

Tema da aula **Tópicos de Modelagem**

BUSINESS SCHOOL

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In *Company* e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseadas em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
Advance
Collegiate
Schools of
Business

Filiada a EFMD
- European
Foundation for
Management
Development

Referência em cursos de MBA nas principais mídias de circulação

LABDATA FIA

NOSSOS DIFERENCIAIS | QUEM SOMOS

O Laboratório de Análise de Dados – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de *Big Data*, *Analytics* e Inteligência Artificial.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e *Analytics* no Brasil. Os diretores foram professores de grandes especialistas do mercado.

- +10 anos de atuação.
- +9.000 alunos formados.

Docentes

- Sólida formação acadêmica: doutores e mestres em sua maioria;
- Larga experiência de mercado na resolução de cases;
- Participação em congressos nacionais e internacionais;
- Professor assistente que acompanha o aluno durante todo o curso.

Estrutura

- 100% das aulas realizadas em laboratórios;
- Computadores para uso individual durante as aulas;
- 5 laboratórios de alta qualidade (investimento +R\$2MM);
- 2 unidades próximas à estação de metrô (com estacionamento).

PROFA. DRA. ALESSANDRA DE ÁVILA MONTINI

Diretora do LABDATA-FIA, apaixonada por dados e pela arte de lecionar. Tem muito orgulho de ter criado na FIA cinco laboratórios para as aulas de Big Data e Inteligência Artificial. Possui mais de 20 anos de trajetória nas áreas de Data Mining, Big Data, Inteligência Artificial e Analytics. Cientista de dados com carreira realizada na Universidade de São Paulo. Graduada e mestra em Estatística Aplicada pelo IME-USP e doutora pela FEA-USP. Com muita dedicação chegou ao cargo de professora e pesquisadora na FEA-USP, ganhou mais de 30 prêmios de excelência acadêmica pela FEA-USP e mais de 30 prêmios de excelência acadêmica como professora dos cursos de MBA da FIA. Orienta alunos de mestrado e de doutorado na FEA-USP. Parecerista da FAPESP e colunista de grandes portais de tecnologia.

PROF. ÂNGELO CHIODE, MSc

Bacharel, mestre e candidato ao PhD em Estatística (IME-USP), atua como professor de Estatística Aplicada para turmas de especialização, pós-graduação e MBA na FIA. Trabalha como consultor nas áreas de Analytics e Ciência de Dados há 13 anos, apoiando empresas na resolução de desafios de negócio nos contextos de finanças, adquirência, seguros, varejo, tecnologia, aviação, telecomunicações, entretenimento e saúde. Nos últimos 5 anos, tem atuado na gestão corporativa de times de Analytics, conduzindo projetos que envolviam análise estatística, modelagem preditiva e *machine learning*. É especializado em técnicas de visualização de dados e design da informação (Harvard) e foi indicado ao prêmio de Profissional do Ano na categoria Business Intelligence, em 2019, pela Associação Brasileira de Agentes Digitais (ABRADi).

Conteúdo Programático

DISCIPLINAS

IA E TRANSFORMAÇÃO DIGITAL

ANALYTICS

INTELIGÊNCIA ARTIFICIAL: MACHINE LEARNING

INTELIGÊNCIA ARTIFICIAL: DEEP LEARNING

EMPREENDEDORISMO E INOVAÇÃO

COMPORTAMENTO HUMANO E SOFT SKILLS

TEMAS: ANALYTICS E MACHINE LEARNING

ANÁLISE EXPLORATÓRIA DE DADOS

INFERÊNCIA ESTATÍSTICA

TÉCNICAS DE PROJEÇÃO

TÉCNICAS DE CLASSIFICAÇÃO

TÓPICOS DE MODELAGEM

TÉCNICAS DE SEGMENTAÇÃO

TÓPICOS DE ANALYTICS

MANIPULAÇÃO DE BASE DE DADOS

AUTO ML

TEMAS: DEEP LEARNING

REDES DENSAS

REDES CONVOLUCIONAIS

REDES RECORRENTES

MODELOS GENERATIVOS

FERRAMENTAS

LINGUAGEM R

LINGUAGEM PYTHON

DATABRICKS

Conteúdo da Aula

3. Categorização de Variáveis

Validação de Modelos

Referências Bibliográficas

1. Introdução e Objetivo

Introdução

1. INTRODUÇÃO É OBJETIVO | TÓPICOS DE MODELAGEM

Nas aulas anteriores, aprendemos a teoria a respeito de **modelos de regressão linear e logística**. Vimos que tais conceitos podem nos ajudar a solucionar inúmeros *cases* práticos, tais como:

- Existe associação entre o tempo de experiência dos vendedores de veículos de uma concessionária e o seu volume de vendas mensal?
- Existe associação entre a pluviometria de uma cidade em um mês de verão e a quantidade de casos de dengue no mês seguinte?
- Existe associação entre o limite de cartão de crédito definido historicamente para os clientes de um banco e o seu perfil demográfico e transacional?
- Existe associação entre o salário inicial definido pelos gestores de uma empresa para os analistas júniores e suas características durante o processo seletivo?
- Existe associação entre a utilização de um cupom de desconto fornecido em um varejo *online* e características sociodemográficas dos clientes?
- Existe associação entre a decisão de um investidor apostar em renda variável e o seu comportamento histórico em investimentos em renda fixa?
- Existe associação entre a inadimplência a um empréstimo e características comportamentais do tomador no mercado de crédito como um todo?

Objetivo

1. INTRODUÇÃO E OBJETIVO | TÓPICOS DE MODELAGEM

Nesta aula, vamos aprofundar um pouco mais o nosso entendimento e a aplicação de modelos de regressão, abordando alguns **tópicos adicionais** pertinentes:

- Como definir os períodos históricos para cálculo das variáveis explicativas?
- Como contornar certos problemas de **comportamento** associados às variáveis explicativas quantitativas (valores ausentes, *outliers* etc.)?
- > Como garantir que o modelo tem o poder de predizer bem a variável resposta para **novas observações**?

2. Definição de Períodos

Como Definir os Períodos de Cada Variável?

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

12)

Durante a fase de planejamento de um modelo, deve-se definir as variáveis explicativas que serão testadas, bem como a variável resposta. Além disso, é necessário estabelecer os **períodos de referência** em que cada variável será calculada, com base no interesse de negócio.

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Adaptado a partir de: https://www.kaggle.com/code/harikrishna9/why-employees-are-leaving/data

Variáveis disponíveis:

ult_avaliacao_clima	Nível de satisfação do funcionário, na pesquisa de clima do último trimestre
qtde_projetos_Xm	Quantidade de projetos desenvolvidos nos últimos 3 meses, 6 meses, 12 meses e 24 meses
media_horas_trabalho_Xm	Quantidade média de horas trabalhadas por mês, nos últimos 3 meses, 6 meses e 12 meses
tempo_empresa	Tempo na empresa, em anos
flag_promoção_Xm	Indica se recebeu promoção (1) ou não (0) nos últimos 3 meses, 6 meses e 12 meses e 'na vida'
departamento	Área de atuação na empresa
patamar_salario	Patamar salarial (abaixo, próximo ou acima da média, para o cargo ocupado)
turnover	Indica se houve desligamento voluntário (1) ou não (0) nos 6 meses seguintes

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

Case: *Turnover* de Funcionários

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (*turnover*). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Temos dados disponíveis para 2 safras ("fotografias") distintas da base de dados de funcionários ativos.

Para cada safra, vamos denominar o mês de referência como M0:

- ✓ Safra 1: M0 = janeiro/2023 (último dia do mês);
- ✓ Safra 2: M0 = julho/2023 (último dia do mês).

Podemos denominar os meses anteriores à referência como M-1, M-2, ... e os meses posteriores como M+1, M+2, ...:

- ✓ **Safra 1:** M-1 = dezembro/2022; M-2 = novembro/2022; ... / M+1 = fevereiro/2023; M+2 = março/2023; ...
- ✓ **Safra 2:** M-1 = junho/2023; M-2 = maio/2023; ... / M+1 = agosto/2023; M+2 = setembro/2023; ...

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

lab.data

Previsão versus Histórico

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Quando o modelo tem objetivo **preditivo**, tal como no exemplo de *turnover* de funcionários, é fundamental que a variável resposta seja calculada em um período **posterior e distinto** do período de cálculo das variáveis explicativas. Dessa forma, garantimos que o modelo possa ser aplicado para predizer o que ocorrerá no futuro, em vista do que já se conhece do passado.

Case: *Turnover* de Funcionários

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

Modelos de Diagnóstico 2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Por outro lado, há situações em que o modelo cumpre apenas um papel diagnóstico em vez de preditivo, de forma a descrever as relações observadas entre variável resposta e as explicativas no histórico e gerar conhecimento acerca do fenômeno de interesse. Neste caso, **não há um período de previsão**.

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Exemplo: Predição de preços de imóveis.

Variável	Período de cálculo
Idade do imóvel, em anos	MO
Distância do imóvel até a estação de metrô mais próxima, em km	MO
Quantidade de comércios próximos ao imóvel	MO
Preço do imóvel, em milhares de reais/m²	MO

Neste problema, modelamos o **preço atual** de um imóvel em vista de outras **características atuais** do mesmo imóvel. Não geramos um modelo que visa predizer algo para o futuro (ex.: qual será o preço do imóvel daqui a 1 ano), mas sim uma ferramenta diagnóstica a partir da qual o preço dos imóveis possa ser explicado a partir de outras características observadas **ao mesmo tempo**.

Seleção de Períodos por Poder Preditivo

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

A definição do período histórico para cálculo de cada variável explicativa pode ser realizada com base no **maior poder preditivo** demonstrado por elas em diferentes janelas temporais. Ou seja, pode-se escolher o período que **maximiza a relação** entre cada variável explicativa e a variável resposta.

Information Value (IV)

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

O **valor da informação**, ou *information value* (IV), é um índice que mensura o grau de associação entre duas variáveis qualitativas.

No contexto da regressão logística, o IV é calculado entre as variáveis explicativas e a variável resposta binária, na fase preliminar de análise exploratória, a fim de identificar quais variáveis explicativas têm **maior potencial de discriminância** no modelo.

Information Value (IV)

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Para calcular o índice IV de uma variável, ela deve ser subdividida em **categorias**. Caso ela seja quantitativa, esse processo é realizado automaticamente nos *softwares*.

A fórmula do índice IV é dada por:

$$IV = \sum log\left(\frac{\% Y = 1}{\% Y = 0}\right) \cdot \left[(\% Y = 1) - (\% Y = 0)\right]$$

onde:

- % Y = 0 representa a porcentagem de concentração de **valores zero** na variável resposta em determinada categoria, em relação ao total de zeros.
- % Y = 1 representa a porcentagem de concentração de **valores um** na variável resposta em determinada categoria, em relação ao total de zeros.

A somatória é realizada sobre as categorias da variável explicativa.

Information Value (IV) 2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Quanto **maior** o IV de uma variável explicativa, **maior** o grau de associação entre ela e a variável resposta.

A tabela a seguir propõe uma interpretação acerca do grau de associação para diferentes patamares de IV:

Valor	Associação
$IV \ge 0.50$	Excelente
$0.30 \le IV < 0.50$	Forte
$0.10 \le IV < 0.30$	Média
$0.02 \le IV < 0.10$	Fraca
<i>IV</i> < 0,02	Muito fraca

Information Value (IV) 2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

Exemplo de variável qualitativa com associação **forte** a partir do IV:

Quantidade de atrasos	Cliente pagou em dia a dívida atual?					WOF	11/
anteriores do cliente	Não (Y = 0)	Sim (Y = 1)	Total	WOE	IV
Nenhum atraso	100	10%	400	40%	500	0,60	0,18
1 atraso	200	20%	300	30%	500	0,18	0,02
2 atrasos	300	30%	200	20%	500	-0,18	0,02
3+ atrasos	400	40%	100	10%	500	-0,60	0,18
Total	1.000	100%	1.000	100%	2.000	-	0,40

Exemplo de variável qualitativa com associação **muito fraca** a partir do IV:

ldade do cliente	Cliente pagou em dia a dívida atual?					WOE	11/
idade do cliente	Não ((Y = 0)	Sim (Y = 1)	Total	VVOE	IV
18 a 30 anos	400	40%	380	38%	780	-0,02	0,0004
31 a 45 anos	300	30%	320	32%	620	0,03	0,0006
46 a 60 anos	200	20%	170	17%	370	-0,07	0,0021
61+ anos	100	10%	130	13%	230	0,11	0,0034
Total	1.000	100%	1.000	100%	2.000	-	0,007

Case: *Turnover* de Funcionários

2. DEFINIÇÃO DE PERÍODOS | TÓPICOS DE MODELAGEM

24)

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (*turnover*). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Para as variáveis que possuem diferentes janelas temporais de cálculo, podemos selecionar o período que fornece **maior** *information value* (IV) em relação à variável resposta.

qtde_projetos_ <i>X</i> m			
Período	IV		
3 meses	0,003		
6 meses	0,008		
12 meses	0,003		
24 meses 0,010			

media_horas_trabalho_ <i>X</i> m		
Período	IV	
3 meses	0,006	
6 meses	0,015	
12 meses 0,011		

flag_promoção_Xm			
Período	IV		
3 meses	0,026		
6 meses	0,00004		
12 meses	0,00006		
'na vida'	0,008		

Referência: safra de janeiro/2023.

Referência: safra de janeiro/2023.

Caso se tratasse de uma regressão linear, poderíamos substituir o IV pelo coeficiente de correlação linear.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

3. Categorização de Variáveis

Por Que Categorizar uma Variável Quantitativa? 3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

Com frequência, é comum que se realize um processo de categorização prévia das variáveis quantitativas candidatas a compor modelos de regressão. Essa categorização pode trazer algumas vantagens para a qualidade da modelagem e interpretação dos resultados.

Por Que Categorizar uma Variável Quantitativa? 3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

Em algumas situações, a interpretação dos **parâmetros estimados** por modelos de regressão é facilitada quando as variáveis quantitativas são categorizadas.

Exemplo na regressão linear:

- > Sem categorização: A cada 1 unidade de incremento na variável explicativa X, incrementa-se, em média, β unidades na resposta Y, mantidas fixas as demais variáveis.
- Com categorização: Ao passar de A para B na variável explicativa X, incrementa-se, em média, β unidades na resposta Y, mantidas fixas as demais variáveis.

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

Infelizmente, os modelos de regressão (linear ou logística) não conseguem lidar com **valores ausentes** nas variáveis. Quaisquer observações (linhas) que apresentem ausência de informação para ao menos 1 variável (coluna) são automaticamente **desconsideradas** da modelagem.

Já com a categorização, as observações com valores ausentes são representadas por meio de uma categoria apropriada, tal como "Sem informação".

Note que a ausência de informação pode possuir caráter **explicativo** acerca da variável resposta. Exemplo: clientes com tempo desde a última reclamação = *ausente* são menos propensos ao cancelamento de um serviço.

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

A ocorrência de **valores atípicos** (*outliers*) nas variáveis explicativas quantitativas pode afetar as estimativas dos parâmetros, tanto na regressão linear quanto na regressão logística.

Já quando as variáveis são categorizadas, os *outliers* são naturalmente englobados na categoria **inferior** (com valores mais baixos) ou **superior** (com valores mais altos). Dessa forma, não exercem influência exacerbada no processo de estimação.

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

Por fim, a estimação de um parâmetro β único para uma variável explicativa quantitativa pode ser algo problemático, especialmente em casos de **oscilação no padrão de discriminância** desta variável ao longo de sua escala.

Exemplo na regressão logística:

% de cancelamento de seguro, por faixa etária

Não há uma tendência única de crescimento/decrescimento da propensão ao cancelamento à medida que a idade aumenta; o padrão é de **alternância**.

Como Categorizar as Variáveis Quantitativas?

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

No caso da **regressão linear**, em que a variável resposta *Y* é quantitativa, uma **inspeção gráfica** costuma ser suficiente para avaliar quais categorias devem ser formadas na variável explicativa *X*.

Exemplo:

Categorização sugerida:

Categoria 1: $X \le 3$

Categoria 2: X > 3

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

Já no caso da **regressão logística**, é possível dividir a variável explicativa *X* com base em grupos de mesmo tamanho (percentis) e examinar as **variações na taxa de resposta** por categoria.

Exemplo:

3 faixas da variável X	Taxa de resposta (Y = 1)
Faixa (tercil) 1	32%
Faixa (tercil) 2	14%
Faixa (tercil) 3	9%

4 faixas da variável X	Taxa de resposta (Y = 1)
Faixa (quartil) 1	35%
Faixa (quartil) 2	25%
Faixa (quartil) 3	13%
Faixa (quartil) 4	8%

5 faixas da variável X	Taxa de resposta (Y = 1)
Faixa (quintil) 1	36%
Faixa (quintil) 2	28%
Faixa (quintil) 3	26%
Faixa (quintil) 4	14%
Faixa (quintil) 5	7%

Categorização sugerida: em quatro faixas (quartis), pois ao dividir em cinco faixas, começamos a ter categorias com taxas de resposta semelhantes.

Case: *Turnover* de Funcionários

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Realizando uma análise exploratória breve da safra de janeiro/2023, vemos que a variável *ult_avaliação_clima* é a única que possui valores ausentes. Logo, precisamos categorizá-la, a fim de que os funcionários que não responderam a última pesquisa de clima também sejam considerados no modelo.

ult_avaliacao_clima
Min. :0.0000
1st Qu.:0.3900
Median :0.6900
Mean :0.6218
3rd Qu.:0.8800
Max. :1.0000
NA's :217

217 valores ausentes (5,6% dos registros da safra de jan/23)

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

Case: *Turnover* de Funcionários

3. CATEGORIZAÇÃO DE VARIÁVEIS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Avaliando cenários de categorização da variável *ult_avaliação_clima* em 3, 4, 5 e 6 faixas (além dos valores ausentes), a divisão em **4 faixas** parece ser suficiente.

```
0 1

[0,0.51] 0.7821138 0.2178862

(0.51,0.83] 0.8221504 0.1778496

(0.83,1] 0.8717300 0.1282700

<NA> 0.8248848 0.1751152
```

```
0 1
[0,0.39] 0.7744035 0.2255965
(0.39,0.69] 0.8110497 0.1889503
(0.69,0.88] 0.8426230 0.1573770
(0.88,1] 0.8714286 0.1285714
<NA> 0.8248848 0.1751152
```

```
0 1
[0,0.31] 0.7720000 0.2280000
(0.31,0.59] 0.7991632 0.2008368
(0.59,0.78] 0.8147651 0.1852349
(0.78,0.92] 0.8777633 0.1222367
(0.92,1] 0.8614009 0.1385991
<NA> 0.8248848 0.1751152
```

```
0 1
[0,0.245] 0.7635468 0.2364532
(0.245,0.51] 0.8003221 0.1996779
(0.51,0.69] 0.8140704 0.1859296
(0.69,0.83] 0.8296875 0.1703125
(0.83,0.93] 0.8780069 0.1219931
(0.93,1] 0.8656716 0.1343284
<NA> 0.8248848 0.1751152
```

Clientes que não responderam a última pesquisa de clima possuem risco intermediário de *turnover*

Cenários com 5 e 6 faixas apresentam categorias com taxas de resposta muito semelhantes

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

4. Validação de Modelos

Averiguando a Estabilidade do Modelo 4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

Ao desenvolver um modelo preditivo baseado numa **amostra** dos indivíduos de interesse, duas questões essenciais que devemos averiguar são:

- 1. A qualidade do modelo se manteria **estável** ao generalizá-lo para outras observações, no **mesmo período** de tempo?
- 2. A qualidade do modelo se manteria **estável** ao generalizá-lo para futuras observações, em **novos períodos** de tempo?

Averiguando a Estabilidade do Modelo 4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

Ao desenvolver um modelo preditivo baseado numa amostra dos indivíduos VAMOS COMEÇAR POR ESTE PROCESSO ue devemos averiguar são:

- 1. A qualidade do modelo se manteria **estável** ao generalizá-lo para outras observações, no **mesmo período** de tempo?
- 2. A qualidade do modelo se manteria **estável** ao generalizá-lo para futuras observações, em **novos períodos** de tempo?

Problema de Superajuste

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

Quando um modelo de regressão fica extremamente **bem ajustado** (ou **superajustado**) aos dados da amostra, sua capacidade de extrapolação para novas observações da população torna-se **pobre**.

Nessas situações, o alto desempenho obtido na amostra é **artificial**, pois, na realidade, o algoritmo não conseguiu capturar padrões genéricos acerca do fenômeno de interesse, mas sim, padrões **extremamente específicos** dos dados disponíveis.

Meta: discriminar pontos a partir de suas cores.

Estratégia: deixar previamente reservada uma parte da base amostral para testarmos o modelo.

Amostra COMPLETA

(100% das observações)

Conjunto de TREINO

(70 a 80% das observações)

Conjunto de TESTE

(20 a 30% das observações)

Desenvolvemos as regras do modelo neste conjunto e verificamos o seu desempenho.

Aplicamos neste conjunto o modelo desenvolvido no treino, para verificar se o desempenho se mantém estável; se houver queda expressiva, há indício de superajuste.

Considerações:

- > Os conjuntos de treino e teste devem ser definidos de forma **aleatória** (com base num sorteio), a fim de serem comparáveis e evitar quaisquer vieses.
- ➤ O desempenho do algoritmo no conjunto de **teste** é a **referência principal** para julgar a qualidade do algoritmo, pois mensura a capacidade real que o algoritmo tem de extrapolar as predições para novos dados.
- > Em bases de dados pequenas, a divisão de conjuntos de treino e teste pode ser inviável.

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (*turnover*). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

A base de dados referente a janeiro/2023 foi adotada para construção do modelo, e foi subdividida aleatoriamente entre **treino** e **teste**:

- 2.708 observações para treino (70%)
- > 1.161 observações para teste (30%)

A subdivisão entre os conjuntos foi realizada fixando a semente aleatória 12345 no R. A semente tem o papel de controlar os processos que envolvem aleatoriedade, garantindo **reprodutibilidade** (ou seja, obtenção dos mesmos resultados) quando o código é executado em diferentes momentos ou diferentes computadores.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (*turnover*). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Seguindo o processo de seleção de variáveis via *stepwise backward*, as variáveis explicativas estatisticamente significativas para predizer a variável resposta no conjunto de treino, com 95% de confiança, são:

- > departamento
- patamar_salario
- > tempo_empresa
- ult_avaliacao_clima_cat (categorizada por conta dos missing values)
- > flag_promocao_3m

Não há indício de colinearidade entre as variáveis explicativas, visto que os índices VIF obtidos são próximos de 1. *Obs.:* para *dummies* referentes a uma mesma variável qualitativa, é natural que os VIF possam ser mais altos, tal

como ocorre para a variável departamento neste case.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

DESEMPENHO DO MODELO: JAN/23

Ponto de corte = **17,9%** (proporção de indivíduos com *turnover* no conjunto de treino)

Dados	Acurácia	Sensibilidade	Especificidade	KS	AUC
Treino	63,1%	61,2%	71,9%	33,7	71,8
Teste	60,6%	59,3%	67,0%	28,2	68,4

Não houve queda expressiva de desempenho no conjunto de teste, o que indica que o modelo **não está superajustado**.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

lab.data

Averiguando a Estabilidade do Modelo 4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

Ao desenvolver um modelo preditivo baseado numa **amostra** dos indivíduos de interesse, duas questões essenciais que devemos averiguar são:

- 1. A qualidade do modelo se manteria estável ao generalizá-lo para outras observações, no mesmo período de tempo?
- 2. A qualidade do modelo se manteria **estável** ao generalizá-lo para futuras observações, em **novos períodos** de tempo?

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

Para avaliar a estabilidade preditiva do modelo **ao longo do tempo**, vamos simplesmente aplicá-lo na próxima fotografia disponível, referente aos funcionários ativos na safra de **julho/23**.

Este processo é chamado de **validação** *out-of-time* do modelo.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

4. VALIDAÇÃO DE MODELOS | TÓPICOS DE MODELAGEM

A área de Recursos Humanos de uma grande empresa deseja entender quais perfis de funcionários são mais propensos a **solicitarem desligamento** (turnover). A empresa detém dados de 3.869 funcionários que estavam ativos em janeiro/2023; e 4.486 funcionários que estavam ativos em julho/2023.

DESEMPENHO DO MODELO: JUL/23

Ponto de corte = **17,9%** (proporção de indivíduos com *turnover* no conjunto de treino)

Dados	Acurácia	Sensibilidade	Especificidade	KS	AUC
Teste: jan/23	60,6%	59,3%	67,0%	28,2	68,4
Validação: jul/23	61,5%	59,8%	68,8%	29,0	69,1

O desempenho do modelo de manteve **estável** na safra de validação *out-of-time*, tal como desejado.

Arquivos: Turnover_Funcionarios_Jan_23 e ..._Jul_23 (.txt)

lab.data

Referências Bibliográficas

TÓPICOS DE MODELAGEM

- James, G. An Introduction to Statistical Learning With Applications in R. 2ª edição. Springer, 2021.
- Morettin, P. A., Singer, J. M. *Estatística e Ciência de Dados*. 1ª edição. LTC, 2022.

http://labdata.fia.com.br Instagram: @labdatafia Facebook: @LabdataFIA