Problem: Connected Roads

ณ ประเทศอันลึกลับแห่งหนึ่งที่มีผู้นำประเทศได้คิดนโยบายเพื่อแก้ปัญหารถติดโดยการสร้างถนนเชื่อมต่อไป ี่ยังเมืองต่าง ๆ แบบทางเดียว (ถนนแบบ one-way) ทั่วทั้งประเทศ ซึ่งทำให[้]การเดินทางระหว[่]างเมืองหนึ่ง สามารถใช้ถนนเส้นหนึ่งแต่ไม่สามารถใช้ถนนเส้นเดิมเดินทางกลับได้ โดยมีนโยบายให้แต่ละเมืองใช้เงินภาษี ของแต่ละเมืองในการก่อสร้างถนนทั้งหมดที่สามารถออกเดินทางจากเมืองนั้นได้ เมื่อทำการก่อสร้างถนน ทั้งหมดเสร็จเรียบร[้]อยแล้ว ผู้ปกครองประเทศอยากทราบว[่]าแต่ละเมืองจะใช[้]งบประมาณเท่าไหร่ (สมมติว่า ราคาค่าก่อสร้างถนนต่อกิโลเมตรเท่ากันทั้งหมดทุกเมือง)

ให้นักเรียนเขียนโปรแกรมเพื่อหาคำตอบให้กับผู้ปกครองประเทศดังกล่าวโดยให้เรียงลำดับเมืองที่ต้องใช้ งบประมาณจากมากไปหาน้อย ถ้าหากใช้งบประมาณเท่ากันให้เรียงลำดับหมายเลขเมืองจากน้อยไปหามาก

INPLIT

ี บรรทัดแรก ประกอบด้วยตัวเลขจำนวนเต็ม 2 จำนวน (N แทน จำนวนเมืองทั้งหมด และ M แทนจำนวนถนน ทั้งหมด) $1 \leq N \leq 20$, $1 \leq M \leq 100$

M บรรทัดถัดมา ประกอบด้วยเลขจำนวนเต็ม A B และ D แทนเมืองต[้]นทาง เมืองปลายทาง และระยะทาง ระหว่างสองเมือง (กิโลเมตร)

OUTPUT

แสดงหมายเลขเมืองทั้งหมดโดยเรียงลำดับเมืองที่ต้องใช้งบประมาณจากน้อยไปหามาก ถ้าหากใช้งบประมาณ เท่ากันให้เรียงลำดับหมายเลขเมืองจากน้อยไปหามากเช่นกัน

SAMPLE TEST

Input			In	put		
5	6			5	10	
2	1	3		1	2	3
2	3	4		1	4	2
3	4	4		1	5	3
3	5	4		2	1	2
5	3	1		2	3	3
				2	4	5
Ou	Output			3	4	2
1	0			3	5	5
4	0			5	4	4
5	3			5	3	2
2	7					
3 8			Ou	tpu	t	
				4	0	
				5	6	
				3	7	
				1	8	
				2	10	

Graph: Problems 1

Expression Tree

Expression Tree คือ Binary Tree ที่ใช้เก็บนิพจน์ทางคณิตศาสตร์ โหนดของ Expression Tree ประกอบด้วย ข้อมูล 2 แบบ คือ

- 1. Operand คือ ตัวแปร หรือค่าคงที่ที่ถูกดำเนินการทางคณิตศาสตร์ เช่น a, b, x, y หรือ 1, 2, 10, 50 เป็นต้น โดย Operand จะถูกเก็บไว้ที่โหนดใบ
- 2. Operator คือ เครื่องหมายที่ใช้คำนวณ เช่น +, -, *, / เป็นต้น โดย Operator จะถูกเก็บไว้ที่โหนด ภายใน

ข้อสังเกตุ Sub Tree เป็นนิพจน์ย่อยที่มี Root Node หรือ Parent Node เป็น Operator เสมอ ตัวอย่างดังรูป

จากรูป นิพจน์ทางคณิตศาสตร์ คือ a * (b + c) – d นิพจน์ย่อย คือ b + c และ a * (b + c) (ในกรอบสามเหลี่ยม)

จงเขียนโปรแกรมเพื่อหาผลลัพธ์ของนิพจน์ทางคณิตศาสตร์จาก Expression Tree ที่กำหนดให้

Input: บรรทัดที่ 1 คือ ขนาดของอาร์เรย์ที่ใช้เก็บ Expression Tree บรรทัดที่สอง คือ ข้อมูลแต่ละตัวจากอาร์เรย์ (เว้นวรรคข้อมูล แต่ละตัว) โดยในที่นี้กำหนดให้

- Operator ประกอบด้วยเครื่องหมาย +, -, * และ / เท่านั้น
- Operand คือ จำนวนเต็มบวก
- หากข้อมูลมีค่าเท่ากับ -1 หมายถึงไม่มีโหนด ณ ตำแหน่งนั้น จึงไม่ต้องนำมาใช้คำนวณ ตัวอย่างเช่น {-, *, d, a, +, -1, -1, -1, -1, b, c} คือ อาร์เรย์ที่ใช้เก็บ Expression Tree ของรูปข้างต้น

Output : ผลลัพธ์ที่ได้จากการคำนวณของ Expression Tree (ทศนิยม 2 ตำแหน่ง)

Sample:

Input	Output	Note
11 + - 5 2 * -1 -1 -1 3 4	-5	2 *

7 *-+2345	-9	2 3 4 5
15 + 2 * -1 -1 31 -1 -1 -1 -1 5 4	5	3 *

เอกสารประกอบการอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์และคณิตศาสตร์ สาขาคอมพิวเตอร์ ศูนย์คุณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ ค่ายที่ 2 ระหว่างวันที่ 11-28 มีนาคม 2562

Waterlogging

จงเขียนโปรแกรมเพื่อหาปริมาณน้ำที่ถูกขังไว้ระหว่างบล็อก โดยการนำบล็อกที่มีความสูงและความหนาบล็อกละ 1 หน่วยมาวางตามแนวแกน x ตัวอย่างเช่น

จากรูป (a) จำนวนบล็อกที่นำมาขังน้ำ คือ 3, 0, 0, 2, 0, 4 ปริมาณน้ำที่ขังได้คือ 10 หน่วย

จากรูป (b) จำนวนบล็อกที่นำมาขังน้ำ คือ 2, 0, 2 ปริมาณน้ำที่ ขังได้คือ 2 หน่วย

จงเขียนโปรแกรมเพื่อหาปริมาณน้ำที่ถูกขังระหว่างบล็อก

Input:

บรรทัดที่ 1 คือ ขนาดของอาร์เรย์ที่ใช้เก็บจำนวนบล็อก

บรรทัดที่ 2 คือ จำนวนบล็อกที่ใช้ในแต่ละช่วง (เว้นวรรคข้อมูลแต่ละตัว)

Output: ปริมาณน้ำที่ถูกขัง

Sample:

Input	Output	Note
6	10	รูป (a)
300204		

Input:

บรรทัดที่ 1 คือ ขนาดของอาร์เรย์ที่ใช้เก็บจำนวนบล็อก

บรรทัดที่ 2 คือ จำนวนบล็อกที่ใช้ในแต่ละช่วง (เว้นวรรคข้อมูลแต่ละตัว) ปริมาณน้ำที่ถูกขัง

Sample:

Output:

Input 6	Output	Note
300204	10	รูป (a)
2 0 2	2	รูป (b)
6 1 3 2 1 2 1	1	
0 3 0 2 1 2 1	4	