DC-DC Converter

B Swaroop Reddy and G V V Sharma*

1

1

2

3

CONTENTS

- 1 Components
- 2 Circuit Operation
- 3 Circuit Assembly
- **4 Fourier Series Analysis of Boost-Converter**

Abstract—This manual provides the design of a DC-DC Boost-Converter.

1 Components

Component	Value	Quantity
Arduino Uno		1
Inductor	5 mH	1
Capacitor	10 uF	1
n-MOS	IRF 540	1
Jumper Wires	M-M	20
Diode		1
Gate Driver	TLP350	1

TABLE I

2 CIRCUIT OPERATION

The boost converter blockdiagram and circuit is shown in Fig. 1 and Fig. 2.

Fig. 1: Block Diagram

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 2: DC-DC boost converter

Problem 2.1. When the switch is ON, the circuit diagram is shown in Fig. 3. Express the voltage across inductor in terms of V_s and V_o and current passing through the capacitor in terms of I_L and I_o when swich is ON.

Fig. 3: Switch in ON state

Solution:

$$V_L(ON) = V_s$$

$$I_C(ON) + I_o = 0$$

$$I_C(ON) = -I_o$$

Problem 2.2. When the switch is OFF, the circuit diagram is shown in Fig. 4. Express the voltage across inductor in terms of V_s and V_o and current passing through the capacitor in terms of I_L and I_o when swich is OFF.

(2.5.1)

Fig. 4: Switch in OFF state

Solution:

$$V_L(OFF) = V_s - V_o$$
$$I_C(OFF) = I_L - I_o$$

Problem 2.3. Find V_o and I_o .

Solution: From Volt-sec Balance

$$V_L(ON)T_{ON} + V_L(OFF)T_{OFF} = 0$$

$$V_sDT - (V_s - V_o)(1 - D)T = 0$$

$$V_o = \frac{V_s}{(1 - D)}$$

Where D is Duty cycle

From Amp-sec Balance

$$-I_o DT + (I_L - I_o)(1 - D)T = 0$$

$$I_o = \frac{I_L}{(1 - D)}$$

Problem 2.4. Express L interms of D, V_s , $f = \frac{1}{T}$ and ΔI_L .

Where ΔI_L is Ripple in the inductor current i.e maximum change in the inductor current from ON state to OFF state .

Solution:

$$V_{L}(ON) = V_{s}$$

$$L\frac{di_{ON}}{dt_{ON}} = V_{s}$$

$$L\frac{\Delta I_{L}}{DT} = V_{s}$$

$$L = \frac{DV_{s}}{\Delta I_{L} f}$$
(2.4.1)

Problem 2.5. Express C in terms of I_o , D, ΔV_o and

$$f = \frac{1}{T}.$$
Solution: $\Delta V_C = \Delta V_o$
During ON state, $I_C = -I_o$

$$C \frac{dV_C}{dt_{ON}} = -I_o$$

$$\int_{V_{max}}^{V_{min}} dV_C = \int_0^{DT} \frac{-I_o}{C} dt$$

$$V_{min} - V_{max} = \frac{-I_o}{C} DT$$

 $-\Delta V_o = \frac{-DI_o}{Cf}$

 $C = \frac{DI_o}{f \Lambda V_o}$

Problem 2.6. Assume,

Input Voltage $(V_s) = 5V$ Output Voltage $(V_o) = 10V$ $\Delta I_L = 5\%$ of I_L $\Delta V_o = 7\%$ of V_o

Let $R = 10\Omega$ (for $I_o = 1A$) Calculate L and C.

3 CIRCUIT ASSEMBLY

Problem 3.1. Assemble the Boost converter circuit according to Figs. 2, 5 and Table II.

TLP350	1	2	3	4	5	6	7	8
ARDUINO	NA	13	GND	NA			NA	
					-5 V	10 Ω		12 V
MOSFET					S	G		

TABLE II: Pin Connections

Problem 3.2. Program the arduino to generate a square wave with *Duty Cycle D* = 0.5 and frequency f = 5KHz.

Solution:

```
void setup() {
   pinMode(13,OUTPUT);

void loop() {
   digitalWrite(13,LOW);
   delayMicroseconds(100);
   digitalWrite(13,HIGH);
   delayMicroseconds(100);
```

Pin Configuration

- 1: N.C.
- 2: Anode
- 3: Cathode
- 4: N.C.
- 5 : GND
- 6 : V_O (Output)
- 7 : V_O
- 8 : V_{CC}

Fig. 5: TLP350

}

4 Fourier Series Analysis

Problem 4.1. Do the Fourier analysis for the boost converter.

Problem 4.2. Write a Python script for the Fourier analysis.