H18T2A4

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein Lipschitz-stetiges Vektorfeld mit $\langle f(x), x \rangle = 0$ für alle $x \in \mathbb{R}^n \setminus \{0\}$. (Dabei bezeichne $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt in \mathbb{R}^n .) Zu zeigen:

- a) Für jede auf einem offenen Intervall J definierte Lösung $\varphi: J \to \mathbb{R}^n \setminus \{0\}$ der Differentialgleichung x' = f(x) ist die Euklidische Norm $|\varphi(t)|$ konstant.
- b) Jede auf einem offenen Intervall J definierte Lösung φ kann zu einer Lösung $\tilde{\varphi} : \to \mathbb{R}^n \setminus \{0\}$ [sic!] fortgesetzt werden.

Zu a):

Sei also $\varphi: J \to \mathbb{R}^n \setminus \{0\}$ eine Lösung von x' = f(x). Dann gilt:

$$\left(|\varphi(t)|^2\right)' = \left(\langle \varphi(t), \varphi(t)\rangle\right)' = 2 \cdot \langle \varphi'(t), \varphi(t)\rangle = 2 \cdot \langle f(\varphi(t)), \varphi(t)\rangle = 0.$$

Damit ist $|\varphi(t)|^2$ und damit auch $|\varphi(t)|$ konstant.

Zu b):

Vermutlich soll gezeigt werden, dass eine solche Lösung $\varphi: J \to \mathbb{R}^n \setminus \{0\}$ auf ganz \mathbb{R} fortgesetzt werden kann.

Wir bemerken hierzu, dass es zu jedem Anfangswertproblem $x'=f(x),\ x(0)=\xi$ mit $\xi\in\mathbb{R}^n$ aufgrund der Lipschitz-Stetigkeit von f eine eindeutige, maximale Lösung $\mu:I\to\mathbb{R}^n$ auf einem offenen Intervall $I\subseteq\mathbb{R}$ mit $0\in I$ gibt. Schreiben wir I=]a,b[mit a<0< b, so gilt aufgrund der Maximalität der Lösung (- weil $\partial(\mathbb{R}\times\mathbb{R}^n)=\emptyset$) einer der folgenden beiden Fälle:

- 1. $b = \infty$ oder
- 2. $b \neq \infty$, $\lim_{t \geq b} ||\mu(t)|| = \infty$.

Weil $|\mu(t)|$ nach Teil a) aber konstant ist, scheidet der zweite Fall aus und es folgt $b=\infty$, analog $a=-\infty$ und insgesamt $I=\mathbb{R}$. Damit ist φ aufgrund der Eindeutigkeitsaussage des globalen Existenz- und Eindeutigkeitssatzes eine Einschränkung der maximalen Lösung $\mu:\mathbb{R}\to\mathbb{R}^n$. Mit anderen Worten lässt sich φ auf ganz \mathbb{R} fortsetzen.