## 第 4 問 固体物理: 結晶場分裂・禁制遷移

[1]

(a)

$$Y_{00} = \sqrt{\frac{5}{4}}(3\cos^2(-1)) = \sqrt{\frac{5}{4}}\frac{3r^2\cos^2(-r^2)}{r^2} \propto 3z^2 - r^2$$
(1.1)

より (ii)

(b)

$$Y_{22} + Y_{2-2} = \frac{\sqrt{15}}{4\sqrt{2\pi}} \sin\theta (e^{2i\varphi} + e^{-2i\varphi}) = \frac{\sqrt{15}}{2\sqrt{2\pi}} \frac{r^2 \sin\theta^2 \cos^2\varphi - r^2 \sin\theta^2 \sin^2\varphi}{r^2} \propto x^2 - y^2$$
 (1.2)

より (v)

(c)

$$Y_{21} + Y_{2-1} = -\frac{\sqrt{15}}{2\sqrt{2\pi}}\cos\theta\sin\theta\left(e^{i\varphi} - e^{-i\varphi}\right) = -i\sqrt{\frac{15}{2\pi}}\frac{r\cos\theta\,r\sin\theta\sin\varphi}{r^2} \propto yz \tag{1.3}$$

より(iii)

(d)

$$Y_{21} - Y_{2-1} = -\frac{\sqrt{15}}{2\sqrt{2\pi}}\cos\theta\sin\theta\left(e^{i\varphi} + e^{-i\varphi}\right) = -\sqrt{\frac{15}{2\pi}}\frac{r\cos\theta\,r\sin\theta\cos\varphi}{r^2} \propto zx\tag{1.4}$$

より (iv)

(b)

$$Y_{22} - Y_{2-2} = \frac{\sqrt{15}}{4\sqrt{2\pi}} \sin\theta (e^{2i\varphi} - e^{-2i\varphi}) = i \frac{\sqrt{15}}{2\sqrt{2\pi}} \frac{r \sin\theta \cos\varphi \times r \sin\theta \cos\varphi}{r^2} \propto xy$$
 (1.5)

より (i)



図: 結晶場分裂による軌道準位の変化

[3]

電気双極子相互作用のハミルトニアンを以下のように1階の球テンソルに分けて考える

$$H_{p} = exE_{x} + eyE_{y} + ezE_{z} = e\left(-\frac{x+iy}{\sqrt{2}}\right) \underbrace{\left(-\frac{E_{x}+iE_{y}}{\sqrt{2}}\right)^{*}}_{E_{+}^{*}} + ezE_{z}^{*} + e\left(\frac{x-iy}{\sqrt{2}}\right) \underbrace{\left(\frac{E_{x}-iE_{y}}{\sqrt{2}}\right)^{*}}_{E_{-}^{*}}$$
$$= \sqrt{\frac{3}{4\pi}} er\left(Y_{1,1}E_{+}^{*} + Y_{1,0}E_{z} + Y_{1-1}E_{-}^{*}\right)$$
(3.1)

そうするとこの相互作用による遷移積分は  $rY_{1m}$  の部分だけを調べて、それの重ね合わせてやればよいのがわかる。3d 電子自身も球面調和関数  $Y_{2m}$  の重ね合わせであるので次の遷移要素を  $\langle 2, m_f | Y_{1m} | 2, m_i \rangle$  を調べればよい。角度方向の積分だけ注目すると Gaunt 積分と呼ばれる積分になる。

$$\int d\Omega \, Y_{2m_f}^* Y_{1m} Y_{2m_i} = \sqrt{\frac{5 \times 3 \times 5}{4\pi}} \begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ m_f & m & m_i \end{pmatrix} \tag{3.2}$$

1つ目の 3j 記号の列の反対称性によりこの積分は 0 になるので、3d 電子内での双極子相互作用による遷移はどの準位間での生じない。こんな大道具使わずとも d 電子が偶関数、双極子が奇関数であり、全体のパリティが奇になるので、全領域で積分すると 0 となるで十分。

## 3j 記号について

3j 記号は角運動量の合成にあらわれる Clebsh-Gordan 係数を拡張したようなものになっている。

$$\langle l_1 m_1; l_2 m_2 | L, M \rangle = (-1)^{l_1 - l_2 + M} \sqrt{2L + 1} \begin{pmatrix} l_1 & l_2 & L \\ m_1 & m_2 & -M \end{pmatrix}$$
 (3.3)

角運動量の合成の合成であるので 3j 記号内の数字の組で、角運動量の合成則を守らないようなときには値が 0 になる。具体的には、

$$m_1 + m_2 - M = 0, \quad l_1 + l_2 + L \in \mathbb{Z}, \quad |l_1 - l_2| \le L \le l_1 + l_2$$
 (3.4)

である。

3j は列の奇置換に関して位相因子が表れる。これは角運動量の空間反転の対称性のようなものである。

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1 + j_2 + j_3} \begin{pmatrix} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{pmatrix} = (-1)^{j_1 + j_2 + j_3} \begin{pmatrix} j_1 & j_3 & j_2 \\ m_1 & m_3 & m_2 \end{pmatrix}$$
(3.5)

また磁気量子数の反転に関しても位相因子が表れる。これは角運動量の時間反転の対称性のようなものである。

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1 + j_2 + j_3} \begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix}$$
(3.6)

## 感想

私の専門なのでニコニコしながら解いてた。そのまま卒論に使いたいので、必要以上に記述している。