1 Introduction

1.1 Dedekind–Zeta function

Let K be a totally real number field. Let \mathfrak{a} be an ideal inside the ring of integers O_K . Consider the Dedekind-Zeta function:

$$\zeta_K(s) = \sum_{\mathfrak{h}} \frac{1}{\operatorname{Norm}(\mathfrak{b})^s},$$

along with the associated partial Dedekind-Zeta functions:

$$\zeta_K(\mathfrak{a}, s) = \sum_{\mathfrak{b} \sim \mathfrak{a}} \frac{1}{\operatorname{Norm}(\mathfrak{b})^s},$$

The first sum is taken with respect to all the integral ideals \mathfrak{b} in O_K . The second sum is taken with respect to all the integral ideals \mathfrak{b} that are in the same class as \mathfrak{a} in the narrow ray class group of K.

1.2 Motivating questions

Here's an overarching and sequential list of motivating questions:

- (analytic continuation) Do the zeta functions $\zeta_K(s)$ and $\zeta_K(\mathfrak{a}, s)$ have an analytic (or meromorphic) continuation to the entire complex plane?
- (rationality) Having established analytic continuation, can we conclude that the zeta values at non-positive integers are rational?
- (integrality) Having established rationality, for what primes p are these zeta-values p-integral?
- (**Kummer congruences**) Having established *p*-integrality, how do we construct *p-adic L-functions* associated to these zeta values?

1.3 Rationality

The main motivating question for our study group for this semester will be the question of *rationality* of these zeta values. This is known as the *Siegel-Klingen* rationality theorem. There are three celebrated proofs of this result, attributed to:

- 1. Siegel-Klingen (constant terms of Eisenstein series),
- 2. Shintani, and
- 3. Sczech (cohomological).

Our goal will be to read the methods of **Shintani** and **Sczech**. As a reminder to our eventual goal of studying p-adic L-functions, it is worth noting that in this set up, the constructions of the p-adic L-functions by

- 1. Deligne-Ribet [4],
- 2. Cassou-Noguès [1, 2], and
- 3. Charollois–Dasgupta [3].

rely on the methods of Siegel-Klingen, Shintani and Sczech respectively.

Siegel-Klingen
$$\rightarrow$$
 Deligne-Ribet
Shintani \rightarrow Cassou-Noguès
Sczech \rightarrow Charollois-Dasguptas

References for Shintani's method

- 1. Shintani's article [8]
- 2. Hida's book [5]

References for Sczech's method

- 1. Sczech's inventiones article [6].
- 2. Sczech's Kyushu article [7].

2 Plan for the study group

The seminar will meet on Tuesdays, 10:30 am.

Date	Speaker	Section	Sυ
			
18 Jan	Bharath	Introduction	Di
25 Jan	Bharath	$[8, Theorem 1] \implies Siegel-$	Pε
		Klingen rationality	
31 Jan	Shaunak	[8, Proposition 1 and Corol-	Pa
		lary to Proposition 1]	
8 Feb	Radhika	[8, Lemma 2 and Corollary to	Pa
		Lemma 2]	
15 Feb	Mihir	[8, Lemma 3 and Proposition	Pa
		4]	
22 Feb	Mahesh	[8, Proposition 4 and Theo-	Pa
		rem 1]	
		10111 1	

References

- [1] P. Cassou-Noguès. p-adic L-functions for totally real number field. In Proceedings of the Conference on p-adic Analysis (Nijmegen, 1978), volume 7806 of Report, pages 24–37. Katholieke Univ., Nijmegen, 1978.
- [2] P. Cassou-Noguès. Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. *Invent. Math.*, 51(1):29–59, 1979.
- [3] P. Charollois and S. Dasgupta. Integral Eisenstein cocycles on \mathbf{GL}_n , I: Sczech's cocycle and p-adic L-functions of totally real fields. $Camb.\ J.\ Math.$, 2(1):49–90, 2014.
- [4] P. Deligne and K. A. Ribet. Values of abelian L-functions at negative integers over totally real fields. *Invent. Math.*, 59(3):227–286, 1980.
- [5] H. Hida. Elementary theory of L-functions and Eisenstein series, volume 26 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1993.
- [6] R. Sczech. Eisenstein group cocycles for GL_n and values of *L*-functions. *Invent. Math.*, 113(3):581–616, 1993.
- [7] R. Sczech. Eisenstein cocycles for arithmetic groups and values of zeta functions. Number 958, pages 46–48. 1996.
- [8] T. Shintani. On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23(2):393–417, 1976.