THE K-THEORY OF TOEPLITZ C^* -ALGEBRAS OF RIGHT-ANGLED ARTIN GROUPS

NIKOLAY A. IVANOV

ABSTRACT. Toeplitz C^* -algebras of right-angled Artin groups were studied by Crisp and Laca. They are a special case of the Toeplitz C^* -algebras $\mathcal{T}(G,P)$ associated with quasi-latice ordered groups (G,P) introduced by Nica. Crisp and Laca proved that the so called "boundary quotients" $C_Q^*(\Gamma)$ of $C^*(\Gamma)$ are simple and purely infinite. For a certain class of finite graphs Γ we show that $C_Q^*(\Gamma)$ can be represented as a full corner of a crossed product of an appropriate C^* -subalgebra of $C_Q^*(\Gamma)$ built by using $C^*(\Gamma')$, where Γ' is a subgraph of Γ with one less vertex, by the group \mathbb{Z} . Using induction on the number of the vertices of Γ we show that $C_Q^*(\Gamma)$ are nuclear and belong to the small bootstrap class. We also use the Pimsner-Voiculescu exact sequence to find their K-theory. Finally we use the Kirchberg-Phillips classification theorem to show that those C^* -algebras are isomorphic to tensor products of \mathcal{O}_n with $1 \leq n \leq \infty$.

1. Introduction

Toeplitz C^* -Algebras of right-angled Artin Groups generalize both the Toeplitz algebra and the Cuntz algebras. Coburn showed in [4] that the C^* -algebra, generated by a single nonunitaty isometry is unique, i.e. every two C^* -algebras, each generated by a single nonunitary isometry are *-isomorphic. Similar uniqueness theorems about C^* -algebras generated by isometries were proved by Cuntz [7], Douglas [10], Murphy [13], and others. Laca and Raeburn in [12] and Crisp and Laca in [5] proved such uniqueness theorems for a large class of C^* -algebras, corresponding to quasi-lattice ordered groups (G, P). One of the key point they use was to project onto the "diagonal" C^* -algebra generated by the range projections of those isometries, an idea originating from [10].

These C^* -algebras can be viewed as crossed products of commutative C^* -algebras (the C^* -algebras generated by the range projections of the isometries) by semigroups of endomorphisms. Crisp and Laca used techniques from [11] about such crossed products together with the uniqueness theorems mentioned above to prove a sructure theorem for the universal C^* -algebra $C^*(G, P)$ (which by the uniqueness theorems is isomorphic to the "reduced one" $\mathcal{T}(G, P)$) for a large class of quasi-lattice ordered groups (G, P). We will now state [6, Corollary 8.5] and [6, Theorem 6.7] and use them throuought this note. A graph will always mean a simple graph with countable set of vertices.

Date: February 1, 2008.

Theorem 1.1 ([6], Theorem 6.7). Suppose that Γ is a graph with a set of vertices S (finite or infinite) such that Γ^{opp} has no isolated vertices. Then the universal C^* -algebra with generators $\{V_s|s\in S\}$ subject to the relations:

- (1) $V_s^*V_s = I$ for each $s \in S$;
- (2) $V_s V_t = V_t V_s$ and $V_s^* V_t = V_t V_s^*$ if s and t are adjacent in Γ ;
- (3) $V_s^*V_t = 0$ if s and t are distinct and not adjacent in Γ ;
- (4) $\prod_{s \in S_{\lambda}} (I V_s V_s^*) = 0$ for each $S_{\lambda} \subset S$ spanning a finite connected component of Γ^{opp} .

is purely infinite and simple.

We will denote the C^* -algebra from this theorem by $C_Q^*(\Gamma)$.

Theorem 1.2 ([6], Corollary 8.5). Suppose that Γ is a graph with a set of vertices S (finite or infinite) such that Γ^{opp} has no isolated vertices. Let $C^*(\Gamma)$ denote the universal C^* -algebra with generators $\{V_s|s\in S\}$ subject to the relations:

- (1) $V_s^*V_s = I$ for each $s \in S$;
- (2) $V_sV_t = V_tV_s$ and $V_s^*V_t = V_tV_s^*$ if s and t are adjacent in Γ ;
- (3) $V_s^*V_t = 0$ if s and t are distinct and not adjacent in Γ ;

Then each quotient of $C^*(\Gamma)$ is obtained by imposing a further collection of relations of the form

(R) $\prod_{s \in S_{\lambda}} (I - V_s V_s^*) = 0$, where each $S_{\lambda} \subset S$ spans a finite union of finite connected components of Γ^{opp} .

We remind that by definition the opposite graph of the graph Γ is

$$\Gamma^{\text{opp}} = \{(v, w) | v, w \in S, \ (v, w) \notin \Gamma\}.$$

 Γ^{opp} is also called the complement or the inverse of the graph Γ .

Let Γ be a finite graph with set of vertices S such that the opposite graph Γ^{opp} is connected and has more than 1 vertex. Then $C_Q^*(\Gamma)$ is the quotient of $C^*(\Gamma)$ by the ideal generated by $\prod_{s \in S} (I - V_s V_s^*)$. Let $I_{\Gamma} : \langle \prod_{s \in S} (I - V_s V_s^*) \rangle_{C^*(\Gamma)} \to C^*(\Gamma)$ be the inclusion map of this ideal, and $Q_{\Gamma} : C^*(\Gamma) \to C_Q^*(\Gamma)$ be the quotient map. Theorem

inclusion map of this ideal, and $Q_{\Gamma}: C^*(\Gamma) \to C_Q^*(\Gamma)$ be the quotient map. Theorem 1.2 implicitly contains the uniqueness theorem ([5, Theorem 24]). In particular we have the following faithful representation $\pi_{\Gamma}: C^*(\Gamma) \to \mathcal{B}(H_{\Gamma})$ which corresponds to $\mathcal{T}(A_{\Gamma}, A_{\Gamma}^+)$, where $A_{\Gamma} = \{S | ss' = s's \text{ if } (s, s') \in \Gamma\}$:

Let H_{Γ} be the Hilbert space with an orthonormal basis

$$\{\mathfrak{E}[s_1, s_2, \dots, s_n] | n \in \mathbb{N}_0, s_1, \dots, s_n \in S\} / \sim,$$

where the relation \sim means $\mathfrak{E}[s_1, s_2, \ldots, s_n] \sim \mathfrak{E}[s'_1, s'_2, \ldots, s'_m]$ if and only if $V_{s_1} \cdots V_{s_n} = V_{s'_1} \cdots V_{s'_m}$ subject to commutation relation (2) from Theorem 1.2. Let π_{Γ} be given on a generating family of operators and vectors by

$$\pi_{\Gamma}(V_s)(\mathfrak{E}[\emptyset]) = \mathfrak{E}[s],$$

$$\pi_{\Gamma}(V_s)(\mathfrak{E}[s_1, s_2, \dots, s_n]) = \mathfrak{E}[s, s_1, s_2, \dots, s_n].$$

For this representation it is true that the ideal $\langle \pi_{\Gamma}(\prod_{s \in S} (I - V_s V_s^*)) \rangle_{\pi_{\Gamma}(C^*(\Gamma))}$ coinsides with $\mathcal{K}(H_{\Gamma})$ - the compact operators on H_{Γ} .

In [7] Cuntz introduced a certain type of C^* -algebras \mathcal{O}_n , $n=2,3,\ldots,\infty$ generated by a set of isometries with mutually orthogonal ranges. He was able to represent $\mathcal{K}\otimes\mathcal{O}_n$ as a crossed product of an AF-algebra by \mathbb{Z} (\mathcal{K} stands for the C^* -algebra of the compact operators on a separable Hilbert space). There have been generalizations of these algebras that depend on the "crossed product by \mathbb{Z} " idea, for example Cuntz-Krieger algebras [9], Cuntz-Pimsner algebras [17] and others.

In our note for a fixed finite graph with at least three vertices Γ with Γ^{opp} connected we choose a subgraph Γ' one less vertex such that $(\Gamma')^{\text{opp}}$ is connected. Then we represent $C_Q^*(\Gamma)$ as a full corner of a crossed product of a C^* -algebra, built by using $C^*(\Gamma')$, by the group \mathbb{Z} . After doing so we can use some results about C^* -algebras which are crossed products by \mathbb{Z} . Most importantly we use the Pimsener-Voiculescu exact sequence for the K-thoery ([18]). Using induction on the number of the vertices of the graph we conclude that $C_O^*(\Gamma)$ is nuclear and belong to the small bootstrap class (see [2, IV.3.1], [1, §22]) and thus the classification result for purely infinite simple C^* -algebras of Kirchberg-Phillips [16] applies. From this we conclude that $C^*(\Gamma)$ is isomorphic to $\mathcal{O}_{1+|\chi(\Gamma)|}$, where $\chi(\Gamma)$ is an analogue of Euler characteristic, introduced in [6]. Then we extend this result to the case when Γ is an infinite graph with countably many vertices and such that Γ^{opp} is connected, since this graph can be represented as an increasing sequence of finite subgraphs. The general case is a graph Γ with at least two and at most countably many vertices which is such that Γ^{opp} has no isolated vertex. It can be treated easily using Theorem 1.1 and the special cases described above. The conclusion is that $C_Q^*(\Gamma)$ is isomorphic to tensor products of \mathcal{O}_n for $1 \leq n \leq \infty$, where we define \mathcal{O}_1 to be the unital Kirchberg algebra with $\mathbf{K}_0(\mathcal{O}_1) = \mathbb{Z}[1_{\mathcal{O}_1}]_0$ and $\mathbf{K}_1(\mathcal{O}_1) = \mathbb{Z}$. A Kirchberg algebra is by definition a separable, nuclear, simple, purely infinite C^* -algebra that satisfies the Universal Coefficient Theorem.

2. Some C^* -Subalgebras of $C_Q^*(\Gamma)$ and the Crossed Product Construction

If Γ has two vertices and no edges, then from the construcion of $C^*(\Gamma)$ is clear that $C^*(\Gamma)$ is generated by isometries V_1 and V_2 with orthogonal ranges and such that $V_1V_1^* + V_2V_2^* < I$. This is the C^* -algebra \mathcal{E}_2 from [8] which is an extension of \mathcal{O}_2 by the compacts. Thus $C_Q^*(\Gamma) \cong \mathcal{O}_2$.

Suppose now that Γ has a set of vertices S such that $2 < \operatorname{card}(S) < \infty$ and suppose that $\Gamma^{\operatorname{opp}}$ is connected. Since $\Gamma^{\operatorname{opp}}$ is connected if it is not a tree we can remove an arbitrary edge from its arbitrary cycle and the graph obtained in this way (let's denote it by $\Gamma_1^{\operatorname{opp}}$) will remain connected. Continuing in this fashion in finitely many (say l) steps we will arrive at $\Gamma_l^{\operatorname{opp}}$ wich will be a tree. Let $s \in S$ be a "leaf" for $\Gamma_l^{\operatorname{opp}}$. Removing s and the edge that comes out of s from $\Gamma_l^{\operatorname{opp}}$ will not alter the connectedness. All this shows that if Γ' is the graph, obtained from Γ by removing the vertex s and all the edges that come out of s, then its opposite graph $(\Gamma')^{\operatorname{opp}}$ will be connected.

Let $S' \subset S$ be the set of edges of Γ' . We can suppose that $S = \{1, \ldots, n, n+1\}$ and that $S' = \{1, \ldots, n\}$ for some $n \geq 2$. We want to describe the words in letters $\{V_1, \ldots, V_n, V_{n+1}, V_1^*, \ldots, V_n^*, V_{n+1}^*\}$.

Lemma 2.1. Every word in letters $\{V_1, \ldots, V_n, V_{n+1}, V_1^*, \ldots, V_n^*, V_{n+1}^*\}$ can be written in the form $w_1w_2^*$, where w_1, w_2 are words in letters $\{V_1, \ldots, V_n, V_{n+1}\}$.

Proof. We will use induction on the length of the words. The words of length one are V_i and V_i^* and they are of such form. Suppose that the statement of the lemma is true for all words of length m > 1 and less. Take a word w of length m + 1. We have two cases for w:

1) $w = w'V_i^*$ and 2) $w = w'V_i$ for some $1 \le i \le n+1$ and some word w' of length m. By the induction hypothesis w' can be represented as $w' = w'_1(w'_2)^*$, where w'_1 and w'_2 are words in letters $\{V_1, \ldots, V_n, V_{n+1}\}$. In case 1) $w = w'_1(w'_2)^*V_i^*$, so setting $w_1 = w'_1$ and $w_2 = V_iw'_2$ shows that w can be written in the desired form. For case 2) if the word w'_2 is empty then setting $w_1 = w'_1V_i$ and $w_2 = I$ shows that w has the desired form. If $w'_2 = V_jw''_2$ with w''_2 a word in letters $\{V_1, \ldots, V_{n+1}\}$ then

$$w = w'_1(w''_2)^* V_j^* V_i = \begin{cases} 0, & \text{if } (i,j) \notin \Gamma \\ w'_1(w''_2)^*, & \text{if } i = j \\ w'_1(w''_2)^* V_i V_j^*, & \text{if } (i,j) \in \Gamma. \end{cases}$$

The first and the second case in the above equation are words of the desired form. In the third case we have that $w_1'(w_2'')^*V_i$ is a word of length m so it can be represented as $\omega_1\omega_2^*$. Then $w_1'(w_2'')^*V_iV_j^* = \omega_1\omega_2^*V_j^*$ is of the desired form. This concludes the induction and proves the lemma.

Let's denote by V the isometry $V_{n+1} \in C_Q^*(\Gamma)$ and suppose without loss of generality that $V^*V_i = 0$ for $k < i \le n$ (notice that since Γ^{opp} is connected, k < n). If k > 0 then also V commutes and *-commutes with V_1, \ldots, V_k .

Let $T_0 = C^*(V_1, \ldots, V_n)$. Then from Theorem 1.2 it is easy to see that $T_0 \cong C^*(\Gamma')$. Define by induction T_m to be the closed linear span of elements of $C_Q^*(\Gamma)$ of the form $wVt_{m-1}V^*(w')^*$, where w, w' are words in letters $\{V_1, \ldots, V_n\}$ and $t_{m-1} \in T_{m-1}$. The following lemma characterizes the sets T_m .

Lemma 2.2. T_m is a C^* -subalgebra of $C^*(\Gamma)$, isomorphic to $\mathcal{K}^{\otimes m} \otimes T_0 \ (\cong \mathcal{K} \otimes C^*(\Gamma'))$.

Proof. Let us denote by Ω the set of all words ω in letters $\{V_1,\ldots,V_n\}$ such that the letters of the word ωV cannot be commuted pass V, i.e. $\omega V = \omega_1 V \omega_2$ for some words ω_1, ω_2 in letters $\{V_1,\ldots,V_n\}$, implies $\omega_2 = I$. It is easy to see that from the connectedness of Γ^{opp} follows that Ω is an infinite countable set therefore we can enumerate its elements: $\Omega = \{\omega_0, \omega_1, \omega_2, \ldots\}$, setting $\omega_0 = I$. We assume that the words in Ω don't repeat, i.e. $\omega_p \neq \omega_q$ for $p \neq q$ after using the commutation relation. Suppose by induction that $T_{m-1} \cong \mathcal{K}^{\otimes (m-1)} \otimes T_0$ for some $m \geq 1$. We want to show that $T_m \cong \mathcal{K} \otimes T_{m-1}$. Clearly $\{\omega_p V t_{m-1} V^* \omega_q^* | p, q \in \mathbb{N}_0\}$ is a *-closed set. It is easy to see that each element $w'V t_{m-1} V^* w^*$ of T_m after applying the commutation relations (2) from Theorem 1.2 can be written in the form $\omega_p V t'_{m-1} V^* \omega_q^*$ for some $p, q \in \mathbb{N}_0$

and some $t'_{m-1} \in T_{m-1}$. Therefore $\{\omega_p V t_{m-1} V^* \omega_q^* | p, q \in \mathbb{N}_0, t_{m-1} \in T_{m-1}\}$ spans a dense subset of T_m . We conclude that T_m is *-closed.

We want to show now that $V^*\omega_q^*\omega_p V = \delta_{p,q}I$. Write $\omega_p = V_{j_1}\cdots V_{j_s}$ and $\omega_q = V_{i_1}\cdots V_{i_t}$. Then $V^*\omega_q^*\omega_p V = V^*V_{i_t}^*\cdots V_{i_2}^*V_{i_1}^*V_{j_1}V_{j_2}\cdots V_{j_s}V$. There are three cases:

- 1) If V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_r}^*$ ($1 \le r < t$) and $i_{r+1} = j_1$ then $V_{i_{r+1}}^*$ will commute with $V_{i_1}^*, \ldots, V_{i_r}^*$, so the word ω_q can be written in the form $\omega_q = V_{i_1} V_{i_2} \cdots V_{i_t}$ with $i_1 = j_1$. Then we can write $V^* \omega_q^* \omega_p V = V^* V_{i_t}^* \cdots V_{i_2}^* V_{j_2} \cdots V_{j_s} V$ and continue the argument with this word.
- 2) If V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_r}^*$ $(1 \le r < t)$ and $(j_1, i_{r+1}) \notin \Gamma$, then $V^* \omega_q^* \omega_p V = 0$. Also if $j_1 > k$ and V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_t}^*$ we also have $V^* \omega_q^* \omega_p V = 0$.
- 3) If V_{j_1} commutes with V_{i_1}, \ldots, V_{i_t} and V clearly then $j_1 \leq k$ and from the definition of Ω follows that V_{j_1} doesn't commute with all V_{j_2}, \ldots, V_{j_s} . Suppose that V_{j_1} doesn't commute with V_{j_r} ($2 \leq r \leq s$) and if r > 2 V_{j_1} commutes with $V_{j_2}, \ldots, V_{j_{r-1}}$. Notice that $j_r \notin \{i_1, \ldots, i_t\}$ since V_{j_1} commutes with $V_{i_1}^*, \ldots, V_{i_t}^*$ and not with V_{j_r} .

Suppose that $V^*\omega_q^*\omega_p V \neq 0$. Then suppose that $V_{j_1},\ldots,V_{j_{r_1}}$ can be dealt with by using repeatedly case 1). If $r_1=s=t$ then $V^*\omega_q^*\omega_p V=\delta_{p,q}I$ is proven. If $r_1=s< t$ then $V^*\omega_q^*\omega_p V$ reduces to $V^*V_{i_t}^*\cdots V_{i_{s+1}}^*V$. If $i_t\leq k$ then $V_{i_t}^*$ would commute with V^* contradicting the fact that $\omega_q\in\Omega$. $i_t>k$ implies immediatelly $V^*V_{i_t}^*\cdots V_{i_{s+1}}^*V=0$ because V does not commute with all of $V_{i_t}^*,\ldots,V_{i_{s+1}}^*$ so it has a orthogonal range with some of them. The case $r_1=t< s$ is similar. If $r_1< s$ and $r_1< t$ then suppose that for $V_{j_{r_1+1}}$ case 3) applies. We will obtain a contradiction with the fact that $\omega_p\in\Omega$. By case 3) we can find $r_2>r_1+1$ such that $V_{j_{r_1+1}}$ doesn't commute with $V_{j_{r_2}}$ and if $r_2>r_1+2$ then $V_{j_{r_1+1}}$ commutes with $V_{j_{r_1+2}},\ldots,V_{j_{r_2-1}}$. Also $j_{r_2}\notin\{i_{r_1+1},\ldots,i_t\}$ ($V_{j_{r_1+1}}$ commutes with $V_{i_{r_1+1}},\ldots,V_{i_t}$ and not with $V_{j_{r_2}}$) and so case 1) cannot be applied to V_{j_r} . We can repeat this process finitely many times until we reach the isometry V_{j_s} for which case 3) must apply since case 1) cannot be applied as we saw above and case 2) cannot be applied by assumption. But then $j_s\leq k$ and V_{j_s} commutes with V which contradicts $\omega_p\in\Omega$. This proves $V^*\omega_q^*\omega_p V=\delta_{p,q}I$.

It follows that $\omega_p V t_{m-1} V^* \omega_q^* \omega_{p'} V t'_{m-1} V^* \omega_{q'} = \delta_{p',q} \omega_p V t_{m-1} t'_{m-1} V^* \omega_q'$ and thus T_m is a C^* -algebra. The equation $V^* \omega_q^* \omega_p V = \delta_{p,q} I$ implies that $C^* (\{\omega_p V V^* \omega_q^* | 0 \le p, q \le l-1\}) \cong M_l(\mathbb{C})$. It is clear that $V T_{m-1} V^*$ is a C^* -algebra, isomorphic to T_{m-1} . Therefore

$$C^*(\{\omega_p V t_{m-1} V^* \omega_q^* | 0 \le p, q \le l-1, t_{m-1} \in T_{m-1}\}) \cong$$

$$C^*(\{\sum_{i=0}^{l-1} (\omega_i V t_{m-1} V^* \omega_i^*) | t_{m-1} \in T_{m-1}\}) \otimes C^*(\{\omega_p V V^* \omega_q^* | 0 \le p, q \le l-1\})$$

$$\cong T_{m-1} \otimes M_l(\mathbb{C}) = M_l(T_{m-1}),$$

since $\sum_{i=0}^{l-1} (\omega_i V t_{m-1} V^* \omega_i^*)$ commutes with $\omega_p V V^* \omega_q^*$ for each $0 \le p, q \le l-1$ and each $t_{m-1} \in T_{m-1}$. Taking limit $l \to \infty$ concludes the proof of the lemma.

From the proof of this lemma easily follows that T_m is the closed linear span of $\{\omega_{p_m}V\cdots V\omega_{p_1}Vt_0V^*\omega_{q_1}^*V^*\cdots V^*\omega_{q_m}^*|\ \omega_{p_1},\ldots,\omega_{p_m},\omega_{q_1},\ldots,\omega_{q_m}\in\Omega,\ t_0\in T_0\}.$

This implies that $T_m \cdot T_l \subset T_m$ and $T_l \cdot T_m \subset T_m$ for each $m \geq l \geq 0$.

Now we introduce the following C^* -subalgebras of $C_Q^*(\Gamma)$: Define $B_0 = T_0$ and $B_m = C^*(B_{m-1} \cup T_m) = C^*(T_0 \cup \cdots \cup T_m)$. From what we said above is clear that T_m is an ideal of B_m . Therefore we have an extension

$$(1) 0 \longrightarrow T_m \xrightarrow{i_m} B_m \xrightarrow{p_m} B_m/T_m \longrightarrow 0,$$

where $i_m: T_m \to B_m$ is the inclusion map and $p_m: B_m \to B_m/T_m$ is the quotient map.

From [14, Theorem 3.1.7] (or [2, Corollary II.5.1.3]) follows that $B_m = B_{m-1} + T_m$ as a linear space. From [14, Remark 3.1.3] follows that the map $\pi_m : B_{m-1}/(B_{m-1} \cap T_m) \to B_m/T_m$ given by $b_{m-1} + B_{m-1} \cap T_m \mapsto b_{m-1} + T_m$ is an isomorphism $(b_{m-1} \in B_{m-1})$.

Define $\mathcal{I}_m \stackrel{def}{=} \langle V^m [\prod_{i=1}^n (I - V_i V_i^*)] (V^*)^m \rangle_{T_m}$. Since $T_0 \cong C^*(\Gamma')$ from Theorem 1.2 follows that \mathcal{I}_0 is the unique nontrivial ideal of T_0 and it is isomorphic to \mathcal{K} . Then from Lemma 2.2 follows that \mathcal{I}_m is the unique nontrivial ideal of T_m and it is isomorphic to $\mathcal{K}^{\otimes m} \otimes \mathcal{K}$. The ideal \mathcal{I}_m can be described as the closed linear span of

$$\{\omega_{p_m}V\cdots V\omega_{p_1}V\iota_0V^*\omega_{q_1}^*V^*\cdots V^*\omega_{q_m}^*|\ \omega_{p_1},\ldots,\omega_{p_m},\omega_{q_1},\ldots,\omega_{q_m}\in\Omega,\iota_0\in\mathcal{I}_0\}.$$

Therefore it is easy to see that $V^m(V^*)^m \mathcal{I}_m V^m(V^*)^m = V^m \mathcal{I}_0(V^*)^m$.

By the definition of
$$C_Q^*(\Gamma)$$
 we have $(I - VV^*) \prod_{i=1}^n (I - V_i V_i^*) = 0$ or $\prod_{i=1}^n (I - V_i V_i^*) = 0$

 $VV^*\prod_{i=1}^n(I-V_iV_i^*)$. Therefore using relations (2) and (3) from Theorem 1.1 we get

$$\prod_{i=1}^{n} (I - V_i V_i^*) = V V^* \prod_{i=1}^{n} (I - V_i V_i^*) = V \prod_{i=1}^{k} (I - V_i V_i^*) V^* \prod_{i=k+1}^{n} (I - V_i V_i^*) = V \prod_{i=1}^{k} (I - V_i V_i^*) V^* \in T_1.$$

It follows also that $V^m V \prod_{i=1}^k (I - V_i V_i^*) V^* (V^*)^m \in V^m T_1 (V^*)^m \subset T_{m+1}$. It is easy to see that $T_{m+1} \cdot B_m \subset T_{m+1}$ and $B_m \cdot T_{m+1} \subset T_{m+1}$. This implies that $T_m \cap T_{m+1}$ is an ideal of T_m and that $B_m \cap T_{m+1}$ is an ideal of B_m . From this we can conclude that $\mathcal{I}_m \subset (T_m \cap T_{m+1})$ for each $m \in \mathbb{N}$. The reverse inclusion is also true:

Lemma 2.3.
$$B_m \cap T_{m+1} = \mathcal{I}_m$$
 for each $m \in \mathbb{N}_0$.

Proof. Since \mathcal{I}_0 is the unique nontrivial ideal of T_0 and since $T_0 \cap T_1$ is an ideal of T_0 , then if we assume that $\mathcal{I}_0 \subsetneq T_0 \cap T_1$ it will follow that $T_0 = T_0 \cap T_1$. Then $I = 1_{T_0} = 1_{C_Q^*(\Gamma)} \in T_0 \subset T_1$. This will imply that $T_1 \cong \mathcal{K} \otimes T_0$ is a unital C^* -algebra which is a contradiction. Therefore $\mathcal{I}_0 = T_0 \cap T_1$.

It is easy to see that for each $m \in \mathbb{N}$ we have $V^m(V^*)^m T_m V^m (V^*)^m = V^m T_0 (V^*)^m \cong T_0$ and that $V^m (V^*)^m T_{m+1} V^m (V^*)^m = V^m T_1 (V^*)^m \cong T_1$. Thus if we assume that $T_m = T_m \cap T_{m+1}$ it will follow that $V^m T_0 (V^*)^m \subset V^m T_1 (V^*)^m$ and therefore that

 $T_0 \subset T_1$. This is a contradiction with what we proved in the last paragraph. Therefore $T_m \cap T_{m+1} \subsetneq T_m$ and thus $T_m \cap T_{m+1} = \mathcal{I}_m$.

To conclude the proof of the lemma we have to show that $T_{m+1} \cap T_j = 0$ for each $0 \leq j < m$. In this case we have once again that $T_{m+1} \cap T_j$ is an ideal of T_j . Therefore the assumption $T_{m+1} \cap T_j \neq 0$ implies that T_{m+1} contains the minimal nonzero ideal of T_j , \mathcal{I}_j . In particular $V^j \prod_{i=1}^n (I - V_i V_i^*)(V^*)^j = V^{j+1} \prod_{i=1}^k (I - V_i V_i^*)(V^*)^{j+1} \in T_{m+1}$. This implies

$$V^{j+1} \prod_{i=1}^{k} (I - V_i V_i^*) (V^*)^{j+1} = V^{j+1} (V^*)^{j+1} V^{j+1} \prod_{i=1}^{k} (I - V_i V_i^*) (V^*)^{j+1} V^{j+1} (V^*)^{j+1}$$

$$\in V^{j+1} (V^*)^{j+1} T_{m+1} V^{j+1} (V^*)^{j+1} = V^{j+1} T_{m-j} (V^*)^{j+1}.$$

Therefore $\prod_{i=1}^k (I - V_i V_i^*) \in T_{m-j}$. Since also $\prod_{i=1}^k (I - V_i V_i^*) \in T_0$, then the ideal $T_0 \cap T_{m-j}$ of T_0 contains $\prod_{i=1}^k (I - V_i V_i^*)$. We will show that $\prod_{i=1}^k (I - V_i V_i^*) \notin \mathcal{I}_0$ this will imply that $T_0 \subset T_{m-j}$ for m-j>0 and therefore obtaining a contradiction with the fact that T_{m-j} is not unital for m-j>0.

Suppose that $\prod_{i=1}^{k} (I - V_i V_i^*) \in \mathcal{I}_0$. Then since $T_0 = C^*(\Gamma')$ we have $Q_{\Gamma'}(\prod_{i=1}^{k} (I - V_i V_i^*)) = 0$. From the connectedness of $(\Gamma')^{\text{opp}}$ follows that we can find $j, 1 \leq j \leq k$ and $l, k < l \leq n$ with $(j, l) \notin \Gamma'$. Then

$$0 = Q_{\Gamma'}(V_l^*)Q_{\Gamma'}(\prod_{i=1}^k (I - V_i V_i^*))Q_{\Gamma'}(V_l) = Q_{\Gamma'}(V_l^*)Q_{\Gamma'}(\prod_{\substack{(i,l) \in \Gamma' \\ 1 \le i \le k}} (I - V_i V_i^*))Q_{\Gamma'}(V_l) = Q_{\Gamma'}(\prod_{\substack{(i,l) \in \Gamma' \\ 1 \le i \le k}} (I - V_i V_i^*))Q_{\Gamma'}(\prod_{\substack{(i,l) \in \Gamma' \\ 1 \le i \le k}} (I - V_i V_i^*)) = Q_{\Gamma'}(\prod_{\substack{(i,l) \in \Gamma' \\ 1 \le i \le k}} (I - V_i V_i^*)).$$

By repeating this argument finitely many times we will arrive at the equality $Q_{\Gamma'}(I) = 0$ which is a contradiction. Therefore $\prod_{i=1}^k (I - V_i V_i^*) \notin \mathcal{I}_0$. This completes the proof of the lemma.

This lemma shows that we have an extension

(2)
$$0 \to \mathcal{I}_{m-1} \xrightarrow{i'_m} B_{m-1} \xrightarrow{p'_m} B_{m-1}/\mathcal{I}_{m-1} \to 0,$$

where $i'_m: \mathcal{I}_{m-1} \to B_{m-1}$ is the inclusion map and $p'_m: B_{m-1} \to B_{m-1}/\mathcal{I}_{m-1}$ is the quotient map.

From equations (1) and (2) we have the commutative diagram with exact rows:

where $I'_m: \mathcal{I}_{m-1} \to T_m$ and $I_m: B_{m-1} \to B_m$ are the inclusion maps. Define $B \stackrel{def}{=} \bigcup_{i=0}^{\infty} B_i \subset C^*(\Gamma)$ or in other words $B \stackrel{def}{=} \varinjlim(B_m, I_m)$. Notice that if $t_m \in T_m$ then $V t_m V^* \in T_{m+1}$. Thus we have a well defined injective endomorphism $\beta: B \to B$ given by $b \mapsto VbV^*$.

Similarly to the Cuntz' construction from [7] we define $\tilde{B} \stackrel{def}{=} \lim(B^m, \alpha_m)$ as the limit of the sequence (which is also a commutative diagram)

where $j_m: B^m \to B$ are *-isomorphisms. Since \tilde{B} is a limit C^* -algebra we have *-homomorphisms $\alpha^m: B^m \to \tilde{B}$, s.t. $\alpha^m = \alpha^{m+1} \circ \alpha_m$ for all $m \in \mathbb{Z}$.

Now we define a *-homorphism Φ of \tilde{B} to itself, which is induced by "shift to the left" on (4). In other words if we have a stabilizing sequence $(b^m)_{m=-\infty}^{+\infty}$, where $b^m \in B^m$ for each m, then $\Phi((b^m)_{m=-\infty}^{+\infty}) = (j_m^{-1} \circ j_{m+1}(b^{m+1}))_{m=-\infty}^{+\infty}$. In particular for $b \in B$ the element $\alpha^m \circ j_m^{-1}(b)$ can be represented as the sequence $(0,\ldots,0,0,j_m^{-1}(b),\alpha_m \circ j_m^{-1}(b),\alpha_{m+1}\circ\alpha_m \circ j_m^{-1}(b),\ldots) = (0,\ldots,0,0,j_m^{-1}(b),j_{m+1}^{-1}\circ\beta(b),j_{m+2}^{-1}\circ\beta^2(b),\ldots)$ therefore $\Phi(\alpha^m \circ j_m^{-1}(b))$ can be represented as the sequence $(0,\ldots,0,j_{m-1}^{-1}(b),j_m^{-1}\circ\beta(b),j_{m+1}^{-1}\circ\beta^2(b),\ldots)$. This shows that $\Phi(\alpha^m \circ j_m^{-1}(b)) = \alpha^m \circ j_m^{-1}\circ\beta(b)$. The extension of this map to the whole of \tilde{P} (we call it Φ also) in a figure $\Phi(a^m \circ j_m^{-1}(b))$ and $\Phi(a^m \circ j_m^{-1}(b)) = \alpha^m \circ j_m^{-1}\circ\beta(b)$. extension of this map to the whole of B (we call it Φ also) is a *-isomorphism, because Φ is isometric on the dense set of all stabilizing sequences (since j_m are all isomorphisms). Now let A be the crossed product of B by the automorphism Φ . We represent A faithfully on a Hilbert space \mathfrak{H} so that Φ is implemented by a unitary U on \mathfrak{H} : $\Phi(b) = UbU^*$ for $b \in \tilde{B}$. Then $\tilde{A} = C^*(\tilde{B} \cup \{U\})$. Every element of \tilde{A} is a limit of elements of the form $\tilde{a} = \sum_{i=-N}^{N} b_i U^i = \sum_{i=-N}^{-1} U^i \bar{b_i} + b_0 + \sum_{i=1}^{N} b_i U^i$, with $b_i \in \tilde{B}$,

where $\bar{b_i} = U^{-i}b_iU^i \in \tilde{B}$ for i = -N, ..., -1. Therefore the set of the elements of \tilde{A} of the above form is dense in \tilde{A} .

Set $\tilde{P}_m \stackrel{def}{=} \alpha^m(1_{B^m}) \in \tilde{B}$ for each $m \in \mathbb{Z}$. Notice that $\alpha^m(1_{B^m}) = \alpha^m \circ j_m^{-1}(I) = \alpha^{m+1} \circ \alpha_m \circ j_m^{-1}(I) = \alpha^{m+1} \circ j_{m+1}^{-1}(\beta(I))$. By induction

$$\tilde{P}_m = \alpha^{m+i} \circ j_{m+i}^{-1}(\beta^i(I)), \ m \in \mathbb{Z}, \ i \in \mathbb{N}.$$

Therefore we can write

(5)
$$\tilde{P}_m = \Phi^{-m}(\tilde{P}_0), \ m \in \mathbb{Z}.$$

Consider the C^* -algebra $\tilde{P}_0\tilde{A}\tilde{P}_0$. Clearly $\tilde{P}_0\tilde{B}\tilde{P}_0\subset\tilde{P}_0\tilde{A}\tilde{P}_0$. Since elements of the form $\tilde{a}=\sum_{i=-N}^{-1}U^ib_i+b_0+\sum_{i=1}^Nb_iU^i$ $(b_i\in\tilde{B})$ are dense in \tilde{A} , then elements of the form $\tilde{P}_0\tilde{a}\tilde{P}_0=\sum_{i=-N}^{-1}\tilde{P}_0U^ib_i\tilde{P}_0+\tilde{P}_0b_0\tilde{P}_0+\sum_{i=1}^N\tilde{P}_0b_iU^i\tilde{P}_0$ are dense in $\tilde{P}_0\tilde{A}\tilde{P}_0$. It is easy to see that $U\tilde{P}_0U^*=\Phi(\tilde{P}_0)<\tilde{P}_0$, so the range of $U\tilde{P}_0$ is contained in \tilde{P}_0 and therefore $\tilde{P}_0U\tilde{P}_0=U\tilde{P}_0$. Then

$$\begin{split} \tilde{P}_0 \tilde{a} \tilde{P}_0 &= \sum_{i=-N}^{-1} \tilde{P}_0 U^i b_i \tilde{P}_0 + \tilde{P}_0 b_0 \tilde{P}_0 + \sum_{i=1}^N \tilde{P}_0 b_i U^i \tilde{P}_0 = \\ &= \sum_{i=-N}^{-1} (\tilde{P}_0 U^i) (\tilde{P}_0 b_i \tilde{P}_0) + \tilde{P}_0 b_0 \tilde{P}_0 + \sum_{i=1}^N (\tilde{P}_0 b_i \tilde{P}_0) (U^i \tilde{P}_0). \end{split}$$

This shows that if we set $S \stackrel{def}{=} U \tilde{P}_0$ then $\tilde{P}_0 \tilde{A} \tilde{P}_0 = C^* (\tilde{P}_0 \tilde{B} \tilde{P}_0 \cup \{S\})$. Let us also set $S_i \stackrel{def}{=} \alpha^0 (j_0^{-1}(V_i)), i = 1, ..., n$.

It is easy to see that $\operatorname{Span}(\bigcup_{l=0}^{\infty} T_l)$ is dense in B. Then it follows that $\operatorname{Span}(\bigcup_{i=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l))$ is dense in \tilde{B} . Therefore $\tilde{P}_0\operatorname{Span}(\bigcup_{i=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l))\tilde{P}_0 = \operatorname{Span}(\tilde{P}_0\bigcup_{i=0}^{\infty} \alpha^i \circ j_i^{-1}(\bigcup_{l=0}^{\infty} T_l)\tilde{P}_0)$ is dense in $\tilde{P}_0\tilde{B}\tilde{P}_0$. For each $i \in \mathbb{N}$ we have

$$\begin{split} \tilde{P}_{0}\alpha^{i} \circ j_{i}^{-1}(\bigcup_{l=0}^{\infty}T_{l})\tilde{P}_{0} &= \alpha^{i} \circ j_{i}^{-1}(\beta^{i}(I))\alpha^{i} \circ j_{i}^{-1}(\bigcup_{l=0}^{\infty}T_{l})\alpha^{i} \circ j_{i}^{-1}(\beta^{i}(I)) = \\ &= \alpha^{i} \circ j_{i}^{-1}(\beta^{i}(I)(\bigcup_{l=0}^{\infty}T_{l})\beta^{i}(I)) = \alpha^{i} \circ j_{i}^{-1}(V^{i}(V^{*})^{i}(\bigcup_{l=0}^{\infty}T_{l})V^{i}(V^{*})^{i}) = \\ &= \alpha^{i} \circ j_{i}^{-1}((V^{i}(V^{*})^{i})^{2}(\bigcup_{l=0}^{\infty}T_{l})(V^{i}(V^{*})^{i})^{2}) \subset \alpha^{i} \circ j_{i}^{-1}((V^{i}(V^{*})^{i}T_{i})(\bigcup_{l=0}^{\infty}T_{l})(T_{i}V^{i}(V^{*})^{i})) \subset \\ &\subset \alpha^{i} \circ j_{i}^{-1}(V^{i}(V^{*})^{i}(\bigcup_{l=i}^{\infty}T_{l})V^{i}(V^{*})^{i}) = \alpha^{i} \circ j_{i}^{-1}(V^{i}(\bigcup_{l=0}^{\infty}T_{l})(V^{*})^{i}) = \alpha^{i} \circ j_{0}^{-1}(\bigcup_{l=0}^{\infty}T_{l}) = \alpha^{0} \circ j_{0}^{-1}(\bigcup_{l=0}^{\infty}T_{l}). \end{split}$$

From this it follows that $\alpha_0 \circ j_0^{-1}(\operatorname{Span}(\bigcup_{l=0}^{\infty} T_l))$ is dense in $\tilde{P}_0 \tilde{B} \tilde{P}_0$ and therefore also that $\alpha^0(B^0) = \tilde{P}_0 \tilde{B} \tilde{P}_0$. This shows that $\tilde{P}_0 \tilde{A} \tilde{P}_0 = C^*(\alpha_0 \circ j_0^{-1}(\bigcup_{l=0}^{\infty} T_l) \cup \{S\})$.

Observe that

(6)
$$S\alpha^{0} \circ j_{0}^{-1}(b)S^{*} = U\tilde{P}_{0}\alpha^{0} \circ j_{0}^{-1}(b)\tilde{P}_{0}U^{*} = U\alpha^{0} \circ j_{0}^{-1}(b)U^{*} = \Phi(\alpha^{0} \circ j_{0}^{-1}(b)) =$$

= $\alpha^{0} \circ j_{0}^{-1} \circ \beta(b) = \alpha^{0} \circ j_{0}^{-1}(VbV^{*}).$

Since for every m > 0 T_m can be constructed from T_0 and "Ad(V)" equation (6) shows that $\tilde{P}_0\tilde{A}\tilde{P}_0 = C^*(\alpha_0 \circ j_0^{-1}(\bigcup_{l=0}^{\infty} T_l) \cup \{S\}) = C^*(\alpha_0 \circ j_0^{-1}(T_0) \cup \{S\}) = C^*(\{S_1, \ldots, S_n, S\}).$

We want to apply now Theorem 1.1 to the C^* -algebra $A \stackrel{def}{=} \tilde{P}_0 \tilde{A} \tilde{P}_0$. $S_i = \alpha^0 \circ j_0^{-1}(V_i)$ are clearly isometries (i = 1, ..., n). $S^*S = \tilde{P}_0 U^* U \tilde{P}_0 = \tilde{P}_0$ and therefore S is also an isometry. Thus condition (1) holds. It is clear from (6) that $SS^* = \alpha^0 \circ j_0^{-1}(VV^*)$. Therefore

$$0 = \alpha^{0} \circ j_{0}^{-1}(0) = \alpha^{0} \circ j_{0}^{-1}((I - VV^{*}) \prod_{i=1}^{n} (I - V_{i}V_{i}^{*})) =$$

$$= (\tilde{P}_{0} - \alpha^{0} \circ j_{0}^{-1}(VV^{*})) \prod_{i=1}^{n} (\tilde{P}_{0} - \alpha^{0} \circ j_{0}^{-1}(V_{i}V_{i}^{*})) = (\tilde{P}_{0} - SS^{*}) \prod_{i=1}^{n} (\tilde{P}_{0} - S_{i}S_{i}^{*}).$$

This proves that condition (4) holds.

Conditions (2) and (3) obviously hold for all pairs of isometries from $\{S_1, \ldots, S_n\}$. If $n \geq i > k$ then $S_i S_i^* S S^* = \alpha^0 \circ j_0^{-1}(V_i V_i^* V V^*) = 0$, so condition (3) holds also for all paris (S_i, S) with $k < i \leq n$. For $1 \leq i \leq k$ one has

$$SS_i = S\alpha^0 \circ j_0^{-1}(V_i) = S\alpha^0 \circ j_0^{-1}(V_i)S^*S = \Phi(\alpha^0 \circ j_0^{-1}(V_i))S = \alpha^0 \circ j_0^{-1}(VV_iV^*)S = \alpha^0 \circ j_0^{-1}(V_iVV^*)S = \alpha^0 \circ j_0^{-1}(V_iVV^*)S = \alpha^0 \circ j_0^{-1}(V_iVV^*)S = S_iSS^*S = S_iS.$$

This shows that $SS_i = S_iS$. In the same way one can show that $SS_i^* = S_i^*S$. Therefore condition (4) holds for all pairs (S, S_i) with $1 \le i \le k$.

Applying Theorem 1.1 we get $A \cong C_Q^*(\Gamma)$. Obviously we also have $C_Q^*(\Gamma) \cong \tilde{P}_m \tilde{A} \tilde{P}_m$ for each $m \in \mathbb{Z}$.

We reming here (see [2, IV.3.1], [1, §22]) that each C^* -algebra in the small bootstrap class \mathfrak{N} satisfies the Universal Coefficient Theorem. The small bootstrap class \mathfrak{N} is the smallest class of C^* -algebras that satisfy:

- (i) $\mathbb{C} \in \mathfrak{N}$.
- (ii) \mathfrak{N} is closed under stable isomorphism.
- (iii) \mathfrak{N} is closed under inductive limits.
- (iv) \mathfrak{N} is closed under crossed-products by \mathbb{Z} .
- (v) If $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{A}/\mathfrak{I} \to 0$ is an exact sequence, and two of $\mathfrak{I}, \mathfrak{A}, \mathfrak{A}/\mathfrak{I}$ are in \mathfrak{N} , so is the third.

The C^* -algebras in this class are all nuclear.

The following proposition holds:

Proposition 2.4. In the above settings: $\tilde{A} \cong \tilde{B} \rtimes_{\Phi} \mathbb{Z}$ and $A \cong C_Q^*(\Gamma)$ is Morita equivalent to \tilde{A} . Both of the C^* -algebras A and \tilde{A} are simple, belong to \mathfrak{N} and

 $\mathbf{K}_*(\tilde{A}) = \mathbf{K}_*(A)$. Also if we suppose that $[\tilde{P}_0]_0$ generates $\mathbf{K}_0(\tilde{A})$ then it follows that $[\tilde{P}_0]_0$ generates $\mathbf{K}_0(A)$.

Proof. We showed above that $\tilde{P}_m\tilde{A}\tilde{P}_m\cong C_Q^*(\Gamma)$ for each $m\in\mathbb{Z}$. It is easy to see that $\tilde{A}=\bigcup_{m=0}^\infty \tilde{P}_m\tilde{A}\tilde{P}_m$ and since each $\tilde{P}_m\tilde{A}\tilde{P}_m$ is simple from this follows that \tilde{A} is simple too. Therefore every projection in \tilde{A} is full. In particular \tilde{P}_0 is a full projection and therefore $A=\tilde{P}_0\tilde{A}\tilde{P}_0$ is a full corner of \tilde{A} and is therefore Morita equivalent to \tilde{A} . It follows that A and \tilde{A} are stably isomorphic (by Brown's Theorem [3]) and therefore $\mathbf{K}_*(A)=\mathbf{K}_*(\tilde{A})$.

If \tilde{A} belongs to \mathfrak{N} then from the definition follows that A also does since it is stably isomorphic to \tilde{A} .

To conclude the proof of the lemma it remains to show that starting from any finite graph G with G^{opp} connected and going through the above construction the C^* -algebra (let us denote it by \tilde{A}_G - the analogue of \tilde{A} for G) belongs to \mathfrak{N} . We will do this by using induction on the number of the vertices of G. If G has only two vertices and no edges then $C_Q^*(G) \cong \mathcal{O}_2$ and $C^*(G) \cong \mathcal{E}_2$ so the statement for this graph is true. Suppose that the statement is true for any graph G with at most $n \geq 2$ vertices such that its opposite graph G^{opp} is connected. In particular $C_Q^*(\Gamma')$ (and therefore also $C^*(\Gamma')$) belong to \mathfrak{N} . Then $T_0 \cong C^*(\Gamma')$ as constructed above also does. Since the bootstrap category is closed under stabilization, extensions, inductive limits and crossed products by \mathbb{Z} we conclude using induction that the C^* -algebra \tilde{A} is also nuclear and belong to the small bootstrap class (we use diagram (3) together with Lemma 2.2 and the fact that π_m is an isomorphism for all $m \in \mathbb{N}$). Finally as we showed in the last paragraph this implies that A belongs to \mathfrak{N} . This concludes the inductive step because $A \cong C_Q^*(\Gamma)$ and Γ is an arbitrary graph with n+1 vertices such that Γ^{opp} is connected.

The final statement of the proposition in obvious.

The proposition is proved.

3. The Computation of the K-Theory

For a finite graph G with G^{opp} connected Crisp and Laca conjectured in [6] that the order of $[1_{C_Q^*(G)}]_0$ in $\mathbf{K}_0(C_Q^*(G))$ is $|\chi(G)|$, where $\chi(G)$ is the Euler characteristics of G. $\chi(G)$ is defined as

$$\chi(G) = 1 - \sum_{j=1}^{\infty} (-1)^{j-1} \times \{ \text{ number of complete subgraphs of } G \text{ on } j \text{ vertices } \}.$$

We will use the settings from the previous section. Denote $P_m \stackrel{def}{=} V^m (V^*)^m$, $m \in \mathbb{N}_0$. Denote also $Q \stackrel{def}{=} \prod_{i=1}^k (I - V_i V_i^*)$. Let $\Gamma_k = \{(i,j) | 1 \leq i, j \leq k, (i,j) \in \Gamma'\} \subset \Gamma'$.

Since the vertex n+1 of Γ is connected with each of the vertices $1, \ldots, k$ and none of the others we have

$$\chi(\Gamma) = 1 - \sum_{j=1}^{n} (-1)^{j-1} \times \{ \text{ number of complete subgraphs of } \Gamma' \text{ on } j \text{ vertices } \} - (1 - \sum_{j=1}^{k} (-1)^{j-1} \times \{ \text{ number of complete subgraphs of } \Gamma_k \text{ on } j \text{ vertices } \}).$$

Therefore

(7)
$$\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k).$$

The following lemma is based on the "Euler characteristics idea" and is essentially due to Crisp and Laca:

Lemma 3.1. If E is a C*-subalgebra of B that contains T_m (for $m \in \mathbb{N}_0$) we have

(8)
$$\chi(\Gamma')[P_m]_0 = [P_{m+1}Q]_0 \text{ (in } \mathbf{K}_0(E)).$$

If E is a C*-subalgebra of B that contains T_m and T_{m+1} (for $m \in \mathbb{N}_0$) we have

(9)
$$\chi(\Gamma')[P_m]_0 = \chi(\Gamma_k)[P_{m+1}]_0 \text{ (in } \mathbf{K}_0(E)).$$

If E is a C^* -subalgebra of B that contains T_{m+1} (for $m \in \mathbb{N}_0$) we have

(10)
$$[P_{m+1}Q]_0 = \chi(\Gamma_k)[P_{m+1}]_0 \text{ (in } \mathbf{K}_0(E)).$$

Proof. In the last section we showed that

(11)
$$\prod_{i=1}^{n} (I - V_i V_i^*) = V \prod_{i=1}^{k} (I - V_i V_i^*) V^*.$$

Since $V^m \prod_{i=1}^n (I - V_i V_i^*)(V^*)^m = \prod_{i=1}^n (V^m (V^*)^m - V^m V_i V_i^* (V^*)^m)$ then by multiplying equation (11) by V^m on the left and by $(V^*)^m$ on the right we get

$$\prod_{i=1}^{n} (V^{m}(V^{*})^{m} - V^{m}V_{i}V_{i}^{*}(V^{*})^{m}) = V^{m+1} \prod_{i=1}^{k} (I - V_{i}V_{i}^{*})(V^{*})^{m+1} =$$

$$= V^{m+1}(V^{*})^{m+1}Q.$$

This equation is actually three equations which hold in certain C^* -subalgebras of B. We record them here:

If E is a C*-subalgebra of B that contains T_m (for $m \in \mathbb{N}_0$) we have

(12)
$$\prod_{i=1}^{n} (V^{m}(V^{*})^{m} - V^{m}V_{i}V_{i}^{*}(V^{*})^{m}) = V^{m+1}(V^{*})^{m+1}Q.$$

If E is a C^* -subalgebra of B that contains T_m and T_{m+1} (for $m \in \mathbb{N}_0$) we have

(13)
$$\prod_{i=1}^{n} (V^{m}(V^{*})^{m} - V^{m}V_{i}V_{i}^{*}(V^{*})^{m}) = V^{m+1} \prod_{i=1}^{k} (I - V_{i}V_{i}^{*})(V^{*})^{m+1}.$$

If E is a C*-subalgebra of B that contains T_{m+1} (for $m \in \mathbb{N}_0$) we have

(14)
$$V^{m+1} \prod_{i=1}^{k} (I - V_i V_i^*) (V^*)^{m+1} = V^{m+1} (V^*)^{m+1} Q.$$

Note that if E is an appropriate C^* -subalgebra of B then for each projection P that commutes with $V_1V_1^*$ we have $[V^mP(V^*)^m-V^mPV_1V_1^*(V^*)^m]_0=[V^mP(V^*)^m]_0-[V^mPV_1V_1^*(V^*)^m]_0$. Suppose by induction that for some $n>l\geq 1$ if P is a projection that commutes with $V_1V_1^*,\ldots,V_lV_l^*$ we have

$$(15) \quad [V^{m} \prod_{i=1}^{l} (P - PV_{i}V_{i}^{*})(V^{*})^{m}]_{0} =$$

$$[V^{m} P(V^{*})^{m}]_{0} - \sum_{i=1}^{l} [V^{m} PV_{i}V_{i}^{*}(V^{*})^{m}]_{0} +$$

$$+ \sum_{j=2}^{l} (-1)^{j} (\sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq l \\ (i_{s}, i_{t}) \in \Gamma', 1 \leq s < t \leq j}} [V^{m} PV_{i_{1}} \dots V_{i_{j}}V_{i_{j}}^{*} \dots V_{i_{1}}^{*}(V^{*})^{m}]_{0}).$$

We know that $V_{l+1}V_{l+1}^*$ commutes with each of $V_1V_1^*, \ldots, V_lV_l^*$. If P commutes with $V_1V_1^*, \ldots, V_{l+1}V_{l+1}^*$ then we can apply (15) to the family $V_1V_1^*, \ldots, V_lV_l^*$ and the projection $PV_{l+1}V_{l+1}^*$ to obtain the following equation:

$$[V^{m}V_{l+1}V_{l+1}^{*}\prod_{i=1}^{l}(P-PV_{i}V_{i}^{*})(V^{*})^{m}]_{0} = [V^{m}\prod_{i=1}^{l}(PV_{l+1}V_{l+1}^{*}-PV_{l+1}V_{l+1}^{*}V_{i}V_{i}^{*})(V^{*})^{m}]_{0} =$$

$$= [V^{m}PV_{l+1}V_{l+1}^{*}(V^{*})^{m}]_{0} - \sum_{i=1}^{l}[V^{m}PV_{l+1}V_{l+1}^{*}V_{i}V_{i}^{*}(V^{*})^{m}]_{0} +$$

$$+ \sum_{j=2}^{l}(-1)^{j}(\sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq l \\ (i_{s},i_{t}) \in \Gamma', 1 \leq s < t \leq j}}[V^{m}PV_{l+1}V_{l+1}^{*}V_{i_{1}} \cdots V_{i_{j}}V_{i_{j}}^{*} \cdots V_{i_{1}}^{*}(V^{*})^{m}]_{0}).$$

Now since $V^m V_{l+1} V_{l+1}^* \prod_{i=1}^l (P - P V_i V_i^*) (V^*)^m < V^m \prod_{i=1}^l (P - P V_i V_i^*) (V^*)^m$ it is easy to see that we have

$$\begin{split} [V^m(P-PV_{l+1}V_{l+1}^*)\prod_{i=1}^l (P-PV_iV_i^*)(V^*)^m]_0 &= \\ &= [V^m\prod_{i=1}^l (P-PV_iV_i^*)(V^*)^m - V^mV_{l+1}V_{l+1}^*\prod_{i=1}^l (P-PV_iV_i^*)(V^*)^m]_0 = \\ &= [V^m\prod_{i=1}^l (P-PV_iV_i^*)(V^*)^m]_0 - [V^mV_{l+1}V_{l+1}^*\prod_{i=1}^l (P-PV_iV_i^*)(V^*)^m]_0 = \\ &= [V^mP(V^*)^m]_0 - \sum_{i=1}^l [V^mPV_iV_i^*(V^*)^m]_0 + \\ &+ \sum_{j=2}^l (-1)^j \sum_{\substack{1 \leq i_1 < \dots < i_j \leq l \\ (i_s,i_t) \in \Gamma', 1 \leq s < t \leq j}} [V^mPV_{l+1} \cdots V_{i_j}V_{i_j}^* \cdots V_{i_1}^*(V^*)^m]_0 - [V^mPV_{l+1}V_{l+1}^*(V^*)^m]_0 + \\ &- \sum_{j=2}^l (-1)^j \sum_{\substack{1 \leq i_1 < \dots < i_j \leq l \\ (i_s,i_t) \in \Gamma', 1 \leq s < t \leq j}} [V^mPV_{l+1}V_{l+1}^*V_iV_i^*(V^*)^m]_0 - \\ &- \sum_{j=2}^l (-1)^j \sum_{\substack{1 \leq i_1 < \dots < i_j \leq l \\ (i_s,i_t) \in \Gamma', 1 \leq s < t \leq j}} [V^mPV_{l+1}V_{l+1}^*V_{i_1} \cdots V_{i_j}V_{i_j}^* \cdots V_{i_1}^*(V^*)^m]_0 + \\ &+ \sum_{j=2}^{l+1} (-1)^j \sum_{\substack{1 \leq i_1 < \dots < i_j \leq l+1 \\ (i_s,i_t) \in \Gamma', 1 \leq s < t \leq j}} [V^mPV_{i_1} \cdots V_{i_j}V_{i_j}^* \cdots V_{i_1}^*(V^*)^m]_0. \end{split}$$

Then by induction follows that for l = k or l = n we get

$$\left[\prod_{i=1}^{l} (V^{m}(V^{*})^{m} - V^{m}V_{i}V_{i}^{*}(V^{*})^{m})\right]_{0} =
= \left[I\right]_{0} - \sum_{i=1}^{l} \left[V^{m}V_{i}V_{i}^{*}(V^{*})^{m}\right]_{0} + \sum_{j=2}^{l} (-1)^{j} \sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq l \\ (i_{s}, i_{t}) \in \Gamma', 1 \leq s < t \leq j}} \left[V^{m}V_{i_{1}} \cdots V_{i_{j}}V_{i_{j}}^{*} \cdots V_{i_{1}}^{*}(V^{*})^{m}\right]_{0}.$$

Combining the last equation with equations (12), (13) and (14) we obtain the following equations:

If E is a C*-subalgebra of B that contains T_m (for $m \in \mathbb{N}_0$) we have

$$(16) \quad [V^{m}(V^{*})^{m}]_{0} - \sum_{i=1}^{n} [V^{m}V_{i}V_{i}^{*}(V^{*})^{m}]_{0} + \\ + \sum_{j=2}^{n} (-1)^{j} \left(\sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq n \\ (i_{s}, i_{t}) \in \Gamma', 1 \leq s < t \leq j}} [V^{m}V_{i_{1}} \cdots V_{i_{j}}V_{i_{j}}^{*} \cdots V_{i_{1}}^{*}(V^{*})^{m}]_{0}) = \\ = [V^{m+1}(V^{*})^{m+1}Q]_{0}.$$

If E is a C^* -subalgebra of B that contains T_m and T_{m+1} (for $m \in \mathbb{N}_0$) we have

$$(17) \quad [V^{m}(V^{*})^{m}]_{0} - \sum_{i=1}^{n} [V^{m}V_{i}V_{i}^{*}(V^{*})^{m}]_{0} + \\ + \sum_{j=2}^{n} (-1)^{j} (\sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq n \\ (i_{s},i_{t}) \in \Gamma', 1 \leq s < t \leq j}} [V^{m}V_{i_{1}} \cdots V_{i_{j}}V_{i_{j}}^{*} \cdots V_{i_{1}}^{*}(V^{*})^{m}]_{0}) = \\ = [V^{m+1}(V^{*})^{m+1}]_{0} - \sum_{i=1}^{k} [V^{m+1}V_{i}V_{i}^{*}(V^{*})^{m+1}]_{0} + \\ + \sum_{j=2}^{k} (-1)^{j} (\sum_{\substack{1 \leq i_{1} < \dots < i_{j} \leq k \\ (i_{s},i_{t}) \in \Gamma_{k}, 1 \leq s < t \leq j}} [V^{m+1}V_{i_{1}} \cdots V_{i_{j}}V_{i_{j}}^{*} \cdots V_{i_{1}}^{*}(V^{*})^{m+1}]_{0}).$$

If E is a C^* -subalgebra of B that contains T_{m+1} (for $m \in \mathbb{N}_0$) we have

$$(18) \quad [V^{m+1}(V^*)^{m+1}]_0 - \sum_{i=1}^k [V^{m+1}V_iV_i^*(V^*)^{m+1}]_0 +$$

$$+ \sum_{j=2}^k (-1)^j (\sum_{\substack{1 \le i_1 < \dots < i_j \le k \\ (i_s, i_t) \in \Gamma_k, 1 \le s < t \le j}} [V^{m+1}V_{i_1} \cdots V_{i_j}V_{i_j}^* \cdots V_{i_1}^*(V^*)^{m+1}]_0) =$$

$$= [V^{m+1}(V^*)^{m+1}Q]_0.$$

It is easy to see that in each C^* -subalgebra of B that contains T_m the projection $V^m V_{i_1} \cdots V_{i_j} V_{i_j}^* \cdots V_{i_1}^* (V^*)^m$ is Murray - von Neumann equivalent to $V^m (V^*)^m$ via the partial isometry $V^m V_{i_1} \cdots V_{i_j} (V^*)^m \in T_m$, where $\{i_1, \ldots, i_j\} \subset \{1, \ldots, n\}$. This observation together with equations (16), (17) and (18) give:

If E is a C^* -subalgebra of B that contains T_m we have

(19)
$$[P_m]_0 - \sum_{i=1}^n [P_m]_0 + \sum_{j=2}^n (-1)^j \left(\sum_{\substack{1 \le i_1 < \dots < i_j \le n \\ (i_s, i_t) \in \Gamma', 1 \le s < t \le j}} [P_m]_0 \right) = [P_{m+1}Q]_0.$$

If E is a C^* -subalgebra of B that contains T_m and T_{m+1} then we have

$$(20) [P_m]_0 - \sum_{i=1}^n [P_m]_0 + \sum_{j=2}^n (-1)^j \left(\sum_{\substack{1 \le i_1 < \dots < i_j \le n \\ (i_s, i_t) \in \Gamma', 1 \le s < t \le j}} [P_m]_0 \right) =$$

$$= [P_{m+1}]_0 - \sum_{i=1}^k [P_{m+1}]_0 + \sum_{j=2}^k (-1)^j \left(\sum_{\substack{1 \le i_1 < \dots < i_j \le k \\ (i_s, i_t) \in \Gamma_{k-1} \le s < t \le j}} [P_{m+1}]_0 \right).$$

If E is a C^* -subalgebra of B that contains T_{m+1} we have

$$(21) [P_{m+1}]_0 - \sum_{i=1}^k [P_{m+1}]_0 + \sum_{j=2}^k (-1)^j (\sum_{\substack{1 \le i_1 < \dots < i_j \le k \\ (i_s, i_t) \in \Gamma_k, 1 \le s < t \le j}} [P_{m+1}]_0) = [P_{m+1}Q]_0.$$

The last three equations are what we had to prove.

Remark 3.2. It also follows from this lemma that if we denote the isometries that generate $C^*(\Gamma)$ by $\tilde{V}, \tilde{V}_1, \ldots, \tilde{V}_n$, then

$$[(I - \tilde{V}\tilde{V}^*) \prod_{i=1}^n (I - \tilde{V}_i \tilde{V}_i^*)]_0 = \chi(\Gamma)[I]_0 \text{ (in } K_0(C^*(\Gamma))).$$

Therefore in the extension

(22)
$$0 \to \langle (I - \tilde{V}\tilde{V}^*) \prod_{i=1}^n (I - \tilde{V}_i \tilde{V}_i^*) \rangle \xrightarrow{I_{\Gamma}} C^*(\Gamma) \xrightarrow{Q_{\Gamma}} C_Q^*(\Gamma) \to 0$$

the map I_{Γ_*} on \mathbf{K}_0 is given by

$$[(I - \tilde{V}\tilde{V}^*) \prod_{i=1}^n (I - \tilde{V}_i \tilde{V}_i^*)]_0 \mapsto \chi(\Gamma)[I]_0.$$

Now we can state and prove the following

Proposition 3.3. Suppose that G is a finite graph with at least two vertices and suppose that G^{opp} is connected. Then

(23)
$$\mathbf{K}_{0}(C_{Q}^{*}(G)) = \begin{cases} \mathbb{Z}_{|\chi(G)|}, & \text{if } \chi(G) \neq 0, \\ \mathbb{Z}, & \text{if } \chi(G) = 0, \end{cases} \mathbf{K}_{1}(C_{Q}^{*}(G)) = \begin{cases} 0, & \text{if } \chi(G) \neq 0, \\ \mathbb{Z}, & \text{if } \chi(G) = 0, \end{cases}$$

and $[1_{C_Q^*(G)}]_0$ generates $\mathbf{K}_0(C_Q^*(G))$ in all cases.

Moreover $\mathbf{K}_0(C^*(G)) = \mathbb{Z}$, $\mathbf{K}_1(C^*(G)) = 0$ and $[1_{C^*(G)}]_0$ generates $\mathbf{K}_0(C^*(G))$ in all cases.

Proof. We will use induction on the number of vertices of G. If G has two vertices (and no edges) then $C_Q^*(G) = \mathcal{O}_2$ and $C^*(G) = \mathcal{E}_2$ and in this case certainly the statement is true. Suppose that the statement is true for all graphs G with at most $n \geq 2$ vertices and with G^{opp} connected. The graph Γ considered above was a randomly

chosen graph with n+1 vertices and with the property that Γ^{opp} is connected. If we show that the statement holds for Γ than this will prove the statement by induction.

We note that from Lemma 2.2 and the assumption follows that $\mathbf{K}_0(T_m) = \mathbb{Z}[P_m]_0$ and $\mathbf{K}_1(T_m) = 0$ for all $m \in \mathbb{N}_0$. Also since $\mathcal{I}_m \cong \mathcal{K}$ we have $\mathbf{K}_0(\mathcal{I}_m) = \mathbb{Z}[P_mQ]_0$ and $\mathbf{K}_1(\mathcal{I}_m) = 0$ for all $m \in \mathbb{N}_0$. Finally we remind that π_m is an isomorphism for all $m \in \mathbb{N}_0$.

From the K-theory six term eact sequences for the two exact rows of (3) we have the following commutative diagram:

where γ_m^{ind} and δ_m^{ind} are the index maps for the corresponding six term exact sequences. Since \mathcal{I}_{m-1} is generated by P_mQ from Lemma 3.1 follows that the map i_{m*} : $\mathbf{K}_0(\mathcal{I}_{m-1}) \to \mathbf{K}_0(B_{m-1})$ is induced by $[P_mQ]_{\mathbf{K}_0(\mathcal{I}_{m-1})} \mapsto \chi(\Gamma')[P_{m-1}]_{\mathbf{K}_0(B_{m-1})}$. Also the map $I'_{m*}: \mathbf{K}_0(\mathcal{I}_{m-1}) \to \mathbf{K}_0(T_m)$ is induced by $[P_mQ]_{\mathbf{K}_0(\mathcal{I}_{m-1})} \mapsto \chi(\Gamma_k)[P_m]_{\mathbf{K}_0(T_m)}$. When we "apply" β to equations (1) and (2) we obtain the following commutative diagrams with exact rows:

$$0 \longrightarrow \mathcal{I}_{m-1} \xrightarrow{i'_{m}} B_{m-1} \xrightarrow{p'_{m}} B_{m-1}/\mathcal{I}_{m-1} \longrightarrow 0$$

$$\beta \downarrow \qquad \qquad \beta \downarrow \qquad \qquad \downarrow \bar{\beta}$$

$$0 \longrightarrow \mathcal{I}_{m} \xrightarrow{i'_{m+1}} B_{m} \xrightarrow{p'_{m+1}} B_{m}/\mathcal{I}_{m} \longrightarrow 0$$
and
$$0 \longrightarrow \mathcal{I}_{m} \xrightarrow{i_{m}} B_{m} \xrightarrow{p_{m}} B_{m}/\mathcal{I}_{m} \longrightarrow 0$$

where $\bar{\beta}$ and $\bar{\bar{\beta}}$ are induced by β on the above quotients.

We can now start examining the five different cases depending on $\chi(\Gamma')$ and $\chi(\Gamma_k)$: (case I): $\chi(\Gamma') = 0$ and $\chi(\Gamma_k) = 0$.

By assumption $i'_{m*} = 0 = I'_{m*}$. From (24) is easy to see that $\delta_m^{\text{ind}} = 0$. Therefore (24) splits into two:

(27)
$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Suppose by induction that $\mathbf{K}_0(B_{m-1}) = \mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_{m-1}]_0$. Notice that for m = 1 we have $\mathbf{K}_0(B_0) = \mathbb{Z}[P_0]_0$. Then from (27) follows that $\mathbf{K}_0(B_m) = I_{m*}(\mathbf{K}_0(B_{m-1})) \oplus i_{m*}(\mathbf{K}_0(T_m))$ since all extensions of free abelian groups are trivial. Noting that $\mathbf{K}_0(T_m) = \mathbb{Z}[P_m]_0$ concludes the induction. Therefore $\mathbf{K}_0(B_m) = \mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_m]_0$ for each $m \in \mathbb{N}$. Notice that we can write $\mathbf{K}_0(B_m) = \mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_0]_0$

Suppose by induction that

$$\mathbf{K}_{1}(B_{m-1}) = \mathbb{Z}(p_{1_{*}})^{-1} \circ \pi_{1_{*}} \circ (\gamma_{1}^{\text{ind}})^{-1}([P_{1}Q]_{0}) \oplus \dots$$
$$\cdots \oplus \mathbb{Z}(p_{m-1_{*}})^{-1} \circ \pi_{m-1_{*}} \circ (\gamma_{m-1}^{\text{ind}})^{-1}([P_{m-1}Q]_{0}).$$

This is trivially true for m=1. From (28) we see that $\mathbf{K}_1(B_m)=(p_{m*})^{-1}\circ \pi_{m*}(\mathbf{K}_1(B_{m-1}/\mathcal{I}_{m-1}))$. Since all groups are free abelian all the extensions are trivial and therefore $\mathbf{K}_1(B_m)=I_{m*}(\mathbf{K}(B_{m-1}))\oplus \mathbb{Z}(p_{m*})^{-1}\circ \pi_{m*}\circ (\gamma_m^{\mathrm{ind}})^{-1}([P_mQ]_0)$. This concludes the induction. From the functoriality of the index map and from equations (25) and (26) follows that $(p_{m*})^{-1}\circ \pi_{m*}\circ (\gamma_m^{\mathrm{ind}})^{-1}([P_mQ]_0)=(p_{m*})^{-1}\circ \pi_{m*}\circ (\gamma_m^{\mathrm{ind}})^{-1}\circ \beta_*([P_{m-1}Q]_0)=\beta_*\circ (p_{m-1*})^{-1}\circ \pi_{m-1*}\circ (\gamma_{m-1}^{\mathrm{ind}})^{-1}([P_{m-1}Q]_0)$. Therefore we can write

$$\mathbf{K}_{1}(B_{m}) = \mathbb{Z}(p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_{1}^{\text{ind}})^{-1}([P_{1}Q]_{0}) \oplus \dots \\ \cdots \oplus \mathbb{Z}\beta_{*}^{m-1} \circ (p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_{1}^{\text{ind}})^{-1}([P_{1}Q]_{0}).$$

If $u \in B_1$ is a unitary with $[u]_1 = (p_{1*})^{-1} \circ \pi_{1*} \circ (\gamma_1^{\text{ind}})^{-1}([P_1Q]_0)$ then we can write

$$\mathbf{K}_1(B_m) = \mathbb{Z}[u]_1 \oplus \cdots \oplus \mathbb{Z}\beta_*^{m-1}([u]_1).$$

From this we get
$$\mathbf{K}_0(B) = \bigoplus_{i=0}^{\infty} \mathbb{Z}\beta_*^i([I]_0)$$
 and $\mathbf{K}_1(B) = \bigoplus_{i=1}^{\infty} \mathbb{Z}\beta_*^{i-1}([u]_1)$.

Let $\tilde{u} = \alpha^0 \circ j_0(u) \in \tilde{B}$. Then it is easy to see that $\mathbf{K}_0(\tilde{B}) = \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_*^i([\tilde{P}_0]_0)$ and $\mathbf{K}_1(\tilde{B}) = \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_*^{i-1}([\tilde{u}]_1)$.

The Pimsner-Voiculescu gives

$$\bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i}([\tilde{P}_{0}]_{0})) \xrightarrow{\mathrm{id}_{*}-\Phi_{*}} \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i}([\tilde{P}_{0}]_{0})) \longrightarrow \mathbf{K}_{0}(\tilde{A})$$

$$\uparrow \qquad \qquad \qquad \downarrow$$

$$\mathbf{K}_{1}(\tilde{A}) \qquad \longleftarrow \qquad \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i-1}([\tilde{u}]_{1}) \stackrel{\mathrm{id}_{*}-\Phi_{*}}{\longleftarrow} \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i-1}([\tilde{u}]_{1}).$$

From this we can conclude that $\mathbf{K}_0(\tilde{A}) = \mathbb{Z}[\tilde{P}_0]_0$, $\mathbf{K}_1(\tilde{A}) = \mathbb{Z}$. From Proposition 2.4 follows that $\mathbf{K}_0(\tilde{A}) \cong \mathbf{K}_0(C_Q^*(\Gamma)) = \mathbb{Z}$ and $\mathbf{K}_1(\tilde{A}) \cong \mathbf{K}_1(C_Q^*(\Gamma)) = \mathbb{Z}$ and that $[1_{C_Q^*(\Gamma)}]_0$ generates $\mathbf{K}_0(C_Q^*(\Gamma))$.

From Remark 3.2 follows that in the extension (22) the map I_{Γ_*} on \mathbf{K}_0 is zero. This shows that $\mathbf{K}_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $\mathbf{K}_1(C^*(\Gamma)) = 0$.

This concludes the proof of (case \mathbf{I}).

(case II): $\chi(\Gamma') \neq 0$ and $\chi(\Gamma_k) = 0$.

By assumption $\mathbf{K}_0(B_0) = \mathbb{Z}[P_0]_0$, $\mathbf{K}_0(B_0/\mathcal{I}_0) = \mathbb{Z}_{|\chi(\Gamma')|}p'_{1*}([P_0]_0)$, $\mathbf{K}_1(B_0) = 0$ and $\mathbf{K}_1(B_0/\mathcal{I}_0) = 0$.

Suppose by induction that

$$\mathbf{K}_0(B_{m-1}) = \mathbb{Z}[P_{m-1}]_0 \oplus \mathbb{Z}_{|\chi(\Gamma')|}[P_{m-2}]_0 \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma')|}[P_0]_0,$$

$$\mathbf{K}_{0}(B_{m-1}/\mathcal{I}_{m-1}) = \mathbb{Z}_{|\chi(\Gamma')|}p'_{m*}([P_{m-1}]_{0}) \oplus \mathbb{Z}_{|\chi(\Gamma')|}p'_{m*}([P_{m-2}]_{0}) \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma')|}p'_{m*}([P_{0}]_{0}),$$

$$\mathbf{K}_{1}(B_{m-1}) = 0 \text{ and } \mathbf{K}_{1}(B_{m-1}/\mathcal{I}_{m-1}) = 0.$$

Then from diagram (24) immediately follows that $\mathbf{K}_1(B_m) = 0$ and $\mathbf{K}_1(B_m/T_m) = 0$. Then (24) reduces to the following commutative diagram with exact rows:

$$(29) \qquad \mathbf{K}_{0}(\mathcal{I}_{m-1}) \xrightarrow{i'_{m*}} \mathbf{K}_{0}(B_{m-1}) \xrightarrow{p'_{m*}} \mathbf{K}_{0}(B_{m-1}/\mathcal{I}_{m-1}) \longrightarrow 0$$

$$I'_{m*}=0 \downarrow \qquad I_{m*} \downarrow \qquad \qquad \cong \downarrow^{\pi_{m*}}$$

$$0 \longrightarrow \mathbf{K}_{0}(T_{m}) \xrightarrow{i_{m*}} \mathbf{K}_{0}(B_{m}) \xrightarrow{p_{m*}} \mathbf{K}_{0}(B_{m}/T_{m}) \longrightarrow 0.$$

From Lemma 3.1 we have that $\chi(\Gamma')[P_l]_0 = 0$ in $\mathbf{K}_0(B_m)$ for $l = 0, \ldots, m-1$. Since π_{m*} is an isomorphism then by the inducton hypothesis and (29) it is easy to see that p_{m*} restricted to $\mathcal{G} = \langle [P_0]_0, \ldots, [P_{m-1}]_0 \rangle_{\mathbf{K}_0(B_m)}$ is an isomorphism. This fact also implies that there are no relations between $[P_m]_0$ and \mathcal{G} (since the bottom row of (29) is exact). Since i_{m*} is injective then $[P_m]_0$ in of infinite order in $\mathbf{K}_0(B_m)$. Clearly $\mathbf{K}_0(B_m)$ is generated by $[P_m]_0$ and \mathcal{G} . Therefore

$$\mathbf{K}_0(B_m) = \mathbb{Z}[P_m]_0 \oplus \mathbb{Z}_{|\chi(\Gamma')|}[P_{m-1}]_0 \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma')|}[P_0]_0.$$

From the following six term exact sequence

$$\mathbf{K_0}(\mathcal{I}_m) \xrightarrow{i'_{m*}} \mathbf{K_0}(B_m) \xrightarrow{p'_{m*}} \mathbf{K_0}(B_m/\mathcal{I}_m)$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbf{K_1}(B_m/\mathcal{I}_m) \xleftarrow{p'_{m*}} \mathbf{K_1}(B_m) \xleftarrow{i'_{m*}} \mathbf{K_1}(\mathcal{I}_m)$$

and the fact that i'_{m*} is given by $[P_{m+1}Q]_0 \mapsto \chi(\Gamma')[P_m]_0$ we easily get that $\mathbf{K}_1(B_m/\mathcal{I}_m)=0$ and that

$$\mathbf{K}_0(B_m/\mathcal{I}_m) = \mathbb{Z}_{|\chi(\Gamma')|} p'_{m+1_*}([P_m]_0) \oplus \mathbb{Z}_{|\chi(\Gamma')|} p'_{m+1_*}([P_{m-1}]_0) \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma')|} p'_{m+1_*}([P_0]_0).$$
 This completes the induction.

We have
$$\mathbf{K}_0(B) = \bigoplus_{i=0}^{\infty} \mathbb{Z}_{|\chi(\Gamma')|}[P_i]_0$$
 and $\mathbf{K}_1(B) = 0$. We can write $\mathbf{K}_0(B) = \bigoplus_{i=0}^{\infty} \mathbb{Z}_{|\chi(\Gamma')|}\beta_*^i([P_0]_0)$. Therefore $\mathbf{K}_0(\tilde{B}) = \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}_{|\chi(\Gamma')|}\Phi_*^i([\tilde{P}_0]_0)$ and $\mathbf{K}_1(\tilde{B}) = 0$.

The Pimsner-Voiculescu exact sequence gives

$$\bigoplus_{i=-\infty}^{\infty} \mathbb{Z}_{|\chi(\Gamma')|} \Phi_*^i([\tilde{P}_0]_0)) \xrightarrow{\mathrm{id}_* - \Phi_*} \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}_{|\chi(\Gamma')|} \Phi_*^i([\tilde{P}_0]_0)) \longrightarrow \mathbf{K}_0(\tilde{A})$$

$$\uparrow \qquad \qquad \qquad \downarrow$$

$$\mathbf{K}_1(\tilde{A}) \longleftarrow \qquad 0 \longleftarrow \qquad 0.$$

We conclude that $\mathbf{K}_0(\tilde{A}) = \mathbb{Z}_{|\chi(\Gamma')|}[\tilde{P}_0]_0$ and $\mathbf{K}_1(\tilde{A}) = 0$. From Proposition 2.4 we get $\mathbf{K}_0(C_Q^*(\Gamma)) = \mathbb{Z}_{|\chi(\Gamma)|}[1_{C_Q^*(\Gamma)}]_0$ and $\mathbf{K}_1(C_Q^*(\Gamma)) = 0$ (notice that $\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k) = \chi(\Gamma') - 0$).

From Remark 3.2 follows that I_{Γ_*} is "multiplication by $\chi(\Gamma)$ ", so $\mathbf{K}_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $\mathbf{K}_1(C^*(\Gamma)) = 0$.

This concludes the proof of (Case II).

(case III): $\chi(\Gamma') = 0$ and $\chi(\Gamma_k) \neq 0$.

By assumption we have that $\mathbf{K}_0(B_0) = \mathbb{Z}[P_0]_0$, $\mathbf{K}_0(B_0/\mathcal{I}_0) = \mathbb{Z}p'_{1*}([P_0]_0)$, $\mathbf{K}_1(B_0) = 0$ and $\mathbf{K}_1(B_0/\mathcal{I}_0) = \mathbb{Z}$.

Suppose by induction that

$$\mathbf{K}_0(B_{m-1}) = \mathbb{Z}[P_0]_0 \oplus \mathbb{Z}_{|\chi(\Gamma_k)|}[P_1]_0 \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma_k)|}[P_{m-1}]_0$$

and that $\mathbf{K}_1(B_{m-1}) = 0$. Then from diagram (24) we see that the maps γ_m^{ind} and p'_{m*} : $\mathbf{K}_0(B_{m-1}) \to \mathbf{K}_0(B_{m-1}/\mathcal{I}_{m-1})$ are isomorphisms. Since also π_m is an isomorphism this implies that $I_{m*} : \mathbf{K}_0(B_{m-1}) \to \mathbf{K}_0(B_m)$ is an isomorphism into and that p_{m*} restricted to $\mathcal{G} = \langle [P_0]_0, \dots, [P_{m-1}]_0 \rangle_{\mathbf{K}_0(B_m)}$ is also an isomorphism. From the fact that $p_{m*}|_{\mathcal{G}}$ is injective follows that there are no relations between $[P_m]_0$ and \mathcal{G} . The commutativity of

$$\mathbf{K}_{1}(B_{m-1}/\mathcal{I}_{m-1}) \xrightarrow{\gamma_{m}^{\mathrm{ind}}} \mathbf{K}_{0}(\mathcal{I}_{m-1})$$

$$\pi_{m*} \downarrow \cong \qquad \qquad I_{m*} \downarrow [=\times \chi(\Gamma_{k})]$$

$$\mathbf{K}_{1}(B_{m}/T_{m}) \xrightarrow{\delta_{m}^{\mathrm{ind}}} \mathbf{K}_{0}(T_{m})$$

implies that δ_m^{ind} is "multiplication by $\chi(\Gamma_k)$ ". Thus $[P_m]_0$ in $\mathbf{K}_0(B_m)$ is of order $\chi(\Gamma_k)$ (as should be by Lemma 3.1). Therefore

$$\mathbf{K}_0(B_m) = \mathbb{Z}[P_0]_0 \oplus \mathbb{Z}_{|\chi(\Gamma_k)|}[P_1]_0 \oplus \cdots \oplus \mathbb{Z}_{|\chi(\Gamma_k)|}[P_m]_0.$$

We also showed that δ_m^{ind} is injective and therefore $\mathbf{K}_1(B_m) = 0$.

Now we easily get $\mathbf{K}_0(B) = \mathbb{Z}[P_0]_0 \oplus \bigoplus_{i=1}^{\infty} \mathbb{Z}_{|\chi(\Gamma_k)|} \beta_*^i([P_0]_0)$ and $\mathbf{K}_1(B) = 0$. From this follows that $\mathbf{K}_0(\tilde{B}) = \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}_{|\chi(\Gamma_k)|} \Phi_*^i([\tilde{P}_0]_0)$ and $\mathbf{K}_1(\tilde{B}) = 0$.

The Pimsner-Voiculescu exact sequence gives

$$\overset{\infty}{\underset{i=-\infty}{\bigoplus}} \mathbb{Z}_{|\chi(\Gamma_k)|} \Phi_*^i([\tilde{P}_0]_0)) \xrightarrow{\mathrm{id}_* - \Phi_*} \overset{\infty}{\underset{i=-\infty}{\bigoplus}} \mathbb{Z}_{|\chi(\Gamma_k)|} \Phi_*^i([\tilde{P}_0]_0)) \longrightarrow \mathbf{K}_0(\tilde{A})$$

$$\uparrow \qquad \qquad \qquad \downarrow$$

$$\mathbf{K}_1(\tilde{A}) \longleftarrow \qquad 0 \longleftarrow \qquad 0.$$

We conclude that $\mathbf{K}_0(\tilde{A}) = \mathbb{Z}_{|\chi(\Gamma_k)|}[\tilde{P}_0]_0$ and $\mathbf{K}_1(\tilde{A}) = 0$. From Proposition 2.4 we get $\mathbf{K}_0(C_Q^*(\Gamma)) = \mathbb{Z}_{|\chi(\Gamma)|}[1_{C_Q^*(\Gamma)}]_0$ and $\mathbf{K}_1(C_Q^*(\Gamma)) = 0$ (notice that $\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k) = 0 - \chi(\Gamma_k)$).

From Remark 3.2 follows that I_{Γ_*} is "multiplication by $\chi(\Gamma)$ ", so $\mathbf{K}_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $\mathbf{K}_1(C^*(\Gamma)) = 0$.

This concludes the proof of (Case III).

(cases **IV** and **V**): $\chi(\Gamma') \neq 0$, $\chi(\Gamma_k) \neq 0$.

Let's denote $x = \chi(\Gamma')$, $y = \chi(\Gamma_k)$ and let GCD(x, y) = d > 0 be the greatest common divisor of x and y. Then by the Bézout's identity there exist $a, b \in \mathbb{Z}$ such that ax + by = d. Denote also x' = x/d and y' = y/d. Then ax' + by' = 1.

By assumption we have that $\mathbf{K}_0(B_0) = \mathbb{Z}[P_0]_0$, $\mathbf{K}_1(B_0/\mathcal{I}_0) = 0$, $\mathbf{K}_1(B_0) = 0$ and $\mathbf{K}_0(B_0/\mathcal{I}_0) = \mathbb{Z}_{|x|}p'_{1*}([P_0]_0)$.

Then $0 = \mathbf{K}_1(B_0/\mathcal{I}_0) \cong \mathbf{K}_1(B_1/T_1)$ which implies $\mathbf{K}_1(B_1) = 0$. Diagram (24) for m = 1 reduces to

$$(30) \qquad \mathbf{K}_{0}(\mathcal{I}_{0}) \xrightarrow{i_{1*}'} \mathbf{K}_{0}(B_{0}) \xrightarrow{p_{1*}'} \mathbf{K}_{0}(B_{0}/\mathcal{I}_{0}) \longrightarrow 0$$

$$I_{1*}' \downarrow \qquad \qquad I_{1*} \downarrow \qquad \qquad \cong \downarrow \pi_{1*}$$

$$0 \longrightarrow \mathbf{K}_{0}(T_{1}) \xrightarrow{i_{1*}} \mathbf{K}_{0}(B_{1}) \xrightarrow{p_{1*}} \mathbf{K}_{0}(B_{1}/T_{1}) \longrightarrow 0.$$

Clearly in $\mathbf{K}_0(B_1)$ we have $x[P_0]_0 - y[P_1]_0 = 0$. Consider $g = b[P_0]_0 + a[P_1]_0$, $g' = x'[P_0]_0 - y'[P_1]_0 \in \mathbf{K}_0(B_1)$. Since $ag' + y'g = (ax' + y'b)[P_0]_0 = [P_0]_0$ and $x'g - bg' = (x'a + by')[P_1]_0 = [P_1]_0$ it follows that g and g' generate $\mathbf{K}_0(B_1)$. Since i_{1*} is injective on \mathbf{K}_0 it follows that $\mathbf{K}_0(B_1)$ is an infinite group. Clearly $dg' = dx'[P_0]_0 - dy'[P_1]_0 = 0$. Therefore g is of infinite order in $\mathbf{K}_0(B_1)$ and moreover g and g' are not related (or otherwise g would be of finite order). If we suppose that $0 < d' \mid d$ and d'g' = 0 then it will follow that $d'x'[P_0]_0 = d'y'[P_1]_0 \in \ker(p_{1*})$. But the order of $p_{1*}([P_0]_0)$ in $\mathbf{K}_0(B_1/T_1)$ is |x|, so $d'x' \geq x$ or $d' \geq d$. Therefore d' = d and $\mathbf{K}_0(B_1) = \mathbb{Z}(b[P_0]_0 + a[P_1]_0) \oplus \mathbb{Z}_d(x'[P_0]_0 - y'[P_1]_0)$.

Therefore we showed that $\mathbf{K}_0(B_1) = \{\mathbb{Z}[P_0]_0 \oplus \mathbb{Z}[P_1]_0 | x[P_0]_0 - y[P_1]_0 = 0\}$. Suppose by induction that for $m \geq 2$, $\mathbf{K}_1(B_{m-1}) = 0$ and that

$$\mathbf{K}_0(B_{m-1}) = \{ \mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_{m-1}]_0 | x[P_0]_0 - y[P_1]_0 = 0, \dots, x[P_{m-2}]_0 - y[P_{m-1}]_0 = 0 \}.$$

From the induction hypothesis follows that $[P_{m-1}]_0$ is of infinite order in $\mathbf{K}_0(B_{m-1})$ and therefore that $i'_{m*}: \mathbf{K}_0(\mathcal{I}_{m-1}) \to \mathbf{K}_0(B_{m-1})$ is injective and therefore $0 = \mathbf{K}_1(B_{m-1}/\mathcal{I}_{m-1}) \cong \mathbf{K}_1(B_m/T_m)$. This shows that $\mathbf{K}_1(B_m) = 0$ and that (24) reduces to

It is easy to see that

$$\mathbf{K}_{0}(B_{m-1}/\mathcal{I}_{m-1}) = \{\mathbb{Z}p'_{m*}([P_{m-1}]_{0}) \oplus \cdots \oplus \mathbb{Z}p'_{m*}([P_{0}]_{0}) | xp'_{m*}([P_{m-1}]_{0}) = 0, xp'_{m*}([P_{m-2}]_{0}) - yp'_{m*}([P_{m-1}]_{0}) = 0, \ldots, xp'_{m*}([P_{0}]_{0}) - yp'_{m*}([P_{1}]_{0}) = 0\}.$$

Since I'_{m*} is "multiplication by $\chi(\Gamma_k)$ " and therefore injective then by the Five Lemma follows that I_{m*} is also injective. Therefore if we denote $\mathcal{G} = I_{m*}(\mathbf{K}_0(B_{m-1}))$ then $\mathbf{K}_0(B_m) = \langle [P_m]_0, \mathcal{G} \rangle$. One obvious relation in $\mathbf{K}_0(B_m)$ beside the relations that come from $\mathbf{K}_0(B_{m-1})$ is $x[P_{m-1}]_0 - y[P_m]_0 = 0$ and this relation follows from Lemma 3.1. Therefore $\mathbf{K}_0(B_m)$ is a quotient of the group

$$F = \{ \mathbb{Z}\rho_0 \oplus \cdots \oplus \mathbb{Z}\rho_m | x\rho_{m-1} - y\rho_m = 0, \dots, x\rho_0 - y\rho_1 = 0 \},$$

where the quotient map $f: F \to \mathbf{K}_0(B_m)$ is defined on the generators as $\rho_l \mapsto [P_l]_0$, $l = 0, \dots, m$. Then if $F' = \mathbb{Z}\rho_m$ the quotient $F_q = F/F'$ is isomorphis to

$$F_{q} = \{ \mathbb{Z}\rho_{0} \oplus \cdots \oplus \mathbb{Z}\rho_{m} | x\rho_{m-1} - y\rho_{m} = 0, \dots, x\rho_{0} - y\rho_{1} = 0, \rho_{m} = 0 \} = \{ \mathbb{Z}\rho_{0} \oplus \cdots \oplus \mathbb{Z}\rho_{m-1} | x\rho_{m-1} = 0, x\rho_{m-2} - y\rho_{m-1} = 0, \dots, x\rho_{0} - y\rho_{1} = 0 \}.$$

Obviously we have the commutative diagram of abelian groups with exact rows

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F_q \longrightarrow 0$$

$$f' \downarrow \qquad \qquad f \downarrow \qquad \qquad f_q \downarrow$$

$$0 \longrightarrow \mathbf{K}_0(T_m) \xrightarrow{i_{m*}} \mathbf{K}_0(B_m) \xrightarrow{p_{m*}} \mathbf{K}_0(B_m/T_m) \longrightarrow 0,$$

where f_q is the homomorphism induced by f and f' is the restriction of f to F'. Then obviously f' and f_q are isomorphisms (since π_{m_*} is an isomorphism). Therefore by the Five Lemma follows that f is also an isomorphism.

This shows that

$$\mathbf{K}_0(B_m) = \{ \mathbb{Z}[P_0]_0 \oplus \cdots \oplus \mathbb{Z}[P_m]_0 | x[P_0]_0 - y[P_1]_0 = 0, \dots, x[P_{m-1}]_0 - y[P_m]_0 = 0 \}.$$

We also showed above that $\mathbf{K}_1(B_m) = 0$ and this concludes the induction.

Now it is easy to see that $\mathbf{K}_1(B) = 0$ and that

$$\mathbf{K}_{0}(B) = \{ \bigoplus_{i=0}^{\infty} \mathbb{Z} \beta_{*}^{i}([P_{0}]_{0}) | \chi(\Gamma') \beta_{*}^{i}([P_{0}]_{0}) - \chi(\Gamma_{k}) \beta_{*}^{i+1}([P_{0}]_{0}) = 0, \ i \in \mathbb{N}_{0} \}.$$

Then $\mathbf{K}_1(\tilde{B}) = 0$ and

$$\mathbf{K}_{0}(\tilde{B}) = \{ \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) | \chi(\Gamma')\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \chi(\Gamma_{k})\Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0, \ i \in \mathbb{Z} \}.$$

The Pimsner-Voiculescu exact sequence gives

(32)
$$\mathbf{K}_{0}(\tilde{B}) \xrightarrow{\mathrm{id}_{*} - \Phi_{*}} \mathbf{K}_{0}(\tilde{B}) \longrightarrow \mathbf{K}_{0}(\tilde{A})$$

$$\uparrow \qquad \qquad \downarrow$$

$$\mathbf{K}_{1}(\tilde{A}) \longleftarrow 0 \longleftarrow 0.$$

(Case IV): $\chi(\Gamma') \neq 0$, $\chi(\Gamma_k) \neq 0$ and $\chi(\Gamma') = \chi(\Gamma_k)$. In this case

$$\mathbf{K}_{0}(\tilde{A}) = \{ \bigoplus_{i=-\infty}^{\infty} \mathbb{Z} \Phi_{*}^{i}([\tilde{P}_{0}]_{0}) | \chi(\Gamma') \Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \chi(\Gamma') \Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0,$$

$$\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0, i \in \mathbb{Z} \} =$$

$$\{ \bigoplus_{i=-\infty}^{\infty} \mathbb{Z} \Phi_{*}^{i}([\tilde{P}_{0}]_{0}) | \Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0, i \in \mathbb{Z} \} = \mathbb{Z} [\tilde{P}_{0}]_{0}.$$

To examine $\ker(\mathrm{id}_* - \Phi_*)$ take $\omega = \sum_{i=-j}^{j} t_i \Phi_*^i([\tilde{P}_0]_0) \in \ker(\mathrm{id}_* - \Phi_*)$, where $t_i \in \mathbb{Z}$. Then

$$0 = (\mathrm{id}_* - \Phi_*)(\omega) = \sum_{i=-j}^j t_i (\mathrm{id}_* - \Phi_*)(\Phi_*^i([\tilde{P}_0]_0)) = \sum_{i=-j}^j t_i(\Phi_*^i([\tilde{P}_0]_0) - \Phi_*^{i+1}([\tilde{P}_0]_0)).$$

Therefore $t_i = s_i |\chi(\Gamma')|$ for some integers s_i , $i = -j, \ldots, j$. From this easily follows that $\omega = \sum_{i=-j}^{j} s_i |\chi(\Gamma')| [\tilde{P}_0]_0$. Thus $\ker(\mathrm{id}_* - \Phi_*) = |\chi(\Gamma')| \mathbb{Z}[\tilde{P}_0]_0$. This shows that $\mathbf{K}_1(\tilde{A}) = \mathbb{Z}$.

From Proposition 2.4 follows that $\mathbf{K}_0(\tilde{A}) \cong \mathbf{K}_0(C_Q^*(\Gamma)) = \mathbb{Z}$, $\mathbf{K}_1(\tilde{A}) \cong \mathbf{K}_1(C_Q^*(\Gamma)) = \mathbb{Z}$ and that $[1_{C_Q^*(\Gamma)}]_0$ generates $\mathbf{K}_0(C_Q^*(\Gamma))$.

From Remark 3.2 follows that in the extension (22) the map I_{Γ_*} on \mathbf{K}_0 is zero (since $\chi(\Gamma) = \chi(\Gamma') - \chi(\Gamma_k) = 0$). Therefore $\mathbf{K}_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $\mathbf{K}_1(C^*(\Gamma)) = 0$. This concludes the proof of (case \mathbf{IV}).

(case **V**): $\chi(\Gamma') \neq 0$, $\chi(\Gamma_k) \neq 0$ and $\chi(\Gamma') \neq \chi(\Gamma_k)$. In this case

$$\mathbf{K}_{0}(\tilde{A}) = \{ \bigoplus_{i=-\infty}^{\infty} \mathbb{Z}\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) | \chi(\Gamma')\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \chi(\Gamma_{k})\Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0,$$

$$\Phi_{*}^{i}([\tilde{P}_{0}]_{0}) - \Phi_{*}^{i+1}([\tilde{P}_{0}]_{0}) = 0, \ i \in \mathbb{Z} \} =$$

$$\{ \mathbb{Z}[\tilde{P}_{0}]_{0} | \chi(\Gamma')[\tilde{P}_{0}]_{0} - \chi(\Gamma_{k})[\tilde{P}_{0}]_{0} = 0 \} = \mathbb{Z}_{|\chi(\Gamma') - \chi(\Gamma_{k})|}[\tilde{P}_{0}]_{0} = \mathbb{Z}_{|\chi(\Gamma)|}[\tilde{P}_{0}]_{0}.$$

We only need to show that $\mathbf{K}_1(\tilde{A}) = 0$ or that $\mathrm{id}_* - \Phi_*$ is injective.

Take $\omega = \sum_{i=-j}^{j} t_j \Phi_*^i([\tilde{P}_0]_0), t_i \in \mathbb{Z}$ and suppose that $(\mathrm{id}_* - \Phi_*)(\omega) = 0$. Then

$$0 = (\mathrm{id}_* - \Phi_*)(\omega) = \sum_{i=-j}^j t_j(\Phi_*^i([\tilde{P}_0]_0) - \Phi_*^{i+1}([\tilde{P}_0]_0)) =$$

$$= t_{-j}\Phi_*^{-j}([\tilde{P}_0]_0) + \sum_{i=-j+1}^j (t_i - t_{i-1})\Phi_*^i([\tilde{P}_0]_0) - t_j\Phi_*^{j+1}([\tilde{P}_0]_0).$$

If $\chi(\Gamma')$ doesn't divide t_{-j} then the equality $-t_{-j}\Phi_*^{-j}([\tilde{P}_0]_0) = (t_i - t_{i-1})\Phi_*^i([\tilde{P}_0]_0) - t_j\Phi_*^{j+1}([\tilde{P}_0]_0)$ is impossible. If $\chi(\Gamma')$ divides t_{-j} then ω can be expressed in terms of $\Phi_*^{-j+1}([\tilde{P}_0]_0), \ldots, \Phi_*^j([\tilde{P}_0]_0)$. By induction we see that we can write $\omega = t[\tilde{P}_0]_0$ for some $t \in \mathbb{Z}$. But then clearly $(\mathrm{id}_* - \Phi_*)(\omega) = 0$ is possible if and only if t = 0. This shows that $\mathrm{id}_* - \Phi_*$ is injective and therefore that $\mathbf{K}_1(\tilde{A}) = 0$.

From Proposition 2.4 we get $\mathbf{K}_0(C_Q^*(\Gamma)) = \mathbb{Z}_{|\chi(\Gamma)|}[1_{C_Q^*(\Gamma)}]_0$ and $\mathbf{K}_1(C_Q^*(\Gamma)) = 0$.

From Remark 3.2 follows that I_{Γ_*} is "multiplication by $\chi(\Gamma)$ ", so $\mathbf{K}_0(C^*(\Gamma)) = \mathbb{Z}[1_{C^*(\Gamma)}]_0$ and $\mathbf{K}_1(C^*(\Gamma)) = 0$.

This concludes the proof of (Case \mathbf{V}).

The Proposition is proved.

Now we can apply the Kirchberg-Phillips Classification theorem ([16]) to $C_Q^*(G)$ for a finite graph G such that G^{opp} is connected and with at least two vertices, using Theorem 1.1, Proposition 2.4 and Proposition 3.3. We obtain

$$(33) C_Q^*(G) \cong \mathcal{O}_{1+|\chi(G)|}.$$

For infinite graphs with connected opposite graphs we can argue similarly as in [8, Corollary 3.11] to prove the following:

Proposition 3.4. Let G an infinite graph with countably many vertices and such that G^{opp} is connected. Then $C^*(G) (= C_Q^*(G))$ is nuclear and belongs to the small bootstrap class. Moreover $\mathbf{K}_0(C^*(G)) = \mathbb{Z}[1_{C^*(G)}]_0$ and $\mathbf{K}_1(C^*(G)) = 0$.

Proof. By induction we will find a increasing sequence G_n of subgraphs of G with n vertices, $n \geq 2$ which are such that G_n^{opp} is connected for each $n \geq 2$ and also $G_n \xrightarrow{n \to \infty} G$. Obviously we can find two vertices v_1 and v_2 that are not connected (since G^{opp} is conected). Then we chose G_2 to be the graph with vertices v_1 and v_2 and no edges. Suppose we have defined the subgraph G_n for some $n \geq 2$. Let v_1, \ldots, v_n be the vertices of G_n . Since G^{opp} is connected we can find a vertex v_{n+1} of G different from v_1, \ldots, v_n such that v_{n+1} is not connected with all of the vertices v_1, \ldots, v_n . Then obviously the subgraph G_{n+1} of G on vertices v_1, \ldots, v_{n+1} and edges comming from G is such that G_{n+1}^{opp} is connected. This completes the induction.

From Proposition 3.3 we have $\mathbf{K}_0(C^*(G_n)) = \mathbb{Z}[1_{C^*(G_n)}]_0$ and $\mathbf{K}_1(C^*(G_n)) = 0$. It is easy to see that $C^*(G) = \lim_{m \to \infty} C^*(G_n)$. Therefore from Proposition 2.4 we get that $C^*_Q(G)$ is nuclear and belongs to the small bootstrap category \mathfrak{N} . Also $\mathbf{K}_0(C^*(G)) = \lim_{n \to \infty} \mathbf{K}_0(C^*(G_n)) = \mathbb{Z}[1_{C^*(G)}]_0$ and $\mathbf{K}_1(C^*(G)) = \lim_{n \to \infty} \mathbf{K}_0(C^*(G_n)) = 0$. This proves the proposition.

From Theorem 1.1 we know that $C^*(G) = C_Q^*(G)$ is purely infinite and simple. Again using Kirchberg-Phillips theorem we get that if G is an infinite graph on countably many vertices such that G^{opp} is connected then $C^*(G) = C_Q^*(G) \cong \mathcal{O}_{\infty}$. If we define for an infinite countable graph G with G^{opp} conected $\chi(G) \stackrel{def}{=} \infty$ then we can write once again $C_Q^*(G) \cong \mathcal{O}_{1+|\chi(G)|}$.

Remark 3.5. Let G_1 and G_2 be two disjoint graphs. Then by $G_1 * G_2$ we denote their join which is the graph obtained from G_1 and G_2 by connecting each vertex of G_1 with each vertex of G_2 . Then if we start with a graph G on countably many vertices which is such that G^{opp} doesn't have any isolated vertices then we can find a sequence of subraphs G_n , $n \in \mathbb{N}$ (some of G_n 's can have zero vertices) such that G_n^{opp} are all connected and such that $G = \underset{n=1}{\overset{\infty}{\longrightarrow}} G_n$. For a graph F with zero vertices we write $C_O^*(F) = \mathbb{C}$.

Then from Theorem 1.1 easily follows that $C_Q^*(G) = \bigotimes_{n=1}^{\infty} C_Q^*(G_n)$.

Now we can record our main result:

Theorem 3.6. Let G be a graph with at least two and at most countably many vertices such that G^{opp} has no isolated vertices. Write $G = {*\atop n=1}^{\infty} G_n$ as in Remark 3.5 with G_n being a subgraph of G such that G_n^{opp} is connected.

Then

(34)
$$C_Q^*(G) = \underset{n-1}{\overset{\infty}{\otimes}} C_Q^*(G_n) \cong \underset{n-1}{\overset{\infty}{\otimes}} \mathcal{O}_{1+|\chi(G_n)|}.$$

Acknowledgements. Most of the work on this paper was done when I was a graduate student at Texas A&M University. I would like to thank Ron Douglas for choosing this research topic and for the many useful conversations I had with him. I want to thank Marcelo Laca for sending me hardcopies of some of his papers on the subject. Finally I want to thank Ken Dykema, Marcelo Laca and George Elliott for some discussions.

References

- [1] B. Blackadar, K-Theory for Operator Algebras, second edition, Cambridge University Press, 1998.
- [2] B. Blackadar, Operator Algebras, Enc. of Math. Sci., vol. 122, Springer-Verlag, Berlin, 2006.
- [3] L. G. Brown, Stable Isomorphism of Hereditary Subalgebras of C*-algebras, Pacific J. of Math., 71, No 2, (1977).
- [4] L. A. Coburn, The C*-Algebra Generated by an Isometry I, Bull. Amer. Math. Soc. 73, (1967), 722-726.
- [5] J. Crisp, M. Laca, On the Toeplitz Algebras of Right-Angled and Finite-Type Artin Groups, J. Austral Math. Soc., 72, (2002), 223-245.
- [6] J. Crisp, M. Laca, Boundary Quotients and Ideals of Toeplitz C*-Algebras of Artin Groups, JFA, 242, (2007), 127-156.
- [7] J. Cuntz, Simple C*-Algebras Generated by Isometries, Communications in Mathematical Physics, 57, 1977, 173-185.
- [8] J. Cuntz, K-Theory for Certain C*-Algebras, Ann. of Math., 113, (1981), 181-197.

- [9] J. Cuntz, W. Krieger, A Class of C*-Algebras and Topological Markov Chains, Invent. Math., 56, 251-268, (1980).
- [10] R. G. Douglas, On the C*-Algebra of a One-parameter Semigroup of Isometries, Acta Math., 128, (1972), 143-152.
- [11] R. Exel, M. Laca, J. Quigg, Partial Dynamical Systems and C*-Algebras Generated by Partial Isometries, J. Operator Theory, 47, (2002), 169-186.
- [12] M. Laca, I. Raeburn, Semigroup Crossed Products and Toeplitz Algebras of Nonabelian Groups, JFA, 139, (1996), 415-440.
- [13] G. Murphy, Ordered Groups and Toeplitz Algebras, J. Operator Theory, 18, (1987), 303-326.
- [14] G. Murphy, C*-Algebras and Operator Theory, Academic Perss, 1990.
- [15] A. Nica, C*-algebras Generated by Isometries and Wiener-Hopf Operators, J. Operator Theory, 27, (1992), 17-52.
- [16] N. Christopher Phillips, A Classification Theorem for Nuclear Simple C*-Algebras, Documenta Mathematica, 5, 2000, 49-114.
- [17] M. Pimsner, A Class of C*-Algebras Generalizing Both Cuntz-Krieger Algebras and Crossed Products by Z, Fields Inst. Commun., 12, (1997), 189–212.
- [18] M. Pimsner, D. Voiculescu, Exact Sequences for K-Groups and Ext-Groups of Certain Crossproduct C*-Algebras, J. Operator Theory, 4, 1980, 93-118.

Nikolay Ivanov, Department of Mathematics, University of Toronto, Toronto, Ontario, Canada, M5S 2E4

E-mail address: nivanov@fields.utoronto.ca