ECE 411 — DC Machine & Control Systems Cheat Sheet

1) $E = \frac{1}{R_a} \frac{1}{a} + \frac{1}{a} \frac{1}{a} \frac{1}{a} + \frac{1}{a} \frac{1}{a}$

$$e = K_e \omega_m$$
 (Ke = Kt in SI)

 V_a [V], R_a [\Omega], L_a [H], I_a [A], e [V], K_e [\mathrm{V\,s/rad}], ω_m [rad/s]

2) Mechanical Model

$$J_m - dt = I_e - I_L$$

$$T_e = K_t I_a$$

 J_m [kg\,m^2], T_e [N\,m], T_L [N\,m], K_t [N\,m/A], ω_m [rad/s]

3) $\underline{\underline{\mathbf{T}}}_{R_a}^{\mathbf{im}} = \mathbf{Constant}_{m} \underline{\underline{\mathbf{K}}_{t}^2}$

 τ_a, τ_m [s]

4)2 φ_{τ_a} φ

5) $N_n = \frac{1}{\sqrt{\tau_a \tau_m}}$ Frequer $\frac{\tau_{cy}}{2}$ & Damping Ratio

 ω_n [rad/s], ζ [1]

6) Eigenvalues (roots)1 $p_{1,2} = \sqrt{\frac{1}{2\tau_a}} \sqrt{\frac{1}{2\tau_a}}$

7) Minimum Inertia for Real-Valued Roots Require discriminant >= 0 for real roots: tau m >= 4 tau a

 $J_{m,\,\text{min}} = \frac{4L_a K_t^2}{R_a^2}$

8) Performance Metrics (2% criterion) $\frac{\omega_{n}\zeta}{\omega_{n}\zeta}$

Percent overshoot: OS =
$$100 \exp\left(-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}\right)$$
%

General solution: $x(t) = X e^{pt}$

9) Jmpedance Analogy (Electrical ↔ Rotational Mechanical)

10) Variable & Unit Quick Reference

Assumes viscous friction B \sim = 0 in time-constant formulas; Ke = Kt in Sl. *V_a* : Armature voltage [V]

Ia: Armature current [A] J_m : Inertia [kg\,m^2]

R_a: Armature resistance [\Omega] ω_m : Angular speed [rad/s]

La: Armature inductance [H] τ_a, τ_m : Time constants [s]

 ζ : Damping ratio [1] e: Back-EMF [V]

 K_t : Torque const. [N\,m/A] ω_n : Natural freq. [rad/s]

 K_e : Voltage const. [V\,s/rad] p: Laplace variable [s^{-1}]