Hausaufgabe 3

Aaron Sastry

$3~\mathrm{mei}~2022$

Aufgabe 3.2 Heaps

a) Fügen Sie die Werte 10, 4, 3, 15, 21, 2, 8, 11 und 1 in einen anfangs leeren Heap ein. Stellen Sie nach jeder Einfüge-Operation den Heap als Baum dar und geben Sie das Array an, welches dem fertigen Heap entspricht.

Das array zu diesem heap sieht wie folgt aus:

heap = [1, 2, 3, 10, 21, 4, 8, 15, 11]

b) Führen Sie auf dem soeben gebauten Heap zwei deleteMin-Operationen durch und geben Sie jeweils den resultierenden Heap in Baumdarstellung und als Array an.

Lösche das Min-Element:

Min-Element gelöscht

output: deleted element is 1 Neues Min-Element ist: 2

der heap sieht nun wie folgt aus: [2, 10, 3, 11, 21, 4, 8, 15]

Lösche nun das nächste Min-Element:

Min-Element gelöscht

output: deleted element is 2 Neues Min-Element ist: 3

der heap sieht nun wie folgt aus: [3, 10, 4, 11, 21, 15, 8]

c) Beschreiben Sie einen Algorithmus, der k sortierte Listen mit Gesamtlänge n in O(n log k) Zeit zu einer sortierten Liste zusammenfügt. Benutzen Sie dabei einen Heap. Begründen Sie kurz, dass Ihr Algorithmus die Laufzeitschranke einhält.

sortListwithHeap(A: Array of k lists)

sei B ein leerer heap

sei C ein leeres array sei D ein leeres array

 $for \ i <- 1 \ to \ k \ do$

/*tupel aus der value des minElemets der list und der listenNummer */ C. append ([A[i][1], k])

```
Remove(A[i][1])

B. BuildMinHeap(C)

for i <- 1 to n do
    item = B. minElement
    listnumber = item[2]
    deleteMin()
    D. append(item[1])

if A[listnumber] nicht leer
    B. insert((A[listnumber][1], listnumber))
```

Dieser Algorythmus hält die schranke ein, da deleteMin() und insert() laut VL in O(log(n)) sind, und dies wird n mal getan $\to O(n log(n))$

Remove (A[listnumber][1])

d) Gegeben sei die folgende alternative Prozedur zum Erstellen eines binären Heaps für ein unsortiertes Array A[1..n]:

```
\begin{array}{ccc} \text{buildHeapInsert}\left(A : Array\right): \\ & \text{for } i < -1 \text{ to n do} \\ & \text{insert}\left(A[i]\right) \end{array}
```

Geben Sie ein Beispiel für eine Eingabe an, sodass buildHeapInsert eine schlechtere Laufzeit für das Aufbauen des Heaps hat als O(n). Was ist die worst-case Laufzeit von buildHeapInsert? Begründen Sie!

Antwort:

Im schlechtesten Falle ist für jedes Element i, dass eingefügt wird das folgende i+1 Element, welches dannach eingefügt wird kleiner als i, sodass jedes Element immer per siftUp bis auf die Min-Position hoch gegeben werden muss.

Somit würde Insert des i-ten Elements in $\lfloor \log(i) \rfloor$ passieren. Und der gesammt aufbau wäre in:

$$O(\sum_{i=1}^{n} log(i)) \iff O(log(n!))$$

Sobald nun $\log(i) > 1$, wird auch die Summe $\sum_{i=1}^{n} log(i)$ bald größer als die summe $\sum_{i=1}^{n} 1$ $\implies O(log(n!)) > O(n)$ Stirling's approximation $\implies O(log(n!)) = O(nlog(n))$