

VITMO

СЕМИНАР 4

Раздел 2. Проводники и диэлектрики в электрическом поле

- 1. Емкость конденсатора.
- 2. Собственная энергия и энергия взаимодействия заряженных тел, энергия конденсатора.

Найти емкость шарового проводника радиуса $R_1 = 100$ мм, окруженного прилегающим к нему концентрическим слоем диэлектрика проницаемости $\varepsilon = 6,0$ и наружного радиуса $R_2 = 200$ мм.

Рис. 1

Ombem: $C = 1.9 n\Phi$.

Пространство между обкладками плоского конденсатора заполнено последовательно двумя диэлектрическими слоями 1 и 2 с толщинами d_1 и d_2 и с проницаемостями ε_1 и ε_2 . Площадь каждой обкладки равна S. Найти:

- а) емкость конденсатора;
- б) плотность σ' связанных зарядов на границе раздела диэлектрических слоев, если напряжение на конденсаторе равно U и электрическое поле направлено от слоя 1 к слою 2.

Ombem: a) $C = \varepsilon_0 S/(d_1/\varepsilon_1 + d_2/\varepsilon_2)$; b) $\sigma' = \varepsilon_0 U(\varepsilon_1 - \varepsilon_2)/(\varepsilon_1 d_2 + \varepsilon_2 d_1)$.

Одинаковые конденсаторы, емкостью С каждый, соединены в форме куба, как показано на рис. 2.

Определить электроемкость системы между точками 1 и 7.

• *Ombem*: $C_{17} = 6/5C$.

Рис. 2

Заряд q распределен равномерно по объему шара радиуса R. Полагая диэлектрическую проницаемость равной единице, найти:

- а) собственную электростатическую энергию шара;
- б) отношение энергии W1, запасенной внутри шара, к энергии W2, заключенной в окружающем пространстве.

Ombem: a) $W = 3q^2/20\pi_0 \epsilon R$; 6) $W_1/W_2 = 1/5$.

На рис. 3 представлена бесконечная цепь, образованная повторением одного и того же звена — сопротивлений $R_1 = 4$ Ом и $R_2 = 3$ Ом. Найти ее сопротивление между точками A и B.

Omsem: $R = (1 + \sqrt{1 + 4R_2/R_1})R_1/2 = 6 O_M$.

Рис. 3