

Спектральная теория графов Spectral Graph Theory

изучает свойства графов с помощью анализа

- 1) собственных значений,
- 2) собственных векторов,
- 3) характеристических полиномов

матриц, которые связаны с графами:

- 1) матрица сопряжённости,
- 2) матрица Лапласа,
- 3) беззнаковая матрица Лапласа.

Спектр матрицы – мультимножество собственных значений

Спектр конечного графа – спектр её матрицы смежности, Спектр Лапласа – спектр матрицы Лапласа графа [дальше].

Изоспектральность

+) Спектры не зависят от нумерации вершин

Графы с одинаковыми спектрами – изоспектральные (коспектральные)

Изоспектральные графы не всегда изоморфны: $K_{1,4}$ и $C_4 \cup K_1$

[Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 85, 1990.]

Изоспектральность

Ещё пример изоспектральных (из полиэдральных графов)

Теорема. Почти все деревья изоспектральны.

ДЗ так ли это?

Есть перечень известных изоспектральных графов, см.

http://mathworld.wolfram.com/CospectralGraphs.html

Есть специальные методы (метода Сунада) для построения изоспектральных графов

Спектр

Матрица сопряжённости неориентированного графа симметричная

 \Rightarrow

собственные значения вещественные, существует базис из ортонормированных собственных векторов

Зачем нужен «алгебраический» подход к анализу графов

Инвариант Колен де Вердьера $\mu(G)$ — наибольший коранг

 $(n-\mathrm{rank}(M))$ среди всех матриц $M\in\mathbf{R}^{n imes n}$:

1)
$$M_{ij} = \begin{cases} <0, & (i,j) \in E, \\ 0 & (i,j) \notin E. \end{cases}$$

- 2) только одно отрицательное собственное значение (кратности 1),
- 3) выполняется строгая гипотеза Арнольда

Строгая гипотеза Арнольда:

не существует симметричной матрицы $O^{n\times n} \neq X \in R^{n\times n}$: MX = 0,

$$X_{ij} = 0 \Leftrightarrow \begin{vmatrix} i = j, \\ M_{ij} \neq 0. \end{vmatrix}$$

в монографиях – чуть по-другому

Критерии, связанные с инвариантом.

µ ≤ 1 тогда и только тогда, когда линейный лес

объединение путей

µ ≤ 2 тогда и только тогда, когда внешнепланарный граф

при добавлении вершины и рёбер, которые соединяют текущие вершины с добавленной получаем планарный граф

µ ≤ 3 тогда и только тогда, когда планарный граф

µ ≤ 4 тогда и только тогда, когда G бессвязно встраиваемый (linklessly embeddable graph) Д3

вложим в бутылку Клейна ⇒ µ ≤ 5 вложим в тор ⇒ µ ≤ 6 вложим в пов-ть с характеристикой Эйлера k < 0 ⇒ µ ≤ 4-2k

off topic – характеристика Эйлера

Название	Вид	Эйлерова характеристика
Окружность		0
Круг		1
сфера		2
Тор		0
Двойной тор	8	-2

Тройной тор	-4
Проективная поверхность	1
Лист Мёбиуса	0
Бутылка Клейна	O
Две сферы	4

Свойства

Любой граф может быть раскрашен в $\mu(G)+1$ цвет

Минимальное число пересечений при изображении графа на плоскости $\geq \mu(G) - 3$.

Свойства

Если дополнение графа является линейным лесом, то $\mu(G) \ge |G| - 3$

Если дополнение графа является внешнепланарным графом, то $\mu(G) \ge |G| - 4$

Если дополнение графа G является планарным графом, то $\mu(G) \geq \mid G \mid -5$

Монотонность

Если H получен из G с помощью следующих операций (минорирование ~ сведение к минорам):

- 1) удалением изолированных вершин,
 - 2) удалением рёбер,
 - 3) сжатием (схлопыванием) рёбер , тогда $\mu(H) \leq \mu(G)$

Для справки

Теорема Робертсона-Сеймура-Томаса Любое наследуемое свойство графов характеризуется конечным числом запрещенных подграфов.

Наследуемые свойства

- планарность (K_5 , $K_{3,3}$)
- внешнепланарность (K_4 , $K_{2.3}$)
- вложение в поверхность

Проблема: вычисление инварианта

Для справки

Теорема Вагнера

Конечный граф является планарным тогда и только тогда, когда его миноры не включают ни K_5 , ни $K_{3,3}$

Теорема Понтрягина — Куратовского Граф планарен тогда и только тогда, когда он не содержит в качестве подграфа подразделение

 $K_{\scriptscriptstyle 5}$ или $K_{\scriptscriptstyle 3,3}$

Итак, начнём...

Граф
$$G = (V, E)$$

Чащё – неориентированные простые (без кратных рёбер и петель) конечные графы (иногда – взвешенные)

Матрицы

сопряжённости	$A \in \{0,1\}^{n \times n}$: $A_{ij} = 1 \Leftrightarrow (i,j) \in E$		
диагональная матрица степеней	$D_{ij} = egin{cases} \deg(i), & i = j, \ 0, & i eq j. \end{cases}$		
	$D_{ij} - 0, \qquad i \neq j.$		
распределений (diffusion)	$W = D^{-1}A$		
Лапласа (Кирхгофа)	$L = D - A$, $L = NN^{\mathrm{T}}$		
беззнаковая Лапласа	$Q=D+A$, $Q=MM^{\mathrm{T}}$		
инциденций	$M_{ij} = 1 \iff i \in e_j$		
инциденций орграфа			
	$N_{ij} = egin{cases} +1, & e_j = (i,*), \ -1, & e_j = (*,i), \ 0, & ext{иначе}. \end{cases}$		
	0, иначе.		

Матрица Лапласа

	1	2	3	4	5
1	0	0	0	0	0
2	0	2	-1	0	-1
3	0	-1	2	-1	0
4	0	0	-1	2	-1
5	0	-1	0	-1	2

Вырождена
Суммы строк / столбцов нулевые
Все алгебраические дополнения симметричной матрицы равны ДЗ
Имеет физический смысл ДЗ - красиво объяснить
дальше – свойства, связанные со связностью
Как обобщается на весовой граф?

Напомним...

Собственный вектор (матрицы
$$M$$
) – $x \neq \tilde{0}$: $\exists \lambda : Mx = \lambda x$.

У симметричных матриц (такие будут у нас)

- из с.в. можно составить ортонормированный базис (запишем по столбцам в Ψ)
 - вещественные с.з. (запишем на диагональ Λ)

$$\Psi^{\mathrm{T}}M\Psi=\Lambda$$

$$M = \Psi \Lambda \Psi^{\mathrm{T}} = \sum_{i} \lambda_{i} \psi_{i} \psi_{i}^{\mathrm{T}}$$

Отношение Релея –
$$\frac{x^{\mathrm{T}}Mx}{x^{\mathrm{T}}x}$$
. Для собственного вектора – $\frac{x^{\mathrm{T}}Mx}{x^{\mathrm{T}}x}=\lambda$.

Теорема. Пусть M – симметричная матрица, тогда максимум отношения Релея равен максимальному собственному значению.

Простое доказательство

$$\frac{\partial f}{\partial x} = \frac{2Mx(x^{\mathrm{T}}x) - 2x(x^{\mathrm{T}}Mx)}{(x^{\mathrm{T}}x)^2} = 0, \quad Mx = \frac{x^{\mathrm{T}}Mx}{(x^{\mathrm{T}}x)}x$$

Другое доказательство:

взять базис из ортогональных собственных векторов M , расписать вектор \mathcal{X} , подставить.

Отношение Релея

Кстати, почему максимальное значение всегда существует...

$$\frac{x^{\mathrm{T}}Mx}{x^{\mathrm{T}}x}$$

можно рассматривать только векторы: ||x|| = 1 (компактное множество)

на этом множестве функция $x^{\mathrm{\scriptscriptstyle T}} M x$ непрерывна

$$\frac{x^{\mathsf{T}} M x}{x^{\mathsf{T}} x} \le \lambda_{\max}$$

$$\frac{v^{\mathsf{T}} M v}{v^{\mathsf{T}} v} = \lambda_{\max}$$

$$M v = \lambda_{\max} v$$

Что есть в матрицах...

 A_{ii} – число путей из вершины i в вершину j

$$\operatorname{tr}(A^2) = 2 |E|$$

 ${\rm tr}(A^3)=6k$, k – число треугольников в графе

Что есть в матрицах...

Теорема Если граф связный (неориентированный) с диаметром d , то существует как минимум d+1 различное с.з. матрицы A (аналогично L , Q).

Доказательство. Пусть
$$\lambda_1,\dots,\lambda_k$$
 – все различные с.з., тогда
$$(A-\lambda_1I)\cdot\dots\cdot(A-\lambda_kI)=0, \text{ почему?}$$
 поэтому $A^k\in\Lambda(I,A,\dots,A^{k-1})$.

Но если диаметр достижим для пары вершин (i,j), то

$$A_{ij}^{t} = \begin{cases} 0, & t < d, \\ > 0, & t = d. \end{cases}$$

Поэтому k > d .

Квадратичная форма Лапласа -

$$x^{\mathrm{T}}Lx = \sum_{(i,j)} (x_i - x_j)^2$$
, $L = D - A$, $\mathbf{R}^{|V|} \to \mathbf{R}$.

$$\begin{bmatrix} x_1, x_2, x_3, x_4 \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} =$$

$$x_1(2x_1 - x_2 - x_3) + x_1(x_1 - x_2) + x_1(x_1 - x_3) +$$

$$= \frac{x_2(2x_2 - x_1 - x_3) +}{x_3(3x_3 - x_1 - x_2 - x_4) +} = \frac{x_2(x_2 - x_1) + x_2(x_2 - x_3) +}{x_3(x_3 - x_1) + x_3(x_3 - x_2) + x_3(x_3 - x_4) +}$$

$$x_4(x_4 - x_3)$$

$$x_4(x_4 - x_3)$$

Теорема. Минимальное с.з. матрицы Лапласа = 0

T.e. $BCe \ge 0$ – это важно!

Доказательство:

1 способ) т.к. все с.з. неотрицательны, а матрица вырождена.

2 способ) КФЛ неотрицательна, обращается в ноль. Вспоминаем отношение Релея (по теореме Куранта-Фишера).

Кстати, для беззнаковой матрицы Лапласа

$$x^{\mathrm{T}}Qx = \sum_{(i,j)} (x_i + x_j)^2$$

Теорема (Куранта-Фишера) / о минимаксе (min-max theorem)

Пусть A – симметричная матрица с с.з. $\lambda_1 \geq \ldots \geq \lambda_n$, тогда

$$\lambda_k = \max_{\substack{S \subseteq \mathbf{R}^n \\ \dim(S) = k}} \min_{x \in S} \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} = \min_{\substack{T \subseteq \mathbf{R}^n \\ \dim(T) = n - k + 1}} \max_{x \in T} \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x}.$$

Следствие. Если A – симметричная матрица с с.з. $\alpha_1 \ge ... \ge \alpha_n$, матрица B получена из неё удалением i-й строки и i-го столбца, её с.з. $\beta_1 \ge ... \ge \beta_n$, тогда

$$\alpha_1 \ge \beta_1 \ge \ldots \ge \alpha_n \ge \beta_n$$

тут ошибочка;)

Собственные значения матрицы Лапласа

Пусть
$$0=\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$
 – с.з. матрицы Лапласа

Теорема. $\lambda_2 = 0 \Leftrightarrow$ граф несвязный

Доказательство.

Если несвязный – в явном виде строятся два ортогональных собственных вектора.

Если связный, то берём вектор ортогональный к константному, в нём есть два различных элемента $\mathcal{X}_i, \mathcal{X}_j$, учитывая, что вершины i,j соединяет путь, выражение

$$x^{\mathrm{T}}Lx = \sum_{(i,j)} (x_i - x_j)^2$$

будет положительно. Поэтому это не может быть с.в. с нулевым с.з.

Алгебраическая связность графа (Важно!)

 λ_2 – АСГ / индексом связности [Fiedler] соответствующий с.в. – вектор Фидлера

Монотонно не убывает при добавлении рёбер, так как

$$\min_{x^{\mathrm{T}}\tilde{1}=0} \frac{x^{\mathrm{T}}Lx}{x^{\mathrm{T}}x} = \lambda_{2}$$

Помним: max - max с.з., min - min с.з.=0

Кстати,

$$\min \frac{x^{\mathrm{T}} L x}{x^{\mathrm{T}} x} = \lambda_{1}$$

$$\min_{x: x^{\mathrm{T}} \tilde{1} = 0} \frac{x^{\mathrm{T}} L x}{x^{\mathrm{T}} x} = \lambda_{2}$$

$$\min_{x: x^{\mathrm{T}} \tilde{1}=0, x^{\mathrm{T}} \psi_{2}=0} \frac{x^{\mathrm{T}} L x}{x^{\mathrm{T}} x} = \lambda_{3}$$

и т.д.

Что получится если min заменить на argmin?

Проблема вложения графа [Hall, 70]

Вложить граф в прямую:

$$x^{\mathrm{T}}Lx = \sum_{(i,j)} (x_i - x_j)^2 \longrightarrow \min_{x}$$

где $x = (x_1, ..., x_n)$ – координаты наших вершин.

Избежать очевидного константного решения:

$$\tilde{1}^{\mathrm{T}}x=0,$$

учесть масштаб:

$$||x||=1$$

Проблема вложения графа [Hall, 70]

$$x^{\mathrm{T}}Lx = \sum_{(i,j)} (x_i - x_j)^2 \to \min_{x}$$

$$\tilde{1}^{\mathrm{T}}x = 0$$

$$||x|| = 1$$

Решение – собственный вектор, соответствующий второму по величине с.з. матрицы Лапласа.

Проблема вложения графа [Hall, 70]

Теперь вкладываем в плоскость:

$$\sum_{(i,j)\in E} \|(x_i, y_i) - (x_j, y_j)\|^2 = \sum_{(i,j)\in E} (x_i - x_j)^2 + \sum_{(i,j)\in E} (y_i - y_j)^2 \to \min$$

при условии

$$\sum_{i \in V} (x_i, y_i) = (0, 0).$$

Если добавить условие ортогональности x и y, то получим, что решение – с.в., соответствующие второму и третьему с.з. матрицы Лапласа.

Вот почему визуализация графа по с.в.!

Сейчас будут картинки... откуда берутся синусоиды?

Вложение линейного графа

первые 5 собственных векторов

Вложение кольца

ДЗ почему рисунок стал некрасивым?

Минутка кода

```
import networkx as nx
g = nx.dorogovtsev_goltsev_mendes_graph(4)

pos = nx.spectral_layout(g)
nx.draw_networkx_nodes(g, pos)
nx.draw_networkx_edges(g, pos)
```



```
pos = nx.spectral_layout(g)
pos = nx.spring_layout(g, random_state=1)
pos = nx.random_layout(g, random_state=2)
pos = nx.circular_layout(g)
```

Вложения разных графов

Иногда размерности не хватает для вложения

[Hal70] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17:219-229, 1970.

Разбиение графа

Рёберная граница –
$$\partial S = \{(i,j) \in E \mid i \in S, j \notin S\}$$

Число Чигера (изопериметрическое число) – $h(G) = \min_{0 < |S| \le n/2} \frac{|\partial S|}{|S|}$

Оценивает, есть ли в графе «узкое горло»

Приложения:

построение компьютерных сетей тасование карт ДЗ Рассказать об этом

Разбиение графа

Теорема.
$$h(G) \ge \frac{\lambda_2(1-s)}{2}$$
, где $s = |S|/|V|$

Если λ_{γ} – большое с.з., то граф «сильно связан»

Неравенство Чигера [Wiki, без доказательства]

В
$$k$$
-регулярном графе $\frac{k-\lambda_2}{2} \leq h(G) \leq \sqrt{2k(k-\lambda_2)}$

Часто называют одним из основных результатов в СТК

Теорема.
$$h(G) \ge \frac{\lambda_2(1-s)}{2}$$
, где $s = |S|/|V|$

Доказательство. Известно, что

$$\min_{x^{\mathrm{T}}\tilde{1}=0} \frac{x^{\mathrm{T}}Lx}{x^{\mathrm{T}}x} = \lambda_{2}.$$

Поэтому для любого вектора x ортогонального к 1 выполняется $x^{\mathrm{\scriptscriptstyle T}} L x \geq \lambda_2 x^{\mathrm{\scriptscriptstyle T}} x$.

Если $x=x_S-s\tilde{1}$, где x_S – характеристический вектор множества S (поправка x_S до ортогональности к $\tilde{1}$), то

$$x^{\mathrm{T}}Lx = \sum_{(i,j)\in E} (x_i - x_j) = |\delta S|$$

и $x^{\mathrm{\scriptscriptstyle T}}\widetilde{1}=0$. Из

$$x^{\mathrm{T}}x = |S|(1-s)^{2} + (|V| - |S|)s^{2} = |S|(1-s)$$

следует утверждение теоремы.

Применение в комбинаторике

Теорема.
$$h(G) \ge \frac{\lambda_2(1-s)}{2}$$
, где $s = |S|/|V|$.

Следствие (можно показать, зная спектр гиперкуба), что для любого подмножества вершин $S:|S| \le 2^{n-1}$ справедливо $|\partial S| \ge |S|$ (это простое некомбинаторное доказательство)

Матричная теорема о деревьях

Теорема [без доказательства]

В неориентированном мультиграфе число остовных деревьев равно

$$\det(L+J/n^2) = \mu_2 \cdot \ldots \cdot \mu_n / n$$

(с.з. Лапласа $0 = \mu_1 \le ... \le \mu_n$)

Следствие

Число остовных деревьев полного графа

(формула Кэли)

$$\mathrm{od}(K_n) = n^{n-2}$$

Число остовных деревьев полного двудольного графа

$$\operatorname{od}(K_{m,n}) = m^{n-1} n^{m-1}$$

ДЗ доказать

На семинаре разберёмся

Матричная теорема о деревьях

Теорема [без доказательства]

$$|V| = n = 2k$$
 , с.з. Лапласа $0 = \mu_1 \leq \ldots \leq \mu_n$, если $\mu_n \leq 2\mu_2$,

то в графе есть совершенное соответствие

(подмножество рёбер такое, что любая вершина инцидентна только одному ребру множества).

Теорема [без доказательства]

Кратность нуля как с.з. (неориентированного графа) равна числу компонент связности.

Как быть с двудольностью

Спектр Лапласа не распознаёт двудольность ДЗ Показать

Теорема [без доказательства]

Кратность нуля как с.з. (неориентированного графа) беззнакового Лапласа равна числу компонент двудольности.

Теорема [без доказательства]

Граф двудольный тогда и только тогда, когда спектр Лапласа равен "беззнаковому" спектру Лапласа.

ДЗ Показать на примерах, что так

Матрица смежности

Пошли другие обозначения

$$A$$
 ~ с.з. $\lambda_1 \ge \ldots \ge \lambda_n$ (могут быть <0!!!) $L = kI - A$ ~ с.з. $0 = \mu_1 \le \mu_2 \le \ldots \le \mu_n$

Теорема $d_{\mathrm{avr}} \leq \lambda_{\mathrm{l}} \leq d_{\mathrm{max}}$ Доказательство

$$\lambda_{1} = \max_{x} \frac{x^{\mathrm{T}} A x}{x^{\mathrm{T}} x} \ge \frac{\tilde{1}^{\mathrm{T}} A \tilde{1}}{\tilde{1}^{\mathrm{T}} \tilde{1}} = \frac{\sum A_{ij}}{n} = \frac{\sum \deg(i)}{n}$$

Пусть u – собственный вектор, соответствующий u_1 с i-м максимальным элементом (можно считать ненулевым), тогда

$$\lambda_{1} = \frac{\left(Av\right)_{i}}{v_{i}} = \frac{\sum_{j:(i,j)\in E} v_{j}}{v_{i}} \le \sum_{j:(i,j)\in E} \frac{v_{j}}{v_{i}} \le \sum_{j:(i,j)\in E} 1 = \deg(i) \le d_{\max}.$$

Теорема
$$d_{\mathrm{avr}} \leq \lambda_{\mathrm{l}} \leq d_{\mathrm{max}}$$

Замечание Если удалить вершину с наименьшей степенью, то средняя степень d_{avr} неубывает, а λ_{l} невозрастает, т.е. не смотря на оценку они ведут себя по-разному!

$$\lambda_{1} = \max_{x} \frac{x^{T} A x}{x^{T} x} \ge \max_{y} \frac{\begin{pmatrix} y \\ 0 \end{pmatrix}^{T} A \begin{pmatrix} y \\ 0 \end{pmatrix}}{\begin{pmatrix} y \\ 0 \end{pmatrix}^{T} \begin{pmatrix} y \\ 0 \end{pmatrix}}$$

Замечание Из этой схемы доказательства понятно, что

$$\lambda_{\min}(A) \le \lambda_{\min}(A') \le \lambda_{\max}(A') \le \lambda_{\max}(A)$$

где A^\prime – подматрица A , образованная строками и столбцами из

$$\{i_1,\ldots,i_k\}$$

Следствие. Граф раскрашиваем в $d_{\max}+1$ цвет (очевидно). Граф раскрашиваем в $\left| \ \lambda_1 \right|+1$ цвет. По индукции.

Оценка точна! ДЗ Почему?

Замечание [без доказательства]. Хроматическое число

$$\geq \frac{\lambda_n}{\lambda_n - d_{\text{avr}}}$$

$$\geq 1 + \frac{\lambda_1}{-\lambda_n}$$

[через оценку сумм с.з. для блоковых матриц]

Напоминалка

Граф 2-раскрашиваем ⇔ двудольный Граф 3-раскрашиваем – NP-полная задача Граф планарный ⇒ 4-раскрашиваем

Лемма. Если в конечном графе $\lambda_{ m l}=d_{ m max}$, то он $d_{ m max}$ -регулярный.

Лемма. Если в конечном графе $\lambda_{
m l}=d_{
m max}$, то он $d_{
m max}$ -регулярный.

Доказательство. У нас при доказательстве было неравенство

$$\lambda_{1} = \frac{\left(Av\right)_{i}}{v_{i}} = \frac{\sum_{j:(i,j)\in E} v_{j}}{v_{i}} \le \sum_{j:(i,j)\in E} \frac{v_{j}}{v_{i}} \le \sum_{j:(i,j)\in E} 1 = \deg(i) \le d_{\max}$$

Теперь – это равенство:

$$\frac{v_j}{v_i} = 1, (i, j) \in E,$$

не только у і-й вершины максимальная степень, но и у всех соседей. Из связности графа ⇒ у всех вершин в графе максимальная степень.

Для DM. Спектр пополнять другими характеристиками графа.

Теорема (Фробениуса-Перрона) [без доказательства]

Пусть граф связный и взвешенный, тогда

- 1) $\lambda_{\rm l} \geq -\lambda_n$ [они все вещественные, пока не больше]
- $2) \ \lambda_1 > \lambda_2$
- 3) для $\lambda_{\scriptscriptstyle \parallel}$ есть положительный собственный вектор

[Можно добавить доказательство + вспомогательная лемма]

Теорема (Ф-П для Лапласианов) [без доказательства]

Пусть матрица M имеет неположительные недиагональные элементы, граф ненулевых недиагональных элементов связен.

Пусть λ_1 – наименьшее с.з. с с.в. v^1 . Тогда можно выбрать v^1 положительным и λ_1 имеет кратность 1.

Теорема

Граф двудольный тогда и только тогда, когда для любого с.з. λ величина $(-\lambda)$ тоже является с.з.

Связный граф с наибольшим с.з. λ двудольный тогда и только тогда, когда $(-\lambda)$ тоже является с.з.

Сильно регулярный граф – простой, ориентированный, без петель, существуют параметры $(n,k,k_{_{\! 1}},k_{_{\! 2}})$ такие, что

$$|V| = n$$
, $\forall i \deg(i) = k$, $\forall (i, j) \in E \deg(i, j) = k_1$, $\forall (i, j) \notin E \deg(i, j) = k_2$.

 $\deg(i,j)=k$ - вершины i,j имеют k общих соседей.

Теорема Для простого нетривиального (не полного и не пустого) графа порядка n следующие утверждения эквивалентны:

- 1) граф (n, k, k_1, k_2) -сильно регулярный
- 2) $A^2 = (k_1 k_2)A + (k k_2)I + k_2J$ для некоторых вещественных k, k_1, k_2
- 3) есть два с.з. с с.в. ортогональными к $\hat{1}$

Доказательство Первые два утв. очевидно эквивалентны. Пусть верно второе и v – с.в. с с.з. λ , тогда

$$A^{2}v = (k_{1} - k_{2})Av + (k - k_{2})Iv + k_{2}Jv$$

$$\lambda^{2}v = (k_{1} - k_{2})\lambda v + (k - k_{2})v + k_{2}(\sum v_{i})v$$

Для вектора ортогонального к $\tilde{1}$ – $\lambda^2 = (k_1 - k_2)\lambda + (k - k_2)$

Здесь два разных решения.

Если верно третье утв. и соответствующие с.з. λ, λ' , то ДЗ почему?

$$(A - \lambda I)(A - \lambda' I) = sJ$$

для некоторого S, поэтому $A^2 \in \Lambda(A,I,J)$.

Теорема

Граф с одним с.з. – без рёбер Связный граф с двумя с.з. – полный Связный регулярный граф с 3 с.з. – строго регулярный Связный регулярный граф с 4 с.з. – «walk-regular» (для любого $k \ge 2$ число путей через вершину длины k не зависит от вершины)

МАТЕМАТИЧЕСКИЕ ОСНОВЫ СТГ

 $L\succ 0$, если L – неотрицательно(!) определённая матрица $G\succ H$, если $L_{\!_G}\succ L_{\!_H}$, если $L_{\!_G} - L_{\!_H} \succ 0$

Лемма. Если $G \succ cH$, то $\mu_k(G) \geq c\mu_k(H)$ для всех k (здесь умножение на c – умножение весов графа).

Доказательство очевидно из

$$\lambda_{k}(G) = \max_{\substack{S \subseteq \mathbf{R}^{n} \\ \dim(S) = k}} \min_{x \in S} \frac{x^{\mathsf{T}} L_{G} x}{x^{\mathsf{T}} x} \geq c \max_{\substack{S \subseteq \mathbf{R}^{n} \\ \dim(S) = k}} \min_{x \in S} \frac{x^{\mathsf{T}} L_{H} x}{x^{\mathsf{T}} x} \geq c \lambda_{k}(H).$$

Аналогична монотонность при добавлении рёбер и увеличении отдельных весов.

МАТЕМАТИЧЕСКИЕ ОСНОВЫ СТГ

Теорема об аппроксимации

Для любого $\varepsilon>0$ существует d>0, что для всех достаточно больших n существует d-регулярный граф G:

$$(1+\varepsilon)G \succ K_n \succ (1/(1+\varepsilon))G$$
.

Полные графы аппроксимируются графами с малым числом рёбер!