

Material Definition

I. Hrivnacova, IPN Orsay

Credits:

T. Nikitina, J.Apostolakis, G.Cosmo, A. Lechner, (CERN), S.Incerti (CENBG), Tatsumi Koi (SLAC), M. Verderi (LLR) and others

Geant4 ED PHENIICS Tutorial, 13 - 17 May 2019, Orsay

Outline

- The System of units & constants
- NIST Database
- Definition of elements
- Materials and mixtures

The System of Units

- Geant4 has no default unit. To give a number, unit must be "multiplied" to the number, for example :
 - G4double width = 12.5*m;
 - G4double density = 2.7*g/cm3;
- If no unit is specified, the internal G4 unit will be used, but this is discouraged!
- Almost all commonly used units are available.
- Refer to CLHEP: SystemOfUnits.h
- To get a value in a given unit divide a variable by this unit:
 - G4cout << dE / MeV << " (MeV)" << G4endl;
- Users can define their own units using G4UnitDefinition class

The System of Units (2)

- Geant4 uses system of units defined in CLHEP and based on:
 - millimeter (mm), nanosecond (ns), Mega eV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), luminous intensity (candela), radian (radian), steradian (steradian)
- All other units are computed from the basic ones.
- In output, Geant4 users can choose the most appropriate unit to use. Just specify the category for the data (Length, Time, Energy, etc...):
 - G4cout << G4BestUnit(stepSize, "Length");
 - stepSize will be printed in km, m, mm or ... fermi, depending on its value

Definition of Materials

- Geant4 models materials mimicking what happens in nature
- With different kind of materials
 - Isotopes, elements, molecules, compounds and mixtures => G4Isotope, G4Element, G4Material
- Attributes associated:
 - Temperature, pressure, state, density
- Note that modeling is in most of the cases limited to "High Energy Physics" approximation:
 - le: molecular or crystal structure do not count at high energy
- But with notable exceptions:
 - Very low energy DNA simulation does take into account DNA structure
 - New developments regarding channeling effects are ongoing...

Isotopes, Elements and Materials

- G4Isotope and G4Element describe the properties of the atoms:
 - Atomic number, number of nucleons, mass of a mole, shell energies
 - Cross-sections per atoms, etc...
- G4Material describes the macroscopic properties of the matter:
 - Temperature, pressure, state, density
 - Radiation length, absorption length, etc...

NIST Database

- NIST database:
 - https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
- Imported inside Geant4
- Simplifies definition of materials in users applications as it is sufficient just to choose a material or an element by its name
- Guarantees accuracy in major parameters:
 - Density, mean excitation potential, elemental composition, isotopic composition, ...

Predefined materials in NIST

- Elementary materials
 - Up to Californium (Cf, Z=98)
- Compounds and mixtures
 - A-150 Tissue-Equivalent Plastic, Air Dry (near sea level) and many others
- HEP and Nuclear Materials
 - Liquid Ar, PbWO4, CR39 and so on
- Space Materials
 - Kevlar, Dacron and so on
- Bio Chemical Materials
 - Cytosine, thymine and so on
- Total number of predefined material in the database is 315

Getting Material from NIST

 Element/Material is retrieved from Geant4 material database by its name:

```
#include "G4NistManager.hh"

// Get NIST manager
G4NistManager* manager = G4NistManager::Instance();

// Get/build elements, materials
G4Element* elC = manager->FindOrBuildElement("G4_C");
G4Material* water = manager->FindOrBuildMaterial("G4_WATER");
```

- The list of currently available material names can be found in the Geant4 User's Guide for Application Developers
 - Appendix 6: Geant4 Material Database
 - The list is permanently being extended

More about NIST

Scaling the density of a defined material in NIST:

 A compound can be built by specifying a vector of atomic numbers and weights using

Isotope masses are accessible using

```
G4NistManager::GetMass(G4int Z, G4int N);
```

NIST materials in Geant4

Elements

Elementary Materials from the NIST Data Base Name ChFormula density(g/cm^3) I(eV) G4_H 8.3748e-05 G4_He 0.000166322 41.8 G4_Li 0.534 G4_Be 1.848 63.7 G4_B 2.37 76 G4_C G4 N 0.0011652 $G4_0$ 0.00133151 G4_F 0.00158029 115 10 G4_Ne 0.000838505 137 11 G4_Na 0.971 12 G4_Mg 1.74 156 13 G4_A1 2.6989 166 14 G4_Si 2.33 173

Compounds

###	Compo	ound Materials	from the NIST Dat	ta Base
N	Name	ChFormula	density(g/cm^3)	I(eV)
13	G4_Adipo	se_Tissue	0.92	63.2
	1	0.119477		
	6	0.63724		
	7	0.00797		
	8	0.232333		
	11	0.0005		
	12	2e-05		
	15	0.00016		
	16	0.00073		
	17	0.00119		
	19	0.00032		
	20	2e-05		
	26	2e-05		
	30	2e-05		
4	G4_Air		0.00120479	85.7
	6	0.000124		
	7	0.755268		
	8	0.231781		
	18	0.012827		
2	G4_CsI		4.51	553.1
	53	0.47692		
	55	0.52308		

Explicit Material Definition

Elements

 Elements are defined by name, symbol, atomic number and mass of mole:

Elements & Isotopes

If necessary, elements can be built from pre-defined isotopes:

```
G4int iz, n, nComponents;
G4double abundance;
// isotopes
G4Isotope* u235
  = new G4Isotope("U235", iz=92, n=235, a=235.01*g/mole);
G4Isotope* u238
  = new G4Isotope("U238", iz=92, n=238, a=238.03*g/mole);
// element composed of isotopes
G4Element* uranium
  = new G4Element("Enriched Uranium", "U", nComponents=2);
uranium->AddIsotope(u235, abundance= 90.*perCent);
uranium->AddIsotope(u238, abundance= 10.*perCent);
```

Material of One Element

Single element material:

```
G4double density = 1.390*g/cm3;
G4double a = 39.95*g/mole;
G4Material* lAr
= new G4Material("liquidArgon", z=18., a, density);
```

- Do not try to use the single element capability as a replacement of a mixture, by making an "effective" average A, Z: it will crash with hadronic physics!
 - Remember : cross-sections are not a function of material properties, but a function of nuclear properties.
 - Provide the correct set of elements instead.

Material: Molecule

Material as a composition by number of atoms (molecule):

```
G4double a, z, density;
G4int nComponents, nAtoms;
G4String symbol;
a = 1.01*g/mole;
G4Element* elH
  = new G4Element("Hydrogen", symbol="H", z=1., a);
a = 16.00*g/mole;
G4Element* el0
  = new G4Element("0xygen", symbol="0", z=8., a);
density = 1.000*q/cm3;
G4Material* water
  = new G4Material("Water", density, nComponents=2);
water->AddElement(elH, nAtoms=2);
water->AddElement(el0, nAtoms=1);
```

To repeat: in most of the cases, the molecular structure is not taken into account in Geant4: this a high energy approximation

Material: Compound

Compound: a composition of elements by fraction of mass

```
G4double a, z, density;
G4int nComponents;
G4String name, symbol;
a = 14.01*g/mole;
G4Flement* elN
 = new G4Element(name="Nitrogen", symbol="N", z=7., a);
a = 16.00*g/mole;
G4Element* el0
  = new G4Element(name="0xygen", symbol="0", z=8., a);
density = 1.290*mg/cm3;
G4Material* air
  = new G4Material(name="Air", density, nComponents=2);
air->AddElement(elN, 70.0*perCent);
air->AddElement(el0, 30.0*perCent);
```

Material: Mixture

Composition of compound materials and elements by mass fraction

Example of Gas

- It may be necessary to specify temperature and pressure
 - As dE/dx computation is affected

Example of Vacuum

- Absolute vacuum does not exist: it is a gas at very low density!
 - Cannot define materials composed of multiple elements through Z or A, with density = 0!

Summary

- Materials in Geant4 describe the macroscopic properties
- You may use the NIST database
 - Includes many isotopes, elements and materials
 - As well as "advanced" materials (organic tissues, etc.)
- You may also create new materials for the NIST database scaling material densities
- When needed, the materials, elements and isotopes can be defined from scratch, using Geant4 classes