	b locked	unblocked	Name:
blocked model	0.002	0.044	ID:
unblocked model	0.023	5tat 42	21, Test 2, Fall, Nov. 13, 2013; Marzban 7 + 13
ONLY a half-size "cheat sheet" is allowed Multiple choice: Circle all the correct answers; there is wrong-answer penalty For questions above horizontal line, do not explain. For questions below horizontal line, SHOW answer & work; NO CREDIT for correct answer without explanation			
1 Circle the correct answer. The t-test (or F-test) in the contrast-based approach to hypothesis testing allows one to perform a) only pairwise comparisons. b) any comparison, controlling family-wise error rate. c) any comparison, without controlling family-wise error rate. d) any comparison, controlling family-wise error rate when contrasts are orthogonal.			
the des		experiment f he p-value of	ffect, suppose we plan to develop the model $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$. If truly does not involve blocks, then the p-value of the model will be the model if the design truly involves blocks. D.023 Vs. D.023 nigher than comparable to d) unrelated to
1 (1) 3. For the additive model $y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$, an estimate of the residuals is given by (2) $\overline{y}_{ij} - \overline{y}_{}$ (3) $\overline{y}_{ij} - \overline{y}_{}$ (4) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{.j.} + \overline{y}_{}$ (5) $y_{ijk} - \overline{y}_{ij}$ (6) $y_{ijk} - \overline{y}_{i} - \overline{y}_{.j.} + \overline{y}_{}$ (7) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (8) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (9) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (10) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (11) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (12) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$ (13) $\overline{y}_{ijk} - \overline{y}_{i} - \overline{y}_{} + \overline{y}_{}$			
predictions (i.e., fitted values). For the full model one should expect of and for the additive			
For sample Brinks, if depends if β interesting or fine correlation." For sample and in ϵ []. In standard notation, suppose we have used the model $y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$, to represent data from a factorial problem involving two factors (A,B), and n replicates. Further, suppose we have found that α_i , and $(\alpha\beta)_{ij}$ are significant, but β_j is not. Then we can conclude that the A treatment effect is due to			
a) facto			b) the interaction with B © Both a and b.
	2^k probler significant		act of the A effect and B effect is equal to the AB interaction effect if b) it is not significant c) None of the above.
The sig	n of the in	teraction ter	n plot, suppose the shaded (unshaded) w (high) level of a factor B. rm in the model will then be Any A effect (B=+) - Any A effect (B=-)
For a problem involving one treatment (A) and one block (B), write the most appropriate model.			
Yi	5 = M+	dit Bj + t	Eij OR Yijk = M + xi + Bj + (XB) ij + Eijk
	(= 1 a j=1 b)	i=1a j=1b
	•		$h = 1 n \leftarrow \text{veplicates}$.

+

In a 2^k problem, what kind of design will cause an effect to get confounded with block? 1

In complete Block

2

11 In a Latin Square Design involving 3 factors (A, B, C), each with 3 levels, the following data have been collected. The numbers in parantheses are y_{ijk} corresponding to the i^{th}, j^{th}, k^{th} level of a) Estimate the effect of C for each of its 3 levels. A,B,C, respectively.

Effect at
$$C_1$$
: $V_{-1} = \frac{1}{3} (+1+0+2) = +1$
 C_2 : $V_{-2} = \frac{1}{3} (-1+0+1) = 0$

Effect at C_2 : $V_{-2} = \frac{1}{3} (-1+0+1) = 0$

Effect at C_3 : $V_{-3} = V_{-1} = \frac{1}{3} (-1-1-1) = -1$

b) Compute SS_C using nothing more than $SS_C = \sum_{ijk}' (\overline{y}_{..k} - \overline{y}_{...})^2$, where the prime on the sum

indicates a restricted sum over 9 elements.

$$SS_{c} = \frac{5}{5!} \left(\overline{Y_{...k}} - \overline{Y_{...}} \right)^{2} = \left(\overline{Y_{...1}} + \overline{Y_{...1}} + \overline{Y_{...1}} + \overline{Y_{...2}} + \overline{Y_{...2}} + \overline{Y_{...2}} + \overline{Y_{...3}} + \overline{Y_{...3}} + \overline{Y_{...3}} \right)$$

$$= 3 \left(\overline{Y_{...1}} + \overline{Y_{...2}} + \overline{Y_{...3}} \right) = 3 \left(1 + 0 + 1 \right) = 6$$

In a 2^k design, an interaction effect has been estimated to be [(1) - a - b + ab]/2. Under the null hypothesis of no interaction, what is the expected value of the estimate? Show work.

13. For a 2^2 factorial problem, show that SS_A , as defined by $\frac{1}{2n}\sum_i y_{i..}^2 - \frac{1}{4n}y_{...}^2$ is equal to $\frac{1}{4n}(\text{contrast}_A)^2$, where contrast_A = [-(1) + a - b + ab].

$$SS_{A} = \frac{1}{2n} \sum_{i} \frac{1}{1} \frac{1}$$

14. Consider the model $y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$, with i = 1, ..., a, j = 1, ..., b, for a treatment factor A (with a-levels), and a block factor B (with b levels). For a = 2, show that the statistic $F = MS_A/MS_E$ is equal to the square of the t statistic $t = \frac{\overline{d}}{s_d/\sqrt{b}}$, where $d_j = y_{1j} - y_{2j}$. You may use the fact that $SS_A = \sum_{ij} (\overline{y}_{i.} - \overline{y}_{..})^2$ and $MS_E = \frac{1}{2} s_d^2$. (This shows that an F-test of $\alpha_i = 0$ is equivalent to a paired t-test of the equality of two means.)

$$SS_{A} = \sum_{i,j}^{a,b} (Y_{i}, -Y_{i},)^{2} = b \sum_{i}^{a} (Y_{i}, -Y_{i},)^{2} = b \left[(Y_{i}, -Y_{i},)^{2} + (Y_{2}, -Y_{i},)^{2} \right]$$

$$= b \left[\frac{1}{4} (Y_{i}, -Y_{2},)^{2} + \frac{1}{4} (Y_{2}, -Y_{i},)^{2} \right] \qquad \qquad \frac{1}{5} Y_{i} - \frac{1}{2b} Y_{i}, \qquad Similarly$$

$$SS_{A} = \frac{1}{2} b (Y_{i}, -Y_{2},)^{2} = \frac{1}{2} b \frac{2}{d} \qquad \qquad \frac{1}{5} (Y_{i}, +Y_{2},) \qquad \qquad \frac{1}{5} (Y_{i}, -Y_{2},)$$

$$\therefore F = \frac{MS_{A}}{MS_{E}} = \frac{\frac{1}{2} b \frac{2}{d}}{\frac{1}{2} S_{A}^{2}} = \left[\frac{\overline{d}}{S_{A} \sqrt{1b}} \right]^{2} \qquad \qquad \frac{1}{2} (Y_{i}, -Y_{2},)$$

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.