Everything you wanted to know and more!

- Physical properties
 - Soluble in organic solvents
 - Insoluble in water
- Biological Functions
 - 1. Hormone & hormone precursor
 - 2. Aid in digestion
 - 3. Energy storage & metabolic fuel
 - 4. Functional and Structural membrane component
 - 5. Insulation-for nerves and against heat loss

Lipids-Chemistry

Composition of C-H bonds makes

energy rich

 Transport through triglycerides, cholesterol cholesteryl esters, phospholipids

Lipids-Chemistry

- Fatty Acids
 - R-COOH only a small amount of plasma portion
 - Saturation C=C or C-C
 - Usually part of trigly or phospholipids
- Glycerol Esters
 - Triglycerides for energy
 - Phospholipids hydrophilic heads

Lipids-Chemistry

- Cholesterol
 - 4 rings, only 1 hydrophilic group, amphipathic (free chol.)
 - Esterified cholesterol has NO polar groups
 - Almost exclusively Animalia
 - Unable to be catabolized for energy
 - Converted to usable products

$$H_3C-(CH_2)_n-C$$
Cholesterol

FUN WORD ALERT!!!

FUN WORD ALERT!!!

perhydrocylcopentanophenanthrene

- Spherical 10-1200 nm wide
 - Proteins are apolipoproteins on surface
- Ultracentrifuge into fractions
 - Chylomicron, VLDL,LDL, HDL

CHARACTERISTICS	CHYLOS	VLDL	LDL	HDL
Density (g/mL)	< 0.93	0.93-1.006	1.019-1.063	1.063-1.21
Molecular weight (kD)	(0.4–30) · 10 ⁹	(10-80) · 10 ⁶	$2.75 \cdot 10^6$	$(1.75-3.6) \cdot 10^5$
Diameter (nm)	80–1,200	30–80	18–30	5–12
Total lipid (% by weight)	98	89–96	77	50
Triglyceride (% by weight)	84	44–60	11	3
Total cholesterol (% by weight)	7	16–22	62	19

Lipids-Apolipoproteins

TABLE 14-2 CHARACTERISTICS OF THE MAJOR HUMAN APOLIPOPROTEINS						
APOLIPOPROTEIN	MOLECULAR WEIGHT (kD)	PLASMA CONCENTRATION (mg/dL)	MAJOR LIPOPROTEIN LOCATION	FUNCTION		
Аро А-І	28,000	100–200	HDL	Structural, LCAT activator, ABCA1 lipid acceptor		
Apo A-II	17,400	20–50	HDL	Structural		
Apo A-IV	44,000	10–20	Chylos, VLDL, HDL	Structural		
Apo B-100	5.4 × 10 ⁵ 10 ⁵	70–125	LDL, VLDL	Structural, LDL receptor ligand		
Аро В-48	2.6 × 10 ⁵	<5	Chylos	Structural, remnant receptor ligand		
Apo C-I	6,630	5–8	Chylos, VLDL, HDL	Structural		
Apo C-II	8,900	3–7	Chylos, VLDL, HDL	Structural, LPL cofactor		
Apo C-III	9,400	10–12	Chylos, VLDL, HDL	Structural, LPL inhibitor		
Аро Е	34,400	3–15	VLDL, HDL	Structural, LDL receptor ligand		
Apo(a)	(3–7) · 10 ⁵	<30	Lp(a)	Structural, plasminogen inhibitor		

- Chylomicrons
 - Only with apo B-48
 - Largest, turbidity-causing
 - Produced by intestines for absorption
 - Once absorbed lipases hydrolyze the triglycerides and cholesterol esters
 - 2-3 hours after meals they peak in blood
 - Liver takes up the rest
 - Nice creamy layer! YUM!

- Very Low Density Lipoproteins VLDL
 - Produced by liver
 - Apo B-100, Apo E, Apo Cs
 - Carries endogenous triglycerides to tissues
 - Causes turbidity in fasting specimens, no creamy layer
 - Ingestion of carbs, sat/transfatty acids ↑ VLDL production

- Low-Density Lipoproteins LDL
 - Apo B100
 - Formed by lipolysis of VLDL
 - Taken in by peripheral cells and liver
 - Can also infiltrate intracellular spaces
 - Macrophages become foam cells or do they?
 - Atherosclerotic plaques
 - Smaller subtypes are more dangerous

- High-Density Lipoprotein HDL
 - Smallest and most dense
 - Synthesized by liver and intestines
 - Discoidal → spherical
 - Apo A-I x2
 - HDL₂ HDL₃

- Lipoprotein(a)
 - Similar to LDL
 - apo (a) and apo B-100
 - Heterogenous # of kringle sequences
 - Remain constant
 - Increases risk of CHD
 - May promote clotting ↑ MI ↑ Stroke

- Absorption Pathway
 - Special mechanisms needed to absorb
- Exogenous Pathway
 - Ingested fats distributed & transferred
- Endogenous Pathway
 - Packaging and distribution to cells of the body

- Lipid Absorption
 - 60-130g of polar substances/day
 - Pancreatic lipase chops off F.A.s
 - Amphipathic lipids aggregate with bile acids (micelle formed)
 - Intestinal wall reesterifies into triglycerides & chol. esters
 - Packaged with apo B-48 (Chylomicron formed)

- Exogenous Pathway
 - Chylomicrons secreted into lymphatics
 - Enter circulation via thoracic duct
 - Lipoprotein Lipase is activated in circulation
 - Triglycerides→FFAs & glycerol (cell food)
 - Excess is reesterified inside cell as Trigly

- Exogenous Pathway
 - Chylomicron remnants are recycled
 - Apo E receptor allows for liver uptake» FFAs, free Chol., amino acids
 - Chosterol recycled with bile ½ will be reabsorbed
 - Some apolipoproteins and lipids are transferred to HDL

- Endogenous Pathway
 - Liver takes triglycerides and makes VLDL (some made de novo from carbs)
 - LPL also digests TG to FFAs & glycerol
 - VLDL shrinks to VLDL remnant
 - Further transformed to LDL through lipolysis
 - LDL delivers cholesterol to peripheral tissues

Lipids-Lipid Metabolism

- Endogenous Pathway
 - LDL receptors on cells take up cholesterol
 - Excess cholesterol is digested by ACAT into esters (LCAT outside of cells)
 - If LDL receptor is faulty blood LDL ↑
 - Premature atherosclerosis

- Reverse Cholesterol Transport Pathway
 - For cholesterol to go BACK from periphery HDL to the rescue
 - Free cholesterol esterified by LCAT
 - Captured by HDL
 - ½ transferred to LDL on its way back to liver by CETP

Lipids-In the Lab

- Reference Ranges
 - -Total Cholesterol 140-200 mg/dL
 - -LDL ----- 40-75 mg/dL
 - -HDL----- 50-130 mg/dL
 - -Triglycerides ----- 60-150 mg/dL
- Fasting Lipids
 - 12-14 hours after last eating

Lipids-In the Lab

- Risk markers
 - ↑Cholesterol ↑Heart disease
 - Genetic and lifestyle influences
 - HDL negative risk factor
 - Among homogenous lifestyle ↑HDL ↓Heart disease
 - All adults get lipid panel every 5 years

- Hyperlipoproteinemia
 - Hypercholesterolemia
 - Closest link to heart disease
 - FH 1:1,000,000 homozygotes
 - Total Chol. 900-1000 mg/dL MI while teenager
 - FH 1:500 heterozygotes
 - Total Chol. 300-600 mg/dL symptomatic 20-50
 - Primarily increased LDL
 - HMG-CoA reductase inhibitors
 - "LDL pheresis"

- Hypertriglyceridemia
 - Borderline high 150-200mg/dL
 - High 200-500 mg/dL
 - Very High >500 mg/dL
 - Deficency in LPL or apo CII (LPL co-factor)
 - "Cream over clear"

- Combined hyperlipidemia
 - FCH some have one, the other or both ↑
 - Dysbetalipoproteinemia (type III)
 - ↑VLDL ↑Chylomicrons from defective catabolism
 - » VLDL Chol : total Chol >0.30
 - Apo E2/2 alelle
- Lp(a) Elevation
 - ↑CHD and CVD
 - Drug resistant

- Hypolipoproteinemia
 - Hypoalphalipoproteinemia
 - Decrease in circulating HDL
 - < 40 mg/dL
 - Absence of hypertriglyceridemia
 - Almost zero HDL? Tangier Disease
 - Possibly transitory with stresses

- "Cutpoints" set by NCEP based upon epidemiological studies
- Standardization and comparability of results enacted
- Analytes
 - Cholesterol
 - Triglyceride
 - Lipoproteins

- Cholesterol Measurement
 - Abell-Kendall
 - Ref Method: hexane extraction after hydrolysis with alcoholic KOH followed by Liebermann-Burchard color reagent
 - Complicated, but agrees with isotope dilution mas-spec "definitive method"
 - Replaced by enzymatic reagents

Cholesterol ester +
$$H_2O$$
 $\xrightarrow{Cholesteryl \, esterase}$ Cholesterol + Fatty Acid

Cholesterol + $O2$ $\xrightarrow{Cholesterol \, oxidase}$ Cholestone + H_2O_2
 $H_2O_2 + dye$ $\xrightarrow{peroxidase}$ change in color @500nm Absorbed Appears

Triglyceride +
$$H_2O \xrightarrow{Bacterial Lipase} Glycerol + Fatty Acid$$

$$Glycerol + ATP \xrightarrow{Glycerokinase} Glycerophosphate + ADP$$

Glycerophosphate
$$Glycerophosphate + O_2 \xrightarrow{oxidase} Dihyroxyacetone + H_2O_2$$

Free glycerol in serum can contribute to false high results How could we fix this?

- Lipoproteins
 - Electrophoresis
 - Agarose
 - As go to α Bs go to β and chylos go nowhere
 - Ultracentrifugation
 - Chemical precipitation
 - Antibodies
 - Chromatography
 - Detergents and antibodies most common

- Blockage of non-HDL lipoproteins
 - "When cholesterol esterase and cholesterol oxidase enzymes are modified by PEG, they show selective catalytic activities toward lipoprotein fractions, with the reactivity increasing in the order: LDL < VLDL ≈ chylomicrons < HDL"
 - HDL-Cholesterol plus 3rd generation product insert © 2014, Roche Diagnostics

PEG-Cholesterol
HDL-cholesterol esters +
$$H_2O$$
 $\xrightarrow{\text{oxidase}}$ HDL-Chol + RCOOH

$$\begin{array}{c} {\it PEG-Cholesterol} \\ {\it HDL-Cholesterol} + O_2 & \xrightarrow{\it Oxidase} \Delta^4 - {\it cholestone} + H_2O_2 \end{array}$$

$$2 H_2O_2 + 4$$
—amino—antipyrine + HSDA
peroxidase
purple—blue pigment + 5 H_2O

- LDL
 - Friedewald Equation
 - LDL = Total Chol HDL $(\frac{\text{Triglycerides}}{5})$
 - Works for up to 400 mg/dL of Trigs
 - Direct Measurements
 - Detergents used to selectively solubilize LDL also Mg²⁺ and a sugar inhibit VLDL and Chylo. action

Any Questions?

