Itemsets

Mining Massive Datasets Carlos Castillo Topic 05

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Market Basket Analysis

- Understand customers
 - Purchasing habits, sensitivity to price, promotions
- Understand products
 - Co-purchases, fast/slow movers
- Take action: promotions, store layout, ...

Transactions contain items, which can be grouped into itemsets

- Transactions
 - Sets of items bought by customers
- The Goal
 - Determine associations between groups of items bought by customers
- Quantification of the Level of Association
 - Frequencies of sets of items
- The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

"Transaction" is a general concept

Items	Transactions
Groceries	Grocery cart
University courses	Virtual shopping cart
Guests	Party
Movies	Actor
Symptoms	Patient
Streamed songs	Streaming subscriber
Words	Document
Liked photos	Instagram account

Applications

- Supermarket Data
 - Target marketing, shelf placement
- Text Mining
 - Identifying co-occurring terms
- Generalization to Dependency-oriented Data Types
 - Web log analysis, software bug detection
- Other Major Data Mining Problems
 - Clustering, classification, and outlier analysis

Association rules

- Generated from frequent itemsets
- Formulation X⇒Y
 - {Soy latte} ⇒ {Brown Sugar}
 - {Kale, Quinoa} ⇒ {Almond milk}
- Applications
 - Promotion
 - Shelf placement
- Conditional Probability $P(Y|X) = \frac{P(X \cap Y)}{P(X)}$

Association rule mining

- U is a set of d items
- T is a set of n transactions $T_1, T_2, ..., T_n$ with $T_i \subseteq U$
- Itemset: a set of items
- k-itemset: a set of k items

 How many different k-itemsets exist? 2^k

Binary representation of a transaction

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

Definitions

• **Support of itemset** *I*, written sup(I):

```
the fraction of transactions in the database T = \{T_1 \dots T_n\} that contain I as a subset.
```

Frequent itemset mining with support minsup:

```
Given a set of transactions T = \{T_1, ..., T_n\}, where T_i \subseteq U, find all itemsets I_i such that \sup(I_i) \ge \min \sup
```

Example

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

- $sup(\{Bread, Juice\}) = 2/5 = 0.4$
- sup({Strawberries, Tomatoes}) = 1/5 = 0.2
- If minsup=0.3, {Bread, Juice} is a frequent itemset

Database

TID	Iter	ns		
100	1	3	4	
200	2	3	5	
300	1	2	3	5
400	2	5		

Try it!

- Write the support of every 2-itemset or 3-itemset occurring in this database
- Indicate which are frequent itemsets if minsup = 1/2

Properties

 The smaller minsup is, the larger the number of frequent itemsets

Support monotonicity property: $if J \subseteq I$, $sup(J) \ge sup(I)$ WHY?

Properties

- The smaller minsup is, the larger the number of frequent itemsets
- Support monotonicity property: $if I \subseteq I$, $sup(I) \ge sup(I)$
- Confusingly, some authors refer to this as the support anti-monotonicity property
- Downward closure property: every subset of a frequent itemset is also frequent

Closed itemset

An itemset is **closed** if all itemsets containing it are less frequent

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Find a closed itemset in this set of transactions

Closed itemset

An itemset is **closed** if all itemsets containing it are less frequent

```
tid Set of items

1    Bread, Jam, Juice
2    Tofu, Juice, Tomatoes
3    Bread, Strawberries, Tofu, Juice
4    Tofu, Juice, Tomatoes
5    Strawberries, Juice, Tomatoes
```

- Example closed itemset: {Bread, Juice}
- sup({Bread, Juice}) = 2
 sup({Bread, Juice, Jam}) = 1
 sup({Bread, Juice, Strawberries}) = 1
 sup({Bread, Juice, Tofu}) = 1

Maximal itemset

An itemset is **maximal** if

- it is closed and
- it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Try it!

- Find the three maximal frequent patterns at minsup=0.4
- Tip: first find all frequent patterns at minsup=0.4
 - The total number is 11 (?)

Maximal itemset

An itemset is **maximal** if

- it is closed and
- it has support ≥ minsup

```
tid Set of items

1    Bread, Jam, Juice
2    Tofu, Juice, Tomatoes
3    Bread, Strawberries, Tofu, Juice
4    Tofu, Juice, Tomatoes
5    Strawberries, Juice, Tomatoes
```

• Maximal frequent patterns at minsup=0.4

```
{Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}
```

- Frequent patterns at minsup=0.4
 - The total number is 11 (?)
 - All of them are subsets of maximal frequent patterns

Maximal itemset

An itemset is **maximal** if

- it is closed and
- it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Maximal patterns

{Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}

... are **condensed** representations of frequent patterns, but do not retain information about the support of their subsets.

					Transaction	•
TID	Items		nı	···	Ids ¿	1
1	ABC	124	123 1234	245	345	
2	ABCD	A	В	D D	E	
3	BCE					
4	ACDE	12 124 24	4 123	2 3	24 34	45 25
5	DE	AB AC AD	AE BC	BD BE	CD CE	DE
		ABC ABD ABE 2 ABCD	ABCE AB	ADE BCD ACDE	3 BCE BDE BCDE	4 CDE
		supported				
	by ar	_	ABC	DE		[Source]
	trans	actions				[Source]

Support of each itemset

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

The border is a graph cut and ...

- All itemsets **above** the border are **frequent**
- All itemsets below the border are not frequent
- All **maximal** frequent itemsets are adjacent to the border
- Any border respects the downward closure property

Association rules

What is a rule

- A rule is of the form X⇒Y
 X and Y are itemsets
- X is the antecedent, Y is the consequent
- The confidence of the rule is:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}$$

Confidence of a rule

• The confidence of the rule $X \Rightarrow Y$ is:

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

• This is the conditional probability of $X \cup Y$ occurring in a transaction, given that X occurs in the transaction

Confidence of a rule (cont.)

```
tid Set of items

1    Bread, Jam, Juice
2    Tofu, Juice, Tomatoes
3    Bread, Strawberries, Tofu, Juice
4    Tofu, Juice, Tomatoes
5    Strawberries, Juice, Tomatoes
```

```
conf(\{tofu, juice\} \Rightarrow \{tomatoes\}) = ?
```

Lift of a rule

• The lift of the rule $X \Rightarrow Y$ is:

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X) \sup(Y)}$$

 This is the ratio between the observed support and the expected support if X and Y were independent

Try it!

$conf(X \Rightarrow Y) =$	$\sup(X \cup Y)$
$\operatorname{com}(X \to I)$	$-\frac{1}{\sup(X)}$

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)\sup(Y)}$$

Rule	Support	Confidence	Lift
$A \Rightarrow D$			
$C \Rightarrow A$			
$A \Rightarrow C$			
$B \& C \Rightarrow D$			

Association rule (minsup, minconf)

Let X, Y be two itemsets; the rule X⇒Y is an
 association rule of minimum support minsup
 and minimum confidence minconf if:

$$\sup(X\Rightarrow Y) \ge \min\sup$$

and
 $\operatorname{conf}(X\Rightarrow Y) \ge \min \operatorname{conf}$

Summary

Things to remember

- Itemset, k-itemset, transaction
- Support, confidence, lift
- Maximal and closed itemsets
- Association rule of minsup and minconf

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 1-3, 5, 7-8$
 - Exercises $5.7 \rightarrow 1-5$
- Mining of Massive Datasets 2^{nd} edition (2014) by Leskovec et al.
 - Exercises 6.1.5 \rightarrow 6.1.1-6.1.7
- Introduction to Data Mining 2^{nd} edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 2-7$