Graph Theory

CO 442

Luke Postle

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 442 during Fall 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface			1
1	Colorings		4
	1.1 Coloring and Brooks' Theorem		4

First let's look at a proof example.

Theorem

Every two longest paths in a connected graph G intersect.

Proof:

Suppose note. That is, there exist two longest paths P_1 and P_2 of G such that $V(P_1) \cap V(P_2) = \emptyset$. For each $i \in \{1, 2\}$, let $v_{i,1}$ and $v_{i,2}$ be the ends of P_i . Since G is connected, there exists a shortest path P from $V(P_1)$ to $V(P_2)$. Since P is shortest, we have that $|V(P_i) \cap V(P)| = 1$ for each $i \in \{1, 2\}$.

For each $i \in \{1, 2\}$, let u_i be the end of P in $V(P_i)$. For each $i, j \in \{1, 2\}$, let $Q_{i,j}$ be the subpath of P_i from u_i to $v_{i,j}$. We assume without loss of generality that for each $i \in \{1, 2\}$, we have that $|E(Q_{i,1})| \ge |E(Q_{i,2})|$ and hence

$$|E(Q_{i,1})| \ge |E(P_i)|/2.$$

Let $P' = v_{1,1}Q_{1,1}u_1Pu_2Q_{2,1}v_{2,1}$. Note that P' is a path in G and

$$|E(P')| = |E(Q_{1,1})| + |E(P)| + |E(Q_{2,1})| \ge |E(P)| + |E(P_1)| > |E(P_1)|.$$

Hence P' is a longer path than P_1 , contradicting that P_1 is a longest path.

Things to remember:

- 1. Correctness
- 2. Clarity/Precision
- 3. Ease of Reading

Colorings

1.1 Coloring and Brooks' Theorem

coloring

A **coloring** of a graph G is an assignment of colors to vertices of G such that no two adjacent vertices receive the same color.

k-coloring

Let G be a graph. We say $\phi: V(G) \to [k]$ is a k-coloring of G if $\phi(u) \neq \phi(v)$ for every $uv \in E(G)$.

Since every graph G has a |V(G)|-coloring, we are interested in the minimum numbers of colors needed to color G.

chromatic number

The **chromatic number** of a graph G, denoted $\chi(G)$, is the minimum number k such that G has a k-coloring.

Then why coloring?

- Coloring is a foundational problem in graph labeling, wherein we study functions on V(G) according to constraints imposed on the graph (e.g. non-adjacent vertices are labeled differently)
- Coloring is a foundational problem in graph decomposition, wherein we seek to decompose V(G) into certain kinds of subgraphs (e.g. independent sets)
- Applications to maps, scheduling, job processing, frequency assignment (e.g. cell networks)
- Applications to algorithms (e.g. distributed computing)

However, coloring is hard.

A graph being an **independent set** is by definition equivalent to being **1-colorable**.

A graph being **bipartite** is by definition equivalent to being **2-colorable**. (Indeed coloring is a generalization of partite)

Proposition 1.1

G is 2-colorable if and only if G does not contain an odd cycle.

Moreover, there exists a poly-time algorithm to decide if G is 2-colorable.

Theorem 1.2: Karp 1972

For each $k \geq 3$, deciding if a graph G has a k-coloring is NP-complete.

Indeed, 3-coloring is NP-complete even for planar graphs. Any constant factor approximation is also NP-complete.

Then what about the bounds on chromatic number?

As mentioned $\chi(G) \leq |V(G)|$.

Greedy Upper bound: $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ denotes the maximum degree of vertices in G. Why? By a greedy algorithm:

- Order the vertices of G arbitrarily, $v_1, \ldots, v_{|V(G)|}$.
- Color the vertices in order avoiding the colors of previously colored neighbors.
- Since each vertex has at most $\Delta(G)$ neighbors, there is always at least one color for the current vertex.

Lower bound: $\chi(G) \ge \omega(G)$, where $\omega(G)$ denotes the clique number of H, that is the maximum size of a clique in G.

Can we do better than the greedy upper bound?

No! The bound is tight for complete graphs: $\omega(K_n) = \chi(K_n) = (n-1) + 1 = \Delta(K_n) + 1$.

Can we do better if the graph is not complete?

No! The graph could have a component that is complete.

Can we do better if the graph is connected and not complete?

No! The bound is tight for odd cycles: $\chi(C_{2k+1}) = 3 = 2 + 1 = \Delta(C_{2k+1}) + 1$.

Can we do better if the graph is connected and neither complete nor an odd cycle? Yes!

Theorem 1.3: Brooks 1941

If G is connected, then $\chi(G) \leq \Delta(G)$ if and only if G is neither complete nor an odd cycle.

Index

C	K
chromatic number 4	k-coloring
coloring 4	