### Raju Hazari

Department of Computer Science and Engineering National Institute of Technology Calicut

November 5, 2020

# Proof of Myhill-Nerode Theorem

- We stated with a machine M and defined a equivalence relation  $R_M$  on M.  $R_M$  was a finite index, it is right invariant and L is a union of some of the equivalence classes of  $R_M$ .
- Then we saw that if we take  $R_L$ ,  $R_M$  will be a refinement of  $R_L$ . So, the index of  $R_L$  or number of equivalence classes in  $R_L$  will be less than equal to the number of equivalence classes in  $R_M$ .
- Then from  $R_L$ , we constructed a DFA M'. Corresponding to each equivalence class of  $R_L$  we have a state in M'. Equivalence class which contains the empty string it corresponds to start state. If x in L then an equivalence class corresponding to that will be a final state.



- This is a state diagram of DFA. Here, the alphabet  $\Sigma^* = \{0, 1\}$
- Now, consider this as a machine M induces an equivalence relation  $(R_M)$  on  $\Sigma^*$ .
- In  $R_M$  we have define the set of strings which take you from initial state to a particular state and the each of corresponding to a equivalence class. So, there is five equivalence classes,  $J_0$ ,  $J_1$ ,  $J_2$ ,  $J_3$  and  $J_4$ .
  - ▶  $J_0$  is a equivalence class which contains a set of strings which take you from  $q_0$  to  $q_0$
  - ▶  $J_1$  is a equivalence class which contains a set of strings which take you from  $g_0$  to  $g_1$

- L contains two class, i.e.,  $J_3$  and  $J_4$ , because these two are final state. So, L is a union of these two equivalence classes,  $L = J_3 \cup J_4$
- Now, consider  $R_M$  will be refinement of  $R_L$ . So, some of these equivalence classes can be merged in  $R_L$ . See which of them can be merged.
- First consider two equivalence class  $J_1$  and  $J_2$ , and two string x and y. Consider x belongs to  $J_1$  and y belongs to  $J_2$ . If I take a z, and if z contain just one 0 then both xz and yz will not be accepted. If z contains just one 1, both of them will be accepted. So, whatever may be z, xz and yz both will be accepted or both will be rejected. So, in  $R_L$  we can put  $J_1$  and  $J_2$  in same equivalence class.
- Next consider two equivalence class  $J_0$  and  $J_1$ , and two string x and y. Consider x belongs to  $J_0$  and y belongs to  $J_1$ . If I take a z, and if z contain just one 1, then yz will be accepted but xz not be accepted. So, in  $R_L$  we can not merge  $J_0$  and  $J_1$  in same equivalence class.

- Similarly, we can see that in  $R_L$ , we can merge  $J_3$  and  $J_4$  in same equivalence class. But we can not merge  $J_1$  and  $J_3$  in same equivalence class.
- So, in  $R_L$  there are only three equivalence class  $J_0$ ,  $J_1 \cup J_2$  and  $J_3 \cup J_4$ .
- Now, from this  $R_L$  when we construct a DFA M', it has three state. Let us consider the three states are A, B and C respectively.
- Equivalence state  $J_0$  contains the empty string, so A is the initial state.



This is the minimum state automata.

#### • Definition:

Two states p and q of a DFA are called **indistinguishable** if  $\delta^*(p, w) \in F$  implies  $\delta^*(q, w) \in F$ , and  $\delta^*(p, w) \notin F$  implies  $\delta^*(q, w) \notin F$ , for all  $w \in \Sigma^*$ .

On the other hand, if there exists some string  $w \in \Sigma^*$  such that  $\delta^*(p, w) \in F$  and  $\delta^*(q, w) \notin F$  or vice versa, then the states p and q are said to be **distinguishable** by a string w. Here, w is the distinguishing sequence.

### • Example1:



- We have  $q_0 q_1 q_2 q_3 q_4$  in one block
- Separate them into two block, having final and non-final states.

$$\overline{q_0\,q_1\,q_2}\qquad \overline{q_3\,q_4}$$

 $\epsilon$  take you from each one of them to a final state and also  $\epsilon$  take you from each one of them to a non-final state. So,  $\epsilon$  is the distinguishable sequence.

• Again separate first block into two block (based on 0-successor or 1-successor)

$$\overline{q_0}$$
  $\overline{q_1 q_2}$   $\overline{q_3 q_4}$ 



The corresponding minimum state automata:



### • Example2:



- We have  $q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7$  in one block
- Separate them into two block, having final and non-final states.

$$\overline{q_0 q_1 q_3 q_4 q_5 q_6 q_7} \qquad \overline{q_2}$$

- $\overline{q_3 q_5} \qquad \overline{q_0 q_1 q_4 q_6 q_7} \qquad \overline{q_2}$
- $\bullet \qquad \overline{q_3 q_5} \qquad \overline{q_0 q_4} \qquad \overline{q_1 q_7} \qquad \overline{q_6} \qquad \overline{q_2}$



The corresponding minimum state automata:

