

Markov-Analyse & Interview

Master WiSe 2023/24

vorgelegt von: Linus Langenkamp

Jolan Eggers

Nicolas Schneider

Redouane Kabouchi

Studiengang: Optimierung und Simulation

HSBI

Markov-Analyse& Interview

1	Allgemeines
2	Markov Kette - Modellierungskomponenten
3	Anwendungsbeispiele
4	Stärken und Grenzen
5	Rheinmetall Analyse
6	Interview
7	Fazit

Allgemeines

- Benannt nach dem Mathematiker Andrei Markow (1856-1922).
- Anwendung im Risikomanagement.
- Markov-Prozess als Grundlage für Verlässlichkeitsprüfung
- Modellierung in Form einer Markov-Kette
- Beschreibung der zeitlichen Entwicklung von Objekten oder Systemen

Modellierungskomponenten

- 1. Zustandsraum: Endliche Menge möglicher Zustände
- 2. Anfangsverteilung: Wahrscheinlichkeiten zu Beginn in bestimmten Zuständen
- 3. Übergangsmatrix: Matrix mit Übergangswahrscheinlichkeiten zwischen Zuständen

Markov-Kette - Klassisch

Markov-Kette - Klassisch

Markov-Ketten und Anwendungsbereiche

Markov-Ketten

- Zustand abhängig nur vom unmittelbaren Vorgänger
- Migrationsmatrix beschreibt Wahrscheinlichkeiten der Zustandsänderung

Anwendungsbereiche

- Beispiel: Ratingmigrationen von Unternehmen
- Evaluierung der zeitlichen Entwicklung von Projekten

Anwendungsbereiche und Beispiele

- Beispiel: Ratingmigrationen von Unternehmen
- Evaluierung der zeitlichen Entwicklung von Projekten
- "Zufällige Irrfahrten" oder "Random Walks"
- Anwendungen in der Finanzmathematik (z.B., Black/Scholes-Formel)

Stärken und Grenzen

Stärken

- Modellierung von zufälligen Zustandsänderungen ist einfach (GBM-Modellierung).
- Leichte Modellierung von stochastischen Netzen.
- Verständliches Grundprinzip von Markov-Ketten, leicht kommunizierbar.
- Effiziente Algorithmen, besonders mit stochastischen IT-Werkzeugen.

Grenzen

- Hohe Rechenkomplexität.
- Erfordert umfangreiche mathematische/stochastische Fachkenntnisse.
- Begrenzte Fähigkeit, extreme Stressszenarien praktisch mit einem Random Walk abzubilden.

Markov-Kette- Übertragung auf Kurse

Markov-Analyse

Markov-Analyse – Übertragung ins Kontinuierliche

Rheinmetall - Markov Analyse

Rheinmetall - Markov Analyse

Rheinmetall - Markov Analyse

Interview im Risikomanagement

- •Expertenbefragungen ergänzen oft analytische oder kreative Ansätze.
- ✓ Wichtig hier: Berücksichtigung verschiedener Perspektiven für umfassendes Verständnis, mithilfe Interviews ⇒ neuen Einsichten und Blickwinkeln, nicht allein durch analytische oder kreative Ansätze erfassbar
- •Als wichtige Informationsquelle und liefern Denkanstöße für bisher nicht betrachtete Risiken.
- ✓ Die Einbeziehung verschiedener Experten ⇒ Erkennung blinden Flecken und Ermöglichung umfassenderen Risikobewertungen.
- •Bei Kollektionsmethoden ratsam: Verschiedene interne und externe Experten interviewen für umfassende Erkenntnisse (z.B., Ingenieure, Betriebswirte, Juristen...).

Interviewtechniken

- **Strukturierte Interviews:** Definieren Fragenbereiche und potenzielle Fragen.
- **❖Standardisierte Interviews:** weiter in der Formalisierung: Konkrete Fragen.
- •Die Standardisierung angewendet ⇒ den Interviewer-Bias zu reduzieren zur Minimierung bewussten oder unbewussten Beeinflussung (vgl. Kahneman 2011; Romeike 2013a, 2013b).
- •Interviews: Effektive Methode zur Risikoerkennung, ideal als Ergänzung zu analytischen oder kreativen Ansätzen.

Fazit

•Markov-Analyse Methode:

- Angewendet am Rheinmetall-Unternehmen.
- Modelliert Ausfallwahrscheinlichkeiten, Zustandsänderungen, Ausfallraten und Reparaturraten.
- Quantitatives Analyseverfahren mit grafischen Modellen für mögliche Systemzustände.

•Experteninterviews:

- Effiziente Methode zur Identifikation potenzieller Risiken.
- Direkter Austausch mit Experten ⇒ schnelle Datenerfassung.
- Effektive Erkennung potenzieller Risiken im Vergleich zu rein analytischen oder kreativen Ansätzen.

Quellen

- •https://www.datacamp.com/tutorial/markov-chains-python-tutorial
- •https://mathshistory.st-andrews.ac.uk/Biographies/Markov/