## Лабораторная работа №2

Математическое моделирование

Волгин Иван

#### Содержание

| 1 | Цель работы                    | 4  |
|---|--------------------------------|----|
| 2 | Задание                        | 5  |
| 3 | Выполнение лабораторной работы | 6  |
| 4 | Выводы                         | 11 |

# Список иллюстраций

| 3.1 | Код для построения модели                |
|-----|------------------------------------------|
| 3.2 | Траектория катера                        |
| 3.3 | совместные траектории                    |
| 3.4 | точка пересечения                        |
| 3.5 | Код для построения модели второго случая |
| 3.6 | Траектория катера                        |
| 3.7 | точка пересечения 10                     |

## 1 Цель работы

Построить математическую модель для выбора правильной стратегии при решении задачи о погоне

## 2 Задание

Здесь приводится описание задания в соответствии с рекомендациями методического пособия и выданным вариантом.

#### 3 Выполнение лабораторной работы

Построение модели (рис. 3.1).

```
: # Расстояние от лодки до катера
k = 16.9

# Начальные услодил
r0 = (10 / 57) * K # Начальной угол (б радианах)

# Движение лодки браконьеров
fi = (3 / 4) * π # Угол направления движения лодки
tspan = (0.0, 5.0) # Вреженной интервал

# движение береговой охраны
f(r, p, t) = r/sqrt(21.09)

# Задача ОДУ для первого случая
и0 = [r0] # Начальное услодие (вектор)
prob = ODEProblem(f, и0, tspan)
sol = solve(prob, saveat=0.1)

# Построение траектории движения катера
theta = range(0, Zn, length=length(sol.t)) # Углы для полярного графика
r = [u[1] for u in sol.u] # Расстояния от центра

# График в полярных координатах
plot(theta, r, proj=:polar, lims=(0, 15), label="Траектория движения катера", xlabel="Угол", ylabel="Расстояние")
```

Рис. 3.1: Код для построения модели

В итоге я получил вот такой рисунок (рис. 3.2)



Рис. 3.2: Траектория катера

Отрисовываю движение катера с движением лодки и вижу, что траектории пересекаются (рис. 3.3)



Рис. 3.3: совместные траектории

Вычисляю точку пересевения катера и лодки (рис. 3.4)

```
# ДУ для движения катера береговой охраны
y(x) = (1690*exp(10*x)/(sqrt(2109)))/509

# угол движения лодки браконьеров
y(fi)
```

#### 1.2358144990585077e9

Рис. 3.4: точка пересечения

Построение модели для второго случая (рис. 3.5).

```
# Расстояние от лодки до катера
k = 16.9

# Начальные услобия
r0 = (10 / 37) * k # Начальное расстояние
theta0 = -pi # Начальный угол (6 радианах)

# Движение лодки браконьеров
fi = (3 / 4) * п # Угол направления движения лодки
tspan = (0.0, 5.0) # Временной интервал

# движение береговой охраны
f(r, p, t) = r/sqrt(21.09)

# Задача ОДУ для первого случая
u0 = [-0] # Начальное условие (вектор)
prob = 00EProblem(f, u0, tspan)
sol = solve(prob, saveat=0.1)

# Построение траектории движения катера
theta = range(0, 2т, length=length(sol.t)) # Углы для полярного графика
r = [u[1] for u in sol.u] # Расстояния от центра

# График в полярных координатах
plot(theta, r, proj=:polar, lims=(0, 15), label="Траектория движения катера", xlabel="Угол", ylabel="Расстояние")
```

Рис. 3.5: Код для построения модели второго случая

В итоге получаю такую траекторию (рис. 3.6)



Рис. 3.6: Траектория катера

Отрисовываю движение катера с движением лодки для второго случая и вижу, что траектории пересекаются (рис. **??**)

```
# функция описывающая движение лодки браконьеров
x(t) = tan(fi)*t

x (generic function with 1 method)

# траеткория движения лодки
angle = [fi for i in range(0, 15)]
x_lim = [x(i) for i in range(0,15)]

plot!(angle, x_lim, proj=:polar, lims=(0, 15), label = "Траектория движения лодки")
```



{#fig:007wio

Вычисляю точку пересечения катера и лодки во втором случае (рис. 3.7)

```
# ДУ для движения катера береговой охраны
y2(x) = (1690*exp((10*x)/(sqrt(2109))+(10*pi/sqrt(2109))))/31

# угол движения лодки браконьеров
y2(fi-pi)
```

91.06396242032447

Рис. 3.7: точка пересечения

#### 4 Выводы

В процессе выполнения данной лабораторной работы я построил математическую модель для выбора правильной стратегии при решении задачи о погоне.