

Implicit and explicit knowledge

An important question for us is how knowledge can be represented in these two forms, the implicit—intuitive and difficult to verbalize—and the explicit—which allows humans to share part of their thinking process through natural language.

Table 1. Examples of current inductive biases in deep learning. Some have to do with the architecture while the last one influences the training framework and objective.

inductive bias	corresponding property
distributed representations	patterns of features
convolution	group equivariance (usually over space)
deep architectures	$complicated \ functions = composition \ of \ simpler \ ones$
graph neural networks	equivariance over entities and relations
recurrent nets	equivariance over time
soft attention	equivariance over permutations
self-supervised pre-training	P(X) is informative about $P(Y X)$

Table 2. Proposed additional inductive biases for deep learning: much progress has been made in learning representation of high-level variables (entities or objects). Much more progress is needed on other inductive biases such as the ones listed above. It would also be useful to think about integrating these inductive biases into a unified architecture.

inductive bias	corresponding property	relevant references
high-level variables play a causal role	learning representations of latent entities/attributes	[90–108]
changes in distribution are due to causal interventions	changes in distribution are localized in the appropriate semantic space	[103,109–113]
knowledge is generic, defined over abstract variables, and can be applied on different instances	factorizing knowledge in terms of abstract variables and functions that encapsulate how these variables interact with each other	[99,114,115]
sparsity of the factor graph	learned functions operate on a sparse set of variables (like arguments in typed-programming languages)	[99,114]
relevant causal chains tend to be very short (in time)	causal chains used to perform learning or inference (to obtain explanations or plans for achieving some goal) are broken down into short causal chains of events that may be far in time from each other	[116–121]
context-dependent processing involving goals, top-down influence and bottom-up competition	top-down contextual information is dynamically combined with bottom-up sensory signals at every level of the hierarchy of computations relating low-level and high-level representations	[122–124]

Attention: dynamic information flow (dynamic connection between different blocks)

Attention is about sequentially selecting what computation to perform on what quantities.

Soft attention:

convex combination of the values of the

elements at the previous level
-X- Convex weights are coming from a softman that is conditioned on how each of
the elements' key vector matches
some query vector.
Stochastic hard attention:
one samples from a distribution over
elements to choose the other ded
Content.
Soft attention:
one mixes these contents with
different positive convex weights
Attention: process sets of key/value pairs

Nrxd
query (read key) OERNrxd
key (Write key) KERNoxd
(d: dimension of each key)
Values (Write values)
Λ
Attention (Q, K, V) =
$O(2k^T)$
Softmax (Ski) V
Declarative knowledge of causal structure