《动态图概述》

主讲: 彭老师

https://www.julyedu.com/

动态图数据集介绍 Dynamic Graph Datasets

Static Graph

Static Graphs are a kind of data structure that models a set of objects (nodes), their interactions (edges) and the corresponding information (representations).

Applications of Static GNNs

Recommender System

"To-buy-together" Recommendations

are well related and diverse.

Dynamic Graph

Time-varied graph-based structure.

Dynamic Continuous Graph

Dynamic Continuous Graph

Pros: Information loss less

Cons: The most complicated network

 t_{i} t_{j} t_{i} t_{i

Projection on 2D Temporal graph

Graph Evolution

Dynamic Continuous Graph

Reddit post dataset consists of one month of posts made by users on subreddits;

Wikipedia edits dataset is one month of edits made by edits on Wikipedia pages;

LastFM song listens dataset has one month of who listens-to-which song information;

Task 1: Details of MOOC datasets?

Data	Users	Items	Interactions	
Reddit	10,000	984	672,447	
Wikipedia	8,227	1,000	157,474	
LastFM	980	1,000	1,293,103	
MOOC	7,047	97	411,749	

Dynamic Continuous Graph

Node:

User ID; Item ID

Time:

Timestamp

	Α	В	С	D	Е	F	G	Н	
1	user_id	item_id	timestamp	state_labe	comma_separated_list_of_features				
2	0	0	0	0	-0.31999	-0.4357	0.106784	-0.06731	
3	0	1	6	0	-0.31999	-0.4357	0.106784	-0.06731	
4	1	12	7839	0	-0.31999	-0.4357	0.106784	-0.06731	
5	1	11	7846	0	-0.31999	-0.4357	0.106784	-0.06731	
6	2	1	37868	0	-0.31999	-0.4357	0.607805	1.337563	
7	3	1	37953	0	-0.31999	-0.4357	0.106784	-0.06731	
8	4	1	37969	0	-0.31999	-0.4357	1.108826	7.157747	
9	4	3	38018	0	-0.31999	-0.4357	0.607805	0.133387	

Dynamic Discrete Graph

Dynamic Discrete Graph

Pros: Less complex Network

Cons: Information loss more

Graph Snapshot

Dynamic Discrete Graph

Time Step ==> Duration

Timestamp ==> Instant

	Commu	nication	Rating		
Attribute	Enron	UCI	Yelp	ML-10M	
# of Nodes	143	1,809	6,569	20,537	
# of Links	2,347	16,822	95,361	43,760	
# of Time steps	12	13	12	13	

Applications of Dynamic GNNs

Top: Inter-county mobility data from King County. Bottom: Intra-county mobility data from King County.

COVID-2019 Mobility

加态图神经网络分类 Dynamic Graph Neural Networks

Dynamic networks add a new <u>dimension</u> to network modelling and prediction – **time**.

A DGNN, is considered to be a neural network architecture which can encode a dynamic network and where the aggregation of neighbouring node features is part of the neural network architecture.

A dynamic network have both **temporal** and **structural** patterns.

Two Keys:

- Structural Information;
- **Temporal** Information.

Dynamic Network: A Dynamic Network is a graph G = (V, E)

where:

 $V = \{(v, t_s, t_e)\}$, with v a vertex of the graph and t_s, t_e are respectively the start and end timestamps for the existence of the vertex (with $t_s \le t_e$).

 $E = \{(u, v, t_s, t_e)\}$, with $u, v \in V$ and t_s, t_e are respectively the start and end timestamps for the existence of the edge (with $t_s \leq t_e$).

Priori knowledge:

- **❖** Temporal granularity
- Link duration spectrum
- * Node dynamic

Temporal Granularity

Dynamic Network: A Dynamic Network is a graph G = (V, E)

Dynamic network representations can be grouped into four distinct levels ordered by temporal granularity: (i) static, (ii) edge weighted, (iii) discrete, and (iv) continuous networks.

Dynamic Discrete Representations

Discrete Representations: use an ordered set of graphs (snapshots) to represent a dynamic graph.

$$DG = (G^1, G^2 \dots G^T)$$

T: Snapshot

Uniform Dara Encoding

$$G^1 G^2 G^3 \cdots G^T$$

Dynamic Continuous Representation

Dynamic **Continuous** network representations are the only representations that have <u>exact</u> temporal information.

This makes them the most complex but also the representation with the most potential.

Three continuous representations:

- (i) event-based;
- (ii) contact sequence;
- (iii) graph streams.

Dynamic Continuous Representation

Event-based continuous representation: $EB = \{(u_i, v_i, t_i, \Delta_i), i = 1, 2, 3 ...\}$

Contact Sequence continuous representation: $CS = \{(u_i, v_i, t_i), i = 1, 2, 3 ...\}$

Graph Streams continuous representation: $GS = \{e_1, e_2, ...\}$

where u_i and v_i is a node pair on which the *i* event occurs, t_i is the timestamp for when the event starts and Δ_i is the duration of the event.

Where $e_i = (u_i, v_i, t_i, \delta_i)$, $\delta_i \in \{-1,1\}$: -1 represents an edge removal and 1 represents that an edge is added.

Link Duration Spectrum

Temporal and evolving networks on the link duration spectrum:

The spectrum go from 0 (links have no duration) to infinity (links last forever).

Link Duration Spectrum

The spectrum go from 0 (links have no duration) to infinity (links last forever).

Node Dynamics

Static where the number of nodes stay static over time;

Dynamic where the nodes may appear and disappear. A notable special case of node dynamic networks are the networks where nodes may only appear;

Growing networks are those where nodes may only appear. (special case of dynamic ones)

Dynamics Network Cube

Node Temporal granularity Node dynamics Link duration Precise dynamic network term	
1 Discrete Node static Evolving Discrete node static evolving network	rk
Temporal Discrete node static temporal netwo	ork
Node dynamic Evolving Discrete node dynamic evolving ne	twork
4 Temporal Discrete node dynamic temporal ne	twork
5 Continuous Node static Evolving Continuous node static evolving ne	work
6 Temporal Continuous node static temporal ne	twork
7 Node dynamic Evolving Continuous node dynamic evolving	network
8 Temporal Continuous node dynamic temporal	network

Dynamic Network Models

Stacked Dynamic Graph Neural Networks

SDGNN: model a discrete dynamic graph is to have a separate GNN handle each snapshot of the graph and feed the output of each GNN to a time series component.

Integrated Dynamic Graph Neural Networks

IDGNN: are encoders which combine GNNs and RNNs in one layer and thus combine modeling of the spatial and the temporal domain in that one layer.

Dynamic Continuous Graph Neural Networks

Task 2:

- a. Types of Dynamic Continuous Graph Neural Networks;
- b. Classical Approaches of each type.

微信扫一扫关注我们

https://www.julyedu.com