Applying MO theory to other systems

Conducting materials (metals/semiconductors) show similar behaviour

Metallic character increases

Metallic Properties

Metallic Character decreases

Metals

- Shiny solids
- Moderate to high melting point
- Good conductors: heat & electricity
- Lose electrons to nonmetals

Band Theory: Group 1 Metals

 Li_n (metal): n 2s AOs = n MOs (n valence electrons)

Li 2s Energy Band

 Li_n (metal): n 2s AOs = n MOs (n valence electrons)

Energy

Conduction Band empty MOs

Valence Band filled MOs

* Small energy gaps enable easy excitation and "mobile" electrons * (partially filled energy band enables conductivity)

Be₂ MO Energy Diagram

Band Theory Group 2 Metals

 $\mathbf{Be_n}$ (metal): n 2s AOs = n MOs (2n valence electrons)

Be: Only using 2s Energy Band

 Be_n (metal): n 2s AOs = n MOs (2n valence electrons)

Valence shell of Be $2s^2 2p^0$

Valence Band (2s) filled MOs

* 2s band completely filled... but 2p band is empty!*

Be with 2s and 2p Energy Bands

 $\mathbf{Be_n}$ (metal): $n \ 2s + 3n \ 2p \ AOs = 4n \ MOs (<math>\underline{2n}$ valence electrons)

Conductivity

Conductivity depends upon the size of the energy "gap" between valence and conduction band

Metals(conductors) – no band gap, "free" electrons (no covalent bonds) **Semiconductors** – small band gap, bonding has more covalent character

Insulators – large band gap, strongly held electrons in covalent bonds

Semiconductors

 Si_n (semimetal) – intrinsic semiconductor (fixed band gap) 4n AOs = 4n MOs (4n valence electrons)

^{*} more electrons can be excited to conduction band when more energy applied *

"Doped" Semiconductors: Si/P

Si_n doped with P – extrinsic semiconductor (altered band gap) (n-type semi-conductor – "negative" from extra P electron)

^{*} more electrons can be excited to conduction band when more energy applied *

"Doped" Semiconductors – Si/Al

Si_n doped with Al – extrinsic semiconductor (altered band gap) (p-type semi-conductor - "positive" from missing Al electron)

http://www.homepower.com/articles/solar-electricity/equipment-products/peek-inside-pv-cell