## Az informatikai biztonság alapjai

Pintér-Huszti Andrea

2023. október 1.

#### Tartalom

- RSA titkosítási séma
  - Matematikai alapok
  - RSA titkosítási séma
  - Biztonsági elemzés

## RSA titkosítási séma

### RSA







- 1977-ben jelent meg
- Tervezői: Ron Rivest, Adi Shamir, és Leonard Adleman
- Legtöbb Nyilvános Kulcs Infrastruktúra (PKI) termékben megtalálható, SSL/TLS tanúsítványok
- Biztonságos e-mail: PGP, Outlook



## Matematikai alapok

## Kongruenciák

#### Definíció

Legyenek a és b egész számok és m pozitív egész. Azt mondjuk, hogy a **kongruens** b-vel modulo m, ha m|a-b.

 $\underline{\mathsf{Jel\"{o}l\acute{e}s}} : \ a \equiv b \pmod{m}$ 

- Az m számot modulusnak nevezzük.
- Két szám pontosan akkor kongruens modulo m, ha m-mel osztva ugyanazt a maradékot adják
- Amennyiben a és b nem kongruensek modulo m, akkor a és b inkongruensek modulo m, jelölése:  $a \not\equiv b \pmod{m}$

<u>Példák</u>:  $13 \equiv 8 \pmod{5}$ ,  $25 \equiv -10 \pmod{7}$ ,  $25 \not\equiv 10 \pmod{7}$ 



## Euler-féle $\varphi$ függvény

#### Definíció

Az  $a_1, a_2,..., a_n$  számok relatív prímek, ha nincs egységtől különböző közös osztójuk, azaz  $(a_1, a_2,..., a_n) = 1$ .

<u>Példa</u>: 5, -3, 15, -56 számok relatív prímek.

#### Definíció

(Euler-féle  $\varphi$  függvény)

Tetszőleges n pozitív egész esetén  $\varphi(n)$  jelöli az  $1,2,\ldots,n$  számok közül az n-hez relatív prímek számát.

Példák: 
$$\varphi(10) = 4$$
,  $\varphi(7) = 6$ 



## Euler-féle $\varphi$ függvény

#### Tétel

$$\varphi(n) = n \prod_{p|n} \frac{p-1}{p}$$
, ahol p prím.

Példa:  $\varphi(100) = 100 \cdot \frac{1}{2} \cdot \frac{4}{5} = 40$ 

Vegyük észre:

$$\varphi(p)=p-1,$$

ahol p prím, és

$$\varphi(p \cdot q) = (p-1)(q-1),$$

ahol p, q prímek



#### Euler-Fermat tétel

#### Tétel

(Euler-Fermat tétel, kétféle megfogalmazás) Ha (a, m) = 1, akkor  $a^{\varphi(m)} \equiv 1 \pmod{m}$ .

#### Tétel

(kis Fermat tétel)

- **1** Ha p prímszám,  $a \in \mathbb{Z}$  és  $p \nmid a$ , akkor  $a^{p-1} \equiv 1 \pmod{p}$ .
- **2** Ha p prímszám és  $a \in \mathbb{Z}$ , akkor  $a^p \equiv a \pmod{p}$ .

## Lineáris kongruenciák

#### Definíció

Ha  $a, b \in \mathbb{Z}$  és m pozitív egész, akkor az  $ax \equiv b \pmod{m}$  kongruenciát **lineáris kongruenciának** nevezzük.

A kongruencia megoldásai olyan egész számok, melyeket x helyébe írva a kongruencia teljesül. Megoldások számán a különböző maradékosztályok számát értjük, melyekből vett egészek a kongruenciát kielégítik.

#### Tétel

Ha  $a, b \in \mathbb{Z}$  és m pozitív egész, az  $ax \equiv b \pmod{m}$  lineáris kongruencia akkor és csak akkor oldható meg, ha  $(a, m) \mid b$ .

Ha az  $ax \equiv b \pmod{m}$  lineáris kongruencia megoldható, akkor a megoldások száma (a, m).

#### Tétel

Ha (a, m) = 1, akkor az ax  $\equiv b \pmod{m}$  lineáris kongruencia egyetlen megoldása  $x \equiv a^{\varphi(m)-1} \cdot b \pmod{m}$ .

#### Bizonyítás

Ha  $x \equiv a^{\varphi(m)-1} \cdot b \pmod{m}$ , akkor x valóban megoldás, hiszen az Euler-Fermat tétel szerint  $aa^{\varphi(m)-1} \cdot b \equiv b \pmod{m}$ .  $\square$ 

## Szimultán kongruenciarendszer

#### Definíció

Ha ugyanazon ismeretlenre több különböző modulusú kongruenciafeltételt adunk, akkor **szimultán kongruenciarendszer**t kapunk.

#### Tétel

Αz

$$x \equiv y_1 \pmod{m}$$
$$x \equiv y_2 \pmod{n}$$

szimultán kongruenciarendszer megoldhatóságának szükséges és elégséges feltétele, hogy  $(m,n) \mid y_1 - y_2$ . Az összes megoldás egy maradékosztályt alkot modulo [m,n].

Az [m, n] az m és n modulusok legkisebb közös többszörösét jelöli.



#### Kínai maradéktétel

#### Tétel

Legyenek  $m_1, m_2, \ldots, m_k$  páronként relatív prímek. Ekkor

$$x \equiv y_1 \pmod{m_1}$$
 $x \equiv y_2 \pmod{m_2}$ 
 $\vdots$ 
 $x \equiv y_k \pmod{m_k}$ 

szimultán kongruenciarendszer bármilyen  $y_1, y_2, \dots, y_k$  egészek esetén megoldható, és a megoldások egyetlen maradékosztályt alkotnak modulo  $m_1 m_2 \cdot \dots \cdot m_k$ .

#### Kínai maradéktétel

Bizonyítás Legyen  $M=m_1m_2\cdots m_k$  és  $M_i=\frac{M}{m_i}$ , ahol  $i=1,2,\ldots,k$ . Mivel az  $m_1,\ldots,m_k$  modulusok páronként relatív prímek, ezért  $(M_i,m_i)=1,\ i=1,2,\ldots,k$ . Tekintsük az  $M_i\cdot x\equiv 1\pmod{m_i}$ , ahol  $i=1,2,\ldots,k$  kongruenciákat. Bármely i esetén a kongruencia megoldható, hiszen  $(M_i,m_i)=1$ , legyen  $x\equiv c_i\pmod{m_i}$  a megoldás. Ekkor  $M_i\cdot c_i\equiv 1\pmod{m_i}$  és  $M_i\cdot c_i\equiv 0\pmod{m_i}$ , ahol  $i\neq j$ . Legyen

$$x_0 \equiv \sum_{i=1}^k M_i c_i y_i \pmod{M}.$$

Az előbbiek alapján  $x_0 \equiv y_i \pmod{m_i}$ ,  $i=1,\ldots,k$ , tehát  $x_0$  megoldása a szimultán kongruenciarendszernek. Ezzel egy konstruktív bizonyítást adtunk a megoldás létezésére.

Most lássuk be, hogy csak egy megoldása van. Tegyük fel, hogy  $x_0'$  szintén megoldása a szimultán kongruenciarendszernek. Így  $x_0' \equiv y_i$  (mod  $m_i$ ),  $i=1,2,\ldots,k$ , azaz  $m_i \mid x_0'-y_i$ , bármely i-re. Ugyanakkor  $x_0$  szintén megoldás, tehát  $m_i \mid x_0-y_i$ , ahonnan  $m_i \mid x_0'-x_0$  bármely i-re. Ha az előbbi oszthatóság tetszőleges  $i \in \{1,2,\ldots,k\}$ -re teljesül, akkor  $m_1m_2 \cdot \cdots \cdot m_k \mid x_0'-x_0$  is áll, azaz  $M \mid x_0'-x_0$ , így  $x_0' \equiv x_0 \pmod{M}$ . Tehát  $x_0'$  és  $x_0$  megoldások egy maradékosztályba esnek modulo M.  $\square$ 

## RSA titkosítási séma

#### RSA titkosítási séma

Aszimmetrikus titkosítási séma: AE = (Key, Enc, Dec)

- Key:
  - Véletlenül választunk két nagy prímet: p, q.
  - ② Kiszámítjuk az RSA modulust:  $n = p \cdot q$ .
  - **3** Kiszámítjuk az Euler-féle  $\phi$  függvényt:  $\phi(n) = (p-1)(q-1)$ .
  - Választunk egy *véletlen e* egészt:  $1 < e < \phi(n)$  és  $(e, \phi(n)) = 1$ . (e titkosító kitevő)
  - **5** Kiszámítjuk d-t:  $1 < d < \phi(n)$  és  $ed \equiv 1 \pmod{\phi(n)}$ . (d visszafejtő kitevő)

$$PK = (n, e)$$
,  $SK = d$  and  $\phi(n)$ ,  $p, q$  titkos paraméterek  $\mathcal{P} = \mathcal{C} = \mathbb{Z}_n$ 

- $Enc_{PK}(m) = m^e \pmod{n} \ \forall m \in \mathcal{P} \ \text{\'es} \ PK = (n,e) \ \text{mellett.}$
- $Dec_{SK}(c) = c^d \pmod{n} \ \forall c \in C \text{ \'es } SK = d \text{ mellett.}$



#### Aszimmetrikus titkosítási séma: AE = (Key, Enc, Dec)

- Key:
  - Véletlenül választunk két nagy prímet: p = 5, q = 11.
  - ② Kiszámítjuk az RSA modulust:  $n = p \cdot q = 55$ .
  - **3** Kiszámítjuk az Euler-féle  $\phi$  függvényt:  $\phi(n) = (p-1)(q-1) = 40$ .
  - Választunk egy *véletlen e* egészt:  $1 < e < \phi(n)$  és  $(e, \phi(n)) = 1$ , e = 3.
  - **5** Kiszámítjuk d:  $1 < d < \phi(n)$  és  $ed \equiv 1 \pmod{\phi(n)}$ , d = 27.

$$PK = (n = 55, e = 3)$$
,  $SK = d = 27$  és  $\phi(n) = 40$ ,  $p = 5$ ,  $q = 11$  titkos paraméterek  $\mathcal{P} = \mathcal{C} = \mathbb{Z}_{55}$ 

- m = 8 és PK = (55,3):  $Enc_{PK}(m) = 8^3 \pmod{55}$  $8^3 \equiv 17 \pmod{55}$
- c = 17 és SK = 27:  $Dec_{SK}(c) = 17^{27} \pmod{55}$  $17^{27} \equiv 8 \pmod{55}$

## Kapcsolódó algoritmusok

- Key:
  - Véletlenül választunk két nagy prímet: p, q. -> Prímtesztek (pl. Miller-Rabin prímteszt)
  - ② Választunk egy véletlen e egészt:  $1 < e < \phi(n)$  és  $(e, \phi(n)) = 1$ . -> Euklideszi algoritmus
- $Enc_{PK}(m) = m^e \pmod{n} \ \forall m \in \mathcal{P} \text{ és } PK = (n, e) \text{ mellett. } ->$  Gyors hatványozás
- $Dec_{SK}(c) = c^d \pmod{n} \ \forall c \in C \text{ \'es } SK = d \text{ mellett. -> K\'inai}$ Maradéktétel alkalmazása



## Biztonsági elemzés

# SK kiszámítása PK ismeretében nehéz ——> prímfaktorizáció

#### A támadó célja a titkos kulcs megszerzése:

Tétel: A d exponens kiszámítása az (n,e) paraméterek ismeretében **ugyanolyan nehéz**, mint az n modulus p és q prímfaktorainak meghatározása, ahol |p|=|q|.

#### Megjegyzés:

- Ha meg tudjuk határozni n faktorait, akkor d kiszámítható a  $ed \equiv 1 \pmod{\phi(n)}$  kongruenciából.  $\phi(n)$  kiszámításához p és q ismerete szükséges.
- Ha van egy hatékony algoritmus d kiszámítására (n, e)
   ismeretében, akkor ez az algoritmus alkalmas n faktorizálására.

#### Prímfaktorizáció

- Ha az n modulus p és q faktorai elég nagyok, akkor nem ismerünk hatékony (polinomiális idejű) algoritmust n faktorizálására.
- Paraméterek méretei: |n|=768, ahol |p|=|q|=384 modulust faktorizálták 2009-ben Számtest Szita algoritmussal. |n|=1024, ahol |p|=|q|=512 biztonságos. https://unideb.hu —-> |n|=4096 (hosszú távra archiválás)

## RSA modulus mérete (2018)



## A nyílt üzenet m kiszámítása a c ismeretében nehéz——> RSA probléma

#### A támadó célja a nyílt üzenet meghatározása:

- Az RSA Probléma: Adott (n, e) RSA nyilvános kulcs és  $c \equiv m^e \pmod{n}$  titkosított üzenet mellett m nyílt üzenet kiszámítása.
- A támadó nem feltétlenül ismeri a titkos kulcsot. Feladat:  $c^{\frac{1}{e}}$ (mod *n*) kiszámítása.
- Az RSA Probléma nehéz, ha az n modulus elég nagy és a prímek véletlenül generáltak, valamint az m nyílt üzenet (emiatt a c titkosított üzenet is) egy a 0 és n-1 közé eső véletlen egész.
- Az m nyílt üzenet véletlensége a [0, n-1] intervallum felett fontos feltétel. Ha m egy kis halmazból vett, akkor a támadó könnyen meghatározhatja m-et úgy, hogy egyenként próbálgatja az összes lehetséges *m*-et (brute force).

## Prímfaktorizáció vs. RSA probléma

- Prímfaktorizáció -> RSA probléma
   Az RSA Probléma nem nehezebb, mint a prímfaktorizáció,
   hiszen ha a támadó képes az n modulus faktorizálására, akkor
   ki tudja számolni a d titkos kulcsot az (n, e) nyilvános
   kulcsból.
- RSA probléma -> Prímfaktorizáció
   Nem tudjuk, hogy ha az RSA probléma megoldható, akkor tudunk -e hatékony algoritmust adni a prímfaktorizációra.

- Speciális a nyílt üzenetek halmaza Támadás: Csak a titkosított üzenet ismert (COA) Input: c, (n, e) Output: m, ahol  $m^e \equiv c \pmod{n}$  Algoritmus: Minden lehetséges nyílt üzenetet kipróbálunk. (Brute Force)
- Titkosított üzenetek közötti kapcsolat Támadás: Választott üzenet alapú támadás (CCA) Input: c, (n, e) és m' egy választott c'-re Output: m Algoritmus:
  - **1** Választunk egy véletlen  $r \in \mathcal{P}$
  - ② Kiszámítjuk  $r' \equiv r^e \pmod{n}$ , és kérjük  $c' \equiv r' \cdot c \pmod{n}$  visszafejtését
  - **3** Megkapjuk m'-t, ahol  $m' \equiv (c')^d \equiv (r' \cdot c)^d \equiv r \cdot m \pmod{n}$
  - r ismeretében m kiszámítható m'-ből



- A tankönyvi RSA egy nem biztonságos titkosítási séma.
- Gyakorlatban: RSA-OAEP (Optimal Asymmetric Encryption Padding):

Adott: 
$$G: \{0,1\}^k \to \{0,1\}^l$$
,  $H: \{0,1\}^l \to \{0,1\}^k$ ,  $\mathcal{P} = \{0,1\}^l$   
Titkosítás:

- Input:  $m \in \{0,1\}^l$  és  $r \in \{0,1\}^k$
- Output:  $c = ((m \oplus G(r)) || (r \oplus H(m \oplus G(r))))^e \pmod{n}$

#### Visszafeités:

- Input:  $c \in \{0,1\}^{l+k}$
- Kiszámítjuk:
  - $c^d = ((m \oplus G(r))||(r \oplus H(m \oplus G(r)))) \pmod{n}$
  - Meghatározzuk  $r: r = (r \oplus H(m \oplus G(r))) \oplus H(m \oplus G(r))$
  - $m = (m \oplus G(r)) \oplus G(r)$
- Output: m



## Egyirányú függvény

- Egyirányú függvény:
  - Kiszámítani könnyű: Adott x, és könnyű kiszámítáni f(x)-et.
  - Nehéz invertálni: Adott f(x), nehéz kiszámítani x-et.
- Nem tudjuk, hogy létezik -e egyirányú függvény.
- ullet Egyirányúnak  $\emph{bizonyul:}\ p,q$  prímek szorzata, ahol |p|=|q|
  - Könnyű kiszámítani: Adott p, q, könnyű  $f(p, q) = p \cdot q$  kiszámítása.
  - Nehéz invertálni: Adott  $f(p,q) = p \cdot q$ , nehéz kiszámítani p vagy/és q-t. (prímfaktorizáció)

## Egyirányú csapóajtó függvény

- Egyirányú csapóajtó függvény:
  - Egyirányú függvény
    - Kiszámítani könnyű: Adott x, és könnyű kiszámítáni f(x)-et.
    - Nehéz invertálni: Adott f(x), nehéz kiszámítani x-et.
  - Csapóajtó információ: Bizonyos plusz információval viszont könnyű invertálni: x kiszámítása f(x)-ből.
- Nem tudjuk, hogy létezik -e egyirányú csapóajtó függvény.
- Egyirányú csapóajtó függvénynek bizonyul: moduláris hatványozás RSA modulussal
  - Egyirányú függvény:
    - Kiszámítani könnyű: Adott m, könnyű kiszámítani  $f(m) = m^e \pmod{n}$  (gyors hatványozás).
    - Nehéz invertálni: Adott  $f(m) = m^e \pmod{n}$  és (n, e), nehéz kiszámítani m-et. (RSA probléma)
  - Csapóajtó információ: $d, p, q, \phi(n)$ .

