MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2008 SOLUTION KEY

Round 6

- A) $360/n = 4.5 \implies n = 80$ and the sum of the interior angles is determined by 180(n-2). 180(78) = 14040
- B) $x = 49 \rightarrow y = 49$ As vertical angles, $m \angle 3 + m \angle 4 = y$. Since $m \angle 3 = m \angle 4$, $m \angle 4 = y/2$. $m \angle 1 + m \angle 2 = 180 - y \rightarrow m \angle 2 = 90 - y/2$ Draw a line through the vertex of the angle whose measure is z° parallel to L_1 . As alternate interior angles of $\| s \|$, $m \angle 2 = m \angle 5$ and $m \angle 4 = m \angle 6$. Thus, z = y/2 + (90 - y/2) = 90 and y + z = 139
- C) By the triangle angle bisector theorem, $\frac{BD}{DC} = \frac{AB}{AC}$.

Since
$$\triangle DEF \sim \triangle DAC$$
, $\frac{FE}{AC} = \frac{DF}{DC}$.

Using
$$BD = DF$$
, we have $\frac{FE}{AC} = \frac{BD}{DC}$

Using transitivity, we have a third proportion $\frac{FE}{AC} = \frac{AB}{AC}$.

Since the denominators are equal, we have $FE = AB = \underline{7}$. No computations were necessary!

