Fonte: FLEMMING, Diva Marília; WAGNER, Christian. Conjuntos e Elementos da Análise Real. Palhoça: Unisul Virtual, 2015.

Capítulo 1

Seção 1

Exemplo. Demonstrar o princípio da boa-ordenação.

Exemplo. Usando indução, provar que a soma dos n primeiros números naturais é igual a $\frac{n(n+1)}{2}$.

Exemplo. Qual a cardinalidade de $\{x \in \mathbb{R} \text{ tais que } |5x - 3| = 7\}$?

Exemplo. Estabelecer a cardinalidade do conjunto $A = \{x \in \mathbb{Z} \text{ tais que } 2 \le 2x + 9 \le 8\}.$

Exemplo. São conjuntos infinitos:

O conjunto dos números reais.

O conjunto das parábolas que passam pelo ponto (0,0).

O conjunto dos números pares.

Exemplo. O conjunto I dos números inteiros positivos ímpares é enumerável.

Exemplo. Verificar se o conjunto dos números inteiros é enumerável.

Seção 2

Exemplo. |12| = 12.

Exemplo. $|-12| = \max\{12, -12\}.$

Exemplo. $|12| = \sqrt{12^2}$.

Exemplo. Determinar os valores de x tais que $|x-a| < \varepsilon$.

Exemplo. Provar que $|x+y| \leq |x| + |y|$.

Exemplo. Provar que $|xy| \leq |x| |y|$.

Exemplo. Provar que $|x| - |y| \le ||x| - |y|| \le |x - y|$.

Exemplo. Resolver a inequação 2x + 1 < 7.

Exemplo. Determine se os conjuntos são limitados superiormente ou inferiormente, ou limitados, em \mathbb{Q} .

$$\{1, 3, 5, 7\};$$

$$\left\{\frac{1}{n}, n \in \mathbb{N}\right\};$$

$$\{-3n, n \in \mathbb{N}\};$$

Um conjunto finito qualquer.

Exemplo. \mathbb{R} é limitado?

Exemplo. O supremo de $A = \{2, 4, 6, 8\}$ é 8.

Exemplo. Dados [2,5]; (2,5); e [2,5), n=5 é cota superior e n<5 não é cota superior de todos.

Exemplo. O ínfimo de $A = \{2, 4, 6, 8\}$ é 2.

Exemplo. Dados [2,5]; (2,5); e [2,5), n=2 é cota inferior e n>2 não é cota inferior de todos.

Exemplo. Determine o supremo e ínfimo.

Corpo ordenado Q;

$${2,5,7,9};$$

$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\};$$

$$\left\{\frac{n-1}{n}, n \in \mathbb{N}\right\};$$

$$\left\{-\frac{1}{n}, n \in \mathbb{N}\right\};$$

$$\left\{\frac{1}{2^n}, n \in \mathbb{N}\right\};$$

$${2,4,6,8,\ldots}.$$

Seção 3

Exemplo. O corpo $\mathbb Q$ é ordenado e não completo.

Exemplo. O corpo \mathbb{R} é completo.

Exemplo. Todo conjunto finito não é denso em \mathbb{R} .

Exemplo. O conjunto dos inteiros \mathbb{Z} não é denso em \mathbb{R} .

Exemplo. O conjunto complementar de \mathbb{Z} é denso em \mathbb{R} .

Exemplo. Verifique o princípio dos intervalos encaixados para a família de intervalos $I_n = \left[\frac{-1}{n}, \frac{1}{n}\right]$.

Capítulo 2

Seção 1

Exemplo. (0,1) é aberto.

Exemplo. (a, b), onde a < b, é aberto.

Exemplo. $(0,1) \cup (3,4)$ é aberta.

Exemplo. \mathbb{R} e \emptyset são abertos.

Exemplo. [0,1] não é aberto.

Exemplo. (-1,1) é vizinhança de 0.

Exemplo. [-1,1] é vizinhança de 0, pois $0 \in \left(-\frac{1}{2},\frac{1}{2}\right) \subset [-1,1]$.

Exemplo. int (0,1) = (0,1).

Exemplo. int [0, 2] = (0, 2).

Exemplo. int $\mathbb{Q} = \emptyset$.

Exemplo. int $\{1, 2, 3, 4, ...\} = \emptyset$.

Exemplo. $A = (-\infty, 0] \cup [1, +\infty)$ é fechado.

Exemplo. \mathbb{R} e \emptyset são fechados.

Exemplo. [a, b], com $a, b \in \mathbb{R}$, é fechado.

Exemplo. $\{a\}$, com $a \in \mathbb{R}$, é fechado.

Exemplo. Determine se os conjuntos são abertos, fechados, abertos e fechados, ou nenhum dos dois.

 $\mathbb{R};$

Ø;

 $[0,1] \cup [4,5];$

$$\bigcup_{n\in\mathbb{N}} \biggl(\frac{1}{n},1\biggr);$$

 $(0,\infty);$

 $[0,\infty);$

$$A = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}.$$

Exemplo. Seja $A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$. A não é fechado pois seu complementar não é aberto (não é possível encontrar uma vizinhança de 0 contida em A^c). Porém, A é uma união infinita de conjuntos unitários: $A = \bigcup_{n \in \mathbb{N}} \left\{\frac{1}{n}\right\}$, com cada conjunto unitário $\left\{\frac{1}{n}\right\}$ fechado.

Exemplo. Dado qualquer conjunto $A \subset \mathbb{R}$, todo ponto $a \in A$ é ponto de aderência de A, pois $a = \lim_{n \to \infty} x_n$ onde $x_n = a$, $\forall n \in \mathbb{N}$.

Exemplo. Seja A = (0, 1]. Então 0 é aderente a A, pois $0 = \lim_{n \to \infty} \frac{1}{n}$ e $\frac{1}{n} \in (0, 1]$, $\forall n \in \mathbb{N}$.

Exemplo. Qual o fecho do intervalo semiaberto A = (0, 1]?

Exemplo. São fechos:

De [a, b), [a, b];

De (a, b], [a, b];

De $(a, +\infty)$, $[a, +\infty)$;

De $(-\infty, b)$, $(-\infty, b]$;

De [a, b], [a, b];

De $[a, +\infty)$, $[a, +\infty)$;

De $(-\infty, b]$, $(-\infty, b]$.

Exemplo. Qual o fecho de $A = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$? Este conjunto é fechado?

Exemplo. O fecho de qualquer conjunto unitário é ele próprio. Por exemplo, $X = \{2\} \Rightarrow \bar{X} = \{2\}$.

Seção 2

Exemplo.
$$A = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$$
. Então, $A' = \{0\}$.

Exemplo. Se A é um conjunto finito, então $A' = \emptyset$.

Exemplo. $\mathbb{Z}' = \emptyset$.

Exemplo. Determine os pontos de acumulação e aderência dos conjuntos (se houverem).

$$\left\{\frac{1}{n}, n \in \mathbb{N}\right\};$$

 \mathbb{Q} ;

(a,b).

Exemplo. Determine se todos os pontos dos conjuntos são isolados.

$$\left\{\frac{1}{n}, n \in \mathbb{N}\right\};$$

$$\{0\} \cup \left\{\frac{1}{n}, n \in \mathbb{N}\right\};$$

 $\mathbb{N};$

(0,1).

Seção 3

Exemplo. Sejam:

$$X = [0, 1];$$

$$C_1 = \left(-\frac{1}{2}, \frac{1}{2}\right);$$

$$C_2 = \left(\frac{1}{4}, \frac{3}{2}\right); e$$

$$C_3 = \left(\frac{1}{8}, \frac{5}{4}\right).$$

 $C = \{C_1, C_2, C_3\}$ é cobertura aberta de X.

 $C' = \{C_1, C_2\}$ é subcobertura aberta de X.

 $C'' = \{C_1, C_3\}$ é subcobertura aberta de X.

 $C''' = \{C_2, C_3\}$ não é subcobertura de X.

Exemplo. O conjunto finito $K = \{1, 2, ..., n\}$ é compacto.

Exemplo. Qualquer conjunto finito é compacto.

Exemplo. $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$ é compacto?

Exemplo. N e \mathbb{Z} são compactos?

Exemplo. \mathbb{R} não é compacto.

Exemplo. [0,1) é compacto?

Seção 4

Exemplo. Mostre que a função f(x) = 2x - 5 é contínua no ponto a = 2.

Exemplo. Mostre que a função $f(x) = x^2$ é contínua no ponto a = 2.

Capítulo 3

Seção 1

Exemplo. A derivada da função constante é igual a zero.

Exemplo. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = ax + b. Então para todo $x \in \mathbb{R}$ temos que f'(x) = a.

Exemplo. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^n$ com n um número inteiro positivo. Então $f'(x) = n \cdot x^{n-1}$.

Exemplo. Calcule as derivadas das funções.

$$f(x) = x^2 - 3x + 1;$$

$$f(x) = (x-2)(x^2 - 5x);$$

$$f(x) = \frac{x-1}{x+2};$$

$$h(x) = (x^2 - 2x + 3)^4;$$

$$y = \cos(4 - 2x).$$

Seção 2

Exemplo. Seja f(x) = 2x - 1. Determine a derivada da função inversa.

Solução. Pelo teorema:

Seja $f: A \to B$ uma bijeção com inversa $g = f^{-1}: B \to A$. Se f é derivável no ponto $a \in A \cap A'$ e g é contínua no ponto b = f(a), então g é derivável no ponto b se e somente se $f'(a) \neq 0$. Neste caso, $g'(b) = \frac{1}{f'(a)}$.

$$(f^{-1})'(x) = \frac{1}{f'(x)}.$$

Como f'(x) = 2,

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{2}.$$

Exemplo. Seja $f: [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ definida por $f(x) = \arcsin(x)$. f é derivável em (-1, 1) e $f'(x) = \frac{1}{\sqrt{1 - x^2}}$.

Solução. Com o conceito de função inversa,

$$y = \arcsin x \Leftrightarrow x = g(y) = \sin y$$
, com $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

6

Como

$$(\operatorname{sen} y)' \neq 0$$
 para qualquer $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

então, pelo teorema:

Seja $f:A\to B$ uma bijeção com inversa $g=f^{-1}:B\to A$. Se f é derivável no ponto $a\in A\cap A'$ e g é contínua no ponto b=f(a), então g é derivável no ponto b se e somente se $f'(a)\neq 0$. Neste caso, $g'(b)=\frac{1}{f'(a)}$.

$$f'(x) = \frac{1}{g'(y)} = \frac{1}{(\sec y)'} = \frac{1}{\cos y}.$$

Para todo $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, usando a identidade trigonométrica

$$sen^2 y + \cos^2 y = 1 \Rightarrow \cos y = \sqrt{1 - \sec^2 y}.$$

e substituindo na equação anterior,

$$f'(x) = \frac{1}{(\text{sen } y')} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \text{sen}^2 y}}.$$

Como x = sen y,

$$f'(x) = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$$

para todo $x \in (-1, 1)$.

Exemplo. A função $f(x) = x^2$ não possui derivada inversa no ponto x = 0.

Solução. f'(x) = 2x, e neste, f'(0) = 0, contradizendo a hipótese do teorema:

Seja $f\colon A\to B$ uma bijeção com inversa $g=f^{-1}\colon B\to A$. Se f é derivável no ponto $a\in A\cap A'$ e g é contínua no ponto b=f(a), então g é derivável no ponto b se e somente se $f'(a)\neq 0$. Neste caso, $g'(b)=\frac{1}{f'(a)}$.

Exemplo. Seja $f(x) = 27x^3$. Calcule a derivada da função inversa.

Solução. A inversa de f é dada por

$$x = g(y) = \frac{1}{27} \sqrt[3]{y}.$$

Como

$$f'(x) = 81x^2 > 0$$
 para todo $x \neq 0$,

$$g'(y) = \frac{1}{81x^2} = \frac{1}{81\left(\frac{1}{27}\sqrt[3]{y}\right)} = \frac{1}{9y^{\frac{2}{3}}}.$$

Mudando a notação,

$$g'(x) = \frac{1}{9x^{\frac{2}{3}}}.$$

Note que não podemos aplicar o teorema:

Seja $f: A \to B$ uma bijeção com inversa $g = f^{-1}: B \to A$. Se f é derivável no ponto $a \in A \cap A'$ e g é contínua no ponto b = f(a), então g é derivável no ponto b se e somente se $f'(a) \neq 0$. Neste caso, $g'(b) = \frac{1}{f'(a)}$.

pois neste caso y = 0 e y' = 0.