$$1 in = 2.54 cm$$

$$v_f = v_i + a \Delta t$$

$$1 \text{ ft} = 0.3048 \text{ m}$$

$$s_f = s_i + v_i \Delta t + a \Delta t^2 / 2$$

$$v_f^2 = v_i^2 + 2 \text{ a } \Delta s$$

$$1 \text{ kg} = 2.205 \text{ lb}$$

$$v = R \omega$$

$$\omega_f = \omega_i + \alpha \Delta t$$

$$g = 9.80 \text{ m/s}^2$$

$$\theta_f = \theta_i + \omega_i \Delta t + \alpha \Delta t^2 / 2$$

$$360^{\circ} = 2 \pi \text{ rad}$$

$$\omega_f^2 = \omega_i^2 + 2 \alpha \Delta \theta$$

L =
$$2 \pi R$$
 (circumference of a circle)

$$\omega = 2~\pi$$
 / T, f = 1 / T

$$S = R^2 \pi$$
 (surface area of a circle)

$$a_c = v^2 / R = \omega^2 R$$

Quadratic equation: if a x² + b x + c = 0, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$\vec{A} = A_x \,\hat{\imath} + A_y \,\hat{\jmath} + A_z \,\hat{k}, \quad A = \sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}, \quad \tan \phi = A_y \,/\, A_x$$

Cosine law: $c^2 = a^2 + b^2 - 2$ a b cos θ , where θ is the angle *between* sides a and b.

Projectile motion (positive y up):

$$x_f = x_i + v_{xi} \Delta t$$
, $y_f = y_i + v_{yi} \Delta t - g \Delta t^2 / 2$; $v_{xf} = v_{xi}$, $v_{yf} = v_{yi} - g \Delta t$

Relative motion:
$$\vec{v}_{AB} = \vec{v}_{AC} + \vec{v}_{CB}$$
 , $\vec{v}_{AB} = -\vec{v}_{BA}$

Newton's second law: $\vec{F}_{NET} = m \vec{a}$, $\vec{F}_{NET} = \vec{F}_1 + \vec{F}_2 + \cdots + \vec{F}_N$

Weight in non-inertial reference frames: $w=mg(1+a_{v}/g)$

Kinetic friction: $f_k = \mu_k$ N, opposite to the direction of motion

Static friction: $f_s^{(\text{max})} = \mu_s$ N, direction as necessary to prevent motion

Newton's third law: $\vec{F}_{A \rightarrow B} = -\vec{F}_{B \rightarrow A}$.

Momentum: $\vec{p} = m \ \vec{v}$.

Impulse – momentum theorem: $\Delta \vec{p} = \vec{J}$, where $\vec{J} = \int_{t_i}^{t_f} \vec{F} \ dt$.

Conservation of momentum: $\vec{p}_i = \vec{p}_f$, where $\vec{p} = \sum_k \vec{p}_k = \sum_k m_k \, \vec{v}_k$.

Kinetic energy: $K = \frac{1}{2} m v^2 = \frac{1}{2m} p^2$.

Potential energy in gravitational field: $U_G = m \ g \ h$.

Potential energy of a spring: $U_S = \frac{1}{2} k (\Delta s)^2$. Hooke's law: $\vec{F} = -k \Delta \vec{s}$.

Conservation of mechanical energy: $K_i + U_i = K_f + U_f$.

Work: W = $\int \vec{F} \ d\vec{r}$. Work-kinetic energy theorem: $W = \Delta K$.

 $W_{NC} = \Delta E_{MECH}; \Delta K + \Delta U + \Delta E_{TH} = W_{EXT}.$

Power: $P = \frac{dE_{SYS}}{dt}$; $P = \vec{F}\vec{v}$

Elastic collision, with mass m₂ initially at rest:

$$v_{1F} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i}$$
, $v_{2F} = \frac{2 m_1}{m_1 + m_2} v_{1i}$

Moment of inertia of a system of particles: $I = \sum_i m_i r_i^2$.

Parallel axis theorem: $I = I_{CM} + M d^2$

Moments of inertia of solid bodies through the center of mass:

Rod of mass M length L	ML ² /12	Hollow sphere of mass M, radius R	2 MR ² / 3
Cylindrical hoop of mass M, radius R	MR ²	Solid sphere of mass M, radius R	2 MR ² / 5
Solid cylinder of mass M, radius R	MR ² / 2	Solid disk of mass M, radius R	MR ² / 2

Kinetic energy of rotational motion: $K = \frac{1}{2} I \omega^2$

Angular momentum of a solid body: $\overrightarrow{L} = I \ \overrightarrow{\omega}, L = I \omega$

Angular momentum of a particle: $\vec{L} = \vec{r} \times \vec{p}$, $L = rp \sin\theta = mrv \sin\theta$

Torque: $\vec{\tau} = \vec{r} \times \vec{F}$, $\tau = r F \sin\theta$, $\tau = I \alpha$

Conservation of angular momentum: $\frac{d\vec{L}}{dt} = \vec{\tau}$, for isolated system $\vec{L} = const$.

Gravitational force: = $G \frac{m_1 m_2}{d^2}$, where G = 6.67 * 10⁻¹¹ N m² / kg²

Gravitational potential energy (zero at infinity): $U = -G \frac{m_1 m_2}{d}$

Gravitational acceleration: $g = G \frac{M}{d^2}$

Orbiting velocity: $v_o = \sqrt{G\,M/d}$, Escape velocity: $v_e = \sqrt{2\,G\,M/d}$

Kepler's third law: $\frac{d^3}{T^2} = \frac{G M}{4 \pi^2}$

Linear harmonic motion: $x(t) = A\cos(\omega t + \varphi_0)$, $x_{MAX} = A$

 $v(t) = -A \omega \sin(\omega t + \varphi_0), v_{MAX} = A \omega$

 $a(t) = -A \omega^2 \cos(\omega t + \varphi_0), a_{MAX} = A \omega^2$

Period of a spring-box oscillator: $T_S = 2\pi \sqrt{m/k}$

Period of a pendulum: $T_P=2\pi\,\sqrt{l/g}$

Angular frequency: $\omega = 2 \pi / T$

Mass of the Earth: $M_E = 5.98 * 10^{24} \text{ kg}$, Radius of the Earth: $R_E = 6370 \text{ km}$

Mass of the Sun: $M_S = 1.99 * 10^{30} \text{ kg}$, Radius of the Sun: $R_S = 6.96 * 10^5 \text{ km}$

Earth-Sun distance: $d_{ES} = 149.6 *10^6 \text{ km}$