Theoretical Computer Science Tutorial Week 5

Prof. Andrey Frolov

nnoboria

Agenda

- Myhill-Nerode criteria (Negative examples)
- Pumping Lemma
- Pushdown automata

Myhill-Nerode criteria

For a language L over an alphabet A,

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Myhill-Nerode theorem

A language L is regular iff \equiv_L has a finite number of equivalent classes.

Myhill-Nerode method. Examples

Negative Example

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

$$L_{01} = \{\epsilon, 01, 0011, 000111, \ldots\}$$

Proof

For $m \neq k$,

$$0^m \not\equiv_{L_{01}} 0^k$$
,

since $0^m 1^k \notin L_{01}, 0^k 1^k \in L_{01}$ (a distinguishing ext. is 1^k). Therefore, there are infinity many equivalence classes! So, L_{01} is not regular.

Agenda[']

- Myhill-Nerode criteria (Negative examples)
- Pumping Lemma
- Pushdown automata

Pumping Lemma

Negative Example

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

$$L_{01} = \{\epsilon, 01, 0011, 000111, \ldots\}$$

Suppose that a FSA with k states recognize L_{01} .

$$\underbrace{\epsilon,\ 0,\ 00,\ \ldots,\ 0^k}_{k+1}$$

$$\underbrace{q_0, \ q_{i_1}, \ q_{i_2}, \ \ldots, \ q_{i_k}}_{k+1}$$

Pumping Lemma

Suppose that a FSA with k states recognizes L_{01} .

$$\underbrace{e, 0, 00, \dots, 0^{k}}_{k+1}$$

$$\underbrace{q_{0}, q_{i_{1}}, q_{i_{2}}, \dots, q_{i_{k}}}_{k+1}$$

$$q_{i_{5}} \xrightarrow{0} q_{i_{k+1}} \xrightarrow{0} q_{i_{k+2}} \xrightarrow{0} \dots \xrightarrow{0} q_{i_{5}}$$

Pumping Lemma

Suppose that a FSA with k states recognizes L_{01} .

$$\underbrace{\frac{\epsilon, \ 0, \ 00, \ \dots, \ 0^k}_{k+1}}_{q_0, \ q_{i_1}, \ q_{i_2}, \ \dots, \ q_{i_k}}_{k+1}$$

$$\underbrace{q_0, \ q_{i_1}, \ q_{i_2}, \ \dots, \ q_{i_k}}_{k+1}$$

Therefore, if the FSA recognizes 0^n1^n then it recognizes also $0^{n+t}1^n$ for some t > 0. It's a contrudiction.

Pumping lemma

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$,
- $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 0$.

How Pumping lemma is useful?

• Can we use this theorem to prove that a set is regular?

How Pumping lemma is useful?

Can we use this theorem to prove that a set is regular?
 No, because it gives only a necessary condition for a language to be regular (and not a sufficient condition).

How Pumping lemma is useful?

- Can we use this theorem to prove that a set is regular?
 No, because it gives only a necessary condition for a language to be regular (and not a sufficient condition).
- We can use it to prove that a language is not regular. How?

Pumping lemma

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$ and $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 0$.

Corollary (Contrapositive)

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1)
$$\underbrace{0^{n-p_1-p_2}}_{\times} \underbrace{(0^{p_1})}_{V} \underbrace{0^{p_2}1^n}_{z}$$
 and $p_1 \neq 0$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1)
$$\underbrace{0^{n-p_1-p_2}}_{\times}\underbrace{(0^{p_1})}_{V}\underbrace{0^{p_2}1^n}_{z}$$
 and $p_1 \neq 0$

2)
$$\underbrace{0^{n}1^{p_{1}}}_{x}\underbrace{(1^{p_{2}})}_{y}\underbrace{1^{n-p_{1}-p_{2}}}_{z}$$
 and $p_{2}\neq 0$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1)
$$\underbrace{0^{n-p_1-p_2}}_{\times} \underbrace{(0^{p_1})}_{V} \underbrace{0^{p_2}1^n}_{z}$$
 and $p_1 \neq 0$

2)
$$\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{y} \underbrace{1^{n-p_1-p_2}}_{z}$$
 and $p_2 \neq 0$

3)
$$\underbrace{0^{n-p_1}}_{x} \underbrace{(0^{p_1}1^{p_2})}_{y} \underbrace{1^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$$
 and $p_1\neq 0$, we have
$$xy^2z=$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$$
 and $p_1\neq 0$, we have
$$xy^2z=0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$$
 and $p_1\neq 0$, we have
$$xy^2z=0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n=0^{n+p_1}1^n$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

1) for
$$\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$$
 and $p_1\neq 0$, we have
$$xy^2z=0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n=0^{n+p_1}1^n\not\in L,$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{X} \underbrace{(1^{p_2})}_{Z} \underbrace{1^{n-p_1-p_2}}_{Z}$ and $p_2 \neq 0$, we have

$$xy^2z =$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{z} \underbrace{1^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{z}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{X} \underbrace{(1^{p_2})}_{Z} \underbrace{1^{n-p_1-p_2}}_{Z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

3) for $\underbrace{0^{n-p_1}}_{x}\underbrace{(0^{p_1}1^{p_2})}_{y}\underbrace{1^{n-p_2}}_{z}$ and $p_1,p_2\neq 0$, we have $xy^2z=$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{z} \underbrace{1^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

3) for $\underbrace{0^{n-p_1}}_{x}\underbrace{(0^{p_1}1^{p_2})}_{y}\underbrace{1^{n-p_2}}_{z}$ and $p_1, p_2 \neq 0$, we have $xy^2z = 0$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{z} \underbrace{1^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

3) for $\underbrace{0^{n-p_1}}_{x}\underbrace{(0^{p_1}1^{p_2})}_{y}\underbrace{1^{n-p_2}}_{z}$ and $p_1, p_2 \neq 0$, we have $xy^2z = 0^{n-p_1}(0^{p_1}1^{p_2})^21^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}0^{p_1}1^{p_2}1^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}0^{p_1}1^{p_2}1^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}1^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}1^{n-p_2}$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{z} \underbrace{1^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

3) for
$$\underbrace{0^{n-p_1}}_{x}\underbrace{(0^{p_1}1^{p_2})}_{y}\underbrace{1^{n-p_2}}_{z}$$
 and $p_1, p_2 \neq 0$, we have $xy^2z = 0^{n-p_1}(0^{p_1}1^{p_2})^21^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}0^{p_1}1^{p_2}1^{n-p_2} = 0^n1^{p_2}0^{p_1}1^n$

Example 1

 $L_{01} = \{0^n 1^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

1) for $\underbrace{0^{n-p_1-p_2}}_{x}\underbrace{(0^{p_1})}_{y}\underbrace{0^{p_2}1^n}_{z}$ and $p_1\neq 0$, we have

$$xy^2z = 0^{n-p_1-p_2}(0^{p_1})^20^{p_2}1^n = 0^{n+p_1}1^n \notin L,$$

2) for $\underbrace{0^n 1^{p_1}}_{x} \underbrace{(1^{p_2})}_{z} \underbrace{1^{n-p_1-p_2}}_{z}$ and $p_2 \neq 0$, we have

$$xy^2z=0^n1^{n+p_2}\notin L,$$

3) for $\underbrace{0^{n-p_1}}_{x}\underbrace{(0^{p_1}1^{p_2})}_{y}\underbrace{1^{n-p_2}}_{z}$ and $p_1, p_2 \neq 0$, we have $xy^2z = 0^{n-p_1}(0^{p_1}1^{p_2})^21^{n-p_2} = 0^{n-p_1}0^{p_1}1^{p_2}0^{p_1}1^{p_2}1^{n-p_2} = 0^n1^{p_2}0^{p_1}1^n \notin L$

Pumping lemma

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$ and $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 0$.

Corollary (Contrapositive)

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

2) if y does not contain b, that is

$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}}_{y} \underbrace{ba^{n}}_{z}, \text{ or } w = \underbrace{a^{n}b}_{x} \underbrace{a^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$

Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

Let $w = xyz \in L_2$ and $y \neq \epsilon$

1) if y contains b (that is
$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}ba^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$
)

then xy^2z contains b twice and hence $xy^2z \notin L_2$

2) if y does not contain b, that is

$$w = \underbrace{a^{n-p_1}}_{x} \underbrace{a^{p_1}}_{y} \underbrace{ba^{n}}_{z}, \text{ or } w = \underbrace{a^{n}b}_{x} \underbrace{a^{p_2}}_{y} \underbrace{a^{n-p_2}}_{z}$$

then $xy^2z = a^kba^m$ where $k \neq m$ and hence $xy^2z \notin L_2$

Pumping lemma. For practice

Pumping lemma

If $L\subseteq \Sigma^*$ is a regular language then there exists $m\geq 1$ such that any $w\in L$ with $|w|\geq m$ can be represented as w=xyz such that

- $y \neq \epsilon$,
- $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 0$.

Corollary

If for any $m \ge 1$ there is $w \in L$ such that $|w| \ge m$ and for any representation w = xyz with $y \ne \epsilon$ and $|xy| \le m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Pumping lemma. For practice

Corollary

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Negative Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

For each
$$m$$
, let $w=a^mb^m$. If $w=xyz$ and $|xy|\leq m$, then $w=\underbrace{a^{m-p_1-p_2}}_x\underbrace{(a^{p_1})}_x\underbrace{a^{p_2}b^m}_z$ and hence $xy^2z\notin L_1$

Pumping lemma. For practice

Corollary

If for any $m \geq 1$ there is $w \in L$ such that $|w| \geq m$ and for any representation w = xyz with $y \neq \epsilon$ and $|xy| \leq m$

$$xy^iz \notin L$$
 for some $i \ge 0$.

Then L is not a regular language.

Negative Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For each m, let $w = a^m b a^m$. If w = xyz and $|xy| \le m$, then $w = \underbrace{a^{m-p_1}}_{x} \underbrace{a^{p_1}}_{y} \underbrace{ba^{m}}_{z}$ and hence $xy^2z \notin L_2$

Agenda

- Myhill-Nerode criteria (Negative examples)
- Pumping Lemma
- Pushdown automata

FSA

Pushdown Automata (PDA)

Finite State Automata

 $\Gamma = \{Z_0, A\}, Z_0$ is the initial stack symbol.

 $aabb \in L_1$

PDA. Examples

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular, but is recognized by a PDA.

PDA. Examples

Example 2

 $L_2 = \{a^n b a^n \mid n \in \mathbb{N}\}$ is not regular, but is recognized by a PDA.

Thank you for your attention!