4章 指数関数と対数関数

問1

(1)
$$\log_2 16 = m$$
とおくと

$$2^m = 16$$

$$2^m = 2^4$$

よって、
$$m = 4$$
であるから、 $\log_2 16 = 4$

【別解】

与式 =
$$\log_2 2^4$$

= $4 \log_2 2$
= $4 \cdot 1 = 4$

$$(2)$$
 $\log_3 \frac{1}{9} = m$ とおくと

$$3^m = \frac{1}{9}$$

$$3^m = 3^{-2}$$

よって,
$$m = -2$$
 であるから, $\log_3 \frac{1}{9} = -2$

【別解】

与式 =
$$\log_3 3^{-2}$$

= $-2 \log_3 3$
= $-2 \cdot 1 = -2$

 $(3) \log_3 1 = m と おく と$

$$3^m = 1$$

$$3^m = 3^0$$

よって, m=0であるから, $\log_3 1 = 0$

【別解】

与式 =
$$\log_3 3^0$$

= $0\log_3 3 = \mathbf{0}$

 $(4) \log_{10} 0.1 = m$ とおくと

$$10^m = 0.1$$

$$10^m = \frac{1}{10}$$

$$10^m = 10^{-1}$$

よって, m = -1であるから, $\log_{10} 0.1 = -1$

【別解】

与式 =
$$\log_{10} 10^{-1}$$

= $-1 \log_{10} 10$

$$= -1 \cdot 1 = -1$$

(5) log_{0.1} 0.01 = mとおくと

$$0.1^m = 0.01$$

$$0.1^m = 0.1^2$$

よって,
$$m=2$$
であるから, $\log_{0.1}0.01=2$

【別解】

与式 =
$$\log_{0.1} 0.1^2$$

= $2 \log_{0.1} 0.1$
= $2 \cdot 1 = 2$

(6)
$$\log_5 \sqrt[3]{25} = m と おくと$$

$$5^m = \sqrt[3]{25}$$

$$5^m = 25^{\frac{1}{3}}$$

$$5^m = (5^2)^{\frac{1}{3}}$$

$$5^m = 5^{\frac{2}{3}}$$

よって,
$$m = \frac{2}{3}$$
であるから, $\log_5 \sqrt[3]{25} = \frac{2}{3}$

【別解】

与式 =
$$\log_5 5^{\frac{2}{3}}$$

$$=\frac{2}{3}\log_5 5$$

$$=\frac{2}{3}\cdot 1=\frac{2}{3}$$

問 2

(1) 与式 =
$$\log_3 3^5$$

= $5 \log_3 3$
= $5 \cdot 1 = 5$

(2) 与式 =
$$\log_2\left(\frac{4}{3} \times \frac{3}{2}\right)$$

= $\log_2 2$

【別解】

与式 =
$$(\log_2 4 - \log_2 3) + (\log_2 3 - \log_2 2)$$

= $\log_2 2^2 - \log_2 3 + \log_2 3 - \log_2 2$
= $2 - 1 = 1$

(4) 与式 =
$$\log_3 5^{\frac{1}{2}} - \log_3 \frac{\sqrt{15}}{3}$$

= $\log_3 \frac{\sqrt{5}}{\sqrt{15}}$
= $\log_3 \frac{3}{\sqrt{3}}$
= $\log_3 \frac{3\sqrt{3}}{3}$ ※分母を有理化
= $\log_3 \sqrt{3}$
= $\log_3 \sqrt{3}$
= $\log_3 3^{\frac{1}{2}}$
= $\frac{1}{2}\log_3 3$
= $\frac{1}{2} \cdot 1 = \frac{1}{2}$

問 3

(1) 左辺 =
$$\log_a 1 - \log_a M$$

= $0 - \log_a M$
= $-\log_a M =$ 右辺

(2) 左辺 =
$$\log_a M^{\frac{1}{n}}$$

$$= \frac{1}{n} \log_a M =$$
右辺

問 4

(1) 左辺 =
$$(\log_a L + \log_a M) + \log_a N$$

= $\log_a LM + \log_a N$
= $\log_a LMN =$ 右辺

(2)(1)の証明より

与式 =
$$\log_{10} \left(0.4 \times \frac{50}{3} \times 1.5 \right)$$

$$= \log_{10} \left(\frac{4}{10} \times \frac{50}{3} \times \frac{15}{10} \right)$$
$$= \log_{10} 10 = \mathbf{1}$$

問 5

底を3にする.

$$\log_{9\sqrt{3}} 3 = \frac{\log_3 3}{\log_3 9\sqrt{3}}$$

$$= \frac{1}{\log_3 3^{\frac{5}{2}}}$$

$$= \frac{1}{\frac{5}{2} \log_3 3}$$

$$= \frac{1}{\frac{5}{2} \cdot 1}$$

$$= \frac{2}{\frac{2}{3}}$$

問 6

 $\log_a b$ の底をbにする.

$$\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$

また

$$\log_b \frac{1}{a} = \log_b a^{-1}$$

$$= -\log_b a$$
であるから
与式 = $\frac{1}{\log_b a} \cdot (-\log_b a)$

問7

(1) 底を2にそろえる.

与式 =
$$\frac{\log_2 2}{\log_2 3} \cdot \frac{\log_2 9}{\log_2 4}$$

= $\frac{1}{\log_2 3} \cdot \frac{\log_2 3^2}{\log_2 2^2}$
= $\frac{1}{\log_2 3} \cdot \frac{2\log_2 3}{2\log_2 2}$
= $\frac{1}{\log_2 3} \cdot \frac{2\log_2 3}{2}$
= $1 \cdot 1 = 1$

(2) 底を2にそろえる.

与式 =
$$\log_2 3^2 \cdot \frac{\log_2 16}{\log_2 5} \cdot \frac{\log_2 25}{\log_2 3}$$

$$= 2\log_2 3 \cdot \frac{\log_2 2^4}{\log_2 5} \cdot \frac{\log_2 5^2}{\log_2 3}$$
$$= 2\log_2 3 \cdot \frac{4\log_2 2}{\log_2 5} \cdot \frac{2\log_2 5}{\log_2 3}$$
$$= 2 \cdot 4 \cdot 2 = \mathbf{16}$$

問8

(1) x = 10 ξ , $y = \log_4 1 = 0$ x = 4のとき, $y = \log_4 4 = 1$ グラフは、2点(1,0)、(4,1)を通り、 単調に増加する曲線となる.

(2) この関数のグラフは, $y = \log_2 x$ のグラフを x軸方向に1平行移動したものであり、 漸近線は, x = 1である.

x = 2のとき, $y = \log_2(2 - 1) = 0$ x = 3のとき, $y = \log_2(3 - 1) = 1$ グラフは、2点(2,0)、(3,1)を通り、

単調に増加する曲線となる.

(3) この関数のグラフは, $y = \log_3 x$ のグラフと y軸に関して対称である.

$$x = -1$$
のとき、 $y = \log_3\{-(-1)\} = 0$
 $x = -3$ のとき、 $y = \log_3\{-(-3)\} = 1$
グラフは、 2 点 $(-1, 0)$, $(-3, 1)$ を通り、
単調に減少する曲線となる.

$$y$$
 1
 -3
 -1
 0
 x

$$(1)$$
 $\frac{1}{81} = \frac{1}{3^4} = 3^{-4}$ $\sqrt{27} = 27^{\frac{1}{2}} = (3^3)^{\frac{1}{2}} = 3^{\frac{3}{2}}$ であるから,定義域は $3^{-4} < x < 3^{\frac{3}{2}}$ $y = \log_3 y$ は単調に増加するので $\log_3 3^{-4} < y < \log_3 3^{\frac{3}{2}}$ すなわち

$$-4\log_3 3 < y < \frac{3}{2}\log_3 3$$

よって,
$$-4 < y < \frac{3}{2}$$

(2)
$$0.125 = 0.5^3$$
 $0.25 = 0.5^2$
であるから、定義域は
 $0.5^3 < x \le 0.5^2$
 $y = \log_{0.5} x$ は単調に減少するので $\log_{0.5} 0.5^3 > y \ge \log_{0.5} 0.5^2$
すなわち
 $3\log_{0.5} 0.5 > y \ge 2\log_{0.5} 0.5$
よって、 $2 \le y < 3$

問 10

(1) 0.25 < 2 < 5 $y = \log_4 x$ は単調に増加するから $\log_4 0.25 < \log_4 2 < \log_4 5$

$$(2) \frac{1}{9} < \sqrt{3} < 3$$

 $y = \log_{\frac{1}{2}} x$ は単調に減少するから

$$\log_{\frac{1}{3}} \frac{1}{9} > \log_{\frac{1}{3}} \sqrt{3} > \log_{\frac{1}{3}} 3$$

すなわち

$$log_{\frac{1}{3}}3 < log_{\frac{1}{3}}\sqrt{3} < log_{\frac{1}{3}}\frac{1}{9}$$

問 11

(1) 真数条件より, x > 0, x - 1 > 0であるから $x > 0 \cdot \cdot \cdot (1)$

$$\log_3 \frac{x}{x-1} = 2$$

$$\log_3 \frac{x}{x-1} = \log_3 3^2$$

$$\frac{x}{x-1} = 9$$

$$x=9(x-1)$$

$$x = 9x - 9$$

$$8x = 9$$

$$x = \frac{9}{8}$$

これは、①を満たしている.

よって、
$$x = \frac{9}{8}$$

(2) 真数条件より, x+2>0, x-1>0であるから

$$x > 1 \cdot \cdot \cdot \bigcirc$$

$$\log_4(x+2)(x-1) = 1$$

$$\log_4(x+2)(x-1) = \log_4 4$$

$$(x+2)(x-1)=4$$

$$x^2 + x - 2 = 4$$

$$x^2 + x - 6 = 0$$

$$(x-2)(x+3) = 0$$

$$x = 2, -3$$

①
$$\upbeta$$
 \upbeta \upbeta \upbeta \upbeta \upbeta \upbeta \upbeta \upbeta \upbeta

問 12

(1) 真数条件より, 2x + 1 > 0であるから

$$x > -\frac{1}{2} \cdot \cdot \cdot \bigcirc$$

$$\log_3(2x+1) \ge 2\log_3 3$$

$$\log_3(2x+1) \ge \log_3 3^2$$

$$\log_3(2x+1) \ge \log_3 9$$

底が1より大きいので

$$2x + 1 \ge 9$$

$$2x \ge 8$$

$$x \ge 4$$

これは、①を満たす.

よって,
$$x \ge 4$$

(2) 真数条件より, 2x + 1 > 0であるから

$$x > -\frac{1}{2} \cdot \cdot \cdot \cdot \bigcirc$$

$$\log_3(2x+1) \le 2\log_3 3$$

$$\log_3(2x+1) \le \log_3 3^2$$

$$\log_3(2x+1) \le \log_3 9$$

$$2x + 1 \leq 9$$

$$2x \leq 8$$

$$x \leq 4$$

$$-\frac{1}{2} < x \le 4$$

問 13

(1) 与式 =
$$\log_{10}(2 \times 3)$$

= $\log_{10} 2 + \log_{10} 3$
= $0.3010 + 0.4771 = 0.7781$

(2) 与式 =
$$\log_{10} \frac{15}{10}$$

= $\log_{10} \frac{3}{2}$
= $\log_{10} 3 - \log_{10} 2$
= $0.4771 - 0.3010 = 0.1761$

(3) 底を10にする.

与式 =
$$\frac{\log_{10} 9}{\log_{10} 5}$$

= $\frac{\log_{10} 3^2}{\log_{10} \frac{10}{2}}$
= $\frac{2\log_{10} 3}{\log_{10} 10 - \log_{10} 2}$
= $\frac{2 \cdot 0.4771}{1 - 0.3010}$
= $\frac{0.9542}{0.699}$
= 1.3650 ... \approx 1.365

問 14

(1) 両辺の常用対数をとると

$$\log_{10} 10^n \le \log_{10} 1.1^{200}$$

$$n \log_{10} 10 \le 200 \log_{10} 1.1$$

$$n \le 200 \log_{10} 1.1$$

対数表より、 $\log_{10} 1.1 = 0.0414$ であるから $200\log_{10} 1.1 = 200 \cdot 0.0414 = 8.28$ よって、 $n \leq 8.28$ であり、nはこれを満たす最大の整数なので、n = 8

(2) 両辺の常用対数をとると

$$\log_{10} 10^n \le \log_{10} 1.2^{200}$$

$$n \log_{10} 10 \le 200 \log_{10} 1.2$$

$$n \le 200 \log_{10} 1.2$$

対数表より、 $\log_{10} 1.2 = 0.0792$ であるから

$$200 \log_{10} 1.2 = 200 \cdot 0.0792 = 15.84$$

よって、 $n \le 15.84$ であり、nはこれを満たす最大の

整数なので、n=15

問 15

両辺の常用対数をとると

$$\log_{10} 10^{-n} \ge \log_{10} \frac{1}{3^{100}}$$

$$-n \log_{10} 10 \ge \log_{10} 3^{-100}$$

$$-n \ge -100 \log_{10} 3$$

$$n \le 100 \log_{10} 3$$

対数表より、 log_{10} 3 = 0.4771であるから

$$100 \log_{10} 3 = 100 \cdot 0.4771 = 47.71$$

よって, $n \le 47.71$ であり, nはこれを満たす最大の

整数なので, n = 47

問 16

1時間ごとに前の時間のr倍になるとすると

ここで、n時間後に最初の量の 10 倍以上になるとすると

 $r^n \ge 10$

すなわち、 $3^{\frac{n}{6}} \ge 10$

両辺の常用対数をとって

$$\log_{10} 3^{\frac{n}{6}} \ge \log_{10} 10$$

$$\frac{n}{6}\log_{10} 3 \ge 1$$

$$n \ge \frac{6}{\log_{10} 3}$$

対数表より、 log_{10} 3 = 0.4771であるから

$$\frac{6}{\log_{10} 3} = \frac{6}{0.4771} = 12.575 \dots$$

したがって、 $n \ge 12.575 \dots$

よって, はじめて 10 倍以上になるのは

13 時間後である.

問 17

普通預金は,1年間で $\frac{103}{100}$ 倍になる.

経過年数をn年とすると

$$\left(\frac{103}{100}\right)^n \ge 1.5$$

$$\left(\frac{103}{100}\right)^n \geqq \frac{3}{2}$$

両辺の常用対数をとると

$$\log_{10} \left(\frac{103}{100}\right)^n \ge \log_{10} \frac{3}{2}$$

$$n\log_{10}\frac{103}{100} \ge \log_{10}\frac{3}{2}$$

$$n \log_{10} 1.03 \ge \log_{10} 3 - \log_{10} 2$$

$$n \ge \frac{\log_{10} 3 - \log_{10} 2}{\log_{10} 1.03}$$

対数表より, $\log_{10} 1.03 = 0.0128$, $\log_{10} 2 = 0.3010$,

 $\log_{10} 3 = 0.4771$ であるから

$$\frac{\log_{10} 3 - \log_{10} 2}{\log_{10} 1.03} = \frac{0.4771 - 0.3010}{0.0128}$$

= 13.75 ...

したがって, $n \ge 13.75$

よって, 預金が 1.5 倍となるのは 14 年後である.