5. Vybraná rozdělení diskrétní náhodné veličiny

Název NV X	Popis	Pravděpodobnostní funkce	E(X)	D(X)
Binomická $Bi(n,\pi)$	počet úspěchů v n Bernoulliho pokusech	$P(X = k) = \binom{n}{k} \pi^k (1 - \pi)^k$	$n\pi$	$n\pi(1-\pi)$
	počet úspěchů v <i>n</i> závislých pokusech	$P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$		
Alternativní $A(\pi)$	počet úspěchů v 1 pokusu	$P(X = 1) = \pi$ $P(X = 0) = 1 - \pi$	π	$\pi(1-\pi)$
Geometrická $Ge(\pi)$	počet pokusů do 1. úspěchu (včetně)	$P(X = n) = \pi (1 - \pi)^{n-1}$	$\frac{1}{\pi}$	$\frac{1-\pi}{\pi^2}$
$egin{aligned} \mathbf{Negativn\check{e}} \\ \mathbf{binomick\acute{a}} \\ \mathbf{(Pascalova)} \\ NB(k,\pi) \end{aligned}$	počet pokusů do k. úspěchu (včetně)	$P(X = n) = \binom{n-1}{k-1} \pi^k (1 - \pi)^{n-k}$	$\frac{k}{\pi}$	$\frac{k(1-\pi)}{\pi^2}$
Poissonova $Po(\lambda t)$	počet událostí v Poissonově procesu v uzavřené oblasti (v čase, na ploše, v objemu)	$P(X = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$	λt	λt

Popis Podmínky		ky	Název NV X	
m a × at × am × ala ° m	nezávislé pokusy	n = 1	Alternativní - $A(\pi)$	
počet úspěchů v <i>n</i> pokusech		$n \ge 1$	Binomická - $Bi(n,\pi)$	
ponascon	závislé pokusy		Hypergeometrická - $H(N, M, n)$	
počet pokusů do k. úspěchu	nezávislé pokusy	k = 1	Geometrická - $Ge(\pi)$	
(včetně)		$k \ge 1$	Negativně binomická - $NB(k,\pi)$	
počet události v uzavřené oblasti (v čase, na ploše, v objemu)	ordinarita, stacionarita, beznáslednost procesu		Poissonova - $Po(\lambda t)$	

Přehled düležitých R tunkci.

	Provdep. fre	Dist. fre
Binomická $Bi(n,\pi)$	P(X=K)=	F(k)=
	dbinom(k,n,T)	phinom (h-1, m, TT)
Hypergeometrická $H(N,M,n)$	P(X=b)=	F(h)=
	dhyper(k,M,N-M,n)	Phyper(k-1,M,N-M,M)
Negativně binomická $NB(k,\pi)$	D(X=w)=	F(m)=
	dupinom (m-b, b, T)	Phbinom(n-k-1, k,ît)
Poissonova $Po(\lambda t)$	P(X=h)=	F(h)=
	dpois (la, lt)	ppois (/2-1, /t)

Příklady.

Příklad 1.

Bridž se hraje s 52 bridžovými kartami, které se rozdají mezi 4 hráče. Vždy 2 hráči hrají spolu. Při rozdávání (13 karet) jste dostali do rukou 2 esa. Jaká je pravděpodobnost, že váš partner bude mít zbývající dvě esa?

$$X$$
... priced es N rune spoluhreire $X \sim H(N=39, M=2, m=13)$

$$P(X=2) = dhyper(2, M, N-M, m) = 0,105$$

2,37,13

Proordet. 1 de bolefa dostare 2 eser je 10,5%.

Příklad 2.

Pokusy se zjistilo, že radioaktivní látka vyzařuje během 7,5 s průměrně 3,87 α-částice. Určete pravděpodobnost toho, že za 1 sekundu vyzáří tato látka alespoň jednu α-částici.

X... poid vysurienigh
$$X$$
-cashir $2a10$

X \sim Poi $(\lambda \cdot t = \frac{3185}{7.5})$
 $\lambda = 3187/7.5$
 $t=1$

$$P(X \ge 1) = 1 - P(X < 1) = 0,405$$

Provodin. , re se vysan alson 1. istre je 40,39.

Příklad 3.

Kamarád vás pošle do sklepa, abyste donesl(a) 4 lahvová piva - z toho dvě desítky a dvě dvanáctky. Nevíte, kde rozsvítit, proto vezmete z basy poslepu 4 láhve. S jakou pravděpodobností jste vyhověl(a), víte-li, že v base bylo celkem 10 desítek a 6 dvanáctek?

Příklad 4.

V jednom mililitru určitého dokonale rozmíchaného roztoku se v průměru nachází 15 určitých mikroorganismů. Určete pravděpodobnost, že při náhodném výběru vzorku o objemu 1/2 mililitru bude ve zkumavce méně než 5 těchto mikroorganismu.

No. poted mikroory. Ne Northy

$$X \sim Poi(\lambda := \frac{15}{2})$$
 $\lambda = 15$
 $t = 112$
 $P(X < S) = F(S) = PPois(S-1, \lambda +) = 0.172$
 $P(X < S) - P(Y = S)$

Provider. The je we made mere S mid. je 13,126

Příklad 5.

Na stůl vysypeme 15 mincí. Jaká je pravděpodobnost, že počet mincí ležících lícem nahoře, je od 8 do 15?

X... Wright miner lesisish linen 2 15

$$X \sim Bi (m=15; TI=0,5)$$

 $P(8 \le X \le 15) = P(X \le 15) - P(X \le 8) = 0,5$

 $P(8 \leq X)$ $P(X \leq 16)$

Provider i De proved minei lisen rahon je od 8 du 15 je 50 %

Příklad 6.

Pravděpodobnost, že se dovoláme do studia rozhlasové stanice, která právě vyhlásila telefonickou soutěž je 0,08. Jaká je pravděpodobnost, že se dovoláme nejvýše na 4. pokus?

$$P\left(\underline{X \leq 4}\right) = P(X \leq 5) = pnbinom(S-h-1,h,T)$$

$$= 1,284$$

Proordérador, resolutatione rejuyée na 4 robers de 28,4%.

Příklad 7.

V továrně se vyrobí denně 10 % vadných součástek. Jaká je pravděpodobnost, že vybereme-li třicet součástek z denní produkce, tak nejméně dvě budou vadné?

X... poiet vordných souristeh y výteru

$$X \sim Bi(m=30, T=0,1)$$

 $P(X \geq 2) = 1 - P(X \leq 2) = 1 - Pbinom(2-1, m, T)$
 $F(z) = 0,816$

Provid. in ve ythere budou alegen I voché
Příklad 8

Příklad 8.

Ve skladu je 200 součástek. 10 % z nich je vadných. Jaká je pravděpodobnost, že vybereme-li ze skladu třicet součástek, tak nejméně dvě budou vadné?

$$X \sim H(N=200, M=20; M=50)$$

$$P(\chi \geq 2) = 1 - P(\chi \leq 2) = 1 - Phyper(2-1, M, N-M, m)$$

=0,834

Provd., re resigher buden représé 2 raché re 85,476.

Příklad 9.

V určité firmě bylo zjištěno, že na 33 % počítačů je nainstalován nějaký nelegální software. Určete pravděpodobnostní a distribuční funkci počtu počítačů s nelegálním softwarem mezi třemi kontrolovanými počítači.

X... poiet pein Avien o reley. sept. ne výlien $X \sim Bi(m=3, TI=0.33)$ $\frac{X_1}{P(y_1)} = 0.331 + 0.444 = 0.274 = 0.036$

 $\frac{(2,3)(3,3)(3,3)}{F(4)}$

Příklad 10.

Sportka je loterijní hra, v níž sázející tipuje šest čísel ze čtyřiceti devíti, která očekává, že padnou při budoucím slosování. K účasti ve hře je nutné zvolit alespoň jednu kombinaci 6 čísel (vždy 6 čísel na jeden sloupec) a pomocí křížků tato čísla označit na sázence společnosti Sazka a.s. do sloupců, počínaje sloupcem prvním. Sázející vyhrává v případě, že uhodne alespoň tři čísla z tažené šestice čísel. Jaká je pravděpodobnost, že proto, aby sázející vyhrál, bude muset vyplnit:

bude muset vyplnit:

6 crael se 49

Pro jeden damper

X... poiet Areferiph inel

X ~ H(N=49, M=6, n=6)

P(X=3)=1-P(X23)=1-phyper(5-1, 19, N-19, n)

=0,019

a) prime ? sloupre

Y. rich uphrimin slouper du righty Y ~ NB (h=1, TT = 0,014)

 $P(Y=3)=dnbiron(3-h,h,\pi)=0.018$

Privilepeud, ne ryphime & slugee mes ryphimene je 1,8.1. b) alestor Solvyrå P(Y ≥ S)= 1-P(Y ∠S)=1-pnbinon (S-L-1, h, = 0,928 Providerat. je aleston 5 elempéer ner nythejeme je 42,8°1. () mève vez 10 P(Y < 10) = P N b i no m (10 - h - 1, h, T)= 0,156 Proderod, is uphajeme pri vyphiema mêne res 10 staupui je 15, C1. d) vire res 5 a reprise 10

P(SLY410) = P(Y410) - P(Y45) F(11) F(6)Phoinom (11-2-1,2,T)-Phoinom(G-la-1, h, TT) -0,082 Provdepod, ne Mujem pi opprient vive reō 5 a reprise 10 Alorprie 10 8,2°10

.

Příklad 11.

Pravděpodobnost, že hodíme 6 na 6stěnné kostce je 1/6. Hážeme tak dlouho, než hodíme šestku 10 krát.

a)

Jaká je střední hodnota počtu hodů.

X... pried hedri bushhun ver
$$10 \times \text{radub}$$

X ~ NB($h = 10$, $TT = 1/6$)
 $E(T) = \frac{h}{T} = \frac{10}{1/6} = 69$
Whether bushes poids later is 60

b)

S kolika hody nejméně musíme počítat, pokud chceme, aby pradvěpodobnost, že se nám podaří naházet 10 šestek, byla alespoň 70%.

$$P(X \leq w) \geq 0,7$$

$$F(w)$$

musim poértal alespon o 68 heely.