

Claims

1. A tube (30) for a microscope (1) with an
5 objective defining an objective optical path (5), the
tube (30) defining a tube optical path (16), a
binocular head (20) provided at the tube (30) defining
an ocular optical path (21), a deflection element being
provided in the tube optical path (16), whereby a
10 deflection mirror (18) is provided behind the objective
optical path (5), when viewed from the user's (17)
position,

characterized in that a single tube-lens system (11) is positioned in the tube optical path
15 (16) and in that a modification to the inclination of
the ocular optical path (21) in relation to the
horizontal (H) by a value α causes the position of the
deflection mirror (18) to be modified by an angle $\alpha/2$.

20 2. The tube as claimed in claim 1, characterized
in that the single tube-lens system (11) is positioned
at the microscope (1) in the region of a connection
element (8) in front of the deflection element (15).

25 3. The tube as claimed in claim 1 or 2,
characterized in that the binocular head (20) has two
eyepieces (13), in that an intermediate image (12) is
created in each of the eyepieces (13) and in that the
distance from a lens vertex (39) of the single tube-
30 lens system (11) to the intermediate image (12) is not
greater than 1.25 times the focal distance of the tube-
lens system (11).

4. The tube as claimed in one of claims 1 to 3,
35 characterized in that the deflection mirror (18) and
the binocular head (20) are pivotably embodied and that
the pivoting movement thereof is constrainedly coupled.

5. The tube as claimed in claim 4, characterized
in that the constrained coupling between the deflection
mirror (18) and the binocular head (20) is embodied so
that the deflection mirror (18) pivots by an angle
5 value $\alpha/2$ when the binocular head (20) is pivoted by
the value α .

6. The tube as claimed in claim 5, characterized
in that the deflection mirror defines a pivot axis that
10 runs in the middle of the reflecting surface of the
deflection mirror.

7. The tube as claimed in one of claims 4 to 6,
characterized in that the binocular head (20) has an
15 adjustable range of the angle α between the horizontal
and the ocular optical path of slightly over 0° and
 32.5° .

8. The tube as claimed in claim 7, characterized
20 in that the adjustable range of the angle α preferably
lies between 7.5° and 32.5° .

9. The tube as claimed in one of claims 1 to 3,
characterized in that the deflection mirror and the
25 binocular head (20) are fixedly and unchangeably
positioned.

10. The tube as claimed in claim 9, characterized
in that the deflection mirror (18) and the binocular
30 head (20) are fixedly and unchangeably positioned.

11. The tube as claimed in one of claims 9 and 10,
characterized in that the angle α of the binocular head
(20) between the horizontal and the ocular optical path
35 can be fixedly preset to, preferably, between 7.5° and
 20.0° .

12. The tube as claimed in one of claims 1 and 11, characterized in that a holding element (22) is provided on which the deflection device (15) and the deflection mirror (18) are mounted.

5

13. The tube as claimed in claim 12, characterized in that the deflection element (15) is a prism.

14. The tube as claimed in one of claims 12 and 13, 10 characterized in that the holding element (22) is surrounded by a housing consisting of a lower housing part (23) and an upper housing part (24).

15. The tube as claimed in claim 12, characterized 15 in that the upper housing part (24) has a recess (25) into which a mounting part (26) for the binocular head (20) can be inserted.

16. The tube as claimed in claim 12, characterized 20 in that the binocular head (20) as well as the single tube-lens system (11) are attached in or on the holding element (22).

17. The tube as claimed in one of claims 1 to 16, 25 characterized in that the distance between the deflection element (15) and the deflection mirror (18) lies in the range of between 0.125 times and 0.150 times the focal distance of the single tube-lens system (11).