МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №8

Выполнил: Студент группы Р3208 Петров В. М.

Преподаватель:

Санкт-Петербург, 2025

Цель работы

Изучить численные методы решения нелинейных уравнений и реализовать три из них средствами программирования. Понять их сходства и различия.

Ход работы

Часть 1.

$$3x^3 + 1.7x^2 - 15.42x + 6.89$$

Метод секущих: [-3; -2]

Рабочая формула:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 ...$

Метод хорд: [0; 1]

Рабочая формула:

$$x_i=a_i-rac{b_i-a_i}{f(b_i)-f(a_i)}f(a_i)$$
 или $x_i=rac{a_if(b_i)-b_if(a_i)}{f(b_i)-f(a_i)}$

Метод простой итерации: начальное приближение -x = 1

Рабочая формула:

$$x_{i+1} = \varphi(x_i)$$

$$\varepsilon = 10^{-2}$$

№ шага	a	b	х	f(a)	f(b)	f(x)	$ x_{k+1}-x_k $
0	0	1	0.64272	6.89	-3.83	-1.522	0.3573
1	0	0.64272	0.52643	6.89	-1.522	-0.3188	0.11629
2	0	0.52643	0.50315	6.89	-0.3188	-0.0561	0.02328
3	0	0.50315	0.4991	6.89	-0.0561	-0.0095	0.00405

Таблица 1 - Уточнение центрального корня методом хорд

№ шага	x_{k-1}	$f(x_{k-1})$	x_k	$f(x_k)$	x_{k+1}	$f(x_{k+1})$	$ x_k-x_{k+1} $
0	-3	-12.55	-2	20.53	-2.62062	4.9826	0.62062
1	-2	20.53	-2.62062	4.9826	-2.8195	-3.3609	0.19888
2	-2.62062	4.9826	-2.8195	-3.3609	-2.7394	0.2173	0.0801
3	-2.8195	-3.3609	-2.7394	0.2173	-2.74426	0.0085	0.00486

Таблица 2 - Уточнение крайнего левого корня методом секущих

№ шага	X_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
0	1.000	-0.26826	11.0909	1.26826
1	-0.26826	0.43887	0.70359	0.70713
2	0.43887	0.49657	0.01938	0.057699
3	0.49657	0.49826	1.74e-05	0.00168

Таблица 3 - Уточнение центрального корня методом простой итерации

Рисунок 1 - График функции $x^3 - 2,92x^2 + 1,435x + 0,791$

2 часть

$$\begin{cases} tg(xy) = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases} \rightarrow \begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases} \rightarrow \begin{cases} tg(xy) - x^2 = 0 \\ 0.8x^2 + 2y^2 - 1 = 0 \end{cases}$$

$$\left| \frac{y}{(cosxy)^2} - 2x \frac{x}{(cosxy)^2} \right| * \left(\frac{\Delta x}{\Delta y} \right) = \begin{pmatrix} x^2 - tg(xy) \\ 1 - 0.8x^2 - 2y^2 \end{pmatrix}$$

$$\left\{ \left(\frac{y}{(cosxy)^2} - 2x \right) \Delta x + \frac{x}{(cosxy)^2} \Delta y = x^2 - tg(xy) \\ 1.6x\Delta x + 4y \Delta y = 1 - 0.8x^2 - 2y^2 \end{cases}$$

Начальное приближение: $x_0 = -0.61$; $y_0 = -0.59$

Первая итерация:

$$\begin{cases} \left(\frac{-0.59}{(\cos(-0.61)(-0.59))^2} - 2(-0.61)\right) \Delta x + \frac{-0.61}{(\cos(-0.61)(-0.59))^2} \Delta y = (-0.61)^2 - tg((-0.61)(-0.59)) \\ 1,6(-0.61)\Delta x + 4(-0.59) \Delta y = 1 - 0,8(-0.61)^2 - 2(-0.59)^2 \end{cases}$$

$$\begin{cases} 0.5465\Delta x + (-0.6964)\Delta y = -0.0042 \\ -0.976\Delta x - 2.36 \Delta y = 0,00612 \end{cases}$$

$$\begin{cases} \Delta x = 0.0029 \\ \Delta y = -0.0038 \end{cases}$$

Приближение: $x_1 = -0.61 + 0.0029 = -0.6071$; $y_1 = -0.59 - 0.0038 = -0.5938$

$$|x_1 - x_0| \le \varepsilon, |y_1 - y_0| \le \varepsilon$$

 $|-0.6071 + 0.61| \le \varepsilon, |-0.5938 + 0.59| \le \varepsilon \Rightarrow 1$ -ый корень: (-0.6071; -0.5938)

Аналогично находим 2-ой корень: (0; -0.70711)

Корни симметричны относительно центра координат, поэтому другие 2 корня: $(0.6071;\ 0.5938)\ u\ (0;\ 0.70711)$

Рисунок 2 - График 2-ух функций

Блок-схемы используемых методов

Рисунок 3 - Блок-схема метода хорд

Рисунок 4 - Блок-схема метода секущих

Рисунок 5 - Блок-схема метода простой итерации

Результаты выполнения программы

Вывод

В результате выполнения данной лабораторной работой я познакомился с численными методами решения нелинейных уравнений и реализовал метод хорд, метод секущих и метод простой итерации на языке программирования Python, закрепив знания. Все методы довольно легко программируются и дают высокую точность и быструю сходимость при удачном выборе начального приближения.