Equilíbrio Tampão

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Soluções Tampão

- 1. Ação tamponante.
- 2. Escolha do tampão.
- 3. Equação de Henderson-Hasselbalch:

$$pH = pK_a - log \frac{[base]_{inicial}}{[\acute{a}cido]_{inicial}}$$

4. Capacidade tamponante.

1.0.1 Habilidades

- a. Calcular o pH de uma solução tampão.
- Calcular a variação no pH de uma solução tampão por adição de ácido ou base.
- c. Calcular a composição da solução tampão para um pH desejado.
- d. Comparar a eficiência de soluções tampão em diferentes valores de pH.

2 Titulações ácido-base

- 1. Titulação ácido forte-base forte.
- 2. Titulação ácido forte-base fraca e ácido fraco-base forte.
- 3. Indicadores ácido-base.
- 4. Tituação de ácidos polipróticos.

2.0.1 Habilidades

- a. Calcular o pH ao longo de uma titulação ácido forte-base forte.
- b. **Calcular** o pH do ponto de equivalência para um titulação ácido fraco-base forte.
- c. Calcular o pH ao longo de uma titulação de ácido ou base fracos.
- d. Identificar indicadores adequados para uma titulação.

Nível I

PROBLEMA 2.1

2101

Uma solução tampão é 0,15 mol $\rm L^{-1}$ em $\rm HNO_2(aq)$ e 0,2 mol $\rm L^{-1}$ em $\rm NaNO_2(aq)$

Determine o pH da solução.

Dados

•
$$K_a(HNO_2) = 4.3 \times 10^{-4}$$

Uma solução tampão é 0,04 mol L^{-1} em NH_4Cl (aq) e 0,03 mol L^{-1} em NH_5 (aq)

Determine o pH da solução.

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 2.3

2103

Foram dissolvidos 0,02 mol de NaOH (s) em 300 mL de uma solução tampão que é 0,04 mol $\rm L^{-1}$ em acetato de sódio e 0,08 mol $\rm L^{-1}$ em ácido acético.

Determine a variação de pH da solução.

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 2.4

2104

Foram dissolvidos 0,01 mol de HCl (g) em 500 mL de uma solução tampão que é 0,04 mol $\rm L^{-1}$ em acetato de sódio e 0,08 mol $\rm L^{-1}$ em ácido acético.

Determine a variação de pH da solução.

Dados

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

PROBLEMA 2.5

2105

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 5.

Dados

- $pK_{a2}(H_3PO_4) = 7,21$
- $pK_a(CH_3COOH) = 4,75$
- $pK_a(HClO_2) = 2$
- $pK_a(HNO_2) = 3,37$
- $pK_b(NH_3) = 4,75$

PROBLEMA 2.6

2106

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 10.

PROBLEMA 2.2 2I02

Dados

- $pK_{a3}(H_3PO_4) = 12,7$
- $pK_a(CH_3COOH) = 4,75$
- $pK_b(NH_3) = 4,75$
- $pK_b(C_5H_5N) = 8,75$
- $pK_b((CH_3)_3N) = 4,19$

PROBLEMA 2.7

2107

Determine a razão entre as concentrações molares de íons acetato e de ácido acético necessária para tamponar uma solução em pH = 5,3.

Dados

• $pK_a(CH_3COOH) = 4,75$

PROBLEMA 2.8

2**I**08

Determine a razão entre as concentrações molares de íons benzoato e de ácido benzóico necessária para tamponar uma solução em pH=3,5.

Dados

• $pK_a(C_6H_5COOH) = 4,19$

PROBLEMA 2.9

210

Foram adicionados $20 \,\text{mL}$ de uma solução $0,15 \,\text{mol}\,\text{L}^{-1}$ de HCl(aq) a $25 \,\text{mL}$ de uma solução $0,11 \,\text{m}$ de NaOH(aq).

Determine o pH da solução resultante.

PROBLEMA 2.10

2I10

Foram adicionados 30 mL de uma solução 0,12 mol L^{-1} de HCl(aq) a 15 mL de uma solução 0,31 m de KOH(aq).

Determine o pH da solução resultante.

PROBLEMA 2.11

2I11

Considere a titulação de $25 \,\text{mL}$ de uma solução $0,01 \,\text{mol}\,L^{-1}$ de HClO(aq) com uma solução $0,02 \,\text{mol}\,L^{-1}$ de KOH(aq).

Determine o pH no ponto estequiométrico.

Dados

• $K_a(HClO) = 3 \times 10^{-8}$

PROBLEMA 2.12

2I12

Considere a titulação de 25 mL de uma solução 0,02 mol $\rm L^{-1}$ de NH3(aq) com uma solução 0,015 mol $\rm L^{-1}$ de HCl(aq).

Determine o pH no ponto estequiométrico.

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 2.13

2I13

Uma solução foi preparada pela mistura de $25\,\mathrm{mL}$ de uma solução $0.1\,\mathrm{mol}\,\mathrm{L}^{-1}$ de ácido fórmico com $5\,\mathrm{mL}$ de uma solução $0.15\,\mathrm{mol}\,\mathrm{L}^{-1}$ de NaOH.

Determine o pH da solução resultante.

Dados

• $K_a(HCOOH) = 1.8 \times 10^{-4}$

PROBLEMA 2.14

2I14

Uma solução foi preparada pela mistura de 25 mL de uma solução 0,1 mol $\rm L^{-1}$ de amônia com 10 mL de uma solução 0,15 mol $\rm L^{-1}$ de HCl

Determine o pH da solução resultante.

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

Nível II

PROBLEMA 2.15

2I37

Considere os indicadores disponíveis para a titulação de uma solução 0,20 mol L^{-1} de CH $_3$ COOH (aq) com uma solução 0,20 mol L^{-1} de NaOH (aq)

() Indicador	pK _{In}
() azul de timol	1,7
tornassol	6,5
vermelho de fenol	7,9
fenoftaleína	8,9
alizarina	11,7
()	

Assinale a alternativa com o indicador mais adequado.

PROBLEMA 2.16

2I38

Considere os indicadores disponíveis para a titulação de uma solução $0,20\, mol\, L^{-1}$ de $NH_3(aq)$ com uma solução $0,20\, mol\, L^{-1}$ de $HCl\, (aq)$

() Indicador	pK_{In}
() alaranjado de metila	3,4
vermelho de metila	5,0
vermelho de fenol	7,9
azul de timol	8,9
fenoftaleína	9,4
0	

Assinale a alternativa com o indicador mais adequado.

Gabarito

Nível I

- **1.** 3,49
- **2.** 9,13
- **3.** 1,21
- **4.** -0,4
- 5. A
- 6. C
- **7.** 3,16
- **8.** 0,2
- **9.** 2,25
- **10.** 12,4
- **11.** 9,67
- **12.** 5,66
- **13.** 3,39
- **14.** 9,1

Nível II

1. D

2. B