Assignment 2

630516am and 590049bm

23 Nov 2021

Question 1

```
set.seed(2021)
b0 <- 3
b1 <- 5
b2 <- 8
gamma <- 1
x1 \leftarrow rnorm(5000, mean = 1, sd = 1)
x2 <- rnorm(5000, mean = 2, sd = 1)
z \leftarrow rgamma(5000, shape = 1.2, scale = 1.1)
sigma_sq <- 1*exp(gamma*z)</pre>
epsilon <- rnorm(5000, mean = 0, sd = sqrt(sigma_sq))
y \leftarrow b0 + b1*x1 + b2*x2 + epsilon
model1 \leftarrow lm(y \sim x1 + x2)
modelsummary(model1,
              vcov = c("iid", "HCO"),
              gof_map = gm,
              stars = T)
lmtest::bptest(formula = y ~ x1 + x2)
##
    studentized Breusch-Pagan test
## data: y ~ x1 + x2
```

```
Model 1
                                 Model 2
             2.609***
                                 2.609***
(Intercept)
              (0.375)
                                 (0.315)
             5.009***
                                 5.009***
x1
              (0.149)
                                  (0.078)
             8.080***
                                 8.080***
x2
              (0.152)
                                  (0.097)
Ν
               5000
                                   5000
```

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

0.44

0.44

Adj. R2

```
## BP = 0.50429, df = 2, p-value = 0.7771
gamma <- 0
sigma_sq <- 1*exp(gamma*z)
epsilon <- rnorm(5000, mean = 0, sd = sqrt(sigma_sq))

y <- b0 + b1*x1 + b2*x2 + epsilon

model1 <- lm(y ~ x1 + x2)
model2 <- lm(y ~ x1 + x2, weights = sigma_sq)</pre>
```

Question 2

- 1. Show that the OLS estimator of the parameter β is not consistent.
- 2. Derive plim (b) where b is the OLS estimator of β . Determine the sign of the magnitude of the inconsistency when $0 < \beta < 1$, that is, the sign of plim(b) β when $0 < \beta < 1$.

First, we demean the two variables so that the constant-term α equals zero. Then we regress $\tilde{C} = \beta \tilde{D} + \epsilon$. We can do this because of Frisch-Waugh-Lovell. The estimate that we get is:

$$\hat{\beta} = (\tilde{D}^T \tilde{D})^{-1} \tilde{D}^T C_{=} (\tilde{D}^T \tilde{D})^{-1} (\beta \tilde{D} + \epsilon)$$

and

$$\mathbb{E}[\hat{\beta}] = \beta + (\tilde{D}^T \tilde{D})^{-1} \tilde{D}^T \epsilon$$

Evaluating the probability limit gives:

$$\mathrm{plim}_{n\to\infty}(\hat{\beta}) = \beta + \mathrm{plim}(\frac{1}{n}\tilde{D}^T\tilde{D})^{-1} \cdot \mathrm{plim}(\frac{1}{n}\tilde{D}^T\epsilon)$$

which simplifies to:

$$\beta + \frac{1}{\operatorname{Var}(D)} \cdot \frac{1}{1 - \beta} \sigma^2$$

by the fact that variances and covariances are the same after demeaning, and by the reduced form equation for D made explicit below. Under $0 < \beta < 1$, since variances are positives, the right term can only be positive and thus the bias is always positive.

Substituting equation (2) into equation (1) and solving for C gives:

$$C = \frac{\alpha}{1 - \beta} + \frac{\beta}{1 - \beta} Z_i + \frac{1}{1 - \beta} \epsilon_i$$

substituting this back in the definition for D gives:

$$D = \frac{\alpha}{1 - \beta} + \left(\frac{\beta}{1 - \beta} + 1\right) Z_i + \frac{1}{1 - \beta} \epsilon_i$$

From this, we can calculate $Cov(D, \epsilon_i)$, which is $\frac{1}{1-\beta}Var(\epsilon) = \frac{1}{1-\beta}\sigma^2$.

3. Find an instrumental variable (IV) for the endogenous variable D i and argue why it could be an IV.

The instrumental variable could be Z, because it is relevant, i.e. $Cov(D, Z) \neq 0$. Also, it is exogenous (valid), as it is exogenously generated and has no correlation with the error term ϵ according to the DGP sketched out here.

4. Derive b_{IV} , the IV estimator of β in terms of the variables C, D, and Z step by step.

First, suppose X is a matrix consisting of a column of 1's and D, so we can write:

$$\mathbb{E}[z_i \epsilon_i] = 0 = \frac{1}{n} \sum_i z_i (c_i - \alpha - \beta D_i) = \frac{1}{n} \sum_i z_i (c_i - x_i \beta)$$

Using this moment condition to solve for β , we retrieve the b_{IV} estimator:

$$\hat{b}_{IV} = \left(\sum z_i^T x_i\right)^{-1} \left(z_i^T c_i\right) = (Z^T X)^{-1} Z^T C$$

5. Use the expression of b_{IV} to show that it is consistent.

$$b_{IV} = (Z^T X)^{-1} Z^T C = (Z^T X)^{-1} Z^T (X\beta + \epsilon) = (Z^T X)^{-1} Z^T X\beta + (Z^T X)^{-1} Z^T \epsilon = \beta + (Z^T X)^{-1} Z^T \epsilon$$

Evaluating the plim of this estimator then gives:

$$\operatorname{plim}(b_{IV}) = \beta + \operatorname{plim}(Z^T X)^{-1} \cdot \operatorname{plim}(Z^T \epsilon)$$

where the last factor goes to zero as $n \to \infty$.

Question 3

1. Plot the distribution of the growth rate of employment and of import exposure 1990-2007 across US commuting zones