Traditional Oil

James Woods

Last Lecture

- We looked at the changes in oil prices from the point of view of a more competitive model with expectations and inventory demand driving changes.
- Has an Occam's razor advantage over the monopoly models commonly offered.
- ▶ But there is still room for a monopoly power explanation.

Monopoly in the short run

- $ightharpoonup P_m > P_{pc}$
- $ightharpoonup Q_m < \dot{Q}_{pc}$
- Dead weight loss and increase in producer surplus.

Monopoly in the long run

- ▶ k adjusts so that where MR = LRAC
- ightharpoonup MC = MR = SRAC
- Costs are still minimized

Monopoly Can Be Price Regulated

- ▶ Requires a ceiling below P_m and greater than or equal to P_{pc}
- Results in a welfare improvement
- Part of the logic behind CPI-X regulation
- Complicated kink in MR develops
- ▶ Kills monopoly if P < AC</p>
- ▶ Cool property that as P_c decreases, Q* increases. Opposite of perfect competition

Tax A Monopolist?

- ▶ Books says you can't tax a monopolist to be more efficient.
 - ► Has not stopped people from trying, note 50% tax rate in 1950s.
 - ► The tax is less about efficiency and more about equity and government revenue requirements.
- You can improve welfare with a subsidy
 - ► Fails on the equity criteria

Oil Independence Argument

I have oil and but you have more oil and it is cheaper.

- ▶ I become independent and use all my oil. Who has power now?
- ▶ I buy your oil and save mine. Now who has power?
- ► Look at the Hottelling Rule, extract so that the price increases at the rate of interest.
 - Funny that this doesn't happen very often.
 - Lots of assumptions.

Multi-plant monopoly

- ► Two plants: One with high and one with low marginal costs.
- Horizontal summation of individual MC results in joint MC.
 - Book shows a kink. Gets flatter as the higher cost plant starts to produce.
 - More plants, more kinks.
- ▶ Profit maximizing is as usual MR = MC.
- Individual plant production
 - ▶ Find *AR** then
 - ► Find the Q such that MC of each firm equals AR*
- Note that profit maximizing production is allocated based on cost
 - Not reserves
 - Not population
 - Not revenue requirements

Why This is A Problem for OPEC or any Cartel

- Cooperation requires that each be at least as well off as they would be without participating.
 - At some levels of demand, some members of cartel should not produce.
- Many ways of splitting profits
 - By production
 - By reserves
 - ▶ By marginal costs
 - Other

How to Break Splitting Profits

- By production
 - Produce as much as you can and depend on the cartel to store or destroy.
 - Ocean Spray approach.
- By reserves
 - Madly explore
 - Hard to reach oil is as valuable as easy oil. Venezuela, UK
- By marginal costs
 - Need a lump-sum transfer to non-producers to work.

In the end, cartels mix methods and take into account political and government revenue needs.

Wait? Politics and Government Revenue?

- Assumes a lot of government control over oil, which is true in many places.
- Favorable prices can be used to build alliances
 - Cuba and USSR
 - Venezuela and the Caribbean Basin
- Explicitly removes the objective of profit maximizing and changes to:
 - Revenue maximization or
 - Profit maximization subject to revenue constraint

Connect Oil Revenue to Macroeconomics

- Marginal Efficiency of Investment
 - Macro concept. Relationship between internal rate of return on investment and the scale of investment.
 - Inverse relationship
 - Optimal is where the interest rate, marginal cost, is equal to MEI, marginal benefit.
- Optimal governmental investment determined by MEI=r
- Many combinations of P and Q satisfy
 - ► If revenue requirement can not be achieved, firms revenue maximize, MR = 0
 - ▶ If revenue requirement can be achieved, firm may reduce output from from *MC* splitting to allow others to have more revenue.

How this Allows Saudi Arabia to be "Swing Producer"

- ► Saudi Arabia has low extraction cost, <\$20 bl.
 - Under multiplant monopoly it would produce a lot.
 - It is also a "low absorption" country
 - ▶ Wide range of output levels meets the revenue requirement.
- ► They can meet the revenue requirements with low or high output levels.
 - They can increase output, like now, to reduce prices for strategic purposes
 - ▶ They can reduce output to hit OPEC quotas.

Does the Monopoly Argument Add Anything?

- ▶ OPEC only seems to be able to collude when there are macro expansions.
- Consistent with dynamic collusion arguments.
 - Decide if colluding now and receiving monopoly rents is worth more than
 - Not colluding and receiving more now but few monopoly rents in future.
 - Collusion when future demand is expect high
 - Collusion fails when future demand is expected low.

Simplified Dynamic Collusion

Definitions

- $ightharpoonup c = Collude, \sim c = Not Collude$
- ▶ D_H high demand and D_L low demand.
- ▶ $\pi(c|D) < \pi(\sim c|D)$ If you break collusion now you gain. Both are lower when demand is low.
- ▶ $\beta E[V(c|D)] > \beta E[V(\sim c|D)]$ If you break collusion the expected discounted value of all future profits is smaller. Both are lower when demand is low.

Four states of the world

- \triangleright $D_{H,1}$ and $D_{H,2}$, Demand high now and High later
- ▶ $D_{H,1}$ and $D_{L,2}$, High now and How later
- ▶ $D_{L,1}$ and $D_{H,2}$, Low now and High later
- ▶ $D_{L,1}$ and $D_{L,2}$, Low now and Low later

With a reasonable β , demand and cost functions.

Results with best stories

- ▶ $\pi(c|D_H) + \beta E[V(c|D_H)] > \pi(\sim c|D_H) + \beta E[V(\sim c|D_H)]$ If demand is high and will stay high, better off colluding.
- ▶ $\pi(c|D_L) + \beta E[V(c|D_L)] < \pi(\sim c|D_L) + \beta E[V(\sim c|D_L)]$ If demand is low and will stay low, you better off not colluding.
- ▶ $\pi(c|D_H) + \beta E[V(c|D_L)] < \pi(\sim c|D_H) + \beta E[V(\sim c|D_L)]$ If demand is high and will fall, better off not colluding.
- ▶ $\pi(c|D_L) + \beta E[V(c|D_H)] > \pi(\sim c|D_L) + \beta E[V(\sim c|D_H)]$ If demand is Low and will increase, better off colluding.

Many alternative values

- ▶ Collusion tends to vanish if the future benefit of collusion, $\beta E[V(c|D)] \beta E[V(\sim c|D)]$, is small.
- Collusion also vanishes if the current benefit of not colluding, $\pi(\sim c|D) \pi(c|D)$, is large.

Apply to Oil Markets

- Increase in commodity demand because of GDP growth makes it easier to collude.
- Decreases in commodity demand because of recession collapses collusion.
- ▶ When OPEC is large part of market, i.e., 1970s, then collusion is likely because the future benefits to collusion, $\beta E[V(c|D)] \beta E[V(\sim c|D)]$, are larger.
- The dynamic component is missing in the traditional monopoly arguments.
 - Not being able to establish or keep to a target is seen as a political, rather than economic, problem
 - Demand for commodities is a key and explains the periods when OPEC could increase prices.