

ADDIS ABABA UNIVERSITY DEPARTMENT OF MATHEMATICS

Math. 325 Mid-exam.(Reg)

	For i	For instructor's use only		
Name	P	art I		
ID.No	P	1		
Section :	a r	2		
Instructor's Name:	t II	3		
Date: may18, 2011		4		
Time allowed 2 hrs				
		Total		

This exam booklet contains 6 short answer questions and 4 workout problems.

Part I. Give the precise and simplified short answer on the space provided. [1.5 points each]

- 1. If A and B are orthogonal vectors such that $||A|| = \sqrt{3}$ and ||B|| = 1, then the angle between vectors A + B and A B is _____
- 2. If a nonzero vector A makes 30° , 60° & 45° from the positive x-axis, y-axis and z-axis respectively and $||A|| = \sqrt{3}$, then A =_____
- 3. If $A = \begin{pmatrix} 1 & \cos \beta & \cos \theta \\ \cos \beta & 1 & \cos \alpha \\ \cos \theta & \cos \alpha & 1 \end{pmatrix}$ where $\cos \alpha, \cos \beta$ & $\cos \theta$ are directional cosines of a vector v in \square ³. Then det $A = \underline{\hspace{1cm}}$
- 4. Given matrices A and B of size 3x3. If detA = 4 and detB = -3, then $det(A^{-1}(^{t}B)^{2}adjA) = \underline{\hspace{1cm}}$

- 5. Given vectors A=(1,1,1), B=(2,1,0) and C=(0,3,1), then $\|proj_A(2B+C)\| = \underline{\hspace{1cm}}$
- 6. The eigenvalues of the matrix $A = \begin{pmatrix} 2 & c \\ 3 & -1 \end{pmatrix}$ are -4 and c-1. Then $c = \underline{\hspace{1cm}}$
- 7. If $A = \begin{pmatrix} k-3 & 2 & 1 \\ -1 & k & 1 \\ 0 & 0 & 1 \end{pmatrix}$, then the linear system AX=0 have a non-trivial solution for
- 9. The volume of the parallelepiped spanned by vectors A=(-2,2,1), B=(0,1,0) and C = (-4, 3, 2) is _____

Part II. Attempt all the problems and show the required steps clearly. [25 points]

1. Show that $W = \{(x, y, z) \mid x + y + z = 0\}$ is a subspace of \square^3 . (3 pts.)

- 2. Given $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$. Find
 - a) all eigenvalues and corresponding eigenvectors of matrix A. (3 pts.)
 - b) inverse of A. (3 pts.)

- 3. a) Find the equation of the line l of intersection of the planes $\pi_1: 2x y + z = 2$ and $\pi_2: 3x + y + z = 2$. (3 pts.
 - b) Find the distance between the line l in part (a) and the point Q = (1, 0, 0). (2 pts.)

4. Show that the vectors $v_1 = (-1,1,1)$, $v_2 = (0,0,1) \& v_3 = (2,1,1)$ form basis of \Box 3. Find coordinate vector of (1,2,3) with respect to this basis. (4 pts.)

O, ATEREPA

5. (a) Determine all values the constant b for which the system

$$x+y-2z = 4$$
,
 $3x+5y-4z = 16$,
 $2x+3y-bz = 8$,

has i) a unique solution, (2 pts.) ii) an infinite number of solutions, (2 pts.)

(b) Find the solution sets in part (a) (i) and (ii) (3 pts.)