Week 8

Applications of the Sylow Theorems

8.1 Sylow III and Examples

11/14:

- Last time:
 - Sylow I: p-Sylow subgroups exist.
 - Sylow II: p-Sylow subgroups are unique up to conjugation. Moreover, if $Q \subset G$ is a p-group, then $Q \subset gPg^{-1}$ with the same g.
 - We proved Sylow II by taking $H \subset G$, and separately taking $P \subset G$ to be p-Sylow. In this case, there exists $g \in G$ such that $H \cap gPg^{-1}$ is a p-Sylow of H. If H = Q, then $Q \cap gPg^{-1} = Q$.
 - More on this??
- Alternate proof of Sylow II.

Proof. We attack the first claim (equality for p-Sylows) in three steps; we will not prove the second claim (containment for p-groups) herein. Step 1 defines a useful group action, allowing us to apply relevant theorems from that domain later on. Step 2 proves the existence of a fixed point of said group action, which will be intimately related to the final element g by which we conjugate P to make it equal Q. Step 3 relates this element g to the desired result. Let's begin.

Let X denote the set of all p-Sylows of G. By Sylow I, X is nonempty. Thus, we may choose $P, Q \in X$ (note that P, Q are not necessarily distinct). Define $G \subset G/P$ by left multiplication. Restrict the group action to Q (i.e., restrict the function $\cdot : G \times G/P \to G/P$ to $Q \times G/P$).

Since $|G| = p^n k$ and $|P| = p^n$, we have that gcd(|G/P|, p) = 1. Thus, |G/P| is not divisible by p, so $|G/P| \mod p \not\equiv 0 \mod p$. Additionally, since Q is a p-group (by definition as a p-Sylow), we have from the proposition in Lecture 7.2 that $Fixed(G/P) \equiv |G/P| \mod p$. This combined with the previous result reveals that Fixed(G/P) is nonempty. As such, we may choose $qP \in Fixed(G/P)$.

By definition, Q stabilizes qP, i.e.,

$$QgP = gP$$
$$g^{-1}QgP = P$$

where the latter equation above is a simple rearrangement of the first, but can be interpreted to mean that $g^{-1}Qg$ stabilizes P. Thus, if $g^{-1}qg \in g^{-1}Qg$, we have $(g^{-1}qg)p_1 = p_i$ for some $i = 1, \ldots, p^n$, and hence $q = g(p_ip_1^{-1})g^{-1} \in gPg^{-1}$. Therefore, $Q \subset gPg^{-1}$. Since |P| = |Q|, we additionally have that $Q = gPg^{-1}$, as desired.

• Sylow III. The first is existence, the second is uniqueness, and then there's this one (divisibility and congruence).

- Theorem (Sylow III divisibility and congruence): Let P be a p-Sylow, and let n_p denote the number of p-Sylows of G. Then
 - 1. Let $N = N_G(P)$. Then $n_p = |G|/|N| = [G:N]$. In particular, n_p divides |G|.

Proof. To prove a claim which expresses |G| in terms of the product of two other numbers, we should think about using the Orbit-Stabilizer theorem. To do so, we need a group action. In particular, a group action by conjugation could be useful because we have a normalizer involved. With this motivation mentioned, let's begin.

Let X be the set of p-Sylows of G. Define $G \subset X$ by conjugation. By the Orbit-Stabilizer theorem,

$$|\operatorname{Stab}_G(P)| \cdot |\operatorname{Orb}(P)| = |G|$$

Since the group action is by conjugation, we have by the definition of the stabilizer and the normalizer that

$$\operatorname{Stab}_{G}(P) = \{ g \in G \mid gPg^{-1} = P \} = N_{G}(P) = N$$

According to Sylow II, every p-Sylow (every element of X) is conjugate to every other via some element of G. Thus, since our group action is conjugation, the group action is transitive and Orb(P) = X. Thus,

$$|\operatorname{Orb}(P)| = |X| = n_p$$

Therefore, substituting the previous two results into the preceding one, we have that

$$|N| \cdot n_p = |G|$$
$$n_p = |G|/|N| = [G:N]$$

as desired. \Box

2. $n_p \equiv 1 \mod p$.

Proof. Congruence should make us think, "fixed points." In this argument, we will pick up where we left off, using the same group action defined in the proof of part 1 to express the claim in the language of fixed points. We will then deduce that this latter claim is true, proving the original claim. Let's begin.

Restrict the action from part 1 to P. This may mean that $P \subset X$ is no longer transitive, but this will not cause any issues. Moving on, we know by the closure of subgroups that $gPg^{-1} = P$ for any $g \in P$; thus, P is a fixed point of $P \subset X$. It follows by the proposition from Lecture 7.2 that $\operatorname{Fixed}_P(X) \equiv |X| \mod p$, and hence $n_p = |X| \equiv \operatorname{Fixed}_P(X) \mod p$. Thus, we are done if we can show that $\operatorname{Fixed}_P(X) = 1$, i.e., that P is the only fixed point of X under $P \subset X$.

Let $Q \in \operatorname{Fixed}_P(X)$ be arbitrary; we seek to prove that Q = P. Define $N := N_G(Q)$. By definition, $Q \subset N$. Additionally, $P \subset N$: Since $Q \in \operatorname{Fixed}_P(X)$, $gQg^{-1} = g \cdot Q = Q$ for all $g \in P$. Hence P, Q are both p-Sylows of N (the order of p dividing |N| certainly [by Lagrange's Theorem] divides the order of p dividing |G|). By Sylow II, any two p-Sylows are conjugate, so there exists $n \in N$ such that $nQn^{-1} = P$. Additionally, since $Q \triangleleft N$ by HW4 Q3c, we have that $nQn^{-1} = Q$. Therefore, by transitivity, P = Q, as desired.

- We are now done with proving the Sylow theorems. Make sure you have nice copies written out!
 - Perhaps before the final, I should take all important proofs from the quarter and make "proof outlines" in my review sheet, giving the tricks and motivation in as concise a format as possible but still allowing me to deduce the rest of the proof for myself. This could be a great exercise!
- The arguments that we've used thus far in this class are mostly combinatorical with a bit of number theory sprinkled in.
- Before going into applications of the Sylow theorems, we present an example that's good to keep in mind.

- Let $G = S_p$ for some $p \in \mathbb{N}$ prime.
 - S I: Yes, G has a p-Sylow, namely $P = \langle (1, 2, \dots, p) \rangle$.
 - S II: Any *p*-cycles are conjugate to one another.
 - Intuitive derivation of the value of n_p : n_p is the number of elements of order $p^{[1]}$ divided by $p-1^{[2]}$. Thus,

$$n_p = \frac{p!}{p(p-1)} = (p-2)!$$

- S III: $(p-2)! \equiv 1 \mod p$.
 - We obtain a related statement from Wilson's theorem: $(p-1)! \equiv -1 \mod p$.
- S III: $|N| = |N_G(P)| = p(p-1)$.
- This result combined with $P \triangleleft N$: |N/P| = p 1.
- Theorem (Wilson's theorem): A natural number p > 1 is prime iff

$$(p-1)! \equiv -1 \mod p$$

• Affine group (of order p): The following group, which consists of permutations given by affine maps. Denoted by Aff_p. Given by

$$\operatorname{Aff}_p = S_{\mathbb{Z}/p\mathbb{Z}}$$

- We send $x \in \mathbb{Z}/p\mathbb{Z}$ to $ax + b \in \mathbb{Z}/p\mathbb{Z}$.
- Injective:

$$ax + b = ay + b$$
$$a(x - y) \equiv 0 \mod p$$
$$x = y$$

- We also need to check that Aff_p is actually a subgroup. The group operation...
- An affine map is the sum of a linear transformation and a translation. Thus,

$$A(ax+b) + B = Aax + Ab + B$$

SC

$$(a,b)(A,B) = (aA, Ab + B)$$

- We claim that $P = \langle X \to X + 1 \rangle$ is a subgroup??
- In particular, $P \triangleleft \operatorname{Aff}_p \leq N$.
- Thus, Aff_p = $N_{S_p}(\langle (1, 2, ..., p) \rangle)$. This is a nice new group to have.
- We have $P: \mathrm{Aff}_p \to (\mathbb{Z}/p\mathbb{Z})^*$ defined by $\langle x \mapsto x + b \rangle$. $x \mapsto ax + b$ goes to a in the codomain, Ax + B maps to A, and $aAx + \cdots$ maps to aA.
- Remark: If q|p-1 is prime, then $(\mathbb{Z}/p\mathbb{Z})^*$ has an element of order q (Sylow). Call it σ . Then $\langle \sigma \rangle \leq (\mathbb{Z}/p\mathbb{Z})^*$.
- Theorem: Let p, q be primes such that p > q. Then either...
 - 1. $p \equiv 1 \mod q$ and there exists a nonabelian group of order pq that is a subset of Aff_p.
 - 2. $p \not\equiv 1 \mod q$ and all groups of order pq are isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$.

¹Recall that this is p!/p, since there are p options for the first entry, p-1 for the second, on and on down to 1, but there are also p ways to write said element.

²Each p-Sylow P contains p-1 distinct p-cycles.

Proof. ...

- Misc notes: According to S III...
 - -|G|=pq and $n_p\equiv 1\mod p$. Either $n_p=1$ or $n_p=q\equiv 1\mod p$, implying q>p, a contradiction.
 - Alternatively, $G \cong P_p \times P_q$. $n_q = 1$ or $n_q = p$. If $p \not\equiv 1 \mod q$, then $n_q = 1$. We end up with $P_p \unlhd G$ and $P_q \unlhd G$, which implies that $P_p \cap P_q = \{e\}$. Therefore, P_p and P_q commute.
- First example: 15; the first composite number for which p, q > 2 (and thus the structure is not covered by our previous analysis).
- We still haven't completely classified groups of order pq; sometimes there's one, sometimes there's more. We will look at these groups in greater detail next lecture.

8.2 Groups of Order pq

- 11/16: Classifying groups of order |G| = 2p for p > 2 prime.
 - By Sylow I, there exists a p-Sylow P_p and a 2-Sylow P_2 .
 - Since $[G: P_p] = 2$, HW4 Q6 implies that P_p is normal.
 - Alternate strategy: By SyIII, $n_p \equiv 1 \mod p$ and $n_p = |G|/|N| = |G|/|P| = 2p/p = 2$. Thus, $n_p = 1$ or $n_p = 2$. These facts combine to say that $n_p = 1$ and $P_p \leq G$.
 - By Lagrange's Theorem, we must have $P_p = \langle x \rangle$ and $P_2 = \langle y \rangle$ for some $x, y \in G$.
 - $-x^{p}=e=y^{2}.$
 - $-G = \langle x, y \rangle.$
 - ullet The elements have order 1, 2, p or 2p by Lagrange.
 - Since $\langle x \rangle$ is normal, it follows that

$$y \langle x \rangle y^{-1} = \langle x \rangle$$
$$yxy^{-1} \in \langle x \rangle$$
$$yxy^{-1} = x^k$$

where the x, y used throughout are the previously referenced generators (not any sort of arbitrary variable).

- Goal: Put constraints on k.
- $k \equiv 0 \mod p \text{ iff } x = e.$
 - If $k \equiv 0 \mod p$, then $yxy^{-1} = x^k = e$, so $x = y^{-1}y = e$.
 - If x = e, then $x^k = yey^{-1} = e$, so we must have $k \equiv 0 \mod p$.
- A preview of something we will shortly prove.
 - There are two groups of order 2p: D_{2p} and $\mathbb{Z}/2p\mathbb{Z}$.
 - In the latter, k = 1.
 - Since $\mathbb{Z}/2p\mathbb{Z}$ is abelian, the conjugate of any element is itself. Thus, $yxy^{-1} = x^1$.
 - In the former, k = -1 (if conjugating by a reflection??).
 - Recall the multiplication rule $rs = sr^{-1}$, from which we can deduce that $srs^{-1} = r^{-1}$.
 - Note that it is proper to use s analogously to y and r analogously to x since reflections (s) have order 2 like y and rotations (r) can have much higher orders (e.g., p).

- Another (redundant??) possibility: $yx^iy^{-1} = yx^{ik}y^{-1}$.
- We now prove that there are only two groups of order 2p.
- Conjugating x by y twice gives us

$$x = exe = y^2xy^{-2} = y(yxy^{-1})y^{-1} = yx^ky^{-1} = (yxy^{-1})^k = (x^k)^k = x^{k^2}$$

- Comparing exponents, we have $k^2 \equiv 1 \mod p$.
- This is equivalent to $(k^2-1) \equiv 0 \mod p$, which in turn is equivalent to $(k+1)(k-1) \equiv 0 \mod p$.
- It follows that $k \equiv \pm 1 \mod p$.
- Now we must consider each case in turn.
- If k=1, then G is abelian, i.e., $G=P_p\times P_2$.
 - Example: $\mathbb{Z}/2p\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
 - We'll see a lot of this breaking up of groups next quarter.
 - Calegari alludes to the **Chinese remainder theorem**.
- Theorem (Chinese remainder theorem): Let m, n be relatively prime positive integers. For all integers a, b, the pair of congruences

$$x \equiv a \mod m$$
$$y \equiv b \mod m$$

has a solution, and this solution is uniquely determined modulo mn.

• If k = -1, then $yx = x^{-1}y$.

$$\begin{array}{c|cccc} & x^i & x^iy \\ \hline x^j & x^{i+j} & x^{i+j}y \\ x^jy & x^{j-i}y & x^{j-i} \end{array}$$

Table 8.1: Multiplication table for |G| = 2p and k = -1.

- We still have that $x^p = 1$.
- We want to show based on this multiplication rule that we really have the dihedral group. Once we have this, there's at most one group it could possibly be. Since D_{2p} is such a group, then they must be isomorphic.
- To do so, we show that the rule determines the multiplication table (see Table 8.1 above).
- Thus, there is at *most* one group.
- But since D_{2p} exists, there is also at *least* one group.
- Therefore, if k = -1, we must have $G \cong D_{2p}$.
- Proposition: Let |G| = 2n, n > 2. If $x \in G$ and |x| = n, |y| = 2, $yx = x^{-1}y$ implies $G \cong D_{2n}$.

Proof. The multiplication table is uniquely determined (analogous to the above argument). \Box

- Remark about $D_4 = K$, where K is the Klein 4-group??
- We now move on to |G| = pq, where p > q are both prime.
- Applying S III, we get n_p equals 1 or q and is congruent to 1 mod p, and n_q equals 1 or p and is congruent to 1 mod q.

- Thus, $n_p = 1$ always and $n_q = 1$ unless $p = 1 \mod q$.
- If |G| = pq and p > 2, $p \not\equiv 1 \mod q$, then $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.
- Case where |G| = q and $p \equiv 1 \mod q$. Then $P_p = \langle x \rangle$ and $P_q = \langle y \rangle$, so $P_p \subseteq G$. This is another (strange??) application of S III.
 - Using what we have here, we know that $yxy^{-1} = x^k$, $k \not\equiv 0 \mod p$. k = 1 implies G is abelian and $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.
 - Now we just need to conjugate x by y, q times over: $x = y^q x y^{-q} = x^{k^q}$. Thus, $k^q \equiv 1 \mod p$.
 - Unlike when q=2, we could factor then. Now we've got a more difficult problem; can't factor it.
 - Does there exist q satisfying the above property? If so, how many are there?
 - Think about this as an identity in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ which has order p-1. We can thus deduce by Lagrange that q|p-1.
 - Sylow I: There exists η of order q such that $\eta, \eta^2, \eta^3, \dots, \eta^{q-1}$ all have order p.
 - We could argue that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic (and in fact it is), but here's something else: We have that $k^q 1 = (k-1)(k-\eta)\cdots(k-\eta^{q-1})$. This is factoring polynomials mod p (weird for now, but very commonplace next quarter).
 - Fix η . Then $yxy^{-1} = x^{\eta^2}$.
- Claim I: This determines the multiplication table; $\langle x \rangle \subset G$. The right cosets $\langle x \rangle$, $\langle x \rangle$ $y, \ldots, \langle x \rangle$ y^{q-1} . $G/P_p \cong \mathbb{Z}/q\mathbb{Z}$. If we have all of the elements of the form $x^i y^j$, do we know how to multiply these together? In particular, can we determine how to write

$$x^i y^j x^a y^b = x^r y^s$$

We have that $yx = x^{\eta^i}y$, so the multiplication table is determined. This implies that there is at most q-1 nonabelian groups.

• Now we have

$$yxy^{-1} = x^{\eta^{i}}$$
$$y^{2}xy^{-1} = x^{\eta^{2i}}$$
$$\vdots$$
$$y^{r}xy^{-r} = x^{\eta^{ri}}$$

Thus, $\eta^{ri} = \eta$. Therefore, $y_i = y^r$ so $yxy^{-1} = x^{\eta}$, so there is at most 1 non abelian group.

- But, P a p-Sylow of S_p and $N = N_{S_p}(P)$ and $C = C_{S_p}(P)$ gives us |N| = p(p-1) and |C| = p so that $N/C = (\mathbb{Z}/p\mathbb{Z})^{\times}$. We now take the preimage in N so that $\langle y, x \rangle = G$. |G| = pq. Then P, G abelian would imply $G \subset C$, but this is not possible since G ahs pq and C has p, so G is not abelian.
- Example $21 = 7 \cdot 3$. $2^3 \equiv 1 \mod 7$. Then we take $\mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/7\mathbb{Z}$ so we take $x \mapsto x + a$, $x \mapsto 2x + a$, $x \mapsto 4x + a$, on and on where a is a constant. There are 21 such maps.
- If $\eta^1 = 1 \mod p$, then the affine maps from $\mathbb{Z}/p\mathbb{Z}$ to $\mathbb{Z}/p\mathbb{Z}$ send $x \mapsto \eta^i x + b$.
- If we call $\sigma = x + 1$ and and $\tau = x \to x\eta$, then $x \mapsto x + \eta = \sigma\eta$.
- The set of affine maps has both $\mathbb{Z}/p\mathbb{Z}$ and $(\mathbb{Z}/p\mathbb{Z})^{\times}$ as subsets.
- If we think about the groups we've classified, we've classified $1, p, p^2, p^3, pq.$ p^3 just a bit, though. Limit to this strategy: The prime factorizations are so simple that we get immediate and very restrictive information about the p-Sylow subgroups (e.g., the biggest one is normal). This can't occur indefinitely because we will eventually get to cases like A_5 of order 60, for example, which has no normal subgroups.

- If we think about our progress (classifying groups of low order up to 4), then going upwards, the first group we can't do is of order $12 = 2 \cdot 2 \cdot 3$. This is like A_4 , which is not too bad but all the same, $n_3 = 1, 4, n_2 = 1, 3$. If $n_3 = 4$, then we have an action of G on the 3 Sylow's, giving a transitive map from G to S_4 . Thus, the stabilizer has size 3.
- $n_3 = 1$, so $G = P_3 \times P_2$. $n_3 = 1$ and $n_2 = 3$, so $G \times S_3$. Since there is such an explosion of groups, this is not the optimal strategy. Thus, ...
- We may do a review session of the 25 practice problems over Twitch with him playing speedtest.
- At this point, we have the tools to do every outgoing homework problem, save the last one of the last psets on symmetry groups.

8.3 Symmetries in Three-Space

- 11/18: Classify the finite subgroups of SO(3).
 - We can take any regular n-gon and think of $D_{2n} \subset O(2) \subset SO(2)$.
 - Five platonic solids: Te, Cu, Oc, Do, and Ic.
 - Cu and Oc are paired and Do and Ic are paired. Te $\cong A_4$, Cu \cong Oc $\cong S_4$, and Do \cong Ic $\cong A_5$.
 - Theorem: Let $G \subset SO(3)$ be a finite group. Then G is conjugate to one of these groups.
 - Let $g \in SO(3)$, $g \neq e$. The only fixed points of g lie on a line ℓ which contains the origin 0.
 - We have a group action SO(3) $\subset S^2 = \{v \mid ||v|| = 1\}$. Consider $G \subset S^2$. Any $g \neq e$ has exactly 2 fixed points which we may call $\{\pm u\}$ for some u.
 - Thus, $|\operatorname{Stab}(x)| = 1$ for all but finitely many points $x \in S^2$.
 - Claim:

$$\sum_{x \in S^2} |\operatorname{Stab}(x) - 1|$$