Deep Neural Network

Handwitten Digits Recognition

Neural Network Terminologia

2 hidden layers

NN can have quite a sew hidden layers. Thanks to NVIDIA

Artificial neural networks

IRIS dataset

- Input layer is responsible to accept the data and pass it to the rest of the network.

- # Each neuton in the input layer represents one feature (Xi)

 of the input data (training data)
- Weights

 Weights or biases.

 Weights or biases.

No calculation is being done

(input layer simply basses the input data to the next layer.)

In general, No of neurons in input layer = No. of features in the input data

In general, No of neurous in input layer = No. of features in the input data (training dataset)

#2 Hidden Layer

- This is the second layer in neural network architeture diagram
- Hidden layers can be one or more than one.

Common perception: It is a block box!]]

Will ofer it -> going to be overwhelming !!!

- Hidden layer is the Intermediate layer blw input and Output layer.

Turpose of Hidden layer(s)

Linear Algebra Implementation using Numby Calculus - Gradient Descent Algorithm

- a) Maxima & Minima b) Partial Derivative
- C) Differentiation chain Rule.

Midden layer is the critical layer (Share Khan Academy) Probabilities (log gradds) Where most of the computation happens, allowing the model to learn representations Logistic Regression

and patterns from the data

Feature Extraction

- > Hidden layers identify important features or patterns in the data which are not explicitly visible in the raw input.
- > Each successive hidden layer learns lincreasingly complex

features -> edges in images in early layers, followed by shapes and then objects in later layers

Step#D edges and corners

Step#D Combining these features identified in step#1

to detect shapes like line, circle, semicircle, squares etc.

H Non-Linearity

Complex, non-linear relationships blw inputs
and outputs by applying non-linear activation functions

Hierarchical Representation

- Hidden layers built a hierarchy of representations:
 Lower layers learn simple patterns (e.g. edges in images)
 - Higher layers learn abstract concepts (e.g., objects or semantics)

carpairplane a come later!

What We See

08	02	22	97	38	15	00	40	00	75	04	05	07	78	52	12	50	77	91	08
19	19	99	40	17	81	18	57	60	87	17	40	98	43	69	48	04	56	62	00
81	19	31	73	55	79	14	29	93	71	40	67	53	88	30	03	49	13	36	65
52	70	95	23	04	60	11	42	69	24	68	56	01	32	56	71	37	02	36	91
22	31	16	71	51	67	63	89	41	92	36	54	22	40	40	28	66	33	13	80
24	47	32	60	99	03	45	02	44	75	33	53	78	36	84	20	35	17	12	50
32	98	81	28	64	23	67	10	26	38	40	67	59	54	70	66	18	38	64	70
67	26	20	68	02	62	12	20	95	63	94	39	63	08	40	91	66	49	94	21
24	55	58	05	66	73	99	26	97	17	78	78	96	83	14	88	34	89	63	72
21	36	23	09	75	00	76	11	20	45	35	14	00	61	33	97	34	31	33	95
78	17	53	28	22	75	31	67	15	94	03	80	04	62	16	14	09	53	56	92
16	39	05	42	96	35	31	47	55	58	88	24	00	17	54	24	36	29	85	57
86	56	00	48	35	71	89	07	05	11	44	37	11	60	21	58	51	54	17	58
19	80	81	68	05	24	47	69	28	73	22	13	86	52	17	77	04	89	55	40
04	52	08	83	97	35	22	16	07	97	57	32	16	26	26	79	33	27	98	66
0.0	36	60	67	57	62	20	72	03	46	33	67	46	55	12	32	63	93	53	49
04	42	16	73	30	25	39	11	24	94	72	18	08	46	29	32	40	62	76	36
20	69	36	41	72	30	23	0.0	34	62	99	69	82	67	59	85	74	04	34	16
20	73	35	29	78	31	90	01	74	31	49	71	48	86	81	16	23	57	05	54
01	70	54	71	63	51	54	69	16	92	33	48	61	43	52	01	89	19	67	48

What Computers See

0	0	0	0	30	0
0	0	0	30	0	0
0	0	30	0	0	0
0	0	30	0	0	0
0	0	30	0	0	0
0	0	30	0	0	0
0	0	0	0	0	0
	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pixel	repres	sentation	of filter

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

-	1	1	1.	1-	-	1 -
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0
			of filter		<u> </u>	

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Abraham Linush

- Each hidden layer consists of multiple
neurons (ex: 100 neurons) which are computational x2(Petal height)
Units.

- Each neuron L.

Units.

- Earch neuron processes inputs by performing of (weighted sum followed by activation function)

$$Z = \sum_{i=1}^{n} \omega_i x_i + 6$$

-> weighted sum of inputs with bis

where.

Wi: weights

2: inputs

b: bias

Z: Sigma: summation

Linear Regression _______ Weight | coefficients and bias (intercept)