Neural Networks and Deep Learning Project Report: [CIFAR-100 Image Classification]

Dwaipayan Nandi, 12021002016040(28)

November 26, 2023

Dataset Chosen: CIFAR-100

Objective:

The objective of this project is to develop a convolutional neural network (CNN) for image classification. The CNN will be trained on a large dataset of images and will be able to classify new images into one of a predefined set of categories

CNN Architecture:

Layer	Type	Output Shape	
$conv2d_1$	Conv2D	(None, 32, 32, 64)	
$conv2d_2$	Conv2D	(None, 32, 32, 64)	
max_pooling2d_1	MaxPooling2D	(None, 16, 16, 64)	
dropout_1	Dropout	(None, 16, 16, 64)	
conv2d_3	Conv2D	(None, 16, 16, 128)	
$conv2d_4$	Conv2D	(None, 16, 16, 128)	
$max_pooling2d_2$	MaxPooling2D	(None, 8, 8, 128)	
dropout_2	Dropout	(None, 8, 8, 128)	
$conv2d_5$	Conv2D	(None, 8, 8, 256)	
$conv2d_6$	Conv2D	(None, 8, 8, 256)	
$max_pooling2d_3$	MaxPooling2D	(None, 4, 4, 256)	
dropout_3	Dropout	(None, 4, 4, 256)	
$conv2d_7$	Conv2D	(None, 4, 4, 512)	
$conv2d_8$	Conv2D	(None, 4, 4, 512)	
$max_pooling2d_4$	MaxPooling2D	(None, 2, 2, 512)	
dropout_4	Dropout	(None, 2, 2, 512)	
flatten	Flatten	(None, 2048)	
dense	Dense	(None, 2000)	
dropout_5	Dropout	(None, 2000)	
dense_1	Dense	(None, 1000)	
dropout_6	Dropout	(None, 1000)	

Layer	Type	Output Shape
dense_2	Dense	(None, 500)
dropout_7	Dropout	(None, 500)
dense_3	Dense	(None, 100)

We have used **Data Augmentation** to artificially increase the size of a training dataset by creating new training examples from existing ones. These extra images were used as validation dataset and also helps us to increase the accuracy of the result.

Results:

Validation Accuracy: 57.52 %

Test Accuracy: 56.93 %

Validation Loss: 1.75

Test Loss: 1.75

Loss and Accuracy Plots

Conclusion

This project has successfully developed a (CNN) for image classification trained on CIFAR-100 and was able to achieve an accuracy of 56.93%. This is a good result, given the complexity of the task. The CNN was able to correctly classify a wide variety of images, including animals, objects, and scenes. The project also investigated the use of data augmentation to improve the performance of the CNN.