1. Show that the converse of Schur's lemma does not hold.

Solution. Consider the additive group of $\mathbb Q$ as a module over $\mathbb Z$. Then $\mathbb Q$ is clearly not simple but $\operatorname{End}_{\mathbb Z}\mathbb Q=\mathbb Q$, since each endomorphism φ is determined by the image $\varphi(1)=\alpha\in\mathbb Q$ and it is also clear that multiplication by $\alpha\in\mathbb Q$ gives an endomorphism.

2. Let V be a vector space over a field K. Show that $R = \text{End}(V_K)$ is left primitive but not necessarily simple. Describe the ideal structure of R.

Solution. Clearly V as a left R-module is faithful and simple. Hence R is left primitive. If $\dim_K V$ is finite, then R is simple, so let us consider the infinite dimensional case. It is easy to show that if κ is an arbitrary infinite cardinality then the endomorphisms of rank less than κ form and ideal I_{κ} . Furthermore if $f \in R$ is of rank λ then any $g \in R$ of rank not greater than λ will belong to the ideal generated by f. Hence the ideals are all of this form. Thus the ideals of R form a chain and they are in one-to-one correspondence with infinite cardinalities κ such that $\kappa \leq (\dim V)^+$, the correspondence being given by $\kappa \mapsto I_{\kappa}$.

3. Show that if $R = \text{End}(V_K)$ as above then R has a minimal left ideal and conclude that every simple faithful left R-module is isomorphic to RV.

Solution. Let dim $V = \kappa$ and $\mathcal{B} = \{\mathbf{b}_{\lambda} \mid \lambda < \kappa\}$ be a basis for V. Then $I = \operatorname{Ann}_R \mathcal{B} \setminus \{\mathbf{b}_0\}$ is a left ideal in R and it is clearly minimal. Namely, let $0 \neq f \in I$ and $g \in I$ be arbitrary elements. Then $f(\mathbf{b}_0) = \mathbf{v} \neq 0$, hence there is $r \in R$ for which $r(\mathbf{v}) = g(\mathbf{b}_0)$. With this r we have rf = g, hence Rf = I. This implies that I is minimal. Since any primitive ring is prime, a statement from the lecture implies that every faithful simple R-module is isomorphic, hence they must be isomorphic to RV (which is faithful and simple).

4. Let R be a left primitive ring and $0 \neq e \in R$ an idempotent element. Show that S = eRe is also left primitive.

Solution. Let V be a faithful simple R-module. We will show that U = eV is a faithful simple S-module. Clearly $ere \cdot ev = erev \in U$, hence we get an S-structure on U. Furthermore, if ereU = 0 then ereeV = ereV = 0, hence ere annihilates V, implying that ere = 0. Finally, if $u = ev \neq 0$ for some $u \in U$, then Ru = V by simplicity of V. But then Su = eRev = eRev = eRev = eRu = eV = U hence U is a simple S-module. Thus S is also left primitive.

5. Show that for K a field of characteristic 0 the Weyl-algebra $A_1(K) = K\langle x,y\rangle/(xy-yx-1)$ is left primitive.

Solution. Let V = K[t] and let us consider the ring homomorphism $\Phi: K\langle x,y\rangle \to \operatorname{End}_{\mathbb{Z}} V$ defined by $x \mapsto (p(t) \mapsto p'(t))$ and $y \mapsto (p(t) \mapsto tp(t))$. Since $K\langle x,y\rangle$ is freely generated by x and y, such a homomorphism exists. A straightforward calculation shows that $\Phi(xy-yx)t^i=(i+1)t^i-it^i=t^i$, thus $\Phi(xy-yx-1)=0$. Thus Φ factors through $A_1(K)$, hence V becomes an $A_1(K)$ -module. A relatively easy calculation shows that V is a simple $A_1(K)$ -module. Namely, for arbitrary nonzero $p(t)=a_0+\cdots+a_nt^n$ we have $x^n\cdot p(t)=a_nn!$ and $y^mx^n\cdot p(t)=a_nn!t^m$. Thus since the characteristic of K is 0, for $q(t)=b_0+\cdots+b_kt^k$ we define $r_t=\frac{b_t}{a_nn!}y^tx^n$ and $r=r_0+\cdots+r_k$. Then rp(t)=q(t), showing that V is simple as an $A_1(K)$ -module. A somewhat lengthier calculation shows that V is faithful; the details are omitted. Remark: Basically we have shown that via the mapping Φ the ring $A_1(K)$ can be thought of as the ring of differential operators on K[t], i.e. $\left\{\sum_{i=0}^n p_i(t)D^i \mid p_i(t) \in K[t]\right\}$, where D is the derivation on K[t], and this ring acts densely on K[t].

- **6.** Decide whether the following implications are true:
 - a) A ring R is left primitive if and only if the full matrix ring $M_n(R)$ is left primitive.
 - b) A ring R is prime if and only if the full matrix ring $M_n(R)$ is prime.

Solution. a) If $M_n(R)$ is primitive then Problem 4 implies that $E_{11}M_n(R)E_{11}\simeq R$ is also primitive. Conversely, assume that R is left primitive with V a simple faithful R-module. Then one can show that V^n as a set of column vectors is a faithful simple $M_n(R)$ -module. b) Observe first that the ideals \mathcal{I} of $M_n(R)$ are precisely the subsets of the form $M_n(I)$ for some $I \triangleleft R$. A standard matrix multiplication argument shows that the projection $\pi_{ij}: \mathcal{I} \to R$, with $\pi_{ij}(A) = A_{ij}$ maps \mathcal{I} onto the same ideal $I \triangleleft R$ for all i, j, furthermore \mathcal{I} is the direct sum (as Abelian group) of these projections, hence it is of the form $M_n(I)$. Conversely, the sets $M_n(I)$ are ideals in $M_n(R)$. Now, for ideals $I_1, I_2 \triangleleft R$ and the corresponding ideals $\mathcal{I}_1, \mathcal{I}_2 \triangleleft M_n(R)$ we have that $I_1 \cdot I_2 = 0$ if and only if $\mathcal{I}_1 \cdot \mathcal{I}_2 = 0$. Thus R is prime if and only if $M_n(R)$ is prime.

- 7. a) Suppose the path algebra $K\Gamma$ is finite dimensional. Give a precise condition for $K\Gamma$ to be primitive (prime, resp.).
 - b) Show that $K\Gamma$ (without the assumption on the dimension) is prime if and only if for each pair of vertices i, j in Γ there is an (oriented) path from i to j.

Solution. a) If $K\Gamma$ is primitive then it is prime. Thus we will show first that if $K\Gamma$ is prime then Γ has one vertex and no arrows. Since $K\Gamma$ is finite dimensional, the arrows generate a nilpotent ideal, contradicting the primeness of $K\Gamma$. Hence there are no arrows in $K\Gamma$. Next, if Γ contains at least two vertices then the ideals generated by the corresponding idempotents are disjoint hence their product is zero contradicting the primeness of $K\Gamma$. Thus Γ contains only one vertex. Conversely, if Γ has one vertex and no arrows then $K\Gamma$ is a field and thus it is primitive and hence also prime. b) If $K\Gamma$ is prime then $e_iK\Gamma e_j \neq 0$, hence there is an oriented path from i to j for any vertices $i, j \in \Gamma$. Conversely, suppose that the latter condition holds. We want to show that $K\Gamma$ is prime, i. e. that $aK\Gamma b \neq 0$ for any pair of elements $a \neq 0 \neq b$ of $K\Gamma$. Multiplying a and b by suitable idempotents, we may assume that a is a linear combination of different paths a_{α} , each starting at a and ending at a is a linear combination of different paths a by a cach starting at a and ending at a is a path of maximal length among the summands. Similarly, we may assume that a is a linear combination of different paths a by a cach starting at a and ending at a is a path of maximal length among the summands. Let a be an oriented path from a to a. Then in the product a there will be a summand a and a different from all other summands. Thus the product cannot be zero. This shows that in this case a is prime.

8. Show that the fact that $R \subseteq \operatorname{End}(V_D)$ is 1-transitive does not imply that R is dense in $\operatorname{End}(V_D)$ (although it follows that V is a simple faithful R-module). (*Hint:* Construct an example where $\operatorname{End}(RV)$ is strictly larger than D.)

Solution. Take \mathbb{C} as an \mathbb{R} -vector-space. Clearly, \mathbb{C} acts on \mathbb{C} faithfully and transitively, on the other hand the action of \mathbb{C} on $\mathbb{C}_{\mathbb{R}}$ is not 2-transitive. (Note that this does not contradict the density theorem since $\operatorname{End}_{\mathbb{C}}\mathbb{C} = \mathbb{C} \supset \mathbb{R}$.)

9. Prove that if R is primitive then the centre Z(R) is an integral domain. Conversely, show that for any integral domain S there is a primitive ring R with $Z(R) \simeq S$.

Solution. If $a, b \in Z(R)$ would be nonzero elements for which ab = 0, then for the nonzero ideals A = Ra and B = Rb and the faithful simple R-module S we would get RaS = S and RbS = S but then 0 = abS = abRRS = RaRbS = RaS = S, a contradiction. Hence $ab \neq 0$. For the converse let S be an integral domain and Q the field of quotients of S. Let V be an infinite dimensional vector space over Q and define R to be the subring of $End(V_Q)$ as follows:

$$R = \left\{ f = g + s \cdot \mathrm{id}_V \in \mathrm{End}(V_Q) \mid g \text{ is of finite rank, } s \in S \right\}$$

Then one can check easily that R is dense in $\operatorname{End}(V_Q)$, moreover $Z(R) \simeq S$.

10. Show that in Wedderburn's theorem (which states that a simple left artinian left primitive ring is isomorphic to $M_n(D)$ for some division ring D and $n \in \mathbb{N}$) the division ring D and the positive integer n are uniquely determined by R.

Solution. We have to show that if $M_n(D) \simeq M_k(\Delta)$ then $D \simeq \Delta$ and n = k. Suppose φ gives an isomorphism between the two matrix rings and let $e = E_{11} \in M_n(D)$ be the idempotent element containing 1 in the upper left corner and 0's elsewhere. Then e generates a minimal left ideal in $M_n(D)$, hence $f = \varphi(e)$ must be an idempotent, generating a minimal left ideal in $M_k(\Delta)$. By a change of basis, i.e. an inner automorphism of $M_k(\Delta)$, if necessary, we may assume that f is an element where in the upper left corner we have an identity matrix of rank r and 0's elsewhere. By the minimality of $M_k(\Delta)f$, we get that r = 1. Thus $D \simeq eM_n(D)e \simeq fM_k(\Delta)f \simeq \Delta$. A dimension argument shows that n = k.

11. Observe the following chain of implications:

$$R$$
 is simple $\Rightarrow R$ is primitive $\Rightarrow R$ is prime

Show that none of the implications can be reversed but if we assume that R is left Artinian then both implications can be replaced by equivalences.

Solution. \mathbb{Z} is prime but not primitive and $\operatorname{End}_K V$ is primitive but it is not simple if V is infinite dimensional. Hence the reverse implications are false. On the other hand if R is left artinian and prime then it contains a minimal left ideal hence it is primitive by a theorem proved in class. Furthermore, if R is primitive and left Artinian then we have seen that $A \simeq M_n(D)$ for some division ring D and $n \in \mathbb{N}$, hence it is simple.

12. Suppose $R \subseteq \text{End}(V_D)$ is a dense subring. Show that the *socle* of R as a left module (i. e. the left ideal generated by all minimal left ideals) consists of all elements of R which have finite rank.

Solution. Let I be the set of all endomorphisms in R which are of finite rank. It is clear that I is an ideal in $\operatorname{End}(V_D)$. We will show first that $I\subseteq\operatorname{Soc}(R)$, the socle of R. We claim that if $\operatorname{rank}(r)=1$ for an element $r\in R$, then Rr is a minimal left ideal in R. To this end we have to show that if $sr\neq 0$ for some $s\in R$, then Rsr=Rr, i. e. that $r\in Rsr$. But $sr\neq 0$ implies that there is an element $v\in V$ such that $sr(v)\neq 0$. Then the density of R implies that there is $t\in R$ such that tsr(v)=r(v). We claim that tsr=r, i. e. tsr(w)=r(w) for any $w\in V$. But if $r(w)\neq 0$ then $r(w)=r(v)\lambda$ for some $\lambda\in D$ hence $tsr(w)=tsr(v)\lambda=r(v)\lambda=r(w)$. This implies that Rr is a minimal left ideal in R, hence $Rr\leq\operatorname{Soc} R$. Now let us take an $r\in I$ with $\operatorname{rank}(r)=k$. This means that $r(V)=\langle v_1,\ldots,v_k\rangle$ for some D-independent elements. The density of R implies that there are elements $a_1,\ldots a_k\in R$ such that $a_i(v_j)=\delta_{ij}v_j$. This implies that $r=(\sum_{i=1}^k a_i)r=\sum_{i=1}^k (a_ir)$ and $\operatorname{rank}(a_ir)=1$. Hence r is a sum of rank 1 elements in R, thus it is in $\operatorname{Soc} R$. We have shown that $I\subseteq\operatorname{Soc} R$. To prove the opposite direction, i. e. that $\operatorname{Soc} R\subseteq I$, it is enough to show that any minimal left ideal $0\neq L=Rr$ is generated by an element of rank 1. Suppose $\operatorname{rank} r\geq 2$. This means that we can find elements $v_1,v_2\in V$ for which $r(v_1)$ and $r(v_2)$ are D-independent. Density of R implies that there is an element $t\in R$ for which $r(v_1)\neq 0$ an $r(v_2)=0$. But in this case $r\in Rr$ for which all elements of Rtr will contain v_2 in their kernels, implying that $r\notin Rtr$. This contradicts the minimality of Rr. Thus $\operatorname{Soc} R\subseteq I$, as required.

- 13. a) Show that if R is a prime ring and $L \leq {}_RR$ is a minimal left ideal then L is generated by an idempotent element.
 - b) Show that the left and right socle of a prime ring coincide.

Solution. a) Let R be a prime ring and $0 \neq L = Rr$ be a minimal left ideal. Since R is prime, $L^2 \neq 0$, hence $La \neq 0$ for some $a \in L$. Since La is a left ideal, the minimality of L implies that La = L. Thus there is an element $e \in L$ such that ea = a. Hence $(e^2 - e)a = 0$. But the annihilator of a in L is a left ideal of R, strictly contained in L (because $ea \neq 0$). Hence this annihilator is 0, thus $e^2 = e$. So we get an idempotent element in L = Rr and by minimality of L we get that Rr = Re and thus r = re. (Observe that $\operatorname{End}_R(Re) \simeq eRe$ and by Schur's lemma eRe is a division ring.) b) We want to show that if Rr is a minimal left ideal in a prime ring R then R is also a minimal right ideal in R. Thus let $0 \neq s \in R$; we need to show that $r \in sR$. But $s \in rR$ means s = rt for some $t \in R$. Hence s = rt = ret. Note that R being a prime ring implies that $sRs \neq 0$ so there is an element $u \in R$ such that $sus = returet \neq 0$. But the sus = reture e = reture e