FSM Design Patterns

Lab 3, ESDM

Objective

Using the Stateflow tool in Simulink to model to implement simple design requirements which are very often encountered in practice.

Theoretical aspects

TBD. See the Lectures.

In this lab you will implement:

- Signal debouncing
 - One-sided
 - Two-sided
- Minimum Timer

Exercises

- 1. Design a FSM in Stateflow to implement a User Switch Logic module, according to the following requirements:
 - 1. There is one voltage input V_{in} corresponding to the voltage measured after a button:
 - when but ton is not pressed, voltage is $V_{in} > 4.5V$
 - when button is pressed, voltage is $V_{in} < 0.5V$
 - 2. There are three boolean outputs: ShortPress, LongPress, StuckError

- 3. The voltage input shall be debounced as follows:
 - when voltage $V_{in} < 0.5V$ for at least T_{on} , the button shall be considered pressed
 - when voltage $V_{in} > 4.5V$ for at least T_{off} , the button shall be considered de-pressed
 - intermediate voltage values shall be ignored
- 4. When the button is pressed for up to T_{long} , the system shall set the output ShortPress = TRUE for duration T_{out} . The output shall be set on the depressing of the button.
- 5. When the button is pressed for longer than T_{long} , the system shall set the output LongPress = TRUE for duration T_{out} .. The output shall be set as soon as the T_{long} delay has elapsed.
- 6. When the button is pressed for longer than T_{error} , the system shall set the output StuckError = TRUE. The output shall be set as soon as the T_{error} delay has elapsed. The output is maintained until the button is de-pressed.
- 7. All the durations shall be customizable by setting them as parameters from the Matlab Workspace. Default values are $T_{on}=200ms$, $T_{off}=100ms$, $T_{long}=3s$, $T_{out}=20ms$, $T_{error}=25s$, .
- 2. Test your design: put appropriate inputs and observe the output signals.

Not done:

- 3. Design a FSM in Stateflow with one input Voltage and one output OvervoltageError for the following requirements:
 - 1. The error flag OvervoltageError shall be set when input Voltage exceeds CP_MaxVoltage for at least CP_DebounceOnTime
 - 2. The error flag OvervoltageError shall be cleared when input Voltage is below CP_MaxVoltage for at least CP_DebounceOffTime
- 4. Test your design: put appropriate inputs and observe the output signals.
- 5. How would you add **hysteresis** to the previous block?
- 6. Design a FSM in Stateflow with one input UserCommand and one output ActivateHighBeam for the following requirements:
 - 1. The High Beam shall be started (ActivateHighBeam = TRUE) as soon as the input UserCommand becomes TRUE, if they were stopped for a duration of at least CP_MinimumOffDelay until the current moment.
 - 2. The High Beam shall be stopped (MotorCommand = FALSE) as soon as the input UserCommand is FALSE

- 3. When the High Beam is stopped, no activation is allowed for at least CP_MinimumOffDelay afterwards.
- 7. Test your design: put appropriate inputs and observe the output signals.
- 8. Design a FSM in Stateflow with two inputs MotorOn and LatchReached and one output LiftgateClosed, for the following requirements:
 - 1. The liftgate shall be considered open (LiftgateClosed = FALSE) always when MotorOn = TRUE.
 - 2. The liftgate shall be considered closed (LiftgateClosed = TRUE) when MotorOn = FALSE, if the input LatchReached becomes TRUE within CP_MaxLatchDelay after MotorOn has become FALSE.
 - 3. If the input LatchReached becomes TRUE, but the motor was not started anytime within CP_MaxLatchDelay prior to this moment, it shall be ignored and the liftgate shall be considered open.
- 9. Test your design: put appropriate inputs and observe the output signals.