Fyrsta laugardagsæfingin í eðlisfræði 2019-2020

Nafn:

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	g	$9.82{ m ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{Jmol^{-1}K^{-1}}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N m^2 C^{-2}}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C^2 s^2 m^{-3} kg^{-1}}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m^3 kg^{-1} s^{-2}}$
Geisli jarðarinnar	R_J	$6.38 \cdot 10^6 \mathrm{m}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Svarblað

Krossar

Hver kross gildir 3 stig. Vinsamlegast skráið svörin ykkar við tilheyrandi krossi hér fyrir neðan:

K1	K2	K 3	K 4	K 5	K 6	K7	K8	K 9	K10	K11	K12	K13	K14	K15
D	D	D	E	E	D	A	C	A	D	C	В	D	A	C

Svör við skriflegu dæmunum

Lausnir ykkar verða lesnar yfir og gefin verða stig fyrir hluta af lausn.

Dæmi 1:

(a)
$$d = 105$$
 m.

Dæmi 2: (a)
$$c_R = \sqrt{\frac{h_1}{h_0}} = \sqrt{\frac{h_0}{h_{h-1}}}$$
.

(b)
$$\Delta K = 1/57 \, T$$
.

$$\eta:=rac{\Delta K}{K_0}=$$
 0,93.

(b)
$$h_n = \mathcal{L}_{\mathcal{R}}^{\mathbf{2h}} \mathbf{h_0}$$
.
(c) $t_0 = \sqrt{\frac{\mathbf{2ho}}{\mathbf{g}}}$.

(c)
$$t_0 = \sqrt{\frac{2ho}{9}}$$
.

(d)
$$t_n = 2 c_R^{n} t_0$$
.

(a)
$$u = \frac{\mathbf{MV}}{\mathbf{M+m}}$$
.

(b)
$$y_1 = \frac{L}{2}$$
.
 $y_2 = \frac{L}{2} + \frac{MX}{M+M}$.
 $y = \frac{MX}{M+M}$.

(c)
$$L_1 = mv(x-y) = \frac{mM}{M+m} vx$$

(d)
$$I_y = \frac{1}{12} M L^2 + \frac{Mm}{M+m} \times 2$$
.

(e)
$$\omega = \frac{\mathbf{L}_{\mathbf{I}}}{\mathbf{T}_{\mathbf{J}}}$$
.
(f) $x = \frac{1}{6}\mathbf{L}$.

(f)
$$x = \frac{1}{6}$$

Krossar (45 stig)

- **K1.** Skriðþungi hlutar með massa m og hraða v er táknaður með p. Hann er skilgreindur þannig að p = mv. Hver er SI-eining skriðþunga?
 - (A) $\rm m/s^2$ (B) $\rm kgm^2/s$ (C) $\rm kgm/s^2$ (D) $\rm kgm/s$ (E) $\rm kg/s$
- **K2.** Kappakstursbíll tekur af stað úr kyrrstöðu og nær hraðanum $100\,\mathrm{km/klst}$ eftir 2,5 s. Hver er meðalhröðun hans á þeim tíma?
 - (A) $1.3 \,\mathrm{m/s^2}$ (B) $4.5 \,\mathrm{m/s^2}$ (C) $7.7 \,\mathrm{m/s^2}$ (D) $11 \,\mathrm{m/s^2}$ (E) $45 \,\mathrm{m/s^2}$
- K3. Lítum á bolta sem er kastað upp í loftið. Loftmótstaða verkar á boltann. Hvert af eftirfarandi gröfum lýsir best hraða boltans sem fall af tíma?

- **K4.** Kubbur með massa m hvílir á skábretti. Núningsstuðullinn milli kubbsins og skábrettisins er μ . Látum θ_{max} vera stærsta hornið sem skábrettið má halla um áður en að kubburinn byrjar að renna niður skábrettið. Hvert af eftirtöldu er þá satt?
 - (A) θ_{max} er stærra á tunglinu en á jörðinni.
 - (B) θ_{max} er stærra á tunglinu en á jörðinni.
 - (C) θ_{max} er stærra á Mars en á tunglinu.
 - (D) θ_{max} er stærra á tunglinu en á Mars.
 - (E) θ_{max} er það sama á tunglinu, jörðinni og Mars.
- **K5.** Tveir strengir halda uppi massa m. Hver er togkrafturinn, T, i strengjunum?
 - (A) $\frac{1}{2}mg$ (B) $\frac{1}{2}mg\sin\theta$ (C) $\frac{1}{2}mg\cos\theta$ (D) $\frac{mg}{2\sin\theta}$ (E) $\frac{mg}{2\cos\theta}$

- **K6.** Viðarkubb af þyngd 30 N er haldið undir vatni. Uppdrifskrafturinn sem verkar á kubbinn er 50 N þegar hann er allur undir vatni. Nú er kubbnum sleppt þannig að hann flýtur á vatninu. Hversu stórt hlutfall af kubbnum er sýnilegt fyrir ofan vatnsyfirborðið?
 - (A) 1/15 (B) 1/5 (C) 1/3 (D) 2/5 (E) 3/5
- K7. Hjólreiðamaður ferðast með jöfnum hraða 22,0 km/klst. Hann tekur sér 20 mín pásu á miðri leið og heldur svo áfram að hjóla með jöfnum hraða 22,0 km/klst. Meðalhraði hjólreiðamannsins var 17,5 km/klst með stoppinu. Hversu langa vegalengd hjólaði hann?
 - (A) 28,5 km (B) 30,3 km (C) 31,2 km (D) 36,5 km (E) 38,9 km

- **K8.** Stöng af lengd 1,00 m með einsleita massadreifingu snýst um punkt 30,0 cm frá enda hennar (vegna þyngdarkraftsins). Stöngin er í fullkomnu jafnvægi eftir að 50,0 g massa er komið fyrir í 20,0 cm fjarlægð frá sama enda. Hver er massi stangarinnar?
 - (A) $35.7 \,\mathrm{g}$ (B) $33.3 \,\mathrm{g}$ (C) $25.0 \,\mathrm{g}$ (D) $17.5 \,\mathrm{g}$ (E) $14.3 \,\mathrm{g}$
- **K9.** Litlum bolta er kastað lárétt fram af borðsbrún með upphafshraða v. Boltinn lendir á jörðinni í láréttri fjarlægð D frá borðinu. Tilraun er framkvæmd þannig að mismunandi gildi á v og tilheyrandi gildi á D eru skráð niður í töflu. Hvert af eftirfarandi gröfum mun gefa beina línu?

- (A) v sem fall af D.
- (B) v^2 sem fall af D.
- (C) v sem fall af D^2 .
- (D) v sem fall af $\frac{1}{D}$.
- (E) v sem fall af $\frac{1}{\sqrt{D}}$.
- **K10.** Tvær plánetur, A og B, hafa sama eðlismassa. Pláneta A hefur tvisvar sinnum stærri geisla en B. Þyngdarhröðunin á plánetu A er g_A og á plánetu B er hún g_B . Hvert er hlutfallið g_A/g_B ?
 - (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) 4
- K11. Hver þyrfti massi rafeindar að vera til þess að þyngdarkrafturinn milli tveggja rafeinda væri jafn rafkraftinum milli þeirra?
 - (A) $9.11 \cdot 10^{-31} \,\mathrm{kg}$ (B) $7.76 \cdot 10^{-20} \,\mathrm{kg}$ (C) $1.86 \cdot 10^{-9} \,\mathrm{kg}$ (D) $21.6 \,\mathrm{kg}$ (E) $1.16 \cdot 10^{10} \,\mathrm{kg}$
- **K12.** Ögn með litla jákvæða hleðslu +q og önnur ögn með talsvert stærri neikvæða hleðslu -Q sitja fastar í tiltekinni fjarlægð hvor frá annari eins og á myndinni hér til hægri. Hvar myndirðu þurfa að koma lítilli ögn með jákvæða hleðslu fyrir til þess að hún væri í jafnvægi?

- (A) Hægra megin við neikvæðu hleðsluna.
- (B) Vinstra megin við jákvæðu hleðsluna.
- (C) Milli hleðslanna, nær þeirri jákvæðu.
- (D) Milli hleðslanna, nær þeirri neikvæðu.
- (E) Nákvæmlega miðja vegu á milli hleðslanna.
- K13. Einfaldri eldflaug er skotið á loft úr kyrrstöðu með heildarhröðun 25 m/s² upp á við. Slökkt er á vélinni eftir 5,0 s. Gerum ráð fyrir að massi eldflaugarinnar haldist fastur og að engin loftmótstaða verki á eldflaugina. Hversu hátt kemst eldflaugin?
 - (A) 310 m (B) 490 m (C) 770 m (D) 1100 m (E) 1600 m
- K14. Gervihnöttur er á hringlaga sporbaug um jörðina. Á einu ári minnkar heildarorka gervihnattarins um 1 J vegna loftmótstöðu. Hvert af eftirfarandi er þá satt?
 - (A) Hreyfiorkan eykst um 1 J.
 - (B) Hreyfiorkan helst óbreytt.
 - (C) Hreyfiorkan minnkar um $\frac{1}{2}$ J.
 - (D) Hreyfiorkan minnkar um 1 J.
 - (E) Hreyfiorkan minnkar um 2 J.
- K15. Burj Khalifa turninn er risavaxinn skýjakljúfur í Dúbæ í Sameinuðu arabísku furstadæmunum. Turninn er hæsta mannvirki heims, 828 m hár. Turninn er svo hár að hægt er að horfa á tvö sólsetur þar sama dag. Hversu langur tími líður milli sólsetra við botn turnsins og við topp hans?
 - (A) 12 s (B) 73 s (C) 220 s (D) 890 s (E) 1200 s

Dæmi 1: Árekstur! (15 stig)

Byssukúlu með massa $m=10\,\mathrm{g}$ er skotið með láréttum hraða $v_0=500\,\mathrm{m/s}$ í gegnum golfkúlu með massa $M=200\,\mathrm{g}$ sem stendur kyrr í hæð $h=5.0\,\mathrm{m}$ á enda stangar. Golfkúlan lendir á jörðinni í fjarlægð $s=20\,\mathrm{m}$ frá neðri enda stangarinnar.

- (a) Hversu langt frá neðri enda stangarinnar lendir byssukúlan?
- (b) Hversu stór hluti af hreyfiroku byssukúlunnar breyttist í varma þegar byssukúlan fór í gegnum golfkúluna?

Dæmi 2: Skopparabolti (20 stig)

Skopparabolta með massann m er sleppt úr hæðinni h_0 yfir jörðu. Í n-ta skipti sem að boltinn lendir á jörðinni skoppar hann aftur upp í hæð h_n þannig að $h_{n+1} < h_n$. Hunsið áhrif loftmótstöðu í þessu dæmi.

(a) Til að byrja með skulum við aðeins skoða hvað gerist í fyrsta skoppi: þá skoppar boltinn aftur upp í hæð $h_1 < h_0$. Látum v_0 tákna hraða boltans rétt fyrir fyrsta skoppið og v_1 tákna hraða boltans rétt eftir fyrsta skoppið. Finnið skoppstuðul (e. coefficient of restitution) boltans, c_R , sem fall af h_0 og h_1 . Skoppstuðull boltans er skilgreindur þannig að:

$$c_R := \frac{\text{hraði eftir árekstur}}{\text{hraði fyrir árekstur}} = \frac{v_1}{v_0}.$$

- (b) Gerum ráð fyrir að skoppstuðull boltans haldist óbreyttur í gegnum hin skoppin. Finnið h_n sem fall af h_0, n og c_R .
- (c) Látum t_0 tákna tímann sem líður frá því að skopparaboltanum er sleppt úr hæð h_0 og þar til að hann skellur á jörðinni í fyrsta skipti. Finnið t_0 sem fall af h_0 og þyngdarhröðuninni g.
- (d) Látum t_n tákna tímann sem líður milli n-ta skopps og (n+1)-skopps. Finnið t_n sem fall af t_0, n og c_R .
- (e) Heildartíminn, τ , sem líður frá því að boltanum er sleppt og þar til að hann hættir að skoppa er skilgreindur þannig að:

$$\tau := \sum_{n=0}^{+\infty} t_n = \lim_{n \to \infty} (t_0 + t_1 + \dots + t_n)$$

Takið eftir því að $0 < c_R < 1$ og sýnið að:

$$\tau = \left(\frac{1+c_R}{1-c_R}\right)\sqrt{\frac{2h_0}{g}}.$$

Dæmi 3: Kústskaft (20 stig)

Skoðum kústskaft með einsleita massadreifingu sem hefur lengd L og massa M. Gerum ráð fyrir að þykkt þess sé óveruleg og það standi lóðrétt í jafnvægi á sléttum fleti. Enginn núningur verkar milli flatar og kústskafts. Hleypt er af byssu nálægt skaftinu og henni haldið þannig að þegar byssukúlan festist í skaftinu er kúlan í hæð x yfir miðju skaftsins og hraði kúlunnar v er í lárétta stefnu. Massi byssukúlunnar er m.

- (a) Notið skriðþungavarðveislu til að finna línulegan hraða skaftsins, u, eftir áreksturinn.
- (b) Látum y_1 tákna massamiðju skaftsins fyrir áreksturinn og látum y_2 tákna massamiðju skaftsins eftir áreksturinn. Ákvarðið bæði y_1 og y_2 ásamt stærðinni $y := y_2 y_1$.
- (c) Finnið hverfiþungann, L_1 , fyrir áreksturinn um ás sem liggur í gegnum nýju massamiðjuna.
- (d) Finnið hverfitregðu stangarinnar, I_y , um ás í gegnum nýju massamiðjuna, sem fall af m, M, x, L.
- (e) Nýtið ykkur hverfiþungavarðveislu til þess að finna hornhraða stangarinnar, ω , um massamiðjuna.
- (f) Finnið x sem fall af L, M, m og v þ.a. neðsti punktur skaftsins verði kyrrstæður rétt eftir áreksturinn.