

LTK8002D 4.2W 高耐压、无干扰式AB类、音频放大器

■ 概述

LTK8002D 是一款高耐压 4.2W、单声道 AB 类音频功率放大器,工作电压 2.5V-6V,以 BTL 桥连接的方式,在 6V 电源电压下,可以给 4Ω 负载提供 THD 小于 10%、平均为 4.2W 的输出功率。在关闭模式下,电流典型值小于 1uA

LTK8002D 是为提供大功率、高保真音频输出而专门设计的,它仅仅需要少量的外围元器件,并且能工作在宽电压条件下(2.5-6V)。LTK8002D不需要耦合电容,自举电容或者缓冲网络,所以非常适用于小音量的低功耗的系统。

■ 应用

- 蓝牙音箱、智能音箱
- 便携游戏机,儿童玩具
- 拉杆音箱、扩音器、MP3、
- 各类音频产品

■ 特性

- 输入电压范围 2.5V-6V
- 极少的外围元件
- 无需耦合电容,自举电容以及缓冲网络
- 优异的爆破声抑制电路
- 超低底噪、超低失真
- 10% THD+N, VDD=5V, 4Ω 负载下提供高达 3W 的输出功率
- 10% THD+N, VDD=6V, 4Ω 负载下 提供高达
 4.2W 的输出功率
- 短路保护
- 关断电流 < 1ua

■ 封装

芯片型号	封装类型	封装尺寸
LTK8002D	SOP-8	

■ 典型应用图

■ 管脚说明及定义

管脚编号	管脚名称	I/O	功能说明
1	SD	Ι	关断控制。高关断,低打开
2	BYPASS	_	内部共模参考电压
3	IN+	Ι	模拟正向输入端
4	IN-	Ι	模拟反向输入端
5	V01	0	BTL 正向输出端
6	VDD	Р	电源正端
7	GND	GND	电源负端
8	V02	0	BTL 反向输出端

■ 最大极限值

参数名称	符号	数值	单位
供电电压	$V_{ ext{DD}}$	6V	V
存储温度	T_{STG}	-60°C-150°C	°C
结温度	$T_{ m J}$	160℃	$^{\circ}\mathbb{C}$

■ 推荐工作范围

参数名称	符号	数值	单位
供电电压	$V_{ ext{DD}}$	3V-6V	V
存储温度	$T_{ ext{STG}}$	-50°C-150°C	$^{\circ}\mathbb{C}$
结温度	$T_{ m J}$	-50°C-160°C	$^{\circ}\mathbb{C}$

■ ESD 信息

参数名称	符号	数值	单位
人体静电	HBM	± 2000	V
机器模型静电	CDM	±300	$^{\circ}$

■ 基本电气特性

VDD=5V, T_A=25℃的条件下:

信号	参数	测试条件	最小值	典型值	最大值	单位
VDD	电源电压		2. 5	5	6	V
IDD	静态电源电流	VDD=2.5V-6V, IO=0A	2	2	6	mA
Vn	静态底噪	VDD=5V, AV=20DB, Awting		56		uV
ISHDN	关断电流	VDD=2.5V -6V		0.5		uА
		VDD=6V,		3. 9		
	输出功率	THD+N=10%,				
		$f=1kHz$, $RL=4\Omega$;				

LKCHIP			北京联辉	科电子技术有限公司
		VDD=5V THD+N=10%, f=1kHz, RL=4Ω;	2. 7	
			1.0	
		VDD=4. 2V	1.9	
		THD+N=10%,		
		f=1kHz , RL=4Ω; VDD=6V	3.0	
		THD+N=1%, f=1kHz , RL=4 Ω ;	5.0	W
Po		VDD=5V	2.0	
		THD+N=1%, f=1kHz , RL=4 Ω ;	2.0	
		VDD=4.2V	1.4	
		THD+N=1%, $f=1kHz$, $RL=4\Omega$;		
		VDD=5V	3.9	
		THD+N=10%,		
		f=1kHz , RL=3Ω;		
		VDD=5V	1.5	
		THD+N=10%,		
		$f=1kHz$, $RL=8\Omega$;		
		VDD=4.2V	1.0	
		THD+N=1%, f=1kHz , RL=8 Ω ;		
THD+N	总谐波失真加噪声	VDD=5V Po=0.6W, RL=8Ω	0.1	%
		VDD=5V Po=1.6W, RL=4Ω	0. 15	
OTP	过温保护		165	$^{\circ}$
		VDD=5V, VRIPPLE=200mVRMS,		
PSRR	电源电压抑制比	RL=8 Ω , CB=2. 2μF	80	dB
		VDD=6V	<1.3	
SDopen	SD脚开启电压	VDD=5V	<1.2	
Spopen	30個月月电圧	VDD=4V	<1.0	
		VDD=3V	<0.9	V
		VDD=6V	>1.9	v
SDsd	SD脚关闭电压	VDD=5V	>1.7	
שמעט	2014年入411年11	VDD=4V	>1.5	
		VDD=3V	>1.3	
VDDopen	VDD开启电压	SD=0	>2.5	V
VDDsd	VDD关闭电压	SD=0	<0.8	V
Topen	开启时间	VDD =5V, BYPASS=1uf,	290	Ms

■ 性能特性曲线

A_v=20dB, BYPASS=1uf T_A=25℃, 无特殊说明项均是在VDD=5V, 4Ω条件下测试:

, , , , , , , , , , , , , , , , , , , ,				
描述	测试条件	编号		
Input Amplitude VS. Output Amplitude	VDD=5V, RL=4Ω	1		
Input Voltage VS. Maximum Output Power	RL= 4Ω , THD= 10%	2		
Output Power VS.THD+N	VDD=5V, RL= 4Ω , A _V = 20 DB	2		
	VDD=4. 2V, RL=4 Ω , A _V =20DB	ა		
Input Voltage VS.Power Crrent	VDD=3. OV-5V, RL=4 Ω ,	5		
Frequency VS.THD+N	VDD=5V, RL=4 Ω , A _V =20DB, P0=0. 2W	6		
Frequency Response	VDD=5V, RL=4Ω	7		

● 特性曲线

图1: Input Amplitude VS. OutputPower

图2: Input Voltage VS. Output Power

图3: Output Power VS.THD+N

图4: Input Voltage VS.Power Crrent

图5: Frequency VS.THD+N

图6: Frequency Response

■ 应用说明

● SD管脚控制

SD管脚是芯片使能脚位。控制芯片打开和关闭, SD管脚为高电平时,功放芯片关断,SD管脚为低 电平时,功放芯片打开,正常工作。SD管脚不能 悬空。

SD管脚	芯片状态
低电平	打开状态
高电平	关闭状态

■ 功放增益控制

LTK8002D接受模拟信号输入,输出为模拟音频信号, 其增益均可通过R_N调节,计算公式为:

$$A_V = 2 \times (\frac{Rf}{Ri})$$

A_v为增益,通常用DB表示,上述计算结果单位为倍数、20Log倍数=DB。

LTK8002D的串联电阻(Rin)和反馈电阻(Rf)都由外部定义,用户可根据根据实际供电电压、输入幅度、和失真度定义。

如Rf=56K时, Ri=10K。A_v=2*56/10、=11.2倍、A_v=20.2DB

输入电容(Cin)和输入电阻(Rin)组成高通滤波器,其截止频率为:

$$f_C = \frac{1}{2\pi \times R_{IN} \times C_{IN}}$$

Cin电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的P0P0声

● Bypass电容

Byp电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时Byp电容的大小会影响芯片的电源抑制比、噪声、以及POP声等重要性能。建议将该电容设置为1uf,因该Byp的充电速度速度比输入信号端的充电速度越慢,POP声越小。

● 电源去藕

LTK8002D是高性能CMOS音频放大器,足够的电源退耦可保证输出THD和PSRR尽可能小。电源的退耦需要可以用插件电容和陶瓷电容组合来实现。陶瓷电容典型值为1.0 μF,放置在尽可能靠近器件VDD端口可以得到最好的工作性能,

● PCB设计注意事项

- ➤ 芯片供电VDD脚位,建议使用一个贴片电容, 电容值为1uf。为了提升芯片工作性能以及让 电源在动态时更稳定,可在VDD处使用一个插 件电容220uf-470uf。
- ➤ 功放芯片电源走线要粗,最好使用敷铜方式连接。电源供电脚(VDD)走线网络中如有过孔必须使用多孔连接,并加大过孔内径,不可使用单个过孔直接连接。
- ▶ BYPASSD电容尽量靠近芯片管脚放置。
- ▶ 输入电容(Ci)、输入电阻(Ri)尽量靠近功 放芯片管脚放置,音频走线最好使用包地处理, 可以有效的抑制其他信号耦合的噪声。
- ▶ LTK8002D 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度不能过小。

芯片封装SOP-8

and forther	Dimensions In Millimeters			Dimensions In Inches		
字符	Min	Nom	Max	Min	Nom	Max
b	0.33	0.42	0.51	0.013	0.017	0.020
С	3.8	3.90	4.00	0.150	0. 154	0. 157
C1	5.8	6.00	6. 2	0.228	0. 235	0. 244
C2	1.35	1.45	1.55	0.053	0.058	0.061
C3	0.05	0. 12	0. 15	0.004	0.007	0.010
D	4.70	5.00	5. 1	0. 185	0. 190	0. 200
D1	1.35	1.60	1.75	0.053	0.06	0.069
е	1. 270 (BSC)			0. 050 (BSC)		
L	0.400	0.83	1. 27	0.016	0.035	0.050

声明1: 北京联辉科电子技术有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。

声明2: LTK8002D耐回流焊温度<240℃,建议回流焊该温度设置在该范围内。 北京联辉科电子技术有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题.