See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228395024

simplification Reversible discrete volume polyhedrization using Marching Cubes

Article in Proceedings of SPIE - The International Society for Optical Engineering · April 2004 bot 10.1117/12.535391

CITATIONS 3 authors, including: French National Centre for Scientific Research **David Coeurjolly** 154 PUBLICATIONS 1,960 CITATIONS SEE PROFILE 76 READS 60 PUBLICATIONS 384 CITATIONS French National Centre for Scientific Research Isabelle Sivignon SEE PROFILE

Some of the authors of this publication are also working on these related projects:

PhD: Discrete geometry for irregular isothetic grids View project

Digital calculus, geometric measure theory, and applications View project

Reversible discrete volume polyhedrization using Marching Cubes simplification

David Cœurjolly, Alexis Guillaume, Isabelle Sivignon

{dcoeurjo, alexis.guillaume}@liris.cnrs.fr, sivignon@lis.inpg.fr.

LIRIS (Lyon), LIS (Grenoble) - France

Introduction

Discrete volumes ⇒exploitation and study are difficult:

- huge volume of data
- facet structure

Problem: how to transform a discrete volume into a Euclidean Polyhedra?

- topologically correct surface
- reversibility property

State of the art

Digital plane segmentation : Ok

Digital Polyhedrization: [Debled-Rennesson]

[Vittone] [Klette] [Sivignon]

⇒No method exists to ensure both the correct topology and the reversibility of the edges and the vertices of the surface

Introduction

Two approaches:

- Marching-Cubes algorithms: compute a triangulated reversible surface. Huge number of facets but reversible solution.
- Digital geometry solutions: segment the digital surface into pieces of digital planes, and then reconstruct a surface from this information. Hard to ensure both reversibility and correct topology.

Idea: Combine the two processes in order to decrease the number of facets of the MC triangulation.

Contents

- 1. Marching-Cubes algorithms
- 2. Digital plane recognition and digital plane segmentation
- 3. Proposed algorithm
- 4. Results
- 5. Conclusion and future works

Preliminaries

Cellular decomposition of \mathbb{Z}^3 (Digital surface = set of oriented surfels)

Problem: Given a density function $V: \mathbb{Z}^3 \to \mathbb{R}$, how to extract a triangulated iso-surface?

Problem: Given a density function $V: \mathbb{Z}^3 \to \mathbb{R}$, how to extract a triangulated iso-surface?

⇒ Marching-Cubes algorithm [Lorensen-Cline 87]

Step 1: Cubic cell decomposition

Step 2: Local configurations

Step 1: Cubic cell decomposition

Step 2: Local configurations

Step 1: Cubic cell decomposition

Step 2: Local configurations

+ Interpolation processes

Step 1: Cubic cell decomposition

Step 2: Local configurations

Marching-Cubes global properties

Lemma 1 The triangulated surface is closed, oriented and without self-crossing [Lachaud 96]

Lemma 2 Let $V: \mathbb{Z}^3 \to \{0,1\}$ be a binary object, and a threshold in [0,1]. The Marching-Cubes surface is a reversible polyhedrization of the binary object according to the Object Boundary Quantization model.

Lemma 3 The MC vertices and boundary surfel centers coincide.

Digital plane recognition

Problem: Given a set of voxels V, does there exist a plane P which digitization contains V?

Many solutions:

- geometrical properties [Stojmenovic-Tosic91] [Kim-Stojmenovic91] [Veelaert93]
- arithmetical definition [Debled95]
- linear programming framework [Francon et al.96] [Buzer02] [Vittone00]

Digital plane recognition

 \mathcal{V} is a piece of digital plane \Rightarrow there exist (α, β, γ) such that $\mathcal{V} \subset \{(x, y, z) \in \mathbb{Z}^3 \mid 0 \leq \alpha x + \beta y + \gamma + z < 1\}$

Set of parameters (α, β, γ) = Preimage of \mathcal{V} = Intersection of linear constraints.

Digital plane recognition

 \mathcal{V} is a piece of digital plane \Rightarrow there exist (α, β, γ) such that $\mathcal{V} \subset \{(x, y, z) \in \mathbb{Z}^3 \mid 0 \leq \alpha x + \beta y + \gamma + z < 1\}$

Directional recognition algorithm

Any solution plane of this preimage crosses the segments [p, p+d[where d=(0,0,1).

⇒Set of directions

$$D = \{(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)\}$$

Directional recognition algorithm

Directional recognition algorithm:

The directional recognition algorithm in direction d on \mathcal{V} computes the set of Euclidean planes that cross all the segments $\lceil pq \rceil$ where $p \in \mathcal{V}$ and q is equal to p + d.

Nota Bene: \Rightarrow 6 preimages for \mathcal{V} .

 ${\cal V}$ is a piece of digital plane \Leftrightarrow one out of the 6 preimages is not empty.

For each direction d

For each unlabelled voxel v

Apply incrementally the directional recognition algorithm in direction d with seed v.

Inner surfel of a plane P in direction d:

Property: All the solution planes of P cross all the segments [pq[where $\{p,q\}$ is a surfel labelled with P.

Sketch of the algorithm

Perpendicular projection of a surfel center onto a plane:

given a surfel defined by $(p,q) \in \mathbb{Z}^2$ with $d^1(p,q) = 1$, we center its projected onto the Euclidean plane in the (pq) direction.

Given a set of surfels belonging to the same DP

Step 1: Extract an Euclidean plane from the DP preimage

Step 2: Project all MC vertices onto such a plane

Lemma 4 The polyhedron obtained at the end of the vertex projection step has got the reversibility property.

Proof hints : since the Euclidean plane comes from the DP preimage, all projected vertices belong to the [p,q[segment.

Given a set of surfels belonging to the same DP

Step 1: Extract an Euclidean plane from the DP preimage

Step 2: Project all MC vertices onto such a plane

Lemma 4 The polyhedron obtained at the end of the vertex projection step has got the reversibility property.

Proof hints : since the Euclidean plane comes from the DP preimage, all projected vertices belong to the [p,q[segment.

Important: all Euclidean planes of the DP preimage can be used...

Homogeneous triangle: a triangle of the MC is homogeneous if its vertices belong to the same Digital Plane.

Homogeneous triangle: a triangle of the MC is homogeneous if its vertices belong to the same Digital Plane.

DP segmentation labelling on vertices

Homogeneous triangle: a triangle of the MC is homogeneous if its vertices belong to the same Digital Plane.

- DP segmentation labelling on vertices
- Homogeneous triangle labelling

Homogeneous triangle: a triangle of the MC is homogeneous if its vertices belong to the same Digital Plane.

- DP segmentation labelling on vertices
- Homogeneous triangle labelling

 Connected homogeneous triangle set are merged

Homogeneous triangle: a triangle of the MC is homogeneous if its vertices belong to the same Digital Plane.

- DP segmentation labelling on vertices
- Homogeneous triangle labelling

 Connected homogeneous triangle set are merged

Homogeneous triangles are coplanar at the end of the vertex projection step

Complete Algorithm

- **1**: Let S be the surfels of the boundary of the object O
- 2: Compute the DPS of S
- 3: Let MC the polyhedron given by the Marching-Cubes algorithm
- 4: for each vertex v of MC do
- **5**: Find the surfel $s \in \mathcal{S}$ associated to v
- 6: Project v onto the representative Euclidean plane of the digital plane associated to s
- 7: end for
- 8: Merge adjacent coplanar triangles into polygonal facets.

Theorem: The polyhedron obtained by the above algorithm has got the reversibility property and is topologically correct (closed, without self-crossing, oriented).

Results 1: Overall Algorithm

Results 2

Efficiency of the polyhedron

Object	MC	simplified MC	percentage of removed facets
pyramid	620	196	68%
catenoid	5032	1427	72%
pyramid6	4396	557	87%
rounded_cube	9944	1621	84%
sphere25	24632	8774	64%

Conclusion and Future works

Main result: algorithm to compute a topologically correct reversible polyhedrization of a binary volume based on a MC simplification

Future Works:

- Non-homogeneous triangle patch removal using appropriate choices of the representative Euclidean planes from DP preimages
- Generalization of the algorithm to n-dimensional polyhedrization based on n-dimensional MC surfaces.

