1 Мера множеств

Пусть X — множество. Тогда 2^X — совокупность всех его подмножеств, а $S\subset 2^X$ называется системой множеств.

Положим по определению $E = \bigcup A \in SA$. Это называется единицей системы S.

Определение 1.1. Система S называется кольцом, если $\forall A, B \in S$ $A \cup B, A \setminus B \in S$, то есть кольцо замкнуто относительно конечного числа объединений и разностей. Если кольцо $S \supset E$, оно называется алгеброй.

Пусть $S \subset 2^X$. Тогда $\mathcal{R}(S)$ — наименьшее кольцо, содержащее систему S, а $\mathcal{A}(S)$ — наименьшая алгебра, содержащая S, то есть $\mathcal{R}(S)$ пересечение всех колец, содержащих S, $\mathcal{A}(S)$ — пересечение всех алгебр, содержащих S

Утверждение 1.1. $S-\kappa$ ольцо, если и только если $\forall A, B \in S$ $A \cap B \in S$ и $A \triangle B \in S$.

Доказательство. Это доказывается с помощью таких равенств

$$A \cap B = A \setminus (A \setminus B); \quad A \triangle B = (A \setminus B) \cup (B \setminus A); \quad A \cup B = (A \triangle B) \triangle (A \cap B); \quad A \setminus B = A \triangle (A \cap B).$$

Определение 1.2. Кольцо (алгебра) S называется σ -кольцом (-алгеброй), если

$$\forall A_n \in S \quad \bigcup_{1=n}^{\infty} A_n \in S.$$

Определение 1.3. Кольцао (алгебра) S называется δ -кольцом (-алгеброй), если

$$\forall A_n \in S \quad \bigcap_{1=n}^{\infty} A_n \in S.$$

Утверждение 1.2. Условия для σ и δ алгебры совпадают.

Доказательство. Запишем формулы двойственности.

$$E \setminus \left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcap_{n=1}^{\infty} (E \setminus A_n), \quad E \setminus \left(\bigcap_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} (E \setminus A_n).$$

Утверждение, очевидно, доказано.

 $\mathcal{R}_{\sigma}(S)$ — это наименьшее σ -кольцо, содержащее S, $\mathcal{A}_{\sigma}(S)$ — это наименьшая σ -алгебра, содержащая S. Определение 1.4. Пусть (X, ρ) — метрическое пространство, τ — топология. Тогда $\mathcal{A}_{\sigma}(\tau) =: \mathcal{B}(X)$ называется борелевской σ -алгеброй метрического пространства X.

Определение 1.5. S называется полукольцом, если $\forall A, B \in S$ $A \cap B \in S$ $u A \setminus B = \bigsqcup_{i=1}^{n} C_i$, где $C_i \in S$.

Утверждение 1.3. Если S- полукольцо, то $\forall A, B_i \in S$ $A \setminus \bigcup_{i=1}^n B_i = \bigcap_{j=1}^n C_j$, где $C_j \in S$.

Доказательство. По индукции. Для n=1 верно. Пусть верно для n, докажем для n+1.

$$A \setminus \bigcup_{i=1}^{n+1} B_i = A \setminus \bigcup_{i=1}^n B_i \setminus B_{n+1},$$

что есть $\bigsqcup_{j=1}^m (C_j \setminus B_{n+1}) = \bigsqcup_{j=1}^m \bigsqcup_{i=1}^n C_{ij}$, где $C_{ij} \in S$, что и требовалось доказать.

Лемма 1.1. Пусть S- полукольцо. Тогда $A\in\mathcal{R}(S)$ если и только если $A=\bigsqcup_{i=1}^n A_i,$ где $A_i\in S.$

Доказательство. Положим $R = \{A = \bigsqcup_{i=1}^n A_i \mid n \in \mathbb{N}, \ A_i \in S\}$. Отметим, что $R \subset \mathcal{R}(S)$. Покажем, что R — кольцо.

$$A = \bigsqcup_{i=1}^{n} A_i, \quad B = \bigsqcup_{j=1}^{m} B_j, \quad A_i, B_j \in S.$$

 $A \setminus B = \bigsqcup_{i=1}^n (A_i \setminus B)$. В силу доказанного выше утверждения это является $\bigsqcup_{i=1}^n \bigsqcup_{j=1}^m C_{ij}C_{ij}$, где $C_{ij} \in S$. Следовательно, $A \setminus B \in R$.

 $A \cup B = A \setminus B \sqcup B \in R$. Следовательно R — кольцо. И, следовательно, $R = \mathcal{R}(S)$.

Пусть X — множество. Опять же $S \subset 2^X$. И функция $\varphi \colon S \to \mathbb{F}$, где $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Определение 1.6. Функция φ называется аддитивной, если $\varphi(A \sqcup B) = \varphi(A) + \varphi(B) \ \ \forall \ A, B, A \sqcup B \in S. \ \varphi$ называется конечно аддитивной, если $\varphi\left(\bigsqcup_{i=1}^n A_i\right) = \sum_{i=1}^n \varphi(A_i) \ A_i, \bigsqcup_{i=1}^n A_i \in S \ \forall \ n \in \mathbb{N}.$

Определение 1.7. φ называется σ -аддитивной, если $\varphi\bigg(\bigsqcup_{i=1}^\infty A_i\bigg) = \sum_{i=1}^\infty \varphi(A_i) \ A_i, \bigsqcup_{i=1}^\infty A_i \in S \ \forall \ n \in \mathbb{N}.$

Так как \coprod не зависит от порядка множеств, то ряд сходится абсолютно.

Определение 1.8. Функция $m \colon S \to \mathbb{R}_+$ называется конечно-аддитивной мерой (σ -аддитивной мерой), если

- 1. S это полукольцо;
- 2. m конечно (или σ -) $a\partial \partial umu$ вна.

Определение 1.9. Мера $m_1 \colon S_1 \colon R_+$ называется называется продолжением меры $m \colon S \to \mathbb{R}_+,$ если $S \subset S_1$

u ограничение $m_1|_{S_1}=m$. **Теорема 1.1.** Для любой меры $m\colon S\to\mathbb{R}_+$ $\exists !\ m_1\colon S_1\to\mathbb{R}_+$ продолжение, где $S_1\in\mathcal{R}(S)$. Доказательство. Определим $m_1(A)=\sum\limits_{i=1}^n m(A_i)$, где $A=\bigsqcup\limits_{i=1}^n A_i,\ A_i\in S$. Пусть $A=\bigsqcup\limits_{i=1}^n A_i=\bigcup\limits_{j=1}^m B_j$. Тогда одновременно выполнится $A = \bigsqcup_{i=1}^n \bigsqcup_{j=1}^m (A_i \cap B_j)$ и $m_1(A) = \sum_{i=1}^n \sum_{j=1}^m m(A_i \cap B_j)$ не зависит от разложения A.

Пусть $A = \bigsqcup_{i=1}^n A_i$, $A_i \in \mathcal{R}(S)$. В свою очередь $A_i = \bigsqcup_{i=1}^{m_i} A_{ij}$, где $A_{ij} \in S$. Соответственно,

$$A = \bigsqcup_{i=1}^{n} \bigsqcup_{j=1}^{m_i} A_{ij}, \quad m_1(A) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} m(A_{ij}) = \sum_{i=1}^{n} m_1(A_i).$$

Таким образом доказана конечная аддитивность. Устремив $n \to \infty$ в предыдущих рассуждениях, докажем σ -аддитивность.

1.1 Свойства σ -аддитивной меры

Пусть $m \colon S \to \mathbb{R}_+ - \sigma$ -аддитивная мера. Тогда

Утверждение 1.4. $m(\varnothing)=m(\varnothing\sqcup\varnothing)=2m(\varnothing)\Rightarrow m(\varnothing)=0.$

Утверждение 1.5 (монотонность). Если $\bigsqcup_{i=1}^{\infty} A_i \subset A$, причём $A_i, A \in S$, то $\sum_{i=1}^{\infty} m(A_i) \leqslant m(A)$.

Доказательство. Возьмём фиксированное $n \in \mathbb{N}$. Тогда $\bigsqcup_{i=1}^n A_i \subset A$ и $A = \bigsqcup_{i=1}^n A_i \sqcup \bigsqcup_{i=1}^m B_j, \ A_i, B_j \in S$. Тогда

$$m(A) = \sum_{i=1}^{n} m(A_i) \sum_{i=1}^{n} m(B_j) \geqslant \sum_{i=1}^{n} m(A_i).$$

Устремим $n \to \infty$ и получим требуемое.

Утверждение 1.6 (полуаддитивность). Пусть $A \subset \bigcup_{i=1}^{\infty} A_i$, где $A, A_i, \bigcup_{1=i}^{\infty} A_i =: B \in S$. Тогда $m(A) \leqslant \sum_{i=1}^{\infty} m(A_i)$.

Доказательство. Берём $B_1 = A_1, \, B_k = A_k \setminus \left(\bigcup_{i=1}^{k-1} A_i\right)$, где $k = 2, 3, \dots \, B_k \in \mathcal{R}(S)$. Считаем, что m определена

для B_k , как продолжение меры. $B = \bigsqcup_{k=1}^{\infty} B_k$ и $m(B) = \sum_{k=1}^{\infty} B_k$. Так как $A \subset B$, $m(A) \leqslant m(B) \leqslant \sum_{k=1}^{\infty} B_k \leqslant \sum_{k=1}^{\infty} A_k$.

Утверждение 1.7 (непрерывность снизу). Если $A_i \uparrow A, \ A, A_i \in S, \ mo \lim_{i \to -\infty} \infty m(A_i) = m(A).$

Доказательство. Что значит стрелочка вверх: $A_1\subset A_2\subset \dots$ и $\bigcup_{i=1}^\infty A_i=A$. Пусть $A_0=\varnothing,\ B_i=A_i\setminus A_{i-1}$. Тогда

$$A = \bigsqcup_{i=1}^{\infty} B_i, \quad B_i \in \mathcal{R}(S).$$

Считаем меру m продолженной на $\mathcal{R}(S)$. Тогда $m(A) = \sum_{i=1}^{\infty} m(B_i) = \sum_{i=1}^{\infty} (A_i \setminus A_{i-1}) = \lim_{i \to \infty} m(A_i)$.

Сформулируем обратное утверждение.

Утверждение 1.8. Если конечно аддитивная мера непрерывна снизу, то она σ -аддитивна.

Доказательство. Путьс $A=\bigsqcup_{i=1}^{\infty}A_i,\ A_i,A\in S.$ Положим, $B_n=\bigsqcup_{i=1}^nA_i.$ Тогда $B_n\uparrow A$ и $m(A)=\lim_{n\to\infty}m(B_n)=$

Утверждение 1.9 (непрерывность сверху). Если $A_i \downarrow A, A_i, A \in S, mo \lim_{i \to \infty} \infty m(A_i) = m(A).$

Доказательство. $A_1 \supset A_2 \supset \dots$ и $\bigcap_{i=1}^{\infty} A_i = A$. Обозначим $B = A_1 \setminus A, \ B_i := A_1 \setminus A_i, \ i = 1, 2, \dots$ Тогда $B_i \uparrow B$ и $m(B) = \lim_{i \to \infty} m(B_i)$. $m(A_i) - m(A) = m(A_i) - \lim_{i \to \infty} m(A_i)$, следовательно, $m(A) = \lim_{i \to \infty} m(A_i)$. Утверждение 1.10. Если конечно аддитивная мера непрерывна сверху, то она σ -аддитивна. Доказательство. $A = \bigsqcup_{i=1}^{\infty} A_i, \ A, A_i \in S, \ B_n = \bigsqcup_{i=1}^n A_i, \ B_n \downarrow \varnothing$. $\lim_{n \to \infty} B_n = 0$. Тогда

$$m(A) - \lim_{n \to \infty} \sum_{i=1}^{n} m(A_i) = 0.$$

Что и требовалось доказать.

Определение 1.10. Пусть (X, ρ) — метрическое пространство, S — полукольцо в X. Мера $m \colon S \to \mathbb{R}_+$ называется регулярной, если

$$\forall \ \varepsilon > 0, \ \forall \ A \in S \ \exists \ B, C \in S \colon \overline{B} \ компактно, \ \overline{B} \subset A \subset C^0, m(C \setminus B) < \varepsilon.$$

Теорема 1.2. Каждая регулярная мера $m: S \to \mathbb{R}_+$ является σ -аддитивной.

Доказательство. Пусть $A = \bigsqcup_{i=1}^{\infty} A_i, \ A_i, A \in S. \ m(A) \geqslant \sum_{i=1}^{\infty} m(A_i).$ Существуют $B, C, B_i, C_i \in S: \overline{B}, \overline{B}_i - \text{компакты, } \overline{B} \subset A \subset C^0, \overline{B}_i \subset A_i \subset C^0_i \text{ и } m(C \setminus B) < \frac{\varepsilon}{2}, \ m(C_i \setminus B_i) < \frac{\varepsilon}{2^{i+1}}.$

 $\overline{B} \subset \bigcup_{i=1}^{\infty} C_i^0$. Из компактности следует, что $\overline{B} \subset \bigcup_{i=1}^n C_i^0$. Следовательно, $m(B) \leqslant \sum_{i=1}^n m(C_i)$.

$$m(A) \leqslant m(C) \leqslant m(B) + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{n} m(C_i) + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{n} m(B_i) + \sum_{i=1}^{n} \frac{\varepsilon}{2^{i+1}} + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{\infty} m(A_i) + \varepsilon.$$

Так как ε — произвольная постоянная, получаем требуемое.

1.2 Мера Стилтьеса в \mathbb{R}

Пусть $S = \{[a,b)|a,b \in \mathbb{R}, a \leq b\}$. Это полукольцо. Пусть $\alpha(x)$ — неубывающая функция на \mathbb{R} . Определение 1.11. $m_{\alpha}([a,b))=\alpha(b)-\alpha(a)$. α называется функцией распределения, а m_{α} — конечно-аддитивная

Теорема 1.3. Мера m_{α} является σ -аддитивной, если и только если $\alpha(x)$ непрерывна слева.

Доказательство. Необходимость. Пусть $x_n \uparrow x$. Тогда полуинтервал $[x_n, x) \downarrow \varnothing$. Следовательно, существует предел $\lim_{n\to\infty} m_{\alpha}([x_n,x)) = 0$. Следовательно, $\alpha(x) = \lim_{n\to\infty} \alpha(x_n)$, то есть α непрерывна слева. Достаточноть. Пусть $\forall \ x \in \mathbb{R} \quad \alpha(x-0) = \alpha(x)$. Полуинтервал $[a,b-\delta) \subset [a,b) \subset (a-\delta,b) \quad \forall \ \delta > 0$.

$$m_{\alpha}\big([a-\delta,b)\setminus[a,b-\delta)\big)=m_{\alpha}\big([a-\delta,a)\big)+m_{\alpha}\big([b-\delta,b)\big)=\alpha(a)-\alpha(a-\delta)+\alpha(b)-\alpha(b-\delta)\leqslant\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Мера Стилтьеса регулярна, следовательно, σ -аддитивна.

2 Измеримые множества

Далее мы через $\overline{\mathbb{R}}_+ := \mathbb{R}_+ \sqcup \{\infty\}$ будем обозначать множество неотрицательных чисел и добавленный символ бесконечности, при этом будут выполнены следующие аксиомы: $\forall a \in \mathbb{R}_+ \ a + \infty = \infty, a \cdot \infty = \infty \ (a \neq 0),$ $0 \cdot \infty = 0$ и $a < \infty, \infty \leq \infty$.

Какая-то из этих аксиом понадобится, только когда будем рассматривать интеграл Лебега.

Определение 2.1. $\mu \colon 2^X \to \overline{\mathbb{R}}_+$ называется внешней мерой, если

- (1) Мера пустого множества равна нулю $\mu(\varnothing) = 0$,
- (2) $\mu A \leqslant \mu B$, ecau $A \subset B$,

(3)
$$\mu A \leqslant \sum_{n=1}^{\infty} \mu(A_n)$$
, ecau $A \subset \bigcup_{n=1}^{\infty}$.

Определение 2.2. Множество $E \subset X$ называется измеримым (относительно внешней меры μ), если

$$\mu A = \mu(A \cap E) + \mu(A \setminus E) \quad \forall \ A \subset X.$$

В силу свойства 3 полуаддитивности внешней меры, достаточно доказывать только неравенство

$$\mu A \geqslant \mu(A \cap E) + \mu(A \setminus E) \quad \forall \ A \subset X,$$

чтобы показать измеримость множества.

Давайте введём ещё одно обозначение $AB := A \cap B$, $A' := X \setminus A$, $\mu_A(B) := \mu(AB)$.

Тогда легко понять, что E измеримо, если и только если $\forall A \subset X \quad \mu_A(X) = \mu_A(E) + \mu_A(E')$.

Давайте ещё через Σ будем обозначать совокупность всех измеримых множеств относительно внешней меры μ .

2.1 Некоторые свойства измеримых множеств

Утверждение 2.1. *Если* $\mu E = 0$, *mo* $E \in \Sigma$.

Доказательство. Это вытекает из того, что $\mu_A(E) = 0$ из монотонности меры $\forall A$, и тоже в силу монотонности $\mu_A(X) \geqslant \mu_A(E) + \mu_A(E')$. А мы уже знаем, что этого неравенства достаточно.

Утверждение 2.2. *Если* $E_1, E_2 \in \Sigma$, *mo* $E = E_1 E_2 \in \Sigma$.

Доказательство. Для доказательства запишем следующие равенства:

$$\mu_A(X) = \mu_A(E_1) + \mu_A(E_1')$$

в силу измеримости E_1 . А в силу измеримости E_2 можем записать такое неравенство

$$\mu_A(X) = \mu_A(E_1) + \mu_A(E_1') = \mu_{AE_1}(E_2) + \mu_{AE_2}(E_2') + \mu_A(E_1') = \mu_A(E) + \underbrace{\mu_A(E_1E')}_{E_2' \subset E'} + \underbrace{\mu_A(E_1'E')}_{E_1' \subset E'} = \mu_A(E) + \mu_A(E').$$

Утверждение 2.3. *Если* $E \in \Sigma$, *mo* $E' \in \Sigma$.

Доказательство. Это вытекает из того, что второе дополнение E'' = E есть само множество. И отсюда $\mu_A(X) = \mu_A(E') + \mu_A(E'')$.

Утверждение 2.4. *Если* $E_1, E_2 \in \Sigma$, то и разность $E_1 \setminus E_2, E_1 \cup E_2 \in \Sigma$.

Доказательство. Это вытекает из таких простых равенств: $E_1 \setminus E_2 = E_1 E_2', E_1 \cup E_2 = (E_1' E_2')'.$

Таким образом система измеримых множест является алгеброй. Очевидно же из определения вытекает, что $\varnothing, X \in \Sigma.$

Утверждение 2.5. Функция $\mu_A \colon \Sigma \to \overline{\mathbb{R}}_+$ является конечно аддитивной мерой на алгебре¹ Доказательство. Пусть $E = E_1 \sqcup E_2, E_1, E_2 \in \Sigma$. Тогда в силу измеримости

$$\mu_A(E) = \mu_{AE}(E_1) + \mu_{AE}(E_1') = \mu_A(\underbrace{EE_1}_{E_1}) + \mu_A(\underbrace{EE_1'}_{E_2}) = \mu_A(E) + \mu_A(E_2)$$

Ну и основная теорема.

Теорема 2.1 (Каратеодори). Пусть $\mu: 2^X \to \overline{R}_+$ внешняя мера. Тогда

- (1) $\Sigma \sigma$ -алгебра;
- (2) $\mu \colon \Sigma \to \overline{\mathbb{R}}_+ \sigma$ -аддитивная мера.

Доказательство. Пусть $E=\bigsqcup_{n=1}^{\infty}E_n,\,E_n\in\Sigma.$ Обозначим $F_n=\bigsqcup_{k=1}^nE_k,\,F_n\in\Sigma.$

Для любого $A \subset X$

$$\mu_A(X) = \mu_A(F_n) + \mu_A(F'_n) \geqslant \sum_{k=1}^N \mu_A(E_k) + \mu_A(E').$$

Устремляем $n \to \infty$.

$$\sum_{k=1}^{\infty} \mu_A(E_k) + \mu_A(E') \geqslant \mu_A(E) + \mu_A(E').$$

Получаем
$$\mu(E) = \sum_{k=1}^{\infty} \mu(E_k), E \in \Sigma, \, \mu_A(X) = \sum_{k=1}^{\infty} \mu_A(E_k) + \mu_A(E').$$

 $^{^1}$ Потом мы докажем и $\sigma\text{-аддитивность}.$

Пусть $m\colon S\to\mathbb{R}_+,\ S\subset 2^X$ — полукольцо, и мера m σ -аддитивна. Будем также полагать, что она σ -конечна, то есть X представимо в виде

$$X = \bigsqcup_{n=1}^{\infty} A_n, \quad A_n \in S.$$

У нас мера конечно, поэтому этого будет достаточно.

Определение 2.3. Мера заданная на совокупности всех подмножеств $m^*: 2^X \to \overline{\mathbb{R}}_+$ называется внешней мерой Лебега, если

$$m^*(A) = \inf_{A \subset \bigcup_{n=1}^{\infty} A_n} \sum_{n=1}^{\infty} m(A_n).$$

Инфинум по всем счётным покрытиям.

Сейчас мы докажем, что внешняя мера Лебега является внешней мерой.

Доказательство. Обозначение (X, Σ, ν) — измеримое пространство где Σ — σ -алгебра измеримых множеств $\mu = m^*, \ \nu := \mu|_{\Sigma}$.

- (1) $m^*(\emptyset) = 0$ очевидно;
- (2) $m^*(A) \leq m^*(B)$, если $A \subset B$ тоже;

(3)
$$M^*(A) \leqslant \sum_{n=1}^{\infty} m^*(A_n)$$
, если $A \subset \bigcup_{k=1}^{\infty} A_n$.

Докажем третье: если $\exists n : m^*(A_n) = \infty$, то утверждение верно.

Пусть $\forall n \in \mathbb{N} \ m^*(A_n) < \infty$.

$$\forall \varepsilon > 0 \ \exists B_{nk} \in S \colon A_n \subset \bigcup_{k=1}^{\infty} B_{nk} \text{ if } \sum_{k=1}^{\infty} (B_{nk}) < m^*(A_n) + \frac{\varepsilon}{2^n}.$$

Отсюда вытекает, что A содержится в двойном объединении

$$A \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} B_{nk}, \quad m^*(A) \leqslant \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} m(B_{nk}) \leqslant \sum_{n=1}^{\infty} m^*(A_n) + \varepsilon.$$

Ещё одно свойство запишем и сделаем перерыв.

Утверждение 2.6. *Если* $A \in S$, *mo* $m^*(A) = m(A)$

Доказательство. Это вытекает из такого неравенства:

$$m^*(A) \leqslant m(A) \leqslant \sum_{n=1}^{\infty} m(A_n),$$

если $A \subset \bigcup_{n=1}^{\infty} A_n, A_n \in S.$

Теорема 2.2 (о продолжении меры). Пусть $m \colon S \to \mathbb{R}_+ - \sigma$ -аддитивная мера. Тогда

- (1) Внешняя мера $\mu := m^* \colon \Sigma \to \overline{\mathbb{R}}_+ \ \sigma$ -аддитивная;
- (2) Σ является σ -алгеброй;
- (3) $S \subset \Sigma$;
- (4) $\mu|_{S} = m$.

Доказательство. Всё, кроме свойства три, доказано в теореме Коритоадори. Докажем 3. Пусть у нас $E \in S$, $A \subset X$ — произвольно множество, $\varepsilon > 0$. Тогда

$$\exists B_n \in S \colon A \subset \bigcup_{n=1}^{\infty} \text{ if } \sum_{n=1}^{\infty} m(B_n) < \mu^*(A) + \varepsilon.$$

Ну теперь применим свойство полуаддитивности и запишем следующее равенство (воспользуемся полуаддитивностью внешней меры)

$$m^*(A) \leqslant m^*(A \cap E) + m^*(A \setminus E) \leqslant \sum_{n=1}^{\infty} \left(\underbrace{m(B_n \cap E) + m(B_n \setminus E)}_{m(B_n)} \right) = \sum_{n=1}^{\infty} \leqslant m^*(A) + \varepsilon.$$

Так как ε произвольно, тут везде знаки равенства и $E \in \Sigma$.

Следствие 2.1. Полукольцо содержится в наименьшем кольце, которое содержится в наименьшем σ -кольце, которое содержится в наименьшей σ -алгебре, содержащейся в Σ , то есть

$$S \subset \mathcal{R}(S) \subset \mathcal{R}_{\sigma}(S) \subset \mathcal{A}_{\sigma}(S) \subset \Sigma$$
.

Теорема 2.3 (о единственности продолжения меры). Пусть $m: S \to \mathbb{R}_+$ σ -аддитивная и σ -конечная мера. Тогда $\exists ! \ \sigma$ -аддитивная мера, которая продолжает меру m на σ -алгебру.

Доказательство. Докажем для случая $\mu(X) < \infty$ (иначе разобьём множество на измеримые). Пусть имеются два продолжения $\mu \colon \Sigma \to \overline{\mathbb{R}}_+$ и $\mu \colon \Sigma \overline{\mathbb{R}}_+$, где $\mu = m^*$. Тогда $\forall E \in \Sigma \ \nu E \leqslant \mu(E)$, ведь на $S \ \mu\big|_S = \nu\big|_S = m$. Осталось заметить, что в силу аддитивности этмх мер

$$\nu(E) + \nu(E') = m(X) = \mu(E) + \mu(E').$$

Отсюда видим, что $\nu(E) = \mu(E)$.

Лемма 2.1 (об измеримой оболочке). Пусть $\mu = m^* -$ внешняя мера Лебега. Тогда $\forall \ A \subset X \ \exists \ B \in \Sigma \colon A \subset B$ $u \ \mu(A) = \mu(B)$.

Доказательство. $\forall \ n \in \mathbb{N} \ \exists \ B_{nk} \in S \colon A \subset B_n = \bigcup_{k=1}^{\infty} B_{nk} \ \text{и} \ \mu(B_n) \leqslant \sum_{k=1}^{\infty} \mu(B_{nk}) < \mu(A) + \frac{1}{n}$ по определению нижней грани, которая присутствует в определении внешней меры Лебега.

Обозначим $B:=\bigcap_{n=1}^{\infty}B_n\in\Sigma,\,A\subset B.$ Имеем

$$\mu(B) \leqslant \mu(B_n) \leqslant \mu(A) + \frac{1}{n}.$$

Ну и поскольку n произвольно, то получается равенство.

Определение 2.4. Пусть $\mu = m^*$ и $\mu(X) < \infty$. Множество $E \subset X$ называется измеримым по Лебегу, если $\mu(X) = \mu(E) + \mu(E')$.

Ясно, что если множество измеримо, то оно измеримо по Лебегу. Докажем обратное.

Доказательство. Пусть E измеримо по Лебегу. Тогда существует по лемме об измеримой оболочке

$$\exists A, B \in \Sigma : E \subset A, E' \subset B, \mu(E) = \mu(A), \mu(A') = \mu(B).$$

Отсюда вытекает, что $A \cup B = X$ и $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cup B)$ в силу аддитивности (ну надо на картинку посмотреть, ведь множества A и B измеримы). Это всё равно

$$\mu(A \cap B) = \mu(E) + \mu(E') - \mu(X) = 0.$$

Ну а множество меры нуль измеримо, то есть $A \cap B \in \Sigma$. Так как $A \setminus E \subset A \cap B$, $\mu(A \setminus E) = 0$ и разность тоже измерима. Пожтому множество E можно записать как

$$E = A \setminus (A \setminus E) \in \Sigma.$$

Значит эти определения конечной меры эквивалентны.

Теорема 2.4 (критерий измеримости Ваме—Гуссейна). Пусть $\mu = m^* \ u \ \mu(X) < \infty$. Тогда

$$E \in \Sigma \Leftrightarrow \forall \ \varepsilon > 0 \ \exists \ B \in \mathcal{R}(S) \colon \mu(E \triangle B) < \varepsilon.$$

Доказательство. Необходимость. Пусть $E \in \Sigma$ и $\varepsilon > 0$. Тогда $\exists \ A_k \in S \colon E \subset A = \bigcup_{k=1}^{\infty} A_k$ и по определению нижней грани

$$\mu(A) \leqslant \sum_{k=1}^{\infty} m(A_k) \leqslant \mu(E) + \frac{\varepsilon}{2}.$$

Существует n, для которого $\sum\limits_{k=n+1}^{\infty}m(A_k)<\frac{\varepsilon}{2}$. Положим $B_n:=\bigcup\limits_{k=1}^nA_k$. Тогда

$$\mu(E \triangle B_n) \leqslant \mu(E \setminus B_n) + \mu(B_n \setminus E) \leqslant \mu(A \setminus B_n) + \underbrace{\mu(A \setminus E)}_{B_n \subset A} \leqslant \sum_{k=n+1}^{\infty} m(A_k) + \frac{\varepsilon}{2} < \varepsilon.$$

Достаточность. Пусть $E \subset B \cup (E \triangle B)$. Из этого вытекает

$$|\mu(E) - \mu(B)| \le \mu(E \triangle B) < \varepsilon, \qquad |\mu(E') - \mu(B')| \le \mu(E' \triangle B') = \mu(E \triangle B) < \varepsilon.$$

Если это сложить, получится неравенство

$$\mu(X) = \mu(B) + \mu(B'), \qquad |\mu(E) + \mu(E') - \mu(X)| < 2\varepsilon.$$

Значит, $E \in \Sigma$.

Помните меру Стилтьеса? Сейчас определим меру Лебега—Стилтьеса

Определение 2.5. Пусть есть полукольцо интервалов $S = \{[a,b) | a,b \in \Sigma, a \leqslant b\}$, есть $\alpha(x) \uparrow$ (неубывает) и $\forall \ x \in \mathbb{R} \ \alpha(x-0) = \alpha(x)$. Положим $m_{\alpha}\big([a,b)\big) := \alpha(b) - \alpha(a)$. Это σ -аддитивная мера. Пусть $m = \mu_a^*$ и $\Sigma_{\alpha} - \sigma$ -алгебра измеримых множеств. Тогда $\mu \colon \Sigma_{\alpha} \to \overline{\mathbb{R}}_+$ называется мерой Лебега—Стилтьеса.

Если $\alpha(x) = x$, мера называется мерой Лебега.

Приведём пример неизмеримого по Лебегу множества $E \subset [0,1]$. Введём отношение эквивалентности: $\forall \, x,y \in [0,1] \, \, x \sim y \Leftrightarrow x-y \in \mathbb{Q}$. Множество [0,1] разбивается на несчётное число классов эквивалентности $[0,1] = \bigsqcup_{i \in I} C_i$, где при $i \neq j \, C_i \cap C_j = \varnothing$. Пусть $E = \left\{x_i\right\}_{i \in I}$, где $x_i \in C_i$. Пусть $\left\{e_n\right\}_{n=1}^{\infty} = [0,1] \cap \mathbb{Q}$. Тогда определим сдвиг на рациональное число $E_n = E + r_n, \, n = 1,2,\ldots$ Если $E \in \Sigma$, то $E_n \in \Sigma$ (это уже не обязательно подмножество [0,1]) и $\mu(E) = \mu(E_n)$. Для $n \neq m$ $E_n \cap E_m = \varnothing$. Видим, что $[0,1] \subset \bigcup_{n=1}^{\infty} E_n$, а с другой стороны

 $\bigcup_{n=1}^{\infty} E_n \subset [-1,2]$. Можем применить неравенсто для измеримых множеств

$$1 = \mu([0,1]) \leqslant \sum_{n=1}^{\infty} \mu(E_n) \leqslant \mu([-1,2]) = 3.$$

Если $\mu(E) \neq 0$, получаем бесконечную расходящуюся сумму, а если $\mu(E) = 0$, то противоречие с первым неравенством.

3 Измеримые функции

Всюду на этой лекции тройка (X, Σ, μ) будет обозначать измеримое пространство. Мы сейчас будем использовать только следующие свойства измеримого пространства.

- (1) $\Sigma sigma$ -алгебра с единицей X;
- (2) $\mu: \Sigma \to \overline{\mathbb{R}}_+ \sigma$ -аддитивная мера;
- (3) $\forall A \subset B : \mu(B) = 0 \quad A \in \Sigma$.

Пусть $E \subset X$.

Определение 3.1. Функция $f: E \to \mathbb{R}$ называется измеримой, если

$$\forall c \in \mathbb{R} \ E(f < c) := \{ x \in E | f(x) < c \} \in \Sigma.$$

Понятно, что из определения вытекает, что E будет измеримо, как счётное объединение этих множеств. Кроме того

$$E(f \leqslant c) = \bigcap_{n=1}^{\infty} E\left(f < c + \frac{1}{n}\right) \in \Sigma; \tag{1}$$

$$E(f \geqslant c) = E \setminus E(f < c) \in \Sigma; \tag{2}$$

$$E(f > c) = E \setminus E(f \leqslant c) \in \Sigma; \tag{3}$$

$$E(a \leqslant f < b) = E(f < b) \setminus E(f < a) \in \Sigma; \tag{4}$$

$$E(a < f < b) = E(f < b) \setminus E(f \leqslant a) \in \Sigma.$$
 (5)

Таким образом, все промежутки измеримы.

Лемма 3.1. $f \colon E \to \mathbb{R}$ измерима, если и только если

$$\forall B \in \mathcal{B}(\mathbb{R}) \quad f^{-1}(B) \in \Sigma.$$

Доказательство. Необходимость. Положим $S := \{A \subset \mathbb{R}\mathcal{B} | f^{-1}(A) \in \Sigma\}$. Все интервалы измеримы и лежат в S. $S-\sigma$ -алгебра, $\mathbb{R} \in S$.

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B), \quad f^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) =$$

Таким образом $S - \sigma$ -алгебра,

Достаточность $E(f < c) = f^{-1}(-\infty, c)$ очевидна.

Покажем связь топологии и измеримости. Введём такое определение.

Определение 3.2. Пусть μ — регулярна. Функция $f \colon E \to \mathbb{R}$, где $E \in \Sigma$, обладает C-свойством, если

$$\forall \ arepsilon > 0 \ \exists \$$
компакт K , такой, что $\mu(E \setminus K) < arepsilon, \ g = f \big|_{K}$ — непрерывная функция.

Теорема 3.1 (Лузина). Пусть μ — регулярная мера (в прошлый раз давали: для которой X является метрическим пространством и ещё другие свойства есть) и все открытые множества измеримы. Тогда функция $f \colon E \to \mathbb{R}$ измерима \Leftrightarrow она обладает C-свойством

Доказательство. Необходимость. Фиксируем $\varepsilon > 0$. Функция у нас f измерима. Отсюда вытекает, что $E \in \Sigma$. Так как мера регулярна, то \exists такие измеримые $A_0, B_0 \in \Sigma$, такие что A_0 компактно, B_0 открыто, $A_0 \subset E \subset B_0$ и $\mu(B_0 \setminus A_0) < \frac{\varepsilon}{2}$. (Это всё из регулярности меры.)

Пусть задана система всех интервалов $\{I_n\}$ с рациональными концами на прямой $\mathbb R$. Их не более чем счётно, поэтому я их занумеровал натуральными числами. Поэтому также в силу регулярности $\exists \ A_n, B_n \in \Sigma$, такие что A_n компактно, B_n открыто, $A_n \subset f^{-1}(I_n) \subset B_n$, $\mu(B_n \setminus A_n) < \frac{\varepsilon}{2^{n+1}}$.

Определим $G:=\bigcup_{n=0}^{\infty}(B_n\setminus A_n)\in$ — открыто, значит, измеримо, то есть $G\in\Sigma$. И его мера (по σ -аддитивности) $\mu G<\varepsilon$.

Обозначим $K = E \setminus G = A_0 \setminus \bigcup_{n=1}^{\infty} (B_n \setminus A_n)$. Оно является компактным как разность компактного A_0 и открытого.

Осталось доказать, что органичение на компакт является непрерывной функцией. Пусть $g = f|_K$. Тогда прообраз интервала $f^{-1}(I_n) = f^{-1}(I_n) \cap K$. Ну и кроме того легко понять, что пересечение с этим компактом, это всё равно что $g^{-1}(I_n) = B_n \cap K$. При этом B_n открыто, значит, $g^{-1}(I_n)$ открыто в K. Значит, g непрерывна на компакте K.

Вот мы доказали необходимость.

Достаточность. Пусть f обладает C-свойством. Тогда для каждого n существует измеримый компакт $K_n \in \Sigma$, для которого $K_n \subset E$, $\mu(E \setminus K_n) < \frac{1}{n}$, ну и ограничение $g_n\big|_{K_n}$ непрерывно.

Обозначим $F:=\bigcup_{n=1}^{\infty}(E\setminus K_n)$. Значит, функция g_n непрерывна на компакте K_n , поэтому \forall интервала $I=(a,b)\subset\mathbb{R}$ прообраз $g_n^{-1}(I)=f^{-1}(I)\cap K_n$. Существуеют такие открытые множества B_n , дающие в перечении $B_n\cap K_n=g^{-1}(I)$.

$$f^{-1}(I) \setminus F = \bigcup_{n=1}^{\infty} f^{-1}(I) \cap K_n = \bigcup_{n=1}^{\infty} B_n \cap K_n$$

Так как B_n и K_n из σ -алгебры, то это всё измеримо. И $\mu(F)=0, \mu\in\Sigma$, значит, и прообраз интегралов будет измеримым $f^{-1}(I)\in\Sigma$.

Следующая лемма нам поможет выяснить алгебраические свойства измеримых функций.

Лемма 3.2. Пусть у нас функции $f,g: E \to \mathbb{R}$ измеримы, а функция h, заданная на открытом множестве $h: D \to \mathbb{R}$ непрерывна, причём $D \subset \mathbb{R}^2$ является открытым множеством. Предположим также, что $\forall \ x \in E \ \left(f(x), g(x) \right) \in D$. Тогда можно рассмотреть сложную функцию $F(x) = h \left(f(x), g(x) \right)$, и она окажется измеримой.

Доказательство. Пусть $c \in \mathbb{R}$ рассмотрим D(h < c) — это множество открыто в R^2 в силу непрерывности h. Поэтому всякое открытое множество можно представить в виде объединения открытых прямоугольников не более чем счётного числа

$$D(h < c) = \bigcup_{n=1}^{\infty} \Pi_n, \quad \Pi_n = (a_n, b_n) \times (c_n, d_n).$$

Например, прямоугольники с рациональными вершинами.

Теперь запишем такое множество

$$E((f,g) \in \Pi_n) = E(a_n < f < b_n) \cap E(c_n < g < d_n).$$

Поэтому множество $E(F < c) = \bigcup_{n=1}^{\infty} E\big((f,g) \in \Pi_n\big) = \bigcup_{n=1}^{\infty} E(a_n < f < b_n) \cap E(c_n < g < d_n)$. Каждое из этих множеств измеримо, значит, и объединение будет тоже измеримым. Тем самым утверждение леммы доказано.

Следствие 3.1. Если $f,g \colon E \to \mathbb{R}$ измеримы, то $f+g,fg,\frac{f}{g}$ $(g \neq 0),f^p$ $(p>0,g\leqslant 0)$ измеримы.

Следствие 3.2. Пусть теперь у нас задана последовательность измеримых функций $f_n \colon E \to \mathbb{R}, \ n \in \mathbb{N}.$ Предположим, что в каждой точке $\inf_n f_n$, $\sup f_n$, $\overline{\lim}_{n\to\infty} f_n$, $\underline{\lim}_{n\to\infty} f_n$ измеримы, если принимают конечные

Доказательство. Легко проверяются такие формулы

$$E\left(\inf_{n} f_{n} < c\right) = \bigcup_{n=1}^{\infty} E(f_{n} < c); \qquad E\left(\sup_{n} f_{n} > c\right) = \bigcup_{n=1}^{\infty} E(f_{n} > c).$$

А для пределов вот такие.

$$\overline{\lim_{n\to\infty}}\,f_n=\inf_{k\geqslant 1}\left(\sup_{n\geqslant k}f_n\right);\qquad \underline{\lim_{n\to\infty}}\,f_n=\sup_{k\geqslant 1}\left(\inf_{n\geqslant k}f_n\right).$$

Таким образом все эти множества измеримы.

Следствие 3.3. Пусть $f_n \colon E \to \mathbb{R}$ измеримы $u \; \forall \; x \in E \; \exists \; f(x) = \varlimsup_{n \to \infty} f_n(x)$. Тогда предел f измерим.

$$f := \overline{\lim} f_n = \underline{\lim} f_n.$$

Введём такие обозначения. $f_n, f, g: E \to \mathbb{R}$

- (1) $f_n \to f$, если $\forall x \in E \ \exists f(x) = \lim_{n \to \infty} f_n(x)$
- (2) $f_n \nearrow f$, если $f_n \xrightarrow{} f$ и $f_1 \leqslant f_2 \leqslant \dots$
- (3) $f_n \searrow f$, если $f_n \xrightarrow[n \to \infty]{} f$ и $f_1 \geqslant f_2 \geqslant \dots$

Определение 3.3. Фикция $h \colon E \to \mathbb{R}$ называется простой, если $h(E) = \{h_1, h_2, \dots, h_n\} \subset \mathbb{R}$.

$$h(x) = \sum_{k=1}^{n} h_k \chi_{H_k}(x),$$

где $H_k := \{x \in E \big| h(x) = h_k \}, \, \chi_H(x) = \begin{cases} 1, & x \in H; \\ 0, & x \notin H. \end{cases}$

Теорема 3.2. $\forall f: E \to \mathbb{R}_+$ измеримой существует неубывающая последовательность $h_n \nearrow f$ $(n \to \infty), h_n = 0$ измеримые и простые.

Теорема 3.3. Построим по следующей формуле

$$h_n(x) := \sum_{k=1}^{2^{2n}} \frac{k-1}{2^n} \chi_{H_k^n}(x) + 2^n \chi_{H^n}(x),$$

где $H_k^n := E\left(\frac{k-1}{2^n} \leqslant f < \frac{k}{2^n}\right)$, $H^n := E(f \geqslant w^n)$, $k = 1, 2, \ldots, k^{2n}$ Покажем, что эта последовательность функций неубывающая. Ясно, что функции простые, что измеримые. Так как y нас $H_K^n = H_{2k-1}^{n+1} \sqcup H_{2k}^{n+1}$, $h_n(x) = \frac{k-1}{2^n} = \frac{2k-2}{2^{n+1}} \leqslant h_{n-1}(x)$ Кроме того $\left|f(x) - h_n(x)\right| < \frac{1}{2^n}$, если $x \in E(f < 2^n)$.

Поскольку n убегает в бесконечность. $h_n \nearrow f$. Если f ещё и ограничена, то сходимость будет ещё и равномерной.

равномернои. Определение 3.4. $f_n \to f$ почти всюду $(n. \, в.)$, если $\exists \ A \in \Sigma \colon \mu(A) = 0, \ f_n \to f$ на $E \setminus A$. Определение 3.5. $f_n \to f$ почти равномерно $(n. \, p.)$, если $\forall \ \varepsilon > 0 \ \exists \ A \in \Sigma \colon \mu(A) < \varepsilon \ u \ f_n \xrightarrow[n \to \infty]{} f$ на $E \setminus A$.

Определение 3.6. $f \sim g$ эквивалентны, если $\exists A \in \Sigma \colon \mu(A) = 0 \ u \ f(x) \equiv g(x) \ \forall \ x \in E \setminus A$.

Пределы почти всюду и почти равномерно определяются с точностью до эквивалентности. Если функция измерима, то и эквивалентная ей измерима.

Теорема 3.4 (Егорова). Пусть у нас $\mu(E) < \infty$, функции $f_n : E \to \mathbb{R}$ измеримы. Тогда $f_n \to f$ почти всюду на $E \Leftrightarrow f_n \to f$ почти равномерно.

Доказательство. Необходимость. Пусть у нас последовательность функций сходится почти всюду $f_n \to f$ (п. в.) на Е. Легко видеть, что доказательство из определения почти равномерной сходимости сводится к случаю

Обозначим $B_n = \bigcap^{\infty} E\left(|f_j - f| < \frac{1}{k}\right)$ для $k \geqslant 1$. Объединение таких множеств даст всё E. Таким образом,

последовательность $B_n \nearrow E$. Мы доказывали свойство непрерывности меры снизу, поэтому $\lim \mu(B_n) = \mu(E)$. Обозначим дополнение $A_n := E \setminus B_n$. Тогда в силу равенства $\lim \mu(B_n) = \mu(E)$ предел $\lim_{n \to \infty} \mu(A_n) = 0$.

Поэтому существует n_k , такой что $\mu(A_{n_k}) < \frac{\varepsilon}{2^k}$ для любого $\varepsilon > 0$.

Обозначим $A:=\bigcup\limits_{k=1}^{\infty}A_{n_k}$. Тогда $\mu(A)<\sum\limits_{k=1}^{\infty}\frac{\varepsilon}{2^k}=\varepsilon$. Дополнение $E\setminus A$ есть пересечение $E\setminus A=\bigcap\limits_{k=1}^{\infty}$. Поэтому $\forall\ j\geqslant n_k,\ \forall\ x\in E\setminus A\ \left|f_j(x)-f(x)\right|<\frac{1}{k}$. Следовательно, последовательность сходится равномерно на множестве $E\setminus A$.

Достаточность. Пусть у нас последовательность функций $f_n \to f$ (п. р.) на E. Ну по определение $\forall n \; \exists \; A_n \in \Sigma \colon \mu(A_n) < \frac{1}{n}, \; f_m \xrightarrow[m \to \infty]{} f$ на $E \setminus A_n$.

Обозначим $A:=\bigcap_{n=1}^{\infty}A_n,\ \mu A=0.\ \mathrm{ II}\ \forall\ x\in E\setminus A\Rightarrow f_m(x)\to f(x).$

Определение 3.7. Пусть $f, f_n \colon E \to \mathbb{R}$ измеримы. $f_n \to f$ по мере μ на E (здесь мы должны предположить, что функция измерима... сначала), если $\lim_{n \to \infty} \mu\Big(E\big(|f_n - f| \geqslant \varepsilon\big)\Big) = 0$ для любого $\varepsilon > 0$.

Теорема 3.5. Тут два утверждения.

- (1) Пусть $f, f_n \colon E \to \mathbb{R}$ измеримы, $u \ \mu(E) < \infty$, то из $f_n \xrightarrow[n \to \infty]{} f$ (n. в.) на E следует, что $f_n \xrightarrow[n \to \infty]{} f$ по мере E.
- (2) Если $f_n \xrightarrow[n \to \infty]{} f$ по мере на E, то \exists подпоследовательность $f_{n_k} \to f$ (n. в.) на E.

Доказательство. Для доказательства первого утверждения применим теорему Егорова.

$$\varepsilon > 0 \quad \exists \ A \in \Sigma \colon \mu(A) < \varepsilon, \ f_n \Longrightarrow_{n \to \infty},$$

то есть $\exists n: \forall k \geqslant n \ \left| f_n(x) - f(x) \right| < \varepsilon$. Отсюда следует, что $\mu \Big(E \big(|f_k - f| \geqslant \varepsilon \big) \Big) \leqslant \mu(A) < \varepsilon$. Значит, предел $f_k \to f$ по мере на E.

Доказательство второго утверждения. Пусть $f_n \to f$ по мере. Существует $m_k \colon \mu\Big(E\big(|f-f_{m_k}|\geqslant \frac{1}{2^k}\big)\Big) < \frac{1}{2^k}$ (из сходимости по мере следует, что предел этой конструкции равен нулю). Обозначим $A_n := \bigcup_{k=n}^\infty E\big(|f-f_{m_k}|\geqslant \frac{1}{2^k}\big)$ и рассмотрим $A := \bigcap_{n=1}^\infty A_n$. Имеем $\mu(A_n) < \frac{1}{2^{n-1}}$, получаем $\mu(A) = 0$.

Если
$$x \in E \setminus A$$
, то $x \in E \setminus A_n$ и $|f(x) - f_{m_k}(x)| < \frac{1}{2^k}$. Следовательно, $f_{m_k} \to f$ на $E \setminus A$.

Ну и в заключение давайте примерчик один приведём. Пример Риссо. Покажем, что их сходимости по мере не следует сходимость почти всюду. Берём отрезок E=[0,1], разбиваем его на отрезки $A_n=\left[\frac{k}{2^m},\frac{k+1}{2^n}\right]$. Каждый отрезок имеет меру $\mu(A_n)=\frac{1}{2^m}$. Нумерация такая: $n=2^m+k,\,k=0,1,\ldots,2^m-1$, для того, чтобы

нумерация была по одному индексу. $f_n(x) = \chi_{A_n}(x) = \begin{cases} 1, & x \in A_n; \\ 0, & x \notin A_n. \end{cases}$ Тогда мера Лебега

$$\mu(f_n \geqslant \varepsilon) = \frac{1}{2^m} \to 0, \quad 0 < \varepsilon \leqslant 1.$$

Наша последовательность $f_n \to 0$ по мере на отрезке [0,1].

Но эта последовательность не сходится никуда. Легко видеть

$$\overline{\lim} f_n(x) = 1, \quad x \in [0,1]; \qquad \underline{\lim} f_n(x) = 0, \quad \forall \ x \in [0,1].$$

К нулю в том числе не сходится.

4 Интеграл Лебега

Значит, у нас в дальшейшем (X, Σ, μ) — измеримое пространство (на прошлой лекции я говорил, что это такое), $E \in \Sigma$, через α будем обозначать $\alpha = \left\{A_k\right\}_{k=1}^n$ — измеримое разбиение E, то есть $E = \bigsqcup_{k=1}^n A_k, A_k \in \Sigma$.

Пусть также есть $f \colon E \to \mathbb{R}_+$. Введём обозначения $S_{\alpha}(f) = \sum_{k=1}^n a_k \mu(A_k) - \text{сумма Дарбу}^1$, $a_k = \inf_{x \in A_k} f(x)$, $a_k = a_k(f)$.

Определение 4.1. Интегралом Лебега измеримой функции $f \colon E \to \mathbb{R}_+$ называется верхняя грань сумм Дарбу

$$\int_{E} f \, d\mu = \sup_{\alpha} = S_{\alpha}(f).$$

 $^{^1}$ Так как $0\cdot\infty=0$ по определению, все суммы Дарбу конечные.

Если значения функции имеют произвольный знак, то есть $f \colon E \to \mathbb{R}$. То $f = f_+ - f_-$, где $f_\pm(x) =$ $=\max\{\pm f(x),0\}$, то интеграл Лебега определяется, как

$$\int_E f \, d\mu := \int_E f_+ \, d\mu - \int_E f_- \, d\mu.$$

Функция называется интегрируемой по Лебегу (или суммируемой) $f\in L(E,\mu),$ если f измерима и $\int_{E} f_{\pm} d\mu < \infty.$

Верхняя грань сумм Дарбу может быть и бесконечной. Это допустимо для неотрицательной функции. А в случае знакопеременной функции может возникнуть неопределённость $\infty - \infty$.

Теперь перейдём у свойствам.

Утверждение 4.1. Пусть $f \colon E \to \mathbb{R}_+$ измерима. Тогда $\int\limits_E f \, \mu = 0 \Leftrightarrow f \sim 0$, то есть f = 0 почти всюду.

Доказательство. Необходимость. Если $\int_{\Gamma} f \, d\mu = 0$, то все суммы Дарбу $S_{\alpha}(f) = 0$. Рассмотрим $E_n = E(g \geqslant \frac{1}{n})$.

Ясно, что $E_n\nearrow E(f>0)$ и $\mu\bigl(E(f>0)\bigr)\stackrel{\sim}{=}\lim\mu(E)=0.$ Ведь мы можем строить разбиение так, чтобы одно из множеств было E_n .

Достаточность. $\mu(E(f>0))=0$, значит, $S_{\alpha}(f)=0$. Это из определения вытекает. **Утверждение 4.2.** Пусть $f,g\colon E\to \mathbb{R}_+$ измеримы $u\ f\leqslant g$ на E. Тогда $\int\limits_E f\ d\mu\leqslant \int\limits_g d\mu$.

Доказательство. Так как сумма Дарбу для любого разбиения удовлетворяет соответствующему неравенству $S_{\alpha}(f) \leqslant S_{\alpha}(g)$.

Утверждение 4.3. Если $f,g\in L(E,\mu)$ и $f\leqslant g$ на E, то $\int\limits_E f_+\,d\mu\leqslant \int\limits_E g_+\,d\mu$ и $\int\limits_E f_-\,d\mu\geqslant \int\limits_E g_-\,d\mu$. А если вычтем,

 $\int f \, d\mu \leqslant \int g \, d\mu.$

Лемма 4.1. Пусть $h \in L(E, \mu)$ простая, то есть принимает конечное количество значений. Тогда, как мы знаем, она записывается в виде

$$h(x) = \sum_{k=1}^{m} = h_k \chi_{H_l}(x), \qquad H_l = \{x \in X | h(x) = h_l\}.$$

Тогда $\int_E h \, d\mu = \sum_{l=1}^m h_l \mu(E \cap H_l).$

Доказательство. Достаточно доказать для случая неотрицательной функции $h \geqslant 0$. $a_k(h) \leqslant h_l$, если $B_{kl} =$ $A_k \cap H_l \neq 0$,

$$S_{\alpha}(f) = \sum_{k=1}^{n} a_k \mu(A_k) = \sum_{k=1}^{n} \sum_{l=1}^{m} a_k \mu(B_{kl}) \leqslant \sum_{k=1}^{n} \sum_{l=1}^{m} h_l \mu(B_{kl}) = \sum_{l=1}^{m} h_l \mu(E \cap H_l).$$

Но если мы возьмём разбиение $\alpha = \left\{ E \cap H_l \right\}_{l=1}^m$, будет знак равенства.

Из этой леммы вытекают следующие два следствия.

Следствие 4.1. Если $h \in L(E,\mu)$ простая, то её интеграл обладает свойством аддитивности, то есть

$$\int\limits_E h\,d\mu = \sum_{n=1}^\infty \int\limits_{E_n} h\,d\mu, \qquad E = \bigsqcup_{n=1}^\infty E_n, \quad E_n \in \Sigma.$$

Следствие 4.2. Если $f \colon E \to \mathbb{R}_+$ измерима, то $\int\limits_E f \, d\mu = \sup\limits_{0 \leqslant h \leqslant f} \int\limits_E h \, \mu$, где h-простая измеримая функция.

Доказательство. Доказательство последнего следстви. Имеем из свойства $2\int\limits_{E}h\,d\mu\leqslant\int\limits_{E}g\,d\mu.$

Следующая теорема одна из основных теорем.

Теорема 4.1 (о монотонной сходимости). Пусть $f_n : E \to \mathbb{R}$ неотрицательны и измеримы, и $f_n \nearrow f$ на E. (Интеграл от f при этом может быть бесконечным, ничего страшного.) Тогда

$$\lim_{n \to \infty} \int_{E} f_n \, d\mu = \int_{E} f \, d\mu.$$

Доказательство. Давайте обозначим этот предел через $I = \lim_{n \to \infty} \int\limits_E f_n \, d\mu$. Так как $f_n \leqslant f$ в каждой точке, то этот предел будет оцениваться $I \leqslant \int\limits_{-\infty}^{\infty} f \, d\mu$. Для доказательства нам нужно доказать обратное неравенство.

Возьмём произвольную простую функцию $h \colon 0 \leqslant h \leqslant f, \ \varepsilon \in (0,1)$ и определим следующие множества $E_n = E(\varepsilon h \leqslant f_n) \nearrow E$. Запишем следующим очевидные равенства

$$\varepsilon \int_{E_n} h \, d\mu = \int_{E_n} \varepsilon h \, d\mu \leqslant \int_{E_n} f_n \, d\mu \leqslant \int_{E} f_n \, d\mu \leqslant I.$$

Hy а теперь заметим, что $\lim_{n\to\infty}h\,d\mu=\int\limits_{\Gamma}h\,d\mu$ в силу следствия 1. Переходя к пределу получаем $\varepsilon\int\limits_{\Gamma}h\,d\mu\leqslant I.$ В силу произвольности ε

$$\int_{E} h \, d\mu \leqslant I \quad \forall \ 0 \leqslant h \leqslant f.$$

По свойству 3 имеем $G \int E f d\mu \leq I$.

Следующее важное свойство четвёртое. Свойство линейности интеграла. **Утверждение 4.4.** Пусть $f,g\in L(E,\mu)$ и $\lambda\in\mathbb{R}$. Тогда $\int\limits_E\lambda f\,d\mu=\lambda\int\limits_Ef\,d\mu$ и $\int\limits_E(f+g)\,d\mu=\int\limits_Ef\,d\mu+\int\limits_Eg\,d\mu$.

Доказательство. Первое свойство настолько очевидно, что я и доказывать не хочу. Докажем второе. Пусть пока что $f,g\leqslant 0$ и простые. Нужно вспомнить доказанную лемму и взять пересечение разбиений.

Второй случай. Пусть у нас теперь f и g неотрицательны и измеримы. В этом случае мы с вами доказывали теорему о том, что всякая неотрицательная функция является монотонным пределом неотрицательных простых функций, то есть $\exists f_n \nearrow f$ и $g_n \nearrow g$, где f_n, g_n — простые. Тогда и $f_n + g_n \nearrow f + g$. Ну а теперь применяем теорему о монотонной сходимости.

$$\int_{E} (f+g) d\mu = \lim_{n \to \infty} \int_{E} (f_n + g_n) d\mu \stackrel{1}{=} \lim_{n \to \infty} \int_{E} f_n d\mu + \lim_{n \to \infty} \int_{E} fg_n d\mu$$

ну и по теореме о монотонной сходимости получаем $=\int\limits_{E}f\,d\mu+\int\limits_{E}g\,d\mu.$

Ну и третий случай, когда $f,g\in L(E,\mu),\, f=f_+-f_-,\, g=g_+-g_-.$ Тогда $(f+g)=(f+g)_+-(f+g)_-,$ и мы получим такое равенство

$$(f+g)_+f_-+g_+=(f+g)_-+f_++g_-.$$

Это равенство можно проинтегрировать по свойству 2, собрать слагаемые обратно и получить результат. **Утверждение 4.5.** Пусть $f \in L(E,\mu)$, то $|f| \in L(E,\mu)$ и выполнены соответствующие неравенства

$$\left| \int_{E} f \, d\mu \right| \leqslant \int_{E} |f| \, d\mu.$$

Доказательство. $|f| = f_+ + f_- \in L(E,\mu)$ по доказанным свойствам. Кроме того $-|f| \leqslant f \leqslant |f|$, применяем свойство 2, получаем $-\int\limits_E |f| \leqslant \int\limits_E f \, d\mu \leqslant \int\limits_E |f| \, d\mu$.

Лемма 4.2 (Фату). Пусть $f_n \colon E \to \mathbb{R}_+$ измеримы и $f = \underline{\lim} f_n$ почти всюду на E. Тогда $\int f \, d\mu \leqslant \underline{\lim} \int f_n \, d\mu$.

Доказательство. По свойству 4 можно избавиться от требования условия почти всюду. Будем считать, что $f=\varliminf f_n$ всюду на E. Ну и введём такие функции $g_n=\inf_{n\geqslant m}f_n$ — это измеримые неотрицательные функции (мы доказывали), ну и кроме того $g_m \nearrow f$ по определению предела.

Так как $\forall \ n \geqslant n \ g_m \leqslant f_n$, то у нас $\int\limits_E g_m \ d\mu \leqslant \inf\limits_{n \geqslant m} \int\limits_E f_n \ e\mu$. Ну и теперь применяем теорему о монотонной сходимости.

$$\int_{f} d\mu = \lim_{n \to \infty} \int_{E} g_n d\mu \leqslant \lim_{m \to \infty} \inf_{n \geqslant m} \int_{E} f_n d\mu = \underline{\lim} \int_{E} f_n d\mu.$$

И лемма доказана.

Теорема 4.2 (Лебега о предельном переходе). Пусть $f_n \colon E \to \mathbb{R}$ измеримы, $f = \lim f_n$ почти всюду на множестве E, и существует функция $g \in L(E,\mu),$ $g \geqslant 0$ и $|f_n| \leqslant g^1$ на множестве E (можно и оставить здесь почти всюду). Тогда $f, f_n \in L(E,\mu)$ и $\lim_{n \to \infty} \int\limits_E f_n \, d\mu = \int\limits_E f \, d\mu$.

Доказательство. Не поскольку f измерима, то f_n тоже будет измерима. Будут выполнены такие неравенства почти всюду: $f_{n\pm}, f_{\pm} \leqslant g$ почти всюду на E. По свойству 2 интегралы будут конечны, то есть $f, f_n \in L(E, \mu)$. Кроме того $g \pm f_n \geqslant 0$ в силу того, что $|f_n| \leqslant g$ на E; $g \pm f_n \to g \pm f$, ну и нижний предел тоже сходится. Можно

 $^{^{1}}$ Эта функция g называется интегрируемой мажорантой.

применить лемму Фату

$$\int_{E} (f+g) \, d\mu \leqslant \underline{\lim} \int_{E} (g+f_n) \, d\mu, \qquad \int_{E} (g-f) \, d\mu \leqslant \underline{\lim} \int_{E} (g-f_n) \, d\mu$$

В силу аддитивности интеграла, на g погу сократить в каждом неравенстве. Останется два неравенства. Из-за минуса нижний предел сменится на верхний.

$$\overline{\lim} \int_{E} f_n \, d\mu \leqslant \int_{E} f \, d\mu \leqslant \underline{\lim} \int_{E} f_n \, d\mu.$$

И теорема доказана.

Теорема 4.3 (о σ -аддитивности интеграла Лебега). Пусть $f \in L(E,\mu), E = \bigsqcup_{n=1}^{\infty} E_n, E_n \in \Sigma.$ Тогда $\int\limits_{E} f \, d\mu = \int\limits_{E} \int\limits_{E} E_n \, d\mu = \int\limits_{E} \int\limits_{E} \int\limits_{E} E_n \, d\mu = \int\limits_{E} \int\limits_{E} \int\limits_{E} E_n \, d\mu = \int\limits_{E} \int\limits_$

$$= \sum_{n=1}^{\infty} \int_{E_n} f \, d\mu.$$

Доказательство. Понятно, что $f = f_+ - f_-$, и доказательство сводится к случаю $f \geqslant 0$. Пусть сначала $E = E_1 \sqcup E_2, E_1, E_2 \in \Sigma$. Функция неотрицательна, значит можно рассуждать суммами Дарбу. Пусть α — разбиение множества E. Тогда у нас индуцируются разбиения $\alpha_1 = \alpha \cap E_1, \ \alpha_2 = \alpha \cap E_2$. Легко понять, что тогда $S_{\alpha}(f) \leqslant S_{\alpha_1}(f) + S_{\alpha_2}(f)$.

С другой стороны. Если α_1 — разбиение E_1 , α_2 — разбиение E_2 , можно построить $\alpha=\alpha_1\sqcup\alpha_2$. В этом случае у нас будет равенство $S_{\alpha}(f)=S_{\alpha_1}(f)+S_{\alpha_2}(f)$. Значит, и верхняя грань будет удовлетворять этому равенству:

$$\int_{f} d\mu = \int_{E_1} f d\mu + \int_{E_2} f d\mu.$$

Ну и теперь общий случай. Пусть $f\geqslant 0$, положим $F_n:=\bigsqcup_{k=1}^n E_k,\ f_n:=\chi_{F_n}\cdot f.$ Тогда $f_n\nearrow f$ и можно применить теорему о монотонной сходимости

$$\int_{E} f \, d\mu = \lim_{n \to \infty} \int_{E} f_n \, d\mu = \lim_{n \to \infty} \int_{F_n} f \, d\mu.$$

Раз для двух множеств верно, то и для любого конечно числа множеств будет верно и $\int\limits_{E} f \, d\mu = \lim\limits_{n \to \infty} \sum\limits_{k=1}^{n} \int\limits_{E_{n}} f \, d\mu.$

Теорема 4.4 (Неравенство Чебышёва). Пусть $f \colon E \to \mathbb{R}_+$ измерима. Тогда $\forall \ t > 0 \ \mu(E_t) \leqslant \frac{1}{t} \int\limits_E f \, d\mu$, $E_+ := E(f \geqslant t)$.

С этой теоремы началась теория вероятности. До Чебышёва теория вероятность было только интуитивной. Доказательство. Имеем по свойству 2: $\int\limits_E f \ d\mu \geqslant \int\limits_{E_t} f \ d\mu \geqslant t\mu(E_t)$.

Введём такое определение.

Определение 4.2. Пусть $f: E \to \mathbb{R}_+$ измерима. Обозначим через $\lambda_f(t) = \mu(E_t), \ t > 0, \ E_t := E(f \geqslant t). \ \lambda_f(t)$ называется функцией распределения (значений f).

Утверждение 4.6. Свойства. Докажем только последнее.

- (1) $\lambda_f(t) \downarrow$;
- (2) $\lambda_f(t-0) = \lambda_f(t);$
- (3) $\exists a: 0 < a \leq \infty, \ \lambda_f(t) = \infty \ npu \ t \in (0, a);$
- (4) Ecnu $f \in L(E, \mu)$, mo $\lambda_f(t) < \infty$ npu t > 0;
- (5) Если $\mu(E(f=t)) > 0$, то t- точка разрыва λ_f ;
- (6) $\lambda_f(t) = \overline{\overline{o}}(\frac{1}{4})$, ecau $f \in L(E, \mu)$.

Доказательство. $E_t \searrow \varnothing$, $\lim_{t \to \infty} \int_{E_{\perp}} f \, d\mu$. Ну а следовательно $t\mu(E_t) \leqslant \int_{E_{\perp}} f \, d\mu$.

Определение 4.3. Если $f g \in E$: \mathbb{R}_+ измеримы и $\lambda_f(t) = \lambda_g(t) \ \forall \ t > 0$, то f и g называются равноизмеримыми.

Пусть $f,g\in L(E,\mu)$. Тогда применяя теорему Фубини (которая у нас ещё будет) можно написать такие равенства

$$\int_{E} f \, d\mu = \int_{0}^{\infty} \lambda_f(t) \, dt; \qquad \int_{E} g \, d\mu = \int_{0}^{\infty} \lambda_g(t) \, dt.$$

5 Абсолютно непрерывные функции

Начнём с определения абсолютной функций множества. У нас будет дальше (X, Σ, μ) — измеримое пространство. Обозначим через $\Sigma_E = \{A \subset E | A \in \Sigma\}, E \in \Sigma$.

Определение 5.1. Функция $\varphi \colon \Sigma_E \to \mathbb{R}$ называется зарядом, если φ σ -аддитивна. Заряд называется абсолютно непрерывным $\varphi \ll \mu$ относительно меры μ , если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \colon \forall \ A \in \Sigma_E, \ \mu(A) < \delta \Rightarrow |\varphi(A)| < \varepsilon.$$

Теорема 5.1 (об абсолютной непрерывности интеграла Лебега). Если $f \in L(E,\mu)$, то $\varphi(A) = \int_A f \, d\mu$, $A \in \Sigma_E$, является абсолютно непрерывным зарядом.

Доказательство. Что интеграл зяряд, мы доказывали в прошлой лекции. Надо доказать только абсолютную непрерывность. Представим $f = f_+ - f_-$. Тогда можно считать, что $f \geqslant 0$. Рассмотрим $E_n = E(f \leqslant n), E_n \nearrow E$. Можно воспользоваться свойством непрерывности снизу для меры.

$$\forall \ \varepsilon > 0 \ \exists \ n \in \mathbb{N} \colon \varphi(E \setminus E_n) < \frac{\varepsilon}{2}.$$

A ещё $\forall A \in \Sigma_E \quad \mu(A) < \delta = \frac{\varepsilon}{2n}, \ \varphi(A \cap E_n) = \int\limits_{A \cap E_n} f \ d\mu \leqslant n\delta = \frac{\varepsilon}{2}.$ Ну и осталось написать, что $\varphi(A) = \varphi(A \cap E_n) + \underbrace{\varphi(A \setminus E_n)}_{\leqslant \mu(E \setminus E_n)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, поскольку у нас φ монотонна (так как f неотрицательна).

Следующая теорема в нашем курсе если и будет доказана, то на последней лекции, если время останется. Кто интересуется, может прочесть в книге Колмогоров—Фомин.

Теорема 5.2 (Радона—Никодима). Если заряд $\varphi \colon \Sigma_E \to \mathbb{R}$ удовлетворяет условию

$$\forall A \in \Sigma_E : \mu(A) = 0 \Rightarrow \varphi(A) = 0.$$

E имеет σ -конечную меру.

Tогда $\exists !\ (c\ movinocmbio\ до\ эквивалентности)\ f\in L(E,\mu)\ maкая,\ что\ arphi(A)=\int\limits_A f\ d\mu\ \ orall\ A\in \Sigma_E.$

Помните, что мы называли функции эквивалентными, если они совпадают почти всюду.

Доказательство. Единственность легко доказать. Если интегралы совпадают для всех $A \in \Sigma_E$ $\int\limits_A f \, d\mu = \int\limits_A g \, d\mu$, то пусть $\exists \ B \in \Sigma_E \colon \mu(B) > 0$, такой, что $f(x) > g(x) \ \ \forall \ x \in B$. Следовательно, $\int\limits_B (f-g) \, d\mu > 0$.

Следствие обычно называется свойством абсолютной непрерывности. Его можно было бы и независимо доказать, но это заняло бы определённое время. Так что просто выведем из теоремы Радона—Никодима.

Следствие 5.1 (критерий абсолютной непрерывности). $\varphi \ll \mu \Leftrightarrow \forall A \in \Sigma_E : \mu(A) = 0 \Rightarrow \varphi(A) = 0$.

Доказательство. Необходимость очевидна. Потому что если множесво меры нуль $\forall \ \varepsilon > 0 |\varphi(A)| < \varepsilon$, то $\varphi(A) = 0$. А обратное вытекает из теоремы Радона—Никодима.

5.1 Функции точки

Сначала я вам напомню определение функции ограниченной в вариациях. Определение 5.2. $F \in B \vee [a,b]$, ecnu

$$\bigvee_{a}^{b} ar(F) := \sup_{\tau} \sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| < \infty, \quad \tau := \{a = x_0 < x_1 < \dots < x_n = b\}.$$

Пространство будет линейным, и в нём можно ввести норму $||F|| = |F(a)| + \bigvee_{i=1}^{b} (F_i)$.

Напомню свойства без доказательства. Это должно быть в курсе математического анализа.

Утверждение 5.1. *Если*
$$F \in B \vee [a,b]$$
 u $a < c < b$, mo $\bigvee_{a}^{b} ar(F) = \bigvee_{a}^{c} ar(F) + \bigvee_{a}^{b} ar(F)$.

Утверждение 5.2. *Если*
$$F(c-0) = F(c)$$
. *mo* $V(x) = \bigvee_{c}^{x} ar(F)$, $V(c-0) = V(c)$.

Утверждение 5.3. Разложение Жордана. Если $F \in B \vee [a,b]$, то $\exists \alpha(x) \uparrow u \beta(x) \uparrow$, такая, что

$$\alpha(a) = \beta(a) = 0$$
, $F(x) = F(a) + \alpha(x) - \beta(x)$, $V(x) = \alpha(x) + \beta(x)$.

Доказательство.
$$\alpha(x) := \frac{1}{2} \{ \bigvee_a^x ar(F) + F(x) - F(a) \}, \ \beta(x) := \frac{1}{2} \{ \bigvee_a^x ar(F) - F(x) + F(a) \}.$$

Ещё одну теорему приведу без доказательства.

Теорема 5.3 (Лебега о производной монотонной функции). Если функция $f:[a,b] \to \mathbb{R}$ монотонна, $f(x) \leqslant f(y)$, если $x \leqslant y$ (или наоборот), то существует производная f'(x) почти всюду на [a,b].

5.2 Интеграл Лебега—Стилтьеса

Пусть $F \in B \vee [a,b]$ непрерывна слева. Тогда по разложению Жордана можем написать $F(x) = F(a) + \alpha(x) - \beta(x)$, где $\alpha, \beta \uparrow$. Можно построить меры Лебега—Стилтьеса $\mu_{\alpha}, \mu_{\beta}$. И мы можем тогда построить заряд Лебега—Стилтьеса

$$\varphi_F = \mu_{\alpha} - \mu_{\beta}$$
.

Заряд определён на $\Sigma_F:=\Sigma_{\alpha}\cap\Sigma_{\beta},$ пересечение σ -алгебр мер μ_{α} и $\mu_{\beta}.$ Определение теперь.

Определение 5.3. Интеграл Лебега—Стилтьеса $\int\limits_a^b f \, d\varphi_F := \int\limits_a^b f \, d\mu_{\alpha} - \int\limits_a^b f \, d\mu_{\beta}$. Определён на полуинтервале [a,b).

И напомню определение.

Определение 5.4. Интеграл Римана—Стилтьеса $\int\limits_a^b f\,dF:=\lim\limits_{d(au)\to 0}R_{ au}(f,\xi,F),\ arrho$ е

$$R_{\tau}(f,\xi,F) := \sum_{k=1}^{n} f(\xi_k) (F(x_k) - F(x_{k-1})),$$

au — разбиение отрезка, то есть $au = \{a = x_0 < x_1 < \dots < x_n = b\},\ d(au) = \max_{1 \leq k \leq n} (x_k - x_{k-1}),\ \xi = \{\xi_k\}\ u$ $\xi_k \in [x_{k-1}k, x_k].$

Лемма 5.1. Если функция $F \in C[a,b]$, то сущетсвует интеграл Римана—Стилтьеса.

Доказательство. Достаточно рассмотреть, когда F неубывающая. Тогда интегральная сумма будет является интегралом Лебега от некоторой простой функции. $f\tau(x) = f(\xi_k)$ на $[x_{k-1}, x_k)$. Так как функция непрерывно, я могу вместо отрезка брать полуинтервал. Ещё на отрезке $f_{\tau} \Rightarrow f$. По теореме Лебега интеграл существует.

Кстати функцию F можно переопределить в счётном числе точек. От этого интеграл не изменится.

Нам эта лемма в общем-то и не понадобится.

Теорема 5.4 (о сравнении интегралов). Если функция f:[a,b] ограничена $u \exists \int_a^b ddF$, то $\exists \int_a^b f d\varphi_F$ u они равны.

Доказательство. Применяем разложение Жордана. Без ограничения общности считаем $F(x) = \alpha(x) \uparrow$ и $f \geqslant 0$. Рассмотрим в этом случае интегральные суммы Дарбу—Стилтьеса для заданного разбиения

$$\underline{D}_{\tau}(f,\alpha) := \sum_{k=1}^{n} \underline{a}_{k} m_{\alpha} ([x_{k-1}, x_{l}]), \quad \overline{D}_{\tau}(f,\alpha) := \sum_{k=1}^{n} \overline{a}_{k} m_{\alpha} ([x_{k-1}, x_{l}]),$$

где
$$\underline{a}_k = \inf_{[x_k, x_{k-1})]} f(x), \, \overline{a}_k = \sup_{[x_k, x_{k-1})]} f(x), \, \tau = \{a = x_0 < x_1 < \dots < x_n = b\}.$$
 Тогда

$$\underline{D}_{\tau}(f,\alpha) \leqslant \overline{D}_{\tau}(f,\alpha).$$

Осталось доказать равенство.

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \colon \forall \ \tau \colon d(\tau) < \delta \ I - \varepsilon \leqslant R_{\tau}(f, \xi, \alpha) \leqslant I + \varepsilon, \ I = \int_{a}^{b} f \, d\alpha.$$

Тогда суммы Римана будут находиться между суммами Дарбу

$$\forall \varepsilon > 0 \ I - \varepsilon \leqslant D_{\tau}(f, \alpha) \leqslant R_{\tau}(f, \xi, \alpha) \leqslant \overline{D}_{\tau}(f, \alpha) \leqslant I + \varepsilon$$

Определение 5.5. $f \in AC[a,b], \ \textit{где} \ f \colon [a,b] \to \mathbb{R}$ абсолютно непрерывна, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall \bigsqcup_{k=1}^{n} (a_k, b_k) \subset [a, b] \colon \sum_{k=1}^{n} (b_k - a_k) < \delta \Rightarrow \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

Такие функции образуют линейную пространство, где можно ввести норму $||f|| := |f(a)| + \int\limits_a^b |f'(t)| dt$, корректность котороой мы проверим чуть позже.

Утверждение 5.4. $Ec\partial u\ f\in {\rm Lip}[a,b],\ mo\ ecm b\ \exists\ C\ 0\colon \big|f(x)-f(y)\big|\leqslant C|x-y|\ \forall\ x,y\in [a,b],\ mo\ f\in AC[a,b].$ Утверждение 5.5. $Ecn u\ f\in AC[a,b],\ mo\ f\in C\vee [a,b].$

Доказательство. Берётся разбиение $\tau = \{a = x_0 < x_1 < \dots < x_n = b\}$, такое что $(x_k - x_{k-1}) = \frac{\delta}{2} = \frac{(b-a)}{n}$. Тогди вариация

$$\bigvee_{a}^{b} ar(f) = RY1n \bigvee_{x_{k-1}}^{x_{k}} ar(f) \leqslant n\varepsilon = \frac{2(b-a)}{\delta}\varepsilon.$$

Утверждение 5.6. Если $f \in AC[a,b]$, то в разложении Жордана $F(x) = F(a) + \alpha(x) - \beta(x)$ $\alpha, \beta \in AC[a,b]$. Доказательство. Нам нужно доказать, что $V(x) = \bigvee_{a}^{x} ar(f)$ абсолютно непрерывна. Нужно воспользоваться свойством вариации и записать, что

$$\sum_{k=1}^{n} |V(b_k) - V(a_k)| = \sum_{k=1}^{n} \bigvee_{a_k} ar(f) \leqslant \varepsilon.$$

Достаточно заметить, что вариация на отрезке $[a_k, b_k]$ это точная верхняя грать сумм Дарбу. Нужно вспомнить определение абсолютно непрерывных функций и всё сразу понятно станет.

Ну и последнее свойство.

Утверждение 5.7. Если $f \in AC[a,b], mo \exists ! \ g \in L[a,b]$ (единственность с точностью до эквивалентности), такая что $f(x) = f(a) + \int\limits_{a}^{x} g(t) \, dt$.

Доказательство. Разложим f по формуле Жордана $f(x) = f(a) = \alpha(x) - \beta(x)$, $\alpha, \beta \uparrow$. Затем построим меры Лебега—Стилтьеса $\mu_{\alpha}, \mu_{\beta}$ по функциям α, β . Эти меры будут абсолютно непрерывны $\mu_{\alpha}, \mu_{\varepsilon} \ll \lambda$ (λ —мера Лебега), так как α, β абсолютно непрерывны (у нас было два определения абсолютной непрерывности для разных объектов, тут используются оба).

Отсюда вытекает, что заряд $\varphi_F \ll \lambda$. Ну и по теоереме Радона—Никодима

$$f(x) - f(a) = \varphi_f([a, x)) = \int_a^x g(t) dt$$

для некоторой функции $g \in L[a,b]$. Эта функция будет единственной с точностью до эквивалентности, как и в теореме Радона—Никодима.

Лемма 5.2. Пусть $F \uparrow на [a,b]$. Тогда $\int_a^b F'(t) dt \leqslant F(b) - F(a)$. Но если $F \in \text{Lip}[a,b]$, то выполняется равенство.

По теореме Лебега производная монотонной функции интегрируема почти всюду. Равенство же может быть и не выполнено, например, если взять функцию Кантора (лесницу Кантора).

Доказательство. Давайте мы продолжим нашу функцию за отрезок $F(x) = F(b), x \in [b, b+1]$. Функция останется неубывающе. Ну и возьмём такие функции и применим теорему Лебега

$$F_n(t) = \frac{F\left(x + \frac{1}{n}\right) - F(x)}{\frac{1}{n}} \xrightarrow[n \to \infty]{} F'(t).$$

Предел есть по теореме Лебега почти всюду на [a,b]. Теперь применим теорему Фату

$$\int_{a}^{b} F'(t) dt \leqslant \underline{\lim} \int_{a}^{b} F_n(t) dt = \underline{\lim} \left(b \int_{b}^{b+\frac{1}{n}} F(t) dt - n \int_{a}^{a+\frac{1}{b}} F(t) dt \right) \leqslant F(b) - F(a).$$

Это в силу того, что функция неубывающая.

Осталось вторую часть доказать. Чтобы её доказать, нужно вспомнить определение условия Липшица. Из этого определения вытекает, что производная ограничена почти всюду $|F'(t)| \leq C$ почти всюду. Ну и тогда

вместо леммы Фату можно применить теорему Лебега о предельном переходе под знаком интеграла. **Теорема 5.5** (характеристические свойсва абсолютно непрерывных функций). $F \in AC[a,b]$, если и только

$$\exists \ F'(t)(n.\ 6.)\ na\ [a,b],\ F'\in L[a,b], F(x)=F(a)+\int\limits_{-\infty}^{x}F'(t)\,dt \forall \ x\in [a,b].$$

Доказательство. Достаточность вытекает из абсолютной непрерывности интеграла Лебега.

Применяя свойство разложение Жордана, можно считать, что $F \uparrow$ на [a,b]. Давайте ещё считать, что F(a)=0. Тогда по свойству 4 имеем

$$F(x) = \int_{a}^{x} f(t) dt, \ f \in L[a, b].$$

Поэтому для доказательства необходимости нужно доказать, что F'(t) = f(t) почти всюду на [a, b].

Введём такие функции $f_n(x) = \min \{f(t), n\}$ — срез функции на уровне n. f определена почти всюду, её можно считать неотрицательной. Обозначим $F_n(x) = \int\limits_a^x f_n(t)\,dt$. Запишем разность

$$F(x) - F_n(x) = \int_a^x \left(\underbrace{f(t) - f_n(t)}_{\geq 0}\right) dt \uparrow.$$

Следовательно $F'(x) \geqslant F'_n(x)$ почти всюду на [a,b]. Производная существует почти всюду по теореме Лебега. Давайте запишем ещё следующее равенство по лемме, используя, что $F_n(x) \in \text{Lip}[a,b]$.

$$F_n(x) = \int_{0}^{x} F'_n(t) dt = \int_{0}^{x} f_n(t) dt,$$

 $F'_n(t) = f_n(t)$ почти всюду на [a, b].

$$F'(x) \geqslant F'_n(x) = f_n(x)$$
 п. в.

переходя к пределу, получаем $F'(x) \geqslant f(x)$ почти всюду на [a,b]. Тогда

$$\int_{a}^{b} \left(F'(t) - f(t) \right) dt \geqslant 0.$$

А по лемме этот же интеграл будет оцениваться нулём и в другую сторону

$$\int_{a}^{b} F'(t) dt \leqslant F(b) - F(a) = \int_{a}^{b} f(t) dt \leqslant 0.$$

Значит, интеграл равен нулю. А поскольку функция неотрицательна, то она равна нулю почти всюду и F'(t) = f(t) почти всюду.

6 Теорема Фубини

Сначала мы докажем предварительную теорему, а потом уже теорему Фубини. Рассмотрим S_k — полукольцо в X_k , где $k=1,\ldots,n$. И рассмотрим прямое произведение этих полуколец $S:=S_1\times\cdots\times S_n=\{A=A_1\times\cdots\times A_n\mid A_k\in S_k, k=1,\ldots,n\}$. Мы сейчас докажем, что это тоже полукольцо. Пусть у нас ещё заданы меры на каждом полукольце $m_k\colon S_k\to\mathbb{R}_+$. Тогда можно ввести понятие прямого произведения мер $m=m_1\times\cdots\times m_n$, где $m(A):=m_1(A_1)\ldots m_n(A_n)$, если $A=A_1\times\cdots\times A_n$.

Теорема 6.1. Если $m_k \colon S_k \to \mathbb{R}_+$ есть σ -аддитивные меры на полукольцах S_k при $k = 1, \ldots, n$, то $S = S_1 \times \cdots \times S_n$ является полукольцом и $m = m_1 \times \cdots \times m_n$ является σ -аддитивной мерой.

Доказательство. Приведём доказательство для n=2, далее по индукции. Пусть $S=S_1\times S_2$ — полукольцо. Берём два множества

$$A = A_1 \times A_2, \ B = B_1 \times B_2 \in S, \ A_1, B_1 \in S_1, \ A_2, B_2 \in S_2.$$

Легко проверяется, что

$$A \cap B = (A_1 \cap B_1) \times (A_2 \cap B_2).$$

¹ Будет ещё другое произведение мер, поэтому слово прямое не будем опускать.

Можно нарисовать картинку в виде двух прямоугольников.

Теперь разность представляется в виде трёх слагаемых

$$A \setminus B = ((A_1 \setminus B_1) \times (A_2 \setminus B_2)) \sqcup ((A_1 \setminus B_1) \times (A_2 \cap B_2)) \sqcup ((A_1 \cap B_1) \times (A_2 \setminus B_2)).$$

 \Im то тоже можно показать, нарисовав картинку из двух прямоугольников. Таким образом, S- полукольцо.

Осталось показать, что произведение мер является σ -аддитивной мерой. Пусть множество A представляется в виде

$$A = \bigsqcup_{l=1}^{m} B^{(l)}, \quad A = A_1 \times A_2, \ B^{(l)} = B_1^{(l)} \times B_2^{(l)}.$$

Давайте запишем такую функцию

$$f_l(x_1) := m_2(B_2^{(l)}) \cdot \chi_{B_1^{(l)}}(x_1), \quad x_1 \in A_1.$$

Из этого определения вытекает, что $A_2 = \bigcup_{l=1}^m B_2^{(l)}$, но не обязательно дизьюнктное. Отсюда вытекает такое равенство

$$m_2(A_2) = \sum_{l=1}^m f_l(x_1), \quad x_1 \in A_1.$$

Пусть μ_1 — продолжение меры m_1 . Мы сейчас будем писать интеграл и подставлять определение нашей функции.

$$m(A) := m_1(A_1) \cdot m_2(A_2) = \int_{A_1} m_2(A_2) d\mu_1 = \sum_{l=1}^m \int_{A_1} f_l(x_1) d\mu_1 = \sum_{l=1}^m m_1(B_1^{(l)}) \cdot m_2(B_2^{(l)}).$$

Для $m=\infty$ нужно лишь применить теорему о монотонной сходимости. Выкладка та же самая. Определение 6.1. Пусть у нас заданы измеримые пространства $(X_k, \Sigma_k, \mu_k), \ k=1,\ldots,n$. Тогда мы можем построить

$$X = X_1 \times \cdots \times X_n, \ S = \Sigma_1 \times \cdots \times \Sigma_n, \ m = \mu_1 \times \cdots \times \mu_n.$$

Если построить внешнюю меру и ограничить на Σ , то $m^*|_{\Sigma} = \mu$ и тройка (X, Σ, μ) называется произведением измеримых пространств.

Это произведение обладает свойством ассоциативности. Будем обозначать это произведение не как прямое, а как тензорное

$$\mu := \mu_1 \otimes \cdots \otimes \mu_n.$$

Свойство ассоцативности тогда записывается так

$$(\mu \otimes \mu_2) \otimes \mu_3 = \mu \otimes (\mu_2 \otimes \mu_3).$$

Свойство ассоциативности вытекает из ассоциативности прямого произведения. Мы для простоты изложения далее будем рассматривать случай n=2.

Пусть (X, Σ_X, μ_X) и (Y, Σ_Y, μ_Y) — измеримые пространства. Тогда для $Z = X \times Y, \ \mu = \mu_X \otimes mu_Y, \ E \in \Sigma$ обозначим сечения

$$E_X = \{ y \in Y | (x, y) \in E \}, \quad E_Y = \{ x \in X | (x, y) \in E \}.$$

Сечение объединений будет объединением сечений, относительно пересечения и разности так же. То же самое можем сделать для функций

$$f \colon E \to \mathbb{R}, \quad f_x(y) = f(x,y), \quad f_y(x) = f(x,y).$$

Теорема 6.2. Если $E \in \Sigma$ σ -конечной меры, то

$$\mu(E) = \int_{V} \mu_y(E_x) d\mu_x = \int_{V} \mu_x(E_y) d\mu_y.$$

Вообще говоря, не все сечения будут измеримы, функция будет определена почти всюду. Где функция неопределена, положим её равной нулю, это не повлияет на значение интеграла. Доказательство. Доказательство будет проходить в несколько шагов.

1. $E = A \times B, A \in \Sigma_x, B \in \Sigma_y$. Тогда

$$\mu(E) = \mu_x(A) \cdot \mu_y(B) = \int_A \mu_y(B) \, d\mu_x = \int_A \mu_x(A) \, d\mu_x.$$

Это равенства симметричны, мы будем доказывать только одно из них.

$$\forall E \in \mathcal{R}(S), \quad S = \Sigma_x \times \Sigma_y.$$

 $2. \ \mu(E) < \infty.$ Построим измеримую оболочку A множества E (была лемма об измеримой оболочке).

$$A = \bigcap_{k=1}^{\infty} A_k, \quad E \subset A_k, \quad A_k = \bigcup_{l=1}^{\infty} A_{kl}, \quad A_{kl} \in S, \mu(A_k \setminus E) < \frac{1}{k}.$$

Из этого вытекает, что $\mu(A \setminus E) = 0$. Введём теперь следующие множества

$$B_n := \bigcap_{k=1}^n A_k, \quad D_{nm} := \bigcap_{k=1}^n \bigcup_{l=1}^m A_{kl} \in S.$$

Так как оба $\in S$, для них уже теорема доказана. Кроме того, $B_n \searrow A$ при $n \to \infty$, а $D_{mn} \nearrow B_n$ при $m \to \infty$. Теперь осталось применить свойства непрерывности меры снизу и сверху. А так как для множеств из полукольца теорема доказана, то и для наших множеств будет доказана. Ну и $\mu(A \setminus E) = 0$. Значит, надо доказать ещё для множеств меры нуль.

Пусть $B = E \setminus A$, $\mu(B) = 0$. Берём точно так же измеримую оболочку C этого множества $C \supset B$. Для этой измеримой оболочки мы уже доказали теорему. Имеем интеграл

$$\int_{X} \mu_{y}(C_{x}) d\mu_{X} = \mu(C) = \mu(B) = 0.$$

Так как $C \supset B$, то и $C_x \supset B_x$. И таким образом, мы доказали теорему полность для множества конечной меры.

Если множества σ -конечной меры, мы представляем их в виде счётного объединения конечной меры.

Теперь то, что оставалось без доказательства: про функцию распределения. Это как пример применения этой теоремы. Пусть (X, Σ, μ) — измеримое пространство. На множестве $E \in \Sigma$ задана неотрицательная измеримая функция $f \colon E \to \mathbb{R}_+$. Рассмотрим множество-подграфик

$$G = \{(x,t) | 0 \leqslant t \leqslant f(x)\} \subset X \times \mathbb{R}_+.$$

Позже мы докажем, что подграфик измеримой функции есть измеримое множество. А сейчас запишем его меру, как интегралы по сечениям

$$\mu(G) = \int_{E} f \, d\mu = \int_{0}^{\infty} \mu(G_t) \, dt = \int_{0}^{\infty} \lambda_f(t) \, dt,$$

где G_t — функция распределения, а $\lambda_f(t) = \mu(G_t)$.

Лемма 6.1. Пусть $f: E \to \mathbb{R}_+$ измерима. Тогда её подграфик $G = \{(t,x) | 0 \le t \le f(x)\} \subset X \times \mathbb{R}_+$ является измеримым относительно произведения мер $\mu \times dt$.

Доказательство. Давайте введём множества $H_k^n = E\left(\frac{k-1}{2^n}, f, \frac{k}{2^n}\right)$ (множество точек x, для которых выполняется неравенство) и функции $h_n(x) = \sum_{k=1}^{\infty} \frac{k}{2^n} \chi_{H_k^n}(x) > f(x)$. Была у нас лемма о том, что $h_n \searrow f$.

У функции h_n подграфик измерим, а подграфик функции f будет пересечением этих подграфиков. А пересечения измеримых измеримы.

Работаем в тех же обозначениях для произведения измеримых пространств.

Теорема 6.3 (Фубини). Если $E \in \Sigma$ σ -конечной меры $u \ f \in L(E,\mu), \ mo$

$$\int_{E} f d\mu = \int_{X} \int_{E_x} f_x d\mu_y d\mu_x = \int_{Y} \int_{E_y} f_y d\mu_x d\mu_y.$$

То есть интеграл по произведению мер равен повторному интегралу.

Доказательство. Представим f в виде разности неотрицательных функций $f = f_+ - f_-$, где $f_\pm \geqslant 0$. Это даёт нам право без ограничения общности считать, что $f \geqslant 0$. Обозначим $\lambda = \mu \otimes dt = \mu_x \otimes \mu_y \otimes dt$ в силу ассоциативности. Ещё обозначим $\nu = \mu_y \otimes dt$. Тогда $\lambda = \mu_x \otimes \nu$. Мера задана на множестве $X \times Y \times \mathbb{R}_+$.

ассоциативности. Ещё обозначим $\nu = \mu_y \otimes dt$. Тогда $\lambda = \mu_x \otimes \nu$. Мера задана на множестве $X \times Y \times \mathbb{R}_+$. Рассмотрим подграфик $G = \{(x,y,t) | 0 \leqslant t \leqslant f(x,y)\} \subset X \times Y \times \mathbb{R}_+$. Мы доказали, что G измеримо относительно меры λ .

Теперь давайте вычислять меру этого множества разными способами. Первый спобос: фиксируем (x,y)

$$\lambda(G) = \int_{E} f \, d\mu.$$

 ${\bf C}$ другой стороны можем фиксировать переменную x. Тогда будет подграфик сечения функции

$$\lambda(G) = \int_{E} f \, d\mu = \int_{X} \nu(G_x) \, d\mu_X.$$

Но сам этот подграфик мы тоже можем вычислить с помощью сечений.

$$\lambda(G) = \int_{E} f \, d\mu = \int_{X} \nu(G_x) \, d\mu_X = \int_{X} \left(\int_{E_x} f_x \, d\mu_y \right) \, d\mu_x.$$

А второе равенство доказывается симметрично.

А теперь рассмотрим меру Лебега на \mathbb{R}^n . Рассмотрим n экземпляров измеримых пространств $(\mathbb{R}, \Sigma_k, \mu_k)$ Лебега в $\mathbb{R}, k = 1 \dots, n$. Тогда можем рассмотреть измеримое пространство в \mathbb{R}^n

$$(\mathbb{R}^n, \Sigma, \mu), \quad \mu = \mu_1 \otimes \cdots \otimes \mu_n.$$

Можно было по-другому определять, а именно сразу рассмотреть полукольцо. Но у нас была теорема единственности меры, значит, мы бы получили то же самое.

Пусть $\Delta = [a_1, b_1] \times \cdots \times [a_n, b_n] - n$ -мерный отрезок. Будем обозначать $R(\Delta)$ — множество функций, измеримых по Риману, а $L(\Delta)$ — множество функций, интегрируемых по Лебегу на этом отрезке. Будем рассматривать только ограниченные функции $f \colon \Delta \mathbb{R}$. Для заданной функции определим функции Бэра

$$\underline{f}(x) := \lim_{r \to 0} \inf_{x \in \Delta \cap S_r(x)} f(x), \quad \overline{f}(x) = \lim_{r \to 0} \sup_{x \in \Delta \cap S_r(x)} f(x).$$

Эти функции измеримы, поскольку множества $\Delta(\underline{f}>c)$ и $\Delta(\overline{f}< c)$ тех точек отрезка, для которых $\underline{f}>c$ и множество, где $\overline{f}< c$ открыты для любого $c\in\mathbb{R}$.

Нижняя функция будет совпадать с верхней в точке x, если и только если функция непрерывна в x. **Теорема 6.4** (Лебега о сравнении интегралов Римана и Лебега для n-мерного отрезка). Пусть функция $f: \Delta \to \mathbb{R}$ ограничена. Тогда $f \in \mathbb{R}(\Delta) \Leftrightarrow \mu(E_1) = 0$, где

$$E_f = \{x \in \Delta | \underline{f}(x) \neq \overline{(x)} \}.$$

Если
$$f \in R(\Delta, mo \ f \in L(\Delta) \ u \int_{\Delta} f(x) \ dx = \int_{\Delta} f \ d\mu.$$

Доказательство. Сначала напишем одно из необходимых и достаточных условий интегрируемости. Когда нижний интеграл Дарбу совпадает с верхним. Мы устраиваем разбиение $\tau = \left\{\Delta_l\right\}_{l=1}^n$ отрезка Δ , внутренности элементов которого не пересекаются, то есть $\mathring{\Delta}_l \cap \mathring{\Delta}_{l'} = \varnothing$ при $l \neq l'$, а $\Delta = \bigcup_{l=1}^m \Delta_l$.

$$\underline{D}_{\tau}(f) = \sum_{l=1}^{m} \underline{a}_{l} \mu(\Delta_{l}), \ \underline{a}_{l} = \inf_{\Delta_{l}} f(x), \quad \overline{D}_{\tau}(f) = \sum_{l=1}^{m} \overline{a}_{l} \mu(\Delta_{l}), \ \overline{a}_{l} = \sup_{\Delta_{l}} f(x).$$

Условие выглядит так

$$\int f(x) dx = \sup_{\tau} \underline{D}(f) = \inf_{\tau} \overline{D}_{\tau}(f) = \int f(x) dx.$$

Пусть $\tau_k = \left\{\Delta^{(k)}{}_l\right\}_{l=1}^{m_k}$ — последовательность разбиений, удовлетворяющая условиям

- 1. Диаметр $f(\tau_k) \to 0$;
- 2. $\tau_k \supset \tau_{k+1}$;

3.
$$\int_{-}^{\infty} f(x) dx = \lim_{k \to \infty} \underline{D}_{\tau_k}(f) = \lim_{k \to \infty} \sum_{k=1}^{m_k} \underline{a}_l^{(k)} \mu(\Delta_l^{(k)}).$$

Функции $h_k(x) = \sum_{l=1}^{m_k} \underline{a}_l^{(k)} \chi_{\Delta_l^{(l)}}(x) \nearrow \underline{f}(x), \ \forall \ x \in \mathring{\Delta}_l^{(k)}, \ \forall \ k,l.$ Значит, сходится почти всюду и по одной из теорем имеем

$$\int f(x) dx = \lim_{k \to \infty} \sum_{l=1}^{m_k} \underline{a}_l^{(k)} \mu(\Delta_l^{(k)}) = \lim_{k \to \infty} \int_{\Lambda} h_k d\mu = \int_{\Lambda} \underline{f} d\mu d\mu.$$

Отсюда мы получаем равенства

$$\int_{-}^{} f(x) dx = \int_{-}^{} \underline{f} d\mu, \quad \int_{-}^{}^{} f(x) dx = \int_{-}^{}^{} \overline{f} d\mu.$$

Мы можем их объединить

$$\int\limits_{\Delta} \underbrace{(\overline{f} - \underline{f})}_{\geqslant 0} d\mu, \quad \underline{f}(x) \leqslant f(x) \leqslant \overline{f}(x).$$

Откуда мы получаем, что $f(x)-\overline{f}(x)=0$ почти всюду на $\Delta,\,f(x)=f(x)=\overline{f}(x)$ почти всюду на $\Delta.$ И

$$\int_{\Delta} f(x) \, dx = \int_{\Delta} f \, d\mu.$$

Сейчас мы построим функцию, которая не интегрируема по Лебегу. То есть никакая ей эквивалентная не интегрируема по Риману. Берём отрезок [0,1], набор $\{r_n\}=\mathbb{Q}\cap[0,1]$ и число $0<\varepsilon<1$. Положим

$$A_{\varepsilon} = \bigcup_{n=1}^{\infty} (r_n - \varepsilon_n, r_n + \varepsilon_n), \quad \varepsilon_n = \frac{\varepsilon}{2^{n+1}}.$$

Легко сверху оценить меру $\mu(A_{\varepsilon}) \leqslant \sum_{n=1}^{\infty} 2\varepsilon_n = \varepsilon$. Мера будет маленькой, но положительной. Положим

$$B_{\varepsilon} = [0,1] \setminus A_{\varepsilon}.$$

Это замкнутое множество, которое состоит только из иррациональных чисел. Оно нигде не плотно. Ну и мера этого множества $\mu(B_{\varepsilon})\geqslant 1-\varepsilon$. Теперь достаточно взять функцию

$$f(x) = \chi_{B_s}(x)$$
.

И сама функция не интегрируема по Риману, и её нельзя изменить на множестве меры нуль так, чтобы она стала интегрируемой по Риману.

7 Пространство L_n

Сегодня рассмотрим пространство $L_p(E,\mu),\ 1\leqslant p\leqslant \infty$. Распространим понятия, которые были для действительной функции.

Пусть (X, Σ, mu) — измеримое пространство, а $\mathbb{F} = \begin{cases} \mathbb{R}, \\ \mathbb{C}. \end{cases}$ $E \in \Sigma$. Функция $f \colon E \colon \mathbb{F}, \ u(x) = \operatorname{Re} f(x), \ v(x) = \operatorname{Im} f(x)$, то есть f(x) = u(x) + iv(x).

Определение 7.1. f-uзмеримая, если u,v измеримы. $f\in L(E,\mu)$, если $u,v\in L(E,\mu)$ и $\int\limits_E f\,d\mu=\int\limits_E u\,d\mu+i\int\limits_E v\,d\mu$.

Все теоремы, где нет неравенств, верные для действительно значных функций, верны и для комплексно-значных. Некоторые свойства мы с вами докажем.

Утверждение 7.1. Если $f,g\in L(E,\mu)$ и $\lambda\in\mathbb{F},\ mo\ f+g,\ \lambda f\in L(E,\mu)$ и

$$\int\limits_{\mathbb{R}} \left(f+g\right) d\mu = \int\limits_{\mathbb{R}} f \, d\mu + \int\limits_{\mathbb{R}} g \, d\mu, \ \int\limits_{\mathbb{R}} \lambda f \, d\mu = \lambda \int\limits_{\mathbb{R}} f \, d\mu.$$

Доказательство. Например, докажем последнее свойство. Пусть $\lambda = \alpha + i\beta$, а f = u + iv, тогда $\lambda f = (\alpha u - \beta v) + i(\alpha v + \beta u)$. По определению интеграла комплекснозначной функции и по свойству линейности

интеграла действительнозначной функции имеем

$$\int\limits_E \lambda f \, d\mu = \int\limits_E (\alpha u - \beta v) \, d\mu + i \int\limits_E (\alpha v + \beta u) \, d\mu = \left(\alpha E u - \beta \int\limits_E v \, d\mu\right) + i \left(\alpha \int\limits_E v \, d\mu + \beta \int\limits_E u \, d\mu\right) = \lambda \int\limits_E f \, d\mu.$$

Утверждение 7.2. Пусть $f \in L(E, \mu)$. Тогда $|f| \in L(E, \mu)$ и

$$\left| \int_{E} f \, d\mu \right| \leqslant \int_{E} |f| \, d\mu.$$

Доказательство. $|f| = \sqrt{u^2 + v^2}$, как обычно. Это не превосходит $|f| \le |u| + |v| \in L(E, \mu)$. Осталось доказать равенство. Представим результат интегрирования в тригонометрической форме $\int\limits_{\Gamma} f \, d\mu = \left| \int\limits_{\Gamma} f \, d\mu \right| \cdot e^{i\theta}$. Тогда

$$\left| \int\limits_E f \, d\mu \right| = e^{-i\theta} \int\limits_E f \, d\mu = \operatorname{Re} e^{-i\theta} \int\limits_E f \, d\mu = \operatorname{Re} \int\limits_E e^{-i\theta} f \, d\mu = \int\limits_E \operatorname{Re} (e^{-i\theta} f) \, d\mu \leqslant \int\limits_E |f| \, d\mu.$$

Утверждение 7.3. Пусть $f_1 \sim g_1$, $f_2 \sim g_2$. Тогда $f_1 + f_2 \sim g_1 + g_2$ и $\lambda f_1 \sim \lambda g_1$.

Это свойство очевидно. А если $f \sim g$ и $f \in L(E,\mu)$, то $g \in L(E,\mu)$. Значит, $L(E,\mu)$ есть линейное пространство и множество классов эквивалентных функций есть линейное пространство.

Мы вводили обозначение $B(E) = \{f \colon E \to \mathbb{F} | f$ — ограничены на $E\}$.

Определение 7.2. $L_{\infty}(E,\mu)$ — множество классов эквивалентности ограниченных функций с нормой $\|f\|_{\infty}$ = $\inf_{\mu(A)=0}\sup_{x\in E\setminus A}\left|f(x)\right|$. Оно называется множеством существенно ограниченных функций. А норма называется существенной верхней гранью.

Имеем $L\supset B(E)$ — подпространство, $f\sim 0$. Тогда $L_{\infty}(E,\mu)=B(E)\setminus L$. Мы будем обращаться с этими классами, как обыкновенными функциями.

Для каждого $\forall n \in \mathbb{N} \ \exists A_n \in \Sigma \colon \mu(A_n) = 0, \ \forall \ x \in E \setminus A_n \ \left| f(x) \right| < \|f\|_{L_\infty} + \frac{1}{n}.$ Обозначим через $A_f = \bigcup_{n=1}^{\infty} A_n$, $\mu A_f = 0$ и $\|f\|_{L_\infty} = \sup_{x \in E \setminus A_f} |f(x)|$. То есть нижняя грань достигается на некотором множестве меры нуль. Такое множество может быть и не одно. Оно существует, нам этого достаточно, чтобы доказать

Утверждение 7.4 (Свойства нормы). Пусть $||f||_{L_{\infty}} = 0$. Тогда $f \sim 0$. Кроме того, $||\lambda f||_{L_{\infty}} = |\lambda| \cdot ||f||_{L_{\infty}}$. И неравенство треугольника.

Доказательство. Как доказать неравенство треугольника. Запишем равенства

$$||f||_{L_{\infty}} = \sup_{x \in E \setminus A_f} |f(x)|, \quad ||g||_{L_{\infty}} = \sup_{x \in E \setminus A_g} |g(x)|.$$

Положим $A = A_f \cup A_g$. Тогда

$$||f+g||_{L_{\infty}} \leqslant \sup_{x \in E \setminus A} |f(x)+g(x)| \leqslant \sup_{x \in E \setminus A_f} |f(x)| + \sup_{x \in E \setminus A_g} = ||f||_{L_{\infty}} + ||g||_{L_{\infty}}.$$

Вот мы и доказали все свойства нормированного пространства.

Теорема 7.1. $L_{\infty}(E,\mu)$ — банахово пространство, то есть полное линейное нормированное пространство.

Доказательство. Рассмотрим последовательность Коши $\{f_n\}\subset L_\infty(E,\mu)$. Положим $A=\bigcup_{n,m=1}^\infty A_{f_n-f_m}$. При этом $\mu(A) = 0$ и $||f_n - f_m|| = \sup_{x \in E \setminus A} |f_n(x) - f_m(x)|$. Так как $f_n \in B(E \setminus A)$ — последовательность Коши, то

по доказанному на первой же лекции $f_n \xrightarrow[n \to \infty]{E \setminus A} f \in B(E \setminus A)$. Положим f(x) = 0 на A. Тогда $f \in L_\infty(E,\mu)$ и $\|f-f_n\|_{L_\infty} \xrightarrow[n\to\infty]{} 0.$ Определение 7.3. $L_p(E,\mu),\ 1\leqslant p<\infty$ —пространство классов эквивалентности измеримых функций

 $f \colon E \to \mathbb{F} \colon |f|^p \in L(E,\mu)$ с нормой

$$||f||_{L_p} = \left(\int_E |f|^p d\mu\right)^{\frac{1}{p}}.$$

Это линейное пространство функций, суммируемых в степени р.

Заметим, что если $f,g \in L_p(E,\mu)$, то $|f+g|^p \leqslant 2^p(|f|^p+|g|^p)$ ну и ясно, что $\lambda f \in L_p(E,\mu)$. А чтобы доказать, что это нормированное пространство, надо доказать несколько неравенств.

Утверждение 7.5 (неравенство Гёльдера). Пусть $1 < p, q < \infty, \ \frac{1}{p} + \frac{1}{q} = 1 \ u \ f, g \colon E \to \mathbb{R}_+ \ u \ измеримы. Тогда$

$$\int\limits_E fg\,d\mu \leqslant \bigg(\int\limits_E f^p\,d\mu\bigg)^{\frac{1}{p}} \bigg(\int\limits_E g^q\,d\mu\bigg)^{\frac{1}{q}}.$$

Причём эти интегралы могут принимать и бесконечные значения. Суммируемость не требуется.

Доказательство. Сначала докажем неравенство Юнга для чисел $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$, где $a,b \geqslant 0$. Рассматриваем функции $y = x^{p-1}$ и $x = y^{q-1}$. Легко видеть, что эти функции взаимно обратные. Значит, можно посчитать интеграл слева от кривой и снизу от кривой. А площадь прямоугольника будет меньше

$$ab \leqslant \int_{0}^{a} x^{p-1} dx + \int_{0}^{b} y^{q-1} dy = \frac{a^{p}}{p} + \frac{a^{q}}{q}.$$

Равенство будет только в том случае, когда $a^{p-1} = b$ или, эквивалентно $a^p = b^q$.

Чтобы доказать теперь неравенство Гёльдера, введём обозначения $A=\int\limits_E f^p\,d\mu$ и $B=\int\limits_E g^q\,d\mu$. Если одно из этих чисел равно нулю или бесконечности, то неравенство очевидно. Берём $a=\frac{f}{A^{\frac{1}{p}}}$ и $b=\frac{q}{B^{\frac{1}{q}}}$. Применяем неравенство Гёльдера и интегрируем его

$$\int\limits_E ab\,d\mu\leqslant \frac{1}{p}\int\limits_E a^p\,d\mu + \frac{1}{q}\int\limits_E b^q\,d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

Отсюда вытекает уже неравенство Гёльдера. Легко видеть, что равенство будет тогда и только тогда, когда $f^p = \lambda g^q$, где $\lambda = A/B$ почти всюду на множестве E.

Следующее неравенство

Утверждение 7.6 (неравенство Минковского). Пусть $f, g \in L_p(E, \mu), 1 \leqslant p < \infty$. Тогда $||f + g||_{L_p} \leqslant ||f||_{L_p} + ||g||_{L_p}$.

Доказательство. В случае p=1, это неравенство вытекает из элеметнарного неравенства для чисел $|f+g| \le |f| + |g|$. Нужно проинтегрировать это неравенство, получим неравенство треугольника для L_1 .

Пусть
$$p>1$$
. Положим $A=\int\limits_E|f|^p\,d\mu,\,B=\int\limits_E|g|^p\,d\mu,\,C=\int\limits_E|f+g|^p\,d\mu.$ Тогда

$$C = \int_{E} |f + g| \cdot |f + g|^{p-1} d\mu \leqslant \int_{E} |f| \cdot |f + g|^{p-1} d\mu + \int_{E} |g| \cdot |f + g|^{p-1} d\mu.$$

Найдём $q \colon \frac{1}{p} + \frac{1}{q} = 1, \ (p-1)q = p.$ Тогда по неравенству Гёльдера

$$C \leqslant A^{\frac{1}{p}} \cdot C^{\frac{1}{q}} + B^{\frac{1}{p}} \cdot C^{\frac{1}{q}}, \quad C^{\frac{1}{p}} \leqslant A^{\frac{1}{p}} + B^{\frac{1}{p}}.$$

Теперь когда достигается равенство. |f+g|=|f|+|g| почти всюду на E и

$$\frac{|f|^p}{A} = \frac{|g|^p}{B} = \frac{|f+g|^p}{C}$$

почти всюду на E. Из этого вытекает, что $f=h\cdot g$, для $h\geqslant 0$ почти всюду на E. Подставляя, получаем $h=\left(\frac{A}{B}\right)^p$ почти всюду на E (если $g\neq 0$). Так что у нас получается, что $f=\lambda g$ и $\lambda=\left(\frac{A}{B}\right)^{\frac{1}{p}}$. То есть равенство достигается только тогда, когда функции линейно зависимы, причём с положительным коэффициентом. Значит, L_p является строго нормированным. Элемент приближения является единственным.

А вот это уже полезное неравенство.

Утверждение 7.7 (обобщённое неравенство Минковского). Пусть задано два измеримых пространства (X, Σ_x, μ_x) и (Y, Σ_y, μ_y) , $E \in \Sigma_x$, $F \in \Sigma_y$ и задана измеримая функция $f \colon E \times F \to \mathbb{R}_+$, а $1 \leqslant p < \infty$. Тогда

$$\left(\int\limits_{E} \left(\int\limits_{F} f_x \, d\mu_y\right)^p d\mu_x\right)^{\frac{1}{p}} \leqslant \int\limits_{F} \left(\int\limits_{E} f_y^p \, d\mu_x\right)^{\frac{1}{p}} d\mu_y.$$

Доказательство. Нам понадобится теорема Фубини. Но это неравенство не зря называется обобщённым неравенством Минковского, так как доказывается точно так же. $g(x) = \int\limits_F f_x \, d\mu_y$ существует для почти всех

 $x \in E$.

$$\int_{E} g^{p} d\mu_{x} = \int_{E} g \cdot g^{p-1} d\mu_{x} = \int_{E} g^{p-1} \left(\int_{E} f_{y} d\mu_{x} \right) d\mu_{y}.$$

Теперь применяем неравенство Гёльдера к произведению двух функций.

$$\leqslant \int\limits_{F} \left(\int\limits_{E} f_{y}^{p} d\mu_{x} \right)^{\frac{1}{p}} d\mu_{y} \cdot \left(\int\limits_{E} g^{p} d\mu_{x} \right)^{\frac{1}{q}}.$$

Если поделить на скобку, получится как раз обобщённое неравенство Минковского.

Теорема 7.2. $L_p(E,\mu)$ — банахово пространство при $1 \leq p < \infty$.

Доказательство. Возьмём последовательность Коши $\{f_n\} \subset L_p(E,\mu)$. Тогда существует $\{m_k\} \colon m_1 < m_2 < \dots$ и $\|f_k - f_l\|_{L_p} < \frac{1}{2^n} \ \ \forall \ k, \geqslant m_n$. Такую подпоследовательность можно выбрать. И рассмотрим функцию (равенство имеет смысл в почти всех точках)

$$g(x) = |f_{m-1}(x)| + \sum_{n=1}^{\infty} |f_{m_{n+1}}(x) - f_{m_n}(x)|.$$

Если организовать частичные суммы g_n , то $g_n\nearrow g$ (значит, и в степени p тоже монотонно возрастают), так как все члены ряда неотрицательны. Кроме того $\|g_n\|_{L_p}\leqslant \|f_{m_1}\|+\sum\limits_{n=1}^\infty \frac{1}{2^n}=\|f_{m_1}\|_{L_p}+1$, то есть норма конечная. По теореме о монотонной сходимости $g\in L_p(E,\mu)$. И отсюда g конечна почти всуу на E. Значит, ряд в определении g(x) сходится почти всюду. Если снять модули, ряд будет сходиться абсолютно почти всюду

$$f(x) = f_{m_1}(x) + \sum_{n=1}^{\infty} (f_{m_{n+1}}(x) - f_{m_n}(x))$$

сходится абсолютно почи всюду. Тогда

$$f_{m_n}(x) = f_{m_1}(x) = \sum_{k=1}^{n-1} (f_{m_{k+1}}(x) - f_{m_k}(x)).$$

Из того, что $|f|^p\leqslant |g|^p\in L(E,\mu)$ следует, что $f\in L_p(E,\mu)$. Если теперь вычесть частичную сумму, получим

$$f(x) - f_{m_n}(x) = \sum_{k=n}^{\infty} (f_{m_{k+1}}(x) - f_{m_k}(x)).$$

Чтобы для бесконечной суммы неравенство можно было использовать, применяем теорему Фату

$$||f - f_{m_n}||_{L_p} \le \sum_{k=1}^{\infty} ||f_{m_{k+1}} - f_{m_k}||_{L_p} < \frac{1}{2^{n-1}}.$$

Если имеется в метрическом пространстве последовательность Коши такую, что имеет сходящуюся подпоследовательность, то она сама сходится, что можно легко показать по неравенству треугольника. Значит, мы показали, что $f_n \to f \in L_p(E,\mu)$. Значит, мы доказали полноту.

Лемма 7.1. Обозначим через $H(E,\mu)$ множество простых измеримых функций из $L_p(E,\mu)$, $1 \leqslant p \leqslant \infty$. Утверждается, что $H(E,\mu)$ всюду плотно в $L_p(E,\mu)$.

Доказательство. Раскладываем в разность неотрицательнх $f = f_+ - f_-$ и $f_\pm = \max\{\pm f, 0\}$. Мы доказывали, что $\exists \ h_n^\pm \nearrow f_\pm$, где $h_n^\pm \in H(E,\mu)$. Так как h_n^\pm интегрируемы, то и f_\pm будут интегрируемы. Обозначим

$$h = h_n^+ - h_n^-, \quad ||f - h||_{L_p} \le ||f_+ - h_n^+||_{L_p} + ||f_- - h_n^-||_{L_p} \xrightarrow[n \to \infty]{} 0$$

по тереме о монотонной сходимости.

Теперь наша задача показать, что непрерывные функции всюду плотны в L_p . А для этого нужно вообще какую-то топологию ввести.

Пусть (X, ρ) — метрическое пространство, (X, Σ, μ) — измеримое пространство с регулярной мерой и все открытые множества измеримы (а значит и замкнутые и компактные).

Теорема 7.3. Множество C(X) непрерывных ограниченных функций (тех из них, что лежат в L_p) всюду плотно в $L_p(E,\mu)$ для $1 \le p < \infty$ (в отличие от леммы здесь $p < \infty$).

Доказательство. Возьмём $f\in L_p$ и $\varepsilon>0$. По лемме $\exists\ h\in H(E,\mu)$, такая, что $\|f-h\|_{L_p}<\frac{\varepsilon}{2}$. Всякая простая

функция является линейной комбинацией характеристических функций

$$h(x) = \sum_{l=1}^{m} h_l \chi_{H_l}(x), \quad \chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}$$

Существует $\exists A$ — компактное и \exists открытое B_l , для которых $A_l \subset H_l \subset B_l$ и $\mu(B_l \setminus A_l) < \left(\frac{\varepsilon}{2c}\right)^p$, где $c = \sum_{l=1}^m |h_k|$. У нас же функция уже фиксирована.

Напомню $\rho(x,A) = \int\limits_{y\in A} \rho(x,y)$ есть непрерывная функция, поскольку выполняется неравенство

$$\rho(x,A) \leqslant \rho(y,A) + \rho(x,y) \Rightarrow |\rho(x,A) - \rho(y,A)| \leqslant \rho(x,y).$$

Доказательство. Доказательство этого неравенства простое $\rho(x,A) \leqslant \left| \rho(x,z) - \rho(z,y) \right| + \rho(z,y) \leqslant \rho(x,y) \quad \forall \ z \in A.$

Ну теперь давайте построим функцию $g(x)\sum_{l=1}^m h_l g_l(x),\ g_l(x)=\frac{\rho(x,X\setminus B_l)}{\rho(x,A_l)+\rho(x,X\setminus B_l)}.$ При этом $0\leqslant g_l(x)\leqslant 1,$ $g_l(x)=1,$ есил $x\in A_l,\ g_c(x)=0,$ если $x\in X\setminus B_l,$ то есть $x\not\in B_l.$ Все эти функции непрерывны:

$$\|\chi_{H_l} - g_l\|_{L_p} \leqslant \mu^{\frac{1}{p}}(B_l \setminus A_l) < \frac{\varepsilon}{2c}.$$

И по неравенству Минковского получаем

$$||h-g||_{L_p} < \frac{\varepsilon}{2}, \qquad ||f-g||_{L_p} \leqslant ||f-h||_{L_p} + ||g-h||_{L_p} < \varepsilon.$$

Закончим таким следствием

Следствие 7.1. $BL_p[0,1]$, $\epsilon de\ 1 \leqslant p < \infty$ всюду плотно множество

- 1. H([0,1]) простых функций;
- 2. C[0,1];
- 3. $\widetilde{C}[0,1], f(0) = f(1);$
- 4. $S- cmy neн чатые функции; для некоторого разбиения <math>0=x_0 < x_1 < \cdots < x_n < 1$ $f(x)=\sum_{k=1}^n c_k \chi_{[x_{k-1},x_k]}(x);$
- 5. P множество алгебраических многочленов, то есть $P(x) = \sum_{k=1}^{n} c_k x^k$;
- 6. T тригонометрических многочленов $T(x) = \sum_{k=-n}^{n} c_k e^{2\pi i k x};$
- 7. $C^{\infty}[0,1]$.