Credit Card Fraud Detection

Anomaly detection of fraudulent transactions

Anthea Silvia Sasdelli Course of Artificial Intelligence in Industry

Project development

Credit Card Fraud Detection dataset from kaggle

The dataset was taken from Kaggle and is composed by:

- 284807 transaction made by credit cards in September 2013 by European cardholders.
- Each transaction contains:
 - **The time**: number of seconds elapsed between each transaction
 - Features V1 to V28: Principal components derived from PCA
 - Amount: The monetary value of each transaction.
 - **Class**: The response variable indicating whether the transaction is fraudulent (1) or legitimate (0).

	Time	V1	V2	V3	V4	V5	 V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	 -0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	 0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	 -0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	 0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	 0.215153	69.99	0

Dataset simplification and data processing

The distributions of the features are then plotted to see how they were distributed. Since some of them had huge overlaps and unclear distinction between the two classes, the dataset has been simplified.

Dataset simplification and data processing

The distributions of the features are then plotted to see how they were distributed. Since some of them had huge overlaps and unclear distinction between the two classes, the dataset has been simplified.

It was used Random Forest to find the best features.

	Class	V10	V12	V14	V16	V17
0	0	0.090794	-0.617801	-0.311169	-0.470401	0.207971
1	0	-0.166974	1.065235	-0.143772	0.463917	-0.114805
2	0	0.207643	0.066084	-0.165946	-2.890083	1.109969
3	0	-0.054952	0.178228	-0.287924	-1.059647	-0.684093
4	0	0.753074	0.538196	-1.119670	-0.451449	-0.237033

Dataset simplification and data processing

• The dataset is then **normalized**, an operation recommended for GMM but essential for Autoencoder.

	V10	V12	V14	V16	V17	Class
	V 10	V 12	V 14	V 10	V17	Class
0	0.510600	0.680908	0.635591	0.434392	0.737173	0
1	0.505267	0.744342	0.641219	0.464105	0.727794	0
2	0.513018	0.706683	0.640473	0.357443	0.763381	0
3	0.507585	0.710910	0.636372	0.415653	0.711253	0
4	0.524303	0.724477	0.608406	0.434995	0.724243	0

- The dataset is then divided in :
 - o <u>normal</u>: every normal transaction (Class == 0)
 - <u>fraud</u>: every fraudulent transaction (Class == 1)

Dataset simplification and data processing

• Upon further analysis of the dataset, a strong imbalance between the elements of the two classes was noted.

```
The initial normal dataset has this shape: (284315, 6) The fraudulent dataset has this shape: (492, 6)
```


- Because of this it was decided to divide the normal dataset in two:
 - the test dataset, that contains a ratio of 3:1 (three normal transaction each fraudulent one)
 - the train dataset, that contains the rest of the normal transactions

In this way it was possible to create a balanced normal test dataset.

Dataset split

The train dataset thas this shape: (282839, 5)

The test dataset thas this shape: (1968, 5)

This means that the models will be trained with the new split of normal dataset, which doesn't contain any fraudulent transaction (**UNSUPERVISED LEARNING**)

GMM

What are the Gaussian Mixture Models

 A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the latent Gaussians.

For this project it has been used the class of scikit-learn: <u>sklearn.mixture.GaussianMixture</u>

GMM

Pipeline

- Then the log-probabilities are calculated on the train split.
 They indicate how well each point fits the distribution learned from the model.
- The threshold was calculated by checking which percentile maximized the F1 score on the test set. Specifically, for each percentile, it was computed a threshold based on the GMM score distribution for the training data.

```
percentiles = range(1, 100)
best_f1_score = 0
best_percentile = None

for X in percentiles:
    threshold = np.percentile(gmm.score_samples(X_train), X)
    test_log_probs = gmm.score_samples(X_test_combined)
    y_pred = np.where(test_log_probs < threshold, 1, 0)

current_f1_score = f1_score(y_test_combined, y_pred)
    if current_f1_score > best_f1_score:
        best_percentile = 100-X
```

```
print(f"Best Percentile: {best_percentile}%")

Best Percentile: 1%

# Definition of the threshold for the anomalies threshold = np.percentile(gmm.score_samples(X_train), best_percentile)

#Prediction of the test set labels based on the threshold y_pred = np.where(log_probs < threshold, 1, 0)</pre>
```


GMM

Results

	Precision	Recall	F1-score	Support
Normal	0.95	0.99	0.97	1476
Anomaly	0.97	0.85	0.90	492
Accuracy	-	-	0.95	1968
Macro avg	0.96	0.92	0.94	1968
Weighted avg	0.96	0.95	0.95	1968

Accuracy: **0**.9547764

Predicted label

GMM

Results

More data preprocessing

 Another modification had to be made to the train set as it was too high in relation to the number of fraudulent examples in the test set.
 In fact, as can be seen in the diagram below, the model was unable to identify the anomalies.

	Confusio	n matrix	
Norma	I - 1476	0	- 1400 - 1200 - 1000
True label			- 800
			- 600
Anomaly	, - 292	200	- 400
	Berral	Aroman	∐ ₀
		ed lahel	

	precision	recall	f1-score	support
Norma	l 0.83	1.00	0.91	1476
Anomal	y 1.00	0.41	0.58	492
accurac	у		0.85	1968
macro av	g 0.92	0.70	0.74	1968
weighted av	a 0.88	0.85	0.83	1968

It was decided to put a ratio of 10:1 in the train set.

More data preprocessing

• It was decided to put a ratio of 10:1 in the train set.

(14760, 5)

Previous shape of the train: (282839, 5)

What is an autoencoder?

Encoder


```
input_data = Input(shape=(input_dim,), name='encoder_input')

# Hidden layers
#encoder = Dense(units= 125, activation= 'tanh', name='encoder_1')(input_data)
#encoder = Dropout(.1)(encoder)
encoder = Dense(64,activation='tanh', name='encoder_2')(input_data)
encoder = Dropout(.1)(encoder)
encoder = Dense(48,activation='tanh', name='encoder_3')(encoder)
encoder = Dropout(.1)(encoder)
encoder = Dense(16,activation='tanh', name='encoder_4')(encoder)
encoder_1 (Dense dropout_3)
# Bottleneck layer
latent_encoding = Dense(latent_dim, activation='linear', name='lencoder_3') (encoder_3)
```


Decoder


```
Layer (type)
encoder input (InputLayer)
encoder 2 (Dense)
dropout 3 (Dropout)
encoder 3 (Dense)
dropout 4 (Dropout)
encoder 4 (Dense)
dropout 5 (Dropout)
latent encoding (Dense)
decoder 1 (Dense)
dropout 6 (Dropout)
decoder 2 (Dense)
dropout 7 (Dropout)
decoder 3 (Dense)
dropout 8 (Dropout)
reconstructed data (Dense)
```


Some graph of the training

Pipeline

 Next, the model reconstructs X_test_combined, and reconstruction scores (mean squared errors) are calculated. These scores indicate how well each sample is represented by the model, with higher scores suggesting potential anomalies.

```
# Reconstruct the data using our trained autoencoder model
x_test_recon = autoencoder_model.predict(X_test_combined)
# The reconstruction score is the mean of the reconstruction errors (relative reconstruction scores = np.mean((X test combined - x test recon)**2, axis=1)
```

The threshold was chosen to maximize the F1 score on the test set.
 Specifically, it was set based on the point where the difference between the True Positive Rate (tpr) and False Positive Rate (fpr) was greatest.

```
# Use the optimal threshold
optimal_threshold_idx = np.argmax(tpr - fpr)
optimal_threshold = thresholds[optimal_threshold_idx]

y_pred = (reconstruction_scores > optimal_threshold).astype(int)
```


Results

	Precision	Recall	F1-score	Support
Normal	0.94	1.00	0.97	1476
Anomaly	0.98	0.82	0.89	492
Accuracy	-	-	0.95	1968
Macro avg	0.96	0.91	0.93	1968
Weighted avg	0.95	0.95	0.95	1968

Accuracy: 0.950203252

Results

Conclusions

• The GMM demonstrated a strong capability for anomaly detection, achieving an average accuracy of 95.5% on the test data. This model effectively captured the data distribution, allowing it to detect anomalies reliably. Notably, GMM also showed a superior trade-off between false positives and false negatives compared to the Autoencoder, which is essential for minimizing costly false alarms in fraud detection.

On the other hand, the Autoencoder achieved a slightly lower accuracy of 95%.
While its architecture offers flexibility, the model's complexity did not translate
to higher accuracy. Additionally, the Autoencoder's false positive-to-false
negative ratio was less balanced than GMM's, impacting its overall reliability in
this context.

Overall, the results suggest that the **GMM** s a slightly more effective choice for fraud detection in this context, providing a better balance between accuracy and the cost of misclassifications. This makes it a robust option when prioritizing both detection precision and manageable false alarm rates.

Further improvements

- <u>Dataset managing</u>: as has been pointed out previously the dataset has been simplified, both in the choice of components to be used and in the rationalization (caused by the imbalance of the two classes). So a possible development might be:
 - to increase the number of components of the simplified dataset, if not use it in its entirety;
 - o to use synthetic data (data augmentation) to create more fraudulent data
- <u>Different Autoencoder Structure or hyperparameters</u>: the autoencoder can be setted with different hyperparameters or built with a different structure (more layer, different activation, more/less neurons, ...)
- Choose different models for the Anomaly Detection

Thanks for your attention

If all the dataset is used for the train

If we use the ratio 10:1

If we use the ratio 10:1 with simplif. autoencoder in the bottom

If we use the ratio 10:1 with simplif. autoencoder on top

	precision	recall	f1-score	support
Normal	0.94	1.00	0.97	1476
Anomaly	0.98	0.81	0.89	492
accuracy			0.95	1968
macro avg	0.96	0.90	0.93	1968
ighted avg	0.95	0.95	0.95	1968

If we use the ratio 10:1 with simplif. on top without drop

If we use ratio 15:1 with simplified autoencoder on top

If we use ratio 15:1

If we use ratio 20:1

	precision	recall	f1-score	support
Normal	0.93	1.00	0.96	1476
Anomaly	0.99	0.76	0.86	492
accuracy			0.94	1968
macro avg	0.96	0.88	0.91	1968
ighted avg	0.94	0.94	0.94	1968

If we use ratio 30:1

	precision	recall	f1-score	support
Normal	0.92	1.00	0.96	1476
Anomaly	0.99	0.74	0.85	492
accuracy			0.93	1968
macro avg	0.96	0.87	0.90	1968
weighted avg	0.94	0.93	0.93	1968

If we use ratio 30:1 with simplified autoencoder

