Discrete Adjustment with Multiple Changing Environments

Silvio Ravaioli

CD Lab Meeting

November 22, 2019

Motivation

- Lab experiment, tracking problem: estimate the probability of a binary event, which changes stochastically (as in Khaw, Stevens, and Woodford 2017 JME)
- Multiple simultaneous choices
- Framework: price adjustments
- Empirical motivation: sticky prices over time (Bils and Klenow 2004 JPE), but also uniform prices across stores (Della Vigna and Gentzkow 2019 QJE)
- ► Main Hypothesis (+ correlation): Changes occur more often together than in isolation
- Opposite Hypothesis (- correlation): Changes occur more often in isolation than together

Motivation

- Lab experiment, tracking problem: estimate the probability of a binary event, which changes stochastically (as in Khaw, Stevens, and Woodford 2017 JME)
- Multiple simultaneous choices
- Framework: price adjustments
- Empirical motivation: sticky prices over time (Bils and Klenow 2004 JPE), but also uniform prices across stores (Della Vigna and Gentzkow 2019 QJE)
- ► Main Hypothesis (+ correlation): Changes occur more often together than in isolation
- Opposite Hypothesis (- correlation): Changes occur more often in isolation than together

Side result of the experiment

Side result of the experiment

Lab experiment - Old vs New

Khaw et al. 2017 - Discrete adjustment to a changing environment

Lab experiment - Old vs New

Adapted task with two independent states

Collected Data - Time Series

Collected Data - Time Series

Collected Data - Time Series

Conservatism

Participants vs optimal behavior

Inertia and correlated adjustment

- Inertia: no change in 51% of the rounds
- Correlated changes: a change in p1 increases the likelihood of changing p2 from 1/4 to 1/2

	All	Conditional on	Conditional on
	All	p1 changed	p1 unchanged
Pr(p2 change)	32%	49%	24%
Avg p2 c (cond.)	10.73%	8.68%	12.71%
Avg p2 change	3.44%	4.25%	3.05%

Participants vs optimal behavior

Predictors of change

Predictors of change

Predictors of change

Logit Regression

Logit(Change p2)	(1)	(2)	(3)	(4)
Constant	-1.26***	-1.16***	-1.55***	-1.93***
Bayesian gap p2	3.08***		2.64***	4.02***
Bayesian gap p1	0.222		0.265	1.18***
Bayesian var p2		3.01***	2.43***	4.28***
Bayesian var p1		0.334*	0.502***	1.69***
Bg p2 \times Bv p2				-9.14***
Bg p1 \times Bv p1				-6.18***

Avg adjustment (unconditional)

Avg adjustment (conditional)

Avg response time

Discrete Adjustment with Multiple Changing Environments

Silvio Ravaioli

CD Lab Meeting

November 22, 2019

Preference for round numbers

Overconfidence

Conservatism (Bayesian agent)

NO overconfidence (Bayesian agent)

Benchmark (Bayesian agent)

