Computational Microelectronics L8

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Neural network

Why neural networks in this course?

- Basically, this course is for the TCAD development.
 - Numerical analysis of a set of governing equations
 - Governing equations → discretization → implementation

Electron continuity at a steady-state • No time derivative - The electron current density becomes divergenceless (solenoidal). $\frac{1}{q} \nabla \cdot \mathbf{J}_n = \frac{\partial n}{\partial t} = 0 \quad \text{Steady-state}$ - The electron current density reads: (Einstein relation) $\mathbf{J}_n = q D_n \left(\nabla n - \frac{1}{V_T} n \nabla \phi \right)$ - 1D case, J_n $\frac{dJ_n}{dx} = 0$ $J_n = q D_n \left(\frac{dn}{dx} - \frac{1}{V_T} n \frac{d\phi}{dx} \right)$ Gist Lecture

```
• We are almost there. -\operatorname{From} J_n = -\frac{qD_n}{V_T} \frac{\Delta \phi}{\Delta x} C_2, J_n = \frac{qD_n}{\Delta x} \left( n_{i+1} \frac{\frac{\Delta \phi}{V_T}}{\exp{\frac{\Delta \phi}{V_T}} - 1} - n_i \frac{\frac{\Delta \phi}{V_T} \exp{\frac{\Delta \phi}{V_T}}}{\exp{\frac{\Delta \phi}{V_T}} - 1} \right) - \text{With the Bernoulli function, } B(x) = \frac{x}{\exp{x-1}}, J_n = \frac{qD_n}{\Delta x} \left[ n_{i+1} B\left( \frac{\Delta \phi}{V_T} \right) - n_i B\left( -\frac{\Delta \phi}{V_T} \right) \right]
```

```
# Electron continuity

dphi = (phi[ii+1]-phi[ii])/VT
b[3*ii+2] = q*Dn/I0*( elec[ii+1]*Ber(dphi) - A[3*ii+2,3*(ii+1)+2] = A[3*ii+2,3*(ii+1)+2] + A[3*ii+2,3*ii +2] = A[3*ii+2,3*ii +2] + A[3*ii+2,3*(ii+1)] = A[3*ii+2,3*(ii+1)] + A[3*ii+2,3*ii] = A[3*ii+2,3*ii] + A[3*ii+2,3*ii] + A[3*ii+2,3*ii] = A[3*ii+2,3*ii] + A[3*ii+2] = b[3*ii+2] - q*Dn/I0*( elec[ii]*Be A[3*ii+2,3*ii +2] = A[3*ii+2,3*ii +2] - A[3*ii+2,3*ii +2] = A[3*ii+2,3*ii] - A[3*ii+2,3*(ii-1)+2] - A[3*ii+2,3*(ii-1)+2] = A[3*ii+2,3*ii] - A[3*ii+2,3*(ii-1)] = A[3*ii+2,3*(ii-1)] - A[3*ii+2,3*(ii-1)] = A[3*ii+2,3*(ii-1)] - A[3*ii+2,3*(ii-1)] = A[3*ii+2,3*(ii-1)] - A[3*ii+2,3*(ii-1)] = A[3*ii+2,3*(ii-1
```

- It ("neural network") is a new topic introduced this semester.
 - Data-driven approach

Recent applications (1)

- Surrogate model
 - A simple model to predict important parameters

Surrogate model for LDMOSFETs (IIT Gandhinagar)

Recent applications (2)

- TCAD acceleration
 - Prepare a good initial guess for the Newton-Raphson method

Recent applications (3)

- Compact model
 - BSIM-CMG is a standard model.
 - Recently, BSIM-NN is developed.

Compact model (Alsemy)

MNIST dataset of handwritten digits

We can download it.

It's 7.

- The original one, https://yann.lecun.com/exdb/mnist/, do now allow downloading.
- MNIST in CSV (https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/)

They are placed in the same row. 0 represents white while 255 represents black.

	A	В		С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U
1	7	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	4	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	1	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	4	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	9	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	5	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	9	O)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Homework#8

- Due: AM08:00, October 10
- Problem#1
 - Download the MNIST dataset. For your later use, visualize one of them.
 - For example, one of them looks like:

Thank you for your attention!