

Today's Class

- Tree Diagram
- Permutations
- Combinations

Tree Diagram

- o Pictorial representation of all possibilities
- Two options
 - First part of branch is first option
 - Second branching represents section options

Example: Tree Diagram

- Draw a tree diagram for drawing two balls out of three colors (red, white and green).
 - What is the probability of each outcome?
 - What is the probability of getting two balls of the same color?

http://math.youngzones.org/tree.ht

Ordered Sampling with Replacement Example

 How many different 7-place license plates are possible if the first 3 places are to be occupied by letters and the final 4 by numbers?

Ordered Sampling without Replacement Example

 How many license plates would be possible if repetition among letters or numbers were prohibited?

Product Rule for k-Tuples

 A k-tuples is ordered collection of k elements. e.g. (3,1,4,2)≠(1,4,2,3)

distinct ways of doing Task 1 of doing Task 2

n_k
distinct objects
of doing Task k

How many different k-tuples can be made this way?

$$\boldsymbol{n_{_{1}}}\!\times\!\boldsymbol{n_{_{2}}}\!\times\!\cdots\!\times\!\boldsymbol{n_{_{k}}}$$

Ordered Sampling without Replacement Example

o If you want to select three of the billiard balls to form a lineup of speakers. In how many ways can you choose the billiard balls?

Order matters

123

1 3 2

2 1 3

231

3 2 1

- - -

Permutation

- o Chosen without replacement
- Order matters
- The number of permutations of size k from n objects is denoted by P_{k,n}:

$$\begin{split} P_{_{k,n}} &= n \times (n-1) \times (n-2) \times \dots \times (n-k+1) \\ &= \frac{n!}{(n-k)!} \end{split}$$

Factorial

- The factorial function (!) means to multiply a series of descending natural numbers
- Examples
 - \bullet 4! = 4 × 3 × 2 × 1 = 24
 - $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040$
 - 1! = 1

Unordered Sampling without Replacement Example

• If you wanted to select three of the billiard balls and you just want to know which 3 pool balls were chosen, not the order. In how many ways can you choose the billiard balls?

Order does matter	Order doesn't matter
123	
1 3 2	(3) (5) (5)
2 1 3	123
2 3 1	123
3 1 2	
3 2 1	

Combination

- Order does not matter
- The number of combinations of size k from n distinct objects will be denoted by C_{k,n}:

$$C_{k,n} = {n \choose k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$

$$P_{k,n} = k! \times C_{k,n}$$

Pascal's Triangle

$$\begin{array}{c} 1 \\ 1 \\ {\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 3 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix}} \\ 1 \\ {\begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}} \\ 1$$

Example: Probability

• UCLA SEAS has received a shipment of 25 printers, of which 10 are B&W laser printers and 15 are color laser printers. If 6 of these 25 are selected at random to be checked by a technician. What is the probability that exactly 3 of those selected are B&W laser printers?

