CONTEXT-AWARE PROGRAMMING LANGUAGES

TOMAS PETRICEK

Computer Laboratory University of Cambridge

2014

The development of programming languages needs to reflect important changes in the way programs execute. In recent years, this has included e.g. the development of parallel programming models (in reaction to the multi-core revolution) or improvements in data access technologies. This thesis is a response to another such revolution – the diversification of devices and systems where programs run.

The key point made by this thesis is the realization that execution environment or *context* is fundamental for writing modern applications and that programming languages should provide abstractions for programming with context and verifying how it is accessed.

We identify a number of program properties that were not connected before, but model some notion of context. Our examples include tracking different execution platforms (and their versions) in cross-platform development, resources available in different execution environments (e. g. GPS sensor on a phone and database on the server), but also more traditional notions such as variable usage (e. g. in liveness analaysis and linear logics) or past values in stream-based data-flow programming.

Our first contribution is the discovery of the connection between the above examples and their novel presentation in the form of calculi (*coeffect systems*). The presented type systems and formal semantics highlight the relationship between different notions of context. Our second and third contributions are two unified coeffect calculi that capture commonalities in the presented examples. In particular, our *flat coeffect calculus* models languages with contextual properties of the execution environment and our *structural coeffect calculus* models languages where the contextual properties are attached to the variable usage.

Although the focus of this thesis is on the syntactic properties of the presented systems, we also discuss their category-theoretical motivation. We introduce the notion of an *indexed* comonad (based on dualisation of the well-known monad structure) and show how they provide semantics of the two coeffect calculi.

CONTENTS

1	FLA	т соеі	FFECT CALCULUS	1
	1.1	Introd	duction	1
		1.1.1	Contributions	1
		1.1.2	Related work	2
	1.2	Flat c	oeffect calculus	2
		1.2.1	Reconciling lambda abstraction	2
		1.2.2	Flat coeffect algebra	3
		1.2.3	Understanding flat coeffects	4
		1.2.4	Flat coeffect types	5
		1.2.5	Examples of flat coeffects	5
		1.2.6	Typing of let binding	7
	1.3	Categ	orical motivation	7
		1.3.1	Categorical semantics	8
		1.3.2	Introducing comonads	8
		1.3.3	Generalising to indexed comonads	9
		1.3.4	Properties and related notions	11
		1.3.5	Flat indexed comonads	12
		1.3.6	Semantics of flat calculus	14
	1.4	Equat	tional theory	16
		1.4.1	Syntactic properties	16
		1.4.2	Call-by-value evaluation	18
		1.4.3	Call-by-name evaluation	19
		1.4.4	Internalized sequencing	22
	1.5	Synta	ctic properties and extensions	24
		1.5.1	Subtyping for coeffects	24
		1.5.2	Alternative lambda abstraction	25
		1.5.3	Language with pairs and unit	26
	1.6	Relate	ed work	27
		1.6.1	When is coeffect not a monad	27
		1.6.2	When is coeffect a monad	28
	1.7	Concl	usions	30
ві	BLIO	GRAPH	IY	31
Α	APP	ENDIX	. A	37
	ΑТ	Subst	itution for flat coeffects	27

FLAT COEFFECT CALCULUS

Successful programming language abstractions need to generalize a wide range of recurring problems while capturing the key commonalities. These two aims are typically in opposition – more general abstractions are less powerful, while less general abstractions cannot be used as often.

In the previous chapter, we outlined a number of systems that capture how computations access the environment in which they are executed. We identified two kinds of systems – *flat* capturing whole-context properties and *structural* capturing per-variable properties. As we show in Chapter ??, the systems can be unified using a single abstraction. This is useful when implementing and composing the systems, but such abstraction is *less powerful* – i. e. its generality hides useful properties that we can see when we consider the systems separately. For this reason, this and the next chapter discusses *flat* and *structural* systems separately.

1.1 INTRODUCTION

In the previous chapter, we looked at three important examples of systems that track whole-context properties. The type systems for whole-context liveness (Section ??) and whole-context data-flow (Section ??) have a very similar structure – their lambda abstraction duplicates the requirements and their application arises from the combination of *sequential* and *point-wise* composition.

The system for tracking of implicit parameters (Section ??), and similar systems for rebindable resources, differ in two ways. In lambda abstraction, they split the context requirements between the declaration-site and the call-site and they use only a single operator on the indices, typically \cup .

1.1.1 Contributions

All of the examples are practically useful and important and so we want to be able to capture all of them. Despite the differences, the systems can fit the same framework. The contributions of this chapter are as follows:

- We present a *flat coeffect calculus* with a type system that is parameterized by a *flat coeffect algebra* and can be instantiated to obtain all of the three examples discussed (Section 1.2).
- We give the equational theory of the calculus and discuss type-preservation for call-by-name and call-by-value reduction (Section 1.4). We also extend the calculus with subtyping and pairs (Section 1.5).
- We present the semantics of the calculus in terms of *indexed comonads*, which is a generalization of comonads, a category-theoretical dual of monads (Section 1.3). The semantics provides deeper insight into how (and why) the calculus works.

1.1.2 Related work

The development in this chapter can be seen as a counterpart to the well-known development of *effect systems* [29] and the use of *monads* [50] in programming languages. The syntax and type system of the flat coeffect calculus follows similar style as effect systems [48, 78], but differs in the structure, as explained in the previous chapter, most importantly in lambda abstraction.

Wadler and Thiemann famously show a correspondence between effect systems to monads [94], relating effectful functions $\tau_1 \xrightarrow{\sigma} \tau_2$ to monadic computations $\tau_1 \to M^{\sigma} \tau_2$. In this chapter, we show a similar correspondence between *coeffect systems* and *comonads*. However, due to the asymmetry of λ -calculus, this is not a simple mechanical dualization.

The main purpose of the comonadic semantics presented in this chapter is to provide a semantic motivation for the flat coeffect calculus. The semantics is inspired by the work of Uustalu and Vene [84] who present the semantics of contextual computations (mainly for data-flow) in terms of comonadic functions $C\tau_1 \to \tau_2$. Our *indexed comonads* annotate the structure with information about the required context, i.e. $C^{\sigma}\tau_1 \to \tau_2$. This is similar to the recent work on *parameterized monads* by Katsumata [40].

1.2 FLAT COEFFECT CALCULUS

The flat coeffect calculus is defined in terms of *flat coeffect algebra*, which defines the structure of context annotations, such as r, s, t. These can be sets of implicit parameters, integers or other values. The expressions of the calculus are those of the λ -calculus with *let* binding; assuming T ranges over base types, the types of the calculus are defined as follows:

$$\begin{array}{lll} e & ::= & x \mid \lambda x.e \mid e_1 \ e_2 \mid \text{let} \ x = e_1 \ \text{in} \ e_2 \\ \tau & ::= & T \mid \tau_1 \stackrel{r}{\rightarrow} \tau_2 \end{array}$$

We discuss subtyping and pairs in Section 1.5. The type $\tau_1 \xrightarrow{\Gamma} \tau_2$ represents a function from τ_1 to τ_2 that requires additional context r. It can be viewed as a pure function that takes τ_1 with or wrapped in a context r.

In the categorical semantics, the function $\tau_1 \xrightarrow{r} \tau_2$ is modelled by a morphism $C^r\tau_1 \to \tau_2$. However, the object C^r does not exist as a syntactical value. This is because we use comonads to define the *semantics* rather than *embedding* them into the language as in the meta-language approaches (the distinction between the two approaches has been discussed in detail in Section ??). The annotations r are formed by an algebraic structure discussed next.

1.2.1 Reconciling lambda abstraction

Recall the lambda abstraction rules for the implicit parameters system (annotating the context with sets of required parameters) and the data-flow system (annotating the context with the number of past required values):

$$\begin{array}{c} \text{(abs-imp)} & \frac{\Gamma, x : \tau_1 @ r \cup s \vdash e : \tau_2}{\Gamma @ r \vdash \lambda x.e : \tau_1 \overset{s}{\rightarrow} \tau_2} \\ \end{array} \quad \text{(abs-df)} \quad \frac{\Gamma, x : \tau_1 @ n \vdash e : \tau_2}{\Gamma @ n \vdash \lambda x.e : \tau_1 \overset{n}{\rightarrow} \tau_2} \\ \end{array}$$

In order to capture both systems using a single calculus, we need a way of unifying the two systems. For the data-flow system, this can be achieved by over-approximating the number of required past elements:

$$\textit{(abs-min)} \quad \frac{\Gamma, x : \tau_1 @ \min(n, m) \vdash e : \tau_2}{\Gamma@n \vdash \lambda x.e : \tau_1 \xrightarrow{m} \tau_2}$$

The rule (abs-df) is admissible in a system that includes the (abs-min) rule. If we include sub-typing rule (on annotations of functions) and sub-coeffecting rule (on annotations of contexts), then the reverse is also true – because $min(n, m) \le m$ and $min(n, m) \le n$.

1.2.2 Flat coeffect algebra

To make the flat coeffect system general enough, the algebra consists of three operations. Two of them, \circledast and \oplus , represent the *sequential* and *point-wise* composition, respectively and the third one, \wedge represents context *merging*. The term merging should be understood semantically – the operation models what happens when the semantics of lambda abstraction combines context available at the declaration-site and the call-site.

In addition to the three operations, we also require two special values used to annotate variable access and constant access and a relation that defines the ordering.

Definition 1. A flat coeffect algebra $(\mathfrak{C},\circledast,\oplus,\wedge)$, use, $\mathsf{ign},\leqslant)$ is a set \mathfrak{C} together with elements use, $\mathsf{ign}\in\mathfrak{C}$, relation \leqslant and binary operations $\circledast,\oplus,\wedge$ such that $(\mathfrak{C},\circledast)$, use) and $(\mathfrak{C},\oplus,\mathsf{ign})$ are monoids, (\mathfrak{C},\leqslant) is a pre-order and (\mathfrak{C},\wedge) is a band (idempotent semigroup). That is, for all $r,s,t\in\mathfrak{C}$:

```
\begin{array}{llll} r\circledast (s\circledast t)=(r\circledast s)\circledast t & \text{use}\circledast r=r=r\circledast \text{use} & \text{(monoid)} \\ r\oplus (s\oplus t)=(r\oplus s)\oplus t & \text{ign}\oplus r=r=r\oplus \text{ign} & \text{(monoid)} \\ r\wedge (s\wedge t)=(r\wedge s)\wedge t & r\wedge r=r & \text{(band)} \\ \text{if } r\leqslant s \text{ and } s\leqslant t \text{ then } r\leqslant t & t\leqslant t & \text{(pre-order)} \end{array}
```

In addition, the following distributivity axioms hold:

$$(r \oplus s) \circledast t = (r \circledast t) \oplus (s \circledast t)$$

 $t \circledast (r \oplus s) = (t \circledast r) \oplus (t \circledast s)$

In two of the three systems, some of the operators of the flat coeffect algebra coincide, but the data-flow system requires all three. Similarly, the two special elements also coincide in some, but not all systems. The required laws are motivated by the aim to capture common properties of the three examples, without unnecessarily restricting the system:

- The monoid (C, ®, use) represents sequential composition of (semantic) functions. The laws of a monoid are required in order to form a category structure in the categorical model (Section 1.3).
- The monoid (ℂ,⊕,ign) represents *point-wise* composition, i.e. the case when the same context is passed to multiple (independent) computations. The monoid laws guarantee that usual syntactic transformations on tuples and the unit value (Section 1.5) preserve the coeffect.
- For the \(\) operation, we require associativity and idempotence. The
 idempotence requirement makes it possible to duplicate the coeffects
 and place the same requirement on both call-site and declaration-site,

i.e. it makes the (*abs-df*) rule admissible. In some cases, the operator forms a monoid with the unit being the greatest element of the set.

It is worth noting that the operators \oplus and \wedge are dual in some of the systems. For example, in data-flow computations, they are max and min respectively. However, this duality does not hold for implicit parameters. Using the syntactic reading, they represent merging and splitting of context requirements – in the (abs) rule, \wedge appears in the assumption and the combined context requirements of the body are split between two positions in the conclusions; in the (app) rule, \oplus appears in the conclusion and combines two context requirements from the assumptions.

ORDERING. The flat coeffect algebra requires a pre-order relation \leqslant , which is used to define sub-coeffecting rule of the type system. When the monoid $(\mathfrak{C}, \oplus, \mathsf{ign})$ is idempotent and commutative monoid (semi-lattice), the \leqslant relation can be defined in terms of \oplus as:

$$r \leqslant s \iff r \oplus s = s$$

This definition is consistent with all three examples that motivate flat coeffect calculus, but it cannot be used with the structural coeffects (where it fails for the bounded reuse calculus) and so we choose not to use it.

Furthermore, the use coeffect is often the top (greatest) or the bottom (smallest) element of the semi-lattice, but not in general. As discussed in Section 1.4, when this is the case, we are able to prove certain properties of the calculus.

1.2.3 *Understanding flat coeffects*

Before looking at the type system in Figure 1, let us clarify how the rules should be understood. The coeffect calculus provides both analysis of context dependence (type system) and semantics for context (how it is propagated). These two aspects provide different ways of reading the judgements $\Gamma @ r \vdash e : \tau$ and the typing rules used to define it.

- **Analysis of context dependence.** Syntactically, coeffect annotations r model *context requirements*. This means we can over-approximate them and require more than is actually needed at runtime.
 - Syntactically, the typing rules should be read top-down. In (*app*), the context requirements of multiple assumptions are *merged*; in (*abs*), they are split between the declaration-site and the call-site.
- **Semantics of context passing.** Semantically, coeffect annotations r model *contextual capabilities*. This means that we can throw away capabilities, if a sub-expression requires fewer than we currently have.
 - Semantically, the typing rules should be read bottom-up. In application, the capabilities provided to the term e_1 e_2 are *split* between the two sub-expressions; in abstraction, the capabilities provided by the call-site and declaration-site are *merged* and passed to the body.

The reason for this asymmetry follows from the fact that the context appears in a *negative position* in the semantic model (Section 1.3). It means that we need to be careful about using the words *split* and *merge*, because they can be read as meaning opposite things. To disambiguate, we always use the term *context requirements* when using the syntactic view and *context capabilities* or just *available context* when using the semantic view.

$$(var) \quad \frac{x:\tau \in \Gamma}{\Gamma @ \text{ use } \vdash x:\tau}$$

$$(const) \quad \frac{c:\tau \in \Delta}{\Gamma @ \text{ ign } \vdash c:\tau}$$

$$(sub) \quad \frac{\Gamma @ r' \vdash e:\tau}{\Gamma @ r \vdash e:\tau} \qquad (r' \leqslant r)$$

$$(app) \quad \frac{\Gamma @ r \vdash e_1:\tau_1 \xrightarrow{t} \tau_2 \qquad \Gamma @ s \vdash e_2:\tau_1}{\Gamma @ r \oplus (s \circledast t) \vdash e_1 \ e_2:\tau_2}$$

$$(abs) \quad \frac{\Gamma, x:\tau_1 @ r \land s \vdash e:\tau_2}{\Gamma @ r \vdash \lambda x.e:\tau_1 \xrightarrow{s} \tau_2}$$

$$(let) \quad \frac{\Gamma @ r \vdash e_1:\tau_1 \qquad \Gamma, x:\tau_1 @ s \vdash e_2:\tau_2}{\Gamma @ s \oplus (s \circledast r) \vdash \text{let } x = e_1 \ \text{in } e_2:\tau_2}$$

Figure 1: Type system for the flat coeffect calculus

1.2.4 Flat coeffect types

The type system for flat coeffect calculus is shown in Figure 1. Variables (*var*) and constants (*const*) are annotated with special values provided by the coeffect algebra. Following the top-down syntactic reading, the (*sub*) rule allows us to treat an expression with fewer context requirements as an expression with more context requirements.

The (*abs*) rule is defined as discussed in Section 1.2.1. The body is annotated with context requirements $r \wedge s$, which are then split between the context-requirements on the declaration-site r and context-requirements on the call-site s. Examples of the \wedge operator are discussed in the next section.

In function application (*app*), context requirements of both expressions and the function are combined as discussed in Chapter ??. The pointwise composition \oplus is used to combine the context requirements of the expression representing a function r and the context requirements of the argument, sequentially composed with the context-requirements of the function $s \otimes t$.

The type system also includes a rule for let-binding. The rule is *not* equivalent to the derivation for $(\lambda x.e_2)$ e_1 , but it represents one admissible typing derivation. We return to let-binding after looking a number of examples. Additional constructs such as pairs are covered in Section 1.5.

1.2.5 Examples of flat coeffects

The flat coeffect calculus generalizes the flat systems discussed in Section ?? of the previous chapter. We can instantiate it to a specific use just by providing a flat coeffect algebra. The following summary defines the systems for implicit parameters, liveness and data-flow. For the latter two, we obtain more general (but compatible) rule for lambda abstraction.

Example 2 (Implicit parameters). Assuming Id is a set of implicit parameter names, the flat coeffect algebra is formed by $(\mathcal{P}(\mathsf{Id}), \cup, \cup, \cup, \emptyset, \emptyset, \subseteq)$.

For simplicity, we assume that all parameters have the same type ρ and so the annotations only track sets of names. The definition uses set union for all three operations. Both variables and constants are are annotated with \emptyset and

the ordering is defined by \subseteq . The definition satisfies the flat coeffect algebra laws because (S, \cup, \emptyset) is an idempotent, commutative monoid. The system has a single additional typing rule for accessing the value of a parameter:

$$(\textit{param}) \ \frac{?p \in c}{\Gamma @ c \vdash ?p : \rho}$$

The rule specifies that the accessed parameter ?p needs to be in the set of required parameters c. As discussed earlier, we use the same type ρ for all parameters, but it is easy to define an extension tracking set of parameters with type annotations.

Example 3 (Liveness). Let $L = \{L, D\}$ be a two-point lattice such that $D \subseteq L$ with a join \sqcup and meet \sqcap . The flat coeffect algebra for liveness is then formed by $(L, \sqcap, \sqcup, \sqcap, L, D, \subseteq)$.

As in Section $\ref{eq:section}$, sequential composition \circledast is modelled by the meet operation \sqcap and point-wise composition \oplus is modelled by join \sqcup . Two-point lattice is a commutative, idempotent monoid. The distributivity $(r \sqcup s) \sqcap t = (r \sqcap t) \sqcup (s \sqcap t)$ does not hold for *every* lattice, but it trivially holds for a two-point lattice used here.

The definition uses join \sqcup for the \land operator that is used by lambda abstraction. This means that, when the body is live L, both declaration-site and call-site are marked as live L. When the body is dead D, the declaration-site and call-site can be marked as dead D, or as live L, which is less precise, but permissible over-approximation, which could otherwise be achieved via sub-typing.

Example 4 (Data-flow). *In data-flow, context is annotated with natural numbers and the flat coeffect algebra is formed by* $(\mathbb{N}, +, max, min, 0, 0, \leq)$.

As discussed earlier, sequential composition \circledast is represented by + and point-wise composition \oplus uses max. For data-flow, we need a third separate operator for lambda abstraction. Annotating the body with min(r, s) ensures that both call-site and declaration-site annotations are equal or greater than the annotation of the body. As with liveness, this allows over-approximation.

As required by the laws, $(\mathbb{N}, +, 0)$ and $(\mathbb{N}, max, 0)$ form monoids and (\mathbb{N}, min) forms a band. Note that data-flow is our first example where + is not idempotent. The distributivity laws require the following to be the case: max(r,s) + t = max(r+t,s+t), which is easy to see. Finally, a simple data-flow language includes an additional rule for prev:

$$(prev) \quad \frac{\Gamma@c \vdash e : \tau}{\Gamma@c + 1 \vdash prev \ e : \tau}$$

As a further example that was not covered earlier, it is also possible to combine liveness analysis and data-flow. In the above calculus, 0 denotes that we require current value, but no previous values. However, for constants, we do not even need the current value.

Example 5 (Optimized data-flow). In optimized data-flow, context is annotated with natural numbers extended with the \bot element, that is $\mathbb{N}_\bot = \mathbb{N} \cup \{\bot\}$ such that $\forall n \in \mathbb{N}.\bot \leqslant n$. The flat coeffect algebra is $(\mathbb{N}_\bot, +, max, min, 0, \bot, \leqslant)$ where m + n is \bot whenever $m = \bot$ or $n = \bot$ and min, max treat \bot as the least element.

Note that $(\mathbb{N}_{\perp}, +, 0)$ is a monoid for the extended definition of +, (\mathbb{N}, max, \perp) is also a monoid and (\mathbb{N}, min) is a band. The required distributivity laws also holds for this algebra.

1.2.6 Typing of let binding

Recall the (*let*) rule in Figure 1. It annotates the expression let $x = e_1$ in e_2 with context requirements $s \oplus (s \otimes r)$. This is a special case of typing of an expression ($\lambda x. e_2$) e_1 , using the idempotence of \wedge as follows:

$$(app) \quad \frac{\Gamma @ \ r \vdash e_1 : \tau_1}{\Gamma @ \ s \vdash \lambda x. e_2 : \tau_1 \xrightarrow{s} \tau_2} \quad (abs)}{\Gamma @ \ s \vdash \lambda x. e_2 : \tau_1 \xrightarrow{s} \tau_2}$$

This design decision is similar to ML value restriction, but it works the other way round. Our *let* binding is more restrictive rather than more general. The choice is motivated by the fact that the typing obtained using the special rule for let-binding is more precise (with respect to sub-coeffecting) for all the examples considered in this chapter. Table 1 shows how the coeffect annotations are simplified for our examples.

	Definition	Simplified
Implicit parameters	$s \cup (s \cup r)$	$s \cup r$
Liveness	s □ (s ⊔ r)	S
Data-flow	max(s, s + r)	s+r

Table 1: Simplified annotation for let binding in sample flat calculi

The simplified annotations directly follow from the definitions of particular flat coeffect algebras. It is perhaps somewhat unexpected that the annotation can be simplified in different ways for different examples.

To see that the simplified annotations are *better*, assume that we used arbitrary splitting $s = s_1 \land s_2$ rather than idempotence. The "Definition" column would use s_1 and s_2 for the first and second s, respectively. The corresponding simplified annotation (using idempotence) would have $s_1 \land s_2$ instead of s. For all our systems, the simplified annotation (on the right) is more precise than the original (on the left):

$$s_1 \cup (s_2 \cup r) \supseteq (s_1 \cup s_2) \cup r$$
 (implicit parameters)
 $s_1 \cap (s_2 \cup r) \supseteq (s_1 \cap s_2)$ (liveness)
 $\max(s_1, s_2 + r) \geqslant \min(s_1, s_2) + r$ (data-flow)

The inequality cannot be proved from other properties of the flat coeffect algebra. To make the flat coeffect system as general as possible, we do not *in general* require it as an additional axiom, although the above examples provide reasonable basis for requiring that the specialized annotation for let binding is the least possible annotation for the expression $(\lambda x.e_2)$ e_1 .

1.3 CATEGORICAL MOTIVATION

The type system of flat coeffect calculus arises as a generalization of the examples discussed in Chapter ??, but we can also obtain it by looking at the categorical semantics of context-dependent computations. This is a direction that we explore in this section. Although the development presented here is interesting in its own, our main focus is *using* categorical semantics to motivate and explain the design of flat coeffect calculus.

1.3.1 Categorical semantics

As discussed in Section ??, categorical semantics interprets terms as morphisms in some category. For typed calculi, the semantics defined by $\llbracket - \rrbracket$ usually interprets typing judgements $x_1:\tau_1\ldots x_n:\tau_n\vdash e:\tau$ as morphisms $\llbracket\tau_1\times\ldots\times\tau_n\rrbracket\to\llbracket\tau\rrbracket$.

As a best known example, Moggi [50] showed that the semantics of various effectful computations can be captured uniformly using the (strong) monad structure. In that approach, computations are interpreted as $\tau_1 \times \ldots \times \tau_n \to M\tau$ for some monad M. For example, $M\alpha = \alpha \cup \{\bot\}$ models partiality (maybe monad), $M\alpha = \mathcal{P}(\alpha)$ models non-determinism (list monad) and $M\alpha = (\alpha \times S)^S$ models side-effects (state monad). Here, the structure of a strong monad provides necessary "plumbing" for composing monadic computations.

Following similar approach to Moggi, Uustalu and Vene [84] showed that (monoidal) comonads uniformly capture the semantics of various kinds of context-dependent computations [84]. For example, data-flow computations over non-empty lists NEList $\alpha = \alpha + (\alpha \times \text{NEList }\alpha)$ are modelled using the non-empty list comonad.

The monadic and comonadic model outlined here represents at most a binary analysis of effects or context-dependence. A function $\tau_1 \to \tau_2$ performs *no* effects (requires no context) whereas $\tau_1 \to M\tau_2$ performs *some* effects and $C\tau_1 \to \tau_2$ requires *some* context. In the next section, we introduce *indexed comonads*, which provide a more precise analysis and let us model computations with context requirements r as functions $C^r\tau_1 \to \tau_2$ using an *indexed comonad* C^r .

1.3.2 Introducing comonads

In category theory, *comonad* is a dual of *monad*. Informally, we get a comonad by taking a monad and "reversing the arrows". More formally, one of the equivalent definitions of comonad looks as follows:

Definition 6. A comonad over a category C is a triple (C, counit, cobind) where:

- C is a mapping on objects (types) $C : \mathcal{C} \to \mathcal{C}$
- counit is a mapping $C\alpha \to \alpha$
- cobind is a mapping $(C\alpha \rightarrow \beta) \rightarrow (C\alpha \rightarrow C\beta)$

such that, for all $f: C\alpha \to \beta$ and $g: C\beta \to \gamma$:

```
cobind counit = id(left identity)counit \circ cobind f = f(right identity)cobind (g \circ cobind f) = (cobind g) \circ (cobind f)(associativity)
```

From the functional programming perspective, we can see C as a parametric data type such as NEList. The counit operations extracts a value α from a value that carries additional context $C\alpha$. The cobind operation turns a context-dependent function $C\alpha \to \beta$ into a function that takes a value with context, applies the context-dependent function to value(s) in the context and then propagates the context.

As mentioned earlier, Uustalu and Vene [84] use comonads to model dataflow computations. They describe infinite (coinductive) streams and nonempty lists as example comonads. **Example 7** (Non-empty list). A non-empty list is a recursive data-type defined as NEList $\alpha = \alpha + (\alpha \times \text{NEList }\alpha)$. We write in and inr for constructors of the left and right cases, respectively. The type NEList forms a comonad together with the following counit and cobind mappings:

```
\begin{array}{lll} \mbox{counit } l = h & \mbox{when } l = \mbox{inl } h \\ \mbox{counit } l = h & \mbox{when } l = \mbox{inr } (h,t) \end{array} \mbox{cobind } f \ l = \mbox{inl } (f \ l) & \mbox{when } l = \mbox{inl } h \\ \mbox{cobind } f \ l = \mbox{inr } (f \ l, \mbox{ cobind } f \ t) & \mbox{when } l = \mbox{inr } (h,t) \end{array}
```

The counit operation returns the head of the non-empty list. Note that it is crucial that the list is *non-empty*, because we always need to be able to obtain a value. The cobind defined here returns a list of the same length as the original where, for each element, the function f is applied on a *suffix* list starting from the element. Using a simplified notation for list, the result of applying cobind to a function that sums elements of a list gives the following behaviour:

```
cobind sum (7,6,5,4,3,2,1,0) = (28,21,15,10,6,3,1,0)
```

The fact that the function f is applied to a *suffix* is important in order to satisfy the *left identity* law, which requires that cobind counit l = l.

It is also interesting to examine some data types that do *not* form a comonad. As already mentioned, list List $\alpha=1+(\alpha\times \text{List }\alpha)$ is not a comonad, because the counit operation is not defined for the value inl (). Similarly, the Maybe data type defined as $1+\alpha$ is not a comonad for the same reason. However, if we consider flat coeffect calculus for liveness, it appears natural to model computations as function Maybe $\tau_1\to\tau_2$. To use such model, we first need to generalise comonads to *indexed comonads*.

1.3.3 Generalising to indexed comonads

The flat coeffect algebra includes a monoid $(\mathfrak{C}, \circledast)$, use), which defines the behaviour of sequential composition, where the annotation use represents a variable access. An indexed comonad is formed by a data type (object mapping) $C^{\mathsf{T}}\alpha$ where the annotation T determines what context is required.

Definition 8. Given a monoid $(\mathfrak{C}, \circledast)$, use) with binary operator \circledast and unit use, an indexed comonad over a category \mathfrak{C} is a triple $(\mathfrak{C}^{\mathsf{r}}, \mathsf{counit}_{\mathsf{use}}, \mathsf{cobind}_{\mathsf{r},\mathsf{s}})$ where:

- C^r for all $r \in \mathbb{C}$ is a family of object mappings
- counit_{use} is a mapping $C^{use}\alpha \rightarrow \alpha$
- cobind_{r.s} is a mapping $(C^r \alpha \to \beta) \to (C^{r \circledast s} \alpha \to C^s \beta)$

such that, for all $f: C^r \alpha \to \beta$ and $g: C^s \beta \to \gamma$ and the identity $id_s: C^s \alpha \to C^s \alpha$:

```
\begin{aligned} \mathsf{cobind}_{\mathsf{use},s} \; \mathsf{counit}_{\mathsf{use}} &= \mathsf{id} & \textit{(left identity)} \\ \mathsf{counit}_{\mathsf{use}} \circ \mathsf{cobind}_{\mathsf{r,use}} \; \mathsf{f} &= \mathsf{f} & \textit{(right identity)} \\ \mathsf{cobind}_{\mathsf{r}\circledast_{\mathsf{S},\mathsf{t}}} \; (g \circ \mathsf{cobind}_{\mathsf{r,s}} \; \mathsf{f}) &= (\mathsf{cobind}_{\mathsf{s,t}} \; g) \circ (\mathsf{cobind}_{\mathsf{r,s}\circledast_{\mathsf{t}}} \; \mathsf{f}) & \textit{(associativity)} \end{aligned}
```

Rather than defining a single mapping C, we are now defining a family of mappings C^r indexed by a monoid structure. Similarly, the operation $\mathsf{cobind}_{r,s}$ operation is now also formed by a *family* of mappings for different pairs of indices r,s. To be fully precise, cobind is a family of natural transformations and we should include α,β as indices, writing $\mathsf{cobind}_{r,s}^{\alpha,\beta}$. For the purpose of this thesis, it is sufficient to treat cobind as a family of mappings or, when it does not introduce ambiguity, view it as a single mapping.

The counit operation is not defined for all $r \in \mathcal{C}$, but only for the unit use. We still include the unit as an index writing counit_{use}, but this is merely for symmetry. Crucially, this means that the operation is defined only for some special contexts.

If we look at the indices in the laws, we can see that the left and right identity require use to be the unit of \circledast . Similarly, the associativity law implies the associativity of the \circledast operator.

The category that models sequential composition is formed by the unit arrow counit together with the (associative) composition operation that composes computations with contextual requirements as follows:

$$\begin{array}{ll} - \hat{\circ} - \ : \ (C^r \tau_1 \to \tau_2) \to (C^s \tau_2 \to \tau_3) \to (C^{r \circledast s} \tau_1 \to \tau_3) \\ g \, \hat{\circ} \, f \ = \ g \, \circ \, (\mathsf{cobind}_{r,s} f) \end{array}$$

The composition $\hat{\circ}$ best expresses the intention of indexed comonads. Given two functions with contextual requirements r and s, their composition is a function that requires $r \circledast$, s. The contextual requirements propagate *backwards* and are attached to the input of the composed function.

EXAMPLES. Any comonad can be turned into an indexed comonad using a trivial monoid. However, indexed comonads are more general and can be used with other data types, including indexed Maybe.

Example 9 (Comonads). Any comonad C is an indexed comonad with an index provided by a trivial monoid ($\{1\}$, *, 1) where 1*1=1 and C^1 is the underlying mapping C of the original comonad. The operations counit₁ and cobind_{1,1} are defined by the operations counit and cobind of the comonad.

Example 10 (Indexed option). The indexed option comonad is defined over a monoid ($\{L, D\}, \sqcup, L$) where \sqcup is defined as earlier, i. e. $L = r \sqcup s \iff r = s = L$. Assuming 1 is the unit type inhabited by (), the mappings are defined as follows:

$$\begin{array}{lll} C^L\alpha = \alpha & \text{cobind}_{r,s} \,:\, (C^r\alpha \to \beta) \to (C^{r\sqcup s}\alpha \to C^s\beta) \\ C^D\alpha = 1 & \text{cobind}_{L,L} \,\, f\, x & = f\, x \\ & \text{cobind}_{L,D} \,\, f\, () & = () \\ \\ \text{counit}_L : C^L\alpha \to \alpha & \text{cobind}_{D,L} \,\, f\, () & = f\, () \\ \\ \text{counit}_L \,\, \nu = \nu & \text{cobind}_{D,D} \,\, f\, () & = () \end{array}$$

The indexed option comonad models the semantics of the liveness coeffect system discussed in \ref{cl} , where \ref{cl} $\alpha=\alpha$ models a live context and \ref{cl} $\alpha=1$ models a dead context which does not contain a value. The counit operation extracts a value from a live context; cobind can be seen as an implementation of dead code elimination. The definition only evaluates f when the result is marked as live and is thus required, and it only accesses x if the function f requires its input.

The indexed family C^r in the above example is analogous to the Maybe (or option) data type Maybe $\alpha=1+\alpha$. As mentioned earlier, this type does not permit (non-indexed) comonad structure, because counit () is not defined. This is not a problem with indexed comonads, because counit only needs to be defined on live context.

Example 11 (Indexed product). The semantics of implicit parameters is modelled by an indexed product comonad. We use a monoid $(P(Id), \cup, \emptyset)$ where Id is the set of (implicit parameter) names. As previously, all parameters have the type ρ . The data type $C^r \alpha = \alpha \times (r \to R)$ represents a value α together with a function that

associates a parameter value ρ with every implicit parameter name in $r \subseteq Id$. The cobind and counit operations are defined as:

$$\begin{array}{ll} \mathsf{counit}_{\emptyset} : C^{\emptyset}\alpha \to \alpha & \mathsf{cobind}_{r,s} \: : \: (C^{r}\alpha \to \beta) \to (C^{r \cup s}\alpha \to C^{s}\beta) \\ \mathsf{counit}_{\emptyset} \: (\alpha,g) = \alpha & \mathsf{cobind}_{r,s} \: f \: (\alpha,g) = (f(\alpha,g|_{r}),g|_{s}) \end{array}$$

The definition of counit simply ignores the function and returns the value in the context. The cobind operation uses the restriction operation $f|_{\Gamma}$, which we already defined when discussing semantics of implicit parameters in Section ?? (indeed, cobind here captures an essential part of the semantics).

The function g in cobind is defined on the union of the implicit parameters, i. e. $r \cup s \rightarrow \rho$. When passing it to f, we restrict it to just r and when returning it as a result, we restrict it to s.

1.3.4 Properties and related notions

We discuss additional examples in Section 1.3.5, after we look at the remaining structure that is needed to define the semantics of flat coeffect calculus. Before doing so, we discuss additional properties and categorical structures that have been proposed mainly in the context of monads and effects and are related to indexed comonads.

SHAPE PRESERVATION. Ordinary comonads have the *shape preservation* property [58]. Intuitively, this means that the shape of the additional context does not change during the computation. For example, in the NEList comonad, the length of the list stays the same after applying cobind.

Indexed comonads are not restricted by this property of comonads. For example, given the indexed product monad, in the computation $\mathsf{cobind}_{\mathsf{r},\mathsf{s}}\mathsf{f}$ above, the shape of the context changes from containing implicit parameters $\mathsf{r} \cup \mathsf{s}$ to containing just implicit parameters s .

FAMILIES OF MONADS. When linking effect systems and monads, Wadler and Thiemann [50] propose a *family of monads* as the categorical structure. The dual structure, *family of comonads*, is defined as follows.

Definition 12. A family of comonads is formed by triples $(C^r, cobind_r, counit_r)$ for all r such that each triple forms a comonad. Given r, r' such that $r \leq r'$, there is also a mapping $\iota_{r',r} : C^{r'} \to C^r$ satisfying certain coherence conditions.

Family of comonads is more restrictive than indexed comonad, because each of the data types needs to form a comonad separately. For example, our indexed option does not form a family of comonads (again, because counit is not defined on $C^D\alpha=1$). However, given a family of comonads and indices such that $r\leqslant r\circledast s$, we can define an indexed comonad. Briefly, to define cobind_{r,s} of an indexed comonad, we use cobind_{r\®s} from the family, together with two lifting operations: $\iota_{r\circledast s,r}$ and $\iota_{r\circledast s,s}$.

PARAMETERIC EFFECT MONADS. Parametric effect monads introduced by Katsumata [40] (independently to our indexed comonads) are closely related to our definition. Although presented in a more general categorical framework (and using monads), the model defines unit operation only on the unit of a monoid and bind operation composes effect annotations using the provided monoidal structure.

1.3.5 Flat indexed comonads

Indexed comonads model the semantics of sequential composition, but additional structure is needed to model the semantics of the flat coeffect calculus. This is where the duality between monads and comonads can no longer help us, because context is propagated differently than effects in lambda abstraction and application.

Whereas Moggi [50] requires *strong* monad to model effectful λ -calculus, Uustalu and Vene [84] require *lax semi-monoidal* comonad to model λ -calculus with contextual properties. The structure requires a monoidal operation:

$$m: C\alpha \times C\beta \rightarrow C(\alpha \times \beta)$$

The m operation is needed in the semantics of lambda abstraction. It represents merging of contexts and is used to merge the context of the declaration-site (containing free variables) and the call-site (containing bound variable). For example, for implicit parameters, this combines the additional parameters defined in the two contexts.

The semantics of flat coeffect calculus requires operations for *merging*, but also for *splitting* of contexts. These are provided by *lax* and *oplax* monoidal structures. In addition, we also need a lifting operation (similar to ι from Definition 12) to model sub-coeffecting.

Definition 13. Given a flat coeffect algebra $(\mathfrak{C}, \circledast, \oplus, \wedge, \mathsf{use}, \mathsf{ign}, \leqslant)$, an flat indexed comonad is an indexed comonad over the monoid $(\mathfrak{C}, \circledast, \mathsf{use})$ equipped with families of operations $\mathsf{merge}_{\mathsf{r},\mathsf{s}}$, $\mathsf{split}_{\mathsf{r},\mathsf{s}}$ and $\mathsf{lift}_{\mathsf{r}',\mathsf{r}}$ where:

- merge_{r.s} is a family of mappings $C^r \alpha \times C^s \beta \to C^{r \wedge s}(\alpha \times \beta)$
- $split_{r,s}$ is a family of mappings $C^{r \oplus s}(\alpha \times \beta) \to C^r \alpha \times C^s \beta$
- lift r', r is a family of mappings $C^{r'} \alpha \to C^r \alpha$ for all r', r such that $r \leqslant r'$

The $\mathsf{merge}_{r,s}$ operation is the most interesting one. Given two comonadic values with additional contexts specified by r and s, it combineds them into a single value with additional context $r \land s$. The \land operation often represents *greatest lower bound*¹, elucidating the fact that merging may result in the loss of some parts of the contexts r and s. We look at examples of this operation in the next section.

The split_{r,s} operation splits a single comonadic value (containing a tuple) into two separate values. Note that this does not simply duplicate the value, because the additional context is also split. To obtain coeffects r and s, the input needs to provide *at least* r and s, so the tags are combined using the \oplus , which is often the *least upper-bound*¹.

Finally, lift $_{r',r}$ is a family of operations that "forget" some part of a context. This models the sub-coeffecting operation and lets us, for example, forget some of the available implicit parameters, or turn a live context (containing a value) into a dead context (empty).

ALTERNATIVE DEFINITION. Although we do not require this as a general law, in all our systems, it is the case that $r \leqslant r \oplus s$ and $s \leqslant r \oplus s$. This allows a simpler definition of *indexed flat comonad* by expressing the split operation in terms of the lifting (sub-coeffecting) as follows:

$$\begin{aligned} \mathsf{map}_r \ f &= \mathsf{cobind}_{r,r} \ (\mathsf{f} \circ \mathsf{counit}_{\mathsf{use}}) \\ \mathsf{split}_{r,s} \ c &= (\mathsf{map}_r \ \mathsf{fst} \ (\mathsf{lift}_{r \oplus s,r} \ c), \mathsf{map}_s \ \mathsf{snd} \ (\mathsf{lift}_{r \oplus s,s} \ c)) \end{aligned}$$

¹ The \wedge and \oplus operations are the greatest and least upper bounds for the liveness and data-flow examples, but not for implicit parameters. However, they are useful as an informal analogy.

The map_r operation is the mapping on functions that corresponds to the object mapping C^r . The definition is dual to the standard definition of map for monads in terms of bind and unit. The functions fst and snd are first and second projections from a two-element pair. To define the $\mathsf{split}_{r,s}$ operation, we duplicate the argument c , then use lifting to throw away additional parts of the context and then transform the values in the context.

This alternative is valid for our examples, but we do not use it for two reasons. Firstly, it requires duplication of the value c, which is not required elsewhere in our model. So, using explicit split, our model could be embedded in a linear or affine model. Secondly, it is similar to the definition that is needed for structural coeffects in Chapter ?? and so it makes the connection between the two system easier to see.

EXAMPLES. All examples of *indexed comonads* discussed in Section 1.3.3 can be extended into *flat indexed comonads*.

Example 14 (Monoidal comonads). Just like indexed comonads generalise comonads, the additional structure of flat indexed comonads generalises symmetric semimonoidal comonads of Uustalu and Vene [84]. The flat coeffect algebra is defined as $(\{1\}, *, *, *, 1, 1, =)$ where 1 * 1 = 1 and 1 = 1. The additional operation merge_{1,1} is provided by the monoidal operation called m by Uustalu and Vene. The split_{1,1} operation is defined by duplication and lift_{1,1} is the identity function.

Example 15 (Indexed option). Flat coeffect algebra for liveness defines \oplus and \land as \sqcup and \sqcap , respectively and specifies that $D \sqsubseteq L$. Recall also that the object mapping is defined as $C^L \alpha = \alpha$ and $C^D \alpha = 1$. The additional operations of a flat indexed comonad are defined as follows:

$$\begin{array}{lll} \text{merge}_{L,L} \; (a,b) \; = \; (a,b) & \text{split}_{L,L} \; (a,b) \; = \; (a,b) \\ \text{merge}_{L,D} \; (a,()) \; = \; () & \text{split}_{L,D} \; (a,b) \; = \; (a,()) \\ \text{merge}_{D,L} \; ((),b) \; = \; () & \text{split}_{D,L} \; (a,b) \; = \; ((),b) \\ \text{merge}_{D,D} \; ((),()) \; = \; () & \text{split}_{D,D} \; () \; = \; ((),())) \end{array}$$

Without the indexing, the merge operations implements zip on option values, returning an option only when both values are present. The behaviour of the split operation is partly determined by the indices. When the input is dead, both values have to be dead (this is also the only solution of $D = r \sqcap D$), but when the input is live, the operation can perform implicit sub-coeffecting and drop one of the values.

Explicit sub-coeffecting using the (sub) rule is modelled by the lift operation. This can turn a *live* value v into a dead value (), or it can behave as identity. The behaviour is, again, determined by the index.

Example 16 (Indexed product). For implicit parameters, both \wedge and \oplus are the \cup operation and the relation \leq is formed by the subset relation \subseteq . Recall that the data type $C^r \alpha$ is $\alpha \times (r \to R)$ where R is some representation of a parameter value. The additional operations are defined as:

$$\begin{aligned} & \mathsf{split}_{r,s} \; ((\mathfrak{a},\mathfrak{b}),\mathfrak{g}) \; = \; ((\mathfrak{a},\mathfrak{g}|_r),(\mathfrak{b},\mathfrak{g}|_s)) \\ & \mathsf{merge}_{r,s} \; ((\mathfrak{a},\mathfrak{f}),(\mathfrak{b},\mathfrak{g})) \; = \; ((\mathfrak{a},\mathfrak{b}),\mathfrak{f} \uplus \mathfrak{g}) \\ & \quad \mathsf{lift}_{r',r} \; (\mathfrak{a},\mathfrak{g}) \; = \; (\mathfrak{a},\mathfrak{g}|_r) \end{aligned} \qquad \qquad \begin{aligned} & \mathsf{where} \; \mathfrak{f} \uplus \, \mathfrak{g} = \\ & \quad \mathfrak{f}|_{\mathit{dom}(\mathfrak{f}) \backslash \mathit{dom}(\mathfrak{g})} \cup \mathfrak{g} \end{aligned}$$

The split operation splits the tuple and restricts the function (representing available implicit parameters) to the required sub-sets. This corresponds to the definition in terms of lift, which performs just the restriction. The merge

operation is more interesting. It uses \forall operation that we defined when introducing implicit parameters in Section ??. It merges the values, preferring the definitions from the right-hand side (call-site) over left-hand side (declaration-site). Thus the operation is not symmetric.

Example 17 (Indexed list). Our last example provides the semantics of data-flow computations. The flat coeffect algebra is formed by $(\mathbb{N}, +, \max, \min, 0, 0, \leq)$. In a non-indexed version, the semantics is provided by a non-empty list. In the indexed semantics, the index represents the length of the storing past values. The data type is then a pair of the current value, followed by $\mathfrak n$ past values. The mappings that form the flat indexed comonad are defined as follows:

$$\begin{array}{l} {\sf counit}_0\langle a_0\rangle = a_0 & {\sf C}^n\alpha = \underbrace{\alpha\times\ldots\times\alpha}_{(n+1)-{\sf times}} \\ {\sf cobind}_{m,n} \ f\langle a_0,\ldots a_{m+n}\rangle = & (n+1)-{\sf times} \\ \langle f\langle a_0,\ldots,a_m\rangle,\ldots,f\langle a_n,\ldots,a_{m+n}\rangle\rangle \\ {\sf merge}_{m,n}(\langle a_0,\ldots,a_m\rangle,\langle b_0,\ldots,b_n\rangle) = \\ \langle (a_0,b_0),\ldots,(a_{min(m,n)},b_{min(m,n)})\rangle \\ {\sf split}_{m,n}\langle (a_0,b_0),\ldots,(a_{max(m,n)},b_{max(m,n)})\rangle = \\ (\langle a_0,\ldots,a_m\rangle,\langle b_0,\ldots,b_n\rangle) \\ {\sf lift}_{n',n}\langle a_0,\ldots,a_{n'}\rangle = & ({\sf when}\ n\leqslant n') \\ \langle a_0,\ldots,a_n\rangle \end{array}$$

The reader is invited to check that the number of required past elements in each of the mappings matches the number specified by the indices. The index specifies the number of *past* elements and so the list always contains at least one value. Thus counit returns the element of a singleton list.

The cobind_{m,n} operation requires m + n elements in order to generate n past results of the f function, which itself requires m past values. When combining two lists, $\text{merge}_{m,n}$ behaves as zip and produces a list that has the length of the shorter argument. When splitting a list, $\text{split}_{m,n}$ needs the maximum of the required lengths. Finally, the lifting operation just drops some number of elements from a list.

1.3.6 Semantics of flat calculus

In Section ??, we defined the semantics of concrete (flat) context-dependent computations including implicit parameters, liveness and data-flow. Using the *flat indexed comonad* structure, we can now define a single uniform semantics that is capable capturing of all our examples, as well as other computations that can be modelled by the structure.

CONTEXTS AND FUNCTIONS. The modelling of contexts and functions generalizes the earlier concrete examples. We use the family of mappings C^T as an (indexed) data-type that wraps the product of free variables of the context and the arguments of functions:

EXPRESSIONS. The definition of the semantics is shown in Figure 2. For readability, we write the definitions in a simple programming language nota-

$$\llbracket \Gamma @ \text{ use } \vdash x_{\mathfrak{i}} : \tau_{\mathfrak{i}} \rrbracket \ \mathit{ctx} = \pi_{\mathfrak{i}} \ (\mathsf{counit}_{\mathsf{use}} \ \mathit{ctx}) \tag{\mathit{var}}$$

$$\llbracket \Gamma @ \operatorname{ign} \vdash c_i : \tau \rrbracket \ ctx = \delta \ (c_i) \tag{const}$$

$$\llbracket \Gamma @ \mathbf{r} \vdash \mathbf{e} : \tau \rrbracket \ ctx = \tag{sub}$$
$$\llbracket \Gamma @ \mathbf{r}' \vdash \mathbf{e} : \tau \rrbracket \ (\mathsf{lift}_{\mathbf{r},\mathbf{r}'} \ ctx) \tag{when } \mathbf{r}' \leqslant \mathbf{r})$$

$$\llbracket \Gamma @ r \vdash \lambda x.e : \tau_1 \xrightarrow{s} \tau_2 \rrbracket ctx = \lambda v.$$

$$\llbracket \Gamma, x : \tau_1 @ r \land s \vdash e : \tau_2 \rrbracket (\mathsf{merge}_{r,s} (ctx, v))$$
(abs)

Figure 2: Categorical semantics of the flat coeffect calculus

tion as opposed to the point-free categorical style. However, it can be equally written using just the operations of flat indexed comonad together with ith projection from a tuple represented by π_i , *curry* and *uncurry*, function composition, value duplication ($\Delta: A \to A \times A$) and function pairing (given $f: A \to B$ and $g: C \to D$ then $f \times g: A \times C \to B \times D$). These operations can be provided by e.g. a Cartesian Closed Category.

The semantics of variable access and abstraction are the same as in the semantics of Uustalu and Vene [84], modulo the indexing. The semantics of variable access (var) uses counit_{use} to extract product of free-variables from the context and then projection π_i to obtain the variable value. Abstraction (abs) takes the context ctx and function argument v and merges their additional contexts using $merge_{r,s}$. Assuming the context Γ contains variables of types $\sigma_1, \ldots, \sigma_n$, this gives us a value $C^{r \wedge s}((\sigma_1 \times \ldots \times \sigma_n) \times \tau_1)$. Assuming that n-element tuples are associated to the left, the wrapped context is equivalent to $\sigma_1 \times \ldots \times \sigma_n \times \tau_1$, which can then be passed to the body of the function.

The semantics of application is more complex. It first duplicates the free-variable product inside the context (using map_r and duplication). Then it splits this context using $\mathsf{split}_{r,s\oplus t}$. The two contexts contain the same variables (as required by sub-expressions e_1 and e_2), but different coeffect annotations. The first context (with index r) is used to evaluate e_1 , resulting in a function $C^t\tau_1\to\tau_2$. To obtain the result, we compose this with a function created by applying $\mathsf{cobind}_{s,t}$ on the semantics of sub-expression e_2 , which is of type $C^{s\circledast t}\sigma_1\times\ldots\times\sigma_n\to C^t\tau_1$.

Finally, constants (*const*) are modelled by a global dictionary δ and subcoeffecting is interpreted by dropping additional context from the provided context *ctx* using lift_{r,r'} and providing it to the semantics of the assumption.

PROPERTIES. The categorical semantics can be used to embed context-dependent computations in functional programming languages, similarly to how monads provide a way of embedding effectful computations. More importantly, it also provides validation for the design of the type system developed in Section 1.2.4. As stated in the following theorem, the annotations in the type system match those of the semantic functions.

Remark 18 (Correspondence). In all of the typing rules of the flat coeffect system, the context annotations r of typing judgements $\Gamma @ r \vdash e : \tau$ and function types $\tau_1 \stackrel{r}{\to} \tau_2$ correspond to the indices of mappings C^r in the corresponding semantic function defined by $\llbracket \Gamma @ r \vdash e : \tau \rrbracket$.

Proof. By analysis of the semantic rules in Figure 2.

Thanks to the indexing, the statement of the remark is significantly stronger than for a non-indexed system, because it provides the justification for our choice of indices in the typing rules. In particular, we can see that the annotations follow from the annotations on primitive functions that define the semantics. Also, each function defining the semantics uses a distinct operation of the coeffect algebra and so the type system is the most general possible definition (within the comonadic framework we use).

1.4 EQUATIONAL THEORY

Each of the concrete coeffect calculi discussed in this chapter has a different notion of context, much like various effectful languages have different notions of effects (such as exceptions or mutable state). However, in all of the calculi, the context has a number of common properties that are captured by the *flat coeffect algebra*. This means that there are equational properties that hold for all of the systems we consider. Further properties hold for systems where the context satisfies additional properties.

In this section, we look at such shared syntactic properties. This accompanies the previous section, which provided a *semantic* justification for the axioms of coeffect algebra with a *syntactic* justification. Operationally, this section can also be viewed as providing a pathway to an operational semantics for two of our systems (implicit parameters and liveness), which can be based on syntactic substitution. As we discuss later, the notion of context for data-flow is more complex.

1.4.1 Syntactic properties

Before discussing the syntactic properties of general coeffect calculus formally, it should be clarified what is meant by providing "pathway to operational semantics" in this section. We do that by contrasting syntactic properties of coeffect systems with more familiar effect systems. Assuming $e_1[x \leftarrow e_2]$ is a standard capture-avoiding syntactic substitution, the following equations define four syntactic reductions on the terms:

The rules capture syntactic reductions that can be performed in a general calculus, without any knowledge of the specific notion of context. The glet notation models explicit sequencing of context-dependent computations an is inspired by Filinski [23]. In the rest of the section, we briefly outline the interpretation of the four rules and then we focus on call-by-value (Section 1.4.2) and call-by-name (Section 1.4.3) in more details.

The focus of this work is on the general coeffect system and so we do not discuss the operational semantics of the specific notions of context. However, some work in that area has been done by Brunel et al. [14].

CALL-BY-NAME. In call-by-name, the argument is syntactically substituted for all occurrences of a variable. It can be used as the basis for operational semantics of purely functional languages. However, using the rule in effectful languages breaks the *type preservation* property. For example, consider a language with effect system where functions are annotated with sets of effects such as {write}. A function $\lambda x.y$ is a effect-free:

$$y:\tau_1 \vdash \lambda x.y:\tau_1 \xrightarrow{\emptyset} \tau_2 \& \emptyset$$

Substituting an expression *e* with effects {write} for y changes the type of the function by adding latent effects (without changing the immediate effects):

$$\vdash \lambda x.e : \tau_1 \xrightarrow{\{write\}} \tau_2 \& \emptyset$$

Similarly to effect systems, substituting a context-dependent computation e for a variable y can add latent coeffects to the function type. However, this is not the case for *all* flat coeffect calculi. For example, call-by-name reduction preserves types and coeffects for the implicit parameters system. This makes the model suitable for languages such as Haskell.

CALL-BY-VALUE. The call-by-value evaluation strategy is often used by effectful languages. Here, an argument is first reduced to a *value* before performing the substitution. In effectful languages, value is defined syntactically. For example, in the *Effect* language [94], values are identifiers x or functions $(\lambda x.e)$.

The notion of *value* in coeffect systems differs from the usual syntactic understanding. A function $(\lambda x.e)$ does not delay all context requirements of the body e and may have immediate context requirements. Thus we say that e is a value if it is a value in the usual sense *and* has not immediate context requirements. We define this formally in Section 1.4.2.

The call-by-value evaluation strategy holds for a wide range of flat coeffect calculi, including all our three examples. However, it is rather weak – in order to use it, the concrete semantics needs to provide a way for reducing context-dependent term $\Gamma @ r \vdash e : \tau$ to a term $\Gamma @ \text{use} \vdash e' : \tau$ with no context requirements.

INTERNALIZED SEQUENCING. The (internalized sequencing) rule captures an operational semantics where the language provides a construct representing sequential composition and expressions can be reduced to a normal form, consisting of a sequenced context-dependent operations. We choose to write the sequencing operation as glet to emphasize that this is a separate primitive and not an ordinary syntactic let. The normal form looks as follows:

glet
$$x_1 = e_1$$
 in ... glet $x_n = e_n$ in e

Here, the expressions e_1, \ldots, e_n , e do not contain further nested glet constructs. This evaluation strategy provides context-dependent counterpart to operational view of monads developed by Filinsky [23]. We discuss how expressions reduce to the normal form in Section 1.4.4

The (internalized sequencing) rule is useful when defining a concrete semantics for a language that provides constructs for explicitly providing the

context. For example, consider a language with implicit parameters where a parameter is defined by e_1 with $p = e_2$. Semantics for such language would provide a reduction rule:

```
(glet x_1 = ?p \text{ in } e) with ?p = e_1 \quad \leadsto \quad \text{let } x_1 = e_1 \text{ in } e
```

Here, the glet construct provides a way of sequentialising the context-requirements so that they can be discharged by matching constructs providing the required contexts. As discussed tfearlier, we focus on the general case and so we discuss when a flat coeffect calculus supports this form of evaluation (rather than looking at semantics for concrete systems).

LOCAL SOUNDNESS AND COMPLETENESS. Two desirable properties of calculi, coined by Pfenning and Davies [65], are *local soundness* and *local completeness*. They guarantee that the rules which introduce a function arrow (lambda abstraction) and eliminate it (application) are not too strong and sufficiently strong.

The local soundness property is witnessed by (call-by-name) β -reduction, which we discussed already. The local completeness is witnessed by the η -expansion rule. We discuss the flat coeffect algebra conditions under which the reduction holds in Section 1.4.3.

1.4.2 *Call-by-value evaluation*

As discussed in the previous section, call-by-value reduction can be used for most flat coeffect calculi, but it provides a very weak general model i.e. the hard work of reducing context-dependent term to a *value* has to be provided for each system. Syntactic category for values is defined as:

```
v \in SynVal v ::= x | c | (\lambda x.e)

n \in NonVal n ::= e_1 e_2 | let x = e_1 in e_2

e \in Expr e ::= v | n
```

The category *SynVal* captures syntactic values, but a context-dependency-free value in coeffect calculus cannot be defined purely syntactically.

Definition 19. An expression e is a value, written as val(e) if it is a syntactic value, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies, i. e. $e \in SynVal$ and it has no context-dependencies.

The call-by-value substitution substitutes a value, with context requirements use, for a variable, whose access is also annotated with use. Thus, it does not affect the type and context-requirements of the term:

Lemma 20 (Call-by-value substitution). *In a flat coeffect calculus with a coeffect algebra* $(\mathfrak{C},\circledast,\oplus,\wedge,\mathsf{use},\mathsf{ign},\leqslant)$, given a value $\Gamma @ \mathsf{use} \vdash \mathsf{v} : \sigma$ and an expression $\Gamma,\mathsf{x} : \sigma @ \mathsf{r} \vdash \mathsf{e} : \tau$, then substituting v for x does not change the type and context requirements: $\Gamma @ \mathsf{r} \vdash \mathsf{e} [\mathsf{x} \leftarrow \mathsf{v}] : \tau$.

Proof. By induction over the type derivation, using the fact that x and v are annotated with use and that Γ is treated as a set in the flat calculus.

The substitution lemma 20 holds for all flat coeffect systems. However, proving that call-by-value reduction preserves typing requires an additional constraint on the flat coeffect algebra, which relates the \wedge and \oplus operations:

```
r \wedge t \leqslant r \oplus t (approximation)
```

Intuitively, this specifies that the \land operation (splitting of context requirements) under-approximates the actual context capabilities while the \oplus operation (combining of context requirements) over-approximates the actual context requirements.

The property holds for all three systems we consider – for implicit parameters, this is an equality; for liveness and data-flow (which both use a lattice), the greatest lower bound is smaller than the least upper bound.

Assuming \longrightarrow_{cbv} is call-by-value reduction that reduces the term $(\lambda x.e)v$ to a term exv, the type preservation theorem is stated as follows:

Theorem 21 (Call-by-value reduction). *In a flat coeffect system with the* (approximation) *property, if* $\Gamma @ r \vdash e : \tau$ *and* $e \longrightarrow_{\mathsf{cbv}} e'$ *then* $\Gamma @ r \vdash e' : \tau$.

Proof. Consider the typing derivation for the term $(\lambda x.e) v$ before reduction:

$$\frac{\Gamma, x : \tau_1 @ r \wedge t \vdash e : \tau_2}{\Gamma @ r \vdash \lambda x.e : \tau_1 \xrightarrow{t} \tau_2} \qquad \Gamma @ \text{ use } \vdash \nu : \tau_1}{\Gamma @ r \oplus (\text{use } \otimes t) \vdash (\lambda x.e) \nu : \tau_2}$$

$$\Gamma @ r \oplus t \vdash (\lambda x.e) \nu : \tau_2$$

The last step simplifies the coeffect annotation using the fact that use is a unit of \circledast . From Lemma 20 $e[x \leftarrow v]$ has the same coeffect annotation as e. As $r \land t \leqslant r \oplus t$, we can apply sub-coeffecting:

$$(sub) \ \frac{ \Gamma@r \wedge t \vdash e[x \leftarrow \nu] : \tau_2 }{ \Gamma@r \oplus t \vdash e[x \leftarrow \nu] : \tau_2 }$$

Thus, the reduction preserves type and coeffect annotation (although this may not be the *only* typing of the original term). \Box

1.4.3 *Call-by-name evaluation*

In the call-by-name reduction of $(\lambda x.e_1)$ e_2 , the expression e_2 is substituted for all occurrences of the variable v in an expression e_1 . As discussed in Section 1.4.1, the call-by-name strategy does not *in general* preserve the type of a program, but it does preserve the typing in some interesting cases. The typing is preserved for different reasons in two of our systems, so we briefly review the concrete examples.

DATA-FLOW. The type preservation property does not hold for data-flow. This case is similar to the example shown earlier with effectful computations. As a minimal example, consider the substitution of prev z for a variable y in a function $\lambda x.y$:

$$y:\tau_1, z:\tau_1 @ 0 \vdash \lambda x.y:\tau_1 \xrightarrow{0} \tau_2$$
 (before)
 $z:\tau_1 @ 1 \vdash \lambda x. \text{prev } z:\tau_1 \xrightarrow{1} \tau_2$ (after)

After the substitution, the coeffect of the body is 1. The rule for lambda abstraction requires that 1 = min(r, s) and so the least solution is to set both r, s to 1. The substitution this affects the coeffects attached both to the function type and the overall context.

Semantically, the coeffect over-approximates the actual requirements – the code does not access previous value of the argument x. This cannot be caputred by a flat coeffect system, but can be captured using the structural system discussed in Chapter ??.

IMPLICIT PARAMETERS. In data-flow, there is no typing for the resulting expression that preserves the type of the function. However, this is not the case for all systems. Consider substituting an implicit parameter access ?p for a variable y:

$$y:\tau_1 @ \emptyset \vdash \lambda x.y:\tau_1 \xrightarrow{\emptyset} \tau_2 \qquad \text{(before)}$$
$$\emptyset @ \{?p\} \vdash \lambda x.?p:\tau_1 \xrightarrow{\emptyset} \tau_2 \qquad \text{(after)}$$

The above shows one possible typing of the body – one that does not change the coeffects of the function type and attaches all additional coeffects (implicit parameters) to the context. In case of implicit parameters (and, more generally, systems with set-like annotations) this is always possible.

LIVENESS. In liveness, the type preservation also holds, but for a different reason. Consider substituting any expression ϵ of type τ_1 with coeffects r for a variable y:

$$y:\tau_1 @L \vdash \lambda x.y:\tau_1 \xrightarrow{L} \tau_2$$
 (before)
 $\emptyset @L \vdash \lambda x.e:\tau_1 \xrightarrow{L} \tau_2$ (after)

In the original expression, both the overall context and the function type are annotated with L, because the body contains a variable access. An expression *e* can always be treated as being annotated with L (because L is the top element of the lattice) and so substitution does not change any coeffects.

REDUCTION THEOREM. The above examples (implicit parameters and liveness) demonstrate two particular kinds of coeffect algebra for which typing preservation holds. Proving the type preservation separately provides more insight into how the systems work and so we choose to consider separately.

Definition 22. We call a flat coeffect algebra top-pointed if use is the greatest (top) coeffect scalar ($\forall r \in \mathcal{C}$. $r \leq use$) and bottom-pointed if it is the smallest (bottom) element ($\forall r \in \mathcal{C}$. $r \geq use$).

Liveness is an example of top-pointed coeffects as variables are annotated with L and D \leq L, while implicit parameters and data-flow are examples of bottom-pointed coeffects. For top-pointed flat coeffects, the substitution lemma holds without additional requirements:

Lemma 23 (Top-pointed substitution). In a top-pointed flat coeffect calculus with an aglebra $(\mathcal{C}, \circledast, \oplus, \wedge, \mathsf{use}, \mathsf{ign}, \leqslant)$, substituting an expression e_s with arbitrary coeffects s for a variable x in e_r does not change the coeffects of e_r :

$$\begin{split} \Gamma @\, s \vdash e_s : \tau_s & \wedge \Gamma_1, x : \tau_s, \Gamma_2 \, @\, r \vdash e_r : \tau_r \\ & \Rightarrow \Gamma_1, \Gamma, \Gamma_2 \, @\, r \vdash e_r [x \leftarrow e_s] : \tau_r \end{split}$$

Proof. Using sub-coeffecting ($s \le use$) and a variation of Lemma 20.

As variables are annotated with the top element use, we can substitute the term e_s for any variable and use sub-coeffecting to get the original typing (because $s \le use$).

In a bottom pointed coeffect system, substituting e for x increases the context requirements. However, if the system satisfies the strong condition that $\wedge = \circledast = \oplus$ then the context requirements arising from the substitution can be associated with the context Γ , leaving the context requirements of a function value unchanged. As a result, substitution does not break soundness

as in effect systems. The requirement $\wedge = \circledast = \oplus$ holds for our implicit parameters example (all three operators are set union) and for other set-like coeffects. It allows the following substitution lemma:

Lemma 24 (Bottom-pointed substitution). *In a bottom-pointed flat coeffect cal*culus with an algebra $(\mathcal{C}, \circledast, \oplus, \wedge, \text{use}, \text{ign}, \leqslant)$ where $\wedge = \circledast = \oplus$ and the operation is also idempotent and commutative and $r \leqslant r' \Rightarrow \forall s.r \circledast s \leqslant r' \circledast s$ then:

$$\Gamma @ s \vdash e_s : \tau_s \land \Gamma_1, x : \tau_s, \Gamma_2 @ r \vdash e_r : \tau_r$$

$$\Rightarrow \Gamma_1, \Gamma, \Gamma_2 @ r \circledast s \vdash e_r [x \leftarrow e_s] : \tau_r$$

Proof. By induction over \vdash , using the idempotent, commutative monoid structure to keep s with the free-variable context. See Appendix A.1.

The flat system discussed here is *flexible enough* to let us always re-associate new context requirements (arising from the substitution) with the free-variable context. In contrast, the structural system discussed in Chapter ?? is *precise enough* to keep the coeffects associated with individual variables – thus preserving typing in a complementary way.

The two substitution lemmas show that the call-by-name evaluation strategy can be used for certain coeffect calculi, including liveness and implicit parameters. Assuming $\longrightarrow_{\mathsf{cbn}}$ is the standard call-by-name reduction, the following subject reduction theorem holds:

Theorem 25 (Call-by-name reduction). In a coeffect system that satisfies the conditions for Lemma 23 or Lemma 24, if $\Gamma @ r \vdash e : \tau$ and $e \rightarrow_{\mathsf{cbn}} e'$ then $\Gamma @ r \vdash e' : \tau$.

Proof. For top-pointed coeffect algebra (using Lemma 23), the proof is similar to the one in Theorem 21, using the facts that $s \le use$ and $r \land t = r \oplus t$. For bottom-pointed coeffect algebra, consider the typing derivation for the term $(\lambda x.e_r)$ e_s before reduction:

$$\frac{\Gamma, x : \tau_s @ r \vdash e_r : \tau_r}{\Gamma @ r \vdash \lambda x. e_r : \tau_s \xrightarrow{r} \tau_r} \qquad \Gamma @ s \vdash e_s : \tau_s}$$

$$\Gamma @ r \oplus (s \circledast r) \vdash (\lambda x. e_r) e_s : \tau_r$$

The derivation uses the idempotence of \wedge in the first step, followed by the (*app*) rule. The type of the term after substitution, using Lemma 24 is:

$$\frac{\Gamma, x : \tau_s @r \vdash e_r : \tau_r \quad \Gamma @s \vdash e_s : \tau_s}{\Gamma, x : \tau_r @r \circledast s \vdash e_r [x \leftarrow e_s] : \tau_s}$$

From the assumptions of Lemma 24, we know that $\circledast = \oplus$ and the operation is idempotent, so trivially: $r \circledast s = r \oplus (s \circledast r)$

EXPANSION THEOREM. The η -expansion (local completeness) is similar to β -reduction (local soundness) in that it holds for some flat coeffect systems, but not for all. Out of the examples we discuss, it holds for implicit parameters, but does not hold for liveness and data-flow.

Recall that η -expansion turns e into $\lambda x.e$ x. In the case of liveness, the expression e may require no variables (both immediate and latent coeffects are marked as D). However, the resulting expression $\lambda x.e$ x accesses a variable, marking the context and function argument as live. In case of data-flow, the coeffects are made larger by the lambda abstraction. We remedy this limitation in the next chapter.

However, the η -expansion preserves the type for implicit parameters and, more generally, for any flat coeffect algebra where $\oplus = \wedge$. Assuming \to_{η} is the standard η -reduction:

Theorem 26 (η -expansion). In a bottom-pointed flat coeffect calculus with an algebra $(\mathfrak{C},\circledast,\oplus,\wedge,\text{use},\text{ign},\leqslant)$ where $\wedge=\oplus$, if $\Gamma @ r \vdash e : \tau_1 \stackrel{s}{\to} \tau_2$ and $e \to_{\eta} e'$ then $\Gamma @ r \vdash e' : \tau_1 \stackrel{s}{\to} \tau_2$.

Proof. The following derivation shows that $\lambda x.f x$ has the same type as f:

$$\frac{\Gamma @ r \vdash f : \tau_1 \xrightarrow{s} \tau_2 \qquad x : \tau_1 @ use \vdash x : \tau_1}{\Gamma, x : \tau_1 @ r \oplus (use \circledast s) \vdash f x : \tau_2}$$

$$\frac{\Gamma, x : \tau_1 @ r \oplus s \vdash f x : \tau_2}{\Gamma, x : \tau_1 @ r \land s \vdash f x : \tau_2}$$

$$\frac{\Gamma, x : \tau_1 @ r \land s \vdash f x : \tau_2}{\Gamma @ r \vdash \lambda x. f x : \tau_1 \xrightarrow{s} \tau_2}$$

The derivation starts with the expression e and derives the type for $\lambda x.e$ x. The application yields context requirements $r \oplus s$. In order to recover the original typing, this must be equal to $r \land s$. Note that the derivation is showing just one possible typing – the expression $\lambda x.e$ x has other types – but this is sufficient for showing type preservation.

In summary, flat coeffect calculi do not *in general* permit call-by-name evaluation, but there are several cases where call-by-name evaluation can be used. Among the examples we discuss, these include liveness and implicit parameters. Moreover, for implicit parameters (and more generally, any set-like flat coeffect algebra), the η -expansion holds as well, giving us both local soundness and local completeness as coined by Pfenning and Davies [65].

1.4.4 Internalized sequencing

The call-by-value and call-by-name evaluation strategies discussed in the previous section are the key techniques for defining equational theory of flat coeffects. In this section, we briefly discuss another approach that follows the style of generic operational semantics designed by Filinski [23] for effectful computations.

The idea is to embed sequencing of context-dependent computations as an explicit construct into the language and define a *normal form* that consists of sequenced expressions. The reduction to the normal form is generic for all coeffect systems (satisfying certain conditions), while the reduction of the normal form is provided by each concrete coeffect system. The extended language with the glet construct and its typing is defined as follows:

```
\begin{array}{ll} e & ::= & x \mid \lambda x.e \mid e_1 \; e_2 \mid \text{let} \; x = e_1 \; \text{in} \; e_2 \mid \text{glet} \; x = e_1 \; \text{in} \; e_2 \\ n & ::= & e \mid \text{glet} \; x = e \; \text{in} \; n \\ \tau & ::= & T \mid \tau_1 \stackrel{r}{\rightarrow} \tau_2 \\ \\ & (\textit{glet}) & \hline \begin{array}{c} \Gamma @ \, s \vdash e_1 : \tau_1 & \Gamma, x : \tau_1 @ \, r \vdash e_2 : \tau_2 \\ \hline \Gamma @ \, r \oplus (s \circledast r) \vdash \text{glet} \; x = e_1 \; \text{in} \; e_2 : \tau_2 \end{array} \end{array}
```

The newly introduced syntactic form n represents a normal form. The construct glet x = e in n models an explicit sequencing of an expression e, followed by an expression n. Note that glet can only contain further glet constructs in the body, but not in the argument. The typing of the glet is the same as the typing of ordinary let construct – as discussed in Section 1.2.4, for the examples we consider, this gives a *more precise* typing than the typing of the term $(\lambda x.n)$ e.

The reduction rules that produce a normal form are shown in Figure 3. The (*eval*) rule introduces glet by reducing a redex $(\lambda x.e_2)$ e_1 to an expres-

$$(\lambda x.e_2) e_1 \rightsquigarrow \text{glet } x = e_1 \text{ in } e_2$$
 (eval)

(glet
$$x = e_1$$
 in e_2) $e_3 \rightarrow x \notin fv(e_3)$ (glet-app)

Figure 3: Reduction to normal form.

sion representing explicit sequencing of e_1 and e_2 . The remaining two rules specify how glet distributes with other constructs (glet and application). In (glet-app), the glet construct appearing inside an application is lifted to the top-level; similarly (glet-glet) lifts a glet construct nested in the argument of another glet.

As with *call-by-value* and *call-by-name* strategies, the *internalized sequencing* strategy can only be used with coeffect systems satisfying certain conditions. The general form of the conditions is summarized in Appendix ?. Here, we briefly consider our three examples.

CONDITIONS. The (*eval*) reduction can be safely applied for any flat coeffect calculus which satisfies the condition that the typing of the glet expression (shown above) is equivalent or more precise than typing of the expression ($\lambda x.e_2$) e_1 . More formally:

Definition 27. A flat coeffect algebra $(\mathbb{C}, \circledast, \oplus, \wedge, \text{use, ign,} \leqslant)$ is oriented if for all $s, s_1, s_2, r \in \mathbb{C}$ such that $s = s_1 \wedge s_2$ it is the case that $s \circledast (s \oplus r) \leqslant s_1 \circledast (s_2 \oplus r)$.

As discussed in Section 1.2.6, this condition is satisfied for all our three examples (strictly for liveness and data-flow; and by equality for implicit parameters). For the (*glet-app*) and (*glet-glet*) rules, additional conditions arise from the typing of the original and reduced expression (showed in Appendix?). The results are summarized in the following two tables.

Assuming $\Gamma@r_1 \vdash e_1 : \tau_1$ and $\Gamma@r_2 \vdash e_2 : \tau_3 \xrightarrow{s} \tau_2$ and $\Gamma@r_3 \vdash e_3 : \tau_3$, the typings of the original and reduced expressions in (*glet-app*) rule are:

	Before	After	Satisfied
Parameters	$max(r_1+r_2,r_3+s)$	$r_1 + max(r_2, r_3 + s)$	×
Liveness	$r_2 \sqcap (r_3 \sqcup s)$	$r_2 \sqcap (r_3 \sqcup s)$	✓
Data-flow	$(r_2 \cup r_1) \cup (r_3 \cup s)$	$(r_2 \cup (r_3 \cup s)) \cup r_1$	✓

Assuming $\Gamma@r_1 \vdash e_1 : \tau_1$ and $\Gamma@r_2 \vdash e_2 : \tau_2$ and $\Gamma@r_3 \vdash e_3 : \tau_3$, the typings of the original and reduced expressions in (*glet-glet*) rule are:

	Before	After	Satisfied
Parameters	$r_3 + (r_2 + r_1)$	$(r_3 + r_2) + r_1$	✓
Liveness	r ₃	r ₃	✓
Data-flow	$r_3 \cup (r_2 \cup r_1)$	$(r_3 \cup r_2) \cup r_1$	✓

Figure 4: Subtyping rules for flat coeffect calculus

This means that *internalized sequencing* provides a basis for operational semantics of liveness and implicit parameters, but not for data-flow languages. For other coeffect systems, the conditions in Appendix ? have to be re-examined.

1.5 SYNTACTIC PROPERTIES AND EXTENSIONS

The flat coeffect algebra introduced in Section 1.2 requires a number of laws. The laws are required for three distinct reasons – to be able to define the categorical structure in Section 1.3, to prove equational properties in Section 1.4 and finally, to guarantee intuitive syntactic properties for constructs such as λ -abstraction and pairs in context-aware calculi.

In this section, we look at the last point. We discuss what syntactic equivalences are permitted by the properties of \land and we extend the calculus with pairs and units and discuss their syntactic properties. In the following section, we further develop subtyping relation for the calculus.

1.5.1 Subtyping for coeffects

The typing rules discussed in Section 1.2.4 include sub-coeffecting rule which makes it possible to treat an expression with smaller context requirements as an expression with greater context requirements. In the corresponding categorical semantics, this means that we can *drop* some of the provided context.

Figure 4 adds sub-typing on function types, making it possible to treat a function with smaller context requirements as a function with greater context requirements. The definition uses the standard reflexive and transitive <: operator. As the (*sub-fun*) shows, the function type is contra-variant in the input and co-variant in the output. The (*typ*) rule allows using sub-typing on an expression type in the coeffect calculus.

$$\begin{split} & \llbracket \Gamma @ \operatorname{r} \vdash e : \tau' \rrbracket = \llbracket \tau <: \tau' \rrbracket \circ \llbracket \Gamma @ \operatorname{r} \vdash e : \tau \rrbracket \end{split} \qquad (typ) \\ & \llbracket \tau <: \tau \rrbracket = \operatorname{id} \qquad \qquad (sub\text{-refl}) \\ & \llbracket \tau_1 <: \tau_3 \rrbracket = \llbracket \tau_2 <: \tau_3 \rrbracket \circ \llbracket \tau_1 <: \tau_2 \rrbracket \qquad (sub\text{-trans}) \\ & \llbracket \tau_1 \xrightarrow{\operatorname{r}} \tau_2 <: \tau_1' \xrightarrow{\operatorname{r}'} \tau_2' \rrbracket = \lambda f. \qquad (sub\text{-fun}) \\ & \llbracket \tau_2 <: \tau_2' \rrbracket \circ f \circ \mathsf{map}_{\operatorname{r}} \llbracket \tau_1' <: \tau_1 \rrbracket \circ \mathsf{lift}_{\tau', \tau} \end{split}$$

Figure 5: Semantics of subtyping for flat coeffects

SEMANTICS. We follow the same approach as with the rest of the calculus and use a categorical semantics to explain (and confirm) the design of the sub-typing rules. The semantics of a judgement $\llbracket \tau <: \tau' \rrbracket$ is a function $\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket$. As shown in Figure 5, the seamntics of the sub-typing rule (*typ*) then just composes the semantics of the original expression with the conversion produced by the semantics of the sub-typing judgement.

The rest of the Figure 5 shows the rules that define the semantics of <:. The reflexivity and transitivity are just the identity function and function composition, respectively. The (sub-fun) case is interesting – recall that the semantics of a function $\tau_1' \stackrel{r'}{\longrightarrow} \tau_2'$ is $C^{r'}\tau_1' \to \tau_2'$. To build the required function, we first drop unnecessary context using lift_{r',r}: $C^{r'}\tau_1' \to C^r\tau_1'$ and use the map_r function to transform the nested τ_1' to τ_1 . Then we evaluate the original function f and turn the resulting τ_2 into the required result of type τ_2' .

1.5.2 Alternative lambda abstraction

In Section 1.2.1, we discussed how to reconcile two typings for lambda abstraction (for implicit parameters, the lambda function splits context requirements using $r \cup s$; for data-flow it suffices to duplicate the requirement r). We introduced the \land operation as a way of providing the additional abstraction. Here, we identify coeffect calculi for which the simpler (duplicating) rule is sufficient.

IDEMPOTENCE. Recall that (\mathcal{C}, \wedge) is a band, meaning that \wedge is idempotent and associative. The idempotence means that the context requirements of the body can be required from both the declaration site and the call site. Thus, the following (*idabs*) typing is valid (for reference, it is shown side-by-side with the ordinary lambda abstraction rule):

$$(\textit{idabs}) \ \frac{ \Gamma, x : \tau_1 @ r \vdash e : \tau_2 }{ \Gamma @ r \vdash \lambda x.e : \tau_1 \overset{r}{\rightarrow} \tau_2 } \qquad \textit{(abs)} \ \frac{ \Gamma, x : \tau_1 @ r \land r \vdash e : \tau_2 }{ \Gamma @ r \vdash \lambda x.e : \tau_1 \overset{r}{\rightarrow} \tau_2 }$$

To derive (idabs), we use idempotence on the body annotation $r = r \land r$ and then use the standard (abs) rule. So, (idabs) follows from (abs), but the other direction is not necessarily the case. The condition below identifies coeffect calculi where (abs) follows from (idabs).

Definition 28. A flat coeffect algebra $(\mathfrak{C}, \circledast, \oplus, \wedge, \mathsf{use}, \mathsf{ign}, \leqslant)$ *is* strictly oriented if for all $\mathsf{s}, \mathsf{r} \in \mathfrak{C}$ it is the case that $\mathsf{r} \wedge \mathsf{s} \leqslant \mathsf{r}$.

$$\begin{array}{c} (\textit{pair}) & \frac{ \Gamma @ \, r \vdash e_1 : \tau_1 \quad \Gamma @ \, s \vdash e_2 : \tau_2 }{ r \oplus s \, @ \, \Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 } \\ \\ (\textit{proj}) & \frac{ \Gamma @ \, r \vdash e : \tau_1 \times \tau_2 }{ \Gamma @ \, r \vdash \pi_i \, e : \tau_i } \\ \\ (\textit{unit}) & \frac{ }{ \Gamma @ \, ign \vdash () : unit } \end{array}$$

Figure 6: Typing rules for pairs and units

Remark 29. For a flat coeffect calculus with a strictly oriented algebra, the standard (abs) rule can be derived from the (idfun) rule.

Proof. The following derives the conclusion of (*abs*) using (*abs*), sub-coeffecting, sub-typing and the fact that the algebra is *stricty oriented*:

$$(\textit{idabs}) \qquad \frac{\Gamma, x : \tau_1 @ r \land s \vdash e : \tau_2}{\Gamma @ r \land s \vdash \lambda x.e : \tau_1 \xrightarrow{r \land s} \tau_2} \qquad (r \leqslant r \land s)$$

$$(\textit{typ}) \qquad \frac{\Gamma @ r \vdash \lambda x.e : \tau_1 \xrightarrow{r \land s} \tau_2}{\Gamma @ r \vdash \lambda x.e : \tau_1 \xrightarrow{s} \tau_2} \qquad (r \leqslant r \land s)$$

The practical consequence of the Remark 29 is that, for strictly oriented coeffect calculi (such as our liveness and data-flow computations), we can use the (*idabs*) rule and get an equivalent type system. This alternative formulation removes the non-determinism that arises from the splitting of context requirements in the original (*abs*) rule.

SYMMETRY. The \land operation is idempotent and associative. In all of the three examples considered in this chapter, the operation is also *symmetric*. To make our definitions more general, we do not require this to be the case for *all* flat coeffect systems. However, systems with symmetric \land have the following property.

Remark 30. For a flat coeffect calculus such that $r \land s = s \land r$, assuming that r', s', t' is a permutation of r, s, t:

$$\Gamma, x : \tau_1, y : \tau_2 @ r \land s \land t \vdash e : \tau_3$$

$$\Gamma @ r' \vdash \lambda x. \lambda y. e : \tau_1 \xrightarrow{s'} (\tau_2 \xrightarrow{t'} \tau_3)$$

Intuitively, this means that the context requirements of a function with multiple arguments can be split arbitrarily between the declaration site and (multiple) call sites. In other words, it does not matter how the context requirements are satisfied.

1.5.3 Language with pairs and unit

The calculus introduced in Section 1.2 consisted only of variables, abstraction, application and let binding to show the key aspects of flat coeffect systems. Here, we extend it with pairs and the unit value to sketch how it

can be turned into a full programming language. The syntax of the language is extended as follows:

```
e ::= ... | () | e_1, e_2

\tau ::= ... | unit | \tau \times \tau
```

The typing rules for pairs and the unit value are shown in Figure 6. The unit value (unit) is annotated with the ign coeffect (the same as other constants). Pairs, created using the (e_1 , e_2) expression, are annotated with a coeffect that combines the coeffects of the two sub-expressions using the point-wise operator \oplus . The operator models the case when the (same) available context is split and passed to two independent sub-expressions. This matches the semantics of pairs discussed shortly. Finally, the (proj) rule is uninteresting, because π_i can be viewed as a pure function.

PROPERTIES. Pairs and the unit value in a lambda calculus should form a monoid – associativity means that the expression $(e_1,(e_2,e_3))$ should be isomorphic to $((e_1,e_2),e_3)$ and that $((),e) \simeq e \simeq (e,())$, where the isomorphism appropriately transforms the values, without affecting other properties (here coeffects) of the expression.

In the following, we assume that assoc is a pure function transforming a pair $(x_1,(x_2,x_3))$ to a pair $((x_1,x_2),x_3)$. We write $e \equiv e'$ when for all Γ,τ and Γ , it is the case that $\Gamma \circ \Gamma \vdash e : \tau$ if and only if $\Gamma \circ \Gamma \vdash e' : \tau$.

Theorem 31. For a flat coeffect calculus with pairs and units, the following holds:

```
assoc (e_1,(e_2,e_3)) \equiv ((e_1,e_2),e_3) (associativity) \pi_1 (e,()) \equiv e (right unit) \pi_2 ((),e) \equiv e (left unit)
```

Proof. Follows from the fact that $(\mathcal{C}, \oplus, \mathsf{ign})$ is a monoid and assoc, π_1 and π_2 are pure functions (treated as contstants in the langauge).

The above properties follow from the laws of the flat coeffect algebra. In addition, if the \oplus operation is symmetric (which is the case for all our examples in this chapter), it also holds that swap $(e_1, e_2) \equiv (e_2, e_1)$.

1.6 RELATED WORK

Most of the related work leading to coeffects has already been discussed in Chapter ?? and we covered work related to individual concepts throughout the chapter. In this section, we do not repeat the discussion present elsewhere – we discuss one specific question that often arises when discussing coeffects and that is when is coeffect (not) an effect?

We start with a quick overview of the ways in which effects and coeffects differ and then we briefly look at one (but illustrative) example where the two concepts overlap. We focus mainly on the equivalence between the *categorical semantics*, which reveals the nature of the computations – rather than considering just the syntactic aspects of the type system.

1.6.1 When is coeffect not a monad

Coeffect systems differ from effect systems in three important ways:

• Semantically, coeffects capture very different notions of computation. As demonstrated in Chapter ??, coeffects track additional contextual

properties required by a computation, many of which cannot be captured by a monad (e.g. liveness or data-flow).

- Syntactically, coeffect calculi use a richer algebraic structure with pointwise composition, sequential composition and context merging (⊕, ⊛, ∧) while most effect systems only use a single operation for sequential composition (monadic bind).
- Syntactically, the second difference is in the lambda abstraction (*abs*). In coeffect systems, the context requirements of the body can be split between declaration-site and call-site, while monadic effect systems delay all effects.

Despite the differences, our implicit parameters example can be also represented by a monad. Semantically, the *reader* monad is equivalent to the *product* comonad. Syntactically, we use the \cup operation for all three operations of the coeffect algebra. However, the last point requires us to extend monadic lambda abstraction.

1.6.2 When is coeffect a monad

As discussed in Section ??, one of our examples, implicit parameters, can be also captured by a monad. However, *just* a monad is not enough because lambda abstraction in effect systems does not provide a way of splitting the context requirements between declaration-site and call-site (or combining the implicit parameters available in the scope where the function is deined and those specified by the caller).

CATEGORICAL RELATIONSHIP. Before looking at the necessary extensions, consider the two ways of modelling implicit parameters. We assume that the function $r \to \sigma$ is a lookup function for reading implicit parameter values that is defined on a set r. The two definitions are:

$$C^{r}\tau = \tau \times (r \to \sigma)$$
 (product comonad)
 $M^{r}\tau = (r \to \sigma) \to \tau$ (reader monad)

The *product comonad* simply pairs the value τ with the lookup function, while the *reader monad* is a function that, given a lookup function, produces a τ value. As noted by Orchard [57], when used to model computation semantics, the two representations are equivalent:

Remark 32. Computations modelled as $C^{\tau}\tau_1 \to \tau_2$ using the product comonad are isomorphic to computations modelled as $\tau_1 \to M^{\tau}\tau_2$ using the currying/uncurrying isomorphism.

Proof. The isomorphism is demonstrated by the following equation:

$$\begin{split} &C^{r}\tau_{1} \rightarrow \tau_{2} = \\ &(\tau_{1} \times (r \rightarrow \sigma)) \rightarrow \tau_{2} \\ &\tau_{1} \rightarrow ((r \rightarrow \sigma) \rightarrow \tau_{2}) \\ &\tau_{1} \rightarrow M^{r}\tau_{2} \end{split}$$

The equivalence holds for monads and comonads (as well as *indexed* monads and comonads), but it does not extend to *flat* indexed comonads which also provide the $merge_{r,s}$ operation to model context merging.

DELAYING EFFECTS IN MONADS. In the syntax of the language, the above difference is manifested in the (*abs*) rules for monadic effect systems and comonadic coeffect systems. The following listing shows the two rules side-by-side, using the coeffect notation for both of them:

$$\begin{array}{c} (\textit{cabs}) & \frac{\Gamma, x : \tau_1 @ r \cup s \vdash e : \tau_2}{\Gamma @ r \vdash \lambda x.e : \tau_1 \overset{s}{\to} \tau_2} \\ \end{array} & (\textit{mabs}) & \frac{\Gamma, x : \tau_1 @ r \cup s \vdash e : \tau_2}{\Gamma @ \emptyset \vdash \lambda x.e : \tau_1 \overset{r \cup s}{\longrightarrow} \tau_2} \\ \end{array}$$

In the comonadic (*cabs*) rule, the implicit parameters of the body are split. However, the monadic rule (*mabs*) places all requirements on the call-site. This follows from the fact that monadic semantics uses the unit operation in the interpretation of lambda abstraction:

$$[\![\lambda x.e]\!] = \text{unit} (\lambda x.[\![e]\!])$$

The type of unit is $\alpha \to M^\alpha \emptyset$, but in this specific case, the α is instantiated to be $\tau_1 \to M^{r \cup s} \tau_2$ and so this use of unit has a type:

unit :
$$(\tau_1 \to M^{r \cup s} \tau_2) \to M^{\emptyset} (\tau_1 \to M^{r \cup s} \tau_2)$$

In order to split the implicit parameters of the body ($r \cup s$ on the left-hand side) between the declaration-site (\emptyset on the outer M on the right-hand side) and the call-site ($r \cup s$ on the inner M on the right-hand side), we need an operation (which we call delay) with the following signature:

$$\mathsf{delay}_{r,s} \; : \; (\tau_1 \to M^{r \cup s} \tau_2) \to M^r (\tau_1 \to M^s \tau_2)$$

The operation reveals the difference between effects and coeffects – intuitively, given a function with effects $r \cup s$, it should execute the effects r when wrapping the function, *before* the function actually perforsm the effectful operation with the effects. The remaining effects s are delayed as usual, while effects r are removed from the effect annotation of the body.

Another important aspect of the signature is that the function needs to be indexed by the coeffect annotations r, s. The indices determine how the input context requirements $r \cup s$ are split – and thus guarantee determinism of the function.

The operation cannot be implemented in a useful way for most standard monads, but the reader monad is, indeed, an exception. It is not difficult to see how it can be implemented when we expand the definitions of $M^{\tau}\tau$:

$$\mathsf{delay}_{r,s} \,:\, (\tau_1 \to (r \cup s \to \sigma) \to \tau_2) \to ((r \to \sigma) \to \tau_1 \to (s \to \sigma) \to \tau_2)$$

RESTRICTING COEFFECTS IN COMONADS. As just demonstrated, we can extend monads so that the reader monad is capable of capturing the semantics of implicit parameters, including the splitting of implicit parameter requirements in lambda abstraction. Can we also go the other way round and *restrict* the comonadic semantics so that all requirements are delayed as in the (*mabs*) rule, thus modelling fully dynamically scoped parameters?

This is, indeed, also possible. Recall that the semantics of lambda abstraction in the flat coeffect calculus is modelled using $\mathsf{merge}_{r,s}$. The operation takes two contexts (wrapped in a comonad $\mathsf{C}^r\alpha$), combines their carried values and additional contextual information (implicit parameters). To obtain the (*mabs*) rule, we can restrict the first parameter, which corresponds to the declaration-site context:

$$\begin{array}{ll} \mathsf{merge}_{r,s} \, : \, C^r \alpha \times C^s \, \beta \to C^{r \cup s} (\alpha \times \beta) & \textit{(normal)} \\ \mathsf{merge}_{r,s} \, : \, C^\emptyset \alpha \times C^s \, \beta \to C^s (\alpha \times \beta) & \textit{(restricted)} \end{array}$$

In the (*restricted*) version of the operation, the declaration-site context requires no implicit parameters and so all implicit parameters have to be satis-

fied by the call-site. The semantics using the restricted version corresponds to the (*mabs*) rule shown above.

The idea of restricting the operations of the coeffect calculus semantics could be used more generally. We could allow any of the coeffect algebra operations \circledast , \wedge , \oplus to be *partial* and thus the restricted (fully dynamically-scoped) version of implicit parameters could be obtained just by changing the definition of \wedge . Similarly, we could obtain e.g. a fully lexically-scoped version of the system. Similar idea has been used for the semantics of effectful computations by Tate [79].

1.7 CONCLUSIONS

This chapter presented the *flat coeffect calculus* – a unified system for tracking contextual properties that are *whole-context*, meaning that they are related to the execution environment or the enitre context in which computations are executed. This is the first of the two *coeffect calculi* developed in this thesis.

The flat coeffect calculus is parameterized by a *flat coeffect algebra* that captures the structure of the information tracked by the type system. We demonstrated how to instantiate the system to capture three specific systems discussed earlier in Chapter ??, namely liveness, data-flow and implicit parameters.

Next, we introduced the notion of *flat indexed comonad*, which is a generalization of comonad, equipped with additional operations needed to provide categorical semantics of the flat coeffect calculus. The indices of the flat indexed comonad operations correspond to the coeffect annotations in the type system and provide a foundation for the design of the calculus.

Finally, we discussed the equational theory for flat coeffect calculus. Although each concrete instance of flat coeffect calculus models different notion of context, there are syntactic properties that hold for all flat coeffect systems satisfying certain additional conditions. In particular, two *subject reduction* theorems prove that the operational semantics for two classes of flat coeffect calculi (including liveness and implicit parameters) can be based on call-by-name reduction.

In the upcoming chapter, we move from *flat* coeffect calculi, tracking whole-context properties to *structural* coeffect calculi, tracking per-variable information, thus covering systems from the second half of Chapter ??.

- [1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In *Proceedings of POPL*, 1999.
- [2] M. Abbott, T. Altenkirch, and N. Ghani. Containers: constructing strictly positive types. *Theoretical Computer Science*, 342(1):3–27, 2005.
- [3] D. Ahman, J. Chapman, and T. Uustalu. When is a container a comonad? In *Proceedings of the 15th international conference on Foundations of Software Science and Computational Structures*, FOSSACS'12, pages 74–88, Berlin, Heidelberg, 2012. Springer-Verlag.
- [4] A. W. Appel. *Modern compiler implementation in ML*. Cambridge University Press, 1998.
- [5] R. Atkey. Parameterised notions of computation. *J. Funct. Program.*, 19, 2009.
- [6] J. E. Bardram. The java context awareness framework (jcaf)—a service infrastructure and programming framework for context-aware applications. In *Pervasive Computing*, pages 98–115. Springer, 2005.
- [7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. De Simone. The synchronous languages 12 years later. *Proceedings of the IEEE*, 91(1):64–83, 2003.
- [8] G. Biegel and V. Cahill. A framework for developing mobile, context-aware applications. In *Pervasive Computing and Communications*, 2004. *PerCom 2004. Proceedings of the Second IEEE Annual Conference on*, pages 361–365. IEEE, 2004.
- [9] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough. Dynamic rebinding for marshalling and update, with destruct-time λ. In Proceedings of the eighth ACM SIGPLAN international conference on Functional programming, ICFP '03, pages 99–110, New York, NY, USA, 2003. ACM.
- [10] G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. *Studia Logica*, 65:2000, 2001.
- [11] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda–a functional language with dependent types. In *Theorem Proving in Higher Order Logics*, pages 73–78. Springer, 2009.
- [12] E. Brady. Idris, a general-purpose dependently typed programming language: Design and implementation. *Journal of Functional Programming*, 23(05):552–593, 2013.
- [13] S. Brookes and S. Geva. Computational comonads and intensional semantics. Applications of Categories in Computer Science. London Mathematical Society Lecture Note Series, Cambridge University Press, 1992.
- [14] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A core quantitative coeffect calculus. In *ESOP*, pages 351–370, 2014.

32

- [15] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency analysis. In *Proceedings of the 11th international conference on Database programming languages*, DBPL'07, pages 138–152, Berlin, Heidelberg, 2007. Springer-Verlag.
- [16] J. Clarke. SQL Injection Attacks and Defense. Syngress, 2009.
- [17] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without tiers. FMCO '00, 2006.
- [18] P. Costanza and R. Hirschfeld. Language constructs for context-oriented programming: an overview of contextl. In *Proceedings of the* 2005 symposium on Dynamic languages, DLS '05, pages 1–10, New York, NY, USA, 2005. ACM.
- [19] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus of capabilities. In *Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 262–275. ACM, 1999.
- [20] R. Davies and F. Pfenning. A modal analysis of staged computation. *J. ACM*, 48(3):555–604, May 2001.
- [21] Developers (Android). Creating multiple APKs for different API levels. http://developer.android.com/training/multiple-apks/api.html, 2013.
- [22] W. Du and L. Wang. Context-aware application programming for mobile devices. In *Proceedings of the 2008 C₃S₂E conference*, C₃S₂E ′08, pages 215–227, New York, NY, USA, 2008. ACM.
- [23] A. Filinski. Monads in action. POPL, pages 483–494, 2010.
- [24] A. Filinski. Towards a comprehensive theory of monadic effects. In *Proceeding of the 16th ACM SIGPLAN international conference on Functional programming*, ICFP '11, pages 1–1, 2011.
- [25] C. Flanagan and M. Abadi. Types for Safe Locking. ESOP '99, 1999.
- [26] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In *Proceedings of Conference on Programming Language Design and Implementation*, PLDI '03.
- [27] O. Frieder and M. E. Segal. On dynamically updating a computer program: From concept to prototype. *Journal of Systems and Software*, 14(2):111–128, 1991.
- [28] M. Gabbay and A. Nanevski. Denotation of syntax and metaprogramming in contextual modal type theory (cmtt). *CoRR*, abs/1202.0904, 2012.
- [29] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative programming. In *Proceedings of Conference on LISP and func. prog.*, LFP '86, 1986.
- [30] J.-Y. Girard, A. Scedrov, and P. J. Scott. Bounded linear logic: a modular approach to polynomial-time computability. *Theoretical computer science*, 97(1):1–66, 1992.

- [31] Google. What is API level. Retrieved from http://developer.android.com/quide/topics/manifest/uses-sdk-element.html#ApiLevels.
- [32] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming language lustre. *Proceedings of the IEEE*, 79(9):1305–1320, 1991.
- [33] W. Halfond, A. Orso, and P. Manolios. Wasp: Protecting web applications using positive tainting and syntax-aware evaluation. *IEEE Trans. Softw. Eng.*, 34(1):65–81, Jan. 2008.
- [34] W. G. Halfond, A. Orso, and P. Manolios. Using positive tainting and syntax-aware evaluation to counter sql injection attacks. In *Proceedings* of the 14th ACM SIGSOFT international symposium on Foundations of software engineering, pages 175–185. ACM, 2006.
- [35] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions. In *Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming*, pages 48–60. ACM, 2005.
- [36] M. Hicks, J. T. Moore, and S. Nettles. *Dynamic software updating*, volume 36. ACM, 2001.
- [37] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented programming. *Journal of Object Technology*, 7(3), 2008.
- [38] S. L. P. Jones. *Haskell 98 language and libraries: the revised report*. Cambridge University Press, 2003.
- [39] P. Jouvelot and D. K. Gifford. Communication Effects for Message-Based Concurrency. Technical report, Massachusetts Institute of Technology, 1989.
- [40] S.-y. Katsumata. Parametric effect monads and semantics of effect systems. In *Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, POPL '14, pages 633–645, New York, NY, USA, 2014. ACM.
- [41] A. Kennedy. Types for units-of-measure: Theory and practice. In *Central European Functional Programming School*, pages 268–305. Springer, 2010.
- [42] A. J. Kennedy. Relational parametricity and units of measure. In *Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pages 442–455. ACM, 1997.
- [43] R. B. Kieburtz. Codata and Comonads in Haskell, 1999.
- [44] T. S. Kuhn. *The structure of scientific revolutions*. University of Chicago Press, 1970.
- [45] I. Lakatos. *Methodology of Scientific Research Programmes: Philosophical Papers: v.* 1. Cambridge University Press.
- [46] J. R. Lewis, M. B. Shields, E. Meijert, and J. Launchbury. Implicit parameters: dynamic scoping with static types. In *Proceedings of POPL*, POPL '00, 2000.

- [47] F. Loitsch and M. Serrano. Hop client-side compilation. *Trends in Functional Programming, TFP*, pages 141–158, 2007.
- [48] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In *Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, POPL '88, pages 47–57, New York, NY, USA, 1988. ACM.
- [49] E. Meijer, B. Beckman, and G. Bierman. Linq: reconciling object, relations and xml in the .net framework. In *Proceedings of the 2006 ACM SIGMOD international conference on Management of data*, SIGMOD '06, pages 706–706, New York, NY, USA, 2006. ACM.
- [50] E. Moggi. Notions of computation and monads. *Inf. Comput.*, 93:55–92, July 1991.
- [51] T. Murphy, VII., K. Crary, and R. Harper. Type-safe distributed programming with ML5. TGC'07, pages 108–123, 2008.
- [52] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for distributed computing. LICS '04, pages 286–295, 2004.
- [53] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. *ACM Trans. Comput. Logic*, 9(3):23:1–23:49, June 2008.
- [54] P. O'Hearn. On bunched typing. *J. Funct. Program.*, 13(4):747–796, July 2003.
- [55] P. W. O'Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In *Proceedings of the 15th International Workshop on Computer Science Logic*, CSL '01, pages 1–19, London, UK, UK, 2001. Springer-Verlag.
- [56] D. Orchard. Programming contextual computations.
- [57] D. Orchard. Should I use a Monad or a Comonad? Unpublished draft, 2012.
- [58] D. Orchard and A. Mycroft. A notation for comonads. In *Implementation* and *Application of Functional Languages*, pages 1–17. Springer, 2013.
- [59] D. Orchard and T. Petricek. Embedding effect systems in haskell. In *Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell*, Haskell '14, pages 13–24, 2014.
- [60] T. Petricek. Client-side scripting using meta-programming.
- [61] T. Petricek. Evaluations strategies for monadic computations. In *Proceedings of Mathematically Structured Functional Programming*, MSFP 2012.
- [62] T. Petricek. Understanding the world with f#. Available at http://channel9.msdn.com/posts/Understanding-the-World-with-F.
- [63] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: unified static analysis of context-dependence. In *Proceedings of International Conference on Automata, Languages, and Programming Volume Part II, ICALP* 2013.

- [64] T. Petricek and D. Syme. The f# computation expression zoo. In *Proceedings of Practical Aspects of Declarative Languages*, PADL 2014.
- [65] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. *Mathematical. Structures in Comp. Sci.*, 11(4):511–540, Aug. 2001.
- [66] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security in haskell. In *Proceedings of the first ACM SIGPLAN symposium on Haskell*, Haskell '08, pages 13–24, 2008.
- [67] A. Sabelfeld and A. C. Myers. Language-based information-flow security. *IEEE J.Sel. A. Commun.*, 21(1):5–19, Sept. 2006.
- [68] T. Sans and I. Cervesato. QWeSST for Type-Safe Web Programming. In *Third International Workshop on Logics, Agents, and Mobility,* LAM'10, 2010.
- [69] M. Serrano. Hop, a fast server for the diffuse web. In *Coordination Models and Languages*, pages 1–26. Springer, 2009.
- [70] P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli, M. Allen-Williams, P. Habouzit, and V. Vafeiadis. Acute: High-level programming language design for distributed computation. J. Funct. Program., 17(4-5):547–612, July 2007.
- [71] V. Simonet. Flow caml in a nutshell. In *Proceedings of the first APPSEM-II* workshop, pages 152–165, 2003.
- [72] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutandis: safe and predictable dynamic software updating. In *ACM SIGPLAN Notices*, volume 40, pages 183–194. ACM, 2005.
- [73] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic programming in ml. In *Proceedings of the 16th ACM SIGPLAN international conference on Functional programming*, ICFP '11, pages 15–27, New York, NY, USA, 2011. ACM.
- [74] D. Syme. Leveraging .NET meta-programming components from F#: integrated queries and interoperable heterogeneous execution. In *Proceedings of the 2006 workshop on ML*, pages 43–54. ACM, 2006.
- [75] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek. Themes in information-rich functional programming for internet-scale data sources. In *Proceedings of the 2013 Workshop on Data Driven Functional Programming*, DDFP '13, pages 1–4, 2013.
- [76] D. Syme, A. Granicz, and A. Cisternino. Building mobile web applications. In *Expert F#* 3.0, pages 391–426. Springer, 2012.
- [77] D. Syme, T. Petricek, and D. Lomov. The f# asynchronous programming model. In *Practical Aspects of Declarative Languages*, pages 175–189. Springer, 2011.
- [78] J. Talpin and P. Jouvelot. The type and effect discipline. In *Logic in Computer Science*, 1992. *LICS'*92., pages 162–173, 1994.
- [79] R. Tate. The sequential semantics of producer effect systems. In *Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, POPL '13, pages 15–26, New York, NY, USA, 2013. ACM.

- [80] P. Thiemann. A unified framework for binding-time analysis. In *TAP-SOFT'97: Theory and Practice of Software Development*, pages 742–756. Springer, 1997.
- [81] F. Tip. A survey of program slicing techniques. *Journal of programming languages*, 3(3):121–189, 1995.
- [82] M. Tofte and J.-P. Talpin. Region-based memory management. *Information and Computation*, 132(2):109–176, 1997.
- [83] T. Uustalu and V. Vene. The essence of dataflow programming. In *Proceedings of the Third Asian conference on Programming Languages and Systems*, APLAS'05, pages 2–18, Berlin, Heidelberg, 2005. Springer-Verlag.
- [84] T. Uustalu and V. Vene. Comonadic Notions of Computation. *Electron. Notes Theor. Comput. Sci.*, 203:263–284, June 2008.
- [85] T. Uustalu and V. Vene. The Essence of Dataflow Programming. *Lecture Notes in Computer Science*, 4164:135–167, Nov 2006.
- [86] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross site scripting prevention with dynamic data tainting and static analysis. In *Proceeding of the Network and Distributed System Security Symposium (NDSS)*, volume 42, 2007.
- [87] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis. *J. Comput. Secur.*, 4:167–187, January 1996.
- [88] J. Vouillon and V. Balat. From bytecode to javassript: the js_of_ocaml compiler. *Software: Practice and Experience*, 2013.
- [89] B. Wadge. Monads and intensionality. In *International Symposium on Lucid and Intensional Programming*, volume 95, 1995.
- [90] W. W. Wadge and E. A. Ashcroft. *LUCID, the dataflow programming language*. Academic Press Professional, Inc., San Diego, CA, USA, 1985.
- [91] P. Wadler. Strictness analysis aids time analysis. In *Proceedings of the* 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 119–132. ACM, 1988.
- [92] P. Wadler. Linear types can change the world! In *Programming Concepts and Methods*. North, 1990.
- [93] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In *Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, POPL '89, pages 60–76, New York, NY, USA, 1989. ACM.
- [94] P. Wadler and P. Thiemann. The marriage of effects and monads. *ACM Trans. Comput. Logic*, 4:1–32, January 2003.
- [95] D. Walker. Substructural Type Systems, pages 3–43. MIT Press.
- [96] H. Xi. Dependent ml an approach to practical programming with dependent types. *Journal of Functional Programming*, 17(02):215–286, 2007.

APPENDIX A

This appendinx provides additional details for some of the proofs for equational theory of flat coeffect calculus from Chapter 1 and structural coeffect calculus from Chapter ??.

A.1 SUBSTITUTION FOR FLAT COEFFECTS

In Section 1.4.3, we stated that, for a bottom-pointed flat coeffect algebra (i. e. $\forall r \in \mathcal{C}$. $r \geqslant \text{use}$), the call-by-name substitution preserves type if all operators of the flat coeffect algebra coincide (Lemma 24). This section provides the corresponding proof.

Lemma (Bottom-pointed substitution). *In a bottom-pointed flat coeffect calculus with an algebra* $(\mathcal{C}, \circledast, \oplus, \wedge, \mathsf{use}, \mathsf{ign}, \leqslant)$ *where* $\wedge = \circledast = \oplus$ *and the operation is also idempotent and commutative and* $r \leqslant r' \Rightarrow \forall s.r \circledast s \leqslant r' \circledast s$ *then:*

$$\Gamma @ S \vdash e_s : \tau_s \land \Gamma_1, x : \tau_s, \Gamma_2 @ r \vdash e_r : \tau_r$$

$$\Rightarrow \Gamma_1, \Gamma_1, \Gamma_2 @ r \circledast S \vdash e_r [x \leftarrow e_s] : \tau_r$$

Proof. Assume that $\Gamma @S \vdash e_s : \tau_s$ and we are substituting a term e_s for a variable x. Note that we use upper-case S to distinguish the coeffect of the expression that is being substituted into an expression. Using structural induction over \vdash :

(VAR) Given the following derivation using (var):

$$\Gamma_1$$
, γ : τ, Γ_2 @ use $\vdash \gamma$: τ

There are two cases depending on whether y is the variable x or not:

– If y=x then also $\tau=\tau_s$ and thus $y[x\leftarrow e_s]=e_s$. Using the assumption, implicit weakening and the fact that use is a unit of \circledast :

$$\frac{\Gamma @ S \vdash y[x \leftarrow e_s] : \tau_s}{\Gamma_1, \Gamma, \Gamma_2 @ S \vdash y[x \leftarrow e_s] : \tau}$$
$$\overline{\Gamma_1, \Gamma, \Gamma_2 @ \text{use} \circledast S \vdash y[x \leftarrow e_s] : \tau}$$

– If $y \neq x$ then $y[x \leftarrow e_s] = y$. Using the fact that use is the bottom element and sub-coeffecting:

$$\frac{\Gamma_1, y : \tau, \Gamma_2 @ \text{ use } \vdash y : \tau}{\Gamma_1, y : \tau, \Gamma_2 @ \text{ use } \otimes S \vdash y : \tau}$$

(CONST) Similar to the (var) case when the variable is not substituted.

(SUB) Given the following typing derivation using (*sub*):

$$\frac{\Gamma_1, x : \tau_s, \Gamma_2 @ r' \vdash e : \tau}{\Gamma_1, x : \tau_s, \Gamma_2 @ r \vdash e : \tau} \qquad (r' \leqslant r)$$

From the induction hypothesis, we have that $\Gamma_1, \Gamma, \Gamma_2 \otimes r' \otimes S \vdash e[x \leftarrow e_s] : \tau$. The condition on \leq means that $r' \otimes S \leq r \otimes S$ and so we can apply the (*sub*) rule to obtain $\Gamma_1, \Gamma, \Gamma_2 \otimes r \otimes S \vdash e[x \leftarrow e_s] : \tau$.

(ABS) Given the following typing derivation using (abs):

$$\frac{\Gamma_1, x : \tau_s, \Gamma_2, y : \tau_1 @ r \land s \vdash e : \tau_2}{\Gamma_1, x : \tau_s, \Gamma_2 @ r \vdash \lambda y.e : \tau_1 \xrightarrow{s} \tau_2}$$

Assume w.l.o.g. that $x \neq y$. From the induction hypothesis, we have that:

$$\Gamma_1, \Gamma, \Gamma_2, y : \tau_1 @ r \otimes s \vdash e[x \leftarrow e_s] : \tau_2$$

Now using the fact that $\wedge = \circledast$, associativity and commutativity and (*abs*):

$$\frac{\Gamma_{1}, \Gamma, \Gamma_{2}, y : \tau_{1} @ (r \land s) \circledast S \vdash e[x \leftarrow e_{s}] : \tau_{2}}{\Gamma_{1}, \Gamma, \Gamma_{2}, y : \tau_{1} @ (r \circledast S) \land s \vdash e[x \leftarrow e_{s}] : \tau_{2}}$$

$$\frac{\Gamma_{1}, \Gamma, \Gamma_{2} @ r \circledast S \vdash \lambda y. (e[x \leftarrow e_{s}]) : \tau_{1} \xrightarrow{s} \tau_{2}}{\Gamma_{1}, \Gamma, \Gamma_{2} @ r \circledast S \vdash (\lambda y. e)[x \leftarrow e_{s}] : \tau_{1} \xrightarrow{s} \tau_{2}}$$

(APP) Given the following typing derivation using (app):

$$\frac{\Gamma_{1}, x : \tau_{s}, \Gamma_{2} @ r \vdash e_{1} : \tau_{1} \xrightarrow{t} \tau_{2} \qquad \Gamma_{1}, x : \tau_{s}, \Gamma_{2} @ s \vdash e_{2} : \tau_{1}}{\Gamma_{1}, x : \tau_{s}, \Gamma_{2} @ r \oplus (s \circledast t) \vdash e_{1} e_{2} : \tau_{2}}$$

From the induction hypothesis, we have that:

$$\Gamma_1, \Gamma, \Gamma_2 \otimes r \otimes S \vdash e_1[x \leftarrow e_s] : \tau_1 \xrightarrow{t} \tau_2$$

$$\Gamma_1, \Gamma, \Gamma_2 \otimes s \otimes S \vdash e_2[x \leftarrow e_s] : \tau_1$$
(*)

Now using (*app*) rule and the fact that $\oplus = \otimes$, associativity, commutativity and idempotence (note that all three properties are needed):

$$(*)$$

$$\frac{\Gamma_{1}, \Gamma, \Gamma_{2} @ (r \circledast S) \oplus ((s \circledast S) \circledast t) \vdash e_{1}[x \leftarrow e_{s}] e_{2}[x \leftarrow e_{s}] : \tau_{2}}{\Gamma_{1}, \Gamma, \Gamma_{2} @ (r \oplus (s \circledast t)) \circledast S \vdash (e_{1} e_{2})[x \leftarrow e_{s}] : \tau_{2}}$$

(LET) Given the following typing derivation using (*let*):

$$\frac{\Gamma_1, x : \tau_s, \Gamma_2 @r \vdash e_1 : \tau_1 \qquad \Gamma_1, x : \tau_s, \Gamma_2, y : \tau_1 @s \vdash e_2 : \tau_2}{\Gamma_1, x : \tau_s, \Gamma_2 @s \oplus (s \circledast r) \vdash \text{let } y = e_1 \text{ in } e_2 : \tau_2}$$

From the induction hypothesis, we have that:

$$\Gamma_{1}, \Gamma, \Gamma_{2} @ r \circledast S \vdash e_{1}[x \leftarrow e_{s}] : \tau_{1}$$

$$\Gamma_{1}, \Gamma, \Gamma_{2}, y : \tau_{1} @ s \circledast S \vdash e_{2}[x \leftarrow e_{s}] : \tau_{2}$$

$$(\dagger)$$

Now using (*let*) rule and similarly to the (*app*) case:

 $\frac{\Gamma_{1},\Gamma,\Gamma_{2} @(s \circledast S) \oplus ((s \circledast S) \circledast (r \circledast S)) \vdash \text{let } y = e_{1}[x \leftarrow e_{s}] \text{ in } e_{2}[x \leftarrow e_{s}] : \tau_{2}}{\Gamma_{1},\Gamma,\Gamma_{2} @(s \oplus (s \circledast r)) \circledast S \vdash (\text{let } y = e_{1} \text{ in } e_{2})[x \leftarrow e_{s}] : \tau_{2}}$