Glide affiliation - Supplementary materials

6.1 Bayesian Data Analysis

The present work uses Bayesian Data Analysis (BDA) for statistical inferences. This implies that we do not focus on a single point estimate for a given parameter β , but rather we use Bayes Theorem to derive a posterior distribution of plausible estimates of β . Importantly, we do not use p-values or any other decision rules for determining the importance of an effect. BDA allows us to quantify our uncertainty in a more straightforward way with regard to our statistical models and focus on estimation.

6.2 Syllable division task

The first model analyzed the syllabification task data using multinomial logistic regression. The participants responses (triphthong, hiatus, simplification) were modeled in a simple, intecept-only model, and as a function of the post-consonantal glide ([j], [w]). Table 6.1 below provides the complete output summary of the model.

Table 6.1: Model summary for the syllabification task. The table reports posterior medians, 95% credible intervals, and probability of direction to assess estimates, along with Rhat and Effective sample size to assess model fit.

Model	Parameter	Estimate	P(direction)	Rhat	ESS	Prior
Main	μ Simplification: Intercept	-0.30 [-0.96, 0.29]	0.84	1.00	1724.03	Normal(0, 20)
Main	μ Triphthong: Intercept	0.12 [-0.45, 0.66]	0.66	1.00	1974.05	Normal(0, 20)
[j]	μ Simplification: Intercept	-0.29 [-1.00, 0.47]	0.78	1.00	1576.48	Normal(0, 20)
[j]	μ Triphthong: Intercept	-0.14 [-0.89, 0.52]	0.65	1.00	1604.93	Normal(0, 20)
[w]	μ Simplification: Intercept	-0.37 [-1.61, 0.76]	0.73	1.00	1480.26	Normal(0, 20)
[w]	μ Triphthong: Intercept	0.54 [-0.42, 1.55]	0.88	1.00	1238.82	Normal(0, 20)

6.3 Phrase reading task

6.3.1 GAMMs

GAMMs represent an extension to the linear model framework that allow non-linear functions called factor smooths to be applied to predictors. In this sense, the predictors can be classified into two types: parametric terms (equivalent to fixed effects in hierarchical model terminology) and smooth terms. Random smooths are conceptually similar to random slopes and intercepts in the mixed-effects regression framework (Winter & Wieling, 2016). Thus, they allow the by-subject trajectory shapes to vary as a function of a parametric effect and are essential in avoiding anti-conservative models.

6.3.2 F1

The model summary output of the duration model is available in Table 6.2 here:

Table 6.2: Model summary for the duration analysis. The table reports posterior medians, 95% credible intervals, and probability of direction to assess estimates, along with Rhat and Effective sample size to assess model fit.

Parameter	Estimate	P(direction)	Rhat	ESS	Prior
Intercept	-0.07 [-0.41, 0.27]	0.65	1.00	2540.31	Normal(0, 0.2)
Palatal	0.22 [-0.20, 0.62]	0.86	1.00	2091.63	Normal(0, 0.5)

The full model specification used to fit the F1 GAMM is provided below, followed by the full output of the model summary in Table 6.3.

```
# Set priors
priors <- c(
  prior(normal(0, 0.5), class = Intercept),
  prior(normal(0, 0.5), class = b),
  prior(
    student_t(3, 0, 1),
    class = sds,
    coef = s(time course segment, bs = "cr", k = 3)),
  prior(
    student_t(3, 0, 2.5),
    class = sds,
    coef = s(time course segment, by = is palatal ord, bs = "cr", k = 4)),
  prior(
    student_t(3, 0, 2.5),
    class = sds,
    coef = s(time_course_segment, participant, bs = "fs", m = 1, k = 3)),
  prior(cauchy(0, 2), class = sigma)
# Model formula
mode formula <- bf(</pre>
 f1norm ~ is_palatal_ord +
  s(time_course_segment, bs = "cr", k = 3) + # ref smooth
  s(time course segment, by = is palatal ord, bs = "cr", k = 4) + # diff
  s(time_course_segment, participant, bs = "fs", m = 1, k = 3), # random
)
# F1 GAM
b gam f1 <- brm(
 formula = model formula
  family = gaussian(),
  prior = priors,
  backend = "cmdstanr", iter = 2000, warmup = 1000, cores = 4,
  control = list(adapt_delta = 0.999999, max_treedepth = 20),
  data = carrier_tc_final_gamm,
```

Table 6.3: Model summary for the F1 GAMM. The table reports posterior medians, 95% credible intervals, and probability of direction to assess estimates, along with Rhat and Effective sample size to assess model fit.

Parameter	Function	Estimate	P(direction)	Rhat	ESS	Prior
Intercept		0.04 [-0.30, 0.37]	0.62	1.00	1241.48	Normal(0, 0.5)
Not palatal		-0.15 [-0.31, 0.00]	0.98	1.00	5632.28	Normal(0, 0.5)
Time course	Smooth	0.40 [-0.15, 0.86]	0.93	1.00	1617.80	$student_t(3, 0, 1)$
Time course: Not palatal	Smooth	0.05 [-0.17, 0.24]	0.67	1.00	5176.51	$student_t(3, 0, 1)$

An exploratory model not reported on the time course of the intensity measurements is provided below in Table 6.4.

Table 6.4: Model summary for the F1 GAMM. The table reports posterior medians, 95% credible intervals, and probability of direction to assess estimates, along with Rhat and Effective sample size to assess model fit.

Parameter	Function	Estimate	P(direction)	Rhat	ESS	Prior
Intercept		-0.10 [-0.48, 0.29]	0.72	1.00	1178.24	Normal(0, 0.5)
Not palatal		0.23 [0.10, 0.36]	1.00	1.00	5471.15	Normal(0, 0.5)
Time course	Smooth	0.69 [0.32, 1.02]	1.00	1.00	1761.32	$student_t(3, 0, 1)$
Time course: Not palatal	Smooth	0.37 [0.20, 0.56]	1.00	1.00	4063.34	$student_t(3, 0, 1)$

6.4 Reproducibility information

About this document

This document was written in RMarkdown using papaja (Aust & Barth, 2020).

Session info

```
setting value
 version R version 4.1.0 (2021-05-18)
          macOS Big Sur 10.16
 os
         x86 64, darwin17.0
 system
         X11
 ui
 language (EN)
 collate en_US.UTF-8
 ctype
          en US.UTF-8
 tz
          America/New York
 date
          2021-11-02
               loadedversion
                                   date
assertthat
                       0.2.1 2019-03-21
                       1.8.1 2021-06-14
bayesplot
bookdown
                        0.24 2021-09-02
brms
                      2.16.1 2021-08-23
broom.mixed
                       0.2.7 2021-07-07
```

cmdstanr	0.4.0	2021-07-22		
coda	0.19-4	2020-09-30		
devtools	2.4.2	2021-06-07		
dplyr	1.0.7	2021-06-18		
emmeans	1.7.0	2021-09-29		
forcats		2021-01-27		
fs		2020-07-31		
gamm4		2020-04-03		
ggdist		2021-07-19		
ggplot2		2021-06-25		
ggridges		2021-01-08		
glue		2020-08-27		
haven		2021-08-04		
here		2020-12-13		
kableExtra		2021-02-20		
knitr		2021-09-29		
lme4		2021-05-23		
100		2020-12-09		
lubridate		2021-10-07		
magrittr		2020-11-17		
markdown		2019-08-07		
mgcv		2021-10-06		
modelr		2020-05-19		
mvtnorm		2021-10-08		
patchwork		2020-12-17		
posterior		2021-09-09		
purrr		2020-04-17		
Rcpp		2021-07-07		
RcppParallel		2021-05-04		
readr		2021-09-27		
readxl		2019-03-13		
remotes		2021-09-29		
reprex	2.0.1	2021-08-05		
rlang		2021-04-30		
rmarkdown		2021-09-14		
rprojroot		2020-11-15		
rstan		2020-07-27		
rstantools		2020-07-06		
rvest		2021-07-26		
scales	1.1.1	2020-05-11		
sessioninfo	1.1.1	2018-11-05		
stringr	1.4.0	2019-02-10		
tibble	3.1.5	2021-09-30		
tidybayes		2021-08-22		
tidyr	1.1.4	2021-09-27		
tidyselect	1.1.1	2021-04-30		
viridisLite	0.4.0	2021-04-13		

References

Aust, F., & Barth, M. (2020). *papaja: Create APA manuscripts with R Markdown*. Retrieved from https://github.com/crsh/papaja

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68(3), 255–278.

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software*, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. *Entropy*, 19(10), 1–13. https://doi.org/10.3390/e19100555

R Core Team. (2018). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Sóskuthy, M. (2017). Generalised additive mixed models for dynamic analysis in linguistics: A practical introduction. *arXiv Preprint arXiv:1703.05339*.

Stan Development Team. (2018). Stan modeling language users guide and reference manual (Version 2.18.0). Stan Development Team. Retrieved from http://mc-stan.org

Winter, B., & Wieling, M. (2016). How to analyze linguistic change using mixed models, growth curve analysis and generalized additive modeling. *Journal of Language Evolution*, (1, 1), 7–18.

Wood, S. (2006). *Generalized additive models: An introduction with* r (2nd ed.). Boca Raton: CRC Press.