Mathématiques – Seconde

Corrigés des exercices

Table des matières

1	Rappels de calcul et de géométrie	2
2	Nombres réels	13
3	Géométrie repérée	17

Rappels de calcul et de géométrie

Exercice 1 Dans chaque question, on obtient la réponse à l'aide d'un tableau de proportionnalité.

1.

Nombre de personnes	4	6
Farine (en g)	250	?
Lait (en mL)	500	?
Œufs	4	6

Pour 6 personnes, il faut $\frac{250\times6}{4} = \frac{1500}{4} = 375$ g de farine, $\frac{500\times6}{4} = \frac{3000}{4} = 750$ mL de lait et, bien sûr, 6 œufs.

2. Les 6 yaourts pèsent $6 \times 125 = 750$ g.

masse (en g)	1000	750
prix (en €)	2	?

Je payerai $\frac{750\times2}{1000} = \frac{1500}{1000} = 1,5$ €.

3. Généralement, dans ce type de question, il vaut mieux convertir en minutes ¹.

temps (en min)	60	?
distance (en km)	20	45

On mettra $\frac{60\times45}{20} = \frac{20\times3\times45}{20} = 135$ min, soit 2 h 15 min (puisque 135 = 120 + 15).

4. L'énoncé donne les informations recensées dans le tableau ci-dessous et demande de compléter la case ①.

Florins	7	?	1
Pistoles	6	4	2
Deniers	?	5	30

On complète d'abord la case ② : en échange de 30 deniers, on a $4 \times 30 \div 5 = 24$ pistoles :

Florins	7	?	1
Pistoles	6	4	24
Deniers	?	5	30

On peut alors compléter la case ① : en échange de 30 deniers, on a $\frac{7 \times 24}{6} = \frac{7 \times 4 \times 6}{6} = 28$ florins.

Exercice 2 1. On complète deux tableaux de proportionnalité (on travaille en min et en km) :

temps (en min)	60	?
distance (en km)	3	0,5

temps (en min)	60	?
distance (en km)	15	5

Stéphane nage $\frac{60\times0,5}{3}=\frac{30}{3}=10$ min, puis il court $\frac{60\times5}{15}=\frac{300}{15}=20$ min.

2. Stéphane a parcouru un total de 5 + 0, 5 = 5, 5 km, en 10 + 20 = 30 min.

temps (en min)	30	60
distance (en km)	5,5	?

La vitesse moyenne de Stéphane sur l'ensemble de son parcours est donc $\frac{60 \times 5,5}{30} = \frac{30 \times 2 \times 5,5}{30} = 11 \text{ km/h}.$

Exercice 3

^{1.} Les calculs ne sont pas toujours plus faciles en minutes qu'en heures, mais c'est généralement le cas.

Le trapèze est constitué:

- d'un rectangle *BHDC*, d'aire $\ell \times L = 3 \times 2 = 6$; d'un triangle *AHD*, d'aire $\frac{B \times h}{2} = \frac{2 \times 2}{2} = 2$.

Donc l'aire du trapèze est 6 + 2 = 8.

Remarque: On peut aussi utiliser la formule (hors-programme):

$$\mathcal{A}_{\text{trapèze}} = \frac{(B+b) \times h}{2} = \frac{(5+3) \times 2}{2} = 8.$$

Exercice 4 Le losange est « la moitié » d'un rectangle de côtés ℓ et L, donc son aire est $\frac{\ell \times L}{2}$.

Exercice 5 Rappels:

- une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé (les hauteurs sont tracées en pointillés bleus);
- le fait que les hauteurs soient « concourantes » signifie qu'elles passent toutes les trois par un même point qu'on appelle « orthocentre du triangle » (nommé O sur la figure ci-dessous).

Exercice 6 On note *H* le pied de la hauteur issue de *A* dans le triangle *ABC*.

[AH] est une hauteur dans les triangles BIA et CIA, donc

$$\mathcal{A}_{BIA} = \frac{BI \times AH}{2} \qquad \qquad \mathcal{A}_{CIA} = \frac{CI \times AH}{2}.$$

Or BI = CI puisque I et le milieu de [BC], donc BIA et CIA ont la même aire.

Exercice 7 1. La négation de

Tous les hommes sont mortels.

est

<u>Il existe</u> un homme <u>immortel</u>.

2. La négation de

<u>Il existe</u> un dessert <u>sans sucre</u> à la cantine.

est

Tous les desserts sont sucrés à la cantine.

Remarque: Dans les deux exemples que nous venons de traiter, pour écrire la négation d'une phrase, il suffit de remplacer les « tous » par « il existe » , et réciproquement; et d'inverser les conclusions (exemple : immortel/mortel). C'est une technique qui fonctionne toujours.

3. La négation de

<u>Il existe</u> un pays dans lequel <u>tous</u> les hommes <u>savent lire</u>.

est

Dans <u>tous</u> les pays, <u>il existe</u> un homme qui ne sait pas lire.

4. Le contraire de « être allé en Angleterre ou en Espagne » est « n'être allé ni en Angleterre, ni en Espagne », donc la négation de

Tous les élèves de la classe sont déjà allés en Angleterre ou en Espagne .

est

<u>Il existe</u> un élève de la classe qui n'est jamais allé en Angleterre, ni en Espagne.

5. Comme dans l'exemple précédent, le contraire de « ni... ni... » est « ou ». Donc la négation de

Chloé n'aime ni les fraises, ni les framboises.

est

Chloé aime les fraises ou les framboises.

Exercice 8 1. (a) On identifie A et B dans l'implication :

Cette implication est vraie (cours du primaire).

(b) • L'implication contraposée est

on A

Cette contraposée est vraie, puisque l'implication originale l'est (cf l'énoncé : quand une implication est vraie, sa contraposée l'est aussi).

· L'implication réciproque est

B A Elle est fausse, comme le montre le contre-exemple suivant : 10 est multiple de 5, mais il ne se termine pas par 5.

2. L'implication

Si
$$\underbrace{\text{un nombre se termine par 0}}_{A}$$
, alors $\underbrace{\text{il est multiple de 10}}_{B}$.

et sa réciproque

sont vraies toutes les deux.

Exercice 9 Soit ABC un triangle

1. Théorème de Pythagore.

Si *ABC* est rectangle en *A*, alors $BC^2 = AB^2 + BC^2$.

2. Théorème contraposé de Pythagore.

Si
$$BC^2 \neq AB^2 + BC^2$$
, alors ABC n'est pas rectangle en A.

3. Théorème réciproque de Pythagore.

Si
$$BC^2 = AB^2 + BC^2$$
, alors ABC est rectangle en A .

Le théorème réciproque est bien sûr vrai, comme vous l'avez appris au collège.

<u>N</u>En devoir, le correcteur sera très attentif au nom du théorème utilisé dans les démonstrations : théorème, théorème contraposé ou théorème réciproque – il ne faudra pas confondre!

Exercice 10 1. Pour construire la figure, on trace successivement :

- Le segment [*EF*].
- La perpendiculaire à [EF] passant par E.
- Un arc de cercle de centre F, de rayon 7 cm. Il coupe la perpendiculaire que nous venons de tracer en G.

D'après **le théorème de Pythagore** dans *EFG* rectangle en *E* :

$$FG^{2} = EF^{2} + EG^{2}$$

$$7^{2} = 5^{2} + EG^{2}$$

$$49 = 25 + EG^{2}$$

$$49 - 25 = EG^{2}$$

$$\sqrt{24} = EG$$

Conclusion : $EG = \sqrt{24}$ cm.

 $\underline{\wedge} Sauf$ si l'énoncé le demande, ne donnez pas de valeur approchée.

2. Le plus grand côté est [BC] , donc le triangle ne pourrait être rectangle qu'en ${\cal A}.$

On calcule:

$$BC^2 = 6^2 = 36 AB^2 + AC^2 = 5^2 + 4^2 = 25 + 16 = 41$$

$$BC^2 \neq AB^2 + AC^2.$$

D'après **la contraposée du théorème de Pythagore**, ABC n'est pas rectangle en A.

Exercice 11 ABCDEFGH est un parallélépipède rectangle tel que AB = BC = 6 et CG = 3.

On utilise deux fois de suite le théorème de Pythagore :

Dans ABC rectangle en B,

$$AC^{2} = AB^{2} + BC^{2}$$

$$AC^{2} = 6^{2} + 6^{2}$$

$$AC^{2} = 36 + 36$$

$$AC^{2} = 72$$
(Inutile de donner AC!)

Dans ACG rectangle en C,

$$AG^{2} = AC^{2} + CG^{2}$$

$$AG^{2} = 72 + 3^{2}$$

$$AG^{2} = 72 + 9$$

$$AG^{2} = 81$$

$$AG = \sqrt{81} = 9$$

Conclusion : AG = 9.

Exercice 12 Sur la figure ci-dessous (qui n'est pas à l'échelle), le segment [MK] mesure 3 cm, le segment [MN] mesure 5 cm et h = 1,2 cm.

- 1. $\mathscr{A}_{MNP} = \frac{MN \times h}{2} = \frac{5 \times 1,2}{2} = 3 \text{ cm}^2$. 2. On a aussi $\mathscr{A}_{MNP} = \frac{PN \times MK}{2}$, donc $3 = \frac{PN \times 3}{2}$, soit $3 \times 2 = PN \times 3$; et donc PN = 2 cm.
- 3. (Non détaillé.) Il faut calculer successivement KN, puis KP et MP.

- Pour KN, on utilise le théorème de Pythagore dans le triangle KMN. On obtient KN=4 cm.
- KP = KN PN = 4 2 = 2 cm.
- Enfin, pour calculer *PM*, on utilise le théorème de Pythagore dans le triangle *KMP*. On obtient $MP = \sqrt{13}$ cm.

1. Les côtés de l'angle droit d'un triangle rectangle mesurent *a* et *b*, l'hypoténuse mesure *c*. Exercice 13

D'après le théorème de Pythagore, $c^2 = a^2 + b^2$, donc

$$c = \sqrt{a^2 + b^2}.$$

2. L'affirmation

Pour tous nombres positifs
$$a$$
 et b , $\sqrt{a^2 + b^2} = a + b$.

est FAUSSE! Voici deux justifications:

• Par le calcul. Il suffit de donner un contre-exemple : on choisit a=4 et b=3. Dans ce cas

$$\sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$$
 est différent de $a + b = 4 + 3 = 7$.

• **Géométriquement.** $\sqrt{a^2 + b^2}$ est la longueur de l'hypoténuse c du triangle rectangle de la question 1; tandis que a + b est la somme des longueurs des côtés de l'angle droit. Or cette somme est strictement plus grande que celle de l'hypoténuse, puisque le chemin le plus court d'un point à un autre est la ligne droite.

Exercice 14 Soit *A* un point et Δ une droite du plan. Le projeté orthogonal de *A* sur Δ est le point *H* de Δ tel que (*AH*) $\perp \Delta$.

1. On trace la perpendiculaire à Δ passant par A. Elle coupe Δ en H.

2. Par construction, le triangle *AMH* est rectangle en *H*, donc son hypoténuse *AM* est strictement plus grande que le côté de l'angle droit *AH* (c'est le même raisonnement que celui de l'exercice précédent) :

3. Le segment [AH] est la hauteur ² issue de A dans le triangle ABC.

^{2.} Le mot *hauteur* est polysémique (il a plusieurs sens) : le segment [AH] peut être appelé *hauteur*, la droite (AH) peut également être appelée *hauteur*; enfin la longueur AH peut elle aussi être appelée *hauteur* – c'est cette longueur, par exemple, que l'on retrouve dans la formule $\frac{B \times h}{2}$ pour l'aire du triangle.

Exercice 15 On résout les équations :

Exercice 16 Les deux plateaux de la balance ci-dessous sont en équilibre. Les poids noirs ont tous la même masse M kg.

Le fait que la balance soit en équilibre se traduit par l'équation

$$3M + 7 = 10 + M$$
.

On la résout:

$$3M+7-M = 10 + M-M$$

$$2M+7 = 10$$

$$2M+7-7 = 10-7$$

$$2M = 3$$

$$\frac{2M}{2} = \frac{3}{2}$$

$$M = 1,5$$

Conclusion : la solution est M = 1, 5.

Exercice 17 Le stade des Gones compte 15 000 places. Il y a x places dans les virages et les autres dans les tribunes. Une place en virage coûte $15 \notin$ et une place dans les tribunes coûte $25 \notin$.

Aujourd'hui, le stade est plein et la recette est de 295 000 €.

1. Il y a x places dans les virages, donc (15000 - x) places dans les tribunes. La recette totale en ϵ est donc

$$15 \times x + 25 \times (15000 - x)$$
.

Comme cette recette est 295 000 €, *x* est solution de l'équation

$$15x + 25(15000 - x) = 295000.$$

2. On résout l'équation de la question précédente :

$$15x + 25(15000 - x) = 295000$$

$$15x + 25 \times 15000 + 25 \times (-x) = 295000$$

$$15x + 375000 - 25x = 295000$$

$$-10x + 375000 = 295000$$

$$-10x + 375000 - 375000 = 295000 - 375000$$

$$-10x = -80000$$

$$\frac{-10x}{-10} = \frac{-80000}{-10}$$

$$x = 8000.$$

Conclusion : il y a x = 8000 places dans les virages (et donc 7 000 dans les tribunes).

Exercice 18

$$A = \frac{5}{6} + \frac{2}{3} = \frac{5}{6} + \frac{2 \times 2}{3 \times 2} = \frac{5}{6} + \frac{4}{6} = \frac{5 + 4}{6} = \frac{9}{6} = \frac{3 \times 3}{2 \times 3} = \frac{3}{2}$$

$$B = \frac{3}{4} - \frac{1}{6} = \frac{3 \times 3}{4 \times 3} - \frac{1 \times 2}{6 \times 2} = \frac{9}{12} - \frac{2}{12} = \frac{9 - 2}{12} = \frac{7}{12}$$

$$C = 2 + \frac{1}{5} = \frac{2}{1} + \frac{1}{5} = \frac{2 \times 5}{1 \times 5} + \frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5}$$

$$D = \frac{3}{10} \times \frac{5}{6} = \frac{3 \times 5}{10 \times 6} = \frac{15}{60} = \frac{\cancel{15}}{\cancel{15} \times 4} = \frac{1}{4}$$

$$E = 2 \times \frac{5}{6} - \frac{4}{9} = \frac{2 \times 5}{6} - \frac{4}{9} = \frac{10 \times 3}{6 \times 3} - \frac{4 \times 2}{9 \times 2} = \frac{30}{18} - \frac{8}{18} = \frac{30 - 8}{18} = \frac{22}{18} = \frac{11 \times \cancel{2}}{9 \times \cancel{2}} = \frac{11}{9}$$

$$F = 4 - 3 \times \frac{5}{6} = \frac{4}{1} - \frac{3 \times 5}{6} = \frac{4 \times 6}{1 \times 6} - \frac{15}{6} = \frac{24}{6} - \frac{15}{6} = \frac{24 - 15}{6} = \frac{9}{6} = \frac{3 \times \cancel{3}}{2 \times \cancel{3}} = \frac{3}{2}$$

$$G = \frac{6}{10} \times \frac{15}{8} = \frac{6 \times 15}{10 \times 8} = \frac{90}{80} = \frac{9 \times \cancel{10}}{8 \times \cancel{10}} = \frac{9}{8}$$

$$H = \left(\frac{2}{3}\right)^2 = \frac{2}{3} \times \frac{2}{3} = \frac{2 \times 2}{3 \times 3} = \frac{4}{9}$$

Exercice 19 Le père donne le tiers de la somme nécessaire et le petit-frère donne le quart, donc à eux deux ils en donnent

$$\frac{1}{3} + \frac{1}{4} = \frac{1 \times 4}{3 \times 4} + \frac{1 \times 3}{4 \times 3} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}.$$

Ainsi il reste $\frac{5}{12}$ du prix à payer à la charge du grand-frère. Or on sait que le grand frère a donné $10 ext{ €}$, donc le prix du livre (soit $\frac{12}{12}$ du prix) est égal à

$$\frac{12}{5} \times 10 = \frac{12 \times 10}{5} = \frac{120}{5} = 24 \in.$$

Remarque : Il peut être agréable de présenter les choses avec le schéma ci-dessous : chaque petite tranche représente $\frac{1}{12}$ du prix du livre et vaut $2 \in$. Ainsi, les $\frac{5}{12}$ du prix payé (c'est-à-dire le prix payé par le grand-frère) valent $5 \times 2 = 10 \in$; et la valeur totale du livre est $12 \times 2 = 24 \in$.

Exercice 20

$$A = \frac{2^{15} \times 3^{6}}{2^{12} \times 3^{4}} = \frac{2^{15}}{2^{12}} \times \frac{3^{6}}{3^{4}} = 2^{15-12} \times 3^{6-4} = 2^{3} \times 3^{2} = 8 \times 9 = 72$$

$$B = \frac{5^{3} \times 5^{6}}{5^{7}} = \frac{5^{3+6}}{5^{7}} = \frac{5^{9}}{5^{7}} = 5^{9-7} = 5^{2} = 25$$

$$C = \frac{2^{18}}{8 \times 2^{12}} = \frac{2^{18}}{2^{3} \times 2^{12}} = \frac{2^{18}}{2^{3+12}} = \frac{2^{18}}{2^{15}} = 2^{18-15} = 2^{3} = 8$$

$$D = \frac{6^{6}}{2^{5} \times 3^{4}} = \frac{(2 \times 3)^{6}}{2^{5} \times 3^{4}} = \frac{2^{6} \times 3^{6}}{2^{5} \times 3^{4}} = \frac{2^{6} \times 3^{6}}{2^{5} \times 3^{4}} = 2^{6-5} \times 3^{6-4} = 2^{1} \times 3^{2} = 2 \times 9 = 18$$

$$E = \frac{(10^{4})^{3}}{10^{8}} = \frac{10^{4 \times 3}}{10^{8}} = \frac{10^{12}}{10^{8}} = 10^{12-8} = 10^{4} = 10000$$

$$F = \frac{4^{5}}{8^{3}} = \frac{(2^{2})^{5}}{(2^{3})^{3}} = \frac{2^{2 \times 5}}{2^{3 \times 3}} = \frac{2^{10}}{2^{9}} = 2^{10-9} = 2$$

$$G = \frac{10^{10} + 10^{8}}{10^{7}} = \frac{10^{10}}{10^{7}} + \frac{10^{8}}{10^{7}} = 10^{10-7} + 10^{8-7} = 10^{3} + 10^{1} = 1000 + 1 = 1001$$

Exercice 21 Pour ranger les nombres par ordre croissant, on les écrit sous forme décimale, en écrivant à chaque fois quatre chiffres après la virgule pour simplifier les comparaisons.

On rappelle avant cela que $10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = \underbrace{0,00}_{3 \text{ zéros}} 1$, donc multiplier un nombre par 10^{-3} revient à décaler la virgule de 3

rangs vers la gauche (le raisonnement est le même pour 10^{-2}).

$$A = 35, 4 \times 10^{-3} = 0,0354$$

$$B = 0,034 = 0,0340$$

$$C = 3,6 \times 10^{-2} = 0,036$$

$$D = \frac{355}{10^4} = \frac{355}{10000} = 0,0355$$

$$E = \frac{7}{60} \times \frac{3}{10} = \frac{7 \times 3}{60 \times 10} = \frac{7}{20 \times 3 \times 10} = \frac{7}{200}$$

$$= 0,0350$$

Conclusion : B < E < A < D < C.

Exercice 22 Avant de commencer, il est utile de se rappeler que 10 cm=1 dm; et que 1 ℓ = 1 dm³. Autrement dit, un litre est le volume d'un cube qui mesure 1 dm sur 1 dm, ou encore 10 cm sur 10 cm sur 10 cm (la figure ci-dessous n'est bien sûr pas à l'échelle).

On remplit d'eau un aquarium rectangulaire dont la largeur est 80 cm, la profondeur 30 cm et la hauteur 40 cm. On dispose d'un robinet dont le débit est de 6 litres par minute.

1. Les dimensions de l'aquarium sont :

largeur = 8 dm, profondeur = 3 dm, hauteur = 4 dm,

donc son volume est

$$8 \times 3 \times 4 = 96 \ell$$
.

2. On peut se passer d'un tableau de proportionnalité : le débit du robinet est de 6 ℓ /min, donc il faut 96 ÷ 6 = 16 min pour remplir les 96 ℓ de l'aquarium.

Exercice 23 On utilise les identités remarquables pour calculer :

$$99^{2} = (100 - 1)^{2} = 100^{2} - 2 \times 100 \times 1 + 1^{2} = 10000 - 200 + 1 = 9801$$
 (IR n°2)

$$103^{2} = (100+3)^{2} = 100^{2} + 2 \times 100 \times 3 + 3^{2} = 10000 + 600 + 9 = 10609$$
 (IR n°1)

$$71 \times 69 = (70+1)(70-1) = 70^2 - 1^2 = 4900 - 1 = 4899$$
 (IR n°3)

$$2,05^2 = (2+0,05)^2 = 2^2 + 2 \times 2 \times 0,05 + 0,05^2 = 4+0,2+0,0025 = 4,2025$$
 (IR n°1)

$$4.3 \times 3.7 = (4 + 0.3)(4 - 0.3) = 4^2 - 0.3^2 = 16 - 0.09 = 15.91$$
 (IR n°3)

Remarque : Comment calculer 0.05^2 de tête? Comme $0.05^2 = 0.05 \times 0.05$ et que 0.05 a deux chiffres après la virgule, 0.05^2 en aura 2 + 2 = 4. Il ne reste alors plus qu'à calculer $5^2 = 25$ pour pouvoir conclure : $0.05^2 = 0.0025$.

Attention cependant à cette méthode : les derniers chiffres du résultat peuvent être des 0, comme dans l'exemple suivant :

$$0,05 \times 0,0006 = 0,000030,$$

puisque $6 \times 5 = 30$ et que le résultat doit avoir 2 + 4 = 6 chiffres après la virgule (le dernier, ici, étant un 0).

Exercice 24 Le côté du grand carré mesure a + b, donc son aire est $(a + b)^2$.

D'un autre côté, le grand carré peut être découpé en quatre parties : un carré de côté a, donc d'aire a^2 (hachuré en bleu), un carré de côté b, donc d'aire b^2 (hachuré en vert) et deux rectangles de côtés a et b, donc d'aires $a \times b$ (hachurés en rouge). Ainsi l'aire du grand carré est-elle aussi égale à

$$a^2 + b^2 + 2 \times a \times b$$
.

En comparant avec la première méthode de calcul de l'aire, on obtient la relation attendue :

$$(a+b)^2 = a^2 + 2ab + b^2$$
.

Exercice 25 1. Pour comparer les fractions $a = \frac{4}{5}$ et $b = \frac{5}{6}$, on les réduit au même dénominateur :

$$a = \frac{4 \times 6}{5 \times 6} = \frac{24}{30}$$
 , $b = \frac{5 \times 5}{6 \times 5} = \frac{25}{30}$.

Comme 24 < 25, on obtient a < b.

2. On compare à présent $c=\frac{524}{525}$ et $d=\frac{525}{526}$. On réduit là aussi au même dénominateur, mais on n'effectue aucun calcul (comme nous allons le voir, ce n'est pas nécessaire) :

$$c = \frac{524 \times 526}{525 \times 526} \qquad , \qquad d = \frac{525 \times 525}{526 \times 525}.$$

Les dénominateurs sont identiques, donc il suffit de comparer les numérateurs. D'après l'identité remarquable n°3,

$$524 \times 526 = (525 - 1)(525 + 1) = 525^2 - 1^2 = 525^2 - 1.$$

Ce nombre est strictement inférieur à $525 \times 525 = 525^2$, donc c < d.

Exercice 26 La partie hachurée de la figure de gauche est un rectangle de côtés (a - b) et (a + b), donc son aire est égale à (a - b)(a + b).

Quant à la partie hachurée de la figure de droite, c'est un carré de côté a duquel on a retiré un carré de côté b. Son aire est donc égale à $a^2 - b^2$.

L'identité remarquable n°3 nous dit que $(a-b)(a+b) = a^2 - b^2$, donc les aires des deux zones hachurées sont les mêmes.

Exercice 27

On pose MP = x, on a donc PN = MN - MP = 10 - x.

D'après le théorème de Pythagore dans chacun des deux triangles rectangles AMP et NBP:

$$AP^{2} = MP^{2} + MA^{2}$$

$$AP^{2} = x^{2} + 4^{2}$$

$$AP^{2} = x^{2} + 16$$

$$BP^{2} = PN^{2} + BN^{2}$$

$$BP^{2} = (10 - x)^{2} + 3^{2}$$

$$BP^{2} = 10^{2} - 2 \times 10 \times x + x^{2} + 9$$
 (on développe grâce à l'IR n°2)
$$BP^{2} = 100 - 20x + x^{2} + 9$$

$$BP^{2} = x^{2} - 20x + 109$$

On sait que AP = BP, donc $AP^2 = BP^2$; et d'après les deux calculs ci-dessus :

$$x^2 + 16 = x^2 - 20x + 109.$$

Il n'y a plus qu'à résoudre:

$$16 = -20x + 109$$

$$16 - 109 = -20x + 109 - 109$$

$$\frac{-93}{-20} = \frac{-20x}{-20}$$

$$4.65 = x$$

Conclusion : MP = 4,65.

Exercice 28

1. D'après le théorème de Pythagore,

$$x^2 + y^2 = 13^2 = 169.$$

D'après l'IR n°1, $(x + y)^2 = x^2 + y^2 + 2xy$. Or $x^2 + y^2 = 169$, et $\frac{x \times y}{2} = 30$, puisque c'est l'aire du triangle. On en déduit $x \times y = 30 \times 2 = 60$, puis

$$(x+y)^2 = x^2 + y^2 + 2xy = 169 + 2 \times 60 = 169 + 120 = 289.$$

Finalement, comme $(x + y)^2 = 289$,

$$x + y = \sqrt{289} = 17.$$

2. On utilise cette fois l'IR n°2:

$$(x-y)^2 = x^2 + y^2 - 2xy = 169 - 2 \times 60 = 169 - 120 = 49.$$

Or $x - y \ge 0$, puisque x est plus grand que y, donc

$$x - y = \sqrt{49} = 7.$$

▲Si on ne savait pas lequel des deux côtés est le plus grand, on pourrait avoir x - y = -7!!!

On sait à présent que x + y = 17 et x - y = 7. On ajoute membre à membre ces égalités et on en déduit x : x = 17 et x - y = 17 et x

$$(x+y) + (x-y) = 17+7$$

$$x+y+x-y=24$$

$$\frac{2x}{2} = \frac{24}{2}$$

$$x = 12$$

Enfin, comme x + y = 17, on trouve y = 17 - x = 17 - 12 = 5.

Conclusion : x = 12, y = 5.

2 Nombres réels

Exercice 29 1. $-7 \in \mathbb{Q}$. VRAI.

Justification: $-7 = \frac{-7}{1}$, donc $-7 \in \mathbb{Q}$ (il s'écrit comme le quotient de deux entiers).

2. $-7 \in \mathbb{N}$. **FAUX.**

Justification: -7 est strictement négatif, donc ce n'est pas un entier naturel.

3.
$$-\frac{13}{4} \in \mathbb{Z}$$
. FAUX.

Justification : $-\frac{13}{4} = -3,25$ a des chiffres après la virgule, donc il n'est pas entier.

Remarque : Pour obtenir $\frac{13}{4} = 3,25$ sans calculatrice, trois possibilités : ① Diviser de tête 13 par 2 deux fois de suite – ② Poser la division – ③ Remarquer que $\frac{13}{4} = \frac{12}{4} + \frac{1}{4} = 3 + 0,25 = 3,25$.

4.
$$-\frac{13}{4} \in \mathbb{D}$$
. VRAI.

Justification : $-\frac{13}{4} = -3,25$ a deux chiffres après la virgule, donc il est décimal.

5. $5,824 \in \mathbb{D}$. **VRAI.**

Justification: 5,824 a trois chiffres après la virgule, donc il est décimal

6. $5,824 \in \mathbb{Q}$. **VRAI.**

Justification $n^{\circ}1:5,824$ est décimal (cf question précédente), donc il est rationnel d'après le cours ($\mathbb{D} \subset \mathbb{Q}$).

Justification n°2: $5,824 = \frac{5824}{1000}$, donc $5,824 \in \mathbb{Q}$ (il s'écrit comme le quotient de deux entiers).

7.
$$\frac{10}{6} \in \mathbb{D}$$
. FAUX.

Justification: On pose la division:

$$\begin{array}{c|cccc}
 & 1 & 0 & 6 \\
 & - & 6 & 1,6 \\
 & - & 3 & 6 & 4
\end{array}$$

Comme on obtient deux fois le même reste (4), ça va continuer indéfiniment. Conclusion : $\frac{10}{6} = 1,666 \cdots$ n'est pas décimal, puisqu'il a une infinité de chiffres après la virgule.

8.
$$\frac{17}{11} \in \mathbb{D}$$
. FAUX.

Justification: On pose la division:

$$\begin{array}{c|ccccc}
 & 1 & 7 & & 1 & 1 \\
 & - & 1 & 1 & & 1,5 & 4 \\
 & - & 5 & 5 & & & \\
 & - & 5 & 5 & & & \\
 & - & 4 & 4 & & & \\
 & & & 6 & & & \\
\end{array}$$

Comme on obtient deux fois le même reste (6), ça va continuer indéfiniment. Conclusion : $\frac{17}{11} = 1,5454 \cdots$ n'est pas décimal, puisqu'il a une infinité de chiffres après la virgule.

Exercice 30 1.

$$I_1 = [1;4]$$
 $I_2 = [5;+\infty[$ $I_3 =]-2;0[$

2.

$$I_1 = [-1; 1[$$
 $I_2 =]3; +\infty[$ $I_3 =]-\infty; -2]$

Exercice 31

1. $5 \in [2; 6[$

- 2. −2 ∉]−2;1]
- 3. $\pi \in]3;4[$ (on rappelle que $\pi \approx 3,14)$

Exercice 32

1.
$$5 \times |-6| = 5 \times 6 = 30$$

- 2. |3| + |-3| = 3 + 3 = 6
- 3. |5| |-5| = 5 5 = 0
- 4. $|-4| \times |2| = 4 \times 2 = 8$
- 5. |7-4| = |3| = 3
- 6. |4-7| = |-3| = 3
- 7. |4-3|+|5-6|=|1|+|-1|=1+1=2
- 8. $|5-11|+2\times|7-8|=|-6|+2\times|-1|=6+2\times1=6+2=8$
- 9. $|8-5| \times |7-10| = |3| \times |-3| = 3 \times 3 = 9$
- 10. $|15-6|-4 \times |1-4| = |9|-4 \times |-3| = 9-4 \times 3 = 9-12 = -3$

Exercice 33

1. On résout l'équation |x-2|=3.

Méthode n°1: avec la définition de la valeur absolue.

Les nombres dont la valeur absolue vaut 3 sont 3 et -3. Donc dire que

$$|x-2| = 3$$

revient à dire que

$$x-2=3$$
 ou que $x-2=-3$

Donc

$$x-2+2=3+2$$
 ou $x-2+2=-3+2$
 $x=5$ ou $x=-1$

Conclusion : l'équation a deux solutions : x = 5 et x = -1.

2. On résout l'équation |x-1| = 4.

Méthode n°1: avec la définition de la valeur absolue.

Les nombres dont la valeur absolue vaut 4 sont 4 et -4. Donc dire que

$$|x - 1| = 4$$

revient à dire que

$$x - 1 = 4$$
 ou que $x - 1 = -4$

Donc

$$x - 1/ + 1/ = 4 + 1$$
 ou $x - 1/ + 1/ = -4 + 1$
 $x = 5$ ou $x = -3$

Conclusion : l'équation a deux solutions : x = 5 et x = -3.

3. On résout l'équation |x+2| = 2.

Méthode n°2: avec la distance.

Dire que

$$|x-2| = 3$$

revient à dire que la distance entre *x* et 2 est égale à 3.

On voit qu'il y a deux solutions : x = 5 et x = -1.

Méthode n°2: avec la distance.

Dire que

$$|x - 1| = 4$$

revient à dire que la distance entre *x* et 1 est égale à 4.

On voit qu'il y a deux solutions : x = 5 et x = -3.

Méthode n°1: avec la définition de la valeur absolue.

Les nombres dont la valeur absolue vaut 2 sont 2 et -2. Donc dire que

$$|x + 2| = 2$$

revient à dire que

$$x + 2 = 2$$
 ou que $x + 2 = -2$

Donc

$$x+2-2=2-2$$
 ou $x+2-2=-2-2$
 $x=0$ ou $x=-4$

Conclusion : l'équation a deux solutions : x = 0 et x = -4.

Méthode n°2: avec la distance.

Il y a une vraie difficulté : l'égalité |x+2| = 2 se réécrit

$$|x - (-2)| = 2$$

(il faut absolument faire apparaître un « – » pour pouvoir interpréter en termes de distance). Donc dire que

$$|x + 2| = 2$$

revient à dire que la distance entre x et -2 est égale à 2.

On voit qu'il y a deux solutions : x = 0 et x = -4.

4. On résout l'équation |x-2| = |x-6|.

Conformément à l'indication, on travaille avec la distance : dire que |x-2| = |x-6|, c'est dire que la distance entre x et 2 est la même que la distance entre x et 6. Autrement dit, x est à égale distance de 2 et de 6. Il y a un seul nombre x qui convienne : le milieu de l'intervalle [2;6], c'est-à-dire x = 4.

Conclusion : il y a une seule solution, x = 4.

Exercice 34 Commençons par deux exemples :

- si x = 3, alors $\sqrt{x^2} = \sqrt{3^2} = \sqrt{9} = 3$.
- si x = -3, alors $\sqrt{x^2} = \sqrt{(-3)^2} = \sqrt{9} = 3$.

On comprend que quand x est positif, on aura toujours $\sqrt{x^2} = x = |x|$; tandis que dans le cas où x est négatif, le signe – « disparaît » lorsqu'on élève au carré, ce qui donne finalement $\sqrt{x^2} = |x|$. Autrement dit, quel que soit x (y compris si x = 0), on a l'égalité

$$\sqrt{x^2} = |x|$$

Exercice 35 1. Dire que |x-2| < 3, c'est dire que la distance entre x et 2 est strictement inférieure à 3. On voit que les x qui conviennent sont tous les nombres de l'intervalle]-1;5[(extrémités exclues, puisque l'inégalité est stricte).

2. Les points de l'intervalle ci-dessous sont les nombres *x* dont la distance à 8 est inférieure ou égale à 2 (donc extrémités incluses); autrement dit, ce sont les nombres *x* tels que

$$|x-6| \le 2.$$

$$\text{dist.} = 2 \quad \text{dist.} = 2$$

$$1 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11$$

Exercice 36 Le but de l'exercice est de prouver que $\sqrt{2}$ n'est pas un nombre rationnel. Pour cela, on fait un raisonnement par l'absurde : on suppose que $\sqrt{2}$ est rationnel, c'est-à-dire qu'on peut l'écrire sous forme de fraction irréductible $\sqrt{2} = \frac{p}{q}$, où p et q sont deux entiers strictement positifs. Il faut, partant de là, aboutir à une absurdité.

1. On part de l'égalité $\sqrt{2} = \frac{p}{q}$, on élève au carré et on multiplie par q^2 :

$$\sqrt{2}^2 = \left(\frac{p}{q}\right)^2$$

$$2 = \frac{p}{q} \times \frac{p}{q}$$

$$2 = \frac{p^2}{q^2}$$

$$2 \times q^2 = \frac{p^2}{q^2} \times q^2$$

$$2q^2 = p^2$$

2. Commençons par un exemple : prenons un nombre qui « se termine par 4 » (donc le chiffre des unités est 4). Le carré de ce nombre va « se terminer par 6 », puisque $4^2 = 16$. Autrement dit, le chiffre des unités du carré est 6.

Avec la même technique, on voit que si le chiffre des unités est 9, celui du carré est 1 (puisque $9^2 = 81$); etc. On remplit ainsi le tableau :

Chiffre des unités de <i>p</i>	0	1	2	3	4	5	6	7	8	9
Chiffre des unités de p^2	0	1	4	9	6	5	6	9	4	1

3. Pour avoir le chiffre des unités de $2q^2$, il suffit de reprendre la deuxième ligne du tableau précédent et de multiplier par 2. Par exemple, si le chiffre des unités de q est 7, alors celui de q^2 est 9; et celui de $2q^2$ est 8 (puisque $2 \times 9 = 18$). On remplit ainsi le nouveau tableau :

Chiffre des unités de q										
Chiffre des unités de $2q^2$	0	2	8	8	2	0	2	8	8	2

4. D'après la question 1, $2q^2 = p^2$. Les nombres $2q^2$ et p^2 étant égaux, ils ont le même chiffre des unités. Or dans nos deux tableaux, le seul chiffre en commun des deuxièmes lignes est le 0 ; et on l'obtient lorsque le chiffre des unités de p est 0, et lorsque le chiffre des unités de q est 0 ou 5.

5. Supposons que $\sqrt{2}$ soit rationnel : on peut donc l'écrire sous forme de fraction irréductible $\sqrt{2} = \frac{p}{q}$. D'après la question précédente, p se termine par 0 et q se termine par 0 ou 5. Mais alors p et q sont tous deux multiples de 5, et donc la fraction $\frac{p}{q}$ n'est pas irréductible, en contradiction avec l'hypothèse que nous avons faite au départ.

Conclusion : supposant que $\sqrt{2}$ était rationnel, on aboutit à une absurdité; c'est donc que $\sqrt{2}$ est irrationnel : $\sqrt{2} \notin \mathbb{Q}$.

3 Géométrie repérée

Exercice 37 1.

(a) On a $A(1\ ;\ 2)$ et $B(4\ ;\ -2)$. On calcule les coordonnées de I:

$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right) \qquad I\left(\frac{1+4}{2}; \frac{2+(-2)}{2}\right) \qquad I\left(\frac{5}{2}; \frac{0}{2}\right) \qquad I\left(2, 5; 0\right).$$

(b)
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(4 - 1)^2 + (-2 - 2)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$

2. (a) On a C(-4; 2) et D(2; -3). On calcule les coordonnées de J:

$$J\left(\frac{x_C+x_D}{2};\frac{y_C+y_D}{2}\right) \qquad J\left(\frac{-4+2}{2};\frac{2+(-3)}{2}\right) \qquad J\left(\frac{-2}{2};\frac{-1}{2}\right) \qquad J\left(-1;-0,5\right).$$

(b)
$$CD = \sqrt{(x_D - x_C)^2 + (y_D - y_C)^2} = \sqrt{(2 - (-4))^2 + (-3 - 2)^2} = \sqrt{6^2 + (-5)^2} = \sqrt{36 + 25} = \sqrt{61}.$$

Exercice 38 1.

2. On calcule les coordonnées de M:

$$M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right) \qquad M\left(\frac{0+7}{2}; \frac{-2+5}{2}\right) \qquad M\left(\frac{7}{2}; \frac{3}{2}\right) \qquad M(3,5;1,5).$$

Puis celles de M':

$$M'\left(\frac{x_C + x_D}{2}; \frac{y_C + y_D}{2}\right) \qquad M'\left(\frac{2+5}{2}; \frac{3+0}{2}\right) \qquad M'\left(\frac{7}{2}; \frac{3}{2}\right) \qquad M'\left(3, 5; 1, 5\right).$$

- 3. On constate dans la question précédente que M = M', les diagonales [AB] et [CD] du quadrilatère ACBD se coupent donc en leur milieu. D'après une propriété du collège, cela entraîne que ACBD est un parallélogramme, puis que ses côtés opposés sont de même longueur : BD = AC, CB = AD.
- 4. On calcule les longueurs AC et CB:

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(2 - 0)^2 + (3 - (-2))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29}$$
.

•
$$CB = \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2} = \sqrt{(7-2)^2 + (5-3)^2} = \sqrt{5^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29}$$
.

On constate que AC = CB, donc d'après la question précédente :

$$BD = AC = CB = AD$$
.

Conclusion : le quadrilatère ACBD a quatre côtés de même longueur, donc c'est un losange.

Exercice 39

On calcule la longueur des trois côtés :

•
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-2 - 2)^2 + (1 - 4)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5.$$

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(1 - 2)^2 + (-3 - 4)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50}$$

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(1 - 2)^2 + (-3 - 4)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50}$$
.
• $BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(1 - (-2))^2 + (-3 - 1)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$.
 $AB = BC$, donc ABC est isocèle en B . On utilise le théorème réciproque de Pythagore pour prouver qu'il est rectangle :

$$\left. \begin{array}{l} AC^2 = \sqrt{50}^2 = 50 \\ AB^2 + BC^2 = 5^2 + 5^2 = 25 + 25 = 50 \end{array} \right\} AC^2 = AB^2 + BC^2.$$

D'après le théorème réciproque de Pythagore, ABC est rectangle en B.

1. • $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(1 - 6)^2 + (5 - 0)^2} = \sqrt{(-5)^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50}$

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(0 - 6)^2 + (2 - 0)^2} = \sqrt{(-6)^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40}$$
.

•
$$BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(0 - 1)^2 + (2 - 5)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10}$$

On a donc:

$$AB^{2} = \sqrt{50}^{2} = 50$$

$$AC^{2} + BC^{2} = \sqrt{40}^{2} + \sqrt{10}^{2} = 40 + 10 = 50$$

$$AB^{2} = AC^{2} + BC^{2}.$$

D'après le théorème réciproque de Pythagore, ABC est rectangle en C.

2. D'après la formule du cours :

$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right) \qquad I\left(\frac{6+1}{2}; \frac{0+5}{2}\right) \qquad I(3,5; 2,5).$$

3. Le triangle ABC étant rectangle en C, le milieu I de l'hypoténuse [AB] est le centre de Γ (rappel de l'énoncé); et le rayon de Γest

$$r = IA = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2} = \sqrt{(6 - 3, 5)^2 + (0 - 2, 5)^2} = \sqrt{2, 5^2 + (-2, 5)^2} = \sqrt{6, 25 + 6, 25} = \sqrt{12, 5}.$$

4. Savoir si H(3,5;6) appartient à Γ revient à savoir si la longueur IH est égale à r ou non. On calcule cette longueur avec la formule du cours :

$$IH = \sqrt{(x_H - x_I)^2 + (y_H - y_I)^2} = \sqrt{(3.5 - 3.5)^2 + (6 - 2.5)^2} = \sqrt{0^2 + 3.5^2} = \sqrt{0 + 12.25} = \sqrt{12.25}.$$

Comme $\sqrt{12,25} \neq \sqrt{12,5}$, le point H n'appartient pas à Γ .

N.B. La figure est trompeuse, puisqu'on a l'impression que H est sur Γ . En réalité, si vous avez pris 1 cm comme unité graphique, le point H est à environ trois cheveux (au sens propre) du cercle.

Exercice 41

1. • Le milieu du segment [AC] a pour coordonnées

$$\left(\frac{x_A + x_C}{2}; \frac{y_A + y_C}{2}\right) \qquad \left(\frac{0+4}{2}; \frac{4+(-3)}{2}\right) \qquad (2; 0,5).$$

• Le milieu du segment [BD] a pour coordonnées

$$\left(\frac{x_B + x_D}{2}; \frac{y_B + y_D}{2}\right) \qquad \left(\frac{6 + (-2)}{2}; \frac{1 + 0}{2}\right) \qquad (2; 0, 5).$$

Les diagonales du quadrilatère ABCD se coupent en leur milieu, donc c'est un parallélogramme (propriété du collège).

∆Si vous donnez un nom aux milieux des diagonales avant de faire les calculs, donnez-leur des noms différents : avant de faire les calculs, on n'a pas encore prouvé que les milieux étaient les mêmes.

2. On calcule la longueur des diagonales:

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(4 - 0)^2 + (-3 - 4)^2} = \sqrt{4^2 + (-7)^2} = \sqrt{16 + 49} = \sqrt{65}$$
.

•
$$AC = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \sqrt{(4 - 0)^2 + (-3 - 4)^2} = \sqrt{4^2 + (-7)^2} = \sqrt{16 + 49} = \sqrt{65}.$$

• $BD = \sqrt{(x_D - x_B)^2 + (y_D - y_B)^2} = \sqrt{(-2 - 6)^2 + (0 - 1)^2} = \sqrt{(-8)^2 + (-1)^2} = \sqrt{64 + 1} = \sqrt{65}.$

Exercice 42 1. Le symétrique de 2 par rapport à 5,5 est 9.

2. On généralise le travail de la question précédente : c est le symétrique de a par rapport à b lorsque b est le milieu du segment qui va de a à c.

Autrement dit $b = \frac{a+c}{2}$, ce qui donne $b \times 2 = \frac{a+c}{2} \times 2$, soit 2b = a+c; et donc

$$c = 2b - a$$
.

3. On place *C*, symétrique du point *A* par rapport au point *B*.

Par définition d'une symétrie centrale, B est le milieu du segment [AC], donc d'après la formule du cours pour le milieu d'un segment :

$$x_B = \frac{x_A + x_C}{2} \qquad , \qquad y_B = \frac{y_A + y_C}{2}.$$

Autrement dit, en remplaçant avec les données de l'énoncé :

$$3,25 = \frac{1+x_C}{2}$$
 , $-1,75 = \frac{2+y_C}{2}$.

En raisonnant comme dans la question précédente, on obtient

$$x_C = 2 \times 3, 25 - 1 = 5, 5$$
 , $y_C = 2 \times (-1, 75) - 2 = -5, 5$.

Conclusion : C(5, 5; -5, 5).

Exercice 43 Cet exercice d'introduction à la notion de vecteur appelle quelques commentaires :

- 1. La télécabine EFGH glisse pour aboutir à la position IJKL. Ce déplacement est appelé « translation de vecteur \overrightarrow{AB} ».
- 2. Le vecteur \overrightarrow{AB} a été représenté en violet sur la figure, il est égal à chacun des vecteurs \overrightarrow{EI} , \overrightarrow{FJ} , \overrightarrow{GK} et \overrightarrow{HL} . On peut donc écrire

 $\overrightarrow{AB} = \overrightarrow{EI} = \overrightarrow{FJ} = \overrightarrow{GK} = \overrightarrow{HL}.$

3. Pour aller de A à B, on avance de 4 carreaux en abscisse et on descend de 1 carreau en ordonnée; on dit que \overrightarrow{AB} a pour abscisse 4 et pour ordonnée -1. On note $\overrightarrow{AB} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

Exercice 44 1.

2. On calcule les coordonnées de \overrightarrow{AB} :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \qquad \overrightarrow{AB} \begin{pmatrix} 1 - (-3) \\ 2 - 0 \end{pmatrix} \qquad \overrightarrow{AB} \begin{pmatrix} 4 \\ 2 \end{pmatrix}.$$

3. On calcule les coordonnées de \overrightarrow{II} :

$$\overrightarrow{IJ} \begin{pmatrix} x_J - x_I \\ y_J - y_I \end{pmatrix} \qquad \overrightarrow{IJ} \begin{pmatrix} 5 - 1 \\ 0 - (-2) \end{pmatrix} \qquad \overrightarrow{IJ} \begin{pmatrix} 4 \\ 2 \end{pmatrix}.$$

22

Conclusion : les vecteurs \overrightarrow{AB} et \overrightarrow{IJ} ont les mêmes coordonnées, donc ils sont égaux : $\overrightarrow{AB} = \overrightarrow{IJ}$.

Exercice 45 On considère les points A(-3;-2), B(5;-2), C(1;4), D(-1;1), E(3;1), F(5;4).

Il y a trop de possibilités pour que les justifie toutes. Je vais me contenter de donner un couple de vecteurs égaux, avec la justification; puis donner toutes les autres égalités possibles, mais sans les justifier :

1. Une égalité et sa justification.

 $\overrightarrow{DC} = \overrightarrow{EF}$. En effet, ces vecteurs ont les mêmes coordonnées :

•
$$\overrightarrow{DC}\begin{pmatrix} x_C - x_D \\ y_C - y_D \end{pmatrix}$$
 $\overrightarrow{DC}\begin{pmatrix} 1 - (-1) \\ 4 - 1 \end{pmatrix}$ $\overrightarrow{DC}\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
• $\overrightarrow{EF}\begin{pmatrix} x_F - x_E \\ y_F - y_E \end{pmatrix}$ $\overrightarrow{EF}\begin{pmatrix} 5 - 3 \\ 4 - 1 \end{pmatrix}$ $\overrightarrow{EF}\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

•
$$\overrightarrow{EF}\begin{pmatrix} x_F - x_E \\ y_F - y_E \end{pmatrix}$$
 $\overrightarrow{EF}\begin{pmatrix} 5 - 3 \\ 4 - 1 \end{pmatrix}$ $\overrightarrow{EF}\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

2. Toutes les autres égalités.

Toutes les autres egalites.

$$\overrightarrow{CF} = \overrightarrow{DE} \qquad \overrightarrow{FC} = \overrightarrow{ED} \qquad \overrightarrow{CD} = \overrightarrow{FE} \qquad \overrightarrow{DC} = \overrightarrow{AD} \qquad \overrightarrow{EF} = \overrightarrow{AD} \qquad \overrightarrow{DA} = \overrightarrow{CD} \qquad \overrightarrow{DA} = \overrightarrow{FE} \qquad \overrightarrow{AE} = \overrightarrow{DF} \qquad \overrightarrow{EA} = \overrightarrow{FD} \qquad \overrightarrow{CE} = \overrightarrow{EB} \qquad \overrightarrow{EC} = \overrightarrow{BE}$$

 \triangle Attention à l'ordre des lettres! Par exemple, $\overrightarrow{DC} = \overrightarrow{EF}$, mais $\overrightarrow{DC} \neq \overrightarrow{FE}$ (il y a un problème de sens : le vecteur \overrightarrow{DC} « monte vers le haut et la droite »; tandis que \overrightarrow{FE} « descend vers le bas et la gauche » – l'erreur se détecte aussi bien sûr en calculant les coordonnées).

Exercice 46 En physique, un vecteur représente une force, et la longueur (ou norme) du vecteur correspond à l'intensité de la force. L'égalité $\|\overrightarrow{P_2}\| = 2 \|\overrightarrow{P_1}\|$ signifie que la masse 2 a un poids deux fois plus important que celui de la masse 1.

Exercice 47 L'image du triangle *ABC* par la translation de vecteur $\overrightarrow{u} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$ est le triangle *DEF*.

Exercice 48 Un voyageur de commerce (= un représentant) fait une note de frais pour chaque jour de travail où il utilise sa voiture. Il reçoit une part fixe de $30 \in$, et une indemnité de $0.5 \in$ /km.

Remarque : On peut penser que l'indemnité kilométrique sert à rembourser les frais de déplacement (par exemple si le représentant utilise sa propre voiture); et que la part fixe sert à payer les repas.

1. S'il fait 120 km dans la journée, le montant de la note de frais est de

$$30 + 120 \times 0, 5 = 30 + 60 = 90 \in$$
.

2. On note x le nombre de km parcourus par le voyageur de commerce, et f(x) le montant de la note de frais. On a alors

$$f(x) = 30 + x \times 0, 5 = 0, 5x + 30.$$

3. La fonction f est affine, puisque f(x) = 0.5x + 30 (c'est bien une fonction de la forme f(x) = ax + b, avec a = 0.5 et b = 30). Sa courbe représentative est donc une droite, que l'on trace à partir d'un tableau de valeurs avec deux valeurs; par exemple :

X	0	120
f(x)	30	90

$$f(0) = 0.5 \times 0 + 30 = 30$$
$$f(120) = 0.5 \times 120 + 30 = 90$$

On place les points de coordonnées (0;30) et (120;90), puis on trace la droite – en réalité un segment, puisqu'on va de 0 à 200 en abscisses.

Remarque : On a choisi les valeurs 0 et 120, mais on peut prendre n'importe quelles valeurs – l'avantage de 0, c'est que le calcul est facile; et l'avantage de 120, c'est qu'on a déjà fait le calcul dans la question 1.

- 4. Le voyageur de commerce a une note de frais de 75 €. Pour déterminer le nombre de km parcourus dans la journée, il y a deux méthodes :
 - **Graphiquement.** On voit qu'il a parcouru 90 km (pointillés rouges) ³.
 - **Par le calcul.** On retire les frais fixes : 90 − 30 = 60 € d'indemnité kilométrique. Puis, comme chaque km compte pour 0,5 €, on divise : 45 ÷ 0,5 = 45 × 2 = 90 km. ⁴

Exercice 49 1. • Lorsqu'on télécharge 50 Mo, on paye 3 €.

- Lorsqu'on télécharge 150 Mo, les 100 premiers coûtent 3 €; et les 50 suivants coûtent 50 × 0,04 = 2 €. On paye donc au total 3 + 2 = 5 €.
- 2. On complète le tableau de valeurs :

Nombre de Mo	0	50	100	150	200
Prix à payer	3	3	3	5	7

Remarque : jusqu'à 100 Mo, on paye 3 €. Ensuite, chaque nouvelle tranche de 50 Mo est facturée 2 €.

3. On construit la courbe qui donne le prix payé en fonction du nombre de Mo téléchargés. Elle est constante sur l'intervalle [0;100], puis affine sur l'intervalle [100;200]. Il faut donc utiliser une règle pour effectuer le tracé ⁵.

- 4. Il y a deux méthodes:
 - Graphiquement. On voit qu'on a téléchargé 140 Mo (pointillés rouges).
 - Par le calcul. J'ai payé 4,60 €, donc 3 + 1,60 €. J'ai donc téléchargé 1,60 ÷ 0,04 = 40 Mo au-delà du 100°. Autrement dit, j'ai téléchargé 140 Mo.
- 3. La méthode graphique est simple, mais la réponse pourrait être imprécise.
- 4. On peut aussi résoudre l'équation 0.5x + 30 = 75.
- 5. On parle de fonction « affine par morceaux ».

Exercice 50 Les gares de Calais et de Boulogne-sur-Mer sont distantes de 30 km. Un train part à 12 h de Boulogne-sur-Mer en direction de Calais et roule à la vitesse de 40 km/h. Un train part de Calais à 12 h 15 et fait route en sens inverse à la vitesse de 60 km/h.

1. Le train qui part à 12 h de Boulogne-sur-Mer roule à la vitesse de 40 km/h, donc il parcourt 40 km en 60 min. Pour savoir quand il arrive à Calais, on complète un tableau de proportionnalité :

temps (en min)	60	?
distance (en km)	40	30

Le train mettra $\frac{60\times30}{40}=\frac{1800}{40}=45$ min pour arriver à Calais, donc il y sera à 12 h 45.

Pour le train qui part de Calais, le calcul est plus facile : il roule à 60 km/h, donc parcourt 60 km en 60 min; et ainsi 30 km en 30 min. Comme il part à 12 h 15, il arrive à 12 h 45 lui aussi.

On peut ainsi représenter la marche des deux trains :

2. Nous allons déterminer l'heure de croisement des trains par le calcul. Graphiquement, cela correspond à l'abscisse du point d'intersection des courbes.

À 12h15, le train qui part de Boulogne-sur-Mer a parcouru 10 km (facile à vérifier), il est donc à 20 km de Calais. C'est l'heure à laquelle le deuxième train part. Comme l'un roule à 40 km/h et l'autre à 60 km/h, tout se passe comme si un seul train devait parcourir 20 km à la vitesse de 40 + 60 = 100 km/h. On complète un tableau de proportionnalité :

temps (en min)	60	?
distance (en km)	100	20

 $\frac{60 \times 20}{100} = \frac{1200}{100} = 12$, donc il faudrait 12 min à ce train pour parcourir 20 km. Ainsi, les deux trains se croiseront-ils à

$$12 h 15 min + 12 min = 12 h 27 min.$$

Exercice 51 Je me contenterai du graphique, donc je ne ferai pas les calculs pour avoir les heures exactes des deux rencontres – elles s'obtiennent avec les mêmes techniques que dans l'exercice précédent.

