- 29/03/2019 CLASSE 1° AME TECNOLOGIE INFORMAZIONE E TELECOMUNICAZIONE STUDENTE 1) Un BiT quanti valori può contenere: 2) Elenca i valori che può contenere: 3) Se uso due BiT quante informazioni posso esprimere? Fai vedere quali. 4) Se devo esprimere i 4 segni delle carte da gioco: Cuori, Picche, Quadri e Fiori, quanti bit dovrei utilizzare? 5) Fai vedere che associ ogni possibile combinazione a ogni seme: 6) Problema: Un mazzo di carte francesi ha come detto 4 semi e per ogni seme ci sono 13 valori: ASSO, DUE, TRE, QUATTRO,, DIECI, JACK, DONNA e RE. Quindi un totale 13 * 4 = 52 carte. Quanti BiT sono necessari per esprimere ognuna delle 52 carte?
 - Tenendo conto del Seme scrivete da esempio ASSO di CUORI mettendo i primi N¹ bit per la parte del seme (4 possibili semi) e i secondi N² bit per la parte del valore (13 possibili valori), esempio come nella figura, scrivete la sequenza di BiT:

Scegliete una delle 4 possibili combinazioni per esprimere il seme, Cuori, e una delle possibili 13 combinazioni per

esprimere il valore, ASSO.

- 7) Di quanti Bit è composto un Byte?
- 8) DATA LA TABELLA ASCII STANDAR, i primi 128 caratteri, scrivete la parola 'Cane' in binario, separando carattere per carattere:

Codice ASCII STANDARD

Byte		Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000	0	Null	00100000	32	Spc	01000000	64	(a)	01100000	96	`
00000001	1	Start of heading	00100001	33	!	01000001	65	$\check{\mathbf{A}}$	01100001	97	a
00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	с
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40		01001000	72	Н	01101000	104	h
00001001	9	Horizontal tab	00101001	41) l	01001001	73	I	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	j
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44	,	01001100	76	L	01101100	108	1
00001101	13	Carriage return	00101101	45		01001101	77	\mathbf{M}	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	р
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	v
00010111	23	End trans. block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
00011010	26	Substitution	00111010	58	:	01011010	90	Z	01111010	122	z
00011011	27	Escape	00111011	59	;	01011011	91	1	01111011	123	{
00011100	28	File separator	00111100	60	<	01011100	92	Ì	01111100	124	Ì
00011101	29	Group separator	00111101	61	=	01011101	93	1	01111101	125	}
00011110	30	Record Separator	00111110	62	>	01011110	94	Å	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95	_	01111111	127	Del

9) Ora sempre utilizzando la tabella ASCII STANDARD, decodificate la sequenza binari:

01000011 01100001 01110011 01100001

controllate che sia scritto 'Casa'. E' vero?