NTIN090 — Základy složitosti a vyčíslitelnosti 4. cvičení

Petr Kučera

1. prosince 2022

1 Věty použitelné v příkladech

Připomeňme si nejprve základní třídy složitosti definované k funkci $f: \mathbb{N} \to \mathbb{N}$.

TIME(f(n)) jazyky přijímané deterministickými Turingovými stroji v čase O(f(n)).

SPACE(f(n)) jazyky přijímané deterministickými Turingovými stroji v prostoru O(f(n)).

NTIME(f(n)) jazyky přijímané nedeterministickými Turingovými stroji v čase O(f(n)).

NSPACE(f(n)) jazyky přijímané nedeterministickými Turingovými stroji v prostoru O(f(n)).

Dále si shrneme tvrzení z přednášky, jež se mohou hodit při řešení příkladů z tohoto cvičení. **Věta** (**Vztahy mezi třídami**): Pro každou funkci $f : \mathbb{N} \to \mathbb{N}$ platí

- (i) $TIME(f(n)) \subseteq SPACE(f(n))$
- (ii) $TIME(f(n)) \subseteq NTIME(f(n))$
- (iii) $SPACE(f(n)) \subseteq NSPACE(f(n))$
- (iv) $NTIME(f(n)) \subseteq SPACE(f(n))$

Věta (Vztah prostoru a času): Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \text{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \text{TIME}(2^{c_L f(n)}) \right].$$

Důsledek 3 *Je-li* f(n) funkce, pro kterou platí $f(n) \ge \log_2 n$ a je-li g(n) funkce, pro kterou platí f(n) = o(g(n)), pak

$$NSPACE(f(n)) \subseteq TIME(2^{g(n)}).$$

Věta (**Savičova věta**): Pro každou funkci $f(n) \ge \log_2 n$ platí

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Věta (**Deterministická prostorová hierarchie**): Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) = o(f_2(n))$ a f_2 je prostorově konstruovatelná¹, potom

$$SPACE(f_1(n)) \subseteq SPACE(f_2(n)).$$

Věta (**Deterministická časová hierarchie**): Jsou-li $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) = o(f_2(n)/\log f_2(n))$ a f_2 je časově konstruovatelná², potom

$$TIME(f_1(n)) \subseteq TIME(f_2(n)).$$

¹Všechny funkce, které v následujících příkladech uvažujeme, jsou prostorově konstruovatelné a tento předpoklad tak není třeba ověřovat.

²Všechny funkce, které v následujících příkladech uvažujeme, jsou časově konstruovatelné a tento předpoklad tak není třeba ověřovat.

2 Příklady

 Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

$TIME(2^{n^2})$	$SPACE(n \log n)$	(1)
$TIME(2^{n\log n})$	$TIME(2^{n^2})$	(2)
$NSPACE(\log^2 n)$	$TIME(2^{n\log n})$	(3)
NTIME(n)	$NSPACE(\log^2 n)$	(4)
$\mathrm{SPACE}(n\log n)$	NTIME(n)	(5)
$TIME(2^{n\log n})$	$SPACE(n\log n)$	(6)
$NSPACE(\log^2 n)$	$TIME(2^{n^2})$	(7)
NTIME(n)	$TIME(2^{n\log n})$	(8)
$\mathrm{SPACE}(n\log n)$	$NSPACE(\log^2 n)$	(9)
$TIME(2^{n^2})$	NTIME(n)	(10)

Řešení:

- (1) SPACE $(n \log n) \stackrel{5}{\subseteq} \text{SPACE}(n \log^2 n) \stackrel{1(iii)}{\subseteq} \text{NSPACE}(n \log^2 n) \stackrel{3}{\subseteq} \text{TIME}(2^{n^2})$
- (2) $TIME(2^{n \log n}) \stackrel{6}{\subsetneq} TIME(2^{n^2})$
- (3) $NSPACE(log^2 n) \stackrel{3}{\subseteq} TIME(2^n) \stackrel{6}{\subseteq} TIME(2^{n log n})$
- (4) ?
- (5) NTIME(n) $\stackrel{1(iv)}{\subseteq}$ SPACE(n) $\stackrel{5}{\subsetneq}$ SPACE(n log n)
- $(6)^{-3}$
- (7) $\text{NSPACE}(\log^2 n) \subsetneq \text{TIME}(2^{n \log n}) \subsetneq \text{TIME}(2^{n^2})$
- (8) NTIME(n) $\stackrel{1(iv)}{\subseteq}$ SPACE(n) $\stackrel{5}{\subseteq}$ SPACE(n $\sqrt{\log n}$) $\stackrel{1(iii)}{\subseteq}$ NSPACE(n $\sqrt{\log n}$) $\stackrel{3}{\subseteq}$ TIME(2^{n log n})
- (9) $NSPACE(\log^2 n) \stackrel{4}{\subseteq} SPACE(\log^4 n) \stackrel{5}{\subseteq} SPACE(n \log n)$
- (10) NTIME(n) \subseteq TIME($2^{n \log n}$) \subseteq TIME(2^{n^2})
- 2. Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

(1) $TIME(2^n)$ SPACE(n) $TIME(2^{n \log n})$ (2) $TIME(2^n)$ $TIME(2^{n \log n})$ (3) $NSPACE((log n)^3)$ (4) $NSPACE((log n)^3)$ $NTIME(2^n)$ (5) $NTIME(2^n)$ SPACE(n) $TIME(2^{n \log n})$ (6)SPACE(n) $NSPACE((log n)^3)$ (7) $TIME(2^n)$ $TIME(2^{n \log n})$ (8) $NTIME(2^n)$ (9) $NSPACE((log n)^3)$ SPACE(n)(10) $NTIME(2^n)$ $TIME(2^n)$

Řešení:

- (1) ?
- (2) $TIME(2^n) \stackrel{6}{\subsetneq} TIME(2^{n \log n})$
- (3) NSPACE($(\log n)^3$) $\stackrel{3}{\subseteq}$ TIME(n) $\stackrel{6}{\subseteq}$ TIME($2^{n \log n}$)
- (4) NSPACE($(\log n)^3$) $\stackrel{4}{\subseteq}$ NSPACE($(\log^6 n) \stackrel{3}{\subseteq}$ TIME($(2^{\log^7 n}) \stackrel{6}{\subseteq}$ TIME($(2^n) \stackrel{1(ii)}{\subseteq}$ NTIME($(2^n) \stackrel{1}{\subseteq}$ NTIME($(2^n) \stackrel{1}{\subseteq}$
- (5) ?
- (6) SPACE $(n) \subsetneq SPACE(n \sqrt{\log n}) \stackrel{1(iii)}{\subseteq} NSPACE(n \sqrt{\log n}) \stackrel{3}{\subseteq} TIME(2^{n \log n})$
- (7) NSPACE($(\log n)^3$) $\stackrel{4}{\subseteq}$ NSPACE($\log^6 n$) $\stackrel{3}{\subseteq}$ TIME($2^{\log^7 n}$) $\stackrel{6}{\subseteq}$ TIME(2^n)
- (8) ?
- (9) NSPACE($(\log n)^3$) $\stackrel{4}{\subseteq}$ SPACE($\log^6 n$) $\stackrel{5}{\subseteq}$ SPACE(n)
- (10) $\text{TIME}(2^n) \stackrel{1(ii)}{\subseteq} \text{NTIME}(2^n)$
- 3. Ukažte, že třída P je uzavřena na sjednocení, průnik a doplněk.

Řešení: Předpokládejme, že A a B jsou jazyky v P. Uvažme navíc deterministické Turingovy stroje M_A a M_B , které přijímají jazyky A a B v polynomiálním čase.

- (a) Deterministický Turingův stroj M_{\cup} , který přijímá $A \cup B$ v polynomiálním čase, pustí pro vstup x postupně výpočty $M_A(x)$ a $M_B(x)$ a přijme, právě když byl jeden z těchto výpočtů přijímající.
- (b) Deterministický Turingův stroj M_{\cup} , který přijímá $A \cap B$ v polynomiálním čase, pustí pro vstup x postupně výpočty $M_A(x)$ a $M_B(x)$ a přijme, právě když oba tyto výpočty přijaly.
- (c) Deterministický Turingův stroj M', který přijímá jazyk \overline{A} v polynomiálním čase se vstupem x pustí M(x) a zneguje odpověď tohoto výpočtu.

4. Ukažte, že třída NP je uzavřena na sjednocení a průnik.

Řešení: Postupujeme stejně jako v řešení problému 3 jen s tím rozdílem, že všechny uvažované Turingovy stroje jsou nedeterministické.

5. Ukažte, že třída NP je uzavřena na operaci Kleeneho hvězdičky. Tj. je-li $A \in \text{NP}$

$$A^* = \{w = w_1 w_2 \dots w_k \mid k \in \mathbb{N} \land (\forall i = 1, \dots, k) [w_i \in A]\}$$

je v NP.

Řešení: Předpokládejme, že M_A je nedeterministický Turingův stroj, který přijímá A v polynomiálním čase. Nedeterministický Turingův stroj M, který přijímá v polynomiálním čase jazyk A^* se vstupem w uhodne nedeterministicky rozdělení w na podřetězce w_1, \ldots, w_k (pro nějaké číslo k). Poté M pustí postupně výpočty $M_A(w_1), \ldots, M_A(w_k)$. Aby M(w) přijal, musí být všechny tyto výpočty přijímající, v opačném případě je tento výpočet odmítající.

6. Ukažte, že třída P je uzavřena na operaci Kleeneho hvězdičky. Tj. je-li $A \in P$

$$A^* = \{w = w_1 w_2 \dots w_k \mid k \in \mathbb{N} \land (\forall i = 1, \dots, k) [w_i \in A]\}$$

je v P.

Řešení: Předpokládejme, že řetězec w se skládá z n znaků, které označíme $w[1], \ldots, w[n]$. Pokud n=0, pak $w\in A^*$, můžeme tedy předpokládat, že n>0 a řetězec w je neprázdný. Pomocí w[i:l] označíme podřetězec w, který začíná na indexu i a má délku l, tedy $w[i:l]=w[i]\cdot \cdots w[i+l-1]$. Uvažme tabulku T o rozměrech $n\times n$, v níž jsou hodnoty 0 nebo 1. Popíšeme dynamický algoritmus, který vyplní tabulku T tak, aby platilo, že pro indexy $i\in\{1,\ldots,n\}$ a $l\in\{1,\ldots,n\}$ platilo, že T[i][l]=1, právě když $w[i:l]\in A^*$. Ve chvíli, kdy bude tato tabulka správně vyplněná, stačí se podívat na hodnotu T[1][n]. Popíšeme nyní dynamický algoritmus, který tabulku T vyplní.

Pro l=1 má platit T[i][1]=1, právě když $w[i]\in A^*$, což je totéž jako $w[i]\in A$, tento test lze provést v polynomiálním čase. Pro l>1 předpokládejme, že řádky před l-tým jsou již vyplněny správně. Pokud $w[i:l]\in A$, můžeme položit T[i][l]=1, toto je možné otestovat v polynomiálním čase. Jinak hledáme hodnotu $m\in\{1,\ldots,l-1\}$, pro kterou by platilo, že $w[i:m]\in A^*$ (tedy T[i][m]=1) a $w[i+m:l-m]\in A^*$ (tedy T[i+m][l-m]=1). Algoritmus 1 sleduje právě popsanou myšlenku.

```
Input: Řetězec w = w[1] \dots w[n]
Output: true pokud w \in A^*, false jinak
Inicializuj tabulku T o rozměrech n \times n;
for l \leftarrow 1 to n do
    for i \leftarrow 1 to n - l + 1 do
        T[i][l] \leftarrow 0;
        if w[i, l] \in A then
            T[i][l] \leftarrow 1;
           continue;
        for m \leftarrow 1 to l - 1 do
                                            // Pro l=1 se neprovede žádná smyčka
            if T[i][m] = 1 and T[i + m][l - m] = 1 then
                T[i][l] \leftarrow 1;
                break;
if T[1][n] = 1 then
return true
else

    return false
```

Algoritmus 1: Algoritmus rozhodující, zda $w \in A^*$.

Počet dotazů rozhodovací proceduře pro jazyk A je polynomiální, a tedy i složitost algoritmu 1 je polynomiální.

3 Domácí úkoly

7. (30 bodů) Pro následující dvojice tříd rozhodněte, zda mezi nimi platí nějaká inkluze, pokud ano, tak zda je ostrá nebo ne. Vyznačte také dvojice, u nichž není možno (z našich znalostí) ukázat, zda mezi nimi je nějaký vztah. Přesněji, mezi danou dvojici tříd doplňte symbol ⊆, ⊊, =, ⊇, ⊋ nebo "?". Své odpovědi zdůvodněte.

(1)	SPACE(n)	$TIME(2^{\log^3 n})$
(2)	$TIME(2^{\log^3 n})$	$NSPACE(\log^2 n)$
(3)	$NSPACE(\log^2 n)$	$NTIME(2^{\log^3 n})$
(4)	$NTIME(2^{\log^3 n})$	$\mathrm{NTIME}(2^{n\log n})$
(5)	$NTIME(2^{n\log n})$	SPACE(n)
(6)	SPACE(n)	$NSPACE(\log^2 n)$
(7)	$TIME(2^{\log^3 n})$	$NTIME(2^{\log^3 n})$
(8)	$NSPACE(\log^2 n)$	$NTIME(2^{n\log n})$
(9)	$NTIME(2^{\log^3 n})$	SPACE(n)
(10)	$NTIME(2^{n\log n})$	$TIME(2^{\log^3 n})$