

Zadanie B

Najkrótsze ścieżki w grafie bez wag

Napisz program, który obliczy najkrótsze ścieżki pomiędzy dowolną parą wierzchołków w grafie. Dokładnie, dla każdej pary (i,j) wierzchołków w grafie znajdzie wierzchołek k poprzedzający j na najkrótszej ścieżce z i do j. Należy zaimplementować probabilistyczny algorytm działający w czasie $O(\log^2 n \cdot \text{MM}(n))$, gdzie MM(n) to czas mnożenia macierzy rozmiaru n. W programie można wykorzystać najprostszy algorytm mnożenia macierzy działający w czasie $O(n^3)$.

Wejście

Pierwsza linia zawiera liczbę naturalną n ($1 \le n \le 400$), określającą rozmiar grafu. Kolejne n linii pliku zawiera macierz sąsiedztwa grafu G. Wierzchołki numerujemy począwszy od 1; (n+1)—sza linia zawiera opis sąsiadów wierzchołka o numerze n.

Wyjście

Dla każdego zestawu danych wypisz macierz następników S[i,j] zdefniowaną następująco:

 $S[i][j] = \left\{ \begin{array}{ll} k & \text{poprzednik } j \text{ na najkrótszej ścieżce z } i \text{ do } j \text{ jeżeli ścieżka istnieje,} \\ 0 & \text{w przeciwnym przypadku.} \end{array} \right.$

Dostępna pamięć: 32MB

Przykład

5	0	1	4	1	3
0 1 0 1 0	2	0	2	3	3
1 0 1 0 0	4	3	0	3	3
0 1 0 1 1	4	3	4	0	3
1 0 1 0 0	4	3	5	3	0
0 0 1 0 0					