Processamento de Linguagem Natural

Prof. Dr. Silvio do Lago Pereira

Departamento de Tecnologia da Informação

Faculdade de Tecnologia de São Paulo

Processamento de linguagem natural (PLN)

consiste no desenvolvimento de modelos computacionais para a realização de tarefas que dependem de informações expressas em uma língua natural.

- Alguns exemplos de aplicação:
 - tradução e interpretação de textos
 - busca de informações em documentos
 - interface homem-máquina (*chatterbots*)
- Aspectos da pesquisa em PLN:
 - som: fonologia
 - estrutura: morfologia e sintaxe
 - significado: semântica e pragmática

Alguns aspectos da pesquisa em PLN

- Fonologia: reconhece os sons (fonemas) que formam as palavras de uma língua.
- **Morfologia**: reconhece uma palavra em termos de unidades básicas (morfemas).
- Sintaxe: define a estrutura de uma frase com base na forma como as palavras desta frase se relacionam entre si (categorias gramaticais).
- Semântica: associa significado às estruturas sintáticas, em função do significado das palavras que a compõem.
- Pragmática: adequa o significado de uma frase ao contexto em que ela é usada.

Considerações

- PLN é uma vasta área de pesquisa que envolve diversas áreas do conhecimento.
- Para simplificar, abordaremos apenas alguns conceitos básicos de análise sintática.
- Mostraremos como usar conceitos básicos de linguagens formais para definir uma gramática capaz de gerar e reconhecer um conjunto restrito de frases em português.

Gramáticas

- Uma linguagem é um conjunto de sentenças, formadas pela concatenação de símbolos.
- Linguagens formais são linguagens artificiais (tais como lógica proposicional ou Pascal) que podem ser matematicamente definidas, de forma rigorosa.
- Linguagens naturais (tais como português ou inglês) não são matematicamente definidas.
- Embora a correspondência não seja perfeita, podemos tratar linguagens naturais como tratamos linguagens formais.

Uma gramática

é uma especificação matemática da estrutura das sentenças de uma linguagem.

- Formalmente, uma gramática é definida por:
- S: o símbolo inicial da gramática ($S \in \mathcal{N}$)
- T: um conjunto de **símbolos terminais**, denotando palavras da linguagem (léxico).
- \mathcal{N} : um conjunto de **símbolos não-terminais**, denotando componentes de sentenças.
- \mathcal{R} : um conjunto de **regras de produção**, que especificam como símbolos não-terminais podem ser expandidos em símbolos não-terminais e terminais.

Especificação de gramática usando diferença de listas

Considere a gramática a seguir:

```
S = \{frase\}
\mathcal{T}= {o, gato, rato, caçou}
\mathcal{N}= {frase, sujeito, predicado, artigo, substantivo, verbo}
\mathcal{R} = \{ \text{frase } --> \text{ sujeito, predicado } \}
     sujeito --> artigo, substantivo;
     predicado --> verbo, artigo, substantivo;
     artigo --> [o];
     substantivo --> [gato] | [rato];
     verbo --> [cacou]}
```

De acordo com esta gramática:

- uma frase é um sujeito seguido de um predicado
- um sujeito é um artigo seguido de um substantivo
- um predicado é um verbo, seguido de um artigo, seguido de um substantivo
- um artigo é o símbolo terminal o
- um substantivo é o símbolo terminal gato ou rato
- um verbo é o símbolo terminal caçou

Especificação de gramática usando diferença de listas

 Considere que frases são representadas por listas de palavras. Então, por exemplo, a frase "o gato caçou o rato" pode ser representada como

```
[o,gato,caçou,o,rato]
```

 Reconhecendo o primeiro artigo em [o,gato,caçou,o,rato], obtemos a lista [gato, caçou, o, rato]. Isto pode ser indicado em Prolog com o fato: artigo([o|A],A).

 Analogamente, reconhecendo o primeiro substantivo em [gato, caçou, o, rato], obtemos a lista [caçou, o, rato]. Isto pode ser indicado com o fato: substantivo([gato|A],A).

 Neste ponto, é importante notar que, reconhecendo um artigo seguido de um substantivo, acabamos reconhecendo o sujeito da frase. Em Prolog, isto pode ser indicado pela regra:

```
sujeito(A,C) :- artigo(A,B), substantivo(B,C).
```


Especificação de gramática usando diferença de listas

 Após o reconhecimento do sujeito em [o,gato,caçou,o,rato], obtemos a lista [caçou, o, rato]. Reconhecendo o verbo nesta lista, obtemos a lista [o, rato]. Isto pode ser indicado com o fato:

```
verbo([caçou|A],A).
```

 O artigo em [o, rato] pode ser reconhecido pelo fato já declarado anteriormente e, para reconhecer este novo substantivo, podemos usar o fato:

```
substantivo([rato|A],A).
```

 Aqui também podemos notar que, para reconhecer o predicado da frase, é necessário reconhecer um verbo, seguido de um artigo e um substantivo. Isto pode ser indicado pela regra:

```
predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
```

• Finalmente, para reconhecer uma frase, podemos usar a regra:

```
frase(A,C) :- sujeito(A,B), predicado(B,C).
```


Reconhecimento de frases

Exemplo 1. Especificação completa da gramática

```
frase(A,C) :- sujeito(A,B), predicado(B,C).
sujeito(A,C) :- artigo(A,B), substantivo(B,C).
predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
artigo([o|A],A).
substantivo([gato|A],A).
substantivo([rato|A],A).
verbo([caçou|A],A).
```

Exercício 1. Uso da gramática para reconhecimento de frases

Digite a gramática do Exemplo 1 e faça as consultas a seguir:

```
?- artigo([o,gato,caçou,o,rato],R).
?- sujeito([o,gato,caçou,o,rato],R).
?- frase([o,gato,caçou,o,rato],[]).
?- frase([o,gato,rato,o,caçou],[]).
?- frase([o,rato,caçou,o,gato],[]).
?- frase([gato,caçou,rato],[]).
```


Reconhecimento de frases

```
/* 1 */ frase(A,C) :- sujeito(A,B), predicado(B,C).
   /* 2 */ sujeito(A,C) :- artigo(A,B), substantivo(B,C).
   /* 3 */ predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
   /* 4 */ artigo([o|A].A).
   /* 5 */ substantivo([gato|A],A).
   /* 6 */ substantivo([rato|A],A).
   /* 7 */ verbo([cacou|A],A).
                                                                          ?- frase([o.gato,cacou,o,rato],[]).
                                           ?- sujeito([o,gato,caçou,o,rato],B<sub>1</sub>), predicado(B<sub>1</sub>,[]).
               ?- artigo([o,gato,caçou,o,rato],B_2), vartigo([o,gato,caçou,o,rato],B_2), vartigo([o,gato,cac,ou,o,rato],B_2), vartigo([o,gato,cac,ou,o,rato],B_2)
                                        ?- substantivo([gato,caçou,o',rato],B<sub>1</sub>), predicado(B<sub>1</sub>,[]).
                                                                              ?- predicado([caçou,o,rato],[])
                               ?- verbo([cacou, o, rato], B_3), artigo(B_3, C_3), substantivo(C_3, []).
                                                              ?- artigo([o,rato],C<sub>3</sub>), substantivo(C<sub>3</sub>,[]).
                                                                                       ?- substantivo([rato],[]).
                                                                                                                                           SUCESSO
Prof. Dr. Silvio do Lago Pereira - DTI / FATEC-SP
                                                                                                                                                                                                                                                          9
```


Reconhecimento de frases

```
/* 1 */ frase(A,C) :- sujeito(A,B), predicado(B,C).
/* 2 */ sujeito(A,C) :- artigo(A,B), substantivo(B,C).
/* 3 */ predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
/* 4 */ artigo([o|A].A).
/* 5 */ substantivo([gato|A],A).
/* 6 */ substantivo([rato|A],A).
/* 7 */ verbo([cacou|A],A).
                         ?- frase([o,gato,rato,o,cacou],[]).
              ?- sujeito([o,gato,rato,o,caçou],B_1), predicado(B_1,[]).
    ?- artigo([o,gato,rato,o,cacou],B_2), substantivo(B<sub>2</sub>,B<sub>1</sub>), predicado(B<sub>1</sub>,[]).
             ?- substantivo([gato,rato,o,caçou],B<sub>1</sub>), predicado(B<sub>1</sub>,[]).
                          ?- predicado([rato,o,caçou],[])
          ?- verbo([rato,o,cacou],B_3), artigo(B_3,C_3), substantivo(C_3,[]).
                                         FALHA
```

Exemplo 1. A gramática completa

```
frase(A,C) :- sujeito(A,B), predicado(B,C).
sujeito(A,C) :- artigo(A,B), substantivo(B,C).
predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
artigo([o|A],A).
substantivo([gato|A],A).
substantivo([rato|A],A).
verbo([caçou|A],A).
```

Exercício 2. Uso da gramática para geração de frases

Faça as consultas a seguir, que geram todas as frases da linguagem definida pela gramática do Exemplo 1:

```
?- frase(F,[]).
?- forall( frase(F,[]), writeln(F) ).
```

Exemplo 1. A gramática completa

```
frase(A,C) :- sujeito(A,B), predicado(B,C).
sujeito(A,C) :- artigo(A,B), substantivo(B,C).
predicado(A,D) :- verbo(A,B), artigo(B,C), substantivo(C,D).
artigo([o|A],A).
substantivo([gato|A],A).
substantivo([rato|A],A).
verbo([caçou|A],A).
```

Exercício 3. Ampliação do léxico da gramática

Altere a definição da gramática do Exemplo 1, adicionando o artigo **um** e o verbo **assustou**. Em seguida, faça as consultas a seguir:

```
?- frase(F,[]).
?- forall( frase(F,[]), writeln(F) ).
```


Notação DCG (Definite Clause Grammar)

 A linguagem Prolog oferece uma notação, denominada DCG, que facilita a especificação de gramáticas. Ao ser compilada, uma gramática em notação DCG é automaticamente transformada em uma gramática usando diferença de listas.

Exemplo 2. Uma gramática em notação DCG

```
frase --> sujeito, predicado.
sujeito --> artigo, substantivo.
predicado --> verbo, artigo, substantivo.
artigo --> [o].
substantivo --> [gato] | [rato].
verbo --> [cacou].
```

Exercício 4. Análise do resultado da compilação da notação DCG

Digite a gramática do Exemplo 2, compile e faça a consulta a seguir:

?- listing.

Categorias gramaticais

 Em PLN, é bastante comum o uso de termos técnicos para designar categorias gramaticais. Alguns destes termos são os seguintes:

s : sintagma sentencial (frase)

sn: sintagma nominal

sv: sintagma verbal

det : determinante (artigo)

n: nome (substantivo)

adj: adjetivo

v : verbo

vi: verbo intransitivo

vt: verbo transitivo

adv: advérbio

 A fim de simplificar a notação, usaremos estes termos na especificação das próximas gramáticas.

Categorias gramaticais

Exemplo 3. Gramática G1

```
s --> sn, sv.
sn --> det, n, adj.
sv --> vi, adv.
sv --> vt, adv, sn.
det --> [o].
n --> [gato] | [rato].
adj --> [] | [gordo] | [magro].
vi --> [caçou] | [dormiu].
vt --> [caçou].
adv --> [] | [silenciosamente].
```

Exercício 5. Teste da gramática G1

Gere e analise todas as frases da linguagem definida pela gramática G1.

A dependência de contexto ocorre quando uma palavra da frase deve concordar com outras palavras da mesma frase.

Exemplo 4. Gramática G2

```
--> sn, sv.
sn --> det, n.
sv --> v, sn.
det --> [o].
n --> [gato] | [rato].
v --> [caçou].
```

Exercício 6. Ampliação da gramática com gênero feminino

Amplie a gramática G2, adicionando o artigo a e os substantivos gata e rata. Em seguida, gere e analise todas as frases definidas pela gramática alterada.

Exemplo 5. Gramática com concordância de gênero G3

```
s --> sn, sv.
sn --> det(G), n(G).
sv --> v, sn.
det(m) --> [o].
det(f) --> [a].
n(m) --> [gato] | [rato].
n(f) --> [gata] | [rata].
v --> [caçou].
```

Exercício 7. Gramática com concordância de gênero

Gere e analise todas as frases definidas pela gramática G3.

Exercício 8. Ampliação do léxico

Adicione os artigos indefinidos um e uma e gere as frases definidas pela gramática.

Exemplo 6. Gramática G4

```
s --> sn, sv.
sn --> det(G), n(G).
sv --> v, sn.
det(m) --> [o] | [um].
det(f) --> [a] | [uma].
n(m) --> [gato] | [rato].
n(f) --> [gata] | [rata].
v --> [caçou].
```

Exercício 9. Ampliação da gramática com plural

Amplie a gramática G4, adicionando:

- os artigos: os, uns, as, umas
- os substantivos: gatos, ratos, gatas, ratas
- o verbo: caçaram

Em seguida, gere e analise todas as frases definidas pela nova gramática.

Exemplo 7. Gramática G5

```
--> sn(N), sv(N).
sn(N) --> det(G,N), n(G,N).
sv(N) --> v(N), sn(_).
det(m,s) --> [o] | [um].
n(m,p) --> [gatos] | [ratos].
n(f,s) --> [gata] | [rata].
n(f,p) --> [gatas] | [ratas].
v(s) --> [caçou].
v(p) \longrightarrow [cacaram].
```

Exercício 10. Teste da gramática G5

Gere e analise todas as frases definidas pela gramática G5.

Fim