(5) Sufficiency, bias, Rao-Blackwell theorem

Let X_1, \ldots, X_n be i.i.d. $Poi(\lambda)$, with unknown $\lambda > 0$.

- (a) Show that $Y = \sum_{n=1}^{n} X_i$ is a sufficient statistic for λ .
- (b) Find an unbiased estimator of $p_r = P(X = r)$, which depends only on X_1 . Find $P(X_1 = r | Y = k)$ both for $k \ge r$ and k < r. Hence use the Rao-Blackwell theorem to improve your estimator of p_r .

a)
$$L(x|\lambda) = \begin{cases} \lambda^{\frac{n}{n-1}x_i} \left(\prod_{i=1}^{n} x_i! \right)^{-1} \exp\left(-n\lambda\right), & \text{if } x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$$

From now on we only consider $x \in \{0,1,\dots\}$. Let $g(2|2) := \lambda^2 \exp(-n\lambda)$, and $h(x) := \left(\prod_{i=1}^n x_i!\right)$. We have $L(x|\lambda) = g(Y_i\lambda)h(X)$, hence Y is a sufficient shaliplic for λ .

b)
$$P_r = P(X=r) = \frac{\lambda^r}{r!} e^{-\lambda}$$
, $\widehat{P}_r(x) := \begin{cases} 1 & \text{if } x_0 = r \\ 0 & \text{otherwise} \end{cases}$, then $\widehat{P}_r(X)$ is an

unbiased extinoster of p_r , since $\mathbb{E}_2(\hat{p}_r(x)) = \frac{x^r}{r!} e^{-x} = p_r$

Set $k \in V$, if there was with $k = V(w) = \sum_{i=1}^{n} x_i(w)$ and $x_1(w) = v$, then

$$V = X_1(\omega) \leq \sum_{i=1}^n X_i(\omega) = k \cdot \beta_i$$
, hence $P(X_1 = V \mid V = k) = 0$

Let rik, then

$$|P(x_1=r|r=k) = \frac{|P(x_1=r)|\frac{z^n}{z^n}x_i=k-r}{|P(y=k)|} = \frac{|P(x_1=r)|P(\frac{z^n}{z^n}x_i=k-r)}{|P(y=k)|}$$

$$= \frac{\lambda^{r}}{r!} e^{-\lambda} \frac{((n-1)\lambda)^{k-r}}{(k-r)!} e^{-(n-1)\lambda} \left(\frac{(n\lambda)^{k}}{k!} e^{-n\lambda} \right)^{-1}$$

$$= \frac{k!}{r!(n-r)!} \frac{(n-1)^{k-r}}{n^{k}} = {k \choose r} \frac{(n-1)^{k-r}}{n^{k}}$$

We used Mal $\sum_{i=1}^{n} X_{i} \sim loi((n-1)\lambda)$ and $Y \sim loi(n\lambda)$

Hence
$$\psi(k) = \mathbb{E}(X_1 = r \mid Y = k) = \mathbb{P}(X_1 = r \mid Y = k) = \begin{cases} \binom{n}{r} \frac{(n-1)^{n-r}}{n^n}, & \text{if } 0 \leq r \leq k \\ 0, & \text{otherwise} \end{cases}$$

By the fao-Blockwell Theorem, $\phi(Y)$ is an unbiased estimator of pr with W_{ab} ($\phi(Y)$) $\leq V_{ab}$ ($\widehat{p_r}(X)$).