

EMC TEST REPORT

Applicant

: Miwa Lock Co., Ltd

3-1-12, Shiba, Minato-ku, Tokyo, Japan, 105-8510

Type of Equipment

: ALV2 ENTRANCE READER

Model Number

: ALV2DCU.DP

FCC ID

: VBU-ALV2DCU

Standard

: 47 CFR Part 15 Subpart C Section 15.225

Receipt Date of Sample

: 2010-7-22

Date Tested

: 2010-7-25, 8-4

Date Report Issued

: 2010-09-22

Report Number

: EMC10124a

This test report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government. The report shall not be reproduced, except in full, without the written approval of IPS Corporation.

APPROVED by:

TESTS SUPERVISED by:

Tetsushi Yamaguchi / Manager

Hidemasa Fujimoto

IPS Corporation

1878-1 Harumiya Ono Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601, Japan.

Phone: +81-266-44-5200 Fax: +81-266-44-5300

KF

$\underline{Contents}$

1 GENERAL INFORMATION	3
1.1 Product Description and Specification. 1.2 Summary of Test Result 1.3 Measurement Uncertainty 1.4 Tested Systems Details 1.5 Test Facility	4 4
2 SYSTEM TEST CONFIGURATION	6
2.1 Justification	6
3 RADIATED EMISSION TEST 0.15MHz-30MHz (Part15.225(a),(b),(c))	7
3.1 Test Setup	7
4 RADIATED EMISSION TEST 30MHz 1000MHz (Part 15.209, 225(d))	8
4.1 Test Setup	8 8
5 FREQUENCY STABILITY TEST (Part 15.225(e))	10
5.1 Test Setup	10
6 TEST DATA	12
6.1 Radiated Emission 0.15MHz 30MHz Detection mode	13
7 TEST CONFIGURATION PHOTOS	20
7.1 Photos of Radiated Emission Test (blow 30MHz)	20

1 GENERAL INFORMATION

1.1 Product Description and Specification

The Equipment Under Test (EUT) Model: ALV2DCU•DP is a low power transmitter for hotel card lock and its fundamental frequency is 13.56MHz. Its has two 13.56MHz transmitters. One is for detection of the approach of RFID card, the other is for communication with RFID card. They do not work simultaneity.

Model No.	ALV2DCU•DP		
Serial No.	Sample 7		
Product Type	Pre-production		
Rated Power	3.0VDC(supplied by external controller)		
Transmitting Francisco	Transmitter A: 13.56MHz		
Transmitting Frequency	Transmitter B: 13.56MHz		
Modulation	Transmitter A: Non modulation		
Modulation	Transmitter B: ASK		

Operation mode

Detection mode	Detecting the approach of RFID card (by using transmitter A)
Communication mode	Communication with RFID card (by using transmitter B)

< Block Diagram >

1.2 Summary of Test Result

Transmitter A (Detection mode)

Item	Specification	Deviation	Worst Margin	Results	Remarks
Radiated Emission	15.225(a)	N/A	54.3dB	PASS	
(Fundamental)	15.225(b)	N/A	62.9dB	PASS	
(Fundamental)	15.225(c)	N/A	52.0dB	PASS	
Radiated Emission	15.225(d)	N/A	11.1dB	PASS	
(Spurious)	15.209	IN/A	11.100	LHOO	
Frequency Stability	15.225(e)	N/A	0.00019%	PASS	

Tansmitter B (Communication mode)

Item	Specification	Deviation	Worst Margin	Results	Remarks
Radiated Emission	15.225(a)	N/A	45.3dB	PASS	
(Fundamental)	15.225(b)	N/A	63.1dB	PASS	
(Fundamental)	15.225(c)	N/A	51.9dB	PASS	
Radiated Emission	15.225(d)	N/A	8.4dB	PASS	
(Spurious)	15.209	IN/ A	0.4uD	r Ass	
Frequency Stability	15.225(e)	N/A	0.00061%	PASS	

1.3 Measurement Uncertainty

Radiated Emission Test	Antenna	Frequency range	Polarization	10m U (dB)	3m U (dB)
	Biconical	30MHz-300MHz	Horizontal	3.9	3.9
Radiated Emission	(BBA9106)	JOINT 12 JOONT 12	Vertical	4.1	4.0
Natiated Ellission	LogPeriodic	300MHz-1GHz	Horizontal	4.1	4.1
	(UHALP9108-A)	JOONITE TOTIE	Vertical	4.2	4.2
Magnetic Field Emission	Loop (HLA6120)	9kHz-30MHz	-	_	2.6

Note

: Coverage factor k=2

: 1) Applied for Code of Federal Regulation 47 Part 15

1.4 Tested Systems Details

EUT

	Equipment Manufacturer		Model No.	Serial No.	Note
ID	Name	Manuacturei	Model No.	Seriai No.	Note
А	ALV2 ENTRANCE READER	MIWA LOCK CO., LTD.	ALV2DCU•DP	Sample 7	

Peripherals

	Equipment	Manufacturer	Model No.	Serial No.	FCC ID & Note	
ID	Name	Manufacturei	wiodei ivo.	Serial No.	FCC ID & Note	
В	DOOR CONTROL UNIT	COWBELL ENGINEERING CO., LTD.	CMHL-001	08G000004T		

1.5 Test Facility

The test facilities are located in following places of IPS Corporation.

• EMC Center 1878-1 Harumiya Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken 399-0601 Japan.

• Open Test Site 4593 Hosohora Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken 399-0601 Japan.

Above facilities have been registered at FCC with registration number 171180. Also test facilities are accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) by United States Department of Commerce, National Institute of Standard and Technology (NIST) for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. These criteria encompass the requirements of ISO/IEC 17025 and the relevant requirements of ISO 9002:1994 as suppliers of calibration or test results. Accreditation awarded for specific services, ANSI C63.4 with FCC 47CFR Part 15B and other, listed on the Scope of Accreditation for: ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS.

NVLAP LAB CODE: 200012-0 Effective until: December 31, 2010.

2 SYSTEM TEST CONFIGURATION

2.1 Justification

- All tests were performed without any deviation from the ANSI C63.4:2003.
- The system was configured for testing a typical fashion (as a customer would normally use it). The test data Radiated emission are presented for the "worst case" measurements, that test program as clause 2.2 should be working and the cable routing was attempted to maximize the emission.
- EUT was tested in three orthogonal orientation for Radiated emission in order to present "the worst case".
- EUT was set to transmit continuously during test by using one of two RF circuit.

2.2 Special Accessories

None.

2.3 Equipment Conditions

The condition at the time of receipt of EUT: Good
The condition at the time of return of EUT: Good
Limited conditions: None

EUT has a DIP switch which can control to set to transmit 13.56MHz continuously. This DIP switch has placed for test purpose only.

IPS Corp. Page 6 of 20

3 RADIATED EMISSION TEST 0.15MHz-30MHz (Part15.225(a),(b),(c))

3.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The table size was $0.8 \text{ m high} \times 1.8 \text{ m wide} \times 1.0 \text{ m deep.}$

3.2 Testing Instrumentation

Equipment	Manufacturer	Model	S/N	Calib	ration
Equipment	Manuacturei		Date	Due	
Semi-Anechoic Chamber	Otsuka Science	10m	No.3	2010-02-04	2011-02-28
EMI Test Receiver	Rohde & Schwarz	ESCS30	836858/002	2010-04-21	2011-04-30
Spectrum Analyzer	ADVANTEST	R3132	131201410	2009-11-26	2010-11-30
Loop Antenna	Chase	HLA6120	1131	2010-04-01	2011-04-30
Cable System	IPS Corporation	CE(1)	N/A	2009-10-28	2010-10-31

3.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:-

$$FS = RA + c.f. = RA + AF + CL$$
 AG

c.f.	Correction Factor	AF	Antenna Factor
FS	Field Strength (Emission Level - Result)	CL	Cable Loss
RA	Receiver Amplitude (Reading Level)	AG	Amplifier Gain or Attenuator Loss

This measurement was performed at distance of 3m. The limit was extrapolated by using the square of an inverse linear distance extrapolation factor (40 dB/decade). Also the field strength is calculated by converting 30m and 3m distance limit.

3.4 Test Detail

Test data and spectrum chart: Refer to section 6.1. and 6.2

Test configuration photo: Refer to section 7.1

4 RADIATED EMISSION TEST 30MHz 1000MHz (Part 15.209, 225(d))

4.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The table size was $0.8 \text{ m high} \times 1.8 \text{ m wide} \times 1.0 \text{ m deep.}$

4.2 Test Instrumentation

Equipment	Manufacturor	Manufacturer Model		Calib	ration
Equipment	Manufacturei	Model	S/N	Date	Due
Semi-Anechoic Chamber	Otsuka Science	3m	No.2	2009-12-25	2010-12-31
EMI Test Receiver	Rohde & Schwarz	ESIB40	100208	2010-06-04	2011-06-30
Biconical Antenna	Schwarzbeck	BBA9106	1586	2010-05-08	2011-05-31
LogPeriodic Antenna	Schwarzbeck	UHALP9108-A	0942	2010-06-03	2011-06-30
Cable System	IPS Corporation	RE(33)	N/A	2010-02-24	2011-02-28

4.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:-

$$FS = RA + c.f. = RA + AF + CL AG$$

c.f.	Correction Factor	AF	Antenna Factor
FS	Field Strength (Emission Level - Result)	CL	Cable Loss
RA	Receiver Amplitude (Reading Level)	AG	Amplifier Gain or Attenuator Loss

4.4 Test Detail

4.4.1 Detection Mode

EUT was tested in three orthogonal orientations and it was found that "Pattern 1" orientation is the worst-case orientation.

No.	Frequency [MHz]	Reading [dB(uV)]	c.f. [dB]	Result [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]	H/V	Height [cm]	Angle [°]	Axial
1	48.114	37.1	-8.2	28.9	40.0	11.1	V	100.0	163.0	Pattern 1
2	47.988	36.5	-8.1	28.4	40.0	11.6	V	100.0	175.0	Pattern 2
3	48.128	36.7	-8.2	28.5	40.0	11.5	V	100.0	195.0	Pattern 3
4	89.560	35.2	-11.9	23.3	43.5	20.2	V	100.0	234.0	Pattern 2
5	284.765	31.1	0.9	32.0	46.0	14.0	Н	114.4	152.0	Pattern 1
6	284.765	30.9	0.9	31.8	46.0	14.2	V	100.0	155.0	Pattern 2

4.4.1 Detection Mode (Continued)

Individual test data and spectrum chart: Refer to section 6.3.

Test configuration photo: Refer to section 7.2

4.4.2 Communication Mode

EUT was tested in three orthogonal orientations and it was found that "Pattern 1" orientation is the worst-case orientation.

No.	Frequency [MHz]	Reading [dB(uV)]	c.f. [dB]	Result [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]	H/V	Height [cm]	Angle [°]	Axial
1	92.924	44.7	-10.6	34.1	43.5	9.4	Н	180.2	259.0	Pattern 1
2	94.923	45.7	-10.6	35.1	43.5	8.4	V	100.0	312.0	Pattern 1
3	94.924	45.1	-10.6	34.5	43.5	9.0	V	100.0	302.0	Pattern 2
4	94.923	44.5	-10.6	33.9	43.5	9.6	V	100.0	58.0	Pattern 3
5	108.483	37.3	-7.5	29.8	43.5	13.7	V	100.0	39.0	Pattern 1
6	122.045	35.0	-5.4	29.6	43.5	13.9	V	192.8	229.0	Pattern 1

Individual test data and spectrum chart: Refer to section 6.3.

Test configuration photo: Refer to section 7.2

5 FREQUENCY STABILITY TEST (Part 15.225(e))

5.1 Test Setup

- The test setup was made according to ANSI C63.4:2003.
- The EUT was placed in a temperature and humidity chamber.

 The near field magnetic sensor was placed near the EUT inside the chamber.

Temperature & Humidity chamber

5.2 Test Instrumentation

Equipment	Manufacturer	Model	S/N	Calibration		
Equipment	Manulacturei	Model	3/ IV	Date	Due	
Temp. & Humi. Chamber	ESPEC	PL-4S	13002260	Non Ca	libration	
Near Field Magnetic Sensor	Anritsu	MA2601C	MA01	2010-1-7	2011-1-7	
Spectrum Analyzer	ADVANTEST	R3132	131201410	2009-11-26	2010-11-30	
Power supply	KIKUSUI	PAN35-5A	EH000852	Non Ca	libration	

5.3 Test Detail

Test configuration photo: Refer to section 7.3

″Di	Frequency stability "Diviation"/"Carrier Frequency" 0.000192									
Temperature	ataut	0 mm im	Time 5min.	10min	Diviation (Max)-(Min)					
-20°C Frequency (MHz)	start up 13.559939	2.min. 13.559933	13.559931	13.559927	0.000012					
	Frequency stability: "Diviation"/"Carrier Frequency" @ -20°C									
Temperature			Time		Diviation					
20°C	start up	2.min.	5min.	10min	(Max)-(Min)					
Frequency (MHz)	13.559931	13.559935	13.559939	13.559947	0.000016					
Fred	uency stability :	"Diviation"/"C	arrier Frequency"	@ 20°C	0.000118%					
Temperature			Time		Diviation					
50℃	start up	2.min.	5min.	10min	(Max)-(Min)					
Frequency (MHz)	13.559923	13.559923	13.559921	13.559923	0.000002					
Frequ	uency stability :	"Diviation"/"Ca	rrier Frequency"	@ 50°C	0.000015%					

5.3.2 Communication Mode

"	Frequency stability 0.00060 "Diviation"/"Carrier Frequency"										
Temperature		Tin	ne		Diviation						
−20°C	start up	2.min.	5min.	10min	(Max)-(Min)						
Frequency (MHz)	13.560019										
Fred	Frequency stability: "Diviation"/"Carrier Frequency" @ −20°C										
Temperature		Tin	ne		Diviation						
20°C	start up	2.min.	5min.	10min	(Max)–(Min)						
Frequency (MHz)	13.559997	13.559989	13.559985	13.559979	0.000018						
Fre	quency stability : "I	Diviation"/"Carrie	r Frequency" @ 20	°C	0.000133%						
Temperature		Tin	ne		Diviation						
50°C	start up	2.min.	5min.	10min	(Max)-(Min)						
Frequency (MHz)	13.559945	13.559994	13.559939	13.559937	0.000057						
Freq	Frequency stability: "Diviation"/"Carrier Frequency" @ 50°C										

6 TEST DATA

6.1 Radiated Emission 0.15MHz 30MHz Detection mode

Final Result

	Vertical Po	larization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[d\bar{B}]$	[cm]	[° -]
1	13. 110	-4.7	22. 1	17.4	69. 5	52. 1	100.0	183.0
2	13.410	-4.5	22. 1	17.6	80. 5	62.9	100.0	183.0
3	13. 553	14.1	22. 1	36. 2	90. 5	54.3	100.0	183.0
4	13. 560	27.8	22. 1	49.9	124. 0	74. 1	100.0	183.0
5	13. 567	13. 1	22. 1	35. 2	90. 5	55.3	100.0	183.0
6	13.710	-4.5	22. 1	17.6	80. 5	62.9	100.0	183.0
7	14.010	-4.6	22. 1	17.5	69. 5	52.0	100.0	183.0

6.2 Radiated Emission 0.15MHz 30MHz Communication mode

Final Result

	Vertical Po	larization	(QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	13. 110	-4.5	22. 1	17.6	69. 5	51.9	100.0	182.0
2	13.410	-4.7	22. 1	17.4	80. 5	63. 1	100.0	182.0
3	13. 553	23. 1	22. 1	45. 2	90. 5	45.3	100.0	182.0
4	13.560	37.2	22. 1	59. 3	124. 0	64. 7	100.0	182.0
5	13. 567	20.5	22. 1	42.6	90. 5	47.9	100.0	182.0
6	13.710	-4.8	22. 1	17. 3	80.5	63. 2	100.0	182.0
7	14.010	-4.9	22. 1	17. 2	69. 5	52.3	100.0	182.0

6.3 Radiated Emission 30MHz 1000MHz Detection mode

Axial Direction of EUT: Pattern 1

t 15 Subport R Class R

Standard : FCC Part15 SubpartB ClassB

Model : ALV2DCU • DP S/N : Sample7

Product Name : ALV2 ENTRANCE READER

File No : 018

Power Source : AC120V / 60Hz
Temp /Humi : 24deg / 48%
Test Mode : Detection
Remarks : Pattern 1
Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	$\lceil MHz \rceil$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$\lceil dB \rceil$	$\lceil cm \rceil$	[° -]
1	284.765	30.0	0.9	30. 9	46. 0	15. I	$\bar{1}17.1$	154. 0
	Vertical Po	olarization	(QP)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	48. 114	37. 1	-8.2	28. 9	40.0	11. 1	100.0	163.0
2	58. 293	34. 5	-11.2	23. 3	40.0	16.7	100.0	152.0
3	89. 917	36.0	-11.8	24. 2	43.5	19.3	100.0	241.0
4	284. 765	30. 2	0.9	31. 1	46.0	14.9	100.0	156.0
5	881.404	30. 5	4. 7	35. 2	46.0	10.8	109.4	338.0

Axial Direction of EUT: Pattern 2

1E10205017. dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2DCU • DP S/N : Sample7

Product Name : ALV2 ENTRANCE READER

File No : 017

Power Source : AC120V / 60Hz
Temp /Humi : 24deg / 48%
Test Mode : Detection
Remarks : Pattern 2
Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	284. 765	31. 1	0.9	32.0	46.0	14.0	114.4	152.0
2	881.403	30. 2	4.7	34.9	46.0	11. 1	100.0	316.0
	Vertical Po	larization	(QP)					
	reference for	Tal IDa clon	(dt)					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle
			· · ·		Limit [dB(μV/m)]	Margin [dB]	Height [cm]	Angle [°]
	Frequency	Reading	c. f			0		Angle [°] 175.0
	Frequency [MHz]	Reading [dB(μV)]	c.f [dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
No.	Frequency [MHz] 47.988	Reading [dB(μ V)] 36.5	c. f [dB(1/m)] -8.1	[dB(μ V/m)] 28.4	[dB($\mu V/m$)] 40.0	[dB] 11.6	[cm] 100.0	[°] 175. 0
No. 1 2	Frequency [MHz] 47.988 58.159	Reading [dB(μV)] 36.5 34.5	c. f [dB(1/m)] -8.1 -11.2	$\begin{bmatrix} dB (\mu V/m) \\ 28.4 \\ 23.3 \end{bmatrix}$	$\begin{bmatrix} dB (\mu V/m) \\ 40.0 \\ 40.0 \end{bmatrix}$	[dB] 11.6 16.7	[cm] 100.0 100.0	[°] 175. 0 141. 0

Axial Direction of EUT: Pattern 3

IPS Corporation *************************** *********** 4 August, 2010 09:00 <<Radiated Emission>>

1E10205016. dat

Standard : FCC Part15 SubpartB ClassB

Mode1 : ALV2DCU • DP : Sample7 S/N

Product Name : ALV2 ENTRANCE READER

File No : 016

Power Source : AC120V / 60Hz Temp /Humi : 24deg / 48% Test Mode : Detection Remarks : Pattern 3 Operator : M. Furihata

	Horizontal	Polarizatio	on (QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	$[\mathrm{MHz}]$	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	284. 763	29. 7	0.9	30.6	46. 0	15.4	114.5	238.0
2	881.402	29.8	4.7	34. 5	46.0	11.5	100.0	306.0
	Vertical Po	olarization	(QP)					
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[° -]
1	48. 128	36. 7	-8.2	28. 5	40.0	11.5	100.0	195.0
2	58.048	34.0	-11.1	22.9	40.0	17. 1	100.0	127.0
3	90.001	35. 5	-11.8	23.7	43.5	19.8	100.0	218.0
4	284, 765	32.7	0. 9	33. 6	46.0	12.4	100.0	156.0

6.4 Radiated Emission 30MHz 1000MHz Communication mode

Axial Direction of EUT: Pattern 1

<<Radiated Emission>> 3 August, 2010 14:11

1E10205013. dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2DCU • DP S/N: Sample7

: ALV2 ENTRANCE READER Product Name

File No : 013

DC3V supplied by externalcontroller

Power Source Temp /Humi Test Mode 25deg / 53% : Communication Remarks : Pattern 1 Operator : M. Furihata

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle
			QP		QP		QP		
	$[\mathrm{MHz}]$		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	94. 924	Н	44.7	-10.6	34. 1	43. 5	9.4	182.0	259.0
2	122.044	Н	38.6	-5.4	33.2	43. 5	10.3	149.5	127.0
3	40.682	V	31.8	-5.7	26. 1	40.0	13.9	100.0	354.0
4	48.448	V	35.4	-8.3	27. 1	40.0	12.9	100.0	160.0
5	94. 923	V	45.7	-10.6	35. 1	43. 5	8.4	100.0	312.0
6	108.483	V	37.3	-7.5	29.8	43. 5	13.7	100.0	39.0
7	122.045	V	35.0	-5.4	29.6	43. 5	13.9	192.8	229.0

Axial Direction of EUT: Pattern 2

1E10205014. dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2DCU • DP S/N : Sample7

Product Name : ALV2 ENTRANCE READER

File No : 014

Power Source : DC3V supplied by externalcontroller

Temp /Humi : 25deg / 53%
Test Mode : Communication
Remarks : Pattern 2
Operator : M. Furihata

No.	Frequency	(P)	Reading	c. f	Result	Limit	Margin	Height	Angle
			QP		QP		QP		
	[MHz]		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	94. 926	Н	42.8	-10.6	32. 2	43. 5	11.3	185.0	270.0
2	122.044	Н	38.7	-5.4	33. 3	43. 5	10.2	146.6	127.0
3	40.683	V	32.6	-5.7	26. 9	40.0	13. 1	100.0	1.0
4	48. 195	V	35. 2	-8.2	27.0	40.0	13.0	100.0	186.0
5	94. 924	V	45. 1	-10.6	34. 5	43. 5	9.0	100.0	302.0
6	122.045	V	35 . 1	-5.4	29.7	43. 5	13.8	100.0	218.0

Axial Direction of EUT: Pattern 3

1E10205015. dat

Standard : FCC Part15 SubpartB ClassB

Model : ALV2DCU • DP S/N : Sample7

Product Name : ALV2 ENTRANCE READER

File No : 015

Power Source : DC3V supplied by externalcontroller

Temp /Humi : 25deg / 53%

Test Mode : Communication

Remarks : Pattern 3

Operator : M. Furihata

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle
			QP		QP		QP		
	$[\mathrm{MHz}]$		$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
1	94. 924	Н	41.3	-10.6	30.7	43. 5	12.8	189. 1	270.0
2	122.046	Н	36.0	-5.4	30.6	43.5	12.9	153. 4	129.0
3	40.683	V	33.6	-5.7	27.9	40.0	12. 1	100.0	68.0
4	48. 184	V	35. 2	-8.2	27.0	40.0	13.0	100.0	179.0
5	94. 923	V	44.5	-10.6	33.9	43.5	9.6	100.0	58.0
6	122.044	V	35. 4	-5.4	30.0	43. 5	13.5	100.0	226.0

7 TEST CONFIGURATION PHOTOS

7.1 Photos of Radiated Emission Test (blow 30MHz)

7.2 Photos of Radiated Emission Test (above 30MHz)

7.3 Photos of Frequency Stability Test

