Egzamin licencjacki — 6 lipca 2007

Z zestawu sześciu zadań (Matematyka I, Matematyka II, Programowanie, Matematyka dyskretna, Algorytmy i struktury danych i Metody numeryczne) poniżej należy wybrać i przedstawić rozwiązanie trzech zadań. Za brakujące (do trzech) zadania zostanie wystawiona ocena nieostateczna z urzędu. Egzamin uważa się za zaliczony, jeśli student rozwiąże z oceną dostateczną co najmniej 2 zadania. Wtedy ocena z egzaminu jest średnią arytmetyczną ocen z trzech wybranych zadań. Na rozwiązanie zadań przeznacza się czas 3x40=120 minut. Po wyjściu z sali egzaminacyjnej w czasie egzaminu nie ma możliwości powrotu do tej sali i kontynuowania pisania egzaminu.

Matematyka I

Za poprawne rozwiązanie całego zadania można otrzymać 9 punktów. 3 punkty dają ocenę dostateczną, 4 — dostateczną z plusem, 5 — dobrą, 6 — dobrą z plusem, a 7 — ocenę bardzo dobrą.

- 1. (3 punkty) Nie używając znaku negacji (można używać znaku ∉) napisz formuły równoważne zanegowanym formułom poniżej.
 - (a) $(\forall i \le n \ i \in X) \Rightarrow n+1 \in X$
 - (b) $\forall i \leq n \ (i \in X \Rightarrow n+1 \in X)$
 - (c) $\forall n \exists i \ ((i \leq n \land i \notin X) \lor n + 1 \in X)$
- 2. (1 punkt) Czy dla dowolnych zbiorów A, B, C równość $A \cap B = A \cap C$ implikuje równość B = C? Odpowiedź uzasadnij.
- 3. (2 punkty) Sformułuj zasadę indukcji matematycznej.
- 4. (3 punkty) Niech liczby F_n dla $n \in \mathbb{N}$ będą zdefiniowane równaniami
 - $F_0 = 0$,
 - $F_1 = -1$,
 - $F_{n+2} = F_n + F_{n+1}$ dla wszystkich $n \in \mathbb{N}$.

Udowodnij indukcyjnie, że dla wszystkich $n \in \mathbb{N}$ zachodzi $F_n \leq 0$.

Matematyka II

- 1. Podaj przykład trzech wektorów, które są liniowo niezależne w przestrzeni \mathbb{R}^3 nad ciałem \mathbb{R} oraz liniowo zależne w przestrzeni \mathbb{Z}_3^3 nad ciałem \mathbb{Z}_3 . Podany przykład uzasadnij.
- 2. Wykaż, że przy dowolnie ustalonym elemencie b grupy \mathbf{G} odwzorowanie $a\mapsto bab^{-1}$ jest izomorfizmem grupy \mathbf{G} na siebie.
- 3. W pierścieniu \mathbb{Z}_8 rozwiąż równanie 2x = 4.

Programowanie

Za zadanie można otrzymać 20 punktów. Aby otrzymac ocenę dostateczną, należy zdobyć 7 punktów, próg dla dst+ to 9p, dla db — 11p, dla db+ 13p, dla bdb — 15p.

Część 1. Gramatyka G_1 z symbolem startowym S nad alfabetem $\{a, b\}$ dana jest za pomocą następującego zbioru produkcji:

$$\{S \rightarrow aSb \; , \; S \rightarrow bSa \; S \rightarrow SS, S \rightarrow Sb, S \rightarrow bS \; , \; S \rightarrow \varepsilon \}$$

- a) Czy gramatyka ta jest jednoznaczna (odpowiedź uzasadnij)? (2)
- b) Czy jest możliwe usunięcie jednej produkcji z tej gramatyki i otrzymanie w ten sposób gramatyki G_2 , takiej że $L(G_1) = L(G_2)$. Odpowiedź uzasadnij. (3)
- c) Niech $A_1 = L(G_1) \cap \mathcal{L}((aa^*b)^*)$. Czy A_1 jest językiem regularnym? Udpowiedź uzasadnij (2)
- d) Niech $A_2 = L(G_1) \cap \mathcal{L}(a^*b^*a^*)$. Przedstaw możliwie prostą gramatykę bezkontekstową lub wyrażenie regularne generujące A_2 . (3)

Przypominam, że L(G) to język generowany przez gramatykę G, a $\mathcal{L}(r)$ to język generowany przez wyrażenie regularne r.

Część 2. Będziemy rozważać zadanie odwracania listy, czyli, na przykład, zamiany [1,2,3,4] na [4,3,2,1]. Ta część egzaminu ma dwa warianty (do wyboru przez studenta, w przypadku rozwiązania obu sprawdzany jest tylko ten wariant, który w odpowiedzi pojawia się jako pierwszy).

Wariant funkcjonalny

Możesz używać Haskella albo SML-a. W specyfikacji zadania używamy typów Haskellowych.

- a) Napisz funkcję append :: [a] -> [a], która łączy dwie listy (tzn wykonuje ich konkatenację). (2)
- b) Wykorzystując funkcję append napisz funkcję reverse :: [a] -> [a], która odwraca listę. Postaraj się, by rozwiązanie było możliwie naturalne. (2)
- c) Dlaczego powyższy program wykonuje $O(N^2)$ operacji, gdzie N jest długością listy? (2)
- d) Napisz wersję funkcji z punktu b), która wykonuje O(N) operacji. (4)

Wariant logiczny

W tym wariancie powinieneś używać Prologa.

- a) Napisz predykat append(A,B,C), prawdziwy, gdy listy A oraz B po konkatenacji dadzą listę B. (2)
- b) Wykorzystując predykat append napisz predykat reverse(A,B), prawdziwy, gdy lista B jest odwróconą listą A. Postaraj się, by rozwiązanie było możliwie naturalne. (2)
- c) Dlaczego powyższy program wykonuje $O(N^2)$ operacji, gdzie N jest długością listy? (2)
- d) Napisz wersję predykatu z punktu b), która wykonuje O(N) operacji. (4)

Matematyka dyskretna

Rozwiąż zależność rekurencyjną $a_n = 4a_{n-1} - 4a_{n-2}$ przy warunkach początkowych $a_0 = 0, a_1 = 2.$

Algorytmy i struktury danych

Rozważmy problem $mnożenia\ dlugich\ liczb\ całkowitych$: dla zadanych n-cyfrowych liczb $A=(a_{n-1}a_{n-2}\ldots a_0)$ i $B=(b_{n-1}b_{n-2}\ldots b_0)$ należy obliczyć iloczyn $C=A\cdot B$, przy czym $C=(c_{2n-1}c_{2n-2}\ldots c_0)$ będzie już liczbą (2n)-cyfrową. Opisz algorytm oparty na metodzie dziel $i\ zwyciężaj$, który efektywnie rozwiązuje to zadanie. Uzasadnij poprawność przedstawionego rozwiązania i przeanalizuj jego złożoność obliczeniową (możesz założyć, że n jest potęgą 2).

Podaj przykłady dwóch innych problemów, które można rozwiązać techniką dziel i zwyciężaj i oszacuj złożoność obliczeniową zastosowanych algorytmów.

Metody numeryczne

1. (a) Niech dane będą parami różne punkty x_0, x_1, \dots, x_n i liczby y_0, y_1, \dots, y_n . Podaj postać Newtona wielomianu interpolacyjnego L_n spełniającego następujące warunki:

1)
$$L_n \in \Pi_n$$
; 2) $L_n(x_i) = y_i$ $(i = 0, 1, ..., n)$.

(b) Znajdź wielomian interpolacyjny $L_5 \in \Pi_5$ dla danych

2. (a) Zaproponuj efektywny algorytm obliczania wyznacznika nieosobliwej macierzy $A \in \mathbb{R}^{n \times n}$ (n może być duże). Jaka jest złożoność Twojego algorytmu?