Medical cost

Regresion Project

Tomer badug. Shirli miller. Judi Eliya

project goal

prediction the medical cost

Data content

the input variables are:

- 1. Age
- 2. Sex
- 3. BMI
- 4. Children
- 5. Smoker

Output variable – Charges (Medical cost)

The Dataset

1338 row and 7 columns

- Age age of primary beneficiary (18-64)
- Sex insurance contractor gender: female / male
- **BMI** Body mass index (kg / m ^ 2) using the ratio of height to weight (ideally 18.5 to 24.9)
- Children Number of dependents
- Smoker Yes / No
- Region divided to: northeast, southeast, southwest, northwest of US
- Charges Individual medical costs billed (currency amount in thousands)

- ➤ Handling null
- ➤ Remove duplicate
- ► Label Encoder
- **>** describe
- ➤ pairwise relationships in a dataset
- Explore two variables with bivariate and univariate graphs
- > Compute pairwise correlation of columns matrix

➤ Handling null

```
[] 1 df.isnull().sum()

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```


➤ Remove duplicate

[] 1 df[df.duplicated()]

➤ Label Encoder

1	1 df.head()												
	age	sex	bmi	children	smoker	region	charges						
0	19	female	27.900	0	yes	southwest	16.88						
1	18	male	33.770	1	no	southeast	1.73						
2	28	male	33.000	3	no	southeast	4.45						
3	33	male	22.705	0	no	northwest	21.98						
4	32	male	28.880	0	no	northwest	3.87						

➤ describe

	age	sex	bmi	children	smoker	region	charges
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13.270433
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12.109948
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1.120000
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4.742500
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9.385000
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16.642500
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63.770000

pre processing - EDA® ▶ pairwise relationships in the dataset charges 20 60 1.0 0 children smoker bmi charges age smoker charges

>Explor two variables with bivariate and univariate graphs

>Explor two variables with bivariate and univariate graphs

Compute pairwise correlation of columns - matrix

Conclusion and the next steps

- Smoking has the highest impact on medical costs, even though the costs are growing with age, bmi and children.
- ➤ Also people who have children generally smoke less

We would like to separate the data to smoker and non-smoker

- ➤ Linear regression
- ➤Tree regression
- >KNN

measure of success

► Linear regression – All Data

LR ALL Data RMSE (train) = 6.11

LR ALL Data RMSE (test) = 5.81

charges = -11.067+0.251*age+0.104*sex+0.316*bmi+0.507*children+23.783*smoker-0.418*region

► Linear regression – Smoker

Smokers only RMSE (train) = 5.46

Smokers only RMSE (test) = 6.69

charges = -21.397+0.261*age-0.852*sex+1.439*bmi+0.243*children-0.534*region

➤ Linear regression – Non-smoker

Non Smokers only RMSE (train) = 4.59

Non Smokers only RMSE (test) = 4.53

charges = -1.921+0.260*age-0.513*sex+0.012*bmi+0.660*children-0.477*region

► Linear regression – dummies to smoker and Non-smoker

LR Dummies RMSE (test) = 5.81

charges = 0.825+0.251*age+0.104*sex+0.316*bmi+0.507*children-0.418*region-11.891*smoker_0+11.891*smoker_1

➤Tree regression:

22 leaf

➤Tree regression RMSE (Tree-train)= 4.24 RMSE (Tree- test)= 4.31 : 0.11893312408806282 age sex : 0.0 samples = 1070 bmi : 0.17072465149668153 : 0.011220687003120955 children smoker : 0.6970950125766626 samples = 861 value = 8.474 region : 0.00202652483547211 age <= 58.5 mse = 27.022 age <= 41.0 mse = 28.187 $smoker \le 0.5$ mse = 141.804samples = 1070value = 13.051True False age <= 46.5 bmi <= 30.1 mse = 36.875mse = 132.274samples = 861samples = 209 value = 8.474 value = 31.906 $age \le 22.5$ $age \le 58.5$ $age \le 41.0$ mse = 24.741mse = 27.022 mse = 28.187samples = 549samples = 312samples = 101value = 5.939 value = 12.935 value = 21.536

>KNN:

7 neighbors

KNN RMSE (train)= 8.72

KNN RMSE (test)= 10.16

Feature engineering

- ► Label Encoder
- **≻**Dummies
- ➤ Standard scalar
- ➤ Box Cox
- **≻**Normalization

>KNN:

7 neighbors

Standard Scalar

Knn Standard Scalar RMSE (train)= 5.37
Knn Standard Scalar RMSE (test)= 6.12

>KNN:

7 neighbors

Box Cox

After Correcting Mu after correcting BMI : 30.66339686098655, Sigma after correcting BMI : 6.0959076415894256

Before Correcting Mu before correcting AGE: 39.20702541106129, Sigma before correcting AGE: 14.044709038954522

After Correcting
Mu after correcting AGE: 39.20702541106129, Sigma after correcting AGE: 14.044709038954522

>KNN:

7 neighbors

Box Cox

RMSE (knn-train)= 4.58 RMSE (Tree- test)= 4.57

Comparing Methods

Thanks

Tomer badug Shirli miller Judi Eliya

