Wave2Spec2Text

KAGGLE CHALLENGE

Content

- Challenge Introduction
 - Dataset Description
 - Challenge with Speech Recognition
- Implementation
 - From Wave to Images
- Experiments
- Conclusions

Challenge Description

- Dataset: <u>TensorFlow</u> Speech Commands Datasets of 65,000 one-second long utterances of 30 short words by thousands of different people
- Dataset Labels: "yes, no, up, down, left, right, on, off, stop, go"
- Objective: Build best classification model

Challenge with Speech Recognition

Vater (wootaa) **United States England Australia** www.youtube.com/JapaneseEng101

Challenge with Speech Recognition

Implementation

• From Wave to Images:

- Converting wave-format into spectrograms
- Storing frequency (40 log-mel) and time in an image
- Use padding to ensure the same dimensions

VGG11 Architecture

List of Experiments

- 1. Testing different Network Depths and Architectures (VGG)
 - Will Deeper Networks Retain More Important Information?
 - Risk over-fitting (a common problem)
 - Will different architectures perform better?
- 2. Testing Different Optimization Functions
 - o SGD vs. Adam
- 3. Training with Augmented data
- 4. Using an Ensemble Model
- 5. Visualizing Confusion Matrix

Experiments 1: Testing Network Depths and Architectures

- TDNN, VGG11, VGG16
- 5 Epochs
- Checking for overfitting

Experiment 1: Testing Network Depths and architectures

Accuracy	TDD	VGG11 SGD	VGG11	VGG16	VGG16 *	Ensemble	Ensemble **
Validation	89.95%	90.8%	95.5%	91.13%	94.76%	N/A	N/A
Test	89.53%	90.4%	93.47%	90.84%	94.7%	95.19%	95.54%

VGG11 > VGG16!

^{*} Trained on augmented data ** Weighted Ensemble

Experiment 2: Optimization Functions

- From UC Berkeley paper The Marginal Value of Adaptive Gradient Methods in Machine Learning:
 - Adaptive models usually perform better during training (converge faster) than non-adaptive optimizers, but can generalize worse (CIFAR-10)

Optimizers for Speech2Spec2Text

Source: https://arxiv.org/pdf/1705.08292.pdf, UC Berkeley & Toyota Technological Institute at Chicago, May 24, 2017

Experiment 3: Data Augmentation

Augmented each sample to 0.9 and 1.1x speed.
150,000 sample recordings.

Accuracy	TDD	VGG11 SGD	VGG11	VGG16	VGG16 *	Ensemble .	Ensemble **
Validation	89.95%	90.8%	95.5%	91.13%	94.76%	N/A	N/A
Test	89.53%	90.4%	93.47%	90.84%	94.7%	95.19%	95.54%

3.8% increase in Accuracy

Experiment 4: Ensemble model

Accuracy	Ensemble	Ensemble **
Validation	N/A	N/A
Test	95.19%	95.54%

** Weighted Ensemble

Experiments 4: Confusion Matrix

Analysis of VGG11 SGD Model

Predicted Label

Conclusion

- **■** Good but unrealistic results: 95.54% is state of the art
 - top 1 in Kaggle private dataset is 91.06% accurate.
- Several ways to go forward:
 - Further data augmentation
 - More models in ensemble
 - Explore other architectures
 - Exploiting domain specific knowledge
 - Analyze image embeddings together with confusions matrix