TERM PROJECT ADVANCED GRAPH THEORY

KNIGHTS TOUR

Chaitanya Nitin Bhutada [17CS10011] Sanket Rajendra Meshram [17CS30030]

Guided By - Prof. Bhargab B. Bhattacharya

Computer Science and Engineering Indian Institute of Technology , Kharagpur

20/11/2020

ABSTRACT

The "Knight's Tour" problem, to move a knight on a chessboard or a n*m board so as to cover all the squares exactly once.

INTRODUCTION

We will be discussing 3 Algorithms and Comparing their Space and Time Complexities.

1] Backtracking:

Marking the Current state visited go the next non-visited state and if we can complete the tour by this visit we return the Order of visiting or else we go to the next non-visited state.

2] Warnsdorff's Rule:

Taking the Backtracking Algorithm as our base we apply a heuristic of accessibility to get our solution faster.

3] Neural Network:

With the help of Neurons we will configure the network so as to restrict degree of each node to be 2. The state when we reach this is called a Stable state. The neurons are updated sequentially by counting squares on the chess board in row-major order and enumerating the neurons that represent knight moves out of each square.

All the implementations can be found: here

BACKTRACKING

Starting from a random square. We mark this square as visited and move until we have covered all the n*m positions.

As in the diagram we can see the knight has at-most 8 next moves. For the current position we mark it as visited if we have covered all the n*m squares the sequence is returned else we move to the next non-visited position. If this move does not fetch us all the n*m squares we move to the next non-visited position.

The pseudo code is as follows:

Complexity Analysis

The space complexity is linear i.e $O(n^*m)$ as we just require to store the visited sequence. Time complexity is $O(8^{(n*m)})$ Time taken for our implementation for 6*6 was 540 secs.

WARNSDORFF'S RULE

- Number of Directed knight's tour increases rapidly .
- Warnsdorff's rule uses this fact.

n	Number of directed tours (open and closed) on an <i>n</i> × <i>n</i> board (sequence A165134 in the OEIS)					
1	1					
2	0					
3	0					
4	0					
5	1,728					
6	6,637,920					
7	165,575,218,320					
8	19,591,828,170,979,904					

Warnsdorff's Algorithm

- Always visiting the Square which has least Accessibility.
- Algorithm
 - set P as any random start Square.
 - mark P with number '1'
 - for each move number 2 to (n*m):
 - Let S be set of points accessible from P.
 - set P with point of least accessibility.
 - mark P with current move number.
- The marking will return us the order of knights move.
- This gives the solution for 100x100 within 1 min.

NEURAL NETWORK

The neural network is designed such that each legal knight's move on the chessboard is represented by a neuron. Therefore, the network basically takes the shape of the knight's graph over an $n \times n$ chess board. (A knight's graph is simply the set of all knight moves on the board)

Each neuron can be either "active" or "inactive" (output of 1 or 0). If a neuron is active, it is considered part of the solution to the knight's tour. Once the network is started, each active neuron is configured so that it reaches a "stable" state if and only if it has exactly two neighboring neurons that are also active (otherwise, the state of the neuron changes). When the entire network is stable, a solution is obtained. The complete transition rules are as follows:

$$U_{t+1}(N_{i,j}) = U_{t+1}(N_{i,j}) + 2 - \sum_{N \in G(N_{i,j})} V_t(N)$$

$$V_{t+1}(N_{i,j}) = \begin{cases} 1 & U_{t+1}(N_{i,j}) > 3 \\ 0 & U_{t+1}(N_{i,j}) < 0 \\ V_{t+1}(N_{i,j}) & otherwise \end{cases}$$

where t represents time (incrementing in discrete intervals), $U(N_{i,j})$ is the state of the neuron connecting square i to square j, $V(N_{i,j})$ is the output of the neuron from i to j, and $G(N_{i,j})$ is the set of "neighbors" of the neuron (all neurons that share a vertex with $N_{i,j}$).

Initially (at t=0), the state of each neuron is set to 0, and the output of each neuron is set randomly to either 0 or 1. The neurons are then updated sequentially till we get a stable solution.

The network is configured to give subgraphs of degree 2 within the Knight Graph. The set of degree 2 subgraphs include closed knight tour. However there are many other solution that are not knights tour. For example there may be two small independent circuit in knights graph.

Figure 1: 2 possibilities

Complexity Analysis

The space complexity is linear $O(n^*m)$ i.e size of the board as the Knights graph is $O(n^*m)$. For $n \le 20$ the number of iterations needed to get a stable network is < 100. For n = 26 the

probability of getting a knights tour as a subgraph is 1 out of 40000 so as the n increases using this approach would not be feasible as number of non-solutions would increase.

For our implementation time taken for 8*8 was = 9.725 sec.

GENERAL KNIGHT TOUR

1. BOARDS OF WIDTH 3

Theorem: There does not exists a tour on a 3×3 , 3×5 , 3×6 board.

Proof: Run BACKTRACKING on these boards.

Theorem : There exists a tour on a $3 \times m$ board unless m = 3, 5, 6.

Proof: We will show a tour beginning in the upper left for boards of size m = 4, 7, 9, 10. These boards can then be connected together to form all possible $3 \times m$ boards except m = 3, 5, 6, all of which were proven to be impossible.

The 3×4 board

1	14	17	20	11	8	5
16	19	12	3	6	21	10
13	2	15	18	9	4	7

The 3×7 board

1	14	17	10	7	4	19	22	25
16	9	12	3	18	23	26	5	20
13	2	15	8	11	6	21	24	27

The 3×9 board

1	4	7	22	15	20	13	26	29	18
8	23	2	5	10	25	16	19	12	27
3	6	9	24	21	14	11	28	17	30

The 3×10 board

Given any $3 \times m$ board where m 6 = 3, 5, 6, the above boards can be strung together where the numbers on the boards are incremented appropriately.

Two 3×7 boards hooked together

Claim: All 4xm Tour on board can be represented as concatenation of 3×3 , 3×5 , 3×6 board Tours.

Proof:

- 11 = 7+4
- 12 = 4 + 4 + 4
- 13 = 9 + 4
- 14 = 10 + 4
- 15 = 4 + 4 + 7
- 16 = 4 + 4 + 4 + 4
- 17 = 10 + 7
- 18 = 9 + 9
- 19 = 7 + 4 + 4 + 4
- 10(n+1) + k = (n*10) + (10 + k); 10+k can be replaced from above.

Hence Proved

2. BOARDS OF WIDTH 4

Theorem: The grey squares can be toured on a $4 \times m$ board for m 5.

- Divide the board into colour white and grey .
- Make first two in first column grey and next 2 as white or vise versa .
- Then keep alternating on next columns.

• Tour on grey square .

Even Case

• Tour on white squares.

- Star represent square where Tour on Grey squares end .
- First travel all the grey squares as shown above . Then all the white squares . Which completes the Tour .

REFERENCES

- 1. SAM GANZFRIED "A SIMPLE ALGORITHM FOR KNIGHT'S TOURS"
- 3. Knight's Tour by Kevin McGown
- 3. Number of knight tour's
- 4. Neural network computing for knight's tour problems