AcF305:

International Financial and Risk Management Week 8

Dr. Mykola Babiak
Lancaster University Management School

Outline of Lecture 8

- Essential reading: Chapter 19 of Sercu (2009).
- Topics: Cost of international capital InCAPM
 - Can we use local NPV techniques to determine the value of a foreign investment project? Why is it important to find out whether home country and foreign country are integrated?
 - What is the capital asset pricing model (CAPM)? How is the model derived? What is its intuition? How is the market portfolio related to the CAPM?
 - Why do we need an international CAPM? How can we implement this model to derive a firm's cost of capital?

Value of an International Project

- In previous courses, you should have learned how to determine the NPV of a local (= produces HC cash flows) investment project.
 - Rule: Discount expected cash flows at the owners' opportunity cost of capital.
- Contrast this with a foreign project, generating FC cash flows: How would we determine its value? A priori, there are two options:
 - 1. Translate expected FC cash flows into HC using the expected spot rate, i.e. $E(\tilde{C}_{\tau}^* * \tilde{S}_{\tau}) = E(\tilde{C}_{\tau})$, and discount at local discount rate. But remember $E(\tilde{C}_{\tau}^* * \tilde{S}_{\tau}) \neq E(\tilde{C}_{\tau}^*) * E(\tilde{S}_{\tau})$
 - 2. Discount expected FC cash flows at foreign discount rate and translate FC value into HC at spot rate prevailing today.

What is the cost of capital?

- It is the opportunity cost from investing in a project. In other words, it establishes what would be the interest that one could obtain from investing in a similar project with equal risk
- If markets are integrated (e.g. no trading frictions and barriers), then the cost of capital no longer follows the standard CAPM you know from prior courses

Example of a NPV Calculation

- Assume you can invest into a local project, with:
 - 1. Initial investment equal to 10,000.
 - Expected cash flows of 5,000 over the next four years.
- The NPV is:

$$-10,000 + \frac{5,000}{(1+r)} + \frac{5,000}{(1+r)^2} + \frac{5,000}{(1+r)^3} + \frac{5,000}{(1+r)^4}$$

- Assume that r = 10%, then NPV=5,849.32
- r is the (opportunity) cost of capital

International valuation

- To compute the expected cost of capital or expected return on an asset we need to know its exposure to risk factors: market and currency factors.
- If investors can hold foreign assets, it is no longer acceptable to use a CAPM-equation with its benchmark portfolio of the local stock index
 - The local index ignores foreign assets, which could well be good investment opportunities
 - Local assets, are owned by foreigners

International valuation

- When investors put their money away from their home countries in international projects, they are exposed to exchange rate risk
- What is the appropriate benchmark
 - Foreign market portfolio?
 - Local market portfolio?
 - A combination of both?
- How should the expected rate of return be adjusted to account for exchange rate risk?

International valuation III

• In summary, feasible approaches to determine the value of an international project can be determined through the following tree:

```
markets integrated? = \begin{cases} YES: use approach (1) or (2) \rightarrow apply InCAPM \\ NO: must use approach (1) \rightarrow apply local CAPM \end{cases}
```

- Why can capital budgeting be done from the perspective of a local or foreign investor when markets are integrated?
 - In an integrated market, investors from different countries use the same cost of capital (once prices and cashflows are transformed into the same currency). Otherwise, arbitrage opportunities would exist.
- Therefore, in an integrated market, home country investors and host country investors will agree in the value of the project => Same price and same cost of capital

Segmented Markets

 When markets are segmented, the foreign discount rates are different from local discount rates; we must first translate and then discount:

$$E(\widetilde{C}^*) \longrightarrow E(\widetilde{C}^*\widetilde{S}) \longrightarrow \text{discount } E(\widetilde{C}^*\widetilde{S})$$
expectation in FC
expectation in HC
with, importantly: $E(\widetilde{C}^*\widetilde{S}) = E(\widetilde{C}^*)E(\widetilde{S}) + \text{cov}(\widetilde{C}^*,\widetilde{S})$

Example:

	State of the economy			
	Boom: $C^* = 150$	Slump: $C^* = 100$	Prob(S)	$\mathrm{E}(\tilde{C} S)$
$S_T = 1.2$	p = 0.15; C=180	p=0.35; C=120	0.50	138
$S_T = 0.8$	p = 0.35; C=120	p= 0.15; C = 80	0.50	108
$Prob(C^*)$	p = 0.50	p = 0.50		

$$E(\tilde{S}) = (0.50 * 1.2) + (0.50 * 0.8) = 1.00$$

 $E(\tilde{C}^*) = (0.50 * 150) + (0.50 * 100) = 125$

yet, even though
$$E(\tilde{S})*E(\tilde{C}^*)=125$$
, we can see that: $E(\tilde{S}\tilde{C}^*)=(0.15*180)+(0.35*120)+(0.35*120)+(0.15*80)=123$

Then discount these expectations using the single-country CAPM.

Assumptions and Essentials of the CAPM

- In a segmented market, the value of an international project will be determined by the single-country CAPM.
- Some assumptions and essentials of this model are:
 - Investors rank portfolios based on expected return and variance.
 - The return on a portfolio can be written as:

$$\widetilde{r}_p - r_0 = \sum_{j=1}^N x_j (\widetilde{r}_j - r_0)$$

where r_j , r_p and r_0 are the nominal return of stock j, portfolio p and the risk-free asset and x_i is the weight invested into stock j.

A combination of risk-free rate and stock will have:

$$\widetilde{r}_{p} = x\widetilde{r}_{s} + (1-x)r_{0} = r_{0} + x(\widetilde{r}_{s} - r_{0}) \rightarrow \begin{cases} E(\widetilde{r}_{p}) = r_{0} + xE[\widetilde{r}_{s} - r_{0}], \\ sd(\widetilde{r}_{p}) = |x| sd(\widetilde{r}_{s}) \end{cases}$$

- ... while that of two stocks (with $x_2 = 1 - x_1$) implies:

$$\widetilde{r}_{p} = x_{1}\widetilde{r}_{1} + (1 - x_{1})\widetilde{r}_{2} \rightarrow \begin{cases} E(\widetilde{r}_{p}) = E(\widetilde{r}_{1}) + x_{1}[E(\widetilde{r}_{1}) - E(\widetilde{r}_{2})], \\ sd(\widetilde{r}_{p}) = (x_{1}^{2} \operatorname{var}(\widetilde{r}_{1}) + 2x_{1}x_{2} \operatorname{cov}(\widetilde{r}_{1}, \widetilde{r}_{2}) + x_{2}^{2} \operatorname{var}(\widetilde{r}_{2}))^{0.5} \end{cases}$$

Relation between Risk-free Asset and Stocks

Figure 19.1: Combinations of risky stock portfolio s and asset 0

Relation between Risk-free Asset and Stocks

Figure 19.2: The risk-return bound with just risky assets

Relation between Risk-free Asset and Stocks

Figure 19.3: Efficient Portfolios & the Tangency Portfolio

Forming an Optimal (Efficient) Portfolio

- An investor wants to form an optimal portfolio, i.e. he wants to maximize expected return and minimize variance.
 - Expected portfolio return: $E(\tilde{r}_p) = r_0 + \sum_{j=1}^{N} x_j E(\tilde{r}_j r_0)$
 - Portfolio variance: $var(\widetilde{r}_p) = \sum_{j=1}^{N} x_j \sum_{k=1}^{N} x_k cov(\widetilde{r}_j, \widetilde{r}_k)$
- To this end, the investor must determine the extra benefit (= $E(\tilde{r}_p)$) and extra cost (= $var(\tilde{r}_p)$) of investing just a little bit more into stock j.

Forming an Optimal (Efficient) Portfolio

Example with two stocks:

extra benefit:
$$\frac{\partial E(\widetilde{r}_p - r_0)}{\partial x_k} = E(\widetilde{r}_k - r_0)$$
extra cost:
$$\frac{\partial \operatorname{var}(\widetilde{r}_p)}{\partial x_k} \propto \operatorname{cov}(\widetilde{r}_k, \widetilde{r}_p)$$
taking partial derivatives

- Rule: In an optimal portfolio, the extra benefit-over-extra cost ratio must be equal across all stocks.
 - In practice: Investors can identify an optimal portfolio from computing the ratio of all stock's expected excess return over their covariance with the portfolio; if all ratios are equal: portfolio is optimal.

Optimal Portfolios & Investors' Risk Aversion

More rigorously:

Identification of an Optimal Portfolio:

$$\frac{E(\widetilde{r}_{j}-r_{0})}{\operatorname{cov}(\widetilde{r}_{j},\widetilde{r}_{p})}=\lambda, \text{ for all risky assets } j=1,2,3,\ldots,N$$

where λ equals an investor's relative risk aversion.

Optimal Portfolios & Investors' Risk Aversion

Example: Assume the following data are known:

$$E(\tilde{r}_j - r)$$
 (co)variances

 Asset 1
 0.092
 $cov(\tilde{r}_1, \tilde{r}_1) = 0.04$
 $cov(\tilde{r}_1, \tilde{r}_2) = 0.05$

 Asset 2
 0.148
 $cov(\tilde{r}_2, \tilde{r}_1) = 0.05$
 $cov(\tilde{r}_2, \tilde{r}_2) = 0.09$

- Check whether the portfolio x₁ = 0.40 and x₂ = 0.60 is efficient via the following steps:
 - Compute each stock's covariance with the portfolio; use the formula:

$$cov(\tilde{r}_{j}, \tilde{r}_{p}) = cov(\tilde{r}_{j}, x_{1}\tilde{r}_{1} + x_{2}\tilde{r}_{2}) = x_{1}cov(\tilde{r}_{j}, \tilde{r}_{1}) + x_{2}cov(\tilde{r}_{j}, \tilde{r}_{2})$$

$$cov(\tilde{r}_{1}, \tilde{r}_{p}) = 0.40 \times 0.04 + 0.60 \times 0.05 = 0.046; cov(\tilde{r}_{2}, \tilde{r}_{p}) = 0.40 \times 0.05 + 0.60 \times 0.09 = 0.074$$

Calculate the ratio of expected excess return over covariance for each stock:

$$\lambda_1 = 0.092/0.046 = 2$$
; $\lambda_2 = 0.148/0.074 = 2$

An investor with risk aversion equal to 2 will hold this portfolio.

More Examples of Efficient Portfolios

- Example: What will an investor with a different risk aversion do?
 - Assume x₁ = 0.20 and x₂ = 0.30, with the remainder invested into the risk-free asset.
 - Is this also an efficient portfolio? [YES/NO]
 Where on the efficient frontier, if at all, would this investor be? [further to the right/left than before]
- As this investor is more risk-averse than our previous investor, his lambda coefficient is higher than before:

before:

$$\lambda = \underbrace{\frac{0.092}{0.023}}_{stock \, 1} = \underbrace{\frac{0.148}{0.037}}_{stock \, 2} = 4$$

 As lambdas are equal across stocks (=4), the lambda of the portfolio will also be equal to all the stocks' lambdas:

Relative risk aversion =
$$\lambda = \frac{E(\tilde{r}_p - r_0)}{\text{var}(\tilde{r}_p)}$$

which implies that an investor's relative risk aversion can be measured by the portfolio that the investor holds.

Capital Asset Pricing Model

- Assumptions:
 - 1. Homogeneous opportunities (equal access to the same assets)
 - Homogeneous expectations (investors use the same estimates of assets' expected returns and of their variances).
- An implication: All investors hold the same equity market portfolio and therefore, for all risky stocks j = 1, 2, 3, ..., N:

$$\frac{E(\widetilde{r}_{j}-r_{0})}{\operatorname{cov}(\widetilde{r}_{j},\widetilde{r}_{m})} = \lambda_{m} = \frac{E(\widetilde{r}_{m}-r_{0})}{\operatorname{var}(\widetilde{r}_{m})}$$
from last slide

$$\Leftrightarrow E(\widetilde{r}_{j}-r_{0}) = \frac{E(\widetilde{r}_{m}-r_{0})}{\operatorname{var}(\widetilde{r}_{m})} \operatorname{cov}(\widetilde{r}_{j},\widetilde{r}_{m}) = \beta_{j,m} E(\widetilde{r}_{m}-r_{0})$$

- Beta is a measure of a stock's relative risk, i.e. its co-movement with the market.
 - If $\beta_{j,m}$ = 0, an asset's expected return is the risk-free rate.
 - If $\beta_{i,m} > 0$, an asset's expected return contains a risk premium.

Why the InCAPM must differ from the CAPM

- When markets are integrated, the market portfolio must contain the stocks of all countries into which investors can invest (e.g. world market)
- However, there are other differences to the standard CAPM, for example
 - A U.K. investor cares about his wealth in £.
 - When our U.K. investor invests into, say, the U.S., he is not interested in the \$-return, but in the £-return, which is:

$$r_{SJ}^{\pounds} \approx r_{SJ}^{\$} + r_{\$}$$

= gain/loss_{U.S. stock} + gain/loss_{currency}

 When differences in inflation rates do not offset changes in the exchange rate, real U.S. and U.K. returns will differ, violating the homogeneous expectations assumption.

Why the InCAPM must differ from the CAPM

- An extreme example is the return on the T-bill. Suppose that there is no inflation (nominal returns are the same as real returns)
 - To a US investor, the CAD T-bill is one of the available risky assets and is therefore included in the US tangency portfolio.
 - To a Canadian investor, the CAD T-bill is riskfree, and it is not part of the Canadian tangency portfolio.

Optimal Portfolio Formation in an Integrated World

- Assume a world with 2 integrated countries, say Canada (home) & the U.S. (abroad, denoted by an asterisk)
- Integrated world: Canadian and U.S. investors can both invest into Canadian and U.S. stocks → together, the world market portfolio
- Portfolio choices can be summarised as follows:

Canadians choose
$$p$$
 such that $E(\tilde{r}_j - r) = \lambda \operatorname{cov}(\tilde{r}_j, \tilde{r}_p)$,
Americans choose p^* such that $E(\tilde{r}_j^* - r^*) = \lambda \operatorname{cov}(\tilde{r}_j^*, \tilde{r}_{p^*}^*)$.

where p denotes portfolio and the asterisk (*) refers to amounts in the foreign currency (USD)

Optimal Portfolio Formation in an Integrated World

• Translated into CAD, the problem of the American investor can be written as (see technical note 19.2 in the textbook for the derivation):

Americans choose p^* such that $E(\tilde{r}_j - r) = \lambda \text{cov}(\tilde{r}_j, \, \tilde{r}_{p^*}) + (1 - \lambda) \text{cov}(\tilde{r}_j, \, \tilde{s}),$

where \tilde{s} is the percentage change in the exchange rate (CAD per USD)

Covariance with the exchange rate

• The covariance between stock returns and exchange rates is proportional to the coefficient γ from the regression model

$$\tilde{r}_j = \alpha_{j,s} + \gamma_j \, \tilde{s}_{\text{CAD/USD}} + \epsilon_{j,s}.$$

- How are different assets exposed in CAD terms? Some examples
- 1. Canadian risk-free asset: not affected \Rightarrow zero covariance
- 2. U.S. risk-free asset: one-to-one affected \Rightarrow positive covariance
- 3. Canadian importer: an increase in the CAD/USD rate means bad news ⇒ negative covariance with exchange rate
- 4. Canadian manufacturer: an increase in the CAD/USD rate means good news ⇒ positive covariance with exchange rate
- 5. Also consider a U.S. exporter or an importer

Covariance with the exchange rate

Figure 19.4: Relative exposures (γ) of various assets

 Firms from both countries can show very different exposures to the CAD/USD exchange rate

A Quick Derivation of the InCAPM

• The two equations that determine the Canadian and U.S. market portfolios

CDN:
$$E(\tilde{r}_j - r) = \lambda \operatorname{cov}(\tilde{r}_j, \tilde{r}_p),$$

US: $E(\tilde{r}_j - r) = \lambda \operatorname{cov}(\tilde{r}_j, \tilde{r}_{p^*}) + (1 - \lambda) \operatorname{cov}(\tilde{r}_j, \tilde{s}).$

can be aggregated into (see technical note 19.3)

$$E(\tilde{r}_j - r) = \lambda \operatorname{cov}(\tilde{r}_j, \, \tilde{r}_w) + \kappa \operatorname{cov}(\tilde{r}_j, \, \tilde{s}),$$

where w refers to the world market portfolio and κ captures national invested wealths and risk aversions

 The above expression (see the final (!) technical note 19.4) leads to the InCAPM formula

A Quick Derivation of the InCAPM

• In its standard form, the International Capital Asset Pricing Model (InCAPM) is usually written as

$$E(\tilde{r}_j - r) = \beta_{j,w} E(\tilde{r}_w - r) + \gamma_{j,s} E(\tilde{s} + r^* - r),$$

where $\beta_{j,w;s}$ and $\gamma_{j,s;w}$ are regression coefficients corresponding to the market risk and exchange rate risk, respectively, estimated from the market model with a single currency exposure

$$\tilde{r}_j = \alpha_{j,w,s} + \beta_{j,w,s} \tilde{r}_w + \gamma_{j,s,w} \tilde{s} + \tilde{\epsilon}_{j,w,s}.$$

• In your assignment, assume (το simplify computations) that all risk free rates are equal to zero.

An InCAPM in an Integrated World with N Countries

• When there are *N+1* integrated countries, the InCAPM can be written as:

$$E(\widetilde{r}_j - r_0) = \beta_{j,w;all\ s} E(\widetilde{r}_w - r_0) + \sum_{k=1}^N \gamma_{j,s_k;w,other\ s} E(\widetilde{s}_k + r_{0,k}^* - r_0)$$

where $\beta_{j,w;all\ s}$ and $\gamma_{j,s_k;w,other\ s}$ are regression coefficients from the market model and n exposure models

- If there are 100 integrated countries, there would be 101 coefficients: this somehow seems too much of a good thing:
 - Reduce the number of slope coefficients through focusing only on the more important countries.
 - Alternatively, drop all slope coefficients, but still use the world market portfolio.

Summary, Homework and Additional Reading

- In this lecture, we dealt with:
 - One needs to be aware of differences regarding how the value of a local and a foreign investment project can be determined.
 - The difference between segmented and integrated markets and the reason of why this is important for capital budgeting.
 - Standard Capital Asset Pricing Model provides the basis for capital budgeting analysis
 - In the international context (with integrated markets), International CAPM needs to be applied
- At home, you will need to cover:
 - Take another look at the mathematical derivation of the InCAPM.
 - Solve exercises for the next workshop