

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a 7-a

Varianta 2

Problema 1. Arătați că pentru orice număr natural nenul n, numărul $\sqrt{n + \left[\sqrt{n} + \frac{1}{2}\right]}$ este irațional.

(Am notat cu [a] partea întreagă a numărului real a.)

Gazeta Matematică

Problema 2. Determinați perechile de numere întregi (a, b) cu proprietatea că $a^2 + 2b^2 + 2a + 1$ este divizor al lui 2ab.

Problema 3. Fie dreptunghiul ABCD şi punctele arbitrare $E \in (CD)$ şi $F \in (AD)$. Perpendiculara din punctul E pe dreapta FB intersectează dreapta BC în punctul P şi perpendiculara din punctul F pe dreapta EB intersectează dreapta AB în punctul Q. Să se arate că punctele P, D şi Q sunt coliniare.

Problema 4. Fie triunghiul ABC cu $m(\widehat{A}) = 80^{\circ}$ şi $m(\widehat{C}) = 30^{\circ}$. Considerăm punctul M interior triunghiului ABC astfel încât $m(\widehat{MAC}) = 60^{\circ}$ şi $m(\widehat{MCA}) = 20^{\circ}$. Dacă N este intersecția dreptelor BM şi AC să se arate că (MN) este bisectoarea unghiului \widehat{AMC} .