Licence 3 Université de Paris VIII

Licence Informatique parcours mathmatiques

Introduction à la cryptographie

Corrigé Travaux dirigés nº 11

S. Mesnager

Exercice 1.

 $\sigma_1^3 = 12 \pmod{1833}$, la signature est correcte. $\sigma_2^3 = 710 \pmod{1833}$, la signature n'est pas correcte.

Exercice 2.

- 1. $q^m = 166$, $y^r r^s = 166$, la signature est correcte.
- 2. L'adversaire sait que modulo 498, la clé privée x est solution de l'équation m=xr+ks, i.e. $95x\equiv 400-299\times 197 \pmod{498}$; $x\equiv 261\times 173 \pmod{498}$; x=333.
- 3. L'aléa k est solution de $k(s_1 s_2) = m_1 m_2 \pmod{498}$; $194k \equiv -100 \pmod{498}$, 194k = -100 + 498u; 97k = -50 + 249u; $k = -50 \times 172 \pmod{299}$; k = 115. On trouve la clé privée $k = 112 \pmod{498}$.

Exercice 3.

- 1. Si f_0 et f_1 se rencontrent, on connaît a et b dans $\{1, \ldots, p-1\}$ tels que $g^a = cg^b$, c-à-d $c = g^{a-b}$. Le logarithme de c en base g serait donc facile.
- 2. Si F n'était pas résistante aux collisions fortes, on pourrait trouver $x = x_1 \cdots x_k$ et $x' = x'_1 \cdots x'_k$ tels que F(x) = F(x'). Si $x_1 \neq x'_1$, on peut supposer que $x_1 = 0$ et $x'_1 = 1$. Alors $a = F(x_2 \cdots x_k)$ et $b = F(x'_2 \cdots x_k)$ vérifient $f_0(a) = f_1(b)$. Si $x_1 = x'_1$, alors $x_2 \dots x_k$ et $x'_2 \cdots x'_k$ fournissent également une collision pour F. Si x n'est pas préfixe de x' (ou l'inverse), on peut recommencer le raisonnement jusqu'à obtenir une différence sur le premier terme. Si x est préfixe de x', soit x' = xy (ou l'inverse), on trouve $f_1(y) = e$, ce qui fournit un antécédent de e.

Exercice 4

Soit (r, s) une signature valide pour m, i.e. $y^r r^s = g^m$. Comme m est inversible modulo (p-1), on peut poser m' l'inverse de m modulo (p-1) et $r' = r + p(r\mu m' - r)$ et $s' = s\mu m' \operatorname{mod}(p-1)$. On a $r' \equiv r\mu/m \operatorname{mod}(p-1)$ et $r' \equiv r \operatorname{mod} p$. Par conséquent, $y^{r'}r'^{s'} = y^{r\mu/m}r^{s\mu/m} = (y^r r^s)^{\mu/m} = (g^m)^{\mu/m} = g^{\mu}$. La signature est reconnue comme valide.

Exercice 5

- 1. Soit $\alpha = g^t$. Comme on suppose qu'il est possible de calculer un logarithme en base α , on peut trouver z, qui est le logarithme de y^t en base α .
- 2. La relation gt = p-1 signifie que g est l'inverse de -t modulo p. D'après le petit théorème de Fermat, $g^{p-1} = 1$. Donc $g^{(p-1)/2}$ est une racine carrée de 1. C'est donc ± 1 . Comme g est un élément générateur, ce n'est pas 1. C'est donc -1. Comme $p \equiv 1 \pmod 4$, $\frac{p-1}{2}$ est pair. Donc $(gt)^{(p-1)/2} = (-1)^{(p-1)/2} = 1$. D'après $g^{(p-1)/2} = -1$, on a $t^{(p-1)/2} = t \cdot t^{(p-3)/2} = -1$. Le second facteur $t^{(p-3)/2}$ est l'inverse de -t modulo p. D'après la remarque ci-dessus, c'est g.
- 3. On a $y^t t^s = g^{tz} t^{(p-3)/2 \times (m-tz)} = g^{tz} \times g^{m-tz} = g^m$. La signature est donc considérée comme valide.