prostopadła do płaszczyzny wyznaczonej przez punkty K, L i E i w konsekwencji $\angle KEL = \beta$. Z porównania trójkątow równoramiennych $\triangle KCL$ i $\triangle KEL$, mających wspólną podstawę oraz $|KE| < |KC| \ (|KE| \text{ jest przyprostokątną})$, wnioskujemy, że $\angle KEL = \beta > \angle KCL = \frac{\pi}{2}$, zatem dziedziną dla kąta β jest przedział $\left(\frac{\pi}{2}, \pi\right)$.

W celu wyznaczenia wysokości czworościanu oznaczmy przez S środek kwadratu OKCL. Wówczas $|ES|=|SK|\mathrm{ctg}\frac{\beta}{2}=\frac{r}{\sqrt{2}}\mathrm{ctg}\frac{\beta}{2}$. Poprowadźmy płaszczyznę przechodzącą przez DO oraz przez C. Przekrój czworościanu tą płaszczyzną pokazano na rysunku 29. Z twierdzenia Pitagorasa w $\triangle ESC$ mamy $|EC|^2=|SC|^2-|ES|^2=\frac{r^2}{2}-\frac{r^2}{2}\mathrm{ctg}^2\frac{\beta}{2}=r^2\frac{-\cos\beta}{2\sin^2\frac{\beta}{2}}$. Z podobieństwa trójkątów $\triangle ESC$ i $\triangle DOC$ dostajemy proporcję $\frac{H}{|OC|}=\frac{|ES|}{|EC|}$. Stąd

$$H = \frac{|OC||ES|}{|EC|} = \frac{r^2 \operatorname{ctg}\frac{\beta}{2}}{r\sqrt{\frac{-\cos\beta}{2\sin^2\frac{\beta}{2}}}} = r\sqrt{2}\frac{\cos\frac{\beta}{2}}{\sqrt{-\cos\beta}}.$$
 (8)