Appendix

A Proof of Theorem 1

Proof.

$$x_{t+1} = \arg\min_{x} m_{1:t} \cdot x + \sum_{s=1}^{t} \frac{1}{2\alpha_{s}} (x - x_{s})^{T} Q_{s} (x - x_{s})$$

$$+ \Psi_{t}(x)$$

$$= \arg\min_{x} m_{1:t} \cdot x + \sum_{s=1}^{t} \frac{1}{2\alpha_{s}} (\|Q_{s}^{\frac{1}{2}}x\|_{2}^{2} - 2x \cdot (Q_{s}x_{s})$$

$$+ \|Q_{s}^{\frac{1}{2}}x_{s}\|_{2}^{2}) + \Psi_{t}(x)$$

$$= \arg\min_{x} (m_{1:t} - \sum_{s=1}^{t} \frac{Q_{s}}{\alpha_{s}}x_{s}) \cdot x + \sum_{s=1}^{t} \frac{1}{2\alpha_{s}} \|Q_{s}^{\frac{1}{2}}x\|_{2}^{2}$$

$$+ \Psi_{t}(x).$$
(22)

Define $z_{t-1} = m_{1:t-1} - \sum_{s=1}^{t-1} \frac{Q_s}{\alpha_s} x_s$ $(t \ge 2)$ and we can calculate z_t as

$$z_t = z_{t-1} + m_t - \frac{Q_t}{\alpha_t} x_t, \quad t \ge 1.$$
 (23)

By substituting (23), (22) is simplified to be

$$x_{t+1} = \arg\min_{x} z_t \cdot x + \sum_{s=1}^{t} \frac{Q_s}{2\alpha_s} ||x||_2^2 + \Psi_t(x).$$
 (24)

By substituting $\Psi_t(x)$ (Eq. (5)) into (24), we get

$$x_{t+1} = \arg\min_{x} z_{t} \cdot x + \sum_{g=1}^{G} \left(\lambda_{1} \| x^{g} \|_{1} + \lambda_{21} \sqrt{d_{x^{g}}} \right)$$

$$\| \left(\sum_{s=1}^{t} \frac{Q_{s}^{g}}{2\alpha_{s}} + \lambda_{2} \mathbb{I} \right)^{\frac{1}{2}} x^{g} \|_{2} + \| \left(\sum_{s=1}^{t} \frac{Q_{s}}{2\alpha_{s}} + \lambda_{2} \mathbb{I} \right)^{\frac{1}{2}} x \|_{2}^{2}.$$
(25)

Since the objective of (25) is component-wise and element-wise, we can focus on the solution in one group, say g, and one entry, say i, in the g-th group. Let $\sum_{s=1}^t \frac{Q_s^g}{2\alpha_s} = \operatorname{diag}(\sigma_t^g)$ where $\sigma_t^g = (\sigma_{t,1}^g, \dots, \sigma_{t,d_xg}^g)$. The objective of (25) on $x_{t+1,i}^g$ is

$$\Omega(x_{t+1,i}^g) = z_{t,i}^g x_{t+1,i}^g + \lambda_1 |x_{t+1,i}^g| + \varPhi(x_{t+1,i}^g), \tag{26} \label{eq:26}$$

where $\Phi(x_{t+1,i}^g) = \lambda_{21} \sqrt{d_{x^g}} \| (\sigma_{t,i}^g + \lambda_2)^{\frac{1}{2}} x_{t+1,i}^g \|_2 + \| (\sigma_{t,i}^g + \lambda_2)^{\frac{1}{2}} x_{t+1,i}^g \|_2^2$ is a nonnegative function and $\Phi(x_{t+1,i}^g) = 0$ iff $x_{t+1,i}^g = 0$ for all $i \in \{1, \dots, d_{x^g}\}$. We discuss the optimal solution of (26) in three cases:

- a) If $z_{t,i}^g=0$, then $x_{t+1,i}^g=0$. b) If $z_{t,i}^g>0$, then $x_{t+1,i}^g\leq0$. Otherwise, if $x_{t+1,i}^g>0$, we have $\Omega(-x_{t+1,i}^g)<\Omega(x_{t+1,i}^g)$, which contradicts the minimization value of $\Omega(x)$ on $x_{t+1,i}^g$. Next, if $z_{t,i}^g\leq\lambda_1$, then $x_{t+1,i}^g=0$. Otherwise, if $x_{t+1,i}^g<0$, we have $\Omega(x_{t+1,i}^g) = (z_{t,i}^g - \lambda_1) x_{t+1,i}^g + \Phi(x_{t+1}^{g,i}) > \Omega(0)$, which also contradicts the minimization value of $\Omega(x)$ on $x_{t+1,i}^g$. Third, $z_{t,i}^g > \lambda_1 \ (\forall i = 1, \dots, d_{x^g})$. The objective of (26) for the g-th group,

 $\Omega(x_{t+1}^g)$, becomes

$$(z_t^g - \lambda_1 \mathbf{1}_{d_{xg}}) \cdot x_{t+1}^g + \Phi(x_{t+1}^g).$$

c) If $z_{t,i}^g < 0$, the analysis is similar to b). We have $x_{t+1,i}^g \geq 0$. When $-z_{t,i}^g \leq \lambda_1$, $x_{t+1,i}^g = 0$. When $-z_{t,i}^g > \lambda_1$ ($\forall i = 1, \ldots, d_{x^g}$), we have

$$\Omega(x_{t+1}^g) = (z_t^g + \lambda_1 \mathbf{1}_{d_{xg}}) \cdot x_{t+1}^g + \Phi(x_{t+1}^g).$$

From a), b), c) above, we have

$$x_{t+1}^g = \underset{x}{\operatorname{arg\,min}} - s_t^g \cdot x + \varPhi(x), \tag{27}$$

where the *i*-th element of s_t^g is defined same as (9). Define

$$y = (\operatorname{diag}(\sigma_t^g) + \lambda_2 \mathbb{I})^{\frac{1}{2}} x. \tag{28}$$

By substituting (28) into (27), we get

$$y_{t+1}^g = \arg\min_{y} -\tilde{s}_t^g \cdot y + \lambda_{21} \sqrt{d_{x^g}} \|y\|_2 + \|y\|_2^2, \tag{29}$$

where $\tilde{s}_t^g = (\operatorname{diag}(\sigma_t^g) + \lambda_2 \mathbb{I})^{-1} s_t^g$ which is defined same as (10). This is unconstrained non-smooth optimization problem. Its optimality condition (see [21], Section 27) states that y_{t+1}^g is an optimal solution if and only if there exists $\xi \in \partial \|y_{t+1}^g\|_2$ such that

$$-\tilde{s}_t^g + \lambda_{21} \sqrt{d_{x^g}} \xi + 2y_{t+1}^g = 0. \tag{30}$$

The subdifferential of $||y||_2$ is

$$\partial ||y||_2 = \begin{cases} \{\zeta \in \mathbb{R}^{d_{x^g}} | -1 \le \zeta^{(i)} \le 1, i = 1, \dots, d_{x^g} \} & \text{if } y = 0, \\ \frac{y}{||y||_2} & \text{if } y \ne 0. \end{cases}$$

Similarly to the analysis of ℓ_1 -regularization, we discuss the solution of (30) in two different cases:

a) If $\|\tilde{s}_t^g\|_2 \leq \lambda_{21}\sqrt{d_{x^g}}$, then $y_{t+1}^g = 0$ and $\xi = \frac{\tilde{s}_t^g}{\lambda_{21}\sqrt{d_{x^g}}} \in \partial \|0\|_2$ satisfy (30). We also show that there is no solution other than $y_{t+1}^g = 0$. Without loss of generality, we assume $y_{t+1,i}^g \neq 0$ for all $i \in \{1, ..., d_{x^g}\}$, then $\xi = \frac{y_{t+1}^g}{\|y_{t+1}^g\|_2}$, and

$$-\tilde{s}_{t}^{g} + \frac{\lambda_{21}\sqrt{d_{x^{g}}}}{\|y_{t+1}^{g}\|_{2}}y_{t+1}^{g} + 2y_{t+1}^{g} = 0.$$
(31)

From (31), we can derive

$$(\frac{\lambda_{21}\sqrt{d_{x^g}}}{\|y_{t+1}^g\|_2}+2)\|y_{t+1}^g\|_2=\|\tilde{s}_t^g\|_2.$$

Furthermore, we have

$$||y_{t+1}^g||_2 = \frac{1}{2} (||\tilde{s}_t^g||_2 - \lambda_{21} \sqrt{d_{x^g}}), \tag{32}$$

where $\|y_{t+1}^g\|_2 > 0$ and $\|\tilde{s}_t^g\|_2 - \lambda_{21}\sqrt{d_{x^g}} \le 0$ contradict each other. b) If $\|\tilde{s}_t^g\|_2 > \lambda_{21}\sqrt{d_{x^g}}$, then from (31) and (32), we get

$$y_{t+1}^g = \frac{1}{2} \left(1 - \frac{\lambda_{21} \sqrt{d_{x^g}}}{\|\tilde{s}_t^g\|_2} \right) \tilde{s}_t^g. \tag{33}$$

We replace y_{t+1}^g of (33) by x_{t+1}^g using (28), then we have

$$x_{t+1}^{g} = (\operatorname{diag}(\sigma_{t}^{g}) + \lambda_{2}\mathbb{I})^{-\frac{1}{2}}y_{t+1}^{g}$$

$$= (2\operatorname{diag}(\sigma_{t}^{g}) + 2\lambda_{2}\mathbb{I})^{-1}(1 - \frac{\lambda_{21}\sqrt{d_{x^{g}}}}{\|\tilde{s}_{t}^{g}\|_{2}})s_{t}^{g}$$

$$= (\sum_{s=1}^{t} \frac{Q_{s}}{\alpha_{s}} + 2\lambda_{2}\mathbb{I})^{-1}(1 - \frac{\lambda_{21}\sqrt{d_{x^{g}}}}{\|\tilde{s}_{t}^{g}\|_{2}})s_{t}^{g}.$$
(34)

Combine a) and b) above, we finish the proof.

\mathbf{B} Proof of Theorem 2

Proof. We use the method of induction.

a) When t = 1, then Algorithm 1 becomes

$$\begin{split} Q_1 &= \alpha_1 (\frac{\sqrt{V_1}}{\alpha_1} - \frac{\sqrt{V_0}}{\alpha_0}) = \sqrt{V_1}, \\ z_1 &= z_0 + m_1 - \frac{Q_1}{\alpha_1} x_1 = m_1 - \frac{\sqrt{V_1}}{\alpha_1} x_1, \\ s_1 &= -z_1 = \frac{\sqrt{V_1}}{\alpha_1} x_1 - m_1, \\ x_2 &= (\frac{\sqrt{V_1}}{\alpha_1})^{-1} s_1 = x_1 - \alpha_1 \frac{m_1}{\sqrt{V_1}}, \end{split}$$

which equals to Eq. (1).

b) Assume t = T, Eq. (35) are true.

$$z_T = m_T - \frac{\sqrt{V_T}}{\alpha_T} x_T,$$

$$x_{T+1} = x_T - \alpha_T \frac{m_T}{\sqrt{V_T}}.$$
(35)

For t = T + 1, we have

$$\begin{split} z_{T+1} &= z_T + m_{T+1} - \frac{Q_{T+1}}{\alpha_{T+1}} x_{T+1} \\ &= m_T - \frac{\sqrt{V_T}}{\alpha_T} x_T + m_{T+1} - \frac{Q_{T+1}}{\alpha_{T+1}} x_{T+1} \\ &= m_T - \frac{\sqrt{V_T}}{\alpha_T} (x_{T+1} + \alpha_T \frac{m_T}{\sqrt{V_T}}) + m_{T+1} - \frac{Q_{T+1}}{\alpha_{T+1}} x_{T+1} \\ &= m_{T+1} - (\frac{\sqrt{V_T}}{\alpha_T} + \frac{Q_{T+1}}{\alpha_{T+1}}) x_{T+1} \\ &= m_{T+1} - \frac{\sqrt{V_{T+1}}}{\alpha_{T+1}} x_{T+1}, \\ x_{T+2} &= (\frac{\sqrt{V_{T+1}}}{\alpha_{T+1}})^{-1} s_{T+1} = -(\frac{\sqrt{V_{T+1}}}{\alpha_{T+1}})^{-1} z_{T+1} \\ &= x_{T+1} - \alpha_T \frac{m_{T+1}}{\sqrt{V_{T+1}}}. \end{split}$$

Hence, we complete the proof.

C Proof of Theorem 3

Proof. Let

$$h_t(x) = \begin{cases} \sum_{s=1}^t \frac{1}{2\alpha_s} ||Q_s^{\frac{1}{2}}(x - x_s)||_2^2 \ \forall \ t \in [T], \\ \frac{1}{2} ||x - c||_2^2 & t = 0. \end{cases}$$

It is easy to verify that for all $t \in [T]$, $h_t(x)$ is 1-strongly convex with respect to $\|\cdot\|_{\sqrt{V_t}/\alpha_t}$ which $\frac{\sqrt{V_t}}{\alpha_t} = \sum_{s=1}^t \frac{Q_s}{\alpha_s}$, and $h_0(x)$ is 1-strongly convex with respect to $\|\cdot\|_2$.

From (7), we have

$$\mathcal{R}_{T} = \sum_{t=1}^{T} (f_{t}(x_{t}) - f_{t}(x^{*})) \leq \sum_{t=1}^{T} \langle g_{t}, x_{t} - x^{*} \rangle
= \sum_{t=1}^{T} \langle m_{t} - \gamma m_{t-1}, x_{t} - x^{*} \rangle \leq \sum_{t=1}^{T} \langle m_{t}, x_{t} - x^{*} \rangle
= \sum_{t=1}^{T} \langle m_{t}, x_{t} \rangle + \Psi_{T}(x^{*}) + h_{T}(x^{*}) + \left(\sum_{t=1}^{T} \langle -m_{t}, x^{*} \rangle \right)
- \Psi_{T}(x^{*}) - h_{T}(x^{*}) \right)
\leq \sum_{t=1}^{T} \langle m_{t}, x_{t} \rangle + \Psi_{T}(x^{*}) + h_{T}(x^{*}) + \sup_{x \in \mathcal{Q}} \left\{ \langle -m_{1:T}, x \rangle \right.
- \Psi_{T}(x) - h_{T}(x) \right\},$$
(36)

where in the first and second inequality above, we use the convexity of $f_t(x)$ and the condition (12) respectively.

We define $h_t^*(u)$ to be the conjugate dual of $\Psi_t(x) + h_t(x)$:

$$h_t^*(u) = \sup_{x \in \mathcal{Q}} \left\{ \langle u, x \rangle - \Psi_t(x) - h_t(x) \right\}, \quad t \ge 0,$$

where $\Psi_0(x) = 0$. Since $h_t(x)$ is 1-strongly convex with respect to the norm $\|\cdot\|_{h_t}$, the function h_t^* has 1-Lipschitz continuous gradients with respect to $\|\cdot\|_{h_t^*}$ (see, [14], Theorem 1):

$$\|\nabla h_t^*(u_1) - \nabla h_t^*(u_2)\|_{h_t} \le \|u_1 - u_2\|_{h_t^*},\tag{37}$$

and

$$\nabla h_t^*(u) = \operatorname*{arg\,min}_{x \in \mathcal{Q}} \left\{ -\langle u, x \rangle + \Psi_t(x) + h_t(x) \right\}. \tag{38}$$

As a trivial corollary of (37), we have the following inequality:

$$h_t^*(u+\delta) \le h_t^*(u) + \langle \nabla h_t^*(u), \delta \rangle + \frac{1}{2} \|\delta\|_{h_t^*}^2.$$
 (39)

Since $h_{t+1}(x) \ge h_t(x)$ and $\Psi_{t+1}(x) \ge \Psi_t(x)$, from (38), (39), (6), we have

$$h_{T}^{*}(-m_{1:T}) \leq h_{T-1}^{*}(-m_{1:T})$$

$$\leq h_{T-1}^{*}(-m_{1:T-1}) - \left\langle \nabla h_{T-1}^{*}(-m_{1:T-1}), m_{T} \right\rangle$$

$$+ \frac{1}{2} \|m_{T}\|_{h_{T-1}^{*}}^{2}$$

$$\leq h_{T-2}^{*}(-m_{1:T-1}) - \left\langle x_{T}, m_{T} \right\rangle + \frac{1}{2} \|m_{T}\|_{h_{T-1}^{*}}^{2}$$

$$\leq h_{0}^{*}(0) - \left\langle \nabla h_{0}^{*}(0), m_{1} \right\rangle - \sum_{t=2}^{T} \left\langle x_{t}, m_{t} \right\rangle$$

$$+ \frac{1}{2} \sum_{t=2}^{T} \|m_{t}\|_{h_{t-1}^{*}}^{2}$$

$$= -\sum_{t=1}^{T} \left\langle x_{t}, m_{t} \right\rangle + \frac{1}{2} \sum_{t=1}^{T} \|m_{t}\|_{h_{t-1}^{*}}^{2}.$$

$$(40)$$

where the last equality above follows from $h_0^*(0) = 0$ and (11) which deduces $x_1 = \nabla h_0^*(0)$.

By substituting (40), (36) becomes

$$\mathcal{R}_{T} \leq \sum_{t=1}^{T} \langle m_{t}, x_{t} \rangle + \Psi_{T}(x^{*}) + h_{T}(x^{*}) + h_{T}^{*}(-m_{1:T})$$

$$\leq \Psi_{T}(x^{*}) + h_{T}(x^{*}) + \frac{1}{2} \sum_{t=1}^{T} \|m_{t}\|_{h_{t-1}^{*}}^{2}.$$
(41)

D Additional Proofs

D.1 Proof of Lemma 1

Proof. Let $V_t = \operatorname{diag}(\sigma_t)$ where σ_t is the vector of the diagonal elements of V_t . For *i*-th entry of σ_t , by substituting (13) into (15), we have

$$\sigma_{t,i} = g_{t,i}^2 + \eta \sigma_{t-1,i}$$

$$= (m_{t,i} - \gamma m_{t-1,i})^2 + \eta g_{t-1,i}^2 + \eta^2 \sigma_{t-2,i}$$

$$= \sum_{s=1}^t \eta^{t-s} (m_{s,i} - \gamma m_{s-1,i})^2$$

$$\geq \sum_{s=1}^t \eta^{t-s} (1 - \gamma) (m_{s,i}^2 - \gamma m_{s-1,i}^2)$$

$$= (1 - \gamma) \left(m_{t,i}^2 + (\eta - \gamma) \sum_{s=1}^{t-1} \eta^{t-s-1} m_{s,i}^2 \right).$$
(42)

Next, we will discuss the value of η in two cases.

a) $\eta = 1$. From (42), we have

$$\sigma_{t,i} \ge (1 - \gamma) \left(m_{t,i}^2 + (1 - \gamma) \sum_{s=1}^{t-1} m_{s,i}^2 \right)$$

$$> (1 - \gamma)^2 \sum_{s=1}^t m_{s,i}^2$$

$$\ge (1 - \nu)^2 \sum_{s=1}^t m_{s,i}^2.$$

$$(43)$$

Recalling the definition of $M_{t,i}$ in Section 1.5, from (43), we have

$$\sum_{t=1}^T \frac{m_{t,i}^2}{\sqrt{\sigma_{t,i}}} < \frac{1}{1-\nu} \sum_{t=1}^T \frac{m_{t,i}^2}{\|M_{t,i}\|_2} \leq \frac{2}{1-\nu} \|M_{T,i}\|_2,$$

where the last inequality above follows from Appendix C of [4]. Therefore, we get

$$\sum_{t=1}^{T} \|m_{t}\|_{(\frac{\sqrt{V_{t}}}{\alpha_{t}})^{-1}}^{2} = \alpha \sum_{t=1}^{T} \sum_{i=1}^{d} \frac{m_{t,i}^{2}}{\sqrt{\sigma_{t,i}}}$$

$$< \frac{2\alpha}{1-\nu} \sum_{i=1}^{d} \|M_{T,i}\|_{2}.$$
(44)

b) $\eta < 1$. We assume $\eta \ge \gamma$ and $\kappa V_t \succeq V_{t-1}$ where $\kappa < 1$, then we have

$$\sum_{s=1}^{t} \kappa^{t-s} \sigma_{t,i} \ge \sum_{s=1}^{t} \sigma_{s,i} \ge (1-\gamma) \sum_{s=1}^{t} m_{s,i}^{2}.$$

Hence, we get

$$\sigma_{t,i} \ge \frac{1-\kappa}{1-\kappa^t} (1-\gamma) \sum_{s=1}^t m_{s,i}^2$$

$$> (1-\kappa)(1-\gamma) \sum_{s=1}^t m_{s,i}^2$$

$$\ge (1-\nu)^2 \sum_{s=1}^t m_{s,i}^2,$$
(45)

which deduces the same conclusion (44) of a).

Combine a) and b), we complete the proof.

D.2 Proof of Corollary 1

Proof. From the definition of m_t (13), V_t (15), we have

$$|m_{t,i}| = |\sum_{s=1}^{t} \gamma^{t-s} g_{s,i}| \le \frac{1-\gamma^t}{1-\gamma} G < \frac{G}{1-\gamma} \le \frac{G}{1-\nu},$$
$$|\sigma_{t,i}| = |\sum_{s=1}^{t} \eta^{t-s} g_{s,i}^2| \le tG^2.$$

Hence, we have

$$\Psi_T(x^*) \le \lambda_1 dD_1 + \lambda_{21} dD_1 (\frac{\sqrt{T}G}{2\alpha} + \lambda_2)^{\frac{1}{2}} + \lambda_2 dD_1^2,$$
 (46)

$$h_T(x^*) \le \frac{dD_2^2 G}{2\alpha} \sqrt{T},\tag{47}$$

$$\frac{1}{2} \sum_{t=1}^{T} \|m_t\|_{h_{t-1}^*}^2 < \frac{\alpha}{1-\nu} \sum_{i=1}^{d} \frac{\sqrt{T}G}{1-\nu} = \frac{d\alpha G}{(1-\nu)^2} \sqrt{T}.$$
 (48)

Combining (46), (47), (48), we complete the proof.

E Additional Experimental Results

Table 5. The learning rates of the optimizers of three datasets.

Optimizer	MLP	OPNN	DCN
Adam/Group Adam	1e-4	1e-4	1e-3
AdaGrad/Group AdaGrad	1e-2	1e-2	1e-2

Table 6. The regularization terms of
GROUP ADAM of three datasets.Table 7. The regularization terms of
GROUP ADAGRAD of three datasets.

Dataset	λ_1	λ_{21}	λ_2	Dataset	λ_1	λ_{21}	λ_2
MLP	5e-3	1e-2	1e-5	MLP	0	1e-2	1e-5
OPNN	8e-5	1e-5	1e-5	OPNN	8e-5	8e-5	1e-5
DCN	4e-4	5e-4	1e-5	DCN	0	4e-3	1e-5

Table 8. Fine-tuned schedule of magnitude pruning. The best AUC for each dataset on each sparsity level is bolded.

Ratio	MLP		OPNN		DCN	
of Sam-	Sparsity	AUC	Sparsity	AUC	Sparsity	AUC
$\mathbf{ples}_{30\%}$		0.7454		0.6809		0.8016
20%	0.974	0.7457	0.078	0.7259	0.518	0.8015
10%	0.974	0.7439	0.078	0.7160	0.518	0.8015
0%		0.7452		0.7551		0.8019
30%		0.7454		0.6356		0.8005
20%	0.864	0.7441	0.039	0.6383	0.062	0.7977
10%		0.7453		0.6678		0.7884
0%		0.7464		0.7491		0.8018
30%		0.7443	0.032	0.6826	0.018	0.7883
20%	0.701	0.7452		0.6618		0.7969
10%		0.7449		0.6604		0.7800
0%		0.7452		0.7465		0.8017
30%	0.132	0.7457	0.018	0.6318	0.0042	0.7400
20%		0.7428		0.6419		0.7236
10%		0.7450		0.6207		0.6864
0%		0.7452		0.7509		0.7995
30%	0.038	0.7444	0.0092	0.5934	0.0025	0.7442
20%		0.7442		0.6003		0.7105
10%		0.7437		0.6355		0.6925
0%		0.7430		0.7396		0.7972

Table 9. The ℓ_{21} -regularization terms of the optimizer using s_t and \tilde{s}_t .

Method		λ			
s_t			2.5e-4 7.5e-3		1e-3 2.5e-2
$ ilde{s}_t$	0	0.05	0.075	0.1	0.125
	0.15	0.175	0.2	0.225	0.25