Ayudantía II - FIS140 - 2022 S1

Profesor Coordinador: Dr. Maximiliano Rivera Urrejola. Ayudantes: Patricio Valdés Saavedra, Bastián Mesías Ríos Iván González Echeverría y Rodolfo Morales Gálvez.

7 y 8 de abril

1. Ondas Planas

Una OEM se propaga en el vacío y su campo eléctrico se encuentra dado por:

$$E_x = 0$$

$$E_y = 50 \sin[2\pi (6 \cdot 10^{14} t - 2 \cdot 10^6 x)]$$

$$E_z = 0$$

Se pide:

- a) Calcular la frecuencia, periodo, longitud de onda y fase inicial del campo eléctrico.
- b) Indicar el estado de polarización de la OEM y su dirección de propagación.
- c) Escribir la expresión del campo magnético asociado.
- d) Representar gráficamente la OEM.

2. Polarización

Una OEM de frecuencia $6 \cdot 10^{14}$ Hz (luz verde) y amplitud de campo eléctrico $30\sqrt{2}$ V/m, se propaga en el vacío según el eje $+\hat{x}$.

Se pide encontrar las expresiones matemáticas de \vec{E} en los siguientes casos:

- a) Onda polarizada en el plano XY.
- b) Onda circularmente polarizada.

3. Teorema de Poynting

Sabiendo que el campo eléctrico de una OEM se encuentra dado por:

Se pide:

- a) Encuentre su vector de Poynting.
- b) Encuentre la energía promedio transmitida por la OEM.

4. Ondas Circulares

Una radioemisora emite ondas con una frecuencia de 800 Hz y una potencia de 10 kW. Suponiendo que las ondas pueden ser aproximadas como esféricas, se pide:

- a) Imagine una superficie cualquiera que encierra la radioemisora. ¿Cuánta energía atraviesa dicha superficie?.
- b) Calcule cómo varía la intensidad de las OEM emitidas por la radioemisora en función de la distancia.
- c) Calcule la magnitudes de los campos eléctricos y magnéticos a 1 km de la radioemisora.

5. Ejercicios propuestos

a) Una OEM de igual frecuencia que la de (1) se propaga en el vacío y su campo magnético se encuentra dado por:

$$\vec{B} = 3 \cdot 10^{-1} \cos(\omega t - kx)\hat{y}$$

Determine: (a) dirección de propagación; (b) valores de ω y \vec{k} ; y (c) campo eléctrico asociado. Respuesta: (a) \hat{z} ; (b) $\omega = 2\pi \cdot 6 \cdot 10^{14}$ rad/s $\vec{k} = 2\pi \cdot 2 \cdot 10^6 \hat{x}$ rad/m; (c) $\vec{E} = E_0 \hat{z}$ con $E_0 = cB_0 = 9 \cdot 10^7$ V/m.

- b)
- c)
- d)