Anexo PEC 2 - Genómica Computacional

Alejandro Keymer 10/12/2019

Ejercicio 1. Estrategias de alineamiento [50%]

Secuencias CDS de la Proteína de ratón y humano del gen TMEM106B

>mouse

MGKSLSHLPLHSNKEDGYDGVTSTDNMRNGLVSSEVHNEDGRNGDVSQFP
YVEFTGRDSVTCPTCQGTGRIPRGQENQLVALIPYSDQRLRPRRTKLYVM
ASVFVCLLLSGLAVFFLFPRSIEVKYIGVKSAYVSYDAEKRTIYLNITNT
LNITNNNYYSVEVENITAQVQFSKTVIGKARLNNITNIGPLDMKQIDYTV
PTVIAEEMSYMYDFCTLLSIKVHNIVLMMQVTVTTAYFGHSEQISQERYQ
YVDCGRNTTYQLAQSEYLNVLQPQQ

>human

MGKSLSHLPLHSSKEDAYDGVTSENMRNGLVNSEVHNEDGRNGDVSQFPY VEFTGRDSVTCPTCQGTGRIPRGQENQLVALIPYSDQRLRPRRTKLYVMA SVFVCLLLSGLAVFFLFPRSIDVKYIGVKSAYVSYDVQKRTIYLNITNTL NITNNNYYSVEVENITAQVQFSKTVIGKARLNNITIIGPLDMKQIDYTVP TVIAEEMSYMYDFCTLISIKVHNIVLMMQVTVTTTYFGHSEQISQERYQY VDCGRNTTYQLGQSEYLNVLQPQQ

Secuencias CDS de la Nucleótidos de ratón y humano del gen TMEM106B

>human

ATGGGAAAGTCTCTTTCTCATTTGCCTTTGCATTCAAGCAAAGAAGATGC TTATGATGGAGTCACATCTGAAAACATGAGGAATGGACTGGTTAATAGTG AAGTCCATAATGAAGATGGAAGAAATGGAGATGTCTCTCAGTTTCCATAT GTGGAATTTACAGGAAGAGATAGTGTCACCTGCCCTACTTGTCAGGGAAC AGGAAGAATTCCTAGGGGGCAAGAAAACCAACTGGTGGCATTGATTCCAT ATAGTGATCAGAGATTAAGGCCAAGAAGAACAAAGCTGTATGTGATGGCT TCTGTGTTTGTCTGTCTACTCCTTTCTGGATTGGCTGTGTTTTTCCTTTT CCCTCGCTCTATCGACGTGAAATACATTGGTGTAAAATCAGCCTATGTCA GTTATGATGTTCAGAAGCGTACAATTTATTTAAATATCACAAACACACTA AATATAACAAACAATAACTATTACTCTGTCGAAGTTGAAAACATCACTGC CCAAGTTCAATTTTCAAAAACAGTTATTGGAAAGGCACGCTTAAACAACA TAACCATTATTGGTCCACTTGATATGAAACAAATTGATTACACAGTACCT ACCGTTATAGCAGAGGAAATGAGTTATATGTATGATTTCTGTACTCTGAT ATCCATCAAAGTGCATAACATAGTACTCATGATGCAAGTTACTGTGACAA CAACATACTTTGGCCACTCTGAACAGATATCCCAGGAGAGGTATCAGTAT GTCGACTGTGGAAGAACACAACTTATCAGTTGGGGCAGTCTGAATATTT AAATGTACTTCAGCCACAACAGTAA

>mouse

ATGGGAAAGTCTCTTTCTCACTTACCTTTGCATTCAAATAAAGAAGATGG CTATGATGGCGTTACATCGACAGACAATATGAGAAATGGATTGGTTAGCA GTGAAGTGCACAACGAAGACGGAAGAAATGGAGATGTCTCTCAGTTCCCA TATGTGGAATTTACTGGAAGAGATAGTGTCACTTGTCCCACTTGCCAAGG AACAGGAAGAATTCCTAGGGGACAAGAAAACCAACTGGTGGCATTGATTC

3-5 GENEID

```
## date Sun Dec 15 17:16:17 2019
## source-version: geneid v 1.2 -- geneid@imim.es
# Sequence human - Length = 37571 bps
# Optimal Gene Structure. 2 genes. Score = 31.87
# Gene 1 (Forward). 11 exons. 622 aa. Score = 31.58
   First
              157
                       286
                             9.81
                                    + 0 1
                                              8.07
                                                      2.83
                                                             20.67
                                                                       0.00
                                                                              AA
                                                                                   1: 44 human 1
Internal
            10376
                     10458
                             1.45
                                     + 2 0
                                              5.58
                                                      2.65
                                                              3.77
                                                                       0.00
                                                                              AA
                                                                                  44: 71 human_1
Internal
            12800
                     12857
                             0.89
                                     + 0 1
                                              3.87
                                                      3.09
                                                              5.54
                                                                       0.00
                                                                                  72: 91 human_1
Internal
            15504
                     15655 -0.00
                                     + 2 0
                                              0.91
                                                      4.65
                                                              5.41
                                                                       0.00
                                                                              AA 91:141 human_1
Internal
            16764
                     16828
                             1.03
                                     + 0 2
                                              4.32
                                                      1.67
                                                              6.10
                                                                       0.00
                                                                              AA 142:163 human_1
                     17406
                                              3.69
                                                      3.72
                                                                       0.00
Internal
            17225
                             5.73
                                    + 1 1
                                                             15.71
                                                                              AA 163:224 human_1
Internal
            23771
                     23865 -1.35
                                     + 2 0
                                             -0.44
                                                      3.68
                                                              4.25
                                                                       0.00
                                                                              AA 224:255 human 1
Internal
            25045
                     25142
                             2.96
                                     + 0 2
                                              3.54
                                                      0.05
                                                             14.52
                                                                       0.00
                                                                              AA 256:288 human_1
Internal
            26262
                     26281
                             2.17
                                     + 1 1
                                              6.90
                                                      4.53
                                                              0.77
                                                                       0.00
                                                                              AA 288:295 human 1
                                              0.45
                                                                       0.00
Internal
            27296
                     27427
                             2.70
                                    + 2 1
                                                      5.26
                                                             10.70
                                                                              AA 295:339 human_1
Terminal
            28008
                     28858
                             6.20
                                     + 2 0
                                              4.56
                                                      0.00
                                                             21.14
                                                                       0.00
                                                                              AA 339:622 human_1
```

>human_1|geneid_v1.2_predicted_protein_1|622_AA
MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY
CMWVQDEPLLQEELANTIAQLVHAVNNSAAQACVWFFSRIKVFLDVLMKEVLCPESQSPN
GVRFHFIDIYLDELSKVGGKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVD
QSPFVPEETMEEQKTKVGDGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERG
RDDCGTFEDTGPLLQFDYKAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQ
LSFAEDISADEDDQILSQGKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRK
KKKKHHLQPENPGPGGAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEH
PPAVPMHNKRKRPRKKSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLK
RKRKLGVVPVNGSGLSTPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLEL
CGLPSQKTASLKKRKKMRVMSNLVEHNGVLESEAGQPQALVRWEHPQASSPQRHSLASMG
LHCLLRGRVGAGGQASGLSSS*

# Gene 2	(Forward).	4 exons	. 141 a	a. Score	= 0.28						
First	30518	30529	-2.92	+ 0 0	1.42	1.23	1.21	0.00	AA	1: 4	human_2
Internal	30780	30932	0.68	+ 0 0	2.81	3.31	5.01	0.00	AA	5: 55	human_2
Internal	31931	31994	2.93	+ 0 1	4.88	4.80	5.31	0.00	AA	56: 77	human_2
Terminal	33682	33875	-0.40	+ 2.0	-0.70	0.00	12.53	0.00	AA	77:141	human 2

>human_2|geneid_v1.2_predicted_protein_2|141_AA MKIKGSSGTCSSLKKQKLRAESDFVKFDTPFLPKPLFFRRAKSSTATHPPGPAVQLNKTP

${\tt SSSKKVTFGLNRNMTAEFKKTDKSILVSPTGPSRVAFDPEQKPLHGVLKTPTSSPASSPL}\\ {\tt VAKKPLTTTPRRRPRAMDFF*}$

GENESCAN

View gene model output: PS | PDF

GENSCAN 1.0 Date run: 15-Dec-119 Time: 10:56:32

Sequence $/tmp/12_15_19-10:56:32.fasta: 37576 bp: 47.68% C+G: Isochore 2 (43 - 51 C+G%)$

Parameter matrix: HumanIso.smat

Predicted genes/exons:

_			_										
		.		4.00	004	400	•		4.05	00	004	0 750	00.04
	1.01	Init	+	162	291	130	2	1	107	80	324	0.752	33.81
	1.02	Intr	+	10381	10463	83	2	2	94	92	26	0.829	2.96
	1.03	Intr	+	12805	12862	58	0	1	97	99	62	0.963	6.66
	1.04	Intr	+	14367	14452	86	1	2	47	95	49	0.678	1.04
	1.05	Intr	+	15133	15194	62	0	2	53	86	51	0.694	-1.07
	1.06	Intr	+	15531	15660	130	0	1	27	99	108	0.642	6.50
	1.07	Intr	+	16769	16833	65	1	2	78	83	73	0.995	3.32
	1.08	Intr	+	17230	17411	182	1	2	77	91	192	0.962	17.91
	1.09	Intr	+	23776	23870	95	2	2	37	94	55	0.688	0.68
	1.10	Intr	+	25050	25147	98	2	2	64	26	129	0.640	3.11
	1.11	Intr	+	26267	26286	20	2	2	91	100	-1	0.600	-2.35
	1.12	Intr	+	27301	27432	132	2	0	41	121	120	0.872	11.22
	1.13	Intr	+	27668	27856	189	0	0	51	67	92	0.625	2.96

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.14 Intr + 28013 28737 725 0 2 85 95 470 0.762 38.55 71 0.368 1.15 Intr + 30241 30385 145 71 48 1.26 1.16 Intr + 30594 30676 83 1 30 51 91 0.478 -1.04 1.17 Intr + 30785 30937 153 1 0 100 101 109 0.999 13.67 1.18 Intr + 31936 31999 64 0 1 114 131 52 0.996 10.39 1.19 Term + 33687 33880 194 1 2 52 55 187 0.999 9.38 1.20 PlyA + 35505 35510 -0.456

Suboptimal exons with probability > 1.000

Exnum Type S .Begin ...End .Len Fr Ph B/Ac Do/T CodRg P.... Tscr..

NO EXONS FOUND AT GIVEN PROBABILITY CUTOFF

Predicted peptide sequence(s):

>/tmp/12_15_19-10:56:32.fasta|GENSCAN_predicted_peptide_1|897_aa
MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY
CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML
IRLVLRQSFEVLKRNGWEESRIKVFLDVLMKEVLCPESQSPNGVRFHFIDIYLDELSKVG
GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG
DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY
KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ
GKHKKKGNKLLEKTNLEKEKGKQELQGALGGGCLMTTRDLWFLPLSPKISGNGTISVPYV
FINGQKEGFQSQLGMEEVGPDDKGSRVFCVEEEDSESSLQKRRRKKKKKHHLQPENPGPG
GAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRK
KSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKKKLGVVPVNGSGL
STPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRK

KMRVMSNLVEHNGVLESEAGQPQALAAHLNLPEPPVCRQRHWAAHTSESQVRDPVSLWVA VSCCTRNECPGPASVVLCVKPELCRMEGLSASAVRKTAGRRGSSGTCSSLKKQKLRAESD FVKFDTPFLPKPLFFRRAKSSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDK SILVSPTGPSRVAFDPEQKPLHGVLKTPTSSPASSPLVAKKPLTTTPRRPRAMDFF

FGNESH

FGENESH 2.6 Prediction of potential genes in Homo_sapiens genomic DNA

Time : Sun Dec 15 10:58:15 2019

Seq name: human

Length of sequence: 37571

Number of predicted genes 1: in +chain 1, in -chain 0. Number of predicted exons 16: in +chain 16, in -chain 0.

Pos	i	tions	О	of predict	ed ge	nes	and exons:	Variant	1 from	1,	Score:	115.993872
G		Str	F	'eature	Start	;	End	Score		ORF		Len
1		+	1	CDSf	157	, _	286	28.30	157	_	285	129
1		+	2	CDSi	10376	; –	10458	7.43	10378	_	10458	81
1		+	3	CDSi	12800) –	12857	6.33	12800	_	12856	57
1		+	4	CDSi	14362	2 –	14447	3.34	14364	-	14447	84
1		+	5	CDSi	15128	3 –	15189	2.40	15128	-	15187	60
1		+	6	CDSi	15526	; –	15655	6.39	15527	-	15655	129
1		+	7	CDSi	16764	<u> </u>	16828	6.62	16764	-	16826	63
1		+	8	CDSi	17225	; –	17406	12.24	17226	-	17405	180
1		+	9	CDSi	23771	. –	23865	2.10	23773	-	23865	93
1		+ 1	0	CDSi	25045	; –	25142	0.60	25045	-	25140	96
1		+ 1	1	CDSi	26262	2 –	26281	-1.21	26263	-	26280	18
1		+ 1	2	CDSi	27296	5 –	27427	8.29	27298	-	27426	129
1		+ 1	3	CDSi	28008	} –	28732	33.29	28010	-	28732	723
1		+ 1	4	CDSi	30780) –	30932	9.89	30780	-	30932	153
1		+ 1	5	CDSi	31931	. –	31994	13.04	31931	-	31993	63
1		+ 1	6	CDS1	33682	? –	33875	1.90	33684	_	33875	192
1		+		PolA	33923	3		-4.47				

Predicted protein(s):

>FGENESH: [mRNA] 1 16 exon (s) 157 - 33875 2277 bp, chain + ATGGCCCCCGCCATGCAGCCGGCCGAGATCCAATTTGCCCAGCGGCTGGCGTCCAGCGAG AAGGGCATCCGGGACCGAGCGGTGAAGAAGCTGCGCCAGTACATCAGCGTGAAGACGCAG AGGGAGACAGGAGGTTTCAGTCAGGAAGAACTTCTGAAAATCTGGAAGGGGCTCTTCTAC TGCATGTGGGTGCAGGATGAACCCCTTCTACAGGAAGAGCTCGCCAACACCATTGCACAG ACCATGAATCGAGAATGGAAAGGAATAGACAGGCTACGCCTGGACAAATACTATATGCTG ATTCGTCTGGTCCTGAGGCAGTCCTTTGAAGTCTTGAAGCGAAATGGCTGGGAAGAAGC ${\tt CGAATCAAGGTTTTCTTGGATGTCCTGATGAAGGAGGTCCTGTGTCCTGAGAGGTCAGTCT}$ CCTAATGGAGTGAGATTCCACTTCATTGATATTTACCTGGATGAACTCTCCAAAGTCGGG GGGAAGGAGCTTTTAGCAGATCAGAATCTCAAGTTTATCGATCCATTCTGCAAAATTGCT GCGAAGACGAAGGACCACACCCTGGTACAGACCATAGCTCGGGGTGTCTTCGAAGCTATC GTAGATCAGTCTCCTTTTGTGCCTGAAGAGACGATGGAGGAACAGAAGACAAAAGTGGGT GATGGTGACCTCTCTGCTGAGGAGATACCTGAAAATGAGGTATCCTTGAGAAGAGCTGTC AGTAAAAAGAAGACACCACTGGGCAAAAACCATTCCAGAAAAGATGGACTCAGTGATGAA AGAGGAAGAGATGACTGTGGAACCTTTGAGGACACAGGGCCCCTTCTCCAGTTTGACTAT AAGGCTGTTGCTGATCGACTCCTGGAAATGACCAGCAGGAAGAACACGCCCCACTTCAAC TCTCAACTCAGTTTTGCGGAGGACATTTCTGCTGATGAAGATGACCAAATCCTCAGTCAA

GGAAGCAGAGTCTTTTGTGTAGAGGAAGAGGACAGTGAAAGCAGTCTTCAAAAGAGAAGA AGGAAGAAGAAGAAGAACCACCTGCAGCCTGAAAATCCAGGCCCAGGGGGTGCAGCC CCATCCTGGAACAGAACCGGGGCAGGGAGCCCGAGGCCTCTGGGCTGAAAGCCCTGAAG GCACGTGTGGCCGAGCCAGGTGCAGAGGCCACGTCCAGCACTGGGGAGAGAGTGGCTCC GAGCATCCTCCAGCCGTCCCCATGCACAATAAAAGGAAACGGCCACGGAAGAAGAGCCCG AGGGCCCACAGGGAAATGTTGGAATCAGCAGTGTTGCCCCCAGAGGACATGTCTCAGAGT GGCCCGACTGCCATCCTCAGGGACCTAGAGGGTCCCCGACAGGTGGAGCCCAACTC CTAAAAAGGAAGCGGAAACTTGGAGTTGTGCCCGTCAATGGCAGTGGCCTGTCCACGCCG GCCTGGCCTCCATTGCAGCAGGAAGGCCCTCCCACAGGCCCCGCAGAGGGGGCGAACAGC $\tt CACACCACGCTGCCCCAGCGCAGGAGGCTGCAGAAAAAGAAGGCAGGGCCCGGCAGCCTG$ GAGCTCTGTGGCCTGCCCAGCCAGAAAACAGCAAGTTTGAAAAAGAGGAAGAAAATGAGA GTGATGTCAAACTTGGTGGAGCACAACGGGGTGCTGGAGTCCGAAGCTGGGCAACCCCAG GCTCTGGGAAGCAGTGGGACTTGCAGTTCCCTGAAGAAGCAGAAGCTGAGGGCAGAGAGC GACTTTGTGAAGTTTGACACCCCCTTCTTACCAAAGCCCCTGTTCTTCAGAAGAGCCAAG AGCAGCACTGCCACCCTCCAGGCCCTGCCGTCCAGCTAAACAAGACACCATCCAGC AAGAGTATCTTGGTCAGTCCCACGGGCCCTTCTCGAGTGGCCTTCGACCCTGAACAGAAG CCCCTCCACGGGTGCTGAAGACCCCCACCAGCTCACCTGCCAGCTCACCCCTGGTGGCC AAGAAGCCCCTGACCACCACCAAGGAGAAGGCCCAGGGCTATGGATTTCTTCTGA

>FGENESH: 1 16 exon (s) 157 - 33875 758 aa, chain + MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML IRLVLROSFEVLKRNGWEESRIKVFLDVLMKEVLCPESOSPNGVRFHFIDIYLDELSKVG GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ GKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRKKKKHHLQPENPGPGGAA PSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRKKSP RAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGLSTP AWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRKKMR VMSNLVEHNGVLESEAGQPQALGSSGTCSSLKKQKLRAESDFVKFDTPFLPKPLFFRRAK SSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDKSILVSPTGPSRVAFDPEQK PLHGVLKTPTSSPASSPLVAKKPLTTTPRRRPRAMDFF

7.

Resultado de alineamiento con tblastn

RID: Z9YBNTWX114

Job Title:Protein Sequence

Program: TBLASTN

Query: None ID: lcl|Query_24331(amino acid) Length: 274 Subject:genomicC ID: lcl|Query_24333(dna) Length: 21894

Sequences producing significant alignments:

Description genomicC

Alignments:
>genomicC

Sequence ID: Query_24333 Length: 21894

Range 1: 8096 to 8317

Max Total Query E Per. Score Score cover Value Ident Acces 114 537 93% 1e-31 75.68 Query Score:114 bits(285), Expect:1e-31, Method:Compositional matrix adjust.,

Identities:63/74(85%), Positives:67/74(90%), Gaps:1/74(1%)

Query 1 MGKslshlplhssKEDAYDGVT-SENMRNGLVNSEVHNEDGRNGDVSQFPYVEFTGRDSV 59
MGKSLSHLP+H+ KED YDG T S+NMRNGLV+SE H EDGR GDVSQFPYVEFTGRDSV

Sbjct 8096 MGKSLSHLPIHTCKEDGYDGGTVSDNMRNGLVHSESHGEDGRCGDVSQFPYVEFTGRDSV 8275

Query 60 TCPTCQGTGRIPRG 73 TCPTCQGTGRIPRG

Sbjct 8276 TCPTCQGTGRIPRG 8317

Range 2: 16460 to 16606

Score:86.7 bits(213), Expect:3e-22, Method:Compositional matrix adjust.,

Identities: 40/49(82%), Positives: 46/49(93%), Gaps: 0/49(0%)

Query 226 LMMQVTVTTTYFGHSEQISQERYQYVDCGRNTTYQLGQSEYLNVLQPQQ 274

+ ++VTVTT+YFGHSEQIS+E+YQYVDCG NTTYQLGQSEYLNVLQP Q

Sbjct 16460 VFLRVTVTTSYFGHSEQISREKYQYVDCGGNTTYQLGQSEYLNVLQPPQ 16606

Range 3: 13800 to 13919

Score:71.2 bits(173), Expect:7e-19, Method:Compositional matrix adjust.,

Identities:35/40(88%), Positives:37/40(92%), Gaps:0/40(0%)

Query 159 SVEVENITAQVQFSKTVIGKARLNNITIIGPLDMKQIDYT 198 SVEV NITAQVQFSKTVIGKARLNNIT IGPLDMKQ++ T

Sbjct 13800 SVEVANITAQVQFSKTVIGKARLNNITNIGPLDMKQVNRT 13919

Range 4: 14014 to 14061

Score: 29.6 bits(65), Expect: 7e-19,

Method:Compositional matrix adjust.,

Identities: 13/16(81%), Positives: 14/16(87%), Gaps: 0/16(0%)

Query 195 IDYTVPTVIAEEMSYM 210

IDY VPTVI +EMSYM

Sbjct 14014 IDYMVPTVIQDEMSYM 14061

Range 5: 12835 to 12972

Score:75.1 bits(183), Expect:3e-18, Method:Compositional matrix adjust.,

Identities:36/46(78%), Positives:41/46(89%), Gaps:0/46(0%)

Query 95 KLYVMASVFVCLLLSGLAVFFLFPRSIDVKYIGVKSAYVSYDVQKR 140

KLYV ASV VCLLLSGLAVFFLFPRS+DV+YIGVKS YV+Y+ +R

Sbjct 12835 KLYVTASVIVCLLLSGLAVFFLFPRSVDVEYIGVKSVYVNYEQSRR 12972

Range 6: 11376 to 11441

Score:48.5 bits(114), Expect:1e-09, Method:Compositional matrix adjust.,

Identities:22/22(100%), Positives:22/22(100%), Gaps:0/22(0%)

Query 73 GQENQLVALIPYSDQRLRPRRT 94

GQENQLVALIPYSDQRLRPRRT

Sbjct 11376 GQENQLVALIPYSDQRLRPRRT 11441

Range 7: 15653 to 15718

Score:39.3 bits(90), Expect:1e-06, Method:Compositional matrix adjust.,

Identities:17/22(77%), Positives:19/22(86%), Gaps:0/22(0%)

Query 208 SYMYDFCTLISIKVHNIVLMMQ 229

S+ DFCTL SIKVHNIV+MMQ

Sbjct 15653 SFFSDFCTLASIKVHNIVVMMQ 15718

Range 8: 11710 to 11805

Score:18.9 bits(37), Expect:4.4,

Method: Compositional matrix adjust.,

Identities:8/32(25%), Positives:16/32(50%), Gaps:0/32(0%)

Query 107 LLSGLAVFFLFPRSIDVKYIGVKSAYVSYDVQ 138

L+ L + RSI++ + S ++ D+Q

Sbjct 11805 LI*TLIIKMHLLRSINILQRAIHSCIINIDIQ 11710

Range 9: 5896 to 5970

Range 10: 792 to 857

Score:17.7 bits(34), Expect:8.5,
Method:Compositional matrix adjust.,
Identities:7/22(32%), Positives:11/22(50%), Gaps:0/22(0%)

Query 247 RYQYVDCGRNTTYQLGQSEYLN 268 R+Q CG + T + G + N Sbjct 857 RFQVEFCGSDMTSESGSCKSWN 792

Sbjct 5970 TPPGPFPLHSLPATLPQVCSIAWGY 5896

Range 11: 12045 to 12113

Score:17.7 bits(34), Expect:9.5, Method:Compositional matrix adjust., Identities:9/23(39%), Positives:13/23(56%), Gaps:0/23(0%)

Query 93 RTKLYVMASVFVCLLLSGLAVFF 115 R +L + +VC LL + VFF Sbjct 12113 RFRLLHQIYYVCYLLCEVTVFF 12045

9.

Promotores (5000 bases) del gen TMEM106B segun especies

>human

 ${\tt tgttttgtttttaggattcactgaatttcttgaatatatggattt}$ acatattcagtcagtttttggagatttctaagtttttatcttttcaatatt $\verb|tcttctatcccctttctgctccttggattccaagtacatatgtgctaaat|$ ${\tt gatttgatattatcctaaagatatcagatgctcccttccatttgtccttg}$ attttgctctttatattcagtttatataatttctactgaccgtctcaagt $\verb|ttacagg| ttttttccctctg| ttatgtccaatttggtgataatgctaaaa|$ agtgaactttttacttctaatattttatttctaatatttcaacttgctttt $\verb|ttttccattttttatacagatgctttaacatatctatcaaagtgatttta|\\$ ${\tt aagtctctgccagataataccaaatctgggccatttctgtattttcccct}$ ${\tt attaatcattttctctttgaccattggctcacattttcttgctccttcat}$ gtctcataatctttattatatgctagatattgtataaaagaaaacagtaa ataacatgtacctcaaaaaacatcttgccattttttctatcaagattatt $\tt gtttggaaggctgaatcaaatctttcaacagtgagtcaaaaacccacatt$ $\verb|ctgggttttgttgaagttttgattcagtttatttactattgctttcaaat|\\$

 ${\tt atgcttgagttcttggcactggcaaaatctcaagattaatgtgcacctac}$ ${\tt tagctcattccaccaaactattcaatactttcttagctcaaacacctagc}$ $\verb|ttcca| at a tctcca cagg | tttctg | tttactctccagt | cttgccgg | tca|$ $\verb|tttctgtgcctcaggagaatcctgggcagcctgccaccctgcctccagcc|\\$ $\verb|ttcacagagctgctgcagtacactggttaaaggcctagaatctgcaaaga|\\$ aatttcttcagcattcatgccctaccccatgcctttaacatatgacattt $\tt gag cactta at gaag accttt ag gag ag a at t gg ag ag t gag t gc acact$ ${\tt cgttctatcactggaacgacatgagattgtaatctatcatcctggtccac}$ a cacaggggtgtcattcggcaggtctcccttcggccctgtttatggtgca $\verb|ttcctccttctcccactg| \verb|tttgtaggtgattaaagcaactctaattcta|$ $\verb|ttctctcttaggaagctctccttatcttttggatttaagtgtacttaaat|$ a a a a c c t t c t c t a g c t t g t t g t t g t g a a g a a a c a g t c t t t t a t a a c a t $\verb|aaatccta| attggactctgtgttttccttattttatattcggaacacctc|$ $\verb|ctcaaggatttctggacccaattctcctcttttcagcagcagtgatgatc|\\$ $\verb"acttagcaaaagagtgaaaataccctcttttccccccctaaccagttaac"$ $\verb|tttactcaccgtcatcacttatctttgtgtagtaaaagttgaggacagaa|$ $\verb|ttcactcttccaaatttaatacagatattcatgccacagtggttaatagc|$ tgtagctttgcagtcaaaatatccgagttctagttgctagctgtgtgtc $\verb|atgtgcaagtcataatacctaggatcctctatttccactgtttgaaataa|\\$ gatatgggataataacagaacctaatccatagcatttctataaaaattag gccaagtgttattgaactcctaaaattattcttactagaaattatgatta a cagaggaa atatagaa gatcctgcctaa gaaggagtacagagacataac ${\tt caagagtttcagataggtaagttatttgcagaaattaataaagacctctg}$ $\verb|cttttaaaataattggaatgacaaagatgttcaatagagtcaggagttt|\\$ $\verb|actgcctgtgaatgtaagtcaggtggcacagcgggaaatggtagttttgc|$ ta atggtag ttttgctatgtatctggggcactatctctgaaaatcagcca $\tt gacaaacttcaatcttttcaatccctggtttccaatgtaacctatccagg$ $\verb|tttctaacataatctgaccagcatatcagtggaaggggtgagctgagag|\\$ $agactta tatatta acatttg acaa attatat \verb|gtttcaaa| attat| tatgt$ ${\tt tccttttctgcttataatttttaacagctaatttctagaaaagtaatttt}$ tg caa a a ttttt a g ttat g g ct g a ct g ct a ttag g a ttt g g g t g a tttac $\verb|cattaaaagagataaagagaattgaaatgagagataaggctgttttcaa|\\$ ${\tt gatttagtacaacctagagaaatcccttagcttcagcatcatactaaata}$ taaccagaaatcattaagaaagaatgttcttctattcaaacttatcccag $\verb|actgttaaa| \verb|attactggcctttatatctgatagcacctagaccactactg|$ aactcggaactcaagaaatcactgttaatcaaataattggaagcttttca gaaaattttcctttcaaaatgtgcttcaatgaaaaataaggcataggaaca a at gtacca a a cattca at at ct gtcttta a a gtacttcctt gttat at $\tt ggatgataaatttgtaatcataatatctaatatttactgattgctctgca$ $\tt ggtatcagctcccatccataaccctttgagacagacattattactatctt$ $\verb|cattttgcag| at a a ta a a a a ttaggtata a a gaaggcta a gtattttgcc|$ ${\tt cactcttacagagattttgtatatctctgtcaggctgggctcattttcag}$ gccatatggctcccaaggctgtgttcccaaccctgctactgaactgcttc tta cag caa cattctcc cag gaa gacttattcct at gt gaattc cag gaa $\verb|tttggataaggaactgtgctatatggccagcacgttttaagttaaatgat|\\$ ${\tt gaggttgagaaaatactaaatactcccttaagaattaaagaaaaaagtaa}$ $\verb|ctttttcacttaagaataatatatattacattatagaaccatttgcctat|\\$ $\verb|ttaacaataataaagaaaaaacatccatgctctcaaactacaggcaactg|$ $\verb|tttatattttgtatatttctttccatttcaaggcagatatgtaatattt|\\$ ${\tt tatatctatatgttatctatatgtgaatatagtttacatcctattacaat}$

 ${\tt acctcatatcctatactttgcatcctgattttaattttatatcactccgc}$ $\tt gtataacagccttataagatggtttttactggctttataaaaactcaata$ ${\tt gatggctattccataattttaaaaactcagtaattccaaggggaacatca}$ ${\tt tatctccacaggtggactgtcaataattttgagaaaaattttcccccatg}$ $\verb|attctgatttgttttaaccaacctattaattttgaaatttcaaacagtgt|$ agcggttgaaaaataatgattttatcaatgtcccttgttggacattcagt ${\tt ttatttaaatggatacacctcatacccaaatctttttagagttctcatta}$ $\tt ggtttaggatacttctgaaagggtggaattgctggaccaaacgatgtgaa$ $\verb|cattttaatagtcttgatacatactgactgtctgccagaaaacttaggag|\\$ $\verb|ttttaaatctccgacaacattgtatgagaaagctcattatctcacatatg|$ ${\tt gatctacagtaatcctcttaaattgtatatcgttctgacttgtatttcct}$ ${\tt acttttacatagcttcatttcccaattcctgttagaattccctgattcta}$ ${\tt acaggatcacactgatcctgttagaagagagaaatatatgactctcactt}$ $\verb|ccttgctcctgtgactgtaagaatgcctaccattcattaaacgttaaact|\\$ $\verb|ctccgcaggaatgagactagagtgcccttaatattattaccggcatctca|\\$ ttgatccctcaaaacgactccttgtcgttgttcttatcttctaagtgaaatgacctagacgttggggggggggcagccccaacccacagcgaagagcttaa $\tt gtactgggatccgagacgggatttcacacacctgtaactagcaccagagt$ ta aggggtgggggggggggcagcgtgggcaaagcgaaacgaaaccgagcaaa ${\tt aacaaaaactacggccttgccgcttgctgtctccttctagttggccagtt}$ $\verb|tctaaattaaaatagaggtagctttgctgctgtcagcggcgtgtgtacgg|$ accagtttattccattcctaaggaccagactgtcagcgacaactcgcatt $\tt gcgtgagcgaggaggctgctcagctgaaagctgaggcagatggtgcacat$ $\verb|ttataccctttgcaaaaggaaatggtctgatatgggaaataggaggagcg|$ $\verb|actgttcctaggta| attcgtggctacagtggacactttgaagtctggggg|$ $\verb|acgcgaaggtaatgaaacctgaagagcgcacaatctcacacgatcgacgc|$ $\verb|ctctgggctcaaacaggaggaagaaggacgcatgcgtcacgccaa|\\$ ggggtgtccctccgggagcgctctgcgcaggcgcggacgcaggttacagc ${\tt agcgcttggcctctgctgatgccgtcgttatcctacccctccccgtccc}$

>mouse

tgtgtgtatgtgtgtgtgtgtgtgtgtgtgtttatgtgtgtgtg $\verb|ttataaag| \verb|ctccctgagaaatg| \verb|ttgttgtcttagttcagatatttctg|$ agctgtacttctgatctaatcagtattagggtgtgcatacaataaaccat $\verb|ccctgtctgactgagatcggtgttcattcgtatggtttgtagtgctactc|\\$ t c a g c c c t c a a c a a t a t t t t t a a t t c t t t a t t t g g a c a a a a t a t c t g c t $\verb|attccaagtttaaaaaaattattcatgccacagtggtgaataacatgtgc|$ $\verb|ttttctgatttctagttatacaatttgatagctgtgtgttcatatacaag|$ $\verb|ttacataacctagaatcttctatcttctttttttttttcttctgatgtgtgcat|\\$ $\tt gtttataagtatgcagggatgtgtgtatggaaatttgggacaatacaggg$ $\verb|tttctttttcaaacattctctaccatagctatagtaagataggatctctc|\\$ $\verb|actgagtctggacctcacca| \verb|attgccagtgagcaccactgatccttgca|$ $\verb|tctctgttttccagagctgagatcacaaataccaacctctaggcttaaat|$ $\verb|atttaatgtgtgttctggtgaattgaactagtttcttcatacttatggaa|$ ${\tt caaacactttacagactgagtgatctctcccgtctttagtttctctgttt}$ aaaataaaattcagataataatagaatgtaatccaaagacttcccataga $\verb|aattaaaaagagatgaactgaaatacttcatatactgcatgacacaacaa|\\$ ${\tt actcattcatttattaaacatgacctattttgtaacattttttcactaac}$ $\tt tggtttaaacatcttaatacatacagagaaatttgcctctctaggtttga$

agca at gaag at gta agt cagga tata caga agat tct tat gcta aa aatggtttcttagggatgtgaaccaaaggctcaaagggatgagatgtttgcag $\verb|aatgtaacaaaggatattgaagaggaaacacaaaggtgtagtcacaga|\\$ ${\tt accaagaacttgctatcagtgaatgtagggcaaatgaccacagggaataa}$ ${\tt tacttttgctatgtatctgggaaactatcacaggaattcagccagaaaca}$ ctccagttctttaacttctaattttctattatagaaggttgagtaaaata ${\tt agccacaccaaaaagacaaaaagaaaattctttatatacacagagtataa}$ $\tt gtttgtgagtgcatctataaaaataattaaactcagtttgctaatgttac$ $\verb|ccagccagcttgaaacttaaaagtgcaggctacgacagacctgcatacta|\\$ a caata a accata tacttc a gaac gattg a gag a gata a attat gaattatttgtctgtttataagttttagcaacaaatttctaaggaagtgacatttga ${\tt aatttggctgccagctgttaatatgtgggtgagtctcattcaaggaaatt}$ ${\tt atgagaaacatggaaggaacatgcatgttttgaagatttaacctagcata}$ $\tt gaagaataccttatttcaacacccacgaaaaagaggtttaatcagatcac$ ${\tt aacttctgttcagttacctcatactatttaaaaacattgtttctaatatct}$ $\verb|aatagcatgtagactgacatggatctcaaaatttcaaagaaaaagttgtt|\\$ gacattttccaaaatttttcttttaaaaatattctttaatgattaaaaaaa $\verb|tttactgtttgtggataaaaactttgtcacaataatatctaattgttgtg|$ $\verb|tttataaaaatataaagagaaggaatatgtttggtggaggtaaggtagg|$ tgtgggggaaggtgcctctgcagggccatgctgaggtattgcttccc $\verb|ctggagggaccagccatgcaatgtattcagggcatggggaggtgagttga|\\$ agaggctgtgaccacttgcagagagagagggaatgcggagcctgtaggagggacaagcagccccttttatagagtcaggcacacctggcaacag $\tt gtaactgcggggcagagcctgacaaaatgccaacactaacagctgctata$ $\verb|cttacaaccttttaaaacaagctccaacagggccataccttctaatcgtg|$ $\verb|ccactccttgggcagagcatatacacaccatcacattctgcttcctggcc|\\$ $\verb|cccataggcttgtccaaacatatgaatctatgggggccatacctaaacat|$ agcata ataa aaccat cacag t g tat g agcat g taact g agg cacta t agaaaaataatatagaaagacaggtgtaattatggaggtggggaaaagacc $\verb|cttactctggaggctagttggagtctgtcttcagttgagagttaaggatt|\\$ $\verb|ccagcata| attaacactta| ctgtgatgttgcagacatagaaacaatactc|$ $\verb|attttaaaactgtaaaaataacaacaaaaacaacacccaatagaaaga|$ $\tt gtgcataagacatcatgtatgttctcagtccttgatattttaagaagctt$ aa a cttttatctta a ctttctg cacccctaggtcgcttta cattgtgagttgtaatcctattcaagactccacaggagctctaatcccatttacgttcctta at gaacctt ta aa gat tact gaaaacccaccccaa aa t g tat g t g t g g $\verb|ctactataaagacaatgaagtgtgattctctctttgaggagcccacagcca|\\$ ${\tt tgttctcagatgagatttatacattctctgagtccctttcatttctattt}$ $\verb|aagtctatgcttaaactctatgtttaaatgccttttaatacacatcaagt|\\$ $\tt gggcttcatattggatcttattgaagggaaggaaggctgttctcacagca$ ${\tt agttttagggcaactagtgtgcaacccaaggaaccacatctcaaaagcaa}$ t cattttat caa gtg cactg ctgg tg tg actta at cag gt atttag tttatgtgtatttagtttccttgcagtggtttgaataggaacagcctctggacc $\tt ggcttaaatggaggaggtgctgactagggagagggccttggggtctaagg$ agctaattcacttccctgctgtctctgatgtcgaactctaagctcctcca gtatcatgtctgcctggttgctgccatgtttcctgccaggagcataacgg gctaaacctctgaaactgtaagccaaccccaaataaatgtattctttata agagttgccatggtctacttcgaagctattgttaactctattgaaatcct

 ${\tt aagaaactggttacacactgcacacaactttactttagaattctcattat}$ $\verb|aatttaggatgaatctcacagagtgaaattgccggacctaaggaggtgaa|\\$ ${\tt tgttttaaatagtcttaaaacatcctgcttatgtagatggaaaatacaca}$ gctctcacctcaaaaggacaaagagtttattctaaagccaatatgaggaa $\verb|ccatgacctgaaaacaaagacttgggctattccaaataccaatgtcccaa|\\$ tgtgataacaatttcatgaaacttttatatacatagaagatggtcataaa $\verb|tcaaaatactttccaaatacatacaaggcagtttagaagagcgggacaaa|$ $\verb|attgggagctcctcgcccagtgcagttgcttttttccagtagagaaggaa|$ agatgcttacttcccagttataactctgttaattttctaggaatttcaccagaaaccccatttatagggaagctattaaactcctttagcaaccgcatct ${\tt gttcttgctttcaattttatcttattataatcccatccaggaatcttatg}$ agccactta at a catctt gattat caggaaga cagaaaagaggt cata ac $\verb|aacctttgactataacactggcgagccactaaaatgagccactgtagcct|$ ${\tt caactcactgtaaattatgactggacaatgaggtgcatggattgggacac}$ $\verb|tcctttaacaactcacttggtcatgagctttggggtacaactcttattgc|$ $\verb|atgcactgaataatgtgaatttaagtacaaaatcaaaacaagattaaacc|$ a agg cgg gg gg gg gg gg tg cgt ctt ccc gg tga catta attt cta aatga aaactcaataacaaaattctggcctgcaactctgccagaaatgtgcaccaa $\verb|ccggctcattctaaccccaggaaggaagttttgtgtctgcaaatctagac|\\$ ttgagaacacgatcgctcaaaattgcgacggtgcacattcctccccttta ${\tt caaaaggaatcagcctggtggaggggaaaagggaaaaccgattattcgta}$ agccaggcgcaattagtactattttgaaactttccagtctagagaagaga ${\tt caggtgacaaaaccagaagctttcaccctggcaacttcccttcaaaccgg}$

>rat

 $\tt gccaggaaacaccagaaggcagagttgagcaggcagagagctga$ $\tt ggcaaaagacaccagaatgaaagcaagaaaggaactgggtgaaagtatgt$ $\verb|ctgcaccagtcccaggccagggccactggttttgttcccttccctc|\\$ $\verb|ccctgcctgcctccctgtcgcccagatggccagatacagcagtggt|$ $\tt gacagcagcagcagaagttaaaattattaactagaaaatggcagcca$ ggccagatcaccaggtggtcacatggtgaacttggggagtgagctctggg $\verb|ccgcgactgtaggtaaacagttcacctatgcctaggatttggcaactaca|\\$ agaaggaactacctcagaggagagagagaaaatctcgcccaagagaaaatg $\verb|tcctaga| at gagggt cagtgaa aa gaccaagtcata aa gaccgatatctc|$ $\verb|ttctctgaagtttgggctaaagagcaaaggcctctctatgtggtggtggg|\\$ gggtggggggggggggtgggatgtgaacctgaggagtttctaatccaagtat $\verb|cggctccaaatgtgttttataaaaatatagagagaaggaatatgtttgct|\\$ ggaagttaaggtgtggaggaatggggtgcctttgcaggcccattg $\verb|ctggcgcatcgctttcccacctgaggaccaacaccacaggacagttgcta|\\$ ${\tt tggttcctttagtagctcgatatatcaggcatgagcgacgtgggttggtg}$ ggaggtgaggtgtggagtgttgagggtgggttcgagggggtattttagtgtgaaggagtggtggtgactgtttaccttgtgggggtcatcagtttgtga ${\tt catggtgttgctggctgattttctgtttaattttaactatctgtgctgct}$ ggcgaggaggtgggagggacatggaagatccggagccatagatgataga tgggtggtgacacagatgaactatgaggggtacaaggattgatattactgatggtttacatttggtgtttttgtagtttgccgagagagggaaaggggt a agagga cag cgctagagtaagaaagcaagaggtgggtggggcaagcagc

 $\verb|ctggtttatagtgagtcaggcacacctgactgttgccaggtaactggggg|$ gtggagcttagacaaaatgccagcactaataatgctagacctacgaccct $\tt gtaaaacaagcattattgctatctcaattctaaaagcaatagacatatgt$ ataaagaatgaggttttctttattttccaggctgtttacctactttgtag $\verb|cttagttcatcctcaggcaagcagccttctaaggcaataccactaaattt|\\$ acaggacttaccttctagagattcattattgaattctagtcacgtggata $a agact \verb|gcca| a aatatt \verb|gatagagaca| attct \verb|gtgaaa| atacac$ $\verb|ccttagatattcctttaaggaaggacttattttgcattcaagaataatac|$ ${\tt aggtcagcctatagaaataggcacaacttcaacattgtatacaataaaat}$ $\verb|atttatttttaaagtctctcaaaaggcaactggtggggatttctgtccct|$ tgtccaaaaaaaaaaaaaaaaaaaatagtctaattaagagattggaaattgt ${\tt taccctgaccccattccagcttcctcttagctcggggtcattataacctt}$ ${\tt catgaaaacagtttagatgacaccgagggcaaagtttattgctgaagaat}$ $\tt gtgaggcattccacctactgagcatggacaaaggtcaagagaccactgca$ ${\tt gaggaaagctggctaagggattagggtgatgatgtccagagaccttgtgc}$ ${\tt taactgacctacatgttcaggaaatctttgtctgaaacaacttcttgaaa}$ tggtatttccctatccaggtgtgcttcaggtccattttgagtaactcttaaggtatgtgtgtgcacgtgggtgtcttaggggtttactgctgtgaacaga $\verb|catcatgaccaggacaactcttacaaggacaacgtttaattgggactggc|\\$ $\verb|ttacaggttcagggttcagtccattatcacccaggtagaacatggcagc|\\$ $\verb|ctcaaggcaggcctggcacaggaggaactgagagccttacatcttcatct|\\$ $\verb|tcaggctgctagcagaatactggcttcagctaggatgagggtcttatagc|$ ${\tt cacagtgacacacctactccaacagggccacactttctaatcatgccatt}$ $\verb|ccctgggcaaagcatatacaaaccattaatcctacttcctggtccccata|\\$ $\tt ggcttgtccaaacatgtgagtaaacacagcataataaagccatcacagtg$ $\tt ggtgagggtgttattgaggcactgtacaaaaataatacagaaaggcaggt$ gaagttatggggtcgggggtgggtgctccttattctggaatctagctga ${\tt aatctttcaccagcttagagttaagggttccagcacaattaatattcact}$ $\tt gtgatgttgcaaatagaaacattatccatttaaaagctgtaaaaaataaca$ a caa aa aa caa aa tact caa aa gaa ggag t g cat aa gact t cat g cat g t t $\verb|ctcagtccttgatattttacaaagttcttaagaacaatacttttcttta|\\$ $\tt ggtaaagatatcttaatcttctgcacccctaggttgctttatattgtcag$ $\verb|ttgta| atcctactca agactcca caggagctacccgccagcca atcccat|$ $\tt gtatgtgtcgctacagtaaagacaatgactatttcctcagaagtccacag$ $\verb|ccatgttctcagatgagatttatacattctttgagcccctttccttttca|\\$ taaaagtctgtgcttgaaatatatgtttaaatgccctttaatacacttcaagtaggctt catattggatcttattgaagggcaggaagactgttctcgca $\tt gcaagttttagggcagttagtgcaacacaaaaggaccacatctcaaaaagct$ attaattcacccagtgcactactggtgtgactaatcaggtatttagttta tgtgactggtcacagtggtttgaataggaatagcctcctcaacctgtttga aggtttggctcatagggagtggcacagttaggaggcgtggctttagaat $\tt gggtgtggctttgttgggggggggtgctgactaggaagtaagctttgaggt$ $\tt gtaaggagccaattcactttctgttgtatgtgaactctcaagcagaacca$ $\tt gcaccatctgcctgcaggaagataatggactaaacctttgaaactgtaag$ $\verb|ccaggcccaaagagttgccgtggtcgtggtccacttcgcagcaatagaaa|$ $\verb|tcctaagatattggtcacccactgcacgcaactttactttggaattctca|\\$ $\verb|ttatcattcaggatgaattctacagtggacctgaagagatgaatgtttta|\\$ gtcttgaaacttccttctgtagatggaaaatacacagctctcaccttaaa ${\tt aggtctaagagtttattttggagccaaatgtgagggaccatgacctgaaa}$ ${\tt acaaaaactcgggctattctgaataccatgtcccaacgtgtaacaatttc}$ $\verb|atgaaacttatacacataaaagaagatggtcataaattaagatactttcc|$ aaataaaaacaaggcagtttagaagagcggggcaaaattggtcgctcctc $\verb|gcccagtccggttgctttttgccagcagaagaagaagaacaacaacaatca|$

 ${\tt atggatgcttaaccctttcccacttagttatagtccattaattttctagg}$ $\verb|aatttcaccagtaaccccatttatagggaaattattaaactttagcagct|\\$ $\verb|aagta| acctttta| agata| acactcgagattcacta| aaatgagccacagta|$ gcctcaactcacagtgagttatgactggacaatgaggtgtgtgggggag ${\tt aggtcctgaggatactcctctaagaactcacttggtcatgagtattgggg}$ tacaactcttattgcacacacagaataatgtgaacttaagtacaaaatca ${\tt aaacaagattaaaccaatgcgggggtggggtgcgttttcccagtgacag}$ aa atttcta aatga aa acaa taa caa gat gt gt gt aactct gt cag ag at $\tt gtgcaccaactggttcatccttaccccagggaggaagtcttgcggctgca$ ${\tt aatgcagcattgaaaacaaggccgctcaaaactgcgacagtacacatttc}$ $\verb|tccccttcacaaaagaaatcagccttatggaagggaaaaggaaaaccgat|$ $\verb|ttttcgtaaggcagacgcaataagtactatttctaaacttgccagtctag|$ agaacagacaggaggcgaaaccaggagccttcccccagcaacttcccttc ${\tt agggtgccaaagctgggaaagggcgcatgcgtactacctattccaggctc}$ $\verb|ccagctcctccttccatgggcggactacgcaggcgcacgcgcaggctccc|\\$ ${\tt ggggtacccggctcagctgatgcagttgttgtcctacccctccccgccg}$ $\verb|ctctcccggcctcactcgggccggcccttagccccgccctgggaccggga|$ $\verb|ctccgtgaccccgtcctgcggctcgccagcgcaggagcatcccgggaccg|$

>chicken

 $\verb|cagctgcaattgctgctatgtttcttaggtaaagacaagtggtttggaat|\\$ gtgatttgtaataaccgtgttctgaaagaagctattcagaagcattaaac ${\tt tataatcactgggtcattcacccaactgatcagaagatttattattcttt}$ ${\tt gtctagatctgtgggttgttggcatttttgtatctccccatcaatatcca}$ $\tt gtttcttgaatttccagtttgttttttttttcctcctccagaagaaaggtg$ aga atataca aa caga atta agat gggctatttttcttca actcct ggga $\tt gcacacaatgcagcaagcaagccatggataatacatagcatcagaactgt$ $\verb|aatcatctcattcgtcaacta| at gcaa a \verb|aatttaaggtttgcacacgta| at the constraint of t$ gaaca aggagaaacta taa agta tacactg cagaagacca tagagtgttg ${\tt caagaatgacagttgtcggtagctgtgcaatatatcagaaatacatcagt}$ ${\tt tataaaaggctgtttatgttttattcattcaaaataactcagagcacagg}$ $\verb|ccgtatcatcagaaaatacatagcaatgaaagtacctgtgacacaccatg|$ $\verb|cttaagcattaaatgcatctaaaaatgtttaccacagaatatcattaaaa|\\$ $\verb|tcagaa| attctgaa atacagagaattcttcacataggtggaa aaggatgt|$ $\verb|ttcaaaaacagaactcttaaaaatccgaacagaccaaataaagacagtgg|$ aatttttgatattcatatttttaattcttgtaattctaatttaattagta cagg cacagct caa aggaa cactg gggt g cagtaa caggtat gtt gctg a $\verb|tttgcctcagattacatacacctacatgagcgtcgcaactattgtataga|\\$ $\verb|ttggtttgatgttctgggattaggatgatttctgaataaaataagact|\\$ $\verb|gttgcccttgtaatagatcaagggcaaaatcaataaacaattatagttgt|\\$ $\verb|tctta| atttttat caggatagcttatacctcttttcctgagtttctcaa|$ aaagaaaat cagagtaaagggaat cag catttt cacttggttgtcccagt ${\tt gagcaggtgatagaagtctaaaaaaattgttcctgtgactgatggagatg}$ a aggaagaa agtagtccacatagg cagctgtaacagatgtgcaaagccta $\verb|ctgtgccttatataaaccagtggtaataaccagtctaaagcagttacaag|\\$ $\verb|ctttcttaaaggccttctcccctatcagcaactggtcagtgcccacattc|\\$ $\verb|tctcacattgctgttttatattctagattagatagaaatcattgctttta|\\$ tgttgctttatttattttttgtggggtttggtagtttaggttctttctgatttgtttgattttttgctgaggagaagcttggatatatgttagagat

 ${\tt aaaaactgagctaaaatgctgtatctacctcagcattcagatagcatgcc}$ ${\tt acccattttcaggctagcagactgtatgaaaacaagactcagtaactttg}$ a aggtgttagccagtttcagctgagtcacagagataagaaagtttatacaaatttcataaagatagataaccaggcagaagagagacaagggattgaatg $\verb|tttggaag| ccattgtgtaataactttctatgcagtaagcacatttctaac|$ a a a attct attt g t g a a c a t g g c a g c c t g c a t g t t a c t g t c a g a a t a c t c t $\tt gcaggaaaagacatgagttgtatgcagttcttttgttacaatttgggtaa$ a cagt catctg ag ag g tag at ctat ag gaa at g ag g ctg cattag ttt ca $\verb|tcag| ttgaag| ttcttcggataag| caatgcaatgaggttgaagaagaaa$ taaaattaattagtctctcaagcatctgaggtcatgcagatatgcactgg ${\tt gagtctgcacattggtgcagttgattgctcttgagattgctaattccagc}$ $\verb|tcttgcaagaacctgactcacttgtcatatccgagccacaaaactcaact|\\$ tgaaacctgattcatcacttggctttctttactgatatactactggaagt $\verb|ataaa| at g cacct g g t t a ct g at ct at g a g a a ct a a g a g c a ct t g c a g ct$ $\tt gtcccataactcagttcaaaggtgatgatctcaaattccctgttcctatc$ ${\tt atttgattgtttccatttcatacccctcacagtgccatttgtgctgtaca}$ $\verb|tcacttgcctatcatgcatttttattatttttttgtatctgtgtttaagt|\\$ $\verb|atgca| atcccagtccagtggtggttagcacagtccaatcagtttcaggaa|$ $\verb|ctggca| at a ttggatgctgtgcagtgtaaaatgtgtaaaatactccttct|$ ataaccaa aggtattttgtttcaatcagtccaagctcagtggcccacttc ${\tt agtgacgctttcaggcatctcatcccatatttaagcacttctaatgtact}$ tgtaatgtgtacatcttgttatcggtaataccacatatttctcatgtttt $\verb|tcatgcttgcatagtgagcgtaagactttacaggaccttcatattattgc|$ $\verb|tttaagacaactattaaggagcttaaggcacataattggtgagcaagatt|\\$ $\verb|tttctagtgtttcaacttaaattttctttaacatgcactttctaaatgaa|$ gaagggaaaaagctttcctaatgtatcaaatctacagaaggaaaggctat $\tt ggcagtttggaaatgtaattaatacaaaacagtttattgtttaaagtaac$ agact caa a acct cat g cag at tt caact g tt g g g at ctat cat g g a a a g a ctat cat g g a a g a ctat cat g c a g a ctat cat g g a a g a ctat cat g c a ctat catagaaaca at gtctcaggcaactatgtaacatcctgatcggcatttggccttctagataagtttcaatgttggatgaaaactgctgcaatcaaaggtgtaaa act g ta att t g acc caa g act g cact g ta tt t caa act t g c ta g g a g a a constant to the second sectaaatttatattgagatactctgtcagagtaaataactctgagtagccag $\verb|aattcagtgtgaattcccaaagccattccaaaaacctttctgctagactt|\\$ ${\tt actcctcacgtctcctgtagtataatgattcagatcaatctgaatgactg}$ ${\tt acattattatctgatactattcaaaaggcggagactgtgttctcattttc}$ tgtttggatagctggaaactctgatactgtttgatgtggatcaatataaa $\verb|cttgagactgaaccaaaagtcaatagccagtgaagccagtagccaggctt|\\$ ${\tt accaaattcacctcatctgacacttgttgctgaacatgtcatgttcatac}$ ${\tt aggttccaaacaagccagggttctgttcaaaggtttttatgtataatttt}$ $\tt gtatgtaggaacccacagagtaccatggtcatccatgctgcactggcagc$ $\verb|tttgatggggacctcaggaaacttgaagacctgcaaaagtgttggctgag|$ ${\tt gagggacaaagaaccatgacatggcagctttgccactactttcagaca}$ $\tt gcctctcctttacatgaactggctaaccaggagtgaggatgattgctaaa$ tggctcaggtcatgatttgtgcagaccattttttttctgagtgcgtatttttg caggtg agttattttctttg cctattctttcctgg acacagagcccaa ${\tt catgagcaatactgccagcagggctcgcacctgcagcagctctggactgg}$ ${\tt tgttagaggtgtcgtgcctccagagcagcctggagccatgccctgtcctc}$

9.

Proteinas según los diferentes alineamientos

>GENEID

MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY
CMWVQDEPLLQEELANTIAQLVHAVNNSAAQACVWFFSRIKVFLDVLMKEVLCPESQSPN
GVRFHFIDIYLDELSKVGGKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVD
QSPFVPEETMEEQKTKVGDGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERG
RDDCGTFEDTGPLLQFDYKAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQ
LSFAEDISADEDDQILSQGKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRK
KKKKHHLQPENPGPGGAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEH
PPAVPMHNKRKRPRKKSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLK
RKRKLGVVPVNGSGLSTPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLEL
CGLPSQKTASLKKRKKMRVMSNLVEHNGVLESEAGQPQALVRWEHPQASSPQRHSLASMG
LHCLLRGRVGAGGQASGLSSS*

 $\label{thm:mkikgssgtcsslkkqklraesdfvkfdtpflpkplffrraksstathppgpavqlnktpssskkvtfglnrnmtaefkktdksilvsptgpsrvafdpeqkplhgvlktptsspassplvakkpltttprrrpramdff$

>GENSCAN

MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY
CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML
IRLVLRQSFEVLKRNGWEESRIKVFLDVLMKEVLCPESQSPNGVRFHFIDIYLDELSKVG
GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG
DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY
KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ
GKHKKKGNKLLEKTNLEKEKGKQELQGALGGGCLMTTRDLWFLPLSPKISGNGTISVPYV
FINGQKEGFQSQLGMEEVGPDDKGSRVFCVEEEDSESSLQKRRRKKKKKHHLQPENPGPG
GAAPSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRK
KSPRAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGL
STPAWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRK
KMRVMSNLVEHNGVLESEAGQPQALAAHLNLPEPPVCRQRHWAAHTSESQVRDPVSLWVA
VSCCTRNECPGPASVVLCVKPELCRMEGLSASAVRKTAGRRGSSGTCSSLKKQKLRAESD
FVKFDTPFLPKPLFFRRAKSSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDK
SILVSPTGPSRVAFDPEOKPLHGVLKTPTSSPASSPLVAKKPLTTTPRRRPRAMDFF

>FGENESH

MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEELLKIWKGLFY

CMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQTMNREWKGIDRLRLDKYYML IRLVLRQSFEVLKRNGWEESRIKVFLDVLMKEVLCPESQSPNGVRFHFIDIYLDELSKVG GKELLADQNLKFIDPFCKIAAKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVG DGDLSAEEIPENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDISADEDDQILSQ GKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRRRKKKKKHHLQPENPGPGGAA PSLEQNRGREPEASGLKALKARVAEPGAEATSSTGEESGSEHPPAVPMHNKRKRPRKKSP RAHREMLESAVLPPEDMSQSGPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGLSTP AWPPLQQEGPPTGPAEGANSHTTLPQRRRLQKKKAGPGSLELCGLPSQKTASLKKRKKMR VMSNLVEHNGVLESEAGQPQALGSSGTCSSLKKQKLRAESDFVKFDTPFLPKPLFFRRAK SSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTDKSILVSPTGPSRVAFDPEQK PLHGVLKTPTSSPASSPLVAKKPLTTTPRRRPRAMDFF

>RRP1B

MAPAMQPAEIQFAQRLASSEKGIRDRAVKKLRQYISVKTQRETGGFSQEE LLKIWKGLFYCMWVQDEPLLQEELANTIAQLVHAVNNSAAQHLFIQTFWQ TMNREWKGIDRLRLDKYYMLIRLVLRQSFEVLKRNGWEESRIKVFLDVLM KEVLCPESQSPNGVRFHFIDIYLDELSKVGGKELLADQNLKFIDPFCKIA AKTKDHTLVQTIARGVFEAIVDQSPFVPEETMEEQKTKVGDGDLSAEEIP ENEVSLRRAVSKKKTALGKNHSRKDGLSDERGRDDCGTFEDTGPLLQFDY KAVADRLLEMTSRKNTPHFNRKRLSKLIKKFQDLSEGSSISQLSFAEDIS ADEDDQILSQGKHKKKGNKLLEKTNLEKEKGSRVFCVEEEDSESSLQKRR RKKKKKHHLQPENPGPGGAAPSLEQNRGREPEASGLKALKARVAEPGAEA TSSTGEESGSEHPPAVPMHNKRKRPRKKSPRAHREMLESAVLPPEDMSQS GPSGSHPQGPRGSPTGGAQLLKRKRKLGVVPVNGSGLSTPAWPPLQQEGP PTGPAEGANSHTTLPORRRLOKKKAGPGSLELCGLPSOKTASLKKRKKMR VMSNLVEHNGVLESEAGQPQALGSSGTCSSLKKQKLRAESDFVKFDTPFL PKPLFFRRAKSSTATHPPGPAVQLNKTPSSSKKVTFGLNRNMTAEFKKTD KSILVSPTGPSRVAFDPEQKPLHGVLKTPTSSPASSPLVAKKPLTTTPRR RPRAMDFF