Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal beserta hasilnya, ya, semangat!

Pertama, masukkan dulu nilai initial value dan initial randomnya ya ...

Initial Value

X ₁	Х2	Х3			$Y_{d,6}$
0.7	0.8	0.9	0.1	-1	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ ₄	θ ₅	θ_6
0.5	0.6	0.3	1.1	-1	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$Y_4 = \frac{1}{1 + e^{-(x_1 W_{14} + x_2 W_{24} + x_3 W_{34} - \theta_4)}}$$

$$= \frac{1}{1 + e^{-((0.7*0.5) + (0.8*0.3) + (0.9*(-1)) - 0.2)}}$$

$$= \frac{1}{1 + e^{-0.20807}}$$

$$= \frac{1}{1 - 0.20807}$$

$$= \frac{1}{0.7913}$$

$$= 0.3752$$

$$Y_5 = \frac{1}{1 + e^{-(x_1 W_{15} + x_2 W_{25} + x_3 W_{35} - \theta_5)}}$$

$$= \frac{1}{1+e^{-((0.7*0.6)+(0.8*1.1)+(0.9*0.1)-0.3)}}$$

$$= \frac{1}{1+e^{-1.09}}$$

$$= \frac{1}{1+0.3362}$$

$$= \frac{1}{1.3362}$$

$$= 0.7484$$

$$Y_6 = \frac{1}{1+e^{-((Y_{4W_{46}}+Y_{5W_{56}}-\theta_{6})})}$$

$$= \frac{1}{1+e^{-((0.3752*(-1.1))+(0.7484*(-0.7))-0.4)}}$$

$$= \frac{1}{1+e^{-(-1.3366)}}$$

$$= \frac{1}{1+3.8061}$$

$$= \frac{1}{4.8061}$$

$$= 0.2081$$

$$e = Y_{d,6} - Y_{6}$$

$$= 0 - 0.2081$$

$$= -0.2081$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	e	
0.3752	0.7484	0.2081	-0.2081	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections

$$\delta_6 = Y_6(1 - Y_6)e$$

$$= 0.2081(1 - 0.2081)(-0.2081)$$

$$= -0.0343$$

$$\nabla_{46} = \alpha \delta_6 Y_4$$

$$= 0.1(-0.0343)(0.3752)$$

$$= -0.0013$$

$$\nabla_{56} = \alpha \delta_6 Y_5$$

$$= 0.1(-0.0343)(0.7484)$$

$$= -0.0026$$

$$\nabla \theta_6 = \alpha(threshold)\delta_6$$

$$= 0.1(-1)(-0.0343)$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

= 0.00343

δ_6	δ_6 ∇_{46}		∇θ ₆		
-0.0343	-0.0013	-0.0026	0.00343		

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Layer/Hidden Layer

$$\delta_4 = Y_4 \delta_6 \eta W_{46}$$

$$= Y_4 \delta_6 (1 - Y_4) W_{46}$$

$$= 0.3752(-0.0343)(1 - 0.3752)(-1.1)$$

$$= \mathbf{0.0088}$$

$$\delta_5 = Y_5 \delta_6 \eta W_{56}$$

$$= Y_5 \delta_6 (1 - Y_5) W_{56}$$

$$= 0.7484(-0.0343)(1 - 0.7484)(-0.7)$$

$$= \mathbf{0.0045}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	$oldsymbol{\delta}_5$
0.0088	0.0045

Langkah 4: Hitung weight corrections

$$\nabla w_{14} = \alpha x_1 \delta_4$$
$$= 0.1(0.7)(0.0088)$$

$$\nabla w_{24} = \alpha x_2 \delta_4$$

= 0.1(0.8)(0.0088)

= 0.000704

$$\nabla w_{34} = \alpha x_3 \delta_4$$

= 0.1(0.9)(0.0088)

= 0.000792

 $\nabla \theta_4 = \alpha(Threshold)\delta_4$

=0.1(-1)(0.0088)

= -0.00088

 $\nabla w_{15} = \alpha x_1 \delta_5$

=0.1(0.7)(0.0045)

= 0.000315

 $\nabla w_{25} = \alpha x_2 \delta_5$

= 0.1(0.8)(0.0045)

= 0.00036

 $\nabla w_{35} = \alpha x_3 \delta_5$

= 0.1(0.9)(0.0045)

= 0.000405

 $\nabla \theta_5 = \alpha(Threshold)\delta_5$

=0.1(-1)(0.0045)

= -0.00045

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇w ₁₄	∇w ₂₄	∇w ₃₄	∇θ4	∇w ₁₅	∇w ₂₅	∇w ₃₅	∇θ₅
0.000616	0.000704	0.000792	-0.00088	0.000315	0.00036	0.000405	-0.00045

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 8

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

= 0.19912

 $=\theta_5 + \nabla \theta_5$

=0.3-0.00045

 θ_5

$$\theta_6 = \theta_6 + \nabla \theta_6$$
$$= 0.4 + 0.00343$$

= 0.40343

Lalu isi rangkuman hasilnya di tabel ini ya ...

W 14	W ₁₅	W 24	W 25	W 34	W 35	θ ₄	θ ₅	Θ ₆
0.5000616	0.600315	0.300704	1.10036	-0.999208	0.10040	0.19912	0.29955	0.40343

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge platinum! Semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~