SDM 366 Optimal Control and Estimation

LN1: Linear Algebra Review

Prof. Wei Zhang

Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

Why Linear Algebra:

- One of the most important tools for modern control theory
- Topics covered in this class, such as
 - State space model
 - Least squares
 - Stability analysis
 - Linear quadratic regulator (LQR)
 - Kalman filter

can be viewed as applications of linear algebra

Crucial for machine learning, robotics, computer vision, ...

Facts about the students:

- Remember formulas without deep understanding of concepts
- Good at numerical calculations, but not analytical analysis

Goal:

- Learn to "Forget" the formulas or numerical techniques
- Review/rebuild fundamental concepts
- "Speak" the language of linear algebra: formulate/analyze/solve linear algebra problems without using formulas or numbers
 - Linear independence
 - Matrix rank
 - Vector space
 - Column space/null space
 - Solution Ax = b
- Just a short review. A good reference is the MIT course (Prof. Strang) https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Linear, conic, convex combinations
 - Some Geometric Sets

Key Concept: Linear Combination

■ Linear combination of two vectors v_1 , $v_2 \in \mathbb{R}^2$

• Linear combination of $v_1, v_2, ..., v_k \in \mathbb{R}^n$

Key Concept: Linear Combination

• Trivial and nontrivial linear combination:

Span of a set of vectors:

$$span(v_1, v_2, ..., v_k) = \{w \in R^n : w = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k, \text{ for some scalars } \alpha_1, \alpha_2, ..., \alpha_k\}$$

Linear Independence

• Two vectors $\{v_1, v_2\}$ are **linearly dependent** if

• A set of vectors $\{v_1, \dots, v_k\}$ is linearly **independent** if

No nontrivial linear combination = 0

• Equivalent definition: No vector v_i can be expressed as a linear combination of other vectors $v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n$

Vector Space

- Vector space V: set of elements for which "addition" and "multiplication by scalers" can be properly defined
 - element can be number, matrix, function, symbols ...
 - "Addition" and "multiplication" can be defined as long as they satisfy certain Axioms.
- **Subspace** of a vector space *V*: subset of *V* that is "closed" under addition and multiplication

• Span (v_1, v_2) :

• $R_+^2 = \{x \in R^2 : x_1 \ge 0 , x_2 \ge 0\}$:

Vector Space

- $\{v_1, v_2, ..., v_k\}$ is a basis for a vector space V if
 - 1. $V = span(\{v_1, v_2, ..., v_k\})$
- 2. $\{v_1, v_2, ..., v_k\}$ is linearly independent

- Dimension of a vector space:
 - Number of vectors in a basis
 - Fact: number of vectors in any basis of a finite-dim vector space is the same

Vector Space

■ Coordinates of $w \in V$ with respect to a basis $\{v_1, v_2, ..., v_k\}$

Coordinates of a vector depend on the basis

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Linear, conic, convex combinations
 - Some Geometric Sets

Key: Matrix vector multiplication as mixture of columns

- Let y = Ax, then y is a linear combination of the columns of A
 - Write matrix A in terms of its columns

$$A = [a_1 \ a_2 \ ... \ a_n], \text{ where } a_i \in \mathbb{R}^m$$

• Then y = Ax can be written as

• Similarly, if z=dB, where d and z are row vectors, then z is a linear combination of the rows of B

Column Space (Range) of a Matrix $A \in \mathbb{R}^{m \times n}$

$$Col(A) = Range(A) = \{ Ax \mid x \in R^n \} \subset R^m$$

• = Span of columns of A

• Example:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Null Space of a Matrix $A \in \mathbb{R}^{m \times n}$

$$Null(A) = \{x \in R^n | Ax = 0\}$$

- Coefficients of linear combinations that result in a zero vector
- Zero null space implies: columns of A are independent

• Example of null space:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Rank of a matrix $A \in \mathbb{R}^{m \times n}$

- Definition: rank(A) = dim(Col(A))
 - i.e. number of independent columns of *A*
- Nontrivial facts
 - $rank(A) = rank(A^T)$

• $rank(A) \le min(m, n)$: full rank means rank(A) = min(m, n)

- rank(A) + dim(Null(A)) = n
 - "conservation of dimension": Think about A as a linear mapping that maps $x \in R^n$ to a vector $y = Ax \in R^m$. Each dimension of input x is either crushed to zero or ends up in output

Example of "conservation of dimension":

- Find the Null(A), where $A \in R^{10\times 4} = [a_1 \ a_2 \ a_3 \ a_4]$ satisfies
 - ① a_1 , a_3 independent
- $2 \quad a_2 = 1a_1 + 2a_3$
- $a_4 = 5a_1 36a_3$

Linear Equation Ax = b, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$

There exists a solution if

■ There always exists a solution for any $b \in R^m$ if:

• There exists a unique solution if:

Review Outline

- Part I:
 - Linear combination
 - Linear independence
 - Vector space
- Part II:
 - Column space/Null space
 - Matrix rank
 - Solution space of Ax = b
- Part III
 - Inner product
 - Linear, conic, convex combinations
 - Some Geometric Sets

Inner Product

• Inner product of vectors in R^n : $\langle v, w \rangle =$

• Norm of $v \in \mathbb{R}^n$

■ Angle between $v, w \in \mathbb{R}^n$

Orthogonality:

Projection

• Projection of $v \in \mathbb{R}^n$ along direction e

• $\{e_1, \dots, e_k\}$ be orthonormal basis of vector space V, then any $v \in V$, $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_k \rangle e_k$

General Inner Product

- General inner product $\langle \cdot, \cdot \rangle : V \times V \to R$
- maps each pair in a vector space to a scaler
- satisfies several key properties: linearity, conjugate, positive definiteness ...

• Inner product of matrices in $R^{m \times n}$: $\langle A, B \rangle =$

• Inner product of two functions f, g on interval [a, b]:

Projection

• **Fourier series**: Consider a vector space of periodic functions: $V = \{\text{integrable functions over } [0,2\pi)\}$

- Inner product: $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$
- Basis: $B = \{1, \cos x, \sin(x), \cos(2x), \sin(2x), ...\}$

• $f \in V$, then

Representation of Geometric Objects / Sets

■ Implicit method via (sub)-level sets:

$$\{x \in R^n : f(x) = 0\}$$
 or $\{x \in R^n : f(x) \le 0\}$

■ Explicit method: $\{x(\alpha) \in \mathbb{R}^n : \alpha \text{ satisfies certain conditions}\}$

Wei Zhang CLEAR Lab @ SUSTech 23

Cone and Conic Combination

■ Cone: A set *S* is called a cone if $x \in S \Rightarrow \lambda x \in S$, $\forall \lambda \geq 0$

■ Conic combination of $v_1, ..., v_k \in R^n$ $cone(v_1, ..., v_k) = \{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k : \alpha_i \ge 0\}$

Convex Set and Convex Combination

• Convex set: A set *S* is called convex if

$$v_1, v_2 \in S \Rightarrow \alpha v_1 + (1 - \alpha)v_2 \in S$$

■ Convex combination of $v_1, ..., v_k \in \mathbb{R}^n$ $\{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k : \alpha_i \geq 0, \sum \alpha_i = 1\}$

• Convex hull $\overline{co}(S)$: set of all convex combinations of points in S

Some Simple Geometric Sets - Line

■ Line segment: Given $v_1 \neq v_2 \in \mathbb{R}^n$: $\{v_2 + \alpha (v_1 - v_2): \alpha \in [0,1]\}$

• Line (explicit): $\{v_2 + \alpha (v_1 - v_2): \alpha \in R\}$

- Line: (implicit)
- e.g. in R^2 : $\{x \in R^2 : a^T x = b\}$

Some Simple Geometric Sets - Hyperplanes

■ Hyperplanes (Implicit): $\{x \in R^n : a^T x = b\}$

■ Hyperplanes (Explicit): $\{x \in R^n : a^T x = b\} \Rightarrow \{x_0 + \sum_i \alpha_i v_i : \alpha_i \in R, i = 1, ..., n-1\}$

• Halfspaces: $\{x \in R^n : a^T x \le b\}$

Some Simple Geometric Sets - Polyhedron

• (Convex) Polyhedron: intersection of a finite number of half spaces

$$P = \{x \in R^n : Ax \le b\}$$

■ **Polyhedral cone**: intersection of finitely many halfspaces that contain the origin:

$$P = \{x \in R^n : Ax \le 0\}$$

Polytope: bounded polyhedron

Some Simple Geometric Sets - Polyhedron

• Polyhedron (vertex representation):

$$P = \overline{co}(v_1, \dots, v_m) \oplus cone(r_1, \dots, r_q)$$

Some Simple Geometric Sets - Quadratic Sets

■ Euclidean balls: $B(x_c, r) = \{x \in R^n : ||x - x_c||_2 \le r\}$ or $B(x_c, r) = \{x_c + ru : u \in R^n, ||u||_2 \le 1\}$

■ Ellipsoids: $E = \{x \in R^n : (x - x_c)^T P^{-1} (x - x_c) \le 1\}$ or $E = \{x_c + Au : u \in R^n, ||u||_2 \le 1\}$