Chapter 3: Modeling Data in the Organization

Modern Database Management 8th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

Objectives

- Definition of terms
- Importance of data modeling
- Write good names and definitions for entities, relationships, and attributes
- Distinguish unary, binary, and ternary relationships
- Model different types of attributes, entities, relationships, and cardinalities
- Draw E-R diagrams for common business situations
- Convert many-to-many relationships to associative entities
- Model time-dependent data using time stamps

Business Rules

- Statements that define or constrain some aspect of the business
- Assert business structure
- Control/influence business behavior
- Expressed in terms familiar to end users
- Automated through DBMS software

A Good Business Rule is:

- Declarative –what, not how
- Precise clear, agreed-upon meaning
- Atomic one statement
- Consistent internally and externally
- Expressible structured, natural language
- Distinct non-redundant
- Business-oriented understood by business people

A Good Data Name is:

- Related to business, not technical, characteristics
- Meaningful and self-documenting
- Unique
- Readable
- Composed of words from an approved list
- Repeatable

Data Definitions

- Explanation of a term or fact
 - Term word or phrase with specific meaning
 - Fact association between two or more terms
- Guidelines for good data definition
 - Gathered in conjunction with systems requirements
 - Accompanied by diagrams
 - Iteratively created and refined
 - Achieved by team agreement

ask

E-R Model Constructs

Entities:

- Entity instance person, place, object, event, concept (often corresponds to a row in a table)
- Entity Type collection of similar entity instances (often corresponds to a table)

Relationships:

- Relationship instance link between entities
 (corresponds to primary key-foreign key equivalencies in related tables)
- Relationship type category of relationship ...link between entity types
- Attribute property or characteristic of an entity or relationship type (often corresponds to a field in a table)

Sample E-R Diagram (Figure 3-1)

Basic E-R notation (Figure 3-2)

ternary entity should be replaced by assoiative entity

Attributes

ENTITY NAME
Identifier
Partial identifier
Optional
[Derived]
{Multivalued}
Composite(,,)

Relationship symbols

Attribute

symbols

Relationship degrees specify number of entity types involved

relationship

Relationship degrees the relationship

What is a state of entity in the relationship

Binary

Relationship cardinality

Mandatory one Mandatory many Optional one Optional many

Relationship cardinalities specify how many of each entity type is allowed

What Should an Entity Be?

- SHOULD BE: important multi value multi attribute
 - An object that will have many instances in the database
 - An object that will be composed of multiple attributes
 - An object that we are trying to model
- SHOULD NOT BE:
 - A user of the database system
 - An output of the database system (e.g., a report)

Figure 3-4 Example of inappropriate entities

Attributes

in the tool it's called column entity in tool is called table one row is one record

- Attribute property or characteristic of an entity or relationship type
- Classifications of attributes:
 - Required versus Optional Attributes
 - Simple versus Composite Attribute
 - Single-Valued versus Multivalued Attribute
 - Stored versus Derived Attributes age is data entry and
 - Identifier Attributes

age is data entry and should be calculated each time it's used

Identifiers (Keys)

- Identifier (Key)—An attribute (or combination of attributes) that uniquely identifies individual instances of an entity type
- Simple versus Composite Identifier
- Candidate Identifier an attribute that could be a key … satisfies the requirements for being an identifier

Characteristics of Identifiers

Will not change in value

not derived

- Will not be null
- No intelligent identifiers (e.g., containing locations or people that might change)
- Substitute new, simple keys for long, composite keys

Figure 3-7 A composite attribute

Figure 3-8 Entity with **multivalued** attribute (Skill) and **derived** attribute (Years_Employed)

Figure 3-9 Simple and composite identifier attributes

because the travel number is duplicated we use its data in addition to its number as a composite identifier

Figure 3-19 Simple example of time-stamping

```
PRODUCT
Product_ID
{Price_History
(Effective_Date, Price)}
```

This attribute that is both multivalued and composite

More on Relationships

- Relationship Types vs. Relationship Instances
 - The relationship type is modeled as lines between entity types...the instance is between specific entity instances
- Relationships can have attributes
 - These describe features pertaining to the association between the entities in the relationship
- Two entities can have more than one type of relationship between them (multiple relationships)
- Associative Entity combination of relationship and entity
 associative entity can have ID of one of its strong IDs

Figure 3-10 Relationship types and instances

good

a) Relationship type

b) Relationship instances

Degree of Relationships

- Degree of a relationship is the number of entity types that participate in it
 - Unary Relationship
 - Binary Relationship
 - Ternary Relationship

Degree of relationships – from Figure 3-2

Cardinality of Relationships

One-to-One

Each entity in the relationship will have exactly one related entity

One-to-Many

An entity on one side of the relationship can have many related entities, but an entity on the other side will have a maximum of one related entity

Many-to-Many

 Entities on both sides of the relationship can have many related entities on the other side

Cardinality Constraints

- Cardinality Constraints the number of instances of one entity that can or must be associated with each instance of another entity
- Minimum Cardinality
 - If zero, then optional
 - If one or more, then mandatory
- Maximum Cardinality
 - The maximum number

Figure 3-12 Examples of relationships of different degrees

a) **Unary** relationships rarely found in reality

Figure 3-12 Examples of relationships of different degrees (cont.)

b) Binary relationships

Figure 3-12 Examples of relationships of different degrees (cont.)

c) Ternary relationship

Note: a relationship can have attributes of its own

Figure 3-17 Examples of cardinality constraints

a) Mandatory cardinalities

Figure 3-17 Examples of cardinality constraints (cont.)

b) One optional, One mandatory

Figure 3-17 Examples of cardinality constraints (cont.)

a) Optional cardinalities

Figure 3-21 Examples of multiple relationships

a) Employees and departments

Entities can be related to one another in more than one way

Figure 3-21 Examples of multiple relationships (cont.)

b) Professors and courses (fixed lower limit constraint)

Figure 3-15a and 3-15b Multivalued attributes can be represented as relationships

Strong vs. Weak Entities, and Identifying Relationships

Strong entities

- exist independently of other types of entities
- has its own unique identifier
- identifier underlined with single-line

Weak entity

- dependent on a strong entity (identifying owner)
- cannot exist on its own
- does not have a unique identifier (only a partial identifier)
- Partial identifier underlined with double-line
- Entity box has double line

Identifying relationship

links strong entities to weak entities

Identifying relationship

Associative Entities

- An entity has attributes
- A relationship links entities together
- When should a relationship with attributes instead be an associative entity?
 - All relationships for the associative entity should be many
 - The associative entity could have meaning independent of the other entities
 - The associative entity preferably has a unique identifier, and should also have other attributes
 - The associative entity may participate in other relationships other than the entities of the associated relationship
 - Ternary relationships should be converted to associative entities

Figure 3-11a A binary relationship with an attribute

Here, the **date completed** attribute pertains specifically to the employee's completion of a course...it is an attribute of the *relationship*

Figure 3-11b An associative entity (CERTIFICATE)

Associative entity is like a relationship with an attribute, but it is also considered to be an *entity in its own right*.

Note that the many-to-many cardinality between entities in Figure 3-11a has been replaced by two one-to-many relationships with the associative entity.

Figure 3-13c An associative entity – bill of materials structure

This could just be a relationship with attributes...it's a judgment call

Figure 3-18 Ternary relationship as an associative entity

Microsoft
Visio
Notation for
Pine Valley
Furniture
E-R diagram

Different modeling software tools may have different notation for the same constructs