

FCC TEST REPOR

The Nest Network S.L.

For

eNest

Model Name: NE101SA

Trade Name: eNest

Brand Name: Nestwork

FCC ID: 2ABF8-NE101SA

Standard: 47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

Test date: 2013-11-10to 2013-11-20

Issue date: 2014-2-11

Ву

Shenzhen Morlab Communications Technology Co., Ltd.

FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China 518101

Tested by Liu Zhi San Liu Zhiseng

(Test Engineer)

Date 2914. 2.11

Cerzeng Dexin

Q (Chief Manage)

M. System Certification

Reviewed by

Peng Huarui

(Dept. Manager)

Date 2014. 7. 1

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Web site: http://www.morlab.cn/

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

TABLE OF CONTENTS

<u>GEI</u>	<u>NERAL INF</u>	ORMATION	3
1.1			3
1.2	TEST STAN	NDARDS AND RESULTS	4
1.3	FACILITIES	AND ACCREDITATIONS	5
<u>2.</u>	<u>47 CFR PA</u>	RT 2, PART 22H REQU	REMENTS 6
2.1	CONDUCTI	ED RF OUTPUT POWER	6
2.2			14
2.3	99% Occi	JPIED BANDWIDTH	17
2.4	FREQUENC	CY STABILITY	24
2.5	CONDUCTI	ED OUT OF BAND EMISSIO	NS26
2.6	BAND EDG	E	33
2.7	TRANSMIT	TER RADIATED POWER (E	IRP/ERP)36
2.8	RADIATED	OUT OF BAND EMISSIONS	41
			Change History
	Issue	Date	Reason for change
	1.0	2013-11-19	First edition

GENERAL INFORMATION

1.1 EUT Description

EUT Type: eNest

Serial No. (n.a, marked #1 by test site)

Hardware Version V4.0 Software Version V1.5.2

Applicant: The Nest Network S.L.

Plaza Republica Argentina 3 Madrid Spain

Manufacturer.....: The Nest Network S.L.

Plaza Republica Argentina 3 Madrid Spain

Frequency Range: GSM 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz); Rx: 869.20 - 893.80MHz (at intervals of 200kHz)

GSM 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz); Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

Modulation Type...... GSM,GPRS Mode with GMSK Modulation

Multislot Class..... GPRS: Multislot Class12

Antenna Type.....: PIFA Antenna

Emission Designators: GSM 850:247KGXW,GSM 1900:250KGXW

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- *Note 3:* For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 3 of 48

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General
	(10-1-12 Edition)	Rules and Regulations
2	47 CFR Part 22	Public Mobile Services
	(10-1-12 Edition)	
3	47 CFR Part 24	Personal Communications Services
	(10-1-12 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	2.1046	Conducted RF Output Power	<u>PASS</u>
2.	24.232(d)	Peak to average radio	<u>PASS</u>
2	2.1049,22.917	99% Occupied Bandwidth	<u>PASS</u>
	24.238		
3	2.1055,22.355	Frequency Stability	<u>PASS</u>
	24.235		
4	2.1051,2.1057	Conducted Out of Band Emissions	<u>PASS</u>
	22.917,24.238		
5	2.1051,2.1057	Band Edge	<u>PASS</u>
	22.917,24.238		
6	22.913,24.232	Transmitter Radiated Power (EIPR/ERP)	<u>PASS</u>
7	2.1053,2.1057	Radiated Out of Band Emissions	<u>PASS</u>
	22.917,24.238		

NOTE: Measurement method according to TIA/EIA 603.D-2010

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 4 of 48

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, No.8 LongChang Road,Block 67, BaoAn District, ShenZhen, GuangDong Province,P. R. China 518101. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 695796.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 5 of 48

2. 47 CFR PART 2, PART 22H REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2013.05	2014.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2013.05	2014.05
Power Meter	Agilent	E4418B	GB43318055	2013.05	2014.05
Power Sensor	Agilent	8482A	MY41091706	2013.05	2014.05
Power Splitter	Weinschel	1506A	NW521	2013.05	2014.05
Attenuator 1	Resnet	20dB	(n.a.)	2013.05	2014.05
Attenuator 2	Resnet	3dB	(n.a.)	2013.05	2014.05

2.1.3 Test Results

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 6 of 48

output power of the EUT.

1. GSM Model Test Verdict:

Dond	Channal	Frequency	Measured	Measured Output Power		
Band	Channel	(MHz)	dBm	Refer to Plot	dBm	Verdict
CCM	128	824.2	29.25			<u>PASS</u>
GSM 850MHz	190	836.6	29.26	Plot A1 to A3	35	<u>PASS</u>
OSUMITZ	251	848.8	29.30			<u>PASS</u>
GSM	512	1850.2	27.88			<u>PASS</u>
1900MHz	661	1880.0	27.20	Plot B1 to B3	32	<u>PASS</u>
1900МП2	810	1909.8	27.21			<u>PASS</u>
GPRS	128	824.2	28.63	Diet C4 to		<u>PASS</u>
850MHz	190	836.6	28.69	Plot C1 to	35	<u>PASS</u>
OSUMITZ	251	848.8	28.69	CS		<u>PASS</u>
CDDC	512	1850.2	27.27	Diet D1 to		<u>PASS</u>
GPRS 1900MHz	661	1880.0	26.58	Plot D1 to	32	<u>PASS</u>
1900101112	810	1909.8	26.63		<u>PASS</u>	

Note 1: For the GPRS model, all the slots were tested and just the worst data was record in this report.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 7 of 48

2. GSM Model Test Plots:

(Plot A1:GSM 850MHz Channel = 128)

(Plot A2:GSM 850MHz Channel = 190)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 8 of 48

(Plot A3:GSM 850MHz Channel = 251)

(Plot B1: GSM 1900MHz Channel = 512)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 9 of 48

(Plot B2: GSM 1900MHz Channel = 661)

(Plot B3: GSM 1900Hz Channel = 810)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 10 of 48

(Plot C 1: GPRS 850MHz Channel = 128)

(Plot C 2: GPRS 850MHz Channel = 190)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 11 of 48

(Plot C 3: GPRS 850MHz Channel = 251)

(Plot D 1: GPRS 1900MHz Channel = 512)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 12 of 48

(Plot D 2: GPRS 1900MHz Channel = 661)

(Plot D 3: GPRS 1900MHz Channel = 810)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 13 of 48

2.2 Peak to Average Ratio

2.2.1 Definition

According to FCC section 2.1049 and FCC 24.232(d), the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2 Test Description

See section 2.1.2 of this report.

2.2.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

Test procedures:

A .For GSM operating mode:

- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- B. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

1. Test Verdict:

Band	Channal	Channel Frequency		Peak to Average radio		
Danu	Chamilei	(MHz)	dBm	Refer to Plot	dBm	Verdict
CCM	512	1850.2	0.03		<u>P</u>	<u>PASS</u>
GSM 1900MHz	661	1880.0	0.04	Plot A1 to A3	13	<u>PASS</u>
1900101112	810	1909.8	0.05			<u>PASS</u>

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 14 of 48

(Plot A1:GSM 1900 MHz Channel = 512)

(Plot A2:GSM 1900 MHz Channel = 661)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 15 of 48

(Plot A3:GSM 1900MHz Channel = 810)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 16 of 48

2.3 99% Occupied Bandwidth

2.3.1 Definition

According to FCC section 2.1049 and FCC § 22.917 &24.238, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth,

2.3.2 Test Description

See section 2.1.2 of this report.

2.3.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the 99% occupied bandwidth.

2. Test Verdict:

Band	Chann	Frequen	26dB	99% Occupied	Refer to
Danu	el	cy (MHz)	bandwidth	Bandwidth	Plot
	128	824.2	312.8 KHz	243.76 KHz	Plot A
GSM 850MHz	190	836.6	310.1 KHz	242.92 KHz	Plot B
	251	848.8	316.7 KHz	246.88 KHz	Plot C
	512	1850.2	318.2 KHz	243.87 KHz	Plot D
GSM 1900MHz	661	1880.0	321.4 KHz	247.73 KHz	Plot E
	810	1909.8	314.2 KHz	249.99 KHz	Plot F
	128	824.2	305.3 KHz	244.19 KHz	Plot G
GPRS 850MHz	190	836.6	307.2 KHz	242.89 KHz	Plot H
	251	848.8	308.8 KHz	240.97 KHz	Plot I
	512	1850.2	314.1 KHz	243.88 KHz	Plot J
GPRS 1900MHz	661	1880.0	321.7 KHz	247.21 KHz	Plot K
	810	1909.8	319.4 KHz	245.62 KHz	Plot L

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 17 of 48

3. Test Plots:

(Plot A: GSM 850MHz Channel = 128)

(Plot B: GSM 850MHz Channel = 190)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 18 of 48

(Plot C: GSM 850MHz Channel = 251)

(Plot D: GSM 1900MHz Channel = 512)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 19 of 48

(Plot E: GSM 1900MHz Channel = 661)

(Plot F: GSM 1900MHz Channel = 810)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 20 of 48

(Plot G: GPRS 850MHz Channel = 128)

(Plot H: GPRS 850MHz Channel = 190)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 21 of 48

(Plot I: GPRS850MHz Channel = 251)

(Plot J: GPRS 1900MHz Channel = 512)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 22 of 48

(Plot K: GPRS 1900MHz Channel = 661)

(Plot L: GPRS 1900MHz Channel = 810)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 23 of 48

2.4 Frequency Stability

2.4.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.4.2 Test Description

1. Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2013.05	2014.05
DC Power Supply	Good Will	GPS-3030DD	EF920938	2013.05	2014.05
Temperature	YinHe Experimental	HL4003T	(n.a.)	2013.05	2014.05
Chamber	Equip.				

2.4.3 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.7VDC, 4.2VDC and 3.6VDC, which are specified by the applicant; the normal temperature here used is 25°C. The frequency deviation limit of

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 24 of 48

850MHz band is ± 2.5 ppm, and 1900MHz is ± 1 ppm.

1. GSM 850MHz Band

Test Conditions								
Power	Temperature	Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)		Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-18.07		15.31		-16.22		
	-20	15.39		24.35		19.32		
	-10	-11.35		27.21		25.31	±2122	<u>PASS</u>
	0	30.22		-25.29		30.26		
3.7	+10	-29.21		15.37		-29.21		
	+20	19.33	±2060.5	-14.22	±2091.5	19.33		
	+30	-19.27		21.24		-19.27		
	+40	26.29		16.26		-16.22		
	+55	18.97		11.31		19.32		
4.2	+25	30.22		21.95		25.31		
3.6	+25	-29.21		30.05		22.26		

2. GSM 1900MHz Band

Test Conditions								
Power	Temperatur	Channel = 512 (1850.2MHz)		Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)		Verdict
(VDC)	e (°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-10.22		-16.25		11.24		
	-20	21.23		11.32		-11.66		
	-10	13.41		25.31		-13.17		
	0	0.49		30.26		11.32	•	
3.7	+10	-12.52		-29.21		25.31	•	
	+20	30.62	±1850.2	19.33	±1880.0	30.26	±1909.8	<u>PASS</u>
	+30	13.45		-19.27		-29.21		
	+40	-12.52		25.29		19.33		
	+55	30.62		-16.33		-19.27		
4.2	+25	-0.59		11.32		25.29		
3.6	+25	21.81		15.39		11.92		

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 25 of 48

2.5 Conducted Out of Band Emissions

2.5.1 Requirement

According to FCC section 22.917(a) and FCC section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.5.2 Test Description

See section 2.1.2 of this report.

2.5.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	< -25	Plot A1toA1.1		PASS
850MHz	190	836.6	< -25	Plot A2toA2.1	-13	PASS
OSUMINZ	251	848.8	< -25	Plot A3toA3.1		PASS
GSM	512	1850.2	< -25	Plot B1toB1.1		PASS
1900MHz	661	1880.0	< -25	Plot B2toB2.1	-13	PASS
I SOUMINZ	810	1909.8	< -25	Plot B3toB3.1		PASS

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 26 of 48

2. Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

(Plot A1:GSM 850MHz Channel = 128, 30MHz to 1GHz)

(Plot A1.1: GSM 850MHz Channel = 128, 1GHz to 9GHz)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 27 of 48

(Plot A2:GSM 850MHz Channel = 190, 30MHz to 1GHz)

(Plot A2.1: GSM 850MHz Channel = 190, 1GHz to 9GHz)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 28 of 48

(Plot A3:GSM 850MHz Channel = 251, 30MHz to 1GHz)

(Plot A3.1: GSM 850MHz Channel = 251, 1GHz to 9GHz)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 29 of 48

(Plot B1: GSM 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot B1.1: GSM 1900MHz Channel = 512, 1GHz to 20GHz)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 30 of 48

(Plot B2: GSM 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot B2.1: GSM 1900MHz Channel = 661, 1GHz to 20GHz)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 31 of 48

(Plot B3: GSM 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot B3.1: GSM 1900MHz Channel = 810, 1GHz to 20GHz)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 32 of 48

2.6 Band Edge

2.6.1 Requirement

According to FCC section 22.917(b) and FCC section 24.238(b), in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2 Test Description

See section 2.1.2 of this report.

2.6.3 Test Result

The lowest and highest channels are tested to verify the band edge emissions.

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	-16.89	Plat A	-13	<u>PASS</u>
850MHz	251	848.8	-13.74	Plot B	-13	<u>PASS</u>
GSM	512	1850.2	-16.77	Plat C	-13	<u>PASS</u>
1900MHz	810	1909.8	-15.75	Plot D	-13	<u>PASS</u>

2. Test Plots:

(Plot A: GSM 850 Channel = 128)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 33 of 48

(Plot B: GSM 850 Channel = 251)

(Plot C: GSM 1900 Channel = 512)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 34 of 48

(Plot D: GSM 1900 Channel = 810)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 35 of 48

2.7 Transmitter Radiated Power (EIRP/ERP)

2.7.1 Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

2.7.2 Test Description

Test Setup:

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

- GSM Maximum RF output power: GSM 850 29.30dBm, GSM 1900 27.88dBm, Please refer to section 2.1.3 of this report.
- Step size (dB): 3dB
- Minimum RF power: GSM 850 3.0dBm, GSM 1900 0.3dBm, .

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), and it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 36 of 48

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator Agilent		E5515C	GB43130131	2013.05	2014.05
Spectrum Analyzer Agilent		E7405A	US44210471	2013.05	2014.05
Full-Anechoic	Albatross	9m*6m*6m	(n.a.)	2013.05	2014.05
Chamber					
Test Antenna -	Schwarzbeck	VULB 9163	9163-274	2013.05	2014.05
Bi-Log					
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2013.05	2014.05
Substitution	Schwarzbeck	BBHA 9120C	9120C-384	2013.05	2014.05
Antenna					
Pre-AMPs	lucix	S10M100L3802	S020180L3203	2013.05	2014.05
Notch Filter	COM-MW	ZBSF-C836.5-25-X	NA	2013.05	2014.05
Notch Filter COM-MW		ZBSF-C1747.5-75-X2	NA	2013.05	2014.05
Notch Filter	COM-MW	ZBSF-C1880-60-X2	NA	2013.05	2014.05

2.7.3 Test Result

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST CABLES} is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

GSM Model Test Verdict:

Band	Channel	Frequenc	PCL	Measured ERP			Limit		Verdict		
Бапи	Chamilei	y (MHz)		dBm	W	Refer to Plot	dBm W		Vertice		
GSM 850MHz	128	824.20	5	30.67	1.167		38.5	7	<u>PASS</u>		
	190	836.60	5	30.73	1.183	Plot A			<u>PASS</u>		
	251	848.80	5	31.32	1.355				<u>PASS</u>		
GPRS 850MHz	128	824.20	5	30.60		Plot B Note 1 38.5					<u>PASS</u>
	190	836.60	5	30.56	1.138		38.5	7	<u>PASS</u>		
	251	848.80	5	31.30	1.349				<u>PASS</u>		

Dond	Channel	Frequenc	PCL	Measured EIRP			Limit		Verdict
Band	Chamilei	y (MHz)		dBm	W	Refer to Plot	dBm	W	verdict
GSM 1900MHz	512	1850.2	0	27.89	0.615	Plot C	33	2	<u>PASS</u>
	661	1880.0	0	28.28	0.673				<u>PASS</u>
	810	1909.8	0	28.05	0.638				<u>PASS</u>
GPRS 1900MHz	512	1850.2	0	27.46	0.557	Plot D Note 1	33	2	<u>PASS</u>
	661	1880.0	0	27.92	0.619				<u>PASS</u>
	810	1909.8	0	27.91	0.618				<u>PASS</u>

Note 1: For the GPRS model, all the slots were tested and just the worst data was record in this report.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525 Page 38 of 48

2. Test Plots:

(Plot A: GSM 850MHz Channel = 128, 190, 251)

(Plot B: GPRS 850MHz Channel = 128, 190, 251)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 39 of 48

(Plot C: GSM 1900MHz Channel = 512, 661, 810)

(Plot D: GPRS 1900MHz Channel = 512, 661, 810)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 40 of 48

2.8 Radiated Out of Band Emissions

2.8.1 Requirement

According to FCC section 22.917(a) and section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

The spurious emission with frequency band 1900 according to FCC section 2.1057.

2.8.2 Test Description

See section 2.7.2 of this report.

Equipment List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2013.05	2014.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2013.05	2014.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2013.05	2014.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2013.05	2014.05
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2013.05	2014.05
Substitution Antenna	Schwarzbeck	BBHA 9120C	9120C-384	2013.05	2014.05
Pre-AMPs	lucix	S10M100L3802	S020180L3203	2013.05	2014.05
Notch Filter	COM-MW	ZBSF-C836.5-25-X	NA	2013.05	2014.05
Notch Filter	COM-MW	ZBSF-C1747.5-75-X2	NA	2013.05	2014.05
Notch Filter	COM-MW	ZBSF-C1880-60-X2	NA	2013.05	2014.05

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 41 of 48

1. Test Verdict:

Dand	Channe	Frequen		lax. Spurious on (dBm)	Defeate Diet	Limit (dBm	Verdic t
Band	ı	cy (MHz)	Test Antenna Horizontal	Test Antenna Vertical	Refer to Plot		
0014	128	824.2	< -25	< -25	Plot A.1/A.2		<u>PASS</u>
GSM	190	836.6	< -25	< -25	Plot A.3/A.4	-13	<u>PASS</u>
850MHz	251	848.8	< -25	< -25	Plot A.5/A.6		<u>PASS</u>
GSM	512	1850.2	< -25	< -25	Plot B.1/B.2		<u>PASS</u>
1900MHz	661	1880.0	< -25	< -25	Plot B.3/B.4	-13	<u>PASS</u>
I SUUIVITZ	810	1909.8	< -25	< -25	Plot B.5/B.6		<u>PASS</u>

2. Test Plots for the Whole Measurement Frequency Range:

Note1: the power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

(Plot A.1: GSM 850MHz Channel = 128, Test Antenna Horizontal)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 42 of 48

(Plot A.2: GSM 850MHz Channel = 128, Test Antenna Vertical)

(Plot A.3: GSM 850MHz Channel = 190, Test Antenna Horizontal)

Shenzhen Morlab Communications Technology Co., Ltd.

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 43 of 48

(Plot A.4: GSM 850MHz Channel = 190, Test Antenna Vertical)

(Plot A.5: GSM 850MHz Channel = 251, Test Antenna Horizontal)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 44 of 48

(Plot A.6: GSM 850MHz Channel = 251, Test Antenna Vertical)

(Plot B.1: GSM 1900MHz Channel = 512, Test Antenna Horizontal)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 45 of 48

(Plot B.2: GSM 1900MHz Channel = 512, Test Antenna Vertical)

(Plot B.3: GSM 1900MHz Channel = 661, Test Antenna Horizontal)

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 46 of 48

(Plot B.4: GSM 1900MHz Channel = 661, Test Antenna Vertical)

(Plot B.5: GSM 1900MHz Channel = 810, Test Antenna Horizontal)

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525 Page 47 of 48

(PlotB.6: GSM 1900MHz Channel = 810, Test Antenna Vertical)

Web site: http://www.morlab.cn/ Email: info.sz@morlab.cn Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 48 of 48

^{**} END OF REPORT **