Exercises lecture 4: 4.9

Formulation phase 1:

Before starting Phase 1, we express the Phase 1 objective function in non-basic variables (saves a pivot at the beginning of Phase 1).

$$w = x_2^a = 2 - x_2 - x_3 + s_2.$$

Phase 1:

basis	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3	x_2^a
s_1	5	1	1	1	1	0	0	0
x_2^a	2	0	1	1	0	-1	0	1
basis $ \begin{array}{c} s_1 \\ x_2^a \\ s_3 \end{array} $	1	2	0	1	0	0	1	0
$\overline{-w}$	-2	0	-1	-1	0	1	0	0

Bring x_2 into the basis. min-ratio test: $\min\{5/1, 2/1\} = 2/1$, so x_2^a leaves the basis.

basis	\bar{b}	$ x_1 $	x_2	x_3	s_1	s_2	s_3	x_2^a	
s_1	3	1	0	0	1	1	0	-1	$r_1 - r_2$
x_2	2	0	1	1	0	-1	0	1	r_2
s_3	1	2	0	1	0	0	1	0	$r_1 - r_2$ r_2 r_3 $r_4 + r_2$
-w	0	0	0	0	0	0	0	1	$r_0 + r_2$

 $\bar{c}_j \geq 0$ for all j, so we have reached optimum of Phase 1.

 x_2^a is not in the basis, so we can remove the column of x_2^a from the tableau, and re-introduce the original objective function z.

$$x = -4x_1 + x_2 - x_3$$
.

Before setting up the tableau, express z as a function of non-basic variables. From the second row of the simplex tableau at the end of Phase 1, we read $x_2 + x_3 - s_2 = 2$, or $x_2 = 2 - x_3 + s_2$. We now get:

$$z = -4x_1 + x_2 - x_3 = -4x_1 + (2 - x_3 + s_2) - x_3 = -4x_1 - 2x_3 + s_2 + 2$$
.

The starting tableau of Simplex Phase 2 is:

basis	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3
$\overline{s_1}$	3	1	0	0	1	1	0
x_2	2	0	1	1	0	-1	0
$ \begin{array}{c} \text{basis} \\ \hline s_1 \\ x_2 \\ s_3 \\ \hline -z \end{array} $	1	2	0	1	0	0	1
-z	-2	-4	0	-2	0	1	0

Bring x_1 into the basis. min-ratio test: $\min\{3/1, 1/2\} = 1/2$, so s_3 leaves the basis.

 $\bar{c}_j \geq 0$ for all j, so we reached an optimal basic feasible solution.

$$\begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \begin{pmatrix} 1/2 \\ 2 \\ 0 \end{pmatrix}, \text{ with } z^* = 0.$$

Since there are non-basic variables with $\bar{c}_j = 0$ we see that there are more optimal solutions. We can let x_3 enter the basis ($\bar{c}_{x_3} = 0$). The min-ratio test indicates that x_1 then leaves the basis.

basis	\bar{b}	$ x_1 $	x_2	x_3	s_1	s_2	s_3	
$\overline{s_1}$	3	1	0	0	1	1	0	$r_1 + r_3$
x_2	1	-2	1	0	0	-1	-1	$r_2 - 2r_3$
x_3	1	2	0	1	0	0	1	$r_1 + r_3$ $r_2 - 2r_3$ $2r_3$ r_0
-z	0	0	0	0	0	1	2	r_0

Another bfs has been found:

$$\begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ with } z^* = 0.$$

These are the only optimal *basic* feasible solutions. All optimal solutions are obtained as convex combinations of these two basic feasible solutions:

$$\begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \lambda_1 \begin{pmatrix} 1/2 \\ 2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \lambda_1 + \lambda_2 = 1, \ \lambda_1, \ \lambda_2 \ge 0, \quad \text{with } z^* = 0.$$

Alternatively, we can write:

$$\begin{pmatrix} x_1^* \\ x_2^* \\ x_3^* \end{pmatrix} = \lambda \begin{pmatrix} 1/2 \\ 2 \\ 0 \end{pmatrix} + (1-\lambda) \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \lambda \ge 0, \quad \text{with } z^* = 0.$$