

Clermont'ech – API Hour #57 La plomberie dans les Datacenters Azure : comment ça marche ?

David SANTIAGO & Vincent MISSON

19 décembre 2023

\$ whoami \$ whoarewe

Vincent Misson

Cloud Solution Architect @Microsoft

blog.cloud63.fr

vmisson

David Santiago

Cloud Solution Architect @Microsoft

davidsantiago.fr

davidsntg

Agenda

- Azure Global Infrastructure
- Inside an Azure Datacenter
- The life of a packet

Inside Azure

Global Infrastructure

Azure region architecture

Geography

- Discrete market with two or more regions
- Meets data residency and compliance requirements
- Fault-tolerant to protect from complete region failure

Region

- Set of datacenters within a metropolitan area
- Network latency perimeter <2ms

Availability Zones

- Unique physical locations within an Azure region
- Each zone is made up of one or more DCs
- Independent power, cooling and networking
- Inter-AZ network latency <2ms
- Fault-tolerant to protect from datacenter failure

Geography

Region: France Central

Regional Networks

Edge

 Connects Region to Internet and Enterprise peers

Regional Network Gateway

- Massively parallel, hyper scale DC interconnect
- Space and power protected

Datacenters

- Small, Medium or Large (T-shirt sizes)
- Only contains server racks, DC network
- RNGs are sized to support growing the region by adding data centers

OneWAN is better than two: Unifying a split WAN architecture

- 8074 network (SWAN)
 - Inter-datacenter
- 8075 network (Core)
 - User facing traffic

https://www.microsoft.com/en-us/research/publication/onewan-is-betterthan-two-unifying-a-split-wan-architecture/

Azure Networking overview

DC hardware

- SmartNIC/FPGA
- SONIC

Services

- Virtual Networks
- Load Balancing
- VPN Services
- Firewall
- DDoS Protection
- DNS and Traffic Management

Intra-region

- DC Networks
- Regional Networks
- Optical Modules

Regional network

Regional network

Regional network

Regional network

WAN backbone

- Software WAN
- Subsea Cables
- Terrestrial Fiber

Microsoft

WAN

 National Clouds

CDN

 Acceleration for applications and content

Last mile

 E2E monitoring (Network Watcher, Network Performance Monitoring)

Edge and ExpressRoute

- Internet Peering
- ExpressRoute

Inside Azure

Inside Datacenter

Quincy, WA

Azure Networking Physical Layout

Software for Open Networking in the Cloud (SONIC)

Native Linux

- Native Linux kernel
- Leverage Unix networking stack

Containerized

- Quick feature release and bug fix
- · Hitless upgrade without customer impact

Open Sourced

- On GitHub with Apache License
- · Build on top of SAI

Rich ecosystem

• Platform/ASIC Agnostic

https://github.com/sonic-net/SONiC

Inside Azure

Life of a packet

Azure servers: General purpose

2 x 24 core

Skylake Lake 192 GB DDR4

5 x 960 GB M.2 NVMe

Gen 2		
Processor	2 x 6 Core 2.1 GHz	
Memory	32 GiB	
Hard Drive	6 x 500 GB	
SSD	None	

Godzilla		
Processor	2 x 16 Core 2.0 GHz	
Memory	512 GiB	
Hard Drive	None	
SSD	9 x 800 GB	
NIC	40 Gh/s	

	Intel Gen 6		
łz	Processor	2 x Skylake 24 Core 2.7GHz	
	Memory	768GiB DDR4	
	Hard Drive	None	
	SSD	4 x 960 GB M.2 SSDs and 1 x 960 GB SATA	
	NIC	40 Gb/s + FPGA	

	Optim
Core	Processor
	Memory
	Hard Drive
SSDs SATA	SSD
A	NIC

AMD Gen 6		
Processor	2 x 32 core Naples	
Memory	512 GB DDR4	
Hard Drive	None	
SSD	7 x 960 GB M.2 NVM	
NIC	50 Gb/s + FPGA	

'		ci Ocii i
	Processor	2 x 26 core Cascade Lake
	Memory	576 GB DDR4
	Hard Drive	None
NVMe	SSD	7 x 960 GB M.2 NVM
	NIC	50 Gb/s + FPGA

AMD Gen /		
Processor	2 x 32 core Rome	
Memory	768 GB DDR4	
Hard Drive	None	
SSD	7 x 960 GB M.2 NVMe	
NIC	50 Gb/s + FPGA	

Deast		
essor	4 x 18 Core 2.5 GHz	Process
ory	4096 GiB	Memor
Drive	None	Hard Di
	4 x 2 TB NVMe, 1 x 960 GB SATA	SSD
	40 Gh/s	NIC

Deast V2 Decessor 8 x 28 Core 2.5 GHz Demory 12 TiB None 4 x 2 TB NVMe, 1 x 960 GB SATA

Azure Host OS

Long story short

- Headless (no GUI) console only
- Supports x86, x64 & ARM architectures
- Mainly C++, Python & Rust
- ~280 MB
- Disable unused drivers and features such a print spooler, etc.
- Minimal set of server roles

Patching

- Hot Patching in ms
- VM PHU (~30s)
- Live Migration (few s)
- Hypervisor Hot Restart < 1s
- Details

https://techcommunity.microsoft.com/t5/windows-os-platform-blog/azure-host-os-cloud-host/ba-p/3709528

Azure compute architecture

Node / Host

Packet Encapsulation

VFP – Virtual Filtering Platform

https://nwktimes.blogspot.com/2023/01/azure-host-based-sdn-part-1-vfp.html

Routing

More information

- The Cost of a Cloud: Research Problems in Data Centers Networks
 - http://research.microsoft.com/~dmaltz/papers/DC-Costs-CCR-editorial.pdf
- VL2: A Scalable and Flexible Data Center Network
 - https://www.microsoft.com/en-us/research/publication/vl2-a-scalable-and-flexible-data-center-network/
- Towards a Next Generation Data Center Architecture: Scalability and Commoditization
 - http://research.microsoft.com/~dmaltz/papers/monsoon-presto08.pdf
- DCTCP: Efficient Packet Transport for the Commoditized Data Center
 - https://www.microsoft.com/en-us/research/publication/data-center-tcp-dctcp/
- The Nature of Datacenter Traffic: Measurements and Analysis
 - https://www.microsoft.com/en-us/research/publication/the-nature-of-data-center-traffic-measurements-andanalysis/
- What Goes into a Data Center?
 - https://www.microsoft.com/en-us/research/publication/what-goes-into-a-data-center-sigmetrics-2009-tutorial/

Thank you!