CS 181: Homework 2

Jonathan Woong 804205763 Summer 2017 Discussion 1A

Thursday $3^{\rm rd}$ August, 2017

Problem 1. Minimize:

State	0	1	TFA	A	В	\mathbf{C}	D	E	F	G	Н
A	В	С	A								
В	Е	Е	В	X							
С	Е	F	\mathbf{C}	X	X						
D	Е	С	D	X	X	X					
Е	G	F	${f E}$	X	X	X	X				
F	G	Н	\mathbf{F}	X	X	X	X	X			
G	D	D	G	X	X	X	X	X	X		
Н	G	Е	Н	X	X	X	X	X	X	X	

This DFA cannot be minimized.

Problem 2. L = $\{a^n b^m c^{2(n+m)}; n \ge 0, m \ge 0\}$

Find if L is:

a) a regular language

Assume that L is regular.

Let $p = \text{pumping length and } w = a^n b^p c^{2(n+p)} = xyz.$

Suppose n = 0 and p = 3, then $w = b^3c^6 = bbbccccc = xyz$.

- 1) Let x=b,y=bb,c=ccccc. By pumping lemma, we expect $xy^kz\in L\ \forall k\geq 0$. Suppose k=2, then $w=xy^2z=bbbbbcccccc=b^5c^6\not\in L$.
- 2) Let x=bb, y=bc, z=cccc. By pumping lemma, we expect $xy^kz\in L\ \forall k\geq 0$. Suppose k=2, then $w=xy^2z=bbbcbccccce\not\in L$.
- 3) Let x = bbb, y = cc, z = cccc. By pumping lemma, we expect $xy^kz \in L \ \forall k \geq 0$. Suppose k = 2, then $w = xy^2z = bbbccccccc = b^3c^8 \notin L$.
- ... By contradiction, L is not a regular language. We cannot build a finite automata for a non regular language.
- b) a context-free language

Assume that L is context-free.

Let $p = \text{pumping length and } w = a^n b^p c^{2(n+p)} = uvxyz.$

Suppose n = 2 and p = 2, then $w = a^2b^2c^8 = aabbccccccc$.

1) Let u=a, v=a, x=bb, y=c, z=cccccc. By pumping lemma, we expect $uv^kxy^kz\in L\ \forall k\geq 0$.

Suppose k=2, then $w=uv^2xy^2z=aaabbccccccc=a^3b^2c^9\not\in L$.

2) Let u=a, v=ab, x=b, y=c, z=cccccc. By pumping lemma, we expect $uv^kxy^kz\in L\ \forall k\geq 0.$

Suppose k = 2, then $w = uv^2xy^2z = aababbcccccccc \notin L$.

... By contradiction, L is not a context-free language. We cannot build a pushdown automata for a non context-free language.

Problem 3. Is any finite language regular? Prove your answer is correct.

Yes. A finite language L must have a finite set of strings that are accepted by L. Let these strings be denoted as w_1, w_2, \ldots, w_n . We can express L as $w_1 \cup w_2 \cup \cdots \cup w_n = \bigcup_{i=1}^n w_i$, which is a regular expression. Since any language which can be defined using a regular expression is defined to be a regular language, then by definition any finite language is regular.