Assignment 9

Rushi Shah April 4, 2018

Problem 1

The function f defined as follows is called the Dirichlet function:

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

where \mathbb{Q} is the set of rational numbers. Prove that f is NOT Riemann integrable on [0,1]. Hint: using the fact that any interval of real numbers contains both rationals and irrationals.

To show that the function f is not Riemann integrable, we must show that

$$\sup_{P}\{L_{P}(f)\}\neq\inf_{P}\{U_{P}(f)\}$$

Since any interval of real numbers contains both rational and irrational numbers, we know that for any partition P with N intervals, $m_i(f) = 0$ and $M_i(f) = 1$ for all $1 \le i \le N$.

By def'n, for any P with N intervals, and since $M_i(f) = 1$, $m_i(f) = 0$ are constants, we know that $L_P(f) = \sum_{i=1}^N m_i(x_i - x_{i-1}) = m_i \sum_{i=1}^N x_i - x_{i-1} = m_i \cdot (x_n - x_0) = m_i = 0$ and $U_P(f) = \sum_{i=1}^N M_i(x_i - x_{i-1}) = M_i \sum_{i=1}^N x_i - x_{i-1} = M_i \cdot (x_n - x_0) = M_i = 1$. Thus $\sup_P \{L_P(f)\} = 0$ and $\inf_P \{U_P(f)\} = 1$, so $\sup_P \{L_P(f)\} \neq \inf_P \{U_P(f)\}$ and the function is not

Riemann integrable.

Problem 2

Let f and g be both Riemann integrable on [a,b]. Prove that f g is Riemann integrable on [a,b]. Hint: One strategy is to first show that f^2 is integrable if f is integrable and then use the fact that $f = ((f+g)^2 - f^2)$ $f^2 - g^2)/2$.

Lemma: if f is integrable then f^2 is integrable. Since f is integrable, we know that $\forall \varepsilon > 0$. $\exists P . U_P(f)$ $L_P(f) < \varepsilon$. We would like to show that $\forall \varepsilon > 0$. $\exists P : U_P(f^2) - L_P(f^2) < \varepsilon$.

Consider

$$|f^{2}(x) - f^{2}(y)| = |(f(x) + f(y))(f(x) - f(y))| \le |f(x) + f(y)||f(x) - f(y)|$$

$$\le 2B|f(x) - f(y)|$$

$$\le 2B|M_{i}(f) - m_{i}(f)|$$

But also

$$|f^2(x) - f^2(y)| \le |M_i(f^2) - m_i(f^2)|$$

by the least upper bound property of f^2 . Because $|M_i(f^2) - m_i(f^2)|$ is the least upper bound, we can see that $|M_i(f^2) - m_i(f^2)| \le 2B|M_i(f) - m_i(f)|$.

Now we can consider

$$U_{P}(f)^{2} - L_{P}(f^{2}) = \sum_{i=1}^{N} (M_{i}(f^{2}) - m_{i}(f^{2}))(x_{i} - x_{i-1})$$

$$\leq \sum_{i=1}^{N} (2B(M_{i}(f) - m_{i}(f))(x_{i} - x_{i-1}))$$

$$\leq 2B(U_{P}(f) - L_{P}(f))$$

$$\leq 2B\varepsilon$$

Which, by the Riemann integrability test, implies that f^2 is integrable if f is integrable.

Because $f g = ((f+g)^2 - f^2 - g^2)/2$ and integrability is closed under addition, we know that f g is integrable as desired.

Problem 3

Let f be a continuous function on [a,b] and suppose that $\delta > 0$.

a)

Prove that $\int_a^b f(x)dx = \lim_{\delta \to 0} \int_{a+\delta}^b f(x)dx$. Consider a partition P with N intervals of size δ so $x_1 = x_0 + \delta = a + \delta$ and $b = x_N = a + N\delta$. Then $b = a + N\delta \to \delta = \frac{b-a}{N}$ so $\lim_{\delta \to 0} \int_{a+\delta}^b f(x)dx = \lim_{N \to \infty} \sum_{i=1}^N f(x_i^*)(x_i - x_{i-1})$ by the defin of a Riemann sum. But $\lim_{N \to \infty} \sum_{i=1}^N f(x_i^*)(x_i - x_{i-1}) = \int_a^b f(x)dx$ which gives the desired result. Thus $\int_a^b f(x)dx = \lim_{\delta \to 0} \int_{a+\delta}^b f(x)dx$. This result was also proved in theorem 14.2.

b)

Prove that $\int_a^b f(x)dx = \lim_{\delta \to 0} \int_{a+\delta}^{b-\delta} f(x)dx$. We can consider the open interval (a,b) to apply theorem 14.3 which gives us the points $a_1 = a, a_K = b$ and gives us the following equality

$$\int_a^b f(x)dx = \sum_{j=1}^{K+1} \lim_{\delta \to 0} \int_{a_{j-1}+\delta}^{a_j-\delta} f(x)dx = \lim_{\delta \to 0} \int_{a+\delta}^{b-\delta} f(x)dx$$

as desired.