Primer Examen de Laboratorio. Andrés Eduardo Córdora Orellana.

28 108 1 2020

Parte 1. Un automóvil viaja 35.0 km en una dirección 60.0° al norceste y luego 20 km al norte. Encuentre la magnitud y dirección del desplazamiento resultante del automóvil.

Triangulo oblicuangulo

Ley de Cosenos.
121=1212+1812-2121131605+

12 + (20 km)2+ (35 km)2 - 2(20 Km)(35 Km) (05 1206 121 = 1 400 Km2 + 1225 Km2 - (-700 Km2)

1121= 48.21 Km/

Sen B = B Sen A = Sen B = 35kh Sen (120°)

 $\beta = \text{Sen}^{-1}(0.63)$ $\overrightarrow{R} = 48.21 \text{ km}$ con un ángulo de 38.9° al noroeste.

Parte 2.

1. Dados los vectores 4, B, y C a) Determine los componentes de caela vector

b) Eacuentre el vector resultante

i) expresado en componentes rectonquíares.

ii) expresados en magnitud y dirección.

Ax = A cos
$$\theta$$
 \Rightarrow 20 cos 37°

Ax = 15.97 χ

Ay = ASen θ \Rightarrow 20 Sen 37°

Ay = 12.03 χ

Bx = Bcos θ = 5 cos 127°

Bx = -3.0 χ

By = Bsen θ = 6 Sen 127°

By = 3.9 χ

Cx = C cos θ = 10 cos (-45°)

Cx = 7.07 χ

Cy = (Sent = 10 Sen (-45°)

Cy = -7.073

b.) i) Componentes Rectanquiares.

$$\overrightarrow{R}' = Rx^2 + Ry^2$$
 $Rx = Ax + Bx + Cx$
 $Rx = (15.97x) + (-3.02) + (4.07x)$
 $Rx = 20.04x$
 $Ry = Ay + By + Cy$
 $Ry = (12.03x) + (3.9x) + (-3.07x)$
 $Ry = 8.86x$

b) ii) Expresados en magnitud y dirección.

$$|\vec{R}| = \sqrt{(20.04)^2 + (8.86)^2} \quad \theta = \text{Ton'} \left(\frac{8.86}{20104}\right)$$

$$|\vec{R}| = \sqrt{401.60 + 38.50}$$

$$|\vec{R}| = 21.91$$

- 2. Determine el vector resultante de los 3 desplazamiento consecutivo que se muestran.
 - a. Expresado en sus componentes rectanquilares. b. Expresado en magnitud y dirección.

$$C_x = 17.8 \cos(270)$$
 $C_x = 0m$
 $C_y = 17.8 \sin(270)$
 $C_y = -17.8 m$

$$Ax = 90 - 32 = 58$$
 $Ax = 72.4 (os (s8^{\circ}))$
 $Ax = 38.36 m$
 $Ay = 92.4 Sen (58)$
 $Ay = 61.39 m$
 $B = 180 + 36$
 $B = 216^{\circ}$
 $Bx = 57.3 (os (216))$
 $Bx = -46.35 m$
 $By = -33.68 m$

a)
$$\overrightarrow{Rx} = Ax + Bx + Cx$$
 $Rx = (38.36m) + (-46.35m) + (0)m$
 $Rx = -7.99m$
 $\overrightarrow{Ry} = Ay + By + Cy$
 $Ry = (61.39m) + (-33.68m) + (-17.8m)$
 $\overrightarrow{Ry} = 9.91m$

b)
$$|\vec{R}| = \sqrt{(-7.99 \text{ m})^2 + (9.91 \text{ m})^2}$$

$$|\vec{R}| = \sqrt{63.84 \text{ m}^2 + 98.20 \text{ m}^2}$$

$$|\vec{R}| = \sqrt{162.09 \text{ m}^2}$$

$$|\vec{R}| = 12.72 \text{ m}$$

$$\Theta = \operatorname{Tan}^{-1}\left(\frac{9.91 \, \text{m}}{-7.99 \, \text{m}}\right)$$

$$\Theta = \operatorname{Tan}^{-1}\left(-1.24\right)$$

$$D = -51.12^{\circ} \text{ Nor Oeste.}$$