Basi di dati

IL MODELLO RELAZIONALE

I modelli logici dei dati

- Tre modelli logici tradizionali
 - gerarchico
 - reticolare
 - relazionale
- Più recenti
 - a oggetti (poco diffuso)
 - basato su XML ("complementare" a quello relazionale)

Modelli logici, caratteristiche

- Gerarchico e reticolare
 - utilizzano riferimenti espliciti (puntatori) fra record
- Relazionale "è basato su valori"
 - anche i riferimenti fra dati in strutture (relazioni) diverse sono rappresentati per mezzo dei valori stessi

studenti	Matricola	Cognome	Nome	Data di nascita
	6554	Rossi	Mario	05/12/1978
	8765	Neri	Paolo	03/11/1976
	9283	Verdi	Luisa	12/11/1979
	3456	Rossi	Maria	01/02/1978
	esami	Studente	Voto	Corso
		3456	30	04
		3456	24	02
		9283	28	01
		6554	26	01
	corsi	Codice	Titolo	Docente
		01	Analisi	Mario
		02	Chimica	Bruni
		04	Chimica	Verdi

Il modello relazionale

- Proposto da E. F. Codd nel 1970 per favorire l'indipendenza dei dati
- Disponibile in DBMS reali nel 1981 (non è facile implementare l'indipendenza con efficienza e affidabilità!)
- Si basa sul concetto matematico di relazione (con una variante)
- Le relazioni hanno naturale rappresentazione per mezzo di tabelle

Relazione: tre accezioni

- relazione matematica: come nella teoria degli insiemi
- relazione secondo il modello relazionale dei dati
- relazione (dall'inglese relationship) che rappresenta una classe di fatti, nel modello Entity-Relationship; tradotto anche con associazione o correlazione

Relazione matematica, esempio

- $D_1 = \{a,b\}$
- $D_2 = \{x, y, z\}$
- prodotto cartesiano $D_1 \times D_2$

a	X
a	У
a	Z
b	X
b	У
b	Z

una relazione

$$r \subseteq D_1 \times D_2$$

Relazione matematica

- D₁, ..., D_n (n insiemi anche non distinti)
- prodotto cartesiano D₁×...×D_n:
 - l'insieme di tutte le n-uple $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$
- relazione matematica su D₁, ..., D_n:
 - un sottoinsieme di $D_1 \times ... \times D_n$.
- D₁, ..., D_n sono i domini della relazione

Relazione matematica, proprietà

- una relazione matematica è un insieme di n-uple ordinate:
 - $(d_1, ..., d_n)$ tali che $d_1 \in D_1, ..., d_n \in D_n$
- una relazione è un insieme:
 - non c'è ordinamento fra le n-uple
 - le n-uple sono distinte
 - ciascuna n-upla è ordinata: l' i-esimo valore proviene dall' i-esimo dominio

Relazione matematica, esempio

Partite ⊆ string × string × int × int

```
Juve Lazio 3 1
Lazio Milan 2 0
Juve Roma 0 2
Roma Milan 0 1
```

- Ciascuno dei domini ha due ruoli diversi, distinguibili attraverso la posizione:
 - La struttura è posizionale

Struttura non posizionale

 A ciascun dominio si associa un nome unico nella tabella (attributo), che ne descrive il "ruolo"

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	1

•L'ordinamento fra gli attributi è irrilevante: la struttura è non posizionale

Struttura non posizionale, 2

Casa	Fuori	RetiCasa	RetiFuori
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	0	2
Roma	Milan	0	1

Fuori	Casa	RetiFuori	RetiCasa
Lazio	Juve	1	3
Milan	Lazio	0	2
Roma	Juve	2	0
Milan	Roma	1	0

Tabelle e relazioni

- In una tabella che rappresenta una relazione
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante
- Una tabella rappresenta una relazione se
 - le righe sono diverse fra loro
 - le intestazioni delle colonne sono diverse tra loro
 - i valori di ogni colonna sono fra loro omogenei

Il modello è basato su valori

 I riferimenti fra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini che compaiono nelle ennuple

studenti	Motricolo	Cognomo	e Nome	Data di na	occito
Studenti		Cognome			
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	3456	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Geometria	Bruni	
		04	Chimica	Verdi	

Alternativa

 Altri modelli (sia quelli "storici", reticolare e gerarchico, sia quello a oggetti) prevedono riferimenti espliciti, gestiti dal sistema

studenti	Matricola	Cognome	e Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	3456	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Geometria	Bruni	
		04	Chimica	Verdi	

Struttura basata su valori: vantaggi

- indipendenza dalle strutture fisiche (si potrebbe avere anche con puntatori di alto livello) che possono cambiare dinamicamente
- si rappresenta solo ciò che è rilevante dal punto di vista dell'applicazione
- l'utente finale vede gli stessi dati dei programmatori
- i dati sono portabili piu' facilmente da un sistema ad un altro
- i puntatori sono direzionali

Definizioni

Schema di relazione:

un nome di relazione R con un insieme di attributi $A_1, ..., A_n$:

$$R(A_1,..., A_n)$$

 Schema di base di dati: insieme di schemi di relazione:

$$R = \{R_1(X_1), ..., R_k(X_k)\}$$

Esempio

• Schema di relazione:
STUDENTI (Matricola, Cognome, Nome,
Data di nascita)

Relazione

Schema di base di dati:

R= {STUDENTI (Matricola, Cognome, Nome, Data di nascita), ESAMI (Studente, Voto, Corso), CORSI (Codice, Titolo, Docente)}

Definizioni, 2

- Una ennupla su un insieme di attributi X è una funzione che associa a ciascun attributo A in X un valore del dominio di A
- t[A] denota il valore della ennupla t sull'attributo A

Per esempio, se *t* è la prima ennupla della relazione STUDENTI, possiamo dire che *t* [Nome] = Mario

Definizioni, 3

- (Istanza di) relazione su uno schema R(X): insieme r di ennuple su X
- (Istanza di) base di dati su uno schema R= {R₁(X₁), ..., R_n(X_n)}:
 insieme di relazioni r = {r₁,..., r_n} (con r_i relazione su R_i)

Esempio di istanza di relazione

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	8765	Neri	Paolo	03/11/1	976
	9283	Verdi	Luisa	12/11/1	979
	3456	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	

Relazioni su singoli attributi

studenti

Matricola	Cognome	Nome	Data di nascita
6554	Rossi	Mario	05/12/1978
8765	Neri	Paolo	03/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	01/02/1978

studenti lavoratori

Matricola 6554 3456

	Da Filippo Via Roma 2, Roma					
	Ricevuta Fisca 1235 del 12/10/2					
3	Coperti	3,00				
2	Antipasti	6,20				
3	Primi	12,00				
2	Bistecche	18,00				
	Totale	39,20				

	Da Filippo Via Roma 2, Roma				
	Ricevuta Fiscale 1240 del 13/10/2002				
2	Coperti	2,00			
2	Antipasti	7,00			
2	Primi	8,00			
2	Orate	20,00			
2	Caffè	2,00			
	Totale	39,00			

Da Filippo Via Roma 2, Roma				
Ricevuta Fiscale 1235 del 12/10/2002				
3	Coperti	3,00		
2	Antipasti	6,20		
3	Primi	12,00		
2	Bistecche	18,00		
<i>Totale</i> 39,20				

Da Filippo Via Roma 2, Roma			
Ricevuta Fiscale 1240 del 13/10/2002			
2	Coperti	2,00	
2	Antipasti	7,00	
2	Primi	8,00	
2	Orate	20,00	
2	Caffè	2,00	
	Totale	39,00	

	Da Filippo Via Roma 2, Roma			
Ricevuta Fiscale 1235 del 12/10/2002				
3	Coperti	3,00		
2	Antipasti	6,20		
3	Primi	12,00		
2	Bistecche	18,00		
Totale 39,20				

Da Filippo Via Roma 2, Roma			
Ricevuta Fiscale 1240 del 13/10/2002			
2	Coperti	2,00	
2	Antipasti	7,00	
2	Primi	8,00	
2	Orate	20,00	
2	Caffè	2,00	
<i>Totale</i> 39,00			

Ricevute

Numero	Data	Qtà	Descrizione	Importo	Totale
1235	12/10/2002	3	Coperti	3,00	39,20
		2	Antipasti	6,20	
		3	Primi	12,00	
		2	Bistecche	18,00	
1240	13/10/2002	2	Coperti	2,00	39,00

• Ma i valori debbono essere semplici, non relazioni!

Relazioni che rappresentano strutture nidificate

Ricevute

Numero	Data	Totale
1235	12/10/2002	39,20
1240	13/10/2002	39,00

Dettaglio

Numero	Qtà	Descrizione	Importo
1235	3	Coperti	3,00
1235	2	Antipasti	6,20
1235	3	Primi	12,00
1235	2	Bistecche	18,00
1240	2	Coperti	2,00

Strutture nidificate, riflessione

- Abbiamo rappresentato veramente tutti gli aspetti delle ricevute?
- Dipende da che cosa ci interessa!
 - possono esistere linee ripetute in una ricevuta?
 - l'ordine delle righe e' rilevante?
- Sono possibili rappresentazioni diverse

Rappresentazione alternativa per strutture nidificate

Ricevute

Numero	Data	Totale
1235	12/10/2002	39,20
1240	13/10/2002	39,00

Dettaglio

Numero	Riga	Qtà	Descrizione	Importo
1235	1	3	Coperti	3,00
1235	2	2	Antipasti	6,20
1235	3	3	Primi	12,00
1235	4	2	Bistecche	18,00
1240	1	2	Coperti	2,00

Informazione incompleta

- Il modello relazionale impone ai dati una struttura rigida:
 - le informazioni sono rappresentate per mezzo di ennuple
 - solo alcuni formati di ennuple sono ammessi: quelli che corrispondono agli schemi di relazione
- I dati disponibili possono non corrispondere al formato previsto

Informazione incompleta: motivazioni

Nome	SecondoNome	Cognome
Franklin	Delano	Roosevelt
Winston		Churchill
Charles		De Gaulle
Josip		Stalin

Informazione incompleta: soluzioni?

- Non conviene (anche se spesso si fa) usare valori del dominio (0, stringa nulla, "99", ...):
 - potrebbero non esistere valori "non utilizzati"
 - valori "non utilizzati" potrebbero diventare significativi
 - in fase di utilizzo (nei programmi) sarebbe necessario ogni volta tener conto del "significato" di questi valori

Informazione incompleta nel modello relazionale

- Tecnica rudimentale ma efficace:
 - valore nullo: denota l'assenza di un valore del dominio (ma non è un valore del dominio)
- t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore nullo (che indichiamo qui con NULL)
- Si possono (e debbono) imporre restrizioni sulla presenza di valori nulli

Tipi di valore nullo

- (Almeno) tre casi differenti
 - valore sconosciuto
 - valore inesistente
 - valore senza informazione
- I DBMS non distinguono i tipi di valore nullo

Troppi valori nulli

	NA (' 1		X 1	D (1'	• 4
studenti	Matricola	Cognome	Nome	Data di na	ascita
	6554	Rossi	Mario	05/12/1	978
	9283	Verdi	Luisa	12/11/1	979
	NULL	Rossi	Maria	01/02/1	978
	esami	Studente	Voto	Corso	
		NULL	30	NULL	
		NULL	24	02	
		9283	28	01	
	corsi	Codice	Titolo	Docente	
		01	Analisi	Mario	
		02	NULL	NULL	
		04	Chimica	Verdi	

Vincoli di integrità

 Esistono istanze di basi di dati che, pur sintatticamente corrette, non rappresentano informazioni possibili per l'applicazione di interesse

Una base di dati "scorretta"

Esami	Studente	Voto	Lode	Corso
	276545	32		01
	276545	30	e lode	02
	787643	27	e lode	03
	739430	24		04

	1				4.
Si	tı ı			n	tı
\mathbf{C}	LU	ıu	U	ı	u

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Vincolo di integrità

- Proprietà che deve essere soddisfatta dalle istanze che rappresentano informazioni corrette per l'applicazione
- Un vincolo è una funzione booleana (un predicato): associa ad ogni istanza il valore vero o

falso

Vincoli di integrità, perché?

- descrizione più accurata della realtà
- contributo alla "qualità dei dati"
- utili nella progettazione (vedremo)
- usati dai DBMS nella esecuzione delle interrogazioni

Vincoli di integrità, nota

- alcuni tipi di vincoli (ma non tutti) sono "supportati" dai DBMS:
 - possiamo quindi specificare vincoli di tali tipi nella nostra base di dati e il DBMS ne impedisce la violazione
- per i vincoli "non supportati", la responsabilità della verifica è dell'utente o del programmatore

Tipi di vincoli

- vincoli intrarelazionali
 - vincoli su valori (o di dominio)
 - vincoli di ennupla
- vincoli interrelazionali

Esempio

Esami	Studente	Voto	Lode	Corso
	276545	32		01
	276545	30	e lode	02
	787643	27	e lode	03
	739430	24		04

					4
St	' I I	\cap		n	ŤΙ
\mathbf{O}	.u	u	\Box	ı	L

Matricola	Cognome	Nome
276545	Rossi	Mario
787643	Neri	Piero
787643	Bianchi	Luca

Vincoli di ennupla

- Esprimono condizioni sui valori di ciascuna ennupla, indipendentemente dalle altre ennuple
- Caso particolare:
 - Vincoli di dominio: coinvolgono un solo attributo

Sintassi ed esempi

- Una possibile sintassi:
 - espressione booleana di atomi che confrontano valori di attributo o espressioni aritmetiche su di essi

$$(Voto \ge 18) AND (Voto \le 30)$$

$$(Voto = 30) OR NOT (Lode = "e lode")$$

Vincoli di ennupla, altro esempio

Stipendi

Impiegato	Lordo	Ritenute	Netto
Rossi	55.000	12.500	42.500
Neri	45.000	10.000	35.000
Bruni	47.000	11.000	36.000

Lordo = (Ritenute + Netto)

Vincoli di ennupla, violazione

Stipendi

Impiegato	Lordo	Ritenute	Netto
Rossi	55.000	12.500	42.500
Neri	45.000	10.000	35.000
Bruni	50.000	11.000	36.000

Lordo = (Ritenute + Netto)

Identificazione delle ennuple

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- non ci sono due ennuple con lo stesso valore sull'attributo Matricola
- non ci sono due ennuple uguali su tutti e tre gli attributi Cognome, Nome e Data di Nascita

Chiave

 insieme di attributi che identificano le ennuple di una relazione

Formalmente:

- un insieme K di attributi è superchiave per r se r non contiene due ennuple distinte t₁ e t₂ con t₁[K] = t₂[K]
- K è chiave per r se è una superchiave minimale per r (cioè non contiene un'altra superchiave)

Una chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Matricola è una chiave:
 - è superchiave
 - contiene un solo attributo e quindi è minimale

Un'altra chiave

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Inf	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Cognome, Nome, Nascita è un'altra chiave:
 - è superchiave
 - minimale

Un'altra chiave??

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- Non ci sono ennuple uguali su Cognome e Corso:
 - Cognome e Corso formano una chiave
- Ma è sempre vero?

Vincoli, schemi e istanze

- i vincoli corrispondono a proprietà del mondo reale modellato dalla base di dati
- interessano a livello di schema (con riferimento cioè a tutte le istanze)
- ad uno schema associamo un insieme di vincoli e consideriamo corrette (valide, ammissibili) le istanze che soddisfano tutti i vincoli
- un'istanza può soddisfare altri vincoli ("per caso")

Studenti

Matricola Cognome Nome Corso Nascita

• chiavi:

Matricola Cognome, Nome, Nascita

Matricola	Cognome	Nome	Corso	Nascita
27655	Rossi	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	3/11/76
67653	Rossi	Piero	Ing Mecc	5/12/78

- È corretta: soddisfa i vincoli
- Ne soddisfa anche altri ("per caso"):
 - Cognome, Corso è chiave

Esistenza delle chiavi

- Una relazione non può contenere ennuple distinte ma uguali
- Ogni relazione ha come superchiave l'insieme degli attributi su cui è definita
- e quindi ha (almeno) una chiave

Importanza delle chiavi

- L'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- le chiavi permettono di correlare i dati in relazioni diverse:
 - il modello relazionale è basato su valori

Chiavi e valori nulli

- In presenza di valori nulli, i valori della chiave non permettono
 - di identificare le ennuple
 - di realizzare facilmente i riferimenti da altre relazioni

Matricola	Cognome	Nome	Corso	Nascita
NULL	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
NULL	Neri	Mario	NULL	5/12/78

 La presenza di valori nulli nelle chiavi deve essere limitata

Chiave primaria

- Chiave su cui non sono ammessi nulli
- Notazione: sottolineatura

<u>Matricola</u>	Cognome	Nome	Corso	Nascita
86765	NULL	Mario	Ing Inf	5/12/78
78763	Rossi	Mario	Ing Civile	3/11/76
65432	Neri	Piero	Ing Mecc	10/7/79
87654	Neri	Mario	Ing Inf	NULL
43289	Neri	Mario	NULL	5/12/78

Integrità referenziale

- informazioni in relazioni diverse sono correlate attraverso valori comuni
- in particolare, valori delle chiavi (primarie)
- le correlazioni debbono essere "coerenti"

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

\ /'			
\ / i		ш	П
- V I	a	ш	
•	3		

<u>Matricola</u>	Cognome	Nome
3987	Rossi	Luca
3295	Neri	Piero
9345	Neri	Mario
7543	Mori	Gino

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Λ		1	_
Δ	П	T	\cap
$\overline{}$	u	L	V

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Vincolo di integrità referenziale

 Un vincolo di integrità referenziale ("foreign key") fra gli attributi X di una relazione R₁ e un'altra relazione R₂ impone ai valori su X in R₁ di comparire come valori della chiave primaria di R₂

Vincolo di integrità referenziale

- vincoli di integrità referenziale fra:
 - l'attributo Vigile della relazione INFRAZIONI e la relazione VIGILI
 - gli attributi Prov e Numero di INFRAZIONI e la relazione AUTO

Violazione di vincolo di integrità referenziale

Infrazioni

<u>Codice</u>	Data	Vigile	Prov	Numero
34321	1/2/95	3987	MI	39548K
53524	4/3/95	3295	TO	E39548
64521	5/4/96	3295	PR	839548
73321	5/2/98	9345	PR	839548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	E39548	Rossi	Mario
ТО	F34268	Rossi	Mario
PR	839548	Neri	Luca

Vincoli di integrità referenziale: commenti

- Giocano un ruolo fondamentale nel concetto di "modello basato su valori"
- In presenza di valori nulli i vincoli possono essere resi meno restrittivi
- Sono possibili meccanismi per il supporto alla loro gestione ("azioni" compensative a seguito di violazioni)
- Attenzione ai vincoli su più attributi

Integrità referenziale e valori nulli

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Azioni compensative

- Esempio:
 - Viene eliminata una ennupla causando una violazione
- Comportamento "standard":
 - Rifiuto dell'operazione
- Azioni compensative:
 - Eliminazione in cascata
 - Introduzione di valori nulli

Eliminazione in cascata

Impiegati

Matricola	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	XYZ
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Introduzione di valori nulli

Impiegati

<u>Matricola</u>	Cognome	Progetto
34321	Rossi	IDEA
53524	Neri	NULL
64521	Verdi	NULL
73032	Bianchi	IDEA

Progetti

<u>Codice</u>	Inizio	Durata	Costo
IDEA	01/2000	36	200
XYZ	07/2001	24	120
ВОН	09/2001	24	150

Vincoli multipli su più attributi

Incidenti

Codice	Data	ProvA	NumeroA	ProvB	NumeroB
34321	1/2/95	TO	E39548	MI	39548K
64521	5/4/96	PR	839548	TO	E39548

Auto

<u>Prov</u>	<u>Numero</u>	Cognome	Nome
MI	39548K	Rossi	Mario
TO	E39548	Rossi	Mario
PR	839548	Neri	Luca

Vincoli multipli su più attributi, 2

- vincoli di integrità referenziale fra:
 - gli attributi ProvA e NumeroA di INCIDENTI e la relazione AUTO
 - gli attributi ProvB e NumeroB di INCIDENTI e la relazione AUTO

L'ordine degli attributi è significativo