PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-132086

(43)Date of publication of application: 22.05.1998

(51)Int.CI.

F16J 15/22

D02G 3/02

D07B 1/04

(21)Application number : 09-257077

(71)Applicant: NIPPON PILLAR PACKING CO LTD

(22)Date of filing:

22.09.1997

(72)Inventor: UEDA TAKAHISA

(54) PACKING

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the usability and the general purpose property of a packing while to secure a high sealing property as a packing, by increasing the tensile strength and the toughness of knitting yarns while maintaining the intrinsic high compression restoring property and the concordance of an expansion graphite. SOLUTION: In this packing 1 with a free length, plural lines of reinforced yarns 40 set in an expansion graphite 41 to be a base material along its longitudinal direction is jointed with the expansion graphite 41 integral, or they are buried without jointing so as to compose a knitting yarn 4. Plural lines of knitting yarns 4 are bundled to form a core 2, and the outer periphery of the core 2 is covered by a braid 3 of knitting yarns 4, or plural lines of knitting yarns 4 are bundled to form a braid, or plural lines of knitting yarns 4 are bundled and twisting processed.

LEGAL STATUS

[Date of request for examination]

22.09.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3101916

[Date of registration]

25.08.2000

[Number of appeal against examiner's decision of rejection]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-132086

(43)公開日 平成10年(1998) 5月22日

(51) Int.Cl.		識別記号	FΙ	
F16J	15/22		F16J	15/22
D02G	3/02		D02G	3/02
D07B	1/04		D07B	1/04

審査請求 有 請求項の数17 OL (全 7 頁)

(21)出願番号 (62)分割の表示 (22)出願日	特願平9257077 特願平2-503018の分割 平成 2年(1990) 2月8日	(71)出願人 (72)発明者 (74)代理人	000229737 日本ピラー工業株式会社 大阪府大阪市淀川区野中南2丁目11番48号 上田 隆久 兵庫県三田市武庫が丘4丁目5番地10 弁理士 鈴江 孝一 (外1名)
		ı	

(54) 【発明の名称】 パッキン

(57)【要約】

【課題】 膨張黒鉛本来の高い圧縮復元性およびなじみを維持しつつ、編み糸の引張り強さおよび靭性を高くし、バッキンとして高い封止特性を確保するとともに、使用性および汎用性の向上が図れるようにする。

【解決手段】 基材となる膨張黒鉛41中に、それの長手方向に沿って配置した補強繊維糸40を接着剤により 膨張黒鉛41と一体に接着して、もしくは接着しないで 埋設して構成される編み糸4を複数本集束して中芯2を 形成し、この中芯2の外周を編み糸4の編組体3によって被覆したり、若しくは、編み糸4を複数本集束してみねり 加工して、自由な長さのバッキン1としている。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強機構糸を埋設して編み糸となし、との編み糸を複数本集束して中芯が形成され、この中芯の外周が前記編み糸の編組体によって被覆されていることを特徴とするパッキン。

【請求項2】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強繊維糸を埋設して編み糸となし、との編み糸を複数本集束して編組したことを特徴とするパッキン。

【請求項3】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強繊維糸を埋設して編み糸となし、との編み糸を複数本集束してひねり加工したことを特徴とするパッキン。

【請求項4】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強繊維糸を接着剤により膨張黒鉛と一体に接着し埋設して編み糸となし、との編み糸を複数本集束して中芯が形成され、との中芯の外周が前記編み糸の編組体によって被覆されていることを特徴とするパッキン。

【請求項5】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強繊維糸を接着剤により膨張黒鉛と一体に接着し埋設して編み糸となし、この編み糸を複数本集束して編組したととを特徴とするパッキン。

【請求項6】 基材となる膨張黒鉛中に、それの長手方向に沿って配置した補強繊維糸を接着剤により膨張黒鉛と一体に接着し埋設して編み糸となし、この編み糸を複数本集束してひねり加工したことを特徴とするバッキン。

【請求項7】 上記膨張黒鉛が芋虫状黒鉛粉である請求 30 項1ないし6のいずれかに記載のパッキン。

【請求項8】 上記膨張黒鉛が細幅のシート状である請求項1ないし6のいずれかに記載のパッキン。

【請求項9】 上記補強繊維糸が木綿、レーヨン、フェノール、アラミド、PBI、PTEF、PPS、PEE Kなどの有機繊維の中から選択された少なくとも1つのものである請求項1ないし6のいずれかに記載のバッキン。

【請求項10】 上記補強繊維糸がガラス繊維、炭素繊維、セラミック繊維などの無機繊維の中から選択された 40 少なくとも1つのものである請求項1ないし6のいずれかに記載のバッキン。

【請求項11】 上記補強繊維糸がステンレス、インコネル、モネルなどの金属線の中から選択された少なくとも1つのものである請求項1ないし6のいずれかに記載のパッキン。

【請求項12】 上記補強繊維糸が上記有機繊維から選択された少なくとも1つと、上記無機繊維または金属線の中から選択された少なく1つとの複合体である請求項1ないし6のいずれかに記載のバッキン。

[請求項13] 上記補強機維糸が上記無機機構もしくは金属線の中から選択された少なくとも1つまたはこれらの複合体の表面を、上記有機機維の中から選択された1つの短線維もしくはこれらの複合短線維糸によって被覆したものである請求項1ないし6のいずれかに記載のパッキン。

【請求項14】 上記補強繊維糸が上記無機繊維もしくは金属線の中から選択された1つまたはこれらの複合体の表面を、抄造物によって被覆したものである請求項1 10 ないし6のいずれかに記載のパッキン。

【請求項15】 上記補強繊維糸が上記有機繊維と無機 繊維もしくは金属線とを撚ったものである請求項1ない し6のいずれかに記載のバッキン。

【請求項16】 上記補強繊維糸が上記有機繊維もしくは無機繊維または金属線をニット編みしたものである請求項1ないし6のいずれかに記載のバッキン。

【請求項17】 上記補強繊維糸が長手方向に平行に延びる複数の無機繊維もしくは金属線と、これらの間に交絡されて平行を保持する有機繊維とからなるものである20 請求項1ないし6のいずれかに記載のバッキン。

【発明の詳細な説明】

[0001]

[発明の属する技術分野]本発明は、流体機器の軸封部 に用いるグランドパッキンなどに好適なパッキンに関する。

[0002]

【従来の技術】従来、例えば流体機器の軸封部などに用いられるグランドバッキンを得るためのバッキン材料として、圧縮復元性が高く封止性にすぐれた特性をもっている膨張黒鉛を基材としたものが知られている。

[0003]

【発明が解決しようとする課題】ところで、このような 膨張黒鉛を基剤として形成されるグランドパッキンは、 ラミネート式、ダイモールド式、チップモールド式、リ ボンパック式などの圧縮成形方式によって製造される が、これらのものは、あらかじめ用いる軸径にあわせて リング状に形成しておく必要があり、軸径の異なる他の ものには使用し得ない。したがって、汎用性に乏しく、 また膨張黒鉛自体、引張強さが弱く脆いため、スタフィ ンボックスなどに装着したものを交換のために取り出す 作業が困難であり使用性に劣る。

【0004】さらに、上記各圧縮成形方式の個々の問題点として、ラミネート式の場合は、歩留りが悪くコストアップにつながる。ダイモールド式およびチップモールド式の場合は、金型成形となりコスト高になるとともに、別用性に乏しい。リボンバック式の場合は、作業性が悪いなどを挙げるととができる。

[0005] とれらの問題点は、他の編組パッキンと同様、膨張黒鉛を軸径に合せて所定の長さに切断して使用 50 し得るように、紐状体に構成することで解決できるけれ

ども、膨張黒鉛自体は、黒鉛粒子の結晶のC軸方向に膨 張させた外観上芋虫状粒子(粉体)であるため、これら 芋虫状粒子を集合して圧縮成形によってシート状に形成 できるが、シート状に形成しても前述のように引張強さ が弱く、脆い性質のものであるから、糸(ヤーン)とす ることができないので編組できない。したがって、他の **福組バッキンのように軸径に合せて所定長さに切断した** のち、との切断されたものを軸外周に巻回してパッキン として使用することが不可能とされていた。

【0006】本発明は上記のような実情に鑑みてなされ 10 たもので、福組に必要な膨張黒鉛製編み糸、即ち、膨張 黒鉛を基剤とする編み糸構成を基礎研究とする鋭意研究 の結果、膨張黒鉛本来の圧縮復元性が高く、かつなじみ 性にすぐれている特性を損なうことなく、編み糸の引張 り強さおよび靭性を高くし、とのような編み糸の複数本 集束によって高い封止性を確保しつつ使用性および汎用 性の向上を図るととができるパッキンを提供するととを 目的としている。

[0007]

【課題を解決するための手段】上記目的を達成するため 20 に、請求項1~請求項3に記載の発明に係るパッキン は、基材となる膨張黒鉛中に、それの長手方向に沿って 配置した補強繊維糸を埋設して編み糸となし、との編み 糸を複数本集束して中芯を形成し、この中芯の外周を上 記稿み糸の編組体によって被覆する、若しくは、上記編 み糸を複数本集束して編組する、あるいは、上記編み糸 を複数本集束してひわり加工することを特徴とするもの である。

【0008】上記構成の請求項1~請求項3 に記載の発 明によれば、脆い性質の膨張黒鉛を基材とする編み糸中 30 に、それの長手方向に沿って補強繊維糸を配置し埋設す ることで、膨張黒鉛同士の結合性を利用して所定量の膨 張黒鉛の集合体を構成させ膨張黒鉛が本来もっている高 い圧縮復元性とすぐれたなじみ性を維持しつつ、編み糸 に補強繊維糸のもっている高い引張り強さと靭性とが付 与されているから、との編み糸を糸切れすることなく編 組したり、ひねり加工したりすることができる。これに よって、との編み糸の複数本を集束して形成された中芯 の外周を該編み糸の編組体によって被覆した紐伏体を形 成させたり、福み糸の複数本を集束し編組して高い引張 40 り強さおよび靭性をもった編組体(角編み)を形成させ たり、編み糸を複数本集束してひねり加工して高い引張 り強さおよび靭性をもつひわり加工紐状体を形成させた りすることが可能となり、したがって、膨張黒鉛本来の 特性である高い圧縮復元性およびなじみ性によりバッキ ンとして不可欠な高い封止特性を確保できるものであり ながら、とのパッキンを構成する編み糸のもつ高い引張 り強さおよび朝性を活用して、軸径に合わせて紐状体を 所定長さに切断し軸外周に巻回してパッキンとして使用 するといった汎用性および使用性の向上が図れる。

【0009】また、請求項4~請求項6に記載の発明に 係るパッキンは、基材となる膨張黒鉛中に、それの長手 方向に沿って配置した補強繊維糸を接着剤により膨張黒 鉛と一体に接着し埋設して編み糸となし、この編み糸を 複数本集束して中芯を形成し、この中芯の外周を上記稿 み糸の編組体によって被覆する、若しくは、上記編み糸 を複数本集束して編組する、あるいは、上記編み糸を複 数本集束してひねり加工するととを特徴とするものであ る。・

【0010】上記構成の請求項4~請求項6に記載の発 明によれば、請求項1~請求項3に記載の発明と同様 に、膨張黒鉛本来の特性である高い圧縮復元性およびな じみ性によりパッキンとして不可欠な高い封止特性を確 保できるものでありながら、とのパッキンを構成する編 み糸のもつ高い引張り強さおよび靭性を活用して、軸径 に合わせて紐状体を所定長さに切断し軸外周に巻回して パッキンとして使用するといった汎用性および使用性の 向上が図れるのはもちろん、特に、編み糸を構成する補 強繊維糸と膨張黒鉛とが接着材により一体に接着されて いるので、編組などのパッキン製作工程中に曲げやひね りなどの応力が加えられたとしても、膨張黒鉛が剝がれ たり脱落するととを確実に防いで膨張黒鉛本来の特性に よる高い封止性能を一層確実に発揮させるととができ る。

[0011]上記請求項1~6 に記載の発明に係るパッ キンにおける膨張黒鉛としては、請求項7に記載のよう な芋虫状黒鉛粉を使用しても、請求項8に記載のような 細幅シート状のものを使用してもよい。

【0012】また、上記請求項1~6に記載の発明に係 るパッキンにおける編み糸を構成する補強繊維糸として は、請求項9に記載のように、木綿、レーヨン、フェノ ール、アラミド、PBI、PTEF、PPS、PEEK などの有機繊維の中から選択された少なくとも1つのも のであっても、請求項10に記載のように、ガラス繊 維、炭素繊維、セラミック繊維などの無機繊維の中から 選択された少なくとも1つのものであっても、請求項1 1 に記載のように、ステンレス、インコネル、モネルな どの金属線の中から選択された少なくとも1つのもので あってもよく、また、請求項12に記載のように、上記 有機繊維から選択された少なくとも1つと上記無機繊維 または金属線の中から選択された少なく1つとの複合体 であってもよい.

【0013】さらに、上記請求項1~6に記載の発明に 係るパッキン用福み糸における補強繊維糸として、請求 項13に記載のように、上記無機繊維もしくは金属線の 中から選択された少なくとも1つまたはこれらの複合体 の表面を、上記有機繊維の中から選択された1つの短繊 維もしくはこれらの複合短繊維糸によって被覆したも の、請求項14に記載のように、上記無機機維もしくは 金属線の中から選択された1つまたはこれらの複合体の

50

5

表面を、抄造物によって被覆したもの、請求項15に記載のように、上記有機繊維と無機繊維もしくは金属線とを撚ったもの、請求項16に記載のように、上記有機繊維もしくは無機繊維または金属線をニット編みしたもの、あるいは、請求項17に記載のように、長手方向に平行に延びる複数の無機繊維もしくは金属線と、これらの間に交絡されて平行を保持する有機繊維とからなるもの、のいずれであってもよい。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面 10 にもとづいて説明する。図1は本発明に係るパッキンの一実施の形態を示す一部切断斜視図であり、同図において、パッキン1は中芯2とこの中芯2の外周を被覆している例えば袋編みされた編組体3によって構成されており、中芯2は編み糸4を複数本集束して長手方向に配置することによって形成され、編組体3は編み糸4を袋編みすることによって形成されている。

【0015】上記編み糸4は、図2に示すように、幅方向に相互に間隔をあけて長手方向に沿って配置した例えば木綿によってなる複数本の補強繊維糸40の両面を図 20 示されていない接着剤によって芋虫状の膨張黒鉛粉からなる膨張黒鉛41と一体に接着して埋設した構成になっている。補強繊維糸40として用いられる木綿は、その表面に極く短く細い繊維が無数に立つ、いわゆる毛羽立ちが認められるので、接着剤との付着性がよい。そのために、補強繊維糸40と膨張黒鉛41とが互いに強固に接着されて編組などによるパッキン製作工程中に膨張黒鉛41が剥がれたり脱落することを防止できる。

【0016】とのように、幅方向に相互に間隔をあけて 長手方向に配置した例えば木綿によってなる複数本の補 30 強繊維糸40を接着剤により膨張黒鉛41と一体に接着 して埋設した編み糸4を構成することで、編み糸4には 補強繊維糸40のもっている高い引張り強さと靭性とが 付与されることになるから、この編み糸4は糸切れする ととなく編組できる。したがって、編み糸4によって形 成された中芯の外周を、該編み糸4で袋編みした編組体 3によって被覆した紐状体5、つまり高い引張り強さを もち、靭性に富んだ特性を有する紐状体5に形成し、と の紐伏体5を例えば軸径に合せて所定に長さに切断して パッキン1として使用するととができるので、汎用性と 40 使用性が向上する。しかも、パッキン1を構成している 中芯2および編組体3には、膨張黒鉛41が本来もって いる高い圧縮復元性とすぐれたなじみ性が付与されると とになるから、パッキン1として不可欠な高い封止特性 を確保できる。

【0017】図3は本発明に係るパッキン1の他の実施の形態を示す斜視図であり、前記実施の形態と同一もしくは相当部分には同一の符号を付し、それらの詳しい説明は省略する。図3において、パッキン1は編み糸4を8本用いて8打角編みした編組体3Aによって紐状体5

を形成している。

[0018] との実施の形態による場合も、編み糸4には補強繊維糸40のもっている高い引張り強さと靭性とが付与されることになるので、この編み糸4を糸切れすることなく編組(角編み)できる。したがって、高い引張り強さをもち、靭性に富んだ特性を有する編組体3Aによって紐状体5を形成し、この紐状体5を例えば軸径に合せて所定に長さに切断してパッキン1として使用することができるので、汎用性と使用性が向上する。しかも、パッキン1を構成している編組体3Aには、膨張黒鉛41が本来もっている高い圧縮復元性とすぐれたなじみ性が付与されることになるから、パッキン1として不可欠な高い封止特性を確保できる。

【0019】図4は本発明に係るバッキンの別の実施の 形態を示す斜視図であり、前記各実施例と同一もしくは 相当部分には同一の符号を付し、それらの詳しい説明は 省略する。図4において、バッキン1は、編み糸4を6 本束ねて、20回/mのひねり加工を施しながらロール 成形を行い、ひねり加工された紐状体5を形成してい

[0020] この実施の形態による場合も、編み糸4に は補強繊維糸40のもっている高い引張り強さと靭性と が付与されるととになるので、との編み糸4を糸切れす るととなくひねり加工するととができる。したがって、 高い引張り強さをもち、靭性に富んだ特性を有するひね り加工された紐状体5を形成し、との紐状体5を例えば 軸径に合せて所定に長さに切断してパッキン1として使 用することができるので、汎用性と使用性が向上する。 しかも、パッキン1を構成しているひねり加工された紐 状体5には、膨張黒鉛41が本来もっている高い圧縮復 元性とすぐれたなじみ性が付与されることになるから、 パッキン1として不可欠な高い封止特性を確保できる。 【0021】上記各実施の形態では、膨張黒鉛41とし て、芋虫状黒鉛粉を使用したものにてついて説明してい るが、細幅(幅寸法、例えば5 mm以下) に切断したシー ト状の膨張黒鉛を使用してもよい。また、補強繊維糸4 0の片面のみを接着剤により膨張黒鉛41に接着した編 み糸4を構成させてもよい。さらに、前記の編み糸4 を、図5のように、撚りをかけたのちに使用してもよ

[0022]上記編み糸4を構成している補強繊維糸4 0としては、前記木綿に代えて、レーヨン、フェノー ル,アラミド、PBI、PTFE、PPS、PEEKな どの有機繊維の中から選択された1つもしくはガラス繊 椎, 炭素繊維,セラミック繊維などの無機繊維の中から 選択された1つ、またはステンレス、インコネル、モネ ルなどの金属線の中から選択された1つのものであって もよく、また、前記有機繊維の中から選択された少なく とも1つと前記無機繊維の中から選択された少なくとも 1つとの複合体であってもよい。

【0023】図6~図10はそれぞれ補強繊維糸40の 変形例を示し、図6の補強繊維糸40は、前配有機繊維 から選択された1つ40A(木綿またはアラミド)と、 前記無機繊維または金属線の中から選択された1つ40 B(はガラス繊維、炭素繊維またはステンレス線)とを 撚って形成している。との補強繊維糸40では、有機繊 維によって膨張黒鉛41との付着性と靭性を向上させ、 かつ無機繊維または金属線によって引張り強さと靭性を 向上させることができる。

【0024】図7の補強繊維糸40は、前記無機繊維も しくは金属線の中から選択された少なくとも1つ40B (ガラス繊維、炭素繊維もしくはステンレス線) の表面 を、有機繊維の中から選択された1つ(木綿またはアラ ミド)の短機維6によって被覆したものである。この補 強繊維糸40では、短繊維6の被覆層によって膨張黒鉛 41との付着性と靭性を向上させ、かつ無機繊維もしく は金属線の中から選択された少なくとも1つ40Bによ って引張り強さと靭性を向上させることができる。なお 短繊維6の被覆層は、有機繊維の中から選択された2つ 以上の短繊維を複合した複合短繊維糸によって形成して 20 もよい。

【0025】図8の補強繊維糸40は、前記無機繊維も しくは金属線の中から選択された少なくとも1つ40B (ガラス繊維、炭素繊維もしくはステンレス線) の表面 を、例えばパルプ抄造物7によって被覆したものであ る。との補強繊維糸40では、パルプ抄造物7の被覆層 によって膨張黒鉛41との付着性と靭性を向上させ、か つ無機繊維もしくは金属線の中から選択された少なくと も1つ40Bによって引張り強さと靭性を向上させるC とができる。

【0026】図9の補強繊維糸40は、前記有機繊維か ら選択された1つ40A(木綿またはアラミド)もしく は前記無機繊維、または金属線の中から選択された1つ 40B(ガラス繊維、炭素繊維またはステンレス線)の いずれかをニット編み8したものである。この補強繊維 糸40では、ニット編み構造体の編み目で形成される凹 凸によって接着剤との付着性が向上し、かつニット編み 構造体自体が保有している伸縮機能によって引張り力を 吸収できるので、結果的に引張りに対する許容度が大き くなり靭性を向上させるととになる。

【0027】図10の補強繊維糸40は、前記無機機 維、または金属線の中から選択された1つ40B(ガラ ス繊維、炭素繊維またはステンレス線)を複数本長手方 向に平行に配置し、とれら複数の繊維間に前記有機繊維 から選択された1つ40A(木綿またはアラミド)を交 絡させて、平行を保持したものである。この補強繊維糸 40では、有機繊維によって膨張黒鉛41との付着性と 靭性を向上させ、かつ無機繊維または金属線によって引 張り強さと靭性を向上させることができる。

向に相互に間隔をあけて長手方向に沿って配置し埋設し た補強繊維糸40のもっている高い引張り強さと靭性が **掲み糸4に付与されているので、との編み糸4を糸切れ** することなく容易に編組またはひねり加工できる。即 ち、図11(A)(B)のように、破線で示す軌跡上を 旋回移動する複数の編み糸ボビン9、9から編み糸4を 繰りだして袋福みする場合のように、 福み糸ボビン9, 9が軌跡の外側に位置している時点での編み糸ボビン 9, 9から編み点Pまでの長さlaと、編み糸ポピン 9. 9が軌跡の内側に位置している時点での編み糸ボビ ン9,9から編み点Pまでの長さ1bとの差が小さく、 したがって、編み糸4には比較的小さい引張力が負荷さ れる場合は勿論のとと、図12(A)(B)のように、 破線で示す対角線上の軌跡を移動する複数の編み糸ボビ ン9、9から編み糸4を繰りだして角編みする場合のよ うに、編み糸ボビンタ、9が軌跡の外側に位置している 時点での編み糸ボビン9.9から編み点Pまでの長さ1 aと、編み糸ボビン9、9が軌跡の中央部位置している 時点での編み糸ボビン9,9から編み点Pまでの長さ1 bとの差が大きく、したがって、編み糸4には比較的大 きい引張力が負荷される場合でも編組が可能である。 [0029]

[発明の効果]以上のように、請求項1~3に記載の発 明によれば、脆い性質の膨張黒鉛を基材とする編み糸中 に、それの長手方向に沿って補強繊維糸を配置し埋設す るととで、膨張黒鉛同士の結合性を利用して所定量の膨 張黒鉛の集合体を構成させ膨張黒鉛が本来もっている高 い圧縮復元性とすぐれたなじみ性を維持しつつ、福み糸 に補強繊維糸のもっている高い引張り強さと靭性とを付 30 与させて、編組やひねり加工のような複雑な応力が作用 するバッキンの製作工程時に糸切れなどが生じるととを 確実に防止できる。したがって、との編み糸の複数本を 集束して形成された中芯の外周を該編み糸の編組体によ って被覆した紐状体を形成させたり、編み糸の複数本を 集束し編組して高い引張り強さおよび靭性をもった編組 体(角編み)を形成させたり、編み糸を複数本集束して ひねり加工して高い引張り強さおよび靭性をもつ紐状体 を形成させたりするととも容易であり、したがって、膨 張黒鉛本来の特性である高い圧縮復元性およびなじみ性 40 によりパッキンとして不可欠な高い封止特性を確保でき るものでありながら、とのパッキンを構成する編み糸の もつ高い引張り強さおよび靭性を活用して、軸径に合わ せて紐状体を所定長さに切断し軸外周に巻回してパッキ ンとして使用するといった汎用性および使用性の向上を 図るできるという効果を奏する。

【0030】また、請求項4~6に記載の発明によれ は、請求項1~請求項3に記載の発明と同様に、膨張黒 鉛本来の特性である高い圧縮復元性およびなじみ性によ りパッキンとして不可欠な高い封止特性を確保できると [0028]以上のように、膨張黒鉛41中にその幅方 50 ともに、軸径に合わせて所定長さに切断し軸外周に巻回

してバッキンとして使用するといった汎用性および使用 性の向上が図れるのはもちろん、特に、編み糸を構成す る補強繊維糸と膨張黒鉛とが接着材により一体に強固に 接着されているので、編組などのバッキン製作工程中に 曲げやひねりなどの応力が加えられたとしても、膨張黒 鉛が剝がれたり脱落することを確実に防いで膨張黒鉛本 来の特性による高い封止性能を一層確実に発揮させると

【図面の簡単な説明】

とができるという効果を奏する。

【図1】本発明に係るパッキンの一実施の形態を示すー 10 部切断斜視図である。

【図2】同上パッキンを構成する編み糸の一例を示す一 部切断斜視図である。

[図3] 本発明に係るパッキンの他の実施の形態を示す 一部切断斜視図である。

【図4】本発明に係るバッキンの別の実施の形態を示す 一部切断斜視図である。

[図5] 編み糸の変形例を示す斜視図である。

【図6】補強繊維糸の変形例を示す説明図である。

*【図7】補強繊維糸の変形例を示す説明図である。

【図8】補強繊維糸の変形例を示す説明図である。

【図9】補強繊維糸の変形例を示す説明図である。

【図10】補強繊維糸の変形例を示す説明図である。

【図11】(A)は編み糸ボビンから編み点に繰りたさ れる編み糸を袋編みする時の状態を示す正面図、(B) は編み糸ボビンから編み点に繰りだされる編み糸を袋編 みする時の編み糸の長さ変動を説明する側面図である。

【図12】(A)は編み糸ボビンから編み点に繰りたさ れる編み糸を角編みする時の状態を示す正面図、(B) は編み糸ポピンから編み点に繰りだされる編み糸を角編 みする時の編み糸の長さ変動を説明する側面図である。 【符号の説明】

1 パッキン

2 中芯

3.3A 編組体

編み糸

補強繊維糸

膨張黑鉛.

[図1-1]

(B)

THIS PAGE BLANK (USPTO)