Statistics for Data Science

Lecture 8

Hierarchical Models and Mixture Distributions

Ken Cameron

Class Test

• 1.15pm Thursday 2nd Nov

• 1W 2.104

• 60 minutes

Multiple choice (10 question)

Class Test

- Test will start promptly at 1.15pm.
- Desks will not be numbered.
 - You may sit where you wish.
- Collect question paper and script on arrival.
 - Don't open question paper until instructed to do so.
- Calculators will be provided.
 - Collect on arrival.

Class Test

- You should hand in your answer script and calculator before leaving.
 - Don't leave in the first 20 minutes.
 - Don't leave in the last 10 minutes.
- No admittance after the first 20 minutes.

Content

Hierarchical Models

Mixture Distributions

Multivariate Distributions

Hierarchical Models

- So far,
 - The random variables we've seen have a single distribution.
 - With parameters.
- In general,
 - A random variable has only one distribution.
 - However, it is often easier to model a situation as a hierarchy.

A Classic Example

- An insect lays a large number of eggs, each surviving with probability p.
 - On average how many eggs survive?
- The large number is a random variable.
 - Let's use a Poisson distribution (λ).
- And if the survival of eggs is independent,
 - The we have Bernoulli Trials.

A Classic Example

- Two random variables
 - X = number of survivors
 - Y = number of eggs laid
 - X | Y ~ binomial(Y,p).
 - Y ~ Poisson(λ)

Complex model from simple models

- The hierarchy allows us to build a complex model
 - From a series of simple models.
- The hierarchy is built using
 - Conditional and marginal distributions.
 - And we know how to deal with those.

Example, continued.

• We're interested in X = number of survivors.

$$P(X = x) = \sum_{y=0}^{\infty} P(X = x, Y = y)$$

$$= \sum_{y=0}^{\infty} P(X = x | Y = y) P(Y = y)$$

$$= \sum_{y=x}^{\infty} \left[{y \choose x} p^{x} (1-p)^{y-x} \right] \left[\frac{e^{-\lambda} \lambda^{y}}{y!} \right]$$

• Given, $x \mid Y = y$ is binomial(y, p) and Y is Poisson(λ).

Example, simplify.

$$P(X = x) = \sum_{y=x}^{\infty} \left[\binom{y}{x} p^{x} (1-p)^{y-x} \right] \left[\frac{e^{-\lambda} \lambda^{y}}{y!} \right]$$

$$= \frac{(\lambda p)^{x} e^{-\lambda}}{x!} \sum_{y=x}^{\infty} \frac{((1-p)\lambda)^{y-x}}{(y-x)!}$$

$$= \frac{(\lambda p)^{x} e^{-\lambda}}{x!} \sum_{t=0}^{\infty} \frac{((1-p)\lambda)^{t}}{t!}$$

$$= \frac{(\lambda p)^{x} e^{-\lambda}}{x!} e^{(1-p)\lambda}$$

$$= \frac{(\lambda p)^{x}}{x!} e^{-p\lambda}$$

Simplify, and multiply by λ^x/λ^x .

Note, t = y - x

So X ~ Poisson(λp)

Example

- Y no longer plays a part.
 - Introducing it was to make the model easier to follow.
- The parameter of X is now the product of two parameters.
 - Easier to understand both.
- Final answer:

$$EX = \lambda p$$

• If X and Y are any two random variables, then

$$\mathsf{EX} = \mathsf{E}(\mathsf{E}(\mathsf{X} \,|\, \mathsf{Y}))$$

• Provided expectations exist.

Proof

• Let f(x,y) denote the joint pdf of X and Y.

• By definition,

$$EX = \iint x f(x, y) dx dy = \iiint x f(x \mid y) f_Y(y) dy$$

- Where f(x|y) is the conditional pdf of X given Y = y
- And $f_{\nu}(y)$ is the marginal pdf of Y

Proof

• Note, the inner integral is the conditional expectation E(X|y), so

$$EX = \int E(X \mid y) f_{Y(y)} dy = E(E(X \mid y))$$

• You can replace the integrals with sums to prove this for the discrete case as well.

Example, revisited

• So we can use this to find the answer for our previous example.

$$EX = E(E(X | Y))$$

$$= E(pY)$$

$$= p\lambda$$

- Given X | Y ~ binomial(Y,p)
- And Y \sim Poisson(λ)

For any two random variables X and Y:

$$Var X = E(Var(X|Y) + Var(E(X|Y))$$

• Provided the expectations exist.

Proof

• By definition,

•
$$Var X = E([X - EX]^2) = E([X - E(X|Y) + E(X|Y) - EX]^2)$$

• Var
$$X = E([X - E(X|Y)]^2 + E([E(X|Y) - EX]^2) + 2E([X - E(X|Y)][E(X|Y)-EX])$$

Last term is zero.

Proof

• Thus

$$E([X - E(X|Y)]^2) = E(E\{[X - E(X|Y)]2|Y\}) = E(Var(X|Y))$$

• And,

$$E([E(X|Y) - EX]^2) = Var(E(X|Y))$$

• Establishing,

$$Var X = E(Var(X|Y) + Var(E(X|Y))$$

Mixture distribution

• A random variable X is said to have a

mixture distribution

- if the distribution of X depends on a quantity that also has a distribution.
- Hierarchies lead to mixture distributions.

• (This is the popular definition. There is no standardised one.)

Multi-stage Hierarchies

Hierarchies are not limited to two distributions.

- We can treat multi-stage hierarchies as a series of two-stage.
- Or,
 - In some cases we may keep them as explicit stages.
 - Sometimes that's easier.

Multivariate Distributions

We've been focused on bivariate distributions.

• But, as mentioned at the start of the previous lecture, all the ideas we've covered apply when there's more than two random variables.

We can generalise this as a vector of random variables:

$$X = (X_1, X_2, ..., X_n)$$

Sample Space

- The random vector **X** has a sample space that is a subset of Rⁿ.
- If it's a discrete random vector, the sample space is countable.
- If $X = (X_1, X_2, ..., X_n)$ is a discrete random vector
 - Then the joint pmf of $(X_1, X_2, ..., X_n)$ is
 - The function defined by $f(x) = f(x_1, x_2, ..., x_n) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$
 - For each $(x_1, x_2, ..., x_n) \in R^n$

• Discrete

$$P(X \in A) = \sum_{x \in A} f(x)$$

Continuous

$$P(X \in A) = \int \dots \int_A f(x)dx = \int \dots \int_A f(x_1, \dots, x_n)dx_1 \dots dx_n$$

• (For any $A \subset R^n$)

Definition

Let n and m be positive integers

• And let p_1 , ..., p_n be numbers satisfying $0 \le p_i \le 0$, i = 0, ..., p_n

• And $\sum_{i=1}^{n} p_i = 1$.

Definition

• Then the random vector $(X_1, ..., X_n)$ has a multinomial distribution with m trials and cell probabilities $p_1, ..., p_n$.

• If the joint pmf of $(X_1, ..., X_n)$ is

$$f(x_1, ..., x_n) = \frac{m!}{x_1! ... x_n!} p_1^{x_1} ... p_n^{x_n} = m! \prod_{i=1}^n \frac{p_i^{x_i}}{x_i!}$$

Multinomial Theorem

- Let m and n be positive integers.
- Let A be the set of vectors $x = (x_1, x_2, ..., x_n)$
 - Such that each x_i is a nonnegative integer
 - And $\prod_{i=1}^{n} x_i = m$
- Then for any real numbers $p_1, ..., p_n$:

$$(p_1 + \dots + p_n)^m = \sum_{x \in A} \frac{m!}{x_1! \dots x_n!} p_1^{x_1} \dots p_n^{x_n}$$

Definition

- Let $X_1, ..., X_n$ be random vectors with joint pdf or pmf $f(x_1, ..., x_n)$.
- Let $f_{Xi}(x_i)$ denote the marginal pdf or pmf of X_i .
- Then $X_1, ..., X_n$ are called mutually independent random vectors
 - If for every f(x₁, ..., x_n)

$$f(x_1, ..., x_n) = f_{X_1}(x_1) ... f_{X_n}(x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

• If the X_i s are all one dimensional then $X_1,, X_n$ are called mutually independent random variables.

• Let $X_1, ..., X_n$ be mutually independent random variables.

• Let g₁, ..., g_n be real valued functions

- Such that $g_i(x_i)$ is a function only if x_i , i=1,...,n.
- Then,

$$E(g_1(X_1)...g_n(X_n)) = E(g_1(X_1)...g_n(X_n))$$

- Let X₁, ..., X_n be mutually independent random variables
 - With mgfs M_{x1}(t), ..., M_{xn}(t).
- Let $Z = X_1 + ... + X_n$.
- Then the mgf of Z is

$$M_z(t) = M_{X1}(t)...M_{Xn}(t).$$

- In particular, if X_1 , ..., X_n all have the same distribution with mgf $M_x(t)$
- Then

$$M_z(t) = (M_x(t))^n$$

• Let X_1 , ..., X_n be random vectors.

- Then $X_1, ..., X_n$ are mutually independent random vectors
 - If and only if there exists functions $g_i(x_i)$, i=1,...,n
 - Such that the joint pdf or pmf of $(X_1, ..., X_n)$ can be written as:

$$f(x_1, ..., x_n) = g_1(x_1)...g_n(x_n)$$

• Let X_1 , ..., X_n be independently random vectors.

• Let $g_i(x_i)$ be a function only of x_i , i=1,...,n.

• Then the random variables $U_i = g_i(X_i)$, i=1,...n,

are mutually independent.