1 Счетность множества рациональных чисел, несчетность множества действительных чисел

Утверждение. Множество \mathbb{Q} счетно, \mathbb{R} - несчетно.

Доказательство. Докажем, что $\mathbb Q$ счетно. Каждое число из $\mathbb Q$ представимо в виде несократимой десятичной дроби $\frac{p}{q}$, где $p \in \mathbb Z$, а $q \in \mathbb N$. Составим таблицу таких чисел следующим образом:

	0	1	-1	2	-2	
1	$\frac{0}{1}$	$\frac{1}{1}$	$-\frac{1}{1}$	$\frac{2}{1}$	$-\frac{2}{1}$	
2	$\frac{0}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{2}{2}$	$-\frac{2}{2}$	
3	$\frac{0}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$	
						٠

Теперь пойдем снизу вверх по диагоналям и будем присваивать дробям номера по порядку: $\frac{0}{1}$ присваиваем 1, $\frac{1}{1}$ присваиваем 2, $\frac{0}{2}$ - было, значит пропускаем, $-\frac{1}{1}$ - 3 и так далее. Таким образом мы строим биекцию между натуральными и рациональными числами, а значит $\mathbb{Q} \cong \mathbb{N}$, следовательно \mathbb{Q} - счетно.

Теперь докажем несчетность \mathbb{R} от противного. Предположим, что \mathbb{R} счетно, а значит и отрезок $[0,1] \subset \mathbb{R}$. Тогда мы можем выписать все числа из отрезка [0,1] в таблицу и пронумеровать их:

1	$0,\alpha_{1_1}\alpha_{1_2}\alpha_{1_3}\dots$
2	$0,\alpha_{2_1}\alpha_{2_2}\alpha_{2_3}\dots$
3	$0, \alpha_{3_1}\alpha_{3_2}\alpha_{3_3}\dots$

Тогда составим такое число $0, \delta_1 \delta_2 \delta_3 \dots$, что

$$\delta_i = egin{cases} 0, \ ext{ecли} \ lpha_{i_i} = 9 \ lpha_{i_i} + 1, \ ext{иначe} \end{cases}$$

Тогда полученное число будет отличаться от i-того в i-й цифре, поэтому его в таблице не будет. Противоречие. Таким образом $\mathbb R$ несчетно.

2 Теорема о существовании точной верхней (нижней) грани множества

Теорема. Каждое непустое множество $X \subset \mathbb{R}$, ограниченное сверху (снизу) имеет точную верхнюю (нижнюю грань)

Доказательство. Пусть $S \subset \mathbb{R}$ - множество всех верхних граней множества X, тогда

$$\forall x \in X, \ \forall s \in S : x \le s$$

Пользуясь теоремой о полноте действительных чисел, получаем, что

$$\exists c \in \mathbb{R} : \forall x \in X, \ \forall s \in S : x \leq c \leq s$$

Тогда c - искомая mочная верхняя грань. Существование точной нижней грани доказывается аналогично.

CTP. 2

3 Бесконечно малые последовательности их свойства. Арифметические операции со сходящимися последовательностями

Определение. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой тогда и только тогда, когда $\lim_{n\to\infty}x_n=0$ (последовательность сходится к нулю)

Теорема. Если $\{x_n\}$ - бесконечно малая последовательность, то последовательность $\{\frac{1}{x_n}\}$ - бесконечно большая.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая последовательность, тогда:

$$\forall \epsilon > 0 \,\exists N \in \mathbb{N} \,\forall n > N : |x_n| < \epsilon$$

$$|x_n| < \epsilon \Leftrightarrow \left|\frac{1}{x_n}\right| > \frac{1}{\epsilon}$$

Значит

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |\frac{1}{x_n}| > \frac{1}{\epsilon} \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = +\infty$$

Из этого следует, что $\{\frac{1}{x_n}\}$ - бесконечно большая.

Теорема. Сумма бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ и $\{y_n\}$ - бесконечно малые последовательности. Тогда

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{2}$$

$$\forall \epsilon > 0 \ \exists N_2 \in \mathbb{N} \ \forall n > N_2 : |y_n| < \frac{\epsilon}{2}$$

Тогда

$$\forall \epsilon > 0 \ \exists N = \max(N_1, N_2) \ \forall n > N : |x_n + y_n| \leq_{\text{(неравенство треугольника)}} |x_n| + |y_n| < \epsilon$$

Это означает, что последовательность $\{x_n+y_n\}$ является бесконечно малой

Теорема. Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая, а $\{y_n\}$ - ограниченная. Тогда

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N} \ x_n < M$$

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{M}$$

Тогда

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \forall n > N : |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\epsilon}{M} \cdot M = \epsilon$$

Это означает, что последовательность $\{x_n \cdot y_n\}$ является бесконечно малой

Теорема. (Арифметические свойства сходящихся последовательностей) Пусть $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, а $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то справедливы следующие равенства:

1.
$$\lim_{n\to\infty}(x_n+y_n)=a+b$$

$$2. \lim_{n\to\infty} (x_n - y_n) = a - b$$

3.
$$\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$$

4.
$$\lim_{n\to\infty}(\frac{x_n}{y_n})=\frac{a}{b}$$
 (только если $\forall n\in\mathbb{N}:y_n\neq 0\land b\neq 0)$

Доказательство.

1) Из условия следует, что

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1 : |x_n - a| < \frac{\epsilon}{2}$$
$$\forall \epsilon > 0, \exists N_2 \in \mathbb{N}, \forall n > N_1 : |y_n - b| < \frac{\epsilon}{2}$$

тогда,

$$\forall \epsilon > 0, \exists N = \max(N1, N2) \in \mathbb{N}, \forall n > N : |x_n + y_n - a - b| \le |x_n - a| + |y_n - b| < \epsilon$$

$$\lim_{n \to \infty} (x_n + y_n) = a + b$$

3) Аналогично, переход:

$$|x_n \cdot y_n - a \cdot b| = |x_n \cdot y_n - a \cdot y_n + a \cdot y_n - a \cdot b| \le |y_n| |x_n - a| + |a| |y_n - b|$$
 y_n ограниченна числом $M \Rightarrow |x_n \cdot y_n - a \cdot b| \le |M| |x_n - a| + |a| |y_n - b|$

При $N=max(N_1(rac{\epsilon}{2|M|}),N_2(rac{\epsilon}{2|a|}))$ получаем:

$$|x_n \cdot y_n - a \cdot b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

4 Свойства пределов, связанные с неравенствами

Теорема. (О зажатой последовательности) Если $\{x_n\}, \{y_n\}, \{z_n\}$ - сходящиеся последовательности, причем $\forall n: x_n \leq y_n \leq z_n$ и $\lim_{x \to \infty} x_n = \lim_{x \to \infty} z_n = l$, то $\lim_{x \to \infty} y_n = l$

Доказательство.

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |x_n - l| < \epsilon \Leftrightarrow \epsilon - l < x_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |z_n - l| < \epsilon \Leftrightarrow \epsilon - l < z_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : \epsilon - l < x_n \le y_n \le z_n < \epsilon + l \Leftrightarrow |y_n - l| < \epsilon$$

Теорема. Если последовательности $\{x_n\}$ и $\{y_n\}$ имеют пределы $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$ соответственно, то если $\exists N, \ \forall n > N : x_n \leq y_n, \ \text{то } a \leq b$

Доказательство. От противного. Пусть a > b, тогда из определения предела:

$$\forall \epsilon > 0, \ \exists N_1 \in \mathbb{N}, \forall n > N_1 : \epsilon - a < x_n < \epsilon + a$$

$$\forall \epsilon > 0, \ \exists N_2 \in \mathbb{N}, \forall n > N_2 : \epsilon - b < y_n < \epsilon + b$$

Тогда зафиксируем $\epsilon = \frac{a-b}{2} > 0$:

$$\exists N = max(N_1, N_2), \ \forall n > N : y_n < b + \frac{a-b}{2} = a - \frac{a-b}{2} < x_n$$

Противоречие.

5 Теорема о пределе ограниченной монотонной последовательности

Теорема. Если последовательность монотонно возрастает (убывает) и ограниченна сверху (снизу), то она имеет предел, причем он является точной верхней (нижней) гранью.

Доказательство. Если последовательность $\{x_n\}$ ограниченна сверху, то она имеет точную верхнюю грань M такую, что:

$$\forall n \in \mathbb{N} : x_n \le M \Rightarrow \forall \epsilon > 0 : x_n < M + \epsilon$$

$$\forall \epsilon > 0, \exists N : M - \epsilon < x_N$$

Так как последовательность $\{x_n\}$ монотонно возрастает, то:

$$\forall \epsilon > 0, \exists N, \forall n > N : M - \epsilon < x_n$$

Тогда:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |x_n - M| < \epsilon$$

Таким образом, M - предел $\{x_n\}$. Аналогично доказывается для последовательности, ограниченной снизу.

6 Число е

Теорема. Пределом последовательности $(1+\frac{1}{n})^n$ называется число e.

Доказательство. Возьмем последовательность $y_n = (1 + \frac{1}{n})^{n+1}$. Докажем, что она монотонно убывает.

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{n}{n-1}\right)^n \left(\frac{n}{n+1}\right)^{n+1} = \frac{n^{2n} \cdot n}{(n^2 - 1)^n (n+1)} = \frac{n^2}{(n^2 - 1)^n (n+1)} = \frac$$

Таким образом, $\{y_n\}$ монотонно убывает, при этом все ее члены неотрицательны, а значит она ограниченна снизу. Тогда по теореме Вейерштрасса она имеет предел. Тогда:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} y_n \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = \lim_{n \to \infty} y_n \cdot 1 = \lim_{n \to \infty} y_n = e$$

Значит $\{(1+\frac{1}{n})^n\}$ тоже сходится.

7 Теорема Кантора о вложенных отрезках

Теорема. Пересечение вложенных отрезков $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ всегда непустое множество. При этом если длины отрезков стремятся к нулю, то их пересечение - точка.

Доказательство. Рассмотрим монотонно возрастающую, ограниченную последовательность $\{a_n\}$ и монотонно убывающую, ограниченную последовательность $\{b_n\}$. По теореме Вейерштрасса, $\{a_n\}$ имеет точную верхнюю грань p, а $\{b_n\}$ - точную нижнюю грань q. Так как $\forall x \in \{a_n\}, \forall y \in \{b_n\}: x \leq y$, то $p \leq q$. Тогда отрезок [p,q] - есть пересечение вложенных отрезков.

Предположим, что существуют две различные точки M_1 и M_2 принадлежащие пересечению вложенных отрезков, длины которых стремятся к нулю. Тогда:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |a_n - b_n| < \epsilon$$

Зафиксируем $\epsilon = \frac{|M_1 - M_2|}{2}$, тогда существует такой вложенный отрезок, длина которого не превышает ϵ , а значит и расстояния от M_1 до M_2 . Тогда, очевидно, отрезок не может покрыть обе точки одновременно.

8 Подпоследовательности. Два определения частичного предела

Определение. Подпоследовательностью $\{x_n\}$ называется такая последовательность $\{x_{n_k}\}$, что $\{n_k\}$ - монотонно возрастающая последовательность натуральных чисел.

Определение. Частичным пределом последовательности $\{x_n\}$ - называют предел ее подпоследовательности.

Определение. Число $l \in \mathbb{R}$ называется частичным пределом последовательности $\{x_n\} \Leftrightarrow \forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N: |x_n - l| < \epsilon$

Утверждение. Оба определения частичного предела эквивалентны.

Доказательство. (В одну сторону) Пусть

$$\lim_{x_{n_k}} = l \Leftrightarrow \forall \epsilon > 0, \exists K \in \mathbb{N}, \forall k > K : |x_{n_k} - l| < \epsilon$$

Тогда $\forall N \in \mathbb{N}$ можно выбрать $K \in \mathbb{N}$ так, что $\forall k > K : n_k > N$, а это значит, что:

$$\forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N : |x_n - l| < \epsilon$$

(В другую сторону) Пусть l - частичный предел последовательности $\{x_n\}$, тогда:

$$\forall \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N : |x_n - l| < \epsilon$$

Тогда построим последовательность $\{x_{n_k}\}$ следующим образом:

$$\epsilon := 1 \quad \exists n_1 \in \mathbb{N} \quad |x_{n_1} - l| < 1$$
 $\epsilon := 1/2 \quad \exists n_2 > n_1 \quad |x_{n_2} - l| < 1/2$

Тогда по построению

$$\forall \epsilon > 0, \exists K \in \mathbb{N}, \forall k > K : |x_{n_k} - l| < \epsilon$$

9 Теорема о трёх определениях верхнего и нижнего пределов

Определение. Верхним пределом $\overline{\lim}_{n\to\infty}x_n$ называется наибольший из частичных пределов $\{x_n\}$.

Определение. Нижним пределом $\underline{\lim}_{n\to\infty} x_n$ называется наименьший из частичных пределов $\{x_n\}$.

Теорема. (3 определения нижнего и верхнего пределов) Для любой ограниченной последовательности $\{x_n\}$ существует верхний предел $L = \overline{\lim}_{n\to\infty} x_n$ и нижний предел $l = \underline{\lim}_{n\to\infty} x_n$. При этом данное определение эквивалентно следующим двум:

1.

$$(\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : x_n < L + \epsilon) \land (\forall \epsilon > 0 \; \forall N \in \mathbb{N} \; \exists n > N : x_n > L - \epsilon)$$
$$(\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : x_n > l - \epsilon) \land (\forall \epsilon > 0 \; \forall N \in \mathbb{N} \; \exists n > N : x_n < l + \epsilon)$$

2.
$$L = \overline{\lim}_{n \to \infty} \sup\{x_n, x_{n+1}, \ldots\}$$
 $l = \underline{\lim}_{n \to \infty} \inf\{x_n, x_{n+1}, \ldots\}$

Доказательство. Пусть $s_n = \sup\{x_n, x_{n+1}, \ldots\}$. Очевидно, что $s_n \leq s_{n-1}$ и что $s_n \geq \inf\{x_n\}$. Тогда по теореме Вейерштрасса $\{s_n\}$ сходится.

$$L := \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sup\{x_n, x_{n+1}, \ldots\} = \inf\{s_n\}$$

Докажем справедливость первого определения.

$$\lim_{n \to \infty} s_n = L \Leftrightarrow \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : |s_n - L| < \epsilon \Leftrightarrow x_n \le s_n < L + \epsilon$$
$$L = \inf\{s_n\} \Leftrightarrow \forall N \in \mathbb{N} \; s_{N+1} = \sup\{x_{N+1}, x_{N+2}, \ldots\}$$

Так как $L = \inf\{s_n\}$, то $L \leq s_{N+1}$.

$$\forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : x_n = \sup\{x_n, x_{n+1}, \ldots\} \ge \sup\{x_{N+1}, x_{N+2}, \ldots\} = s_{N+1} > s_{N+1} - \epsilon = L - \epsilon$$

Отсюда:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : x_n < L + \epsilon$$

 $\forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : x_n > L - \epsilon$

Докажем в обратную сторону. Будем строить последовательность следующим образом $(N(\epsilon)$ - такое число N, что $\forall n>N: x_n < L+\epsilon$ - первая часть первого пункта):

$$\epsilon := 1 \qquad \exists n_1 > N(1) \qquad |x_{n_1} - L| < 1$$

$$\epsilon := 1/2 \quad \exists N_2 = \max(N(1/2), n_1) \quad \exists n_2 > N_2 : |x_{n_2} - L| < 1/2$$

Таким образом, мы доказали, что L является частичным пределом x_n . Теперь докажем, что L является наибольшим частичным пределом. Пусть у нас есть любая подпоследовательность $\{y_n\}$ последовательности $\{x_n\}$ такая, что $\lim_{n\to\infty}y_n=t$. Из первой первой части первого пункта следует, что

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N : y_n < L + \epsilon \Rightarrow t \leq L + \epsilon$$

Тогда $\forall \epsilon > 0 \ t \leq L + \epsilon \Rightarrow t \leq L$, а это значит, что L - наибольший из частичных пределов.