Computer Vision – Assignment 1

Omar Ali - 28587497

2024-05-07

1: Image Segmentation and Detection

In this task, 3 balls from some images needed to be extracted from a set of 62 images and segmented into a mask. The balls were of three types: American Football, Football, and Tennis Ball. The images represent a sequence or frames where the balls are in motion. The task was to segment the balls from the background and calculate the Dice Similarity Score (DS) of the segmented balls against the ground truth mask of the balls.

1.1 Ball Segmentation

In this section, I will demonstrate how the balls were segmented from the background using a series of image-processing techniques. The steps are as follows:

Original
Step 1
Grab the original
image from path

HSV
Step 2
Converted the RGB
image into HSV colour
space

Intensity
Step 3
Extracted the Intensity
Channel

GBlur
Step 4
Apply Gaussian Blur
with k=[3x3] with 2
iterations

Median Blur Step 5 Apply Median Blur with k=[3x3] with 2 iterations

Adaptive Gaussian
Threshold
Step 6
With Blocksize = 19
and c = 5

Opening
Step 7

to disconnecting white
pixels k = (4,4) with 5
iterations

Dilate
Step 8
expanding white
pixels to remove noisy
black holes holes k =
(3,3) with 4 iterations

Erode
Step 9
re-shrinking the white
pixels to let the balls
begin to connect k =
(3,3) with 2 iterations

Fill
Step 10
Fill the enclosed black
areas

Dilate and Erode
Step 11
series of dilations and
erosions to remove the
noisy black pixels
whislt maintaining *

Contour
Step 12
find the contours of
the (bitwise_not)
image

At this stage, step 12, it can be seen that the balls have been segmented from the background. However, this is only the case in the particular sample, frame 85. In the images below, Frame 100 is re-displayed to show that the ball segmentation still had artifacts that needed to be removed. Two main culprits were the shadows of the American Football in the latter frames, as well as some sections of the background that were not yet caught by the segmentation process so far.

In order to remove the shadow, it was found that the intensity channel of the HSV image was quite effective and computationally cheap to apply.

Contour Step 12 Grab the original image from path

Thresholing Intensity
Step 13.1
A threshold of 0.4 was applied
to the intensity image from
step 3 to remove shadows

Combine
Step 13.2
The contour and the
thresholded intensity image
were combined

The inverse of the thresholded intentity, in step 13.1, was combined with the contour using a 'bitwise and' operation.

1 combo = cv2.bitwise_not(cv2.bitwise_or(thresh_intensity_image, contour_image)

Convex Hull Step 14

Circularity Step 15

Finally, a convex hull was applied to the contours to remove sharp edges and improve the circularity of the contours. The circularity of the contours was calculated and only contours with a circularity greater than 0.72 were kept.

1.2 Dice Similarity Score

The Dice Similarity Score (DS) of every segmented ball image was compared against the ground truth mask of the ball image. The Dice Similarity Score (DS) is defined as:

$$DS = \frac{2 * |M \cap S|}{|M| + |S|}$$

where M is the ground truth mask and S is the segmented mask. The DS score ranges from 0 to 1, where 1 indicates a perfect match between the two masks.

A bar chart of the DS has been plotted for every frame. The lowest recorded score is 0.82 for frame 93 and the highest is 0.96 for frame 78.

Additionally, a violin plot, was used to display the distribution of the DS score across all the frames, it can be seen that there is quite a skew of the data towards the higher range of the DS score, with the greatest proportion of the data sitting around the 0.93-0.94 range.

Below are the best and worst frames in terms of the Dice Similarity Score achieved by the segmentation process.

1.3 Discussion

The implementation was found to be quite good, where the DS scores had a maximum of 0.96, minimum of 0.82, mean of 0.91 and standard deviation of 0.04. However, the implementation is quite clunky and very tuned for this task.

Overall, the number of steps in order to reach the solution is quite large, at 15 steps. The additional processing was ultimately due to a whack-a-mole situation, where refinements in one area of the task cause another area to worsen. This makes this solution temperamental and not very robust to changes in the input data, however, for very refined results, this is likely to be a similar case for most image segmentation methodologies that do not more complex models such as deep learning.

In the initial processing, it was found that the Intensity value provided a very good initial starting point, as opposed to using grayscale, as the intensity of the balls has a very distinct value compared to the background. The Gaussian Blur and Median Blur were very effective at removing the nose from this image, whilst maintaining the edges of the balls. The Adaptive Gaussian Threshold (AGT) was effective in detecting the edges in the image, compared to a standard threshold, because it takes into consideration a normalised local area for its thresholding calculation.

The range of morphological filters was essential in getting a cleaner mask of the balls, with just the right amount of erosion and dilation to remove the noise from the background. Different ranges of kernel sizes were used for the erosion and dilation, however all used some scale of the MORPH_ELLIPSE structuring element. It is important to note that in the first applications of the morphological filters, the region being eroded or dilated was the background, not the balls. This was because the image had not yet been inverted and so the balls were considered the background.

Once the morphological filtering was complete, the balls were segmented using the opency.findContours function. As mentioned, this was found to not be refined enough, so the intensity channel was used to remove the shadows from the American Football, a convex hull was applied to the contours to connect sharp edges, and the circularity of the contours where only contours with a circularity greater than 0.72 were kept.

There are certainly some improvements that could be made, and would have possibly decided to take a different approach had this task been reattempted. A possible alternative first step could be to make use of the colour channels of the image to segment the balls. This could be done by applying a threshold to the colour channels and then combining the results. This would have been a more robust approach where the main challenge would be the distinction of the white football from the walls of the room. Additionally, considering the constrained environment, it could have been possible to create a mask of the problematic parts of the room and have these be removed from the image before segmentation.

2: Feature Calculation

2.1 Shape Features

In this section, I will demonstrate how a range of shape features (Solidity, Non-compactness, Circularity, Eccentricity) can be calculated from the contours of the segmented balls.

In order to get the contours of the segmented balls, I made use of the openCV 'findContours' function which returns a list of contours and a hierarchy for all the contours in the image.

```
1 img = cv2.imread(image)
2 img = cv2.bitwise_and(cv2.cvtColor(msk, cv2.COLOR_GRAY2BGR), img)
3 contours, _ = cv2.findContours(msk, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
```

Each contour is split into the corresponding balls in order to combine the contours of the same ball into an array, this is done by exploiting the areas of each ball. The details of the code can be explored as needed, however the core logic is as follows:

```
1 area = cv2.contourArea(contour)
2 if area > 1300:  # football
3    append_ball = BALL_LARGE
4 elif area > 500:  # soccer_ball
5    append_ball = BALL_MEDIUM
6 else:  # tennis ball
7    append_ball = BALL_SMALL
```

Using this, the features can be evaluated for every ball.

2.1.a Circularity

Circularity is defined as the ratio of the area of the circle with the same perimeter as the object to the area of the object. For a given contour C, the circularity is calculated by:

```
1 area = cv2.contourArea(contour)
2 perimeter = cv2.arcLength(contour, closed=True)
3 circularity = (4 * math.pi * area) / (perimeter**2)
```


Both the Football and the Tennis ball have a higher circularity than the American Football. This is expected as the American Football has a more elongated shape compared to the other two balls. Visually, the football has a smaller variance in circularity compared to the tennis ball. This is likely due to the relative size of the football compared to the tennis ball, where the football is larger and has a more consistent shape from the perspective of an image and will not suffer from distortion and be impacted by smaller pixel ranges.

2.1.b Eccentricity

Eccentricity is the ratio of the distance between the foci of the ellipse to the major axis length. For a given contour C, the eccentricity is calculated by:

```
1 ellipse = cv2.fitEllipse(contour)
2 a = max(ellipse[1])
3 b = min(ellipse[1])
4 eccentricity = (1 - (b**2) / (a**2)) ** 0.5
```


The American Football has the highest eccentricity of all the balls, which is expected as it has a more elongated shape compared to the other two balls. The football and the tennis ball both have very distributed eccentricity values.

2.1.c Solidity

Solidity is the ratio of the area of the object to the area of the convex hull of the object. For a given contour C, the solidity is calculated by:

```
1 area = cv2.contourArea(contour)
2 convex_hull = cv2.convexHull(contour)
3 convex_area = cv2.contourArea(convex_hull)
4 solidity = area / convex_area
```


The solidity of the American Football is much higher and more consistent than the other two balls. This is likely due to the ball being larger in size and so a convex hull around the ball is likely to be more similar to the ball itself. This follows through as we see the football having a higher solidity than the tennis ball, and the tennis ball's solidity is much more distributed than the others.

2.1.d Non-compactness

Non-compactness is the ratio of the area of the object to the area of the circle with the same perimeter as the object. For a given contour C, the non-compactness is calculated by:

```
1 area = cv2.contourArea(contour)
2 perimeter = cv2.arcLength(contour, closed=True)
3 non_compactness = 1 - (4 * math.pi * area) / (perimeter**2)
```


The tennis ball has the tightest distribution of non-compactness values, with the American Football having the highest non-compactness values. This is because the American Football has a more elongated shape that changes its dimensions as the perspective shifts.

2.2 Texture Features

In this section, texture features are calculated from the segmented balls. The texture features are evaluated by calculating the normalised Grey-Level Co-occurrence Matrix (GLCM) in four orientations (0°, 45°, 90°, 135°) for every individual ball. The GLCM is a matrix that describes how

often different combinations of pixel intensity values occur in an image. The GLCM is calculated for each of the colour channels (red, green, blue) and for each of the four orientations then averaged across the orientations to determine the texture features of the ball. These features include Angular Second Moment, Contrast, Correlation, and Entropy.

For each feature, one colour channel is selected to demonstrate the feature calculation. The blue channel was selected for the Angular Second Moment, the red channel for Contrast, and the green channel for Correlation.

To get the GLCM, the balls were segmented in a similar way to what was described previously in the shape features section. However, this time, the mask generated was overlayed onto the original image to get the pixel values of the balls.

The GLCM was calculated using the 'greycomatrix' function from the skimage library. The first row and column were both stripped away from the GLCM to remove the background noise. The GLCM was then normalised using 'greycoprops' and the texture features were evaluated for all four orientations. These were then averaged to get the final average texture value for the ball.

2.2.a Applied Texture Features

Below are a set of violin plot of the texture featuures for the three balls. The Angular Second Moment was calculated for the blue channel, the Contrast for the red channel, and the Correlation for the green channel, where the yellow plot represents the Tennis Ball, the white plot represents the Football, and the orange plot represents the American Football.

The **ASM**, is a measure of textural uniformity within an image. The ASM will be high when the image has constant or repetitive patterns, meaning the pixel intensities are similar or identical throughout the image. The yellow tennis ball has a high ASM mean in the blue channel, which suggests that the pixel intensities in the blue channel for the yellow tennis ball are very similar or

identical throughout the image. This could be due to the yellow color having a low blue component in the RGB color model. The orange American football has a low ASM mean in the blue channel, which suggests that there is a lot of variation or randomness in pixel intensities in the blue channel for the orange American football. This could be due to the orange color having a low blue component in the RGB color model, or due to variations in lighting conditions or reflections on the ball. The large standard deviation indicates that the pixel intensities in the blue channel for the orange American football vary widely. This could be due to factors such as lighting conditions, shadows, or variations in the ball's color.

The **ASM range** in an image indicates the spread of textural uniformity across the image. A high range would indicate that there are areas of the image with very high textural uniformity. The yellow tennis ball has a low ASM range mean in the blue channel. This means that the pixel intensities in the blue channel for the yellow tennis ball are very similar or identical throughout the image.

The **contrast** of an image, specifically in a color channel, refers to the difference in color that makes an object distinguishable. In the red channel of an image, objects with a high amount of red will have a high intensity. The yellow tennis ball and the white football have the highest contrast means in the red channel because yellow, and white have a combination of red and green in the RGB color model.

The **correlation** of an image, specifically in a color channel, refers to the degree to which neighboring pixel values are related. In the green channel of an image, objects with a high amount of green will have a high intensity. The orange American football has a high correlation mean in the green channel, which suggests that it has a strong relationship with neighboring pixel values in the green channel. This could be due to the orange color having less green component compared to yellow or due to different lighting conditions. The yellow tennis ball has a low correlation mean in the green channel because yellow is a combination of red and green in the RGB color model. This means that the yellow tennis ball will have a high intensity in the green channel, but the correlation is low.

In terms of using the features to classify the balls, the Shape features can be very useful, especially in classifying the American Football as it has the most distinctive shape of the three balls. In particular, the solidity of the American Football has a very high value, and low distribution, compared to the others, making it a particularly distinguishing feature. The texture features can also be useful in identifying the balls but this is colour dependent. The tennis ball tends to have the lowest correlation and the American Football the highest.

3: Object Tracking

3.1 Kalman Filter

A Kalman filter is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone.

It can be used in the context of object tracking to estimate the position of an object based on noisy measurements of its position. The Kalman filter uses a motion model to predict the next state of the object and an observation model to update the state based on the measurements.

The Kalman filter consists of two main steps: the prediction step and the update step.

These require a few sets of parameters to be set up, such as the state vector x, the state covariance matrix P, the motion model F, the observation model H, the process noise covariance matrix Q, and the measurement noise covariance matrix R.

```
1 x = np.matrix([x0]).T
2 Q = kq * np.matrix([[nx, 0, 0, 0], [0, nvx, 0, 0], [0, 0, ny, 0], [0, 0, 0,
nvy]])
3 P = Q
4 F = np.matrix([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt], [0, 0, 0, 1]])
5 H = np.matrix([[1, 0, 0, 0], [0, 0, 1, 0]])
6 R = kr * np.matrix([[nu, 0], [0, nv]])
7 N = len(z[0])
8 s = np.zeros((4, N))
```

Intial Parameters:

```
1 nx=0.16, ny=0.36, nvx=0.16, nvy=0.36, nu=0.25, nv=0.25
2 x0=[0,0,0,0], z=[], kr=1, kq = 1, dt=0.05
```

In the prediction step, the filter uses the motion model to predict the next state of the object based on the previous state.

```
1 def kalman_predict(x, P, F, Q):
       xp = F * x
 2
       Pp = F * P * F.T + Q
 3
 4
       return xp, P
 5
 6 def kalman update(x, P, H, R, z):
 7
       S = H * P * H.T + R
       K = P * H.T * np.linalg.inv(S)
 8
       zp = H * x
 9
10
       xe = x + K * (z - zp)
       Pe = P - K * H * P
11
12
       return xe, Pe
```

In the update step, the filter uses the observation model to update the state based on the measurements.

The plotted graph of the initial noisy coordinates [na,nb] and the estimated coordinates $[x^*,y^*]$ can be seen below.

In order to evaluate the performance of the Kalman filter, the root mean squared error (RMSE) can be evaluated to show how close the estimated trajectory is to the ground truth trajectory.

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \hat{x}_{i} \right)^{2} + \left(y_{i} - \hat{y}_{i} \right)^{2}}$$

```
1 \text{ rms} = \text{np.sqrt}(1/\text{len}(px) * (\text{np.sum}((x - px)**2 + (y - py)**2)))
```

The initial Kalman filter implementation used a starting point of (0,0) for the x and y coordinates and had a mean of 9.68 and an RMS of 26.21. This performance was suboptimal compared to the noise, which had a mean of 6.96 and an RMS of 7.42.

The starting point was changed to the first point in the trajectory. The measurement noise parameter nv was set to be three magnitudes lower than nu, reflecting the smaller changes in the y positional values compared to the x positional values. The process noise parameters were also adjusted, with nx increased to 1.6 and ny to increase the noise on the x positional data which allows the filter to be more flexible in its predictions allowing for smoother transitions between the timesteps.

The final optimised parameters were set to:

```
1 kq = 1.75E-2, kr = 1.5E-3, nx = 1.6, ny = 0.32, nvx = 0.16*1.75E-2
2 nvy = 0.36*1.75E-2, nu = 0.25, nv = 0.25E-3
```

These adjustments resulted in a significant improvement in the filter's performance, with the mean reduced to 6.81 and the RMS reduced to 7.26, bringing the prediction closer to the ground truth.

4: Appendix.

4.1 Worst DS Frames

4.2 Best DS Frames

4.3 All Features

Contrast Avg

Red Channel

Green Channel

600

400

200

Tennis Lookball Blue Channel

600

400

200

Tennis Lookball Burgitah Lookball Blue Channel

Red Channel

4.4 Code

4.4.a image_segmentation.py

```
1 import os
 2 import cv2
 3 from cv2.typing import MatLike
 4 import numpy as np
 5 from segmentation.utils import fill
 6 import math
7
 8 class ImageSegmentation:
       def __init__(self, image_path: str, save_dir: str = None):
           self.processing_data = []
10
11
           self.image path = image path
12
           self.image = cv2.imread(image_path)
13
           self.processing images = []
14
           self.save_dir = save_dir
15
       def log_image_processing(self, image, operation: str):
16
17
           """log the image processing"""
18
           self.processing_data.append(operation)
19
           self.processing_images.append(image)
20
21
       def gblur(self, image, ksize=(3, 3), iterations=1):
22
           """apply gaussian blur to the image"""
23
           blur = image.copy()
24
           for _ in range(iterations):
               blur = cv2.GaussianBlur(blur, ksize, cv2.BORDER_DEFAULT)
25
26
           self.log_image_processing(blur, f"gblur,kernel:{ksize},iterations:
{iterations}")
           return blur
27
28
       def mblur(self, image, ksize=3, iterations=1):
29
30
           """apply gaussian blur to the image"""
           blur = image.copy()
31
32
           for _ in range(iterations):
33
               blur = cv2.medianBlur(blur, ksize)
           self.log_image_processing(
34
35
               blur, f"medianblur,kernel:{ksize},iterations:{iterations}"
36
37
           return blur
38
       def adaptive_threshold(self, image, blockSize=15, C=3):
39
40
           """apply adaptive threshold to the image"""
41
           image = image.copy()
42
           adaptive_gaussian_threshold = cv2.adaptiveThreshold(
43
               src=image,
44
               maxValue=255,
45
               adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
46
               thresholdType=cv2.THRESH_BINARY,
47
               blockSize=blockSize,
```

```
1
               C=C,
 2
           )
 3
           self.log image processing(
 4
               adaptive gaussian threshold,
 5
               f"adaptive_threshold,blockSize:{blockSize},C:{C}",
 6
           )
 7
           return adaptive_gaussian_threshold
       def dilate(self, image, kernel=(3, 3), iterations=1,
 8
op=cv2.MORPH ELLIPSE):
           """apply dilation to the image"""
9
10
           image = image.copy()
11
           kernel = cv2.getStructuringElement(op, kernel)
12
           dilation = cv2.dilate(
13
               src=image,
               kernel=kernel,
14
15
               iterations=iterations,
16
           )
17
18
           self.log_image_processing(
19
               dilation,
20
               f"erode, kernel: {kernel}, iterations: {iterations}",
21
22
           return dilation
23
24
       def erode(self, image, kernel=(3, 3), iterations=1, op=cv2.MORPH ELLIPSE):
25
           """apply dilation to the image"""
26
           image = image.copy()
27
           kernel = cv2.getStructuringElement(op, kernel)
28
           dilation = cv2.erode(
29
               src=image,
30
               kernel=kernel,
31
               iterations=iterations,
32
           )
33
34
           self.log_image_processing(
35
               dilation,
36
               f"dilate, kernel: {kernel}, iterations: {iterations}",
37
38
           return dilation
39
40
       def closing(self, image, kernel=(5, 5), iterations=10):
41
           """apply closing to the image"""
42
           image = image.copy()
           kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, kernel)
43
44
           closing = cv2.morphologyEx(
45
               src=image,
               op=cv2.MORPH CLOSE,
46
47
               kernel=kernel,
48
               iterations=iterations,
49
           )
50
51
           self.log_image_processing(
52
               closing,
53
               f"closing, kernel: {kernel}, iterations: {iterations}",
54
55
           return closing
```

```
1
       def opening(self, image, kernel=(5, 5), iterations=1,
op=cv2.MORPH ELLIPSE):
           """apply opening to the image"""
 2
 3
           image = image.copy()
 4
           kernel = cv2.getStructuringElement(op, kernel)
 5
           opening = cv2.morphologyEx(
 6
               src=image,
 7
               op=cv2.MORPH_OPEN,
 8
               kernel=kernel,
 9
               iterations=iterations,
10
           self.log_image_processing(
11
12
               opening,
               f"opening,kernel:{kernel},iterations:{iterations}",
13
14
15
           return opening
16
       def generic filter(self, image, kernel, iterations=1,
17
custom_msg="genertic_filter"):
           result = image.copy()
18
19
20
           for i in range(iterations):
21
               result = cv2.filter2D(result, -1, kernel)
22
23
           self.log image processing(
24
               result, f"{custom_msg},kernel:{kernel},iterations:{iterations}"
25
           )
26
           return result
27
       def dilate_and_erode(
28
29
           self, image, k_d, i_d, k_e, i_e, iterations=1, op=cv2.MORPH_ELLIPSE
30
       ):
31
           image = image.copy()
32
           for _ in range(iterations):
33
               for _ in range(i_d):
34
                   image = self.dilate(image, (k_d, k_d), op=op)
35
               for _ in range(i_e):
36
                   image = self.erode(image, (k_e, k_e), op=op)
37
           self.log_image_processing(
38
               image,
39
               f"dilate_and_erode,k_d:{(k_d,k_d)},i_d={i_d},k_e:{(k_e,
k_e)},i_e={i_e},iterations:{iterations}",
40
           )
41
           return image
42
43
       def fill_image(self, image_data, name, show=True):
44
           self.log image processing(
               image_data[name],
45
               f"fill {name}",
46
47
           )
           image_data[f"fill_{name}"] = {
48
49
               "image": fill(image_data[name]["image"].copy()),
               "show": show,
50
51
           }
```

```
1
       def find ball contours(
 2
           self,
 3
           image,
 4
           circ_thresh,
 5
           min_area=400,
 6
           max_area=4900,
 7
           convex_hull=False,
 8
       ):
 9
           img = image.copy()
10
           cnts = cv2.findContours(img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
           cnts = cnts[0] if len(cnts) == 2 else cnts[1]
11
12
13
           blank_image = np.zeros(img.shape, dtype=img.dtype)
14
15
           for c in cnts:
16
               # Calculate properties
17
               peri = cv2.arcLength(c, True)
18
               # Douglas-Peucker algorithm
               approx = cv2.approxPolyDP(c, 0.0001 * peri, True)
19
20
21
               # applying a convex hull
22
               if convex_hull == True:
23
                   c = cv2.convexHull(c)
24
25
               # get contour area
26
               area = cv2.contourArea(c)
27
               if area == 0:
28
                   continue # Skip to the next iteration if area is zero
29
30
               circularity = 4 * math.pi * area / (peri**2)
31
32
               if (
33
                   (len(approx) > 5)
34
                   and (area > min_area and area < max_area)</pre>
35
                   and circularity > circ_thresh
36
               ):
37
                   cv2.drawContours(blank_image, [c], -1, (255), cv2.FILLED)
38
39
           return blank_image
40
41
42
       @staticmethod
       def preprocessing(image):
43
44
           image_data = {}
45
46
           image data["original"] = {
47
               "image": image.image,
               "show": True,
48
49
50
           image_data["grayscale"] = {
51
               "image": cv2.cvtColor(image.image, cv2.COLOR_BGRA2GRAY),
               "show": False,
52
53
           }
```

```
1
           image data["hsv"] = {
 2
               "image": cv2.cvtColor(image.image.copy(), cv2.COLOR BGR2HSV),
               "show": False,
 3
 4
           }
 5
           (_, _, intensity) = cv2.split(image_data["hsv"]["image"])
 6
           image_data["intensity"] = {
 7
               "image": intensity,
               "show": False,
 8
 9
           }
10
           image_data["gblur"] = {
11
               "image": image.gblur(
12
                    image_data["intensity"]["image"], ksize=(3, 3), iterations=2
13
               ),
14
               "show": False,
15
           }
16
           image data["blur"] = {
17
               "image": image.mblur(
                   image data["intensity"]["image"], ksize=3, iterations=2
18
19
20
                "show": False,
21
           }
22
23
           intensity_threshold = cv2.threshold(
24
               image_data["intensity"]["image"], 125, 255, cv2.THRESH_BINARY
25
           )[1]
26
           image_data["intensity_threshold"] = {
27
28
               "image": intensity_threshold,
29
               "show": False,
30
           }
31
32
           name = "adap_gaus_thrsh"
33
           image data[name] = {
34
               "image": image.adaptive_threshold(
35
                    image=image_data["blur"]["image"].copy(),
36
                   blockSize=19,
37
                   C=5,
38
               ),
               "show": False,
39
40
           }
41
42
           image data["open"] = {
43
               "image": image.opening(
44
                    image=image_data["adap_gaus_thrsh"]["image"].copy(),
45
                    kernel=(5, 5),
46
                   iterations=4,
               ),
47
48
               "show": False,
49
50
           image_data["dilate"] = {
51
               "image": image.dilate(
52
                    image=image_data["open"]["image"].copy(),
53
                    kernel=(3, 3),
54
                   iterations=2,
55
               ),
56
               "show": False,
```

```
1
           }
 2
           image_data["erode"] = {
 3
                "image": image.erode(
 4
                    image=image_data["open"]["image"].copy(),
 5
                    kernel=(3, 3),
 6
                    iterations=2,
 7
               ),
                "show": True,
 8
 9
10
           fill_erode = image.fill_image(image_data, "erode")
11
           image_data["dilate_and_erode"] = {
12
13
                "image": image.dilate_and_erode(
14
                    image_data["fill_erode"]["image"],
15
                    k_d=4,
16
                    i d=5,
17
                    k_e=5,
18
                    i e=2,
19
                    iterations=1,
20
               ),
21
                "show": False,
22
           }
23
24
           contours = image.find_ball_contours(
25
                cv2.bitwise not(image data["dilate and erode"]["image"]),
26
               0.32,
27
           )
28
29
           image_data["contours"] = {
                "image": contours,
30
                "show": False,
31
32
           }
33
34
           image_data["im_1"] = {
35
                "image": cv2.bitwise_not(
36
                    image_data["intensity_threshold"]["image"],
37
                "show": False,
38
39
           }
40
41
           image_data["im_2"] = {
42
                "image": cv2.bitwise not(
43
                    image_data["contours"]["image"],
44
                "show": False,
45
46
           }
47
           image data["segmentation before recontour"] = {
                "image": cv2.bitwise_not(
48
49
                    cv2.bitwise or(
50
                        image_data["im_1"]["image"], image_data["im_2"]["image"]
51
                    ),
52
               ),
53
                "show": True,
54
           }
55
56
           recontours = image.find_ball_contours()
```

```
1
               image_data["segmentation_before_recontour"]["image"],
 2
               0.0,
 3
               min_area=100,
 4
               max_area=4900,
 5
               convex_hull=True,
 6
           )
 7
 8
            image_data["convex_hull"] = {
                "image": recontours,
 9
                "show": True,
10
11
           }
12
13
           image_data["opening_after_segmentation"] = {
14
               "image": image.opening(
15
                   image_data["convex_hull"]["image"],
                   kernel=(3, 3),
16
17
                   iterations=5,
18
19
               "show": True,
20
           }
21
           image_data["segmentation"] = {
22
23
               "image": image.find_ball_contours(
24
                   image_data["opening_after_segmentation"]["image"],
25
                   0.72,
26
                   250,
                   5000,
27
28
                   True,
29
               ),
30
               "show": True,
31
32
           return image_data
```

4.4.b utils.py

```
1 import os
 2 import glob
 3 from natsort import natsorted
 4 import numpy as np
 5 import matplotlib.pyplot as plt
 6 import cv2
7
8
9 def get_images_and_masks_in_path(folder_path):
       images = sorted(filter(os.path.isfile, glob.glob(folder_path + "/*")))
11
       image_list = []
       mask_list = []
12
13
       for file_path in images:
          if "data.txt" not in file_path:
14
15
               if "GT" not in file path:
16
                   image_list.append(file_path)
17
               else:
                   mask_list.append(file_path)
18
19
20
       return natsorted(image_list), natsorted(mask_list)
21
22
23 # source and modofied from https://stackoverflow.com/a/67992521
24 def img_is_color(img):
25
26
       if len(img.shape) == 3:
27
           # Check the color channels to see if they're all the same.
28
           c1, c2, c3 = img[:, :, 0], img[:, :, 1], img[:, :, 2]
29
           if (c1 == c2).all() and (c2 == c3).all():
30
               return True
31
32
       return False
33
34
35 from heapq import nlargest, nsmallest
36
37
38 def dice_score(processed_images, masks, save_path):
       eval = []
40
       score_dict = {}
41
       for idx, image in enumerate(processed_images):
42
           score = dice_similarity_score(image, masks[idx], save_path)
43
           score dict[image] = score
44
          if len(eval) == 0 or max(eval) < score:</pre>
45
               max_score = score
46
              max_score_image = image
47
          if len(eval) == 0 or min(eval) > score:
48
               min_score = score
49
               min_score_image = image
50
           eval.append(score)
51
       avg_score = sum(eval) / len(eval)
52
       max_text = f"Max Score: {max_score} - {max_score_image}\n"
53
       min_text = f"Min Score: {min_score} - {min_score_image}\n"
54
       avg_text = f"Avg Score: {avg_score}\n"
```

```
1
       print("--- " + save path + "\n")
 2
       print(max_text)
 3
       print(min text)
       print(avg_text)
 4
 5
       print("---")
 6
 7
       FiveHighest = nlargest(5, score_dict, key=score_dict.get)
 8
       FiveLowest = nsmallest(5, score_dict, key=score_dict.get)
 9
       with open(f"{save path}/dice score.txt", "w") as f:
10
           f.write("---\n")
11
           f.write(max text)
12
           f.write(min_text)
13
           f.write(avg_text)
           f.write("---\n")
14
           f.write("Scores:\n")
15
           for idx, score in enumerate(eval):
16
17
               f.write(f"\t{score}\t{masks[idx]}\n")
           f.write("---\n")
18
           f.write("5 highest:\n")
19
20
           for v in FiveHighest:
21
               f.write(f"{v}, {score_dict[v]}\n")
22
           f.write("---\n")
23
           f.write("5 lowest:\n")
24
           for v in FiveLowest:
25
               f.write(f"{v}, {score_dict[v]}\n")
26
27
       frame_numbers = [extract_frame_number(key) for key in score_dict.keys()]
28
29
       plt.figure(figsize=(12, 3))
30
       plt.bar(frame_numbers, score_dict.values(), color="c")
31
       plt.title("Dice Score for Each Image Frame")
32
       plt.xlabel("Image Frame")
33
       plt.ylabel("Dice Similarity Similarity Score")
34
       plt.ylim([0.8, 1])
35
       plt.xticks(
           frame_numbers, rotation=90
36
37
       ) # Rotate the x-axis labels for better readability
38
       plt.grid(True)
39
       plt.tight layout() # Adjust the layout for better readability
40
       plt.savefig(f"Report/assets/dice score barchart.png")
41
42
       # standard deviation
43
       std_dev = np.std(eval)
44
       print(f"Standard Deviation: {std_dev}")
45
       mean = np.mean(eval)
46
       print(f"Mean: {mean}")
47
48
       # plot boxplot
49
       plt.figure(figsize=(12, 3))
50
       plt.violinplot(eval, vert=False, showmeans=True)
51
       plt.title("Dice Score Distribution")
52
       plt.xlabel("Dice Similarity Score")
53
       plt.grid(True)
54
       plt.tight layout()
55
       plt.text(0.83, 0.9, f'Standard Deviation: {std_dev:.2f}',
transform=plt.gca().transAxes)
```

```
1
       plt.text(0.83, 0.80, f'Mean: {mean:.2f}', transform=plt.gca().transAxes)
 2
       plt.savefig(f"Report/assets/dice score violin.png")
 3
 4 def extract frame number(path):
 5
       components = path.split("/")
 6
       filename = components[-1]
 7
       parts = filename.split("-")
 8
       frame_number_part = parts[-1]
 9
       frame number = frame number part.split(".")[0]
10
       return int(frame_number)
11
12
13 def dice_similarity_score(seg_path, mask_path, save_path):
14
15
       seg = cv2.threshold(cv2.imread(seg_path), 127, 255, cv2.THRESH_BINARY)[1]
16
       mask = cv2.threshold(cv2.imread(mask path), 127, 255, cv2.THRESH BINARY)
[1]
17
       intersection = cv2.bitwise and(seg, mask)
18
       dice_score = 2.0 * intersection.sum() / (seg.sum() + mask.sum())
19
20
       difference = cv2.bitwise_not(cv2.bitwise_or(cv2.bitwise_not(seg), mask))
21
       cv2.imwrite(save_path + f"/difference_ds_{dice_score}.jpg", difference)
22
       return dice_score
23
24
25 def show_image_list(
       image_dict: dict = {},
26
27
       list_cmaps=None,
28
       grid=False,
29
       num_cols=2,
       figsize=(20, 10),
30
31
       title_fontsize=12,
32
       save_path=None,
33 ):
34
       list_titles, list_images = list(image_dict.keys()),
35
list(image_dict.values())
36
37
       assert isinstance(list images, list)
38
       assert len(list images) > 0
39
       assert isinstance(list_images[0], np.ndarray)
40
41
       if list_titles is not None:
           assert isinstance(list_titles, list)
42
43
           assert len(list images) == len(list titles), "%d imgs != %d titles" %
(
44
               len(list images),
45
               len(list_titles),
46
           )
47
48
       if list_cmaps is not None:
49
           assert isinstance(list_cmaps, list)
50
           assert len(list images) == len(list cmaps), "%d imgs != %d cmaps" % (
51
               len(list_images),
52
               len(list_cmaps),
53
```

```
1
       num_images = len(list_images)
 2
       num cols = min(num images, num cols)
 3
       num_rows = int(num_images / num_cols) + (1 if num_images % num_cols != 0
else 0)
 4
 5
       # Create a grid of subplots.
 6
       fig, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
 7
 8
      # Create list of axes for easy iteration.
 9
       if isinstance(axes, np.ndarray):
10
           list axes = list(axes.flat)
11
       else:
12
          list_axes = [axes]
13
14
       for i in range(num_images):
15
16
           img = list_images[i]
           title = list titles[i] if list titles is not None else "Image %d" %
17
(i)
18
           cmap = (
19
              list_cmaps[i]
20
               if list_cmaps is not None
21
               else (None if img_is_color(img) else "gray")
22
           )
23
24
          list_axes[i].imshow(img, cmap=cmap)
25
          list_axes[i].set_title(title, fontsize=title_fontsize)
26
           list_axes[i].grid(grid)
27
           list_axes[i].axis("off")
28
29
       for i in range(num_images, len(list_axes)):
           list_axes[i].set_visible(False)
30
31
32
       fig.tight_layout()
33
34
       if save_path is not None:
35
           fig.savefig(save_path)
36
37
       plt.close(fig)
38
39
40 def fill(img):
41
       des = cv2.bitwise_not(img.copy())
       contour, hier = cv2.findContours(des, cv2.RETR_CCOMP,
42
cv2.CHAIN APPROX SIMPLE)
      for cnt in contour:
43
44
           cv2.drawContours(des, [cnt], 0, 255, -1)
45
       return cv2.bitwise_not(des)
```

4.4.c seg_main.py

```
1 import os
 2 import cv2
 3 from tqdm import tqdm
 5 from datetime import datetime
 6 from segmentation.image_segmentation import ImageSegmentation
 7 from segmentation.utils import (
 8
       dice score,
 9
       get_images_and_masks_in_path,
10
       show_image_list,
11)
12
13 import multiprocessing as mp
15 dir path = os.path.dirname(os.path.realpath( file ))
16 path = "data/ball_frames"
17
18
19 def store_image_data(log_data, time: datetime):
       """method to store in a text file the image data for processing"""
20
       check_path = os.path.exists(f"process_data/{time}/data.txt")
21
22
       if not check path:
23
           with open(f"process_data/{time}/data.txt", "w") as f:
24
               for log in log data:
25
                   f.write(f"{log}\n")
26
27
28 def process_image(inputs: list[list, bool]) -> None:
29
       """method to process the image"""
30
       [image_path, save, time, save_dir] = inputs
31
       image = ImageSegmentation(image_path, save_dir)
32
       data = image.preprocessing(image)
33
       processed_images = {}
34
       for key in data.keys():
35
           if data[key]["show"] is not False:
36
               processed images[key] = data[key]["image"]
37
       log_data = image.processing_data
38
39
       name = os.path.splitext(os.path.basename(image_path))[0]
40
41
       save path = None
42
       if save:
43
           save path = f"{save dir}/{name}"
44
           if not os.path.exists(save_dir):
45
               os.mkdir(save_dir)
46
           store_image_data(log_data, time)
47
48
           if data["segmentation"]["image"] is not None:
49
               segmentation_path = f"{save_dir}/segmentation/"
50
               if not os.path.exists(segmentation path):
51
                   os.mkdir(segmentation_path)
52
               seg_path = f"{segmentation_path}
{os.path.basename(image.image_path)}"
               cv2.imwrite(seg_path, data["segmentation"]["image"])
53
```

```
1
       show_image_list(
 2
           image dict=processed images,
 3
           figsize=(10, 10),
 4
           save_path=save_path,
 5
       )
 6
 7 def process_all_images(images, save=False):
       time = datetime.now().isoformat("_", timespec="seconds")
       save path = f"process data/{time}"
 9
       seg_path = f"{save_path}/segmentation"
10
11
12
      with mp.Pool() as pool:
13
           inputs = [[image, save, time, save_path] for image in images]
14
           list(
15
               tqdm(
                   pool.imap unordered(process image, inputs, chunksize=4),
16
17
                   total=len(images),
18
               )
19
           )
20
           pool.close()
21
           pool.join()
22
23
       return save_path, seg_path
24
25
26 def main():
27
       images, masks = get_images_and_masks_in_path(path)
28
       processed_image_path, seg_path = process_all_images(images, True)
29
       processed_images, _ = get_images_and_masks_in_path(seg_path)
30
       dice_score(processed_images, masks, seg_path)
31
32
33 if __name__ == "__main__":
34
      main()
35
```

4.4.d seg_main.py

```
1 import os
 2 import re
 3 import cv2
5 from cv2.gapi import bitwise_and
6 from matplotlib import pyplot as plt
7 from matplotlib.artist import get
9 from segmentation.utils import get_images_and_masks_in_path
10 import numpy as np
11 from segmentation.utils import fill
12 import math
13 from skimage.feature import graycomatrix, graycoprops
15 BALL SMALL = "Tennis"
16 BALL_MEDIUM = "Football"
17 BALL_LARGE = "American\nFootball"
18
19
20 def shape_features_eval(contour):
21
      area = cv2.contourArea(contour)
22
23
      # getting non-compactness
24
      perimeter = cv2.arcLength(contour, closed=True)
25
      non_compactness = 1 - (4 * math.pi * area) / (perimeter**2)
26
27
      # getting solidity
28
      convex hull = cv2.convexHull(contour)
29
      convex_area = cv2.contourArea(convex_hull)
30
      solidity = area / convex_area
31
32
      # getting circularity
33
      circularity = (4 * math.pi * area) / (perimeter**2)
34
35
      # getting eccentricity
36
      ellipse = cv2.fitEllipse(contour)
37
      a = max(ellipse[1])
38
      b = min(ellipse[1])
39
      eccentricity = (1 - (b**2) / (a**2)) ** 0.5
40
41
      return {
42
          "non_compactness": non_compactness,
43
          "solidity": solidity,
44
          "circularity": circularity,
45
           "eccentricity": eccentricity,
46
      }
47
48
49 def texture_features_eval(patch):
      # # Define the co-occurrence matrix parameters
50
51
      distances = [1]
52
      angles = np.radians([0, 45, 90, 135])
53
      levels = 256
      symmetric = True
54
```

```
1
       normed = True
 2
       glcm = graycomatrix(
 3
           patch, distances, angles, levels, symmetric=symmetric, normed=normed
 4
 5
       filt_glcm = glcm[1:, 1:, :, :]
 6
 7
       # Calculate the Haralick features
 8
       asm = graycoprops(filt_glcm, "ASM").flatten()
 9
       contrast = graycoprops(filt glcm, "contrast").flatten()
10
       correlation = graycoprops(filt_glcm, "correlation").flatten()
11
12
       # Calculate the feature average and range across the 4 orientations
13
       asm_avg = np.mean(asm)
14
       contrast_avg = np.mean(contrast)
15
       correlation_avg = np.mean(correlation)
16
       asm range = np.ptp(asm)
17
       contrast_range = np.ptp(contrast)
18
       correlation range = np.ptp(correlation)
19
20
       return {
21
           "asm": asm,
22
           "contrast": contrast,
23
           "correlation": correlation,
24
           "asm_avg": asm_avg,
           "contrast_avg": contrast_avg,
25
           "correlation_avg": correlation_avg,
26
27
           "asm_range": asm_range,
28
           "contrast_range": contrast_range,
29
           "correlation_range": correlation_range,
30
       }
31
32
33 def initialise channels features():
       def initialise_channel_texture_features():
34
35
           return {
               "asm": [],
36
37
               "contrast": [],
38
               "correlation": [],
39
               "asm_avg": [],
               "contrast_avg": [],
40
41
               "correlation_avg": [],
42
               "asm range": [],
43
               "contrast_range": [],
44
               "correlation_range": [],
           }
45
46
47
       return {
48
           "blue": initialise_channel_texture_features(),
49
           "green": initialise channel texture features(),
50
           "red": initialise_channel_texture_features(),
51
       }
53 def initialise_shape_features():
54
       return {
55
           "non_compactness": [],
56
           "solidity": [],
```

```
1
           "circularity": [],
 2
           "eccentricity": [],
 3
       }
 4
 5
 6 def get_all_features_balls(path):
 7
       features = {
 8
           BALL_LARGE: {
 9
               "shape features": initialise shape features(),
10
               "texture_features": initialise_channels_features(),
           },
11
12
           BALL_MEDIUM: {
13
               "shape_features": initialise_shape_features(),
14
               "texture_features": initialise_channels_features(),
15
16
           BALL SMALL: {
17
               "shape_features": initialise_shape_features(),
               "texture_features": initialise_channels_features(),
18
19
           },
20
       }
21
22
       images, masks = get_images_and_masks_in_path(path)
23
       for idx, _ in enumerate(images):
24
           image = images[idx]
25
           mask = masks[idx]
26
           msk = cv2.imread(mask, cv2.IMREAD_GRAYSCALE)
           _, msk = cv2.threshold(msk, 127, 255, cv2.THRESH_BINARY)
27
28
29
           # overlay binay image over it's rgb counterpart
30
           img = cv2.imread(image)
31
           img = cv2.bitwise and(cv2.cvtColor(msk, cv2.COLOR GRAY2BGR), img)
32
           contours, _ = cv2.findContours(msk, cv2.RETR_EXTERNAL,
cv2.CHAIN APPROX NONE)
33
34
           for contour in contours:
               area = cv2.contourArea(contour)
35
36
               ball_img = np.zeros(msk.shape, dtype=np.uint8)
37
               cv2.drawContours(ball img, contour, -1, (255, 255, 255), -1)
38
               fill_img = cv2.bitwise_not(fill(cv2.bitwise_not(ball_img)))
               rgb fill = cv2.bitwise and(cv2.cvtColor(fill img,
39
cv2.COLOR_GRAY2BGR), img)
40
41
               out = fill_img.copy()
42
               out_colour = rgb_fill.copy()
43
44
               # Now crop image to ball size
45
               (y, x) = np.where(fill img == 255)
46
               (topy, topx) = (np.min(y), np.min(x))
47
               (bottomy, bottomx) = (np.max(y), np.max(x))
48
               padding = 3
49
               out = out[
                   topy - padding : bottomy + padding, topx - padding : bottomx +
50
padding
51
52
               out_colour = out_colour[
```

```
1
                   topy - padding : bottomy + padding, topx - padding : bottomx +
padding
 2
               ]
 3
 4
               # getting ball features
 5
               shape_features = shape_features_eval(contour)
 6
               texture_features_colour = {
 7
                   "blue": texture_features_eval(out_colour[:, :, 0]),
 8
                   "green": texture features eval(out colour[:, :, 1]),
 9
                   "red": texture_features_eval(out_colour[:, :, 2]),
               }
10
11
12
               # segmenting ball by using area
13
               if area > 1300: # football
14
                   append_ball = BALL_LARGE
15
               elif area > 500: # soccer_ball
                   append_ball = BALL_MEDIUM
16
17
               else: # tennis ball
18
                   append_ball = BALL_SMALL
19
20
               for key in shape_features:
21
                   features[append_ball]["shape_features"]
[key].append(shape_features[key])
22
23
               for colour in texture features colour.keys():
24
                   for colour_feature in texture_features_colour[colour]:
25
                       features[append_ball]["texture_features"][colour][
26
                           colour feature
27
                       ].append(texture_features_colour[colour][colour_feature])
28
       return features
29
30
31 def feature stats(features, ball, colours=["blue", "green", "red"]):
32
       def get_stats(array):
33
           return {
34
               "mean": np.mean(array),
               "std": np.std(array),
35
36
               "min": np.min(array),
               "max": np.max(array),
37
38
           }
39
40
       def get ball shape stats(features, ball):
41
           feature_find = ["non_compactness", "solidity", "circularity",
"eccentricity"]
42
           return {
43
               feature: get_stats(features[ball]["shape_features"][feature])
44
               for feature in feature find
45
       def get ball texture stats(features, ball, colour):
46
           feature_find = ["asm_avg", "contrast_avg", "correlation_avg"]
47
48
           return {
49
               texture: get_stats(features[ball]["texture_features"][colour]
[texture])
50
               for texture in feature find
51
           }
52
```

```
1
       stats = {
 2
           ball: {
 3
               "shape_features": get_ball_shape_stats(features, ball),
 4
               "texture features": {
 5
                   colour: get_ball_texture_stats(features, ball, colour)
                   for colour in colours
 6
 7
               },
 8
           },
 9
       }
10
       return stats
11
12
13 def get_histogram(data, Title):
14
15
       data {ball: values}
16
17
      for ball, values in data.items():
18
           plt.figure(figsize=(3,3))
19
           plt.hist(values, bins=20, alpha=0.5, label=ball)
20
           plt.xlabel(Title)
21
           plt.ylabel("Frequency")
22
           plt.legend()
23
           plt.tight_layout()
24
           plt.savefig("Report/assets/features/"+ Title + "_histogram_" +
ball.replace("\n", "_"))
25
      # plt.show()
26
27
28 if __name__ == "__main__":
       features = get_all_features_balls("data/ball_frames")
29
30
31
       balls = [
32
           BALL_SMALL,
33
           BALL MEDIUM,
34
           BALL_LARGE,
35
       ]
36
37
       non compactness = {
38
           ball: features[ball]["shape_features"]["non_compactness"] for ball in
balls
39
40
       solidity = {ball: features[ball]["shape_features"]["solidity"] for ball in
balls}
41
       circularity = {
           ball: features[ball]["shape features"]["circularity"] for ball in
42
balls
43
       }
44
       eccentricity = {
           ball: features[ball]["shape_features"]["eccentricity"] for ball in
45
balls
46
       }
47
48
       get histogram(non compactness, "Non-Compactness")
49
       get_histogram(solidity, "Soliditiy")
50
       get_histogram(circularity, "Circularity")
```

```
1
       get_histogram(eccentricity, "Eccentricity")
 2
 3
       channel colours = ["red", "green", "blue"]
 4
 5
       def get_ch_features(feature_name):
 6
           return {
 7
               colour: {
 8
                   ball: features[ball]["texture_features"][colour][feature_name]
 9
                   for ball in balls
10
11
               for colour in channel colours
12
           }
13
14
       def get_ch_stats(feature_data, colours=channel_colours):
           return [[feature_data[colour][ball] for ball in balls] for colour in
15
colours1
16
       asm avg = get ch features("asm avg")
17
18
       contrast_avg = get_ch_features("contrast_avg")
       correlation_avg = get_ch_features("correlation_avg")
19
20
       asm_range = get_ch_features("asm_range")
21
22
       asm_data = get_ch_stats(asm_avg)
23
       contrast_data = get_ch_stats(contrast_avg)
24
       correlation data = get ch stats(correlation avg)
25
       asm_range_data = get_ch_stats(asm_range)
26
27
       asm title = "ASM Avg"
28
       contrast_title = "Contrast Avg"
29
       correlation_title = "Correlation Avg"
30
       asm_range_title = "ASM Range Avg"
31
32
       plt colours = ["yellow", "white", "orange"]
       channels = ["Red Channel", "Green Channel", "Blue Channel"]
33
34
35
       plt.figure()
36
37
       def get boxplot(data, title, colours=plt colours, rows=3, columns=3,
offset=0):
38
           channels = ["Red Channel", "Green Channel", "Blue Channel"]
39
40
           fig = plt.figure(figsize=(8,3)) # Get the Figure object
41
           fig.suptitle(title) # Set the overall title
           for i, d in enumerate(data):
42
43
               ax = plt.subplot(rows, columns, i + offset + 1)
44
               ax.set_facecolor(channel_colours[i])
               ax.patch.set alpha(0.5)
45
46
               violins = plt.violinplot(
47
                   d, showmeans=True, showmedians=False, showextrema=False
48
49
               for j, pc in enumerate(violins["bodies"]):
50
                   pc.set_facecolor(colours[j])
51
                   pc.set edgecolor("black")
52
                   pc.set alpha(0.2)
53
               plt.xticks([1, 2, 3], balls, rotation=45)
54
               plt.title(channels[i])
```

```
1
 2
       def get boxplot specific(data, title, i, colours=plt colours):
 3
 4
           plt.figure(figsize=(2.5,6))
 5
           d = data[i]
 6
           violins = plt.violinplot(
 7
               d, showmeans=True, showmedians=False, showextrema=False
 8
           for j, pc in enumerate(violins["bodies"]):
 9
10
               pc.set_facecolor(colours[j])
               pc.set edgecolor("black")
11
12
               pc.set_alpha(0.5)
13
           plt.xticks([1, 2, 3], balls, rotation=45)
14
           plt.title(title + '\n' + channels[i])
           ax = plt.gca() # Get the current Axes instance
15
16
           ax.set_facecolor(channel_colours[i]) # Set the background color
17
           ax.patch.set_alpha(0.1) # Set the alpha value
18
       columns = 3
19
20
       rows = 1
21
22
       get_boxplot_specific(asm_data, asm_title, 2)
23
       plt.tight_layout()
24
       plt.savefig("Report/assets/features/asm_data_blue_channel")
25
       plt.close()
26
27
       get_boxplot_specific(asm_range_data, asm_range_title, 2)
28
       plt.tight layout()
29
       plt.savefig("Report/assets/features/asm_range_data_blue_channel")
30
       plt.close()
31
32
       get_boxplot_specific(contrast_data, contrast_title, 0)
33
       plt.tight layout()
34
       plt.savefig("Report/assets/features/contrast_data_red_channel")
35
       plt.close()
36
       get_boxplot_specific(correlation_data, correlation_title, 1)
37
38
       plt.tight layout()
39
       plt.savefig("Report/assets/features/correlation_green_channel")
40
       plt.close()
```

4.4.e tracking_main.py

```
1 from matplotlib import pyplot as plt
 2 import numpy as np
 3
 4
 5 def kalman_predict(x, P, F, Q):
 6
       xp = F * x
 7
       Pp = F * P * F.T + Q
 8
       return xp, Pp
 9
10
11 def kalman_update(x, P, H, R, z):
       S = H * P * H.T + R
12
13
       K = P * H.T * np.linalg.inv(S)
14
       zp = H * x
15
16
       xe = x + K * (z - zp)
17
       Pe = P - K * H * P
       return xe, Pe
18
19
20
21 def kalman_tracking(
22
       z,
23
       \times 01 = 0.0,
24
       x02=0.0,
25
       x03=0.0,
26
       \times 04 = 0.0,
27
       dt=0.5,
28
       nx=0.16,
29
       ny=0.36,
30
       nvx=0.16,
31
       nvy=0.36,
32
       nu=0.25,
33
       nv = 0.25,
34
       kq=1,
35
       kr=1,
36):
37
       # Constant Velocity
       F = np.matrix([[1, dt, 0, 0], [0, 1, 0, 0], [0, 0, 1, dt], [0, 0, 0, 1]])
38
39
40
       # Cartesian observation model
41
       H = np.matrix([[1, 0, 0, 0], [0, 0, 1, 0]])
42
43
       # Motion Noise Model
44
       Q = kq*np.matrix([[nx, 0, 0, 0], [0, nvx, 0, 0], [0, 0, ny, 0], [0, 0, 0, 0])
nvy]])
45
       # Measurement Noise Model
46
       R = kr*np.matrix([[nu, 0], [0, nv]])
47
48
       x = np.matrix([x01, x02, x03, x04]).T
49
       P = 0
50
51
       N = len(z[0])
52
       s = np.zeros((4, N))
53
```

```
1
       for i in range(N):
 2
           xp, Pp = kalman_predict(x, P, F, Q)
 3
           x, P = kalman\_update(xp, Pp, H, R, z[:, i])
 4
           val = np.array(x[:2, :2]).flatten()
 5
           s[:, i] = val
 6
 7
       px = s[0, :]
 8
       py = s[1, :]
 9
10
      return px, py
11
12
13 def rms(x, y, px, py):
14
       return np.sqrt(1/len(px) * (np.sum((x - px)**2 + (y - py)**2)))
15
16 def mean(x, y, px, py):
17
      return np.mean(np.sqrt((x - px)**2 + (y - py)**2))
18
19 if __name__ == "__main__":
20
21
       x = np.genfromtxt("data/x.csv", delimiter=",")
22
       y = np.genfromtxt("data/y.csv", delimiter=",")
23
       na = np.genfromtxt("data/na.csv", delimiter=",")
       nb = np.genfromtxt("data/nb.csv", delimiter=",")
24
25
       z = np.stack((na, nb))
26
27
       dt = 0.5
28
       nx = 160.0
29
       ny = 0.00036
30
       nvx = 0.00016
31
       nvy = 0.00036
32
      nu = 0.00025
33
      nv = 0.00025
34
35
       px1, py1 = kalman_tracking(z=z)
36
37
       nx = 0.16 * 10
38
       ny = 0.36
39
       nvx = 0.16 * 0.0175
       nvy = 0.36 * 0.0175
40
41
       nu = 0.25
42
       nv = 0.25 * 0.001
43
       kq = 0.0175
44
       kr = 0.0015
45
       px2, py2 = kalman_tracking(
46
          nx=nx,
47
           ny=ny,
48
           nvx=nvx,
49
           nvy=nvy,
50
           nu=nu,
51
           nv=nv,
52
           kq=kq,
53
           kr=kr,
54
           Z=Z,
55
       )
56
```

```
1
      plt.figure(figsize=(12, 5))
 2
 3
      plt.plot(x, y, label='trajectory')
      plt.plot(px1, py1, label=f'intial prediction, rms={round(rms(x, y, px1,
4
py1), 3)}')
      print(f'initial rms={round(rms(x, y, px1, py1), 3)}, mean={round(mean(x,
y, px1, py1), 3)}')
      plt.plot(px2, py2,label=f'optimised prediction, rms={round(rms(x, y, px2,
py2), 3)}')
7
      print(f'optimised rms={round(rms(x, y, px2, py2), 3)}, mean={round(mean(x,
y, px2, py2), 3)}')
      plt.scatter(na, nb,marker='x',c='k',label=f'noisy data, rms={round(rms(x,
8
y, na, nb), 3)}')
      print(f'noise rms={round(rms(x, y, na, nb), 3)}, mean={round(mean(x, y,
na, nb), 3)}')
      plt.legend()
10
11
      plt.title("Kalman Filter")
12
13
      plt.savefig("Report/assets/tracking/kalman_filter.png")
14
      # plt.show()
```