EPOCH1D surrogate model (PX915 Project)

Generated by Doxygen 1.8.17

1 epoch_surra	1
2 Modules Index	3
2.1 Modules List	3
3 Data Type Index	5
3.1 Data Types List	5
4 Module Documentation	7
4.1 epoch_calculator Namespace Reference	7
4.1.1 Detailed Description	8
4.1.2 Function Documentation	8
4.1.2.1 bandpass()	8
4.1.2.2 dispersion_EM()	8
4.1.2.3 dispersion_EPW()	9
4.1.2.4 dispersion_Stokes()	9
	10
4.1.2.6 plasmon()	10
	10
	11
	11
·	12
	12
	12
,, – – – "	12
	12
•	13
	13
	14
- 1	14
·	14
·	
5 Data Type Documentation	15
5.1 epoch_calculator.dist_f Class Reference	15
5.1.1 Detailed Description	15
5.1.2 Constructor & Destructor Documentation	16
5.1.2.1init()	16
5.1.3 Member Function Documentation	16
5.1.3.1 plot_p_dist_func()	16
5.1.3.2 read_dist_data()	16
5.2 epoch_calculator.EM_fields Class Reference	17
5.2.1 Detailed Description	17
5.2.2 Constructor & Destructor Documentation	18
5.2.2.1init()	18

5.2.3 Member Function Documentation	18
5.2.3.1 get_2D_Electric_Field_x()	18
5.2.3.2 get_2D_Electric_Field_y()	18
5.2.3.3 get_2D_FFT()	19
5.2.3.4 get_2D_Magnetic_Field_z()	19
5.2.3.5 get_filtered_signals()	19
5.2.3.6 get_flux()	21
5.2.3.7 get_flux_grid_av()	21
5.2.3.8 get_space_FFT()	22
5.2.3.9 get_time_FFT()	22
5.3 visualiser.epoch_plotter Class Reference	22
5.3.1 Detailed Description	23
5.3.2 Constructor & Destructor Documentation	23
5.3.2.1init()	23
5.3.3 Member Function Documentation	23
5.3.3.1 density_plot()	24
5.3.3.2 dispersion_2D_plot()	24
5.4 epoch_calculator.Laser_Plasma_Params Class Reference	24
5.4.1 Detailed Description	26
5.4.2 Constructor & Destructor Documentation	26
5.4.2.1init()	26
5.4.3 Member Function Documentation	26
5.4.3.1 get_matching_conds()	26
5.4.3.2 get_plasma_param()	27
5.4.3.3 get_spatio_temporal()	27
5.4.3.4 read_data()	27
Index	29

Chapter 1

epoch_surra

Repo for PX915 summer project

2 epoch_surra

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all documented modules with brief descriptions:

epoch_calculator	7
utils	11
visualiser	14

4 Modules Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

epoch_calculator.dist_f	
Dist_f Class	. 15
epoch_calculator.EM_fields	
EM_fields (p. 17) Class	. 17
visualiser.epoch_plotter	
Epoch_plotter Class	. 22
epoch_calculator.Laser_Plasma_Params	
Laser_Plasma_Params (p. 24) Class	. 24

6 Data Type Index

Chapter 4

Module Documentation

4.1 epoch_calculator Namespace Reference

Classes

```
    class dist_f
        dist_f (p. 15) Class.
    class EM_fields
        EM_fields (p. 17) Class.
```

• class Laser_Plasma_Params

Laser_Plasma_Params (p. 24) Class.

Functions

```
    def winsincFIR (omega_c, omega_s, M)
        winsincFIR
    def bandpass (w0, bw, omega_s, M)
        bandpass
    def moving_av (Q, span, period=10)
        moving_av
    def plasmon (ne)
        plasmon
    def dispersion_Stokes (k, k0, ne, omega0)
        dispersion_Stokes
    def dispersion_EPW (k, ne, v_th)
```

```
    def dispersion_EM (k, ne)
        dispersion_EM
    def srs_matching (k, k0, ne, v_th, omega0)
        srs_matching
```

dispersion_EPW

8 Module Documentation

Variables

```
• c = constants.c
```

```
• eps0 = constants.epsilon_0
```

- **me** = constants.m e
- **e** = constants.e
- **kB** = constants.k
- tuple **keV_to_K** = (e*1e3)/kB
- **mu0** = constants.mu_0
- **pi** = np.pi
- int **pico** = 1e-12
- int **micron** = 1e-6
- int **nano** = 1e-9

4.1.1 Detailed Description

Documentation for epoch_calculator (p. 7) module

The epoch_calaculator module reads the EPOCH data files and calculates several parameters. There are three classes, one which handles the calculations from grid quantities (**Laser_Plasma_Params** (p. 24)), field quantities (EM_fileds) and the momentum distribution function (**dist_f** (p. 15)).

4.1.2 Function Documentation

4.1.2.1 bandpass()

```
def epoch_calculator.bandpass (  \begin{tabular}{ll} $w0,$\\ $bw,$\\ $omega\_s,$\\ $M$ ) \end{tabular}
```

bandpass

Create a band-pass filter by convolving a high-pass and a low-pass filter

Parameters

w0	: central frequency you want to filter around (fraction of omega0)
bw	: total bandwidth of your filter (fraction of omega0)
М	: half filter length (must be odd)

4.1.2.2 dispersion_EM()

```
{\tt def epoch\_calculator.dispersion\_EM} \ (
```

```
k,
ne )
```

dispersion_EM

EM wave in plasama dipersion relation

Parameters

k	: EM wavenumber in plasma
ne	: Electron number density

4.1.2.3 dispersion_EPW()

```
def epoch_calculator.dispersion_EPW ( k, \\ ne, \\ v\_th )
```

dispersion_EPW

Electron Plasma wave dispersion realtion - Bohm-Gross

Parameters

k	: EPW wavenumber in plasma	
ne	: Electron number density	
V↔	: Electron thermal velocity	
_th		

4.1.2.4 dispersion_Stokes()

```
 \begin{array}{c} \text{def epoch\_calculator.dispersion\_Stokes (} \\ k, \\ k0, \\ ne, \\ omega0 \ ) \end{array}
```

dispersion_Stokes

Stokes dispersion curve (Stokes branch) (maximal SRS growth where this curve intersects EPW curve)

Parameters

k	: Wavenumber in plasma
k0	: Vacuum wavenumber (laser)
ne	: Electron number density
omega0	: Laser frequency

Generated by Doxygen

10 Module Documentation

4.1.2.5 moving_av()

moving_av

Finds moving average of an array using scipys uniform_filter1d function

Parameters

Q	: Data array
span	: length of data
period	: period to average over

4.1.2.6 plasmon()

```
\begin{tabular}{ll} $\operatorname{def epoch\_calculator.plasmon} & ( \\ & ne \end{tabular} \label{eq:ne}
```

plasmon

Calculates electron-plasma frequency

Parameters

```
ne : Electron number density
```

4.1.2.7 srs_matching()

```
def epoch_calculator.srs_matching ( k,\\ k0,\\ ne,\\ v\_th,\\ omega0\ )
```

srs_matching

SRS frequency matching condition (SRS when it returns zero)

Parameters

k	: Wavenumber in plasma	
k0	: Vacuum wavenumber (laser)	
ne	: Electron number density	
v_th	: Electron thermal velocity	
omega0	: Laser frequency	

4.1.2.8 winsincFIR()

winsincFIR

Windowed sinc filter function (http://www.dspguide.com/ch16/2.htm (Equation 16-4))

Parameters

omega⊷	: cutoff frequency
_c	
omega⊷	: sampling rate (sampling frequency)
_s	
М	: length of the filter kernel (must be odd)

4.2 utils Namespace Reference

Functions

```
    def expav (a, t)
        expav
    def read_intensity (dir)
        read_intensity
    def replace_line (line_in, line_out, fname)
        replace_line
    def run_epoch (intensity, data_dir='Data', output=False, np=10)
        run_epoch
    def get_l_SRS_res (l_array, dir, np=10)
        get_l_SRS_res
    def append_list_as_row (file_name, list_of_elem)
        append_list_as_row
```

12 Module Documentation

4.2.1 Detailed Description

Documentation for utils module

The utils module houses functions which are used to either read data, run simulations or just mathematical definitions that aren't relate to plasma physics.

4.2.2 Function Documentation

4.2.2.1 append_list_as_row()

append_list_as_row

Append data to csv file (for appending I and I_SRS result)

Parameters

file_name	: file name of csv file
list_of_elem	: list to write to csv file

4.2.2.2 expav()

```
def utils.expav ( a_t t )
```

expav

Calculates exponential moving average (EMA) $mu_i = exp(-1/T)mu_{i-1} + (1-exp(-1/T))*x_i$

Parameters

а	: Array
t	: Period/Lengthscale of EMA

4.2.2.3 get_I_SRS_res()

```
def utils.get_I_SRS_res (
```

```
I_array,
dir,
np = 10 )
```

```
get_I_SRS_res
```

Runs epoch1d simulations for changing intensity and ouptputs backsactter SRS intensity

Parameters

I_array	: Intensity array (list of data to sim)
dir	: Directory to store epoch data to and where the input.deck file is
np	: Number of processors to eun epoch1d on (MPI)

4.2.2.4 read_intensity()

```
def utils.read_intensity ( dir )
```

read_intensity

Read intensity in W/cm2 from input.deck

Parameters

```
| dir | : Directory which holds input.deck file you want to read (str)
```

4.2.2.5 replace_line()

replace_line

Function rewrite line in input.deck via python

Parameters

line_in	: original line in input.deck	
line_out	: repacement of line_in in input.deck	

14 Module Documentation

4.2.2.6 run_epoch()

run_epoch

Runs epoch1d simulations for set intensity

Parameters

intensity	: Intensity to write in input.deck
data_dir	: Directory to store epoch data to and where the input.deck file is
output	: Ouput to command line (True) or to run.log file (False)
np	: Number of processors to eun epoch1d on (MPI)

4.3 visualiser Namespace Reference

Classes

```
• class epoch_plotter
epoch_plotter (p. 22) Class.
```

4.3.1 Detailed Description

Documentation for visualiser module

The visualiser module houses functions which are used to perform plotting routines on epoch data.

Chapter 5

Data Type Documentation

5.1 epoch_calculator.dist_f Class Reference

```
dist_f (p. 15) Class.
```

Public Member Functions

```
    def __init__ (self, dir)
        init
    def read_dist_data (self)
        read_dist_data
    def plot_p_dist_func (self, scaled_x=False)
        plot_p_dist_func
```

Public Attributes

- · directory
- files
- nfiles
- p_max
- p_min
- res
- epoch_data
- v_th
- p_norm
- times
- dist_funcs
- · momenta_bins

5.1.1 Detailed Description

```
dist_f (p. 15) Class.
```

Class that reads and ouptputs the electron momentum distrubution function from output dist_ .. .sdf files.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 __init__()
```

init

The constructor

Parameters

self	: The object pointer
dir	: Directory where data is stored (str)

5.1.3 Member Function Documentation

5.1.3.1 plot_p_dist_func()

plot_p_dist_func

Plots all distribution functions

Parameters

self	: The object pointer
scaled←	: (Logical) Scales momentum using p_norm
X	

5.1.3.2 read_dist_data()

```
\label{lem:calculator.dist_f.read_dist_data} \mbox{ (} \\ self \mbox{ )}
```

read_dist_data

Read and store distrinution functions at output times

Parameters

```
self : The object pointer
```

The documentation for this class was generated from the following file:

· epoch_calculator.py

5.2 epoch_calculator.EM_fields Class Reference

EM_fields (p. 17) Class.

Public Member Functions

```
• def __init__ (self, dir)
     init

    def get_2D_Electric_Field_x (self)

     get 2D Electric Field x

    def get_2D_Electric_Field_y (self)

     get_2D_Electric_Field_y
• def get_2D_Magnetic_Field_z (self)
     get_2D_Magnetic_Field_z

    def get_2D_FFT (self, field, square_mod=True)

     get_2D_FFT
• def get_time_FFT (self, field, square_mod=True)
     get time FFT

    def get_space_FFT (self, field, square_mod=True)

     get_space_FFT
• def get_filtered_signals (self, laser=False, plot_E=False, plot_B=False)
     get_filtered_signals

    def get_flux (self, laser=False, time_series=False)

     get_flux
• def get_flux_grid_av (self, ncells=50, laser=False)
     get flux grid av
```

Public Attributes

- · directory
- · epoch_data
- · timesteps
- nx

5.2.1 Detailed Description

EM_fields (p. 17) Class.

Class that reads and calculates field quantities from fields_ output files.

5.2.2 Constructor & Destructor Documentation

init

The constructor

Parameters

self	: The object pointer
dir	: Directory where data is stored (str)

5.2.3 Member Function Documentation

5.2.3.1 get_2D_Electric_Field_x()

```
\label{eq:calculator.EM_fields.get_2D_Electric_Field_x} \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$ $self$ )$ \\ \mbox{$get_2D_Electric_Field_x$} \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$$ $self$ )$ \\ \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$ $self$ )$ \\ \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$$ $self$ )$ \\ \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$ $self$ )$ \\ \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$ $self$ )$ \\ \mbox{$def$ poch_calculator.EM_fields.get_2D_Electric_Field_x ($$$$$ $self$ )$ \\
```

Get time and space data of Ex field i.e Ex(x,t)

Parameters

```
self : The object pointer
```

5.2.3.2 get_2D_Electric_Field_y()

Get time and space data of Ey field i.e Ey(x,t)

Parameters

```
self : The object pointer
```

5.2.3.3 get_2D_FFT()

get_2D_FFT

Get 2D FFT (i.e space and time) for specific field

Parameters

self	: The object pointer
field	: EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')
square_mod	: (Logical) outputs the sqaured modulus of the FFT

5.2.3.4 get_2D_Magnetic_Field_z()

```
\label{eq:calculator_EM_fields.get_2D_Magnetic_Field_z} $$ ($$ self )$$ $$ get_2D_Magnetic_Field_z $$
```

Get time and space data of Bz field i.e Bz(x,t)

Parameters

```
self : The object pointer
```

5.2.3.5 get_filtered_signals()

get_filtered_signals

Finds filtered signals of Ey and Bz fields (either laser signal or SRS signal)

Parameters

self	: The object pointer
laser	: (Logical) Whether to output laser sginal (true) or SRS signal (false)
plot⇔ E	: (Logical) Whether to plot the filter result at set grid point to test if it works (Ey field)
 plot← _B	: (Logical) Whether to plot the filter result at set grid point to test if it works (Bz field)

5.2.3.6 get_flux()

get_flux

Finds Poynting flux in x direction Sx = (EyBz-ByEz)/mu0 (SRS produces scattered light with same polarisation as the laser (i.e Ez and By are negliable) thus Sx = EyBz/mu0)

Parameters

self	: The object pointer
laser	: (Logical) Whether to use laser sginal (true) or SRS signal (false)
plot⊷	: (Logical) Whether to output the Sx time series (true) or the time average (false)
_ <i>E</i>	

5.2.3.7 get_flux_grid_av()

get_flux_grid_av

Averages Poynting flux over ncells (near LH boundary for backscatter SRS and RH boundary for laser)

Parameters

self	: The object pointer
ncells	: Number of cells to average over (default 50)
laser	: (Logical) Whether to use laser sginal (true) or SRS signal (false)

5.2.3.8 get_space_FFT()

get_space_FFT

Produces 1D space FFT for specific field

Parameters

self	: The object pointer	
field	: EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')	
square_mod	: (Logical) outputs the sqaured modulus of the FFT	

5.2.3.9 get_time_FFT()

get_time_FFT

Produces 1D time FFT for specific field

Parameters

self	: The object pointer	
field	: EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')	
square_mod	: (Logical) outputs the sqaured modulus of the FFT	

The documentation for this class was generated from the following file:

· epoch_calculator.py

5.3 visualiser.epoch_plotter Class Reference

epoch_plotter (p. 22) Class.

Public Member Functions

```
    def __init__ (self, dir)
        init
    def density_plot (self)
        density_plot
    def dispersion_2D_plot (self, field)
        dispersion_2D_plot
```

Public Attributes

- · directory
- · epoch_data
- · epoch_fields

5.3.1 Detailed Description

```
epoch_plotter (p. 22) Class.
```

Class that contains plotting routines that are oten used.

5.3.2 Constructor & Destructor Documentation

init

The constructor

Parameters

self	: The object pointer
dir	: Directory where data is stored (str)

5.3.3 Member Function Documentation

5.3.3.1 density_plot()

```
\label{eq:condition} \mbox{def visualiser.epoch\_plotter.density\_plot} \  \  ( self \ )
```

density_plot

Plots the number desnity over space

Parameters

```
self: The object pointer
```

5.3.3.2 dispersion_2D_plot()

dispersion_2D_plot

Plots 2D FFT of the fields

Parameters

self	: The object pointer
field	: EM Field to FFT (inputs are either 'Ex', 'Ey', 'Bz')

The documentation for this class was generated from the following file:

· visualiser.py

5.4 epoch_calculator.Laser_Plasma_Params Class Reference

Laser_Plasma_Params (p. 24) Class.

Public Member Functions

```
    def __init__ (self, dir)
        init
    def read_data (self)
        read_data
```

• def get_spatio_temporal (self, mic=True)

get_spatio_temporal

• def get_plasma_param (self)

get_plasma_param

def get_matching_conds (self)

get_matching_conds

Public Attributes

- · directory
- · intensity
- · wavelength
- · timesteps
- · omega0
- · critical_density
- k0_vac
- grid_data
- field_data_0
- · field_data_1
- · data_final
- grid
- nodes
- dx
- Lx
- nx
- dt
- · t_end
- · time
- k_space
- omega_space
- · ne_data
- ne
- · ne_min
- ne_max
- Ln
- · omega_pe_data
- · omega_pe
- omega_pe_min
- omega_pe_max
- k0
- Te_data
- Te
- Te_kelvin
- v_th
- deb_len
- k_epw_bs
- omega_epw_bs
- · k_bs
- omega_bs
- · omega_bs_norm
- k_bs_norm
- k_epw_bs_norm
- · k_epw_fs
- omega_epw_fs
- k_fs
- · omega_fs
- omega_fs_norm
- k_fs_norm
- k_epw_fs_norm

5.4.1 Detailed Description

Laser_Plasma_Params (p. 24) Class.

Class that reads and calculates plasama and grid quantities from grid_output files.

5.4.2 Constructor & Destructor Documentation

init

The constructor

Parameters

self	: The object pointer	
dir	: Directory where data is stored (str)	

5.4.3 Member Function Documentation

5.4.3.1 get_matching_conds()

```
\label{lem:laser_Plasma_Params.get_matching_conds} \mbox{ (} \\ self \mbox{ )}
```

get_matching_conds

Calculates SRS scattered wavenumber and frequency

Parameters

self : The object pointer

5.4.3.2 get_plasma_param()

```
\label{lem:laser_Plasma_Params.get_plasma_param} \mbox{ (} self \mbox{ )}
```

get_plasma_param

Calculates plasma parameters/variables

Parameters

self	: The object pointer

5.4.3.3 get_spatio_temporal()

get_spatio_temporal

Reads the initial grid data and other files required to find sim data

Parameters

self	: The object pointer	
mic	: (Logical) Output grid in microns	

5.4.3.4 read_data()

```
def epoch_calculator.Laser_Plasma_Params.read_data ( self \ )
```

read_data

Reads the initial grid data and other files required to find sim data

Parameters

```
self : The object pointer
```

The documentation for this class was generated from the following file:

· epoch_calculator.py

Index

init	get_plasma_param, 26
epoch_calculator.dist_f, 16	get_spatio_temporal, 27
epoch_calculator.EM_fields, 18	read_data, 27
epoch_calculator.Laser_Plasma_Params, 26	expav
visualiser.epoch_plotter, 23	utils, 12
append_list_as_row	get_2D_Electric_Field_x
utils, 12	epoch_calculator.EM_fields, 18
	get_2D_Electric_Field_y
bandpass	epoch_calculator.EM_fields, 18
epoch_calculator, 8	get_2D_FFT
donaity plat	epoch_calculator.EM_fields, 19
density_plot	get_2D_Magnetic_Field_z
visualiser.epoch_plotter, 23	epoch_calculator.EM_fields, 19
dispersion_2D_plot	get_filtered_signals
visualiser.epoch_plotter, 24 dispersion_EM	epoch_calculator.EM_fields, 19
• —	get_flux
epoch_calculator, 8 dispersion_EPW	epoch_calculator.EM_fields, 21
epoch_calculator, 9	get_flux_grid_av
dispersion_Stokes	epoch_calculator.EM_fields, 21
epoch calculator, 9	get_I_SRS_res
epocit_calculator, 9	utils, 12
epoch_calculator, 7	get_matching_conds
bandpass, 8	epoch_calculator.Laser_Plasma_Params, 26
dispersion_EM, 8	get_plasma_param
dispersion_EPW, 9	epoch_calculator.Laser_Plasma_Params, 26
dispersion_Stokes, 9	get_space_FFT
moving_av, 10	epoch_calculator.EM_fields, 22
plasmon, 10	get_spatio_temporal
srs_matching, 10	epoch_calculator.Laser_Plasma_Params, 27
winsincFIR, 11	get_time_FFT
epoch_calculator.dist_f, 15	epoch_calculator.EM_fields, 22
init, 16	moving_av
plot_p_dist_func, 16	epoch calculator, 10
read_dist_data, 16	opoon_oaloulator, To
epoch_calculator.EM_fields, 17	plasmon
init, 18	epoch_calculator, 10
get_2D_Electric_Field_x, 18	plot_p_dist_func
get_2D_Electric_Field_y, 18	epoch calculator.dist f, 16
get_2D_FFT, 19	
get_2D_Magnetic_Field_z, 19	read data
get_filtered_signals, 19	epoch_calculator.Laser_Plasma_Params, 27
get_flux, 21	read_dist_data
get_flux_grid_av, 21	epoch_calculator.dist_f, 16
get_space_FFT, 22	read_intensity
get_time_FFT, 22	utils, 13
epoch_calculator.Laser_Plasma_Params, 24	replace_line
init, 26	utils, 13
get_matching_conds, 26	run_epoch

30 INDEX

```
utils, 13
srs_matching
    epoch_calculator, 10
utils, 11
    append_list_as_row, 12
    expav, 12
    get_I_SRS_res, 12
    read_intensity, 13
    replace_line, 13
    run_epoch, 13
visualiser, 14
visualiser.epoch_plotter, 22
     __init__, 23
    density_plot, 23
    dispersion_2D_plot, 24
winsincFIR
    epoch_calculator, 11
```