106bombyx

B-MAT-200

Sequences

- Sequence of numbers $(x_0, x_1, x_2, x_3, ...)$
- Or more generally (x_i) , $i \ge 0$
- Can also be defined as a function $f: \mathbb{N} \to \mathbb{R}$ $f(i) = x_i$
- Examples
 - Factorial: (1,2,6,24,120, ...)
 - Prime numbers: (2,3,5,7,11,13,17,19,23 ...)

Definition by recursion

- An element is defined by the previous elements in the sequence:
 - Initial value: x_0
 - Recursion: $x_n = f(x_{n-1}, x_{n-2}, ..., x_0)$
- Examples:
 - Fibonacci: $x_{i+1} = x_i + x_{i-1}$ which yields: (0,1,1,2,3,5,8,...)
 - Bombyx evolution:

$$x_{i+1} = kx_i \frac{(1000 - x_i)}{1000}$$

Sequence properties

- A sequence can be bounded if:
 - There exists M (upper bound) such as $x_i \leq M$, for every i
 - There exists m (lower bound) such as $x_i \ge m$, for every i
- A sequence can have a limit when $i \to \infty$
- If a sequence has a finite limit, the sequence is *convergent*
- If it does not converge (infinite limit or no limit), it is divergent

Subsequences and adherent values

- A subsequence is formed from another sequence by removing some elements
 - Example: (2,4,6,8, ...) is a subsequence of (1,2,3,4, ...)
- A sequence has an adherent value a if it has a subsequence that converges to a
 - Example: (1,2,1,2,1,2, ...) has two adherent values: 1 and 2

106bombyx

• Goal: plot the evolution of butterflies by computing the logistic map

$$x_{i+1} = kx_i \frac{1000 - x_i}{1000}$$

- Inputs:
 - n: number of butterflies in the first generation
 - k: growth rate between 1 and 4
 - i0, i1: initial and final generations
- Inputs must be (n, k) OR (n, i0, i1)

106bombyx

- Output if n and k are given as parameters:
 - Logistic map
 - Display the first 100 points of the curve: (i, x_i)
- Output if n, i0 and i1 are given as parameters:
 - "Bifurcation diagram"
 - For every k between 1 and 4, with a step of 0.01, display every points of the sequence between i0 and i1 (included): (k, x_i)

Suggested bonus

- Plot the curves with gnuplot
- Learn about fractals and plot:
 - Julia set
 - Mandelbrot set

