

Algoritmo Genético

Prof. Esp. Victor Venites

SCHOOL OF AI – SÃO PAULO – 2019 – AULA 23 – ALGORITMO GENÉTICO

Até Aqui

Matemática e Estatística –

- Matrizes
- Análise Descritiva
- Exploração de Dados
- Séries Temporais

Machine Learning -

- Naive Bayes
- Perceptron
- Radial Bases Function
- Redes Convolucionais

DeepLearning -

- AutoEncoders
- RNN LSTM
- Reinforcement Learning

Exemplos –

- ∘ Hands-On 101
- Slides
- Python

Requisitos

Roteiro -

- Exploração de Dados
- Perceptron
- Radial Bases Function
- Reinforcement Learning
- Algoritmo Genético

Objetivo

- Compreender o conceito dos desafios desconhecidos
- Mostrar os complementos do que se vê na internet
- Passar pelos conceitos de Algoritmos e Biologia
- Abdução
- Passar um pouco da minha experiência
- Deixar o aluno apto para aplicar
- Levantar questões... E responder a maioria!

Material: GitHub / Slides e Código

Vídeo: YouTube - Live

Algoritmo Genético – Artigos Históricos

Adaptation in Natural and Artificial Systems

John Henry Holland

(1975)

Genetic Algorithms and Machine Learning

David E. Goldberg and John Henry Holland

(1988)

Livro: Adaptation in Natural and Artificial Systems

John Henry Holland

(1992)

Por quê Algoritmo Genético?

- A vida é um constante aprendizado, com vitórias e derrotas. Devemos aprender com elas e procurar melhorar sempre! *By Victor Venites*
- "Matemática Dinâmica" -> Decodificação Contínua
- Aumento de Complexidade pelo grande tamanho dos dados
- Soluções aleatórias para problemas diversos, e as vezes aleatórios
- Procurar métodos diferentes e que ajudem a encontrar soluções aceitáveis

Como funciona?

- Abdução da reprodução das espécies
- Imitar o processo da seleção natural
- "Crescei e multiplicai-vos"
- Sobrevivência do mais forte, ou adaptado(esperto?)
- Cross-Over, ou o cruzamento do papai com a mamãe
- Mutações aleatórias da Natureza(Radiação?)

Processos – Raciocínio Lógico

Dedução:

- Regra geral para resultados particulares
- Matemática
- Regressão Linear, Modelos de Treinamento, Análise

Indução:

- Da amostra generaliza na população
- Estatística, Pesquisa Científica
- T-Student, Coleta de Dados do IBGE

Abdução:

- Inferências hipotéticas na existência de regras
- Trazer para si de outro lugar
- Inteligência Artificial
- Algoritmos Evolutivos

O que é Algoritmo Genético?

- É uma abdução, pois trabalha com a hipótese de agir como a seleção natural
- Por exemplo,

Chute Aleatório de Pesos

- Após a escolha dos pais
- Cruzamos os genes deles
- Metade do Pai e Metade da Mãe...
- Ou você pode arbitrar um percentual do que tem melhor fitness. Ex: 60 contra 40

Acurácia de Positivos e Negativos

Valor Previsto

Valor Verdadeiro

	Positivo	Negativo		
Negativo	Verdadeiros Positivos	Falsos Negativos		
Positivo	Falsos Positivos	Verdadeiros Negativos		

- Verificar:
 - VP / TP
 - VN / TN

	Positive disease		Negative disease		-	Total	
Test result	n	(%)	n	(%)	n	(%)	
T+ (classification 4, 5)	42	(53.2) TP	37	(46.8) FP	79	(100)	
T- (classification 3)	6	(16.7) FN	30	(83.3) TN	36	(100)	
Total	48	(41.7)	67	(58.3)	115	(100)	
Parameters		Formula		%			
Sensitivity	TP/(TP + FN)		8	87 (with disease and positive test)			
Specificity	TN/(TN + FP)		44	44 (without disease and negative test)			
Positive predictive value	TP/(TP + FP)			53			
Negative predictive value	TN/(TN + FN)			83			
Accuracy		(TP + TN)/Total		62			

Roda do Acaso

• Escolhe aleatoriamente quem serão os pais

Cross-Over

- Após a escolha dos pais
- Cruzamos os genes deles
- Metade do Pai e Metade da Mãe...
- Ou você pode arbitrar um percentual do que tem melhor fitness. Ex: 60 contra 40

Mutação

• Criamos um irmão gêmeo do filho e causamos uma mutação nele

E as Aplicações?

- Basicamente na maioria dos cases das aulas anteriores...
- Desafios de Lógica Computacional: OR, AND, XOR
- Problemas de Algebra Linear
- Machine Learning
- Vídeo Jogos: Mar I/O

0	0	0
0	1	0
1	0	0
1	1	1

	XOR	
0	0	0
0	1	1
1	0	1
1	1	0

Onde adquirir bases de Dados?

Sites conhecidos:

- Kaggle Breast Cancer Wisconsin (Diagnostic) Data Set
- https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

Passo-a-Passo – Algoritmo Genético

- 1 -> Ver problemas
- 2 -> Montar esquema
- 3 -> Variáveis
- 4 -> Teste
- 5 -> Discutir melhorias

• • •

X - > Dominar MatriX

Hands-On

Revisão

- Aplicações
- Dúvidas

- Feedback...
 - O que achou da aula?
 - Como foi sua experiencia?
- E os Slides? Agradáveis?

Referências Bibliográficas - Livros

Inteligência Artificial — Stuart Russell e Peter Norvig (2013), ISBN 978-85-352-3701-6

https://books.google.com.br/books?isbn=0262035618 - Traduzir esta página

lan Goodfellow, Yoshua Bengio, Aaron Courville - 2016 - Visualização - Mais edições The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

Referências Bibliográficas - YouTube

School of Al São Paulo -

https://www.youtube.com/channel/UCcQgGC19k35ayQNsspyyBhQ

Inteligência Artificial aprendendo a JOGAR!!! (com Redes Neurais e Algoritmos Genéticos) –

https://www.youtube.com/watch?v=aTRLMi70lxk

Obrigado!

Att,

Victor Venites

E-mail: contato@victorvenites.com

LinkedIn: https://www.linkedin.com/in/victor-venites/