Fisciano, 18 settembre 2014

topologia • IT

Topologia di rete (topologia)

Limite di tempo: 1.0 secondi Limite di memoria: 256 MiB

Installare una rete affidabile che serva centinaia o migliaia di computer non è un compito facile. Carlo Centrostella, il tecnico incaricato della rete per le prossime nazionali, lo sa bene e di certo non vuole fare brutta figura proprio davanti agli occhi della commissione olimpica delle Olimpiadi di Informatica. La rete è rappresentata da un grafo in cui i vertici sono i computer e gli archi identificano i collegamenti tra di essi. Generalmente la topologia di una rete rientra in una di queste 3 categorie, per ognuna delle quali viene fornito un esempio:

Topologia lineare	0-0-0-0
Topologia ad anello	
Topologia a stella	

Affinché si possa dire che un gruppo connesso di PC formi una certa topologia è necessario che siano presenti almeno due PC nel gruppo. Inoltre le topologie ad anello e a stella necessitano, rispettivamente, di almeno 3 ed almeno 4 PC. I computer lasciati scollegati non formano alcuna topologia di rete.

Carlo ha già cominciato a collegare i PC con dei cavi, così che certi gruppi di computer sono connessi tra di loro secondo una qualche topologia. Purtroppo non è sempre stato coerente e non ricorda come ha collegato certi PC. Aiuta Carlo a scrivere un programma che, analizzando la struttura della rete, determina quanti gruppi (connessi) di computer sono collegati rispettando la topologia lineare, quanti quella ad anello e quanti quella a stella.

Implementazione

Dovrai sottoporre esattamente un file con estensione .c, .cpp o .pas.

Tra gli allegati a questo task troverai un template (topologia.c, topologia.cpp, topologia.pas) con un esempio di implementazione.

Dovrai implementare la seguente funzione:

C/C++	<pre>void Analizza(int N, int M, int A[], int B[], int T[])</pre>
Pascal	procedure Analizza(N, M: longint; var U, V, T: array of longint);

dove:

topologia Pagina 1 di 3

Gara di Prova OII 2014

Fisciano, 18 settembre 2014

topologia • IT

- L'intero N rappresenta il numero di PC.
- \bullet L'intero M rappresenta il numero di collegamenti nella rete.
- Gli array A e B sono indicizzati da 0 a M-1, e rappresentano i collegamenti della rete: per ogni $i=0,\ldots,M-1$, vi è un cavo che collega il PC A[i] e il PC B[i]. I PC sono numerati da 1 a N. I collegamenti sono bidirezionali.
- La funzione dovrà riempire l'array T con i seguenti tre valori: il numero di topologie lineari, ad anello e a stella, rispettivamente.

Grader di prova

Nella directory relativa a questo problema è presente una versione semplificata del grader usato durante la correzione, che potete usare per testare le vostre soluzioni in locale. Il grader di esempio legge i dati di input dal file input.txt, a quel punto chiama la funzione Analizza che dovete implementare. Il grader scrive sul file output.txt i valori di T[0], T[1] e T[2].

Nel caso vogliate generare un input per un test di valutazione, il file input.txt deve avere questo formato:

- Riga 1: contiene gli interi N e M.
- Riga i+2 (per $i=0,\ldots,M-1$): contiene gli interi A[i] e B[i].

Il file output.txt ha un'unica riga che contiene i tre interi T[0], T[1], T[2], i quali rappresentano rispettivamente il numero di topologie lineari, il numero di topologie ad anello e il numero di topologie a stella.

Assunzioni

- $1 \le N, M \le 100000$.
- Un cavo non collega mai un PC con se stesso.
- Non esistono due cavi distinti che collegano la stessa coppia di PC.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

- Subtask 1 [5 punti]: Casi d'esempio.
- Subtask 2 [25 punti]: $N \le 30$.
- Subtask 3 [50 punti]: La rete dei PC è connessa.
- Subtask 4 [20 punti]: Nessuna limitazione specifica.

topologia Pagina 2 di 3

Fisciano, 18 settembre 2014

topologia • IT

Esempi di input/output

input.txt	output.txt
15 11	1 1 1
2 8	
3 14	
12 2	
9 11	
12 8	
4 14	
7 1	
6 5	
10 1	
14 13	
1 6	

Spiegazione

Nel caso di esempio la rete è la seguente:

Osserviamo che la rete non è connessa. La prima componente connessa corrisponde ad una topologia ad anello (ovvero, la sottorete composta dai nodi 2, 8 e 12), la seconda invece corrisponde ad una topologia a stella (nella quale il nodo 14 rappresenta il centro) e la terza ad una topologia lineare (nodi 11 e 9). La quarta e la quinta componente connessa non corrispondono a nessuna delle topologie descritte nel testo.

topologia Pagina 3 di 3