

HC32F472 系列

32 位 ARM® Cortex®-M4 微控制器

数据手册

Rev1.01 2024年12月

产品特性

ARM Cortex-M4 32bit MCU+FPU, 150 DMIPS, 512 KB Flash, 68 KB SRAM, USBFS, 3 CANs (FD/ 2.0B), EXMC, 25 Timers, 3 ADCs, 8 DACs, 2 PGAs, 4 CMPs, 6 UARTs, 4 SPIs, 3 I2Cs, QSPI, AES, HASH (SHA256/ HMAC), FMAC (FIR), MAU

■ ARMv7-M 架构 32bit Cortex-M4 CPU,集成 FPU、MPU,支持 SIMD 指令的 DSP,及 CoreSight 标准调试单元。最高工作主频 120 MHz,达到 150 DMIPS 或 410 Coremarks 的运算性能

■ 内置存储器

- 最大 512 KByte 的 dual bank Flash memory
- 最大 64 KByte 的单周期访问高速 SRAM, 4 Kbyte 的掉电保持 SRAM。

■ 电源,时钟,复位管理

- 系统电源 (Vcc): 1.8-3.6 V
- 7 个独立时钟源:外部主时钟晶振(4-25 MHz)、外部副晶振(32.768 kHz)、内部高速 RC(16/20 MHz)、内部中速 RC(8 MHz)、内部低速 RC(32.768kHz)、PLL、内部 WDT 专用 RC(10 kHz)
- 包括上电复位(POR)、低电压检测复位(PVD1R/PVD2R)、端口复位(NRST)在内的 15 种复位源,每个复位源有独立标志位

■ 低功耗运行

- 外设功能可以独立关闭或开启
- 三种低功耗模式: Sleep、Stop、Power down 模式

■ 外设运行支持系统显著降低 CPU 处理负荷

- 16 通道双主机 DMAC
- USBFS 专用 DMAC
- 3 个数据计算单元(DCU)
- 数学协处理单元(MAU),支持 Sin/ Sqrt
- 支持 16 阶 FIR 数字滤波器(FMAC)
- 支持外设事件相互触发(AOS)

■ 高性能模拟

- 内置高精度 VREF
- 3 个独立 12bit 2.5 MSPS ADC
- 8 个独立 12bit DAC
- 2 个可编程增益放大器 (PGA)
- 4 个独立电压比较器(CMP)
- 1 个片上温度传感器(OTS)

■ Timer

- 10 个多功能 16bit PWM Timer (Timer6)
- 1个16bit 电机 PWM Timer (Timer4)
- 2 个 32bit 通用 Timer(TimerA)
- 4个16bit 通用 Timer (TimerA)
- 4个16bit 通用 Timer (Timer2)
- 2 个 16bit 基础 Timer (Timer0)
- 实时时钟 Timer (RTC)
- 2个 WDT, 支持内部专用时钟

■ 最大 85 个 GPIO

- 最大 59 个 5V-tolerant IO

■ 最大 19 个通信接口

- 6个 USART,支持 ISO7816-3 协议
- 4 个 SPI
- 3 个 I2C,支持 SMBus 协议
- 1 个 QSPI,支持 60 Mbps 高速访问(XIP)
- 3个 CAN,支持 CAN2.0B、CAN FD
- 1个USB 2.0内置 FS-PHY,支持 Device/ Host
- 1个MDIO

■ 外部存储器控制器 EXMC

- 支持静态 Memory 控制器

■ 数据加密功能

AES/ HASH (SHA256/ HMAC) / TRNG

■ 封装形式:

- LQFP100 (14×14 mm)
- LQFP48 (7×7 mm)
- BGA64 (4×4 mm)

支持型号:

HC32F472JCTI-LQ48	HC32F472JETI-LQ48
HC32F472KCHI-VFBGA64	HC32F472KEHI-VFBGA64
HC32F472PCTI-LQFP100	HC32F472PETI-LQFP100

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本 文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC 产品依据购销基本合同中载明 的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2024 小华半导体有限公司 保留所有权利

目 录

产品	1特性	ŧ		2
声	明			3
目	录			4
表了	劽			8
图第	引			. 11
1	简介	Overv	iew)	12
	1.1	型号命	名规则	.13
	1.2	型号功	能对比表	.14
	1.3	功能框	图	.17
	1.4	功能简	介	
		1.4.1	CPU	
		1.4.2	总线架构(BUS)	
		1.4.3	复位控制(RMU)	
		1.4.4	时钟控制(CMU)	
		1.4.5	电源控制(PWC)	
		1.4.6	初始化配置(ICG)	
		1.4.7	嵌入式 FLASH 接口(EFM)	.20
		1.4.8	内置 SRAM(SRAM)	.21
		1.4.9	通用 IO(GPIO)	.21
		1.4.10	中断控制(INTC)	.21
		1.4.11	自动运行系统(AOS)	.22
		1.4.12	存储保护单元(MPU)	. 22
		1.4.13	键盘扫描(KEYSCAN)	.22
		1.4.14	内部时钟校准器(CTC)	.22
		1.4.15	DMA 控制器(DMA)	.23
		1.4.16	电压比较器(CMP)	.23
		1.4.17	模数转换器(ADC)	.24
		1.4.18	数模转换器(DAC)	.25
		1.4.19	温度传感器(OTS)	.25
		1.4.20	高级控制定时器(Timer6)	.25
		1.4.21	通用控制定时器(Timer4)	.26
		1.4.22	紧急刹车模块(EMB)	.26
		1.4.23	通用定时器(TimerA)	.26

	1.4.24	通用定时器(Timer2)	26
	1.4.25	通用定时器(Timer0)	26
	1.4.26	实时时钟(RTC)	27
	1.4.27	看门狗计数器(WDT)	27
	1.4.28	串行通信接口(USART)	27
	1.4.29	集成电路总线(I2C)	27
	1.4.30	串行外设接口(SPI)	29
	1.4.31	四线式串行外设接口(QSPI)	30
	1.4.32	USB2.0 全速模块(USBFS)	30
	1.4.33	可编程逻辑阵列(PLA)	30
	1.4.34	高精度参考电压(VREF)	30
	1.4.35	CAN FD 控制器(CAN FD)	30
	1.4.36	MDIO 串行总线接口(MDIO)	31
	1.4.37	外部存储器控制器(EXMC)	31
	1.4.38	加密协处理模块(CPM)	31
	1.4.39	CRC 计算单元(CRC)	31
	1.4.40	数据计算单元(DCU)	31
	1.4.41	数学运算单元(MAU)	32
	1.4.42	滤波数学加速器(FMAC)	32
	1.4.43	调试控制器(DBGC)	32
2	引脚配置及功	l能(Pinouts)	33
	2.1 引脚配	置图	33
	2.2 引脚功	〕能表	36
		〕能说明	
		用说明	
3	电气特性(E	Cs)	46
	3.1 参数条	件	46
	3.1.1	最小值和最大值	46
	3.1.2	典型值	46
	3.1.3	典型曲线	46
	3.1.4	负载电容	
	3.1.5	引脚输入电压	46
	3.1.6	电源方案	47
	3.1.7	电流消耗测量	48
	3.2 绝对最	大额定值	49

	3.3	工作条	件	50
	3	3.3.1	通用工作条件	50
	3	3.3.2	上电/掉电时的工作条件	50
	3	3.3.3	复位和电源控制模块特性	51
	3	3.3.4	供电电流特性	53
	3	3.3.5	低功耗模式唤醒时序	61
	3	3.3.6	外部时钟源特性	61
	3	3.3.7	内部时钟源特性	64
	3	3.3.8	PLL 特性	65
	3	3.3.9	存储器(闪存)特性	66
	3	3.3.10	电气敏感性	67
	3	3.3.11	I/O 端口特性	68
	3	3.3.12	I2C 接口特性	74
	3	3.3.13	MDIO 接口特性	75
	3	3.3.14	SPI 接口特性	76
	3	3.3.15	QSPI 接口特性	79
	3	3.3.16	USB 接口特性	80
	3	3.3.17	USART 接口特性	82
	3	3.3.18	JTAG 接口特性	84
	3	3.3.19	SWD 接口特性	86
	3	3.3.20	TRACE 接口特性	87
	3	3.3.21	12 位 ADC 特性	88
	3	3.3.22	12 位 DAC 特性	93
	3	3.3.23	温度传感器	96
	3	3.3.24	内置 VREFINT 特性	96
	3	3.3.25	AVCC 分压特性	96
	3	3.3.26	VREF 特性	97
	3	3.3.27	比较器特性	98
	3	3.3.28	EXMC 特性	99
	3	3.3.29	增益可调放大器特性	.102
	3	3.3.30	EIRQ 滤波特性	.102
	3	3.3.31	USART1 STOP 模式下 RX 滤波特性	.102
4	封装信	言息		103
	4.1		<u> </u>	
	4.2	焊盘示	意图	.106

版本	修订证	ᅾ	112
5	订购信	息	111
	4.4	封装热阻系数	.110
	4.3	丝印说明	.109

表索引

表	1-1	型号功能对比表	. 14
表	1-2	SPI 主要特性	.29
表	2-1	引脚功能表	. 36
表	2-2	Func32~63 表	. 39
表	2-3	端口配置	.40
表	2-4	通用功能规格	.41
表	2-5	引脚功能说明	.42
表	2-6	引脚使用说明	. 45
表	3-1	电压特性	.49
表	3-2	电流特性	.49
表	3-3	热特性	.50
表	3-4	通用工作条件	. 50
表	3-5	上电/掉电时的工作条件	.50
表	3-6	复位和电源控制模块特性	.51
表	3-7	运行模式电流消耗 1	.53
表	3-8	运行模式电流消耗 2	. 55
表	3-9	运行模式电流消耗 3	.56
表	3-10	运行模式电流消耗 4	.57
表	3-11	运行模式电流消耗 5	.58
表	3-12	低功耗模式电流消耗	.59
表	3-13	模拟模块电流消耗	. 60
表	3-14	低功耗模式唤醒时间	.61
表	3-15	高速外部用户时钟特性	.61
表	3-16	XTAL 4-25 MHz 振荡器特性	. 62
表	3-17	XTAL32 振荡器特性	.63
表	3-18	HRC 振荡器特性	.64
表	3-19	MRC 振荡器特性	.64
表	3-20	LRC 振荡器特性	.64
表	3-21	SWDTLRC 振荡器特性	.64
表	3-22	PLLH 主要性能指标	. 65
表	3-23	闪存特性	.66
表	3-24	闪存编程擦除时间	.66
表	3-25	闪存可擦写次数和数据保存期限	.66

表 3-26	ESD 特性	67
表 3-27	静态 Latch-up 特性	67
表 3-28	I/O 静态特性	68
表 3-29	输出电压特性	70
表 3-30	I/O 交流特性	72
表 3-31	I2C 电气特性	74
表 3-32	MDIO 电气特性	75
表 3-33	SPI 电气特性	76
表 3-34	QSPI 电气特性	79
表 3-35	USB Full-Speed 电气特性	80
表 3-36	USB Low-Speed 电气特性	81
表 3-37	USART 电气特性	82
表 3-38	USART 最高波特率	82
表 3-39	JTAG 接口特性	84
表 3-40	SWD 接口特性	86
表 3-41	TRACE 接口特性	87
表 3-42	ADC 特性	88
表 3-43	高速输入通道静态精度@ fADC=60 MHz	89
表 3-44	高速输入通道静态精度@ fadc=30 MHz	89
表 3-45	高速输入通道动态精度@ fadc=60 MHz	89
表 3-46	高速输入通道动态精度@ fadc=30 MHz	89
表 3-47	低速输入通道静态精度@ fadc=60 MHz	90
表 3-48	低速输入通道静态精度@ fADC=30 MHz	90
表 3-49	低速输入通道动态精度@ f _{ADC} =60 MHz	90
表 3-50	低速输入通道动态精度@ fadc=30 MHz	90
表 3-51	12-bit DAC 端口输出允许且输出放大器允许时特性	93
表 3-52	12-bit DAC 端口输出允许且输出放大器禁止时特性	94
表 3-53	12-bit DAC 端口输出禁止且输出放大器禁止时特性	95
表 3-54	温度传感器特性	96
表 3-55	内置 VREFINT 特性	96
表 3-56	AVCC 分压特性	96
表 3-57	VREF 特性	97
表 3-58	比较器特性	98
表 3-59	内部 EXCLK 模式的 EXMC 特性	99
表 3-60	反馈 EXCLK 模式的 EXMC 特性	100

表	3-61	增益可调放大器特性	102
表	3-62	EIRQ 滤波特性	102
表	3-63	USART1 STOP 模式下 RX 滤波特性	102
表	4-1	各封装热阻系数参考值	110

图索引

冬	1-1	型号命名规则	.13
冬	1-2	功能框图	.17
冬	3-1	引脚负载条件(左)与输入电压测量(右)	.46
冬	3-2	电源方案	.47
冬	3-3	电流消耗测量方案	. 48
冬	3-4	采用8 MHz 晶振的典型应用	. 62
冬	3-5	采用 32.768 kHz 晶振的典型应用	. 63
冬	3-6	I/O 交流特性定义	. 73
冬	3-7	I2C 总线时序定义	. 74
冬	3-8	MDIO 时序	. 75
冬	3-9	SPI 时序定义(从机模式,CPHA=0)	. 77
冬	3-10	SPI 时序定义(从机模式,CPHA=1)	. 77
图	3-11	SPI 时序定义(主机模式)	. 78
图	3-12	QSPI 时钟时序	. 79
冬	3-13	QSPI 时序定义	. 79
冬	3-14	USB 上升/下降时间及 Cross Over 电压定义	. 81
图	3-15	USART 时钟时序	. 82
冬	3-16	USART(CSI)输入输出时序	. 83
图	3-17	JTAG TCK 时钟	. 84
图	3-18	JTAG 输入输出	. 85
冬	3-19	SWD SWCLK 时钟	.86
冬	3-20	SWDIO 输入输出	.86
冬	3-21	TRACE 时钟	.87
冬	3-22	TRACE DATA 输出	.87
冬	3-23	ADC 精度特性	.91
冬	3-24	使用 ADC 的典型连接	. 92
图	3-25	电源和参考电源去耦例	. 92
图	3-26	CMP 迟滞特性	.98
图	3-27	EXMC 输出信号时序图	101
图	3-28	EXMC 输入信号时序图	101

1 简介(Overview)

HC32F472 系列是基于 ARM® Cortex®-M4 32-bit RISC CPU,最高工作频率 120 MHz 的高性能 MCU。Cortex-M4 内核集成了浮点运算单元(FPU)和 DSP,实现单精度浮点算术运算,支持所有 ARM 单精度数据处理指令和数据类型,支持完整 DSP 指令集。内核集成了 MPU 单元,同时叠加 DMAC 专用 MPU 单元,保障系统运行的安全性。

HC32F472 系列集成了高速片上存储器,包括最大 512 KB 的 Flash、最大 64 KB 的 SRAM、4 KB 的掉电保持 SRAM。集成了 Flash 访问加速单元,实现 CPU 在 Flash 上的单周期程序执行。轮询式总线矩阵支持多个总线主机同时访问存储器和外设,提高运行性能。总线主机包括 CPU、DMA、USB 专用 DMA。除总线矩阵外,支持外设间数据传递,基本算术运算和事件相互触发,可以显著降低 CPU 的事务处理负荷。

HC32F472 系列集成了丰富的外设功能。包括:内置高精度 VREF; 3 个独立的 12bit 2.5 MSPS ADC; 2 个增益可调 PGA; 8 个 12 位 DAC; 4 个高速电压比较器 (CMP); 10 个多功能 PWM Timer (Timer6) 支持 20 路互补 PWM 输出; 1 个电机 PWM Timer (Timer4) 支持 3 路互补 PWM 输出; 4 个 16bit 通用 Timer (TimerA) 及 2 个 32bit 通用 Timer(TimerA)支持正交编码输入及 24 路 Duty 独立可设 PWM 输出; 13 个串行通信接口(I2C/ UART/ SPI); 1 个 QSPI 接口; 3 路 CAN; 内置 USBFS PHY 的 USBFS Controller; 1 个外部扩展总线控制器,包括 SMC 控制器; 1 个数学运算单元(MAU)和 4 个滤波数学加速器(FMAC)。

HC32F472 系列支持宽电压范围(1.8~3.6 V), 宽温度范围(-40~105 °C)和各种低功耗模式。

典型应用

HC32F472 系列提供 100 pin、48 pin 的 LQFP 封装,64 pin 的 BGA 封装,主要用于中、高速光模块、高精度模拟、多路 CAN 等应用场景。

1.1 型号命名规则

I: -40-105℃增强型工业级

图 1-1 型号命名规则

1.2 型号功能对比表

表 1-1 型号功能对比表

功能		产品型号						
		HC32F472JCTI	HC32F472JETI	HC32F472KCHI	HC32F472KEHI	HC32F472PCTI	HC32F472PETI	
引脚数		48	48	64	64	100	100	
GPIO数		39	39	55	55	85	85	
5V Tolerant GPIO数		29	29	37	37	59	59	
封装		LQFP	LQFP	BGA	BGA	LQFP	LQFP	
温度范围				-40~1	105 ℃			
电源电压范围				1.8~	3.6 V			
	Flash	256	512	256	512	256	512	
Memory	ОТР	134 KByte						
	SRAM	68 KB						
DMA		2unit * 8ch						
外部端口中断		EIRQ * 16vec						
	UART	6ch						
	SPI	4ch						
	MDIO	1ch						
Communcation Interfaces	I2C	3ch						
	CAN FD			3	ch			
	QSPI			1	ch			
	USB FS	1ch	1ch	-	-	1ch	1ch	
Timers	Timer0			2ι	ınit			
Tilliers	Timer2			4u	ınit			

HC32F472 系列数据手册_Rev1.01 14/112

功能		产品型号							
		HC32F472JCTI	HC32F472JETI	HC32F472KCHI	HC32F472KEHI	HC32F472PCTI	HC32F472PETI		
TimerA Timer4 Timer6		6unit							
		1unit							
				10	unit				
			1	ch					
			1	ch					
SWDT RTC				1	ch				
	12bit ADC	3unit, 21ch	3unit, 21ch	3unit, 29ch	3unit, 29ch	3unit, 27ch	3unit, 27ch		
	12bit DAC	2ch	2ch	8ch	8ch	2ch	2ch		
Analog	内置VREF	-	-	1	1	-	-		
Analog	PGA	2ch							
	CMP	2ch	2ch	4ch	4ch	2ch	2ch		
	OTS	/	/	/	/	1	/		
DCU					/				
FMAC		/							
MAU		✓ ·							
AES256		✓ ·							
HASH (SHA256)		·							
TRNG					✓				
EXMC PLA 频率监测模块(FCM)				-		,	/		
					√				
					✓				
可编程电压检测功能(P\	/D)				√				
				SI	WD				

HC32F472 系列数据手册_Rev1.01 15/112

74 <u>4</u> 45	产品型号					
功能	HC32F472JCTI	HC32F472JETI	HC32F472KCHI	HC32F472KEHI	HC32F472PCTI	HC32F472PETI
调试接口			JΤ.	AG		

HC32F472 系列数据手册_Rev1.01 16/112

1.3 功能框图

图 1-2 功能框图

1.4 功能简介

1.4.1 CPU

HC32F472 系列集成了最新一代的嵌入式 ARM® Cortex®-M4 with FPU 32bit 精简指令 CPU,实现了管脚少功耗低的同时,提供出色的运算性能和迅速的中断反应能力。片上集成的存储容量可以充分发挥出 ARM® Cortex®-M4 with FPU 出色的指令效率。CPU 支持 DSP 指令,可以实现高效信号处理运算和复杂算法。单点精度 FPU(Floating Point Unit)单元可以避免指令饱和,加快软件开发。

1.4.2 总线架构(BUS)

主系统由 32 位多层 AHB 总线矩阵构成,可实现以下主机总线和从机总线的互连:

■ 主机总线

- Cortex-M4F 内核 CPU-I 总线、CPU-D 总线、CPU-S 总线
- 系统 DMA 1 总线、系统 DMA 2 总线
- USBFS_DMA 总线

■ 从机总线

- Flash ICODE 总线
- Flash DCODE 总线
- Flash MCODE 总线(CPU 以外其他主机访问 Flash 的总线)
- 高速 SRAMH(SRAMH 32 kB)总线
- 系统 SRAM (SRAM0 32 kB) 总线
- 系统 SRAM (Ret SRAM 4 KB) 总线
- APB1 外设总线(EMB/ Timers/ SPI/ USART/ AOS/ EFM)
- APB2 外设总线(Timers/ SPI/ USART/ SPI/ MDIO)
- APB3 外设总线(ADC/ DAC/ TRNG)
- APB4 外设总线(FCM/ WDT/ SWDT/ EMU/ CTC/ OTS/ RTC/ VREF/ PLA)
- APB5 外设总线(Timers/ CMP/ I2C)
- AHB1 外设总线(DMPU/ KEYSCAN/ INTC/ DCU/ GPIO/ DMA/ CMU/ MAU/ FMAC)
- AHB2 外设总线(CAN1/ USBFS)
- AHB3 外设总线(CAN2/ CAN3)
- AHB4 外设总线(AES/ HASH/ CRC)
- AHB5 外设总线(SMC/ SMCR/ QSPI)

借助总线矩阵,可以实现主机总线到从机总线高效率的并发访问。

1.4.3 复位控制 (RMU)

芯片配置了15种复位方式:

- 上电复位 (POR)
- NRST 引脚复位(NRST)
- 欠压复位(BOR)
- 可编程电压检测1复位(PVD1R)
- 可编程电压检测 2 复位(PVD2R)
- 看门狗复位(WDTR)
- 专用看门狗复位(SWDTR)
- 掉电唤醒复位(PDRST)
- 软件复位(SRST)
- MPU 错误复位 (MPUR)
- RAM 奇偶校验复位(RAMPR)
- RAMECC 复位(RAMECCR)
- 时钟异常复位(CKFER)
- 外部高速振荡器异常停振复位(XTALER)
- Cortex-M4 LOCKUP 复位(LKUPR)

1.4.4 时钟控制(CMU)

时钟控制单元提供了一系列频率的时钟功能,包括:一个外部高速振荡器、一个外部低速振荡器、一个PLL 时钟、一个内部高速振荡器、一个内部中速振荡器、一个内部低速振荡器、一个 SWDT 专用内部低速振荡器、时钟预分频器、时钟多路复用和时钟门控电路。

时钟控制单元还提供时钟频率测量功能。时钟频率测量电路(FCM)使用测定基准时钟对测定对象时钟进行监视测定。在超出设定范围时发生中断或者复位。

AHB、APB 和 Cortex-M4 时钟都源自系统时钟,系统时钟的源可选择 6 个时钟源:

- 1. 外部高速振荡器(XTAL)
- 2. 外部低速振荡器(XTAL32)
- 3. PLLH 时钟(PLLH)
- 4. 内部高速振荡器(HRC)
- 5. 内部中速振荡器 (MRC)
- 6. 内部低速振荡器(LRC)

系统时钟的最大运行时钟频率可以达到 120 MHz。SWDT 有独立的时钟源: SWDT 专用内部低速振荡器(SWDTLRC)。实时时钟(RTC)使用外部低速振荡器或者内部低速振荡器作为时钟源。USB-FS 的 48MHz 时钟可以选择系统时钟 PLLH 作为时钟源。

对于每一个时钟源,在未使用时都可以单独打开和关闭,以降低功耗。

1.4.5 电源控制 (PWC)

电源控制器用来控制芯片的多个电源域在多个运行模式和低功耗模式下的电源供给、切换、检测。电源控制器由功耗控制逻辑(PWC)、电源电压检测单元(PVD)构成。

芯片的工作电压(VCC)为 1.8 V 到 3.6 V。电压调节器(LDO)为 VDD 域和 VDDR 域供电,VDDR 电压调压器(RLDO)在掉电模式为 VDDR 域供电。芯片通过功耗控制逻辑(PWC)提供了高速、超低速等两种运行模式,睡眠、停止和掉电等三种低功耗模式。

电源电压检测单元(PVD)提供了上电复位(POR)、掉电复位(PDR)、欠压复位(BOR)、可编程电压检测 1(PVD1)、可编程电压检测 2(PVD2)等功能,其中 POR、PDR、BOR 通过检测 VCC 电压,控制芯片复位动作。PVD1 通过检测 VCC 电压,根据寄存器设定使芯片产生复位或者中断。PVD2 通过检测 VCC 电压或者外部输入检测电压,根据寄存器选择产生复位或者中断。

VDDR 区域在芯片进入掉电模式通过 RLDO 维持电源,保持 4 KB 的 Ret SRAM 的数据。模拟模块配备了专用供电引脚,提高了模拟性能。

1.4.6 初始化配置(ICG)

芯片复位解除后,硬件电路会读取 FLASH 地址 0x0000 0400H~0x000 0045FH 把数据加载到初始化配置寄存器。地址 0x0000 0408~0x0000 040B、0x0000 0414~0x0000 041F、0x0000 0438~0x0000 045F 为保留地址,请写入全 1 保证芯片正常动作。FLASH 引导交换无效时,该区域存在 FLASH 块 0扇区 0;FLASH 引导交换有效时,该区域存在 FLASH 块 1扇区 0。用户可通过编程或擦除扇区 0 来修改初始化配置(Initial ConfiG)寄存器。地址 0x0000 0420~0x0000 0437 为数据安全保护使能区。寄存器复位值由 FLASH 地址数据确定。

1.4.7 嵌入式 FLASH 接口(EFM)

FLASH 接口通过 ICODE、DCODE 和 MCODE 总线对 FLASH 进行访问,可对 FLASH 执行编程,擦除和全擦除操作;通过指令预取和缓存机制加速代码执行。

主要特性:

- 两块独立 FLASH 构成 dual bank,可实现 BGO(background operation)功能
- 最大 134 Kbytes 的 OTP 空间
- ICODE 总线 16 Bytes 预取指

- 两个独立缓存区:ICODE 总线缓存空间 2 Kbytes; DCODE 总线缓存空间 256 bytes
- 支持引导交换功能
- 支持数据安全保护

1.4.8 内置 SRAM (SRAM)

本产品带有 64 KB 系统 SRAM (SRAMH/ SRAMO) 和 4 KB 掉电模式保持 SRAM (Ret SRAM)。

各 SRAM 可按照字节、半字(16 位)或全字(32 位)访问。所有 SRAM(SRAMH/ SRAMO/ Ret SRAM)读写操作最快可以在 CPU 最高速度(120 MHz)下执行。

Ret SRAM 可在 Power down 模式下提供 4 KB 的数据保持空间。

SRAM0 和 Ret SRAM 带有 ECC 校验(Error Checking and Correcting),ECC 校验为纠一检二码,即可以纠正一位错误,检查两位错误;SRAMH 带有奇偶校验(Even-parity check),每字节数据带有一位校验位。

1.4.9 通用 IO (GPIO)

GPIO 主要特性:

- 每组 Port 配有 16 个 I/O Pin,根据实际配置可能不足 16 个
- 支持上拉和下拉
- 支持推挽、开漏输出模式
- 支持高、中、低型驱动模式
- 支持 CMOS/ Schmitt 两种输入模式自由切换
- 支持外部中断的输入
- 支持 I/O pin 周边功能复用,每个 I/O pin 最多 64 个可选择的复用功能
- 各个 I/O pin 可独立编程
- 各个 I/O pin 可以选择 2 个功能同时有效(不支持 2 个输出功能同时有效)

1.4.10 中断控制(INTC)

中断控制器(INTC)选择中断事件作为中断请求送到 NVIC 唤醒 WFI;选择中断事件作为事件输入(RXEV) 唤醒 WFE;选择中断事件唤醒系统低功耗模式(休眠模式和停止模式);控制外部中断和软件中断。

INTC 的主要规格如下:

■ NVIC 中断请求: Cortex-M4 的 NVIC 支持最多 240 个中断请求(IRQ),每个 IRQ 对应一个或多个中断事件

更多关于异常和 NVIC 编程的说明,请参考《ARM Cortex™-M4F 技术参考手册》中【第 5 章:异常】和【第 8 章:嵌套向量中断控制器】

- 可编程优先级: 16 个可编程优先级(使用了 4 位中断优先级寄存器)
- 不可屏蔽中断:可以独立选择多种系统中断事件作为不可屏蔽中断,且各中断事件配备独立的使能 选择、标志、标志清除寄存器
- 配备 16 个外部管脚中断事件
- 配备最多 512 个中断事件
- 配备 32 个软件中断事件
- 中断可唤醒系统休眠模式和停止模式

1.4.11 自动运行系统(AOS)

自动运行系统(Automatic Operation System)用于在不借助 CPU 的情况下实现外设硬件电路之间的联动。利用外设电路产生的事件作为 AOS 源(AOS Source),如定时器的比较匹配、定时溢出,RTC 的周期信号、通信模块的收发数据的各种状态(空闲、接收数据满、发送数据结束、发送数据空),ADC的转换结束等,来触发其他外设电路动作。被触发的外设电路动作称为 AOS 目标(AOS Target)。

1.4.12 存储保护单元(MPU)

MPU 可以提供对存储器的保护,通过阻止非授权的访问,可以提高系统的安全性。

本芯片内置了 1 个针对 CPU 的 MPU 单元, 1 个针对 CPU 主栈指针的 MPU 单元, 1 个针对 CPU 线程栈指针的 MPU 单元, 3 个针对 DMA 的 MPU 单元和 1 个针对 IP 的 MPU 单元。

其中 ARM MPU 提供 CPU 对全部 4 G 地址空间的访问权限控制。

MSPMPU/ PSPMPU 分别提供对 CPU 的主栈指针/线程栈指针的保护,指针超出设定范围时,可以设置 MPU 动作为不可屏蔽中断/复位。

SMPU1/ SMPU2/ FMPU 分别提供系统 DMA_1/系统 DMA_2/ USBFS-DMA 对全部 4 G 地址空间的读写访问权限控制。对禁止空间发生访问时,可以设置 MPU 动作为无视/总线错误/不可屏蔽中断/复位。

IP MPU 提供非特权模式时对系统 IP 和安全相关 IP 的访问权限控制。

1.4.13 键盘扫描(KEYSCAN)

本产品搭载键盘控制模块(KEYSCAN)1 个单元。KEYSCAN 模块支持键盘阵列(行和列)扫描,列是由独立的扫描输出 KEYOUTm (m=0~7)驱动,而行 KEYINn (n=0~15)则作为 EIRQn (n=0~15)输入被检测。本模块通过行扫描查询法实现按键识别功能。

1.4.14 内部时钟校准器(CTC)

内部时钟校准器(Clock Trimming Controller,以下称 CTC)可以自动校准内部高速振荡器(HRC)。由于工作环境的影响 HRC 的频率可能会产生偏差,用 CTC 基于外部高精度参考时钟,采用硬件方式自动调整 HRC 的频率以得到一个精准的 HRC 时钟。

CTC 的主要特性如下:

- 三个外部参考时钟源: XTAL、XTAL32、CTCREF
- 用于频率测量并具有重载功能的 16 位校准计数器
- 用于频率校准的8位校准偏差值和6位校准值
- 用于提示校准失败的错误中断

1.4.15 DMA 控制器 (DMA)

DMA 用于在存储器和外围功能模块之间传送数据,能够在 CPU 不参与的情况下实现存储器之间,存储器和外围功能模块之间以及外围功能模块之间的数据交换。

- DMA 总线独立于 CPU 总线,按照 AMBA AHB-Lite 总线协议传输
- 拥有 2 个 DMA 控制单元,共 16 个独立通道,可以独立操作不同的 DMA 传输功能
- 每个通道的启动源通过独立的触发源选择寄存器配置
- 每次请求传输一个数据块
- 数据块最小为1个数据,最多可以是1024个数据
- 每个数据的宽度可配置为 8 bit、16 bit 或 32 bit
- 可以配置最多 65535 次传输
- 源地址和目标地址可以独立配置为固定、自增、自减、循环或指定偏移量的跳转
- 可产生 3 种中断:块传输完成中断、传输完成中断、传输错误中断。每种中断都可以配置是否屏蔽。其中块传输完成、传输完成可作为事件输出,可作为其它外围模块的触发源
- 支持连锁传输功能,可实现一次请求传输多个数据块
- 支持外部事件触发通道重置
- 不使用时可设置进入模块停止状态以降低功耗

1.4.16 电压比较器(CMP)

电压比较器 (Comparator,以下简称 CMP) 是将两个模拟电压进行比较并且输出比较结果的外设模块,提供了 2 组,共 4 个比较通道:CMP1/ CMP2、CMP3/ CMP4。

CMP 具有以下主要特性:

- 4个比较通道可独立进行普通比较
- 同组的两个比较通道组合使用可实现最多 2 组窗口比较模式
- 每个比较通道的正/负端电压均有多个输入源(IO/ PGA/ DAC/ VREF)供选择
- 噪声滤波器可以对比较器输出滤波,7 种采样时钟可选
- 可使用定时器 PWM 进行比较器输出空白窗口控制
- 可在比较结果的变化沿处产生中断、触发其他外设以及唤醒 STOP 模式
- 比较结果可通过寄存器监视,也可输出到外部管脚 VCOUT

- 比较结果可用于紧急刹车(EMB)以及定时器空白窗口的控制事件
- 軟件复位和看门狗复位发生时比较器输出保持
- 迟滞功能

1.4.17 模数转换器 (ADC)

12 位 ADC 是一种采用逐次逼近方式的模拟数字转换器。本 MCU 搭载 3 个 ADC 单元,单元 1 和 2 最大支持 24 个通道,单元 3 最大支持 25 个通道,可以转换来自外部引脚、以及芯片内部的模拟信号。模拟输入通道可以任意组合成一个序列,一个序列可以进行单次扫描转换或连续扫描转换。支持对任意指定通道进行连续多次转换并对转换结果进行平均。ADC 模块还搭载模拟看门狗功能,对任意指定通道的转换结果进行监视,检测其是否超出用户设定的范围。

ADC 主要特性:

■ 高性能

- 可配置 12 位、10 位和 8 位分辨率
- ADC 数字接口时钟 PCLK4 和转换时钟 PCLK2(也称作 ADCLK)的频率比可设置为 1:1、2:1、4:1、8:1、1:2、1:4

PCLK2 可选与系统时钟 HCLK 异步的 PLL 时钟,此时频率比 PCLK4: PCLK2=1:1 PCLK2 频率最高支持 60 MHz

- 采样率: 2.5 MSPS(PCLK2=60 MHz, 12 位, 采样 11 周期, 变换 13 周期)
- 各通道采样时间独立编程
- 各通道独立数据寄存器
- 数据寄存器可配置左/右对齐方式
- 连续多次转换平均功能
- 模拟看门狗,监视转换结果
- 不使用时可以将 ADC 模块设定成停止状态

■ 模拟输入通道

- 最大 32 个外部模拟输入通道
- 三个内部模拟输入:内部基准电压、VREFINT、AVCC 分压

■ 转换开始条件

- 软件设置转换开始
- 周边外设同步触发转换开始
- 外部引脚触发转换开始

■ 转换模式

- 2 个扫描序列 A、B,可任意指定单个或多个通道
- 序列 A 单次扫描

- 序列 A 连续扫描
- 双序列扫描,序列 A、B 独立选择触发源,序列 B 优先级高于 A
- 协同工作模式(适用于具有两个或三个 ADC 的设备)

■ 中断与事件信号输出

- 序列 A 扫描结束中断和事件 ADC_EOCA
- 序列 B 扫描结束中断和事件 ADC EOCB
- 模拟看门狗 0 比较中断和事件 ADC CMP0
- 模拟看门狗 1 比较中断和事件 ADC_CMP1
- 上述的 4 个事件输出都可启动 DMA

本 MCU 搭载了 2 个单元可编程增益放大器 PGA,增益范围 x2~x32 可选择。模拟输入可以先经过 PGA 电路进行放大,然后再输入到 ADC 模块进行转换。

1.4.18 数模转换器(DAC)

本 MCU 搭载了 4 个 12 位转换精度的数模转换器单元 DAC1~4。每个 DAC 单元包含两个 D/A 转换通道,可以独立转换也可以同步转换。模拟电压输出范围有两档可设。每个转换通道配有输出缓冲器,可以在没有外部运放时直接驱动外部负载。

DAC 主要特性如下:

- 4 个 DAC 单元,每个单元有两个 D/A 转换通道
- 12 位转换数据可配置成左对齐或者右对齐格式
- 同一个 DAC 单元的两个转换通道可实现同步转换
- 独立的参考电压 VREFH 用于提高转换精度
- 使用输出缓冲器时可选择 1.0x 或者 2.0x 输出增益
- 输出可用于电压比较器(CMP)的负端输入
- 输出配有缓冲功能,可直接驱动外部负载
- A/D 转换优先模式可减少对 ADC 转换时的干扰
- 软件复位/看门狗复位 DAC 输出保持

1.4.19 温度传感器(OTS)

OTS 可以获取芯片内部的温度,以支持系统的可靠性操作。使用软件或者硬件触发启动测温后,OTS 提供一组与温度相关的数字量,通过计算公式可以计算得到温度值。

1.4.20 高级控制定时器(Timer6)

高级控制定时器 6(Timer6)是一个 16 位计数宽度的高性能定时器,能在各种复杂应用场景中提供丰富、灵活的搭配组合和各种中断、事件、PWM 输出。该定时器支持锯齿波和三角波两种波形模式,可生成各种 PWM 波形(单边对齐独立 PWM、双边对称独立 PWM、双边对称互补 PWM、双边非对称 PWM

等);单元间可实现软件同步和硬件同步(同步启动、停止、清零、刷新等);各基准值寄存器支持缓存功能(单级缓存和双级缓存);支持脉宽测量和周期测量;支持 2 相正交编码和 3 相正交编码;支持 EMB 控制。本系列产品中搭载 10 个单元的 Timer6(U1~10 为 16 bit 定时器)。

1.4.21 通用控制定时器(Timer4)

通用控制定时器 4(Timer4)是一个用于三相电机控制的定时器模块,提供各种不同应用的三相电机控制方案。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形;支持缓存功能;支持 EMB 控制。本系列产品中搭载 1 个单元的 Timer4。

1.4.22 紧急刹车模块(EMB)

紧急刹车模块是在满足一定条件时产生控制事件输出给定时器,以控制定时器停止向外部电机输出 PWM 信号的功能模块,下列要因用于产生控制事件:

- 外部端口输入电平变化
- PWM 输出端口电平发生同相(同高或同低)
- 电压比较器比较结果
- 系统错误
- 写寄存器软件控制

1.4.23 通用定时器(TimerA)

通用定时器 A(TimerA)是一个具有 16/32 位计数宽度、4 路 PWM 输出的定时器。该定时器支持三角波和锯齿波两种波形模式,可生成各种 PWM 波形(单边对齐 PWM、双边对称 PWM);支持计数器同步启动;比较基准值寄存器支持缓存功能;支持单元间级联计数;支持 2 相正交编码计数和 3 相正交编码计数。本系列产品搭载 6 个单元 TimerA(U1~U2 为 32 bit 定时器;U3~U6 为 16 bit 定时器),最大可实现 24 路 PWM 输出。

1.4.24 通用定时器(Timer2)

通用定时器 2(Timer2)是一个可以实现同步计数、异步计数方式的基本定时器。该定时器内含 2 个通道(CH-A 和 CH-B)。每个通道均有一个输出端口,可实现基本的方波输出;每个通道均有 2 个输入端口,一个是时钟输入端口,可实现端口异步计数;一个是触发输入端口,可实现定时器启动、停止、清零、计数动作及计数值捕获输入;支持脉宽测量和周期测量。本系列产品中搭载 4 个单元的 Timer2。

1.4.25 通用定时器(TimerO)

通用定时器 0(Timer0)是一个可以实现同步计数、异步计数方式的基本定时器。该定时器内含 2 个通道(CH-A 和 CH-B),可以在计数期间产生比较匹配事件。该事件可以触发中断,也可作为事件输出来控制其它模块等。本系列产品中搭载 2 个单元的 Timer0。

1.4.26 实时时钟(RTC)

实时时钟(RTC)是一个以 BCD 码格式保存时间信息的计数器。记录从 00 年到 99 年间的具体日历时间。支持 12/ 24 小时两种时制,根据月份和年份自动计算日数 28、29(闰年)、30 和 31 日。

1.4.27 看门狗计数器 (WDT)

看门狗计数器有两个,一种是计数时钟源为专用内部 RC(SWDTLRC: 10 KHz)的专用看门狗计数器(SWDT),另一种是计数时钟源为 PCLK3 的通用看门狗计数器(WDT)。专用看门狗和通用看门狗是 16 位递减计数器,用来监测由于外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行而产生的软件故障。

两个看门狗都支持窗口功能。在计数开始前可预设窗口区间,计数值位于窗口区间时,可刷新计数器, 计数重新开始。

1.4.28 串行通信接口(USART)

本产品搭载通用串行收发器模块(USART)6 个单元。通用串行收发器模块(USART)能够灵活地与外部设备进行全双工数据交换;本 USART 支持通用异步串行通信接口(UART),时钟同步通信接口,智能卡接口(ISO/ IEC7816-3)和 LIN 通信接口。支持调制解调器操作(CTS/ RTS 操作),多处理器操作。与 Timer0 模块配合支持 UART 接收 TIMEOUT 功能。USART 1 支持通过 RX 线唤醒 STOP 模式功能。

具体功能分配如下:

■ UART: 全通道支持

■ 多处理器通信:全通道支持■ 时钟同步通信:全通道支持

■ RX 线唤醒 STOP 模式功能: USART 1 支持

■ 小数波特率:全通道支持

■ LIN: USART_3、USART_6 支持

■ 智能卡: USART_1、USART_2、USART_4、USART_5 支持

■ UART 接收超时功能: USART 1、USART 2、USART 4、USART 5 支持

1.4.29 集成电路总线(I2C)

I2C(集成电路总线)用作微控制器和 I2C 串行总线之间的接口。提供多主模式功能,可以控制所有 I2C 总线的协议、仲裁。支持标准模式、快速模式,还支持 SMBus 总线。

I2C 主要特性:

■ I2C 总线方式、SMBUS 总线方式可选。主机模式、从机模式可选。自动确保与传送速率相对于的 各种准备时间、保持时间和总线空闲时间

- 标准模式最大 100 Kbps、快速模式最大 400 Kbps、FM+模式最大 1 Mbps
- 自动生成开始条件、重新开始条件和停止条件,并能检测到总线的开始条件、重新开始条件和停止 条件
- 最大支持 128 个从机地址。支持 7 位地址格式和 10 位地址格式。能检测到广播呼叫地址、SMBus 主机地址、SMBus 设备默认地址、SMBus 报警地址
- 发送时可以自动判定应答位。接收时可以自动发送应答位
- 握手功能
- 仲裁功能
- 超时功能,可以检测 SCL 时钟长时间停止
- SCL 输入和 SDA 输入内置数字滤波器,滤波能力可编程
- 通信错误,接收数据满,发送数据空,一帧发送结束,地址匹配一致中断
- 2级发送接收 FIFO

1.4.30 串行外设接口(SPI)

本产品搭载 4 个通道的串行外设接口 SPI,支持高速全双工串行同步传输,方便地与外围设备进行数据交换。用户可根据需要进行三线/四线,主机/从机及波特率范围的设置。

表 1-2 SPI 主要特性

要点	描述
	• 支持4线式SPI模式和3线式时钟同步运行模式
串行通信功能	• 支持全双工和只发送两种通信方式
	• 可调整通信时钟SCK的极性和相位
	• 可选择数据移位顺序: MSB开始/ LSB开始
数据格式	• 可选择数据宽度:4/5/6/7/8/9/10/11/12/13/14/15/16/20/24/32位
	• 单次最多可传送或接收4帧宽度为32位的数据
	• 主机模式下可通过内置专用波特率发生器对波特率进行调整,波特率范围为
波特率	PCLK1的2分频~256分频
	• 从机模式下允许的最大波特率为PCLK1的6分频
粉捏碎冲	• 带有16字节的数据缓冲区域
数据缓冲	• 支持双重缓冲
	• 模式故障错误监测
 错误监测	• 数据过载错误监测
日庆 血则	• 数据欠载错误监测
	• 奇偶校验错误监测
	• 每个通道配置四根片选信号线
 片选信号控制	• 可对片选信号和通信时钟的相对时序关系进行调整
九处信与在例	• 可对连续两次通信之间的片选信号无效时间进行调整
	• 极性可调
 主机模式下的传输控制	• 通过将数据写入数据寄存器启动传输
土がい矢式「ログマ和江中)	• 通信自动挂起功能
	• 接收数据区域已满
	• 发送数据区域已空
中断	• SPI错误(模式/过载/欠载/奇偶校验)
	• SPI空置
	• 传输完成(仅为事件源)
低功耗控制	• 可设置模块停止
其他功能	• SPI初始化功能

1.4.31 四线式串行外设接口(QSPI)

四线式串行外设接口(QSPI)是一个存储器控制模块,主要用于和带 SPI 兼容接口的串行 ROM 进行通信。其对象主要包括有串行闪存,串行 EEPROM 以及串行 FeRAM。

1.4.32 USB2.0 全速模块(USBFS)

USB 全速(USBFS)控制器为便携式设备提供了一套 USB 通信解决方案。USBFS 控制器支持主机模式和设备模式,且芯片内部集成全速 PHY。主机模式下,USBFS 控制器支持全速(FS,12 Mb/s)和低速(LS,1.5 Mb/s)收发器,而设备模式下则仅支持全速(FS,12 Mb/s)收发器。USBFS 控制器支持USB2.0 协议所定义的所有四种传输方式(控制传输、批量传输、中断传输和同步传输)。

1.4.33 可编程逻辑阵列 (PLA)

可配置逻辑阵列为外部引脚提供 256 个可编程数字逻辑操作,而无需 CPU 干预。本模块实现 16 个独立的 PLA 单元。

1.4.34 高精度参考电压(VREF)

本 MCU 内嵌了一个高精度参考电压简称 (VREF),可以作为 ADC、DAC 的参考电压,也可以通过 VREFH 引脚作为输出,供片外电路使用。

1.4.35 CAN FD 控制器(CAN FD)

CAN FD 控制器遵循 CAN 总线 CAN2.0(2.0A、CAN2.0B) 和 CAN FD 协议。

CAN 总线控制器可以处理总线上的数据收发,在本产品中,CAN FD 控制器具有 16 组筛选器。筛选器用于为应用程序选择要接收的消息。

CAN FD 控制器中应用程序可通过 1 个高优先级的主发送缓冲器(Primary Transmit Buffer,以下简称 PTB)和 3 个辅发送缓冲器(Secondary Transmit Buffer,以下简称 STB)将发送数据送至总线,由发送调度器决定邮箱发送顺序。通过 8 个接收缓冲器(Receive Buffer,以下简称 RB)获取总线数据。3 个 STB 以及 8 个 RB 可以理解为一个 3 级 FIFO 和一个 8 级 FIFO,FIFO 完全由硬件控制。

CAN FD 总线控制器同时也可以支持时间触发 CAN 通信(Time-trigger communication)。

1.4.36 MDIO 串行总线接口(MDIO)

MDIO 接口包含在 IEEE802.3 协议中,是专用于以太 PHY 的管理的串行总线接口,采用 IEEE 802.3 Clause45。MDIO 接口硬件可以接收完整的 MDIO 帧,而无需软件干预。MDIO 接口硬件也可以在没有软件干预的情况下发送完整的 MDIO 帧,只要在接收读数据帧或读后增量地址帧的周转位(TA)之前提供要发送的数据。为了帮助使用和提供相关数据,在每个完整帧的末尾都会生成中断。如果接收到的 PHYADR 或 DEVADD 与预期值不匹配,则不会对帧执行操作。中断也可以在每个有效的 PHYADR 和 DEVADD 之后生成,以允许在帧内进行更复杂的控制。

1.4.37 外部存储器控制器(EXMC)

外部存储器控制器 EXMC(External Memory Controller)是一个用来访问各种片外存储器,实现数据交换的独立模块。EXMC 通过配置可以把内部的 AMBA 协议接口转换为各种类型的专用片外存储器通信协议接口,包括 SRAM、PSRAM、NOR Flash 等。

1.4.38 加密协处理模块(CPM)

加密协处理模块(CPM)包括 AES 加解密算法处理器、HASH 安全散列算法、TRNG 真随机数发生器三个子模块。

AES 加解密算法处理器遵循美国国家标准技术研究所(NIST)在 2000 年 10 月 2 日正式宣布的新的数据加密标准,分组长度固定为 128 位,而密钥长度支持 128/ 192/ 256 位。

HASH 安全散列算法是 SHA-2 版本的 SHA-256(Secure Hash Algorithm),符合美国国家标准和技术局发布的国家标准"FIPS PUB 180-3",可以对长度不超过 2⁶⁴ 位的消息产生 256 位的消息摘要输出。

TRNG 真随机数发生器是以连续模拟噪声为基础的随机数发生器,提供 64 bit 随机数。

1.4.39 CRC 计算单元 (CRC)

本模块 CRC 算法遵从 ISO/ IEC13239 的定义,分别采用 32 位和 16 位的 CRC。CRC32 的生成多项式为 $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$,32 位初值为 "0xFFFF"。CRC16 的生成多项式为 $X^{16}+X^{12}+X^{5}+1$,16 位初值为 "0xFFFF"。

1.4.40 数据计算单元(DCU)

数据计算单元(Data Computing Unit)是一个不借助于 CPU 的简单处理数据的模块。每个 DCU 单元具有 3 个数据寄存器,能够进行 2 个数据的加减和比较大小,以及窗口比较功能。本产品搭载 3 个 DCU 单元,每个单元均可独立完成自身功能。

1.4.41 数学运算单元 (MAU)

数学运算单元(MAU)是一个内含开方运算和正弦运算两种运算类型的硬件加速运算模块,支持定点数的开方和正弦运算。正弦函数支持 360°/ 2^12 运算精度。

1.4.42 滤波数学加速器(FMAC)

滤波数学加速器(FMAC)是一个 FIR 滤波计算的硬件加速模块。该模块可进行最大 16 阶,且阶数可配置的 FIR 数字滤波。内置 16x16 bit 乘法器、32+5 bit 加法器,用户可自定义输出数据精度。本系列产品搭载 4 个 FMAC 模块。

1.4.43 调试控制器 (DBGC)

本 MCU 的内核是 Cortex™-M4F,该内核包含用于高级调试功能的硬件。利用这调试功能,可以在取指(指令断点)或访问数据(数据断点)时停止内核。内核停止时,可以查询内核的内部状态和系统的外部状态。查询完成后,将恢复内核和系统并恢复程序执行。

提供两个调试接口:

- 串行调试跟踪接口 SWD
- 并行调试跟踪接口 JTAG

2 引脚配置及功能(Pinouts)

2.1 引脚配置图

LQFP100

LQPF48

BGA64

(Top View)

注: A1 为 Pin 1。

2.2 引脚功能表

表 2-1 引脚功能表

				Analog	EIRQ/WKUF	TRACE/ JTAG	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16	Func17	Func18	Func19	Func20	Func21	Func22	Func23	Func24	Func25	Func26	Func32~63
LQFP48	BGA64	LQFP100	Pin Name				GPO	I2C/ ADTRG	CMP/SPI/ KEY	EXMC/SPI	SPI/QSPI/ EXMC	QSPI/ KEY	SPI/KEY/ EMB	USART	USART	PLA	PLA/TIM6 /EMB	TIM6	TIM6/ EXMC	TIM6/ TIMA	TIM6/ TIMA	TIM6/ TIMA	TIM6/TIMA/ ADTRG	TIMA	TIMA/ TIM2	TIM2	TIM4/ CTC	TIM2/ EMB/CTC/ FCM	TIM2/ EMB/USB/ CMP	MDIO/ ADTRG	Other	EVENTOUT	EVENTPORT/ ADTRG	Communication Function Group
-	-	1	PE2		EIRQ2	TRACECL K	GPO			EXMC_ADD 23	SPI4_NSS3							TIM6_4_P WMA	TIM6_4_P WMB			TIMA_5_PWN 2/CLKB	TIMA_6_PWM1 /CLKA				TIM4_1_OU H	J						FG1
-	-	2	PE3		EIRQ3	TRACED0	GPO			EXMC_ADD 19	SPI4_NSS2											TIMA_5_PWN	TIMA_6_PWM2 /CLKB	2			TIM4_1_OU L	J						FG1
-	-	3	PE4		EIRQ4	TRACED1	GPO			EXMC_ADD 20	SPI4_NSS1											TIMA_5_PWN	TIMA_6_PWM3	3			TIM4_1_OV H	1						FG1
-	-	4	PE5		EIRQ5	TRACED2	GPO			EXMC_ADD 21	SPI4_NSS0										TIMA_5_TR	TIMA_5_PWN 1/CLKA	TIMA_6_PWM4	1			TIM4_1_OV L	,						FG1
-	-	5	PE6		EIRQ6	TRACED3	GPO			EXMC_ADD 22	SPI4_SCK										TIMA_5_TR	TIMA_5_PWN 2/CLKB	1				TIM4_1_CL K							FG1
1	-	6	PF2		EIRQ2		GPO		CMP4_OUT	EXMC_ADD 24		KEYOUT6						TIM6_10_P WMA	TIM6_10_P WMB	TIM6_TRIG	6	TIMA_4_TRIC	5				TIM4_1_0 WH	EMB_PORT 4						FG2
2	B2	7	PC13		EIRQ13+WK UP3_1		GPO			EXMC_ADD 25		KEYOUT5					PLA3OUT	TIM6_7_P WMA	TIM6_7_P WMB								TIM4_1_O WL				RTC_OU		EVNTP313	FG2
3	A2	8	PC14	XTAL32_IN	EIRQ14		GPO																				TIM4_1_PC T						EVNTP314	
4	A1	9	PC15	XTAL32_OUT	EIRQ15		GPO																				TIM4_1_AD SM						EVNTP315	
-	-	10	VSS																															
-	-	11	VCC																															
5	B1	12	PF0	XTAL_IN/XTAL_EXT	EIRQ0		GPO	I2C1_SD A	CMP3_OUT	EXMC_DAT A27						PLAIN16		TIM6_9_P WMA	TIM6_9_P WMB	TIM6_TRIG	6						TIM4_1_AD SM)						
6	C1	13	PF1	XTAL_OUT	EIRQ1		GPO	I2C1_SCL	CMP1_OUT	EXMC_ADD 29						PLAIN17											TIM4_1_PC							
7	D1	14	NRST																															
-	E3	15	PC0	ADC123_IN10	EIRQ0		GPO			EXMC_ADD 0	SPI1_NSS3	KEYOUT4					PLA4OUT	TIM6_7_P WMB	TIM6_7_P WMA		TIMA_5_P WM1/CLKA	TIMA_6_PWN 1/CLKA	1									EVENTOUT	EVNTP300	FG2
-	E2	16	PC1	ADC123_IN11	EIRQ1		GPO		СМРЗ_ООТ	EXMC_ADD 1	SPI1_NSS2	KEYOUT3					PLA5OUT	TIM6_8_P WMB	TIM6_8_P WMA		TIMA_5_P WM2/CLKB	TIMA_6_PWN 2/CLKB	1									EVENTOUT	EVNTP301	FG2
-	F2	17	PC2	ADC123_IN12	EIRQ2		GPO		SPI1_MISO	EXMC_ADD 2	SPI1_NSS1	KEYOUT2					PLA6OUT	TIM6_9_P WMB	TIM6_9_P WMA		TIMA_5_P WM3	TIMA_6_PWN 3	1									EVENTOUT	EVNTP302	FG2
-	F1	18	PC3	ADC123_IN13	EIRQ3		GPO		SPI1_MOSI	EXMC_ADD 3		KEYOUT1					PLA7OUT	TIM6_10_P WMB	TIM6_10_P WMA		TIMA_5_P WM4	TIMA_6_PWN 4	1					EMB_PORT 2				EVENTOUT	EVNTP303	FG2
8	E1	19	AVSS																															
-	-	20	VREFL																															
-	G1	21	VREFH																															
9	H1	22	AVCC																															
10	G2	23	PA0	ADC123_IN0+CMP1_INM1	EIRQ0+WKU P0_0	,	GPO		CMP1_OUT	EXMC_ADD 10	SPI3_NSS1	KEYOUT4		USART1_ CTS	USART2_ CTS	PLAIN18	TIM6_TRIG D	TIM6_1_P WMA	TIM6_1_P WMB	TIM6_TRIG	TIMA_3_TR	TIMA_1_PWN 1/CLKA	TIMA_1_TRIG	TIMA_3_ PWM1/C LKA	TIM2_3_CL KB	TIM2_3_P WMB/TRIG B		EMB_PORT 3			FCMREF	EVENTOUT	EVNTP100	FG1
11	H2	24	PA1	ADC123_IN1+CMP1_INP1+CMP2_IN P1+RTC_CLK1	N EIRQ1		GPO		SPI2_NSS1	EXMC_ADD 11	SPI3_NSS2	KEYOUT3		USART1_ RTS		PLAIN19		TIM6_6_P WMB		TIM6 TRIG	TIMA 4 P	TIMA_1_PWN 2/CLKB		TIMA_3_ PWM2/C LKB	TIM2_4_P WMB/TRIG B	TIM2_4_CL KB	TIM4_1_OU L	EMB_PORT 4				EVENTOUT	EVNTP101	FG1
12	F3	25	PA2	ADC123_IN2+CMP1_INM2+CMP2_I NM1	EIRQ2		GPO	ADTRG1	CMP2_OUT	EXMC_ADD 12	SPI3_NSS3	QSPI_IO2	KEYOUT7				PLA0OUT			TIMA_5_TF	R TIMA_5_P WM1/CLKA	TIMA_1_PWN	TIMA_4_PWM1 /CLKA	TIMA_3_ PWM3	TIM2_3_CL	TIM2_3_P WMA/TRIG	TIM4_1_OU	j		MDC	CAN2_TS T_SAMPL	EVENTOUT	EVNTP102	FG1
13	G3	26	PA3	ADC123_IN3+CMP1_INP2+CMP2_IN			+ +			EXMC_ADD 13							PLA4OUT	TIM6_1_P	-	 	+	-	TIMA_5_TRIG	_				_		MDIO	E	EVENTOUT	EVNTP103	FG1
	-	27	VSS	P2	+					13								VVMA	WMB	VVM3	WM2/CLKB	4		PWM4	В	VR.	K	-						
	_	28	VCC		+																							-						
	C2	-	PF4	HC32F472KCHI/HC32F472KEHI:ADO	C _{EIRQ4}		GPO									PLAIN20												-		MDC		EVENTOUT		FG2
_	D2	-	PF5	3_IN14 HC32F472KCHI/HC32F472KEHI:AD0			GPO										PLA11OUT													MDIO		EVENTOUT		FG2
	1			3_IN15 HC32F472KCHI/HC32F472KEHI: ADC12 IN4+DAC1 OUT1+CMP1 IN																														
14	Н3	29	PA4	P3+CMP1 INM3+CMP2 INP3+CMP. INM2+CMP3 INM2+CMP4 INM2 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC12 IN4+DAC1 OUT1	2 EIRQ4		GPO		SPI3_NSS0	EXMC_ADD 14	SPI2_NSS0	QSPI_NSS	SPI1_NSS 0	USART1_ CK	USART2_ CK		PLA5OUT					TIMA_4_TRIG	TIMA_2_PWM2 /CLKB	2	TIM2_1_P WMA/TRIG A	TIM2_1_CL KA	TIM4_1_OV L	,			CAN2_TS T_CLOCK	EVENTOUT	EVNTP104	FG2

HC32F472 系列数据手册_Rev1.01

				Analog	EIRQ/WKUP	TRACE/ JTAG	Func0 I	Func1 Fu	nc2 Fund	:3 Fu	nc4 Fu	nc5 Fur	nc6 Fu	unc7 Fur	nc8 Fu	nc9 Fu	unc10	Func11	Func12	Func13	Func14	Func15	Func16	Func17	Func18	Func19	Func20	Func21	Func22	Func23	Func24	Func25	Func26	Func32~63
LQFP48	BGA64	LQFP100	Pin Name					I2C/ CMP	/SPI/ EXMC	SPI SPI/	QSPI/ QS	SPI/ SPI/I		SART USA	ART P		A/TIM6 /EMB	TIM6	TIM6/ EXMC	TIM6/ TIMA	TIM6/ TIMA	TIM6/ TIMA	TIM6/TIMA/ ADTRG	TIMA	TIMA/ TIM2	TIM2	TIM4/ CTC		TIM2/ EMB/USB/	MDIO/ ADTRG	Other	EVENTOUT	EVENTPORT/ ADTRG	Communication Function
15	F4	30	PA5	HC32F472KCHI/HC32F472KEHI: ADC12_IN5+DAC1_OUT2+CMP1_IN M4+CMP3_INM3+CMP4_INM3 HC32F472JCTI/HC32F472JETI/HC32 F472PETI: ADC12_IN5+DAC1_OUT2	EIRQ5		GPO		NSS3 EXMC			_SCK SPI1_		ART6_ CTS			A6OUT						G TIMA_3_TRIG	TIMA 3 PWMĪ/C LKA	Tu 10 4 D	TIM2_1_CL KB		FCM	СМР	ADIRO	CAN1_TS T_SAMPL E	EVENTOUT	EVNTP105	Group FG2
16	G4	31	PA6	HC32F472KCHI/HC32F472KEHI: ADC12_IN6+DAC2_OUT1+CMP2_IN M3+CMP4_INM4 HC32F472 CTI/HC32F472 ETI/HC32 F472PCTI/HC32F472PETI: ADC12_IN6	EIRQ6		GPO C.	CAN3_TS _SAMPL CMP1 E	_OUT EXMC_ A24	DAT	QSF	ı_IO1 SPI1	_MIS US/	ART6_ RTS		PL	A7OUT			TIMA_5_P WM4			TIMA_2_PWM1 /CLKA	TIMA_5 PWM1/C LKA	TIM2_3_P WMA/TRIG A	TIM2_3_CL KA	TIM4_1_OV H	EMB_PORT 2	EMB_PORT			EVENTOUT	EVNTP106	FG2
17	Н4	32	PA7	HC32F472KCHI/HC32F472KEHI: ADC12 IN7+DAC2 OUT2+CMP1 IN P4+CMP2 INP4+CMP2 INM4+CMP3 INM4+PGA1 HC32F472[CTI/HC32F472]ETI/HC32 F472PCTI/HC32F472PETI: ADC12 IN7 +PGA1	EIRQ7		GPO A	ADTRG3 CMP2	OUT EXMC_ A25		QSF	I_IOO SPI1_	MOS US	ART6_ CK		PL	A1OUT T	TIM6_1_P WMA	TIM6_7_P WMA	TIM6_7_P WMB	TIM6_1_P WMB	TIMA_2_PWN 2/CLKB	TIMA_6_PWM1 /CLKA	TIMA_3_ PWM4	TIM2_1_P WMA/TRIG A	TIM2_1_CL KA	. TIM4_1_O WH	TIM2_4_P WMA/TRIG A	TIM2_4_CL KA		CAN1_TS T_CLOCK	EVENTOUT	EVNTP107	FG2
-	Н5	33	PC4	HC32F472KCHI/HC32F472KEHI:ADC 12 IN14+DAC3_OUT1 HC32F472PCTI/HC32F472PETI: AD C12 IN14+	EIRQ4		GPO	SPI4_	MISO EXMC_	ADD	KEY	отто				PLA	A12OUT			TIM6_TRIG	TIM6_TRIG Ā											EVENTOUT	EVNTP304	FG1
-	H6	34	PC5	HC32F472KCHI/HC32F472KEHI:ADC 12 IN15+DAC3 OUT2 HC32F472PCTI/HC32F472PETI: AD C12 IN15	EIRQ5		GPO	SPI4_	MOSI EXMC_5	ADD	KEY	OUTO				PLA	A130UT											EMB_PORT				EVENTOUT	EVNTP305	FG1
18	F5	35	PB0	HC32F472KCHI/HC32F472KEHI: ADC123_IN8+CMP3_INP1+CMP4_IN P1+PGA2 HC32F472/CTI/HC32F472/ETI/HC32 F472PCTI/HC32F472PETI: ADC12_I N8++PGA2	EIRQ0			ADTRG1	EXMC_ A21	DAT SPI3	_NSSO KEY	DUT2		ART5_ CTS	PL	AIN8 PL	A1OUT T	TIM6_8_P WMA	TIM6_2_P WMA	TIM6_2_P WMB	TIM6_8_P WMB	TIMA_6_TRIG	G TIMA_2_PWM3	TIMA_3_ PWM1/C LKA	TIM2_3_P WMB/TRIG B	TIM2_3_CL KB	TIM4_1_AD SM				RTC_OU T	EVENTOUT	EVNTP200	FG1
19	G5	36	PB1	HC32F472KCHI/HC32F472KEHI:ADC 123 IN9 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC12 I N9	EIRQ1+WKU P0_1	1 1	GPO A	ADTRG2 CMP4	OUT EXMC_		QSP	_SCK		ART5_ RTS	PL	AIN9	T	TIM6_3_P WMA	TIM6_9_P WMA	TIM6_9_P WMB	TIM6_3_P WMB		TIMA_2_PWM4	TIMA_3 PWM2/C LKB	TIM2_1_P WMA/TRIG A	TIM2_1_CL KA	TIM4_1_PC	:			MCO_1	EVENTOUT	EVNTP201	FG1
20	G6	37	PB2	HC32F472KCHI/HC32F472KEHI: AD C123_IN16+CMP4_INM1 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC12_I N16	EIDO3 I WKII	1 1	GPO A	ADTRG3	EXMC_ A2	DAT SPI4	_NSS2 KEY	DUT1		ART5_ CK	PLA	JIN10			TIM6_TRIG B	TIM6_TRIG	TIM6_TRIG	TIMA_2_TRIG	ò	TIMA_3_ PWM3	TIM2_1_P WMB/TRIG B	TIM2_1_CL KB	TIM4_1_0 WL				MCO_2	EVENTOUT	EVNTP202	FG1
-	G7	38	PE7	HC32F472KCHI/HC32F472KEHI:DAC 4 OUT1	EIRQ7		GPO		EXMC_ A4		PI_IO2 QSP	_SCK EMB_					Т	TIM6_TRIG	TIM6_TRIG	TIM6_5_P WMB	TIM6_5_P WMA	TIMA_1_PWN	TIMA_3_PWM3	3								EVENTOUT		FG2
-	Н7	39	PE8	HC32F472KCHI/HC32F472KEHI:DAC 4 OUT2	EIRQ8		GPO		EXMC_ A5		PI_IO3	EMB_	POR				Т	TIM6_7_P WMA	TIM6_7_P WMB	TIM6_4_P WMA	TIM6_4_P WMB	TIMA_1_PWM	TIMA_3_PWM4									EVENTOUT		FG2
-	-	40	PE9	HC32F472KCHI/HC32F472KEHI: CM P3 INM1	EIRQ9		GPO		EXMC_ A6								Т	TIM6_7_P WMB	TIM6_7_P WMA															FG2
-	-	41	PE10	-	EIRQ10		GPO		EXMC A7								Т	TIM6_8_P WMA	TIM6_8_P WMB															FG2
-	-	42	PE11		EIRQ11		GPO		EXMC_ A8								T	TIM6_8_P WMB	TIM6_8_P WMA															FG2
-	-	43	PE12		EIRQ12		GPO		EXMC_ A9								Т	TIM6_9_P WMA	TIM6_9_P WMB															FG2
-	-	44	PE13		EIRQ13		GPO		EXMC_ A10								1	TIM6_9_P WMB	TIM6_9_P WMA															FG2
-	-	45	PE14		EIRQ14		GPO		EXMC_ A11								Т	TIM6_10_P WMB	TIM6_10_P WMA															FG1
-	-	46	PE15		EIRQ15		GPO		EXMC_ A12																			EMB_PORT						FG1
21	-	47	PB10		EIRQ10		GPO	CMP4	OUT EXMC_	DAT QSF	PI_IO2 QSP	_SCK				EMI	B_PORT_T	TIM6_5_P WMB	TIM6_5_P WMA	TIM6_TRIG		TIMA_1_PWM 3	TIMA_3_PWM3	3								EVENTOUT	EVNTP210	FG1
22	-	48	PB11		EIRQ11		GPO		EXMC_ A31		PI_IO3 KEY	OUT1 EMB_	POR 4				Т	TIM6_4_P WMA	TIM6_4_P WMB			TIMA_1_PWM 4	TIMA_3_PWM4									EVENTOUT	EVNTP211	FG1
23	D4	49	VSS																															
24	E4	50	VCC																															
-	E6	-	VCCIO																															
25	Н8	51	PB12	HC32F472KCHI/HC32F472KEHI:ADC 12_IN17	EIRQ12		GPO	CMP4	OUT EXMC_	ALE SPI2	_NSSO QSP	_NSS SPI1_	NSS)	USAF C	RT3_ K				TIM6_3_P WMB	TIM6_TRIG B	TIM6_3_P WMA							EMB_PORT		MDC		EVENTOUT	EVNTP212	FG2
26	G8	52	PB13	HC32F472KCHI/HC32F472KEHI:ADC 12_IN18	EIRQ13		GPO		EXMC_	CE1	QSP	_SCK SPI1_	SCK	USAF CT				TIM6_7_P WMA	TIM6_3_P WMA	TIM6_7_P WMB	TIM6_3_P WMB									MDIO		EVENTOUT	EVNTP213	FG2
27	F8	53	PB14	HC32F472KCHI/HC32F472KEHI:ADC 12_IN19	EIRQ14		GPO		EXMC_	CE2	QSF	ı_lO1 SPI1	MIS	USAF R1	RT3_ rs		Т	TIM6_8_P WMA	TIM6_4_P WMB	TIM6_8_P WMB	TIM6_4_P WMA	TIMA_6_PWM 1/CLKA	TIMA_6_TRIG	TIMA_4 PWM1/C LKA			TIM4_1_OU H)		MDIO_A0		EVENTOUT	EVNTP214	FG2
28	F7	54	PB15	HC32F472KCHI/HC32F472KEHI: AD C12_IN20+CMP3_INM1+RTC_CLK2 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC12_I N20+RTC_CLK2	EIDO15		GPO	CMPI	_OUT EXMC_	CE3	QSF	ı_IOO SPI1_ I	MOS	USAF CT			T	TIM6_9_P WMA	TIM6_4_P WMA	TIM6_9_P WMB	TIM6_4_P WMB	TIMA_6_PWM 2/CLKB	¹ TIMA_4_PWM3	TIMA_4_ B PWM2/C LKB	TIMA_6_TR IG		TIM4_1_OU L	J		MDIO_A1		EVENTOUT	EVNTP215	FG2
-	-	55	PD8		EIRQ8		GPO		EXMC_ A13																		TIM4_1_OV H	′					EVNTP408	FG1
-	-	56	PD9		EIRQ9		GPO		EXMC_ A14																		TIM4_1_0V L	′					EVNTP409	FG1

HC32F472 系列数据手册_Rev1.01

				Analog	EIRQ/WKUP	TRACE/ JTAG	Func0	Func1 Func	2 Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16	Func17	Func18	Func19	Func20	Func21	Func22	Func23	Func24	Func25	Func26	Func32~63
LQFP48	BGA64	LQFP100	Pin Name			1	GPO	I2C/ CMP/S ADTRG KEY	PI/ EXMC/SF	SPI/QSPI/	QSPI/ KEY	SPI/KEY/ EMB	USART	USART	PLA	PLA/TIM6 /EMB	TIM6	TIM6/ EXMC	TIM6/ TIMA	TIM6/ TIMA	TIM6/ TIMA	TIM6/TIMA/ ADTRG	TIMA	TIMA/ TIM2	TIM2	TIM4/ CTC	TIM2/ EMB/CTC/	TIM2/ EMB/USB/	MDIO/ ADTRG	Other	EVENTOUT	EVENTPORT/ ADTRG	Communication Function
-	-	57	PD10		EIRQ10		GPO		EXMC_DA A15					USART3_ CK												TIM4_1_O WH	FCM	CMP				EVNTP410	Group FG1
-	-	58	PD11		EIRQ11		GPO		EXMC_AD	D				USART3_ CTS												TIM4_1_O WL						EVNTP411	FG1
-	-	59	PD12		EIRQ12		GPO		EXMC_AD	D				USART3_ RTS								TIMA_4_PWM1 /CLKA				TIM4_1_PC						EVNTP412	FG1
-	-	60	PD13		EIRQ13		GPO		EXMC_AD	D												TIMA_4_PWM2 /CLKB				TIM4_1_AD SM						EVNTP413	FG1
-	-	61	PD14		EIRQ14		GPO		EXMC_DA A0	Т												TIMA_4_PWM3				TIM4_1_CL K						EVNTP414	FG1
-	-	62	PD15		EIRQ15		GPO		EXMC_DA	Т				USART4_ CK								TIMA_4_PWM4				CTCREF						EVNTP415	FG1
-	F6	63	PC6		EIRQ6		GPO	СМРЗ_С	UT EXMC_AD	D	KEYOUT2	2		USART6_ CTS				TIM6_1_P WMB	TIM6_TRIG	TIM6_1_P WMA		TIMA_2_PWM1 /CLKA							MDIO_A2		EVENTOUT	EVNTP306	FG2
-	E7	64	PC7		EIRQ7		GPO	SPI2_NS	S3 EXMC_AD	D	KEYOUT3	EMB_POR	1	USART6_ RTS				TIM6_2_P WMB		TIM6_2_P WMA		TIMA_2_PWM2 /CLKB							MDIO_A3		EVENTOUT	EVNTP307	FG2
-	E8	65	PC8		EIRQ8		GPO	SPI2_NS	S2 EXMC_AD	D	KEYOUT4	1		USART6_ CK	PLAIN16		TIM6_5_P WMB	TIM6_3_P WMB	TIM6_5_P WMA	TIM6_3_P WMA		TIMA_2_PWM3							MDIO_A4		EVENTOUT	EVNTP308	FG2
-	D8	66	PC9		EIRQ9		GPO	SPI2_NS	S1 EXMC_AD	D	KEYOUT5	5		USART4_ RTS	PLAIN17		TIM6_5_P WMA	TIM6_4_P WMB	TIM6_5_P WMB	TIM6_4_P WMA		TIMA_2_PWM4									EVENTOUT	EVNTP309	FG2
29	D7	67	PA8	ADC3_IN4	EIRQ8+WKU P2_0	ı	GPO (CAN3_TS T_CLOCK KEYOU	Γ6 EXMC_DA	T SPI4_NSS3	3			USART1_ CK	PLAIN11		TIM6_1_P WMB	TIM6_7_P WMB	TIM6_1_P WMA	TIM6_7_P WMA			TIMA_2_ PWM1/C	TIM2_1_CL KB	TIM2_3_P WMB/TRIG	CTCREF		USBFS_SO F	MDIO_A0	MCO_1	EVENTOUT	EVNTP108	FG1
30	C7	68	PA9	ADC3_IN5	EIRQ9		GPO	KEYOU	EVMC DA	Т			USART4_ CTS		PLAIN12		TIM6_1_P WMA				TIMA_1_PWN	TIMA_3_PWM3	LKA TIMA_2_ PWM2/C		B TIM2_3_P WMA/TRIG	TIM4_1_AD	EMB_PORT	USBFS_VB	MDIO_A1	MCO_2	EVENTOUT	EVNTP109	FG1
31	C6	69	PA10	ADC3_IN6	EIRQ10+WK		GPO	CMP3 C	EVMC AD	D			USART4_		PLAIN13	PI A2OUT	TIM6 2 P	TIM6_9_P	TIM6_2_P			TIMA_3_PWM4	LKB TIMA_2_	TIM2_3_CL	A TIM2_1_P WMB/TRIG B	TIM4_1_CL	EMB_PORT	USBES ID	MDIO_A2		EVENTOUT	EVNTP110	FG1
- 51			17/120	HC32F472KCHI/HC32F472KEHI:	UP2_2		GPO	65_6	26				RTS		. 2 23		WMB	WMB	WMA						TIMO 1 D		5	000.00	11310_12		272.11001		.02
32	C8	70	PA11	ADC3_IN7 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC3_IN7+USBFS_DM HC32F472KCHI/HC32F472KEHI:	EIRQ11+WK UP2_3		GPO	CMP1_C	UT EXMC_AD	D QSPI_IO2				USART1_ CTS	PLAIN14	PLA3OUT	TIM6_7_P WMA	TIM6_10_P WMB	TIM6_7_P WMB	TIM6_10_P WMA	TIM6_2_PWM B	TIM6_2_PWMA	TIMA_2_ PWM4	TIM2_3_CL KA	TIM2_1_P WMA/TRIG A	TIM4_1_0 WL	EMB_PORT 2		MDIO_A3		EVENTOUT	EVNTP111	FG1
33	В8	71	PA12	ADC3 IN17 HC32F472JCTI/HC32F472JETI/HC32 F472PCTI/HC32F472PETI: ADC3_IN17+USBFS_DP	EIRQ12+WK UP3_0			CMP2_C	UT EXMC_AD	D SPI1_NSS1	QSPI_IO3	EMB_POR		USART1_ RTS	PLAIN15		TIM6_TRIG C	TIM6_8_P WMA	TIM6_TRIG Ā	TIM6_8_P WMB	TIMA_1_TRIG	TIMA_5_PWM1 /CLKA				TIM4_1_OV H			MDIO_A4	FCMREF	EVENTOUT	EVNTP112	FG2
34	A8	72	PA13		EIRQ13	JTMS_SW DIO	GPO		EXMC_AD 29	D	QSPI_IO1	L	USART4_ CK	USART3_ CTS		PLA8OUT	TIM6_6_P WMB	TIM6_6_P WMA	TIM6_TRIG D			TIMA_5_PWM2 /CLKB	TIMA_6_ PWM3			TIM4_1_OV L		CMP3_OUT	ADTRG3	IFRP_OU T	EVENTOUT	EVNTP113	FG2
-	-	73	PF8		EIRQ8		GPO		EXMC_DA A26	Т													TIMA_5_ PWM4								EVENTOUT		FG2
35	-	74	VSS																														
36	-	75	VCC																														
-	D6	-	PF6		EIRQ6		GPO	CMP1_C	UT							PLA9OUT													MDC				FG2
-	C5	-	PF7		EIRQ7		GPO	CMP2_C								PLA10OUT													MDIO				FG2
37	A7	76	PA14		EIRQ14+WK UP3_2	JTCK_SWC LK	GPO	СМРЗ_С	UT EXMC_DA A27	Т	QSPI_IO0)					TIM6_4_P WMB	TIM6_4_P WMA	TIM6_6_P WMA	TIM6_6_P WMB			TIMA_6_ PWM4			TIM4_1_OU H	EMB_PORT		ADTRG2		EVENTOUT	EVNTP114	FG2
38	A6	77	PA15	ADC3_IN18	EIRQ15+WK UP3_3	JTDI	GPO	SPI3_NS	S0 SPI1_NSS	0 SPI2_NSS0	QSPI_NSS	S EMB_POR			PLAIN0	PLA3OUT	TIM6_5_P WMB	TIM6_5_P WMA	TIM6_TRIG	TIMA_1_P WM1/CLKA	TIMA_1_TRIG	TIMA_3_TRIG	TIMA_3_ PWM1/C LKA		EXMC_RB7	TIM4_1_OU L		EMB_PORT			EVENTOUT	EVNTP115	FG2
-	В7	78	PC10		EIRQ10		GPO		EXMC_DA A18	T SPI3_NSS3	3					PLA2OUT	TIM6_1_P WMA						Livi						MDC		EVENTOUT	EVNTP310	FG1
-	В6	79	PC11		EIRQ11		GPO		EXMC_DA A19	T SPI3_NSS2	KEYOUT6	5				PLA14OUT													MDIO		EVENTOUT	EVNTP311	FG1
-	B5	80	PC12		EIRQ12		GPO		EXMC_DA A20	T SPI3_NSS	KEYOUT7	,		USART3_ CK		PLA15OUT															EVENTOUT	EVNTP312	FG1
-	-	81	PD0		EIRQ0		GPO		EXMC_DA A2					USART5_ CTS																		EVNTP400	FG1
-	-	82	PD1		EIRQ1		GPO		EXMC_DA A3	Т				USART5_ RTS																		EVNTP401	FG1
-	-	83	PD2		EIRQ2		GPO	СМРЗ_С	UT EXMC_BA	A							TIM6_3_P WMB	TIM6_3_P WMA	TIM6_TRIG				TIMA_2_ TRIG				EMB_PORT 5				EVENTOUT	EVNTP402	FG1
-	-	84	PD3		EIRQ3		GPO		EXMC_CL	к			USART5_ CK	USART2_ CTS																		EVNTP403	FG2
-	-	85	PD4		EIRQ4		GPO		EXMC_OF					USART2_ RTS																		EVNTP404	FG2
-	-	86	PD5		EIRQ5		GPO		EXMC_W	E																						EVNTP405	FG2
-	-	87	PD6		EIRQ6		GPO		EXMC_RB	0																						EVNTP406	FG2
-	-	88	PD7		EIRQ7		GPO		EXMC_CE	0				USART2_ CK																		EVNTP407	FG1
39	A5	89	PB3	ADC3_IN19	EIRQ3+WKU P0_3	JTDO_TRA CESWO	GPO				QSPI_SCK	<			PLAIN1	PLA0OUT	TIM6_10_P WMA	TIM6_10_P WMB	TIM6_TRIG	TIMA_1_P WM2/CLKB	TIMA_3_PWM 2/CLKB	TIMA_2_TRIG	TIMA_4_ PWM1/C	TIM2_2_CL KB	TIM2_4_P WMB/TRIG	TIM4_1_O WL			MDIO_A0		EVENTOUT	EVNTP203	FG1
			1							1								Lb			_, 0210	<u> </u>	LKA		В								

HC32F472 系列数据手册_Rev1.01

						TRACE																												
				Analog	EIRQ/WKUP	TRACE/ JTAG	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7	Func8	Func9	Func10	Func11	Func12	Func13	Func14	Func15	Func16	Func17	Func18	Func19	Func20	Func21	Func22	Func23	Func24	Func25	Func26	Func32~63
LQFP48	BGA64	LQFP10	00 Pin Name				1	I2C/ ADTRG	CMP/SPI/ KEY	EXMC/SPI	SPI/QSPI/ EXMC	QSPI/ KEY	SPI/KEY/ EMB	USART	USART	PLA	PLA/TIM6 /EMB	TIM6	TIM6/ EXMC	TIM6/ TIMA	TIM6/ TIMA	TIM6/ TIMA	TIM6/TIMA/ ADTRG	IIIIIA	TIMA/ TIM2	TIM2	TIM4/ CTC	TIM2/ EMB/CTC/ FCM	TIM2/ EMB/USB/ CMP	MDIO/ ADTRG	Other	EVENTOUT	EVENTPORT, ADTRG	Communication Function Group
40	A4	90	PB4	ADC3_IN20	EIRQ4+WKU P1_0	NJTRST	GPO			EXMC_CE6		QSPI_IO1				PLAIN2	PLA10UT	TIM6_2_P WMB	TIM6_2_P WMA		TIMA_5_P WM1/CLKA	A	TIMA_2_PWM1 /CLKA	LIND	NA	_ ^		1		MDIO_A1	MCO_2	EVENTOUT	EVNTP204	FG1
41	C4	91	PB5	ADC3_IN21	EIRQ5+WKU P1_1		GPO			EXMC_CE7		QSPI_IO0			USART2_ CK	PLAIN3	PLA2OUT	TIM6_4_P WMB	TIM6_4_P WMA		TIMA_6_P WM1/CLKA	1	TIMA_2_PWM2 /CLKB	PWM3	KB	B	WH	4		MDIO_A2	MCO_1	EVENTOUT	EVNTP205	FG1
42	D3	92	PB6		EIRQ6+WKU P1_2		GPO				SPI1_NSS2	QSPI_IO2				PLAIN4		TIM6_TRIG Ā	EXMC_CE6	TIM6_TRIG C	TIMA_5_P WM2/CLKB	TIM6_TRIGE	TIMA_4_PWM1 /CLKA	TIMA_4_ PWM4	TIM2_4_CL KA	TIM2_2_P WMA/TRIG A	TIM4_1_OV L	CTCREF	_	_		EVENTOUT		FG2
43	C3	93	PB7		EIRQ7+WKU P1_3		GPO				EXMC_ADV	QSPI_IO3				PLAIN5		TIM6_6_P WMB	TIM6_6_P WMA	TIM6_TRIG D	TIMA_6_P WM2/CLKB	1	TIMA_4_PWM2 /CLKB						CMP2_OUT	MDIO_A4	ADTRG2	EVENTOUT	EVNTP207	FG2
44	В4	94	PF3/MD				GPO			EXMC_CE7	SPI2_NSS0	QSPI_NSS				PLAIN7							TIMA_2_TRIG	TIMA_6_ PWM1/C LKA	TIM2_2_P WMB/TRIG B	TIM2_2_CL KB	TIM4_1_0 WH		СМР3_ОИТ		IFRP_OU T	EVENTOUT	ADTRG3	FG2
45	В3	95	PB8	PVD2EXINP	EIRQ8		GPO		CMP4_OUT	EXMC_DAT A28	SPI1_NSS3	KEYOUT0				PLAIN6	PLA3OUT	TIM6_5_P WMB	TIM6_5_P WMA	TIM6_TRIG		TIMA_5_PWI 1/CLKA	ADTRG1	TIMA_4_ PWM3	TIM2_1_P WMA/TRIG A	TIM2_1_CL KA	TIM4_1_OV H	EMB_PORT	USBFS_DR VVBUS	MDC	FCMREF	EVENTOUT	EVNTP208	FG2
46	А3	96	PB9		EIRQ9+WKU P2_1		GPO		CMP2_OUT	EXMC_DAT A29	SPI2_NSS0	QSPI_NSS				PLAIN7		TIM6_1_P WMA	TIM6_1_P WMB		TIMA_6_P WM1/CLKA	4	TIMA_4_TRIG	TIMA_4_ PWM4	TIM2_2_P WMA/TRIG A	TIM2_2_CL KA	TIM4_1_0 WH			MDIO	IFRP_OU T	EVENTOUT	EVNTP209	FG2
-	-	97	PE0		EIRQ0		GPO			EXMC_CE4													TIMA_4_TRIG											FG2
-	-	98	PE1		EIRQ1		GPO			EXMC_CE5																								FG2
47	D5	99	VSS																															
48	E5	100	VCC																															

注:

- 上表中,Func32~63 主要为串行通信功能(包含USART、SPI、I2C、CAN),分成两组FunctionGroup,简称FG1、FG2。详细请参考表 2-2。

表 2-2 Func32~63 表

	Func32	Func33	Func34	Func35	Func36	Func37	Func38	Func39	Func40	Func41	Func42	Func43	Func44	Func45	Func46	Func47
FG1	USART1_TX	USART1_RX	USART2_TX	USART2_RX	USART3_TX	USART3_RX	USART4_TX	USART4_RX	USART5_TX	USART5_RX	USART6_TX	USART6_RX	SPI1_SCK	SPI1_MOSI	SPI1_MISO	SPI2_SCK
FG2	USART1_TX	USART1_RX	USART2_TX	USART2_RX	USART3_TX	USART3_RX	USART4_TX	USART4_RX	USART5_TX	USART5_RX	USART6_TX	USART6_RX	SPI2_SCK	SPI2_MOSI	SPI2_MISO	SPI3_SCK

	Func48	Func49	Func50	Func51	Func52	Func53	Func54	Func55	Func56	Func57	Func58	Func59	Func60	Func61	Func62	Func63
FG1	SPI2_MOSI	SPI2_MISO	SPI3_SCK	SPI3_MOSI	SPI3_MISO	SPI1_NSS0	I2C1_SDA	I2C1_SCL	I2C2_SDA	I2C2_SCL	I2C3_SDA	I2C3_SCL	CAN1_TX	CAN1_RX	CAN2_TX	CAN2_RX
FG2	SPI3_MOSI	SPI3_MISO	SPI4_SCK	SPI4_MOSI	SPI4_MISO	SPI4_NSS0	I2C1_SDA	I2C1_SCL	I2C2_SDA	I2C2_SCL	I2C3_SDA	I2C3_SCL	CAN2_TX	CAN2_RX	CAN3_TX	CAN3_RX

HC32F472 系列数据手册_Rev1.01

表 2-3 端口配置

De else sue	Port								Ві	its								Pin	Count
Package	Group	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Te	otal
	PortA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	
	PortB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	
LQFP100	PortC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	85
LQFP100	PortD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	85
	PortE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	
	PortF	-	-	-	-	-	-	-	0	-	-	-	-	0	0	0	0	5	
	PortA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	
	PortB	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	14	
BGA64	PortC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	55
	PortE	-	-	-	-	-	-	-	0	0	-	-	-	-	-	-	-	2	
	PortF	-	-	-	-	-	-	-	-	0	0	0	0	0	-	0	0	7	
	PortA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	
LOED40	PortB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	20
LQFP48	PortC	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	3	39
	PortF	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0	4	

表 2-4 通用功能规格

Port		上拉/下拉	开漏输出	驱动能力	5V 耐压
	PA0~PA3	支持	支持	低,中,高	支持
Do wh A	PA8~PA10	支持	支持	低,中,高	支持
PortA	PA13~PA15	支持	支持	低,中,高	支持
	PA4~PA7, PA11, PA12	支持	支持	低,中,高	不支持
PortB	PB0~PB11	支持	支持	低,中,高	支持
POILB	PB12~PB15	支持	支持	低,中,高	不支持
	PC0~PC3	支持	支持	低,中,高	支持
PortC	PC10~PC15	支持	支持	低,中,高	支持
	PC4~PC9	支持	支持	低,中,高	不支持
PortD	PD0~PD7	支持	支持	低,中,高	支持
POILD	PD8~PD15	支持	支持	低,中,高	不支持
	PE0~PE6	支持	支持	低,中,高	支持
PortE	PE9~PE15	支持	支持	低,中,高	支持
	PE7~PE8	支持	支持	低,中,高	不支持
PortF	PF0~PF8	支持	支持	低,中,高	支持

注:

- 用作模拟功能时,输入电压不得高于VREFH/AVCC。

2.3 引脚功能说明

表 2-5 引脚功能说明

类别	功能名	I/O	说明
	VCC	I	电源
	Vecto		BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、
	VCCIO		PB15 端子电源
Power	VSS	1	电源地
rowei	AVCC	I	模拟电源
	VREFH	I/O	模拟参考电压
	AVSS	1	模拟电源地
	VREFL	Ι	模拟参考电压
System	NRST	I	复位端子,低有效
System	MD	I	模式端子
PVD	PVD2EXINP	I	PVD2 外部输入比较电压
	XTAL_IN/ XTAL_EXT	I	ᇪᇄᆠᇚᇶᇄᇎ
	XTAL_OUT	0	外部主时钟振荡器接口
Clock	XTAL32_IN	I	시 했다마나 (22.700) 1년 후 명 1호 대
	XTAL32_OUT	0	外部副时钟(32.768K)振荡器接口
	MCO_x (x=1~2)	0	内部时钟输出
GPIO	GPIOxy (x=A~F y=0~15)	10	通用输入输出
EVENTOUT	EVENTOUT	0	Cortex-M4 CPU 事件输出
EIRQ	EIRQx (x=0~15)	I	可屏蔽外部中断
EINQ	WKUPx_y (x=0~3 y=0~3)	I	PowerDown 模式外部唤醒输入
Event Port	EVNTPxy (x=1~4 y=0~15)	Ю	事件端口输入输出功能
Key	KEYOUTx (x=0~7)	0	KEYSCAN 扫描输出信号
	JTCK_SWCLK	Ι	
	JTMS_SWDIO	10	
JTAG/ SWD	JTDO_TRACESWO	0	在线调试接口
	JTDI	I	
	NJTRST	I	
TRACE	TRACECLK	0	跟踪调试同步时钟输出
TRACE	TRACEDx (x=0~3)	0	跟踪调试数据输出
FCM	FCMREF	I	时钟频率测量功能的外部管脚输入基准时钟
DTC	RTC_OUT	0	1 Hz 时钟输出
RTC	RTC_CLK x (x=1~2)	1	外部时钟输入
	TIM2_x_CLKA	1	计数时钟端口输入
Timer2 $(x=1\sim4)$	TIM2_x_CLKB	I	计数时钟端口输入
\·· = '/	TIM2_x_PWMA/ TRIGA	Ю	外部事件触发输入或 PWM 端口输出

类别	功能名	I/O	说明
	TIM2_x_PWMB/ TRIGB	Ю	外部事件触发输入或 PWM 端口输出
	TIM4_x_CLK	I	计数时钟端口输入
	TIM4_x_OUH	Ю	PWM 端口 U 相输出
	TIM4_x_OUL	Ю	PWM 端口 U 相输出
	TIM4_x_OVH	Ю	PWM 端口 V 相输出
Timer4 (x=1)	TIM4_x_OVL	Ю	PWM 端口 V 相输出
(** =)	TIM4_x_OWH	Ю	PWM 端口 W 相输出
	TIM4_x_OWL	Ю	PWM 端口 W 相输出
	TIM4_x_ADSM	0	专用事件输出监测
	TIM4_x_PCT	0	PWM 周期输出监测
	TIM6_TRIGA	I	外部事件触发 A 输入
	TIM6_TRIGB	1	外部事件触发 B 输入
Timer6	TIM6_TRIGC	1	外部事件触发 C 输入
(x=1~10)	TIM6_TRIGD	1	外部事件触发 D 输入
	TIM6_x_PWMA	Ю	外部事件触发输入或 PWM 端口输出
	TIM6_x_PWMB	Ю	外部事件触发输入或 PWM 端口输出
	TIMA_x_TRIG	I	外部事件触发输入
TimerA	TIMA_x_PWM1/ CLKA	Ю	外部事件触发输入或 PWM 端口输出或计数时钟端口输入
(x=1~6)	TIMA_x_PWM2/ CLKB	Ю	外部事件触发输入或 PWM 端口输出或计数时钟端口输入
	TIMA_x_PWMy (y=3~4)	Ю	外部事件触发输入或 PWM 端口输出
EMB	EMB_PORTx (x=1~5)	1	端口输入控制信号
	USARTx_TX	Ю	发送数据
	USARTx_RX	Ю	接收数据
USARTx $(x=1~6)$	USARTx_CK	Ю	通信时钟
	USARTx_RTS	0	请求发送信号
	USARTx_CTS	I	清除发送信号
	SPIx_MISO	Ю	主输入/从输出数据传输引脚
	SPIx_MOSI	Ю	主输出/从输入数据传输引脚
SPIx (x=1~4)	SPIx_SCK	Ю	传输时钟
	SPIx_NSS0	Ю	从机选择输入输出引脚
	SPIx_NSSy (y=1~3)	0	从机选择输出引脚
	QSPI_IOx (x=0~3)	Ю	数据线
QSPI	QSPI_SCK	0	时钟输出
	QSPI_NSS	0	从机选择
I2Cx	I2Cx_SCL	Ю	时钟线
(x=1~3)	I2Cx_SDA	Ю	数据线
CANx	CANx_TX	0	发送数据
(x=1~3)	CANx_RX	I	接收数据

类别	功能名	I/O	说明
	CANx_TST_SAMPLE	0	仅用于观测,采样位置(采样点后一周期的通信时钟宽 度)
	CANx_TST_CLOCK	0	仅用于观测,波特率(一位开始前一周期的通信时钟宽 度)
	USBFS_DM	10	USBFS 片上全速 PHY D-信号
	USBFS_DP	10	USBFS 片上全速 PHY D+信号
LICD FC	USBFS_VBUS	ı	USBFS VBUS 信号
USB_FS	USBFS_ID	I	USBFS ID 信号
	USBFS_SOF	0	USBFS SOF 脉冲输出信号
	USBFS_DRVVBUS	0	USBFS VBUS 驱动许可信号
	CMP1_OUT	0	CMP1 结果输出
	CMP2_OUT	0	CMP2 结果输出
	CMP3_OUT	0	CMP3 结果输出
CMP	CMP4_OUT	0	CMP4 结果输出
	CMPx_INPy (x=1~4 y=1~4)	I	CMPx 正端模拟输入
	CMPx_INMy (x=1~4 y=1~4)	I	CMPx 负端模拟输入
	ADTRG1	I	ADC1 AD 转换外部启动源
	ADTRG2	I	ADC2 AD 转换外部启动源
400	ADTRG3	ı	ADC3 AD 转换外部启动源
ADC	ADC123_INx (x=0~3, 8~13, 16)	ı	ADC1,2,3 共用外部模拟输入端口
	ADC12_INx (x=4~7, 14, 15, 17~20)	I	ADC1,2 共用外部模拟输入端口
	ADC3_INx (x=4~7, 14, 15, 17~21)	I	ADC3 外部模拟输入端口
DAC	DACx_OUTy (x=1, 2, 3, 4 y=1, 2)	0	DAC 模拟输出
	EXMC_CLK	Ю	
	EXMC_OE	0	
	EXMC_WE	0	
	EXMC_ALE	0	
EVMC	EXMC_BAA	0	
EXMC	EXMC_ADV	0	→ 具体查阅参考手册 EXMC 章节 │
	EXMC_CEx (x=0~7)	0	1
	EXMC_RBx(x=0~7)	I]
	EXMC_ADDx (x=0~29)	0	1
	EXMC_DATAx (x=0~31)	10	1

2.4 引脚使用说明

表 2-6 引脚使用说明

引脚名	使用说明
VCC	电源,接 1.8 V~3.6 V 电压,并就近与 VSS 引脚接去耦电容(参考【电气特性(ECs)】)
VCCIO	电源,接 1.08 V~3.6 V 电压,并就近与 VSS 引脚接去耦电容(参考【电气特性(ECs)】)
VSS	电源地,接0V
AVCC	模拟电源,给模拟模块供电,接与 VCC 相同电压(参考【电气特性(ECs)】)
AVCC	不使用模拟模块时,请与 VCC 短接
AVSS	模拟电源地,给模拟模块供电,接与 VSS 相同电压(参考【电气特性(ECs)】)
AV33	不使用模拟模块时,请与 VSS 短接
VREFL	模拟参考电压,接与 AVSS 相同电压(参考【电气特性(ECs)】)
VNEFL	不使用模拟模块时,请与 AVSS 短接
	模拟参考电压,
VREFH	内部 VREF 电路关闭时,接不高于 AVCC 的电压,不使用模拟模块时,请与 AVCC 短接;
	内部 VREF 电路使能时,VREFH 引脚连接内部 VREF 电路,禁止连接 AVCC 或外部电压。
PF3/ MD	模式输入。复位引脚(NRST)解除(从低电平变为高电平)时,本管脚必须固定为低电平。
FI 3/ MD	推荐接电阻(4.7 KΩ)到 VSS(下拉)
NRST	复位引脚,低有效。不使用时接电阻到 VCC(上拉)
	通用引脚。用作输入功能时,支持 5 V 耐压的引脚输入电压不要超过 5 V,输入电压超过 VCC
Pxy (x=A~F y=0~15)	时禁止内部上拉/下拉,不支持 5 V 耐压的引脚输入电压不要超过 VCC。用作模拟输入时,模
FAY (X-A~F Y-U~13)	拟电压不要超过 VREFH/ AVCC。
	不使用时悬空,或者接电阻到 VCC(上拉)/ VSS(下拉)

3 电气特性(ECs)

3.1 参数条件

若无另行说明,所有电压都以 Vss 为基准。

3.1.1 最小值和最大值

除非特别说明,所有器件的最小值和最大值在最坏的环境温度、供电电压和时钟频率条件下通过样本测试综合评估得到。

3.1.2 典型值

除非特别说明,典型数据都是在 TA = 25 °C、Vcc = 3.3 V 条件下通过样本测试综合评估得到。

3.1.3 典型曲线

除非特别说明,否则所有典型曲线未经测试,仅供设计参考。

3.1.4 负载电容

图 3-1(左)中显示了用于测量引脚参数的负载条件。

3.1.5 引脚输入电压

图 3-1(右)中显示了器件引脚上输入电压的测量方法。

图 3-1 引脚负载条件(左)与输入电压测量(右)

3.1.6 电源方案

图 3-2 电源方案

- 1. 4.7 μF 陶瓷电容必须连至 VCC 引脚之一。
- 2. 4.7 μF 陶瓷电容必须连至 VCCIO 引脚。

- 3. AVSS=VSS=VREFLo
- 4. 每个电源对(例如 VREFH/ VREFL、VCC/ VSS、VCCIO/ VSS、AVCC/ AVSS……)必须使用上述的滤 波陶瓷电容去耦。这些电容必须尽量靠近或低于 PCB 下面的适当引脚,以确保器件正常工作。不 建议去掉滤波电容来降低 PCB 尺寸或成本。这可能导致器件工作不正常。
- 5. GPIO_LP 表示 BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、PB15 端子。

3.1.7 电流消耗测量

图 3-3 电流消耗测量方案

3.2 绝对最大额定值

如果加在器件上的载荷超过表 3-1、表 3-2 和表 3-3 中列出的绝对最大额定值,则可能导致器件永久 损坏。这些数值只是额定应力,并不意味着器件在这些条件下功能正常。长期工作在最大额定值条件下 可能会影响器件的可靠性。

符号	项目	最小值	最大值	单位
Vcc-Vss	外部主电源电压(包括AVCC、VCC) ⁽¹⁾	-0.3	4.0	
V _{CCIO} -V _{SS}	外部部分电源电压	-0.3	4.0	
Vin	除PA4~PA7, PC4~PC5, PE7~8(DAC) PB12~15, PC6~9, PD8~15 PA11/ USBFS_DM、 PA12/ USBFS_DP 之外其他引脚上的输入电压 ⁽²⁾ PA4~PA7, PC4~PC5, PE7~8(DAC) PB12~15, PC6~9, PD8~15 PA11/ USBFS_DM、 PA12/ USBFS_DP 引脚上的输入电压	Vss-0.3 Vss-0.3	Vcc+4.0(最大5.8 V) Vcc+0.7(最大4.0 V)	V
VSSx-VSS	不同接地引脚之间的电压差(包含VREFL)	-	50	mV
Vesd(HBM)	静电放电电压(人体模型)	请参考【电学	气敏感性】	-

表 3-1 电压特性

- 1. 在允许的范围内,所有主电源(VCC、VCCIO、AVCC)和接地(VSS、AVSS)引脚必须始终连接到外部电源。
- 2. 必须始终遵循 VIN 的最大值。

表 3-2 电流特性

符号	项目	最大值	单位
∑lvcc	流入所有VCC _x 电源线的总电流(拉电流) ⁽¹⁾	240	
∑lvss	流出所有VSSx接地线的总电流(灌电流) ⁽¹⁾	-240	
lvcc	流入每个VCCx电源线的最大电流(拉电流) ⁽¹⁾	100	
lvss	流出每个VSSx接地线的最大电流(灌电流) ⁽¹⁾	-100	mA
l.a	任意I/O和控制引脚的输出灌电流	20	IIIA
lio	任意I/O和控制引脚的输出拉电流	-20	
Σlia	所有I/O和控制引脚上的总输出灌电流 ⁽²⁾	120	
Σl _{IO}	所有I/O和控制引脚上的总输出拉电流 ⁽²⁾	-120	

- 1. 在允许的范围内,所有主电源(VCC、AVCC)和接地(VSS、AVSS)引脚必须始终连接到外部电源。
- 2. 此总输出电流必须正确分布在所有电源域内;此总输出电流适用于 64 PINs 及以上封装,对于 48 PINs 封装,总输出电流最大值为±80 mA,对于 32 PINs 封装,总输出电流最大值为±40 mA。

表 3-3 热特性

符号	项目	数值	单位
T _{STG}	储存温度范围	-65~150	°C
Tj	最大结温范围	-40~125	°C

3.3 工作条件

3.3.1 通用工作条件

表 3-4 通用工作条件

符号	参数	条件	Min.	Тур.	Max.	单位
fhclk	内部AHB时钟频率 ⁽¹⁾	-	-	-	120	MHz
Vcc	标准工作电压	-	1.8	-	3.6	٧
Vccio	GPIO_LP ⁽⁴⁾ 端子供电电源	-	1.08	-	3.6	٧
V _{AVCC}	模拟工作电压(2)	-	1.8	-	3.6	
		2 V ≤ VCC ≤ 3.6 V 2 V ≤ AVCC ≤ 3.6 V	-0.3	-	5.5	
	5 V耐压引脚上的输入电压 ^{(3) (5) (6)}	VCC < 2 V AVCC < 2 V	-0.3	-	5.2	
V _{IN}	PA4~PA7, PC4~PC5, PE7~8 (DAC) PB12~15, PC6~9, PD8~15					V
	PA11/ USBFS_DM、 PA12/ USBFS_DP 引脚上的输入电压 ⁽⁶⁾	-	-0.3	-	Vcc+0.3	
TA	环境温度范围	-	-40	-	105	°C
Tj	结温范围	-	-40	-	125	°C

- 1. 量产测试保证。
- 2. 若存在 VREFH 引脚,则必须考虑下述条件: 0 ≤ AVCC-VREFH ≤ 1.2 V。
- 3. 要使电压保持在高于 VCC+0.3 V,必须禁止内部上拉/下拉电阻。
- 4. GPIO_LP 表示 BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、PB15 端子。
- 5. 需保证器件的电源(VCC、AVCC)稳定后,此电压再加到器件的 5 V 耐压引脚。
- 6. 禁止此输入电压直接连接外部电源。建议通过 100 Ω以上的电阻串接外部电源。

3.3.2 上电/掉电时的工作条件

TA 服从一般工作条件。

表 3-5 上电/掉电时的工作条件

符号	参数	最小值	最大值	单位
the c	VCC上升时间速率	20	20000	ucΛ/
tvcc	VCC下降时间速率	20	20000	μs/V

3.3.3 复位和电源控制模块特性

表 3-6 复位和电源控制模块特性

PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD1,2的迟滞(4) - - 100 - mV VPOR Leh/排电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V TPOR POR迟滞 - - 40 - mV IRUSH IJEXBL 电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TIRYD NRST复位最低宽度 - 10 - - µs TIPVD1 PVD1复位解除时间(2) - 300 380 460 µs TIPVD2 PVD2复位解除时间(2) - 300 380 460 µs TINRST NRST复位解除时间(2) - 25 35 50 µs TRIPT 内部复位时间(2) - 440 520 610 µs TRSTBOR BOR复位解除时间(2) - 440 520 610 µs <th>符号</th> <th>参数</th> <th>条件</th> <th>最小值</th> <th>典型值</th> <th>最大值</th> <th>单位</th>	符号	参数	条件	最小值	典型值	最大值	单位
Veore BOR的監測电压 ICG1.8DR_LEV[1:0]=0b10 1.99 2.20 2.40 V VPVD1 ICG1.8DR_LEV[1:0]=0b11(1) 2.20 2.40 2.60 V VPVD1 PVD1LVL[2:0]=0b000(1) 1.80 2.00 2.20 V PVD1LVL[2:0]=0b001 1.90 2.10 2.30 V PVD1LVL[2:0]=0b010 2.10 2.30 2.50 V PVD1LVL[2:0]=0b101 2.33 2.55 2.77 V PVD1LVL[2:0]=0b101 2.53 2.55 2.87 V PVD1LVL[2:0]=0b101 2.53 2.75 2.97 V PVD1LVL[2:0]=0b110 2.63 2.85 3.07 V PVD1LVL[2:0]=0b011 2.73 2.95 3.17 V PVD2LVL[2:0]=0b0001 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b110 (1) 2.43 2.65 2.87 V PVD12bimimimimimimimimimimimimimimimimimimim			ICG1.BOR_LEV[1:0]=0b00 ⁽¹⁾	1.78	1.99	2.19	٧
ICG1.BOR_LEV [1:0]=0b10	M		ICG1.BOR_LEV [1:0]=0b01	1.89	2.09	2.30	٧
VPVD1 1.80 2.00 2.20 V PVD1LVL[2:0]=0b0001 1.90 2.10 2.30 V PVD1LVL[2:0]=0b010 1.90 2.10 2.30 V PVD1LVL[2:0]=0b010 2.10 2.30 2.50 V PVD1LVL[2:0]=0b011 2.33 2.55 2.77 V PVD1LVL[2:0]=0b101 2.53 2.55 2.87 V PVD1LVL[2:0]=0b101 2.53 2.75 2.97 V PVD1LVL[2:0]=0b111 2.63 2.85 3.07 V PVD1LVL[2:0]=0b111 2.73 2.95 3.17 V PVD2LVL[2:0]=0b0101 1.90 2.10 2.30 V PVD2LVL[2:0]=0b0101 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b010 2.53 2.75 2.97 V PVD2LVL[2:0]=0b110 2.63 2.85 3.07 V PVD2LVL[2:0]=0b101 2.63 2.85	V BOR	BOR的监测电压	ICG1.BOR_LEV [1:0]=0b10	1.99	2.20	2.40	٧
VPVD1 PVD1LV[2:0]=0b001 1.90 2.10 2.30 V PVD1LVL[2:0]=0b010 2.10 2.30 2.50 V PVD1LVL[2:0]=0b010 2.10 2.30 2.50 V PVD1LVL[2:0]=0b011 2.33 2.55 2.77 V PVD1LVL[2:0]=0b100 2.43 2.65 2.87 V PVD1LVL[2:0]=0b101 2.53 2.75 2.97 V PVD1LVL[2:0]=0b110 2.63 2.85 3.07 V PVD1LVL[2:0]=0b111 2.73 2.95 3.17 V PVD1LVL[2:0]=0b011 1.90 2.10 2.30 V PVD2LVL[2:0]=0b010 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b010 2.53 2.75 2.97 V PVD2LVL[2:0]=0b010 2.53 2.75 2.97 V PVD4D4[2:0]=0b110(1) 2.73 2.95 3.17 V PVD4[2:0]=0b111(1) 2			ICG1.BOR_LEV [1:0]=0b11 ⁽¹⁾	2.20	2.40	2.60	٧
VPVD1 PVD1발治測电压(3) PVD1UVL[2:0]=0b010 2.10 2.30 2.50 V PVD1UVL[2:0]=0b011 2.33 2.55 2.77 V PVD1UVL[2:0]=0b100 2.43 2.65 2.87 V PVD1UVL[2:0]=0b101 2.53 2.75 2.97 V PVD1UVL[2:0]=0b110 2.63 2.85 3.07 V PVD1UVL[2:0]=0b111(1) 2.73 2.95 3.17 V PVD2UVL[2:0]=0b0001 1.90 2.10 2.30 V PVD2UVL[2:0]=0b001 2.10 2.30 2.50 V PVD2UVL[2:0]=0b010 2.33 2.55 2.77 V PVD2UVL[2:0]=0b101 2.43 2.65 2.87 V PVD2UVL[2:0]=0b100 2.53 2.75 2.97 V PVD2UVL[2:0]=0b1010 2.63 2.85 3.07 V PVD2WVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2WVL[2:0]=0b110 (1) 2.73 2.95 3.17 V			PVD1LVL[2:0]=0b000 ⁽¹⁾	1.80	2.00	2.20	٧
VPVD1 PVD1监測电压(3) PVD1UVL[2:0]=0b011 2.33 2.55 2.77 V PVD1UVL[2:0]=0b100 2.43 2.65 2.87 V PVD1UVL[2:0]=0b101 2.53 2.75 2.97 V PVD1UVL[2:0]=0b110 2.63 2.85 3.07 V PVD1UVL[2:0]=0b111(1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b0001(1) 1.90 2.10 2.30 V PVD2LVL[2:0]=0b001 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b101 2.43 2.65 2.87 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b110 (1) 2.63 2.85 3.07 V PVD40px PVD1,269返滞(4) - - 100 - mV Vpoatyst PVD1,269返滞(4) - - 100 <td></td> <td></td> <td>PVD1LVL[2:0]=0b001</td> <td>1.90</td> <td>2.10</td> <td>2.30</td> <td>٧</td>			PVD1LVL[2:0]=0b001	1.90	2.10	2.30	٧
VPVD1 PVD1協測电压(3) PVD1LVL[2:0]=0b100 2.43 2.65 2.87 V PVD1LVL[2:0]=0b101 2.53 2.75 2.97 V PVD1LVL[2:0]=0b110 2.63 2.85 3.07 V PVD1LVL[2:0]=0b011(1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b000(1) 1.90 2.10 2.30 V PVD2LVL[2:0]=0b001 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b010 2.33 2.55 2.87 V PVD2LVL[2:0]=0b101 2.43 2.65 2.87 V PVD2LVL[2:0]=0b101 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD4LVL[2:0]=0b101(1) 2.73 2.95 3.17 V PVD4LVL[2:0]=0b110(1) 2.73 2.95 3.17 V PVD4LVL[2:0]=0b110(1) 2.73 2.95 3.17 V PVD4LVL[2:0]=0b110(1) 2.73 2.95 3.17 V <			PVD1LVL[2:0]=0b010	2.10	2.30	2.50	٧
PVD1tVL[2:0]=0b100		D) (D 4 H 6 701 + FT (2)	PVD1LVL[2:0]=0b011	2.33	2.55	2.77	٧
PVD1LVL[2:0]=0b110 2.63 2.85 3.07 V	VPVD1	PVD1监测电压 ⁽³⁾	PVD1LVL[2:0]=0b100	2.43	2.65	2.87	٧
PVD1LVL[2:0]=0b111(1)			PVD1LVL[2:0]=0b101	2.53	2.75	2.97	٧
VPVD2LAVL[2:0]=0b000(1) 1.90 2.10 2.30 V PVD2LVL[2:0]=0b001 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b011 2.43 2.65 2.87 V PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) (5) 0.90 1.10 1.30 V Vport 上电/掉电复位阈值 (1) 上升沿VPOR 1.56 1.68 1.80 V TPORN POR迟滞 - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TIRNT 内部复位解除时间(2) - 25 35 50 μs TRIPT </td <td></td> <td></td> <td>PVD1LVL[2:0]=0b110</td> <td>2.63</td> <td>2.85</td> <td>3.07</td> <td>٧</td>			PVD1LVL[2:0]=0b110	2.63	2.85	3.07	٧
VPVD2L 2.10 2.30 2.50 V PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b011 2.43 2.65 2.87 V PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR PVD1,260 ½ (2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR PVD1,260 ½ (2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR PVD1,260 ½ (2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR PVD1,260 ½ (2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR PVD1,260 ½ (2:0]=0b111 (1) (5) 0.90 1.56 1.68 1.80 V VPOR POR ½ PVD2,20 ½ (2:0]=0b111 (1) (5) 0.90 1.56 1.64 1.76 V VPOR POR ½ PVD2,20 ½ 1.52<			PVD1LVL[2:0]=0b111 ⁽¹⁾	2.73	2.95	3.17	٧
VPVD2 PVD2LVL[2:0]=0b010 2.33 2.55 2.77 V PVD2LVL[2:0]=0b011 2.43 2.65 2.87 V PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) (5) 0.90 1.10 1.30 V VPOR Lel/peage (might) Lel/paace (might) 1.56 1.68 1.80 V VPOR Lel/peage (might) - - 40 - mV IRUSH Increase (POR JAM)			PVD2LVL[2:0]=0b000 ⁽¹⁾	1.90	2.10	2.30	٧
VPVD2 PVD2监测电压(3) PVD2LVL[2:0]=0b011 2.43 2.65 2.87 V PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) (5) 0.90 1.10 1.30 V Vpordhyst PVD1,26b返滞(4) - 1.00 - mV Vpor 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V VporRhyst POR迟滞 - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TINRST NRST复位量低宽度 - 10 - - μs TipvD1 PVD1复位解除时间(2) - 300 380 460 μs Tinrst NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - <td></td> <td></td> <td>PVD2LVL[2:0]=0b001</td> <td>2.10</td> <td>2.30</td> <td>2.50</td> <td>٧</td>			PVD2LVL[2:0]=0b001	2.10	2.30	2.50	٧
VPVD2 PVD2监测电压(3) PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) 2.73 2.95 3.17 V PVD2LVL[2:0]=0b111 (1) 0.90 1.10 1.30 V VPOR PVD1,26b迟滞(4) - - 100 - mV VPOR 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V VPOR POR迟滞 - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TIPVD1 PVD1复位解除时间(2) - 300 380 460 µs TIPVD2 PVD2复位解除时间(2) - 300 380 460 µs TINRST NRST复位解除时间(2) - 25 35 50 µs TRIPT 内部复位时间(2) - 440 520 610 µs			PVD2LVL[2:0]=0b010	2.33	2.55	2.77	٧
PVD2LVL[2:0]=0b100 2.53 2.75 2.97 V PVD2LVL[2:0]=0b101 2.63 2.85 3.07 V PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V PVPD4 PVD1,2的迟滞(4) - - 100 - mV VPOR 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V TRISH POR迟滞 - - 40 - mV TRIST NRST复位最低宽度 - - 100 150 mA TIPVD1 PVD1复位解除时间(2) - 300 380 460 µs TIPVD2 PVD2复位解除时间(2) - 300 380 460 µs TINRST NRST复位解除时间(2) - 25 35 50 µs TRIPT 内部复位时间(2) - 140 160 200 µs TRSTBOR BOR复位解除时间(2) - 440 520 610 µs	.,		PVD2LVL[2:0]=0b011	2.43	2.65	2.87	٧
PVD2LVL[2:0]=0b110 (1) 2.73 2.95 3.17 V	V PVD2	PVD2监测电压 [©] /	PVD2LVL[2:0]=0b100	2.53	2.75	2.97	٧
Vpvdhyst PVD1,2的迟滞(4) - PVD1,2的迟滞(4) - 100 - mV Vpor 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V Vpor PDR迟滞 - 上升沿VPOR 1.52 1.64 1.76 V Vpor PDR迟滞 - 40 - mV Image:	V _P VD2		PVD2LVL[2:0]=0b101	2.63	2.85	3.07	٧
Vpvdhyst PVD1,2的迟滞(4) - - 100 - mV VpoR 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V VpoRhyst POR迟滞 - - 40 1.76 V VpoRhyst POR迟滞 - - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TNRST NRST复位最低宽度 - 10 - - µs TIPVD1 PVD1复位解除时间(2) - 300 380 460 µs TINRST NRST复位解除时间(2) - 25 35 50 µs TRIPT 内部复位时间(2) - 140 160 200 µs TRSTBOR BOR复位解除时间(2) - 440 520 610 µs			PVD2LVL[2:0]=0b110 (1)	2.73	2.95	3.17	٧
VPOR 上电/掉电复位阈值(1) 上升沿VPOR 1.56 1.68 1.80 V VPOR VPOR VPOR VPOR VPOR VPOR VPOR VPOR			PVD2LVL[2:0]=0b111 ^{(1) (5)}	0.90	1.10	1.30	٧
VPOR 上电/掉电复位阈值(1) 下降沿VPDR 1.52 1.64 1.76 V VPORhyst POR迟滞 - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - 100 150 mA TNRST NRST复位最低宽度 - 10 - - μs TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	V _{pvd} hyst	PVD1,2的迟滞 ⁽⁴⁾	-	-	100	-	mV
VPORhyst POR迟滞 - 40 - mV IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - - 100 150 mA TNRST NRST复位最低宽度 - 10 - - μs TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	V		上升沿VPOR	1.56	1.68	1.80	٧
IRUSH 调压器上电时的浪涌电流 (POR或从待机唤醒) - 100 150 mA TNRST NRST复位最低宽度 - 10 - - μs TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	V POR	上电/捍电复业阈值 ⁽¹⁾	下降沿VPDR	1.52	1.64	1.76	٧
IRUSH (POR或从待机唤醒) - - 100 150 mA TNRST NRST复位最低宽度 - 10 - - μs TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	V _{POR} hyst	POR迟滞	-	-	40	-	mV
(POR或从待机唤醒) 10 - - μs TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	1	调压器上电时的浪涌电流			100	150	^
TIPVD1 PVD1复位解除时间(2) - 300 380 460 μs TIPVD2 PVD2复位解除时间(2) - 300 380 460 μs TINRST NRST复位解除时间(2) - 25 35 50 μs TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	IRUSH	(POR或从待机唤醒)	-	-	100	150	MA
T _{IPVD2} PVD2复位解除时间 ⁽²⁾ - 300 380 460 μs T _{INRST} NRST复位解除时间 ⁽²⁾ - 25 35 50 μs T _{RIPT} 内部复位时间 ⁽²⁾ - 140 160 200 μs T _{RSTBOR} BOR复位解除时间 ⁽²⁾ - 440 520 610 μs	TNRST	NRST复位最低宽度	-	10	-	-	μs
TINRST NRST复位解除时间 ⁽²⁾ - 25 35 50 μs TRIPT 内部复位时间 ⁽²⁾ - 140 160 200 μs TRSTBOR BOR复位解除时间 ⁽²⁾ - 440 520 610 μs	T _{IPVD1}	PVD1复位解除时间 ⁽²⁾	-	300	380	460	μs
TRIPT 内部复位时间(2) - 140 160 200 μs TRSTBOR BOR复位解除时间(2) - 440 520 610 μs	T _{IPVD2}	PVD2复位解除时间 ⁽²⁾	-	300	380	460	μs
T _{RSTBOR} BOR复位解除时间 ⁽²⁾ - 440 520 610 μs	T _{INRST}	NRST复位解除时间 ⁽²⁾	-	25	35	50	μs
	TRIPT	内部复位时间 ⁽²⁾	-	140	160	200	μs
T _{RSTPOR} 上电复位解除时间 ⁽²⁾ 2500 3000 μs	T _{RSTBOR}	BOR复位解除时间 ⁽²⁾	-	440	520	610	μs
	TRSTPOR	上电复位解除时间(2)	-	-	2500	3000	μs

- 1. 量产测试保证。
- 2. 设计保证。

- 3. PVD1 监测电压是 VCC 电压下降时的监测电压;在 PVD2LVL[2:0]设置为 0b111 时 PVD2 监测电压是 PVDEXINP 电压下降时的监测电压,在 PVD2LVD[2:0]设置为 0b111 之外的值时 PVD2 监测电压是 VCC 电压下降时的监测电压。
- 4. PVD1,2 的迟滞是 VCC 上升时的监测电压与 VCC 下降时的监测电压的差值。
 - VCC 上升时的 PVD1 监测电压=Vpvd1+Vpvdhyst;
 - VCC 上升时的 PVD2 监测电压=Vpvd2+Vpvdhyst。
- 5. PVD2LVDL[2:0] = 0b111 时,比较电压是 PVD2EXINP 管脚的外部输入比较电压。

3.3.4 供电电流特性

电流消耗受多个参数和因素影响,其中包括工作电压、环境温度、I/O 引脚负载、器件软件配置、工作频率、I/O 引脚开关速率、程序在存储器中的位置以及运行的代码等。

图 3-3 中介绍了电流消耗的测量方法。本节所述各种模式下的电流消耗测量值都是在实验室条件下通过一套运行在 FLASH 的测试代码得出。

具体条件如下:

- 1. 所有 I/O 引脚都处于高阻模式(无负载)。
- 2. 时钟频率选择 fHCLK=120 MHz/ 60 MHz/ 24 MHz/ 8 MHz/ 1 MHz。
- 3. 功耗模式分为:正常工作模式 ICC_RUN、休眠模式 ICC_SLEEP、停止模式 ICC_STP、掉电模式 ICC_PD、Dhrystone 工作模式 ICC_DHRYSTONE。
- 4. 外设时钟 ON/ OFF 请参考具体电流条件说明。
- 5. f_{HCLK}=120 MHz/60 MHz 下 PLL 处于开启状态。

表 3-7 运行模式电流消耗 1

1#*_#	Down make "	Symbol	<i>b</i> /ii.	T- (0C)	产品規	规格		Unit
模式	Parameter	Symbol	条件	Ta(°C)	Min	Typ ⁽³⁾	Max ⁽²⁾	Unit
		ICC_RUN	while(1),全模块时钟 OFF ⁽¹⁾	-40	-	15.5	-	mA
		_	while(1),全模块时钟ON ⁽¹⁾	-40	-	32	-	mA
		ICC DHRYSTONE	CACHE OFF	-40	-	16	-	mA
		ICC_DIINISIONE	CACHE ON	-40	-	16	-	mA
		ICC SLEEP	全模块时钟OFF ⁽¹⁾	-40	-	10.5	-	mA
		ICC_SLLLF	全模块时钟ON ⁽¹⁾	-40	-	27	-	mA
		ICC_RUN	while(1),全模块时钟 OFF ⁽¹⁾	25	-	16	-	mA
			while(1),全模块时钟ON ⁽¹⁾	25	-	32	-	mA
运行	f _{HCLK} =	ICC_DHRYSTONE	CACHE OFF	25	-	17	-	mA
模式	120 MHz		CACHE ON	25	-	17	-	mA
		ICC CLEED	全模块时钟OFF ⁽¹⁾	25	-	11	-	mA
		ICC_SLEEP	全模块时钟ON ⁽¹⁾	25	-	27	-	mA
		ICC RUN	while(1),全模块时钟OFF	85	-	17	29	mA
		ICC_KON	while(1),全模块时钟ON	85	-	34	49	mA
		ICC DHRYSTONE	CACHE OFF	85	-	-	30	mA
		ICC_DHK1310NE	CACHE ON	85	-	-	30	mA
		ICC SLEED	全模块时钟OFF	85	-	12	23	mA
		ICC_SLEEP	全模块时钟ON	85	-	29	43	mA
		ICC_RUN	while(1),全模块时钟 OFF ⁽¹⁾	105	-	19	36	mA

ttt-th Down	Parameter	Symbol	条件	Ta(°C)	产品规格			Unit
模式	Farameter				Min	Typ ⁽³⁾	Max ⁽²⁾	Oilit
			while(1),全模块时钟ON ⁽¹⁾	105	-	35	56	mA
		ICC DURYSTONE	CACHE OFF	105	-	-	38	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	38	mA
		ICC_SLEEP -	全模块时钟OFF ⁽¹⁾	105	-	14	30	mA
			全模块时钟ON ⁽¹⁾	105	-	30	51	mA

- 1. 量产测试保证。
- 2. Max 电压条件 VCC=1.8~3.6 V。
- 3. Typ 电压条件 VCC=3.3 V。

表 3-8 运行模式电流消耗 2

144_15			- m	- (0.6)	产品规	略		
模式	Parameter	Symbol	条件	T _A (°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
		ICC DUN	while(1),全模块时钟OFF	-40	-	9	-	mA
		ICC_RUN	while(1),全模块时钟ON	-40	-	18.5	-	mA
		ICC BUDYCTONE	CACHE OFF	-40	-	8.7	-	mA
		ICC_DHRYSTONE	CACHE ON	-40	-	8.7	-	mA
		ICC CLEED	全模块时钟OFF	-40	-	6.5	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	16	-	mA
		ICC DUN	while(1),全模块时钟OFF	25	-	9.5	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	19	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	9	-	mA
			CACHE ON	25	-	9	-	mA
		ICC_SLEEP	全模块时钟OFF	25	-	7	-	mA
运行	fhclk=		全模块时钟ON	25	-	16.5	-	mA
模式	60 MHz	ICC_RUN	while(1),全模块时钟OFF	85	-	11	22	mA
			while(1),全模块时钟ON	85	-	20	33	mA
		ICC DUDYSTONE	CACHE OFF	85	-	-	22	mA
		ICC_DHRYSTONE	CACHE ON	85	-	-	22	mA
		ICC SLEEP	全模块时钟OFF	85	-	8	19	mA
		ICC_SLEEP	全模块时钟ON	85	-	18	31	mA
		ICC DUN	while(1),全模块时钟OFF	105	-	12	29	mA
		ICC_RUN	while(1),全模块时钟ON	105	-	22	41	mA
		ICC DUDYSTONE	CACHE OFF	105	-	-	29	mA
		ICC_DHRYSTONE	CACHE ON	105	-	-	29	mA
		ICC SLEEP	全模块时钟OFF	105	-	10	26	mA
		ICC_SLEEP	全模块时钟ON	105	-	19	38	mA

- 1. Typ 电压条件 VCC=3.3 V。
- 2. Max 电压条件 VCC=1.8~3.6 V。

表 3-9 运行模式电流消耗 3

1#-15	Dawa waataw	Sl	A7 /IL	T- (9C)	产品规	格		11!4
模式	Parameter	Symbol	条件	T _A (°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
		ICC_RUN	while(1),全模块时钟OFF	-40	-	5	-	mA
			while(1),全模块时钟ON	-40	-	10.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	10.5	-	mA
		ICC SLEED	全模块时钟OFF	-40	-	4	-	mA
		ICC_SLEEP	全模块时钟ON	-40	-	9.5	-	mA
		ICC RUN	while(1),全模块时钟OFF	25	-	5	-	mA
		ICC_RUN	while(1),全模块时钟ON	25	-	10.5	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	10.5	-	mA
		ICC_SLEEP	全模块时钟OFF	25	-	4	-	mA
运行	fhclk=		全模块时钟ON	25	-	9.5	-	mA
模式	24 MHz	ICC_RUN	while(1),全模块时钟OFF	85	-	-	17	mA
			while(1),全模块时钟ON	85	-	-	24	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	18	mA
		ICC SLEEP	全模块时钟OFF	85	-	-	16	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	22	mA
		ICC RUN	while(1),全模块时钟OFF	105	-	-	24	mA
		ICC_KUN	while(1),全模块时钟ON	105	-	-	31	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	25	mA
		ICC SLEEP	全模块时钟OFF	105	-	-	23	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	30	mA

- 1. Typ 电压条件 VCC=3.3 V。
- 2. Max 电压条件 VCC=1.8~3.6 V。

表 3-10 运行模式电流消耗 4

1#-15	Dawawakaw	Symbol	A7 /IL	T- (9C)	产品规模	各		11!4
模式	Parameter	Symbol	条件	T _A (°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
		ICC_RUN	while(1),全模块时钟OFF	-40	-	3.2	-	mA
			while(1),全模块时钟ON	-40	-	6	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	3.3	-	mA
		ICC_SLEEP	全模块时钟OFF	-40	-	2.8	-	mA
			全模块时钟ON	-40	-	5.6	-	mA
		ICC RUN	while(1),全模块时钟OFF	25	-	3.4	-	mA
		ICC_RON	while(1),全模块时钟ON	25	-	6.2	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	3.5	-	mA
		ICC_SLEEP ICC_RUN	全模块时钟OFF	25	-	3.0	-	mA
运行模	fHCLK=		全模块时钟ON	25	-	5.8	-	mA
式	8 MHz		while(1),全模块时钟OFF	85	-	-	12.8	mA
			while(1),全模块时钟ON	85	-	-	16.4	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	13.3	mA
		ICC SLEEP	全模块时钟OFF	85	-	-	9.7	mA
		ICC_SLLLF	全模块时钟ON	85	-	-	15.7	mA
		ICC RUN	while(1),全模块时钟OFF	105	-	-	19	mA
		ICC_KON	while(1),全模块时钟ON	105	-	-	22	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	20	mA
		-	全模块时钟OFF	105	-	-	15.4	mA
		ICC_SLEEP	全模块时钟ON	105	-	-	22.5	mA

- 1. Typ 电压条件 VCC=3.3 V。
- 2. Max 电压条件 VCC=1.8~3.6 V。

表 3-11 运行模式电流消耗 5

			5 0	_ (0.5)	产品规	———— 格		
模式	Parameter	Symbol	条件	T _A (°C)	Min	Typ ⁽¹⁾	Max ⁽²⁾	Unit
		ICC RUN	while(1),全模块时钟 OFF	-40	-	2.4	-	mA
		icc_itolv	while(1),全模块时钟 ON	-40	-	3.9	-	mA
		ICC_DHRYSTONE	CACHE OFF	-40	-	2.4	-	mA
		ICC SLEEP	全模块时钟OFF	-40	-	2.4	-	mA
		ICC_SEEE1	全模块时钟ON	-40	-	3.8	-	mA
		ICC_RUN	while(1),全模块时钟 OFF	25	-	2.6	-	mA
			while(1),全模块时钟 ON	25	-	4.1	-	mA
		ICC_DHRYSTONE	CACHE OFF	25	-	2.6	-	mA
		ICC SLEEP	全模块时钟OFF	25	-	2.5	-	mA
运行	fHCLK=	.30_32221	全模块时钟ON	25	-	4	-	mA
模式	1 MHz	ICC_RUN	while(1),全模块时钟 OFF	85	-	-	11	mA
		ICC_KON	while(1),全模块时钟 ON	85	-	-	12.5	mA
		ICC_DHRYSTONE	CACHE OFF	85	-	-	11.3	mA
		ICC SLEEP	全模块时钟OFF	85	-	-	8.8	mA
		ICC_SLEEP	全模块时钟ON	85	-	-	12.5	mA
		ICC RUN	while(1),全模块时钟 OFF	105	-	-	17.5	mA
		ICC_RUN	while(1),全模块时钟 ON	105	-	-	18	mA
		ICC_DHRYSTONE	CACHE OFF	105	-	-	18.1	mA
		ICC SLEEP	全模块时钟OFF	105	-	-	14.5	mA
		ICC_SLLEP	全模块时钟ON	105	-	-	18.7	mA

- 1. Typ 电压条件 VCC=3.3 V。
- 2. Max 电压条件 VCC=1.8~3.6 V。

表 3-12 低功耗模式电流消耗

1#+_15	Do wo we also w	Complete al	#/#W00 22W	T-(0C)	产品规	!格		11!4
模式	Parameter	Symbol	条件(VCC=3.3 V)	T _A (°C)	Min	Typ ⁽³⁾	Max ⁽²⁾	Unit
				-40(1)	-	55	-	μΑ
停止		ICC STD	/ -	25 ⁽¹⁾	-	204	-	μΑ
模式	-	ICC_STP	停止模式 	85	-	1.1	6.7	mA
				105(1)	-	2	11	mA
			掉电模式1(1)	-40	-	10	-	μΑ
			掉电模式2(1)	-40	-	5	-	μΑ
			掉电模式3 ⁽¹⁾	-40	-	3	-	μΑ
			掉电模式4(1)	-40	-	3	-	μΑ
			掉电模式2+XTAL32+RTC	-40	-	6	-	μΑ
			掉电模式2+LRC+RTC ⁽¹⁾	-40	-	10	-	μΑ
			掉电模式1(1)	25	-	11.5	-	μΑ
			掉电模式2 ⁽¹⁾	25	-	5.5	-	μΑ
			掉电模式3 ⁽¹⁾	25	-	3	-	μΑ
			掉电模式4(1)	25	-	3.5	-	μΑ
			掉电模式2+XTAL32+RTC	25	-	7	-	μΑ
掉电		ICC PD	掉电模式2+LRC+RTC ⁽¹⁾	25	-	10.5	-	μΑ
模式	-	ICC_FD	掉电模式1	85	-	22.7	36	μΑ
			掉电模式2	85	-	15.7	29	μΑ
			掉电模式3	85	-	13.0	26	μΑ
			掉电模式4	85	-	13.2	26	μΑ
			掉电模式2+XTAL32+RTC	85	-	-	27	μΑ
			掉电模式2+LRC+RTC	85	-	20.6	35	μΑ
			掉电模式1(1)	105	-	36.4	60	μΑ
			掉电模式2(1)	105	-	29.2	52	μΑ
			掉电模式3 ⁽¹⁾	105	-	26.4	49	μΑ
			掉电模式4 ⁽¹⁾	105	-	26.7	49	μΑ
			掉电模式2+XTAL32+RTC	105	-	-	51	μΑ
			掉电模式2+LRC+RTC ⁽¹⁾	105	-	34.0	59	μΑ

- 1. 量产测试保证。
- 2. Max 电压条件 VCC=1.8~3.6 V。
- 3. Typ 电压条件 VCC=3.3 V。

表 3-13 模拟模块电流消耗

Item	Darameter	Cymbol	名件NGC NGC 2.2.VI	Ta(°C)	产品规范	恪		Unit
item	Parameter	Symbol	条件(VCC=AVCC=3.3 V)	IA(C)	Min	Тур	Max	Unit
			XTAL振荡模式大驱动24 MHz	25	-	1.8	-	mA
			振荡模式中驱动16 MHz	25	-	1	-	mA
			振荡模式小驱动10 MHz	25	-	0.8	-	mA
			振荡模式超小驱动8 MHz	25	-	0.6	-	mA
			XTAL 32.768 kHz	25	-	1.1	-	μΑ
			HRC	25	-	0.3	-	mA
模块		ICC MODULE	PLLH (VCO=480 MHz)	25	-	2	-	mA
电流	-	ICC_MODULE	PLLH (VCO=240 MHz)	25	-	1.1	-	mA
			ADC	25	-	1.3	-	mA
			DAC 放大器允许	25	-	2.3	-	mA
			DAC 放大器禁止	25	-	0.2	-	mA
			CMP	25	-	0.3	-	mA
			PGA	25	-	0.7	- m m m m m m m m.	mA
			USBFS ⁽¹⁾	25	-	6.0	-	mA

^{1.} 设计保证,包含控制部分与 USBPHY 通信时的电流,负载 50 pf。

3.3.5 低功耗模式唤醒时序

唤醒时间测量方法为,从唤醒事件触发至 CPU 执行的第一条指令:

- 对于停止或睡眠模式:唤醒事件为 WFE。
- WKUP 引脚用于从待机、停止、睡眠模式唤醒。所有时序均在环境温度及 VCC=3.3 V 测试得出。

表 3-14 低功耗模式唤醒时间

符号	参数	条件	典型值	最大值	单位
T _{STOP}	从停止模式唤醒	系统时钟为MRC	20.4	35	
T _{PD1}	从掉电模式1唤醒	-	35	78	
T _{PD2}	从掉电模式2唤醒	-	119	270	μs
T _{PD3}	从掉电模式3唤醒	-	2220	3000	
T _{PD4}	从掉电模式4唤醒	-	205	447	

3.3.6 外部时钟源特性

3.3.6.1 外部源产生的高速外部用户时钟

在旁路模式,XTAL 振荡器关闭,输入引脚为标准 I/O。外部时钟信号必须考虑 I/O 静态特性。

表 3-15 高速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fxtal_ext	用户外部时钟源频率		1	-	25 ⁽¹⁾	MHz
V _{IH_XTAL}	XTAL_EXT输入引脚高电平电压 ⁽¹⁾		0.8*Vcc	-	Vcc	V
VIL_XTAL	XTAL_EXT输入引脚低电平电压 ⁽¹⁾	-	Vss	-	0.2*Vcc	V
tr(XTAL_EXT) tf(XTAL_EXT)	XTAL_EXT上升或下降时间		-	-	5	ns
Duty(XTAL_EXT)	占空比	-	40	-	60	%

1. 量产测试保证。

3.3.6.2 晶振/陶瓷谐振器产生的高速外部时钟

高速外部(XTAL)时钟可以使用一个 4 到 25 MHz 的晶振/陶瓷谐振振荡器产生。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以尽量减小输出失真和起振稳定时间。有关谐振器特性(频率、封装、精度等)的详细信息,请咨询晶振谐振器制造商。

符号	参数	条件	最小值	典型值	最大值	单位
fxtal_in	振荡器频率	-	4	-	25	MHz
R _F	反馈电阻(1)	-	-	300	-	kΩ
AXTAL	XTAL精度 ⁽²⁾⁽³⁾	-	-500	-	500	ppm
G _{mmax}	振荡器Gm ⁽²⁾	起振	4	-	-	mA/V
t	☆≒□ (2/4)	VCC稳定,晶振=8 MHz	-	2.0	-	ms
tsu(xtal)	启动时间 ⁽⁴⁾	VCC稳定,晶振=4 MHz	-	4.0	-	ms

表 3-16 XTAL 4-25 MHz 振荡器特性

- 1. 量产测试保证。
- 2. 设计保证。
- 3. 这个参数取决于应用系统上使用到的谐振器。
- 4. t_{SU(XTAL)}是起振时间,即从软件使能 XTAL 开始测量,直至得到稳定的振荡频率这段时间。该值基于标准晶振谐振器测得,可能随晶振制造商的不同而显著不同。

对于 C_{L1} 和 C_{L2} ,建议使用专为高频应用设计、可满足晶振或谐振器要求的高质量外部陶瓷电容(请参见下图)。 C_{L1} 和 C_{L2} 的大小通常相同, C_{L1} = C_{L2} = $2*(C_L-C_S)$ 。 C_S 是 PCB 和 MCU 引脚(XTAL_IN、XTAL_OUT) stray capacitance。 C_L 为晶振或陶瓷谐振器的负载电容,请咨询晶振谐振器制造商。

图 3-4 采用8 MHz 晶振的典型应用

1. REXT的值取决于晶振特性。

3.3.6.3 晶振/陶瓷谐振器产生的低速外部时钟

低速外部时钟可以使用一个由 32.768 kHz 的晶振/陶瓷谐振器构成的振荡器产生。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以尽量减小输出失真和起振稳定时间。有关谐振器特性(频率、封装、精度等)的详细信息,请咨询晶振谐振器制造商。

<i>5</i> /5 □	↔ ¥b	<i>₽</i> //↓	规格	₩		
符号	参数	条件	Min	Тур	Max	单位
F _{XTAL32}	频率	-	-	32.768	-	kHz
RF	反馈电阻 ⁽¹⁾	-	-	15	-	ΜΩ
I _{DD_XTAL32}	功耗	XTAL32DRV[2:0]=0b000	-	0.8	-	μΑ
Axtal32	XTAL32精度 ⁽³⁾	-	-500	-	500	ppm
G _{mmax}	振荡器Gm ⁽²⁾	XTAL32DRV[2:0]=0b000	5.6	-	-	μΑ/V
Tsuxtal32	启动时间(4)	VCC稳定状态下	-	2	-	S

表 3-17 XTAL32 振荡器特性

- 1. 量产测试保证。
- 2. 设计保证。
- 3. 这个参数取决于应用系统上使用到的谐振器。
- 4. T_{SUXTAL32} 是起振时间,即从软件使能 XTAL32 开始测量,直至得到稳定的 32.768 kHz 振荡频率这段时间。该值基于标准晶振谐振器测得,可能随晶振制造商的不同而显著不同。

对于 C_{L1} 和 C_{L2} ,建议使用高质量外部陶瓷电容(请参见下图)。 C_{L1} 和 C_{L2} 的大小通常相同, $C_{L1}=C_{L2}=2*(C_L-C_S)$ 。Cs 是 PCB 和 MCU 引脚(XTAL32_IN、XTAL32_OUT) stray capacitance。如果 C_{L1} 和 C_{L2} 大于 18 pF,建议设置 XTAL32DRV[2:0]=0b001(大驱动,功耗典型值增加 0.2 μ A)。 C_L 为 晶振或陶瓷谐振器的负载电容,请咨询晶振谐振器制造商。

图 3-5 采用 32.768 kHz 晶振的典型应用

3.3.7 内部时钟源特性

3.3.7.1 内部高速 (HRC) 振荡器

表 3-18 HRC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
	此五丈(1)	模式1	-	16	-	- MHz
fhrc	频率 ⁽¹⁾	模式2	-	20	-	IVITZ
	用户调整刻度	-	-	-	0.2	%
		TA = -40到105 °C ⁽¹⁾	-3	-	3	%
	ı 	T _A = -20到105 ℃	-2.5	-	2.5	%
	频率精度	T _A = -20到85 ℃	-2	-	2	%
		T _A = 25 °C ⁽¹⁾	-1.5	-	1.5	%
t _{st(HRC)}	HRC振荡器振荡稳定时间 ⁽¹⁾	-	-	-	15	μs

1. 量产测试保证。

3.3.7.2 内部中速 (MRC) 振荡器

表 3-19 MRC 振荡器特性

符号	参数	最小值	典型值	最大值	单位
fmrc	频率 ⁽¹⁾	7.2	8	8.8	MHz
t _{st(MRC)}	MRC振荡器稳定时间 ⁽¹⁾	-	-	3	μs

1. 量产测试保证。

3.3.7.3 内部低速 (LRC) 振荡器

表 3-20 LRC 振荡器特性

符号	参数	最小值	典型值	最大值	单位
fLRC	频率(1)	27.853	32.768	37.683	kHz
t _{st(LRC)}	LRC振荡器稳定时间 ⁽¹⁾	-	-	36	μs

1. 量产测试保证。

3.3.7.4 SWDT 专用内部低速(SWDTLRC)振荡器

表 3-21 SWDTLRC 振荡器特性

符号	参数	最小值	典型值	最大值	单位
fswdtlrc	频率(1)	9	10	11	kHz
tst(SWDTLRC)	SWDTLRC振荡器稳定时间 ⁽¹⁾	-	-	57.1	μs

1. 量产测试保证。

3.3.8 PLL 特性

表 3-22 PLLH 主要性能指标

符号	参数	条件	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL PFD (Phase Frequency Detector) input clock ^{(1) (2)}	-	1	-	25	MHz	
f _{PLL_OUT}	PLL multiplier output clock	-	15	-	120	MHz	
fvco_out	PLL VCO output (1)	-	240	-	480	MHz	
tLOCK	PLL lock time ⁽¹⁾	-	-	80	120	μs	
littor	Period Jitter	PLL PFD input clock=8 MHz, System clock=120 MHz, Peak-to-Peak	-	±100	-	nc	
Jitter _{PLL}	Cycle-to-Cycle Jitter	PLL PFD input clock=8 MHz, System clock=120 MHz, Peak-to-Peak	-	±150	-	ps	

- 1. 量产测试保证。
- 2. 推荐使用较高的输入时钟,以获得良好的 Jitter 特性。

3.3.9 存储器(闪存)特性

器件交付给客户时,闪存已被擦除。

表 3-23 闪存特性

符号	参数	条件	最小值	典型值	最大值	单位	
	// da da >\$\frac{1}{2}	读模式,Vcc = 1.8 V~3.6 V	-	-	5		
		编程模式,V _{CC} = 1.8 V~3.6 V	-	-	10	mA	
lvcc	供电电流(1)	块擦除模式,Vcc = 1.8 V~3.6 V	-	-	10		
		全擦除模式,V _{CC} = 1.8 V~3.6 V	-	-	10		

1. 设计保证。

表 3-24 闪存编程擦除时间

符号	参数	条件	最小值	典型值	最大值	单位
т	字编程时间(1)	单编程模式	43+2* T _{hclk} ⁽²⁾	48+4* T _{hclk} ⁽²⁾	53+6* T _{hclk} ⁽²⁾	μs
I prog	字编程时间(1)	连续编程模式	12+2* T _{hclk} (2)	14+4* T _{hclk} (2)	16+6* T _{hclk} (2)	μs
Terase	块擦除时间 ⁽¹⁾	-	16+2* T _{hclk} (2)	18+4* T _{hclk} (2)	20+6* T _{hclk} ⁽²⁾	ms
T _{mas}	全擦除时间(1)	-	16+2* T _{hclk} ⁽²⁾	18+4* T _{hclk} ⁽²⁾	20+6* T _{hclk} ⁽²⁾	ms

- 1. 量产测试保证。
- 2. Thclk 为 CPU 时钟的 1 周期。

表 3-25 闪存可擦写次数和数据保存期限

符号	参数	2 JH	数值	₩ /÷
		条件	最小值	单位
Nend	编程,块擦除次数	T _A = 85 °C	10	千次
N _{end}	全擦除次数	T _A = 85 °C	10	千次
T _{ret}	数据保存期限	T _A = 85 °C	10	年

3.3.10 电气敏感性

使用特定的测量方法对芯片进行不同的测试(ESD、LU),以确定其在电气敏感性方面的性能。

3.3.10.1 静电放电(ESD)

根据每种引脚组合,对每个样本的引脚施加静电放电。此项测试符合 JS001/ JS002 标准。

表 3-26 ESD 特性

符号	参数	条件	最大值	单位
V _{ESD(HBM)}	静电放电电压(人体模型)	T _A =+25 °C,符合JS001标准	4000	V
Vesd(cdm)	静电放电电压(充电设备模型)	T _A =+25 °C,符合JS002标准	1000	V

3.3.10.2 静态 Latch-up

为评估静态 Latch-up 性能,需要对芯片执行两项互补的静态 Latch-up 测试:

- 对每个电源和模拟输入引脚施加过压
- 对其他输入、输出和可配置 I/O 引脚施加电流注入

这些测试符合 JESD 78 IC Latch-up 标准。

表 3-27 静态 Latch-up 特性

符号	参数	条件	最大值	单位
LU	静态Latch-up	T _A =+105°C,符合JESD78标准	200	mA

3.3.11 I/O 端口特性

常规输入/输出特性

表 3-28 I/O 静态特性

符号	参数		条件	最小值	典型值	最大值.	单位
VIL	Schmitt输入低电平 ⁽¹⁾		1.8≤Vcc≤3.6	-	-	0.3Vcc	٧
ViH	Schmitt输入高电平 ⁽¹⁾		1.8≤Vcc≤3.6	0.7Vcc	-	-	V
V _{HYS}	Schmitt输入迟滞		1.8≤Vcc≤3.6	0.1	0.2	-	V
VIL	(GPIO_LP ⁽⁵⁾) Sch	hmitt输入低电平 ⁽¹⁾	1.08≤Vcc≤1.8	-	-	0.3Vcc	V
ViH	(GPIO_LP ⁽⁵⁾) Sch	hmitt输入高电平 ⁽¹⁾	1.08≤Vcc≤1.8	0.7Vcc	-	-	V
V _{HYS}	(GPIO_LP ⁽⁵⁾) Sch	hmitt输入迟滞	1.08≤Vcc≤1.8	0.08	0.15	-	V
VIL	CMOS输入低电平(1)	1.8≤Vcc≤3.6	-	-	0.3Vcc	V
V _{IH}	CMOS输入高电平(1)	1.8≤V _{CC} ≤3.6	0.7V _{CC}	-	-	V
V _{IL}	(GPIO_LP ⁽⁵⁾) CM	IOS输入低电平 ⁽¹⁾	1.08≤V _{CC} ≤1.8	-	-	0.3V _{CC}	V
ViH	(GPIO_LP ⁽⁵⁾) CM	IOS输入高电平 ⁽¹⁾	1.08≤Vcc≤1.8	0.7Vcc	-	-	V
TTL_V _{IL}	CMOS/ Schmitt兼	容TTL输入低电平 ⁽¹⁾	2.7≤Vcc≤3.6	-	-	0.8	V
TTL_V _{IH}	CMOS/ Schmitt兼容TTL输入高电平(1)		2.7≤Vcc≤3.6	2.2	-	-	V
TTL_V _{IH}	CMOS兼容TTL输入高电平 ⁽¹⁾		2.7≤Vcc≤3.47	2.0	-	-	V
	Schmitt输入最高频率		2.7≤Vcc≤3.6	-	-	40	MHz
			1.8≤V _{CC} ≤2.7	-	-	20	MHz
F(')	CMOS输入最高频率		2.7≤Vcc≤3.6	-	-	80	MHz
Fmax(in)			1.8≤Vcc≤2.7	-	-	40	MHz
	(GPIO_LP ⁽⁵⁾) Schmitt输入最高频率		1.08≤V _{CC} ≤1.8	-	-	20	MHz
	(GPIO_LP ⁽⁵⁾) CM	(GPIO_LP ⁽⁵⁾) CMOS输入最高频率		-	-	30	MHz
	1042 と中文(1)	106~12日次(1)		-	-	1	μΑ
I_{LKG}	I/O输入漏电流 ⁽¹⁾ 		$V_{IN} = 5.5V^{(2)}$	-	-	10	μΑ
Rpu	弱上拉	-	$V_{IN} = V_{SS}$ $1.8 \le V_{CC} \le 3.6$	10	30	150	ΚΩ
TYPU	等效电阻(1)(3)(7)	GPIO_LP ⁽⁵⁾	$V_{IN} = V_{SS}$ $1.08 \le V_{CC} \le 1.8$	40	200	400	ΚΩ
Rpd	弱下拉	-	$V_{IN} = V_{CC}$ $1.8 \le V_{CC} \le 3.6$	5	20	50	ΚΩ
πρα	等效电阻 ⁽¹⁾⁽³⁾⁽⁷⁾	GPIO_LP ⁽⁵⁾	$V_{IN} = V_{CC}$ $1.08 \le V_{CC} \le 1.8$	10	60	120	ΚΩ
R _{PD}	弱下拉 等效电阻 ^{(4) (7)}	PA11/ USBFS_DM PA12/ USBFS_DP	V _{IN} = V _{CC}	-	500	-	ΚΩ
Cıo	I/O引脚电容 ⁽²⁾	PA11 (USBFS_DM) PA12 (USBFS_DP) PB6, PB7, PB10, PB11 (I2C) PF3 (MD)	-	-	10	-	pF
	,, 2 3 10-1 U II	PA4~PA7, PC4, PC5, PE7, PE8 (DA输出) ⁽⁶⁾	-		15		pF
	上述以外其他输入引脚		-	-	5	-	pF

- 1. 量产测试保证。
- 2. 设计保证。
- 3. 对 PA11/ USBFS_DM、PA12/ USBFS_DP 而言,标明的是 USB 功能关闭时 GPIO 的弱上拉等效电阻数值。关于 USB 功能的上拉/下拉电阻请参考【USB 接口特性】章节。
- 4. 仅 PA11/ USBFS_DM、PA12/ USBFS_DP 有弱下拉电阻,且一直有效。
- 5. GPIO_LP 表示 BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、PB15 端子。
- 6. 适用于产品型号 HC32F472KCHI/ HC32F472KEHI 的对应端子。
- 7. 要使电压保持在高于 Vcc+0.3 V,必须禁止内部上拉/下拉电阻。

输出电流

GPIO(通用输入/输出)可提供最大±20 mA 的拉电流或灌电流。

输出电压

表 3-29 输出电压特性

驱动	符号	参数	条件	最小值	典型值	最大值	单位
低驱动	V _{OL}	低电平输出(1)(2)		-	-	0.6	
	Vон	高电平输出(1)(3)	l _{IO} =±1.5 mA, 1.8≤V _{CC} <2.7	Vcc-0.6	-	-	
	VoL	低电平输出(1)(2)		-	-	0.6	
	Vон	高电平输出(1)(3)	l _{IO} =±3 mA, 2.7≤V _{CC} ≤3.6	Vcc-0.6	-	-	
	VoL	低电平输出(1)(2)	L . C A . 2.7 . A 2.6	-	-	1.3	
	Vон	高电平输出(1)(3)	l _{IO} =±6 mA, 2.7≤V _{CC} ≤3.6	Vcc-1.3	-	-	
	VoL	低电平输出(1)(2)	l _{IO} =±0.25 mA, 1.08≤V _{CC} ≤1.8	-	-	0.2	
	Vон	高电平输出(1)(3)	(GPIO_LP ⁽⁴⁾)	Vcc-0.2	-	-	
	V _{OL}	低电平输出(1)(2)	1 12 1 1 0 2 7	-	-	0.4	
	V _{OH}	高电平输出(1)(3)	l ₁₀ =±3 mA, 1.8≤V _{CC} <2.7	V _{CC} -0.4	-	-	
	VoL	低电平输出(1)(2)	L .5 A 27 W 26	-	-	0.4	
	Vон	高电平输出(1)(3)	l ₁₀ =±5 mA, 2.7≤Vcc≤3.6	Vcc-0.4	-	-	
中驱动	VoL	低电平输出(1)(2)	1 12 2 4 2 7 3/ 22 6	-	-	1.3	
	Vон	高电平输出(1)(3)	$I_{IO}=\pm 12 \text{ mA}, 2.7 \le V_{CC} \le 3.6$	Vcc-1.3	-	-	
	VoL	低电平输出(1)(2)	I _{IO} =±0.5 mA, 1.08≤V _{CC} ≤1.8	-	-	0.2	
	Vон	高电平输出(1)(3)	(GPIO_LP ⁽⁴⁾)	Vcc-0.2	-	-	V
	V _{OL}	低电平输出(1)(2)	L .C 1.0 2.7	-	-	0.4	
	Vон	高电平输出(1)(3)	l _{IO} =±6 mA, 1.8≤V _{CC} <2.7	Vcc-0.4	-	-	
	V _{OL}	低电平输出(1)(2)	1 10 1 2 7 2 6	-	-	0.4	
	Vон	高电平输出(1)(3)	l _{IO} =±8 mA, 2.7≤V _{CC} ≤3.6	Vcc-0.4	-	-	
	VoL	低电平输出(1)(2)	1	-	-	1.3	
	Vон	高电平输出(1)(3)	$I_{10}=\pm 20 \text{ mA}, 2.7 \le V_{CC} \le 3.6$	Vcc-1.3	-	-	
÷==-	VoL	低电平输出(1)(2)	1 120 1 2 07 -1/ 12 0	-	-	0.88	
高驱动	Vон	高电平输出(1)(3)	l ₁₀ =±20 mA, 2.97≤V _{CC} ≤3.6	Vcc-0.88	-	-	
	VoL	低电平输出(1)(2)	I _{IO} =±1 mA, 1.08≤V _{CC} ≤1.8	-	-	0.2	
	V _{OH}	高电平输出(1)(3)	(GPIO_LP ⁽⁴⁾)	V _{CC} -0.2	-	-	
	VoL	低电平输出(1)(2)	l _{IO} =±2 mA, 1.08≤V _{CC} ≤1.8	-	-	0.32	
	Vон	高电平输出(1)(3)	(GPIO_LP ⁽⁴⁾)	Vcc-0.32	-	-	
	VoL	低电平输出(1)(2)	l _{IO} =±3 mA, 1.08≤V _{CC} ≤1.8	-	-	0.4	
	Vон	高电平输出(1)(3)	(GPIO_LP ⁽⁴⁾)	Vcc-0.4	-	-	
IIC/FM+	VOLFM+	低电平输出(1)(2)	I _{IO} =20 mA, 2.7≤V _{CC} ≤3.6	-	-	0.4	

- 1. 量产测试保证。
- 2. 器件的 I_{IO} 灌电流必须一直考虑表 3-2 中规定的绝对最大额定。 I_{IO} (I/O 端口和控制引脚)之和一定不能超过 I_{VSS} 。
- 3. 器件的 lio 拉电流必须始终遵循表 3-2 所列的绝对最大额定值,lio(I/O 端口和控制引脚)的总和不得超过 lvcc。
- 4. GPIO_LP 表示 BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、PB15 端子。

输出交流特性

表 3-30 I/O 交流特性

驱动设置	符号	参数	条件 ⁽³⁾	最小值	典型值	最大值	单位
低驱动	((10)	最大频率 ⁽¹⁾	C _L =30 pF, V _{CC} ≥ 2.7 V	-	-	20	- MHz
			C _L =30 pF, V _{CC} ≥1.8 V	-	-	10	
	f _{max} (IO)out		C _L =10 pF, V _{CC} ≥2.7 V	-	-	40	
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	20	
	$t_f(IO)$ out $t_r(IO)$ out	输出高至低电平下降时间 及输出低至高电平上升时	C _L =30 pF, V _{CC} ≥2.7 V	-	-	15	
			C _L =30 pF, V _{CC} ≥1.8 V	-	-	25	
			C _L =10 pF, V _{CC} ≥2.7 V	-	-	7.5	ns
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	15	
	f _{max} (IO)out	(CDIO LD(2))目土坻壶 (1)	C _L =30 pF, V _{CC} ≥1.08 V	-	-	5	MHz
	Imax(IO)Out	(GPIO_LP ⁽²⁾)最大频率 ⁽¹⁾	C _L =10 pF, V _{CC} ≥1.08 V	-	-	10	IMI⊓Z
		输出高至低电平下降时间	C _L =30 pF, V _{CC} ≥1.08 V	-	-	60	
	t _f (IO)out t _r (IO)out	及输出低至高电平上升时 间(GPIO LP ⁽²⁾)	C _L =10 pF, V _{CC} ≥1.08 V	-	-	30	ns
		- 最大频率 ⁽¹⁾	C _L =30 pF, V _{CC} ≥ 2.7 V	-	-	45	- MHz
	f (10)		C _L =30 pF, V _{CC} ≥1.8 V	-	-	22.5	
	f _{max} (IO)out		C _L =10 pF, V _{CC} ≥2.7 V	-	-	90	
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	45	
	t _f (IO)out t _r (IO)out	输出高至低电平下降时间 及输出低至高电平上升时 间	C _L =30 pF, V _{CC} ≥2.7 V	-	-	6	ns
			C _L =30 pF, V _{CC} ≥1.8 V	-	-	10	
中驱动			C _L =10 pF, V _{CC} ≥2.7 V	-	-	4	
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	6	
	f _{max} (IO)out	(GPIO_LP ⁽²⁾)最大频率 ⁽¹⁾	C _L =30 pF, V _{CC} ≥1.08 V	-	-	10	- MHz
			C _L =10 pF, V _{CC} ≥1.08 V	-	-	20	
		(GPIO_LP ⁽²⁾)输出高至低电平下降时间及输出低至高电平上升时间	C _L =30 pF, V _{CC} ≥1.08 V	-	-	30	ns
	t _f (IO)out t _r (IO)out		C _L =10 pF, V _{CC} ≥1.08 V	-	-	15	
		ut 最大频率 ⁽¹⁾	C _L =30 pF, V _{CC} ≥2.7 V	-	-	100	
	f _{max} (IO)out		C _L =30 pF, V _{CC} ≥1.8 V	-	-	50	MHz
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	100	
		+A.U. = 7.16 p.1.	C _L =30 pF, V _{CC} ≥2.7 V	-	-	4	
高驱动	t _f (IO)out	输出高至低电平下降时间 及输出低至高电平上升时间	C _L =30 pF, V _{CC} ≥1.8 V	-	-	6	
	t _r (IO)out		C _L =10 pF, V _{CC} ≥2.7 V	-	-	2.5	ns
			C _L =10 pF, V _{CC} ≥1.8 V	-	-	3.5	1
	f (IC) :	(ODIO 10/2)\E 1 157 (2)	C _L =30 pF, V _{CC} ≥1.08 V	-	-	20	MU-
	f _{max} (IO)out	(GPIO_LP ⁽²⁾)最大频率 ⁽¹⁾	C _L =10 pF, V _{CC} ≥1.08 V	-	-	40	MHz
	t _f (IO)out		C _L =30 pF, V _{CC} ≥1.08 V	-	-	15	ns

驱动设置	符号	参数	条件 ⁽³⁾	最小值	典型值	最大值	单位
	t _r (IO)out	(GPIO_LP ⁽²⁾)输出高至低电					
		平下降时间及输出低至高	C _L =10 pF, V _{CC} ≥1.08 V	-	-	8	
		电平上升时间					

- 1. 最大频率在图 3-6 中定义。
- 2. GPIO LP表示 BGA64 封装 PC6、PC7、PC8、PC9、PB12、PB13、PB14、PB15 端子。
- 3. 负载电容 CL 必须将 PCB 和 MCU 引脚的电容考虑在内(产品型号 HC32F472KCHI/ HC32F472KEHI 的 DA 输出用引脚 PA4~PA7、PC4、PC5、PE7、PE8 与电路板的电容可粗略地估算为 20 pF; USB 引脚 PA11、PA12 及 I2C 引脚 PB6、PB7、PB10、PB11 及 MD 引脚 PF3 与电路板的电容分别可粗略地估算为 15 pF; 其他引脚与电路板的电容可粗略地估算为 10 pF)。

图 3-6 I/O 交流特性定义

3.3.12 I2C 接口特性

表 3-31 I2C 电气特性

符号	参数	标准模式(SM)		快速模式(FM)		快速模式Plus (FM+) (3)		单位
		Min	Max	Min	Max	Min	Max	ıπ
fscL	SCL频率	0	100	0	400	0	1000	kHz
t _{HD;STA}	开始条件/重新开始条件Hold	4.0	-	0.6	-	0.26	-	μs
t _{LOW}	SCL低电平	4.7	-	1.3	-	0.5	-	μs
thigh	SCL高电平	4	-	0.6	-	0.26	-	μs
tsu;sta	重新开始条件Setup	4.7	-	0.6	-	0.26	-	μs
thd;dat	数据Hold ₍₁₎	0	-	0	-	0	-	μs
tsu;dat	数据Setup ₍₁₎	30+ t _{12C基准时钟周期(2)}	-	30+ t _{I2C基准时钟周期(2)}	-	30+ t _{I2C基准时钟周期(2)}	-	ns
t _R	SCL/SDA的上升时间	-	1000	-	300	-	120	ns
t _F	SCL/SDA的下降时间	-	300	-	300	-	120	ns
t _{SU;STO}	停止条件Setup	4	-	0.6	-	0.26	-	μs
t _{BUF}	停止条件到开始条件间的 BUS空闲时间	4.7	-	1.3	-	0.5	-	μs
Cb	负载电容	-	400	-	400	-	550	pF

- 1. 量产测试保证。
- 2. $t_{I2C \, \underline{a}_{\underline{A}\underline{B}\underline{B}\underline{B}\underline{B}\underline{B}\underline{B}\underline{B}\underline{B}}$ 即 I2C 基准时钟周期,由 I2C_CCR.FREQ[2:0]位设定。
- 3. FM+模式下,I2C 功能需配置在 PB6、PB7、PB10、PB11 端口。

图 3-7 I2C 总线时序定义

3.3.13 MDIO 接口特性

表 3-32 MDIO 电气特性

符号	性能指标	Min	Тур	Max	Unit
fmdc	MDC时钟频率	-	-	4	MHz
t _{setup}	MDIO setup时间 ₍₁₎	10	-	-	ns
thold	MDIO hold时间 ₍₁₎	10	-	-	ns
t _{delay}	MDIO输出延时 ₍₁₎	-	-	175	ns

图 3-8 MDIO 时序

3.3.14 SPI 接口特性

表 3-33 SPI 电气特性

Symbol	parameter	Conditions	min	max	Unit
t _w (SCKH)	CCVADARHA	主机模式 ⁽⁴⁾ ,1.8 V≤Vcc≤3.6 V	T _{pclk1} -1 ⁽⁵⁾	T _{pclk1} +1 ⁽⁵⁾	ns
IW(SCKII)	SCK高电平时间	从机模式 ⁽⁴⁾ ,1.8 V≤Vcc≤3.6 V	3xT _{pclk1} -1 ⁽⁵⁾	3xT _{pclk1} +1 ⁽⁵⁾	ns
tw(SCKL)	SCK低电平时间	主机模式, 1.8 V≤Vcc<3.6 V	T _{pclk1} -1 ⁽⁵⁾	T _{pclk1*1} +1 ⁽⁵⁾	ns
tw(SCKL)	300版电干时间	从机模式, 1.8 V≤Vcc<3.6 V	3xT _{pclk1} -1 ⁽⁵⁾	3xT _{pclk1} +1 ⁽⁵⁾	ns
t _{su} (SI)	Data输入建立时间	从机模式, 1.8 V≤Vcc≤3.6 V	4	-	ns
t _h (SI)	Data输入保持时间	从机模式, 1.8 V≤Vcc≤3.6 V	3	-	ns
t _v (SO)	Data绘出去效时间	从机模式, 2.7 V≤Vcc≤3.6 V ⁽¹⁾	-	15	ns
ιν(30)	Data输出有效时间	从机模式, 1.8 V≤Vcc<2.7 V	-	26	ns
+ (MI)		主机模式, 2.7 V≤Vcc≤3.6 V ⁽¹⁾	5	-	ns
t _{su} (MI)	Data输入建立时间	主机模式, 1.8 V≤Vcc<2.7 V	9	-	ns
t _h (MI)		主机模式, 2.7 V≤Vcc≤3.6 V ⁽¹⁾	5	-	ns
th(IVII)	Data输入保持时间 	主机模式, 1.8 V≤Vcc<2.7 V	15	-	ns
		从机模式, 1.8 V≤Vcc≤3.6 V	6×T _{pclk1} (5)	-	ns
t _{su} (SS)	SS建立时间	主机模式, 2.7 V≤Vcc≤3.6 V	-5+N×T _{sck} ^{(2) (5)}	-	ns
		主机模式, 1.8 V≤Vcc<2.7 V	-10+N×T _{sck} ^{(2) (5)}	-	ns
		从机模式, 1.8 V≤Vcc≤3.6 V	6×T _{pclk1} (5)	-	ns
t _h (SS)	SS保持时间	主机模式, 2.7 V≤Vcc≤3.6 V	-5+N×T _{sck} (3) (5)	-	ns
		主机模式, 1.8 V≤Vcc<2.7 V	-10+N×T _{sck} ^{(3) (5)}	-	ns
t _v (MO)	Data於山左於时间	主机模式, 2.7 V≤Vcc≤3.6 V ⁽¹⁾	-	4	ns
ι _ν (ΙνίΟ <i>)</i>	Data输出有效时间	主机模式, 1.8 V≤Vcc≤2.7 V	-	9	ns

- 1: 量产测试保证。
- 2: N=1~8 由寄存器 SPI_CFG1.MSSI[2:0]决定。
- 3: N=1~8 由寄存器 SPI_CFG1.MSSDL[2:0]决定。
- 4: tw(SCKH)和 tw(SCKL)的数值由 SPI_CFG2.MBR 决定,表格中所列值为 SPI_CFG2.MBR=0 的值。
- 5: Tpclk1 是指时钟 PCLK1 的 1 个周期,Tsck 是指 SPI 通信时钟的 1 个周期。

图 3-9 SPI 时序定义(从机模式,CPHA=0)

图 3-10 SPI 时序定义(从机模式,CPHA=1)

图 3-11 SPI 时序定义(主机模式)

3.3.15 QSPI 接口特性

表 3-34 QSPI 电气特性

Symbol	parameter	Min	Max	Unit
t _{Qscyc}	SCK 时钟周期数	2	64	Thclk
tqswн	SCK 高电平	t _{Qscy} c×0.4	-	ns
tqswL	SCK 低电平	t _{Qscy} c×0.4	-	ns
tou	数据输入建立时间(2.7 V~3.6 V) ⁽¹⁾	5	-	ns
tsu	数据输入建立时间(1.8 V~2.7 V)	5		ns
+	数据输入保持时间(2.7 V~3.6 V) ⁽¹⁾	5	-	ns
tıн	数据输入保持时间(1.8 V~2.7 V)	15		ns
top	数据输出迟延(1)	-	4	ns
tон	数据输出保持时间	0	-	ns

图 3-12 QSPI 时钟时序

图 3-13 QSPI 时序定义

3.3.16 USB 接口特性

表 3-35 USB Full-Speed 电气特性

Symb	ol	Parameter	Conditions	Min. ⁽³⁾	Тур.	Max. ⁽³⁾	单位
	Vcc	工作电压(2)	-	3.0	-	3.6	V
	VIL	输入低电平(1)	-	-	-	0.8	V
输入	ViH	输入高电平(1)	-	2.0	-	-	V
	V _{DI}	差分输入灵敏度(1)	-	0.2	-	-	V
	Vсм	差分共模电压(1)	-	0.8	-	2.5	V
	Vol	静态输出低电平(1)(4)	R _L =1.5 kΩ to 3.6 V	-	-	0.3	V
	Voh	静态输出高电平(1)(4)	R _L =15 kΩ to VSS	2.8	-	3.6	V
	Vcrs	Cross-over电压	C _L =50 pF	1.3	-	2.0	V
输出	t _R	上升时间	C _L =50 pF, 10%~90% of V _{OH} -V _{OL}	4	-	20	ns
	t _F	下降时间	CL=50 pF, 10%~90% of VoH-VoL	4	-	20	ns
	t _{RFMA}	上升下降时间比t _R /t _F	C _L =50 pF	90	-	111	%
R _{PD}		下拉电阻(1)	V _{IN} = V _{CC} , in host mode	-	15.0	-	kΩ
Rpu		L+÷ 由四(1)	V _{IN} = V _{SS} , idle state	0.900	1.2	1.575	kΩ
שאח	R _{PU} 上拉电阻 ⁽¹⁾		V _{IN} = V _{SS} , in device mode	1.425	2.3	3.090	kΩ
Z _{DRV}		输出阻抗 ⁽⁵⁾	Driving high or low	28	36	44	Ω

- 1. 量产测试保证。
- 2. 工作电压降至 2.7 V 时,仍可保证 USB 全速收发器的功能,但不能保证完整的 USB 全速电气特性, 后者在 2.7 到 3.0 V 的 V_{CC} 电压范围内会降级。
- 3. 所有电压均基于局部接地电位测得。
- 4. RL是连接至 USB 全速驱动器的负载。
- 5. DP、DM 端口无需外接串联电阻进行阻抗匹配,Driver 输出已包括该匹配电阻,此特性设计保证。
- 6. DP、DM 端口无需外接上拉/下拉电阻,PHY 内部已集成。

耒	3-36	USB	Low-Speed	由气特性
1X	3-30	030	LOW-SDEED	TE LIVIE

Symbol		Parameter	Conditions	Min.(1)	Тур.	Max. ⁽¹⁾	单位
	Vcc	工作电压(2)	-	3.0	-	3.6	٧
	VIL	输入低电平	-	-	-	0.8	٧
输入	V _{IH}	输入高电平	-	2.0	-	-	٧
	V _{DI}	差分输入灵敏度	-	0.2	-	-	٧
	Vсм	差分共模电压	-	0.8	-	2.5	٧
	VoL	静态输出低电平(3)	R _L =1.5 kΩ to 3.6 V	-	-	0.3	٧
	Vон	静态输出高电平(3)	$R_L=15 \text{ k}\Omega$ to VSS	2.8	-	3.6	٧
	Vcrs	Cross-over电压	C _L =200 pF~600 pF	1.3	-	2.0	٧
输出	t _R	上升时间	C _L =200 pF~600 pF, 10%~90% of Vон-Vo _L	75	-	300	ns
	t _F	下降时间	C _L =200 pF~600 pF, 10%~90% of Vон-VoL	75	-	300	ns
	trfma	上升下降时间比t _R /t _F	C _L =200 pF~600 pF	80	-	125	%
R _{PD}		下拉电阻	V _{IN} = V _{CC} , in host mode	-	15.0	-	kΩ
Z _{DRV}		输出阻抗 ⁽⁴⁾	Driving high or low	28	36	44	Ω

- 1. 所有电压均基于局部接地电位测得。
- 2. 工作电压降至 2.7 V 时,仍可保证 USB 低速收发器的功能,但不能保证完整的 USB 低速电气特性, 后者在 2.7 到 3.0 V 的 Vcc 电压范围内会劣化。
- 3. RL是连接至 USB 低速驱动器的负载。
- 4. DP、DM 端口无需外接串联电阻进行阻抗匹配,Driver 输出已包括该匹配电阻,此特性设计保证。
- 5. DP、DM 端口无需外接上拉/下拉电阻,PHY 内部已集成。

图 3-14 USB 上升/下降时间及 Cross Over 电压定义

3.3.17 USART 接口特性

表 3-37 USART 电气特性

符号	参数		最小值	最大值	单位
+	<i>t</i> ← \ □→5-h FI #□ #±	UART	4	1	tocura
t _{cyc}	输入时钟周期数	时钟同步模式	6	1	t _{PCLK1}
tcĸw	输入时钟宽度		0.4	0.6	t _{cyc}
tcĸr	输入时钟上升时间		-	5	ns
tcĸf	输入时钟下降时间		-	5	ns
tтр	发送延迟时间 2.7 V≤Vcc≤3.6 V ⁽¹⁾	时钟同步模式	-	23	ns
CID	发送延迟时间 1.8 V≤Vcc<2.7 V	时钟同步模式	-	30	ns
t _{RDS}	接收数据建立时间 2.7 V≤Vcc≤3.6 V ⁽¹⁾	时钟同步模式	17	-	ns
יאט	接收数据建立时间 1.8 V≤Vcc<2.7 V	时钟同步模式	23	-	ns
t _{RDH}	接收数据保持时间	时钟同步模式	5	-	ns

表 3-38 USART 最高波特率

模式		最高波特率
UART	内部时钟源	PCLK1/8
UAKT	外部时钟源	PCLK1/32
时钟同步模式 2.7 V≤V	/cc≤3.6 V	6.0 Mbps
时钟同步模式 1.8 V≤Vcc<2.7 V		4.0 Mbps

图 3-15 USART 时钟时序

图 3-16 USART (CSI) 输入输出时序

3.3.18 JTAG 接口特性

表 3-39 JTAG 接口特性

Symbol	Item	Min	Тур	Max	Unit
tтсксус	JTCK clock cycle time	50	-	-	ns
t _{TCKH}	JTCK clock high pulse width	15	-	-	ns
ttckl	JTCK clock low pulse width	15	-	-	ns
t _{TCKr}	JTCK clock rise time	-	-	5	ns
t _{TCKf}	JTCK clock fall time	-	-	5	ns
t _{TMSs}	JTMS setup time ⁽¹⁾	10	-	-	ns
tтмsh	JTMS hold time ⁽¹⁾	10	-	-	ns
t _{TDIs}	JTDI setup time ⁽¹⁾	10	-	-	ns
t _{TDIh}	JTDI hold time ⁽¹⁾	10	-	-	ns
tTDOd	JTDO data delay time ⁽¹⁾	10	-	25	ns

图 3-17 JTAG TCK 时钟

图 3-18 JTAG 输入输出

3.3.19 SWD 接口特性

表 3-40 SWD 接口特性

Symbol	Item	Min	Тур	Max	Unit
tswclKcyc	SWCLK clock cycle time	50	-	-	ns
tswclkh	SWCLK clock high pulse width	15	-	-	ns
tswclkl	SWCLK clock low pulse width	15	-	-	ns
tswclKr	SWCLK clock rise time	-	-	5	ns
tswclkf	SWLCK clock fall time	-	-	5	ns
t _{SWDIs}	SWDI setup time ⁽¹⁾	10	-	-	ns
tswdih	SWDI hold time ⁽¹⁾	10	-	-	ns
tswDOd	SWDO data delay time ⁽¹⁾	2	-	25	ns

图 3-19 SWD SWCLK 时钟

图 3-20 SWDIO 输入输出

3.3.20 TRACE 接口特性

表 3-41 TRACE 接口特性

Symbol	Item	Min	Тур	Max	Unit
ttrclkcyc	TRACECK clock cycle time	20	-	-	ns
t _{TRCKH}	TRACECK clock high pulse width	7	-	-	ns
ttrckl	TRACECK clock low pulse width	7	-	-	ns
ttrckr	TRACECK clock rise time	-	-	2.5	ns
ttrckf	TRACECK clock fall time	-	-	2.5	ns
t _{TRDd}	TRACED[3:0] output delay time(1)	1.6	-	8.4	ns

图 3-21 TRACE 时钟

图 3-22 TRACE DATA 输出

3.3.21 12 位 ADC 特性

表 3-42 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	电源	-	1.8	-	3.6	V
VREFH	正参考电压(1)	-	1.8	-	Vavcc	V
VREFL	负参考电压	-	-	Vavss	-	V
		高速工作模式下 Vavcc = 2.4 ~ 3.6 V	1	-	60	
f _{ADC}	ADC转换时钟频率	低速工作模式下 V _{AVCC} = 1.8 ~ 2.4 V	1	-	30	MHz
		超低速工作模式	1	-	8	
V _{AIN}	转换电压范围	-	V _{REFL}	-	V _{REFH}	V
RAIN	外部输入阻抗 ⁽²⁾	详见公式1	-	-	50	kΩ
RADC	采样开关电阻(2)	-	-	3	6	kΩ
Cadc	内部采样和保持电容 ⁽²⁾	-	-	4	7	pF
t _D	触发器转换延迟 ⁽²⁾	f _{ADC} = 60 MHz	-	-	0.3	μs
4-	五+X中+コ(2)	f COMII-	0.183	-	4.266	μs
ts	采样时间 ⁽²⁾	f _{ADC} =60 MHz	11	-	255	1/ f _{ADC}
		f _{ADC} = 60 MHz 12位分辨率	0.4	-	-	μs
tconv	单通道总转换时间 ⁽²⁾	f _{ADC} = 60 MHz 10位分辨率	0.37	-	-	μs
	(包括采样时间)	f _{ADC} = 60 MHz 8位分辨率	0.34	-	-	μs
		20到268(采样时间Ts+逐次	、 皮色近n位分辨率	<u>(</u> +1)	•	1/ f _{ADC}
fs	采样率 ⁽²⁾ f _{ADC} = 60 MHz	12位分辨率单ADC	-	-	2.5	Msps
tsт	上电时间(2)	-	-	1	2	μs

- 1. 0≤V_{AVCC} V_{REFH}≤1.2V_o
- 2. 设计保证。

公式 1: RAIN 最大值公式

$$R_{AIN} = \frac{k-1}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

上式(公式 1)用于确定使误差低于 1/4 LSB 的最大外部阻抗。其中 N = 12(12 位分辨率),k 为 ADC_SSTR 寄存器中定义的采样周期数。

高速通道: PC0~3、PA0~3。

低速通道: 除高速通道以外其他通道。

表 3-43 高速输入通道静态精度@ fadc=60 MHz

符号	参数	条件	典型值	最大值	单位
E _T	总未调整误差		±4.5	±6	LSB
Eo	偏移误差	f _{ADC} =60 MHz	±3.5	±6	LSB
E _G	增益误差	输入源阻抗<1KΩ	±3.5	±6	LSB
E _D	微分非线性误差	VREFH=VAVCC=2.4/ 3.6 V TA =-40 °C/ 105 °C	±1	±3	LSB
EL	积分非线性误差		±1.5	±4	LSB

表 3-44 高速输入通道静态精度@ fadc=30 MHz

符号	参数	条件	典型值	最大值	单位
Ет	总未调整误差		±4.5	±6	LSB
Eo	偏移误差	fadc=30 MHz	±3.5	±6	LSB
Eg	增益误差	输入源阻抗<1 KΩ	±3.5	±6	LSB
E _D	微分非线性误差	$V_{REFH}=V_{AVCC}=1.8 V$ TA =-40 °C/ 105 °C	±1	±3	LSB
EL	积分非线性误差		±1.5	±4	LSB

表 3-45 高速输入通道动态精度@ f_{ADC}=60 MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	fadc=60 MHz	10.5	-	Bits
SINAD	信噪谐波比	输入信号频=2 kHz	64.3	-	dB
SNR	信噪比	输入源阻抗=0Ω	64.4	-	dB
THD	总谐波失真	V _{REFH} =V _{AVCC} =2.4/ 3.6 V T _A =-40 °C/ 105 °C	-	-78.1	dB

表 3-46 高速输入通道动态精度@ fadc=30 MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	f _{ADC} =30 MHz	10.6	-	Bits
SINAD	信噪谐波比	输入信号频=2 kHz	67.0	-	dB
SNR	信噪比	输入源阻抗=0 Ω V _{REFH} =V _{AVCC} =1.8 V	67.1	-	dB
THD	总谐波失真	TA =-40 °C/ 105 °C	-	-75.1	dB

表 3-47 低速输入通道静态精度@ fadc=60 MHz

符号	参数	条件	典型值	最大值	单位
E _T	总未调整误差		±5.5	±7	LSB
Eo	偏移误差	f _{ADC} =60 MHz	±4.5	±7	LSB
E _G	增益误差	输入源阻抗<1 KΩ	±4.5	±7	LSB
E _D	微分非线性误差	VREFH=VAVCC=2.4/ 3.6 V TA =-40 °C/ 105 °C	±1.5	±3	LSB
EL	积分非线性误差		±2.0	±4	LSB

表 3-48 低速输入通道静态精度@ fadc=30 MHz

符号	参数	条件	典型值	最大值	单位
E _T	总未调整误差		±5.5	±7	LSB
Eo	偏移误差	fadc=30 MHz	±4.5	±7	LSB
Eg	增益误差	输入源阻抗<1 KΩ	±4.5	±7	LSB
E _D	微分非线性误差	VREFH=VAVCC=1.8 V TA =-40 °C/ 105 °C	±1.5	±3	LSB
EL	积分非线性误差		±2.0	±4	LSB

表 3-49 低速输入通道动态精度@ fadc=60 MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	f _{ADC} =60 MHz	10.5	-	Bits
SINAD	信噪谐波比	输入信号频=2 kHz	64.4	-	dB
SNR	信噪比	输入源阻抗=0Ω	64.4	-	dB
THD	总谐波失真	V _{REFH} =V _{AVCC} =2.4/ 3.6 V T _A =-40 °C/ 105 °C	-	-80.3	dB

表 3-50 低速输入通道动态精度@ fadc=30 MHz

符号	参数	条件	最小值	最大值	单位
ENOB	有效位数	f _{ADC} =30 MHz	10.6	-	Bits
SINAD	信噪谐波比	】输入信号频=2 kHz	66.6	-	dB
SNR	信噪比	輸入源阻抗=0Ω VREFH=VAVCC=1.8V	66.8	-	dB
THD	总谐波失真	TA =-40 °C/ 105 °C	-	-79.4	dB

图 3-23 ADC 精度特性

- 1. 实际传输曲线举例。
- 2. 理想传输曲线。
- 3. 端点相关线。
 - ET = 总未调整误差:实际和理想传输曲线间的最大偏离。
 - Eo = 偏移误差: 第一次实际转换和第一次理想转换间的偏离。
 - E_G = 增益误差: 最后一次理想转换和最后一次实际转换间的偏离。
 - ED = 微分非线性误差:实际步进和理想值间的最大偏离。
 - EL = 积分非线性误差: 任何实际转换和端点相关线间的最大偏离。

图 3-24 使用 ADC 的典型连接

- 1. 有关 RAIN、RADC 和 CADC 值的信息,请参见表 3-42。
- 2. Cparasitic 表示 PCB 电容(取决于焊接和 PCB 布线质量)以及焊盘电容(约 5 pF)。Cparasitic 值较高会导致转换精度降低。要解决这一问题,应减小 f_{ADC}。
- 3. PA4~PA7、PC4、PC5、PB12~PB15 管脚 ADC 通道有此二极管。

通用 PCB 设计准则

应按照下图所示对电源进行去耦。0.1 µF 电容应为(优质)陶瓷电容。这些电容应尽可能靠近芯片。

图 3-25 电源和参考电源去耦例

3.3.22 12 位 DAC 特性

表 3-51 12-bit DAC 端口输出允许且输出放大器允许时特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	-	1.8	3.3	3.6	V
VREFH	参考电源电压(VREFH) ⁽³⁾	-	1.8	3.3	Vavcc	٧
AO	输出电压范围 ⁽¹⁾	DACR.DAOGS2/ DAOGS1 = 0b0	0.2	-	VREFH -0.2	V
AO	潮山电压火油。	DACR.DAOGS2/ DAOGS1 = 0b1	0.2	-	Vavcc-0.2	V
RL	负载电阻	-	300	-	-	Ω
CL	负载电容	-	-	-	100	pF
RO	输出电阻 ⁽²⁾	-	-	-	2.5	Ω
DNL	微分非线性误差(两个连续代码之间的偏差-1LSB) ⁽¹⁾	RL=300 Ω	-	-	±3	LSB
INL	积分非线性误差(代码I处测得的值与代码 0及最后一个代码4095之间连线上代码I处 的值之间的差) ⁽¹⁾	RL=300 Ω	-	-	±4	LSB
OE	偏移误差(代码(0x800)处测得值与理想值 VREFH/2 之间的差) ⁽¹⁾	RL=300 Ω	-	-	±25	LSB
GE	增益误差	RL=300 Ω	-	-	±1	%
Tst	建立时间(满刻度:适用于到DAC输出达 到最终值±4LSB时,最低输入代码与最高 输入代码之间12位输入代码转换)	-	-	-	4	μs
lavcc	模拟电源电流(静态电流,无负载)	-	-	-	2600	μΑ
Irefh	参考电源电流(静态电流)	-	-	-	260	μΑ
PSRR	电源抑制比(2)	-	45	65	-	dB

- 1. 量产测试保证。
- 2. 设计保证。
- 3. $0 \le VAVCC-VREFH \le 1.2 V_{\circ}$

表 3-52 12-bit DAC 端口输出允许且输出放大器禁止时特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	-	1.8	3.3	3.6	V
VREFH	参考电源电压	-	1.8	3.3	Vavcc	V
AO	输出电压范围(1)	-	0	-	VREFH -1LSB	V
CL	负载电容	-	-	-	20	pF
RO	输出电阻(2)	-	-	8	-	ΚΩ
DNL	微分非线性误差(两个连续代码之间的偏差- 1LSB) ⁽¹⁾	-	-	-	±2	LSB
INL	积分非线性误差(代码I处测得的值与代码0及最后一个代码4095之间连线上代码I处的值之间的差) ⁽¹⁾	-	-	-	±4	LSB
TUE	总不可调整误差	-	-	-	±24	LSB
T _{st}	建立时间(适用于到DAC输出达到最终值 ±4LSB时,最低输入代码与最高输入代码之间 12位输入代码转换,CL=20 pF)	-	-	-	4	μς
lavcc	模拟电源电流(静态电流)	-	-	-	2	μΑ
Irefh	参考电源电流(静态电流)	-	-	-	250	μΑ

- 1. 量产测试保证。
- 2. 设计保证。

表 3-53 12-bit DAC 端口输出禁止且输出放大器禁止时特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	-	1.8	3.3	3.6	٧
VREFH	参考电源电压	-	1.8	3.3	Vavcc	٧
AO	输出电压范围(1)	-	0	-	VREFH -1LSB	-
DNL	微分非线性误差(两个连续代码之间的偏差- 1LSB) ⁽¹⁾	-	1	-	±2	LSB
TUE	总不可调整误差(1)	-		-	±5	LSB
	建立时间(适用于到DAC输出达到最终值±1 LSB时,最低输入代码与最高输入代码之间12 位输入代码转换,V _{REFH} ≥2.7)(DAC输出接4 个比较器) ⁽¹⁾	-	-	-	230	ns
Tst	建立时间(适用于到DAC输出达到最终值±32 LSB时,最低输入代码与最高输入代码之间12 位输入代码转换,VREFH≥2.7)(DAC输出接4 个比较器) ⁽¹⁾	-	-	-	135	ns
Ist	建立时间(适用于到DAC输出达到最终值±1 LSB时,最低输入代码与最高输入代码之间12 位输入代码转换,V _{REFH} < 2.7)(DAC输出接4 个比较器) ⁽¹⁾	-		-	240	ns
	建立时间(适用于到DAC输出达到最终值±32 LSB时,最低输入代码与最高输入代码之间12 位输入代码转换,V _{REFH} <2.7)(DAC输出接4 个比较器) ⁽¹⁾	-	-	-	145	ns
lavcc	模拟电源电流(静态电流)	-	-	0.1	2	μΑ
Irefh	参考电源电流(静态电流)	-	-	146	250	μΑ

1. 设计保证。

3.3.23 温度传感器

表 3-54 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
TL	温度线性度	-	-2	-	+2	°C
TE	绝对精度 ⁽¹⁾	Ta 25 ℃, 105 ℃两点定标	-2	-	+2	°C

1. 实际特性与定标点温度的精度有关。如果使用芯片预置的数据定标,由于量产测试环境的温度存在差异,特性不做保证。

3.3.24 内置 VREFINT 特性

表 3-55 内置 VREFINT 特性

符号	参数	条件	最小值	典型值	最大值	单位
VREFINT	内部参考电压(1)	-40 °C ≤T _J ≤ +125 °C	1.08	1.1	1.12	V
ΔV _{REFINT}	温度误差(2)	V _{AVCC} = 3.3 V, -40 °C ≤T _J ≤ +125 °C	-	-	10	mV
T _{Coeff}	温度系数(2)	-40 °C ≤T _J ≤ +125 °C	-	-	80	ppm/ °C
tstart	建立时间 ⁽²⁾	-	-	-	15	μs
V _{REFINT_DIV1}	1/4参考电压(2)	-	24	25	26	
VREFINT_DIV2	1/2参考电压(2)	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3}	3/4参考电压(2)	-	74	75	76	

- 1. 量产测试保证。
- 2. 设计保证。

3.3.25 AVCC 分压特性

表 3-56 AVCC 分压特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVCC}	模拟电源电压	-	1.8	3.3	3.6	٧
V _{AVCC_DIV}	1/2 AVCC分压 ⁽¹⁾	-	47	50	53	% V _{AVCC}
t _{START}	建立时间(2)	-	-	-	15	μs
lavcc	功耗	-	-	22	40	μΑ

- 1. 量产测试保证。
- 2. 设计保证。

3.3.26 VREF 特性

表 3-57 VREF 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	-	2.8	3.3	3.6	V
V _{REFH}	输出基准电压(1)	2.8 V ≤ VAVCC ≤ 3.6 V -40 °C ≤T _J ≤ +125 °C	2.47	2.5	2.53	V
T _{TRIM}	校准刻度 ⁽²⁾	-	-	2.5	-	mV
CL	负载电容 ⁽³⁾	-	-	1	-	μF
ESR	等效串联电阻	C _L =1 μF	-	-	1	Ω
I _{LOAD}	驱动电流	-	-	-	10	mA
I _{LINE_R}	线性调整率 ⁽²⁾	2.8 V ≤ V _{AVCC} ≤ 3.6 V	-	1000	2000	ppm/ V
ILOAD_R	负载调整率 ⁽²⁾	$500 \mu A \le I_{LOAD} \le 10 mA$	-	50	800	ppm/ mA
T _{Coeff}	温度系数(2)(4)	-40 °C ≤T _J ≤ +125 °C	-	-	100	ppm/ °C
PSRR	内语(伊生)(LL(2)	DC	-	60	-	- dB
LOUV	电源抑制比 ⁽²⁾	100 K Hz	-	40	-	UD
t _{START}	建立时间(2)	$C_L = 1 \mu F$	-	-	800	μs

- 1. 此特性指标受扭曲/挤压因素导致的芯片物理形变影响。该规格为无此类物理形变影响下的量产测试保证值。实际使用时需规避此类物理形变的发生。
- 2. 设计保证。
- 3. 使用 1 μ F 电容负载时建议同时并联使用 100 nF 低 ESR 电容,以切断高频噪声,以便获得更好的 ADC/ DAC 动态指标。
- 4. 温度系数包含 BGR 电路部分的系数。

3.3.27 比较器特性

表 3-58 比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	-	1.8	3.3	3.6	٧
Vı	输入电压范围	-	0	-	Vavcc	٧
T _{cmp}	比较时间 ⁽¹⁾	Step=200 mV with overdrive 100 mV 输入Slew Rate≥4 mV/ns	-	-	60	ns
T _{set}	输入通道切换稳定时间	-	-	100	200	ns
		HYST[2:0]=0b000	-	0	-	mV
		HYST[2:0]=0b001	-	10	-	mV
		HYST[2:0]=0b010	-	20	-	mV
	'D'### T	HYST[2:0]=0b011	-	30	-	mV
V _{hyst}	迟滞电压	HYST[2:0]=0b100	-	40	-	mV
		HYST[2:0]=0b101	-	50	-	mV
		HYST[2:0]=0b110	-	60	-	mV
		HYST[2:0]=0b111	-	70	-	mV
Voffset	比较器输入失调电压	-	-15	-	+15	mV

1. 性能测试计算方法是从 CMP 输入管脚输入电压,到 CMP 输出管脚输出比较结果。

图 3-26 CMP 迟滞特性

3.3.28 EXMC 特性

表 3-59 内部 EXCLK 模式的 EXMC 特性

Symbol	Parameter	Min	Тур	Max	Unit
t 244 4	地址线输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	12	ns
t_add_d	地址线输出迟延时间(1.8 V~2.7 V)	-	-	18	ns
t data d	数据线输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	12	ns
t_uata_u	数据线输出迟延时间(1.8 V~2.7 V)	-	-	18	ns
t co d	CE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_ce_d	CE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t wo d	WE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_we_d	WE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
+ 00 d	OE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_oe_d	OE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t baa d	BAA 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
L_Daa_u	BAA 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t adv d	ADV 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_auv_u	ADV 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
+ alo d	ALE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_ale_d	ALE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t data c	数据线输入 Setup 时间(2.7 V~3.6 V) ⁽¹⁾	24	-	-	ns
t_data_s	数据线输入 Setup 时间(1.8 V~2.7 V)	28	-	-	ns
t_data_h	数据线输入 Hold 时间 ⁽¹⁾	0	-	-	ns
t rh c	RB 输入 Setup 时间(2.7 V~3.6 V) ⁽¹⁾	24	-	-	ns
t_rb_s	RB 输入 Setup 时间(1.8 V~2.7 V)	28	-	-	ns
t_rb_h	RB 输入 Hold 时间 ⁽¹⁾	0	-	-	ns

表 3-60 反馈 EXCLK 模式的 EXMC 特性

Symbol	Parameter	Min	Тур	Max	Unit
L	地址线输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	12	ns
t_add_d	地址线输出迟延时间(1.8 V~2.7 V)	-	-	18	ns
L -1-11	数据线输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	12	ns
t_data_d	数据线输出迟延时间(1.8 V~2.7 V)	-	-	18	ns
t an d	CE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_ce_d	CE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t wo d	WE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_we_d	WE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
+ a a d	OE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_oe_d	OE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t had d	BAA 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_baa_d	BAA 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t adv. d	ADV 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_adv_d	ADV 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t ala d	ALE 输出迟延时间(2.7 V~3.6 V) ⁽¹⁾	-	-	9	ns
t_ale_d	ALE 输出迟延时间(1.8 V~2.7 V)	-	-	12	ns
t data a	数据线输入 Setup 时间(2.7 V~3.6 V) ⁽¹⁾	7	-	-	ns
t_data_s	数据线输入 Setup 时间(1.8 V~2.7 V)	7	-	-	ns
t data b	数据线输入 Hold 时间(2.7 V~3.6 V) ⁽¹⁾	5	-	-	ns
t_data_h	数据线输入 Hold 时间(1.8 V~2.7 V)	14	-	-	ns
t rb c	RB 输入 Setup 时间(2.7 V~3.6 V) ⁽¹⁾	7	-	-	ns
t_rb_s	RB 输入 Setup 时间(1.8 V~2.7 V)	7	-	-	ns
+ ub b	RB 输入 Hold 时间(2.7 V~3.6 V) ⁽¹⁾	5	-	-	ns
t_rb_h	RB 输入 Hold 时间(1.8 V~2.7 V)	14	-	-	ns

图 3-27 EXMC 输出信号时序图

图 3-28 EXMC 输入信号时序图

3.3.29 增益可调放大器特性

表 3-61 增益可调放大器特性

符号	参数		条件	最小值	典型值	最大值	单位
Vavcc	模拟电源电压	模拟电源电压		1.8	3.3	3.6	٧
Vos	输入失调电压		-	-8	-	8	mV
Vı	输入电压范围		-	0.1*V _{AVCC} / Gain	-	0.9*V _{AVCC} / Gain	٧
			Gain=2	-2	-	2	%
			Gain=2.133	-2	-	2	%
			Gain=2.286	-2	-	2	%
			Gain=2.667	-2	-	2	%
			Gain=2.909	-2	-	2	%
			Gain=3.2	-2.5	-	2.5	%
		使用内部的模	Gain=3.556	-2.5	-	2.5	%
GE	增益误差	拟地AVSS作为	Gain=4.0	-2.5	-	2.5	%
		PGA负相输入	Gain=4.571	-3.0	-	3.0	%
			Gain=5.333	-3.0	-	3.0	%
			Gain=6.4	-4.0	-	4.0	%
			Gain=8	-4.0	-	4.0	%
			Gain=10.667	-5.0	-	5.0	%
			Gain=16	-5.0	-	5.0	%
			Gain=32	-8.0	-	8.0	%

3.3.30 EIRQ 滤波特性

表 3-62 EIRQ 滤波特性

符号	参数	条件	最小值	典型值	最大值	单位
		INTC_NOCCR.NOCSEL = 0b00	0.4		1.2	μs
Ws since	FIDO於)海沙安安	INTC_NOCCR.NOCSEL = 0b01	8.0	-	2.3	μs
W _{F_EIRQ} EIRQ输入滤波宽/	EIRQ输入滤波宽度	INTC_NOCCR.NOCSEL = 0b10	1.7	-	4.5	μs
		INTC_NOCCR.NOCSEL = 0b11	3.4	-	8.9	μs

3.3.31 USART1 STOP 模式下 RX 滤波特性

表 3-63 USART1 STOP 模式下 RX 滤波特性

符号	参数	条件	最小值	典型值	最大值	单位
		USART1_NFC.USART1_NFS = 0b00	0.4	-	1.2	μs
WE LICARTI	LICADT1於入海冲空床	USART1_NFC.USART1_NFS = 0b01	0.8	-	2.3	μs
WF_USART1	USART1输入滤波宽度	USART1_NFC.USART1_NFS = 0b10	1.7	-	4.5	μs
		USART1_NFC.USART1_NFS = 0b11	3.4	-	8.9	μs

4 封装信息

4.1 封装尺寸

LQFP100 封装

DETAIL: F

Symbol	14	x14 Millime	ter	
Symbol	Min	Nom	Max	
Α			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
А3	0.59	0.64	0.69	
b	0.17		0.27	
С	0.09	0.15	0.20	
D	15.80	16.00	16.20	
D1	13.90	14.00	14.10	
E	15.80	16.00	16.20	
E1	13.90	14.00	14.10	
е		0.50BSC		
L	0.45		0.75	
L1	1.00REF			
θ	0	3.5°	7°	

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

Symbol	7x7 Millimeter				
Syllibol	Min	Min Nom			
Α			1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
А3	0.59	0.64	0.69		
b	0.17		0.27		
С	0.09	0.15	0.20		
D	8.80	9.00	9.20		
D1	6.90	7.00	7.10		
E	8.80	9.00	9.20		
E1	6.90	7.00 7.10			
е	0.50BSC				
L	0.45	0.60 0.75			
L1		1.00REF			
θ	0	3.5° 7°			

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

BGA64 封装

DETAIL A(2:1)

DETAIL B(2:1)

Symbol	4x4 Millimeter				
	Min	Nom	Max		
Α	0.68	0.76	0.84		
A1	0.13	0.18	0.23		
A2	0.53 0.58 0.63				
А3	0.40BSC				
b	0.20	0.25	0.30		
D	3.90	4.00	4.10		
D1		2.8BSC			
Е	3.90	4.00	4.10		
E1		2.8BSC			
е		0.40BSC			
L	0.475REF				

4.2 焊盘示意图

LQFP100 封装(14 mm x 14 mm)

NOTE:

- Dimensions are expressed in millimeters.

BGA64 封装(4 mm x 4 mm)

NOTE:

Dimensions are expressed in millimeters.

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.240 mm
Dsm	0.340 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.240 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

LQFP48 封装(7 mm x 7 mm)

NOTE:

Dimensions are expressed in millimeters.

4.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

LQFP100 封装(14 mm x 14 mm)/ LQFP48 封装(7 mm x 7 mm)

BGA64 封装(4 mm x 4 mm)

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

4.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 T_J (℃)可以按照下面的公式计算:

$$T_J = T_A + (P_D \times \theta_{JA})$$

- TA 是指封装芯片工作时的工作环境温度,单位是°C;
- θ_{IA} 是指封装对工作环境的热阻系数,单位是 $^{\circ}$ C/W;
- PD 等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 IDD x VDD,I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_I,不可以超出芯片可容许的最大结温度 T_I。

表 4-1 各封装热阻系数参考值

Package Type and Size	Thermal Resistance Junction-ambient Value (θ _{JA})	Unit
LQFP100 14 mm x 14 mm/ 0.5 mm pitch	56 +/- 10 %	°C/W
BGA64 4 mm x 4 mm/ 0.4 mm pitch	65 +/- 10 %	°C/W
LQFP48 7 mm x 7 mm/ 0.5 mm pitch	57 +/- 10 %	°C/W

5 订购信息

产品	교목	HC32F472JCTI -LQ48	HC32F472JETI -LQ48	HC32F472KCHI -VFBGA64	HC32F472KEHI -VFBGA64	HC32F472PCTI -LQFP100	HC32F472PETI -LQFP100
主频(MHz)		120					
内	核	M4	M4	M4	M4	M4	M4
Flash	n(KB)	256	512	256	512	256	512
ОТР	(KB)			. 1	134		
RAM	I(KB)		64				
GI	PIO	39	39	55	55	85	85
电压	(V)		1.8 ~ 3.6				
DI	МА	2unit * 8ch					
	Timer				23		
定时及计数	WDT				1ch		
是 到及月数	SWDT				1ch		
	RTC				lch		
	UART				6		
	MDIO	1ch					
	I ² C	3					
\ -	SPI				4		
通信接口	QSPI	1					
	USB_FS	1ch	1ch	-	-	1ch	1ch
	CAN-FD	3ch					
	EXMC			-		/	/
	ADC 12bit	3unit ,21ch	3unit ,21ch	3unit, 29ch	3unit, 29ch	3unit, 27ch	3unit, 27ch
	DAC 12bit	2ch	2ch	8ch	8ch	2ch	2ch
模拟	PGA	3ch					
12277	OTS	/					
	VREF	-	-	1	1	-	-
	СМР	2ch	2ch	4ch	4ch	2ch	2ch
	PVD	/	✓	/	1	✓	1
	FMAC	/	✓	/	/	✓	1
协处理	DCU	/	/	1	/	/	/
	MAU	/	/	1	/	/	1
	AES	AES256					
安全	TRNG	1					
	Hash	SHA256					
工作温度	变 (°C)	-40~105	-40~105	-40~105	-40~105	-40~105	-40~105
封装包装	封装形式	LQFP48 (7*7)	LQFP48 (7*7)	VFBGA64 (4*4)	VFBGA64 (4*4)	LQFP100 (14*14)	LQFP100 (14*14)
2,700	包装形式	TRAY	TRAY	TRAY	TRAY	TRAY	TRAY

订购前,请联系销售窗口咨询最新量产信息。

版本修订记录

版本号	修订日期	修订内容		
Rev1.00	2023/12/18	初版发布。		
		1. ;	产品特性: 内部低速 RC 频率修改:"32K"->"32.768K"	
		2.	1.4.16 修改 CMP 比较模式的命名"电压比较"->"普通比较"。	
		3. :	1.4.17 修改外部模拟输入通道数量。	
		4. 2	2.2 表 2-1 增加 Func0 列的功能描述,删除 PE9 上 RTC_CLK2 功能。	
		5. 2	2.3 表 2-5 修改 VREFH 的输入输出方向;外部副时钟频率修改:"32K"	
		-	->"32.768K";修改 EXMC 的地址线方向。	
		6. 2	2.4 表 2-6 修改 VREFH 使用说明。	
		7. 3	3.3.1 表 3-4 新增环境温度范围、结温范围说明;新增引脚上的输入电	
Rev1.01	2024/12/26	J	压注释。	
		8. 3	3.3.3 表 3-6 修改 PVD1,2 的电压值。	
		9. 3	3.3.18 图 3-18 修改 tTDO0 为 tTDOd,修改下标,并最后一个字母小	
		:	写。	
		10. 3	3.3.20 修改本小节名字 "ETM 接口特性"-> "TRACE 接口特性";修改	
		į	表 3-41 名字。	
		11. 3	3.3.21 修改注释。	
		12. :	全文删除有关 RTC 入侵事件功能。	
		13. :	全文删除 ETM 相关。	