# Clustering I

COMP5318 Machine Learning and Data Mining semester 1, 2023, week 9
Irena Koprinska

Reference: Tan ch.7.1-7.3, 8.2, Witten ch.4.8, Müller & Guido: ch.3.5,

Geron: ch.9







- Introduction
  - Definition and applications
  - Distance measures and distance between clusters
  - Taxonomy
- Partitional clustering: K-means algorithm
- Model-based clustering: GMM
- Hierarchical clustering: agglomerative and divisive



# What is clustering?

- The process of dividing the data objects (items, examples) into groups (called clusters) so that the objects from the same group are:
  - similar to each other within the cluster
  - dissimilar to the objects in other clusters
- The similarity is computed using a distance measure





### Clustering is unsupervised learning

- Clustering is unsupervised learning: no labels
- Given:
  - A set of unlabeled examples (input vectors)
  - k desired number of clusters (may not be given)
- Task: Cluster (group) the examples into k clusters (groups)
- Supervised vs unsupervised learning
  - Supervised the class labels are given; the goal is to build a classifier that can be used to predict the class of new (unlabelled) examples
  - Unsupervised there are no class labels; the goal is to group similar examples together.



### Applications of clustering

- Clustering is used
  - As a stand-alone tool to group data
  - As a building block for other algorithms e.g. a pre-processing tool for dimensionality reduction – using the cluster center to represent all data points in the cluster



# Clustering applications

- Ex.1: Targeted marketing
  - Segment customers into groups with distinct characteristics and use this knowledge to develop targeted marketing campaigns
  - Data purchase history, browsing history, demographic data
  - Targeted campaigns are cheaper than mass-campaigns
- Ex. 2: Customer loyalty
  - Analyse customer behavior and find groups of customer who are likely to defect, e.g. to another medical insurance, electricity or phone company
- Ex. 3: Gene clustering
  - Find genes with similar structure and functionality important for understanding diseases and finding effective treatments
  - Data: microarray from thousands of genes, analysed simultaneously







# Clustering applications (2)

- Ex. 3: Document clustering
  - Find groups of documents that are similar to each other based on their content
  - Applications:
    - Patent documents assessment: group similar patent documents to make the evaluation of a new patent document easier
    - Personalized news recommendations
- Ex. 4: Clustering for understanding eating habits and dietary patterns of a particular cohorts (e.g. of young Australians)
  - Group 1: People who skip breakfast, care about weight, do not exercise regularly; eat high protein, low fat and high sugar diet; eat out because they enjoy the social aspect; snack after dinner
  - Group 2: ...
  - Use this knowledge to promote good eating habits and changes in government policies





# Clustering applications (3)

- Color compression
  - Reduce the number of colors in an image smaller storage requirements
- Cluster the pixels and then replace them with the color of their cluster centroids – smaller number of colors used, smaller storage requirements
- See the tutorial exercises

Original image



16 million colors

16 colors

Irena Koprinska, irena.koprinska@sydney.edu.au

COMP5318 ML&DM, week 9, 2023



# Clustering applications (4)

- Image segmentation
  - Partition an image into segments based on similar colors







- A good clustering will produce clusters with
  - High cohesion (i.e. high similarity within the cluster)
  - High separation (i.e. low similarity between the clusters)
- How to evaluate the quality of the clustering next week





#### Measuring similarity between data points

- Similarity between 2 data points A and B is measured using a distance measure
  - If the distance D(A,B) is high -> A and B are dissimilar
  - If the distance D(A,B) is low -> A and B are similar
- Various similarity measures see lecture 1b
  - Euclidean and Manhattan distance
  - Cosine similarity
  - Many others



#### Euclidean and Manhattan distance - revision

- 2 examples (data points):  $A = [a_1, a_2, ..., a_n], B = [b_1, b_2, ..., b_n]$
- e.g. A= [1, 3, 5], B=[1, 6, 9]
- Euclidean distance

$$D(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

$$D(A,B) = \sqrt{(1-1)^2 + (3-6)^2 + (5-9)^2} = 5$$

Manhattan distance

$$D(A,B) = |a_1 - b_1| + |a_2 - b_2| + \dots + |a_n - b_n|$$

$$D(A,B)=|1-1|+|3-6|+|5-9|=7$$

#### Cosine distance - revision

Cosine similarity

$$\cos(A, B) = \frac{A.B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} a_{i} b_{i}}{sqrt(\sum_{i=1}^{n} a_{i}^{2}) sqrt(\sum_{i=1}^{n} b_{i}^{2})}$$

- Geometric representation: measures the angle between A and B
  - Cosine similarity = 1 => angle(A,B)=0°
  - Cosine similarity = 0 => angle (A,B)=90°



Image from https://deepai.org/machine-learning-glossary-and-terms/cosine-similarity

#### Cosine distance – revision (2)

- A= [3,2,0,5,0,0,0,2,0,0]
- B = [1,0,0,0,0,0,0,1,0,2]

$$A.B = 3 * 1 + 2 * 0 + 0 * 0 + 5 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 2 * 1 + 0 * 0 + 0 * 2 = 5$$

$$||A|| = \sqrt{3^2 + 2^2 + 0^2 + 5^2 + 0^2 + 0^2 + 0^2 + 2^2 + 0^2 + 0^2} = \sqrt{42} = 6.481$$

$$||B|| = \sqrt{1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2} = \sqrt{6} = 2.245$$

$$= > \cos(A,B) = 0.3150$$



#### Centroid and medoid of a cluster

- Consider a cluster with N points {p1,..,pN}
- Centroid C the "middle" of the cluster  $C = \frac{\sum_{i=1}^{N} p}{N}$ 
  - Typically not an actual data point in the cluster
- Medoid M the centrally located data point in the cluster





#### Distance between clusters

- Centroid the distance between the centroids
- Medoid the distance between the medoids
- Single link (MIN) The smallest pairwise distance between elements from each cluster
- Complete link (MAX) the largest pairwise distance between elements from each cluster
- Average link the average pairwise distance between elements from each cluster





### Taxonomy of clustering algorithms

- Partitional k-means, k-medoids; create 1 set of clusters
- Model-based GMM
- Hierarchical agglomerative and divisive; create a nested set of clusters
- Density-based DBSCAN; regions with high density form clusters
- Grid-based CLIQUE; density-based but divides the space into grid cells and forms clusters from cells that are sufficiently dense



Irena Koprinska, irena.koprinska@sydney.edu.au

COMP5318 ML&DM, week 9, 2023



# K-Means clustering algorithm





# K-Means clustering algorithm

- Partitional clustering algorithm
- Very popular and widely used
- Requires the number of clusters k to be specified
- 3 main steps:
  - Choose k examples as the initial centroids of the clusters
  - Form k clusters by assigning each example to the closest centroid
  - At the end of each epoch:
    - Re-compute the centroid of the clusters
    - Check if the stopping condition is satisfied: centroids do not change. If yes – stop; otherwise, repeat steps 2 and 3 using the new centroids.



### Pseudo code and example

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change



Step 1: Choose initial centroids



Step 2: Assign data points to the cluster of the closest centroid



Step 3: End of epoch:
-Recompute centroids
-Check if stopping condition is satisfied – yes, stop; no - repeat from step 2



Step 4: Assign data points to the cluster of the closest centroid



#### K-means - more details

- The initial centroids are typically chosen randomly
- The algorithm is sensitive to the initial centroids different clusters will be produced – see next slides
- "Closeness" is measured by a distance measure
- Most of the convergence happens in the first few epochs
- Often the stopping condition is changed from "Until centroids do not change" to 'Until relatively few points change clusters'
- Complexity is O( n\*k\*i\*d )
  - n number of points, k number of clusters, i number of iterations,
     d number of attributes





- Given: 5 items with the distance between them
- Task: Use the K-means algorithm to cluster them into 2 clusters. The initial centroids are A and B. Show the clusters after the first epoch.

|   | A  | В | С | D  | Е |
|---|----|---|---|----|---|
| A | 0  | 2 | 7 | 10 | 1 |
| В | 2  | 0 | 3 | 4  | 6 |
| C | 7  | 3 | 0 | 5  | 9 |
| D | 10 | 4 | 5 | 0  | 1 |
| Е | 1  | 6 | 9 | 1  | 0 |

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change





- Initial centroids: A and B
- cluster1 the cluster of A
- cluster2 the cluster of B

| Epoch1 | – start: |
|--------|----------|
|--------|----------|

- A is assigned to cluster1 (centroid)
- B is assigned to cluster2 (centroid)
- C:
   d(C, A)=7, d(C, B)=3
   => C is assigned to cluster2
- D:
   d(D, A)=10, d(D, B)=4
   D is assigned to cluster2

|   | A  | В | C | D  | Е |
|---|----|---|---|----|---|
| Α | 0  | 2 | 7 | 10 | 1 |
| В | 2  | 0 | 3 | 4  | 6 |
| С | 7  | 3 | 0 | 5  | 9 |
| D | 10 | 4 | 5 | 0  | 1 |
| Е | 1  | 6 | 9 | 1  | 0 |

E:
 d(E, A)=1, d(E, B)=6
 => E is assigned to cluster1

End of epoch 1, clusters are:

{A, E} and {B, C, D}



#### Sensitive to initial centroids

Different random initialisation -> different result





Initialisation 1 - good clustering



Initialisation 2 - bad clustering

Irena Koprinska, irena.koprinska@sydney.edu.au

COMP5318 ML&DM, week 9, 2023



#### Good initial centroids



Irena Koprinska, irena.koprinska@sydney.edu.au COMP5318 ML&DM, week 9, 2023



#### Poor initial centroids



Irena Koprinska, irena.koprinska@sydney.edu.au COMP5318 ML&DM, week 9, 2023



# Selecting good initial centroids

- Method 1: Run K-means several times with different randomly selected initial centroids; evaluate each clustering using SSE, select the clustering with the smallest Sum of Squared Error (SSE)
- SSE:
  - For each point, the error is the distance to the closest centroid
  - To get SSE, we square these errors and sum them

$$SSE = \sum_{i=1}^{\kappa} \sum_{\mathbf{X} \in K_i} d(c_i, \mathbf{x})^2$$

c<sub>i</sub> are the centroids, k - number of clusters, x - data points

Method 2: K-means++



- K-means++ is a variation of K-means which uses a new method for selecting the initial centroids; the rest is the same as the standard Kmeans
- Centroid selection:
  - Select centroids incrementally, until k centroids have been selected
  - At every step, each point has a probability to be selected as a centroid that is proportional to the square of its distance to its closest centroid
  - => Selects points that are farthest away from the current centroids selects well-separated points
  - Can select outliers, but outliers are rare by definition
- Works well in practice



#### K-means++ pseudocode for centroid selection

- Selection of initial centroids in K-means++:
  - 1: For the first centroid, pick one of the points at random.
  - 2: **for** i=1 to *number of trials* **do**
  - 3: Compute the distance, d(x), of each point to its closest centroid.
  - 4: Assign each point a probability proportional to each point's d(x)2.
  - Pick new centroid from the remaining points using the weighted probabilities.
  - 6: end for



#### K-means issues: Handling empty clusters

- K-means can yield empty clusters no points are allocated to a cluster during the assignment step – the cluster consists only of the initial centroid
- Solution: choose different initial centroid strategies:
  - Choose the point that is farthest away from any current centroid
  - Use the K-means++ approach (similar idea)
  - Choose a point from the cluster that has the highest SSE
    - This will typically split the cluster and reduce the overall SSE of the clustering
- If there are several empty clusters, the above can be repeated several times



#### K-means issues: Outliers

- When there are outliers, the resulting cluster centroids are less representative and the SSE is higher
- Solution: remove outliers before clustering
- Caution: for some clustering applications outliers are important and should not be removed, e.g.:
  - Data compression: all points need to be clustered
  - Financial analysis unusually profitable customers can be the most interesting
- Alternatively, remove outliers as a post-processing step after clustering – keep track of SSE contributed by each point, eliminate points with unusually high contributions, especially over multiple runs
- Various techniques for identifying outliers out scope for this course, see Tan ch.9



### Variations: Bisecting K-means

Different ways: the largest cluster, the cluster with the largest SSE, or

based on both size and SSF

- Extension of k-means
- Main idea: to obtain k clusters, split the data into 2 clusters, select one of these clusters to split further and so one until k clusters are obtained
  - 1: Initialize the list of clusters to contain the cluster containing all points.
  - 2: repeat
  - 3: Select a cluster from the list of clusters
  - 4: **for** i = 1 to  $number\_of\_iterations$  **do**
  - 5: Bisect the selected cluster using basic K-means
  - 6: end for
  - 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
  - 8: until Until the list of clusters contains K clusters



# Bisecting K-means - Example

Less sensitive to initialization problems





### K-means and different types of clusters

 K-means works well if the clusters are spherical, of equal density, equal size and are well separated



#### K-means on clusters with non-spherical shapes

 Doesn't work well for natural clusters with complex (non-spherical) shape





K-means (2 Clusters)



#### K-means on clusters with different size

- Doesn't work well for natural clusters with vastly different size
- 3 natural clusters, the second one is much bigger than the first and third
- K-Means cannot find the natural clusters it splits the largest



3 - 2 -1 0 1 2 3 4 X

Original points K-means (3 Clusters)



### K-means on clusters with different density

- Doesn't work well for natural clusters with different density
- 3 natural clusters, 2 of them are much denser than the other
- K-Means cannot find the natural clusters it splits the large cluster



**Original points** 



K-means (3 clusters)



## K-Means - strengths and weaknesses

- Simple and very popular
- Relatively efficient, even though multiple runs are required
- Sensitive to centroid initialization
- Not sensitive to the order in which the input examples are applied
- Does not work well for clusters with non-spherical shape, different sizes and different density
- Does not work well for data containing outliers
  - Pre-processing is needed outlier detection and removal
- Different variations e.g. bisecting K-means and K-means++
  - Both reduce sensitivity to initialization (choice of initial centroids)



### Model-based: GMM





### Gaussian mixture model clustering

- Gaussian Mixture Model (GMM) clustering is a probabilistic clustering
- It assumes that the data is generated by a mixture of normal (Gaussian) distributions





#### 3 normal distributions



#### ND = normal distribution

- *ND1:*  $\mu = 0.5$ ,  $\sigma = 0.2$
- ND2:  $\mu = -0.1$ ,  $\sigma = 0.07$
- *ND3:*  $\mu = 0.2$ ,  $\sigma = 0.13$





- 2000 data samples for ND1
- 5000 data samples for ND2
- 10000 data samples for ND3
- Probability density function for a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ :  $(x-\mu)^2$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-x)^2}{2\sigma^2}}$$

# GMM Algorithm



- We assume that the data is generated by a mixture of k Gaussian (normal) distributions. Each distribution has 2 parameters: μ and σ.
- One distribution corresponds to 1 cluster
- We don't know the parameters  $\mu$  and  $\sigma$  of the distributions; starting from random initial values we iteratively estimate them from the data
- After each estimation, we compute the probability of each example to belong to each distribution (cluster)
- Using the probabilities, we re-compute the parameters, until they don't change



### Algorithm 9.2 EM algorithm.

- 1: Select an initial set of model parameters.

  (As with K-means, this can be done randomly or in a variety of ways.)
- 2: repeat
- 3: **Expectation Step** For each object, calculate the probability that each object belongs to each distribution, i.e., calculate  $prob(distribution j|\mathbf{x}_i, \Theta)$ .
- 4: **Maximization Step** Given the probabilities from the expectation step, find the new estimates of the parameters that maximize the expected likelihood.
- 5: **until** The parameters do not change.
  (Alternatively, stop if the change in the parameters is below a specified threshold.)



# GMM and K-Means correspondence

- Expectation step in GMM -> Assigning each object to a cluster in K-means
  - In K-means crisp assignment, in GMM probabilistic; each object is assigned to each cluster with a certain probability
- Maximization step in GMM -> Computing the cluster centroid in K-Means
  - In GMM we compute the parameters of the distributions

#### Algorithm 9.2 EM algorithm.

- 1: Select an initial set of model parameters. (As with K-means, this can be done randomly or in a variety of ways.)
- 2: repeat
- 3: **Expectation Step** For each object, calculate the probability that each object belongs to each distribution, i.e., calculate  $prob(distribution \ j | \mathbf{x}_i, \Theta)$ .
- 4: **Maximization Step** Given the probabilities from the expectation step, find the new estimates of the parameters that maximize the expected likelihood.
- 5: **until** The parameters do not change.
  (Alternatively, stop if the change in the parameters is below a specified threshold.)







- (a) Probability density function for the mixture model.
- (b) 20,000 points generated from the mixture model.
- 1-dim data x (20 000 points), generated by 2 Gaussian distributions: distribution 1 and distribution 2
- For simplicity, let's assume that we know the standard deviations  $\sigma_1$  and  $\sigma_2$  and that both are the same:  $\sigma_1 = \sigma_2 = 2$
- Step 1: Initial guesses for  $\mu_1$  and  $\mu_2$ :  $\mu_1$  = -2,  $\mu_2$  = 3
- => initial parameters of the 2 distributions:  $\theta_1$ =(-2,2),  $\theta_2$ =(3,2)
- Set of parameters for the entire mixture model:  $\theta = (\theta_1, \theta_2)$





- Step 2: Expectation step
  - Compute the probability that a point  $x_i$  came from each distribution j (j=1,2)

$$P(distribution j|x_i, \theta) = \frac{w_j P(x_i|\theta_j)}{w_1 P(x_i|\theta_1) + w_2 P(x_i|\theta_2)}$$

 $w_j$  are the weights of each distribution (the probability for distribution j to generate the example); all weights should sum to 1, i.e.  $w_1+w_2=1$ .

For our example we assume that  $w_1=w_2=0.5$ :

$$P(distribution j|x_i, \theta) = \frac{0.5 P(x_i|\theta_j)}{0.5 P(x_i|\theta_1) + 0.5 P(x_i|\theta_2)}$$

- E.g. for point  $x_i = 0$ :  $P(x_i|\theta_1) = 0.12$ ,  $P(x_i|\theta_2) = 0.06$  (calculated using the probability density function of normal distribution)
- =>  $P(distribution \ 1|x = 0, \theta) = \frac{0.12}{0.12 + 0.06} = 0.66$  $P(distribution \ 2|x = 0, \theta) = \frac{0.06}{0.12 + 0.06} = 0.33$
- We compute these probabilities for all n = 20000 points



• Step 3: Maximization step – compute new estimates for  $\mu_1$  and  $\mu_2$ 

$$\mu_1 = \sum_{i=1}^n x_i \frac{P(distribution \ 1 | x_i, \theta)}{\sum_{i=1}^n P(distribution \ 1 | x_i, \theta)}, \quad \mu_2 = \sum_{i=1}^n x_i \frac{P(distribution \ 2 | x_i, \theta)}{\sum_{i=1}^n P(distribution \ 2 | x_i, \theta)}$$

- Notice that the new estimate for the mean  $\mu$  is the weighted average of the points, where the weights are the probabilities that the points belong to the distribution
- Repeat the expectation and maximization steps until the estimates for  $\mu_1$  and  $\mu_2$  don't change or change very little
- After convergence, each point is assigned to the cluster with the highest probability





- GMM can be seen as a generalization of K-means
- It is more flexible it allows for elliptical clusters rather than circular and for probabilistic assignment to each cluster rather than crisp – see the tutorial notes



Irena Koprinska, irena.koprinska@sydney.edu.au COMP5318 ML&DM, week 9, 2023





- Clustering of people with insomnia based on EEG data
- https://www.sciencedirect.com/science/article/abs/pii/S0950705119303387

Data-driven cluster analysis of insomnia disorder with physiology-based qEEG variables ★

Stephen McCloskey <sup>a</sup>  $\stackrel{>}{\sim}$   $\stackrel{\boxtimes}{\sim}$ , Bryn Jeffries <sup>a, b</sup>, Irena Koprinska <sup>a</sup>, Christopher B. Miller <sup>b, c</sup>, Ronald R. Grunstein <sup>b, c</sup>





# Hierarchical clustering





### Hierarchical clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram a tree like diagram that records the sequences of merges



**Nested clusters** 



Dendrogram



## Strengths of hierarchical clustering

- No need to specify the number of clusters in advance
- A desired number of clusters can be obtained by 'cutting' the dendrogram at different levels
- The dendrogram provides a useful visualization an interpretable description of the clustering process
- The dendrogram may reveal a meaningful taxonomy



## Two approaches: agglomerative and divisive

- Agglomerative (bottom-up) merges clusters iteratively
  - Start with each item in its own cluster; iteratively merge clusters until all items belong to one cluster
- Divisive (top-down) splits a cluster iteratively
  - Place all items in one cluster; iteratively split clusters in two until all items are in their own cluster
- Divisive is less popular than agglomerative; we will focus on agglomerative





### Agglomerative and divisive clustering - diagrams

- Agglomerative (bottom-up) merges clusters iteratively
- Divisive (top-down) splits a cluster iteratively





## Agglomerative hierarchical clustering

- Agglomerative is the most popular hierarchical clustering algorithm
- The key operation is computing the distance between two clusters (the proximity matrix)
- There are different versions of how the clusters are merged at each step; we will
  use the version that merges the 2 closest clusters
  - 1. Compute the proximity matrix
  - 2. Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix
  - **6. Until** only a single cluster remains



### Distance between clusters

- Hierarchical clustering typically uses the following distance measures:
  - Single link (MIN)
  - Complete link (MAX)
  - Average link
  - Ward's method the distance between 2 clusters is the increase in SSE that results when the 2 clusters are merged



|                     | The distance between 2 clusters is:                                                           |  |
|---------------------|-----------------------------------------------------------------------------------------------|--|
| Single link (MIN)   | the <b>smallest</b> distance between an element in one cluster and an element in the other    |  |
| Complete link (MAX) | the <b>largest</b> distance between an element in one cluster and an element in the other     |  |
| Average link        | the <b>average</b> distance between each element in one cluster and each element in the other |  |



## Agglomerative clustering - example

 Given are 6 data points. Apply agglomerative hierarchical clustering to cluster them using the single-link distance between clusters and the Manhattan distance between data points.



### Algorithm:

Compute the distance matrix Let each data point be a cluster

### **Repeat**

Merge the two closest clusters Update the proximity matrix

Until only a single cluster remains



Step 1: Compute the distance matrix using the Manhattan distance





Distance matrix

### Algorithm:

Compute the distance matrix

Let each data point be a cluster Repeat

Merge the two closest clusters Update the proximity matrix Until only a single cluster remains



Step 2: Let each data point be a cluster





### Algorithm:

Compute the distance matrix Let each data point be a cluster Repeat

Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

Distance matrix





- Step 3: Merge the 2 closest clusters and update the distance matrix
  - There are 2 pairs of clusters with the smallest distance of 1: (B and C) and (E and F) – we can merge them





### Algorithm:

Compute the distance matrix Let each data point be a cluster Repeat

> Merge the two closest clusters Update the proximity matrix

Until only a single cluster remains

Distance matrix (not updated)





- Step 3: Merge the 2 closest clusters and <u>update the distance matrix</u>
  - B and C are merged; E and F are merged
  - Now we can update the distance matrix using the single-link distance





Distance matrix (updated)

### Algorithm:

Compute the distance matrix Let each data point be a cluster Repeat

> Merge the two closest clusters Update the proximity matrix

Until only a single cluster remains



 Step 4: Merge the 2 closest clusters and update the distance matrix (repeat until we have only 1 cluster)



|      | A | B, C | D | E, F |
|------|---|------|---|------|
| A    | х | 3    | 9 | 4    |
| B, C |   | х    | 7 | 5    |
| D    |   |      | х | 4    |
| E, F |   |      |   | х    |

 Merge {A} with {B,C} (smallest distance)

Distance matrix (not updated)

|         | A, B, C | D | E, F |
|---------|---------|---|------|
| A, B, C | х       | 7 | 4    |
| D       |         | х | 4    |
| E, F    |         |   | х    |

Distance matrix (updated)

Update the distance matrix



 Step 5: Merge the 2 closest clusters and update the distance matrix (repeat until we have only 1 cluster)



|         | A, B, C | D | E, F |
|---------|---------|---|------|
| A, B, C | х       | 7 | 4    |
| D       |         | х | 4    |
| E, F    |         |   | х    |

Distance matrix (not updated)

|         | A, B, C | D, E, F |
|---------|---------|---------|
| A, B, C | х       | 4       |
| D, E, F |         | х       |

Distance matrix (updated)

The smallest distance is 4 in 2 cases:

- 1) {A,B,C} and {E,F}
- 2) {D} and {E,F}

There is an overlap – both involve {E,F} – which one to merge first? We need a rule to resolve ties; assume random choice – we select 2)

Merge {D} with {E,F} and update the distance matrix



## Step 6 - finish

- Step 6: Merge {A,B,C} with {D,E,F}
- Finish all items belong to the same cluster
- Draw the dendrogram



Data points



Distance matrix (not updated)

|                  | A, B, C, D, E, F |
|------------------|------------------|
| A, B, C, D, E, F | х                |

Distance matrix (updated)

### Algorithm:

Compute the distance matrix Let each data point be a cluster Repeat

> Merge the two closest clusters Update the proximity matrix

Until only a single cluster remains

 Note: The last 2 merges are both at distance 4



**Dendrogram** 



## Divisive hierarchical clustering

- Less popular
- Can be implemented based on computing the minimum spanning tree

### Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain



Minimum spanning tree



# Hierarchical clustering – example

- Using hierarchical clustering to cluster time series
- The similarity between two time series can be calculated using correlation or other measures





## Hierarchical clustering – strengths and limitations

- Especially suitable for tasks with natural nesting relationships between clusters (taxonomies, hierarchies)
- Does not require the number of clusters to be specified in advance
- Computationally expensive which limits its applicability to high dimensional data
  - Space complexity: O(n²), n number of examples (storing the distance matrix and dendrogram)
  - Time complexity: O(n³) n levels; at each of them n² distance matrices must be searched and updated
- Not incremental assumes all data is present
- Sensitive to noise and outliers
  - Outliers are more problematic for the Ward's method as they increase the SSE and less problematic for the single, complete and average link
  - Outliers tend to form single clusters that do not merge with any other clusters until later in the process; they can be removed by discarding small clusters





- Next week: Clustering II
  - Density-based and grid-based clustering
  - Evaluating clustering results



COMP5318 ML&DM, week 9, 2023