Software para projeto de Placa de Circuito Impresso - PCI

Professor Jean Prigol

Construção de um circuito eletrônico

 Construir ou montar um circuito eletrônico é fazer as conexões desejadas entre os terminais (pinos) dos componentes.

Há diferentes maneiras de se montar um circuito.

Por exemplo:

1. Método *não tente isto em casa*

2. Método 'ugly board', 'ugly bug' ou 'dead bug'

3. Variação do método 'ugly board'

 Fazer trilhas na placa, manualmente, usando uma mini retífica (dremel). Com uma placa dupla face, pode-se usar o layer inferior como plano de terra.

4. Placa padrão

 Também chamada de "placa universal", "placa perfurada universal"ou "placa perfurada".

Há diferentes layouts e tamanhos.

5. Placa padrão

Montagem

Conexões com fios por cima e/ou por baixo

Cortar as trilhas quando necessário

6. Wire wrap

 Os fios são enrolados nos terminais de um soquete especial, com terminais longos, usando uma ferramenta específica.

7. Protoboard

7. Protoboard

Também chamado de "breadboard" ou "matriz de contatos".

http://en.wikipedia.org/wiki/Breadboard

7. Protoboard

7. Protoboard

8. Placa de circuito impresso (PCI)

Também chamada de PCB (Printed Circuit Board)

FR4 (Flame Resistant). É um laminado composto por uma malha de fibra de vidro e resina epoxy. Espessura mais usada: 1,5 mm (59 mil). Reúne boas características para a construção de PCI: resistência mecânica, boa isolação elétrica e baixíssima absorção de umidade.

Sobre o FR4 há uma lâmina de cobre. A espessura mais utilizada é de 0,034mm (1,34 mil).

1 oz = 28g 1 mil = 1 milésimo de polegada = 0,001"" = 0,0254 mm 100 mil = 2,54 mm

Principais técnicas para a acomodação dos componentes na PCI

Through-hole Os componentes possuem terminais que precisamser inseridos em furos na placa para seremsoldados.

Principais técnicas para a acomodação dos componentes na PCI

PCI de face simples (single layer)

Como fazer as trilhas não cruzarem?

Melhor ainda é construir uma PCI de dupla face (double layer)

Via: é um furo metalizado (*plated through-hole - PTH*) utilizado para fazer a conexão elétrica entre uma trilha em uma face com uma trilha em outra face da placa. Uma vez que as vias não são utilizadas para inserir terminais de componentes, o furo e a ilha (pad) da via possuem um diâmetro pequeno.

PCI de dupla face (double layer)

PCI de dupla face (double layer). Adaptador SOIC-8 para DIP

Ilhas com furos metalizados para a soldagem de uma barra de pinos

Etapas para o desenvolvimento de uma PCI

- 1. Projeto em um software específico
 - O projeto é o, "desenho" da placa, também chamado de layout da placa.
 - Estes softwares pertencem a uma categoria chamada EDA
- (Electronic Design Automation) ou ECAD.
 - Os softwares EDA podem oferecer diversos tipos de pacotes.
 Por exemplo: simulação, análise eletromagnética, projeto de CI, projeto de dispositivos lógico-programáveis, layout de PCB...
 - Há várias opções de EDA no mercado:
 - O que vamos utilizar é o software EasyEDA;

• 2. Fabricação

- No diagrama esquemático só existem os símbolos dos componentes.
- As representações físicas, isto é, como eles devem aparecer na PCI, são chamadas de footprints.
- Os softwares EDA possuem bibliotecas com milhares de footprints para os mais variados tipos de componentes.
- Caso não exista o footprint necessário na biblioteca, é possível criar o footprint no EDA.

Relação Largura de trilha e capacidade de corrente

Largura da trilha (mil)	Largura da trilha (mm)	Corrente para cobre com 0,2mm (1 oz)	Corrente para cobre com 0,4mm (2 oz)
5	0,127	0,5 A	0,7 A
10	0,254	0,8 A	1,4 A
20	0,508	1,4 A	2,2 A
30	0,762	1,9 A	3 A
50	1,27	2,5 A	4 A
100	2,54	4 A	7 A

Isolação de trilhas

https://www.smps.us/pcbtracespacing.html

Dicas

Gerar PDF para prototipagem

Obrigado!

- **in** jeanprigol
- @jeanprigol
- **⊙** @jeanprigol

