

MODÉLISER LE COMPORTEMENT DES SYSTÈMES MÉCANIQUES DANS LE BUT D'ÉTABLIR UNE LOI DE COMPORTEMENT EN UTILISANT DES MÉTHODES

PSI - PSI *

BILAN ÉNERGÉTIQUE D'UN SYSTÈME MULTIPHYSIQUE

CHEVILLE DU ROBOT NAO

1 OBJECTIFS

1.1 Objectif technique

Objectif:

L'objectif de ce TP est d'estimer l'énergie nécessaire à la mise en mouvement de la cheville ainsi que la part attribuée à chaque sous ensemble.

1.2 Contexte pédagogique

Analyser:

☐ A3 – Conduire l'analyse

Modéliser:

- ☐ Mod2 Proposer un modèle
- Mod3 Valider un modèle

Résoudre:

☐ Rés2 — Procéder à la mise en œuvre d'une démarche de résolution analytique

1.3 Évaluation des écarts

Problématique : déterminer la consommation énergétique de la cheville lors d'une flexion du robot.

2 ÉVALUATION DE L'ÉNERGIE NÉCESSAIRE À LA MISE EN MOUVEMENT DE LA CHEVILLE

2.1 Évaluation de l'énergie cinétique

Activité 2 - Modélisation

- □ Proposer une méthode permettant de donner l'expression littérale de l'énergie cinétique de l'ensemble de la cheville dans son mouvement par rapport au bâti.
- Proposer une méthode permettant de déterminer l'inertie équivalente des pignons ramenée sur l'arbre moteur.

Activité 3 - Expérimentation - Modélisation

- □ Proposer une méthode expérimentale permettant d'estimer la (les) composante(s) utile(s) de la matrice d'inertie des pignons.
- ☐ Proposer une méthode, à partir de SolidWorks, permettant d'estimer le moment d'inertie des pignons.
- ☐ Proposer une méthode permettant de valider les valeurs déterminées.

2.2 Synthèse

Activité 4 - Résolution

Évaluer l'énergie cinétique de l'ensemble de la cheville dans son mouvement par rapport au bâti. Vous prendrez soin d'identifier la part (en pourcentage) de chacune des composantes de l'énergie cinétique.

Activité 5 - Résolution

☐ Évaluer le nombre de squats que peut réaliser le robot NAO.

1 Présentation Générale

1.1 Description générale

.2 Géométrie du robot

1.3 Spécification de la batterie

Battery type	Lithium ion	
Nominal voltage/capacity	21.6 V / 2.15 Ah	
Max charge voltage	24.9 V	
Recommended charge current	2 A	
Max discharge current	2.0 A	
Energy	27.6 Wh	

1.4 Spécifications de la cheville

Ankle Pitch	Module	Z	Coefficient de déport	Entraxe de fonctionnement	Rapport de réduction
pignon_03_20		20	0		
mobile_inf_1 - roue	0,3	80	0	15	4
mobile_inf_1- pignon	0,4	25	0,214	14,5	1,88
mobile_inf_2 - roue		47	0,042		
mobile_inf_2 - pignon	0,4	12	0,564	14,5	4,83
mobile_inf_4 - roue		58	0,836		
mobile_inf_4 - pignon	0,7	10	0,541	16,8	3,6
roue_sortie_inf		36	0,603		
Rapport					130,85

