

Classification and Representation

- Video: Classification 8 min
- Reading: Classification 2 min
- Video: Hypothesis Representation 7 min
- Reading: Hypothesis
 Representation
 3 min
- Video: Decision Boundary
 14 min
- Reading: Decision
 Boundary
 3 min

Logistic Regression Model

- Video: Cost Function
 10 min
- Reading: Cost Function 3 min
- Video: Simplified Cost Function and Gradient Descent 10 min
- Reading: Simplified Cost Function and Gradient Descent
 3 min
- Video: Advanced Optimization 14 min
- Reading: Advanced Optimization 3 min

Multiclass Classification

Review

Solving the Problem of Overfitting

Review

<u>°</u>

Cost Function

We cannot use the same cost function that we use for linear regression because the Logistic Function will cause the output to be wavy, causing many local optima. In other words, it will not be a convex function.

Instead, our cost function for logistic regression looks like:

$$J(heta) = rac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_{ heta}(x^{(i)}), y^{(i)})$$
 $\mathrm{Cost}(h_{ heta}(x), y) = -\log(h_{ heta}(x)) \qquad ext{if } \mathrm{y} = 1$
 $\mathrm{Cost}(h_{ heta}(x), y) = -\log(1 - h_{ heta}(x)) \qquad ext{if } \mathrm{y} = 0$

When y = 1, we get the following plot for $J(\theta)$ vs $h_{\theta}(x)$:

Similarly, when y = 0, we get the following plot for $J(\theta)$ vs $h_{\theta}(x)$:

$$\operatorname{Cost}(h_{ heta}(x),y) = 0 ext{ if } h_{ heta}(x) = y \ \operatorname{Cost}(h_{ heta}(x),y) o \infty ext{ if } y = 0 ext{ and } h_{ heta}(x) o 1 \ \operatorname{Cost}(h_{ heta}(x),y) o \infty ext{ if } y = 1 ext{ and } h_{ heta}(x) o 0$$

If our correct answer 'y' is 0, then the cost function will be 0 if our hypothesis function also outputs 0. If our hypothesis approaches 1, then the cost function will approach infinity.

If our correct answer 'y' is 1, then the cost function will be 0 if our