

Hypriot Cluster Lab

An ARM-Powered Cloud Solution Utilizing Docker

Marcel Großmann Andreas Eiermann Mathias Renner

Agenda

- Challenges induced by IoT/Fog Computing
- Conceptual Proposal: Single Board Computers & Container Virtualization
- 3. Proof of Concept: Hypriot Cluster Lab (HCL)

Agenda

- 1. Challenges induced by IoT/Fog Computing
- Conceptual Proposal: Single Board Computers & Container Virtualization
- 3. Proof of Concept: Hypriot Cluster Lab (HCL)

Motivation

[Picture: www.offshorewind.biz]

[Picture: www.gruenderfreunde.de]

IoT's Requirements

Hardware

- "Expansion to small"
- High energy efficiency
- Low-cost products

Software

- Standards for Interconnectivity/Interoperability
- Security & Privacy
- Safety
- Scalability
- Manageability
- Automation, Auto-Configuration
- Resilience, Self-Healing
- Open Source

[Renner, 2015]

Agenda

- 1. Challenges induced by IoT/Fog Computing
- 2. Conceptual Proposal: Single Board Computers & Container Virtualization
- 3. Proof of Concept: Hypriot Cluster Lab (HCL)

[Picture: www.alphr.com]

IoT Hardware Model: Raspberry Pi 3

Raspberry Pi Zero

[Picture: raspberrypi-spy.co.uk]

IoT Software Stack

OS OS

Some App Linux IoT App
Middleware
OS

Some App
Container Virtualization
Linux

Does Container Virtualization meet IoT's requirements?

IoT App OS

loT App
Middleware
OS

- XXXX
- 7

- Standards for Interconnectivity/Interoperability
- Security & Privacy
- Safety
- Scalability
- Manageability
- Automation, Auto-Configuration
- Resilience, Self-Healing
- Open Source

Evolution of Virtualization

[Holla, 2015]

VM vs. Container Virtualization

Hypervisor

Container-Enabled Kernel

Runs Operating System	Runs processes
Heavyweight isolated virtual machines	Lightweight kernel namespaces
Can theoretically emulate any architecture	Is less flexible in architecture emulation
VMs start via a full boot-up process	Very fast namespace + process creation
Platform-oriented solution	Service-oriented solution
Optimized for generality	Optimized for minimalism and speed

Wifi for First Live Demo: Starting Webserver

SSID: hcl@ict

Password: hcl4iotrocks

Then go to: http://hcl.ict

Summary

IoT App Software Middleware OS Hardware

Agenda

- Challenges induced by IoT/Fog Computing
- Conceptual Proposal: Single Board Computers & Container Virtualization
- 3. Proof of Concept: Hypriot Cluster Lab (HCL)

Proof of concept: Hypriot Cluster Lab

- A piece of software, built against IoT's requirements
- Status: Proof of concept, not production ready
- Available on Github.com
- Cooperation between University of Bamberg and the Hypriot Team
- Includes lots of plumbing: Docker, Avahi, Dnsmasq...

HCL vs. IoT's requirements

Hardware

- High energy efficiency
- "Expansion to small"
- Low-cost products

Software

- Standards for Interconnectivity/Interoperability
- Security & Privacy
- Safety
- Scalability
- Manageability
- Resilience, Self-Healing
- Open Source

HCL: Outlook

- Add feature: Resilience by integrating Kubernetes/Mesos/Nomad
- Add security layer with TINC

HCL Setup Process

Use Cases

[Picture: www.offshorewind.biz]

[Picture: www.gruenderfreunde.de]

Use Case 1: Communication via Overlay Network

Use Case 2: Loadbalancing

Literature

- Renner, M. (2015). Evaluation of Container Technology as a Model for the Infrastructure of the Internet of Things. http://mathias-renner.de/thesis.pdf
- Holla, S. (2015). Orchestrating Docker: manage and deploy Docker services to containerize applications efficiently. Birmingham: Packt Publishing.

Questions?

Marcel Großmann
marcel.grossmann@uni-bamberg.de
Andreas Eiermann
andreas@hypriot.com
Mathias Renner
mathias@hypriot.com