Пусть мы проводим серию испытаний или экспериментов, в результате которых могут наблюдаться различные ucxo-du (элементарные cobumus), зависящие от случая. Пример — бросание игральной кости, здесь элементарное событие — выпадение одного из чисел $1, 2, \ldots, 6$. Некоторые совокупности элементарных событий называются cobumusmu. Пример события — выпадение четного числа очков на игральной кости. Если некоторое событие при многократном повторении испытания происходит примерно с частотой p, говорят, что вероятность данного события равна p.

Если множество возможных исходов конечно, и все исходы равновероятны, то подсчёт вероятности событий сводится к подсчёту числа исходов, содержащихся в событии.

Если же не все исходы равновероятны, то наша интуиция может нас подвести, поэтому требуется некоторая строгость в определениях и утверждениях. Случаи, когда множество исходов бесконечно, требуют особой строгости, так как небольшая неосторожность может вести к парадоксам или противоречиям. Примером этому может служить следующая

Задача 1. Пусть p — вероятность того, что случайно выбранная точка в круге находится на расстоянии, меньшем половины радиуса. Придумайте, как получить p = 1/2 и p = 1/4.

Определение 1. Вероятностным пространством называется тройка (Ω, \mathbb{A}, P) , где

- Ω некоторое множество (пространство элементарных событий);
- \mathbb{A} совокупность подмножеств множества Ω , называемых *событиями*, обладающая следующими свойствами:
 - 1. $\emptyset \in \mathbb{A}, \Omega \in \mathbb{A},$
 - 2. если $A \in \mathbb{A}$, то событие \overline{A} противоположное событию A (происходящее тогда и только тогда, когда не происходит событие A) лежит в \mathbb{A} ;
 - 3. если $A, B \in \mathbb{A}$, то *сумма* событий $A \cup B$ (происходящее тогда и только тогда, когда происходит хотя бы одно из событий A, B) лежит в \mathbb{A} ;
 - 4. если $A, B \in \mathbb{A}$, то *произведение* событий $A \cap B$ (происходящее тогда и только тогда, когда происходит и A, и B) лежит в \mathbb{A} ;
- P числовая функция $P: \mathbb{A} \to \mathbb{R}$ (называемая вероятностью, или вероятностной мерой), такая что
 - 1. $P(\emptyset) = 0$, $P(\Omega) = 1$, $P(A) \ge 0$ для любого $A \in \mathbb{A}$:
 - 2. (аддитивность вероятностной меры) если $A \cap B = \varnothing$ (т. е. события A и B несовместны), то $P(A \cup B) = P(A) + P(B)$;
- **Задача 2**.** Если множество Ω бесконечно, то требуются дополнительные аксиомы, касающиеся суммы и произведения бесконечного числа событий. Попробуйте их придумать и сформулировать.
- **Задача 3. а)** Постройте вероятностное пространство, отвечающее бросанию четырех игральных костей. **6)** Найдите вероятность выпадения при бросании четырёх костей хотя бы одной шестерки.
- **Задача 4.** Пусть (Ω, \mathbb{A}, P) вероятностное пространство. Докажите, что **a)** вероятность любого события не превосходит 1; **6)** если $A, B \in \mathbb{A}$ события, причём $A \subset B$, то $P(A) \leqslant P(B)$.
- **Задача 5.** Рассмотрим конечное множество Ω из k элементов. Пусть \mathbb{A} множество 2^{Ω} всех подмножеств Ω . Для каждого $X \in \mathbb{A}$ положим P(X) = |X|/k. Докажите, что тройка (Ω, \mathbb{A}, P) образует вероятностное пространство.
- **Задача 6.** Из множества всех последовательностей длины n, состоящих из цифр 0, 1, 2, случайно выбирается одна. Найдите вероятность того, что в последовательности ровно m_0 нулей, m_1 единиц и m_2 двоек.
- Задача 7. Юра выучил 3 билета из 30. На экзамене все билеты лежат на столе, студенты по очереди тянут билеты, вытянутые билеты убирают со стола. Каким выгоднее тянуть билет Юре?
- Задача 8. ($Cxema\ Bephynnu$) Проводятся n опытов, в каждом опыте может произойти определенное событие («успех») с вероятностью p (или не произойти «неудача» с вероятностью q=1-p), после чего подсчитывается количество успехов. Постройте вероятностное пространство, соответствующее этому эксперименту.
- **Задача 9.** а) Пусть вероятность попасть под машину при переходе улицы в неположенном месте равна 0,01. Какова вероятность остаться целым, сто раз перейдя улицу в неположенном месте? б) Как связана эта вероятность с числом e? Вычислите её поточнее.
- Задача 10. (Геометрическое распределение) Проводится сколь угодно длинная серия опытов, в каждом из которых может произойти событие («успех») с вероятностью p, или событие «неудача» (с вероятностью q=1-p), до тех пор, пока не произойдёт успех. Подсчитывается количество испытаний до наблюдения первого «успеха». Постройте вероятностное пространство, соответствующее этому эксперименту.
- Задача 11. Про некий вид бактерий известно, что каждая бактерия через минуту после своего появления на свет делится с вероятностью p_k на k потомков, где $k=0,1,\ldots,10$. При этом p_0 это вероятность смерти бактерии через минуту после рождения. Докажите, что вероятность x того, что весь род, начавшийся с данной бактерии, когда-либо целиком вымрет, удовлетворяет уравнению $x=p_0+p_1x+p_2x^2+\cdots+p_{10}x^{10}$.
- **Задача 12.** Каждый из n пассажиров купил по билету на n-местный самолет. Первой зашла сумасшедшая старушка и села на случайное место. Далее, каждый вновь вошедший занимает свое место, если оно свободно; иначе занимает случайное. Какова вероятность того, что последний пассажир займет свое место?

1	2	3 a	3 6	4 a	4 6	5	6	7	8	9 a	9 6	10	11	12

Листок №РТ-3 Страница 2

Условная вероятность

Задача 13. Пусть B- событие, обладающее ненулевой вероятностью.

- а) Дайте определение условной вероятности $P(A \mid B)$ события A при условии B.
- **б)** Докажите, что тройка $(\Omega, \mathbb{A}, P_B)$, где P_B условная вероятность, является вероятностным пространством.

Задача 14. Какова вероятность того, что в семье два мальчика, если один из детей — мальчик?

Задача 15. Вероятность попадания в цель при отдельном выстреле равна 0,2. Какова вероятность поразить цель, если в 2% случаев выстрел не происходит из-за осечки?

Определение 2. События A и B называются независимыми, если $P(AB) = P(A) \cdot P(B)$. События A_1, \ldots, A_n называются независимыми в совокупности, если для любых $1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant n$ выполнено равенство $P(A_{i_1}A_{i_2}\ldots A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \cdots \cdot P(A_{i_k})$.

Задача 16. Из колоды в 52 карты выбирается наудачу одна карта. Независимы ли события

а) «выбрать вальта» и «выбрать пику»; б) «выбрать вальта» и «не выбрать даму»?

Задача 17. Пусть A и B независимы. **a)** Верно ли, что $P(B \mid A) = P(B)$? **6)** Выразите P(A и B) через P(A) и P(B). **b)** Верно ли, что независимы события A и «не B»? **r)** Тот же вопрос про события «не A» и «не B».

Задача 18. Следует ли из попарной независимости нескольких событий их независимость в совокупности?

Задача 19. (*Теорема умножения вероятностей*) Пусть A_1, A_2, \ldots, A_n — события, вероятности которых больше 0. Докажите, что

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 A_2) \cdot ... \cdot P(A_n \mid A_1 ... A_{n-1}).$$

Определение 3. События A и B несовместны, если они не могут произойти одновременно $(A \cap B = \emptyset)$.

Задача 20. (Формула полной вероятности) Пусть H_1, H_2, \dots, H_n — попарно несовместные события («гипотезы»), причем $H_1 \cup H_2 \cup \dots \cup H_n = \Omega$. Докажите, что для любого события B

$$P(B) = \sum_{i=1}^{n} P(H_i) \cdot P(B \mid H_i).$$

Задача 21. Два охотника одновременно выстрелили одинаковыми пулями в медведя. Медведь был убит одной пулей. Как поделить охотникам шкуру, если вероятность попадания у первого — 0,3, а у второго — 0,6?

Задача 22. Три завода выпускают одинаковые изделия. Первый производит 50% всей продукции, второй — 20%, третий — 30%. Первый завод выпускает 1% брака, второй — 8%, третий — 3%. Выбранное наугад изделие — бракованное. Какова вероятность того, что оно со второго завода?

Задача 23. Пусть при рентгеновском обследовании вероятность обнаружить туберкулез у больного туберкулезом равна 0,9, а вероятность принять здорового человека за больного равна 0,01. Доля больных туберкулезом по отношению ко всему населению равна 0,001. С какой вероятностью человек здоров, если **a)** он был признан больным при обследовании; **б)** он был признан больным при двух независимых обследованиях?

Задача 24. В первой урне 2 белых и 6 чёрных шаров, во второй — 4 белых и 2 чёрных. Из первой урны наудачу переложили 2 шара во вторую, после чего из второй урны наудачу достали один шар.

а) Какова вероятность того, что этот шар белый? **б)** Шар, взятый из второй урны, оказался белым. Какова вероятность того, что из первой урны во вторую были переложены 2 белых шара?

Задача 25. Из 100 симметричных монет одна фальшивая (с двумя орлами). Выбрали случайно монету, бросили 5 раз: выпали все орлы. С какой вероятностью, если её бросить ещё 10 раз, снова выпадут все орлы?

Геометрические вероятности

При решении требуется построить соответствующее бесконечное вероятностное пространство.

Задача 26. Палку случайно ломают на 3 части. С какой вероятностью из них можно сложить треугольник?

Задача 27. ($3a\partial a$ ча Brophona) На плоскость, разлинованную параллельными прямыми на расстоянии a друг от друга, случайно брошена игла длиной l < a. Найти вероятность пересечения иглы с какой-нибудь прямой.

Задача 28. (*Парадокс Бертрана*) С какой вероятностью случайная хорда некой данной окружности будет больше стороны правильного треугольника, вписанного в эту окружность?

Задача 29. Монету радиусом r и толщиной d бросают на горизонтальную поверхность (соударение неупругое). Какова вероятность того, что монета упадет на ребро?

13 a	13 б	14	15	16 a	16 б	17 a	17 б	17 B	17 Г	18	19	20	21	22	23 a	23 6	24 a	24 б	25	26	27	28	29