Kombinatorika

pracujeme so všetkými prvkami?

po výbere?

variácie s opakovaním

vracajú sa prvky

$$V'_k(n) = n^k$$
 $V_k(n) = \frac{n!}{(n-k)!}$

permutácie s opakovaním

všetky prvky množiny

sú unikatné?

zaleží na poradí?

$$P_{k_1,k_2,\ldots,k_r}'(n)=rac{n!}{k_1!\cdot k_2!\cdot\ldots\cdot k_r!}$$

permutácie bez opakovania

$$P(n) = n!$$

kombinácie s opakovaním

$$C'_k(n) = \binom{n+k-1}{k}$$

spôsoby rozdať 32 kariet 4

hračom (ak môžeme dať napr. 32 karty jednému a nič

5 druhov zmrzlín, kúpiť 15

-rôzne súčiny 2 činiteľov z 5

ostatným)

kombinácie bez opakovania

$$C'_k(n) = \binom{n+k-1}{k}$$
 $C_k(n) = \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$

dostaneme pospajaním C(2,6)

-9 bodov na kružnici, koľko

dostaneme trojuholn. C(3,9)

-20 prikladov z aritm + 30 z

geom., zoradiť po 3 aritm + 2

- 6 bodov, 3 neležia na 1

priamke, koľko usečiek

geom. C(3,20)*C(2,30)

- päťciferné čísla z 6 cifier, môžu sa opakovať - 3 lístky z 5, vracajú sa do
- vrecka - súcasne hodiť x hracie kocky = 6^x
- koľko znakov z 1 až 4 signálov môže obsahovať Morseova abeceda V'(1,2)+V'(2,2)+V'(3,2)+V'(4,2)

priklady päťciferné čísla z 6 cifier,

nezmysel

variácie bez

opakovania

- nemôžu sa opakovať - 3 lístky z 5, nevracajú sa do vrecka
- 8 ľudí si posiela pohľadnice = 8! / 6!
- z koľkych prvkov sa dá vytvoriť 240 variácii 2. triedy

 kolko slov zo slova matematika/ okolo(písmena sa opakujú) -rozostaviť 3 zelené, 2 červ. a 2 modre predmety

$$P'_{3,2,2}(7) = \frac{7!}{3! \cdot 2! \cdot 2!}$$

päťciferné čísla z 5 cifier, nemôžu sa opakovať -usporiadať na poličke 4 cz a 3 sk knihy, aby najprv boli cz P(4)*P(3)

r(4) r(3) -postaviť do radu n ľudí -usporiadať ABCDE aby A bolo 1. a E - posledné (menia sa len BCD) P(3)

Kombinačné čísla

$$\binom{n}{k} = \binom{n}{n-k},$$

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

$$\binom{n}{1} = n$$

$$\binom{n}{0}=1,$$
 odkiaľ dostávame ďalšie dva vzťahy $\binom{n}{n}=1$ a $\binom{0}{0}=1,$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Binomická veta

$$\left(a+b\right)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \binom{n}{3} a^{n-3} b^3 + \ldots \ldots + \binom{n}{n} a^0 b^n$$

$$(a+b)^n = \sum_{k=0}^n {n \choose k} a^{n-k} b^k$$
 $a,b \in \mathbb{R}; n,k \in \mathbb{N}$

KTOR
$$\vec{y}$$
 ELEN HNOHOLLENA
 $(3\chi^2 - \frac{1}{\chi})^{10}$ OBSAHUJE \vec{k} ?
 $\begin{pmatrix} 10 \\ k \end{pmatrix} \begin{pmatrix} 3\chi^2 \end{pmatrix}^{10-k} \begin{pmatrix} -1 \\ x \end{pmatrix}^k \rightarrow \vec{v}$ Reobering cen
 $3 \begin{pmatrix} 10-k \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix}^k \begin{pmatrix} -k \\ x \end{pmatrix}$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -k \\ x \end{pmatrix}$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -k \\ x \end{pmatrix} = \chi$ exponed χ
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $2 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $3 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$
 $4 \cdot (10-k) \begin{pmatrix} -1 \\ x \end{pmatrix} = \chi$

Pascalov trojuholník

$\mathbf{n} = 0$								1									
n = 1							1		1								
n = 2							1	2		1							
n = 3						1	3			3	1						
n = 4					1		4		6	4	1	1					
n = 5				1		5		10		10	5	1					
n = 6				1	6		15		20	1	5	6	1				
n = 7			1	7		21		35		35	21		7	1	1		
n = 8		1		8	28		56		70	5	6	28		8	1		
n = 9		1	9	36		84		126		126	84		36		9	1	
n = 10	- 1	10	4	15	120		210		252		210	126		45		10	1

čiselné sústavy

16 => 2

 $62_{16} = 0110\ 0010_2$

FB₁₆ = 1111 1011₂

 $10_{16} = 0001 \ 0000_2$

10 => 2

$$12C_{10} = 64 + 32 + 16 + 8 =$$

$$= 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{4} + 0 \cdot 2^{4} + 0 \cdot 2^{5} + 0 \cdot 2^{6} + 0 \cdot 2^$$

$$55_{10} = 32 + 16 + 14 + 2 + 1 =$$

$$= 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{4} + 1 \cdot 2^{6} =$$

= 1101112	8A ₁₆ =	1000 10102
=> 10		
$\mathbf{10_2} = (2^0 \times 0) + (2^1 \times 1) + (2^2 \times 0) + (2^3 \times 0) + (2^3 \times 0) + (2^4 \times 0) + (2^5 \times 1) + (2^6 \times 1) + (2^7 \times 0) = 2^4 + 2^5 + 2^6 = 98_{11} + 2^6 + 2^$		
$x = (2^{0} \times 0) + (2^{1} \times 0) + (2^{2} \times 0) + (2^{3} \times 0) + (2^{4} \times 1) + (2^{5} \times 0) = 2^{4} = 18_{10}$		

 $\textcolor{red}{\textbf{010001010}}_2 = (2^0 \times 0) + (2^1 \times 1) + (2^2 \times 0) + (2^3 \times 1) + (2^3 \times 0) + (2^6 \times 0) + (2^6 \times 0) + (2^7 \times 1) + (2^8 \times 0) = 2^1 + 2^3 + 2^7 = 138_{10} + 2^8$

10	

8

Десятичное число	Двоичное число	Восьмеричное число	Шестнадцатеричное число			
0	0	0	0			
1	1	1	1			
2	10	2	2			
3	11	3	3			
4	100	4	4			
5	101	5	5			
6	110	6	6			
7	111	7	7			
8	1000	10	8			
9	1001	11	9			
10	1010	12	A			
11	1011	13	В			
12	1100	14	С			
13	1101	15	D			
14	1110	16	E			

Postupnosti

Postupnosť je rastúca ak
$$a_n < a_{n+1}$$
 $klesajúca$ $a_n > a_{n+1}$
 $konštantná$ $a_n = a_{n+1}$

Rekurentný tvar

 $b_{11} = b_4 q^7$

 $|b_7| = \sqrt{b_6 b_8}$

Aritmetická postupnosť $a_{n+1} = a_n + d$

Formula n-tého člena

$$a_n = a_1 + (n-1)d$$

$$a_n = a_k + (n-k)d$$

$$a_n = \frac{a_{n-k} + a_{n+k}}{2}$$

Sučet prvých n členov

$$S_n = \frac{2a_1 + (n-1)d}{2} \cdot n$$

$$S_n = \frac{a_1 + a_n}{2} \cdot n$$
diferencia
$$d = a_{n+1} - a_n$$

Geometrická postupnosť $b_{n+1}=b_n \quad q,$

 $kde q \neq 0 - kvocient$

Formula n-tého člena

$$b_n = b_1 \cdot q^{n-1}$$

$$b_n = b_1 \cdot q^{n-k}$$

$$\frac{b_n}{b_{n-1}} = \frac{b}{b_n}$$

$$b_n = b_1 \cdot q^{n-1}$$
 $b_n = b_k \cdot q^{n-k}$
 $b_{n-1} = \frac{b_{n+1}}{b_n}$
 $b_n^2 = b_{n-k} \cdot b_{n+k}$
 $|b_n| = \sqrt{b_{n-1}b_{n+1}}$

Sučet prvých n členov

$$S_n = b_1 \frac{1-q^n}{1-q} = b_1 \frac{q^n-1}{q-1}, \ q \neq 1$$
 kvocient
$$q = \frac{b_{n+1}}{1-q}$$

Сумма бесконечно убывающей геометрической прогресии:

$$S = \frac{b_1}{1-q}, |q| < 1$$