Trajectory planning for fast moving cars

Šimon Rozsíval

Vedoucí práce: prof. RNDr. Roman Barták, Ph.D. Katedra Teoretické Informatiky a Matematické Logiky

Cíl diplomové práce

- Vytvořit autonomní závodní automobil, který bude schopen závodit na libovolném okruhu
 - Se znalostí mapy okruhu
 - Bez znalosti překážek umístěných na trati
- Otestovat implementaci na skutečném robotickém vozidle
 - Inspirace soutěží F1/10 UPenn

Autonomní závodní agent

Analýza mapy okruhu

- Předpoklad: Robot nebude schopen perfektně sledovat naplánovanou trasu
 - Po chvíli bude nutné trajektorii přeplánovat
- Plánování soustředěno jen na 2 zatáčky bezprostředně před vozidlem
 - Výrazné zmenšení prohledávaného prostoru
 - Umožňuje real-time plánování za jízdy
- Jednoduchý algoritmus pro detekci zatáček
 - Spuštěn jen jednou před začátkem závodu pro konkrétní okruh
 - Idea:
 - Najdeme "středovou čáru" trati () v bitmapě
 - Vynecháme všechny body, které jsou "viditelné" z předchozího validního bodu
 - Sloučíme body, které jsou blízko
 - Vynecháme body, ve kterých se příliš nemění směr cesty (
 - Zbývající body prohlásíme za zatáčky ()

Plánování trajektorie

- Cíl:
 - najít trajektorii z výchozího stavu skrze 2 následující záchytné body bez kolize
 - o co nejlepší čas do cíle
- Spojitý stavový prostor
 - Konfigurace vozidla (x, y, θ)
 - \circ Stav serva a motoru (δ,ω)
 - Počet navštívených záchytných bodů (m)
- Akce: dvojice (δ_t, τ_t)
- Testované algoritmy:
 - Hybrid A*
 - SEHS

$$X = \{(x, y, \theta, m, \delta, \omega) \mid x, y, \omega \in \mathbb{R}, m \in \{0, 1, 2, \dots, l\}, \theta, \delta \in [0, 2\pi)\}.$$

$$U = \{(\delta_t, \tau_t) \mid \delta_t \in [\delta_{min}, \delta_{max}] \tau_t \in [-1, 1]\}$$

Plánování trajektorie

Hybrid A*

- Efektivní hledání ve spojitém stavovém prostoru
 - Stavový prostor uniformě rozdělen do diskrétních oblastí
 - Při otevření vrcholu si zapamatujeme jak přesný stav vozidla, tak i jeho diskrétní souřadnice
 - Každou diskrétní oblast expandujeme nejvýše jednou
- Úspěšně použit při DARPA Urban Challenge
 - Stanford Racing Team, vozidlo Junior
- Hrubost diskretizace má zásadní vliv na dobu hledání řešení i na kvalitu nalezeného řešení
 - Kvůli diskretizaci můžeme přijít o některá řešení

Plánování trajektorie

Space Exploration guided Heuristic Search (SEHS)

- Také diskretizuje stavový prostor
- 1. Fáze: Space Exploration
 - Najde cestu z překrývajících se kruhů z počátečního stavu do cíle
 - Všesměrový pohyb
- 2. Fáze: Heuristic Search
 - Algoritmus A*
 - Místo uniformního rozdělení souřadnic (x, y) je vybrán index nejbližšího kruhu
- Autor: Chao Chen
 - Disertační práce na Technické univerzitě v Mnichově, 2016

Zdroj: Chao Chen, "Combining Space Exploration and Heuristic Search in Online Motion Planning for Nonholonomic Vehicles", 2016

Sledování trajektorie

- Vstup:
 - Poslední naplánovaná trajektorie
 - Aktuální odhad stavu vozidla
- Výstup:
 - Řídící signál pro servo a motor
- Implementované a testované algoritmy:
 - Pure Pursuit
 - Dynamic Window Approach (DWA)

Sledování trajektorie

Pure Pursuit

- Výpočet úhlu natočení předních kol
 - o uvažuje jen geometrii vozidla a pozici cíle
- Cíl P je nejzazší bod naplánované dráhy vzdálený od středu zadní nápravy maximálně I_d
- Vzdálenost I_d závisí na rychlosti vozidla
 - Čím rychlejší jízda tím větší výhled
- Cílovou rychlost akce volí algoritmus podle rychlosti v nejbližším bodě naplánované trajektorie

$$R = \frac{l_d}{2\sin\alpha}$$

$$\delta_t = \arctan\frac{L}{R} = \arctan\frac{2L\sin\alpha}{l_d} = \arctan\frac{2L\sin\alpha}{Kv}$$

Sledování trajektorie

Dynamic Window Approach (DWA)

- Vybírá se akce z množiny přípustných akcí pro poslední známý stav vozidla
 - Pro každou vyzkouší, jak by se stav vozidla vyvíjel, kdyby byla tato akce zafixovaná pro nějaký konstantní časový interval (např. 0.5s).
 - Vyřadí se akce, které by vedly ke kolizi.
 - Pro zbývající akce se spočítají "chyby" sledování trajektorie:
 - Vzdálenost od překážek
 - Vzdálenost od naplánované dráhy
 - Rozdíl mezi naplánovanou a predikovanou rychlostí vozidla
 - Rozdíl mezi naplánovaným a predikovaným úhlem natočení vozidla
 - Vybere se akce s nejmenším váženým průměrem chyb

- Plánování trajektorie pro celé kolo
- Experimenty na robotickém vozítku
- Simulovaný závod

Plánování trajektorie pro celé kolo

- Srovnání Hybrid A* a SEHS
- Ze startovací pozice skrze všechny zatáčky
 - 6 různých závodních okruhů
- Zkoušeli jsme různé kombinace parametrů pro diskretizaci stavového prostoru
 - Zajímal nás vliv zvolených parametrů na kvalitu nalezeného řešení a na dobu hledání řešení
- Cílem bylo zjistit, zda je jeden z algoritmů výrazně lepší než druhý
 - Při vhodně zvolených parametrech
- Ani jeden z algoritmů však nebyl výrazně lepší
 - Každý z algoritmů "vyhrál" právě 3 závody ze 6 (čas do cíle)
 - Hybrid A* měl často kratší výpočet, avšak ne výrazně

Robotické vozítko

- Vlastní robotické vozítko se senzory a počítačem
 - o LIDAR, IMU, encoder
 - Nvidia Jetson Nano
- Problém s odometrií při vyšších rychlostech
- Při nižších rychlostech bylo auto schopno bezpečně jezdit po okruhu
 - o cca 1 m/s

Simulovaný závod

- ROS Gazebo + konfigurace a testovací trať F1/10
 - https://github.com/f1tenth/f1tenth_simulator

Hybrid A* + DWA, čas kola 25.274s

Simulovaný závod

- Testovali jsme úspěšnost všech kombinací algoritmů
- Nejlepších výsledků jsem dosáhl s pomocí kombinace SEHS + DWA
- Podařilo se překonat referenční řešení pro danou trať
 - Pure Pursuit podél předdefinované trajektorie
 - o Implementace od týmu F1/10

Planning alg.	Following alg.	Avg. lap time [s]	Best lap time [s]	Max. speed $[m s^{-1}]$
SEHS	DWA	25.577	23.815	4.04
Hybrid A*	DWA	25.802	24.295	4.05
SEHS	Pure Pursuit	27.168	25.850	4.03
Hybrid A*	Pure Pursuit	27.484	25.667	4.01
Referenční řešení:			25.911	4.05

Překážky

Shrnutí výsledků

- Implementace algoritmů pro autonomní závodní auto
 - Díky segmentaci trati na jednotlivé úseky mezi zatáčkami zvládne auto přeplánovávat bez potíží během jízdy nehledě na délku okruhu
- Testování na robotickém vozítku
 - Nutnost omezit maximální rychlost na 1 m/s
 - Při vyšších rychlostech již docházelo k problémům s určováním odometrie z dat dostupných z použitých senzorů
- Ověření funkčnosti algoritmů v simulátoru
 - Dosažená rychlost 4.1 m/s (14.76 km/h) u modelu auta 1:10
 - To odpovídá rychlosti 41 m/s (147 km/h) u běžného auta
 - Podařilo se překonat referenční řešení, které sleduje předdefinovanou trajektorii
 - Auto se umí vyhnout i statickým překážkám na trati

Děkuji za pozornost

Segmentace závodního okruhu

Nedetekovaná zatáčka

- V jednom konkrétním případě algoritmus v ukázce selhává
 - Důvod: "Vynecháme body, ve kterých se příliš nemění směr cesty"
 - Hraniční úhel stanoven na: $\%\pi = 0.80\pi$ (144°)
 - Úhel v tomto případě: 0.88π (159°)
- Při vyšší hodnotě hraničního úhlu však přibylo více falešně detekovaných zatáček u jiných okruhů

Srovnání s jinými řešeními F1/10

- Soutěží F1/10 již proběhlo 6, avšak zdrojové kódy byly zveřejněny pouze pro řešení ze závodu F1tenth Porto Grand Prix 2018
 - https://github.com/f1tenth/F110CPSWeek2018
 - Z jiných ročníků nebyly zdrojové kódy zveřejněny
- Ve zdrojových kódech je ukázka 5 řešení
 - Všechna řešení jsou čistě reaktivní
 - žádná lokalizace
 - vybere řídící výstup jen z dat z LIDARu
 - Nejzajímavější je práce ČVUT (vítěz)
 - algoritmus Follow The Gap
 - snaží se držet uprostřed trati
 - rychlost je odvislá od úhlu zatáčení

Zdůvodnění volby parametrů

- Pro plánování na celé kolo byla volena řada parametrů diskretizace
 - Hrubost mřížky (x, y)
 - o Počet různých natočení vozidla (θ)
 - \circ Počet různých úrovní natočení předních kol (δ)
 - Počet různých úrovní rychlosti otáčení motoru (ω)
 - Časový kro pro integrování (Δt)
- Pro každou hodnotu byly 3 možnosti
- Zkoušeli jsme všechny různé kombinace
 - Výsledky experimentů pro všechny různé kombinace jsou uvedeny v tabulce v příloze práce
- Protože experiment bylo nutné pro každou hodnotu několikrát zopakovat (průměrná doba výpočtu na daném HW) a celý experiment trval dlouhou dobu, nebylo vyzkoušeno více různých variant

Heuristika

- Shodná pro Hybrid A* i SEHS
 - Euklidovská vzdálenost skrze všechny waypointy (s)
 - o při maximální rychlosti (v)
 - o → minimální potřebný čas do cíle (t = s / v)