Sentiment Analysis and Llama 3.1 Fine-Tuning

1. Initial Steps and Dataset Processing

Dataset

- **Source:** Excel file containing Bengali text and corresponding sentiment labels (positive, negative, neutral).
- Loading Method: Utilized pandas.read_excel() to load the dataset.

Data Preprocessing

- Text Cleaning: Leveraged BNLP library for processing Bengali text.
 - CleanText Module: Initialized with parameters fix_unicode=True and unicode_norm=True to handle Unicode errors and clean the text output effectively.
 - Unwanted Strings Removal: Removed the string "See Translation" and reduced duplicate punctuation marks such as '' (Bengali full stop), ',' (comma), '?' (question mark), and '...' (ellipsis) using re.sub().
 - Sentence Tokenization: Used BNLP's NLTKTokenizer for tokenizing text at the sentence level. This was necessary because word_tokenize removed punctuation, which was crucial for sentiment analysis.
 - Stemmer Issue: Initially employed stemmers from banglanltk, but they truncated words undesirably (e.g., ' ' to ' '), leading to loss of meaning. Consequently, stemming was excluded from the preprocessing pipeline.

• Vectorization:

 Used TfidfVectorizer to transform the cleaned text into TF-IDF feature vectors. Converted the sparse matrix to a dense format with .toarray() to facilitate model training.

Challenges

- Ensuring that important parts of Bengali text, especially punctuation, were preserved during preprocessing.
- Finding a reliable NLP library for Bengali text processing, which led to the exploration of both BNLP and banglanltk.

2. Sentiment Analysis with Traditional Machine Learning Models

Models Used

	Test	
Model	Accuracy	Best Parameters
Logistic Regression	75%	{'C': 10, 'solver': 'liblinear'}
Multinomial Naive	65%	Default
Bayes		
Random Forest	75%	{'max_depth': 10, 'n_estimators':
Classifier		50'}
XGBoost	60%	{'learning_rate': 0.2, 'n_estimators':
		100'}
LightGBM	55%	{'learning_rate': 0.1, 'n_estimators':
-		100'}
LSTM	55%	Default

Stratified K-Fold Cross-Validation Results

	Test	
Model	Accuracy	Best Parameters
Logistic Regression	0.75	{'C': 10, 'solver': 'liblinear'}
Multinomial Naive	0.65	Default
Bayes		
Random Forest	0.75	{'max_depth': 10, 'n_estimators':
		50'}
XGBoost	0.60	{'learning_rate': 0.2, 'n_estimators':
		100'}
LightGBM	0.55	{'learning_rate': 0.1, 'n_estimators':
		100'}
LSTM	0.55	Default

K-Fold Results

Test Accuracy
0.75
0.65
0.70
0.60
0.50

Analysis

• Best Performance: Logistic Regression and Random Forest were the top performers with 75% accuracy, indicating that simpler models combined with effective text vectorization can be highly effective for sentiment analysis.

• LSTM Performance: The LSTM model exhibited poor performance (55% accuracy). The small dataset size and high variance likely contributed to its underperformance.

3. LSTM Model for Sentiment Analysis

Architecture

- Embedding Layer: Created word embeddings for the input text.
- LSTM Layer: Designed to capture sequential patterns in the text.
- Dense Layer: Used for sentiment classification.

Performance

- Accuracy: 55%
- **Epochs:** Validation accuracy plateaued at 37.5% after a few epochs, suggesting issues with model convergence.

Challenges

- **Data Format:** Conversion of TF-IDF vectorized data to a dense format suitable for LSTM was required.
- Dataset Size: The limited dataset size (99 rows) led to overfitting and hampered the model's ability to generalize.

4. Llama 3.1 Fine-Tuning

Initial Issues

- Licensing Restrictions: Faced difficulties accessing Llama 3.1 models due to licensing issues. Applied for access, but was pending approval.
- Model Choice: Used Dolphin 2.9.4 Llama 3.1 8B model from Hugging Face as an alternative.

Model Details

- Source: Dolphin 2.9.4 Llama 3.1 8B
- Base Model: Meta's Llama 3.1 8B with 8.03 billion parameters.
- **Description:** Dolphin was uncensored and the dataset was filtered to remove alignment and bias, thereby making the model more compliant.
- Training Details:
 - Context Length: 128K
 - Finetuning Sequence Length: 8192
 - **Prompt Format:** ChatML prompt template
- Training Hyperparameters:
 - Learning rate: 5e-06Train batch size: 2Eval batch size: 2

- Seed: 42
- Distributed type: multi-GPU
- Num devices: 8
- Gradient accumulation steps: 16
- Total train batch size: 256
- Total eval batch size: 16
- Optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- LR scheduler type: cosine
- LR scheduler warmup steps: 100
- Num epochs: 3

Fine-Tuned Training Results (Dolphin 2.9.4 Fine-Tuned Training Results of the Base Model Llama 3.1 8B

- **Epoch 1:** Loss: 0.5837, Validation Loss: 0.5814
- **Epoch 2:** Loss: 0.5525, Validation Loss: 0.5671
- **Epoch 3:** Loss: 0.5514, Validation Loss: 0.5655

Hardware Challenges

- **GPU Limitations:** GTX 1050Ti with 4GB VRAM was insufficient for model fine-tuning.
- Training Adjustments:
 - Forced CPU usage with no_cuda=True and reduced batch size.
 - Used mixed precision (fp16=True) and gradient accumulation (gradient_accumulation_steps=4).

Outcome

• **Inability to Fine-Tune:** Due to hardware limitations, the fine-tuning process was unsuccessful, with kernel crashes occurring frequently.

Future Considerations

- Cloud-Based Services: Use cloud-based GPUs (e.g., AWS, Google Colab) for handling large models.
- Lighter Models: Explore parameter-efficient fine-tuning methods like QLoRA or 4-bit quantized models.

Performance Comparison

- Best Performing Models: Logistic Regression and Random Forest achieved the highest accuracy at 75%.
- Worst Performing Models: LSTM and LightGBM both had poor performance with 55% accuracy.
- XGBoost: Mid-range performance with 60% accuracy.

Improvements

- Data Augmentation: Enhance dataset with more diverse examples to improve performance of deep learning models like LSTM.
- Hardware Upgrades: Utilize cloud GPUs for large model fine-tuning.
- Exploring Lightweight Models: Investigate parameter-efficient methods for fine-tuning large models on resource-constrained setups.

Key Insights

- Traditional ML Models: Logistic Regression and Random Forest outperformed more complex models like LSTM for small datasets.
- Fine-Tuning Requirements: Significant hardware resources are necessary for fine-tuning large models like Llama.

Limitations Faced

- NLP Toolkit Selection: Struggled to find an effective Bangla NLP toolkit for sentiment analysis. Explored and used BNLP and banglanltk.
- Stemmer Issues: Direct use of banglanltk stemmer led to loss of meaning. Decided to skip stemming.
- Punctuation Removal: The word_tokenize method removed essential punctuation; sentence_tokenize from NLTKTokenizer was used to resolve this issue.
- Sparse Matrix Conversion: Addressed issues with sparse matrices by converting to dense format using .toarray().

Llama 3.1 Licensing Issues

- Access Request: Submitted request for access to Llama 3.1 model repositories, pending review.
- Model Alternative: Used Dolphin 2.9.4 Llama 3.1 8B from Hugging Face due to access issues with Llama 3.1.

Hardware Constraints

- VRAM Limitation: 4GB VRAM on GTX 1050Ti was insufficient for fine-tuning.
- **CPU Use:** Forced CPU use due to GPU constraints, leading to frequent kernel crashes despite adjustments.