CSC 148: Introduction to Computer Science Week 9

Tree traversals

Binary Search Trees (BSTs)

Today: Tree Traversals

- Formalize strategies for traversing any general Tree
 - BSTs are just a special type of Tree ...
 - Hence, traversals are similar

Functions as Arguments

def list_if(self, p: Callable[[Any], bool]) -> list[Any]:

"""Return a list of values in this Tree that satisfy predicate ...

Parameter is a function which takes a single value argument and checks some predicate on that value, returning True or False.

pass

```
Idea: if self._root is empty => return []
    if it's a leaf => [self._root] if p(self._root) else []
    otherwise => call recursively for each subtree in self._subtrees
        and construct the list of values that satisfy p
```


Traversal

 The functions and methods we have seen get information from every node of the tree -- in some sense they traverse the tree

- Sometimes the order of processing tree nodes is important:
 - Do we process the root of the tree (and the root of each subtree...) before or after its children?
 - Or, perhaps, we process along levels that are the same distance from the root?

Preorder Traversal

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit its first subtree in preorder
 - visit its second subtree in preorder

• ...

What is the sequence of nodes being visited in preorder?

Preorder – More Examples

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit its first subtree in preorder
 - visit its second subtree in preorder
 - ...

What is the sequence of nodes being visited in preorder?

Preorder - More Examples

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit its first subtree in preorder
 - visit its second subtree in preorder
 - ...

What is the sequence of nodes being visited in preorder?

Postorder Traversal

- Visit each node of Tree t as follows:
 - visit its first subtree in postorder
 - visit its second subtree in postorder
 - ...
 - do something with the node / value, e.g., print it

What is the sequence of nodes being visited in postorder?

Postorder – More Examples

- Visit each node of Tree t as follows:
 - visit its first subtree in postorder
 - visit its second subtree in postorder
 - •
 - do something with the node / value, e.g., print it

What is the sequence of nodes being visited in postorder?

Postorder – More Examples

- Visit each node of Tree t as follows:
 - visit its first subtree in postorder
 - visit its second subtree in postorder
 - ...
 - do something with the node / value, e.g., print it

What is the sequence of nodes being visited in postorder?

Inorder Traversal (BST only)

- Visit each node of Tree t as follows:
 - visit its first subtree in inorder
 - do something with the node / value, e.g., print it
 - visit its second subtree in inorder

What is the sequence of nodes being visited in inorder?

Inorder – More Examples

- Visit each node of Tree t as follows:
 - visit its first subtree in inorder
 - do something with the node / value, e.g., print it
 - visit its second subtree in inorder

What is the sequence of nodes being visited in inorder?

Inorder – More Examples

- Visit each node of Tree t as follows:
 - visit its first subtree in inorder
 - do something with the node / value, e.g., print it
 - visit its second subtree in inorder

What is the sequence of nodes being visited in inorder?

Level-order Traversal

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit all its children (first level in the tree) and act on the nodes
 - visit all the children's children (second level in the tree) and act on the nodes
 - visit third level in the tree, etc...

What is the sequence of nodes being visited in level order?

Level-order

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit all its children (first level in the tree) and act on the nodes
 - visit all the children's children (second level in the tree) and act on the nodes
 - visit third level in the tree, etc...

What is the sequence of nodes being visited in level order?

Level-order

- Visit each node of Tree t as follows:
 - do something with the node / value, e.g., print it
 - visit all its children (first level in the tree) and act on the nodes
 - visit all the children's children (second level in the tree) and act on the nodes
 - visit third level in the tree, etc...

What is the sequence of nodes being visited in level order?

Worksheet

Tree traversals...

Queues, Stacks, Recursion

 You may have noticed in the code for level order visit that there were no recursive calls, and a queue was used to process a recursive structure in level order

 Careful use of a stack allows you to process a tree in preorder, postorder, or inorder (no recursion needed)

Remember recursive vs. iterative discussion from last week