MATH 239 Spring 2012: Assignment 7 Solutions

- 1. {16 marks} For the following statements, determine whether they are true or false, and give justifications through a proof or counterexample.
 - (a) If there is a u, v-walk of odd length, then there is a u, v-path of odd length.

Solution. False. For example, in the following graph, there exist a u, v-walk of length 5, but the only u, v-path has length 2.

(b) If G is a bipartite graph, then any closed walk has even length.

Solution. True. Let (A, B) be a bipartition of the vertices of G. Let $v_0, v_1, \ldots, v_k = v_0$ be a closed walk in G, which has length k. Without loss of generality, we may assume that v_0 is in A. Since v_0v_1 is an edge, v_1 must be in B. Since v_1v_2 is an edge, v_2 must be in A. Following the same argument, we see that v_0, v_2, v_4, \ldots are in A and v_1, v_3, v_5, \ldots are in B. Since the last vertex $v_k = v_0$ which must be in A, k must be even.

(c) If there is a cycle containing u and v and another cycle containing v and w, then there is a cycle containing u and w.

Solution. False.

(d) Any 3-regular graph must have a Hamilton cycle.

Solution. False. The following graph (considered as one graph) is not connected, and hence has no Hamilton cycle.

2. $\{8 \text{ marks}\}\$ Prove that if G is a graph where every vertex has degree at least k, then G contains a path of length at least k.

Solution. Let v_0, v_1, \ldots, v_m be a path of the longest length in G. Note that neighbours of v_m must all be on the path, for otherwise we may extend the path to get a longer one, contradicting our original choice. Since v_m has degree at least k, it is adjacent to at least k distinct vertices on the path. This implies that $m \geq k$, hence this path has length at least k.

- 3. {16 marks} The Kneser graph $G_{n,k}$ is the graph where the vertices are all k-subsets of [n], and two vertices are adjacent if and only if their corresponding sets are disjoint.
 - (a) Draw $G_{4,1}$ and $G_{5,2}$.

Solution. $G_{4,1}$ is a K_4 , $G_{5,2}$ is the Petersen graph.

(b) How many vertices and edges are there in $G_{n,k}$?

Solution. There are $\binom{n}{k}$ vertices. Each vertex is adjacent to $\binom{n-k}{k}$ other vertices (these are the k-subsets of the n-k element not in our set). Using the handshaking lemma and we see that the number of edges is $\binom{n}{k}\binom{n-k}{k}/2$.

(c) Prove that if $n \geq 3k - 1$, then $G_{n,k}$ is connected.

Solution. We will show that there is a path between $S = \{1, ..., k\}$ and any other vertices. Let T be any k-subset of [n]. If T is disjoint from S, then there is an edge between S and T which forms an S, T-path. Otherwise, $|S \cap T| \ge 1$, and so

$$|S \cup T| = |S| + |T| - |S \cap T| < 2k - 1.$$

Since $n \geq 3k - 1$, we see that

$$|[n] \setminus (S \cup T)| = n - |S \cup T| \ge 3k - 1 - (2k - 1) = k.$$

This means that there are at least k elements of [n] that are not in $S \cup T$. Let U be a k-subset of those elements. Then U is disjoint with both S and T, and S, U, T forms an S, T-path.

(d) Prove that if $n \geq 3k$, then $G_{n,k}$ is not bipartite. As {Extra credit: 4 marks}, prove this statement for $n \geq 2k + 1$.

Solution. It suffices to show this statement for n = 3k, as $G_{3k,k}$ is a subgraph of $G_{n,k}$ for any larger n. In $G_{3k,k}$, we consider the three vertices

$$S = \{1, 2, \dots, k\}, T = \{k + 1, \dots, 2k\}, U = \{2k + 1, \dots, 3k\}.$$

These three vertices are mutually disjoint, hence they are adjacent to each other. This forms a cycle of length 3 in $G_{3k,k}$, hence this graph is not bipartite.

For $n \ge 2k+1$, again we only need to show this for n = 2k+1. We will find a cycle of length 2k+1 as follows: Let $S_1 = \{1, 2, ..., k\}$, $T_1 = \{k+1, k+2, ..., 2k\}$, $S_2 = \{2, 3, ..., k, 2k+1\}$, $T_2 = \{1, k+2, k+3, ..., 2k\}$. For each i = 3, ..., k, we define

$$S_i = \{i, \dots, k\} \cup \{k+1, \dots, k+i-2\} \cup \{2k+1\}, T_i = \{1, \dots, i-1\} \cup \{k+i, \dots, 2k\}.$$

It is easy to check that S_i and T_i are disjoint, and T_i and S_{i+1} are also disjoint. We now define $S_{k+1} = \{k+1, k+2, \dots, 2k-1, 2k+1\}$, which is disjoint from both S_1 and $T_k = \{1, \dots, k-1, 2k\}$. This means that

$$S_1, T_1, S_2, T_2, \dots, S_k, T_k, S_{k+1}$$

is a cycle of length 2k + 1. This implies that $G_{n,k}$ is not bipartite.

Just to illustrate this construction, this cycle in $G_{7,3}$ is $S_1, T_1, S_2, T_2, S_3, T_3, S_4$ where

$$S_1 = \{1, 2, 3\}$$

$$T_1 = \{4, 5, 6\}$$

$$S_2 = \{2, 3, 7\}$$

$$T_2 = \{1, 5, 6\}$$

$$S_3 = \{3, 4, 7\}$$

$$T_3 = \{1, 2, 6\}$$

$$S_4 = \{4, 5, 7\}$$

4. {10 marks} Let a_n be the number of cycles of length 4 in an *n*-cube. So $a_1 = 0, a_2 = 1, a_3 = 6$. For $n \ge 1$, determine an explicit formula for a_n .

(Hint: There are at least 2 ways to solve this question. One way is to use the recursive construction of the n-cube to generate a recurrence relation, and solve it. Another way is to enumerate certain pairs of binary strings.)

Solution. Recall that we can construct the n-cube by taking two copies of the (n-1)-cube and join corresponding vertices of the two copies with an edge. Let's call the two copies C and C' where a vertex v in C is joined to the vertex v' in C'. Each 4-cycle in C and C' is still a 4-cycle in the n-cube. There are a_{n-1} of those 4-cycles, so this accounts for $2a_{n-1}$ 4-cycles in the n-cube. In addition, for each edge st in C, we have an additional 4-cycle s, t, t', s' in the n-cube. Since there are $2^{n-2}(n-1)$ edges in C, this accounts for an additional $2^{n-2}(n-1)$ 4-cycles in the n-cube. So a_n satisfies the recurrence

$$a_n = 2a_{n-1} + n2^{n-2} - 2^{n-2}.$$

The homogeneous part of the solution is $A \cdot 2^n$. For a specific solution, we need to use

$$b_n = \alpha n^2 2^{n-2} + \beta n 2^{n-2}.$$

This will give us

$$b_n - 2b_{n-1} = \alpha n^2 2^{n-2} + \beta n 2^{n-2} - 2\alpha (n-1)^2 2^{n-3} - 2\beta (n-1) 2^{n-3}$$
$$= 2\alpha n 2^{n-2} - \alpha 2^{n-2} + \beta 2^{n-2}$$

This means that $2\alpha = 1$, so $\alpha = 1/2$. And $\beta - \alpha = -1$, so $\beta = -1/2$. Therefore, a specific solution is

$$b_n = n^2 2^{n-3} - n2^{n-3}.$$

The general solution is

$$a_n = A \cdot 2^n + (n^2 - n)2^{n-3}$$
.

Plugging in $a_1 = 0$, we get that A = 0. So the solution for a_n is

$$a_n = (n^2 - n)2^{n-3}.$$

Alternate solution. Let A be the set of all pairs (s,t) of binary strings of length n where s and t differ in exactly 2 positions. There are 2^n ways to choose s, and for each s, there are $\binom{n}{2}$ ways to choose t (just pick the two positions to change). So $|A| = 2^n \binom{n}{2}$.

Now for each 4-cycle a,b,c,d in the n-cube, notice that the opposite ends a,c or b,d are binary strings that differ in exactly two positions. For each such cycle, we create 4 pairs in A: (a,c),(c,a),(b,d),(d,b). So then the number of 4-cycles in the n-cube is $|A|/4=2^{n-2}\binom{n}{2}$. (Note that this is exactly the same as our previous solution when you expand $\binom{n}{2}=n(n-1)/2$.)