Norme d'une matrice de Hankel infinie

ANDRINAJORO Mija Niaina

May 20, 2025

1. Resumé

L'objectif de cette étude est d'approcher numériquement la norme spectrale d'une des matrices de Hankel : matrice de Hilbert . Sur ce , on a essayé d'implémenter en python deux méthodes : méthode de la puissance et celui d' Arnoldi. On a trouvé que la norme spectrale converge vers un certain nombre quand la taille de la matrice tend vers $+\infty$.

2. Introduction

2.1. Contexte scientifique :

Une matrice de Hankel est une matrice carré dont les indices vérifient la relation :

$$a_{i,j} = a_{i-1,j-1}.$$

Une matrice de Hilbert est une matrice de Hankel particulière. Elle vérifie la relation :

$$a_{i,j} = \frac{1}{i+j+1}.$$

Les matrices de Hilbert sont connues pour être mal conditionnées c-à-d une petite variation de ses éléments peut provoquer des grandes variations dans la solution d'un système linéaire associé . En d'autres termes , une petite perturbation dans les données provoquent une erreur très importante dans le résultat calculé. Pour quantifier la sensibilité de la solution d'un système linéaire aux perturbations de données , on utilise la norme spectrale . Cette quantité est souvent appelée conditionnement .

Ainsi il est important de connaître les propriétés de la norme spectrale d'une matrice de Hilbert.

2.1. But:

Notre but est de prouver la convergence de la norme et de formuler une conjecture numérique pour la valeur limite .

2.3. Plan:

Voici les étapes qu'on a suivi :

• Calculer la norme pour les coupes $n \times n \le 20000$ incrémenté de 10 par la méthode des puissances .

- 2 Calculer la norme par la méthode d'Arnoldi .
- 3 Conjecturer la convergence.
- Utiliser mpmath à haute précision sur n=100 pour valider la conjecture puis on a vérifié aussi sur **sagemath**.
- **6** Représentations graphiques et conjecture numérique de la valeur limite .

3. Méthodes:

3.1 Génération d'une matrice de Hilbert :

On peut construire une matrice de Hilbert de taille n de façon récursive : Sur python :

```
import numpy as np
def matrice_hilbert(n):
    M=np.zeros((n,n))##matrice nulle
    for i in range(n):
        for j in range(n):
            M[i,j]=1/(i+j+1)
        return M
```

On peut aussi obtenir une matrice de Hilbert en important le module scipy :

```
from scipy.linalg import hilbert
H=hilbert(n)
```

En sage, on peut faire:

```
R=RealField(64)
H=matrix(R,n,n,lambda i,j:1/(i+j+1))
```

3.2. Calcul de la norme par méthode des puissances.

Norme spectrale : La norme spectrale d'une matrice M est la plus grande valeur singulière de M . Elle est définie par :

$$||M||_2 = \max_{||x||_2=1} ||Mx||_2.$$

Ici, $||x||_2$ désigne la norme euclidienne du vecteur x. Comme une matrice de Hilbert est symétrique, ses valeurs singulières coïncident avec les modules de ses valeurs propres.

Principe de la méthode de la puissance :

- Choisir un vecteur x_0 tel que Mx non nul.
- $x_{k+1} = Mx_k/||Mx_k||$.
- La valeur propre de plus grande module est la limite de (x_k)

Code python : En appliquant la methode de la puissance à M^tM , on obtient la plus grande valeur propre de M. Voici le code en python qu'on a utilisé :

```
def puissance_norme(M, i=10000, t=1e-10):
    n=M.shape[0] #taille de la matrice M
    x=np.random.rand(n) #x est le vecteur aleatoire initial
    x=x/np.linalg.norm(x)
    a=0
    for k in range(i):
        Mx=M@x
        x=Mx/np.linalg.norm(Mx)
        valeur_propre=x.T@M@x
        if abs(valeur_propre-a)<t:
            return valeur_propre
        return valeur_propre
    return valeur_propre</pre>
```

3.3. Accélération avec Arnoldi :

Principe:

• On construit une base orthonormale $\{q_1, ..., q_m\}$ du sous-espace

$$K_m(M, q_1) = span\{q_1, Mq_1, M^2q_1, M^{m-1}q_1\}.$$

- A chaque étape ,on calcule Mq_k puis on orthogonalise par rapport a la base existante $\{q_1, ..., q_k\}$ pour obtenir q_{k+1} .
- On obtient une matrice H_m de taille m×m de Hessenberg dont les valeurs propres sont des approximations des valeurs propres de M.

Code python : On a utilisé la fonction **eigsh** sur python qui retourne les valeurs propres et d'une matrice. Elle utilise la méthode d'Arnoldi.

which='LM' signifie la valeur absolue est maximale.

3.4. Calcul avec haute précision.

On a réimplémenter l'algorithme utilisant la méthode de la puissance en utilisant mpmath . Après on a vérifié sur sage en utilisant ce code :

```
R=Realfield(100)
m=matrix(R,100,100,lambda i,j:1/(i+j+1))
v=m.eigenvalues()
n=max(v)
```

Ce code nous permet de calculer avec 100 bits de précision la norme spectrale d'une matrice de Hilbert de taille 100.

3.5. Conjecturer la valeur limite

On a ajusté la courbe des résultats obtenu en utilisant deux modèles sur **scipy.optimize.curve- fit**

4. Analyse des résultats :

Les résultats obtenus sont illustrés dans les fichiers csv.

4.1. Comparaison entre méthode de la puissance vs Arnoldi

La méthode d'Arnoldi est plus rapide surtout pour les grandes valeurs de N . Par exemple pour N=1000 le rapport entre temps de calcul via méthode de la puissance vs Arnoldi est d'environ 1.5 .

4.2. Etude de la convergence :

D'après les résultats $||A||_N - ||A||_{N+100}|$ est au voisinage de 0 et diminue avec N. Donc , on peut dire que $(||A||_N)$ est de Cauchy . C-à-d elle converge vers une limite l.

4.3. Calcul à haute précision :

En python , pour N=100 : on obtient 2.18 avec 60 itérations . En sage , on a trouvé norme = 2.18269097757... .

4.4 Valeur limite:

Voici le schéma obtenu quand on a utilisé un modèle logarithmique. L'équation de la

courbe ajustée est

$$y = 1.9 + 0.077 \times \ln(N + 0.00000816)$$

. Voici le schéma obtenu quand on a utilisé un modèle asymptotique. L'équation de la courbe ajustée est

$$y = 2.8 + 1/N$$

Interprétation: Le modèle logarithmique est très proche de notre donnée . Mais notre souci c'est qu'elle est divergente . Le modèle asymptotique est supérieur à notre donnée mais elle nous permet de voir que la limite de notre tracé en bleu est inférieur à la sienne à savoir 2.8.

Conjecture:La norme spectrale d'une matrice de Hilbert infini tend vers 2.8.

5. Conclusion:

A travers cette étude ,on a montré que la norme spectrale d'une matrice de Hilbert converge vers une limite l qu'on a estimé numériquement =2.8 qui est assez proche de π (limite en théorie). L'utilisation de divers méthodes nous a permis de confirmer cette estimation.