

低飽和型レギュレータ

■概要

NJM2845/46はバイポーラプロセスを使用し、ローノイズ、高リップル除去比を実現した低飽和型レギュレータです。

TO-252パッケージに搭載し、出力電流800mA、小型2.2μFセラミックコンデンサ対応の為、民生機器からポータブル機器まで幅広いアプリケーションに最適です。

NJM2846はON/OFFコントロール端子付きのため、OFF時の 消費電流を低減させることができます。

外形

NJM2845DL1

NJM2846DL3

■ 特 徴

● 高リップル除去比◆ ローノイズ75dB typ. (f=1kHz)Vno=45µVrms (Vo=3V品)

● 2.2µFセラミックコンデンサ対応 (Vo>2.6V品)● 出力電流 lo(max.)=800mA

● 高精度出力電圧 Vo ±1.0%

● 低入出力間電位差 0.18V typ. (Io=500mA時)

● ON/OFF機能付き (NJM2846)

● サーマルシャットダウン回路内蔵

● 過電流保護回路内蔵

● バイポーラ構造

● パッケージ TO-252-3 (NJM2845DL1), TO-252-5 (NJM2846DL3)

■ 端子配列

NJM2845DL1

5.NC

NJM2846DL3

■ 等価回路図

NJM2845/46

■ 出力電圧ランク

品 名	出力電圧
NJM284*DL*-15	1.5V
NJM284*DL*-18	1.8V
NJM284*DL*-02	2.0V
NJM284*DL*-22	2.2V
NJM284*DL*-23	2.3V
NJM284*DL*-25	2.5V
NJM284*DL*-03	3.0V
NJM284*DL*-33	3.3V
NJM284*DL*-04	4.0V
NJM284*DL*-05	5.0V

出力電圧設定範囲: 1.5~5.0V (0.1V step)

■ 絶対最大定格

(Ta=25°C)

項目	記号	定格	単 位	
入力電圧	V _{IN}	+14	V	
コントロール電圧	V_{CONT}	+14(*1)	V	
消費電力	P_D	P _D 10(Tc≤25°C) 1.0(Ta≤25°C)		
動作温度	Topr	-40 ~ +85 °C		
保存温度	Tstg	-40 ~ +150	°C	

(*1): NJM2846のみに適用。入力電圧が14V以下の場合は入力電圧と等しくなります。

■ 入力電圧範囲

V_{IN}=+2.5V(出力電圧 Vo: 2.3V 未満の製品)~+(Vo+9V)

■ NJM2845

■ 電気的特性 (V_{IN}=Vo+1V, C_{IN}=0.33μF, Co=2.2μF(1.7V<Vo≤2.6V: Co=4.7μF, Vo≤1.7V: Co=10μF), Ta=25°C)

,				. ,		
項目	記号	条件	最 小	標準	最大	単 位
出力電圧	Vo	lo=30mA	-1.0%	ı	+1.0%	V
無負荷時無効電流	ΙQ	lo=0mA	-	400	600	μΑ
出力電流	lo	Vo - 0.3V	800	1050	1	mA
ラインレギュレーション	$\Delta Vo/\Delta V_{IN}$	V _{IN} =Vo+1V ~ Vo+6V, lo=30mA	-	ı	0.10	%/V
ロードレギュレーション	ΔVo/Δlo	lo=0 ~ 800mA	-	ı	0.004	%/mA
入出力間電位差(*2)	ΔV_{I-O}	lo=500mA	-	0.18	0.28	V
リップル除去比	RR	ein=200mVrms, f=1kHz, lo=10mA, Vo=3V品	-	75	ı	dB
出力電圧温度係数	∆Vo/∆Ta	Ta=0 ~ 85°C, lo=10mA	-	± 50	-	ppm/°C
出力雑音電圧	V_{NO}	f=10Hz~80kHz, lo=10mA, Vo=3V品	-	45	ı	μVrms

(*2): 出力電圧 Vo: 2.3V未満の製品は除く。

各出力電圧共通表記としているため、個別仕様書とは異なることがあります。

別途仕様書にて確認の程、お願いいたします。

■ 消費電力 - 周囲温度特性例

■ 測定回路図

*3 1.7V<Vo \leq 2.6V version: Co=4.7 μ F(ceramic) Vo \leq 1.7V version: Co=10 μ F(ceramic)

■ 応用回路例

NJM2845/46

■ NJM2846

■ 電気的特性 (V_{IN}=Vo+1V, C_{IN}=0.33µF, Co=2.2µF(1.7V<Vo≤2.6V: Co=4.7µF, Vo≤1.7V: Co=10µF),Ta=25°C)

項目	記号	条件	最 小	標準	最大	単 位
出力電圧	Vo	lo=30mA	-1.0%	-	+1.0%	V
無負荷時無効電流	ΙQ	lo=0mA	-	400	600	μΑ
OFF時消費電流	I _{Q (OFF)}	V _{CONT} =0V			100	nA
出力電流	lo	Vo - 0.3V	800	1050	-	mA
ラインレギュレーション	$\Delta Vo/\Delta V_{IN}$	V _{IN} =Vo+1V ~ Vo+6V, lo=30mA	-	-	0.10	%/V
ロードレギュレーション	ΔVο/ΔΙο	lo=0 ~ 800mA	-	-	0.004	%/mA
入出力間電位差(*5)	ΔV_{I-O}	lo=500mA	-	0.18	0.28	V
リップル除去比	RR	ein=200mVrms, f=1kHz, lo=10mA, Vo=3V品	1	75	ı	dB
出力電圧温度係数	∆Vo/∆Ta	Ta=0 ~ 85°C, lo=10mA	-	± 50	1	ppm/°C
出力雑音電圧	V_{NO}	f=10Hz~80kHz, lo=10mA, Vo=3V品	-	45	1	μVrms
コントロール電流	I _{CONT}	V _{CONT} =1.6V, Io=0mA	-	3	12	μΑ
出力ON制御電圧	V _{CONT(ON)}		1.6	- 1	-	V
出力OFF制御電圧	V _{CONT(OFF)}		-	-	0.6	V

^{(*5):} 出力電圧 Vo: 2.3V未満の製品は除く。

各出力電圧共通表記としているため、個別仕様書とは異なることがあります。

別途仕様書にて確認の程、お願いいたします。

■ 消費電力 - 周囲温度特性例

■ 測定回路図

*6 1.7V<Vo \leq 2.6V version: Co=4.7 μ F(ceramic) Vo \leq 1.7V version: Co=10 μ F(ceramic)

■ 応用回路例

① ON/OFF機能を使用しないとき

*7 1.7V<Vo \leq 2.6V version: Co=4.7 μ F Vo \leq 1.7V version: Co=10 μ F

コントロール端子はVINに接続してください。

② ON/OFF機能を使用したとき

*7 1.7V<Vo≤2.6V version: Co=4.7 μ F Vo≤1.7V version: Co=10 μ F

コントロール端子はHレベルでONし、オープンもしくはGNDレベルでOFFします。

コントロール端子 - VIN間に抵抗Rを接続する場合

コントロール端子 - V_{IN}間にプルアップ抵抗Rを接続するとコントロール電流は低減されますが、出力ON制御の最低電圧は上昇します。

また、出力ON制御の最低電圧/電流は周囲温度によって変動しますので、抵抗Rを挿入される場合は特性例の温度特性をご確認の上、起動不良を起こさないようなマージンを持った抵抗値を決定してください。

<入力コンデンサCINについて>

入力コンデンサ C_N は、電源インピーダンスが高い場合や、 V_N 又はGND配線が長くなった場合の発振を防止する効果があります。そのため、推奨値以上(C_N 0.1 μ F)の入力コンデンサ C_N を、 V_N 端子 - GND端子間に、できるだけ配線が短くなるように接続してください。

<出力コンデンサC。について>

出力コンデンサCoは、レギュレータ内蔵のエラーアンプの位相補償のために必要であり、容量とESR(Equivalent Series Resistance: 等価直列抵抗)が回路の安定度に影響を与えます。

本製品では、低ESRのコンデンサで安定動作するよう設計されておりますが、安定動作のためには推奨容量値以上の Coを接続する必要があります。推奨容量値以下のCoを使用すると、内部回路の安定度の低下により、出力ノイズの 増加、レギュレータの発振、等が起こる可能性があります。

このため、ご使用に当たっては、推奨容量値以上のCoをVo端子 - GND端子間に最短配線で接続して下さい。推奨容量値は出力電圧により異なり、低出力電圧品では、大きな容量値を必要とする場合がありますので、出力電圧毎に推奨容量値をご確認ください。

Coは容量値が大きいほど、出力ノイズとリップル成分が減少し、また、出力負荷変動に対する応答性も向上します。

■ 特性列 (NJM2845)

■ 特性列 (NJM2845)

■ 特性列 (NJIM2845)

■ 特性列 (NJM2845)

■ 特性列 (NJIM2846)

■ 特性例 (NJM2846)

■ 特性例 (NJM2846)

■ 特性例 (NJM2846)

NJM2845/46

■ 特性例 (NJM2846)

<注意事項> このデータブックの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの活かな保証を行うものではありませ ん。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。