Lineare Algebra Tutorium 7 Lösung

Andrea Colarieti Tosti May 29, 2018

1 Aufgabe 1

1.1 i

Da $lin(T) = lin(S) = \sum_{k=1}^{n} \lambda_k v_k$, ist ese leicht daraus zu erkennen dass die zwei Untervektorräume die gleiche Basis $B_S = B_T = \{v_1, ..., v_n\}$.

Da der Austauschsatz sagt: Sei $U \subseteq V$ und V ein K-Vektorraum, gibt es eine mengen linear unabhängige vektoren $v_1, ..., v_n, n \in \mathbb{N}$, die die Basis von V $B_V = \{v_1, ..., v_n\}$ bilden.

Und es gibt eine menge $B_U := \{u_1, ..., u_m\}$ mit $1 \leq m < n, m \in \mathbb{N}$ basis von U, sodass $B_V = \{u_1, ..., u_m, v_{m+1}, ..., v_n\}$.

Merken wir dass die Vektoren aus den Basen von S und T genau die selben sind und daher die Untervektorräume gleich sind.

1.2 ii

Da $S\subseteq T\subseteq V$ können wir den obergenannten Austauschsatz anwenden und die folgende Aussage treffen:

Seien die Basen von S und T bzw. $B_S := \{s_1, ..., s_n\}, \ B_T := \{t_1, ..., t_m\}$ und die Basis von V: $B_V := \{v_1, ..., v_l\}$ mit $1 \le n \le m < l$ und $l, m, n \in \mathbb{N}$, können wir geauso sagen, dass $B_V := \{s_1, ..., s_n, t_{n+1}, ..., t_m, v_{m+1}, ..., v_l\}$. Es lässt sich folgern, dass $lin(S) = \sum_{k=1}^n \lambda_k s_k \subseteq lin(T) = \sum_{k=1}^m \lambda_k t_k$

2 Aufgabe 2

2.1 i

Da ϕ eine lineare abbildung mit der eigenschaft $\phi \circ \phi = \phi$ können wir ohne Zweifel sagen, dass $(\phi \circ \phi)(x) = \phi(\phi(x)) = \phi(x) = x$ also ist das durch ϕ abgebildete Wert immer unverändert. Daraus folgt $Bild(\phi) = \phi(V) = \{v \in V | \phi(v) = v\}$. Beobachtung : $\phi = Id_V$

2.2 ii

```
zz; v - \phi(v) \in ker(\phi) wir haben gerade beobachtet dass \phi = Id_V ist. Also gilt \forall v \in V : v - \phi(v) = v - v = 0_v \in ker(\phi).
```

2.3 iii

```
zz: V = ker(\phi) \oplus \phi(V)
Aus den aussagen (i) und (ii) wissen wir dass ker(\phi) = \{0_V\} und \phi(V) = \{v \in V | \phi(v) = v\}. Wir müssen beweisen, dass V = ker(\phi) + \phi(V) und ker(\phi) \cap \phi(V) = \{0_v\}.
```

Das ist trivial da $Bild(\phi)$, V entspricht und wir aus der Vorlesung wissen, dass $ker(\phi) + \phi(V) \subseteq V$. Es folgt dann $ker(\phi) \cap \phi(V) = \{0_v\} \cap V = 0_v$.

2.4 iv

Sei $\phi = Id_V$ und $x, y \in V$ mit der eigenschaft $x \neq y$.

 $\phi(x) = \phi(y) \Rightarrow x = y$, das wiederspricht die Definition. Also können wir behaupten dass ϕ Injektiv ist.

Sollte $\phi \neq Id_V$ sein. Folgt $\phi(x) \neq x$ besipielweise $\phi(x) = ax$ mit $a \in \mathbb{K}$. $\Rightarrow \phi(x) = \phi(y) \Rightarrow ax = ay$ uund ist genauso injektiv o.O was mache ich falsch? :(

3 Aufgabe 3

3.1i

zz.
$$(D \circ \phi_n) \mathbb{R}$$
 linear ist. Wobei
$$D := P_n \to P_n, \ f \mapsto (f' : I \to \mathbb{R}, x \mapsto \frac{df(x)}{dx})$$
 $\phi_n : \mathbb{R}^{n+1} \to C^0(I, \mathbb{R})$ $\phi_n(v) = p \in C^0(I, \mathbb{R}) \Leftrightarrow$ $(v = \sum_{k=1}^{n+1} a_{k-1} e_k \wedge (\forall x \in i : p(x) = \sum_{k=0}^{n} a_k x^k), a_o, ..., a_n \in \mathbb{R})$

Beweis:

Seien $n \in \mathbb{N}, \ \lambda, a_1, ..., a_n \in \mathbb{R}, b_1, ..., b_n \in \mathbb{R}, x \in I, v, w \in \mathbb{R}^n$ mit v := $(a_1,...,a_n), w := (b_1,...,b_n)$

$$\bullet (D \circ \phi_n(v))(x) + (D \circ \phi_n(w))(x) = (D \circ \phi_n(v+w))(x))$$

$$(D \circ \phi_n(v))(x) + (D \circ \phi_n(w))(x) = D(\sum_{k=0}^n a_k x^k) + D(\sum_{k=0}^n b_k y^k) =$$

$$\sum_{k=0}^{n-1} k a_k x^{k-1} + \sum_{k=0}^{n-1} k b_k x^{k-1} = \sum_{k=0}^{n-1} k a_k x^{k-1} + k b_k x^{k-1}$$

$$(D \circ \phi_n(v+w))(x) = D(\sum_{k=0}^n (a_k + b_k)x^k) = \sum_{k=0}^{n-1} k(a_k + b_k)x^{k-1} = 0$$

$$\sum_{k=0}^{n-1} k a_k x^{k-1} + k b_k x^{k-1}$$

• $\lambda(D \circ \phi_n(v))(x) = (D \circ \phi_n(\lambda v))(x)$

$$\lambda(D\circ\phi_n(v))(x)=\lambda\;D(\sum_{k=0}^na_kx^k)=\lambda\cdot\sum_{k=0}^{n-1}ka_kx^{k-1}=$$

$$\sum_{k=0}^{n-1} \lambda k a_k x^{k-1}$$

$$(D\circ\phi_n(\lambda v))(x)=D(\sum_{k=0}^n\lambda a_kx^k)=\sum_{k=0}^{n-1}k\lambda a_kx^{k-1}$$
 Da die multiplikation in $\mathbb R$ kommutativ ist, sind die 2 aussagen gleich.

Also ist $(D \circ \phi_n)$ \mathbb{R} -Linear.

$$ker(D \circ \phi_n) := \{ x \in I : (\phi_n(v))(x) = 0 \in C^0(I, \mathbb{R}), v \in \mathbb{R}^n \}$$
$$Im(D \circ \phi_n) := \{ (\phi_n(v)) \in C^0(I, \mathbb{R}), v \in \mathbb{R}^n \}$$

3.2 ii

4 Aufgabe 4

4.1 i V^+

Sei $v \in V^+ \subseteq V$ und $V^+ := \{v \in V | \phi(v) = v\}$. Gibt es $v \in V^+ \subseteq V$ sodass $\phi(v) = v$, also ist $V^+ \neq \emptyset$.

Seien $v, w \in V^+ \subseteq V$ gilt $\phi(v) + \phi(w) = v + w = \phi(v + w) \Rightarrow v + w \in V^+$

Sei $v \in V^+ \subseteq V$ und $\lambda \in \mathbb{K}$ gilt $\lambda \phi(v) = \lambda v = \phi(\lambda v) \Rightarrow \lambda v \in V^+$

4.2 i V^-

Sei $v \in V^- \subseteq V$ und $V^- := \{v \in V | \phi(v) = -v\}$. Gibt es $v \in V^- \subseteq V$ sodass $\phi(v) = -v$, also ist $V^- \neq \emptyset$.

Seien $v, w \in V^- \subseteq V$ gilt $\phi(v) + \phi(w) = (-v) + (-w) = -(v+w) = \phi(v+w) \Rightarrow v + w \in V^-$

Sei $v \in V^- \subseteq V$ und $\lambda \in \mathbb{K}$ gilt $\lambda \phi(v) = \lambda(-v) = -(\lambda v) = \phi(\lambda v) \Rightarrow \lambda v \in V^-$

4.3 ii

Wir starten mit der Gleicheit $V = V^+V^-$ und schließen ab mit $V^+ \cap V^- = \{0_n\}$.

 \supseteq : Aus der Vorlesung wissen wir, dass $V^+V^-\supseteq V$ ist.

 \subseteq : Aus der definition von K aus der Übung wissen wir dass $1_k \neq -1_k$, also folgern vir dass ein Vektor v element des K-Vektorraums V zwei möglichen Darstellungen hat: $v_1 = 1_k v$ oder $v_2 = -1_k v = -v$.

Also gilt es $\phi(v_1) = \phi(1_k v_1) = 1_k v_1 \in V^+$ und $\phi(v_2) = \phi(-1_k v_2) - = 1_k v_2 \in V^ \Rightarrow v$ ist zwingend teil von V^+ oder V^- und daraus lässt sich folgern, dass $V = V^+ + V^-$

Es bleibt zu zeigen, dass $V^+ \cap V^- = \{0_v\}$. Wir wissen schon aus der Vorlesung, dass $0_v \in V^+$ sowie $0_v \in V^-$.

Sei $\phi \in V^+ \cap V^-$ müssen wir ein $v \in V$ finden können, sodaß $\phi(v) = \phi(-v) \Rightarrow v = -v$ da $1_k \neq -1_k$ folgt widerspruch. Also ist o_v das einzige elsement in $V^+ \cap V^-$.