#HW3 Cell Based Phased-Locked Loop Design report

♦ Group member

- 1. Department ESS, Name 林士登, ID: 110011207
- 2. Department EE , Name 陳立珩, ID : 110011222

♦ Contribution

- 1. 林士登 Verilog code, Testbench, Synthesis, Layout testing and Simulations, Final summary report
- 2. 陳立珩 Verilog code, Testbench, Synthesis, Layout testing and Simulations

♦ Outline

- 1. PLL Architecture
- 2. PLL waveform and frequency comparison (pre-layout / post-layout)
- 3. Functional cells in PLL
- 4. Gate-level synthesis / Gate simulation report
- 5. Layout generation and analysis

♦ Results and Analysis

1. PLL Architecture

The graph indicated above represents our main PLL architecture. The main goal of the PLL is to achieve a 92MHz output clk signal with input reference clk of 1MHz. In addition to the general PLL design approach, we designed the controller and DCO more resilient to prevent the frequency divider from feeding in some glitch generated during the alpha code transition, the functional blocks and their corresponding function will be shown in the following part in our report (part 3.).

2. PLL waveform and frequency comparison

('PLL.v' and 'PLL_tb.v' code file is included in the submit area)

Pre-sim

(entire timeline vs. frequency acquisition)

- \checkmark alpha = 10, period = 10.848ns, frequency = 92.183MHz
- \checkmark alpha = 11, period = 10.976ns, frequency = 91.108MHz
- ✓ The average clock cycle times of clk_out observed over 10 clock cycles after the frequency acquisition is 10.848ns, the error compared to the ideal clock cycle time is | 10.848 10.87 | = 0.022ns, which is 0.2% in percentage.

Post-sim

(entire timeline vs. frequency acquisition)

- \checkmark alpha = 6, period = 10.807ns, frequency = 92.533MHz
- \checkmark alpha = 7, period = 10.941ns, frequency = 91.399MHz
- The average clock cycle times of clk_out observed over 10 clock cycles after the frequency acquisition is 10.807ns, the error compared to the ideal clock cycle time is |10.807 10.87| = 0.063ns, which is 0.6% in percentage.

Comparison of waveforms: The gate delays in post-layout is larger than those in pre-layout, which results in faster starting of frequency acquisition.

3. Functional cells in PLL

(phase detector.v / frequency divider.v / controller.v / DCO.v is included)

1 Phase detector

✓ *I0*:

Input: clk_ref(clk), clk_div(clk_div), rst_n(rst_n)

Output: lead(lead), lag(lag)

✓ Logic diagram:

✓ Operating mechanism:

If clk_div lags clk_ref, then the phase detector produces a lag pulse. If clk_div is ahead of clk_ref, the phase detector produces a lead pulse. When both clk_div and clk_ref arrive, reset the lead and lag signals to 0.

2 Controller

✓ *I0*:

Input: clk_dco(clk_dco), clk_ref(clk_ref), lead(lead), lag(lag), rst_n(rst_n) Output: alpha(alpha), alpha _next(alpha_next)

✓ Logic diagram:

✓ Operating mechanism:

The controller is designed to detect the lead lag signal every 64 clk_ref cycles (counter = 64). If clk_div is ahead of clk_ref (lead), the alpha_next value will be incremented by 1. Otherwise, the alpha_next value will be decremented by 1. In addition, we designed to pass alpha_next to alpha when encountering clk_dco negative edge (because we found that switching code at negative edge clk_dco may eliminate glitches)

③ <u>DCO</u>

✓ *I0*:

Input: enable(enable), rst_n(rst_n),alpha(alpha),alpha_next(alpha_next)
Output: clk_dco(clk_dco)

✓ Logic diagram:

✓ Operating mechanism:

The design is as same in HW2, but in order to eliminate glitches, we deliberately switch the lambda code when alpha == alpha_next.

4 Frequency divider

✓ *I0*:

Input: clk_in(clk_dco), rst_n(rst_n), N(N)

Output: clk_out(clk_div)

✓ Logic diagram:

✓ Operating mechanism:

We designed a counter to calculate N/2, then declare a variable cnt_tmp. If the value of counter is equal to N/2, reset the counter and continue the loop. Next, we designed a flip-flop with an input clk_tmp and an output clk_out, which changes (~clk_tmp) every N/2 times. Finally, a clock with frequency of (clk_in)/N can be generated.

4. Gate-level synthesis / Gate simulation report

Area Report

 Combinational area:
 913.046416

 Buf/Inv area:
 491.803210

 Noncombinational area:
 1157.889605

 Macro/Black Box area:
 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 2070.936021

Total area: undefined

1 The total area shown in the 'PLL_syn.report' file is 2070.936021 um².

② The number of final gate count is 2070.936021 / 2.8224 = 733.75.

Power Report

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%) Attrs
io_pad	0.0000	0.0000	0.0000	0.0000	(0.00%)
memory	0.0000	0.0000	0.0000	0.0000	(0.00%)
black_box	0.0000	0.0000	0.0000	0.0000	(0.00%)
clock_network	0.0000	0.0000	0.0000	0.0000	(0.00%)
register	1.5906e-02	2.1521e-04	5.9499e+05	1.6716e-02	(12.98%)
sequential	2.6711e-02	6.3730e-05	2.3286e+06	2.9104e-02	(22.60%)
combinational	5.1189e-02	2.4078e-02	7.6650e+06	8.2932e-02	(64.41%)
Total	9.3806e-02 mW	2.4357e-02 mW	1.0589e+07 pW	0.1288	mW		

- ① Cell Internal Power = $93.806 \, \text{uW}$ (74%)
- ② Net Switching Power = $24.357 \, \text{uW} (26\%)$
- ③ Total Dynamic Power = 93.806 + 24.357 = 118.163 uW (100%)
- 4 Cell Leakage Power = 10.589 uW
- \bigcirc Total Power = 0.1288 mW

5. Layout generation and analysis

Physical view

Amoeba view

Area Report

Layout total area = 2075.170 um^2 .

innovus 2> report_ar Hinst Name	ea Module Name	Inst Count	Total Area
PLL	<pre>phase_detector frequency_divider frequency_divider_DW01_inc_0_DW01_inc_2 controller DC0</pre>	241	2075.170
U0		4	38.808
U1		31	258.250
U1/add_18_aco		7	60.682
U2		43	461.462
U3		163	1316.650

Power Report

Total Power			
Total Internal Power: Total Switching Power: Total Leakage Power: Total Power:	0.07820970 0.01688925 0.00710033 0.10219927	76.5267% 16.5258% 6.9475%	

- 1. Total Internal Power = 0.07820970 mW
- 2. Total Switching Power = 0.01688925 mW
- 3. Total Leakage Power = 0.00710033 mW
- 4. Total Power = 0.10219927 mW