

I3344 Numerical Simulation & Modeling

Ahmad Fadlallah

Tentative Syllabus

- √ Interpolation and extrapolation
 - ✓ Linear: linear regression y = ax + b; correlation, standard deviation, etc.
 - √ Non-linear: k nearest neighbors (KNN)
 - √ Validation of two models: k-fold cross validation method.
- √ Solving a linear equation
 - ✓ Direct methods: Gauss and LU
 - √ Iterative methods: Jacobi and Gauss-Seidel
- ✓ Derivation
 - √ Finite difference method (FDM): Euler and Runge-kutta
- ✓ Integration: surface estimation
 - √ Finite Element Method (FEM).
 - √ Monte Carlo method.
 - √ Comparison of two methods.
- √ Non-linear problems
 - √ Bisection method
- Optimization
- Introduction to the notion of parallel computing and underlying algorithms

Outline

- Introduction
- Golden Section Search
- Newton Method

Introduction

- Root location and optimization are related in the sense that both involve guessing and searching for a point on a function.
 - Root location: searching for zeros of a function
 - Optimization: searching for the minimum or the maximum.

Mathematical Background

 An optimization or mathematical programming problem generally be stated as:

Find x, which <u>minimizes</u> or <u>maximizes</u> f(x) subject to

$$d_i(x) \le a_i$$
 $i = 1, 2, ..., m$
 $e_i(x) = b_i$ $i = 1, 2, ..., p$

- x is an n-dimensional design vector
- f(x) is the objective function
- $d_i(x)$ are inequality constraints
- $e_i(x)$ are equality constraints
- a_i and b_i are constants

Introduction (cont'd)

Introduction (cont'd)

 Multimodal cases: Both local and global optima can occur for a single function

Introduction (cont'd)

- How to distinguish global optimum from local one?
 - By graphing to gain insight into the behavior of the function.
 - Using randomly generated starting guesses and picking the largest of the optima as global.

Global

Global

Perturbing the starting point associated to a local optima to see if the routine returns a better point or the same local optima.

Local

maximum

Golden-Section Search

- A unimodal function has a <u>single</u> maximum (resp. minimum) in the a <u>given interval</u>. For a unimodal function:
 - Pick two points that will bracket your extremum [x_I, x_u].
 - Pick an additional third point within this interval to determine whether a maximum occurred.
 - Pick a fourth point to determine whether the maximum has occurred within the first three or last three points
 - The key is making this approach efficient by choosing intermediate points wisely thus minimizing the function evaluations by replacing the old values with new values.

Golden-Section Search (cont'd)

$$\ell_0 = \ell_1 + \ell_2$$

 the sum of the two sub lengths I₁ and I₂ must equal the original interval length.

$$\frac{\ell_1}{\ell_0} = \frac{\ell_2}{\ell_1}$$

the ratio of the length must be equal

$$\frac{l_1}{l_1 + l_2} = \frac{l_2}{l_1} \qquad R = \frac{l_2}{l_1}$$

$$1 + R = \frac{1}{R} \qquad R^2 + R - 1 = 0$$

$$R = \frac{-1 + \sqrt{1 - 4(-1)}}{2} = \frac{\sqrt{5} - 1}{2} = 0.61803$$

Golden Ratio

Golden Ratio (History)

Golden-Section Search (cont'd)

f(x)

- The method starts with two initial guesses, x_I and x_u, that bracket one local extremum of f(x)
- two interior points x₁ and x₂ are chosen according to the golden ratio

$$d = \frac{\sqrt{5} - 1}{2}(x_u - x_l)$$

$$x_1 = x_l + d$$

$$x_2 = x_u - d$$

 The function is evaluated at these two interior points.

Golden-Section Search (cont'd)

- If $f(x_1)>f(x_2)$
 - => the domain of x to the left of x_2 from x_1 to x_2 does not contain the maximum
 - => can be eliminated => new $x_1=x_2$
- If $f(x_2)>f(x_1)$
 - => the domain of x to the right of x_1 from x_1 to x_2 , would have been eliminated => new $x_u = x_1$
- New x₁ is determined as before

• Stop condition: $|x_u - x_l| < \varepsilon$, max = $(x_l + x_u)/2$

Exercise

• Use the golden-section search to find the maximum of the following function within the interval x_l =0 and x_u =4.

$$f(x) = 2\sin x - \frac{x^2}{10}$$

• Note

$$d = \frac{\sqrt{5} - 1}{2}(x_u - x_l)$$

$$x_1 = x_l + d$$

$$x_2 = x_u - d$$

Exercise - Solution

$$f(x) = 2\sin x - \frac{x^2}{10}$$

$$d = \frac{\sqrt{5} - 1}{2}(4 - 0) = 2.472$$

$$f(x_2) = f(1.528) = 2\sin(1.528) - \frac{1.528^2}{10} = 1.765$$

$$x_1 = 0 + 2.472 = 2.472$$

$$f(x_1) = f(2.472) = 0.63$$

- Because $f(x_2) > f(x_1)$, the maximum is in the interval defined by x_1 , x_2 , and x_1 .
- For the new interval

 $x_2 = 4 - 2.472 = 1.528$

- LB remains $x_1 = 0$, x_1 becomes the UB => $x_u = 2.472$.
- Former x_2 value becomes the new x_1 , that is, $x_1 = 1.528$.

$$d = \frac{\sqrt{5} - 1}{2}(2.472 - 0) = 1.528$$
$$x_2 = 2.4721 - 1.528 = 0.944$$

Exercise - Solution (cont'd)

$$f(x) = 2\sin x - \frac{x^2}{10}$$

i	ΧĮ	$f(x_l)$	x ₂	$f(x_2)$	X ₁	$f(x_1)$	Χυ	f(x _u)	d
1	0	0	1.5279	1.7647	2.4721	0.6300	4.0000	-3.1136	2.4721
2	0	0	0.9443	1.5310	1.5279	1.7647	2.4721	0.6300	1.5279
3	0.9443	1.5310	1.5279	1.7647	1.8885	1.5432	2.4721	0.6300	0.9443
4	0.9443	1.5310	1.3050	1.7595	1.5279	1.7647	1.8885	1.5432	0.5836
5	1.3050	1.7595	1.5279	1.7647	1.6656	1.7136	1.8885	1.5432	0.3607
6	1.3050	1.7595	1.4427	1.7755	1.5279	1.7647	1.6656	1.7136	0.2229
7	1.3050	1.7595	1.3901	1.7742	1.4427	1.7755	1.5279	1.7647	0.1378
8	1.3901	1.7742	1.4427	1.7755	1.4752	1.7732	1.5279	1.7647	0.0851

Quadratic Interpolation

 Parabolic interpolation takes advantage of the fact that a second-order polynomial often provides a good approximation to the shape of f(x) near an optimum

Quadratic Interpolation (cont'd)

- There is <u>only one</u> <u>quadratic polynomial or parabola</u> connecting three points.
- if we have three points that jointly bracket an optimum, we can fit a parabola to the points.
- Then we can differentiate it, set the result equal to zero, and solve for an estimate of the optimal x.
- It can be shown through some algebraic manipulations that the result is $x_3 = \frac{f(x_0)(x_1^2 x_2^2) + f(x_1)(x_2^2 x_0^2) + f(x_2)(x_0^2 x_1^2)}{2f(x_0)(x_1 x_2) + 2f(x_1)(x_2 x_0) + 2f(x_2)(x_0 x_1)}$

• x_0 , x_1 , and x_2 are the <u>initial guesses</u>, and x_3 is the <u>value of x</u> that corresponds to the <u>maximum value of the parabolic fit</u> to the guesses

• and so on (same as golden section search)

Exercise

• Use parabolic interpolation to approximate the maximum of the following function with initial guesses of $x_0=0$, $x_{1=1}$, and $x_2=4$.

$$f(x) = 2\sin x - \frac{x^2}{10}$$

Note:

$$x_3 = \frac{f(x_0)(x_1^2 - x_2^2) + f(x_1)(x_2^2 - x_0^2) + f(x_2)(x_0^2 - x_1^2)}{2f(x_0)(x_1 - x_2) + 2f(x_1)(x_2 - x_0) + 2f(x_2)(x_0 - x_1)}$$

Exercise - Solution

$$x_0 = 0 f(x_0) = 0$$

$$x_1 = 1 f(x_1) = 1.5829$$

$$x_2 = 4 f(x_2) = -3.1136$$

$$x_3 = \frac{0(1^2 - 4^2) + 1.5829(4^2 - 0^2) + (-3.1136)(0^2 - 1^2)}{2(0)(1 - 4) + 2(1.5829)(4 - 0) + 2(-3.1136)(0 - 1)} = 1.5055$$

Because the function value for the new point is higher than for the intermediate point (x_1) and the new x value is to the right of the intermediate point, the lower guess (x_0) is discarded. Therefore, for the next iteration

$$x_0 = 1 f(x_0) = 1.5829$$

$$x_1 = 1.5055 f(x_1) = 1.7691$$

$$x_2 = 4 f(x_2) = -3.1136$$

$$x_3 = \frac{1.5829(1.5055^2 - 4^2) + 1.7691(4^2 - 1^2) + (-3.1136)(1^2 - 1.5055^2)}{2(1.5829)(1.5055 - 4) + 2(1.7691)(4 - 1) + 2(-3.1136)(1 - 1.5055)}$$

$$= 1.4903 f(1.4903) = 1.7714.$$

Exercise - Solution

C
Ŧ
ā
ō
<u>a</u>
7

i	<i>x</i> ₀	$f(x_0)$	<i>x</i> ₁	$f(x_1)$	<i>x</i> ₂	$f(x_2)$	<i>x</i> ₃	$f(x_3)$
1	0.0000	0.0000	1.0000	1.5829	4.0000	-3.1136	1.5055	1.7691
2	1.0000	1.5829	1.5055	1.7691	4.0000	-3.1136	1.4903	1.7714
3	1.0000	1.5829	1.4903	1.7714	1.5055	1.7691	1.4256	1.7757
4	1.0000	1.5829	1.4256	1.7757	1.4903	1.7714	1.4266	1.7757
5	1.4256	1.7757	1.4266	1.7757	1.4903	1.7714	1.4275	1.7757

Golden Section Search

x_i $f(x_i)$	X ₂	$f(x_2)$	X ₁	$f(x_1)$	X _U	$f(x_o)$	d
0 0	1.5279	1.7647	2.4721	0.6300	4.0000	-3.1136	2.4721
0 0	0.9443	1.5310	1.5279	1.7647	2.4721	0.6300	1.5279
0.9443 1.5310	0 1.5279	1.7647	1.8885	1.5432	2.4721	0.6300	0.9443
0.9443 1.5310	0 1.3050	1.7595	1.5279	1.7647	1.8885	1.5432	0.5836
1.3050 1.7593	5 1.5279	1.7647	1.6656	1.7136	1.8885	1.5432	0.3607
1.3050 1.7593	5 1.4427	1.7755	1.5279	1.7647	1.6656	1.7136	0.2229
1.3050 1.7593	5 1.3901	1.7742	1.4427	1.7755	1.5279	1.7647	0.1378
1.3901 1.7742	2 1.4427	1.7755	1.4752	1.7732	1.5279	1.7647	0.0851
0.9443 1.5310 1.3050 1.7593 1.3050 1.7593 1.3050 1.7593	1.3050 5 1.5279 5 1.4427 5 1.3901	1.7595 1.7647 1.7755 1.7742	1.5279 1.6656 1.5279 1.4427	1.7647 1.7136 1.7647 1.7755	1.8885 1.8885 1.6656 1.5279		1.5432 1.5432 1.7136 1.7647

Newton's Method

- Based on the Newton- Raphson method to find the root of an equation
- The Newton-Raphson method is based on the principle that *if* the initial guess of the root of f(x) = 0 is at x_i , then if one draws the tangent to the curve at $f(x_i)$, the point x_{i+1} where the tangent crosses the x-axis is an improved estimate of the root

$$f'(x_i) = \tan \theta$$

= $\frac{f(x_i) - 0}{x_i - x_{i+1}}$ \Rightarrow $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

22

Newton's Method (cont'd)

- Consider a new function g(x)=f'(x).
- The optimal value x* satisfies: f'(x*)=g(x*)=0
- We can use the following as a technique to the extremum of f(x).

• Start with an initi $x_{i+1}=x_i-\frac{f'(x_i)}{f''(x_i)}$ the iterations until finding f'(x_k) = 0 (

Exercise

• Use Newton's method to approximate the maximum of the following function with initial guesses of $x_0=2.5$

$$f(x) = 2\sin x - \frac{x^2}{10}$$

Note:

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

Exercise - Solution

$$f(x) = 2\sin x - \frac{x^2}{10}$$

$$f'(x) = 2\cos x - \frac{x}{5}$$

$$f''(x) = -2\sin x - \frac{1}{5}$$

$$x_{i+1} = x_i - \frac{2\cos x_i - x_i/5}{-2\sin x_i - 1/5}$$

i	X	f(x)	f'(x)	f"(x)
0	2.5	0.57194	-2.10229	-1.39694
1	0.99508	1.57859	0.88985	-1.87761
2	1.46901	1.77385	-0.09058	-2.18965
3	1.42764	1.77573	-0.00020	-2.17954
4	1.42755	1.77573	0.00000	-2.17952

Exercise

Employ the following methods to find the maximum of

$$f(x) = 4x - 1.8x^2 + 1.2x^3 - 0.3x^4$$

- (a) Golden-section search ($x_l = -2$, $x_u = 4$, $\xi_s = 1\%$).
- (b) Parabolic interpolation ($x_0=1.75$, $x_1=2$, $x_2=2.5$, iter. = 4).
- (c) Newton's method ($x_0 = 3$, $\mathcal{E}_s = 1\%$).