The Price of Anarchy in Network Creation Games

Erik. D. Demaine, Mohammadtaghi Hajiaghayi, Mamid Mahini, Morteza Zadimoghaddam

ACM Transactions on Algorithms 8 (2012) Article 13.

Speaker: Joseph Chuang-Chieh Lin

Institute of Information Science Academia Sinica Taiwan

17 July 2015

Erik D. Demaine

Mohammadtaghi Hajiaghayi

Hamid Mahini

Morteza Zadimoghaddam

Network creation games

• First introduced in PODC 2003.

Alex Fabrikant

Ankur Luthra

Elitza Maneva

Christos H. Papadimitriou

Scott Shenker

Network creation games [Fabrikant et al. @PODC 2003]

- *n* players: 1, 2, ..., n.
- s_i : specified by a subset of $\{1, 2, ..., n\} \setminus \{i\} = [n] \setminus \{i\}$ as the strategy of player i.
 - The set of neighbors where player *i* forms a link (edge).
- G_s : the undirected graph with vertex set [n] and edges corresponding to $s = \langle s_1, s_2, \dots, s_n \rangle$.
- G_s has an edge $\{i,j\}$ if either $i \in s_j$ or $j \in s_i$.
- $d_s(i,j)$: the distance between i and j in G_s .
- G_s : an equilibrium graph (when the context is clear).

Network creation games (Two models)

The sum model

$$c_i(s) = \alpha |s_i| + \sum_{j=1}^n d_s(i,j).$$

The max model

$$c_i(s) = \alpha |s_i| + \max_{i=1}^n d_s(i,j).$$

• The total cost is $c(s) = \sum_{i=1}^{n} c_i(s)$.

Network creation games (Two models)

The sum model

$$c_i(s) = \alpha |s_i| + \sum_{j=1}^n d_s(i,j).$$

The max model

$$c_i(s) = \alpha |s_i| + \max_{j=1}^n d_s(i,j)$$

• The total cost is $c(s) = \sum_{i=1}^{n} c_i(s)$.

Network creation games (contd.)

Theorem [Fabrikant et al.@PODC 2003]

The PoA for the sum network creation game is $O(\sqrt{\alpha})$ for all α .

Preliminaries

Let's have a look at Fabrikant's results for $\alpha < 2$.

- \bullet α < 1:
 - the social optimum: the complete graph.
 - \star It's also a NE (: PoA = 1).

- $1 < \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - $\star K_n$ is NOT a NE.
 - * The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + (\binom{n}{2} - |E|) \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n - 1)$$

- $1 \le \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2.
 - \star K_n is NOT a NE.
 - \star The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + {n \choose 2} - |E| \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n - 1)$$

- $1 \le \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2.
 - \star K_n is NOT a NE.
 - ★ The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + \left(\binom{n}{2} - |E| \right) \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1).$$

- $1 < \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - $\star K_n$ is NOT a NE.
 - ★ The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + (\binom{n}{2} - |E|) \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1).$$

- $1 \le \alpha < 2$:
 - The social optimum: still the complete graph (i.e., K_n).
 - Any NE must be connected and has diameter ≤ 2 .
 - \star K_n is NOT a NE.
 - ★ The worst NE: a star.
 - $\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + (\binom{n}{2} |E|) \cdot 2 \cdot 2 = (\alpha 2) \cdot |E| + 2n(n-1)$.

• $1 < \alpha < 2$:

•

- The social optimum: still the complete graph (i.e., K_n).
- Any NE must be connected and has diameter ≤ 2 .
- \star K_n is NOT a NE.
- ★ The worst NE: a star.

•
$$\alpha \cdot |E| + |E| \cdot 2 \cdot 1 + (\binom{n}{2} - |E|) \cdot 2 \cdot 2 = (\alpha - 2) \cdot |E| + 2n(n-1).$$

PoA =
$$\frac{C(\operatorname{star})}{C(K_n)} = \frac{(\alpha - 2) \cdot (n - 1) + 2n(n - 1)}{\alpha \binom{n}{2} + 2 \cdot \binom{n}{2} \cdot 1}$$
$$= \frac{4}{2 + \alpha} - \frac{4 - 2\alpha}{n(2 + \alpha)}$$

Lemma 1 [Albers et al. @SODA 2006]

For any Nash equilibrium s and any vertex v_0 in G_s ,

$$c(s) \leq 2\alpha(n-1) + n \cdot \mathsf{Dist}(v_0) + (n-1)^2.$$

• Dist
$$(v_0) = \sum_{v \in V(G_s)} d_s(v_0, v)$$
.

• A graph G_s corresponding to a NE s.

- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_{ν} : the number of tree edges built by ν in $T(\nu_0)$.

*
$$c_{\nu}(s) \le \alpha(\eta_{\nu} + 1) + \mathsf{Dist}(\nu_0) + n - 1$$

 $c_{\nu_0}(s) = \alpha \cdot \eta_{\nu_0} + \mathsf{Dist}(\nu_0).$

•
$$c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$$

 $\leq 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)^2$

- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_{ν} : the number of tree edges built by ν in $T(\nu_0)$.
- $\star c_{\nu}(s) \leq \alpha(\eta_{\nu} + 1) + \mathsf{Dist}(\nu_{0}) + n 1.$ $c_{\nu_{0}}(s) = \alpha \cdot \eta_{\nu_{0}} + \mathsf{Dist}(\nu_{0}).$
- $c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$ $\leq 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)^2$

- $T(v_0)$: the shortest-path tree rooted at v_0 .
- η_{ν} : the number of tree edges built by ν in $T(\nu_0)$.
- * $c_{\nu}(s) \leq \alpha(\eta_{\nu}+1) + \mathsf{Dist}(\nu_0) + n 1.$ $c_{\nu_0}(s) = \alpha \cdot \eta_{\nu_0} + \mathsf{Dist}(\nu_0).$
- $c(s) = \sum_{v \in V(G_s) \setminus \{v_0\}} c_v(s) + c_{v_0}(s)$ $\leq 2\alpha(n-1) + n \cdot \text{Dist}(v_0) + (n-1)^2.$

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\begin{aligned} \mathsf{PoA} & \leq & \frac{2\alpha(n-1) + n \cdot \mathsf{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & \leq & \frac{2\alpha(n-1) + n \cdot (n-1)d + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & < & \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)} \\ & \leq & \max\left\{\frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1))}{n(n-1)}\right\} \\ & = & \max\{2, d+1\}. \end{aligned}$$

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\text{PoA} \leq \frac{2\alpha(n-1) + n \cdot \text{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)}$$

$$\leq \frac{2\alpha(n-1) + n \cdot (n-1)d + (n-1)^2}{\alpha(n-1) + n(n-1)}$$

$$< \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)}$$

$$\leq \max \left\{ \frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1)}{n(n-1)} \right\}$$

$$= \max\{2, d+1\}.$$

Lemma 2

If the shortest-path tree in an equilibrium graph G_s rooted at u has depth d, then $PoA \leq d+1$.

• For some $u \in V$,

$$\begin{array}{lll} \mathsf{PoA} & \leq & \frac{2\alpha(n-1) + n \cdot \mathsf{Dist}(u) + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & \leq & \frac{2\alpha(n-1) + n \cdot (n-1)d + (n-1)^2}{\alpha(n-1) + n(n-1)} \\ & < & \frac{2\alpha(n-1) + n(n-1)(d+1)}{\alpha(n-1) + n(n-1)} \\ & \leq & \max\left\{\frac{2\alpha(n-1)}{\alpha(n-1)}, \frac{n(n-1)(d+1))}{n(n-1)}\right\} \\ & = & \max\{2, d+1\}. \end{array}$$

- $N_k(u)$: the set of vertices with distance $\leq k$ from u.
- $\bullet \ N_k := \min_{v \in V(G_s)} |N_k(v)|.$

Lemma 3

For any equilibrium graph G_s , $N_2(u) > \frac{n}{2\alpha}$ for every vertex u and $\alpha \geq 1$.

- Assume that $|\{v \in V(G_s) \mid d_s(v,u) > 2\}| \ge \frac{n}{2}$.
 - Otherwise, $|N_2(u)| \ge n/2 \ge n/(2\alpha)$.

- $N_k(u)$: the set of vertices with distance $\leq k$ from u.
- $\bullet \ N_k := \min_{v \in V(G_s)} |N_k(v)|.$

Lemma 3

For any equilibrium graph G_s , $N_2(u) > \frac{n}{2\alpha}$ for every vertex u and $\alpha \geq 1$.

- Assume that $|\{v \in V(G_s) \mid d_s(v, u) > 2\}| \ge \frac{n}{2}$.
 - Otherwise, $|N_2(u)| \ge n/2 \ge n/(2\alpha)$.

$$(v \in V \mid d_s(v, u) \le 1)$$

$$+$$
 : $\{v \in V \mid d_s(v,u) \le 2\}$

- $S := \{v \in V \mid d_s(v, u) = 2\}.$
- For each v with $d_s(v, u) \ge 2$, pick any one of its shortest path to u and assign v to the only vertex (w) in this path that is in S.
- | vertices assigned to $w \in S$ | $\leq \alpha$.
 - Otherwise, u could buy (u, w).

$$(v \in V \mid d_s(v, u) \le 1)$$

$$+$$
 : $\{v \in V \mid d_s(v,u) \le 2\}$

- $S := \{ v \in V \mid d_s(v, u) = 2 \}.$
- For each v with $d_s(v, u) \ge 2$, pick any one of its shortest path to u and assign v to the only vertex (w) in this path that is in S.
- | vertices assigned to $w \in S$ | $\leq \alpha$.
 - Otherwise, u could buy (u, w).
- $\bullet : |S| > (n/2)/\alpha = n/(2\alpha)$

$$(v \in V \mid d_s(v, u) \le 1)$$

$$+$$
 : $\{v \in V \mid d_s(v,u) \le 2\}$

- $S := \{ v \in V \mid d_s(v, u) = 2 \}.$
- For each v with $d_s(v, u) \ge 2$, pick any one of its shortest path to u and assign v to the only vertex (w) in this path that is in S.
- | vertices assigned to $w \in S \mid \leq \alpha$.
 - Otherwise, u could buy (u, w).
- $\bullet :: |S| > (n/2)/\alpha = n/(2\alpha)$

$$(v \in V \mid d_s(v, u) \le 1)$$

$$+$$
 : $\{v \in V \mid d_s(v, u) \le 2\}$

$$\bigcirc : \{ v \in V \mid d_s(v, u) = 2 \}$$

- $S := \{ v \in V \mid d_s(v, u) = 2 \}.$
- For each v with $d_s(v, u) \ge 2$, pick any one of its shortest path to u and assign v to the only vertex (w) in this path that is in S.
- | vertices assigned to $w \in S \mid \leq \alpha$.
 - Otherwise, u could buy (u, w).

$$\bullet :: |S| > (n/2)/\alpha = n/(2\alpha).$$

$$(v \in V \mid d_s(v, u) \le 1)$$

$$+$$
 : $\{v \in V \mid d_s(v,u) \le 2\}$

- $S := \{ v \in V \mid d_s(v, u) = 2 \}.$
- For each v with $d_s(v, u) \ge 2$, pick any one of its shortest path to u and assign v to the only vertex (w) in this path that is in S.
- | vertices assigned to $w \in S \mid \leq \alpha$.
 - Otherwise, u could buy (u, w).
- $\bullet :: |S| > (n/2)/\alpha = n/(2\alpha).$

$$O(1)$$
 upper bounds for $\alpha = O(\sqrt{n})$

For $\alpha < \sqrt{n/2}$, the PoA ≤ 6 .

- Suppose that $\exists v \in V(G_s)$ s.t. $d_s(u, v) \geq 6$.
- v can buy $\{u, v\}$ to decrease its distance from all vertices in $N_2(u)$ by at least 1.
 - : v has not bought it : $|N_2(u)| \leq \alpha$.
- By Lemma 3, $|N_2(u)| > n/(2\alpha) \Rightarrow \alpha > \sqrt{n/2}$ (contradiction).

For $\alpha < \sqrt{n/2}$, the PoA ≤ 6 .

- Suppose that $\exists v \in V(G_s)$ s.t. $d_s(u, v) \geq 6$.
- v can buy $\{u, v\}$ to decrease its distance from all vertices in $N_2(u)$ by at least 1.
 - : v has not bought it : $|N_2(u)| \leq \alpha$.
- By Lemma 3, $|N_2(u)| > n/(2\alpha) \Rightarrow \alpha > \sqrt{n/2}$ (contradiction).

For $\alpha < \sqrt{n/2}$, the PoA ≤ 6 .

- Suppose that $\exists v \in V(G_s)$ s.t. $d_s(u, v) \geq 6$.
- v can buy $\{u, v\}$ to decrease its distance from all vertices in $N_2(u)$ by at least 1.
 - : v has not bought it : $|N_2(u)| \leq \alpha$.
- By Lemma 3, $|N_2(u)| > n/(2\alpha) \Rightarrow \alpha > \sqrt{n/2}$ (contradiction).

For $\alpha < \sqrt{n/2}$, the PoA ≤ 6 .

- Suppose that $\exists v \in V(G_s)$ s.t. $d_s(u, v) \geq 6$.
- v can buy $\{u, v\}$ to decrease its distance from all vertices in $N_2(u)$ by at least 1.
 - : v has not bought it : $|N_2(u)| \leq \alpha$.
- By Lemma 3, $|N_2(u)| > n/(2\alpha) \Rightarrow \alpha > \sqrt{n/2}$ (contradiction).

For $\alpha < \sqrt[3]{n/2}$, the PoA \leq 4.

Proof:

- Δ : maximum vertex degree of G_s .
- $N_2(u) \le 1 + \Delta + \Delta(\Delta 1) = 1 + \Delta^2$ for an arbitrary u.
- $1 + \Delta^2 > n/(2\alpha) > \alpha^2 \Rightarrow \Delta > \alpha 1$.
- Let v be a vertex with degree Δ
- Suppose that $\exists u \in V(G_s)$ s.t. $d_s(v, u) \geq 4$.
- u can buy $\{u,v\}$ to decrease its distance to all vertices in $N_1(v)$ by ≥ 1
 - $\Rightarrow |N_1(v)| = \Delta + 1 \le \alpha$ (contradiction)

For $\alpha < \sqrt[3]{n/2}$, the PoA \leq 4.

Proof:

- Δ : maximum vertex degree of G_s .
- $N_2(u) \le 1 + \Delta + \Delta(\Delta 1) = 1 + \Delta^2$ for an arbitrary u.
- $1 + \Delta^2 > n/(2\alpha) > \alpha^2 \Rightarrow \Delta > \alpha 1$.
- Let v be a vertex with degree Δ .
- Suppose that $\exists u \in V(G_s)$ s.t. $d_s(v, u) \geq 4$.
- *u* can buy {*u*, *v*} to decrease its distance to all vertices in *N*₁(*v*) by ≥ 1
 ⇒ |*N*₁(*v*)| = ∧ + 1 ≤ α (contradiction)

Theorem 5

For $\alpha < \sqrt[3]{n/2}$, the PoA \leq 4.

- Δ : maximum vertex degree of G_s .
- $N_2(u) \le 1 + \Delta + \Delta(\Delta 1) = 1 + \Delta^2$ for an arbitrary u.
- $1 + \Delta^2 > n/(2\alpha) > \alpha^2 \Rightarrow \Delta > \alpha 1$.
- Let v be a vertex with degree Δ .
- Suppose that $\exists u \in V(G_s)$ s.t. $d_s(v, u) \geq 4$.
- u can buy $\{u, v\}$ to decrease its distance to all vertices in $N_1(v)$ by ≥ 1 $\Rightarrow |N_1(v)| = \Delta + 1 \leq \alpha$ (contradiction).

Theorem 5

For $\alpha < \sqrt[3]{n/2}$, the PoA \leq 4.

- Δ : maximum vertex degree of G_s .
- $N_2(u) \le 1 + \Delta + \Delta(\Delta 1) = 1 + \Delta^2$ for an arbitrary u.
- $1 + \Delta^2 > n/(2\alpha) > \alpha^2 \Rightarrow \Delta > \alpha 1$.
- Let v be a vertex with degree Δ .
- Suppose that $\exists u \in V(G_s)$ s.t. $d_s(v, u) \geq 4$.
- u can buy $\{u,v\}$ to decrease its distance to all vertices in $N_1(v)$ by ≥ 1
 - $\Rightarrow |N_1(v)| = \Delta + 1 \le \alpha$ (contradiction).

Theorem 5

For $\alpha < \sqrt[3]{n/2}$, the PoA \leq 4.

- Δ : maximum vertex degree of G_s .
- $N_2(u) \le 1 + \Delta + \Delta(\Delta 1) = 1 + \Delta^2$ for an arbitrary u.
- $1 + \Delta^2 > n/(2\alpha) > \alpha^2 \Rightarrow \Delta > \alpha 1$.
- Let v be a vertex with degree Δ .
- Suppose that $\exists u \in V(G_s)$ s.t. $d_s(v, u) \geq 4$.
- u can buy $\{u, v\}$ to decrease its distance to all vertices in $N_1(v)$ by ≥ 1 $\Rightarrow |N_1(v)| = \Delta + 1 \leq \alpha$ (contradiction).

An
$$O(1)$$
 upper bound for $\alpha = O(n^{1-\epsilon})$

 $\mathit{O}(1)$ upper bound for $lpha = \mathit{O}(\mathit{n}^{1-\epsilon})$

The main theorem

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

• Let's go through several lemmas and corollaries first.

Lemma 6

For any vertex u in an equilibrium graph G_s , if $|N_k(u)| > n/2$, then $|N_{2k+2\alpha/n}(u)| = n$.

- Assume to the contrary that $|N_{2k+2\alpha/n}(u)| < n$.
 - $\exists v \in V(G_s)$ s.t. $d_s(u,v) \geq 2k + 1 + 2\alpha/n$.

$$\begin{aligned} &d_s(u,v) \geq 2k + 1 + 2\alpha/n \\ &d_s(u,x) + d_s(x,v) \geq d_s(u,v) \\ \Rightarrow &d_s(x,v) \geq k + 1 + 2\alpha/n \end{aligned}$$

Lemma 6

For any vertex u in an equilibrium graph G_s , if $|N_k(u)| > n/2$, then $|N_{2k+2\alpha/n}(u)| = n$.

Proof:

- Assume to the contrary that $|N_{2k+2\alpha/n}(u)| < n$.
 - $\exists v \in V(G_s)$ s.t. $d_s(u, v) \geq 2k + 1 + 2\alpha/n$.

 $d_s(x,v) \ge k+1+2\alpha/n \to \le k+1.$ Dist(v) decreases by $\ge N_k(u) \cdot 2\alpha/n.$ $\therefore \alpha \ge |N_k(u)| \cdot 2\alpha/n$ (Contradiction)

PoA in Network Creation Games

The sum model O(1) upper bound for $\alpha = O(n^{1-\epsilon})$

Lemma 6

For any vertex u in an equilibrium graph G_s , if $|N_k(u)| > n/2$, then $|N_{2k+2\alpha/n}(u)| = n$.

• Setting $\alpha < n/2$ & $\alpha < 12n \lg n$:

Corollary 7

For any vertex $u \in V(G_s)$ with $\alpha < n/2$, if $|N_k(u)| > n/2$, then $|N_{2k+1}(u)| = n$.

Corollary 8

For any vertex $u \in V(G_s)$ with $\alpha < 12n \lg n$, if $|N_k(u)| > n/2$, then $|N_{2k+24 \lg n}(u)| = n$

PoA in Network Creation Games

The sum model O(1) upper bound for $\alpha = O(n^{1-\epsilon})$

Lemma 6

For any vertex u in an equilibrium graph G_s , if $|N_k(u)| > n/2$, then $|N_{2k+2\alpha/n}(u)| = n$.

• Setting $\alpha < n/2$ & $\alpha < 12n \lg n$:

Corollary 7

For any vertex $u \in V(G_s)$ with $\alpha < n/2$, if $|N_k(u)| > n/2$, then $|N_{2k+1}(u)| = n$.

Corollary 8

For any vertex $u \in V(G_s)$ with $\alpha < 12n \lg n$, if $|N_k(u)| > n/2$, then $|N_{2k+24 \lg n}(u)| = n$.

Lemma 9

If $|N_k(u)| > Y$ for every vertex u in an equilibrium graph G_s , then

- either $|N_{2k+3}(u)| > n/2$ for some u
- or $|N_{3k+3}(u)| \ge N_k \cdot n/\alpha > Yn/\alpha$ for every u.
- Obviously true if $\exists u \text{ s.t. } |N_{2k+3}(u)| > n/2$.
- Assume that for every u, $|N_{2k+3}(u)| \le n/2$.

Lemma 9

If $|N_k(u)| > Y$ for every vertex u in an equilibrium graph G_s , then

- either $|N_{2k+3}(u)| > n/2$ for some u
- or $|N_{3k+3}(u)| \ge N_k \cdot n/\alpha > Yn/\alpha$ for every u.
- Obviously true if $\exists u \text{ s.t. } |N_{2k+3}(u)| > n/2$.
- Assume that for every u, $|N_{2k+3}(u)| \le n/2$.

Proof of Lemma 9

- $S = \{v \in V(G_s) \mid d_s(v, u) = 2k + 3\}.$
- Select a subset of *S* (*center points*) by the following algorithm:
 - Unmark all vertices in S;
 - Repeatedly select an unmarked x ∈ S
 as a center point, mark all unmarked
 vertices in {x' ∈ S | d_s(x', x) ≤ 2k},
 and assign these vertices to x.

Proof of Lemma 9 (contd.)

- Suppose that we select $x_1, x_2, ..., x_\ell$ as center points.
- $\ell \ge n/\alpha$. WHY?

We prove it later...

Proof of Lemma 9 (contd.)

- Suppose that we select $x_1, x_2, ..., x_\ell$ as center points.
- $\ell \ge n/\alpha$. WHY?

We prove it later...

- Suppose that we select $x_1, x_2, ..., x_\ell$ as center points.
- $\ell \ge n/\alpha$. WHY? We prove it later...

- According to the algorithm, $d_s(x_i, x_j) > 2k$ for any pair of center points x_i, x_j .
 - $N_k(x_i) \cap N_k(x_j) = \emptyset$ for $i \neq j$.
 - By the hypothesis, $|N_k(x_i)| > Y$ for every x_i .
- Hence, $|\bigcup_{i=1}^{\ell} N_k(x_i)| = \sum_{i=1}^{\ell} |N_k(x_i)|$ $\geq \ell \cdot N_k > \ell Y$.
- u has a path of length $\leq 3k + 3$ to every vertex in $N_k(x_i)$.
- $|N_{3k+3}(u)| \ge |\bigcup_{i=1}^{\ell} N_k(x_i)|$

- According to the algorithm, $d_s(x_i, x_j) > 2k$ for any pair of center points x_i, x_j .
 - $N_k(x_i) \cap N_k(x_j) = \emptyset$ for $i \neq j$.
 - By the hypothesis, $|N_k(x_i)| > Y$ for every x_i .
- Hence, $|\bigcup_{i=1}^{\ell} N_k(x_i)| = \sum_{i=1}^{\ell} |N_k(x_i)|$ $\geq \ell \cdot N_k > \ell Y$.
- u has a path of length $\leq 3k + 3$ to every vertex in $N_k(x_i)$.
- Inererore, $|N_{3k+3}(u)| \ge |\bigcup_{i=1}^{\ell} N_k(x_i)|$

- According to the algorithm, $d_s(x_i, x_j) > 2k$ for any pair of center points x_i, x_j .
 - $N_k(x_i) \cap N_k(x_j) = \emptyset$ for $i \neq j$.
 - By the hypothesis, |N_k(x_i)| > Y for every x_i.
- Hence, $|\bigcup_{i=1}^{\ell} N_k(x_i)| = \sum_{i=1}^{\ell} |N_k(x_i)|$ $\geq \ell \cdot N_k > \ell Y$.
- u has a path of length $\leq 3k + 3$ to every vertex in $N_k(x_i)$.
- Therefore.

$$|N_{3k+3}(u)| \ge |\bigcup_{i=1}^{\ell} N_k(x_i)|.$$

- According to the algorithm, $d_s(x_i, x_j) > 2k$ for any pair of center points x_i, x_j .
 - $N_k(x_i) \cap N_k(x_j) = \emptyset$ for $i \neq j$.
 - By the hypothesis, |N_k(x_i)| > Y for every x_i.
- Hence, $|\bigcup_{i=1}^{\ell} N_k(x_i)| = \sum_{i=1}^{\ell} |N_k(x_i)|$ $\geq \ell \cdot N_k > \ell Y$.
- u has a path of length $\leq 3k + 3$ to every vertex in $N_k(x_i)$.
- Therefore,

$$|N_{3k+3}(u)| \ge |\bigcup_{i=1}^{\ell} N_k(x_i)|.$$

Proving $\ell \geq n/\alpha$.

- Let C_i be the vertices in S assigned to x_i .
 - $S = \bigcup_{i=1}^{\ell} C_i$.
- For each vertex v at distance $\geq 2k + 3$ from u:
 - Pick any one shortest path from v to u (via exactly one vertex $w \in S$);
 - Assign v to the same center point as w.
- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.

- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.
 - If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\alpha \geq 2|T_i|$.
 - Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)
 - $\Rightarrow \sum_{i=1}^{\ell} |T_i| \geq n/2.$
- Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

 $\mathit{O}(1)$ upper bound for $\alpha = \mathit{O}(\mathit{n}^{1-\epsilon})$

- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.
- If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\alpha \geq 2|T_i|$.
 - Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)
 - $\Rightarrow \sum_{i=1}^{\ell} |T_i| \geq n/2.$
- Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

Copyright held by the authors.)

- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.
- If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\alpha \geq 2|T_i|$.
- Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)
 - $\Rightarrow \sum_{i=1}^{\ell} |T_i| \ge n/2$
- Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

• T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.

- If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\alpha \geq 2|T_i|$.
- Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)
 - $\Rightarrow \sum_{i=1}^{\ell} |T_i| \geq n/2.$
- Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

Proof of Lemma 9 (contd.)

Copyright held by the authors.)

- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.
 - If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\therefore \alpha \geq 2|T_i|$.
- Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)

$$\Rightarrow \sum_{i=1}^{\ell} |T_i| \geq n/2.$$

• Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

 $\mathit{O}(1)$ upper bound for $\alpha = \mathit{O}(\mathit{n}^{1-\epsilon})$

(Copyright held by the authors.)

- T_i := the set of vertices assigned to x_i and whose distance from u is > 2k + 3.
 - If u bought $\{u, x_i\}$, distance between u and w becomes $\leq 2k + 1$.
 - u's distance to v would decrease by $\geq 2k + 3 (2k + 1) = 2$.
 - $\alpha \geq 2|T_i|$.
 - Moreover, $|N_{2k+3}(u)| \le n/2$ (the earliest assumption)
 - $\Rightarrow \sum_{i=1}^{\ell} |T_i| \geq n/2.$
- Therefore, $\ell \alpha \geq 2 \sum_{i=1}^{\ell} |T_i| \geq n$.

 $\mathit{O}(1)$ upper bound for $lpha = \mathit{O}(\mathit{n}^{1-\epsilon})$

The main theorem (proof)

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_j+3}(v)| > n/2$ for some v
- \star For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_a$
- $\star :: N_{a_1} = N_2 > X/2 :: N_{a_i} > X^i/2$ for every $i \leq j$.

 $\mathit{O}(1)$ upper bound for $lpha = \mathit{O}(\mathit{n}^{1-\epsilon})$

The main theorem (proof)

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_i+3}(v)| > n/2$ for some v
- * For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_{a_i}$
- $\star :: N_{a_1} = N_2 > X/2$: $N_{a_i} > X^i/2$ for every $i \leq j$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_j+3}(v)| > n/2$ for some v.
- * For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_{a_i}$
- $\star :: N_{a_1} = N_2 > X/2 :: N_{a_i} > X^i/2$ for every $i \leq j$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_j+3}(v)| > n/2$ for some v.
- * For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_{a_i}$
- $\star :: N_{a_1} = N_2 > X/2 :: N_{a_i} > X^i/2$ for every $i \leq j$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_j+3}(v)| > n/2$ for some v.
- * For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_{a_i}$.
- $\star :: N_{a_1} = N_2 > X/2 :: N_{a_i} > X^i/2$ for every $i \leq j$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha < n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- Let $X = n/\alpha > n^{\epsilon}$.
- Define $a_1 = 2$ and $a_i = 3a_{i-1} + 3$ for all i > 1.
- * $N_2(u) > n/(2\alpha) = X/2$ for all u. (Lemma 3)
- * For each $i \ge 1$, either $N_{2a_i+3}(v) > n/2$ for some v or $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = X \cdot N_{a_i}$. (Lemma 9)
- Let j be the least number s.t. $|N_{2a_j+3}(v)| > n/2$ for some v.
- * For each i < j, we have $N_{a_{i+1}} \ge (n/\alpha)N_{a_i} = XN_{a_i}$.
- $\star :: N_{a_1} = N_2 > X/2 :: N_{a_i} > X^i/2$ for every $i \leq j$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha \leq n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- $$\begin{split} \bullet \quad \text{Moreover, } X^j/2 < N_{\mathsf{a}_j} \leq n, \text{ so } X^j < 2n. \\ \therefore \ j < \frac{1}{\epsilon} (1 + 1/\lg n) \quad \big(n^{\epsilon j} < (n/\alpha)^j = X^j < 2n \big). \\ \Rightarrow \ j < \frac{1}{\epsilon} + 1 \text{ and hence } j \leq \lceil 1/\epsilon \rceil \quad \big(\because \epsilon \geq 1/\lg n \big). \end{split}$$
- Hence, $|N_{2a_{\lceil 1/\epsilon \rceil + 3}}(v)| \ge |N_{2a_j + 3}(v)| > n/2$.

Theorem 10

For $\epsilon \geq 1/\lg n$ and $1 \leq \alpha \leq n^{1-\epsilon}$, PoA $\leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8$.

- $\therefore \ \alpha < n^{1-\epsilon} \ \text{and} \ \epsilon \geq 1/\lg n$, we have $\alpha < \frac{n}{n^{1/\lg n}} = n/2$.
- $\therefore |N_{4a_{\lceil 1/\epsilon \rceil}+7}(v)| = n \quad \text{(Corollary 7)}.$
 - Hence, the shortest path tree rooted at v has depth $\leq 4a_{\lceil 1/\epsilon \rceil} + 7$.
 - PoA $\leq 4a_{\lceil 1/\epsilon \rceil} + 8$ (Lemma 2).
- Solving the recurrence relation $a_i=3a_{i-1}+3$ with $a_1=2\Rightarrow a_i=\frac{7}{6}3^i-\frac{3}{2}<\frac{7}{6}3^i$.
- $\therefore \ \mathsf{PoA} \ \leq 4 \cdot \tfrac{7}{6} 3^{\lceil 1/\epsilon \rceil} + 8 \leq 4.667 \cdot 3^{\lceil 1/\epsilon \rceil} + 8.$

PoA in Network Creation Games
The sum model

 $o(n^\epsilon)$ upper bound for $lpha < 12n\lg n$

An $o(n^{\epsilon})$ upper bound for $\alpha < 12n \lg n$

Lemma 11 (similar to Lemma 9)

If $N_k > Y$ in an equilibrium graph G_s , then

- either $|N_{4k+1}(u)| > n/2$ for some u
- or $|N_{5k+1}(u)| \ge N_k \cdot kn/\alpha > Ykn/\alpha$ for every u.

Theorem 12 (similar to Theorem 10)

For $1 \le \alpha < 12n \lg n$, the PoA is $O(5^{\sqrt{\lg n}} \lg n)$.

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- ullet Either $|N_{4k+1}(v)|>n/2$ sor some v, or $|N_{5k+1}|\geq N_k\cdot (kn/lpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\Rightarrow a_j = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j
- Hence $n \geq N_{a_i} > 5^{\sum_{i=1}^{n} i}$
 - $\sum_{i=1}^{j-1} i = j(j-1)/2 \le \log_5 n$
 - $> j < 1 + \sqrt{2\log_5 n} < 1 + \sqrt{\lg n}.$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$ $\Rightarrow a_i > Z \cdot 5^i$.
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- ullet $N_{a_{i+1}} \geq N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{n} i}$.
 - $a \quad \nabla^{j-1} := i(i-1)/2 < |a|$
 - $> j < 1 + \sqrt{2 \log_5 n} < 1 + \sqrt{\lg n}$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$ $\Rightarrow a_i > Z \cdot 5^i$.
 - $\triangleright \ a_j = O(5^j \lg n)$
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- ullet $N_{a_{i+1}} \geq N_{a_i} \cdot (a_i \cdot n/\alpha) > 5' N_{a_i}$ for each i < j
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{n} i}$.

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.

 - *ay* 0 (0 .g./).
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j
- Hence $n \geq N_{a_i} > 5^{\sum_{i=1}^{n} l_i}$

 - $> j < 1 + \sqrt{2 \log_5 n} < 1 + \sqrt{\lg n}.$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\triangleright \ a_j = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_i+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{r} i}$.

 - $> j < 1 + \sqrt{2\log_5 n} < 1 + \sqrt{\lg n}$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| > N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\triangleright a_i = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_i+1}(v)| > n/2$.
- $N_{a_{i+1}} > N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j.

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\triangleright a_j = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j.
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{j-1} i}$.
 - $\sum_{i=1}^{j-1} i = j(j-1)/2 \le \log_5 n.$
 - $> j < 1 + \sqrt{2\log_5 n} < 1 + \sqrt{\lg n}$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\triangleright a_j = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j.
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{j-1} i}$.
 - $\sum_{i=1}^{j-1} i = j(j-1)/2 \le \log_5 n$.
 - $> j < 1 + \sqrt{2\log_5 n} < 1 + \sqrt{\lg n}.$

Theorem 12

- Let $Z = 12 \lg n$. $\Rightarrow \alpha/n < 12 \lg n = Z$, $n/\alpha > 1/Z$.
- $|N_Z| > Z$ (: any equilibrium graph is connected).
- Either $|N_{4k+1}(v)| > n/2$ sor some v, or $|N_{5k+1}| \ge N_k \cdot (kn/\alpha)$. (Lemma 11)
- The recurrence relation: $a_i = 5a_{i-1} + 1$, $a_0 = Z$.
 - $\triangleright a_i > Z \cdot 5^i$.
 - $\triangleright a_i = O(5^j \lg n).$
- Let j be the least number s.t. $|N_{4a_j+1}(v)| > n/2$.
- $N_{a_{i+1}} \ge N_{a_i} \cdot (a_i \cdot n/\alpha) > 5^i N_{a_i}$ for each i < j.
- Hence $n \ge N_{a_i} > 5^{\sum_{i=1}^{j-1} i}$.
 - $\sum_{i=1}^{j-1} i = j(j-1)/2 \le \log_5 n$.
 - $> j < 1 + \sqrt{2\log_5 n} < 1 + \sqrt{\lg n}.$

Proof of Theorem 12 (contd.)

Theorem 12

For $1 \le \alpha < 12n \lg n$, the PoA is $O(5^{\sqrt{\lg n}} \lg n)$.

Recall that:

Corollary 8

For any vertex $u \in V(G_s)$ with $\alpha < 12n \lg n$, if $|N_k(u)| > n/2$, then $|N_{2k+24 \lg n}(u)| = n$.

- The depth of the shortest-path tree rooted at v: $\leq 2(4a_j+1)+24\lg n < 2(4a_{1+\sqrt{\lg n}}+1)+24\lg n$ (Corollary 8).
- Therefore, PoA is $O(5^{\sqrt{\lg n}} \lg n)$. (Lemma 2 & $a_j = O(5^j \lg n)$)

A brief summary

—: Fabrikant et al. 2003

—: This paper (Demaine et al. 2007)

—: Albers et al. 2006

