强化学习与博弈论 Reinforcement Learning and Game Theory

陈旭

计算机学院

Deterministic Policy Gradient RL

Discrete Action Space

- Action space $\mathcal{A} = \{ \text{left, right, up} \}$.
- The action space \mathcal{A} is discrete.

Continuous Action Space

• The action space \mathcal{A} is continuous:

$$\mathcal{A} = [0^{\circ}, 360^{\circ}] \times [0^{\circ}, 180^{\circ}].$$

• Actions are 2-dim vectors.

DQN for Discrete Action Space

Policy Network for Discrete Action Space

Discretization

Discretization

- Discretize the action space. (Draw a grid.)
- Now, the number of actions is the number of grid points.

Discretization

- Discretize the action space. (Draw a grid.)
- Now, the number of actions is the number of grid points.
- Problem: curse of dimensionality.
 - Let *d* be the degree of freedom.
 - The number of actions grows exponentially with d.

Continuous Action Space

- The action space \mathcal{A} is a subset of \mathbb{R}^2 .
- The action space \mathcal{A} is continuous:

$$\mathcal{A} = [0^{\circ}, 360^{\circ}] \times [0^{\circ}, 180^{\circ}].$$

• Actions are 2-dim vectors.

Deterministic Policy Gradient (DPG)

Reference:

- Silver et al. Deterministic policy gradient algorithms. In *ICML*, 2014.
- Lillicrap et al. Continuous control with deep reinforcement learning. In ICLR, 2016.

• Use a deterministic policy network (actor): $a = \pi(s; \theta)$.

- Use a deterministic policy network (actor): $a = \pi(s; \theta)$.
- Use a value network (critic): q(s, a; w).

- Use a deterministic policy network (actor): $a = \pi(s; \theta)$.
- Use a value network (critic): q(s, a; w).
- The critic outputs a scalar that evaluates how good the action a is.

• Transition: (s_t, a_t, r_t, s_{t+1}) .

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time t:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

• TD error:
$$\delta_t = q_t - (r_t + \gamma \cdot q_{t+1}).$$
 TD Target

- Transition: (s_t, a_t, r_t, s_{t+1}) .
- Value network makes prediction for time *t*:

$$q_t = q(s_t, \mathbf{a_t}; \mathbf{w}).$$

• Value network makes prediction for time t + 1:

$$q_{t+1} = q(s_{t+1}, a'_{t+1}; \mathbf{w}), \text{ where } a'_{t+1} = \pi(s_{t+1}; \mathbf{\theta}).$$

- TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}}$.

• The critic q(s, a; w) evaluates how good the action a is.

- The critic $q(s, a; \mathbf{w})$ evaluates how good the action a is.
- Improve θ so that the critic believes $\alpha = \pi(s; \theta)$ is better.
- Update θ so that $q(s, \mathbf{a}; \mathbf{w}) = q(s, \pi(s; \theta); \mathbf{w})$ increases.

• Goal: Increasing $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• Goal: Increasing $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial \ q(s,\pi(s;\theta);\mathbf{w})}{\partial \ \theta} = \frac{\partial \ a}{\partial \ \theta} \cdot \frac{\partial \ q(s,a;\mathbf{w})}{\partial \ a}.$$

• Goal: Increasing $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial \ q(s,\pi(s;\theta);\mathbf{w})}{\partial \ \theta} = \frac{\partial \ a}{\partial \ \theta} \cdot \frac{\partial \ q(s,a;\mathbf{w})}{\partial \ a}.$$

• Goal: Increasing $q(s, \mathbf{a}; \mathbf{w})$, where $\mathbf{a} = \pi(s; \mathbf{\theta})$.

• DPG:
$$\mathbf{g} = \frac{\partial \ q(s,\pi(s;\theta);\mathbf{w})}{\partial \ \theta} = \frac{\partial \ a}{\partial \ \theta} \cdot \frac{\partial \ q(s,a;\mathbf{w})}{\partial \ a}.$$

• Gradient ascent: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \mathbf{g}$.

Stochastic Policy VS Deterministic Policy

Stochastic Policy

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Stochastic Policy

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|\mathbf{s};\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Stochastic Policy

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Control:

Randomly sample an action from the distribution

Directly use the output, *a*

Stochastic Policy

Deterministic Policy

Policy:

 $\pi(\mathbf{a}|s;\mathbf{\theta})$

 $\pi(s; \theta)$

Output:

Probability distribution over the action space

Action a

Control:

Randomly sample an action from the distribution

Directly use the output, *a*

Application:

Mostly discrete control

Continuous control