第一章 多项式

张彪

天津师范大学 数学科学学院 zhang@tjnu.edu.cn

Outline

§1 数域

定义

设 P 是由一些复数组成的集合,其中包括 0 与 1 如果 P 中任意两个数的和、 差、积、商(除数不为零)仍在 P 中,则称 P 为一个数域.

常用到的数域:有理数域 ℚ、实数域 ℝ、复数域 ℂ.

数域定义的另一形式

定义

设 P 是由一些复数组成的集合,其中包括 0 与 1 如果对于加法、减法、乘法、除法(除数不为零)运算封闭,则称 P 为一个数域.

例 1

所有形如 $a + b\sqrt{2}(a, b)$ 是有理数) 的数构成一个数域 $\mathbb{Q}(\sqrt{2})$.

例 1

所有形如 $a + b\sqrt{2}(a, b)$ 是有理数)的数构成一个数域 $\mathbb{Q}(\sqrt{2})$.

证明 (i)
$$0, 1 \in \mathbb{Q}(\sqrt{2})$$

(ii) 对四则运算封闭. 事实上
$$\forall a,\beta \in \mathbb{Q}(\sqrt{2}),$$
 设 $\alpha=a+b\sqrt{2},\beta=c+d\sqrt{2},$ 有 $a\pm\beta=(a\pm c)+(b\pm d)\sqrt{2}\in\mathbb{Q}(\sqrt{2})$

$$a\beta = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

设
$$\alpha = a + b\sqrt{2} \neq 0$$
, 则 $a - b\sqrt{2} \neq 0$ 且
$$\frac{\beta}{\alpha} = \frac{c + d\sqrt{2}}{a + b\sqrt{2}} = \frac{(c + d\sqrt{2})(a - b\sqrt{2})}{(a + b\sqrt{2})(a - b\sqrt{2})}$$

$$= \frac{ac - 2bd}{a^2 - 2b^2} + \frac{ad - bc}{a^2 - 2b^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

注

有理数域是最小的数域。 **证明** 设 *P* 为一个数域.

- 由定义知 $1 \in P$,
- 又 P 对加法封闭知: 1+1=2, 1+2=3, ···, P 包含所有自然数;
- 由 0 ∈ P 及 P 对减法的封闭性知: P 包含所有负整数,因而 P 包含所有整数;
- 任何一个有理数都可以表为两个整数的商,由 P 对除法的封闭性知: P 包含所有有理数.

即任何数域都包含有理数域作为它的一部分.

定义

设 x 是一个符号 (文字), n 为非负整数. 形式表达式

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

其中 $a_0, a_1, \ldots, a_n \in P$, 称为系数在数域 P 中的一元多项式,简称为数域 P 上的一元多项式。

注

- 符号 x 可以是为未知数,也可以是其它待定事物.
- 这里 $a_i x^i$ 称为 i 次项, a_i 称为 i 次项系数. 若 $a_n \neq 0$, 则称 $a_n x^n$ 为首项.
- 习惯上记为 $f(x), g(x), \ldots$ 或 f, g, \ldots 上述形式表达式可写为

$$\sum_{i=0} a_i x^i.$$

- 零多项式——系数全为 0 的多项式
- 多项式相等——f(x) = g(x) 当且仅当同次项的系数全相等(系数为零的项除外)
- 多项式 f(x) 的次数——f(x) 的最高次项对应的幂次,记作 $\deg(f(x))$. 如: $f(x) = 3x^3 + 4x^2 5x + 6$ 的次数为 3,即 $\deg(f(x)) = 3$

$$f(x) = q(x)g(x) + r(x)$$

例 2

$$f(x)=x^4+3x^3-x^2-4x-3$$

$$g(x)=3x^3+10x^2+2x-3$$
 求 $(f(x),g(x))$,并求 $u(x),v(x)$ 使

(f(x), g(x)) = u(x)f(x) + v(x)g(x)

辗转相除法可按下面的格式来作:

$$f(x) = q_1(x)g(x) + r_1(x)$$

$$f(x) = q_1(x)g(x) + r_1(x)$$

$$g(x) = q_2(x)r_1(x) + r_2(x)$$

$$f(x) = q_1(x)g(x) + r_1(x)$$
$$g(x) = q_2(x)r_1(x) + r_2(x)$$
$$r_1(x) = q_3(x)r_2(x)$$

因此 $(f(x), g(x)) = \frac{1}{9}r_2(x) = x + 3$ 由 $f(x) = q_1(x)q(x) + r_1(x)$ $q(x) = q_2(x)r_1(x) + r_2(x)$ $r_1(x) = q_2(x)r_2(x)$ 可知 $r_2(x) = q(x) - q_2(x)r_1(x)$ $= q(x) - q_2(x) (f(x) - q_1(x)q(x))$ $=-q_2(x)f(x)+(1+q_1(x)q_2(x))q(x)$ 于是,令 $u(x) = -\frac{1}{6}q_2(x) = \frac{3}{5}x - 1,$ $v(x) = \frac{1}{6} (1 + q_1(x)q_2(x)) = -\frac{1}{5}x^2 + \frac{2}{5}x,$ 就有 (f(x), g(x)) = u(x)f(x) + v(x)g(x).