t	Vame: P. Shailesh	Roll no:	EE20B100		
	I. Fill in the blanks				
1.	Data flow				
2.	It may cause short circu	it (or) Bu	urn if there are	different	values
3 -	To avoid short circuit.	(or) To mul	tiple gates with	same output	lines.

- 4. (i) Multiple FF's outputs
 - (ii) READ AND WRITE ENABLE
 - (iii) Read from one FF and write into another FF.
- 5. (i) 4 bits
 - ii) 8 bits
- 6. (i) MOV, LDI
 - (ii) ADD
 - (iii) **-**
- 7. (i) Control which operation to be performed.
 - (ii) Control unit
 - 1024
 - g- (i) 0010 1011 1001
 - (ii) 697

- 10. SRAM , DRAM
- 11. SRAM
- II. Answer the following:
- 1. (a) A memory chip with 8 data pins means at each location Ans.

 it has 8 bits of data with in the chip.

So, The organisation =
$$\left(\frac{\text{Capacity}}{\text{No. of data pins}}\right) \times 8 = \left(\frac{512 \text{ k}}{8}\right) \times 8$$

- (b) No. of address lines = $\log_2(64 \times 2^{10}) = \log_2(2^{16}) = 16$ [: 16 Address lines].
- (a) Total amount of memory (bytes) = Total no. of addresses = 0x (9FFFF-10000)+1

(b) Byte addressable memory means &bits.

Word length = 16 bits.

(c) Size of address bus =
$$log_{2}(589824) = log_{2}(589824) + 1$$

$$= 19 + 1$$
[:] = GIF

Ans = 20 bits

(d) Size of data bus = 8 bits

Ans. (a) Block diagram

- (b) Size of Databus = 8 bits
 Size of address bus = 16 bits
 World length = 16 bits
- (c) i) LDS R, 0x0300
 - (i) Mov Ro, R1

\$000	Ro
\$001	R
	GPR
\$0020 \$0005F	1/0
	A 1972
\$00060	SRAM
\$0300	}
i.)

4 ¹

	450		
	ACTIVE - HIGH LOGIC		
53 52 5, 56	LOGIC (M=1)	ARITHMETIC (M=0) (G=1)	
0001	A+B	A+B	
0 1 1 0	A⊕B	A-B	
1001	(A⊕B) '	A+B	
1100	1	A+A	

$$A = A_3 A_2 A_1 A_0$$
 $B = B_3 B_2 B_1 B_0$

_			
	5.	Si	Shirt
	0	0	o-shirt
	0	1	1-Shirt
	1	O	2- Shirt
	1	1	3-shirt

(b) The 4-bit FF takes 3-clock cycles for 3-bit shift whereas shirt takes 1-clock cycle.

5. (a) 4x4 Barrel Shifter

(b) A barrel shifter is able to complete the 3-bit shifter in single clock cycle, But a 4 bit FF shifter will take 3 clock cycles to shift 3-bits.

- 6. (a) The value of 7 points to the address of operard Ars.

 OXD3 in the array
 - (b) $R_0 = 0 \times 32$; $R_1 = 0 \times 5F$
 - (e) 0xD3 and 0xSF are inputs.
 - (d) Addition of 2 bexadecimal numbers and storing the result and carry in SRAM at address.
 - (e) 0x32 is stored in SRAM or address 0x60 and 0x01 is stored at 0x61.