Cooperative Pruning in **Cross-Domain** Deep Neural Network **Compression**

Shangyu Chen, Wenya Wang, Sinno Jialin Pan

School of Computer Science and Engineering Nanyang Techonological University, Singapore

Background & Motivation

Cooperative Pruning

Experiment

Deep Neural Network Compression

Figure 1: Smartphones

Figure 2: Cameras

- ► More and more deep learning applications are deployed in edge devices: cellphone, surveillance camera, etc.
- ▶ It is impossible to perform inference without optimization:
 - * Compress the model: Prune parameters from the redundant model.
 - * Accelerate computation: Skip computation with parameters as 0 (pruned).

Pruning

0

0.5

-1.2

Limitation of Current Pruning

Most existing pruning methods rely access to **large amount** of training data, however:

- ▶ Training data is limited due to difficulty of collection.
- Data privacy in commercial models with high confidential requirement.

Question: How can we train a pruned neural network with limited training data?

Using Data from Other Domain

► Can we leveage knowledge from other domains (data-affluent) to assist pruning under limited data?

Task: Transfer knowledge from other domains to improve pruning: *Cross-Domain Deep Neural Network Compression*.

Traditional (Static) Pruning

- ► Given a pre-trained neural network model **W**.
- ► Find a pruning mask M: Whether a parameter is pruned or not (denoted by 0 or 1).
 - * e.g. Prune parameters based on their absolute magnitude.
- ▶ The produced pruned model: $\mathbf{W}' = \mathbf{WM}$
 - * Fine-tune the un-pruned parameters.
- ► This process is one-time pruning.

Dynmaic Pruning

- ► Given a pre-trained neural network model **W**.
- During training, pruning mask M is forwarded via:

Forward:
$$L = Loss(\mathbf{W}') = Loss(\mathbf{WM})$$
 (1)

Gradient of ${f W}$ is un-attainable due to the non-derivative of ${f M}$

Backward modification:

Backward:
$$\frac{\partial L}{\partial \mathbf{W}} = \frac{\partial L}{\partial \mathbf{W}'}$$
 (2)

Pruning Algorithm

Static Pruning

Dynamic Pruning

Background & Motivation

Cooperative Pruning

Experiment

Finding a Bridge

Task: Transfer knowledge from other domains to improve pruning.

Key Questions:

- ▶ What to transfer ?
- ► How to transfer ?

Remember Dynamic Pruning:

Finding a Bridge

Key Questions:

- What to transfer ?
 - Pruning mask: Knowledge is embedded in mask for transfer.
- ► How to transfer ?
 - Cooperative Pruning: Source / target task is dynamically prunned together.
 - ► Pruning mask is generated based on the absoluted maganitude of updated weights.

Cooperative Pruning (Co-Prune)

Transfer Factor α

- ightharpoonup lpha determines "how much knowledge" is transfered to target.
- $ightharpoonup \alpha$ decreases during the whole process.

Transfer Factor α (Cont.)

Background & Motivation

Cooperative Pruning

Experiment

Dataset: CIFAR9-STL9

- ► CIFAR10: 50k training data, STL10: 5k labeled training data.
- ▶ Non-overlap category is removed.
- ► CIFAR9: 45k training data, STL9: 4.5k labeled training data.

CIFAR9

STL9

Experiment Results

CD (0/)		ED 4 (0/)	D 4 (0/)
CR (%)	Method	FP Acc (%)	Prune Acc (%)
10.4	LWC	68.03	66.26
	OBD		65.78
	DNS		66.25
	L-OBS		66.01
	DDC-DNS		66.49
	Co-Prune		66.99
1.3	LWC		57.47
	OBD		50.82
	DNS		58.89
	L-OBS		56.00
	DDC-DNS		56.79
	Co-Prune		60.5
	One-Time Co-Prune		55.36
	Distillation		53.16

Background & Motivation

Cooperative Pruning

Experiment

- We proposed a framework (Co-Prune) to transfer knowledge from other domains to improve pruning in limited-data scenario.
- Co-Prune is conducted by cooperatively training different pruning models.
- Pruning mask for target domain is generated by weighted-sum of parameters from target / source neural network models.
- Codes are released at: https://github.com/csyhhu/Co-Prune
- Awesome project on Deep Neural Network Compression:

 https://github.com/csyhhu/
 ANYANG
 CHOMAWesome-Deep-Neural-Network-Compression