

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

Nome do Componente Curricular em português:		Código:
Redes Complexas		PCC121
Nome do Componente Curricular em inglês:		
Complex Networks		
Nome e sigla do departamento:		Unidade acadêmica:
Departamento de Computação (DECOM)		ICEB
Carga horária semestral	Carga horária semanal teórica	Carga horária semanal prática
Ex: 60 horas	04 horas/aula	-
Data da Aprovação pelo Colegiado:		
xx/08/2025		

Ementa:

Introdução e conceito básicos; Redes direcionadas e com pesos; Modelos e algoritmos de geração de redes complexas; Correlações de grau; Robustez em rede; Detecção de Comunidades; Fenômenos dinâmicos em rede; Tópicos avançados.

Conteúdo programático:

- Introdução e conceitos básicos: Tipos de redes e aplicações; Matriz de adjacência, lista de adjacência, redes com pesos; Caminhos e distâncias, medidas de centralidade, conectividade e transitividade.
- Redes direcionadas e com pesos: Redes direcionadas, a Web, PageRank.
- Modelos e algoritmos de geração de redes complexas: Redes aleatórias, redes de pequeno mundo, propriedade livre de escala, modelo Barabási-Albert, redes dinâmicas.
- Correlações de grau: assortatividade.
- Robustez em redes: percolação, falhas e ataques.
- Detecção de Comunidades: conceitos e algoritmos.
- Fenômenos dinâmicos em rede: espalhamento viral e propagação de informação, sincronização de osciladores acoplados;
- Tópicos avançados.

Objetivos:

Propiciar aos alunos conhecimentos teóricos e práticos sobre os principais conceitos relacionados a Redes Complexas.

Metodologia:

Aulas expositivas sobre os conteúdos. Atividades de implementação individuais ou em grupos. Seminários dos alunos. Projeto final da disciplina. Prova.

Atividades Avaliativas:

- Cada atividade avaliativa terá uma pontuação que pode variar de zero a dez.
- Seminário dos alunos sobre artigos importantes da área e pré-projeto.
- Atividades de implementação sobre os conteúdos da aula.
- Prova

Projeto final.

Média final = (seminário)*0,2 + (atividades de implementação)*0,3 + (projeto final)*0,3 + (prova)*0,2

Cronograma:

Aula	Conteúdo
1-2	Apresentação e introdução
3-6	Introdução e conceitos básicos
7	Seminário
8-9	Redes aleatórias
10-12	Modelos e geração de redes
13-14	Correlações de grau
15-16	Análise de robustez
17-22	Detecção de comunidades
23-30	Fenômenos dinâmicos em redes
31	Prova
33-34	Tópicos avançados: redes funcionais
35-36	Tópicos avançados: redes temporais e multicamada
37-42	Tópicos avançados: aprendizado de máquina em grafos
43-58	Tópicos avançados e desenvolvimento do projeto final
59-60	Apresentação do Projeto Final

De 07/09 a 05/10: Estudo de artigos seminais sobre Redes Complexas e preparação para seminário.

Bibliografia básica:

- BARABÁSI, A.-L. Network science. Cambridge: Cambridge University Press, 2016.
 475 p.
- MENCZER, F.; FORTUNATO, S.; DAVIS, C. A First Course in Network Science. Cambridge: Cambridge University Press, 2020. 300 p.
- NEWMAN, M. **Networks**: An Introduction. Oxford: Oxford University Press, 2010. 784 p.

Bibliografia complementar:

- BARABÁSI, A.-L. Linked: how everything is connected to everything else and what it means for business, science and everyday life. New York: Plume, 2003. 294 p.
- BARRAT, A.; MELY, M. B.; VESPIGNANI, A. **Dynamical Processes on Complex Networks**. Cambridge: Cambridge University Press, 2012. 361 p.
- EASLEY, D.; KLEINBERG, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge: Cambridge University Press, 2010. 727 p.
- ESTRADA, E. **The structure of complex networks**: theory and applications. Oxford: Oxford University Press, 2012. 478 p.
- JACKSON, M. O. **Social and Economic Networks**. Princeton: Princeton University Press, 2010. 504 p.