frontal.lib

June 7, 2023

1 Public procedures

These procedures are available for other libraries and the end user to use.

1.1 fcodim

Given a frontal map germ $f:(N,x)\to (Z,y)$, compute the frontal codimension of f. For plane curves, if we write the equation for the image of f as g=0, we can use the formula

$$\operatorname{codim}_{\mathscr{F}_e} f = \tau(g) - \delta(g) - \operatorname{mult}(g) + 1$$

from [2].

For the general case, let g=0 be the equation for the image of f and (f_t) be a frontal disentanglement of f (see [1]) with equation G=0 in the image. A conjecture by Nuño-Ballesteros states that

$$\operatorname{codim}_{\mathscr{F}_e} f = \dim \frac{J(G) + (G)}{J_{rel}(G) + (g)} \otimes \mathbb{C}\{t\},$$

where J(G) is the Jacobian ideal of G and $J_{rel}(G)$ is the relative Jacobian ideal, wherein the partial derivatives with respect to the parameter t are ignored.

2 Static procedures

These procedures are only available for this library, and are declared with the static type. To make them available, simply remove the static type in code.

2.1 wdeg

Given a weighted homogeneous polynomial $g \in \mathbb{K}[x_1, \dots, x_n]$, there exist by definition $w_1, \dots, w_n, d \geq 0$ such that

$$g((\lambda x_1)^{w_1}, \dots, (\lambda x_n)^{w_n}) = \lambda^d g(x_1^{w_1}, \dots, x_n^{w_n}).$$

The values w_1, \ldots, w_n are known as the *weights* of g, and d, as the *weighted homogeneous degree* of g. This procedure takes a weighted homogeneous polynomial g and returns

- 1. the weights of g;
- 2. the weighted homogeneous degree of g.

References

- [1] C. Muñoz-Cabello, J. J. Nuño-Ballesteros, and R. Oset Sinha. Singularities of frontal surfaces, 2022.
- [2] C. Muñoz-Cabello, J. J. Nuño-Ballesteros, and R. Oset Sinha. Deformations of corank 1 frontals, 2023.