DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ARGOMENTO 16 / QUIZ STUDENTI 22-23 TURNO 1

Iniziato	martedì, 14 febbraio 2023, 09:43
Stato	Completato
Terminato	martedì, 14 febbraio 2023, 10:10
Tempo impiegato	26 min. 17 secondi
Punteggio	19,00/23,00
Valutazione	8,26 su un massimo di 10,00 (83 %)

1 of 23 14/02/2023, 10:10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 8 \end{bmatrix}$$

Allora:

$$\bigcirc$$
 a. $K_2(A)=rac{1}{2}.$

$$left b. \ K_2(A) = 8.$$

$${igcup}$$
 c. $K_2(A)=4$.

La risposta corretta è: $K_2(A)=8$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se A è una matrice $n \times n$, quale delle seguenti affermazioni è corretta?

- $\bigcirc \ \, \text{a.} \quad K(A) = min\{||A||, ||A^{-1}||\}.$
- \bigcirc b. K(A) > 1.
- lacksquare c. $K(A) \geq 1$.

La risposta corretta è: $K(A) \ge 1$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia Ax=b un sistema lineare. Quale delle seguenti affermazioni è corretta:

($\Delta x = ext{errore su } x$, $\Delta b = ext{errore su } b$)

$$igcolumn{ @ a. } rac{||\Delta x||}{||x||} \leq ||A||||A^{-1}||rac{||\Delta b||}{||b||}$$

$$\bigcirc$$
 b. $rac{||x||}{||\Delta x||} \leq ||A||||A^{-1}||rac{||b||}{||\Delta b||}$

$$\bigcirc$$
 C. $rac{||\Delta b||}{||b||} \leq ||A||||A^{-1}||rac{||\Delta x||}{||x||}$

La risposta corretta è: $\frac{||\Delta x||}{||x||} \leq ||A||||A^{-1}|| \frac{||\Delta b||}{||b||}$

Risposta errata

Punteggio ottenuto 0,00 su 1,00

L'errore algoritmico è dovuto:

- O a. Al propagarsi degli errori di arrotondamento delle singole operazioni.
- O b. Alla realizzazione di un procedimento infinito come procedimento finito.
- c. Nessuna delle precedenti.

×

La risposta corretta è: Al propagarsi degli errori di arrotondamento delle singole operazioni.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i,f(x_i))$, con $i=0,\ldots,n$. Vale:

- igcirc a. Se $n o\infty$ dell'errore $\Pi(x)-f(x) o 0.$
- b. Nessuna delle precedenti.
- igcup c. Se $n o\infty$ dell'errore $\Pi(x)-f(x) o\infty.$

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione p(x) :

- a. ha grado $\le n$.
- O b. ha grado $\geq n$.
- \bigcirc c. ha grado $\leq n+1$.

La risposta corretta è: ha grado $\leq n$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $f:\mathbb{R}^n o \mathbb{R}$ derivabile:

- \bigcirc a. $abla f(x^*)=0$ è condizione necessaria e sufficiente affinche x^* sia un punto di massimo.
- \bigcirc b. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di minimo.
- \odot c. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

La risposta corretta è: $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

Domanda **8**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione convessa . Vale:

- lacksquare a. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo globale.
- b. Nessuna delle precedenti.
- igcup c. Se $abla f(x^*)=0$ allora x^* è un punto di minimo locale.

La risposta corretta è: Se $abla f(x^*) = 0 \,$ allora x^* è un punto di minimo globale.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se

$$A = \left[egin{array}{cc} -1 & 1 \ 0 & 3 \end{array}
ight]$$

Allora:

- \bigcirc a. A è simmetrica ma non definita positiva.
- \bigcirc b. A è simmetrica e definita positiva.
- \odot c. A è non simmetrica e definita positiva.

La risposta corretta è: A è non simmetrica e definita positiva.

×

Domanda 10

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Se U è una matrice $n \times n$ ortogonale allora:

- a. Nessuna delle precedenti.
- \bigcirc b. U è simmetrica.
- \bigcirc c. U è non singolare.

La risposta corretta è: U è non singolare.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Data la matrice:

$$A = \left[egin{array}{cccc} 1 & 3 & 2 \ -4 & 0 & 3 \ 0 & 1 & -3 \end{array}
ight]$$

La norma 1 di A:

$$\bigcirc \ \text{a.} \ ||A||_1=7.$$

$$\bigcirc$$
 c. $||A||_1 = 6$.

La risposta corretta è: $||A||_1 = 8$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Se A è una matrice $n \times n$ allora:

- a. Nessuna delle precedenti.
- $\bigcirc \text{ b. } \left| |A| \right|_F = \rho(A^TA).$
- lacksquare C. $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$

La risposta corretta è: $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Usando la notazione scientifica normalizzata con base eta=10, se x=3.89, allora:

- \bigcirc a. La mantissa di x è 3.89 e la parte esponenziale è 10^{0} .
- \odot b. La mantissa di x è 0.389 e la parte esponenziale è 10^1 .
- O c. Nessuna delle precedenti.

La risposta corretta è: La mantissa di x è 0.389 e la parte esponenziale è 10^1 .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Usando la notazione scientifica normalizzata con base $\beta=10$, se x=0.006, allora:

- \bullet a. La mantissa di x è 0.6 e la parte esponenziale è 10^{-2} .
- O b. Nessuna delle precedenti.
- \bigcirc c. La mantissa di x è 6 e la parte esponenziale è 10^{-3} .

La risposta corretta è: La mantissa di x è 0.6 e la parte esponenziale è 10^{-2} .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Nel metodo del Gradiente la direzione di discesa di f in x_k è:

- \bigcirc a. $abla f(x_k)$
- lacksquare b. $abla f(x_k)$
- $igcup c. \quad
 abla f(-x_k)$

La risposta corretta è: $-\nabla f(x_k)$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=e^{x_1}+x_2^2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e $\alpha=1$, allora:

¬ quiz studenti 22-23 tempo 30

Vai a...

esame studenti anno 21-22 -

$$igcup a. \quad x^{(1)} = (-1,2)^T.$$

O b.
$$x^{(1)} = (0,0)^T$$
.

c.
$$x^{(1)} = (-1,0)^T$$
.

La risposta corretta è: $x^{(1)} = (-1, 0)^T$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Il problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ e (m>n), si puo' risolvere utilizzando le equazioni normali quando:

- lacksquare a. rg(A) = n.
- \bigcirc b. rg(A) = 0.
- \bigcirc c. rg(A)=m.

La risposta corretta è: rg(A) = n.

×

Domanda 18

Risposta errata

Punteggio ottenuto 0,00 su 1,00 Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha almeno una soluzione se:

- \bigcirc a. rg(A) = n.
- b. nessuna delle precedenti
- \bigcirc c. $rg(A) \leq n$.

La risposta corretta è: $rg(A) \leq n$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Il costo computazionale della fattorizzazione di Cholesky di una matrice $n \times n$ è:

- igcup a. Maggiore rispetto a quello della fattorizzazione LR.
- igcup b. Uguale a quello della fattorizzazione LR.
- \odot c. Minore rispetto a quello della fattorizzazione LR.

La risposta corretta è: Minore rispetto a quello della fattorizzazione LR.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Ogni matrice A non singolare di dimensioni $n \times n$ è fattorizabile come PA = LR,

- a. entrambe sono errate.
- \bigcirc b. con P matrice di permutazione, L matrice con tutti 0 sulla diagonale e R triangolare inferiore non singolare.
- \bigcirc c. con P matrice diagonale, L matrice simmetrica con tutti 1 sulla diagonale e R triangolare superiore non singolare.

La risposta corretta è: entrambe sono errate.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00 Sia

$$A = egin{bmatrix} rac{1}{2} & 0 & 0 \ 3 & -rac{1}{3} & 0 \ 5 & -rac{1}{2} & rac{1}{2} \end{bmatrix}$$

- o a. Il metodo di Gauss-Seidel è convergente per ogni termine noto b.
- Ob. Il metodo di Gauss-Seidel non converge per ogni termine noto b.
- O c. Il metodo di Gauss-Seidel è convergente solo per alcuni termini noti b.

La risposta corretta è: Il metodo di <u>Gauss</u>-Seidel è convergente per ogni termine noto b.

×

Domanda **22**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

I valori singolari sono tutti:

- \bigcirc a. Positivi o negativi, mai nulli (\neq 0).
- \bigcirc b. Strettamente positivi (> 0).
- \odot c. Non negativi (≥ 0).

La risposta corretta è: Non negativi (≥ 0).

Domanda 23

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Una matrice di rango r ha esattamente:

- \bigcirc a. r valori singolari ≥ 0 .
- \bullet b. r valori singolari = 0.
- \bigcirc c. r valori singolari < 0.

La risposta corretta è: r valori singolari ≥ 0 .

23 of 23