

Amendments to the claims

1. (currently amended) A compound of Formula (I):

or a stereoisomer, or pharmaceutically acceptable salt form or prodrug thereof, wherein:

A^1 is $\text{C}_1\text{-C}_3$ alkylene substituted by 0-2 $\text{C}_1\text{-C}_4$ alkyl;

A^2 is $-\text{C}(=\text{O})\text{R}^{9b}$, $-\text{S}(=\text{O})\text{R}^{9b}$, $-\text{S}(=\text{O})_2\text{R}^{9b}$, $-\text{CONHR}^{9b}$,

$-\text{S}(=\text{O})_2\text{NHR}^{9b}$, $-\text{C}(=\text{O})\text{OR}^{9b}$,

$-\text{A}^3-\text{R}^{9a}$;

$-\text{A}^3-\text{A}^4-\text{R}^{9a}$,

$-\text{A}^3-\text{A}^4-\text{A}^5-\text{R}^{9a}$, or

$-\text{A}^3-\text{A}^4-\text{A}^5-\text{A}^6-\text{R}^{9a}$,

W is selected from the group:

$-\text{B}(\text{OR}^{26})(\text{OR}^{27})-$

$-\text{C}(=\text{O})\text{C}(=\text{O})-\text{Q}$,

$-\text{C}(=\text{O})\text{C}(=\text{O})\text{NH}-\text{Q}$,

$-\text{C}(=\text{O})\text{C}(=\text{O})-\text{O}-\text{Q}$,

$-\text{C}(=\text{O})\text{CF}_2\text{C}(=\text{O})\text{NH}-\text{Q}$,

$-\text{C}(=\text{O})\text{CF}_3$,

$-\text{C}(=\text{O})\text{CF}_2\text{CF}_3$,

$-\text{C}(=\text{O})\text{H}$, and

$-\text{C}(=\text{O})\text{W}^1$;

w^1 is OR^8 or $NR^{11}R^{11a}$,

Q is selected from the group:

$-(CR^{10}R^{10e})_m-Q^1,$

$-(CR^{10}R^{10e})_m-Q^2,$

C_1-C_4 alkyl substituted with Q^1 ,

C_2-C_4 alkenyl substituted with Q^1 ,

C_2-C_4 alkynyl substituted with Q^1 ,

an amino acid residue,

$-A^7-A^8$, and

$-A^7-A^8-A^9,$

m is 1, 2, 3, or 4,

Q^1 is selected from the group:

$-CO_2R^{11}, -SO_2R^{11}, -SO_3R^{11}, -P(O)_2R^{11}, -P(O)_3R^{11},$

aryl substituted with 0-4 Q^{1a} , and

5-6 membered heterocyclic group consisting of carbon atoms and

1-4 heteroatoms selected from the group: O, S, and N,

optionally saturated, partially unsaturated or unsaturated,

and said 5-6 membered heterocyclic group is substituted

with 0-4 Q^{1a} ,

Q^{1a} is H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,

$-CO_2R^{19}, -C(=O)NR^{19}R^{19a}, -NHC(=O)R^{19}, -SO_2R^{19},$

$-SO_2NR^{19}R^{19a}, -NR^{19}R^{19a}, -OR^{19}, -SR^{19}, C_1-C_4$ alkyl,

C_1-C_4 alkoxy, C_1-C_4 haloalkyl, or C_1-C_4 haloalkoxy;

Q^2 is $X-NR^{12}-Z$, $NR^{12}-Y-Z$, or $X-NR^{12}-Y-Z$,

X is $C(=O)$, S , $S(=O)$, $S(=O)2$, $P(O)$, $P(O)2$, or
 $-P(O)3$,

Y is $C(=O)$, S , $S(=O)$, $S(=O)2$, $P(O)$, $P(O)2$, or
 $-P(O)3$,

Z is selected from the group:

$\epsilon_1-\epsilon_4$ haloalkyl;

$\epsilon_1-\epsilon_4$ alkyl substituted with $0-3 Z^a$;

$\epsilon_2-\epsilon_4$ alkenyl substituted with $0-3 Z^a$;

$\epsilon_2-\epsilon_4$ alkynyl substituted with $0-3 Z^a$;

$\epsilon_3-\epsilon_{10}$ cycloalkyl substituted with $0-5 Z^b$;

aryl substituted with $0-5 Z^b$;

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with $0-4 Z^b$;

an amino acid residue,

$-A^7-A^8$, and

$-A^7-A^8-A^9$,

Z^a is selected from the group:

H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,

$-CO_2R^{20}$, $C(=O)NR^{20}R^{20a}$, $NHC(=O)R^{20}$, $NR^{20}R^{20a}$,

OR^{20} , SR^{20} , $\text{S}(\text{=O})\text{R}^{20}$, SO_2R^{20} , $\text{SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{-C}_4$ -alkyl,
 $\text{C}_1\text{-C}_4$ -haloalkyl, $\text{C}_1\text{-C}_4$ -haloalkoxy,
 $\text{C}_3\text{-C}_{10}$ -cycloalkyl substituted with 0-5 Z^b ,
 $\text{C}_3\text{-C}_{10}$ -carboecyle substituted with 0-5 Z^b ,
aryl substituted with 0-5 Z^b , and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-10 membered heterocyclic group is substituted
with 0-4 Z^b ,

Z^b is selected from the group:

H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,
 CO_2R^{20} , $\text{C}(\text{=O})\text{NR}^{20}\text{R}^{20a}$, $\text{NHC}(\text{=O})\text{R}^{20}$, $\text{NR}^{20}\text{R}^{20a}$,
 OR^{20} , SR^{20} , $\text{S}(\text{=O})\text{R}^{20}$, SO_2R^{20} , $\text{SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{-C}_4$ -alkyl,
 $\text{C}_1\text{-C}_4$ -haloalkyl, $\text{C}_1\text{-C}_4$ -haloalkoxy,
 $\text{C}_3\text{-C}_{10}$ -cycloalkyl substituted with 0-5 Z^e ,
 $\text{C}_3\text{-C}_{10}$ -carboecyle substituted with 0-5 Z^e ,
aryl substituted with 0-5 Z^e , and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-10 membered heterocyclic group is substituted
with 0-4 Z^e ,

Z^e is H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,
 CO_2R^{20} , $\text{C}(\text{=O})\text{NR}^{20}\text{R}^{20a}$, $\text{NHC}(\text{=O})\text{R}^{20}$, $\text{NR}^{20}\text{R}^{20a}$,

OR^{20} , SR^{20} , $\text{S}(\text{=O})\text{R}^{20}$, SO_2R^{20} , $\text{SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{-C}_4\text{-alkyl}$,
 $\text{C}_1\text{-C}_4\text{-haloalkyl}$, or $\text{C}_1\text{-C}_4\text{-haloalkoxy}$;

R^1 is selected from the group: H, F;

$\text{C}_1\text{-C}_6$ alkyl substituted with 0-3 R^{1a} ;

$\text{C}_2\text{-C}_6$ alkenyl substituted with 0-3 R^{1a} ;

$\text{C}_2\text{-C}_6$ alkynyl substituted with 0-3 R^{1a} ; and

$\text{C}_3\text{-C}_6$ cycloalkyl substituted with 0-3 R^{1a} ;

R^{1a} is selected at each occurrence from the group:

Cl , F, Br, I, CF_3 , CHF_2 , OH, =O, SH, CO_2R^{1b} , SO_2R^{1b} ,
 SO_3R^{1b} , $\text{P}(\text{O})_2\text{R}^{1b}$, $\text{P}(\text{O})_3\text{R}^{1b}$, $\text{C}(\text{=O})\text{NHR}^{1b}$,
 $\text{NHC}(\text{=O})\text{R}^{1b}$, $\text{SO}_2\text{NHR}^{1b}$, OR^{1b} , SR^{1b} , $\text{C}_3\text{-C}_6$ cycloalkyl, $\text{C}_1\text{-C}_6$
alkoxy, S ($\text{C}_1\text{-C}_6$ alkyl),
 $\text{C}_1\text{-C}_4$ alkyl substituted with 0-3 R^{1e} ,
aryl substituted with 0-5 R^{1e} ,
 $\text{O}(\text{CH}_2)_n$ aryl substituted with 0-5 R^{1e} ,
 $\text{S}(\text{CH}_2)_n$ aryl substituted with 0-5 R^{1e} , and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-10 membered heterocyclic group is substituted
with 0-3 R^{1e} ;

n is 0, 1 or 2;

R^{1b} is H;

C_1-C_4 -alkyl substituted with 0-3 R^{1e} ;

C_2-C_4 -alkenyl substituted with 0-3 R^{1e} ;

C_2-C_4 -alkynyl substituted with 0-3 R^{1e} ;

C_3-C_6 -cycloalkyl substituted with 0-5 R^{1e} ;

aryl substituted with 0-5 R^{1e} ;

aryl C_1-C_4 -alkyl substituted with 0-4 R^{1e} ; or

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{1e} ,

R^{1e} is selected at each occurrence from the group:

C_1-C_4 -alkyl, Cl, F, Br, I, OH, SH, CN, NO₂, OR^{1d}, C(=O)OR^{1d}, NR^{1d}R^{1d}, SO₂R^{1d}, SO₃R^{1d}, C(=O)NHR^{1d}, NH₂C(=O)R^{1d}, SO₂NHR^{1d}, CF₃, OCF₃, C_3-C_6 -cycloalkyl, phenyl, and benzyl;

R^{1d} is selected at each occurrence from the group: H, C_1-C_4 -alkyl, phenyl and benzyl;

R^2 is selected from the group: H, C_1-C_4 alkyl, C_2-C_4 alkenyl, C_2-C_4 alkynyl, C_3-C_4 cycloalkyl, and C_3-C_4 cycloalkyl(C_1-C_4 alkyl)-;

alternatively, R^1 and R^2 can be combined to form a 4-7 membered cyclic group consisting of carbon atoms, substituted with 0-2 R^{14} ,

R^3 is selected from the group: R^4 ,

- $(CH_2)_p-NH-R^4$,
- $(CH_2)_p-NHC(=O)-R^4$,
- $(CH_2)_p-C(=O)NH-R^4$,
- $(CH_2)_p-C(=O)O-R^4$,
- $(CH_2)_p-C(=O)C(=O)-R^4$,
- $(CH_2)_p-C(=O)C(=O)NH-R^4$,
- $(CH_2)_p-NHC(=O)NH-R^4$,
- $(CH_2)_p-NHC(=O)NHC(=O)-R^4$,
- $(CH_2)_p-NHS(=O)_2-R^4$,
- $(CH_2)_p-S(=O)_2NH-R^4$,
- $(CH_2)_p-C(=O)-R^4$,
- $(CH_2)_p-O-R^4$, and
- $(CH_2)_p-S-R^4$;

p is 0, 1, or 2;

R^4 is selected from the group:

- C₁-C₆ alkyl substituted with 0-3 R^{4a} ;
- C₂-C₆ alkenyl substituted with 0-3 R^{4a} ;
- C₂-C₆ alkynyl substituted with 0-3 R^{4a} ;
- C₃-C₁₀ cycloalkyl substituted with 0-4 R^{4b} ;
- C₃-C₁₀ carbocycle substituted with 0-4 R^{4b} ;
- aryl substituted with 0-5 R^{4b} ; and
- aryl-C₁-C₄ alkyl substituted with 0-5 R^{4b} ; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{4b},~~

R^{4a} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H, C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a}, NH_C(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a}, S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NH_C(=NH)NHR¹¹, C(=NH)NHR¹¹, NOR¹¹, NR¹¹C(=O)OR^{11a}, NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a}, NR¹¹SO₂R^{11a}, OP(O)(OR¹¹)₂,

C₁-C₄ alkyl substituted with 0-3 R^{4b};

C₂-C₄ alkenyl substituted with 0-3 R^{4b};

C₂-C₄ alkynyl substituted with 0-3 R^{4b};

C₃-C₇ cycloalkyl substituted with 0-4 R^{4c};

C₃-C₁₀ carbocycle substituted with 0-4 R^{4c}; and

aryl substituted with 0-5 R^{4c}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4e},~~

R^{4b} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~-C(=NH)NHR¹¹, NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~-OC(=O)NR¹¹R^{11a}, NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a},~~
~~NR¹¹SO₂R^{11a}, OP(O)(OR¹¹)₂,~~

~~C₁-C₄ alkyl substituted with 0-3 R^{4c};~~

~~C₂-C₄ alkenyl substituted with 0-3 R^{4c};~~

~~C₂-C₄ alkynyl substituted with 0-3 R^{4c};~~

~~C₃-C₆ cycloalkyl substituted with 0-4 R^{4d}; and~~

~~aryl substituted with 0-5 R^{4d}; and~~

~~5-10 membered heterocyclic group consisting of carbon atoms
 and 1-4 heteroatoms selected from the group: O, S, and N,
 optionally saturated or unsaturated; and said 5-10
 membered heterocyclic group is substituted with 0-3 R^{4d},~~

R^{4c} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~

~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~

~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~

~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},~~

~~E₁-C₄ haloalkyl, E₁-C₄ haloalkoxy,~~

~~C₁-C₄ alkyl substituted with 0-3 R^{4d};~~

~~C₂-C₄ alkenyl substituted with 0-3 R^{4d};~~

~~C₂-C₄ alkynyl substituted with 0-3 R^{4d};~~

~~C₃-C₆ cycloalkyl substituted with 0-4 R^{4d}; and~~

aryl substituted with 0-5 R^{4d}; and
 5-10 membered heterocyclic group consisting of carbon atoms
 and 1-4 heteroatoms selected from the group: O, S, and N,
 optionally saturated or unsaturated; and said 5-10
 membered heterocyclic group is substituted with 0-3 R^{4d},

R^{4d} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, =O, OH, -CO₂H,
 -CO₂R¹¹, C(=O)NR¹¹R^{11a}, NHC(=O)R¹¹,
 -NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a}, S(=O)R^{11a},
 -SO₂R¹¹, SO₂NR¹¹R^{11a}, C₁-C₄-alkyl, C₁-C₄-alkoxy,
 C₁-C₄-halealkyl, C₁-C₄-halealkoxy, phenyl, and benzyl;

R⁸ is H or C₁-C₄-alkyl,

R^{9a} is selected from the group: H, -S(=O)R^{9b}, -S(=O)₂R^{9b},
 -S(=O)₂NHR^{9b}, -C(=O)R^{9b}, -C(=O)OR^{9b}, -C(=O)NHR^{9b},
 -C(=O)NHC(=O)R^{9b};
 C₁-C₆ alkyl substituted with 0-3 R^{9c};
 C₂-C₆ alkenyl substituted with 0-3 R^{9c};
 C₂-C₆ alkynyl substituted with 0-3 R^{9c};
 C₃-C₆ cycloalkyl substituted with 0-3 R^{9d},
 C₃-C₁₄ carbocycle substituted with 0-4 R^{9d},
 aryl substituted with 0-5 R^{9d}; and
 5-10 membered heterocyclic group consisting of carbon atoms
 and 1-4 heteroatoms selected from the group: O, S, and N,
 optionally saturated, partially unsaturated or unsaturated,

~~and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},~~

R^{9b} is selected from the group: H;

C₁-C₆ alkyl substituted with 0-3 R^{9c};

C₂-C₆ alkenyl substituted with 0-3 R^{9c};

C₂-C₆ alkynyl substituted with 0-3 R^{9c};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9d};

C₃-C₁₄ carbocycle substituted with 0-4 R^{9d}; and

aryl substituted with 0-5 R^{9d}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},~~

R^{9c} is selected from the group: CF₃, OCF₃, Cl, F, Br, I, =O, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂,

C₁-C₆ alkyl substituted with 0-3 R^{9d};

C₂-C₆ alkenyl substituted with 0-3 R^{9d};

C₂-C₆ alkynyl substituted with 0-3 R^{9d};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9e};

C₃-C₁₄ carbocycle substituted with 0-4 R^{9e}; and

aryl substituted with 0-5 R^{9e}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated,~~

~~and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e},~~

R^{9d} is selected at each occurrence from the group:

~~CF₃, OCF₃, Cl, F, Br, I, =O, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂,~~

C₁-C₄ alkyl substituted with 0-3 R^{9e};

C₁-C₄ alkoxy substituted with 0-3 R^{9e};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9e}; and

aryl substituted with 0-5 R^{9e}; and

~~5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e},~~

R^{9e} is selected at each occurrence from the group:

C₁-C₄ alkyl, C₁-C₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH, phenyl, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, and NO₂;

R¹⁰ is selected from the group: CO₂R¹¹, NR¹¹R^{11a}, and C₁-C₆ alkyl substituted with 0-1 R^{10a};

R^{10a} is selected from the group: halo, NO₂, CN, CF₃, -CO₂R¹¹, NR¹¹R^{11a}, OR¹¹, SR¹¹, C(=NH)NH₂, and aryl substituted with 0-1 R^{10b},

R^{10b} is selected from the group: CO₂H, NH₂, OH, SH, and
C(=NH)NH₂+

R^{10c} is H or C₁-C₄ alkyl;

alternatively, R¹⁰ and R^{10c} can be combined to form a C₃-C₆ cycloalkyl group substituted with 0-1 R^{10a},

R¹¹ and R^{11a} are, at each occurrence, independently selected from the group: H;
C₁-C₆ alkyl substituted with 0-3 R^{11b};
C₂-C₆ alkenyl substituted with 0-3 R^{11b};
C₂-C₆ alkynyl substituted with 0-3 R^{11b};
C₃-C₇ cycloalkyl substituted with 0-3 R^{11b};
aryl substituted with 0-3 R^{11b}; and
aryl(C₁-C₄ alkyl)- substituted with 0-3 R^{11b};

R^{11b} is OH, C₁-C₄ alkoxy, F, Cl, Br, I, NH₂, or -NH(C₁-C₄ alkyl);

R¹² is H or C₁-C₄ alkyl;

R¹⁴ is C₁-C₄ alkyl or C₂-C₄ alkenyl;

R¹⁹ and R^{19a} are independently selected from the group: H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, aryl, aryl(C₁-C₄ alkyl), C₃-C₆ cycloalkyl, and C₃-C₆ cycloalkyl(C₁-C₄ alkyl);

alternatively, $\text{NR}^{19}\text{R}^{19a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

R^{20} and R^{20a} are independently selected from the group: H, $\text{C}_1\text{-}\text{C}_4$ alkyl, $\text{C}_1\text{-}\text{C}_4$ haloalkyl, aryl, aryl($\text{C}_1\text{-}\text{C}_4$ alkyl), $\text{C}_3\text{-}\text{C}_6$ cycloalkyl, and $\text{C}_3\text{-}\text{C}_6$ cycloalkyl($\text{C}_1\text{-}\text{C}_4$ alkyl);

alternatively, $\text{NR}^{20}\text{R}^{20a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

OR^{26} and OR^{27} are independently selected from:

- a) -OH,
- b) -F,
- c) $\text{NR}^{28}\text{R}^{29}$,
- d) $\text{C}_1\text{-}\text{C}_8$ alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; and
- f) a cyclic boronic amide where said boronic amide contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or
- g) a cyclic boronic amide ester where said boronic amide ester contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

R²⁸ and R²⁹, are independently selected from: H, C₁-C₄-alkyl, aryl(C₁-C₄-alkyl), and C₃-C₇-cycloalkyl;

A³, A⁴, A⁵, A⁶, A⁷, A⁸, and A⁹ are independently selected from an amino acid residue; and

an amino acid residue, at each occurrence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration. is valine.

2. (currently amended) A compound of Claim 1, or a stereoisomer, or a pharmaceutically acceptable salt form ~~or~~ prodrug thereof, wherein:

A¹ is -CH₂-- or CH₂CH₂-;

A² is C(-O)R^{9b}, S(-O)R^{9b}, S(-O)₂R^{9b}, CONHR^{9b},
-S(-O)₂NHR^{9b}, C(-O)OR^{9b},
-A³-R^{9a},
-A³-A⁴-R^{9a},
-A³-A⁴-A⁵-R^{9a}, or
-A³-A⁴-A⁵-A⁶-R^{9a},

W is selected from the group:

-B(OR²⁶)(OR²⁷),
-C(-O)C(-O)-Q,
-C(-O)C(-O)NH-Q,
-C(-O)C(-O)-O-Q,

$\text{C}(=\text{O})\text{CF}_2\text{C}(=\text{O})\text{NH-Q}$,
 $\text{C}(=\text{O})\text{CF}_3$,
 $\text{C}(=\text{O})\text{CF}_2\text{CF}_3$,
 $\text{C}(=\text{O})\text{H}$, and
 $\text{C}(=\text{O})\text{W}^1$,

W^1 is OR^8 or $\text{NR}^{11}\text{R}^{11a}$,

Q is selected from the group:

$(\text{CR}^{10}\text{R}^{10e})_m\text{Q}^1$,
 $\text{C}_1\text{-C}_4$ -alkyl substituted with Q^1 ,
 $\text{C}_2\text{-C}_4$ -alkenyl substituted with Q^1 , and
 $\text{C}_2\text{-C}_4$ -alkynyl substituted with Q^1 ,

m is 1 or 2,

Q^1 is selected from the group:

CO_2R^{11} , SO_2R^{11} , SO_3R^{11} , $\text{P}(\text{O})_2\text{R}^{11}$, $\text{P}(\text{O})_3\text{R}^{11}$,
phenyl substituted with $0\text{-}4\text{ Q}^{1a}$, and
5-6 membered heterocyclic group consisting of carbon atoms and
1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-6 membered heterocyclic group is substituted
with $0\text{-}4\text{ Q}^{1a}$,

Q^{1a} is H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,
 CO_2R^{19} , $\text{C}(=\text{O})\text{NR}^{19}\text{R}^{19a}$, $\text{NHC}(=\text{O})\text{R}^{19}$, SO_2R^{19} ,
 $\text{SO}_2\text{NR}^{19}\text{R}^{19a}$, $\text{NR}^{19}\text{R}^{19a}$, OR^{19} , SR^{19} , $\text{C}_1\text{-C}_4$ -alkyl,

C_1-C_4 -alkoxy, C_1-C_4 -haloalkyl, or C_1-C_4 -haloalkoxy;

R^1 is selected from the group: H, F,

C_1-C_6 alkyl-substituted with 0-3 R^{1a} ;

C_2-C_6 alkenyl-substituted with 0-3 R^{1a} ; and

C_2-C_6 alkynyl-substituted with 0-3 R^{1a} ; and

C_3-C_6 cycloalkyl substituted with 0-3 R^{1a} ,

R^{1a} is selected at each occurrence from the group:

C_1 , F, Br, I, CF_3 , CHF_2 , OH, =O, SH, CO_2R^{1b} , SO_2R^{1b} ,

SO_3R^{1b} , $P(O)_2R^{1b}$, $P(O)_3R^{1b}$, $C(=O)NHR^{1b}$,

$NHC(=O)R^{1b}$, SO_2NHR^{1b} , OR^{1b} , SR^{1b} , C_3-C_6 -cycloalkyl, C_1-C_6 alkoxy, $S(C_1-C_6$ alkyl),

C_1-C_4 alkyl substituted with 0-3 R^{1c} ,

aryl substituted with 0-5 R^{1c} ,

$O(CH_2)_n$ aryl substituted with 0-5 R^{1c} ,

$S(CH_2)_n$ aryl substituted with 0-5 R^{1c} , and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1c} ,

n is 0, 1 or 2;

R^{1b} is H,

C_1-C_4 alkyl substituted with 0-3 R^{1c} ,

C_2-C_4 -alkenyl substituted with 0-3 R^{1e} ,
 C_2-C_4 -alkynyl substituted with 0-3 R^{1e} ,
 C_3-C_6 -cycloalkyl substituted with 0-5 R^{1e} ,
aryl substituted with 0-5 R^{1e} ,
aryl C_1-C_4 alkyl substituted with 0-4 R^{1e} , or
5-6 membered heterocyclic group consisting of carbon atoms and
1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-10 membered heterocyclic group is substituted
with 0-4 R^{1e} ,

R^{1e} is selected at each occurrence from the group:

C_1-C_4 alkyl, Cl, F, Br, I, OH, SH, CN, NO₂, OR^{1d},
C(=O)OR^{1d}, NR^{1d}R^{1d}, SO₂R^{1d}, SO₃R^{1d}, C(=O)NHR^{1d},
NHC(=O)R^{1d}, SO₂NHR^{1d}, CF₃, OCF₃, C_3-C_6 -cycloalkyl, phenyl,
and benzyl,

R^{1d} is selected at each occurrence from the group: H, C_1-C_4 alkyl,
phenyl and benzyl,

R^2 is selected from the group: H, C_1-C_4 alkyl, C_2-C_4 -alkenyl, C_2-C_4
alkynyl, C_3-C_4 -cycloalkyl, and C_3-C_4 -cycloalkyl(C_1-C_4 alkyl);

alternatively, R^1 and R^2 can be combined to form a 4-7 membered
cyclic group consisting of carbon atoms, substituted with 0-2
 R^{14} ,

R^3 is selected from the group: R^4 ,

$-(CH_2)_p-NH-R^4,$
 $-(CH_2)_p-NHC(=O)-R^4,$
 $-(CH_2)_p-C(=O)NH-R^4,$
 $-(CH_2)_p-C(=O)O-R^4,$
 $-(CH_2)_p-C(=O)C(=O)-R^4,$
 $-(CH_2)_p-C(=O)C(=O)NH-R^4,$
 $-(CH_2)_p-NHC(=O)NH-R^4,$
 $-(CH_2)_p-NHC(=O)NHC(=O)-R^4,$
 $-(CH_2)_p-NHS(=O)_2-R^4,$
 $-(CH_2)_p-S(=O)_2NH-R^4,$
 $-(CH_2)_p-C(=O)-R^4,$
 $-(CH_2)_p-O-R^4,$ and
 $-(CH_2)_p-S-R^4,$

C₁-C₆ alkyl substituted with phenyl,
C₁-C₆ alkenyl substituted with phenyl,
-CH₂CONHPh, and
(2-phenylquinolin-4-yl)methyl;

p is 0, 1, or 2,

R⁴ is selected from the group:

~~C₁-C₆ alkyl substituted with 0-3 R^{4a},~~
~~C₂-C₆ alkenyl substituted with 0-3 R^{4a},~~
~~C₂-C₆ alkynyl substituted with 0-3 R^{4a},~~
~~C₃-C₁₀ cycloalkyl substituted with 0-4 R^{4b},~~
~~C₃-C₁₀ carbocycle substituted with 0-4 R^{4b},~~
~~aryl substituted with 0-5 R^{4b},~~

~~aryl C₁-C₄ alkyl substituted with 0-5 R^{4b}, and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or
unsaturated; and said 5-10 membered heterocyclic group is
substituted with 0-3 R^{4b},~~

~~R^{4a} is, at each occurrence, independently selected from:~~

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃,
=O, OH, CO₂H, C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},
-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},
-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,
-C(=NH)NHR¹¹, =NOR¹¹, NR¹¹C(=O)OR^{11a},
-NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a}, NR¹¹SO₂R^{11a},
-OP(O)(OR¹¹)₂,~~

~~C₁-C₄ alkyl substituted with 0-3 R^{4b},~~

~~C₂-C₄ alkenyl substituted with 0-3 R^{4b},~~

~~C₂-C₄ alkynyl substituted with 0-3 R^{4b},~~

~~C₃-C₇ cycloalkyl substituted with 0-4 R^{4c},~~

~~C₃-C₁₀ carbocycle substituted with 0-4 R^{4c},~~

~~aryl substituted with 0-5 R^{4c}, and~~

~~5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or
unsaturated; and said 5-10 membered heterocyclic group is
substituted with 0-3 R^{4c},~~

~~R^{4b} is, at each occurrence, independently selected from:~~

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~C(=NH)NHR¹¹, NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~OC(=O)NR¹¹R^{11a}, NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a},~~
~~NR¹¹SO₂R^{11a}, OP(O)(OR¹¹)₂,~~
~~C₁-C₄-alkyl substituted with 0-3 R^{4e},~~
~~C₂-C₄-alkenyl substituted with 0-3 R^{4e},~~
~~C₂-C₄-alkynyl substituted with 0-3 R^{4e},~~
~~C₃-C₆-cycloalkyl substituted with 0-4 R^{4d},~~
~~aryl substituted with 0-5 R^{4d}; and~~
~~5-10 membered heterocyclic group consisting of carbon atoms~~
~~and 1-4 heteroatoms selected from the group: O, S, and N;~~
~~optionally saturated or unsaturated; and said 5-10~~
~~membered heterocyclic group is substituted with 0-3 R^{4d},~~

R^{4e} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},~~
~~C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,~~
~~C₁-C₄-alkyl substituted with 0-3 R^{4d},~~
~~C₂-C₄-alkenyl substituted with 0-3 R^{4d},~~
~~C₂-C₄-alkynyl substituted with 0-3 R^{4d},~~
~~C₃-C₆-cycloalkyl substituted with 0-4 R^{4d},~~

~~aryl substituted with 0-5 R^{4d}, and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated or unsaturated; and said 5-10
membered heterocyclic group is substituted with 0-3 R^{4d},~~

~~R^{4d} is, at each occurrence, independently selected from:
H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,
CO₂R¹¹, C(=O)NR¹¹R^{11a}, NHC(=O)R¹¹,
NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a}, S(=O)R^{11a},
SO₂R¹¹, SO₂NR¹¹R^{11a}, C₁-C₄-alkyl, C₁-C₄-alkoxy,
C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, phenyl, and benzyl;~~

~~R⁸ is H or C₁-C₄-alkyl,~~

~~R^{9a} is selected from the group: H, S(=O)R^{9b}, S(=O)₂R^{9b},
S(=O)₂NHR^{9b}, C(=O)R^{9b}, C(=O)OR^{9b}, C(=O)NHR^{9b},
C(=O)NHC(=O)R^{9b},
C₁-C₆-alkyl substituted with 0-3 R^{9c},
C₂-C₆-alkenyl substituted with 0-3 R^{9c},
C₂-C₆-alkynyl substituted with 0-3 R^{9c},
C₃-C₆-cycloalkyl substituted with 0-3 R^{9d},
C₃-C₁₄-carbocycle substituted with 0-4 R^{9d},
aryl substituted with 0-5 R^{9d}, and
5-10 membered heterocyclic group consisting of carbon atoms
and 1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,~~

and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},

R^{9b} is selected from the group: H,

C₁-C₆ alkyl substituted with 0-3 R^{9e},

C₂-C₆ alkenyl substituted with 0-3 R^{9e},

C₂-C₆ alkynyl substituted with 0-3 R^{9e},

C₃-C₁₄ carbocycle substituted with 0-4 R^{9d},

aryl substituted with 0-5 R^{9d}, and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},

R^{9e} is selected from the group: CF₃, OCF₃, Cl, F, Br, I, -O-, OH,

C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂,

C₁-C₆ alkyl substituted with 0-3 R^{9d},

C₂-C₆ alkenyl substituted with 0-3 R^{9d},

C₂-C₆ alkynyl substituted with 0-3 R^{9d},

C₃-C₁₄ carbocycle substituted with 0-4 R^{9e},

aryl substituted with 0-5 R^{9e}, and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated,

and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e},

R^{9d} is selected at each occurrence from the group:

CF₃, OCF₃, Cl, F, Br, I, =O, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂,

C₁-C₄-alkyl substituted with 0-3 R^{9e},

C₁-C₄-alkoxy substituted with 0-3 R^{9e},

C₃-C₆-cycloalkyl substituted with 0-3 R^{9e},

aryl substituted with 0-5 R^{9e}; and

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e},

R^{9e} is selected at each occurrence from the group:

C₁-C₄-alkyl, C₁-C₄-alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH, phenyl, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, and NO₂,

R¹⁰ is selected from the group: CO₂R¹¹, NR¹¹R^{11a}, and C₁-C₆-alkyl substituted with 0-1 R^{10a},

R^{10a} is selected from the group: halo, NO₂, CN, CF₃, CO₂R¹¹, NR¹¹R^{11a}, OR¹¹, SR¹¹, C(=NH)NH₂, and aryl substituted with 0-1 R^{10b},

R^{10b} is selected from the group: CO_2H , NH_2 , OH , SH , and
 $\text{C}(\text{=NH})\text{NH}_2+$

R^{10e} is H or $\text{C}_1\text{-}\text{C}_4$ -alkyl,

alternatively, R^{10} and R^{10e} can be combined to form a $\text{C}_3\text{-}\text{C}_6$ cycloalkyl group substituted with 0-1 R^{10a} ,

R^{11} and R^{11a} are, at each occurrence, independently selected from the group: H,
 $\text{C}_1\text{-}\text{C}_6$ -alkyl substituted with 0-3 R^{11b} ,
 $\text{C}_2\text{-}\text{C}_6$ -alkenyl substituted with 0-3 R^{11b} ,
 $\text{C}_2\text{-}\text{C}_6$ -alkynyl substituted with 0-3 R^{11b} ,
 $\text{C}_3\text{-}\text{C}_7$ -cycloalkyl substituted with 0-3 R^{11b} ,
aryl substituted with 0-3 R^{11b} , and
aryl($\text{C}_1\text{-}\text{C}_4$ -alkyl) substituted with 0-3 R^{11b} ,

R^{11b} is OH, $\text{C}_1\text{-}\text{C}_4$ -alkoxy, F, Cl, Br, I, NH_2 , or $\text{NH}(\text{C}_1\text{-}\text{C}_4$ -alkyl);

R^{12} is H or $\text{C}_1\text{-}\text{C}_4$ -alkyl,

R^{14} is $\text{C}_1\text{-}\text{C}_4$ -alkyl or $\text{C}_2\text{-}\text{C}_4$ -alkenyl,

R^{19} and R^{19a} are independently selected from the group: H, $\text{C}_1\text{-}\text{C}_4$ alkyl, $\text{C}_1\text{-}\text{C}_4$ -haloalkyl, aryl, aryl($\text{C}_1\text{-}\text{C}_4$ -alkyl), $\text{C}_3\text{-}\text{C}_6$ cycloalkyl, and $\text{C}_3\text{-}\text{C}_6$ -cycloalkyl($\text{C}_1\text{-}\text{C}_4$ -alkyl),

alternatively, $\text{NR}^{19}\text{R}^{19a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N,

and

OR^{26} and OR^{27} are independently selected from:

- a) OH,
- b) F,
- c) $\text{NR}^{28}\text{R}^{29}$,
- d) $\text{C}_1\text{-C}_8$ -alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O pinanediol.,

R^{28} and R^{29} , are independently selected from: H, $\text{C}_1\text{-C}_4$ -alkyl, aryl($\text{C}_1\text{-C}_4$ -alkyl), and $\text{C}_3\text{-C}_7$ -cycloalkyl,

A^3 , A^4 , A^5 , and A^6 , are independently selected from an amino acid residue, and

an amino acid residue, at each occurrence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration.

3. (canceled)

4. (canceled)

5. (canceled)

6. (canceled)

7. (currently amended) A compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt form ~~or prodrug~~ thereof, selected from:— the group consisting of

(4S)-*N*-{[(1*R*)-1-[(3α*S*,4*S*,6*S*,7α*R*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-3-methyl-2-[(phenylacetyl)-amino]-butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

tert-butyl (1*S*)-*N*-{[(1*R*)-1-[(3α*S*,4*S*,6*S*,7α*R*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;

(4*S*)-*N*-{[(1*R*)-1-[(3α*S*,4*S*,6*S*,7α*R*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(anilinocarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3α*S*,4*S*,6*S*,7α*R*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(9*H*-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3α*S*,4*S*,6*S*,7α*R*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(4-

methoxyphenyl)acetyl]amino}-3-methylbutanoyl)-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4S)-N-{{[(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl}-3-{(2S)-2-[(9H-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

9H-fluoren-9-ylmethyl (1S)-N-{{[(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl]amino}carbonyl}-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;

(4S)-N-{{[(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-3-methyl-2-[(3-(trifluoromethyl)benzyl)amino]butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4S)-N-{{[(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2S)-2-[(1,1'-biphenyl)-4-ylmethyl]amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

9H-fluoren-9-ylmethyl (1S)-1-((5S)-5-{{[(1R)-1-[(3 α S,4S,6S,7 α R)-hexahydro-3 α ,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl]amino}carbonyl}-2-oxo-3-[(2-phenyl-4-quinolinyl)methyl]imidazolidinyl]carbonyl)-2-methylpropylcarbamate;

N-((1S)-1-{{(5S)-5-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-amino}carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl}carbonyl}-2-methylpropyl)-2-chloronicotinamide;

(4S)-N-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2S)-2-[(4-butylbenzoyl)amino]-3-methylbutanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

isobutyl (1S)-1-{{(5S)-5-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}amino}carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl}carbonyl}-2-methylpropylcarbamate;

(4S)-N-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2S)-2-[(benzoylamino)carbonyl]amino]-3-methylbutanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4S)-N-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2S)-3-methyl-2-(1-naphthoylamino)butanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4S)-N-{{[(1R)-1-[(3αS,4S,6S,7αR)-hexahydro-3α,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2S)-2-(acetylamino)-3-methylbutanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4S)-N-{[(1R)-1-[(3 α S, 4S, 6S, 7 α R)-hexahydro-3 α , 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-[(2S)-2-(benzoylamino)-3-methylbutanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

benzyl (5S)-5-[(1R)-1-[(3 α S, 4S, 6S, 7 α R)-hexahydro-3 α , 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]-3-butenyl]amino) carbonyl]-2-oxo-3-[(2E)-3-phenyl-2-propenyl]-1-imidazolidinecarboxylate; and

benzyl (5S)-5-[(1R)-1-[(3 α S, 4S, 6S, 7 α R)-hexahydro-3 α , 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]-3-butenyl]amino) carbonyl]-3-(2-anilino-2-oxoethyl)-2-oxo-1-imidazolidinecarboxylate.

8

~~Rule 1.126
RA 9/23/03~~
~~✓~~. (currently amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt form or prodrug thereof.

9

~~✓~~. (canceled)

10

~~✓~~. (canceled)

11

~~✓~~. (canceled)

12

~~✓~~. (canceled)

13

~~✓~~. (canceled)

¹⁴
~~13.~~ (canceled)

¹⁵
~~14.~~ (previously canceled)

¹⁶
~~15.~~ (previously canceled)

¹⁷
~~16.~~ (previously canceled)

¹⁸
~~17.~~ (previously canceled)

¹⁹
~~18.~~ (previously canceled)

²⁰
~~19.~~ (previously canceled)

²¹
~~20.~~ (previously canceled)

²²
~~21.~~ (previously canceled)

Rule 1.12
Rk
9/23/03