MA2102: LINEAR ALGEBRA

Lecture 13: Linear Isomorphism

16th September 2020

We study the space of all linear maps together. Given vector spaces V and W (over a field F), consider

$$\mathcal{L}(V, W) := \{T : V \to W \mid T \text{ is linear}\}.$$

When W = V, we simplify $\mathcal{L}(V, V)$ to $\mathcal{L}(V)$, the set of linear selfmaps of V. Given $S, T: V \to W$, set

$$(S+T)(v) := S(v) + T(v)$$

Claim: S + T is a linear map Check that

$$(S+T)(cv) = S(cv) + T(cv) = cS(v) + cT(v) = c(S+T)(v)$$

Given two vectors $v_1, v_2 \in V$

$$\begin{array}{rcl} (S+T)(v_1+v_2) & = & S(v_1+v_2)+T(v_1+v_2) \\ & = & S(v_1)+S(v_2)+T(v_1)+T(v_2) \\ & = & (S+T)(v_1)+(S+T)(v_2) \end{array}$$

This defines a map

$$+: \mathcal{L}(V, W) \times \mathcal{L}(V, W) \to \mathcal{L}(V, W), (S, T) \mapsto S + T$$

This is commutative and associative (as addition of functions behave likewise). The zero map $\mathbb{O}:V\to W$ is the additive identity in $\mathcal{L}(V,W)$.

To define the scaling, consider for any scalar c and $T \in \mathcal{L}(V, W)$ the map

$$(cT)(v) := cT(v)$$

Show that *cT* is a linear map. This defines a map

$$: F \times \mathcal{L}(V, W) \to \mathcal{L}(V, W), (c, T) \mapsto cT$$

Thus, 1T = T and it can be seen that (-1)T is the inverse of T. All other axioms can now be verified easily.

Observation The set $\mathcal{L}(V, W)$ is a vector space.

Examples (1) Consider $\mathcal{L}(\mathbb{R}, \mathbb{R}^n)$ and let $T : \mathbb{R} \to \mathbb{R}^n$ be a linear map. Since $\{1\}$ is a basis of \mathbb{R} , T is determined by T(1) (T(c) = cT(1)). It seems intuitively clear that the map

$$\operatorname{ev}: \mathcal{L}(\mathbb{R}, \mathbb{R}^n) \to \mathbb{R}^n, \ T \mapsto T(1)$$

is a bijection. It is onto (given $\mathbf{v} \in \mathbb{R}^n$ set $T(c) = c\mathbf{v}$).

It is one-to-one (if T(1) = S(1), then T(c) = cT(1) = cS(1) = S(c)). Moreover,

$$ev(S+T) = (S+T)(1) = S(1) + T(1) = ev(S) + ev(T)$$

 $ev(cT) = (cT)(1) = cT(1) = c ev(T)$

implies that ev is actually a linear bijection. It follows from lecture 12 that ev^{-1} is a linear map (exercise).

(2) We shall see later that $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ can be identified (by a linear bijection) to $M_{m \times n}(\mathbb{R})$.

Definition [Linear Isomorphism] A linear map $T: V \to W$ is called a linear isomorphism if T is one-to-one and onto.

We say V and W are isomorphic (as vector spaces) if there exists a linear isomorphism $T: V \to W$.

Note that T being one-to-one and onto guarantees that $T^{-1}: W \to V$ is a well-defined linear map (cf. lecture 12). Thus, an alternative definition of isomorphism can be the existence of a linear map $S: W \to V$ such that $T \circ S = \mathrm{id}_W$ and $S \circ T = \mathrm{id}_V$. This implies that T is a bijection and $S = T^{-1}$.

Remark The notion of isomorphism is an equivalence relation.

- The identity map id: $V \rightarrow V$ is a linear isomorphism.
- If $S: V \to W$ is a linear isomorphism, then $S^{-1}: W \to V$ is also an isomorphism.
- If $S: V \to W$ and $T: U \to V$ are linear isomorphisms, then $S \circ T: U \to W$ is also an isomorphism.

We may now make precise what we had meant by "looks like". It means "is isomorphic to".

Proposition Let $T: V \to W$ be a linear map.

(i) Let $\{w_1, \ldots, w_n\} \subset W$ be a linearly independent set and let T be surjective. If $v_i \in V$ such that $T(v_i) = w_i$, then $\{v_1, \ldots, v_n\}$ is linearly independent.

(ii) Let $\{v_1, ..., v_n\} \subset V$ be a linearly independent set. If T is injective, then $\{T(v_1), ..., T(v_n)\}$ is linearly independent.

then $\{T(v_1),...,T(v_n)\}$ is linearly independent. (iii) Let T be a linear isomorphism. If $\beta = \{v_1,...,v_n\}$ is a basis for V, then $\{T(v_1),...,T(v_n)\}$ is a basis for W.

Proof.

(ii) If $c_1T(v_1) + \cdots + c_nT(v_n) = 0_W$, then by linearity of T, $T(c_1v_1 + \cdots + c_nv_n) = 0_W$. Thus, $c_1v_1 + \cdots + c_nv_n = 0_V$ due to injectivity of T. As v_i 's are linearly independent, c_i 's are all zero.

(i) If $c_1v_1 + \cdots + c_nv_n = 0_V$, then by linearity of T,

$$\mathbf{0}_W = T(c_1v_1+\cdots+c_nv_n) = c_1T(v_1)+\cdots+c_nT(v_n) = c_1w_1+\cdots+c_nw_n.$$

As w_i 's are linear independent, c_i 's are zero.

(iii) Since β spans V and T is onto, $T(\beta) = \{T(v_1), \ldots, T(v_n)\}$ spans W. As β is linearly independent, by (ii) $T(\beta)$ is linearly independent. This proves that $T(\beta)$ is a basis.

Remark The proposition works for infinite linearly independent sets as well as for infinite dimensional vector spaces. For instance, in (i) we may choose any linearly independent set S in V to prove that T(S) is linearly independent. Similarly, in (iii), the image of a basis is a basis, even if V is not finite dimensional.