ĆWICZENIA IV i V

(funkcje)

Zadania

- 1. Która z podanych relacji jest funkcją? Dla każdej funkcji wyznacz jej dziedzine i przeciwdziedzine.
 - (a) $r = \{(1,2), (2,2), (2,4), (4,4), (4,8), (8,4)\},\$
 - **(b)** $r = \{(1,2), (2,2), (3,4), (4,8), (8,5)\},\$
 - (c) $r = \{(x, y) \subset \mathbb{Z} \times \mathbb{Z} : 2x + y = \max\{x, 2\}\},\$
 - (d) $r = \{(x, y) \subset \mathbb{R} \times \mathbb{R} : |y| = 2^x\}.$
- 2. Sprawdź, czy funkcja $f:X\to X$ jest suriekcją, iniekcją, bijekcją. Wyznacz obraz i przeciwobraz zbioru $A\subset X$
 - (a) $X = \mathbb{R}, f(x) = x 2, A = [-1, 1],$
 - **(b)** $X = \mathbb{R}, f(x) = x^2 1, A = [0, 2),$
 - (c) $X = \mathbb{R}$, $f(x) = \log(1 + |x|)$, $A = \{-9, 0, 10\}$,
 - (d) $X = \mathbb{R}^+, f(x) = x \cos^2 x, A = [\pi, 2\pi].$
- 3. Niech f będzie relacją zdefiniowaną w zbiorze liczb rzeczywistych dodatnich, określoną wzorem: x f y wttw, gdy lg y=3x+1. Zbadaj, czy f jest funkcją. Jeśli tak, sprawdź czy jest to bijekcja i wyznacz $f^{-1}(A)$ dla A=[16,32]. Wyznacz $(f\circ f)(B)$ dla $B=\{1,2,4\}$.
- 4. Dana jest funkcja $f: \mathbb{Z} \to \mathbb{Z}$ taka, że $f(x) = \min\{x, (-1)^x\}$. Wyznacz dziedzinę i przeciwdziedzinę tej funkcji. Sprawdź, czy jest ona iniekcją i czy jest suriekcją. Wyznacz obraz zbioru $A = \{-3, -1, 1, 3\}$ względem funkcji f.
- 5. Dana jest funkcja $f: \mathbb{R} \to \mathbb{R}$ taka, że $f(x) = \frac{2x+1}{x-1}$ dla $x \neq 1$ oraz f(1) = 2. Wyznacz dziedzinę i przeciwdziedzinę tej funkcji. Sprawdź, czy jest ona bijekcją. Jeśli tak wyznacz obraz zbioru $A = (-\infty, 2)$ względem funkcji f^{-1} .
- 6. Dana jest funkcja $f: \wp(\mathbb{R}) \times \wp(\mathbb{R}) \to \wp(\mathbb{R})$ taka, że $f(A, B) = A \cup B$. Sprawdź, czy jest to funkcja różnowartościowa. Wyznacz obraz zbioru $\wp(\{1\}) \times \wp(\{1,2\})$ względem funkcji f.
- 7. Dane jest odwzorowanie f. Sprawdź, czy jest ono bijekcją. Jeśli tak wyznacz funkcję odwrotną.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = (x \mod 4)$,
 - **(b)** $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, \ f(x) = |x| x,$
 - (c) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 1,$
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y, x-y),
 - (e) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2, y)$.
- 8. Dane są funkcje $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 3^x, g: \mathbb{R} \to \mathbb{R}, g(x) = x^3, h: \mathbb{R} \to \mathbb{R}, h(x) = \max\{3, x\} x$. Wyznacz:
 - (a) $f \circ g$,
 - (b) $g \circ h$,
 - (c) $(f \circ g) \circ h$,
 - (d) $f \circ (g \circ h)$.
- 9. Udowodnij, że dla dowolnej funkcji f i dowolnych zbiorów A, B.
 - (a) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$,

- **(b)** Jeśli $A \subseteq B$, to $f^{-1}(A) \subseteq f^{-1}(B)$.
- 10. Udowodnij, że złożeniem funkcji różnowartościowych jest funkcja różnowartościowa.
- 11. Niech f będzie funkcją ze zbioru X w zbiór Y. Zbadaj czy dla dowolnych $A, B \subseteq X$ i $C \subseteq Y$ zachodzi podana równość. Podaj przykład ilustrujący rozważaną równość lub kontrprzykład wskazujący, że równość nie zachodzi.
 - (a) $f(A \backslash B) = f(A) \backslash f(B)$,
 - **(b)** $f(A \cap f^{-1}(C)) = C \cap f(A)$.
- 12. Uzasadnij, że:
 - (a) $5n^3 + 100n = O(n^5)$,
 - **(b)** $4n^6 + n^3 + 21n^2 + n + 100 = \Theta(n^6)$.
- 13. Uporządkuj niemalejąco poniższy ciąg funkcji wg ich rzędów:
 - (a) $f_1(n) = 100n^5 + 7$, $f_2(n) = \frac{3n^4 + 4n}{7n^3 + 1}$, $f_3(n) = \lg n^n$, $f_4(n) = (n+1)!$, $f_5(n) = n^n$, $f_6(n) = 10^{3n+1}$,
 - **(b)** $f_1(n) = 3n^2 + 7n + 5$, $f_2(n) = \lg n^2$, $f_3(n) = |\sin(n!)|$, $f_4(n) = (\sqrt{n})^n$, $f_5(n) = n!$.
- 14. Które równości są prawdziwe. Odpowiedź uzasadnij.
 - (a) $2^{n+1} = O(2^n)$,
 - **(b)** $(n+1)^2 = O(n^2),$
 - (c) $2^{2n} = O(2^n)$,
 - (d) $\log^{73} n = O(\sqrt{n}),$
 - (e) $40^n = O(n!)$,
 - (f) $40^n = O(2^n)$,
 - (g) (2n)! = O(n!),
 - **(h)** $\lg n^n = O(\lg n)$.
- 15. Określ, które z podanych ograniczeń funkcji f(n) są poprawne:
 - (a) $f(n) = \Theta((n^5 5n + 1)^8)$, $f(n) = O(\sqrt{n} \log n)$, $f(n) = \Omega(n!)$, gdzie $f(n) = (2n + 1)^{40}$,
 - **(b)** $f(n) = \Theta(n \lg n), f(n) = O(n^{\lg 4}), f(n) = \Omega(n\sqrt{n}), \text{ gdzie } f(n) = \lg n^{\sqrt{n}}.$