Cassandra report - DBLP

MANIP M'EBOBISSE Séthi - MOHAMED Soilhat - Ngatcha Nancy -ROMANO Léa

27 janvier 2019

1. How we import the dataset in the NoSQL database

1. Schema

First, we need to determine the schema on witch we'll construct our database. After reading the file and analyzing the different keys and values type, we came to a first schema:

```
CREATE TYPE pagesType (
  start INT.
  end INT
);
CREATE TYPE journalType (
  series VARCHAR,
  editor VARCHAR.
  volume VARCHAR,
  isbn LIST<VARCHAR>
);
CREATE TABLE IF NOT EXISTS DBLP (
  id VARCHAR,
  type VARCHAR,
  year INT,
  title VARCHAR,
  authors LIST<VARCHAR>,
  pages frozen<pagesType>,
  booktitle VARCHAR,
  journal frozen<journalType>,
  url VARCHAR,
  cites LIST < VARCHAR>,
  PRIMARY KEY(id)
);
```

2. Program for the dataset

We decided to write the loading program in python:

import json

```
from cassandra.cluster import Cluster
cluster = Cluster(['127.0.0.1'])
session = cluster.connect()
session.execute("CREATE KEYSPACE IF NOT EXISTS DBLP WITH REPLICATION =
{'class':'SimpleStrategy','replication_factor':3};")
session.set_keyspace('dblp')
session.execute("CREATE TYPE IF NOT EXISTS pagesType ( \
           start INT, \
           end INT\
         );")
session.execute("CREATE TYPE IF NOT EXISTS journalType ( \
         series VARCHAR,\
         editor VARCHAR,\
         volume VARCHAR,\
         isbn LIST<VARCHAR>\
        );")
session.execute("CREATE TABLE IF NOT EXISTS DBLP ( \
         id VARCHAR, \
         type VARCHAR,\
         year INT, \
         title VARCHAR,\
         authors LIST<VARCHAR>,\
         pages frozen<pagesType>,\
         booktitle VARCHAR, \
         journal frozen<journalType>,\
         url VARCHAR, \
         cites LIST<VARCHAR>,\
         PRIMARY KEY(id) \
        );")
```

```
session.execute('TRUNCATE dblp;')
with open('DBLP_clean.json', 'r') as file:
  for data in file.readlines():
     dataJSON = json.loads(data.replace("", """))
     dataJSON['year'] = int(dataJSON['year'])
     if (dataJSON['pages']['start'] != None):
       dataJSON['pages']['start']= int(dataJSON['pages']['start'])
     if (dataJSON['pages']['end'] != None):
       dataJSON['pages']['end']= int(dataJSON['pages']['end'])
     data = str(dataJSON)
     data = data.replace("'", '"')
     data = data.replace(""", """)
     data = data.replace('\n', "")
     data = data.replace("_id", "id")
     data = data.replace('None', 'null')
     data = data.replace(""\"", "\""")
     data = data.replace("\"",",""\",")
     data = data.replace("u\"","\"")
     statement = "INSERT INTO dblp JSON ""+ data + "";"
     session.execute(statement)
```

At each step of the loading we had to add changes to the program so that it cleans all the possible "error" we found.

2. Queries

#Simple queries (type exercise 1)

1. Find all the ids.

SELECT id FROM dblp;

```
cqlsh:dblp> SELECT id FROM dblp;
 id
              series/sfsc/HirotaYD12
            conf/cases/WongCKKPSGK12
             conf/icassp/SundsboHA96
                 conf/ems/KowsaryS08
                  conf/icassp/CuiA02
                   conf/dac/KinLMP99
                 conf/icassp/LiuW04a
                     conf/wsc/Chae05
                 series/sci/DiasPA06
               conf/hais/SmilgyteN11
                         phd/Hasse95
            conf/icassp/ArsikereLA13
                 phd/de/Liccardi2006
             series/sci/SbirleaSPC11
                conf/icassp/KangQM13
                books/daglib/0024011
```

Here is an extract of the actual output

2. Find all the titles of publications

SELECT title FROM dblp;

```
title

Mascot Robot System Based on Fuzzy Control Technology.

Embedded reconfigurable architectures.

Comparison of two architectures for implementation of the discrete cosine transform.

Prediction of Internal Flaw
Parameters in a Two-dimensional Body Using Steady-state Surface Temperature Data and IHCP Methods.

Efficient adaptation text design based on the Kullback-Leibler measure.

Power Efficient Mediaprocessors: Design Space Exploration.

New class of broadband arrays with frequency invariant beam patterns.

Optimal vehicle scheduling & layout for automated material handling systems (AMHS).

Automatic Synthesis of Microcontroller Assembly Code Through Linear Genetic Programming.

Artificial Neural Networks Application in Software Testing Selection Method.
```

3. Find all books written in 1954.

SELECT * FROM dblp WHERE type ='Book' AND year = 1954 ALLOW FILTERING;

4. Find the number of books or articles written before 2010

SELECT count(*) FROM dblp WHERE year < 2010 ALLOW FILTERING;

```
cqlsh:dblp> Select count(*) from DBLP where year < 2010 ALLOW FILTERING;
count
-----
79572
(1 rows)
Warnings :
Aggregation query used without partition key</pre>
```

5. Find the number of books in the database

Such as we already create an index on type we don't need to allow filtereing. SELECT COUNT(*) FROM dblp WHERE type = 'Book';

```
cqlsh:dblp> Select COUNT(*) from DBLP where type = 'Book';
count
-----
11074
(1 rows)
```

6. Find the authors of the book "The Complexity of Valued Constraint Satisfaction Problems »

SELECT authors FROM DBLP WHERE title = 'The Complexity of Valued Constraint Satisfaction Problems' ALLOW FILTERING;

```
cqlsh:dblp> SELECT authors FROM DBLP WHERE title = 'The Complexity of Valued Constraint Satisfaction Problems' ALLOW FILTERING;

authors
------
['Stanislav Zivny']

(1 rows)
```

#Complex queries (type exercice 2)

1. Find all books written by Dov M. Gabbay.

CREATE INDEX ON dblp (authors); CREATE INDEX ON dblp(type); SELECT * FROM dblp WHERE type = 'Book' AND authors CONTAINS 'Dov M. Gabbay' ALLOW FILTERING;

```
calsh:dblp> SELECT * FROM dblp WHERE type = 'Book' AND authors CONTAINS 'Dow M. Gabbay' ALLOW FILTERING
...;

id | pages | title | booktitle | cites | journal | type | url | year

| books/daglis/0809778 | | ['Dov M. Gabbay'] | mull | mull | (series: 'Prentice Hall series in computer science', editor: mull, volume: null, isbn: ['978-0-1 mull | 1098 | 100 M. Gabbay'] | mull | mull | (series: 'Cognitive Technologies', editors: mull, volume: null, isbn: ['978-0-1 mull | 1098 | (series: 'Cognitive Technologies', editors: mull, volume: null, isbn: ['978-3-6 decitors: mull, volume: null, volume: null, isbn: ['978-3-6 decitors: mull, volume: null, volume: null, isbn: ['978-3-6 decitors: mull, volume: null, volume: null
```

2. Update the year of a book depending on it's id. UPDATE DBLP SET year = 2008 WHERE id ='series/cogtech/Wahlster13';

#Hard query (type exercice 3)

1. Create a new UDA to produce an equivalence to "GROUP BY + COUNT" on textual attributes

CREATE OR REPLACE FUNCTION state_group(state map<text, int>, type text)

CALLED ON NULL INPUT RETURNS map<text, int> LANGUAGE java AS ' Integer val = (Integer) state.get(type); if (val == null) val = 0; else val++; state.put(type, val); return state; ';

CREATE OR REPLACE AGGREGATE state_group_and_max(text) SFUNC state_group STYPE map<text, int> INITCOND {};

We had trouble testing this function on Cassandra but normally it works.