Two Source Diffusion

Nick Brennan and Adam Jaynes Wednesday, August 20th, 2014 Biomedical Optics in Taiwan

Two Layer Diffusion

Two sources, one in each tissue layer

First layer has a thickness L, second layer is

semi-infinite
• Each source has a strength/weight

> Weight is based on albedo, L, and absorption and scattering coefficient

Fig. 1. Positions of isotropic point sources in a two-layer medium. The first layer has a thickness of L.

Resolved Diffuse Reflectance

- Reflectance as a function of ρ
 - Find the Fluency Rate at z=0 and then the slope at z=0

$$R(\rho) = \frac{1}{4} \Phi_{1}(\rho, z = 0) + \frac{1}{2} D_{1} \frac{\delta \Phi_{1}(\rho, z)}{\delta z} \Big|_{z=0}$$

Our Results

- Compare the Diffusion results to MCML results
- High Error due to integration method

Joe's Results

• He uses Simpson's integration, which uses quadratics to determine area under the curve

Relative Error

Next Task

- Bone properties based on:
 - Blood Concentration
 - Wavelength
- Our Goal:
 - Create a model which:
 - 1. Gives power for different wavelengths (700 900nm)
 - 2. Gives power for different blood concentrations (50 100 %)
 - 3. Gives power at different detector distances (15 and 25mm)
- Assumptions:
 - Anisotropy is constant between skin and bone (g=0.81)
 - Detector has 2mm radius

How Blood Concentration Affects Scattering Coefficient

Calculating μ_a of Bone

• μ_a is largely dependent on the concentration of blood, but more specifically, the concentration of hemoglobin

$$\mu_a = 2.303 * (MC_{blood}) * (C_{BinT}) * (Hb\varepsilon) * (C_{HbO}, C_{Hb})$$

- Normal molar concentration of blood ~ 2.3e-3 g/mole
- Concentration of blood in tissue ~ 5%
- Concentration of HbO in blood ~ 80%

How Blood Concentration Affects Absorption Coefficient

Initial Results (15mm)

Initial Results (25mm)

Initial Results (100% BC)

Initial Results (50% BC)

What is the Relationship Between μ_a and Power?

Convergent Studies

Relative Error

Conclusions & Future

CONCLUSIONS:

- As the concentration of blood decreases, the effect of μ_a on power also decreases
- Decreasing the blood concentration has a larger effect on the increase in power

FUTURE:

- Sample data from 14-16mm and 24-26mm instead of 0 to 30mm which would decrease the run time by up to 85%.
- The next part of this experiment to try would be to send the light into the tissue at an angle.

Questions?