

Analyzing the Relationship Between Deforestation Rates and Temperature Anomalies

Rebekah Northrup January 2025

Table of contents

01 Why This Dataset?

02

Approach to Analysis

03 Key Findings

04

Conclusion

-

Why This Dataset?

Motivation:

 Interest in understanding the environmental impact of deforestation on global temperature anomalies

Questions I hoped to explore:

- Is there a correlation between deforestation rates and temperature anomalies?
- Can deforestation rates predict temperature anomalies?

Approach to Analysis

Approach to Analysis

Initial Steps	
Data Cleaning:	 Handled missing values and checked for outliers Calculated annual deforestation rates from forest area data
Exploratory Data Analysis (EDA):	 Visualized the distribution of variables Investigated correlations between deforestation rates and temperature anomalies
Statistical Modeling:	Performed linear regression to test the predictive relationship between variables
Challenges Faced:	 Extreme skewness in deforestation rates led to clustered data Near-zero correlation indicated weak relationships, requiring careful interpretation

Approach to Analysis

Lessons Learned	
What Worked:	 Visualizations provided clear insights into data distribution and trends Statistical tests validated the absence of significant relationships
What Didn't Work:	 Linear regression failed to provide meaningful results due to weak correlations Extreme outliers in deforestation rates distorted visualizations

Key Findings

Correlation Analysis:

Heatmap Revealed:

- Correlation between deforestation rates and temperature anomalies: -0.0026
- No significant linear relationship detected

Deforestation_Rate Temperature_Anomaly
Deforestation_Rate 1.000000 -0.002633
Temperature Anomaly -0.002633 1.000000

Linear Regression Results:

- **R^2** Score: ~4.67e-06
 - Indicates the model
 explains no variance in
 temperature anomalies
- Mean Squared Error: ~1.336
 - Highlights minimal predictive power of deforestation rates

```
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.metrics import r2_score, mean_squared_error
# Prepare data for regression
regression data = data.dropna(subset=['Deforestation Rate', 'Temperature Anomaly'])
X = regression data[['Deforestation Rate']].values
y = regression_data['Temperature_Anomaly'].values
# Split into training and test sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Fit linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate model
print(f"R^2 Score: {r2 score(y test, y pred)}")
print(f"Mean Squared Error: {mean squared error(y test, y pred)}")
```


Visualizations:

- Scatter Plot: Deforestation vs. Temperature Anomaly
 - Plotted on a logarithmic scale for clarity
 - Showed no discernible trend between the variables

-}-

Conclusion

Next Steps:

- **Future Investigations:**
 - Feature engineering:
 - Apply non-linear transformations to deforestation rates
 - Incorporate additional predictors (e.g., CO2 emissions, industrial activity)
 - Advanced modeling:
 - Use machine learning models like Random Forests or Gradient Boosting
 - Geospatial Analysis:
 - Explore regional patterns in deforestation and temperature anomalies
- Limitations Encountered:

- Lack of other environmental factors in the dataset
- Insufficient granularity in deforestation data for regional analysis

Conclusion:

Weak Relationship:

 Both the statistical results (R^2 and correlation) and visual analysis confirm that deforestation rates are not a significant linear driver of temperature anomalies in this dataset.

Outliers and Skewness:

- The extreme skewness in the distribution of deforestation rates might obscure any underlying patterns or relationships
- Potential outliers could distort the regression and scatter plot results

Other Influences:

 Temperature anomalies are likely influenced by other variables, such as greenhouse gas emissions, industrialization, or renewable energy usage

Takeaways:

- Deforestation impact on climate requires a broader context
- Encourages integration of additional variable for more robust analyses

Thank You!

rebekah1247@gmail.com (910)203-9389

