

CSE7766 用户手册

免校准电能计量芯片

Rev.1.2

www.docin.com

通讯地址:深圳市南山区蛇口南海大海 1079 号花园城数码大厦 A 座 9 楼

邮政编码: 518067

公司电话: +(86 755)86169257 传 真: +(86 755)86169057 公司网站: www.chipsea.com

历史修改记录

时间	记录	版本号
2016-10-12	初版发行	Rev.1.0
2017-04-25	【1】修改 1.1 小节, 芯片主要特性功能, 第一行与第二行。	Rev.1.1
	【2】修改2小节,芯片特性说明部分参数,增加测量精度表。	
	【3】修改 3.1 小节, CSE7766 典型应用隔离方案、增加非隔离方	
	案。	
	【4】修改表 3-3 处注解	
	【5】修改 3.6 小节,更改 F_{CF} '公式。	
	【6】3.7 小节,增加电压、电流、有功功率运算参考流程图。	
2017-08-07	【1】3.6.2 小节,新增内容: 当 CFI=0 时,忽略本次 Adj.7 及 CF	Rev.1.2
	脉冲个数(CFm: CFl),即无效值。	

目录

历史修改记录	2
目录	3
1 芯片功能说明	4
1.1 芯片主要特性功能 1.2 芯片引脚说明	
2 电气特性	5
2.1 极限值	5 6 7
3 芯片应用	8
3.1 CSE7766 典型应用	9 9
3.5 校准方式	13 13
3. 6 电量计算	14 14
3.7 电压、电流、有功功率运算参考流程图	15 16 16
3.7.3 有功功率运算参考流程图	17 17
4 CSE7766 封装	

1 芯片功能说明

CSE7766 为单相多功能计量芯片,其提供高频脉冲 CF用于电能计量,通过 UART 可以直接 读取电流、电压和功率的相关参数(如:系数、周期);串口波特率为 4800 bps (±2%),8 位数据,1 位偶校验,1 停止位。本芯片采用 SOP8 封装。

1.1 芯片主要特性功能

- 1. 电量累计误差为±1%。
- 2. 电流有效值、电压有效值、功率误差范围详见 2.3 小节。
- 3. 串口 UART 通讯协议波特率为 4800bps。
- 4. 内置电源监控电路, 当电源电压低到 4V 时, 芯片进入复位状态。
- 5. 内置 2.43V 的电压参考源。
- 6. 5V 单电源供电,工作电流小于 5mA。
- 主要应用领域:需要测量电压、电流和功率的场合,例如单相多功能电能表、计量插座、数显表等。

1.2 芯片引脚说明

CSE7766 使用 SOP8 封装。

图 1: 芯片引脚图

表 1-1 CSE7766 引脚说明

引脚序号	引脚名称	输入/输出	说明
1	VDD	芯片电源	芯片电源
2,3	V1P, V1N	I	电流差分信号输入端,最大差分输入信号±43.75mV
4	V2P	I	电压信号正输入端。最大输入信号±700mV
5	VSS	芯片地	芯片地
6	TI	0	UART 发送口
7	CF	0	输出有功高频脉冲,占空比 50%
8	RI	I	UART 接收口,预留

2 电气特性

2.1 极限值

参数	符号	最小值	典型值	最大值	单位
电源	VDD	-0.3	-	+6.0	V
VDD to GND		-0.3	-	+6.0	V
V1P, V1N, V2P		-2		+2	V
模拟输入电压	V_{INA}	-0.3	-	VDD+0.3	V
数字输入电压	$V_{\rm IND}$	-0.3	-	VDD+0.3	V
数字输出电压	V _{OUTD}	-0.3	-	VDD+0.3	V
工作温度	T_A	-40	-	85	°C
存储温度	T_{stg}	-65	-%	150	°C

2.2 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
电源范围	VDD	4.5	5.0	5.5	v
温度范围	TA	-40	-	+85	.C

2.3 模拟特性

VDD = 5 V, GND = 0 V, 25℃, 如无其它说明都是此条件。

────────────────────────────────────	符号	最小值	典型值	最大值	单位
模拟输入 (所有通道)					
共模信号		-1	-	1	V
模拟输入					
满量程时对电压通道的串扰(50,		_	-100	_	dB
60Hz)			-100		uБ
输入电容	IC	-	6.4	-	pF
等效输入阻抗: 电流通道	EII		500	_	kΩ
电压通道	Lii		6		$M\Omega$
等效输入噪声: 电流通道	N _I	-	-	2	μVrms
电压通道	NI	-	-	20	μVrms
电源供给					
电流消耗	I		4	-	mA
(VDD = 5 V)	1		7	-	mA

功耗 (VDD = 5 V)	PC	-	20		mW
掉电检测低压阈值	PMLO	-	4	-	V
掉电检测高压阈值	PMHI	-	4.3	-	V
内置参考电压					
基准电压	VREF	2.3	2.43	2.55	V
温漂	TC _{VREF}	-	25	-	ppm/°C

测量精度(计量参数相对误差与绝对误差)

参数	符号	最小值	典型值	最大值	单位		
电流: 1mR 采样电阻(理想值,电阻无偏差情况下),电流满量程 30.9A							
30.9A~250mA(相对误差)		-1	0.5	1	%		
249mA~50mA(绝对误差)			5	10	mA		
电流最小测量值(由整机噪声决定)			50		mA		
空载电流 (由整机噪声决定)			38		mA		
电压: 1MR 电阻分压(理想值,电阻无	电压: 1MR 电阻分压 (理想值,电阻无偏差情况下)						
电压测量范围 80V~260V(相对误差)	AP-9	-1	0.5	21	%		
功率: (理想值, 电流采样电阻及电压分	人压电阻无	偏差情况	下)	4			
55W 以上(相对误差)	_ 1	-1	0.5	1	%		
55W~15W(相对误差)	1	-3	0.8	3	%		
15W 以下(绝对误差)			0.5	1.5	W		
功率最小测量值(由整机噪声决定)			2		W		
空载功率 (由整机噪声决定)			0		W		

2.4 数字特性

VDD = 5 V, GND = 0 V, 25 °C, 如无其它说明都是此条件。

参数	符号	最小值	典型值	最大值	单位
主时钟					
主时钟频率	MCLK	3.04	3.579	4.12	MHz
主时钟占空比		30	50	70	%
滤波器					
输入采样速率			MCLK /4	_	Hz
(DCLK=MCLK/K)		-	WCLK/4	-	112
数字滤波器输出码率	OWR	-	MCLK /128	-	Hz
高通滤波器转折(-3dB)频率		-	0.543	-	Hz
输出					

高电平输出电压 Iout = +5 mA	V _{OH}	VDD-0.5	-	-	V
低电平输出电压 Iout=-5mA	V_{OL}	-	-	0.5	V
输入漏电流	I _{in}	-	±10	-	μΑ
数字输出引脚电容	C _{OUT}	-	5	-	pF
UART					
4800bps		-2		+2	%

2.5 开关特性

CF输出的脉冲占空比为 50%。

Rev1.2

3 芯片应用

3.1 CSE7766 典型应用

如图 2 所示,在 CSE7766 的电源端,应并联两个小电容,以滤除来自电网高频及低频噪声。电流信号通过锰铜电阻采样后接入 CSE7766,电压信号则通过电阻网络后输入到 CSE7766。 CSE7766 必须同时连接电流信号与电压信号,不可单独只接一个信号。

图 2: CSE7766 典型应用 (隔离方案)

注:

CSE7766 为免校准电能计量芯片,芯片出厂校准后偏差为±1%,那么外部器件的精度最终 影响客户产品的整体精度,图 2 中标识的 1%精度器件,其精度越高则客户整机精度越高。

从图 2 可看出,电流通道影响电流精度的元器件为 1mR 锰铜电阻,电压通道影响电压精度的元器件为 1M 电阻和与之相连的 1K 电阻,当着三个元器件精度均在±1%内时,则 CSE7766 免校准整机误差可控制在±2%内。

电压通道 1M 电阻应选择耐高压 1000V 1%电阻(或更高精度); 否则需拆分成 5 个 0805 1%(或更高精度)电阻。避免使用过程中由于电阻耐压值不够,造成整机损坏。

CSE7766 部分采集强电信号,根据安规标准任何人体可能触碰的地方需进行隔离,图 2 中使用光耦隔离(客户自行选择隔离方式,并不限制)。

选择零线做地或火线做地均可,建议使用零线做地。

图 3: CSE7766 典型应用(非隔离方案)

图 3 为 CSE7766 非隔离方案, MCU 工作电压 3.3V。 若 MCU 工作电压 5V,则 TI 与 MCU 之间接 200R 电阻。

3.2 有功功率 F_{CF} 信号频率

CSE7766 的内部 DSP 具有一定的增益,经过频率转换模块后,有功功率的输出频率可由以下公式计算:

$$F_{CF} = \frac{V1 \times V2 \times 48}{V_{REF}^2} \times \frac{f_{osc}}{128}$$

V1: 电流通道引脚上的电压信号;

V2: 电压通道引脚上的电压信号;

 f_{osc} : 内置晶振, 典型频率约为 3.579MHz;

 V_{REF} : 内置基准源, 典型电压为 2.43V;

注:由于 CSE7766 存在噪声,在没有信号输入的情况下,为了保证电流、电压正确测量有效值的大小,施加在通道 V1P/V1N 的电流有效值不能低于 40uv,施加在通道 V2P 的电压有效值不能低于 480uv。在使用时,请向本公司的技术支持咨询。

3.3 测量范围

选取不同的锰铜电阻(建议锰铜电阻 1mR)直接影响到 CSE7766 的电流量程。 公式如下:

电流满量程(A)=
$$\frac{43.75(\text{mV})}{\sqrt{2}* 锰铜电阻值 (\text{mR})}$$

如: 1mR 锰铜电阻

电流满量程(A)=
$$\frac{43.75\text{mV}}{\sqrt{2}*1\text{mR}} \approx 30.9\text{A}$$

电流在 500:1 范围内达到±0.5%的精度,即 1mR 锰铜电阻电流量程 30.9A~0.0618A 内为 0.5% 精度;小于 0.0618A 精度会大于 0.5%。

若 PCB 板有噪声,这些噪声会影响到测量的精度,故在实际应用中要考虑噪声造成的精度偏差,噪声对小信号影响较大。(在 PCB 打板前可咨询我司)

CSE7766 的 CF (pin7) 脚可以检测出 PCB 板噪声对信号的影响。把锰铜处短路,即电流输入信号为 0,即可观察。

锰铜越大, 信号频率越大, 周期越小。

电压±0.5%的精度。

功率测量范围若电压固定,则由电流决定其量程。

3.4 串口协议

用户可以通过 UART 串口协议(RI、TI)读取电压、电流、功率、电量的相关参数,通过运算得到电压、电流、功率、电量。目前该串口只支持 4800bps 的波特率(允许误差±2%),接收口 RI 暂时预留,没有实际功能。串口每隔 50ms 自动将电压系数、电压周期、电流系数、电流周期、功率系数、功率周期、校准次数、CF 脉冲个数的数据包通过 TI 发送(数据以十六进制发送)。

数据包的具体格式为:包头(2*(1byte 数据+1bit 偶校验))→电压系数(3*(1byte 数据

+1bit 偶校验))→电压周期(3*(1byte 数据+1bit 偶校验))→电流系数(3*(1byte 数据+1bit 偶校验))→电流周期(3*(1byte 数据+1bit 偶校验))→功率系数(3*(1byte 数据+1bit 偶校验))→功率周期(3*(1byte 数据+1bit 偶校验))→校准次数(1*(1byte 数据+1bit 偶校验))→CF 脉冲个数(2*(1byte 数据+1bit 偶校验))→包尾(1byte 数据+1bit 偶校验)。

共 24byte, 4800bps 用时 54.912ms

第n个字节数据流

图 4: UART 数据示意图

表 3-1

数据符号	高 byte	中 byte	低 byte
数据名称			
电压系数	Ukh	Ukm	Ukl
电压周期	Uth	Utm	Utl
电流系数	Ikh	Ikm	Ik1
电流周期	Ith	Itm	Itl
功率系数	Pkh	Pkm	Pk1
功率周期	Pth	Ptm	Ptl
Adj			Adj
CF 脉冲个数		CFm	CF1

串口具体发送数据如下:

表 3-2

序号	数据内容	占用字	未进行校	已进行校	异常
		节	准	准	
1	包头 1	1	0AAH	055H	0FxH
2	包头 2	1	05AH	05AH	05AH
3	Ukh	1	0FFH	0xxH	0xxH
4	Ukm	1	0FFH	0xxH	0xxH
5	Uk1	1	0FFH	0xxH	0xxH
6	Uth	1	0xxH	0xxH	0xxH
7	Utm	1	0xxH	0xxH	0xxH

8	Ut1	1	0xxH	0xxH	0xxH
9	Ikh	1	0FFH	0xxH	0xxH
10	Ikm	1	0FFH	0xxH	0xxH
11	Ik1	1	0FFH	0xxH	0xxH
12	Ith	1	0xxH	0xxH	0xxH
13	Itm	1	0xxH	0xxH	0xxH
14	Itl	1	0xxH	0xxH	0xxH
15	Pkh	1	0FFH	0xxH	0xxH
16	Pkm	1	0FFH	0xxH	0xxH
17	Pk1	1	0FFH	0xxH	0xxH
18	Pth	1	0xxH	0xxH	0xxH
19	Ptm	1	0xxH	0xxH	0xxH
20	Pt1	1	0xxH	0xxH	0xxH
21	Adj	1	0xxH	0xxH	0xxH
22	CFm	1	0xxH	0xxH	0xxH
23	CF1	1	0xxH	0xxH	0xxH
24	包尾	1	0xxH	0xxH	0xxH
955	checksum1		A		

x=0~F

(1) 当包头 1 为 FxH (x=1~F) 时,表示含义如下:

表 3-3

包头1	描述		
包头 1.bit7~bit4	=1111,固定值。		
包头 1.bit3	=1表示电压周期超出范围,		
1////	=0表示电压周期未超出范围;		
包头 1.bit2	=1表示电流周期超出范围;		
	=0表示电流周期未超出范围;		
包头 1.bit1	=1表示功率周期超出范围;		
	=0表示功率周期未超出范围;		
包头 1.bit0	=1 表示系数存储区域(3n0h~3nFh)异常。(n=A, B, C, D, E, F)		
	=0表示系数存储区域正常		

注:

电流周期、电压周期、有功功率周期最大测量约 16s,超出后提示对应周期超出量程范围。 即表 3-3 描述。

电压或电流信号周期提示超出范围,则其对应的 3byte 信号周期值视为无效(电压、电流通道在没有信号输入的情况下, CSE7766 内部会检测到 2Hz 左右的电压、电流信号,故当出现电压、电流周期超出范围时,一般为异常情况,芯片本身损坏或外部电路有问题)。

功率周期提示超出范围,而电压、电流未提示超出范围时,视有功功率为0,电流为0。

- (2) 芯片有无进行过标准校验,通过包头 1(0AAH 未进行校准,055H 已进行校准)给出提示。
- (3) checksum1 为除包头、包尾外所有数据之和取低 8bit,用户接收完数据后,用于校验接收数据是否准确
- (4) 电压周期、电流周期、功率周期单位为 us。当信号周期大于 1s 时,立即把信号周期输

出给用户,并用 Adj.4(5 或 6)提示输出为不完整周期。(如:信号周期为 3.5s,那么当累计周期计时到 1s 后给客户输出 1s 信号周期, 1.5s 时输出 1.5s 信号周期,而不是等到 3.5s 后用户才收到讯息,从而提高了反映速度。待测信号量越小,其信号周期越大。)

(5) Adj:

表 3-4

Adj		描述					
Adj.0	校准地址选择 3nd	校准地址选择 3n0h~3nFh(n=A, B, C, D, E, F)					
	Adj.2	Adj.1 Adj.0		备注			
	0	0	0	n=F			
Adj.1	0	0	1	n=E			
Auj.1	0	1	0	n=D			
	0	1	1	n=C			
	1	0	0	n=B			
Adj.2	1	0	1	n=A			
	1	1	0	禁止校准			
	100.	- 41					
Adj.3	预 留						
Adj.4	Adj.4=1 表示串口功率周期输出的是完整的周期;						
THE .	Adj.4=0 表示串口	Adj.4=0 表示串口功率周期输出的是不完整的周期;					
Adj.5							
	Adj.5=0 表示串口电流周期输出的是不完整的周期;						
Adj.6	Adj.6=1 表示串口	Adj.6=1 表示串口电压周期输出的是完整的周期;					
	Adj.6=0 表示串口	Adj.6=0 表示串口电压周期输出的是不完整的周期;					
Adj.7	脉冲个数溢出. 4	脉冲个数溢出,Adj.7取反一次					

- ◆Adj0~2: 用于校准时校准数据写入地址判断。如 Adj0~2=2,表示此次校准地址为 3D0H~ 3DFH。出厂校准地址 Adj0~2=0,即 3F0H~ 3FFH 开始。
- ◆Adj. 3: 预留
- ◆Adj. 4: 功率信号周期大于 1s 时,会把当前周期计数时间发送给用户,为了区分此时输出的功率周期是完整功率周期或大于 1s 的功率周期计数,用此标志位判别。
- ◆Adj. 5: 电流信号周期大于 1s 时,会把当前周期计数时间发送给用户,为了区分此时输出的电流周期是完整电流周期或大于 1s 的电流周期计数,用此标志位判别。
- ◆Adj. 6: 电压 信号周期大于 1s 时,会把当前周期计数时间发送给用户,为了区分此时输出的电压周期是完整电压周期或大于 1s 的电压周期计数,用此标志位判别。
- ◆Adj. 7: CF 引脚(pin7)每产生一个脉冲信号,CF 脉冲个数(CFm: CFl)加1,当累加的 CF 脉冲个数溢出时(CFm: CFl=0FFFFH+1,溢出)校准系数 Adj. 7 值取反一次。

特别注意:

- 1) 当 CFI=0 时, 忽略本次 Adj. 7 及 CF 脉冲个数 (CFm: CFI), 即无效值。
- 2)由于串口发送时,读取 CF 脉冲个数 (CFm: CFI) 比读取 Adj. 7 早约 50ms 左右,所以读取到 Adj. 7 发生值取反时,当本次读取到的 CF 脉冲个数 (CFm: CFI) 小于上次读取到的 CF 脉冲个数 (CFm: CFI) 时,则本次读取的 CF 脉冲个数 (CFm: CFI) 有效;否则视本次 CF 脉冲个数 (CFm: CFI) 为 0。

3.5 校准方式

3.5.1 校准地址选择

CSE7766 首次通电后,需进行校准过程(即包头 1: **0AAH**,表示需进行校准后使用,芯片出厂时会进行一次校准):读取串口数据获取电压周期、电流周期、功率周期,结合较表装置经上位机计算后,将结果写入芯片的 3n0h~3nFh 地址(n=A, B, C, D, E, F),具体如下:(详细内容请参考 CSE7766 校表方案相关文档)

表 3-5

存储数据
(校准电压周期*校准电压)高 8bit
(校准电压周期*校准电压)中 8bit
(校准电压周期*校准电压) 低 8bit
(校准电流周期*校准电流)高 8bit
(校准电流周期*校准电流)中 8bit
(校准电流周期*校准电流) 低 8bit
(校准功率周期*校准功率)高 8bit
(校准功率周期*校准功率)中8bit
(校准功率周期*校准功率) 低 8bit
预 留
预留
预留
预留
预留
预留
Checksum2 , 8bit

注: Checksum2 = 3n7H~3nFH 的数据相加,取低 8 位。

◆Adj.bit2~bit0(校准次数)校准地址选择:

表 3-6

2 Bit	1 Bit	0 Bit	备注
0	0	0	n=F
0	0	1	n=E
0	1	0	n=D
0	1	1	n=C
1	0	0	n=B
1	0	1	n=A

1 1 0 禁止校准

当前允许校准次数为6次。芯片出厂时会进行一次校准。

3.5.2 芯片出厂校准参数及电流、电压、功率计算公式

CSE7766 出厂校准参数 V1P,V1N 处为 1mR 锰铜电阻(V1P,V1N 处电阻下文由 V1R 标识), V2P 处为 1M 电阻(V2P 处电阻下文由 V2R 标识),输入负载信号为 5A,220V(参考图 2)。故当外部硬件与出厂校准时参数一致,则运算时可忽略 V1R 与 V2R。

◆电流计算公式:

待测电流
$$Ix(A) = \frac{e流系数 (十六进制数)}{e流周期(十六进制数)*V1R}$$

◆电压计算公式:

待测电压
$$Ux(V) = \frac{e E 系数 (十六进制数)}{e E B 期 (十六进制数) * V2R}$$

◆功率计算公式:

注: 若 V1P,V1N 处为 1mR 锰铜电阻则 V1R=1, V1P,V1N 处为 2mR 锰铜电阻则 V1R=2, 以此类推; 若 V2P 处为 1M 电阻则 V2R=1, V2P 处为 2M 电阻则 V2R=2, 以此类推。

由于出厂校准时,仅是芯片校准,并非是整机校准,所以会有些许误差(PCB产生的噪声不同,误差范围也不同),若用户测试后不接受误差,可以自行校准。详细内容请咨询我司。

3.6 电量计算

3.6.1 CF 的频率

CSE7766 的内部 DSP 具有一定的增益,经过频率转换模块后,有功功率的输出频率可由以下公式计算:

$$F_{CF} = \frac{V1 \times V2 \times 48}{V_{RFF}^2} \times \frac{f_{osc}}{128}$$

V1: 电流通道引脚上的电压信号;

V2: 电压通道引脚上的电压信号;

 f_{osc} : 内置晶振, 典 \times 型频率约为 3.579MHz;

 V_{REF} : 内置基准源, 典型电压为 2.43V;

注:由于 CSE7766 存在噪声,在没有信号输入的情况下,为了保证电流、电压正确测量有效值的大小,施加在通道 V1P\V1N 的电流有效值不能低于 40uv,施加在通道 V2P 的电压有效值不能低于 480uv。在使用时,请向本公司的技术支持咨询。

如: 5A 电流, 1mR 的锰铜电阻; 200V 电压, 1k 分压电阻。(请参考图 2 电路)

$$F_{CF} = \frac{1mR \times 5A \times 200V \times 1K/1M \times 48}{2.43V^2} \times \frac{3.579MHz}{128} \approx 227$$
Hz (理论值)

3.6.2 当前电量计算范例

串口输出 2byte 的脉冲个数与 1bit 的脉冲个数溢出标志(Adj.bit7),脉冲个数每溢出一次 Adj.bit7 值取反一次。用户对脉冲个数进行累加来计算当前电量。

注:脉冲个数溢出次数=n, 2byte脉冲个数=y

当前电量理论值(kW.h) =
$$\frac{$$
总的脉冲个数}{1 度电的脉冲个数} = \frac{n \times 65536 + y}{227Hz \times 3600s}

对于固定的硬件(锰铜),一度电产生固定的脉冲,所以 1 度电的脉冲个数是一个固定值。根据功率系数=校准功率周期*校准功率,得出 1000W 时功率频率 F_{CF} '为:

$$F_{CF}'(Hz) = \frac{V1R * V2R * 10^9}{\text{功率系数}}$$

(注: V1R, V2R 取值参考 3.5.2) 则当前电量实际值为:

当前电量(kW.h) =
$$\frac{$$
总的脉冲个数}{1 度电的脉冲个数} = \frac{n \times 65536 + y}{F_{CF}' \times 3600s}

1000W 负载运行 1 小时为 1 度电,上述例子中 F_{CF} ' x 3600s 为 1000W 负载运行 1 小时的脉冲个数,即 1 度电脉冲个数。在 1 度电的脉冲个数不变的情况下,负载改变,那么负载运行时间也就改变。

特别注意:

- 1) 当 CFI=0 时, 忽略本次 Adj. 7 及 CF 脉冲个数 (CFm: CFI), 即无效值。
- 2)由于串口发送时,读取 CF 脉冲个数 (CFm: CF1) 比读取 Adj. 7 早约 50ms 左右,所以读取到 Adj. 7 发生值取反时,当本次读取到的 CF 脉冲个数 (CFm: CF1) 小于上次读取到的 CF 脉冲个数 (CFm: CF1) 时,则本次读取的 CF 脉冲个数 (CFm: CF1) 有效;否则视本次 CF 脉冲个数 (CFm: CF1) 为 0。

对于不同的硬件,1 度电的脉冲个数其理论值与实际值是有偏差的,若要测量的精准度高必须用实际 F_{CF} '进行运算。

3.7 电压、电流、有功功率运算参考流程图

为了更加直观的表示电压、电流、有功功率运算流程,将引入典型应用运算流程图供参考。

3.7.1 电压运算参考流程图

图 5: 电压运算流程图

3.7.2 电流运算参考流程图

图 6: 电流运算流程图

3.7.3 有功功率运算参考流程图

图 7: 有功功率运算流程图

3.8 芯片的启动阈值与潜动预防

CSE7766 使用新型的防潜动算法,只要输入信号的功率值大于内部的噪声值,计量模块则开始正常计量。

3.9 内置振荡器

CSE7766 使用的内置振荡器的频率约为 3.579M, 电源电压抑制比则<0.01/V。

3.10 内置基准源

CSE7766 内置高精度带隙基准源,基准源输出的典型电压为 2.43V。

4 CSE7766 封装

CSE7766 使用 SOP8 封装, 具体封装信息如下图所示:

图 8: CSE7766 封装信息图