Question Bank

UNIT-I

Short Answer Questions

S.NO	Question	Course Outcome	Bloom's Taxono my Level	Marks	Unit No.
1	Define a well-posed learning problem with an example.	CO1	K1	2 M	Unit-I
2	State the concept of inductive bias in machine learning.	CO1	K1	2 M	Unit-I
3	Explain the Find-S algorithm with a simple example.	CO1	K2	2 M	Unit-I
4	Find the maximally specific hypothesis using the Find-S algorithm for a given set of training data.	CO1	K3	2 M	Unit-I
5	Define the version space in concept learning.	CO1	K1	2 M	Unit-I

Long Answer Questions

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	State and explain the general-to-specific ordering in concept learning with examples.	CO1	K5	5 M	Unit-I
2	Using the Candidate Elimination algorithm, find the version space for a given set of hypotheses.	CO1	K3	5 M	Unit-I
3	Derive an expression for the inductive bias and explain its significance in decision tree learning.	CO1	K4	5 M	Unit-I
4	Using an example, illustrate the process of constructing a decision tree from training data.	CO1	K4	5 M	Unit-I
5	Draw the decision tree for a given dataset and discuss the issues related to decision tree learning.	CO1	K4	5 M	Unit-I

1.	_	f learning from examples a CO1, K1)	nd generalizing to unseen case	es is called	[]
A.De	eduction	B. Concept learning	C. Overfitting	D. Cross-v	alidatio	o n

2.	The Find-S alg	gorithm is used to	(CO1, K1)		Г	1
	" 1 d	D D' 1.1 ' 11	C E' 141 1 4 'C'	D Ell :	<u> </u>	
	al hypothesis		C. Find the least specific hypothesis	D. Elimina inconsister		thecec
gener			heses consistent with the training		lt Hypo	uicses
3.		. (CO1, K1)		8	[]
A.Hv	pothesis		~ ~	- a		
space	•	B. Version space	C. Concept space	D. Candida	ate spa	ce
4.	Decision trees	are most appropriate for	. (CO1, K2)		[]
		B. Problems with			ļ	
l	ntinuous it problems	discrete, categorical outcomes	C. Regression tasks	D. Unsupe learning	rvised	
5.	Big Data is tha	at which (CO1,K2)			[]
A. Sr	nall involume,	B. is huge in volume,	C. huge in volume, yet			
	rowing	yet growing	reduces with time	D. none		
expo	nentially	exponentially with time				
	he algorithm tl	hat searches the hypothesis	space to find the most specific	hypothesis		
6.		n positive examples is		• 1	[]
				I		
A. I Learr	Decision Tree ning	B. Candidate Elimination Algorithm	C. Find-S Algorithm	D. Naïve I	Bayes	
	The inductive	hias in decision tree learnin	g is that (CO1, K	2)		
7.	The maderive	olds in decision tree learning	g 15 that (CO1, 11	2)	[]
A	Simpler trees	B. More complex trees	C. Only specific hypotheses		!	
	preferred over	are preferred	are considered	D. Version	-	is
comp	olex ones	r		eliminated		
	The process of	 f removing inconsistent hype	otheses from the version space	is known		
8.	as		omeses from the version space	15 11110 1111	[]
						-
A. Pr	uning	B. Candidate	C. Data Cleaning	D. Hypoth		
		Elimination	s that it (CO1, K2	Generation	1 	
9.	-	on of the Find-S argorithm is	s that it (CO1, K2		[]
Α.	Fails to	B. Finds the most	C. Always finds a correct	D. D		·•
guara	antee finding arget concept	general hypothesis	hypothesis	D. Require examples t		
uic t	arget concept			cxampics t	o runci	.1011
10	Inductive bias	in machine learning refers t	. (CO1, K1)		Г	1
10.					L	J
	The set of	D. TII		D. III .		, •
	nptions a er makes to	B. The process of finding patterns in data	C. The quality of data	D. The noi data	se pres	ent in
genei		iniding patterns in data		aata		

II Fill in the Blanks:

1.	The Find-S algorithm is used to find the hypothesis that is consistent with all positive examples. (CO1, K1)
2.	In decision tree learning, the search strategy employed is known as (CO1, K2)
3.	In concept learning, the process of narrowing down the set of hypotheses by eliminating those inconsistent with examples is called (CO1, K2)
4.	1. In concept learning, the process of narrowing down the set of hypotheses by eliminating those inconsistent with examples is called (CO1, K2)
5.	is the assumption made by a learning algorithm to generalize beyond the observed data. (CO1, K1)
6.	A decision tree is most appropriate for problems where the target output is (CO1, K2)
7.	The initial hypothesis in the Find-S algorithm is set to the hypothesis. (CO1, K1)
8.	The algorithm is used to systematically eliminate hypotheses that do not fit the training data. (CO1, K2)
9.	In decision tree learning, refers to the preference for simpler hypotheses over complex ones. (CO1, K1)
10	The process of learning a decision tree from labeled examples is called learning. (CO1, K1)

UNIT-II

Short Questions:

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Define a neural network.	CO2	K1	2 M	Unit-II

2	State the role of perceptrons in neural	CO2	K1	2 M	Unit-II
	networks.				
3	Explain the significance of the back-	CO2	K2	2 M	Unit-II
	propagation algorithm in training				
	neural networks.				
4	Identify appropriate problems for	CO2	K3	2 M	Unit-II
	neural network learning.				
5	Define the concept of hypothesis	CO2	K1	2 M	Unit-II
	evaluation in machine learning.				

Long Questions:

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Explain the architecture of a multilayer neural network and the process of back-propagation.	CO2	K5	5 M	Unit-II
2	Derive the equations used in the back-propagation algorithm for updating the weights in a neural network.	CO2	K4	5 M	Unit-II
3	Analyze the challenges faced by neural networks in learning from complex datasets.	CO2	K4	5 M	Unit-II
4	Compare and contrast the performance of different neural network architectures in solving real-world problems.	CO2	K4	5 M	Unit-II
5	Evaluate the effectiveness of hypothesis evaluation techniques in improving the accuracy of machine learning models.	CO2	K5	5 M	Unit-II

1.	The primary (CO2, K1)	function of the backprop	agation algorithm is to	·	[]
A. Train neural networks		B. Validate hypotheses	C. Eliminate noise	D. Extrac	t features

2.	The primary f	function of a perceptron is	to (CO2, K1)		[]
A. Classify	data	B. Store information	C. Perform complex calculations	D. Genera	te rando	om
3.	A multilayer r	neural network consists of		indinio 015	[]
A. One laye	er	B. Two layers	C. Multiple layers	D. No lay	ers	
4.		of neural networks, activa (CO2, K2)	ntion functions are used to		[]
A. Normali	ze data	B. Introduce non- linearity	C. Simplify computations	D. Reduce		
5.	Big Data is the	at which (CO2,K2)			[]
	volume, yet ponentially	B. is huge in volume, yet growing exponentially with time	C. huge in volume, yet reduces with time	D. none		
6.	_		is space to find the most specingles is (CO2,		[]
A. Dec Learning	ision Tree	B. Candidate Elimination Algorithm	C. Find-S Algorithm	D. Naïve	Bayes	
7.	Which neural [CO2, K1]	network model was devel	oped by Frank Rosenblatt?		[]
A. Hop Net	ofield work	B. Ada line	C. SOM	D. Percep	otron	
8.	Which elements model learns? [CO2, K1]		ermines how quickly or slow	ly the	[]
A. Weight		B. Bias	C. Learning rate	D. Activa Function	ition	
9.		k is known for minimizing target output?	g the squared error between	the actual	[]
A. Perceptr		B. Ada Line	C. Max Net	D. Hopfie	ld Netw	orks
10.	What does BA [CO2, K1]	AM stand for in neural net	works?		[]
A. Binary Memory	Associative	B. Backward Adaptive Mechanism	C. Bidirectional Associative Memory	D. Binary Memory	Adapti	ve

II Fill in the Blanks:

1. ,	The	in a neural network represents the strength of the connection between neurons.
------	-----	--

	[CO2, K1]
2.	The function in a neural network introduces non-linearity to the model. [CO2, K1]
3.	The Perceptron model was designed to solve classification problems. [CO2, K1]
4.	In a Back-Propagation network, the is propagated backwards through the network to update the weights. [CO2, K1]
5.	Learning uses labeled data to train neural networks. [CO2, K1]
6.	ADALINE stands for [CO2, K1]
7.	The rate in a neural network controls how much the weights are adjusted with respect to the loss gradient. [CO2, K1]
8.	A is a computational model inspired by the structure and functioning of biological neural networks. [CO2, K1]
9.	Associative Memory Networks are used for pattern and recall. [CO2, K1]

UNIT-III

Short Questions

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Define Bayesian learning.	CO3	K1	2 M	Unit-III
2	State Bayes' theorem and its application in	CO3	K1	2 M	Unit-III

	machine learning.				
3	Identify the role of the Naïve Bayes classifier	CO3	K3	2 M	Unit-III
	in text classification tasks.	CO3	KS	2 111	
	Mid-II				
1	Explain conditional probability	CO3	K3	2 M	Unit-III
2	Define the EM algorithm and its significance	CO3	K1	2 M	Unit-III
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	in machine learning.	CO3	KI	\(\alpha \) IVI	UIIII-III
2	Explain the concept of maximum likelihood	CO3	K2	2 M	Unit-III
3	hypothesis.	003	K2	\(\alpha \) 1V1	Omt-m

Long Answer Questions

Q.No	Questio	on				Course Outcom e	Bloom's Taxonom y Level	Mark s	Uni t No.
1	help of	p of an example.		CO3	K5	5 M	Unit -III		
2	Compare the performance of the Naïve Bayes classifier with other classification algorithms in text classification.		CO3	K4	5 M	Unit -III			
3	Analyze the role of Rayesian belief networks in		CO3	K4	5 M	Unit -III			
				Mid		1			
4	table. U	se Weigh	ning dataset goted k-NN and for 60, 80 and For 60,	d determine		CO3	K6	5 M	Unit -III
5			ctiveness of the data in mach			CO3	K5	5 M	Unit -III
	1		num likelihoo oilities in mac	• •		CO3	K4	5 M	Unit -III

1.	Bayes' theorem is primarily used to calculate (CO3, K1)	[]	
----	---	---	---	--

A. Pr	obabilities	B. Hypotheses C. Errors D. Weights	C. Big data analytics	D. Data a	nalysis	
2.	The Naïve Bay		eatures are (CO3,	(K1)	[]
A. De	ependent	B. Independent	C. Correlated	D. Sequen	tial	
3.		that suggests a model should wn as (CO3, I	the as simple as possible while (X2)	e fitting	[]
A. O	ccam's Razor	B. Bayesian inference	C. Maximum likelihood	D. Minimu description		
4.				[]	
	Initial beliefs efore seeing data B. Final conclusions C. Likelihood of evidence		D. Error m	argins		
5.	The EM algori	thm is primarily used for	. (CO3, K2)		[]
A. Pa	nrameter	B. Data	C. Model evaluation	D. Data vi	sualizat	ion
			Mid-II			
6. In computational learning theory, the term PAC stands for (CO3, K1)				[]	
Appr	A nnrovimately		D. Pattern Clustering		су	
7.	In Bayesian le	arning, "likelihood" refers to	. (CO3, K2)		[]
	U	B. The prior knowledge	C. The posterior probability	D. Error m	inimiza	tion
8.	K2)	following is a key assumption	on of the Naive Bayes classifier	,	[]
A. indep	Conditional pendence	B. Complete dependence	C. Perfect correlation	D. Variabl correlation		e
9.	9. Instance-based learning focuses on (CO3, K2)			[]	
A. traini	A. Storing all B. Generalizing from training examples examples C. Creating rules data		g trainir	ıg		
10.	_	nal learning theory, the Vapa (CO3, K2)	nik-Chervonenkis (VC) dimens	sion	[]
	A. The capacity of B. The error rate of a a model to learn Classifier C. Data distribution D. Noise lev			evels		

II Fill in the blanks

S.NO	

1	Bayes' theorem calculates in probabilistic models. (CO3, K1)			
2	The Naïve Bayes classifier assumes between features. (CO3, K2)			
3	The principle that prefers the simplest hypothesis is called (CO3, K2)			
4	In Bayesian learning, the belief before seeing the data is called the (CO3, K1)			
5	The term PAC stands for learning. (CO3, K2)			
	Mid-II			
6	The EM algorithm involves two steps: Expectation and (CO3, K1)			
7	The Vapnik-Chervonenkis (VC) dimension measures the of a model. (CO3, K2)			
8	In instance-based learning, predictions are based on the data points. (CO3, K1)			
9	The term "likelihood" in Bayesian learning refers to the of the data given the model. (CO3, K1)			
10	Instance-based learning stores training examples for future use. (CO3, K2)			

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Define genetic algorithms and their application in machine learning.	CO4	K1	2 M	Unit- IV
2	State the key principles behind reinforcement learning.	CO4	K1	2 M	Unit- IV
3	Explain the process of hypothesis space search in genetic algorithms.	CO4	K2	2 M	Unit- IV
4	Identify the role of Q-learning in reinforcement learning tasks.	CO4	К3	2 M	Unit- IV
5	Define the concept of non-deterministic rewards and actions in reinforcement learning.	CO4	K1	2 M	Unit-

Long Questions:

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Explain the working of genetic algorithms with an example.	CO4	K5	5 M	Unit- IV
2	Derive the fitness function used in a genetic algorithm for solving optimization problems.	CO4	K4	5 M	Unit- IV
3	Analyze the relationship between genetic algorithms and evolutionary learning models.	CO4	K4	5 M	Unit- IV
4	Compare the effectiveness of rule-based learning with genetic algorithms in complex problem-solving scenarios.	CO4	K4	5 M	Unit- IV
5	Evaluate the impact of reinforcement learning in improving the performance of intelligent agents.	CO4	K5	5 M	Unit- IV

1. Genetic algorithms are inspired by (CO4, K1)]
---	---

A. Nat	tural selection	B. Artificial intelligence	C. Neural networks	D. Evoluti psycholog	•	
2.	1	f selecting individuals for re (CO4, K2)	eproduction in a genetic algori	thm is	[]
A. Cro	ossover	B. Mutation	C. Selection	D. Elimina	ition	
3.	In genetic prog (CO4, K1)	gramming, the individuals a	re typically represented as	·	[]
A. Stri	ings	B. Trees	C. Graphs	D. Matrice	es	
4.	The main objective of reinforcement learning is to learn (CO4, K2)		CO4, K2)	[]	
A. Opt	timal actions	B. Optimal parameters	C. Decision trees	D. Neural	networ	ks
5.	A characteristi	ic of genetic algorithms is _	. (CO4, K1)		[]
A. Exploitation B. Exploration C. Convergence D. Random			nness			
6.	In reinforcement learning, the feedback received from the environment is called (CO4, K2)		[]		
A. Rev	ward	B. Cost	C. Output	D. Feedba	ck	
7.	Genetic algori	thms primarily use a fitness	function to (CO	4, K1)	[]
A. individue reprod		B. Measure learning accuracy	C. Track convergence	D. Modify	hypoth	ieses
8.		ent learning, the process of ded (CO4, K2)	exploring and exploiting to ma	aximize	[]
A. exploi	A. Exploration- exploitation tradeoff B. Decision balancing C. Random search D. Genetic convergence					
9.		f combining two parent solucalled (CO4, I	ntions to form new offspring in (Κ2)	genetic	[]
A. Cro	ossover	B. Mutation	C. Selection	D. Cloning	5	
10.	Reinforcemen	t learning is typically used i	in environments.	(CO4, K1)	[]
A. Dy	namic	B. Static	C. Stationary	D. Predicta	able	

II Fill in the Blanks:

S.NO	
1	Genetic algorithms are based on the concept of (CO4, K1)
2	The process of combining parts of two parent solutions in genetic algorithms is called (CO4, K2)

3	In reinforcement learning, the feedback received after performing an action is called a (CO4, K1)
4	In genetic algorithms, mutations introduce into the population. (CO4, K2)
5	A reinforcement learning agent aims to maximize its over time. (CO4, K2)
6	Genetic algorithms use a function to evaluate the quality of solutions. (CO4, K1)
7	The tradeoff in reinforcement learning involves choosing between exploring new actions or exploiting known ones. (CO4, K2)
8	Reinforcement learning typically involves interacting with a environment. (CO4, K1)
9	In genetic algorithms, helps introduce diversity into the population. (CO4, K2)
10	Reinforcement learning algorithms aim to find the strategy for a task. (CO4, K1)

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Define analytical learning and its role in machine learning.	CO5	K1	2 M	Unit-V
2	State the significance of using prior knowledge in analytical learning.	CO5	K1	2 M	Unit-V
3	Explain the PROLOG-EBG approach in explanation-based learning.	CO5	K2	2 M	Unit-V
4	Identify the challenges in combining inductive and analytical learning methods.	CO5	K3	2 M	Unit-V
5	Define the concept of explanation- based generalization (EBG) in machine learning.	CO5	K1	2 M	Unit-V

Long Answer Questions

Q.No	Question	Course Outcome	Bloom's Taxonomy Level	Marks	Unit No.
1	Explain the process of analytical learning with an example.	CO5	K5	5 M	Unit-V
2	Derive the equation for explanation- based generalization in analytical learning.	CO5	K4	5 M	Unit-V
3	Analyze the challenges and benefits of combining inductive and analytical learning methods.	CO5	K4	5 M	Unit-V
4	Compare the effectiveness of analytical learning and inductive learning in different machine learning tasks.	CO5	K4	5 M	Unit-V
5	Evaluate the role of prior knowledge in enhancing the performance of machine learning models through analytical learning.	CO5	K5	5 M	Unit-V

1 Analytical learning focuses on	[CO5, K1]	[]	
----------------------------------	-----------	-----	--

A. prior with	knowledge examples	B. Purely learning from data	C. Generalizing from examples	D. Pattern mat	ching	
2	In analytical le	earning, prior knowledge is	used to	[CO5, K1]	[]
A. hypot	Generate theses	B. Evaluate data	C. Simplify learning tasks	D. All of the a	bove	
3	The combinat	ion of inductive and analyti	cal learning helps in	[CO5, K1]	[]
A. traini	Reducing ng time	B. Improving accuracy	C. Enhancing generalization	D. All of the a	bove	
4	Analytical lea	urning is particularly useful	in domains .	[CO5, K1]	[]
A. St	atic	B. Dynamic	C. Complex	D. Simple		
5	The process of	f using examples to refine k	nowledge is known as	[CO5, K2]	[]
A. learn	Conceptual ing	B. Case-based reasoning	C. Model-based learning	D. Knowledge refinement	;	
6	Combining ar	nalytical and inductive learn	ing leads to [CO5,	K1]	[]
A. Faster learning B. More robust models C. Better pre-		C. Better predictions	D. All of the a	bove		
7	A significant advantage of analytical learning is its ability to incorporate [CO5, K2]			[]	
A. Noise		B. Uncertainty	C. Expert knowledge	D. Randomnes	SS	
8		of analytical learning, the t [CO5, K1]	erm "explanation-based learning	ng" refers to	[]
A. Learning from previous cases		B. Learning from mistakes	C. Learning from reasoning	D. Learning fr intuition	om	
9	Analytical lea	rning can help in	decision-making processes.	[CO5, K2]	[]
A. Complex B. Simple C. Automated. D. None of the			above			
10	The combination of inductive and analytical learning can improve performance. [CO5, K1]		[CO5, K1]	[]	
A. Pr	edictive	B. Descriptive	C. Prescriptive	D. All of the al	oove	

II. Fill in the Blanks:

1.	Analytical learning emphasizes the use of knowledge. [CO5, K1]
2.	The integration of inductive and analytical learning enhances [CO5, K1]
3.	A significant advantage of analytical learning is its ability to handle [CO5, K2]
4.	The process of refining knowledge based on examples is known as [CO5, K1]
5.	In analytical learning, the term "explanation-based learning" involves [CO5, K1]
6.	Combining analytical and inductive approaches results in models. [CO5, K2]]
7.	Analytical learning is particularly beneficial in domains. [CO5, K1]
8.	[CO5, K2] One key feature of analytical learning is its reliance on knowledge
9.	The integration of different learning approaches can lead to improved performance. [CO5, K1]
10.	Analytical learning can assist in making decisions. [CO5, K1]