SVERIGE

(12) UTLÄGGNINGSSKRIFT

B (21) R403564-1

(19) SE

(51) Internationall klass GO1S

(44) Ansokan utlagd och utlaggningsskriften publicerad

85-12-16

(11) Publiceongs nummer

442 348

(41) Ansokan allmant tillgånglig

85-12-16

(22) Patentansokan inkom

84-07-04

Ansokan inkommen som

(24) Lopdag PATENTVERKET

84-07-04

x svensk patentansökan

med nummer

(62) Stamansokans nummer (86) Internationall ingivningsdag

fullföljd internatione i patentansokan med nummer

(86) Ingivningsdag for ansokan om europeiskt patent

omvandlad europeisk putentiinsokan

(30) Prioritetsuppgifter

(71) Sökande

Stiftelsen institutet för mikrovågsteknik vid Tekniska högskolan i Stockholm, Box 70033 100

44 Stockholm SE

(72) Uppfinnare B. Hane , Stockholm

(74) Ombud

Örtenblad B

(54) Benämning

Förfarande och anordning för bestämning av inbördes läge mellan två objekt

(56)Anförda publikationer: DE,Al 3 115 678(G01S 13/74), US 4 151 525(343-6.5)

(57)Sammandrag:

Förfarande för bestämning av ett inbördes läge mellan två objekt, innefattande att från det första objektet utsända en mikrovågssignal mot det andra objektet, vilket andra objekt bringas mottaga signalen och återutsända en signal, vilken bringas att mottagas av det första objektet. Enl. uppfinningen innefattar det första objektet en sändar/mottagarenhet (S/M-enhet), vilken utsänder nämnda signal (f_o) från en sändarantenn. Det andra objektet (T) bringas återutsända nämnda signal modulerad med en signal (f_m) , varvid det första objektet bringas mottaga den återutsända signalen medelst åtminstone två antenner (M₁,M₂) placerade symmetriskt på var sin sida om sändarantennen (S) och i ett med sändarantennen (S) gemensamt antennplan. Vinkeln (0) mellan nämnda antennplan och det andra objektet, i åtminstone en dimension; bestämmes genom en fasjämförelse resp. en amplitudjämförelse hos mottagna signaler beroende på om det andra objektet (T) befinner sig i det f\u00f6rsta objektets s.k. n\u00e4rzon eller ej.

Vidare innefattar uppfinningen en anordning för utförande av förfarandet.

S/M đ

Föreliggande uppfinning avser ett förfarande för bestämning av ett inbördes läge mellan två objekt, jämte en anordning härför.

Det finns ett flertal industriella och andra tillämpningar där man har behov av att mäta det inbördes läget mellan två föremål, såsom mellan ett rörligt och ett stationärt objekt. Ett exempel är en robot som automatiskt skall uppsöka ett objekt för att utföra en operation på objektet. Härför behöves, om robotens läge relativt objektet inte är känt, en lägesmätare utnyttjas för att först bestämma robotens läge relativt objektet. Ett annat exempel kan vara att lägesbestämma redskap, såsom maskiner, relativt omgivningen, exempelvis olika referenspunkter på marken.

Föreliggande uppfinning är speciellt lämpad för bestämning av det inbördes läget mellan två objekt där det ena objektet skall uppsöka det andra objektet. Emellertid kan föreliggande uppfinning tillämpas i allehanda sammanhang där en lägesbestämning mellan två objekt behöver utföras.

Föreliggande uppfinning hänför sig till ett förfarande för bestämning av ett inbördes läge mellan två objekt, innefattande att från ett första objekt innefattande en sändar/mottagarenhet utsända en mikrovågssignal mot det andra objektet, vilket andra objekt bringas mottaga signalen och återutsända en signal vilken bringas att mottagas av det första objektet medelst åtminstone två antenner och utmärkes av, att det första objektets sändar/ mottagarenhet bringas utsända nämnda signal med en frekvens forån en sändarantenn, av att det andra objektet bringas återutsända nämnda signal modulerad med en signal $\mathbf{f}_{\mathbf{m}}$, av att det första objektets antenner är placerade symmetriskt på var sin sida om sändarantennen och i ett med sändarantennen gemensamt antennplan, samt av att vinkeln mellan nämnda antennplan och det andra objektet, i åtminstone i en dimension, nämligen i ett första plan löpande genom sändarantennen och de två mottagarantennerna, bestämmes genom en fasjämförelse resp. en amplitudjämförelse hos mottagna signaler beroende på om det andra objektet befinner sig i det första objektets s.k. närzon eller ej, d.v.s. på ett avstånd närmare än ett avstånd av samma storleksordning som avståndet d mellan de två mottagarantennerna eller ej, där för det fall det andra objektet befinner sig utanför närzonen nämnda vinkel 0 bestämmes genom en fasjämförelse mellan den av resp. mottagarantenn mottagna signalen efter blandning med den utsända signalen $f_{_{
m O}}$, där fasskillnaden mellan de mottagna signalerna bestämmes, samt av att nämnda

Grandone service

vinkel bestämmes ur uttrycket

$$\theta = \arcsin \left[\frac{(F_2 - F_1) \cdot c}{2\pi \cdot f_0 \cdot d} \right]$$

där c är ljushastigheten och d är avståndet mellan de två mottagarantennerna, medelst en till S/M-enheten hörande beräkningsenhet.

Vidare hänför sig uppfinningen till en anordning av det slag och med de huvudsakliga särdrag som angives i patentkravet 6.

Medelst förfarandet och anordningen enligt uppfinningen är det möjligt att bestämma riktningen till en referenspunkt i förhållande till en sändar-/ mottagarenhet, nedan kallad S/M-enhet. Referenspunkten utgöres av en transponder T.

Enligt uppfinningen utnyttjas mikrovågor för nämnda bestämning. Genom att använda mikrovågor i stället för ett exempelvis optiskt system erhåller manett system, som inte influeras av en besvärlig miljö, såsom en miljö innehållande smuts och damm, ljusreflexer etc. Detta har stor betydelse vid industriella tillämpningar.

Ett speciellt problem uppträder när transpondern kommer nära S/M-enheten, närmare bestämt inom S/M-enhetens s.k. närområde.

Detta problem löses genom att S/M-enheten övergår från att mäta fasskillnader mellan mottagna mikrovågssignaler till att mäta signalernas amplitud. Detta är ett ytterst väsentligt bidrag till lägesbestämningen genom fasmätning, därför att under utnyttjande av amplitudmätning kan ett objekt såsom en robotarm ledas ända fram till objektet.

Nedan beskrives uppfinningen närmare i anslutning till på bifogade ritningar visade förklarande diagram och olika som exempel visade utföringsformer av uppfinningen, där

- figur l åskådliggör principen för vinkelmätning,
- figur 2 visar ett schematiskt blockschema över en sändare/mottagarenhet för fasmätning,
- figur 3 och 4 visar placeringen av en sändar/mottagarenhets antenner enligt två olika utföranden,
- figur 5 schematiskt visar den s.k. närzonens principiella utbredning

- figur 6 visar ett schematiskt blockschema över en sändare/mottagarenhet för amplitudmätning
- figur 7 visar ett diagram över mottagna signalers amplitud som funktion av mottagarantennernas läge
- figur 8 visar ett diagram över mottagna signalers amplitud som funktion av avståndet mellan transponderoch mottagarantennerna
- figur 9 visar ytterligare en placering av en sändar/mottagarenhets antenner
- figur 10 visar ett schematiskt blockschema över en sändar/mottagarenhet för både fasmätning och amplitudmätning
- figur 11 och 12 visar ett tillämpningsexempel.

Figur 1 åskådliggör principen för vinkelmätning i ett plan. Sändar/mottagarenheten S/M innefattar i planet två mottagarantenner $\rm M_1$, $\rm M_2$ och en sändarantenn S. Transpondern T innefattar en mottagarantenn och en sändarantenn, vilka företrädesvis är kombinerade i en transponderantenn 1. S/M-enheten är anordnad att utsända en mikrovågssignal av exempelvis frekvensen $\rm f_0$ lika med 2450 MHz. Transpondern är anordnad att, vilket förklaras närmare nedan, mottaga signalen $\rm f_0$ och återutsända en signal $\rm f_0$ + $\rm f_m$, där $\rm f_m$ exempelvis är 10kHz, d.v.s. reflektera den av S/M-enheten utsända signalen $\rm f_0$.

Den reflekterade signalen mottages av mottagarantennerna M_1 , M_2 , vilka är symmetriskt placerade på ett visst inbördes avstånd på var sin sida om sändarantennen S. På grund av skillnad i tillryggalagd sträcka för de återutsända och mottagna signalerna $f_0 + f_m$, uppstår en fasskillnad mellan signalerna vid antennerna M_1 , M_2 , som motsvarar skillnaden i avstånd. Den vid antennen M_1 mottagna signalen har tillryggalagt sträckan $2L_0 - \Delta L$ där L_0 är avståndet från sändarantennen S och transponderns antenn 1. Den vid antennen M_2 mottagna signalen har tillryggalagt sträckan $2L_0 + \Delta L$. Signalerna S_1 vid antennen M_1 , S_2 vid antennen M_2 och S_0 vid sändarantennen kan beskrivas enl. formlerna

$$S_{0} = \cos (2\pi \cdot f_{0} \cdot t) \tag{1}$$

$$S_1 = k_1 \cdot \cos \left[2\pi \left(f_0 + f_m \right) \left(t - \frac{2L_0 - \Delta L}{c} \right) \right]$$
 (2)

$$S_2 = k_2 \cdot \cos \left[2\pi (f_0 + f_m) \left(t - \frac{2L_0 + \Lambda L}{c} \right) \right]$$
 (3)

där k_1 och k_2 är konstanter och c är ljushastigheten.

I figur 2 visas S/M-enheten schematiskt. Med siffran 2 betecknas en lokaloscillator vilken genererar en signal med frekvensen $f_{\rm O}$ som leds till dels sändarantennen S, dels till var och en av två homodyna blandare 3.4. Den ena blandarens 3 andra ingång är ansluten till den ena mottagarantennen M_1 och den andra blandarens 4 andra ingång är ansluten till den andra mottagarantennen M_2 . De rådande frekvenserna är angivna i figur 2.

Efter homodyn blandning i blandarna 3,4 erhålles signalerna $S_1^{'}$ resp. $S_2^{'}$ en]. formlerna

$$S_1' = k_3 \cdot \cos(2\pi \cdot f_m \cdot t + \phi_1)$$
 (4)

$$S_2^i = k_4 \cdot \cos (2\pi \cdot f_m \cdot t + \phi_2)$$
 (5)

$$dHr \quad \phi_1 = \frac{2\pi \cdot f_0}{G} \quad (2L_0 - \Delta L) \qquad \text{och}$$
 (6)

$$\phi_2 = \frac{2\pi - f_0}{c} \quad (2L_0 + \Delta L) \qquad \text{samt}$$
 (7)

där k, och k, är konstanter.

Fasskillnaden mellan S₁ och S₂ ges av

$$\phi_3 = \phi_1 - \phi_2 = \frac{2\pi \cdot f_0}{c} \cdot 2 \cdot \Delta L$$
 (8)

Vinkeln θ mellan S/M-enhetens antennplan och transpordern T, se figur 1, kan uttryckas som

$$\theta = \arcsin\left(\frac{2\tilde{\Delta}L}{d}\right)$$
 (9)

där d är avståndet melian de två mottagarantennerna ${\rm M_1},~{\rm M_2}.$

Ur formlerna ovan fås
$$\theta = \arcsin\left(\frac{\phi_3...c}{2\pi f_o \cdot d}\right)$$
 (10)

Genom att således mäta fasskillnaden ϕ_3 kan vinkeln 6 mellan S/M-enheten och transpondern T bestämmas genom den vid den homodyna blandningen framtagna mellanfrekvensen f_m , kan fasmätningen utföras vid en låg frekvens i stället för vid mikrovågsfrekvens.

Det ovan behandlade avsåg mätning i ett plan, d.v.s. i en dimension. Genom att anordna ytterligare två mottagarantenner M₃, M₄ i ett andra plan vinkelrätt mot det första plan i vilket mottagarantennerna M₁, M₂ förefinns och placera de ytterligare mottagarantennerna M₃, M₄ på motsvarande sätt på ömse sidor om sändarantennen S, samt anordna ytterligare två blandare, kan bestämning av en vinkel 6' mellan S/M-enheten och transpondern ske i det andra planet, varigenom transponderns T vinkelläge i förhållande till S/M-enheten bestämmes i två inbördes vinkelräta plan.

Ju större avståndet d är, desto noggrannare kan vinklarna θ,θ' bestämmas. Å andra sidan minskar den den maximala entydiga vinkeln. För entydighet inom vinkelområdet -45° < θ , θ' < 45° gäller att avståndet d < $\lambda/\sqrt{2}$ där λ är våglängden vid frekvensen f₀, där -180° < ϕ_1 , ϕ_2 < + 180°.

Ett sätt att öka noggrannheten med bibehållande av stor maximal entydig vinkel är att anordna ytterligare mottagarantenner M_6 , M_7 resp. M_8 , M_9 , se figur 4, utanför och i samma plan som de nämnda mottagarantennerna M_1 , M_2 resp. M_3 , M_4 .

Transpondern T är företrädesvis utförd som en i det svenska patentet nr. 7503620-2 beskriven s.k. registreringsgivare. Denna innefattar en sändarantenn och en mottagarantenn vilka kan utgöras av en antenn 1. Till antennen är en enkel sidbandsmodulator 5 ansluten. En pulstågsgenerator 6 förefinns anordnad att generera ett pulståg 7, företrädesvis av individuellt utseende för var och en av transpondrarna när flera olika transpondrar T förefinns, vilket pulståg styr en oscillator 8. Den av oscillatorn 8 alstrade frekvensen $f_{\rm m}$ pålägges modulatorn 5 exempelvis när en puls i pulståget avges till oscillatorn, genom att oscillatorn endast när en puls avges alstrar frekvensen $f_{\rm m}$. Den till antennen 1 matade signalen består således av ett pulståg motsvarande pulståget 7, innefattande frekvenserna $f_{\rm O}$ och $f_{\rm O}+f_{\rm m}$, där frekvensen $f_{\rm O}$ råder mellan pulserna i pulståget 7 och frekvensen $f_{\rm O}+f_{\rm m}$ råder under varje puls.

Genom att göra pulståget 7 individuellt för varje transponder T och förse S/M-enheten med en dekoder anordnad att dekodera pulståget för identifiering av transpondern T, kan S/M-enheten i förekommande fall bestämma vinklarna θ , θ itill en av flera transpondrar utvald transponder.

Denna utföringsform innebär en väsentlig fördel när S/M-enheten utnyttjas för att styra en robotarms läge till ett objekt, där i beroende av önskad robotoperation en av flera transpondrar utväljes eller där robotarmen är

avsedd att uppsöka flera olika objekt i en viss successiv ordning.

Det ovan angivna avser mätning av en transponders läge i förhållande till S/M-enheten i två dimensioner. För praktiska tillämpningar är det dock i vissa fall erforderligt att även mäta det inbördes läget i den tredje dimensionen.

Förvisso är det i många fall tillräckligt att mäta i två dimensioner. När tillämpningen avser en robot kan därvid roboten vara anordnad att på basis av en mätning av 0, 0' föra robotens arm i den av vinklarna givna riktningen, och om erforderligt göra flera mätningar under robotarmens förflyttning till dess att en lämplig anordning indikerar att robotarmen nått sitt mål.

Emellertid är det ofta erforderligt, särskilt när robotarmen närmar sig det ifrågavarande objektet, att erhålla uppgift om avståndet till objektet. Det är således önskvärt att få dylik information i den s.k. närzonen,utmärkt med det streckade området i figur 5, d.v.s. när S/M-enheten och transpondern T ligger nära varandra. I närzonen är avståndet mellan objekten av samma storleksordning som avståndet d. Närmare bestämt har närzonen en utbredning motsvarande 1,5 · d ut från S/M-enheten, och en bredd av d. Framförallt är det viktigt att med hög precision kunna detektera när S/M-enhetens sändarantenn ligger mitt för transponderantennen.

Enligt en föredragen och mycket väsentlig utföringsform av föreliggande uppfinning bestämmes amplituden hos de av S/M-enheten mottagna signalerna istället för fasskillnaderna, för att tredimensionellt lägesbestämma S/M-enhetens läge i närzonen. Vid denna utföringsform utnyttjas en anordning vilken schematiskt visas i figur 6 och 9, vilken har samma principiella uppbyggnad som anordningen visad i figur 2, med den skillnaden att den av var och en av mottagarantennerna M₁, M₂, M₅ mottagna signalen blandas med frekvensen f₀ alstrad av oscillatorn 12 i blandare 9, 10, 11 varvid tre signaler S₁', S₂' och S₅' motsvarande ekvationerna (4) och (5) ovan bildas. Sändarantennen S utgör således även en mottagarantenn M₅, se figur 9. I figur 9 visas även två ytterligare antenner M₃ och M₄ analogt med den i figur 3 visade antennuppsättningen för att möjliggöra mätning i två inbördes vinkelräta plan. En ytterligare skillnad är, att blandarna 9, 10, 11 är försedda med en utgång för en signal G₁, G₂ resp. G₅ vilken motsvarar den mottagna signalens amplitud från antennerna M₁, M₂ resp. M₅.

I figur 7 illustreras de uppmätta amplituderna G₁, G₂, G₅ som funktion av läget för transpondern T när dess antenn förskjuts i sidled relativt S/M-enhetens antenner. Det vinkelräta avståndet mellan transponderns T antenn och S/M-enhetens antenner är således konstant.

Då transpondern T ligger mitt för sändarantennen S blir kvoten $G_1/G_2=1$ (O dB). Om transpondern ligger till vänster om antennen S blir $G_1/G_2>1$ och om den ligger till höger blir $G_1/G_2<1$. I närzonen är logaritmen av kvoten G_1/G_2 proportionell mot avståndet X vilket betecknar sidoförskjutningen. Kvoten G_1/G_2 är även proportionell mot vinklarna θ , θ '.

Genom logaritmen av kvoten G_1/G_2 är det således möjligt att bestämma transponderns antenns sidoförskjutning i planet relativt S/M-enhetens sändarantenn.

Genom att utnyttja tre mottagare M₁, M₂, M₅, som ovan angivits, är det även möjligt att bestämma storheten R enl. uttrycket (11) och även avståndet Z mellan S/M-enheten och transpondern. Avståndet Z är nämligen en entydig funktion av kvoten

$$R = \frac{G_5}{\sqrt{G_1/G_2}} \tag{11}$$

I figur 8 visas amplituden G_5 , kvoten G_1/G_2 samt kvoten R som funktion av avståndet mellan transponderantennen 1 och sändarantennen S när dessa ligger mitt för varandra.

Funktionen Z = F(R) kan approximeras med en polynomfunktion. Utseendet av funktionen bestäms bl.a. av geometrin hos antennarrangemanget och frekvensen.

Om transpondern befinner sig i närzonen kan man alltså bestämma både riktning och avstånd till transpondern.

Enligt en föredragen utföringsform av uppfinningen övergår S/M-enheten från att bestämma vinklarna 0, 0' genom bestämning av fjasskillnader till att bestämma avstånd och vinklar till transpondern enl. det nyss angivna förfarandet när transpondern inträder i närzonen. Föredragna villkor för övergång från s.k. fjärrmod till s.k. närmod ges nedan, där uppfinningen ytterligare beskrives i samband med ett utföringsexempel där mätning i två inbördes vinkelräta plan avses.

I figur 10 visas ett utföringsexempel av en dylik anordning enl. uppfinningen.

Uppbyggnaden är i princip densamma som den som ovan beskrivits. En mikrovägsoscillator 13 genererar en signal med frekvensen $f_{\rm O}$, exempelvis 2450 MHz. Signalen delas via en effektdelare 14, en riktkopplare 15 och en effektdelare 16 upp i sex lika delar, nämligen dels till sändarantennen S, dels till en av ingångarna på var och en av fem resp. blandare 17,18,19,20,21, vars andra ingång är ansluten till resp. mottagarantenn M_1 , M_2 , M_3 , M_4 och M_5 . Antennen M_5 är via riktkopplaren 15 ansluten till blandarens 21 andra ingång. Således utsändes frekvensen $f_{\rm O}$ av sändarantennen S. Transpondern är anordnad att mottaga signalen och återutsända en signal med frekvensen $f_{\rm O}$ + $f_{\rm m}$ där $f_{\rm m}$ kan vara 10 kHz. Den av var och en av mottagarantennerna mottagna signalen $f_{\rm O}$ + $f_{\rm m}$ leds till resp. blandare 17-21 varvid signalerna blandas ned till frekvensen $f_{\rm m}$, vilka signaler förstärkes i till resp. blandares utgång anslutna förstärkare 22,23,24,25,26. Förstärkarna 22-26 är anslutna till en resp. likriktare 26,27,28,29,30.

De efter blandning erhållna signalerna S_1^1 - S_5^1 har samma inbördes fasoch amplitudrelationer som råder mellan signalerna S_1 - S_5 före blandning. Efter blandning förstärkes och bandpassfiltreras signalerna i nämnda förstärkare 22-26.

På resp. likriktares 26-30 utgång uppträder en signal G_1 - G_5 vilken motsvarar resp. signals S_1 - S_5 amplitud. Dessa signaler förs till en resp. ingång på en beräkningsenhet 31.

För fasmätning förefinns fyra fasmätare 32,33,34,35 anordnade att mäta fassskillnaden mellan resp. mottagen signal S_1^1 - S_4^1 och en referensfas given av signalen S_5^\prime .

Till var och en av fasmätarnas ena ingång avges signalen \S_5^i och till fasmätarnas andra ingång avges resp. signal \S_1^i – \S_4^i efter förstärkning i förstärkarna 22-25.

På resp. fasmätares 32-35 utgång uppträder en signal F_1 - F_4 vilken motsvarar resp. fasskillnader. Dessa signaler förs till en resp. ingång på beräkningsenheten 31.

Beräkningsenheten är anordnad att beräkna vinkeln 0 mellan S/M-enheten och transpondern i dels två inbördes vinkelräta plan, ex.vis vertikalplanet $(\Theta_{\mathbf{V}})$ och horisontalplanet $(\Theta_{\mathbf{H}})$ en!. uttrycken

$$\theta_{H} = \arcsin \left[\frac{(F_2 - F_1) \cdot c}{2\pi \cdot f_0 \cdot d} \right]$$
 (12)

$$\Theta_{v} = \arcsin \left[\frac{(F_{i_{1}} - F_{3}) \cdot c}{2\pi \cdot f_{0} \cdot d} \right]$$
 (13)

där den I figur 9 visade antennuppsättningen råder och där avståndet där det i figur 1 markerade avståndet mellan antennerna $\rm M_1$ och $\rm M_2$ resp. $\rm M_3$ och $\rm M_4$.

Beräkningsenheten 31 är även anordnad att beräkna huruvida transpondern befinner sig i närzonen eller ej genom att utföra beräkning enl. uttrycket

$$\log \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}} < k_5$$
 (14)

och

$$k_6 \cdot G_5 < Max (G_1, G_2, G_3, G_4)$$
 (15)

där k_5 och k_6 är konstanter vilka väljes så att dessa vid resp. beräkning är förutbestämda.

Uttryckets (14) vänsterled motsvarar ekvationen (11) men för två inbördes vinkelräta plan.

Uttryckets (15) högerled skall utläsas som det största av värdena G_1 , G_2 , G_3 och G_4 .

På motsvarande sätt gäller för bestämning av närzonen i en dimension följande uttryck, vilka helt motsvarar uttrycken (14) och (15) för två dimensioner , nämligen

$$\log \frac{G_5}{(G_1 \cdot G_3)^{1/2}} < k_{10}$$
 (16)

och

$$k_{11} \cdot G_5 < Max (G_1, G_2)$$
 (17)

där k_{10} och k_{11} är konstanter.

Närzonens storlek bestämmes således genom valet av resp. konstanters k₅ och k₆ värden. För att få en väldefinierad gräns för närzonen bör konstanterna väljas så att närzonen får en utsträckning som den i figur 5 visade, eller något mindre.

Fjärrzonen definieras av att något av uttrycken (14) eller (15) är uppfyllt. När det ena eller det andra av uttrycken (14) eller (15) är uppfyllt är således beräkningsenheten 31 anordnad att bestämma vinkelläget mellan S/M-enheten och transpondern genom att beräkna vinklarna $\theta_{\rm V}$ och $\theta_{\rm H}$ enl. ekvationerna (12) och (13).

När inte något av villkoren är uppfyllda är beräkningsenheten 31 anordnad att övergå till att beräkna vinklarna $\theta_{\rm H}$ och $\theta_{
m V}$ enl. uttrycken

$$\theta_{H} = k_{7} - \log \left(\frac{G_{2}}{G_{1}}\right) \tag{18}$$

$$\theta_{\mathbf{v}} = k_8 \log \left(\frac{G_3}{G_4}\right) \tag{19}$$

där k_7 och k_8 är konstanter, d.v.s. i enlighet med vad som ovan sagts, och är anordnad att bestämma storheten R enl. uttrycket

$$R = \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}} \tag{20}$$

d.v.s. enl. den princip som det ovan redogjorts för i samband med ekvation (11).

På motsvarande sätt gäller för bestämning av storheten R i en dimension uttrycket

$$R = \frac{G_5}{(G_1 \cdot G_2)^{1/2}}$$

Storheten R utgör som framgått ovan, bl.a. i samband med beskrivningen av figur 8, ett mått på avståndet mellan det första objektet (S/M) och det andra objektet (T).

Det är i vissa tillämpningar önskvärt att låta exempelvis \$/M-enhetens bärare, såsom en robot, uppsöka och föras mot transpondern. Härvid är det önskvärt att erhålla information om när transpondern befinner sig i \$/M-enhetens närzon. Vidare är det ofta önskvärt att stanna roboten när \$/M-enheten befinner sig på ett förutbestämt avstånd från transpondern. Ett dylikt förutbestämt avstånd ges entydigt av ett förut-

bestämt värde på storheten R. Dylika förutbestämda värden bestäms empiriskt och lagras i ett beräkningsenheten tillhörande minne.

Emellertid är det ibland även önskvärt att erhålla uppgift om det rådande avståndet mellan S/M-enheten och transpondern, då transpondern befinner sig i närzonen.

I sådant fall bestäms det ovan angivna funktionssambandet Z = F(R) empiriskt. Sambandet kan lagras som en serie R-värden kopplade till motsvarande Z-värde. Emellertid kan även en dylik empiriskt bestämd serie av mätvärden ges ett analytiskt uttryck genom att på konventionellt sätt en polynomfunktion eller en log (log)-funktion ansättes och dess konstanter bestäms medelst de empiriskt bestämda värdena. Härvid kan exempelvis minsta kvadratfelsmetoden användas.

Det sålunda bestämda analytiska uttrycket Z = F(R) inmatas i beräknings-enheten, varvid denna är anordnad att insätta den beräknade storheten R i uttrycket Z = F(R) och därigenom bestämma det absoluta avståndet Z.

Beräkningsenheten 31 är försedd med utgångar på vilka beräkningsenheten är anordnad att avge signaler motsvarande vinkeln $\theta_{\rm H}$ och vinkeln $\theta_{\rm V}$ samt storheten R och eventuellt avståndet Z (dist). En utgång vilken avger en signal (F/N) utvisande om beräkningsenheten arbetar i närmod eller fjärrmod kan även förekomma. Dessa signaler matas till exempelvis en styr- och reglerenhet för exempelvis en robot eller till annan enhet där signalerna utnyttjas.

Ett av synnerligen många tillämpningsexempel av föreliggande uppfinning beskrives nedan i samband med figurerna 11 och 12. Tillämpningsexemplet avser automattankning av bilar.

En bränslepump 50 förefinns vilken är försedd med en robotarm 51 vilken är teleskopiskt förlängbar. Robotarmen 51 är koncentriskt fäst på en första vridbar platta 52 vilken i sin tur är koncentriskt fäst på en andra vridbar platta 53 med i huvudsak dubbelt så stor diameter som förstnämnda platta. Genom att vrida båda plattorna 52,53 kan robotarmen nå ett område i vertikalplanet som motsvaras av den större plattan 53. På robotarmens 51 fria ände är ett robothuvud 54 fäst, vilket innefattar ett rör med en ut- och indragbar slang 55 förbunden med bränslepumpens 50 bränsletank, en S/M-enhet 56 av ovan angivet slag och ett mekaniskt organ 57 för öppnande av en bils bränslepåfyllningsledning.

Figur 12 visar en bils bränslepåfyllningsställe. För ändamålet innefattar detta ställe en automatiskt eller från förarplatsen öppningsbar lucke 58, en bränslepåfyllningsledning 59 och ett mekaniskt organ 60 för att öppna denna samt en transponder 61.

När bilen eller fordonet placerats inom robotens arbetsområde och luckan 58 öppnats avkänner S/M-enheten förekomsten av transpondern 61. En regler- och styrenhet för roboten aktiveras av en mikrodator till vilken beräkningsenheten 31 är ansluten. Regler- och styrenheten för därefter robothuvudet mot bränslepåfyllningsstället 62 till dess att transpondern 61 befinner sig i närzonen. Detta sker genom att plattorna vrides i erforderlig utsträckning och genom att robotarmen teleskopiskt förlängs medelst lämpliga drivorgan. Beräkningsenheten kontrollerar successivt de nämnda kriterierna avseende närzonen. När transpondern befinner sig i närzonen övergår beräkningsenheten 31 till nämnda närmod och styr således, via mikrodatorn och regler- och styrenheten, in S/M-enhetens antenner mot transponderns antenn tîll dess transpondern förefinns på ett förutbestämt avstånd från robothuvudet, varvid de mekaniska organen 57,60 har kontakt med varandra. Exempelvis innefattar robothuvudets organ en kuggkrans, vilken drives av en motor och vilken kuggkrans påverkar det andra mekaniska organet 60 vilket likaledes kan utgöras av en kuggkrans till att på lämpligt sätt öppna bilens bränslepåfyllningsledning 59. Slangen 55 befinner sig efter nämnda inriktning vid ledningens 59 mynning. Härefter matas slangen 55 ned ett stycke i ledningen 59 varefter en förutbestämd mängd bränsle påfylles.

Efter avslutad påfyllning matas slangen 55 in I robotarmen 51, bränslepåfyllningsledningen 59 förslutes med organen 57,60 och robothuvudet återtar ett utgångsläge närmare bränslepumpen 50.

Ovan har en robot nämnts som exempel. Det är emellertid helt klart att varjehanda tillämpning innefattas (uppfinningen.

Uppfinningen skall inte anses begränsad till de som exempel angivna utför-Ingsformerna utan kan varieras inom dess av bifogade patentkrav angivna ram.

Patentkrav

Förfarande för bestämning av ett inbördes läge mellan två objekt, innefattande att från ett första objekt innefattande en sändar/mottagarenhet utsända en mikrovågssignal mot det andra objektet, vilket andra objekt bringas mottaga signalen och återutsända en signal vilken bringas att mottagas av det första objektet medelst åtminstone två antenner (M₁,M₂), känneteckn a t a v, att det första objektets sändar/mottagarenhet (S/M-enhet) bringas utsända nämnda signal med en frekvens forån en sändarantenn, av att det andra objektet (T) bringas återutsända nämnda signal modulerad med en signal f_m , av att det första objektets antenner (M_1,M_2) är placerade symmetriskt på var sin sida om sändarantennen (\$) och i ett med sändarantennen (\$) gemensamt antennplan, samt av att vinkeln (θ) mellan nämnda antennplan och det andra objektet, i åtminstone i en dimension, nämligen i ett första plan löpande genom sändarantennen och de två mottagarantennerna, bestämmes genom en fasjämförelse resp. en amplitudjämförelse hos mottagna signaler beroende på om det andra objetet (T) befinner sig i det första objektets s.k. närzon eller ej, d.v.s. på ett avstånd närmare än ett avstånd av samma storleksordning som avståndet d mellan de två mottagarantennerna (M1, M2) eller ej, där för det fall det andra objektet (T) befinner sig utanför närzonen nämnda vinkel θ bestämmes genom en fasjämförelse mellan den av resp. mottagarantenn (M_1, M_2) mottagna signalen efter blandning med den utsända signalen f_0 , där fasskillnaden (F₂ - F₁) mellan de mottagna signalerna bestämmes, samt av att nämnda vinkel (θ) bestämmes ur uttrycket

$$\theta = \arcsin \left[\frac{(f_2 - f_1) \cdot c}{2\pi \cdot f_0 \cdot d} \right]$$

där c är ljushastigheten och d är avståndet mellan de två mottagarantennerna, medelst en till S/M-enheten hörande beräkningsenhet (31).

2, Förfarande en I. krav 1, k ä n n e t e c k n a t a v, att en vinkel θ^* mellan nämnda antennplan och det andra objektet (T) även bestämmes i en andra dimension, nämligen i ett andra plan, som är vinkelrätt mot nämnda första plan, genom att ytterligare två mottagarantenner (M3,M4) är symmetriskt placerade på var sin sida om sändarantennen (S) i nämnda antennplan

samt i ett plan vinkelrätt mot förstnämnda plan bringas mottaga nämnda återutsända signal och att fasskillnaden ($F_4 - F_3$) mellan de av de ytterligare antennerna (H_3, H_4) mottagna signalerna bestämmes varefter vinkeln θ bestämmes medelst nämnda uttryck där $F_4 - F_3$ insättes i stället för $F_2 - F_1$ och där d betecknar avståndet mellan de ytterligare två mottagarantennerna.

3. Förfarande enl. krav leller 2, kännetecknat av, att nämnda beräkningsenhet (31) tillhörig S/M-enheten bringas att beräkna huruvida det andra objektet (T) befinner sig i det första objektets (S/M-enheten) s.k. närzon eller ej, genom att bestämma om följande två uttryck avseende mätning i en dimension

$$\log \frac{G_5}{(G_1 - G_2)^{1/2}} < k_{10}$$
 (16)

resp.
$$k_{11} \cdot G_5 < Max (G_1, G_2)$$
 (17)

eller följande två uttryck avseende mätning i två dimensioner

$$\log \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}} < k_5$$
 (14)

resp.
$$k_6 \cdot G_5 < Max (G_1, G_2, G_3, G_4)$$
 (15)

är uppfyllda eller ej,

där G_1 resp. G_2 är förstnämnda två mottagarantenners (H_1,H_2) resp. mottagna signalers amplitud och där G_3 resp. G_4 är de nämnda två ytterligare mottagarantennernas (H_3,H_4) resp. mottagna signalers amplitud och där G_5 är den av nämnda sändarantenn (S), vilken bringas att mottaga signaler medelst en mottagarantenn (H_5) , mottagna signalens amplitud och där K_{10} , K_{11} , K_5 resp. K_6 är förutbestämda konstanter, samt av att det andra objektet (T) anses befinna sig i närzonen när inte något av uttrycken (16) och (17) vad avser en dimension resp. när inte något av uttrycken (14) och (15) vad avser två dimensioner är uppfyllda.

4. Förfarande enl. krav 3, k ä n n e t e c k n a t a v, att när det andra objektet (T) genom nämnda uttryck bestämts vara i närzonen bestäms nämnda vinklar θ, θ^{\dagger} genom en amplitudjämförelse, medelst beräkningsenheten (31) ur uttrycken

$$\Theta = k_7 \cdot \log \left(\frac{G_2}{G_1}\right)$$

$$\Theta' = k_8 \cdot \log \left(\frac{G_3}{G_6}\right)$$

där k, och kg är förutbestämda konstanter.

5. Förfarande enl. krav 3 eller 4, kännetecknat av, att när det andra objektet genom nämnda uttryck bestämts vara i närzonen bestäms storheten R medelst beräkningsenheten (31) ur uttrycket

$$R = \frac{G_5}{(G_1 \cdot G_2)^{1/2}}$$

för det fall mätning sker i en dimension resp. ur uttrycket

$$R = \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}}$$

för det fall mätning sker i två dimensioner där R utgör ett mått på avståndet Z mellan det första objektet och det andra objektet.

6. Anordning för bestämning av ett inbördes läge melian två objekt, innefattande ett första objekt med en sändar/mottagarenhet (S/M) anordnad att utsända en mikrovägssignal mot det andra objektet (T), viiket andra objekt är anordnat att mottaga signalen och återutsända en signal som sändar/mottagarenheten (S/M) är anordnad att mottaga, där sändar/mottagarenheten är försedd med åtminstone två mottagarantenner (M_1 , M_2) för mottagande av den återutsända signalen, samt där S/M-enheten innefattar blandare (9,11;17,18) anordnade att blanda den mottagna signalen från resp. mottagarantenn (M_1 , M_2) med den utsända signalen, och innefattar fasjämförelsekretsar (32,33) anordnade att jämföra resp. mottagen signals fasläge relativt den utsända signalens fas, känne tecknad av, att sändar/mottagarenheten (S/M) är anordnad att utsända en signal med frekvensen forån en sändarantenn (S), av att det andra objektet (T) är anordnat att återutsända nämnda

ار پيغ

signal modulerad med en signal f_m , av att mottagarantenner (M_1,M_2) är placerade symmetriskt på var sin sida om sändarantenner (S) och i ett med sändarantenner (S) gemensamt antennplan, samt av att en beräkningsenhet (S) förefinns anordnad att beräkna fasskillnaden $(F_2 - F_1)$ meilan de mottagna signalerna samt anordnad att beräkna vinkeln Θ mellan nämnda antennplan och det andra objetet (T), i åtminstone en dimension, nämligen i ett första plan löpande genom sändarantennen (S) och de två mottgarantennerna (M_1,M_2) ur uttrycket

$$\theta = \arcsin \left[\frac{(F_2 - F_1) \cdot c}{2\pi \cdot f_0 \cdot d} \right]$$

där c är ljushastigheten och d är avståndet mellan de två mottagarantennerna $\mathbf{M}_1, \mathbf{M}_2$.

- 7. Anordning enl. krav 6, kännet ecknada v, att ytterligare två mottagarantenner (M_3,M_4) förefinns, vilka är symmetriskt placerade på var sin sida om sändarantennen (S) i nämmda antennplan samt i ett andra plan vinkelrätt mot nämnda första plan och vilka är anordnade att mottaga den återutsända signalen och av att ytterligare två blandare (19,20) och två fasjämförelsekretsar (34,35) förefinns anordnade på i krav 6 nämnt sätt, samt av att beräkningsenheten är anordnad att även beräkna vinkeln 0^1 mellan nämnda antennplan och det andra objektet i en andra dimension, nämligen i nämnda andra plan ur ovan nämnda uttryck där fasskillnaden $F_4 F_3$ uppträdande mellan de två ytterligare mottagarantennerna (M_3,M_4) insättes i stället för $F_2 F_1$, och där d betecknar avståndet mellan de ytterligare två mottagarantennerna (M_3,M_4) .
- 8. Anordning enl. krav 6 eller 7, k ä n n e t e c k n a d a v, att sändar/mottagarenheten (S/M) även är anordnad att mäta en resp. mottagen signals amplitud medelst kretsar (26,27,28,29,30) innefattande likriktare och av att sändarantennen (S) även är anordnad att medelst en mottagarantenn (M₅) mottaga en av det andra objektet (T) återutsänd signal, samt av att beräkningsenheten (31) är anordnad att beräkna huruvida det andra objektet (T) befinner sig i det första objektets (S/M) s.k. närzon eller ej, d.v.s. på ett avstånd närmare än ett avstånd av samma storleksordning

som nämnda avstånd d eller ej, genom att beräkna om följande två uttryck avseende mätning i en dimension

$$\log \frac{G_5}{(G_1 \cdot G_2)^{1/2}} < k_{10}$$
 (16)

resp.
$$k_{11} \cdot G_5 < \text{Max}(G_1, G_2)$$
 (17)

eller följande två uttryck avseende mätning i två dimensioner

$$\log \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}} < k_5$$
 (14)

resp.
$$k_6 \cdot G_5 < \text{Max}(G_1, G_2, G_3, G_4)$$
 (15)

är uppfyllda eller ej

där G_1 resp. G_2 är en medelst nämnda kretsar (26,27) uppmätt amplitud för en signal mottagen av de två förstnämnda resp. mottagarantennerna (H_1,H_2), där G_3 resp. G_4 är en medelst nämnda kretsar (28,29) uppmätt amplitud för en signal mottagen av de två ytterligare resp. mottagarantennerna (H_3,H_4) och där G_5 är den vid sändarantennens mottagarantenn H_5 medelst nämnda krets (30) uppmätta amplituden hos en mottagen signal, samt där K_{10} , K_{11} , K_5 resp. K_6 är i beräkningsenheten inmatade förutbestämda konstanter, varvid det andra objektet (T) anses befinna sig i närzonen när inte något av uttrycken (16) och (17) vad avser en dimension resp. när inte något av uttrycken (14) och (15) vad avser två dimensioner är uppfyllda.

9. Anordning enl. krav 8, k ä n n e t e c k n a d a v, att för det fell det andra objektet (T) befinner sig i närzonen, beräkningsenheten är anordnad att beräkna nämnda vinklar θ , θ' ur uttrycken

$$\theta = k_7 \cdot \log \left(\frac{G_2}{G_1}\right)$$

$$\theta' = k_8 \cdot \log \left(\frac{G_3}{G_L}\right)$$

där k₇ och k₈ är förutbestämda konstanter.

10. Anordning enl. krav 8 eller 9, kännetecknad av, att för det fall det andra objektet (T) befinner sig i närzonen, beräknings-enheten (31) är anordnad att beräkna storheten R ur uttrycket

$$R = \frac{G_5}{(G_1 \cdot G_2)^{1/2}}$$

för det fall mätning i en dimension avses, resp. ur uttrycken

$$R = \frac{G_5}{(G_1 \cdot G_2 \cdot G_3 \cdot G_4)^{1/4}}$$

för det fall mätning i två dimensioner avses, där R utgör ett mått på avståndet Z mellan det första objektet och det andra objektet.

F4

