

GraphSAINT: Graph Sampling Based Inductive Learning Method

Hanqing Zeng*,¹, Hongkuan Zhou*,¹, Ajitesh Srivastava¹, Rajgopal Kannan², Viktor Prasanna¹

1. University of Southern California 2. US Army Research Lab ICLR, April 2020 https://github.com/GraphSAINT/fpga.usc.edu

Background: Graph Representation Learning

What it does: Embed each graph node into a low-dimensional vector

GNN
$$x = \begin{bmatrix} 1.2 \\ -2 \\ 5.3 \end{bmatrix}$$
 Clustering Link prediction Node classification

Why it is challenging: Num. of multi-hop neighbors explode

Background: Graph Representation Learning

Low training efficiency is now a serious problem in GNN deployment!!

- PinSAGE 2-layer GCN + 7.5billion nodes = 3 days on 16-GPU cluster
- Deep GNNs Training cost grows exponentially with depth

Overview of state-of-the-art minibatch training methods (ref. on slide 11)

Method: Minibatch Construction

Sample a small subgraph, then build a complete GNN

- Constant neighborhood size
- Not an I.I.D. data sampler → Bias elimination
- Need to preserve connectivity → Variance reduction

General training framework

- Graph samplers: for social networks, molecular graph, traffic networks, ...
- GNN architectures: convolution, pooling, attention, skip-connection, ...

Method: Bias Elimination

Why?

- Popular users will be/need to be sampled more frequently
- Need accurate embedding on everyone

How?

- Normalize minibatch loss by probability of sampling each <u>node</u>
- Normalize neighbor aggregation by probability of sampling each <u>edge</u>
- Lightweight preprocessing to estimate the probability

Method: Variance Reduction

How?

"Important" neighbors to be sampled more frequently

Theorem (independent edge sampling): optimal edge probability for variance minimization is $p_{u,v} \propto \frac{1}{d_u} + \frac{1}{d_v}$.

Extensions

- Multi-layer version of random edge sampling → Random walk sampler
- Variations of random walk sampler → Multi-dimensional RW, etc.

Experiments

Setup

• 5 large graphs Up to 1.5M nodes

5 GNN architectures GCN/GraphSAGE, GAT, JK-net, MixHop, GaAN etc.

4 graph samplers Node, Edge, Random walk, MD-Random walk

Multiple depths
 From 2-layer to 5-layer GNNs

Dataset	Nodes	Edges	Degree	Feature	Classes	Train / Val / Test
PPI	14,755	225,270	15	50	121 (m)	0.66 / 0.12 / 0.22
Flickr	89,250	899,756	10	500	7 (s)	0.50 / 0.25 / 0.25
Reddit	232,965	11,606,919	50	602	41 (s)	0.66 / 0.10 / 0.24
Yelp	716,847	6,977,410	10	300	100 (m)	0.75 / 0.10 / 0.15
Amazon	1,598,960	132,169,734	83	200	107 (m)	0.85 / 0.05 / 0.10
PPI (large version)	56,944	818,716	14	50	121 (m)	0.79 / 0.11 / 0.10

Experiments

Experiments

Graph clustering vs.
Graph sampling

	PPI (large	e version)	Reddit		
	2×512	5×2048	2×128	4×128	
ClusterGCN GraphSAINT	0.903±0.002 0.941 ±0.003	0.994±0.000 0.995 ±0.000	0.954±0.001 0.966 ±0.001	0.966±0.001 0.970 ±0.001	

Layer sampling vs.
Graph sampling

Conclusion

Minibatch training method for *deep* GNNs on *large* graphs

State-of-the-art training quality (accuracy, speed)

Highly flexible and extensible (graph samplers, GNN architectures)

References

Papers on slide 2

- **GraphSAGE**: "Inductive representation learning on large graphs". In NeurIPS 2017.
- **FastGCN**: "FastGCN: Fast learning with graph convolutional networks via importance sampling". In ICLR 2018.
- **S-GCN**: "Stochastic training of graph convolutional networks with variance reduction". In ICML 2018.
- AS-GCN: "Adaptive sampling towards fast graph representation learning". In NeurIPS 2019.
- ParaGCN: "Accurate, efficient and scalable graph embedding". In IEEE/IPDPS 2019.
- Cluster-GCN: "Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks". In KDD 2019.
- GraphSAINT: "GraphSAINT: Graph sampling based inductive learning method". In ICLR 2020.

Thank you!

