13 강

데이터분석방법론2

LMM

3-수준 군집자료분석

대전대학교빅데이터인공지능학과 강위창 교수

- 제 13강. LMM 3-수준 군집자료분석
 - □ 3-수준 군집자료
 - 2 LMM : 군집자료의 특성 탐색
 - 3 LMM : 군집자료의 분석모형 구축
 - 4 LMM : 군집자료 모형적합 결과 해석
 - 5 LMM : 모형진단

自自州Ω 및 목표

이번 강의에서는 3-수준 군집자료를 분석하는 LMM을 예제자료 중심으로 소개합니다.

- 3-수준 군집자료의 통계적 특성을 이해하고 해당 자료에 적합한 LMM 분석모형을 제시할 수 있다.
- 2 3-수준 군집자료에 LMM을 올바르게 적합시키고 분석결과를 해석할 수 있다.

제 13강. LMM 3-수준 군집자료분석

01 제 13강. LMM 3-수준 군집자료분 3-수준 군집자료

1. 例제자료

- **그** 수업개선연구자료(Anderson et al., 2009)
- > 연구목적
 - 교육환경(학교의 주변환경, 교사의 특성, 사회경제적 상태 등)은 초등학교 학생들의 수학성적 성취에 영향을 주는가?

1. 예제자료

- □ 수업개선연구자료(Anderson et al., 2009)
- > 자료의 생성과 특성
 - U.S 초등학교 모집단에서 107개의 학교(school)를 확률 추출함
 - 추출된 각 학교에서 1학년의 일부 학급을 랜덤 추출: 312개 학급
 - 추출된 각 학급에서 학생 일부를 랜덤 추출: 1190명 학생
 - 유치원 때 대비 수학성적변화(MATHGAIN:)을 측정함.
 - 3-수준 군집자료(three-level clustered data)
 - Level 1(student-level): 관측 자료의 가장 아래 수준(학생)
 - Level 2(classroom-level): Level 1의 바로 위 수준(학급)
 - Level 3(school-level) Level 2의 바로 위 수준(학교)

1. 에게자료(2)

□ 수업개선연구자료(Anderson et al., 2009)

> 자료 구조(https://websites.umich.edu/~bwest/chapter4.html)

sex	minority	mathkind	mathgain	ses	yearstea	mathknow	housepov	mathprep	classid	schoolid	childid
1	1	448	32	0.46	1		0.082	2	160	1	1
0	1	460	109	-0.27	1		0.082	2	160	1	2
1	1	511	56	-0.03	1		0.082	2	160	1	3
0	1	449	83	-0.38	2	-0.11	0.082	3.25	217	1	4
0	1	425	53	-0.03	2	-0.11	0.082	3.25	217	1	5
1	1	450	65	0.76	2	-0.11	0.082	3.25	217	1	6
0	1	452	51	-0.03	2	-0.11	0.082	3.25	217	1	7
0	1	443	66	0.2	2	-0.11	0.082	3.25	217	1	8
1	1	422	88	0.64	2	-0.11	0.082	3.25	217	1	9
0	1	480	-7	0.13	2	-0.11	0.082	3.25	217	1	10
0	1	502	60	0.83	2	-0.11	0.082	3.25	217	1	11
1	1	502	-2	0.06	1	-1.25	0.082	2.5	197	2	12
0	0	430	101	0.3	1	-1.25	0.082	2.5	197	2	13
0	0	526	30	-0.27	2	-0.72	0.082	2.33	211	2	14

- ◆ 3-수준 군집자료(three-level clustered data)
- ➤ Level 1(student-level)
 - ✓ 수학성적변화(mathgain), 성별(sex), 소수자여 부(minority), 유치원수학성적(mathkind), 사 회경제적상태(ses), 학생번호(childid)
- Level 2(classroom-level)
 - ✓ 교사의교육경험년수(yeartea), 교사의 수학교 육준비수준(mathprep), 교사의수학지식 (mathknow), 교실번호(classid)
- ➤ Level 3(school-level)
 - ✓ 학교주변의 주거환경(housepov), 학교번호 (schoolid)

2. 자료 준비

➤ https://websites.umich.edu/~bwest/chapter4.html 에서 자료를 다운받아 classroom.csv 파일로 저장.

> classroom.csv 파일이 아래 폴더 [C:₩강위창₩방통대₩데이터분석방법론2₩강의노트_2024 ₩예제자료]에 있다고 가정 **02** 제 13강. LMM 3-수준 군집자료분석 LMM: 군집자료의 특성 탐색

1. Ω인(변수)의 구분 : 고정Ω인 vs. 변량Ω인

sex	minority	mathkind	mathgain	ses	yearstea	mathknow	housepov	mathprep	classid	schoolid	childid
1	1	448	32	0.46	1		0.082	2	160	1	1
0	1	460	109	-0.27	1		0.082	2	160	1	2
1	1	511	56	-0.03	1		0.082	2	160	1	3
0	1	449	83	-0.38	2	-0.11	0.082	3.25	217	1	4
0	1	425	53	-0.03	2	-0.11	0.082	3.25	217	1	5
1	1	450	65	0.76	2	-0.11	0.082	3.25	217	1	6
0	1	452	51	-0.03	2	-0.11	0.082	3.25	217	1	7
0	1	443	66	0.2	2	-0.11	0.082	3.25	217	1	8
1	1	422	88	0.64	2	-0.11	0.082	3.25	217	1	9
0	1	480	-7	0.13	2	-0.11	0.082	3.25	217	1	10
0	1	502	60	0.83	2	-0.11	0.082	3.25	217	1	11
1	1	502	-2	0.06	1	-1.25	0.082	2.5	197	2	12
0	0	430	101	0.3	1	-1.25	0.082	2.5	197	2	13
0	0	526	30	-0.27	2	-0.72	0.082	2.33	211	2	14
0	0	504	65	0.74	2	-0.72	0.082	2.33	211	2	15
1	0	527	29	0.31	2	-0.72	0.082	2.33	211	2	16
1	0	462	152	1.1	2	-0.72	0.082	2.33	211	2	17
0	0	483	50	0.52	12.54		0.082	2.3	307	2	18
1	1	516	60	-1.15	12.54		0.082	2.3	307	2	19
0	1	476	74	0	12.54		0.082	2.3	307	2	20
0	1	453	91	0.39	12.54		0.082	2.3	307	2	21

- 고정요인 (fixed factors)
 - Level 1 : 성별(sex: 0=남, 1=여),
 소수자여부(minority: 0=,no,
 1=yes),
 유치원수학성적(mathkind),
 사회경제적상태(ses)
 - Level 2 :
 교사교육경험년수(yeartea), 교사
 수학교육준비수준(mathprep),
 교사수학지식(mathknow)
 - Level 3 : 학교주변 주거환경(housepov)
- 변량요인 (random factors)
 - Level 1 : 학생
 - Level 2 : 교실
 - Level 3 : 학교

2. 탐색적 자료분석 : 기술 통계량

□ Level 1 변수들의 기술 통계량

```
> ##### 탐색적 분석 : Classroom data
> class <- read.csv("C:/강위창/방통대/데이터분석방법론2/강의노트 2024/예제자료/classroom.csv", h = T)
> ## Level 1 기술통계량
> attach(class)
> level1 <- data.frame(mathgain, sex,minority,mathkind,ses)</pre>
> summary(level1)
   mathgain
                              minority mathkind
           sex
                                                                ses
Min. :-110.00 Min. :0.0000 Min. :0.0000
                                             Min. :290.0
                                                           Min. :-1.61000
1st Qu.: 35.00 1st Qu.:0.0000 1st Qu.:0.0000
                                             1st Qu.:439.2 1st Qu.:-0.49000
Median: 56.00 Median: 1.0000 Median: 1.0000
                                             Median :466.0 Median :-0.03000
Mean : 57.57 Mean
                    :0.5059 Mean :0.6773
                                             Mean :466.7 Mean :-0.01298
                              3rd Qu.:1.0000
3rd Qu.: 77.00 3rd Qu.:1.0000
                                             3rd Qu.:495.0 3rd Qu.: 0.39750
      : 253.00
Max.
                Max.
                      :1.0000
                              Max.
                                     :1.0000
                                             Max. :629.0
                                                           Max. : 3.21000
```


• mathgain : 중앙값 〈 평균값

• sex : 여학생 50.6%

• minority : 소수자 67.7%

• ses : 중앙값 < 평균값

2. 탐색적 자료분석 : 기술 통계량

□ Level 2 변수들의 기술 통계량

```
> level.a2 <- aggregate(class, list(classid = class$classid), mean)</p>
> level2 <- data.frame(level.a2$yearstea, level.a2$mathprep, level.a2$mathknow)</p>
> summary(level2)
level.a2.yearstea level.a2.mathprep level.a2.mathknow
      : 0.00
                 Min.
Min.
                        :1.000
                                   Min.
                                          :-2.50000
1st Qu.: 4.00 1st Qu.:2.000
                                  1st Qu.:-0.76000
Median :10.00 Median :2.300
                                   Median :-0.19000
               Mean :2.577
     :12.28
                                   Mean :-0.08025
Mean
3rd Qu.:20.00 3rd Qu.:3.000
                                   3rd Ou.: 0.62000
      :40.00
                 Max. :6.000
Max.
                                   Max. : 2.61000
                                   NA's
                                         :27
```


- yeartea : 평균 12.28년 (중앙값 < 평균값)
- mathknow : 27 개의 classroom(교사)에서 결측치 존재

▶ Level 3 변수의 기술 통계량

```
> level3 <- aggregate(class, list(schoolid = class$schoolid), mean)
> summary(level3$housepov)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0120 0.0855 0.1480 0.1941 0.2645 0.5640
```


 housepov : 평균 이하 재산 가 구 비율의 평균 19.41%

2. 탐색적 자료분석 : 학교와 학급에 따른 박스그림

4개 학교와 각 학교의 학급에서의 종속변수 박스그림

- 종속변수(mathgain)의 분포(평균 과 분산 등)는
 - ➤ 학교(school)에 따라서 변동성 이 존재
 - 각 학교내의 학급에 따라서도 변동성이 존재

- 학교와 학급을 수준 별 변량요인으로 설정하는 Multilevel models
 (LMM) 분석 시도
 - √ 변량절편모형
 - ✓ 변량계수모형 등

2. 탐색적 자료분석 : 학교와 학급에 따른 박스그림

□ 4개 학교와 각 학교의 학급에서의 종속변수 박스그림

R code

제 13강. LMM 3-수준 군집자료분석 LMM: 군집자료의 분석모형 구축

- □ 상향식(Step-Up) 모형구축 전략
- > Step1: "mean-only" (variance components) 모형 적합
 - 고정효과는 "상수항"만 포함
 - 2-수준 및 3-수준 변량요인(각각 학급, 학교) 포함
 - k번째 학교 내 i 번째 학급의 i번째 학생에 대하여

$$Mathgain_{ijk} = \beta_0 + u_{i|k} + u_k + \varepsilon_{ijk}$$

여기서

$$\varepsilon_{ijk} \sim^{iid} N(0,\sigma^2)$$
, $u_{j|k} \sim^{iid} N(0,\sigma_{cl}^2)$, $u_k \sim^{iid} N(0,\sigma_{sch}^2)$

- 이고 ε_{ijk} , $u_{j|k}$, u_k 는 서로 독립.
- ▶ 분산성분모형(variance components models)
- > 3-수준 변량절편모형

- □ 상향식(Step-Up) 모형구축 전략
- > Step1: "mean-only" (variance components) 모형 적합
 - "mean-only" 모형

$$Mathgain_{ijk} = \beta_0 + u_{j|k} + u_k + \varepsilon_{ijk}$$

- ▶ "unconditional" 모형이라고도 함.
- Step1 에서 모형 검정의 내용
 - 변량효과의 유의성 검정(가능도비 검정)
 - \checkmark 학급변량효과 $u_{i|k}$ 의 유의성
 - \checkmark 학교변량효과 u_k 의 유의성

- □ 상향식(Step-Up) 모형구축 전략
- > Step2: Level 1 공변량 추가한 모형 적합
 - Step1 에서 선택된 모형에 Level 1 공변량 추가 모형 $Mathgain_{ijk} = \beta_0 + X_{ijk}\beta_1 + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 X_{ijk} 는 $(1 \times p)$ Level 1 공변량 벡터, β_1 는 $(p \times 1)$ 미지의 모수벡터
 - Step2 에서 모형 검정의 내용(가능도비 검정, F-검정, t-검정)
 ✓ β₁ 의 유의성

- □ 상향식(Step-Up) 모형구축 전략
- > Step3: Level 2 공변량 추가한 모형 적합
 - Step2 에서 선택된 모형에 Level 2 공변량 추가 모형 $Mathgain_{ijk} = \beta_0 + X_{ijk}\beta_1 + X_{jk}\beta_2 + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 X_{jk} 는 $(1 \times q)$ Level 2 공변량 벡터, β_2 는 $(q \times 1)$ 미지의 모수벡터
 - Step3 에서 모형 검정의 내용(가능도비 검정, F-검정, t-검정)
 - \checkmark β_2 의 유의성

- □ 상향식(Step-Up) 모형구축 전략
- > Step4: Level 3 공변량 추가한 모형 적합
 - Step3 에서 선택된 모형에 Level 3 공변량 추가 모형 $Mathgain_{ijk} = \beta_0 + X_{ijk}\beta_1 + X_{jk}\beta_2 + X_k\beta_3 + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 X_k 는 $(1 \times l)$ Level 3 공변량 벡터, β_3 는 $(l \times 1)$ 미지의 모수벡터
 - Step4 에서 모형 검정의 내용(가능도비 검정, F-검정, t-검정)
 - ✓ β₃ 의 유의성

- □ Three-level 변량절편모형 적합: Step1
- > "mean-only" 모형(모형4.1) 적합
 - k번째 학교 내 j 번째 학급의 i번째 학생에 대하여 $Mathgain_{ijk} = \beta_0 + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 $\varepsilon_{ijk} \sim^{iid} N(0,\sigma^2), u_{j|k} \sim^{iid} N(0,\sigma_{cl}^2), u_k \sim^{iid} N(0,\sigma_{sch}^2)$ 이고 $\varepsilon_{ijk}, u_{i|k}, u_k$ 는 서로 독립.

모형4.1 적합

> library(nlme)
> # "mean-only" 모형(variance components models)(Model 4.1)
> model4.1.fit <- lme(mathgain~1,random = ~1|schoolid/classid,data=class, method = "REML")

- □ Three-level 변량절편모형 적합: Step1
- > "mean-only" 모형(모형4.1) 적합
 - k번째 학교 내 i 번째 학급의 i번째 학생에 대하여 $Mathgain_{ijk} = \beta_0 + u_{i|k} + u_k + \varepsilon_{ijk}$ $\varepsilon_{ijk} \sim^{iid} N(0,\sigma^2)$, $u_{i|k} \sim^{iid} N(0,\sigma_{cl}^2)$, $u_k \sim^{iid} N(0,\sigma_{sch}^2)$

summary(model4.1.fit)

Random effects:

Formula: ~1 | schoolid

(Intercept)

StdDev: 8.802955

Formula: ~1 | classid %in% schoolid

(Intercept) Residual

StdDev: 9.961301 32.06609

- $\widehat{\sigma_{sch}} = 8.80$, $\widehat{\sigma_{sch}^2} = 77.44$
- $\widehat{\sigma_{cl}} = 9.96, \ \widehat{\sigma_{cl}^2} = 99.20$
 - $\hat{\sigma} = 32.07$, $\widehat{\sigma^2} = 1028.49$

- 오차분산(3-수준) 추정값 큼
- 3-수준 공변량의 추가 시사

- □ Three-level 변량절편모형 적합: Step1
- > 변량효과 유의성 검정 : 학교 내 학급의 유의성 검정
 - 가설의 설정

$$H_0: \sigma_{cl}^2 = 0$$
 vs. $H_1: \sigma_{cl}^2 > 0$

귀무가설 모형

$$Mathgain_{ijk} = \beta_0 + u_k + \varepsilon_{ijk}$$

$$\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_k \sim^{iid} N(0, \sigma_{sch}^2)$$

대립가설 모형

$$Mathgain_{ijk} = \beta_0 + u_{j|k} + u_k + \varepsilon_{ijk}$$

$$\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), u_k \sim^{iid} N(0, \sigma_{sch}^2)$$

- □ Three-level 변량절편모형 적합: Step1
- 변량효과 유의성 검정 : 학교 내 학급의 유의성 검정
 - 가능도비 검정통계량 LR과 분포

$$LR = -2log\left(\frac{L_{H_0}}{L_{H_1}}\right) \approx^{H_0} 0.5 \times x^2(0) + 0.5 \times x^2(1)$$

여기서 L_{H_0} 과 L_{H_1} 은 각각 귀무가설과 대립가설에서 구한 REML값

귀무가설 모형 적합

model4.1A.fit <- lme(mathgain~1, random=~1|schoolid, data=class, method = "REML")</pre>

대립가설 모형 적합

model4.1.fit <- lme(mathgain~1, random = ~1|schoolid/classid, data=class, method = "REML")</pre>

검정 결과

> anova(model4.1.fit, model4.1A.fit) Model df AIC BIC logLik Test L.Ratio p-value model4.1.fit 1 4 11776.76 11797.09 -5884.382 model4.1A.fit 2 3 11782.67 11797.91 -5888.335 1 vs 2 7.904762 0.0049

p-value= **0.5** * 0.0049 = 0.0025

- □ Three-level 변량절편모형 적합: Step2
- > Level 1 공변량 추가한 모형(모형4.2) 적합
 - Level 1 공변량 : $sex(x_{1ijk}: 0=H, 1=G)$, minority $(x_{2ijk}: 0=H, 1=G)$, mathkind (x_{3ijk}) , $ses(x_{4ijk})$ 을 모형4.1 에 추가
 - k번째 학교 내 i 번째 학급의 i번째 학생에 대하여

```
Mathgain_{ijk} = \beta_0 + \underline{\beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk}}\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), \ u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), \ u_k \sim^{iid} N(0, \sigma_{sch}^2)
```

모형4.2 적합

```
# 모형2: Level 1 공변량 추가한 모형: Model 4.2.
model4.2.fit <- lme(mathgain~sex+minority+mathkind+ses, random=~1|schoolid/classid,
data=class, na.action = "na.omit", method = "REML")
summary(model4.2.fit)
```

- □ Three-level 변량절편모형 적합: Step2
- > Level 1 공변량 추가한 모형(모형4.2) 적합

```
> summary(model4.2.fit)
Random effects:
Formula: ~1 | schoolid
       (Intercept)
StdDev: 8.671991
Formula: ~1 | classid %in% schoolid
       (Intercept) Residual
          9.12604 27.10286
StdDev:
Fixed effects: mathgain ~ sex + minority + mathkind + ses
              Value Std.Error DF t-value p-value
(Intercept) 282.79034 10.853234 874 26.055860 0.0000
      -1.25119 1.657730 874 -0.754762 0.4506
sex
minority -8.26213 2.340113 874 -3.530655 0.0004
mathkind -0.46980 0.022266 874 -21.099524
                                           0.0000
         5.34638 1.241094 874 4.307794 0.0000
ses
```

모수 추정치

•
$$\widehat{\beta_2} = -8.26$$

$$\bullet \ \widehat{\beta_3} = -0.47$$

•
$$\widehat{\beta_4} = 5.35$$

•
$$\hat{\sigma_{sch}} = 8.67$$

•
$$\widehat{\sigma_{cl}} = 9.12$$

•
$$\hat{\sigma} = 27.10$$

- □ Three-level 변량절편모형 적합: Step2
- > Level 1 공변량 유의성 검정
 - 가설의 설정

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$
 vs. $H_1: not H_0$

귀무가설 모형

$$Mathgain_{ijk} = \beta_0 + u_{j|k} + u_k + \varepsilon_{ijk}$$

$$\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), u_k \sim^{iid} N(0, \sigma_{sch}^2)$$

대립가설 모형

$$Mathgain_{ijk} = \beta_0 + \underline{\beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk}}$$
$$\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), u_k \sim^{iid} N(0, \sigma_{sch}^2)$$

- □ Three-level 변량절편모형 적합: Step2
- ▶ Level 1 공변량 유의성 검정 : 가능도비 검정
 - 가능도비 검정통계량 LR과 분포

$$LR = -2log\left(\frac{L_{H_0}}{L_{H_1}}\right) \approx^{H_0} x^2(4)$$

여기서 L_{H_0} 과 L_{H_1} 은 각각 귀무가설과 대립가설에서 구한 ML값

유의성 검정과 결과

```
> ## Level 1 공변량 유의성 검정: 가능도비 검정
> # 귀무가설: "means-only"모형(모형4.1): ML estimation.
> model4.1.ml.fit <- lme(mathgain~1,random=~1|schoolid/classid, data=class, method="ML")
> # 대립가설: 모형4.2: ML estimation.
> model4.2.ml.fit <- lme(mathgain~sex+minority+mathkind+ses, random=~1|schoolid/classid,
                    data=class, na.action="na.omit", method="ML")
> anova(model4.1.ml.fit, model4.2.ml.fit)
              Model df AIC BIC logLik Test L.Ratio p-value
model4.1.ml.fit 1 4 11779.33 11799.66 -5885.666
model4.2.ml.fit 2 8 11406.96 11447.62 -5695.481 1 vs 2 380.3684 <.0001
```


p-value < 0.0001

- □ Three-level 변량절편모형 적합: Step3
- > 모형4.2에 Level 2 공변량 추가한 모형(모형4.3) 적합
 - Level 2 공변량 : yeartea (x_{5jk}) , mathknow (x_{6jk}) , mathprep (x_{7jk}) 을 모형4.2에 추가
 - k번째 학교 내 j 번째 학급의 i번째 학생에 대하여

$$\begin{aligned} Mathgain_{ijk} &= \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} \\ &+ \beta_5 * \underline{x_{5jk} + \beta_6 * x_{6jk} + \beta_6 * x_{7jk} + u_{j|k} + u_k + \varepsilon_{ijk}} \\ &\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), \, u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), \, u_k \sim^{iid} N(0, \sigma_{sch}^2) \end{aligned}$$

모형4.3 적합

모형3: 모형4.2에 Level 2 공변량 추가한 모형: Model 4.3. model4.3.fit <- lme(mathgain~sex+minority+mathkind+ses+yearstea+mathknow+mathprep, random=~1|schoolid/classid,data=class, na.action="na.omit", method="REML")

- □ Three-level 변량절편모형 적합: Step3
- > 모형4.2에 Level 2 공변량 추가한 모형(모형4.3) 적합

```
> summary(model4.3.fit)
Random effects:
 Formula: ~1 | schoolid
        (Intercept)
        8.671285
StdDev:
 Formula: ~1 | classid %in% schoolid
        (Intercept) Residual
          9.310153 26.71766
StdDev:
Fixed effects: mathgain ~ sex + minority + mathkind +
               Value Std.Error DF t-value p-value
(Intercept) 282.02452 11.701687 792 24.101185 0.0000
          -1.33950 1.718580 792 -0.779423 0.4360
sex
minority -7.86886 2.418081 792 -3.254177 0.0012
mathkind -0.47501 0.022747 792 -20.882471 0.0000
ses 5.41925 1.275995 792 4.247078 0.0000 yearstea 0.03974 0.117070 177 0.339435 0.7347
mathknow
          1.91448 1.147015 177 1.669094 0.0969
           1.09485 1.148493 177 0.953296 0.3417
mathprep
```

모수 추정치

•
$$\widehat{\beta_1} = -1.34$$

•
$$\widehat{\beta}_2 = -7.87$$

•
$$\widehat{\beta_3} = -0.48$$

•
$$\widehat{\beta_4} = 5.42$$

•
$$\widehat{\beta_6} = 1.91$$

•
$$\widehat{\beta_7} = 1.09$$

•
$$\widehat{\sigma_{sch}} = 8.67$$

•
$$\widehat{\sigma_{cl}} = 9.31$$

•
$$\hat{\sigma} = 26.72$$

- □ Three-level 변량절편모형 적합: Step3
- > Level 2 공변량 유의성 검정: t-검정
 - "mathknow" 에 27개의 결측치 존재
 - 전체 자료를 사용하여 적합한 모형4.2와 결측치를 제외하고 적합한 모형4.3
 에 대하여 가능도비 검정을 실시하는 부 적절
 - ➤ 각 개별 공변량에 대하여 t-검정 실시

◆ 가설의 설정

✓ 교사교육경험년수(yeartea)에 대한 유의성 검정

$$H_0: \beta_5 = 0$$
 vs. $H_1: \beta_5 \neq 0$

✓ 교사수학지식(mathknow)에 대한 유의성 검정

$$H_0: \beta_6 = 0$$
 vs. $H_1: \beta_6 \neq 0$

✓ 수학교육준비수준(mathprep)에 대한 유의성 검정

$$H_0: \beta_7 = 0$$
 vs. $H_1: \beta_7 \neq 0$

- □ Three-level 변량절편모형 적합: Step3
- ▶ Level 2 공변량 유의성 검정: t-검정

```
> summary(model4.3.fit)
Random effects:
 Formula: ~1 | schoolid
       (Intercept)
       8.671285
StdDev:
 Formula: ~1 | classid %in% schoolid
       (Intercept) Residual
         9.310153 26.71766
StdDev:
Fixed effects: mathgain ~ sex + minority + mathkind +
               Value Std.Error DF t-value p-value
(Intercept) 282.02452 11.701687 792 24.101185 0.0000
          -1.33950 1.718580 792 -0.779423 0.4360
sex
minority -7.86886 2.418081 792 -3.254177 0.0012
mathkind -0.47501 0.022747 792 -20.882471 0.0000
ses5.419251.2759957924.2470780.0000yearstea0.039740.1170701770.3394350.7347
          1.91448 1.147015 177 1.669094 0.0969
mathknow
          1.09485 1.148493 177 0.953296 0.3417
mathprep
```

개별 t-검정 결과

- Level 1 공변량이 모형 에 있을 때 Level 2 공 변량을 추가하는 것은 통계적으로 유의하지 않음
 - ▶ 모형4.2를 분석모 형으로 유지

- □ Three-level 변량절편모형 적합: Step4
- > 모형4.2에 Level 3 공변량 추가한 모형(모형4.4) 적합
 - Level 3 공변량 : housepov (x_{8k}) 을 모형4.2에 추가
 - k번째 학교 내 j 번째 학급의 i번째 학생에 대하여

$$\begin{aligned} Mathgain_{ijk} &= \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} \\ &+ \beta_8 * \underline{x_{8k} + u_{j|k}} + u_k + \varepsilon_{ijk} \\ &\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), \ u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), \ u_k \sim^{iid} N(0, \sigma_{sch}^2) \end{aligned}$$

모형4.4 적합

모형4: 모형4.2에 Level 3 공변량 추가한 모형: Model 4.4. model4.4.fit <- update(model4.2.fit, fixed = ~sex+minority+mathkind+ses<u>+housepov)</u>

- □ Three-level 변량절편모형 적합: Step4
- > 모형4.2에 Level 3 공변량 추가한 모형(모형4.4) 적합

```
summary(model4.4.fit)
Random effects:
Formula: ~1 | schoolid
       (Intercept)
StdDev: 8.818243
Formula: ~1 | classid %in% schoolid
       (Intercept) Residual
StdDev:
         9.030822 27.10018
Fixed effects: mathgain ~ sex + minority + mathkind + ses + housepov
              Value Std.Error DF t-value p-value
(Intercept) 285.05800 11.020766 874 25.865534 0.0000
       -1.23460 1.657434 874 -0.744884 0.4565
sex
minority -7.75588 2.384993 874 -3.251950 0.0012
mathkind -0.47086 0.022281 874 -21.132931
                                           0.0000
     5.23971 1.244971 874 4.208703 0.0000
ses
housepov -11.43923 9.937384 105 -1.151131 0.2523
```

모수 추정치

•
$$\widehat{\beta_1} = -1.23$$

•
$$\widehat{\beta_2} = -7.76$$

•
$$\widehat{\beta}_3 = -0.47$$

$$\widehat{\beta_4} = 5.24$$

•
$$\widehat{\beta_8} = -11.44$$

•
$$\widehat{\sigma_{sch}} = 8.82$$

•
$$\widehat{\sigma_{cl}} = 9.03$$

•
$$\hat{\sigma} = 27.10$$

- □ Three-level 변량절편모형 적합: Step4
- > Level 3 공변량 유의성 검정: t-검정 또는 가능도비 검정
 - ◆ 가설의 설정

$$H_0: \beta_8 = 0$$
 vs. $H_1: \beta_8 \neq 0$

귀무가설 모형

$$\begin{aligned} Mathgain_{ijk} &= \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk} \\ & \varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), \, u_{j|k} \sim^{iid} N(0, \sigma^2_{cl}), \, u_k \sim^{iid} N(0, \sigma^2_{sch}) \end{aligned}$$

대립가설 모형

$$\begin{aligned} Mathgain_{ijk} &= \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} \\ &\quad + \beta_8 * x_{8k} + u_{j|k} + u_k + \varepsilon_{ijk} \\ &\quad \varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), \, u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2), \, u_k \sim^{iid} N(0, \sigma_{sch}^2) \end{aligned}$$

- □ Three-level 변량절편모형 적합: Step4
- > Level 3 공변량 유의성 검정: t-검정

```
summary(model4.4.fit)
Random effects:
Formula: ~1 | schoolid
       (Intercept)
StdDev: 8.818243
Formula: ~1 | classid %in% schoolid
       (Intercept) Residual
StdDev:
         9.030822 27.10018
Fixed effects: mathgain ~ sex + minority + mathkind + ses + housepov
              Value Std.Error DF t-value p-value
(Intercept) 285.05800 11.020766 874 25.865534 0.0000
          -1.23460 1.657434 874 -0.744884 0.4565
sex
minority -7.75588 2.384993 874 -3.251950 0.0012
mathkind -0.47086 0.022281 874 -21.132931
                                           0.0000
ses 5.23971 1.244971 874 4.208703 0.0000
housepov -11.43923 9.937384 105 -1.151131 0.2523
```

t-검정 결과

- Level 1 공변량이 모형 에 있을 때 Level 3 공 변량을 추가하는 것은 통계적으로 유의하지 않음
 - ▶ 모형4.2를 최종 분석모형으로 선택

2. Classroom 연구자료 LMM 적합

- □ Three-level 변량절편모형 적합: Step4
- > Level 3 공변량 유의성 검정: 가능도비 검정
 - 가능도비 검정통계량 LR과 분포

$$LR = -2log\left(\frac{L_{H_0}}{L_{H_1}}\right) \approx^{H_0} x^2(1)$$

여기서 L_{H_0} 과 L_{H_1} 은 각각 귀무가설과 대립가설에서 구한 ML값

유의성 검정과 결과

✓ 모형4.2를 최종분석모형으로선택

p-value= 0.25

제 13강. LMM 3-수준 군집자료분석 LMM : 군집자료 모형적합 결과 해석

□ Classroom 연구자료에 대한 최종분석 모형

> 분석모형 기술

$$Mathgain_{ijk} = \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk} + \beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk}$$
 여기서

$$\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2)$$
, $u_{j|k} \sim^{iid} N(0, \sigma_{cl}^2)$, $u_k \sim^{iid} N(0, \sigma_{sch}^2)$

이고 ε_{ijk} , u_{ijk} , u_k 는 서로 독립

> 모형 적합

최종모형 적합

‡ 최종 분석모형: Model 4.2.

□ 최종 모형 적합 결과

> summary(model4.2.fit) 고정효과 모형 적합결과

	Value	Std.Error	DF	t-value	p-value
(Intercept)	282.79034	10.853234	874	26.055860	0.0000
sex	-1.25119	1.657730	874	-0.754762	0.4506
minority	-8.26213	2.340113	874	-3.530655	0.0004
mathkind	-0.46980	0.022266	874	-21.099524	0.0000
ses	5.34638	1.241094	874	4.307794	0.0000

공변량 효과 추정치 해석 : 예

- "사회경제적상태(ses)" 추정치 해석
 - ▶ "나머지 공변량들(sex, minority, mathkind)이 보정되었을 때 ses 가 1 단위 높을 수록 수학성적성취점수는 평균적으로 5.35 (SE=1.24) 높다 (p<0.0001)."
- ✓ 과제: 다른 공변량 효과 추정치에 대한 해석
- ightharpoonup 고정효과 모형의 적합 결과 기술 : $\widehat{E(Y_{ij})}$

$$\begin{split} \widehat{E(Y_{ijk})} &= \widehat{\beta_0} + \widehat{\beta_1} * x_{1ijk} + \widehat{\beta_2} * x_{2ijk} + \widehat{\beta_3} * x_{3ijk} + \widehat{\beta_4} * x_{4ijk} \\ &= 282.79 - 1.25 * x_{1ijk} - 8.26 * x_{2ijk} - 0.47 * x_{3ijk} + 5.35 * x_{4ijk} \end{split}$$

- □ 최종 모형 적합 결과
- ightharpoonup 분산 모수[$\sigma_{sch}^2, \sigma_{cl}^2, \sigma^2$]의 추정결과와 해석

$$Mathgain_{ijk} = \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk}$$
 $+\beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 $\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_{j|k} \sim^{iid} N(0, \sigma^2_{cl}),$ $u_k \sim^{iid} N(0, \sigma^2_{sch})$ 이고 $\varepsilon_{ijk}, u_{j|k}, u_k$ 는 서로 독립

•
$$\widehat{\sigma_{sch}^2}$$
 = (8.67)² = 75.17 (77.44)*

$$\widehat{\sigma_{cl}^2} = (9.13)^2 = 83.36 \, (99.20)$$

$$\widehat{\sigma^2} = (27.10)^2 = 734.41 \ (1028.49)$$

▶ * 모형4.1 추정값

분산모수 추정 결과

Random effects:

Formula: ~1 | schoolid (Intercept)

StdDev: 8.671991

Formula: ~1 | classid %in% schoolid

(Intercept) Residual

StdDev: 9.12604 27.10286

- 분산성분모형에 Level 1 공변량을 추가하면
 - ✓ 오차분산은 1028.49 ⇒ 734.41 (29%」)
 - ✓ 학교 내 학급분산 99.20 ⇒ 83.36 (16%↓)
 - ✓ 학교 분산 77.44 ⇒ 75.17 (3%↓)

감소. 즉 Level 1 공변량, 자료 변동을 효과적으로 설명

□ 최종 모형 적합 결과

ightarrow 변량효과($u_{j|k},u_k$)예측결과와 해석

$$Mathgain_{ijk} = \beta_0 + \beta_1 * x_{1ijk} + \beta_2 * x_{2ijk}$$
 $+\beta_3 * x_{3ijk} + \beta_4 * x_{4ijk} + u_{j|k} + u_k + \varepsilon_{ijk}$ 여기서 $\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2), u_{j|k} \sim^{iid} N(0, \sigma^2_{cl}),$ $u_k \sim^{iid} N(0, \sigma^2_{sch})$ 이고 $\varepsilon_{ijk}, u_{j|k}, u_k$ 는 서로 독립

변량효과 $u_k, u_{i|k}$ 의 예측치(BLUPs)

Level	:	schoolid	Level:	classid	%in%	schoolid
(Intercept)		(Intercept)				
1	0	.49814218	1/160	3.402	246448	3
2	5	.60559955	1/217	-2.850	79317	7
3	12	.80151595	2/197	-2.989	964788	3
4	-7	.51320961	2/211	4.945	523708	3
5	-0	.54047662	2/307	4.252	237421	L
6	7	.98976163	3/11	0.777	710766	5
7	-6	.31932542	3/137	3.782	299534	1
8	3	.25485950	3/145	10.443	351923	3
9	-5	.06060416	3/228	-0.826	548709	9

$\widehat{u_k},\widehat{u_{j|k}}$ 의 해석

- 3^{rd} 학교의 변량효과가 큰 값으로 예측
- 3^{rd} 학교의 145^{th} 학급의 변량효과 가 큰값으로 예측

2. Three-level 군집자료의 급내상관계수(ICC) 추정

- □ 분산성분모형과 급내상관계수(동질성의 측도) 추정
- > 분산성분모형과 분산모수 추정 그리고 ICC

[Three-level variance components model]

$$Mathgain_{ijk} = \beta_0 + u_{j|k} + u_k + \varepsilon_{ijk}$$
 여기서 $\varepsilon_{ijk} \sim^{iid} N(0, \sigma^2)$, $u_{j|k} \sim^{iid} N(0, \sigma^2_{cl})$, $u_k \sim^{iid} N(0, \sigma^2_{sch})$ 이고 ε_{ijk} , $u_{j|k}$, $u_k \leftarrow$ 서로 독립

•
$$\widehat{\sigma_{sch}^2} = (8.80)^2 = 77.44$$

$$\widehat{\sigma_{cl}^2} = (9.96)^2 = 99.20$$

$$\widehat{\sigma^2} = (32.07)^2 = 1028.49$$

분산모수 추정 결과

Random effects:

Formula: ~1 | schoolid (Intercept)

StdDev: 8.802955

Formula: ~1 | classid %in% schoolid

(Intercept) Residual

StdDev: 9.961301 32.06609

급내상관계수: ICC

학교의 ICC

$$\checkmark \widehat{ICC}_{sch} = \frac{\widehat{\sigma}_{sch}^2}{\widehat{\sigma}_{sch}^2 + \widehat{\sigma}_{cl}^2 + \widehat{\sigma}^2} = \frac{77.44}{77.44 + 99.20 + 1028.49} = \mathbf{0.06}$$

• 학교 내 학급의 ICC

$$\checkmark \quad \widehat{ICC}_{sch} = \frac{\widehat{\sigma}_{sch}^2 + \widehat{\sigma}_{cl}^2}{\widehat{\sigma}_{sch}^2 + \widehat{\sigma}_{cl}^2 + \widehat{\sigma}^2} = \frac{77.44 + 99.20}{77.44 + 99.20 + 1028.49} = \mathbf{0.15}$$

05 제 13강. LMM 3-수준 군집자료분석 LMM : 모형진단

1. EBLUPs 그림 : 변량효과의 분포 가정 진단

□ 학급 및 학교 변량효과의 EBLUPs 그림

➢ 정규분포로부터 이 탈하는 뚜렷한 징후 는 보이지 않음

```
par(mfrow=c(1,2))
# 학급에 대한 EBEUPS Q-Q plot
cl <- ranef(model4.2.fit,level=2)
qqnorm(cl[,1], main="Normal Q-Q plot",xlab="학급 변량효과의 EBEUPS")
qqline(cl[,1], col=2, lwd=2, lty=1)

# 학교에 대한 EBEUPS Q-Q plot
sch <- ranef(model4.2.fit,level=1)
qqnorm(sch[,1], main="Normal Q-Q plot",xlab="학교 변량효과의 EBEUPS")
qqline(sch[,1], col=2, lwd=2, lty=1)
```

2. 잔차 분석 : 조건부 생잔차 그림

ightharpoonup Histogram: ε_{ij} 의 정규성 검토 & 이상치 탐색

- 양쪽(특히 왼쪽) 긴 꼬리를 가지는 분포
 - ➤ 정규분포에서의 이탈 시사
 - > 이들에 대한 추가적인 탐구 시사
 - √ 변수변환(?)
 - ✓ 변량요인(예: 변량계수 등) 추가 검토
 - ✓ 오차분산구조(예: 이분산 등) 탐구

2. 잔차 분석 : 예측값 vs. 잔차

ightharpoonup 예측값 vs. 잔차 산점도 : ε_{ijk} 의 등분산성 검토

- ❖ Loess 곡선 큰 예측값에서 증가하는 경향
 - 큰(작은) 예측값을 설명할 수 있는 공변량 또는 변량요인의 결여 시사
 - 각 공변량 별로 산점도 탐구
 - ✓ 비선형항 검토
 - ✓ 변량계수모형 검토

2. 잔차 분석

R code

```
## 조건부 잔차진단
par(mfrow=c(1,1))
# 생조건부잔차 histogram
rrsid <- data.frame(resid(model4.2.fit))</pre>
histogram(~rrsid[,1],aspect=2, xlab="Raw residuals", main="생조건부잔차 히스토그램")
# 생조건부잔차 Q-Q plot
qqnorm(rrsid[,1], main="Normal Q-Q plot", xlab="Raw Residuals")
ggline(rrsid[,1], col=2, lwd=2, lty=1)
# (표준화 조건부잔차) vs (예측값 on classroom-level)
plot(resid(model4.2.fit, type="normalized") ~ fitted(model4.2.fit,level=2),
     main="(표준화 조건부잔차) vs (예측값 on classroom-level)",
     xlab="Fitted values on school-level", ylab="표준화 조건부잔차")
abline (h = 0, lty = 2, lwd=2)
lines(lowess(resid(model4.2.fit, type="normalized") ~ fitted(model4.2.fit,level=2)),
     col=2, lwd=2)
```

