Please upload your solution to Problem 3 to canvas for marking after the workshop.

Problem 1

What is the angular speed (in radians per second) of the following components of the minute hand of a smoothly running analog watch?

Problem 2

In the figure below, wheel A of radius $r_A = 10$ cm is coupled by belt B to wheel C of radius $r_C = 25$ cm. The angular speed of wheel A is increased from rest at a constant rate of 1.6 rads⁻². Find the time needed for wheel C to reach an angular speed of 100 rev/min, assuming the belt does not slip.

Problem 3

A 0.400 kg ball is shot directly upward at initial speed 40.0 ms^{-1} . What is its angular momentum about P, 2.00 m horizontally from the launch point, when the ball is

- (a) at maximum height?
- (b) halfway back to the ground?

What is the torque on the ball about P due to the gravitational force when the ball is

- (c) at maximum height?
- (d) halfway back to the ground?

Problem 4

A uniform solid sphere rolls down an incline.

- (a) What must be the incline angle if the linear acceleration of the centre of the sphere is to have a magnitude of 0.10g?
- (b) If a frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to 0.10g? Why?

Want more practice?

Further problems on Angular Variables: Chapter 10.1-10.4 Further problems on Inertia & Torque: Chapter 10.5-10.8 Further problems on Rolling & Angular Momentum: Chapter 11