

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年1 月29 日 (29.01.2004)

PCT

(10) 国際公開番号 WO 2004/009817 A1

(KAWAZU,Yoichi) [JP/JP]; 〒514-0113 三重県 津市 一身田大古曽670 一身田宿舎A403 Mie (JP). 杉山

慶太 (SUGIYAMA,Keita) [JP/JP]; 〒514-0043 三重県 津市 南新町13-1 古川住宅1-302 Mie (JP). 守

川 俊幸 (MORIKAWA, Toshiyuki) [JP/JP]; 〒930-0973 富山県 富山市 長江東町 2-6-3 1 Toyama (JP). 笹

谷 孝英 (SASAYA,Takahide) [JP/JP]; 〒765-0003 香川県 善通寺市 善通寺町 7-1 2-1 4 Kagawa (JP).

(51) 国際特許分類⁷: C12N 15/40, C07K 14/08, 16/10, C12N 5/14, A01H 5/00, C12P 21/02, C12Q 1/68

(21) 国際出願番号:

PCT/JP2003/009086

(22) 国際出願日:

2003年7月17日(17.07.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(74) 代理人: 清水 初志 、外(SHIMIZU,Hatsushi et al.); 〒 300-0847 茨城県 土浦市 卸町 1-1-1 関鉄つくばビル 6 階 Ibaraki (JP).

(30) 優先権データ:

特願2002-209805

2002年7月18日(18.07.2002)

(81) 指定国 (国内): JP, US.

(71) 出願人 (米国を除く全ての指定国について): 独立行政法人農業技術研究機構 (NATIONAL AGRI-CULTURAL RESEARCH ORGANIZATION) [JP/JP]; 〒305-8517 茨城県 つくば市 観音台 3-1-1 Ibaraki (JP). (84) 指定国 (広域): ヨーロッパ特許 (DE, ES, GB).

添付公開書類:

一 国際調査報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 川頭 洋一

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NUCLEIC ACID ENCODING MIRAFIORI LETTUCE VIRUS PROTEIN AND UTILIZATION THEREOF

(54)発明の名称: ミラフィオリレタスウイルスタンパク質をコードする核酸およびその利用

(57) Abstract: An outer coat protein is purified from highly purified Mirafiori lettuce virus and its partial amino acid sequence is determined. Based on the amino acid sequence data thus determined, a primer is designed and employed in a polymerase chain reaction. Thus, a DNA encoding the outer coat protein of Mirafiori lettuce virus is cloned and its primary structure is clarified. By effecting 5' RACE with the use of a primer designed based on the sequence data thus obtained, plural DNA molecules encoding outer coat proteins of Mirafiori lettuce virus are isolated and their primary structures are successfully determined. It is found out that, using the same, a Mirafiori lettuce virus-resistant plant can be constructed and the infection with Mirafiori lettuce virus can be diagnosed.

F(57)要約: 高度に純化したミラフィオリレタスウイルスからその外被タンパク質を精製し、その部分アミノ酸配 の列を決定した。決定したアミノ酸配列の情報を基に設計したプライマーを用いたポリメラーゼ連鎖反応により、ミ のラフィオリレタスウイルス外被タンパク質をコードするDNAをクローニングし、その一次構造を解明した。得られ 「た配列情報を基に設計したプライマーを用いた5'RACEを実施することにより、ミラフィオリレタスウイルス外被タ のンパク質をコードする複数のDNA分子を単離するとともに、その一次構造を決定することに成功した。これを利 、用してミラフィオリレタスウイルス抵抗性植物の作出およびミラフィオリレタスウイルスの感染の診断を行なうこ ・とが可能であることを見出した。

- 1 -

明細書

ミラフィオリレタスウイルスタンパク質をコードする核酸およびその利用

5 技術分野

本発明は、ミラフィオリレタスウイルスタンパク質をコードする核酸および該 核酸によりコードされるタンパク質、並びにそれらの製造および用途に関する。

背景技術

10

15

20

ミラフィオリレタスウイルス (MiLV) は、2000年イタリアでビッグベイン症状を示したレタスより分離され(P. Roggero et al., (2000) Archives of Virology 145: 2629-2642)、2002年にはレタスビッグベイン病の病原ウイルスはレタスビッグベインウイルス (LBW) ではなく、本ウイルスではないかという報告がされた(H. Lot et al., (2002) Phytopathology 92: 288-293)。本ウイルスは Olpidiu m brassicae (糸状菌) によって伝搬する土壌伝搬性ウイルスで、アメリカ、日本、ヨーロッパでレタスビッグベイン病を発生させ問題となっている。本ウイルスは Ophiovirusに属し、3分節ゲノムのマイナス鎖RNAからなり、それぞれの大きさは8.5、1.9および1.7kbで48kDaの外被タンパクを構造タンパクとして持っていることが報告されている。本ウイルスは最近発見されたためにその遺伝子情報などは明らかとされておらず、的確な遺伝子学的な診断法の確立が行われていない。

本ウイルス病に対する抵抗性品種は数品種あるがその抵抗性は低く、また、有用な抵抗性素材も見つかっていない。そこで、本ウイルスに対する強度抵抗性の植物を作出するには、ウイルス遺伝子を植物に導入する方法が有用である。そのためにはウイルスの遺伝子配列を決定する必要がある。

本発明は、このような状況に鑑みてなされたものであり、ミラフィオリレタスウイルスタンパク質および該タンパク質をコードする核酸を単離し、その構造を解明することを目的とする。また、本発明は、植物における該核酸またはそのアンチセンスの発現を通じて、植物にミラフィオリレタスウイルスに対する抵抗性を付与することを目的とする。さらに、本発明は、該核酸あるいは該核酸によりコードされるタンパク質を検出することによるミラフィオリレタスウイルスの感染を診断する方法を提供することも目的とする。

ミラフィオリレタスウイルスはRNAウイルスであり、該ウイルスのタンパク質をコードするDNAまたはそのアンチセンスDNAを植物体内で発現させれば、転写レベルあるいは翻訳レベルでミラフィオリレタスウイルスタンパク質の産生や機能を阻害することができると考えられる(P. F. Tennant, (1994), Phytopathology 84, 1359-1366、C. C. Huntley & T. C. Hall, (1993), Virology 192, 290-297、D. C. Baulcombe, (1996), The Plant Cell, 8, 1833-1844)。

本発明者等は、このような発想に着目してミラフィオリレタスウイルスに対す 5 る抵抗性植物を作製するため、ミラフィオリレタスウイルスタンパク質をコード する遺伝子の単離を行なった。

具体的には、本発明者らは、まず、ミラフィオリレタスウイルスを高度に純化し、これをSDS-ポリアクリルアミドゲル電気泳動に付し、該ウイルスを構成する外被タンパク質を検出した。この検出された外被タンパク質を精製し、ペプチドに分解後エドマン法によりその部分のアミノ酸配列を決定した。さらに、決定したアミノ酸配列の情報を基に設計したプライマーを用いたポリメラーゼ連鎖反応により、ミラフィオリレタスウイルス外被タンパク質をコードするDNAをクローニングし、その一次構造を決定した。

次いで、ミラフィオリレタスウイルスの全外被タンパク質をコードする遺伝子 を決定するために、純化ウイルスからRNAを調製し、このRNA分子を用いて5'RACE(Rapid Amplification of cDNA Ends)を実施した。その結果、ミラフィオリレタス

ウイルス外被タンパク質をコードする複数のDNA分子を単離するとともに、その一 次構造を決定することに成功した。

単離したDNA分子またはそのアンチセンス分子は、その発現により植物体にミラフィオリレタスウイルス抵抗性を付与することが可能であり、これにより植物の

5 生産性の向上を図ることができる。また、単離したDNA分子の配列情報を基にミラフィオリレタスウイルス特異的プライマーを設計し、これを利用することによりミラフィオリレタスウイルスの遺伝診断を行うことも可能である。また、得られた配列情報を基に、ミラフィオリレタスウイルス外被タンパク質に結合する抗血清を作製して、これをミラフィオリレタスウイルスの血清学的診断法に利用することも可能である。

本発明は、以上のような知見を基に完成されたものであり、ミラフィオリレタ スウイルスタンパク質および該タンパク質をコードする核酸、並びにそれらの製 造および用途を提供する。より詳しくは、本発明は、

- (1) ミラフィオリレタスウイルスの外被タンパク質をコードする下記 (a) または (b) の核酸、
 - (a) 配列番号: 2に記載のアミノ酸配列からなるタンパク質をコード する核酸。
 - (b)配列番号:1に記載の塩基配列のコード領域を含む、(a)に記載の核酸。
- 20 (2) RNAである、(1) に記載の核酸、

15

- (3) DNAである、(1) に記載の核酸、
- (4) (2)に記載の核酸の相補鎖に相補的なセンスRNAをコードするDNA、
- (5) (2)に記載の核酸と相補的なアンチセンスRNAをコードするDNA、
- (6) (2) に記載の核酸を特異的に開裂するリボザイム活性を有するRNAをコープを25 ードするDNA、
 - (7) (3) に記載の核酸を含むベクター、

- 4

- (8) (3) に記載の核酸または(7) に記載のベクターを保持する形質転換 細胞、
- (9) (1) に記載の核酸によりコードされるタンパク質、
- (10) (9) に記載のタンパク質に結合する抗体、
- 5 (11) (8) に記載の形質転換細胞を培養し、該形質転換細胞またはその培養上清から発現させたタンパク質を回収する工程を含む、(9) に記載のタンパク質の製造方法、
 - (12) (4) から (6) のいずれかに記載のDNAを含むベクター、
- (13) (1) に記載の核酸、(4) から(6) のいずれかに記載のDNA、また 10 は(7) もしくは(12) に記載のベクターを保持する形質転換植物 細胞、
 - (14) (13) に記載の形質転換植物細胞を含む形質転換植物体、
 - (15) (14) に記載の形質転換植物体の子孫またはクローンである、形質 転換植物体、
- 15 (16) (14) または(15) に記載の形質転換植物体の繁殖材料、および
 - (17) ミラフィオリレタスウイルスの感染を診断する方法であって、植物細胞またはミラフィオリレタスウイルスの媒介菌である Olpidium brassicaeにおける、(1) に記載の核酸または(9) に記載のタンパク質を検出することを特徴とする方法、
- 20 を提供するものである。

本発明は、ミラフィオリレタスウイルスの外被タンパク質および該タンパク質をコードする核酸を提供する。本発明に含まれる、本発明者らにより単離されたミラフィオリレタスウイルスの外被タンパク質をコードするcDNAの塩基配列を配列番号:1に、該cDNAがコードするタンパク質のアミノ酸配列を配列番号:2に 示した。単離したcDNAは1514bpの塩基配列からなり、437アミノ酸をコードしていた。これはミラフィオリレタスウイルスの遺伝子およびタンパク質の一次構造を

20

25

- 5 -

示した初めての例である。

本発明のタンパク質をコードする核酸には、DNAおよびRNAが含まれる。このDNA にはcDNAおよび化学合成DNAが含まれ、また、RNAにはウイルスゲノムRNA、mRNA、 合成RNAが含まれる。本発明の核酸は、当業者にとって常套手段を利用して調製す 5 ることが可能である。具体的には、純化ウイルスをSDS-フェノール法などの方法 で除タンパク質して調製したRNA、あるいはCTAB法などでウイルス感染葉から抽出 した全核酸を鋳型として、本発明の核酸の配列から設計したプライマーあるいは ランダムプライマーを用いて逆転写反応を行なうことで第一鎖DNAを合成できる。 この方法で作製した第一鎖DNAから、Gubler & Hoffman法 (U. Gulber & B. J. Ho ffman, (1983), Gene 25, 263) により第二鎖DNAを合成し、市販の数々のプラス ミドあるいはファージミドベクターにクローニングできる。あるいは、第一鎖DNA を鋳型とし、本発明の核酸の配列から設計したプライマーを用いたポリメラーゼ 連鎖反応により本ウイルスのRNAをコードするDNAを増幅し、pGEM-Tベクターなど を用いたTAクローニング、あるいはプライマーに制限酵素サイトを付けることに より市販の数々のプラスミドベクターにクローニングできる。

本発明の核酸は、組換えタンパク質の調製やミラフィオリレタスウイルス抵抗 性植物の作出に利用することもできる。

組換えタンパク質を調製する場合には、通常、本発明のタンパク質をコードす るDNAを適当な発現ベクターに挿入し、該ベクターを適当な細胞に導入し、形質転 換細胞を培養して発現させたタンパク質を精製する。組換えタンパク質は、精製 を容易にするなどの目的で、他のタンパク質との融合タンパク質として発現させ ることも可能である。例えば、大腸菌を宿主としてマルトース結合タンパク質と の融合タンパク質として調製する方法(米国New England BioLabs社発売のベクタ ーpMALシリーズ)、グルタチオン-S-トランスフェラーゼ(GST)との融合タンパク 質として調製する方法(Amersham Pharmacia Biotech社発売のベクターpGEXシリ ーズ)、ヒスチジンタグを付加して調製する方法 (Novagen社のpETシリーズ) な

20

25

どを利用することが可能である。宿主細胞としては、組換えタンパク質の発現に適した細胞であれば特に制限はなく、上記の大腸菌の他、発現ベクターを変えることにより、例えば、酵母、種々の動植物細胞、昆虫細胞などを用いることが可能である。宿主細胞へのベクターの導入には、当業者に公知の種々の方法を用いることが可能である。例えば、大腸菌への導入には、カルシウムイオンを利用した導入方法 (M. Mandel, & A. Higa, (1970), Journal of Molecular Biology, 53, 158-162、D. Hanahan, (1983), Journal of Molecular Biology, 166, 557-580) を用いることができる。宿主細胞内で発現させた組換えタンパク質は、該宿主細胞またはその培養上清から、当業者に公知の方法により精製し、回収することができる。組換えタンパク質を上記したマルトース結合タンパク質などとの融合タンパク質として発現させた場合には、容易にアフィニティー精製を行うことが可能である。

得られた組換えタンパク質を用いれば、これに結合する抗体を調製することができる。例えば、ポリクローナル抗体は、精製した本発明のタンパク質若しくはその一部のペプチドをウサギなどの免疫動物に免疫し、一定期間の後に血液を採取し、血ペいを除去した血清より調製することが可能である。また、モノクローナル抗体は、上記タンパク質若しくはペプチドで免疫した動物の抗体産生細胞と骨腫瘍細胞とを融合させ、目的とする抗体を産生する単一クローンの細胞(ハイブリドーマ)を単離し、該細胞から抗体を得ることにより調製することができる。これにより得られた抗体は、本発明のタンパク質の精製や検出などに利用することが可能である。本発明の抗体には、抗血清、ポリクローナル抗体、モノクローナル抗体、およびこれら抗体の断片が含まれる。

ミラフィオリレタスウイルス抵抗性植物を作出する場合には、ミラフィオリレタスウイルスタンパク質の産生や機能を抑制するDNAを植物細胞に導入し、これにより得られた形質転換植物細胞を再生させればよい。

ミラフィオリレタスウイルスタンパク質の産生や機能を抑制するDNAとしては、

-7-

ミラフィオリレタスウイルスタンパク質をコードするRNAのいずれかの鎖(センス 鎖またはその相補鎖)にハイブリダイズするRNAをコードするDNAを用いることが できる。

ウイルスゲノムのセンス鎖およびmRNAにハイブリダイズするRNAをコードするDN Aとしては、本発明者らにより単離された配列番号:2に記載のタンパク質をコー ドするDNA、好ましくは配列番号:1に記載の塩基配列のコード領域を含むDNAの 転写産物に相補的なアンチセンスRNAをコードするDNAが挙げられる。ここで「相 補的」とは、ミラフィオリレタスウイルスタンパク質の産生を有効に阻害できる 限り、完全に相補的でない場合も含まれる。転写されたRNAは、標的とするミラフ 10 ィオリレタスウイルスタンパク質をコードするRNAに対して好ましくは90%以上、 最も好ましくは95%以上の相補性を有する。ここで「相補性」とは、2つの配列の 対応する領域を、相補的塩基対の数が最大となるように整列させた場合における 、該領域における全塩基数に対する相補的塩基対を形成した塩基数の%である。 ウイルスゲノムRNAの相補鎖にハイブリダイズするRNAをコードするDNAとしては 、本発明者らにより単離された配列番号:2 に記載のタンパク質をコードするRNA 15 、好ましくは配列番号:1に記載の塩基配列のコード領域を含むRNAの相補鎖に相 補的なセンスRNAをコードするDNAを用いることができる。ここで「相補的」とは 、ミラフィオリレタスウイルスタンパク質の産生を有効に阻害できる限り、完全 に相補的でない場合も含まれる。転写されたセンスRNAは、標的とするミラフィオ 20 リレタスウイルスタンパク質をコードするRNA(相補鎖)に対して好ましくは90% 以上、最も好ましくは95%以上の相補性を有する。

効果的に標的遺伝子の発現を阻害するには、上記アンチセンスRNAやセンスRNA の長さは、少なくとも15塩基以上であり、好ましくは100塩基以上であり、さらに 好ましくは500塩基以上であり、通常、5kbよりも短く、好ましくは2.5kbよりも短 い。

また、ミラフィオリレタスウイルスタンパク質の産生を抑制するDNAとしては、

WO 2004/009817

ミラフィオリレタスウイルスタンパク質をコードするRNAの少なくとも一方の鎖を 切断するリボザイムをコードするDNAを用いることも可能であると考えられる。

リボザイムとは触媒活性を有するRNA分子のことをいう。リボザイムには種々の活性を有するものがあるが、中でもRNAを切断する酵素としてのリボザイムの研究により、RNAの部位特異的な切断を目的とするリボザイムの設計が可能となった。リボザイムには、グループIイントロン型や、RNasePに含まれるM1RNAのように40のヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(小泉誠および大塚栄子, (1990),蛋白質核酸酵素,35:2191)。

- 何えば、ハンマーヘッド型リボザイムの自己切断ドメインは、G13U14C15のC15の3'側を切断するが、活性にはU14が9位のAと塩基対を形成することが重要とされ、15位の塩基はCの他にAまたはUでも切断されることが示されている(M. Koizumi et al., (1988), FEBS Lett. 228:225)。リボザイムの基質結合部を標的部位近傍のRNA 配列と相補的になるように設計すれば、標的RNA中のUC、UUまたはUAという配列を認識する制限酵素的なRNA切断リボザイムを作出することが可能である(M. Koizumi et al., (1988), FEBS Lett. 239:285、小泉誠および大塚栄子, (1990),蛋白質核酸酵素,35:2191、M. Koizumi et al., (1989), Nucleic Acids Res. 17:7059)。例えば、本発明の遺伝子(配列番号:1)中には標的となりうる部位が複数存在する。
 - 20 また、ヘアピン型リボザイムも、本発明の目的のために有用である。ヘアピン型リボザイムは、例えばタバコリングスポットウイルスのサテライトRNAのマイナス鎖に見出される(J. M. Buzayan, Nature, 323:349, 1986)。このリボザイムも、標的特異的なRNA切断を起こすように設計できることが示されている(Y. Kikuchi & N. Sasaki, (1992), Nucleic Acids Res. 19:6751、 菊池洋, (1992) 化学と生物 3 0:112)。

標的を切断できるよう設計されたリボザイムは、植物細胞中で転写されるよう

にカリフラワーモザイクウイルスの35Sプロモーターなどのプロモーターおよび転写終結配列に連結される。しかし、その際、転写されたRNAの5'末端や3'末端に余分な配列が付加されていると、リボザイムの活性が失われてしまうことがある。このようなとき、転写されたリボザイムを含むRNAからリボザイム部分だけを正確に切り出すために、リボザイム部分の5'側や3'側に、トリミングを行うためのシスに働く別のトリミングリボザイムを配置させることも可能である(K. Taira et al., (1990), Protein Eng. 3:733、A. M. Dzianott & J. J. Bujarski, (1989), Proc. Natl. Acad. Sci. USA. 86:4823、 C. A. Grosshans & R. T. Cech, (1991), Nucleic Acids Res. 19:3875、 K. Taira et al., (1991), Nucleic Acids Res. 19:5125)。また、このような構成単位をタンデムに並べ、標的遺伝子内の複数の部位を切断できるようにして、より効果を高めることもできる(N. Yuyama et al., (1992), Biochem. Biophys. Res. Commun. 186:1271)。このようなリボザイムを用いて本発明で標的となる遺伝子の転写産物を特異的に切断し、該遺伝子の発現を抑制することができる。

15 植物細胞の形質転換に用いられるベクターとしては、該細胞内で挿入されたDNA を発現させることが可能なものであれば特に制限はない。例えば、植物細胞内での恒常的な遺伝子発現を行うためのプロモーター (例えば、カリフラワーモザイクウイルスの35Sプロモーター) を有するベクターや、外的な刺激により誘導的に活性化されるプロモーターを有するベクターを用いることも可能である。好適な ベクターとしては、例えば、pBIバイナリーベクターが挙げられる。ベクターの導入される「植物細胞」には特に制限はないが、本発明の目的から、ミラフィオリレタスウイルスが感染性を有する植物が好適である。ミラフィオリレタスウイルスが感染性を有する植物が好適である。ミラフィオリレタスウイルスが感染性を有する植物が好適である。ミラフィオリレタスウイルスが感染性を有する植物としては、レタス以外に、例えば、Chenopodium quinoa(アカザ科)、Nicotiana benthamiana(ナス科) (P. Roggero et al., (2000) Archiv es of Virology 145: 2629-2642)が挙げられる。「植物細胞」の形態は、植物体への再生が可能である限り、種々の形態の植物細胞、例えば、懸濁培養細胞、プ

- 10 -

ロトプラスト、葉の切片、カルスなどが含まれる。

植物細胞へのベクターの導入は、ポリエチレングリコール法、ポリカチオン法、電気穿孔法(エレクトロポーレーション)、アグロバクテリウムを介する方法、パーティクルガン法など当業者に公知の種々の方法を用いることができる。例えば、文献(S. Z. Pang et al., (1996), The Plant Journal 9: 899-909)に記載の方法は好適な方法の一例である。

形質転換植物細胞からの植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行うことが可能である。好適な再生の方法としては、例えば、文献 (S. Enomoto, et al., (1990), Plant Cell Reports 9:6-9) に記載の方法が挙げられる。

- 一旦、ゲノム内に本発明のDNAが導入された形質転換植物体が得られれば、該植物体から有性生殖により子孫を得ることが可能である。また、該植物体やその子孫あるいはクローンから繁殖材料(例えば、種子、株、カルス、プロトプラスト等)を得て、それらを基に該植物体を量産することも可能である。本発明には、本発明のDNAが導入された植物細胞、該細胞を含む植物体、該植物体の子孫およびクローン、並びに該植物体、その子孫、およびクローンの繁殖材料が含まれる。また、本発明は、ミラフィオリレタスウイルスの感染を診断する方法を提供する。本発明の診断方法の一つの態様は、プライマーあるいはプローブを利用したミラフィオリレタスウイルスタンパク質をコードするRNAを検出することを特徴とする方法である。このようなプローブやプライマーとしては、配列番号:2に記載のミラフィオリレタスウイルスタンパク質をコードするDNAに相同的または相補的な少なくとも15ヌクレオチドからなる核酸を用いることができる。該核酸は、好ましくは配列番号:2に記載のミラフィオリレタスウイルスタンパク質をコー
- 25 プライマーやプローブは必要に応じて標識されていてもよい。標識としては、 例えば、放射標識が挙げられる。

ドするDNAに特異的にハイブリダイズする核酸である。

- 11 -

この診断においては、例えば、ミラフィオリレタスウイルスに感染したことが 疑われる植物、本ウイルスを保毒していると疑われる Olpidium brassicae、ある いは本菌を含む土壌から被検試料を調製し、該試料に対し、上記のプライマーを 用いたポリメラーゼ連鎖反応 (PCR) 法あるいは上記のプローブを利用したノーザ 5 ンブロッティング法を実施すればよい。

本発明の診断方法の他の一つの態様は、抗体を利用したミラフィオリレタスウ

イルスタンパク質を検出することを特徴とする方法である。この診断に用いる抗体の調製は、例えば、得られたアミノ酸配列(配列番号:2)から抗原領域を推定してペプチドを合成し、KLHあるいはBSAなどのキャリアタンパクに結合させ、10 これをウサギに免疫することにより調製することができる。また、QIAexpress Type IVKit (QIAGEN社)を用いて、大腸菌で発現させたミラフィオリレタスウイルスの外被タンパク質をヒスチジンでタッギングし、得られたタンパク質をウサギに免疫することにより調製することもできる。抗体は、必要に応じて標識されていてもよい。標識としては、例えば、酵素標識が挙げられる。また、抗体自体を直接標識しなくとも、抗体に結合する物質、例えば、プロテインAなどを介して標識して、目的のタンパク質を検出してもよい。

この診断においては、例えば、ミラフィオリレタスウイルスに感染したことが 疑われる植物、本ウイルスを保毒していると疑われる Olpidium brassicae、ある いは本菌を含む土壌から被検試料を調製し、該試料に対し、上記の抗体を用いてE LISA法あるいはウエスタンブロット法を実施すればよい。

発明を実施するための最良の形態

20

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。

25 [実施例1] ミラフィオリレタスウイルスの外被タンパク質遺伝子のクローニ ング

15

20

25

1999年に兵庫県のレタス圃場より採集した汚染土にレタスを播種し、発病株をChenopodium quinoaに汁液接種し、増殖したウイルスをC. quinoaでさらに増殖させてウイルス純化材料とした。ウイルス純化は、Morikawaら(T. Morikawa et al., (1995), Ann. Phytopathol. Soc. Jpn. 61:578-581)のチューリップ微班モザイクウイルスの精製法を改変して行った。まず、ミラフィオリレタスウイルス感染薬に、5mM Na-DIECA、0.1% (v/v) 2-メルカプトエタノール、1mM Na-EDTAを含むTris-HCl (pH8.0)を加えてホモジナイズした。また、四塩化炭素処理を省き、最後のCsCl密度勾配遠心の代わりにCs₂SO₄の密度勾配遠心し、ウイルス画分を得た。本純化法で得られた純化ウイルスをSDS-ポリアクリルアミドゲルで電気泳動すると、48kDaの一本のバンドのみが検出された。また、電子顕微鏡観察ではMiLVの粒子のみが観察され他の不純物が観察されなかったことより、高純度の純化ウイルスが得られていることが分かった。

ウイルス核酸の抽出は、純化ウイルスをフェノール/クロロホルム処理後、エタノール沈殿で行った。1stcDNAの作製にはp(dN)。プライマーを用い、First-strand cDNA Synthesis Kit (amersham pharmacia biotech)によって作製した。

ペプチドマップ作成によるMiLV外被タンパク質の内部アミノ酸配列の決定は以下のようにして行った。純化MiLVを10% SDS-ポリアクリルアミドゲル電気泳動後クマジー染色し、48kDaの目的のバンドを切り出し、カルボキシメチル化後、リジルエンドペプチターゼ処理した。処理後、逆相HPLCによるペプチドマッピングにより81本のパターンを得た。それらのパターンのうち数パターンについてアミノ酸の配列を決定した。

得られた数種のアミノ酸配列のうち、EGETAI (配列番号: 3) および LPTEVS (配列番号: 4) を基にdYK5プライマー (GARGGIGARACIGCIAT/配列番号: 5) およびdYK8プライマー (SWIACYTCIGTIGGIAR/配列番号: 6) を設計し、Taq DNA Polymerase (Promega) を用いてPCRを行ったところ、約750bpのPCR産物が得られた。得られたPCR産物をpGEM-T Easy Vector System (Promega) を用いてクローニング

.- 13 -

し、外被タンパク質をコードする塩基配列の一部を決定した。

MiLVは純化ウイルス中にプラス鎖とマイナス鎖両方を含むため、5'RACEのみで外被タンパク質遺伝子の全配列を決定することができる。RACE用の1stcDNAの作製にはp(dN)₆プライマーを用い、SMART RACE cDNA Amplification Kit (CLONTECH)によって作製した。次いで、外被タンパク質をコードする塩基配列に特異的なプライマーを用いてRACEを行い、約750bpおよび約700bpのPCR産物を得た。得られたPCR産物はpGEM-T Easy Vector System (Promega)を用いてクローニングし、塩基配列を決定した。

以上の方法により、配列番号:1に示した1514bpの塩基配列を決定した。本遺 10 伝子は86塩基より翻訳がスタートし、配列番号:2に示した437残基のアミノ酸を コードしていた。

産業上の利用の可能性

本研究ではMiLV抵抗性の形質転換植物を作出するために、MiLVの外被タンパク質の遺伝子およびその近傍の遺伝子を決定した。本遺伝情報はMiLV外被タンパク質およびその近傍の遺伝子、あるいはそれらのアンチセンスの遺伝子を導入することによりMiLV抵抗性形質転換植物の開発が可能となる。本遺伝情報を基にしてMiLV特異的プライマーの設計によりMiLVの遺伝診断法にも利用できる。また、得られたMiLV外被タンパク質のアミノ酸配列を基にした合成ペプチドに対する抗血清、あるいは大腸菌で発現させたMiLVの外被タンパクに対する抗血清を作製し、血清学的診断法にも利用できる。

- 14·-

請求の節囲

- 1. ミラフィオリレタスウイルスの外被タンパク質をコードする下記(a)または(b)の核酸。
- 5 (a)配列番号:2に記載のアミノ酸配列からなるタンパク質をコードする核酸。
 - (b) 配列番号:1に記載の塩基配列のコード領域を含む、(a) に記載の核酸。
 - 2. RNAである、請求項1に記載の核酸。
- 10 3. DNAである、請求項1に記載の核酸。
 - 4. 請求項2に記載の核酸の相補鎖に相補的なセンスRNAをコードするDNA。
 - 5. 請求項2に記載の核酸と相補的なアンチセンスRNAをコードするDNA。
 - 6. 請求項2に記載の核酸を特異的に開裂するリボザイム活性を有するRNAをコードするDNA。
- 15 7. 請求項3に記載の核酸を含むベクター。
 - 8. 請求項3に記載の核酸または請求項7に記載のベクターを保持する形質転 換細胞。
 - 9. 請求項1に記載の核酸によりコードされるタンパク質。
 - 10. 請求項9に記載のタンパク質に結合する抗体。
- 20 11. 請求項8に記載の形質転換細胞を培養し、該形質転換細胞またはその培養上清から発現させたタンパク質を回収する工程を含む、請求項9に記載のタンパク質の製造方法。
 - 12. 請求項4から6のいずれかに記載のDNAを含むベクター。
- 13. 請求項1に記載の核酸、請求項4から6のいずれかに記載のDNA、または 35 請求項7もしくは12に記載のベクターを保持する形質転換植物細胞。
 - 14. 請求項13に記載の形質転換植物細胞を含む形質転換植物体。

- 15 -

- 15. 請求項14に記載の形質転換植物体の子孫またはクローンである、形質 転換植物体。
- 16. 請求項14または15に記載の形質転換植物体の繁殖材料。
- 17. ミラフィオリレタスウイルスの感染を診断する方法であって、植物細胞 またはミラフィオリレタスウイルスの媒介菌である Olpidium brassicae における、請求項1に記載の核酸または請求項9に記載のタンパク質を 検出することを特徴とする方法。

SEQUENCE LISTING

<110> National Agricultural Research Organization

<120> Nucleic acids encoding mirafiori lettuce virus proteins and utilization thereof.

<130> ARO-A0202P

<150> JP 2002-209805

<151> 2002-07-18

<160> 6

<170> PatentIn Ver. 2.1

<210> 1

<211> 1514

<212> DNA

<213> mirafiori lettuce virus

<220>

<221> CDS

⟨222⟩ (87).. (1400)

<400> 1

gattattttt taaaaatata acaagctcat aagaaaacaa cttctccact caaaagtgaa 60

tetttteaaa gaaaaacaaa gteaca atg tea gga gta tac aag gtt tee gga 113

Met Ser Gly Val Tyr Lys Val Ser Gly

att cag tot atc ttg caa aaa gat gtg act tcc gaa gga gaa aca gct 161

Ile Gln Ser Ile Leu Gln Lys Asp Val Thr Ser Glu Gly Glu Thr Ala

10 15 20 25

att cta att tct ctt ggt ctc atg aca aaa gaa gag aag cct gtt cct 209

Ile Leu Ile Ser Leu Gly Leu Met Thr Lys Glu Glu Lys Pro Val Pro

30 35 40

gca aaa atg gcc atg gtg gca tct gca aaa gca aac tca atc atc ttt 257

Ala Lys Met Ala Met Val Ala Ser Ala Lys Ala Asn Ser Ile Ile Phe

45 50 55

gtt tcg gaa gat ggc tct ttg tct ttt gaa gct cca aaa gaa aca gga 305 Val Ser Glu Asp Gly Ser Leu Ser Phe Glu Ala Pro Lys Glu Thr Gly 60 65 70

gga	gtc	aag	ttt	cct	ttc	agc	gca	gcc	aaa	gta	aag	gag	cta	att	gaa	401
Gly	Val	Lys	Phe	Pro	Phe	Ser.	Ala	Ala	Lys	Val	Lys	Glu	Leu	Ile	Glu	
90					95					100	•				105	
												٠,				•
ggg	aaa	agt	ctt	act	ttg	gat	cag	gac	aaa	atc	caa	aaa	gtg	ctg	gaa	449
Gly	Lys	Ser	Leu	Thr	Leu	Asp	G1n	Asp	Lys	Ile	Gln	Lys	Val	Leu	Glu	•
				110					115					120		•
•													•		٠.	•
gaa	tat	gtt	aag	aaţ	ttg	cca	agg	act	gct	gag	act	tac	aaa	cca	aaa	497
Glu	Tyr	Val	Lys	Asn	Leu	Pro	Arg	Thr	Ala	Glu	Thr	Tyr	Lys	Pro	Lys	٠.
•			125	•				130					135			
		.'	,			•		٠.		•					•	*
gag	att	gag	atc	aaa	tgt	ttc	aag	ggt	gtt	gac	ttc	agt	ata	agc	agt	545
G1u	Ile	Glu	Ile	Lys	Cys	Phe	Lys	Gly	Val	Asp	Phe	Ser	Ile	Ser	Ser	
		140					145					150		•	٠,٠	
F *	•	٠.						***	, .					•		, .
ttg	ctt	tct	tca	ggg	acc	aaa	atc	tta	gat	gct	att	ctt	tac	agt	act	593
Leu	Leu	Ser	Ser	Gly	Thr	Lys	Ile	Leu	Asp	Åla	Ile	Leu	Tyr	Ser	Thr	
	155					160			• .	•	165			,		•
				. '			,	•	•						:	
tac	aag	gat	tca	gca	gag	cac	aac	ttc	ata	ttt	gat	gtg	aaa	gtt	cta	641
Tyr	Lys	Asp	Ser	Ala	Glu	His	Asn	Phe	Ile	Phe	Asp	Val	Lys	Val	Leu	
170					175	•				180	,				185	
					•							•				

tct cct gat ttc atc gat agc aag tta ctc gtg aac aac atc gaa aca 689 Ser Pro Asp Phe Ile Asp Ser Lys Leu Leu Val Asn Asn Ile Glu Thr

190 195 200

ggc aat cga gca atc aaa gca gct ttc tgt ctt gtt tac aat caa ggt 737 Gly Asn Arg Ala Ile Lys Ala Ala Phe Cys Leu Val Tyr Asn Gln Gly 205 210 215

gga ttg cca tca aag acg agt gaa gaa cga cca cta tct aag ttt gta 785

Gly Leu Pro Ser Lys Thr Ser Glu Glu Arg Pro Leu Ser Lys Phe Val

220 225 230

aga gaa acg ata ttc cgt gag aaa gat ctc aaa gct aac gag tta tgt 833

Arg Glu Thr Ile Phe Arg Glu Lys Asp Leu Lys Ala Asn Glu Leu Cys

235 240 245

gaa tat ctg tca tca gca gat cct tct ttg ttt cca agt caa gtc ttt 881
Glu Tyr Leu Ser Ser Ala Asp Pro Ser Leu Phe Pro Ser Gln Val Phe
250 255 260 265

ttg aaa atc tca ctt gaa aac ctt cct act gag gtt tca tca cgt tgc 929

Leu Lys Ile Ser Leu Glu Asn Leu Pro Thr Glu Val Ser Ser Arg Cys

270 275 280

aag atg tcg att gcg ggc aac aaa gca atg aga tat gca ctc tta gct 977
Lys Met Ser Ile Ala Gly Asn Lys Ala Met Arg Tyr Ala Leu Leu Ala
285 290 295

caa aag ttt gac aaa gat gaa att cca gtt cca aca gaa gtg aat cct 1025 Gln Lys Phe Asp Lys Asp Glu Ile Pro Val Pro Thr Glu Val Asn Pro 310 305 300 1073 aca act agc tca gaa tac atg cag aaa aag gag aaa ata gaa aaa gca Thr Thr Ser Ser Glu Tyr Met Gln Lys Lys Glu Lys Ile Glu Lys Ala 315 320 325 aaa aag ata gtt gat gtt cta tgt tct ctt gct tct gac ttc cag gca 1121 . Lys Lys Ile Val Asp Val Leu Cys Ser Leu Ala Ser Asp Phe Gln Ala 345 330 335 340 caa gtg aaa atg cat cct ctc tcc cct gag aga tca tcg agg aag aat 1169 Gln Val Lys Met His Pro Leu Ser Pro Glu Arg Ser Ser Arg Lys Asn 355 360 350 ttc act ctg caa ttg act tct gca att gtt act tca ctt tcc tac aaa 1217 Phe Thr Leu Gln Leu Thr Ser Ala Ile Val Thr Ser Leu Ser Tyr Lys 370 375 365 ggg agg tta gac atg aga aaa gca atc gaa gag aaa aag ata gag gct Gly Arg Leu Asp Met Arg Lys Ala Ile Glu Glu Lys Lys Ile Glu Ala 390 380 385

ttc aaa aga gat gaa aat ata ttt gga agg tta aat gct ctt gga caa 1313 Phe Lys Arg Asp Glu Asn Ile Phe Gly Arg Leu Asn Ala Leu Gly Gln

395

400

405

ccc acg ttt cct gtt ctg act aac gca gat gct gac ttt tct gaa ttg 1361
Pro Thr Phe Pro Val Leu Thr Asn Ala Asp Ala Asp Phe Ser Glu Leu
410 415 420 425

tca gtt gag gcc gtg aag aca gct tac gga aag aaa tga gggcagaatc 1410 Ser Val Glu Ala Val Lys Thr Ala Tyr Gly Lys Lys

430

435

ggagtgaata gtgaagaatg tggaattgtg gacagatttg cttttttccg cttatccttt 1470

gcgataggga gtatgtgaac tgatagtttt aataaaaaac tatc

1514

<210> 2

<211> 437

<212> PRT

<213> mirafiori lettuce virus

<400> 2

Met Ser Gly Val Tyr Lys Val Ser Gly Ile Gln Ser Ile Leu Gln Lys

1

5

10

. 15

Asp Val Thr Ser Glu Gly Glu Thr Ala Ile Leu Ile Ser Leu Gly Leu

20

25

30

Met Thr Lys Glu Glu Lys Pro Val Pro Ala Lys Met Ala Met Val Ala

•		35					40					45		:	
Ser	Ala	Lys	Ala	Asn	Ser	Ile	Ile	Phe	Val	Ser	Glu	Asp	Gly	Ser	Leu
	50					55					60			·.	•
Ser	Phe	Glu	Ala	Pro	Lys	Glu	Thr	Gly	Glu	Thr	Ser	Lys	Pro	Gly	Glu
65		•			70					7 5	•				80
Lys	Lys	Glu	Glu	Lys	Lys	Val	Glu	Val	Gly	Val	Lys	Phe	Pro	Phe	Ser
				85					90					95	
Ala	Ala	Lys	Val	Lys	Glu	Leu	Ile	Glu	Gly	Lys	Ser	Leu	Thr	Leu	Asp
			100					105					110		. •
Gln	Asp	Lys	Ile	Gln	Lys	Val	Leu	Glu	Glu	Tyr	Val	Lys	Asn	Leu	Pro
	•	115					120					125			
Arg	Thr	Ala	Glu	Thr	Tyr	Lys	Pro	Lys	Glu	Ile	Glu	Ile	Lys	Cys	Phe
	130					135					140				•
Lys	Gly	Val	Asp	Phe	Ser	Ile	Ser	Ser	Leu	Leu	Ser	Ser	Gly	Thr	Lys
145					150	•	١.			155			٠		160
Ile	Leu	Asp	Ala	Ile	Leu	Tyr	Ser	Thr	Tyr	Lys	Asp	Ser	Ala	Glu	His
		,		165					170					175	
Asn	Phe	Ile	Phe	Asp	Val	Lys	Val	Leu	Ser	Pro	Asp	Phe	Ile	Asp	Ser
		•	180					185		·			190	,	
Lys	Leu	Leu	Val	Asn	Asn	Ile	Glu	Thr	Gly	Asn	Arg	Ala	Ile	Lys	Ala
· ·		195					200					205			
Ala	Phe	Cys	Leu	Val	Tyr	Asn	Gln	Gly	Gly	Leu	Pro	Ser	Lys	Thr	Ser
	210	·.				215					220				
Glu	Glu	Arg	Pro	Leu	Ser	Lys	Phe	Val	Arg	Glu	Thr	Ile	Phe	Arg	Glu
225					230		,			235				•	240
Lys	Asp	Leu	Lys	Ala	Asn	Glu	Leu	Cys	Glu	Tyr	Leu	Ser	Ser	Ala	Asp

				245					250					255	
Pro	Ser	Leu	Phe	Pro	Ser	Gln	Val	Phe	Leu	Lys	Ile	Ser	Leu	Glu	Asn
			260					265					270		÷
Leu	Pro	Thr	Glu	Val	Ser	Ser	Arg	Cys	Lys	Met	Ser	Ile	Ala	Gly	Asn
		275					280			•		285			
Lys	Ala	Met	Arg	Tyr	Ala	Leu	Leu	Ala	Gln	Lys	Phe	Asp	Lys	Asp	Glu
	290		٠.			295					300				
Ile	Pro	Val	Pro	Thr	Glu	Val	Asn	Pro	Thr	Thr	Ser	Ser	Glu	Tyr	Met
305			·, ,	<i>:</i> .	310		•			315					320
Gln	Lys	Lys	Ġlu	Lys	Ile	Glu	Lys	Ala	Lys	Lys	Ile	Val	Asp	Val	Leu
		•		325			· .		330					335	
Cys	Ser	Leu	Ala	Ser	Asp	Phe	Gln	Ala	Gln	Val	Lys	Met	His	Pro	Leu
			340		,			345		,			350		
											,	0.7	•		_
Ser	Pro	Glu	Arg	Ser	Ser	Arg	Lys	Asn	Phe	Thr	Leu	GIn	Leu	Thr	Ser
Ser	Pro	Glu 355	Arg	Ser	Ser	Arg	160 Lys	Asn	Phe	Thr		365	Leu	Thr	Ser
		355	Arg Thr		•		360		•		,**	365			
		355			•		360		•		,**	365			
Ala	Ile 370	355 Val		Ser	Leu	Ser 375	360 Tyr	Lys	Gly	Arg	Leu 380	365 Asp	Met	Arg	Lys
Ala	Ile 370	355 Val	Thr	Ser	Leu	Ser 375	360 Tyr	Lys	Gly	Arg	Leu 380	365 Asp	Met	Arg	Lys
Ala Ala 385	Ile 370 Ile	355 Val Glu	Thr	Ser Lys	Leu Lys 390	Ser 375 Ile	360 Tyr Glu	Lys Ala	Gly	Arg Lys 395	Leu 380 Arg	365 Asp	Met Glu	Arg Asn	Lys Ile 400
Ala Ala 385	Ile 370 Ile	355 Val Glu	Thr	Ser Lys	Leu Lys 390 Ala	Ser 375 Ile	360 Tyr Glu	Lys Ala	Gly	Arg Lys 395	Leu 380 Arg	365 Asp	Met Glu	Arg Asn	Lys Ile 400
Ala Ala 385 Phe	Ile 370 Ile Gly	355 Val Glu Arg	Thr	Ser Lys Asn 405	Leu Lys 390 Ala	Ser 375 Ile Leu	360 Tyr Glu Gly	Lys Ala Gln	Gly Phe Pro 410	Arg Lys 395 Thr	Leu 380 Arg Phe	365 Asp Asp Pro	Met Glu Val	Arg Asn Leu 415	Lys Ile 400 Thr
Ala Ala 385 Phe	Ile 370 Ile Gly	355 Val Glu Arg	Thr Glu Leu	Ser Lys Asn 405	Leu Lys 390 Ala	Ser 375 Ile Leu	360 Tyr Glu Gly	Lys Ala Gln	Gly Phe Pro 410	Arg Lys 395 Thr	Leu 380 Arg Phe	365 Asp Asp Pro	Met Glu Val	Arg Asn Leu 415	Lys Ile 400 Thr
Ala 385 Phe	Ile 370 Ile Gly	355 Val Glu Arg	Thr Glu Leu Ala	Ser Lys Asn 405 Asp	Leu Lys 390 Ala	Ser 375 Ile Leu	360 Tyr Glu Gly	Lys Ala Gln Leu	Gly Phe Pro 410	Arg Lys 395 Thr	Leu 380 Arg Phe	365 Asp Asp Pro	Met Glu Val	Arg Asn Leu 415	Lys Ile 400 Thr

⟨210⟩ 3

<211> 6

<212> PRT

<213> mirafiori lettuce virus

<400> 3

Glu Gly Glu Thr Ala Ile.

.

<210> 4

⟨211⟩ 6

<212> PRT

<213> mirafiori lettuce virus

<400> 4

Leu Pro Thr Glu Val Ser

1

5

⟨210⟩ 5

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:an artificially
synthesized primer sequence

<220>

<221> modified_base

<222> (6)

<223> i

<220>

<221> modified_base

<222> (12)

<223> i

<220> ∴

<221> modified_base

<222> (15)

<223> i

<400> 5

.garggngara cngcnat

17

<210> 6

<211> 17

<212> DNA

11/12.

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:an artificially
synthesized primer sequence

<220>

<221> modified_base

⟨222⟩ (3)

<223> i

<220>

<221> modified_base

<222> (9)

<223> i

<220>

<221> modified_base

<222> (12)

<223> i

<220>

<221> modified_base

<222> (15)

<223> i

<400> 6

swnacytcng tnggnar

. 17

International application No.
PCT/JP03/09086

		PCT/JI	203/09086							
	SIFICATION OF SUBJECT MATTER C1 ⁷ C12N15/40, C07K14/08, C07I C12P21/02, C12Q1/68	K16/10, C12N5/14, A01H5	/00,							
According t	According to International Patent Classification (IPC) or to both national classification and IPC									
	S SEARCHED									
Int.	ocumentation searched (classification system followed C1 ⁷ C12N15/40, C07K14/08, C07K C12P21/02, C12Q1/68	K16/10, C12N5/14, A01H5								
	tion searched other than minimum documentation to th									
Swis Gene	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/GeneSeq, MEDLINE(STN), WPI(DIALOG), Genbank/EMBL/DDBJ/ GeneSeq, BIOSIS(DIALOG)									
C. DOCU	MENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.							
P,X	van der Wilk F. et al., Nucle genomic organization of an op with lettuce big-vein disease Nov), Vol.83, No.Pt 11, pages	phiovirus associated e., J Gen Virol.(2002	1-17							
P,X	Yoichi KAWAZU et al., Nucleotide sequence of the coat protein gene of Mirafiori luttuce virus., J Gen Plant Pathol (2003), Vol.69, No.1, pages 55 to 60									
х	Roggero P. et al., An Ophiove lettuce with big-vein symptom Arch Virol. (2000), Vol.145, 2642	ms.,	1-17							
Furth	er documents are listed in the continuation of Box C.	See patent family annex.								
"A" docume conside "E" earlier	categories of cited documents: ent defining the general state of the art which is not ared to be of particular relevance document but published on or after the international filing	"T" later document published after the inte priority date and not in conflict with the understand the principle or theory und document of particular relevance; the	ne application but cited to erlying the invention claimed invention cannot be							
cited to special "O" docume means "P" docume	ent which may throw doubts on priority claim(s) or which is a establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed	considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family								
07 A	actual completion of the international search ugust, 2003 (07.08.03)	Date of mailing of the international sear 19 August, 2003 (19	-							
	ailing address of the ISA/ nese Patent Office	Authorized officer								
Facsimile No	o.	Telephone No.								

	国際調査報告	国際出願番号 PCT/JPO:	3/0,9086
A. 発明の原	異する分野の分類(国際特許分類(IPC))		
Int. Cl7	C12N15/40, C07K14/08, C07K16/10, C12N5/14, A01	H5/00, C12P21/02, C12Q1/68	
	「 テった分野 最小限資料(国際特許分類(IPC))		
Mat. 6.11, 2.10			
Int. Cl7	C12N15/40, C07K14/08, C07K16/10, C12N5/14, A01	H5/00, C12P21/02, C12Q1/68	·
最小限資料以外	トの資料で調査を行った分野に含まれるもの		•
	用した電子データベース (データベースの名称、	•	
	sProt/PIR/GeneSeq, MEI ank/EMBL/DDBJ/GeneSeq,		,OG) ,
C. 関連する	ると認められる文献		•
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	ささは、その関連する箇所の表示	関連する 請求の範囲の番号
PΧ	van der Wilk F, et.al., Nucleotide sequence of an ophiovirus associated with let J Gen Virol. (2002 Nov), Vol. 83, No. Pt	tuce big-vein disease.,	1 – 1 7
PΧ	1-17		
		·	
区 C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
もの 「E」国際出版 以後にな 「L」優先権 日若しく 文可頭に 「O」口頭に	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 質日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ出願と矛盾するものではなく、多の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当上の文献との、当業者にとって自よって進歩性がないと考えられる 「&」同一パテントファミリー文献	き明の原理又は理論 4該文献のみで発明 たられるもの 4該文献と他の1以 目明である組合せに
国際調査を完了	了した日 07.08.03	国際調査報告の発送日 39.08.0	3
日本国	D名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 那千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) - 鈴木 美葉子 (印 電話番号 03-3581-1101	- ''

国際出願番号 PCT/JP03/09086

	C (続き) .	関連すると認められる文献								
	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号							
	X	Roggero P, et. al., An Ophiovirus isolated from lettuce with big-vein symptoms., Arch Virol. (2000), Vol. 145, No. 12, p. 2629-2642	1-17							
, ,	,									
			·							
	1									

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.