Lógica para Computação Unificação - Lógica de Primeira Ordem

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

Introdução

2 Substituição

Unificação

Tópicos

Introdução

Substituição

Unificação

- Precisamos adaptar a resolução para lidar com as variáveis e símbolos de função
- Considere as cláusulas $C_1 = \{P(x), Q(x)\}$ e $C_2 = \{\neg P(a), \neg R(x, y)\}$
- Qual o valor do resolvente entre elas $res(C_1, C_2)$?

- Precisamos adaptar a resolução para lidar com as variáveis e símbolos de função
- Considere as cláusulas $C_1 = \{P(x), Q(x)\}$ e $C_2 = \{\neg P(a), \neg R(x, y)\}$
- Qual o valor do resolvente entre elas $res(C_1, C_2)$?
- Deveria ser possível obter $res(C_1, C_2) = \{Q(a), \neg R(a, y)\}$

- Precisamos adaptar a resolução para lidar com as variáveis e símbolos de função
- Considere as cláusulas $C_1 = \{P(x), Q(x)\}$ e $C_2 = \{\neg P(a), \neg R(x, y)\}$
- Qual o valor do resolvente entre elas $res(C_1, C_2)$?
- Deveria ser possível obter $res(C_1, C_2) = \{Q(a), \neg R(a, y)\}$
- Considere as cláusulas $C_1 = \{R(x, y)\}\ e\ C_2 = \{\neg R(y, f(a))\}$
- Qual deveria ser o resolvente entre elas $res(C_1, C_2)$?

Tópicos

- Substituição
- Unificação

- Considere $C_1 = \{ P(f(y)) \}$ e $C_2 = \{ \neg P(f(w)) \}$
- Precisamos de uma forma de unificar esses literais
- Podemos substituir a variável y por w na primeira cláusula

Definição

Uma substituição é um conjunto $\theta = \{x_1 \leftarrow t_1, ..., x_n \leftarrow t_n\}$ em que cada x_i é um variável e cada t_i é um termo tal que $x_i \neq t_i$ e $x_i \neq x_j$ para $i \neq j$. O conjunto vazio $\{\}$ é a substiuição vazia.

Definição

Uma expressão é um termo, literal, cláusula ou conjunto de cláusulas. Seja E uma expressão e $\theta = \{x_1 \leftarrow t_1, ..., x_n \leftarrow t_n\}$ uma substituição. A aplicação de θ em E, denotada por $E\theta$, é o conjunto obtido de E, substituindo simultaneamente todas as ocorrências de x_i em E por t_i para $i \in \{1, ..., n\}$. Se $\theta = \{\}$, $E\theta = E$.

Exemplo

Seja
$$C = \{P(x), Q(f(y))\}\$$
e $\theta = \{x \leftarrow y, y \leftarrow f(a)\}.$
 $C\theta = \{P(y), Q(f(f(a)))\}.$

- Considere $\theta_1 = \{x \leftarrow y\}, \ \theta_2 = \{y \leftarrow b\} \ \text{e} \ C = \{P(x,y)\}$
- $(C\theta_1)\theta_2 = \{P(y,y)\}\theta_2 = \{P(b,b)\}$
- Como definir a composição de substituições?

- Considere $\theta_1 = \{x \leftarrow y\}, \ \theta_2 = \{y \leftarrow b\} \ \text{e} \ C = \{P(x,y)\}$
- $(C\theta_1)\theta_2 = \{P(y,y)\}\theta_2 = \{P(b,b)\}$
- Como definir a composição de substituições?
- $\{x \leftarrow (y\{y \leftarrow b\}), y \leftarrow b\}$

Composição de Substituições

Definição

Sejam $\theta_1 = \{x_1 \leftarrow t_1, ..., x_n \leftarrow t_n\}$ e $\theta_2 = \{y_1 \leftarrow s_1, ..., y_n \leftarrow s_n\}$.

Seja $X = \{x_1, ..., x_n\}$ as variáveis são substituídas em θ_1 .

A **composição** de θ_1 e θ_2 , denotada por $\theta_1\theta_2$, é a substituição:

 $\theta_1\theta_2 = \{x_i \leftarrow (t_i\theta_2) \mid x_i \in X \text{ e } x_i \neq t_i\theta_2\} \cup \{y_i \leftarrow s_i \in \theta_2 \mid y_i \notin X\}.$

Composição de Substituições

Exemplo

Sejam
$$\theta_1 = \{x \leftarrow w\}$$
 e $\theta_2 = \{w \leftarrow x\}$.
 $\theta_1\theta_2 = \{w \leftarrow x\}$

Exemplo

Sejam
$$\theta_3 = \{x \leftarrow a\} \text{ e } \theta_4 = \{x \leftarrow b\}.$$

 $\theta_3\theta_4 = \{x \leftarrow (a\{x \leftarrow b\})\} = \{x \leftarrow a\}$

Composição de Substituições

Exemplo

Sejam
$$\theta_1 = \{x \leftarrow f(y), w \leftarrow z, z \leftarrow x\} \in \theta_2 = \{y \leftarrow w, x \leftarrow z, z \leftarrow w\}.$$

 $(P(x, w, z, y)\theta_1)\theta_2 = P(f(y), z, x, y)\theta_2 = P(f(w), w, z, w).$
 $P(x, w, z, y)(\theta_1\theta_2) = P(x, w, z, y)\{x \leftarrow f(w), y \leftarrow w\} = P(f(w), w, z, w).$

Proposição

Seja E uma expressão e θ_1 e θ_2 duas substituições. $(C\theta_1)\theta_2 = C(\theta_1\theta_2)$.

Tópicos

Introdução

Substituição

Unificação

Unificação

- Considere as cláusulas $C_1 = \{P(f(x), y, x)\}\$ e $C_2 = \{\neg P(z, g(z), a)\}$
- Seja $\theta = \{x \leftarrow a, y \leftarrow g(f(a)), z \leftarrow f(a)\}$
- $C_1\theta = \{P(f(a), g(f(a)), a)\}\ e\ C_2\theta = \{\neg P(f(a), g(f(a)), a)\}$
- A substituição θ unifica C_1 e C_2

Unificador

Definição

Seja $U=\{A_1,...,A_n\}$ um conjunto de atômicas. Um unificador θ é uma substituição tal que

$$A_1\theta=\ldots=A_n\theta.$$

Exemplo

Seja $U = \{P(x,y), P(w,x)\}$. $\theta_1 = \{x \leftarrow w, y \leftarrow x\}$ é um unificador. $\theta_2 = \{x \leftarrow a, y \leftarrow a, w \leftarrow a\}$ também é um unificador mas θ_1 é mais geral.

Unificador

Definição

Seja $U=\{A_1,...,A_n\}$ um conjunto de atômicas. Um unificador θ é uma substituição tal que

$$A_1\theta=\ldots=A_n\theta.$$

Exemplo

Seja $U = \{P(x,y), P(w,x)\}$. $\theta_1 = \{x \leftarrow w, y \leftarrow x\}$ é um unificador. $\theta_2 = \{x \leftarrow a, y \leftarrow a, w \leftarrow a\}$ também é um unificador mas θ_1 é mais geral.

ullet É possível obter $heta_2$ a partir de $heta_1$

Unificador

Definição

Seja $U=\{A_1,...,A_n\}$ um conjunto de atômicas. Um unificador θ é uma substituição tal que

$$A_1\theta=\ldots=A_n\theta.$$

Exemplo

Seja $U = \{P(x,y), P(w,x)\}$. $\theta_1 = \{x \leftarrow w, y \leftarrow x\}$ é um unificador. $\theta_2 = \{x \leftarrow a, y \leftarrow a, w \leftarrow a\}$ também é um unificador mas θ_1 é mais geral.

- ullet É possível obter $heta_2$ a partir de $heta_1$
- $\theta_2 = \theta_1\{w \leftarrow a, x \leftarrow a\}$

Unificador Mais Geral

Definição

Um unificador mais geral de um conjunto de atômicas U é um unificador θ tal que qualquer unificador θ_1 de U pode ser expresso como $\theta_1 = \theta\theta_2$ em que θ_2 é uma substituição.

Exemplo

Seja $U = \{P(f(x), g(y)), P(f(f(a)), g(z))\}.$

O unificador $\theta = \{x \leftarrow f(a), z \leftarrow y\}$ é um unificador mais geral.

 $\theta_1 = \theta\{y \leftarrow f(g(a))\}$ é um unificador de U.

 $\theta_2 = \theta\{y \leftarrow a\}$ é um unificador de U.

Conjunto de Diferença

• Primeiro, precisamos saber a parte que difere nas atômicas

Definição

Seja $S = \{A_1, ..., A_n\}$ um conjunto de atômicas. Seja k a posição mais à esquerda na qual as atômicas diferem.

O conjunto de termos $\{t_1, ..., t_n\}$ começando na posição k das atômicas $A_1, ..., A_n$ é o conjunto de diferença de S.

Se todos as atômicas são iguais, o conjunto de diferença é $\{\}$.

Exemplo

Seja
$$S = \{P(f(x), y, x), P(z, g(z), a)\}.$$

O conjunto de diferença de S é $\{f(x), z\}$.

Algoritmo de Unificação

```
function UNIFICA(atomicas)
    \theta \leftarrow \{\}
    while |subst(atomicas, \theta)| \neq 1 do
        d \leftarrow difer(subst(atomicas, \theta))
        unifica \leftarrow False
        for termo_1 \in d do
            for termo_2 \in d do
                 if var?(termo_1) and not ocorre(termo_1, termo_2) then
                     \theta \leftarrow \theta\{termo_1 \leftarrow termo_2\}
                     unifica \leftarrow True
        if unifica = False then
            return False
    return \theta
```

Exemplo

Exemplo

```
Seja S = \{P(f(x), y, x), P(z, g(z), a)\}.

D = \{f(x), z\} em que z é variável e não ocorre em f(x).

\theta = \{z \leftarrow f(x)\}.

D = \{y, g(f(x))\} em que y é variável e não ocorre em g(f(x)).

\theta = \{z \leftarrow f(x)\}\{y \leftarrow g(f(x))\} = \{z \leftarrow f(x), y \leftarrow g(f(x))\}.

D = \{x, w\} em que x é variável e não ocorre em w.

\theta = \{z \leftarrow f(x), y \leftarrow g(f(x))\}\{x \leftarrow w\} = \{z \leftarrow f(w), y \leftarrow g(f(w)), x \leftarrow w\}.
```

Exemplo

Exemplo

```
Seja S = \{P(g(y), f(x, h(x), y)), P(x, f(g(z), w, z))\}.
D = \{g(y), x\} em que x é variável e não ocorre em g(y).
\theta = \{x \leftarrow g(y)\}.
D = \{y, z\} em que y é variável e não ocorre em z.
\theta = \{x \leftarrow g(y)\}\{y \leftarrow z\} = \{x \leftarrow g(z), y \leftarrow z\}.
D = \{w, h(g(z))\} em que w é variável e não ocorre em h(g(z)).
\theta = \{x \leftarrow g(z), y \leftarrow z\}\{w \leftarrow h(g(z))\}.
\{x \leftarrow g(z), y \leftarrow z, w \leftarrow h(g(z))\}.
```