CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

	•	
Course	Number	Sections
Mathematics	205	All
Examination	Date	Duration
Midterm	10 March, 2019	1 h 30 min
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

- 1. (6+5 marks):
 - (a) Graph $f(x) = \begin{cases} \sqrt{1-x^2} 1, & -1 \le x \le 0 \\ |x-1| 1, & x > 0 \end{cases}$ on the interval [-1, 3], and use it to calculate the definite integral $\int_{-1}^{3} f(x) dx$ in terms of area.
 - (b) Use the Fundamental Theorem of Calculus to find the function f(x) and the constant A such that $\int_{x}^{2} f(t) dt + A = x^{2} + x$.
- 2. (6 marks): Find the antiderivative F(x) of $f(x) = \frac{\cos^5(x) + 1}{\cos^2(x)}$ such that F(0) = 0.
- 3. (5+5 marks): Calculate the following indefinite integrals

(a)
$$\int \frac{x^2 - 2}{x^2 - x - 2} dx$$
 (b) $\int e^{2x} \sqrt{e^x + 1} dx$

- 4. (5 marks): Sketch the graphs of functions $x = 2y^2$ and $x = 4 + y^2$, and find the area enclosed (do not approximate).
- 5. (6+6 marks): Evaluate the following definite integrals (do not approximate):

(a)
$$\int_{\sqrt{2}}^{2} \sqrt{4-x^2} \, dx$$
 (b) $\int_{0}^{\pi/4} \arctan(x) \, dx$

- 6. (6 marks): Sketch the region enclosed by the graphs of $y = \sqrt{x}$, x-axis and the line x = 4. Find the volume of a solid obtained by rotating this region about the axis y = -1.
- Bonus. (3 marks): Given that $\int_{0}^{1} e^{-x} [f(x) f'(x)] dx = e$ and f(0) = 0, find f(1).