Mills

unaoya

May 28, 2024

Chapter 1

Mills' constant

Definition 1.1. A positive real number x is Mills if 1 < x and for all positive integers n, the number $\lfloor x^{3^n} \rfloor$ is prime.

Theorem 1.2. BHP

Proposition 1.3. There exists a Mills number.

Proof. proof

Proposition 1.4. W has minimum.

Proposition 1.5. $\theta = 21/40$. There exists a natural number k_0 such that for all $k \ge k_0$, we have

$$p_k^3 \le p_{k+1} \le p_k^3 + p_k^{3\theta}.$$

Lemma 1.6. For all natural numbers k, we have

$$p_k \le p_{k+1} < (p_k^3 + 1)^3 - 1.$$

Lemma 1.7. There exists $\gamma > 0$ and $k_1 > 1$ such that for all $k \ge k_1$, we have

$$|A^{3^k} - p_k| \le e^{-3^k \gamma}.$$

Theorem 1.8. Mahler

Theorem 1.9. The Mills' constant is irrational.

Proof. proof \Box