МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехники

ПОСТРОЕНИЕ ТРЕХМЕРНОЙ МОДЕЛИ ШПОНКИ И ЕЕ ЧЕРТЕЖА В ПРОГРАММНОМ ПАКЕТЕ КОМПАС

Методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» для студентов направления 221000.62 «Мехатроника и робототехника»

УДК 62.231

Составители Е.Н. Политов, Л.Ю. Ворочаева

Рецензент Кандидат технических наук, доцент В.Я. Мищенко

Построение трехмерной модели шпонки и ее чертежа в программном пакете Компас: методические указания по выполнению лабораторной и самостоятельной работ по курсу «Проектирование мехатронных систем» / Юго-Зап. гос. ун-т; сост. Е.Н. Политов, Л.Ю. Ворочаева. Курск, 2015. 13 с.

Методические указания содержат сведения по построению трехмерной модели шпонки и ее чертежа в программном пакете Компас. Приведены варианты задания, пример проектирования модели шпонки.

Методические указания соответствуют требованиям программы, утверждённой учебно-методическим объединением (УМО).

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л. 1,4. Уч.-изд.л. 1,3. Тираж 30 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

Содержание

Задание	4
Ход выполнения работы	4
Создание файла детали	5
Построение трехмерной модели шпонки	5
Построение чертежа шпонки	9
Рекомендательный список литературы	13

Задание

1 Построить трехмерную модель шпонки в соответствии с ГОСТ 23360-78 и данными таблицы 1, где L – длина, b – ширина, h – высота, d – диаметр ступени вала, на которой выполнен шпоночный паз.

- 2 Построить чертеж шпонки с ее трехмерной модели.
- 3 Проставить необходимые размеры, посадочные и присоединительные размеры указать с учетом отклонений, остальные размеры выполнить по 14 квалитету.
- 4 Указать шероховатость посадочных поверхностей, неуказанная шероховатость для остальных поверхностей Ra 6,3.

Табл. 1 - Размеры шпонок, мм

	d		т	h
Св.	Д 0	b	${f L}$	h
6	8	2	6÷2	2
			0	
8	10	3	6÷3	3
			6	
10	12	4	8÷4	4
			5	
12	17	5	10÷	5
			56	
17	22	6	14÷	6
			70	
22	30	8	18÷	7
			90	
30	38	10	22÷	8
			110	
38	44	12	28÷	8
			140	

Ход выполнения работы

Необходимо построить шпонку для закрепления зубчатого колеса на валу. Параметры шпонки:

L, MM	b, мм	h, mm
28	12	8

Создание файла детали

Для создания новой детали выполните команду Файл — Создать или нажмите кнопку Cоздать на панели Cтандартная.

В диалоговом окне укажите тип создаваемого документа Деталь и нажмите кнопку OK.

На экране появится окно новой детали. Нажмите кнопку *Сохранить* на панели *Стандартная*.

В поле Имя файла диалогового окна сохранения документов введите имя детали - Шпонка.

Нажмите кнопку Сохранить.

В окне *Информация о документе* просто нажмите кнопку OK. Поля этого окна заполнять не обязательно.

Построение трехмерной модели шпонки

Выберите плоскость, в которой будете делать эскиз, в Дереве *модели*, например, Плоскость XY.

При этом она выделится, как показано на рисунке.

На верхней панели нажмите кнопку Co3damb эскиз \square . Плоскость XY примет вид:

На панели *Геометрия* Выберите команду *Прямоугольник по центру и вершине* и постройте его произвольного размера с центром в начале координат.

Выполните параметризацию объекта, используя соответствующую панель \Box , используйте Выровнять точки по вертикали \Box для начала координат и середины горизонтальной стороны и Выровнять точки по горизонтали \Box для начала координат и середины боковой стороны.

Проставьте размеры длины (L) и ширины (b) прямоугольника, выбрав на панели инструментов Pазмеры подпункт Линейные размеры.

Нажмите кнопку *Операция выдавливания* на панели *Редактирование детали* в поле *Расстояние* на панели свойств введите численное значение высоты шпонки (h).

Постройте радиусы скругления, используя команду *Скругление* вкладки *Редактирование детали*. На Панели свойств указывается значение радиуса скругления R=0.5b.

Задайте свойства детали, ее наименование, обозначение и укажите материал, из которого она изготовлена, вызвав панель *Свойства модели* нажатием правой клавиши мыши по окну детали.

Построение чертежа шпонки

Создайте файл чертежа и сохраните его. Выберите формат и его ориентацию для изображения детали в нужном масштабе.

Используя кнопку Стандартные виды на инструментальной панели Виды \square , постройте три вида детали, предварительно выбрав масштаб на панели свойств.

Для задания размеров достаточно двух видов: спереди и сверху, поэтому вид слева удалите.

Для построения осевой линии на панели инструментов Обозначения \square выберите Осевая линия по двум точкам. Укажите начальную и конечную точки построения осевой (то есть крайние левую и правую точки вида спереди и сверху, а также крайние верхнюю и нижнюю точки на виде спереди).

Задайте длину, ширину и высоту шпонки по системе вала – квалитет h, для ширины и высоты h9, а для длины – h14, как указано в ГОСТ 23360-78.

Укажите радиусы скругления и их число.

Неуказанную шероховатость задайте равной Ra 6,3. Технические требования можно не указывать, т.к. все размеры и их отклонения заданы на чертеже.

Для заполнения основной надписи выполните по ней двойной щелчок левой клавишей мыши.

Графы *Наименование*, *Обозначение*, *Материал*, *Масса* заполняются системой автоматически, требуемые данные берутся из трехмерной модели детали.

Заполните графы *Разраб*. и *Пров*., а также при изменении масштаба изображения детали графу *Масштаб*.

После заполнения штампа нажмите кнопку Создать объект Чертеж шпонки имеет вид.

Рекомендательный список литературы

- 1. Большаков В.П., Бочков А.Л. Основы 3D-моделирования. Питер. 2012. 304 с.
- 2. Большаков В.П., Тозик В.Т., Чагина А.В. Инженерная и компьютерная графика. БХВ-Петербург. 2012. 208 с.
- 3. КОМПАС 3D V15. Руководство пользователя. АСКОН. 2014. 526 с.
- 4. Ганин Н.Б. Трехмерное проектирование в КОМПАС-3D. ДМК-Пресс. 2012. 784 с.
- 5. Герасимов А.А. Новые возможности КОМПАС-3D V13. Самоучитель. БХВ-Петербург. 2011. 288c.