МФТИ ФРКТ

Лабораторная работа 2.2-2.3

Изучение спектров водорода и молекулы йода.

Добровольская Ксения Гаврилин Илья Б01-110

1 Аннотация

В данной работе исследовались: а.) сериальные закономерности в оптическом спектре водорода, по результатам которых была рассчитана постоянная Ридберга; б.) спектр поглощения паров йода в видимой области, по результатам которого были вычислены энергия колебательного кванта молекулы йода, энергия её диссоциации в основном и возбужденном состояниях.

2 Изучение спектра атома водорода

Схема экспериментальной установки приведена на рис.1.

Рис. 1: Схема экспериментальной установки для изучения водорода.

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2, преднозначенный для спектральных исследований в диапазоне от 0.38 до 1.00 мкм.

В опытах по измерению длин волн бальмеровской серии источником света служит водородная трубка Н-образной формы, питаемая от источника высокого напряжения. Молекулы воды в электрическом разряде разлагаются, образуя атомарный водород. Трубка заполняется газом до давления 5-10 Торр.

3 Изучение молекулярного спектра йода

Схема экспериментальной установки приведена на рис. 2.

Молекулярный спектр поглощения паров йода можно наблюдать, используя

- 1.Источник сплошного спектра лампу накаливания.
- 2. Поглощающую среду кювету с исследуемым веществом.
- 3.Спектральный прибор, регристрирующий спектр поглощения монохроматор УМ-2.

В нашей работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2.

Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключенной вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсатор.

В результате подогрева кристаллы йода частично возгоняются, образуя пары с легкой фиолетовой окраской. Спектрометр позволяет визуально наблюдать линии поглощения молекул йода на фоне сплошного спектра излучения лампы накаливания видимой области.

Рис. 2: Схема экспериментальной установки для изучения йода.

4 Ход работы

1. Калибруем барабан спектрометра по спектру неона:

N	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi,^{o}$	2536	2566	2500	2490	2462	2440	2430	2394	2386	2366	2354	2338
λ, A	7032	6929	6717	6678	6599	6533	6506	6402	6383	6334	6305	6266

Рис. 3: Спектр неона.

N	13	14	15	16	17	18	19	20	21	22	23	24
$\varphi,^o$	2320	2298	2290	2270	2262	2240	2212	2200	2170	2158	1896	1856
λ, A	6217	6164	6143	6096	6074	6030	5976	5945	5882	5853	5401	5331

2. Строим градуировочную кривую:

Рис. 4: Градуировочная кривая по спектру неона. $\lambda, A(\varphi,^{o})$

3. Калибруем барабан спектрометра по спектру ртути:

N	K1	K2	1	2	3	4	5	6
$\varphi,^{o}$	2572	2328	2136	2134	1936	1526	858	320
λ ,	691	623	579	577	546	492	436	405

Рис. 5: Спектр ртути.

4. Строим градуировочную кривую:

Рис. 6: Градуировочная кривая по спектру ртути. $\lambda, nm(\varphi, ^o)$

5. Определяем координаты линий бальмеровской серии атомарного водорода ($n=2,\,Z=1$):

Название	H_{α}	H_{α}	H_{α}	H_{α}
Цвет	красный	голубой	фиолетовый	не видна
$\varphi,^{o}$	2448	1458	820	_
$R, (cm)^{-1}$	110770	113400	108180	-
λ, A	6500	4700	4400	-
m	3	4	5	6
k	7.2	5.33	4.76	4.5

- 6. Из градуировочных кривых определяем длины волн бальмеровской серии атомарного водорода. Отношения длин волн соответствуют формуле сериальной закономерности.
- 7. По результатам предыдущих измерений рассчитываем постоянную Ридберга для каждой из наблюдаемых линий водорода.

$$R = \frac{1}{\lambda_{mn} Z^2 (\frac{1}{n^2} - \frac{1}{m^2})} = \frac{k_{mn}}{\lambda_{mn} Z^2}$$

Среднее значение ${\rm R}=110800\pm1500(cm)^{-1}$. Данный результат соответствует табличному значению ${\rm R}=109$ 678 $(cm)^{-1}$ в рамках погрешности.

8. Определяем деления барабана монохроматора, соответсвующие первой S_1 и шестой S_6 линиям молекулярного спектра йода. Кордината приблизительного конца отчетливой видимости спектральных линий $S_a r$. $h = 4.1 * 10^{-15} 9B$ с

	$\varphi,^o$	λ, A	$\nu = \frac{c}{\lambda}, 10^{14} Gts$	$h\nu, eB$
S_1	2326	6170	4.86	1.99
S_6	2224	5980	5.02	2.06
S_{gr}	1702	5100	5.88	2.41

9. По результатам предыдущих измерений вычисляем энергию колебательного кванта молекулы йода и энергию её диссоциации в основном и возбужденном состояниях:

$$h\nu_2 = \frac{h\nu_0 6 - h\nu_0 1}{5} = 0.013eB$$

Используем, что энергия колебательного кванта основного состояния $=h\nu_1=0.027$ эВ, энергия возбуждения атома $E_a=0.94$ эВ, $h\nu_{gr}=2.44$ эВ, энергия диссоциации молекулы йода $E_d=1.5$ эВ.

Энергия электронного перехода

$$h\nu_0 1 = h\nu_{el} + h\nu_2 (n_2 + \frac{1}{2}) - \frac{1}{2}h\nu_1 = h\nu_{el} + \frac{1}{2}(h\nu_2 - h\nu_1)$$

$$h\nu_{el} = h\nu_0 1 + \frac{1}{2}(h\nu_1 - h\nu_2) = 1.99 + 0.007 = 2eB$$

Энергия диссоциации молекулы в основном состоянии

$$D_1 = h\nu_{qr} - E_a = 2.44 - 0.94 = 1.5eB$$

Табличное значение 1.5425 эВ.

в возбужденном

$$D_2 = h\nu_{gr} - h\nu_{el} = 2.44 - 2 = 0.44eB$$

Табличное значение 0.69 эВ.

5 Выводы

В данной работе мы

- 1.) Исследовали сериальные закономерности в оптическом спектре водорода, с помощью проградуированного монохроматора рассчитали значения длин волн бальмеровской серии атомарного водорода и получили соответствие формуле сериальной закономерности. По результатам этих рассчетов вычислили постоянную Ридберга, ее значение составило $R=110800\pm1500(cm)^{-1}$, что с учетом погрешности соответсвует табличному значению.
- 2.) Спектр поглощения паров йода в видимой области. Были вычислены энергия колебательного кванта молекулы йода, энергия её диссоциации в основном и возбужденном состояниях. Значения данных по порядку величин сходятся с табличными.