1.1

Vybudujte teóriu výrokovej logiky používajúcej iba túto spojku: zadefinujte pojem formuly, vytvárajúcej postupnosti a stromu pre formulu, boolovského ohodnotenia.

Nech $P = \{ p,q,r,... \}$ je množina elementárnych výrokov (výrokových premenných). Výrokové konštanty $\{0,1\}$ sú pravdivostné hodnoty.

Formula:

Výroková formula nad množinou P výrokových premenných je zostrojená opakovaným použitím týchto dvoch pravidiel:

- (1) Každá výroková premenná p∈P alebo výroková konštanta je výroková formula.
- (2) Ak výrazy ϕ a ψ sú výrokové formuly, potom aj výrazy $(\uparrow \phi)$, $(\phi \uparrow \psi)$, $(\psi \uparrow \psi)$ sú výrokové formuly.

Formuly môžeme chápať ako slová, ktoré sú zostrojené nad abecedou P výrokových premenných a logických spojok (a taktiež pomocných zátvoriek).

Vytvárajúca postupnosť:

Konštrukcia formuly φ nad množinou P je tvorená postupnosťou formúl φ_1 , φ_2 ,..., φ_n , pričom posledný prvok φ_n je totožný s formulou φ , pre každé i = 1,2,...n platí jedna s týchto možností:

- (1) φ_i je výroková premenná z P alebo výroková konštanta.
- (2) φ_i vznikla z niektorého z prvkov množiny $\{\varphi_1, \varphi_2, \dots, \varphi_{n-1}\}$ aplikáciou logickej spojky \uparrow

Prvky postupnosti φ_1 , φ_2 , ..., φ_n sa nazývajú podformuly formuly.

Strom pre formulu:

Syntaktický strom pre formulu grafická repreznetácia formuly, kde koncové vrcholy stromu reprezentujú výrokové premenné a vrcholy z nasledujúcich vrstiev sú priradené spojkám 个.

Vyhodnocovanie tohto stromu prebieha postupne zdola nahor.

Príklad: $(p \uparrow p) \uparrow (q \uparrow q)$

Boolovské ohodnotenie:

Ohodnotenie(sémantika) špecifikuje význam danej vety (ktorá ma tiež aj svoju syntax). Vo výrokovej logike, ktorá sa zaoberá len pravdivostnými hodnotami premenných a ich formúl. Sémantika výrokovej formuly je vlastne tabuľka pravdivostných hodnôt formuly pre rôzne hodnoty jej výrokov. Tak napríklad: pre formulu $(p \uparrow p) \uparrow (q \uparrow q)$ ktorá má korektnú syntax (napr. reprezentovanú syntaktickým stromom), je jej sémantika plne určená ďalej uvedenou tabuľkou jej pravdivostných hodnôt pre všetky štyri kombinácie výrokov p a q.

Jednoducho povedané, boolovské ohodnotenie priradí každému výroku 0 alebo 1.

1.2

Dokážte, že: a) ↑ je definovateľná zo spojok ¬, ∧ a V;

b) \neg , \land , \lor , \rightarrow sú definovateľné z \uparrow .

a) Z úlohy 1.1 vieme, že A ↑ B je pravdivé vtt keď aspoň jedno z A alebo B je nepravdivé. A teda tabuľka hodnôt vypadá následovne:

Α	В	А↑В
0	0	1
0	1	1
1	0	1
1	1	0

Shefferov symbol vieme definovať následovne: ¬(a ∧ b)

Po rozdelení negácie sa konjunkcia vymení za disjunkciu a dostávame: ¬a V ¬b

Tvrdenie dokážem pravdivostnou tabuľkou.

а	b	a 个 b	¬a	¬b	aΛb	¬(a ∧ b)	¬a∨¬b
0	0	1	1	1	0	1	1
0	1	1	1	0	0	1	1
1	0	1	0	1	0	1	1
1	1	0	0	0	1	0	0

Ako je vidieť v tabuľke, tieto formuly sú ekvivalentné a teda \uparrow je definovateľná zo spojok \neg , \land a \lor ;

b) ¬a je definovateľná ako ↑a == a↑a

Α	¬А	ΑΛΑ	
0	1	1	
1	0	0	

Vyplýva z tabuľky hodnôt pre Sheffervu spojku v úlohe 1.2 a)

a ∧ b je definovateľná ako (a ↑b) ↑ (a ↑b)

Α	В	А↑В	aΛb	(a个b) 个 (a个b)
0	0	1	0	0
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1

a \lor b je definovateľná ako (a \uparrow a) \uparrow (b \uparrow b)

Α	В	a V b	$A \uparrow A$	В↑В	(a 个a) 个 (b个b)
0	0	0	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	1	0	0	1

a \rightarrow b je definovateľná ako a \uparrow (b \uparrow b) alebo b \uparrow (a \uparrow a)

Α	В	a o b	А↑В	В↑В	a 个 (b 个b)	a 个 (a个b)
0	0	1	1	1	1	1
0	1	1	1	0	1	1
1	0	0	1	1	0	0
1	1	1	0	0	1	1

Z tabuliek vyplýva, že \neg , \land , \lor , \rightarrow sú definovateľné z \uparrow .

1.3 X

Zdroje: http://www.fiit.stuba.sk/docs/edicna_cinnost/ucebne_texty/ML_uvod-str.pdf