Given:

2.9. A computer program has produced the following output for a hypothesis-testing problem:

```
Difference in sample means: 2.35

Degrees of freedom: 18

Standard error of the difference in sample means: ?

Test statistic: t_0 = 2.01

P-value: 0.0298
```

- (a) What is the missing value for the standard error?
- (b) Is this a two-sided or a one-sided test?
- (c) If $\alpha = 0.05$, what are your conclusions?
- (d) Find a 90% two-sided CI on the difference in means.

Solution:

a)

The test statistic is $t0=(\mu 0-\mu 1)/stderr$

Which implies that the stderr= $t0/(\mu 0-\mu 1)=2.01/2.35=0.8553$

- b) Using 1-tcdf(2.01,18)=0.0298, which is the p-value, hence it is a one sided test.
- c) a one sided test is performed by comparing the test statistic to a reference value of the t-distribution with alfa=0.05 and dF=18, which is $t_ref=1.7341$
- as t0> t_ref, we shall **REJECT H0**.
- c) here we need to construct the following inequality

 Δ -t_{alfa/2,dF}*stderr $\leq \Delta \leq \Delta$ +t_{alfa/2,dF}*stderr

Where Δ is the difference in the sample means and the stderr as above. We need to realize that alfa should be 0.1 instead of 0.05 and therefore we need to find $t_{0.05,18}$, which is 1.7341. The 90% confidence interval for the difference in sample means is therefore

CI: $2.35-1.7341*0.8553 \le 2.35 \le 2.35+1.7341*0.8553$

Or more compactly

CI: $0.8668 \le 2.35 \le 3.8332$