PYL 100: Tut. Sheet #3 EM Waves + Applications

- 1. An em wave propagates (with freq. ω) in a conductor of $\omega p = 2\omega$, $\varepsilon_r = 9$, $\nu = 10^3 \omega$. Estimate the distance after which intensity becomes half. [(C/8N5 ω)] 2^{-1}
- 2. A 5 GHz microwave propagates in a lossy dielectric of $\varepsilon_{\tau} = 80$. It suffers power loss of 0.2 db/meter. Estimate conductivity of the medium. [Hint: $P = P_0 e^{-2k_1/2}$, Power loss in $db = 10 \log_{10}(P_0/P)$.] Ans: $k_1 \simeq 2.3 \times 10^{-2}$, $\sigma = 0.13$ M Ks.
- 3. In a conductor \vec{J} is $\pi/3$ out of phase with \vec{E} of $\omega/2\pi = 0.3$ THz. Estimate electron collision frequency. $[\nu \sim 10^{12} \, \text{s}^{-1}]$
 - 4. Plot skin depth $(S = k_{*}^{-1})$ of an em were in a collisionless plasma as a function of $\omega | \omega_p$.
 - 5. Phase velocity of 10 GHz em wave in a blasma is 2c. Estimate Uph of 17 GHz wave. [Ans. 2c/N3.].
- 6. Show that $v_{ph} \cdot v_g = c^2$ in a collisionless plasma. Plot $v_g \cdot v_{ph}$ versus $\omega l \omega p$.
- 7. A 10V/m em wave is normally incident on a plasma of $\omega p / \omega = 1.6$. Estimate the fueld at a depth of $4c/\omega$. [$4 \times 10^{-} 2V/m$.]
- 8. For Earth $\sigma = 1 \text{ MKS}$, $\varepsilon_{\tau} = 4$. Plot skun depth as a function of ω for low-freq. waves.