Dynamic Network Analysis of Bitcoin's Lightning Network

Ferenc Béres¹, István András Seres², and Claas Brüß³

¹MTA SZTAKI

²Department of Computer Algebra, Eötvös Loránd University ³Technise Universität München

May 5, 2019

Abstract

Keywords: Bitcoin, Lightning Network, Network Security, Network Topology, Payment Channel Network, Network Robustness

1 Introduction

2 Notation

Let E(t) and N(t) denote the number of edges and nodes at time t respectively.

3 LN's evolution

3.1 Macroscopic evolution

Ever since LN had been launched its popularity steadily grew, causing its average degree increasing over time. In [1] it was shown that densification of real networks follow power-law distribution, i.e.:

$$E(t) \propto N(t)^a,$$
 (1)

where we call a the power law densification exponent, where $1 \le a \le 2$. If a = 1, then average degree of the network is constant over time, on the other hand if a = 2, the network is an extremely dense graph, where each node has, on average, edges to a constant fraction of all nodes [1]. We found that LN is no exception to the DPL rule (3.1).

Figure 1: LN follows the Densification Power Law relation with exponent a=1.55634117. Goodness-of-fit: $\mathbb{R}^2=0.98$.

3.2 Microscopic evolution

- 4 Link prediction
- 5 Fee (sub)optimality
- 6 Conclusion
- ${\bf 7} \quad {\bf Acknowledgements}$

References

[1] Jurij Leskovec. *Dynamics of large networks*. PhD thesis, Carnegie Mellon University, School of Computer Science, Machine Learning . . . , 2008.