Practica 5: Sensor de Estado Sólido

Sistemas de Medicion y Control 18MPEDS0730 Ago-Dic 2025

Centro de Enseñanza Tecnica Industrial Plantel Colomos Tgo. en Desarrollo de Software

> Academia: Sistemas Electrónicos Profesor: Diana Marisol Figueroa Flores

> EMMANUEL BUENROSTRO 22300891 7F1 EMILIANO ARZATE 22300929 7F1

> > 9 de octubre de 2025

§1 Objetivo

Objetivo General: Experimentar el funcionamiento de un LM35.

Objetivos Específicos: Verificar el funcionamiento básico, de un sensor de estado sólido y realizar su curva de respuesta, utilizando un acondicionamiento de amplificación para mandar la señal eléctrica a un sistema de adquisición de datos manejando una resolución de 8 bits.

§2 Desarrollo Teórico

§2.1 Resumen

Elaborar un resumen sobre los diferentes tipos de sensores de estado sólido. Anexar las referencias bibliográficas, una referencia deberá ser virtual y la otra de un libro, considerando el formato APA correspondiente al tipo de referencia.

§2.2 Material

Anotar el material y equipo para llevar a cabo la práctica agregando los valores teóricos.

§2.3 Caracteristicas Electricas de los Componentes

Anexar características eléctricas de todos los componentes a utilizar, así como los voltajes y corrientes máximas de trabajo, distribución de terminales, etc.

§2.4 Diagrama a Bloques

§2.5 Calculos

Realizar los cálculos correspondientes para el acoplamiento de la señal del termistor hacia el ADC.

Voltaje por °C LM35: 10mV

Resolución ADC 8 bits: $\frac{5V}{256} = 19.5 \text{mV}$

Amplificación: $\frac{19.5}{10} = 1.95$

En AmpOp Amplificador no inversor: $R_f = R_q = 1k$

$$V_{\text{salida}} = V_{\text{Entrada}}(1 + \frac{R_f}{R_g}) = 2 * V_{\text{Entrada}}$$

Amplificación de 2.

§2.6 Diagrama ISA

Agregar tú diagrama utilizando la nomenclatura ISA.

§3 Desarrollo Practico

§3.1 Pasos

Describe los pasos desde el inicio de la elaboración de la práctica hasta el término de la misma

§3.2 Diagrama Electrico

Dibujar el Diagrama eléctrico utilizando algún programa para elaborar circuitos electrónicos, sin olvidar el valor de los componentes reales.

§3.3 Valores Prácticos

Equivalente en °C	Voltajes del LM35	Voltaje de entrada	Valor que se muestra
		Analogica	°C sensor Voltaje del
			Sensor y Voltaje de
			Amplificado
25°C	0.248V	0.469V	0.469V 25°C
33°C	0.330V	0.619V	0.619V 33°C
34°C	0.340v	0.637V	0.637V 34°C
39°C	0.385V	0.731V	0.731V 39°C
43°C	0.425V	0.806V	0.806V 43°C
48°C	0.475v	0.900V	0.900V 48°C
53°C	0.529v	0.993V	0.993V 53°C
54°C	0.543v	1.012V	1.1012V 54°C
56°C	0.558v	1.050V	1.050V 56°C
58°C	0.578v	1.08V	1.08V 58°C

Gráfica de Respuesta del Sensor de Estado Solido

§4 Observaciones y Conclusiones

§4.1 Observaciones

 $Elaborar\ las\ observaciones\ correspondientes.$

§4.2 Conclusiones Personales

 $Realizar\ las\ conclusiones\ correspondientes\ de\ forma\ personal\ anexando\ usos\ y\ aplicaciones\ de\ lo\ aprendido.$