Efficient NIZK for NP without Knowledge Assumptions

Alonso González¹

Mi casita

Abstract. Insert abstract here.

1 Introduction

In this work we construct a NIZK argument of knowledge (NIZK-AoK) for the language

 $\mathsf{CircuitSat} := \left\{ C : \exists \boldsymbol{x} \in \mathbb{Z}_p^m \text{ s.t. } C \text{ is an algebraic circuit and } C(\boldsymbol{x}) = 1 \right\},$

with proof size $\kappa + \Theta(\operatorname{depth}(C))$ elements of a bilinear group, where κ is the size of a proof of knowledge of \boldsymbol{x} . In the case of binary circuits, i.e. p=2, we have that $\kappa=2|\boldsymbol{x}|+O(1)$ using the techniques of [?]. In general, κ sould be independent from the circuit.

We organize the circuit gates by level, where level ℓ is formed by the gates at distance ℓ from the output gate. For example, the d-th level, where $d := \operatorname{depth}(C)$, contain the gates whose inputs are only elements from the circuit input \boldsymbol{x} and the 0-th level contains the unique gate whose output is the output of the circuit.

To each level we might associate a vector of degree 2 polynomials $\mathbf{p}_{\ell} \in \mathbb{Z}_{q}^{n_{\ell}}[W_{1},\ldots,W_{m_{\ell}}]$, where $m_{\ell} \in \mathbb{N}$ is the number of inputs of level ℓ and $n_{\ell} \in \mathbb{N}$ is the number of outputs (or, equivalently the number of gates) of level ℓ . Note that it must hold that $\sum_{i<\ell} n_{i} \geq m_{\ell} \geq n_{\ell-1}$ (TODO: Check this) and that it must hold that for every $\mathbf{x} \in \mathbb{Z}_{p}^{m}$

$$C(x) = (p_d \circ p_{d-1} \circ \ldots \circ p_0)(x)$$
 TODO: I need to add id gates

We work on asymmetric bilinear groups and our construction is built from the following primitives:

- 1. A commitment scheme for vectors in \mathbb{Z}_q^m for wich we can construct a NIZK argument of knowledge of the opening.
- 2. An homomorphic commitment scheme Com for vectors in \mathbb{Z}_q^m , randomness in \mathbb{Z}_q^r , and commitment keys in $\mathbb{G}_s^{k\times (m+r)}$ with (possibly) constant-size commitments in \mathbb{G}_s^k , $s\in\{1,2\}$. Additionally we require that, whenever k=m+r, Com defines perfectly binding commitments.

3. A constant size QA-NIZK argument for the following language

$$\mathcal{L}_{\mathsf{deg-2},ck,ck'}(\boldsymbol{p}) := \left\{ \begin{aligned} & \text{knowledge of } \boldsymbol{x} \text{ s.t. } [\boldsymbol{c}]_1 = \mathsf{Com}_{ck}(\boldsymbol{x}) \Longrightarrow \\ [\boldsymbol{c}]_s,[\boldsymbol{c}']_s : \text{knowledge of } \boldsymbol{y} \text{ s.t. } [\boldsymbol{c}']_1 = \mathsf{Com}_{ck'}(\boldsymbol{y}) \\ & \text{and } \boldsymbol{y} = \boldsymbol{p}(\boldsymbol{x}) \end{aligned} \right\},$$

for some $p \in \mathbb{Z}_p^n[X_1, \dots, X_m]$ of degree at most 2. In turn, this QA-NIZK argument is constructed from the following primitives:

I don't know if it would be a good idea to introduce a notion of conditional argument (or proof) of knowledge, where the soundness reduction has access to an oppening of the commitments.

(a) A QA-NIZK argument for the following language

$$\mathcal{L}_{\mathsf{prod},ck_1,ck_2} = \left\{ [oldsymbol{a}]_1, [oldsymbol{b}]_2, [oldsymbol{c}]_1 : egin{align*} [oldsymbol{a}]_1 = \mathsf{Com}_{ck_1}(oldsymbol{x}) & \mathrm{and}[oldsymbol{b}]_2 = \mathsf{Com}_{ck_2}(oldsymbol{y}) \ \Longrightarrow [oldsymbol{c}]_1 = \mathsf{Com}_{ck_3}(oldsymbol{x} \otimes oldsymbol{y}) \end{pmatrix},$$

where $\boldsymbol{x} \in \mathbb{Z}_q^m$, $\boldsymbol{y} \in \mathbb{Z}_q^n$, $\boldsymbol{x} \otimes \boldsymbol{y} \in \mathbb{Z}_q^{mn}$, $ck_3 = ck_1 \otimes ck_2 \in \mathbb{G}_T^{k_1k_2 \times (m+r_1)(n+r_2)}$, and \otimes denote the kroenecker product between matrices with entries in \mathbb{Z}_q or \mathbb{G}_s , where multiplication is replace by the pairing function e when necessary (the commitment keys are matrices of group elements).

(b) A QA-NIZK argument for the language

$$\mathcal{L} = \left\{ [\boldsymbol{c}]_1, [\boldsymbol{c}']_1 : \underset{[\boldsymbol{c}']_1}{\text{knowledge of } \boldsymbol{x} \text{ s.t. } [\boldsymbol{c}]_1 = \mathsf{Com}_{ck_1 \otimes ck_2}(\boldsymbol{x}) \Longrightarrow \right\},$$

(c) A QA-NIZK argument for the language

$$\mathcal{L} = \left\{ [\boldsymbol{c}]_1, [\boldsymbol{a}']_1, [\boldsymbol{b}']_2 : \begin{array}{l} \text{knowledge of } \boldsymbol{x} \text{ s.t. } [\boldsymbol{c}]_1 = \mathsf{Com}_{ck}(\boldsymbol{x}) \\ \Longrightarrow [\boldsymbol{a}']_1 = \mathsf{Com}_{ck_1}(\boldsymbol{\Gamma}_1 \boldsymbol{x}) \text{ and } [\boldsymbol{b}']_2 = \mathsf{Com}_{ck_2}(\boldsymbol{\Gamma}_2 \boldsymbol{x}) \end{array} \right\},$$

2 Technical Overview

Constant-Size Multiplicative Homomorphic Commitments. Both Groth-Sahai and Pedersen commitments are special cases of the following general commitment scheme

$$ck := [\mathbf{G}]_s = [\mathbf{G}_0|\mathbf{G}_1] \in \mathbb{G}_s^{k \times (n+r)}, \quad \mathsf{Com}_{ck}(\mathbf{x}; \boldsymbol{\rho}) = [\mathbf{G}_0]_s \mathbf{x} + [\mathbf{G}_1]_s \boldsymbol{\rho}.$$

Groth-Sahai commitments correspond to the case k=n+r, which defines perfectly binding commitments if **G** is invertible, and Pedersen commitments correspond to the case k=1, which defines perfectly hiding commitments. We will consider the case k>1 which has been called *somewhere statiscally binding* commitments and is a mixture between Groth-Sahai and Pedersen commitments.

With this formulation is easy to derive commitments to $\boldsymbol{x} \otimes \boldsymbol{y}$ from commitments to $\boldsymbol{x} \in \mathbb{Z}_q^m$ and $\boldsymbol{y} \in \mathbb{Z}_q^n$, as follows

$$\mathsf{Com}_{ck_3}(\boldsymbol{x}\otimes\boldsymbol{y};\boldsymbol{
ho}_3):=\mathsf{Com}_{ck_1}(\boldsymbol{x};\boldsymbol{
ho}_1)\otimes\mathsf{Com}_{ck_2}(\boldsymbol{y};\boldsymbol{
ho}_2),$$

where $ck_2 := [\mathbf{H}_0 | \mathbf{H}_2]_1, ck_3 = [\mathbf{G} \otimes \mathbf{H}]_T$ and

$$oldsymbol{
ho}_3 = egin{pmatrix} oldsymbol{0}_m \ oldsymbol{
ho}_1 \end{pmatrix} \otimes egin{pmatrix} oldsymbol{y} \ rac{1}{2}oldsymbol{
ho}_2 \end{pmatrix} + egin{pmatrix} oldsymbol{x} \ rac{1}{2}oldsymbol{
ho}_1 \end{pmatrix} \otimes egin{pmatrix} oldsymbol{0}_n \ oldsymbol{
ho}_2 \end{pmatrix}$$

 $(\rho_3 \text{ has a different form?}).$

This approach has the disadvantage that once we compute $[c]_T = \mathsf{Com}_{ck_3}(x \otimes y)$ we are stucked in the target group and no more multiplications are possible. But one can still *bootstrap* commitment $[c]_T$ (in some analogy with FHE techniques) by bringing it to one of the base groups \mathbb{G}_s and requiring the verifier to check that

$$e([\mathbf{a}]_1, [\mathbf{b}]_2) = e([\mathbf{c}]_s, [\mathbf{I}]_{2-s+1}).$$

Arguments of Equal Opening. Given $[c]_1 = \mathsf{Com}_{ck}(x; \rho)$, where $ck = ck_1 \otimes ck_2$, we want to show that $[c']_1$ can be also oppened to x but ck' is a random commitment key.

To do so we will give a QA-NIZK argument that c/c' is in the linear span of

$$\mathbf{J} := egin{pmatrix} \mathbf{G}_0 \otimes \mathbf{H}_0 \ \mathbf{G}_0 \otimes \mathbf{H}_1 \ \mathbf{G}_1 \otimes \mathbf{H}_0 \ \mathbf{G}_1 \otimes \mathbf{H}_1 \ \mathbf{0} \ \mathbf{G}_0' \end{pmatrix}$$

However, the QA-NIZK argument only shows the existence of some \boldsymbol{w} such that $\boldsymbol{c}/\boldsymbol{c}' = \mathbf{J}\boldsymbol{w}$ but it might be the case that \boldsymbol{c}' still can't be oppened to \boldsymbol{x} — i.e. \boldsymbol{w} can't be \boldsymbol{x} appended with some other vector. We will show that this is not the case when there is some extractor that extracts \boldsymbol{x} from the proof.

Assume that $[c]_1 = \mathsf{Com}_{ck}(x; \rho)$ but $[c']_1 \neq \mathsf{Com}_{ck'}(x; \rho')$ for any ρ' , and assume also that the adversary provides a valid proof $[\pi]_1$ for $[c/c']_1$. Given knowledge of x, we can compute $[c^{\dagger}]_1 := \mathsf{Com}_{ck}(x; \mathbf{0})$ and $[c^{\ddagger}] := \mathsf{Com}_{ck'}(x; \mathbf{0})$, and note that c^{\dagger}/c^{\ddagger} is in the immage of \mathbf{J} and thus we can compute a proof $[\pi^{\dagger}]_1$ for $[c^{\dagger}/c^{\ddagger}]_1$. By the properties of the QA-NIZK arguments for linear spaces, we get that $[\pi - \pi^{\dagger}]_1$ is a proof for $[d^{\dagger}/d^{\ddagger}]_1$, where

$$[oldsymbol{d}^{\dagger}]_1 = [oldsymbol{c} - oldsymbol{c}^{\dagger}]_1 = \mathsf{Com}_{ck}(oldsymbol{0}; oldsymbol{
ho})$$

and

$$[oldsymbol{d}^{\ddagger}]_1 = [oldsymbol{c}' - oldsymbol{c}^{\ddagger}]
eq \mathsf{Com}_{ck}(oldsymbol{0}, oldsymbol{
ho}^{\ddagger})$$

for any ρ^{\ddagger} .

We will show that d^{\dagger}/d^{\ddagger} is not in the immage of \mathbf{J}' , such that $[\mathbf{J}']_1$ is computationally indistinguishable from $[\mathbf{J}]_1$.

Let $u_0, u_1, v_0, v_1, u'_0, u'_1$ randomly chosen from \mathbb{Z}_q^k . We compute **J** as before but now ck_1, ck_2 and ck' are computed as follows

$$ck_1 = [\mathbf{G}_0|\mathbf{G}_1]_1 = [\boldsymbol{u}_0\mathbf{A}_0|\boldsymbol{u}_1\mathbf{A}_1]_1$$

$$ck_2 = [\mathbf{H}_0|\mathbf{H}_1]_2 = [\boldsymbol{v}_0\mathbf{B}_0|\boldsymbol{v}_1\mathbf{B}_1]_2$$

$$ck' = [\mathbf{G}'_0|\mathbf{G}'_1]_1 = [\boldsymbol{u}'_0(\mathbf{A}_0 \otimes \mathbf{B}_0) + \boldsymbol{u}_1\mathbf{C}_0|\boldsymbol{u}_1\mathbf{C}_1]_1$$
(1)

since $[u]_s \mu$, $\mu \leftarrow \mathbb{Z}_q$, is indistinguishable from a random element in \mathbb{G}_s^k — as long as the DDH assumption is hard in \mathbb{G}_s — it follows that the new commitment keys are indistinguishable from the original ones.

There is still a technical problem with this approach: when using the DDH assumption in \mathbb{G}_2 to change the distribution of ck_2 we can only compute $[\mathbf{J}]_2$ while we need to compute $[\mathbf{J}]_1$ to carry on the soundness proof. This problem has already arised and solved in [?] and we use a similar solution in our final proof system. For the sake of clarity, for this intuitive explanation we just assume that ck_1, ck_2 and ck' are sampled from (1) in the real game (although this will render impossible to prove zero-knowledge).

Going back to the problem of whether d^{\dagger}/d^{\dagger} is in the immage of **J**, we get that now this is not the case. Indeed, define $u_{i,j} := u_i \otimes v_j$, $i, j \in \{0,1\}$, and note that matrix **J** is equal to

$$\begin{pmatrix} \boldsymbol{u}_{0,0}(\mathbf{A}_0 \otimes \mathbf{B}_0) & \boldsymbol{u}_{0,1}(\mathbf{A}_0 \otimes \mathbf{B}_1) \; \boldsymbol{u}_{1,0}(\mathbf{A}_1 \otimes \mathbf{B}_0) \; \boldsymbol{u}_{1,1}(\mathbf{A}_1 \otimes \mathbf{B}_1) \; \boldsymbol{0} \\ \boldsymbol{u}_0'(\mathbf{A}_0 \otimes \mathbf{B}_0) + \boldsymbol{u}_1'\mathbf{C}_0 & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{u}_1'\mathbf{C}_1 \end{pmatrix}$$

and that d^{\dagger}/d^{\ddagger} can be written as

$$\begin{pmatrix} \boldsymbol{d}^{\dagger} \\ \boldsymbol{d}^{\dagger} \end{pmatrix} = \begin{pmatrix} \boldsymbol{u}_{0,1} \mu_{0,1} + \boldsymbol{u}_{1,0} \mu_{1,0} + \boldsymbol{u}_{1,1} \mu_{1,1} \\ \boldsymbol{u}_{0}' \nu_{0} + \boldsymbol{u}_{1}' \nu_{1} \end{pmatrix}, \text{ where } \nu_{0} \neq 0.$$

Lets see that d^{\dagger}/d^{\ddagger} is not in the immage of **J** by showing that there aren't solutions to $d^{\dagger}/d^{\ddagger} = \mathbf{J}(w_{0,0}/w_{0,1}/w_{1,0}/w_{1,1}/w_2)$. Indeed, suppose that

$$\begin{pmatrix} u_{0,1}\mu_{0,1} + u_{1,0}\mu_{1,0} + u_{1,1}\mu_{1,1} \\ u'_0\nu_0 + u'_1\nu_1 \end{pmatrix} = \begin{pmatrix} \sum_{i,j \in \{0,1\}} u_{i,j} (\mathbf{A}_i \otimes \mathbf{B}_j) w_{i,j} \\ u_0(\mathbf{A}_0 \otimes \mathbf{B}_0) w_{0,0} + u'_1 \mathbf{C}_0 w_{0,0} + u'_1 \mathbf{C}_1 w_2. \end{pmatrix}$$
(2)

Given that $u_{0,0}$ is linearly independent from $\{u_{0,1}, u_{1,0}, u_{1,1}\}$ and that $u_{0,0}$ doesn't appear on the left side of the first row of equation (2), it must hold that $(\mathbf{A} \otimes \mathbf{B})w_{0,0} = \mathbf{0}$. Then, the second row is reduced to

$$u_0'\nu_0 + u_1'w_0\nu_1 = u_1'(\mathbf{C}_0w_{0,0} + \mathbf{C}_1w_2).$$

Since u_0' is linearly independent from u_1' , it must hold that $\nu_0 = 0$ but this contradicts the fact that $c' \neq \mathsf{Com}_{ck'}(x; \rho')$ for all ρ' . We conclude that d^{\dagger}/d^{\ddagger} is not in the immage of \mathbf{J} and $[\pi - \pi^{\dagger}]$ is a proof of a false statement, contradicting the soundness of the QA-NIZK proof system for linear languages.

With symmetric bilinear groups this problen doesn't even exists, and in the soundness proof we might change $[\mathbf{J}]_1$ distribution without any problem.