Geometría Diferencial

Ejercicios para Entregar - Práctica 2

Guido Arnone

Sobre los Ejercicios

Además del ejercicio (9), elejí resolver los ejercicios () y (12).

Ejercicio 9. Sea M una variedad diferenciable de dimensión n y \mathcal{A} su atlas maximal. Sea TM = $\bigsqcup_{p \in M} T_p M$ y sea $\pi : TM \to M$ la función tal que $\pi(v) = p$ si $v \in T_p M$. Para cada $(U, x) \in \mathcal{A}$, sea $TU = \bigsqcup_{p \in U} T_p M \subset TM$ y $\overline{x} : TU \to x(U) \times \mathbb{R}^n$ la función tal que

$$\overline{\mathbf{x}}(\mathbf{v}) = (\mathbf{x}(\pi(\mathbf{v})), \mathbf{v}(\mathbf{x}^1), \dots, \mathbf{v}(\mathbf{x}^n))$$

cada vez que $v \in TU$. Probar que:

(a) La función $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ es una biyección con inversa

$$\overline{x}^{-1}(a,b^1,\ldots,b^n) = \sum_{i=1}^n b^i \frac{\partial}{\partial x^i} \Big|_{x^{-1}(a)}$$

para cada $a \in x(U)$.

- (b) Si (U,x), $(V,y) \in \mathcal{A}$ y $U \cap V \neq \emptyset$, entonces $\overline{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$ es un abierto de \mathbb{R}^{2n} y la biyección $\overline{x} \circ \overline{y}^{-1} : y(U \cap V) \times \mathbb{R}^n \to x(U \cap V) \times \mathbb{R}^n$ es un difeomorfismo.
- (c) El conjunto TM admite una estructura diferenciable que lo transforma en una variedad diferenciable de dimensión 2n, con atlas

$$\overline{\mathcal{A}} = \{(TU, \overline{x}) : (U, x) \in \mathcal{A}\}.$$

(d) Con respecto a esta estructura diferenciable, la proyección π : TM \rightarrow M es diferenciable.

Demostración. Hacemos cada inciso por separado,

(a) Sean $(a,b)=(a,b^1,\ldots,b^n)\in x(U)\times \mathbb{R}^n$ y $h(a,b):=\sum_{i=1}^n b^i \frac{\partial}{\partial x_i}|_{x^{-1}(a)}$. Como h(a,b) es una combinación lineal de derivaciones en $x^{-1}(a)$, resulta una derivación en $x^{-1}(a)$. Por lo

1

tanto, $h(a,b) \in T_{x^{-1}(a)}M$ y entonces $x\pi(h(a,b)) = xx^{-1}(a) = a$. Además, si $\pi_j : \mathbb{R}^n \to \mathbb{R}$ es la proyección en la j-ésima coordenada, para cada $j \in [n]$ es $x^j = \pi_j x$ y entonces

$$\begin{split} h(\alpha,b)(x^j) &= \left(\sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}\right)(x^j) = \sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}(x^j) = \sum_{i=1}^n b^i \frac{\partial (x^j x^{-1})}{\partial x_i}\Big|_{\alpha} \\ &= \sum_{i=1}^n b^i \frac{\partial \pi_j}{\partial x_i}\Big|_{\alpha} = \sum_{i=1}^n b^i \delta_{ij} = b^j. \end{split}$$

Concluimos así que $\overline{x}(h(a,b)) = (a,b) \in x(U) \times \mathbb{R}^n$. Recíprocamente si $v \in M_p$ con $p \in U$, luego

$$\begin{split} h(\overline{x}(\nu)) &= h(x\pi(\nu), \nu(x^1), \dots, \nu(x^n)) = \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_{x^{-1}(x\pi(\nu))} = \\ &= \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_p. \end{split}$$

Esto último coincide justamente la expresión de ν en la base $\left\{\frac{\partial}{\partial x_i}\Big|_p\right\}_{i=1}^n$, lo que termina de probar que $h = \overline{x}^{-1}$.

(b) En primer lugar, notemos que como $U \cap V$ es abierto y x homeomorfismo, $x(U \cap V)$ es abierto y así $x(\underline{U} \cap V) \times \mathbb{R}^n$ es abierto en \mathbb{R}^{2n} . Tenemos también que $TU \cap TV = T(U \cap V)$ y usando (a), es $\overline{x|_{U \cap V}} = \overline{x}|_{T(U \cap V)}$ por lo que $\overline{x|_{U \cap V}}$ resulta sobreyectiva (ya que $x|_{U \cap V}$ es otra carta de M). Luego (b) nos dice que en efecto $\overline{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$.

Veamos ahora que \overline{xy}^{-1} es un difeomorfismo. Como \overline{x} e \overline{y} son biyectivas, basta ver que las composiciones \overline{xy}^{-1} y \overline{yx}^{-1} son diferenciables. Por simetría (ya que podemos intercambiar los roles de x e y) basta probar un caso: lo hacemos para \overline{xy}^{-1} . Por un cálculo directo, si $(a,b) \in y(U \cap V) \times \mathbb{R}^n$ y $\pi_j : \mathbb{R}^n \to \mathbb{R}$ es la proyección en la j-ésima coordenada, para cada $j \in \llbracket n \rrbracket$ es $x^jy^{-1} = \pi_jxy^{-1} = (xy^{-1})^j$. Por lo tanto,

$$\begin{split} \overline{y}^{-1}(a,b)(x^{j}) &= \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial y_{i}} \Big|_{y^{-1}(a)} (x^{j}) = \sum_{i=1}^{n} b^{i} \frac{\partial x^{j} y^{-1}}{\partial x_{i}} \Big|_{a} \\ &= \sum_{i=1}^{n} b^{i} \frac{\partial (x y^{-1})^{j}}{\partial x_{i}} \Big|_{a} = [J(x y^{-1})_{a} \cdot b]_{j} \end{split}$$

con $\mathbb{J}(xy^{-1})_{\mathfrak{a}}$ la matriz jacobiana de $xy^{-1}:y(U\cap V)\subset\mathbb{R}^n\to x(U\cap V)\subset\mathbb{R}^n$ en el punto $\mathfrak{a}\in y(U\cap V)$. Por (a) sabemos que $\pi\overline{y}^{-1}(\mathfrak{a},\mathfrak{b})=y^{-1}(\mathfrak{a})$, así que

$$\begin{split} x\overline{y}^{-1}(a,b) &= (x\pi(\overline{y}^{-1}(a,b)), \overline{y}^{-1}(a,b)(x^1), \dots, \overline{y}^{-1}(a,b)(x^n)) \\ &= (xy^{-1}(a), [J(xy^{-1})_a \cdot b]_1, \dots, [J(xy^{-1})_a \cdot b]_n) \\ &= (xy^{-1}(a), J(xy^{-1})_a \cdot b). \end{split}$$

Como M es variedad diferenciable, xy^{-1} es suave y entonces $a \mapsto \mathbb{J}(xy^{-1})_a$ es suave. Ésto último dice que $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ es suave¹, de lo que concluimos que \overline{xy}^{-1} es diferenciable.

¹Esto es porque en cada componente $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ coincide con $(a,b) \mapsto \sum_{i=1}^n b^i \frac{\partial (xy^{-1})^j}{\partial x_i} \Big|_a$ que es una suma de productos de proyectar a $\mathbb{J}(xy^{-1})$ o $(a,b) \mapsto b$ en alguna coordenada, y todas las funciones involucradas son suaves.

(c) Procedemos por pasos: primero dotaremos al fibrado tangente de una topología que hará del mismo un espacio T_2 localmente euclídeo con base numerable. Es decir, le daremos a TM una estructura de variedad topológica, donde además cada función $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ resultará un homeomorfismo. Por último, concluiremos que con esta estructura $\overline{\mathcal{A}}$ es un altas diferenciable.

En primer lugar, afirmamos que la colección

$$\mathcal{B} = \{\overline{x}^{-1}(V) : (U, x) \in \mathcal{A}, V \subset x(U) \times \mathbb{R}^n \text{ abierto}\}\$$

es una base para una topología en TM. Dado $v \in T_pM \subset TM$, existe una carta (U,x) con $U \ni p$ y entonces $v \in TU = \overline{x}^{-1}(x(U) \times \mathbb{R}^n) \in \mathcal{B}$. Por lo tanto es $\bigcup_{U \in \mathcal{B}} U = TM$. Ahora, sean $\overline{x_1}^{-1}(W_1), \overline{x_2}^{-1}(W_2) \in \mathcal{B}$ con $(U_1, x_1), (U_2, x_2) \in \mathcal{A}$ y $W_1, W_2 \subset \mathbb{R}^{2n}$ abiertos. Entonces, se tiene que

$$\begin{split} \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(W_2) &= (\overline{x_1}^{-1}(W_1) \cap TU_1) \cap (TU_2 \cap \overline{x_2}^{-1}(W_2)) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n) \cap \overline{x_2}^{-1}(W_2) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2) \\ &= \overline{x_1}^{-1}(W_1) \cap \overline{x_1}^{-1} \circ \overline{x_1} \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2) \\ &= \overline{x_1}^{-1}(W_1 \cap \overline{x_1} \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)). \end{split}$$

Como $x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2$ es abierto y $\overline{x_1} \circ \overline{x_2}^{-1}$ es difeomorfismo, $\overline{x_1} \overline{x_2}^{-1} (x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)$ es abierto. Luego

$$W_1 \cap \overline{x}_1 \circ \overline{x_2}^{-1}(x_2(U_1 \cap U_2) \times \mathbb{R}^n \cap W_2)$$

resutla abierto y por lo tanto, $\overline{x_1}^{-1}(W_1) \cap \overline{x_2}^{-1}(W_2)$ se puede escribir como la preimagen por $\overline{x_1}$ de un abierto de $x_1(U_1) \times \mathbb{R}^n$. En particular esto termina de probar que \mathcal{B} es una base. Dotamos entonces a TM de la topología generada por \mathcal{B} .

Si (U,x) es una carta de M, afirmamos ahora que $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ es un homeomorfismo. Por construcción de la topología en TM, resulta continua. Resta ver que es abierta: si tomamos un abierto básico $TU \cap \overline{y}^{-1}(W)$ con $(V,y) \in \mathcal{A}$ y $W \subset \mathbb{R}^{2n}$ abierto, es

$$\overline{x}(TU \cap \overline{y}^{-1}(W)) = \overline{x}(TU \cap TV \cap \overline{y}^{-1}(W)) = \overline{x}(\overline{y}^{-1}(U \cap V \times \mathbb{R}^n) \cap \overline{y}^{-1}(W))$$
$$= \overline{x} \circ \overline{y}^{-1}(U \cap V \times \mathbb{R}^n \cap W).$$

Efectivamente $\overline{x}(TU \cap \overline{y}^{-1}(W))$ es entonces abierto, ya que $U \cap V \times \mathbb{R}^n \cap W$ es abierto y $\overline{x} \circ \overline{y}^{-1}$ un difeomorfismo. Como \overline{x} es además biyectiva, es un homeomorfismo. En particular TM es **localmente euclídeo**: si $v \in T_pM \subset TM$, tomando una carta (U,x) de M con $p \in U$ tenemos un homeomorfismo $\overline{x} : TU \to x(U) \times \mathbb{R}^n$ con $TU \ni v$.

A continuación, veamos que TM resulta **Hausdorff**. Sean $v \neq w \in$ TM dos derivaciones, de forma que existen $p,q \in M$ con $v \in T_pM$ y $w \in T_qM$. Si p=q, tomamos una carta (U,x) de M con $p \in U$. Luego $v,w \in TU$ y $\overline{x}(v) \neq \overline{x}(w)$ así que como \mathbb{R}^{2n} es T_2 , existen abiertos disjuntos $U \ni \overline{x}(v)$ y $V \ni \overline{x}(w)$. Por lo tanto $\overline{x}^{-1}(U)$ y $\overline{x}^{-1}(V)$ son dos abiertos disjuntos que separan a v de w. Si en cambio $p \neq q$, consideramos cartas (U,x) y (V,y) con U y V disjuntos. Tenemos entonces que $TU \cap TV = \emptyset$ y $v \in TU$, $w \in TV$. En cualquier caso, siempre existen abiertos disjuntos que separan a v y w.

Por último, TM tiene una **base numerable**: como M es una variedad, tiene una base numerable. En particular, el cubrimiento $\{U:(U,x)\in\mathcal{A}\}$ de M tiene un subcubrimiento numerable $(U_n)_{n\in\mathbb{N}}$ con $(U_n,x_n)_{n\in\mathbb{N}}$ cartas de M. Para cada $n\in\mathbb{N}$, el abierto $x_n(U_n)\times\mathbb{R}^n$ tiene una base numerable $\{V_j^n\}_{j\in\mathbb{N}}$. Afirmamos entonces que el conjunto numerable $\mathcal{B}'=\{\overline{x_n}^{-1}(V_j^n)\}_{(n,j)\in\mathbb{N}^2}$ es una base de TM. Sea (U,x) una carta de M, $W\subset x(U)\times\mathbb{R}^n$ abierto y $v\in\overline{x}^{-1}(W)$. Veamos que hay un abierto de \mathcal{B}' que contiene a v y está contenido en $\overline{x}^{-1}(W)$. De que $v\in\mathbb{T}U$ sabemos que existe $p\in U$ tal que v es una derivación en p y, como tenemos que $(U_n)_{n\in\mathbb{N}}$ cubre M, existe $k\geq 1$ con $U_k\ni p$. En consecuencia es $v\in\mathbb{T}U_k\cap\overline{x}^{-1}(W)$. Entonces podemos escribir

$$TU_k \cap \overline{x}^{-1}(W) = \overline{x}_k^{-1} \overline{x}_k (TU_k \cap \overline{x}^{-1}(W))$$

y como $\overline{x}_k(\nu) \in \overline{x}_k(TU_k \cap \overline{x}^{-1}(W)) \subset x_n(U_n) \cap \mathbb{R}^n$, existe $l \geq 1$ tal que $\overline{x}_k(\nu) \in V_l^k \subset \overline{x}_k(TU_k \cap \overline{x}^{-1}(W))$. Esto dice que

$$\nu \in \overline{x}_k^{-1}(V_l^k) \subset \overline{x}_k^{-1} \overline{x}_k(TU_k \cap \overline{x}^{-1}(W)) \subset \overline{x}^{-1}(W),$$

así que existe un tal entorno de \mathcal{B}' , como afirmamos.

En conclusión, TM es una variedad topológica. Como $\bigcup_{(U,x)\in\mathcal{A}} TU = T(\bigcup_{(U,x)\in\mathcal{A}} U) = TM$ y las funciones $\{\overline{x}: (U,x)\in\mathcal{A}\}$ resultan homeomorfismos, para concluir que $\overline{\mathcal{A}}$ es un atlas diferenciable resta ver que los cambios de coordenadas son difeomorfismos. Esto es precisamente lo que probamos en (b), así esto termina de probar que TM con $\overline{\mathcal{A}}$ resulta una variedad diferenciable de dimensión 2n.

(d) Sea $v \in TM$. Existen entonces $p \in M$ tal que $v \in T_pM$ y una carta (U,x) de M con $\pi(v) = p \in U$. Por (c) sabemos que (TU, \overline{x}) es una carta de v, y por definición de TU es también $\pi(TU) = U$. Por lo tanto, resta ver que *bajando* con estas cartas la función que resulta es diferenciable entre abiertos euclídeos. Es decir, basta probar que $x \circ \pi \circ \overline{x}^{-1}$ es diferenciable.

$$\begin{array}{c|c}
TU & \xrightarrow{\pi} & U \\
\hline
x & \downarrow x \\
x(U) \times \mathbb{R}^n \xrightarrow{----} x(U)
\end{array}$$

Como para todo $v \in TU$ el vector $x \circ \pi(v)$ coincide con las primeras n coordenadas de $\overline{x}(v)$, notando $\pi_1: (p,q) \in \mathbb{R}^n \times \mathbb{R}^n \mapsto p \in \mathbb{R}^n$ es entonces $x \circ \pi \circ \overline{x}^{-1} = \pi_1|_{x(U) \times \mathbb{R}^n} \circ \overline{x} \circ \overline{x}^{-1} = \pi_1|_{x(U) \times \mathbb{R}^n}$. Esta última es diferenciable ya que es la restricción al abierto $x(U) \times \mathbb{R}^n$ de la función diferenciable π_1 . Consecuentemente, $\pi: TM \to M$ resulta diferenciable.

Observación 1. Sean M una variedad diferenciable $y \in C^{\infty}(M)$ una función que vale constantemente $\mu \in \mathbb{R}$. Si $\nu : C^{\infty}(M) \to \mathbb{R}$ es una derivación en $p \in M$, entonces $\nu(f) = 0$. En efecto, notando $1 : M \to \mathbb{R}$ a la función que vale constantemente 1 es

$$v(1) = v(1 \cdot 1) \stackrel{\text{(Leibniz)}}{=} 1(p)v(1) + 1(p)v(1) = 2v(1),$$

lo que implica v(1) = 0. En consecuencia, $v(f) = v(\mu \cdot 1) = \mu v(1) = 0$.

Recuerdo ahora el siguiente resultado que utilizaré a continuación,

Lema 2. Sea X un espacio topológico conexo y $f: X \to Y$ una función. Si f es localmente constante, entonces es constante.

Demostración. Si $y \in \text{im } f$, el conjunto $E_y := f^{-1}(y) = \{x \in X : f(x) = y\}$ es abierto: para cada $z \in E_y$ existe por hipótesis un abierto $U \ni z$ donde f es constante, y como f(z) = y luego f vale constantemente g en todo g. Por lo tanto, g el g existe por hipótesis un abierto g en todo g es conjuntos g en todo g es conjuntos g existe por hipótesis un abierto g existe por hipótesis g exis

$$X = \bigsqcup_{y \in \text{im } f} E_y$$

es una unión de abiertos disjuntos no vacíos, necesariamente # im f=1. Esto es precisamente que f sea una función constante. \Box

Ejercicio 12. Sean M y N variedades diferenciables y sea $f: M \to N$ una función diferenciable. Probar que

- Si f es constante, entonces $f_{*p} = 0$ para todo $p \in M$.
- Si M es conexa y $f_{*p} = 0$ para todo $p \in M$, entonces f es constante.

Demostración. Notaremos $c_q: M \to N$ a la función que vale constantemente q y definimos $m := \dim M$, $n := \dim N$. Supongamos en primer lugar que $f = c_q$ para cierto $q \in N$. Sea $p \in M$ y veamos que f_{*p} es nula. Dada una derivación $v : C^{\infty}(M) \to \mathbb{R}$ en p y $g \in C^{\infty}(M)$, luego es

$$f_{*p}(v)(g) = v(-\circ f)(g) = v(gf) = v(gc_q) = v(c_{g(q)}) = 0,$$

con esta última igualdad dada por la Observación 1, pues $c_{g(q)}: N \to \mathbb{R}$ vale constantemente g(q). Como la derivación $f_{*p}(\nu)$ se anula en toda función, tenemos que $f_{*p}(\nu) = 0$. Por lo tanto, f_{*p} se anula en toda derivación: es entonces $f_{*p} = 0$, y esto vale para cualquier punto $p \in M$.

Supongamos ahora que M es conexa y veamos para este caso la afirmación recíproca. Alcanza con probar que f es localmente constante: fijemos entonces $p \in M$ y veamos que existe un entorno abierto de p donde f es constante. Consideramos ahora una carta (V,ψ) de N con $f(p) \in V$ g una carta (U,ϕ) de M con g con g consideramos ahora una carta g consideramos g conside

$$\frac{\partial}{\partial x_i}\Big|_q^{\varphi}(gf) = \frac{\partial gf\varphi^{-1}}{\partial x_i}\Big|_{\varphi^{-1}(q)} = 0$$

para todo $i \in [m]$ y $q \in U$. Es decir, la función diferenciable $gf\phi^{-1}: \phi^{-1}(U) \to \mathbb{R}$ tiene gradiente nulo. Como U es conexo y ϕ es homeomorfismo, luego $\phi^{-1}(U)$ es conexo. Como $gf\phi^{-1}$ tiene gradiente nulo y dominio conexo, es constante:

$$gf\phi^{-1}(x)=\mu_g\in\mathbb{R}\quad (\forall x\in\phi^{-1}(U)).$$

²Como f es continua f⁻¹(V) es abierto, y entonces f⁻¹(V) ∩ U es un abierto de M que contiene a p. Por lo tanto f⁻¹(V) ∩ U es un abierto en U, y como éste es homeomorfo a un abierto euclídeo, también lo es f⁻¹(V) ∩ U. En particular tenemos un entorno conexo \tilde{U} de p contenido en f⁻¹(V) ∩ U. La restricción de la carta a \tilde{U} es una carta que cumple lo que pedimos, por lo que podemos sin pérdida de generalidad asumir directamente a U conexo con $U \subset f^{-1}(V)$.

Equivalentemente, se tiene que $gf\equiv c_{\phi(\mu_g)}$ en U para cada $g\in C^\infty(N)$. Ahora, dado $i\in \llbracket n \rrbracket$ siempre existe $\overline{\psi}^i\in C^\infty(N)$ tal que $\overline{\psi}^i|_V=\psi^i$ y existen entonces constantes $c_1,\ldots,c_n\in \mathbb{R}$ tales que $\overline{\psi}^if\equiv c_i$ en U. Como $f(U)\subset V$, es

$$c_{\mathfrak{i}} \equiv \overline{\psi}^{\mathfrak{i}}|_{V} \circ f\Big|_{\mathfrak{U}}^{V} = \psi^{\mathfrak{i}} \circ f\Big|_{\mathfrak{U}}^{V}$$

en U para cada $i \in [n]$, de forma que $\psi f \Big|_U^V \equiv (c_1, \ldots, c_n) =: c$. Como ψ es homeomorfismo, luego $f \Big|_U^V \equiv \psi^{-1}(c)$. Vemos así que f es constante en el abierto $U \ni p$, lo que completa la demostración.

6