

DevOps Multiverse

Y sus variantes

Axel Labruna

Business Solution Architect @Nubiral AWS Community Builder DevOps Institute Ambassador

El recorrido de hoy • - - |

- 1 Definiciones clave
- 3 💥 Herramientas por metodología
- 5 🗠 Tendencias y demanda laboral
- 7 Recursos y certificaciones

- 6 A Cómo iniciar tu carrera
- 8 🏿 Conclusión

Érase una vez en un reino desarrollo tradicional

DevOps es una metodología que integra el desarrollo de software (Dev) y las operaciones de TI (Ops) para mejorar la colaboración, automatización y entrega continua de valor.

Características principales:

- Integración y entrega continua

 Automatización del ciclo de vida del desarrollo
- Automatización

 Reducción de tareas manuales y procesos repetitivos

Beneficios:

- Mayor velocidad en la entrega de software
- Mejora de la calidad y estabilidad del producto
- Reducción de fallos en producción y tiempo de recuperación

- Cultura de colaboración

 Equipos de desarrollo y operaciones trabajan juntos
- Medición continuaMonitoreo y optimización del rendimiento

Herramientas clave en DevOps

CI/CD

Integración y despliegue continuo: automatización del ciclo de vida de desarrollo

Jenkins

Servidor de automatización open-

GitLab CI

CI/CD integrado con GitLab

GitHub Actions

Flujos de trabajo en repositorio

CircleCI

Plataforma cloud de CI/CD

Infraestructura como código

Observabilidad, análisis y alertas sobre infraestructura y servicios

Gestión y aprovisionamiento de infraestructura mediante definiciones en código

Terraform

Ansible

aws CloudFormation

IaC para AWS

Monitoreo

Pulumi

Contenedores

Empaquetado, distribución y ejecución de aplicaciones aisladas

Docker

Plataforma de contenedores

Kubernetes

Orquestación de contenedores

Prometheus

Recolección de métricas

Grafana

Containerd

Runtime de contenedores

Harbor

Registro de imágenes

📭 Datadog

Monitoreo cloud

ELK Stack

DevSecOps integra la seguridad en todo el ciclo de vida de desarrollo y operaciones. Esta metodología incorpora el enfoque "Security as Code", donde las prácticas de seguridad son responsabilidad de todos, no solo del equipo especializado.

Filosofía "Security by Design":

Seguridad desde el inicio

No como una capa añadida al final

Responsabilidad compartida

Todos contribuyen a la seguridad del código

Automatización de seguridad Integrada en pipelines de CI/CD

Detección temprana

Vulnerabilidades identificadas en fases iniciales

Herramientas destacadas:

Q Análisis de código SonarQube, Checkmarx, Fortify Escaneo de dependencias Snyk, OWASP Dependency-Check

Seguridad en contenedores

Aqua, Trivy, Clair

El súper flujo DevSecOps

Herramientas clave en DevSecOps

DevSecOps integra seguridad en todo el ciclo de vida del desarrollo. Estas herramientas permiten detectar, prevenir y mitigar vulnerabilidades desde el inicio del desarrollo hasta la implementación.

• Análisis de Seguridad

T Escaneo de Dependencias

Seguridad en Contenedores

SonarOube

Análisis estático de código para detectar bugs, vulnerabilidades y "code smells"

OWASP Dependency-Check

Identifica componentes vulnerables en las dependencias del proyecto

Aqua Security

Seguridad para contenedores y aplicaciones cloud native desde el desarrollo hasta producción

Checkmarx

Análisis de seguridad de aplicaciones (SAST) para identificar vulnerabilidades en el código

Snyk

Detecta y corrige vulnerabilidades en dependencias y contenedores en tiempo real

Trivy

Escáner simple y completo para vulnerabilidades en contenedores e imágenes Docker

Consejo: Integra estas herramientas en tu pipeline de CI/CD para automatizar la detección temprana de vulnerabilidades.

¿Qué es SRE (Site Reliability Engineering)?

SRE es una disciplina creada por Google que aplica principios de ingeniería de software a las operaciones de TI, con énfasis en fiabilidad, automatización y escalabilidad.

Principios clave:

Error Budgets

Balance entre innovación y fiabilidad

MonitorizaciónBasada en métricas y alertas efectivas

SLI/SLO/SLA:

Automatización

Reducción de tareas manuales (toil)

Ingeniería de sistemas

Enfoque sistémico para operaciones de TI

🚱 SLI

Service Level Indicators: métricas que miden el rendimiento real (latencia, disponibilidad, tasa de errores).

SLO

Service Level Objectives: objetivos internos de rendimiento, como "99.9% de disponibilidad en 30 días".

0

SL

Service Level Agreements: contratos con consecuencias financieras o legales por incumplimiento.

Herramientas clave en SRE

Observabilidad

Prometheus

Sistema de monitoreo y alerta de código abierto con modelo de datos dimensional

Grafana

Plataforma para visualizar y analizar métricas a través de dashboards personalizables

Datadog

Solución de monitoreo para cloud, servidores, bases de datos y servicios

PagerDuty

Plataforma de gestión de incidentes con alertas, escalamiento y guardias

Opsgenie

Sistema de alertas y notificaciones con integración a múltiples herramientas

Incident.io

Herramienta para coordinar y documentar la respuesta a incidentes

Automatización

Terraform

Herramienta de infraestructura como código para crear y modificar recursos

Kubernetes

Orquestador de contenedores para despliegue y escalado automatizado

> Scripts personalizados

Bash, Python o Go para automatizar tareas comunes de SRE

Consejo SRE: Las herramientas por sí solas no son suficientes. SRE utiliza el concepto de "presupuesto de error" (error budget) para balancear la fiabilidad y la velocidad de innovación.

¿Qué es Platform Engineering?

Platform Engineering es la disciplina que se enfoca en la creación y mantenimiento de plataformas internas para que los equipos de desarrollo puedan construir, desplegar y operar software de manera más eficiente, segura y autónoma.

Objetivos principales:

- Mejorar la experiencia de desarrollo

 Reducir la fricción para los desarrolladores
- Implementar controles de seguridad
 De forma transparente y aplicación centralizada
- Beneficios para desarrolladores:
- Autoservicio: acceso a recursos sin depender de otros equipos
- Enfoque en código de negocio en lugar de configuraciones
- Aceleración de onboarding y adopción de mejores prácticas

- Estandarizar infraestructuras
 Crear patrones y servicios reutilizables
- Acelerar el tiempo de entregaReducir el trabajo manual repetitivo

Herramientas clave en Platform Engineering

Las herramientas de Platform Engineering permiten crear, mantener y mejorar plataformas internas para equipos de desarrollo, facilitando la entrega de software de manera más eficiente y segura.

Plataformas internas

= Infraestructura

Automatización y CI/CD

Backstage

Plataforma open source de Spotify para crear portales de desarrolladores

Terraform

Herramienta de infraestructura como código para provisionar recursos

Jenkins

Servidor de automatización open source para CI/CD

Portal de autoservicio para recursos de ingeniería y catálogos de software

Kubernetes

Orquestador de contenedores para gestionar microservicios

GitHub Actions

Automatización integrada con GitHub para workflows CI/CD

Humanitec

Plataforma para crear PaaS personalizados para equipos de desarrollo

Crossplane

Framework para construir abstracciones de infraestructura cloud

Tekton

Framework cloud-native para construir pipelines CI/CD

GitOps es un paradigma operativo que utiliza Git como única fuente de verdad para definir y gestionar infraestructuras y aplicaciones, automatizando despliegues utilizando flujos de trabajo basados en Git.

- Sistema declarativo
 Todo el sistema se describe como código en repositorios Git
- Cambios automatizados
 Agentes detectan diferencias y sincronizan automáticamente

- Estado deseado versionadoGit es la única fuente de verdad para el estado del sistema
- Reconciliación continua
 Sistema auto-reparable que mantiene el estado deseado

Flujo de trabajo:

Beneficios:

- Mayor transparencia y trazabilidad con historial de cambios en Git
- Recuperación ante desastres simplificada mediante reconciliación automática
- Mejor colaboración entre equipos de desarrollo y operaciones
- Simplificación del proceso de despliegue y reducción de errores

Herramientas clave en GitOps

GitOps utiliza Git como fuente de verdad para definir y gestionar infraestructura y aplicaciones. Las herramientas GitOps automatizan el proceso de despliegue basándose en los cambios realizados en repositorios Git.

Git & Plataformas Git

GitHub, GitLab, Bitbucket

- ✓ Almacenamiento de manifiestos declarativos
- ✓ Control de versiones y colaboración
- Trazabilidad y auditoría de cambios

Argo CD

Controlador de despliegue continuo declarativo

- ✓ UI Web avanzada para visualizar despliegues
- Sincronización automática con Git
- Soporte para múltiples clusters

Flux CD

Controlador GitOps de CNCF

- ✓ Enfoque minimalista y sin servidor
- ✓ Integración nativa con notificaciones
- ✓ Potente sistema de reconciliación

Kubernetes

Plataforma de orquestación de contenedores

- ✓ API declarativa para definir estados objetivo
- Control de versiones por objeto
- ✓ Integración con operadores de GitOps

"Quien conoce al enemigo y se conoce a sí mismo, disputa 100 combates sin peligro"

~ Sun Tzu ~

"Quien conoce su aplicación y se conoce a sí mismo, ejecuta 100 deploys sin peligro"

~ El hermano DevSecOps de Sun Tzu ~

Resumen clave

- Crecimiento de salarios25-40% superior a roles tradicionales de desarrollo
- Adopción empresarial
 El 83% de empresas están implementando prácticas DevOps
- DevSecOps en auge
 Crecimiento del 47% en requisitos de seguridad integrada

- Recomendaciones para arrancar
 - 1 Comienza con lo fundamental
 - Domina Linux y scripting básico (Bash, Python)
 - Aprende conceptos de redes y virtualización
 - Construye un laboratorio práctico
 - Despliega entornos con VMs o servicios cloud gratuitos
 - Experimenta con Docker, Git y CI/CD pipelines sencillos
 - 3 Participa en la comunidad
 - Contribuye a proyectos open source desde tu primer año
 - Construye un portfolio personal en GitHub

Cursos Gratuitos y de Pago

Cloud

AWS Skill Builder, MS Learn

Udemy

DevOps Bootcamp y Prácticas

KodeKloud

Kubernetes y Docker práctico

A Cloud Guru

SRE y Platform Engineering

Certificaciones Recomendadas

AWS: Arma tu propio path

Kubernetes: CKA, CKAD, CKS

GitOps: GitOps Fundamentals (CNCF)

DevSecOps: DevSecOps Foundation (DevOps Institute)

Arma tu propio path Azure:

GitHub: Fundamentals, Copilot, Advanced Security

Comunidades y Foros

Roxs Ross / Tech With Nana Jamie Ynoñan / Óscar Lobaton

Animate a explorar, descubrir y compartir!

Matias Armándola / Edu Spotti Andrea Griffiths / Mabel Gerónimo Meetup & Eventos KubeCon, DevOpsDays

A ¿Cómo empezar tu carrera?

- Aprende lo básico primero: Linux, redes, bash/scripting
- Crea un entorno de laboratorio personal con VMs o cloud gratuito
- Contribuye a proyectos open source para ganar experiencia
- Artículos en Medium, Dev.to, Linkedin. Labos hands-on de comunidades, referentes, programas de providers (GitHub, Azure, AWS)

"Los planes no son nada, la planificación lo es todo"

~ Dwight Eisenhower ~

Muchas gracias!

