2-Sécurisation des équipements réseaux

Techniques de sécurisation

- Sécurisation des équipements réseaux
 - Filtrage par adresse MAC
 - Gestion des mots de passe
 - Recouvrement des mots de passe oubliés
 - Protection des lignes de commandes
 - Désactivation des services inutilisés
 - Sauvegarde TFTP
 - Connexions distantes TELNET et SSH
 - Sécurisation des accès WLAN
 - Authentification
 - Protocoles AAA

Filtrage par adresses MAC

- En théorie l'@MAC est unique
- Table MAC commutateur
- Le commutateur effectue une association
 @MAC source / port

Table MAC:

- Filtrage par adresse MAC
 - Permet d'autoriser ou de refuser l'accès au réseau aux équipements définis dans une liste d'accès.
 L'@MAC est analysée par le commutateur et est comparée à la liste des autorisations

Filtrage par adresses MAC

- Lorsqu'un PC se connecte sur un port d'un Switch il est capable de récupérer l'ensemble du trafic passant par ce port du Switch
 - Il faut donc sécuriser l'accès à ses ports
- On peut donc protéger certains ports en restreignant l'accès à une ou plusieurs @MAC spécifiques
 - Utiliser le mode access
 - Autoriser la connexion qu'à une seule adresse MAC
 - Spécifier la seule adresse MAC autorisée à se connecter sur ce port précis
 - Apprentissage dynamique de l'adresse autorisée
 - Désactiver le port en cas de violation

Configuration

- Elle se fait en plusieurs étapes
 - □ 1. Mettre le port en mode access
 - Switch(config-if)# switchport mode access
 - 2. Activer la sécurité globale sur un ou plusieurs ports
 - Switch(config-if)# switchport port-security
 - 3. Indiquer le **nombre maximum** d'adresses MAC qui peuvent se connecter sur ce port (dans l'exemple 2)
 - Switch(config-if)# switchport port-security max 2
- Il existe deux cas pour le filtrage
 - Filtrage statique : la liste des adresses mac autorisées est spécifiée de manière statique
 - Filtrage dynamique : la liste des adresses mac autorisées est apprise dynamiquement

Configuration

- Filtrage statique
 - 4. Pour spécifier les seules adresses MAC autorisées
 - Switch(config-if)#switchport port-security macaddress 0001.424B.6502
 - Switch(config-if)#switchport port-security macaddress 00a1.b2cB.def2
- Filtrage dynamique
 - 4. Les adresses mac autorisées sont apprises dynamiquement par ordre d'arrivée jusqu'à atteindre le nombre maximum fixée
 - Switch(config-if)#switchport port-security macaddress sticky

Configuration

- Etapes suivantes
 - □ 5. En cas de violation action à entreprendre
 - Switch(config-if)# switchport port-security violation ?
- Il existe deux méthodes en cas de violation
 - shutdown : le port est totalement désactivé
 - □ restrict : le port est activé mais tous les paquets de la machine non autorisée sont bloqués. Le Switch garde en mémoire le nombre de violations
- Remettre le port dans l'état initial non sécurisé
 - Switch#clear port-security [options]
 - Réactiver un port désactivé par le filtrage
 - Faire no shutdown et ensuite shutdown

Gestion des mots de passe

- Mot de passe d'accès à la console
 - Routeur(config)#line console 0
 - Routeur(config-line)#password cisco
 - Routeur(config-line)#login
- Mot de passe administrateur
 - Deux manières de le définir
 - Routeur(config)#enable password class1
 - Routeur(config)#enable secret class2
 - Le mot de passe <u>secret</u> est prioritaire sur le mot de passe <u>password</u>
- Cryptage et taille minimale des mots de passe
 - Routeur(config)#service password-encryption
 - Routeur(config)#security passwords min-length [0-16]

Suppression des mots de passe

- Permet de supprimer les mots de passe console et administrateur
- Routeur>show version
 - Notez la valeur du registre de configuration
 - Configuration register is 0x2102 »
 - Redémarrez le routeur
 - Pendant le chargement appuyez sur CTRL+C
 - Sous windows CTRL + Pause
 - Mode rommon de démarrage basic sans l'IOS
- rommon 1> confreg 0x2142
- rommon 2> reset

Protection des lignes inactives

- Les lignes console et vty peuvent être inactives pendant un intervalle de temps
- Déconnexion automatique au bout d'un temps
 - R1(config)#line console 0
 - R1(config-lin)#exec-timeout 5 0 (5 minutes 0 secondes)
 - R1(config)#line vty 0 4
 - R1(config-lin)#exec-timeout 5 0
- Empêcher les tentatives de connexion par force brute
- Bloquer les tentatives de connexion pendant 5 minutes si un utilisateur effectue 2 tentatives de connexion sans y parvenir au bout de 2 minutes.
 - R1(config)#login block-for 300 attempt 2 within 120

Désactivation des services

- Désactiver les services inutilisés qui fonctionnent par défaut au démarrage du routeur
 - Suivant les versions de l'IOS les services ne sont pas les mêmes
 - R1(config)#no service timestamps
 - R1(config)#no service nagle
 - R1(config)#no cdp run (Equipements cisco voisins)
 - R1(config)#no service ?
- Désactiver les protocoles UDP qui ne doivent pas être routés
 - R1(config)#no ip forward-protocol udp ?
- Fonction de sécurité globale du routeur
 - R1#auto secure

Sauvegarde TFTP

- Protocole de transfert des fichiers légers fonctionnant en UDP sur le port 69
- Sauvegarde de la configuration des routeurs
 - Nécessité d'un client et d'un serveur TFTP
 - Vérifier la connexion entre client et serveur (ping)
- Sauvegarde de la mémoire flash (Images IOS)
 - Router#copy flash tftp:
- Sauvegarde de la configuration actuelle du routeur
 - Router#copy running-config tftp:
- Chargement de la configuration depuis le serveur TFTP vers le routeur
 - Router#copy tftp: [running-config | flash]

Mise à jour (upgrade) IOS

- Switch Catalyst 2960 IOS 12.2 → IOS 15.0
- Pré-configuration
 - Adresse IP du serveur TFTP, du switch (vlan 1)
 - Vérification version IoS et de l'image IoS 15 (TFTP)
- Mise à jour IOS depuis le serveur TFTP
 - Switch#copy tftp flash:
 - Address or name of remote host []? 10.0.0.1
 - Source filename []? c2960-lanbasek9-mz.150-2.SE4.bin
- Installation de la nouvelle image IOS
 - Switch(config)#boot system flash:c2960-lanbasek9-mz.150-2.SE4.bin
 - Switch#write
 - Switch#reload
- Vérification
 - Switch#version

Gestion des accès à distance

- Accès à distance
 - Facilite l'administration des équipement sur des grands réseaux
- Nécessité de protocoles d'accès distants
 - TELNET
- > Les informations circulent en clair

SSH

→ Chiffrement des informations

Configuration SSH

- Configuration d'un accès SSH sur le routeur
 - Router(config)# hostname Nomrouteur
 - Router(config)# ip domain-name info.ut.sn
 - Router(config)# ip ssh version 2
 - Router(config)# ip ssh time-out 120 (120 secondes)
 - Router(config)# ip ssh authentication-retries 2
 (Fermeture après deux tentatives sans succès)
 - Router(config)# crypto key generate rsa (taille 1024 bits)
- Connexion à partir d'un poste client SSH
 - PC> ssh –I username IProuteur
- Visualiser les connexions SSH actives
 - Router# show ssh

Filtrage Telnet ou SSH

- Activer les lignes vty pour les connexions distantes
 - Router(config)# line vty 0 4
 - Router(config-line)# password cisco
 - Router(config-line)# login
- Filtrage du protocole de connexion distante
 - Router(config-line)# transport input ?

all: tous les protocoles autorisés

none : aucun protocole autorisé

telnet : seul le protocole telnet est autorisé

ssh : seul le protocole ssh est autorisé

Sécurité des WLAN

- SSID non diffusé
- Filtrage des adresses MAC
- Authentification distante

Sécurité WLAN

- WEP (Wired Equivalent Privacy) 1997
 - Clé statique variant de 64 à 128b (Hexadecimal)
 - WPA (Wifi Protected Access) 2003
 - Clé statique variant de 8 à 63 caractères ASCII
- WPA Entreprise
 - Authentification distante par des serveurs AAA
- Evolution versWPA2 et WPA2 Enterprise

Université de Thiès Réseaux IP

Authentification

- Critère de sécurité : Confidentialité
- Garantie que les seuls personnes autorisées ont accès à l'information
- Deux grands types d'authentification :
 - Authentification locale : les informations d'authentification sont stockées sur le périphériques où l'on doit s'authentifier
 - Authentification distante : les informations d'authentification sont stockées sur des serveurs distants où l'on doit s'authentifier à l'aide de protocoles

Authentification locale

- Création d'un compte utilisateur/mot de passe
 - Routeur(config)#username test secret cisco
 - Routeur(config)#username test1 secret cisco1
- Configuration des listes d'authentification locales
 - Activer globalement l'authentification
 - Créer une liste d'authentification LOCAL_AUTH
 - Authentifier les connexion sur les lignes console et vty en utilisant la bases de données locales :
 - R1(config)#aaa new-model
 - R1(config)#aaa authentication login LOCAL_AUTH local
 - R1(config)#line console 0
 - R1(config-lin)#login authentication LOCAL_AUTH
 - R1(config-lin)#line vty 0 4 (5 connexions simultanées)
 - R1(config-lin)#login authentication LOCAL_AUTH

Types et authentification

- Possibilités d'authentification
 - R1(config)#aaa authentication login LOCAL_AUTH?

local	Uses the local username database for authentication.
local-case	Uses case-sensitive local username authentication.
none	Uses no authentication.
group radius	Uses the list of all RADIUS servers for authentication.
group tacacs+	Uses the list of all TACACS+ servers for authentication.

- Authentification de secours
 - Choisir par ordre de priorité la méthode d'authentification
 - R1(config)#aaa authentication login LOCAL_AUTH <u>local</u> group radius

Les protocoles AAA

■ Le terme AAA englobe trois notions

Authentication: Authentification des utilisateurs

Authorization : Autorisation (droits d'accès)

Accounting : Traçabilité

- Les routeurs peuvent utiliser leurs bases de données locales pour accomplir ces fonctions ou d'autres protocoles associés à des serveurs
- Les protocoles AAA les plus utilisés sont
 - Radius (Remote Authentication Dial-In User Service)
 - Tacacs (Terminal Access Controller Access-Control System), propriétaire de Cisco
- Nous verrons le protocole Radius dans le cadre de ce cours (standard)

Radius

- Protocole standard (RFC 2865) largement utilisé par les FAI pour authentifier les utilisateurs (ADSL)
- Assure le transport des données d'authentification de façon normalisée entre le client et le Serveur

Serveur Radius

- Relié à une base données d'identification locale ou externe (BD SQL, Annuaire LDAP)
- Utilise le port UDP 1645
- Transactions entre serveur et client chiffrées et authentifiées grâce à une clé secrète partagée

Client Radius

- NAS (Network Access Server)
- Équipement établissant la connexion au serveur

Architecture client serveur

- Client NAS (Network Access Server)
 - Equipement qui désire s'authentifier et bénéficier des autorisation nécessaires
- Serveur Radius
 - Permet l'authentification et ensuite procure les autorisations nécessaires au NAS
- Paramètres de la transaction
 - Login, mot de passe et clé secrète pour cryptage

Fonctionnement de l'identification

- Fonctionnement par étapes
 - Le client radius (NAS) demande au poste deux paramètres (login et ensuite mot de passe)
 - □ Le client génère une requête *Access-Request* contenant les informations d'authentification
 - Mot de passe crypté mais login en clair
 - Le serveur consulte sa base et donne une des réponses
 - ACCEPT : l'identification a réussi
 - □ **REJECT**: l'identification a échoué
 - <u>CHALLENGE</u>: le serveur RADIUS souhaite des informations supplémentaires de la part de l'utilisateur et propose un « défi » (en anglais « challenge »);
 - Le serveur retourne ensuite les autorisations spécifiques à l'utilisateur authentifié

Autorisations et traçabilité

- Centralisation des paramètres de sécurité
- Autorisations : permet d'enrichir les identifications avec d'autres paramètres
 - Adresse IP fixe
 - Temps de connexion
 - Temps d'inactivité
- Accounting
 - Journalisation (logs des accès)
 - Facturation
- RADIUS est très utilisé pour l'identification des clients ADSL d'un fournisseur d'accès
 - Permet leur authentification et la facturation

Limitations de radius

- Radius est utilisé avec UDP
 - Utiliser UDP pour un débit plus important
 - Utiliser TCP pour plus de sécurité
- Radius base son identification login+mot de passe
 - Avec les mobiles d'autres numéros (IMEI)
- Radius utilise un transport en clair ou seul le mot de passe est crypté
 - Pris en compte dans TACACS
- RADIUS n'assure pas de mécanisme d'identification du serveur
 - Une machine peut se faire passer pour un serveur Radius et détourner le trafic du NAS

Configuration de Radius

- Configurer préliminaires du serveur RADIUS
 - @IP du routeur NAS
 - Port 1645
 - Comptes utilisateurs et clé secrète partagée
- Configuration du routeur pour RADIUS
 - Router(config)# aaa new-model
 - Router(config)# aaa authentication login lprt3 group radius
- Indiquer l'adresse IP du serveur radius et la clé
 - Router(config)# radius-server host 192.168.10.2 auth-port 1645 key macle1
- Activer les connexions à distance sur le NAS
 - Router(config)# line vty 0 4
 - Router(config)# login authentication lprt3