3. Übung

Timo Bergerbusch 344408 & Marc Burian 344300

2. November 2017

1 Aufgabe

1.1 a)

i	1	2	3	4	5	6	7		i	2	3	7	4	6	1	5
$\overline{p_i}$	3		7					$rac{1}{\text{sort wrt } \frac{p_i}{w_i}}$	$\overline{p_i}$	4	7	8	6	1	3	2
w_i	4	2	4	4	3	1	J	ω_i	w_i	2	4	5	4	1	4	3
$\frac{p_i}{w_i}$	0.75	2	1.75	1.5	$\frac{2}{3}$	1	1.6		$\frac{p_i}{w_i}$	2	1.75	1.6	1.5	1	0.75	$\frac{2}{3}$
Sei $C = 15$ dann folgt:																

Iteration	nächster Gegenstand	passt?	add. Wert	∑Wert	$C - \sum w$
0	-	-	-	0	15
1	2	Ja	4	4	13
2	3	Ja	7	11	9
3	7	Ja	8	19	4
4	4	Ja	6	25	0
5	6	Nein	0	25	0
6	1	Nein	0	25	0
7	5	Nein	0	25	0

 $[\]Rightarrow$ Die Lösung ist die Menge der Gegenstände $M=\{2,3,4,7\}$ mit einem Wert von v=25 und einer Restkapazität von $C_{Rest}=0$. Somit ist die Performance $R_{gre}(P)=\frac{25}{25}=1$

1.2 b)

Ja die Lösung ist optimal. Durch die vorherige Sortierung nach dem relativen Wert im Verhältnis zum Gewicht und da kein Spezialfall vorliegt lässt sich die Optimalität leicht erkennen.

1.3 c)

			3					l	3			
$\overline{p_i}$	6	60	9	7	8	$\overbrace{\operatorname{sort wrt} \frac{p_i}{w_i}}$	p_i	6	9	8	7	60
w_i	1	20	2	2	2	Soft wit $\frac{w_i}{w_i}$	w_i	1	2	2	2	20
$\frac{p_i}{w_i}$	6	3	4.5	3.5	4		$\frac{p_i}{w_i}$	6	4.5	4	3.5	3

Iteration	nächster Gegenstand	passt?	add. Wert	\sum Wert	$C - \sum w$
0	-	-	-	0	20
1	1	Ja	6	6	19
2	3	Ja	9	15	17
3	5	Ja	8	23	15
4	4	Ja	7	30	13
5	2	Nein	-	30	13

 \Rightarrow Die Lösung ist die Menge der Gegenstände $M=\{1,3,4,5\}$ mit einem Wert von v=30 und einer Restkapazität von $C_{Rest}=13$. Somit ist die Performance $R_{gre}(P)=\frac{30}{60}=0.5$.

1.4 d)

Das Ergebnis des Algorithmus bleibt das selbe, allerdings verändert sich der Optimale Wert auf $z_{opt} = 84$ durch $M_{opt} = \{2, 3, 4, 5\}$. Somit wird das Performance-Verhältnis noch schlechter.

1.5 e)

Für Greedy-Algorithmen können Szenarien konstruiert werden, in welchen sie relativ schlecht abschneiden. Solche Sonderfälle müssen dann zusätzlich abgefangen werden um die Performance zu verbessern. Insgesamt sind Greedy-Algorithmen im allgemeinen nicht optimal.

1.6 f)

Durch den Extended-Greedy-Algorithmus, in welchem am Ende nochmal geschaut wird für jeden <u>nicht</u> mitgenommenen Gegenstand ob dieser, falls er alleine in den Rucksack passt, mehr Profit bringt wird der gesamte Inhalt durch eben jenen Gegenstand ausgetauscht.

Somit würde der Extended-Greedy-Algorithmus an dieser Stelle für sowohl C=25 als auch für C=26 den Gegenstand 2 statt aller anderen in den Rucksack packen um auf einen Funktionswert von 60 zu kommen, welcher dann ein Performance-Verhältnis von $R_{ext_gr}(P_1)=\frac{60}{60}=1$, bzw $R_{ext_gr}(P_2)=\frac{60}{84}=0.7143$ besitzt.

2 Aufgabe

2.1 a)

2.2 b)

Nachdem sortieren sieht die Tabelle wie folgt aus:

		i	1 4	6 2	7 3 8	3 5			
		w_i	7 6	5 4	4 3 2	2 1			
bin/	1	'		2	3		4		
it.	M_1	Rest	M_2	Rest	M_3	Rest	M_4	Rest	
0	Ø	8	Ø	8	Ø	8	Ø	8	
1	{1}	1							
2 3			{4}	2					
3					{6}	3			
5							{2}	4	
5							$\{2,7\}$	0	
6					$\{6,3\}$	0			
7			$\{4, 8\}$	0					
8	$\{1,5\}$	0							
\sum	$\{1,5\}$	0	$\{4, 8\}$	0	$\{6,3\}$	0	${2,7}$	0	

Somit liegt die min. Anzahl der Bins für die Best-Fit-Decreasing-Heuristik bei 4.