Memory Systems

Counteracting the memory wall

Introduction

Analogy

Evaluation

Conclusion

The memory wall

- DRAM performance improvement
 - 7% per year
- Processor performance improvement
 - 30 to 50% per year until 2005

The memory hierarchy

	Technology	Cost (\$) / GB	Location
Cache	SRAM	Very expensive	On chip
Memory	DRAM	Inexpensive	Off chip
Hard drive	Flash	Cheap	Off chip

An analogy: the library

Temporal and spatial locality

- Temporal locality
 - If you referenced a book recently, you will probably reference it again soon
- Spatial locality
 - If you pulled one book off the shelf, other books on that shelf are also relevant to you

Memory system evaluation

Performance metrics and equations

A load instruction

- Each memory component has some latency to access
 - t_{cache} , t_{MM} , t_{HD}
- Classifying accesses
 - A *miss*: the data requested is not available
 - A *hit*: the data requested is available

The hit and miss rate

$$Miss\ Rate = rac{Number\ of\ misses}{Total\ number\ of\ memory\ accesses}$$

$$Hit\ Rate = rac{Number\ of\ hits}{Total\ number\ of\ memory\ accesses}$$

Let \overline{MR}_{cache} , \overline{MR}_{MM} be the miss rates of the cache and main memory, respectively.

Average memory access time

$$AMAT = t_{cache} + MR_{cache}(t_{MM} + MR_{MM} \times t_{HD})$$

Conclusion

Recapping the important points

The memory hierarchy

The cache hierarchy

