Algebra 3

Hugo Trebše (hugo.trebse@gmail.com)

26. oktober 2024

Algebra is the offer made by the devil to the mathematician. The devil says: »I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine.«

Michael Atiyah

Kazalo

1	Ponovitev Algebre 2	3
2	Razpadna polja 2.1 Polja s karakteristiko 0	4 5
3	Galoisova teorija 3.1 Pregled Galoisove teorije	8
Li	teratura	14

1 Ponovitev Algebre 2

Definicija 1.1

Naj bo $\mathbb{F} \subseteq \mathbb{K}$

- $a \in \mathbb{K}$ je algebraičen nad \mathbb{F} , če je ničla nekega polinoma iz $\mathbb{F}[X]$.
- \mathbb{K} je algebraična razširitev \mathbb{F} , če so vsi elementi \mathbb{K} algebraični nad \mathbb{F} .
- \mathbb{K} je končna razširitev \mathbb{F} , natanko tedaj, ko je \mathbb{K} končnodimenzionalni vektorski prostor nad \mathbb{F} .

Trditev 1.2

• $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$. Če je $[\mathbb{L} : \mathbb{F}], [\mathbb{K} : \mathbb{L}] < \infty$, potem je $[\mathbb{K} : \mathbb{L}] < \infty$ ter velja

$$[\mathbb{K}:\mathbb{F}]=[\mathbb{K}:\mathbb{L}][\mathbb{L}:\mathbb{F}].$$

Izrek 1.3: Boreico

Kvadratni koreni različnih naravnih števil, ki niso deljiva s kvadrati naravnih števil, so linearno neodvisni nad \mathbb{Q} .

Naloga 1.4

Naj sta a, b algebraična nad \mathbb{F} , ter $[\mathbb{F}(a) : \mathbb{F}]$ tuj $[\mathbb{F}(b) : \mathbb{F}]$. Potem je

$$[\mathbb{F}(a,b):\mathbb{F}] = [\mathbb{F}(a):\mathbb{F}][\mathbb{F}(b):\mathbb{F}].$$

Oris dokaza. Očitno $[\mathbb{F}(a):\mathbb{F}]$ deli $[\mathbb{F}(a,b):\mathbb{F}]$, enako za b, sledi, da je $[\mathbb{F}(a,b):\mathbb{F}]=c\cdot [\mathbb{F}(a):\mathbb{F}][\mathbb{F}(b):\mathbb{F}]$. Obenem je tudi $[\mathbb{F}(a,b):\mathbb{F}(a)]\leq [\mathbb{F}(b):\mathbb{F}]$, po opazovanju minimalnega polinoma b nad \mathbb{F} in nad $\mathbb{F}(a)$.

Naloga 1.5

Poišči razpadno polje $x^5 - 2$.

Oris dokaza. Trivialno je razpadno polje $\mathbb{Q}(\sqrt[5]{2}, e^{\frac{2i\pi}{5}})$. Ker je $[\mathbb{Q}(e^{\frac{2\pi i}{5}}) : \mathbb{Q}] = 4$ in $[\mathbb{Q}(\sqrt[5]{2}) : \mathbb{Q}] = 5$ je stopnja razpadnega polja nad \mathbb{Q} enaka 20.

Naloga 1.6

V \mathbb{Z}_p ne velja izrek o primitivnem elementu: Pokaži, da razširitev $\mathbb{Z}_p(x,y)/\mathbb{Z}_p(X^p,Y^p)$ ni primitivna.

2 Razpadna polja

Izrek 2.1

Za vsako polje \mathbb{F} in nerazcepen polinom $p \in \mathbb{F}[X]$ obstaja razširitev \mathbb{F} , ki jo imenujmo \mathbb{K} , da je za nek $a \in \mathbb{K}$ velja p(a) = 0.

Oris dokaza. $\mathbb{K} \cong \mathbb{F}[X]/\langle p(x)\rangle$. Očitno vsebuje podpolje izomorfno \mathbb{F} , element $x+\langle p(x)\rangle$ pa je ničla p.

Definicija 2.2

 $Razpadno\ polje$ polinoma $p \in \mathbb{F}[X]$ je najmanjše polje, ki vsebuje \mathbb{F} kot podpolje, ter v njem p(x) razpade na linearne faktorje.

Definicija 2.3

Polje \mathbb{F} je algebraično zaprto, če je razpadno polje vsakega polinoma $\mathbb{F}[X]$ enako \mathbb{K} . Algebraično zaprtje polja \mathbb{F} je polje \mathbb{K} , ki je algebraično nad \mathbb{F} in je algebraično zaprto.

Izrek 2.4

Do izomorfizma natančno obstaja samo eno razpadno polje.

Oris dokaza. Beležimo dve opombi:

Opomba 1: Če je φ izomorfizem polj \mathbb{F} in \mathbb{F}' , ga lahko razširimo do izomorfizma med $\mathbb{F}[X]$ in $\mathbb{F}'[X]$. Nerazcepni polinomi $\mathbb{F}[X]$ in $\mathbb{F}'[X]$ na trivialen način sovpadajo.

Opomba 2: Če je $a \in \mathbb{K}$ ničla nerazcepnega polinoma $p(X) \in \mathbb{F}[X]$, potem obstaja izomorfizem polj $\overline{\varepsilon}$, ki slika iz $\mathbb{F}[X]/\langle p(X)\rangle$ v $\mathbb{F}(a)$, ter je $\overline{\varepsilon}(X+\langle p(X)\rangle)=a$ in $\overline{\varepsilon}(\lambda+\langle p(X)\rangle)=\lambda$.

Če je $\varphi: \mathbb{F} \to \mathbb{F}'$ izomorfizem in a ničla nerazcepnega polinoma p(X) ter a' ničla $p_{\varphi}(X)$, potem lahko φ na enoličen način razširimo do izomorfizma med $\mathbb{F}(a)$ in $\mathbb{F}'(a')$. Enoličnost je očitna. Definiramo lahko $\tilde{\varphi}$ kot naravni izomorfizem med $\mathbb{F}[X]/\langle p(X)\rangle$ in $\mathbb{F}'[X]/\langle p_{\varphi}(X)\rangle$, ki kot kompozitum ostalih dokazanih izomorfizmov implicira izomorfnost $\mathbb{F}(a)$ in $\mathbb{F}'(a')$. Dobra definiranost $\tilde{\varphi}$ je očitna.

2.1 Polja s karakteristiko 0

Lema 2.5

Naj bo \mathbb{F} polje s karakteristiko 0. Potem ima vsak nerazcepen polinom nad \mathbb{F} v vsaki razširitvi same enostavne ničle.

Oris dokaza. gcd(f(X), f'(X)) je polinom v $\mathbb{F}[X]$, ki je nekonstanten in neničelen ter deli f(X).

Izrek 2.6

Naj bo \mathbb{F} polje s karakteristiko 0, ter naj bo $f(X) \in \mathbb{F}[X]$ nekonstanten polinom. Naj bo \mathbb{K} razpadno polje $f, \varphi : \mathbb{F} \to \mathbb{F}'$ izomorfizem polj ter \mathbb{K}' razpadno polje $f_{\varphi}(X)$ nad $\mathbb{F}'[X]$. Potem obstaja natanko $[\mathbb{K} : \mathbb{F}]$ razširitev izomorfizmov φ na izomorfizem med \mathbb{K} in \mathbb{K}'

Opazimo, da smo izreke zapisali v obliki razširitev izomorfizmov, ne pa v obliki razširitev polj (najpogosteje nas bo zanimalo le $\varphi = id_{\mathbb{F}}$). Če bi trditve zapisali na ta način, bi se dokazi otežili, saj bi s tem ošibili indukcijsko predpostavko.

Definicija 2.7

Razširitev polja \mathbb{F} je enostavna, če je K = F(a) za nek $a \in \mathbb{K}$. a tedaj imenujemo primitivni element.

Izrek 2.8: Izrek o primitivnem elementu

Vsaka končna razširitev polja s karakteristiko 0 je enostavna.

Oris dokaza. Zadosti pokazati, da če je $\mathbb{K} = \mathbb{F}(b,c)$, potem obstaja a, da je $\mathbb{K} = \mathbb{F}(a)$. b,c sta algebraična, saj je razširitev končna, zaporedoma imata minimalna polinoma p(X) ter q(X) nad \mathbb{F} . Naj bo \mathbb{K}_1 razširitev \mathbb{K} , v katerem p(X) in q(X) razpadeta. $b = b_1, \ldots, b_r$ naj bodo ničle p(X) ter $c = c_1, \ldots, c_s$ ničle q(X). Izberemo $\lambda \in \mathbb{F}$, ki ni enak $\frac{b_j - b}{c - c_k}$. Trdimo, da je $a = b + \lambda \cdot c$. Očitno je $\mathbb{F}(a) \subseteq F(b,c)$. Uvedimo $f(X) = p(a - \lambda X) \in \mathbb{F}(a)[X]$, velja f(c) = 0. Naj bo $\tilde{q}(X)$ minimalni polinom c nad $\mathbb{F}(a)$. Če bi bil $\tilde{q}(c_k) = 0$ za $k \neq 1$ bi bil $f(c_k) = 0 \implies p(a - \lambda c_k) = 0$, kar je nemogoče, po naši izbiri λ . Ker ima \tilde{q} eno samo ničlo ter ima zgolj enostavne ničle pa je $\mathbb{F}(c) \subseteq \mathbb{F}(a)$, kar je bilo treba pokazati.

3 Galoisova teorija

Dani sta polji \mathbb{F} in \mathbb{K} , zanimala pa nas bodo »vmesna« polja \mathbb{L} , kjer je $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$.

Te bomo analizirali z opazovanjem grup avtomorfizmov polja \mathbb{K} , ki fiksirajo \mathbb{F} . Ponovno opomnimo, da bomo opazovali le tiste avtomorfizme, za katere je restrikcija na \mathbb{F} identiteta. Da je ta množica grupa je očitno.

Naj bo G množica avtomorfizmov \mathbb{K} , ki fiksirajo \mathbb{F} ter \mathcal{G} množica podgrup grupe G. \mathcal{G} bomo povezali s \mathcal{F} - množico vmesnih polj med \mathbb{F} in \mathbb{K} . Taka povezava je koristna, saj znamo o grupah povedati mnogo več kot o poljih, zato lahko vprašanja o poljih prevedemo na vprašanja o grupah, jih v grupah rešimo, ter odgovorimo na začetno vprašanje.

Najprej brez dokaza navedemo ključne trditve ter obravnavamo nekaj primerov.

3.1 Pregled Galoisove teorije

Primer 3.1

Naj bo $\mathbb{F} = \mathbb{R}$ ter $\mathbb{K} = \mathbb{C}$. Denimo, da bi obstajalo vmesno polje \mathbb{L} med \mathbb{R} in \mathbb{C} . Bodisi protislovje po stopnjah razširitev, bodisi ugotovimo, da če je $\ell \in \mathbb{L}$, potem je $\ell - \Re(\ell) \in \mathbb{L}$, posledično je $i \in \mathbb{L}$, sledi $\mathbb{L} = \mathbb{C}$, ali pa $\mathbb{L} = \mathbb{R}$, če so vsi elementi \mathbb{L} realni.

Kaj pa vemo o avtomorfizmih \mathbb{C} , ki fiksirajo \mathbb{R} ? Očitno je $\sigma(z) = \overline{z} \in G$. Ker velja $i^2 + 1 = 0$ je $\sigma'(i)^2 + \sigma'(1) = 0 \implies \sigma'(i)^2 = -1$, posledično je $\sigma'(i) \in \{-i, i\}$. Sledi, da je $\sigma' \in \{id, \overline{\cdot}\}$.

Trditev 3.2

Za razširitev \mathbb{K} polja \mathbb{F} so ekvivalentni naslednji pogoji. Če velja eden izmed naslednjih pogojev je razširitev Galoisova.

- K je razpadno polje nekega polinoma iz $\mathbb{F}[X]$.
- Če ima nerazcepen polinom $p(X) \in \mathbb{F}[X]$ neko ničlo v \mathbb{K} , potem p razpade v \mathbb{K} .
- $|G| = [\mathbb{K} : \mathbb{F}].$

Primer 3.3

Naj bo $\mathbb{F} = \mathbb{Q}$ ter $\mathbb{K} = \mathbb{Q}(\sqrt{2})$. Z enostavnim razmislekom o stopnjah razširitve dobimo $\mathcal{F} = {\mathbb{Q}, \mathbb{Q}(\sqrt{2})}$. Ponovno vidimo, da je $G = {1, \sigma}$, kjer je $\sigma(a + \sqrt{2}b) = a - \sqrt{2}b$. Z uporabo enačbe $\sqrt{2}^2 - 2 = 0$ ugotovimo, da smo našli vse avtomorfizme, ki fiksirajo \mathbb{Q} .

Primer 3.4

Naj bo $\mathbb{F} = \mathbb{Q}$ ter $\mathbb{K} = \mathbb{Q}(\sqrt[3]{2})$. Ponovno je potrebno ugotoviti le kako generični avtomorfizem $\sigma \in G$ deluje na elementu $\sqrt[3]{2}$. Vemo, da je $\sqrt[3]{2}^3 - 2 = 0$, sledi, da je $\sigma(\sqrt[3]{2})^3 = 2$. Ker σ slika v $\mathbb{Q}(\sqrt[3]{2})$, v posebnem primeru v \mathbb{R} , pa obstaja le ena rešitev te enačbe, sledi, da je $\sigma = \mathrm{id}$. Dobimo, da je $|G| = 1 = |\mathcal{G}|$, obenem pa je $\mathcal{F} = \{\mathbb{F}, \mathbb{K}, \ldots\}$, kar se zdi v protislovju z zgornjo trditvijo. Seveda to ni protislovje, le ugotovili smo, da tudi prvi dve točki ne moreta veljati.

Definicija 3.5

Za vsak $H \in \mathcal{G}$ definirajmo polje fiksnih točk podgrupe H

$$\mathbb{K}^{H} = \{ x \in \mathbb{K} \mid \sigma(x) = x \ \forall \sigma \in H \}$$

Opazimo, da je

$$\mathbb{K}^G = \mathbb{F} \text{ ter } \mathbb{K}^{\{1\}} = \mathbb{K}.$$

Trditev 3.6

- Preslikava $H \to \mathbb{K}^H$ je bijekcija iz \mathcal{G} v \mathbb{F} .
- $H \leq H'$ natanko tedaj, ko je $\mathbb{K}^{H'} \subseteq \mathbb{K}^H$
- $|H| = [\mathbb{K} : \mathbb{K}^H].$

Primer 3.7

Naj bo $\mathbb{F}=\mathbb{Q}$ in $\mathbb{K}=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Mar je \mathbb{K} Galoisova razširitev? Seveda je K razpadno polje $(X^2-2)(X^2-3)\in\mathbb{Q}[X]$. Sledi, da je $[\mathbb{K}:\mathbb{F}]=4$, štiri podpolja pa so generirana z $1,\sqrt{2},\sqrt{3},\sqrt{6}$. Vidimo, da je $\sigma(\sqrt{2})^2=2$ ter $\sigma(\sqrt{3})^2=3$, kar poda le 4 možnosti za avtomorfizem σ , sledi |G|=4. Ker imajo vsi avtomorfizmi red 2 je $G\cong\mathbb{Z}_2\oplus\mathbb{Z}_2$.

Primer 3.8

Naj bo $\mathbb{F} = \mathbb{Q}$ ter za $\omega \in \mathbb{C} \setminus \mathbb{R}$, ki zadošča $\omega^3 = 1$ naj bo $\mathbb{K} = \mathbb{Q}(\sqrt[3]{2}, \omega)$. K je razpadno polje polinoma $X^3 - 2$. Velja, da je [K : F] = 6, zato pričakujemo, da je |G| = 6. Minimalni polinom ω je $X^2 + X + 1$. Seveda velja, da je vsak avtomorfizem, ki fiksira \mathbb{F} , določen s svojimi vrednostmi na $\sqrt[3]{2}$ ter ω . Izberemo bazo $1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \sqrt[3]{2}\omega, \sqrt[3]{4}\omega$, da je ta množica baza preverimo na standarden način, upoštevajoč, da je koeficient ω kot kompleksnega števila nujno 0.

Vemo, da je $\sigma(\sqrt[3]{2})^3 = 2$ ter, da je $\sigma(\omega)^3 = 1$, za sliko vsakega izmed $\sqrt[3]{2}$ in ω imamo tri možnosti za sliko. Opazimo lahko, da avtomorfizem σ , ki fiksira ω in slika $\sqrt[3]{2}$ v $\sqrt[3]{2}\omega$ ne komutira z avtomorfizmom ρ , ki fiksira $\sqrt[3]{2}$ ter slika ω v $\sqrt[3]{2}\omega$. Ker je G nekomutativna in reda 6 je izomorfna S_3 .

Podgrupa S_3 s 3 elementi je A_3 , sledi, da to generira σ . Ostale podgrupe generirajo transpozicije, namreč σ , $\sigma \cdot \rho$ ter $\sigma \cdot \rho^2$.

Izrek 3.9

 $H \subseteq G$ natanko tedaj, ko je \mathbb{K}^H Galoisova razširitev \mathbb{F} in je $G/H \cong \operatorname{Aut}(\mathbb{K}^H/\mathbb{F})$.

3.2 Legitimizacija Galoisove teorije

Naj bo \mathbb{F} podpolje \mathbb{K} . Aut (\mathbb{K}/\mathbb{F}) naj bo grupa avtomorfizmov \mathbb{K} , ki fiksirajo \mathbb{F} . Pogosto bomo Aut (\mathbb{K}/\mathbb{F}) označevali z G.

Lema 3.10

Če je $\sigma \in \operatorname{Aut}(\mathbb{K}/\mathbb{F})$ in je $a \in \mathbb{K}$ ničla $f(X) \in \mathbb{F}[X]$, potem je $\sigma(a)$ ničla f(X).

Avtomorfizmi, ki fiksirajo bazno polje, tako permutirajo ničle polinomov.

Po izreku o primitivnem elementu lahko vsako končno razširitev \mathbb{K} polja \mathbb{F} zapišemo kot razširitev v elementu $a \in \mathbb{K}$. Vsak avtomorfizem je tako enolično določen z delovanjem na a. Naj bo p(X) minimalni polinom a nad \mathbb{F} . Sledi, da vsak avtomorfizem, ki fiksira \mathbb{F} , le permutira ničle p(X), zato je avtomorfizmov največ $\deg(p)$. Po eni izmed lem iz prejšnjega predavanja (komutativni diagram) pa vemo, da je avtomorfizmov natanko $\deg(p(X)) = [\mathbb{K} : \mathbb{F}]$.

Trditev 3.11

Avtomorfizmov \mathbb{K} , ki fiksirajo \mathbb{F} je natanko $\deg(p)$, kjer je p minimalni polinom primitivnega elementa $\mathbb{K} : \mathbb{F}$, s koeficienti v \mathbb{F} .

Kot v prejšnjem podpoglavju definiramo za $H \leq G$ polje fiksnih točk H kot

$$\mathbb{K}^H = \{ x \in \mathbb{K} \mid \sigma(x) = x \, \forall \sigma \in H \}$$

Dve ključni lemi sta: (v obeh predpostavimo $char(\mathbb{F}) = 0$)

Lema 3.12

Naj bo $H \leq G$ ter $[\mathbb{K} : \mathbb{F}] < \infty$. Naj bo $a \in \mathbb{K}$ in naj bodo $a = a_1, \dots, a_m$ različni elementi množice $\{\sigma(a) \mid \sigma \in H\}$. Potem je

$$p(X) = (X - a_1) \dots (X - a_m)$$
 minimalni polinom a nad \mathbb{K}^H .

Oris dokaza. Preverimo, da ima p koeficiente v \mathbb{K}^H . Če je $p(X) = \sum_{i=0}^m \alpha_i X^i$, potem je $p_{\rho}(X) = \sum_{i=0}^m \rho(\alpha_i) X^i$. Vsak a_i je oblike $\sigma_i(a)$ za nek $\sigma_i \in H$. Sledi, da je $\rho(\alpha_i) \in \{\sigma(a) \mid \sigma \in H\}$, posledično ρ permutira to množico, saj je namreč injektiven. Sledi, da je $p_{\rho}(X) = p(X) \implies \rho(\alpha_i) = \alpha_i \implies \alpha_i \in \mathbb{K}^H$.

Naj bo $f(X) \in \mathbb{K}^H[X]$ tak, da je f(a) = 0, posledično so tudi vsi a_i ničle f. Sledi, da $p \mid f$.

Lema 3.13

$$|H| = [\mathbb{K} : \mathbb{K}^H] \text{ ter } [\mathbb{K} : \mathbb{F}] = |H| [\mathbb{K}^H : \mathbb{F}].$$

Oris dokaza. Treba je pokazati le prvo trditev. Naj bo $\mathbb{K} = \mathbb{F}(a)$, zato velja tudi $\mathbb{K} = \mathbb{K}^H(a)$. Sledi, da je $[\mathbb{K} : \mathbb{K}^H] = m = \deg(m_a(X))$, kjer je $m_a(X)$ minimalni polinom a nad \mathbb{K}^H . Po zgornji lemi je $m = |\{\sigma(a) \mid \sigma \in H\}| = |H|$, kjer zadnja enakost velja, ker različna avtomorfizma iz H elementa a, kot primitivnega elementa, ne morata preslikati v isti element.

Izrek 3.14

Naj bo $[\mathbb{K} : \mathbb{F}] < \infty$ ter char $(\mathbb{F}) = 0$. Naslednje trditve so ekvivalentne:

- $|\operatorname{Aut}(\mathbb{K}/\mathbb{F})| = [\mathbb{K} : \mathbb{F}].$
- $\mathbb{K}^{\operatorname{Aut}(\mathbb{K}/\mathbb{F})} = \mathbb{F}$.
- Vsak nerazcepen polinom nad \mathbb{F} z ničlo v \mathbb{K} razpade v \mathbb{K} .
- \mathbb{K} je razpadno polje nekega nerazcepnega polinoma iz $\mathbb{F}[X]$.
- \mathbb{K} je razpadno polje nekega polinoma iz $\mathbb{F}[X]$.

Dokaz. Označujmo $G = \operatorname{Aut}(\mathbb{K}/\mathbb{F})$. Uporabimo drugo lemo v primeru H = G, sledi, da je $[\mathbb{K}^G : \mathbb{F}] = 1$, kar pokaže implikacijo.

Naj bo p(X) minimalni polinom elementa $a \in \mathbb{K}$ nad \mathbb{F} . Po prvi lemi v primeru H = G in upoštevajoč $\mathbb{K}^G = \mathbb{F}$ dobimo, da je $p(X) = \prod_{i=1}^m (X - \sigma_i(a))$, ter je $p(X) \in \mathbb{F}[X]$ ter so $\sigma_i(a) \in \mathbb{K}$.

Uporabimo izrek o primitivnem elementu, naj bo $\mathbb{K} = \mathbb{F}(a)$ ter p(X) minimalni polinom a nad \mathbb{F} . p(X) razpade na produkt linearnih faktorjev v $\mathbb{K}[X]$. K je najmanjše polje v katerem razpade p, saj je \mathbb{K} najmanjše polje, ki vsebuje ničlo a.

Zadnja točka implicira prvo po izreku 2.1.

Če razširitev \mathbb{K} zadošča enemu izmed zgornjih pogojev jo imenujemo Galoisova razširitev. Tedaj označujemo $\operatorname{Aut}(\mathbb{K}/\mathbb{F})$ tudi z $\operatorname{Gal}(\mathbb{K}/\mathbb{F})$. Če je \mathbb{K} razpadno polje polinoma f, potem \mathbb{K} imenujemo tudi Galoisova razširitev polinoma f.

Opomba: Splošneje (zunaj karakteristike 0) Galoisovo razširitev vpeljemo preko pojma normalnosti in separabilnosti. Razširitev je *normalna*, če je algebraična in zadošča tretji točki zgornjega izreka Razširitev je *separabilna*, če je vsak nerazcepen polinom separabilen - ima vse ničle enostavne.

Opomba: \mathbb{K} naj bo Galoisova razširitev \mathbb{F} in \mathbb{L} vmesno polje. Potem je \mathbb{K} tudi Galoisova razširitev \mathbb{L} (saj je razpadno polje istega polinoma nad \mathbb{L} kot nad \mathbb{F}).

Izrek 3.15: Osnovni izrek Galoisove teorije

Naj bo \mathbb{K} Galoisova razširitev polja \mathbb{F} s katakteristiko 0. Označimo s \mathcal{F} množico vseh vmesnih polj med \mathbb{F} in \mathbb{K} ter naj bo \mathcal{G} množica vseh podgrup grupe $Gal(\mathbb{K}/\mathbb{F}) = G$.

• Preslikava $\alpha: \mathcal{G} \to \mathcal{F}$, kjer je

$$\alpha(H) = \mathbb{K}^H$$

je bijektivna in njena inverzna preslikava je $\beta: \mathcal{F} \to \mathcal{G}$, kjer je

$$\beta(\mathbb{L}) = \operatorname{Gal}(\mathbb{K}/\mathbb{L}).$$

• Če H ustreza \mathbb{L} : $\mathbb{L} = \mathbb{K}^H$ ali ekvivalentno $\operatorname{Gal}(\mathbb{K}/\mathbb{L}) = H$, potem je

$$|H| = [\mathbb{K} : \mathbb{L}] \text{ ter } [G : H] = [\mathbb{L} : \mathbb{F}].$$

• Če H ustreza \mathbb{L} in H' ustreza \mathbb{L}' , potem je

$$H \subset H' \iff \mathbb{L}' \subset \mathbb{L}.$$

• Če H ustreza \mathbb{L} , potem je

$$H \subseteq G \iff \mathbb{L}$$
 je Galoisova razširitev \mathbb{F} .

Tedaj velja tudi

$$G/H \cong \operatorname{Gal}(\mathbb{L}/\mathbb{F}).$$

Oris dokaza. $\alpha(\beta(\mathbb{L})) = \alpha(\operatorname{Gal}(\mathbb{K}/\mathbb{L}))$ ter $\beta(\alpha(H) = \operatorname{Gal}(\mathbb{K}/\mathbb{K}^H)$, želeli, bi pokazati $\mathbb{K}^{\operatorname{Gal}(\mathbb{K}/\mathbb{L})} = \mathbb{L}$ in $\operatorname{Gal}(\mathbb{K}/\mathbb{K}^H) = H$. Ker je \mathbb{K} Galoisova razširitev \mathbb{L} in zaradi druge točke izreka na prejšnji strani sledi prva enakost.

Očitno velja, da je $H \subseteq \operatorname{Gal}(\mathbb{K}/\mathbb{K}^H)$. Treba je dokazati le še, da imata grupi isti red. Po drugi lemi sledi, da je $|H| = [\mathbb{K} : \mathbb{L}]$ in po prvi točki izreka je $[\mathbb{K} : \mathbb{L}] = |\operatorname{Gal}(\mathbb{K}/\mathbb{L})|$.

Prva enakost druge točke sledi po lemi 2. Druga enakost druge točke pa sledi po uporabi Lagrangevega izreka.

Pokažimo četrto točko. Naj H ustreza \mathbb{L} , $\mathbb{L} = \mathbb{K}^H$ in $H = \operatorname{Gal}(\mathbb{K}/\mathbb{L})$.

$$H \subseteq G \iff \sigma^{-1}\rho\sigma \in H \ \forall \sigma \in H \land \forall \rho \in H.$$

Zato bi želeli pokazati, da je za vse $l \in \mathbb{L}$: $\rho(\sigma(l)) = \sigma(l)$, ker pa je $\mathbb{L} = \mathbb{K}^H$ pa je to ekvivalentno $\sigma(l) \in \mathbb{L}$, saj je $\sigma(l)$ fiksna točka ρ . Tako je $H \subseteq G \iff \sigma(\mathbb{L}) \subseteq \mathbb{L} \iff \sigma(\mathbb{L}) = \mathbb{L}$, kjer zadnja ekvivalenca velja, ker je σ injektiven, ter ker je \mathbb{L} končnodimenzionalen vektorski prostor nad \mathbb{F} . Definirajmo $\varphi: G \to \operatorname{Aut}(\mathbb{L}/\mathbb{F}) \implies \phi(\sigma) = \sigma|_{\mathbb{L}}$. Ker je $G/\ker(\varphi) \cong \operatorname{im}(\varphi)$.

3.3 Vaje

Naloga 3.16

Določi $Aut(\mathbb{R})$.

Oris dokaza. Vemo, da je f(x) + f(y) = f(x) + f(y) ter f(xy) = f(x)f(y). Vemo, da je f na \mathbb{Q} identiteta. Želimo pokazati zveznost f. Ker je $f(x^2) = f(x)^2$ hitro dobimo, da je $f(x) = f(y) + f(x-y) = f(y) + f(\sqrt{x-y})^2 > f(y)$ za x > y, f je tako monotona. Velja, da je f(x) - f(a) = f(x-a) < f(q) za neko racionalno število q, za katero velja, da je |x-a| < q. Zveznost sledi.

Nauk: Relacija urejenosti lahko izrazimo algebraično:

$$x > y \iff \exists \lambda \in \mathbb{R} \ x - y = \lambda^2.$$

Naloga 3.17

Določi zvezne elemente $Aut(\mathbb{C})$.

Oris dokaza.
$$f$$
 fiksira \mathbb{Q} . Ker je \mathbb{Q} gosta v \mathbb{R} sledi, da f fiksira tudi \mathbb{R} . $i^2+1=0 \implies f(i) \in \{i,-i\}$

Nauk: Pri algebraičnih razširitvah iščemo minimalne polinome generatorjev razširitve, nato pa vemo, da avtomorfizem permutira ničle.

Kaj pa nezvezni elementi $\mathrm{Aut}(\mathbb{C})$? Te konstruiramo s pomočjo izbire.

Splošna uporaba Zornove leme $\{(K,\pi) \mid \mathbb{F} \subseteq K \subseteq \mathbb{C}, \pi : \mathbb{K} \to \mathbb{C}\}$. Uvedemo delno urejenost: $(K,\pi) \subseteq (K',\pi') \iff K \subseteq K'$ ter $\pi'|_K = \pi$. Obstaja zgornja meja verige, zato imamo maksimum.

Pomnimo, da je \mathbb{K}/\mathbb{F} Galoisova razširitev, če je K razpadno polje nekega polinoma nad \mathbb{F} . V Galoisovi razširitvi vsak nerazcepen polinom nad \mathbb{F} , ki ima ničlo v \mathbb{K} , razpade v \mathbb{K} .

Naloga 3.18

Vsaka kvadratična razširitev K/F je Galoisova.

Oris dokaza. Po Vietu je vsota ničel v \mathbb{F} , če vsebuje eno seveda tudi drugo.

Naloga 3.19

Ali je $\mathbb{Q}(\sqrt[4]{2}/\mathbb{Q})$ Galoisova razširitev? Poišči $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q})$.

Oris dokaza. Ako bi bila Galoisova bi vsebovala vse ničle polinoma X^4-2 , kompleksnih ničel pa seveda ne vsebuje. Po klasičnem argumentu o permutaciji ničel dobimo, da sta edina avtomorfizma identiteta ter »konjugiranje«.

Naloga 3.20

Če sta \mathbb{K}/\mathbb{F} in \mathbb{L}/\mathbb{K} Galoisova, ali sledi, da je \mathbb{L}/\mathbb{F} Galoisova?

Oris dokaza. Vse kvadratične razširitve so Galoisove, pogledamo $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt[4]{2})\subseteq\mathbb{Q}(\sqrt[4]{2})$

Naloga 3.21

Pokaži, da lahko Galoisovo grupo polinoma stopnje n vložimo v S_n .

 $Oris\ dokaza$. Galoisova grupa polinoma je tu mišljena kot Galoisovo grupo razpadnega polja polinoma. Ničle oštevilčimo, nato imamo naravno vložitev.

Literatura

[1] prof. dr. Matej Brešar. *Predavanja Algebre 3.* 2025.