- 6. [*T. Gonzalez*] Let $s = \{s_1, s_2, s_3, ..., s_n\}$ and $t = \{t_1, t_2, t_3, ..., t_r\}$ be two sets. Assume $1 \le s_i \le m$, $1 \le i \le n$, and $1 \le t_i \le m$, $1 \le I \le r$. Using the idea of Exercise 9, write a function to determine if $s \subseteq t$. Your function should work in O(r + n) time. Since $s \equiv t$ iff $s \subseteq t$ and $t \subseteq s$, one can determine in linear time whether two sets are the same. How much space is needed by your function?
 - 9. [T. Gonzalez] Design a dictionary representation that allows you to search, insert, and delete in O(1) time. Assume that the keys are integer and in the range [0, m) and that m + n units of space are available, where n is the number of insertions to be made. (Hint: Use two arrays, a[n] and b[m], where a[i] will be the (i+1)th pair inserted into the table. If k is the ith key inserted, then b[k] = i.) Write C++ functions to search, insert, and delete. Note that you cannot initialize the arrays a and b as this would take O(n + m) time.

int aln 1, bly] for i=u~n $\alpha(ssi) = 1$ for i = 0~~ b[i] = r[] => check if sril=k is a subset of t if b[a[s[i]]] == -1return fadse else

reture true

(unordered_nap)