Complex Analysis: Main ideas

Peter Kagey

August 13, 2018

1. Cauchy-Riemann Equations

Let f(z) = u(x,y) + iv(x,y) then f is holomorphic if and only if $u_x = v_y$ and $u_y = -v_x$. Note: To remember which sign is which, check with $(x+iy)^2 = (x^2 - y^2) + i(2xy)$

2. Cauchy's Integral Theorem

Let f be a holomorphic on a simply connected open set Ω , then the integral along any closed curve $\gamma \in \Omega$ vanishes:

$$\oint_{\gamma} f \, dz = 0.$$

3. Cauchy's Integral Formula

Let f be a holomorphic on a simply connected open set Ω , and let $\gamma \in \Omega$ be a simple closed curve around z_0 . Then $f(z_0)$ is uniquely determined by the values on the boundary of the curve

$$f(z_0) = \frac{1}{2\pi i} \oint_{\alpha} \frac{f(\xi)}{\xi - z_0} d\xi,$$

and by differentiating under the integral

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

4. **Defintion:** Residue The residue of f at z_0 is the coefficient of $(z-z_0)^{-1}$ in the Taylor expansion of f about z_0 .

5. Residue Theorem

Let Ω be a "nice" region, and f is holomorphic on $\Omega \setminus \{z_0\}$. Then

$$\frac{1}{2\pi i} \oint_{\gamma} f(z)dz = \operatorname{Res}_{z_0}(f).$$

where γ is a nice curve in Ω .

6. Schwarz Lemma

Assume that $f: \mathbb{D} \to \mathbb{D}$ is a holomorphic map such that f(0) = 0.

Then $|f(z)| \le |z|$ for all $z \in \mathbb{D}$ and $|f'(0)| \le 1$. Also, if |f(z)| = |z| for some $z \ne 0$ or if |f'(0)| = 1, then f is a rotation.

7. Rouché's Theorem

Let γ be a curve in Ω homologous to 0 with winding number at most 1. Then if f and g are analytic and satisfy the inequality |f - g| < |f| for all points on γ , f and g enclose the same number of zeroes.

8. Argument principle

Suppose f is a meromorphic function inside and on some closed contour C with no zeros or poles on C, then

$$\oint_C \frac{f'(z)}{f(z)} dz = 2\pi i (N - P)$$

1

where N is the number of zeros and P is the number of poles inside C.

9. **Definition: Normal Family** (Ahlfors, p. 220) A family $\mathfrak F$ is said to be normal in Ω if every sequence $\{f_n\}$ of functions $f_n \in \mathfrak F$ contains a subsequence which converges uniformly on every compact subset of Ω .