

Виртуализация: Типы виртуализаций KVM, QEMU

Александр Зубарев

Председатель цикловой комиссии "Информационной безопасности инфокоммуникационных систем"

АКТ (ф) СПбГУТ

Предисловие

На этом занятии мы:

- поговорим о типах виртуализации;
- рассмотрим, какие системы виртуализации бывают;
- узнаем, как работают виртуальные машины и распределяются ресурсы.

План занятия

- Введение
- 2. Типы виртуализации
- 3. История создания
- 4. Технологии аппаратной виртуализации
- 5. <u>KVM</u>
- 6. <u>libvirt</u>
- 7. <u>XEN</u>
- 8. OEMU
- 9. <u>GNS 3</u>
- 10. Итоги
- 11. Домашнее задание

Введение

Термины виртуализации

Виртуализация — это создание изолированных окружений в рамках одного физического устройства.

Каждое окружение выглядит, как отдельный компьютер со своими характеристиками (доступная память, процессор и тп.)

Такое окружение называют набором логических ресурсов или виртуальной машиной.

ОС, внутри которой стартует другая ОС, называется **хост-системой, (host).** А ОС, которая работает в виртуальном окружении — **гостевой (guest)**.

Виртуализация бывает:

- Аппаратная
- Программная
- Контейнерная (будет рассмотрена в следующих лекциях)
- Хостинговая (рассматривалась на первой лекции)

Аппаратная виртуализация работает благодаря поддержке со стороны железа: процессора. В отличие от программной виртуализации, гостевые ОС управляются гипервизором напрямую, без участия хостовой ОС.

- Работает без посредников, быстро, весело, надежно.
- Привязана к платформе: нет технологии нет виртуализации.

TRADITIONAL AND VIRTUAL ARCHITECTURE APP APP APP **APPLICATION** os os os **OPERATING SYSTEM** VIRTUALIZATION LAYER TRADITIONAL ARCHITECTURE **VIRTUAL ARCHITECTURE**

Программная виртуализация эмулирует все железо от процессора до сетевого адаптера (если он нужен). В отличие от аппаратной виртуализации, не важно, какое у вас аппаратное обеспечение, будет работать на любом железе.

- + Хост система и гостевая система не зависимы.
- Медленная, так как надо эмулировать все, что работает быстро.

Программную виртуализацию можно использовать для игр, но медленно.

СТОЧНИК

Первая аппаратная виртуализация Intel была воплощена в 386-х процессорах и носила название V86 mode.

Этот режим работы 8086-го процессора позволял запускать параллельно несколько DOS-приложений.

источник

Второе, что было реализовано — многозадачность. Она является первым уровнем абстракции приложений. Каждое приложение распределяет ресурсы физического процессора в режиме разделения исполнения кода по времени.

10 109HVIK

HyperThreading представляет собой аппаратную технологию виртуализации: при ее использовании происходит симуляция двух виртуальных процессоров в рамках одного физического с помощью техники Symmetric Multi Processing (SMP).

Процессор с поддержкой виртуализации может работать в двух режимах root operation и non-root operation.

В режиме **root operation** работает специальное программное обеспечение, являющееся «легковесной» прослойкой между гостевыми операционными системами и оборудованием — монитор виртуальных машин (Virtual Machine Monitor, VMM), носящий также название гипервизор (hypervisor).

Технологии аппаратной виртуализации

Технологии аппаратной виртуализации

Производители и технологии виртуализации

Intel — VT-x VT-d VMDQ

AMD - AMD-V

ARM Limited — EL2

Примечание: Для работы аппаратной виртуализации в программной процессор должен иметь данные инструкции

Intel vs AMD

Ведущие производители процессоров для серверных и настольных платформ — компании Intel и AMD разработали техники аппаратной виртуализации, для их использования в платформах виртуализации.

И в 2005 году представили свои инструкции:

- VT-x
- AMD-V

виртуализации на процессоре.

Аппаратная виртуализация — это логическое развитие архитектуры AMD Direct Connect, реализующая технологию виртуализации в кремнии. Эта технология дает больше возможностей производителям программного обеспечения, позволяя не беспокоиться о программной эмуляции

App App

Guest Guest Service
OS OS Guest

Hypervisor

AMD64 with
AMD Virtualization

Аппаратная виртуализация AMD реализуется путем введения новых режимов работы процессора и дополнительных инструкций:

- Новый режим процессора: Guest Mode
- Новая структура данных: Virtual Machine Control Block (VMCB)
- Новая инструкция: VMRUN
- Новый режим памяти: Real Mode w/ Paging

Intel

Аппаратная виртуализация VT-х описывается специальной структурой VMCS (Virtual Machine Control Structure) и является небольшим участком физической оперативной памяти, хранящим:

- минимально необходимые данные для запуска гостевой ОС,
- данные, необходимые для безопасного выхода из режима работы гостевой ОС,
- некоторые настройки, относящиеся к управлению этой виртуальной машиной.

Принцип работы VT-х

ARM

ARM гипервизор работает с уровнем исключения EL2. Только программное обеспечение, работающее на уровне исключения EL2 или выше, может получить доступ и настроить различные функции виртуализации.

ARM

источник

KVM

KVM

Для исполнения прямых аппаратных запросов в ОС должна иметься библиотека, которая направляла бы эти запросы аппаратной части напрямую.

Red hat создала ассоциацию Open Virtualization Alliance, которая была признана решить проблему отсутствия базового гипервизора для ядра Linux. Так и был создан гипервизор **KVM** или **Kernel-based Virtual Machine**.

Гипервизор KVM представляет из себя загружаемый модуль ядра Linux, который предназначен для обеспечения виртуализации на платформе Linux x86.

Сам модуль содержит:

- компонент собственно виртуализации (kvm.ko),
- процессорно-специфический загружаемый модуль kvm-amd.ko либо kvm-intel.ko.

Начиная с версии ядра 2.6.20, KVM является основной составляющей Linux. Иными словами, если у вас стоит Linux, то у вас уже есть KVM.

Необходимым условием для использования KVM является поддержка одной из инструкций виртуализации — Intel VT-х, AMD-V или ARP с поддержкой EL2

Сам по себе KVM не выполняет эмуляции. Вместо этого программа, работающая в пространстве пользователя, использует интерфейс /dev/kvm для настройки адресного пространства гостя виртуальной машины, через него же эмулирует устройства вводавывода и видеоадаптер.

KVM позволяет виртуальным машинам использовать немодифицированные образы дисков QEMU, VMware и других, содержащие ОС.

Каждая виртуальная машина имеет свое собственное виртуальное аппаратное обеспечение:

- сетевые карты,
- диск,
- видеокарту,
- и другие устройства.

Использование KVM

Для наглядности рассматривается виртуализация KVM на базе библиотеки virt-manager

libvirt

libvirt — это набор инструментов, предоставляющий единый API к множеству различных технологий виртуализации.

При использовании libvirt не важно какой «бекенд»: Xen, KVM, VirtualBox или что-то ещё. Более того, можно использовать libvirt внутри Ruby, Python, C++ и многих других программ Или удаленно подключаться к виртуальным машинам по защищенным каналам.

libvirt — это просто API, а вот как с ним взаимодействовать решать пользователю.

Давайте попробуем.

Сначала проверим, поддерживается ли аппаратная виртуализация. На самом деле, работать будет и без её поддержки, только гораздо медленнее.

egrep --color=auto 'vmx|svm|0xc0f' /proc/cpuinfo

Так как KVM — это модуль ядра Linux, то нужно проверить, загружен ли он уже, и если нет, то загрузить:

```
lsmod | grep kvm
```

Если модуль не загружен:

```
modprobe kvm
modprobe kvm_intel # или modprobe kvm_amd
```

Возможна ситуация, что аппаратная виртуализация выключена в BIOS. Поэтому, если модули kvm_intel/kvm_amd не подгружаются, то необходимо проверить настройки BIOS.

Теперь установим необходимые пакеты. Проще всего сделать это, установив сразу группу пакетов:

CentOS:

yum group list «Virtual*»

[root@localhost etc]# yum group list "Virtual*" Last metadata expiration check: 0:01:21 ago on Sun 16 May 2021 03:13:44 AM EDT. Available Environment Groups: Virtualization Host

Для управления виртуальными машинами из командой строки используется утилита virsh. Проверить, есть ли хотя бы одна виртуалка, можно командой:

virsh list

Для использование GUI — virt-manager.

virsh умеет создавать виртуалки только из XML файлов, формат которых можно изучить в документации libvirt.

[root@localhost etc]# yum install virt-manager_

Пример использования libvirt

```
virt-install --name mkdev-vm-0 \
--location ~/Downloads/CentOS-7-x86_64-Minima-2009l.iso \
--memory=1024 --vcpus=1 \
--disk size=8
```

Присоединиться можно при помощи virt-manager.

VIRTUALIZATION GETTING STARTED GUIDE

Одно из преимуществ использования KVM/libvirt — потрясающая документация, в том числе создаваемая компанией Red Hat.

Руководство по началу работы с виртуализацией

XEN

XEN

Xen — кроссплатформенный гипервизор, разработанный в компьютерной лаборатории Кембриджского университета и распространяемый на условиях лицензии GPL.

Основные особенности:

- поддержка режима паравиртуализации помимо аппаратной виртуализации,
- минимальность кода самого гипервизора, за счёт выноса максимального количества компонентов за пределы гипервизора.

https://xenproject.org

HYPER-V

HYPER-V система аппаратной виртуализации для x64-систем на основе гипервизора. Все они позволяют виртуализировать серверные платформы x86-64 и представляют собой системы аппаратной виртуализации для VPS хостинга и не только.

Windows-ая программа и с Win платформой работает на ура!

Для сравнения

	Best Value	Bare Metal	KVM	Xen
Timed MAFFT Alignment	lower	7.78	7.795	8.42
Smallpt	lower	160	162	167.5
POV-Ray	lower	230.02	232.44	235.89
PostMark	higher	3667	3824	3205
OpenSSL	higher	397.68	393.95	388.25
John the Ripper (MD5)	higher	49548	48899.5	46653.5
John the Ripper (DES)	higher	7374833.5	7271833.5	6911167
John the Ripper (Blowfish)	higher	3026	2991.5	2856
CLOMP	higher	3.3	3.285	3.125
C-Ray	lower	35.35	35.66	36.13
7-Zip	higher	12467.5	12129.5	11879

Сравнение гипервизоров

Динамика рынка

Источник

QEMU — свободная программа с открытым исходным кодом для эмуляции аппаратного обеспечения различных платформ.

Включает в себя эмуляцию процессоров Intel x86 и устройств ввода-вывода. Может эмулировать 80386, 80486, Pentium, Pentium Pro, AMD64 и другие x86-совместимые процессоры; ARM, MIPS, RISC-V, PowerPC, SPARC, SPARC64 и частично m68k.

https://www.qemu.org

Режимы QEMU

Полная эмуляция системы — полностью эмулирует устройство, включая все его компоненты, процессор и различные периферийные устройства. Он может использоваться для запуска нескольких ОС без перезагрузки или отладки системного кода.

Эмуляция пользовательского режима — работает только для Linux хоста, позволяет запускать процессы Linux, скомпилированные для одной архитектуры в другой, например, ARM программы в х86. Полезно для разработки, кросскомпиляции и отладки.

Установка

Debian:

sudo apt install qemu-kvm qemu qemu-system

CentOS:

sudo yum install qemu-kvm qemu qemu-system

ArchLinux:

sudo pacman -i qemu-kvm qemu qemu-system

FreeBSD:

cd /usr/ports/emulator/qemu
make && make install && make install clean

Эмулятор qemu создает много команд, но их можно разделить на группы:

- qemu-архитектура эмуляция окружения пользователя для указанной архитектуры;
- qemu-system-архитектура эмуляция полной системы для архитектуры;
- qemu-img утилита для работы с дисками;
- qemu-io утилита для работы с вводом/выводом на диск;
- qemu-user оболочка для qemu-архитектура, позволяет запускать программы других архитектур в этой системе;
- qemu-system оболочка для qemu-system-архитектура, позволяет полностью эмулировать систему нужной архитектуры.

Синтаксис команды такой:

\$ qemu-system параметры

Куда сложнее здесь синтаксис каждого из параметров:

имя_параметра имя_опции=значение:значение2

Мы рассмотрим только основные параметры, и их опции, которые нам понадобятся:

- machine указывает тип компьютера, который вы собрались эмулировать, можно выбрать ubuntu, pc, pc-q35 и другие варианты, смотрите подробнее командой — machine help;
- сри тип процессора, можно передать непосредственно тип процессора, а также дополнительные флаги;

Все остальные можно посмотреть тут:

https://wiki.qemu.org/Category:User_documentation

Демонстрация создания виртуальной машины:

```
qemu-img create -f qcow2 test 1G

qemu-system-x86_64 -hda ubuntu.qcow -boot d -cdrom
~/downloads/name_iso.iso -m 640
```


Graphical Network Simulator — это графический симулятор сети, который позволяет смоделировать виртуальную сеть из маршрутизаторов и виртуальных машин. Незаменимый инструмент для обучения и тестов. Работает практически на всех платформах. Отлично подходит для создания стендов на десктоп машинах.

В зависимости от аппаратной платформы, на которой будет использоваться GNS3, возможно построение комплексных проектов, состоящих из маршрутизаторов Cisco, Cisco ASA, Juniper, а также серверов под управлением сетевых операционных систем.

Итоги

Итоги

Сегодня мы рассмотрели:

- различные системы виртуализации,
- работу систем виртуализации на различных уровнях,
- возможность создания абстрактной модели.

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера .
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Александр Зубарев