Real Analysis

The underlying space for the real analysis is the set of real numbers

- 1. Axioms of real numbers
 - \bullet The set $\mathbb N$ of Natural Numbers
 - Peano Axioms
 - (a) 1 belongs to N
 - (b) If n belongs to \mathbb{N} , then its successor n+1 belongs to \mathbb{N}
 - (c) 1 is not successor of any elements in N
 - (d) If n and m have the same successor, then n = m
 - (e) A subset of \mathbb{N} which contains 1, and which contains n+1 whenever it contains n, must equal $\mathbb{N}[\text{This is the basis of mathematical induction}]$
 - The set $\mathbb Q$ of Rational Numbers
 - Algebraic Number: A number satisfies a polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0$$

where the coefficients $c_0, c_1, ..., c_n \in \mathbb{Z}, c_n \neq 0$ and $n \geq 1$

Rational number are always algebraic number

- Rational Zeros Theorem

Suppose $c_0, ..., c_n \in \mathbb{Z}$, and $r \in \mathbb{Q}$ satisfying the polynomial equation

$$c_n x^n + \dots c_1 x + c_0 = 0 (1)$$

where $n \ge 1, c_n \ne 0$ and $c_0 \ne 0$. Let $r = \frac{c}{d}$ where c, d are integers having no common factors and $d \ne 0$.

Then c divides c_0 and d divides c_n

Remark: The only rational candidates for solutions of (1) have the form $\frac{c}{d}$ where c divides c_0 and d divides c_n

Proof

$$c_n \left(\frac{c}{d}\right)^n + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0$$
 (2a)

$$c_n c^n + \dots + c_1 c d^{n-1} + c_0 d^n = 0$$
 (2b)

(a) Solve (2b) for $c_0 d^n$

$$c_0 d^n = -c \left[c_n c^{n-1} - \dots - c_1 d^{n-1} \right]$$

(b) Solve (2b) for $c_n c^n$

$$c_n c^n = -d \left[c_{n-1} c^{n-1} + \dots + c_1 c d^{n-2} + c_0 d^{n-1} \right]$$

- Corollary

Consider the polynomial equation

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0$$

where the coefficients $c_0, ..., c_{n-1} \in \mathbb{Z}$ and $c_0 \neq 0$. Any rational solution of this equation must be an integer that divides c_0

- − Properties of Q
 - (a) **A1.** associative laws a + (b + c) = (a + b) + c, $\forall a, b, c$
 - (b) **A2.** commutative laws a + b = b + a, $\forall a, b$
 - (c) **A3.** $a + 0 = a, \forall a$
 - (d) **A4.** $\forall a, \exists -a \text{ such that } a + (-a) = 0$
 - (e) **M1.** associative laws a(bc) = (ab)c, $\forall a, b, c$
 - (f) M2. commutative lawsab = ba, $\forall a, b$
 - (g) M3. $a \cdot 1 = a \ \forall a$
 - (h) **M4.** $\forall a \neq 0, \exists a^{-1} \text{ such that } aa^{-1} = 1$
 - (i) **DL** distributive $lawa(b+c) = ab + ac, \forall a, b, c$

Remark: a system that has more than one elements satisfies these nine properties is called a **filed**

- Order structure of \mathbb{Q}
 - (a) **O1.** Give a and b, either $a \leq b$ or $b \leq a$
 - (b) **O2.** If $a \leq b$ and $b \leq a$, then a = b
 - (c) **O3.** transitive law If $a \le b$ and $b \le c$, then $a \le c$
 - (d) **O4.** If $a \le b$ then $a + c \le b + c$
 - (e) **O5.** if $a \le b$ and $0 \le c$, then $ac \le bc$

Remark: A filed with an ordering satisfying properties O1 through O5 is called an **Ordering Filed**

- ullet The set $\mathbb R$ of Real Numbers
- _
- \bullet The following are consequences of the field properties:
 - (a) $a + c = b + c \ a = b$
 - (b) $a \cdot 0 = 0, \forall a$
 - (c) $(-a)b = -ab, \forall a, b$
 - (d) $(-a)(-b) = ab, \forall a, b$
 - (e) ac = bc, $c \neq 0$ implies a = b
 - (f) ab = 0 implies a = 0 or b = 0 $\forall a, b, c \in \mathbb{R}$
 - Proof. (a)
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)
- $\bullet\,$ The following are consequences of the properties of an ordered field:
 - (a) If $a \le b$ then $-b \le -a$
 - (b) If $a \le b$ and $c \le 0$, then $bc \le ac$

- (c) If $0 \le a$ and $0 \le b$ then $0 \le ab$
- (d) $\forall a, \ 0 \le a^2$
- (e) 0 < 1
- (f) If 0 < a, then $0 < a^{-1}$
- (g) If 0 < a < b, then $0 < b^{-1} < a^{-1}$ $\forall a, b, c \in \mathbb{R}$

Proof. (a)

- distance between a and b: dist(a,b) = |a-b|
- Theorem
 - (a) $|a| \ge 0, \forall a \in \mathbb{R}$
 - (b) $|ab| = |a| \cdot |b|, \ \forall a, b \in \mathbb{R}$
 - (c) $|a+b| \le |a| + |b|, \ \forall a, b \in \mathbf{R}$
 - Proof. (a)
 - (b)
 - (c)

3