数量关系

一、数量思维

1.选项关联: 不是填空题

注意观察选项之间的倍数关系。

2.代入排除:

应用范围:多位数问题、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题、和差倍比问题,优先代入整数选项。

- 3.整除思想: 必须将题目式子转化成 $A = B \times C$ 两两相乘的形式 整除判定法则: ①拆分法517 = 470 + 47; ②因式分解 $6 = 2 \times 3$; ③常用的 $2 \times 3 \times 5 \times 7 \times 11$ 和13 整除判定法则。
- 4.特值思想: 恩

数字特值: 题目没具体数字, 只有相互比例关系等, 常用于计算题、浓度问题、工程问题或行程问题。数字特值计算题优先考虑-1, 0, 1, 工程与行程等问题优先考虑最小公倍数。

图形特值: 比如特殊的长方形——正方形。

5.奇偶特性: 题目中出现平均、总和、差, 尤其是不定方程的时候

奇偶判定: ①加减运算: 同奇同偶必得偶, 一奇一偶只能奇;

②乘除运算:一偶就是偶,双奇才是奇。

二、基础代数公式和方法

1.基础代数公式:

完全平方: $(a \pm b)^2 = a^2 \pm 2ab + b^2$

平方差: $a^2 - b^2 = (a + b) \times (a - b)$

完全立方: $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

立方和差: $a^3 \pm b^3 = (a \pm b)(a^2 + ab + b^2)$

阶乘: $n!=n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$

$$a^{m} \times a^{n} = a^{m+n}$$
 $a^{m} \div a^{n} = a^{m-n}$ $(a^{m})^{n} = a^{mn}$ $(ab)^{n} = a^{n} \times b^{n}$

2.常用方法:

公式法 (记住常用的公式)

因子法 (整除特性结合)

放缩法 (用于判定计算的整数部分)

构造法

特值法

三、等差数列

1.n为项数, a_1 为首项, a_n 为末项, d为公差, S_n 为等差数列前n项的和

通项公式: $a_n = a_1 + (n-1) d$

求和公式:
$$S_n = \frac{n \times (a_1 + a_n)}{2} = na_1 + \frac{1}{2}n(n-1)d$$

项数公式: $n = \frac{a_n - a_1}{d} + 1$

等差中项: 2A = a + b (若a、A、b成等差数列)

2.若m+n=k+i, 则: $a_m+a_n=a_k+a_i$

3.前 n 个奇数: 1, 3, 5, 7, 9, … (2n—1) 之和为 n²

 $4.a_{m}-a_{n} = (m-n)d$

四、等比数列

1.n为项数, a_1 为首项, a_n 为末项,q为公比, S_n 为等比数列前n项的和

通项公式: $a_n = a_1 q^{n-1}$

求和公式:
$$S_n = \frac{a_1 \cdot (1 - q^n)}{1 - q} (q \neq 1)$$

等比公式: $G^2 = ab$ (若a、G、b成等比数列)

2.若m+n=p+q, 则: $a_m \times a_n = a_p \times a_q$

$$3.\frac{a_m}{a_n} = q^{m-n}$$

五、周期问题

一周7天,5个工作日。一年平年365天(52周+1天),闰年366天(52周+2天)。

平年与闰年						
	判断方法	年共有天数	2月天数			
平年	不能被4整除	365天	28天			
闰年	可以被4整除	366天	29天			

心**竺提醒:** 闰年: 四年一闰, 百年不闰, 四百年再闰。平年365天, 365÷7 = 52…1 大月31天, 小月30天, 平月 (2月) 28或29天。

	大月与小月	
	包含的月份	月共有天数
大月	1, 3, 5, 7, 8, 10, 12	31天
小月	4, 6, 9, 11	30天

心竺提醒: 星期每7天一循环; "隔N天"指的是"每 (N+1)天"。

循环周期问题: 若一串实物以T为周期, 且A÷T=N···a, 那么第A项等同于第a项。

六、行程问题

六、行程问题 $\frac{2v_1v_2}{1.$ 平均速度型:平均速度= $\frac{2v_1v_2}{v_1+v_2}$ (心竺提醒: 等距离平均速度,常用于上下坡题型); 路程=速度×时间;平均速度=总路程÷总时间

2.相遇追及型: 相遇问题: 相遇距离 = (大速度 + 小速度) × 相遇时间

追及问题: 追及距离 = (大速度-小速度) ×追及时间

背离问题: 背离距离 = (大速度 + 小速度) × 背离时间

3.环形运动型: 同点出发

反向运动:环形周长= (大速度+小速度) ×相遇时间 同向运动:环形周长= (大速度-小速度) ×追及时间

4.流水行船型:

顺流行程 = 顺流速度 × 顺流时间 = (船速 + 水速) × 顺流时间

逆流行程 = 逆流速度 × 逆流时间 = (船速-水速) × 逆流时间

船速= (顺水速度+逆水速度) ÷2 水速= (顺水速度-逆水速度) ÷2

5.火车过桥型:

列车在桥上的时间 = (桥长-车长) ÷列车速度

列车从开始上桥到完全下桥所用的时间 = (桥长 + 车长) ÷列车速度

列车速度 = (桥长 + 车长) ÷过桥时间

6.扶梯上下型: 扶梯总长 = 人走的阶数× $(1\pm \frac{v_{\#}}{v})$, (顺行用加、逆行用减)

7.电梯问题:

同向运动: $S = (V_A + V_{el}) \times T$

反向运动: S = (V_人-V_{电梯}) × T

8.队伍行进型:

队头→队尾: 队伍长度 = $(V_{\Lambda} + V_{N})$ ×时间

队尾 \rightarrow 队头: 队伍长度 = $(V_{\lambda_-}V_{\bowtie})$ ×时间

9.典型行程模型:

等距离平均速度: $v = \frac{2v_1v_2}{v_1 + v_2} (v_1, v_2)$ 分别代表往、返速度)

等发车前后过车: 核心公式: $T = \frac{2t_1t_2}{t_1+t_2}$; $\frac{\mathbf{v}_{\pm}}{\mathbf{v}_{\downarrow}} = \frac{t_2+t_1}{t_2-t_1}$

无动力顺水漂流:漂流所需时间 = $\frac{2t_{f ilde u}t_{f ilde w}}{t_{f ilde u}-t_{f ilde w}}$

(其中t顺和t避分别代表船顺流所需时间和逆流所需时间)

10.多次相遇型:

相遇次数	相遇总路程	相遇时间	甲时间	甲路程	乙时间	乙路程
出发到第1 次相遇	$S_{ ot}$	T _{ijj}	$T_{\mathcal{F}}$	$S_{\it F\!\!\!/}$	T_{Z}	S_Z
出发到第2	3 <i>S</i> 点	3 <i>T</i> 凋	3 <i>T</i> #	3 <i>S</i> ₩	$3T_{Z_{i}}$	$3S_{Z_i}$
次相遇 出发到第3	ろ ろ 意 	- 3 <i>1 遇</i> 	3 <i>1 申</i>	3 3 単	312	332
次相遇	5 <i>S</i> ë	5 <i>T遇</i>	5 <i>T</i> #	5 <i>S</i> ∉	$5T_{\mathbb{Z}}$	5 S_Z
出发到第4 次相遇	7 S 总	7 <i>T遇</i>	7 <i>T</i> #	7 <i>S</i> ₩	$7T_{Z}$	$7S_Z$
出发到第5 次相遇	9 <i>S</i> <u>#</u>	9 <i>T遇</i>	9 <i>T</i> #	9 <i>S</i> ₩	$9T_Z$	9 <i>S</i> Z
	•••••	•••••	•••••	•••••	•••••	•••••

出发到第n	(2n-1) S	(2n-1) T	(2n-1) T	(2n-1) S	(2n-1) T	(2n-1) S
次相遇	 .送	 週	 <i>甲</i>	甲	z	Z

七、钟表问题

1.钟面上按"分针"分为60小格,时针的转速是分针的 $\frac{1}{12}$,分针每小时可追及 $\frac{11}{12}$ 圈;

- 2.时针与分针一昼夜重合22次,垂直44次,成180°为22次;
- 3.钟表一圈分成12格,时针每小时转一格(30°),分针每小时转12格(360°);
- 4.时针一昼夜转两圈 (720°) , 1小时转 $\frac{1}{12}$ 圈 (30°) ; 分针一昼夜转24圈, 1小时转1圈;
- 5.钟面上每两格之间为30°,时针与分针成某个角度一般都有对称的两种情况。

追及公式: $T = T_0 + \frac{1}{11}T_0$, T 为追及时间、 T_0 为静态时间(假设时针不动,分针和时针达到 条件要求的虚拟时间)。

八、工程问题

1.基本公式: 工作量=工作效率×工作时间 工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 总工作量=各分工作量之和 心竺提醒: 在解决实际问题时, 常设最小公倍数

- 2.多人合作问题:设工作总量为特值(完成工作所需时间或工作效率的最小公倍数),求各 自的效率或者时间, 求题目所问。
- 3.轮流工作问题: 计算每人的工作效率, 得到一个周期的工作量。做除法, 看工作总量包含 几个周期的工作量,还剩余多少工作量分析剩余工作量,得出最终答案。

九、溶液问题

1.基本公式:溶液质量=溶质质量+溶剂质量 溶液浓度=溶质质量÷溶液质量溶液浓度 溶质质量=溶液质量×溶液浓度

2.浓度分别为 a%、b%的溶液, 质量分别为 M、N, 交换质量 L 后浓度都变成 c%, 则:

$$c\% = \frac{a\% \times M + b\% \times N}{M + N}$$

$$L = \frac{MN}{M + N}$$

- 3.混合稀释型:

 - ①溶液倒出比例为a的溶液,再加入相同的溶剂,则浓度为 $(1-a)^{\infty}$ × 原浓度 ②溶液加入比例为a的溶剂,再倒出相同的溶液,则浓度为 $(\frac{1}{1+a})^{\infty}$ × 原浓度
- 4.常用方法: 十字交叉、不变量、比例、赋值、调和平均数。
- 5.反复操作型: 先看第一次, 抓住不变量。

十、容斥原理

- 1.两集合标准型: 总个数 两者都不满足的个数 = 满足条件I的个数 + 满足条件II的个 数 — 两者都满足的个数
- 2.三集合标准: AUBUC = A + B + C A ∩ B A ∩ C B ∩ C + A ∩ B ∩ C
- 3.三集合图标标数型: 利用图形配合标数解答
 - ①特别注意"满足条件"和"不满足条件"的区别;
 - ②特别注意有没有"三个条件都不满足"的情形;

- ③标数时,注意由中间向外标记。
- 4.三集合整体重复型: 假设满足三个条件的元素分别为ABC, 而至少满足三个条件之一的元 素的总量为W, 其中: 满足一个条件的元素数量为x, 满足两个条件的元素数量为y, 满足 三个条件的元素数量为z, 可以得以下等式:

 - (1)W = x + y + z (2)A + B + C = x + 2y + 3z

十一、利润问题

1.利润=销售价(卖出价)-成本

利润率 =
$$\frac{$$
利润}{成本} = $\frac{$ 销售价 - 成本}{成本} = $\frac{$ 销售价}{成本} - 1

销售价=成本× (1+利润率)

成本 =
$$\frac{$$
销售价}{1+ 利润率

2.利息 = 本金×利率×时期

本金 = 本利和÷ (1+利率×时期)

本利和 = 本金 + 利息 = 本金× (1 + 利率×时期)

月利率 = 年利率÷12

月利率×12=年利率

例:某人存款 2400元,存期 3年,月利率为 10.2‰ (即月利 1 分零 2 毫),三年到期后, 本利和共是多少元? $\therefore 2400 \times (1 + 10.2\% \times 36) = 2400 \times 1.3672 = 3281.28$ (元)

- 3.常用方法: 方程、比例
- 4.分段计算:水费电费、纳税金额、出租车乘车费等
- 5.折扣

十二、排列组合

1.计算原理: 分类——相加; 分步——相乘

2.排列、组合:

	定义 (m≤n)	顺序 影响	列式	计算
排列	从n个元素中取出 m个元素进行排	有	A_n^m	$A_n^m = \frac{n!}{(n-m)!} = n(n-1)(n-2)(n-m+1)$
组合	从n个元素中取出 m个元素进行组	无	C m	$C_n^m = \frac{n!}{(n-m)!m!} = \frac{n(n-1)(n-2)(n-m+1)}{m(m-1)(m-2)2\times 1}$

另外:
$$\mathbf{C}_n^m = \mathbf{C}_n^{n-m}$$

另外:
$$\mathbf{C}_n^m = \mathbf{C}_n^{n-m}$$
 $\mathbf{C}_n^m = \mathbf{A}_n^m \div \mathbf{A}_m^m = (规定 \ \mathbf{C}_n^0 = 1)$

3.常用方法:

	优先法	捆绑法	插空法	间接法
题干 特征	有特殊要求	有相邻	有不相邻	正难则反
解题步骤	①优先考虑特殊要求的元素或位置; ②再排其他元素。	①将相邻元素看做整体进行排列; ②相邻元素内部进行排列。	①先排其他元素; ②再将不相邻元素 插入空隙(注意两端是否能放)	总的方法数—对立 面的方法数

4.错位排列:一般都是停车位的问题, 主要记D3 D4和D5

N取值	1	2	3	4	5	
方法数	$D_1 = 0$	$D_2 = 1$	$D_3 = 2$	$D_4 = 9$	$D_5 = 44$	
计算 方法	$D_{N} = (N-1)(D_{N-1} + D_{N-2})$					

5.环形模型:

模型	定义	方法数
环球	N个不同元素排成一圈	A
模型		$A_{ m N-l}$

6.隔板模型:

题干特征: ①n个相同的元素;

②分给m个不同对象;

③每个对象至少一个。

	特点	解题方法
原型	每个对象至少1个	$\mathbf{C}_{\scriptscriptstyle \mathrm{n-l}}^{\scriptscriptstyle \mathrm{m-l}}$
变形1	每个对象至少a个 (a≥2)	先给每个对象 $(a-1)$ 个: $C_{n-(a-1)m-1}^{m-1}$
变形2	任意分	先向每个对象借 1 个: C_{n+m-1}^{m-l}

十三、概率问题

分类	题干特征	解题方法
古典 概率	①基本事件的概率相等; ②基本事件有限性。	P _A = 事件A的方法数 总的方法数
多次 独立 重复 事件	①基本事件只有两种结果: 发生或不发生, 发生的概率为p, 不发生的概率为 (1-P); ②求某次实验独立重复n次,则事件A发生m次概率P _A	$P_A = C_n^m p^m (1-p)^{n-m}$

十四、几何问题

1.勾股定理: $a^2+b^2=c^2$ (其中a和b为直角边, c为斜边)

常用	直角边	3	6	9	12	15	5	10	7	8
的勾	且用起	4	8	12	16	20	12	24	24	15
股数	斜边	5	10	15	20	25	13	26	25	17

2.几何最值型:

平面	若周长一定,越接近与圆,面积越大。
图形	若面积一定,越接近于圆,周长越小。

立体 图形

若表面积一定, 越接近于球, 体积越大。

若体积一定, 越接近于球, 表面积越小。

3.平面图形的周长与面积公式:

	长方形	正方形	平行 四边形	三角形	梯形	圆	扇形
图例	<i>a b</i>	a	$\begin{bmatrix} a \\ h \end{bmatrix}$	c h b	$ \frac{a}{h} $	r/d	r
周长	2(a+b)	4 <i>a</i>	2(a+b)	a+b+c	/	2πr或πd	$rac{n}{180}\pi r$ (弧长)
面积	ab	a^2	ah	$\frac{ah}{2}$	$\frac{a+b}{2} \times h$	πr^2 或 $\frac{1}{4}\pi d^2$	$\frac{n}{360}\pi r^2$

4.立体图形的表面积与体积公式:

	长方体	正方体	球体	圆柱体	圆锥体
图例	b a c	a	F	h	h
表 面积	2(ab+bc+ac)	$6a^2$	$4\pi r^2$	$2\pi r^2 + 2\pi rh$	$\pi r l + \pi r^2$
体积	abc	a^3	$\frac{4}{3}\pi r^3$	$\pi r^{^2}\!h$	$\frac{1}{3}\pi r^2h$

5.图形等比缩放型:

- 一个几何图形, 若其尺度变为原来的m倍, 则:
- ①所有对应角度不发生变化;
- ②所有对应**长度**变为**原来的 m 倍**;
- ③所有对应**面积**变为**原来的** m² 倍;
- ④所有对应**体积**变为**原来的m³倍**。
- 6.一些特殊性质:
 - ①三角形三边关系

在一个三角形中, 任意两边之和大于第三边; 任意两边之差小于第三边。

②多边形内角和

多边形内角和公式: n边形内角和等于 $(n-2)\times180^{\circ}$ 。

7.常用方法:

- ①平面几何: 割补法、平移法。
- ②立体几何: 数个数: 整体涂 内部没涂 = 至少一面涂;

挖部分: 原体积 - 挖掉的体积;

长短线: 勾股定理。

8.几何极限理论:

- ①平面中: 周长一定, 面积越大越靠近圆。
- ②立体中: 表面积一定, 体积越大越靠近球。

十五、方程问题

1.方程: 一个方程、一个未知量

2.方程组:又称"联立方程"。把若干个方程合在一起研究,使其中的未知数同时满足每一个 方程的一组方程。

特征: 多个方程、多个未知量 (未知量个数等于方程个数)

方法: 带入消元, 加减消元

3.不定方程:

特征:一个方程、多个未知量; 求某个未知量的值

方法: 奇偶特性→因子分析→尾数判定→赋值验证

4.不定方程(组):

特征: 多个方程、多个未知量 (未知量的个数多于方程个数); 求一个整体的值

方法:整体分析法——凑整;赋 0 法简化计算;数字特性法

十六、不等式

1.一元二次方程求根公式: $ax^2+bx+c = a(x-x_1)(x-x_2)$

其中:
$$X_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
; $X_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ ($b^2 - 4ac \ge 0$)
根与系数的关系: $X_1 + X_2 = -\frac{b}{a}$, $X_1 \cdot X_2 = \frac{c}{a}$
2. $a + b \ge 2\sqrt{ab}$ $(\frac{a + b}{2})^2 \ge ab$ $a^2 + b^2 \ge 2ab$ $(\frac{a + b + c}{3})^3 \ge abc$

3.
$$a^3 + b^3 + c^3 \ge 3abc$$
 $a + b + c \ge 3\sqrt[3]{abc}$

$$a + b + c \ge 3\sqrt[3]{abc}$$

4.一阶导为零法: 连续可导函数, 在其内部取得最大值或最小值时, 其导数为零。 5.两项分母裂项公式:
$$\frac{b}{m(m+a)} = (\frac{1}{m} - \frac{1}{m+a}) \times \frac{b}{a}$$

三项分母裂项公式:
$$\frac{b}{m(m+a)(m+2a)} = \left[\frac{1}{m(m+a)} - \frac{1}{(m+a)(m+2a)}\right] \times \frac{b}{2a}$$

十七、最值问题

1.最不利构造:特征:至少……保证 N个相同的…… 方法: 最不利情况 + 1

2.数列构造: 特征: 最多 (少) ……最少 (多) ……; 排名第……最多 (少) ……

方法: 排序、定位、构造、加和、求解

核心: 若求至多为多少,则其他量尽量小,从小到大构造数列 若求至少为多少,则其他量尽量大,从大到小构造数列

计算结果非整数时: 求至少的, 向上取整; 求至多的, 向下取整

3.多集合反向构造:特征: ……至少……

方法: 反向、加和、做差

4.二次函数最值:特征:列出计算式为一元二次方程 方法: 配方法、求导法、不等式法

十八、几何边端问题

1.方阵问题

①实心方阵: 方阵总人数 = $(最外层每边人数)^2 = (外圈人数÷4+1)^2 = N^2$

最外层人数 = (最外层每边人数 - 1) × 4

②空心方阵: 方阵总人数 = (最外层每边人数)² - (最外层每边人数 - 2×层数)²

= (最外层每边人数-层数) ×层数×4

心竺提醒: 无论是方阵还是长方阵、相邻两层的人数都满足: 外层比内层多8人。

例:有一个3层的空心方阵,最外层有10人,问全阵有多少人?

∴ (10 – 3) × 3 × 4 = 84 (人)

③N 边形每边有 a 人,则一共有 N(a-1)人。

④实心长方阵: 总人数 = $M \times N$ 外圈人数 = 2M + 2N - 4

2.排队型: 假设队伍有 N 人, A 排在第 M 位; 则其前面有 (M-1) 人, 后面有 (N-M) 人。

3.爬楼型: 从地面爬到第N层楼要爬 (N-1) 楼, 从第N层爬到第M层要爬M-N 层。

十九、植树问题

1.单边线形植树: 棵数 = 总长 \div 间隔 + 1 总长 = (棵数 -1) × 间隔

环形植树: 棵数 = 总长 ÷ 间隔 总长 = 棵数 × 间隔

楼间植树: 棵数 = 总长 \div 间隔 -1 总长 = (棵数 +1) × 间隔

2.双边植树:相应单边植树问题所需棵数的2倍。

3. 剪绳问题:对折 N 次,从中剪 M 刀,则被剪成了 $(2^N \times M + 1)$ 段

二十、弃九推断

心竺提醒: 在整数范围内的 + - × 三种运算中, 可以使用此法。

- 1.计算时,将计算过程中数字全部除以9,留其余数进行相同的计算。
- 2.计算时如有数字不在0~8之间,通过加上或减去9或9的倍数达到0~8之间。
- 3.将选项除以9留其余数、与上面计算结果对照、得到答案。

二十一、乘方尾数

- 1.底数留个位
- 2.指数末两位除以4留余数 (余数为0则看作4)

例: 3724⁴⁹⁹⁸的末尾数字是多少?

 $\therefore 3724^{4998} \rightarrow 4^2 \rightarrow 6 \quad (4^2 = 16 \quad 16 \text{ 的末位数字是 6})$

二十二、除以"7"乘方余数核心口诀

心竺提醒: 只对除数为7的求余数有效

- 1.底数除以7留余数
- 2.指数除以6留余数 (余数为0则看作6)

例: 20072009 除以7余数是多少?

 $\therefore 2007^{2009} \rightarrow 5^5 \rightarrow 3125 \rightarrow 3 \quad (3125 \div 7 = 446 \cdots 3)$

二十三、调和平均数

1.调和平均数:

调和平均数: $a = \frac{1}{a_1 + a_2}$ 等价钱平均价格核心公式: $p = \frac{2p_1p_2}{p_1 + p_2}$

(P1、P2分别代表之前两种东西的价格)

等溶质增减溶剂核心公式: $r_2 = \frac{2r_1r_3}{r_1+r_3}$ (其中 r_1 、 r_2 、 r_3 分别代表连续变化的浓度)

二十四、杂题模块

1.年龄问题: 年龄差不变

2.余数同余问题:核心口诀: "余同取余、和同加和、差同减差、公倍数做周期"

心**竺提醒:** n的取值范围为整数, 既可以是负值(数量关系中一般不是), 也可以取零值。

3.指数增长: 如果有一个量, 每个周期后变为原来的A倍, 那么N个周期后就是最开始的AN 倍,一个周期前应该是当时的 $\frac{1}{a}$ 。

4. 牛吃草: 核心公式: v=(N-x)T

原有草量= (牛数-每天长草量) ×天数, 其中: 一般设每天长草量为x **心竺提醒**: 如果草场面积有区别,如"M头牛吃W亩草时", $\mathrm{NH}_{\overline{W}}^{\underline{M}}$ 代人,此时 N代表单位面积上的牛数。

5.青蛙跳井:问:青蛙在h米深的井底,白天向上爬a米,夜晚向下滑b米,问几天爬出去? 核心公式: $\frac{h-a}{a-b}+1$

6.比赛问题:淘汰赛:每比赛一场淘汰一个队伍

单循环赛: 任意两个队伍比赛一场, N个队伍比赛场次 C2

双循环赛: 任意两个队伍比赛两场, N 个队伍比赛场次 2 × C¹

7.空瓶换酒问题:每N个空瓶子能换1瓶酒,共A个空瓶,那么一共可以换 A/(N-1)瓶酒。 N个空瓶可以换1瓶饮料, 要喝M瓶饮料, 至少要买的饮料瓶数为A, 有: A + A/(N-1) = M (A如果出现小数就进1; M如果出现小数就舍去)

赋值法: 赋每瓶酒价格为N元, 则空瓶子1元, 酒 (N-1) 元, 再计算

二十五、典型数列前N项和

1.
$$1+2+3+...+n={2 \choose (n+1)}$$

2.
$$1+3+5+...+(2n-1)=n^{\frac{n}{2}}$$

3.
$$2+4+6+...+(2n) = n(n+1)$$

4.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1)$$

5. $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n}{3}(4n^2 - 1)$
6. $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$

5.
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n}{3}(4n^2 - 1)$$

6.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$

7.
$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1)$$

8.
$$1 \times 2 + 2 \times 3 + ... + n(n+1) = \frac{n}{3}(n+1)(n+2)$$

9.平方数:

底数	1	2	3	4	5	6	7	8	9	10	11
----	---	---	---	---	---	---	---	---	---	----	----

平方	1	4	9	16	25	36	49	64	81	100	121
底数	12	13	14	15	16	17	18	19	20	21	22
平方	144	169	196	225	256	289	324	361	400	441	484
底数	23	24	25	26	27	28	29	30	31	32	33
平方	529	576	625	676	729	784	841	900	961	1024	1089

10.立方数:

底数	1	2	3	4	5	6	7	8	9	10	11
立方	1	8	27	64	125	216	343	512	729	100	133

11.多次方数:

	1次方	2次方	3次方	4次方	5次方	6次方	7次方	8次方	9次方	1 0 次 方	1 1 次 方		
2	2	4	8	16	32	64	128	256	512	102 4	204 8		
3	3	9	27	81	243	729							
4	4	16	64	256	102 4	/							
5	5	25	125	625	312 5	/			/				
6	6	36	216	129 6	777 6	/							

心竺提醒: 1既不是质数也不是合数

12.其他

①200以内质数: 2 3 5 7

11 13 17 19 23 29

31 37 41 43 47 53 59 139 149 151 157 163 167

61 67 71 73 79 83 89 97

101 103 107 109

113 127 131 137

173 179 181 191 193 197

199

②常用"非唯一"变换:

a.数字0的变换: $0 = 0^N (N \neq 0)$

b.数字1的变换: $1 = a^0 = 1^N = (-1)^{2N} (a \neq 0)$

13.正四面体常用参数:

侧/底面高: $PD = AD = \frac{\sqrt{3}}{2}$ a

侧/底面面积: $\frac{\sqrt{3}}{4}$ a²

截面ADP面积: $\frac{\sqrt{2}}{4}$ a²

底面外接圆半径: $AO = \frac{\sqrt{3}}{3}a$