GEOMETRÍA

Tomo 7

5th SECONDARY

RETROALIMENTACIÓN

1. Una pieza metálica tiene forma de cilindro circular recto de radio 2 y altura 27. Luego se funde para construir tres esferas de radio x. Calcule x.

Resolución

2. Calcule el área del círculo máximo de una esfera, sabiendo que su volumen es numéricamente igual al quíntuple del área de su superficie esférica.

Resolución

Piden: S

$$S = \pi r^2 \qquad ... (1)$$

Por dato:

$$V_{(Esf)} = 5(A_{(Esf)})$$
 $\frac{4}{3}\pi \cdot r^{3} = 5(4\pi \cdot r^{2})$
 $r = 15$... (2)

Reemplazando 2 en 1.

$$S = \pi . 15^2$$

$$S = 225\pi u^2$$

3. Calcule el volumen del sólido generado por la región rectangular al girar 360° alrededor de la recta L.

Resolución

- Piden: $V_{(SG)}$ $V_{(SG)} = 2\pi.x.A$
- PSR :Notable de 37° y 53°
- Del gráfico:

$$A = (8)(6)$$

$$A = 48$$

- Se traza $\overline{GE} \perp \stackrel{\leftrightarrow}{L}$
- Se traza $\overline{GH} \perp \overline{PS}$

$$PH = HS = 4$$

Reemplazando al teorema.

$$V_{(SG)} = 2 \pi .7.48$$

$$V_{(SG)} = 672\pi \text{ u}^3$$

4. En la figura, T es punto de tangencia, calcule el área de la superficie generada por la circunferencia al girar 360° alrededor de la recta L.

Resolución

- Piden: $A_{(SG)}$ $A_{(SG)} = 2\pi.x.L$
- Se traza \overline{OT} .
- COTP: T. Pitágoras

$$(r + 4)^2 = r^2 + 8^2$$

 $r = 6$

Reemplazando:

$$A_{(SG)} = 2 \pi (10) (2.6.\pi)$$

 $A_{(SG)} = 2 \pi (10) (12\pi)$

$$A_{(SG)}$$
= 240 π^2 u²

5. Determine las coordenadas del baricentro de la región triangular ABC.

6. Calcule el área de la región rectangular OABC.

Resolución

Por Coordenada del Punto Medio

$$m = \frac{3+11}{2} = 7$$

$$n = \frac{8+2}{2} = 5$$

Por teorema:

$$S = (7)(5)$$

$$S = 35 u^2$$

7. Calcule el perímetro de la región cuadrada ABCD.

Resolución

• Piden: $2p_{ABCD}$ $2p_{ABCD} = 4\ell$... (1)

• Se traza \overline{AC}

$$d = \sqrt{(5-4)^2 + (9-2)^2}$$

$$d = \sqrt{(1)^2 + (7)^2}$$

$$d = \sqrt{50} = 5\sqrt{2}$$

ADC: Notable de 45° y 45°

$$\ell = 5$$
 ... (2)

Reemplazando 2 en 1.

$$2p_{ABCD} = 4(5)$$

$$2p_{ABCD} = 20 u$$

8. Halle la ecuación general de una recta que pasa por el punto (2; 4) y es paralela a la recta cuya ecuación es x + 3y + 5 = 0.

L_{2} x + 3y + 5 = 0 (2; 4)

Resolución

- Piden: La ecuación de la recta L₁.
- Calculando la pendiente:

$$\mathbf{m} = -\frac{\mathbf{A}}{\mathbf{B}}$$
 $\mathbf{L}_2 : \mathbf{x} + 3\mathbf{y} + \mathbf{5} = \mathbf{0}$ $\mathbf{m}_2 = -\frac{1}{3}.$

• Si dos rectas son paralelas se cumple:

$$m_1 = m_2$$
 $m_1 = -\frac{1}{3}$.

Calculando la ecuación de la recta L₁

$$y-y_1 = m(x-x_1)$$
 $y-4 = -\frac{1}{3}(x-2)$
 $3y-12 = -x+2$

$$L_1: x + 3y - 14 = 0$$

9. Halle la ecuación general de una recta que pasa por el punto (1; 5) y es perpendicular a la recta cuya ecuación es 2x - 3y + 7 = 0.

L_{1} L_{2} (1;5) 2x-3y+7=0

Resolución

- Piden: La ecuación de la recta L₁.
- Calculando la pendiente:

• Si dos rectas son perpendiculares se cumple:

$$m_1.m_2 = -1$$
 $m_1 = -\frac{3}{2}$.

Calculando la ecuación de la recta L₁

$$y-y_1 = m(x-x_1)$$
 $y-5 = -\frac{3}{2}(x-1)$
 $2y-10 = -3x+3$

$$L_1: 3x + 2y - 13 = 0$$

10. Calcule el área de la región triangular sombreada mostrada.

Resolución

- Piden: S
- En el punto A:

$$5x + 4(0) - 20 = 0$$

 $5x = 20$
 $x = 4$

En el punto B:

$$5(0) + 4y - 20 = 0$$

 $4y = 20$
 $y = 5$

Por teorema:

$$S = \frac{(4)(5)}{2}$$

$$S=10\;u^2$$