Широкие и узкие оптимумы

Методы получения более широких оптимумов (SAM и SWA)

План

- 1. Разобраться в широких и узких оптимумы, определить ширину оптимума, понять почему широкие оптимумы лучше
- 2. Разобраться в методах SAM и SWA

Широкие и узкие оптимумы

по оси Y отмечаются значения функции потерь, а по оси X значения параметров

Проблема: как определить ширину оптимума в многомерном случае

Определение ширины оптимума

- 1. Объем области, в которой значение функции потерь не сильно отличаются друг от друга (Hochreiter & Schmidhuber, 1997)
- 2. Максимальное значение функции потери в окрестности найденного оптимума (Кескар и др., 2017)
- 3. Собственное значение Гессиана в точках минимума (Яо и др., 2018)

Очевидное наблюдение

Чем оптимум шире — тем выше обобщая способность и адаптивность модели

Глобальная идея – искать широкие минимумы

SAM (Sharpness-Aware Minimization)

- 1. Метод для эффективного повышения обобщенности модели
- 2. Основная идея минимизировать функцию потерь в некоторой окрестности

Вводим новую функцию потерь с гиперпараметром $p \in [1, \infty]$

$$L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \triangleq \max_{\|\boldsymbol{\epsilon}\|_{p} \leq \rho} L_{S}(\boldsymbol{w} + \boldsymbol{\epsilon}),$$

Задача, лежащая в основе метода SAM:

$$\min_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) + \lambda ||\boldsymbol{w}||_{2}^{2}$$

Эффективный способ посчитать градиент

$$\nabla_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})|_{\boldsymbol{w} + \hat{\boldsymbol{\epsilon}}(\boldsymbol{w})}.$$

где

$$\hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) = \rho \operatorname{sign}\left(\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right) \left|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right|^{q-1} / \left(\left\|\nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w})\right\|_{q}^{q}\right)^{1/p}$$

$$\boldsymbol{\epsilon}^*(\boldsymbol{w}) \triangleq \underset{\|\boldsymbol{\epsilon}\|_p \leq \rho}{\arg \max} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) \approx \underset{\|\boldsymbol{\epsilon}\|_p \leq \rho}{\arg \max} L_{\mathcal{S}}(\boldsymbol{w}) + \boldsymbol{\epsilon}^T \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}) = \underset{\|\boldsymbol{\epsilon}\|_p \leq \rho}{\arg \max} \boldsymbol{\epsilon}^T \nabla_{\boldsymbol{w}} L_{\mathcal{S}}(\boldsymbol{w}).$$

Реализация метода SAM

```
Input: Training set S \triangleq \bigcup_{i=1}^n \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}, Loss function
            l: \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+, Batch size b, Step size \eta > 0,
            Neighborhood size \rho > 0.
Output: Model trained with SAM
Initialize weights w_0, t=0;
while not converged do
      Sample batch \mathcal{B} = \{(x_1, y_1), ...(x_b, y_b)\};
      Compute gradient \nabla_{\boldsymbol{w}} L_{\mathcal{B}}(\boldsymbol{w}) of the batch's training loss;
      Compute \hat{\boldsymbol{\epsilon}}(\boldsymbol{w}) per equation 2;
      Compute gradient approximation for the SAM objective
         (equation 3): \mathbf{g} = \nabla_w L_{\mathcal{B}}(\mathbf{w})|_{\mathbf{w} + \hat{\boldsymbol{\epsilon}}(\mathbf{w})};
      Update weights: \boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \boldsymbol{g};
      t = t + 1;
end
```

Algorithm 1: SAM algorithm

return w_t

Figure 2: Schematic of the SAM parameter update.

Сравнение собственных значений Гессиан

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	$2.7_{\pm 0.1}$	$3.5_{\pm 0.1}$	$16.5_{\pm 0.2}$	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	$2.3_{\pm 0.1}$	$2.6_{\pm 0.1}$	$14.9_{\pm 0.2}$	$16.9_{\pm 0.1}$
WRN-28-10 (200 epochs)	AA	2.1 $_{\pm < 0.1}$	$2.3_{\pm 0.1}$	$13.6_{\pm 0.2}$	$15.8_{\pm 0.2}$
WRN-28-10 (1800 epochs)	Basic	2.4 _{±0.1}	$3.5_{\pm 0.1}$	$16.3_{\pm 0.2}$	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	$2.1_{\pm 0.1}$	$2.7_{\pm 0.1}$	$14.0_{\pm 0.1}$	$17.4_{\pm 0.1}$
WRN-28-10 (1800 epochs)	AA	$1.6_{\pm 0.1}$	$2.2 \pm < 0.1$	12.8 $_{\pm 0.2}$	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	$2.3_{\pm < 0.1}$	$2.7_{\pm 0.1}$	$15.1_{\pm 0.1}$	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	$14.2_{\pm 0.2}$	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 $_{\pm < 0.1}$	$1.9_{\pm 0.1}$	$12.8_{\pm 0.1}$	$14.1_{\pm 0.2}$
PyramidNet	Basic	$2.7_{\pm 0.1}$	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	12.6 \pm 0.2	$16.4_{\pm 0.1}$
PyramidNet	AA	$1.6_{\pm 0.1}$	$1.9_{\pm 0.1}$	11.6 \pm 0.1	$14.6_{\pm 0.1}$
PyramidNet+ShakeDrop	Basic	2.1 _{±0.1}	$2.5_{\pm 0.1}$	13.3 \pm 0.2	$14.5_{\pm 0.1}$
PyramidNet+ShakeDrop	Cutout	1.6 \pm <0.1	$1.9_{\pm 0.1}$	$11.3_{\pm 0.1}$	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	1.4 $_{\pm < 0.1}$	$1.6_{\pm < 0.1}$	$10.3_{\pm 0.1}$	$10.6_{\pm 0.1}$

ImageNet

Model	Enoch	SAM		Standard Training (No SAM)		
Model	Epoch	Top-1	Top-5	Top-1	Top-5	
ResNet-50	100	22.5 _{±0.1}	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm0.11}$	
	200	21.4 \pm 0.1	$5.82_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$	
	400	20.9 $_{\pm 0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$	
ResNet-101	100	20.2 $_{\pm 0.1}$	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$	
	200	19.4 $_{\pm 0.1}$	$4.76_{\pm 0.03}$	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$	
	400	19.0 $_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$	
ResNet-152	100	19.2 $_{\pm < 0.01}$	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$	
	200	$18.5_{\pm 0.1}$	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$	
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm 0.07}$	

Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.

SWA (Stochastic Weight Averaging)

1. Вдохновимся идеей FGE и будем усреднять веса вдоль кривых между локальными минимумами

Преимущества:

- 1. Всего одна модель
- 2. Решает проблему большого инференса

Loss landscape

Figure 1: Illustrations of SWA and SGD with a Preactivation ResNet-164 on CIFAR-100¹. **Left**: test error surface for three FGE samples and the corresponding SWA solution (averaging in weight space). **Middle** and **Right**: test error and train loss surfaces showing the weights proposed by SGD (at convergence) and SWA, starting from the same initialization of SGD after 125 training epochs.

Learning rate

$$\alpha(i) = (1 - t(i))\alpha_1 + t(i)\alpha_2,$$

$$t(i) = \frac{1}{c} (\text{mod}(i - 1, c) + 1).$$

Зависимость ошибки от итерации модели ResNet164 на датасете CIFAR-100

Реализация метода SWA

Algorithm 1 Stochastic Weight Averaging Require:

```
weights \hat{w}, LR bounds \alpha_1, \alpha_2,
   cycle length c (for constant learning rate c=1), num-
   ber of iterations n
Ensure: w_{SWA}
   w \leftarrow \hat{w} {Initialize weights with \hat{w}}
   w_{\text{SWA}} \leftarrow w
   for i \leftarrow 1, 2, \ldots, n do
       \alpha \leftarrow \alpha(i) {Calculate LR for the iteration}
       w \leftarrow w - \alpha \nabla \mathcal{L}_i(w) {Stochastic gradient update}
       if mod(i, c) = 0 then
          n_{\text{models}} \leftarrow i/c \{\text{Number of models}\}
          w_{\text{SWA}} \leftarrow \frac{w_{\text{SWA}} \cdot n_{\text{models}} + w}{n_{\text{models}} + 1} \text{ {Update average}}
       end if
   end for
    {Compute BatchNorm statistics for w_{SWA} weights}
```

Связь с широким оптимумом

Figure 4: (**Left**) Test error and (**Right**) L_2 -regularized cross-entropy train loss as a function of a point on a random ray starting at SWA (blue) and SGD (green) solutions for Preactivation ResNet-164 on CIFAR-100. Each line corresponds to a different random ray.

Figure 5: L_2 -regularized cross-entropy train loss and test error as a function of a point on the line connecting SWA and SGD solutions on CIFAR-100. **Left**: Preactivation ResNet-164. **Right**: VGG-16.

VGG-16 (200)	72.55 ± 0.10	74.26	73.91 ± 0.12	74.17 ± 0.15	74.27 ± 0.25
ResNet-164 (150)	78.49 ± 0.36	79.84	79.77 ± 0.17	80.18 ± 0.23	80.35 ± 0.16
WRN-28-10 (200)	80.82 ± 0.23	82.27	81.46 ± 0.23	81.91 ± 0.27	82.15 ± 0.27
PyramidNet-272 (300)	83.41 ± 0.21	_	_	83.93 ± 0.18	84.16 ± 0.15
		CIFAR-10			
VGG-16 (200)	93.25 ± 0.16	93.52	93.59 ± 0.16	93.70 ± 0.22	93.64 ± 0.18

FGE (1 Budget)

CIFAR-100

SGD

budgets. Accuracies for the FGE ensemble are from Garipov et al. [2018].

DNN (Budget)

SWA

1.25 Budgets

1 Budget

1.5 Budgets

ResNet-164 (150) 95.45 95.56 ± 0.11 95.77 ± 0.04 95.28 ± 0.10 95.83 ± 0.03 96.36 WRN-28-10 (200) 96.18 ± 0.11 96.45 ± 0.11 96.64 ± 0.08 96.79 ± 0.05 ShakeShake-2x64d (1800) 96.93 ± 0.10 97.16 ± 0.10 97.12 ± 0.06

Table 1: Accuracies (%) of SWA, SGD and FGE methods on CIFAR-100 and CIFAR-10 datasets for different training

Связь SWA и FGE

$$w_{SWA} = \frac{1}{n} \sum w_i, \ w_{FGE} = \frac{1}{n} \sum f(w_i)$$

Пусть $\Delta_i = w_i - w_{SWA}$, тогда $\sum \Delta_i = 0$ Лианезируем f в точке w_{SWA}

$$f(w_j) = f(w_{SWA}) + \langle \nabla f(w_{SWA}), \Delta_j \rangle + O(\|\Delta_j\|^2)$$

тогда

$$\bar{f} - f\left(w_{\text{SWA}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\left\langle \nabla f\left(w_{\text{SWA}}\right), \Delta_{i} \right\rangle + O\left(\left\|\Delta_{i}\right\|^{2}\right) \right) = \left\langle \nabla f\left(w_{\text{SWA}}\right), \frac{1}{n} \sum_{i=1}^{n} \Delta_{i} \right\rangle + O\left(\Delta^{2}\right) = O\left(\Delta^{2}\right),$$

Преимущества триангулярного Ir

Figure 7: Test error as a function of training epoch for constant (green) and decaying (blue) learning rate schedules for a Wide ResNet-28-10 on CIFAR-100. In red we average the points along the trajectory of SGD with constant learning rate starting at epoch 140.

Используемые ресурсы

- Статья про SAM
- 2. <u>Статья про SWA</u>