

다양한 합성곱 신경망 모델

1 AlexNet(2012)

02 VGGNet(2014)

03 GoogLeNet(2014)

104 ResNet(2015)

1. AlexNet(2012)

- 역대 우승 알고리즘의 이미지 분류 오류율
 - ▶ 층의 깊이가 깊어질수록 오차가 줄어듦
 - ▶ AlexNet 덕분에 합성곱 신경망이 주목을 받게 됨

[출처 : Stanford University CS231n, http://cs231n.stanford.edu/]

1, AlexNet(2012)

- ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)의 2012년 대회 우승
- 의미있는 성능을 낸 첫 번째 합성곱 신경망 구조
- 당시 GPU가 지금보다 발달하지 않아 2대의 GPU를 사용함
- 활성화 함수로 Relu를 사용함
- 드롭아웃 기법을 사용함

[출처: https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf]

2. VGGNet(2014)

- 옥스포드 대학의 연구팀 VGG에 의해 개발된 모델
- ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)의 2014년 대회 준우승
- VGGNet을 시작으로 네트워크 깊이가 엄청 깊어지게 됨

[출처 : https://arxiv.org/pdf/1409.1556.pdf]

2. VGGNet(2014)

- 13 Convolution Layers + 3 Fully-connected Layers
- 3x3 Convolution Filters
- Stride: 1 & Padding: 1
- 2x2 Max Pooling (Stride: 2)

ReLU

			-			
ConvNet Configuration						
Α	A-LRN	В	C	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
maxpool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
maxpool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

2. VGGNet(2014)

예제

문제 상황

VGGNet으로 이미지 분류하기

실습 코드

from tensorflow.keras.applications. vgg19 import VGG19

예 시 화 면

3. GoogLeNet(2014)

- 합성곱 신경망의 아버지 '얀르쿤'이 구글에서 개발함
- VGGNet 보다 구조가 복잡해 널리 쓰이진 않았지만, 구조 면에서 주목받음
- 하나의 계층에서도 다양한 종류의 필터, 풀링을 도입함

[출처 : https://arxiv.org/pdf/1409.4842.pdf]

3. GoogLeNet(2014)

인셉션 모듈

차원(채널) 축소를 위한 1x1 합성곱 계층 아이디어

- ▶ 갈림길이 생김으로써 조금 더 다양한 특성을 모델이 찾을 수 있게 함
- ▶ 인공지능이 사람이 보는 것과 비슷한 구조로 볼 수 있게 함
- ▶ VGGNet 보다 신경망이 깊어졌음에도, 사용된 파라미터는 절반 이하임

[출처 : https://arxiv.org/pdf/1409.4842.pdf]

4. ResNet(2015)

Degradation 문제

- 20층의 신경망이 56층의 신경망보다 낮은 오류율
- 층이 깊어질수록 기울기가 점점 사라져 학습이 잘 되지 않는 문제
- 기울기 소실에 의한 Degradation 문제를 해결하기 위해 제안

[출처 : https://arxiv.org/pdf/1512.03385.pdf]

4. ResNet(2015)

Residual Block

Residual Block

기울기가 잘 학습될 수 있도록 일종의 지름길을 만들어주는 방법

- ▶ y=F(x)+x를 다시 쓰면 F(x)=y-x로 표현할 수 있음
- ▶ 입력과 출력 간의 차이를 학습하도록 설계됨
- ▶ Identity Short Connection은 하나 이상의 층을 건너 뛸 수 있게 함
- 추가적인 파라미터도 필요하지 않고 복잡한 곱셈 연산도 필요하지 않는 것이 장점임

[출처 : https://arxiv.org/pdf/1512.03385.pdf]

4. ResNet(2015)

Degradation Problem

PlainNet

기울기 소실 문제 때문에 18-layer의 성능이 34-layer 보다 뛰어남

ResNet

기울기 소실 문제가 Skip Connection에 의해 해결되어 34-layer의 성능이 더 뛰어남

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

[출처 : https://arxiv.org/pdf/1512.03385.pdf]

강의마무리

KEY POINT

- ► AlexNet(2012)
 - 의미있는 성능을 낸 첫 번째 합성곱 신경망 구조
 - 활성화 함수로 Relu를 사용, 드롭아웃 기법 사용
- VGGNet(2014)
 - 네트워크 깊이가 엄청 깊어지게 됨
 - 컨볼루션 필터커널의 사이즈는 가장 작은 3x3으로 고정
- GoogLeNet(2014)
 - VGGNet 보다 구조가 복잡해 널리 쓰이진 않았지만, 구조 면에서 주목받음
 - 하나의 계층에서도 다양한 종류의 필터, 풀링을 도입
- ResNet(2015)
 - ▶ 기울기 소실에 의한 Degradation 문제를 해결하기 위해 제안
 - Residual Block으로 기울기가 잘 학습될 수 있도록 일종의 지름길을 만들어줌

Python을 활용한 이미지 분석

7. 다양한 합성곱 신경망 모델

"이번 시간을 모두 마치셨습니다. 수고하셨습니다."

