Data una funzione y=f(x) sia ${\bf D}$ il suo dominio e sia ${\it x_0}$ un punto di accumulazione per il dominio

$\lim_{x \to x_0} f(x) = l$	$\xrightarrow{\ell}_{x_0}$	$\forall I_{l} \exists I_{x_{0}} : \forall x \in (I_{x_{0}} \cap D) - \{x_{0}\} \Rightarrow f(x) \in I_{l}$ $\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in D : 0 \neq x - x_{0} < \delta \Rightarrow f(x) - l < \varepsilon$ $\forall \varepsilon > 0 \exists I_{x_{0}} : \forall x \in (I_{x_{0}} \cap D) - \{x_{0}\} \Rightarrow f(x) - l < \varepsilon$
$\lim_{x \to x_0} f(x) = +\infty$	\downarrow	$\forall I_{+\infty} \exists I_{x_0} : \forall x \in (I_{x_0} \cap D) - \{x_0\} \Rightarrow f(x) \in I_{+\infty}$ $\forall M > 0 \exists \delta > 0 : \forall x \in D : 0 \neq x - x_0 < \delta \Rightarrow f(x) > M$ $\forall M > 0 \exists I_{x_0} : \forall x \in (I_{x_0} \cap D) - \{x_0\} \Rightarrow f(x) > M$
$\lim_{x \to x_0} f(x) = -\infty$	**************************************	$\forall I_{-\infty} \exists I_{x_0} : \forall x \in (I_{x_0} \cap D) - \{x_0\} \Rightarrow f(x) \in I_{-\infty}$ $\forall M > 0 \exists \delta > 0 : \forall x \in D : 0 \neq x - x_0 < \delta \Rightarrow f(x) < -M$ $\forall M > 0 \exists I_{x_0} : \forall x \in (I_{x_0} \cap D) - \{x_0\} \Rightarrow f(x) < -M$
$\lim_{x \to +\infty} f(x) = l$	<i>ℓ</i> → →	$\forall I_{l} \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) \in I_{l}$ $\forall \varepsilon > 0 \exists N > 0 : \forall x \in D : x > N \Rightarrow f(x) - l < \varepsilon$ $\forall \varepsilon > 0 \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) - l < \varepsilon$
$\lim_{x \to +\infty} f(x) = +\infty$		$\forall I_{(+\infty)} \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) \in I_{(+\infty)}$ $\forall M > 0 \exists N > 0 : \forall x \in D : x > N \Rightarrow f(x) > M$ $\forall M > 0 \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) > M$
$\lim_{x \to +\infty} f(x) = -\infty$	→ → → → → → → → → → → → → → → → → → →	$\forall I_{(-\infty)} \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) \in I_{(-\infty)}$ $\forall M > 0 \exists N > 0 : \forall x \in D : x > N \Rightarrow f(x) < -M$ $\forall M > 0 \exists I_{(+\infty)} : \forall x \in (I_{(+\infty)} \cap D) \Rightarrow f(x) < -M$
$\lim_{x \to -\infty} f(x) = l$		$\forall I_{l} \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) \in I_{l}$ $\forall \varepsilon > 0 \exists N > 0 : \forall x \in D : x < -N \Rightarrow f(x) - l < \varepsilon$ $\forall \varepsilon > 0 \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) - l < \varepsilon$
$\lim_{x \to -\infty} f(x) = +\infty$		$\forall I_{(+\infty)} \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) \in I_{(+\infty)}$ $\forall M > 0 \exists N > 0 : \forall x \in D : x < -N \Rightarrow f(x) > M$ $\forall M > 0 \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) > M$
$\lim_{x \to -\infty} f(x) = -\infty$	<u></u>	$\forall I_{(-\infty)} \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) \in I_{(-\infty)}$ $\forall M > 0 \exists N > 0 : \forall x \in D : x < -N \Rightarrow f(x) < -M$ $\forall M > 0 \exists I_{(-\infty)} : \forall x \in (I_{(-\infty)} \cap D) \Rightarrow f(x) < -M$