## Inference on FDs

- Closures
- Determining Keys
- Minimal Covers

COMP3311 20T3 ♦ Inference on FDs ♦ [0/11]

>>

>>



Given a set F of fds, how many new fds can we derive?

For a finite set of attributes, there must be a finite set of derivable fds.

The largest collection of dependencies that can be derived from F is called the closure of F and is denoted  $F^+$ .

Closures allow us to answer two interesting questions:

- is a particular dependency  $X \rightarrow Y$  derivable from F?
- are two sets of dependencies *F* and *G* equivalent?

COMP3311 20T3 ♦ Inference on FDs ♦ [1/11]



For the question "is  $X \rightarrow Y$  derivable from F?" ...

• compute the closure  $F^+$ ; check whether  $X \rightarrow Y \in F^+$ 

For the question "are F and G equivalent?" ...

• compute closures  $F^+$  and  $G^+$ ; check whether they're equal

Unfortunately, closures can be very large, e.g.

$$R = ABC, F = \{AB \rightarrow C, C \rightarrow B\}$$
  
 $F^{+} = \{A \rightarrow A, AB \rightarrow A, AC \rightarrow A, AB \rightarrow B, BC \rightarrow B, ABC \rightarrow B, C \rightarrow C, AC \rightarrow C, BC \rightarrow C, ABC \rightarrow C, AB \rightarrow AB, \dots, AB \rightarrow ABC, AB \rightarrow ABC, C \rightarrow B, C \rightarrow BC, AC \rightarrow B, AC \rightarrow AB\}$ 

COMP3311 20T3 ♦ Inference on FDs ♦ [2/11]

< /



Algorithms based on  $F^+$  rapidly become infeasible.

To solve this problem ...

• use closures based on sets of attributes rather than sets of fds.

Given a set X of attributes and a set F of fds, the closure of X (denoted  $X^{+}$ ) is

• the largest set of attributes that can be derived from X using F

Determining X+ from  $\{X \rightarrow Y, Y \rightarrow Z\}$  ...  $X \rightarrow XY \rightarrow XYZ = X+$ 

For computation,  $|X^{+}|$  is bounded by the number of attributes.

COMP3311 20T3 ♦ Inference on FDs ♦ [3/11]



Algorithm for computing attribute closure:

```
Input: F (set of FDs), X (starting attributes)
Output: X+ (attribute closure)

Closure = X
while (not done) {
   OldClosure = Closure
   for each A → B such that A ⊂ Closure
   add B to Closure
   if (Closure == OldClosure) done = true
}
```

COMP3311 20T3 ♦ Inference on FDs ♦ [4/11]

<< \ \ >>

### Closures (cont)

For the question "is  $X \rightarrow Y$  derivable from F?" ...

• compute the closure  $X^+$ , check whether  $Y \subset X^+$ 

For the question "are F and G equivalent?" ...

- for each dependency in *G*, check whether derivable from *F*
- for each dependency in F, check whether derivable from G
- if true for all, then  $F \Rightarrow G$  and  $G \Rightarrow F$  which implies  $F^+ = G^+$

For the question "what are the keys of *R* implied by *F*?" ...

• find subsets  $K \subset R$  such that  $K^+ = R$ 

COMP3311 20T3 ♦ Inference on FDs ♦ [5/11]

<< / / >>

# Determining Keys

Example: determine primary keys for each of the following:

1. 
$$FD = \{A \rightarrow B, C \rightarrow D, E \rightarrow FG\}$$

- A? A+ = AB, so no ... AB? AB+ = ABCD, so no
- ACE? ACE+ = ABCDEFG, so yes!

2. 
$$FD = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$$

○ B? B+ = BCD, so no ... A? A+ = ABCD, so yes!

3. 
$$FD = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

A? A+ = ABC, so yes! ... B? B+ = ABC, so yes!

COMP3311 20T3 ♦ Inference on FDs ♦ [6/11]

<< / />>>

#### Minimal Covers

For a given application, we can define many different sets of fds with the same closure (e.g. F and G where  $F^+ = G^+$ )

Which one is best to "model" the application?

- any model has to be complete (i.e. capture entire semantics)
- models should be as small as possible
   (we use them to check DB validity after update; less checking is better)

If we can...

- determine a number of candidate fd sets, F, G and H
- establish that  $F^+ = G^+ = H^+$
- we would then choose the smallest one for our "model"

Better still, can we *derive* the smallest complete set of *fd*s?

COMP3311 20T3 ♦ Inference on FDs ♦ [7/11]

<< \ \ >>

# Minimal Covers (cont)

#### Minimal cover $F_c$ for a set F of fd s:

- F<sub>c</sub> is equivalent to F
- all fds have the form  $X \rightarrow A$  (where A is a single attribute)
- it is not possible to make  $F_c$  smaller
  - either by deleting an fd
  - or by deleting an attribute from an fd

An fd d is redundant if  $(F-\{d\})^+ = F^+$ 

An attribute a is redundant if  $(F-\{d\}\cup\{d'\})^+ = F^+$  (where d'is the same as d but with attribute A removed)

COMP3311 20T3 ♦ Inference on FDs ♦ [8/11]

### Minimal Covers (cont)

Algorithm for computing minimal cover:

```
Inputs: set F of fds
Output: minimal cover F_c of F
F_c = F
Step 1: put f \in F_c into canonical form
Step 2: eliminate redundant attributes from f \in F_c
Step 3: eliminate redundant fds from F_c
```

#### Step 1: put fds into canonical form

```
for each f \in F_c like X \to \{A_1, \dots, A_n\}
remove X \to \{A_1, \dots, A_n\} from F_c
add X \to A_1, \dots, X \to A_n to F_c
end
```

COMP3311 20T3 ♦ Inference on FDs ♦ [9/11]

<< / />>>

## Minimal Covers (cont)

#### Step 2: eliminate redundant attributes

```
for each f \in F_c like X \to A
for each b in X
f' = (X-\{b\}) \to A; G = F_c - \{f\} \cup \{f'\}
if (G^+ == F_c^+) F_c = G
end
```

#### Step 3: eliminate redundant functional dependencies

for each 
$$f \in F_c$$

$$G = F_c - \{f\}$$
if  $(G^+ == F_c^+) F_c = G$ 
end

COMP3311 20T3  $\diamond$  Inference on FDs  $\diamond$  [10/11]

### Minimal Covers (cont)

Example: compute minimal cover

E.g. 
$$R = ABC$$
,  $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$ 

Working...

- canonical fds:  $A \rightarrow B$ ,  $A \rightarrow C$ ,  $B \rightarrow C$ ,  $AB \rightarrow C$
- redundant attrs:  $A \rightarrow B$ ,  $A \rightarrow C$ ,  $B \rightarrow C$ ,  $AB \rightarrow C$
- redundant fds:  $A \rightarrow B$ ,  $A \rightarrow C$ ,  $B \rightarrow C$

This gives the minimal cover  $F_c = \{A \rightarrow B, B \rightarrow C\}$ .

COMP3311 20T3 ♦ Inference on FDs ♦ [11/11]

Produced: 4 Nov 2020