Calculus II Test #2

There are a total number of 110 points available (100 are needed for a grade of 100%). Show your work and clearly label your answers. *No scrap paper, calculators, or notes are allowed.*

To get credit on a problem, you must give a clear, well-written explanation. An answer alone will not suffice.

You have 90 minutes to complete this test.

READ, AND PRINT AND SIGN YOUR NAME BEFORE BEGINNING THE TEST.

I will neither give nor receive unauthorized assistance on this test.

Printed Name ______ Signature _____

Problem 1 (10+5 pts)

- (a) $\int x^2 \cos(5x) dx =$
- (b) $\int_0^\pi x^2 \cos(5x) dx =$

$$\int \frac{2}{\sqrt{81 - 4x^2}} dx =$$

Problem 3
$$(10 \text{ pts})$$

$$\int \sin(2x)^6 \cos(2x)^3 dx =$$

$$\int \frac{x}{84x^2 - 1} dx =$$

Calculus II Test#2

Use Simpson's Rule, with n=6, to approximate $\int_0^2 (x^2+4)dx$, and compare to the exact answer of the integral.

Hint:
$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)].$$

Calculus II Test #2

Problem 6 (10+10 pts)

- (a) $\lim_{x \to 3} \frac{e^{3-x}}{(x+3)^2} =$
- (b) $\lim_{x \to \pi} \frac{\sin(6x)}{\sin(3x)} =$

Calculus II Test#2

Problem 7 (10+10 pts)

- (a) Find the area of the region bounded by y = 5 and $y = 5 x^2 e^{-x}$.
- (b) Compute the volume of the solid formed by revolving the curve $y = e^{-x}$, starting at x = 1 and going right (limit as $x \to \infty$) around the x-axis.

Calculus II Test#2

Problem 8 (10 pts)

Compute the area of the region bounded by the three curves

$$y = \sqrt{4 - x^2}$$
, $y = \sqrt{1 - (x - 1)^2}$, and $y = -\sqrt{1 - (x + 1)^2}$.

(Hint: Think geometrically.)