

CAUSAL INFERENCE AND MACHINE LEARNING

About the course

The relationship between causality and artificial intelligence can be seen from two points of view: how causality can help solve some of the current problems of Al and how causal inference can leverage machine learning techniques. In this course we will review the two points of view with special emphasis on examples and practical cases.

Causal Machine Learning

Reinforcement Learning

Enrique Mora

enrique.mora@es.nestle.com

Causal ML. Reinforcement Learning

```
t
            discrete time step
            final time step of an episode t
            action at time t
S_t
           state at time t
           regret/loss at time t
R_t
           reward at time t
\mathcal{R}
           return
            policy (decision-making rule)
\pi
            probability of taking action a in state s
\pi(a \mid s)
s, s'
           true states
x, x'
           observed states
v_{\pi}(s)
           value of state s under policy \pi (expected return)
           value of taking action a in state s under policy \pi
q_{\pi}(s,a)
           trajectory, i.e., \tau = \{x_t, a_t, x_{t+1}\}_{t=1}^T
\tau
```


Causality + RL = Causal RL

RL: focused on building algorithms to maximise rewards

- Using synthetic data simulators
- Able to generate large amounts of data

Causality: focused on the *identifiability* and *inferences* based on given *causal structure*

- Typically given a limited-size observation dataset
- From an unknown environment and policy
- We cannot interact with the environment online

Off-line RL: learning optimal policies from a dataset generated from an unobserved policy.

- Learn from observational data
- Without access to the environment

Causal RL

Problem	Output	Benefits over non-causal RL
Causal Bandits	$\hat{\pi} = \argmin_{\pi \in \Pi} L_n(\pi)$	Optimal simple regret guarantees
Model-Based RL	$\widehat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \ell\left(\boldsymbol{\theta}, (R_{t+1}, S_{t+1})\right)$	Deconfounding
Multi- Environment RL	$\hat{\pi} = rg \max_{\pi \in \Pi} \mathbb{E}_{c \sim p(c)} \left[\mathcal{R} \left(\pi, \mathcal{M}^c \right) \right]$	Interpretable task embeddings, systematic generalization
Off-Policy Policy Evaluation	$\hat{v}_{\pi}(s) = \mathbb{E}_{oldsymbol{x} \sim d_0} \left[\sum_{t=0}^{T-1} \gamma^t r_t \mid x_0 = x ight]$	Deconfounding
Imitation Learning	$\hat{\pi} = \operatorname*{argmin}_{\pi \in \Pi} \mathbb{E}_{\boldsymbol{x} \sim d_{\pi^*}} \left[\ell \left(\boldsymbol{x}, \pi, \pi^* \left(\boldsymbol{x} \right) \right) \right]$	Deconfounding
$ \begin{array}{c} {\rm Credit} \\ {\rm Assignment} \end{array} $	$\mathcal{M}_{a_t \to r_{t+k}}$ or $\mathcal{M}_{a_t \to s_{t+1}}$ or $\mathcal{M}_{a_t^i \to a_t^j}$	Intrinsic reward, Data-efficiency
Counterfactual Data Augmentation	$ ilde{ au} = \{ ilde{x}_t, ilde{a}_t, ilde{x}_{t+1}\}_{t=1}^T$	Data-efficiency
Agent Incentives	Incentive criteria and measures	Avoiding unintended harmful behavior

Causal Bandits

Algorithm 1 Parallel Bandit Algorithm

- 1: **Input:** Total rounds T and N.
- 2: **for** $t \in 1, ..., T/2$ **do**
- 3: Perform empty intervention do()
- 4: Observe X_t and Y_t
- 5: for $a = do(X_i = x) \in \mathcal{A}$ do
- 6: Count times $X_i = x$ seen: $T_a = \sum_{t=1}^{T/2} \mathbb{1}\{X_{t,i} = x\}$
- 7: Estimate reward: $\hat{\mu}_a = \frac{1}{T_c} \sum_{t=1}^{T/2} \mathbb{1}\{X_{t,i} = x\} Y_t$
- 8: Estimate probabilities: $\hat{p}_a = \frac{2T_a}{T}$, $\hat{q}_i = \hat{p}_{do(X_i=1)}$
- 9: Compute $\hat{m} = m(\hat{q})$ and $A = \{a \in \mathcal{A} : \hat{p}_a \leq \frac{1}{\hat{m}}\}.$
- 10: Let $T_A := \frac{T}{2|A|}$ be times to sample each $a \in A$.
- 11: **for** $a = do(X_i = x) \in A$ **do**
- 12: **for** $t \in 1, ..., T_A$ **do**
- 13: Intervene with a and observe Y_t
- 14: Re-estimate $\hat{\mu}_a = \frac{1}{T_A} \sum_{t=1}^{T_A} Y_t$
- 15: **return** estimated optimal $\hat{a}_T^* \in \arg \max_{a \in \mathcal{A}} \hat{\mu}_a$

"before the agent takes the next action, it observes further samples for all non-intervened variables"

Source

Off-Policy Policy Evaluation

Off-policy policy evaluation (OPPE) is a problem in reinforcement learning where the goal is to evaluate a given policy (evaluation policy) using data generated by a different one (behaviour policy).

The off-policy evaluation problem is challenging because the data generated by the behaviour policy may not be representative of the target policy, leading to bias in the estimates.

Example. SQL Injection Attack

Example. RL as Hacker

Table 1. Example of mutations

Mutation	Example
	admin OR $1=1\# \Rightarrow$ admin oR $1=1\#$
Whitespace Substitution	$ admin OR 1=1\# \Rightarrow admin \t \ 1=1\# $
Comment Injection	admin OR $1=1\# \Rightarrow \text{admin } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Epoch	min reward	max reward	avg. regard	avg. episode length
1	-21.40	-5.01	0.00	19.60
2	-16.36	-4.29	0.00	15.88
3	-18.75	-3.43	0.00	12.07
7	-18.75	-1.51	0.00	7.04

Example. RL as Hacker

Model	Accuracy
	99,75%
RoBERTa Fine-tuned (SQL)	99,75%
Roberta Custom tokenizer	

Example. Causal problem: Soft-intervention

Example. Estimators

$$V_{DM}^{\pi}(s) = E_n\left[\sum_{a \in A} \pi_e(a|s_0^{(i)})q(s_0^{(i)}, a; \phi)\right] = n^{-1} \sum_{i=0}^{N} \sum_{a \in A} \pi_e(a|s_0^{(i)})q(s_0^{(i)}, a; \phi)$$

$$V_{IS}^{\pi_e} = E_n[\omega_{0:T-1}\sum_{t=0}^{T-1}\gamma^t r_t] = n^{-1}\sum_{i=0}^N \omega_{0:T-1} G_i \qquad \omega_{0:T-1} = \prod_{t=0}^{T-1}\pi_e(a_t|s_t)/\pi_b(a_t|s_t)$$

Example. Results

Measure	Value
Theoretical Maximum Reward	
	-1.2624
Real V_{π_b} (random agent)	-6.2203
Avg. Estimated V_{π_e} (10 experiments of 200 episodes)	-4.5136
RSME estimated V_{π_e} (10 experiments of 200 episodes)	
STD estimated V_{π_e} (10 experiments of 200 episodes)	0.1580

Measure	
	0.0
	-1.2624
Real V_{π_b} (random agent)	-6.2203
Estimated V_{π_e} (10 experiments of 200 episodes)	1.0745
RSME estimated V_{π_e} (10 experiments of 200 episodes)	
STD estimated V_{π_e} (10 experiments of 200 episodes)	0.1423