Any user may:

request verification of a public key associated with her address, by broadcasting her [hash(address | optional appended string) -> public key] tuple to the verification pending queue

A verified user may:

- add a new public key by creating a [hash(address | optional appended string) -> public key] mapping
- revoke any public key associated with their address
- change any public key associated with their address

A validator may:

• compete with other validators for the right to write a block and send a secret message to the addresses on the verification pending queue, and validate the signed responses of the previous block's verifications.

Anybody may:

 look up the public key for a given address hash (or address hash || string concatenation) in the verified user database.

2.2 Aggregating Reputation Signals through Encrypted EigenTrust

Once there exists a decentralized mapping of phone numbers to public keys, it can be used to bootstrap a reputation system that helps users determine the trustworthiness of any new users they may transact with.

A person's cell phone contact list is a rough first-order proxy for a list of people in whom she has a certain level of trust. One can imagine refining this trust proxy through explicit signals (for example, a user may rate people in her contact list in an application-specific manner, or attest to whether a contact in their address book is a person or not), and implicit signals (for example, if a user makes a payment to somebody in her contact list). These signals can be maintained locally, on the user's cell phone, without sharing them with anybody else.

Such address-book based trust signals define a trust network that is both logically decentralized and functionally decentralized. No single entity stores or has visibility into the entire trust network; each user simply knows the people whom they trust, and the level to which they trust them. We describe below how to compute sybil-resistant, privacy-preserving aggregate reputation scores given this decentralized trust network.

2.2.1 EigenTrust

EigenTrust [14] is a decentralized algorithm for computing global reputation scores, given pairwise local trust scores. The key intuition behind EigenTrust is that a person's reputation score can be defined as the number of people who trust that person, weighted by their reputation scores. This recursive computation converges for all nodes to the principal eigenvector \vec{t} of the trust matrix T, where T_{ij} is number between 0 and 1, and whose magnitude is proportional to the relative level that node i trusts node j^3 .

In EigenTrust, the principal eigenvector of T is computed using a distributed variant of the Power Method [20]. In the context of a social payments network, it would proceed as follows: The trust network T_{ij} would be some variant of the payment network, where T_{ij} would be nonzero if node i has paid node j, and node j is in the address book of node i. Each node stores their own current t_i , and has access to the values of T_{ij} in row i and column j (the people with whom the node has interacted). The principle eigenvector \vec{t} would then be computed in an iterative fashion as follows. At

³An alternative way to frame the problem is to compute the stationary distribution of the ergodic Markov chain described by the trust network.