

Minería de datos y Patrones

Version 2025-I

Aprendizaje supervisado – Intro

Dr. José Ramón Iglesias
DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Aprendizaje supervisado – Intro

Esquema: Aprendizaje supervisado

Marco global

<u>Generalidades</u>

Contexto te 'orico

Marco matem 'atico

Ejemplos

<u>Aprendizaje</u>

Funci 'on de costo

<u>Errores, complejidad y</u> <u>sobre-aprendizaje</u>

Regularizaci 'on

Optimizaci 'on

Evaluacion de la predicci´on

M'etricas de clasificaci'on

M'etricas de regresi'on

Muestro para validaci 'on

Marco global

Outline: Marco global

Marco global

<u>Generalidades</u>

Contexto teorico

<u>Aprendizaje</u>

Evaluacion de la predicci´on

Outline: Generalidades

Marco global

<u>Generalidades</u>

Contexto teorico Aprendizaje

Evaluacion de la predicci´on

Aprendizaje supervisado

Descriptores y etiquetas

Atributos

es.	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Figure 1: Un base de datos estructurados

Atributos

• Imágenes: Histograma de colores

 Sonidos: Representación tiempofrecuencia

En

I Tener datos etiquetados

II **Extraer los descriptores** = transformar documentos en vectores

III Crear un modelo matemático f_{θ}

- VI **Implementar una función de costo (error)** ℓ a minimizar
- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

En resumen

I Tener datos etiquetados

- Conjunto de datos de tamaño n_i , $D_n = \{(Doc_i, Y_i), i = 1..n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del pr'estamo concedido)
- II **Extraer los descriptores** = transformar documentos en vectores
- III Crear un modelo matemático f_{θ}

- VI Implementar una función de costo (error) ℓ a minimizar
- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

En resumen

I Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1..n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
- II **Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)
- III Crear un modelo matemático f_{θ}

- VI Implementar una función de costo (error) ℓ a minimizar
- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

En

I.Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1..n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

II.Extraer los descriptores = transformar documentos en vectores

- X es un vector de observaciones (por ejemplo: edad, sexo, salario)
- Y son las etiquetas (por ejemplo: monto del pr'estamo concedido)

III.Crear un modelo matemático f_{θ}

- Modelo f_{θ} tal que $f_{\theta}(\mathbf{X})$ está cerca de Y (para regresión)
- θ es el conjunto de parámetros del modelo matemático

VI **Implementar una función de costo (error)** ℓ a minimizar

- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeñ o
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

I.Tener datos etiquetados

- Conjunto de datos de tamaño n_i , $D_n = \{(Doc_i, Y_i), i = 1...n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

II.Extraer los descriptores = transformar documentos en vectores

- X es un vector de observaciones (por ejemplo: edad, sexo, salario)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III.Crear un modelo matemático f_{θ}

- Modelo f_{θ} tal que $f_{\theta}(\mathbf{X})$ esté cerca de Y (para regresión)
- θ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequeño V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño

VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

I.Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1..n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

II.Extraer los descriptores = transformar documentos en vectores

- X es un vector de observaciones (por ejemplo: edad, sexo, salario)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III.Crear un modelo matemático f_{θ}

- Modelo f_{θ} tal que $f_{\theta}(\mathbf{X})$ esté cerca de Y (para regresión)
- θ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequeño
- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño Σ
 - equeno $\sum_{i} \ell(f_{\theta}(\mathbf{X}_{i}), Y_{i})$
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

En resumen

I.Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1..n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 II.Extraer los descriptores = transformar documentos en vectores
- X es un vector de observaciones (por ejemplo: edad, sexo, salario)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III.Crear un modelo matemático f_{θ}

- Modelo f_{θ} tal que $f_{\theta}(\mathbf{X})$ esté cerca de Y (para regresión)
- θ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequen o
- V Encontrar los parámetros ϑ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequenaron $\ell(f_{\theta}(\mathbf{X}_i), Y_i)$
- VI Probar f_{θ^*} en nuevos datos con una métrica de evaluación adecuada

Outline: Contexto teórico

Marco global

<u>Generalidades</u>

Contexto te orico

Marco matem 'atico

Ejemplos

<u>Aprendizaje</u>

Evaluacion de la predicci´on

Aprendizaje supervisado I

Marco matemático

- Medida de entrada: $\mathbf{X} = (X^{(1)}, X^{(2)}, ..., X^{(d)}) \in X$
- Medida de salida: $Y \in Y$
- $(X, Y) \sim \mathbf{P}$ donde \mathbf{P} es desconocido
- Conjunto de entrenamiento: $D_n = (\mathbf{X}_1, Y_1), ..., (\mathbf{X}_n, Y_n)$
- A menudo:
 - $\mathbf{X} \in \mathbb{R}^d$ y $Y \in J1, ..., C$) para una tarea de clasificación
 - $\mathbf{X} \in \mathbb{R}^d$ y $Y \in \mathbb{R}$ para una tarea de regresion

Un clasificador es una función en $F = \{f : X \rightarrow Y\}$

Objetivo

Construir un clasificador \hat{f} satisfactorio utilizando los datos de entrenamiento. Atención: \hat{f} depende de D_n .

Aprendizaje supervisado II

Aprendizaje, tarea, medida de rendimiento

- Conjunto de entrenamiento: $Dn = (X1, Y_1), ..., (X_n, Y_n)$
- Clasificador: $f: X \to Y$ (medible).
- Función de costo/pérdida: ℓ(Y, f(X)) mide la calidad de la predicción de f en relación con Y
- Riesgo:

$$R(f) = E[\ell(Y, f(\mathbf{X}))]$$

Objetivo

Aprender a construir un clasificador $f \in F$ desde los datos de entrenamiento D_n de manera que el riesgo R(f) sea pequen o en promedio en relación con D_n .

Ejemplo: Eucalipto

- BDD simple y clásica
- Predecir el taman o en función de la circunferencia
- X = circ
- Y = ht

Ejemplo: Eucalipto

Modelo Lineal

Modelo paramétrico:

$$f_{eta}(extsf{circ}) = eta_1 + eta_2 extsf{circ} = \hat{ht}$$

• ¿Cómo elegir $\beta = (\beta_1, \beta_2)$?

Ejemplo: M'inimos cuadrados

Metodología

Naturalmente:

$$\sum_{i=1}^{n} |Y_i - f_{\beta}(X_i)|^2 = \sum_{i=1}^{n} |ht_i - f_{\beta}(circ_i)|^2 = \sum_{i=1}^{n} |ht_i - (\beta_1 + \beta_2 circ_i)|^2$$

Elección de β que minimiza este criterio;

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^2}{\arg\min} \sum_{i=1}^{n} |ht_i - (\beta_1 + \beta_2 \text{circ}_i)|^2$$

Heurística

Regresión Lineal

- Modelo estadístico: (circ_i, ht_i) i.i.d. con la misma ley que un (circ, ht) genérico
- Criterio de rendimiento: Buscar un f con un error promedio bajo

$$E[|ht - f(circ)|^2]$$

 Criterio empírico: Reemplazar la ley desconocida por su contraparte empírica

$$\frac{1}{n}\sum_{i=1}^{n}|ht_i-f(\mathbf{circ}_i)|^2$$

- **Elegir un clasificador**: no tomar un modelo demasiado complejo, restringirse al modelo más simple que dé buenos resultados (Ej: gran red neuronal/demasiadas características para muy pocos ejemplos)
- Aprender el modelo: Optimizar sobre los datos

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de parametres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de paramètres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de param`etres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de param`etres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de paramètres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Modelos

$$\beta \in \mathbb{R}^d$$
 = plus de paramètres

- Este modelo ya no se adapta a los datos que se le muestran.
- Sobreajuste : se adapta demasiado a D_n y ya no generaliza

Complejidad

- Si el modelo es demasiado simple, entonces ya no sigue los datos
- Si el modelo es demasiado complejo, el modelo aprende todas las irregularidades del dataset D_n
- Ejemplo: si el modelo es el de la curva del medio más una componente de ruido no tenida en cuenta en las variables, el modelo de la derecha aprende ese ruido

Outline: Aprendizaje

Marco global

<u>Generalidades</u>

Contexto te 'orico

<u>Aprendizaje</u>

Funci on de costo

<u>Errores, complejidad y</u> <u>sobre-aprendizaje</u>

Regularizaci 'on

Optimizaci 'on

Evaluacion de la predicci´on

Aprendizaje supervisado

Diferentes conceptos

- Datos etiquetados: Regresión o Clasificación
- Extracción de características: Tono, Intensidad, Tempo o Edad, Salario, Género, etc.
- Modelo f_{θ} : SVM, Regresión Logística, Bosque Aleatorio, CNN
- Función de costo a optimizar: Pérdida de Bisagra, Pérdida de Entropía Cruzada, Pérdida Logística, Pérdida Cuadrada, etc.
- Algoritmo de optimización: Adam, SGD, BFGS, etc.
- Métrica de evaluación: Recall, Precisión, Mínimos Cuadrados, etc.

En el caso anterior:

- Descriptores y etiquetas:
- Modelo:
- Funcion de costo:
- Optim:
- Métrica de evaluación:

Aprendizaje supervisado

Diferentes conceptos

- Datos etiquetados: Regresión o Clasificación
- Extracción de caracter ísticas: Tono, Intensidad, Tempo o Edad,
 Salario, Género, etc.
- Modelo f_{θ} : SVM, Regresión Logística, Bosque Aleatorio, CNN
- Función de costo a optimizar: Pérdida de Bisagra, Pérdida de Entropía Cruzada, Pérdida Logística, Pérdida Cuadrada, etc.
- Algoritmo de optimización: Adam, SGD, BFGS, etc.
- Métrica de evaluación: Recall, Precisión, Mínimos Cuadrados, etc.

En el caso anterior:

- Descriptores y etiquetas: Circunferencia y longitud
- Modelo: Polinomio de grado 6
- Funcion de costo: Pérdida Cuadrada
- Optim: Descenso de Gradiente Estocástico (SGD)
- Métrica de evaluación: Mínimos Cuadrados

Entrenamiento: función de costo ℓ

Principio

- Función que penaliza cuando el modelo comete errores
- Minimizar esta función sobre el conjunto de entrenamiento (riesgo empírico) para encontrar parámetros del modelo satisfactorios:

$$f_{\hat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i))$$

- Convexidad: generalmente se reemplaza la función de costo ℓ^{0/1} por una función convexa ℓ' más fácil de optimizar
 - Expresa el error desde una perspectiva numérica
 - Transmite al algoritmo de aprendizaje lo que es importante y tiene sentido para la tarea
 - Debe ser una función que se pueda optimizar eficientemente (convexa). La función $\ell^{0/1} = 1f(X) = Y$ no es utilizable (ni siquiera continua).

Función de costo y convexidad

Ejemplos de funciones de costo clásicas

- Logística (Softmax): $\ell'(Y, f(\mathbf{X})) = \log(1 + \exp^{-Yf(\mathbf{X})})$
- Bisagra: $\ell'(Y, f(X)) = (1 Yf(X))_{+}$
- Exponencial: $\ell'(Y, f(\mathbf{X})) = \exp^{-Yf(\mathbf{X})}$
- Cross-Entropy: $\ell'(Y, f(\mathbf{X})) = -(Y \ln(f(\mathbf{X})) + (1 Y) \ln(1 f(\mathbf{X})))$

Ejemplo de funciones de costo clásicas

- Logística (Softmax): $\ell'(Y, f(\mathbf{X})) = \log(1 + \exp^{-Yf(\mathbf{X})})$
- Exponencial: $\ell'(Y, f(\mathbf{X})) = \exp^{-Yf(\mathbf{X})}$
- con $Y = \pm 1$, queremos que $f(\mathbf{X})$ sea muy pos/neg para $Y = \pm 1/-1$
- Si $f(\mathbf{X}) = signo(Y)$, entonces $exp^{-Yf(\mathbf{X})}$ es pequen o

Ejemplo de funciones de costo clásicas

- Cuadrada: $\ell'(Y, f(\mathbf{X})) = (1 Yf(\mathbf{X}))^2$
- con $Y = \pm 1$, queremos exactamente $Y = f(\mathbf{X})$ (signo y amplitud)

Ejemplo de funciones de costo clásicas

- Bisagra: $\ell'(Y, f(X)) = (1 Yf(X))_{+}$
- con $Y = \pm 1$
- Si $f(\mathbf{X}) = signo(Y)$, y $|f(\mathbf{X})| > 1$ entonces $Yf(\mathbf{X}) > 1$

Ejemplo de funciones de costo clásicas

- Cross-Entropy: $\ell'(Y, f(X)) = -(Y \ln(f(X)) + (1 Y) \ln(1 f(X)))$
- con Y ∈ 0, 1, queremos f(X) = Y

.

$$\ell'(Y, f(\mathbf{X})) = \begin{cases} -\ln(1 - f(\mathbf{X})) & \text{si } Y = 0 \\ -\ln(f(\mathbf{X})) & \text{si } Y = 1 \end{cases}$$

Complejidad y modelos

- $F = \{f : \text{funciones medibles } X \to Y\}$
- Mejor solución $f^* = \arg \min_{f \in F} R(f)$
- Clase de funciones S ⊂ F utilizadas como modelos
- Objetivo ideal en S: $f_S^* = \arg \min_{f \in S} R(f)$
- Estimación obtenida en S: se obtiene f_S tras un entrenamiento

Error de aproximación y error general

$$\mathcal{R}(\hat{f}_{S}) - \mathcal{R}(f^{*}) = \underbrace{\mathcal{R}(f_{S}^{*}) - \mathcal{R}(f^{*})}_{\text{error de aproximacion}} + \underbrace{\mathcal{R}(\hat{f}_{S}) - \mathcal{R}(f_{S}^{*})}_{\text{error de estimacion}}$$

- ullet El error de aproximación puede ser grande si el modelo ${\cal S}$ no es adaptado
- El error de estimación puede ser grande si el modelo es complejo

Sobre-aprendizaje y sub-aprendizaje

- Según la complejidad del modelo (por ejemplo, tiempo de entrenamiento) se observa un comportamiento diferente
- Los modelos poco complejos son aprendidos fácilmente pero el error de aproximación puede ser grande (sub-aprendizaje)
- Los modelos muy complejos pueden tener el objetivo correcto pero un gran error de estimación (sobre-aprendizaje)

Sobre-aprendizaje: Problema

Error y riesgos

- El riesgo empírico (error en el conjunto de entrenamiento) disminuye con el aumento de la complejidad del modelo
- El riesgo real (error en observaciones de un nuevo conjunto) es muy diferente. iTenemos un problema de generalización!
- Sobre-aprendizaje : los parámetros aprendidos son demasiado específicos para el conjunto de entrenamiento
- Se debe usar un criterio diferente al error en el conjunto de entrenamiento

Sobre-aprendizaje: Complejidad

Complejidad

- Si el modelo es demasiado simple, entonces ya no sigue los datos
- Si el modelo es demasiado complejo, el modelo aprende todas las irregularidades del conjunto de datos D_n
- Ejemplo: si el modelo es el de la curva del medio más una componente de ruido no considerada en las variables, el modelo de la derecha aprende ese ruido

Sobre-aprendizaje: Regularización

Solución para combatir este problema de no generalización: regularización

Principio

- El riesgo empírico de un estimador seleccionado de una familia de funciones dadas los datos está sesgado
- Al agregar una penalización en relación con la complejidad del modelo f_θ, podemos disminuirla y reducir el sobre-aprendizaje:

$$\mathcal{R}_n(f_\theta) \rightarrow \mathcal{R}_n(f_\theta) + pen(\theta)$$

· Entonces, en el riesgo:

$$\underset{f_{\theta},\theta \in \Theta}{\min} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i)) + pen(\theta)$$

Sobre-aprendizaje: Regularización

Regularización

- Principio de parsimonia (navaja de Occam): cuanto más simple y funcione un modelo, mejor.
- Permite no tener en cuenta tantas particularidades de los datos.
- Intuición: disminuir la norma del modelo o su número de coeficientes, número de ramas del grafo (poda)

Sobre-aprendizaje: Regularización

Regularizaciones dásicas

- AIC: $pen(\vartheta) = \lambda ||\vartheta||_0$ (no convexa, parsimoniosa, poco utilizada)
- Ridge: $pen(\vartheta) = \lambda ||\vartheta||_2$ (convexa, no parsimoniosa)
- Lasso: $pen(\vartheta) = \lambda ||\vartheta||_1$ (convexa, parsimoniosa)
- Elastic Net: $pen(\vartheta) = \lambda_1 ||\vartheta||_1 + \lambda_2 ||\vartheta||_2$ (convexa, parsimoniosa)
- Optimización simple si el costo (la regularización) es convexo
- Necesidad de especificar los λ , que se convierten en nuevos hiperparámetros

Intuición de la parsimonia

Lasso induce parsimonia

En negro $B^n = x/x \in \mathbb{R}^d y ||x||_n < 1$ para n = 0, 1, 2 en \mathbb{R}^2

• En dimensiones grandes, la mayoría de B¹ se concentra en los ejes. Esto equivale a tener valores nulos para otros ejes.

Intuición de la parsimonia : normas

Ejercicio: Hemos visto la bola 1, y la bola 2. ¿Que forma tiene la bola infinita?

Optimización

Optimización de la función de costo

- Sirve para converger al valor mínimo de la función de costo en el conjunto de datos de entrenamiento
- Mejor caso: rápido y preciso
- A menudo se hacen aproximaciones para ser más rápidos

Visualización de la función de costo

Se puede visualizar el valor de la funcion de costo como una superficie:

- Los valores de los parámetros θ varían en el plano, y el valor de la función $\ell(D_n; \theta)$ varía en altura.
- La convergencia se produce cuando se tienen parámetros que están en un hueco de esta superficie (mínimo local o global, dependiendo del modelo)

Optimización: Descenso del Gradiente Estocástico

Descenso del gradiente

Después de cada cálculo de la función de costo $\ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta)$, se calcula el gradiente de esta función para actualizar los parámetros θ :

$$\theta \leftarrow \theta - \alpha * \nabla_{\theta} \ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta)$$

Ejemplo

• Sean $f_{\theta}(\mathbf{X}) = \theta^T \mathbf{X} = \sum_{k=0}^{d} \theta_k X^{(k)} \text{ y } \ell(Y, f_{\theta}(\mathbf{X})) = \frac{1}{2} (Y - f_{\theta}(\mathbf{X}))^2$

$$\nabla_{\theta}\ell(Y_{i}, f_{\theta}(\mathbf{X}_{i}); \theta) = \begin{pmatrix} \frac{\theta}{\partial \theta_{i}} \\ \vdots \\ \frac{\theta}{\partial \theta_{d}} \end{pmatrix} . \ell(Y_{i}, f_{\theta}(\mathbf{X}_{i}); \theta) = \begin{pmatrix} X_{i}^{(1)}(Y - f_{\theta}(\mathbf{X}_{i})) \\ \vdots \\ X_{i}^{(d)}(Y_{i} - f_{\theta}(\mathbf{X}_{i})) \end{pmatrix}$$

Optimizaci on : Descenso del Gradiente Estoc astico

Descenso del gradiente

Después de cada cálculo de la función de costo $\ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta)$, se calcula el gradiente de esta función para actualizar los parámetros θ :

$$\theta \leftarrow \theta - \alpha * \nabla_{\theta} \ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta)$$

Ejemplo

• Sean $f_{\theta}(\mathbf{X}) = \theta^T \mathbf{X} = \sum_{k=0}^{d} \theta_k X^{(k)} \text{ y } \ell(Y, f_{\theta}(\mathbf{X})) = \frac{1}{2} (Y - f_{\theta}(\mathbf{X}))^2$

$$\begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} \leftarrow \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} - \alpha * \begin{pmatrix} X_i^{(1)}(Y - f_{\theta}(\mathbf{X}_i)) \\ \vdots \\ X_i^{(d)}(Y_i - f_{\theta}(\mathbf{X}_i)) \end{pmatrix}$$

Optimizaci'on: Importancia de la tasa de aprendizaje

Learning rate

- Un α demasiado pequeño no avanza en el aprendizaje
- Un α demasiado pequeño alarga el tiempo de entrenamiento
- Un α demasiado grande no permite alcanzar el mínimo (damos vueltas alrededor del agujero de la superficie)
- Un α demasiado grande no permite nada
- Una soluci 'on: disminuir α con el tiempo

Algoritmos de descenso del gradiente

Existen otros algoritmos existentes que se basan en un descenso del gradiente estoc 'astico (SGD) con especificidades para mejorar su eficacia:

- Descenso del gradiente estoc 'astico con momento
- Gradiente acelerado de Nestorov (NAG)
- Gradiente adaptativo (AdaGrad)
- Adam
- RMSprop

Finalmente, tambi 'en existen otros m'etodos m'asd'asicos de descenso: BFGS, L-BFGS, Quasi Newton, ...

Outline: Evaluaci´on de la predicci´on

Marco global

Generalidades

Contexto te 'orico

Aprendizaje

Evaluacion de la predicci´on

M'etricas de clasificaci on etricas de regresi on

Muestro para validaci 'on

Evaluaci´on de la predicci´on: Verdaderos y falsos positivos

Preste atenci'on

- Si el conjunto de datos no está equilibrado
- La importancia que se le da a los diferentes tipos de errores

Type I error (false positive)

Type II error (false negative)

		Model prediction / Test result	
		Positive / Predicted positive	Negative / Predicted Negative
Actual / Ground truth / target / condition / Label	Positive (P)	True Positive (TP), hit	False Negative (FN), type II error, miss, Underestimation
	Negative (N)	False Positive (FP), type I error, false alarm, Overestimation	True negative (TN), correct rejection

M'etricas: Recall

Recall: ¿Qué proporción de los positivos reales se clasificaron como positivos?

$$Recall = \frac{TP}{TP + FN}$$

- ¿Se han clasificado a todos?
- ¿En qué caso esta métrica podría ser la más importante?

M'etricas: Recall

Recall: ¿Qué proporción de los positivos reales se clasificaron como positivos?

$$\mathsf{Recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

- ¿Se han clasificado a todos?
- ¿En qué caso esta métrica podría ser la más importante?
- Detección masiva de una enfermedad contagiosa: no queremos perder a ningún contaminado

M'etricas: Precisi'on

Precisión: ¿Qué proporción de las predicciones positivas son correctas?

$$\mathsf{Precision} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}}$$

- ¿Se han clasificado a todos?
- ¿En qué caso esta métrica podría ser la más importante?

M'etricas: Precisi'on

Precisión: ¿Qué proporción de las predicciones positivas son correctas?

$$Precisión = \frac{TP}{TP + FP}$$

- ¿Se han clasificado a todos?
- ¿En qué caso esta métrica podría ser la más importante?
- Detección fina de una enfermedad mortal: no queremos dar ningún tratamiento pesado sin necesidad

M'etricas: Accuracy

Precisi'on: ¿Qu'e proporci'on de las predicciones son correctas?

Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$

- ¿Qué tan bien funciona en el conjunto de datos global?
- ¿En qué caso esta métrica es completamente inu 'til?

M'etricas: Accuracy

Precisi on: ¿Qu'eproporci on de las predicciones son correctas?

Accuracy =
$$\frac{TP + TN}{TP + FP + TN +}$$

- ¿Qué tan bien funciona en el Enjunto de datos global?
- ¿En qué caso esta métrica es completamente inútil?
- Detecci´on de anomal´ıas: con 1% de casos positivos, un sistema que predice negativo todo el tiempo da un 99% de precisi´on...

M'etricas: Ejercicio I

Considere 286 mujeres: 201 no tienen reincidencia de c'ancer despu'es de 5 años y 85 sí tienen.

Compare los modelos:

- M1: "todas reinciden"
- M2: "ninguna reincide"

TODO

Hacer matrices de confusi´on, calcular accuracy, precision, recall y F1.

Considere 286 mujeres: 201 no tienen reincidencia de cáncer después de 5 años y 85 sí tienen. Compare los modelos:

M1: Todas reinciden

M1	+	-
ď	85	0
-	201	0

M2: Ninguna reincide

M2	+	-
+	0	85
	0	201

Accuracy: 85/286= 0.3 Precision: 85/286= 0.3

Recall: 1

F1: 2*0.3/(0.3+1)=0.46

Accuracy: 201/286 = 0.7

Precision: 0/0 = undef

Recall: 0/85=0

F1: undef

M'etricas: Cost Matrix

La idea: Hay errores mas graves que otras

Poner un peso sobre el tipo de error

A veces yo se cuales errores son más costosos y cuales aciertos son más valiosos.

	Clase predicha			
	C(i j)	clase = +	clase = -	
Clase real	clase = +	C(+ +)	C(- +)	
	clase = -	C(+ -)	C(- -)	

C(i|j): Costo de clasificar un objeto como clase j dado que es clase i

M'etricas: Cost Matrix

La idea: Hay errores mas graves que otras

Poner un peso sobre el tipo de error

A mayor costo peor el modelo.

Matrix Costo	Clase predicha		
	C(i j)	+	-
Clase	+	-1	100
real	ĵ	1	0

Modelo M1	Clase predicha		
		+	-
Clase	+	150	40
real	-	60	250

Accuracy(M1) =
$$0.8$$

C(M1) = $-1*150+100*40+1*60+0*250 = 3910$

Modelo M2	Clase predicha		
		+	-
Clase	+	250	45
real	_	5	200

Accuracy(M2) =
$$0.9$$

C(M2) = $-1*250+100*45+1*5+0*200 = 4255$

Métricas

Diferentes métricas según lo que se busca

•

$$Recall = \frac{TP}{TP + FN}$$

•

Precision =
$$\frac{TP}{TP + FP}$$

•

Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$

•

$$F1 = \frac{2 * Recall * Precision}{Recall + Precision} = \frac{2TP}{2TP + FP + FN}$$

Más generalmente: $\frac{1}{F_{\beta}} = \frac{1}{1+\theta^2} (\theta^2 \frac{1}{Recall} + \frac{1}{Precision})$

- Curva ROC, AUC,...
- top-k accuracy, balanced accuracy

More infos: https://scikit-learn.org/stable/modules/ model evaluation.html#classification-metrics

Agregaci´on de M´etricas I

Si hay mas de una clase, hay que agregar las m'etricas per clase:

- Micro-averaging: computar métrica para cada clase y luego promediar
- Macro-averaging: crear matriz de confusi on binaria para cada clase, combinar las matrices y luego evaluar

		_	old labels		
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precisionu} = \frac{8}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5 + 60 + 50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln =	recalls =	
		8	60	200	
				200 1+50+200	

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2

Agregaci´on de M´etricas II

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contingency table and the microaveraged and macroaveraged precision.

- · Los micro-promedios son dominados por las clases m'æfrecuentes.
- Los macro-promedios pueden sobre-representar a clases minoritarias.

Receiver operating characteristic (ROC)

Definicion

Ilustra el rendimiento de un sistema clasificador binario a medida que varía su umbral de discriminación. Se crea trazando la fracción de verdaderos positivos de los positivos (TPR = true positive rate) frente a la fracción de falsos positivos de los negativos (FPR = false positive rate), en varios ajustes de umbral.

El AUC (area under curve) se utiliza porque mas grande significa mejor.

Evaluación de la predicción: distancia

Diferentes funciones para calcular el rendimiento de una regresi´on

- Error medio absoluto: ^Σ/_n | Y_i f(**X**i)|
 Error cuadrático medio: ¹/_n i = 1ⁿ|Y_i f(**X**_i)|²
- Error medio mediano: mediana($|Y_1 f(\mathbf{X}_1)|, ..., |Y_n f(\mathbf{X}_n)|$)
- Coeficiente de determinaci on R²:

$$1 - \frac{\sum_{i=1^{n}|Y_{i}-f(\mathbf{X}i)|^{2}} i = 1^{n}|Y_{i}-Y|^{2}}{i = 1^{n}|Y_{i}-Y|^{2}}$$

Validaci'on Cruzada (Cross-Validation)

Principio

- Separación del conjunto de datos D en V conjuntos D, de tamaños similares
- Para cada v ∈ [1; V] :
 - Tomar D^{-ν} = D \ DV
 - Entrenar f^{-v} en D^{-v}
 - Calcular $\mathcal{R}^{-\nu}(\hat{f}^{-\nu}) = \frac{1}{n_v} \sum (\mathbf{X}_i, Y_i) \in \mathcal{D}_v \ell(Y_i, \hat{f}^{-\nu}(\mathbf{X}_i))$
- Calcular el riesgo general : $\mathcal{R}^{CV}(\hat{f}) = \frac{1}{V} \sum_{i=1}^{V} \mathcal{R}^{-v}(\hat{f}^{-v})$

Train	Train	Test
Test	Train	Train
Train	Test	Train

Conjuntos de validaci´on y prueba (Holdout)

 La validaci on cruzada requiere V entrenamientos. ¿Existe un método menos costoso?

Separaci'on del conjunto de datos D en 3 conjuntos

- El conjunto de entrenamiento se utiliza para entrenar el clasificador
- El conjunto de validaci´on proporciona una idea del poder de generalizaci´on del modelo entrenado. Puede usarse para detener el entrenamiento
- El conjunto de prueba es un conjunto independiente utilizado para probar el rendimiento del clasificador, no interactuar a con el entrenamiento del clasificador

Taman o de la partici on

Figure 1: Performancias de un modelo segun la cantidad de datos bista

- La evaluación puede variar mucho seguín las particiones escogidas.
- Training muy pequen o ⇒ modelo sesgado.
- Testing muy pequen o ⇒ accuracy poco confiable.

Questions?

References i