Groups 4 Subgroups

Contents

1	intro	2
2	definition	2
	isomorphisms 3.1 Examples	3

1 intro

Consider
$$U = \{ z \in \mathbb{C} \mid |z| = 1 \} \subseteq \mathbb{C}$$
.

note

each elem of U is defined by $\theta \in [0, 2\pi) = \mathbb{R}_{2\pi}$

Every angle
$$\theta \in \mathbb{R}_{2\pi}$$
 given by $f: U \to R_{2\pi}, \ f(z) = \theta$ for $z = e^{i\theta}$ +
$$f^{-1}: \mathbb{R}_{2\pi} \to U, \ f^{-1}(\theta) = e^{i\theta}$$

Consider U with multiplication:

Let
$$z_1 = e^{i\theta_1}, z_2 = e^{i\theta_2} \in U$$

then $z_1 \cdot z_2 = e^{i\theta_1} \cdot e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$ where $\theta_1, \theta_2 \in \mathbb{R}_{2\pi}, \theta_1 + \theta_2 \in \mathbb{R}_{2\pi}$

Set U is <u>closed</u> under multiplication.

2 definition

 def algebraic structure

Let S be a set.

Let \star be a binary operation on S

 $\star: S \times S \to S$

 (S, \star) is an algebraic structure

So (U, \cdot) and $(\mathbb{R}_{2\pi}, +_{2\pi})$ are algebraic structures such that there is a "1-1" relation between U and $\mathbb{R}_{2\pi}$ and operations are preserved.

$$(U, \cdot) \simeq (\mathbb{R}_{2\pi}, +_{2\pi})$$
 or
$$U \simeq \mathbb{R}_{2\pi}$$

3 isomorphisms

To show two algebraic structures are isomorphic, find a bijective function that preserves the operations. Isomorphic structures share the same algebraic properties (associativity, commutative, distributive...).

To show two algebraic structures are <u>not</u> isomorphic, find a property that they don't share (the easiest to check is cardinality).

3.1 Examples

$$(\mathbb{N}, +) \not\simeq (\mathbb{Z}, +)$$

because \mathbb{N} has no additive identity

$$(\mathbb{Z}^*,\,\cdot)\not\simeq(\mathbb{Q}^*,\,\cdot)$$

because not all elements of \mathbb{Z}^* have inverses $\left(\frac{n}{m}\right)^{-1} = \frac{m}{n}$

$$(\mathbb{R}, +) \not\simeq (\mathbb{R}, \cdot)$$

because $x \star x + 1 = 0$ is solveable in $(\mathbb{R}, +) : 2x + 1 = 0$ but unsolveable in $(\mathbb{R}, \cdot) : x^2 + 1 = 0$