Beamer By Example

Darmstadt Theme—Edited from a standard template by dfg

Willie Dewit ¹ Jessie May ²

¹Department of Mathematics University of Somewhere

²Scottish Institute for Higher T_EXnology

Conference on Fabulous Presentations, 2007

Fancy Bits

Outline

- Structure
 - Features
 - Basics
 - Colour
- 2 Lists
 - Uncovering Text
 - Theorems/Proofs
 - Handouts
- Fancy Bits
 - Columns
 - pstricks package
 - Movies

Beamer

Features

Written by Till Tantau while completing his PhD.

- Process with either pdflatex or latex+dvips
- Standard LATEX commands still work
- tableofcontents works
- Overlays & dynamic effects easily created
- Easy navigation through sections & subsections
- Many templates and examples included in package
- article style can be used to produce notes

Fancy Bits

Sample Code

```
\documentclass{beamer}
\usetheme{Darmstadt}
Use \section{..} and \subsection{..} to create items
for the Table of Contents.
The code for a frame is ...
  \subsection{Basics}
  \begin{frame}
    \frametitle{Sample Code}
           Frame content
  \end{frame}
```


Outline-Code

The next lines of code are:

```
\section{Lists}
\subsection{Uncovering Text}
\begin{frame}
 \frametitle{..title..}
 \begin{uncoverenv}<2->
  \alert<2>{Then the next frame ...}
 \end{uncoverenv}
\end{frame}
```

The Table of Contents appears before each new section unless switched off

Colour

Colouring Text

This a 2-stage process

- Define the colour \setbeamercolor{blue}{fg=blue!50}
- Use the colour {\usebeamercolor[fg]{blue} Some blue text} Some blue text
- or \newcommand{\green}[1]{\usebeamercolor[fg]{green}#1} \green{some green text}....some green text

Fancy Bits

\alert<3>{text}{puts "text" in red on 3rd overlay}

Uncovering Text

Subtitle: A Short Example

- Use itemize a lot-with \pause
- Use very short sentences or short phrases.

```
\begin{itemize}
\item
  Use \texttt{itemize} a lot--with \pause
\item
  Use very short sentences or short phrases.
\end{itemize}
```


Uncovering Text

Structure

Uncovering Text

Subtitle: A Longer Example

You can create overlays...

- using the \pause command:
 - First item. (\pause)
 - Second item.
- using overlay specifications:
 - First item. (\item<3->)
 - Second item.(\item<4>)
- using the general \uncover command: (\uncover<5->{\item First item...})
 - First item.
 - Second item.

Uncover & alert

- Apple
- Peach
- Plum
- Orange

```
\begin{itemize}[<+-| alert@+>]
   \item Apple
   \item Peach
   \item Plum
   \item Orange
\end{itemize}
```


Uncovering Equations

$$A = B$$
 $= C$
 $= D$

```
\begin{align*}
A &= \uncover<2->\{B\}\
\uncover<2->\{\&=C\\}
\uncover<3->\{\&=D\)
\end{align*}
```


An example of replacement

This uses five overlays, each separate equations...

$$\frac{d}{dx} \frac{x+3}{(x-1)^2} =$$

$$= \frac{(x-1)^2 - 2(x+3)(x-1)}{(x-1)^4}$$

$$= \frac{(x-1)((x-1) - 2(x+3))}{(x-1)^4}$$

$$= \frac{((x-1) - 2(x+3))}{(x-1)^3} = -\frac{x+7}{(x-1)^3}$$

\alt is used to replace the first line and then \visible, as opposed to \uncover. Alignment not ideal.

Fancy Bits

An example of align with replacement

Three overlays, ...

```
left = rhs 1
    = rhs 3
```

```
\begin{align*}
   left&=\alt<1>{rhs1}{\text{alternate rhs}}\\
  \visible<3->{\&=rhs3}
\end{align*}
```

Uses \alt and \visible, as opposed to \uncover. Alignment spoiled because alternative is longer than original.

An example of align with replacement

Use of \phantom to ensure correct alignment when \alt string is longest...

```
left = rhs 1
   = rhs 3
```

```
\begin{align*}
  \text{left}&=
        \alt<1>{\text{rhs 1}}{\text{alternate rhs 2}}\\
   \visible<3->
        {&=\text{rhs 3}\phantom{extra appended}}\\
\end{align*}
```


The align environment with replacement

$$\frac{d}{dx} \frac{x+3}{(x-1)^2} =$$

$$= \frac{(x-1)^2 - 2(x+3)(x-1)}{(x-1)^4}$$

$$= \frac{(x-1)((x-1) - 2(x+3))}{(x-1)^4}$$

$$= \frac{((x-1) - 2(x+3))}{(x-1)^3} = -\frac{x+7}{(x-1)^3}$$

\alt replaces the first line and then \visible, as opposed to \uncover. Alignment is fixed.

Uncovering Text

Structure

Uncovering Rows

Class	Α	В	С	D
Χ	1	2	3	4
Υ	3	4	5	6
Z	5	6	7	8

\usepackage{colortbl}

```
\rowcolors[]{1}{blue!20}{red!10}
\begin{tabular}{1!{\vrule}cccc}\hline
Class & A & B & C & D\\hline
X & 1 & 2 & 3 & 4 \\pause
Y & 3 & 4 & 5 & 6 \\pause
Z & 5 & 6 & 7 & 8
\end{tabular}
```


Uncovering Text

Structure

Uncovering Columns

```
Class
               D
      1 2 3 4
Χ
```

```
\begin{tabular}%
  {l!{\vrule}c<{\onslide<2->}%
    c<{\onslide<3>}
    c<{\order{c}<{c}}
\end{tabular}
```


Theorem and Proof

Theorem

There is no largest prime number

Proof.

- Suppose p were the largest prime
- Let q be the product of the first p numbers
- Then q + 1 is not divisible by any of them
- Thus q + 1 is a prime number larger than p.

Theorem and Proof-Code

```
\begin{theorem}
  There is no largest prime number
\end{theorem}
\begin{proof}
\begin{itemize}
\item Suppose $p$ were the largest prime\pause
\item Let $q$ be ... first $p$ numbers\pause
\item Then $q+1$ is not divisible ...\pause
\item Thus $q+1$ is a prime ... $p$.\pause
\end{itemize}
\end{proof}
```


Theorems/Proofs

Main Theorem

Theorem $\alpha < 2^{\alpha}$ for all ordinals α .

Proof.

As shown by Cantor...

Summary

Printing slides for handouts

```
With the header
\documentclass[t,handout]{beamer}
```

- (i) the t option specifies vertically aligned top frames
- (ii) all piecewise defined slides are aggregated into one.

```
(iii) \usepackage{enumerate}
   \begin{enumerate}[<+->][(i)]
     \item the \texttt{\blue{t}} option specifies
     \item all piecewise defined ....
   \end{enumerate}
```

Fancy Bits

Graphics & Text Side by Side

```
\begin{columns}[b]
\begin{column}{.25\textwidth}
       \includegraphics[width=1.3in]%
            {FILE.epsc}
\end{column}
 \begin{column}{.75\textwidth}
       text column
  \end{column}
\end{columns}
```


[We actually use semiverbatim & incremental alerts.]

Diagrams

A small diagram with a few lines of LATEX. At the 2nd overlay we can add a link from one to another using PSTRICKS

Fancy Bits

```
\blue \rnode{START}{\textsc{PSTricks}}
\visible<2>{\nccurve%
    [linecolor=red,angleA=330,angleB=315]{START}{c}}
```


Householder formula

The Householder formula below lets one compute $f(x_*) = 0$ for an arbitrary f.

$$x_{k+1} \mapsto \Phi_n(x_k) = x_k + (n-1) \frac{\left(\frac{1}{f(x_k)}\right)^{n-2}}{\left(\frac{1}{f(x_k)}\right)^{n-1}} + f(x_k)^{n+1} \quad \psi$$
 (1)

where $n \ge 2$ and $\dot{\psi}$ is an arbitrary function.

Formula (1) gives an iteration of order n converging towards x_* such that: $f(x_*) = 0$.

Some PSTRICKS

Any practical use for this?

```
MS-ICMS-ICMS
   ICMS-ICMS-ICMS-ICMS-ICMS-I
MS-ICMS-ICMS-ICMS-ICMS-ICMS-ICM
CMS-ICMS-ICMS-ICMS-ICMS-ICMS
MS-ICMS-ICMS-ICMS-ICMS-ICMS-ICM
   JCMS-ICMS-ICMS-ICMS-ICMS
```


Some more PSTRICKS

or this ...


```
\pstextpath{\psccurve[linestyle=none]%
(.5,0)(3.5,1)(3.5,0)(.5,1)
{\blue ICMS--ICMS--ICMS--ICMS--ICMS--%
ICMS--ICMS--ICMS--ICM}
```


Including Movies

Even though the movie is "embedded" in the .tex file, the .avi file must still reside in the same folder as the pdf file.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.

Fancy Bits

Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

Main Theorem

Theorem

 $\alpha <$ 2 $^{\alpha}$ for all ordinals α .

Proof.

As shown by Cantor...

For Further Reading

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.

D.F. Griffiths

Beamer By Example

http://www.maths.dundee.ac.uk/~dfg/talks.shtml

