Mostafa Sabri

Lecture 15

4.6 Change of Basis

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ are two bases of V. Then the *transition matrix P from* \mathcal{C} *to* \mathcal{B} is the matrix P such that

$$[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_{\mathcal{C}}$$
.

P is also called the change of coordinates matrix.

In the following, in the special case $V = \mathbb{R}^n$, we denote $S = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ the standard basis of \mathbb{R}^n .

Thm: If $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ are two bases of V, expand for each i,

$$\mathbf{b}_i = a_{1i}\mathbf{c}_1 + a_{2i}\mathbf{c}_2 + \cdots + a_{ni}\mathbf{c}_n.$$

Then the transition matrix from $\mathcal B$ to $\mathcal C$ is

$$Q = [a_{ij}] = [[\mathbf{b}_1]_{\mathcal{C}} \cdots [\mathbf{b}_n]_{\mathcal{C}}].$$

Proof. If
$$\mathbf{x} = \sum_{i=1}^{n} \alpha_{i} \mathbf{b}_{i}$$
, then $\mathbf{x} = \sum_{i=1}^{n} \alpha_{i} (\sum_{j=1}^{n} \alpha_{ji} \mathbf{c}_{j}) = \sum_{j=1}^{n} (\sum_{i=1}^{n} \alpha_{ji} \alpha_{i}) \mathbf{c}_{j}$. So $Q[\mathbf{x}]_{\mathcal{B}} = [\alpha_{ij}] \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} \sum_{j} \alpha_{1j} \alpha_{j} \\ \vdots \\ \sum_{i} \alpha_{ni} \alpha_{i} \end{bmatrix} = [\mathbf{x}]_{\mathcal{C}}$.

П

The transition matrix P from C to B is invertible. Moreover, P^{-1} is the transition matrix from B to C.

<u>Proof.</u> We have $[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_{\mathcal{C}} = PQ[\mathbf{x}]_{\mathcal{B}}$ for any $\mathbf{x} \in V$. This implies $\mathbf{v} = PQ\mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^n$ as the coordinate map is onto. Since $PQ = I_n$, then $Q = P^{-1}$ (thm).

Find the transition matrix from the standard basis S of \mathbb{R}^2 to $C = \{(1, 1), (1, -1)\}$.

Thm: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be two bases of \mathbb{R}^n . The transition matrix Q from \mathcal{B} to \mathcal{C} arises in the row equivalence $\begin{bmatrix} \mathcal{C} & \mathcal{B} \end{bmatrix} \sim \begin{bmatrix} I_n & Q \end{bmatrix}$.

Here \mathbf{c}_i , \mathbf{b}_i are arranged as columns to form $\begin{bmatrix} \mathcal{C} & \mathcal{B} \end{bmatrix}$.

Proof. The matrix \mathcal{C} is invertible since \mathbf{c}_i form a basis, so $C \sim I_n$ (thm), so there are elementary matrices E_i such that $I_n = E_k \cdots E_1 \mathcal{C}$. Let $M = E_k \cdots E_1$. Then $M \mathcal{C} = I_n$ implies $[M\mathbf{c}_1 \cdots M\mathbf{c}_n] = [\mathbf{e}_1 \cdots \mathbf{e}_n]$, i.e. $M\mathbf{c}_i = \mathbf{e}_i$.

Now if
$$\mathbf{b}_i = \sum_{j=1}^n a_{ji} \mathbf{c}_j$$
, then

$$M\mathbf{b}_{i} = \sum_{j=1}^{n} a_{ji} M\mathbf{c}_{j} = \sum_{j=1}^{n} a_{ji} \mathbf{e}_{j} = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix} = [\mathbf{b}_{i}]_{\mathcal{C}}.$$
 Thus, $M\mathcal{B} = \begin{bmatrix} M\mathbf{b}_{1} & \cdots & M\mathbf{b}_{n} \end{bmatrix} = \begin{bmatrix} [\mathbf{b}_{1}]_{\mathcal{C}} & \cdots & [\mathbf{b}_{n}]_{\mathcal{C}} \end{bmatrix} = Q.$

Recalling that $M = E_k \cdots E_1$, this says that the row

П

operations reducing \mathcal{C} to I_n also reduce \mathcal{B} to Q.

Find the transition matrix from \mathcal{B} to \mathcal{C} if \mathcal{B} is the standard basis \mathcal{S} of \mathbb{R}^3 and $\mathcal{C} = \{(1, 2, 3), (4, 5, 6), (0, 0, 1)\}.$

The previous theorem directly implies:

Cor: The transition matrix from $S \to C$ is C^{-1} .

The transition matrix from $\mathcal{B} \to \mathcal{S}$ is \mathcal{B} .

Find the transition matrix from \mathcal{B} to \mathcal{C} if

- 1. $\mathcal{B} = \{(1, 1), (1, -1)\}, \mathcal{C} = \mathcal{S}.$
- 2. $\mathcal{B} = \{(1, 2), (3, 4)\}, \mathcal{C} = \{(1, 1), (2, 0)\}.$

Change of bases in P_n and $M_{m,n}$

Thm: Let $\mathcal{B} = \{\mathbf{p}_0, \dots, \mathbf{p}_n\}$ and $\mathcal{C} = \{\mathbf{q}_0, \dots, \mathbf{q}_n\}$ be two bases of P_n . Let $\mathcal{S} = \{1, x, \dots, x^n\}$ be the standard basis. Define $\tilde{\mathcal{B}} = \{[\mathbf{p}_0]_{\mathcal{S}}, \dots, [\mathbf{p}_n]_{\mathcal{S}}\}$ and $\tilde{\mathcal{C}} = \{[\mathbf{q}_0]_{\mathcal{S}}, \dots, [\mathbf{q}_n]_{\mathcal{S}}\}$. Then the transition matrix from \mathcal{B} to \mathcal{C} is the transition matrix from $\tilde{\mathcal{B}}$ to $\tilde{\mathcal{C}}$.

This result says that to find the transition matrix between bases in P_n , it suffices to consider the corresponding coordinate vectors in \mathbb{R}^{n+1} and find the transition matrix using the recipe $\begin{bmatrix} \tilde{\mathcal{C}} & \tilde{\mathcal{B}} \end{bmatrix}$. The same method works for $M_{m,n}$.

Consider P_2 . Find the transition matrix from the bases \mathcal{B} to \mathcal{C} if $\mathcal{B} = \{1 + x + x^2, 1, x\}$ and $\mathcal{C} = \{2 + x + 6x^2, 5 + x, x^2\}$

Change of bases in P_n and $M_{m,n}$

Proof. The transition matrix Q from \mathcal{B} to \mathcal{C} is

$$Q = [[\mathbf{p}_0]_{\mathcal{C}} \cdots [\mathbf{p}_n]_{\mathcal{C}}]. \text{ Now } [\mathbf{p}]_{\mathcal{C}} = \begin{bmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{bmatrix} \iff \mathbf{p} = \mathbf{p}$$

$$\sum_{i=0}^{n} \alpha_{i} \mathbf{q}_{i} \iff [\mathbf{p}]_{S} = \sum_{i=0}^{n} \alpha_{i} [\mathbf{q}_{i}]_{S} \iff [[\mathbf{p}]_{S}]_{\tilde{c}} = \begin{bmatrix} \alpha_{0} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$

Thus, $Q = \left[[\mathbf{p}_0]_{\mathcal{S}}]_{\tilde{\mathcal{C}}} \cdots [[\mathbf{p}_n]_{\mathcal{S}}]_{\tilde{\mathcal{C}}} \right]$, which is the transition matrix from $\tilde{\mathcal{B}}$ to $\tilde{\mathcal{C}}$.

Consider $M_{2,2}$. Find the transition matrix from $\mathcal{B} = \{E_i\}$ the standard basis of $M_{2,2}$ to $(\begin{bmatrix} 1 & 3 & 1 & \begin{bmatrix} -2 & -51 & \begin{bmatrix} -1 & -21 & \begin{bmatrix} -2 & -31 \end{bmatrix} \end{bmatrix})$

$$C = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}, \begin{bmatrix} -2 & -5 \\ -5 & 4 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ -2 & 4 \end{bmatrix}, \begin{bmatrix} -2 & -3 \\ -5 & 11 \end{bmatrix} \right\}.$$