Lenguajes Regulares y Expresiones Regulares

Conjuntos regulares

- Un conjunto es regular si:
 - 1. Es el conjunto vacío, \emptyset , δ el conjunto cuyo elemento es la palabra vacía, $\{\mathcal{E}\}$, δ es un subconjunto simple (s δ lo un elemento) del alfabeto.
 - 2. Puede ser generado a partir de Ø ó de {ε} ó de un subconjunto simple utilizando las operaciones de unión, concatenación y cerradura de Kleene.

Definición recursiva de conjunto regular.

Sea Σ un alfabeto. Los conjuntos regulares sobre Σ se definen recursivamente como:

- Base: \emptyset , $\{\varepsilon\}$ y $\{a\}$, para toda $a \in \Sigma$, son conjuntos regulares sobre Σ .
- **Paso recursivo**: Si X e Y son conjuntos regulares sobre Σ , entonces los conjuntos $X \cup Y$, X. Y y X^* también lo son.
- Cerradura: X es un conjunto regular sobre Σ sólo si puede ser obtenido a partir de los elementos base mediante un número finito de aplicaciones del paso recursivo.

Ejemplos de conjuntos regulares

- $\{a, b\}^*$
- {aa, bb}
- $\{a,b\}^*\{bb\} \{a,b\}^*$

Son regulares sobre $\Sigma = \{a, b\}$

• El conjunto de cadenas que empiezan y terminan con una a y contienen al menos una b es regular sobre $\{a, b\}$.

$${a}{a}{a,b}^*{b}{a,b}^*{a}$$

Expresiones regulares (ER)

Las expresiones regulares (ER) se utilizan para abreviar la descripción de conjuntos regulares:

- El conjunto regular $\{a\}$ es representado por a.
- Las operaciones:
 - unión representado por +
 - concatenación representado por yuxtaposición
 - cerradura de Kleene representado por *

- Definición: Sea Σ un alfabeto. Las expresiones regulares sobre Σ se definen recursivamente como:
 - Base: \emptyset , ε y a, para toda $a \in \Sigma$, son expresiones regulares sobre Σ .
 - **Paso recursivo**: Si u y v son expresiones regulares sobre Σ , entonces las expresiones (u+v), (uv) y (u^*) también lo son y representan a los conjuntos $\{u\} \cup \{v\}$, $\{u\} \{v\}$ y $\{u\}^*$, respectivamente.
 - Cerradura: u es una expresión regular sobre Σ sólo si puede ser obtenido a partir de los elementos base mediante un número finito de aplicaciones del paso recursivo.

Ejemplos:

Lenguaje	Expresión regular
$\{3\}$	3
$\{0\}$	O
$\{001\} = \{0\} \{0\} \{1\}$	001
$\{0,1\} = \{0\} \cup \{1\}$	0 + 1
$\{0, 10\} = \{0\} \cup \{10\}$	0 + 10
$\{1, \boldsymbol{\varepsilon}\}\{001\}$	$(1 + \varepsilon)001$
$\{110\}^*\{0,1\}$	$(110)^*(0+1)$
{1}*{10}	1*10

Expresiones regulares

Entonces, las expresiones regulares se pueden simplificar más reduciendo el número de paréntesis:

- $\{a,b\}^*\{bb\}\{a,b\}^* = (a+b)^*bb(a+b)^*$
- $\{a\}\{a,b\}^*\{b\}\{a,b\}^*\{a\} = a(a+b)^*b(a+b)^*a$
- Notación
 - $\bullet_{11}^{+} = 1111^{*}$
 - $u^2 = uu$, $u^3 = u^2u$, ...

Ejemplo

• El conjunto $\{bawab \mid w \in \{a, b\}^*\}$ es regular sobre $\{a, b\}$

Demostración:

Con	junto	Expresión	Justificación
1.	$\{a\}$	а	Base
2.	$\{b\}$	Ь	Base
3.	$\{a\}\{b\} = \{ab\}$	ab	Concatenación de 1 y 2
4.	$\{a\} \cup \{b\} = \{a,b\}$	a+b	Unión de 1 y 2
5.	$\{b\}\{a\} = \{ba\}$	ba	Concatenación de 2 y 1
6.	$\{a,b\}^*$	$(a+b)^*$	Cerradura Kleene de 4
7.	$\{ba\}\{a,b\}^*$	$ba(a+b)^*$	Concatenación de 5 y 6
8.	$\{ba\}\{a,b\}^*\{ab\}$	$ba(a+b)^*ab$	Concatenación de 7 y 3

Lenguajes regulares

• Definición:

Un lenguaje es regular si se puede representar por una expresión regular o conjunto regular.

Equivalencias

- Una expresión regular define un patrón; una palabra **pertenece** al lenguaje definido por esa expresión regular si y sólo si sigue el patrón.
- Una expresión regular que represente un lenguaje debe cumplir dos condiciones:
 - Correcta: todas las palabras representadas por la expresión regular deben ser parte del lenguaje.
 - Completa: toda palabra del lenguaje debe ser representada por la expresión regular.

Equivalencias

- Concatenación indica orden de los símbolos
- Cerradura de Kleene permite repeticiones
- + indica selección.
- Dos expresiones que representan al mismo conjunto son llamadas **equivalentes**.

ER1=
$$(a+b)^*aa(a+b)^*+(a+b)^*bb(a+b)^*$$

={aa, bb, aaa, baa, abb, bbb,}

Representa al conjunto de cadenas sobre $\{a, b\}$ que contienen a la subcadena aa o a la subcadena bb.

$$ER2 = a^*ba^*ba^*$$

={bb, abb, bab, bba,}

Representa al conjunto de cadenas sobre $\{a, b\}$ que contienen exactamente dos b's

$$ER3 = a^*(a^*ba^*ba^*)^*$$
 y $ER4 = a^*(ba^*ba^*)^*$
= {\varepsilon\$, bb, bba, bab,}

Representan cadenas con un número par de b's.

$$ER5 = (a+ab)^*$$

Expresión regular para el lenguaje sobre $\{a,b\}$ en cuyas palabras inmediatamente antes de toda b aparece una a

ER6=
$$(ba+bc+a+c)^*bb(a+c+ab+cb)^*$$

Expresión regular que representa a las palabras que contienen exactamente una vez dos b's contiguas

Ejercicio

• Escriba una expresión regular para el lenguaje sobre {0,1} que consiste de las palabras en las que no hay dos símbolos iguales contiguos, es decir, los 0's y los 1's se alternan.

- $(01)^* + (10)^* + 0(10)^* + 1(01)^*$
- $(\epsilon + 1)(01)*(\epsilon + 0)$
- $(\epsilon + 0)(10)*(\epsilon + 1)$

Identidades

•
$$\emptyset u = u\emptyset = \emptyset$$

•
$$\varepsilon u = u \varepsilon = u$$

•
$$\emptyset^* = \varepsilon$$

$$3 = 3$$

•
$$u+v=v+u$$

•
$$u+\emptyset=u$$

•
$$u+u=u$$

•
$$u^* = u^* u^* = (u^*)^*$$

•
$$u(v+w) = uv + uw$$

•
$$(u+v)_W = u_W + v_W$$

$$(uv)^* u = u(vu)^*$$

•
$$(u+v)^* = (u^*+v)^* = u^*(u+v)^* = (u+vu^*)^* = (u^*v^*)^* = u^*(vu^*)^* = (u^*v)^*u^*$$

•
$$u^*(u + \varepsilon) = u^*$$

•
$$u^*u^* = u^*$$

•
$$u^* + v^* = v^* + u^*$$

•
$$(u^*v^*)^* = (u+v)^* = (u+v)^*uv(u+v)^* + v^*u^*$$

Ejemplos

• Expresión que representa las cadenas sobre $\{a,b\}$ que no contienen la subcadena aa:

$$b^*(ab^+)^* + b^*(ab^+)^* a =$$
 $b^*(ab^+)^* (\varepsilon + a) =$
 $b^*(abb^*)^* (\varepsilon + a) =$
 $(b+ab)^* (\varepsilon + a)$

• Expresión regular que representa las cadenas sobre $\{a, b, c\}$ que contienen la subcadena bc:

$$(a+b+c)^*bc(a+b+c)^*$$

• $c^*(b+ac^*)^*$ Representa las cadenas que no contienen la subcadena bc.

Ejemplos

• Cadenas sobre $\{0, 1\}$ de longitud igual a 5: (0+1)(0+1)(0+1)(0+1)(0+1) $= (0+1)^5$

- Cadenas sobre $\{0, 1\}$ de longitud mayor o igual a 6: $(0+1)(0+1)(0+1)(0+1)(0+1)(0+1)(0+1)^*$ = $(0+1)^6(0+1)^*$
- Cadenas sobre $\{0, 1\}$ de longitud menor o igual a 6: $(0 + 1 + \epsilon)(0 + 1 + \epsilon)$ $= (0 + 1 + \epsilon)^6$

Ejercicios

• Obtenga una expresión regular para el conjunto de palabras sobre $\{a, b, c\}$ que tienen al menos una a y al menos una b.

$$(a + b + c)^*a(a + b + c)^*b(a + b + c)^*$$

• Obtenga una expresión regular para el lenguaje sobre {0, 1} que consiste de las palabras cuyo décimo símbolo contado de la derecha a la izquierda es un 1.