Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Programmable devices have existed for centuries. It is usually easier to code in "high-level" languages than in "low-level" ones. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Use of a static code analysis tool can help detect some possible problems. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. It is very difficult to determine what are the most popular modern programming languages. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Unreadable code often leads to bugs, inefficiencies, and duplicated code. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages.