

Low-Energy ⁷Be Analysis Using EDA

Gerry Hale and Mark Paris

14 February 2023

LA-UR-23-21487

Chi-squared Expression and Search Method in EDA

$$\chi_{\text{EDA}}^{2} = \sum_{i} \left[\frac{nX_{i}(\mathbf{p}) - R_{i}}{\Delta R_{i}} \right]^{2} + \left[\frac{nS - 1}{\Delta S / S} \right]^{2}$$

$$g_{i} = \frac{\partial \chi^{2}}{\partial p_{i}},$$

$$\Rightarrow \chi_{0}^{2} + (\mathbf{p} - \mathbf{p}_{0})^{\mathsf{T}} \mathbf{g}_{0}^{0} + \frac{1}{2} (\mathbf{p} - \mathbf{p}_{0})^{\mathsf{T}} \mathbf{G}_{0} (\mathbf{p} - \mathbf{p}_{0})$$

$$G_{ij} = \frac{\partial^{2} \chi^{2}}{\partial p_{i} \partial p_{j}} = H_{ij}^{-1}$$

Search method is the rank-1 variable metric algorithm of Davidon, Broyden, as modified by Wolfe:

$$egin{aligned} oldsymbol{\Delta}\mathbf{p} &= -\mathbf{H}\mathbf{g} \ \mathbf{r} &= oldsymbol{\Delta}\mathbf{p} - \mathbf{H}oldsymbol{\Delta}\mathbf{g}, \ \mathbf{H}_{n+1} &= \mathbf{H}_n + rac{\mathbf{r}\mathbf{r}^\mathbf{T}}{\mathbf{r}^\mathbf{T}oldsymbol{\Delta}\mathbf{g}} \end{aligned}$$

Summary of ⁷Be Analysis

channel	a _c (fm)	I _{max}
³ He+ ⁴ He	4.43	4
p+ ⁶ Li	3.13	1
γ+ ⁷ Be	50.	1

Reaction	Energies (MeV)	# data points	Types of data	χ^2
⁴ He(³ He, ³ He) ⁴ He	E _{3He} =1.2 - 10.8	1519	$\sigma(\theta)$, $A_y(^3He)$	1381
⁴ He(³ He,p) ⁶ Li	E _{3He} = 8.2 - 10.8	129	$\sigma(\theta)$	123
⁶ Li(p,³He)⁴He	E _p = 0.025 - 3.0	773	$\sigma_{int}(E)$, $\sigma(\theta)$, $A_y(p)$	1203
⁶ Li(p,p) ⁶ Li	E _p = 0.50 - 2.6	190	$\sigma(\theta)$	240
⁴ He(³ He,γ) ⁷ Be	E _{3He} = 8.2 - 10.8	40	σ _{int} (E)	53
⁶ Li(p, γ) ⁷ Be	$E_p = 0.16 - 1.174$	26	$\sigma_{\text{int}}(E)$	23
Free norms.				135
Total		2677		3158

 $(\chi^2/\text{pt.=}1.18, \chi^2/\text{d.o.f.=}1.20)$

⁴He(³He,³He)⁴He Differential Cross Sections

⁴He(³He, ³He)⁴He Differential Cross Sections, cont.

⁴He(³He,³He)⁴He Analyzing Powers

⁴He(³He,³He)⁴He Analyzing Powers

⁴He(³He, ³He)⁴He Differential Cross Sections

⁴He(³He, ³He)⁴He Differential Cross Sections, cont.

⁴He(³He, ³He)⁴He Differential Cross Sections, cont.

⁴He(³He,³He)⁴He Differential Cross Sections, cont.

⁴He(³He,³He)⁴He Differential Cross Sections, cont.

⁴He(³He, ³He)⁴He Differential Cross Sections, cont.

⁴He(³He,p)⁶Li Differential Cross Sections

⁴He(³He,p)⁶Li and ⁶Li(p,³He)⁴He Differential Cross Sections

⁶Li(p,³He)⁴He Differential Cross Sections

⁶Li(p,³He)⁴He Differential Cross Sections and Analyzing Powers

⁶Li(p,³He)⁴He Analyzing Powers and Differential Cross Sections

⁶Li(p,³He)⁴He Differential Cross Sections

⁶Li(p,³He)⁴He and ⁶Li(p,p)⁶Li Differential Cross Sections

⁶Li(p,p)⁶Li Differential Cross Sections ¹⁶(p,p)¹⁶ Guida E= 495.000 keV ¹⁶(p,p)¹⁶ Guida E= 692.000 keV

⁶Li(p,p)⁶Li Differential Cross Sections

Integrated Reaction Cross Section

Integrated Capture Cross Sections

Summary/Conclusions

- The EDA analysis of reactions in the 7 Be system at excitation energies up to 8.15 MeV gives a good representation of the experimental data included (χ^2 /d.o.f.=1.2), including capture. Our prescription for photon channels, based on R.G. Newton's semi-classical treatment of EM scattering, is quite different from the the standard (e.g.,L&T) one, so parameter comparisons would be difficult.
- The narrow 3/2⁺ resonance seen in the previous version of this analysis appears to have been spurious, and it is no longer present.
- A recent measurement of ${}^{3}\text{He+}{}^{4}\text{He}$ scattering in the range $0.676 \le E_{3\text{He}} \le 5.48$ MeV from Paneru *et al.* is an important addition to the experimental data base. Som was kind enough to send us his laboratory data late last week, but we have not yet converted it to a form that can be used by EDA. However, the ${}^{3}\text{He+}{}^{4}\text{He}$ S-wave scattering length from our analysis, $a_0 = 45.8$ fm, is closer to the value obtained from his halo EFT analysis (42±1) fm than to the R-matrix value, 33.1±0.13(stat.) (+7.5,-3, analysis) fm.

