

THAPAR INSTITUTE OF ENGINEERING &TECHNOLOGY, PATIALA

Department of Computer Science & Engineering Operating System (UCS303) – End Semester Examination

Date: 08/12/2023 & Time: 02:00PM MM:

MM: 100 & WT: 35 & MT: 180 Min

Attempt/Answer any five COMPLETE questions and all sub-parts like (a), (b), (c) for each question at one place. Do mention Page No. of your attempt at front page of the answer sheet. Assume missing data (if any), Show all intermediate computations properly.

		spends CPU time	**							
			rocesses have different arrival and burst times, given as t, compute average waiting time of the system?					as		
		Tollows. With the	Process	Arrival	Burst Time			Priority	de system?	
			ID	Time	CPU I/O		CPU	ritority		
			P1	0	3	4	1	8		
			P2	0	2	3	2	6		
			P3	1	1	3	3	7		1
			P4	1	4	4	4	9		
			P5	6	2	2	2	4		
Q4.	(a).	the page references 6, 7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1 to complete its execution. With the help of a suitable diagram (showing step-by-step execution) compute the page faults that will occur using First in First Out (FIFO), Most Frequently Used (MFU), Least Recently Used (LRU), and Optimal Page Replacement (OPR) algorithms. In case of multiple choices for page replacement, the FIFO algorithm will be used to resolve conflict. Explain the Readers-Writers Problem along with its constraints and conditions. Also, write the deadlock-free solution (pseudo code) for the said problem using semaphores.								f a ng nd nt, the [10
Q5.	(a).	0 starts from centre and move in an incremental fashion towards the circumference. requests with following cylinder number are received by the disk controller: 55, 58, 3 160, 150, 38, 184. Compute the Total Head movements and the Number of times Head its direction, when the following algorithms have been deployed. Currently head is p at cylinder 100. The initial direction of movement is towards higher cylinder numbers f and C-SCAN. Show suitable diagrams and intermediate computational steps for each (i) FCFS (ii) SSTF (iii) SCAN (iv) Consider the given code segment to analyse the three critical section conditions: mutual 2. CMP Ri, 0							mference. The discrepance of the	isk 90, ges ied AN
Q6.	(a).	exclusion, bounded waiting, and progress. Preemption can occur while executing the given code. Assume, initial lock value is zero (lock=0) and all instructions are atomic. Show that if above mentioned synchronization conditions are satisfied or not with proper explanation. Consider a disk which has 16 platters, and every platters has 2 surfaces, every surface is having the given described by the given described by the store M[lock], 1 and JNZ denotes comparision and jump at non-zero intructions.							ing [10	
	(b).	1K tracks. Each track of the disk has 1024 sectors and each of size 512 Bytes. Assume that disk has an average seek time of 60ns and rotational rate of 720RPM. Show intermediate calculations to answer the following questions: (i) What is the capacity of the disk? (ii) What is the time taken to read 8 consecutive sectors of a track? (iii) What is the data transfer rate of the disk? In a computer system, four files of size 11050 bytes, 4990 bytes, 5170 bytes, and 12640 bytes need to be stored. For storing these files on disk, we are using 100 byte disk blocks. For each block used to store a file, 4 bytes of bookkeeping information also needs to be stored on the disk. Consequently, the total space used to store a file is the sum of the space taken to store the file and the space taken to store the bookkeeping information for the blocks allocated for storing the file. A disk block can store either bookkeeping information for a file or data from a file, but not both. Assume that no two process and their bookkeeping information stored in same block. What is the total space and total number of blocks required for storing the above mentioned files using 100 byte disk blocks?							tes [10 ach the the ting but ck.	