

MAPETH

BATCH CODE - 12-AJ251MA

Subject Name- Physics

 Chapter Name - Work , Power & Energy

Harsh Rajwansh Sir

Lecture No.- 02

Work, Power & Energy

2 Work done in different situations

3

4

A constant force $\vec{F} = (5\hat{i} - 2\hat{j} + 4\hat{k})$ N acts on a particle displacing from (1,-1,2) to (2,2,0). Find the total work done by the force.

$$\vec{S} = (2-1)\hat{i} + (2-(-1))\hat{j} + (0-2)\hat{k}$$

$$\vec{S} = \hat{i} + 3\hat{j} - 2\hat{k}$$

$$\vec{F} = 5\hat{i} - 2\hat{j} + 4\hat{k}$$

$$\vec{W} = \vec{F} \cdot \vec{S} = 5 - 6 - 8$$

$$= -97$$

A particle is shifted from origin to (1, 2, -3) under the action of three forces act simultaneously . $\vec{F_1} = (2\hat{i} + 3\hat{j} - \hat{k}) N$, $\vec{F_2} = (\hat{i} - 2\hat{j} + 2\hat{k}) N$ and $\vec{F_3} = (\hat{i} + \hat{j} - 3\hat{k}) N$. Find net work done on particle dues to these forces .

At t=0, particle is at origin & moves on $y=4x^2$. Find the work done by a force \vec{F} = 4 \hat{i} + 6 \hat{j} + 8 \hat{k} when y coordinate of particle become 16.

$$S_1 = (2,16)$$
 $S_2 = (-2,16)$

Find net workdone by friction in each block in first 3 sec. $(\vec{u} = 0)$

$$\int_{S=0}^{\infty} \int_{S=0}^{\infty} \int_{S$$

$$W_{\xi} = (5)(20.25)(0.180)$$

=-101.257

Find net workdone by friction in each block in first 2 sec. $(\vec{u} = 0)$

$$f=10N$$
 $f=0.2\times6\times10$
 $f=0.2\times6\times10$

Find net workdone by friction in each block in first 4 sec. $(\vec{u} = 0)$

$$f = 25N$$
 $5 = 0.0 + \frac{1}{2} \times 5 \times 16 = 40 \text{ m}$

$$W_{\xi} = (25)(40)(65180)$$

$$f=15N$$
 $f=15N$
 $f=10N$
 $f=25N$
 $f=25N$

$$M_{t}^{2} = (10)(8)(8)(80 = 80)$$

Find net workdone by friction in each block in first 2 sec. $(\vec{u} = 0)$

Acceleration of elevator $\vec{a} = 1 \hat{i} + 2 \hat{j}$ $\vec{u} = 0$

Find work done by: Gravity & Tension in 4 sec

$$T_2 = 101$$

$$T_2 = 101$$

$$T_3 = 101$$

$$\begin{array}{c|cccc}
Q_{N=1} & Q_{N=2} & & & \\
U=0 & & & & \\
J=1 & & & \\
S_{N=2} & & & & \\
S_{N=2} & & & \\
S_{N=1} & & & \\
S_{N=2} & & & \\
S_{N=1} & & & \\
S_{N=2} & & & \\
S_{N=2} & & & \\
S_{N=1} & & & \\
S_{N=2} & & & \\
S_{N=2} & & & \\
S_{N=1} & &$$

Acceleration of elevator $\vec{a} = 1 \hat{i} + 2 \hat{j}$ u = 0

Find work done by: Gravity, Normal in 2 sec

10 kg Smooth

Solve the DPP

[Introduction, Definition of work, work done by constant force, Area under force-displacement curve]

A pursuly moves from position

\$\(\) = \$\(\) = \$2\(\) = \$6\(\) to position

\$\(\) = \$\(\) = \$1.5\(\) = \$6\(\) and the action of factor 40 + \$\(\) = \$16\(\) \$1. The mock directly than force with the \$(A)\$ \$100.2\$

((A) \$100.2\$

Thank You!!!!
Baccho...

Join Telegram Channel

Share your performance with parents through Student Parents Dashboard

Rate your today's class in the Batch

