'cs229'—Notes

Malcolm

Started 1st October 2024

Chapter 1

Supervised learning

Given a dataset of n training examples $\{(x^{(i)}, y^{(i)}); i = 1\}, \ldots, n\}$ —a training set—where \boldsymbol{x} represents the features and \boldsymbol{y} the "output" or target variable we are trying to predict. If not already obvious, we denote the vector space of \boldsymbol{x} as \mathcal{X} and that of the outputs \boldsymbol{y} as \mathcal{Y} .

Our goal is, given a training set, to learn a function $h: \mathcal{X} \mapsto \mathcal{Y}$ so that h(x) is a "good" predictor for the corresponding y. This function h is called a *hypothesis*.

When trying to predict a continuous target variable, we call this a regression problem; whereas when y can take on only a small number of discrete values we call that a classification problem.

1.0.1 Linear Regression

Say we decide to approximate y as a linear function of x:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Where θ represents the parameters/weights (parametrising the space of linear functions mapping from \mathcal{X} to \mathcal{Y}). We can simplify our notation as such: (by convention letting $x_0 = 1$, aptly named the intercept term)

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \boldsymbol{\theta}^T \boldsymbol{x}$$

In order to formalise a measure of proximity between the predicted value h(x) and the target y, we define a cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

This particular cost function implies an ordinary least squares regression model.

1.0.2 LMS algorithm

Our cost function $J(\theta)$ gives us a measure of prediction accuracy. We want to choose θ so as to minimise $J(\theta)$. Starting with an initial set of θ , we need a search algorithm that repeatedly changes θ in an attempt to minimise $J(\theta)$. Here we consider the *gradient descent* algorithm, which, given some initial θ , repeatedly performs the update:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Where the update is simultaneously performed for all values of $j=0,\ldots,d$. α is called the *learning rate* (how much we move in the direction the gradient points in).

Intuition

Consider attempting to minimise the least mean squares (LMS) cost function for a single training example:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^d \theta_i x_i - y \right)$$

$$= (h_{\theta}(x) - y) x_j$$

This gives us the update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

(we use the notation a := b to denote (in a script) overwriting a with b) Notice the property of the LMS update rule that the magnitude of the update is proportional to the *error* term $(y^{(i)} - h_{\theta}(x^{(i)}))$; this means that predictions further off the mark result in a greater correction to θ . (next page)

Batch Gradient Descent

}

We had the LMS rule for when there was only a single training example. One way to modify this method for a training set of more than one example is the following algorithm:

Repeat until convergence {

$$\theta_j := \theta_j + \alpha \sum_{i=1}^n \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}, \text{ (for every } j)$$

Written more succinctly (θ_j and x_j as vectors):

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

This method looks at every example in the entire training set on every step, and is called *batch gradient descent*.

Stochastic gradient descent

Now consider another algorithm:

Loop {
$$for i = 1 to n, \{$$

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}, \quad (for every j)$$
 } }

Written more compactly:

$$\theta := \theta + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x^{(i)}, \text{ (update } \theta \text{ } n \text{ times)}$$

Here we update θ for each training example during each run of the training set. This is called $stochastic/incremental\ gradient\ descent.$

Whereas batch gradient descent has to scan through the entire training set before taking a single step—which is costly if n is large—stochastic gradient descent continues to make progress with each example it looks at. Stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent. Note that "convergence" doesn't really occur—the parameters θ will keep oscillating around the minimum of $J(\theta)$. (though most values near minimum would be reasonably good approximations to the true minimum)

1.0.3 Gradients of

Matrix Derivatives

For a function $f: \mathbb{R}^{n \times d} \mapsto \mathbb{R}$ mapping from *n*-by-*d* matrices to real numbers, we define the derivative of f with respect to A to be

$$\nabla_A f(A) = \begin{bmatrix} \frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial A_{n1}} & \cdots & \frac{\partial f}{\partial A_{nd}} \end{bmatrix}$$

Gradient of b^Tx :

For $x \in \mathbb{R}^n$ and $f(x) = b^T x$ for known $b \in \mathbb{R}^n$, we have

$$f(x) = \sum_{i=1}^{n} b_i x_i$$

and so

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$$

Consider repeating this for the partial of each element of x. See that $\nabla_x b^T x = b$ (analogous to single variable calculus).

Gradient of $f(x) = x^T A x$:

Now consider the quadratic function $f(x) = x^T A x$ for $A \in \mathbb{S}^n$ (meaning symmetric). First see that

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

this can be seen from considering that

$$b = Ax \in \mathbb{R}^{n \times 1}$$

can be written as

$$b_1 = \sum_{i=1}^n A_{1i} x_i$$

:

$$b_n = \sum_{i=1}^n A_{ni} x_i$$

(next page)

so we can write

$$x^{T}Ax = x^{T}b = \sum_{j=1}^{n} x_{j}b_{j} \in \mathbb{R}$$
$$= \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{n} A_{ji}x_{i}\right)$$

Rewriting gives us

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

which was what we wanted. Now we take the partial derivative by considering the terms including x_k an x_k^2 factors separately:

$$\begin{split} \frac{\partial f(x)}{\partial x_k} &= \frac{\partial f(x)}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j \\ &= \frac{\partial f(x)}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right] \\ &= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k \\ &= \sum_{i=1} A_{ik} x_i + \sum_{j=1} A_{kj} x_j = 2 \sum_{i=1}^n A_{ki} x_i \end{split}$$

where the last equality follows since A is assumed to be symmetric. Since

$$\sum_{i=1}^{n} A_{ki} x_i$$

is just the inner product of a single row of A and x—the kth entry of $\nabla_x f(x)$ is the just the inner product of the kth row of A and x; therefore

$$\nabla_x x^T A x = 2Ax$$

also analogous to single variable calculus. (next page)

Hessian

1.0.4 Least Squares matrix representation

Here we consider $J(\theta)$ —the least squares cost function—in matrix-vectorial notation.

Given a training set, we define the design matrix X to be the $n \times d$ matrix $(n \times d + 1)$ if we include the intercept term) that contains the training examples' inputs values in its rows:

$$\boldsymbol{X} = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(n)})^T - \end{bmatrix}$$

and \boldsymbol{y} the n-dimensional vector containing the target values:

$$oldsymbol{y} = egin{bmatrix} y^{(1)} \\ y^{(2)} \\ dots \\ y^{(n)} \end{bmatrix}$$

See that we can represent our least squares function over the entire dataset as