

9 March 2023 slotmachine • EN

Problem 2 - Slot machine (slotmachine)

Time spent with the Reply Code Masters team is time you'll never forget!

Spending a day with them at a casino, you start with an initial budget of B_i and your goal is to reach a budget of B_f by playing slot machines.

With their algorithmic skills, the Reply Code Masters team has identified a series of slot machines that will guarantee victory!

Specifically, you have N slot machines available to play, each of which require a C_i cost. This is subtracted from your current budget, but will ensure you a win of R_i money. Hower, you can't play a slot machine if its C_i is greater than your current budget.

You can play an unlimited number of times on any slot machine if your budget allows, but be careful: the casino guards always monitor players, so you'll have to minimise the number of plays to reach the desired budget B_f before being kicked out of the casino.

Help the Reply Code Master team find the minimum number R of slot machine games needed to reach the desired budget B_f .

Input data

The first line of the input file contains an integer **T**, the number of test cases to solve.

For each test case, the first line of the input file contains the integers:

- N, the number of slot machines
- B_f , the final budget to be reached
- B_i , the initial budget available

The next N lines will display information for each slot machine:

- C_i , the cost to play the i^{th} slot machine
- R_i , the reward gained by playing the i^{th} slot machine

Output data

The output file must contain T lines.

For each test case in the input file, the output file must contain a line with the characters:

Case #t: R

Where \mathbf{t} is the test case number, from 1 to \mathbf{T} , and R is the number of slot machine games to reach the target of cash B_f .

Note: the lines of the output file must be ordered from Case #1: to Case #T:.

slotmachine Page 1 of 2

Constraints

- $1 \le T \le 20$, the number of test cases
- $1 \le N \le 10000$, the number of slot machines
- $1 \le B_i < B_f \le 1\,000\,000\,000$, the initial and final budget
- $1 \le C_i \le 50\,000$ for each $0 \le i \le N-1$, the cost to play each of the N slot machines
- $1 \le R_i \le 50\,000$ for each $0 \le i \le N-1$, the reward gained for each of the N slot machines

Scoring

- input 1: $T = 1, N \le 10, B_f \le 500$
- input $2: T = 5, N \le 20, B_f \le 1000$
- input 3: $T = 10, N \le 200, B_f \le 10000$
- input 4: T = 15, $N \le 2000$, $B_f \le 100000$
- input 5: $T = 20, N \le 10000, B_f \le 10000000000$

Examples

input	output
1	Case #1: 21
6 392 13	0db0 #1. 21
11 12	
13 27	
13 17	
16 35	
30 41	
38 42	

Explanation

In the first test case we start with an initial budget B_i of 13 and we have to reach a final budget B_f of 392. To reach the goal we have 6 different slot machines:

- Slot machine 1 with a cost C_i of 11 and reward R_i of 12
- Slot machine 2 with a cost C_i of 13 and reward R_i of 27
- Slot machine 3 with a cost C_i of 13 and reward R_i of 17
- Slot machine 4 with a cost C_i of 16 and reward R_i of 35
- Slot machine 5 with a cost C_i of 30 and reward R_i of 41
- Slot machine 6 with a cost C_i of 38 and reward R_i of 42

A possible optimal solution is:

- Use once the 2nd slot machine, increasing the budget from 13 to 27
- Use 20 times the 4th slot machine, increasing the budget from 27 to 407, thus reaching the final budget B_f of 392

slotmachine Page 2 of 2