

Indefinite Integrals Ex 19.9 Q35

Let
$$I = \int \frac{x \sin^{-1} x^2}{\sqrt{1 - x^4}} dx - - - - \{i\}$$

Let
$$\sin^{-1} x^2 = t$$
 then,
 $d(\sin^{-1} x^2) = dt$

$$\Rightarrow 2x \times \frac{1}{\sqrt{1-x^4}} dx = dt$$

$$\Rightarrow \frac{x}{\sqrt{1-x^4}}dx = \frac{dt}{2}$$

Putting $\sin^{-1} x^2 = t$ and $\frac{x}{\sqrt{1-x^4}} dx = \frac{dt}{2}$ in equation (i), we get

$$I = \int t \frac{dt}{2}$$
$$= \frac{1}{2} \times \frac{t^2}{2} + C$$
$$= \frac{1}{4} \left(\sin^{-1} x^2 \right)^2 + C$$

$$I = \frac{1}{4} \left(\sin^{-1} x^2 \right)^2 + C$$

Indefinite Integrals Ex 19.9 Q36

Let
$$I = \int x^3 \sin(x^4 + 1) dx - - - - (i)$$

Let
$$x^4 + 1 = t$$
 then,
 $d(x^4 + 1) = dt$

$$\Rightarrow x^4 dx = dt$$

$$\Rightarrow x^3 dx = \frac{dt}{4}$$

Putting $x^4 + 1 = t$ and $x^3 dx = \frac{dt}{4}$ in equation (i), we get

$$I = \int \sin t \frac{dt}{4}$$
$$= -\frac{1}{4}\cos t + c$$
$$= -\frac{1}{4}\cos \left(x^4 + 1\right) + c$$

$$I = -\frac{1}{4} \cos \left(x^4 + 1\right) + c$$

Indefinite Integrals Ex 19.9 Q37

Let
$$I = \int \frac{(x+1)e^x}{\cos^2(xe^x)} dx - \cdots - (i)$$

Let
$$xe^x = t$$
 then,
 $d(xe^x) = dt$

$$\Rightarrow \qquad \left(e^x + xe^x\right)dx = dt$$

$$\Rightarrow (x+1)e^x dx = dt$$

Putting $xe^x = t$ and $(x+1)e^x dx = dt$ in equation (i), we get

$$I = \int \frac{dt}{\cos^2 t}$$
$$= \int \sec^2 t \, dt$$
$$= \tan t + c$$
$$= \tan \left(xe^x\right) + c$$

$$I = \tan(xe^x) + c$$

Indefinite Integrals Ex 19.9 Q38

Let
$$I = \int x^2 e^{x^3} \cos\left(e^{x^3}\right) dx - - - - - (i)$$

Let
$$e^{x^3} = t$$
 then $d(e^{x^3}) = dt$

$$\Rightarrow 3x^2 e^{x^3} dx = dt$$

$$\Rightarrow 3x^2 e^{x^3} dx = dt$$
$$\Rightarrow x^2 e^{x^3} dx = \frac{dt}{3}$$

Putting $e^{x^3} = t$ and $x^2 e^{x^3} dx = \frac{dt}{3}$ in equation (i), we get

$$I = \int \cos t \frac{dt}{3}$$
$$= \frac{\sin t}{3} + c$$
$$= \frac{\sin \left(e^{x^3}\right)}{3} + c$$

$$I = \frac{1}{3} \sin\left(e^{x^3}\right) + c$$

Indefinite Integrals Ex 19.9 Q39

Let
$$I = \int 2x \sec^3(x^2 + 3) \tan(x^2 + 3) dx - - - - - (i)$$

Let
$$\sec(x^2+3)=t$$
 then,
$$d\left[\sec(x^2+3)\right]=dt$$

$$\Rightarrow 2x \sec(x^2 + 3) \tan(x^2 + 3) dx = dt$$

Putting $\sec(x^2+3)=t$ and $2x\sec(x^2+3)\tan(x^2+3)dx=dt$ in equation (i), we get

$$I = \int t^2 dt$$

$$= \frac{t^3}{3} + c$$

$$= \frac{1}{3} \left[\sec(x^2 + 3) \right]^3 + c$$

$$I = \frac{1}{3} \left[\sec \left(x^2 + 3 \right) \right]^3 + c$$

****** END ******