

Course Objective and Outcome Form
Department of Electrical and Computer Engineering
School of Engineering and Physical Sciences
North South University, Bashundhara, Dhaka-1229, Bangladesh

1. Course Number and Title: CSE 332 Computer Organization and Architecture

2. Credits: 3

3. Type: Required, Engineering, Lecture + Lab

4. Prerequisites: CSE 231 Digital Logic Design

5. Contact Hours: Lecture – 3 Hours/week, Lab – 3 Hours/week

6. Course Summary

This course introduces students to the basic concepts of computers, their design and how they work. It encompasses the definition of the machine's instruction set architecture, its use in creating a program, and its implementation in hardware. The course addresses the bridge between gate logic and executable software, and includes programming both in assembly language (representing software) and HDL (representing hardware). It will cover modern computer principles using a typical processor and emphasize system-level issues, understanding process performance, and the use of abstraction as a tool to manage complexity. It will then explain how efficient memory systems are designed to work closely with the processor. Next, it will introduce micro-architecture, datapath design, pipeline architecture and hazards, superscalar architecture, multi-core processors, cache memory & mapping, ALU, Floating Point Numbers and Floating Point ALU design. Moreover, design of microprogrammed control unit will be discussed. Finally, we introduce systems with many processors.

7. Course Objective:

The objectives of this course are

- a) to develop basic understanding of computer organization: roles of processors, main memory, and input/output devices.
- b) to evaluate/measure the performance of a computing system for comparing with other similar systems
- c) to familiar with architectural design concepts related to different building blocks of a processor. Also to introduce VHDL to design micro-architecture.
- d) to employ specialized knowledge of subsystems like data-path, memory and control unit components to design a RISC processing element
- e) to define processor specification and instruction set architecture.
- f) to understand memory organization, including cache structures and virtual memory schemes.
- g) to understand design of multiplier, floating point ALU, multi-core and superscalar processor

8. Course Outcomes (COs):

Upon Successful completion of this course, students will be able to:

SI	CO Description	Weightage (%)
CO1	Introduction to functional units and evaluate the performance of a computing system	10%
CO2	Analyze instruction set architecture and different building blocks of processor for designing more efficient processors	20%
CO3	Design an instruction set architecture and subsystems of central processing unit.	20%
CO4	Design pipeline architecture, cache memory, ALU, floating point ALU, superscalar and multi-core processor	20%

9. Mapping of CO-PO

SI	CO Description	POs	Bloom's	Delivery	Assessment
			taxonomy	methods	tools
			domain/level	and activities	
CO1	Introduction to functional units	a-b	Cognitive/	Lectures,	Mandatory
	and evaluate the performance of		Evaluate	Notes	Quiz/
	a computing system				Mid/Final
CO2	Analyze instruction set	с-е	Cognitive/	Lectures,	Lab-work
	architecture and different		Analyze	Notes,	
	building blocks of processor for			Lab	
	designing more efficient				
	processors, VHDL				
CO3	Design an instruction set	c-g	Cognitive/	Lectures,	Quiz/
	architecture and subsystems of		Create	Notes,	Mid/Final
	central processing unit.				
CO4	Design pipeline architecture,	d-g	Cognitive/	Lectures,	Quiz/
	cache memory, integer ALU,		Evaluate	Notes	Mid/Final
	floating point ALU, superscalar				
	and multi-core processor				

10. Resources: Text Book

No	Name of Author(s)	Year of Publication	Title of Book	Edition	Publisher's Name	ISBN
1.	David A. Patterson, John L. Hennessy	2013	Computer Organization and Design, MIPS Edition: The Hardware/Software Interface	5 th	Morgan Kaufmann	ISBN-13: 978- 0124077263

Reference book

No	Name of	Year of	Title of	Edition	Publisher's	ISBN
	Author(s)	Publication	Book		Name	
1.	William	2015	Computer	10 th Ed.	Pearson	ISBN-10.
	Stallings		Organization		Publisher	0134101618
			and			
			Architecture			

11. Weightage Distribution among Assessment Tools

Assessment Tools	Weightage (%)
Attendance	5
Assignment	5
Quiz	15
Mid Term-1	15
Mid Term-2	15
MCQ	10
Final Exam	25
Lab work	10

12. Grading Policy: NSU Standard