Задача 1. Вниз по ступенькам

В данной задаче вам предлагается рассмотреть движение вниз по ступенькам в различных вариантах. В скобках в пунктах задачи указаны величины, через которые необходимо выразить ответ. Ускорение свободного падения -g.

Часть А. Абсолютное скольжение

1. Две ступеньки

Шайба, размером которой можно пренебречь, скользит по гладкой горизонтальной поверхности с некоторой скоростью. На пути шайбы на расстоянии l друг от друга находятся две ступеньки высотой h (рис. 1). Будем считать, что соударения с шайбы с поверхностью неупругие в том смысле, что при столкновении «зануляется» вертикальная составляющая скорости, а горизонтальная сохраняется.

Рисунок 1 — Шайба и две ступеньки высокой h

Если начальная скорость шайбы будет больше некоторого критического значения $v_{\kappa p}$, шайба перелетит одну ступеньку и ударится в ее край.

А1.1. Найдите $v_{\text{кр}}$ (l, h, g).

Далее будем рассматривать случаи $v_{\rm kp+}$ и $v_{\rm kp-}$, когда начальная скорость шайбы больше или меньше критической соответственно, однако мало отличается от нее. Значения $v_{\rm kp+}$ и $v_{\rm kp-}$ считаем приближенно равными.

- **A1.2.** В каком из случаев, $v_{\text{кр+}}$ или $v_{\text{кр-}}$, время достижения некоторой точки Φ за ступеньками (рис. 1) будет меньше?
- **А1.3.** В каком из случаев, $v_{\text{кp+}}$ или $v_{\text{кp-}}$, потери механической энергии по достижении точки Ф будут меньше?

2. Бесконечная лестница.

Теперь предположим, что ступенек выстой h на расстоянии l друг от друга бесконечно много. Если посмотреть на них сбоку с большого расстояния, то будет казаться, что вся лестница представляет собой сплошную наклонную плоскость, а скачущая шайба казаться просто скользящей по ней.

А2.1. Считая, что изначально шайбу запустили со скоростью $v_{\text{кр-}}$, найдите скорость ее кажущегося скольжения по такой наклонной плоскости $v_{\text{накл}}$ (h, l, g).

Часть В. Трение скольжения

Снова рассмотрим случай двух ступенек из части A1. Пусть теперь присутствует сухое трение скольжения, одинаковое на всех поверхностях. Коэффициент трения скольжения равен μ . Будем считать трение небольшим настолько, что во всех рассматриваемых случаях шайба достигает точки Φ (рис. 1).

- **В1.1** Пусть шайбу запустили со скоростью $v_B < v_{\rm кp}$ с края первой ступеньки. Считая, что время соударения очень мало, определите скорость шайбы сразу после первого неупругого соударения v_B' (v_B , μ , g, h).
- **B1.2** В каком из случаев, $v_{\text{кр+}}$ или $v_{\text{кр-}}$, потери механической энергии будут меньше?