Классическая криптография <u>Квантовые выч</u>исления

Мурашко И.В.

Санкт Петербургский Государственный Политехнический Университет

Agenda

- Квантовая механика
- Квантовые вычисления
- Методы симметричного шифрования и алгоритм Гровера
- Методы несимметричного шифрования (RSA, Diffie-Hellman, Elliptic curve) и алгоритм Шора.

Двухуровневый атом

Квантовая механика Квантовые вычисления Алгоритм Гровера Алгоритм Шора

Кот Шредингера

Отрицательные вероятности

Базовые блоки квантового компьютера

Задача о поиске иголки в стоге сена

Алгоритм Гровера

Влияние на рекомендации к использованию

$$AES_{128} \rightarrow AES_{256}$$

RSA и задача факторизации чисел

Diffie-Hellman, Elliptic curve и дискретный логарифм

Задача о нахождении периода функций и алгоритм Шора

Влияние на рекомендации к использованию

NSA не рекомендует использование алгоритмов на элиптических кривых для внутреннего использования.

Алгоритм RSA. Генерация ключей

- Выбираются два простых числа р и q
- ullet Вычисляется произведение выбранных простых чисел $n=p\cdot q$
- ullet Вычисляется функция Эйлера $\phi\left(n
 ight)=\left(p-1
 ight)\left(q-1
 ight)$
- Выбирается целое число e такое что $1 < e < \phi(n)$ и e и $\phi(n)$ взаимно просты, т. е. НОД $(e,\phi(n))=1$.
- ullet вычисляем $d\equiv e^{-1}\mod\phi\left(n
 ight)$, т. е. $d\cdot e\equiv 1\mod\phi\left(n
 ight)$.

Открытый ключ состоит из двух чисел: модуля n и открытой экспоненты e. Именно эти два числа используются для шифрования исходного сообщения.

Закрытый ключ состоит тоже из двух чисел: модуля n и закрытой экспоненты d.

Алгоритм RSA. Генерация ключей. Пример

Example

 $(RSA.\ \Gamma$ енерация ключей) Выбираем два простых числа p=3 и q=7. Произведение этих чисел n=21. Функция Эйлера $\phi\left(n\right)=\left(p-1\right)\left(q-1\right)=2\cdot 6=12$.

Выбираем число e (открытая экспонента), таким образом, что 1 < e < 12 и НОД (e,12) = 1. Очевидно e = 5 удовлетворяет заявленным условиям.

Вычисляем закрытую экспоненту $d\equiv 5^{-1}\mod 12$, т. е. d=5. Действительно $5\cdot 5=25=2\cdot 12+1$, т. е. $5\cdot 5\equiv 1\mod 12$. Т. о. получаем

- \bullet Открытый ключ (n=12, e=5)
- \bullet Закрытый ключ (n=12, d=5)

Алгоритм RSA. Шифрование

Допустим надо зашифровать некоторое сообщение M. Вначале оно переводится в целое число(числа) m такое, что $0 < m < \phi(n)$. Далее вычисляется за зашифрованный текст c:

$$c \equiv m^e \mod n \tag{1}$$

Example

Алгоритм RSA. Дешифрование

Допустим надо зашифровать некоторое сообщение M. Вначале оно переводится в целое число(числа) m такое, что $0 < m < \phi(n)$. Далее вычисляется за зашифрованный текст c:

$$c \equiv m^e \mod n \tag{2}$$

Example

 $(RSA.\ Шифрование)$ Допустим у нас есть открытый ключ (n=12,e=5) (см. прим. 1) и мы хотим зашифровать следующее сообщение $m=1101_2=11_{10}$. Шифротекст вычисляется по формуле $(2)\ c\equiv 11^5\mod 21=2$.

Введение. Лекция 1 Классическая криптография Квантовая механика Квантовые вычисления

Алгоритм Шора

Algorithm 1 Алгоритм Шора

```
a \Leftarrow 0 repeat Bыбрать новое число a такое, что 0 < a < N if \mathrm{HOД}\left(a,N\right) \neq 1 then return a end if Haŭtu период r функции f\left(x,a\right) = a^x \mod N until (r \not\equiv 0 \mod 2) or (a^{\frac{r}{2}} \equiv -1 \mod N) return \mathrm{HOД}\left(a^{\frac{r}{2}} \pm 1, N\right)
```

Алгоритм Гровера