Chapitre II: Arithmétique dan Z

I- Relation de divisibilité, division euclidienne

1- Relation de divisibilité

Définition: Divisibilité

Soient deux entiers relatifs $(a, b) \in Z^2$. On dit que a divise b, ou que a est un diviseur de b, ou que b est un multiple de a si et seulement si $\exists k \in Z \ tq \ b = a$. On notera a | b (se lit « a divise b ») le fait que l'entier a divise l'entier b.

Théorème : Propriétés de la relation de divisibilité

Soient $a, b, c, d \in Z$

- **Réflexivité**: La relation « divise » est réflexive : $\forall \alpha \in Z \mid \alpha \mid \alpha$.
- **Transitivité**: La relation « divise » est transitive : $\forall a, b, c \in Z$ [a | b et b | c] $\Rightarrow a \mid c$.
- **Symétrie / antisymétrie :** La relation « divise » n'est ni symétrique, ni antisymétrique. Donc ce n'est ni une relation d''équivalence, ni une relation d'ordre sur Z). Par contre : [a | b et b | a] ⇒ a = + b.
- Combinaison linéaire : Si [d | a et d | b] \Rightarrow d | $k_1a + k_2b \ \forall k_1, k_2 \in Z$
- **Produit**: Si [a | b et c |d] alors ac | bd. En particulier si a | b alors $a^k | b^k \forall k \in \mathbb{N}$
- Multiplication / division par un entier : si $d \neq 0$; $a \mid b \Leftrightarrow ad \mid bd$

2- Relation de congruence

Définition:

Soient $n \in N$ et a, $b \in Z$. On dit que a est congru à b modulo n si $n \mid (b-a)$, i.e. si $\exists k \in Z \ tq \ b = a + kn$. On notera $a \equiv b$.

Remarque : La relation de congruence est une généralisation de la relation de divisibilité ; il faut en effet avoir en tète le cas particulier $n \mid a \Leftrightarrow a \equiv 0 \mod n$.

Théorème: Propriétés de la relation de congruence

Soient $a, a', b, b' \in Z$ et $m, n \in N$

- La relation . ≡ . mod n est réflexive, symétrique et transitive
- **Somme**: Si $a \equiv b \mod n$ et $a' \equiv b' \mod n$ alors $a + a' \equiv b + b' \mod n$
- **Produit :** Si $a \equiv b \mod n$ et $a' \equiv b' \mod n$ alors $a.a' \equiv b.b' \mod n$. En particulier si $a \equiv b \mod n$ alors $a^k \equiv b^k \mod n$ $\forall k, \in N$
- Multiplication / division par un entier : si $m \neq 0$; $a \equiv b \mod n \Leftrightarrow am \equiv bm \mod mn$

3- Division euclidienne

Soient deux entiers $(a, b) \in Z \times N$ avec $b \neq 0$. Alors il existe un unique couple $(q, r) \in Z \times N$ tel que : a = bq + r et $0 \le r \le b-1$; ou encore $0 \le r \le b$

On appelle a le dividende, b le diviseur, q le quotient et r le reste de la division euclidienne de a par b.

On a
$$q = \left[\frac{a}{b}\right]$$
 et $r \equiv a \mod b$

II- Diviseur et Multiple Communs

Définition: soit $a, b \in Z$

- On appelle un diviseur commun de a et b tout entier $d \in Z$ qui à la fois est un diviseur de a et un diviseur de b.
- On appelle un multiple commun de a et b tout entier $m \in Z$ qui à la fois est un multiple de a et un multiple de b.

1. PGCD, théorèmes d'Euclide et de Bezout

Définition:

Soient deux entiers non tous deux nuls $(a, b) \in \mathbb{Z}^2$.

On appelle plus grand commun diviseur de PGCD de a et b tout entier $d \in Z$ tel que :

- d est diviseur commun de a et b : d | a et d | b;
- d est un multiple de tout diviseur commun de a et b $\forall \delta \in Z$, $(\delta | a \text{ et } \delta | b) \Rightarrow \delta | d$

Le plus grand commun diviseur de a et b est noté PGCD (a, b) ou a \lambda b.

Théorème: Théorème d'Euclide

Soient deux entiers (a,b) $\in N^{*2}$. Effectuons la division euclidienne de l'entier a par l'entier b :

```
\exists ! (q, r) \in \mathbb{N}^2 : a = bq + r \text{ et } 0 \le r \le b \text{ Alors} : a \land b = b \land r
```

Exemple : Déterminons le pgcd des entiers 366 et 43 en utilisant l'algorithme d'Euclide :

```
366 = 43 \times 8 + 22
43 = 22 \times 1 + 21
22 = 21 \times 1 + 1
21 = 1 \times 21 + 0
Donc PGCD (366, 431) = 1

1542 = 26 \times 58 + 34
58 = 1 \times 34 + 24
34 = 1 \times 24 + 10
24 = 2 \times 10 + 4
10 = 2 \times 4 + 2
4 = 2 \times 2 + 0
Donc PGCD (1542, 58) = 2
```

Théorème: Existence et unicité du PGCD

Soient deux entiers a, $b \in Z$ il existe un et un seul PGCD positif de a et b, appelé le PGCD de a et b. Le seul autre PGCD de a et b est alors -PGCD (a, b)

Théorème: Propriétés du PGCD

Soient deux entiers a, $b \in Z$

- (i) pour tout $k \in Z$ PGCD (ak, bk) = |k| PGCD (a, b)
- (ii) pour tout diviseur commun $d \neq 0$ de a et b $PGCD\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{PGCD(a,b)}{|d|}$

Théorème: Coefficients de Bezout

Soient deux entiers non nuls $(a, b) \in \mathbb{Z}^2$. Il existe $(u, v) \in \mathbb{Z}^2$ tels que au + bv = $a \land b$. Un tel couple (u, v) est appelé couple de coefficients de Bezout pour a et b.

Remarques: les entiers (u, v) ne sont pas uniques

Pour trouver un couple de coefficients de Bézout de deux entiers strictement positifs a et b, il suffit de « remonter les calculs » dans l'algorithme d'Euclide

Exemple:

Donner le PGCD de a et b et un couple de coefficients de Bezout avec avec a = 14938 et b = 9471

```
\begin{array}{lll} 14938 = 1 \cdot 9471 + 5467 & 77 = 385 - 308 \\ 9471 = 1 \cdot 5467 + 4004 & 77 = 385 - (1078 - 2 \cdot 385) = 3 \cdot 385 - 1078 \\ 5467 = 1 \cdot 4004 + 1463 & 77 = 3(1463 - 1078) - 1078 = -4 \cdot 1078 + 3 \cdot 1463 \\ 4004 = 2 \cdot 1463 + 1078 & 77 = -4 \cdot (4004 - 2 \cdot 1463) + 3 \cdot 1463 = 11 \cdot 1463 - 4 \cdot 4004 \\ 1463 = 1 \cdot 1078 + 385 & 77 = 11 \cdot (5467 - 4004) - 4 \cdot 4004 = -15 \cdot 4004 + 11 \cdot 5467 \\ 1078 = 2 \cdot 385 + 308 & 77 = -15 \cdot (9471 - 5467) + 11 \cdot 5467 = 26 \cdot 5467 - 15 \cdot 9471 \\ 385 = 1 \cdot 308 + 77 & 77 = 26 \cdot (14938 - 9471) - 15 \cdot 9471 = 26 \cdot 14938 - 41 \cdot 9471 \end{array}
```

Les calculs de la colonne 1 donnent a $^b = 77$, puis ceux de la colonne 2 donnent 26a - 41b = 77

Exo: reprendre les questions de l'exemple précédant avec a= 3080 et b= 525

2. Nombres premiers entre eux

Définition:

Soit a, $b \in Z$. On dit que a et b sont premiers entre eux (ou encore étrangers) si leurs seuls diviseurs communs sont 1 et -1 ou encore a b = 1.

Exemple: 28 et 15 sont premiers entre eux

Théorème : Théorème de Bezout

Soient deux entiers non nuls $(a, b) \in \mathbb{Z}^2$. Les deux propositions suivantes sont équivalentes

- Les entiers a et b sont premiers entre eux : $a \wedge b = 1$
- $\exists (u, v) \in \mathbb{Z}^2 \text{ tel que } 1 = au + bv$

Théorème: Théorème de Gauss

Soient trois entiers non nuls $(a, b, c) \in Z^{*3}$ si $[a \mid bc \text{ et } a \land b = 1] \Rightarrow a \mid c$

Corollaire : Forme irréductible d'un nombre rationnel

Soit $r \in Q$. Il existe un unique couple $(p,q) \in Z \times N^*$ tel que $r = \frac{p}{q}$ et tel que p et q soient premiers entre eux. Cette écriture $r = \frac{p}{q}$ est appelée la forme irréductible de r.

3. PPCM

Définition:

Soient deux entiers non tous deux nuls $(a, b) \in \mathbb{Z}^2$.

On appelle plus petit commun multiple PPCM de a et b tout entier $m \in Z$ tel que :

- m est multiple commun de a et b : $a \mid m$ et $b \mid m$;
- m est un diviseur de tout multiple commun de a et b $\forall \mu \in Z$, $(a|\mu \text{ et } b|\mu) \Rightarrow m|\mu$

Le plus petit commun multiple de a et b est noté PPCM (a, b) ou a V b .

Théorème: Existence et unicité du PPCM

Soient deux entiers a, $b \in Z$ il existe un et un seul PPCM positif de a et d, appelé le PPCM de a et b. Le seul autre PPCM de a et b est alors - PPCM (a, b) On a l'égalité $|ab| = PGCD(a,b) \times PPCM(a,b)$

Exemple:

PPCM (1542, 58) = 44718 en effet PPCM (1542, 58) =
$$\frac{1542 \times 58}{PGCD (1542,58)} = \frac{1542 \times 58}{2} = 44718$$

III- Nombres premiers

Définition:

Soit p un entier naturel. On dit que p est premier si p > 2 et si ses seuls diviseurs dans N sont 1 et p. On dit que p est composé si p n'est pas premier.

L'ensemble des nombres premiers est noté p

Exemple : La liste des nombres premiers contient 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43...

Proposition: L'ensemble des nombres premiers est infini.

Lemme:

Soit $r \in N^*$. On considère r nombre premiers $p_1, p_2, \dots, p_r \in \mathbb{p}$, distincts deux à deux et des entiers naturels non nuls $\alpha_1, \alpha_2, \dots, \alpha_r$. Alors tout diviseur premier $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ est l'un des $p_{i \ ou \ i \in [\![1, \ r]\!]}$

Théorème: Existence et unicité de la décomposition en facteurs premiers

Soit un entier $n \in N$, $n \ge 2$. il existe un unique entier $r \in N^*$, une unique famille (p_1, p_2, \dots, p_r) de nombres premiers rangés dans l'ordre $p_1 < p_2 < \dots, < p_r$ et une unique famille $(\alpha_1, \alpha_2, \dots, \alpha_r)$ d'entiers naturels non nuls tels que : $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ Les entiers p_1, p_2, \dots, p_r sont tous les nombres premiers qui divisent n Pour tout $i \in [1, r]$ $p_i^{\alpha_i}$ est la plus grande puissance de p_i qui divise n α_i est appelé l'ordre de multiplicité de p_i dans n.

Théorème: Expression du PGCD et du PPCM à l'aide des facteurs premiers

Soient deux entiers non-nuls $a, b \in N^*$. Leur décomposition en facteurs premiers s'écrit :

$$a = \prod_{p \in \mathbb{p}} p^{\alpha_p} \quad et \quad b = \prod_{p \in \mathbb{p}} p^{\beta_p}$$

$$PGCD(a, b) = \prod_{p \in \mathbb{p}} p^{\min(\alpha_{p_i} \beta_p)} \quad et \quad PPCM(a, b) = \prod_{p \in \mathbb{p}} p^{\max(\alpha_{p_i} \beta_p)}$$