Méthodes d'analyse sémantique de corpus de décisions jurisprudentielles

Soutenance de thèse

Gildas TAGNY NGOMPÉ

24 janvier 2020

Jury:

- Stéphane MUSSARD, Professeur, Université de Nîmes (Directeur de thèse)
- Jacky MONTMAIN, Professeur, IMT Mines Alès (Co-directeur de thèse)
- Sandra BRINGAY, Professeur, Université Paul Valéry Montpellier (Rapporteur)
- Mohand BOUGHANEM, Professeur, Université Toulouse III Paul Sabatier (Rapporteur)
- Françoise SEYTE, Maître de Conférences (HDR), Université de Montpellier (Examinateur)
- O Fabrice MUHLENBACH, Maître de Conférences, Université Jean Monnet de Saint-Étienne (Examinateur)
- Guillaume ZAMBRANO, Maître de Conférences, Université de Nîmes (Encadrant de proximité)
- Sébastien HARISPE, Maître Assistant, IMT Mines Alès (Encadrant de proximité)

1. Identification du sens du résultat

1. Identification du sens du résultat

1.3 Résultats expérimentaux

- 1.1 Contexte
- 1.2 Méthode proposée : adaptations de la régression Gini-PLS
- 1.2 Methode proposee : adaptations de la regression dini-r Lo

1.1 Contexte

Restriction du problème d'identification des demandes

- Uniquement les décisions à une demande de la catégorie
 - o Raison : plus de 50% des documents dans la majorité des catégories
- Classification binaire (éviter les subtilités de rédaction)
 - Raison : les demandes sont en majorité acceptées ou rejetées

1.1 Contexte

Plusieurs algorithmes classiques existent

- Classifieur bayésien naïf [Duda et al., 1973]
- K-plus-proches-voisins [Cover and Hart, 1967]
- SVM [Vapnik, 1995]
- Arbre de décision
- Analyse discriminante linéaire [Fisher, 1936] et quadratique [McLachlan, 1992]
- NBSVM [Wang and Manning, 2012]
- fastText [Grave et al., 2017]
- o etc.

1.2 Méthode proposée : adaptations de la régression Gini-PLS

Régression Gini-PLS

- PLS [Wold, 1966] (régression partielle des moindres carrés)
 - Réduction supervisée de dimensions x₁, x₂, ..., x_m en composantes orthogonales t₁,, t_h

$$t_h = \sum_{k=1}^m w_{hk} \cdot \hat{U}_{(h-1)k}$$

avec $\hat{U}_{0k} = x_k$, $\forall h > 0$, \hat{U}_{hk} est le résidu de la régression de x_k sur $t_1, ..., t_{h-1}$ ()
et $w_{hj} = \frac{\text{cov}(\varepsilon_h, \hat{U}_{(h-1)j})}{\sqrt{\sum_{i=1}^m \text{cov}^2(\varepsilon_h, \hat{U}_{(h-1)j})}}$

o Régression de y dans l'espace réduit

$$y = c_1t_1 + ... + c_ht_h + \varepsilon_h$$

- Gini-PLS [Mussard and Souissi-Benrejab, 2018]
 - Remplacement de la covariance $cov(x_j, y)$ par la covariance de Gini $cog(y; x_i) := cov(y; R(x_i))$

0

1.2 Méthode proposée : adaptations de la régression Gini-PLS

- 1. Gini-PLS généralisé
 - Utilisation de l'opérateur co-Gini généralisé : $cog_{\nu}(x_{\ell}, x_{k}) := -\nu cov(x_{\ell}, r_{\nu}^{\nu-1}); \ \nu > 1$

pous disposer d'un curseur ν permettant de régler le compromis entre l'atténuation de la variabilité des variables et l'influence des queues de distributions de ces variables

- 2. Logit-PLS: $\forall j > 1$, les w_{hj} sont les coefficients de la régression logistique de y sur les composantes $t_1, ..., t_{h-1}, u_{(h-1)j}$ [Tenenhaus, 2005]
- 3. Gini-Logit-PLS : covariance Gini pour $u_{(h)j}$ et coefficient Logit pour les w_{hi}

1.3 Résultats expérimentaux

Comaparaison des classifieurs PLS aux classifieurs classiques

Représentation	Algorithme	F ₁	$F_{1_{arbre}} - F_{1}$	$F_{1_{\text{max}}} - F_{1_{\text{min}}}$
tf – gss	Arbre	0.668	0	0.42
tf — avg _{global}	LogitPLS	0.648	0.02	0.263
tf — avg _{global}	StandardPLS	0.636	0.032	0.346
$tf - \Delta_{DF}$	GiniPLS	0.586	0.082	0.426
$tf - \Delta_{DF}$	GiniLogitPLS	0.578	0.09	0.547
-	NBSVM	0.494	0.174	0.434
-	fastText	0.412	0.256	0.127

1.3 Résultats expérimentaux

Amélioration de la classification par restriction du document

Catégorie	Zone	Représentation	Algorithme	F ₁
асра	demande_resultat_a_resultat_context	tf — dbidf	Arbre	0.846
	litige_motifs_dispositif	tf — dbidf	StandardPLS	0.697
	litige_motifs_dispositif	tf — avg _{global}	LogitPLS	0.683
concdel	litige_motifs_dispositif	tf — gss	Arbre	0.798
	motifs	tf — idf	GiniLogitPLS	0.703
	context	logave — dbidf	StandardPLS	0.657
danais	demande_resultat_a_resultat_context	$avg_{local} - \chi^2$	Arbre	0.813
	demande_resultat_a_resultat_context	atf — avg _{global}	LogitPLS	0.721
	demande_resultat_a_resultat_context	atf — avg _{global}	StandardPLS	0.695
dcppc	demande_resultat_a_resultat_context	$tf - \chi^2$	Arbre	0.985
	demande_resultat_a_resultat_context	$tf - \chi^2$	LogitPLS	0.94
	litige_motifs_dispositif	tp — mar	StandardPLS	0.934
doris	litige_motifs_dispositif	tp — dsidf	GiniPLS	0.806
	litige_motifs_dispositif	tp — dsidf	GiniLogitPLS	0.806
	litige_motifs_dispositif	atf — ig	StandardPLS	0.772
styx	motifs	tf — dsidf	Arbre	1
	demande_resultat_a_resultat_context	logave — dsidf	GiniLogitPLS	0.917
	litige_motifs_dispositif	tf – rf	GiniPLS	0.833

Questions

References I

Cover, T. and Hart, P. (1967).

Nearest Neighbor Pattern Classification.

IEEE Transactions on Information Theory, 13(1):21-27.

Duda, R. O., Hart, P. E., et al. (1973).

Pattern Classification And Scene Analysis, volume 3. John Wiley & Sons. New York.

Fisher, R. A. (1936).

The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7(2):179–188.

Grave, E., Mikolov, T., Joulin, A., and Bojanowski, P. (2017).

Bag of tricks for efficient text classification.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, volume 2, pages 427–431, Valencia, Spain.

McLachlan, G. J. (1992).

Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons.

Mussard, S. and Souissi-Benrejab, F. (2018). Gini-PLS Regressions.

Journal of Quantitative Economics, pages 1–36.

References II

Tenenhaus, M. (2005).

La regression logistique PLS.

In Droesbeke, Jean-Jacques and Lejeune, Michel and Saporta, Gilbert, editor, Modèles statistiques pour données qualitatives, chapter 12, pages 263–276. Editions Technip.

Vapnik, V. N. (1995).

The Nature of Statistical Learning Theory. Springer.

Wang, S. and Manning, C. D. (2012).

Baselines and bigrams: Simple, good sentiment and topic classification.

In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2. pages 90–94. Association for Computational Linguistics.

Wold, H. (1966).

Estimation of principal components and related models by iterative least squares. *Multivariate Analysis*, pages 391–420.