Symulacje komputerowe MST

Algorytm Ziggurat

18.04.2023

Poniższy algorytm pozwala na szybkie i efektywne generowanie realizacji zmiennej losowej z rozkładu o ściśle malejącej gestości. Prezentacja algorytmu na podstawie

• Marsaglia, George, Wai Wan Tsang. "The ziggurat method for generating random variables." *Journal of statistical software* 5 (2000): 1-7.

Generowanie wektora x:

Celem Algorytmu Ziggurat jest pokrycie obszaru pod krzywą f(x) przez 256 prostokątów, o takim samym polu, w taki sposób aby różnica między sumą pól prostokątów i wartością pola pod krzywą f(x), była jak najmniejsza. Niech $0 = x_0 < x_1 < \ldots < x_{255} = r$ będą punktami odpowiadającymi prawym krawędziom prostokątów. Na podstawie powyższego opisu mamy

$$x_i(f(x_{i-1}) - f(x_i)) = v$$
, dla $i = 1, 2, \dots, 255$,

gdzie

$$v = rf(r) + \int_{r}^{\infty} f(x) \, \mathrm{d}x.$$

Wybieramy takie r aby spełniona była nierówność $|v-x_1+x_1f(x_1)|<\varepsilon$, gdzie ε jest pewną małą wartością ustaloną przez użytkownika i

$$x_i = f^{-1}(v/x_{i+1} + f(x_{i+1})), \text{ dla } i = 254, \dots, 1.$$

Odpowiednie r można oszacować korzystając z metody bisekcji.

Generowanie wektorów k i w

Niech
$$k_0=\lfloor 2^{32}r(f(r)/v\rfloor$$
 i $w_0=0.5^{32}v/f(r)$. Dla każdego $i=1,\ldots,255$ podstaw
$$k_i=\lfloor 2^{32}(x_{i-1}/x_i)\rfloor,$$

$$w_i=0.5^{32}x_i.$$

Główny algorytm

- i) Wygeneruj 32 bitową liczbę całkowitą j i niech i będzie liczbą całkowitą utworzoną z 8 ostatnich bitów j.
- ii) Ustaw $x = jw_i$. Jeżeli $j < k_i$ to zwróć x.
- iii) Jeżeli i=0 wygeneruj realizację x z ogona rozkładu.
- iv) Jeżeli $(f(x_{i-1}) f(x_i))U < f(x) f(x_i)$, zwróć x. Tutaj $U \sim \mathcal{U}(0,1)$.
- v) Wróć do punktu i).

W przypadku rozkładu Pareto, w punkcie iii) wygeneruj realizację za pomocą metody odwracania dystrybuanty.