- Theorem: PCP is undecidable.
 - From any TM M and input w, we can construct an instance P where a match is an accepting of M on w.
 - Dominos $P': (1) \left[\frac{\#}{\#q_0 w_1 \dots w_n \#} \right]; (2) \left[\frac{qa}{br} \right]$ if $\delta(q, a) = (r, b, R); (3) \left[\frac{cqa}{rcb} \right]$ if $\delta(q, a) = (r, b, L); (4) \left[\frac{a}{a} \right]$ for every $a \in \Gamma; (5) \left[\frac{\#}{\#} \right]$ and $\left[\frac{\#}{\sqcup \#} \right]; (6) \left[\frac{aq_{\text{accept}}}{q_{\text{accept}}} \right]$ and $\left[\frac{q_{\text{accept}}a}{q_{\text{accept}}} \right]$ for every $a \in \Gamma; (7) \left[\frac{q_{\text{accept}} \#}{\#} \right]$.
 - Define *u, u*, and *u* to be the three strings: (1) $*u = *u1*...*u_n$; (2) $u* = u1*...*u_n*$; (3) $*u* = *u1*...*u_n*$.
 - Dominos $P': [\frac{t_1}{b_1}] = [\frac{\#}{\#q_0 w_1...w_n \#}], ..., [\frac{t_k}{b_k}].$
 - Dominos $P: \left[\frac{*t_1}{*b_1*}\right], \left[\frac{*t_1}{b_1*}\right], \dots, \left[\frac{*t_k}{b_k*}\right], \left[\frac{*@}{@}\right].$
- **Theorem**: CFL-Intersection is undecidable. (Intuition: PCP \leq_T CFL-Intersection)
 - Let a decider for CFL-Intersection be $H := \text{On input } (G_1, G_2)$: Accept if $L(G_1) \cap L(G_2) \neq \emptyset$. Reject if $L(G_1) \cap L(G_2) = \emptyset$.
 - Define $G'_1((u_1, v_1), \dots, (u_n, v_n)) := \text{Let } \Sigma$ be the set of alphabets used in $((u_1, v_1), \dots, (u_n, v_n))$. $L(G'_1) = \{ w \# w^R | w \in \Sigma^* \}.$
 - Define $G'_2((u_1, v_1), \dots, (u_n, v_n)) := S \to u_i S v_i^R \mid \# \text{ for } i = 1, \dots, n.$
 - Construct a decider $D := \text{On input } ((u_1, v_1), \dots, (u_n, v_n))$: Construct $G'_1((u_1, v_1), \dots, (u_n, v_n))$ and $G'_2((u_1, v_1), \dots, (u_n, v_n))$. Run H on (G'_1, G'_2) . Accept if H accepts (G'_1, G'_2) . Reject if H rejects (G'_1, G'_2) .
 - If *H* decides CFL-Intersection, then *D* decides PCP. PCP is undecidable, so CFL-Intersection is undecidable.
- Theorem: CFL-Universality (ALL_{CFG}) is undecidable. (Intuition: $A_{TM} \leq_T ALL_{CFG}$)
 - Let a decider for ALL_{CFG} be H := On input |G|: Accept if $L(G) = \Sigma^*$. Reject if $L(G) \neq \Sigma^*$.
 - Define $G'(M, w) := L(G') = \{C_0 \# C_1 \# \dots \# C_n\}$ which satisfies any one of the following:
 - C_0 is not the initial configuration.
 - C_n is not an accepting configuration.
 - There exists $0 \le i < n$ such that $C_i \vdash C_{i+1}$ does not obey the transition functions for M.
 - Construct a decider D := On input (M, w): Construct G'(M, w). Run H on [G']. Accept if H rejects [G']. Reject if H accepts [G'].
 - If H decides ALL_{CFG} , then D decides A_{TM} . A_{TM} is undecidable, so ALL_{CFG} is undecidable.
- Theorem: CFL-Subset is undecidable.
 - Let a decider for CFL-Subset be $H := \text{On input } (G_1, G_2)$: Accept if $L(G_1) \subseteq L(G_2)$. Reject if $L(G_1) \not\subseteq L(G_2)$.
 - Construct a decider D := On input [G]: Run H on (G'_1, G) where $L(G'_1) = \Sigma^*$. Accept if H accepts (G'_1, G) . Reject if H rejects (G'_1, G) .
 - If *H* decides CFL-Subset, then *D* decides ALL_{CFG}. ALL_{CFG} is undecidable, so CFL-Subset is undecidable.