3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - 3.4.1 União
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.1 Complemento

Def: Complemento

Complemento de um conjunto A ⊆ U

A' ou
$$^{\sim}A$$

$$^{\sim}A = \{x \in U \mid x \notin A\}$$

♦ Relacionando com a Lógica

- complemento corresponde à negação
- símbolo ~ é um dos usados para a negação

Exp: Complemento

Dígitos = $\{0, 1, 2, ..., 9\}$ conjunto universo e A = $\{0, 1, 2\}$

$$\bullet$$
 $^{\sim}$ A = { 3, 4, 5, 6, 7, 8, 9 }

Exp: ...Complemento

N conjunto universo e $A = \{0, 1, 2\}$

•
$$^{\sim}A = \{x \in N \mid x > 2\}$$

Para qualquer conjunto universo U

- \bullet $\sim \emptyset = U$
- ~U = Ø

R conjunto universo

- ~ Q = I
- ~ I = Q

Exp: Complemento, União e Intersecção

U conjunto universo. Para qualquer A ⊆ U

$$\bullet A \cap {}^{\sim} A = \emptyset$$

◆ Propriedade Duplo Complemento

para qualquer A ⊆ U

$$\sim \sim A = A$$

- relacionamento com lógica
 - * A: todos elementos x tais que x ∈ A
 - * ~A: todos elementos x tais que x ∉ A

*
$$\sim$$
 A: todos elementos x tais que $\neg\neg(x \in A)$

$$\neg(x \in A)$$

• complemento é reversível: ~ (~A) = A

Propriedade DeMorgan

- relacionada com o complemento
- envolve a união e a intersecção

$$^{\sim}(A \cup B) = ^{\sim}A \cap ^{\sim}B \qquad \neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$^{\sim}(A \cap B) = ^{\sim}A \cup ^{\sim}B \qquad \neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$

◆ Essa propriedade permite concluir

 intersecção pode ser calculada em termos do complemento e união

$$A \cap B = ^{\sim}(^{\sim}A \cup ^{\sim}B)$$

união pode ser calculada em termos do complemento e intersecção

$$A \cup B = {}^{\sim}({}^{\sim}A \cap {}^{\sim}B)$$

♦ Diferença: derivada da intersecção e complemento

Def: Diferença

A e B conjuntos

$$A - B = A \cap {}^{\sim} B = \{x \mid x \in A \land x \notin B\}$$

Exp: Diferença

```
Dígitos = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
Vogais = \{a, e, i, o, u\}
Pares = \{0, 2, 4, 6,...\}
```

- Dígitos Vogais = Dígitos
- Dígitos Pares = { 1, 3, 5, 7,9 }

Exp: ...Diferença

$$A = \{ x \in \mathbb{N} \mid x > 2 \} e B = \{ x \in \mathbb{N} \mid x^2 = x \}$$

- $A B = \{3, 4, 5, 6, \dots\}$
- $B A = \{0, 1\}$

 \mathbb{R} (reais), \mathbb{Q} (racionais) e \mathbb{I} (irracionais)

- \bullet R Q = I
- R I = Q
- \bullet Q I = Q

Universo U e A ⊆ U

- $\bullet \varnothing \varnothing = \varnothing$
- U Ø = U
- U A = ~A
- U U = ∅

♦ Por que a operação de diferença é não-reversível?

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - 3.4.1 União
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.5.2 Conjunto das Partes

- Para um conjunto A
 - \bullet A \subseteq A
 - $\bullet \varnothing \subseteq A$
- ◆ Para qualquer elemento a ∈ A
 - { a } ⊆ A
- ♦ Seguindo o racionínio
 - definição de uma operação unária
 - Conjunto das Partes
 - * aplicada a um conjunto A
 - * resulta no conjunto de todos os subconjuntos de A

Def: Conjunto das Partes, Conjunto Potência

A conjunto

$$P(A) \quad \text{ou} \quad 2^{A}$$

$$P(A) = \{ X \mid X \subseteq A \}$$

Exp: Conjunto das Partes

$$A = \{a\}, B = \{a, b\} e C = \{a, b, c\}$$

- $P(\emptyset) = \{\emptyset\}$
- $P(A) = {\emptyset, {a}}$
- $P(B) = {\emptyset, {a}, {b}, {a, b}}$
- $P(C) = {\emptyset, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}$

Quantos elementos tem P(X)?

Exp: ...Conjunto das Partes

$$D = \{ a, \emptyset, \{ a, b \} \}$$

• $P(D) = {\emptyset, {a}, {\emptyset}, {a,b}}, {a, \emptyset}, {a, b}}, {a, b}}, {a, b}}, {a, b}}, {\emptyset, {a, b}}, {\emptyset, {a, b}}$

Quantos elementos tem P(X)?

- ♦ Número de elementos de P(X)
 - número de elementos de
 - * X é n * P(X) é 2ⁿ
 - justifica a notação 2^X
 - * prova por indução introduzida adiante

♦ Reversabilidade de P(X)?

- uma solução: união de todos os conjuntos de P(X)
- como fica o cálculo da união se o número de elementos do conjunto das partes for infinito?
 - * não será discutido

Exp: Reversabilidade do Conjunto das Partes

Resultante: { Ø, { a } }

• Operando: $\varnothing \cup \{a\} = \{a\}$

Resultante: $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

• Operando: $\emptyset \cup \{a\} \cup \{b\} \cup \{a,b\} = \{a,b\}$

Resultante: $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Operando: Ø∪{a}∪{b}∪ {c}∪{a,b}∪ {a,c}∪{b,c}∪ {a,b,c}