

Kapitel 3 Matching in Graphen

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel Dipl.-Inform. Andre Droschinsky

VO 3/4 am 17./19. April 2018

3.1 Maximale Matchings in Graphen

Definition (Matching)

Sei G=(V,E) ein ungerichteter Graph (ohne Schleifen). Eine Kantenmenge $M\subseteq E$ heißt Matching (oder Paarung) falls gilt:

Für alle Paare $e,e'\in M$ mit $e=(u,v),e'=(u',v')\in M$ gilt $\{u,v\}\cap\{u',v'\}=\emptyset$.

Also: jeder Knoten darf zu höchstens einer M-Kante inzident sein.

Wir suchen ein maximales Matching (Maximum Matching, maximale Kardinalität).

Bipartite Graphen

wichtige Graphenklasse

Definition (Bipartiter Graph)

Sei G=(V,E) ein gerichteter oder ungerichteter Graph. G ist bipartit, wenn die Knotenmenge in zwei Mengen V_1 und V_2 geteilt werden kann, so dass alle Kanten zwischen V_1 und V_2 verlaufen, d.h. für alle e=(u,v) gilt: $(u\in V_1$ und $v\in V_2)$ oder $(u\in V_2)$ und $v\in V_1$.

Beobachtung

Es gilt: G ist bipartit $\Leftrightarrow G$ enthält keine ungeraden Kreise (im ungerichteten Sinne).

Anwendungen von Matching

Matching-Probleme fallen in die Klasse der Zuordnungsprobleme

Viele Varianten: perfektes Matching, maximales Matching, maximal gewichtetes Matching, ...

- Travelling Salesman Problem: Christofides-Heuristik
- Chinese Postman Problem (kürzester Zyklus in Graphen, der jede Kante mindestens einmal durchfährt, z.B. Briefträger, Müllabfuhr)
- Maximaler Schnitt in planaren Graphen (meine Diplomarbeit)
- Steganographie (Verstecken geheimer Informationen in Bildern), ...

Anwendungen von Matching in bipartiten Graphen

Klasse der Zuordnungsprobleme

- Zuordnung von Medizinstudierenden zu Krankenhäusern in den USA (Heiratsproblem, Prioritäten)
- Zuordnung von Studierenden zu Übungsgruppen (gewichtetes perfektes Matching)
- Zuordnung von Lehrveranstaltungen zu Räumen (maximales Matching)
- Preisfindung bei Auktionen (maximalen Gesamtgewinn)
- Satellitenkommunikation (Zeitschlitz-Zuordnungsproblem), ...

Voraussetzung: Graph ohne Schleifen und ohne Mehrfachkanten

Zwei bahnbrechende Aufsätze - der erste 1965:

PATHS, TREES, AND FLOWERS

JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements called vertices and a finite set of elements called edges such that each edge meets exactly two vertices, called the end-points of the edge. An edge is said to join its end-points.

A matching in G is a subset of its edges such that no two meet the same vertex. We describe an efficient algorithm for finding in a given graph a matching of maximum cardinality. This problem was posed and partly solved by C. Berge; see Sections 3.7 and 3.8.

Maximum matching is an aspect of a topic, treated in books on graph theory, which has developed during the last 75 years through the work of about a dozen authors. In particular, W. T. Tutte (8) characterized graphs which do not contain a *perfect* matching, or *1-factor* as he calls it—that is a set of edges with exactly one member meeting each vertex. His theorem prompted attempts at finding an efficient construction for perfect matchings.

Zwei bahnbrechende Aufsätze - der zweite:

JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics Vol. 69B. Nos. 1 and 2. January—June 1965

Maximum Matching and a Polyhedron With 0,1-Vertices

Jack Edmonds

(December 1, 1964)

A matching in a graph G is a subset of edges in G such that no two meet the same node in G. The convex polyhedron G is characterized, where the extreme points of C correspond to the matchings in G. Where each edge of G carries a real numerical weight, an efficient algorithm is described for finding a matching in G with maximum weight-sum.

Section 1

An algorithm is described for optimally pairing a finite set of objects. That is, given a real numerical weight for each unordered pair of objects in a set Y₁ to select a family of mutually disjoint pairs the sum of whose weights is maximum. The well-known optimum assignment problem [5]² is the special case where Y partitions into two sets A and B such that

inequalities. In particular, we prove a theorem analogous to one of G. Birkhoff [1] and J. von Neuman [5] which says that the extreme points of the convex set of doubly stochastic matrices (order n by n) are the permutation matrices (order n by n). That theorem and the Hungarian method are based on Konig's theorem about matchings in bipartite graphs. Our work is related to results on graphs due to Tutte [4].

Aussois 2002: Jack Edmonds freut sich

Köln 2004: Jack & Kathie mit Pauline & Paul

3.2 Matchings in bipartiten Graphen

Wie berechnet man maximale Matchings in bipartiten Graphen?

Idee Greedy

Starte mit \emptyset und füge so lange eine Kante hinzu, bis keine Kante mehr hinzufügbar ist.

Algorithmus 3.4 (Greedy Matching-Algorithmus)

- 1. $M := \emptyset$
- 2. If $\exists e \in E \colon M \cup e$ ist Matching Then $M := M \cup e$; Weiter bei 2.
- 3. Ausgabe M

Matchings in bipartiten Graphen

Theorem 3.5

Sei G = (V, E) ein ungerichteter Graph, M_{opt} ein maximales Matching in G.

Der Greedyalgorithmus berechnet ein Matching M_{greedy} mit $|M_{\text{greedy}}| \geq |M_{\text{opt}}|/2.$

Sogar für bipartite Graphen ist $|M_{\text{greedy}}| = |M_{\text{opt}}|/2$ möglich. \checkmark

Beweis der Approximationsgüte

Beweis.

 $V_{
m greedv}$: Menge der zu $M_{
m greedv}$ inzidenten Knoten

klar
$$|V_{\text{greedy}}| = 2 |M_{\text{greedy}}|$$

Jede Kante $e \in M_{\text{opt}}$ ist zu einem Knoten in V_{greedy} inzident , sonst wäre e noch hinzu gewählt worden.

Aus der Disjunktheit der Matchingkanten folgt also:

also
$$|M_{
m opt}| \leq |V_{
m greedy}| = 2\,|M_{
m greedy}|$$
 also $|M_{
m greedy}| \geq |M_{
m opt}|/2$

Wir setzen ab jetzt voraus: Graph zusammenhängend (also $n-1 \le |E| \le {n \choose 2}$)

sonst unabhängig auf Zusammenhangskomponenten

•000000000 000000000000000000000

Zentrale Begriffe

Definition 3.6 (Matching-Begriffe)

G = (V, E) ungerichteter Graph, $M \subseteq E$ Matching auf G.

- $e \in M$ heißt Matching-Kante (M-Kante).
- $e \notin M$ heißt freie Kante.
- $v \in V$ inzident zu Matching-Kante $e \in M$ heißt besetzt.
- $v \in V$ nicht besetzt heißt frei.

Zentrale Begriffe

Definition 3.6 ff (Alternierende und M-verbessernde Pfade)

G = (V, E) ungerichteter Graph, $M \subseteq E$ Matching auf G.

- Ein Pfad P der Länge k ist eine Folge $(v_0,e_1,v_1,e_2,\ldots,e_k,v_k)$ von abwechselnd Knoten und Kanten aus G mit $e_i=(v_{i-1},v_i)$ für $i=1,\ldots,k$.
- Man schreibt auch: $P = (v_0, v_1, \dots, v_k)$.
- Ein Weg ist ein Pfad in dem alle Knoten verschieden sind.
- Ein nicht-leerer Pfad $P=(v_1,v_2,\ldots,v_k)$ mit $k\geq 2$ bei dem sich M-Kanten und freie Kanten abwechseln heißt M-alternierend.
- Ein kreisfreier M-alternierender Pfad $P=(v_1,\ldots,v_k)$, $k\geq 2$, mit v_1 und v_k frei heißt M-verbessernd (oder M-augmentierend).

Beispiel zu Matching-Begriffen

Bemerkung: Ein M-verbessernder Pfad ist also ein (besonderer) Weg.

M-verbessernde Pfade

Theorem 3.7 (Berge, 1957)

Sei G beliebiger Graph mit Matching M. Es gilt: M maximal \Leftrightarrow Es gibt keinen M-verbessernden Pfad.

Beweis.

Wir beweisen

M nicht maximal \Leftrightarrow Es gibt M-verbessernden Pfad.

"
$$\Leftarrow$$
": Sei $P=(v_1,\ldots,v_k)$ M -verbessernder Pfad.

Beobachtung k gerade (also k = 2j mit $j \in \mathbb{N}$)

Mache M-Kanten $\{v_2, v_3\}$, $\{v_4, v_5\}$, ..., $\{v_{2j-2}, v_{2j-1}\}$ zu freien Kanten.

Mache freie Kanten $\{v_1, v_2\}$, $\{v_3, v_4\}$, ..., $\{v_{2j-1}, v_{2j}\}$ zu M-Kanten.

Beobachtung Das ist möglich: M danach noch Matching. Beobachtung M wächst dadurch um 1.

Beweis der Gegenrichtung

"M nicht maximal $\Rightarrow \exists$ M-verbessernden Pfad" Sei M nicht maximal. $\exists M'\colon |M'|>|M|$

Betrachte $M \oplus M'$

Betrachte $M \oplus M'$

$$= \{e \mid e \in M \land e \notin M'\} \cup \{e \mid e \notin M \land e \in M'\}$$

Beobachtung in $M\oplus M'$ alle Knotengrade ≤ 2 also $M\oplus M'$ zerfällt in disjunkte Pfade und Kreise immer M-Kante und M'-Kante abwechselnd also alle Kreise haben gerade Länge

$$|M'|>|M|\Rightarrow \exists$$
 Pfad P mit mehr M' - als M -Kanten P ist M -verbessernd

Anwendung einfacher Matching-Algorithmus

Einfacher Matching-Algorithmus für bipartite Graphen

Ab jetzt: G = (V, E) bipartit

Algorithmus

- $\mathbf{n} M := \emptyset$
- **2** Berechne M-verbessernden Pfad P.
- 3 If kein P gefunden, Then Exit mit Ausgabe M.
- $4 M := M \oplus P \text{ (Augmentiere } M)$
- 6 Weiter bei 2.

klar terminiert, weil $\leq |V|/2$ Iterationen

also Korrektheit klar $\sqrt{}$

Aber auch effizient?

M-verbessernde Pfade finden

Sei $G = (U \uplus W, E)$ bipartiter Graph, M Matching auf G.

Wir "richten" G:

 $G_M = (U \uplus W, E_M)$ gerichteter Graph mit

- $(u,w) \in E_M$ für $\{u,w\} \in E \setminus M$, $u \in U$, $w \in W$
- $(w,u) \in E_M$ für $\{u,w\} \in E \cap M$, $u \in U$, $w \in W$

Beobachtungen

- jeder gerichtete Weg in G_M ist M-alternierender Pfad in G
- jeder gerichtete Weg in G_M von freiem U-Knoten zu freiem W-Knoten ist M-verbessernder Pfad in G

M-verbessernde Pfade finden

 $G_M = (U \uplus W, E_M)$ gerichteter Graph mit

- $(u,w) \in E_M$ für $\{u,w\} \in E \setminus M$, $u \in U$, $w \in W$
- $(w,u) \in E_M$ für $\{u,w\} \in E \cap M$, $u \in U$, $w \in W$

zusätzlich einfügen

- Knoten q, s
- alle Kanten (q, u) mit $u \in U$ frei
- ullet alle Kanten (w,s) mit $w\in W$ frei

Jeder gerichtete (q, s)-Weg ist M-verbessernder Pfad

Ausformulierter Algorithmus

Algorithmus 3.8 (einfacher Matching-Algorithmus)

- 1. $M := \emptyset$
- 2. Konstruiere gerichteten Graphen $G' = (U \uplus W, E')$ mit $E' = \{(u,w) \mid u \in U, w \in W, \{u,w\} \notin M\}$ $\cup \{(w,u) \mid u \in U, w \in W, \{u,w\} \in M\}$ mit neuen Knoten q,s und allen Kanten (q,u) mit $u \in U$ frei sowie allen Kanten (w,s) mit $w \in W$ frei.
- 3. Suche mit Breitensuche einen gerichteten Weg von q nach s. Sei P dieser Weg.
- 4. If P gefunden Then $M:=M\oplus P$; Weiter bei 2. Else Ausgabe M.

Analyse zu Algorithmus 3.8

Theorem 3.9

Algorithmus 3.8 berechnet in Zeit $O(ne)=O(n^3)$ ein maximales Matching für einen bipartiten Graphen $G=(U \uplus W,E)$ mit $|U \uplus W|=n$ und |E|=e.

Beweis.

Laufzeit Ein Breitensuche-Aufruf geht in O(e)

Augmentierung eines M-verbessernden Pfades: O(e)

Konstruktion/Update des gerichteten Graphen: O(e)

 \max imal $\leq n/2$ Iterationen

Korrektheit alle gefundenen gerichteten Pfade "frei --- frei"

 $\Leftrightarrow M$ -verbessernde Pfade

klar Breitensuche findet solche Pfade

Geht es nicht schneller?

Was bisher geschah...

Matchings

- Greedy-Algorithmus mit 2-Approximation
- Einfacher Algorithmus mit Laufzeit $O(n \cdot e) = O(n^3)$ für bipartite Graphen

Wunsch schnellerer Algorithmus

dazu Struktureinsichten

Ideen zur Verbesserung

bekannt eine Graph-Traversierung geht in Zeit O(e)

bisher eine Graph-Traversierung für Matchingverbesserung um 1

Wunsch Matchingverbesserungen "in größeren Sprüngen"

Wie geht das?

klar gleichzeitige "Addition" von k knotendisjunkten M-verbessernder Pfaden ist möglich und verbessert um k

Idee Finde in einer Graph-Traversierung möglichst viele knotendisjunkte M-verbessernde Pfade.

intuitiv klar kurze M-verbessernde Pfade eher günstig

Algorithmus von Hopcroft und Karp

M-verbessernde Pfade geben.

Wir zeigen zunächst eine Mindestanzahl an knotendisjunkten M-verbessernden Pfaden:

Lemma:

Sei G=(V,E) beliebiger Graph, seien $M,N\subseteq E$ Matchings auf G. Falls |N|>|M|, dann enthält $(M\oplus N)$ mindestens |N|-|M| knotendisjunkte M-verbessernde Pfade.

Beweis.

Betrachte $M\oplus N$. Mit den Beobachtungen aus Beweis zu Theorem 3.7 folgt: Jede Zusammenhangskomponente ist entweder (a) ein M-alternierender Kreis gerader Länge oder (b) ein M-alternierender Pfad. Jeder M-verbessernde Pfad enthält höchstens eine Kante aus N mehr als aus M. \Rightarrow Es muss mindestens s:=|N|-|M| knotendisjunkte

Algorithmus von Hopcroft und Karp

Lemma 3.10: Eigenschaften kürzester Pfade

Sei G = (V, E) beliebiger Graph, $M \subseteq E$ Matching auf G,

P ein kürzester M-verbessernder Pfad,

P' ein $(M \oplus P)$ -verbessernder Pfad.

Dann gilt: $|P'| \ge |P| + |P \cap P'|$.

Erinnerung: $M \oplus P = \{e \mid e \in M \land e \notin P\} \cup \{e \mid e \notin M \land e \in P\}$ Beweis

Betrachte $N := (M \oplus P) \oplus P'$ (neues Matching)

|N| = |M| + 2

Beobachte $M \oplus N = M \oplus ((M \oplus P) \oplus P') = P \oplus P'$

Aus vorigem Lemma folgt: $M \oplus N$ enthält zwei knotendisjunkte M-verbessernde Pfade P_1, P_2

Beweis von Lemma 3.10

```
Wir haben Matching M, P ein kürzester M-verbessernder Pfad P' ein (M \oplus P)-verbessernder Pfad N = (M \oplus P) \oplus P' M \oplus N = P \oplus P' enthält zwei knotendisjunkte M-verbessernde Pfade P_1, P_2 |M \oplus N| = |P \oplus P'| \geq |P_1| + |P_2|
```

```
\begin{aligned} & \mathsf{klar} & |P| \leq |P_1| \ \mathsf{und} \ |P| \leq |P_2| \\ & \mathsf{also} & |P \oplus P'| \geq |P_1| + |P_2| \geq 2 \ |P| \\ & \mathsf{Beobachtung} & |P \oplus P'| = |P| + |P'| - 2 \ |P \cap P'| \\ & \mathsf{also} \ |P| + |P'| - |P \cap P'| \geq |P \oplus P'| \\ & \mathsf{zusammen} & |P| + |P'| - |P \cap P'| \geq 2 \ |P| \\ & \mathsf{also} & |P'| > |P| + |P \cap P'| \end{aligned}
```

Wir haben also gezeigt:

Lemma 3.10: Eigenschaften kürzester Pfade

Sei G=(V,E) beliebiger Graph, $M\subseteq E$ Matching auf G, P ein kürzester M-verbessernder Pfad, P' ein $(M\oplus P)$ -verbessernder Pfad. Dann $|P'|\geq |P|+|P\cap P'|$

Daraus:

Beobachtung für kürzeste Pfade

Sei G=(V,E) beliebiger Graph, $M\subseteq E$ Matching auf G, P ein kürzester M-verbessernder Pfad, P' ein $(M\oplus P)$ -verbessernder Pfad. Falls |P'|=|P|, dann sind die beiden Pfade kantendisjunkt.

Eine Folge von Matchings

Lemma 3.11

Sei G=(V,E) ungerichteter Graph, $M_0:=\emptyset$, für $i\in\mathbb{N}_0$ sei $M_{i+1}:=M_i\oplus P_i$, dabei P_i ein kürzester M_i -verbessernder Pfad. Für alle $i,j\in\mathbb{N}_0$ gilt:

- 1. $|P_i| \leq |P_{i+1}|$
- 2. $|P_i| = |P_j|$ und $i \neq j \Rightarrow P_i$ und P_j sind knotendisjunkt

Beweis.

- 1. Beobachtung folgt direkt aus Lemma 3.10 √
- 2. durch Widerspruch (Achtung: i.A. ist nicht j = i + 1)

Annahme $|P_i| = |P_j| \text{ mit } i \neq j$ und $P_i \text{ und } P_j \text{ nicht}$ knotendisjunkt

Beweis von Lemma 3.11

Annahme $|P_i| = |P_j|$ mit $i \neq j$ und P_i und P_j nicht knotendisjunkt

Beobachtung Alle P_h mit $i \leq h \leq j$ haben $|P_h| = |P_i| = |P_j|$

Wähle P_k und P_l mit $i \leq k < l \leq j$ so, dass P_k und P_l nicht knotendisjunkt und alle P_m mit k < m < l knotendisjunkt zu P_k und P_l

Geht das? im Zweifel k=l-1 und Forderung über P_m leer Wir haben $(M_k \oplus P_k)$ -verbessernden Pfad P_l (da alle P_m mit k < m < l knotendisjunkt zu P_k und P_l) weil nicht knotendisjunkt $\exists v$ in P_k und P_l

Beobachtung $\exists e \text{ zu } v \text{ inzidente Kante aus } M_k \oplus P_k$ $e \text{ ist in } P_k \text{ und } P_l \text{ (sonst } P_l \text{ nicht } (M_k \oplus P_k)\text{-verbessernd)}$ also $|P_k \cap P_l| \geq 1$

also $|P_l| \ge |P_k| + |P_k \cap P_l| > |P_k|$ (Lemma 3.10) Widerspruch \square

Folgerung aus Lemma 3.11

Was haben wir gerade bewiesen?

Lemma 3.11

Sei G=(V,E) ungerichteter Graph, $M_0:=\emptyset$, für $i\in\mathbb{N}_0$ sei $M_{i+1}:=M_i\oplus P_i$, dabei P_i ein kürzester M_i -verbessernder Pfad. Für alle $i,j\in\mathbb{N}_0$ gilt:

- 1. $|P_i| \leq |P_{i+1}|$
- 2. $|P_i| = |P_j|$ und $i \neq j \Rightarrow P_i$ und P_j sind knotendisjunkt

Folgerung: mehrere kürzeste M-verbessernde Pfade gut parallel "addierbar"

Der Algorithmus von Hopcroft und Karp (1971)

Algorithmus 3.12 (Hopcroft und Karp)

- 1. $M := \emptyset$
- 2. Berechne eine maximale Menge kürzester knotendisjunkter M-verbessernder Pfade P_1, P_2, \ldots, P_k .
- 3. If $k \geq 1$ Then $M:=M\oplus P_1\oplus P_2\oplus \cdots \oplus P_k$. Weiter bei 2. Else Ausgabe M.

Theorem 3.13

Algorithmus 3.12 berechnet für einen bipartiten Graphen $G=(U\uplus W,E)$ mit $|U\uplus W|=n$ und |E|=e ein maximales Matching in Zeit $O\left(\sqrt{n}\cdot e\right)=O\left(n^{5/2}\right)$.

Auf dem Weg zum Beweis von Theorem 3.13

Korrektheit nach Vorüberlegungen offensichtlich $\sqrt{}$

Wir werden zeigen

- 1. Jede Runde ist in Zeit O(e) durchführbar.
- 2. Es gibt $O(\sqrt{n})$ Runden.

dazu hilfreich obere Schranke für Länge kürzester M-verbessernder Pfade

Warum?

Wir wissen Länge kürzester M-verbessernder Pfade wächst in jeder Runde (da gleich lange Pfade knotendisjunkt sind)

also kürzeste Pfade nicht lang ⇒ nicht viele Phasen

M-verbessernder Pfade: Anzahl und Länge

Betrachte Matching M und maximales Matching M_{opt} $(|M| \leq |M_{\text{opt}}|)$

Betrachte $M \oplus M_{\mathsf{opt}}$ Zusammenhangskomponenten davon seien $C_i = (V_i, E_i) \ (i \in \{1, 2, \dots\})$

Erinnerung alle C_i jeweils Kreise gerader Länge oder einfache Pfade $\Rightarrow \text{ es gibt } \geq |M_{\text{opt}}| - |M| \text{ knotendisjunkte}$ $M_{\text{-verbesserude}} \text{ Pfade}$

M-verbessernde Pfade: Anzahl und Länge

haben $\geq |M_{\rm opt}| - |M|$ kontendisjunkte $M\text{-}{\it verbessernde}$ Pfade darin $\;\; \leq |M| \; M\text{-}{\it Kanten}$

 $\begin{array}{ll} \text{Schubfachprinzip} & \exists \ M\text{-verbessernder Pfad} \\ & \text{mit} \leq \left\lfloor \frac{|M|}{|M_{\text{opt}}|-|M|} \right\rfloor \ M\text{-Kanten} \end{array}$

klar M-Kanten und M_{opt} -Kanten alternieren also $\mathrm{Pfadl\"{a}nge} \leq 2 \left \lfloor \frac{|M|}{|M_{\mathrm{opt}}| - |M|} \right \rfloor + 1$

Beobachtung kürzeste M-verbessernde Pfade kurz, wenn $|M_{\mathrm{opt}}| - |M|$ groß

Idee Ausnutzen zur Fallunterscheidung

- 1. Fall $|M_{\mathrm{opt}}| |M|$ groß \leadsto nur kurze Pfade
- 2. Fall $|M_{\rm opt}| |M|$ klein \leadsto nur wenige Runden

Anzahl der Runden des Hopcroft-Karp-Algorithmus

$$\begin{array}{ll} \text{Definiere} & \text{zwei Phasen} \\ & \text{Phase 1} & 0 \leq |M| \leq \left\lfloor |M_{\text{opt}}| - \sqrt{|M_{\text{opt}}|} \right\rfloor \\ & \text{Phase 2} & \left\lfloor |M_{\text{opt}}| - \sqrt{|M_{\text{opt}}|} \right\rfloor < |M| < |M_{\text{opt}}| \end{array}$$

Aber wir kennen $|M_{\text{opt}}|$ doch gar nicht!

klar $|M_{
m opt}|$ existiert, also wohldefiniert dient nur der Analyse, Algorithmus bleibt unverändert

```
zunächst Phase 2 klar |M_{\rm opt}| \leq n/2 (Def. Matching) also \sqrt{|M_{\rm opt}|} = O\left(\sqrt{n}\right) also in Phase 2 nur O\left(\sqrt{n}\right) Runden \checkmark
```

Länge kürzester M-verbessernder Pfade in Phase 1

Phase 1
$$0 \le |M| \le \lfloor |M_{\text{opt}}| - \sqrt{|M_{\text{opt}}|} \rfloor$$

Erinnerung Pfadlänge kürzester M-verbessernder Pfade $\leq 2 \left| \frac{|M|}{|M_{\rm out}| - |M|} \right| + 1$

$$2\left\lfloor\frac{|M|}{|M_{\text{opt}}|-|M|}\right\rfloor + 1 \le 2\left\lfloor\frac{\left\lfloor|M_{\text{opt}}|-\sqrt{|M_{\text{opt}}|}\right\rfloor}{|M_{\text{opt}}|-\left\lfloor|M_{\text{opt}}|-\sqrt{|M_{\text{opt}}|}\right\rfloor}\right\rfloor + 1$$

$$= 2\left\lfloor\frac{|M_{\text{opt}}|-\left\lceil\sqrt{|M_{\text{opt}}|}\right\rceil}{\left\lceil\sqrt{|M_{\text{opt}}|}\right\rceil}\right\rfloor + 1$$

$$= 2\left\lfloor\frac{|M_{\text{opt}}|}{\left\lceil\sqrt{M_{\text{opt}}}\right\rceil} - 1\right\rfloor + 1$$

$$< 2\sqrt{|M_{\text{opt}}|} + 1$$

Anzahl der Runden

Wir haben

- $O\left(\sqrt{|M_{\mathsf{opt}}|}\right) = O\left(\sqrt{n}\right)$ Runden in Phase 2
- Pfadlänge kürzester M-verbessernder Pfade $= O\left(\sqrt{|M_{\mathrm{opt}}|}\right) = O\left(\sqrt{n}\right)$ in Phase 1

Erinnerung

Pfadlänge kürzester M-verbessernder Pfade wächst um > 1 in jeder Runde

also nach $O\left(\sqrt{|M_{\mathrm{opt}}|}\right) = O\left(\sqrt{n}\right)$ Runden ist Phase 1 beendet also insgesamt $O\left(\sqrt{|M_{\mathrm{opt}}|}\right) = O\left(\sqrt{n}\right)$ Runden

wollen zeigen Zeit $O\left(\sqrt{n}\cdot e\right)$ insgesamt jetzt genügt zu zeigen Zeit O(e) je Runde

Vorbereitung effiziente Durchführung einer Runde

Erinnerung G bipartit

Erinnerung Algorithmus 3.8 richten bipartiter Graphen $G_M = (U \cup W, E_M)$ gerichteter Graph mit

- $(u, w) \in E_M$ für $\{u, w\} \in E \setminus M$, $u \in U$, $w \in W$
- $(w,u) \in E_M$ für $\{u,w\} \in E \cap M$, $u \in U$, $w \in W$

zusätzlich einfügen

- Knoten q, s
- alle Kanten (q, u) mit $u \in U$ frei
- alle Knoten (w,s) mit $w \in W$ frei

Effiziente Implementierung einer Runde

- 1. Berechne gerichteten Graphen mit Zusatzknoten q, s und Zusatzkanten $\{(q,u)\mid u\in U \text{ frei}\}$, $\{(w,s)\mid w\in W \text{ frei}\}$.
- 2. In einer Breitensuche, berechne die kürzesten Distanzen (dist())-Werte bzgl. q) der erreichten Knoten bis zum ersten Mal s erreicht wird; dann Stop BFS
- 3. In einer Tiefensuche, die nur Kanten (u,v) benutzt mit $\operatorname{dist}(v) \operatorname{dist}(u) = 1$, extrahiere alle kürzesten q-s-Wege, nach jedem extrahierten Weg P markiere Knoten auf P als nicht mehr benutzbar
- 4. Verwende alle gefundenen kürzesten q-s-Wege als M-verbessernde Pfade.

klar jeder Schritt in Zeit O(n+e) = O(e) durchführbar also insgesamt Zeit $O\left(\sqrt{|M_{\mathrm{opt}}|} \cdot e\right) = O\left(\sqrt{n} \cdot e\right) = O\left(n^{5/2}\right)$

Ein kleines Beispiel

3.2 Matchings in allgemeinen Graphen

wir haben maximale Matchings in bipartiten Graphen in Zeit $O\left(n^{5/2}\right)$

klar wollen maximale Matchings in allgemeinen Graphen Geht das nicht genau so?

klar Algorithmus von Hopcroft und Karp nicht direkt übertragbar weil keine Mengen $U \uplus W = V$ identifizierbar

Ist ein einfacher Matching-Algorithmus direkt übertragbar?

- 1. $M := \emptyset$
- 2. Finde M-verbessernden Pfad P.
- 3. If P gefunden, Then $M := M \oplus P$; Weiter bei 2.
- 4. Ausgabe M

Ein Beispiel

Vom Umgang mit "Blüten"

Beobachtung Kreise ungerader Länge können ein Problem sein

Anmerkungen Kürzeste alternierende Pfade

mit 2 freien Endknoten sind in allgemeinen Graphen nicht automatisch M-verbessernd;

In bipartiten Graphen hingegen schon,

denn alle Kreise sind gerade

Können wir gefundene Kreise nicht einfach ignorieren?

Erinnerung Graphen können exponentiell viele Kreise haben

also total naives Vorgehen geht nicht

Idee von Jack Edmonds (1965): "Heureka, you shrink"

Kontraktion der ungeraden Kreise ("Blüten") zu einem Knoten Achtung: wiederholte Kontraktion führt zu "Blütenhierarchie" Diese Idee führte zu dem ersten polynomiellen Matching-Algorithmus in allgemeinen Graphen Laufzeit jedoch relativ hoch: $O(n^4)$

Idee von Micali und Vazirani (1980)

Erinnerung Algorithmus von Hopcroft und Karp (Algorithmus 3.12) löst das Problem in Zeit $O\left(n^{5/2}\right)$ für bipartite Graphen

Was können wir beibehalten? - Was müssen wir ändern?

Was ist mit

Theorem 3.7: M maximal $\leftrightarrow \exists M$ -verbessernder Pfad?

Beobachtung gilt in beliebigen Graphen $\sqrt{}$

Was ist mit

Lemma 3.10/3.11: kürzeste M-verbessernde Pfade wachsen, kürzeste M-verbessernde Pfade gleicher Länge sind disjunkt?

Beobachtung gilt in beliebigen Graphen $\sqrt{}$

Hopcroft/Karp auf allgemeinen Graphen

wie gesehen geht nicht

Aber vielleicht funktionieren Teile?

Einsicht Grundgerüst funktioniert √

- 1. $M := \emptyset$
- 2. Berechne eine maximale Menge kürzester knotendisjunkter M-verbessernder Pfade P_1, P_2, \ldots, P_k .
- 3. If $k \geq 1$ Then $M := M \oplus P_1 \oplus P_2 \oplus \cdots \oplus P_k$. Weiter bei 2. Else Ausgabe M.

Was ist mit der Anzahl der Runden?

Einsicht Beweis funktioniert unverändert $O\left(\sqrt{M_{\mathrm{opt}}}\right) = O\left(\sqrt{n}\right)$ Runden

also nur effiziente Implementierung von Schritt 2 offen

Ein Matching-Algorithmus für allgemeine Graphen

Bemerkung bei sorgfältiger Implementierung \rightsquigarrow Laufzeit O(e) je Runde

...aber wie das genau funktioniert Resultat

gehört nicht zum Stoff

Theorem 3.16

Der Algorithmus von Micali und Vazirani berechnet in Zeit $O(\sqrt{n}e)$ ein maximales Matching in einem beliebigen Graphen G=(V,E) mit |V|=n und |E|=e.

Bemerkungen zum Bipartiten Matching

- Der Algorithmus von Hopcroft-Karp ist bis heute für dünne Graphen der theoretisch beste.
- Alt, Blum, Mehlhorn und Paul stellten 1991 einen auf Netzwerkflüssen basierenden Algorithmus vor, der für dichte Graphen etwas besser ist (Laufzeit: $O(n^{1.5}\sqrt{e/\log n})$).
- Experimentelle Vergleiche (teilweise veraltet) widersprechen sich teilweise bezüglich der praktisch besten Varianten.

⇒ Mögliche Bachelorarbeiten: Experimentelle Vergleiche verschiedener Varianten

Literaturhinweise für Interessierte

- Originalartikel: John E. Hopcroft, Richard M. Karp: An $n^{5/2}$ Algorithm for Maximum Matchings in Bipartite Graphs", SIAM Journal on Computing 2 (4): 225–231, 1973
- Originalartikel: Helmut Alt, Norbert Blum, Kurt Mehlhorn, Markus Paul: Computing a maximum cardinality matching in a bipartite graph in time, Information Processing Letters 37 (4): 237–240, 1991
- Experimentelle Vergleiche: Kurt Mehlhorn: The Engineering of Some Bipartite Matching Programs, LNCS 1741, Springer, 1–3, 1999
- Boris V. Cherkassky, Andrew V. Goldberg, Paul Martin, J.C. Setubal, Joao C. Setubal, Jorge Stolfi: Augment or push: A computational study of bipartite matching and unit capacity flow algorithms, ACM J. Exp. Algorithmics, vol. 3 (8), 1998