Stacked Clumping and Thresholding (SCT)

Making the most of C+T for polygenic scores

Florian Privé

Copenhagen, June 2019

Standard PRS - part 1: estimating effects

Genome-wide association studies (GWAS)

In a GWAS, each single-nucleotide polymorphism (SNP) is tested independently, resulting in one effect size $\hat{\beta}$ and one p-value p for each SNP.

Easy combining:
$$PRS_i = \sum_j \hat{eta}_j \cdot G_{i,j}$$

Standard PRS - part 2: restricting predictors

Clumping + Thresholding (C+T)

$$PRS_i = \sum_{\substack{j \in S_{ ext{clumping}} \ p_j < p_T}} \hat{eta}_j \cdot G_{i,j}$$

Hyper-parameters in C+T

- ullet threshold on squared correlation of clumping ($r_c^2 \sim 0.2$) and window size for LD computation ($w_c \sim 500 kb$)
- ullet p-value threshold (p_T between 1 and 10^{-8} and choose the best one)
- ullet threshold of imputation quality score ($INFO_T\sim 0.3$)

```
\Longrightarrow stdCT (standard C+T)
```

Our contribution

- going further by stacking all C+T models (instead of just choosing the best model)

```
\Longrightarrow SCT (Stacked C+T)
```

Stacking with penalized logistic regression

$$rgmin_{eta_0,\,eta}(\lambda,lpha) \left\{ \underbrace{-\sum_{i=1}^n \left(y_i\log(p_i) + (1-y_i)\log(1-p_i)
ight) + \lambda\left((1-lpha)rac{1}{2}\|eta\|_2^2 + lpha\|eta\|_1
ight)}_{ ext{Loss function}}
ight\}$$

$$ullet p_i = 1/\left(1+\expigl(-(eta_0+x_i^Teta)igr)
ight)$$

- x is denoting the C+T scores and covariates (e.g. principal components),
- ullet y is the disease status we want to predict,
- λ is a regularization parameter that needs to be determined and
- α determines relative parts of the regularization $0 \le \alpha \le 1$.

Results (simulations)

Results (real data)

Results (grid of hyper-parameters for MDD and T2D)

Beyond predicting one disease

Differentiating type 1 from type 2 diabetes

Stacking C+T scores for both types of diabetes

$$rgmin_{eta_0,\,eta}(\lambda,lpha) \left\{ \underbrace{-\sum_{i=1}^n \left(y_i \log(p_i) + (1-y_i) \log(1-p_i)
ight)}_{ ext{Loss function}} + \underbrace{\lambda\left((1-lpha)rac{1}{2}\|eta\|_2^2 + lpha\|eta\|_1
ight)}_{ ext{Penalization}}
ight\}$$

$$ullet p_i = 1/\left(1+\expigl(-(eta_0 + {x_1}_i^Teta_1 + {x_2}_i^Teta_2)igr)
ight)$$

- x_1 is denoting the C+T scores derived from **T1D** summary statistics
- x_2 is denoting the C+T scores derived from **T2D** summary statistics
- y (restricting to people with diabetes) is
 - 1 for type 2 diabetes and
 - 0 for type 1 diabetes

Predictive power of PRS

Investigating age of diagnosis

Predictive power of PRS + age at diagnosis

Investigating age of diagnosis

Other useful variables?

Conclusion / limitations

- PRS is of relative improvement over "age at diagnosis" alone (AUC of 91.0 [87.8-93.9] vs 88.7 [85.1-92.0])
- Small sample size
 (493 T1D / 7507 T2D in training and 149 / 2139 in test set)
- Use of other variables? (available at diagnosis: BMI, sex, others?)
- Consider other types of diabetes?
- Possible misdiagnosis errors in the dataset used
- Try a different method?
 - build one PRS for each type of diabetes separately and merge them after with other variables?
 - prefer individual-level data methods?
 (works best for T1D because of large effects in HLA region)

Thanks!

Presentation available at

https://privefl.github.io/thesis-docs/SCT-diabetes.html

Slides created via R package xaringan.