Exercise 9. Let (X, \mathscr{A}) be a measurable space, and let μ be a measure on (X, \mathscr{A}) such that $\mu(X) = 1$. Suppose that $1 \leq p_1 < p_2 < +\infty$.

- (a) Show that if f belongs to $\mathscr{L}^{p_2}(X, \mathscr{A}, \mu)$, then f belongs to $\mathscr{L}^{p_1}(X, \mathscr{A}, \mu)$ and satisfies $||f||_{p_1} \leq ||f||_{p_2}$. (Hint: use Hölder's inequality or Jensen's inequality.)
- (b) Show that if f and $f_1, f_2,...$ belong to $\mathcal{L}^{p_2}(X, \mathcal{A}, \mu)$ and $\{f_n\}$ converges to f in p_2 th mean, then $\{f_n\}$ converges to f in p_1 th mean.

Proof.