Compromiso 1

Javier Falcón (2016-5265) January 26, 2019

1 Justifique si las siguientes identidades son válidas o no

- a. $a(ba)^* = (ab)^*a$
 - La expresión es válida debido a que todas las cadenas que sean válidas en la expresión regular a la izquierda de la igualdad pueden ser representadas dentro de la expresión al lado derecho.
- b. $ab^* = \epsilon |a(a|b)^*$

Esta indentidad no es válida debido a que al presentar abb = aab como ejemplo de cadenas que responden a las expresiones regulares en cada lado de la igualdad, ésta queda inválida. La expresión del lado izquierdo de la igualdad solo admite cadenas con una sola a al pricipio, mientras que la expresión del lado derecho admite cadenas que pueden tener múltiple número de a en su comienzo.

- c. $b(b|\epsilon)^*(a|\epsilon)|b = ba^*$
 - Nuevamente, esta identidad es inválida debido a que la igualdad no se cumple para todas las cadenas de los lenguajes que satisfagan las expresiones regulares presentes, por ejemplo bb = baa. En este caso, el lado izquierdo de la igualdad admite cadenas con múltiples apariciones del caracter b, mientras que el lado derecho solo admite cadenas con un solo caracter b presente al principio de ella.

2 Use la construcción/algoritmo de Thompson para obtener los Automatas Finitos Nodeterminísticos (AFNs)

a.
$$(a|b)^*|(aba)^+$$

Figure 1: AFN 1

b. $(aa|b)^*(bb|a)^*$

Figure 2: AFN 2

c. $(aa^*|bb^*)^+|(b^+a|a^+b)^*$

Figure 3: AFN 3

3 Obtener el Automata Finito Determinístico (AFD) correspondiente.

- a. $(a|b)^*|(aba)^+$
- b. $(aa|b)^*(bb|a)^*$
- c. $(aa^*|bb^*)^+|(b^+a|a^+b)^*$

Figure 4: AFD 1

Figure 5: AFD 2

Figure 6: AFD 3