PROTEASE VARIANTS

FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to variants of proteases belonging to the RP-II or C-component type, and methods for the construction of such variants with altered properties, such as stability (e.g. thermostability or storage stability), Ca²⁺ dependency, and pH dependent activity.

BACKGROUND OF THE INVENTION

Enzymes have been used within the detergent industry as part of washing formulations for more than 30 years. Proteases are from a commercial perspective the most relevant enzyme in such formulations, but other enzymes including lipases, amylases, cellulases, hemicellulases or mixtures of enzymes are also often used. Proteases are also used in other fields, such as production of diary products, processing of hides, feed processing, etc.

To improve the cost and/or the performance of proteases there is an ongoing search for proteases with altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.), modified specificity in respect of substrates, etc.

The search for proteases with altered properties includes both discovery of naturally occurring proteases, i.e. so called wild-type proteases but also alteration of well-known proteases by e.g. genetic manipulation of the nucleic acid sequence encoding said proteases. Knowledge of the relationship between the three-dimensional structure and the function of a protein has improved the ability to evaluate which areas of a protein to alter to affect a specific property of the protein.

One group of proteases, which has been indicated for use in detergents, food processing, feed processing is the RP-II proteases or C-component proteases belonging to the protease family S1B, glutamic-acid-specific endopeptidases. This family has till now only received relatively minor attention and has not been further grouped into different sub-groups. However, from the amino acid identities of isolated RP-II proteases it is evident that subgroups exist. Bacillus proteases of the RP-II type are serine proteases that in primary structure are similar to chymotrypsin.

The first description of a protease of the RP-II family of Bacillus proteases was in US Patent No. 4,266,031 (Tang et al., Novo Industri A/S), where it was designated Component C and tentatively (and incorrectly) characterised as not being a serine protease or metallo protease. Component C was considered a contaminant in the production of the Bacillus licheniformis alkaline protease, subtilisin Carlsberg.

5

10

15

20

25

30

In EP 369 817 (Omnigene Bioproducts, Inc.) the *B. subtilis* member of the RP-II family was identified by its amino acid and DNA sequences. The enzyme was again stated not to be a serine protease, and the family name RP-II designated (Residual Protease II). The enzyme was characterized further as a metallo protease by the inventors of EP 369 817 (Rufo et al., 1990, J. Bacteriol. 2 1019-1023, and Sloma et al., 1990, J. Bacteriol. 172 1024-1029), designating the enzyme as mpr.

In WO 91/13553 (Novozymes A/S) the amino acid sequence of the C component was disclosed, stating that it is a serine protease specific for glutamic and aspartic acid, while EP 482 879 (Shionogi & Co. Ltd.) disclosed the enzyme and a DNA sequence encoding the C component from *B. licheniformis* ATCC No. 14580, naming the enzyme BLase. In EP 482 879 the protease is described as being specific for glutamic acid (see also Kakudo et al. "Purification, characterization, cloning, and expression of a glutamic acid-specific protease from Bacillus licheniformis ATCC 14580". J. Biol. Chem. 267:23782 (1992)).

In 1997 Okamoto et al. (Appl. Microbiol. Biotechnol. (1997) 48 27-33) found that the *B. subtilis* homologue of BLase, named BSase was identical to the above-mentioned enzyme, mpr/RP-II.

In 1999 Rebrikov et al. (Journal of Protein Chemistry, Vol. 18, No. 1, 1999) disclosed a Glu-specific protease from *B. intermedius* that also belongs to the RP-II family.

In WO 01/16285 a number of further RP-II protease were disclosed with DNA and amino acid sequences. These RP-II proteases were isolated from *B. pumilus*, *B. halmapalus* and *B. licheniformis*. WO 01/16285 also discloses a number of variants of RP-II proteases. These variants were based on various concepts relating to the primary structure of the RP-II proteases (amino acid sequences).

The homology matrix in Table 1 below clearly indicates that the RP-II proteases 1 to 8 are a distinct group of Glu-specific proteases that are clearly different from the other Glu-specific proteases in the Matrix

Table 1

10

15

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	100	99	97	60	55	55	47	59	46	45	45	47	49
2		100	99	60	60	59	50	61	50	44	45	46	52
3			100	60	57	54	47	60	47	45	45	44	49
4				100	94	92	68	57	44	38	40	42	47
5					100	91	59	54	44	42	40	43	45
6						100	63	53	39	42	46	41	45
7			***************************************				100	48	41	41	40	36	44
8								100	50	45	46	46	54
9	·						·		100	63	53	55	49
10										100	53	56	52
11											100	78	54
12												100	53
13													100

In the matrix the sequences are identified by the patent publication in which first published or sequence database accession numbers.

- 1. Bacillus sp. JA96 glutamic-acid-specific endopeptidase, JA96, WO 01/16285
- 5 2. 1p3e *B. Intermedius*, glutamic-acid-specific endopeptidase, BIP, EMBL No. Y5136, Rebrikov et al., Journal of Protein Chemistry, Vol. 18, No. 1, 1999
 - 3. Bacillus sp. BO32 glutamic-acid-specific endopeptidase, BO32, WO 01/16285
 - 4. Bacillus licheniformis, BLC, WO 01/16285 (cf. US Patent No. 4,266,031)
 - 5. Bacillus sp. CDJ31 glutamic-acid-specific endopeptidase, CDJ31, WO 01/16285
 - 6. Bacillus sp. AC116 glutamic-acid-specific endopeptidase, AC116, WO 01/16285
 - 7. mpr bacsu Bacillus subtilis serine protease, MPR, EP 369 817
 - 8. Bacillus sp. AA513 qlutamic-acid-specific endopeptidase, AA513, WO 01/16285
 - 9. eta_staau Staphylococcus aureus exfoliative toxin A (Lee et al. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus; J. Bacteriol. 169:3904 (1987))
 - 10. etb_staau Staphylococcus aureus exfoliative toxin B (Jackson,M.P.; landolo,J.J.; Sequence of the exfoliative toxin B gene of Staphylococcus aureus; J. Bacteriol.

167:726 (1986))

11. q53781 Staphylococcus aureus (strain Mu50 / ATCC 700699) (Rieneck et al.; Submitted (JUN-1996) to the EMBL/GenBank/DDBJ databases)

12. q53782 Staphylococcus aureus (strain Mu50 / ATCC 700699) (Rieneck et al.,"Molecular cloning and expression of a novel Staphylococcus aureus antigen". Biochim. Biophys. Acta 1350:128 (1997)

13. stsp_staau Staphylococcal serine endoproteinase V8 Glu-C (Gray, "Nucleotide sequence of the serine protease gene of *Staphylococcus aureus*, strain V8" Nucleic Acids Res. 15:6757 (1987)

10

15

20

25

30

5

The three-dimensional structure of the protease Toxin A from *Staphylococcus* aureus. Belonging to the S1B family has been determined by Cavarelli, J., et al. Structure Vol. 5, p. 813 1997.

However, despite the sequence homology between the proteases belonging to the RP-II proteases and Toxin A from *Staphylococcus aureus*, modelling of the three-dimensional structure of RP-II proteases on the basis of the three-dimensional structure of Toxin A from *Staphylococcus aureus* may result in an incorrect three-dimensional structure because of structural differences, especially because the distinct difference in sequence homology to the RP-II proteases.

The inventors of the present invention have elucidated the three-dimensional structure of the C-component protease from *Bacillus licheniformis* and found that there are several differences between this and the three-dimensional structure of Toxin A from *Staphylococcus aureus* also belonging to the S1B subgroup of proteases. This surprising difference in structure makes it advantageous to use the BLC structure as basis for homology modelling of RP-II proteases, which, in turn, will improve the ability to obtain desired changes in functionality by protein engineering.

BRIEF DESCRIPTION OF THE INVENTION

The inventors have modified the amino acid sequence of a RP-II protease to obtain variants with improved properties, based on the three-dimensional structure of the C-component. The variants will have altered properties, such as increased activity at low temperatures, increased thermostability, increased specific activity at a given pH, altered Ca²⁺ dependency, increased stability in the presence of other detergent ingredients (e.g. bleach, surfactants etc.) etc.

Accordingly, the object of the present invention is to provide a method for constructing RP-II proteases having altered properties, in particular to provide a method for constructing RP-II proteases having altered properties as described above.

Thus, in its broadest aspect, the present invention relates to a method for constructing a variant of a parent RP-II protease, wherein the variant has at least one altered property as compared to said parent RP-II protease, which method comprises:

- i) analyzing the three-dimensional structure of the RP-II protease to identify, on the basis of an evaluation of structural considerations, at least one amino acid residue or at least one structural region of the RP-II protease, which is of relevance for altering said property;
- ii) constructing a variant of the RP-II protease, which as compared to the parent RP-II protease, has been modified in the amino acid residue or structural part identified in i) so as to alter said property; and
- iii) testing the resulting RP-II protease variant for said property.

Although it has been described in the following that modification of the parent RP-II protease in certain regions and/or positions is expected to confer a particular effect to the thus produced RP-II protease variant, it should be noted that modification of the parent RP-II protease in any of such regions may also give rise to any other of the above-mentioned effects. For example, any of the regions and/or positions mentioned as being of particular interest with respect to, e.g., improved thermostability, may also give rise to, e.g., higher activity at a lower pH, an altered pH optimum, or increased specific activity, such as increased peptidase activity.

Further aspects of the present invention relates to variants of a RP-II protease, the DNA encoding such variants and methods of preparing the variants. Still further aspects of the present invention relates to the use of the variants for various industrial purposes, in particular as an additive in detergent compositions. Other aspects of the present invention will be apparent from the below description as well as from the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

5

10

15

20

25

30

Fig. 1 provides a schematic structure of the RP-II protease from Bacillus licheniformis, BLC.

Fig. 2 shows a 3D structure based alignment of the wild type RP-II proteases 1 to 8 of Table 1.

Fig. 3 shows the BLC protease ribbon structure in black, with indication of active site residues, the bound peptide and the ion-binding site. The calcium ion is the sphere at the bottom of the Figure, the active site residues are in light grey and shown in stick model, and the bound peptide DAFE is in medium grey and shown in stick model.

5

10

15

20

BRIEF DESCRIPTION OF APPENDICES

APPENDIX 1 provides the structural coordinates for the solved crystal 3D structure of the BLC RP-II protease, in the standard pdb format. The residues are numbered from 1-217, the calcium ion is numbered 301, and the DAFE substrate is numbered 401-404.

DEFINITIONS

Prior to discussing this invention in further detail, the following terms and conventions will first be defined.

For a detailed description of the nomenclature of amino acids and nucleic acids and modifications introduced in a polypeptide or protein and especially in a RP-II protease by genetic manipulation, we refer to WO 01/16285 pages 5 to 15, hereby incorporated by reference.

The term "RP-II proteases" refers to a sub-group of serine protease, belonging to the protease family S1B, glutamic-acid-specific endopeptidases. Serine proteases or serine peptidases is a subgroup of proteases characterised by having a serine in the active site, which forms a covalent adduct with the substrate. Further the RP-II proteases (and the serine proteases) are characterised by having two active site amino acid residues apart from the serine, namely a histidine and an aspartic acid residue.

25

30

The RP-II proteases have a homology to the rest of the S1B protease family of around 50% (using the UWGCG version 8 software GAP program), or more preferred a homology higher than 55%. Table 1 demonstrate homologies between various S1B proteases. The RP-II proteases, nos. 1 to 8, are in Table 1 indicated in bold and the other S1B proteases, nos. 9 to 13, in bold italics. Table 1 shows that there is a clear distinction to the RP-II proteases from the other S1B proteases, but it is also clear that among the RP-II proteases there are subgroups. One subgroup comprises nos. 1, 2, and 3; and another subgroup comprises nos. 4, 5, and 6. The lengths of the listed RP-II proteases vary from 215 to 222 amino acid residues and experience within the subtilisin subgroups of subtilases indicates that such a variation in length probably has only

little effect on the 3-dimensional structures of these and other RP-II protease subgroups.

PARENT

5

10

25

30

The term "parent" is in the context of the present invention to be understood as a protein, which is modified to create a protein variant. The parent protein may be a naturally occurring (wild-type) polypeptide or it may be a variant thereof prepared by any suitable means. For instance, the parent protein may be a variant of a naturally occurring protein which has been modified by substitution, chemical modification, deletion or truncation of one or more amino acid residues, or by addition or insertion of one or more amino acid residues to the amino acid sequence, of a naturally-occurring polypeptide. Thus the term "parent RP-II protease" refers to a RP-II protease which is modified to create a RP-II protease variant.

15 **VARIANT**

The term "variant" is in the context of the present invention to be understood as a protein which has been modified as compared to a parent protein at one or more amino acid residues.

20 MODIFICATION

The term "modification(s)" or "modified" is in the context of the present invention to be understood as to include chemical modification of a protein as well as genetic manipulation of the DNA encoding a protein. The modification(s) may be replacement(s) of the amino acid side chain(s), substitution(s), deletion(s) and/or insertions in or at the amino acid(s) of interest. Thus the term "modified protein", e.g. "modified RP-II protease", is to be understood as a protein which contains modification(s) compared to a parent protein, e.g. RP-II protease.

HOMOLOGY

"Homology" or "homologous to" is in the context of the present invention to be understood in its conventional meaning and the "homology" between two amino acid sequences should be determined by use of the "Similarity" parameter defined by the GAP program from the University of Wisconsin Genetics Computer Group (UWGCG)

package using default settings for alignment parameters, comparison matrix, gap and gap extension penalties. Default values for GAP penalties, i.e. GAP creation penalty of 3.0 and GAP extension penalty of 0.1 (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711). The method is also described in S.B. Needleman and C.D. Wunsch, Journal of Molecular Biology, 48, 443-445 (1970). Identities can be extracted from the same calculation. The homology between two amino acid sequences can also be determined by "identity" or "similarity" using the GAP routine of the UWGCG package version 9.1 with default setting for alignment parameters, comparison matrix, gap and gap extension penalties can also be applied using the following parameters: gap creation penalty = 8 and gap extension penalty = 8 and all other parameters kept at their default values. The output from the routine is besides the amino acid alignment the calculation of the "Percent Identity" and the "Similarity" between the two sequences. The numbers calculated using UWGCG package version 9.1 is slightly different from the version 8.

NAMING OF RP-II PROTEASES

5

10

15

25

30

In describing the RP-II proteases of the invention the following abbreviations are used for ease of reference:

20 BLC = RP-II protease from *Bacillus licheniformis* (US Patent No. 4,266,031),

AA513 = RP-II protease from Bacillus halmapalus AA513 (WO 01/16285),

AC116 = RP-II protease from *Bacillus licheniformis* AC116 (WO 01/16285)

BO32 = RP-II protease from Bacillus pumilus BO32 (WO 01/16285),

CDJ31 = RP-II protease from *Bacillus licheniformis* CDJ31 (WO 01/16285),

JA96 = RP-II protease from *Bacillus pumilus* JA96 (WO 01/16285),

MPR = RP-II protease from *Bacillus subtilis* IS75 (EP 369 817 B1)

BIP = RP-II protease from *B. intermedius* (Rebrikov et al., Journal of Protein Chemistry, Vol. 18, No. 1, 1999)

SEQUENCE LISTING

In the appended Sequence Listing the RP-II proteases are indicated as:

SEQ. ID. NO. 1 = BLC (DNA), SEQ. ID. NO. 2 = BLC (AA),

SEQ. ID. NO. 3 = AA513 (DNA), SEQ. ID. NO. 4 = AA513 (AA),

SEQ. ID. NO. 5 = AC116 (DNA), SEQ. ID. NO. 6 = AC116 (AA)

```
SEQ. ID. NO. 7 = BO32 (DNA), SEQ. ID. NO. 8 = BO32 (AA)
```

5 SEQ. ID. NO. 15 = BIP (DNA), SEQ. ID. NO. 16 = BIP (AA)

POSITION

10

15

20

25

30

The term "position" is in the context of the present invention to be understood as the number of an amino acid residue in a peptide, polypeptide or protein when counting from the N-terminal end of said peptide/polypeptide. The position numbers used here normally refer directly to different RP-II proteases.

The RP-II proteases are numbered individually according to each of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and 16.

Corresponding position

The invention, however, is not limited to variants of these particular RP-II proteases but extends to parent proteases containing amino acid residues at positions which are "equivalent" to the particular identified residues in *Bacillus licheniformis* RP-II protease. In some preferred embodiment of the present invention, the parent protease is JA96 or BIP RP-II protease and the substitutions are made at the equivalent a mino acid residue positions in JA96 or BIP corresponding to those listed above.

A residue (amino acid) position of a RP-II protease is equivalent to a residue (position) of the *Bacillus licheniformis* RP-II protease if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in *Bacillus licheniformis* RP-II protease (i.e., having the same or similar functional capacity to combine, react, or interact chemically).

In order to establish homology to primary structure, the amino acid sequence of a precursor protease is directly compared to the *Bacillus licheniformis* RP-II protease, BLC, primary sequence by aligning the amino acid sequence of an isolated or parent wild type enzyme with a suitable well-known enzyme of the same group or class of enzymes defines a frame of reference. This type of numbering was used in WO 01/16285. If nothing else is indicated herein, in the present instance the *Bacillus licheniformis* RP-II protease, first designated component C and therefore here abbreviated BLC, has been chosen as standard.

In order to establish homology to the tertiary structure (3D structure) of BLC, the 3D structure based alignment in Fig. 2 has been provided. By using this alignment the amino acid sequence of a precursor RP-II protease may be directly correlated to the *Bacillus licheniformis* RP-II protease, BLC, primary sequence. For a novel RP-II protease sequence, the (3D based) position corresponding to a position in BLC is found by

- i) identifying the RP-II protease from the alignment of Fig. 2 that is most homologous to the novel sequence,
- ii) aligning the novel sequence with the sequence identified to find the corresponding position in the RP-II protease from Fig. 2, and
- iii) establishing from Fig. 2 the corresponding position in BLC.

5

10

15

20

25

30

35

For comparison and finding the most homologous sequence the GAP program from GCG package as described below are used.

The alignment can as indicated above be obtained by the GAP routine of the GCG package version 8 to number the variants using the following parameters: gap creation penalty = 3 and gap extension penalty = 0.1 and all other parameters kept at their default values.

The alignment of Fig. 2 defines a number of deletions and insertions in relation to the sequence of BLC. In the alignment deletions are indicated by asterixes (*) in the referenced sequence, and the referenced enzyme will be considered to have a gap at the position in question. Insertions are indicated by asterixes (*) in the BLC sequence, and the positions in the referenced enzyme are given as the position number of the last amino acid residue where a corresponding amino acid residue exists in the standard enzyme with a lower case letter appended in alphabetical order, e.g. 82a, 82b, 82c, 82d, see Fig. 2.

In case the referenced enzyme contains a N- or C-terminal extension in comparison to BLC; an N-terminal extension is given the position number 0a, 0b, etc. in the direction of the N-terminal; and a C-terminal extension will be given either the position number of the C-terminal amino acid residue of BLC with a lower case letter appended in alphabetical order, or simply a continued consecutive numbering.

Thus for comparisons RP-II proteases are numbered by reference to the positions of the BLC RP-II protease (SEQ ID NO: 2) as provided in Fig. 2. The position is then indicated as "corresponding to BLC".

DETAILED DESCRIPTION OF THE INVENTION

The inventors of the present invention have elucidated the three-dimensional structure of BLC, SEQ ID NO:2 by X-ray crystallography and found that there are several interesting features in the structure of this protease in comparison with the known structures of other proteases, such as the RP-II proteases. These features include both similarities and differences.

RP-II proteases

5

10

15

20

25

30

As described above a RP-II protease is in the context of the present invention to be understood as a protease which has at least 50% homology to BLC (SEQ ID NO:2). In particular said protease may have at least 55% homology to BLC, i.e. to SEQ ID NO:2. The invention thus relates to variant RP-II proteases having at least 50% homology to BLC.

Specifically the variants of the invention may comprise RP-II proteases comprising a number of modifications or modifications in a number of positions ranging from at least one and up to 50, or from 1 to 45, or from 1 to 40, or from 1 to 35, or from 1 to 30, or from 1 to 25, or from 1 to 20, or from 1 to 15, or from 1 to 14, or from 1 to 13, or from 1 to 12, or from 1 to 11, or from 1 to 10, or from 1 to 9, or from 1 to 8, or from 1 to 7, or from 1 to 6, or from 1 to 5, or from 1 to 4, or from 1 to 3, or from 1 to 2 modifications or positions. Such modifications comprising substitutions, deletions and insertions in the indicated number or number of positions.

A RP-II protease variant of the present invention is encoded by an isolated polynucleotide, which nucleic acid sequence has at least 50% homology with the nucleic acid sequence shown in SEQ ID NO: 1, and where the polynucleotide encodes a variant RP-II protease in relation to a parent protease.

In a first embodiment of the present invention a RP-II protease suitable for the purpose described herein may be a RP-II protease homologous to the three-dimensional structure of BLC, i.e. it may be homologous to the three-dimensional structure defined by the structure coordinates in Appendix 1 by comprising the structural elements defined below.

It is well-known to a person skilled in the art that a set of structure coordinates for a protein or a portion thereof is a relative set of points that define a shape in three dimensions; it is possible that an entirely different set of coordinates defines an identical or a similar shape. Moreover, slight variations in the individual coordinates may have little or no effect on the overall shape.

These variations in coordinates may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates of Appendix 1 (BLC structure) may be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above. Alternatively, said variations may be due to differences in the primary amino acid sequence.

5

10

15

20

25

30

35

When such variations are within an acceptable standard error as compared to the structure coordinates of Appendix 1 said three-dimensional structure is within the context of the present invention to be understood as being homologous to the structure of Appendix 1. The standard error may typically be measured as the root mean square deviation of e.g. conserved backbone residues, where the term "root mean square deviation" (RMS) means the square root of the arithmetic mean of the squares of the deviations from the mean.

It is also well-known to a person skilled in the art that within a group of proteins which have a homologous structure there may be variations in the three-dimensional structure in certain areas or domains of the structure, e.g. loops, which are not, or at least only of a small importance to the functional domains of the structure, but which may result in a big root mean square deviation of the conserved residue backbone atoms between said structures.

Thus it is well known that a set of structure coordinates is unique to the crystal-lised protein. No other three dimensional structure will have the exact same set of coordinates, be it a homologous structure or even the same protein crystallised in different manner. There are natural fluctuations in the coordinates. The overall structure and the inter-atomic relationship can be found to be similar. The similarity can be discussed in terms of root mean square deviation of each atom of a structure from each "homologous" atom of another structure. However, only identical proteins have the exact same number of atoms. Therefore, proteins having a similarity below 100% will often have a different number of atoms, and thus the root mean square deviation can not be calculated on all atoms, but only the ones that are considered "homologous". A precise description of the similarity based on the coordinates is thus difficult to describe and difficult to compute for homologous proteins. Regarding the present invention, similarities in 3D structure of different RP-II proteases can be described by the content of homologous structural elements, and/or the similarity in amino acid or DNA sequence

Examples of BLC like RP-II proteases include the BLC = RP-II protease from

Bacillus licheniformis (cf. US Patent No. 4,266,031), AA513 = RP-II protease from Bacillus halmapalus AA513 (NP000368), AC116 = RP-II protease from Bacillus licheniformis AC116 (NP000364), BO32 = RP-II protease from Bacillus pumilus BO32 (NP000366), CDJ31 = RP-II protease from Bacillus licheniformis CDJ31 (NP000365), JA96 = RP-II protease from Bacillus pumilus JA96 (NP000367), MPR = RP-II protease from Bacillus subtilis IS75 (cf. EP 369 817 B1), BIP = RP-II protease from B. intermedius (EMBL No. Y5136, Rebrikov et al., Journal of Protein Chemistry, Vol. 18, No. 1, 1999)

Accordingly, a preferred embodiment of the present invention is a variant of a parent RP-II protease or a RP-II protease variant which is at least 50% homologous to the sequence of SEQ ID NO 2 preferably at least 55%, preferably at least 65%, at least 70%, at least 74%, at least 80%, at least 83%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homologous to the sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14 or 16.

A further embodiment of the invention is a RP-II protease variant comprising the following structural characteristics:

- a) two beta-barrel domains each comprising six long strands in antiparallel organisation,
- b) three alpha helices,

5

10

15

20

25

30

35

- c) at least one ion-binding site,
 - d) an active site comprising the amino acid residues His, Asp and Ser.

The potential ion binding site is defined as similar coordination or arrangement of the coordinates as in the 3D structure of BLC having one calcium ion coordinated by the Ile 3 carbonyl atom O, the Ser 5 carbonyl atom O and bidendate by the Asp 161 Carboxyl acid group and the further coordination made by waters. The calcium may be substituted in the structure by water but then having the same coordination.

The RP-II protease variants of the present invention are encoded by isolated polynucleotides, which nucleic acid sequence has at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% homology with the nucleic acid sequence shown in SEQ ID NO:1, 3, 5, 7, 9, 11, 13, or 15, and where the polynucleotide encodes a variant RP-II protease in relation to a parent protease.

Further the isolated nucleic acid sequence encoding a RP-II protease variant of

the invention hybridizes with a complementary strand of the nucleic acid sequence shown in SEQ ID NO: 1 preferably under low stringency conditions, at least under medium stringency conditions, at least under medium/high stringency conditions, at least under very high stringency conditions.

Suitable experimental conditions for determining hybridization at low, medium, or high stringency between a nucleotide probe and a homologous DNA or RNA sequence involves presoaking of the filter containing the DNA fragments or RNA to hybridize in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 µg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) *Anal. Biochem.* 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/µg) probe for 12 hours at ca. 45°C. The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least 55°C (low stringency), more preferably at least 60°C (medium stringency), still more preferably at least 65°C (medium/high stringency), even more preferably at least 70°C (high stringency), and even more preferably at least 75°C (very high stringency).

Three-dimensional structure of RP-II proteases

5

10

15

20

25

30

The BLC RP-II protease was used to elucidate the three-dimensional structure forming the basis for the present invention.

The structure of BLC was solved in accordance with the principle for x-ray crystallographic methods, for example, as given in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989.

The structural coordinates for the solved crystal structure of BLC are given in standard PDB format (Protein Data Bank, Brookhaven National Laboratory, Brookhaven, CT) as set forth in Appendix 1. It is to be understood that Appendix 1 forms part of the present application. In the context of Appendix 1, the following abbreviations are used: CA refers to c-alpha (carbon atoms) or to calcium ions, (however to avoid misunderstandings we normally use the full names "c-alpha atoms", "calcium" "Ca" or "ion" in the present specification). Amino acid residues are given in their standard three-letter code or the standard one-letter code. The structural coordinates in Appendix 1 contain the protease structure wherein the active serine was replaced by alanine and a com-

plex formed with the peptide DAFE (= Asp-Ala-Phe-Glu) as well as water molecules. The protease coordinates has a chain identification called A, whereas the peptide is called B, the calcium ion is called C, and the water is W. In the following the positions of the mentioned residues refer to the sequence of BLC as disclosed in SEQ ID NO: 2.

The overall structure of BLC falls into the S1 group of the proteases (MEROPS; http://merops.sanger.ac.uk/). The structure is a trypsin type of fold with two beta-barrel domains. The beta-barrel's each consists of six antiparallel beta-sheets folded into a beta-barrel. The topology can be described as S1-S2-S3-S6-S5-S4 for the strands in both beta-barrels. It is assumed that all the RP-II proteases fall within the same general overall structure.

The 3D structure of C-component serine protease from *Bacillus licheniformis* has 16 strands of which the 12 bigger strands compose the two beta-barrels; and 3 helixes. The four very short strands are number 1, 5, 6 and 10 counting from the N-terminal and are composed of residue numbers 9-10, 50-51, 56-57 and 114-115. The other strands are residue numbers 22-26, 31-36, 41-44, 62-65, 77-83, 99-102, 126-131, 142-151, 156-159, 171-177, 182-192 and 201-205. One main helix C-terminal residue number 208-219. Two very small helices are composed of residues 86-90 and 106-110.

The active site consists of a triad involving the Ser in position 167, the His in position 47, and the Asp in position 96.

The 3D structure of BLC has one calcium ion coordinated by the carbonyl oxygen atom of lie in position 3, the carbonyl oxygen atom of Ser in position 5, and bidendate by the Carboxylic acid group of Asp in position 161. Further coordinations are made by water molecules.

The calcium ion is placed in a distance from the CA atoms of the active site and Gly in position 168 as provided below:

Ser 167 CA atom to Ca ion: 16.07Å His 47 CA atom to Ca ion: 24.27Å Asp 96 CA atom to Ca ion: 23.72Å Gly 168 CA atom to Ca ion: 19.20Å

30

35

5

10

15

20

25

The position of an ion-binding site can be defined by the distance to four specific atoms in the core structure. The distance from the ion-binding site to the c-alpha atoms of the three active site residues has been chosen. Throughout the RP-II proteases the residues Ser, His and Asp in the active site are highly conserved. In BLC they are Asp96, His47 and Ser167. The fourth distance chosen is the distance to the c-alpha

atom of the amino acid residue coming first after the active site serine residue in the sequence (herein after called "next to Ser"); in the 3D structure of BLC it is Gly168.

5

10

15

20

25

30

35

In a preferred embodiment of the present invention, the distance between the ion-binding site and i) Asp c-alpha atom is 22.50-24.00 Å, ii) His c-alpha atom is 23.25-25.25 Å, iii) Ser c-alpha atom is 15.00-17.00Å, iv) next to Ser c-alpha atom is 18.20-20.20 Å,

However these distances may vary from one RP-II protease to the other, and as described above, the ion binding site may also bind to a sodium ion. The present distances are given with a calcium ion in the structure. If a sodium ion was bound instead the distances would be shifted a little bit. Generally the distances can vary ±0.8Å, preferably ±0.7Å, ±0.6Å, ±0.5Å, ±0.4Å, or most preferably ±0.3Å.

Further, in the RP-II proteases, the peptide structure circumscribing the ion-binding site is composed of the amino acid residues placed in positions 1-7, 159-162 and 143-145 with the coordinating atoms being the backbone carbonyl oxygen atom of residues I3, S5, D161 and water molecules.

3D structures of RP-II proteases can be modelled using the known structure of a related protease and general modelling tools as shown in Example 1. A prerequisite for obtaining a realistic 3D model structure is that the model is based on an adequate sequence homology higher than 50%, preferably higher than 55%, and even more preferred higher than 60% to the sequence of the protease for which the structure is known. RP-II Protease models can be constructed based on the 3D guided sequence alignments to BLC in Figure 2.

Therefore 3D structure models of RP-II proteases could in principle be made by using the modelling tools and the known 3D structure of the toxin A protease from *Staphylococcus a ureus* from the Exf family of proteases (Cavarelli et al. (1997) The Structure of *Staphylococcus aureus* Epidermolytic Toxin A, an atypic serine protease, at 1.7 Å resolution, Structure, Vol. 5, p.813 (pdb name 1ARP).

If compared to the structure of the toxin A protease from Staphylococcus aureus, the structure of the RP-II proteases, as represented by BLC, can be divided into a "common protease" region, an "intermediate" region and a "nonhomologous" region.

The active site can be found in the common protease region, which is structurally closely related to the Toxin A structure. The common protease region is composed of residues 58, 70-83. The common protease region has an RMS lower than 1.2.

Outside the common protease region the structure of the RP-II protease BLC differs from the Toxin A structure to a greater extent.

The intermediate region consists of residues 14-28, 29-51, 94-104, 155-175. The intermediate region has an RMS bigger than 1.2 and less than 1.8. Any relationships between the three-dimensional structure and functionality based on modelling from the S. aureus 3D structure are potentially difficult to predict in this region of the RP-II proteases.

The common region and the intermediate region consist of the majority of the two central beta-barrels, especially the strands of the beta-barrels.

The nonhomologous region consists of residues 1-6, 7-13, 52-57, 59-69, 84-88, 89-93, 105-153. The nonhomologous region has a RMS higher than 1.5. Any relationships between the three-dimensional structure and functionality based on modelling from the S. aureus 3D structure are very difficult to predict in this region of the RP-II proteases.

Inferred structure-function relationships based on model building of a RP-II protease 3D structure on the 3D structure of S. aureus Toxin A would thus be very uncertain and speculative.

Homology building of RP-II proteases

5

10

15

20

25

30

A model structure of a RP-II protease can be built using the BLC structure in Appendix 1, or a structure similar to the BLC structure comprising the structural elements (a) two beta-barrel domains each comprising six long strands in antiparallel organisation, (b) three alpha helices, (c) at least one low affinity ion-binding site, and (d) an active site comprising the amino acid residues His, Asp and Ser, or other 3D RP-II protease structures, e.g. established by X-ray structure determination, that may become available in the future, and the Homology™ program or a comparable program, e.g., Modeller™ (both from Molecular Simulations, Inc., San Diego, CA). The principle is to align the amino acid sequence of a protein for which the 3D structure is known with the amino acid sequence of a protein for which a model 3D structure has to be constructed. The structurally conserved regions can then be built on the basis of consensus sequences. In areas lacking homology, loop structures can be inserted, or sequences can be deleted with subsequent bonding of the necessary residues using, e.g., the program Homology. Subsequent relaxation and optimization of the structure should be done using either Homology or another molecular simulation program, e.g., CHARMm™ from Molecular Simulations.

Methods for designing BLC and RP-II or S1B family protease variants

Comparisons of the molecular dynamics of different proteins can give a hint as to which domains are important or connected to certain properties pertained by each protein.

The present invention comprises a method of producing a variant of a parent BLC like RP-II protease, the variant having at least one altered property as compared to the parent BLC like RP-II protease, the method comprising:

- a) producing a model structure of the parent BLC like RP-II protease on the three-dimensional structure of BLC,
- b) comparing the model three-dimensional structure of the parent BLC like RP-II protease to the BLC structure by superimposing the structures through matching the active residues CA, CB, C, O, and N atoms,
- c) identifying on the basis of the comparison in step a) at least one structural part of the parent BLC like RP-II protease, wherein an alteration in said structural part is predicted to result in an altered property;
- d) modifying the nucleic acid sequence encoding the parent BLC like RP-II protease to produce a nucleic acid sequence encoding deletion or substitution of one or more amino acids at a position corresponding to said structural part, or an insertion of one or more amino acid residues in positions corresponding to said structural part;
- e) expressing the modified nucleic acid sequence in a host cell to produce the variant RP-II protease;
- f) isolating the produced protease;
- g) purifying the isolated protease and
- h) recovering the purified RP-II protease.

Stability - alteration of ion-binding site

An ion-binding site is a significant feature of an enzyme. Therefore alterations of the amino acid residues close to the ion-binding site are likely to result in alterations of the stability of the enzyme. Especially modifications affecting the charge distribution and/or the electrostatic field strength at or in the vicinity of the site are important.

Improved stability

5

10

15

20

25

Stabilisation of the ion-binding site of RP-II proteases may be obtained by modifications in positions close to the ion binding site.

Such modifications may comprise the substitution of a positively charged amino acid residue with a neutral or negatively charged residue, or the substitution of a neutral residue with a negatively charged residue or the deletion of a positively charged or neutral residue in positions close to the ion binding site.

Positions located at a distance of 10Å or less to the ion-binding site of BLC are: 1, 2, 3, 4, 5, 6, 7, 8, 143, 144, 145, 146, 158, 159, 160, 161, 162, 194, 199, 200, and 201. Especially positions 2, 3, 4, 5, 6, 7, 144, 159, 160, 161 located at a distance of 6 Å or less from the ion binding site are important.

Corresponding positions in other RP-II proteases may be identified using Fig. 2 herein.

The modifications D7E and D7Q in BLC are examples of suitable modifications in one of these positions.

Removal of ion-binding site in BLC

5

10

15

20

25

30

By removing the ion-binding site it is possible to alter the dependency of the enzyme on calcium or other ions in the solution.

Removal of the Calcium site in BLC can be done by the substitutions H144R and/or D161R,K+H144Q,N (SEQ ID NO: 2). Similar modifications may be made in structurally corresponding residues in other RP-II proteases.

Alteration of thermostability

A variant with improved stability (typically increased thermostability) may be obtained by modification of the mobility of identified regions, such as by introduction of disulfide bond(s), substitution with proline, alteration of hydrogen bond contact(s), altering charge distribution, introduction of salt bridge(s), filling in internal structural cavities with one or more amino acids with bulkier side groups (in e.g. regions which are structurally mobile), substitution of histidine residues with other amino acids, removal of a deamidation sites, or by helix capping.

Regions with increased mobility:

The below indicated regions of BLC have an increased mobility in the crystal

structure of the enzyme, and it is presently believed that these regions can be responsible for stability or activity of BLC and the other RP-II proteases. Especially thermostabilisation may be obtained by altering the highly mobile regions. Generally, thermostability may be improved by making these regions less mobile. Improvements of the enzyme may be obtained by making modifications in the regions and positions identified below. Introducing e.g. larger residues or residues having more atoms in the side chain could increase the stability, or, e.g., introduction of residues having fewer atoms in the side chain could be important for the mobility and thus the activity profile of the enzyme. The regions can be found by analysing the B-factors taken from the coordinate file in Appendix 1, and/or from molecular dynamics calculations of the isotropic fluctuations. These can be obtained by using the program CHARMm from MSI (Molecular Simulations Inc.).

Molecular dynamics simulation at 300K and 400K of BLC reveals the following highly mobile regions:

26-31, 50-55, 89-91, and 193-198, and 4-5, 11-12, 26-31, 50-55, 69-70, 89-91, 178-183, 195-199 and 216-221, respectively.

It is contemplated that modifications in these regions may influence the thermostability of RP-II proteases. Modifications are preferably made in the regions 26-31 (26, 27, 28, 29, 30, 31); 89-91 (89, 90, 91); 216-221 (216, 217, 218, 219, 220, 221), and especially in BLC the substitutions G30A and G91A. Similar modifications may be made in structurally corresponding residues in other RP-II proteases.

Also B-factors (see "in X-Ray Structure Determination, Stout, G.K. and Jensen, L.H., John Wiley & Sons, Inc. NY, 1989") from crystallographic data indicate the following more mobile regions in the BLC (RP-II protease) structure:

```
51-56, (i.e. 51, 52, 53, 54, 55, 56)
88-94, (i.e. 88, 89, 90, 91, 92, 93, 94)
118-122 (I. e. 118, 119, 120, 121, 122)
173-183 (i.e. 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183)
```

It is contemplated that modifications in these regions may influence the thermostability of RP-II proteases. Modifications are preferably made in the regions 51-56 and 118-122.

Disulfide bonds:

5

10

15

20

30

A RP-II protease variant of the present invention with improved stability, e.g.

thermostability, as compared to the parent RP-II protease may be obtained by introducing new inter-domain or intra-domain bonds to provide a more rigid and stable structure, such as by establishing inter- or intra-domain disulfide bridges. This is done by introducing cysteines in appropriate positions in the RP-II molecule by substitution(s) or insertion(s).

According to the guidelines mentioned above the below mentioned amino acid residues identified in the amino acid sequence of SEQ ID NO: 2 are contemplated as being suitable for cysteine replacement. With one or more of these substitutions with cysteine, disulfide bridges may form in a variant of BLC. A stabilising disulfide bridge may be constructed through the substitutions: S145C and T128C

Surface charge distribution

5

10

15

20

25

30

A variant with improved stability (typically improved thermostability or storage stability) as compared to the parent RP-II protease may be obtained by changing the surface charge distribution of the RP-II protease. For example, when the pH is lowered to about 5 or below, histidine residues typically become positively charged and, consequently, unfavorable electrostatic interactions on the protein surface may occur. By engineering the surface charge of the RP-II protease one may avoid such unfavorable electrostatic interactions that in turn may lead to a higher stability of the RP-II protease.

Charged amino acid residues are (a) positively charged: Lys, Arg, His (pH<5), Tyr (pH>9) and Cys (pH>10) and (b) negatively charged: Asp and Glu.

The surface charge distribution may be modified by (a) removing charged residues from the surface through deletion of a charged residue or substituting an uncharged residue for a charged residue, (b) adding charged residues to the surface through insertion of a charged residue or substituting a charged residue for an uncharged residue, or (c) by reverting the charge at a residue through substituting a positively charged residue for a negatively charged residue or substituting a negatively charged residue for a positively charged residue.

Therefore, a further aspect of the present invention relates to a method for constructing a variant of a parent RP-II protease having a modified surface charge distribution, the method comprising:

- a) identifying, on the surface of the parent RP-II protease, at least one charged amino acid residue;
- b) modifying the charged residue identified in step (a) through deletion or substitu-

tion with an uncharged amino acid residue;

- c) optionally repeating steps a) and b) recursively;
- d) preparing the variant resulting from steps a) c);
- e) testing the stability of said variant; and

5

10

15

20

25

30

35

- f) optionally repeating steps a) e) recursively; and
- g) selecting a RP-II protease variant having increased stability as compared to the parent RP-II protease.

As will be understood by the skilled person it may also, in some cases, be advantageous to substitute an uncharged amino acid residue with an amino acid residue bearing a charge or, alternatively, it may in some cases be advantageous to substitute an amino acid residue bearing a charge with an amino acid residue bearing a charge of opposite sign. Thus, the above-mentioned method may be employed by the skilled person also for these purposes. In the case of substituting an uncharged amino acid residue with an amino acid residue bearing a charge the above-mentioned method may be employed the only difference being steps a) and b) which will then read:

- a) identifying, on the surface of the parent RP-II protease, at least one position being occupied by an uncharged amino acid residue;
- b) modifying the charge in that position by substituting the uncharged amino acid residue with a charged amino acid residue or by insertion of a charged amino acid residue at the position.

Also in the case of changing the sign of an amino acid residue present on the surface of the RP-II protease the above method may be employed. Again, compared to the above method, the only difference being steps a) and b) which, in this case, read:

- a) identifying, on the surface of the parent RP-II protease, at least one charged amino acid residue;
- b) substituting the charged amino acid residue identified in step (a) with an amino acid residue having an opposite charge.

In order to determine the amino acid residues of a protease, which are present on the surface of the enzyme, the surface accessible area are measured using the DSSP program (Kabsch and Sander, *Biopolymers* (1983), 22, 2577-2637). All residues having a surface accessibility higher than 0, 0.10, 0.20, 0.30, 0.35, 0.40, 0.45, 0.50,

0.55 or 0.60 are regarded a surface residue.

An amino acid residue found on the surface of BLC using the above method is T109 and it is contemplated that the substitutions T109R, K, H are of particular interest.

Similar substitutions may be introduced in equivalent positions of other RP-II proteases.

For the purpose of providing RP-II protease variants exhibiting improved wash performance it is possible to modify the pl of the RP-II protease through modification of the surface charge as indicated in WO 91/00345 (Novozymes A/S) and/or WO 99/20771 (Genencor International, Inc.)

Especially changing the pl of the RP-II protease is of interest

10 Changes in BLC:

5

T109R, K, H

Q143R, K, H

E209Q, N

D7N, S, T

15 Q174R, K, H

N216R, K, H

Y17R, K, H

Y95R, K, H

20

25

30

Corresponding modifications may be performed in corresponding positions of other RP-II proteases.

Substitution with proline residues

Improved thermostability of a RP-II protease can be obtained by subjecting the RP-II protease in question to analysis for secondary structure, identifying residues in the RP-II protease having dihedral angles ϕ (phi) and ψ (psi) confined to the intervals [-90°< ϕ <-40° and -180°< ψ <180°], preferably the intervals [-90°< ϕ <-40° and 120°< ψ <180°] or [-90°< ϕ <-40° and -50°< ψ <10°] and excluding residues located in regions in which the RP-II protease is characterized by possessing α -helical or β -sheet structure.

After the dihedral angles ϕ (phi) and ψ (psi) for the amino acids have been calculated, based on the atomic structure in the crystalline RP-II proteases, it is possible to select position(s) which has/have dihedral phi and psi angles favourable for substitution with a proline residue. The aliphatic side chain of proline residues is bonded covalently to the nitrogen atom of the peptide group. The resulting cyclic five-membered ring consequently imposes a rigid constraint on the rotation about the N-C $_{\alpha}$ bond of the peptide backbone

and simultaneously prevents the formation of hydrogen bonding to the backbone N-atom.

For these structural reasons, proline residues are generally not compatible with α -helical and β -sheet secondary conformations.

If a proline residue is not already at the identified position(s), the naturally occurring amino acid residue is substituted with a proline residue, preferably by site directed mutagenesis applied on a gene encoding the RP-II protease in question.

In the group of BLC- like proteases proline residues can be introduced at positions 18, 115, 185, 269 and 293. Accordingly, a preferred BLC variant has one or more of the substitutions: T60P, S221P, G193P, and V194P.

10

15

20

25

30

5

Alteration of activity:

Amino acid residues at a distance of less than 10Å from the active site residues are most likely to influence the specificity and activity of the RP-II proteases, therefore variants comprising modifications in positions 1, 8, 22-35 (22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35), 42-58 (42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58), 82-100 (82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100), 129-135 (1129, 130, 131,132, 133, 134, 135), 141-142, 153-156 (153, 154, 155, 156), 158, 161-171 (161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171), 188-193 (188, 189, 190, 191, 192, 193), 195,, 201-207 (201, 202, 203, 204, 205, 206, 207), 210, 213-214, 217 may provide a change in activity and/or specificity of the RP-II protease variant.

Substrate binding site

The substrate binding site is identified by the residues in contact with a substrate model, such as the DAFE. The 3D structure coordinates of the BLC protease with DAFE bound in the active site can be found in Appendix 1. Without being limited to any theory, it is presently believed that binding between a substrate and an enzyme is supported by favorable interactions found within a sphere 10 Å from the substrate molecule, in particular within a sphere of 6 Å from the substrate molecule. Examples of such favorable bonds are hydrogen bonds, strong electrostatic interaction and/or hydrophobic interactions.

The following residues of the BLC protease (SEQ ID NO:1), are within a distance of 10Å from the peptide DAFE and thus believed to be involved in interactions with said substrate: 1, 2, 3, 8, 25, 29, 30, 31, 32, 33, 34, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

90, 91, 92, 93, 94, 95, 96, 97, 129, 131, 132, 133, 134, 135, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 171, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200 and 204.

The following residues of the BLC protease (SEQ ID NO: 1), are within a distance of 6Å from the peptide DAFE and thus believed to be involved in interactions with said substrate: 1, 2, 31, 32, 47, 48, 88, 91, 93, 96, 162, 163, 164, 165, 166, 167, 168, 190, 191, 192, 193, 194, 195, and 201.

Helix capping:

5

10

15

20

25

30

For the RP-II proteases helix capping may be obtained by modifying the position structurally corresponding to position 221 in BLC, and specifically in BLC by the modification A221N,T

Removal of deamidation sites

For the RP-II proteases, removal of deamidation sites may be obtained by modifying the positions structurally corresponding to positions 213, 216, and 222 of BLC, and specifically in BLC by the modifications.

N213A,C,D,E,F,G,H,I,K,L,P,Q,R,S,T,V,Y,M,W preferably N213L,T,S

N216A,C,D,E,F,G,H,I,K,L,P,Q,R,S,T,V,Y,M,W preferably N216L,T,S

N222A,C,D,E,F,G,H,I,K,L,P,Q,R,S,T,V,Y,M,W preferably N222L,T,S

Combined modifications

The present invention also encompasses any of the above mentioned RP-II protease variants in combination with any other modification to the amino acid sequence thereof. Especially combinations with other modifications known in the art to provide improved properties to the enzyme are envisaged. Such modifications to be combined with any of the above indicated modifications are exemplified in the following.

Removal of critical oxidation sites

In order to increase the stability of the RP-II protease it may be advantageous to substitute or delete critical oxidation sites, such as methionines, with other amino acid residues which are not subject to oxidation.

Accordingly, in a further embodiment the present invention relates to an RP-II protease variant, in which one or more amino acid residues susceptible to oxidation, especially methionine residues exposed to the surface of the molecule, is/are deleted or replaced with another amino acid residue less susceptible to oxidation. The amino acid residue less susceptible to oxidation may for instance be selected from the group consisting of A, E, N, Q, I, L, S and K.

Specific such variants comprises at least one of the deletions or substitutions M36{*,S,A,N,Q,K}; M160{*,S,A,N,Q,K} of the BLC protease; M144{*,S,A,N,Q,K} of the AC116 and CDJ31 proteases; M67{*,S,A,N,Q,K}, M79{*,S,A,N,Q,K}, M137{*,S,A,N,Q,K}, M144{*,S,A,N,Q,K}, and M171{*,S,A,N,Q,K} of the BO32, BIP and JA96 proteases; M159{*,S,A,N,Q,K} of the BO32 protease; M81{*,S,A,N,Q,K}, and M141{*,S,A,N,Q,K} in the MPR protease; and M17{*,S,A,N,Q,K}, M67{*,S,A,N,Q,K}, M144{*,S,A,N,Q,K}, M160{*,S,A,N,Q,K}, M186{*,S,A,N,Q,K}, and M217{*,S,A,N,Q,K} of the AA513 protease (positions are indicated in relation to the BLC protease as indicated in Fig. 2).

15

20

25

30

10

5

Modification of Asn-Gly sequences in the protease

It is known that at alkaline pH, the side chain of Asn may interact with the NH group of a sequential neighboring amino acid to form an isoAsp residue where the backbone goes through the Asp side chain. This will leave the backbone more vulnerable to proteolysis. The deamidation is much more likely to occur if the residue that follows is a Gly. Changing the Asn in front of the Gly or the Gly will prevent this from happening and thus improve the stability, especially as concerns thermo- and storage stability.

The invention consequently further relates to an RP-II protease variant, in which either or both residues of any of the Asn-Gly sequence appearing in the amino acid sequence of the parent RP-II protease is/are deleted or substituted with a residue of a different amino acid.

The Asn and/or Gly residue may, for instance, be substituted with a residue of an amino acid selected from the group consisting of A, Q, S, P, T and Y.

More specifically, any of the Asn or Gly residues of the Asn-Gly occupying positions 68-69, 182-183 and/or 192-193 of the BLC protease; positions 68-69 and/or 192-193 of the AC116 and CDJ-31 proteases, positions 45-46, 74-75, 196-197, and/or

201-202 of the BO32, JA96 and BIP proteases, positions 68-69, 103-104 and/or 192-196 of the MPR protease; and positions 90-91 and/or 201-202 of the AA513 protease, may be deleted or substituted with a residue of an amino acid selected from the group consisting of A, Q, S, P, T and Y. (positions are indicated in relation to the BLC protease as indicated in Fig. 2)

Specific variants of BLC are:

5

 $N68\{*,A,Q,S,P,T,Y\};$ $G69\{*,A,Q,S,P,T,Y\}$

N68{*,A,Q,S,P,T,Y}+G69{*,A,Q,S,P,T,Y}

N182{*,A,Q,S,P,T,Y}; G183{*,A,Q,S,P,T,Y}

10 N182{*,A,Q,S,P,T,Y}+G183{*,A,Q,S,P,T,Y}

 $N192\{*,A,Q,S,P,T,Y\};$ $G193\{*,A,Q,S,P,T,Y\}$

N192{*,A,Q,S,P,T,Y}+G193{*,A,Q,S,P,T,Y}

and combinations thereof.

Specific variants of the AC116 and CDJ-31 proteases are:

15 N68{*,A,Q,S,P,T,Y}; G69{*,A,Q,S,P,T,Y}

N68{*,A,Q,S,P,T,Y}+G69{*,A,Q,S,P,T,Y}

N192{*,A,Q,S,P,T,Y}; G193{*,A,Q,S,P,T,Y}

N192{*,A,Q,S,P,T,Y}+G193{*,A,Q,S,P,T,Y}

N68{*,A,Q,S,P,T,Y}+N192{*,A,Q,S,P,T,Y}

20 and combinations thereof.

Specific variants of BO32, JA96 and BIP proteases are:

 $N45\{*,A,Q,S,P,T,Y\};$ $G46\{*,A,Q,S,P,T,Y\}$

N45{*,A,Q,S,P,T,Y}+G46{*,A,Q,S,P,T,Y}

 $N74\{*,A,Q,S,P,T,Y\};$ $G75\{*,A,Q,S,P,T,Y\}$

N74{*,A,Q,S,P,T,Y}+G75{*,A,Q,S,P,T,Y}

N196{*,A,Q,S,P,T,Y}; G197{*,A,Q,S,P,T,Y}

N196{*,A,Q,S,P,T,Y}+G197{*,A,Q,S,P,T,Y}

5 N201{*,A,Q,S,P,T,Y}; G202{*,A,Q,S,P,T,Y}

 $N201\{*,A,Q,S,P,T,Y\} + G202\{*,A,Q,S,P,T,Y\}$

N45{*,A,Q,S,P,T,Y}+N74{*,A,Q,S,P,T,Y}

N45{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}

N45{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

10 N74{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}

N74{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

N196{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

N45{*,A,Q,S,P,T,Y}+N74{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}

N45{*,A,Q,S,P,T,Y}+N74{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

15 N45{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

N74{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

N45{*,A,Q,S,P,T,Y}+N74{*,A,Q,S,P,T,Y}+N196{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

and combinations thereof.

Specific variants of AA513 are:

20 N90{*,A,Q,S,P,T,Y}; G91{*,A,Q,S,P,T,Y}

N90{*,A,Q,S,P,T,Y}+G91{*,A,Q,S,P,T,Y}

 $N201\{*,A,Q,S,P,T,Y\};$ $G202\{*,A,Q,S,P,T,Y\}$

N201{*,A,Q,S,P,T,Y}+G202{*,A,Q,S,P,T,Y}

N90{*,A,Q,S,P,T,Y}+N201{*,A,Q,S,P,T,Y}

and combinations thereof.

5

20

25

Specific variants of MPR are:

 $N68\{*,A,Q,S,P,T,Y\};$ $G69\{*,A,Q,S,P,T,Y\}$

N68{*,A,Q,S,P,T,Y}+G69{*,A,Q,S,P,T,Y}

 $N103\{*,A,Q,S,P,T,Y\};$ $G104\{*,A,Q,S,P,T,Y\}$

N103{*,A,Q,S,P,T,Y}+G104{*,A,Q,S,P,T,Y}

 $N192\{*,A,Q,S,P,T,Y\};$ $G196\{*,A,Q,S,P,T,Y\}$

10 N192{*,A,Q,S,P,T,Y}+G196{*,A,Q,S,P,T,Y}

N68{*,A,Q,S,P,T,Y}+N103{*,A,Q,S,P,T,Y}

N68{*,A,Q,S,P,T,Y}+N192{*,A,Q,S,P,T,Y}

N103{*,A,Q,S,P,T,Y}+N192{*,A,Q,S,P,T,Y}

N68{*,A,Q,S,P,T,Y}+N103{*,A,Q,S,P,T,Y}+N192{*,A,Q,S,P,T,Y}

and combinations thereof.

Removal of autoproteolysis sites

According to a further aspect of the invention autoproteolysis sites may be removed by changing the amino acids at an autoproteolysis site. Since the RP-II proteases cleaves at Glu and Asp residues it is preferred to modify such residues of a parent RP-II protease having the same or a similar specificity, preferably by substituting with any other amino acid except Glu.

The parent RP-II proteases are mostly specific towards Glu and to a minor extent towards Asp residues. Therefore the modification of the parent (trypsin-like) RP-II protease may preferably be made by changing Glu to another amino acid residue (including Asp). Experiments have indicated that the substitution of Ala for Glu or Asp

provides good results.

5

10

15

20

Glu and Asp residue are in the BLC, CDJ31 and AC116 proteases found in positions E101, ,E152, E173, E209, D6, D51, D96, D135, D161, and D212. BLC has a further Glu in position E104 and Asp in D7.

Specific BLC, CDJ31 and AC116 variants are thus E101A, E152A, E173A, E209A, D6A, D51A, D135A, D161A, D212A, and double, triple, quadruple, etc. combinations thereof. Further specific BLC variants are E104A and D7A.

In JA96, BO32 and BIP Glu and Asp are found at positions E81, E 143, E 151, E209, D5, D6, D69, D96, D103, D135, D152, D161, and D173.

Specific JA96, BO32 and BIP variants are thus E81A, E143A, E151A, E202A, D5A, D6A, D69A, D96A, D103A, D135A, D152A, D161A, D173A, and double, triple, quadruple, etc. combinations thereof.

In MPR Glu and Asp are found at positions E7, E89a, E152, D6, D54, D92, D96, D135, D144, D161, D177 and D209

Specific MPR variants are thus E7A, E89aA, E152A, D6A, D54A, D92A, D96A, D135A, D144A, D161A, D177A and D209A, and double, triple, quadruple, etc. combinations thereof.

In AA513 Glu and Asp are found at positions E26, E55, E94, E117, E123, E137b, E199, D40, D96, D103b, D103d, D135, D149, D154, D161, D184 and D209

Specific AA513 variants are thus E26A, E55A, E94A, E117A, E123A, E137bA, E199A, D40A, D96A, D103bA, D103dA, D135A, D149A, D154A, D161A, D184A and D209A, and double, triple, quadruple, etc. combinations thereof.

Corresponding variants are easily identified in any other RP-II protease.

Alternatively autoproteolysis can be prevented by changing the amino acid residue occupying the 1st and/or 2nd position following the Glu or Asp residue in question to Pro. For instance, this may in BLC, CDJ31 and AC116 be done in the positions 174 and/or 175 as follows:

Q174P; S175P; Q174P+S175P

or in a similar manner in JA96, BO32 or BIP at positions 152 and/or 153 as D152P; T153P; or D152P+T153P.

Corresponding variants are easily identified in these and any other RP-II protease.

Modification of tryptophan residues

In order to stabilize the protein it may be advantageous to replace or delete tryptophan residues at the surface of the protein, e.g., as described in US 5,118,623. The tryptophan residues may advantageously be substituted for F, T, Q or G. Thus, in a further embodiment the invention relates to an RP-II variant comprising one or more of the following substitutions:

10 BLC and AC116:

5

W35{F,T,Q,G}; W88{F,T,Q,G}; W142{F,T,Q,G}; W217{F,T,Q,G}

CDJ31:

W142{F,T,Q,G}; W217{F,T,Q,G};

BO32, JA96 and BIP:

15 W142{F,T,Q,G};

AA513:

W30{F,T,Q,G}; W72{F,T,Q,G}; W142{F,T,Q,G}

MPR:

20

25

W57{F,T,Q,G}; W88{F,T,Q,G}; W112{F,T,Q,G}; W142{F,T,Q,G}; W217{F,T,Q,G}

Modification of tyrosines

In relation to wash performance it has been found that the modification of certain tyrosine residues to phenylalanine provides an improved wash performance. Without being bound by any specific theory, it is believed that titration of these Tyr residues in the alkaline wash liquor has negative effects that are alleviated by replacing the Tyr residues with other residues, especially Phe or Trp, particularly Phe.

In the BLC, AC116 and CDJ31 parent RP-II proteases, the following tyrosine

residues may be modified:

5

10

19, 50, 72, 74, 82, 95, 97, 112, 115, 117, 132, 154, 163, 195, 200. In BLC and CDJ31 the tyrosines in positions 17 and 158 may also be modified , and in AC116 and CDJ31 the tyrosines in position 172

Examples of specific variants comprise one or more of the following substitutions:

Y17{F,W}, Y19{F,W}, Y50{F,W}, Y72{F,W}, Y74{F,W}, Y82{F,W}, Y88{F,W}, Y95{F,W}, Y97{F,W}, Y112{F,W}, Y115{F,W}, Y117{F,W}, Y132{F,W}, Y154{F,W}, Y158{F,W}, Y163{F,W}, Y172{F,W}, Y195{F,W}, Y200{F,W}

In the JA96, BO32 and BIP parent RP-II proteases, the following tyrosine residues may be modified:

19, 24, 50, 57, 64, 83, 88, 95, 112, 132, 157, 158, 195, 216

Examples of specific JA96, BO32 and BIP variants comprises one or more of the following substitutions:

15 Y19{F,W}, Y24{F,W}, Y50{F,W}, Y57{F,W}, Y64{F,W}, Y83{F,W}, Y88{F,W}, Y95{F,W}, Y112{F,W}, Y132{F,W}, Y157{F,W}, Y158{F,W}, Y195{F,W} and Y216{F,W}

In the AA513 parent RP-II protease, the following tyrosine residues may be modified:

24, 74, 77, 84, 88, 97, 130, 132, 158, 163, 193a

Examples of specific A A513 variants comprises one or more of the following substitutions:

Y24{F,W}, Y74{F,W}, Y77{F,W}, Y84{F,W}, Y88{F,W}, Y97{F,W}, Y130{F,W}, Y152{F,W}, Y158{F,W}, Y163{F,W}, Y193A{F,W}

In the MPR parent RP-II protease, the following tyrosine residues may be modified:

19, 28a, 30, 50, 72, 74, 77, 83, 95, 97, 113, 115, 154, 158, 163, 172, 175, 200, 216

Examples of specific MPR variants comprises one or more of the following sub-

stitutions:

Y19{F,W}, Y28Ad{F,W}, Y30{F,W}, Y50{F,W}, Y72{F,W}, Y74{F,W}, Y77{F,W}, Y83{F,W}, Y95{F,W}, Y97{F,W}, Y113{F,W}, 115{F,W}, Y154{F,W}, Y158{F,W}, Y172{F,W}, Y200{F,W}, Y216{F,W}

5 Other modifications for combination

Examples of specific BLC variants comprises one or more of the following substitutions:

E152{A,R,K,G}

E173A

10 E209A

15

20

25

E152G+G164R

METHODS OF PREPARING RP-II PROTEASE VARIANTS

The RP-II protease variants of the present invention may be produced by any known method within the art. The invention also relates to polynucleotides encoding the RP-II protease variants of the present invention, DNA constructs comprising such polynucleotides and host cells comprising such constructs or polynucleotides.

In general natural occurring proteins may be produced by culturing the organism expressing the protein and subsequently purifying the protein, or recombinantly by cloning a polynucleotide, e.g. genomic DNA or cDNA, encoding the protein into an expression vector, introducing said expression vector into a host cell, culturing the host cell and purifying the expressed protein.

site-directed mutagenesis

Typically protein variants may be produced by site-directed mutagenesis of the gene encoding a parent protein, introduction of the mutated gene into an expression vector, host cell etc. The gene encoding the parent protein may be cloned from a strain producing the polypeptide or from an expression library, i.e. it may be isolated from ge-

nomic DNA or prepared from cDNA, or a combination thereof. The gene may even be a fully synthetically produced gene.

In general standard procedures for cloning of genes and/or introducing mutations (random and/or site directed) into said genes may be used in order to obtain a parent RP-II protease, or RP-II protease variant of the invention. For further description of suitable techniques reference is made to Molecular cloning: A laboratory manual (Sambrook et al. (1989), Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds.)); Current protocols in Molecular Biology (John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.)); Molecular Biological Methods for Bacillus (John Wiley and Sons, 1990); DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); I mmobilized C ells And E nzymes (IRL Press, (1986)); A Practical Guide To Molecular Cloning (B. Perbal, (1984)) and WO 96/34946.

Localized and region specific random mutagenesis

5

10

15

20

25

30

Random mutagenesis is suitably performed either as localized or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a parent RP-II protease may be conveniently performed by use of any method known in the art.

In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a parent RP-II protease wherein the variant exhibits an altered property, such as increased thermostability, increased stability at low pH and at low calcium concentration, relative to the parent RP-II protease, the method comprising:

- a) subjecting a DNA sequence encoding the parent protease to localized or regionspecific random mutagenesis,
- b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- c) screening for host cells expressing a RP-II protease variant which has an altered property relative to the parent RP-II protease.

Step (a) of the above method of the invention is preferably performed using doped primers.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions that are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the RP-II protease by any published technique, using, e.g., PCR, LCR or any DNA polymerase and ligase as deemed appropriate.

5

10

15

20

25

30

35

Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and modification in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% modifications in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, *inter alia*, ensures that introduction of stop codons is avoided (L.J. Jensen et al. *Nucleic Acid Research*, 26, 697-702 (1998).

The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent RP-II protease. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

Subsequent to the incubation with or exposure to the mutagenizing agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally

present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*, *Bacillus brevis*, *Bacillus stearothermophilus*, *Bacillus alkalophilus*, *Bacillus amyloliquefaciens*, *Bacillus coagulants*, *Bacillus circulans*, *Bacillus lautus*, *Bacillus megaterium*, *Bacillus thuringiensis*, *Streptomyces lividans* or *Streptomyces murinus*; and gram negative bacteria such as *E. coli*.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

Localised random mutagenesis

5

10

15

20

30

The random mutagenesis may be advantageously localised to a part of the parent RP-II protease in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localised or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

25 General method for localised random mutagenesis by use of the DOPE program

The localised random mutagenesis may be carried out by the following steps:

- 1. Select regions of interest for modification in the parent enzyme
- 2. Decide on mutation sites and non-mutated sites in the selected region
- Decide on which kind of mutations should be carried out, e.g. with respect to the desired stability and/or performance of the variant to be constructed
- 4. Select structurally based mutations
- 5. Adjust the residues selected in step 3 with regard to step 4.

36

6. Analyse by use of a suitable dope algorithm the nucleotide distribu-

tion.

7. If necessary, adjust the wanted residues to genetic code realism, e.g. taking into account constraints resulting from the genetic code, e.g. in order to avoid introduction of stop codons; the skilled person will be aware that some codon combinations cannot be used in practice and will need to be adapted

- 8. Make primers
- 9. Perform localised random mutagenesis by use of the primers
- 10. Select resulting RP-II protease variants by screening for the desired improved properties.

Suitable dope algorithms for use in step 6 are well known in the art. One such algorithm is described by Tomandl, D. et al., 1997, Journal of Computer-Aided Molecular Design 11:29-38. Another algorithm is DOPE (Jensen, LJ, Andersen, KV, Svendsen, A, and Kretzschmar, T (1998) Nucleic Acids Research 26:697-702).

Expression vectors

5

10

15

20

25

30

A recombinant expression vector comprising a nucleic acid sequence encoding a RP-II protease variant of the invention may be any vector that may conveniently be subjected to recombinant DNA procedures and which may bring about the expression of the nucleic acid sequence.

The choice of vector will often depend on the host cell into which it is to be introduced. Examples of a suitable vector include a linear or closed circular plasmid or a virus. The vector may be an autonomously replicating vector, i.e., a vector which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini chromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, pACYC184, pUB110, pE194, pTA1060, and pAMß1. Examples of origin of replications for use in a yeast host cell are the 2 micron origin of replication, the combination of CEN6 and ARS4, and the combination of CEN3 and ARS1. The origin of replication may be one having a mutation which makes it function as temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75:1433).

Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Vectors which are integrated into the genome of the host cell may contain any nucleic acid sequence enabling integration into the genome; in particular it may contain nucleic acid sequences facilitating integration into the genome by homologous or non-homologous recombination. The vector system may be a single vector, e.g. plasmid or virus, or two or more vectors, e.g. plasmids or virus', which together contain the total DNA to be introduced into the genome of the host cell, or a transposon.

5

10

15

20

25

30

35

The vector may in particular be an expression vector in which the DNA sequence encoding the RP-II protease variant of the invention is operably linked to additional segments or control sequences required for transcription of the DNA. The term, "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in a promoter and proceeds through the DNA sequence encoding the RP-II protease variant. Additional segments or control sequences include a promoter, a polyadenylation sequence, a propeptide sequence, a signal sequence and a transcription terminator. At a minimum the control sequences include a promoter and transcriptional and translational stop signals.

The promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

Examples of suitable promoters for use in bacterial host cells include the promoter of the *Bacillus subtilis* levansucrase gene (sacB), the *Bacillus stearothermophilus* maltogenic amylase gene (amyM), the *Bacillus licheniformis* alpha-amylase gene (amyL), the *Bacillus amyloliquefaciens* alpha-amylase gene (amyQ), the *Bacillus subtilis* alkaline protease gene, or the *Bacillus pumilus* xylosidase gene, the *Bacillus amyloliquefaciens* BAN amylase gene, the *Bacillus licheniformis* penicillinase gene (penP), the *Bacillus subtilis* xylA and xylB genes, and the prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proceedings of the National Academy of Sciences USA 75:3727-3731). Other examples include the phage Lambda P_R or P_L promoters or the E. coli lac, trp or tac promoters or the Streptomyces coelicolor agarase gene (dagA). Further promoters are described in "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; and in Sambrook et al., 1989, supra.

Examples of suitable promoters for use in a filamentous fungal host cell are promoters obtained from the genes encoding Aspergillus oryzae TAKA amylase, Rhi-

zomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, Fusarium oxysporum trypsin-like protease (as described in U.S. Patent No. 4,288,627, which is incorporated herein by reference), and hybrids thereof. Particularly preferred promoters for use in filamentous fungal host cells are the TAKA amylase, NA2-tpi (a hybrid of the promoters from the genes encoding Aspergillus niger neutral (-amylase and Aspergillus oryzae triose phosphate isomerase), and glaA promoters. Further suitable promoters for use in filamentous fungus host cells are the ADH3 promoter (McKnight et al., The EMBO J. 4 (1985), 2093 - 2099) or the tpiA promoter.

5

10

15

20

25

30

35

Examples of suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255 (1980), 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1 (1982), 419 - 434) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al, eds.), Plenum Press, New York, 1982), or the TPI1 (US 4,599,311) or ADH2-4c (Russell et al., Nature 304 (1983), 652 - 654) promoters.

Further useful promoters are obtained from the *Saccharomyces cerevisiae* enolase (ENO-1) gene, the *Saccharomyces cerevisiae* galactokinase gene (GAL1), the *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase genes (ADH2/GAP), and the *Saccharomyces cerevisiae* 3-phosphoglycerate kinase gene. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8:423-488. In a mammalian host cell, useful promoters include viral promoters such as those from Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus, and bovine papilloma virus (BPV).

Examples of suitable promoters for use in mammalian cells are the SV40 promoter (Subramani et al., Mol. Cell Biol. 1 (1981), 854 -864), the MT-1 (metallothionein gene) promoter (Palmiter et al., Science 222 (1983), 809 - 814) or the adenovirus 2 major late promoter.

An example of a suitable promoter for use in insect cells is the polyhedrin promoter (US 4,745,051; Vasuvedan et al., FEBS Lett. 311, (1992) 7 - 11), the P10 promoter (J.M. Vlak et al., J. Gen. Virology 69, 1988, pp. 765-776), the Autographa californica polyhedrosis virus basic protein promoter (EP 397 485), the baculovirus immediate early gene 1 promoter (US 5,155,037; US 5,162,222), or the baculovirus 39K delayedearly gene promoter (US 5,155,037; US 5,162,222).

The DNA sequence encoding a RP-II protease variant of the invention may also, if necessary, be operably connected to a suitable terminator.

The recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.

5

10

15

20

25

30

35

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e.g. antibiotics like ampicillin, kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, neomycin, hygromycin, methotrexate, or resistance to heavy metals, virus or herbicides, or which provides for prototrophy or auxotrophs. Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, resistance. A frequently used mammalian marker is the dihydrofolate reductase gene (DHFR). Suitable markers for yeast host cells are ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. A selectable marker for use in a filamentous fungal host cell may be selected from the group including, but not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hygB (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), trpC (anthranilate synthase), and glufosinate resistance markers, as well as equivalents from other species. Particularly, for use in an Aspergillus cell are the amdS and pyrG markers of Aspergillus nidulans or Aspergillus oryzae and the bar marker of Streptomyces hygroscopicus. Furthermore, selection may be accomplished by co-transformation, e.g., as described in WO 91/17243, where the selectable marker is on a separate vector.

To direct a RP-II protease variant of the present invention into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector. The secretory signal sequence is joined to the DNA sequence encoding the enzyme in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the enzyme. The secretory signal sequence may be that normally associated with the enzyme or may be from a gene encoding another secreted protein.

The procedures used to ligate the DNA sequences coding for the present enzyme, the promoter and optionally the terminator and/or secretory signal sequence, respectively, or to assemble these sequences by suitable PCR amplification schemes, and to insert them into suitable vectors containing the information necessary for replication or integration, are well known to persons skilled in the art (cf., for instance, Sam-

brook et al.).

5

10

20

25

30

More than one copy of a nucleic acid sequence encoding an enzyme of the present invention may be inserted into the host cell to amplify expression of the nucleic acid sequence. Stable amplification of the nucleic acid sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome using methods well known in the art and selecting for transformants.

The nucleic acid constructs of the present invention may also comprise one or more nucleic acid sequences which encode one or more factors that are advantageous in the expression of the polypeptide, e.g., an activator (e.g., a trans-acting factor), a chaperone, and a processing protease. Any factor that is functional in the host cell of choice may be used in the present invention. The nucleic acids encoding one or more of these factors are not necessarily in tandem with the nucleic acid sequence encoding the polypeptide.

15 Host cells

The DNA sequence encoding a RP-II protease variant of the present invention may be either homologous or heterologous to the host cell into which it is introduced. If homologous to the host cell, i.e. produced by the host cell in nature, it will typically be operably connected to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment. The term "homologous" is intended to include a DNA sequence encoding an enzyme native to the host organism in question. The term "heterologous" is intended to include a DNA sequence not expressed by the host cell in nature. Thus, the DNA sequence may be from another organism, or it may be a synthetic sequence.

The host cell into which the DNA construct or the recombinant vector of the invention is introduced may be any cell that is capable of producing the present RP-II protease variants, such as prokaryotes, e.g. bacteria or eukaryotes, such as fungal cells, e.g. yeasts or filamentous fungi, insect cells, plant cells or mammalian cells.

Examples of bacterial host cells which, on cultivation, are capable of producing the RP-II protease variants of the invention are gram-positive bacteria such as strains of Bacillus, e.g. strains of B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or strains of Streptomyces, such as S. lividans or S. murinus, or gram-negative bacteria such as Escherichia coli or Pseudomo-

nas sp.

5

10

15

20

25

30

35

The transformation of the bacteria may be effected by protoplast transformation, electroporation, conjugation, or by using competent cells in a manner known per se (cf. Sambrook et al., supra).

When expressing the RP-II protease variant in bacteria such as *E. coli*, the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or it may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.

When expressing the RP-II protease variant in gram-positive bacteria such as *Bacillus* or *Streptomyces* strains, the enzyme may be retained in the cytoplasm, or it may be directed to the extracellular medium by a bacterial secretion sequence. In the latter case, the enzyme may be recovered from the medium as described below.

Examples of host yeast cells include cells of a species of Candida, Kluyveromyces, Saccharomyces, Schizosaccharomyces, Pichia, Hansehula, or Yarrowia. In a particular embodiment, the yeast host cell is a Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis or Saccharomyces oviformis cell. Other useful yeast host cells are a Kluyveromyces lactis, Kluyveromyces fragilis, Hansehula polymorpha, Pichia pastoris, Yarrowia lipolytica, Schizosaccharomyces pombe, Ustilgo maylis, Candida maltose, Pichia guillermondii and Pichia methanolio cell (cf. Gleeson et al., J. Gen. Microbiol. 132, 1986, pp. 3459-3465; US 4,882,279 and US 4,879,231). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, F.A., Passmore, S.M., and Davenport, R.R., eds, Soc. App. Bacteriol. Symposium Series No. 9, 1980. The biology of yeast and manipulation of yeast genetics are well known in the art (see, e.g., Biochemistry and Genetics of Yeast, Bacil, M., Horecker, B.J., and Stopani, A.O.M., editors, 2nd edition, 1987; The Yeasts, Rose, A.H., and Harrison, J.S., editors, 2nd edition, 1987; and The Molecular Biology of the Yeast Saccharomyces, Strathern et al., editors, 1981). Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194,

pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153:163; and Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920.

Examples of filamentous fungal cells include filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra), in particular it may of the a cell of a species of *Acremonium*, such as *A. chrysogenum*, *Aspergillus*, such as *A. awamori*, *A. foetidus*, *A. japonicus*, *A. niger*, *A. nidulans* or *A. oryzae*, *Fusarium*, such as *F. bactridioides*, *F. cerealis*, *F. crookwellense*, *F. culmorum*, *F. graminearum*, *F. graminum*, *F. heterosporum*, *F. negundi*, *F. reticulatum*, *F. roseum*, *F. sambucinum*, *F. sarcochroum*, *F. sulphureum*, *F. trichothecioides* or *F. oxysporum*, *Humicola*, such as *H. insolens* or *H. lanuginose*, *Mucor*, such as *M. miehei*, *Myceliophthora*, such as *M. thermophilum*, *Neurospora*, such as *N. crassa*, *Penicillium*, such as *P. purpurogenum*, *Thielavia*, such as *T. terrestris*, *Tolypocladium*, or *Trichoderma*, such as *T. harzianum*, *T. koningii*, *T. longibrachiatum*, *T. reesei* or *T. viride*, or a teleomorph or synonym thereof. The use of *Aspergillus spp.* for the expression of proteins is described in, e.g., EP 272 277, EP 230 023.

Examples of insect cells include a *Lepidoptera* cell line, such as *Spodoptera* frugiperda cells or *Trichoplusia ni* cells (cf. US 5,077,214). Culture conditions may suitably be as described in WO 89/01029 or WO 89/01028. Transformation of insect cells and production of heterologous polypeptides therein may be performed as described in US 4,745,051; US 4, 775, 624; US 4,879,236; US 5,155,037; US 5,162,222; EP 397,485).

Examples of mammalian cells include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, COS cells, or any number of other immortalized cell lines available, e.g., from the American Type Culture Collection. Methods of transfecting mammalian cells and expressing DNA sequences introduced in the cells are described in e.g. Kaufman and Sharp, J. Mol. Biol. 159 (1982), 601 - 621; Southern and Berg, J. Mol. Appl. Genet. 1 (1982), 327 - 341; Loyter et al., Proc. Natl. Acad. Sci. USA 79 (1982), 422 - 426; Wigler et al., Cell 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., N.Y., 1987, Hawley-Nelson et al., Focus 15 (1993), 73; Ciccarone et al., Focus 15 (1993), 80; Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al., EMBO J. 1 (1982), 841 - 845. Mammalian cells may be transfected by direct uptake using the calcium phosphate precipitation method of Graham and Van der Eb (1978, Virology 52:546).

Methods for expression and isolation of proteins

5

10

15

20

25

30

To express an enzyme of the present invention the above mentioned host cells transformed or transfected with a vector comprising a nucleic acid sequence encoding an enzyme of the present invention are typically cultured in a suitable nutrient medium under conditions permitting the production of the desired molecules, after which these are recovered from the cells, or the culture broth.

The medium used to culture the host cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The media may be prepared using procedures known in the art (see, e.g., references for bacteria and yeast; Bennett, J.W. and LaSure, L., editors, More Gene Manipulations in Fungi, Academic Press, CA, 1991).

If the enzymes of the present invention are secreted into the nutrient medium, they may be recovered directly from the medium. If they are not secreted, they may be recovered from cell lysates. The enzymes of the present invention may be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gel filtration chromatography, affinity chromatography, or the like, dependent on the enzyme in question.

The enzymes of the invention may be detected using methods known in the art that are specific for these proteins. These detection methods include use of specific antibodies, formation of a product, or disappearance of a substrate. For example, an enzyme assay may be used to determine the activity of the molecule. Procedures for determining various kinds of activity are known in the art.

The enzymes of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction (see, e.g., Protein Purification, J-C Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

When an expression vector comprising a DNA sequence encoding an enzyme of the present invention is transformed/transfected into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme. An advantage of using a heterologous host cell is that it is possible to make a highly purified enzyme composition, characterized in being free from homologous impurities, which are often present when a protein or peptide is expressed in a homologous host cell. In this context homologous impurities mean any impurity (e.g. other polypeptides than the enzyme of the invention) which originates from the homologous cell where the enzyme of the invention is originally obtained from.

10

15

5

DETERGENT APPLICATIONS

The enzyme of the invention may be added to and thus become a component of a detergent composition.

The detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.

20

In a specific aspect, the invention provides a detergent additive comprising the enzyme of the invention. The detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e.g., a laccase, and/or a peroxidase.

25

In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.

Proteases:

30

Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from *Bacillus*, e.g., subtilisin Novo, subtilisin

Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the *Fusarium* protease described in WO 89/06270 and WO 94/25583.

Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 68, 76, 87, 97, 101, 104, 106, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235, 245, 252 and 274.

Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, EsperaseTM, CoronaseTM and KannaseTM (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).

Lipases:

5

10

15

20

25

Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from *Humicola* (synonym *Thermomyces*), e.g. from *H. lanuginosa* (*T. lanuginosus*) as described in EP 258 0 68 and EP 3 05 216 or from *H. insolens* as described in WO 96/13580, a *Pseudomonas* lipase, e.g. from *P. alcaligenes* or *P. pseudoalcaligenes* (EP 2 18 2 72), *P. cepacia* (EP 3 31 3 76), *P. stutzeri* (GB 1,372,034), *P. fluorescens*, *Pseudomonas sp.* strain SD 705 (WO 95/06720 and WO 96/27002), *P. wisconsinensis* (WO 96/12012), a *Bacillus* lipase, e.g. from *B. subtilis* (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), *B. stearothermophilus* (JP 64/744992) or *B. pumilus* (WO 91/16422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.

Preferred commecially available lipase enzymes include LipolaseTM, Lipolase UltraTM and LipexTM (Novozymes A/S).

30 Amylases:

Suitable amylases (α and/or β) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, α -amylases obtained from *Bacillus*, e.g. a special strain of *B. licheniformis*, described in more detail in GB 1,296,839.

Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.

Commercially available amylases are DuramylTM, TermamylTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).

Cellulases:

5

10

15

20

25

30

35

Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera *Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium,* e.g. the fungal cellulases produced from *Humicola insolens, Myceliophthora thermophila* and *Fusarium oxysporum* disclosed in US 4,435,307, US 5,648,263, US 5,691,178, US 5,776,757 and WO 89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.

Commercially available cellulases include RenozymeTM, CelluzymeTM, and CarezymeTM (Novozymes A/S), ClazinaseTM, and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).

Peroxidases/Oxidases:

Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from *Coprinus*, e.g. from *C. cinereus*, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.

Commercially available peroxidases include Guardzyme™ (Novozymes A/S).

The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e. a separate additive or a combined additive, can be formulated e.g. as a granulate, a liquid, a

5

10

15

20

25

30

35

slurry, etc. Preferred detergent additive formulations are granulates, in particular nondusting granulates, liquids, in particular stabilized liquids, or slurries.

Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethylene glycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.

The detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste or a liquid. A liquid detergent may be aqueous, typically containing up to 70 % water and 0-30 % organic solvent, or non-aqueous.

The detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants are typically present at a level of from 0.1% to 60% by weight.

When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alphaolefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.

When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides").

The detergent may contain 0-65 % of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkylor alkenylsuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst).

The detergent may comprise one or more polymers. Examples are carboxy-

methylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

The detergent may contain a bleaching system which may comprise a H_2O_2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxyben-zenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of e.g. the amide, imide, or sulfone type.

The enzyme(s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.

The detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.

It is at present contemplated that in the detergent compositions any enzyme, in particular the enzyme of the invention, may be added in an amount corresponding to 0.01-100 mg of enzyme protein per litre of wash liquor, preferably 0.05-5 mg of enzyme protein per litre of wash liquor, in particular 0.1-1 mg of enzyme protein per litre of wash liquor.

The enzyme of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference.

FOOD PROCESSING APPLICATIONS

5

10

15

20

25

30

The RP-II protease variants of the present invention may also be used in the processing of food, especially in the field of diary products, such as milk, cream and cheese, but also in the processing of meat and vegetables.

FEED PROCESSING APPLICATION

The RP-II protease variants of the present invention may also be used in the processing of feed for cattle, poultry, and pigs and especially for pet food.

TREATMENT OF HIDES

The RP-II protease variants of the invention may also be used for the treatment

of hides.

5

10

20

25

30

DECONTAMINATION OF POSSIBLY INFESTED MATERIALS

The RP-II protease variants of the invention may also be used in processes for

decontaminating instruments, surfaces, and other materials in hospitals, clinics, and

meat processing plants, etc. in order to decompose prions or other infectious agents.

MATERIALS AND METHODS

Strains:

B. subtilis DN1885: Disclosed in WO 01/16285

15 Plasmids:

pNM1003: Disclosed in WO 01/16285

pSX222: Disclosed in WO 96/34946

pNM1008: See Example 2

Method for producing a protease variant

The present invention provides a method of producing an isolated enzyme ac-

cording to the invention, wherein a suitable host cell, which has been transformed with

a DNA sequence encoding the enzyme, is cultured under conditions permitting the pro-

duction of the enzyme, and the resulting enzyme is recovered from the culture.

When an expression vector comprising a DNA sequence encoding the enzyme

is transformed into a heterologous host cell it is possible to enable heterologous re-

combinant production of the enzyme of the invention. Thereby it is possible to make a

highly purified RP-II protease composition, characterized in being free from homolo-

gous impurities.

The medium used to culture the transformed host cells may be any conventional

medium suitable for growing the host cells in question. The expressed RP-II protease

may conveniently be secreted into the culture medium and may be recovered therefrom by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

Proteolytic Activity

Enzyme activity can be measured using the PNA assay using succinyl-alanine-alanine-proline-glutamicacid-paranitroaniline as a substrate. The principle of the PNA assay is described in the Journal of American Oil Chemists Society, Rothgeb, T.M., Goodlander, B.D., Garrison, P.H., and Smith, L.A., (1988).

Textiles

5

10

15

20

Standard textile pieces are obtained from EMPA St. Gallen, Lerchfeldstrasse 5, CH-9014 St. Gallen, Switzerland. Especially type EMPA 116 (cotton textile stained with blood, milk and ink) and EMPA 117 (polyester/cotton textile stained with blood, milk and ink). The textile can be cut into a smaller textile piece of 5x3 cm or 13x3 cm

Other relevant protease stain may be used as well, e.g. C-03, C-05, C-10 from CFT, Center For Testmaterials, Vlaardingen, Netherlands

Wash Conditions

Region	Latin America	Europe	North America	Japan
Temperature	20°C	30°C	20°C	20°C
Washing time	14 min	20 min	12 min	15 min
Swatches	EMPA 117	EMPA 116	EMPA 117	EMPA 117
Water Hard-	9 or 12°dH	15°dH	6°dH	3°dH
ness*				
Detergent dos-	1.5 or 2.5 g/l	4, 6 or 8 g/l	HDL: 1.5 g/l	0.5 or 0.7
Washing pH	As is, or ad-			
washing pri	AS 15, 01 au-	A5 15, 01 au-	AS 15, OF au-	
	justed to 8, 9,			
	10	10	10	10

* °dH: adjusted by adding $CaCl_2*2H_2O$; $MgCl_2*6H_2O$; $NaHCO_3$ (Ratio $Ca^{2+}:Mg^{2+}:HCO^{3-}=2:1:6$) to milli-Q water.

Detergents

15

20

25

30

35

The enzymes of the invention may be tested in the detergent formulations disclosed in WO 97/07202 or in detergents formulations purchased from wfk testgewebe GmbH or similar supplier

List of test detergents from wfk testgewebe

• IEC 60456 Type A* Base Detergent

- TEO 00400 Type A Base Betergent
- IEC 60456 Type B Base Detergent
- IEC 60456 Type C Detergent
- ECE Reference Detergent with Phosphate (1977)
- ECE Reference Detergent without Phosphate (1998)
- AHAM Standard Detergent
- EU ECOLABEL (detergents) Light Duty Detergent
- EU ECOLABEL (detergents) PVP

However, also one of the following commercial detergents may be used in the wash assay, e.g.

- Omo Multi Acao HDP, Unilever, Brazil
- Tide HDL, P&G, US
- Wisk HDL, Unilever, US
- TOP HDP, Lion, Japan
- Attack HDP, Kao, Japan
- Ariel Regular HDP, P&G, Europe
- Ariel Compact HDPC, P&G, Europe
- Persil Megaperls, Henkel, Germany
- Persil, Unilever, UK

Furthermore, a brand extension or color / compact version for the above specified detergent could be used as well

If the detergent contains enzymes, the detergent should be in-activated before use in order to eliminate the enzyme activity already present in the detergent. This is done by heating a detergent stock solution to 85°C in 5 minutes in a micro wave oven. The concentration of

the detergent stock solution in the micro wave oven is between 4 - 20 g/I

EXAMPLE 1

5

10

15

20

25

30

Modelling RP-II Proteases from the 3D Structure of BLC

The overall homology of *Bacillus licheniformis* protease BCL to other RP-II proteases is high. The similarity between the different RP-II proteases is provided in Table 1. Using the sequence alignment of Fig. 2 a model of the JA96 protease can be build using a suitable modelling tool like the Accellrys software Homology, or Modeller (also from Accellrys), or other software like Nest. These programs provide results as a first rough model, with some optimization in the Modeller and Nest programs.

The first rough model provides a close structural homology between the model of JA96 protease and the 3D structure of the BCL as there are no overlapping side chains in the model structure. To optimize the structure the protein can *in silico* be soaked in a box of water and subjected to energy minimization and further molecular dynamics simulations using e.g. the CHARMm™ software from Accelrys. The *in silico* soaking in water can conveniently be done by adding water in the Insight II program (from Accelrys) with a box size of 75*75*75ų. The energy minimization can be done using settings of 300 Steepest descent (SD) and further 600 Conjugated gradients (CJ). The molecular dynamics simulations can conveniently be done using 1.2 ns run using the Verlet algorithm at 300K and standard parameters (see CHARMm manual). Other RP-II protease 3D models may be built in an analogous way.

EXAMPLE 2

Construction of Library of RP-II Protease Variants

Construction and Expression of BLC

A *B. subtilis – E. coli* shuttle vector, pNM1003, suited to a gene coding for RP-II protease BLC and its mutants was constructed. It is derived from the B. subtilis expression vector pSX222 (Described in WO 96/34946) as described in WO 01/16285. To facilitate cloning pNM1008 was constructed introducing a kpnI restriction site downstream the HindIII site to facilitate the cloning of fragments inside the vector. For transformation in Bacillus pNM1008 was restricted with HindIII and a 4350 bp DNA fragment was isolated and ligated. The ligation mixture was used to transform competent *B. subtilis* DN1885, selecting for protease activity, as described in WO 01/16285.

Site-directed mutagenesis

BLC site-directed variants of the invention comprising specific substitutions, insertions or deletions in the molecule are made by traditional cloning of PCR fragments (Sambrook et. al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor) produced by oligonucleotides containing the desired modification. As template pNM1008 is used. In a first PCR using a mutational primer (anti-sense) with a suitable opposite sense primer (e. g.. 5'-CTGTGCCCTTTAACCGCACAGC (SEQ ID No. 17)), downstream of the Mlul site is used. The resulting DNA fragment is used as a sense primer in a second PCR together with a suitable anti-sense primer (e. g. 5'-GCATAAGCTTTTACAGGTACCGGC (SEQ ID No. 18)) upstream from the Kpnl digestion site. This resulting PCR product is digested with Kpnl and Mlul and ligated in pNM1008 digested with the respective enzymes.

The ligation reaction is transformed into E. coli by well-known techniques and 5 randomly chosen colonies are sequenced to confirm the designed mutations.

In order to express a BLC variant of the invention, the pNM1008 derived plasmid comprising the variant is digested with HindIII, ligated and transformed into a competent B. subtilis strain, selecting for protease activity.

EXAMPLE 3

5

10

15

25

30

20 Purification of Enzymes and Variants:

This procedure relates to purification of 2 liter scale fermentation for the production of the RP-II proteases of the invention in a *Bacillus* host cell.

Approximately 1.6 liters of fermentation broth are centrifuged at 5000 rpm for 35 minutes in 1 liter beakers. The supernatants are adjusted to pH 7 using 10% acetic acid and filtered through a Seitz Supra S100 filter plate.

At room temperature, the filtrate is applied to a 100 ml Bacitracin affinity column equilibrated with 0.01M dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7 with sodium hydroxide (Buffer A). After washing the column with Buffer A to remove unbound protein, the protease is eluted from the Bacitracin column using Buffer A supplemented with 25% 2-propanol and 1 M sodium chloride.

54

The fractions with protease activity from the Bacitracin purification step are

combined and applied to a 750 ml Sephadex G25 column (5 cm dia.) equilibrated with Buffer A.

Fractions with proteolytic activity from the Sephadex G25 column are combined and the pH was adjusted to pH 6 with 10% acetic acid and applied to a 150 ml CM Sepharose CL 6B cation exchange column (5 cm dia.) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.1 M boric acid, and 0.002 M calcium chloride adjusted to pH 6 with sodium hydroxide.

The protease is eluted using a linear gradient of 0-0.2 M sodium chloride in 2 liters of the same buffer.

Finally, the protease containing fractions from the CM Sepharose column are combined and filtered through a 0.2μ filter.

By using the techniques of Example 2 for the construction of variants and fermentation, and the above isolation procedure the following RP-II proteases and variants thereof may be produced and isolated:

15

10

5

EXAMPLE 4

Wash Performance of Detergent Compositions Comprising Modified Enzymes

20 AMSA

25

0

The enzyme variants of the present application is tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress. For further description see WO 02/42740 especially the paragraph "Special method embodiments" at page 23-24.

The assay is conducted under the experimental conditions specified below. In respect of the detergent used, all the detergents listed above under "Materials and

Methods" may be used:

5

10

15

20

Detergent base	Example: Omo Acao
Detergent dosage	Example: 1.5 g/l
Test solution volume	160 micro l
рН	Example: As is
Wash time	Example: 14 minutes
Temperature	Example: 20°C
Water hardness	Example: 9°dH
Enzyme concentration in test solution	5 nM, 10 nM and 30 nM
Test material	Example: EMPA 117

After washing the textile pieces is flushed in tap water and air-dried.

The performance of the enzyme variant is measured as the brightness of the colour of the textile samples washed with that specific enzyme variant. Brightness can also be expressed as the intensity of the light reflected from the textile sample when luminated with white light. When the textile is stained the intensity of the reflected light is lower, than that of a clean textile. Therefore the intensity of the reflected light can be used to measure wash performance of an enzyme variant.

Colour measurements are made with a professional flatbed scanner (*PFU DL2400pro*), which is used to capture an image of the washed textile samples. The scans are made with a resolution of 200 dpi and with an output colour dept of 24 bits. In order to get accurate results, the scanner is frequently calibrated with a *Kodak reflective IT8 target*.

To extract a value for the light intensity from the scanned images, a special designed software application is used (*Novozymes Color Vector Analyzer*). The program retrieves the 24 bit pixel values from the image and converts them into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector:

$$Int = \sqrt{r^2 + g^2 + b^2}$$

The wash performance (P) of the variants is calculated in accordance with the below formula:

$$P = Int(v) - Int(r)$$

where

5

10

15

Int(v) is the light intensity value of textile surface washed with enzyme variant and Int(r) is the light intensity value of textile surface washed with the reference enzyme BLC.

A performance score is given as the result of the miniwash in accordance with the definition:

Performance Scores (S) are summing up the performances (P) of the tested enzyme variants as:

S = 2 which indicates that the variant performs better than the reference at all three concentrations (5, 10 and 30 nM) and

S = 1 which indicates that the variant performs better than the reference at one or two concentrations.

A variant is considered to exhibit improved wash performance, if it performs better than the reference in at least one detergent composition.

Mini wash assay

The millilitre scale wash performance assay is conducted under the following conditions:

Detergent base	Example: Omo Acao detergent powder
Detergent dose	Example: 1.5 g/l
рН	Example: "as is" in the current detergent solution and is not
	adjusted.
Wash time	Example: 14 min.
Temperature	Example: 20°C
Water hardness	Example: 9°dH, adjusted by adding CaCl ₂ *2H ₂ O;
	$MgCl_2*6H_2O$; NaHCO ₃ (Ca ²⁺ :Mg ²⁺ :HCO ³⁻ = 2:1:6) to milli-Q
	water.
Enzymes	Variants of BLC. BLC as reference enzyme
Enzyme conc.	5 nM, 10 nM, 30 nM
Test system	125 ml glass beakers. Textile dipped in test solution. Con-
	tinuously lifted up and down into the detergent solution, 50
	times per minute (up-time 0.4 sec, down-time 0.4 sec, lift
	time 0.2 sec)
Test solution volume	50 ml
Test material	Example: EMPA 117 textile swatches (13x5 cm)

After washing the textile piece is flushed in tap water and air-dried and the remission from the test material is measured at 460 nm using a Zeiss MCS 521 VIS spectrophotometer. The measurements are done according to the manufacturer's protocol.

A performance score is given as the result of the miniwash in accordance with the definition:

5

10

15

Performance Scores (S) are summing up the performances (P) of the tested enzyme variants as:

- S = 2 which indicates that the variant performs better than the reference at all three concentrations (5, 10 and 30 nM) and
- S = 1 which indicates that the variant performs better than the reference at one or two concentrations.

A Performance Score higher than 1 indicates better wash performance.

A variant is considered to exhibit improved wash performance, if it performs better than the reference in at least one detergent composition.

The following RP-II variants were constructed as indicated in Example 2 to be purified in accordance with Example 3 and tested as indicated above:

Ion-binding modification:

D7E; D7Q; H144R; D161R; D161K;

5 H144Q+D161R

Mobility modification:

G30A; G91A

10 Cys-bridge formation:

S145C+T128C

Surface charge modification:

D7N,S,T; Y17R,K,H; Y95R,K,H; T109R,K,H; Q143R,K,H; Q174R,K,H; E209Q,N; N216R,K,H

Proline stability:

T60P; S221P; G193P; V194P

20

25

15

EXAMPLE 5

Storage Stability of Modified Enzymes

The storage stability of the variants of the invention is determined by measuring the "residual activity" of the parent and the variants at regular time intervals. The storage stability is often expressed as the half-life, $T_{1/2}$, the time lapsed till the activity is half the initial value.

Residual activity = (Activity at t=i)/((Activity at t=0)×100)%

The Proteolytic activity is measured as described above (PNA assay).

30 EXAMPLE 6

Thermostability of Modified Enzymes

The thermostability of the protease variant s of the invention is determine by Dif-

ferential Scanning Calorimetry (DSC) typically with a heating rate of 0.5°C per minute in a solution containg about 2mg/ml variant.

EXAMPLE 7

5

10

15

Autoproteolytic Stability Of Modified Enzymes

Comparative fermentation experiment

The RP-II variants of the invention are in a fermentation experiment compared to the parent RP-II protease.

Both the variants and the parent are cloned in a pNM1008 expression vector background and fermented in a suitable medium.

After 5 days fermentation 1.5 ml of the fermentation medium is centrifuged and the supernatant used to measure the Proteolytic activity (KPNU) as described above.

The variants providing an increased proteolytic activity in comparison to the activity of the parent are considered to posses an improved autoproteolytic stability relative to the parent.

EXAMPLE 8

Oxidation Stability of Modified Enzymes

20

The variants are tested for their oxidation stability in 0.01 M peracetic acid after 20 minutes at 50°C and pH 7. The parent protease is used as reference.

The results are presented by the residual proteolytic activity in the heat treated samples relative to samples untreated by oxidant or heat.

Appendix 1

	MOTA	3359	N	SER I	3 1	-2.987	12.370	17.565	1.00 7.82	N
	ATOM	3361	CA	SER I		-2.255	12.820	16.353	1.00 7.97	C
5		3363	CB			-3.233	12.933	15.188	1.00 7.57	C
3	MOTA			SER I		-3.233	12.933	15.100	1.00 9.01	0
	ATOM	3366	OG	SER I						C
	MOTA	3368	C	SER I		-1.637	14.171	16.602	1.00 8.14	
	MOTA	3369	0	SER I		-2.098	14.938	17.439	1.00 8.05	0
	MOTA	3372	N	VAL I		-0.592	14.472	15.848	1.00 8.60	Ŋ
10	MOTA	3374	CA	VAL 1		-0.039	15.812	15.824	1.00 10.11	C
	MOTA	3376	CB	VAL 1		1.432	15.811	15.404	1.00 11.81	С
	ATOM	3378	CG1	VAL I	3 2	1.949	17.239	15.233	1.00 13.46	C
	MOTA	3382	CG2	VAL 1	3 2	2.255	15.065	16.421	1.00 14.12	С
	ATOM	3386	С	VAL I	3 2	-0.867	16.605	14.830	1.00 10.56	C
15	MOTA	3387	0	VAL 1	3 2	-0.928	16.250	13.660	1.00 12.81	0
	ATOM	3388	N	ILE I	3	-1.524	17.640	15.331	1.00 9.91	N
	ATOM	3390	CA	ILE I	3 3	-2.409	18.487	14.537	1.00 10.49	C
	ATOM	3392	CB	ILE 1		-3.747	18.700	15.279	1.00 10.68	С
	ATOM	3394	CG1			-4.452	17.348	15.457	1.00 10.36	С
20	ATOM	3397	CD1			-5.671	17.398	16.350	1.00 11.17	C
20	ATOM	3401	CG2			-4.638	19.704	14.531	1.00 13.34	C
	ATOM	3405	C	ILE I		-1.683	19.796	14.299	1.00 10.96	Č
	ATOM	3406	0	ILE I		-1.332	20.502	15.234	1.00 10.91	o
						-1.433	20.302	13.043	1.00 10.31	N
25	MOTA	3407	N	GLY I						
25	MOTA	3409	CA	GLY I		-0.702	21.359	12.748	1.00 12.69	C
	MOTA	3412	C	GLY I		0.685	21.285	13.344	1.00 12.61	C
	ATOM	3413	0	GLY I		1.324	20.239	13.303	1.00 13.40	0
	MOTA	3414	N	SER I		1.162	22.383	13.913	1.00 11.93	N
	ATOM	3416	CA	SER I		2.466	22.358	14.557	1.00 11.64	C
30	MOTA	3418	CB	SER I	3 5	2.900	23.757	14.975	1.00 11.92	С
	MOTA	3421	OG	SER I	3 5	2.011	24.329	15.906	1.00 13.28	0
	ATOM	3423	С	SER I	3 5	2.438	21.451	15.770	1.00 11.22	С
	ATOM	3424	0	SER I	3 5	1.437	21.366	16.462	1.00 11.19	0
	MOTA	3425	N	ASP I	3 6	3.551	20.779	16.028	1.00 10.41	N
35	MOTA	3427	CA	ASP 1		3.704	19.951	17.230	1.00 10.02	С
	ATOM	3429	CB	ASP I		4.700	18.839	16.981	1.00 10.75	С
	ATOM	3432	CG	ASP I		4.838	17.886	18.144	1.00 10.38	С
	ATOM	3433		ASP I		4.132	18.013	19.178	1.00 10.80	Ō
	ATOM	3434		ASP I		5.685	16.961	18.055	1.00 11.46	Ö
40	ATOM	3435	C	ASP I		4.185	20.807	18.373	1.00 9.61	C
70						5.353	21.229	18.410	1.00 11.09	0
	ATOM	3436	0	ASP I				19.312	1.00 11.09	И
	ATOM	3437	N	ASP I		3.290	21.057			
	ATOM	3439	CA	ASP I		3.582	21.969	20.387	1.00 8.21	C
4.5	ATOM	3441	CB	ASP I		2.453	23.010	20.550	1.00 9.26	C
45	MOTA	3444	CG	ASP I		2.334	23.975	19.386	1.00 10.17	C
	MOTA	3445		ASP I		3.147	23.902	18.444	1.00 11.15	0
	MOTA	3446	OD2	ASP 1		1.377	24.778	19.332	1.00 10.99	0
	ATOM	3447	С	ASP 1		3.856	21.237	21.712	1.00 8.24	C
	ATOM	3448	0	ASP 1	3 7	3.978	21.870	22.753	1.00 8.50	0
50	ATOM	3449	N	ARG 1	3 8	4.016	19.918	21.677	1.00 7.90	N
	ATOM	3451	CA	ARG 1	3 8	4.429	19.187	22.872	1.00 7.81	С
	ATOM	3453	CB	ARG 1	3 8	4.444	17.681	22.634	1.00 7.75	С
	MOTA	3456	CG	ARG I		3.068	17.077	22.470	1.00 7.65	С
	MOTA	3459	CD	ARG I		3.090	15.631	22.015	1.00 7.89	С
55	ATOM	3462	NE	ARG 1		3.673	15.554	20.679	1.00 8.24	N
-	ATOM	3464	CZ	ARG I		4.023	14.422	20.073	1.00 8.49	C
	ATOM	3465		ARG I		3.781	13.244	20.628	1.00 8.61	Ŋ
	ATOM	3468		ARG I		4.622	14.472	18.909	1.00 9.63	N
	ATOM	3471	C	ARG I		5.812	19.628	23.321	1.00 3.03	C
60		3471	0	ARG I		6.684	19.028	22.505	1.00 9.34	0
00	ATOM			THR 1		6.007			1.00 9.34	И
	ATOM	3473	N				19.640	24.632		
	ATOM	3475	CA	THR I		7.315	19.897	25.226	1.00 8.75	C
	MOTA	3477	CB	THR I		7.368	21.243	25.939	1.00 9.87	C
	ATOM	3479	OG1	THR I	39	6.296	21.350	26.880	1.00 10.91	0

	ATOM	3481	CG2	THR	В	9	7.191	22.375	24.936	1 00	11.78	С
	ATOM	3485	C									
				THR		9	7.660	18.787	26.199	1.00	8.34	С
	ATOM	3486	0	THR		9	6.793	18.176	26.835	1.00	8.22	0
	ATOM	3487	N	ARG	в :	10	8.954	18.535	26.340	1.00	8.65	N
5	MOTA	3489	CA	ARG	в :	10	9.413	17.459	27.194	1.00	8.98	C
	ATOM	3491	CB	ARG	в .	10	10.873	17.096	26.927		10.45	C
	ATOM	3494	CG	ARG								
						10	11.309	15.787	27.587		11.25	C
	MOTA	3497	CD	ARG		10	12.701	15.396	27.212	1.00	12.23	С
	ATOM	3500	NE	ARG	B 3	10	13.213	14.299	28.025	1.00	12.62	N
10	ATOM	3502	CZ	ARG	в :	10	14.465	13.868	27.967	1.00	14.40	C
	ATOM	3503		ARG		10	15.328	14.413	27.114		16.93	N
	ATOM	3506										
				ARG		10	14.855	12.884	28.743		14.13	N
	ATOM	3509	C	ARG		10	9.237	17.885	28.642	1.00	8.65	C
	ATOM	3510	0	ARG	B 1	10	9.534	19.027	29.025	1.00	9.59	0
15	ATOM	3511	N	VAL	В 1	11	8.771	16.952	29.453	1.00	8.69	N
	ATOM	3513	CA	VAL		11	8.751	17.118	30.893	1.00	9.52	C
	ATOM											
		3515	CB	VAL		L1	7.810	16.080	31.532	1.00	9.21	C
	MOTA	3517	CG1	VAL	B]	11	7.862	16.145	33.047	1.00	10.41	С
	ATOM	3521	CG2	VAL	B 1	11	6.381	16.257	31.015	1.00	9.54	C
20	ATOM	3525	С	VAL	В 1	L1	10.207	16.954	31.390		10.62	C
	ATOM	3526	ō	VAL		1	10.777	15.869				
									31.301		12.34	0
	ATOM	3527	N	THR		L2	10.795	18.048	31.884		12.38	N
	ATOM	3529	CA	THR	B 1	L2	12.217	18.113	32.253	1.00	13.55	С
	ATOM	3531	CB	THR	В 1	L2	12.790	19.543	32.093	1.00	14.37	С
25	ATOM	3533	OG1	THR	в 1	L2	12.035	20.449	32.902	1.00		Ō
_	ATOM	3535	CG2			12	12.611					
								20.030	30.671	1.00		С
	ATOM	3539	С	THR		2	12.507	17.657	33.666	1.00	13.34	C
	ATOM	3540	0	THR		_2	13.669	17.515	34.032	1.00	14.60	0
	MOTA	3541	N	ASN	B 1	L 3	11.472	17.465	34.469	1.00	12.04	N
30	ATOM	3543	CA	ASN		.3	11.646	16.901	35.800	1.00		C
	ATOM	3545	СВ	ASN								
						.3	11.713	17.962	36.894	1.00		C
	MOTA	3548	CG	ASN		.3	11.935	17.344	38.252	1.00	12.29	C
	ATOM	3549	OD1	ASN	B 1	. 3	12.166	16.141	38.356	1.00	12.18	0
	ATOM	3550	ND2	ASN	в 1	.3	11.868	18.153	39.302	1.00	15.45	N
35	ATOM	3553	С	ASN		.3	10.502	15.940	36.074	1.00		
•												C
	MOTA	3554	0	ASN		.3	9.450	16.321	36.578	1.00	10.60	0
	MOTA	3555	N	THR	B 1	.4	10.714	14.678	35.743	1.00	9.43	N
	MOTA	3557	CA	THR	B 1	4	9.671	13.680	35.934	1.00	9.11	С
	ATOM	3559	CB	THR	в 1	4	9.887	12.455	35.046	1.00	9.24	C
40	ATOM	3561	OG1			4	11.122	11.827				
									35.409	1.00	9.63	0
	MOTA	3563	CG2			.4	9.958	12.808	33.561	1.00	10.29	C
	MOTA	3567	С	THR	В 1	.4	9.556	13.227	37.385	1.00	9.62	C
	ATOM	3568	0	THR :	В 1	4	8.730	12.361	37.672	1.00	10.68	0
	ATOM	3569	N	THR :	в 1	.5	10.357	13.804	38.295	1.00		N
45	ATOM	3571	CA	THR		.5						
70							10.147	13.593	39.725	1.00		С
	MOTA	3573	CB	THR		.5	11.456	13.495	40.553	1.00	11.89	С
	ATOM	3575	OG1	THR 1	В 1	.5	12.124	14.763	40.616	1.00	12.96	0
	ATOM	3577	CG2	THR I	В 1	.5	12.432	12.491	39.954	1.00	12.96	С
	MOTA	3581	C	THR I		5	9.244	14.638	40.367	1.00		c
50												
50	ATOM	3582	0	THR 1		.5	8.911	14.514	41.540	1.00		0
	ATOM	3583	N	ALA 1		6	8.832	15.656	39.622	1.00	10.32	N
	MOTA	3585	CA	ALA I	В 1	6	7.900	16.643	40.148	1.00	10.73	С
	ATOM	3587	CB	ALA 1	в 1	6	7.927	17.897	39.301	1.00	11 48	С
	ATOM	3591	C	ALA I		6	6.488	16.060	40.161	1.00		
55												C
55	ATOM	3592	0	ALA I		6	6.059	15.433	39.198	1.00	9.80	0
	MOTA	3593	N	TYR I		7	5.755	16.284	41.237	1.00	10.35	N
	ATOM	3595	CA	TYR I	B 1	7	4.338	15.962	41.260	1.00	10.36	С
	ATOM	3597	CB	TYR I		7	3.838	16.018	42.706	1.00		C
	ATOM	3600	CG	TYR I		7	2.379					
60								15.675	42.858	1.00		C
60	ATOM	3601		TYR I		7	1.436	16.674	42.985	1.00		C
	MOTA	3603	CE1	TYR I		7	0.086	16.386	43.118	1.00	11.35	C
	MOTA	3605	CZ	TYR I	3 1	7	-0.338	15.081	43.139	1.00	11.51	С
	ATOM	3606	ОН	TYR I			-1.690	14.831	43.268	1.00		0
	ATOM	3608		TYR I								
	AION	2000	CEZ	111/	– Т	′	0.579	14.051	42.988	1.00	11.13	С

											_
	MOTA	3610	CD2	TYR B	17	1.940	14.358	42.861	1.00	11.24	C
	ATOM	3612	C	TYR B	17	3.588	16.946	40.363	1.00	L0.06	C
	ATOM	3613	0	TYR B	17	3.857	18.150	40.452	1.00	11.57	0
	MOTA	3614	N	PRO B	18	2.609	16.510	39.557	1.00		N
5	MOTA	3615	CA	PRO B	18	2.080	15.145	39.436	1.00	9.55	C
	MOTA	3617	CB	PRO B	18	0.606	15.412	39.151	1.00 1	10.69	С
	ATOM	3620	CG	PRO B	18	0.646	16.604	38.275	1.00	11.31	С
	MOTA	3623	CD	PRO B	18	1.772	17.460	38.810		10.99	C
	MOTA	3626	C	PRO B	18	2.667	14.326	38.287	1.00	8.62	C
10	ATOM	3627	0	PRO B	18	2.189	13.217	38.035	1.00	8.43	0
	ATOM	3628	N	TYR B	19	3,695	14.844	37.616	1.00	8.36	N
	ATOM	3630	CA	TYR B	19	4.343	14.126	36.531	1.00	8.21	С
	ATOM	3632	CB	TYR B	19	5.389	15.034	35.875	1.00	8.56	C
	ATOM	3635	CG	TYR B	19	4.722	16.277	35.304	1.00	8.70	C
15		3636	CD1		19	4.072	16.231	34.070	1.00	8.24	C
13	ATOM										
	ATOM	3638	CE1	TYR B	19	3.424	17.343	33.553	1.00	9.10	C
	ATOM	3640	CZ	TYR B	19	3.374	18.496	34.286	1.00	9.96	C
	MOTA	3641	OH	TYR B	19	2.725	19.608	33.802	1.00 1	L1.01	0
	ATOM	3643	CE2		19	3.987	18.565	35.519		10.79	С
00											
20	ATOM	3645	CD2	TYR B	19	4.660	17.462	36.020		10.02	С
	MOTA	3647	С	TYR B	19	4.951	12.801	36.969	1.00	7.80	C
	MOTA	3648	0	TYR B	19	4.984	11.860	36.180	1.00	8.04	0
			N	ARG B	20	5.385	12.701	38.224	1.00	7.62	N
	ATOM	3649									
	ATOM	3651	CA	ARG B	20	5.919	11.452	38.741	1.00	7.92	C
25	MOTA	3653	CB	ARG B	20	6.659	11.679	40.056	1.00	8.70	C
	ATOM	3656	CG	ARG B	20	5.865	12.292	41.176	1.00	9.58	C
	ATOM	3659	CD	ARG B	20	6.640	12.228	42.469		10.61	C
	MOTA	3662	NE	ARG B	20	5.937	12.768	43.620		12.27	N
	MOTA	3664	CZ	ARG B	20	6.343	13.830	44.332	1.00 1	L4.55	C
30	ATOM	3665	NH1	ARG B	20	7.433	14.528	44.011	1.00	L5.43	N
•						5.641	14.205	45.395		L5.98	N
	MOTA	3668	NH2		20						
	MOTA	3671	С	ARG B	20	4.833	10.398	38.938	1.00	7.88	C
	MOTA	3672	0	ARG B	20	5.142	9.210	39.062	1.00	8.74	0
	MOTA	3673	N	ALA B	21	3.573	10.834	38.989	1.00	7.67	N
35					21	2.436	9.931	39.101	1.00	7.77	C
33	MOTA	3675	CA	ALA B							
	MOTA	3677	CB	ALA B	21	1.355	10.545	40.004	1.00	8.33	C
	ATOM	3681	C	ALA B	21	1.860	9.554	37.740	1.00	7.49	С
	MOTA	3682	0	ALA B	21	0.883	8.813	37.670	1.00	8.24	0
										7.07	Ŋ
40	MOTA	3683	N	ILE B	22	2.451	10.077	36.668	1.00		
40	MOTA	3685	CA	ILE B	22	2.180	9.629	35.315	1.00	7.15	C
	ATOM	3687	CB	ILE B	22	2.239	10.805	34.320	1.00	7.19	C
	MOTA	3689	CG1	ILE B	22	1.204	11.861	34.727	1.00	7.74	C
				ILE B			13.060	33.823	1.00	7.78	C
	ATOM	3692				1.150					
	ATOM	3696	CG2			2.012	10.301	32.895	1.00	7.55	C
45	ATOM	3700	C	ILE B	22	3.192	8.540	35.014	1.00	7.08	C
	MOTA	3701	0	ILE B	22	4.376	8.686	35.297	1.00	8.15	0
	ATOM	3702	N	VAL B		2.708	7.426	34.477	1.00	7.33	N
	ATOM	3704	CA	VAL B		3.505	6.221	34.384	1.00	7.49	C
	ATOM	3706	CB	VAL B	23	2.933	5.092	35.284	1.00	7.65	C
50	ATOM	3708	CG1	VAL B	23	2.619	5.599	36.672	1.00	8.69	C
•						1.690	4.436	34.682	1.00	8.21	C
	MOTA	3712		VAL B							
	ATOM	3716	C	VAL B	23	3.625	5.760	32.939	1.00	6.99	C
	ATOM	3717	0	VAL B	23	2.710	5.912	32.130	1.00	7.44	0
	ATOM	3718	N	HIS B	24	4.788	5.194	32.623	1.00	7.09	N
55		3720	CA	HIS B		5.005	4.494	31.375	1.00	7.24	C
JJ	ATOM										
	MOTA	3722	CB	HIS B		6.484	4.596	30.984	1.00	7.56	С
	MOTA	3725	CG	HIS B	24	6.810	3.808	29.779	1.00	8.11	C
	ATOM	3726		HIS B		7.112	2.467	29.831	1.00	9.52	N
	ATOM	3728		HIS B		7.263	2.022	28.599	1.00		C
CO											
60	MOTA	3730		HIS B		7.090	3.026	27.757	1.00		N
	ATOM	3732	CD2	HIS B	24	6.804	4.156	28.474	1.00	10.43	C
	ATOM	3734	С	HIS B	24	4.599	3.027	31.568	1.00	7.57	C
	ATOM	3735	ō	HIS B		4.949	2.409	32.577	1.00	8.17	Ō
	MOTA	3736	N	ILE B	25	3.848	2.485	30.615	1.00	7.37	N

	ATOM	3738	CA ILE B	25	3.381	1.108	30.652	1.00 7.87	С
	ATOM	3740	CB ILE B	25	1.842				
			·-			1.058	30.651	1.00 8.18	С
	ATOM	3742	CG1 ILE B	25	1.257	1.843	31.824	1.00 9.00	C
	ATOM	3745	CD1 ILE B	25	-0.242	2.093	31.705	1.00 8.99	C
5	ATOM	3749	CG2 ILE B	25	1.356	-0.398	30.666	1.00 9.66	C
	ATOM	3753	C ILE B	25	3.899	0.364	29.441		
								1.00 8.15	C
	ATOM	3754	O ILE B	25	3.755	0.843	28.315	1.00 8.94	0
	ATOM	3755	N SER B	26	4.486	-0.806	29.669	1.00 8.77	N
	ATOM	3757	CA SER B	26	4.773	-1.727	28.581	1.00 9.89	C
10									
10	ATOM	3759	CB BSER B	26	6.238	-1.804	28.196	0.35 10.66	C
	ATOM	3760	CB ASER B	26	6.305	-1.864	28.514	0.65 11.47	C
	ATOM	3765	OG BSER B	26	6.986	-2.328	29.246	0.35 11.77	0
	ATOM	3766	OG ASER B	26	6.755	-2.916	27.701	0.65 12.82	Ō
	ATOM	3769	C SER B	26					
4.5					4.177	-3.089	28.889	1.00 9.15	С
15	MOTA	3770	O SER B	26	4.245	-3.579	30.017	1.00 9.90	0
	MOTA	3771	N SER B	27	3.579	-3.695	27.878	1.00 8.91	N
	ATOM	3773	CA SER B	27	3.049	-5.042	27.993	1.00 9.24	С
	ATOM	3775	CB SER B	27					
					1.609	-5.020	28.523	1.00 9.75	C
	ATOM	3778	OG SER B	27	0.701	-4.659	27.498	1.00 10.07	0
20	ATOM	3780	C SER B	27	3.045	-5.686	26.626	1.00 9.09	С
	ATOM	3781	O SER B	27	3.418	-5.071	25.633	1.00 9.64	0
	ATOM	3782	N SER B	28					
					2.555	-6.913	26.573	1.00 9.24	N
	MOTA	3784	CA SER B	28	2.448	-7.620	25.319	1.00 9.63	C
	MOTA	3786	CB SER B	28	1.950	-9.034	25.569	1.00 10.05	С
25	ATOM	3789	OG SER B	28	0.663	-9.022	26.149	1.00 11.00	0
	ATOM	3791	C SER B	28	1.551	-6.906	24.309		
									C
	MOTA	3792	O SER B	28	1.683	-7.141	23.109	1.00 10.26	0
	MOTA	3793	N ILE B	29	0.612	-6.081	24.765	1.00 9.01	N
	ATOM	3795	CA ILE B	29	-0.230	-5.322	23.829	1.00 9.45	С
30	ATOM	3797	CB ILE B	29	-1.528	-4.860	24.527	1.00 9.84	C
00									
	MOTA	3799	CG1 ILE B	29	-2.467	-6.054	24.687	1.00 10.68	С
	MOTA	3802	CD1 ILE B	29	-3.749	-5.729	25.407	1.00 11.23	C
	ATOM	3806	CG2 ILE B	29	-2.209	-3.738	23.755	1.00 10.93	С
	ATOM	3810	C ILE B	29	0.520	-4.165	23.182	1.00 9.75	Č
35	ATOM	3811	O ILE B						
33				29	0.298	-3.856	22.009	1.00 10.61	0
	ATOM	3812	N GLY B	30	1.392	-3.519	23.936	1.00 9.50	N
	ATOM	3814	CA GLY B	30	2.104	-2.366	23.439	1.00 10.18	C
	MOTA	3817	C GLY B	30	2.498	-1.451	24.564	1.00 8.93	Ċ
	ATOM	3818	O GLY B	30	2.432	-1.827			
40							25.728	1.00 10.65	0
40	MOTA	3819	N SER B	31	2.926	-0.258	24.195	1.00 9.21	N
	MOTA	3821	CA SER B	31	3.322	0.746	25.151	1.00 9.76	C
	ATOM	3823	CB BSER B	31	4.627	1.413	24.672	0.35 10.79	C
	MOTA	3824	CB ASER B	31	4.636	1.385	24.762	0.65 11.07	C
			OG BSER B						
4.5	MOTA	3829		31	5.007	2.545	25.442	0.35 12.74	0
45	MOTA	3830	OG ASER B	31	5.642	0.393	24.813	0.65 12.96	0
	MOTA	3833	C SER B	31	2.236	1.796	25.263	1.00 8.79	С
	MOTA	3834	O SER B	31	1.624	2.194	24.261	1.00 10.03	0
	ATOM	3835	N CYS B	32	2.006				
						2.249	26.481	1.00 8.21	N
	MOTA	3837	CA CYS B	32	0.981	3.237	26.755	1.00 8.25	C
50	ATOM	3839	CB BCYS B	32	-0.398	2.638	26.853	0.35 9.91	C
	ATOM	3840	CB ACYS B	32	-0.338	2.497	27.106	0.65 8.79	С
	ATOM	3845	SG BCYS B	32	-0.604	1.615		0.35 14.50	
							28.261		S
	MOTA	3846	SG ACYS B	32	-1.274	1.895	25.659	0.65 7.95	S
	MOTA	3847	C CYS B	32	1.399	4.076	27.956	1.00 7.16	C
55	MOTA	3848	O CYS B	32	2.526	3.975	28.467	1.00 8.13	0
	ATOM	3849	N THR B	33	0.491	4.947	28.359	1.00 6.54	
									N
	MOTA	3851	CA THR B	33	0.647	5.783	29.522	1.00 6.41	С
	MOTA	3853	CB THR B	33	0.515	7.251	29.080	1.00 6.34	C
	ATOM	3855	OG1 THR B	33	1.515	7.524	28.079	1.00 6.92	0
60	MOTA	3857	CG2 THR B	33	0.761	8.237	30.220	1.00 6.68	Ċ
	ATOM	3861	C THR B	33	-0.451	5.417		1.00 6.49	
							30.520		C
	ATOM	3862	O THR B	33	-1.496	4.893	30.137	1.00 6.80	0
	MOTA	3863	N GLY B	34	-0.228	5.715	31.793	1.00 6.76	N
	ATOM	3865	CA GLY B	34	-1.290	5.682	32.779	1.00 6.72	C
							· -		-

			~		_						
	ATOM	3868	C	GLY		34	-1.039	6.736	33.827	1.00 6.	
	ATOM	3869	0	GLY		34	-0.075	7.493	33.760	1.00 6.	
	ATOM	3870	N	TRP		35	-1.887	6.753	34.838	1.00 6.	
_	ATOM	3872	CA	TRP		35	-1.766	7.724	35.904	1.00 7.	
5	ATOM	3874	CB	TRP		35	-2.492	9.043	35.563	1.00 7.	
	ATOM	3877	CG	TRP		35	-3.831	8.901	34.906	1.00 8.	
	MOTA	3878	CD1			35	-4.066	8.555	33.608	1.00 8.	12 C
	ATOM	3880	NE1			35	-5.414	8.580	33.339	1.00 8.	93 N
	ATOM	3882	CE2	TRP	В	35	-6.079	8.965	34.473	1.00 8.	81 C
10	ATOM	3883	CD2	TRP	В	35	-5.111	9.181	35.475	1.00 7.	96 C
	ATOM	3884	CE3	TRP	В	35	-5.542	9.590	36.735	1.00 8.	75 C
	ATOM	3886	CZ3	TRP	В	35	-6.887	9.760	36.966	1.00 9.	89 C
	ATOM	3888	CH2	TRP	В	35	-7.814	9.526	35.963	1.00 10.	
	MOTA	3890	CZ2	TRP	В	35	~7.432	9.140	34.705	1.00 10.	
15	MOTA	3892	C	TRP	В	35	-2.265	7.119	37.203	1.00 7.	
	ATOM	3893	0	TRP	В	35	-3.305	6.444	37.247	1.00 7.	
	ATOM	3894	N	MET	В	36	-1.514	7.324	38.276	1.00 7.3	
	MOTA	3896	CA	MET	В	36	-1.884	6.750	39.562	1.00 7.	
	ATOM	3898	CB	MET	В	36	-0.790	6.983	40.601	1.00 8.	
20	ATOM	3901	CG	MET		36	0.593	6.429	40.265	1.00 8.	
	MOTA	3904	SD	MET	В	36	0.683	4.684	39.895	1.00 9.	
	ATOM	3905	CE	MET	В	36	0.098	4.015	41.440	1.00 9.	
	ATOM	3909	С	MET		36	-3.173	7.378	40.084	1.00 7.	
	MOTA	3910	0	MET		36	-3.339	8.603	40.029	1.00 8.4	
25	MOTA	3911	N	ILE		37	-4.055	6.534	40.632	1.00 7.0	
	MOTA	3913	CA	ILE		37	-5.248	6.992	41.337	1.00 8.6	
	ATOM	3915	CB	ILE		37	-6.553	6.614	40.591	1.00 8.7	
	ATOM	3917	CG1	ILE		37	-6.723	5.099	40.438	1.00 8.	
	ATOM	3920	CD1			37	-8.120	4.724	39.928		
30	ATOM	3924	CG2	ILE		37	-6.607	7.330	39.261	1.00 9.7	
00	ATOM	3928	C	ILE		37	-5.294	6.519		1.00 9.2	
	ATOM	3929	0	ILE		37	-6.214		42.789	1.00 8.8	
	ATOM	3930	N	GLY		38		6.872	43.524	1.00 10.4	
	ATOM	3932	CA	GLY		38	-4.311	5.739	43.210	1.00 9.3	
35	ATOM	3935	C	GLY		38	-4.205	5.289	44.585	1.00 9.6	
00	ATOM	3936	0				-2.837	4.675	44.794	1.00 9.9	
	ATOM			GLY PRO		38	-1.986	4.723	43.900	1.00 10.3	
		3937	N			39	-2.597	4.131	45.975	1.00 9.8	
	ATOM	3938	CA	PRO		39	-1.304	3.498	46.274	1.00 10.1	-
40	ATOM	3940	CB	PRO		39	-1.552	2.839	47.634	1.00 10.7	
40	ATOM	3943	CG	PRO		39	-2.545	3.766	48.271	1.00 11.8	=
	ATOM	3946	CD	PRO		39	-3.486	4.139	47.149	1.00 10.2	
	ATOM	3949	C	PRO		39	-0.830	2.487	45.238	1.00 9.6	
	ATOM	3950	0	PRO		39	0.366	2.411	44.978	1.00 10.0	
45	ATOM	3951	N	LYS		40	-1.734	1.687	44.702	1.00 9.6	
45	ATOM	3953	CA	LYS		40	-1.328	0.634	43.791	1.00 9.7	
	ATOM	3955	СВ	LYS		40	-1.113	-0.678	44.529	1.00 11.0	_
	ATOM	3958	CG	LYS		40	-2.335	-1.186	45.229	1.00 11.9	
	ATOM	3961	CD	LYS		40	-2.132	-2.615	45.726	1.00 13.4	
50	ATOM	3964	CE	LYS		40	-0.996	-2.749	46.704	1.00 14.2	0 C
50	MOTA	3967	NZ	LYS		40	-0.976	-4.121	47.344	1.00 15.1	.0 N
	ATOM	3971	С	LYS		40	-2.284	0.467	42.617	1.00 8.7	0 C
	MOTA	3972	0	LYS		40	-2.366	-0.617	42.060	1.00 9.8	7 0
	MOTA	3973	N	THR		41	-2.985	1.532	42.227	1.00 8.1	1 N
	ATOM	3975	CA	THR		41	-3.939	1.455	41.125	1.00 8.1	.4 C
55	MOTA	3977	CB	THR		41	-5.375	1.586	41.663	1.00 8.2	5 C
	MOTA	3979	OG1	THR		41	-5.572	0.652	42.741	1.00 9.3	
	ATOM	3981		THR		41	-6.399	1.262	40.576	1.00 9.1	
	ATOM	3985	С	THR	В	41	-3.641	2.556	40.130	1.00 7.6	
	ATOM	3986	0	THR	В	41	-3.476	3.711	40.515	1.00 8.2	
50	ATOM	3987	N	VAL	В	42	-3.590	2.160	38.861	1.00 7.4	
	ATOM	3989	CA	VAL	В	42	-3.271	3.007	37.732	1.00 7.5	
	ATOM	3991	CB	VAL	В	42	-2.122	2.378	36.911	1.00 7.8	
	ATOM	3993	CG1	VAL	В	42	-1.745	3.260	35.729	1.00 8.9	
	MOTA	3997		VAL		42	-0.914	2.085	37.763	1.00 9.6	
										-	•

	ATOM	4001	C	VAL	B 42	-4.491	3.072	36.818	1.00	7.34	C
	ATOM	4002	0	VAL		-5.024	2.044	36.433	1.00	9.14	
	ATOM	4003	N	ALA		-4.918					0
	ATOM	4005					4.274	36.432	1.00	7.37	N
_			CA	ALA		-5.911	4.442	35.377	1.00	7.20	C
5	MOTA	4007	CB	ALA :		-6.711	5.713	35.603	1.00	7.51	C
	MOTA	4011	С	ALA :		-5.214	4.503	34.017	1.00	7.00	C
	ATOM	4012	0	ALA I	B 43	-4.129	5.081	33.886	1.00	7.26	0
	ATOM	4013	N	THR 1	B 44	-5.836	3.904	33.019	1.00	6.97	N
	ATOM	4015	CA	THR I	B 44	-5.286	3.897	31.670	1.00	7.04	C
10	MOTA	4017	CB	THR I		-4.160	2.834	31.570	1.00	7.41	C
	ATOM	4019	OG1			-3.485	2.938				
	ATOM	4021	CG2					30.303	1.00	7.54	0
				THR I		-4.692	1.413	31.698	1.00	7.72	C
	ATOM	4025	C	THR I		-6.413	3.683	30.656	1.00	6.99	C
	ATOM	4026	0	THR I		-7.596	3.731	30.998	1.00	7.52	0
15	ATOM	4027	N	ALA 1	3 45	-6.048	3.485	29.395	1.00	7.00	N
	ATOM	4029	CA	ALA I	3 45	-7.003	3.149	28.349	1.00	7.12	C
	ATOM	4031	CB	ALA I	3 45	-6.479	3.579	26.979	1.00	7.53	С
	MOTA	4035	С	ALA I	3 45	-7.281	1.644	28.351	1.00	7.28	Ċ
	ATOM	4036		ALA I		-6.370	0.833	28.543	1.00	8.36	
20	ATOM	4037	N	GLY I		-8.529					0
	ATOM						1.256	28.120	1.00	7.41	N
		4039		GLY E		-8.874	-0.156	28.014	1.00	7.78	С
	MOTA	4042		GLY I		-8.106	-0.884	26.933	1.00	7.87	C
	ATOM	4043		GLY E		-7.669	-2.017	27.135	1.00	8.48	0
	MOTA	4044	N	HIS E	3 47	-7.940	-0.234	25.783	1.00	7.88	N
25	ATOM	4046	CA	HIS E	3 47	-7.288	-0.893	24.672	1.00	8.40	С
	MOTA	4048	CB	HIS E	3 47	-7.524	-0.133	23.362	1.00	8.56	C
	ATOM	4051		HIS E		-6.718	1.122	23.182	1.00	7.89	C
	ATOM	4052		HIS E		-7.280	2.381				
	ATOM	4054						23.233	1.00	8.37	N
30				HIS E		-6.356	3.284	22.954	1.00	8.17	C
30	ATOM	4056		HIS E		-5.209	2.668	22.753	1.00	8.05	N
	ATOM	4058		HIS E		-5.409	1.313	22.884	1.00	7.79	С
	ATOM	4060	C	HIS E	3 47	~5.808	-1.162	24.909	1.00	8.34	C
	ATOM	4061	0	HIS E	3 47	-5.198	-1.909	24.160	1.00	9.86	0
	MOTA	4062	N	CYS E	48	-5.235	-0.537	25.933	1.00	7.91	N
35	ATOM	4064		CYS E		-3.850	-0.803	26.311	1.00	8.43	C
	ATOM	4066		CYS E		-3.317	0.340	27.164	1.00		
	ATOM	4069		CYS E		-3.197				9.43	C
							1.908	26.286	1.00	11.14	S
	ATOM	4070		CYS E		-3.671	-2.102	27.099	1.00	8.41	C
40	ATOM	4071		CYS E		-2.553	-2.599	27.197	1.00	9.30	0
40	MOTA	4072	N	ILE E	49	-4.758	-2.622	27.679	1.00	8.25	N
	ATOM	4074	CA	ILE B	49	-4.680	-3.771	28.589	1.00	8.11	C
	ATOM	4076	CB	ILE E	49	-4.931	-3.327	30.049	1.00	8.38	C
	ATOM	4078	CG1	ILE B	49	-6.349	-2.791	30.254	1.00	8.89	C
	MOTA	4081		ILE B		-6.631	-2.365	31.696	1.00		
45	ATOM	4085		ILE B		-3.871				9.33	C
. •	ATOM	4089		ILE B			-2.314	30.454	1.00	9.04	С
						-5.574	-4.945	28.224	1.00	8.36	С
	ATOM	4090		ILE B		-5.385	-6.015	28.774	1.00	8.42	, 0
	ATOM	4091		TYR B		-6.527	-4.765	27.313	1.00	8.78	N
	ATOM	4093	CA '	TYR B	50	-7.397	-5.847	26.876	1.00	9.04	C
50	ATOM	4095	CB '	TYR B	50	-8.752	-5.812	27.602	1.00	9.41	C
	ATOM	4098	CG '	TYR B	50	-9.689	-6.905	27.142		10.04	C
	ATOM	4099		TYR B		-10.686	-6.650	26.211		10.86	
	ATOM	4101		TYR B		-11.534	-7.668				C
	ATOM	4103						25.770		11.77	C
55				TYR B		-11.372	-8.951	26.279	1.00		C
55	ATOM	4104		TYR B		-12.188	-9.993	25.878	1.00		0
	ATOM	4106		TYR B		-10.394	-9.208	27.210	1.00	11.89	C
	ATOM	4108		TYR B		-9.549	-8.200	27.615	1.00	10.91	С
	ATOM	4110	C S	TYR B	50	-7.585	-5.731	25.363	1.00	9.64	C
	MOTA	4111		TYR B		-8.007	-4.678	24.858	1.00		o
50	ATOM	4112		ASP B		-7.221	-6.802	24.663	1.00		
	ATOM	4114		ASP B		-7.291					N
	ATOM	4116		ASP B			-6.906	23.220	1.00		C
						-6.107	-7.742	22.729	0.35		C
	ATOM	4117		ASP B	51	-6.122	-7.695	22.640	0.65		C
	MOTA	4122	CG BA	ASP B	51	-6.080	-7.888	21.234	0.35	13.82	С

	ATOM	4123	CG A	AASP	В 5	1	-6.149	-7.713	21.131	0.65 15.14	C
	MOTA	4124	OD1E	BASP	B 5	1	-6.122	-9.033	20.747	0.35 14.80	0
	MOTA	4125	OD1	AASP	B 5	1	-5.098	-7.505	20.497	0.65 16.90	0
	MOTA	4126	OD2E	BASP	B 5	1	-6.018	-6.909	20.468	0.35 15.44	0
5	MOTA	4127	OD2	AASP	В 5	1	-7.200	-7.900	20.492	0.65 16.43	0
	MOTA	4128	C	ASP		1	-8.601	-7.577	22.843	1.00 11.68	C
	MOTA	4129	0	ASP	B 5	1	-8.809	-8.770	23.089	1.00 12.14	0
	MOTA	4130	N	THR	B 5	2	-9.484	-6.811	22.224	1.00 12.82	N
	ATOM	4132	CA	THR	B 5	2	-10.821	-7.311	21.944	1.00 14.29	С
10	MOTA	4134	CB	THR	B 5	2	-11.794	-6.158	21.621	1.00 15.31	C
	MOTA	4136	OG1	THR	B 5	2	-11.342	-5.436	20.473	1.00 17.85	0
	MOTA	4138	CG2	THR	B 5	2	-11.813	-5.133	22.748	1.00 15.84	С
	MOTA	4142	С	THR	B 5	2	-10.849	-8.374	20.842	1.00 15.07	С
	MOTA	4143	0	THR	В 5	2	-11.736	-9.221	20.836	1.00 16.91	0
15	MOTA	4144	N	SER	В 5	3	-9.900	-8.338	19.911	1.00 15.21	N
	MOTA	4146	CA	SER	B 5	3	-9.869	-9.326	18.824	1.00 15.87	С
	MOTA	4148	CB I	BSER	В 5	3	-8.908	-8.886	17.708	0.35 16.21	С
	ATOM	4149	CB A	ASER	В 5	3	-8.859	-8.903	17.756	0.65 16.72	С
	MOTA	4154	OG I	BSER	B 5	3	-7.569	-8.772	18.157	0.35 17.00	0
20	MOTA	4155	OG A	ASER	в 5	3	-8.752	-9.892	16.748	0.65 18.99	0
	MOTA	4158	С	SER	B 5	3	-9.530	-10.736	19.309	1.00 15.03	С
	ATOM	4159	0	SER	B 5	3	-10.178	-11.722	18.919	1.00 14.93	0
	MOTA	4160	N	SER	B 5	54	-8.511	-10.836	20.153	1.00 14.11	N
	MOTA	4162	CA	SER	B 5	54	-8.082	-12.117	20.691	1.00 13.76	C
25	ATOM	4164	CB	SER	B 5	54	-6.585	-12.082	20.984	1.00 14.63	С
	MOTA	4167	OG	SER	B 5	54	-6.302	-11.212	22.069	1.00 15.48	0
	MOTA	4169	C	SER	В 5	4	-8.830	-12.497	21.955	1.00 12.67	·C
	ATOM	4170	0	SER	В 5	54	-8.716	-13.624	22.416	1.00 13.34	0
	ATOM	4171	N	GLY	B 5	55	-9.564	-11.539	22.518	1.00 12.60	N
30	MOTA	4173	CA	GLY	B 5	55	-10.337	-11.766	23.724	1.00 12.43	C
	ATOM	4176	С	GLY	B 5	55	-9.474	-11.987	24.936	1.00 11.80	C
	ATOM	4177	0	GLY	В 5	55	-9.834	-12.737	25.833	1.00 12.09	0
	MOTA	4178	N	SER	B 5	6	-8.333	-11.313	24.993	1.00 12.30	N
	MOTA	4180	CA	SER	В 5	6	-7.404	-11.563	26.071	1.00 12.22	С
35	MOTA	4182	CB	SER	В 5	6	-6.277	-12.470	25.600	1.00 13.33	С
	ATOM	4185	OG	SER	В 5	6	-5.511	-11.840	24.607	1.00 17.47	0
	MOTA	4187	С	SER	B 5	6	-6.813	-10.288	26.619	1.00 10.81	C
	MOTA	4188	0	SER	в 5	56	-6.567	-9.310	25.907	1.00 10.50	0
	MOTA	4189	N	PHE	в 5	57	-6.573	-10.325	27.916	1.00 9.99	N
40	MOTA	4191	CA	PHE	B 5	57	-5.790	-9.301	28.562	1.00 9.43	C
	MOTA	4193	CB	PHE	B 5	57	-5.887	-9.455	30.080	1.00 10.07	C
	ATOM	4196	CG	PHE	B 5	57	-7.232	-9.069	30.620	1.00 10.41	C
	MOTA	4197	CD1	PHE	B 5	57	-7.527	-7.744	30.869	1.00 10.08	С
	MOTA	4199	CE1	PHE	B 5	57	-8.774	-7.363	31.333	1.00 11.19	С
45	ATOM	4201	CZ	PHE	B 5	57	-9.751	-8.313	31.532	1.00 12.88	С
	ATOM	4203	CE2	PHE	B 5	57	-9.476	-9.645	31.264	1.00 13.00	С
	MOTA	4205	CD2	PHE	B 5	57	-8.230	-10.020	30.810	1.00 12.20	С
	MOTA	4207	С	PHE	B 5	57	-4.347	-9.410	28.102	1.00 9.19	C
	MOTA	4208	0	PHE	B 5	57	-3.877	-10.475	27.678	1.00 10.24	0
50	MOTA	4209	N	ALA	В 5	8	-3.643	-8.288	28.189	1.00 9.20	N
	MOTA	4211	CA	ALA	B 5	8	-2.202	-8.292	28.075	1.00 9.09	C
	MOTA	4213	CB	ALA	B 5	8	-1.664	-6.887	28.322	1.00 9.63	C
	MOTA	4217	C	ALA	В 5	8	-1.601	-9.247	29.090	1.00 9.25	С
	MOTA	4218	0	ALA	В 5	8 6	-2.213	-9.573	30.105	1.00 9.38	0
55	MOTA	4219	N	GLY	В 5	59	-0.371	-9.666	28.838	1.00 9.59	И
	MOTA	4221	CA	GLY	B 5	59	0.444	-10.276	29.857	1.00 9.95	C
	ATOM	4224	C	GLY	В 5	59	0.793	-9.242	30.908	1.00 9.76	С
	ATOM	4225	0	GLY	В 5	59	0.308	-8.099	30.891	1.00 10.29	0
	MOTA	4226	N	THR	В	50	1.637	-9.646	31.834	1.00 10.02	N
60	ATOM	4228	CA	THR	В	50	2.060	-8.759	32.898	1.00 10.25	С
	MOTA	4230	CB	THR		50	3.107	-9.463	33.740	1.00 11.48	С
	MOTA	4232		THR		50		-10.662	34.262	1.00 13.35	0
	MOTA	4234	CG2	THR		50	3.526	-8.622	34.941	1.00 12.09	С
	MOTA	4238	C	THR	В	50	2.629	-7.471	32.338	1.00 9.81	C

	ATOM	4239	0	THE	В	60	3.465	-7.498	31.441	1.00 1	0.64	0
	ATOM	4240	N	ALA		61	2.176	-6.351	32.884	1.00	9.32	N
	ATOM	4242	CA	ALA		61	2.677	-5.044	32.503	1.00	9.32	C
	ATOM	4244	СВ	ALA		61	1.568	-3.981	32.587	1.00	9.62	C
5	ATOM	4248	C	ALA		61	3.837	-4.632	33.385	1.00	8.92	c
Ŭ	ATOM	4249	0	ALA		61	3.876		34.567			
	ATOM	4250	N	THE				-4.954		1.00 1		0
	ATOM					62	4.756	-3.882	32.793	1.00	9.06	N
		4252	CA	THR		62	5.844	-3.224	33.497	1.00	9.56	C
10	ATOM	4254	CB	THR		62	7.159	-3.456	32.762	1.00 1		C
10	ATOM	4256	OG1			62	7.423	-4.870	32.721	1.00 1		0
	ATOM	4258	CG2			62	8.326	-2.808	33.497		2.14	C
	ATOM	4262	С	THR		62	5.495	-1.745	33.556		8.59	C
	ATOM	4263	0	THR		62	5.334	-1.089	32.521	1.00	9.17	0
	ATOM	4264	N	VAL		63	5.359	-1.225	34.771	1.00	8.26	N
15	ATOM	4266	CA	VAL		63	4.826	0.118	35.013	1.00	8.04	C
	ATOM	4268	CB	VAL		63	3.546	0.039	35.861	1.00	8.65	С
	ATOM	4270	CG1	. VAL	В	63	3.023	1.431	36.176	1.00	9.71	C
	ATOM	4274	CG2	VAL	В	63	2.478	-0.794	35.150	1.00	9.51	C
	ATOM	4278	C	VAL	В	63	5.891	0.959	35.693	1.00	7.95	C
20	MOTA	4279	0	VAL	В	63	6.369	0.597	36.771	1.00	8.82	0
	ATOM	4280	N	SER	В	64	6.254	2.083	35.085		7.68	N
	ATOM	4282	CA	SER	В	64	7.393	2.863	35.515		8.03	С
	ATOM	4284	CB	SER	В	64	8.499	2.805	34.462		8.70	C
	ATOM	4287	OG	SER		64	8.898	1.469	34.228		9.66	o
25	MOTA	4289	С	SER		64	6.965	4.306	35.757		7.95	c
	ATOM	4290	O	SER		64	6.893	5.116	34.823		7.83	0
	ATOM	4291	N	PRO		65	6.648	4.658	37.004		8.11	
	ATOM	4292	CA	PRO		65	6.226	6.028	37.301		8.10	N
	ATOM	4294	CB	PRO		65	5.859	5.970				C
30	ATOM	4297	CG	PRO		65	5.584		38.795		8.49	· C
00	ATOM	4300	CD	PRO		65		4.520	39.054		8.49	C
	ATOM	4303	CD				6.600	3.807	38.204		8.68	C
	MOTA	4303		PRO		65	7.344	7.027	37.057		8.00	C
			0	PRO		65	8.483	6.807	37.481		8.46	0
35	ATOM	4305	N	GLY		66	7.038	8.127	36.383		7.75	N
33	ATOM	4307	CA	GLY		66	8.034	9.166	36.186		8.40	C
	ATOM	4310	C	GLY		66	9.266	8.699	35.428		3.24	C
	ATOM	4311	0	GLY		66	10.346	9.265	35.586	1.00	3.86	0
	ATOM	4312	N	ARG		67	9.123	7.685	34.585	1.00 8	3.08	N
40	ATOM	4314	CA	ARG		67	10.223	7.252	33.745	1.00	3.11	C
40	MOTA	4316	CB	ARG		67	9.753	6.160	32.802	1.00	3.27	С
	ATOM	4319	CG	ARG	В	67	10.864	5.568	31.971	1.00 8	3.88	C
	ATOM	4322	CD	ARG		67	10.435	4.444	31.086	1.00 8	3.89	C
	ATOM	4325	NE	ARG		67	11.498	4.135	30.142	1.00	9.16	N
	ATOM	4327	CZ	ARG	В	67	11.404	3.282	29.149	1.00 10	0.30	С
45	MOTA	4328	NH1	ARG	В	67	12.410	3.169	28.296	1.00 1	1.25	N
	MOTA	4331	NH2	ARG	В	67	10.320	2.541	29.004	1.00 12	2.36	N
	MOTA	4334	C	ARG	В	67	10.750	8.429	32.946		3.11	С
	MOTA	4335	0	ARG	В	67	9.983	9.254	32.462		3.22	0
	ATOM	4336	N	ASN	В	68	12.070	8.472	32.783		3.17	N
50	ATOM	4338	CA	ASN		68	12.720	9.484	31.970		3.77	c
	ATOM	4340	CB	ASN		68	13.312	10.573	32.848		9.40	Ċ
	MOTA	4343	CG	ASN		68	13.931	11.660	32.023	1.00 10		C
	ATOM	4344		ASN		68	13.349	12.050	31.010	1.00 11		0
	ATOM	4345		ASN		68	15.136	12.110	32.385	1.00 12		N
55	ATOM	4348	C	ASN		68	13.812	8.863	31.104		9.03	
V .	ATOM	4349	Ō	ASN		68	14.994	8.879	31.455		9.74	С
	ATOM	4350	N	GLY		69	13.405					0
	MOTA	4352	CA	GLY		69	14.329	8.293	29.977		9.60	N
	ATOM	4355	C	GLY		69		7.682	29.037		9.82	C
60	ATOM	4356	0	GLY		69	14.763	6.335	29.549		9.55	C
50	ATOM	4356					13.946	5.419	29.628	1.00 10		0
			N	THR		70 70	16.040	6.194	29.885		.50	N
	ATOM	4359	CA	THR		70	16.516	4.977	30.529	1.00 10		С
	ATOM	4361	CB	THR		70	17.775	4.427	29.839	1.00 10		C
	ATOM	4363	OGI	THR	В	70	18.745	5.471	29.679	1.00 11	68	0

	ATOM	4365	CG2	THR B	70	17.437	3.934	28.436	1.00 11.69	С
									1.00 10.48	C
	MOTA	4369	C	THR B		16.747	5.185	32.024		
	MOTA	4370	0	THR B	70	17.362	4.357	32.689	1.00 11.63	0
	MOTA	4371	N	SER B	71	16.214	6.274	32.558	1.00 10.58	N
5	ATOM	4373	CA	SER B	71	16.175	6.510	33.992	1.00 10.32	С
•									1.00 10.45	C
	MOTA	4375	CB	SER B		16.437	7.969	34.309		
	MOTA	4378	OG	SER B	71	17.669	8.393	33.780	1.00 11.02	0
	MOTA	4380	С	SER B	71	14.821	6.139	34.562	1.00 9.95	С
	MOTA	4381	O	SER B		13.775	6.496	34.006	1.00 10.07	0
40										
10	MOTA	4382	N	TYR B		14.853	5.470	35.710	1.00 9.77	N
	MOTA	4384	CA	TYR B	72	13.665	4.953	36.370	1.00 9.83	C
	ATOM	4386	CB	TYR B	72	13.637	3.420	36.298	1.00 10.11	С
	ATOM	4389	CG	TYR B		13.491	2.884	34.890	1.00 10.38	C
	MOTA	4390	CD1			12.261	2.467	34.422	1.00 10.73	C
15	MOTA	4392	CE1	TYR B	72	12.112	1.963	33.142	1.00 11.24	С
	MOTA	4394	CZ	TYR B	72	13.200	1.895	32.301	1.00 11.23	С
	ATOM	4395	ОН	TYR B	72	13.014	1.381	31.041	1.00 12.73	0
										C
	MOTA	4397	CE2			14.442	2.316	32.741	1.00 11.74	
	MOTA	4399	CD2	TYR B	72	14.581	2.804	34.018	1.00 11.15	C
20	ATOM	4401	С	TYR B	72	13.739	5.443	37.815	1.00 10.00	С
	MOTA	4402	0	TYR B		14.125	4.683	38.712	1.00 10.50	0
	ATOM	4403	N	PRO B		13.426	6.715	38.070	1.00 10.19	N
	MOTA	4404	CA	PRO B	73	13.605	7.254	39.425	1.00 10.57	C
	MOTA	4406	CB	PRO B	73	13.195	8.719	39.285	1.00 10.64	С
25	ATOM	4409	CG	PRO B		12.351	8.766	38.059	1.00 10.69	С
20										
	MOTA	4412	CD	PRO B		12.927	7.742	37.134	1.00 10.07	C
	ATOM	4415	С	PRO B	73	12.778	6.561	40.497	1.00 10.59	С
	ATOM	4416	0	PRO B	73	13.139	6.627	41.664	1.00 12.17	0
	ATOM	4417	N	TYR B	74	11.692	5.916	40.097	1.00 10.13	N
20										
30	MOTA	4419	CA	TYR B	74	10.834	5.165	41.004	1.00 10.86	С
	ATOM	4421	CB	TYR B	74	9.425	5.767	41.038	1.00 10.82	C
	ATOM	4424	CG	TYR B	74	9.500	7.222	41.399	1.00 10.36	С
	MOTA	4425	CD1	TYR B	74	9.391	8.194	40.416	1.00 10.82	С
	MOTA	4427	CE1		74	9.519	9.518	40.701	1.00 11.59	C
35	MOTA	4429	CZ	TYR B	74	9.748	9.915	41.996	1.00 11.91	С
	ATOM	4430	OH	TYR B	74	9.863	11.261	42.253	1.00 14.01	0
	MOTA	4432	CE2	TYR B	74	9.864	8.972	43.005	1.00 12.35	С
	ATOM	4434	CD2		74	9.752	7.632	42.700	1.00 11.52	c
	MOTA	4436	С	TYR B	74	10.788	3.696	40.635	1.00 11.39	С
40	ATOM	4437	0	TYR B	74	9.849	2.993	41.013	1.00 12.84	0
	ATOM	4438	N	GLY B	75	11.820	3.222	39.939	1.00 10.85	N
	ATOM	4440	CA	GLY B		11.872	1.851	39.479	1.00 10.79	Ċ
	MOTA	4443	С	GLY B		10.764	1.505	38.505	1.00 10.56	С
	MOTA	4444	0	GLY B	75	10.129	2.370	37.891	1.00 10.85	0
45	MOTA	4445	N	SER B	76	10.563	0.202	38.377	1.00 10.90	N
	ATOM	4447	CA	SER B		9.489	-0.367	37.607	1.00 11.52	С
	MOTA	4449		BSER B		10.053	-1.085	36.386	0.35 11.19	С
	ATOM	4450	CB 2	ASER B	76	9.998	-0.975	36.309	0.65 13.32	C
	ATOM	4455	OG I	BSER B	76	10.704	-0.188	35.508	0.35 7.99	0
50	MOTA	4456		ASER B		10.880	-2.042	36.529	0.65 17.36	0
00										
	MOTA	4459	С	SER B		8.802	-1.393	38.474	1.00 11.22	С
	MOTA	4460	0	SER B	76	9.444	-2.102	39.264	1.00 12.58	0
	MOTA	4461	N	VAL B	7 7	7.489	-1.472	38.325	1.00 10.56	N
	MOTA	4463	CA	VAL B		6.668	-2.352	39.116	1.00 10.65	С
EE										
55	MOTA	4465		BVAL B		5.793	-1.531	40.080	0.35 10.56	C
	MOTA	4466	CB Z	AVAL B	7 7	5.843	-1.555	40.151	0.65 11.99	C
	MOTA	4469	CG1	BVAL B	77	4.837	-2.397	40.810	0.35 8.39	C
	ATOM	4470		AVAL B		6.704	-0.441	40.775	0.65 12.64	C
									0.35 11.33	C
00	MOTA	4477		BVAL B		6.661	-0.843	41.119		
60	MOTA	4478		AVAL B		4.627	-0.943	39.578	0.65 12.49	С
	MOTA	4485	С	VAL B	77	5.801	-3.183	38.174	1.00 9.91	C
	ATOM	4486	0	VAL B		5.303	-2.699	37.163	1.00 12.13	0
	ATOM	4487	N	LYS B		5.596	-4.440	38.500	1.00 11.93	N
	MOTA	4489	CA	LYS B	78	4.790	-5.315	37.664	1.00 12.70	С

	ATOM	4491	CB	LYS	B 78	5.236	-6.767	37.809	1.00 13.36	C
			CG			6.666		37.399	1.00 15.87	C
	MOTA	4494		LYS						
	ATOM	4497	CD	LYS	B 78	6.906	-6.736	35.938	1.00 17.52	C
	ATOM	4500	CE	LYS	B 78	8.294	-7.176	35.540	1.00 19.94	C
5	ATOM	4503	NZ	LYS	B 78	8.671	-6.739	34.188	1.00 22.53	N
•	ATOM	4507	C	LYS		3.338		38.065	1.00 12.78	С
	ATOM	4508	0	LYS	B 78	3.035	-5.045	39.243	1.00 14.43	0
	ATOM	4509	N	SER	B 79	2.436	-5.360	37.098	1.00 12.03	N
	ATOM	4511	CA	SER	B 79	1.017	-5.509	37.378	1.00 11.74	C
10				SER					1.00 11.51	C
10	ATOM	4513	CB					36.090		
	ATOM	4516	OG	SER		0.508	-6.477	35.178	1.00 10.77	0
	ATOM	4518	C	SER	B 79	0.722	-6.833	38.044	1.00 11.16	C
	MOTA	4519	0	SER		1.441	-7.826	37.856	1.00 12.07	0
								38.804	1.00 10.75	N
4 -	ATOM	4520	N	THR						
15	ATOM	4522	CA	THR	B 80	-0.923	-8.093	39.298	1.00 11.21	С
	ATOM	4524	CB	THR	B 80	-1.164	-8.015	40.807	1.00 11.49	C
	ATOM	4526	OG1	THR	B 80	-1.989	-6.887	41.124	1.00 12.77	0
	ATOM	4528	CG2					41.547	1.00 11.88	С
	ATOM	4532	С	THR				38.578	1.00 11.33	С
20	ATOM	4533	0	THR	B 80	-2.490	-9.682	38.478	1.00 12.80	0
	ATOM	4534	N	ARG	B 81	-2.959	-7.489	38.114	1.00 11.02	N
			CA	ARG		-4.210		37.427	1.00 10.96	С
	ATOM	4536								
	ATOM	4538	CB	ARG	B 81	-5.240		38.374	1.00 11.73	C
	ATOM	4541	CG	ARG	B 81	-5.626	-7.375	39.459	1.00 11.26	C
25	ATOM	4544	CD	ARG	B 81	-6.558	-7.993	40.419	1.00 13.29	C
	ATOM	4547	NE	ARG				41.525	1.00 14.74	N
	ATOM	4549	CZ	ARG				42.357	1.00 13.37	С
	MOTA	4550	NH1	ARG	B 81	-8.139	-6.424	43.336	1.00 11.04	N
	ATOM	4553	NH2	ARG	В 81	-8.704	-8.320	42.185	1.00 16.83	N
30	ATOM	4556	C	ARG				36.824	1.00 9.86	C
30										
	ATOM	4557	0	ARG		-4.234		37.074	1.00 10.32	0
	ATOM	4558	N	TYR	B 82	-5.781	-6.619	36.013	1.00 9.05	N
	ATOM	4560	CA	TYR	B 82	-6.392	-5.564	35.243	1.00 8.45	C
	ATOM	4562	СВ	TYR		-6.236		33.761	1.00 8.46	C
25										C
35	ATOM	4565	CG	TYR		-4.815		33.273	1.00 8.62	
	ATOM	4566	CD1	TYR	B 82	-4.012	-4.791	33.367	1.00 9.06	C
	ATOM	4568	CE1	TYR	B 82	-2.711	-4.804	32.888	1.00 9.18	С
	ATOM	4570	CZ	TYR		-2.202	-5.950	32.310	1.00 8.79	C
										Ō
4.0	ATOM	4571	OH	TYR		-0.907		31.850	1.00 9.78	
40	MOTA	4573	CE2	TYR	B 82	-2.990	-7.081	32.209	1.00 9.01	С
	ATOM	4575	CD2	TYR	B 82	-4.284	-7.053	32.688	1.00 9.11	C
	ATOM	4577	C	TYR	B 82	-7.886	-5.476	35.560	1.00 8.75	C
	ATOM	4578		TYR				35.949	1.00 9.58	Ō
			0							
	MOTA	4579	N	PHE				35.362	1.00 8.61	N
45	ATOM	4581	CA	PHE	B 83	-9.874	-4.032	35.444	1.00 8.66	C
	MOTA	4583	CB	PHE	B 83	-10.228	-3.092	36.585	1.00 9.00	C
	ATOM	4586	CG	PHE		-9.748		37.936	1.00 9.24	C
	ATOM	4587		PHE		-8.475		38.366	1.00 10.26	C
	MOTA	4589	CE1	PHE	B 83	-8.059	-3.502	39.639	1.00 11.44	C
50	ATOM	4591	CZ	PHE	B 83	-8.911	-4.173	40.501	1.00 12.62	C
	ATOM	4593		PHE				40.104	1.00 12.07	С
	MOTA	4595		PHE				38.823	1.00 10.68	C
	MOTA	4597	C	PHE	B 83	-10.298	-3.339	34.160	1.00 8.76	C
	ATOM	4598	0	PHE	B 83	-9.630	-2.409	33.699	1.00 8.65	0
55	ATOM	4599	N	ILE				33.598	1.00 8.84	N
00										
	ATOM	4601	CA	ILE				32.478	1.00 9.12	C
	MOTA	4603	CB	ILE		-11.734	-3.740	31.118	1.00 9.53	С
	MOTA	4605	CG1	ILE	B 84	-12.103	-5.225	31.124	1.00 10.28	С
	ATOM	4608		ILE				29.791	1.00 12.10	C
60									1.00 10.12	C
60	MOTA	4612		ILE				30.746		
	ATOM	4616	С	ILE				32.691	1.00 8.87	C
	MOTA	4617	0	ILE	B 84	-14.134		33.327	1.00 9.55	0
	MOTA	4618	N	PRO	B 85	-14.198	-2.004	32.131	1.00 9.08	N
	ATOM	4619	CA	PRO				32.154	1.00 9.52	C
	ATOM	エ ひエラ	CA	LICO		13.000	-1.902	24.124	1.00 7.32	C

	ATOM	4621	СВ	PRO	в 85	-15.984	-0.561	31.686	1.00 10.01	С
	ATOM	4624	CG	PRO			-0.235	30.745	1.00 9.80	С
	ATOM	4627	CD	PRO			-0.866	31.371	1.00 9.00	С
	ATOM	4630	С	PRO			-3.010	31.176	1.00 10.10	С
5	ATOM	4631	0	PRO	B 85	-15.561	-3.364	30.210	1.00 10.32	0
	ATOM	4632	N	SER	B 86	-17.437	-3.459	31.407	1.00 11.25	N
	ATOM	4634	CA	SER			-4.415	30.502	1.00 12.53	С
	ATOM	4636	CB	BSER	в 86	-19.506	-4.715	30.963	0.35 13.18	С
	ATOM	4637		ASER			-4.789	30.986	0.65 13.91	C
10	ATOM	4642		BSER		-19.544	-5.098	32.327	0.35 14.94	0
	ATOM	4643		ASER			-3.644	31.135	0.65 17.06	0
	ATOM	4646	С	SER			-3.886	29.071	1.00 12.33	С
	ATOM	4647	0	SER			-4.654	28.127	1.00 13.62	0
	ATOM	4648	N	GLY		-18.305	-2.578	28.911	1.00 12.00	N
15	ATOM	4650	CA	GLY			-1.984	27.589	1.00 12.48	С
	ATOM	4653	C	GLY			-2.129	26.808	1.00 12.31	С
	ATOM	4654	ō	GLY			-2.175	25.583	1.00 14.16	0
	ATOM	4655	N	TRP			-2.192	27.495	1.00 11.78	N
	ATOM	4657	CA	TRP			-2.408	26.804	1.00 11.93	С
20	ATOM	4659	СВ	TRP			-1.778	27.501	1.00 11.63	C
	ATOM	4662	CG	TRP			-1.984	26.598	1.00 10.61	Ċ
	ATOM	4663	CD1				-2.843	26.769	1.00 10.04	C
	ATOM	4665		TRP			-2.843	25.652	1.00 10.00	N
	ATOM	4667	CE2				-1.976	24.733	1.00 9.81	C
25	ATOM	4668		TRP			-1.434	25.292	1.00 10.13	Ċ
	ATOM	4669	CE3				-0.519	24.539	1.00 11.31	Ċ
	ATOM	4671	CZ3				-0.194	23.276	1.00 12.74	Ċ
	ATOM	4673	CH2				-0.752	22.749	1.00 12.39	Ċ
	ATOM	4675	CZ2				-1.659	23.451	1.00 11.10	C
30	ATOM	4677	C	TRP			-3.874	26.554	1.00 13.20	C
•	ATOM	4678	Ö	TRP			-4.228	25.544	1.00 14.61	0
	ATOM	4679	N	ARG			-4.742	27.456	1.00 14.97	N
	ATOM	4681	CA	ARG			-6.157	27.135	1.00 17.45	C
	ATOM	4683	СВ	ARG			-6.978	28.216	1.00 18.59	C
35	ATOM	4686	CG	ARG			-8.407	28.352	1.00 20.17	Ċ
•	ATOM	4689	CD	ARG			-9.163	29.496	1.00 22.60	c
	ATOM	4692	NE	ARG			-8.796	30.790	1.00 24.39	N
	ATOM	4694	CZ	ARG			-9.349	31.330	1.00 25.64	Ċ
	ATOM	4695		ARG			-10.314	30.701	1.00 26.15	N
40	ATOM	4698		ARG			-8.931	32.516	1.00 26.48	N
,,	ATOM	4701	C	ARG			-6.339	25.731	1.00 19.17	Ċ
	ATOM	4702	o	ARG			-7.254	24.999	1.00 20.41	Ō
	ATOM	4703	N	SER			-5.436	25.357	1.00 20.72	N
	ATOM	4705	CA	SER			-5.405	24.034	1.00 21.67	C
45	ATOM	4707	СВ	SER			-4.837	24.189	1.00 22.17	Ċ
	ATOM	4710	OG	SER			-5.584	25.125	1.00 23.91	0
	ATOM	4712	C	SER			-4.630	22.917	1.00 21.74	Ċ
	ATOM	4713	0	SER			-4.789	21.746	1.00 23.22	0
	ATOM	4714	N	GLY			-3.771	23.253	1.00 21.01	N
50	ATOM	4716	CA	GLY			-3.027	22.258	1.00 20.45	С
	ATOM	4719	C	GLY			-1.724	21.881	1.00 20.20	С
	ATOM	4720	Ō	GLY			-1.062	20.893	1.00 20.84	Ō
	ATOM	4721	N	ASN			-1.355	22.669	1.00 19.28	N
	ATOM	4723	CA	ASN			-0.132	22.417	1.00 18.38	C
55	ATOM	4725	СВ	ASN			-0.171	23.169	1.00 17.92	Ċ
	ATOM	4728	CG	ASN			0.960	22.777	1.00 17.67	c
	ATOM	4729		ASN			2.066	22.576	1.00 15.73	Ö
	ATOM	4730		ASN			0.686	22.670	1.00 20.42	N
	ATOM	4733	C	ASN			1.052	22.845	1.00 17.91	C
60	ATOM	4734	ō	ASN			1.155	24.021	1.00 17.12	0
	ATOM	4735	N	THR			1.909	21.902	1.00 17.67	N
	ATOM	4737	CA	THR			3.068	22.178	1.00 17.77	C
	ATOM	4739	CB	THR			3.902	20.885	1.00 18.92	C
	ATOM	4741		THR			5.097	21.206	1.00 21.52	Ö
						== : : • •			· · · · 	•

	ATOM	4743	CG2	THR E	93	-15.718	4.434	20.237	1.00 18.95	С
	ATOM	4747	C	THR E		-15.348	4.006	23.212	1.00 15.15	C
	ATOM	4748	Ö	THR E		-14.591	4.719	23.860	1.00 14.57	ō
	ATOM	4749	N	ASN E		-16.676	4.719	23.349	1.00 14.37	N
5				ASN E				24.369	1.00 13.37	C
5	ATOM	4751	CA			-17.263	4.874			
	MOTA	4753	CB	ASN E		-18.767	5.001	24.180	1.00 12.29	C
	MOTA	4756	CG	ASN E		-19.122	5.919	23.041	1.00 14.50	С
	ATOM	4757	OD1	ASN E	94	-18.348	6.785	22.653	1.00 16.90	0
	ATOM	4758	ND2	ASN E	94	-20.312	5.739	22.508	1.00 17.07	N
10	ATOM	4761	С	ASN E	94	-16.951	4.400	25.772	1.00 10.32	C
	ATOM	4762	0	ASN E		-17.229	5.130	26.707	1.00 10.75	0
	ATOM	4763	N	TYR E		-16.361	3.207	25.915	1.00 9.75	N
	ATOM	4765	CA	TYR E		-15.992	2.654	27.219	1.00 9.39	C
	ATOM	4767	CB	TYR E		-16.876	1.444	27.541	1.00 10.00	C
15										c
15	ATOM	4770	CG	TYR E		-18.334	1.826	27.578		
	ATOM	4771	CD1	TYR E		-19.127	1.734	26.446	1.00 11.72	C
	MOTA	4773	CE1	TYR E		-20.466	2.105	26.467	1.00 12.50	C
	MOTA	4775	CZ	TYR E		-21.008	2.602	27.625	1.00 13.24	C
	MOTA	4776	OH	TYR E		-22.332	2.984	27.661	1.00 14.96	0
20	ATOM	4778	CE2	TYR E	95	-20.243	2.720	28.762	1.00 12.98	С
	ATOM	4780	CD2	TYR E	95	-18.911	2.333	28.733	1.00 11.90	C
	ATOM	4782	C	TYR E	95	-14.512	2.285	27.263	1.00 8.95	C
	MOTA	4783	0	TYR E		-14.114	1.400	28.010	1.00 8.99	0
	ATOM	4784	N	ASP E		-13.695	2.996	26.485	1.00 8.73	N
25	ATOM	4786	CA	ASP E		-12.272	2.693	26.401	1.00 8.57	C
20	ATOM	4788	CB	ASP B				25.067		
						-11.716	3.169			C
	ATOM	4791	CG	ASP B		-10.298	2.720	24.829	1.00 8.28	C
	ATOM	4792		ASP B		-9.773	3.069	23.732	1.00 8.57	0
	MOTA	4793		ASP B		-9.674	2.040	25.677	1.00 8.50	0
30	ATOM	4794	C	ASP B		-11.510	3.314	27.580	1.00 7.91	С
	ATOM	4795	0	ASP B	96	-11.002	4.442	27.510	1.00 8.32	0
	ATOM	4796	N	TYR B	97	-11.479	2.567	28.671	1.00 8.03	N
	ATOM	4798	CA	TYR B	97	-10.719	2.910	29.860	1.00 7.75	C
	ATOM	4800	CB	TYR B	97	-11.386	3.992	30.707	1.00 7.83	С
35	ATOM	4803	CG	TYR B	97	-12.688	3.607	31.371	1.00 8.16	C
	ATOM	4804	CD1	TYR B		-13.893	3.674	30.681	1.00 8.43	c
	ATOM	4806	CE1	TYR B		-15.092	3.350	31.297	1.00 8.51	Ċ
	ATOM	4808	CZ	TYR B		-15.094	2.959			C
			OH					32.628	1.00 8.68	
40	ATOM	4809		TYR B		-16.265	2.673	33.298	1.00 9.75	0
40	ATOM	4811	CE2	TYR B		-13.906	2.878	33.321	1.00 8.95	С
	MOTA	4813	CD2	TYR B		-12.719	3.205	32.697	1.00 8.55	С
	MOTA	4815	C	TYR B		-10.531	1.625	30.653	1.00 7.47	С
	MOTA	4816	0	TYR B		-11.168	0.607	30.383	1.00 7.98	0
	MOTA	4817	N	GLY B	98	-9.659	1.684	31.647	1.00 7.59	N
45	ATOM	4819	CA	GLY B	98	-9.409	0.542	32.502	1.00 7.74	C
	ATOM	4822	C	GLY B	98	-8.451	0.917	33.603	1.00 7.36	C
	ATOM	4823	0	GLY B	98	-8.061	2.082	33.748	1.00 7.93	0
	MOTA	4824	N	ALA B		-8.079	-0.080	34.390	1.00 7.67	N
	ATOM	4826	CA	ALA B		-7.139	0.136	35.465	1.00 7.61	C
50	ATOM	4828	CB	ALA B		-7.846	0.428	36.770	1.00 7.01	c
00	ATOM		C							
		4832		ALA B		-6.207	-1.042	35.626	1.00 8.10	C
	ATOM	4833	0	ALA B		-6.523	-2.172	35.222	1.00 8.34	0
	MOTA	4834	N	ILE B		-5.045	-0.762	36.211	1.00 8.17	N
	MOTA	4836	CA	ILE B		-4.042	-1.770	36.490	1.00 8.36	С
55	MOTA	4838	CB	ILE B		-2.709	-1.485	35.749	1.00 8.61	С
	ATOM	4840	CG1			-2.941	-1.193	34.265	1.00 8.93	C
	ATOM	4843	CD1	ILE B	100	-1.682	-0.873	33.485	1.00 10.13	C
	ATOM	4847	CG2	ILE B	100	-1.738	-2.640	35.958	1.00 9.23	С
	ATOM	4851	C	ILE B		-3.764	-1.741	37.982	1.00 8.16	C
60	ATOM	4852	Ō	ILE B		-3.527	-0.682	38.549	1.00 8.74	Ō
	ATOM	4853	N	GLU B		-3.784	-2.903	38.627	1.00 8.55	N
	ATOM	4855	CA	GLU B		-3.315	-3.015	40.003	1.00 8.71	C
			CB	GLU B		-4.160	-4.001			C
	ATOM	4857						40.797		
	MOTA	4860	CG	GLU B	101	-3.907	-3.943	42.293	1.00 10.20	С

	ATOM	4863	CD	GLU	В	101	-5.020	-4.604	43.089	1.00 10	3.1	C
	ATOM	4864		GLU		101	-4.713	-5.401	43.998	1.00 12		0
	ATOM	4865	OE2			101	-6.210		42.782		.03	
		4866						-4.354				0
_	ATOM		C	GLU		101	-1.858	-3.452	39.989		.34	C
5	ATOM	4867	0	GLU		101	-1.466	-4.253	39.161		.30	0
	ATOM	4868	N	LEU		102	-1.073	-2.887	40.894	1.00 8	. 98	N
	ATOM	4870	CA	LEU	В	102	0.358	-3.079	40.934	1.00 8	.90	С
	ATOM	4872	CB	LEU	В	102	1.068	-1.728	41.077	1.00 9	.08	C
	ATOM	4875	CG	LEU	В	102	0.752	-0.722	39.978	1.00 10	.14	С
10	ATOM	4877	CD1	LEU	В	102	1.517	0.561	40.225	1.00 10	.89	С
	ATOM	4881	CD2			102	1.034	-1.294	38.585	1.00 10		C
	ATOM	4885	C	LEU		102	0.807	-3.976	42.080		.48	C
	ATOM	4886	ō	LEU		102	0.168	-4.061	43.133	1.00 10		
	ATOM	4887	N			103						0
15				SER			1.969	-4.589	41.866		.89	N
15	ATOM	4889	CA	SER		103	2.601	-5.483	42.828	1.00 10		C
	ATOM	4891	CB	SER			3.736	-6.273	42.146		.99	C
	ATOM	4894	OG	SER			4.697	-5.398	41.584	1.00 15	. 05	0
	ATOM	4896	C	SER	В	103	3.183	-4.776	44.053	1.00 10	.53	C
	ATOM	4897	0	SER	В	103	3.490	-5.433	45.047	1.00 11	.56	0
20	ATOM	4898	N	GLU	В	104	3.367	-3.464	43.962	1.00 10	.04	N
	ATOM	4900	CA	GLU	В	104	3.968	-2.672	45.021	1.00 10		С
	ATOM	4902	CB	GLU			5.443	-2.395	44.738	1.00 10		c
	ATOM	4905	CG	GLU			6.259	-3.644	44.449	1.00 11		C
	ATOM	4908	CD	GLU			7.723	-3.350	44.233			
25	ATOM	4909	OE1							1.00 13		C
25						104	8.329	-2.659	45.084	1.00 14		0
	ATOM	4910	OE2				8.261	-3.802	43.208		.30	0
	ATOM	4911	C	GLU			3.227	-1.351	45.093	1.00 9	. 84	С
	MOTA	4912	0	GLU		104	2.802	-0.809	44.065	1.00 10	.32	0
	ATOM	4913	N	PRO	В	105	3.068	-0.805	46.291	1.00 9	. 86	N
30	ATOM	4914	CA	PRO	В	105	2.283	0.420	46.478	1.00 10	.40	C
	ATOM	4916	CB	PRO	В	105	1.878	0.324	47.944	1.00 11	. 33	C
	ATOM	4919	CG	PRO	В	105	3.053	-0.322	48.587	1.00 11		C
	ATOM	4922	CD	PRO		105	3.557	-1.331	47.587	1.00 10		C
	ATOM	4925	C	PRO		105	3.075	1.696	46.191		. 58	C
35	ATOM	4926	Ö	PRO			3.227	2.576				
00	ATOM	4927		ILE		105			47.035	1.00 10		0
			N				3.538	1.824	44.957		. 73	N
	ATOM	4929	CA	ILE		106	4.421	2.908	44.586	1.00 9	. 44	C
	MOTA	4931	CB	ILE		106	5.096	2.600	43.224	1.00 9	. 89	С
	MOTA	4933	CG1			106	6.252	3.566	42.933	1.00 10	. 25	С
40	ATOM	4936	CD1			106	7.381	3.581	43.970	1.00 11	. 38	C
	ATOM	4940	CG2			106	4.082	2.599	42.085	1.00 10	. 23	C
	MOTA	4944	C	ILE	В	106	3.729	4.271	44.620	1.00 9.	14	С
	ATOM	4945	0	ILE	В	106	4.382	5.305	44.734		49	0
	ATOM	4946	N	GLY			2.407	4.287	44.541		13	N
45	MOTA	4948	CA	GLY			1.648	5.503	44.748		30	C
	ATOM	4951	C	GLY			1.833	6.128	46.117		.86	
	ATOM	4952	0	GLY			1.627					C
				ASN				7.326	46.279	1.00 10.		0
	ATOM	4953	N				2.228	5.339	47.110	1.00 10.		N
50	ATOM	4955	CA	ASN			2.578	5.915	48.400	1.00 11.		C
50	ATOM	4957	CB	ASN			2.804	4.831	49.458	1.00 11.		C
	MOTA	4960	CG	ASN	В	108	1.518	4.133	49.862	1.00 13.	13	C
	ATOM	4961	OD1	ASN	В	108	0.433	4.675	49.715	1.00 15.	54	0
	ATOM	4962	ND2	ASN	В	108	1.649	2.941	50.428	1.00 15.	52	N
	MOTA	4965	C	ASN	В	108	3.799	6.809	48.340	1.00 11.	38	C
55	ATOM	4966	0	ASN			3.968	7.676	49.192	1.00 13.		. 0
	ATOM	4967	N	THR			4.644	6.606	47.335	1.00 10.		Ŋ
	ATOM	4969	CA	THR			5.811	7.449	47.106	1.00 10.		
	ATOM	4971	CB	THR			6.961					C
								6.584	46.594	1.00 11.		C
60	ATOM	4973		THR			7.329	5.636	47.604	1.00 13.		0
60	MOTA	4975	CG2				8.225	7.390	46.324	1.00 12.		С
	MOTA	4979	C	THR			5.521	8.572	46.123	1.00 10.		C
	MOTA	4980	0	THR			5.856	9.723	46.400	1.00 11.		0
	MOTA	4981	N	VAL			4.931	8.247	44.975	1.00 9.	89	N
	MOTA	4983	CA	VAL	В	110	4.771	9.245	43.921	1.00 9.	99	С

	ATOM	4985	CB	VAL	В	110	4.883	8.652	42.504	1.00 9.6	i9 C
			CG1					8.008	42.291	1.00 10.3	
	MOTA	4987					6.238				
	MOTA	4991	CG2	VAL	В	110	3.749	7.687	42.194	1.00 9.1	
	MOTA	4995	C	VAL	В	110	3.512	10.093	44.054	1.00 10.2	1 C
5	ATOM	4996		VAL			3.434	11.153	43.425	1.00 11.2	
9											
	MOTA	4997	N	GLY			2.543	9.644	44.840	1.00 10.2	
	ATOM	4999	CA	GLY	В	111	1.265	10.314	44.904	1.00 10.2	4 C
	ATOM	5002	С	GLY	R	111	0.334	9.866	43.803	1.00 9.7	'3 C
	ATOM	5003		GLY			0.623	8.938	43.039	1.00 10.1	
10	ATOM	5004	N	TYR	В	112	-0.815	10.522	43.733	1.00 9.9	97 N
	ATOM	5006	CA	TYR	В	112	-1.832	10.140	42.768	1.00 9.9	5 C
				BTYR			-2.648	8.897	43.221	0.35 10.4	
	ATOM	5008									
	ATOM	5009	CB A	TYR	В	112	-2.598	8.884	43.221	0.65 10.3	
	ATOM	5014	CG E	BTYR	В	112	-2.791	8.641	44.714	0.35 11.5	8 C
15	ATOM	5015	CG A	TYR	В	112	-3.133	8.921	44.615	0.65 11.4	1 C
	ATOM	5016		BTYR			-1.797	7.973	45.428	0.35 12.4	
	ATOM	5017	CD1A	TYR	В	112	-2.406	8.376	45.672	0.65 13.1	
	ATOM	5020	CE1E	BTYR	В	112	-1.935	7.713	46.789	0.35 13.5	6 C
	ATOM	5021		TYR			-2.905	8.381	46.970	0.65 15.5	
00											
20	ATOM	5024	CZ E	BTYR	В	112	-3.085	8.100	47.449	0.35 14.9	
	ATOM	5025	CZ P	TYR	В	112	-4.144	8.931	47.209	0.65 16.2	9 C
	ATOM	5026	OH P	BTYR	В	112	-3.215	7.838	48.796	0.35 16.6	34 0
	ATOM	5027		ATYR			-4.641	8.940	48.492	0.65 18.5	
	MOTA	5030	CE2E	BTYR	В	112	-4.097	8.743	46.766	0.35 14.3	
25	MOTA	5031	CE2A	TYR	В	112	-4.894	9.467	46.174	0.65 14.9	98 C
	ATOM	5034		BTYR			-3.951	9.007	45.400	0.35 12.8	
	ATOM	5035	CD2A	TYR	В	112	-4.382	9.459	44.880	0.65 13.0	
	ATOM	5038	C	TYR	В	112	-2.745	11.327	42.440	1.00 9.7	'5 C
	ATOM	5039	0	TYR	В	112	-2.730	12.363	43.110	1.00 10.7	1 0
20											
30	ATOM	5040	N	PHE			-3.495	11.159	41.355	1.00 9.5	
	ATOM	5042	CA	PHE	В	113	-4.382	12.182	40.822	1.00 9.9	
	ATOM	5044	CB	PHE	В	113	-4.592	11.952	39.321	1.00 9.7	'9 C
	ATOM	5047	CG	PHE		113	-3.437	12.384	38.452	1.00 8.7	
	MOTA	5048		PHE		113	-3.520	13.562	37.714	1.00 9.3	
35	ATOM	5050	CE1	PHE	В	113	-2.467	13.968	36.912	1.00 10.0	
	ATOM	5052	CZ	PHE	В	113	-1.321	13.222	36.851	1.00 8.8	18 C
	ATOM	5054		PHE			-1.220	12.060	37.566	1.00 8.7	
	ATOM	5056	CD2	PHE	В	113	-2.271	11.633	38.372	1.00 8.9	
	ATOM	5058	C	PHÉ	В	113	-5.772	12.106	41.441	1.00 10.4	.7 C
40	MOTA	5059	0	PHE	В	113	-6.262	11.022	41.775	1.00 11.4	.7 0
. •				GLY				13.267	41.550	1.00 10.7	
	ATOM	5060	N				-6.409				
	ATOM	5062	CA	GLY	В	114	-7.854	13.333	41.663	1.00 11.3	
	ATOM	5065	С	GLY	В	114	-8.481	13.125	40.293	1.00 10.6	7 C
	ATOM	5066		GLY			-7.801	13.207	39.265	1.00 10.7	
15											
45	MOTA	5067	N	TYR			-9.781	12.875	40.278	1.00 10.5	
	MOTA	5069	CA	TYR			-10.524	12.763	39.030	1.00 10.7	
	ATOM	5071	CB	TYR	В	115	-10.346	11.382	38.379	1.00 10.7	'1 C
	ATOM	5074	CG	TYR			-10.685	10.219	39.275	1.00 10.7	
	MOTA	5075		TYR			-11.988	9.716	39.338	1.00 10.6	
50	ATOM	5077	CE1	TYR	В	115	-12.311	8.658	40.183	1.00 10.3	2 C
	MOTA	5079	CZ	TYR	В	115	-11.313	8.093	40.968	1.00 10.9)1 C
			OH	TYR			-11.581	7.056	41.831	1.00 12.4	
	ATOM	5080									
	ATOM	5082	CE2	TYR	В	115	-10.021	8.585	40.921	1.00 11.6	
	ATOM	5084	CD2	TYR	В	115	-9.715	9.638	40.074	1.00 11.4	.0 C
55	MOTA	5086	C	TYR			-11.983	13.069	39.319	1.00 10.1	
•••											
	ATOM	5087	0	TYR			-12.466	12.866	40.448	1.00 11.1	
	ATOM	5088	N	SER	В	116	-12.696	13.556	38.315	1.00 10.1	
	ATOM	5090	CA	SER	В	116	-14.058	14.032	38.525	1.00 11.0	5 C
	ATOM	5092	CB	SER			-14.047	15.464	39.061	1.00 12.2	
60											
60	MOTA	5095	OG	SER			-15.261	15.741	39.743	1.00 15.6	
	ATOM	5097	C	SER	В	116	-14.881	13.963	37.258	1.00 10.8	0 C
	ATOM	5098	0	SER	В	116	-14.333	13.881	36.155	1.00 11.3	
	ATOM	5099	N	TYR			-16.198	13.964	37.448	1.00 11.2	
	ATOM	5101	CA	TYR	В	117	-17.167	14.054	36.366	1.00 11.2	.8 C

	ATOM	5103	CB	TYR B	117	-18.098	12.834	36.354	1.00 11.24	C
	ATOM	5106	CG	TYR B		-19.039	12.746	37.533	1.00 11.74	С
	MOTA	5107	CD1	TYR B	117	-20.343	13.212	37.431	1.00 13.27	C
	MOTA	5109	CE1	TYR B	117	-21.221	13.145	38.509	1.00 15.32	C
5			CZ	TYR B		-20.788	12.637	39.708	1.00 15.51	C
5	ATOM	5111								
	ATOM	5112	OH	TYR B	117	-21.659	12.576	40.774	1.00 18.16	0
	ATOM	5114	CE2	TYR B	117	-19.494	12.174	39.841	1.00 15.41	C
										Ċ
	ATOM	5116	CD2			-18.626	12.229	38.758	1.00 13.41	
	MOTA	5118	C	TYR B	117	-17.976	15.325	36.528	1.00 12.11	C
10	MOTA	5119	0	TYR B		-18.090	15.880	37.624	1.00 13.00	0
10										
	MOTA	5120	N	THR B	118	-18.546	15.790	35.430	1.00 12.32	N
	MOTA	5122	CA	THR B	118	-19.471	16.915	35.476	1.00 13.14	C
				BTHR B		-18.839	18.242	34.989	0.35 13.58	С
	MOTA	5124								
	MOTA	5125	CB Z	ATHR B	118	-18.853	18.174	34.815	0.65 13.85	C
15	MOTA	5128	OG11	BTHR B	118	-17.607	18.487	35.674	0.35 14.98	0
								33.391	0.65 12.42	0
	MOTA	5129		ATHR B		-18.864	18.025			
	ATOM	5132	CG2	BTHR B	118	-19.688	19.435	35.421	0.35 13.29	С
	ATOM	5133	CG2	ATHR B	118	-17.368	18.339	35.127	0.65 14.99	C
	MOTA	5140	C	THR B	118	-20.722	16.573	34.714	1.00 13.65	C
20	MOTA	5141	0	THR B	118	-20.751	15.691	33.870	1.00 14.93	0
	ATOM	5142	N	THR B	119	-21.782	17.313	35.018	1.00 14.79	N
	ATOM	5144	CA	THR B	119	-23.087	17.127	34.387	1.00 16.50	C
	MOTA	5146	CB	THR B	119	-24.192	17.090	35.473	1.00 17.34	C
			OG1			-24.184	18.319	36.209	1.00 19.76	0
	MOTA	5148								
25	ATOM	5150	CG2	THR B	119	-23.906	16.005	36.521	1.00 18.20	С
	ATOM	5154	C	THR B	119	-23.412	18.233	33.389	1.00 16.89	C
										Ō
	MOTA	5155	0	THR B		-24.581	18.446	33.065	1.00 18.39	
	ATOM	5156	N	SER B	120	-22.392	18.945	32.932	1.00 15.85	N
	ATOM	5158	CA	SER B	120	-22.568	20.023	31.976	1.00 15.52	C
20									1.00 17.29	Ċ
30	MOTA	5160	CB	SER B		-22.688	21.348	32.714		
	ATOM	5163	OG	SER B	120	-21.566	21.555	33.538	1.00 19.16	0
	ATOM	5165	C	SER B		-21.385	20.044	31.015	1.00 13.69	C
	MOTA	5166	0	SER B	120	-20.433	19.256	31.151	1.00 13.49	0
	ATOM	5167	N	SER B	121	-21.450	20.938	30.037	1.00 13.50	N
35	ATOM	5169	CA	SER B		-20.440	20.977	28.999	1.00 13.20	С
33										
	MOTA	5171	CB	SER B	121	-20.823	22.004	27.943	1.00 13.58	C
	ATOM	5174	OG	SER B	121	-19.822	22.072	26.951	1.00 14.79	0
				SER B				29.561	1.00 12.29	C
	MOTA	5176	С			-19.065	21.321			
	ATOM	5177	0	SER B	121	-18.936	22.162	30.445	1.00 13.82	0
40	ATOM	5178	N	LEU B	122	-18.034	20.659	29.042	1.00 11.06	N
, ,									1.00 10.63	C
	ATOM	5180	CA	LEU B		-16.653	20.994	29.362		
	ATOM	5182	CB	LEU B	122	-15.870	19.715	29.679	1.00 10.33	С
	ATOM	5185	CG	LEU B	122	-16.152	19.154	31.076	1.00 11.02	C
	ATOM	5187		LEU B		-15.645	17.729	31.205	1.00 11.81	C
45	ATOM	5191	CD2	LEU B	122	-15.557	20.038	32.139	1.00 12.56	C
	ATOM	5195	С	LEU B		-15.968	21.775	28.238	1.00 10.13	С
	ATOM	5196	0	LEU B		-14.775	22.042	28.324	1.00 10.57	0
	ATOM	5197	N	VAL B	123	-16.708	22.183	27.209	1.00 10.64	N
	ATOM	5199	CA	VAL B		-16.101	22.935	26.115	1.00 10.83	С
50	ATOM	5201	CB	VAL B	123	-17.123	23.312	25.017	1.00 11.49	· C
	ATOM	5203	CG1	VAL B	123	-16.511	24.290	24.006	1.00 12.60	C
				VAL B		-17.603	22.060	24.288	1.00 12.49	C
	ATOM	5207								
	MOTA	5211	С	VAL B	123	-15.439	24.192	26.669	1.00 10.32	C
	ATOM	5212	0	VAL B	123	-16.057	24.936	27.431	1.00 11.74	0
55				GLY B		-14.189	24.416	26.283	1.00 10.03	N
55	ATOM	5213	N							
	ATOM	5215	CA	GLY B	124	-13.431	25.575	26.714	1.00 10.35	C
	MOTA	5218	C	GLY B	124	-12.591	25.362	27.954	1.00 9.90	С
									1.00 11.28	ō
	MOTA	5219	0	GLY B		-11.707	26.170	28.220		
	MOTA	5220	N	THR B	125	-12.851	24.311	28.726	1.00 9.67	N
60	ATOM	5222	CA	THR B	125	-12.062	24.049	29.919	1.00 9.49	С
				THR B		-12.709	22.900	30.695	1.00 10.53	c
	ATOM	5224	CB							
	ATOM	5226	OG1	THR B	125	-13.998	23.310	31.178	1.00 13.20	0
	ATOM	5228	CG2	THR B	125	-11.907	22.498	31.922	1.00 10.73	C
			C	THR B		-10.635	23.689	29.511	1.00 8.89	Ċ
	ATOM	5232	C	IIIK D	129	10.035	23.003	49.31L	1.00 0.09	C

	MOTA	5233	0	THR	В	125	-10.437	22.872	28.619	1.00	9.49	0
	MOTA	5234	N	THR			-9.646	24.285	30.170	1.00	9.07	N
	MOTA	5236	CA	THR			-8.254	23.992	29.867	1.00	9.38	С
	ATOM	5238	CB	THR	В	126	-7.368	25.212	30.064	1.00	10.46	C
5	ATOM	5240	OG1	THR	В	126	-7.532	25.706	31.393	1.00	12.73	0
	ATOM	5242	CG2	THR		126	-7.790	26.346	29.130	1.00	11.44	С
									30.679	1.00	8.61	C
	ATOM	5246	С	THR			-7.731	22.819				
	MOTA	5247	0	THR	В	126	-8.035	22.654	31.874	1.00	9.84	0
	ATOM	5248	N	VAL	В	127	-6.951	21.996	29.987	1.00	8.18	N
10	MOTA	5250	CA	VAL	В	127	-6.403	20.764	30.520	1.00	8.03	С
	ATOM	5252	СВ	VAL		127	-7.290	19.529	30.187	1.00	8.26	С
	MOTA	5254		VAL			-8.635	19.599	30.912	1.00	9.66	C
	ATOM	5258	CG2	VAL	В	127	-7.486	19.389	28.694	1.00	9.04	C
	ATOM	5262	С	VAL	В	127	-5.001	20.543	29.961	1.00	7.96	C
15	MOTA	5263	0	VAL	В	127	-4.625	21.117	28.935	1.00	9.12	0
. •	ATOM	5264	N	THR			-4.259	19.675	30.630	1.00	7.81	N
	MOTA	5266	CA	THR			-2.953	19.208	30.209	1.00	7.75	C
	MOTA	5268	CB	THR	В	128	-1.953	19.374	31.362	1.00	8.07	C
	MOTA	5270	OG1	THR	В	128	-1.843	20.762	31.705	1.00	9.24	0
20	ATOM	5272	CG2	THR	В	128	-0.549	18.864	31.006	1.00	8.88	С
20									29.857	1.00	7.12	Ċ
	MOTA	5276	C	THR			-3.052	17.735				
	MOTA	5277	0	THR			-3.715	16.967	30.556	1.00	7.80	0
	MOTA	5278	N	ILE	В	129	-2.385	17.340	28.775	1.00	6.77	N
	MOTA	5280	CA	ILE	В	129	-2.233	15.940	28.421	1.00	6.79	C
25	MOTA	5282	СВ	ILE	В	129	-2.874	15.613	27.062	1.00	7.12	C
	ATOM	5284		ILE			-4.328	16.098	27.046	1.00	7.95	C
												C
	MOTA	5287		ILE			-5.076	15.825	25.764	1.00	8.74	
	MOTA	5291	CG2	ILE	В	129	-2.766	14.141	26.789	1.00	8.17	С
	MOTA	5295	C	ILE	В	129	-0.739	15.639	28.412	1.00	6.77	C
30	MOTA	5296	0	ILE	В	129	0.001	16.217	27.603	1.00	7.27	0
	ATOM	5297	N	SER	В	130	-0.298	14.761	29.305	1.00	6.76	N
		5299	CA	SER			1.112	14.417	29.438	1.00	6.68	C
	ATOM											
	MOTA	5301	CB	SER		130	1.694	15.022	30.710	1.00	7.29	C
	MOTA	5304	OG	SER	В	130	3.097	14.906	30.734	1.00	8.01	0
35	MOTA	5306	C	SER	В	130	1.250	12.911	29.453	1.00	6.73	C
	MOTA	5307	0	SER	В	130	0.517	12.224	30.158	1.00	6.79	0
	ATOM	5308	N	GLY			2.187	12.390	28.665	1.00	6.62	N
				GLY			2.425	10.958	28.637	1.00	6.73	Ĉ
	MOTA	5310	CA			131						
	MOTA	5313	С	GLY			3.640	10.604	27.804	1.00	6.56	С
40	MOTA	5314	0	GLY	В	131	4.554	11.409	27.661	1.00	7.16	0
	MOTA	5315	N	TYR	В	132	3.652	9.381	27.288	1.00	6.84	N
	MOTA	5317	CA	TYR	В	132	4.858	8.737	26.740	1.00	7.12	C
	ATOM	5319	СВ	TYR			5.165	7.463	27.555	1.00		С
												Ċ
4 =	MOTA	5322	CG	TYR			5.728	7.832	28.917	1.00		
45	ATOM	5323		TYR			7.087	8.103	29.060	1.00	7.37	С
	MOTA	5325	CE1	TYR	В	132	7.614	8.520	30.265	1.00	7.89	C
	ATOM	5327	CZ	TYR	В	132	6.781	8.669	31.364	1.00	7.57	C
	ATOM	5328	OH	TYR	В	132	7.269	9.112	32.573	1.00	8.04	0
	ATOM	5330		TYR			5.438	8.389	31.262	1.00	7.67	С
EΩ												
50	MOTA	5332		TYR			4.908	7.980	30.035	1.00	7.29	C
	MOTA	5334	C			132	4.676	8.424	25.250	1.00	6.94	C
	ATOM	5335	0	TYR	В	132	4.361	7.295	24.880	1.00	8.05	0
	MOTA	5336	N	PRO	В	133	4.874	9.411	24.378	1.00	7.25	N
	MOTA	5337	CA	PRO			4.670	9.185	22.944	1.00	7.42	С
55			CB	PRO			4.628	10.594		1.00		Ċ
55	ATOM	5339							22.368			
	MOTA	5342	CG	PRO			5.503	11.387	23.285	1.00		C
	MOTA	5345	CD	PRO			5.210	10.826	24.655	1.00	7.47	С
	MOTA	5348	C	PRO	В	133	5.786	8.400	22.267	1.00	7.76	C
	MOTA	5349	0	PRO	В	133	6.974	8.597	22.533	1.00	8.78	0
60	ATOM	5350	N			134	5.389	7.581	21.300	1.00		N
	ATOM	5352	CA	GLY			6.306	6.749	20.548	1.00		c
												C
	MOTA	5355	C			134	7.046	7.440	19.418	1.00		
	MOTA	5356	0	GLY			7.926	6.828	18.819		12.46	0
	MOTA	5357	N	ASP	В	135	6.718	8.697	19.134	1.00	8.82	N

	ATOM	5359	CA	ASP	В	135	7.459	9.489	18.154	1.00	9.23	С
	ATOM	5361	CB			135	6.533	10.305	17.243	1.00	8.88	С
	ATOM	5364	CG			135	5.732	11.364	17.966	1.00	8.72	С
	MOTA	5365		ASP			5.506	11.238	19.200	1.00	8.57	Ō
5	ATOM	5366		ASP			5.290	12.341	17.292	1.00	9.32	0
•	ATOM	5367	C			135	8.523	10.368	18.796	1.00	9.65	C
	ATOM	5368	Ö			135	9.102	11.216	18.121		11.42	Ō
	ATOM	5369	N			136	8.768	10.161	20.088	1.00	9.77	N
	ATOM	5371	CA	LYS		136	9.873	10.781	20.812		10.15	C
10	ATOM	5371	CB	LYS		136	9.349	11.647	21.958	1.00	9.99	C
10	ATOM	5376	CG	LYS		136	8.378	12.734	21.523		10.04	C
	ATOM	5379	CD			136	9.008	13.792	20.637		11.86	C
	ATOM	5382	CE			136	8.014	14.925	20.392		13.11	C
	ATOM	5385	NZ			136	8.453	15.910	19.384		15.11	N
15	ATOM	5389	C	LYS		136	10.756	9.670	21.376		10.43	C
13	ATOM	5390	0	LYS		136	10.730	8.491	21.280		11.37	0
	ATOM	5391	N	THR		137	11.881	10.042	21.200		11.03	N
	ATOM	5391	CA	THR		137	12.777	9.068	22.582		11.49	C
	ATOM	5395	CB	THR		137	13.887	9.813	23.343		12.46	C
20	ATOM	5397	OG1	THR		137	14.687	10.558	22.415		14.16	0
20			CG2	THR			14.865	8.837	24.040		13.85	C
	ATOM	5399				137		8.169	23.536		10.34	C
	ATOM	5403	C				12.010 11.257			1.00	9.84	0
	ATOM	5404	0			137		8.654	24.378 23.428			
25	ATOM	5405	N	ALA		138	12.240	6.868	24.232		10.82	N C
25	ATOM	5407	CA			138	11.524	5.900 4.511				c
	ATOM	5409	CB	ALA			12.055		23.995		11.85	c
	MOTA	5413	C	ALA			11.631	6.256	25.702			0
	ATOM	5414	0	ALA			12.694	6.552	26.218		11.32	
20	ATOM	5415	N	GLY			10.503	6.194	26.378		10.16	N C
30	MOTA	5417	CA	GLY			10.468	6.419	27.800	1.00	9.75	C
	ATOM	5420	C	GLY			10.535	7.861	28.250	1.00	8.52	
	ATOM	5421	0	GLY			10.669	8.089	29.441	1.00	9.08	0
	ATOM	5422	N	THR			10.421	8.829	27.340	1.00	8.37	N
25	ATOM	5424	CA			140	10.416	10.238	27.729	1.00	8.32	C
35	ATOM	5426	CB			140	11.318	11.119	26.843	1.00	9.11	C
	ATOM	5428	OG1	THR			10.877	11.095	25.476	1.00	9.56	0
	ATOM	5430	CG2	THR			12.768	10.611	26.900	1.00		C
	ATOM	5434	C	THR			8.987	10.774	27.783	1.00	7.64	C
40	ATOM	5435	0	THR			8.120	10.378	26.991	1.00	8.11	0
40	ATOM	5436	N	GLN			8.736	11.644	28.753	1.00	7.31	N
	ATOM	5438	CA	GLN			7.405	12.176	28.997	1.00	7.20	C
	ATOM	5440	CB	GLN			7.108	12.226	30.513	1.00	7.37	C
	ATOM	5443	CG	GLN			5.617	12.242	30.802	1.00	7.74	C
45	ATOM	5446	CD	GLN			5.238	12.460	32.256	1.00	7.09	C
45	ATOM	5447		GLN			4.394	13.318	32.560	1.00	8.12	0
	ATOM	5448		GLN			5.812	11.669	33.171	1.00	7.80	N
	ATOM	5451	C	GLN			7.284	13.551	28.353	1.00	7.04	C
	MOTA	5452	0	GLN			8.177	14.384	28.523	1.00	7.62	0
50	MOTA	5453	N	TRP			6.180	13.771	27.652	1.00	7.07	N
50	ATOM	5455	CA	TRP			5.912	14.982	26.902	1.00	7.12	C
	ATOM	5457	CB	TRP			6.063	14.717	25.387	1.00	7.52	C
	ATOM	5460	CG	TRP			7.481	14.449	24.987	1.00	7.95	C
	MOTA	5461		TRP			8.205	13.342	25.263	1.00	7.71	C
	ATOM	5463		TRP			9.486	13.476	24.796	1.00	8.83	N
55	MOTA	5465		TRP			9.612	14.702	24.206	1.00	8.82	C
	ATOM	5466		TRP			8.363	15.342	24.303	1.00	8.41	C
	MOTA	5467		TRP			8.227	16.617	23.758	1.00	9.13	C
	MOTA	5469		TRP			9.321	17.200	23.122	1.00	9.87	C
00	MOTA	5471		TRP			10.538	16.541	23.048		10.47	C
60	MOTA	5473		TRP			10.703	15.288	23.568		10.08	C
	MOTA	5475	C	TRP			4.492	15.441	27.166	1.00	6.82	С
	MOTA	5476	0	TRP			3.594	14.623	27.352	1.00	7.54	0
	ATOM	5477	N	GLN			4.282	16.757	27.146	1.00	6.91	N
	MOTA	5479	CA	GLN	В	143	2.998	17.337	27.499	1.00	6.91	С

WO 2005/078074 PCT/DK2005/000097

	MOTA	5481	СВ	GLN	В	143	3.012	17.856	28.938	1.00	7.31	С
	MOTA	5484	CG	GLN	В	143	3.928	19.058	29.162	1.00	8.18	C
	MOTA	5487	CD	GLN	В	143	3.867	19.564	30.570	1.00	8.88	C
	ATOM	5488	OE1	GLN	В	143	2.792	19.555	31.173	1.00	10.18	0
5	MOTA	5489	NE2	GLN	В	143	4.988	20.039	31.087	1.00	10.86	N
	ATOM	5492	C	GLN	В	143	2.599	18.460	26.561	1.00	7.08	C
	ATOM	5493	0	GLN	В	143	3.427	19.104	25.928	1.00	7.42	0
	ATOM	5494	N	HIS	В	144	1.296	18.711	26.521	1.00	7.02	N
	ATOM	5496	CA	HIS	В	144	0.706	19.829	25.804	1.00	7.09	C
10	ATOM	5498	CB	HIS	В	144	0.457	19.463	24.342	1.00	7.49	C
	ATOM	5501	CG	HIS	В	144	0.061	20.617	23.491	1.00	7.31	C
	ATOM	5502	ND1	HIS	В	144	-0.682	20.454	22.350	1.00	8.42	N
	ATOM	5504	CE1	HIS	В	144	-0.861	21.643	21.800	1.00	8.61	C
	ATOM	5506	NE2	HIS	В	144	-0.286	22.564	22.557	1.00	8.06	N
15	ATOM	5508	CD2	HIS	В	144	0.319	21.942	23.610	1.00	8.23	C
	MOTA	5510	С	HIS	В	144	-0.604	20.173	26.496	1.00	6.98	C
	ATOM	5511	0	HIS	В	144	-1.362	19.276	26.890	1.00	8.41	0
	ATOM	5512	N	SER	В	145	-0.878	21.463	26.640	1.00	7.81	N
	ATOM	5514	CA	SER	В	145	-2.093	21.946	27.290	1.00	7.65	C
20	ATOM	5516	CB	SER	В	145	-1.755	22.780	28.522	1.00	8.72	C
	ATOM	5519	OG	SER	В	145	-1.027	22.028	29.472	1.00	9.99	0
	ATOM	5521	С	SER	В	145	-2.927	22.764	26.315	1.00	7.50	C
	ATOM	5522	0	SER	В	145	-2.406	23.304	25.338	1.00	8.51	0
	ATOM	5523	N	\mathtt{GLY}	В	146	-4.218	22.863	26.598	1.00	7.67	N
25	ATOM	5525	CA	GLY	В	146	-5.132	23.637	25.793	1.00	7.84	C
	ATOM	5528	C	GLY	В	146	-6.563	23.318	26.170	1.00	7.50	C
	MOTA	5529	0	GLY	В	146	-6.830	22.629	27.148	1.00	8.13	0
	ATOM	5530	N	PRO	В	147	-7.503	23.835	25.402	1.00	7.99	N
	MOTA	5531	CA	PRO	В	147	-8.924	23.707	25.733	1.00	8.42	C
30	MOTA	5533	CB	PRO	В	147	-9.524	24.935	25.053	1.00	8.99	С
	MOTA	5536	CG	PRO		147	-8.686	25.096	23.804	1.00	9.17	C
	MOTA	5539	CD	PRO		147	-7.290	24.658	24.195	1.00	8.66	C
	ATOM	5542	C	PRO		147	-9.581	22.445	25.182	1.00	8.24	С
	ATOM	5543	0	PRO		147	-9.216	21.930	24.128	1.00	8.60	0
35	MOTA	5544	N	ILE		148	-10.613	21.991	25.892	1.00	8.18	N
	MOTA	5546	CA	ILE		148	-11.532	21.003	25.349	1.00	8.21	C
	MOTA	5548	СВ	ILE		148	-12.458	20.481	26.455	1.00	8.12	С
	ATOM	5550		ILE		148	-11.654	19.795	27.570	1.00	9.56	C
	ATOM	5553	CD1			148	-10.843	18.627	27.145	1.00	10.59	C
40	MOTA	5557	CG2			148	-13.529	19.585	25.887	1.00	8.52	C
	MOTA	5561	C	ILE		148	-12.338	21.662	24.222	1.00	8.21	C
	ATOM	5562	0			148	-12.939	22.728	24.410	1.00	9.55	0
	ATOM	5563	N			149	-12.348	21.019	23.064	1.00	8.67	N
4.5	ATOM	5565	CA			149	-13.055	21.532	21.896	1.00	9.10	C
45	MOTA	5567	CB			149	-12.286	21.197	20.632	1.00	9.84	C
	MOTA	5571	C	ALA			-14.476	21.013	21.771	1.00	9.41	C
	ATOM	5572	0	ALA			-15.352	21.743	21.301		10.63	0
	ATOM	5573	N			150	-14.684	19.747	22.136	1.00	9.20	N
	MOTA	5575	CA			150	-15.983	19.098	22.036		10.09	C
50	MOTA	5577	CB			150	-16.093	18.145	20.814		10.95	C
	ATOM	5579		ILE			-15.739	18.858	19.510		10.69	C
	MOTA	5582		ILE			-15.768	17.974	18.271		11.51	C
	ATOM	5586		ILE			-17.497	17.568	20.704		13.68 9.44	c
55	MOTA	5590	C			150 150	-16.183 -15.291	18.306 17.594	23.320 23.769	1.00	8.76	0
55	ATOM	5591 5592	O N			151	-17.372	18.427	23.769		10.89	И
	ATOM						-17.765				11.77	C
	ATOM	5594 5596	CA CB			151 151	-17.765	17.741 18.810	25.101 26.136		12.97	c
	ATOM ATOM	5596 5599	OG			151	-18.167	18.242	27.381		15.09	0
60	ATOM	5601	C			151	-18.973	16.242	24.767		11.59	c
00	ATOM	5601	0			151	-20.087	17.374	24.767		14.34	0
	ATOM	5602	И			152	-18.761	17.374	24.707		11.06	И
	ATOM	5605	CA			152	-19.854	14.663	24.303		10.89	C
	ATOM	5605		BGLU			-19.631	13.897	22.888		11.93	C
	AIOM	3007	C13	TOTO.	נ	202	17.031	40.001	22.000	5.55		C

	ATOM	5608	CB AGLU B 1	52 -19.474	13.796	23.024	0.65 12.76	C
	ATOM	5613	CG BGLU B 1	52 -20.041	14.715	21.652	0.35 12.04	С
	MOTA	5614	CG AGLU B 1	52 -18.748	14.582	21.953	0.65 14.68	C
	MOTA	5619	CD BGLU B 1	52 -20.198	13.882	20.388	0.35 13.76	С
5	MOTA	5620	CD AGLU B 1	52 -18.197	13.685	20.889	0.65 17.47	С
	MOTA	5621	OE1BGLU B 1	52 -21.155	14.126	19.613	0.35 15.60	0
	ATOM	5622	OE1AGLU B 1	52 -18.974	13.391	19.960	0.65 19.10	0
	ATOM	5623	OE2BGLU B 1	52 -19.369	12.976	20.169	0.35 15.01	0
	MOTA	5624	OE2AGLU B 1	52 -17.012	13.276	20.998	0.65 18.63	0
10	MOTA	5625	C GLU B 1	52 -20.076	13.771	25.417	1.00 10.28	С
	MOTA	5626	O GLU B 1	52 -19.376	13.873	26.426	1.00 11.20	0
	MOTA	5627	N THR B 1	53 -21.057	12.893	25.338	1.00 9.81	N
	ATOM	5629	CA THR B 1	53 -21.430	12.101	26.492	1.00 10.13	C
	MOTA	5631	CB THR B 1	53 -22.622	11.232	26.129	1.00 10.71	C
15	MOTA	5633	OG1 THR B 1	53 -23.706	12.086	25.751	1.00 12.66	0
	MOTA	5635	CG2 THR B 1	53 -23.106	10.417	27.332	1.00 11.52	C
	MOTA	5639	C THR B 1		11.246	27.012	1.00 9.76	С
	ATOM	5640	O THR B 1		11.197	28.214	1.00 10.41	_ 0
	MOTA	5641	N TYR B 1		10.574	26.108	1.00 9.41	N
20	MOTA	5643		54 -18.588	9.578	26.489	1.00 9.25	C
	MOTA	5645		54 -18.890	8.217	25.847	1.00 9.78	. C
	MOTA	5648		54 -20.239	7.693	26.220	1.00 10.14	C
	MOTA	5649		54 -20.470	7.150	27.475	1.00 10.50	C
~-	ATOM	5651	CE1 TYR B 1		6.673	27.838	1.00 10.83	C
25	MOTA	5653	CZ TYR B 1		6.754	26.930	1.00 11.01	C
	ATOM	5654		54 -24.016	6.299	27.224	1.00 12.69	0
	ATOM	5656		54 -22.535	7.282	25.686	1.00 11.61	C
	ATOM	5658	CD2 TYR B 1		7.762	25.344	1.00 11.24	C
20	ATOM	5660		54 -17.172	9.972	26.116	1.00 8.89	0
30	ATOM	5661		54 -16.233	9.282	26.532	1.00 9.04 1.00 9.30	И
	ATOM	5662		55 -17.001 55 -15.694	11.045 11.445	25.351 24.860	1.00 9.30 1.00 9.53	C
	ATOM ATOM	5664 5666	CA LYS B 1 CB BLYS B 1		11.445	23.401	0.35 10.42	C
	ATOM	5667	CB ALYS B 1		11.057	23.393	0.65 10.60	C
35	ATOM	5672		55 -15.714	9.526	23.080	0.35 11.44	C
55	ATOM	5673	CG ALYS B 1		9.579	23.102	0.65 11.66	C
	ATOM	5678		55 -14.796	8.573	23.861	0.35 11.42	C
	ATOM	5679		55 -14.096	8.991	23.466	0.65 9.69	C
	ATOM	5684		55 -13.424	8.327	23.221	0.35 11.05	C
40	ATOM	5685		55 -14.129	7.489	23.408	0.65 12.11	С
	ATOM	5690	NZ BLYS B 1		7.235	23.943	0.35 10.75	N
	ATOM	5691	NZ ALYS B 1	55 -12.784	6.834	23.478	0.65 10.75	N
	ATOM	5698	C LYS B 1		12.944	24.954	1.00 9.70	C
	ATOM	5699	O LYS B 1	55 -16.531	13.686	24.765	1.00 11.39	0
45	ATOM	5700	N LEU B 1	56 -14.365	13.388	25.280	1.00 8.75	N
	ATOM	5702	CA LEU B 1	56 -13.957	14.757	25.042	1.00 8.77	C
	ATOM	5704	CB LEU B 1	56 -13.188	15.313	26.238	1.00 9.34	C
	ATOM	5707	CG LEU B 1		15.230	27.589	1.00 9.50	С
	ATOM	5709	CD1 LEU B 1		15.921	28.641	1.00 10.29	С
50	ATOM	5713	CD2 LEU B 1	56 -15.313	15.818	27.545	1.00 10.26	С
	ATOM	5717	C LEU B 1		14.781	23.817	1.00 8.24	C
	MOTA	5718	O LEU B 1		13.817	23.555	1.00 9.48	0
	ATOM	5719	N GLN B 1		15.863	23.049	1.00 7.55	N
	ATOM	5721	CA GLN B 1		16.040	21.931	1.00 7.62	C
55	ATOM	5723	CB GLN B 1		15.991	20.589	1.00 8.06	C
	MOTA	5726	CG GLN B 1		14.779	20.448	1.00 8.73	С
	ATOM	5729	CD GLN B 1		14.415	19.009	1.00 9.08	C
	ATOM	5730	OE1 GLN B 1		14.641	18.152	1.00 11.00	O N
60	MOTA	5731	NE2 GLN B 1		13.811	18.749	1.00 10.76	N C
60	ATOM	5734	C GLN B 1 O GLN B 1		17.344	22.077	1.00 7.12 1.00 7.80	0
	ATOM	5735 5736	O GLN B 1 N TYR B 1		18.287 17.376	22.701	1.00 7.80	N
	ATOM ATOM	5736 5738	CA TYR B 1		18.471	21.508 21.731	1.00 7.08	C
	ATOM	5740	CB TYR B 1		18.365	23.128	1.00 7.13	C
	ATOM	5/40	(D 11K D 1	30.077	10.202	22.120	1.00 0.00	

	ATOM	5743	CG	TYR	В	158	-8.393	16.941	23.559	1.00	7.06	C
				TYR		158	-7.326	16.222	23.034	1.00	7.19	С
	ATOM	5744										
	MOTA	5746	CE1	TYR	В	158	-7.108	14.901	23.404	1.00	7.09	C
	ATOM	5748	CZ	TYR	В	158	-7.946	14.281	24.320	1.00	7.18	C
5	ATOM	5749	ОН	TYR	R	158	-7.750	12.979	24.733	1.00	7.90	0
•				TYR					24.839	1.00	7.53	C
	MOTA	5751	CE2			158	-9.012	14.992				
	ATOM	5753	CD2	TYR	В	158	-9.232	16.292	24.455	1.00	7.22	C
	MOTA	5755	С	TYR	В	158	-8.280	18.442	20.641	1.00	6.81	C
	ATOM	5756	0	TYR	B	158	-8.009	17.396	20.043	1.00	7.32	0
10												N
10	MOTA	5757	N	ALA		159	-7.670	19.601	20.393	1.00	7.32	
	MOTA	5759	CA	ALA	В	159	-6.629	19.703	19.374	1.00	7.78	C
	MOTA	5761	CB	ALA	В	159	-6.680	21.052	18.663	1.00	8.55	C
	ATOM	5765	С	ALA			-5.229	19.451	19.903	1.00	7.90	C
									19.110	1.00	8.83	Ō
	MOTA	5766	0	ALA			-4.297	19.384				
15	ATOM	5767	N	MET	В	160	-5.055	19.302	21.220	1.00	7.36	N
	ATOM	5769	CA	MET	В	160	-3.713	19.139	21.772	1.00	7.42	C
	ATOM	5771	CB	MET	B	160	-3.733	18.986	23.293	1.00	8.13	C
												Ċ
	MOTA	5774	CG	MET		160	-4.060	20.269	24.029	1.00	8.32	
	ATOM	5777	SD	MET	В	160	-5.812	20.754	24.003	1.00	8.06	S
20	ATOM	5778	CE	MET	В	160	-6.418	19.818	25.409	1.00	8.63	C
	ATOM	5782	С	MET	В	160	-3.042	17.927	21.119	1.00	7.49	С
											7.73	Ō
	MOTA	5783	0	MET			-3.660	16.882	20.868	1.00		
	MOTA	5784	N	ASP	В	161	-1.756	18.098	20.866	1.00	7.41	N
	ATOM	5786	CA	ASP	В	161	-0.986	17.115	20.130	1.00	7.72	C
25	MOTA	5788	СВ	ASP		161	0.316	17.758	19.654	1.00	8.40	С
20												C
	MOTA	5791	CG	ASP		161	0.065	18.961	18.781	1.00	8.51	
	ATOM	5792	OD1	ASP	В	161	0.577	20.072	19.078	1.00	9.92	0
	ATOM	5793	OD2	ASP	В	161	-0.668	18.829	17.794	1.00	8.73	0
	MOTA	5794	С	ASP		161	-0.704	15.870	20.953	1.00	7.16	C
20												Ō
30	MOTA	5795	0	ASP			-0.294	15.963	22.117	1.00	7.81	
	MOTA	5796	N	THR	В	162	-0.901	14.722	20.319	1.00	7.20	N
	ATOM	5798	CA	THR	В	162	-0.669	13.420	20.924	1.00	7.17	C
	ATOM	5800	CB	THR	В	162	-1.969	12.811	21.499	1.00	7.29	C
											7.90	Ō
	MOTA	5802	OG1	THR		162	-2.905	12.578	20.436	1.00		
35	ATOM	5804	CG2	THR	В	162	-2.645	13.727	22.509	1.00	8.12	C
	MOTA	5808	C	THR	В	162	-0.154	12.465	19.857	1.00	7.27	C
	ATOM	5809	0	THR		162	-0.332	12.693	18.664	1.00	7.57	0
									20.298		7.74	N
	MOTA	5810	N	TYR		163	0.414	11.350		1.00		
	ATOM	5812	CA	TYR			0.840	10.282	19.401	1.00	7.85	C
40	ATOM	5814	CB	TYR	В	163	2.316	10.465	19.013	1.00	8.00	C
	ATOM	5817	CG	TYR	В	163	2.766	9.721	17.771	1.00	8.39	С
	ATOM	5818		TYR			2.621	10.309	16.533		10.58	C
	MOTA	5820	CEI	TYR			3.039	9.684	15.385		11.78	С
	MOTA	5822	CZ	TYR	В	163	3.642	8.452	15.458	1.00	11.29	C
45	ATOM	5823	OH	TYR	В	163	4.037	7.861	14.280	1.00	14.10	0
	ATOM	5825		TYR			3.807	7.835	16.689	1.00	9.46	С
												c
	MOTA	5827		TYR			3.390	8.484	17.833	1.00	8.33	
	ATOM	5829	С	TYR	В	163	0.643	8.948	20.088	1.00	7.90	C
	MOTA	5830	0	TYR	₿	163	0.537	8.870	21.310	1.00	8.15	0
50	ATOM	5831	N	GLY			0.628	7.881	19.296	1.00	7.76	N
00												
	MOTA	5833	CA	GLY			0.677	6.530	19.828	1.00	8.11	C
	ATOM	5836	С	\mathtt{GLY}	В	164	1.667	6.417	20.964	1.00	7.49	C
	ATOM	5837	0	GLY	В	164	2.773	6.926	20.880	1.00	8.72	0
	ATOM	5838	N	GLY	В	165	1.262	5.708	22.009	1.00	7.45	N
==										1.00	7.27	C
55	ATOM	5840	CA	GLY			1.988	5.644	23.269			
	MOTA	5843	С			165	1.350	6.507	24.339	1.00	6.66	C
	ATOM	5844	0	GLY	В	165	1.461	6.214	25.531	1.00	7.23	0
	ATOM	5845	N			166	0.662	7.572	23.923	1.00	6.83	N
											6.61	C
00	ATOM	5847	CA			166	-0.003	8.463	24.859	1.00		
60	MOTA	5849	CB			166	0.045	9.919	24.381	1.00	6.74	С
	ATOM	5852	CG	GLN	В	166	1.451	10.489	24.459	1.00	7.33	C
	ATOM	5855	CD			166	1.507	11.943	24.074	1.00	6.80	С
		5856		GLN			1.609	12.277	22.895	1.00	7.44	Ö
	ATOM											
	MOTA	5857	NE2	GLN	В	T66	1.421	12.831	25.056	1.00	8.44	N

	MOTA	5860	С	GLN	В	166	-1.429	8.054	25.211	1.00	6.58	C
	ATOM	5861	Ō	GLN			-2.003	8.683	26.096	1.00	6.83	0
	ATOM	5862	N			167	-2.023	7.043	24.587	1.00	6.87	N
_	MOTA	5864	CA	ALA		167	-3.285	6.550	25.133	1.00	6.77	C
5	MOTA	5866	CB			167	-3.854	5.379	24.386	1.00	7.55	C
	MOTA	5870	C	ALA	В	167	-3.038	6.162	26.587	1.00	6.83	C
	MOTA	5871	0	ALA	В	167	-1.998	5.619	26.939	1.00	7.16	0
	ATOM	5872	N	GLY	В	168	-4.029	6.461	27.410	1.00	6.56	N
	ATOM	5874	CA	GLY	В	168	-3.940	6.275	28.838	1.00	6.85	C
10	ATOM	5877	C	GLY			-3.482	7.506	29.584	1.00	6.95	С
. •	ATOM	5878	Ö	GLY		168	-3.573	7.528	30.811	1.00	8.08	Ō
	ATOM	5879	N			169	-2.983	8.524	28.883	1.00	6.66	N
							-2.522	9.730	29.550	1.00	6.73	C
	ATOM	5881	CA			169						C
4.5	MOTA	5883	CB			169	-1.937	10.743	28.561	1.00	6.97	
15	MOTA	5886	QG	SER		169	-0.786	10.274	27.893	1.00	7.01	0
	MOTA	5888	C	SER	В	169	-3.682	10.418	30.252	1.00	6.37	C
	MOTA	5889	0	SER	В	169	-4.809	10.457	29.735	1.00	7.00	0
	ATOM	5890	N	PRO	В	170	-3.423	11.031	31.401	1.00	6.55	N
	MOTA	5891	CA	PRO	В	170	-4.460	11.849	32.024	1.00	6.89	C
20	MOTA	5893	CB	PRO	В	170	-3.857	12.207	33.376	1.00	7.40	С
	ATOM	5896	CG	PRO		170	-2.372	12.206	33.129	1.00	7.51	C
	ATOM	5899	CD	PRO		170	-2.132	11.112	32.117	1.00	7.19	C
	ATOM	5902	C			170	-4.681	13.102	31.183	1.00	6.85	C
				PRO		170	-3.735	13.676	30.622	1.00	7.40	0
O.F.	ATOM	5903	0									
25	ATOM	5904	N	VAL		171	-5.937	13.524	31.132	1.00	7.09	N
	MOTA	5906	CA			171	-6.348	14.785	30.543	1.00	7.34	C
	ATOM	5908	CB	VAL		171	-7.465	14.557	29.506	1.00	7.54	С
	MOTA	5910	CG1	VAL	В	171	-7.909	15.888	28.901	1.00	8.25	C
	MOTA	5914	CG2	VAL	В	171	-7.031	13.593	28.430	1.00	7.81	C
30	ATOM	5918	С	VAL	В	171	-6.840	15.593	31.737	1.00	7.34	C
	MOTA	5919	0	VAL	В	171	-7.955	15.357	32.214	1.00	8.22	0
	ATOM	5920	N	PHE	В	172	-5.982	16.449	32.278	1.00	7.59	N
	MOTA	5922	CA	PHE		172	-6.163	16.916	33.647	1.00	7.79	С
	ATOM	5924	CB	PHE		172	-5.221	16.170	34.623	1.00	8.27	Ċ
35	ATOM	5927	CG	PHE			-3.744	16.499	34.490	1.00	8.37	Č
55				PHE					35.375		9.16	C
	ATOM	5928				172	-3.131	17.378		1.00		C
	ATOM	5930		PHE		172	-1.781	17.635	35.304	1.00	9.65	
	MOTA	5932	CZ	PHE		172	-1.013	17.033	34.328	1.00	9.66	C
	MOTA	5934		PHE			-1.601	16.164	33.436	1.00	9.16	C
40	MOTA	5936		PHE			-2.958	15.881	33.524	1.00	8.25	C
	MOTA	5938	С	PHE			-6.001	18.406	33.814	1.00	8.22	C
	MOTA	5939	0	PHE	В	172	-5.216	19.061	33.133	1.00	8.32	0
	MOTA	5940	N	GLU	В	173	-6.748	18.939	34.765	1.00	9.45	N
	MOTA	5942	CA	GLU	В	173	-6.530	20.289	35.261	1.00	10.25	C
45	MOTA	5944	CB	GLU			-7.785	20.812	35.938	1.00	10.74	С
	MOTA	5947	CG	GLU			-8.990	20.794	35.029	1.00	11.64	С
	MOTA	5950	CD	GLU			-10.231	21.270	35.737		12.37	C
	ATOM	5951		GLU			-10.771	22.325	35.349		13.46	Ō
	ATOM	5952		GLU			-10.643	20.583	36.698		14.40	Ō
50											11.18	C
50	ATOM	5953	C	GLU			-5.379	20.263	36.258			
	ATOM	5954	0			173	-5.337	19.402	37.127		11.76	0
	MOTA	5955	N			174	-4.454	21.209	36.145		12.69	N
	MOTA	5957	CA	GLN	В	174	-3.289	21.244	37.026	1.00	14.03	C
	MOTA	5959	CB	GLN	В	174	-2.344	22.376	36.616	1.00	14.32	C
55	MOTA	5962	CG	GLN	В	174	-1.682	22.176	35.261	1.00	14.57	C
	ATOM	5965	CD	GLN	В	174	-0.500	21.229	35.272	1.00	13.85	C
	ATOM	5966		GLN			-0.120	20.709	34.207		14.35	0
	ATOM	5967		GLN			0.089	20.999	36.440		13.83	N
	ATOM	5970	C			174	-3.670	21.420	38.499		14.98	C
60	ATOM	5971	0			174	-3.055	20.828	39.382		15.06	0
00			N			175	-4.688		38.754		16.64	И
	ATOM	5972						22.232				
	ATOM	5974	CA			175	-5.086	22.556	40.114		18.96	C
	MOTA	5976	CB			175	-4.237	23.718	40.627		19.69	C
	MOTA	5979	OG	SER	В	175	-4.601	24.095	41.945	1.00	22.47	0

	MOTA	5981	С	SER E	175	-6.561	22.930	40.126	1.00 19.54	C
	MOTA	5982	0	SER E	175	-6.933	24.006	39.666	1.00 20.78	0
	MOTA	5983	N	SER E		-7.400	22.039	40.644	1.00 19.58	N
				SER E				40.640	1.00 20.22	C
_	ATOM	5985	CA			-8.842	22.251			
5	MOTA	5987	CB	SER E		-9.468	21.458	39.495	1.00 20.96	С
	MOTA	5990	OG	SER E	176	-10.867	21.629	39.459	1.00 23.01	0
	ATOM	5992	C	SER E	176	-9.475	21.805	41.947	1.00 20.01	C
	ATOM	5993	0	SER E		-8.995	20.878	42.599	1.00 18.97	0
	ATOM	5994	N	SER E		-10.560	22.486	42.311	1.00 20.67	N
10				SER E			22.938		1.00 21.82	C
10	MOTA	5996	CA			-11.457		43.368		
	MOTA	5998	CB	SER E		-11.738	23.164	44.369	1.00 22.03	С
	ATOM	6001	OG	SER E	177	-12.180	24.343	43.719	1.00 24.65	0
	MOTA	6003	C	SER E	177	-12.749	21.547	42.706	1.00 22.02	C
	ATOM	6004	0	SER E		-13.563	22.340	42.230	1.00 23.51	0
15	ATOM	6005	N	ARG E		-12.881	20.226	42.622	1.00 21.68	N
10						-14.097	19.547	42.176	1.00 20.93	C
	ATOM	6007	CA	ARG E						
	MOTA	6009	CB	ARG E		-13.937	18.996	40.745	1.00 20.43	C
	MOTA	6012	CG	ARG E		-13.783	20.018	39.627	1.00 18.45	C
	MOTA	6015	CD	ARG E	178	-13.677	19.382	38.238	1.00 16.30	C
20	MOTA	6018	NE	ARG E	178	-13.336	20.340	37.188	1.00 15.06	N
	MOTA	6020	CZ	ARG E		-14.210	20.982	36.429	1.00 15.42	С
							20.830	36.599	1.00 16.79	N
	ATOM	6021		ARG E		-15.520				
	MOTA	6024		ARG E		-13.766	21.800	35.487	1.00 15.73	N
	MOTA	6027	C	ARG E	178	-14.317	18.378	43.127	1.00 21.07	C
25	ATOM	6028	0	ARG E	178	-13.498	18.130	44.007	1.00 21.95	0
	MOTA	6029	N	THR E	179	-15.409	17.643	42.952	1.00 20.41	N
	ATOM	6031	CA	THR E		-15.601	16.424	43.723	1.00 20.45	C
	ATOM	6033	CB	THR E		-16.934	15.754	43.349	1.00 21.16	C
00	MOTA	6035	OG1	THR E		-18.030	16.605	43.717	1.00 22.79	0
30	MOTA	6037	CG2	THR E		-17.156	14.483	44.160	1.00 22.10	C
	MOTA	6041	C	THR E	179	-14.439	15.480	43.434	1.00 19.46	C
	MOTA	6042	0	THR E	179	-14.150	15.185	42.267	1.00 19.41	0
	MOTA	6043	N	ASN E	180	-13.759	15.050	44.493	1.00 18.57	N
	ATOM	6045	CA	ASN E		-12.593	14.162	44.410	1.00 18.41	C
25										C
35	MOTA	6047	CB	ASN E		-12.948	12.851	43.684	1.00 18.60	
	MOTA	6050	CG	ASN E		-11.881	11.765	43.846	1.00 18.64	C
	MOTA	6051	OD1	ASN E	180	-11.492	11.110	42.874	1.00 17.95	0
	MOTA	6052	ND2	ASN E	180	-11.407	11.572	45.071	1.00 19.48	N
	ATOM	6055	C	ASN E	180	-11.376	14.840	43.778	1.00 17.73	C
40	ATOM	6056	Ō	ASN E		-10.477	14.160	43.272	1.00 18.18	O
40		6057	N	CYS E				43.845	1.00 18.01	N
	ATOM					-11.329	16.175			
	MOTA	6059	CA	CYS E				43.412		С
	ATOM	6061	CB	CYS E	181	-10.365	17.519	42.007	1.00 16.55	C
	MOTA	6064	SG	CYS E	181	-10.449	16.203	40.788	1.00 14.03	S
45	MOTA	6065	С	CYS E	181	-9.864	18.092	44.372	1.00 18.41	C
	ATOM	6066	0	CYS E		-10.756	18.845	44.780	1.00 19.23	0
	ATOM	6067	N	ASN E		-8.595	18.188	44.734	1.00 19.10	N
									1.00 19.72	
	MOTA	6069	CA	ASN E		-8.057	19.316	45.475		C
	MOTA	6071	CB	ASN E		-8.215	19.085	46.989	1.00 20.52	C
50	MOTA	6074	CG	ASN E	182	-7.873	20.313	47.824	0.50 21.48	С
	ATOM	6075	OD1	ASN E	182	-7.469	20.192	48.983	0.50 23.03	0
	MOTA	6076	ND2	ASN E	182	-8.051	21.498	47.248	0.50 22.48	N
	MOTA	6079	С	ASN E		-6.593	19.428	45.053	1.00 19.26	С
	ATOM	6080	Ö	ASN E		-5.683	19.248	45.854	1.00 20.75	Ö
E E										
55	MOTA	6081	N	GLY E		-6.392	19.722	43.767	1.00 17.83	N
	ATOM	6083	CA	GLY E		-5.102	19.586	43.106	1.00 16.31	C
	MOTA	6086	C	GLY E	183	-5.308	19.065	41.691	1.00 15.03	С
	MOTA	6087	0	GLY E	183	-6.328	19.348	41.063	1.00 15.07	0
	MOTA	6088	N	PRO E		-4.353	18.300	41.168	1.00 13.71	N
60	ATOM	6089	CA	PRO E		-4.487	17.759	39.810	1.00 12.66	C
				PRO E		-3.241			1.00 12.00	C
	ATOM	6091	CB				16.889	39.651		
	ATOM	6094	CG	PRO E		-2.259	17.444	40.640	1.00 14.51	C
	ATOM	6097	CD	PRO E		-3.077	17.925	41.800	1.00 14.52	С
	MOTA	6100	C	PRO E	184	-5.769	16.941	39.671	1.00 11.46	С

	ATOM	6101	0	PRO	В	184	-6.076	16.141	40.565	1.00 12.1	.2 0
	MOTA	6102	N	CYS	В	185	-6.500	17.154	38.581	1.00 10.9	
	MOTA	6104	CA	CYS	В	185	-7.851	16.641	38.453	1.00 10.3	
	MOTA	6106	CB	CYS	В	185	-8.838	17.758	38.780	1.00 11.2	
5	MOTA	6109	SG	CYS	В	185	-10.536	17.205	38.967	1.00 13.1	
	MOTA	6110	C	CYS	В	185	-8.095	16.139	37.046	1.00 9.1	L8 C
	MOTA	6111	0	CYS	В	185	-8.272	16.933	36.118	1.00 9.9	91 0
	MOTA	6112	N	SER	В	186	-8.075	14.824	36.874	1.00 9.1	LO N
	ATOM	6114	CA	SER	В	186	-8.312	14.244	35.555	1.00 8.7	73 C
10	ATOM	6116	СВ	SER	В	186	-7.828	12.808	35.521	1.00 9.2	22 C
	MOTA	6119	OG	SER	В	186	-6.445	12.784	35.662	1.00 10.9	95 O
	MOTA	6121	C	SER	В	186	-9.792	14.276	35.205	1.00 8.8	35 C
	MOTA	6122	0	SER	В	186	-10.631	13.896	36.021	1.00 9.4	17 0
	MOTA	6123	N	LEU	В	187	-10.070	14.716	33.981	1.00 8.4	18 N
15	MOTA	6125	CA	LEU	В	187	-11.417	14.803	33.438	1.00 8.4	£8 C
	MOTA	6127	CB	LEU	В	187	-11.672	16.220	32.909	1.00 8.7	73 C
	MOTA	6130	CG	LEU	В	187	-11.486	17.345	33.923	1.00 9.7	71 C
	MOTA	6132	CD1	LEU	В	187	-11.768	18.686	33.266	1.00 10.1	L5 C
	MOTA	6136	CD2	LEU	В	187	-12.372	17.141	35.147	1.00 11.5	50 C
20	ATOM	6140	C	LEU	В	187	-11.677	13.791	32.329	1.00 8.2	23 C
	MOTA	6141	0	LEU	В	187	-12.828	13.573	31.958	1.00 8.6	54 0
	MOTA	6142	N	ALA	В	188	-10.612	13.181	31.805	1.00 8.1	L8 N
	MOTA	6144	CA	ALA	В	188	-10.694	12.216	30.727	1.00 7.9	99 C
	MOTA	6146	CB	ALA	В	188	-10.950	12.910	29.397	1.00 7.9	96 C
25	MOTA	6150	С	ALA	В	188	-9.385	11.425	30.699	1.00 7.5	51 C
	MOTA	6151	0	ALA	В	188	-8.414	11.769	31.366	1.00 7.8	38 0
	MOTA	6152	Ň	VAL	В	189	-9.389	10.372	29.896	1.00 7.5	53 N
	MOTA	6154	CA	VAL	В	189	-8.217	9.552	29.624	1.00 7.6	58 C
	MOTA	6156	CB I	BVAL	В	189	-8.268	8.135	30.229	0.35 8.2	28/ C
30	MOTA	6157	CB Z	AVAL	В	189	-8.511	8.063	29.995	0.65 8.3	
	ATOM	6160	CG1	BVAL	В	189	-9.551	7.453	29.930	0.35 9.3	36 \ C
	MOTA	6161	CG1	AVAL	В	189	-7.306	7.209	29.742	0.65 9.6	55 \ C
	MOTA	6168	CG21	BVAL	В	189	-7.113	7.296	29.717	0.35 10.0	
	MOTA	6169	CG2	AVAL	В	189	-8.970	7.917	31.433	0.65 8.6	
35	ATOM	6176	C	VAL	В	189	-7.982	9.584	28.117	1.00 7.2	27 C
	MOTA	6177	0	VAL	В	189	-8.890	9.267	27.338	1.00 7.4	18 0
	MOTA	6178	N	HIS	В	190	-6.793	9.991	27.673	1.00 6.9	
	MOTA	6180	CA	HIS	В	190	-6.546	10.097	26.248	1.00 6.8	
	MOTA	6182	CB	HIS	В	190	-5.167	10.736	25.956	1.00 6.9	
40	MOTA	6185	CG	HIS	В	190	-4.917	10.787	24.504	1.00 6.6	58 C
	MOTA	6186	ND1	HIS	В	190	-5.791	11.423	23.659	1.00 7.5	50 N
	MOTA	6188	CE1	HIS	В	190	-5.449	11.150	22.417	1.00 7.2	
	MOTA	6190	NE2	HIS	В	190	-4.369	10.394	22.428	1.00 7.7	
	MOTA	6192	CD2	HIS			-4.006	10.160	23.732	1.00 7.5	
45	MOTA	6194	С			190	-6.656	8.714	25.580	1.00 6.6	
	MOTA	6195	0			190	-6.168	7.735	26.122	1.00 7.0	
	MOTA	6196	N			191	-7.271	8.655	24.402	1.00 6.9	
	MOTA	6198	CA			191	-7.429	7.367	23.723	1.00 7.1	
	MOTA	6200	CB			191	-8.815	6.739	23.986	1.00 7.5	
50	ATOM	6202		THR			-9.845	7.700	23.751	1.00 9.1	
	MOTA	6204		THR			-8.974	6.296	25.430	1.00 8.3	
	MOTA	6208	С			191	-7.162	7.340	22.221	1.00 7.3	
	MOTA	6209	0	THR	В	191	-6.635	6.336	21.746	1.00 8.2	
	MOTA	6210	N	ASN	В	192	-7.589	8.362	21.472	1.00 7.5	
55	ATOM	6212	CA			192	-7.637	8.270	20.016	1.00 8.6	
	ATOM	6214	CB			192	-9.084	8.158	19.500	1.00 10.1	
	MOTA	6217	CG			192	-9.884	7.097	20.205	1.00 13.0	
	MOTA	6218		ASN			-9.925	5.949	19.768	1.00 17.4	
	ATOM	6219		ASN			-10.571	7.484	21.269	1.00 13.7	
60	MOTA	6222	C			192	-7.053	9.497	19.349	1.00 7.8	
	MOTA	6223	0			192	-7.187	10.604	19.845	1.00 7.5	
	MOTA	6224	N			193	-6.466	9.272	18.178	1.00 7.8	
	MOTA	6226	CA			193	-6.097	10.347	17.282	1.00 7.9	
	MOTA	6229	С	GLY	В	193	-7.269	10.780	16.424	1.00 7.6	58 C

	ATOM	6230	0	GLY	В	193	-8.	434	10.495	16.712	1.00	8.59	0
	MOTA	6231	N	VAL	В	194	-6.	934	11.448	15.329	1.00	7.94	N
	MOTA	6233	CA	VAL	В	194	-7.	905	12.057	14.430	1.00	8.60	C
	ATOM	6235	СВ	VAL				210	13.166	13.608	1.00	9.21	С
5	ATOM	6237		VAL				096	13.671	12.465	1.00		С
Ü	ATOM	6241		VAL				800	14.308	14.504	1.00	9.07	Ċ
									10.982	13.518	1.00	9.30	C
	ATOM	6245	C	VAL				484					0
	MOTA	6246	0	VAL				749	10.269	12.840		10.19	
	ATOM	6247	N	TYR				806	10.861	13.489	1.00	9.47	N
10	ATOM	6249	CA	TYR			-10.		9.922	12.601		10.28	C
	MOTA	6251	CB	TYR			-10.	327	8.471	13.092		11.06	C
	ATOM	6254	CG	TYR	В	195	-11.	205	8.082	14.268	1.00	11.54	C
	ATOM	6255	CD1	TYR	В	195	-10.	850	8.436	15.562	1.00	11.78	C
	ATOM	6257	CE1	TYR	В	195	-11.	625	8.075	16.647	1.00	13.23	С
15	ATOM	6259	CZ	TYR	В	195	-12.	799	7.391	16.439	1.00	14.48	C
	ATOM	6260	ОН	TYR			-13.	573	7.033	17.518	1.00	17.11	0
	ATOM	6262	CE2	TYR			-13.		7.044	15.160		15.20	С
	MOTA	6264		TYR			-12.		7.385	14.082		13.19	C
	ATOM	6266	C	TYR			-11.		10.279	12.489		10.34	Ċ
20				TYR			-12.		11.132	13.209		10.34	0
20	ATOM	6267	0										
	MOTA	6268	N	GLY			-12.		9.603	11.582		11.32	N
	MOTA	6270	CA	GLY			-14.		9.629	11.600		11.81	· C
	MOTA	6273	С	GLY			-14.		10.932	11.216		11.29	С
	MOTA	6274	0	GLY			-15.		11.184	11.604		12.54	0
25	MOTA	6275	N	GLY	В	197	-14.	038	11.749	10.452	1.00	11.14	N
	MOTA	6277	CA	GLY	В	197	-14.	556	13.043	10.072	1.00	11.40	C
	MOTA	6280	С	GLY	В	197	-14.	354	14.124	11.118	1.00	10.86	C
	ATOM	6281	0	GLY	В	197	-14.	712	15.268	10.864	1.00	11.89	0
	ATOM	6282	N	SER	В	198	-13.	756	13.794	12.260	1.00	10.19	N
30	ATOM	6284	CA	SER			-13.	394	14.795	13.240	1.00	9.83	C
	ATOM	6286	CB			198	-13.		14.175	14.624	1.00	9.77	C
	MOTA	6289	OG	SER			-12.		15.156	15.567	1.00	9.88	o
	ATOM	6291	C	SER			-12.		15.428	12.891		10.01	C
												12.17	0
25	ATOM	6292	0			198	-11.		14.812	12.266			
35	MOTA	6293	N			199	-11.		16.664	13.339	1.00	9.97	N
	ATOM	6295	CA	SER			-10.		17.378	13.227		10.64	C
	MOTA	6297	CB	SER			-10.		18.863	12.962		11.88	C
	MOTA	6300	0G	SER			-11.	618	19.054	11.760	1.00	15.50	0
	MOTA	6302	С	SER	В	199	-9.	791	17.257	14.486	1.00	9.48	C
40	MOTA	6303	0	SER	В	199	-8.	720	17.848	14.532	1.00	10.66	0
	MOTA	6304	N	TYR	В	200	-10.	239	16.495	15.480	1.00	8.05	N
	MOTA	6306	CA	TYR	В	200	-9.	643	16.523	16.805	1.00	7.75	C
	MOTA	6308	CB	TYR	В	200	-10.	654	17.084	17.810	1.00	7.69	C
	MOTA	6311	CG	TYR	В	200	-11.	101	18.490	17.511	1.00	8.31	C
45	ATOM	6312	CD1	TYR			-10.	287	19.570	17.798	1.00	9.21	C
	MOTA	6314		TYR			-10.		20.867	17.534	1.00	10.29	С
	MOTA	6316	CZ	TYR			-11.		21.112	16.988		10.84	С
	MOTA	6317	OH	TYR			-12.		22.414	16.730		13.51	0
	MOTA	6319		TYR			-12.		20.065	16.697		11.29	Č
50	MOTA	6321		TYR			-12.		18.748	16.960		10.10	C
50						200					1.00		c
	MOTA	6323	C					217	15.133	17.266			
	MOTA	6324	0	TYR				662	14.114	16.746	1.00		0
	MOTA	6325	N			201		348	15.125	18.274	1.00	7.06	N
	MOTA	6327	CA	ASN				042	13.952	19.084	1.00	7.16	C
55	MOTA	6329	CB	ASN				680	14.153	19.748	1.00	7.15	C
	MOTA	6332	CG	ASN	В	201	-5.	554	14.230	18.742	1.00	7.21	C
	MOTA	6333	OD1	ASN	В	201	- 5.	516	13.447	17.803	1.00	7.69	0
	MOTA	6334	ND2	ASN	В	201	-4.	644	15.175	18.926	1.00	7.72	N
	MOTA	6337	С	ASN			-9.	132	13.735	20.118	1.00	7.29	C
60	ATOM	6338	0	ASN	В	201	-9.	912	14.647	20.394	1.00	7.53	0
	ATOM	6339	N	ARG				206	12.536	20.697	1.00	6.98	N
	ATOM	6341	CA			202	-10.		12.211	21.629	1.00	7.41	C
	ATOM	6343	CB			202	-11.		11.355	20.995	1.00	8.88	c
	MOTA	6346	CG	ARG			-11.		11.653	19.568	1.00	9.57	C
	ATOM	0340	CG	ra(G	ט	202	11.	555	11.633	17.500	1.00	٠. ٠ /	C

	MOTA	6349	CD	ARG	B	202	-12.972	11.011	19.099	1.00	10.98	С
	ATOM	6352	NE			202	-13.038	11.045	17.669		10.86	N
	MOTA	6354	CZ	ARG	В	202	-14.060	10.645	16.946	1.00	10.42	C
	ATOM	6355	NH1	ARG	В	202	-15.207	10.244	17.495	1.00	11.93	N
_				ARG							11.59	
5	MOTA	6358				202	-13.935	10.652	15.633			N
	ATOM	6361	C	ARG	В	202	-9.772	11.449	22.843	1.00	7.12	C
	ATOM	6362	0	ARG	R	202	-8.800	10.686	22.775	1.00	7.24	0
	MOTA	6363	N	GLY	В	203	-10.506	11.616	23.931	1.00	7.36	N
	MOTA	6365	CA	GLY	В	203	-10.273	10.888	25.156	1.00	7.64	C
10	ATOM	6368	C	GLY	В	203	-11.594	10.478	25.782	1.00	7.46	C
10												
	MOTA	6369	0			203	-12.600	11.167	25.693	1.00	8.95	0
	ATOM	6370	N	THR	В	204	-11.601	9.321	26.422	1.00	7.91	N
	ATOM	6372	CA	THR	R	204	-12.766	8.862	27.169	1.00	7.85	C
	MOTA	6374	CB	THR	В	204	-12.526	7.440	27.646	1.00	7.99	C
15	ATOM	6376	OG1	THR	В	204	-12.283	6.626	26.490	1.00	9.14	0
	ATOM	6378	CG2	THR		204	-13.742	6.879	28.396	1.00	8.93	C
	MOTA	6382	С			204	-13.049	9.778	28.339	1.00	7.48	C
	ATOM	6383	0	THR	В	204	-12.207	9.977	29.209	1.00	8.11	0
	ATOM	6384	N	APG	В	205	-14.246	10.340	28.347	1.00	7.64	N
20												
20	MOTA	6386	CA	ARG			-14.673	11.241	29.393	1.00	8.00	C
	ATOM	6388	CB	ARG	В	205	-15.976	11.911	28.965	1.00	8.79	C
	MOTA	6391	CG	ARG	R	205	-16.504	12.958	29.902	1.00	8.59	С
												C
	MOTA	6394	CD	ARG			-17.749	13.634	29.351	1.00	9.13	
	ATOM	6397	NE	ARG	В	205	-18.197	14.685	30.247	1.00	9.66	N
25	MOTA	6399	CZ	ARG	В	205	-19.108	15.593	29.932	1.00	11.19	C
				ARG							12.79	N
	ATOM	6400					-19.463	16.494	30.836			
	MOTA	6403	NH2	ARG	В	205	-19.631	15.622	28.720	1.00	12.68	N
	ATOM	6406	C	ARG	В	205	-14.893	10.499	30.697	1.00	8.17	C
				ARG								O
	ATOM	6407	0				-15.442	9.398	30.704	1.00	8.50	
30	ATOM	6408	N	ILE	В	206	-14.511	11.107	31.803	1.00	7.90	N
	ATOM	6410	CA	ILE	В	206	-14.857	10.543	33.102	1.00	8.22	C
	ATOM	6412	CB	ILE			-13.888	10.984	34.205	1.00	8.53	C
	ATOM	6414	CG1	ILE	В	206	-12.479	10.503	33.832	1.00	10.37	C
	ATOM	6417	CD1	ILE	В	206	-11.395	10.782	34.838	1.00	11.44	C
35	ATOM	6421		ILE			-14.335	10.417	35.576	1.00	8.96	С
00												
	ATOM	6425	С	ILE	В	206	-16.304	10.954	33.378	1.00	8.18	C
	ATOM	6426	0	ILE	В	206	-16.577	12.055	33.837	1.00	9.63	0
	ATOM	6427	N	THR	B	207	-17.221	10.054	33.053	1.00	8.48	N
	ATOM	6429	CA			207	-18.633	10.182	33.409	1.00	8.64	C
40	ATOM	6431	CB	THR	В	207	-19.500	9.287	32.520	1.00	9.02	C
	ATOM	6433	OG1	THR	R	207	-19.159	7.926	32.815	1.00	9.39	0
								9.543				
	MOTA	6435		THR			-19.290		31.017		9.86	С
	ATOM	6439	C	THR	В	207	-18.829	9.725	34.857	1.00	8.82	C
	MOTA	6440	0	THR	В	207	-17.906	9.220	35.505	1.00	9.18	0
45	ATOM	6441	N	LYS			-20.060	9.852	35.352	1.00	9.26	N
70												
	ATOM	6443	CA	LYS	В	208	-20.369	9.298	36.665	1.00	9.84	C
	ATOM	6445	CB	LYS	В	208	-21.833	9.519	37.046	1.00	10.99	C
	ATOM	6448	CG	LYS			-22.087	9.129	38.528		14.71	C
	MOTA	6451	CD	LYS	В	208	-23.399	9.593	39.068	1.00	16.96	C
50	ATOM	6454	CE	LYS	В	208	-23.489	9.258	40.552	1.00	19.57	C
	ATOM	6457	NZ	LYS			-23.241	7.822	40.859		20.47	N
	MOTA	6461	C	LYS	В	208	-20.034	7.814	36.745	1.00	9.27	C
	MOTA	6462	0	LYS	В	208	-19.537	7.336	37.761	1.00	10.16	0
	ATOM	6463	N			209	-20.331	7.079	35.694	1.00	9.18	N
E E												
55	ATOM	6465	CA	GLU			-20.113	5.643	35.715	1.00	9.01	С
	MOTA	6467	CB	GLU	В	209	-20.903	4.935	34.624	1.00	9.53	C
	ATOM	6470	CG	GLII	В	209	-22.414	5.046	34.816	1.00	10.25	С
			CD									c
	MOTA	6473				209	-22.978	6.405	34.428		10.76	
	ATOM	6474	OE1	GLU	В	209	-23.862	6.914	35.155	1.00	12.33	0
60	ATOM	6475	OE2	GLU	В	209	-22.549	6.961	33.386	1.00	11.21	0
	ATOM	6476	С			209	-18.624	5.295	35.653	1.00	8.78	C
	ATOM	6477	0			209	-18.183	4.353	36.318	1.00	9.54	0
	ATOM	6478	N	VAL	В	210	-17.843	6.052	34.878	1.00	8.31	N
	ATOM	6480	CA	VAL			-16.392	5.869	34.868	1.00	8.33	C
	FION	Q 4 U U	-A	- 4-1-1	יי		10.374	5.009	54.000	1.00	5.55	C

	MOTA	6482	CB VAL B	210	15 715	C 700	22 025	1 00 0 11	_
					-15.715	6.782	33.835	1.00 8.11	C
	MOTA	6484	CG1 VAL B		-14.194	6.643	33.918	1.00 8.28	C
	ATOM	6488	CG2 VAL B	210	-16.207	6.468	32.427	1.00 8.18	C
	ATOM	6492	C VAL B	210	-15.835	6.162	36.264	1.00 8.18	С
5	ATOM	6493							
9					-15.034	5.400	36.807	1.00 8.46	0
	ATOM	6494	N PHE B	211	-16.257	7.285	36.828	1.00 8.80	N
	ATOM	6496	CA PHE B	211	-15.865	7.717	38.169	1.00 8.95	C
	ATOM	6498	CB PHE B		-16.632	8.996	38.522	1.00 9.38	
									C
	ATOM	6501	CG PHE B		-16.350	9.534	39.891	1.00 10.33	C
10	ATOM	6502	CD1 PHE B	211	-17.036	9.054	40.992	1.00 12.42	C
	ATOM	6504	CE1 PHE B	211	-16.794	9.562	42.250	1.00 14.20	С
	ATOM	6506	CZ PHE B		-15.867	10.570	42.422	1.00 14.22	
									C
	MOTA	6508	CE2 PHE B		-15.184	11.071	41.328	1.00 12.56	C
	MOTA	6510	CD2 PHE B	211	-15.427	10.548	40.077	1.00 10.94	C
15	MOTA	6512	C PHE B	211	-16.144	6.610	39.183	1.00 9.01	С
	MOTA	6513	O PHE B		-15.284	6.254	39.997	1.00 9.62	
									0
	MOTA	6514	N ASP B		-17.341	6.057	39.145	1.00 9.24	N
	ATOM	6516	CA ASP B	212	-17.719	5.020	40.091	1.00 9.38	C
	ATOM	6518	CB ASP B	212	-19.220	4.742	40.000	1.00 10.22	С
20	ATOM	6521	CG ASP B		-20.081	5.866	40.585		
20									C
	ATOM	6522	OD1 ASP B		-19.596	6.712	41.352	1.00 12.82	0
	MOTA	6523	OD2 ASP B	212	-21.294	5.924	40.326	1.00 14.21	0
	ATOM	6524	C ASP B	212	-16.920	3.730	39.883	1.00 9.20	С
	ATOM	6525	O ASP B	212	-16.558	3.075	40.860		
25									0
25	MOTA	6526	n asn b		-16.642	3.364	38.646	1.00 8.79	N
	MOTA	6528	CA ASN B	213	-15.823	2.182	38.386	1.00 8.75	С
	MOTA	6530	CB BASN B	213	-15.892	1.765	36.925	0.35 8.75	C
	ATOM	6531	CB AASN B	213	-15.742	1.816	36.880	0.65 8.93	C
	MOTA	6536	CG BASN B	213	-17.240	1.173	36.556	0.35 9.22	C
30	ATOM	6537	CG AASN B	213	-16.833	0.837	36.379	0.65 9.63	C
	ATOM	6538	OD1BASN B	213	-17.635	1.198	35.396	0.35 11.25	0
	ATOM	6539	OD1AASN B	213	-17.182	0.862	35.191		
								0.65 11.89	0
	MOTA	6540	ND2BASN B	213	-17.948	0.634	37.537	0.35 8.61	N
	ATOM	6541	ND2AASN B	213	-17.315	-0.040	37.230	0.65 9.89	N
35	MOTA	6546	C ASN B	213	-14.385	2.380	38.876	1.00 8.12	C
	ATOM	6547	O ASN B		-13.866	1.530	39.585		
									0
	ATOM	6548	N LEU B	214	-13.754	3.499	38.509	1.00 8.05	N
	MOTA	6550	CA LEU B	214	-12.388	3.756	38.975	1.00 8.09	С
	MOTA	6552	CB LEU B	214	-11.878	5.101	38.472	1.00 8.15	С
40	ATOM	6555	CG LEU B		-11.645	5.232	36.974	1.00 8.61	C
	ATOM	6557	CD1 LEU B	214	-11.247	6.665	36.638	1.00 9.83	С
	ATOM	6561	CD2 LEU B	214	-10.596	4.247	36.475	1.00 9.91	C
	ATOM	6565	C LEU B	214	-12.321	3.712	40.498	1.00 8.01	С
	ATOM	6566	O LEU B		-11.378	3.153	41.070	1.00 8.50	o
45									
70	ATOM	6567	N THR B		-13.313	4.314	41.144	1.00 8.38	N
	MOTA	6569	CA THR B		-13.315	4.376	42.596	1.00 8.79	С
	ATOM	6571	CB THR B	215	-14.418	5.334	43.053	1.00 9.27	C
	MOTA	6573	OG1 THR B	215	-14.177	6.633	42.485	1.00 10.10	0
	ATOM	6575	CG2 THR B						
50					-14.416	5.517	44.571	1.00 11.07	С
50	MOTA	6579	C THR B		-13.481	2.979	43.209	1.00 8.80	C
	MOTA	6580	O THR B	215	-12.791	2.625	44.166	1.00 9.21	0
	MOTA	6581	N ASN B		-14.370	2.179	42.646	1.00 8.57	N
	ATOM	6583	CA ASN B						
					-14.557	0.818	43.115	1.00 8.67	С
	ATOM	6585	CB ASN B		-15.734	0.173	42.381	1.00 9.22	C
55	ATOM	6588	CG ASN B	216	-15.982	-1.271	42.786	1.00 8.90	С
	ATOM	6589	OD1 ASN B	216	-15.870	-1.642	43.963	1.00 9.87	Ō
	ATOM	6590	ND2 ASN B		-16.303				
						-2.099	41.811	1.00 10.95	N
	MOTA	6593	C ASN B		-13.273	-0.002	42.920	1.00 8.34	C
	ATOM	6594	O ASN B	216	-12.861	-0.759	43.806	1.00 8.95	0
60	ATOM	6595	N TRP B	217	-12.626	0.156	41.771	1.00 8.60	N
	ATOM	6597	CA TRP B		-11.442	-0.632	41.484	1.00 8.62	
									C
	ATOM	6599	CB TRP B		-11.051	-0.484	40.025	1.00 8.99	С
	ATOM	6602	CG TRP B		-12.086	-0.995	39.080	1.00 9.18	C
	ATOM	6603	CD1 TRP B	217	-13.046	-1.934	39.324	1.00 10.15	С
					_				~

WO 2005/078074 PCT/DK2005/000097

	MOTA	6605	NE1 T	RP E	3 217	-13.804	-2.145	38.197	1.00 11.24	N
	ATOM	6607		RP E		-13.350	-1.320	37.207	1.00 10.18	С
	ATOM	6608	CD2 T	RP E	3 217	-12.272	-0.584	37.733	1.00 9.00	C
	ATOM	6609	CE3 T	RP E	3 217	-11.640	0.346	36.907	1.00 9.73	C
5	ATOM	6611	CZ3 T	RP E	3 217	-12.074	0.488	35.602	1.00 11.01	C
	ATOM	6613	CH2 T	RP E	3 217	-13.139	-0.262	35.117	1.00 11.64	C
	MOTA	6615	CZ2 T	RP E	3 217	-13.799	-1.163	35.897	1.00 11.72	С
	ATOM	6617		RP E		-10.303	-0.253	42.431	1.00 8.36	C
	ATOM	6618		RP E		-9.603	-1.117	42.953	1.00 8.91	0
10	ATOM	6619			3 218	-10.123	1.033	42.695	1.00 8.79	N
	ATOM	6621		YS E		-9.100	1.444	43.625	1.00 9.20	С
	ATOM	6623		YS E		-8.827	2.934	43.515	1.00 11.18	С
	ATOM	6626		YS E		-9.737	3.843	44.197	1.00 15.17	С
	MOTA	6629			3 218	-9.326	5.287	43.946	1.00 18.59	С
15	ATOM	6632		YS E		-10.240	6.273	44.642	1.00 20.56	С
	ATOM	6635		YS E		-9.920	6.379	46.090	1.00 23.12	N
	ATOM	6639		YS E		-9.431	0.985	45.054	1.00 9.00	С
	ATOM	6640		YS I		-8.543	0.568	45.790	1.00 10.38	0
	ATOM	6641		SN E		-10.709	1.008	45.430	1.00 8.68	N
20	ATOM	6643		SN E		-11.124	0.530	46.752	1.00 8.69	C
	ATOM	6645		SN E		-12.545	1.004	47.075	1.00 9.62	C
	ATOM	6648		SN E		-12.589	2.441	47.549	1.00 10.94	C
	ATOM	6649	OD1 A			-11.678	2.906	48.223	1.00 14.01	Ō
	ATOM	6650	ND2 A			-13.697	3.138	47.267	1.00 11.68	N
25	MOTA	6653			3 219	-11.040	-0.980	46.901	1.00 8.48	C
20	ATOM	6654			3 219	-11.108	-1.494	48.016	1.00 9.89	0
	ATOM	6655			3 220	-10.884	-1.688	45.792	1.00 8.99	N
	ATOM	6657			3 220	-10.799	-3.141	45.786	1.00 8.99	C
	ATOM	6659			3 220	-11.517	-3.693	44.555	1.00 9.46	c
30	ATOM	6662			3 220	-12.907	-3.416	44.600	1.00 9.93	Ö
50	ATOM	6664		ER I		-9.357	-3.642	45.795	1.00 9.37	Ċ
	ATOM	6665			3 220	-9.124	-4.844	45.742	1.00 10.44	Ō
	ATOM	6666			3 221	-8.377	-2.741	45.851	1.00 9.78	N
	ATOM	6668			3 221	-6.981	-3.155	45.805	1.00 9.87	C
35	MOTA	6670			3 221	-6.068	-1.948	45.804	1.00 10.44	Ċ
00	ATOM	6674		LA I		-6.632	-4.065	46.968	1.00 11.09	C
	ATOM	6675			3 221	-7.064	-3.848	48.094	1.00 12.58	0
	ATOM	6676			3 222	-5.824	-5.080	46.664	1.00 11.56	N
	ATOM	6678		LN E		-5.345	-6.085	47.610	1.00 13.48	C
40	ATOM	6680		LN E		-5.070	-7.420	46.900	0.35 14.51	c
40	ATOM	6681	CB AG			-5.003	-7.403	46.863	0.65 14.16	Ċ
	MOTA	6686	CG BG			-3.617	-7.830	46.798	0.35 16.11	Ċ
	ATOM	6687	CG AG			-6.230	-8.072	46.189	0.65 12.89	c
	ATOM	6692	CD BG			-3.455	-9.200	46.202	0.35 17.67	C
45	ATOM	6693	CD AG			-5.908	-9.289	45.310	0.65 14.84	c
70	ATOM	6694	OE1BG				-10.165	46.695	0.35 19.06	0
	ATOM	6695	OE1BG			-4.806	-9.840	45.371	0.65 18.23	o
	ATOM	6696	NE2BG			-2.655	-9.300	45.148	0.35 18.44	N
	ATOM	6697	NE2AG			-6.880	-9.712	44.495	0.65 13.26	N
50	MOTA	6702			3 222	-4.109	-5.562	48.352	1.00 14.27	C
30	ATOM	6702			3 222	-3.636	-6.231	49.284	1.00 17.27	0
	ATOM	6704	OXT G			-3.579	-4.486	48.029	1.00 17.27	Ö
	ATOM	6705			3 301	-0.643	21.256	17.293	1.00 10.41	CA
	ATOM	13398			7 401	-10.088	3.418	14.402	1.00 20.15	N
55	ATOM	13400			7 401	-10.000	4.298	15.551	1.00 20.13	C
00	ATOM	13402			401	-11.005	3.471	16.700	1.00 20.61	C
		13402			401	-12.475	3.140	16.497	1.00 20.01	C
	ATOM	13405	OD1 A			-13.045	2.395	17.327	1.00 22.37	0
	ATOM	13406	OD1 A			-13.144	3.572	17.327	1.00 25.18	0
60	ATOM	13407			7 401	-9.196	5.076	16.021	1.00 25.29	C
00	ATOM				7 401	-9.136	5.713	17.069	1.00 16.83	0
	ATOM	13409			7 401	-8.115	5.713	17.069	1.00 16.48	И
	ATOM	13412			402	-6.897	5.780	15.242	1.00 14.83	C
	ATOM	13414			402	-7.112		15.549	1.00 12.75	C
	MOTA	13416	CB A	ו אחצ	: 402	-/.112	7.245	12.7//	1.00 12.01	C

WO 2005/078074											PCT/DK2005/000097			
	ATOM	13420	С	ALA	F	402	-6.485	5.557	16.999	1.00	11.06		С	
	ATOM	13421	0	ALA	F	402	-6.190	6.500	17.738	1.00	10.74		0	
	MOTA	13422	N	PHE	F	403	-6.464	4.296	17.429	1.00	10.84		N	
	MOTA	13424	CA	PHE	F	403	-6.076	4.009	18.798	1.00	10.34		C	
5	MOTA	13426	CB	PHE	F	403	-6.233	2.517	19.116	1.00	11.44		C	
	MOTA	13429	CG	PHE	F	403	-7.671	2.025	19.183	1.00	12.38		С	
	MOTA	13430	CD1	PHE	F	403	-8.562	2.511	20.119	1.00	14.77		C	
	MOTA	13432	CE1	PHE	F	403	-9.880	2.048	20.187	1.00	17.09		С	
	MOTA	13434	CZ	PHE	F	403	-10.309	1.064	19.322	1.00	18.48		С	
10	MOTA	13436	CE2	PHE	F	403	-9.424	0.544	18.386	1.00	18.39		C	
	MOTA	13438	CD2	PHE	F	403	-8.109	1.018	18.324	1.00	16.19		C	
	MOTA	13440	С	PHE	F	403	-4.626	4.428	19.018	1.00	10.00		С	
	MOTA	13441	0	PHE	F	403	-3.748	4.110	18.209	1.00	12.25		0	
	MOTA	13442	N	GLU	F	404	-4.372	5.130	20.116	1.00	8.64		N	
15	MOTA	13444	CA	GLU	F	404	-3.025	5.588	20.427	1.00	8.12		С	
	MOTA	13446	CB	GLU	F	404	-2.992	7.120	20.524	1.00	7.95		C	
	MOTA	13449	CG	GLU	F	404	-3.122	7.705	19.117	1.00	8.08		C	
	MOTA	13452	CD	GLU	F	404	-3.043	9.212	19.009	1.00	7.71		C	
	MOTA	13453	OE1	GLU	F	404	-3.129	9.917	20.027	1.00	8.61		0	
20	MOTA	13454	OE2	GLU	F	404	-2.901	9.672	17.856	1.00	8.80		0	
	MOTA	13455	C	${ t GLU}$	F	404	-2.442	4.854	21.637	1.00	8.22		С	
	MOTA	13456	0	GLU	F	404	-2.865	3.708	21.892	1.00	8.82		0	
	ATOM	13457	OXT	GLU	F	404	-1.513	5.394	22.258	1.00	8.53		0	