Soutenance de stage

Création d'un pipeline d'analyse de variants génomiques dans le cadre d'une expérience de mutagenèse aléatoire.

Romuald Marin

Laboratoire d'accueil

Recherche et Développement des Plantes - RDP

Tutelle: ENS, CNRS, INRA ...

Domaine de recherche :

- Développement des plantes
- Evolution des structures reproductrices

Equipe **Signal** (Signalisation hormonale et développement)

Maitre de stage : Fabrice Besnard

Données Biologiques

Expérience de mutagenèse aléatoire

Identifier les **mutations** génétiques causant ces phénotypes

→ Lien entre gène et phénotype

Mutations génétiques

Analyse bio-informatique

Les grandes étapes

Séquencer l'ADN issu des plants mutés

Aligner les lectures des différents échantillons sur le génome de référence

Repérer les variations par rapport au génome de référence : "Variant calling"

Cahier des charges

Problème:

Procédure : 8 scripts différents

Nombreux types de fichiers

Quelques outils disponibles mais version non à jour

Pas de variants structuraux

Un seul design expérimental

Solution:

Fichiers d'entrée et de sortie simples

Amélioration et mise à jour des outils

Pipeline automatisé

Avantage du pipeline **Nextflow**

Coté développeur :

Créé pour la bioinformatique

Différents environnements et langages de script

Système de cache

Gestion des containers docker

Coté utilisateur :

Peu de connaissances en informatique nécessaires

Une ligne de commande

Entrée et sortie simples

Suivi de l'analyse

Fonctionnement du Pipeline

3 fichiers d'entrée :

Génome de référence Lecture Fichier d'annotation

2 fichiers de sortie :

Rapport .HTML Variants en .tsv

3 étapes :

Alignement des lectures Détection des variants Prédiction des effets

Etape 1 : Alignement des lectures

But de l'alignement

Aligner les lectures contre le génome de référence

Objectif : Avoir le plus de lectures alignées

Test de différents programmes

Bowtie2

BWA aln

BWA mem

Pourcentage de lectures mappées par les differents programmes

Traitement des lectures alignées

Picard Tools (filtration)
Samtools (filtration et conversion)

7

Etape 2 : Petits variants avec GATK

Description des étapes

HaplotypeCaller : détecte snp et indel et fournit des fichiers gvcf

GenotypeGVCF: combine les gvcf en un seul vcf

Séparation des snps et indels

Filtration selon snps et indels

Sélection des **variants spécifiques** de la mutagenèse grâce à un script dédié

Etape 2: Variants structuraux avec MetaSV

Méthode:

Combiner les résultats des différents programmes

Avantage:

Variants **imprécis** ou de **faibles qualités** Supprimer possible **faux variants**

MetaSV

9

+ Sélection des variants spécifiques

Etape 3 : Prédiction de l'impact fonctionnel avec snpeff

But : Prédire l'impact fonctionnel pour avoir une liste restreinte de gènes candidats

Fort (HIGH): Cadre de lecture, site d'epissage, perte/gain codon stop

Modéré (MODERATE): Modification d'un ou plusieurs codons

Faible (LOW): Modification synonyme

Nul (MODIFIER) : Région inter-génique

Exemple de fichier de sortie

GENE	CHROM	POS	REF	ALT	DP	EFFECT	IMPACT	.BIOTYPE
ATOZI1	4	36920	CAA	С	69	upstream_gene_variant	MODIFIER	protein_coding
WRKY42	4	2221	TCCCCCC	Т	35	splice_region_variant	LOW	protein_coding
BHLH14	6	363920	CAA	С	69	upstream_gene_variant	MODIFIER	protein_coding
AT4G1025	6	857995	G	GT	65	frameshift_variant	HIGH	protein_coding
AT3G1100	7	3448	С	Α	56	stop_gained	HIGH	protein_coding

Mise à l'épreuve

Simplicité d'exécution

Une seule ligne de commande

Informations sur l'avancement du pipeline

Temps d'exécution 30-35h

Rapport d'exécution concernant la partie technique du pipeline et concernant l'analyse

Mise à l'épreuve

Physcomitrium patens

Données issues de Mousse

Mutations induites par UV

5 mutants générés

Développement anormale

Phyllotaxie

Résultats

	Coverage	indel	snp	SV	Total
Mutant 1	17,4	234	1079	633	1946
Mutant 2	8,9	709	1470	1060	3239
Mutant 3	8,8	653	1774	1064	3491
Mutant 4	15,9	219	961	846	2026
Mutant 5	7,7	898	1916	986	3800

12

Mise à l'épreuve

Analyse impact fonctionnel des variants

Majorité de variants nul "**Modifier**"

→ Intergénique

Peu de variant à fort impact

Permet au généticien d'avoir une **liste restreinte** de variants candidats

Présence de variants intéressants :

Processus métabolique de phosphorylation

Le réseau métabolique de l'auxine

La fabrication de la membrane cellulaire

La fabrication de la pectine

Qualité de l'annotation :

Nombreux gènes prédits Aucune information sur la fonction

Conclusion

Objectifs du cahier des charges validés :

- ✓ Programme avec version à jour (docker)
- ✓ Pipeline facile d'utilisation
- ✓ Large spectre de variants détectés
- Classification de l'impact fonctionnel des variants

Limite du pipeline :

Qualité initiale des données Annotation et information fiable sur les gènes

Perspectives:

Données d'*Arabidopsis thaliana* (Meilleure annotation) Ajout des informations dans rapport HTML

Merci de votre attention

Partie Discussion

Mutagenèse par UV

Attendu : Trouvé : 20% C -> T 16%

Taux "normal" de mutation d'une base vers une autre est d'environ 8% (1 / 12 nucléotides possibles)

Nakamura, M., Nunoshiba, T. & Hiratsu, K. Detection and analysis of UV-induced mutations in the chromosomal DNA of Arabidopsis. Biochem. Biophys. Res. Commun. 554, 89–93 (2021)

Catégorie des variants détectés (snpeff)

Spectre de détection

 $2\ 11033989 .\ G < DEL> .\ PASS\ CIEND=-9,6; END=11034921; SVLEN=-932; SVTYPE=DL; CIPOS=-5,7; SVTOOL=MetaSV; SOURCES=2-11033989-2-11\\ 034921-932-Pindel, 2-11033993-2-11034921-928-Lumpy, 2-11034001-2-11035000-999-CNV nator, 2-11034037-2-11034922-899-BreakDancer; NUM_SVMETHODS=3; NUM_SVTOOLS=4; VT=SV; SVMETHOD=RD, RP, SR; BD_CHR1=2; BD_POS1=11034036; BD_ORI1=10+0-; BD_CHR2=2; BD_POS2=11034922; BD_ORI2=0+10-; BD_SCORE=99.0; BD_SUPPORTING_READ_PAIRS=9\ GT 1/1$

3 25474944 . T . PASS END=25481413;SVLEN=-6057;SVTYPE=DEL;SVTOOL=MetaSV;SOURCES=3-25474907-3-25481390-6565-BreakDancer,3-25475044-3-25481090-6046-Pindel, 3-25475256-3-25481313-6057-Pindel;NUM_SVMETHODS=2;NUM_STOOLS=2;VT=SV;SVMETHOD=RP,SR;BD_CHR1=3;BD_POS1=25474906;BD_ORI1=31+0-;BD_CHR2=3;BD_POS2=25481390; BD_ORI2=1+28-;BD_SCORE=99.0;BD_SUPPORTING_READ_PAIRS=28 GT 1/1