Sanause 1	% у выбравших	% у не выблавших	Комент	Задание 2	% v sufnasılırı	% у не выбравших	Koweur	Задание 3	% у выбозвину	% у не выбравших	Комент	Задание 4	% v aufinzanium	% у не выбравших	Комент	Задание 5	% v suffoasilisty	% у не выбравших	Комент
									,				.,				,		
https://onlinetestpad.com/nztwgswivd@a																			
Из того, что ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, согласно признаку Лаламбера.				Сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+3}}$				Если $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} a_n $ сходится.				Если $\sum_{n=1}^{\infty} u_n(x)$ мажорируем на множестве E , то				Ряд Тейлора в точке $x_0 = 0$ представляет собой ряд Маклорена.			
следует, что $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ имеет				может быть доказана по признаку Лейбница.								$\forall \varepsilon>0 \ \exists n_0\colon \forall n>n_0 \ (n,n_0\in \mathbb{N}) \ \Rightarrow$							
конечную сумму.		90%			90%					90%		$\left \sum_{k=n}^{\infty} u_k(x) \right < \varepsilon \forall x \in E.$	90%				90%		
												IR-M I							
Из того, что $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится				Сходимость ряда $\sum_{n=1}^{\infty} \frac{1+(-1)^n}{n(n+1)}$												Остаточный член			
$u \lim_{n\to\infty} \frac{\sin(\frac{n}{2n-1})}{\frac{1}{n}} = \frac{\pi}{2} \ (\neq 0, \infty),$				может быть доказана по признаку								Если на отрезке функциональный ряд (с дифференцируемыми				в формуле Маклорена порядка 5			
огласно признаку Даламбера,		90%		Лейбница.		90%		Если ряд расходится, то ряд, составленный из его абсолютных элементов, расходится.	90%			если на отрезие функциональный ряд (с лифференцируемыми спагаемыми на этом отрезие) сходится и ряд из дифференциалов его членое сходится равномерно, то ряд из дифференциалов совпадает с дифференциалом суммы исходного ряда.	90%			для функции $\cos x$ может быть записан как $o(x^6)$.		90%	
следует, что $\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{2n-1}\right)$								элементов, расходится.				ряд из дифференциалов совпадает с дифференциалом суммы исходного							
расходится.												ряда.							
				Сходимость $\sum_{n=1}^{\infty} \frac{3n+2}{2n^2}$ может быть												Ряд Тейлора в точке $x_0 = 1$			
				доказана по радикальному признаку Коши.												представляет собой ряд по степеням x.			
						90%		Если ряд сходится абсолютно, то он может сходиться условно.		90%								90%	
				Crommoon 200 20(-1) th												Остаточный член			
				Сходимость ряда $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{n^2+3}$ может быть доказына по признаку												в формуле Маклорена порядка 5			
				Лейбинца.		90%		Ряд, сходящийся абсолютно, может		90%						для функции $\sin x$ может быть записан как $o(x^5)$.		90%	
								сходиться условно.								MORET OLETS SHIRK AIR D(X).			
Из того, что $\int_2^{\infty} \frac{dx}{x \ln^2 x}$ существует и				Сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+3}{\sqrt{n^3+2n^2}}$				Если ряд $\sum_{n=1}^{\infty} a_n$ сходится условно,								В формуле Тейлора 5-го порядка для функции $f(x) = \sin(x - 2)$ в			
конечен, согласно 1-му признаку сравнения рядов (с неравенством),				может быть доказана по абсолютному признаку (с				то $\sum_{n=1}^{\infty} a_n $ расходится.				Если функциональный ряд сходится равномерно на отрезке и его слагаемые дифференцируемы на этом отрезке, то сумма ряда из				точке $x_0 = 2$ остаточный член			
сравнения рядов (с неравенством), следует сходимость $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$.		90%		применением, например, признака		90%			90%			слагаемые дифференцируемы на этом отрезке, то сумма ряда из		90%		может быть представлен в виде $R_5(x) = \frac{\sin(c-2)}{cc}(x+1)^6$, где точка		90%	
Alla-K				сравнения).								производных совпадает с производной суммы исходного ряда.				с лежит между точками 2 и х			
				(1/25+1												и не равна им. Задача разложения функции			
Из того, что ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ не имеет конечной суммы, согласно				Сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n^2+4}$ может быть доказана по признаку												$f(x) = x^2 \arctan(x+3)$			
радикальному признаку Коши,		90%		Лейбница.		90%		Если ряд сходится, то ряд, составленный из его абсолютных	90%			Если функциональный ряд	90%			в окрестности точки $x_0 = -3$ в ряд		90%	
следует, что $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится.		90%				90%		Если ряд сходится, то ряд, составленный из его абсолютных элементов, может как сходиться, так и расходиться.	90%			мажорируем на промежутке, то он сходится на этом промежутке.	90%			Тейлора сводится к стандартному разложению:		90%	
																$r(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \cdots$			
				Сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+2)}$												В ряде Тейлора			
				может быть доказана по признаку												для функции $f(x) = e^{x-5}$ в окрестности точки $x_0 = 5$			
				Лейбница.	90%			Ряд, сходящийся условно, не сходится абсолютно.	90%							одно из слагаемых имеет вид:	90%		
																$\frac{(x-5)^5}{120}$.			
				C 1984												В ряде Тейлора			
				Сходимость $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+1)}$ может быть доказана по абсолютному												для функции $f(x) = e^{x-5}$			
				быть доказана по абсолютному признаку (с применением,				Если ряд расходится абсолютно, то								в окрестности точки $x_0 = 5$			
				например, признака сравнения).		90%		он расходится.		90%		-				одно из слагаемых имеет вид: $(x-5)^4$		90%	
																5			
Из того, что $\sqrt[n]{\left(\frac{2n-1}{2n}\right)^{n^2}} \rightarrow \frac{1}{\sqrt{e}}$ при				Сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}}{n^2+2}$,				Если $\sum_{n=1}^{\infty} a_n $ сходится, то								Задача разложения функции			
$n \to \infty$, согласно следствию из				может быть доказана по				$\sum_{n=1}^{\infty} a_n$ может сходиться условно.				Если функциональный пял схолчтов				$f(x) = \ln(x^2 + 2x + 2)$ в окрестности точки $x_0 = -1$ в ряд			
необходимого условия сходимости (о достаточном условии		90%		абсолютному признаку (с применением, например, признака	90%					90%		Если функциональный ряд сходится равномерно на промежутке, то он сходится абсолютно на этом промежутке.		90%		Тейлора сводится к стандартному		90%	
расходимости ряда), следует, что				сравнения).								промежутке.				разложению:			
$\sum_{n=1}^{\infty} \left(\frac{2n-1}{2n}\right)^{n^2}$ poexousires.				7n-1												$r(t) = t - \frac{t^2}{2!} + \frac{t^3}{3!} - \frac{t^4}{4!} + \cdots$, B формуле Тейкора 4-го порилка			
Из того, что $\frac{3n+1}{3n} > 0$ при $\forall n \in \mathbb{N}$, согласно радикальному признаку				Сходимость ряда $\sum_{n=1}^{\infty} \frac{7n-1}{2n^2}$ может быть доказана по признаку												дзя функции $f(x) = e^{x+1}$ в точке			
Коши, следует, что		90%		Даламбера.		90%			90%			Если функциональный ряд мажорируем на промежутке, то он расходится на этом промежутке.		90%		$x_0 = -1$ остаточный член может быть представлен в виде $R_4(x) =$		90%	
$\sum_{n=1}^{\infty} \left(\frac{3n+1}{3n}\right)^{n^2}$ расходится.		90%				90%			90%			мажирируем на промежутке, то он расходится на этом промежутке.		90%		$\frac{e^c}{120}(x+1)^5$, где точка с лежит		90%	
								Dan cyconuming								между точками -1 и х и не разна им.			
				Сходимость ряда $\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n^2+4}$				Ряд, сходящийся условно, может рас Если $\sum_{n=1}^{\infty} a_n$ сходится, то								Задача разложения функции			
				может быть доказана по признаку				$\sum_{n=1}^{\infty} a_n $ может сходиться.								$f(x) = (x^2 - 6x + 10)\cos(x - 3)$ в окрестности точки $x_0 = 3$ в ряд			
				Лейбница.		90%			90%							Тейлора сводится к стандартному		90%	
																разложению: ,2 ,4 ,6			
																$r(t) = 1 - \frac{t^2}{2} + \frac{t^4}{4} - \frac{t^6}{6} + \cdots$			
				Сходимость ряда $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{n^2+3}$				Если $\sum_{n=1}^{\infty} a_n$ сходится, то $\sum_{n=1}^{\infty} a_n $ может расходиться.								В формуле Тейлора 3-го порядка для функции $f(x) = \ln x$ в точке			
				может быть доказана по признаку Лейбница.				→S=T:-B1 momes beautifurness:								$x_0=1$ остаточный член может			
						90%			90%							быть представлен в виде $R_3(x) = \frac{1}{(x-1)^4}$	90%		
																$-\frac{1}{c^4}\frac{(x-1)^4}{4}$, где точка c лежит между точками 1 и x и не равна им.			
																осолоду 10-твами 1 и л и по равна им.			

Из того, что $\sqrt{n+1} \nrightarrow 0$ при $n \to \infty$, согласно радикальному признаку Коши, следует, что $\sum_{n=1}^{\infty} \sqrt{n+1}$ расходится.		70%	Сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+3}{\sqrt{n^2+2n^2}}$ может быть доказыва по абсолютному признаку (с примечением, например, притнака		70%	Если ряд сходится, то он сходится условно.		70%	Co	Если на отрезке функциональный ряд (с дифференцируемыми слагаемыми на этом отрезке) корится и ряд и дифференциалов то членов сходится равномерню, то сумма ряда и дифференциалов совтадает с приращением суммы исходиного ряда.		70%	Остаточный член а формуле Маклорена порядка 4 для функции $\sin x$ может быть записан как $o(x^4)$.	70%		
Из того, что ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, согласно 1-му признаку сравнения			сравнения).						Εσ	ин $ u_n(x) \le a_n \ \forall x \in E, \ \forall n \in \mathbb{N}$ и $\sum_{n=1}^{\infty} u_n(x)$			В формуне Тойкора 6-го порывая для функция $f(x) = \cos(x+3)$ в			
согласно 1-му признаку сравнесноя рядов (с перавенством), следует, что $\sum_{n=1}^{\infty} \frac{1}{n^2 + n} \ \text{имеет конечную сумму}.$	70%		быть доказана по абсолютному признаку (с применением, например, признака Даламбера).	70%		Если ряд сходится абсолютно, то он может сходиться условно.		70%	cx	одится абсолютно на множестве E .		70%	There $x_0 = -3$ occurrences is such some $x_0 = -3$ occurrences in such some $x_0 = \frac{\sin \epsilon}{\pi} (x + 3)^2$, the Tonorus c defined the $x_0 = \frac{\sin \epsilon}{\pi} (x + 3)^2$ defined $0 = (x + 3)$ is so presents so.		70%	
			Сходимость ряда $\sum_{n=1}^{\infty} \frac{7n-1}{3^n}$ может быть доказана но признаку Даламбера.	70%		Если ряд сходится условно, то он может расходиться.	70%						Ряд Тейлора в точке $x_0 = -2$ представляет собой ряд по степеням $(x-2)$.		70%	
			Расходимость $\sum_{n=1}^{\infty} \binom{n+k}{n}^{n^2}$ может быть доказана по радикальному пригнаху Коши.	70%		Если $\sum_{n=1}^\infty a_n$ расходится, то $\sum_{n=1}^\infty a_n $ расходиться.	70%						B page Tolkops and gybrains $f(x) = \sin(x+1)$ is dependent these as $x_0 = -1$ out to charge and these sections $\frac{-\cos(x+1)}{x}(x+1)^x$.		70%	
Из того, что $\frac{3n+1}{3n}>0$ при $\forall n\in\mathbb{N}$, согласно радилальному принцаку Коши, спедует, что $\sum_{m=1}^{\infty} \left(\frac{2m+1}{3n}\right)^{n^2} \text{расходится.}$		70%	Сходимость раза $\sum_{n=1}^{\infty} \frac{24(-1)^n}{n!+3}$ может бать дооказна по принняку Лейбинца.	70%		Если ряд сходится условню, то он может рассходиться:		70%	то	сив $ u_n(x) \to 0$ $\forall x \in E$ при $n \to \infty$, $\sum_{n=1}^\infty u_n(x)$ сходится равномерно на пожестве E .		70%	If depropose Tokappe for imprass and spinned (f_0) = $\cos(x + 2)$ is there are f_0 = $\cos(x + 2)$ in the g_0 = -3 excentional value source form a programment is take g_0 (g_0) = $\frac{\sin x}{2}(x + 3)^n$, for these g_0 excent source provision -3 is x is in passes see.	70%		
Из того, что $\frac{\sigma_{n+1}}{\sigma_n} \to 1$ при $n \to \infty$, гле $a_n = \frac{\pi}{2n-1}$, согласно следствию из необходимого условия сходимости (о достаточном условии расходимости ряда), следует, что $\sum_{m=1}^{\infty} \frac{1}{2n-1}$ расходится.		70%	Сходимость ряда $\sum_{n=1}^{(-1)^{n+1}}\frac{(-1)^{n+1}}{4+6n}$ может быть доказана по признаку Лейбинца.	70%		Есян $\sum_{n=1}^{\infty} a_n $ расходится, то $\sum_{n=1}^{\infty} a_n$ может расходиться.	70%			Еспи функциональный ряд макорируем на промежутие, то он сходится на этом промежутие.	70%		Остаточный часн в формуле Максирена порядка 4 дам функция sin x может быть записан как $\phi(x^2)$. В расв Тейкора.		70%	
			Сходимость ряда $\sum_{n=1}^{\cos(n)} \frac{\cos(n)}{n}$ можест быть доказыва по признаку Лейбинца.		70%	Если ряд сходится абсолютно, то он может расходиться.		70%					для функции $f(x) = e^{x-5}$ в окрестности точни $\chi_0 = 5$ одно и слагаемых имеет вид: $\frac{(x-5)^2}{130}$.	70%		
			Сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 2n}$ может быть доказыва пов абсолютному призывку (с применением, например, призывае сравмения).		70%	Есян $\sum_{n=1}^{\infty} a_n$ сходится, то $\sum_{n=1}^{\infty} a_n $ может расходиться.	70%						Задача разхожения функции $f(x) = (x^2 - 6x + 5) \sin(x - 2)$ а окресителент и томы $x_0 = 2$ а рад. Тейзора сводится в гатациргивну разхожениях $r(x) = c - \frac{1}{c^2} + \frac{c^2}{13} - \frac{c^2}{134a} + \frac{c^2}{134a} + \cdots.$		70%	

