世芥知旳阶有罹機関

国際事務局

特許協力条約に基づいて公開された国際出願

(11) 国際公開番号 WO 94/16877 (51) 国際特許分類 5 B29D 30/06, B60C 3/00 A1 (43) 国際公開日 1994年8月4日(04.08.94) PCT/JP94/00110 国際調查報告書 添付公開書類 (21) 国際出額番号 1994年1月27日(27.01.94) (22)国際出顧日 (30) 優先権データ 1993年1月27日(27.01.93) 特顏平5/11669 (71) 出願人(米国を除くすべての指定国について) 株式会社 プリヂストン(BRIDGESTONE CORPORATION)[JP/JP] 〒104 東京都中央区京橋一丁目10番1号 Tokyo, (JP) (72) 発明者; および (75)発明者/出願人(米国についてのみ) 亀川龍彦(KAMEGAWA, Tatsuhiko)[JP/JP] 〒187 東京都小平市小川東町3-4-1-406 Tokyo, (JP) 中島幸雄(NAKAJIMA, Yukio)(JP/JP) 〒197 東京都秋川市小川678-18 Tokyo, (JP) 阿部明彦(ABE, Akihiko)[JP/JP] 〒187 東京都小平市小川東町3-5-5 Tokyo, (JP) (74) 代理人 弁理士 中島 淳,外(NAKAJIMA, Jun et al.) 〒160 東京都新宿区新宿4丁目3番17号 HK新宿ビル7階 太陽国際特許事務所 Tokyo, (JP) (81) 指定国 JP, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(54) Title: DESIGN METHOD FOR A PNEUMATIC TIRE

(54) 発明の名称

(57) Abstract A design method for a pneumatic tire according to the present invention comprising the steps of determining a tire basic model representing tire cross-sectional configurations including the internal construction and divided into a plurality of an objective elements, representing a physical value for evaluating a tire performance, a design variable for determining cross-sectional the configurations of limiting and conditions for limiting cross-sectional configurations of tire, obtaining a corrected model of the tire in which the design variable is changed by a unit amount Δr_1 , calculating values of the objective function and limiting conditions of the corrected model, calculating sensitivity for every design variable and 空気入りタイヤの設計方法

... start

100 ... modeling a tire

conditions and a design variable

104 ... calculate an initial value of the objec-

tive function and limiting conditions

106 ... change the design variable by Ar,

the design veriable, and determine the configuration of a tire efter the design

10 ... calculate values of the objective function and limiting conditions of the detarmined tire configuration,

112 ... calculate sensitivity for every design

114 ... estimate a changed amount of the dasign variable that maximizes the objective function while satisfying the limiting

115 ... determine a model of a tire corrected is accordance with the estimated changed amount

116 ... Her the value of the objective function

120 ... determine the configuration of a tire

· b ... end

every uesign variance and calculating an estimated value of a changed amount of the design variable that maximizes the value of the objective function by using sensitivity so calculated while allowing for the limiting conditions, repeating the above steps until the values of the objective function converge, and determining the configuration of a tire based on the design variable when the values of the objective function converge upon the estimated value.

(57) 要約

本発明の空気入りタイヤの設計方法は、内部構造を含むタイヤ断面形状を表すと共に複数の要素に分割されたタイヤ基本モデル、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状を決定する設計変数、及びタイヤ断面形状を制約する制約条件を定める。設計変数を単位量Δr,変化させたタイヤ修正モデルを求める。修正モデルにおける目的関数の値及び制約条件の値を演算する。設計変数毎に感度を演算し、感度を用いて制約条件を考慮しながら目的関数の値を最大にする設計変数の変化量の予測値を演算する。目的関数の値が収束するまで上記のことを繰り返す。目的関数の値が予測値に収束したときの設計変数に基づいてタイヤの形状を決定する。

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AM アルメニア	CZ チェッコ共和国	KP 朝鮮民主主義人民共和国	NZ ニュー·ジーランド PL ポーランド
AT オーストリア	DE ドイツ	KR 大韓民国	PL ホーラント PT ボルトガル
AU オーストラリア	DK デンマーク	KZ カザフスタン	
BB パルバドス	EE エストニア	Ⅱ リヒテンシュタイン	RO ルーマニア
BE ベルギー	ES スペイン	LK スリランカ	RU ロシア連邦
BF プルキナファソ	FI フィンランド	LT リトアニア	SD スーダン
BG ブルガリア	FR フランス	LU ルクセンブルグ	SE スウェーデン
BJ ベナン	GA ガボン	LV ラトヴィア	SI スロヴェニア
BR ブラジル	GB イギリス	MC モナコ	SK スロヴァキア共和国
BY ペラルーシ	GE グルジア	MD モルドバ	SN セネガル
CA カナダ	GN ギニア	MG マダガスカル	TD チャード
CF 中央アフリカ共和国	GR ギリシャ	ML マリ	TG トーコ
CG コンゴー	HU ハンガリー	MN モンゴル	TJ タジキスタン
CH スイス	IE アイルランド	MR モーリタニア	TT トリニダードトバゴ
CI コート・ジボアール	IT イタリー	MW マラウイ	UA ウクライナ
CM カメルーン	JP 日本	NE ニジェール	US 米国
CN 中国	KE ケニア	NL オランダ	UZ ウズベキスタン共和国
CS チェッコスロヴァキア	KG キルギスタン	NO ノルウェー	VN ヴィェトナム

1

明細書

空気入りタイヤの設計方法

技術分野

本発明は、空気入りタイヤの設計方法に関するもので、特に、タイヤの単一目的性能、二律背反性能等を達成するタイヤの構造、形状等の設計開発を効率的にかつ容易にし、しかもタイヤのベストな構造、形状を求めかつコスト・パーフォーマンスの高いタイヤを設計することができる空気入りタイヤの設計方法に関する。

背景技術

従来のタイヤ設計方法は、実験及び計算機を用いた数値実験の繰り返しによる 経験則から成り立っていた。このため、開発に必要な試作・試験の件数が膨大な ものとなり、開発コストがアップし、開発期間もなかなか短縮できなかった。

- (1) タイやのカーカス形状設計に関する背景技術
- 一般にタイヤのカーカス形状設計方法としては大別して下記の2つの設計方法 があり、しかもそのいずれか一方の設計方法で殆どのタイヤが設計開発され、市 販されているのが現状である。

タイヤのカーカス形状設計方法の1つは自然平衡形状と称される設計方法で、特にタイヤをリム組し、空気を充塡してタイヤ内圧を正規内圧にしたとき、タイヤカーカスコードに作用する張力が一定となるように、カーカスの断面形状(タイヤの回転軸を含む平面で切断したときの断面形状)を決定するものでもある。すなわち、タイヤを金型で加硫硬化するときのカーカスの断面形状を正規内圧時のカーカスの断面形状と実質上等しい形状とすることにより、空気充塡時にタイヤの種々補強層の積層物間または積層内に部分的に発生する内部歪等による故障発生を防止するものである。

他の1つは非自然平衡形状と称される設計方法で、代表的な非自然平衡形状設計方法としては、出願人が先に提案した「R COT」と称される商標で既に市販され、コマーシャル的に成功をおさめている設計方法がある。この非自然平衡形状設計方法は前記自然平衡形状設計方法と異なり、逆にカーカスの張力をコントロールする設計方法であり、空気充塡による釣合い形状へ移行しようとする力を利用し、部分的に張力をコントロールすることにより、所定性能を得ようとするものである。

(2) タイヤのクラウン部形状設計に関する背景技術

タイヤのクラウン部形状は、タイヤの回転軸を含む断面において、数個の円弧によって設計されている。円弧の値を決定する方法は、①円弧の値とタイヤ性能のデータベースから決定する方法、②数個のモールドを作成し、このモールドによるタイヤを試作・評価したデータから決定する方法、③数値実験を数多く行い決定する方法等であった。このため、開発効率が良くなかった。

(3) ベルト構造設計に関する背景技術

ベルト構造は、ベルト幅、ベルト角度、コード種類、打ち込み密度、ベルト間 ゴムゲージ分布で決定される。ベルト構造設計の方法は、①実験、数値実験によ ってベルト端部の歪を計測する方法、②ベルト全体の剛性を計測する方法、③ベ ルト構造を変更して室内評価、実車評価を実施する方法等によって、設計案を抽 出することであった。このため、評価期間が長い等の問題があった。

(4)パターン設計に関する背景技術

パターン設計は、自由度が大きいので、基本パターン案をタイヤにグルービングしたり実際にモールドを作成した後にタイヤを試作して実車評価し、実車で生じた問題は基本パターン案を微修正することによって解決して最終的パターンに仕上げていた。このため、パターン設計は、タイヤ形状、構造設計に比較して最も工数を要する分野となっていた。

(5) その他の設計に関する背景技術

これまで述べてきた設計方法と同様の問題を、タイヤゴム部材のゲージ分布(

ビードフィラーのゲージ分布、ゴムチェーファーのゲージ分布、サイドゴムのゲージ分布、トレッドゴムのゲージ分布、トレッドベースゴムのゲージ分布、内面補強ゴムのゲージ分布、ベルトエンドゴムのゲージ分布)の設計についても有している。

発明の開示

しかしながら従来の設計方法を用いたタイヤの設計開発はある性能について目標値を定め、この目標値をクリアすれば一応終了とされ、与えられた資源でベスト、言いかえるならばその最良の性能を得ると言う考え方のものではなかった。また、二律背反する性能を設計するものでなく、そのベストな形状、構造を決定するものでもなかった。その上いずれの設計法も開発が試作・試験の試行錯誤の繰返しで行われるため、非常に非効率でコスト・パフォーマンスが高い等の問題があった。

従って本発明は、ある単一の性能または二律背反する複数の性能を得ようとするとき、与えられた条件でタイヤのベストモードを設計することができると共に、タイヤの設計・開発を高効率化し、タイヤのコスト・パーフォーマンスを著しく低下することができる空気入りタイヤの設計方法を提供することを目的とする

上記目的を達成するために、本発明者等は種々検討を加えた結果、異分野に利用されている「最適化設計手法」をタイヤと言う特殊分野に応用することに着目し、あらゆる検討を試み、具体的にそれをタイヤ設計方法として確立したものである。具体的には、第1の発明の空気入りタイヤの設計方法は、(a)内部構造を含むタイヤ断面形状を表すタイヤ基本モデル、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状またはタイヤ構造を決定する設計変数、及びタイヤ断面形状、タイヤ構造、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件を定めるステップ、(b)制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求めるステップ、及び(c)目的関数の最適値を与え

る設計変数に基づいてタイヤを設計するステップ、を含んでいる。

このステップ(b)では、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、予測値と演算値とに基づいて、制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求めることができる。

また、本発明者等は種々検討を加えた結果、異分野に利用されている「遺伝的 アルゴリズム手法」をタイヤと言う特殊分野に応用することに着目し、あらゆる 検討を試み、具体的にそれをタイヤ設計方法として確立したものである。具体的 には、前記ステップ(a)では、内部構造を含むタイヤ断面形状を表す複数個の タイヤ基本モデルからなる選択対象集団を定め、該選択対象集団の各タイヤ基本 モデルについて、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状また はタイヤ構造を決定する設計変数、タイヤ断面形状、タイヤ構造、性能評価用物 理量及びタイヤ寸度の少なくとも1つを制約する制約条件、及び目的関数及び制 約条件から評価できる適応関数を定め、前記ステップ(b)では、適応関数に基 づいて前記選択対象集団から2つのタイヤ基本モデルを選択し、所定の確率で各 タイヤ基本モデルの設計変数を交叉させて新規のタイヤ基本モデルを生成するこ と及び少なくとも一方のタイヤ基本モデルの設計変数の一部を変更 (突然変異) させて新規のタイヤ基本モデルを生成することの少なくとも一方を行い、設計変 数を変化させたタイヤ基本モデルの目的関数、制約条件及び適応関数を求めて該 タイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しか つ保存したタイヤ基本モデルが所定数になるまで繰り返し、保存した所定数のタ イヤ基本モデルからなる新規集団が所定の収束条件を満たすか否かを判断し、収 束条件を満たさないときには該新規集団を前記選択対象集団として該選択対象集 団が所定の収束条件を満たすまで繰り返すと共に、該所定の収束条件を満たした

ときに保存した所定数のタイヤ基本モデルのなかで制約条件を考慮しながら目的 関数の最適値を与える設計変数の値を求める。

このステップ(b)では、設計変数を変化させたタイヤ基本モデルについて、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、目的関数の値及び制約条件の値から適応関数を求めて該タイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しかつ保存したタイヤ基本モデルが所定数になるまで繰り返すことができる。

前記設計変数は、カーカスライン、折り返しプライライン、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、及び補強材ラインの少なくとも 1 つのラインの形状を表す関数と、ビードフィラーのゲージ分布、ゴムチェーファーのゲージ分布、サイドゴムのゲージ分布、トレッドゴムのゲージ分布、トレッドベースゴムのゲージ分布、内面補強ゴムのゲージ分布、ベルト間ゴムのゲージ分布、及びベルトエンドゴムのゲージ分布の少なくとも 1 つのタイヤゴム部材のゲージ分布を表す変数と、各ベルト層の角度、幅、コード種類、及び打ち込み密度の少なくとも 1 つのベルト部の構造を表す変数と、ブロックの形状及びサイプの位置、本数、及び長さの少なくとも 1 つのパターンの形状を表す変数と、の少なくとも 1 つを含むことができる。

前記設計変数としてカーカスライン、折り返しプライライン、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、及び補強材ラインの少なくとも1つのラインの形状を表す関数から複数のラインを定め、ステップ(b)で設計変数を変化させたときに複数のラインが交差しないように、ラインの形状を表す関数の写像関数及び複数のラインが交差しないための制約条件を求め、該写像関数により写像された空間においてステップ(b)を実行することにより制約条

件を満たしながら目的関数の最適値を与える設計変数の値を求めることができる。

本発明のステップ(a)では、内部構造を含むタイヤ断面形状を表すタイヤ基 本モデル、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状またはタイ ヤ構造を決定する設計変数、及びタイヤ断面形状またはタイヤ構造を制約する制 約条件を定める。このタイヤ基本モデルには、タイヤ外面形状を表すラインの他 、タイヤクラウン形状を表すライン、タイヤ内部のベルトを表すベルトライン、 タイヤのカーカスを表すカーカスライン、タイヤ内部のカーカスプライの折り返 しラインを表す折り返しプライライン、各種補強材のラインを表す補強材ライン - タイヤゴム部材のゲージ分布及びベルト部の構造を表す各ベルト層の角度、幅 コード種類、打ち込み密度、並びにパターンの形状を表す、ブロック形状、ブ ロック溝壁角度、サイプの位置、本数、長さを含ませることができる。また、タ イヤ基本モデルは、複数の要素に分割する有限要素法と呼ばれる手法を用いても 良く解析的手法を用いても良い。タイヤ性能評価用物理量を表す目的関数として は、操縦安定性を向上させるための空気充塡時のタイヤ周方向ベルト張力や構ば ね定数等のタイヤ性能の優劣を支配する物理量を使用することができる。タイヤ 断面形状を決定する設計変数としては、カーカスライン、折り返しプライライン 、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、各種補強材 のラインを表す補強材ラインの少なくとも1つのラインを表す関数等を用いるこ とができ、タイヤ構造を決定する設計変数としては、ビードフィラーのゲージ分 布、ゴムチェーファーのゲージ分布、サイドゴムのゲージ分布、トレッドゴムの ゲージ分布、トレッドベースゴムのゲージ分布、内面補強ゴムのゲージ分布、ベ ルト間ゴムのゲージ分布、及びベルトエンドゴムのゲージ分布の少なくとも1つ のタイヤゴム部材のゲージ分布を表す変数、ベルト層の角度、ベルト層の幅、プ ライの高さ、プライの折返し量、ビード部補強材の角度、幅、位置、材質等のベ ルト部及びビード、サイド部の構造を表す変数を用いることができる。また、パ

ターンを決定する設計変数としては、ブロックの形状、ブロック溝壁角度、サイプの位置、本数、長さ等のパターンの形状を表す変数を用いることができる。タイヤ断面形状やタイヤ構造を制約する制約条件としては、カーカスラインのペリフェリ値の制約、上下一次固有振動数の制約、ベルト層の角度の制約、ベルト層の幅、タイヤ寸度、バネ定数、タイヤ変形量、タイヤ重量、応力、歪、歪エネルギー、転がり抵抗の制約等がある。なお、目的関数、設計変数及び制約条件は、上記の例に限られるものではなく、タイヤ設計目的に応じて種々のものを定めることができる。

次のステップ(b)では、制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求める。この場合には、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、予測値と演算値とに基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求めると効果的である。これによって、制約条件を考慮し目的関数の値が最適になるときの設計変数の値が求められる。

また、前記ステップ(a)では、内部構造を含むタイヤ断面形状を表す複数個のタイヤ基本モデルからなる選択対象集団を定め、該選択対象集団の各タイヤ基本モデルについて、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状またはタイヤ構造を決定する設計変数、タイヤ断面形状、タイヤ構造、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件、及び目的関数及び制約条件から評価できる適応関数を定め、前記ステップ(b)では、適応関数に基づいて前記選択対象集団から2つのタイヤ基本モデルを選択し、所定の確率で各タイヤ基本モデルの設計変数を交叉させて新規のタイヤ基本モデルを生成すること及び少なくとも一方のタイヤ基本モデルの設計変数の一部を変更させて新規

のタイヤ基本モデルを生成することの少なくとも一方を行い、設計変数を変化さ せたタイヤ基本モデルの目的関数、制約条件及び適応関数を求めて該タイヤ基本 モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しかつ保存した タイヤ基本モデルが所定数になるまで繰り返し、保存した所定数のタイヤ基本モ デルからなる新規集団が所定の収束条件を満たすか否かを判断し、収束条件を満 たさないときには該新規集団を前記選択対象集団として該選択対象集団が所定の 収束条件を満たすまで繰り返すと共に、該所定の収束条件を満たしたときに保存 した所定数のタイヤ基本モデルのなかで制約条件を考慮しながら目的関数の最適 値を与える設計変数の値を求めることも効果的である。この場合、ステップ(b)において、設計変数を変化させたタイヤ基本モデルについて、設計変数の単位 変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単 位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約 条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共 に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数 を予測量に相当する量変化させたときの制約条件の値を演算し、目的関数の値及 び制約条件の値から適応関数を求めて該タイヤ基本モデル及び設計変数を変化さ せなかったタイヤ基本モデルを保存しかつ保存したタイヤ基本モデルが所定数に なるまで繰り返すことが更に効果的である。これによっても、制約条件を考慮し 目的関数の値が最適になるときの設計変数の値が求められる。なお、目的関数及 び制約条件から評価できる適応関数は、目的関数及び制約条件からタイヤモデル に対する適応度を求める関数を使用することができる。また、目的関数、設計変 数、制約条件及び適応関数は、上記の例に限られるものではなく、タイヤ設計目 的に応じて種々のものを定めることができる。さらに、前記のタイヤ基本モデル の設計変数の交叉には、選択した2つのタイヤモデルの設計変数についてその一 部または所定部位以降の設計変数を交換する方法がある。さらにまた、タイヤモ デルの設計変数の一部の変更には、予め定めた確率等で定まる位置の設計変数を 変更(突然変異)する方法がある。

設計変数としてカーカスライン、折り返しプライライン、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、及び補強材ラインの少なくとも1つのラインの形状を表す関数から複数のラインを定めたときには、設計変数を変化させたときに複数のラインが交差しないように、ラインの形状を表す関数の写像関数及び複数のラインが交差しないための制約条件を求め、該写像関数により写像された空間においてステップ(b)を実行することにより制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求めれば、複数のラインが交差しなくなる。

そしてステップ(c)では、目的関数の最適値を与える設計変数に基づいてタイヤ基本モデル等を変更することによりタイヤを設計する。また、写像関数を用いたときには、元の関数に写像した設計変数に基づいてタイヤを設計する。

前記のようにステップ(a)において、内部構造を含むタイヤ断面形状を表す 複数個のタイヤ基本モデルからなる選択対象集団を定めると共に、該選択対象集 団の各タイヤ基本モデルについて、タイヤ性能評価用物理量を表す目的関数、タ イヤ断面形状またはタイヤ構造を決定する設計変数、タイヤ断面形状、タイヤ構 造、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件、及 び目的関数及び制約条件から評価できる適応関数を定めたときには、ステップ(b) は次のステップ①乃至ステップ④から構成できる。①適応関数に基づいて選 択対象集団から2つのタイヤ基本モデルを選択するステップ、②所定の確率で各 タイヤモデルの設計変数を交叉させて新規のタイヤ基本モデルを生成すること及 び少なくとも一方のタイヤ基本モデルの設計変数の一部を変更させて新規のタイ ヤ基本モデルを生成することの少なくとも一方を行うステップ、③交叉や変更に より設計変数を変化させたタイヤ基本モデルの目的関数、制約条件及び適応関数 を求めて該タイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデル を保存しかつ保存したタイヤ基本モデルが所定数になるまでステップ①乃至ステ ップ③を繰り返すステップ、④保存した所定数のタイヤ基本モデルからなる新規 集団が所定の収束条件を満たすか否かを判断し、収束条件を満たさないときには

該新規集団を選択対象集団として該選択対象集団が所定の収束条件を満たすまで 前記ステップ①乃至ステップ④を繰り返すと共に、該所定の収束条件を満たした ときに保存した所定数のタイヤ基本モデルのなかで制約条件を考慮しながら目的 関数の最適値を与える設計変数の値を求めるステップ。

このステップ③では、設計変数を変化させたタイヤ基本モデルについて、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、目的関数の値及び制約条件の値から適応関数を演算し、該設計変数が変化された新規なタイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しかつ保存したタイヤ基本モデルが所定数になるまで前記ステップ①乃至ステップ③を繰り返して実行することが効果的である。これによっても、制約条件を考慮し目的関数の値が最適になるときの設計変数の値が求められる。

本発明の設計法に基づき設計・開発した場合従来の試行錯誤を基本とした設計・開発と異なり、コンピューター計算を主体にしてベストモードの設計から設計されたタイヤの性能評価までがある程度可能となり、著しい効率化を達成でき、開発にかかる費用が削減可能となるものである。

以上説明したように本発明によれば、制約条件を満たす目的関数の最適値を与える設計変数を求め、この設計変数からタイヤを設計しているので、ベストモードのタイヤ設計を行うことができる、という効果が得られる。

図面の簡単な説明

- 第1図は、本発明の実施例に使用されるパーソナルコンピュータの概略図、
- 第2図は、本発明の第1実施例の処理ルーチンを示す流れ図、
- 第3図は、第1図の設計変数を決定するルーチンを示す流れ図、

第4図は、タイヤ基本モデルを示す線図、

第 5 図は、第 4 図のタイヤ基本モデルに d θ 毎に基準点 P を通る仮想線を引いた状態を示す線図、

第6図は、選択された節点、この節点についての距離 \mathbf{r} ,及び見込み角 $\boldsymbol{\theta}$,等の関係を示す線図、

第7図は、本発明の第1実施例の処理ルーチンを示す流れ図、

第8図は、第7図の設計変数を決定するルーチンを示す流れ図、

第9図は、タイヤ基本モデルに始点S、終点E、変曲点C、及び最大幅位置点 Mを示した状態を示す線図、

第10図は、始点S、終点E、変曲点C、及び最大幅位置点Mの各点間に想定した円弧の曲率半径を示す線図、

第11図は、タイヤ基本モデルにおける元の節点と最小2乗法により求めた最 適点とのずれ量を示す線図、

第12図は、rz座標を示す線図、

第13図は、 ξ 」 η 」座標を示す線図、

第14図は、 ξ 2 η 2 座標を示す線図、

第15図は、タイヤのビードフィラー及びその周辺部材の形状を示す線図、

第16図は、ベルト層のラインを示す線図、

第17図は、ベルト層のラインを曲線で近似したことを示す線図、

第18図は、節点の移動による要素形状悪化を示す線図、

第19図は、要素分割処理ルーチンを示す流れ図、

第20図は、要素分割の過程を示す線図であり、(a)は領域定義時のモデルを示す線図、(b)は各領域内で発生させた節点を示す線図、(c)は三角要素が発生されたことを示す線図、(d)は節点のスムージングを行ったことを示す線図、

第21図は、ラグランジェ補間処理ルーチンを示す流れ図、

第22図は、クラウン部を曲線で表すことを示す線図、

- 第23図は、クラウン部をラグランジェ補間の次数個で分割したことを示す線 図、
 - 第24図は、クラウン部のラインに対する法線を示す線図、
 - 第25図は、クラウン部形状を円弧で表したことを示す線図、
- 第26図は、クラウン部形状を独立した中心座標値による円弧で表したことを 示す線図、
- 第27図は、パターン表面をラグランジェ次数に従い格子状に分割したことを 示す線図、
 - 第28図は、パターン表面を細分化したことを示す線図、
 - 第29図は、本発明の第10実施例の処理ルーチンを示す流れ図、
 - 第30図は、交叉処理ルーチンを示す流れ図、
- 第31図は、山型写像関数を示す線図であり、(a)は連続的な山型写像関数 を示す線図、(b)は線型的な山型写像関数を示す線図、
- 第32図は、谷型写像関数を示す線図であり、(a)は連続的な谷型写像関数 を示す線図、(b)は線型的な谷型写像関数を示す線図、
 - 第33図は、突然変異処理ルーチンを示す流れ図、
- 第34図は、第11実施例のタイヤ基本モデルを示す線図であり、(a)は作成時のタイヤ基本モデルを示す線図、(b)はベルトの存在を説明するためのイメージ図、
 - 第35図は、交叉処理ルーチンを示す流れ図、
 - 第36図は、突然変異処理ルーチンを示す流れ図、
 - 第37図は、本発明の第12実施例の処理ルーチンを示す流れ図、
- 第38図は、ブロックのモデル化を示す線図であり、(a)はモデル化するためのブロック形状を示す線図、(b)は有限要素モデルのモデル化例を示す線図
 - 第39図は、本発明の第13実施例の処理ルーチンを示す流れ図、
 - 第40図は、本発明の第14実施例の処理ルーチンを示す流れ図、

第41図は、ヒールアンドトゥ磨耗を説明するための説明図である。

発明を実施するための最良の形態

第1図には本発明の空気入りタイヤの設計方法を実施するためのパーソナルコンピュータの概略が示されている。

このパーソナルコンピュータは、データ等を入力するためのキーボード10、 予め記憶されたプログラムに従って制約条件を満たしかつ目的関数を最適、例え ば最大または最小にする設計変数を演算するコンピュータ本体12、及びコンピュータ本体12の演算結果等を表示するCRT14から構成されている。

次に、操縦安定性を向上させるために、空気充塡時のタイヤ周方向ベルト張力を最適値である最大値にするカーカスラインの形状を設計する第1実施例について説明する。

第2図は、第1実施例のプログラムの処理ルーチンを示すものである。ステップ100では、自然平衡状態のタイヤ断面形状を基準形状とし、この基準形状を有限要素法等のように空気充塡時のタイヤ周方向ベルト張力を数値的・解析的に求めることができる手法によりモデル化し、内部構造を含むタイヤ断面形状を表すと共にメッシュ分割によって複数の要素に分割されたタイヤ基本モデルを求める。なお、基準形状は、自然平衡状態のタイヤ断面形状に限らず任意の形状でよい。ここで、モデル化とは、タイヤ形状、構造、材料、パターンを、数値的・解析的手法に基づいて作成されたコンピュータプログラムへのインプットデータ形式に数値化することをいう。第4図はこのタイヤ基本モデルを示すもので、CLはカーカスライン、OLはタイヤ外面形状を表すライン、PLは折り返しプライライン、B1、B2はベルトを表すラインを各々示している。また、このタイヤ基本モデルは、カーカスラインCLの複数の法線NL、NL2、NL3・・・によって複数の要素に分割されている。なお、上記では、タイヤ基本モデルをカーカスラインの複数の法線によって複数の要素に分割した例について説明したが、タイヤ外面形状を表すラインの複数の法線や折り返しプライラインの複数の法線に

よって複数の要素に分割してもよく、また設計目的によって3角形等の任意の形状に分割してもよい。

次のステップ102では、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状を制約する制約条件及びタイヤ断面形状を決定する設計変数を決定する。本実施例では、操縦安定性を向上させるために、空気充塡時のタイヤ周方向ベルト張力を最大にするカーカスラインの形状を設計するため、目的関数OBJ及び制約条件Gを次のように定めている。

目的関数OBJ:ベルト張力のタイヤ周方向成分のタイヤ幅方向の総和

制約条件G:カーカスラインのペリフェリ値がタイヤ基本モデルのカー

カスラインのペリフェリ値の±5%以内

なお、上記カーカスラインのペリフェリ値は、タイヤ形状を変化させる範囲内のカーカスラインの節点(カーカスラインと法線との交点)間の距離の総和として計算することができる。

また、設計変数であるカーカスラインの形状は、曲線を近似する第 3 図のラグランジェ補間ルーチンによって決定される。このラグランジェ補間ルーチンのステップ 1 3 0 では、第 4 図に示すようにタイヤ内部に基準点 P を設定する。次のステップ 1 3 2 では、ベルト端付近の節点 q 1 からリムに拘束される付近の節点 q 2 までの範囲をタイヤ形状を変化させる範囲として指定する。ステップ 1 3 4 では、節点 q 1 と基準点 P とを結ぶ直線を基準線として、この基準線と、節点 q 1 2 と基準点 2 と基準点 3 4 では、いて以下の式に従って角度増分 3 4 4 を演算する。

d $\theta = \theta / ラグランジェ補間の次数 ・・・(1)$

なお、ラグランジェ補間の次数は使用者が予めインプットしておく。

 点 P との距離 r_1 r_2 r_3 ・・・(以下一般式で r_1 と表す。ただし、i=1, 2, ・・・ラグランジェ補間の次数 -1)、節点 Q_1 Q_2 Q_3 ・・・の見込み角 θ_1 θ_2 θ_3 ・・・(以下一般式で θ_1 と表す。ただし、i=1, 2, ・・・ラグランジェ補間の次数 -1)とを演算する。そして、ステップ 1 4 2 において距離 r_1 を設計変数として設定する。

このようにして目的関数 OBJ、制約条件 G及び設計変数 r:を決定した後、第2図のステップ 104において、設計変数 r:の初期値 r oにおける目的関数 OBJの初期値 OBJo及び制約条件 Gの初期値 Goを演算する。

次のステップ106では、タイヤ基本モデルを変化させるために設計変数 r_1 を各々 Δr_1 ずつ変化させる。ステップ108では、設計変数に対応する最内側の節点 Q_1 以外の最内側の節点と基準点Pとの距離 r_m を次式によって演算する。ただし、 θ_m は当該節点と基準点Pとを結ぶ直線の、基準線からの見込み角である。

$$r_{m} = \sum_{i=1}^{n} N_{i} \cdot r_{i}$$

$$N_{i} = \prod_{\substack{j=1 \ j \neq i}}^{n} (\theta_{m} - \theta_{j}) / \prod_{\substack{j=1 \ j \neq i}}^{n} (\theta_{i} - \theta_{j}) \cdot \cdot \cdot (2)$$

また、このステップ 1 0 8 では、法線上の最内側の節点(カーカスライン上の節点)以外の節点、すなわち、タイヤ外面形状を表すラインOL、折り返しプライラインPL及びベルトを表すラインB 1 , B 2 上の節点と最内側の節点Q」との距離を求め、最内側の節点Q」の座標に求めた距離を加算することで法線上の最内側の節点以外の節点座標を求め、設計変数を Δ r , 変化させた後のタイヤ断面形状、すなわちタイヤ修正モデルを決定する。

 の変化量の割合である目的関数の感度 d O B J / d r , 及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度 d G / d r , を各設計変数毎に演算する。

$$\frac{dOBJ}{dr_{i}} = \frac{OBJ_{i} - OBJ_{0}}{\triangle r_{i}}$$

$$\frac{dG}{dr_{i}} = \frac{G_{i} - G_{0}}{dr_{i}}$$
(3)

この感度によって、設計変数を Δ r、変化させたときに目的関数の値及び制約条件の値がどの程度変化するか予測することができる。なお、この感度は、タイヤのモデル化に用いた手法や設計変数の性質によっては、解析的に求められる場合があるので、その際にはステップ 1 1 1 0 の演算は不要になる。

次のステップ114では、目的関数の初期値OBJo、制約条件の初期値Go、設計変数の初期値ro及び感度を用いて、数理計画法により制約条件を満たしながら目的関数を最大にする設計変数の変化量を予測する。この設計変数の予測値を用いて、ステップ115でステップ108と同様の方法によりタイヤ修正モデルを決定すると共に、目的関数値を演算する。ステップ116において、ステップ115で演算した目的関数値OBJとステップ104で演算した目的関数の初期値OBJoとの差と、予めインプットされたしきい値とを比較することで目的関数の値が収束したか否かを判断し、目的関数の値が収束していない場合にはステップ114で求められた設計変数値を初期値として、ステップ104からステップ116を繰り返し実行する。目的関数の値が収束したと判断されたときには、このときの設計変数の値をもって制約条件を満たしながら目的関数を最大にする設計変数の値とし、ステップ120においてこの設計変数の値を用いてタイヤの形状を決定する。

次に本発明の第2実施例を説明する。本実施例は第1実施例の設計変数とは異る設計変数を用いたものである。第7図に本実施例のプログラムの処理ルーチンを示すが、第2図と対応する部分には同一符号を付して説明を省略する。

ステップ160で上記と同様にして目的関数及び制約条件を決定した後、ステップ162において設計変数の決定を行う。第8図は、ステップ162の詳細を示すもので、ステップ150において、第9図に示すように、タイヤ基本モデルの形状を変化させる範囲のカーカスライン上の節点から始点S、終点E、変曲点 C、及び最大幅位置点Mを選択し、これらの点のデータをインプットする。次のステップ152では、第10図に示すように、始点S、終点E、変曲点C、及び最大幅位置点Mの各点間に1つまたは複数の円弧を想定し、これらの円弧の曲率半径R1、R2、R3、R4、及び見込み角 θ 1、 θ 2、 θ 3、 θ 4、を演算する。なお、設計変数を増加させたいときには円弧の数を増加させればよい。

次のステップ 154 では、円弧と法線との交点の座標を演算し、第11 図に示すように、円弧と法線との交点と、カーカスライン上の節点とのずれ量 ε (一般式で ε , と表す。)を演算する。ステップ 156 では、数理計画法により Σ ε , が最小になる円弧の曲率半径 R , (ε , ε)、見込み角 θ , (ε , ε)を演算し、この R , θ , (ε , ε)を設計変数 R , θ , とする。なお、図示は省略したが目的関数、制約条件及び設計変数を決定した後上記と同様にこれらの初期値を演算しておく。

第7図のステップ164では、カーカスライン上の節点をステップ156で求めた $R_{1(0,0)}$ 、 $\theta_{1(0,0)}$ で定まる最適点に移動する。また、次のステップ166では、カーカスライン上の節点以外の節点、すなわち、タイヤ外面形状を表すラインOL、折り返しプライラインPL及びベルトを表すラインB1,B2上の節点とカーカスライン上の節点との距離を求め、カーカスライン上の節点の座標に求めた距離を加算することでカーカスライン上の節点以外の節点座標を求め、カーカスライン上の節点を最適点に移動させたときのタイヤ断面形状をもって、タイヤ基本モデルとする。そして、上記のステップ104からステップ106と同

様に、設計変数の初期値Ro、 θ oにおける目的関数の初期値OBJo及び制約条件の初期値Goを演算し、設計変数を Δ Ri、 Δ \thetai変化させた後のタイヤ修正モデルにより設計変数毎に感度を演算し、数理計画法を用いて制約条件を満たしながら目的関数を最大にする設計変数の変化量を予測し、当該設計変数の予測値におけるタイヤ修正モデルを決定して目的関数OBJを演算し、初期値OBJoとの差としき値とを比較することで目的関数の値が収束したか否かを判断する。収束していない場合はステップ114で求められた設計変数値を初期値としてステップ104からステップ116を繰り返し実行する。目的関数の値が収束したと判断されたときには上記と同様にしてタイヤの形状を決定する。

なお、上記実施例では、設計変数としてカーカスラインの形状を採用したが、 折り返しプライラインの形状、タイヤ外面形状を表すライン、補強材のライン等 を設計変数として決定してもよい。

次に本発明の第3実施例を説明する。本実施例は、複数のラインの形状決定に本発明を適用したものであり、二律背反する性能を最適にしようとするものである。本実施例では、車両の乗り心地を損ねることなく操縦安定性を向上させるカーカスラインの形状、折り返しプライラインの形状及びタイヤ外面形状を決定するものである。この車両の乗り心地を良好にすれば操縦安定性が悪化するため、車両の乗り心地と操縦安定性とは二律背反する。

本実施例の手順は、上記実施例と略同様であるが、目的関数、制約条件及び設計変数の選定が異なっている。本実施例では、目的関数として操縦安定性を向上させるための物理量である横ばね定数を用い、制約条件として乗り心地を支配する物理量である上下一次固有値が一定という条件を採用しており、上下一次固有値が一定という条件の下で横ばね定数が最大になるカーカスラインの形状、折り返しプライラインの形状及びタイヤ外面形状を決定するようにしている。

設計変数については、上記実施例の方法をカーカスライン、折り返しプライライン及びタイヤ外面形状を表すラインの3種のラインにそのまま適用すると、各

ラインが最適化の過程で交差するという問題が生じるため、次のようにして決定 する。

カーカスラインについては第1実施例で説明したラグランジェの補間方法を用いて設計変数 r_i を定める。

ここで各写像関数は以下のように表される。

$$r = \sum_{i} N_{i}^{n} (\xi_{1}, \eta_{1}) r_{i}$$

$$z = \sum_{i} N_{i}^{n} (\xi_{1}, \eta_{1}) z_{i}$$

$$\xi_{1} = \sum_{i} N_{i}^{n} (\xi_{2}, \eta_{2}) \xi_{1i}$$

$$\eta_{1} = \sum_{i} N_{i}^{n} (\xi_{2}, \eta_{2}) \eta_{1i}$$

そして、 ξ_1 η_1 座標における折り返しプライラインを設計変数として決定し、 ξ_2 η_2 座標におけるタイヤ外面形状を表すラインを設計変数として決定する。また、 ξ_1 、 ξ_2 > -1 なる制約条件を加えておく。これにより、ライン同士が交差することがなくなる。

上記の第1の実施例及び第3の実施例で得られたタイヤを実際に試作し試験を 行った結果は以下の表1のとおりであった。

2 0

なお、上記では3つのラインを設計変数として採用してが2つのラインまたは4つ以上のラインを設計変数として採用してもよい。

[表1]

		•	従来タイヤ	実施例(1)	実施例(3)
設計	十・月	開発に要した時間	1 0 0	5 0	6 0
性能	操安性	1 0 0	1 0 6	1 0 4	
	乗 心 地	1 0 0	9 8	1 0 0	

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

試験法:実車走行試験によるフィーリング評価

次に本発明の第4実施例を説明する。本実施例は第3実施例で示した複数のラインの形状決定を、タイヤのビードフィラーおよびその周辺の部材の形状決定に適用したものである。本実施例では、ビード部分の耐久性を損ねることなく転がり抵抗を軽減するビードフィラー形状およびゴムチェーファー形状を決定するものである。本実施例の手順は第3実施例と略同様であるが、目的関数、制約条件および設計変数の選定が異なっており、先ず目的関数および制約条件を次のように定めている。

目的関数:転がり抵抗値

制約条件:折り返しプライ端部の荷重時主歪が初期構造の+3%以内

また、設計変数は、第15図に示すように、ビードフィラー20の外形 (ゲージ分布)を定義するラインBLa、BLbおよびゴムチェーファー22とサイドゴム24との境界ラインKLである。

なお、第3実施例と同様に、設計変数について、上記の各ラインをそのまま適用すると、各ラインが最適化の過程で交差するという問題が生じるため、上記実施例で説明したラグランジェの補間方法や円弧補間法等を用いて設計変数を定め

てもよい。また、第3実施例のように、所定の座標において想定される領域が異なる座標系に正方形等で形成されるような写像関数を作成し、ラインを写像するようにしてもよい。

次に、本発明の第5実施例を説明する。本実施例は第3実施例で示した複数のラインの形状決定を、ベルト部における各ベルト層間の厚みの決定に適用したものである。本実施例では、ベルト部分の耐久性を損ねることなく転がり抵抗を軽減する各ベルト層間のゲージ分布を決定するものである。本実施例の手順は第3実施例と略同様であるが、目的関数、制約条件および設計関数の選定が異なっており、先ず目的関数および制約条件を次のように定めている。

目的関数:転がり抵抗値

制約条件:ベルト端プライ端部の荷重時主歪が初期構造の+3%以内 また設計変数は第16図に示すように、各ベルト層を表わすラインB1, B2 , B3, B4であり、これらのラインB1~B4が変化することにより、目的関

数を最適にする各ベルト層間のゲージ分布が決定されるものである。

以上の実施例ではラインの形状を表わす方法としてラグランジェ補間法および 円弧補間法を用いたが、この他MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS(David F. RogersおよびJ. Alan Adams著)に示されている様なスプライン曲線、B スプライン曲線、ベジェ曲線あるいはNURBS (重み付Bスプライン) 等を用 いて補間するようにしてもよい。

上記の第4実施例及び第5実施例を組み合わせて得られたタイヤを実際に試作し試験を行った結果は、以下の表2のとおりであった。

2 2

[表2]

	従来タイヤ	本発明のタイヤ
設計・開発に要した時間	1 0 0	5 5
転がり抵抗値	1 0 0	9 3
プライ端部の主歪	1 0 0	1 0 2
ベルト端部の主歪	1 0 0	9 7

タイヤサイズ:165SR13

内圧: 1. 9 k g/c m²

荷重: 425kgf

転がり抵抗値の試験法:ドラム惰性走行による50km/h時の抵抗値測定

次に、本発明の第6実施例を説明する。本実施例はベルト構造に本発明を適用したものであり、ベルト部の重量を増すことなく、ベルト部に生じる歪集中を最小化することにより耐久性を向上させるものである。本実施例の手順は第2図に示した第1実施例の手順と略々同様であるが、ステップ102の目的関数、制約条件および設計関数の決定の部分のみ異なっており、目的関数および制約条件を次のように定めている。

目的関数:各ベルト層間に発生する荷重時主歪の最大値

制約条件:ベルト総重量が初期構造での総重量の+1%以内

また、設計変数は各ベルト層の角度、打込み(例えば、打込み本数や打込み強度)及び幅である。この内、角度および打込みについては直接その値を設計変数とすればよく、幅については以下のようにして設計変数を決定する。

先ず、第4図に示すようなタイヤ基本モデルが作成された時、各ベルト層を構成する節点の座標値を用いて、各ベルトのラインを例えば3次関数等により、近似する。例えば、第17図に示すようにラインB1、B2を3次関数で近似する。この場合、ラインB2は、

r=a, z^3+b , z^2+c , z^1+d , で近似され、ラインB1は、

 $r = a_2 z^3 + b_2 z^2 + c_2 z^1 + d_2$

で近似される。目的関数の最適値を与える設計変数を求めるステップにおいて、各ベルト層を構成する各節点は、各ベルト層毎に定められた倍率の値を、その層を構成する各節点の基本モデルにおけるz 座標値に乗じた値をz 座標とし、この値をその層を近似する関数に代入することで求められる値をx 座標値とする点に移動するものとし、各ベルト層毎の倍率の値を設計変数とする。

ここで、本実施例の場合、有限要素法によるモデル化を行った場合には、各べ ルト層の幅の変化にともなって各ベルト層を構成する節点が移動した結果、第1 8図の丸印32の中に示したように要素形状が著しく悪化し計算を続行できなく なる問題がある。この問題を解決するためには、第2図のステップ115におい てタイヤ修正モデルを決定する際に、与えられた節点位置から自動的に要素分割 を行う第19図に示したルーチンを追加すればよい。第19図のステップ180 では、各ベルト層を含む領域を定義するために、データが入力される。このデー 夕には、節点の座標値及び各領域を定義する節点接続間隔粗さ(節点コネクティヒティメッ シュ粗さ)のパラメータがある。このデータ入力により、3領域を定義する例では 、第20図(a)に示したように、領域AR1,AR2,AR3を定義できる。 次のステップ182では、第20図(b)に示したように、各領域内において節 点を発生させて、次のステップ184において第20図(c)に示したように、 発生された節点を含む全ての節点を接続することにより三角要素を発生させる。 次のステップ186では、第20図(d)に示したように、領域内の節点位置を 移動させることにより領域内節点のスムージングを行い、次のステップ188に おいてリナンバリング等の有限要素法における内部処理に関するバンド幅の縮小 処理を行い、本ルーチンを終了する。

なお、本実施例ではベルトのラインの形状を表わす方法として 3 次関数を用いたが、第 1 ~第 2 実施例で用いたようなラグランジェ補間や円弧補間、あるいは

2 4

スプライン曲線、Bスプライン曲線、ベジェ曲線、NURBS等を用いてもよい

上記の第6実施例で得られたタイヤを実際に試作し試験を行った結果は、以下の表3のとおりであった。

[表 3]

	従来タイヤ	本発明のタイヤ
設計・開発に要した時間	1 0 0	4 2
ベルト層間の主歪	1 0 0	9 1
ドラム 試験による故障までの走行距離	1 0 0	1 2 0
ベルト総重量	1 0 0	1 0 1

タイヤサイズ: TBR 10.00R20

内圧: 7. 25kg/cm²

荷重:4050kgf

速度:60km/h

ドラム径: 1. 7 m

この表3から、ベルト層間の荷重時主歪が低減したことにより、耐久性が向上したことが理解される。

次に本発明の第7実施例を説明する。本実施例は本発明をタイヤクラウン部の 形状決定に適用したものであり、タイヤと地面との接触領域の形状を変えること なく、接触領域の圧力分布を均一化し、磨耗性能を向上させるものである。本実 施例の手順は第2図に示した第1実施例の手順と略々同様であるが、ステップ1 02の目的関数、制約条件および設計変数の決定の部分のみ異なっており、先ず 目的関数および制約条件を次のように定めている。

目的関数:接触領域における圧力分布の標準偏差

制約条件:クラウン部中心およびベルト端部におけるタイヤ周方向接触長が

2 5

初期形状における接触長の±5%以内

次に、設計変数であるクラウン部形状については第21図のラグランジェ補間ルーチンによって決定される。このラグランジェ補間ルーチンのステップ170では、クラウン部の形状を変化させる範囲と、これを近似するための曲線の数を指定する。第22図の例では、クラウン部形状をタイヤ中心の節点q3から溝端部の節点q4までと、溝端部の他方の節点q5からベルト端部付近の節点q6までの2個の曲線で表わすことを示しているが、もちろん曲線は例えば節点q3から節点q6までの1個でもよいし、または節点q3と節点q4の間の節点q5と節点q6の間を更に分割して3個以上の曲線で表わしてもよい。

次のステップ172では、第23図に示すように、各々の範囲を予めインプットされたラグランジェ補間の次数個に等分割し、その等分割点に最も近い節点を選択する。第23図の例では、タイヤは分割線Ls1,Ls2,Ls3,Ls4,Ls5によって等分割され、これらの分割線Ls1~Ls5の各々に最も近い節点 q s 1, q s 2, q s 3, q s 4, q s 5 が選択される。次のステップ174では、選択した節点位置におけるクラウン部ラインに対する法線を計算し、これを各々の節点が移動するラインとする。この場合、第24図に示すように、曲線の範囲を表す節点 q 3, q 4, q 5, q 6 と、ステップ172で選択された節点 q s 1, q s 2, q s 3, q s 4, q s 5 に関する法線を演算し、ラインLp1~Lp8を決定する。そして、次のステップ176では、この各々のライン上での各節点の、初期位置からの移動量を設計変数として選択し、本ルーチンを終了する。

なお、選択された節点以外の、クラウン部上の節点の移動量については、第1 実施例で示したと同様に、ラグランジェ補間により決定する。

次に、本発明の第8実施例を説明する。本実施例は第7実施例と同様に本発明 をタイヤクラウン部の形状決定に適用したものであるが、設計変数のみ第7実施 例とは異なっている。また、本実施例の手順は第7図に示した第2実施例の手順 と略々同様であるが、ステップ 1 6 0 および 1 6 2 の目的関数、制約条件および 設計変数の決定の部分のみ異なっており、先ず目的関数および制約条件を次のよ うに定めている。

目的関数:接触領域における圧力分布の標準偏差

制約条件:クラウン部中心およびベルト端部におけるタイヤ周方向接触長が

初期形状における接触長の±5%以内

次に、設計変数であるクラウン部形状については、予め指定したクラウン部の範囲を複数個の円弧で近似する。例えば、第25図に示すように、タイヤ中心の節点 q7からベルト端部付近の節点 q8までの範囲で、近似可能なクラウン部の範囲、この場合、範囲 C R 1、C R 2、C R 3 の 3 領域についてクラウン部形状を3 個の円弧で表わす。範囲 C R 1 については、半径が R 1 で角度 θ 1 で近似でき、範囲 C R 2 については、半径が R 2 で角度 θ 2 で近似でき、範囲 C R 3 については、半径が R 3 で角度 θ 3 で近似できる。

上記の第25図の例では、タイヤ中心の節点 q7からベルト端部付近の節点 q8までの範囲で、クラウン部形状を3個の円弧で表わすことを示しているが、もちろん円弧の数は $1\sim2$ 個あるいは4個以上でも構わない。また、各円弧は必ずしも滑らかに連続している必要はなく、第26図に示すように各円弧の中心の座標値を独立した変数として扱ってもよい。すなわち、範囲CR1については、座標点O1(r1,z1)から半径がR1'かつ角度 θ 1'で近似し、範囲CR2については、座標点O2(r2,z2)から半径がR2'かつ角度 θ 2'で近似し、範囲CR3については、座標点O3(r3,z3)から半径がR3'かつ角度 θ 3'で近似する。そして各々の円弧の半径Riと見込角 θ i、さらに第26図の例のような場合は各円弧の中心の座標値ri,ziをこれに加えて設計変数とする。

なお、第7および第8実施例ではクラウン部の形状を表わす方法としてラグランジェ補間および円弧補間を用いたが、スプライン曲線、Bスプライン曲線、ベジェ曲線、NURBS等を用いてもよい。

次の本発明の第9実施例を説明する。本実施例は本発明をタイヤのパターン表面の形状決定に適用したものであり、パターンと地面とが接触した際の圧力分布を均一化し、磨耗性能を向上させるものである。本実施例の手順は第2図に示した第1実施例の手順と略同様であるが、ステップ102の目的関数、制約条件および設計変数の決定の部分のみ異なっており、先ず目的関数および制約条件を次のように定めている。

目的関数:接触領域における圧力分布の標準偏差

制約条件:パターンンの総体積が初期の体積の±5%以内

次に設計変数であるパターン表面の形状については、第27図に示すようにパターン表面を、予めインプットされたラグランジェ補間次数に従って格子状に分割する。こうして得られた各点(第27図の例では16点)のパターン厚み方向の座標値riを設計変数とする。また、目的関数の計算に有限要素法を用いる場合、パターン表面をさらに細分割する必要があるが、例えば第27図に示すパターン表面を細分割した第28図の例の場合、パターン表面上の設計変数に対応する節点以外の節点の座標値については次式により演算すればよい。

$$x = \sum_{i=1}^{n} M_{i} \cdot x_{i}$$

$$y = \sum_{i=1}^{n} M_{i} \cdot y_{i}$$

$$r = \sum_{i=1}^{n} M_{i} \cdot r_{i}$$

ここで

$$M_{\perp} \equiv M_{em} = N_{c} \quad (\xi) \cdot N_{m} \quad (\eta)$$

$$N_{e} (\xi) = \prod_{\substack{j=1 \\ j \neq e}}^{k_{1}} (\xi - \xi_{1}) / \prod_{\substack{j=1 \\ j \neq e}}^{k_{1}} (\xi_{e} - \xi_{1}),$$

$$N_{m}$$
 $(\eta) = \prod_{\substack{j=1\\j \neq m}}^{k_{2}} (\eta - \eta_{i}) / \prod_{\substack{j=1\\j \neq m}}^{k_{2}} (\eta_{m} - \eta_{i})$

ただし、 $n = k_1 \cdot k_2$

kı:x方向のラグランジェ補間次数+1

k2: y方向のラグランジェ補間次数+1

これにより第2図のステップ108及びステップ115に対応するパターン表面形状の決定および修正が可能となる。なお、本実施例ではパターン表面の形状を表わす方法としてラグランジェ補間を用いたが、この他に前述のMATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS に示されている様なベジェ曲面、Bスプライン曲面あるいはクーンズ曲面などを用い、これらを制御するパラメータを直接設計変数として選択してもよい。

以上の実施例は各々が単独で実施される必要はなく、例えば第1実施例におけるプライラインの決定と第6実施例におけるベルト構造の決定とを同時に実施する、あるいは第1実施例で決定したプライラインを用いて第7実施例におけるクラウン部形状の決定を実施する等、各々を組み合わせてもよい。

上記の第7実施例及び第9実施例を組み合わせて得られたタイヤを実際に試作し、乗用車の右前輪に装着し、一般道路で10000km走行させた後、タイヤのトレッド中心とトレッド側端部の磨耗量比(肩落ち磨耗)について調査した結果は、以下の表4のとおりであった。

2 9

[表 4]

	従来タイヤ	本発明のタイヤ
設計・開発に要した時間	1 0 0	3 6
磨耗量比 (側端部磨耗量/中心部磨耗量)	2.65	1. 50
圧力分布の標準偏差	1 0 0	4 1

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

この表 4 から、圧力分布を均一化したことにより、肩落ち磨耗性が向上したことが理解される。

次に、操縦安定性を向上させるために、空気充塡時のタイヤ周方向ベルト張力を最適値である最大値にするカーカスラインの形状を遺伝的にアルゴリズムによって設計する第10実施例について説明する。なお、本実施例は、上記実施例と略同様の構成であるため、同一部分には同一符号を付して詳細な説明を省略する

第29図は、第10実施例のプログラムの処理ルーチンを示すものである。ステップ200では、N個のタイヤ断面形状を有限要素法等のように空気充填時のタイヤ周方向ベルト張力を数値的・解析的に求めることができる手法によりモデル化し、内部構造を含むタイヤ基本モデルを求める。ここで、モデル化とは、タイヤ形状、構造、材料パターン数値的・解析的手法に基づいて作成されたコンピュータプログラムへのインプットデータ形式に数値化することを言う。なお、Nは予め使用者がインプットする。本実施例で用いるタイヤ基本モデルは、第1実施例の第4図に示したものと同一である。なお、タイヤ基本モデルの分割は、第1実施例と同様に、タイヤ外面形状を表すラインの複数の法線や折り返しプライラインの複数の法線によって複数の要素に分割してもよく、また設計目的によって3角形等の任意の形状に分割してもよい。

次のステップ202では、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状を制約する制約条件及びN個のタイヤモデルのタイヤ断面形状を決定する設計変数を決定する。本実施例では、操縦安定性を向上させるために、空気充塡時のタイヤ周方向ベルト張力を最大にするカーカスラインの形状を設計するため、目的関数OBJ及び制約条件Gを次のように定めている。

目的関数 OBJ: ベルト張力のタイヤ周方向成分のタイヤ幅方向の総和制約条件 G:カーカスラインのペリフェリ値が設定した値の±5%以内なお、上記カーカスラインのペリフェリ値は、タイヤ形状を変化させる範囲内のカーカスラインの節点(カーカスラインと法線との交点)間の距離の総和として計算することができる。

また、設計変数であるカーカスラインの形状は、第1実施例で述べた、曲線を近似する第3図のラグランジェ補間ルーチンによって、N個のタイヤモデル各々について決定される。このラグランジェ補間ルーチンは、第1実施例と同一のため、説明を省略する。

ラグランジェ補間ルーチンをN回繰り返すことにより、目的関数OBJ、制約条件G及びN個のタイヤモデルの各々の設計変数 $r_{1,1}$ (J=1, 2, \cdot \cdot \cdot , N)を決定した後、第29図のステップ204において、N個のタイヤモデルの各々の設計変数 $r_{1,1}$ の各々の目的関数OBJ、及び制約条件G、を演算する。

次のステップ206では、ステップ204で求めたN個のタイヤモデルの各々の目的関数OBJ,及び制約条件G,を用いて、N個のタイヤモデルの各々の適応関数F,を以下の式(4)に従って演算する。本実施例では、例えばベルト張力を最大にするため、適応関数による値(適応度)は、ベルト張力が大きくなると大きくなる。

$$\Phi_{J} = -OBJ_{J} + \gamma \cdot max (G_{J}, O)$$

$$F_{J} = -\Phi_{J} \qquad (4)$$

または、

$$F_{\perp} = 1 / \Phi_{\perp}$$

または、

F_J = -a・Φ_J + b
但し、a =
$$\frac{\Phi_{avg} (c-1)}{(\Phi_{avg} - \Phi_{min})}$$

$$b = \frac{\Phi_{avg} (c - \Phi_{min})}{(\Phi_{avg} - \Phi_{min})}$$

$$\Phi_{avg} = \frac{\sum_{J=1}^{N} \Phi_{J}}{N}$$

c:定数

γ:ペナルティ係数

$$\Phi_{min} = m i n (\Phi_1 \setminus \Phi_2 \setminus \cdots \Phi_N)$$

 Φ 」: N個のタイヤモデルのJ番目のタイヤモデルのペナルティ関数 (J=1、2、3、・・・N)

なお、c及びγは使用者が予め入力する。

次のステップ208では、N個のモデルの中から交叉させるモデルを2個選択する。選択方法としては、一般に知られている適応度比例戦略を用い、N個のタイヤモデルのある個体ℓが各々選択で選ばれる確率P」は以下の式で表わされる

$$P_{i} = \frac{F_{i}}{\sum_{J=1}^{N} F_{i}}$$

但し、 F₁: N個のタイヤモデルの中のある個体 ℓ の適応関数

F: N個のタイヤモデルのJ番目の適応関数

$$J = 1$$
, 2 , 3 , \cdot · · N

上記実施例では、選択方法として適応度比例戦略を用いたが、この他、遺伝的

アルゴリズム(北野宏明 編)に示されている様な、期待値戦略、ランク戦略、 エリート保存戦略、トーナメント選択戦略、あるいはGENITORアルゴリズ ム等を用いてもよい。

次のステップ210では、選択された2個のタイヤモデルを、使用者が予め入力した確率Tによって交叉させるか否かを決定する。ここでいう、交叉とは、後述するように、2個のタイヤモデルの要素の一部を交換することをいう。否定判定で交叉させない場合は、ステップ212において現在の2個のタイヤモデルをそのままの状態でステップ216へ進む。一方、肯定判定で交叉させる場合には、ステップ214において後述するように2個のタイヤモデルを交叉させる。

2個のタイヤモデルの交叉は、第30図に示す交叉ルーチンによって行われる。先ず、ステップ208において選択された2個のタイヤモデルをタイヤモデル a及びタイヤモデルbとすると共に、各々のタイヤモデルaの設計変数について並びを含む設計変数ベクトルで表し、タイヤモデルaの設計変数ベクトルを $V r^a = (r_1^a \ x_2^a \ x_3^a \ x_4^a \ x_5^a \$

次のステップ 2 5 2 では、交叉すると決定されたタイヤモデル a, b の設計変数 r, $^{\circ}$, r, $^{\circ}$ に対して、以下の式に従って距離 d を求める。

$$d = |r_i|^a - r_i|^b$$

次のステップ 2 5 4 では、r , $^{\circ}$ 、r , $^{\circ}$ の取り得る範囲の最小値 B 、及び最大値 B 。を用いて、以下の式に従って正規化距離 d 、を求める。

$$d' = \frac{d}{B_u - B_u}$$

ステップ256では、正規化距離 d'の値を適度に分散させるために、第31

図 (a), (b) に示すような山型の写像関数 Z(x) ($0 \le x \le 1$, $0 \le Z$ (x) ≤ 0 . 5) を用いて、以下の式に従って関数値 Z_{ab} を求める。

$$Z_{ab} = Z (d')$$

このようにして、関数値 Z_a 。を求めた後、ステップ 2 5 8 において新しい設計変数 r_a ' *、 r_a ' * を次の式に従って求める。

$$r_{i}'^{a} = r_{i}^{a} - \frac{\min(|r_{i}^{a} - B_{L}|, |r_{i}^{a} - Bu|)}{0.5} \cdot Z_{ab}$$

$$r_{i}'^{b} = r_{i}^{b} + \frac{\min(|r_{i}^{b} - B_{L}|, |r_{i}^{a} - Bu|)}{0.5} \cdot Z_{ab}$$

または、

$$r_{i}^{a} = r_{i}^{a} + \frac{\min(|r_{i}^{a} - B_{L}|, |r_{i}^{a} - Bu|)}{0.5} \cdot Z_{ab}$$

$$r_{i}^{b} = r_{i}^{b} - \frac{\min(|r_{i}^{b} - B_{L}|, |r_{i}^{a} - Bu|)}{0.5} \cdot Z_{ab}$$

このようにして、r, '。、r, '。を求めた後、ステップ 2 6 0 で新しい設計変数の並びである設計変数ベクトルV r '。、V r '。 は以下のように求められる。

$$V r'^{a} = (r_{1}^{a}, r_{2}^{a}, \cdots r_{i}^{r_{i}}, r_{i+1}^{b}, \cdots r_{n-1}^{b})$$
 $V r'^{b} = (r_{1}^{b}, r_{2}^{b}, \cdots r_{i}^{r_{i}}, r_{i+1}^{a}, \cdots r_{n-1}^{a})$

なお、r, の取り得る範囲の最小値 B_L 及び最大値 B_L u は、使用者が予め入力しておく。また、写像関数 Z_L (x) は第 3.2 図(a), (b) に示すような、谷型の関数でもよい。また、上記例では交叉場所 i は l ヶ所であるが、この他に遺伝的アルゴリズム(北野 宏明 編)に示されているような、複数点交叉または

一様交叉等を用いてもよい。

このような交叉によって新規な2個のタイヤモデルを生成した後、第29図のステップ216では、使用者が予め入力した確率Sで、突然変異させるか否かを決定する。この突然変異は、後述するように、設計変数の一部を微小に変更することをいい、最適な設計変数となりうる母集団を含む確度を高くするためである。ステップ216で、否定判定で突然変異させない場合には、ステップ226では現在の2個のタイヤモデルのまま、次のステップ222へ進む。肯定判定で突然変異させる場合には、次のステップ220で以下のようにして突然変異処理を行う。

この突然変異は、第33図に示す突然変異ルーチンによって行われる。先ず、ステップ262では乱数を生成し、乱数によって突然変異の場所iを決定する。次のステップ264では、距離d'を

 $0 \le d' \le 1$

の範囲で乱数により決定する。

次のステップ 2 6 6 では、第 3 1 図 (a), (b) に示すような山型の写像関数 Z(x) (0 \leq x \leq 1 で、0 \leq Z(x) \leq 0.5) あるいは第 3 2 図 (a),

(b)に示すような谷型の写像関数 Z(x) を用いて、以下の式に従って、関数値 Z d を求める。

$$Zd = Z(d')$$

このようにして、関数値 Z d を求めた後、ステップ 2 6 8 において新しい設計変数 r₁ を以下の式に従って求める。

$$r_{i}' = r_{i} - \frac{m i n (|r_{i} - B_{L}|, |r_{i} - B u|)}{0.5} \cdot Z d$$

または、

$$r' = r' + \frac{min(|r' - B'| | r' - B'|)}{0.5}$$
 · Z d

このようにして、設計変数 r , 'を求めた後、ステップ 2 7 0 で求められる、

新しい設計変数の並びである設計変数ベクトルVr'は以下のようになる。

 $Vr' = (r_1 \setminus r_2 \setminus \cdots r_i' \setminus r_{i+1} \setminus \cdots \setminus r_{n-1})$

このようにして、新たに生成された2個のダイヤモデルについて、目的関数の値と制約条件の値を第29図のステップ222で演算する。次のステップ224では、得られた目的関数の値と制約条件の値から前記実施例例と同様に式(4)を用いて適応関数を演算する。

なお、ステップ230の収束判定は以下の条件のいずれかを満足したら収束と みなす。

- 1)世代数がM個に達した
- 2) 一番目的関数の値が大きい線列の数が全体の g %以上になった
- 3) 最大の目的関数の値が、続くp回の世代で更新されない。

なお、M、q、pは使用者が予め入力しておく。

また、上記実施例を、第2、第3、第4、第5、第6、第7、第8及び第9実 施例の設計変数に適用してもよい。

上記の第10実施例で得られたタイヤを実際に試作し試験を行った結果は、以下の表5のとおりであった。

3 6

[表 5]

					従来夕~	イヤ	実施	列(10)
設計	十・ほ	昇発に関	更しが	1	0 0		5 3	
性	能	操	安	性	1	0 0	1	0 8
		乗	心	地	1	0 0		9 9

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

試験法:実車走行試験によるフィーリング評価

このように、第10実施例では、表1に示した第1実施例対比計算量が増加するため、設計開発に要した時間は若干増加するが、より良い性能のタイヤ設計を行うことができる、という効果がある。

次に、本発明の第11実施例を説明する。本実施例はベルト構造に本発明を適用したものであり、二律背反する性能を最適にしようとするものである。本実施例では、車両の乗り心地を損ねることなく操縦安定性を向上させるベルト構造を決定するものである。

本実施例の手順は、第29図に示す第10実施例のプログラムの処理ルーチンと略同様であるが、目的関数、制約条件及び設計変数の選定、交叉方法、突然変異の方法が異なる。本実施例では、目的関数として操縦安定性を向上させるための物理量である横ばね定数を用い、制約条件として乗り心地を支配する物理量である縦ばね定数が一定という条件を採用しており、縦ばね定数が一定という条件の下で横ばね定数が最大になるベルト構造を決定するようにしている。

また、第34図(a)に示すようなタイヤ基本モデルが作成された時、ベルトが存在する可能性のある場所 b_1 、 b_2 、・・・、 b_n 、・・・、 b_n を設計変数とし、

b. = 1 ならばその場所にベルトが存在する

 $b_1 = 0$ ならばその場所にベルトが存在しない とする。

例えば、第34図(b)に太線で示したように、ベルトが存在するときに、場所 b_1 、 b_2 、・・・、 b_n の順序で1011001100となり、場所 b_{n+1} 、 b_{n+2} 、・・・、 b_m の順序で11111111001となる。

次に交叉は第35図に示す処理ルーチンに基づいて実施される。まず、N個のタイヤモデルの第a番目と第b番目のタイヤモデルを交叉させるとする。各々のタイヤモデルの設計変数の並びを設計変数ベクトル

ステップ 2 7 2 では乱数を生成し、生成された乱数に応じて交叉場所 i を決定する。次のステップ 2 7 4 では以下のように設計変数ベクトルである設計変数の並びを変更し、新しい設計変数の並びとして設計変数ベクトルV B * '、 V B * 'を求める。

VB^a'=(b_i ^a、b₂ ^a、…、b_{i-1} ^a、b_i ^b、b_{i+1} ^b、…、b_m ^b)
VB^b'=(b_i ^b、b₂ ^b、…、b_{i-1} ^b、b_i ^a、b_{i+1} ^a、…、b_m ^a)
次のステップ276では、求めた設計変数ベクトルVB^a'、VB^b'に応じて、2個の新しいタイヤモデルを生成する。

なお、本実施例では交叉場所 i は 1 ヶ所であるが、この他遺伝的アルゴリズム (北野宏明 編)に示されている様な、複数点交叉、一様交叉等を用いてもよい

次に、突然変異は第36図に示す処理ルーチンに基づいて実施される。タイヤ 基本モデルの設計変数の並びを設計変数ベクトル

$$VB = (b_1 \ b_2 \ \cdots b_{i-1} \ b_i \ b_{i+1} \ \cdots b_m)$$
とする。

ステップ278では乱数を生成し、乱数に応じて突然変異の場所 i を決定する

。次のステップ280では突然変異の場所iの設計変数b,を以下のように変化させて新しい設計変数の並びとして設計変数ベクトルVB'を生成する。

 $b_{i} = 1 \times 5 \times 10^{-1} = 0$

 $VB' = (b_1 \setminus b_2 \setminus \cdots b_{i-1} \setminus b_i' \setminus b_{i+1} \setminus \cdots b_m)$

次のステップ282では、求めた設計変数ベクトルVB'から、新しいタイヤモデルを生成する。

なお、上記実施例では設計変数としてベルト構造を採用したが、その他の補強 材等を設計変数として決定してもよい。また、ビード部へ補強材等を入れるか否 かに適用可能である。

上記の第11実施例で得られたタイヤを実際に試作し試験を行った結果は、以下の表6のとおりであった。

[表 6]

					従来タ	イヤ	実施	列(11)
設計	十・開	発に要	更しか	1	0 0		6 5	
性	能	操	安	性	1	0 0	1	0 5
	旭	乗	心	地	1	0 0	1	0 0

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

試験法:実車走行試験によるフィーリング評価

このように、第11実施例では、制約条件を満たす目的関数の最適値を与える 設計変数を求め、この設計変数からタイヤを設計しているので、ベストモードの タイヤ設計を行うことができる、という効果がある。

次に、第12実施例を説明する。本実施例はブロック化したタイヤのブロック 形状決定に本発明を適用したものであり、タイヤ周方向に並んだ大きさの異なる ブロック間のブロック剛性差を少なくすると共に一つのブロックにおいて各方向のブロック剛性を均一にするパターンにより偏磨耗性能を向上させるものである。第37図には、本実施例のプログラム処理ルーチンを示した。ステップ300では、ブロック42の形状を第38図(a)に示すようにブロック42の節点座標、サイプ44の節点座標、ブロックの溝の角度、溝の深さ、サイプの個数、サイプの幅、サイプの埋込み角度、サイプの深さによって定義し、有限要素法、解析的手法で解析できるようにモデル化する。第38図(b)に有限要素モデルのモデル化例を示す。

次のステップ302では、ブロックの性能評価用物理量を表す目的関数、ブロックの面積、サイプの長さ、サイプの長さ×サイプの深さ、サイプの個数等を制約する制約条件及びブロックの節点座標、サイプの節点座標、ブロックの各辺の溝角度、ブロックの各辺の溝深さ、サイプの幅、サイプの埋込み角度、サイプの深さに関した設計変数を決定する。

本実施例では、偏磨耗性能を向上させるために、一つのブロックに於いて各方向のブロック剛性が均一にするパターンを設計するために目的関数、制約条件、設計変数を次のように定めている。

目的関数 〇 B J : ・各方向のブロック剛性を均一

制約条件G:・サイプの長さの変化量が初期モデルでのサイプ長さの

± 5 %以内

・サイプの節点座標がブロックの節点座標で囲まれた図形内 に在る

・サイプ節点座標とブロックの外部を表わす直線間の距離が 2 mm以上

設計変数: サイプの節点座標(ブロックの節点座標は固定)

次のステップ304では、設計変数X,の初期値X。における目的関数OBJの初期値OBJ。及び制約条件Gの初期値G。を演算する。次のステップ306では、ブロックの基本モデルを変化させるために設計変数X,を各々 ΔX ,ずつ

変化させる。次のステップ308では、前記ステップ306で実施した設計変数 の変化を含んだブロックをモデル化する。

ステップ310では、ステップ308で求めたブロック修正モデルについて設計変数を Δ X。変化させた後の目的関数の値OBJ、制約条件の値G」を演算し、ステップ312で以下の式に従って、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度 dOBJ/dX。及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度 dG/dX。を各設計変数毎に演算する。

$$\frac{dOBJ}{dr_{i}} = \frac{OBJ_{i} - OBJ_{0}}{\Delta X_{i}}$$

$$\frac{dG}{dr_{i}} = \frac{G_{i} - G_{0}}{\Delta X_{i}}$$

この感度によって、設計変数を ΔX 、変化させたときに目的関数の値及び制約条件の値がどの程度変化するか予測することができる。なお、この感度は、ブロックのモデル化に用いた手法や設計変数の性質によっては、解析的に求められる場合があるので、その際にはステップ 3 1 2 の演算は不要になる。

する設計変数の値とし、ステップ320においてこの設計変数の値を用いてブロックの形状を決定する。

上記の第12実施例で得られたタイヤを実際に試作し磨耗試験を行った結果は 、以下の表7のとおりであった。

[表7]

	従来タイヤ	実施例(12)
設計・開発に要した時間	1 0 0	2 0
ブロック剛性の均一化度	1 0 0	4 0
H&T高さ	1 0 0	8 0

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

試験法: テストコースで5000km走行

なお、ブロック剛性の均一化度(BK)は、ブロックを3.0度毎にブロック剛性Ki($i=1\sim6$)を実測し、以下の式により得られる。

$$BK = \frac{\sqrt{\sum_{i=1}^{6} (K i - \overline{K})^{2}}}{\overline{K}}$$

$$\overline{K} = \frac{1}{6} \sum_{i=1}^{6} K i$$
 (平均ブロック剛性)

H&T高さ(ヒール・アンド・トー高さ)とは、タイヤの周方向に繋がるブロックが、周方向に鋸刃状に磨耗する現象である。このH&T高さは、第41図に示した。

次に、第13実施例を説明する。本実施例は、第1実施例と第10実施例を組合わせたものである。なお、本実施例は、上記実施例と略同様の構成であるため

、同一部分には同一符号を付して詳細な説明を省略する。

第10実施例では、ステップ118において交叉、突然変異によって得られた設計案をもとに目的関数、制約条件を演算していた。この場合には、Goldberg、D.E., "Genetic Algorithms in Search, Optimization and Machine + Learning", Addison-Wesley(1989)に記載されているように局所的な最適解に落ち込まないものの、真の最適解を求めることが難しいという問題点がある。そこで、第10実施例のステップ222の演算処理として、第1実施例のステップ104~116の処理を用いて、第1実施例と第10実施例の方法を組み合わせれば、上記問題点を解決できる。

第39図には、本実施例のプログラム処理ルーチンを示した。ステップ200 ~220は第10実施例と同一であるため説明を省略する。

ステップ340では、上記のようにして得られた2個の設計案を初期設計案として目的関数及び制約条件の演算をする。次のステップ106~116は上記第1実施例の処理と同様にして、目的関数の値が収束するまで繰り返し実行する。目的関数の値が収束したと判断されたときには、次のステップ224において得られた目的関数の値と制約条件の値から適応関数を演算し、次のステップ226で上記2個のタイヤモデルを保存する。このステップ226で保存したタイヤモデルの数が、N個に達するまでステップ208からステップ228を繰り返し実行し、N個に達した場合には、ステップ230で上記と同様にして収束判定をし、収束した場合に、N個のタイヤモデルの中で制約条件を略満たしながら目的関数の値が最大となるタイヤモデルの設計変数の値をもって制約条件を略満たしながら目的関数を最大にする設計変数の値とし、ステップ232においてこの設計変数の値を用いてダイヤの形状を決定する。

このような、局所的な最適解に落ち込まず、真の最適解を得る方法は、ここで述べた手法以外に、第10実施例の方法に前記参考文献に記載されてある焼きなまし法 (Simulated Annealing)と呼ばれる方法を組み合わせることもできる。

次に、第14実施例を説明する。本実施例は、最適なタイヤ形状に至る過程を 迅速に処理するものである。なお、本実施例は、上記実施例と略同様の構成であ るため、同一部分には同一符号を付して詳細な説明を省略する。

第40図には、本実施例のプログラム処理ルーチンを示した。ステップ400では、タイヤ形状のデータ・ベースから予め指定した所定数Mだけの形状データを読み込む。タイヤ形状データベースは、タイヤのカーカスラインを式(2)のラグランジェ補間、第10図に示す円弧を用いる方法、スプライン曲線、ベージェ曲線、NURBS(重き付Bスプライン)等によって表現したものである。

次のステップ 4 0 2 では、タイヤのカーカスラインF (\mathbf{x}) を次の式 (5) で表現する。

$$F(x) = \sum_{i=1}^{M} a_i f_i (x) \qquad (5)$$

ここで、a, ($i=1\sim M$) は定数、f, (x) はタイヤ形状データベースから読んだものである。

次に、第4図に示すようにカーカスラインに複数の法線NL」、NL2、NL3、・・・を引きその線上にタイヤ部材に応じた厚みを考慮して節点を配する。 そして節点を利用して複数の要素の分割する。

次のステップ 4 0 4 では、タイヤ性能評価物理量を表す目的関数、タイヤ断面 形状を制約する制約条件及びタイヤ断面形状を決定する設計変数を決定する。

また、設計変数であるカーカスラインの形状は、(5)式の定数 a によって決定される。次のステップ 4 0 6 ではタイヤ基本モデルを変化させるために設計変数 a を各々 Δ a ずつ変化させる。次のステップ 4 0 8 では、設計変数 Δ a だけ変化させた後のタイヤのカーカスラインを(5)式より求め、ステップ 4 0 2 の手順に従ってタイヤ修正モデルを決定する。ステップ 1 1 0 以降は、上記と同様のため、説明を省略する。

上記の第14実施例でタイヤを設計すると、実際のタイヤの形状データベース 及び設計者が新た入力した形状を組み合わせて、形状の最適化を図ることができ るため、第1実施例に比較して少ない計算時間で最適解を得ることができる。敷かし最初に読み込む形状データベースに最適解が依存するため、第1実施例に比較して効果が若干少なくなる傾向がある。以下の表8には、第1実施例と同じ目的関数、制約条件の基に第14実施例の手順で設計したタイヤの試作、試験結果を示した。

[表8]

					従来	タイ	ヤ	実施	例(1)	実施	例	(14)
設計・開発に要した時間				1 0	0	1	0 (0		3	0		
性 前	Ł	操	安	性		1 0	0	1	0 (3	1	0	5
	能	乗	心	地		1 0	0		9 8	3		9	8

タイヤサイズ:205/60HR15

内圧: 2. 0 kg/cm²

試験法:実車走行試験によるフィーリング評価

4 5

請 求 の 範 囲

- 1. 次の各ステップを含む空気入りタイヤの設計方法。
- (a) 内部構造を含むタイヤ断面形状を表すタイヤ基本モデル、タイヤ性能評価 用物理量を表す目的関数、タイヤ断面形状またはタイヤ構造を決定する設計変数 、及びタイヤ断面形状、タイヤ構造、性能評価用物理量及びタイヤ寸度の少なく とも1つを制約する制約条件を定めるステップ、(b) 制約条件を考慮しながら 目的関数の最適値を与える設計変数の値を求めるステップ。
- (c)目的関数の最適値を与える設計変数に基づいてタイヤを設計するステップ
- 2. 前記ステップ(b)では、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、予測値と演算値とに基づいて、制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求める請求項1の空気入りタイヤの設計方法。
- 3. 前記ステップ(a)では、内部構造を含むタイヤ断面形状を表す複数個のタイヤ基本モデルからなる選択対象集団を定め、該選択対象集団の各タイヤ基本モデルについて、タイヤ性能評価用物理量を表す目的関数、タイヤ断面形状またはタイヤ構造を決定する設計変数、タイヤ断面形状、タイヤ構造、性能評価用物理量及びタイヤ寸度の少なくとも1つを制約する制約条件、及び目的関数及び制約条件から評価できる適応関数を定め、

前記ステップ(b)では、適応関数に基づいて前記選択対象集団から2つのタ

イヤ基本モデルを選択し、所定の確率で各タイヤ基本モデルの設計変数を交叉させて新規のタイヤ基本モデルを生成すること及び少なくとも一方のタイヤ基本モデルの設計変数の一部を変更させて新規のタイヤ基本モデルを生成することの少なくとも一方を行い、設計変数を変化させたタイヤ基本モデルの目的関数、制約条件及び適応関数を求めて該タイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しかつ保存したタイヤ基本モデルが所定数になるまで繰り返し、保存した所定数のタイヤ基本モデルからなる新規集団が所定の収束条件を満たすか否かを判断し、収束条件を満たさないときには該新規集団を前記選択対象集団として該選択対象集団が所定の収束条件を満たすまで繰り返すと共に、該所定の収束条件を満たしたときに保存した所定数のタイヤ基本モデルのなかで制約条件を考慮しながら目的関数の最適値を与える設計変数の値を求める請求項1の空気入りタイヤの設計方法。

4. 前記ステップ(b)において、設計変数を変化させたタイヤ基本モデルについて、設計変数の単位変化量に対する目的関数の変化量の割合である目的関数の感度及び設計変数の単位変化量に対する制約条件の変化量の割合である制約条件の感度に基づいて制約条件を考慮しながら目的関数の最適値を与える設計変数の変化量を予測すると共に、設計変数を予測量に相当する量変化させたときの目的関数の値及び設計変数を予測量に相当する量変化させたときの制約条件の値を演算し、目的関数の値及び制約条件の値から適応関数を求めて該タイヤ基本モデル及び設計変数を変化させなかったタイヤ基本モデルを保存しかつ保存したタイヤ基本モデルが所定数になるまで繰り返す請求項3に記載の空気入りタイヤの設計方法。

5. 前記設計変数は、

カーカスライン、折り返しプライライン、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、及び補強材ラインの少なくとも 1 つのラインの形

状を表す関数と、

ビードフィラーのゲージ分布、ゴムチェーファーのゲージ分布、サイドゴムのゲージ分布、トレッドゴムのゲージ分布、トレッドベースゴムのゲージ分布、内面補強ゴムのゲージ分布、ベルト間ゴムのゲージ分布、及びベルトエンドゴムのゲージ分布の少なくとも1つのタイヤゴム部材のゲージ分布を表す変数と、

各ベルト層の角度、幅、コード種類、及び打ち込み密度の少なくとも1つのベルト部の構造を表す変数と、

ブロックの形状及びサイプの位置、本数、及び長さの少なくとも1つのパターンの形状を表す変数と、

の少なくとも1つを含む請求項1の空気入りタイヤの設計方法。

- 6. 設計変数としてカーカスライン、折り返しプライライン、タイヤ外面形状を表すライン、タイヤクラウン形状を表すライン、及び補強材ラインの少なくとも1つのラインの形状を表す関数から複数のラインを定め、ステップ(b)で設計変数を変化させたときに複数のラインが交差しないように、ラインの形状を表す関数の写像関数及び複数のラインが交差しないための制約条件を求め、該写像関数により写像された空間においてステップ(b)を実行することにより制約条件を満たしながら目的関数の最適値を与える設計変数の値を求める請求項1の空気入りタイヤの設計方法。
- 7. 前記目的関数は、タイヤのベルト張力の周方向成分のタイヤ幅方向の総和量を表す請求項1の空気入りタイヤの設計方法。
- 8. 前記制約条件は、カーカスラインのペリフェリ値がタイヤ基本モデルのカーカスラインのペリフェリ値を基準とした所定範囲内にあることからなる請求項1の空気入りタイヤの設計方法。

- 9. 前記目的関数は、操縦安定性を向上させるための物理量である横ばね定数からなる請求項1の空気入りタイヤの設計方法。
- 10. 前記制約条件は、乗り心地を支配する物理量である上下一次固有値が一定という条件からなる請求項1の空気入りタイヤの設計方法。
- 11. 設計変数として複数のラインを定めたときには、前記(b)で設計変数を変化させたときに複数のラインが交差しないように、ラインの形状を表す関数の写像関数及び複数のラインが交差しないための制約条件を求め、該写像関数により写像された空間において前記(b)を実行することにより制約条件を満たしながら目的関数の最適値を与える設計変数の値を求める請求項1の空気入りタイヤの設計方法。

第 1 図

- 10 キーボード
- 12 コンピュータ本体
- 14 CRT

第 2 図

2

第 3 図

>

第 4 図

第 5 図

第 6 図

7/39

,

第 8 図

第 9 図

第10図

第 川 図

第 12 図

rz座標

第 13 図

第 14 図

第 15 図

第 16 図

•

7

第 18 図

18/39

19/39

第 20 図

(b)

(c)

(d)

第 21 図

第 22 図

第 23 図

-

第 24 図

第 25 図

第 26 図

*

第 27 図

ラグランジェ補間の次数: x,y方向共3次

第 28 図

4

第 29 図

第 30 図

第 31 図

(a)

(b)

31/39

第 32 図

第 33 図

第 34 図

(a)

VB = (101100110011111111001)

34/39

第 35 図

第 36 図

第 37 図

.

第 38 図

(a)

(b)

第 39 図

.

第 40 図

第 41 図

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP94/00110

A. CLASSIFICATION OF SUBJECT MATTER			
Int. Cl ⁵ B29D30/06, B60C3/00			
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED			
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)			
Int. C1 ⁵ B29D30/06, B60C3/00			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Jitsuyo Shinan Koho 1926 - 1994 Kokai Jitsuyo Shinan Koho 1971 - 1994			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
A			1-11
	August 19, 1991 (19. 08. 9 Line 5, lower left column		
	right column, page 1, Fig. 3, (Family: none)		
A			1-11
	Ltd.), June 8, 1989 (08. 06. 89), (Family: none)		
	Julie 6, 1909 (00. 00. 05, ,		
	`		
			•
			į
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
Special categories of cited documents: "T" later document published after the international filing date or priority			
"A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is "X" document of particular relevance; the claimed invention care considered novel or cannot be considered to involve an instep when the document is taken alone			ered to involve an inventive
	establish the publication date of another citation or other eason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be
"O" document referring to an oral disclosure, use, exhibition or other means considered to involve an inventive step when the document is combined with one or more other such documents, such combination			
	nt published prior to the international filing date but later than ity date claimed	being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the actual completion of the international search Date of mailing of the international search report			
		April 19, 1994 (19.	-
Name and m	ailing address of the ISA/	Authorized officer	
Japan	nese Patent Office		
Facsimile No.		Telephone No.	