Part 1

- a) $\{c.name \mid CITY(c) \land \neg \exists (p) (PLAYGROUND(p) \land p.city_name = c.name)\}$
- b) {c.name, c.population | CITY(c) $\land \neg \exists (c2) (CITY(c2) \land (c2.population < c.population))}$
- c) {e.SIN, e.name | EMPLOYEE(e) $\land \forall$ (k) (KID(k) \land (k.p1_sin = e.SIN = \lor k.p2_SIN = e.SIN)) $\Rightarrow \exists$ (p) (PLAYGROUD(p) \land p.name = k.playground_name)}
- d) {p.name | PLAYGROUND (p) $\land \forall$ (k) (KID(k) \land k.playgroud_name = p.name) \Rightarrow \exists (e) (EMPLOYEE (e) \land (e.SIN = k.p1_sin \lor e.SIN = k.p2_SIN) \land (e.city_name = p.city_name))}
- e) {e.name | EMPLOYEE (e) $\land \exists$ (k) (KID(k) \land (k.p1_sin = e.SIN = \lor k.p2_SIN = e.SIN)) $\Rightarrow \forall$ (p) (PLAYGROUND(p) \land p.name = k.playgroud_name)}

Part 2

- a) $\{c \mid (\exists c \exists d \exists e \exists f) (CITY (c, d, e, f) \land \neg (\exists p \exists q \exists r \exists s) (PLAYGROUND (p, q, r, s) \land r = c))\}$
- b) $\{ac \mid (\exists a \exists b \exists c \exists d) (CITY (a, b, c, d) \land \neg (\exists c \exists d \exists e \exists f) (CITY (c, d, e, f) \land e < c))\}$
- c) {ab | $(\exists a \exists b \exists c \exists d \exists e \exists f) EMPLOYEE (a, b, c, d, e, f) \land (\forall u \forall v \forall w \forall x \forall y \forall z) (KID (u, v, w, x, y, z) / (x = a \ / y = a)) \Rightarrow (\exists p \exists q \exists r \exists s)(PLAYGROUD(p, q, r, s) \land p = z)}$
- e) {a | ($\exists a \exists b \exists c \exists d \exists e \exists f$) EMPLOYEE (a, b, c, d, e, f) /\ ($\exists u \exists v \exists w \exists x \exists y \exists z$) (KID (u, v, w, x, y, z) /\ (x = a \/ y = a)) \Rightarrow ($\forall p \forall q \forall r \forall s$)(PLAYGROUD(p, q, r, s) \land p = z)