

This are my lecture notes

Title of the lecture, ST 2024

Markus Tripp*

March 6, 2024

^{*}Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria, markus.tripp@aau.at.

Contents	•
Contents	_

Contents

1	Preliminaries	3
2	Digression on finite Kakeya sets	3
3	Improvements?	3
References		4

1 Preliminaries 3

1 Preliminaries

All sorts of things are explained and introduced here. One can also put stuff in fancy boxes. A tasty example:

Definition 1: Group action

Let G be a group and X a set. A mapping $\alpha: G \times X \to X$ that satisfies

(A1)
$$\alpha(e, x) = x$$
,

(A2)
$$\alpha(g, \alpha(h, x)) = \alpha(gh, x)$$

for all $g, h \in G$ and $x \in X$ is called a group action of G on X.

Remark 2. It is very common that one replaces α with a dot. Then the two above axioms read as $e \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$.

2 Digression on finite Kakeya sets

Example 3 (Kakeya set in \mathbb{F}_3^2)

We consider the finite field $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z} = \{0+3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z}\}$. For the sake of readability, we will denote the representative for each residue class in the following discussion. Our goal is to find a non-trivial Kakeya set, denoted as $K \subseteq \mathbb{F}_3^2$, which contains a line in each direction. The directions we are considering are as follows: $[(1,0)] = \{(1,0), (2,0)\}, [(0,1)] = \{(0,1), (0,2)\}, [(1,1)] = \{(1,1), (2,2)\}, \text{ and } [(1,-1)] = \{(1,2), (2,1)\} \text{ (note: } (1,-1) = (1,2)). As an example, we select the following lines:$

$$\mathcal{L}_{(1,0),\,(0,0)} = \{(0,0) + t(1,0) : t \in \{0, 1, 2\}\} = \{(0,0), (1,0), (2,0)\},$$

$$\mathcal{L}_{(0,1),\,(2,0)} = \{(2,0), (2,1), (2,2)\}, \quad \mathcal{L}_{(1,1),\,(0,0)} = \{(0,0), (1,1), (2,2)\},$$

$$\mathcal{L}_{(1,-1),\,(1,2)} = \{(1,2), (2,1), (0,0)\},$$

resulting in the Kakeya set $K \subseteq \mathbb{F}_3^2$:

$$K := \mathcal{L}_{(1,0),(0,0)} \cup \mathcal{L}_{(0,1),(2,0)} \cup \mathcal{L}_{(1,1),(0,0)} \cup \mathcal{L}_{(1,-1),(1,2)}$$

= \{(0,0), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}.

 \triangle

3 Improvements?

Feel free to adapt/polish this template in any way you like. I am happy to discuss ideas and suggestions for general improvement of this template!

References 4

Figure 1: Kakeya set in \mathbb{F}_3^2 of the Example 3

References

[1] T.W. Hungerford. *Algebra*. Graduate Texts in Mathematics. Springer New York, 2003. ISBN: 9780387905181.