****大学本科生课程考试试卷

开课学院_____

2019 ~ 2020 学年第 2 学期

课程名称 概率论与数理统计【理工】 考核方式 闭卷

考试时间 <u>120</u> 分钟 考生姓名		<u>等</u> 班级	考生	共 <u>3</u> 生学号	页第	
<u> </u>						_
 一、选择题(オ	大题共 10 小题	,每小题3分,	总计 30 分)		
1. 从一批产品。	中,每次取出一个	(取后不放回)	,抽取三次,	用 A_i ($i=1,2$	2,3) 表示"第	i次取
到的是正品",	则抽到的三个产品	品中,只有一个	是次品()		
	$\overline{A_2} \cup \overline{A_3}$			$A_2 \overline{A_3}$		
(C) $\overline{A}_1 \overline{A}_2$	$\overline{A_3}$	(D) A_1A_2 \bigcup	$A_2A_3 \cup A_2A_3$			
2. 设 A, B 为两	事件, A 与 B 相 I	互独立,且 $P(A)$	$= 0.4, P(A \cup B)$	(B) = 0.7,则	P(B) = 0)
	(B) 0.3					
	X 的分布律为 X	(0 3 2)				
$(A) \frac{1}{3}$	(B) $\frac{1}{2}$	(C)	$\frac{5}{6}$ (D) 1		
4. 设随机变量 2	- X 的分布函数为	$F(x) = \begin{cases} 0, \\ 0.4, - \\ 0.8, 1 \\ 1, 3 \end{cases}$	x < -1 $1 \le x < 1$ $\le x < 3$ $\le x < +\infty$)	
	(B) 0.6					
5. 设随机变量 <i>X</i>	$\sim N(2,3^2)$,若 P	$\{X < c\} = P\{X\}$	$>c$ $\}$,	()	•	
(A) 0	(B) 1	(C) 2	(D) :	3		
6. 设随机变量 2	X与 Y 相互独立,		$Y \sim U(0,2)$,则 <i>P</i> { <i>X</i> <	(Y) = ().
$(A) \frac{1}{4}$	$(\mathbf{B}) \frac{1}{2}$	(C) $\frac{3}{4}$	(D) $\frac{3}{8}$			
7. 设 <i>X</i> , <i>Y</i> 独立,	E(X) = E(Y) = 0	D, D(X) = D(Y)	=1, 则 <i>E</i> (<i>X</i> +	$2Y)^2 = ($).	
(A) 0	(B) 1	(C) 3	(D) 5			
$8. D(X \pm Y) = D$	$\mathcal{O}(X) + \mathcal{O}(Y)$ 的充身	要条件是()			
(A) X 与 Y 不材	相关 (B) X与	Y 相关 (C)	X与Y独立	(D) X =	f Y 不独立	

重庆理工大学本科生课程考试试卷

2019 ~ 2020 学年第 2 学期

课程名称 概率论与数理统计【理工】 考核方式 闭卷

共_____页第_____页

开课学院_____

考试时间__120_分钟

考生姓名	考生班级	考生学号	
. 2 "	为取自正态总体 $N(\mu, \sigma^2)$	的样本, μ , σ^2 均未知,	则下列是统计量
的是()			
$(A) \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X}_i)^{-1}$	$(\overline{X})^2$ (B) $\sum_{i=1}^n (\frac{X_i}{\sigma})^2$ (C) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$	$(\mathbf{D}) \ \frac{1}{n} \sum_{i=1}^{n} X_i^3$
10. 设正态总体 X 的]方差未知,根据来自 X	的容量为 n 的简单随机构	羊本测得样本均值
为 \overline{X} ,样本标准差	$\pm S$,则未知参数 μ 的置	信水平为1-α的置信区	间为()
(A) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha}\right)$	(B)	$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{2}\right)$	$\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)$
(C) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha}\right)$	$,\overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha} $ (D)	$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1), \overline{X} + \frac{1}{\sqrt{n}}\right)$	$\frac{S}{\sqrt{n}}t_{\alpha}(n-1)$
二、填空题(本大剧	题共5小题,每小题3分	, 总计 15 分)	
	犬相同的小球,其中 4 白 吹取得白球的概率为		个一个地取出(不
12. 设随机变量 X~	$N(0,1)$,则 $P\{X=0\}=$	·	
13. 设 X_1, X_2 都服从	参数λ=2的指数分布,	则 $E(X_1 + X_2) =$	·
14. 随机变量 X、Y	相互独立,均服从正态分	个布 $N(1, 2)$,则 $D(X-2)$	<i>P</i> (<i>Y</i>) =
15. 设(X,Y)的概率	密度为 $f(x,y) = \begin{cases} \frac{1}{2} & 0 < \\ 0 & \end{cases}$	x < 2 , 0 < y < 1 ,则 <i>X</i> 的 其他]边缘密度函
数为	_·		
	95 1	V M == 213	
	题共 5 小题,每小题 11 分		· 11 \
16. 设杲商店购买的	一批的产品分别来自工厂	A 相上 \bigcup B , 已知工 \bigcup	A 相上 B 的产

品的次品率分别为 1%和 2%, 工厂 A 和工厂 B 的产品分别占 60%和 40%, 计算:

重庆理工大学本科生课程考试试卷

2019 ~ 2020 学年第 2 学期

开课学院 <u>理学院</u>	课程名称 <u>概率论与数</u>	理统计【理工】	考核方式_	<u> 闭卷</u>
考试时间 120 分钟	_ <u>B 卷</u>	共	页第	5页
考生姓名	考牛班级	老牛学号		

- (1) 从这批产品中任取一件是次品的概率;(2) 已知从中随机取出的一件是次品,则这件产品来自工厂 A 的概率为多少?
- 17. 连续型随机变量 X 的概率密度函数为: $f(x) = \begin{cases} kx^2, & 0 < x < 3 \\ 0, & \text{其他,} \end{cases}$ (1) 求系数 k ;
 - (2) 若Y = 2X + 1, 求Y的概率密度函数.
- 18. 设(X, Y)的分布律为

Y		
X	0	1
-2	0.2	0.3
-1	0.2	0.1
2	0.1	0.1

求: (1) X、Y的边缘分布律; (2) 判断X、Y的独立性; (3) Cov(X,Y).

19. 设总体 X 的密度函数为 $f(x;\theta) = \begin{cases} \frac{2x}{\theta}e^{-\frac{x^2}{\theta}} & x > 0 \\ 0 & \text{其他} \end{cases}$, $\theta > 0$ 为未知参数, X_1, X_2, \cdots, X_n 是

取自总体X的一个样本,求 θ 的极大似然估计量.

20. 设某厂生产的零件长度 $X\sim N(\mu,\sigma^2)$ (单位: cm),现从生产出的一批零件中随机抽取了 9 件,经测量并算得零件长度的平均值 \bar{x} =196,标准差 s=12,如果 σ^2 未知,在显著水平 α = 0.05 下,是否可以认为该厂生产的零件的平均长度是 202cm? ($z_{0.05}$ =1.645, $z_{0.025}$ =1.96, $t_{0.025}$ (8) = 2.306, $t_{0.025}$ (9) = 2.262)

2019~ 2020 学年第二学期概率论与数理统计【理工】

期末 B 卷参考答案及评分标准

一、单项选择题(本大题共10小题,每小题3分,总计30分)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
В	C	В	В	C	C	D	A	D	В

二、填空题(本大题共5小题,每小题3分,总计15分)

(11)	(12)	(13)	(14)	(15	5)
0.4	0	1	10	$f(x) = \begin{cases} \frac{1}{2} \\ 0 \end{cases}$	0 < x < 2 其他

三、解答题(本大题共5小题,每小题11分,总计55分)

16、解: 设 $A = \{$ 产品由工厂A生产的 $\}$, $B = \{$ 产品由工厂B生产的 $\}$,C表示事件"抽到次品"

$$P(A) = 60\%, P(B) = 40\%, P(C \mid A) = 1\%, P(C \mid B) = 2\%$$

(1) $P(C) = P(A)P(C \mid A) + P(B)P(C \mid B)$

$$=60\% \times 1\% + 40\% \times 2\% = 0.014$$
 (4 分)

(2)
$$P(A|C) = \frac{P(AC)}{P(C)} = \frac{P(C|A)P(A)}{P(C)} = \frac{60\% \times 1\%}{0.014} = \frac{3}{7}$$
 (4 $\%$)

(2)
$$\pm Y = 2X + 1$$
 $= 2X + 1$, $\pm Z = \frac{y-1}{2}$, $= \frac{y-1}{2}$

故
$$f_Y(y) = |x'| f_X(\frac{y-1}{2}) = \begin{cases} \frac{1}{2} \times \frac{1}{9} \times (\frac{y-1}{2})^2, & 0 < \frac{y-1}{2} < 3 \\ 0, & 其他 \end{cases} = \begin{cases} \frac{(y-1)^2}{72}, & 1 < y < 7 \\ 0, & 其他 \end{cases}$$
 (6分)

18、解: (1) X与Y 的边缘分布分别为

X	-2	-1	2
p	0.5	0.3	0.2

Y	0	1
p	0.5	0.5

.....(4分)

(2) 由于
$$P{X = -2}P{Y = 0} = 0.5 \times 0.5 = 0.25$$
, $P{X = -2, Y = 0} = 0.2$,于是

$$P{X = -2}P{Y = 0} \neq P{X = -2, Y = 0}$$
 ,所以 X 与 Y 不独立 (3 分)

(3)
$$E(X) = -0.9$$
, $E(Y) = 0.5$, $E(XY) = -0.5$,

$$Cov(X,Y) = E(XY) - E(X)E(Y) = -0.05$$
 (4 $\frac{1}{12}$)

19、解:似然函数为:

$$L(\theta, x_1, \dots, x_n) = \prod_{i=1}^n f(x_i, \theta) = \begin{cases} 2^n \left(\prod_{i=1}^n x_i\right) e^{-\sum_{i=1}^n x_i^2} \\ \theta^n \end{cases}, \quad x_i > 0, i = 1, 2, \dots, n$$

$$0, \qquad \text{ #.th}$$

当
$$x_i > 0, i = 1, 2, \dots, n$$
 时,取对数: $\ln L(\theta) = n \ln 2 + \sum_{i=1}^n \ln x_i - n \ln \theta - \frac{\sum_{i=1}^n x_i^2}{\theta}$ (3分)

解得
$$\hat{\theta} = \frac{\sum_{i=1}^{n} x_i^2}{n}$$
 为极大似然估计值,即 $\hat{\theta} = \frac{\sum_{i=1}^{n} X_i^2}{n}$ 为极大似然估计量。.....(2分)

20、解: 假设
$$H_0: \mu = \mu_0 = 202$$
 $H_1: \mu \neq \mu_0$ (3分)

检验统计量为:
$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

拒绝域为:
$$|t| \ge t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.306$$
 (4分)

由样本值算得 ,
$$|t| = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{196 - 202}{12 / \sqrt{9}} = 1.5 < 2.306$$

于是接受 H_0 ,可以认为该厂生产的零件的平均长度是 202cm。 (4分)