The group G is isomorphic to the group PSL(3,2):C2. Ordinary character table of $G \cong PSL(3,2):C2$:

	1a	2a	3a	4a	7a	2b	6a	8a	8b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1	-1	-1
χ_3	6	-2	0	2	-1	0	0	0	0
χ_4	6	2	0	0	-1	0	0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$
χ_5	6	2	0	0	-1	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$
χ_6	7	-1	1	-1	0	1	1	-1	-1
χ_7	7	-1	1	-1	0	-1	-1	1	1
χ_8	8	0	-1	0	1	2	-1	0	0
χ_9	8	0	-1	0	1	-2	1	0	0

Trivial source character table of $G \cong PSL(3,2)$: C2 at p=2:

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,7)(2,6)(3,4)(5,8)]) \cong C2$ $P_3 = Group([(2,8)(3,4)(5,6)]) \cong C2$

 $P_4 = Group([(1,7)(2,6)(3,4)(5,8),(2,8)(3,4)(5,6)]) \cong C2 \times C2$ $P_5 = Group([(1,7)(2,6)(3,4)(5,8),(1,3,7,4)(2,5,6,8)]) \cong C4$

 $P_6 = Group([(1,7)(2,6)(3,4)(5,8),(1,6)(2,7)(3,5)(4,8)]) \cong C2 \times C2$

Trivial source character table of $G \cong PSL(3,2)$: C2 at $p=2$:														
Normalisers N_i		N_1		N_2	N_3		N_4	N_5	N_6		N_7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G				P_2	I	3	P_4	P_5	I	P ₆	P_7	P_8	P_9	P_{10}
Representatives $n_j \in N_i$		3a	7a	1a	1a	3a	1a	1a	1a	3a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	16	4	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	32	2	-3	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	16	-2	2	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	40	4	-2	8	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	2	1	0	2	2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-1	1	0	2	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	20	2	-1	4	2	2	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 2 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	52	4	-4	4	0	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	28	4	0	4	0	0	0	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	12	0	-2	4	0	0	0	0	2	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	26	2	-2	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	26	2	-2	2	0	0	0	2	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	0	2	2	2	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_{7} = Group([(1,7)(2,6)(3,4)(5,8),(1,4)(2,6)(3,7),(2,8)(3,4)(5,6)]) \cong D8
P_{8} = Group([(1,7)(2,6)(3,4)(5,8),(1,2,3,5,7,6,4,8),(1,3,7,4)(2,5,6,8)]) \cong C8
P_{9} = Group([(1,7)(2,6)(3,4)(5,8),(1,8)(2,4)(3,6)(5,7),(1,3,7,4)(2,5,6,8)]) \cong D8
P_{10} = Group([(1,7)(2,6)(3,4)(5,8),(1,4)(2,6)(3,7),(2,8)(3,4)(5,6),(1,2,3,5,7,6,4,8)]) \cong D16
N_{1} = Group([(2,4)(3,5)(7,8),(1,2,3)(4,6,7)]) \cong PSL(3,2) : C2
N_{2} = Group([(1,7)(2,6)(3,4)(5,8),(1,3)(4,7)(5,8),(1,8,4,6,7,5,3,2)]) \cong D16
N_{3} = Group([(2,8)(3,4)(5,6),(1,7)(3,5)(4,6),(1,7)(2,3)(4,8)]) \cong D12
N_{4} = Group([(2,8)(3,4)(5,6),(1,7)(2,6)(3,4)(5,8),(1,3)(4,7)(5,8)]) \cong D8
N_{5} = Group([(1,3,7,4)(2,5,6,8),(1,7)(2,6)(3,4)(5,8),(2,8)(3,4)(5,6),(1,2)(3,8)(4,5)(6,7)]) \cong D16
N_{6} = Group([(1,6)(2,7)(3,5)(4,8),(1,7)(2,6)(3,4)(5,8),(2,6,7)(3,4,5),(1,3,7,4)(2,5,6,8)]) \cong S4
N_{7} = Group([(2,8)(3,4)(5,6),(1,4)(2,6)(3,7),(1,7)(2,6)(3,4)(5,8),(1,2)(3,8)(4,5)(6,7)]) \cong D16
N_{8} = Group([(1,2,3,5,7,6,4,8),(1,3,7,4)(2,5,6,8),(1,7)(2,6)(3,4)(5,8),(2,8)(3,4)(5,6)]) \cong D16
N_{9} = Group([(1,3,7,4)(2,5,6,8),(1,8)(2,4)(3,6)(5,7),(1,7)(2,6)(3,4)(5,8),(2,8)(3,4)(5,6)]) \cong D16
N_{9} = Group([(1,3,7,4)(2,5,6,8),(1,8)(2,4)(3,6)(5,7),(1,7)(2,6)(3,4)(5,8),(2,8)(3,4)(5,6)]) \cong D16
```

 $N_{10} = Group([(1, 2, 3, 5, 7, 6, 4, 8), (2, 8)(3, 4)(5, 6), (1, 4)(2, 6)(3, 7), (1, 7)(2, 6)(3, 4)(5, 8)]) \cong D16$