If we try a simple MDS algorithm on this data, it is not able to "unwrap" this nonlinear embedding, and we lose track of the fundamental relationships in the embedded manifold (Figure 5-101):

```
In[14]: from sklearn.manifold import MDS
model = MDS(n_components=2, random_state=2)
outS = model.fit_transform(XS)
plt.scatter(outS[:, 0], outS[:, 1], **colorize)
plt.axis('equal');
```


Figure 5-101. The MDS algorithm applied to the nonlinear data; it fails to recover the underlying structure

The best two-dimensional *linear* embedding does not unwrap the S-curve, but instead throws out the original y-axis.

Nonlinear Manifolds: Locally Linear Embedding

How can we move forward here? Stepping back, we can see that the source of the problem is that MDS tries to preserve distances between faraway points when constructing the embedding. But what if we instead modified the algorithm such that it only preserves distances between nearby points? The resulting embedding would be closer to what we want.

Visually, we can think of it as illustrated in Figure 5-102.

Figure 5-102. Representation of linkages between points within MDS and LLE

Here each faint line represents a distance that should be preserved in the embedding. On the left is a representation of the model used by MDS: it tries to preserve the distances between each pair of points in the dataset. On the right is a representation of the model used by a manifold learning algorithm called locally linear embedding (LLE): rather than preserving *all* distances, it instead tries to preserve only the distances between *neighboring points*: in this case, the nearest 100 neighbors of each point.

Thinking about the left panel, we can see why MDS fails: there is no way to flatten this data while adequately preserving the length of every line drawn between the two points. For the right panel, on the other hand, things look a bit more optimistic. We could imagine unrolling the data in a way that keeps the lengths of the lines approximately the same. This is precisely what LLE does, through a global optimization of a cost function reflecting this logic.

LLE comes in a number of flavors; here we will use the *modified LLE* algorithm to recover the embedded two-dimensional manifold. In general, modified LLE does better than other flavors of the algorithm at recovering well-defined manifolds with very little distortion (Figure 5-103):

Figure 5-103. Locally linear embedding can recover the underlying data from a nonlinearly embedded input

The result remains somewhat distorted compared to our original manifold, but captures the essential relationships in the data!

Some Thoughts on Manifold Methods

Though this story and motivation is compelling, in practice manifold learning techniques tend to be finicky enough that they are rarely used for anything more than simple qualitative visualization of high-dimensional data.

The following are some of the particular challenges of manifold learning, which all contrast poorly with PCA:

- In manifold learning, there is no good framework for handling missing data. In contrast, there are straightforward iterative approaches for missing data in PCA.
- In manifold learning, the presence of noise in the data can "short-circuit" the manifold and drastically change the embedding. In contrast, PCA naturally filters noise from the most important components.
- The manifold embedding result is generally highly dependent on the number of neighbors chosen, and there is generally no solid quantitative way to choose an optimal number of neighbors. In contrast, PCA does not involve such a choice.
- In manifold learning, the globally optimal number of output dimensions is difficult to determine. In contrast, PCA lets you find the output dimension based on the explained variance.
- In manifold learning, the meaning of the embedded dimensions is not always clear. In PCA, the principal components have a very clear meaning.