ABOUT: QUIC

TCP에서 UDP로, 웹 통신의 혁명

기존 HTTP 프로토콜은..

- HTML 같은 하이퍼미디어를 전송하기 위해 고안됨
- 즉, 대용량 데이터보다는 저용량인 텍스트 문서를 주로 보내기 위해 사용된다
- 또한, 신뢰성이 중요하기 때문에 TCP를 기반으로 한다

하지만 오늘날..

- 웹앱의 발전으로, HTTP 프로토콜은 이제 고용량 데이터들도 전송한다.
 - MB~GB 단위에 달하는 비디오/오디오/머신러닝 모델 등등..
- 이제 TCP 기반으로 동작하는 HTTP 프로토콜은 한계에 직면하게 되었다.
 - 텍스트 데이터만을 전송하던 기존에는 TCP로도 속도 문제가 없었다.
 - 하지만 이제는 전송되는 데이터의 크기가 MB~GB 단위까지 도달하였다.
 - TCP가 제공하는 "복잡한" <mark>단편화, 흐름제어, 혼잡제어</mark>는 이제 오히려 독이 되어버린 것이다.

QUIC의 등장

누구보다 이러한 HTTP의 문제를 잘 인식하고 있던 회사:

Youtube를 운영하면서, HTTP의 속도 문제를 극복할 수 있는 방법을 모색하기 시작

- CDN 및 캐싱 적극 활용 -> 인프라 비용이 너무 듦
- 압축 코덱 -> 명백한 한계 존재
- 다른 방법은 없을까?

QUIC의 등장

Google은 UDP 기반의 새로운 전송계층 프로토콜을 설계했습니다

QUIC (Quick UDP Internet Connection)

- UDP 기반으로 동작
- 기본적으로 암호화 지원
- 간단한 흐름제어/혼잡제어/오류제어 제공
- "TCP의 재구현"을 목표로 함 (TCP의 장점과 UDP의 장점을 혼합)

QUIC의 특징

1. 간단한 연결 과정

기존 HTTPS는 TCP Handshake와 TLS Handshake가 각각 발생하지만,

QUIC에서는 이 과정을 하나로 합쳐서 데이터 전달과 암호화가 동시에 진행

QUIC의 특징

2. 네트워크 변경에도 연결 유지

기존에는 Wi-Fi를 쓰다가 Cellular로 전환하면, IP가 변경되어 다시 연결해야 했음

하지만 QUIC은 <mark>연결 식별자</mark>를 이용하므로, 통신 도중에 IP가 변경되어도 연결이 유지됨

QUIC의 특징

3. HOL Blocking 최소화

HOL Blocking:

TCP에서는 모든 파편(Fragment)들을 단일 파일의 일부로 간주한다. 이로 인해서 <mark>단 하나의 파편 손실</mark>만 일어나더라도 모든 파편들의 전송이 지연된다.

QUIC은 데이터 파편들을 여러개의 스트림으로 구분하여, 스트림별로 손실을 처리하기 때문에, 이러한 HOT Blocking이 최소화된다.

TCP가 1차선 도로라면, QUIC은 여러 차선이라서 사고나도 크게 문제없는 느낌이랄까..?

QUIC의 단점

1. DDOS 악용 가능성

UDP의 구현체 중 일부는 반사 공격 (Reflection Attack)에 취약한데, UDP를 기반으로 하는 QUIC 역시 반사 공격에 악용될 가능성이 있다.

- Google도 이러한 악용 가능성을 예상했는지, QUIC에 제약사항을 추가해놓았다.
- 응답이 없을 경우, 패킷 크기 제한
- 1,200byte 이상의 초기 패킷 요구

QUIC의 단점

2. 큰 리소스 소모

QUIC은 <mark>각 패킷별로 암호화가 동작</mark>하기 때문에, 암호화 연산의 횟수가 늘어나서 <mark>성능 소모가 크다</mark>

- TCP: 데이터를 암호화 해놓고, 암호화된 데이터를 분할해 전송
- QUIC: 데이터를 분할 해놓고, 그것들을 암호화해 전송

QUIC의 미래

- HTTP/3의 Draft(초안)이 QUIC를 기반으로 함
- Google 뿐만 아니라, Meta(Facebook/Instagram) 등등 수많은 기업들이 QUIC을 이미 적용중 (전 세계의 웹사이트들 중약 25.2%)
- 이러한 흐름으로 보아, QUIC은 빠른 시일 안에 대중화될 것으로 보임

단, 한국의 경우 QUIC이 대중화되기 힘들어보임!

- TCP만 써도 충분히 빠른 대한민국의 인터넷 환경
- Google/Meta와 달리, 한국의 빅테크(Kakao, NAVER)는 QUIC 전환에 소극적

감사합니다