Kombinatorik

Einführung

Zu beachten:

- Unterscheidbare oder nicht unterscheidbare Objekte
- Mit oder ohne Beachtung der Reihenfolge

Quotienten für die Wahrscheinlichkeit:

Probleme beim Bestimmen dieser günstigen und möglichen Fälle:

- Permutationen mit und ohne Wiederholungen
- Auswahlprobleme mit und ohne Wiederholungen

	Permutationen		Ungeordnete Stichprobe	Geordnete Stichprobe
mit Widh	$N = \frac{n!}{p_1! \cdot p_2! \cdot \dots} *$	mit Z.legen	$N = \frac{(s+n-1)!}{s!\cdot(n-1)!} = \begin{pmatrix} s+n-1\\ s \end{pmatrix}$	$N = n^k$
ohne Widh	N = n!	ohne Z.legen	$N = \frac{n \cdot (n-1) \cdot (\dots) \cdot (n-k+1)}{k!} = \begin{pmatrix} n \\ k \end{pmatrix}$	$ N = \frac{n!}{(n-k)!} = n \cdot \dots \cdot (n-k+1) $

*: Multinomialskoeffizient:
$$\binom{n}{n_1, n_2, n_3} = \frac{n!}{n_1! \cdot n_2! \cdot n_3!}$$

Unterscheidbare Objekte

$$N = n!$$

Nicht unterscheidbare Objekte

Möglichkeiten aabbac anzuordnen:

$$N = \frac{6!}{3! \cdot 2!}$$

Wobei 3! die möglichen Permutionen der drei "a" und 2! der zwei "b" sind.

Geordnete Stichproben mit Zurücklegen

$$N = n^k$$

Geordnete Stichproben ohne Zurücklegen

$$N = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Binomische Formel

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}, k = 0 \cdots n, 0! = 1$$
$$\binom{n}{k} = \binom{n}{n-k}$$
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \Longleftrightarrow \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Binominalkoeffizient

Die Binominalkoeffizienten λ_k in der Entwicklung $(a+b)^n = \sum_{k=0}^n \lambda_k a^{n-k} b^k$ sind:

$$\lambda_k = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

TR Eingaben

Berechne: $(a + \frac{1}{a})^4$: expand $((a + \frac{1}{a})^4)$

Berechne: $\binom{10}{2} - \binom{9}{2}$: nCr(10,2) - nCr(9,2)

Berechne: $\binom{x}{2} = 595$: solve(nCr(x,2)=595,x)

Schubfachprinzip: Einfache Form

Falls man n Objekte auf m Mengen verteilt, und n grösser als m ist, dann gibt es mindestens eine Menge, in der mehr als ein Objekt landet.

Schubfachprinzip: Starke Form

Seien $q_1, q_2, ..., q_n$ natürliche Zahlen. Verteilt man

$$q_1 + q_2 + \dots + q_n - n + 1$$

Objekte auf n Mengen, dann enthält entweder die erste Menge mindestens q1 Objekte oder die zweite Menge enthält mindestens q2 Objekte, . . . , oder die n-te Menge enthält mindestens qn Objekte.

$$\Rightarrow$$
 $(q_1 - 1) + (q_2 - 1) + ... + (q_n - 1) = q_1 + q_2 + ... + q_n - n$

Hier setzt dann das einfache Schubfachprinzip an.

Induktion

Aufbau:

- Induktionsverankerung A(1)
- Induktionsschluss $A(n) \rightarrow A(n+1)$

Genauer:

- Induktionsanfang: A(1)
- Induktionsschritt:
 - Induktionsbehauptung A(n+1)
 - Induktionsvoraussetzung A(n)

Gruppen

Gruppenkriterien:		
abgeschlossen	$a \bullet b \epsilon G$	
assoziativ	$(a \bullet b) \bullet c = a \bullet (b \bullet c)$	
neutrales Element	$a \bullet e = a$	
inverses Element	$a \bullet \bar{a} = e$	

Ordnung einer Gruppe:	$\mid G \mid$
Ordnung eines El. einer Gr.:	$min(n): x^n = 1$
Eigenschaften:	$ord(a) \mid ord(G), a^{ord(G)} = 1$
	$x^m = 1 \leftrightarrow m = \lambda \cdot n$

Untergruppe bestimmen: $ordnung(x) \rightarrow Gruppieren \, nach \, Count \rightarrow irgendwann = null \rightarrow nicht \, Invertierbar \, (Tafel \, \ddot{u}berpr\ddot{u}fen)$

Untergruppe der Inv. Elemente: $eulerphiarr(x) \rightarrow nie = null \rightarrow invertierbar (Tafel "überpr" üfen)$

Wichtig: Z_x , $x = prime \rightarrow Untergruppe(1, Z_x)$

Zyklische Gruppen

$G = \langle x \rangle = \{x^0, x^1, x^2,, x^{n-1}\}$	n= Ordnund der Gruppe = Ordnung des Erzeugers
$Z_n : Erzeuger = a^i \neq e, f \ddot{u} r i < n$	Gruppe mit einer n=Primzahl ist immer zyklisch!

Anzahl Erzeuger: eulerphimo(x)

Erzeuger: eulerphiarr(x)

Ordnung Gruppe: maltafel(x), Schnittpunkt mit 0 (Schnittpunkt mit 1 = inverses)

Permutationen

$$S_x \to ordnung(\pi) = anz. Vertauschungen$$

 $S_x \to x! Elemente = x! Vertauschungen$

 $(\pi^{x!}=\pi=id,\,Kriterium\,f\ddot{u}r\,Zyklizit\ddot{a}t)$

Relationen

Relationen-Kriterien:

reflexiv	$\forall a \epsilon A : (a, a) \epsilon R$				
symmetrisch	$\forall a, b \in A : (a, b) \in R \to (b, a) \in R$				
transitiv	$\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$				

Äquivalenz-Relation

Voraussetzung: Die Relation muss reflexiv, transitiv und symmetrisch sein.

Partition: disjunkte Unterteilung in Untermengen - eine ÄR partitioniert eine Menge in Äquivalenzklassen!

Modulare Arithmetik

•
$$a \equiv_m b \leftrightarrow a = tm + b \leftrightarrow m | (a - b) \leftrightarrow R_m(a) = R_m(b)$$

•
$$R_m(a+b) = R_m(a) + R_m(b)$$

•
$$R_m(a \circ b) = R_m(a) \circ R_m(b)$$

•
$$a^p \equiv_p a \leftrightarrow a^{p-1} \equiv_p 1$$

•
$$R_p(a^b) = R_p(R_p(a)^{R_{p-1}(b)})$$

•
$$a\epsilon Z_n^* \to a^{\varphi(n)} \equiv_n 1$$

Zahlentheorie

•
$$a|b \wedge b|c \rightarrow a|c$$

•
$$a|b \wedge b|a \rightarrow a = b = -a$$

•
$$a|b \wedge a|c \rightarrow a|(ub + vc)$$

•
$$a|b \lor a|c \to a|bc$$

•
$$a|bc \wedge ggt(a,b) = 1 \rightarrow a|c$$

Funktionen

Diophant

ax + by = n, $ggt(a, b) = d \rightarrow L\ddot{o}sbar\ falls: d|n\ (diophant(a,b,n))$ $x_0, y_0 \rightarrow Erweiterter\ Euklidischer\ Algorithmus\ (extgcd(a,b))$ $x = x_0 - t \cdot \frac{b}{ggT(a,b)},\ y = y_0 + t \cdot \frac{a}{ggT(a,b)},\ in\ Z_n\ alle\ Zahlem\ mod\ n.$

Euler PHI

$$\begin{split} & \varphi(prime) = prime - 1 \\ & \varphi(x) = |M_x| = \{n\epsilon N | 1 \leq n < x, \ ggT(n,x) = 1\} \\ & \varphi(x) = (1 - \frac{1}{p_1})(1 - \frac{1}{p_2})(1 - \frac{1}{p_3})(1 - \frac{1}{p_4})....(1 - \frac{1}{p_x}) \cdot x, \ p_{1...k} = 1 < p < x, \ p|x \\ & \varphi(m \cdot n) = \varphi(m) \cdot \varphi(n), \ ggT(m,n) = 1 \end{split}$$

$$\varphi(c) = \varphi(p^d) = p^d - p^{d-1}, p = prime$$