Università degli Studi di Milano

The bizzarre story of Laughlin'ansatz

Supervisor

Prof. Luca Guido Molinari

Assistant Supervisor

Dr. Pietro Rotondo

Candidate

Vittorio Erba

Once upon a time... Classical Hall effect

[Hall, 1879]

Plot twist! Plateaux everywhere

 $B\sim 1-10\,\mathsf{T}$

 $T\sim 100\,\mathrm{mK}$

Integer quantum Hall effect

[Von Klitzing, Nobel 1985]

Plot twist! Plateaux everywhere

$T\sim 100\,\mathrm{mK}$

Integer quantum Hall effect
[Von Klitzing, Nobel 1985]

Fractional quantum Hall effect [Laughlin, Störmer, Tsui, Nobel 1988]

IQHE: Landau levels and impurities

Independent electrons

- Harmonic oscillator spectrum
- Level spacing ∝B
- High degeneracy ∝B

IQHE: Landau levels and impurities

Independent electrons

- Harmonic oscillator spectrum
- Level spacing ∝B
- Impurities induce broadening
- Impurities induce localization

Black: localized states Red: conducting states

And what about FQHE?

What is known

- Interacting electrons
- Relevant dynamics limited to E₀ in the strong field limit

And what about FQHE?

What is known

- Interacting electrons
- Relevant dynamics limited to E₀ in the strong field limit

$$H = \text{const.} + \sum_{i < j} \frac{e^2}{|r_i - r_j|}$$

And what about FQHE?

What is known

- Interacting electrons
- Relevant dynamics limited to E₀ in the strong field limit

$$H = \text{const.} + \sum_{i < j} \frac{e^2}{|r_i - r_j|}$$

What's the problem

- No exact solution for Coulomb interaction
- No perturbative approach is possible

Variational approach: Laughlin's ansatz for the ground state

- E_0 has a basis of monomials
 - \Rightarrow Look for a **polynomial** (apart from a gaussian factor)
- H has cylindrical symmetry
 - ⇒ Look for a homogeneous polynomial
- Coulomb interaction is two-body and repulsive
 - \Rightarrow Look for functions of $(z_i z_j)$
- Electrons are fermions
 - ⇒ Look for an antisymmetric function

Laughlin's ansatz for the ground state

$$\psi_L(z_1,\ldots,z_n)=\prod_{i< j}(z_i-z_j)^q e^{-\sum_i \frac{|z_i|^2}{4}}$$

Laughlin's ansatz for the ground state

$$\psi_L(z_1,\ldots,z_n)=\prod_{i< j}(z_i-z_j)^q e^{-\sum_i\frac{|z_i|^2}{4}}$$

- Not exact ground state
- q variational parameter . . .

Laughlin's ansatz for the ground state

$$\psi_L(z_1,\ldots,z_n)=\prod_{i< j}(z_i-z_j)^q e^{-\sum_i \frac{|z_i|^2}{4}}$$

- Not exact ground state
- q identifies the plateaux! (1/q)
- q is an odd integer! (fermions)

Laughlin's ansatz for the ground state

$$\psi_L(z_1,\ldots,z_n)=\prod_{i< j}(z_i-z_j)^q e^{-\sum_i\frac{|z_i|^2}{4}}$$

- Not exact ground state
- q identifies the plateaux! (1/q)
- q is an odd integer! (fermions)

Not exact but $\sim 99\%$ overlap with computed ground state for 1/q plateaux

Why is Laughlin's ansatz so good?

Not clear!

Why is Laughlin's ansatz so good?

Recursive formula for second quantized form 1 to 1 correspondence: factored states \Leftrightarrow Laughlin's wavefunctions [Bernevig & Haldane, 2008]

Why is Laughlin's ansatz so good?

Recursive formula for second quantized form 1 to 1 correspondence: factored states \Leftrightarrow Laughlin's wavefunctions [Bernevig & Haldane, 2008]

Work in progress: Explicit second quantized form Understand correlations between electrons

Look for explicit operator that creates Laughlin's wavefunctions from a factored state