12. Sea c el cardinal de \mathbb{R} . Probar:

(a) Si
$$\#A = c$$
 y $\#B = c$, entonces $\#(A \cup B) = c$.

(b) Si
$$\#A_n = c \ \forall n \in \mathbb{N}$$
, entonces $\#(\bigcup_{n \in \mathbb{N}} A_n) = c$.

$$\Rightarrow$$
 $\exists f \text{ biyective } / f: A \rightarrow [0,1)$

$$\Rightarrow \exists g \text{ biyective } / f: \mathbb{B} \rightarrow [1,2)$$

$$Supongo AnB = \phi$$

$$V(x) = \begin{cases} S(x) & y & x \in \mathbb{B} \\ f(x) & y & x \in \mathbb{B} \end{cases}$$

Pruebo bijectivided de h (x):

```
• \leq i \times e \land \Rightarrow h(x) = f(x) \in [0,1)
```

Busa desur de

$$h(x)=h(y)$$
 $\Rightarrow h(y) \in [0,1) Abz!$

... h es injectivs.

Falta sobreyectivided:

Si te
$$[0,2)$$
 \Rightarrow te $[0,1)$ of te $[1,2)$

$$\exists ! a \in A / f(a) = t = h(a)$$

$$\exists ! b \in \mathcal{B} / g(b) = t = h(b)$$

Final mente [0,1) 0 [1,2) \sim [0,2)y como $A \sim [0,1)$ B~ [1,2) supuse! ⇒ A & B ~ [0,1) & [1,2) ~ [0,2) ~ R ABBNR Ahors, si $A \cap B \neq \phi$ $\Rightarrow A \cup B = (A \cup B) \setminus (A \cap B) \cup (A \cap B)$ $\sim \mathbb{R}$ Por lo que probé Como # AnB < # A #AnB & C o ome of

 $\therefore \# \left(A \cup B \right) \setminus \left(A \cap B \right) \stackrel{!}{U} \left(A \cap B \right) = C$.. # A u B = C

(b) Si
$$\#A_n = c \ \forall n \in \mathbb{N}$$
, entonces $\#(\bigcup_{n \in \mathbb{N}} A_n) = c$.

$$S = \left[1, +\infty\right) \subset \mathbb{R}$$

$$\#\left(\bigcup_{n\in\mathbb{N}}\left[n,n+1\right)\right)=C$$

$$\begin{array}{ccc} & & & \\ &$$

o (d)
$$B_n^{\aleph} = \# N$$
 si er que existe algún B_n^{\aleph}

y como unir a un conjunto on hinito un con junto finito o mimerable no cambia su cardinal,

$$y = 0$$
 $y = 0$
 $y =$