Численное моделирование по физике

Задание 1

"Лунолет орбитальный"

На низкой орбите, вокруг Луны вращается орбитальная станция "Гагарин". Высота орбиты станции составляет от 40 до 60 км в зависимости от варианта задания. Скорость движения станции равна первой космической скорости на данной высоте.

Инженер-электронщик Петров должен запрограммировать автопилот лунного корабля для доставки груза массой 200 кг на орбитальную станцию. После доставки груза корабль должен вернуться в стартовую точку на Луне.

Помогите Петрову запрограммировать автопилот.

Написать программу, предназначенную для численного моделирования манёвров космических аппаратов в непосредственной близости безатмосферных небесных тел сферической формы (радиус Луны составляет 1738 км).

Для расчетов скорости воспользуйтесь уравнением Мещерского.

Требования безопасности:

- 1. Вертикальная посадочная скорость не должна превышать 3 м/с.
- 2. Горизонтальная посадочная скорость не должна превышать 1 м/с.
- 3. Отклонение по горизонтали при посадке не должно превышать 5 м.
- 4. Ускорения при маневрах не должны превышать 3g.
- 5. Груз считается доставленным на орбитальную станцию, если расстояние между кораблем и станцией не превышает 50 м и относительная скорость составляет не более 0.1 м/с.

Упрощения модели:

- Система координат двумерная. Плоскость координат совпадает с плоскостью орбиты орбитальной станции.
- Изменение ориентации корабля происходит мгновенно.
- На изменение ориентации топливо не расходуется.

Автопилот корабля принимает последовательность команд, состоящих из трех параметров:

- 1) α угол ориентация корабля. Значение "0" соответствует направлению вверх, "90" соответствует направлению вперед. "180" соответствует направлению вниз. α лежит в диапазоне (-179°,180°]. Угол задается с точностью до градуса.
- 2) Δm_t расход топлива в кг/с. При расходе равному нулю, полет происходит по инерции. Расход задается с точностью до 0.1 кг.
- 3)t время маневра в с. Время задается с точностью до 0.1 с.

Программа должна рассчитывать новое значение скоростей и новое значение координат. При контакте с поверхностью сохраняются скорости в момент контакта.

Используемые константы:

- 1. Масса аппарата М.
- 2. Масса топлива т.
- 3. Ускорение свободного падения д на Луне.
- 4. Предельная перегрузка при маневрах a_{max} .
- 5. Скорость истечения продуктов сгорания из реактивного двигателя V_p .

Исходные данные (в скобках значения констант). Ускорение силы тяжести на Луне 1.62 м/с 2 (g=1.62). Масса корабля 2000 кг, плюс груз 200 кг (M=2200). Двигатель работает на керосине с жидким кислородом — скорость истечения продуктов сгорания 3660 м/с (V_p =3660). Груз выдерживает трёхкратную перегрузку (a_{max} = 29.43). Начальные скорость и высота определены в варианте задания. В баках 4000 кг топлива и окислителя (m = 4000).

Входные данные: согласно варианту задания

Выходные данные: скорости(Vx,Vy) и координата (X, Y) аппарата перед вводом команды автопилота, параметры новой команды автопилота.

Формат строки вывода:

Vx Vy X Y α Δm_t t(Разделитель табуляция)

Старт лунного корабля может быть задержан, если в этом возникает необходимость.

По условию задачи в начальный момент времени орбитальная станция движется навстречу кораблю.

Варианты задания

№ варианта	Расстояние между ЛК и	Высота орбиты ОС, км
	ОС по орбите ОС, км	

1	-60	40
2	-62	41
3	-64	42
4	-66	43
5	-68	44
6	-70	45
7	-72	46
8	-74	47
9	-76	48
10	-78	49
11	-80	50
12	-82	51
13	-84	52
14	-86	53
15	-88	54
16	-90	55
17	-92	56
18	-94	57
19	-96	58
20	-98	59
21	-100	60

