Docket No.: 2000-0572 22

	WHAT IS CLAIMED IS:		
1	1.	An automatic speech recognition system, comprising:	
2		a memory that stores data related to at least one of a communication	
3	device, transd	lucer, vocal information and acoustic environmental data;	
4		a controller coupled with the memory that determines the data of the at	
5	least one communications device, transducer, vocal information and acoustic		
6	environmental data, and then compensates at least one speech recognition model to		
7	reflect the data; and		
8		a speech recognizer that recognizes speech utterances by using the at least	
9	one compensated speech recognition model.		
10	2.	The automatic speech recognition system according to claim 1, wherein	
11	the transduce	r data includes a distortion value related to a transducer of a mobile	
12	communications device.		
13	3.	The automatic speech recognition system according to claim 1, wherein	
14	the acoustic e	environmental data includes a background noise value that corresponds to an	
15	operating environment of a mobile communications device.		
16	4.	The automatic speech recognition system according to claim 1, wherein	
17	the vocal information includes a distortion value related to an end user associated with a		
18	mobile communications device.		
1	5.	The automatic speech recognition system according to claim 1, wherein a	

- 5. The automatic speech recognition system according to claim 1, wherein a personal computer is used provide the data of the at least one communications device, transducer, vocal information and acoustic environmental data.
- 6. The automatic speech recognition system according to claim 1, wherein a personal digital assistant is used to provide the data of the at least one communications device, transducer, vocal information and acoustic environmental data.
- 7. The automatic speech recognition system according to claim 1, wherein the data of the at least one communications device, transducer, vocal information and acoustic environmental data is provided through a satellite communications system.
- 8. The automatic speech recognition system according to claim 1, wherein the speech recognizer is a network server using a hidden Markov model.

2

3

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

1

2

1

2

1

2

3

1

2

3

1

2

- The automatic speech recognition system according to claim 1, wherein 9. the controller is a network server that includes a pronunciation circuit, an environmenttransducer-speaker circuit and a feature space circuit.
- The automatic speech recognition system according to claim 8, wherein 10. the network server updates the at least one speech recognition model and a pronunciation model to reflect a specific type of communications device.
- The automatic speech recognition system according to claim 1, wherein 11. the memory further stores personal account information that includes administrative information relating to an end user, and a probability value that represents a probability of the end user being in a particular background environment.
- The automatic speech recognition system according to claim 1, wherein 12. the communications device can be configured by an end user to select a specific speech recognition network.
- A controller used in an automatic speech recognition system, comprising: 13. a first section that determines data related to at least one of a communication device, transducer, vocal information and acoustic environmental data; and

a second section that compensates a speech recognition model based the data related to at least one of the communications device, transducer, vocal information and acoustic environmental data;

- The controller according to claim 13, wherein the controller identifies a 14. mobile device by a radio frequency identification tag.
- The controller according to claim 13, wherein the acoustic environmental 15. data is determined using at least one microphone in an end user's environment.
- The controller according to claim 13, wherein the acoustic environmental 16. data is determined using a plurality of microphones that are selectively initiated as an end user walks in between the plurality of microphones.
- The controller according to claim 13, wherein the transducer data is a 17. distortion value based on a difference between an actual transducer in the mobile device and a response characteristic of a transducer used to train the speech recognition model.
- The controller according to claim 13, wherein the vocal information represents a variability that exists in vocal tract shapes among speakers of a group.

2

3

Docket No.: 2000-0572

8

9

12

13

14

15

16

17

18

1

2

3

1

2

3

1

2

19.	The controller according to claim 13, wherein the controller communicates
with a memor	y that stores various acoustic environmental models and various features of
a specific type	e of mobile device.

- The controller according to claim 19, wherein a third section stores 20. personal account information for each end user.
- A method of using an automatic speech recognition system, comprising 21. the steps of:

receiving speech utterances into the automatic speech recognition system; determining data related to at least one of a communications device, transducer, vocal information and acoustic environmental data;

compensating a speech recognition model based on the data related to at least one of the communications device, transducer, vocal information and acoustic environmental data; and

recognizing the speech utterances as speech data using the compensated speech recognition model.

- The method according to claim 21, wherein the transducer data includes a 22. distortion value related to a transducer used in a mobile device.
- The method according to claim 22, wherein the data related to the acoustic 23. environmental data includes a background noise value that corresponds to an operating environment of a mobile communications device.
- The method according to claim 21, wherein the data of the at least one of a 24. communications device, transducer, vocal information and acoustic environmental data is received from a cellular telephone.
- The method according to claim 21, wherein the data of the at least one of a 25. communications device, transducer, vocal information and acoustic environmental data is received from a personal digital assistant.
- The method according to claim 21, wherein the data of the at least one of a 26. communications device, transducer, vocal information and acoustic environmental data is received via a satellite communications system.
- The method according to claim 21, wherein the speech recognition model 27. is a hidden Markov model.

2

1

2

1

2

3

1

2

3

1

2

28.	The method according to claim 23, wherein determining the acoustic
environmenta	l data is performed using a network server.

- The method according to claim 23, wherein the acoustic environmental 29. data is determined using at least one microphone in an end user's environment.
- The method according to claim 22, wherein the distortion value is 30. determined based on a difference between an actual transducer in the mobile device and a response characteristic of a transducer used to train the speech recognition model.
- The method according to claim 21, further comprising updating the speech 31. recognition model and a pronunciation model to reflect a specific type of mobile communications device.
- The method according to claim 21, further comprising configuring the 32. communications device to select a specific speech recognition network.