Package 'titeR'

November 21, 2016

Title	Tools f	or analy	yzing	and	visual	lizing	antibody	titer	data.
-------	---------	----------	-------	-----	--------	--------	----------	-------	-------

Version 0.0.1.0017

Description This package contains methods to calculate endpoints from antibody titer data and visualize titers.

Depends R (>= 3.0.2)

License CCO

LazyData true

RoxygenNote 5.0.1

R topics documented:

+. un	eval Addition for aes() and aes_string()	
Index		13
	Year2_Titers	12
	Year1_Titers	
	titeR	11
	Multiplot	10
	GetEqn	9
	FormatTiters	8
	CalculateStdNorm	7
	CalculateSAdjMFC	6
	CalculatePadjMFC	5
	CalculateD0NormPaired	4
	BubbleChart	3
	Barplot	2
	+.uneval	1

Description

+.uneval is a helper function to allow adding aes and aes_string in ggplot2

Usage

```
## S3 method for class 'uneval'
a + b
```

2 Barplot

References

http://stackoverflow.com/questions/28777626/how-do-i-combine-aes-and-aes-string-options

Examples

```
v1 <- "mpg"
v2 <- "qsec"
ggplot(mtcars, aes(x=wt)) + ylab("") +
    geom_line(aes_string(y=v1) + aes(color="one")) +
    geom_line(aes_string(y=v2) + aes(color="two")) +
    scale_color_manual(name="Val", values=c(one="#105B63",two="#BD4932"))</pre>
```

Barplot

Titer bar plots.

Description

Barplot plots the baseline and day 28 titers

Usage

```
Barplot(dat_list, subjectCol = "SubjectID", cols = 1, groupVar = NULL,
colors = c("#A6CEE3", "#1F78B4", "#B2DF8A", "#33A02C", "#FB9A99", "#E31A1C",
    "#FDBF6F", "#FF7F00"))
```

Arguments

dat_list a named list like the one returned by FormatTiters.

subjectCol

cols numeric specifying how many columns to layout plot

colors a vector of colors specifying bar colors. If dat_list contains more than 4 elements, you must specify your own colors.

Value

(invisibly) a list of ggplot2 object(s).

Author(s)

Stefan Avey

Examples

```
## Prepare the data
strains <- c("A_California_7_2009", "A_Perth_16_2009", "B_Brisbane_60_2008")
titer_list <- FormatTiters(Year1_Titers, strains, subjectCol = "YaleID", otherCols = "AgeGroup")
## Bar plot of a single strain
Barplot(titer_list[strains[1]], subjectCol = "YaleID")
## Bar plot of all 3 strains
Barplot(titer_list, subjectCol = "YaleID")</pre>
```

BubbleChart 3

```
## Can improve readability of previous plot by separating into groups
## For example, group by AgeGroup
Barplot(titer_list, subjectCol = "YaleID", groupVar = "AgeGroup")
```

BubbleChart

Bubble Chart

Description

BubbleChart visualizes baseline vs fold change in titers

Usage

```
BubbleChart(dat_list, fit = NULL, eqSize = 2.5, subjectCol = "SubjectID",
  colorBy = NULL, xlimits = c(1.5, 10.5), xbreaks = 2:10, plot = TRUE,
  cols = 2, ...)
```

Arguments

dat_list	a named list like the one returned by FormatTiters
fit	what type of fit to add. Current options are "lm" for linear model, "exp" for exponential, or NULL for no smoothing.
eqSize	Text size of the equation. Only relevant if fit is not NULL
subjectCol	the name of the column specifying a subject ID. Default is "SubjectID".
colorBy	a character string specifying an endpoint to color By or \ensuremath{NULL} (default) for no coloring.
xlimits	the x-axis limits (passed to scale_x_continuous)
xbreaks	the x-axis breaks (passed to scale_x_continuous)
plot	logical indicating whether to plot or not. Default is TRUE
cols	numeric specifying how many columns to layout plot
• • •	$other \ arguments \ besides \ method \ and \ subjectCol \ passed \ to \ Calculate SAdjMFC.$
scale_y	a character string specifying whether the y axis should be "fixed" for all strains or "free".

Details

This plot was designed for HAI titer data with baseline columns and fold change columns for multiple strains.

Value

(invisibly) a list of ggplot2 objects.

Author(s)

Stefan Avey

4 CalculateD0NormPaired

See Also

FormatTiters

Examples

CalculateD0NormPaired CalculateD0NormPaired

Description

 ${\tt CalculateD@NormPaired\ calculates\ the\ normalized\ day\ 0\ titer\ paired\ with\ the\ titer\ with\ maximum\ normalized\ fold\ change}$

Usage

```
CalculateD0NormPaired(dat, fcStdCols = grep("fc_std_norm", colnames(dat),
  value = TRUE))
```

Arguments

data frame containing fcStdCols

fcStdCols column names containing the titer fold changes for each strain standardized

across subjects

Details

If there are multiple strains that have the maximal fold change, choose the day 0 titer that is higher since this will allow for a greater adjustment and better chance of being a high responder.

Column names containing the day 0 titers for each strain standardized across subjects are assumed to follow the same pattern as fcStdCols with "d0" replacing "fc" in the name.

CalculatePadjMFC 5

Value

a numeric vector containing the values from d0StdCols that correspond to the maximum over the strains of fcStdCols

Author(s)

Stefan Avey

Examples

```
## First Example
```

CalculatePadjMFC

CalculatePadjMFC

Description

CalculatePadjMFC calculates the paired, adjusted maximum fold change (padjMFC)

Usage

```
CalculatePadjMFC(dat, fcCol = "fc_norm_max_ivt", d0Col = "d0_norm_paired",
  discretize = c(0.2, 0.3), scaleResiduals = FALSE,
  responseLabels = paste0(c("low", "moderate", "high"), "Responder"), ...)
```

Arguments

dat	the data containing the columns fcCol and d0Col
fcCol	character string specifying the name of the fold change column from dat
d0Col	character string specifying the name of the day 0 column from dat
discretize	a vector of quantiles in $(0, 0.5]$ specifying where to make the cutoff for low, moderate and high responses. Default is 20% and 30% .
scaleResiduals	Logical. Should residuals be scaled inversely by the square of the confidence intervals from the linear model.
responseLabels	names for low, moderate and high responses
	Additional arguments passed to 1m

Details

Calculate the paired, adjusted maximum fold change (padjMFC) from fc_norm_max_ivt and d0_norm_paired using linear regression to remove the effect of baseline titers. Missing (NA) values are handled and any missing values in fcCol and d0Col will also be missing in the output.

Value

A list with the first element named "linearModel" for the linear model and then "padjMFC" containing the continuous padjMFC metric and one additional element for each value of discretize giving the discrete labels.

6 CalculateSAdjMFC

Author(s)

Stefan Avey

See Also

1m

Examples

First Example

CalculateSAdjMFC

Calculate SAdjMFC

Description

CalculateSAdjMFC calculates the baseline-adjusted maximum fold change (MFC) for each viral strain

Usage

```
CalculateSAdjMFC(datList, subjectCol = "SubjectID", method = c("lm", "exp"),
  scoreFun = max, fcCol = "fc", d0Col = "d0", normalize = TRUE,
  discretize = c(0.2, 0.3), scaleResiduals = FALSE,
  responseLabels = paste0(c("low", "moderate", "high"), "Responder"),
  na_action = "na.fail", ...)
```

Arguments

datList	a list with one data frame for each strain and each data frame containing the
	columns fcCol and d0Col. The order of each data frame must be the same and

columns fcCol and d0Col. The order of each data frame must be the same and they must be the same dimensions. In addition, each data frame must be sorted

by d0Col from low to high.

subjectCol the name of the column specifying a subject ID. Default is "SubjectID".

method a character string specifying the method used to model the relationship between

day 0 and fold change values. One of either "lm" for a linear model or "exp" for

an exponential model.

scoreFun a function applied to all (potentially scaled) residuals for each subject to deter-

mine the endpoint. Default is max but sum may also be useful to quantify the

total response.

fcCol character string specifying the name of the fold change column in each element

of datList

d0Col character string specifying the name of the day 0 column in each element of

datList

normalize Logical specifying whether residuals should be normalized with the inverse nor-

mal transform. Default is TRUE.

discretize a vector of quantiles in (0, 0.5] specifying where to make the cutoff for low,

moderate and high responses. Default is 20% and 30%.

CalculateStdNorm 7

scaleResiduals Logical. Should residuals be scaled inversely by the square of the confidence intervals from the linear model.

responseLabels names for low, moderate and high responses

na_action how should missing NA values be treated. Default is "na.fail"

... Additional arguments passed to lmif method == "lm" or nls if method == "exp"

Details

Calculates the baseline-adjusted fold change for each strain of virus using (unnormalized) fold change and baseline titers. Linear regression or an exponential curve is used to remove the effect of baseline titers on fold changes. The score function (scoreFun) is used to combine the adjusted fold change across multiple strains. Missing (NA) values are handled by being returned as missing in the endpoints in the output

Value

A list with the following elements: "models": the models calculated on each strain separately (with names the same as on datList) "residualMatrix": the matrix of residuals "SAdjMFC": a list containing the continuous and discrete SAdjMFC metrics

Author(s)

Stefan Avey

See Also

lm, nls

Examples

First Example

CalculateStdNorm

Calculate Normalized Titers

Description

CalculateStdNorm calculates the standardized d0 or fc titers

Usage

```
CalculateStdNorm(dat, type, fcToOne = FALSE, idCol = "SubjectID",
  cols = grep(paste0(type, "_[AB]"), colnames(dat), value = TRUE))
```

8 FormatTiters

Arguments

dat	Data frame containing fcStdCols
type	What should be standarized. Either "d0", or "fc".
fcToOne	Logical. Are titer fold changes allowed to be less than 1 or should these be changed to 1 before standardization? Default is FALSE and no changes will be made. Only relevant when type == "fc"
idCol	Name of column containing subject IDs

Details

Cols

This must be run on only 1 cohort at a time because titers will be normalized across all subjects. The median is used but unlike the original reference, the standard deviation is calculated rather than the maximum absolute deviation.

column names containing the titer measurements for each strain

Value

A data frame like dat but with standarized columns added

Author(s)

Stefan Avey

References

Tsang JS, et al. (2014) Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157(2):499<e2><80><93>513.

Examples

First Example

FormatTiters	Format antibody titers.

Description

FormatTiters formats titers into a list with one tidy data frame per viral strain

Usage

```
FormatTiters(titers, strains, subjectCol = "SubjectID",
  otherCols = vector(mode = "character"), d0Cols = paste0("d0_", strains),
  fcCols = paste0("fc_", strains), fcMinZero = TRUE, log2Transform = TRUE)
```

GetEqn 9

Arguments

titers a data frame containing the titer information

strains the names of the virus strains

subjectCol the name of the column specifying a subject ID. Default is "SubjectID".

otherCols a character vector specifying which additional columns of titers to retain. (De-

faults to an empty character vector).

d0Cols the column names of day 0 (baseline) columns fcCols the column names of fold change columns

fcMinZero should negative fold changes be set to 0? Default is TRUE

log2Transform logical specifying whether titer values should be log2 transformed

Value

a list of data frames with one data frame per viral strain containing the baseline ("d0"), fold change ("fc") and any other columns specified by the otherColumns argument.

Author(s)

Stefan Avey

Examples

```
strains <- c("A_California_7_2009", "A_Perth_16_2009", "B_Brisbane_60_2008")
titer_list <- FormatTiters(Year1_Titers, strains, subjectCol = "YaleID")</pre>
```

GetEqn

Get Formatted Model Equation

Description

GetEqn gets the equation for various models in a human readable format

Usage

GetEqn(m)

Arguments

m

a model object

Author(s)

Stefan Avey

References

original lm_eqn and inspiration from this SO post http://stackoverflow.com/questions/7549694/ggplot2-adding-regression-line-equation-and-r2-on-graph.

Multiplot

Examples

```
## First Example
```

Multiplot

Multiple ggplot2 plots on the same page

Description

Multiple Plot Function for ggplot

Usage

```
Multiplot(..., plotlist = NULL, file, cols = 1, layout = NULL)
```

Arguments

... ggplot objects

plotlist a list of ggplot objects

cols Number of columns in layout

layout A matrix specifying the layout. If present, 'cols' is ignored

Details

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom.

Author(s)

R Cookbook

References

```
http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_%28ggplot2%29/
```

Examples

titeR 11

```
p3 <- ggplot(subset(ChickWeight, Time==21), aes(x=weight, colour=Diet)) +
    geom_density() +
    getitle("Final weight, by diet")

# Fourth plot

p4 <- ggplot(subset(ChickWeight, Time==21), aes(x=weight, fill=Diet)) +
    geom_histogram(colour="black", binwidth=50) +
    facet_grid(Diet ~ .) +
    ggtitle("Final weight, by diet") +
    theme(legend.position="none") # No legend (redundant in this graph)

Multiplot(p1, p2, p3, p4, cols=2)</pre>
```

titeR

titeR - An R package for antibody titer data

Description

titeR - An R package for antibody titer data

Year1_Titers

Year 1 titers.

Description

Antibody titers to 3 strains of influenza in a cohort of young and older adults from Yale during the 2010-2011 flu season.

Usage

```
Year1_Titers
```

Format

A data frame with 42 rows and 11 variables:

YaleID subject identifier, unique

AgeGroup age of subject. 20-35 (Young), >= 65 (Older)

... Other columns folow the format <type>_<strain> where <type> is either Day 0 ("d0"), Day 28 ("d28"), or fold change ("fc").

References

Thakar J, et al. (2015) Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging (Albany NY) 7(1):38<e2><80><93>52. https://www.ncbi.nlm.nih.gov/pubmed/25596819

12 Year2_Titers

Year2_Titers

Year 2 titers.

Description

Antibody titers to 3 strains of influenza in a cohort of young and older adults from Yale during the 2011-2012 flu season.

Usage

Year2_Titers

Format

A data frame with 69 rows and 11 variables:

YaleID subject identifier, unique

AgeGroup age of subject. 20-35 (Young), >= 65 (Older)

... Other columns folow the format <type>_<strain> where <type> is either Day 0 ("d0"), Day 28 ("d28"), or fold change ("fc").

References

Thakar J, et al. (2015) Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging (Albany NY) 7(1):38<e2><80><93>52. https://www.ncbi.nlm.nih.gov/pubmed/25596819

Index

```
*Topic HIPC
    BubbleChart, 3
    {\tt CalculateD@NormPaired, 4}
    CalculatePadjMFC, 5
    CalculateSAdjMFC, 6
    CalculateStdNorm, 7
    FormatTiters, 8
*Topic aveytoolkit
    GetEqn, 9
*Topic datasets
    Year1_Titers, 11
    Year2_Titers, 12
+.uneval, 1
Barplot, 2
BubbleChart, 3
CalculateD0NormPaired, 4
CalculatePadjMFC, 5
CalculateSAdjMFC, 3, 6
CalculateStdNorm, 7
FormatTiters, 2, 3, 8
GetEqn, 9
Multiplot, 10
titeR, 11
titeR-package (titeR), 11
Year1_Titers, 11
{\tt Year2\_Titers}, {\tt 12}
```