# SCC120 Fundamentals of Computer Science

Introduction to Algorithms

# The Problem of Sorting

#### Input

sequence (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>) of numbers

#### Output (Sorting in increasing order)

Permutation (a'<sub>1</sub>, a'<sub>2</sub>, ..., a'<sub>n</sub>) of the sequence such that a'<sub>1</sub> ≤ a'<sub>2</sub> ≤ ... ≤ a'<sub>n</sub>

#### Example

- Input: 7, -5, 2, 16, 4
- Output: -5, 2, 4, 7, 16



# The Problem of Sorting

- Also applies to alphabet, size of planets, people's heights
- We will be sorting numbers, but algorithm applies to sorting other things as well







# Many Sorting Algorithms

#### For example:

- Insertion Sort
- Merge Sort
- Quick Sort
- Shell Sort

#### **Insertion Sort**

• Go through example: 7, -5, 2, 16, 4

#### Insertion Sort Function

```
void insertionSort (int A[]) {
      for (int i=1; i<A.length; i++) {</pre>
             int x = A[i];
             int j;
             for (j=i-1; j>=0 && A[j]>x; j--) {
                   A[j+1] = A[j];
            A[j+1] = x;
```

#### Insertion Sort: Cost

The outer loop is evaluated n-1 times

How many times is the inner loop evaluated?

Depends on the array to be sorted

#### Insertion Sort: Best-case Cost

Best-case: the array is already completely sorted, so no "shifting" of array elements is required

 We only test the condition of the inner loop once and the body is never executed

- Let cost of operations in outer loop be C<sub>1</sub>
- Let cost of initialisation steps be C<sub>2</sub>

$$T(n) = (n-1) C_1 + C_2$$

#### Insertion Sort: Worst-case Cost

Worst-case: the array is sorted in reverse order, so each item has to be moved to the front of the array

- Let cost of operations in outer loop, neglecting the cost of the inner loop, be C<sub>1</sub> (that is, the cost of the underlined operations)
- Therefore, total cost of the outer loop over n-1 iterations, **neglecting the cost of the inner loop**, is (n-1) C<sub>1</sub>

#### Insertion Sort Worst Case (cont.)

Let the cost of operations of inner loop (underlined) be C<sub>2</sub>

- In first iteration of outer loop, one iteration of inner loop is executed. So cost of inner is C<sub>2</sub>
- In second iteration of outer, two iterations of inner: 2C<sub>2</sub>

In n-1<sup>th</sup> iteration of outer, n-1 iterations of inner: (n-1)C<sub>2</sub>

### Insertion Sort Worst Case (cont.)

Total worst case cost T(n)

= total cost of outer loop (neglecting inner loop) + total cost of inner loop + initialisation cost

= 
$$(n-1) C_1 + C_2 + 2C_2 + ... + (n-1)C_2 + C_3$$
  
=  $(n-1) C_1 + (1 + 2 + ... + (n-1))C_2 + C_3$   
=  $(n-1) C_1 + 0.5n(n-1)C_2 + C_3$   
=  $(n-1) C_1 + 0.5(n^2-n)C_2 + C_3$ 

[By sum of arithmetic series]
Complexity is quadratic because of the n<sup>2</sup> term

#### Insertion Sort: Cost

What's the average case of the insertion sort?

### SCC120 Asymptotic Efficiencies

#### Overview

- Why Big O notation?
- O(1), O(log N), O(N), O(N<sup>2</sup>), O(2<sup>N</sup>)
- Properties of Big O
- Exercise/example

#### Overview

- Why Big O notation?
- O(1), O(log N), O(N), O(N<sup>2</sup>), O(2<sup>N</sup>)
- Properties of Big O
- Exercise/example

#### Cases

- Consider an algorithm A with input of size n
- Worst case for A
  - A particular input of size n that produces the longest running time
  - Insertion sort: array sorted in reverse order
- Average case for A
  - The average runtime over all inputs of size n, assuming some probability distribution over the inputs
- Best case for A
  - A particular input of size n that produces the shortest running time
  - Insertion sort: array in sorted order

### Why Count Steps?

- Example,  $T(n) = 5n^2 + 5$
- Gives a logical idea of an algorithm's runtime in terms of input size
- Independent of machines (and machine-related constants), operating systems, and programming languages

#### Big O notation

- An even more abstract idea
  - If  $T(n) = 5n^2 + 5$ , then T(n) is  $O(n^2)$
  - If  $T(n) = 100n^2 + n + 5$ , then T(n) is  $O(n^2)$
  - Different T(n) but same Big O characterization
- Big O captures asymptotic efficiency of algorithms
  - Running time with size of input in the limit
    - As input increases without bound
  - Captures order of growth

#### O Meaning

- If an algorithm's runtime is O(f(n)), then it means that the algorithm's runtime grows as fast as f(n) in the limit
  - If runtime is O(n²), then runtime grows as fast as n² in the limit

### O(1)

#### Constant time:

O(1) describes an algorithm that will always execute in the same time regardless of input size

Example: accessing any element in array/string

```
bool isFirstElementNull(char str[])
{
    if (str[0] == null)
        return true;
    return false;
}
```

#### O(1)

- Another example we did before:
   Compute average of array of 5 integers
   T(N) = C<sub>1</sub> x 5 + C<sub>2</sub> and this is O(1)
- Exact number does not matter, as long as it is constant (with respect to input size)
- For  $T(N) = C_1 \times 500 + C_2$ , this is still O(1)

In general, T(N) = k (where k is constant) is O(1)

### O(log N)

Logarithmic time (highly efficient):

An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of the input size

#### Example:

```
int count = 0;
while (N > 1) {
    count++;
    N = N/2;
}
```

### O(log N)

Code is T(N) = C<sub>1</sub> x log<sub>2</sub>N + C<sub>2</sub>
 and this is O(log N)

For this code:

```
int count = 0;
while (N > 1) {
    count++;
    N = N/10;
}
```

• This is  $T(N) = C_1 \times \log_{10} N + C_2$ and is also  $O(\log N)$ , even though base 10

### O(N)

#### Linear time:

O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the input size

#### Example:

Search for integer within array

We did this before and we called it linear search

#### O(N)

- Average of N integers: T(N) = C<sub>1</sub> x N + C<sub>2</sub>
   and this is O(N)
- Find minimum of N integers:
   T(N) = C<sub>1</sub> x N + C<sub>2</sub>
   and this is O(N)
- In general, traversing N integers or objects or elements in some way is O(N)
- If N is large, the constants are not significant, so that's why "doubling N doubles the time taken"

# $O(N^2)$ and $O(N^3)$

#### **Quadratic Time:**

An algorithm is said to run in quadratic time if its time execution is proportional to the square of the input size

#### Cubic Time:

An algorithm is said to run in cubic time if its time execution is proportional to the cube of the input size

# $O(N^2)$ and $O(N^3)$

- Code is  $T(N) = C_1N^2 + C_2N + C_3$  and this is  $O(N^2)$
- In general, O(N<sup>c</sup>) where c>=1 is polynomial-time

## $O(2^N)$

Exponential Time (highly inefficient):

An algorithm is said to run in exponential time if its time execution is exponential with respect to its input size

#### Example:

# $O(2^N)$

• Code is  $T(N) = C_1 \times 2^N + C_2$  and this is  $O(2^N)$ 

# $O(2^N)$

- An interesting example: given N bits, list all possible of binary numbers
- There are 2<sup>N</sup> such numbers

- O(3<sup>N</sup>) and O(10<sup>N</sup>) are also exponential-time
- In general, O(c<sup>N</sup>) where c>1 is exponential-time

# Running Time Graphs



# Running Times Table

| n  | Constant O(1) | logarithmic O(log n) | linear O(n) | N-log-N O(n log n) | quadratic O(n²) | cubic O(n <sup>3</sup> ) | exponential $O(2^n)$    |
|----|---------------|----------------------|-------------|--------------------|-----------------|--------------------------|-------------------------|
|    |               |                      |             |                    |                 |                          |                         |
| 2  | 1             | 1                    | 2           | 2                  | 4               | 8                        | 4                       |
| 4  | 1             | 2                    | 4           | 8                  | 16              | 64                       | 16                      |
| 8  | 1             | 3                    | 8           | 24                 | 64              | 512                      | 256                     |
| 16 | 1             | 4                    | 16          | 64                 | 256             | 4,096                    | 65536                   |
| 32 | 1             | 5                    | 32          | 160                | 1,024           | 32,768                   | 4,294,967,296           |
| 64 | 1             | 6                    | 64          | 384                | 4,069           | 262,144                  | 1.84 x 10 <sup>19</sup> |

#### Big O notation

$$O(1) < O(\log N) < O(N) < O(N^2) < O(N^3) < O(2^N)$$

The difference between these can be large!

#### Overview

- Why Big O notation?
- O(1), O(log N), O(N), O(N<sup>2</sup>), O(2<sup>N</sup>)
- Properties of Big O
- Exercise/example

$$T(n) = n^2 + 100n + 500 = O(n^2)$$
 (RED)

$$T(n) = n^2 = O(n^2) \text{ (BLACK)}$$

(In graphs, n on x axis and T(n) on y)







Any lower order terms in the function can be ignored:

$$O(n^3 + n^2 + n + 5000)$$
 =  $O(n^3)$   
 $O(n + n^2 + 5000)$  =  $O(n^2)$   
 $O(1500000 + n)$  =  $O(n)$ 

$$T(n) = \log_{10}(n) = O(\log n) \text{ (RED)}$$

$$T(n) = n^2 = O(n^2) \text{ (BLACK)}$$



 $T(n) = 1000log_{10}(n) = O(log n)$  (RED)

$$T(n) = n^2 = O(n^2)$$
 (BLACK)





 $T(n) = log_{10}(n) + 10000 = O(log n)$  (RED)

 $T(n) = n^2 = O(n^2) \text{ (BLACK)}$ 



Any lower order terms in the function can be ignored:

$$O(n^3 + n^2 + n + 5000)$$
 =  $O(n^3)$   
 $O(n + n^2 + 5000)$  =  $O(n^2)$   
 $O(1500000 + n)$  =  $O(n)$ 

Any constant multiplications in the function can be ignored:

$$O(254n^2 + n) = O(n^2)$$
  
 $O(546n) = O(n)$ 

Big O's can be combined:

$$O(n^2) + O(n) = O(n^2 + n) = O(n^2)$$
  
 $O(n^2) + O(n^4) = O(n^2 + n^4) = O(n^4)$ 

#### **General Rules**

Multiplication by a constant (non-zero k)

$$O(k^*g) = O(g)$$

If an algorithm (it's runtime) is O(g), then running algorithm k times is also O(g)

Product

$$O(g_1) * O(g_2) = O(g_1 * g_2)$$

If algorithm  $a_1$  is  $O(g_1)$  and  $a_2$  is  $O(g_2)$ , then running  $a_2$  from inside  $a_1$  is  $O(g_1*g_2)$ 

Sum

$$O(g_1) + O(g_2) = O(g_1+g_2)$$

If  $a_1$  is  $O(g_1)$  and  $a_2$  is  $O(g_2)$ , then running  $a_1$  and  $a_2$  one after the other is  $O(g_1+g_2)$ 

#### Nota Bene:

- O meaning earlier not entirely accurate
  - O does not mean as fast as; it means not faster than
    - O is an upper bound
  - Θ in fact captures as fast as
    - Θ is an tight (exact) bound
  - $-\Omega$  (Big Omega): grows at least as fast as
    - Ω is a lower bound