CPU-GPU Dynamic Approximation

Xi Chen Mingze Gao Yanzhou Liu

Outline

- Motivation for Approximation Computation
- CUDA Architecture and GPU Programming
- Approximation for Clustering Algorithm
- K-means Algorithm
- Expectation and Maximization (EM) Algorithm
- Performance Analysis
- Problems and Future Work

Motivation

- Modern General-Purpose GPUs (GPGPUs) can accelerate "appropriate" algorithms
- Approximation: trade off between computation quality and computational effort
- Error resilience exists in applications, no "golden" output value for these applications
- Approximation on iterative methods (IMs)
 - Possible to give a lightweight quality estimator

Approximation for Clustering Algorithm

Clustering:

 Divide up data into groups/clusters so that points in the same group are more "similar" to each other in some way than points outside.

Applications:

- Marketing, Classifications in Biology and Geology, Insurance Field, online documentation classification
- Quality Evaluation Metric: Hamming distance
- Static design:
 - ■∑(distance all the cluster centers move) < 0.02% * the largest distance in the dataset

CUDA Architecture and GPU Programming in OpenCL

OpenCL platform model on CUDA Architecture

Fig1: OpenCL Platform model on CUDA Architecture

- Host code sends commands to the Devices:
 - Transfer data between host memory and device memory
 - Execute kernel code
- Commands are pushed to command queue, executing in order or out of order

CUDA Architecture and GPU Programming in OpenCL

Memory Space

- Private memory: Specific to a work-item; not visible to other work-items.
- Local memory: Local to a work-group.
- Constant memory: A memory region used for objects allocated and initialized by the host.
- Global memory: Accessible to all workitems executing in a context.

Fig2: OpenCL Memory Model

K-means Algorithm—Block Diagram

EM Algorithm—Block Diagram

K-means Algorithm—Result and Performance

Use different memory regions

Table1: GPU performance with different memory allocation

CPU execution time		U execution time local memory)	GPU execution time (global memory)	
	9ms	3.186ms	3.486ms	

- Data set: 100 points, 9 dimensions, 4 clusters
- CPU implementation vs GPU implementation vs GPU approximation

	# of points	# of clusters	# of dimensions	CPU time (ms)	GPU time (ms)	GPU time (ms) (Approximation)	Cut-off iterations
X	100	4	9	9	3.486	1.743	3/6
	4000	4	2	389	174.276	87.138	6/12
	40000	4	2	4562	2594.892	1297.446	6/12
	40000	4	16	40081	20008.490	2589.334	74/85

- Device:
 - CPU: Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz
 - GPU: NVIDIA GeForce GTX 680

K-means Algorithm—Result and Performance

Result comparison:

Data set: 4000 points; 4 clusters; 2 dimensions

EM Algorithm—Result and Performance

GPU implementation vs GPU approximation

# of points	# of clusters	# of dimensions	GPU time (ms)	GPU time (ms) (Approximation)	Cut-off iterations
1000	3	2	3.486	1.743	96/169
4000	4	2	174.276	87.138	125/144
40000	2	2	2594.892	1297.446	157/265

Device:

CPU: Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz

GPU: NVIDIA GeForce GTX 680

5/13/2015

EM Algorithm—Result and Performance

Result comparison:

Data set: 1000 points; 3 clusters; 2 dimensions

Performance Analysis

- Local memory vs global memory
 - Less latency and better performance
 - Local memory resource is limited
- Speedup issues
 - K-means
 - Parallelized reduction
 - Extra matrices were added to parallelize center updating
 - Limited by matrix multiplication
 - Work group size is M*K if given M*N matrix and N*K matrix
 - In the kernel code, summation of N elements is sequentially processed (N is the number of points)
 - EM
 - Some part of the code can not be parallelized
 - E.g. matrix inversion, matrix determinant
 - Barriers for synchronization to prevent data race
 - Use double type
 - Similar issues (e.g. matrix multiplication) to K-means

Problems

Problem: Parallelism for Matrix Multiplication

$$\begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{MN} & \cdots & a_{MN} \end{bmatrix} \times \begin{bmatrix} b_{11} & \cdots & a_{1K} \\ \vdots & \ddots & \vdots \\ b_{N1} & \cdots & b_{NK} \end{bmatrix}$$

- Flatten the multiplication process: (1). Compute all a_{ij}*b_{jk} and get M*N*K results (2). Summation for every N results in (1) in parallel
- When doing summation, running the same kernel and same data multiple times gives different results even adding barrier function for synchronization
- Data race conditions during kernel execution
 - for loop in kernel code easily causes data race problems
 - To avoid such condition, either do it serially or call kernel multiple times
 - Barriers needed

Problems

- clblas library usage
 - Basic Linear Algebra Subprograms supported by AMD
 - Bad portability, difficult to use on NVIDIA GPU
 - Poor performance (even slower than our implementation)
- Matrix operations
 - Matrix Determinant
 - As size of matrix increases, recursive methods needed for computation which is not easy for OpenCL implementation
 - Matrix Inversion
 - As size of matrix increases, it is hard to get solution of the inversion
- Use GPU in Deepthought2
 - Compile OpenCL Host device code successfully
 - When sbatch jobs with specifying GPU request, it returns segmentation fault.

5/13/2015

Future Work

 Optimize the criteria for approximation to get more reliable results, e.g. use the ratio of nodes changing their clusters in each iteration or even dynamic approximation

- Further optimize the matrix multiplication
 - Data race problems need to be solved first

Reference

- Khronos OpenCL Working Group. "The OpenCL Specification, version 1.0. 29, 8 December 2008." URL http://khronos. org/registry/cl/specs/opencl-1.0 29.
- CUDATM, N. "OpenCL Programming Guide for the CUDA Architecture." NVIDIA Corporation (2009).
- Zhang, Qian, et al. "ApproxIt: An approximate computing framework for iterative methods." Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 2014.
- http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/06intro_to_opencl.pdf
- http://sa09.idav.ucdavis.edu/docs/SA09_NVIDIA_IHV_talk.pdf
- https://chrisjmccormick.wordpress.com/2014/08/04/gaussian-mixture-modelstutorial-and-matlab-code/

5/13/2015

A&P

Thanks for Your Attention!