주 간 회 의 록

팀 명	천리안	차수	3차
일 시	2021년 03월 17일 수요일 15시 00	분 – 19기	시 00분 (4시간)
장 소	경상대학교 공과대학 407동 201호		
참석자	김강산, 김송섭, 박보근, 전병륜, 전동환		
불참자	없음		
주요안건	제안서 수정		
	● 지난주 진행상황		

● 지난주 진행상황

- 제안서 작성

● 이번주 진행상황

- ▶ 제안서 수정 및 보충
- 유스케이스 다이어그램, 명세서 구체화

지난주에 작성한 유스케이스 다이어그램과 유스케이스 명세서에서 내용을 세분화하고 관계 표현을 더 확실히 함

유스케이스 명세서

시스템	천리안 드론
유스케이스명	지도생성
액터명	사용자
개요	사용자는 표적탐지 Data, 지형탐색 Data을 통해 만들어진 지도를 확인한다.
사전 조건	Mini PC는 지형탐색 Data와 표적탐지 Data를 가지고 있어야한다.
기본 흐름	Mini PC는 지형담색으로 생성된 Data와 표적담지로 생성된 Data를 Timestamp를 기준으로 합한다. 사용자는 USB를 통해 통합된 지도를 얻는다.
대체 흐름	
예외 흐름	
사후 조건	사용자는 USB를 통해 생성된 지도를 확인한다.

회의내용

유스케이스 명세서

시스템	천리안 드론
유스케이스명	표적탐지
액터명	Camera
개요	Camera는 관찰한 Data를 Mini PC로 보내서 표적을 탐지한다.
사전 조건	시스템에 표적인식 모델이 학습 돼 있어야 한다.
기본 흐름	1. Camera는 사진 Data를 수감한다. 2. Camera는 수많한 Data를 Mini PC로 보낸다. 3. 표적당지모델은 주어진 사진 Data를 통해 학습된 표적을 당지한다.
대체 흐름	기본흐름2에서 Precision이 설정해 놓은 임계 값 이하면 저장하지 않는다.
예외 흐름	
사후 조건	

유스케이스 명세서

시스템	
유스케이스명	지형탐색
액터명	LiDAR
개요	LiDAR는 센서를 통해 지형 Data를 수집하여 Mini PC로 보낸다.
사전 조건	
	1. LiDAR는 센서를 통해서 주변 지형의 Data를 수집한다.
기본 흐름	2. LIDAR는 수집한 Data를 Mini PC로 보낸다.
대체 흐름	
예외 흐름	
사후 조건	

유스케이스 명세서

시스템	
유스케이스명	자율비행
액터명	Flight Controller, Motor
개요	Flight Controller는 Mini PC에서 정해준 경로에 맞게 Motor를 제어하여 자율비행을 한다.
사전 조건	Mini PC는 지형 Data를 가지고 있어야 한다.
기본 흐름	 Mini PC는 저장 돼 있는 지정 Data와 경로담색을 통해 진행 경로를 결정한다. Flight Controller는 결정된 진행 경로에 맞게 Motor를 조절한다.
대체 흐름	
예외 흐름	
사후 조건	

- 시나리오를 확실히 명시하고 내용에 일관성을 갖춤

이선아 교수님에게 피드백을 받은 내용을 중심으로 제안서에 필요한 내용을 추가하였고 단어 일관성, 문맥의 일관성에 맞게 다시 작성함

● 지도교수님과 논의사항

- 유스케이스 다이어그램에 대한 명세서를 세분화하여 흐름을 쉽게 파악할 수 있도록 하기
- 문서의 형식을 마지막에 깔끔하게 관리할 인원이 필요함
- 어느정도 레벨의 자율비행을 구현할지 고민하기
- 문제점: 아직 LiDAR센서에 대해 경상남도 지역혁신 플랫폼 스마트 제조 ICT 사업단에서 승인을 해주지 않아서 SLAM에 대한 구현이 조금 늦춰짐
- 해결방안: LiDAR센서가 필요하지 않은 표적탐지와 시뮬레이션 부분을 먼저 공략한다.
- 팀원 별 실천사항(각 팀원에 부여된 역할을 명확히 명시할 것)

과제의 시나리오 작성 : 박보근, 전병륜

유스케이스 다이어그램, 명세서 세분화: 김강산(표적탐지), 김송섭(SLAM), 전동환(자율주행)

제안서의 전체적인 내용 수정 및 보충 : 김강산, 김송섭, 박보근, 전동환, 전병륜

● **다음 모임 시간/장소:** 2021.03.24.(수) 15:00 경상대학교 공과대학 407동 202호

*한 장으로 부족할 경우 표를 늘려서 사용할 것