HLMA408: Traitement des données

Estimations et tests: cas du cytomégalovirus

Joseph Salmon

http://josephsalmon.eu

Université de Montpellier

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

Étude du CytoMégaloVirus (CMV) humain⁽¹⁾

- Cytomégalovirus: famille des herpesvirus, comprenant le virus de l'herpès simplex, le virus d'Epstein-Barr, virus varicelle-zona....
- Caractéristique du virus:
 - capacité à produire des infections latentes et persistantes
 - dangereux pour les fœtus et les personnes avec faibles défenses immunitaires

⁽¹⁾ adapté de D. Nolan and T. P. Speed. Stat labs: mathematical statistics through applications. Springer Science & Business Media. 2001

Structure de virus CMV⁽²⁾

- génome
- capside
- enveloppe recouverte de glycoprotéïnes

⁽²⁾ source: https://en.wikipedia.org/wiki/Cytomegalovirus

ADN et origine de la réplication

ADN : longue chaîne de lettres sur l'alphabet A, C, G, T complémentaires 2 à 2 (A \leftrightarrow T; G \leftrightarrow C, paires de bases: bp)

Origine de la réplication : les **palindromes**⁽³⁾ (complémentaires) semblent importants biologiquement

Enjeu: découvrir les zones de l'ADN où le nombre de palindromes est **anormalement** élevé

⁽³⁾ e.g., In girum imus nocte et consumimur igni

ADN et origine de la réplication

ADN : longue chaîne de lettres sur l'alphabet A, C, G, T complémentaires 2 à 2 (A \leftrightarrow T; G \leftrightarrow C, paires de bases: bp)

Origine de la réplication : les **palindromes**⁽³⁾ (complémentaires) semblent importants biologiquement

Enjeu: découvrir les zones de l'ADN où le nombre de palindromes est **anormalement** élevé

⁽³⁾ e.g., In girum imus nocte et consumimur igni

Données

Données du génome de CMV ⁽⁴⁾ : répertorie les positions de palindromes dans le génome de CMV

```
n_{\rm bp}=229~354~ nombre de lettres (paires de bases = bp) n=296~ nombre de palindromes de longueur \geq 10~ bp
```

Rem: les palindromes trop court sont exclus

⁽⁴⁾ http://www.stat.berkeley.edu/users/statlabs/data/hcmv.data

Position des palindromes

TO DO: voir notebook EstimationTest.ipynb

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

Des palindromes positionnés au hasard ?

Comment modélise-t-on des palindromes positionnés au hasard sur le génome, sans région privilégiée ?

Sans région privilégiée = homogène

Le modèle = processus de Poisson homogène

► Considérer **tous les** échantillons **possibles** (même si en pratique un seul est un observé)

- Considérer tous les échantillons possibles (même si en pratique un seul est un observé)
- Associer un poids à chacun des échantillons possibles, qui représente sa probabilité
 Exemple: poids égaux (échantillons équiprobables) valant ¹/_n

- Considérer tous les échantillons possibles (même si en pratique un seul est un observé)
- Associer un poids à chacun des échantillons possibles, qui représente sa probabilité
 Exemple: poids égaux (échantillons équiprobables) valant ¹/_n, nombre d'échantillons
- Avec le calcul des probabilités, on peut en déduire des propriétés intéressantes.
 Exemple: intervalle de confiance

- Considérer tous les échantillons possibles (même si en pratique un seul est un observé)
- Associer un poids à chacun des échantillons possibles, qui représente sa probabilité
 Exemple: poids égaux (échantillons équiprobables) valant ¹/_n, nombre d'échantillons
- Avec le calcul des probabilités, on peut en déduire des propriétés intéressantes.

Exemple: intervalle de confiance

Modèle aléatoire : univers des possibles + probabilités $+ \dots$

▶ Dans le cas du modèle "échantillonnage aléatoire simple", le modèle est complètement déterminé

Modèle aléatoire : univers des possibles + probabilités + . . .

- ▶ Dans le cas du modèle "échantillonnage aléatoire simple", le modèle est complètement déterminé
- Certains modèles (et donc les probabilités d'événements) dépendent de paramètres inconnus⁽⁵⁾

⁽⁵⁾ souvent notés par des lettres grecques

Modèle aléatoire : univers des possibles + probabilités $+ \dots$

- ▶ Dans le cas du modèle "échantillonnage aléatoire simple", le modèle est complètement déterminé
- Certains modèles (et donc les probabilités d'événements) dépendent de paramètres inconnus⁽⁵⁾
- ▶ Ici, un modèle dont l'univers des possibles décrit les différentes façons de positionner les palindromes sur le génome

Modèle aléatoire : univers des possibles + probabilités $+ \dots$

- ▶ Dans le cas du modèle "échantillonnage aléatoire simple", le modèle est complètement déterminé
- Certains modèles (et donc les probabilités d'événements) dépendent de paramètres inconnus⁽⁵⁾
- ▶ Ici, un modèle dont l'univers des possibles décrit les différentes façons de positionner les palindromes sur le génome

⁽⁵⁾ souvent notés par des lettres grecques

Processus de Poisson homogène

Processus de Poisson homogène: utiliser pour modéliser des palindromes répartis totalement au hasard, de façon homogène parmi $\approx 200\,000$ positions possibles

- Modèle basique: génome modélisé comme une demi-droite, les palindromes sont des points sur cet ensemble
- ▶ Univers des possibles: ensemble des façons de placer des points sur cette demi-droite (grand, \approx infini)
- Écart à ce modèle dans une zone donnée
 ⇒ palindromes anormalement fréquents dans la zone

Processus de Poisson homogène (2)

Naturel pour construire un modèle probabiliste de points distribués au hasard dans l'espace ou dans un intervalle de temps

Exemple: modèle courant pour l'arrivée de phénomène au cours du temps (passage de bus à un arrêt, nombre d'appels à un serveur téléphonique, etc.)⁽⁶⁾

Propriétés :

les nombres de points apparaissant dans deux régions disjointes sont indépendants (pas de mémoire)

Processus de Poisson homogène (2)

Naturel pour construire un modèle probabiliste de points distribués au hasard dans l'espace ou dans un intervalle de temps

Exemple: modèle courant pour l'arrivée de phénomène au cours du temps (passage de bus à un arrêt, nombre d'appels à un serveur téléphonique, etc.)⁽⁶⁾

Propriétés:

- les nombres de points apparaissant dans deux régions disjointes sont indépendants (pas de mémoire)
- taux λ: taux avec lequel les points apparaissent dans des régions de même taille (homogénéité)

Processus de Poisson homogène (2)

Naturel pour construire un modèle probabiliste de points distribués au hasard dans l'espace ou dans un intervalle de temps

Exemple: modèle courant pour l'arrivée de phénomène au cours du temps (passage de bus à un arrêt, nombre d'appels à un serveur téléphonique, etc.)⁽⁶⁾

Propriétés:

- les nombres de points apparaissant dans deux régions disjointes sont indépendants (pas de mémoire)
- taux λ: taux avec lequel les points apparaissent dans des régions de même taille (homogénéité)

Rappel: une variable aléatoire N suit une loi de Poisson de paramètre $\theta>0$, ce que l'on note $N\sim\mathcal{P}(\theta)$

$$\boxed{\mathbb{P}(N=k) = e^{-\theta} \frac{\theta^k}{k!}}$$

pour tout entier $k \in \mathbb{N}$

Rappel: une variable aléatoire N suit une loi de Poisson de paramètre $\theta>0$, ce que l'on note $N\sim\mathcal{P}(\theta)$

$$\boxed{\mathbb{P}(N=k) = e^{-\theta} \frac{\theta^k}{k!}}$$

pour tout entier $k \in \mathbb{N}$

Rappel: une variable aléatoire N suit une loi de Poisson de paramètre $\theta>0$, ce que l'on note $N\sim\mathcal{P}(\theta)$

$$\boxed{\mathbb{P}(N=k) = e^{-\theta} \frac{\theta^k}{k!}}$$

pour tout entier $k \in \mathbb{N}$

Rappel: une variable aléatoire N suit une loi de Poisson de paramètre $\theta>0$, ce que l'on note $N\sim\mathcal{P}(\theta)$

$$\boxed{\mathbb{P}(N=k) = e^{-\theta} \frac{\theta^k}{k!}}$$

pour tout entier $k \in \mathbb{N}$

Processus de Poisson

- λ : paramètre d'intensité représentant le taux d'apparition du phénomène (les palindromes dans l'exemple précédent)
- ightharpoonup L : longueur de l'un intervalle

Processus de Poisson: le nombre de points (i.e., la variable N) tombant dans un intervalle de longueur L suit une loi de Poisson de paramètre $\theta=\lambda L$

$$N \sim \mathcal{P}(\lambda L)$$

 $\underline{{\rm Interpr\acute{e}tation}}$: en espérance, sur un intervalle de taille L , il y a $\overline{\lambda \times L}$ occurrences

Unité de λ : homogène à l'inverse d'une longueur (taux)

Estimation du taux λ

 Λ : λ généralement inconnu, doit être estimé!

Méthodes populaires d'estimation:

- 1. **méthode des moments** : utilise la loi des grands nombres, approchant l'espérance par la moyenne
- 2. méthode du maximum de vraisemblance : consiste à choisir parmi tous les modèles de Poisson celui dont le paramètre est le plus vraisemblable

Estimation de λ

lci, on choisira comme estimateur de λ :

$$\hat{\lambda} = \frac{\text{nombre de palindromes observés}}{\text{longueur de l'ADN dans l'unité choisie}}$$

Application numérique : $\hat{\lambda} = \frac{296}{229354} \approx 0.0013$

Rem: dans le cas présent les deux méthodes (moments/vraisemblance) coïncident

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

Problème général

"Ce qui est simple est toujours faux. Ce qui ne l'est pas est inutilisable." (7)

(** : "All models are wrong but some are useful") (8)

Hypothèse de modélisation: les observations sont des réalisations de variables aléatoires indépendantes, de loi connue (e.g., Poisson)

Modèle probabiliste: jamais exact, mais souvent décrit suffisamment bien le caractère aléatoire du phénomène

Néanmoins, on peut chercher à vérifier cette hypothèse.

⁽⁷⁾ P. Valéry. Mauvaises pensées et autres. Gallimard, 1942.

⁽⁸⁾G. E. P. Box. "Robustness in the strategy of scientific model building". In: *Robustness in statistics*. Elsevier, 1979, pp. 201–236.

Test d'adéquation et processus de Poisson

- ▶ découper l'ADN de CMV en 57 régions qui ne se recouvrent pas, de longueur $L=4000~{\rm bp^{(9)}}$
- compter l'occurrence de palindromes par région:

Occurrences:

7 1 5 3 8 6 1 4 5 3 6 2 5 8 2 9 6 4 9 4 1 7 7 14 4 4 4 3 5 5 3 6 5 3 9 9 4 5 6 1 7 6 7 5 3 4 4 8 11 5 3 6 3 1 4 8 6

⁽⁹⁾ attention la dernière région ne fait pas la même taille, mais on passera cette difficulté sous silence

Présentation synthétique des données

Comptage de palindrome	Effectifs
0 – 2	7
3	8
4	10
5	9
6	8
7	5
8	4
9 et plus	6
Total	57

Ainsi, il y a 10 régions de notre découpage de l'ADN dans lesquelles on observe exactement 4 palindromes. . .

Estimation des comptages attendus

Ici, l'unité de longueur est 4000 bp. Le nombre moyen de palindromes dans les 57 régions est

$$\hat{\theta} = \frac{1 \times 7 + 3 \times 8 + \dots + 9 \times 6}{57} \simeq 5.16 \ (\simeq 4000 \hat{\lambda})$$

Pour une loi de Poisson $\mathcal{P}(5.16),$ les effectifs attendus sur 57 tirages sont

Comptage de palindrome	Eff. observés	Eff. attendus
0 – 2	7	6.4
3	8	7.5
4	10	9.7
5	9	10.0
6	8	8.6
7	5	6.3
8	4	4.1
9 et plus	6	4.5
Total	57	57

Qu'est-ce qu'un effectif attendu

Si N suit une loi de Poisson de paramètre $\hat{\theta}$, $\mathbb{P}(N=3)=\frac{e^{-\hat{\theta}\hat{\theta}^3}}{3!}$

Si on réalise 57 copies indépendantes de N, on s'attend à voir N=3 se réaliser un nombre de fois égal à

$$57 \times \mathbb{P}(N=3) = 57 \frac{e^{-\hat{\theta}}\hat{\theta}^3}{3!}$$

Avec une estimation de $\hat{\theta}$ voisine de 5.16, on obtient un effectif attendu de :

$$57e^{-5.16} \frac{(5.16)^3}{3!} \approx 7.5$$

etc.

TO DO: cf. notebook associé pour les autres calculs

La différence entre attendu et observé est-elle importante ?

Comptage de palindrome	Eff. observés	Eff. attendus
0 – 2	7	6.4
3	8	7.5
4	10	9.7
5	9	10.0
6	8	8.6
7	5	6.3
8	4	4.1
9 et plus	6	4.5
Total	57	57

[→] pour mesurer la différence entre les deux colonnes, on introduit une statistique de test

Application numérique:

$$\frac{(7-6.4)^2}{6.4} + \frac{(8-7.5)^2}{7.5} + \frac{(10-9.7)^2}{9.7} + \frac{(9-10.0)^2}{10.0} + \\ \frac{(8-8.6)^2}{8.6} + \frac{(5-6.3)^2}{6.3} + \frac{(4-4.1)^2}{4.1} + \frac{(6-4.5)^2}{4.5} \approx 1.0$$

Si le modèle aléatoire est vrai, cette statistique est distribuée suivant une loi du khi-deux à 6 degrés de liberté, notée $\chi^2(6)$

Cette valeur est-telle exceptionnellement grande pour une variable aléatoire qui suit une telle distribution ?

$$\mathbb{P}(\chi^2(6) \ge 1.0) \approx 0.98$$

Application numérique:

$$\frac{(7-6.4)^2}{6.4} + \frac{(8-7.5)^2}{7.5} + \frac{(10-9.7)^2}{9.7} + \frac{(9-10.0)^2}{10.0} + \\ \frac{(8-8.6)^2}{8.6} + \frac{(5-6.3)^2}{6.3} + \frac{(4-4.1)^2}{4.1} + \frac{(6-4.5)^2}{4.5} \approx 1.0$$

Si le modèle aléatoire est vrai, cette statistique est distribuée suivant une loi du khi-deux à 6 degrés de liberté, notée $\chi^2(6)$

Cette valeur est-telle exceptionnellement grande pour une variable aléatoire qui suit une telle distribution ?

$$\mathbb{P}\big(\chi^2(6) \ge 1.0\big) \approx 0.98$$

Pour notre jeu de données: valeur non exceptionnelle

Application numérique:

$$\frac{(7-6.4)^2}{6.4} + \frac{(8-7.5)^2}{7.5} + \frac{(10-9.7)^2}{9.7} + \frac{(9-10.0)^2}{10.0} + \\ \frac{(8-8.6)^2}{8.6} + \frac{(5-6.3)^2}{6.3} + \frac{(4-4.1)^2}{4.1} + \frac{(6-4.5)^2}{4.5} \approx 1.0$$

Si le modèle aléatoire est vrai, cette statistique est distribuée suivant une loi du khi-deux à 6 degrés de liberté, notée $\chi^2(6)$

Cette valeur est-telle exceptionnellement grande pour une variable aléatoire qui suit une telle distribution ?

$$\mathbb{P}(\chi^2(6) \ge 1.0) \approx 0.98$$

Pour notre jeu de données: valeur non exceptionnelle

$$\sum_{\substack{\text{différentes classes}\\ \text{différentes classes}}} \frac{(\text{Eff. observ\'e} - \text{Eff. esp\'er\'e dans la classe})^2}{\text{Eff. esp\'er\'e dans la classe}}$$

- 2. Constater que
 - si le modèle est mauvais, cette statistique est très grande
 - ightharpoonup si le modèle est bon, cette statistique suit une loi du χ^2

$$\sum_{\substack{\text{différentes classes}\\}} \frac{(\text{Eff. observé} - \text{Eff. espéré dans la classe})^2}{\text{Eff. espéré dans la classe}}$$

- 2. Constater que
 - ▶ si le modèle est mauvais, cette statistique est très grande
 - lacktriangle si le modèle est bon, cette statistique suit une loi du χ^2
- 3. Pour distinguer dans quel cas on est, on regarde si la valeur observée (ici ≈ 1.0) est anormalement grande pour la loi de la statistique quand le modèle est exact

$$\sum_{\substack{\text{différentes classes}\\\text{différentes classes}}} \frac{(\text{Eff. observé} - \text{Eff. espéré dans la classe})^2}{\text{Eff. espéré dans la classe}}$$

- 2. Constater que
 - si le modèle est mauvais, cette statistique est très grande
 - lacktriangle si le modèle est bon, cette statistique suit une loi du χ^2
- 3. Pour distinguer dans quel cas on est, on regarde si la valeur observée (ici ≈ 1.0) est anormalement grande pour la loi de la statistique quand le modèle est exact
- 4. Conclusion
 - si anormalement grand, on conclut que le modèle est mauvais
 - sinon, on peut conserver le modèle

$$\sum_{\substack{\text{différentes classes}\\\text{différentes classes}}} \frac{(\text{Eff. observé} - \text{Eff. espéré dans la classe})^2}{\text{Eff. espéré dans la classe}}$$

- 2. Constater que
 - si le modèle est mauvais, cette statistique est très grande
 - lacktriangle si le modèle est bon, cette statistique suit une loi du χ^2
- 3. Pour distinguer dans quel cas on est, on regarde si la valeur observée (ici ≈ 1.0) est anormalement grande pour la loi de la statistique quand le modèle est exact
- 4. Conclusion:
 - si anormalement grand, on conclut que le modèle est mauvais
 - sinon, on peut conserver le modèle

Un peu de vocabulaire

On vient de comparer deux hypothèses :

▶ l'hypothèse nulle, notée \mathcal{H}_0 , sous laquelle on doit connaître la loi de la statistique de test

VS.

▶ l'hypothèse alternative, notée \mathcal{H}_1 , sous laquelle on doit connaître le comportement de la statistique de test

Exemple:

 \mathcal{H}_0 : "les palindromes suivent un processus de Poisson"

 \mathcal{H}_1 : "les palindromes **NE** suivent **PAS** un processus de Poisson"

Rem: une statistique de test doit avoir un comportement différent sous les deux hypothèses pour distinguer les deux cas

Erreurs d'un test: exemple du test de grossesse

► Hypothèse nulle:

 \mathcal{H}_0 : "vous êtes enceinte!"

VS.

► Hypothèse alternative:

 \mathcal{H}_1 : "vous **N'**êtes **PAS** enceinte!"

Réalité:

 \mathcal{H}_0

Diagnostique:

Erreur de type 1 = erreur de première espèce = vrai négatif = rejet à tord

Réalité:

 \mathcal{H}_1

 \mathcal{H}_0

Diagnostique:

Erreur de type 2 = erreur de seconde espèce = faux positif = fausse alarme

Les quatre situations possibles: de la réalité au diagnostique

Autres exemples

Contexte militaire / guerre froide (historique):

 \mathcal{H}_0 : "un missile arrive sur nous!"

VS.

 \mathcal{H}_1 : "il n'y a pas de missile"

Rem: le vocabulaire **fausse alarme** vient de ce contexte pour l'erreur de 2^{nde} espèce

Le Garçon qui criait au loup⁽¹⁰⁾:

 \mathcal{H}_0 : "le loup est dans la bergerie!"

VS.

 \mathcal{H}_1 : "le loup n'est pas dans la bergerie"

Choix des hypothèses

En pratique, comment choisir laquelle des deux hypothèses doit être nommée hypothèse nulle \mathcal{H}_0 ?

Plusieurs heuristiques:

▶ Choisir comme \mathcal{H}_0 l'hypothèse que l'on cherche à rejeter : **Exemple**: test de médicament, \mathcal{H}_0 : "le médicament n'est pas efficace"

Exemple: test de VIH, \mathcal{H}_0 "la personne a la virus" **Exemple**: test de grossesse, \mathcal{H}_0 "la femme est enceinte"

Si l'une de deux hypothèses est plus simple ou "de dimension plus petite" que l'autre, on la choisit pour \mathcal{H}_0 **Exemple**: \mathcal{H}_0 : $\theta = 5$, \mathcal{H}_1 : $\theta \neq 5$

Souvent : \mathcal{H}_0 plus "importante" ou plus "dangereuse" que \mathcal{H}_1 Exemple: de la détection de missile \mathcal{H}_0 : "il y a un missile"

Deux types d'erreur dans un test

► Erreur de 1^{re} espèce: décider en faveur de \mathcal{H}_1 alors que \mathcal{H}_0 est vraie

► Erreur de 2^{nde} espèce: décider en faveur de \mathcal{H}_0 alors que \mathcal{H}_1 est vraie

Les erreurs d'un test

: les erreurs des tests sont asymétriques!

Deux mesures d'erreurs: notées classiquement α et β :

$$\begin{cases} \alpha = \mathbb{P} \bigg(\text{d\'ecider en faveur de } \mathcal{H}_1 \bigg| \mathcal{H}_0 \bigg) : \mathbf{1^{re} \ esp\`ece} \\ \beta = \mathbb{P} \bigg(\text{d\'ecider en faveur de } \mathcal{H}_0 \bigg| \mathcal{H}_1 \bigg) : \mathbf{2^{nde} \ esp\`ece} \end{cases}$$

Plus ces quantités sont petites, mieux c'est!

Erreurs extrêmes

$$\begin{cases} \alpha = \mathbb{P} \bigg(\text{décider en faveur de } \mathcal{H}_1 \bigg| \mathcal{H}_0 \bigg) : \mathbf{1^{re} \ espèce} \\ \beta = \mathbb{P} \bigg(\text{décider en faveur de } \mathcal{H}_0 \bigg| \mathcal{H}_1 \bigg) : \mathbf{2^{nde} \ espèce} \end{cases}$$

Décider toujours en faveur de $\mathcal{H}_0 \iff \alpha = 0$ et $\beta = 1$ **Exemple**: diagnostiquer "vous êtes enceinte" tout le temps

Décider toujours en faveur de $\mathcal{H}_1 \iff \alpha = 1$ et $\beta = 0$

Exemple: diagnostiquer "vous n'êtes pas enceinte " tout le temps

Conclusion: besoin d'un compromis

Théorie classique des tests

Classiquement: l'**utilisateur** fixe α , la probabilité d'erreur de 1^{re} espèce maximale souhaitée (probabilité de rejeter à tord \mathcal{H}_0)

Valeurs classiques de α : 0.10, 0.05 ou 0.01 (selon le contexte) Rappel: on s'intéresse à des α petits

 $\frac{\text{Conséquence}}{\text{entièrement déterminée et peut être évaluée dans les cas standard}} : la valeur <math>1-\beta$ (la **puissance** du test) est

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

Test d'adéquation à une loi

Modèle aléatoire de mesures répétées x_1, \ldots, x_n , supposées indépendantes et de même loi (i.i.d.)

<u>But</u>: tester si l'échantillon x_1, \ldots, x_n provient d'une loi donnée

- ▶ Si le test rejette \mathcal{H}_0 , alors il est peu vraisemblable que la loi soit celle prescrite par \mathcal{H}_0
- ▶ Si le test conserve \mathcal{H}_0 , alors rien dans l'échantillon ne semble en contradiction avec l'hypothèse nulle

- 1. Faire une table de contingence classe / effectif observé
- 2. Estimer le (les) paramètre(s) de la famille de loi (si besoin)
- 3. Calculer les effectifs espérés sous \mathcal{H}_0
- 4. Regrouper les classes pour que les eff. espérés soient ≥ 5 et conserver uniquement cette nouvelle table.
- 5. Pour cette table avec K classes et n observations, calculer:

$$\begin{split} \chi^2_{obs} &:= \sum_{\text{différentes classes}} \frac{(\text{Eff. observ\'e} - \text{Eff. esp\'er\'e dans la classe})^2}{\text{Eff. esp\'er\'e dans la classe}} \\ &= \sum_{k=1}^K \frac{(\hat{f}_k - f_k)^2}{f_k}; \, p_k : \text{probabilit\'e th\'eorique de la classe } k \\ &= \sum_{k=1}^K \frac{(\hat{f}_k - np_k)^2}{np_k} \end{split}$$

Pourquoi diviser par les effectifs espérés?

$$\chi^2_{obs} := \sum_{\text{différentes classes}} \frac{(\text{Eff. observ\'e} - \text{Eff. esp\'er\'e dans la classe})^2}{\text{Eff. esp\'er\'e dans la classe}}$$

Sans correction au dénominateur on prendrait l'erreur quadratique:

$$\sum_{\text{différentes classes}} (\text{Eff. observ\'e} - \text{Eff. esp\'er\'e dans la classe})^2$$

 \hat{f}_1 : la $2^{\rm nde}$ statistique donnerait un poids trop grand aux petites valeurs, e.g., même contribution si $f_1=10, \hat{f}_1=5$ et si $f_2=500, \hat{f}_1=505$

MAIS: en relatif cela représente 50% de variation ou 1%...

 $\underline{\text{Conclusion}}:$ atténuer les petites variations des grands effectifs en multipliant par $\frac{1}{f_k}$

Comportement de la statistique de test

Théorème⁽¹¹⁾

- ▶ Si \mathcal{H}_0 est vraie, la statistique de test χ^2_{obs} suit une loi du χ^2 à (K-1-D) degrés de liberté, notée $\chi^2(K-1-D)$, où
 - lacktriangledown K : nombre de classes (après regroupements éventuels)
 - $lackbox{D}$: nombre de paramètres estimés
- ▶ Si \mathcal{H}_0 est fausse, la statistique de test χ^2_{obs} est grande, de l'ordre de $n \times$ distance entre loi réelle et loi prescrite par \mathcal{H}_0

Rem: preuve techniquement difficile (12), (13)

⁽¹¹⁾ K. Pearson. "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50.302 (1900), pp. 157–175.

⁽¹²⁾ A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2000.

⁽¹³⁾ E. Benhamou and V. Melot. Seven proofs of the Pearson Chi-squared independence test and its graphical interpretation. Tech. rep. 2018.

Valeur du nombre de paramètres estimés

- ▶ Cas où la loi théorique est connue: D=0 **Exemple**: c'était le cas quand on connaît les paramètres de la loi sous \mathcal{H}_0 (e.g., pour un lancé de pièces ou de dés)
- Cas où la loi théorique est inconnue et qu'elle dépend d'un seul paramètre: D=1Exemple: cas du modèle de Poisson dont le taux est inconnu
- Cas où la loi théorique est inconnue et qu'elle dépend de deux paramètres (inconnus et à estimer): D=2 **Exempl**e: cas du modèle gaussien avec μ et σ^2 inconnus

Conclusion à niveau α fixé

Distribution du χ^2 à ℓ degrés de liberté:

Fixer $q_{\chi^2}(1-\alpha)$ tel que:

$$\mathbb{P}\left(\chi^2(\ell) \ge q_{\chi^2}(1-\alpha)\right) = \alpha$$

Décision:

Rejeter \mathcal{H}_0 si $\chi^2_{obs} \geq q_{\chi^2}(1-\alpha)$

Rem: si $x_1, \ldots x_n$ sont i.i.d. $x_i \sim \mathcal{N}(0,1)$, alors $\sum_{i=1}^n x_i^2 \sim \chi^2(n)$

Conclusion à niveau α fixé

Distribution du χ^2 à ℓ degrés de liberté:

Fixer $q_{\chi^2}(1-\alpha)$ tel que:

$$\mathbb{P}\left(\chi^2(\ell) \ge q_{\chi^2}(1-\alpha)\right) = \alpha$$

Décision:

Rejeter \mathcal{H}_0 si $\chi^2_{obs} \geq q_{\chi^2}(1-\alpha)$

Rem: si $x_1, \ldots x_n$ sont i.i.d. $x_i \sim \mathcal{N}(0,1)$, alors $\sum_{i=1}^n x_i^2 \sim \chi^2(n)$

Conclusion à niveau α fixé

Distribution du χ^2 à ℓ degrés de liberté:

Fixer $q_{\chi^2}(1-\alpha)$ tel que:

$$\mathbb{P}\left(\chi^2(\ell) \ge q_{\chi^2}(1-\alpha)\right) = \alpha$$

Décision:

Rejeter \mathcal{H}_0 si $\chi^2_{obs} \geq q_{\chi^2}(1-\alpha)$

Rem: si $x_1, \ldots x_n$ sont i.i.d. $x_i \sim \mathcal{N}(0,1)$, alors $\sum_{i=1}^n x_i^2 \sim \chi^2(n)$

Alternative: *p*-valeur

Rappel : Si $\alpha = 0$, on conserve toujours \mathcal{H}_0

Définition

La p-valeur (\bowtie : p-value) est la plus petite valeur de α pour laquelle on rejette \mathcal{H}_0 sur l'échantillon observé

Interprétation:

"La p-valeur est la probabilité sous \mathcal{H}_0 que l'on observe un résultat aussi surprenant sur les données juste par hasard"

- ightharpoonup p-valeur petite: on rejette l'hypothèse \mathcal{H}_0
- ightharpoonup p-valeur grande: on ne rejette pas l'hypothèse \mathcal{H}_0

Cas du test du
$$\chi^2$$
: la p -valeur vaut $\mathbb{P}\left(\chi^2(K-1-D) \geq \chi^2_{obs}\right)$

p-valeur et exemples

Si
$$0.00 < p$$
-valeur< 0.05 $\begin{cases} \text{ on rejette } \mathcal{H}_0 & \text{ au niveau } 95\% \\ \text{ on conserve } \mathcal{H}_0 & \text{ au niveau } 100\% \end{cases}$

Si
$$0.05 < p$$
-valeur< 0.10 $\begin{cases} \text{ on rejette } \mathcal{H}_0 & \text{ au niveau } 90\% \\ \text{ on conserve } \mathcal{H}_0 & \text{ au niveau } 95\% \end{cases}$

Retour sur l'application numérique: $\mathbb{P}(\chi^2(6) \geq 1.0) \approx 0.98$

<u>Conclusion</u>: la probabilité d'observée une statistique aussi grande par hasard vaut 98%, on est donc pas du tout surpris, et on conserve (non rejet) l'hypothèse de processus de Poisson

Rem: plus de lecture: https://www.statisticsdonewrong.com/

Sommaire

Introduction

Modélisation probabiliste de la position des palindromes

Test d'adéquation à une loi

Test du χ^2 : schéma général

Estimation d'un paramètre

La méthode des moments

 x_1,\ldots,x_n : échantillon i.i.d. selon une loi dépendant d'un paramètre **inconnu** θ

Méthode des moments (14):

1. Calculer $\mathbb{E}(x)$ quand x suit la loi de paramètre θ

 $^{^{(14)}}$ le moment d'ordre k d'une v.a. X est $\mathbb{E}(X^k)$

 x_1,\ldots,x_n : échantillon i.i.d. selon une loi dépendant d'un paramètre **inconnu** θ

Méthode des moments⁽¹⁴⁾:

- 1. Calculer $\mathbb{E}(x)$ quand x suit la loi de paramètre θ
- 2. À partir du calcul précédent, exprimer θ en fonction de $\mathbb{E}(x)$

 x_1,\ldots,x_n : échantillon i.i.d. selon une loi dépendant d'un paramètre **inconnu** θ

Méthode des moments⁽¹⁴⁾:

- 1. Calculer $\mathbb{E}(x)$ quand x suit la loi de paramètre θ
- 2. À partir du calcul précédent, exprimer θ en fonction de $\mathbb{E}(x)$
- 3. Remplacer $\mathbb{E}(x)$ (l'espérance) par \bar{x}_n (la moyenne) dans la formule donnant θ et obtenir un estimateur $\hat{\theta}^{\text{moment}}$ de θ

 x_1,\ldots,x_n : échantillon i.i.d. selon une loi dépendant d'un paramètre **inconnu** θ

Méthode des moments (14):

- 1. Calculer $\mathbb{E}(x)$ quand x suit la loi de paramètre θ
- 2. À partir du calcul précédent, exprimer θ en fonction de $\mathbb{E}(x)$
- 3. Remplacer $\mathbb{E}(x)$ (l'espérance) par \bar{x}_n (la moyenne) dans la formule donnant θ et obtenir un estimateur $\hat{\theta}^{\mathrm{moment}}$ de θ

Exemple: (modèle de Poisson), loi : $\mathcal{P}(\theta)$, ainsi

$$\mathbb{E}(x) = \theta \implies \widehat{\theta}^{\text{moment}} = \bar{x}_n$$

 $^{^{(14)}}$ le moment d'ordre k d'une v.a. X est $\mathbb{E}(X^k)$

 x_1,\ldots,x_n : échantillon i.i.d. selon une loi dépendant d'un paramètre **inconnu** θ

Méthode des moments (14):

- 1. Calculer $\mathbb{E}(x)$ quand x suit la loi de paramètre θ
- 2. À partir du calcul précédent, exprimer θ en fonction de $\mathbb{E}(x)$
- 3. Remplacer $\mathbb{E}(x)$ (l'espérance) par \bar{x}_n (la moyenne) dans la formule donnant θ et obtenir un estimateur $\hat{\theta}^{\mathrm{moment}}$ de θ

Exemple: (modèle de Poisson), loi : $\mathcal{P}(\theta)$, ainsi

$$\mathbb{E}(x) = \theta \implies \widehat{\theta}^{\text{moment}} = \bar{x}_n$$

 $^{^{(14)}}$ le moment d'ordre k d'une v.a. X est $\mathbb{E}(X^k)$

- ► S'il y a plus d'un paramètre
- ightharpoonup Si $\mathbb{E}(x)$ ne dépend pas de θ
- → Faire la même chose en utilisant aussi le moment d'ordre 2

Méthode des moments pour deux paramètres: (θ_1, θ_2)

1. Calculer $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$ en fonction de θ_1 et θ_2

- ► S'il y a plus d'un paramètre
- ightharpoonup Si $\mathbb{E}(x)$ ne dépend pas de θ
- → Faire la même chose en utilisant aussi le moment d'ordre 2

Méthode des moments pour deux paramètres: (θ_1, θ_2)

- 1. Calculer $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$ en fonction de θ_1 et θ_2
- 2. Résoudre le système de deux équations à deux inconnues donnant θ_1 et θ_2 en fonction de $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$

- ► S'il y a plus d'un paramètre
- ightharpoonup Si $\mathbb{E}(x)$ ne dépend pas de θ
- \hookrightarrow Faire la même chose en utilisant aussi le moment d'ordre 2

Méthode des moments pour deux paramètres: (θ_1, θ_2)

- 1. Calculer $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$ en fonction de θ_1 et θ_2
- 2. Résoudre le système de deux équations à deux inconnues donnant θ_1 et θ_2 en fonction de $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$
- 3. Remplacer $\mathbb{E}(x)$ par \bar{x}_n et $\mathbb{E}(x^2)$ par $\frac{1}{n}\sum x_i^2$

- ► S'il y a plus d'un paramètre
- ightharpoonup Si $\mathbb{E}(x)$ ne dépend pas de θ
- → Faire la même chose en utilisant aussi le moment d'ordre 2

Méthode des moments pour deux paramètres: (θ_1, θ_2)

- 1. Calculer $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$ en fonction de θ_1 et θ_2
- 2. Résoudre le système de deux équations à deux inconnues donnant θ_1 et θ_2 en fonction de $\mathbb{E}(x)$ et $\mathbb{E}(x^2)$
- 3. Remplacer $\mathbb{E}(x)$ par \bar{x}_n et $\mathbb{E}(x^2)$ par $\frac{1}{n}\sum x_i^2$

Vraisemblance: variable continue

On note $f_{\theta}(\cdot)$ la densité (continue) de la loi de paramètre θ , et on suppose qu'on observe x_1,\ldots,x_n *i.i.d.* suivant cette loi

_____ Définition ___

La vraisemblance (\mathbb{H} : *Likelihood*) du paramètre θ est la densité de (x_1, \ldots, x_n) vue comme une fonction de θ

- ightharpoonup cas n=1: la vraisemblance de θ (au vu de x_1) est $f_{\theta}(x_1)$
- \blacktriangleright cas n quelconque: la vraisemblance de θ , notée $L(\theta)$, est le produit des vraisemblances :

$$L(\theta) := f_{\theta}(x_1) \times \cdots \times f_{\theta}(x_n)$$

n dit vraisemblance d'un paramètre au vue des données; les données ne sont pas vraisemblables, elles sont ce qu'elles sont!

Vraisemblance: variable discrète

Notant $f_{\theta}(x) := \mathbb{P}(X = x)$ lorsque X suit la loi de paramètre θ , la même formule pour la vraisemblance est encore valable!

Exemple: on cherche le paramètre θ d'une loi de Poisson à l'aide des observations $x_1 = 7$, $x_2 = 1$, ..., $x_{57} = 6$ (cf. diapo $n^{\circ} 22$)

$$\begin{split} L(\theta) &= \mathrm{e}^{-\theta} \frac{\theta^{x_1}}{x_1!} \cdots \mathrm{e}^{-\theta} \frac{\theta^{x_n}}{x_n!} \\ &= \mathrm{e}^{-n\theta} \frac{\theta^{x_1 + x_2 + \ldots + x_n}}{\text{ne d\'epend pas de } \theta} \\ &= \frac{\mathrm{e}^{-n\theta + (x_1 + x_2 + \ldots + x_n) \log(\theta)}}{\text{ne d\'epend pas de } \theta} \end{split}$$

Maximum de vraisemblance (: Maximum Likelihood Estimator, MLE)

Définition

L'estimateur $\hat{\theta}^{\mathrm{MLE}}$ du maximum de vraisemblance est l'estimateur qui maximise la fonction de vraisemblance L, i.e.,

$$\hat{\theta}^{\mathrm{MLE}} = \operatorname*{arg\,max}_{\theta} L(\theta)$$

Rem: mathématiquement il est plus simple de maximiser $\log(L)$ que L car on dérive alors des sommes plutôt que des produits

Rem: $rg \max$ signifie "le point qui atteint le maximum"

Optimisation et résolution

Règle de Fermat⁽¹⁵⁾

Soit $f: \begin{cases} \mathbb{R} & \mapsto \mathbb{R} \\ \theta & \to f(\theta) \end{cases}$ une fonction dérivable qui atteint son maximum au point $\hat{\theta}$, alors la dérivée de f est nulle en $\hat{\theta}$, *i.e.*,

$$f'(\hat{\theta}) = 0$$

 $^{^{(15)}}$ on appelle aussi parfois cette propriété la "condition nécessaire du 1^{er} ordre"

$$\begin{split} \hat{\theta}^{\text{MLE}} &= \operatorname*{arg\,max}_{\theta} L(\theta) \\ \iff & \hat{\theta}^{\text{MLE}} = \operatorname*{arg\,max}_{\theta} \log L(\theta) \end{split}$$

$$\begin{split} \hat{\theta}^{\text{MLE}} &= \operatorname*{arg\,max}_{\theta} L(\theta) \\ \iff & \hat{\theta}^{\text{MLE}} = \operatorname*{arg\,max}_{\theta} \log L(\theta) \\ \iff & (\log L)' \, (\hat{\theta}^{\text{MLE}}) = \frac{d}{d\theta} \, \Big(\log L(\hat{\theta}^{\text{MLE}}) \Big) = 0 \end{split}$$

$$\begin{split} \hat{\theta}^{\text{MLE}} &= \operatorname*{arg\,max}_{\theta} L(\theta) \\ \iff & \hat{\theta}^{\text{MLE}} = \operatorname*{arg\,max}_{\theta} \log L(\theta) \\ \iff & (\log L)' \, (\hat{\theta}^{\text{MLE}}) = \frac{d}{d\theta} \, \Big(\log L(\hat{\theta}^{\text{MLE}}) \Big) = 0 \end{split}$$

Dans le cas Poisson (cf. diapo $n^{\circ} 50$):

$$\forall \theta \in \mathbb{R}, \quad (\log(L))'(\theta) = \frac{x_1 + \dots + x_n}{\theta} - n$$

$$\begin{split} \hat{\theta}^{\text{MLE}} &= \arg\max_{\theta} L(\theta) \\ \iff & \hat{\theta}^{\text{MLE}} = \argmax_{\theta} \log L(\theta) \\ \iff & (\log L)' \, (\hat{\theta}^{\text{MLE}}) = \frac{d}{d\theta} \, \Big(\log L(\hat{\theta}^{\text{MLE}}) \Big) = 0 \end{split}$$

Dans le cas Poisson (cf. diapo $n^{\circ} 50$):

$$\forall \theta \in \mathbb{R}, \quad (\log(L))'(\theta) = \frac{x_1 + \dots + x_n}{\theta} - n$$

Cette dérivée s'annule en $\hat{\theta}^{\text{MLE}} = \frac{x_1 + \dots + x_n}{n}$ et alors ⁽¹⁶⁾:

$$\hat{\theta}^{\text{MLE}} = \bar{x}_n$$

⁽¹⁶⁾ on admettra que c'est bien un maximum (et non un minimum ou un point selle)

Bibliographie I

- Benhamou, E. and V. Melot. Seven proofs of the Pearson Chi-squared independence test and its graphical interpretation. Tech. rep. 2018.
- Box, G. E. P. "Robustness in the strategy of scientific model building". In: *Robustness in statistics*. Elsevier, 1979, pp. 201–236.
- Nolan, D. and T. P. Speed. Stat labs: mathematical statistics through applications. Springer Science & Business Media, 2001.
 - Pearson, K. "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". In: *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* 50.302 (1900), pp. 157–175.
- ▶ Valéry, P. Mauvaises pensées et autres. Gallimard, 1942.

Bibliographie II

 van der Vaart, A. W. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2000.