(12) UK Patent Application (19) GB (11) 2 311 788 (13) A

(43) Date of A Publication 08.10.1997

(21) Application No 9706136.0

(22) Date of Filing 25.03.1997

(30) Priority Data

(31) 9608505

(32) 25.04.1996

(33) GB

(71) Applicant(s)

Zeneca Limited

(Incorporated in the United Kingdom)

15 Stanhope Gate, LONDON, W1Y 6LN, United Kingdom

(72) Inventor(s)

Peter Gregory Prakash Patel

(74) Agent and/or Address for Service

John Mayali

Zeneca Specialties, PO Box No42, Intellectual Property Group, Hexagon House, Blackley, MANCHESTER, M9 8ZS, United Kingdom (51) INT CL⁶

C09D 11/00 11/02, G03G 9/09

(52) UKCL (Edition O)

C4A AC11 AC12C AC12E AC14 AC16 AC17 AC6A AC7

G2C CTQ

U18 S1281 S1300 S1302 S1386 S1465 S1529 S1537 S1558 S1564 S1565 S1567 S1577 S1594 S1597

(56) Documents Cited WO 96/35012 A1

(58) Field of Search

Online: CAS ONLINE

(54) Ink and toner compositions containing bis-{1,3,5-triazinylamino}-substituted monoazo-stilbene dyes with two addition reaction susceptible end groups

(57) An ink composition comprises:

(i) a medium comprising a mixture of water and one or more water-soluble organic solvent(s), an organic solvent, or a low melting point solid; and

(ii) a dye of Formula (1) or Formula (2), or salt thereof:

Formula (1)

(wherein:

each X1 Independently is a labile or non-labile substituent;

each T independently is -O-, -S- or -NR1-;

each L1 independently is a divalent organic linker group;

each V¹ independently is a group which is capable of undergoing an addition reaction or an elimination and addition reaction;

each R¹ independently is H or optionally substituted alkyl;

Z is the residue of a coupling component; and

m and n are each independently 0 or 1]

SO₃H SO₃H SO₃H NR⁴ NR

(57) continued overleaf

(57) cont

[wherein:

each R⁴ independently is H or C₁₋₄-alkyl;

G is H, alkyl, alkoxy, amido, ureido, halo, nitro, carboxy, amino or sulpho;

each X² independently is F, Cl, a quaternary ammonium group or a non labile group; and

each V² independently is a vinyl sulphone group or a group which is convertible to a vinyl sulphone group on treatment with aqueous alkali, a group of formula -SO₂NHCH₃CH₂-Y wherein Y is -OSO₃H, -SSO₃H, -Cl or -OCOCH₃ or a group or formula NHCOCR⁴=CH₂ or -NHCOCBr=CH₂]

Also claimed is a composition comprising the ink and a nucleophilic agent; a process for ink jet printing of a substrate wherein the ink is applied to the substrate using an ink jet printer together with a nucelophilic agent and heating and/or basifying the ink and nucelophilic agent thereby causing the dye present in the ink and the nucleophilic agent to react together; and a toner resin composition comprising a toner resin and a dye of Formula (1), or Formula (2).

10

15

20

25

30

COMPOSITIONS, PROCESSES AND USES

The present invention relates to compositions and solutions thereof, suitable for use in printing and imaging technologies, especially those suitable for coloration of substrates such as paper, plastics, textiles, metal and glass by printing processes such as ink jet printing and those suitable for use in electrophotography such as toners.

Ink jet printing is a non-impact printing technique which involves ejecting, thermally or by action of an oscillating piezo crystal, droplets of ink continuously or on demand from a fine nozzle directly onto a substrate such as paper, plastics, textile, metal or glass. The ink may be aqueous, solvent or hot melt based and must provide sharp, non-feathered images which have good waterfastness, light fastness and optical density, have fast fixation to the substrate and cause no clogging of the nozzle.

Electrophotographic copiers or printers generally comprise an organic photoconductor (OPC) and a developer or toner. The OPC generally comprises an electrically conducting support, a charge generating layer and a charge transport layer. The electrically conducting support is a metal drum, typically an aluminium drum, or a metallised polymer film, typically aluminised polyester. The charge generating layer comprises a charge generating material (CGM) and a binder resin, typically a polycarbonate. The charge transport later comprises a charge transport material (CTM) and a binder resin, typically a polycarbonate. The developer or toner comprises a toner resin, a colorant and optionally a charge control agent (CCA). The toner resin is typically a styrene or substituted styrene polymer or styrene-butadiene copolymer. The colorant is typically a dye or pigment or mixture thereof.

According to the present invention there is provided an ink composition comprising:

- (i) a medium comprising a mixture of water and one or more soluble solvent(s), an organic solvent, or a low melting point solid; and
- (ii) a dye of Formula (1) or salt thereof:

Formula (1)

wherein:

each X¹ independently is a labile or non-labile substituent;

each T independently is -O-, -S- or -NR¹-;

each L¹ independently is a divalent organic linker group;

10

15

20

25

30

35

each V¹ independently is a group which is capable of undergoing an addition reaction or an elimination and addition reaction:

each R¹ independently is H or optionally substituted alkyl; Z is the residue of a coupling component; and m and n are each independently 0 or 1.

The dye of Formula (1) may be in an unionised or free acid form as shown, but is preferably in the form of a salt with one or more cations. Preferred cations are selected from an alkali metal, ammonium and optionally substituted C_{1-4} -alkylammonium cations. Preferred alkali metal cations include lithium, sodium and potassium. A preferred C_{1-4} -alkylammonium cation consists of a nitrogen atom having four substituents selected from H, C_{1-4} -alkyl and hydroxy- C_{1-4} -alkyl, for example mono-, di-, tri- and tetra-(C_{1-4} -alkyl)ammonium and mono-, di, tri- and tetra-(hydroxy C_{1-4} -alkyl) ammonium. It is preferred that the dye of Formula (1) is a salt with an NH_4^+ cation or a mono- or poly-, methyl- or ethylammonium cation or with a mixture of two or more cations, especially a mixture of alkali metal and optionally substituted ammonium cations. Examples of optionally substituted C_{1-4} -alkylammonium cations include mono-, di-, tri- and tetra-methylammonium, mono-, di-, tri- and tetra-ethylammonium and mono-, di-, tri- and tetra-(2-hydroxyethyl)ammonium.

The dye of Formula (1) may be converted wholly or partially into its ammonium or optionally substituted C_{1-4} -alkyl ammonium salt by dissolving in water the dye of Formula (1) in the form of a salt with an alkali metal, acidifying the solution with a mineral acid, such as hydrochloric acid, separating the precipitated compound in free acid form, suspending it in water, adjusting the pH of the suspension to 9 to 9.5 with ammonia or an optionally substituted C_{1-4} -alkylamine to form the water-soluble ammonium or C_{1-4} -alkylammonium salt and removing the alkali metal chloride ions by dialysis. Alternatively the alkali metal ion may be exchanged for an optionally substituted ammonium ion by a conventional ion exchange method.

In X¹ the term "labile substituent" means an atom or group attached directly to the triazine ring which is displaceable by the hydroxy group of a cellulosic material under alkaline conditions. A preferred labile atom is a halogen, especially Cl or F. A preferred labile group is sulpho, more preferably a quaternary ammonium group. As examples of quaternary ammonium groups there may be mentioned trialkyl ammonium groups and optionally substituted pyridinium groups, especially 3-carboxypyridinium and 4-carboxypyridinium.

Preferred non-labile substituents represented by each X^1 include groups of formula $-OR^2$, $-SR^2$ or $-NR^2R^3$ in which R^2 and R^3 each independently is H, optionally substituted alkyl, cycloalkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aralkyl, or R^2 and R^3 together with the nitrogen atom to which they are attached form a 5 or 6 membered ring.

10

15

20

25

30

35

Especially preferred non-labile groups represented by each X^1 include OH; SH; alkoxy, for example methoxy or ethoxy; hydroxy- $C_{2\cdot4}$ -alkylamino, for example mono or di-(2-hydroxyethyl)amino; morpholinyl; piperidinyl; piperazinyl; 4-(hydroxy- $C_{2\cdot4}$ -alkyl)-piperazin1-yl, for example 4-hydroxyethylpiperazin-1-yl; 4-($C_{1\cdot4}$ -alkyl)piperazin-1-yl; for example 4-methylpiperazin-1-yl; $C_{1\cdot6}$ -alkylamino, for example dimethylamino, n-butylamino or n-hexylamino; carboxy- $C_{1\cdot4}$ -alkylamino, for example 2-carboxymethylamino; arylamino, for example phenylamino, mono-3- or di-3,5-carboxyanilino; or sulpho- $C_{1\cdot6}$ -alkylthio, for example HO₃S(CH₂)₂S- and HO₃S(CH₂)₃S-. When X^1 is alkoxy it preferably contains from 1 to 4 carbon atoms.

 R^2 and R^3 each independently is preferably selected from H, C_{1-10} -alkyl especially C_{1-4} -alkyl, substituted C_{1-10} -alkyl especially substituted C_{1-4} -alkyl, phenyl, substituted phenyl, $(CH_2)_{1-4}$ -phenyl and substituted $(CH_2)_{1-4}$ -phenyl especially benzyl and substituted benzyl. When any one of R^2 or R^3 is substituted, the substituent is preferably selected from -OH, -CH₃, -OCH₃, -SO₃H and -CO₂H. When R^2 and R^3 together with the nitrogen atom to which they are attached form a 5- or 6-membered ring, this is preferably morpholine, piperidine or piperazine especially the latter in which the free ring N-atom may be, and preferably is, substituted by a C_{1-4} -alkyl or hydroxy- C_{2-4} -alkyl group.

Preferably each T independently is -NR¹- wherein R¹ is as hereinbefore defined.

The divalent organic linker group represented by each L^1 is preferably an optionally substituted or interrupted alkylene group containing from 2 to 10 carbon atoms, especially C_{2-4} -alkylene, or more preferably an optionally substituted C_{6-11} arylene group, more preferably optionally substituted phenylene or naphthylene.

Preferred groups represented by V¹ which are capable of undergoing an addition reaction or an elimination and addition reaction are as described in International Patent Application No. PCT/GB93/02344, page 6, line 13 to page 8, line 18, which is included herein by reference thereto. Preferably each V¹ independently is a vinyl sulphone group or a group which is convertible to a vinyl sulphone group on treatment with an aqueous alkali, or a group of formula -SO₂NHCH₂CH₂-Y wherein Y is -OSO₃H, -SSO₃H, -CI or -OCOCH₃.

Each R¹ is preferably H or C₁₋₄-alkyl, especially H, methyl or ethyl.

The residue of a coupling component represented by Z is preferably an optionally substituted buta-1,3-dione, phenylene, naphthylene or heterocyclic group (for example a pyrazolone), more preferably Z is optionally substituted 1,3- or 1,4-phenylene.

When L¹, Z or R¹ is substituted it is preferred that each substituent is selected from amino, alkyl preferably C₁₋₄-alkyl, alkoxy preferably C₁₋₄-alkoxy, amido preferably -NHCOC₁₋₄-alkyl, cyano, ureido, sulpho, carboxy, hydroxy, nitro and halo.

Preferably m and n have a value of 1. When m and n are 1 it is preferred that the sulpho groups shown in Formula (1) and in Formula (2) below are both ortho with respect to the -CH=CH- group.

A preferred dye of Formula (1) is of Formula (2) or a salt thereof:

$$R^4-N$$
Formula (2)

wherein:

5

10

15

20

25

30

each R4 independently is H or C14-alkyl;

G is H, alkyl, alkoxy, amido, ureido, halo, nitro, carboxy, amino or sulpho;

each X² independently is F, CI, a quaternary ammonium group or a non labile group; and

each V² independently is a vinyl sulphone group or a group which is convertible to a vinyl sulphone group on treatment with aqueous alkali, a group of formula -SO₂NHCH₂CH₂-Y wherein Y is -OSO₃H, -SSO₃H, -Ci or -OCOCH₃, or a group of formula -NHCOCR⁴=CH₂ or -NHCOCBr=CH₂.

G is preferably H, C_{1-4} -alkyl, C_{1-4} -alkoxy, -NHCOC₁₋₄-alkyl or ureido, more preferably H, methyl, methoxy, ureido or -NHCOCH₃.

Each X² is preferably independently F, CI or a quaternary ammonium group.

The V^2 groups shown in Formula (2) are preferably at the 3- or 4- position relative to the -NR⁴- group.

Groups which are convertible to a vinyl sulphone group, (-SO₂CH=CH₂), on treatment with aqueous alkali include -SO₂CH₂CH₂OSO₃H, -SO₂CH₂CH₂SSO₃H, -SO₂CH₂CH₂OCOCH₃ and -SO₂CH₂CH₂CI.

The ink composition preferably contains from 0.5% to 20%, more preferably from 0.5% to 15%, and especially from 1% to 3%, by weight of the dye based on the total weight of the ink. Although many ink compositions contain less than 5% by weight of dye, it is desirable that the dye has a solubility of around 10% or more to allow the preparation of concentrates which may be used to prepare more dilute inks and to minimise the chance of precipitation of dye if evaporation of the medium occurs during storage of the ink. It is preferred that the dye is dissolved completely in the medium to form a solution.

When the liquid medium is a mixture of water and one or more water-soluble organic solvent(s), the weight ratio of water to water-soluble organic solvent(s) is preferably 99:1 to 1:99, more preferably from 99:1 to 50:50 and especially from 95:5 to 80:20. The water-soluble organic solvent(s) is preferably selected from C_{1.4}-alkanol for example methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol or isobutanol; cyclic alkanols, for example cyclohexanol and cyclopentanol; amides, for example

10

15

20

25

30

35

dimethylformamide and dimethylacetamide; ketones and ketone-alcohols, for example acetone or diacetone alcohol; ethers, for example tetrahydrofuran or dioxane; oligo- or poly-alkyleneglycols, for example diethylene glycol, triethylene glycol, polyethylene glycol or polypropylene glycol; alkyleneglycols or thioglycols containing a C₂-C₆-alkylene group, for example ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol and thiodiglycol; polyols, for example glycerol and 1,2,6-hexanetriol; C₁₋₄-alkyl-ethers of polyhydric alcohols, for example 2-methoxyethanol, 2-(2-methoxyethoxy)ethanol, 2-(2-ethoxyethoxy)-ethanol, 2-[2-(2-methoxyethoxy)ethoxy]-ethanol; heterocyclic ketones, for example 2-pyrrolidone and N-methyl-2-pyrrolidone; and mixtures containing two or more of the aforementioned water-soluble organic solvents, for example thiodiglycol and a second glycol or diethylene glycol and 2-pyrrolidone.

Preferred water-soluble organic solvents are 2-pyrrolidone; N-methyl-pyrrolidone; alkylene- and oligo-alkylene-glycols, for example ethyleneglycol, diethyleneglycol, triethyleneglycol; lower alkyl ethers of polyhydric alcohols, for example 2-methoxy-2-ethoxy-2-ethoxyethanol; and polyethyleneglycols with a molecular weight of up to 500. A preferred specific solvent mixture is a binary or ternary mixture of water and diethylene glycol and/or, 2-pyrrolidone or N-methylpyrrolidone in weight ratios 75-95: 25-5 and 60-80: 0-20: 0-20 respectively.

When the medium comprises a mixture of water and one or more water-soluble organic solvent(s), it preferably also contains humectant to inhibit evaporation of water and preservative to inhibit the growth of fungi, bacteria and/or algae in the solution. Examples of suitable humectants are propan-1,2-diol, butan-1,2-diol, butan-2,3-diol and butan-1,3-diol.

Examples of further suitable ink media are given in US 4,963,189, US 4,703,113, US 4,626,284 and EP 425150A which are incorporated herein by reference thereto.

Where the liquid medium is an organic solvent, the solvent is preferably selected from ketones, alkanols, aliphatic hydrocarbons, esters, ethers, amides or mixtures thereof. Where an aliphatic hydrocarbon is used as the solvent a polar solvent such as an alcohol, ester, ether or amide is preferably added. Preferred solvents include ketones, especially methyl ketone and alkanols especially ethanol and n-propanol.

Solvent based ink compositions are used where fast drying times are required and particularly when printing onto hydrophobic substrates such as plastics, metal or glass.

Where the medium for an ink composition is a low melting point solid the melting point of the solid is preferably in the range from 60° C to 125° C. Suitable low melting point solids include long chain fatty acids and alcohols, preferably those with C_{18-24} chains, or sulphonamides. The dye may be dissolved in the low melting point solid or may be finely dispersed in it.

10

15

20

25

30

35

It is preferred that the medium comprises a mixture of water and one or more watersoluble organic solvent(s), especially water and from one to ten, more especially one to five water-soluble organic solvents.

The inks may optionally contain other components conventionally used in inks for ink jet printing. For example, viscosity and surface tension modifiers, corrosion inhibitors, kogation reducing additives, and surfactants which may be ionic or non ionic.

A particularly preferred ink composition comprises:

- (a) 0.5 to 20 parts of the dye;
- (b) 2 to 60 parts of water-soluble organic solvent(s); and
- (c) 1 to 95 parts water:

wherein all parts are parts by weight based upon the total weight of the ink and the parts (a) + (b) + (c) = 100.

In addition to the parts (a), (b) and (c) the ink may contain other additional components conventionally used in ink formulations as hereinbefore defined.

According to a second aspect of the present invention there is provided a process for printing a substrate with an ink composition using an ink jet printer, characterised in that the ink composition is as defined in the first aspect of the present invention.

A suitable process for the application of an ink compositions as hereinbefore described comprises forming the ink into small droplets by ejection from a reservoir through a small orifice so that the droplets of ink are directed at a substrate. This process is commonly referred to as ink jet printing, and preferred ink jet printing processes for the present inks are piezoelectric ink jet printing and thermal ink jet printing. In thermal ink jet printing, programmed pulses of heat are applied to the ink in the reservoir by means of a resistor adjacent to the orifice, during relative movement between the substrate and the reservoir.

Preferred substrates include overhead projector slides, metal, plastics, glass, paper, including plain and treated papers, which may have an acid, alkaline or neutral character or textile materials, especially natural, synthetic or semi-synthetic materials.

Examples of natural textile materials include wool, silk, hair and cellulosic materials, particularly cotton, jute, hemp, flax and linen.

Examples of synthetic and semi-synthetic materials include polyamides, polyesters, polyacrylonitriles and polyurethanes.

The preferred ink composition used in the process is as hereinbefore described for the first aspect of the present invention.

According to a third aspect of the present invention there is provided a paper, an overhead projector slide or a textile material printed with an ink composition according to the first aspect of the present invention, or by means of the process according to the second aspect of the present invention.

10

15

20

25

30

35

According to a fourth aspect of the present invention there is provided a process for the coloration of a textile material with an ink composition according to the first aspect of the present invention which comprises the steps:-

- i) applying the ink composition to the textile material by ink jet printing; and
- ii) heating the textile material at a temperature from 50°C to 250°C to fix the dye on the material.

The process for coloration of a textile material by ink jet printing preferably comprises a pre-treatment of the textile material with an aqueous pre-treatment composition comprising a water-soluble base, a hydrotropic agent and a thickening agent followed by removing water from the pre-treated textile material to give a dry pre-treated textile material which is subjected to the ink jet printing in step i) above.

The pre-treatment composition preferably comprises an solution of the base and the hydrotropic agent in water containing the thickening agent.

The base is preferably an inorganic alkaline base, especially a salt of an alkali metal with a weak acid such as an alkali metal carbonate, bicarbonate or silicate or an alkali metal hydroxide. The amount of base may be varied within wide limits provided sufficient base is retained on the textile material after pre-treatment to promote the formation of a covalent bond between the dye and the pre-treated textile material. Where the base is sodium bicarbonate it is convenient to use a concentration of from 1% to 5% by weight based on the total weight of the composition.

The hydrotropic agent is present to provide sufficient water to promote the fixation reaction between the dye and the textile material during the heat treatment, in step (ii) above, and any suitable hydrotropic agent may be employed. Preferred hydrotropic agents are urea, thiourea and dicyandiamide. The amount of hydrotropic agent depends to some extent on the type of heat treatment. If steam is used for the heat treatment generally less hydrotropic agent is required than if the heat treatment is dry, because the steam provides a humid environment. The amount of hydrotropic agent required is generally from 2.5% to 50% by weight of the total composition with from 2.5% to 10% being more suitable for a steam heat treatment and from 20% to 40% being more suitable for a dry heat treatment.

The thickening agent may be any thickening agent suitable for use in the preparation of print pastes for the conventional printing of cellulose reactive dyes. Suitable thickening agents include alginates, especially sodium alginate, xantham gums, monogalactam thickeners and cellulosic thickeners. The amount of the thickening agent can vary within wide limits depending on the relationship between concentration and viscosity. However, sufficient agent is preferred to give a viscosity from 10 to 1000 mPa.s, preferably from 10 to 100 mPa.s, (measured on a Brookfield RVF Viscometer). For an alginate thickener this range can be provided by using from 10% to 20% by weight based on the total weight of the pre-treatment composition.

10

15

20

25

30

35

The remainder of the pre-treatment composition is preferably water, but other ingredients may be added to aid fixation of the dye to the textile material or to enhance the clarity of print by inhibiting the diffusion (migration) of dye from coloured areas to non-coloured areas before fixation.

Examples of fixation enhancing agents are cationic polymers, such as a 50% aqueous solution of a dicyanamide/phenol formaldehyde/ammonium chloride condensate for example MATEXIL™ FC-PN (available from ICI), which have a strong affinity for the textile material and the dye, even dye which has been rendered unreactive by hydrolysis of the reactive group, and thus increase the fixation of the dye on the textile material.

Examples of anti-migration agents are low molecular weight acrylic resins, for example polyacrylates, such as poly(acrylic acid) and poly(vinyl acrylate).

A preferred feature of the present process is that the pre-treatment composition also contains such a tertiary amine. Any tertiary amine may be used, but a preferred tertiary amines are substantially odourless compounds such 1.4diazabicyclo[2.2.2]octane (DABCO) and substituted pyridines. preferably carboxypyridines, and especially those in which the pyridine ring is substituted by a carboxylic acid group in the 3 or 4 position, such as nicotinic or isonicotinic acid.

However, when further agents are added to the pre-treatment composition, care must be taken to balance their effects and to avoid interactions with the other ingredients of the composition.

In the pre-treatment stage of the present process the pre-treatment composition is preferably evenly applied to the textile material. Where a deeply penetrated print or a deep shade is required the pre-treatment composition is preferably applied by a padding or similar process so that it is evenly distributed throughout the material. However, where only a superficial print is required the pre-treatment composition can be applied to the surface of the textile material by a printing procedure, such as screen or roller printing, ink jet printing or bar application.

In the pre-treatment stage of the present process, water may be removed from the pre-treated textile material by any suitable drying procedure such as by exposure to hot air or direct heating, for example by infra-red radiation, or micro-wave radiation, preferably so that the temperature of the material does not exceed 100°C.

The application of the ink composition to the textile material, stage (i) of the present process, may be effected by any ink jet printing technique, whether drop on demand (DOD) or continuous flow. The ink composition, preferably also contains a humectant to inhibit evaporation of water and a preservative to inhibit the growth of fungi, bacteria and/or algae in the solution. Where the reactive group is labile even in neutral environment, hydrolysis of the reactive group on the dye in the aqueous composition and during the fixation can be inhibited by use, as humectant, of a glycol or mixture of glycols, in which not more than one hydroxy group is a primary hydroxy group. Examples of

10

15

20

25

30

35

suitable humectants are, propan-1,2-diol, butan-1,2-diol, butan-2,3-diol and butan-1,3-diol. However, the presence of small amounts, up to about 10%, preferably not more than 5%, in total, of polyols having two or more primary hydroxy and/or primary alcohols is acceptable, although the composition is preferably free from such compounds. Where the ink jet printing technique involves the charging and electrically-controlled deflection of drops the composition preferably also contains a conducting material such as an ionised salt to enhance and stabilise the charge applied to the drops. Suitable salts for this purpose are alkali metal salts of mineral acids.

After application of the ink composition, it is generally desirable to remove water from the printed textile material at relatively low temperatures (<100°C) prior to the heat applied to fix the dye on the textile material as this has been found to minimise the diffusion of the dye from printed to non-printed regions. As with the pre-treated textile material removal of water is preferably by heat, such as by exposure to hot air or to infrared or micro-wave radiation.

In stage (ii) of the present process, the printed textile material is submitted to a short heat treatment, preferably after removal of water by low-temperature drying, at a temperature from 100°C to 200°C by exposure to dry or steam heat for a period of up to 20 minutes in order to effect reaction between the dye and the fibre and thereby to fix the dye on the textile material. If a steam (wet) heat treatment is used, the printed material is preferably maintained at 100-105°C for from 5 to 15 minutes whereas if a dry heat treatment is employed the printed material is preferably maintained at 140-160°C for from 2 to 8 minutes.

After allowing the textile material to cool, unfixed dye and other ingredients of the pre-treatment and dye compositions may be removed from the textile material by a washing sequence, involving a series of hot and cold washes in water and aqueous detergent solutions before the textile material is dried.

According to a fifth aspect of the present invention there is provided a textile material, especially a natural, synthetic and semi-synthetic textile material, coloured with an ink composition according to the first aspect of the present invention or by means of the process according to the fourth aspect of the present invention.

In a further feature of the present invention we have found that ink compositions according to the first aspect of the present invention can be applied to substrates in conjunction with a nucleophilic agent to give high levels of colour and good fastness to water.

According to a sixth feature of the present invention there is provided a process for the coloration of a substrate comprising applying to the substrate:

- (i) an ink composition according to the first aspect of the present invention using an ink jet printer; and
- (ii) a nucleophilic agent; and

10

15

20

25

30

35

heating and/or basifying the ink and nucleophilic agent thereby causing the dye present in the ink and the nucleophilic agent to react together.

The nucleophilic agent preferably contains at least 1, more preferably at least two, groups selected from thiols, thiones, aliphatic primary amino groups and aliphatic secondary amino groups. These groups are believed to react with the groups represented by V¹ in dyes of Formula (1) to give a highly substantive species which has a strong affinity for substrates and low solubility in water.

The thiol group which may be present in the nucleophilic agent may, for example, be present in a substituent of formula -CO-SH or -NH-CO-SH.

The thione group which may be present in the nucleophilic agent is of the formula =S, for example as found in -PS(-OH)₂ and -O-PS(-OH)₂ and -O-PS(-OH)₂. A preferred thione group is of the formula >C=S, for example the agent may have a -CS-OH, -CS-NH₂, -NH-CS-OH or thiourea substituent. Preferred thione groups are of the formula -NR⁵-CS-NR⁵R⁵ or -NR⁵-CS-NR⁵- wherein each R⁵ independently is H, optionally substituted alkyl or optionally substituted aryl provided at least one R⁵ is H. Preferably R⁵ is H, optionally substituted C_{1-4} -alkyl or optionally substituted phenyl. When R⁵ is substituted, preferred substituents are as hereinbefore defined for L¹, Z and R¹.

In one embodiment of the invention the nucleophilic agent has a quaternary amine group, in addition to the one or more groups selected from thiols, thiones, aliphatic primary amino groups and aliphatic secondary amino groups. The quaternary amine group can in many cases increase affinity of the nucleophilic agent for substrates such as paper and cotton leading to stronger coloration and higher wet fastness. Examples of quaternary amine groups include dialkyl phenyl ammonium, for example $Ph(CH_3)_2N^+$, $Ph(CH_3CH_2)_2N^+$; optionally substituted pyridinium, for example 2-, 3- and 4- methyl pyridinium,

2-, 3-, 4- carboxy pyridinium; N-alkyl-pyridinyloxy, for example N-methyl-4-pyridinyloxy, N-methyl-2-pyridinyloxy and N-ethyl-4-pyridinyloxy; tri(alkyl)ammonium, for example $(CH_3)_3N^4$ -, $(CH_3CH_2)_3N^4$ -, $CH_3(CH_3CH_2)_2N^4$ -; $(CH_2)_5N^4$ -; $(CH_2CH_2CH_2CH_2)N^4$ -; and those derived from quinuclidine and diazobicyclo octane.

The thiol or thione group which may be present in the nucleophilic agent can be attached to a heterocyclic ring, preferably a 5 or 6 membered ring containing 1, 2 or 3 atoms selected from nitrogen, oxygen and sulphur, to give what are hereinafter referred to as heterocyclic thiol or thione groups respectively. The preferred heterocyclic thiol or thione group contains 1, 2 or more preferably 3 nitrogen atoms. Preferred heterocyclic thiol or thione groups carry 1 or 2 groups selected from -SH and =S. Examples of heterocyclic thiols and thiones include groups of Formula (3) and (4):

10

15

The groups of Formula (3), Formula (4) and the thioureas may exist in tautomeric forms other than those illustrated and these are included in the present invention. By way of illustration tautomers of groups of Formula (3) include those illustrated below by Formulae (3a) and (3b) and tautomers of groups of Formula (4) include those illustrated by (4a), (4b), (4c) and (4d):

The nucleophilic agent is preferably a triazine compound having 1, 2 or 3 groups selected from thiols and thiones, especially trithiotriazine (i.e. s-triazine having three -SH groups) or a compound of the formula:

Formula (4c)

Formula (4d)

wherein:

Formula (4a)

each A is a group of Formula (4) as hereinbefore defined; each X independently is oxygen, sulphur or -NR⁶-; each R⁶ independently is H or alkyl; and W is a divalent organic linker group.

R⁶ is preferably H or C₁₋₄-alkyl.

Formula (4b)

W is preferably an alkylene, arylene or aralkylene group. The preferred alkylene group is optionally substituted C_{2-4} -alkylene. The preferred arylene group is optionally substituted phenylene or naphthylene. The preferred aralkylene group is optionally substituted benzylene or xylylene. When W is substituted the substituent(s) are preferably selected from halo, especially chloro; nitro; alkoxy, especially C_{1-4} -alkoxy; alkyl, especially C_{1-4} -alkyl; cyano; hydroxy; -SH; amino; W may contain or be free from chromophores.

Another preferred nucleophilic agent is of Formula (5) or (6):

Formula (5)

10

5

Formula (6)

wherein:

each R⁶ independently is H or optionally substituted alkyl, preferably H or C₁₋₄-alkyl;

each W independently is as hereinbefore defined; and

each Q is a quaternary amine group.

Preferred quaternary amine groups are as hereinbefore described for the nucleophilic agent. Another preferred nucleophilic agent is of formula Q-W-CH₂SH wherein Q and W are as hereinbefore defined.

20

15

Preferably the nucleophilic agent has at least two aliphatic primary or secondary amino groups because this is believed to give a highly substantive polymer in which the dye and nucleophilic agent constitute alternate units.

The aliphatic primary amino group is an amino group of formula -NH₂ attached to a nitrogen atom or an aliphatic carbon atom and an aliphatic secondary amino group is a

٠.. ٠.

5

10

15

20

25

30

35

group of formula -NH- attached to two aliphatic carbon atoms or to one aliphatic carbon atom and one nitrogen atom.

It is believed important that the -NH₂ and -NH- groups in aliphatic primary and secondary amino groups are attached to aliphatic carbon atoms because attachment to aromatic species (for example phenyl or naphthyl) or to a carbonyl group (-CO-) lowers the nucleophilicity of the -NH₂ or -NH- group thereby rendering them less reactive towards groups represented by V^1 or V^2 in the dye under practical conditions. There may of course be amine groups in the nucleophilic agent which are not aliphatic primary or secondary amino groups provided the nucleophilic agent has at least one group, preferably at least two groups, selected from thiols, thiones, aliphatic primary amino and aliphatic secondary amino groups.

The aliphatic primary amino groups and secondary amino groups may be attached to the same carbon atom, for example as found in guanidine groups such as -NH-C(=NH)-NH₂ and -NH-C(=NH)-NH-. In hydrazines there can be one aliphatic primary amino group and one aliphatic secondary amino group, for example as in CH₃NH-NHCH₃, or two aliphatic primary amino groups, for example as in H₂NN(CH₂CH₂)₂NNH₂.

Preferred aliphatic primary amino groups are of the formula $-CH_2-NH_2$, $-CH(R^7)-NH_2$ and $-C(R^7)_2-NH_2$ and preferred aliphatic secondary amino groups are of the formula $-CH_2-NH-CH_2-$, $-CH(R^7)-NH-CH_2-$ and $-CH(R^7)-NH-CH(R^7)-$ wherein each R^7 independently is H or optionally substituted alkyl, aryl or aralkyl, more preferably H or C_{1-4} -alkyl, especially H or methyl.

Examples of the nucleophilic agents include compounds having 1 aliphatic primary amino group and no aliphatic secondary amino groups, for example methylamine, ethylamine, propylamine, H₂NCH₂CH₂SH; compounds having 2 aliphatic primary amino groups and no aliphatic secondary amino groups, for example H2NCH2CH2NH2. $H_2N(CH_2)_3NH_2$, $H_2N(CH_2)_4NH_2$, $H_2N(CH_2)_6NH_2$, $H_2N(CH_2)_8NH_2$, 1,2- and 1,3diaminocyclohexane, H₂NCH(CH₃)CH₂NH₂, H₂NCH₂CH(NH₂)CO₂H, H₂NCH₂CH(CH₂CH₃)NH₂, Ph-CH(NH₂)-CH(NH₂)-Ph, H₂NCH₂C(CH₂CH₃)₂CH₂NH₂, H₂NCH₂COCH₂NH₂, H₂NCH₂CHOHCH₂NH₂, H₂NCH₂C(CH₃)₂CH₂NH₂, H₂NCH₂CH₂N(CH₂CH₂)₂NCH₂CH₂NH₂, $H_2N(CH_2)_3N(CH_2CH_2)_2N(CH_2)_3NH_2$, $H_2N(CH_2)_4N(CH_2CH_2)_2N(CH_2)_4NH_2$ and compounds of . formula H₂NCH₂CH₂(OCH₂CH₂)_nNH₂ wherein n is from 1 to 9; compounds having three aliphatic primary amino groups and no aliphatic secondary amino groups, for example 1,2,3triaminopropane and (H₂NCH₂CH₂)₃N; compounds having one aliphatic primary amino group and one aliphatic secondary amino group, for example (CH₃)₂CH-NHCH₂CH₂NH₂, CH₃NHCH₂CH₂NH₂, CH₃CH₂NHCH₂CH₂NH₂, HOCH₂CH₂NHCH₂CH₂NH₂, (CH₃O)₃Si(CH₂)₃NHCH₂CH₂NH₂, (CH₃)₂NCH₂CH₂NHCH₂CH₂NH₂,

10

15

20

25

30

35

(CH₃CH₂)₂NCH₂CH₂NHCH₂CH₂NH₂, PhCH₂NHCH₂CH₂NH₂, (CH₃)₂CHNHCH(CH₃)CH₂NH₂, 3-aminopyrrolidine, 3-aminopiperidine. 2-aminomethylpiperidine, HO₂CCH₂NHCH₂CH₂NH₂, cyclohexanyl-NH-CH₂CH₂NH₂, and H₂N(CH₂)₃NH(CH₂)₃NHCOCH₃; compounds having two aliphatic primary amino groups and one aliphatic secondary amino group, for example H₂N(CH₂CH₂NH)₂H, $H_2NCH_2CH_2NH(CH_2)_2NH_2$, $H_2NCH_2CH_2NH(CH_2)_4NH_2$ and NH(CH₂CH(CH₃)-NH₂)₂; Compounds having a least two aliphatic secondary amino groups, especially from 2 to 8 amino HO(CH₂CH₂NH)₂CH₂CH₂OH, secondary groups, for example HO₂CCH₂NHCH₂CH₂NHCH₂CO₂H, PhCH₂NHCH₂CH₂NHCH₂Ph, (-NHCH₂CH₂-)_{3,4} or 5, piperazine, 2-methylpiperazine, 2,5- and 2,6-dimethylpiperazine, H₂N(CH₂CH₂NH)_nH wherein n is 3,4 or 5, CH₃NHCH₂CH₂NHCH₃, (-NHCH₂CH₂CH₂-)₄, 1,4,7,10,13-(6hexaazacvclooctadecane). (CH₃O)₃Si(CH₂CH₂NH)₂CH₂CH₂CO₂CH₃ (CH₃O)₃Si(CH₂CH₂NH)₂CH₂CH₂NH₂. Nucleophilic agents having a molecular weight of at least 600 include polyethylene imine ("PEI") 600, PEI 1000, PEI 1800, PEI 60,000 and PEI 100,000.

The ratio of dye of Formula (1) to nucleophilic agent by weight is preferably in the range 19:1 to 1:19, more preferably 9:1 to 1:9, especially 3:1 to 1:3. Factors influencing the preferred ratio include the relative molecular weights of the dye and nucleophilic agent, and the number of thiol, thione, aliphatic primary amino and aliphatic secondary amino groups in the nucleophilic agent. Because the dye and nucleophilic agent join together by reaction of the V¹ or V² groups in the dye and the thiol, thione, aliphatic primary amino and aliphatic secondary amino groups in the nucleophilic agent it is preferred that the relative amounts (in moles) of dye and nucleophilic agent is chosen such that the number of electrophilic and the total number of thiol, thione, aliphatic primary amino and aliphatic secondary amino groups is about equal, for example in the range 5:4 to 4:5. However, if one wishes the dye may be used in excess such that reactive groups V¹ or V² are present on the resultant oligomer or polymer which can form covalent bonds with the substrates.

In one embodiment the nucleophilic agent has a molecular weight below 600 and in another the molecular weight is at least 600. It is preferred that the nucleophilic agent has a molecular weight below 600.

In an embodiment of the process according to the sixth aspect of the present invention, the ink composition and the nucleophilic agent are applied to the substrate from separate jets in the ink jet printer head. In this embodiment it is preferred that the nucleophilic agent is applied to the substrate by the ink jet printer as a solution or dispersion in a medium, preferably a liquid medium and more preferably an aqueous medium.

10

15

20

25

30

35

In a further embodiment of the current process, the nucleophilic agent is applied to the substrate as a coating after or, more preferably, prior to application of the ink composition from the ink jet printer.

When the process according to the sixth aspect of the present invention is carried out by heating the ink composition and nucleophilic agent such that they react together, it is preferred that the ink and nucleophilic agent are heated from a first temperature to a second temperature at least 20°C higher than the first temperature, more preferably at least 30°C higher, especially at least 40°C higher and optionally up to 200°C or 300°C higher than the first temperature. The first temperature is preferably between 0°C and 40°C, more preferably between 5°C and 40°C, especially between 10°C and 40°C. The ink composition and nucleophilic agent may be heated by any means, for example by an electrical means such as a heating mantle, infra-red, thermal head, microwave or ultrasound or by using steam. The heating may be done at neutral, acid or alkali pH, preferably at a pH above 7. It is preferred that the heating step is performed after the ink composition and nucleophilic agent have been applied to the substrate.

When the present process is performed by basifying the ink composition and nucleophilic agent such that they react together, it is preferred that the basifying is from a first pH to a second pH at least 0.5 pH units higher than the first pH, more preferably at least 1 pH unit higher, especially at least 2 pH units higher, more especially at least 3 pH units higher and optionally up to 7 pH units higher than the first pH. The first pH is preferably between pH 0 and pH 8.5, more preferably between pH 2 and pH 8, especially between pH 4 and pH 8, more especially between pH 6 and pH 8 and especially preferably approximately pH 7.

The ink and nucleophilic agent are preferably basified using an alkaline earth or alkali metal, base or salt, more preferably an alkali metal hydroxide, carbonate or bicarbonate, especially a sodium or potassium hydroxide, carbonate, bicarbonate or mixtures thereof.

The ink and nucleophilic agent are preferably basified such that they react together by :

- (a) basifying the ink composition and/or the nucleophilic agent and forming a mixture of the ink and nucleophilic agent on the surface of the substrate. As hereinbefore described, the ink and nucleophilic agent may be applied to the substrate using separate channels in the ink jet printer head. Alternatively, the nucleophilic agent may be applied to the substrate as a surface coating prior to application of the ink composition by the ink jet printer; or
- (b) basifying the mixture of the ink composition and nucleophilic agent after they have been applied to the substrate. In this embodiment the mixture is preferably basified by immersing the coated substrate into an alkaline solution or, more preferably by application to the substrate of an alkali metal hydroxide, carbonate or bicarbonate from a separate jet

10

15

20

25

30

35

in the ink jet printer head. When an alkali is applied to the substrate using a jet in the ink jet printer, it is preferred that the alkali is applied in a liquid medium, preferably an aqueous medium.

The substrate may be any of the substrates hereinbefore defined for the other aspects of the present invention. Preferred substrates are textile materials, especially natural, synthetic and semi-synthetic materials.

A preferred embodiment of the process according to the sixth aspect of the present invention comprises the steps:

- (i) applying a composition comprising the nucleophilic agent and the pre-treatment composition defined in the fourth aspect of the present invention to the substrate:
- (ii) applying an ink composition according to the first aspect of the present invention to the substrate using an ink jet printer; and
- (iii) heating the substrate at a temperature of from 50°C to 200°C to fix the dye on the substrate.

It is preferred that the ink composition according to the first aspect of the present invention and the nucleophilic agent are applied to the substrate as a mixture using an ink jet printer. The mixture of an ink composition according to the first aspect of the present invention and the nucleophilic agent forms a further aspect of the present invention.

Accordingly, a seventh feature of the present invention provides a composition comprising:

- (i) an ink composition according to the first aspect of the present invention; and
- (ii) a nucleophilic agent having at least one group selected from thiols, thiones, aliphatic primary amino groups and aliphatic secondary amino groups.

The preferred ink compositions and nucleophilic agents contained in the composition are as hereinbefore described in relation to the present process. The preferred ratio of dye of Formula (1) contained in the composition to nucleophilic agent is as hereinbefore described. The composition may contain one or more of the dyes of Formula (1) and one or more of the nucleophilic agents.

A particularly preferred composition comprises:

- (a) 0.5 to 20 parts of the dye;
 - (b) 2 to 60 parts of water-soluble organic solvent(s);
 - (c) 1 to 95 parts water; and
 - (d) 1 to 25 parts of the nucleophilic agent;

wherein all parts are parts by weight based upon the total weight of the composition and the parts (a) + (b) + (c) + (d) = 100.

In addition to the parts (a), (b), (c) and (d) the composition may contain other additional components conventionally used in ink formulations as hereinbefore defined for the first aspect of the present invention.

10

15

20

25

As there is no need to use a free-radical initiator in the coloration processes described above it is preferred that the processes are performed in the absence of such an initiator.

The dyes of Formula (1) may be prepared by condensing a compound of Formula (7):

Formula (7)

with about two molar equivalents of a compound of Formula (8)

$$X^{1}$$
 N
 $T-L^{1}-V^{1}$
 X^{3}

Formula (8)

wherein Z, R^1,T,V^1,L^1,X^1 m and n are as hereinbefore defined and X^3 is a labile group preferably CI or F.

It is preferred to use about two molar equivalents of the compound of Formula (8) relative to the compound of Formula (7) because using more or less is wasteful of whichever compound is in excess. Normally from 1.5 to 2.5, preferably 1.8 to 2.2, molar equivalents of the compound of Formula (8) is used. The condensation is preferably performed in an aqueous solvent, especially water. A temperature of 20 to 40°C is preferred, and a reaction time of 2 to 48 hours is convenient.

The compound of Formula (7) may be prepared by diazotising a suitable 4-amino-4'-nitro-stilbene derivative, coupling onto a coupling component, for example an aniline compound and reducing the nitro group. The compound of Formula (8) can be prepared by condensing an appropriate triazine compound with a compound of Formula H-T-L¹-V wherein T,L¹ and V are as hereinbefore defined.

According to an eighth feature of the present invention there is provided an ink composition obtained by heating or basifying or heating and basifying a composition according to the seventh aspect of the present invention. Preferably the heating and/or basifying is from first to second temperatures and pHs as described hereabove.

The ink composition according to the eighth feature of the present invention contains the polymer or oligomer resulting from the reaction of the dye and nucleophilic agent contained in the composition according to the seventh aspect of the present

10

15

20

25

invention. It is preferred that the polymer is oligomer is dissolved or finely dispersed in the ink composition.

According to a ninth feature of the present invention there is provided a toner resin composition comprising a toner resin and a dye characterised in that the dye is of Formula (1).

The toner resin is a thermoplastic resin suitable for use in the preparation of toner compositions. A preferred toner resin is a styrene or substituted styrene polymer or copolymer such as polystyrene or styrene-butadiene copolymer, especially a styrene-acrylic copolymer such as a styrene-butyl methacrylate copolymer. Other suitable toner resins include polyesters, polyvinylacetate, polyalkenes, polyvinylchloride, polyurethanes, polyamides, silicones, epoxyresins and phenolic resins. Examples of toner resins are given in Electrophotography by R.M. Scharfert (Focal Press), US 5,143,809, UK 2,090,008, US 4,206,064 and US 4,407,928.

The toner resin composition preferably contains from 0.1% to 20% of the dye of Formula (1) more preferably from 3% to 10% based on the total weight of the toner resin compositions.

The toner resin composition may be prepared by any method known to the art which typically involves mixing the toner resin with the dye of Formula (1) and optionally a charge control agent (CCA) by kneading in a ball mill above the melting point of the resin. Generally, this involves mixing the molten toner resin composition for several hours at temperatures from 120 to 200°C, in order to uniformly distribute the optional CCA and dye throughout the toner resin. The toner resin is then cooled, crushed and micronised until the mean diameter of the particles is preferably below 20µm and, for high resolution electro-reprography, more preferably from 1 to 10µm. The powdered toner resin composition so obtained may be used directly or may be diluted with an inert solid diluent such as fine silica by mixing for example in a suitable blending machine.

CCA's are more fully described in WO94/23344.

The invention is further illustrated by the following Examples in which all parts and percentages are by weight unless otherwise stated.

30

Preparation of

$$\begin{array}{c|c} CI & & & & \\ & & & & \\ NH & & & & \\ NH & & & & \\ SO_2CH_2CH_2OSO_3H & & & \\ & & & & \\ SO_2CH_2CH_2OSO_3H & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Stage a)

5

10

15

20

4-Amino-4'-nitro-2,2'-stilbene-disulphonic acid (69% strength, 28g) was dissolved in ice/water (200g) and conc. HCl (12cm³) and NaNO₂ solution (2M, 24cm³) were added dropwise whilst maintaining the temperature below 5°C. After stirring for ½ hour, excess nitrous acid was destroyed using sulphamic acid and 3-methyl aniline (5g) in acetone (50cm³) was added. The pH was raised to 5-6 using 2M NaOH and the product was filtered off and dried to give a monoazo solid (29g).

The monoazo solid (7.0g) was dissolved in water at pH 8 and a solution of sodium sulphide hydrate (8.7g) in water (50cm³) was added. The mixture was stirred for 3 hours, the pH was adjusted to 5 and a 10% w/v salt solution was added. The resultant precipitate was filtered off and dried to give 6.3g of solid.

Stage b)

A solution of cyanuric chloride (2:28g) in acetone (100cm^3) was added over 10 minutes to a solution of 4-(β -sulphatoethyl sulphonyl)aniline (3.45g) in water (100cm^3) at 0-5°C. After 1 hour the product of stage a) (3.0g) in water (100cm^3) was added and the mixture was stirred at ambient temperature for 14 hours. A 10% w/v salt solution was added and the resultant precipitate was filtered off, washed with isopropanol and dried to give the title product (5.1g) having a λ max at 407 nm.

The method of Example 1 was repeated except that in place of 3-methylaniline there was used 3-methyl-6-methoxy aniline. The resultant product had a λ max at 446 nm.

5

Example 3

The method of Example 1 was repeated except that in place of 3-methylaniline there was used 3-ureido aniline. The resultant product had a λ max at 423 nm.

10 Example 4

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used 3-acetamido aniline. The resultant product had a λ max at 421 nm.

Example 5

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used 2,4-diamino benzene sulphonic acid. The resultant product had a λ max at 442nm.

Example 6

20

15

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used N-(β -aminoethyl)-2-hydroxy-3-carbonamido-4-methyl pyridone. The resultant product had a λ max at 456nm.

Example 7

25

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used 1-(2-methyl-3-amino-5-sulphophenyl)-3-carboxypyrazol-5-one. The resultant product had a λ max at 446nm.

Example 8

30

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used 1-(4-aminophenyl)-3-methyl-pyrazol-5-one. The resultant product had a λ max at 436nm.

Example 9

35

The method of Example 1 was repeated except that in place of 3-methyl aniline there was used 1-(4-aminophenyl)butanedi-1,3-one. The resultant product had a λ max at 416nm.

The method of Example 1 was repeated except that in place of 4-(β -sulphatoethylsulphonyl)aniline there was used 4-amino-N- (β -sulphatoethyl)phenyl sulphonamide. The resultant product had a λ max at 420nm.

5

15

20

Example 11

Ink jet printing inks containing dyes described in the foregoing examples may be prepared according to the following formulations shown in Table 1 wherein the figures denote parts by weight for each stated component:

The following abbreviations are used:

PG = propylene glycol;

DEG = diethylene glycol;

NMP = N-methyl pyrollidone;

DMK = dimethylketone;

IPA = isopropanol;

MEOH = methanol;

2P = 2-pyrollidone

MIBK = methylisobutyl ketone

CET = Cetyl ammonium bromide (a surfactant)

BAS = 1:1 mixture by weight of ammonia and methylamine;

 $PHO = Na_2HPO_4$.

TABLE 1

BAS		က								2					τ-						- -
2P MIBK BAS					_	2		4		သ		2		-				9		ဗ	
		5		γ-			တ	5				9	-		4	15	S			က	4
MEOH				2		-		10		9		4	4					7			
IPA						4		9	10			2		5	-				ო		
CET				0.1		0.2	0.5				0.3										
PHO			0.2				0.5												0.3		····
NMP DMK PHO		4		7				က			9	9			S.			9	7	_	
NMP		9	7	7			თ	က			7	4			-		=			7	4
DEG		-	S	-	œ			15	20	4	2	S.			9	2				20	
PG		2		2		ည		4		2	က			2	2			2		7	
Water		80	06	85	91	98	81	09	70	75	80	92	96	06	80	80	84	80	06	69	91
Dye	Content	2.0	3.0	1.0	2.1	3.1	1.1	2.5	1.9	2.4	4.1	3.2	4.6	8.0	1.2	1 .8	5.6	3.3	1.7	1.5	9.
Dye From	Example No.	-	2	က		2	9	က	5	9	8	9	6	10	2	-	က	2	5	_	-

5

10

The ink compositions shown in Table 1 may be applied to a textile material such as cotton using an ink jet printer. Preferably the textile is pre-treated with a composition comprising:

2.5 parts sodium bicarbonate;

15 parts of a 10% aqueous solution of sodium alginate thickening agent;

15 parts of urea;

47.5 parts of water; and

20 parts of Composition A shown in Table 2.

TABLE 2: Composition A

Component	Parts by Weight				
Urea	25				
Distearyl Dimethyl Ammonium Chlorine	2.3				
Isopropyl Alcohol	0.8				
Castor Oil + 2.5 Ethylene Oxide	2.2				
Castor Oil + 4.0 Ethylene Oxide	0.36				
Sodium Lauryl Sulphate	0.010				
Methanol	0.007				
Formaldehyde	0.0001				
Tallow Amine + 15 Ethylene Oxide	0.25				
Acetic Acid (80%)	0.05				
Water	69.0				

The textile material should be thoroughly soaked with the pre-treatment composition in a padding bath and the excess liquor removed by mangling. The material should be dried in hot air at 100°C prior to application of the inks shown in Table 2 by an ink jet printer.

Example 13 to 18

The ink compositions shown in Table 1 may be applied to a substrate, preferably a textile, said substrate being pre-treated with a composition B comprising the pre-treatment composition described in Example 12 and the nucleophilic agent shown in Table 3. In Table 3, the parts by weight refer to parts based upon the total weight of the composition applied to the textile material.

25

20

15

Table 3: Pre-treatment composition B

Example	Nucleophilic Agent	Parts by weight of nucleophilic agent	Pre-treatment composition from Example 12 (Parts)
13	ethylamine	18	82
14	ethylenediamine	10	90
15	piperazine	12	88
16	trithiotriazine	8	92
17	2-aminoethanethiol	15	85
18			

After applying the ink composition to the substrate, the substrate may be heated at a temperature of from 60 to 90°C to fix the dye on the substrate.

CLAIMS

- 1. An ink composition comprising:
- (i) a medium comprising a mixture of water and one or more water-soluble organic solvent(s), an organic solvent, or a low melting point solid; and
- (ii) a dye of Formula (1) or sait thereof:

Formula (1)

wherein:

5

10

15

20

25

each X1 independently is a labile or non-labile substituent:

each T independently is -O-, -S- or -NR1-;

each L¹ independently is a divalent organic linker group;

each V¹ independently is a group which is capable of undergoing an addition reaction or an elimination and addition reaction;

each R¹ independently is H or optionally substituted alkyl;
Z is the residue of a coupling component; and
m and n are each independently 0 or 1.

- 2. An ink composition according to claim 1 wherein V¹ is a vinyl sulphone group or a group which is convertible to vinyl sulphone on treatment with an aqueous alkali or a group of the formula -SO₂NHCH₂CH₂-Y wherein Y is -OSO₃H, -SSO₃H, -Cl or -OCOCH₃.
- 3. An ink composition comprising a medium and a dye of the Formula (2) or a salt thereof:

wherein:

each R4 independently is H or C1-4-alkyl;

15

25

35

- G is H, alkyl, alkoxy, amido, ureido, halo, nitro, carboxy, amino or sulpho; each X² independently is F, Cl, a quaternary ammonium group or a non labile group; and
- each V² independently is a vinyl sulphone group or a group which is convertible to a vinyl sulphone group on treatment with aqueous alkali, a group of formula -SO₂NHCH₃CH₂-Y wherein Y is -OSO₃H, -SSO₃H, -Cl or -OCOCH₃ or a group or formula -NHCOCR⁴=CH₂ or -NHCOCBr=CH₂; and the medium is as defined in claim 1.
- 4. An ink composition according to claim 3 wherein X² is F, Cl or a quaternary ammonium group.
 - 5. An ink composition according to any one of the preceding claims wherein the medium comprises water and one or more water-soluble organic solvent(s).

6. An ink composition according to any one of claims 1 to 5 comprising:

- (a) 0.5 to 20 parts of the dye;
- (b) 2 to 60 parts of water-soluble organic solvent(s); and
- (c) 1 to 95 parts of water;
- wherein all parts are by weight based upon the total weight of the ink and the parts (a) + (b) + (c) = 100.
 - 7. A process for printing a substrate with an ink composition using an ink jet printer, characterised in that the ink composition is as defined in any one of claims 1 to 6.
 - 8. A paper, an overhead projector slide or a textile material printed with an ink composition according to any one of claims 1 to 6 or by means of the process according to claim 7.
- 9. A process for the coloration of a textile material with an ink composition according to any one of claims 1 to 6 which comprises the steps:
 - i) applying the ink composition to the textile material by ink jet printing; and
 - ii) heating the textile material at a temperature from 50°C to 250°C to fix the dye on the material.
 - 10. A process for the coloration of a substrate comprising applying to the substrate:
 - an ink compostion according to any one of claims 1 to 6 using an ink jet printer;
 and
 - (ii) a nucleophilic agent; and

10

35

heating and/or basifying the ink and nucleophilic agent thereby causing the dye present in the ink and the nucleophilic agent to react together.

- 11. A process according to claim 10 wherein the nucleophilic agent contains at least one group selected from thiols, thiones, aliphatic primary amino groups and aliphatic secondary amino groups.
 - 12. A process according to either one of claims 10 or 11 wherein the nucleophilic agent has a molecular weight below 600.
 - 13. A process according to any one of claims 10 to 12 wherein the nucleophilic agent is applied to the substrate using an ink jet printer.
 - 14. A composition comprising:
- 15 (i) an ink composition according to any one of claims 1 to 6; and
 - (ii) a nucleophilic agent having at least one group selected from thiols, thiones, aliphatic primary amino groups and aliphatic secondary amino groups.
- 15. A composition according to claim 14 wherein the nucelophilic agent has a molecular weight below 600.
 - 16. A composition according to either one of claims 14 or 15 comprising:
 - (a) 0.5 to 20 parts of the dye of Formula (1);
 - (b) 2 to 60 parts of water soluble organic solvent(s);
- 25 (c) 1 to 95 parts water; and
 - (d) 1 to 25 parts of the nucleophilic agent; wherein all parts are parts by weight based upon the total weight of the composition and the parts (a) + (b) + (c) + (d) = 100.
- 30 17. An ink composition obtained by heating or basifying or heating and basifying a composition according to any one of claims 14 to 16.
 - 18. A toner resin composition comprising a toner resin and a dye, characterised in that the dye is of Formula (1) or Formula (2) as defined in any one of claims 1 to 4.

Application No:

GB 9706136.0

Claims searched: 1-18

Examiner:

Stephen Quick

Date of search:

25 July 1997

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): (not searched)

Int Cl (Ed.6): (not searched)

Other: Online: CAS ONLINE

Documents considered to be relevant:

Identity of document and relevant passage							
WO 96/35012 A1	(ZENECA), see formula 1, page 5	-					
	<u> </u>	Identity of document and relevant passage WO 96/35012 A1 (ZENECA), see formula 1, page 5					

- X Document indicating lack of novelty or inventive step
 Y Document indicating lack of inventive step if combined with one or more other documents of same category.
- & Member of the same patent family

- A Document indicating technological background and/or state of the art.
- P Document published on or after the declared priority date but before the filing date of this invention.
 - E Patent document published on or after, but with priority date earlier than, the filing date of this application.