tar Omvaldo Carbajal Aldanen 189182

Pregunta !:

Sen f: [0,1] →R; f(x) = √x

DPD: 1 es unig. continuen.

Denostación: Sen E70.

 $|\sqrt{x} - \sqrt{y}|^2 = |\sqrt{x} - \sqrt{y}| |\sqrt{x} - \sqrt{y}| = |\sqrt{x} - \sqrt{y}| \cdot ||\sqrt{x}| - |\sqrt{y}||_{x}$ y a que $|\sqrt{x}| > 0$ y $|\sqrt{y}| > 0$. For $|\sqrt{y}| = |\sqrt{x} - \sqrt{y}| \cdot ||\sqrt{x}| + |\sqrt{y}|$ 10 que implica que $|\sqrt{x}| + |\sqrt{y}| = |\sqrt{x}| + |\sqrt{y}| + |\sqrt{y}|$

Tomando $\delta = \varepsilon^2$, s: $|x-y|<\delta \Rightarrow |f(x)-f(y)|^2 < \varepsilon^2 \Rightarrow |f(x)-f(y)| < \varepsilon$

- . f(x)=√x es unyormenente continues.

@ PD: f no es de lipschitz

Demostración:

Supongames que fes de lipschitz, ento es: $\exists c>0 \neq q$. $\forall x_1y \in [0,1]$ se tiene $|f(x)-f(y)| \leq c|x-y|$.

En perticular si tomano $x = \frac{1}{n}$, y = 0 con $n \in \mathbb{N}$ tenenos que: $\left| \frac{\sqrt{n} - \sqrt{0}}{n} \right| \le C \Rightarrow \left| \frac{\sqrt{n}}{n} \right| \le C \Rightarrow \sqrt{n} \le C \Rightarrow n \le C^2$

lo cual es un contradicción.

. . I no es de lipschitz