Protokoll: Operationsverstärker II

Tom Kranz, Philipp Hacker

27. Mai 2014

Inhaltsverzeichnis

1	Vorbereitung		
	1.1	Schaltskizzen	2
	1.2	Dimensionierung	2
2	Durchführung		
	2.1	Messgeräte	3
		Oszillogramme	
3 Auswertung		wertung	4
4	Anh	nang	4

1 Vorbereitung

Die gesamten Vorbereitungsaufgaben wurden bereits in der Arbeit "**Protokoll: Operationsverstärker I**" bearbeitet und aufgeführt.

1.1 Schaltskizzen

Abb. 1: Bandsperre mit OPV

1.2 Dimensionierung

Für die gezeigte Bandsperre war eine Resonanzfrequenz von $f_{\rm r}\approx 10\,{\rm kHz}$ gefordert. Zusätzlich zu dieser, welche den nicht-invertierenden Eingang ansteuert, kommt ein invertierender Verstärker zum Einsatz. Die gesuchten Gegenkopplungsfaktoren ergeben sich aus dem Verhältnis der Spannungsteilerwiederstände $R_{\rm g}$ und $(k-1)\,R_{\rm g}$. Damit folgt:

$$U_{-} = \frac{(k-1) R_{\rm g}}{(k-1) R_{\rm g} + R_{\rm g}} \cdot U_{\rm a} = \left(1 - \frac{1}{k}\right) \cdot U_{\rm a}$$

Für die Kopplungsfaktoren k=1 bzw. k=2 verschwindet oder halbiert sich die rückgekoppelte Ausgangsspannung gerade. Aus der Definition der Resonanzfrequenz $f_{\rm r}=\left(2\pi RC\right)^{-1}$ und der Forderung, dass der Ausgang nicht zu hochohmig belastet werden kann, folgt die Wahl von R, C und $R_{\rm g}$.

2 Durchführung

2.1 Messgeräte

Für die Messungen an der Bandsperre wurde ausschließlich das Oszilloskop Hameg HM1508-2 verwendet. Die Speisespannung lieferte das Strom-/Spannungsversorgungsgerät Tektronix PS 280 und die Eingangssignale wurden mit dem Funktionsgenerator Tektronix AFG 3022B erzeugt.

2.2 Oszillogramme

Messaufgabe 11 forderte die Aufnahme von Oszillogrammen von Ein- und Ausgangsspannungen bei rechteckförmigen Eingangssignalen mit Grundfrequenzen $f \lesssim f_{\rm r}, f \gtrsim f_{\rm r}, f \lesssim \frac{f_{\rm r}}{3}$ und $f \gtrsim \frac{f_{\rm r}}{3}$.

Abb. 2: Oszillogramme zur Messaufgabe 11, Eingang: rechteckförmiges Signal

3 Auswertung

4 Anhang

Die originalen Messwert-Aufzeichnungen liegen bei.