Домашнее задание N2

Студент: Гусев М. В.

Вариант: 104

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	1				4	1		2		4	5
e2	1	0					1	5	5	1	5	
e3			0	1	2			4	3	1		
e4			1	0	4					2		1
e5			2	4	0	1		5	2		5	
e6	4				1	0	2		2		3	
e7	1	1				2	0			2		5
e8		5	4		5			0		2	1	
e9	2	5	3		2	2			0		1	
e10		1	1	2			2	2		0	4	2
e11	4	5			5	3			1	4	0	3
e12	5			1			5	1		2	3	0

Найти кратчайшие путь от вершины е1 ко всем остальным вершинам:

1. Положить I(e1) = 0+ и считать эту пометку постоянной. Положить I(e_i) = ∞, для всех i ≠ 1 и считать эту пометку временной. Положить p = e1. Результаты итерации запишем в таблицу.

	1
e1	0*
e2	8
e3	8
e4	8
e5	8
e6	8
e7	8
e8	8
e9	8
e10	8
e11	8
e12	8

2. Γ_p = {e2, e6, e7, e9, e11, e12}. Все пометки временные, уточним их:

$$I(e2) = min[\infty, 0*+1] = 1$$

$$I(e6) = min[\infty, 0*+4] = 4$$

$$I(e7) = min[\infty, 0*+1] = 1$$

$$I(e9) = min[\infty, 0*+2] = 2$$

$$I(e11) = min[\infty, 0*+4] = 4$$

$$I(e12) = min[\infty, 0*+5] = 5$$

3. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_2) = 1^*$

	1	2
e1	0*	0*
e2	8	1*
e3	8	8
e4	8	8
e5	8	8
e6	8	4
e7	8	1
e8	8	8
e9	8	2
e10	8	8
e11	8	4
e12	∞	5

- 4. Положим p = e2
- 5. Не все вершины имеют постоянную длину, Γ_p = {e1, e7, e8, e9, e10, e11}. Все вершины с временными пометками: e7, e8, e9, e10, e11, уточним их:

$$I(e7) = min[1, 1*+1] = 1$$

 $I(e8) = min[\infty, 1*+5] = 6$
 $I(e9) = min[2, 1*+5] = 2$
 $I(e10) = min[\infty, 1*+1] = 2$
 $I(e11) = min[4, 1*+5] = 4$

6. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_7) = 1^*$

	1	2	3
e1	0*		
e2	8	1*	
e3	8	8	8
e4	8	8	8
e5	8	8	8
e6	8	4	4
e7	8	1	1*
e8	8	8	6
e9	8	2	2
e10	8	8	2
e11	8	4	4
e12	8	5	5

- Положим р = e7
- 8. Не все вершины имеют постоянную длину, Γ_p = {e1, e2, e6, e10, e12}. Все вершины с временными пометками: e6, e10, e12, уточним их:

$$I(e6) = min[4, 1*+1] = 2$$

 $I(e10) = min[2, 1*+2] = 2$
 $I(e12) = min[5, 1*+5] = 2$

9. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = \min[I(e_i)]$: $I(e_i^*) = \min[I(e_i)] = I(e_i^*) = 2^*$

	1	2	3	4
e1	0*			
e2	8	1*		
e3	8	8	8	8
e4	8	8	8	8
e5	8	8	8	8
е6	8	4	4	2*
e7	8	1	1*	
e8	8	8	6	6
e9	8	2	2	2
e10	8	8	2	2
e11	8	4	4	8
e12	8	5	5	10

- 10. Положим р = e6
- 11. Не все вершины имеют постоянную длину, Γ_p = {e1, e5, e7, e9, e11}. Все вершины с временными пометками: e5, e9, e11, уточним их:

$$I(e5) = min[\infty, 2*+1] = 3$$

$$I(e9) = min[2, 2*+2] = 2$$

$$I(e11) = min[8, 2*+3] = 5$$

12. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_9) = 2^*$

	1	2	3	4	5
e1	0*				
e2	8	1*			
e3	8	8	8	8	8
e4	8	8	8	8	8
e5	8	8	8	8	8
e6	8	4	4	2*	
e7	8	1	1*		
e8	8	8	6	6	6
e9	8	2	2	2	2*
e10	8	8	2	2	2
e11	8	4	4	8	5
e12	8	5	5	10	10

13. Не все вершины имеют постоянную длину, Γ_p = {e1, e2, e3, e5, e6, e11}. Все вершины с временными пометками: e3, e5, e11, уточним их:

$$I(e3) = min[\infty, 2*+3] = 5$$

$$I(e5) = min[\infty, 2*+2] = 4$$

$$I(e11) = min[5, 2*+1] = 3$$

14. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_{10}) = 2^*$

	1	2	3	4	5	6
e1	0*					
e2	8	1*				
e3	8	8	8	8	8	5
e4	8	8	8	8	8	8
e5	8	8	8	8	8	4
e6	8	4	4	2*		
e7	8	1	1*			
e8	8	8	6	6	6	6
e9	8	2	2	2	2*	
e10	8	8	2	2	2	2*
e11	8	4	4	8	5	3
e12	8	5	5	10	10	10

- **15**. Положим р = e**10**
- 16. Не все вершины имеют постоянную длину, Γ_p = {e2, e3, e4, e7, e8, e11, e12}. Все вершины с временными пометками: e3, e4, e8, e11, e12, уточним их:

$$I(e3) = min[5, 2*+1] = 3$$

$$I(e4) = min[\infty, 2*+2] = 4$$

$$I(e8) = min[6, 2*+2] = 4$$

$$I(e11) = min[3, 2*+4] = 3$$

$$I(e12) = min[10, 2*+2] = 4$$

17. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_3) = 3^*$

	1	2	3	4	5	6	7
e1	0*						
e2	8	1*					
e3	8	8	8	∞	8	5	3*
e4	8	8	8	∞	∞	8	4
e5	8	8	8	∞	8	4	4
e6	8	4	4	2*			
e7	8	1	1*				
e8	8	8	6	6	6	6	4
e9	8	2	2	2	2*		
e10	8	8	2	2	2	2*	
e11	8	4	4	8	5	3	3
e12	8	5	5	10	10	10	4

- 18. Положим р = e3
- 19. Не все вершины имеют постоянную длину, Γ_p = {e4, e5, e8, e9, e10}. Все вершины с временными пометками: e4, e5, e8, уточним их:

$$I(e4) = min[4, 3*+1] = 4$$

$$I(e5) = min[4, 3*+2] = 4$$

$$I(e8) = min[4, 3*+4] = 4$$

20. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_{11}) = 3^*$

	1	2	3	4	5	6	7	8
e1	0*							
e2	8	1*						
e3	8	8	8	8	8	5	3*	
e4	8	8	8	8	8	8	4	4
e5	8	8	8	8	8	4	4	4
e6	8	4	4	2*				
e7	8	1	1*					
e8	8	8	6	6	6	6	4	4
e9	8	2	2	2	2*			
e10	8	8	2	2	2	2*		
e11	8	4	4	8	5	3	3	3*
e12	8	5	5	10	10	10	4	4

- 21. Положим р = e11
- 22. Не все вершины имеют постоянную длину, Γ_p = {e1, e2, e5, e6, e9, e10, e12}. Все вершины с временными пометками: e5, e12, уточним их:

$$l(e4) = min[4, 3*+5] = 4$$

 $l(e12) = min[4, 3*+3] = 4$

23. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_4) = 4^*$

	1	2	3	4	5	6	7	8	9
e1	0*								
e2	8	1*							
e3	8	8	8	∞	8	5	3*		
e4	8	8	8	∞	8	8	4	4	4*
e5	8	8	8	∞	8	4	4	4	4
e6	8	4	4	2*					
e7	8	1	1*						
e8	8	8	6	6	6	6	4	4	4
e9	8	2	2	2	2*				
e10	8	8	2	2	2	2*			
e11	8	4	4	8	5	3	3	3*	
e12	8	5	5	10	10	10	4	4	4

- 24. Положим р = e4
- 25. Не все вершины имеют постоянную длину, Γ_p = {e3, e5, e10, e12}. Все вершины с временными пометками: e5, e12, уточним их:

$$I(e5) = min[4, 4*+4] = 4$$

 $I(e12) = min[4, 4*+1] = 4$

26. Среди всех вершин с временными пометками, найдем такую, что $l(e_i^*) = min[l(e_i)]$: $l(e_i^*) = min[l(e_i)] = l(e_5) = 4^*$

	1	2	3	4	5	6	7	8	9	
e1	0*									
e2	8	1*								
e3	8	8	8	8	8	5	3*			
e4	8	∞	8	∞	8	8	4	4	4*	
e5	8	∞	8	∞	8	4	4	4	4	4*
e6	8	4	4	2*						
e7	8	1	1*							
e8	8	∞	6	6	6	6	4	4	4	4
e9	8	2	2	2	2*					
e10	8	∞	2	2	2	2*				·
e11	8	4	4	8	5	3	3	3*		
e12	8	5	5	10	10	10	4	4	4	4

- 27. Положим р = e5
- 28. Не все вершины имеют постоянную длину, Γ_p = {e3, e4, e6, e8, e9, e11}. Все вершины с временными пометками: e8, уточним их:

$$I(e8) = min[4, 4*+5] = 4$$

29. Среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_8) = 4^*$

	1	2	3	4	5	6	7	8	9	
e1	0*									
e2	8	1*								
e3	8	8	8	∞	8	5	3*			
e4	8	8	8	∞	8	8	4	4	4*	
e5	8	8	8	∞	8	4	4	4	4	4*
e6	8	4	4	2*						
e7	8	1	1*							
e8	8	8	6	6	6	6	4	4	4	4*
e9	8	2	2	2	2*					
e10	8	8	2	2	2	2*				
e11	8	4	4	8	5	3	3	3*		
e12	8	5	5	10	10	10	4	4	4	4

- 30. Положим р = e8
- 31. Все вершины имеют постоянную длину, поэтому среди всех вершин с временными пометками, найдем такую, что $I(e_i^*) = min[I(e_i)]$: $I(e_i^*) = min[I(e_i)] = I(e_{12}) = 4^*$
- 32. Положим р = e12

33. Все вершины имеют постоянную длину

	1	2	3	4	5	6	7	8	9	
e1	0*									
e2	8	1*								
e3	8	8	8	8	8	5	3*			
e4	8	∞	8	8	8	8	4	4	4*	
e5	8	∞	8	8	8	4	4	4	4	4*
e6	8	4	4	2*						
e7	8	1	1*							
e8	8	∞	6	6	6	6	4	4	4	4*
e9	8	2	2	2	2*					
e10	8	∞	2	2	2	2*				
e11	8	4	4	8	5	3	3	3*		
e12	8	5	5	10	10	10	4	4	4	4*