This is the supplemental material for the paper "Probabilistic Alternating-Time μ -Calculus", containing omitted proofs due to space restriction.

A Comparison with AMC, PATL* and μ -PCTL

The logics we compared in this section are defined over concurrent game structures (CGSs). Therefore, we first recall the definition of CGSs.

Concurrent Game Structures

A PCGS $\mathcal{G}=(Ag, Act, \mathcal{Q}, \delta, \lambda, q_0)$ is a concurrent game structure (CGS), if δ is defined as $\mathcal{Q}\times\mathcal{D}\to \Upsilon(\mathcal{Q})$ such that for every $q\in\mathcal{Q}$ and $\mathbf{d}\in\mathcal{D}$, there exists exactly one state $q'\in\mathcal{Q}$ such that $\delta(q,\mathbf{d},q')=1$. We will use $\delta(q,\mathbf{d})$ to denote the unique state q' such that $\delta(q,\mathbf{d},q')=1$. Strategies used by agents in CGSs are also deterministic. In this setting, given a coalition strategy $v_A\in V_A$ and a response strategy $v_{\overline{A}}\in V_{\overline{A}}$ of agents A, for every state $q\in\mathcal{Q}$, Paths q is a singleton set. We use $\rho_q^{v_A,v_{\overline{A}}}$ to denote the path in Paths q

A PCGS $\mathcal{G} = (Ag, Act, Q, \delta, \lambda, q_0)$ is a *Markov decision* process (MDP) if \mathcal{G} is a one-agent PCGS, i.e., |Ag| = 1.

Alternating-time μ -Calculus

Alternating-time μ -calculus (AMC) is a powerful alternating-time temporal logic that is strictly more expressive than ATL and ATL*. We show that PAMC $_0$ is strong enough to express AMC over CGSs. AMC is an extension of μ -calculus with coalition modalities (Alur, Henzinger, and Kupferman 2002).

Definition 1. (Alur, Henzinger, and Kupferman 2002) AMC formulae are given by the following grammar:

$$\phi ::= p \mid \neg p \mid Z \mid \phi \land \phi \mid \phi \lor \phi \mid \langle A \rangle \mathbf{X} \phi \mid [A] \mathbf{X} \phi \mid \mu Z. \phi \mid \nu Z. \phi$$
where $p \in \mathbf{AP}$, $Z \in \mathcal{Z}$ and $A \subseteq \mathsf{Aq}$.

The semantics of AMC formulae is defined by the denotation function $\|\circ\|_{\mathcal{G}}^{\xi}$ that maps AMC formulae to sets of states of a CGS \mathcal{G} . Formally, given a CGS $\mathcal{G}=(\mathrm{Ag},\mathrm{Act},\mathcal{Q},\delta,\lambda,q_0),$ an AMC formula ϕ and a valuation $\xi:\mathcal{Z}\to 2^{\mathcal{Q}},\|\circ\|_{\mathcal{G}}^{\xi}$ is inductively defined as follows:

- $\bullet \ \|p\|_{\mathcal{G}}^{\xi} = \lambda(p), \|\neg p\|_{\mathcal{G}}^{\xi} = Q \setminus \lambda(p), \|Z\|_{\mathcal{G}}^{\xi} = \xi(Z);$
- $\|\langle A \rangle \mathbf{X} \psi \|_{\mathcal{G}}^{\xi} = \{ q \in Q \mid \exists v_A \in V_A, \forall v_{\overline{A}} \in V_{\overline{A}}, \delta(q, \mathbf{d}) \in \|\psi\|_{\mathcal{G}}^{\xi} \}$, where $v_A(i)(q, \mathbf{d}(i)) = 1$ for every $i \in A$ and $v_{\overline{A}}(j)(q, \mathbf{d}(j)) = 1$ for every $j \in \overline{A}$;
- $\|[A]\mathbf{X}\psi\|_{\mathcal{G}}^{\xi} = \{ q \in Q \mid \forall v_A \in V_A, \exists v_{\overline{A}} \in V_{\overline{A}}, \delta(q, \mathbf{d}) \in \|\psi\|_{\mathcal{G}}^{\xi} \}$, where $v_A(i)(q, \mathbf{d}(i)) = 1$ for every $i \in A$ and $v_{\overline{A}}(j)(q, \mathbf{d}(j)) = 1$ for every $j \in \overline{A}$;
- $\bullet \ \|\mu Z.\phi\|_G^\xi = \bigcap \{Q' \subseteq Q \mid \|\phi\|_G^{\xi[Z \mapsto Q']} \subseteq Q'\};$
- $||vZ.\phi||_G^{\xi} = \bigcup \{Q' \subseteq Q \mid ||\phi||_G^{\xi[Z \mapsto Q']} \supseteq Q'\};$
- $\bullet \ \|\phi_1 \wedge \phi_2\|_{\mathcal{G}}^\xi = \|\phi_1\|_{\mathcal{G}}^\xi \cap \|\phi_2\|_{\mathcal{G}}^\xi;$

• $\|\phi_1 \vee \phi_2\|_{\mathcal{G}}^{\xi} = \|\phi_1\|_{\mathcal{G}}^{\xi} \cup \|\phi_2\|_{\mathcal{G}}^{\xi}$.

Given an AMC formula ϕ , let $enc(\phi)$ denote the PAMC₀ formula obtained from ϕ by the following recursive transformation: where $\circ \in \{\land, \lor\}$,

$$enc(p) = p$$
 $enc(\phi_1 \circ \phi_2) = enc(\phi_1) \circ enc(\phi_2)$
 $enc(\neg p) = \neg p$ $enc(\langle A \rangle \mathbf{X} \phi) = \langle A \rangle^{>0} \mathbf{X} enc(\phi)$
 $enc(Z) = Z$ $enc([A] \mathbf{X} \phi) = [A]^{>0} \mathbf{X} enc(\phi)$
 $enc(\mu Z. \phi) = \mu Z. enc(\phi)$ $enc(\nu Z. \phi) = \nu Z. enc(\phi)$

Theorem 1. For every CGS \mathcal{G} and every AMC formula ϕ , $\|\phi\|_G^{\xi} = \|enc(\phi)\|_G^{\xi}$.

It is known that AMC is more expressive than ATL and ATL* (Alur, Henzinger, and Kupferman 2002). It follows that $PAMC_0$ is strong enough to express all standard alternating-time temporal logics.

Probabilistic Alternating-time Temporal Logic

Probabilistic alternating-time temporal logic (PATL*) is the first probabilistic extension of the alternating-time temporal logic ATL* (Chen and Lu 2007; Schnoor 2010; Huang, Su, and Zhang 2012).

Definition 2. PATL* formulae are given by the following grammar: where Φ are state formulae, Ψ are path formulae,

$$\Phi ::= p \mid \neg p \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \langle A \rangle^{\sim c} \Psi
\Psi ::= \Phi \mid \Psi \land \Psi \mid \Psi \lor \Psi \mid \mathbf{X} \Psi \mid \Psi \mathbf{U} \Psi \mid \mathbf{R} \Psi$$

where $p \in \mathbf{AP}$, $Z \in \mathcal{Z}$, $A \subseteq \mathsf{Ag}$, $\sim \in \{\geq, >\}$ and $c \in [0, 1]$.

Remark 1. The original definition of PATL* in (Chen and Lu 2007) allows \sim to be =, which is dropped in the later works (Schnoor 2010; Huang, Su, and Zhang 2012). PAMC disallows \sim to be =. Therefore, we drop = in the definition of PATL*.

The semantics of path formulae and state formulae of PATL* are given by the denotation function $\|\circ\|_{\mathcal{G}}^{\xi}$ and $\|\circ\|_{\mathcal{G}}^{\xi,\rho}$ which are inductively defined similar as PAMC, in which $\|\psi_1\mathbf{U}\psi_2\|_{\mathcal{G}}^{\xi,\rho} \equiv \|\mu Z.\psi_2\vee(\psi_1\wedge\mathbf{X}Z)\|_{\mathcal{G}}^{\xi,\rho}$ and $\|\psi_1\mathbf{R}\psi_2\|_{\mathcal{G}}^{\xi,\rho} \equiv \|\nu Z.(\psi_1\wedge\psi_2)\vee(\psi_2\wedge\mathbf{X}Z)\|_{\mathcal{G}}^{\xi,\rho}$.

Given a PATL* formula ϕ , let $enc(\phi)$ denote the PAMC formula obtained from ϕ by the following recursive transformation:

$$\begin{array}{ll} enc(p) = p & enc(\phi_1 \land \phi_2) = enc(\phi_1) \land enc(\phi_2) \\ enc(\neg p) = \neg p & enc(\phi_1 \lor \phi_2) = enc(\phi_1) \lor enc(\phi_2) \\ enc(\mathbf{X}\phi) = \mathbf{X}enc(\phi) & enc(\langle A \rangle^{\sim c}\mathbf{X}\phi) = \langle A \rangle^{\sim c}\mathbf{X}enc(\phi) \\ enc(\phi_1\mathbf{U}\phi_2) = \mu Z.enc(\phi_2) \lor (enc(\phi_1) \land \mathbf{X}Z) \\ enc(\phi_1\mathbf{R}\phi_2) = \nu Z.enc(\phi_1 \land \phi_2) \lor (enc(\phi_2) \land \mathbf{X}Z) \end{array}$$

PATL is a subclass of PATL* in which path formulae are given by: $\Psi ::= \mathbf{X}\Phi \mid \Phi \mathbf{U}\Phi \mid \mathbf{R}\Phi$, where Φ are state formulae. Similar to the transformation from PATL* to PAMC, PATL formulae can be encoded into PAMC₁.

Lemma 1. Every PATL* (resp. PATL) state formula ϕ , we can construct a PAMC (resp. PAMC₁) formula enc(ϕ) such that $\|\phi\|_{\mathcal{G}} = \|\text{enc}(\phi)\|_{\mathcal{G}}$, for all PCGSs \mathcal{G} .

Similar to the relation between AMC and ATL*, fixpoint operators cannot be expressed in PATL*, we get that:

Theorem 2. *PAMC* is strictly more expressive than $PATL^*$, and $PAMC_1$ is strictly more expressive than PATL.

μ-PCTL

 μ -PCTL was introduced by (Castro, Kilmurray, and Piterman 2015) for reasoning about probabilistic systems, like Markov chain and Markov decision processes. μ -PCTL is able to encode several well-known probabilistic such as PCTL and P μ TL (Liu et al. 2015).

Definition 3 (μ -PCTL). *The syntax of probabilistic* μ -PCTL *is given by the following grammar, where* Φ *are* state formulae, Ψ *are* path formulae,

$$\Phi ::= p \mid \neg p \mid Z \mid \Phi \wedge \Phi \mid \Phi \vee \Phi \mid \mu Z.\Phi \mid \nu Z.\Phi \mid [\Psi]^{\sim c}$$

$$\Psi ::= \mathbf{X}\Phi \mid \Phi \mathbf{U}\Phi \mid \Phi \mathbf{R}\Phi$$

where $p \in \mathbf{AP}, Z \in \mathcal{Z}, c \in [0, 1]$ and $\sim \in \{\geq, >\}$.

The semantics of μ -PCTL formulae is defined over MDPs (note that the semantics is defined over Markov chains in (Castro, Kilmurray, and Piterman 2015)). Given a MDP $\mathcal{G} = (\mathsf{Ag}, \mathsf{Act}, Q, \delta, \lambda, q_0)$, a state formula ϕ and a valuation $\xi: Z \to 2^Q$, the denotation function $\| \circ \|_{\mathcal{G}}^{\xi}$ that maps state formulae to sets of states is inductively defined as same as PAMC. The semantics of path formulae is defined similar to PAMC₁.

Given a μ -PCTL formula ϕ , it is easy to transform ϕ into an equivalent PAMC₁ formula $enc(\phi)$ using $enc([\psi]^{\sim c}) = \langle Ag \rangle^{\sim c} enc(\psi)$.

Theorem 3. For every MDP \mathcal{G} and every μ -PCTL state formula ϕ , $\|\phi\|_{\mathcal{G}}^{\xi} = \|enc(\phi)\|_{\mathcal{G}}^{\xi}$.

B Memorability and Determinacy

In this section, we show that the memoryless property of PAMC₁, hence PAMC₀ as well. However, in general, PAMC does not have memoryless property. For determinacy, we show that there is no difference between randomized and deterministic under memoryful setting for PAMC. However, allowing $\sim \in \{\geq, >, =\}$ or only considering memoryless strategies will lose this determinacy property.

Memoryless vs. Memoryful

Proposition 1. Given a principal formula $\phi = \langle A \rangle^{\sim c} \mathbf{X} \psi$, and the coalition strategy v_A and the response strategy $v_{\overline{A}}$ of A, for every state $q \in Q$, we have the following property: $\Pr_q^{v_A, v_{\overline{A}}}(\{\rho \in \mathsf{Paths}_q^{v_A, v_{\overline{A}}} \mid \rho_1 \in ||\psi||_{\mathcal{G}}^{\mathcal{E}}\}) = \sum_{\mathbf{d} \in \mathcal{D}, q' \in ||\psi||_{\mathcal{E}}^{\mathcal{E}}} \Pr_{q}^{v_A, v_{\overline{A}}}(q, \mathbf{d}) \cdot \delta(q, \mathbf{d}, q').$

Proof. The result immediately follows from the fact that $\{\, \rho \in \mathsf{Paths}_q^{\nu_A, \nu_{\overline{A}}} \, | \, \rho_1 \in \|\psi\|_{\mathcal{G}}^{\xi} \, \} = \bigcup_{q' \in \|\psi\|_G^{\xi}} \mathsf{Cyl}^{\nu_A, \nu_{\overline{A}}}(qq').$

Proposition 2. Given a PCGS $\mathcal{G} = (Ag, Act, Q, \delta, \lambda, q_0)$ and a closed PAMC₁ state formula ϕ , let $\|\phi\|_{\mathcal{G}}^R$ and $\|\phi\|_{\mathcal{G}}^r$ respectively denote the set of states satisfying ϕ under memoryful and memoryless settings. Then, $\|\phi\|_{R}^R = \|\phi\|_{F}^r$.

Proof. By applying induction on structure, it is sufficient to show the cases for $\phi = \langle A \rangle^{\sim c} \mathbf{X} \psi$, $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{U} \psi_2$ and $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{R} \psi_2$.

Let us consider the case $\phi = \langle A \rangle^{-c} \mathbf{X} \psi$. Since $q \in \|\langle A \rangle^{-c} \mathbf{X} \psi\|_G^{\xi}$ iff there exists $v_A \in V_A$ such that for all $v_{\overline{A}} \in V_{\overline{A}}$:

$$\mathsf{Pr}_q^{\nu_A,\nu_{\overline{A}}}(\{\rho\in\mathsf{Paths}_q^{\nu_A,\nu_{\overline{A}}}\:|\:\rho_1\in\|\phi\|_{\mathcal{G}}^{\xi}\})\sim c.$$

By applying Proposition 1, we get that $p \in \|\langle A \rangle^{-c} \mathbf{X} \psi\|_{\mathcal{G}}^{\xi}$ iff there exists $v_A \in V_A$ such that for all $v_{\overline{A}} \in V_{\overline{A}}$:

$$\sum_{\mathbf{d} \in \mathcal{D}, q' \in \|\psi\|_{\mathcal{G}}^{\xi}} \mathsf{Pr}^{\nu_A, \nu_{\overline{A}}}(q, \mathbf{d}) \cdot \delta(q, \mathbf{d}, q') \sim c,$$

in which only the distributions $v_A(i)(q)$ and $v_A(j)(q)$ for $i \in A$, $j \in \overline{A}$ make sense. The result immediately follows.

To prove the case $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{U} \psi_2$, we first consider $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{U}^{\leq k} \psi_2$, where $\mathbf{U}^{\leq k}$ denotes that the state formula ϕ_2 should be fulfilled after at most k steps. Since $q \in \|\langle A \rangle^{\sim c} \psi_1 \mathbf{U} \psi_2\|_{\mathcal{G}}^{\xi}$ iff $v = \max_{v_A \in V_A} \min_{v_{\overline{A}} \in V_{\overline{A}}} \Pr_q^{v_A, v_{\overline{A}}} (\{\rho \in \mathsf{Paths}_q^{v_A, v_{\overline{A}}} \mid \{\rho \in \mathsf{Paths}_q^{v_A$

 $\rho_0 \in \|\psi_1 \mathbf{U}^{\leq k} \psi_2\|_G^{\xi}\}) \sim c$. We have that

1. v = 1 if $q \in \|\langle A \rangle^{\sim c} \psi_2\|_G^{\xi}$,

2. v = 0 if $q \notin \|\langle A \rangle^{\sim c} \psi_1\|_G^{\xi} \cup \|\langle A \rangle^{\sim c} \psi_2\|_{\mathcal{G}}^{\xi}$,

 $3. \ v=0 \text{ if } q\notin \|\langle A\rangle^{\sim c}\psi_1\|_{\mathcal{G}}^{\xi}\setminus \|\langle A\rangle^{\sim c}\psi_2\|_{\mathcal{G}}^{\xi} \text{ and } k=0,$

4. $v = \max_{v_A \in V_A} \min_{v_{\overline{A}} \in V_{\overline{A}}} \sum_{\mathbf{d} \in \mathcal{D}, q' \in ||\psi||_{\mathcal{G}}^{\mathcal{E}}} \mathsf{Pr}^{v_A, v_{\overline{A}}}(q, \mathbf{d}) \cdot \delta(q, \mathbf{d}, q') \cdot$

$$\mathsf{Pr}_{q'}^{\nu_A,\nu_{\overline{A}}}(\{\rho \in \mathsf{Paths}_{q'}^{\nu_A,\nu_{\overline{A}}} \mid \rho_0 \in ||\psi_1 \mathbf{U}^{\leq k-1}\psi_2||_{\mathcal{G}}^{\xi}\}), \text{ otherwise.}$$

By applying the induction hypothesis, $\|\psi_1\|_{\mathcal{G}}^R = \|\psi_1\|_{\mathcal{G}}^r$ and $\|\psi_2\|_{\mathcal{G}}^R = \|\psi_2\|_{\mathcal{G}}^r$. If agents \overline{A} can make actions such that either Item 2 or Item 3 holds for a given coalition strategy v_A , then $v_{\overline{A}}$ uses these actions under the track q. While agents A try to make actions such that Item 1 holds for any $v_{\overline{A}}$. In these two cases, the result follows. Otherwise, we iteratively expand $\Pr^{v_A,v_{\overline{A}}}(q,\mathbf{d}) \cdot \delta(q,\mathbf{d},q') \cdot \Pr^{v_A,v_{\overline{A}}}_{q'}(\{\rho \in \operatorname{Paths}^{v_A,v_{\overline{A}}}_{q'} \mid \rho_0 \in \|\psi_1 \mathbf{U}^{\leq k-1}\psi_2\|_{\mathcal{G}}^{\xi}\}$ in Item 4 and continue select actions according Items 1, 2 and 3. This gives us memoryless strategies.

For the unbounded case $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{U} \psi_2$, memoryless strategies are also sufficient by considering $\lim_{k \to \infty} \max_{\nu_A \in V_A} \min_{\nu_{\overline{A}} \in V_{\overline{A}}} \mathsf{Pr}_q^{\nu_A, \nu_{\overline{A}}} (\{\rho \in \mathsf{Paths}_q^{\nu_A, \nu_{\overline{A}}} \mid \rho_0 \in \|\psi_1 \mathbf{U}^{\leq k} \psi_2\|_{\mathcal{E}}^{\mathcal{E}}\}) \sim c.$

The case $\phi = \langle A \rangle^{\sim c} \psi_1 \mathbf{R} \psi_2$ can be seen as $\phi = \langle A \rangle^{\sim c} \neg (\neg \psi_1 \mathbf{U} \neg \psi_2)$ where \neg at the beginning of ψ_1 and ψ_2 can be pushed inside as usual. The proof follows the lines for \mathbf{U} .

Remark 2. The memoryless property in Proposition 2 only holds for model-checking rather than strategy synthesis which is the problem of computing strategies of agents to fulfill the given formula. Consider the PAMC₁ formula $\phi = \langle \{1\} \rangle^{\geq 1} \mathbf{X}(p \wedge \langle \{1\} \rangle^{\geq 1} \mathbf{X} \langle \{1\} \rangle^{\geq 1} \mathbf{X} \neg p)$ and the PCGS $\mathcal{G} = (\{1\}, \{a_1, a_2\}, \{q_0, q_1\}, \delta, \lambda, q_0)$, where

- $\delta(q_0, a_1, q_1) = 1$,
- $\delta(q_0, a_2, q_0) = 1$,
- $\delta(q_1, \sigma, q_0) = 1 \text{ for } \sigma \in \{a_1, a_2\},$
- $\lambda(p) = \{q_1\}.$

It is easy to see that $q_0 \in \|\phi\|_{\mathcal{G}}$ under memoryless setting, as agent 1 can choose difference action at state q_0 to fulfill ϕ and the subformula $(\{1\})^{\geq 1}\mathbf{X}(\{1\})^{\geq 1}\mathbf{X}\neg p$. However, it is impossible to synthesize a memoryless strategy for agent 1 to fulfill ϕ .

We now show that PAMC does not have memoryless property even under deterministic setting by the following example.

Figure 1: Example for memoryless property on PAMC, where $* \in \{a_1, a_2\}$.

Example 1. Let us consider the PCGS $\mathcal{G} = (\{1,2\},\{a_1,a_2\},\{q_0,q_1\},\delta,\lambda,q_0)$ as shown in Figure 1, where for every $* \in \{a_1,a_2\},$

- $\delta(q_0, \langle a_1, * \rangle, q_0) = 0.5$ and $\delta(q_0, \langle a_1, * \rangle, q_1) = 0.5$,
- $\delta(q_0, \langle a_2, * \rangle, q_1) = 1$,
- $\delta(q_1, \mathbf{d}, q_1) = 1$ for every $\mathbf{d} \in \{a_1, a_2\}^2$,
- $\lambda(p) = \{q_1\}.$

Consider the closed PAMC state formula $\phi = \langle \{1\} \rangle^{\geq 0.5} \mathbf{X}(\neg p \wedge \mathbf{X}p)$ which states that agent 1 has a strategy such that whatever agent 2 does, the probability to achieve the goal $\mathbf{X}(\neg p \wedge \mathbf{X}p)$ is no less than 0.5. It is easy to see that there is no memoryless strategy for agent 1 to achieve the goal, i.e., $\|\phi\|_{\mathcal{G}}^r = \emptyset$. While $\|\phi\|_{\mathcal{G}}^R = \{q_0\}$, as agent 1 can use the strategy $v_{\{1\}}$ such that $v_{\{1\}}(q_0)(a_1) = 1$ and $v_{\{1\}}(q_0q_0)(a_2) = 1$.

Randomized vs. Deterministic

Theorem 4. Given a closed PAMC state formula ϕ , let $\|\phi\|_{\mathcal{G}}^p$ and $\|\phi\|_{\mathcal{G}}^d$ respectively denote the set of states satisfying ϕ under randomized and deterministic settings. Then, $\|\phi\|_{\mathcal{G}}^p = \|\phi\|_{\mathcal{G}}^d$ under memoryful setting.

Proof. The proof is straightforward by induction on the structure of ϕ . We only need to consider principal formulae of the form $\langle A \rangle^{-c} \psi$. The proof for the case $\langle A \rangle^{-c} \psi$ follows from Theorem 2 and Lemma 1.

Let PAMC = be the logic by setting $\sim \in \{\geq, >, =\}$ in the PAMC. Then, Theorem 4 will not hold for PAMC =. We show this by the following example.

Example 2. Let us consider the PCGS $\mathcal{G} = (\{1,2\},\{a_1,a_2\},\{q_0,q_1\},\delta,\lambda,q_0)$ as shown in Figure 1 and the closed PAMC = state formula $\phi = \langle \{1\} \rangle \mathbf{X}^{=0.75} p$.

In randomized setting, agent 1 has a strategy $v_{\{1\}}$ such that for all strategies $v_{\{2\}}$ of agent 2, $\Pr_{q_0}^{v_{\{1\}},v_{\{2\}}}(\{\rho \in \mathsf{Paths}_{q_0}^{v_{\{1\}},v_{\{2\}}} \mid \rho_1 \in \|p\|_{\mathcal{G}}^{\xi}\}) = 0.75$, where $v_{\{1\}}(\pi)(a_1) = 0.5$ and $v_{\{1\}}(\pi)(a_2) = 0.5$. Therefore $q_0 \in \|p\|_{\mathcal{G}}^{\xi}$. While, in deterministic setting, it is easy to see that $q_0 \notin \|p\|_{\mathcal{G}}^{\xi}$.

Figure 2: Example for determinacy, where $* \in \{a_1, a_2\}$.

Under memoryless setting, PAMC does not have determinacy property as shown by the following example.

Example 3. Let us consider the PCGS $\mathcal{G} = (\{1,2\},\{a_1,a_2\},\{q_0,q_1,q_3\},\delta,\lambda,q_0)$ as shown in Figure 2 and the closed PAMC state formula $\phi = \langle \{1\} \rangle^{>0} (\mu Z.p_1 \wedge \mu Y.p_0)$. Under randomized memoryless setting, $q_0 \in \|\phi\|_{\mathcal{G}}^{\mathcal{E}}$, while $q_0 \notin \|\phi\|_{\mathcal{G}}^{\mathcal{E}}$ under deterministic memoryless setting.

References

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-time temporal logic. *Journal of the ACM* 49(5):672–713.

Castro, P. F.; Kilmurray, C.; and Piterman, N. 2015. Tractable probabilistic mu-calculus that expresses probabilistic temporal logics. In *Proceedings of the 32nd Symposium on Theoretical Aspects of Computer Science*, 211–223.

Chen, T., and Lu, J. 2007. Probabilistic alternating-time temporal logic and model checking algorithm. In *Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery*, 35–39.

Huang, X.; Su, K.; and Zhang, C. 2012. Probabilistic alternating-time temporal logic of incomplete information and synchronous perfect recall. In *Proceedings of the 26th AAAI Conference on Artificial Intelligence*.

Liu, W.; Song, L.; Wang, J.; and Zhang, L. 2015. A simple probabilistic extension of modal mu-calculus. In *Proceedings of the 24th International Joint Conference on Artificial Intelligence*, 882–888.

Schnoor, H. 2010. Strategic planning for probabilistic games with incomplete information. In *Proceedings of the 9th International Joint Conference on Autonomous Agents and Multiagent Systems*, 1057–1064.