In [174]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

import re

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

In [345]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2008

Out[345]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM2
0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.889999	10.40
1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.040001	Nal
2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.270000	Nal
3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.850000	Nal
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	21.90
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450000	5.1
226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.020000	Nal
226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.540001	13.9
226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.910000	Nal
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690000	11.4;

226392 rows × 17 columns

In [346]: a.info()

RangeIndex: 226392 entries, 0 to 226391 Data columns (total 17 columns): Column Non-Null Count Dtype --------------0 date 226392 non-null object BEN 67047 non-null float64 1 2 CO 208109 non-null float64 3 EBE 67044 non-null float64 4 MXY 25867 non-null float64 5 NMHC 85079 non-null float64 6 NO 2 225315 non-null float64 225311 non-null float64 7 NOx 8 OXY 25878 non-null float64 9 0 3 215716 non-null float64 PM10 220179 non-null float64 10 11 PM25 67833 non-null float64 12 PXY 25877 non-null float64 13 225405 non-null float64 SO 2 14 TCH 85107 non-null float64 TOL 66940 non-null float64 15 16 station 226392 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 29.4+ MB

<class 'pandas.core.frame.DataFrame'>

```
In [347]: b=a.fillna(value=67)
b
```

Out[347]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	F
0	2008- 06-01 01:00:00	145.00	0.47	145.00	145.00	145.00	83.089996	120.699997	145.00	16.990000	16.88
1	2008- 06-01 01:00:00	145.00	0.59	145.00	145.00	145.00	94.820000	130.399994	145.00	17.469999	19.04
2	2008- 06-01 01:00:00	145.00	0.55	145.00	145.00	145.00	75.919998	104.599998	145.00	13.470000	20.27
3	2008- 06-01 01:00:00	145.00	0.36	145.00	145.00	145.00	61.029999	66.559998	145.00	23.110001	10.85
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.16

226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.45
226388	2008- 11-01 00:00:00	145.00	0.30	145.00	145.00	145.00	41.880001	48.500000	145.00	35.830002	15.02
226389	2008- 11-01 00:00:00	0.25	145.00	0.56	145.00	0.11	83.610001	102.199997	145.00	14.130000	17.54
226390	2008- 11-01 00:00:00	0.54	145.00	2.70	145.00	0.18	70.639999	81.860001	145.00	145.000000	11.91
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.69

226392 rows × 17 columns

```
In [348]: b.columns
```

In [349]: c=b.head(10)

c

Out[349]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	Р
0	2008- 06-01 01:00:00	145.00	0.47	145.00	145.00	145.00	83.089996	120.699997	145.00	16.990000	16.889999	1
1	2008- 06-01 01:00:00	145.00	0.59	145.00	145.00	145.00	94.820000	130.399994	145.00	17.469999	19.040001	14:
2	2008- 06-01 01:00:00	145.00	0.55	145.00	145.00	145.00	75.919998	104.599998	145.00	13.470000	20.270000	14:
3	2008- 06-01 01:00:00	145.00	0.36	145.00	145.00	145.00	61.029999	66.559998	145.00	23.110001	10.850000	14:
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	2
5	2008- 06-01 01:00:00	145.00	0.47	145.00	145.00	0.22	67.820000	101.099998	145.00	20.610001	23.389999	14:
6	2008- 06-01 01:00:00	0.17	0.40	0.44	145.00	0.15	72,639999	91,220001	145.00	17.040001	19.940001	14:
7	2008- 06-01 01:00:00	145.00	0.51	145.00	145.00	145.00	80.440002	141.500000	145.00	10.310000	37.259998	14:
8	2008- 06-01 01:00:00	145.00	0.36	145.00	145.00	145.00	68.150002	85.639999	145.00	23.580000	15.060000	
9	2008- 06-01 01:00:00	145.00	0.18	145.00	145.00	0.16	58.330002	64.769997	145.00	35.060001	7.400000	14:
4 ()			•

Out[350]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	so_
0	145.00	0.47	145.00	145.00	145.00	83.089996	120.699997	145.00	16.990000	16.889999	145.00	8.9
1	145.00	0.59	145.00	145.00	145.00	94.820000	130.399994	145.00	17.469999	19.040001	145.00	5.8
2	145.00	0.55	145.00	145.00	145.00	75.919998	104.599998	145.00	13.470000	20.270000	145.00	6.9
3	145.00	0.36	145.00	145.00	145.00	61.029999	66.559998	145.00	23.110001	10.850000	145.00	5.9
4	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	1.43	10.9
5	145.00	0.47	145.00	145.00	0.22	67.820000	101.099998	145.00	20.610001	23.389999	145.00	10.0
6	0.17	0.40	0.44	145.00	0.15	72.639999	91.220001	145.00	17.040001	19.940001	145.00	6.0
7	145.00	0.51	145.00	145.00	145.00	80.440002	141.500000	145.00	10.310000	37.259998	145.00	5.0
8	145.00	0.36	145.00	145.00	145.00	68.150002	85.639999	145.00	23.580000	15.060000	145.00	7.9
9	145.00	0.18	145.00	145.00	0.16	58.330002	64.769997	145.00	35.060001	7.400000	145.00	6.2
4												

In [351]: sns.pairplot(d)

Out[351]: <seaborn.axisgrid.PairGrid at 0x1b6b1786d30>


```
In [352]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[352]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [353]: sns.heatmap(d.corr())

Out[353]: <AxesSubplot:>


```
In [354]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [355]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [356]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[356]: LinearRegression()

```
In [357]: print(lr.intercept_)
           1.2344948896697616
In [358]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
           coeff
Out[358]:
                    Co-efficient
             BEN -4.838476e-04
              CO 6.625942e-14
             EBE -4.832031e-04
             MXY -1.479348e-04
            NMHC 9.927506e-01
            NO_2 -1.152870e-14
             NOx 3.615275e-15
             OXY -1.493934e-04
In [359]: | prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[359]: <matplotlib.collections.PathCollection at 0x1b6c94ca910>
            140
            120
            100
             80
             60
             40
             20
                      20
                            40
                                  60
                                        80
                                             100
                                                   120
                                                         140
In [360]: |print(lr.score(x_test,y_test))
           0.9999997345787882
In [361]: from sklearn.linear_model import Ridge,Lasso
In [362]: rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[362]: Ridge(alpha=10)
In [363]: rr.score(x_test,y_test)
Out[363]: 0.9999988523657496
```

```
In [364]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[364]: Lasso(alpha=10)

In [365]: la.score(x_test,y_test)

Out[365]: 0.9999947449730094

In [366]: a1=b.head(7000)

a1

Out[366]:

	date	BEN	со	EBE	MXY	ИМНС	NO_2	NOx	ОХҮ	O_3	PM10
0	2008- 06-01 01:00:00	145.00	0.47	145.0	145.00	145.00	83.089996	120.699997	145.00	16.990000	16.889999
1	2008- 06-01 01:00:00	145.00	0.59	145.0	145.00	145.00	94.820000	130.399994	145.00	17.469999	19.040001
2	2008- 06-01 01:00:00	145.00	0.55	145.0	145.00	145.00	75.919998	104.599998	145.00	13.470000	20.270000
3	2008- 06-01 01:00:00	145.00	0.36	145.0	145.00	145.00	61.029999	66.559998	145.00	23.110001	10.850000
4	2008- 06-01 01:00:00	1.68	0.80	1.7	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000
							•••				
6995	2008- 06-12 06:00:00	145.00	0.32	145.0	145.00	145.00	65.290001	86.440002	145.00	18.590000	15.790000
6996	2008- 06-12 06:00:00	145.00	0.12	145.0	145.00	145.00	27.959999	31.129999	145.00	59.799999	18.430000
6997	2008- 06-12 06:00:00	145.00	0.14	145.0	145.00	0.13	15.480000	18.360001	145.00	73.620003	9.890000
6998	2008- 06-12 06:00:00	145.00	0.29	145.0	145.00	145.00	15.630000	18.490000	145.00	78.970001	8.470000
6999	2008- 06-12 06:00:00	145.00	0.16	145.0	145.00	145.00	11.860000	14.410000	145.00	88.370003	11.270000

7000 rows × 17 columns

```
In [368]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [369]: h=StandardScaler().fit transform(f)
In [370]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[370]: LogisticRegression(max_iter=10000)
In [371]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [372]: |i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [373]: | prediction=logr.predict(i)
          print(prediction)
          [28079039]
In [374]: |logr.classes_
Out[374]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                 28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
                 28079040, 28079099], dtype=int64)
In [375]: logr.predict proba(i)[0][0]
Out[375]: 1.434851782584846e-58
In [376]: |logr.predict_proba(i)[0][1]
Out[376]: 2.0338132081220725e-57
In [377]: logr.score(h test,g test)
Out[377]: 0.5480952380952381
In [378]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ coordinate descent.p
          y:530: ConvergenceWarning: Objective did not converge. You might want to increase the
          number of iterations. Duality gap: 5.907676344145945, tolerance: 3.5369965392932508
            model = cd_fast.enet_coordinate_descent(
Out[378]: ElasticNet()
In [379]: print(en.coef_)
          [-5.65388513e-04 0.00000000e+00 -1.73285441e-04 1.21588122e-01
            9.92482759e-01 -0.00000000e+00 -0.00000000e+00 -1.20484102e-01]
```

```
In [380]: print(en.intercept_)
          1.0341488827156695
In [381]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          0.9999999550715535
In [382]: from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[382]: RandomForestClassifier()
In [383]: | parameters={ 'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]
           }
In [384]: | from sklearn.model_selection import GridSearchCV
          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
          grid_search.fit(h_train,g_train)
Out[384]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [385]: grid_search.best_score_
Out[385]: 0.6612244897959183
In [386]: rfc best=grid search.best estimator
```

In [391]: **from** sklearn.tree **import** plot tree plt.figure(figsize=(80,50)) plot_tree(rfc_best.estimators_[20],filled=True) $= [192, 14, 87, 0, 0, 0, 6, 0, 10, 109, 0, 24, 8 \ 124, 167, 5, 0, 0, 119, 0, 0, 19]$ 1, 124, 29, 79\n0]'), Text(3826.2857142857147, 226.5, 'gini = 0.885\nsamples = 351\nvalue = [120, 10, 3 6, 0, 0, 0, 6, 0, 6, 43, 0, 16, 0\n57, 54, 5, 0, 0, 72, 0, 0, 66, 35, 8, 20, 0]'), Text(4008.4897959183677, 226.5, 'gini = 0.89\nsamples = 463\nvalue = [72, 4, 51, 0, 0, 0, 0, 0, 4, 66, 0, 8, 8, 67\n113, 0, 0, 0, 47, 0, 0, 125, 89, 21, 59, 0]'), Text(4281.795918367347, 679.5, 'X[5] <= -0.717\ngini = 0.844\nsamples = 253\nvalue = [3, 1, 96, 0, 4, 0, 0, 0, 0, 40, 0, 0, 31 n 28, 0, 0, 0, 26, 0, 0, 8, 63, 11, 8]1, 0]'), Text(4190.693877551021, 226.5, 'gini = 0.699\nsamples = 94\nvalue = [0, 0, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4\n1, 0, 0, 0, 5, 0, 0, 2, 27, 5, 66, 0]'), Text(4372.897959183674, 226.5, 'gini = 0.858\nsamples = 159\nvalue = [3, 1, 58, 0, 4, 0, 0, 0, 0, 40, 0, 0, 0, 27\n27, 0, 0, 0, 21, 0, 0, 6, 36, 6, 15, 0]')]

Conclusion: from this data set i observed that the ELASTICNET has the highest accuracy of 0.999999550715535

In []: