

#### INTRODUCTION

Using data science in the stock market is not new, but that doesn't apply for Saudi Stock Exchange (Tadawul), It needs to be explored and studied deeply, so we can cluster companies based on its behavior during the good and bad days.

Also, we can identify the days with a very large number of trades and try to understand the reason behind it.

Finally, we can predict the stocks prices.

## DATA

The dataset is in csv format

It contains 600,000 rows, each rows and 14 features.

This dataset can be found at Kaggle

#### Data features

- **Symbol (Integer):** The symbol or the reference number of the company.
- Name (String): Name of the company.
- Trading\_Name (String): The trading name of the company.
- Sectoer (String): The sector in which the company operates.
- Date (Date): The date of the stock price.
- Open (Decimal): The opening price.
- **High (Decimal):** The highest price of the stock at that day.

- **low (Decimal):** The lowest price of the stock at that day.
- •Close (Decimal): The closing price.
- •Change (Decimal): The change in price from the last day.
- •Perc\_Change (Decimal): The percentage of the change.
- **Volume\_Traded (Decimal):** The volume of the trades for the day.
- Value\_Traded (Decimal): The value of the.
- **No\_Trades (Decimal):** The number of trades for the day.

#### **GOALS**

- l. predict the stocks prices
- What is the highest Profit section?
- III. What is the less and most valuable year in the Saudi Stock market?
- IV. What is the percentage change in the sector, and what is the highest sector?



#### What is the highest Profit section

# What is the less and most valuable year in the Saudi Stock market

the most valuable year in the Saudi stock market





### Predict The Stocks Prices

#### 1. Linear Regression

A solution to avoid overfitting is using decision trees.

#### 2. Random Forest Model Evaluation



|     | prediction | 1 w train head(10)          |
|-----|------------|-----------------------------|
| 0   | 32.325453  | 1 y_train.head(10)          |
| 1   | 31.855085  | 19895 31.15                 |
| 2   | 32.747660  | 5956 34.03                  |
| 2   | 33.355873  | 24702 10.26                 |
| 3   | 33.300013  | 6587 22.00                  |
| 4   | 33.343089  | 2553 49.00                  |
| 5   | 33.463612  | 31974 16.49                 |
| 283 |            | 2863 24.30                  |
| 6   | 34.221564  | 9644 11.80                  |
| 7   | 34.852940  | 2067 24.30                  |
| 8   | 35.432032  | 26800 30.70                 |
| 0   | 33.432032  | Name: close, dtype: float64 |
| 9   | 35.018065  |                             |

|   | prediction |   |      | e a solutova iz         |
|---|------------|---|------|-------------------------|
| 0 | 32.004659  | 0 | 1    | y_test.head(10)         |
| 1 | 35.020005  |   | 0    | 31.60                   |
| 2 | 10.972651  |   | 1    | 31.35                   |
| 3 | 22.672885  |   | 2    | 31.70                   |
| 3 | 22.012000  |   | 3    | 32.45                   |
| 4 | 47.149408  |   | 4    | 32.70                   |
| 5 | 17.180586  |   | 5    | 32.20                   |
|   | 05.400750  |   | 6    | 33.10                   |
| 6 | 25.139758  |   | 7    | 33.60                   |
| 7 | 12.476548  |   | 8    | 34.25                   |
| 8 | 25.138601  |   | 9    | 34.35                   |
| 9 | 31.360030  |   | Name | : close, dtype: float64 |

## TOOLS

- Numpy
- Pandas
- Matplotlib
- Seaborn
- Sklearn preprocessing
- Sklearn model selection
- LinearRegression
- DecisionTreeRegressor
- Mean squared error
- Jupyter notebook

## Thank for your time

ANY QUESTIONS