lecture 3 presentation

Simon Fløj Thomsen²

oktober 25, 2022

1/50

Simon Fløj Thomsen³ lecture 3 presentation oktober 25, 2022

²Aalborg University, sft@business.aau.dk, lokale 24 fib 11, MaMTEP

- Mort intro:
- 2 Statistik opsumering
- **3** Moving Average process opsumering:
- 4 Auto regressive Processes opsumering
- **5** Done

Section 1

Kort intro:

Kort intro:

- Slides ligger nederst på moodle
- Alle skulle gerne kunne udregne varians, gennemsnit og autocovarians for AR(1) og MA(1) modeller.
- Alle skulle gerne kunne forklarer hvilke regler der bliver brugt til at udregne ovenstående.
- Hvis tid til overs kan i lave eksamensopgaver.

Section 2

Statistik opsumering

Expected value

$$E(aX + b) = aE(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(XY) = E(X)E(Y)$$

- Hvis X og Y er uafhængige
- Bevis for dette behøves i ik at kende

Variance

$$Var(X) = E[X - E(X)]^2 = E(XX) - E(X)E(X)$$

- Vi kan se hvis E(X) = 0 er $Var(X) = E(X^2)$
- Bevis ovenstående

$$Var(aX + b) = a^2 Var(X)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Bevis ovenstående

$$Var(X + Y) = Var(X) + Var(Y)$$

• Hvis X og Y er uafhængige og dermed Cov(X, Y) = 0

Bevis for Var(X)

$$Var(X) = E[X - E(X)]^2 = E(XX) - E(X)E(X)$$

• Løs på tavlen

Bevis for Var(X+Y)

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Covariance

$$Cov(X, Y) = E[X - E(X)][Y - E(Y)] = E(XY) - E(X)E(Y)$$

Bevis ovenstående

$$Cov(X,X) = Var(X)$$

$$Cov(aX + b, cY + d) = acCov(X, Y)$$

Konstanter ændrer Covariansen men ikke correlationen!

$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$$

Bevis Cov(X,Y)

• Forsøg selv at bevis nedenstående (5-10 minutter):

$$Cov(X, Y) = E[X - E(X)][Y - E(Y)] = E(XY) - E(X)E(Y)$$

• Løs på tavlen

Section 3

Moving Average process opsumering:

Mean, varians og Covariance

$$Y_t = \mu + \varepsilon_t + \alpha \varepsilon_{t-1}$$
$$\varepsilon_t \sim IID(0, \sigma^2)$$

• Udregn mean af Y_t

$$E[Y_t] = E[\mu]E[\varepsilon_t] + E[\alpha\varepsilon_{t-1}]$$

• Vi ved $E[\varepsilon_t] = E[\varepsilon_{t-1}] = 0$

$$E[Y_t] = \mu$$

Mean, varians og Covariance

$$Y_t = \mu + \varepsilon_t + \alpha \varepsilon_{t-1}$$
$$\varepsilon_t \sim IID(0, \sigma^2)$$

Udregn variancen

$$\begin{aligned} Var[Y_t] &= E[(Y_t - \mu)^2] \\ &= E[(\varepsilon_t + \alpha \varepsilon_{t-1})^2] \\ &= E[\varepsilon_t^2 + 2\alpha \varepsilon_t \varepsilon_{t-1} + \alpha^2 \varepsilon_{t-1}^2] \\ &= E[\varepsilon_t^2] + 2\alpha E[\varepsilon_t \varepsilon_{t-1}] + \alpha^2 E[\varepsilon_{t-1}^2] \end{aligned}$$

- Hvorfor ved vi $2\alpha E[\varepsilon_t \varepsilon_{t-1}] = 0$?
- Hvad sker der med $E[\varepsilon_t^2]$ og $E[\varepsilon_{t-1}^2]$, og hvorfor?

$$= E[\varepsilon_t^2] + \alpha^2 E[\varepsilon_{t-1}^2]$$
$$(1 + \alpha^2)\sigma^2$$

Mean, varians og Covariance

$$Y_t = \mu + \varepsilon_t + \alpha \varepsilon_{t-1}$$
$$\varepsilon_t \sim IID(0, \sigma^2)$$

• Udregn autocovariance mellem Y_t og Y_{t-1}

$$Cov[Y_t, Y_{t-1}] = E[(Y_t - \mu) * (Y_{t-1} - \mu)]$$
$$E[(\varepsilon_t + \alpha \varepsilon_{t-1})(\varepsilon_{t-1} + \alpha \varepsilon_{t-2})]$$

Forsøg selv at tage de sidste steps!

$$\alpha E[\varepsilon_{t-1}^2]$$

 $\alpha \sigma^2$

Mean, Variance og Covariance

• Udregn autocovariance mellem Y_t og Y_{t-2}

$$Cov[Y_t, Y_{t-2}] = E[(Y_t - \mu) * (Y_{t-2} - \mu)]$$
$$= E[(\varepsilon_t + \alpha \varepsilon_{t-1})(\varepsilon_{t-2} + \alpha \varepsilon_{t-3})]$$

• Samme metode som vist på tavlen før:

$$= 0$$

MA(1) Simulation

$$Y_t = 2 + \varepsilon_t + 0.9\varepsilon_{t-1}$$
$$\varepsilon_t \sim IID(0, 1.5^2)$$

MA(1) process with α =0.9

MA(1) Simulation

```
mean(y)# 1.919655
var(y) # 3.991872
cov(y[-length(y)],y[-1])# 1.922769
```

$$E(y_t) = \mu = 2$$
 $V(y_t) = (1 + \alpha^2)\sigma^2$
 $V(y_t) = (1 + 0.9^2)1.5^2$
 $V(y_t) = (1 + 0.9^2)1.5^2 = 4.0725$
 $Cov = \alpha * \sigma^2$
 $Cov = 0.9 * 1.5^2 = 2.025$

Section 4

Auto regressive Processes opsumering

Auto regressive Processes opsumering

$$Y_t = \mu + \theta Y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim IID(0, \sigma^2)$$

- Værktøjer vi skal bruge til properties af AR-modeller:
- Geometriske serier.
- ② Difference ligninger.

Geometriske serier review - Eksempler på serier

Eksempel 1:

$$\sum_{n=1}^{n} ak^{n} = k + k^{2} + k^{3} + k^{4} + ... + k^{n-1}$$

• Hvor a=1

Eksempel 2:

$$\sum_{n=0}^{n} ak^{-1/2n} = k + \sqrt{k} + 1 + \frac{1}{\sqrt{k}} + \frac{1}{k} \dots$$

• Hvor a = k

Typer af geometriske serier

Note til senere:

- \bullet $a=\mu$
- $k = \theta$

Endelig serie

$$\sum_{n=1}^{n} ak^n = a * \frac{1-k^n}{1-k}, \ k \neq 1$$

Uendelig serie

$$\sum_{n=1}^{\infty} ak^n = rac{a}{1-k}, \; |k| < 1$$

 $\sum_{n=1}^{\infty} ak^n = na, \; |k| = 1$

Udregning

Endelig serie

 S_n står for summen ved et givent n

$$S_{n} = \alpha + \alpha * k + \alpha * k^{2} + \alpha * k^{3} + \dots + \alpha * k^{n-1}$$

$$k * S_{n} = \alpha * k + \alpha * k^{2} + \alpha * k^{3} + \alpha * k^{4} + \dots + \alpha * k^{n}$$

$$S_{n} - k * S_{n} = \alpha + (\alpha * k - \alpha * k) + (\alpha * k^{2} - \alpha * k^{2}) + \dots + (\alpha * k^{n-1} - \alpha * k^{n-1}) - \alpha * k^{n}$$

$$S_{n} - k * S_{n} = \alpha - \alpha * k^{n}$$

$$S_{n}(1 - k) = \alpha(1 - k^{n})$$

$$S_{n} = \alpha * \frac{1 - k^{n}}{1 - k}$$

Udregning

Uendelig serie

Hvis |k| < 1 når $n \to \infty$ vil udtrykket gå mod:

$$S_n = \alpha * \frac{1}{1-k}$$

Dermed kan vi skrive:

$$\sum_{n=1}^{\infty} \alpha k^n = \frac{\alpha}{1-k}$$

Hvis |k| = 1

Kan vi se fra tidligere slide at summen vokser med a hver periode:

$$\sum_{n=1}^{\infty} \alpha k^n = \alpha * n$$

Difference equations: Math to econometrics

Lad os kigge på en 1. ordens differensligning

På 2. semester Mat havde vi følgende:

$$x_t = ax_{t-1} + b$$

I tids serie økonometri har vi set det som en AR(1) process:

$$y_t = \mu + \theta y_{t-1} + \varepsilon_t$$

Hvad er forskellen?

Først lad os se hvad de har tilfældes:

- Begge har en konstant μ og b
- Begge har en coefficient θ og a
- Begge har en variable der ændres over tid (discrete) y_t and x_t

Difference equations: Math to econometrics

Forskellen er ε_t Med definationen:

$$\varepsilon_t \sim IID(0, \sigma^2)$$

Identical, Independent Distributed med mean = 0 og $Var = \sigma^2$

Senere ser vi hvilke forskelle dette giver!

Lad os løse differensligningen vi havde før:

$$x_t = ax_{t-1} + b_t$$

Vi kan starte fra et givent punkt x_0

$$x_1 = ax_0 + b_1$$

$$x_2 = ax_1 + b_2 = a(ax_0 + b_1) + b_2 = a^2x_0 + ab_1 + b_2$$

$$x_3 = ax_2 + b_3 = a(a^2x_0 + ab_1 + b_2) + b_3 = a^3x_0 + a^2b_1 + ab_2 + b_3$$

Vi kan allerede se et mønster:

$$x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_k$$

Vi antager nu $b_k = b$ Så nu har vi en konstant ligsom i AR(1) modellen (fixed over tid).

Vi kan nu skrive det sidste led som:

$$\sum_{k=1}^{t} a^{t-k} b$$

Hvilket er en endelig geometrtisk serie! Som vi lige har kigget på!

$$\sum_{k=1}^{t} a^{t-k} b = b(a^{t-1} + a^{t-2} + a^{t-3} + \dots + a + 1) = \frac{(b - ba^t)}{(1 - a)}$$

Derfor kan vi nu skrive:

$$x_t = a^t(x_0 - \frac{b}{1-a}) + \frac{b}{1-a}$$

Vi kan se hvis $x_0 = \frac{b}{1-a}$ får vi løsningen $x_t = \frac{b}{1-a}$ hvilket er illustreret under:

Ud fra differens ligningen $x_t = ax_{t-1} + b$ kan vi også se at hvis x_s på noget tidspunkt rammer $\frac{b}{1-a}$ vil vi aldrig komme væk fra dette punkt:

$$x_{s+1} = a \frac{b}{1-a} + b = \frac{b}{1-a}$$

Difference equations (stability)

Vi kan kigge på stabiliteten, nøjagtigt ligsom AR(1) modellen i økonometri:

Case 1

Vi kan se at a^t går mod 0 når $t \to \infty$:

$$x_t = a^t(x_0 - \frac{b}{1-a}) + \frac{b}{1-a}$$

Og vi ender med

$$x_t = \frac{b}{1-a}$$

Difference equations (stability)

Case 2

• Vi kan nu se at a^t Går imod ∞ når $t \to \infty$ og eksplodere.

Case 3

$$|a| = 1$$

- Kommer vi til senere
- Lad os kigge på de forskellige scenarier

Difference equations (stability)

FIGURE 20.1

AR(1) model Econometrics

Lad os kigge på AR(1) processen igen:

$$y_t = \mu + \theta y_{t-1} + \varepsilon_t$$

Hvor den eneste forskel var fejlledet: ε_t lad os se på nogle eksempler om vi kan finde en forskel

AR(1) model Exonometrics

Som eksempel bruger vi:

$$y_t = 5 + 0.5y_{t-1} + \varepsilon_t$$

Med start værdien $y_0 = 0$

Lad os bruge løsningen for en difference ligning for når $|{\it a}| < 1$

Vi kan se at stød fra ε_t gør så vi aldrig bliver i $\frac{b}{1-a}$, så istedet regner vi mean!

AR(1) model Exonometrics

$$y_t = 5 + 1.5y_{t-1} + \varepsilon_t$$

$$X_t = 5 + 1.5 \times X_t - 1 + u_t$$

$$y_t = 5 + 1y_{t-1} + \varepsilon_t$$

$$X_t = 5 + 1*X_t - 1 + u_t$$

Plottet vi så før ligner bare en lineær funktion! Hvilket det er!

Husk løsning til vores difference eq.

$$x_t = a^t x_0 + \sum_{k=1}^t a^{t-k} b_k$$

Her brugte vi løsningen til den geometriske serie til at substituere ind for $\sum_{k=1}^t a^{t-k}b_k$ Men vi antog |a|<1

Gå tilbage til geometriske serier!

Vi kan derfor nu indsætte $\sum_{k=1}^{t} a^{t-k} b_k = ta$

$$x_t = a^t x_0 + ta$$

Vi ved a=1 dermed starter vi i x_0 og vokser linært som $t\to\infty$

Tilbage til AR(1) processen! Hvad er det vi kalder det når |a|=1 aka | heta|=1

En Random walk med drift!

Lad os lave det lidt mere tydeligt ved at øge standard deviation i fejlledet!

AR(1) model Exonometrics (mean)

Som vi så før grundet fejlledet er der ik en løsning $\frac{b}{1-a}$ men istedet kan vi udregne mean

$$E[y_t] = E[\mu + \theta y_{t-1} + \varepsilon_t]$$

$$= \mu + \theta E[y_{t-1}] + E[\varepsilon]$$

$$= \mu + \theta E[\mu + \theta y_{t-2} + \varepsilon_{t-1}]$$

$$= \mu + \mu \theta + \theta^2 E[y_{t-2}]$$

$$= \mu + \mu \theta + \theta^2 E[\mu + \theta y_{t-3} + \varepsilon_{t-2}]$$

$$= \mu(1 + \theta + \theta^2 + \theta^3 + \dots + \theta^\infty)$$

Så tilbage til geometriske serier, hvis $|\theta| < 1$ får vi $\frac{\mu}{1-\theta}$

AR(1) model Exonometrics (mean)

Lad os udregne mean fra eksemplet før:

$$y_t = 5 + 0.5y_{t-1} + \varepsilon_t$$

 $E[y_t] = \frac{5}{1 - 0.5} = 10$

Lad os se på plottet igen!

Da μ er en konstant vil denne ikke påvirke variancen og vi kan fjerne denne fra start.

AR(1) process with θ =0.9 and μ =2

var(Y)

[1] 10.191

AR(1) process with θ =0.9 and μ =6

var(Y)

[1] 10.191

$$y_t = \mu + \theta y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim IID(0, \sigma^2)$$

Vi antager derfor $\mu = 0$

$$V(y_t) = E[(y_t - E[y_t])^2]$$

forklar dette step

$$V(y_t) = E[(\theta y_{t-1} + \varepsilon_t)^2]$$

$$V(y_t) = E[\varepsilon_t^2] + \theta^2 E[y_{t-1}^2]$$

$$V(y_t) = \sigma^2 + \theta^2 E[y_{t-1}^2]$$

$$V(y_t) = \sigma^2 + \theta^2 E[(\theta y_{t-2} + \varepsilon_{t-1})^2]$$

• Vi kan nu indsætte y_{t-2} og gøre nøjagtigt de samme steps:

$$\sigma^{2}(1+\theta^{2}+\theta^{4}+\theta^{6}+...+\theta^{\infty})$$

• Brug igen geometrisk serier

$$\frac{\sigma^2}{1-\theta^2}$$

• IF $|\theta| < 1$

AR(1) model Exonometrics (Auto covariance)

$$cov(Y_t, Y_{t-1}) = cov(\mu + \theta Y_{t-1} + \varepsilon_t, Y_{t-1})$$

• fra statistik ved vi at Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

$$cov(\mu, Y_{t-1}) + \theta cov(Y_{t-1}, Y_{t-1}) + cov(\varepsilon_t, Y_{t-1})$$

- vi ved at $cov(\mu, Y_{t-1}) = cov(\varepsilon_t, Y_{t-1}) = 0$
- Og hvad er det nu $cov(Y_{t-1}, Y_{t-1})$ er?

$$cov(Y_t, Y_{t-1}) = \theta \frac{\sigma^2}{1 - \theta^2}$$

- Og antagelsen fra variance skal nu bruges: | heta| < 1

AR(1) model Exonometrics (Auto covariance)

$$cov(Y_t, Y_{t-2}) = cov(\mu + \theta Y_{t-1} + \varepsilon_t, Y_{t-2})$$

$$cov(\mu, Y_{t-2}) + \theta cov(Y_{t-1}, Y_{t-2}) + cov(\varepsilon_t, Y_{t-1})$$

- vi ved at $cov(\mu, Y_{t-1}) = cov(\varepsilon_t, Y_{t-1}) = 0$
- Og vi kender $cov(Y_{t-1}, Y_{t-2})$ som vi fandt på sidste slide.

$$cov(Y_t, Y_{t-2}) = \theta^2 \frac{\sigma^2}{1 - \theta^2}$$

- ullet Da vi bruger covariancen med antagelsen, gælder den stadig: | heta| < 1
- Derfor ACF aftager over tid når i plotter en AR-model.

Section 5

Done

Cheatsheet

Name	$\begin{array}{c} AR(1) \\ \theta < 1 \end{array}$	MA(1)	$AR(1)$ (RW1) $ \theta = 1$	$AR(1)$ (RW2) $ \theta = 1$	$AR(1)$ (RW3) $ \theta = 1$
Mean	$rac{\mu}{1- heta}$	μ	Y_0	$Y_0 + T\mu$	<i>Y</i> ₀ +
					$T\mu + t$
Var	$\frac{\frac{\sigma^2}{1-\theta^2}}{\theta \frac{\sigma^2}{1-\theta^2}}$	$(1+\alpha^2)\sigma^2$	$T\sigma^2$	$T\sigma^2$	$T\sigma^2$
Cov	$\theta \frac{\sigma^2}{1-\theta^2}$	$\alpha \sigma^2$	$T\sigma^2$	$T\sigma^2$	$T\sigma^2$
Stationary? YES!		YES!	NO!	NO!	NO!

- RW1 = Random walk uden drift og trend
- RW2 = Random walk med drift
- RW3 = Random walk med drift og trend