

ν_{τ} Appearance in the DUNE Far Detector

Nicholas Chambers¹, Wei Shi², Michael Wilking²

¹University of Arkansas, ²Stony Brook University

Introduction

Fig. 1: $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation probability. Peak energy shifts right with increasing L. Amplitude given by mixing angles $(\theta_{13}, \theta_{23})$. [1]

• Neutrino oscillations were the first recorded instance of physics beyond the Standard Model, and investigations into neutrino phenomena could answer questions in physics related to **Dark Matter** and the **Baryon Asymmetry** problem.

• ν_{μ} will oscillate mostly into ν_{τ} , as depicted by Fig. 1. Despite the high population of ν_{τ} , this oscillation channel remains completely unexplored. Reliable ν_{τ} detection would be another groundbreaking feature of the DUNE experiment.

u_{τ} -Appearance Physics

Why is ν_{τ} detection important?

- PMNS Matrix Unitarity Check
- Measurement of ν_{τ} charged-current (CC) cross-section
- Oscillation parameter measurement ($\theta_{23}, \Delta m_{31}^2$)

Why is $\nu_{ au}$ detection difficult?

- ν_{τ} CC interaction requires E > 3.5 GeV
- au must be inferred from decay products
- Tough to separate τ signal from background (See Fig. 2)

Fig. 2: Feynman diagrams for nutau weak interactions and subsequent tau decays. (Top/bottom) rows represent (signal/background) processes in the cases of hadronic/leptonic) tau decays (left/right) [2]

Previous ν_{τ} Studies

- Current experiments like T2K and Nova cannot probe the $\nu_{\mu} \rightarrow \nu_{\tau}$ channel. DUNE will be the first long-baseline experiment to have a substantial flux of detectable ν_{τ} in its FD. (See *Fig. 3.*)
- Phenomenology reports suggest that a reliable ν_{τ} selection algorithm could result in ν_{τ} discovery in ~2.5 years of measurements

Fig. 3: Neutrino flux in the FD by flavor. A large tail of ν_{τ} (solid red) extends beyond the 3.5 GeV threshold. [2]

Previous ν_{τ}/ν_{μ} Selection

Fig. 4: Stacked histogram of events that pass a naive cut for $\mathcal{V}_{\mathcal{T}}$ selection. Red events are actual $\mathcal{V}_{\mathcal{T}}$.

Fig. 5: Stacked histogram of events that pass the current ν_{μ} selection criteria. Blue events are actual ν_{μ} .

- Current DUNE software utilizes a **visual neural network** to identify ν_e, ν_μ . This neural network is **not well-trained** for ν_τ .
- Fig 5. shows that current ν_{μ} identification performs well
- There is hope for ν_{τ} : many weak classifiers exist based on τ lepton decay kinematics

Boosted Decision Tree

- Each node of events is split according to the variable with the **best separation**
- Single decision tree is useful for a large data set with many weak classifiers but is susceptible to overtraining
- Circumvent overtraining by adaptive boosting – use 800 decision trees
- Previously misclassified events are prioritized in subsequent trees

Fig. 6: Graphical representation of a decision tree.

Source: TMVA User Guide

Results

Fig. 7: (Left/Right) (ν_{τ} weak classifiers / BDT response) values for FD events

Fig. 8: (Left/Right) Stacked histograms of FD events that pass the optimal BDT cut for (Neutrino / Anti-neutrino) beam configurations. Red events are actual ν_{τ} .

Fig. 9: (Left/Right) $\Delta \chi^2$ signal significance given by BDT cut as a function of $(\Delta m_{31}^2/\theta_{23})$. $\Delta \chi^2$ was calculated for neutrino beam configuration and flux histograms were binned according to total hadronic energy deposits in the FD

- Comparing Fig 4. and the left histogram in Fig 8., we see a 3x increase in \mathcal{V}_{τ} discovery significance as well as a drastic increase in signal purity
- Fig 9. shows that our results attain the necessary $\sqrt{\chi^2} > 5\sigma$ significance to claim ν_{τ} discovery across 99% of oscillation parameter values an unprecedented result using the DUNE FD full simulation sample

References & Acknowledgements

[1] Andre de Gouvea, Kevin J. Kelly, G. V. Stenico, and Pedro Pasquini. Physics with beam tauneutrino appearance at dune. Phys. Rev. D, 100:016004, Jul 2019.
[2] Pedro Machado, Holger Schulz, and Jessica Turner. Tau neutrinos at dune: New strategies, new opportunities. Phys. Rev. D, 102:053010, Sep 2020.

This material is based upon work supported by the National Science Foundation under Grant No. NSF PHY-1852143