Cheat Sheet for PFPL

March 16, 2016

I. Judgements and Rules

1 Abstract Syntax

N	Р	Expression	Name	Say	Meaning
1	5	${\cal P}$	Script P	Proposition	Something to be proved
2	5	$\mathcal{P}(a)$	Script P of a	Proposition about tree a	Something to be proved about AST a
3	5	\mathcal{O}	Script O	Operator	An operator that can be used in an AST
4	5	$\mathcal{O}(a)$	Script O of a	Operator of arity a	An operator of a given arity
5	5	\mathcal{X}_s	Script X sub s	Variables x of sort s	Variables x of sort s
6	5	S	S	A set of sorts	A set of sorts
7	5	$\{X_s\}_{s\in\mathcal{S}}$	Family	Family X of s	A sort-indexed family of disjoint finite sets X_s of variables x of sort s
8	6	[b/x] a	Substitution	Substitute b for x in a	Substitute b for x in a
9	7	$x_1, \ldots, x_n.a$	Abstractor	Bind variables x_n to expression a	Bind variables x_n to expression a
10	8	\overrightarrow{x}	X arrow	List of xs	$x_1,, x_n$
11	8	$\rho: \overrightarrow{x} \leftrightarrow \overrightarrow{x}'$	Fresh renaming	Freshen x using renam-	A bijection between \overrightarrow{x} and \overrightarrow{x}' where \overrightarrow{x}' is fresh.
10	0	â(a)	Dha hat auh i	$\log ho$	
12	8	$\widehat{ ho}_i(a_i)$	Rho hat sub i	Rename result	The result of applying the renaming ρ_i to a_i
13	8	$x =_{\alpha} y$	Equal alpha	α -equivalence	Trees x and y equal up to renaming
14	9	$x \stackrel{\Delta}{=} y$	Delta equals	Replacement	Replace expression x with expression \mathbf{y}

2 Inductive Definitions

N	Р	Expression	Name	Say	Meaning
15 16	13 13	au type $e: au$	Type Colon	Type τ e is of type τ	Judgement that τ is a type Judgement that expression e is of type τ
17	13	$e \Downarrow v$	Down arrow	e has value v	Judgement that expression e has value v
18	14	$\frac{J_1J_k}{J}$	Surfboard	Infers	Judgements J_1J_k infer judgement J

3 Hypothetical and General Judgements

N	Р	Expression	Name	Say	Meaning
				, and the second	
19	23	$J_1J_k \vdash_{\mathcal{R}} \mathcal{K}$	Turnstile	Entails	Given \mathcal{R} and J infer \mathcal{K}
20	23	Γ	Gamma	Judgements Gamma	A finite set of judgements
21	23	Δ	Delta	Judgements Delta	A finite set of type judgements
22	25	$\Gamma \models_R J$	Double turnstile	Admissible	$\vdash_R \Gamma \text{ implies } \vdash_R J$
23	28	∇	Down triangle	Generic derivation	Generic derivation

II. Statics and Dynamics

4 Statics

N	Р	Expression	Name		Say	Meaning
24	36	n ::= s	Colon cole	lon	The syntax of n is s	Specifies the syntax of n
25	36	;	Semicolon		And	Separates arguments to expressionsin abstact notation

5 Dynamics

N	Р	Expression	Name	Say	Meaning
26 27		$s \longmapsto s'$ $s \longmapsto^* s'$	Bar arrow Bar arrow star	Transistion Iterated transistion	State s transitions to state s' State s transitions to state s' over
28		$s \longmapsto^n s'$	Bar arrow n	N times iterated transis-	more than zero transitions State s transitions to state s' over n
				tion	transitions
29	44	${\cal E}$	Script E	Expression context	Expression context
30	45	0	Circle	Hole	Placeholder to put an instruction
31	46	$e \equiv e'$	Equivalent	Definitional equivalence	e is definitionally equivalent to e'

6 Type Safety

IN	Р	Expression	Name	Say	Meaning
32	58	e??	Wrong	E goes wrong	Expression e goes wrong

7 Evaluation Dynamics

N	Р	Expression	Name	Say	Meaning
33	58	$e \Downarrow^k v$	Downarrow k	E evaluates in k steps	Expression e evaluates to v in k
					steps

III. Total Functions

8 Function Definitions and Values

N	Р	Expression	Name	Say	Meaning
34	63	$\{f\}$	Brace brackets	Function	Surround function f in abstract notation
35	63	f.e	Dot	Dot	Introduces the scope e of a function
					f in abstract notation
36	64	$f(au_1): au_2$	Function	Function definition	A function taking an argument of
					type τ_1 and returning a value of type
					$ au_2$
37	64	[x.e/f]e'	Script bracket	Function substitution	Function substitution
38	65	$ au_1 ightarrow au_2$	Right arrow	Maps to	A total function that maps elements
					of type τ_1 to elements of type τ_2
39	65	λ	Lambda	Lambda	Abstraction

9 System T of Higher-Order Recursion

N	Р	Expression	Name	Say	Meaning
40	71	\hookrightarrow	Hook arrow	Select	Deconstructor selector
41	71		Bar	Either	A choice
42	71	\overline{n}	Overline	Church numbering	The Church numbering
43	76	$\lceil n \rceil$	Divided hat	$G\ddot{o}$ del numbering	The Gödel numbering

IV. Finite Data Types

10 Product Types

N	Р	Expression	Name	Say	Meaning
44 45	81 81	$<> < < e_1, e_2 >$	Angle brackets Angle brackets	Null tuple Ordered pair	Null tuple Ordered pair
46	81	e.l	Left	Left projection	Select left member of the ordered
47	81	e.r	Right	Right projection	pair Select right member of the ordered pair

11 Sum Types

Ν	Р	Expression	Name	Say	Meaning
48	87	1.e	Left	Left injection	Create sum type element using left
49	87	r.e	Right	Right injection	type Create sum type element using right type

VI. Infinite Data Types

14 Generic Programming

N	Р	Expression	Name	Say	Meaning
50	121	t. au	Dot	Type operator	Bind t to type τ

15 Inductive and Coinductive Types

IN	P Expression	Name	Say	Meaning
51	133 ≅	Tilde equal	Isomorphism	Isomorphism

VII. Variable Types

17 Abstract Types

N	Р	Expression	Name	Say	Meaning
52	149	$\exists (t. au)$	Existential quantifier	Exists	Defines an interface
53	153	$\forall (t.\tau \longrightarrow \tau_2)$	Universal quantifier	For all	Defines universal type

18 Higher Kinds

N	Р	Expression	Name	Say	Meaning
54	157	::	Colon colon	Kind type constructor	Maps types to types

VIII. Partiality and Recursive Types

19 System PCF of Recursive Functions

N	P E	Expression	Name	Say	Meaning
55 56 57	$ \begin{array}{rrr} 166 & \vdash \\ 166 & \bot \\ 167 & \tau_1 \end{array} $		Short bar arrow Bottom Harpoon	Maps to Bottom Partial function	Function definition Totally undefined partial function Partial function

20 System FPC of Recursive Types

N	Р	Expression	Name	Say	Meaning
58	177	_	Underscore	Underscore	Unfree variable

IX. Dynamic Types

21 The Untyped λ -Calculus

N	Р	Expression	Name	Say	Meaning
		•			C
59	185	Λ	Lambda	Lambda calculus	The lambda calculus
60	188	Y	Y	Y Combinator	The Y combinator
61	190	x^{\dagger}	Superscript cross	Superscript cross	Language isomorphism