Alp Dener

Research Interests

Optimization: PDE-constrained Problems, Gradient-based Algorithms, Sensitivity Analysis, MDO Architectures Machine Learning: Physics Informed Neural Networks, Constrained Training Methods, Supervised Learning Scientific Computing: High Performance Computing for Optimization, Reusable Scientific Software

Education

Rensselaer Polytechnic Institute

December 2017

Aeronautical Engineering, Ph.D.

University of Maryland, Baltimore County

May 2012

Mechanical Engineering, B.S.

Work Experience

Postdoctoral Appointee – Argonne National Laboratory

Feb 2018-Present

Mathematics and Computer Science Division

Supervisor: Todd Munson

- Principal developer on Toolkit for Advanced Optimization (TAO) and contributor to PETSc
- o Research large-scale optimization algorithms with efficient treatment of nonlinear constraints
- o Promote TAO, expand its user base, and provide software support for external researchers

Graduate Research Assistant – Rensselaer Polytechnic Institute

Feb 2013-Dec 2017

Optimal Design Lab

Supervisor: Jason E. Hicken

- Investigate PDE-constrained multi-disciplinary design optimization problems
- o Research gradient-based, reduced-space, matrix-free optimization algorithms
- Develop a parallel-agnostic optimization library tailored for large-scale engineering systems

Undergraduate Research Assistant – University of Maryland, Baltimore County Oct 2010-May 2011 Joint Center for Earth Systems Technology Supervisor: Gergely Dolgos

- o Construction of an optical aerosol measurement instrument
- Design and manufacture of high-precision optical component mounts
- Propose instrument mounting solutions for the NASA GSFC science fleet aircraft

Honors & Awards

AIAA Student Paper Competition - 1st Place

2018

Category: Multidisciplinary Analysis and Optimization

Publications and Presentations

Journal Articles.

- **Dener, Alp, M Andres Miller, et al.** (2020). "Training neural networks under physical constraints using a stochastic augmented Lagrangian approach (submitted)". In: *Journal of Computational Physics*.
- Miller, M Andres et al. (2020). "Encoder-decoder neural network for solving the nonlinear Fokker-Planck-Landau collision operator in XGC (accepted)". In: *Journal of Plasma Physics*.
- Mills, Richard Tran et al. (2020). "Toward Performance-Portable PETSc for GPU-based Exascale Systems (submitted)". In: IEEE Transactions on Parallel and Distributed Systems (Special Section on Innovative R&D toward the Exascale Era).
- **Dener, Alp and Jason E Hicken** (2017). "Matrix-free Algorithm for the Optimization of Multidisciplinary Systems". In: *Structural and Multidisciplinary Optimization, Springer*. DOI: 10.1007/s00158-017-1734-0.
- **Hicken, Jason E and Alp Dener** (2015). "A Flexible Iterative Solver for Nonconvex, Equality-constrained Quadratic Subproblems". In: *Journal on Scientific Computing, SIAM.* DOI: 10.1137/140994496.

Refereed Proceedings.

- **Dener, Alp, Adam Denchfield, and Todd Munson** (June 2019). "Preconditioning nonlinear conjugate gradient with diagonalized quasi-Newton". In: *Proceedings for the Platform for Advanced Scientific Computing Conference*. Zurich, Switzerland. DOI: 10.1145/3324989.3325712.
- **Dener, Alp and Todd Munson** (June 2019). "Accelerating Limited-Memory Quasi-Newton Convergence for Large-Scale Optimization". In: *International Conference on Computational Science*. Faro, Portugal. DOI: 10.1007/978-3-030-22744-9 39.
- Dener, Alp, Jason E Hicken, et al. (June 2018). "Enabling Modular Aerostructural Optimization: Individual Discipline Feasible without the Jacobians". In: 2018 Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum. Atlanta, GA, USA. DOI: 10.2514/6.2018-3570.
- Dener, Alp, Pengfei Meng, et al. (Jan. 2016). "Kona: A Parallel Optimization Library for Engineering-Design Problems". In: 57th AlAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AlAA SciTech Forum. San Diego, CA, USA. DOI: 10.2514/6.2016-1422.
- **Dener, Alp, Gaetan K W Kenway, et al.** (Jan. 2015). "Comparison of Inexact- and Quasi-Newton Algorithms for Aerodynamic Shape Optimization". In: *53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum*. Kissimmee, FL, USA. DOI: 10.2514/6.2015–1945.
- Dener, Alp and Jason E Hicken (Jan. 2014). "Revisiting Individual Discipline Feasible with matrix-free Inexact-Newton-Krylov". In: 10th AlAA Multidisciplinary Design Optimization Conference, AlAA SciTech Forum. National Harbor, MD, USA. DOI: 10.2514/6.2014-0110.

Technical Reports.

Balay, Satish et al. (2020). *PETSc Users Manual*. Tech. rep. ANL-95/11 - Revision 3.14. Argonne National Laboratory. **Dener, Alp et al.** (2020). *TAO Users Manual*. Tech. rep. ANL/MCS-TM-322 - Revision 3.14. Argonne National Laboratory.

Doctoral Thesis

Dener, Alp (Dec. 2017). "A Modular Matrix-free Approach to Multidisciplinary Design Optimization". PhD thesis. Rensselaer Polytechnic Institute.

Preprints / Working Papers....

- **Dener, Alp, Adam Denchfield, and Todd Munson** (2021). "The TAO Nonlinear Conjugate Gradient and Quasi-Newton Laboratory (in preparation)". In: arXiv preprint.
- **Dener, Alp, Todd Munson, et al.** (2021). "Toward Constrained Optimization in Machine Learning: An Error-Tolerant Multisecant Method for Training PINNs (in preparation)". In: *arXiv* preprint.
- **Hicken, Jason E, Pengfei Meng, and Alp Dener** (2017). "Error-tolerant multisecant method for nonlinearly constrained optimization". In: *arXiv preprint arXiv:1709.06985*.

Conference Presentations.

- **Dener, Alp, Todd Munson, et al.** (Mar. 2021). *Toward Constrained Optimization in Machine Learning: An Error-Tolerant Multisecant Method for Training PINNs.* SIAM Conference on Computational Science and Engineering.
- **Dener, Alp** (Feb. 2020). *Investigating Quasi-Newton Outer Product Representations on GPUs.* SIAM Conference on Parallel Processing for Scientific Computing.

Dener, Alp, Adam Denchfield, and Todd Munson (Feb. 2019). *Acelerating Quasi-Newton and Conjugate Gradient Convergence for Large-Scale Optimization*. SIAM Conference on Computational Science and Engineering.

Proposal Contributions

- "Development of a Machine Learning Toolkit in PETSc", co-investigator, LDRD Prime Future Computing, 2021-0177, 2021, (funded)
- "Frameworks, Algorithms and Scalable Technologies for Mathematics (FASTMath) SciDAC Institute", numerical optimizations expert, DOE-ASCR, LAB 20-2223, 2020, (funded)
- "Machine Learning and Artificial Intelligence for Simulation Acceleration and Real-Time Scientific Discovery of Fusion Science on Exascale Computers (MASS)", numerical optimization expert, DOE-FES, LAB 20-2224, 2020, (not funded)
- "Machine learning enhanced sampling methods for the stochastic multi-fidelity optimization of complex systems", numerical optimization expert, DOE-ASCR, LAB 20-2321, 2020, (not funded)

Professional Activities and Service

Referee/Reviewer

- o Mathematics of Optimization Research (2018-)
- o SIAM Journal on Scientific Computing (2018-)
- Optimization and Engineering (2018-)
- o AIAA Journal (2018-)
- o DOE SBIR Phase I Review Panel (2019)

Conference Service

Session Organizer: SIAM CSE19, SIAM CSE21

Argonne Training Program for Extreme-Scale Computing

- o Lead Organizer, Numerical Software Track (2021-)
- o Organizer, Numerical Software Track (2020)
- o Lecturer, Numerical Software Track (2019-)

National Science Bowl

Questions Judge, Illinois Regionals (2021)

Societies

- o American Institute of Aeronautics and Astronautics (2012-)
- Society of Industrial and Applied Mathematics (2012-)
- Mathematical Optimization Society (2018-)
- o Institute for Operations Research and the Management Sciences (2018-)

Givens Associates

- Jamal Shabani, Louisiana State University (2021)
- o Han Sol Suh, Georgia Institute of Technology (2019)