Clustering

DSAIT4020 Elements of Statistical Learning

TUDelft

1

Supervised learning

Supervised learning (2)

Unsupervised learning

Unsupervised learning (2)

• What salient structures exist in the data?

Cluster Analysis

- Grouping observations based on [dis]similarity
- E.g. data mining [exploration, searching for concepts in data]
 - Clustering species based on [genetic] similarity
 - Reducing amount of data to be analysed, helps defining concept / class
- Data reduction: selecting typical class examples
 - Multi-modal classes may be represented using typical examples
- Predicting characteristics for new data

Unlabeled data: what now?

What is a cluster?

Shape: compact, convex

Separation: large

Shape: ?

Separation: large?

Shape: strings

Separation: large?

Shape: loose, convex

Separation: small

Shape: convex and circular

Separation: large?

Shape: loose, convex

Separation: small

What is a cluster?

- Clustering: finding natural groups in data...
 - which themselves are far apart
 - in which objects are close together
- Define what is "far apart" and "close together":
 - Need a distance measure or dissimilarity measure
 - This measure should capture what we think is important for the grouping
 - The choice for a certain distance measure is crucial!
- There is no such thing as <u>the</u> objective clustering

Clustering Clustering Methods

- Very large field, huge number of methods
 - See for example Theodoridis and Koutroumbas, Pattern Recognition, 2003
 - More than 240 pages overview of cluster analysis

16

Chapters 11-16 from the book...

- In literature, an almost infinite number of methods is proposed
- The book tries to cover many of them
- We will discuss the most intuitive, and most used, clustering methods
- Ignore sections 12.3, 12.4, 12.5, 12.6, 12.7
- Ignore pages 661-692
- Ignore 14.3, 14.4, 14.6
- Ignore 15.3 till 15.12 (expect maybe 15.8)

Agenda

Clustering measures

Yes, you also can do soft assignments...

- Clustering methods (hard assignments)
 - Hierarchical clustering
 - *k*-means clustering
- Cluster validation
 - Fusion graphs
 - The Davies-Bouldin Index

Dissimilarity measures

Dissimilarity measures

- Let d(r, s) be the dissimilarity between objects r and s
- Formally, dissimilarity measures should satisfy

$$d(r,s) \ge 0, \forall r,s$$
$$d(r,r) = 0, \forall r$$
$$d(r,s) = d(s,r), \forall r,s$$

 If in addition, the triangle inequality holds, the measure is a metric

$$d(r,t) + d(t,s) \ge d(r,s), \forall r,s,t$$

Most often used: Euclidean distance (metric)

Distance measure

Define a distance between objects:

• Euclidean:
$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{l} (x_i - y_i)^2}$$

• City-block
$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^l |x_i - y_i|$$

•
$$\ell_p$$
 -metric $d_p(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^l |x_i-y_i|^p\right)^{1/p}$

More similarity measures

Cosine similarity

$$s_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Pearson's correlation coefficient

$$r_{Pearson}(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - \mu_x)^T (\mathbf{y} - \mu_y)}{\|\mathbf{x} - \mu_x\| \|\mathbf{y} - \mu_y\|}$$

 and more... (for discrete features, mixed features, categorical features, ...)

Using different measures

Example: time series data (gene expression)

Euclidean distance match exact shape

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{t=1}^{n} (x_{i,t} - x_{j,t})^{2}$$

$$d(\bullet,\bullet) < d(\bullet,\bullet)$$

$$d(\bigcirc, \bigcirc) << d(\bigcirc, \bigcirc)$$

$$d(\bullet, \bullet) << d(\bullet, \bullet)$$

Pearson correlation ignore amplitude

$$1-\rho_{ij}$$

$$d(\bullet, \bullet) \approx d(\bullet, \bullet)$$

$$d(\bigcirc,\bigcirc) << d(\bigcirc,\bigcirc)$$

$$d(\bullet, \bullet) \ll d(\bullet, \bullet)$$

Absolute correlation ignore amplitude & sign

$$1-\left|\rho_{ij}\right|$$

$$d(\bullet, \bullet) \approx d(\bullet, \bullet)$$

$$d(\bullet, \bullet) \approx d(\bullet, \bullet)$$

$$d(\bullet, \bullet) \ll d(\bullet, \bullet)$$

23

$$\rho_{ij} = \sum_{t=1}^{n} (x_{i,t} - \mu_i)(x_{j,t} - \mu_j) / \sigma_i \sigma_j$$

Clustering techniques

Clustering techniques

Agglomerative Hierarchical Clustering

- Starting from individual observations, produce sequence of clusterings of increasing size
- At each level, two clusters chosen by criterion are merged

Agglomerative Hierarchical Clustering

- 1. Determine distances between all clusters
- 2. Merge clusters that are **closest**
- 3. IF #clusters>1 THEN GOTO 1
- Which clusters to start with?
- What is the distance between clusters?
- Final number of clusters?

Different Merging Rules

Two nearest objects in the clusters : single linkage

$$g(R,S) = \min_{ij} \{ d(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i \in R, \mathbf{x}_j \in S \}$$

Two most remote objects in the clusters : complete linkage

$$g(R,S) = \max_{ij} \{ d(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i \in R, \mathbf{x}_j \in S \}$$

Cluster centers : average linkage

$$g(R,S) = \frac{1}{|R||S|} \sum_{ij} \{ d(\mathbf{x}_i, \mathbf{x}_j) : \mathbf{x}_i \in R, \mathbf{x}_j \in S \}$$

Hierarchical clustering

Input:

- dataset, X: [n x p], or directly:
- dissimilarity matrix, **D**: [n x n]
- linkage type

x_{1} x_{2} $x_{3.5}$ x_{2} x_{3} x_{4} x_{5} x_{4} x_{5} x_{4} x_{5} x_{4} x_{5} x_{1} x_{2} x_{3} x_{4}

feature 1

Output:

• dendrogram

Hierarchical clustering (2)

Hierarchical clustering (3)

Step 1:

Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\} = d(2,3)$

	x_1	x_2	<i>x</i> ₃	x_4	x_5
$\overline{x_1}$	0.00	1.58	1.76	5.22	4.53
x_2		0.00	0.74	5.50	5.10
x_3			0.00	4.81	4.48
x_4				0.00	1.12
x_5					0.00

Hierarchical clustering (4)

Step 2:

Merge x_2 and x_3 into a single object, $[x_2, x_3]$;

Hierarchical clustering (5)

Step 3:

Recompute *D* –

what is the distance between $[x_2, x_3]$ and the rest?

Hierarchical clustering (6)

Step 3:

Recompute D –

single linkage: $d([x_2,x_3],x_1) = \min(d(x_1,x_2),d(x_1,x_3))$

Hierarchical clustering (7)

Step 3:

Recompute D –

complete linkage: $d([x_2,x_3],x_1) = \max(d(x_1,x_2),d(x_1,x_3))$

Hierarchical clustering (8)

Step 3: Recompute D –

average linkage: $d([x_2,x_3],x_1) = mean(d(x_1,x_2),d(x_1,x_3))$

Hierarchical clustering (9)

• Step 3:

Recompute D – single linkage:

x_1	$[x_2,x_3]$	x_4	x_5
$x_1 \ 0.00$	1.58	5.22	4.53
$[x_2,x_3]$	0.00	4.81	4.48
x_4		0.00	1.12
x_5			0.00

Hierarchical clustering (10)

Repeat, step 1:

Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\} = d(4,5)$

Hierarchical clustering (11)

• Repeat, step 2: Merge x_4 and x_5 into a single object, $[x_4,x_5]$;

Hierarchical clustering (12)

Repeat, step 3: Recompute *D* (single linkage):

	x_1	$[x_2,x_3]$	$[x_4,x_5]$
x_1	0.00	1.58	4.53
$[x_2,x_3]$		0.00	4.48
$[x_4,x_5]$			0.00

Hierarchical clustering (13)

Repeat steps 1-3 until a single cluster remains...

Hierarchical clustering (14)

Hierarchical clustering (15)

- Hierarchical clustering: repeatedly group closest clusters
- Important choices:
 - Distance measure
 between objects:
 Euclidean, correlation,

. . .

Linkage
 between clusters:
 single, average, complete

Linkage and cluster shape

complete linkage

single linkage

Linkage and cluster shape (2)

Complete linkage

Single linkage

Linkage and cluster shape (3)

Complete linkage

Single linkage

Euclidean, complete linkage

Euclidean, single linkage

Euclidean, complete linkage

Euclidean, single linkage

Euclidean, complete linkage

Euclidean, complete linkage

Remember our example...?

Fusion graph

fusion level

Fusion graph (2)

(Euclidean; complete linkage)

Fusion graph (3)

(Euclidean; complete linkage)

Fusion graph (4)

(Euclidean; single linkage)

Fusion graph (5)

(Euclidean; single linkage)

Hierarchical clustering (16)

Advantages:

- dendrogram gives overview of all possible clusterings
- linkage type allows to find clusters of varying shapes (convex and non-convex)
- different dissimilarity measures can be used

Disadvantages:

- computationally intensive: $O(n^2)$ in complexity and memory
- clusterings limited to "hierarchical nestings"

Any other way of clustering?

Hierarchical:

?????? E.g., K-means (sum-of-squares)

Any other way of clustering?

- Let's start with what we expect to see at the end after conducting a clustering!
- **...** ...
- Basically, our goal is to partition the data into some number K of clusters.
- K=???

Intuitively, what should a cluster look like?

- Well...a group of data points...
- whose inter-point distances are small compared with the distances to points outside of the cluster.

A notion to represent the kth cluster

• μ_k , k=1,...,K, a prototype associated with the k^{th} cluster.

• But what is μ_k ? A simple but sensible choice...

A notion to represent the kth cluster

- μ_k , k=1,...,K, a prototype associated with the k^{th} cluster.
- But what is μ_k ? A simple but sensible choice...
- the centre of the cluster

Our goal is then...

- To find an **assignment of data points** to clusters, as well as a set of vectors μ_k , such that
- the sum of the squares of the distances of each data point to its closest μ_k , is a minimum.

K-means clustering, a.k.a., sum-of-squares clustering

Our goal is then...

- To find an **assignment of data points** to clusters, as well as a set of vectors μ_k , such that
- the sum of the squares of the distances of each data point to its closest μ_k , is a minimum.
- But **where** to put μ_k ...

K-means clustering, a.k.a., sum-of-squares clustering

- 1. choose number of clusters (*K*)
- 2. position prototypes $(\mu_k, k=1,...,K)$ randomly
- 3. assign samples to closest prototype
- 4. compute mean of samples assigned to same prototype → new prototype position

Repeat steps 3 and 4 as long as prototypes move

10.5

- Step 1: Choose number of clusters/prototypes
- Step 2: Position prototypes randomly

10.5

Step 3: Assign samples to closest prototype

10.5

 Step 4: Compute mean of samples assigned to same prototype → new prototype positions

ℱ TUDelft

10.5

- Repeat as long as prototype positions change:
 - Step 3: Assign samples
 - **Step 4:** Recompute prototype positions

10.5

K-means problems

Clustering depends on initialization

 Algorithm can get stuck in local minima

- Solution:
 - start from *I* different random initialisations;
 - keep the best clustering (lowest $Tr(S_W)$);
 - For high-dimensional data, many restarts are necessary (e.g. I = 10000)!

K-means clustering

 Recall from Week 4 (within and between group) scatter):

$$S_W = \sum_{j=1}^K \frac{n_k}{N} \Sigma_k,$$

$$S_B = \sum_{k=1}^K \frac{n_k}{N} (\mu_k - \mu) (\mu_k - \mu)^T, \quad \mu = \sum_{k=1}^K \frac{n_k}{N} \mu_k$$

$$K = 2, N = 5,$$

 $n_1 = 3, n_2 = 2$

K-means clustering

Minimize:

$$Tr\{S_W\} = \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} |x_i - \mu_k|^2$$

(sum of cluster within-scatters)

Our goal is then... (Recall)

- To find an **assignment of data points** to clusters, as well as a set of vectors μ_k , such that
- the sum of the squares of the distances of each data point to its closest μ_k , is a minimum.

K-means clustering, a.k.a., sum-of-squares clustering

K-means problems

• Some prototypes do not capture any data points (μ_3)

- Possible solution:
 - remove cluster and continue with K-1 means
 - alternatively, split largest cluster into two or add a random cluster to continue with K means

K-means clustering

• Choose a different *K*:

K=3

K=4

10.5

K-means summary

- Disadvantages:
 - Finds only convex clusters ("round shapes")
 - Sensitive to initialization
 - Can get stuck in local minima
- Advantages:
 - Simple
 - Fast

Clustering

Hierarchical:

Sum-of-squares:

Validity measures

- Many are based on within and between group scatter
- The larger the between group scatter and the smaller the within group scatter, the better
- Example: Davies-Bouldin index

Davies-Bouldin index

- Assumption: clusters are spherical
- For a good clustering, it should hold that:
 - objects are compactly organized within a cluster
 - clusters are far apart
- D.L. Davies and D.W. Bouldin, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, pp. 224-227, 1979

Davies-Bouldin index (2)

Davies-Bouldin index (3)

Davies-Bouldin index (3)

$$R_{jk} = \frac{\sigma_j + \sigma_k}{\|\boldsymbol{\mu}_j - \boldsymbol{\mu}_k\|}$$
$$R_j = \max_{k=1,...g; k \neq j} R_{jk}$$

g is the number of clusters

Davies-Bouldin index (4)

$$R_{jk} = \frac{\sigma_j + \sigma_k}{\left\|\boldsymbol{\mu}_j - \boldsymbol{\mu}_k\right\|}$$

$$R_{j} = \max_{k=1,\ldots g; k \neq j} R_{jk}$$

$$I_{DB} = \frac{1}{g} \sum_{j=1}^{g} R_j$$

Paired cluster criterion

Worst-case value per cluster

Average worst-case

Davies-Bouldin index (5)

Dataset

Complete link

Davis Bouldin: 3 or 14 clusters

Davies-Bouldin index (5)

Dataset

4 3.5 3 2.5 2 1.5 1

Complete link

Davis Bouldin: 2 or 11 clusters

Davies-Bouldin index (6)

Davis-Bouldin:

Single link

