INF 553 HW2 Task3 Explanation

Siqi Liang 3330505568

Nov. 2019

Requirements

Python 3.6, Scala 2.11, Spark 2.3.3

Task 1

	Jaccard similarity
precision	1.0
recall	0.99
Time(sec)	12.40s

Speed-up tips:

- 1. Local test shows numPartitions=5 helps to speed up (numPartitions>=3 works better than numPartitions=2);
- 2. The calculation of signature matrix can be expressed as below: Assuming there are m hash functions, the signature column for any business b_i is $Sig(b_i)$:

$$\operatorname{Sig}(b_i) = [\min_{u_j \in U(b_i)} \{h_1(u_j)\}, \min_{u_j \in U(b_i)} \{h_2(u_j)\}, \cdots, \min_{u_j \in U(b_i)} \{h_m(u_j)\}]^T$$

where $h_k(u_j)$ is the hash value of user u_j on the kth hash function, $U(b_i)$ is the set of users who have rated the business b_i . This expression helps to speed up a lot comparing with looping the whole hash matrix and user-business characteristic matrix.

3. Pass the characteristic matrix in the form of one column for each business id bid as python dict(), that is, $\{bid1:[uid1_1,uid1_2,...],bid2:[uid2_1,uid2_2,...],...\}$, which is faster to collect all users who have rated the business b_i .

Task 2

Baseline for model-based and user-based CF training on yelp_train.csv and testing on yelp_val.csv:

	Model-based	User-based
RMSE	1.066	1.16981
Time(sec)	17.60s	13.06s

Model-based CF

Tips:

1. Use yelp_train.csv and yelp_val.csv to tune the model hyperparameters, and the result shows that optimal hyperparameters could be rank=3, lambda=0.2, iterations=15 for matrix factorization algorithm training process. The RMSE changes on yelp_val.csv on different hyperparameters:

User-based CF

Tips:

1. Only use the top-K most similar neighbors for the prediction. Most users have very limited corated-users on the business to predict. And the local test shows when only using top-20 most similar neighbors for the prediction could achieve lower RMSE on $yelp_val.csv$.

