I2C LSM9DS1 RaspberryPI C++ Library

Generated by Doxygen 1.8.17

1 I2C LSM9DS1 RaspberryPl C++ Library	1
2 Class Index	3
2.1 Class List	3
3 Class Documentation	5
3.1 AccelSettings Struct Reference	5
3.1.1 Detailed Description	5
3.1.2 Member Enumeration Documentation	6
3.1.2.1 Abw	6
3.2 DeviceSettings Struct Reference	6
3.2.1 Detailed Description	6
3.2.2 Member Data Documentation	7
3.2.2.1 initPIGPIO	7
3.3 GyroSettings Struct Reference	7
3.3.1 Detailed Description	8
3.3.2 Member Enumeration Documentation	8
3.3.2.1 SampleRate	8
3.3.2.2 Scale	8
3.4 LSM9DS1 Class Reference	8
3.4.1 Detailed Description	10
3.4.2 Constructor & Destructor Documentation	10
3.4.2.1 LSM9DS1()	10
3.4.3 Member Function Documentation	10
3.4.3.1 accelAvailable()	10
3.4.3.2 begin()	10
3.4.3.3 calcAccel()	11
3.4.3.4 calcGyro()	11
3.4.3.5 calcMag()	12
3.4.3.6 gyroAvailable()	12
3.4.3.7 magAvailable()	12
3.4.3.8 magOffset()	13
3.4.3.9 readAccel()	13
3.4.3.10 readGyro()	13
3.4.3.11 readMag()	14
3.4.3.12 setAccelScale()	14
3.4.3.13 setCallback()	14
3.4.3.14 setGyroScale()	14
3.4.3.15 setMagScale()	15
3.4.3.16 tempAvailable()	15
3.5 LSM9DS1callback Class Reference	15
3.5.1 Detailed Description	16
3.6 LSM9DS1Sample Struct Reference	16

19
. 18
. 18
. 17
. 17
. 17
. 17
. 16

Chapter 1

I2C LSM9DS1 RaspberryPI C++ Library

This is a C++11 library for the LSM9DS1 on a Raspberry PI using a callback handler for the data.

github repository

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Ę
6
7
8
Ę
6
7
8

4 Class Index

Chapter 3

Class Documentation

3.1 AccelSettings Struct Reference

Accelerometer settings with default values.

```
#include <LSM9DS1.h>
```

 $A_ABW_OFF = -1$

Public Types

```
    enum Scale { A_SCALE_2G = 2, A_SCALE_16G = 16, A_SCALE_4G = 4, A_SCALE_8G = 8 }
        defines all possible FSR's of the accelerometer
    enum Abw {
            A_ABW_408 = 0, A_ABW_211 = 1, A_ABW_105 = 2, A_ABW_50 = 3,
            A_ABW_50 = 3,
```

Defines all possible anti-aliasing filter rates of the accelerometer.

Public Attributes

```
    Scale scale = A_SCALE_16G
        accel scale (in g) can be 2, 4, 8, or 16

    uint8_t enableX = true
```

Enables accelerometer's X axis.

• uint8_t enableY = true

Enables accelerometer's Y axis.

• uint8_t enableZ = true

Enables accelerometer's Z axis.

• Abw bandwidth = A_ABW_OFF

Accel cutoff frequency.

- uint8 t highResEnable = false
- uint8_t highResBandwidth = 0

3.1.1 Detailed Description

Accelerometer settings with default values.

3.1.2 Member Enumeration Documentation

3.1.2.1 Abw

enum AccelSettings::Abw

Defines all possible anti-aliasing filter rates of the accelerometer.

Enumerator

A_ABW_408	408 Hz (0x0)
A_ABW_211	211 Hz (0x1)
A_ABW_105	105 Hz (0x2)
A_ABW_50	50 Hz (0x3)
A_ABW_OFF	no cutoff

The documentation for this struct was generated from the following file:

· LSM9DS1.h

3.2 DeviceSettings Struct Reference

Hardware related settings.

#include <LSM9DS1.h>

Public Attributes

• uint8_t agAddress = LSM9DS1_AG_ADDR

I2C acceleromter address.

• uint8_t mAddress = LSM9DS1_M_ADDR

I2C magnetometer address.

unsigned i2c_bus = LSM9DS1_DEFAULT_I2C_BUS

Default I2C bus number (most likely 1)

• unsigned drdy_gpio = LSM9DS1_DRDY_GPIO

Data ready pin (INT2) of the accelerometer.

• bool initPIGPIO = true

If set to true the pigpio library is initialised with signals disabled.

3.2.1 Detailed Description

Hardware related settings.

3.2.2 Member Data Documentation

3.2.2.1 initPIGPIO

```
bool DeviceSettings::initPIGPIO = true
```

If set to true the pigpio library is initialised with signals disabled.

You can do your own init when setting to false before calling begin().

The documentation for this struct was generated from the following file:

· LSM9DS1.h

3.3 GyroSettings Struct Reference

Gyroscope settings with default values.

```
#include <LSM9DS1.h>
```

Public Types

Public Attributes

```
    Scale scale = G_SCALE_245DPS
        gyro scale can be 245, 500, or 2000
    SampleRate sampleRate = G_ODR_14_9
        Gyro & Accelerometer sample rate.
```

Gyro & Acc sampling rates.

• uint8_t enableX = true

X axis enabled.

uint8_t enableY = true

Y axis enabled.

• uint8 t enableZ = true

Z axis enabled.

- uint8 t bandwidth = 0
- uint8_t lowPowerEnable = false
- uint8_t HPFEnable = false
- uint8_t **HPFCutoff** = 0
- uint8 t flipX = false
- uint8 t flipY = false
- uint8_t flipZ = false
- uint8_t orientation = 0
- uint8_t latchInterrupt = true

3.3.1 Detailed Description

Gyroscope settings with default values.

3.3.2 Member Enumeration Documentation

3.3.2.1 SampleRate

enum GyroSettings::SampleRate

Gyro & Acc sampling rates.

Enumerator

G_ODR_14↔	14.9 Hz (1)
_9	
G_ODR_59↔	59.5 Hz (2)
_5	
G_ODR_119	119 Hz (3)
G_ODR_238	238 Hz (4)
G_ODR_476	476 Hz (5)
G_ODR_952	952 Hz (6)

3.3.2.2 Scale

enum GyroSettings::Scale

Gyro_scale defines the possible full-scale ranges of the gyroscope.

Enumerator

G_SCALE_245DPS	245 degrees per second
G_SCALE_500DPS	500 dps
G_SCALE_2000DPS	2000 dps

The documentation for this struct was generated from the following file:

• LSM9DS1.h

3.4 LSM9DS1 Class Reference

Main class for the LSM9DS1 acceleromter which manages the data acquisition via pigpio and calls the main program via a callback handler.

#include <LSM9DS1.h>

Public Member Functions

LSM9DS1 (DeviceSettings deviceSettings=DeviceSettings())

LSM9DS1 class constructor.

 void begin (GyroSettings gyroSettings=GyroSettings(), AccelSettings accelSettings=AccelSettings(), MagSettings magSettings=MagSettings(), TemperatureSettings temperatureSettings=TemperatureSettings())

Initializes the gyro, accelerometer, magnetometer and starts the acquistion.

void end ()

Ends the data acquisition and closes all IO.

void setCallback (LSM9DS1callback *cb)

Sets the callback which receives the samples at the sampling rate.

bool accelAvailable ()

Polls the accelerometer status register to check if new data is available.

• bool gyroAvailable ()

Polls the gyroscope status register to check if new data is available.

bool tempAvailable ()

Polls the temperature status register to check if new data is available.

bool magAvailable (Ism9ds1_axis axis=ALL_AXIS)

Polls the magnetometer status register to check if new data is available.

int16 t readGyro (lsm9ds1 axis axis)

Read a specific axis of the gyroscope.

int16_t readAccel (lsm9ds1_axis axis)

Read a specific axis of the accelerometer.

int16_t readMag (lsm9ds1_axis axis)

Read a specific axis of the magnetometer.

• void magOffset (uint8_t axis, int16_t offset)

Sets the magnetometer offset.

float calcGyro (int16_t gyro)

Convert from RAW signed 16-bit value to degrees per second This function reads in a signed 16-bit value and returns the scaled DPS.

float calcAccel (int16_t accel)

Convert from RAW signed 16-bit value to gravity (g's).

float calcMag (int16_t mag)

Convert from RAW signed 16-bit value to Gauss (Gs) This function reads in a signed 16-bit value and returns the scaled Gs.

void setGyroScale (GyroSettings::Scale gScl)

Set the full-scale range of the gyroscope.

• void setAccelScale (AccelSettings::Scale aScl)

Set the full-scale range of the accelerometer.

void setMagScale (MagSettings::Scale mScl)

Set the full-scale range of the magnetometer.

uint8_t getGyroIntSrc ()

Get contents of Gyroscope interrupt source register.

uint8_t getAccelIntSrc ()

Get contents of accelerometer interrupt source register.

uint8 t getMagIntSrc ()

Get contents of magnetometer interrupt source register.

uint8_t getInactivity ()

Get status of inactivity interrupt.

uint8_t getFIFOSamples ()

Get number of FIFO samples.

3.4.1 Detailed Description

Main class for the LSM9DS1 acceleromter which manages the data acquisition via pigpio and calls the main program via a callback handler.

The constructor and the begin() function have default settings so that in the simplest case just a callback needs to be registered and then begin be called. To stop the data acquistion call end().

3.4.2 Constructor & Destructor Documentation

3.4.2.1 LSM9DS1()

```
LSM9DS1::LSM9DS1 (

DeviceSettings deviceSettings = DeviceSettings() )
```

LSM9DS1 class constructor.

Parameters

deviceSettings is defined in DeviceSettings The deviceSettings has default values for standard wiring.

3.4.3 Member Function Documentation

3.4.3.1 accelAvailable()

```
bool LSM9DS1::accelAvailable ( )
```

Polls the accelerometer status register to check if new data is available.

Returns

true if data is available.

3.4.3.2 begin()

Initializes the gyro, accelerometer, magnetometer and starts the acquistion.

This will set up the scale and output rate of each sensor.

Parameters

accelSettings	Accelerometer settings with default settings.
gyroSettings	Gyroscope settings with default settings.
magSettings Magnetometer settings with default settings.	
temperatureSettings	Temperature sensor settings with default settings.

3.4.3.3 calcAccel()

Convert from RAW signed 16-bit value to gravity (g's).

This function reads in a signed 16-bit value and returns the scaled g's. This function relies on aScale and aRes being correct.

Parameters

	accel	A signed 16-bit raw reading from the accelerometer.	
--	-------	---	--

Returns

Acceleration in m/s^2.

3.4.3.4 calcGyro()

Convert from RAW signed 16-bit value to degrees per second This function reads in a signed 16-bit value and returns the scaled DPS.

This function relies on gScale and gRes being correct.

Parameters

```
gyro A signed 16-bit raw reading from the gyroscope.
```

Returns

Rotation in deg/s.

3.4.3.5 calcMag()

Convert from RAW signed 16-bit value to Gauss (Gs) This function reads in a signed 16-bit value and returns the scaled Gs.

This function relies on mScale and mRes being correct.

Parameters

mag A signed 16-bit raw reading from the magnetometer.

Returns

Magnetic field strength in Gauss.

3.4.3.6 gyroAvailable()

```
bool LSM9DS1::gyroAvailable ( )
```

Polls the gyroscope status register to check if new data is available.

Returns

true if data is available.

3.4.3.7 magAvailable()

Polls the magnetometer status register to check if new data is available.

Parameters

axis can be either X_AXIS, Y_AXIS, Z_AXIS, to check for new data on one specific axis. Or ALL_AXIS (default) to check for new data on all axes.

Returns

true if data is available.

3.4.3.8 magOffset()

```
void LSM9DS1::magOffset (
          uint8_t axis,
          int16_t offset )
```

Sets the magnetometer offset.

Parameters

axis	can be any of X_AXIS, Y_AXIS, or Z_AXIS.
offset	in raw units

3.4.3.9 readAccel()

Read a specific axis of the accelerometer.

Parameters

```
axis can be any of X_AXIS, Y_AXIS, or Z_AXIS.
```

Returns

A 16-bit signed integer with sensor data on requested axis.

3.4.3.10 readGyro()

Read a specific axis of the gyroscope.

Parameters

```
axis can be any of X_AXIS, Y_AXIS, or Z_AXIS.
```

Returns

A 16-bit signed integer with sensor data on requested axis.

3.4.3.11 readMag()

Read a specific axis of the magnetometer.

Parameters

```
axis can be any of X_AXIS, Y_AXIS, or Z_AXIS.
```

Returns

A 16-bit signed integer with sensor data on requested axis.

3.4.3.12 setAccelScale()

Set the full-scale range of the accelerometer.

Parameters

The desired accelerometer scale.

3.4.3.13 setCallback()

Sets the callback which receives the samples at the sampling rate.

Parameters

cb Callback interface.

3.4.3.14 setGyroScale()

Set the full-scale range of the gyroscope.

This function can be called to set the scale of the gyroscope to 245, 500, or 200 degrees per second.

Parameters

```
gScl The desired gyroscope scale.
```

3.4.3.15 setMagScale()

Set the full-scale range of the magnetometer.

The desired magnetometer scale.

3.4.3.16 tempAvailable()

```
bool LSM9DS1::tempAvailable ( )
```

Polls the temperature status register to check if new data is available.

Returns

true if data is available.

The documentation for this class was generated from the following file:

· LSM9DS1.h

3.5 LSM9DS1callback Class Reference

Callback interface where the callback needs to be implemented by the host application.

```
#include <LSM9DS1.h>
```

Public Member Functions

virtual void hasSample (LSM9DS1Sample sample)=0
 Called after a sample has arrived.

3.5.1 Detailed Description

Callback interface where the callback needs to be implemented by the host application.

The documentation for this class was generated from the following file:

· LSM9DS1.h

3.6 LSM9DS1Sample Struct Reference

```
#include <LSM9DS1.h>
```

Sample from the LSM9DS1.

Public Attributes

```
    float ax = 0
        X Acceleration in m/s<sup>2</sup>.
    float ay = 0
        Y Acceleration in m/s<sup>2</sup>.
    float az = 0
        Z Acceleration in m/s<sup>2</sup>.
    float gx = 0
        X Rotation in deg/s.
    float gy = 0
```

\ **5** . . .

Y Rotation in deg/s.

• float gz = 0

Z Rotation in deg/s.

• float mx = 0

X Magnetic field in Gauss.

• float my = 0

Y Magnetic field in Gauss.

• float mz = 0

Z Magnetic field in Gauss.

• float temperature = 0

Chip temperature.

3.6.1 Detailed Description

Sample from the LSM9DS1.

The documentation for this struct was generated from the following file:

· LSM9DS1.h

3.7 MagSettings Struct Reference

Magnetometer settings with default values.

```
#include <LSM9DS1.h>
```

Public Types

- enum Scale { M_SCALE_4GS = 4, M_SCALE_8GS = 8, M_SCALE_12GS = 12, M_SCALE_16GS = 16 } Defines all possible FSR's of the magnetometer.
- enum SampleRate {

```
\begin{array}{ll} M\_ODR\_0625,\, M\_ODR\_125,\, M\_ODR\_250,\, M\_ODR\_5,\\ M\_ODR\_10,\, M\_ODR\_20,\, M\_ODR\_40,\, M\_ODR\_80 \, \end{array} \\
```

Defines all possible output data rates of the magnetometer.

Public Attributes

- uint8_t enabled = true
- Scale scale = M_SCALE_16GS
- SampleRate sampleRate = M_ODR_80

Output data rate of the magnetometer.

- uint8 t tempCompensationEnable = false
- uint8_t XYPerformance = 3

magPerformance can be any value between 0-3 0 = Low power mode 2 = high performance 1 = medium performance 3 = ultra-high performance

- uint8 t **ZPerformance** = 3
- uint8 t lowPowerEnable = false

3.7.1 Detailed Description

Magnetometer settings with default values.

3.7.2 Member Enumeration Documentation

3.7.2.1 Scale

```
enum MagSettings::Scale
```

Defines all possible FSR's of the magnetometer.

Enumerator

M_SCALE_4GS	4Gs
M_SCALE_8GS	8Gs
M_SCALE_12GS	12Gs
M_SCALE_16GS	16Gs

Generated by Doxygen

The documentation for this struct was generated from the following file:

• LSM9DS1.h

3.8 TemperatureSettings Struct Reference

Temperature sensor settings.

#include <LSM9DS1.h>

Public Attributes

• uint8_t enabled = true

3.8.1 Detailed Description

Temperature sensor settings.

The documentation for this struct was generated from the following file:

• LSM9DS1.h

Index

A_ABW_105	GyroSettings, 8
AccelSettings, 6	G_SCALE_500DPS
A_ABW_211	GyroSettings, 8
AccelSettings, 6	gyroAvailable
A_ABW_408	LSM9DS1, 12
AccelSettings, 6	GyroSettings, 7
A ABW 50	G_ODR_119, 8
AccelSettings, 6	G_ODR_14_9, 8
A ABW OFF	G ODR 238, 8
AccelSettings, 6	G ODR 476, 8
Abw	G_ODR_59_5, 8
AccelSettings, 6	G ODR 952, 8
accelAvailable	G_SCALE_2000DPS, 8
LSM9DS1, 10	G_SCALE_245DPS, 8
AccelSettings, 5	G_SCALE_500DPS, 8
A ABW 105, 6	SampleRate, 8
A_ABW_103, 0 A ABW 211, 6	Scale, 8
A_ABW_211, 0 A ABW 408, 6	ocale, o
A_ABW 50, 6	initPIGPIO
A_ABW_50, 6	DeviceSettings, 7
A_ABW_OFF, 6 Abw, 6	Dovidoodiingo, 7
Abw, o	LSM9DS1, 8
begin	accelAvailable, 10
LSM9DS1, 10	begin, 10
ESIMBDS1, 10	calcAccel, 11
calcAccel	calcGyro, 11
LSM9DS1, 11	calcMag, 11
calcGyro	gyroAvailable, 12
LSM9DS1, 11	LSM9DS1, 10
	magAvailable, 12
calcMag	magOffset, 12
LSM9DS1, 11	readAccel, 13
DeviceSettings, 6	readGyro, 13
initPIGPIO, 7	
IIIIFIGFIO, 7	readMag, 13
G ODR 119	setAccelScale, 14
GyroSettings, 8	setCallback, 14
G_ODR_14_9	setGyroScale, 14
	setMagScale, 15
GyroSettings, 8	tempAvailable, 15
G_ODR_238	LSM9DS1callback, 15
GyroSettings, 8	LSM9DS1Sample, 16
G_ODR_476	M 00M F 4000
GyroSettings, 8	M_SCALE_12GS
G_ODR_59_5	MagSettings, 17
GyroSettings, 8	M_SCALE_16GS
G_ODR_952	MagSettings, 17
GyroSettings, 8	M_SCALE_4GS
G_SCALE_2000DPS	MagSettings, 17
GyroSettings, 8	M_SCALE_8GS
G SCALE 245DPS	MagSettings, 17

20 INDEX

```
magAvailable
    LSM9DS1, 12
magOffset
    LSM9DS1, 12
MagSettings, 17
    M_SCALE_12GS, 17
    M_SCALE_16GS, 17
    M_SCALE_4GS, 17
    M_SCALE_8GS, 17
    Scale, 17
readAccel
    LSM9DS1, 13
readGyro
    LSM9DS1, 13
readMag
    LSM9DS1, 13
SampleRate
    GyroSettings, 8
Scale
    GyroSettings, 8
    MagSettings, 17
setAccelScale
    LSM9DS1, 14
setCallback
    LSM9DS1, 14
setGyroScale
    LSM9DS1, 14
setMagScale
    LSM9DS1, 15
tempAvailable
    LSM9DS1, 15
TemperatureSettings, 18
```