ESERCIZIO 1 - Si consideri la rete di figura.

1.1) Dire, motivando la risposta, se per la rete data è possibile calcolare la matrice di incidenza, ed, in caso affermativo, calcolarla.

Soluzione

P \ T	T1	T2	T3
P1	-1	1	0
P2	0	-1	1
P3	1	-1	0
P4	0	1	-1
P5	-1	0	1
P6	1	-1	-1

1.2) Calcolare il grafo di raggiungibilità o di copertura

Soluzione

M\P	P1	P2	P3	P4	P5	P6
M0	1	1	0	0	2	1
M1	0	1	1	0	1	2
M2	1	0	0	1	1	1
M3	0	0	1	1	0	2
M4	1	1	0	0	2	0
M5	0	1	1	0	1	1
M6	1	0	0	1	1	0
M7	0	0	1	1	0	1
M8	0	1	1	0	1	0

- 1.3) Spiegare, motivando sinteticamente ma chiaramente la risposta, se la rete è:
 - limitata

Soluzione

È 2-limitata

- viva

Soluzione

Non e' viva

- reversibile

Soluzione

Non e' reversibile

1.4) Calcolare i P-invarianti minimi non negativi della rete.

P1 P2 P3 P4 P5 P6

- $1\quad 0\quad 1\quad 0\quad 0\quad 0$
- $0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0$
- $0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$

1.5) Calcolare tutti i sifoni P6-minimi

Soluzione

 $S1 = \{P1, P6\}$

 $S2 = \{P5, P6\}$

1.6) Calcolare il controllore che impedisce lo svuotamento di tutti i sifoni P6-minimi che non coincidono con il supporto di P-invarianti.

Soluzione

L:	b :
-1 0000 -1	-1
0 0 0 0 -1 -1	-1
Cc:	
P\T T1 T2 T3	
PC1 0 0 -1	
PC2 0 -1 0	
Mc:	
1	
2	

1.7) Rappresentare graficamente la rete controllata. (Si può anche modificare la figura data nel testo dell'esercizio)

Soluzione

Nota: Il vincolo su S2 è già rispettato dalla rete (vedi grafo di raggiungibilità) e, di conseguenza, il suo controllo poteva essere non calcolato se correttamente giustificato.

ESERCIZIO 2.

2.1) Si consideri un impianto manifatturiero in grado di svolgere 4 operazioni OP1, OP2, OP3, OP4.

All'inizio il sistema svolge una prima fase che comprende l'esecuzione di OP1 in parallelo ad un'altra operazione scelta a caso tra OP3 e OP2. Terminata questa prima fase può essere esguita l'operazione OP4, terminata la quale il ciclo può riprendere da principio.

Modellizzare tramite il paradigma 1 evento – 2 stati la specifica di comportamento sopra descritta.

Il modello deve inoltre soddisfare ai seguenti requisiti:

- non è possibile duplicare le operazioni
- la rete deve essere binaria
- sono ammesse solo 4 transizioni, associate alle singole operazioni OP1..4

Soluzione

Con OP1 = T1, OP2 = T2, OP3 = T3, OP4 = T4

2.2) Si consideri ora la seguente variante. Dopo la prima fase, vengono eseguite le operazioni OP4 e OP5 in parallelo. Anche in questo caso, per il modello devono valere i 3 requisiti di cui al punto 2.1.

Soluzione

Con OP1 = T1, OP2 = T2, OP3 = T3, OP4 = T4, OP5 = T5

ESERCIZIO 3. - Indicare se le seguenti affermazioni sono vere (V) o false (F).

NOTA: risposta esatta = +x; risposta errata = -x; rispota non data = 0.

In un programma SFC:

- 3.1. più passi possono essere attivi contemporaneamente (V)
- 3.2. esiste sempre un solo passo iniziale (F)
- 3.3. se, in un certo istante, più transizioni sono superabili, solo una viene superata (F)
- 3.4. la struttura OR-diverg. chiusa da una AND-converg. è errata (V)
- 3.5. i comandi sono associati alle transizioni (F)

ESERCIZIO 4.

Scrivere un programma LD che ogni 3 cicli PLC accende un led collegato alla variabile di uscita LED. Il led deve rimanere acceso un ciclo macchina.

Il PLC è sprovvisto della libreria di blocchi funzionali (es. blocco contatore)

Soluzione

