Fuzzy Learning Performance Assessment Based on Decision Making Under Internal Uncertainty

Sergej Prokhorov, Ilona Kulikovskikh

Samara State Aerospace University, Samara, Russia

24-25 September 2015

Outline

- 1 Bloom's taxonomy
- 2 Problem statement
- 3 Knowledge models
 - Binary knowledge model
 - Partial knowledge model
- 4 Fuzzy assessment
 - Definitions
 - Step-by-step procedure
- 5 Computational experiments
 - Simulation. Parameters
 - Simulation. Knowledge models
 - Simulation. Test results
 - Model validation in a real-world context
- 6 Conclusions & future work

Bloom's taxonomy

Problem statement

Binary knowledge model

The score definitions based on a binary knowledge model

$$u_{ik}^B = \left(\left(\theta_k > l_i \right) + \frac{1}{M} \left(\theta_k \le l_i \right) \right) u_{ik}, \tag{1}$$

$$u_{ik}^{BT} = (\theta_k > l_i)u_{ik}, \tag{2}$$

$$u_k^{B/BT} \quad = \quad (1+p) \sum_{i=1}^N u_{ik}^{B/BT} - p \sum_{i=1}^N \Bigl(u_{ik}^{B/BT} + \bigl(u_{ik}^{B/BT} = 0 \bigr) \Bigr),$$

$$\tilde{u}_k^{B/BT} = \frac{\max\{u_k^{B/BT}/N, 0\} + pK}{(1+p)K},$$
(3)

 u_{ik} is the k^{th} student's answer to the i^{th} item; $\theta_k \in [0, 1]$ is the k^{th} student's level of ability; $l_i \in [0, 1]$ is the difficulty of the i^{th} item; K, N, M are the numbers of students, items, and alternatives, respectively; $p \in [0, 1]$ is a penalty for each incorrect answer.

Partial knowledge model

The score definitions based on a partial knowledge model

$$u_{ik}^{P} = (c_k + (1 - c_k)F(\theta_k - l_i))u_{ik}, \tag{4}$$

$$u_{ik}^{PT} = F(\theta_k - l_i)u_{ik}, \tag{5}$$

$$u_k^{P/PT} \quad = \quad (1+p) \sum_{i=1}^N u_{ik}^{P/PT} - p \sum_{i=1}^N \Bigl(u_{ik}^{P/PT} + (u_{ik}^{P/PT} = 0) \Bigr),$$

$$\tilde{u}_k^{P/PT} = \frac{\max\{u_k^{P/PT}/N, 0\} + pK}{(1+p)K},$$
(6)

 c_k is the probability that the k^{th} student's guess results in a correct answer;

 $F(\theta_k - l_i) = \frac{1}{1 + \exp(-(\theta_k - l_i)/q_i)}, g_i$ is a parameter related to the difference between knowledge and difficulty in defining the probability of knowing the answer; $n_k = \sum_{i=1}^{N} (u_{ik} + (u_{ik} = 0))$

Definitions

Definitions

$$\tilde{u}_k^F = \tilde{u}_k^{PT} + \mathbf{w_k},$$

 \mathbf{w}_{k} is an adjustment value based on the degree of guessing.

Definitions

Definitions

$$\tilde{u}_k^F = \tilde{u}_k^{PT} + \mathbf{w_k},$$

 w_k is an adjustment value based on the degree of guessing.

Fuzzy assessment model (FAM)

Let U is a fuzzy set of answers subject to guess results in answering. Then, L is a set of degrees of items difficulty related to Bloom's cognitive levels. Then, FAM can be given as $L = \{(u, \mu_L(u)) | u \in U\}$, where $\mu_L(u): U \to [0,1]$ is the membership function of $L \subset U$. Definitions

Definitions

$$\tilde{u}_k^F = \tilde{u}_k^{PT} + \mathbf{w_k},$$

 $\mathbf{w_k}$ is an adjustment value based on the degree of guessing.

Fuzzy assessment model (FAM)

Let U is a fuzzy set of answers subject to guess results in answering. Then, L is a set of degrees of items difficulty related to Bloom's cognitive levels. Then, FAM can be given as $L = \{(u, \mu_L(u)) | u \in U\}$, where $\mu_L(u): U \to [0,1]$ is the membership function of $L \subset U$.

Fuzzy assessment problem (FAP)

According to Reiter's Theory of Diagnosis, FAP can be defined as a pair (COMPS, TSD) if the set $L \subset COMPS$ such that

 $\mathbf{TSD} \cup \mathbf{OBS}\{\mathbf{AB}(u)|u \in L\} \cup \{\leftarrow \mathbf{AB}(u)|u \in \mathbf{COMPS} - L\}$ is consistent.

Fuzzy assessment

Step-by-step procedure

Step 1: Define COMPS= $\{U, L, \Theta, G, p\}$, where $\theta \in \Theta$, $g \in G$, and $\mu_L(u)$ is the triangular membership function with six center points $\{0.1, 0.26, 0.42, 0.58, 0.74, 0.9\}$;

Step 2: Establish **TSD** as Mamdani's max-min interference mechanism based on the rule base for partial knowledge presented in Fig.1:

students and items, respectively.

Fig. 1. The rule base

Step 3: Compute $U^F = \mathbf{AB}(U)$, where the predicate $\mathbf{AB}(.)$ maps the score U into the required score U^F applying the COG method; **Step 4:** Provide $\mathbf{OBS} = \{K, N\}$, where K and N are the numbers of

4 D N 4 전에 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4 전 N 4

Parameters

Simulation parameters

- number of students is K = 10
- level of ability is $\theta = 0.6$
- \blacksquare number of items is N=6
- degree of guessing is c = 0.25
- discrimination parameter is $g = 3/2\pi$
- value for penalty p = 0.1

Fig. 2. The modelled answers u_{ik} subject to N=6, K=10: the columns correspond to students; the rows - tests

Knowledge models

Fig. 4(a) Student either knows or guesses u_{ik}^P (4)

Fig. 3(b) Student knows u_{ik}^{BT} (2)

Fig. 4(b) Student knows u_{ik}^{PT} (5)

Test results

Fig. 5(a) $\theta = 0.6$, c = 0.25 (3), (6)

Fig. 5(b) $\theta = 0.25$, c = 0.6 (3), (6)

Test results

Fig. 5(a) $\theta = 0.6$, c = 0.25 (3), (6)

Fig. 5(b) $\theta = 0.25$, c = 0.6 (3), (6)

Higher level of ability, more consistent and reliable score.

Test results

Fig. 5(a) $\theta = 0.6$, c = 0.25 (3), (6)

k. students Fig. 5(b) $\theta = 0.25$, c = 0.6 (3), (6)

Higher level of ability, more consistent and reliable score.

C	Comparison between the assessment results							
	Item	\tilde{u}_i^P	\tilde{u}_i^F	\tilde{u}_i^P	\tilde{u}_i^F	\tilde{u}_i^P	\tilde{u}_i^F	
	level	$\theta = 0.8, c = 0.4$		$\theta = 0.6, c = 0.3$		$\theta = 0.3, c = 0.2$		
	1	0.5386	0.5147	0.5	0.4753	0.4268	0.4005	
	2	0.3467	0.338	0.3162	0.3071	0.2606	0.2526	
	3	0.0909	0.0909	0.0909	0.0909	0.0909	0.0909	
	4	0.4734	0.4874	0.4131	0.4314	0.3196	0.3479	
	5	0.2233	0.2238	0.1906	0.1954	0.1439	0.1565	
L	6	0.2096	0.2121	0.1755	0.1849	0.1302	0.1536	

Model validation

Piloting

- 9 PhD students
- 30 minutes for multiple-choice tests
- on English prepositions
- levelled according to Bloom's taxonomy
- FAM parameters are $\theta = 0.6$ and p = 0.1

Results

- 1 Marked trend in categorising the answers according to the cognitive levels
- More definite distinction between true score and fuzzy score in the case $\theta_k < l_i$

Fig. 6. The result before and after applying the proposed FAM

Conclusions

- Fuzzy assessment based on decision making with partial knowledge was proposed and formalised according to Reiter's Theory of Diagnosis
- 2 Provided assessment model was tested on modelled answers with respect to the knowledge frameworks and validated in a real-world context
- Results showed the required relationship between the level of ability and the level of partial knowledge
- 4 The purpose stated in this study is accomplished

Future work

- To analyse a number of responses alternatives, a value for penalty, and response time
- To study the dynamics of multiple-choice decision making to extend the proposed results to the case of formative assessment

Fuzzy Learning Performance Assessment Based on Decision Making Under Internal Uncertainty

Information Systems & Technologies Department, Samara State Aerospace University

☑ 34 Moskovskoye sh., Samara 443086, Russia tel: 0078462674672

Sergej Prokhorov

Head of the Department, Professor email: sp.prokhorov@gmail.com

Ilona Kulikovskikh

Associate Professor

email: kulikovskikh.i@gmail.com