Practice 09 Ch 21 Binary Trees

Due May 22 at 11:59pm **Points** 3.9 **Questions** 39

Available Jan 29 at 12am - May 22 at 11:59pm 4 months Time Limit 25 Minutes

Allowed Attempts Unlimited

Instructions

Practice Quizzes 09 Ch 21 Binary Trees

Total 3.9 points, 0.1 point each

You may take as many time as you like.

Your best score is kept on record.

Take the Quiz Again

Attempt History

	Attempt	Time	Score
KEPT	Attempt 6	4 minutes	3.9 out of 3.9
LATEST	Attempt 6	4 minutes	3.9 out of 3.9
	Attempt 5	8 minutes	3.8 out of 3.9
	Attempt 4	3 minutes	2.03 out of 3.9
	Attempt 3	1 minute	0.3 out of 3.9
	Attempt 2	1 minute	0.4 out of 3.9
	Attempt 1	25 minutes	3.2 out of 3.9

(!) Correct answers are hidden.

Score for this attempt: 3.9 out of 3.9

Submitted May 13 at 3:58pm This attempt took 4 minutes.

Question 1 0.1 / 0.1 pts

When an application begins by searching a binary tree, it starts at
the outermost leaf node
the middle node, halfway between the root and the longest branch
the rightmost child of the root node
• the root node
○ None of these

Question 2	0.1 / 0.1 pts
The first node in a binary tree list is called the	
head pointer	
binary node	
• root node	
opointer node	
None of these	

Question 3	0.1 / 0.1 pts
Deleting a leaf node from a binary tree is not difficult but deleted node requires several steps.	ting a non-leaf
True	

False			

Question 4	0.1 / 0.1 pts
Output will be the same if you use InOrder, PostOrde traversals of the same binary tree.	er, Or PreOrder
True	
• False	

Question 5	0.1 / 0.1 pts
In a binary tree, each node must have a minimum of two child	lren.
True	
• False	

Question 6	0.1 / 0.1 pts
A node that has no children is known as a	
oroot node	
head node	
leaf node	
pure binary node	

None of these			

Question 7	0.1 / 0.1 pts
The binary tree structure is called a "tree" bed down tree.	ause it resembles an upside-
• True	
○ False	

Question 8	0.1 / 0.1 pts
The process of stepping through the nodes of a binary tree	is known as
climbing	
• traversing	
stepping through	
branching out	
None of these	

Question 9

0.1 / 0.1 pts

Binary trees can be divided into

branches		
leaves		
• subtrees		
sawdust		
O None of these		

Question 10	0.1 / 0.1 pts
The height of a tree describes how many lev	els there are in the tree.
• True	
False	

Question 11	0.1 / 0.1 pts
A binary tree with a height of three has	
six nodes	
one root and three nodes with two children each	
• three levels	
three subtrees	
None of these	

Question 12	0.1 / 0.1 pts
Select all that apply. Which of the following are methods binary tree?	of traversing a
LeftOrder traversal	
✓ PreOrder traversal	
☐ FrontOrder traversal	
✓ InOrder traversal	
✓ PostOrder traversal	
Question 13	0.1 / 0.1 pts

Question 13	0.1 / 0.1 pts
The width of a tree is the largest number of nodes in the sa	ame level.
• True	
○ False	

Question 14	0.1 / 0.1 pts
In a binary tree class you usually have a pointer as a memb the	er that is set to
leftmost child node	
first leaf node	

o root of the tree		
O deepest leaf node		
None of these		

Question 15 The _____ in a binary tree is similar to the head pointer in a linked list. oroot pointer leaf pointer null pointer binary pointer None of these

Question 16	0.1 / 0.1 pts
The PreOrder method of traversing a binary tree involution node's data, traversing the node's left subtree, and then right subtree.	
• True	
○ False	

Question 17

0.1 / 0.1 pts

W	/hen a binary tree is used to facilitate a search, it is referred to as a
	binary queue
	 binary ordered deque
	 sort algorithm
	binary search tree
	O None of these

Question 18	0.1 / 0.1 pts
The PostOrder method of traversing a binary tree involves node's data, traversing the node's right subtree, and then transde's left subtree.	
○ True	
• False	

Question 19	0.1 / 0.1 pts
Deleting a node that has two children offers an opportunity to	use
a function that returns a pointer to a pointer	
a function parameter that is a pointer to a pointer	
O double indirection	

○ None of these

Question 20	0.1 / 0.1 pts
The InOrder, PreOrder, and PostOrder traversals can busing	oe accomplished
• recursion	
ono pointers	
ono arguments	
ono parameters	
None of these	

Question 21	0.1 / 0.1 pts
A good reason to use the binary tree structure is	
to expedite the process of searching large sets of information	
aesthetics and program design	
ode readability	
that it is more flexible than the unary tree structure	
None of these	

Question 22	0.1 / 0.1 pts
In a non-linear linked list, a node can point to	
only the next node in sequence	
only the previous node in sequence	
more than one other node, plus the previous node in sequence	
all of the other nodes in the list	
None of these	

Question 23 0.1 / 0.1 p	ots
Select all that apply. Binary trees may be implemented as templates, but ar data types used with them must support the operator.	าy
✓ >	
✓ <	
&&	
✓ ==	
linked	

Question 24 0.1 / 0.1 pts

All nodes to the right of a node hold values greater than that node's value.

○ False	
Question 25	0.1 / 0.1 pts
Question 25	
The intBinaryTree class has a public returns true if a value is not found and fa	
○ True	
False	
Question 26	0.1 / 0.1 pts
Question 26 Values are typically stored in a binary searchild holds data that is less than the right, node's	rch tree so that a node's
Values are typically stored in a binary sear	rch tree so that a node's
Values are typically stored in a binary searchild holds data that is less than the	rch tree so that a node's
Values are typically stored in a binary searchild holds data that is less than the right, node's left, node's	rch tree so that a node's
Values are typically stored in a binary searchild holds data that is less than the right, node's left, node's right, left child's	rch tree so that a node's

The head pointer, anchored at the top of a binary tree, m	ay be called the
oroot node	
• tree pointer	
binary pointer	
O leaf pointer	
O node pointer	

Question 28	0.1 / 0.1 pts
All node pointers that do NOT point to other nodes are set to	
the root of the tree	
a parent node	
their leftmost child node	
a null pointer	
None of these	

Question 29	0.1 / 0.1 pts
Select all that apply. Which of the following operations binary search tree?	can be performed on a
moving	

inserting	
✓ finding	
placing	
✓ deleting	

Question 30	0.1 / 0.1 pts
When working with a binary tree, a node that has more than	n two children
will be cut back by the compiler	
is theoretically impossible in a correctly developed binary tre	ee structure
is known as a triplet node	
O None of these	

Question 31	0.1 / 0.1 pts
A binary tree can be created using a struct or class containing and	ng a data value
a pointer to the first child node	
a pointer to the last child node	
• two pointers, one for the left child and one for the right child	
two data nodes	
None of these	

Question 32	0.1 / 0.1 pts
The InOrder method of traversing a binary tree involves transcribed node's left subtree, processing the node's data, and then transcribed right subtree.	•
• True	
○ False	

Question 33 O.1 / 0.1 pts To remove a node that has children, you must first remove the children. True • False

Question 34	0.1 / 0.1 pts
Binary trees are commonly used to organize key values the records.	nat index database
• True	
○ False	

Question 35	0.1 / 0.1 pts
In a binary tree, each node may point to other no	ode(s).
○ no	
one	
○ two	
Any of these	
None of these	

Question 36	0.1 / 0.1 pts
The shape of a binary tree is	
always triangular	
always balanced	
odetermined by the programmer	
determined by the order in which values are inserted	
None of these	

Question 37

0.1 / 0.1 pts

When the root node points to two other nodes, the nodes are referred to as

•	child nodes, or children
	parent nodes, or parents
	binary nodes
	subnodes
	None of these

When you dereference a pointer to a pointer, the result is a value of the data type that is pointed to another pointer not possible to determine a null pointer None of these

Question 39	0.1 / 0.1 pts
A subtree is an entire branch of a tree from one particular	node down.
• True	
○ False	

Quiz Score: 3.9 out of 3.9