Memoria Ram y Buses

Lenin G. Falconí

2024-07-02

1/20

Lenin G. Falconí Memoria Ram y Buses 2024-07-02

Outline

Flip Flops

2 Memoria Semiconductora

Buses

2 / 20

Lenin G. Falconí Memoria Ram y Buses 2024-07-02

Compuertas Lógicas de Memoria (Latch)

- Compuerta lógica que almacena un 1 bit de memoria.
- Se caracteriza por una señal de retroalimentación de la salida de la compuerta AND a la entrada de la compuerta OR
- ullet Cuando S=1
 ightarrow Q=1
- Cuando R=1 o Q=0
- El valor inicial de Q al encender no es determinado.

	S	R	Acción	Q
	0	0	Hold	Qprev
ĺ	1	0	Set	1
ĺ	Χ	1	Reset	0

Figure: Circuito SR Latch

Latch D

- Utiliza una señal de habilitación E
- Cuando E = 0, Qmantiene el valor anterior
- Cuando E=1, Q=D
- Dispone de una salida complementada

Table: Tabla de verdad de Latch D

D	Ε	Q	Q
0	1	0	1
1	1	1	0
Х	0	Q_{prev}	\overline{Q}_{prev}

Figure: D Latch

Flip Flops

- Dispositivo que cambia su estado de salida de acuerdo a la transición de la señal del reloj.
- El Flip Flop tipo D usa una señal de reloj para conmutar estados.
- Adicionalmente dispone de entradas S y R que permiten sobrescribir los estados de salida.
- Para la conmutación se utiliza la transición positiva del reloj.
- Se pueden conectar en serie para realizar la transferencia de bits de datos de un flip-flop a otro de manera secuencial (i.e. shift register)

S	R	D	CLK	Q	$ar{Q}$
0	0	1	↑	1	0
0	0	0	\uparrow	0	1
0	0	Χ	Estable	Q_{prev}	$ar{Q}_{prev}$
1	0	Χ	Χ	1	0
0	1	Χ	Χ	0	1

Ring Counter

- Conecta la salida del último D-Latch al inicio
- Se utiliza para construir máquinas de estado finito

Registros

- Se utilizan por el procesador para almacenaje temporal de datos
- Sirven como entrada y salida de una variedad de instrucciones como el movimiento de datos desde y hacia la memoria, operaciones aritméticas y manipulaciones a nivel de bit
- Operaciones típicas son la rotación a derecha o izquierda
- Los Registros se escriben y leen usualmente en paralelo de manera simultánea en una transición de reloj.

Figure: Registro de 4 bits

7 / 20

Evolución de la Memoria I

- Es una secuencia de ubicaciones de almacenamiento direccionables que contiene instrucciones y datos para ser utilizados por el procesador mientras ejecuta un programa.
- 1950 a 1970: Se utiliza matrices de núcleos ferromagnéticos toroidales. Se caracterizan por ser no volátiles y el grabado de 1 o 0 se controla según la polarización obtenida por la circulación de la corriente eléctrica a través de la bobina.
- 1970 a actualidad: Memorias estáticas y dinámicas a base de semiconductores como el MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Evolución de la Memoria II

Figure: Acercamiento de núcleos ferromagnéticos

Figure: IBM 360 memoria de 8KB

Figure: Operación de núcleos magnéticos

Memoria Semiconductora

Figure: 64 bits, 1969

Figure: 1MiB, 1989

Figure: 128 GiB, 2019

MOSFET I

- Operación similar a un transistor NPN1.
- Es un dispositivo controlado por voltaje.
- La operación del MOSFET depende de la tensión entre Gate y Source
- Se estima que existen 13 sextillones² de transistores han sido manufacturados, siendo el 99.9% de tipo MOSFET.
- Existen dos tipos de MOSFET: 1) de canal N y 2) de canal P
- Las compuertas lógicas se forman de pares de MOSFET tipo N y P.
- Un dispositivo formado por pares de transistores MOS se denomina Complementary MOS (i.e. CMOS)

¹controlado por corriente

²Un sextillón es un 1 seguido de 21 ceros

MOSFET

Figure: Compuerta NOT

Celda DRAM

- Una memoria de acceso aleatorio dinámico está formada por un MOSFET y un capacitor.
- Una celda DRAM es una localidad que permite escribir y leer un bit
- La celda se replica en una matriz para rectangular para formar un banco de memoria DRAM.
- El estado de la memoria se guarda en el capacitor
- O lógico es 0V
- 1 lógico es alrededor de 1.1V

Celda DRAM

Figure: Celda de 1 bit

Figure: DRAM de 16 bits (4 words de 4 bits)

Proceso de Lectura/Escritura

- Las líneas de dirección (i.e. wordlines) se mantienen a nivel bajo la mayoría del tiempo para mantener al MOSFET apagado.
- Para leer, le circuito de control selecciona la wordline apropiada y la coloca en nivel alto, mientras que las restantes se mantienen en bajo. Esto permite que encender los MOSFETs de la wordline y que los capacitores pasen sus niveles de voltaje a las bitlines (i.e. bus de datos)
- El proceso de lectura funciona similar, sólo que la circuitería se encarga de cargar los capacitores de la *wordline* respectiva.

Etimología DDR5 SDRAM I

- Intel introdujo la memoria DRAM en 1970
- Las siglas DDR hacen referencia a double data rate que indica que el dispositivo realiza dos transferencias por ciclo de reloj.
- El número luego de DDR indica la generación de la tecnología (i.e. DDR5 quinta)
- SDRAM significa DRAM sincrónica: usa una señal de reloj para sincronizar la memoria y el procesador.
- Recuerde que 1 G equivale a 2³⁰
- Para 2021, el estándard de memoria es la DDR5 SDRAM empacada en dual inline memory module (DIMM).
- Un DIMM tiene 288 pines.
- Para laptops está disponible la SODIM de 262 pines

Sistema I/O

- Los procesadores de 32 y 64 bits utilizan el mapeado de las interfaces de entrada/salida a memoria.
- Arquitecturas actuales usan un conjunto de circuitos integrados (chipset) para manejar y comunicar con las interfaces de entrada salida.
- El chipset permite conectar con un amplio rango de periféricos (e.g. discos, interfaces de red, teclado, mouse, USB)

17 / 20

Buses de datos Paralelos y Seriales I

Bus Paralelo

- Un bus paralelo comunica múltiples bits de datos de manera simultánea
- Se utilizaba para conectar el computador a impresoras
- Requiere de varios cables o conductores lo que incrementa el costo y la probabilidad de fallo.
- Existe un límite superior para la velocidad de transferencia de datos en un bus paralelo (los bits no llegan al mismo tiempo al incrementar la velocidad de transmisión)
- Transmiten datos en una sola dirección (half duplex)

Buses de datos Paralelos y Seriales

Bus Serie

- Transmite un bit a la vez entre dos terminales de comunicación.
- Puede desarrollar comunicación bidireccional (i.e. full-duplex)
- Utiliza un par de conductores para transmitir los datos.
- Utiliza señales diferenciales^a para mitigar la susceptibilidad al ruido.
- Físicamente, el cableado serial usa pares trenzados.
- La mayoría de comunicaciones de alta velocidad entre un procesador y un periférico, en computadores actuales, es a través del bus serial.
- Puede alcanzar a realizar billones de transferencias por segundo.
- La conexión entre un procesador y el chipset de la tarjeta madre usa varios buses seriales denominados high-speed input output lanes (HSIO)
- HSIO se usa en PCI-Express, SATA, M.2, USB, Thunderbolt.

^aSe transmite la diferencia de voltaje

Buses de datos Paralelos y Seriales

Figure: Puerto Serial y Paralelo

Figure: Comunicación serial

Figure: Par Trenzado