Machine Learning (ML) Basics

- Machine Learning (ML): A subset of AI used to build logical models.
 - O In business environments:
 - Exploratory analysis with Jupyter Notebooks.
 - Graphical interfaces (GUIs) for pipeline management.

Models:

- O Trained using labeled or unlabeled datasets.
- O Consist of:
 - Parameters: Adjustable values.
 - Structure: Neural networks, decision trees, etc.

Data Splitting for Model Training

- Training Set (60%-80%)
 - Provides input data to train the model.
 - Must contain the correct output (target variable).
- Validation Set (10%-20%)
 - O Used to **evaluate and fine-tune** the model during training.
 - Does not adjust the model's parameters.
 - O Helps measure accuracy.
- Test Set (10%-20%)
 - O Evaluates final model performance on unseen data.
 - O Kept separate from training and validation to **prevent bias**.

Data Formats in ML

- Structured Data: Stored in relational databases.
- Unstructured Data: Includes text, images, audio, video, etc.
- Labeled Data: Contains additional metadata (categories or classes) for each instance. Essential for supervised learning.
- Unlabeled Data: No assigned categories or labels. Used in unsupervised learning.

Supervised Learning

- **Definition:** ML technique where a model is trained on **labeled datasets**.
- Main Approaches:
 - O Classification: Assigns labels to inputs based on training data.
 - Confidence Score: Probability of a correct classification.
 - Use Cases: Spam detection, image classification.
 - O Regression: Predicts continuous values from labeled training data.
 - Estimates the relationship between independent variables and the dependent variable (target variable).
 - Use Cases: Price prediction.
- Types of Classification:
 - $\bigcirc \qquad \textbf{Binary Classification:} \ \mathsf{Two} \ \mathsf{possible} \ \mathsf{outputs} \ (\mathsf{e.g., "Yes/No", "Class A/Class B"}).$

Unsupervised Learning

- Definition: Discovers hidden patterns and structures in unlabeled data.
- Main Techniques:
 - O Clustering: Groups data into clusters based on similar features.
 - Use Cases: Customer segmentation, image grouping.
 - Dimensionality Reduction: Simplifies large datasets by reducing the number of features and removing noise.
 - Use Cases: Data visualization.

Reinforcement Learning (RL)

- Definition: A model (agent) learns by interacting with an environment through trial and error.
- RLHF (Reinforcement Learning from Human Feedback):
 - O Adjusts models based on human-provided feedback.

Model Performance & Error Analysis

- Overfitting: A model fits the training data too well, leading to poor generalization on new evaluation data.
- Underfitting: A model is too simplistic, failing to capture patterns in the data, resulting in poor performance even on training data.

Bias & Variance Trade-off

- Bias (Underfitting):
 - Error caused by overly simple assumptions in the model.
 - Leads to underfitting (fails to capture patterns).
 - O Solution: Increase model complexity.
- Variance (Overfitting):
 - O Error caused by **high sensitivity to small variations** in the training data.
 - Occurs when a model is too complex and memorizes training data instead of generalizing.
 - O Solution: Simplify the model, apply regularization, or increase training data.

Feature Engineering

- Definition: The process of transforming and creating new features from existing data to improve model performance.
- Techniques include:
 - Normalization & Scaling
 - Handling missing values
 - Encoding categorical variables

Deep Learning (DL)

- Definition: A subset of Machine Learning (ML) that uses multiple layers of neurons to model complex data.
- Requires large datasets and is widely used for image and speech recognition.
- Neural Networks Structure
 - Neurons (Nodes):
 - Each neuron receives inputs, processes them, and produces an output.
 - Neurons communicate with each other, passing or blocking information to the next layer.

- O Layers:
 - Input Layer
 - Hidden Layers: One or more layers that handle most of the processing and learning.
 - Output Layer
- Types of Neural Networks
 - Convolutional Neural Networks (CNNs): Designed for grid-structured data, such as images.
 - Recurrent Neural Networks (RNNs): Designed for sequential and time-series data (e.g., text, video, and speech).
 - Uses loops in its architecture for self-feedback.
 - Useful for tasks with variable-length inputs and outputs, such as language translation.

Classification Metrics

- Confusion Matrix: A tool to evaluate classification performance, displaying results in four categories:
 - O True Positives (TP), False Positives (FP), True Negatives (TN), False Negatives (FN).
- Precision: Measures how many positive predictions were correct.
 - O Formula: TP / (TP + FP).
- Accuracy: Measures the overall correctness of predictions.
 - O Formula: (TP + TN) / (TP + TN + FP + FN).
- AUC-ROC (Area Under the Curve Receiver Operating Characteristic):
 - O Measures a model's ability to distinguish between classes in binary classification.
 - O ROC Curve: Plots True Positive Rate (Sensitivity) vs. False Positive Rate.
 - AUC Values:
 - **1.0** = Perfect classifier.
 - **0.5** = No classification power (random guess).
 - O Useful for comparing multiple classification models.

Regression Metrics

- Mean Squared Error (MSE):
 - O Measures how well a model predicts continuous values.
 - O Penalizes large errors more heavily.
 - Example: Predicting house prices—large prediction errors for expensive houses have a greater impact on MSE.

Automated Machine Learning (AutoML)

- Definition: Automates the training and selection of ML models.
- Capabilities:
 - O Automatically chooses the best algorithm for tasks like classification and regression.
 - Optimizes hyperparameters without manual intervention.
 - O Preprocesses data, handling cleaning and transformation automatically.

Machine Learning Designer

- Visual interface for creating machine learning models without coding.
- Drag-and-drop components to build workflows.
- Allows preprocessing, training, and evaluation within a single interface.

Key Features:

- O Modules: Split Data, Join Data, Select Columns in Dataset, Add Rows.
- O Important Parameters: Access Token, Model Name, REST Endpoint Name.
- O Supported Languages: Python and R.

Azure AI Vision (formerly Azure Computer Vision)

Focuses on enabling AI to identify and understand objects, people, and text in images and videos.

Capabilities:

- O Image Classification: Automates categorization and labeling of elements in images.
- Optical Character Recognition (OCR): Converts printed documents into editable and searchable text.
- Face Detection & Analysis: Identifies and verifies individuals in images and videos, analyzing facial expressions for emotion recognition.
- O Object Detection: Identifies and locates objects in images and videos in real-time.
- Image Analysis: Extracts detailed information from images, including objects, faces, text, and inappropriate content.
- O Dense Captions: Generates sentence-level descriptions for up to 10 regions in an image.
- O Captions: Provides a general description of an image.
- Face: Detects and analyzes faces in images.
- O Video Analysis: Analyzes video content.
 - Spatial Analysis: Detects the presence and movement of people in video feeds.

Custom Vision

- O Allows training custom AI models using user-provided images.
- O Supports both image classification and object detection within the same platform.
- O Can detect multiple objects in an image, each with a bounding box.

Natural Language Processing (NLP)

- AI branch focused on enabling computers to understand, interpret, and generate human language.
- Key NLP Techniques:
 - O Tokenization: Splits text into words, phrases, or linguistic units (e.g., ["The", "cats"]).
 - O Lemmatization & Stemming: Reduces words to their base or root form (e.g., ["the", "cat"]).

Use Cases of NLP:

- O Virtual Assistants: Siri, Alexa, and other Al-powered assistants interpret and respond to user queries.
- Sentiment Analysis: Determines the emotion or sentiment expressed in text.
- Machine Translation: Automatically detects and translates languages.
 - When language detection is uncertain, the confidence score is NaN.

Azure AI Language (NLP Services)

• Provides advanced NLP capabilities to process and analyze text.

Features:

- Named Entity Recognition (NER): Identifies specific elements like names, locations, and organizations.
- O Personally Identifiable Information (PII) & Protected Health Information (PHI) Detection.
- Sentiment Analysis: Classifies text as positive, negative, or neutral.
- O Language Detection: Returns the language name, confidence score, and ISO 639-1 code.
- Key Phrase Extraction: Identifies main topics and concepts for categorization.
- O Custom Text Analytics: Enables domain-specific text analysis.

Azure AI Speech

- Speech-to-Text (STT): Converts spoken language into written text.
- Text-to-Speech (TTS): Generates natural-sounding speech from text.
- Speaker Recognition: Identifies speakers based on voice characteristics.

Azure AI Translator

• Cloud-based neural machine translation service for multilingual applications.

Knowledge Mining

• Extracts structured information from large volumes of unstructured data.

Azure AI Document Intelligence (formerly Form Recognizer)

- Recognizes and extracts text, layout, and key-value pairs from documents and forms.
- Not to be confused with Azure Al Vision OCR.
- Use Case: Locating a product image within a product catalog.

Azure Al Search

- Advanced search platform combining traditional search and generative AI capabilities.
- Extracts insights from structured, semi-structured, and unstructured documents.
- Does not support conversational queries.

Generative AI (GenAI)

- AI field that creates new content, including:
 - O Chatbots & Virtual Assistants
 - Image Generation
 - Code Generation
 - O Music Composition
- Foundation Models (FM)
 - O GPT (OpenAI) Text generation.
 - O DALL-E (OpenAI) Image generation.
- Large Language Models (LLMs)
 - $\bigcirc \hspace{0.5cm} \textbf{Advanced AI models designed to understand, generate, and interact with human language}. \\$
 - Generate content based on user inputs (prompts).
 - O Non-deterministic Same input may produce different outputs.
- Azure OpenAl Service
 - O Provides access to OpenAI's language models, including GPT-4.
 - $\bigcirc \hspace{0.5cm} \textbf{Allows fine-tuning models} \ \text{for specific tasks or datasets}. \\$
- OpenAl Studio
 - O Requires **REST Endpoint and Authentication Key**.

OpenAl Codex

- Al model specialized in code generation.
- Understands natural language and generates code accordingly.

Azure AI Bot Service

- Platform for building and publishing bots.
- Supports integration with websites, Microsoft Teams, Facebook, and other platforms.

Azure Conversational Language Understanding (CLU)

- Identifies user intents and extracts key information from natural language input.
- Allows training models tailored to specific business domains.
- Optimized for industry-specific tasks, enhancing model accuracy and performance.
- Enables Al-driven applications, such as chatbots and virtual assistants.

Responsible AI Standards

- Microsoft follows ethical AI principles to ensure fairness, security, and transparency.
- Key Principles:
 - o Fairness: Ensures equal treatment for all users.
 - o Reliability & Security: Protects against failures and vulnerabilities while ensuring accurate results.
 - o Privacy & Security: Data confidentiality and prevention of unauthorized access.
 - Inclusion: Designing AI systems accessible to diverse users and contexts.
 - o **Transparency:** Explains **how AI models work**, making them understandable for users.
 - Accountability: Implements ethical AI governance frameworks.