Module de freinage DCC

1 Caractéristiques

- Module équivalent au module BM1 ref 22600 de Lenz.
- Permet l'arrêt et le redémarrage progressif des trains en digital.
- Courrant maximum de 1A
- Module de freinage DCC utilisant la technologie ABC compatible uniquement avec certains décodeurs (Cf. section 4)
- 3 trous de fixation pour un montage facile.

2 Applications

- Arrêt automatique d'un convoi au pied d'un signal.
- Va et vient automatique.
- Cantons à l'échelle N.
- Arrêt automatique lorsque l'aiguillage n'est pas bien positionné.
- Arrêt automatique en gare.

3 Specifications technique

Specification	Unité	Valeur
Courant maximum en continu	Α	1
Courant maximum en pointe (8.3 ms)	Α	30
Dimensions	mm	25 * 19 * 13
Poids	g	3.1

Table 1: Spécifications

4 Compatibilité

Attention : ce module ne fonctionne qu'en digital et n'est compatible qu'avec les décodeurs qui supportent la technologie ABC. Le tableau 2 montre une liste non exhaustive de décodeurs supportant la technologie ABC.

Ce module est recommandé pour l'échelle N. Pour l'échelle HO, privilégiez plutôt le module **LEC001021**.

Marque	Décodeur compatible	Référence fabricant		
	Gold maxi	10440		
	GOLD+ NEM652	10433-01		
	GOLD+ mini NEM651	10411-01		
	GOLD+ mini wired	10410-01		
	Silver+ NEM652	10331-01		
Lenz	Silver+ direct	10330-01		
	Silver+ 21	10321-01		
	Silver+ Plux12	10312-01		
	Silver+ mini NEM651	10311-01 / 10311-02		
	Silver+ mini wired	10310-01		
	Standard+ V2	10231-02		
ESU	LokPilot V4 / V5	Tous les LokPilot V4 et V5		
230	LokSound V4 / V5	Tous les LokSound v4 et V5		
		MX620, MX620N, MX620R, MX620F		
	Décodeurs miniature	MX618N18,MX621, MX621N, MX621R		
		MX621, FMX622, MX622R, MX622F, MX622N		
		MX63, MX63R, MX63F, MX63T		
	Décodeurs HO	MX623, MX623R, MX623F, MX623P12		
		MX630, MX630R, MX630F, MX630P16		
zimo	Décodeurs HO faible épaisseur	MX64, MX64R, MX64F, MX64T		
		MX64H, MX64HR, MX64HF, MX64V		
		MX631, MX631R, MX631F, MX631D, MX631C		
	Décodeurs HO forte puissance	MX632, MX632R, MX632D, MX632C, MX632V		
		MX632W, MX632VD, MX632WD		
		MX633, MX633R, MX633F, MX633P22		
	Décodeurs sonores miniature	MX648, MX648R, MX648F, MX648P16		
	Decoded 3 301101e3 111111ature	MX646, MX646R, MX646F, MX646N, MX646L		
	Décodeurs sonores HO	MX645, MX645R, MX645F, MX645P16		
	Decoded 3 solioles 110	MX645P22, MX644D, MX644C		
tOm (trainOmatic)	LOKCOMMANDER II	Tous les décodeurs de la gamme.		

Table 2: Décodeurs compatibles

5 Utilisation

En générant une asymétrie dans le signal DCC, ce module permet aux décodeurs compatibles de détecter des zones de ralentissement ou d'arrêt et de réagir en conséquence.

La mise en place de ce module se fait en deux étapes : l'installation et le câblage du module, puis la configuration du ou des décodeurs.

5.1 Installation et câblage du module

Remarque : pour un fonctionnement optimal et sans danger, le câblage de ce module doit se faire avec un fil possédant une section minimale de 0.2mm².

Le module doit être câblé tel que sur la figure 1. L'interrupteur est optionnel. Il permet de shunter le module pour faire repartir manuellement le train arrêté.

Figure 1: Schéma de câblage pour une zone d'arrêt contrôlée par un interrupteur.

- Lorsque l'interrupteur est ouvert, ou qu'il n'y a tout simplement pas d'interrupteur, un signal sera émis sur le rail droit de la zone d'arrêt, et toute machine équipée d'un décodeur compatible et configuré exécutera une procédure d'arrêt.
- Lorsque l'interrupteur est fermé, aucun signal ne sera transmit au niveau de la zone d'arrêt, aucun train ne s'arrêtera donc dans la zone. Si un train était arrêté dans la zone d'arrêt, il redémarrera progressivement.

Note: L'interrupteur peut être remplacé par un relais, un interrupteur fin de course, ou par tout autre système ayant un pouvoir de coupure d'au moins 1A.

5.2 Configuration du décodeur

Pour détecter le signal ABC émis par ce module, les décodeurs doivent être configurés en conséquence. Le tableau 3 montre les CV utilisées pour activer ou modifier le comportement du décodeur vis à vis du signal ABC.

5.2.1 Détermination du décodeur

Si vous connaissez le type de décodeur présent dans votre machine, passez à la section suivante.

Pour identifier la marque de votre décodeur, il faut lire la valeur du CV8.

Marque	Lenz	ESU	Zimo	tOm
Valeur du CV8 identifiant le constructeur	99	151	145	78

Ce tableau est non exhaustif, vous retrouverez une liste plus complète sur le lien suivant : https://www.jmri.org/xml/XSLT/pages/Decoderld.html

5.2.2 Activation de l'ABC

Dans tous les cas, il vous faudra activer la fonction ABC du décodeur pour que vos train puissent réagir au signal émis par ce module.

Marque	Lenz	ESU	Zimo	tOm
Activation de l'ABC dans le sens de marche classique	CV51 = 2 (bit 1)	CV27 = 1 (bit 0)	CV27 = 1 (bit 0)	CV27 = 1 (bit 0)
Activation de l'ABC dans le sens de marche inverse	-	CV27 = 2 (bit 1)	CV27 = 2 (bit 1)	CV27 = 2 (bit 1)
Activation de l'ABC dans les deux sens de marche	CV51 = 6 (bits 1 + 2)	CV27 = 3 (bits 0 + 1)	CV27 = 3 (bits 0 + 1)	CV27 = 3 (bits 0 + 1)

5.2.3 Tester la détection du signal ABC

A ce stade, tester si la machine détecte bien le signal d'arrêt ABC.

Dans certaines configurations, la machine peut ne pas détecter correctement le signal d'arrêt ABC.

Certaines marques de décodeur proposent des paramètres de réglage supplémentaires pour répondre à ce problème.

Marque	Lenz	ESU	Zimo	tOm
Seuil de détection ABC	_	CV134 =	CV134 =	CV141 =
Sean de detection ABC		$(4 \le val \le 32)$	$(101 \le val \le 114)$	$(8 \le \text{val} \le 16)$
Compensation erreur captage ABC	_	CV102 =	CV142 =	_
Compensation erreur captage ADC		$(0 \le \text{val} \le 255)$	$(0 \le \text{val} \le 255)$	

5.2.4 Activer la distance de freinage constante

La distance de freinage constante est le réglage permettant à un train de s'arrêter sur une distance déterminée, quelque soit sa vitesse. Bien que non obligatoire, ce paramètre est fortement recommandé pour un fonctionnement optimal.

Marque	Lenz	ESU	Zimo	tOm
Activation distance de freinage constante	CV51 += 1 (bit 0)	-	CV140 = 1	CV27 += 128 (bit 7)
Longueur de freinage	$CV52 = (0 \le val \le 255)$	$CV254 = (1 \le val \le 255)$	$CV141 = (0 \le val \le 255)$	$CV64 = $ $(1 \le val \le 255)$

Le signe '+=' signifie qu'il faut additionner la valeur donnée dans le tableau avec celle configurée auparavant.

5.2.5 Récapitulatif CV pour l'ABC

Marque	CV	bit	Fonction		
		0	Activation de la distance de freinage constante		
		1	Activation de l'ABC		
Lenz	51	2	si = 1, prise en compte du signal ABC dans les deux sens de marche		
Lenz		3	Activation du mode va et vient avec arrêt intermédiare		
		4	Activation du mode va et vient sans arrêt intermédiaire		
	52	-	Longueur de freinage en cas de distance de freinage constante activée		
	27	0	Activation de l'ABC dans le sens de marche classique		
	21	1	Activation de l'ABC dans le sens de marche inverse		
ESU	102	-	Compensation erreur captage ABC		
	134	-	Seuil de détection ABC		
	254	-	Distance de freinage constante		
	27 0		Activation de l'ABC dans le sens de marche classique		
	21	1	Activation de l'ABC dans le sens de marche inverse		
zimo	134	-	Seuil de détection ABC		
ZIIIIO	140	0	Activation de la fonction distance de freinage constante		
	141	-	Distance de freinage constante		
	142	-	Compensation erreur captage ABC		
tOm		0	Activation de l'ABC dans le sens de marche classique		
	27	1	Activation de l'ABC dans le sens de marche inverse		
		7	Activation de la fonction distance de freinage constante		
	64	-	Distance de freinage constante		
	141	-	Seuil de détection ABC		

Table 3: CV pour l'ABC

Remarque : si le mode manoeuvre ou le mode marche réduite est activé, le décodeur ne tiendra pas compte des signaux ABC.

6 Dimensions

Figure 2: Dimensions du module d'arrêt (toutes les côtes sont données en mm).

7 Contact et SAV

Pour tout renseignement, veuillez vous adresser à contact@lectix.fr.

8 Revision History

Revision	Date	Author(s)	Description
1.0.0	01.05.21	TFC	Création du document
1.0.1	14.05.22	TFC	Ajout de décodeurs compatibles
1.1.0	30.05.22	TFC	Ajout de précisions dans la section 5.2