

# Deep Learning

Chapter 2 딥러닝 기초 (퍼셉트론, 다층 퍼셉트론)







퍼셉트론



#### 학습목표



- 퍼셉트론의 개념을 이해하고, 구현 할 수 있다.
- 다층 퍼셉트론의 개념을 이해하고, 구현 할 수 있다.
- 행렬 곱셈, 행렬 덧셈을 이해 할 수 있다.



- 추상화: 현실 세계를 가상 세계로 모델링하는 작업
- 신경망의 추상화: 인간의 뉴런을 하나를 노드 (인공 뉴런)으로 가상화하고 각 노드의 특성 (가중치)를 다르 게 설정하여 동일한 입력에 대해 다양한 반응을 발생하도록 하게 함.







신경의 흥분이 전달되기 위해서는 뉴런에 전달되는 자극의 크기가 임계치 이상이 되어야 함









$$y = W_1 X_1 + W_2 X_2$$
$$y = \sum_{j=0}^{n} W_j X_j$$



- 뉴런에서 보내온 신호의 총합이 정해진 임계값(b)을 넘어설 때만 1을 출력 (뉴런 활성화)

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le b) \\ 1 & (w_1 x_1 + w_2 x_2 \ge b) \end{cases}$$

- 가중치가 클수록 해당 신호가 결과에 영향을 크게 준다는 것을 의미











$$y = W_1 X_1 + W_2 X_2 + b$$

f(x)Activation function (활성화 함수)



$$\mathbf{y} = \begin{cases} 0, & (W_1 X_1 + W_2 X_2 + b \leq 0) \\ 1, & (W_1 X_1 + W_2 X_2 + b > 0) \end{cases}$$

 $W_1,W_1$ : 가중치 (weight) – 각 입력 신호가 결과에 주는 영향력을 조절하는 매개변수

b: 면향 (bias) - 뉴런이 얼마나 쉽게 활성화하느냐를 조절하는 매개변수







### AND 게이트 퍼셉트론 만들기

| <b>x1</b> | <b>x2</b> | AND |
|-----------|-----------|-----|
| 0         | 0         | 0   |
| 0         | 1         | 0   |
| 1         | 0         | 0   |
| 1         | 1         | 1   |





| X1 | X2 | AND | ×                                                          | y       |
|----|----|-----|------------------------------------------------------------|---------|
| 0  | 0  | 0   | $(0 \times 0.5) + (0 \times 0.5) + (1 \times -0.7) = -0.7$ | class 0 |
| 0  | 1  | 0   | $(0 \times 0.5) + (1 \times 0.5) + (1 \times -0.7) = -0.2$ | class 0 |
| 1  | 0  | 0   | $(1 \times 0.5) + (0 \times 0.5) + (1 \times -0.7) = -0.2$ | class 0 |
| 1  | 1  | 1   | $(1 \times 0.5) + (1 \times 0.5) + (1 \times -0.7) = 0.3$  | class 1 |



# OR 게이트 퍼셉트론 만들기

| <b>x1</b> | <b>x2</b> | OR |
|-----------|-----------|----|
| 0         | 0         | 0  |
| 0         | 1         | 1  |
| 1         | 0         | 1  |
| 1         | 1         | 1  |





| X1 | X2 | OR | × | У       |
|----|----|----|---|---------|
| 0  | 0  | 0  | ? | class 0 |
| 0  | 1  | 1  | ? | class 1 |
| 1  | 0  | 1  | ? | class 1 |
| 1  | 1  | 1  | ? | class 1 |



AND,OR는 해결이 가능하지만 간단한 XOR 문제를 해결 할 수 없다.



# OR 게이트 퍼셉트론 만들기

| <b>x1</b> | <b>x2</b> | XOR |
|-----------|-----------|-----|
| 0         | 0         | 0   |
| 0         | 1         | 1   |
| 1         | 0         | 1   |
| 1         | 1         | 0   |

# 퍼셉트론의 한계





### 퍼셉트론의 한계





한 선으로 분류하려면 ?







다층 퍼셉트론(Multilayer Perceptron)

퍼셉트론을 여러 개의 층으로 구성하여 만든 신경망



- 비선형 데이터를 분리 할 수 있다.
- 학습시간이 오래 걸린다.
- 가중치 파라미터가 많아 과적합되기 쉽다.
- 가중치 초기 값에 민감하며 지역 최적점에 빠지기 쉽다.







| 구조  | 결정 영역 형태                                 | Exclusive-DR<br>문제 | 얽힌 결정 영역을<br>갖는 클래스들 |
|-----|------------------------------------------|--------------------|----------------------|
| 단층  | 초평면에 의해<br>나뉘어지는<br>반평면<br>(Hyper plane) | A B B A            | B                    |
| 두개층 | 볼록한 모양<br>또는<br>닫힌 영역                    | A B A              | B                    |
| 세개층 | 임의의 형태<br>(노드들의 개수에<br>따라 복잡도가<br>결정됨)   | A B A              | B                    |



### NAND 게이트 퍼셉트론 만들기

| <b>x1</b> | <b>x2</b> | NAND |
|-----------|-----------|------|
| 0         | 0         | 1    |
| 0         | 1         | 1    |
| 1         | 0         | 1    |
| 1         | 1         | 0    |





| X1 | <b>X2</b> | NAND | x | у       |
|----|-----------|------|---|---------|
| 0  | 0         | 1    | ? | class 1 |
| 0  | 1         | 1    | ? | class 1 |
| 1  | 0         | 1    | ? | class 1 |
| 1  | 1         | 0    | ? | class 0 |



### 다층 퍼셉트론 활용 XOR 문제 풀기

| x1 | x2 | NAND |   |           |           |     |     |
|----|----|------|---|-----------|-----------|-----|-----|
| 0  | 0  | 1    |   |           |           |     |     |
| 0  | 1  | 1    |   | <b>S1</b> | <b>S2</b> | у   |     |
| 1  | 0  | 1    |   | NAND      | OR        | AND | XOR |
| 1  | 1  | 0    |   | 1         | 0         | 0   | 0   |
| x1 | x2 | OR   |   | 1         | 1         | 1   | 1   |
| 0  | 0  | 0    |   | 1         | 1         | 1   | 1   |
| 0  | 1  | 1    |   | 0         | 1         | 0   | 0   |
| 1  | 0  | 1    | - |           |           |     |     |
| 1  | 1  | 1    | - |           |           |     |     |



| x1 | x2 | XOR |
|----|----|-----|
| 0  | 0  | 0   |
| 0  | 1  | 1   |
| 1  | 0  | 1   |
| 1  | 1  | 0   |













### 다층 퍼셉트론 활용 XOR 문제 풀기(행렬곱)



$$[X_1 \ X_2] \times \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} = [S_1 \ S_2]$$



### 다층 퍼셉트론 활용 XOR 문제 풀기(행렬곱)



$$[S_1 \ S_2] \times {W_{31} \brack W_{32}} + [b_3] = Y$$



#### 다차원 배열 연산







#### 신경망에서 행렬의 곱





$$[1 \ 2] \times \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = [13 \ 16]$$

$$[13 \ 16] + [3 \ 4] = [16 \ 20]$$



#### 다층 퍼셉트론의 동작







# 활성화 함수, 오차



#### 학습목표



- 활성화 함수를 이해 할 수 있다.
- 오차 계산 방법을 이해할 수 있다.



- 신경망은 (선형회귀와 달리) 한 계층의 신호를 다음 계층으로 그대로 전달하지 않고 비선형적인 활성화 함수를 거친 후에 전달
- 이렇게 하는 이유는 생물학적인 신경망을 모방한 것
  - 약한 신호는 전달하지 않고 어느 이상의 신호도 전달하지 않는 "S"자 형 곡선과 같이 "비선 형적"인 반응을 한다고 생각
- 실제로 비선형의 활성화 함수를 도입한 신경망이 잘 동작



- 활성화 함수 (Activation Function) : 뉴런에서 입력 신호가 일정 크기 이상(임 계값)일 때만 신호를 전달하는 메커니즘을 모방한 함수 → 계단함수, 시그모이드 (sigmoid), tanh, ReLU (Rectified Unit)





#### Sigmoid 함수

# Sigmoid

$$\sigma(x) = \frac{1}{1+e^{-x}}$$





sigmoid 함수를 구현해보자



- **활성화 과정**: 가중치 신호를 조합한 결과가 a라는 노드가 되고 활성화 함수 h()를 통과하여 y라는 노드로 변환되는 과정



- **편향은 뉴런이 활성화되는 기준값**이라고 할 수 있음 → **활성화 함수** 
  - 만약 편향이 -0.1이라면 입력신호의 가중치를 곱한 값들의 합이 0.1을 초과할 때만 뉴런이 활성화
  - 편향이 큰 음수라면 그만큼 뉴런이 활성화가 되기 어려운 환경이 됨



#### 활성화 함수로 비선형 함수를 사용하는 이유

- 계단 함수(step), 시그모이드 함수(sigmoid) 등 → 비선형 함수
- 활성화 함수로 선형함수 h(z) = cz 를 사용하면 중간층(은닉층)을 여러 개 구성한 효과를 살릴 수 없다.





#### 출력층의 활성화 함수

- 일반적으로 출력층의 활성화 함수로는 **회귀에는 항등 함수를 분류에는 시그모이드 / 소프트맥스 함** 수를 사용
- 항등함수 (identify function) : 입력을 그대로 출력하는 함수
- softmax function : 출력층의 각 뉴런이 모든 입력 신호의 영향을 받는 함수





#### 소프트맥스(softmax) 함수

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$



# softmax 함수를 구현해보자



#### 출력층의 뉴런 수 설정

- 출력층의 뉴런 수는 **풀려는 문제에 맞게** 적절하게 설정해야 함
- 숫자 0부터 9까지를 분류하고 싶다면 출력층의 개수는 10개로 설정





#### 출력층의 활성화 함수

| 유형      | 출력층 활성화 함수 | 오차함수    |
|---------|------------|---------|
| 회귀      | 항등 함수      | 제곱오차    |
| 이진 분류   | 로지스틱 함수    | 교차 엔트로피 |
| 다클래스 분류 | 스프트맥스 함수   | 교차 엔트로피 |

#### Keras

| linear  | mean_squared_error       |
|---------|--------------------------|
| sigmoid | binary_crossentropy      |
| softmax | categorical_crossentropy |



# Keras 활용 XOR 문제풀기



iris 데이터 신경망으로 풀기 (분류)



- 손실함수 (Loss function) : 최적의 매개변수 값을 탐색하기 위한 기준 지표 → 평균제곱오차 (MSE)와 교 차 엔트로피 오차 (CEE)를 주로 사용
- 정확도를 사용하지 않고 손실함수를 사용하는 이유 <del>→ 정확도의 미분값이 대부분 0이 되기때문</del>
- 신경망 학습에서 가중치, 편향을 탐색 → 손실 함수를 최대한 작게 하는 매개변수를 찾음 → 매개변수의 기울기 (미분)을 계산하고 기울기를 이용하여 매개변수를 갱신
- <mark>손실함수의 미분</mark> : 가중치 매개변수의 값을 아주 조금 변화시켰을 때 손실 함수가 어떻게 변하는지 의미
  - 미분 값이 음수이면 가중치 매개변수를 양의 방향으로 변화시켜 손실 함수의 값을 감소
  - 미분 값이 양수이면 가중치 매개변수를 음의 방향으로 변화시켜 손실 함수의 값을 감소
  - 미분 값이 0이면 가중치 매개변수를 어느쪽으로 움직여도 손실 함수의 값은 변하지 않음
    - → 계단함수를 손실함수로 사용하지 않는 이유



| 평균 제곱 계열      | mean_squared_error             | 평균제곱오차<br>mean(square(yt – y0))                    |
|---------------|--------------------------------|----------------------------------------------------|
|               | mean_absolute_error            | 평균절대 오차<br>mean(abs(yt – y0))                      |
|               | mean_absolute_percentage_error | 평균 절대 백분율 오차<br>mean(abs(yt-y0) / abs(yt))         |
|               | mean_squared_logarithmic_error | 평균제곱 로그 오차<br>mean(square(log(y0)+1)-(log(yt)+1))) |
| 교차 엔트로피<br>계열 | categorical_crossentropy       | 범주형 교차 엔트로피                                        |
|               | binary_crossentropy            | 이항 교차 엔토로피                                         |



#### 평균 제곱 오차

- 평균제곱오차 (Mean Squared Error) → 회귀에서 주로 사용

$$E = \frac{1}{2} \sum_{k=1}^{n} (y_k - t_k)^2$$

y<sub>k</sub> : 신경망의 출력 (신경망이 추정한 값)

t<sub>k</sub> : 정답 레이블

k: 데이터의 차원 수



#### 교차 엔트로피 오차

- 교차 엔트로피 오차 (Cross Entropy Error : CEE) → 분류에서 주로 사용
- 레이블이 one-hot 인코딩인 경우에만 사용 가능

$$E = -\sum_{k=1}^{n} t_k \log y_k$$

y<sub>k</sub>: 신경망의 출력 (신경망이 추정한 값)

t<sub>k</sub> : 정답 레이블 k : 데이터의 차원 수

- t<sub>k</sub>가 1일 때 (정답일 때)만 자연로그의 합을 계산하는 식이 됨.





오차역전파





■ 오차역전파의 개념을 이해 할 수 있다.



- 순전파: 입력 데이터를 입력층에서부터 출력층까지 전파시키면서 출력값을 찾아가는 과정 → 추론
- 역전파: 에러를 출력층에서 입력층 쪽으로 전파시키면서 최적의 학습 결과를 찾아가는 것 → 학습











유통 시스템의 문제점을 찾으려면 어떤 것이 나을까요?

진행방향 진행반대방향



#### 딥러닝 학습 절차





#### 오차역전파 과정





- 가중치 수정





- 편미분 (ð): 여러 개의 변수 중 하나에 대해서만 미분하고 다른 변수 값은 상수로 취급

$$y = 2a + 3b$$

$$\frac{\partial y}{\partial a} = \frac{\partial y}{\partial a} = \frac{\partial y}{\partial b} =$$



- 출력층에서 오류가 0.6이 발생하였다면 입력1 노드로 0.36을 입력2 노드로 0.24의 에러를 전파시켜서 각각이 가중치를 갱신 → **오차 역전파** 





- MLP에서도 출력층의 오차를 은닉층으로 전파시켜 가중치나 바이어스를 갱신하고 다시 입력 층으로 전파하여 가중치나 바이어스를 갱신









- 수퍼에서 1개에 100원인 사과를 2개 샀다면 지불 금액은 ? (단, 소비세가 10% 부과됨)







- 수퍼에서 100원 짜리 사과 2개, 150원 짜리 귤 3개를 샀다면 지불 금액은 ?





- 수퍼에서 과일바구니와 사과 2개, 150원 짜리 귤 3개를 샀다면 지불 금액은 ?





- 사과 가격에 대한 지불 금액의 미분값은 2.2 → 사과 1원 오르면 최종 금액은 2.2원 오른다는 의미





- 역전파는 국소적 미분을 오른쪽에서 왼쪽으로 전달



$$\frac{\partial y}{\partial x} = \frac{\mathbb{E}^{d}}{\mathbb{Q}^{d}} = \mathbb{Q}^{d} + \mathbb{Q}^{d} + \mathbb{Q}^{d}$$



#### 연쇄법칙

$$z = t^2$$
  $t = x + y$ 





#### 연쇄법칙

- 덧셈 노드의 역전파는 입력 값을 그대로 전파





#### 연쇄법칙

- 곱셈 노드의 역전파는 상류 값에 순전파 때의 입력 신호들을 서로 바꾼 값을 곱해서 하류로 보냄







#### 연쇄법칙

- 소비세와 사과 가격이 같은 양만큼 오르면 최종 금액에는 소비세가 200의 크기로 사과 가격이 2.2 크기로 영향을 준다는 의미





#### 활성화 함수의 역전파

$$y = \frac{1}{1 + e^{-x}}$$
$$\frac{\partial y}{\partial x} = y(1 - y)$$

$$y = \tanh(x)$$
$$\frac{\partial y}{\partial x} = 1 - y^2$$



$$(1-y^2) \times \frac{\partial L}{\partial y}$$

$$tanh$$

$$\frac{\partial L}{\partial y}$$



#### 활성화 함수의 역전파

$$\begin{cases} y = x & (x > 0) \\ y = 0 & (x \le 0) \end{cases}$$

$$\begin{cases} \frac{\partial y}{\partial x} = 1 & (x > 0) \\ \frac{\partial y}{\partial x} = 0 & (x \le 0) \end{cases}$$





#### Softmax 함수의 역전파

- Softmax-with-Loss 노드는 a을 입력받아 L을 출력하고 정답인 노드만 1을 빼줌
- 만약 정답이  $t_3$ 이라면  $y_3$ -1으로 역전파하고 나머지는  $y_1$ ,  $y_2$ 로 역전파





#### Sigmoid 함수의 문제점

- Gradient vanishing 문제 발생 : 극단의 미분값(gradient)이 0이 곱해지면 전파되지 않음
- 활성 함수 결과 값의 중심이 0이 아닌 0.5 → **모두 양수이거나 모두 음수일 가능성**
- 지수이므로 계산이 복잡



시그모이드 함수를 미분



#### Sigmoid 함수의 문제점

- MLP이 오차 역전파를 만나 신경망이 되었고 XOR 문제를 해결하였음.
- 하지만 오차 역전파는 출력층부터 입력층까지 하나씩 앞으로 돌아가면서 각 층의 가중치를 수정하는데 이때 미분 (기울기)을 하기 때문에 중간에 기울기가 0이 되는 경우가 발생 → Gradient Vanishing





sigmoid 함수와 tanh 함수를 미분해보자



#### Sigmoid 함수의 문제점

- Gradient vanishing 문제가 Sigmoid 함수보다는 **tanh 함수가 덜 발생** → 결과 값이 [-1, 1] 사이로 제한되고 중심값이 0이므로
- 여전히 vanishing gradient 문제 발생





시그모이드와 tanh의 미분 그래프

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$



#### ReLU 함수

- Sparse activation: 0이하의 입력에 대해 0을 출력함으로써 부분적으로 활성화시킬 수 있음
- Efficient gradient propagation : gradient의 vanishing이 없음 → 양극단 값이 포화되지 않음 (gradient가 exploding되지 않음)
- Efficient computation : 선형함수이므로 미분 계산이 간단 (6배 정도 빠름)
- Scale-invariant : 스케일 조정에 따라 값이 변하지 않음







#### ReLU 함수

- 문제점 : 음수를 모두 0으로 처리하기 때문에 한번 음수가 나오면 그 노드는 학습되지 않는다는 문제
   → 좋지 않는 성능 → leaky ReLU나 다른 ReLU 사용
- Leaky ReLU : 음수의 기울기 값을 0이 아닌 작은 값(0.1, 0.01 등)으로 설정
- Parametric ReLU (PReLU) : 음수의 기울기 값이 변경
- ELU (Exponential Linear Unit) : 음수의 기울기 값을 지수 형태로 설정 → PReLU가 비슷한 성능
- SELU (Scaled ELU) : 2개의 파라미터를 이용하여 기울기를 변경 → 일정한 분산 → PReLU와 비슷
- Swish: 구글에서 나온 함수 → 성능 우수
- maxout : 두 개의 w와 b 중에서 큰 값을 선택 → 성능 우수
- 활성화 함수로 ReLU로 사용하더라도 **마지막 Layer는 Sigmoid나 tanh 함수를 사용** → 0~1 사이의 값을 나타내야 정확히 분류 하는데 좋기 때문



#### ReLU 함수





#### MLP의 문제점









## 학습목표



- 다양한 경사하강법 종류를 알 수 있다.
- Keras를 활용해 다양한 경사하강법을 적용 할 수 있다.



- 경사 하강법은 주어진 데이터 세트에 대해 손실함수 E(w)가 최소가 되는 가중치 w를 찾는 작업
- 현재 지점의 w에서 기울기가 가장 가파르게 하강하는 곳을 따라 조금씩 이동
- 현재 지점의 w에서 E(w)의 w에 대한 음의 미분값이 가장 높은 방향(기울기가 작은, 더 낮은 방향)으로 w를 조금씩 이동
- 문제는 이동하는 정도가 **크면 최저 지점을 지나갈 수도 있고**, 너무 **작으면 이동 횟수가 많아져서** 최저 지점을 찾지 못할 수도 있음





- 한 발 내려간 시점에서 등산객이 자기가 산을 제대로 내려가고 있는지 주변 경사(기울기)를 보면서 판단하듯이 기울기가 음수인지? 양수인지? 확인하면서 최저지점으로 내려감.



- 지역 최소값 (local minimum): 학습 중에 손실함수의 전역 최소값 (global minimum)을 찾지 못하고 지역 최소값에 빠져 나오지 못하는 상황





### 경사하강법 종류

- lr(learning rate) 값만 적절히 변경하고 epsilon, rho, decay는 그대로 사용하는 것을 권장

| 종류      | 개요                                                | 효과              | 케라스 사용법                                                                                   |
|---------|---------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------|
| SGD     | 랜덤하게 추출한 일부 데이터를 사용해 더 빨<br>리, 자주 업데이트 하게 하는 것    | 속도개선            | keras.optimizers.SGD(Ir=0.1)                                                              |
| 모멘텀     | 관성의 방향을 고려해 진동과 폭을 줄이는 효<br>과                     | 정확도개선           | keras.optimizers.SGD(Ir=0.1, momentum=0.9)                                                |
| NAG     | 모멘텀이 이동시킬 방향으로 미리 이동해서<br>경사를 계산, 불필요한 이동을 줄이는 효과 | 정확도개선           | keras.optimizers.SGD(Ir=0.1,<br>momentum=0.9, nesterov=true)                              |
| Adagrad | 변수의 업데이트가 잦으면 학습률을 적게하<br>여 이동 보폭을 조절하는 방법        | 보폭 크기 개선        | keras.optimizers.Adagrad(Ir=0.0<br>1, epsilon=1e-6)                                       |
| RMSProp | Adagrid의 보폭 민감도를 보완한 방법                           | 보폭 크기 개선        | keras.optimizers.RMSprop(Ir=0.0<br>01, rho=0.9, epsilon=1e-08,<br>decay=0.0)              |
| Adam    | 모멘텀과 RMSProp를 합친 방법                               | 정확도, 보폭크<br>기개선 | keras.optimizers.Adam(Ir=0.001,<br>beta_1=0.9, beta_2=0.999,<br>epsilon=1e-08, decay=0.0) |



#### 경사하강법 종류





#### 확률적 경사하강법 (SGD)

- 경사하강법의 많은 계산량(batch)은 속도를 느리게 하고 최적해를 찾기 전에 멈출 수도 있음.
- SGD (Stochastic Gradient Descent) : 전체 데이터가 아닌 랜덤하게 추출한 일부 데이터 (Mini-batch)를 사용하는 방법 → 더 빠르고 자주 업데이터 가능
- 중간 결과의 진폭이 크고 불안정해 보일 수 있지만 빠르고 최적해에 근사한 값을 찾아내는 장점

$$W \leftarrow W - \eta \, \frac{\partial L}{\partial W}$$

- W : 업데이트할 가중치

-  $\eta$ : 학습률 (일반적으로 0.01이나 0.001을 사용)

 $-rac{\partial L}{\partial W}$  : W에 대한 손실함수의 기울기





#### 확률적 경사하강법 (SGD)



경사하강법

(Gradient Descent) 전체 데이터를 이용해 업데이트



확률적경사하강법

(Stochastic Gradient Descent) 확률적으로 선택된 일부 데이터를 이용해 업데이트



#### 모멘텀

- 확률적 경사하강법은 방향에 따라서 기울기 값이 달라지는 경우에 적합하지 않음 → 최소 기울기 방향으로 움직이므로 (Local Minima에 빠질 수 있음)





#### 모멘텀

관성하고 기울기를 모두 고려하여 한번에 이동

이동 : 5+ 3 관성 : 5 기울기 : 3



모멘텀

(Momentum) 경사 하강법에 관성을 적용해 업데이트



#### 모멘텀

- 관성을 부여(업데이트에 사용했던 기울기의 일정 %를 남겨서 현재 기울기에 더하여 업데이트)하는 방법

#### 속도만큼 더해서 더 크게 변하게 함

$$v \leftarrow av - \eta \frac{\partial L}{\partial W}$$
$$W \leftarrow W + v$$

- v : 속도

- a: 모멘텀 계수 (보통 0.9)





#### **NAG** (Nesterov Accelrated Gradient)

- 업데이트 시 모멘텀 방식으로 먼저 더한 다음 계산.
- 미리 해당 방향으로 이동한 뒤 그래디언트를 계산하는 효과.
- 불필요한 이동을 줄일 수 있다.

관성만큼 이동하고 이후에 기울기를 계산하여 이동

이동하고 기울기 계산 관성:5



#### **Adagrad**

- 학습률 (Learning rate)는 스텝 사이즈로 작으면 학습이 오래 걸리고 크면 최적 값을 찾지 못하므로 적절한 학습률 적용이 필요





#### **Adagrad**

- 신경망에서 학습률은 이동 보폭으로 생각할 수 있는데 한번 갱신하는 가중치의 값의 크기를 결정
- 학습률을 작게하면 학습 시간이 느리고 크게하면 최적 점을 지나칠 수 있음.
- 학습 과정에서 점차 기울기가 감소하므로 학습률을 줄여가는데 (Learning rate decay) 보통 과거의 기울 기 값을 제곱해서 더하는 하는 방식을 사용 → SD, SGD, 모멘텀처럼 동일하게 줄이지 않고 이전 기울기를 참조하는 적응형 방법





#### **Adagrad**

- 매개변수 원소 중에서 많이 움직인 (크게 갱신된) 원소는 학습률이 낮아지는 방식으로 학습률이 매개변수에 따라 변경되도록 하는 방식

$$h \leftarrow h + \frac{\partial L}{\partial W} \otimes \frac{\partial L}{\partial W}$$
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

- h : 기존 기울기들의 제곱의 합



## 아다그리드

(Adaptive Gradient) 학습률 감소 방법을 적용해 업데이트



#### **RMSprop**

- AdaGrad는 제곱을 하여 학습률을 줄이기 때문에 빠르게 0에 가까워져 학습이 멈추는 문제가 발생
- RMSprop는 과거의 모든 기울기를 균등하게 더하지 않고 새로운 기울기의 정보만 반영하도록 해서 학습률이 크게 떨어져 0에 가까워지는 것을 방지하는 방법
- 이전에 제곱되어 누적된 값과 새롭게 제곱되는 부분의 반영비율을 decay 상수로 조절

decay 상수
$$h \leftarrow \gamma h + (1 - \gamma) \frac{\partial L}{\partial W} \otimes \frac{\partial L}{\partial W}$$

$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$



#### Adam

- 모멘텀과 RMSprop 방식을 섞은 방식으로 관성 계수를 사용하여 Local Minima에 빠지지 않고 학습률에 대한 계수를 적응형을 변경하는 방식
- (1) 현재의 기울기를 계산
- (2) 이전 모멘텀에 현재 기울기를 더해서 누적 → beta1를 곱해서 누적량과 현재량의 반영비율 조절
- (3) 이전 기울기에 현재 기울기를 제곱해서 누적 → beta2를 곱해서 누적량과 현재량의 반영비율 조절
- (4) 두 값을 더해서 제곱근을 구한 값을 나눔

$$M \leftarrow \beta_1 M + (1 - \beta_1) \frac{\partial L}{\partial W} \qquad W \leftarrow W - \eta \frac{M}{\sqrt{V}}$$
$$V \leftarrow \beta_2 V - (1 - \beta_2) \frac{\partial L}{\partial W} \times \frac{\partial L}{\partial W}$$



## 시뮬레이션







## 시뮬레이션





# Keras로 MNIST 손글씨 학습하기 +가중치, 활성화함수, 옵티마이저, 규제적용



## Keras활용 보스턴 주택 값 예측 신경망 실습 +모델검증, 학습중단, 모델저장, 모델로드

## 신경망 시뮬레이션



#### http://playground.tensorflow.org

