PRODUCT SPECIFICATION

Product Name S76G

LoRa and GNSS Wireless Communication Module

Version E
Doc No 901-10601
Date Nov 5th, 2019

Document History

Date	Revised Contents	Revised By	Version
Nov 01 th ,2017	Draft Version	Kenny	Α
Mar 26 th ,2018	Modify GNSS features description and	Kenny	В
	Package Information		
Jun 27 th ,2018	Electrical Characteristics and pin	Kenny	С
	definitions update and modify product		
	marking to add 2D barcode		
July 27 th ,2018	Correct the function description content,	Kenny	D
	2. Update Block Diagram,		
Nov 5 th ,2019	GNSS add BEIDOU, Correct GNSS current	Jack	E
	consumption		
201			
	Y		
	~~~ ~ ~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		
<b>&gt;</b>	577		



**Product Name** 

S76G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 1 of 23



## **INDEX**

1. FE	EATURE	3
1-1.	Block Diagram	4
1-2.	Product Version	4
1-3.	Specification	5
2. EI	LECTRICAL CHARACTERISTICS	6
2-1.	ABSOLUTE MAXIMUM RATINGS	6
2-2.	RECOMMENDED OPERATING RANGE	6
2-3.	Power Consumption Characteristics	6
2-3	-3.1. 3.3V for LoRa function	
2-3	-3.2. 1.8V for GNSS function	
2-4.	GPS TCXO CLK_IN(IN BUFFER MODE)	8
2-5.	MCU RTC Low-speed external clock	8
2-6.	RF CHARACTERISTICS	
2-0	-6.1. RF characteristics for LoRa	
2-0	-6.2. RF characteristics for GNSS receiver	
2-7.	DIGITAL CHARACTERISTICS	11
<b>2</b> -2	-7.1. DC characteristics	11
	-7.2. NRST pin characteristics	
3. PI	IN DEFINITION	14
	OR DETAILED FUNCTIONS OF PIN DEFINITIONS, PLEASE REFER TO STM32L073 DATASHEET	
3-1.	PIN ASSIGNMENT	
4. M	MECHANICAL DIMENSION	17
5. R	ECOMMENDED REFLOW PROFILE	19
6. SI	IP MODULE PREPARATION	20
6-1.	HANDLING	20
6-2.	SMT Preparation	
7. P/	ACKAGE INFORMATION	
7-1.	PRODUCT MARKING	21
7-2.	TRAY DIMENSION	22
8-1.	PACKING INFORMATION	
8-2.	HUMIDITY INDICATOR CARD	23



**Product Name** 

S76G



#### 1. Feature

#### Platform Features

- ST micro controller: STM32L073Z
- High performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency
- 192 Kbytes of Flash memory
- 20 Kbytes of SRAM
- Serial wire debug (SWD) & JTAG
- USB 2.0 full-speed device/host

#### LORA Features

- LORA chip: Semtech SX1276
- LoRa Modem
- +20 dBm constant RF output vs. V supply
- Programmable bit rate up to 37500 bps
- High sensitivity: down to -137 dBm
- Excellent blocking immunity
- · Preamble detection
- Automatic RF Sense and CAD with ultra-fast AFC
- Payload up to 128 bytes with CRC

#### GNSS Features

- GNSS chip: SONY CXD5603GF
- GPS/GLONASS/BEIDOU receiver
- Ultra-low power consumption
- Supports SBAS/QZSS

#### Other Features

- Periphery components inside S76G:
  - 1. 24MHz crystal for STM32L073Z and 32MHz TCXO for SX1276
  - 2. 16Mbits Flash for CXD5603GF
  - 3. Level shifter for communication between STM32L073Z and CXD5603GF
  - 4. LoRa FEM/matching circuit and GNSS FEM/matching circuit
- Additional components needed for S76G operation:
  - 1. 32.768KHz crystal for STM32L073Z
  - 2. 26MHz TCXO for CXD5603GF
  - 3. Please see section 2-4 and 2-5 for more details
- Epoxy molding finished module in LGA type
- Small size: 13mm X 11mm X 1.55 mm

#### • RoHS & Halogen free compliant / Lead free



**Product Name** 

S76G

### 1-1. Block Diagram

A simplified block diagram of the S76G module is depicted in the figure below.



### 1-2. Product Version

The features of S76G is detailed in the following table

Part	Frequency	Spreading	Bandwidth	Effective	Est. Sensitivity
Number	Range	Factor	(K Hz)	Bitrate (bps)	( dBm )
\$76G	902-928 MHz 863-870 MHz**	6 - 12	62.5 - 500	146 - 37500	-109 to -137*

Note: * LORA setting SF=12, BW=62.5k, Long-Range Mode, highest LNA gain, LnaBoost for Band 1.



Product Name

S76G LoRa and GNSS Wireless Communication Module

Version Doc No Date Page



^{**}Optional FW Support for European band 868 MHz



### 1-3. Specification

<b>Technical Specifications</b>				
Model Name	\$76G			
Product Description	LoRa and GNSS Wireless Communication Module			
Host Interface	UART			
Dimension	13 mm x 11 mm x 1.55mm			
Package	LGA type			
<b>Electrical Specifications</b>				
Fraguency	■ LoRa frequency band: EU868 / US915 / AS923			
Frequency	■ GNSS frequency band: GPS (L1 C/A) / GLONASS (L1OF)/ BEIDOU			
<b>Operation Conditions</b>				
Operating Voltage	■ 3.3V for MCU / LoRa function			
Operating Voltage	■ 1.8V for GNSS function			
Tomporatura	■ Storage: -50°C ~ +105°C			
Temperature	■ Operating: -25°C ~ +85°C			
I I	■ Operating: 10 ~ 95% (Non-Condensing)			
Humidity	■ Storage: 5 ~ 95% (Non-Condensing)			



**Product Name** 

me S7

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

901-10601 Nov 5th ,2019 5 of 23





### 2. Electrical Characteristics

### 2-1. Absolute Maximum Ratings

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD_3V3	Supply Voltage	-0.3		3.9	V
VDD_1V8	Supply Voltage	-0.3		2.2	V
V _{IN}	Input voltage on digital pins	-0.3		3.9	V
Pmr	LoRa RF Input Level			+10	dBm

### 2-2. Recommended Operating Range

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD_3V3	Supply Voltage	2.4	3.3	3.6	V
VDD_1V8	Supply Voltage	1.65	1.8	1.95	V
ML	LoRa RF Input Level		7	+10	dBm

### 2-3. Power Consumption Characteristics

### 2-3.1. 3.3V for LoRa function

Symbol	Parameter	Conditions	Тур.	Max.	Unit
IDDSL	Supply current in Sleep mode	Sleep Stop Mode	4.2	5	uA
IDDST	Supply current in Standby mode	TCXO oscillator enabled	11.2	12.8	mA
IDDR	Supply current in Receive mode	777	22.5		mA
	Supply current in Transmit	RF SetPW = +20 dBm	132	134	
IDDT	mode with impedance	RF SetPW = +17 dBm	112		mA
	matching	RF SetPW = +13 dBm	89		ША
		RF SetPW = + 7 dBm	63		



**Product Name** 

S76G

#### 2-3.2. 1.8V for GNSS function

Symbol	Item	State	Тур.	Unit
GNS _{ACQ}	Satellite acquisition(Hybrid)		21	mA
GNS _{TRK}	Satellite tracking (Hybrid) 8-ch tracking	S0: Exec	14.2	mA
IDLE	Idle	S1: Idle	3.6	mA
SLP ₀	Sleep0	S2: Sleep0	0.39	mA
SLP ₁	Sleep1	S3: Sleep1	0.15	mA

	CXD5603GF					
State	GNSS	CPU	Always-on block	Backup RAM	Main RAM	
S0: Exec	Operation	Operation	Operation	Hold	Hold	
S1: Idle	Standby	Operation	Operation	Hold	Hold	
S2: Sleep0	Power-off	Power-off	Operation	Hold	Hold	
S3: Sleep1	Power-off	Power-off	Operation	Hold	Power-off	

#### **State Description**

S0: Exec

GNSS positioning can be performed.

S1: Idle

This is a command waiting state. The system can accept commands but power consumption is managed to be low.

#### S2: Sleep0

The CXD5603GF holds program code, data and satellite date but other logic circuit is powered off. The CXD5603GF can wake up from this state without loading the data from an external FLASH memory or the system MCU.

#### S3: Sleep1

Because the CXD5603GF holds satellite data only in this state, it must load program data from an external FLASH memory or the system MCU for wake-up but it can get a position with hot start.



**Product Name** 

S76G LoRa and GNSS Wireless Communication Module

### 2-4. GPS TCXO CLK_IN(in buffer mode)

ltem	Symbol	Min.	Тур.	Max.	Unit
Input voltage range	V _{IN}	0.8	-	1.4	Vpp
Input Frequency	F _{IN}	-	26.0	-	MHz
Input frequency characteristics	F _{IN_C}	-0.5	1-1	0.5	ppm
Duty Cycle	D _C	40	<u>-</u>	60	%

#### **Recommended Parts List**

- Nihon Dempa Kogyo Co., Ltd. / NT2016SA
- KYOCERA Crystal Device Corporation / KT2016

### 2-5. MCU RTC Low-speed external clock

Symbol	Parameter	Conditions*	Min	Тур	Max	Unit
fLSE	LSE oscillator frequency		-	32.768	-	kHz
		LSEDRV[1:0]=00 lower driving capability	_ /	7-6	0.5	
	Maximum critical crystal	LSEDRV[1:0]= 01 medium low driving capability		-	0.75	
Gm	trans conductance	LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	μA/V
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
tSU(LSE)**	Startup time	V _{DD} is stabilized	-	2	-	S

^{*} Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date

E 901-10601 Nov 5th ,2019 8 of 23

^{**}Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

#### 2-6. RF Characteristics

#### 2-6.1. RF characteristics for LoRa

The table below gives the electrical specifications for the transceiver operating with LoRaTM modulation. Following conditions apply unless otherwise specified:

LoRa Transmitter (Conductive)

- Supply voltage = 3.3 V.
- Temperature = 25° C.
- Frequency bands: 915 MHz
- Bandwidth (BW) = 125 kHz.
- Spreading Factor (SF) = 12.
- Error Correction Code (EC) = 4/6.
- Packet Error Rate (PER)= 1%
- CRC on payload enabled.
- Payload length = 64 bytes.
- Preamble Length = 12 symbols (programmed register PreambleLength=8)
- With matched impedances

		(			
ltem	Condition	Min.	Тур.	Max.	Unit
Frequency Range	Band1		915		MHz
Tx Pwr Level @Module O/P	PA_BOOST pin	17.5	18.5	19.5	dBm
	LoRa Receiv	er (Conductiv	re)		1
Item	Condition	Min.	Тур.	Max.	Unit
Frequency Range	Band1	863	915	928	MHz
RF sensitivity,	SF = 10		-133		dBm
(Long-Range Mode, highest LNA gain, LNA boost,	SF = 11		-135		dBm
62.5 kHz bandwidth)	SF = 12		-137		dBm
	SF = 7		-121		dBm
RF sensitivity,	SF = 8		-124		dBm
(Long-Range Mode, highest	SF = 9		-127		dBm
LNA gain, LNA boost,	SF = 10		-130		dBm
125 kHz bandwidth)	SF = 11		-131		dBm
	SF = 12		-134		dBm
	SF = 7		-114		dBm
RF sensitivity,	SF = 8		-117		dBm
(Long-Range Mode, highest	SF = 9		-120		dBm
LNA gain, LNA boost,	SF = 10		-123		dBm
500 kHz bandwidth)	SF = 11		-126		dBm
	SF = 12		-128		dBm



**Product Name** 

S/6G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 9 of 23



#### 2-6.2. RF characteristics for GNSS receiver

Parameter	Description	Performance	Unit
C/N @-130 dBm		41	dB
Position Accuracy @-130 dBm	2DRMS	2.5	Meter
TTFF	Cold start	< 35	Sec
@-130 dBm	Hot start	<1	Sec
Consitiuitu	Acquisition	-146	dBm
Sensitivity	Tracking	-158	dBm



**Product Name** 

**S76G**LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 10 of 23



### 2-7. Digital Characteristics

#### 2-7.1. DC characteristics

### Input voltage levels

Symbol	Description	Conditions	Min	Тур.	Max	Unit
		NRST	0.7xVDD_3V3	-	-	V
VIH	I/O input high level voltage	воото	0.7xVDD_3V3	9-	-	V
VID		GPIO	0.7xVDD_3V3	-	-	V
		GPS_Digital IO	0.65xVDD_1V8	-	VDD_1V8+0.3-	V
		NRST	0.7	-	0.3xVDD_3V3	V
\/!!	I/O input low level voltage	воото	-	-	0.14xVDD_3V3	V
VIL		GPIO	<del>-</del>	-	0.3xVDD_3V3	V
		GPS_Digital IO	-0.3	_	0.35xVDD_1V8	V
R _{PU}	Weak pull-up Equivalent resistor	V _{IN} = GND	30	45	60	ΚΩ
R _{PD}	Weak pull-down Equivalent resistor	V _{IN} =VDD_3V3	30	45	60	ΚΩ



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 11 of 23

#### **Output voltage levels**

Symbol	Description	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port / IIO = +8 mA	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	2.7 V≦VDD_3V3≦3.6 V	VDD_3V3-0.4	-	
$V_{OL}$	Output low level voltage for an I/O pin	TTL port / IIO =+ 8 mA 2.7 V≦VDD_3V3≦3.6 V		0.4	
$V_{OH}$	Output high level voltage for an I/O pin	TTL port / IIO =- 6 mA 2.7 V≦VDD_3V3≦3.6 V	2.4		
$V_{OL}$	Output low level voltage for an I/O pin	IIO = +15 mA 2.7 V≦VDD_3V3≦3.6 V		1.3	V
$V_{OH}$	Output high level voltage for an I/O pin	IIO = -15 mA 2.7 V≦VDD_3V3≦3.6 V	VDD_3V3-1.3	-	
V _{OL}	Output low level voltage for an I/O pin	IIO = +4 mA 1.65 V≦VDD_3V3≦3.6 V	-	0.45	
V _{OH}	Output high level voltage for an I/O pin	IIO = +4 mA 1.65 V≦VDD_3V3≦3.6 V	VDD_3V3-0.45	-	
V _{OL}	Output low level voltage	GPS_Digital IO	-	0.2xVDD_1V8	
V _{OH}	Output high level voltage	GPS_Digital IO	0.8xVDD_1V8	-	



**Product Name** 

S76G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 12 of 23

#### 2-7.2. NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor ( $R_{PU}$ ).

The following figure is recommended NRST pin protection circuit against parasitic resets.



Symbol	Description	Conditions	Min	Typ.	Max	Unit
V _{IL(NRST)}	NRST input low level voltage		VSS		0.8	V
V _{IH(NRST)}	NRST input high level voltage		1.4	A 0	VDD_3V3	V
V _{OL(NRST)}	NRST output low level voltage	$I_{OL} = 2mA$ 2.7V < VDD_3V3 < 3.6V	C		0.4	٧
V _{OL(NRST)}	NRST output low level voltage	I _{OL} = 1.5mA 1.65V < VDD_3V3 < 2.7V			0.4	٧
V _{hys(NRST)}	NRST schmitt trigger voltage hysteresis			10% VDD_3V3		mV
$R_{PU}$	Weak pull-up Equivalent resistor	V _{IN} = GND	30	45	60	ΚΩ
$V_{F}$	NRST Input filtered pulse	5			50	nS
$V_{NF}$	NRST Input not filtered pulse	VDD_3V3 > 2.7 V		350		nS



**Product Name** 

S76G LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 13 of 23

### 3. Pin Definition

Pin	Definition	I/O	Power Domain	Description
1	VDD_3V3		VDD_3V3	Power Supply
2	GND			Ground pin
3	GND			Ground pin
4	MCU_Reset	I/O	VDD_3V3	Hardware reset pin
5	GND			Ground pin
6	OSC32_IN	I/O		MCU RTC 32.768KHz crystal input
7	OSC32_OUT	I/O		MCU RTC 32.768KHz crystal output
8	GND		4	Ground pin
9	PA0	I/O	VDD_3V3	MCU pin name: PA0
10	PA2	I/O	VDD_3V3	MCU pin name: PA2
11	PA3	I/O	VDD_3V3	MCU pin name: PA3
12	GND			Ground pin
13	GPS_I2C_SDA	1/0	VDD_1V8	GPS_I2C bus for sensor
14	GPS_I2C_SCL	1/0	VDD_1V8	GPS_I2C bus for sensor
15	PA4	1/0	VDD_3V3	MCU pin name: PA4
16	PA5	I/O	VDD_3V3	MCU pin name: PA5
17	PA6	1/0	VDD_3V3	MCU pin name: PA6
18	PA7	I/O	VDD_3V3	MCU pin name: PA7
19	PC4	I/O	VDD_3V3	MCU pin name: PC4
20	PB0	1/0	VDD_3V3	MCU pin name: PB0
21	PB1	1/0	VDD_3V3	MCU pin name: PB1
22	GPS_TCXO_EN	0	VDD_1V8	GPS 26MHz TCXO enabler
23	GPS_1PPS_OUT	1/0	VDD_1V8	Interrupt output / 1PPS out
24	GPS_RST_X	1	VDD_1V8	GPS Reset pin, Connect to host is active low reset,
25	GPS_UART_TXD	I/O	VDD_1V8	Reserved for GPS Uart_TX test port
26	GPS_UART_RXD	I/O	VDD_1V8	Reserved for GPS Uart_RX test port
27	GND	(		Ground pin
28	RXTX/RFMOD	I/O	VDD_3V3	Control signal from SX1276, which connects to
	TOTAL MICE	1,0	VDD_3V3	internal RF switch at the same time.
29	GND			Ground pin
30	RF_ANT	I/O		LoRa RF I/O



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 14 of 23

Pin	Definition	I/O	Power Domain	Description
24	DA4 DE EENA CDC	0	VDD 3V3	Control signal from MCU_PA1, which connects to
31	PA1_RF_FEM_CPS	0	VDD_3V3	internal RF switch at the same time.
32	GND			Ground pin
33	NC			
34	GND			Ground pin
35	GND			Ground pin
36	NC			
37	GND			Ground pin
38	NC			
39	GND			Ground pin
40	NC			
41	GND			Ground pin
42	NC			
43	GND			Ground pin
44	GPS_ANT	Ţ		GPS RF Input
45	PA8	1/0	VDD_3V3	MCU pin name: PA8
46	PA9_USART1_TX	1/0	VDD_3V3	MCU pin name: PA9
47	PA10_USART1_RX	1/0	VDD_3V3	MCU pin name: PA10
48	PA11	I/O	VDD_3V3	MCU pin name: PA11
49	PA12	1/0	VDD_3V3	MCU pin name: PA12
50	PA13_SWDIO		VDD_3V3	Serial wire (SWD) debug interface
51	PA14_SWCLK		VDD_3V3	Serial wire (SWD) debug interface
52	GPS_TCXO_CLK_IN	1/0	VDD_1V8	GPS 26MHz Clock input from TCXO
53	GND	5		Ground pin
54	VDD_1V8		VDD_1V8	Power Supply
55	NC		. 4	
56	PB5	1/0	VDD_3V3	MCU pin name: PB5
57	PB6_SCL	1/0	VDD_3V3	MCU pin name: PB6
58	PB7_SDA	1/0	VDD_3V3	MCU pin name: PB7
59	воото	I	VDD_3V3	Boot mode selection pin
60	PB8	1/0	VDD_3V3	MCU pin name: PB8
61	GND			Ground Pin
62	GND			Ground Pin

※ For detailed functions of pin definitions, please refer to <u>STM32L073</u> datasheet.



**Product Name** 

**S76G**LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 15 of 23

### 3-1. Pin Assignment

The SiP module will conform to the following pin map, shown in the following diagram (top view)





**Product Name** 

S76G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 16 of 23

### 4. Mechanical Dimension

Unit: mm



**TOP VIEW** 





Unit: ±0.05mm



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 17 of 23

### 4-1. Recommended Footprint

Unit: mm 13 9 2,1 <u>U</u> 6,2

**TOP View** 



**Product Name** 

S76G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

901-10601 Nov 5th ,2019 18 of 23

### **5. Recommended Reflow Profile**

### Reflow Profile for SiP on board Assembly



Preheat time	150℃—200°C: 105+/-15sec
Dwell time	Over 220°C: 70+5/-10 sec
Peak Temp	240 +10/-5°C
Ramp Up/Down Rate	Up: 3 +0/-2 °C / sec Down: 2 +0/-1°C / sec



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

901-10601 Nov 5th ,2019 19 of 23



### **6.SiP Module Preparation**

#### 6-1. Handling

Handling the module must wear the anti-static wrist strap to avoid ESD damage. After each module is aligned and tested, it should be transport and storage with anti-static tray and packing. This protective package must be remained in suitable environment until the module is assembled and soldered onto the main board.

### 6-2. SMT Preparation

- 1. Calculated shelf life in sealed bag: 6 months at<40° and <90% relative humidity (RH).
- 2. Peak package body temperature:  $250^{\circ}$ C.
- 3. After bag was opened, devices that will be subjected to reflow solder or other high temperature process must.
  - A. Mounted within: 168 hours of factory conditions<30°C/60%RH.
  - B. Stored at ≤ 10%RH with N2 flow box.
- 4. Devices require baking, before mounting, if:
  - Package bag does not keep in vacuumed while first time open.
  - B. Humidity Indicator Card is >10% when read at  $23\pm5^{\circ}$ C.
- C. Expose at 3A condition over 8 hours or Expose at 3B condition over 24 hours.
  - 5. If baking is required, devices may be baked for 12 hours at  $125\pm5^{\circ}$ C.



**Product Name** 

S76G LoRa and GNSS Wireless Communication Module

Version Doc No Date Page E 901-10601 Nov 5th ,2019 20 of 23



### 7. Package Information

### 7-1. Product Marking

Figure 1 below details the standard product marking for all AcSiP Corp. products. Cross reference to the applicable line number and table for a full detail of all the variables.



Figure 1 Standard Product Marking Diagram- TOP VIEW



**Product Name** 

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

E 901-10601 Nov 5th ,2019 21 of 23

### 7-2. Tray Dimension

Unit: mm





**Product Name** 

S76G

LoRa and GNSS Wireless Communication Module

Version Doc No Date Page

901-10601 Nov 5th ,2019 22 of 23

### 8-1. Packing Information



### 8-2. Humidity Indicator Card





Dry

Indicates 指示點:

10%,20%,30,40%,50%,60% relative humidity 10%,20%,30,40%,50%,60% 相對濕度

Color Change 顏色變化: Brown (Dry) ---> Blue (Wet) 棕色 (乾燥) ---> 藍色 (潮溼)



Version E
Doc No 901-10601
Date Nov 5th ,2019
Page 23 of 23