Fundação Universidade Estadual de Maringá - UEM Departamento de Estatística - DES/CCE

Curso: Estatística

Disciplina: Análise de Regressão (8071-Turma 2023)

Prof. Dr. Robson Marcelo Rossi

Lista de Exercícios I

Observação 1: Os exercícios propostos devem ser IMPRESSOS e entregues em formato de relatório técnico;

Observação 2: A lista têm valor 1,0 com data limite: 21/12/2023 para entrega;

Observação 3: Utilize um nível de significância de 5% quando não foi enunciado e todas análises devem conterinterpretações nos, respectivos, contextos enunciados;

Observação 4: Os arquivos de dados, quado enunciados, estarão disponíveis na plataforma Moodle (no tópico Banco de Dados).

A reta de regressão obtida pelo método dos mínimos quadrados (MMQ) possui propriedades. Algumas delas necessitam ser demonstradas:

(a) que

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2;$$

(b) a soma dos valores observados é igual à soma dos valores estimados, isto é,

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i;$$

(c) a soma dos resíduos é igual a zero, isto é,

$$\sum_{i=1}^{n} e_i = 0;$$

(d) a soma do produto do valores estimados e resíduos é igual a zero, isto é,

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0.$$

2. Faça o que se pede:

- (a) Simule n=30 valores para o Modelo de Regressão Linear Simples (MRLS) (semente 350) dado por: $Y=-2+0, 5x+\epsilon$ tal que $X\sim N(0,1)$ e $\epsilon\sim N(0,\sigma^2=9)$;
- (b) Apresente o diagrama de dispersão dos dados;
- (c) Estime os parâmetros do modelo via MMQ e pela forma matricial, isto é, $\hat{\beta} = (X'X)^{-1} X'y$;
- (d) Apresente o histograma dos erros e teste sua normalidade via Shapiro-Wilk.

3. Com o objetivo de se estudar a relação entre Tempo de uma reação química (resposta) e Temperatura, um certo experimento foi realizado. A Tabela 1 a seguir contém os valores das temperaturas, em ${}^{0}C$, e os tempos obtidos, em segundos.

Tabela 1. Dados experimentais de Temperatura e Tempo.

Temperatura)			
20	12,3	11,8	11,5	12,1	11,7
30	11,8	11,5	11,4	11,7	11,2
40	10,9	11,2	10,8	10,6	10,3
50	10,4	9,8	9,5	9,9	9,2
60	9,6	9,0	8,7	8,3	9,1
70	9,1	9,3	8,5	8,6	8,3
80	8,4	8,1	8,1	7,7	7,9

- (a) Apresente o diagrama de dispersão dos dados;
- (b) Estime a média, desvio-padrão, variância e coeficiente de variação para a resposta (Tempo de reação), considerando-a como normalmente distribuída (Sugestão: Utilize a função fitdistr da livraria MASS do R);
- (c) Calcule a média, desvio-padrão, variância e coeficiente de variação para a resposta em cada nível de temperatura e responda se há algum indício de heterocedasticidade. Justifique;
- (d) Estime os parâmetros do MRLS da Temperatura versus Tempo via comando lm do R;
- (e) Teste a significância dos parâmetros em nível de 5%;
- (f) Teste a normalidade nos resíduos;
- (g) Trace a reta estimada sobre os pontos observados;
- (h) Construa intervalos de 95% de confiança para os parâmetros estimados;
- 4. As Tabelas 2 e 3 a seguir, fazem parte da saída de uma Análise de Regressão realizada em um determinado programa estatístico.

Tabela 2. Saída 1.

Parameter	Estimate	Std. Error	t $value$	p
Intercept	83,0740	6,5930	12,60	0,000
x	-1,1848	0,1258	-9,42	0,000

Tabela 3. Saída 2.

FV	Df	Sum Sq	Mean Sq	F value	p
\overline{x}	1	1.021,1	1.021,1	88,68	0,000
Residuals	7	80,6	11,5		
Total	8	1.101,6			

- (a) Escreva a equação da reta ajustada;
- (b) Encontre um intervalo de confiança de 95%, para os coeficientes da reta ajustada;
- (c) Verifique se o modelo contribui para explicar a variável resposta. Está adequado? Justifique;
- (d) Encontre a estimativa da variância residual;

5. Um experimento foi conduzido para avaliar, em coelhos a disponibilidade relativa (DR) do Fósforo existente nos Fosfatos de rocha de Araxá e de Patos de Minas em relação ao Fósforo existente no Fosfato Bicálcico. Os animais foram alimentados com rações contendo níveis crescentes de cada Fosfato e foram anotados os consumos de ração, o que permitiu calcular o consumo de Fósforo em cada unidade experimental. A variável resposta observada foi a resistência do fêmur à quebra, mensurada com dinamômetro (Tabela 4).

A disponibilidade relativa é estimada pela razão entre o coeficiente linear de regressão (angular no caso da reta) obtido para o Fosfato de interesse e para o Fosfato Bicálcico, isto é:

$$DR^* = beta_1^*/beta_1^{Bicalcico}$$

Tabela 4. Resistência à quebra de fêmur de coelhos vs níveis de Fósforo.

Ar	axá	Pa	tos	Bicálcico			
\overline{Y}	X	Y	X	Y	X		
21,28	0,184	23,50	0,195	25	0,18		
31,60	$0,\!350$	34,59	$0,\!350$	39	$0,\!36$		
$32,\!42$	$0,\!516$	31,18	0,505	43	0,50		
41,74	$0,\!683$	43,27	0,661	60	0,65		
42,06	0,849	40,36	0,816	63	0,78		
$53,\!38$	1,015	50,45	0,972	71	0,94		

- (a) Ajuste os modelos individuais;
- (b) Calcule a disponibilidade relativa do Fósforo nos dois Fosfatos de rocha e decida pelo melhor;
- (c) Trace as retas ajustadas aos dados simultaneamente.
- 6. Com base nos dados do Instituto Nacional de Estatística de Portugal (INE), o arquivo **cereais** contém a evolução da superfície agrícola (y) utilizada anualmente na produção de cereais para grão $(y : \mathbf{area}, \text{ em } km^2)$ em Portugal, no período de 1986 a 2011 $(x : \mathbf{ano})$. Faça o que se pede:
 - (a) Construa uma nuvem de pontos de superfície agrícola vs. ano e comente;
 - (b) A partir do gráfico obtido do item anterior, sugira um valor para o coeficiente de correlação entre superfície agrícola e ano. Depois, utilize os comandos do R para calcular esse mesmo coeficiente de correlação. Comente o seu significado;
 - (c) Ajuste uma reta de regressão de superfície agrícola utilizada sobre anos. Discuta o significado dos parâmetros da reta ajustada, no contexto do problema sob estudo;
 - (d) Comente a qualidade da reta obtida, calculando o respectivo coeficiente de determinação e interpretando o valor obtido;
 - (e) Trace a reta de regressão ajustada em cima da nuvem de pontos e comente;
 - (f) Calcule a Soma de Quadrados Total (SQT), a partir do cálculo da variância amostral de y;
 - (g) Calcule o valor da Soma de Quadrados da Regressão (SQReg);
 - (h) Calcule a Soma de Quadrados dos Resíduos (SQE), diretamente a partir dos resíduos, e verifique numericamente a relação fundamental da Regressão Linear: SQT = SQReg + SQE;
 - (i) Altere as unidades de medida da variável área, de km^2 para hectares ($area \rightarrow area \times 100$). Ajuste novamente a regressão, após efetuar esta alteração. O que aconteceu aos parâmetros estimados e ao coeficiente de determinação R^2 ? Comente;
 - (j) De novo a partir dos dados originais, transforme a variável ano num contador dos anos do estudo ($ano \rightarrow ano 1985$). Ajuste novamente a regressão, após efetuar esta alteração. O que aconteceu aos parâmetros estimados e ao coeficiente de determinação R^2 ? Comente.

- 7. Hsuie, Ma e Tsai (1995) estudam o efeito da **razão** molar do ácido sebácico (o regressor) na **viscosidade** intrínseca dos copoliesteres (a resposta).
 - (a) Realize uma Análise de RLS completa e apropriada;
 - (b) Apresente um gráfico simultâneo com os dados, o ajuste, o IC e o IP;
 - (c) Apresente um intervalo de predição para uma viscosidade de 0,95.

Razão	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3
Viscosidade	0,45	0,20	0,34	0,58	0,70	0,57	0,55	0,75

8. Com interesse de investigar a relação linear existente entre X (nível de dose (%) nutricional na ração) e Y (resposta à taxa de crescimento), um experimento foi realizado considerando um Delineamento Inteiramente Casualizado (DIC) em um grupo de animais. Realize uma análise completa para os dados e conclua.

\overline{X}	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
\overline{Y}	2	2	1	1	0,1	1	0,1	0,1	1	1	12	10	14	17	11	7	9	15	8	10