- 一. (20 分) 已知 $f(x) = x^3 + 4x^2 10$ 在[1, 2]上有且仅有一个零点 α ,
- (1) 试写出能保证收敛到 f(x) 的零点 α 的不动点迭代公式;
- (2) 用此迭代公式求零点 α , 取初始值为 $x_0=1.5$, 要求 $\left|x_{k+1}-x_k\right|<10^{-3}$ 。解:

(1) 由
$$f(x) = 0$$
, 得 $x = \sqrt{\frac{10}{x+4}}$, 故迭代函数 $g(x) = \sqrt{\frac{10}{x+4}}$, $\forall x \in [1,2]$.

因 $\forall x \in [1,2], \quad g'(x) = -\frac{1}{2} \frac{\sqrt{10}}{\sqrt{(x+4)^3}} < 0$,故 g(x) 单调递减,

$$1 < \sqrt{\frac{3}{5}} = g(2) \le g(x) \le g(1) = \sqrt{2} < 2$$

因
$$\forall x \in [1,2]$$
, $\frac{d|g'(x)|}{dx} = -g''(x) = -\frac{3}{4} \frac{\sqrt{10}}{\sqrt{(x+4)^5}} < 0$,故 $|g'(x)|$ 单调递减,

$$|g'(x)| = \left| \frac{\sqrt{10}}{2\sqrt{(x+4)^3}} \right| \le |g'(1)| = \frac{\sqrt{10}}{2\sqrt{(1+4)^3}} = \frac{1}{\sqrt{50}} < 1$$

所以 $\forall x_0 \in [1,2]$, 迭代 $x_{n+1} = g(x_n)$ 均收敛于 f(x) 的零点 α 。

(2) 迭代公式
$$x_{k+1} = \sqrt{\frac{10}{x_k + 4}}$$
 , $x_0 = 1.5$

计算结果如下

迭代次数 k	0	1	2	3	4	5	
\mathcal{X}_{k}	1.5	1.3484	1.3674	1.3650	1.3653	1.3652	

$$|x_5 - x_4| = |1.3653 - 1.3652| = 0.0001 < 10^{-3},$$