Министерство образования и науки Российской Федерации ФГАОУ ВО «Южно-Уральский государственный университет (НИУ)» Институт естественных и точных наук Факультет математики, механики и компьютерных технологий Кафедра прикладной математики и программирования

ТЕМА РАБОТЫ

Автор работы: студент группы ЕТ-111 Савонин М. В.

Научный руководитель: к.ф.-м.н. доцент кафедры ПМиП Мидоночева Н. С.

Челябинск 2021

Проблема

На эту тему написано уже немало статей. Однако я еще не видел статьи, в которой сравниваются все основные сортировки на большом числе тестов разного типа и размера. Кроме того, далеко не везде выложены реализации и описание набора тестов. Это приводит к тому, что могут возникнуть сомнения в правильности исследования.

Цель

Цель моей работы состоит не только в том, чтобы определить, какие сортировки работают быстрее всего. В первую очередь мне было интересно исследовать алгоритмы, оптимизировать их, чтобы они работали как можно быстрее. Работая над этим, мне удалось придумать эффективную формулу для сортировки Шелла.

Методы измерени

Используя встроенный таймер в систему измеряем длительность выполнения программы.

Далее немного о сортировках.

Сортировка пузырьком / Bubble sort

Будем идти по массиву слева направо. Если текущий элемент больше следующего, меняем их местами. Делаем так, пока массив не будет отсортирован. Очевидно, не более чем после п итераций массив будет отсортирован. Таким образом, асимптотика:

в худшем и среднем случае —
$$O(n^2)$$
 (1)

в лучшем случае
$$-O(n)$$
. (2)

Где п количество элементов.

Шейкерная сортировка / Shaker sort

Заметим, что сортировка пузырьком работает медленно на тестах, в которых маленькие элементы стоят в конце. Такой элемент на каждом шаге алгоритма будет сдвигаться всего на одну позицию влево. Поэтому будем идти не только слева направо, но и справа налево. Будем поддерживать два указателя begin и end, обозначающих, какой отрезок массива еще не отсортирован. На очередной итерации при достижении end вычитаем из него единицу и движемся справа налево, аналогично, при достижении begin прибавляем единицу и двигаемся слева направо. Асимптотика у алгоритма такая же, как и у сортировки пузырьком, однако реальное время работы лучше.

Сортировка вставками / Insertion sort

Создадим массив, в котором после завершения алгоритма будет лежать ответ. Будем поочередно вставлять элементы из исходного массива так, чтобы элементы в массиве-ответе всегда были отсортированы. Асимптотика:

```
в среднем и худшем случае - O(n^2) (3)
в лучшем - O(n) (4)
```

Гномья сортировка / Gnome sort

Алгоритм похож на сортировку вставками. Поддерживаем указатель на текущий элемент, если он больше предыдущего или он первый — смещаем указатель на позицию вправо, иначе меняем текущий и предыдущий элементы местами и смещаемся влево.

Сортировка выбором / Selection sort

На очередной итерации будем находить минимум в массиве после текущего элемента и менять его с ним, если надо. Таким образом, после i-ой итерации первые i элементов будут стоять на своих местах. Асимптотика:

в лучшем, среднем и худшем случае $O(n^2)$ (5)

Тесты

Было 3 группы тестов каждая по 20 запусков объёмом 1е5.

Группы.

- 1. Массивы случайных чисел.
- 2. Частично отсортированный массив.
- 3. Массивы с повторами повторы.

Массив случайных чисел

Диаграмма 1 - сортировка случайных чисел в массиве

Частично отсортированные

Массивы с повторами

Итоговые результаты

	1e5	Итог
1	Insertion sort	2337,07
2	Selection sort	2583,91
3	Gnome sort	3462,19
4	Shaker sort	4544,39
5	Bubble sort	7116,68

Таблица 1 - сортировки упорядоченные по скорости

За счет своего абсолютного безразличия к массиву, сортировка выбором, работавшая быстрее всех на случайных данных, все же проиграла Гномья сортировке вставками. сортировка оказалась заметно хуже последней, из-за чего ее практическое применение сомнительно. Шейкерная и пузырьковая сортировки оказались медленнее всех.

Источник

Вся информация – пост от – 2017. https://habr.com/ru/post/335920/

Спасибо за внимание©