Задача 2.1.3

Определение C_p/C_v по скорости звука в газе

Лось Денис (группа 611)

24 апреля 2017

Цель работы: измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубку; определение показателя адиабаты с помощью уравнения состояния идеального газа

В работе используются: звуковой генератор ГЗ, электронный осциллограф ЭО, микрофон, телефон, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

Теоритическая часть

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}$$

Ход работы

- 1. Подберём напряжение на выходе генератора так, чтобы при резонансе на осциллографе наблюдали колебания достаточной амплитуды. Остановим картину на осциллографе. Убедимся в том, что колебания имеют неискажённую синусоидальную форму.
- 2. Измерим скорость звука в углекислом газе. Перед началом колебаний продуем трубу углекислым газом. Для этого при открытом кране подвижную часть трубы несколько раз медленно выдвинем и затем резко вдвинем в трубу. Измерим резонансные максимумы при медленных перемещениях подвижной части трубы как внутрь, так и наружу. Общая длина трубы в выдвинутом состоянии $L=(704\pm5)~{\rm MM}.$

ν, Гц	L , mm
525	804
1270	804
	690
2897	740
	804
4997	804
	688
1748	752
	675
3005	732
	692

Таблица 1: Резонансные максимумы в зависимости от длины выдвинутой части трубы

u, Гц	c , m / c
525	281.4
1270	289.56
2897	370.8
4997	289.8
1748	269.1
3005	270.5

Таблица 2: Скорость звука в углекислом газе

В результате получаем, что

Следовательно, скорость звука для углекислого газа

$$c = (294 \pm 15) \, \frac{\mathrm{M}}{\mathrm{c}}$$

3. Измерим скорость звука в воздухе.

u, Гц	L , mm		
1933	715		
	625		
2600	736		
	672		
	606		
3250	746		
	700		
	649		
4970	732		
	699		
	630		

Таблица 3: Резонансные максимумы в зависимости от длины выдвинутой части трубы

ν , Гц	c , m $/$ c
1933	347.94
2600	332.8
3250	299.0
4970	328.0

Таблица 4: Скорость звука в воздухе

В результате получаем, что скорость звука в воздухе

$$c = (327 \pm 10) \frac{M}{c}$$

4. Приступим к измерениям с помощью второй установки. Измерим скорость звука в трубе постоянной длины. Плавно увеличивая частоту генератора, получим ряд последовательных резонансных значений частоты, отмечая момент резонанса по увеличению амплитуды колебаний на экране осциллографа. Длина трубы $L=(700\pm1)$ мм.

T, °C	1	2	3	4	5
24	258	497	738	995	1220
35	272	508	751	1010	2010
40	270	512	758	1020	1230
45	274	514	771	1024	1278

Таблица 5: Последовательные наборы резонансов для каждой из температур

Рис. 1: Зависимость частоты резонанса от его порядкового номера для 23 °C

Рис. 2: Зависимость частоты резонанса от его порядкового номера для 30 °C

Рис. 3: Зависимость частоты резонанса от его порядкового номера для 35 °C

Рис. 4: Зависимость частоты резонанса от его порядкового номера для 40 °C

T, °C	c, m / c	σ_c , M $/$ c	γ	σ_{γ}
24	339	17	1.35	0.09
30	344	17	1.36	0.1
35	340	17	1.31	0.09
40	352	18	1.38	0.1

Ответ на ряд контрольных вопросов

- 1. В выбранном интервале температур
 γ от температуры практически не зависит.
- 2. При изменении температуры температуры от очень малых значений до температуры $1000~^{\circ}$ С показатель адиабаты γ будем уменьшаться. Зависимость на всём интервале будет достаточно существенной.