Liste des projets pour le cours MOdéliser Programmer SImuler.

Aurélien Alfonsi, Tony Lelièvre, Renaud Marlet, Pascal Monasse

13 novembre 2014

Les projets seront faits en binôme, comporteront une partie implémentation informatique en C++, et feront appel à des compétences en calcul scientifique, probabilités et informatique. La séance du **jeudi 8 janvier** sera consacrée à une aide pour les projets. La soutenance se fera sous la forme d'une séance de posters à une date à préciser en mars dans le hall où les étudiants présenteront leurs résultats.

Merci d'envoyer par e-mail (à alfonsi@cermics.enpc.fr) votre choix de projet et de binôme le mercredi 26 novembre au plus tard (premier arrivé premier servi).

Voici la liste des projets :

- 1. **AA** : Optimisation de portefeuille de gestion d'actifs.
- 2. **AA+TL**: Propagation d'un virus dans un milieu cellulaire.
- 3. $\mathbf{A}\mathbf{A}$: Calibration en finance: mélange de modèles de Black Scholes: (p_i, σ_i) .
- 4. **AA** Calcul de prix d'un CDO : comparaison entre un modèle exogène et un modèle structurel.
- 5. AA: Gradient stochastique, Robbins Monro et application à la réduction de variance.
- 6. AA: Battage de cartes, vitesse de convergence vers la mesure invariante.
- 7. AA: Recuit simulé sur problèmes non différentiables (voyageur de commerce).
- 8. **AA** : Problèmes d'arrêt optimaux. Options américaines avec temps discrets d'exercice.
- 9. **AA** : Contrôle optimal de chaînes de Markov, application à l'exécution optimale d'ordres sur un marché financier.
- AA : Discrétisation d'EDS avec le schéma de Ninomiya et Victoir. Etude de la variance.
- 11. TL+AA: Transformée de Fourier rapide. Applications à la résolution d'équations aux dérivées partielles et au pricing d'options. Comparaisons des méthodes de Carr-Madan et Attari.
- 12. TL: Méthodes numériques pour générer des dynamiques métastables.
- 13. TL: Une exploration des générateurs de nombres aléatoires.
- 14. **TL** : Application de méthodes adaptatives pour l'échantillonnage dans un modèle de spin.

- 15. TL: Résolution rapide des équations de la mécanique des fluides
- 16. **TL** : Méthode des bases réduites, comparaison avec une méthode de type POD (suivi par S. Boyaval)
- 17. **TL**: EDS pour la physique statistique numérique (algorithme de Metropolis-Hastings, équations de Langevin) (suivi par G. Stoltz).
- 18. TL: Dynamique du système solaire (suivi par G. Stoltz).
- 19. **TL**: Détermination du spectre d'opérateurs hypoelliptiques par discrétisation spectrale (suivi par G. Stoltz).
- 20. **TL** : Calcul de bandes pour les solides périodiques en physique quantique (suivi par V. Ehrlacher).
- 21. **TL** : Une méthode déterministe de résolution de problèmes de grandes dimensions (suivi par V. Ehrlacher).
- 22. **TL**: Méthode d'homogénéisation pour des nanocapteurs noyés dans du béton (suivi par V. Ehrlacher).
- 23. **TL** : Méthodes de réduction de variance en homogénéisation stochastique (suivi par F. Legoll).
- 24. **RM** : Mise en correspondance automatique de textes en langues différentes sans connaissances préalables.
- 25. **RM** : stratégie d'exploration d'états pour la programmation d'un jeu de réflexion comme Othello.
- 26. RM: Recherche d'images similaires dans une (grande) banque de données
- 27. **PM**: Estimation fine de la distorsion de caméra : quasi-Newton et application à la fabrication d'un panorama d'images numériques.
- 28. **PM** : Flot optique : équations aux dérivées partielles et application au suivi de mouvement dans une vidéo.
- 29. **PM**: Arbre des composantes : décomposition d'une image en arbre des composantes connexes d'ensembles de niveau par algorithme Union-Find.
- 30. PM: Calcul de carte de disparités en stéréo par programmation dynamique
- 31. **PM** : Differentiation automatique : calcul efficace de dérivées par analyse en arbre d'une fonction