Extended field theories: - Brian Williams Bord 2: Obys manifolds oriented oriented manifolds with boundary l-mor 2-mor oriented manifolds with writers higher morphisms invertible Tangential Structures: $B \rightarrow BO(n)$ fibration, $M \xrightarrow{\text{TM}} BO(m) \xrightarrow{\times \mathbb{R}^{n-m}} BO(n)$ B framing of m. manifold M": ex: G→0 (n) B. faming i) G=SO(n) m=n B-structure orientation 2) G= Spin(n), m=n Spin-structure Framing of TM i.e. trivialization of TM. 3) G=× 4) m = n-1, G=*, n=3 S^2 has 3 framing but no 2-framing. Def Bord Bordism category of G structures. Note: $\star = G$ Call Bord n = Bord n $\star \longrightarrow G \longrightarrow O(n)$ $\operatorname{Bord}_n^{\operatorname{fr}} \longrightarrow \operatorname{Bord}_n^{\operatorname{G}} \longrightarrow \operatorname{Bord}_n$ ex: Bord to obj = +, -, s', s'x3'??

1-morp = 1111...1 Cobordism Hypothesism: { framed TFT's} { fully dualizable } objects in t C- symmetric monojdal (∞,n) category.

. Fun
$$^{\otimes}$$
 (Bord, f , e) \xrightarrow{ev} $(e^{f d})^{\sim}$ fully dualizable

ox. ✓ F --- F'

Want to show $\forall_{\mathbf{R}} : \mathsf{F}(\Pi) \to \mathsf{F}'(M)$ is an equivalence $\mathsf{F}'(M) \cong \mathsf{F}'(\overline{\Pi})' \to \mathsf{F}(\overline{\Pi})' \cong \mathsf{F}(M)$.

Cor. C^{fd} as above, narries an action of O(n), and hence of G via $G \rightarrow O(n)$.

 \mathcal{T}_{n}^{m} : Jongental Cobordism Hypothesis:
Fun $^{\otimes}$ (Bord $_{n}^{G}$, $^{\circ}$) $^{\simeq}$ ($^{\circ}$ fd) $^{\circ}$

July dualizable:

L= symmetric monoidal (0,2) category

 $X \in \mathcal{C}$ fully dualizable \iff $\exists X'$ $ev: X_{\otimes} \times \overset{\checkmark}{\longrightarrow} 1$ $\longrightarrow X \overset{\checkmark}{\otimes} X$

1) X -> × (evoid) · (ido coevx) = idx

2) ev, over have left, right radjoints

Prof: X is fully dualizable iff X exists & ev has both adjoints.

Extended 2-TFT:

$$\operatorname{Pord}_{2}^{f}:+, (+)^{\vee}= \operatorname{eu}_{+}:$$
 $\operatorname{eu}_{+}:$ $\operatorname{Que}_{+}:$ $\operatorname{Que}_{+}:$

framings of S' form a Z-dorsor S'_n - Let S'_n is the framing coming from an orientation S'_n . The other one.

Journalds: $ev_x^R = (So id_{x^v}) \cdot cov_x$ $ev_x^L = (S^To id_{x^v}) \cdot cov_x$

ex: C= Alg (c) Ob: C-algebras
1-mar. Jumodules

2.mor: maps of bimodules $\forall A \in C$ is dualizable, $A^{V} = A^{ob}$ es: $A^{O} = A^{O} = A^{O}$

 $F_{A}: \quad B_{ov}J_{2}^{fr} \longrightarrow A_{g}C$ $+ \longmapsto A$ $F_{A}(S') = F_{A}(\omega_{A} \cdot \omega \omega_{A}) = A_{\infty}A_{A}^{op}A$

Q. When is $A \in Alg_{\mathfrak{C}}^{(2)}$ fully dualizable? $ev_{\mathfrak{A}}^{\mathfrak{l}}$, $ev_{\mathfrak{A}}^{\mathfrak{R}}$

Want $\operatorname{Hom}_{A\otimes A^{\circ p}}(\operatorname{oo}_{A}^{1}\otimes M,N)\cong\operatorname{Hom}(M,A_{A\otimes A^{\circ p}}\otimes N)$ similarly for $\operatorname{ev}_{A}^{1}$ This implies that $\operatorname{ev}_{A}^{1}=\operatorname{Hom}(A,\mathbb{C})$ $\operatorname{ev}_{A}^{1}=\operatorname{Hom}_{A\otimes A^{\circ p}}(A,A\otimes A^{\circ p})$ Auffices yfor A to be semisimple: $S_{A}={}_{A}A^{*}$ If we want oriented theory we need drivialization of S_{A} $\operatorname{i.e.}_{A}A^{*}={}_{A}A^{*}$

⇒ A is a Fobenius algebra!