- 1) The eigenvalues of a Hermitian matrix are all
 - a) real
 - b) imaginary
 - c) of modulus one
 - d) real and positive
- 2) Which one of the following represents the 3pradial wave function of the hydrogen atom? $(a_0 \text{ is the Bohr radius})$

a)

3) Given the following table,

Group I	Group II
P: Stern-Gerlach exper-	1: Wave nature of particles
iment	
Q: Zeeman effect	2: Quantization of energy of electrons
	in the atoms
R: Frank-Hertz experi-	3: Existence of electron spin
ment	
S: Davisson-Germer	4: Space quantization of angular mo-
experiment	mentum

Which one of the following correctly matches the experiments from Group I to their inferences in Group II?

- a) P-2, Q-3, R-4, S-1
- b) P-1, Q-3, R-2, S-4
- c) P-3, Q-4, R-2, S-1
- d) P-2, Q-1, R-4, S-3
- 4) In spherical polar coordinates (r, θ, ϕ) , the unit vector $\hat{\theta}$ at $(10, \frac{\pi}{4}, \frac{\pi}{2})$ is

 - b) $\frac{1}{\sqrt{2}} \left(\hat{j} + \hat{k} \right)$
 - c) $\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$
 - d) $\frac{1}{\sqrt{2}} \left(\hat{j} \hat{k} \right)$
- 5) The scale factors corresponding to the covariant metric tensor g in spherical polar coordinates are
 - a) $1, r^2, r^2 \sin^2 \theta$
 - b) $1, r^2, \sin^2 \theta$
 - c) 1, 1, 1
 - d) $1, r, r \sin \theta$
- 6) In the context of small oscillations, which one of the following does NOT apply to the normal coordinates?

- a) Each normal coordinate has an eigenfrequency associated with it
- b) The normal coordinates are orthogonal to one another
- c) The normal coordinates are all independent
- d) The potential energy of the system is a sum of squares of the normal coordinates with constant coefficients
- 7) For the given unit cells of a two-dimensional square lattice, which option lists all the primitive cells?

- a) 1 and 2
- b) 1,2 and 3
- c) 1,2,3 and 4
- d) 1,2,3,4 and 5
- 8) Among electric field (E), magnetic field (B), angular momentum (L), and vector potential (A), which is/are odd under parity (space inversion) operation?
 - a) E only
 - b) E & A only
 - c) E & B only
 - d) B & L only
- 9) The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecule in terms of the harmonic frequency ω and anharmonicity constant x_e , is
 - a) $2\omega_e (1 x_e)$
 - b) $2\omega_e (1 3x_e)$
 - c) $3\omega_e (1 2x_e)$
 - d) $3\omega_e (1 4x_e)$
- 10) Match the physical effects and order of magnitude of their energy scales given below, where $\alpha = \frac{e^2}{4\pi\epsilon_o\hbar c}$ is the fine structure constant, m_e and m_p are the electron and proton masses, respectively.

Group I	Group II
P: Lamb shift	$1 :\sim 0 \left(\alpha^2 m_e c^2\right)$
Q: Fine structure	$2 :\sim 0 \left(\alpha^4 m_e c^2\right)$
R: Bohr energy	$3:\sim 0\left(\frac{\alpha^4 m_e^2 c^2}{m_p}\right)$
S: Hyperfine structure	$4 :\sim 0 \left(\alpha^5 m_p c^2\right)$

- a) P-3, Q-1, R-2, S-4
- b) P-2, Q-3, R-1, S-4
- c) P-4, Q-2, R-1, S-3
- d) P-2, Q-4, R-1, S-3
- 11) The logic expression $\bar{A}BC + \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}\bar{C}$ can be simplified to
 - a) AXORC
 - b) AANDC
 - c) 0
 - d) 1
- 12) At low temperatures (T), the specific heat of common metals is described by $(\text{with}\alpha\text{and}\beta\text{as constants})$
 - a) $\alpha T + \beta T^3$
 - b) βT^3
 - c) $\exp\left(-\frac{\alpha}{T}\right)$
 - d) $\alpha T + \beta T^5$
- 13) In a 2-to-1 multiplexer as shown below, the output $X=A_0$ if C=0 and $X=A_1$ if C=1.

Which one of the following is the correct

implementation of this multiplexer?

