

Auscultation des barrages voûtes : leurs déplacements radiaux

© La médiathèque EDF / Gérard Halary - Barrage et retenue de Cap Long - (Hautes Pyrénées)

DIRECTION DES ÉTUDES ET RECHERCHES DÉPARTEMENT SURVEILLANCE DIAGNOSTIC MAINTENANCE

Les mesures

❖ Le dispositif d'auscultation exploite

• Pendules : 24 répartis sur 5 lignes

On mesure les déplacements radiaux et tangentiels, soit : 48 mesures.

• Fils : 3 au pied du plot NO

Nivellement : 60 repèresExtensomètres : 295

• Fuites : 17 points de mesure

"état de santé" du barrage

❖ Les mesures de déplacement

- échantillonnage non régulier
- tous les capteurs ne sont pas relevés à la même date

DIRECTION DES ÉTUDES ET RECHERCHES DÉPARTEMENT SURVEILLANCE DIAGNOSTIC MAINTENANCE

Piézomètres

· Problème initial

On considère une antenne à N capteurs recevant des signaux émis par $\textbf{P sources} \ \underline{\textbf{indépendantes}}, \textbf{avec} \ \textbf{P} \leq \!\!\!\! \textbf{N} \quad pour \ 1 \leq i \leq N \quad r_i = \sum^p a_{ij} s_j + b_i$

$$r(t) = A.s(t) + b(t)$$

Hypothèses

Les sources s sont indépendantes = origines physiques différentes, Le bruit est blanc.

Solution

Chercher une matrice séparante B telle que

$$\hat{s}(t) = B.r(t) \approx \Lambda.P.s(t)$$

DIRECTION DES ÉTUDES ET RECHERCHES DÉPARTEMENT SURVEILLANCE DIAGNOSTIC MAINTENANCE

La séparation de sources "L'idée"

- L'étape essentielle : inverser la matrice de mélange sans connaissance a priori sur le mélange ni sur les sources elles-mêmes.
- Propriété : indépendance statistique .
- Les relations statistiques des observations reflètent fidèlement le mélange. En exploitant ces relations, il est possible d'inverser le système et donc de séparer les phénomènes.

La séparation de sources (les méthodes)

· Les méthodes adaptatives

non adaptées à un échantillonnage irrégulier.

• Les méthodes par blocs

Méthodes de séparation fondées sur des cumulants (LACOUME, CARDOSO, COMMON, GAETA ...)

Méthode de séparation basée sur l'utilisation des statistiques d'ordre 2 (SOBI)

• Choix: SOBI car les statistiques d'ordre 4 sont plus difficiles à estimer (1000 points max)

DIRECTION DES ÉTUDES ET RECHERCHES DÉPARTEMENT SURVEILLANCE DIAGNOSTIC MAINTENANCE

Signaux réels (choix des capteurs)

· Critères:

Corrélation entre les signaux capteurs Position géographique Nombre de points de mesure Nature de la mesure

• Résultats:

Les meilleurs résultats sont obtenus avec des capteurs sur une même verticale, de part et d'autre du milieu du barrage.

SOBI

1- Le blanchiment :

W s'obtient à partir de la partie signal de la matrice de covariance des signaux capteurs. lorsque m=n:

$$W = R_y^{-1/2} \qquad R_y = E[y, y^H]$$

2- Calcul de la matrice de rotation :

$$z = W.x$$
 $R_z(\tau) = U.R_s(\tau).U^H$ $\tau \neq 0$

<u>U</u> diagonalise conjointement K matrices de corrélations correspondant à K instants différents (problèmes de dégénérescence)

Conclusion sur la modèle

- La séparation de sources fonctionne sur les signaux de barrage
- Trois sources principales accord avec l'analyse de la DTG.
- Système de surveillance fondé sur la prédiction du déplacement

Réponse du barrage

• Réponse du barrage à la sollicitation thermique La réponse du barrage à la sollicitation thermique est représentée par un filtrage linéaire (MA) de la température de mémoire m, :

$$e_{t}(k) = \sum_{i=0}^{m_{t}-1} h_{t}(i) t(k-i)$$

• Réponse du barrage à la sollicitation mécanique

La réponse du barrage à la sollicitation mécanique est représentée par un filtrage de Volterra transverse d'ordre p de mémoire m_c , sans termes croisés, appliqué à la cote de retenue :

$$e_{c}(k) = h_{c0} + \sum_{m=1}^{p} \sum_{i=0}^{m_{c}-1} h_{cm}(k) c^{m}(k-i)$$

$$\mathbf{H}_{cm} = \left[\mathbf{h}_{cm}(0), \cdots, \mathbf{h}_{cm}(\mathbf{m}_{c} - 1) \right]$$

• Forme vectorielle du système à identifier

Ce filtrage multi-entrées, mono-sortie s'exprime sous une forme vectorielle :

$$y(k) = e(k) + td(k) \quad \text{et} \quad e(k) = \underline{X(k)}H$$

$$\text{avec} \quad \begin{cases} H = [H_{t}, H_{c_{1}, \dots, H_{c_{p}}}]^{T} = [H_{1}, \dots, H_{p+1}]^{T} \\ \underline{X} = [\underline{X}_{1}, \dots, \underline{X}_{p+1}] \end{cases} \quad \text{et} \quad \underline{X}_{j} = \begin{bmatrix} x_{j}(0) & \dots & x_{j}(-m_{j}+1) \\ x_{j}(1) & \ddots & x_{j}(1-m_{j}+1) \\ \vdots & \ddots & \vdots \\ x_{j}(n) & \dots & x_{j}(n-m_{j}+1) \end{bmatrix}$$

• Estimation du filtre H qui minimise l'erreur quadratique moyenne entre l'estimée des effets et la sortie y(k):

$$\hat{\mathbf{H}} = \left(\underline{\mathbf{X}}^{\mathsf{T}}\underline{\mathbf{X}}\right)^{-1}\underline{\mathbf{X}}^{\mathsf{T}}\mathbf{y}(\mathbf{k}) \begin{vmatrix} \hat{e}_{t}(k) = \underline{\mathbf{X}}_{1}(k)\hat{H}_{1}^{T} \\ \hat{t}d(k) = y(k) - \hat{e}(k) \end{vmatrix}$$

DÉPARTEMENT SURVEILLANCE DIAGNOSTIC MAINTENANCI

Conclusion

L'approche présentée effectue une décomposition du déplacement observé suivant les phénomènes physiques générateurs. Elle nous permet d'estimer les déplacements dus respectivement à la température, à la cote de retenue et au vieillissement.

Les coefficients des filtres fournissent une information synthétique sur l'état de santé du barrage, qui sera mise à profit pour le suivi du vieillissement.

