NOIP 2024 模拟赛题解

BSZX

2024年9月13日

目录

1	链链链(chain)															2								
2	串串	串(str)																						3
	2.1	算法一																						3
	2.2	算法二																						3
	2.3	算法三																						3
	2.4	算法四																						3
	2.5	算法五																						3
3	字符	串(data	()																					5
4	写文	写文章(write)														6								

1 链链链 (chain)

考虑贪心。

我们先找出最大值和次大值。由于最后要把所有边删完,所以最大值所 在连通块一定会与次大值所在连通块断开,此时贡献一定为最大值 – 次大 值。所以不妨先将最大值与次大值断开。那么对于最大值与次大值中间的 数,将它们和最大值断开一定更优。

可以使用 ST 表来计算区间最大值,递归地模拟上述过程即可。复杂度 $O(n\log n)$ 。

2 串串串 (str)

2.1 算法一

考虑如何根据一个 T 求出字典序最大的 T'。

可以贪心地从前往后扫描字符串,如果该字符还没有出现,则从 z 到 a 进行标号,这样映射的结果是字典序最大的。

枚举所有的子串,暴力转换与比较是 $O(n^3)$,期望得分 10。

2.2 算法二

由刚刚的贪心方法,我们发现该子串一定是原串的后缀串,否则可以通过往后扩展获得字典序更大的答案。

枚举所有的后缀,暴力转换与比较是 $O(n^2)$, 期望得分 30。

2.3 算法三

当字符集为 {a} 时,容易得到答案为长度为原串长度的全 z 字符串。结合算法二可以得到 35。

2.4 算法四

当字符集为 $\{a,b\}$ 时,考虑快速的比较两个后缀的 T' 的字典序大小。 考虑将连续的相同字符压缩为一个长度,则两个后缀则变成了两个数 列。

易得知,贪心求得的 T' 时基于压缩的序列,进行 z 和 y 的交替填充。因此,我们可以从字符串的字典序比较,变为数列的比较。

可以求出两个数列的最长公共前缀,然后在差异的地方判断字典序大小即可。

结合算法二可以得到60。

2.5 算法五

考虑算法四启发我们进行拆位,考虑将原串拆分为 26 个 01 字符串,第i 个字符串第i 位为 1 当且仅当原串的第i 为第i 个小写字母。

我们额外记录两个序列数组 ord_i 和 rk_i ,代表从第 i 个字符往后,26 个字母的出现顺序和 26 字母的排名,可以通过从后往前扫描原串以及使用冒泡排序来求得。

这样,比较两个后缀的答案的字典序,则可以通过求出两个后缀答案的最长公共前缀后,查询差异的地方的 rk 来得到顺序。

我们可以通过二分与哈希求得两个后缀答案的最长公共前缀,具体的, 考虑两个子串的答案是否相等,可以通过 ord 的顺序依次比较拆位的字符 串的哈希值,如果所有字母全部一致则两个子串的答案也相等。

复杂度为 $O(n\Sigma \log_2 n)$, 其中 Σ 为字符集大小。

3 字符串(data)

首先考虑如何求 f 函数,对于一个字符串 s,将 A 视作 1,将 B 视作 2,在模 3 意义下相加。排除和为 0 与初始时 'AB' 交错无法操作的情况,剩下的和为 1 即为 $\{A\}$,和为 2 即为 $\{B\}$ 。

使用线段树维护每个线段树节点区间会向后贡献和为 0,1,2 的区间个数,与和为 0,1,2 的子区间个数,并维护当前面贡献为 0,1,2 时所造成的贡献。合并是容易的。另外还需要维护交替串数量,只需要维护以 A,B 中一者开头,A,B 中一者的四类串的上述贡献,即区间本身贡献和前面贡献叠加的结果对后面以及答案的贡献。

统计答案时,用和为 x 的区间数量减去和为 x 的交替区间数量就能得到 $\{A\}$ 与 $\{B\}$ 的解,用和为 0 的数量加上和为 1 或 2 的交替区间数量即为 \emptyset 的数量,且容易发现 $\{A,B\}$ 的数量为 0。

4 写文章 (write)

由于输入方式的特殊性,考虑建出 Trie 树,在 Trie 树上考虑问题。

考虑进行一个 DP,如果一个字符串不加入词库那么可以直接算出贡献, 否则考虑在它最短的能匹配它的前缀处进行贡献。

令 $dp_{x,v}$ 表示 x 的子树内,当前匹配到最短的词库内单词是 v (所在节点), sum_x 表示 x 子树内全部不加入词库的答案,这是好算的。

设 x 的儿子分别是 s_1, s_2, \dots, s_k , 假设 v 在 s_{mid} 这个子树内。

对于 i < mid,显然 s_i 子树中的任意一个串加入词库都会影响 v,所以只能取 sum_{s_i} 。

对于 i > mid,该子树内的"词库串"至少花费 dep_{s_i} 个 A,所以可以取 $\min(sum_{s_i}, min_t\{dp_{s_i,t} + (dep_{s_i} \cdot A + B) \cdot c_t\})$ 。

所以只需要对于每个i求出 $min_t\{dp_{s_i,t}+(dep_{s_i}\cdot A+B)\cdot c_t\}$,就可以使用懒标记维护dp。

发现这是类似斜率优化的形式,需要支持凸包合并,整体向上平移,求 $(dep_{s_i} \cdot A + B)$ 的对应最优值。

可以使用李超线段树合并维护,只需要额外维护截距的懒标记即可。

时间复杂度 $O(n \log n)$,空间复杂度 O(n),复杂度优秀的启发式合并凸包也可通过。