Twitter sentiment analysis

Nghia Dang Platini Dacheu

Task 1 Metadata

- Type: Supervised learning
- Sub type: Natural language processing
- Task: classify racist or sexist tweets from other tweets.
- Dataset: Tweets gathered from twitters
 - Features: Id, tweet content, label

Task 1 Preprocessing

- Stop words removal: if we remove the words that are very commonly used in a given language, we can focus on the important words instead.
 - First ten stop words: ['in', 'yourself', 'becoming', 'never', 'something', 'ten', 'ca', 'they', 'used', 'everyone']

Task 1 Preprocessing

Stemming is a natural language processing technique that lowers inflection in words to their root forms, hence aiding in the preprocessing of text, words, and documents for text normalization.

Task 1 Pipeline and visualization

- Visualization: Distribution of labels in train and test sets
- Visualization: Variations of length
- Feature engineering: Length of the tweet
- Standard scaling: Normalizing to mean 0 and std 1
 - Neutralize importance of all features
 - Dropping memory from displaying large numbers

Task 1 Count Vectorizer

Task 1 Word Cloud

The Neutral Words

Task 1 Positive HashTag distribution

Task 1 Negative HashTag distribution

Task 1 Validation

from sklearn.model_selection import train_test_split

x_train, x_valid, y_train, y_valid = train_test_split(x, y, test_size = 0.25, random_state = 42)

Task 1 Word2Vect Model: Similarity

```
model_w2v.wv.most_similar(positive = "dinner")

/usr/local/lib/python3.6/dist-packages/gensim/mat
integer` is deprecated. In future, it will be tre
    if np.issubdtype(vec.dtype, np.int):
[('spaghetti', 0.6905485391616821),
    ('#prosecco', 0.6454159021377563),
    ('#wanderlust', 0.6233653426170349),
    ('coaching', 0.5992934703826904),
    ('podium', 0.5991446375846863),
    ('#restaurant', 0.5981520414352417),
    ('#boardgames', 0.597622275352478),
    ('sister!!', 0.5959595441818237),
    ('fluffy', 0.5959100127220154),
    ('#marbs', 0.5941186547279358)]
```

Task 1 Classification models

- Random Forest Classifier
- Logistic Regression
- Decision Tree Classifier
- SVC
- XGB

Task 1 Critics and proposal

Critic: Using plain train_test_split is unstable for model performance

Proposal: Cross nested-validation

Task 2 UI design

Task 2 UI mockup

Please upload your training set

Choose File No file chosen

Submit

Please upload your test set if any

Choose File No file chosen

Submit

Please select the model based on your preference

- O Fast but less accuracy
- O Not so fast but the accuracy is ok
- O Slow but good accuracy

Do you want a visualization of the result?

Submit and wait for around 5 minutes for the result

Download the result

Task 3 Challenges

- Compatibility of libraries
- Our roles are sequential, not in parallel.
- Preprocessing is time-consuming: We had to take a fraction of the dataset samples to test. When we applied functions on the entire ones, new values showed up. Thus, we had to debug on the big dataset.

Task 3 Lessons learned

- Stratifying sampling the datasets that all unique values exist in the sample dataset, which is convenient for writing functions.
- Visualization helps in analyzing data.
- We should check for the balance of the dataset for appropriate sampling approaches.
- Deepnote is a solution for a teamwork when cells can be run in parallel.

Reference

https://github.com/sharmaroshan/Twitter-Sentiment-Analysis