# Équations différentielles (GM3)

#### Hasnaa Zidani

LMI - INSA Rouen

2022/2023 - CM4

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

1/0/

Equations non-linéaires autonomes

## EDO nonlinéaires

Dans tout ce chapitre, on utilisera les notations suivantes:

- ightharpoonup Soit  $I \subset \mathbb{R}$  un intervalle,  $t_0 \in I$
- ➤ Soit  $U \subset \mathbb{R}^n$  un ouvert non vide, et  $y_0 \in \mathbb{R}^n$
- ➤ Soit  $f: U \to \mathbb{R}^n$  une fonction continue
- ➤ On considère le système:

## Problème de Cauchy: Equation différentielle (EDO)

$$y'(t) = f(y(t)) \quad \forall t \in J \subset I,$$
  
 $y(t_0) = y_0$ 

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 2/24

## Exemple 1: Dynamique de population

### Modèle de Verhulst

$$y'(t) = ay(t)\left(1 - \frac{y(t)}{K}\right) \quad t \ge 0,$$
  $y(0) = y_0 \in \mathbb{R}_+.$ 

### Modèle de Malthus

$$y'(t)=ay(t), \quad t\geq 0, \ y(0)=y_0\in \mathbb{R}_+.$$

K > 0: capacité de charge; seuil de saturation



H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

3/24

Equations non-linéaires autonomes

Quelques exemples

# Exemple 2: Dynamique de population

### Modèle de Volterra

$$y_1'(t) = ay_1(t) - by_1(t)y_2(t)$$
  $t \ge 0$ ,   
  $y_2'(t) = dy_1(t)y_2(t) - cy_2(t)$   $t \ge 0$ ,

 $\rightarrow$   $y_1(t)$ : population des proies

 $ightharpoonup y_2(t)$ : population de prédateurs





Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 4/24

## Quelques exemples académiques

### ➤ Exemple de non existence globale :

$$y'(t) = y^2(t)$$
 avec  $y(0) = 1$ .

Soit  $J \subset \mathbb{R}$  et  $y(\cdot)$  une solution de l'EDO qui ne s'annule pas sur J. On a:  $\frac{y'(s)}{y^2(s)} = 1$ . Donc

$$\frac{-1}{y(t)}+\frac{1}{y(0)}=t,$$

ou encore  $y(t) = \frac{1}{1-t}$ . Cette solution n'est définie que sur  $J = ]-\infty, 1[$ . Noter que cet intervalle de définition dépend de la condition initiale.

Dans cet exemple, l'EDO n'admet pas de solution globale sur R.

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

5/24

Equations non-linéaires autonomes

Quelques exemples

## Quelques exemples académiques

### ➤ Exemple de non-unicité:

$$y'(t) = \sqrt{|y(t)|}$$
 avec  $y(-2) = -1$ .

La condition initiale y(-2) = -1 < 0. Tant que la solution reste négative, on a:

$$\frac{y'(s)}{\sqrt{-y(s)}}=1.$$

En intégrant entre -2 et t, on obtient

$$-2\sqrt{-y(t)} + 2\sqrt{-y(-2)} = t + 2,$$

ou encore

$$y(t) = -\left(1 - \frac{1}{2}(t+2)\right)^2 = -\left(\frac{1}{2}t\right)^2.$$

Par ailleurs, on peut construire une famille de solutions: pour  $k \ge 1$ ,

$$y_k(t) = \begin{cases} -\left(\frac{1}{2}t\right)^2 & \text{si } t \le 0, \\ 0 & \text{si } 0 < t \le k, \\ \left(\frac{1}{2}(t+k)\right)^2 & \text{si } k < t. \end{cases}$$

Cette EDO admet une infinité de solutions.

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 6/24

## Quelque définitions

#### **Définition**

Une solution du problème de Cauchy (EDO) est un couple (J, y) où

- $\rightarrow$   $J \subset I$  désigne un intervalle ouvert **contenant**  $t_0$ ,
- $\rightarrow$  et y est une fonction de classe  $C^1$  sur J qui vérifie

$$y'(t) = f(y(t)) \quad \forall t \in J, \quad y(t_0) = y_0.$$

- Portrait de phase : ensemble des trajectoires
- $\implies$  Espace de phase :  $\mathbb{R}^n$
- $\bigcirc$  Courbe intégrale :  $\{(t, y(t)), t \in J\}$
- ightharpoonup Point d'équilibre :  $x \in \mathbb{R}^n$  tel que f(x) = 0

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

7/24

8/24

Solution d'un problème de Cauchy

Définition de solution

### Proposition

(J, y) est une solution de (EDO) si et seulement si

$$y(t) = y_0 + \int_{t_0}^t f(y(s)) ds \quad \forall t \in J.$$

 L'équation différentielle (EDO) est équivalente à la forme intégrale donnée dans la proposition ci-dessus.

Zidani () Équations différentielles CM4 - Mercredi 15 février 2023

## **Fonctions Lipschitz**

- On dit que  $f:U\longrightarrow \mathbb{R}^n$  est lipschitzienne si, et seulement si, il existe  $L_f>0$  t.q

$$||f(u)-f(v)|| \leq L_f ||u-v|| \quad \forall u,v \in U.$$

La constante  $L_f$  est dite constante de Lipschitz.

- On dit que f est *localement* lipschitzienne si, et seulement si, pour tout R > 0, il existe  $L_R > 0$  t.q

$$||f(u)-f(v)|| \leq L_R||u-v|| \quad \forall u,v \in U \cap \mathbb{B}(0,R).$$

Ici la constante de Lipschitz  $L_R$  dépend de la boule  $\mathbb{B}(0, R)$ .

- On dit que f est contractante si elle est lipschitzienne et  $L_f < 1$ .
- \* Exemples: les fonctions suivantes sont-elles loc. lipschitziennes?

$$g_1(x) = \cos(x)$$
  $g_2(x) = \sqrt{x}$ 

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

9/24

Solution d'un problème de Cauchy

Fonctions Lipschitziennes

\* On suppose que U est un ouvert convexe, et f est de classe  $C^1$  sur U. Alors f est localement lipschitzienne sur U.

En effet, puisque f est de classe  $C^1$ , alors l'application  $z \mapsto df(z)$  est continue et bornée sur  $U \cap \mathbb{B}(0, R)$  par une constante  $L_R > 0$ :

$$||df(z)|| \le L_R \quad \forall z \in U \cap \mathbb{B}(0, R).$$

Maintenant, soit  $u, v \in U \cap \mathbb{B}(0, R)$ . D'après le théorème de la valeur intermédiaire,

$$\exists \theta \in (0,1), \quad z_{\theta} = \theta u + (1-\theta)v \in U \cap \mathbb{B}(0,R) \quad \text{et} \quad f(u) - f(v) = df(z_{\theta})(u-v).$$

Par conséquent,

$$||f(u) - f(v)|| = ||df(z_{\theta})(u - v)|| < L_{R}||u - v||.$$

Zidani () Équations différentielles

10/24

\* On suppose que U est un ouvert convexe, et f une fonction de classe  $C^1$  dont la différentielle  $z \longmapsto df(z)$  est **bornée uniformément** sur U. Alors f est lipschitzienne sur U.

La preuve utilise les mêmes arguments que précédement, mais ici la constante qui borne la différentielle est uniforme sur U.

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

11/24

Solution d'un problème de Cauchy

Fonctions Lipschitziennes

\* Soit  $f_i$ , pour  $i = 1, \dots, n$ , les composantes de f. f est lipschitzienne (ou localement lipschitzienne) si et seulement si toutes les composantes  $f_i$  le sont.

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 12/24

## Inégalités de Gronwall

#### Lemme

Soit  $\phi$  et  $\psi$  deux fonctions continues sur un intervalle ] $t_0 - c$ ,  $t_0 + c$ [ avec c > 0. Soit  $\lambda > 0$ . On suppose que  $\phi$  est **à valeurs positives**. Si

$$\phi(t) \leq \psi(t) + \lambda \int_{t_0}^t \phi(s) \, ds \quad orall t \in ]t_0 - t_0 + c[$$

**Alors** 

$$\phi(t) \leq \psi(t) + \lambda \int_{t_0}^t \psi(s) e^{\lambda(t-s)} ds \text{ si } t \in [t_0, t_0 + c]$$

$$\phi(t) \leq \psi(t) + \lambda \int_t^{t_0} \psi(s) e^{\lambda(s-t)} ds$$
 si  $t \in [t_0 - c, t_0]$ 

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

13/24

Solution d'un problème de Cauchy

Lemme de Gronwall

### Preuve du Lemme de Gronwall

- ➤ Soit  $t \ge t_0$ . Pour tout  $s \in [t_0, t]$ , on pose  $Z(s) = \int_{t_0}^{s} \phi(\tau) d\tau$ .
- ightharpoonup Donc, on a  $Z'(s) = \phi(s) \le \psi(s) + \lambda Z(s)$ .
- ightharpoonup En multipliant les deux inégalités par  $e^{-\lambda s}$ , on obtient

$$\left(Z(s)e^{-\lambda s}\right)' \leq \psi(s)e^{-\lambda s}.$$

➤ En intégrant entre  $t_0$  et t, et en utilisant  $Z(t_0) = 0$ , on obtient:

$$Z(t)e^{-\lambda t} \leq \int_{t_0}^t \psi(s)e^{-\lambda s} ds.$$

- ► En multipliant les deux inégalités par  $e^{\lambda t}$ , on obtient  $Z(t) \leq \int_{t_0}^t \psi(s) e^{\lambda(t-s)} ds$ .
- ➤ Par conséquent, on a:

$$\phi(t) \leq \psi(t) + \lambda Z(t) \leq \psi(t) + \lambda \int_{t_0}^t \psi(s) e^{\lambda(t-s)} ds.$$

ightharpoonup L'inégalité dans le cas  $t \le t_0$  s'obtient avec le même raisonnement.

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 14/24

### Théorème (Cauchy-Lipschitz - version globalement Lipschitz)

On suppose que f est une fonction continue et lipschitzienne sur U.

Alors pour tout  $(t_0, y_0) \in I \times U$ , l'EDO admet une unique solution globale y sur I.

De plus, si f est de classe  $C^k$  alors y est aussi de classe  $C^{k+1}$ .

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

15/24

Solution d'un problème de Cauchy

Existence de solution globale

## Preuve du théorème (1/5): Unicité

Notons d'abord que toute solution du problème de Cauchy (quand elle existe) vérifie

$$y(t) - y(t_0) = \int_{t_0}^t f(y(s)) ds.$$

Unicité. Supposons que y<sub>1</sub> et y<sub>2</sub> sont deux solutions du problème de Cauchy.
 Donc, on a

$$|y_1(t)-y_2(t)| \leq \int_{t_0}^t \left|f(y_1(s))-f(y_2(s))\right| ds.$$

Comme f est Lipschitz de constante  $L_f$ , on a:

$$|y_1(t) - y_2(t)| \leq \int_{t_0}^t L_f |y_1(s) - y_2(s)| \, ds \quad orall t \in I.$$

Par le Lemme de Gronwall, on obtient

$$|y_1(t)-y_2(t)|\leq 0 \qquad \forall t\in I,$$

ce qui prouve que  $y_1 \equiv y_2$ .

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 16/24

## Preuve du théorème (2/5): Régularité

- **Régularité**. Supposons que f est de classe  $C^k$  pour  $k \ge 1$ . Si  $y \in C^1$  est une slution à l'EDO, alors

$$s \mapsto f(y(s))$$
 est de classe  $C^1$ ,

et la solution y est alors de classe  $C^2$ .

Si  $k \ge 2$ , alors  $s \longmapsto f(y(s))$  est de classe  $C^2$ , et y est alors de classe  $C^3$ .

Par un argument similaire, on vérifie que y est de classe  $C^{k+1}$ .

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

17/24

Solution d'un problème de Cauchy

Existence de solution globale

## Preuve du théorème (3/5): Existence

➤ Notons d'abord que toute solution de l'EDO (quand elle existe) vérifie

$$y(t) - y(t_0) = \int_{t_0}^t f(y(s)) ds.$$

- ➤ Soit  $\delta > 0$  un réel qu'on précisera plus tard. On pose  $J_{\delta} := ]t_0 \delta, t_0 + \delta[$ .
- ➤ On définit l'application  $\mathcal{F}: C(J_{\delta}) \to C(J_{\delta})$ , où pour tout  $\phi \in C(J_{\delta})$ ,  $\mathcal{F}(\phi)$  est une fonction définie par

$$\mathcal{F}(\phi)(t) = y_0 + \int_{t_0}^t f(\phi(s)) \, ds \qquad orall t \in J_\delta.$$

➤ Rappelons que l'espace  $C(J_\delta)$  est muni de la norme:

$$\|\phi\|_{\infty} := \sup_{oldsymbol{s} \in J_{\delta}} |\phi(oldsymbol{s})| \qquad orall \phi \in C(J_{\delta}).$$

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 18/24

## Preuve du théorème (4/5): Existence

 $\blacktriangleright$  Soit  $\phi_1, \phi_2 \in C(J_\delta)$ . On a:

$$\|\mathcal{F}(\phi_1) - \mathcal{F}(\phi_2)\|_{\infty} = \max_{t \in J_{\delta}} \left| \int_{t_0}^t \left[ f(\phi_1(s)) - f(\phi_2(s)) \right] ds \right|$$

$$\leq \max_{t \in J_{\delta}} \int_{t_0}^t \left| f(\phi_1(s)) - f(\phi_2(s)) \right| ds.$$

 $\triangleright$  Puisque f est Lipschitzienne de constante  $L_f > 0$ , on obtient

$$\|\mathcal{F}(\phi_1) - \mathcal{F}(\phi_2)\|_{\infty} \le \max_{t \in J_{\delta}} L_f \int_{t_0}^t |\phi_1(s) - \phi_2(s)| ds$$
 $\le L_f \delta \max_{s \in J_{\delta}} |\phi_1(s) - \phi_2(s)| = L_f \delta \|\phi_1 - \phi_2\|_{\infty}$ 

- ➤ Si on choisit  $\delta > 0$  tel que  $L_f \delta < 1$ , alors  $\mathcal{F} : C(J_\delta) \to C(J_\delta)$  est une **contractante** dans l'espace de Banach  $C(J_\delta)$ .
- $\blacktriangleright$  D'après le théorème du point fixe, il existe une fonction  $y^1 \in C(J_\delta)$  telle que

$$y^{1}(t) = y^{1}(t_{0}) + \int_{t_{0}}^{t} f(y^{1}(s)) ds$$
  $t \in J_{\delta}$ .

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

19/24

Solution d'un problème de Cauchy

Existence de solution globale

## Preuve du théorème (5/5): Existence

- ➤ On vient donc de construire une trajectoire sur un intervalle  $[t_0 \delta, t_0 + \delta]$ .
- Notons qu'ici le choix de  $\delta$  ne dépend pas de  $t_0$  mais uniquement de la constante de Lipschitz globale  $L_f$
- Avec les mêmes arguments (que ci-dessus), on construit la solution  $y^2$  sur l'intervalle  $[t_0 + \delta, t_0 + 2\delta]$  en considérant l'EDO

$$y'(t) = f(y(t)),$$
  $y(t_0 + \delta) = y^1(t_0 + \delta).$ 

▶ De même, on peut construire aussi une solution sur  $[t_0 - 2\delta, t_0 - \delta]$ , en considérant l'EDO avec la condition initiale:

$$y(t_0-\delta)=y^1(t_0-\delta).$$

➤ On recommence cette procédure autant de fois que nécessaire pour construire une solution sur tout l'intervalle /.

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 20/24

- ➤ Le théorème précédent affirme, sous l'hypothèse que f est Lipschitzienne, l'existence et l'unicité d'une solution globale de l'EDO.
- ightharpoonup L'hypothèse Lipschitz sur f est essentielle dans la preuve. Elle permet de choisir  $\delta > 0$  indépendant des conditions initiales.
- $\triangleright$  Si on suppose que f est seulement localement Lipschitz, alors  $\delta$  dépenderait de la constante de Lipschitz locale (et donc dépenderait de la condition initiale);
- La construction de la solution se fera alors sur des intervalles de tailles variables  $\delta_k > 0$ . Et dans ce cas, on ne peut pas assurer de construire une solution sur tout l'intervalle l.

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

21/24

Solution d'un problème de Cauchy

Existence de solution maximale

### Théorème (Cauchy-Lipschitz (version localement Lipschitz))

On suppose que f est une fonction continue et localement lipschitzienne. Alors pour tout  $(t_0, y_0) \in I \times U$ , il existe  $t_-$  et  $t_+$  tels que l'EDO admet une unique solution maximale  $(]t_-, t_+[, y)$ 

- ightharpoonup II existe un intervalle **maximal**  $]t_-, t_+[$  sur lequel est défini la solution y et tel que  $t_0 \in ]t_-, t_+[$  et  $y(t_0) = x_0$ .
- $\rightarrow$  Les bornes  $t_{-}$  et  $t_{+}$  dépendent de la condition initiale  $(t_{0}, x_{0})$

H. Zidani () Équations différentielles CM4 - Mercredi 15 février 2023 22/24

- $\rightarrow$  **Durée de vie de la solution**: y est définie de  $]t_-, t_+[$  dans l'ouvert U, domaine de définition de f.
  - ightharpoonup Si  $U = \mathbb{R}^n$ , alors on a nécessairement  $t_+ = +\infty$  ou

$$t_+ = +\infty$$
 ou  $\lim_{t \to t_+} ||y(t)|| = +\infty$ .

De même  $t_- = -\infty$  ou  $\lim_{t \to t_-} \|y(t)\| = +\infty$ .

➡ Si *U* est un compact, alors

$$]t_-,t_+[=]-\infty,+\infty[.$$

H. Zidani ()

Équations différentielles

CM4 - Mercredi 15 février 2023

23/24

Solution d'un problème de Cauchy

Existence de solution maximale

Dans la suite de ce chapitre, nous aborderons les questions de:

- Sensibilité de la solution d'un problème de Cauchy par rapport aux conditions initiales
- Stabilité du système autour d'un point d'équilibre.

H. Zidani ()