# Oracle Spatial Technology, Tools and Techniques



Martin Davis, Senior Technical Architect <a href="mbdavis@vividsolutions.com">mbdavis@vividsolutions.com</a>



### **Outline**

- Overview of Spatial Data processing
- Overview of Spatial Database Technology
- Oracle Spatial Technology
- Spatial Application Architectures and Tools
- Demo

# Background

#### **Martin Davis**

- 10 years of experience in spatial data processing, in government and the private sector
- Spatial Architect for enterprise-level geospatial applications
- Designer & lead developer of the JTS, JUMP and JCS open source geospatial projects

#### Vivid Solutions, Inc.

- Victoria-based software consulting company
- In business for 8 years
- 25 staff almost all consultants or software developers
- Mix of government and private sector clients
- Enterprise Geospatial Applications are a primary business focus

# Spatial Data has gone mainstream!

- Google Map & Earth
- Microsoft Virtual Earth, etc.
- Drivers:
  - Cheap cycles & storage
  - Easy access to Data





# Spatial Data in the Enterprise

- "80-90% of business databases include location information."
  - Xavier Lopez, Oracle Corp.

- Oracle holds 80% of the geospatial database management market
  - -Oracle Corp.

# What Is Spatial Data?

- Vector Data
  - Geometry (e.g. Points/Lines/Polygons)
  - 2 D or 2.5 D (position + elevation)
  - Spatial + Attributes = Feature
- Raster Data
  - Pixels + attributes
  - Georeferenced Imagery



- Geographic (lat/long)
- Projected (e.g. UTM, Albers)
- Local (unreferenced)









# **Spatial Standards**

- Open Geospatial Consortium (OGC)
  - Simple Features for SQL (SFS)
    - Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection
  - Web Map Service (WMS)
  - Web Feature Service (WFS)
  - Geography Markup Language (GML)
  - Filter
  - Coordinate Transformation Service (CTS)
- ISO TC211
- EPSG (European Petroleum Survey Group)
  - Coordinate Systems

### **Evolution of Spatial Data storage technology**

- Flat Files
- Spatial in pure Relational
  - Highly non-standard
  - poor performance
- Proprietary Spatial Extensions
  - layered on top of (and in!) DBMS
  - uses BLOBS to store data
  - spatial index implemented as SQL tables
  - separate process and API to interact with spatial data (=> more moving parts, non-transactional)
  - no query language
  - limited database tools
- Object-Relational
  - e.g. Illustra/Informix, PostgreSQL
  - Native indexing
  - New spatial type, functions, SQL extensions
  - Vendor-supported or proprietary
- Integrated Spatial Database

### **Spatial Database Capabilities**

- Complex objects representing spatial data types (geometry)
- Spatial indexing capability
  - usually some variant of an R-Tree
- Spatial functions
  - spatial predicates (intersects, overlaps, contains, etc.)
  - manipulating geometry
  - analytic operations (intersection, union, buffer, etc.)
  - metrics (area, length, distance)
  - linear referencing, etc.
- Spatial SQL extensions
  - spatially aware optimizer
- Ideal: spatial "just another column type"

### Spatial Databases- Advantages

- Single repository for all enterprise data
- Transactional
- Performance and scalability
- SQL query language for spatial relationships, analysis
- Spatial "just another datatype" => integration with all DMBS functions:
  - Joins & Views involving spatial data
  - Stored procedures & triggers
  - Replication
  - Backup/Recovery
  - Maintenance, Design Tools
  - Security
- Support for versioning (long transactions, "what-if" capability)
- Reduces training for developers and DBAs

# Spatial Databases - Products

### Commercial

- Oracle Spatial
- IBM DB2 Extended Edition
- Illustra -> Informix -> IBM
- Open Source
  - PostGIS
  - mySQL (limited functionality)

### **Oracle Spatial - History**

#### 1995 Oracle 7.1.6 - MultiDimension

Points only

#### 1997 Oracle 7.3.3 - Spatial Data Option

- Points, Lines, Polygons
- Quad-Tree indexing
- Spatial Operators

#### 1999 Oracle 8i - Spatial

- Object Data type
- Circles, Arcs
- R-Tree Indexing
- Topology/Distance Operators
- Spatial Functions



DATABASE

#### 2002 Oracle 9i - Spatial

- Coordinate Transforms
- Linear Referencing
- Spatial Replication
- Spatial Partitioning

#### 2004 Oracle 10g - Spatial

- Raster Data Management
- Topology & Networking
- Spatial Analysis & Mining

### **Oracle Spatial - Features**

- Locator Bundled with Standard & Enterprise Edition
- Spatial Licensed Option, Enterprise Edition only

#### **Oracle Locator**

All Spatial Data Types (SDO\_GEOMETRY)
Spatial Indexing (Quadtree, R-tree)

- Function-based spatial indexing Spatial Operators
- Topological predicates
- Distance

Implicit Coordinate Transformations

Long Transactions (via Workspace Manager)

**Table Partitioning** 

**Object Replication** 

**Oracle Label Security** 

#### **Oracle Spatial**

#### **Spatial functions**

- · area & length
- aggregates
- intersection, union, buffer, centroid, etc.

**Coordinate Transformations** 

**Linear Referencing** 

**Topology Data Model** 

**Network Data Model** 

Geocoding

Routing

GeoRaster Data Type

**Client-side Java Geometry API** 

# Oracle Spatial – SQL Examples

Defining a spatial table

```
CREATE TABLE muni_parcel (

pid NUMBER(38),

geometry MDSYS.SDO_GEOMETRY,

description VARCHAR2(30));
```

Defining spatial metadata

Creating a spatial index

```
CREATE INDEX muni_parcel_idx ON (geometry)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;
```

# Oracle Spatial – SQL Examples

Loading geometry data via SQL

- Simple spatial query
  - (return features intersecting a bounding box)

```
SELECT * FROM muni_parcel
  WHERE sdo_relate(GEOMETRY,
    mdsys.sdo_geometry(2003, 1042102, NULL,
        mdsys.sdo_elem_info_array(1,1003,3),
mdsys.sdo_ordinate_array(1000000, 2000000, 10000000, 2000000)),
    'mask=anyinteract querytype=window') = 'TRUE'
```

## Oracle Spatial – SQL Examples

- Complex analytic query
  - "Find all mapsheets which contain roads"

```
SELECT * FROM bc_grid_250k g
WHERE g.map_tile IN (
   SELECT a.map_tile FROM bc_grid_250k a, bc_basemap_5k b
   WHERE b.fcode = 'DA24900010'
   AND sdo_filter(a.geometry, b.geometry, 'querytype=join') = 'TRUE'
);
```







### **Spatial Application Architectures**



### **Spatial Tools - Web Presentation**

### Commercial

 Oracle MapViewer, ESRI ArcIMS (via SDE), AutoDesk MapGuide, etc.

### Open-Source

- Minnesota MapServer
- GeoServer
- Also need a Web spatial application framework
  - IMF (BC Gov & Moxie Media), Chameleon, etc.

# **Spatial Tools - Desktop Client**

#### Commercial

- ESRI ArcGIS (via ArcSDE)
- Intergraph GeoMedia
- Autodesk, Manifold, Smallworld, etc

### Open Source

- JUMP (Vivid Solutions)
- uDig (Refractions Research)
- Etc.



### **Other Tools**

- Standard Oracle development tools
- ETL (Extract-Transform-Load)
  - FME (Safe Software)
  - JUMP
  - GeoTools
- Spatial APIs
  - Oracle Java API
  - JTS Topology Suite (Vivid Solutions)

### JTS Topology Suite Spatial API

- Geometry model
  - Points/Lines/Polygons
- Spatial predicates
  - Intersects, contains, overlaps, etc.
- Spatial Metrics
  - area, length, distance
- Spatial Analysis functions
  - Intersection, union, difference, symmetricDifference
  - Buffer
  - centroid, interior point
  - simplification
- Topology Building
  - Polygonization, Line Merging
- Linear Referencing
- I/O
  - Well-Known Text, Well-Known Binary





### Demo: Oracle Spatial via JUMP



### Conclusion

- Spatial Data has gone mainstream!
- Spatial databases make it easier to manage spatial data and integrate it with other enterprise applications.
- "Middleware" is no longer required
- Oracle Spatial is a mature product which provides a full set of spatial functionality
- There are many tools for development and visualization for Oracle Spatial