task

December 6, 2022

1 Set-Up

```
[3]: import pandas as pd
     import numpy as np
     import patsy
     import matplotlib.pyplot as plt
     from sklearn.svm import SVC
     from sklearn.metrics import confusion_matrix, classification_report,_
     →precision_recall_fscore_support
     import seaborn as sns
     from sklearn import preprocessing
     from sklearn.preprocessing import MinMaxScaler
     import statsmodels.api as sm
     import scipy.stats as stats
     import warnings
     from mpl_toolkits.mplot3d import Axes3D
     import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     from sklearn import linear_model
     np.random.seed(19680801)
     warnings.filterwarnings('ignore')
     sns.set()
     sns.set_context("paper", font_scale=10)
```

2 Loading Dataframe

```
[20]: #load csv
task = pd.read_csv('SampleTaskData[42][77][59].csv')
task = task.dropna(axis=1)
print(task)
```

```
      Subject Number
      WRMT
      Left Lateral VTC Classification
      Age

      0
      1
      43.48
      91.67
      6

      1
      2
      54.35
      41.67
      6

      2
      3
      73.91
      75.00
      7
```

```
75.00
3
                  4
                      91.30
                                                                    8
4
                  5
                      52.17
                                                           50.00
                                                                    7
5
                      60.87
                                                           75.00
                  6
                                                                    8
6
                  7
                      78.26
                                                           50.00
                                                                    9
7
                      69.57
                                                           83.33
                  8
                                                                   10
8
                  9
                       63.04
                                                           75.00
                                                                   10
9
                 10
                      86.96
                                                           91.67
                                                                   10
                      67.39
                                                           75.00
10
                 11
                                                                   10
11
                 12
                      89.13
                                                           91.67
                                                                   10
12
                 13
                      76.09
                                                          50.00
                                                                   10
13
                 14
                      63.04
                                                           75.00
                                                                   11
14
                 15
                      58.70
                                                           66.67
                                                                   11
15
                      91.30
                                                          100.00
                 16
                                                                   11
16
                 17
                      91.30
                                                          100.00
                                                                   11
17
                      89.13
                                                           91.67
                 18
                                                                   12
18
                 19 100.00
                                                          91.67
                                                                   22
19
                 20
                      97.83
                                                          100.00
                                                                   22
20
                 21
                      97.83
                                                          100.00
                                                                   22
21
                 22 100.00
                                                          83.33
                                                                   22
22
                 23
                      97.83
                                                          100.00
                                                                   23
                 24
23
                      97.83
                                                          100.00
                                                                   23
24
                 25
                      97.83
                                                          75.00
                                                                   23
                 26 100.00
                                                          100.00
25
                                                                   23
26
                 27
                      97.83
                                                          100.00
                                                                   23
27
                 28
                      97.83
                                                          100.00
                                                                   24
28
                 29
                      86.96
                                                          100.00
                                                                   24
29
                 30 100.00
                                                          100.00
                                                                   24
30
                 31
                      98.00
                                                          58.33
                                                                   24
31
                 32 100.00
                                                          100.00
                                                                   24
32
                 33
                     91.30
                                                           75.00
                                                                   24
33
                                                           91.67
                 34
                      91.30
                                                                   24
34
                 35
                     100.00
                                                          100.00
                                                                   25
35
                      97.83
                                                          100.00
                 36
                                                                   26
36
                 37
                      93.48
                                                          75.00
                                                                   28
```

3 Classification performances and WRMT Scores

```
[21]: Text(0.5, 0, 'Left Lateral VTC Classification - % Correct')
```



```
[22]: from scipy.stats import linregress linregress(task['Left Lateral VTC Classification'], task['WRMT'])
```

[22]: LinregressResult(slope=0.5683353502611742, intercept=37.21850848691025, rvalue=0.5952572867165984, pvalue=0.00010184422394926359, stderr=0.1296793470537376, intercept_stderr=11.11905296823655)

```
[23]: task.rename(columns = {'Left Lateral VTC Classification':'VTC'}, inplace = True)
  outcome_1, predictors_1 = patsy.dmatrices('WRMT ~ VTC', task)
  model = sm.OLS(outcome_1, predictors_1)
  results = model.fit()
  print(results.summary())
```

OLS Regression Results

Dep. Variable:	WRMT	R-squared:	0.354			
Model:	OLS	Adj. R-squared:	0.336			
Method:	Least Squares	F-statistic:	19.21			
Date:	Tue, 06 Dec 2022	Prob (F-statistic):	0.000102			
Time:	21:51:37	Log-Likelihood:	-147.85			
No. Observations:	37	AIC:	299.7			
Df Residuals:	35	BIC:	302.9			
Df Model:	1					
Covariance Type:	nonrobust					

	coef	std err	t	P> t	[0.025	0.975]
Intercept VTC	37.2185 0.5683	11.119 0.130	3.347 4.383	0.002 0.000	14.646 0.305	59.791 0.832
Omnibus:	======================================	12.0 0.0		======================================	======	1.253 13.517
Skew: Kurtosis:		-0.9 5.1	96 Prob(J	B):		0.00116 429.
=========						=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Interpetation: 35.4% of the variation in the WRMT score can be explained from the left lateral VTC Classification. Since the p-value for the F-test is P < .001, we can conclude that the regression model is statistically significant. Left lateral VTC Classification has a statistically significant relationship with the WRMT score. This model has an AIC of 299.7, so we should consider this when comparing it to other models.

4 WRMT Scores and Age

```
[30]: sns.set(style="white", font_scale = 1)
plot2 = sns.regplot(x = 'Age', y = 'WRMT', data = task)
plot2.figure.set_size_inches(8,8)
plot2.set_ylabel('WRMT score - % Correct')
```

[30]: Text(0, 0.5, 'WRMT score - % Correct')


```
[31]: from scipy.stats import linregress linregress(task['Age'], task['WRMT'])
```

[31]: LinregressResult(slope=1.757236446994478, intercept=55.660948978497494, rvalue=0.7920516499613185, pvalue=5.238165037003949e-09, stderr=0.2289262941333921, intercept_stderr=4.174799520780392)

```
[32]: outcome_2, predictors_2 = patsy.dmatrices('WRMT ~ Age', task)
model_2 = sm.OLS(outcome_2, predictors_2)
results = model_2.fit()
print(results.summary())
```

OLS Regression Results

Dep. Variable: WRMT R-squared: 0.627

Model:	OLS	Adj. R-squared:	0.617
Method:	Least Squares	F-statistic:	58.92
Date:	Tue, 06 Dec 2022	Prob (F-statistic):	5.24e-09
Time:	21:58:33	Log-Likelihood:	-137.69
No. Observations:	37	AIC:	279.4
Df Residuals:	35	BIC:	282.6
Df Model:	1		

Covariance Type: nonrobust

=========	========	========	========			========
	coef	std err	t	P> t	[0.025	0.975]
Intercept Age	55.6609 1.7572	4.175 0.229	13.333 7.676	0.000	47.186 1.292	64.136 2.222
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	0.	993 Jarqı		:	1.626 0.189 0.910 45.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Interpetation: 62.7% of the variation in the WRMT score can be explained from Age. Since the p-value for the F-test is P < .001, we can conclude that the regression model is statistically significant. Age has a statistically significant relationship with the WRMT score. The AIC for this model is less than the previous model, meaning it is more likely to be the best model.

5 WRMT Scores Accounting for Multiple Variables

```
[27]: x = task[['VTC','Age']]
y = task['WRMT']

regr = linear_model.LinearRegression()
regr.fit(x, y)

print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)
```

```
Intercept:
```

39.82379246929776

Coefficients:

[0.24656801 1.46478119]

WRMT = (39.82379246929776) + (0.24656801)X1 + (1.46478119)X2

The model shown above can be used to estimate the WRMT scores considering both the subjects age (X2) and Left Lateral VTC classification (X1).

```
[28]: outcome_3, predictors_3 = patsy.dmatrices("WRMT ~ VTC + Age", task)
mod_3 = sm.OLS(outcome_3, predictors_3)
res_3 = mod_3.fit()
print(res_3.summary())
```

OLS Regression Results

OLS Regression Results						
Dep. Variab	le:	WRMT R		R-squared:		0.677
Model:		OLS		Adj. R-squared:		0.658
Method:		Least Squares F-statistic:		atistic:		35.58
Date:	T	ue, 06 Dec 2022	2 Prob	Prob (F-statistic):		4.62e-09
Time:		21:51:58	B Log-I			-135.06
No. Observat	No. Observations: 37		AIC:			276.1
Df Residuals	5:	34	BIC:			281.0
Df Model:			2			
Covariance 7	Гуре:	nonrobust	;			
========	=======					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	39.8238	7.996	4.981	0.000	23.574	56.073
VTC	0.2466	0.108	2.277	0.029	0.027	0.467
Age	1.4648	0.252	5.822	0.000	0.953	1.976
Omnibus:	=======	 2.693	====== B Durbi	in-Watson:		1.680
Prob(Omnibus	Prob(Omnibus): 0.260) Jarqı	ue-Bera (JB):		1.526
Skew:		-0.373	-			0.466
Kurtosis:		3.658	Cond.	. No.		438.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Interpetation: 65.8% (adjusted) of the variation in the WRMT score can be explained from both the left lateral VTC Classification and Age. Since the p-value for the F-test is P < .001, we can conclude that the regression model is statistically significant. This is expected because both variables have statistically significant relationships with WRMT score. Considering that this model has the lowest AIC of the three, this is most likely to be the best model.

```
[18]: task_corr = task.drop('Subject Number', axis=1)
corr_matrix = task_corr.corr()
corr_matrix
```

```
[18]: WRMT VTC Age
WRMT 1.000000 0.595257 0.792052
VTC 0.595257 1.000000 0.510441
Age 0.792052 0.510441 1.000000
```

```
[19]: sns.pairplot(task_corr, kind="scatter")
plt.show()
```



```
[62]: a = sns.heatmap(corr_matrix);
```

