SPRAWOZDANIE

Zajęcia: Analiza procesów uczenia

Prowadzący: prof. dr hab. inż. Vasyl Martsenyuk

Laboratorium Nr 3

Data 31.03.2023

Temat: Użycie sztucznych sieci
neuronowych

Wariant 4

Maksymilian Grygiel
Informatyka
II stopień, stacjonarne,
Semestr I, gr.1a

Link do repozytorium: https://github.com/Maksiolo20/APU

Zadania:

Zadanie modelowania funkcji 1. Zadanie dotyczy matematycznych za pomoca sztucznej sieci neuronowej u zywają c paczkę, neuralnet. Rozwa zamy uzyskanie ´zmienne niezale zna х. Celem jest sieci neuronowej (zmieniają c zar owno ilo ś c warstw ukrytych jak i ilo ś c neuron ow) wypelniają cej warunek Error 0.01. <

Wariant zadania: 4. f (x) = $\log x^2$, $x \in [1; 10]$

```
> install.packages("neuralnet")
> library(neuralnet)
> input <- as.data.frame(runif(100,min=1,max=10))
> output <- log(input^2)
> trainingdata <-cbind(input,output)
> colnames(trainingdata)<-c("Wejście,Wyjście")
> net.sqrt <- neuralnet(Wyjście~Wejście,trainingdata,hidden=7,threshold=0.01,stepmax=1e7)
> print(net.sqrt)
```

Fragment wyniku powyższej funkcji print (całość wyniku dostępna w repozytorium, w pliku: z1_print:

```
$call
neuralnet(formula = Wyjście ~ Wejście, data = trainingdata, hidden = 7,
   threshold = 0.01, stepmax = 1e+07)
$response
     Wyjście
   85.277715
1
2 11.783444
3
  4.888762
4
   2.675981
5 24.736743
6 16.668417
7 52.269785
8 22.915143
9 89.101533
10 52.689216
11 32.167545
12 4.640449
13 31.769322
14 21.882288
15 74.587982
16 69.050277
```

17 58.990672

1.600244 19 19.002536

7.819909 21 30.966970 22 10.172166 23 68.796644

18

20

- 91 64.826439
- 92 22.005558
- 93 24.442849
- 94 2.464001
- 95 42.688949
- 96 89.262339
- 97 14.706760
- 98 64.529275
- 99 24.867242
- 100 40.624071

\$covariate

- [1,] 9.234588
- [2,] 3.427972
- [3,] 2.185484
- [4,] 1.571035
- [5,] 4.972909
- [6,] 4.080627
- [7,] 7.229734
- [8,] 4.786105
- [9,] 9.439357
- [10,] 7.258685

```
[99,] 4.986021
[100,] 6.373568
$model.list
$model.list$response
[1] "Wyjście"
$model.list$variables
[1] "Wejście"
$err.fct
function (x, y)
{
   1/2 * (y - x)^2
<bytecode: 0x000001565d2ba258>
<environment: 0x000001565a5dc9d8>
attr(,"type")
[1] "sse"
$act.fct
function (x)
{
    1/(1 + \exp(-x))
<bytecode: 0x000001565d2b5458>
<environment: 0x000001565a5dce70>
attr(,"type")
[1] "logistic"
$linear.output
[1] TRUE
$data
     Wejście
                Wyjście
1
    9.234588 85.277715
2
    3.427972 11.783444
3
    2.185484 4.888762
4
    1.571035 2.675981
    4.972909 24.736743
5
Kontynuacja kodu w R:
> plot(net.sqrt,rep="best")
```

Wynik funkcji plot – wykres przedstawiający sieć neuronową:

Error: 0.004885 Steps: 38132

Kontynuacja kodu w R:

- > testdata <- as.data.frame(runif(300,min=1,max=20))</pre>
- > net.results <- compute(net.sqrt, testdata)</pre>
- > print(net.results\$net.result)

Fragment powyższej funkcji print. Tak jak w poprzednim przypadku, całość dostępna jest w repozytorium (z1print_2):

```
[,1]
  [1,] 138.521819
  [2,] 140.840143
  [3,] 120.240929
  [4,] 140.983858
  [5,] 78.220580
  [6,] 122.266307
  [7,] 31.521218
  [8,] 140.858524
  [9,] 140.455188
 [10,] 119.534246
 [11,]
       82.203482
 [12,]
        9.911398
 [13,] 35.502518
 [14,] 77.659389
 [15,] 141.028880
 [16,]
        2.225974
 [17,]
       35.744294
 [18,] 88.991730
 [19,] 124.937234
 [20,]
        5.543766
 [21,] 84.311100
 [22,] 141.007463
 [23,]
        4.298969
 [24,] 141.013584
 [25,] 11.952532
 [26,] 141.023088
 [27,]
        2.782913
 [28,]
        2.817876
[291,] 108.545985
[292,] 141.028100
[293,] 141.025507
[294,] 135.742507
[295,] 59.309552
[296,] 140.995329
[297,] 140.985894
[298,]
         32.543606
[299,]
          82.430420
[300,]
          18.793706
Kontynuacja kodu w R:
```

```
> cleanoutput <- cbind(testdata,log(testdata^2),as.data.frame((net.results$net.result)))</pre>
> colnames(cleanoutput) <- c("Wejście", "Oczekiwane Wyjście", "Wyjście sieci neuronowej")
> print(cleanoutput)
```

> save.image("C:/Users/MaksioloLaptop/Desktop/mgr/APU/lab3/Lab3 1.RData")

Ostatnia funkcja print – z1print_3 na repozytorium:

	_	Oczekiwane		Wyjście	sieci	_
1	13.125108		1490541			138.521819
2	15.312502		4573392			140.840143
3	11.063065		8072241			120.240929
4	16.508486	5.	6077491			140.983858
5	8.844167	4.	3595162			78.220580
6	11.187608	4.	8296136			122.266307
7	5.614115	3.	4505679			31.521218
8	15.398324	5.	4685174			140.858524
9	14.379318	5.	3315818			140.455188
10	11.021171	4.	7996362			119.534246
	9.066781	4.	4092346			82.203482
	3.143142	2.	2904457			9.911398
13	5.957623	3.	5693433			35.502518
14	8.812350	4.	3523083			77.659389
15	19.831919	5.	9745854			141.028880
16	1.401548	0.	6751552			2.225974
17	5.977853	3.	5761229			35.744294
18	9.433700	4.	4885767			88.991730
19	11.364755	4.	8610337			124.937234
20	2.336591	1.	6973861			5.543766
21	9.182356	4.	4345676			84.311100
22	17.119449	5.	6804303			141.007463
23	2.040830	1.	4267137			4.298969
24	17.391467	5.	7119594			141.013584
25	3.452484	2.	4781882			11.952532
281	9.567837	4	.5168143			91.544427
282	2.566560	1	.8851328			6.644219
283	12.293158	5	.0180857			134.648702
284	17.501704	. 5	.7245965			141.015556
285	3.183917	2	.3162247			10.169247
286	5.815897	3	.5211899			33.831345
287	16.267569	5	.5783469			140.968708
288	6.729828	3	.8130993			45.298080
289	17.145175	5	.6834336			141.008130
290	5.751661	. 3	.4989772			33.087063
291	10.430179	4	.6894068			108.545985
292	19.312959	5	.9215527			141.028100
2 93	18.523859	5	.8381192			141.025507
294	12.465573	5	.0459413			135.742507
295	7.701814	. 4	.0829117			59.309552
296	16.751608	5	.6369885			140.995329
297	16.546813	5	.6123871			140.985894
298	5.704300	3.	.4824406			32.543606
299	9.079299	4	.4119939			82.430420
300	4.332693	2	.9323786			18.793706

Zadanie 2

Zadanie dotyczy prognozowania ceny urządzeń RTV AGD (error ≤ 100 zl), określonych na Zajęciu 1. Używając metody sztucznych sieci neuronowych opracować plik w języku R z wykorzystaniem paczki neuralnet.

- > library("neuralnet")
- > cena1 <- log(lodowki\$cena)</pre>
- > cena1
- [1] 7.549083 7.494986 7.243513 6.683361 8.342602 8.455105 7.437795 7.649216
- [9] 7.377134 7.089243 6.906755 7.862882 8.160232 7.695758 8.318498
- > lodowki <- lodowki[,-5]</pre>
- > lodowki <- lodowki[,-1]</pre>
- > lodowki

Fragment wywołanych lodówek:

	0 / /		
	nazwa pojemnosc_uzytk	owa_chlodziarki	
1	Whirlpool_W7_9210_KAQUA		237
2	Samsung_RB37J5000SA		269
3	Sharp_SJBA05DMXW1EU		194
4	MPM_217CZ19		171
5	LG_GSJ361DIDV		394
6	Samsung_RS62R50412C		418
7	Beko_RCNA406I30ZXB		253
8	Samsung_RB33N341MSS		217
9	Samsung_RB29FSRNDSA		192
10	Indesit_LR8S1K		228
11	Amica_FK2004		109
12	Whirlpool_W4D7AAAXC	292	
13	Samsung_RS50N3513SA		357
14	Samsung_RB37J501MB1		255
15	Samsung_RS50N3913BC		357
	pojemnosc_uzytkowa_zamrazarki	cena	
1	104	1899	
2	98	1799	
3	70	1399	
4	41	799	
5	197	4199	
6	229	4699	
7	109	1699	
8	98	2099	
9	98	1599	
10	111	1199	
11	48	999	
12	110	2599	

Kontynuacja kodu R:

- > pojemnosc_chlodziarki1 <- log(lodowki\$pojemnosc_uzytkowa_chlodziarki)
 > pojemnosc_chlodziarki1
- $\left[1\right]\ 5.468060\ 5.594711\ 5.267858\ 5.141664\ 5.976351\ 6.035481\ 5.533389\ 5.379897\ 5.257495\ 5.429346\ 4.691348$
- [12] 5.676754 5.877736 5.541264 5.877736

- > pojemnosc_zamrazarki1 <- log(lodowki\$pojemnosc_uzytkowa_zamrazarki)</pre>
- > pojemnosc_zamrazarki1
- [1] 4.644391 4.584967 4.248495 3.713572 5.283204 5.433722 4.691348 4.584967 4.584967 4.709530 3.871201 [12] 4.700480 4.969813 4.584967 4.969813
- > lodowki <-cbind(lodowki,cena1,pojemnosc_chlodziarki1,pojemnosc_zamrazarki1)</pre>
- > lodowki

Fragment z lodówkami:

1 Whir 2 3	rlpool_W7_9210_KAQUA Samsung_RB37J5000SA	237	104	1900	7.549083		
				1000	7.349003		
3		269	98	1799	7.494986		
_	Sharp_SJBA05DMXW1EU	194	70	1399	7.243513		
4	MPM_217CZ19	171	41	799	6.683361		
5	LG_GSJ361DIDV	394	197	4199	8.342602		
6	Samsung_RS62R50412C	418	229	4699	8.455105		
7	Beko_RCNA406I30ZXB	253	109	1699	7.437795		
8	Samsung_RB33N341MSS	217	98	2099	7.649216		
9	Samsung_RB29FSRNDSA	192	98	1599	7.377134		
10	<pre>Indesit_LR8S1K</pre>	228	111	1199	7.089243		
11	Amica_FK2004	109	48	999	6.906755		
12	Whirlpool_W4D7AAAXC	292	110	2599	7.862882		
13	Samsung_RS50N3513SA	357	144	3499	8.160232		
14	Samsung_RB37J501MB1	255	98	2199	7.695758		
15	Samsung_RS50N3913BC	357	144	4099	8.318498		
poje	pojemnosc_chlodziarki1 pojemnosc_zamrazarki1						
1	5.468060	4.644391					
2	5.594711	4.584967					
3	5.267858	4.248495					
4	5.141664	3.713572					
5	5.976351	5.283204					
6	6.035481	5.433722					
7	5.533389	4.691348					
8	5.379897	4.584967					
9	5.257495	4.584967					
10	5.429346	4.709530					
11	4.691348	3.871201					
12	5.676754	4.700480					

- > net.price <-neuralnet(cena1~pojemnosc_chlodziarki1+pojemnosc_zamrazarki1,lodowki,hidden=c(3,2),threshold = 0.01)
 > plot(net.price)
- > save.image("C:/Users/MaksioloLaptop/Desktop/mgr/APU/lab3/zadanie2/Lab3_2.RData")

Poniżej podgląd plot'a sieci neuronowej na lodówkach:

Wnioski:

Język R może posłużyć do przeprowadzania modelowania funkcji matematycznych za pomocą sztucznej sieci neuronowej. Aby to osiągnąć, trzeba skorzystać z funkcji paczki neuralnet. W zadaniach laboratorium uzyskano sieci neuronowe spełniające odpowiednie warunki – na przykład warunek error<0.01.