1. Construct a truth table for the following:

a.
$$(x + y)(x + z)(x' + z)$$

<u>Ans</u>

X	y	Z	x'	x + y	x + z	x' + z	(x+y)(x+z)(x+z)
0	0	0	1	0	0	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	0	1	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	0	1	1	0	0
1	1	1	0	1	1	1	1

2. Show that x = xy + xy'

a. Using truth tables

X	y	y'	xy	xy'	xy + xy'
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1

b. Using Boolean identities

$$x = xy + xy' = x(y+y') \# Distributive Law$$

= $x(1) \# Inverse Law$
= $x \# Identity Law$

$$\underline{\mathbf{Ans}} : \mathbf{x} = \mathbf{xy} + \mathbf{xy'}$$

2. Given the function: F(x,y,z) = xy'z + x'y'z + xyz

a. List the truth table for F.

Ans

X	у	Z	x'	y'	xyz	xy'z	x'y'z	xy'z + x'y'z + xyz
0	0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	1	1
0	1	0	1	0	0	0	0	0
0	1	1	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0
1	0	1	0	1	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	1

b. Draw the logic diagram using the original Boolean expression

<u>Ans</u>

c. Simplify the expression using Boolean algebra and identities.

Ans

$$F(x,y,z) = xy'z + x'y'z + xyz \# Idempotent Law$$

$$= z(xy' + x'y' + xy) \# Distributive Law$$

$$= z(x(y + y') + x'y') \# Commutative \& Distributive Laws$$

$$= z(x(1) + x'y') \# Inverse Law$$

$$= z(x + x'y') \# Identity Law$$

$$= z((x + x')(x + y')) \# Distributive Law$$

$$= z((1)(x + y')) \# Inverse Law$$

$$= z(x + y') \# Identity Law$$

$$= xz + y'z \# Distributive Law$$

d. Simplify the expression using KMap

Ans

x \\ yz	00	01	11	10
0	0	1	0	0
1	0	1	1	0

$$xy'z$$
 $xy'z$

e. List the truth table for your answer in Part d.

<u>Ans</u>

X	У	Z	y'	XZ	y'z	y'z + xz
0	0	0	1	0	0	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	1	0	1	0	1

f. Draw the logic diagram for the simplified expression in Part d.

<u>Ans</u>

Group 2 (8 people)

- 1. 65130500201 Kampol Suwannatam
- **2**. 65130500204 Jirawat Rongsupan
- **3**. 65130500207 Chewin Grerasitsirt
- 4. 65130500209 Natthanon Somroop
- 5. 65130500210 Nontakorn Chatkoonsathien
- 6. 65130500212 Nithit Lertcharoensombat
- 7. 65130500227 Issadaorn Kulsantao
- 8. 65130500237 Chayapol Mahatthanachai