On the hyperuniformity of short range Gibbs point processes

HSRPP 2023, 20.-22.2.2023

Daniela Flimmel Université de Lille

This is a joint work with David Dereudre.

- 1 Hyperuniformity of a point process
 - Definition + Examples
- 2 Hyperuniformity and Gibbs
 - > Conditions a for non-hyperuniformity result
- 3 Examples of short range interactions
 - > Pair potential
 - > Widom-Rowlinson
 - Voronoi interaction
 - k-nearest neighbour interaction

M ... the space of all locally finite measures on $(\mathbb{R}^d, \mathcal{B})$,

 ${\mathcal M}$... the smallest σ -field on ${\mathbf M}$ which makes all the projections

 $\mu \mapsto \mu(B)$ measurable for all $B \in \mathcal{B}$ and $\mu \in \mathbf{M}$,

N ... the space of all locally finite integer valued measures on $(\mathbb{R}^d,\mathcal{B})$,

 \mathcal{N} ... the trace σ -field of \mathcal{M} on \mathbf{N} .

Definition (Point process)

A point process on \mathbb{R}^d is a measurable mapping

$$\Gamma:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbf{N},\mathcal{N}).$$

 Γ is stationary if $\Gamma \stackrel{D}{=} \Gamma + x$ for any $x \in \mathbb{R}^d$.

Marked point process: A point process on $\mathbb{R}^d \times \mathbb{M}$ that is locally finite in the first component.

Agreement: Γ is always assumed to be simple and we look at $\gamma \in \mathbf{N}$ as a locally finite point set of \mathbb{R}^d and write $x \in \gamma$ for $\gamma(x) = 1$.

1. Hyperuniformity of a point process

For a configuration $\gamma \in \mathbf{N}$, denote

$$N_{\Lambda}:=N_{\Lambda}(\gamma)=\sum_{x\in\gamma}\mathbf{1}_{\Lambda}(x)\quad \Lambda\subset\mathbb{R}^d$$
 bounded.

Definition

A point process Γ is hyperuniform if

$$\lim_{\Lambda\nearrow\mathbb{R}^d}\frac{\operatorname{Var}(N_\Lambda)}{|\Lambda|}=0.$$

For a configuration $\gamma \in \mathbf{N}$, denote

$$N_{\Lambda} := N_{\Lambda}(\gamma) = \sum_{x \in \gamma} \mathbf{1}_{\Lambda}(x) \quad \Lambda \subset \mathbb{R}^d$$
 bounded.

Definition

A point process Γ is hyperuniform if

$$\lim_{\Lambda\nearrow\mathbb{R}^d}\frac{\mathsf{Var}(N_\Lambda)}{|\Lambda|}=0.$$

- ▶ What sequence $|\Lambda| \nearrow \mathbb{R}^d$ shall we take?
 - $> B(0,R), R \to \infty$?
 - $[-R, R]^d$?
 - > RW, W compact convex?
 - > all?

1 $\Gamma = \mathbb{Z}^d + U$, U uniform, is hyperunifom.

- 1 $\Gamma = \mathbb{Z}^d + U$, U uniform, is hyperunifom.
- 2 Linear transformation, rotation or i.i.d perturbation of a hyperuniform point process is hyperuniform.

- 1 $\Gamma = \mathbb{Z}^d + U$, U uniform, is hyperunifom.
- 2 Linear transformation, rotation or i.i.d perturbation of a hyperuniform point process is hyperuniform.
- 3 Poisson point process Π with intensity λ is not hyperuniform.
 - $> \operatorname{\sf Var}(N_\Lambda) = \lambda |\Lambda|.$

- 1 $\Gamma = \mathbb{Z}^d + U$, U uniform, is hyperunifom.
- 2 Linear transformation, rotation or i.i.d perturbation of a hyperuniform point process is hyperuniform.
- 3 Poisson point process Π with intensity λ is not hyperuniform.
 - $\operatorname{Var}(N_{\Lambda}) = \lambda |\Lambda|.$
- 4 Thomas point process

$$\Gamma = \bigcup_{x \in \Pi} \{ x + \mathsf{cluster}(x) \}$$

is not hyperuniform.

- 1 $\Gamma = \mathbb{Z}^d + U$, U uniform, is hyperunifom.
- 2 Linear transformation, rotation or i.i.d perturbation of a hyperuniform point process is hyperuniform.
- Poisson point process Π with intensity λ is not hyperuniform.
 - $\operatorname{Var}(N_{\Lambda}) = \lambda |\Lambda|.$
- 4 Thomas point process

$$\Gamma = \bigcup_{x \in \Pi} \{x + \mathsf{cluster}(x)\}$$

is not hyperuniform.

5 Stationary determinantal processes, i.e. those with k-th correlation function

$$\rho_k(x_1, \dots, x_k) = \det[\mathbb{K}(x_i, x_j)_{i,j \in \{1, \dots, k\}}],$$

are hyperuniform if

$$\lambda = \mathbb{K}(0,0) = \int_{\mathbb{R}^d} \mathbb{K}(x,0)^2 \mathrm{d}x.$$

E.g. 2-dim. Ginibre process, 1-dim. Sine process,...

2. Hyperuniformity and Gibbs

Theorem (Ginibre, 67)

Let X be a random variable with values in $\mathbb N$ and denote $p_n:=\mathbb P(X=n)$ and $P_n=n!p_n$. If $\mathbb E\, X^2<\infty$ and

$$\frac{P_{n+2}}{P_{n+1}} \geq \frac{P_{n+1}}{P_n} - F \quad \textit{for some } F > -1,$$

then

$$\frac{\textit{Var}X}{\mathbb{E}\,X} \geq \frac{1}{1+F} > 0.$$

Theorem (Ginibre, 67)

Let X be a random variable with values in $\mathbb N$ and denote $p_n:=\mathbb P(X=n)$ and $P_n=n!p_n$. If $\mathbb E\, X^2<\infty$ and

$$\frac{P_{n+2}}{P_{n+1}} \geq \frac{P_{n+1}}{P_n} - F \quad \text{for some } F > -1,$$

then

$$\frac{\textit{Var}X}{\mathbb{E}\,X} \ge \frac{1}{1+F} > 0.$$

Example Let $\Phi: \mathbb{R}^d \to \mathbb{R}, \beta \geq 0$ be

- ▶ integrable: $\int (1 e^{-\beta \Phi(x)}) dx < \infty$
- ▶ locally stable: $\exists B \in \mathbb{R}$ such that $\sum_{i=1}^{m} \Phi(x_0 x_i) \geq -B \ \forall m \in \mathbb{N}$.

The Gibbs distribution with pair potential Φ in a bounded set Λ is given by

$$P_n := Z^{-1} z^n \int_{\Lambda^n} e^{-\beta \sum_{i < j} \Phi(x_i - x_j)} \mathrm{d}x_1 \dots \mathrm{d}x_n$$

Theorem (Ginibre, 67)

Let X be a random variable with values in $\mathbb N$ and denote $p_n:=\mathbb P(X=n)$ and $P_n=n!p_n$. If $\mathbb E\, X^2<\infty$ and

$$\frac{P_{n+2}}{P_{n+1}} \geq \frac{P_{n+1}}{P_n} - F \quad \text{for some } F > -1,$$

then

$$\frac{\textit{Var}X}{\mathbb{E}\,X} \ge \frac{1}{1+F} > 0.$$

Example Let $\Phi: \mathbb{R}^d \to \mathbb{R}, \beta \geq 0$ be

- ▶ integrable: $\int (1 e^{-\beta \Phi(x)}) dx < \infty$
- ▶ locally stable: $\exists B \in \mathbb{R}$ such that $\sum_{i=1}^{m} \Phi(x_0 x_i) \geq -B \ \forall m \in \mathbb{N}$.

The Gibbs distribution with pair potential Φ in a bounded set Λ is given by

$$P_n := Z^{-1} z^n \int_{\Lambda^n} e^{-\beta \sum_{i < j} \Phi(x_i - x_j)} dx_1 \dots dx_n$$

▶ (Ruelle, 70): Φ superstable pair potential

Definition

A measurable function $\lambda^*:\mathbb{R}^d\times \mathbf{N}\to [0,\infty]$ is called Papangelou intensity of a point process Γ if

$$\int \sum_{x \in \gamma} f(x, \gamma \setminus x) \Gamma(\mathrm{d}\gamma) = \int \int_{\mathbb{R}^d} f(x, \gamma) \lambda^*(x, \gamma) \mathrm{d}x \Gamma(\mathrm{d}\gamma).$$
 (GNZ)

for all positive measurable $f: \mathbb{R}^d \times \mathbf{N} \to \mathbb{R}$.

The point process Γ is called ${\it Gibbs}$ if its Papangelou intensity is of the form

$$\lambda^*(x,\gamma) = z \exp\{-\beta h(x,\gamma)\}$$

for some measurable function $h:\mathbb{R}^d\times\mathbf{N}\to\mathbb{R}$ called local energy and parameters $z>0, \beta\geq 0.$

Definition

A measurable function $\lambda^*: \mathbb{R}^d \times \mathbf{N} \to [0, \infty]$ is called Papangelou intensity of a point process Γ if

$$\int \sum_{x \in \gamma} f(x, \gamma \setminus x) \Gamma(\mathrm{d}\gamma) = \int \int_{\mathbb{R}^d} f(x, \gamma) \lambda^*(x, \gamma) \mathrm{d}x \Gamma(\mathrm{d}\gamma).$$
 (GNZ)

for all positive measurable $f: \mathbb{R}^d \times \mathbf{N} \to \mathbb{R}$.

The point process Γ is called ${\it Gibbs}$ if its Papangelou intensity is of the form

$$\lambda^*(x,\gamma) = z \exp\{-\beta h(x,\gamma)\}$$

for some measurable function $h:\mathbb{R}^d\times \mathbf{N}\to \mathbb{R}$ called local energy and parameters $z>0, \beta\geq 0.$

Remark. Usually, we have given the ${\it energy}\ H$ defined on finite configurations. Then we take

$$h(x,\gamma) := \lim_{r \to \infty} \left[H(\gamma \cap \mathcal{B}(0,r) \cup \{x\}) - H(\gamma \cap B(0,r)) \right]$$

Theorem (Dereudre + F., 2023+)

Let Γ be a stationary point process on \mathbb{R}^d with Papangelou intensity λ^* . Assume that there are some $\delta>0, \alpha_1, \alpha_2>1, \frac{2}{\alpha_1}+\frac{1}{\alpha_2}=1$ such that

(A1)
$$\mathbb{E} \lambda^*(0,\Gamma)^{\alpha_1} < +\infty$$
,

$$(\mathsf{A2}) \ \int_{\mathbb{R}^d \backslash B(0,\delta)} \left(\mathbb{E} \ \left| 1 - \tfrac{\lambda^*(0,\Gamma \cup \{y\})}{\lambda^*(0,\Gamma)} \right|^{\alpha_2} \right)^{1/\alpha_2} \mathrm{d}y < \infty.$$

Then Γ is not hyperuniform.

Available also in the marked setting.

- ► (A1) requires some stability assumption
- ▶ (A2) requires control over the range of interaction
 - > short-range interactions

2. Examples of point processes satisfying (A1) and (A2)

The local energy takes form

$$h(x,\gamma) = \sum_{y \in \gamma} \Phi(x-y), \quad \Phi : \mathbb{R}^d \to \mathbb{R}.$$

- ► Stability: h is stable, i.e. $\sum_{i=1}^{m} \Phi(x_0 x_i) \ge -mB$ (or superstable + lower regular)
- ▶ Range of interaction There is R > 0 such that

$$h(x,\gamma) = h(x,\gamma \cap B(0,R)).$$

 $\Rightarrow \Gamma$ is not hyperuniform.

Ex. Strauss process

$$\Phi(x-y) = \begin{cases} 1, & \text{if } |x-y| \le R, \\ 0, & \text{otherwise} \end{cases}$$

The local energy takes form

$$h(x,\gamma) = \sum_{y \in \gamma} \Phi(x-y), \quad \Phi : \mathbb{R}^d \to \mathbb{R}.$$

- ► Stability: h is locally stable $h \ge -B$. \Rightarrow (A1) \checkmark
- ▶ Range of interaction Φ is integrable at infinity, i.e. $\int_{\mathbb{R}^d \backslash B(0,\delta)} |1-e^{-\Phi(x)}| \mathrm{d}x < \infty \text{ for some } \delta > 0. \Rightarrow \text{ (A2)} \checkmark$

$$\int_{\mathbb{R}^d \setminus B(0,\delta)} \left(\mathbb{E} \left| 1 - \frac{\lambda^*(0,\Gamma \cup \{y\})}{\lambda^*(0,\Gamma)} \right|^{\alpha_2} \right)^{1/\alpha_2} dy = \int_{\mathbb{R}^d \setminus B(0,\delta)} \left| 1 - e^{-\Phi(y)} \right| dy.$$

 $\Rightarrow \Gamma$ is not hyperuniform.

Ex. Riesz gas with s > d

$$\Phi(x - y) = \frac{1}{\|x - y\|^s}$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

For general $\gamma \in \mathbf{N}$, the local energy is given by

$$h(x,\gamma) = \left| \bigcup_{y \in \gamma} B(y,R) \cup B(x,R) \right| - \left| \bigcup_{y \in \gamma} B(y,R) \right|.$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

For general $\gamma \in \mathbf{N}$, the local energy is given by

$$h(x,\gamma) = \left| \bigcup_{y \in \gamma} B(y,R) \cup B(x,R) \right| - \left| \bigcup_{y \in \gamma} B(y,R) \right|.$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

For general $\gamma \in \mathbf{N}$, the local energy is given by

$$h(x,\gamma) = \left| \bigcup_{y \in \gamma} B(y,R) \cup B(x,R) \right| - \left| \bigcup_{y \in \gamma} B(y,R) \right|.$$

Stability: The local energy is uniformly bounded

$$0 \leq h \leq |B(0,R)|$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

For general $\gamma \in \mathbf{N}$, the local energy is given by

$$h(x,\gamma) = \left| \bigcup_{y \in \gamma} B(y,R) \cup B(x,R) \right| - \left| \bigcup_{y \in \gamma} B(y,R) \right|.$$

Stability: The local energy is uniformly bounded

$$0 \le h \le |B(0,R)|$$

Range of interaction: The range of interaction is 2R, i.e.

$$h(x,\gamma)=h(x,\gamma\cap B(x,2R)).$$

$$H(\gamma) = \left| \bigcup_{x \in \gamma} B(x, R) \right|.$$

For general $\gamma \in \mathbf{N}$, the local energy is given by

$$h(x,\gamma) = \left| \bigcup_{y \in \gamma} B(y,R) \cup B(x,R) \right| - \left| \bigcup_{y \in \gamma} B(y,R) \right|.$$

Stability: The local energy is uniformly bounded

$$0 \le h \le |B(0,R)|$$

Range of interaction: The range of interaction is 2R, i.e.

$$h(x,\gamma) = h(x,\gamma \cap B(x,2R)).$$

 $\Rightarrow \Gamma$ is not hyperuniform.

Widom-Rowlinson interaction with random radii

Assume each $x\in\Gamma$ is equipped with a mark R_x from \mathbb{R}_+ , independently and with the same distribution. For finite marked configuration γ , the energy is given by

$$H(\gamma) = \left| \bigcup_{(x,R_x)\in\gamma} B(x,R_x) \right|.$$

Assume each $x\in\Gamma$ is equipped with a mark R_x from \mathbb{R}_+ , independently and with the same distribution. For finite marked configuration γ , the energy is given by

$$H(\gamma) = \left| \bigcup_{(x,R_x)\in\gamma} B(x,R_x) \right|.$$

For a locally finite marked configuration γ , the local energy is given by

$$h((x,R_x),\gamma) = \left| \bigcup_{(y,R_y) \in \gamma} B(y,R_y) \cup B(x,R_x) \right| - \left| \bigcup_{(y,R_y) \in \gamma} B(y,R_y) \right|.$$

Assume each $x \in \Gamma$ is equipped with a mark R_x from \mathbb{R}_+ , independently and with the same distribution. For finite marked configuration γ , the energy is given by

$$H(\gamma) = \left| \bigcup_{(x,R_x)\in\gamma} B(x,R_x) \right|.$$

For a locally finite marked configuration γ , the local energy is given by

$$h((x,R_x),\gamma) = \left| \bigcup_{(y,R_y)\in\gamma} B(y,R_y) \cup B(x,R_x) \right| - \left| \bigcup_{(y,R_y)\in\gamma} B(y,R_y) \right|.$$

lackbox We still have $h\geq 0$. The range of interaction is not bounded, but random and

$$h((x, R_x), \gamma) = h(x, \gamma \cap B(x, 2R_x) \times \mathbb{R}_+).$$

Assume each $x\in\Gamma$ is equipped with a mark R_x from \mathbb{R}_+ , independently and with the same distribution. For finite marked configuration γ , the energy is given by

$$H(\gamma) = \left| \bigcup_{(x,R_x)\in\gamma} B(x,R_x) \right|.$$

For a locally finite marked configuration γ , the local energy is given by

$$h((x,R_x),\gamma) = \left| \bigcup_{(y,R_y) \in \gamma} B(y,R_y) \cup B(x,R_x) \right| - \left| \bigcup_{(y,R_y) \in \gamma} B(y,R_y) \right|.$$

lackbox We still have $h\geq 0$. The range of interaction is not bounded, but random and

$$h((x, R_x), \gamma) = h(x, \gamma \cap B(x, 2R_x) \times \mathbb{R}_+).$$

Lemma (Dereudre+F.)

Let R_0 be the typical mark. If $\mathbb{E}\,e^{lpha eta |B(0,1)|R_0^d} < \infty$ for some lpha > 0 then Γ is not hyperuniform.

Let $A \neq \emptyset$ be a locally finite set in \mathbb{R}^d . For each $x \in A$, we define a Voronoi cell around x as

$$C(x,A) := \{ z \in \mathbb{R}^d : \|z - x\| \le \|z - y\| \text{ for all } y \in A \}.$$

Let \mathcal{C}^d denote the set of all polytopes in \mathbb{R}^d and $\Phi:\mathcal{C}^d\to\mathbb{R}$.

Let $A \neq \emptyset$ be a locally finite set in \mathbb{R}^d . For each $x \in A$, we define a Voronoi cell around x as

$$C(x,A) := \{ z \in \mathbb{R}^d : ||z - x|| \le ||z - y|| \text{ for all } y \in A \}.$$

Let \mathcal{C}^d denote the set of all polytopes in \mathbb{R}^d and $\Phi: \mathcal{C}^d \to \mathbb{R}$.

▶ For a finite configuration $\gamma \in \mathbb{N}$, we consider energy

$$H(\gamma) = \sum_{x \in \gamma} \Phi(C(x,\gamma)) \mathbf{1}\{|C(x,\gamma)| < \infty\}.$$

Let $A \neq \emptyset$ be a locally finite set in \mathbb{R}^d . For each $x \in A$, we define a Voronoi cell around x as

$$C(x, A) := \{ z \in \mathbb{R}^d : ||z - x|| \le ||z - y|| \text{ for all } y \in A \}.$$

Let \mathcal{C}^d denote the set of all polytopes in \mathbb{R}^d and $\Phi: \mathcal{C}^d \to \mathbb{R}$.

For a finite configuration $\gamma \in \mathbf{N}$, we consider energy

$$H(\gamma) = \sum_{x \in \gamma} \Phi(C(x,\gamma)) \mathbf{1}\{|C(x,\gamma)| < \infty\}.$$

► The local energy is given by

$$h(x,\gamma) := \Phi(C(x,\gamma)) + \sum_{y \sim x} \left[\Phi(C(y,\gamma \cup \{x\})) - \Phi(C(y,\gamma)) \right],$$

where $x \sim y$ if $C(x, A \cup \{x, y\}) \cap C(y, A \cup \{x, y\}) \neq \emptyset$.

- (A) additive if $\Phi(C) \leq \Phi(C_1) + \Phi(C_2)$ whenever $C = C_1 \cup C_2$, where $C, C_1, C_2 \in \mathcal{C}^d$,
- (I) increasing if $\Phi(C) \leq \Phi(C')$ whenever $C, C' \in \mathcal{C}^d$ and $C \subseteq C'$,
- (CV) controlled by the volume if there exists a constant K>0 such that $\Phi(C) \leq \min\{|C|,K\}$ for all $C \in \mathcal{C}^d$.

- (A) additive if $\Phi(C) \leq \Phi(C_1) + \Phi(C_2)$ whenever $C = C_1 \cup C_2$, where $C, C_1, C_2 \in \mathcal{C}^d$,
 - (I) increasing if $\Phi(C) \leq \Phi(C')$ whenever $C, C' \in \mathcal{C}^d$ and $C \subseteq C'$,
- (CV) controlled by the volume if there exists a constant K>0 such that $\Phi(C) \leq \min\{|C|,K\}$ for all $C \in \mathcal{C}^d$.

Stability:

$$(\mathsf{A}) + (\mathsf{I}) + (\mathsf{CV}) \Rightarrow -K - |C(x,\gamma)| \le h(x,\gamma) \le K.$$

- (A) additive if $\Phi(C) \leq \Phi(C_1) + \Phi(C_2)$ whenever $C = C_1 \cup C_2$, where $C, C_1, C_2 \in \mathcal{C}^d$,
- (I) increasing if $\Phi(C) \leq \Phi(C')$ whenever $C, C' \in \mathcal{C}^d$ and $C \subseteq C'$,
- (CV) controlled by the volume if there exists a constant K>0 such that $\Phi(C) \leq \min\{|C|,K\}$ for all $C \in \mathcal{C}^d$.

Stability:

$$(\mathsf{A})+(\mathsf{I})+(\mathsf{CV}) \Rightarrow -K-|C(x,\gamma)| \leq h(x,\gamma) \leq K.$$

Range of interaction: There is a random variable R with $\mathbb{E}\,e^{c_dR^d}<\infty$ such that

$$h(x,\gamma) = h(x,\gamma \cap B(0,R)).$$

- (A) additive if $\Phi(C) \leq \Phi(C_1) + \Phi(C_2)$ whenever $C = C_1 \cup C_2$, where $C, C_1, C_2 \in \mathcal{C}^d$,
- (I) increasing if $\Phi(C) \leq \Phi(C')$ whenever $C, C' \in \mathcal{C}^d$ and $C \subseteq C'$,
- (CV) controlled by the volume if there exists a constant K>0 such that $\Phi(C)\leq \min\{|C|,K\}$ for all $C\in\mathcal{C}^d$.

Stability:

$$(\mathsf{A})+(\mathsf{I})+(\mathsf{CV}) \Rightarrow -K-|C(x,\gamma)| \leq h(x,\gamma) \leq K.$$

Range of interaction: There is a random variable R with $\mathbb{E}\,e^{c_dR^d}<\infty$ such that

$$h(x,\gamma) = h(x,\gamma \cap B(0,R)).$$

Lemma (Dereudre + F.)

There is a critical value β_c (explicitly given) depending on z,K and the dimension, such that for all $\beta < \beta_c$, the Gibbs point process Γ is not hyperuniform.

▶ The energy for finite configuration γ is

$$H(\gamma) = \sum_{x \in \gamma} \sum_{y \in V^k(x,\gamma)} \Phi(x-y),$$

▶ The energy for finite configuration γ is

$$H(\gamma) = \sum_{x \in \gamma} \sum_{y \in V^k(x,\gamma)} \Phi(x - y),$$

The local energy is then

$$h(x,\gamma) = \sum_{y \in V^k(x,\gamma)} \Phi(x-y) - \sum_{y \in \gamma} \mathbf{1}_{V^k(y,\gamma \cup \{x\})}(x) \left[\Phi(y-x) - \Phi(y-v^k(y,\gamma)) \right].$$

▶ The energy for finite configuration γ is

$$H(\gamma) = \sum_{x \in \gamma} \sum_{y \in V^k(x,\gamma)} \Phi(x - y),$$

The local energy is then

$$h(x,\gamma) = \sum_{y \in V^k(x,\gamma)} \Phi(x-y) - \sum_{y \in \gamma} \mathbf{1}_{V^k(y,\gamma \cup \{x\})}(x) \left[\Phi(y-x) - \Phi(y-v^k(y,\gamma)) \right].$$

Stability: There exist a constant C_d depending only on the dimension d such that $|h(x,\gamma)| \leq 3kC_d \|\Phi\|_{\infty}$.

▶ The energy for finite configuration γ is

$$H(\gamma) = \sum_{x \in \gamma} \sum_{y \in V^k(x,\gamma)} \Phi(x - y),$$

The local energy is then

$$h(x,\gamma) = \sum_{y \in V^k(x,\gamma)} \Phi(x-y) - \sum_{y \in \gamma} \mathbf{1}_{V^k(y,\gamma \cup \{x\})}(x) \left[\Phi(y-x) - \Phi(y-v^k(y,\gamma)) \right].$$

Stability: There exist a constant C_d depending only on the dimension d such that $|h(x,\gamma)| \leq 3kC_d \|\Phi\|_{\infty}$.

Range of interaction: There is a random variable R with $\mathbb{E}\,R^{d+\epsilon}<\infty$ such that $h(x,\gamma)=h(x,\gamma\cap B(x,R)).$

▶ The energy for finite configuration γ is

$$H(\gamma) = \sum_{x \in \gamma} \sum_{y \in V^k(x,\gamma)} \Phi(x - y),$$

The local energy is then

$$h(x,\gamma) = \sum_{y \in V^k(x,\gamma)} \Phi(x-y) - \sum_{y \in \gamma} \mathbf{1}_{V^k(y,\gamma \cup \{x\})}(x) \left[\Phi(y-x) - \Phi(y-v^k(y,\gamma)) \right].$$

Stability: There exist a constant C_d depending only on the dimension d such that $|h(x,\gamma)| \leq 3kC_d \|\Phi\|_{\infty}$.

Range of interaction: There is a random variable R with $\mathbb{E} R^{d+\epsilon} < \infty$ such that $h(x,\gamma) = h(x,\gamma \cap B(x,R))$.

Lemma (Dereudre + F.)

If $|\Phi| \leq K$ or decreasing $+\Phi \geq K$, then Γ is not hyperuniform.

Ex. Coulomb interaction $\Phi(x) = \frac{1}{\|x\|^{d-2}}$.

Thank you for your attention.