LOPITALOVO PRAVILO

Neka su funkcije f i g diferencijabilne u nekoj okolini tačke $a \in \mathbb{R}$, sem eventualno u samoj tački a i neka je $g'(x) \neq 0$ za svako x iz te okoline. Ako je $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, i ako postoji $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$, $A \in \mathbb{R}$, tada je:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A.$$

Lopitalovo pravilo važi i ako je $A=\pm\infty$ i kada $x\to\pm\infty$. Takođe važi i u slučaju kada je $\lim_{x\to a}f(x)=\pm\infty$ i $\lim_{x\to a}g(x)=\pm\infty$.

Primer 1. Izračunati $\lim_{x\to 0} \frac{\sin x}{x}$.

Kako je $\lim_{x\to 0} \sin x = 0$ i $\lim_{x\to 0} x = 0$ i kako postoji $\lim_{x\to 0} \frac{(\sin x)'}{(x)'} = \lim_{x\to 0} \frac{\cos x}{1} = 1$, to je $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Primer 2. Izračunati $\lim_{x\to\infty}\,\frac{\ln x}{x^a},\,a>0.$

Kako je $\lim_{x\to\infty} \ln x = \infty$ i $\lim_{x\to\infty} x^a = \infty$, za a > 0 i kako postoji $\lim_{x\to\infty} \frac{(\ln x)'}{(x^a)'} = \lim_{x\to\infty} \frac{\frac{1}{x}}{ax^{a-1}} = \lim_{x\to\infty} \frac{1}{ax^a} = 0$, to je $\lim_{x\to\infty} \frac{\ln x}{x^a} = 0$.

Obrnuto ne mora da važi, tj. ako ne postoji $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ to ne mora da znači da i $\lim_{x\to a} \frac{f(x)}{g(x)}$ ne postoji.

Primer 3. $\lim_{x \to \infty} \frac{x + \sin x}{x} = \lim_{x \to \infty} \left(1 + \frac{\sin x}{x}\right) = 1$ jer je funkcija $\sin x$ ograničena, tj $\sin x \in [-1, 1]$, a $\frac{1}{x} \to 0$, kad $x \to \infty$.

Dakle, ova granična vrednost postoji, a ne može se primeniti Lopitalovo pravilo za njeno izračunavanje jer $\lim_{x\to\infty}\frac{x+\sin x}{x}+\lim_{x\to\infty}\frac{1+\cos x}{1}$ ne postoji.

Pored toga što se primenjuje na neodređene izraze oblika " $\frac{0}{0}$ " i " $\frac{\infty}{\infty}$ ", Lopitalovo pravilo se može primeniti i na ostale neodređene izraze (" $0 \cdot \infty$ ", " $\infty - \infty$ ", " 1^{∞} ", " 0^{0} ", " ∞^{0} ") koji se elementarnim aritmetičkim transformacijama svode na prethodna dva slučaja.

• " $0 \cdot \infty$ ": Ako $f(x) \longrightarrow 0$, $x \longrightarrow a$ i $g(x) \longrightarrow \pm \infty$, $x \longrightarrow a$ tada je

$$\lim_{x \to a} f(x) g(x) = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} = 0$$
 ili
$$\lim_{x \to a} f(x) g(x) = \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}} = \infty$$
.

• " $\infty - \infty$ ": Ako $f(x) \longrightarrow \infty$, $x \longrightarrow a$ i $g(x) \longrightarrow \pm \infty$, $x \longrightarrow a$ tada je

$$\lim_{x \longrightarrow a} \left(f\left(x \right) - g\left(x \right) \right) = \lim_{x \longrightarrow a} f\left(x \right) \left(1 - \frac{g\left(x \right)}{f\left(x \right)} \right) = \infty \cdot 0^{\circ}.$$

Može se desiti i da $1 - \frac{g(x)}{f(x)}$ ne teži u nulu kad x teži a. U tom slučaju f(x) - g(x) teži u $\pm \infty$ kad x teži a.

• "0°", " ∞ 0" i "1 ∞ ": U sva tri slučaja izraz oblika $\lim_{x \longrightarrow a} f(x)^{g(x)}$, f(x) > 0 se svodi na oblik " $0 \cdot \infty$ " i to na sledeći način

$$\lim_{x \to a} f(x)^{g(x)} = A / \ln A = \ln \lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} \ln f(x)^{g(x)} = \lim_{x \to a} g(x) \ln f(x) = 0 \cdot \infty.$$