Machine Learning - Homework 7

資工四 B05902023 李澤諺

May 21, 2020

在本次作業中,首先,我使用了助教所提供的 teacher net 和 student net 進行 knowledge distillation,其中,我使用了助教所提供的 data augmentation,並使用了 Adam 進行第一次的訓練,其中 batch size 爲 32,learning rate 爲 0.002,訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到最後的 model,其 size 與 accuracy 如下表所示:

Size Train	Validation	Test		
DIZE	liam	Vandation	Public	Private
1MB	0.90351	0.82741	0.85236	0.84109

最後,我使用了助教所提供的 encode8/decode8 函式,進行 parameter quantization,所得到的 model size 與 accuracy 變化如下:

Size	Train	Validation -	Test	
Dize	Hain		Public	Private
263KB	0.96361	0.82653	0.85475	0.84289

(2、3、4 擇二寫即可,都寫的話取最高兩項加總。)

1. (2%) 請從 Network Pruning/Quantization/Knowledge Distillation/Low Rank Approximation/Design Architecture 選擇兩者實做並詳述你的方法,將同一個大 model 壓縮至接近相同的參數量,並紀錄其 accuracy。

首先, 我實作了一個簡單的 CNN (稱之爲 CNN 1), 其架構如下:

$Conv2d(3, 32, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(32)
ReLU()
MaxPool2d(2)
$Conv2d(32, 64, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(64)
ReLU()
MaxPool2d(2)
$Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(128)
ReLU()
MaxPool2d(2)
$Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(256)
ReLU()
MaxPool2d(2)
$Conv2d(256, 512, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(512)
ReLU()
MaxPool2d(2)
$Conv2d(512, 1024, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(1024)
ReLU()
MaxPool2d(2)
Linear(25600, 11, bias = True)

在訓練過程中,我使用了助教所提供的 data augmentation 進行訓練,並且,我使用了 Adam 進行第一次的訓練,其中 batch size 爲 32,learning rate 爲 0.002,訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到最後的 model,其 parameter 數量和 accuracy 如下表所示:

Parameter	Train	Validation	Test	
			Public	Private
6573835	0.95479	0.80496	0.83682	0.81959

接著, 我將 CNN 1 中的 convolutional layer 替換爲 depthwise + pointwise convolutional layer (稱之爲 CNN 2), 其架構如下:

$Conv2d(3, 32, kernel_size = 3, stride = 1, padding = 2)$
BatchNorm2d(32)
ReLU()
MaxPool2d(2)
$Conv2d(32, 32, kernel_size = 3, stride = 1, padding = 2, groups = 32)$
BatchNorm2d(32)
ReLU()
$Conv2d(32, 64, kernel_size = 1)$
MaxPool2d(2)
$Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 2, groups = 64)$
BatchNorm2d(64)
ReLU()
$Conv2d(64, 128, kernel_size = 1)$
MaxPool2d(2, padding = 1)
$Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 2, groups = 128)$
BatchNorm2d(128)
ReLU()
$Conv2d(128, 256, kernel_size = 1)$
MaxPool2d(2, padding = 1)
$Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 2, groups = 256)$
BatchNorm2d(256)
ReLU()
$Conv2d(256, 512, kernel_size = 1)$
MaxPool2d(2, padding = 1)
$Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 2, groups = 512)$
BatchNorm2d(512)
ReLU()
$Conv2d(512, 1024, kernel_size = 1)$
MaxPool2d(2, padding = 1)
Linear(50176, 11, bias = True)

在訓練過程中,我使用了助教所提供的 data augmentation 進行訓練,並且,我使用了 Adam 進行第一次的訓練,其中 batch size 爲 32,learning rate 爲 0.002,

訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到最後的 model,其 parameter 數量和 accuracy 如下表所示:

Parameter	Train	Validation	Test	
	liam	Vandation	Public	Private
1265163	0.84239	0.78280	0.81171	0.78554

最後,我使用訓練好的 CNN 1 作為 teacher net,並實作另一個 layer 數目較少的 CNN (稱之為 CNN 3) 作為 student net,以進行 kownledge distillation,CNN 3 的架構如下:

$Conv2d(3, 32, kernel_size = 3, stride = 1, padding = 1)$
BatchNorm2d(32)
ReLU()
MaxPool2d(2)
$Conv2d(32, 64, kernel_size = 3, stride = 1, padding = 1)$
BatchNorm2d(64)
ReLU()
MaxPool2d(2)
$Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1)$
BatchNorm2d(128)
ReLU()
MaxPool2d(2)
$Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1)$
BatchNorm2d(256)
ReLU()
MaxPool2d(2)
Linear(65536, 11, bias = True)

在訓練過程中,我使用了助教所提供的 data augmentation 進行訓練,並且,我使用了 Adam 進行第一次的訓練,其中 batch size 為 32,learning rate 為 0.002,

訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到最後的 model,其 parameter 數量和 accuracy 如下表所示:

Parameter	Train	Validation	Test	
	11am	Validation	Public	Private
1110283	0.84543	0.78921	0.82307	0.80047

- 2. (2%) 請嘗試比較以下 accuracy (兩個 Teacher Net 由助教提供) 以及 Student Net 的總參數量以及架構,並嘗試解釋爲甚麼有這樣的結果。你的 Student Net 的參數量必須要小於 Teacher Net 的參數量。
 - x. Teacher net architecture and of parameters: torchvision's ResNet18, with 11182155 parameters.
 - y. Student net architecture and of parameters:
 - a. Teacher net (ResNet18) from scratch: 80.09%.
 - b. Teacher net (ResNet18) ImageNet pretrained fine-tune: 88.41%.
 - c. Your student net from scratch:
 - d. Your student net KD from (a.):
 - e. Your student net KD from (b.):

我使用了助教所提供的 student net, 其架構如下:

$Conv2d(3, 16, kernel_size = 3, stride = 1, padding = 1)$
BatchNorm2d(16)
ReLU6()
MaxPool2d(2, stride = 2, padding = 0)
$Conv2d(16, 16, kernel_size = 3, stride = 1, padding = 1, groups = 16)$
BatchNorm2d(16)
ReLU6()
$Conv2d(16, 32, kernel_size = 1)$
MaxPool2d(2, stride = 2, padding = 0)
$Conv2d(32, 32, kernel_size = 3, stride = 1, padding = 1, groups = 32)$
BatchNorm2d(32)
ReLU6()
$Conv2d(32, 64, kernel_size = 1)$
MaxPool2d(2, stride = 2, padding = 0)
$Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, groups = 64)$

BatchNorm2d(64)
ReLU6()
$\frac{\text{Conv2d}(64, 128, \text{kernel_size} = 1)}{\text{Conv2d}(64, 128, \text{kernel_size} = 1)}$
$\frac{-}{\text{MaxPool2d}(2, \text{stride} = 2, \text{padding} = 0)}$
Conv2d(128, 128, kernel size = 3, stride = 1, padding = 1, groups = 128)
BatchNorm2d(128)
ReLU6()
$Conv2d(128, 256, kernel_size = 1)$
$Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, groups = 256)$
BatchNorm2d(256)
ReLU6()
$Conv2d(256, 256, kernel_size = 1)$
$Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, groups = 256)$
BatchNorm2d(256)
ReLU6()
$Conv2d(256, 256, kernel_size = 1)$
$Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1, groups = 256)$
BatchNorm2d(256)
ReLU6()
$Conv2d(256, 256, kernel_size = 1)$
AdaptiveAvgPool2d(1)
Linear(256, 11)

根據 torch-summary,以上的 student net 中總共有 256779 個 parameter。接著,我使用了 c、d、e 的方法訓練 student net,在這三個方法中,我皆使用了助教所提供的 data augmentation 進行訓練,並且,我使用了 Adam 進行第一次的訓練,其中 batch size 爲 32,learning rate 爲 0.002,訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到最後的 model,其 accuracy 如下表所示:

Method	Train	Validation Test		est
	IIaiii	vandation	Public	ic Private 09 0.80107 41 0.81123
c	0.92439	0.80000	0.81709	0.80107
d	0.88131	0.80816	0.83741	0.81123
e	0.90351	0.82741	0.85236	0.84109

由此可以看出,使用 knowledge distillation 所得到的 model 其 performance 比直接訓練而得的 model 還要高了一些,其原因大概是因為使用 knowledge distillation 可以為 model 提供更多的 information,進而協助 model 提高 performance,而在 kowledge distillation 之中,使用 pretrained 並 fine-tune 過的 ResNet-18 作為 teacher net 時所得到的 performance 比使用從頭開始訓練的 ResNet-18 作為 teacher net 時還要高,其原因大概是因為 pretrained 並 fine-tune 過的 ResNet-18 其 performance 比從頭開始訓練的 ResNet-18 還要高,因此使用 pretrained 並 fine-tune 過的 ResNet-18 作為 teacher net,可以提供 student net 更正確的 information,進而提高 student net 的 performance。

3. (2%) 請使用兩種以上的 pruning rate 畫出 X 軸為參數量,Y 軸為 validation accuracy 的折線圖。你的圖上應會有兩條以上的折線。

首先,我使用了助教所提供的 teacher net 和 student net 進行 knowledge distillation,其中,我使用了助教所提供的 data augmentation,並使用了 Adam 進行第一次的訓練,其中 batch size 爲 32,learning rate 爲 0.002,訓練了 150 個 epoch,接著,再使用 SGD 進行第二次的訓練,其中 batch size 爲 32,learning rate 爲 0.001,訓練了 50 個 epoch,以此得到 student net。接著,我將訓練好的 student net 進行 network pruning,其中,我使用的 compression ratio 分別爲 0.95 和 0.9,並進行了 5 次的 network pruning,在每次的 network pruning 之後,皆會使用 Adam 進行 fine-tune,其中 batch size 爲 32,learning rate 爲 0.001,並 fine-tune 了 5 個 epoch。network pruning 所得到的 validation accuracy 如下圖所示:

Network Pruning

由上圖可以看出,當 compression ratio 越小,亦即 pruning rate 越大時,越不容易 fine-tune 回到原來的 accuracy,使得 accuracy 下降越多。

- 4.~(2%) 請嘗試比較以下 validation accuracy,並且模型大小要接近 1MB:
 - a. 原始 CNN model (用一般的 Convolution Layer) 的 accuracy。
 - b. 將 CNN model 的 Convolution Layer 換成總參數量接近的 Depthwise Pointwise 後的 accuracy。
 - c. 將 CNN model 的 Convolution Layer 換成總參數量接近的 Group Convolution Layer (Group 數量自訂,但不要設為 1 或 in_filters)。