Instituto Tecnológico de Costa Rica

Escuela de Ingeniería en Computación

Tarea: Regresión Lineal

Curso: Inteligencia Artificial – GR 40

Docente: Ing. José Rafael Castro Mora

Tutor: Esteban Villavicencio Soto

Estudiante: Joseph Santamaria Castro Carné: 2021044250

Fecha de entrega: Miércoles 24 de Septiembre Lugar: San Jose, Costa Rica

Tabla de contenido

1. Introducción	3
2. Regresión Lineal con una Variable	3
2.1 Calentamiento	3
2.2 Graficando Datos	3
2.3 Función de Costo	4
2.4 Descenso por Gradiente	4
2.5 Visualización de J(θ)	5
3. Regresión lineal con múltiples variables	6
4. Experimentación con α y número de iteraciones	8
• α = 0.01:	8
• α = 0.03:	8
• α = 0.1:	9
5. Conclusiones	10
6. Entregables	10

1. Introducción

En esta tarea trabajé con la implementación de regresión lineal utilizando **MATLAB**, tanto en el caso de una variable como en el caso multivariable. El objetivo fue entender cómo funciona el modelo, cómo se implementa el **descenso por gradiente** y cómo se compara con la solución obtenida por la **ecuación normal**.

El profesor nos proporcionó plantillas de funciones, las cuales ya incluían la estructura básica del código, y mi trabajo consistió en completarlas o modificarlas para que funcionaran correctamente.

Los archivos de datos utilizados fueron:

- ej1data1.txt: población de una ciudad vs. ganancias de un negocio ambulante (una variable).
- **ej1data2**.txt: tamaño de casa, número de cuartos vs. precio de la casa (múltiples variables).

2. Regresión Lineal con una Variable

2.1 Calentamiento

Lo primero fue completar el archivo **calentamiento.m**, donde debía devolver una **matriz identidad de 5x5**.

Al ejecutar ej1.m, obtuve en consola:

2.2 Graficando Datos

Completé plotData.m para graficar el conjunto de datos. El scatter plot muestra en el eje **X** la población (en decenas de miles) y en el eje **Y** la ganancia (en decenas de miles de dólares).

2.3 Función de Costo

En calculeCosto.m implementé la función de costo. Con parámetros inicializados en ceros, el costo fue: ans = 32.0727

Lo cual coincide con lo esperado.

2.4 Descenso por Gradiente

En **descensoXGradiente.m** implementé la regla de actualización. Al correr el script, obtuve:

Corriendo Descenso por Gradiente ...

Theta encontrado por descenso por gradiente: -3.630291 1.166362 Para una población = 35,000, predecimos una ganancia de 4519.767868 Para una población = 70,000, predecimos una ganancia de 45342.450129 El costo disminuyó hasta converger, confirmando que la implementación fue correcta.

```
Programa en pausa. Oprima enter para continuar.
Corriendo Descenso por Gradiente ...

ans =

32.0727

Theta encontrado por descenso por gradiente: -3.630291 1.166362
Para una población = 35,000, predecimos una ganancia de 4519.767868
Para una población = 70,000, predecimos una ganancia de 45342.450129
Programa en pausa. Oprima enter para continuar.
Visualizando J(theta_0, theta_1) ...
```


2.5 Visualización de $J(\theta)$

Finalmente, visualicé la superficie y el diagrama de contorno de la función de costo. Ambas gráficas muestran un mínimo claro en el valor óptimo de θ .

3. Regresión lineal con múltiples variables

Primero cargué los datos del archivo ej1data2.txt. En la consola se mostraron los **10 primeros ejemplos**:

$$x = [2104 \ 3], y = 399900$$

$$x = [1600 \ 3], y = 329900$$

$$x = [2400 \ 3], y = 369000$$

```
x = [1416 2], y = 232000
x = [3000 4], y = 539900
x = [1985 4], y = 299900
x = [1534 3], y = 314900
x = [1427 3], y = 198999
x = [1380 3], y = 212000
x = [1494 3], y = 242500
```

Programa en pausa. Oprima enter para continuar.

3.1 Normalización de características

En esta parte implementé la función **normaliceCaracteristicas.m**. El objetivo fue llevar cada característica a una media de 0 y una desviación estándar de 1. Con esto, las variables quedaron en la misma escala, lo cual permitió que el descenso por gradiente convergiera más rápido.

3.2 Descenso por gradiente

Después de normalizar, ejecuté el descenso por gradiente con un número de iteraciones de 1000 y un valor de α = 0.03. El resultado obtenido para los parámetros fue:

```
Theta calculado utilizando descenso por gradiente: 340412.659574 110630.918302 -6649.342294
```

```
Ejecutando descenso por gradiente ...
Theta calculado utilizando descenso por gradiente:
340412.659574
110630.918302
-6649.342294
```

Con estos valores de θ , la predicción para una casa de **1650 pies cuadrados y 3 cuartos** fue:

\$293081.493053

La siguiente imagen muestra la evolución del costo $J(\theta)$ durante las iteraciones.

3.3 Ecuación normal

Para validar el resultado, resolví el problema utilizando la ecuación normal. Los valores obtenidos fueron:

```
Theta calculado a partir de la ecuación normal: 89597.909545 139.210674 -8738.019113
```

```
Resolver con la ecuación normal ...
Theta calculado a partir de la ecuación normal:
89597.909545
139.210674
-8738.019113
```

La predicción fue prácticamente la misma que con descenso por gradiente:

\$293081.464335

Esto confirma que ambas implementaciones son correctas y que efectivamente convergen al mismo resultado.

La predicción para el valor de una casa de 3 cuartos y 1650 pies cuadrados (utilizando ecuación normal): \$293081.464335

4. Experimentación con α y número de iteraciones

Durante la implementación de la regresión lineal multivariable realicé pruebas con diferentes valores de la tasa de aprendizaje α y con distintos números de iteraciones para analizar cómo afectaban la convergencia del descenso por gradiente.

• $\alpha = 0.01$:

El costo decreció de manera estable, aunque la convergencia fue relativamente lenta. Después de ~1000 iteraciones alcanzó un valor cercano al mínimo.

• $\alpha = 0.03$:

Se observó un buen balance entre velocidad de convergencia y estabilidad. El costo disminuyó rápidamente y alcanzó el mínimo en menos iteraciones en comparación con α = 0.01.

α = 0.1: El algoritmo no logró converger. El costo comenzó a aumentar y en algunos casos explotó hacia valores muy grandes, indicando divergencia.

En cuanto al número de iteraciones, comprobé que:

• Con 400–500 iteraciones y α = 0.03 ya se alcanzaba un valor muy cercano al mínimo.

• Con 1000 iteraciones y α = 0.01 también se garantizó una convergencia estable, aunque más lenta.

Por lo tanto, la mejor configuración que utilicé para esta tarea fue:

- $\alpha = 0.03$
- Iteraciones = 1000

Con estos parámetros obtuve los valores de θ y la predicción final que coincidió con la obtenida por la ecuación normal, confirmando la validez del modelo.

5. Conclusiones

En esta tarea entendí mejor cómo funciona la regresión lineal y lo importante que es usar bien el descenso por gradiente. Me di cuenta de que normalizar las variables ayuda a que el algoritmo aprenda más rápido, que el valor de α es clave para que el método sea estable, y que tanto el descenso por gradiente como la ecuación normal llegan al mismo resultado, lo cual confirma que todo se implementó bien.

- La normalización hizo que el modelo convergiera más rápido.
- El valor de α fue decisivo: muy grande se descontrola, muy pequeño se hace lento.
- Ambos métodos dieron la misma predicción, lo que valida la implementación.

6. Entregables

- 1. Archivos MATLAB modificados
- 2. Documento PDF