On the Expressive Power of Planning Formalisms in Conjunction with LTL

Songtuan Lin & Pascal Bercher

College of Engineering & Computer Science, The Australian National University {firstName.lastName@anu.edu.au}

Introduction

Objective: The objective of this paper is to study the expressiveness of various hierarchical and non-hierarchical planning formalisms in conjunction with Linear Temporal Logic (LTL).

Method: The approach we consider for this purpose is viewing the solution set of a planning problem as a formal language and compare it with other formal ones.

LTL and Finite LTL

LTL: The syntax of an LTL formula φ is defined as follows:

$$\varphi = \top \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \lor \varphi_2$$

The semantics of LTL is defined in terms of a state sequence of infinite length: $\pi = \langle s_1 \ s_2 \cdots \rangle$. We denote $\pi[i] = \langle s_i \cdots \rangle$.

• $\pi[i] \models \top$

- $\pi[i] \models p \text{ iff } p \in s_i$
- $\pi[i] \vDash \neg \varphi \text{ iff } \pi[i] \nvDash \varphi$ $\pi[i] \vDash \bigcirc \varphi \text{ iff } \pi[i+1] \vDash \varphi$
- $\pi[i] \models \varphi_1 \land \varphi_2 \text{ iff } \pi[i] \models \varphi_1 \land \pi[i] \models \varphi_2$
- $\pi[i] \models \varphi_1 \cup \varphi_2$ iff there exists a $j \geq i$ such that $\pi[j] \models \varphi_2$ and $\pi[\![k]\!] \vDash \varphi_1 \text{ for all } i \le k < j.$

Finite LTL: The syntax of f-LTL is identical to that of LTL, but the semantics is defined in terms of a finite state sequence $\pi = \langle s_1 \cdots s_n \rangle$:

• $\pi[i] \models \top$

- $\pi[i] \models p \text{ iff } p \in s_i$
- $\pi[i] \models \neg \varphi \text{ iff } \pi[i] \nvDash \varphi$
- $\pi_i \vDash \bigcirc \varphi$ iff i < n and $\pi_{i+1} \vDash \varphi$
- $\pi[i] \models \varphi_1 \land \varphi_2 \text{ iff } \pi[i] \models \varphi_1 \land \pi[i] \models \varphi_2$
- $\pi_i \vDash \varphi_1 U \varphi_2$ iff there exists a j with $i \le j \le n$ such that $\pi_j \vDash \varphi_2$, and for each i < k < j, $\pi_k \vDash \varphi_1$

One crucial power of f-LTL is to express the end of a state sequence, written \odot , in terms of the operator \bigcirc :

$$\odot = \bigcirc (\neg \top)$$

More concretely, we have that $\pi[i] \models \odot iff \ i = n$.

Non-hierarchical Planning Formalism

A STRIPS planning problem \mathcal{P} is a tuple $\mathcal{P} = (\mathcal{F}, \mathcal{A}, \delta, s_I, q)$:

- \mathcal{F} : A set of propositions
- A: A set of actions

• $q: q \subset \mathcal{F}$

- s_I : $s_I \in 2^{\mathcal{F}}$
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}} \delta(a) = (prec(a), eff^+(a), eff^-(a))$

A solution to \mathcal{P} is an action sequence $\overline{a} = \langle a_1 \cdots a_n \rangle$ which results in a state sequence $\pi = \langle s_0 \cdots s_n \rangle$ such that $s_0 = s_I$, $g \subseteq s_n$, and for each $1 \le i \le n$, $prec(a_i) \subseteq s_i$ and $s_i = (s_{i-1} \setminus eff^-(a_i)) \cup eff^+(a_i)$.

A $STRIPS-\mathcal{L}$ or a $STRIPS-\mathcal{F}\mathcal{L}$ planning problem \mathcal{P} is a tuple $\mathcal{P}=$ $(\mathcal{F}, \mathcal{A}, \delta, s_I, q)$ where q is respectively an LTL or an f-LTL formula.

A solution to a STRIPS-L or a STRIPS-FL problem is an action sequence \overline{a} which results in a state sequence π with $\pi[0] \models q$.

Remark: For a STRIPS-L problem, since the semantics of LTL is defined over an infinite state sequence, we have to artificially extend π to infinite by repeating its last state indefinitely (see the figure).

Hierarchical Planning Formalism

An \mathcal{HTN} planning problem is $\mathcal{P} = ((\mathcal{F}, \mathcal{A}, \mathcal{C}, \mathcal{M}, \delta), c_I, g)$ where \mathcal{C} is a set of compound tasks, and \mathcal{M} is a set of methods.

A compound task is decomposed into a partial order set of actions and compound tasks called task network by a method.

A solution is a task network consisting solely of actions which is obtained from the initial compound task and has an executable linearisation resulting in a state sequence π satisfying q.

We can incorporate LTL and f-LTL into HTN planning formalism by replacing q with a respective LTL or f-LTL formula.

Languages of Planning Problems

The language of a **non-hierarchical** planning problem \mathcal{P} :

$$\mathcal{L}(\mathcal{P}) = \{ \omega \mid \omega \text{ is a solution to } \mathcal{P} \}$$

The language of a **hierarchical** planning problem \mathcal{P} :

$$\mathcal{L}(\mathcal{P}) = \left\{ \pi \middle| \begin{array}{l} \pi \text{ is an executable linearization of } tn, \\ tn \text{ is a solution to } \mathcal{P} \end{array} \right\}$$

The class of languages of a (hierarchical or non-hierarchical) planning formalism X, e.g., $X = \mathcal{STRIPS}\text{-}\mathcal{FL}$:

 $\mathcal{L}_X = \{ \mathcal{L}(\mathcal{P}) \mid \mathcal{P} \text{ is a planning problem in the formalism } X \}$

Results and Interpretation

• Incorporating LTL and f-LTL into the STRIPS formalism in**creases** its expressiveness. In particular:

$$\mathcal{L}_{STRIPS} \subseteq \mathcal{L}_{STRIPS-L} \subseteq \mathcal{L}_{STRIPS-FL} = SF \subseteq \mathcal{REG}$$

where \mathcal{SF} and \mathcal{REG} refer to the star-free languages and regular languages, respectively.

ullet Incorporating LTL and f-LTL into \mathcal{TIHTN} also increases its expressiveness. In particular:

$$\mathcal{L}_{\mathcal{TIHTN}}\subsetneq\mathcal{L}_{\mathcal{TIHTN-L}}\subsetneq\mathcal{L}_{\mathcal{TIHTN-FL}}=\mathcal{SF}$$

where TIHTN refers to HTN planning with task insertions.

• Incorporating LTL and f-LTL into \mathcal{TOHTN} (total order \mathcal{HTN} planning) does **not** increase its expressiveness. They are all equivalent to context-free languages (CFL):

$$\mathcal{L}_{TOHTN} = \mathcal{L}_{TOHTN-\mathcal{L}} = \mathcal{L}_{TOHTN-FL} = \mathcal{CFL}$$

• All formalisms are below context-sensitive languages (CSL):

$$\mathcal{L}_{\mathcal{HTN}} \subseteq \mathcal{L}_{\mathcal{HTN-L}} \subseteq \mathcal{L}_{\mathcal{HTN-FL}} \subseteq \mathcal{CSL}$$