Contents

1	Fun	ictions	
	1.1	cubic	_root – cubic root, residue, and so on
		1.1.1	$c_root_p - cubic\ root\ mod\ p\ \dots \dots \dots$
		1.1.2	c_residue – cubic residue mod p
		1.1.3	c_symbol – cubic residue symbol for Eisenstein-integers .
		1.1.4	decomposite p – decomposition to Eisenstein-integers
		1.1.5	cornacchia – solve $x^2 + dy^2 = n$

Chapter 1

Functions

- 1.1 cubic root cubic root, residue, and so on
- $1.1.1 \quad c \quad root \quad p-cubic \ root \ mod \ p$

```
	ext{func1}(	ext{a:} integer, 	ext{p:} integer) 
ightarrow list
```

Return the cubic root of a modulo prime p. (i.e. solutions of the equation $x^3 = a \pmod{p}$).

p must be a prime integer.

This function returns the list of all cubic roots of a.

1.1.2 c residue – cubic residue mod p

```
{\tt c\_residue(a:} \; integer, \; {\tt p:} \; integer) \rightarrow integer
```

Check whether the rational integer a is cubic residue modulo prime p.

If $p \mid a$, then this function returns 0, elif a is cubic residue modulo p, then it returns 1, otherwise (i.e. cubic non-residue), it returns -1.

p must be a prime integer.

1.1.3 c symbol – cubic residue symbol for Eisenstein-integers

```
c_symbol(a1: integer, a2: integer, b1: integer, b2: integer)
\rightarrow integer
```

Return the (Jacobi) cubic residue symbol of two Eisenstein-integers $\left(\frac{\mathtt{a1+a2\omega}}{\mathtt{b1+b2\omega}}\right)_3$, where ω is a primitive cubic root of unity.

If $b1 + b2\omega$ is a prime in $\mathbb{Z}[\omega]$, it shows $a1 + a2\omega$ is cubic residue or not.

We assume that $b1 + b2\omega$ is not divisible $1 - \omega$.

1.1.4 decomposite p – decomposition to Eisenstein-integers

decomposite $p(p: integer) \rightarrow (integer, integer)$

Return one of prime factors of p in $\mathbb{Z}[\omega]$.

If the output is (a, b), then $\frac{p}{a+b\omega}$ is a prime in $\mathbb{Z}[\omega]$. In other words, p decomposes into two prime factors $a+b\omega$ and $p/(a+b\omega)$ in $\mathbb{Z}[\omega]$.

p must be a prime rational integer. We assume that $p \equiv 1 \pmod{3}$.

1.1.5 cornacchia – solve $x^2 + dy^2 = p$

$cornacchia(d: integer, p: integer) \rightarrow (integer, integer)$

Return the solution of $x^2 + dy^2 = p$.

This function uses Cornacchia's algorithm. See [1].

p must be prime rational integer. d must be satisfied with the condition 0 < d < p. This function returns (x, y) as one of solutions of the equation $x^2 + dy^2 = p$.

Examples

```
>>> cubic_root.c_root_p(1, 13)
[1, 3, 9]
>>> cubic_root.c_residue(2, 7)
-1
>>> cubic_root.c_symbol(3, 6, 5, 6)
1
>>> cubic_root.decomposite_p(19)
(2, 5)
>>> cubic_root.cornacchia(5, 29)
(3, 2)
```

Bibliography

[1] Henri Cohen. A Course in Computational Algebraic Number Theory. GTM138. Springer, 1st. edition, 1993.