1.4 单纯形方法

• 1.4.1 单纯形法一般讨论

• 1.4.2 求初始可行解——两阶段方法

回顾

• 考虑标准形式的LP问题

$$\min f = c^T x$$

$$\begin{cases}
Ax = b \\
x \ge 0
\end{cases}$$

不失一般性,不妨设 $B=\begin{bmatrix}P_1&P_2&\cdots&P_m\end{bmatrix}$ 是一个基. 基变量为 x_1,\cdots,x_m ,非基变量为 $x_{m+1},x_{m+2},\cdots,x_n$

目标函数和基变量可以由非基变量表示为:

$$\begin{cases} f + (c_B^T B^{-1} N - c_N^T) x_N &= c_B^T B^{-1} b \\ x_B + B^{-1} N x_N &= B^{-1} b \end{cases}$$

$$\begin{cases} f + 0.x_1 + 0.x_2 + \cdots + 0.x_m + b_{0(m+1)}x_{m+1} + \cdots + b_{0n}x_n &= b_{00} \\ x_1 & + b_{1(m+1)}x_{m+1} + \cdots + b_{1n}x_n &= b_{10} \\ + b_{2(m+1)}x_{m+1} + \cdots + b_{2n}x_n &= b_{20} \\ \cdots & \cdots & \cdots \\ x_m + b_{m(m+1)}x_{m+1} + \cdots + b_{mn}x_n &= b_{m0} \end{cases}$$

单纯形表

		x_1	x_2	 x_m	x_{m+1}	 x_n
f	b_{00}	0	0	 0	$b_{0(m+1)}$	 b_{0n}
x_1	b_{10}	1	0	 0	$b_{1(m+1)}$	 b_{1n}
x_2	b_{20}	0	1	 0	$b_{2(m+1)}$	 b_{2n}
:	:	:	•	•	:	 :
x_m	b_{m0}	0	0	 1	$b_{m(m+1)}$	 b_{mn}

1.4.1 单纯形方法一般性讨论

假设 $b_{i0} \ge 0, \forall 1 \le i \le m$, 那么 $x = (b_{10}, b_{20}, \dots, b_{m0}, 0, \dots, 0)^T$ 是(LP)问题一个基础可行解.

1. 若 $b_{0j} \leq 0, \forall m+1 \leq i \leq n,$ 那么目标函数 f 在 x 处取到极 小值 $f_{\min} = b_{00}$.

		x_1	x_2	 x_m	x_{m+1}	 x_n
f	b_{00}	0	0	 0 <	$b_{0(m+1)}$	 b_{0n}
x_1	b_{10}	1	0	 0	$b_{1(m+1)}$	 b_{1n}
x_2	b_{20}	0	1	 0	$b_{2(m+1)}$	 b_{2n}
:		:	:	:	•	 :
x_m	$b_{m\emptyset}$	0	0	 1	$b_{m(m+1)}$	 b_{mn}

2. 若存在 $m+1 \le k \le n$ 满足 $b_{0k} > 0$ 且 $b_{ik} \le 0, 1 \le i \le m$, 那么(LP)问题无最优解.

		x_1	x_2	 x_m		x_k	• • •
f	b_{00}	0	0	 0		$b_{0k} > 0$	
x_1	b_{10}	1	0	 0		b_{1k}	• • •
x_2	b_{20}	0	1	 0		$b_{2k} \leq$	0
÷		i	i	÷	÷		÷
x_m	$b_{m\emptyset}$	0	0	 1		b_{mk}	

理由:考虑
$$x = x(\lambda) = (x_1, x_2, \cdots, x_n)^T, \lambda \ge 0$$
, 这里 $x_i = \begin{cases} b_{i0} - b_{ik}\lambda & \text{if } 1 \le i \le m \\ \lambda & \text{if } i = k \\ 0 & \text{if } m+1 \le i \ne k \le n \end{cases}$

3. 若存在 $m+1 \le k \le n$ 满足 $b_{0k} > 0$,且 $\{b_{ik}, 1 \le i \le m\}$ 有正数. 那么考察

$$\theta = \min\{\frac{b_{i0}}{b_{ik}} | b_{ik} > 0, 1 \le i \le m\} = \frac{b_{r0}}{b_{rk}}$$

那么把基变量 x_r 调整为非基变量,同时把非基变量 x_k 调整为基变量. 此时新的基为

$$B' = [P_1, \cdots, P_{r-1}, P_k, P_{r+1}, \cdots, P_m]$$

在单纯形表上,最左列 x_r 被 x_k 替换,同时做初等行变换,使得 x_k 所在列变为标准单位向量.

			x_1	x_2		x_m		x_k		
	f	b_{00}	0	0	• • •	0	• • •	$b_{0k} > 0$		
	x_1	b_{10}	1	0		0		b_{1k}	\cdots	
	:		0	1		•	•	SO.	me > 0	
, , , , , , , , , , , , , , , , , , ,	x_r	b_{r0}	:	:		:		b_{rk}		$\left \frac{b_{r0}}{b_{rk}} \right =$
	•		≥ 0			÷	:		:	
a	c_m	b_{m0}	0	0	• • •	1	• • •	b_{mk}	• • •	

例1 求线性规划问题的最优解

$$\min f = -5x_1 + x_2$$

$$\begin{cases} x_1 - x_2 & \le & 2 \\ -3x_1 + x_2 & \le & 0 \\ x_1 \ge 0, x_2 & \ge & 0 \end{cases}$$

解: 把问题化成标准形式:

$$\min f = -5x_1 + x_2$$

$$\begin{cases} x_1 - x_2 + x_3 &= 2\\ -x_1 + x_2 + x_4 &= 0\\ x_i \ge 0 & i = 1, 2, 3, 4 \end{cases}$$

取基
$$B_1 = \begin{bmatrix} P_3 & P_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,有

		x_1	x_2	x_3	x_4
f	0	5	-1	0	0
x_3	2	1	-1	1	0
x_4	0	-3	1	0	1

		x_1	x_2	x_3	x_4
f	-10	0	\bigcirc 4>0	-5	0
x_1	2	1	(-1)	1	0
x_4	6	0	-2	3	1

$$b_{01} = 5 > 0$$

$$\theta = \min\{\frac{b_{10}}{b_{11}}\}$$

$$= \min\{\frac{2}{1}\}$$

$$= \frac{2}{1}$$

调整基变量和非基变量:

$$x_3 \leftrightarrow x_1$$
$$B_2 = \begin{bmatrix} P_1 & P_4 \end{bmatrix}$$

做初等行变换,使得单 纯形表中新的基变量 x_1 所在列为标准单位向量:

$$r_0 - 5r_1$$
$$r_2 + 3r_1$$

无最优解!

例2 求线性规划问题的最优解

$$\max f = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 & \leq 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 & \leq 20 \\ x_i \geq 0, i = 1, 2, 3, 4 \end{cases}$$

解: 把问题化成标准形式:

$$\min f' = -x_1 - 2x_2 - 3x_3 - 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 &= 20\\ 2x_1 + x_2 + 3x_3 + 2x_4 + x_6 &= 20\\ x_i \ge 0, i &= 1, \dots, 6 \end{cases}$$

 $T(B_1)$

		x_1	x_2	x_3	x_4	x_5	x_6
f'	0	1	2	3	4	0	0
x_5	20	1	2	2	3	1	0
x_6	20	2	1	3	2	0	1

 $T(B_2)$

		x_1	x_2	x_3	x_4	x_5	x_6
f'	$-\frac{80}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{3}$	0	$-\frac{4}{3}$	0
x_4	$\frac{20}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{1}{3}$	0
x_6	$\frac{20}{3}$	$\frac{4}{3}$	$-\frac{1}{3}$	$\frac{5}{3}$	0	$-\frac{2}{3}$	1

$$b_{04} = 4 > 0$$

$$\theta = \min\{\frac{b_{10}}{b_{14}}, \frac{b_{20}}{b_{24}}\}\$$
$$= \min\{\frac{20}{3}, \frac{20}{2}\}\$$
$$= \frac{20}{3}$$

调整基变量和非基变量:

$$x_5 \leftrightarrow x_4$$

$$B_2 = \begin{bmatrix} P_4 & P_6 \end{bmatrix}$$

做初等行变换,使得单 纯形表中新的基变量 x_4 所在列为标准单位向量:

$$\frac{1}{3}r_1$$

$$r_0 - 4r_1$$

$$r_2 - 2r_1$$

 $T(B_2)$

		x_1	x_2	x_3	x_4	x_5	x_6
f'	$-\frac{80}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{3}$	0	$-\frac{4}{3}$	0
x_4	$\frac{20}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	1	$\frac{1}{3}$	0
x_6	$\frac{20}{3}$	$\frac{4}{3}$	$-\frac{1}{3}$	$\left(\frac{5}{3}\right)$	0	$-\frac{2}{3}$	1

 $T(B_3)$

		x_1	x_2	x_3	x_4	x_5	x_6
f'	-28	$-\frac{2}{5}$	$-\frac{3}{5}$	0 0	0	$-\frac{6}{5}$	<u>-</u>
x_4	4	$-\frac{1}{5}$	$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{2}{5}$
x_3	4	$\frac{4}{5}$	$-\frac{1}{5}$	1	0	$-\frac{2}{5}$	$\frac{3}{5}$

$$f_{\text{max}} = -f'_{\text{min}} = 28$$

调整基变量和非基变量:

$$x_6 \leftrightarrow x_3$$
$$B_3 = \begin{bmatrix} P_4 & P_3 \end{bmatrix}$$

做初等行变换,使得单 纯形表中新的基变量 x_3 所在列为标准单位向量:

$$\frac{3}{5}r_2 \\ r_0 - \frac{1}{3}r_2 \\ r_1 - \frac{2}{3}r_1$$

在基变量和非基变量的调换中,可能会有多种选择,造成在单纯形表迭代中,某些可行基重复出现,从而算法不能有限终止. Bland法则对这些选择做了约定.

定理1 对于标准形式的(LP)问题,在Bland法则下,单纯形方法经过有限步迭代后,必然可以得到问题的最优解或者判定无最优解。

1.4.2 求初始可行解 — 两阶段方法

• 单纯形方法需要从一个基础可行解出发, i.e. 找到一个基B, 满足 $B^{-1}b = (b_{01}, b_{02}, \dots, b_{0m})^T \geq 0.$

• 线性规划问题一定有基础可行解,等价的,可行解集R一定有顶点. 但当问题的规模比较大,如何有效地找到一个基础可行解?

给定标准形式的线性规划问题(LP):

$$\min f = c^T x$$

$$\begin{cases}
Ax = b \\
x \ge 0
\end{cases}$$

不妨假设 $b \ge 0$. 考虑辅助的线性规划问题(LP₀):

$$\min Z = y_1 + y_2 + \dots + y_m$$

$$\begin{cases} Ax + y &= b \\ x \ge 0, & y \ge 0 \end{cases}$$

这里辅助量
$$y = (y_1, y_2, \cdots, y_m)^T$$

注意到如果原问题的可行解集R非空,那么在线性映射下

$$\varphi: \mathbb{R}^n \to \mathbb{R}^{n+m}, \qquad (x_1, x_2, \cdots, x_n)^T \mapsto (x_1, x_2, \cdots, x_n, 0, \cdots, 0)^T$$

有:

$$\varphi(R) \subseteq R'$$

从而

a.
$$Z_{\min} \leq \min_{(x,y)\in\varphi(R)} Z = 0$$
.

b. 若R'有极点 $(a_1, a_2, \dots, a_n, 0, \dots 0)^T$,那么 $(a_1, a_2, \dots, a_n)^T$ 是R的极

点.

求初始可行解算法

考虑(LP)问题的辅助问题 (LP₀), 求得最优解 $(\bar{x},\bar{y})^T$, 对应的基为B.

- I. 若 $Z_{\min} > 0$, (LP)问题无可行解.
- II. 若 $Z_{\min} = 0$, 有 $\bar{y}_1 = \bar{y}_2 = \cdots = \bar{y}_m = 0$.
 - 1. 若最优基 B 对应得基变量均为 x 变量,此时基变量为(LP)问题的一个可行基变量.
 - 2. 若 B 对应的基变量含变量 y_r .
 - ① 若T(B) 中,非基变量x在 y_r 所在行的系数均为0, 那么(LP)问题第r个方程是多余的. 可从T(B)删去多余的 y_r 行.
 - ② 若T(B) 中,非基变量x在 y_r 所在行的系数不全为0, 例如 $b_{rk} \neq 0$, 那么可以用非基变量 x_k 将 y_r 置换出.

II-2经过有限步操作,可以达到II-1的情形.

例3 求线性规划问题的最优解

$$\max f = 2x_1 - x_2 + x_3$$

$$\begin{cases} x_1 + x_2 - 2x_3 & \leq 8 \\ 4x_1 - x_2 + x_3 & \geq 2 \\ 2x_1 + 3x_2 - x_3 & \geq 4 \\ x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{cases}$$

解:该问题的标准形式是

$$\min f' = -2x_1 + x_2 - x_3$$

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= 8 \\ 4x_1 - x_2 + x_3 - x_5 &= 2 \\ 2x_1 + 3x_2 - x_3 - x_6 &= 4 \\ x_i \ge 0, & i = 1, \dots, 6 \end{cases}$$

注 $B = \begin{bmatrix} P_4 & P_5 & P_6 \end{bmatrix}$ 是基,但不是可行基!

考虑辅助问题

$$\min Z = y_1 + y_2 + y_3$$

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 + y_1 &= 8 \\ 4x_1 - x_2 + x_3 - x_5 + y_2 &= 2 \\ 2x_1 + 3x_2 - x_3 - x_6 + y_3 &= 4 \\ x_i \ge 0, y_j \ge 0, i = 1, \dots, 6, j = 1, 2, 3. \end{cases}$$

取基 $B_1 = \begin{bmatrix} P_7 & P_8 & P_9 \end{bmatrix}$

		x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
Z	14	7	3	-2	1	-1	-1	0	0	0
y_1	8	1	1	-2	1	0	0	1	0	0
y_2	2	4	-1	1	0	-1	0	0	1	0
y_3	4	2	3	-1	0	0	-1	0	0	1

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_1)$	Z	14	7	3	-2	1	-1	-1	0	0	0
	y_1	8	1	1	-2	1	0	0	1	0	0
	y_2	2	4	-1	1	0	-1	0	0	1	0
	y_3	4	2	3	-1	0	0	-1	0	0	1

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_2)$	Z	$\frac{21}{2}$	0	$\frac{19}{4}$	$-\frac{15}{4}$	1	$\frac{3}{4}$	-1	0	$-\frac{7}{4}$	0
	y_1	$\frac{15}{2}$	0	$\frac{5}{4}$	$-\frac{9}{4}$	1	$\frac{1}{4}$	0	1	$-\frac{1}{4}$	0
	x_1	$\frac{1}{2}$	1	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	0	$\frac{1}{4}$	0
	y_3	3	0	$\frac{7}{2}$	$-\frac{3}{2}$	0	$\frac{1}{2}$	-1	0	$-\frac{1}{2}$	1

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_2)$	Z	$\frac{21}{2}$	0	$\frac{19}{4}$	$-\frac{15}{4}$	1	$\frac{3}{4}$	-1	0	$-\frac{7}{4}$	0
	y_1	$\frac{15}{2}$	0	$\frac{5}{4}$	$-\frac{9}{4}$	1	$\frac{1}{4}$	0	1	$-\frac{1}{4}$	0
	x_1	$\frac{1}{2}$	1	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	0	$\frac{1}{4}$	0
	y_3	3	0	$\left(\frac{7}{2}\right)$	$-\frac{3}{2}$	0	$\frac{1}{2}$	-1	0	$-\frac{1}{2}$	1

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_3)$	Z	$\frac{45}{7}$	0	0	$-\frac{12}{7}$	1	$\frac{1}{14}$	$-\frac{5}{14}$	0	$-\frac{15}{14}$	$-\frac{19}{14}$
	y_1	$\frac{45}{7}$	0	0	$-\frac{12}{7}$	1	$\frac{1}{14}$	$\frac{5}{14}$	1	$-\frac{1}{14}$	$-\frac{14}{5} - \frac{5}{14}$
	x_1	$\frac{5}{7}$	1	0	$\frac{1}{7}$	0	$-\frac{3}{14}$	$-\frac{1}{14}$	0	$\frac{3}{14}$	$\frac{1}{14}$
	x_2	$\frac{6}{7}$	0	1	$-\frac{3}{7}$	0	$\frac{1}{7}$	$-rac{2}{7}$	0	$-\frac{1}{7}$	$\frac{2}{7}$

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_3)$	Z	$\frac{45}{7}$	0	0	$-\frac{12}{7}$	1	$\frac{1}{14}$	$-\frac{5}{14}$	0	$-\frac{15}{14}$	$-\frac{19}{14}$
	y_1	$\frac{45}{7}$	0	0	$-\frac{12}{7}$	1	$\frac{1}{14}$	$\frac{5}{14}$	1	$-\frac{1}{14}$	$-\frac{\overline{5}}{14}$
	x_1	$\frac{5}{7}$	1	0	$\frac{1}{7}$	0	$-\frac{3}{14}$	$-\frac{1}{14}$	0	$\frac{3}{14}$	$\frac{1}{14}$
	x_2	$\frac{6}{7}$	0	1	$-\frac{3}{7}$	0	$\frac{1}{7}$	$-\frac{2}{7}$	0	$-\frac{1}{7}$	$\frac{2}{7}$

	_

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_4)$	Z	6	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$-\frac{3}{14}$	0	-1	$-\frac{3}{2}$
	y_1	6	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{1}{2}$	1	0	$-\frac{1}{2}$
	x_1	$\frac{14}{7}$	1	$\frac{3}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
	x_5	6	0	7	-3	0	1	-2	0	-1	2

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_4)$	Z	6	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$-\frac{3}{14}$	0	-1	$-\frac{3}{2}$
	y_1	6	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{1}{2}$	1	0	$-\frac{1}{2}$
	x_1	$\frac{14}{7}$	1	$\frac{3}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
	x_5	6	0	7	-3	0	1	-2	0	-1	2

			x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	y_3
$T(B_5)$	Z	0	0	0	0	0	0	$-rac{5}{7}$	-1	-1	-1
	x_4	6	0	$-\frac{1}{2}$	$-\frac{3}{2}$	1	0	$\frac{1}{2}$	1	0	$-\frac{1}{2}$
	x_1	$\frac{14}{7}$	1	$\frac{3}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
	x_5	6	0	7	-3	0	1	-2	0	-1	2

 $B_5 = \begin{bmatrix} P_1 & P_4 & P_5 \end{bmatrix}$ 为原问题的一个可行基. 有了可行基 $B_5 = \begin{bmatrix} P_1 & P_4 & P_5 \end{bmatrix}$, 再回到原问题(标准形式)

$$\min f' = -2x_1 + x_2 - x_3$$

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= 8 \\ 4x_1 - x_2 + x_3 - x_5 &= 2 \\ 2x_1 + 3x_2 - x_3 - x_6 &= 4 \\ x_i \ge 0, & i = 1, \dots, 6 \end{cases}$$

此时对应 B_5 的基础可行解为 $x = (2,0,0,6,6,0)^T$

用单纯形法即可求得最优值或着判定无解. 这就是两阶段方法.