

厦门大学《微积分 1-2》课程期末试卷

- 1. (10 分) 设函数 $u = x^2 + y^2 + xz^2$,
 - (1) 求函数u沿着点A(1,1,1)指向点B(2,0,1)方向的方向导数;
 - (2) # div(grad u), rot(grad u).
- 2. (10 分) 计算二重积分 $I = \iint_D e^{-(x^2+y^2-\pi)} \sin(x^2+y^2) dxdy$, 其中积分区域 $D = \{(x,y) | x^2+y^2 \leq \pi\}.$
- 3. (10 分)计算三重积分 $I=\iint\limits_{\Omega}z(x^2+y^2)\mathrm{d}x\mathrm{d}y\mathrm{d}z$,其中 Ω 是由锥面 $z=\sqrt{x^2+y^2}$ 及平面z=1,z=2所围区域.
- 4. (5 分)设 L 为圆周 $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ y = x \end{cases}$, 计算 $\int_L \sqrt{z^2 + 2y^2} \, ds$
- 5. (5分) 计算曲线积分 $\oint_L \frac{1}{x} \arctan \frac{y}{x} dx + \frac{2}{y} \arctan \frac{x}{y} dy$, 式中L是由 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, y = x及 $y = \sqrt{3}x$ 在第一象限所围成区域D的正向边界。
- 6. (10 分)已知空间物体 Ω 由锥面 $z^2 = x^2 + y^2, z = 1, 0 \le z \le 1$ 所围成,其上每一点的密度与该点到顶点的距离成正比(比例系数为k),(1)求该空间物体的质量m;(2)求该空间物体的重心。

- 7. (10 分)计算 $I = \iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}$,其中 Σ 为下半球面 $z = -\sqrt{a^2 x^2 y^2}$ 的上侧,a 为大于零的常数。
- 8. (10 分)设正项级数 $\sum_{n=1}^{\infty} a_n$,若存在正数 b,使得 $a_{n+1} \leq b(a_n a_{n+1})$, $(n = 1, 2, \cdots)$,证明 级数 $\sum_{n=1}^{\infty} a_n$ 收敛。
- 9. (10 分)求幂级数 $1+\sum_{n=1}^{\infty}(-1)^n\frac{x^{2n}}{2n}$ 的收敛域及它的和函数S(x),并求S(x)的极值.
- 10. (10 分)将函数 $f(x) = \arctan \frac{1-2x}{1+2x}$ 展开成 x 的幂级数。
- 11. (10 分)将函数 f(x) = 2 + |x|, $(-1 \le x \le 1)$ 展开成周期为 2 的傅里叶级数,并由此计算级数 $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ 的和。

附加题 (10分)

设有级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} [e - (1 + \frac{1}{n})^n]$$
,

- (1) 该级数是否条件收敛?
- (2) 该级数是否绝对收敛,请给出你的证明。