

(a) trovo c:
$$-2 = -\sqrt{\frac{1}{C-2}}$$
; $4 = \frac{1}{C-2}$; $4 = -\frac{1}{C-2}$; $4 = -\frac{1}{C-$

3)
$$\int u^2 = -\frac{1}{5}t^5 + C$$
 where $\int u(t) = +\sqrt{C} - \frac{2}{5}t^5$ so the pure could curicy.

(a) $u(t) = \sqrt{C} - \frac{2}{5} = 7$ where $\int u(t) = +\sqrt{C} - \frac{2}{5}t^5$ so the pure could curicy.

(b) $u(t) = \sqrt{C} - \frac{2}{5} = 7$ where $\int u(t) = \sqrt{C} + \frac{247}{5}$ so the pure $\int u(t) = \sqrt{C} + \frac{2$