

2주차

최종석(jschoi@ssu.ac.kr)

목차

- 1. 수의 체계와 변환
- 2. 데이터의 표현
- 3. 논리회로

01 수의 체계와 변환

l. 진법의 개념

- 진법: 사용할 수 있는 숫자 개수와 각 숫자의 위치 값을 정의한 수 체계.
- 사람은 주로 10진법을, 컴퓨터는 2진법을 사용함.

하나 더 알기 진법을 알아야 하는 이유

- 컴퓨터는 0과 1, 디지털 형식으로 정보를 표현하는데, 이를 실생활에 적용하려면
 아날로그 데이터를 디지털 데이터로 변환해야 함.
- 아날로그 데이터는 연속적 데이터, 디지털 데이터는 비연속적인 데이터를 의미.

Ⅲ. 10진법과 2진법

- 10진법: 0부터 9까지 10개의 숫자를 한 묶음으로 하여 10이 될 때마다 1자리씩 자리올림을 하는 방법.
- [그림 2-2]에서 자릿수의 의미
 - 4는 432를 100으로 나누었을 때의 '몫'
 - 32는 앞서 100으로 나누었을 때의 '나머지'
 - 2는 10으로 나누었을 때의 '나머지'

$$432_{10} = 4 \times 10^{2} + 3 \times 10^{1} + 2 \times 10^{0}$$
$$= 4 \times 100 + 3 \times 10 + 2 \times 1$$
$$= 432$$

그림 2-2 10진수 표현 방식

Ⅲ. 10진법과 2진법

- 컴퓨터는 0과 1, 두 가지 숫자로만 수를 표현하는 2진법을 사용.
- 컴퓨터가 2진법을 사용하는 이유: 최초의 컴퓨터가 진공관을 사용했기 때문인데, 진공관은 켜고 끄는(on/off) 기능만 있었기 때문에 진공관이 꺼지면 0, 진공관이 켜지면 1로 인식.

Ⅲ. 10진법과 2진법

하나 더 알기 컴퓨터 용량 단위

- 비트, 바이트, 워드
 - 비트(Bit): 2진수를 표현하는 가장 기본 단위로, 데이터를 표현하는 최소 단위. 1비트는 0과 1, 즉 2가지 상태만 표현할 수 있음.
 - 바이트(Byte): 문자를 표현하는 단위로, 1바이트는 8비트를 하나로 모은 것. 1바이트로는 256(=28)가지 상태를 표현할 수 있음.
 - 워드(Word): 컴퓨터가 한번에 처리할 수 있는 데이터의 단위로, 1워드는 4바이트.
- <u>비트, 디지털 세상을 열다(05:25)</u>

Ⅱ. 10진법과 2진법

하나 더 알기 컴퓨터 용량 단위

■ 큰 용량을 표현하는 단위

표 2-1 큰 용량을 표현하는 단위 구분

용량 단위	약어	2진법 크기	바이트 대비 크기				
바이트(Byte)	В	2°	1B				
킬로바이트(Kilo Byte)	KB	2 ¹⁰	1,024B				
메기바이트(Mega Byte)	MB	2 ²⁰	1,048,576B				
기기바이트(Giga Byte)	GB	2 ³⁰	1,073,741,824B				
테라바이트(Tera Byte)	TB	2 ⁴⁰	1,099,511,627,776B				
페타바이트(Peta Byte)	PB	2 ⁵⁰	1,125,899,906,842,624B				

Ⅲ. 진법 변환

- 10진수 → 2진수
 - 정수 계산 방식: 10진수를 계속 2로 나누면서 몫은 아래에, 나머지는 오른쪽에 기입하면 됨. 몫이 더 이상 2로 나누어지지 않을 때 아래에서부터 순서대로 나머지를 나열하면 2진수가 됨.

그림 2-4 10진수 → 2진수 변환: 정수 부분

Ⅲ. 진법 변환

- 10진수 → 2진수
 - 소수 계산 방식 : 정수 부분은 앞서 말한 방식대로 변환. 소수점 아래의 소수 부 분은 2를 계속 곱하면서 정수로 자리올림이 발생하는지 기록하고 이를 2진수 변 환하면 됨.

그림 2-5 10진수 → 2진수 변환: 소수 부분

Ⅲ. 진법 변환

- 2진수 → 10진수
 - **정수 계산 방식 :** 2진수의 0과 1을 각 자릿수만큼의 2의 지수 승으로 곱한 후 모두 더하면 됨.

```
101001_{2} = 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{0}= 1 \times 32 + 1 \times 8 + 1 \times 1= 41_{10}
```

그림 2-6 2진수 → 10진수 변환: 정수 부분

Ⅲ. 진법 변환

- 2진수 → 10진수
 - 소수 계산 방식: 정수의 변환 방식과 동일하게 각 자릿수를 고려해 계산하면 됨.
 단, 정수와는 반대로 소수점 아래로 내려갈수록 자릿수가 커지고 마이너스를 붙여 계산해야 함.

```
0.1011_2 = 1 \times 2^{-1} + 1 \times 2^{-3} + 1 \times 2^{-4}
= 1 \times 0.5 + 1 \times 0.125 + 1 \times 0.0625
= 0.6875_{10}
```

그림 2-7 2진수 → 10진수 변환 : 소수 부분

Ⅲ. 진법 변환

하나 더 알기 16진법

- 사람 입장에서는 2진법이 정확히 얼마인지 단번에 파악하기가 어렵고 2진법을 표기하면 자릿수가 길어지기 때문에 편의상 16진법을 사용하기도 함.
- 16진법으로 표현하려면 16가지 기호가 필요함. A는 10진수의 10을 의미하고, F는 10진수의 15를 의미함.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- 2진법 → 16진법 변환 : 2진수의 오른쪽에서부터 4비트씩 모아 계산하면 됨.
 - ✓ TIP. 2진법 → 8진법 변환 : 2진수의 오른쪽에서부터 3비트씩 모아 계산.

02 데이터의 표현

l. 정수의 표현

- **정수(Integer) :** 셀 수 있는 수를 의미.
- **정수의 구성 :** 음의 정수, 0, 양의 정수

■ 부호 없는 정수

- 부호 없는 정수(Unsigned Integer): 부호를 생략한다는 의미로, 모든 숫자는 0 또
 는 양의 정수.
- 8비트로 부호 없는 정수를 표현하면 0₁₀~255₁₀까지 나타낼 수 있음.
- N비트를 이용한 부호 없는 정수 표현은 0부터 (2ⁿ-1)까지 가능.

```
0000 0000_2 \leftrightarrow 0_{10}
1111 1111_2 \leftrightarrow 255_{10}
```

그림 2-8 8비트의 2진수 값을 10진수로 변환

I. 정수의 표현

- 부호 없는 정수
 - 부호 없는 정수에서 2진법을 이용한 사칙연산 방법은 기본적으로 10진법에서의 연산 방법과 동일.
 - 덧셈 연산: 2진법의 가장 오른쪽 비트인 최소유효비트(LSB)부터 시작해 각 비트의수를 더하고, 1+1로 자리올림이 발생하면 상위 자리로 1을 올리면 됨.

(a) 00001010₂+ 10001010₂

그림 2-9 2진수의 덧셈 연산

(b) 01101010₂ + 10110011₂

I. 정수의 표현

하나 더 알기 오버플로우

- 오버플로우(overflow): 덧셈의 결과가 8비트로 표현할 수 있는 범위를 넘어선 상황을 의미함.
- 컴퓨터 내부에서는 논리적으로 정확한 결과를 냈다 하더라도 표현 가능한 범위를 벗어났기 때문에 실제 수행 결과는 옳은 값이 아님.
- 즉, 계산 결과를 정확히 표현할 수 없음.
- 실제로 컴퓨터 프로그래밍 시 아주 큰 수끼리의 연산에서 오버플로우가 발생함.
- 문제는 연산 결과에 오류가 나더라도 프로그램은 계속 실행된다는 점.
- 틀린 값을 정확히 체크하지 않으면 최종 결과에 영향이 미침.

Ⅱ. 실수의 표현

- 실수(Real Number): 유리수와 무리수를 총칭하여 확장한 수로, 수직선 위에 나타 낼 수 있는 모든 수를 의미함.
- 컴퓨터 내부에서 실수를 표현하는 방법 : 고정소수점 표현, 부동소수점 표현

■ 고정소수점 표현

• [그림 2-14]와 같이 16비트를 사용하는 경우, 앞의 8비트는 정수 부분을 표현하고 나머지 8비트는 소수 부분으로 할당됨.

 $5.34_{10} = 101.010101110_{2}$

그림 2-14 고정소수점 표현법

Ⅱ. 실수의 표현

- 고정소수점 표현
 - **고정소수점 표현(Fixed-point Representation)** : 소수점의 위치를 고정시켜 표현 한다는 의미.
 - 고정소수점 표현은 숫자 표현이 간단하기 때문에 연산 속도가 빠르다는 장점이 있지만, 일반적으로 컴퓨터에서는 이런 방식을 사용하지 않음.

Ⅱ. 실수의 표현

- 부동소수점 표현
 - 부동소수점 표현(Floating-point Representation): 소수점의 위치를 고정시키지 않고 가수와 지수를 사용해 실수를 표현한다는 의미.
 - 부동소수점으로 표현할 때는 정수 부분에 '0 아닌 수를 하나'만 남기는 정규형으로 먼저 바꿔야 함.
 - [그림 2-15]를 보면 2진수 비트 열에서 지수는 가수 앞에 위치하며, 부호는 가수의 부호를 나타냄.

Ⅲ. 문자의 표현

- 아스키코드
 - 아스키코드(ASCII Code): 초창기 컴퓨터로 문자를 표현하는 과정에서 여러 문제가 발생해 문자를 표현할 약속 체계를 만들었는데, 그중 가장 많이 사용하는 코드체계가 미국표준협회에서 만든 아스키코드임.
 - 아스키코드는 7비트로 구성되어 있으며, 표현할 수 있는 문자 개수는 128(2⁷)임.

Ⅲ. 문자의 표현

■ 아스키코드

표 2-2 아스키코드

10 진수	16 진수	부호	10 진수	16 진수	부호	10 진수	16 진수	부호	10 진수	16 진수	부호
0	0	NUL	32	20	SP	64	40	@	96	60	`
1	1	SOH	33	21	!	65	41	Α	97	61	а
2	2	STX	34	22	"	66	42	В	98	62	b
3	3	ETX	35	23	#	67	43	С	99	63	С
4	4	EOT	36	24	\$	68	44	D	100	64	d
5	5	ENQ	37	25	%	69	45	E	101	65	е
6	6	ACK	38	26	&	70	46	F	102	66	f
7	7	BEL	39	27	1	71	47	G	103	67	g
8	8	BS	40	28	(72	48	Н	104	68	h
9	9	HT	41	29)	73	49	I	105	69	i
10	OA	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	OD	CR	45	2D	-	77	4D	М	109	6D	m
14	0E	SO	46	2E		78	4E	N	110	6E	n
15	OF	SI	47	2F	/	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	Р	112	70	р

Ⅲ. 문자의 표현

■ 아스키코드

10 진수	16 진수	부호	10 진수	16 진수	부호	10 진수	16 진수	부호	10 진수	16 진수	부호
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	S
20	14	DC4	52	34	4	84	54	Т	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	V
23	17	ETB	55	37	7	87	57	W	119	77	W
24	18	CAN	56	38	8	88	58	X	120	78	Х
25	19	EM	57	39	9	89	59	Υ	121	79	у
26	1A	SUB	58	ЗА	:	90	5A	Z	122	7A	Z
27	1 B	ESC	59	3B	;	91	5B	[123	7B	{
28	1C	FS	60	3C	<	92	5C	₩	124	7C	
29	1D	GS	61	3D	=	93	5D]	125	7D	}
30	1E	RS	62	3E	>	94	5E	٨	126	7E	~
31	1F	US	63	3F	?	95	5F	-	127	7F	DEL

Ⅲ. 문자의 표현

- 유니코드
 - 유니코드(Unicode): 아스키코드는 영어 문화권에만 사용 가능해, 다양한 나라의 언어를 표현하고자 만든 코드 체계임.

	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	ACA	ACB	ACC	ACD	ACE	ACF
0	가	감	갠	갰	걀	걐	걠	거	검	겐	겠	결	곀	곐	고	곰
	AC00	AC10	AC20	AC30	AC40	AC50	AC60	AC70	AC80	AC90	ACA0	ACB0	ACC0	ACD0	ACE0	ACF0
1	각	갑	갡	갱	걁	걑	걡	걱	겁	겑	겡	겱	곁	곑	곡	곱
	AO01	AC11	AC21	AC31	AC41	AC51	AC61	AC71	AC81	AC91	ACA1	ACB1	ACC1	ACD1	ACE1	ACF1
2	갂	값 AC12	갢 AC22	갲 AC32	걂 AC42	<u></u> AC52	盟 AC62	검 AC72	값 AC82	겒 AC92	겢 ACA2	겲 ACB2	곂 ACC2	곒 ACD2	귀 ACE2	卫 ACF2

그림 2-17 한글 유니코드 일부