УДК 517.956

О КРАЕВОЙ ЗАДАЧЕ ДЛЯ УРАВНЕНИЯ ЛАПЛАСА СО СМЕШАННЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ В ПОЛУПОЛОСЕ

© 2024 г. Н.Ю. Капустин, Д.Д. Васильченко

В работе доказаны теоремы существования и единственности решения уравнения Лапласа со смешанными граничными условиями в полуполосе, а также получены интегральные представления для частных производных решения.

DOI:

Рассмотрим краевую задачу для уравнения Лапласа

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{1}$$

в полуполосе $D = \{(x,y): 0 < x < \pi, y > 0\}$ в классе функций $u(x,y) \in C(\overline{D}) \cap C^1(\overline{D} \cap \{y > 0\}) \cap C^2(D)$

с граничными условиями

$$u(0,y) = 0, \ \frac{\partial u}{\partial x}(\pi, y) = 0, \ y > 0,$$
 (2)

$$\lim_{y \to 0+0} \int_{0}^{\pi} \left[\frac{\partial u}{\partial y}(x,y) - \frac{\partial u}{\partial x}(x,y) + \varphi(x) \right]^{2} dx = 0, \ \varphi(x) \in L_{2}(0,\pi), \tag{3}$$

$$u(x,y) \rightrightarrows 0, y \to +\infty.$$
 (4)

Аналогичная задача рассматривалась как вспомогательная при изучении задачи Трикоми-Неймана для уравнения Лаврентьева-Бицадзе с граничными условиями второго рода на боковых сторонах полуполосы и коэффициентом $\frac{1}{k}$ при $\frac{\partial u}{\partial y}(x,y), |k|>1$, в статье [1]. На линии изменения типа ставилось условие склеивания нормальных производных по Франклю. Случай k=1 (классическая задача с непрерывным градиентом) не рассматривался и теорема единственности для вспомогательной задачи не доказывалась.

На задачу Трикоми с эллиптической частью в виде полуполосы обратил внимание А.В. Бицадзе в связи с математическим моделированием плоскопараллельных движений газа. В данном случае построение решения конформным отображением приводится к краевой задаче относительно аналитической функции в верхней полуплоскости [2, стр. 327]. На основании известной формулы Шварца [2, стр. 315] А.В. Бицадзе было выписано в квадратурах решение этой краевой задачи.

В работе [4] получено интегральное представление регулярного решения задачи для уравнения Лапласа в полукруге с краевым условием первого рода на полуокружности и двумя различными краевыми условиями типа наклонной производной на двух прямолинейных участках границы.

Теорема 1. Решение задачи (1 - 4) существует, причём его можно представить в виде ряда

$$u(x,y) = \sum_{n=0}^{\infty} A_n e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right],\tag{5}$$

еде коэффициенты $A_n,\ n=0,1,2,\ldots$ определяются из разложения

$$\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] = \frac{\varphi(x)}{\sqrt{2}}.$$
 (6)

Доказательство. Докажем существование решения задачи (1-4). В силу основного результата работы [2] система $\left\{\sin\left[\left(n+\frac{1}{2}\right)x+\frac{\pi}{4}\right]\right\}_{n=0}^{\infty}$ образует базис Рисса в пространстве $L_2(0,\pi)$. Разложим $\frac{\varphi(x)}{\sqrt{2}}$ по этой системе. Коэффициенты разложения в формуле (6) удовлетворяют неравенствам Бесселя

$$C_1 \|\varphi\|_{L_2(0,\pi)} \le \sum_{n=0}^{\infty} A_n^2 \left(n + \frac{1}{2}\right)^2 \le C_2 \|\varphi\|_{L_2(0,\pi)}, \ 0 < C_1 < C_2,$$

где C_1, C_2 не зависят от $\, \varphi \, .$ Следовательно сходится ряд $\, \sum\limits_{n=0}^{\infty} |A_n| \,$ и сходится равномерно ряд

(5). Дифференцировать ряд (5) по х в D можно так как каждая из функций $A_n e^{-\left(n+\frac{1}{2}\right)y} \sin\left[\left(n+\frac{1}{2}\right)x\right]$ имеет в области D производную, сам ряд (5) сходится равномерно и ряд производных

$$\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) e^{-\left(n + \frac{1}{2} \right) y} \cos \left[\left(n + \frac{1}{2} \right) x \right]$$

сходится равномерно в D. Аналогично можно показать, что (5) можно дважды дифференцировать по х и у. Функция (5) является решением уравнения (1) и удовлетворяет граничному условию (2). Условие (4) выполняется так как $\sum_{n=0}^{\infty} e^{-\left(n+\frac{1}{2}\right)y} = \frac{e^{-y/2}}{1-e^{-y}}$. Проверим выполнение условия (3).

Согласно разложению (6), условие (3) принимает вид

$$I(y) = 2\int_{0}^{\pi} \left[\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx$$

Докажем, что $I(y) \to 0$ при $y \to 0+0$. Запишем

$$I(y) \leq I_1(y) + I_2(y)$$
, где

$$I_1(y) = 4 \int_0^{\pi} \left[\sum_{n=0}^m A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx,$$

$$I_2(y) = 4 \int_0^{\pi} \left[\sum_{n=m+1}^{\infty} A_n \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^2 dx.$$

Зафиксируем $\forall \varepsilon > 0$. В силу левой части неравенства Бесселя имеем оценку

$$I_{2}(y) = 4 \int_{0}^{\pi} \left[\sum_{n=m+1}^{\infty} A_{n} \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^{2} dx \le$$

$$\le C_{3} \sum_{n=m+1}^{\infty} A_{n}^{2} \left(n + \frac{1}{2} \right)^{2} \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right)^{2} \le C_{3} \sum_{n=m+1}^{\infty} A_{n}^{2} \left(n + \frac{1}{2} \right)^{2} < \frac{\varepsilon}{2},$$

если т достаточно велико.

Во втором слагаемом мы имеем дело с конечным числом элементов, поэтому:

$$I_{1}(y) = 4 \int_{0}^{\pi} \left[\sum_{n=0}^{m} A_{n} \left(n + \frac{1}{2} \right) \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right) \sin \left[\left(n + \frac{1}{2} \right) x + \frac{\pi}{4} \right] \right]^{2} dx \le$$

$$\le C_{4} \sum_{n=0}^{m} A_{n}^{2} \left(n + \frac{1}{2} \right)^{2} \left(e^{-\left(n + \frac{1}{2} \right) y} - 1 \right)^{2} < \frac{\varepsilon}{2}$$

при $0 < y < \delta$, если δ достаточно мало. Условие (3) выполнено. Теорема доказана.

Теорема 2. Решение задачи (1-4) единственно

Доказательство. Докажем единственность решения этой задачи. Пусть u(x,y) - решение однородной задачи. Введём обозначения $C_{\varepsilon}=(0,\varepsilon), C_R=(0,R), D_R=(\pi,R), D_{\varepsilon}=(\pi,\varepsilon)$. $\prod_{R\varepsilon}$ - прямоугольник $C_{\varepsilon}C_RD_RD_{\varepsilon}$. Справедливы следующие соотношения:

$$0 = \iint_{\Pi_{R\varepsilon}} (R - y)(u_{xx} + u_{yy}) dx dy =$$

$$= \iint_{\Pi_{R\varepsilon}} ((R - y) u_x u)_x dx dy + \iint_{\Pi_{R\varepsilon}} ((R - y) u_y u)_y dx dy - \iint_{\Pi_{R\varepsilon}} (R - y) (u_x^2 + u_y^2) dx dy + \iint_{\Pi_{R\varepsilon}} u_y u dx dy =$$

$$= -\iint_{\Pi_{R\varepsilon}} (R - y) (u_x^2 + u_y^2) dx dy - \int_{C_{\varepsilon} D_{\varepsilon}} (R - \varepsilon) (u_y - u_x) u dx - \int_{C_{\varepsilon} D_{\varepsilon}} (R - \varepsilon) u_x u dx - \int_{C_{\varepsilon} D_{\varepsilon}} \frac{u^2}{2} dx +$$

$$+ \int_{C_{\varepsilon} D_{\varepsilon}} \frac{u^2}{2} dx$$

Отсюда следует

$$\int_{C_{\varepsilon}D_{\varepsilon}} (R - \varepsilon) (u_x - u_y) u dx + \frac{1}{2} \int_{C_RD_R} u^2 dx \le$$

$$\le (R - \varepsilon) \left[\int_{C_{\varepsilon}D_{\varepsilon}} (u_y - u_x)^2 dx \right]^{\frac{1}{2}} \left[\int_{C_{\varepsilon}D_{\varepsilon}} u^2 dx \right]^{\frac{1}{2}} + \frac{1}{2} \int_{C_RD_R} u^2 dx \le$$

$$\le (R - \varepsilon)^2 \int_{C_{\varepsilon}D_{\varepsilon}} (u_y - u_x)^2 dx + \frac{1}{4} \int_{C_{\varepsilon}D_{\varepsilon}} u^2 dx + \frac{1}{2} \int_{C_RD_R} u^2 dx,$$

$$\iint_{\Pi_{R\varepsilon}} (R - y) \left(u_x^2 + u_y^2 \right) dx dy + \frac{1}{4} \int_{C_{\varepsilon} D_{\varepsilon}} u^2 dx + \frac{R - \varepsilon}{2} u^2(\pi, \varepsilon) \le$$

$$\le (R - \varepsilon)^2 \int_{C_{\varepsilon} D_{\varepsilon}} (u_y - u_x)^2 dx + \frac{1}{2} \int_{C_R D_R} u^2 dx$$

В силу (3)

$$\lim_{\varepsilon \to 0+0} \int_{C_{\varepsilon} D_{\varepsilon}} (u_y - u_x)^2 dx = 0$$

отсюда вытекает соотношение

$$\lim_{\varepsilon \to 0+0} \iint\limits_{\prod_{R\varepsilon}} \left(R-y\right) \left(u_x^2 + u_y^2\right) dx dy + \frac{1}{4} \int\limits_{0}^{\pi} u^2(x,0) dx + \frac{R}{2} u^2(\pi,0) \leq \frac{1}{2} \int\limits_{C_R D_R} u^2 dx$$

Устремим теперь $R \to \infty$, тогда $\int\limits_{C_R D_R} u^2 dx \to 0$, отсюда $u(x,y) \equiv 0$ в \overline{D} . Теорема доказана. **Теорема 3.** Пусть u(x,y) - решение задачи (1)-(4) , тогда u_x,u_y представимы в виде

$$u_y(x,y) = -Im \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_0^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt, \tag{7}$$

$$u_x(x,y) = Re \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_0^{\pi} \frac{\sqrt{\sin t}}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \varphi(t) dt, \tag{8}$$

где z = x + iy.

Доказательство. Рассмотрим равенство (6). Система синусов $\left\{\sin\left|\left(n+\frac{1}{2}\right)x+\frac{\pi}{4}\right|\right\}^{\infty}$ образует базис в $L_2(0,\pi)$. Поэтому для коэффициентов $A_n\left(n+rac{1}{2}
ight)$ справедливо следующее представление [2]:

$$A_n\left(n+\frac{1}{2}\right) = \int_0^{\pi} h_{n+1}(t) \frac{\varphi(t)}{\sqrt{2}} dt,$$

где

$$h_n(t) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\operatorname{tg} t/2)^{\gamma/\pi}} \sum_{k=1}^n \sin kt B_{n-k}, \ B_l = \sum_{m=0}^l C_{\gamma/\pi}^{l-m} C_{-\gamma/\pi-l}^m (-1)^{l-m}, \ C_l^m = \frac{l(l-1)\dots(l-n+1)}{n!}.$$

Пусть u(x,y) - решение задачи (1-4), тогда

$$u(x,y) = \sum_{n=0}^{\infty} A_n e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right]$$

и соотвественно

$$u_y(x,y) = -\sum_{n=0}^{\infty} A_n \left(n + \frac{1}{2} \right) e^{-\left(n + \frac{1}{2}\right)y} \sin\left[\left(n + \frac{1}{2}\right)x\right] =$$

$$= -\sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{-\left(n+\frac{1}{2}\right)y} \sin\left[\left(n+\frac{1}{2}\right)x\right] dt,$$

или

$$u_{y}(x,y) = -Im \sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{-\left(n + \frac{1}{2}\right) y} e^{i\left(n + \frac{1}{2}\right) x} dt =$$

$$= -Im \sum_{n=0}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{n+1}(t) e^{i\left(n + \frac{1}{2}\right) z} dt = |m = n + 1| =$$

$$= -Im \sum_{m=1}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{m}(t) e^{i\left(m - \frac{1}{2}\right) z} dt =$$

$$= -Im e^{-\frac{iz}{2}} \sum_{m=1}^{\infty} \int_{0}^{\pi} \frac{\varphi(t)}{\sqrt{2}} h_{m}(t) e^{imz} dt.$$

Поменяем местами знаки интергирования и суммирования

$$u_y(x,y) = -Im \ e^{-\frac{iz}{2}} \int_0^{\pi} \frac{\varphi(t)}{\sqrt{2}} \sum_{m=1}^{\infty} h_m(t) e^{imz} dt$$

Введём новое обозначение:

$$I(t,z) = \sum_{m=1}^{\infty} h_m(t)e^{imz}$$

$$I(t,z) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\operatorname{tg} t/2)^{\gamma/\pi}} \sum_{n=1}^{\infty} \sum_{k=1}^{n} \sin kt B_{n-k} e^{inz} = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\operatorname{tg} t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} \sin kt \sum_{n=k}^{\infty} e^{inz} B_{n-k}$$

и новый индекс m=n-k

$$I(t,z) = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} \sin kt \sum_{m=0}^{\infty} e^{i(m+k)z} B_m = \frac{2}{\pi} \frac{(2\cos t/2)^{\beta}}{(\lg t/2)^{\gamma/\pi}} \sum_{k=1}^{\infty} e^{ikz} \sin kt \sum_{m=0}^{\infty} e^{imz} B_m$$
$$\sum_{k=1}^{\infty} e^{ikz} \sin kt = \frac{e^{iz} \sin t}{(1 - e^{i(z+t)}) (1 - e^{i(z-t)})}$$

Рассмотрим второй ряд:

$$\sum_{l=0}^{\infty} e^{ilz} B_l = \sum_{l=0}^{\infty} e^{ilz} \sum_{m=0}^{l} C_{\gamma/\pi}^{l-m} C_{-\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=m}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} = \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} e^{ilz} C_{\gamma/\pi}^{l-m} C_{\gamma/\pi-\beta}^m (-1)^{l-m} C_{\gamma/\pi-\beta}^m$$

Введём новый индекс суммирования k=l-m

$$\begin{split} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} e^{i(m+k)z} C_{\gamma/\pi}^k C_{-\gamma/\pi-\beta}^m (-1)^k &= \sum_{m=0}^{\infty} e^{imz} C_{-\gamma/\pi-\beta}^m \sum_{k=0}^{\infty} C_{\gamma/\pi}^k (-1)^k e^{ikz} = (1+e^{iz})^{-\gamma/\pi-\beta} (1-e^{iz})^{\gamma/\pi} = \\ &= (1+e^{iz})^{1/2} (1-e^{iz})^{1/2} = \sqrt{1-e^{i2z}}, \end{split}$$

так как в нашем случае $\beta = -1, \ \gamma = \pi/2$. Окончательно получаем формулу

$$\begin{split} u_y(x,y) &= -Im \ e^{\frac{-iz}{2}} \int_0^\pi \frac{\varphi(t)}{\sqrt{2}} I(t,z) dt = \\ &= -Im \ e^{\frac{-iz}{2}} \int_0^\pi \frac{2}{\pi} \frac{(2\cos t/2)^\beta}{(\operatorname{tg} t/2)^{\gamma/\pi}} \frac{e^{iz} \sin t}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \sqrt{1 - e^{i2z}} \frac{\varphi(t)}{\sqrt{2}} dt = \\ &= -Im \ \frac{2}{\pi} e^{\frac{-iz}{2}} \int_0^\pi \frac{1}{2\cos t/2 \sqrt{\tan t/2}} \frac{e^{iz} \sin t}{\left(1 - e^{i(z+t)}\right) \left(1 - e^{i(z-t)}\right)} \sqrt{1 - e^{i2z}} \frac{\varphi(t)}{\sqrt{2}} dt, \end{split}$$

т.е. представление:

$$u_y(x,y) = -Im \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_0^{\pi} \frac{\sqrt{\sin t}}{(1 - e^{i(z+t)})(1 - e^{i(z-t)})} \varphi(t) dt.$$

Рассуждая аналогично, получим представление

$$u_x(x,y) = Re \frac{\sqrt{1 - e^{i2z}}}{\pi} e^{\frac{iz}{2}} \int_{0}^{\pi} \frac{\sqrt{\sin t}}{(1 - e^{i(z+t)})(1 - e^{i(z-t)})} \varphi(t) dt.$$

Теорема доказана.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению № 075-15-2022-284.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Moucees Е.И.*, *Moucees Т.Е.*, *Baфадорова Г.О.* Об интегральном представлении задачи Неймана-Трикоми для уравнения Лаврентьева-Бицадзе // Дифференциальные уравнения, **2015** Т. 51. №8. С.1070-1075
- 2. *Моисеев Е.И.* О базисности одной системы синусов // Дифференциальные уравнения, **1987** Т. 23. №1. С.177-189
- 3. $\mathit{Бицадзе}\ A.B.$ Некоторые классы уравнений в частных производных. // М., Наука, 1981, 448 стр.
- 4. *Mouceeв Т. Е.* Об интегральном представлении решения уравнения Лапласа со смешанными краевыми условиями // Дифференциальные уравнения, **2011**, т. 47, №10, с.1446-1451.

УДК 517.956

Н.Ю. Капустин, Д.Д. Васильченко О краевой задаче для уравнения Лапласа со смешанными граничными условиями в полуполосе // Дифференциальные уравнения

В работе доказаны теоремы существования и единственности решения уравнения Лапласа со смешанными граничными условиями в полуполосе, а также получены интегральные представления для частных производных решения.

Библиогр. 8 назв.

Капустин Николай Юрьевич

Московский государственный университет им. М.В.Ломоносова. Факультет Вычислительной математики и кибернетики. **Уточнить!!!**

Васильченко Дмитрий Дмитриевич

Уточнить!!!