AD – Blatt 9

Simon Thelen

3. Dezember 2018

Aufgabe 1

s	h(s)
61	700
62	318
63	936
64	554
65	172

Aufgabe 2

 P_k ist die Wahrscheinlichkeit, dass k Werte der Hashtable beim ersten Versuch in einen gegebenen Bucket eingefügt werden sollten.

Aufgabe 4

Teilaufgabe 1

Sei $s(n) = \sum_{k=1}^{i} k$.

- 1. Berechne für alle $i \in [1,n]$ das Wert-pro-Volumen-Verhältnis $r_i = \frac{w_i}{v_i}$. (Laufzeit: $\mathcal{O}(n)$)
- 2. Sortiere absteigend nach r_i . Gegenstände sind jetzt neu von 1 bis n durch-nummeriert. $(Laufzeit: O(n \log n))$
- 3. Setze alle a_i auf 0. (Laufzeit: O(n))
- 4. Gehe alle Gegenstände von 1 bis n durch. (Laufzeit: O(n))
 - (a) Setze a_i auf 1, solange $W \leq s(i)$
 - (b) Wenn s(i 1) < W < s(i), setze s_i auf $\frac{v_i}{W \text{s}(i-1)}$ und beende den Algorithmus.

Teilaufgabe 2

$$w_1 = 5, w_2 = 3, w_3 = 3$$

 $v_1 = 4, v_2 = 3, v_3 = 3$

Der in Teilaufgabe 1 beschriebene Algorithmus würde nur w_1 mit Wert 5 verwenden, wenn jedes $a_i \notin \mathbb{Z}$ durch 0 ersetzt wird. Die perfekte Lösung wäre jedoch in diesem Fall w_2 und w_3 mit Gesamtwert 6.