制御工学実験報告書

実験テーマ:

実験日 : 令和 年 月 日

> 月 日

共同実験者: 番

番 番

番 番

提出日 : 令和 年 月 日

再提出日 : 令和 年 月 日

再々提出日: 令和 年 月 日

5 S 番

氏名 :

コメント 〜

(2) ロボットアームの角度制御

1 数式

1.1 数式の使い方

1.1.1 数式の使い方その 1

$$\dot{x} = Ax + Bu$$

とすれば、改行後に数式が挿入されます. 式番号は「\begin{equation} 式 \end{equation}」で囲んで

$$\dot{x} = Ax + Bu \tag{1.1}$$

とすれば自動的につきますし、(1.1) 式のように、式番号を参照することもできます.

1.1.2 数式の使い方その 2

「\begin{align} 式 \end{align}」で囲んで

$$E\dot{x} = Ax + Bu \tag{1.2}$$

$$y = Cx + Du (1.3)$$

とすれば、「& そろえたい部分」で囲まれた位置 ("=") をそろえることができます. \nonumber で

$$E\dot{x} = Ax + Bu \tag{1.4}$$

$$y = Cx + Du$$

のように式番号をはずすこともできます.

以前は「\begin{eqnarray}」 式 \end{eqnarray}」で囲んで

$$E\dot{x} = Ax + Bu \tag{1.5}$$

$$y = Cx + Du (1.6)$$

とし、「& そろえたい部分 &」としていました。現在では、推奨されない書き方です。

1.2 ボールドイタリック

「{\bm ボールドイタリックにしたい部分}」により数式中の文字をボールドイタリックにすることができます.

$$\dot{x} = Ax + Bu \tag{1.7}$$

1.3 ディスプレイ形式の分数

「\frac{分子}{分母}」で表現された分数を行列中などに用いると、

$$\begin{bmatrix}
a & \frac{c}{b} \\
\frac{e}{b+c} & f
\end{bmatrix}$$
(1.8)

のように分数が小さくなってしまいます。通常の大きさにしたい場合には、「\frac{分子}{分母}」の代わりに「\dfrac{分子}{分母}」を使用して下さい、「\dfrac{分子}{分母}」を用いると、次式のようになります.

$$\begin{bmatrix}
 a & \frac{c}{b} \\
 \frac{e}{b+c} & f
\end{bmatrix}$$
(1.9)

2 図表

2.1 図

pdf ファイルを取り込むことができます.

図 2.1 舞鶴高専ロゴ

図 2.1 のように、図番号を参照することもできます.

2.2 表

表の作成は以下の通りです.

表 2.1 PID パラメータ

	比例感度 k_P	比例带 PB	積分時間 T_I	微分時間 T_D
P 制御	$0.5~K_{Pc}$	$2.0 P_{Bc}$	_	_
PI 制御	$0.45~K_{Pc}$	$2.2 P_{Bc}$	$0.83 \; T_c$	_
PID 制御	$0.6~K_{Pc}$	$1.6~P_{Bc}$	$0.5 T_c$	$0.125 T_c$

表 2.1 のように、表番号を参照することもできます.

3 参考文献,その他

参考文献 $^{2)-4)}$ です.参考文献 $^{2)}$ です. 丸文字やリターンキーは ①, \longrightarrow のようにして書けます.

参考文献

- 1) 島ほか:非線形システム制御論, コロナ社 (1997)
- 2) 川田, 島津, 井上: Hamilton-Jacobi 方程式に基づく非線形 \mathcal{H}_{∞} 制御の近似実現,システム制御情報学会論 文誌, Vol. 11, No. 7, pp. 401–410 (1998)
- 3) A. J. van der Schaft: \mathcal{L}_2 -gain Analysis of Nonlinear Systems and Nonlinear State Feedback \mathcal{H}_{∞} Control, *IEEE Trans. Automat. Contr.*, Vol. AC-37, No. 6, pp. 770–784 (1992)
- 4) 中村:二次安定化による倒立振子システムのロバスト制御に関する研究,立命館大学理工学部卒業論文 (1997)