### KUBERNETES

VERTICAL POD AUTOSCALER OPERATOR



# THE TEAM











SELEN

LAXMI

APOORVA

AKSHAY

SINDHU

**Mentors (Redhat)** 

# KUBERNETES

An Orchestration tool for automating deployment, scaling and management of containerized applications.

# OPERATORS

Operators are software extensions to Kubernetes that make use of custom resources to manage applications and their components.

### With Operator



### With Operator





3



### With Operator















### With Operator



# SCALING

- Horizontal Pod Autoscaling (HPA)
- Cluster Autoscaling
- Vertical Pod Autoscaling (VPA)



Container spec

resources:

requests:

memory: 1 GB

cpu: 1 Core

limits:

memory: 1 GB

cpu: 1 Core





#### Container spec

resources:

requests:

memory: 1 GB

cpu: 1 Core

limits:

memory: 1 GB

cpu: 1 Core



### **Horizontal Pod Autoscaling (HPA)**



- great for handing more requests



resources:

requests:

memory: 1 GB

cpu: 1 Core limits:

memory: 1 GB

cpu: 1 Core



### **Horizontal Pod Autoscaling (HPA)**



#### Container spec

resources:

requests:

memory: 1 GB

cpu: 1 Core

limits:

memory: 1 GB

cpu: 1 Core





**Kubernetes Cluster** 



### **Cluster Autoscaling**

- Scales overall cluster size







### **Vertical Pod Autoscaling (VPA)**



### VPA Recommendation

resources:

requests:

memory: 2 GB cpu: 2 Core

limits:

memory: 2 GB

cpu: 2 Core



### **Vertical Pod Autoscaling (VPA)**



# WHAT WE ACHIEVED IN LAST SPRINT

(SPRINT CHICAGO)

- Installed VPA and Grafana operators in both MOC and Operate First Production cluster(Smaug).
- Deployed Resource Consumer(RC).
- Automated requests to the RC using Cron Jobs.
- Created a Grafana instance.

Manual requests via CLI



Automated requests using CronJob



 Scheduled to send HTTP requests to /ConsumeMem and /ConsumeCPU every 10 min in the working hours (8AM - 5PM) daily.

```
spec:
```

```
schedule: "*/10 8-17 * * *"
```



Stacked 3h 8m Reset zoom 300M 200M 100M 8:30 AM 9:00 AM 9:30 AM 10:00 AM 10:30 AM 11:00 AM

Requests from CronJob to consume CPU

Requests from CronJob to consume Memory

# AUTOMATE ROUTE CONFIGURATION





```
ሦ main ▾
```

### vertical-pod-autoscaler-operator / install / rc-depl.yaml

```
. . .
44
    kind: Route
45
    apiVersion: route.openshift.io/v1
46
    metadata:
47
      name: rc-vpa
48
    spec:
49
      host: rc-vpa-neu-cs6620.apps.smaug.na.operate-first.cloud
50
      to:
51
        kind: Service
52
        name: rc-service
53
      port:
54
        targetPort: 8080
55
               $ kubectl apply -f rc-depl.yaml
```

\$ curl --insecure --data "milicores=900&durationSec=600" http://rc-vpa-neu-cs6620.apps.smaug.na.operate-first.cloud:8080/ConsumeCPU

# GRAFANA



neu-cs6620 4 1%

# GRAFANA



```
oct-03-14-compute
```

```
Project: neu-cs6620 ▼
Pods > Pod details
Prc-replica-controller-cmlqm @ Running
Details
           Metrics
                       YAML
                                 Environment
                                                  Logs
                                                           Events
                                                                       Terminal
              name: rc-replica-controller
  139
             uid: 93b98848-e659-47a9-b121-b14f42ecd993
  140
              controller: true
  142
             blockOwnerDeletion: true
  143
          labels:
  144
            app: httpd
  145
        spec:
  146
          restartPolicy: Always
  147
          serviceAccountName: default
  148
          imagePullSecrets:
  149
            - name: default-dockercfg-zg5mp
  150
          priority: 0
          schedulerName: default-scheduler
  152
          enableServiceLinks: true
          terminationGracePeriodSeconds: 30
          preemptionPolicy: PreemptLowerPriority
          nodeName: oct-03-14-compute
  156
          securityContext:
  157
            seLinuxOptions:
  158
             level: 's0:c33,c32'
  159
            fsGroup: 1001120000
  160
          containers:
  161
            - resources:
  162
                limits:
  163
                 cpu: 500m
  164
                 memory: 1000Mi
  165
                requests:
  166
                 cpu: 300m
  167
                 memory: 400Mi
  168
              terminationMessagePath: /dev/termination-log
  169
              name: httpd
  170
              securityContext:
               capabilities:
  Save
            Reload
                         Cancel
```

CS 6620 - CLOUD COMPUTING

30





# VPA RECOMMENDATION

#### **VPA Custom Resource**

```
apiVersion: "autoscaling.k8s.io/v1beta2"
kind: VerticalPodAutoscaler
metadata:
 name: resource-consumer
  namespace: cs6620-fall21-deployverticalpod
spec:
 targetRef:
    apiVersion: "apps/v1"
    kind: Deployment
    name: rc-deployment
  updatePolicy:
    updateMode: "Auto"
```

#### Recommendation:

```
Status:
  Conditions:
    Last Transition Time: 2021-10-25T20:47:20Z
    Status:
                           True
    Type:
                           RecommendationProvided
  Recommendation:
    Container Recommendations:
     Container Name: resource-consumer
     Lower Bound:
        Cpu:
                 25m
       Memory:
                 380082209
      Target:
                 247m
        Cpu:
       Memory: 511772986
      Uncapped Target:
        Cpu:
                 247m
        Memory: 511772986
      Upper Bound:
        Cpu:
                 505m
        Memory:
                 630425876
```

# RESOURCE METRICS

resources:

requests:

memory: 1 GB

cpu: 1 Core

limits:

memory: 1 GB cpu: 1 Core

### Limit

The kubelet enforces those *limits* so that the running container is not allowed to use more of that resource than the limit you set.

### Request

The kubelet also reserves at least the *request* amount of that system resource specifically for that container to use

# VPA RECOMMENDATION TERMS

- lowerBound the minimum recommended resource levels.
- target the recommended resource levels.
- upperBound the highest recommended resource levels.
- uncappedTarget the most recent resource recommendations.

```
Status:
 Conditions:
   Last Transition Time: 2021-10-25T20:47:20Z
   Status:
   Type:
                          RecommendationProvided
 Recommendation:
   Container Recommendations:
     Container Name: resource-consumer
     Lower Bound:
       Memory: 380082209
     Target:
                247m
       Memory: 511772986
     Uncapped Target:
       Memory: 511772986
      Upper Bound:
        Memory: 630425876
```

### VPA UPDATE POLICY

- Auto Updates the pod based on its recommendation by deleting and recreating it.
- Initial Applies recommendations only during pod creation.
- Off Just analyzes and records the recommendations.

```
apiVersion: "autoscaling.k8s.io/v1beta2"
kind: VerticalPodAutoscaler
metadata:
   name: resource-consumer
   namespace: cs6620-fall21-deployverticalpod
spec:
   targetRef:
   apiVersion: "apps/v1"
   kind: Deployment
   name: rc-deployment
   updatePolicy:
   updateMode: "Auto"
```

### VPA TEST CASES

- 1. Pod over-utilization within upper bound of VPA recommendation.
- 2. Pod under-utilization within lower bound of VPA recommendations
- VPA automatically deletes and creating a pod with its new recommendation for upperBound case (over-utilizing) within the limit
- VPA automatically deletes and creating a pod with its new recommendation for lowerBound case (under-utilizing)

# VPA DEMO

#### **Sprint Chicago** 12 Oct 2021 to 25 Oct 2021



# WHAT WE PLAN FOR NEXT SPRINT

(SPRINT DALLAS)

- Experiment VPA scenarios
  - Auto updatePolicy of VPA
  - Underutilization and Overutilization of resources
- Grafana Live Dashboard
  - Create Grafana dashboard with our metrics of interest
- Setup POC application through GitOps workflow