Adaptive regularization without function values

Sadok Jerad^{1,2} with Serge Gratton ^{1,2} and Philippe L.Toint³

¹IRIT-APO

²Toulouse INP-ENSEEIHT

³University of Namur

Siam OP, May 2023

Table of Contents

- 1 Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- Numerical experiments
- 4 Conclusion

Approximately solving the non convex problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

with a robust deterministic algorithm.

Approximately solving the non convex problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

with a robust deterministic algorithm. Advantages:

- Inexact arithmetic.
- Results from simulations.

Approximately solving the non convex problem

$$\min_{x\in\mathbb{R}^n}f(x)$$

with a robust deterministic algorithm. Advantages:

- Inexact arithmetic.
- Results from simulations.

→ Devise an algorithm that do not evaluate the function.

Approximately solving the non convex problem

$$\min_{x\in\mathbb{R}^n}f(x)$$

with a robust deterministic algorithm. Advantages:

- Inexact arithmetic.
- Results from simulations.

- → Devise an algorithm that do not evaluate the function. Adaptive gradient methods :
 - Adagrad [?], WNGrad [?].
 - Adam [?].

Contributions

Determistic OFFO

- pth order information.
- Optimal complexity rate.
 to approximately solve the non-convex unconstrained problem

$$\min_{x\in\mathbb{R}^n}f(x).$$

Contributions

Determistic OFFO

- pth order information.
- Optimal complexity rate.
 to approximately solve the non-convex unconstrained problem

$$\min_{x\in\mathbb{R}^n}f(x).$$

OFFO: Objective Free Function Optimization Current Higher Order OFFO:

Trust region of ?. Matches $\mathcal{O}\left(\epsilon^{-2}\right)$ rate of Vanilla TR when searching

$$\|\nabla f(x_{\epsilon})\| \leq \epsilon.$$

Table of Contents

- Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- Numerical experiments
- 4 Conclusion

- Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- Numerical experiments
- Conclusion

ARp methods

Assumptions

- AS.1 f is a differentiable function.
- AS.2 $\nabla^p f$ is a Lipschitz function with constant L_p .
- AS.3 f is lower bounded by f_{low} .
- AS.4 $\min_{\|d\| \le 1} \nabla_x^i f(x)[d]^i \ge -\kappa_{\text{high}}$ for $i \in \{2, \dots, p\}$.

$$T_{f,p}(x,s) \stackrel{\mathrm{def}}{=} f(x) + \sum_{i=1}^{p} \frac{1}{i!} \nabla_x^i f(x)[s]^i,$$

$$m_k(s) \stackrel{\mathrm{def}}{=} T_{f,p}(x_k,s) + \frac{\sigma_k}{(p+1)!} \|s_k\|^{p+1}.$$

By adapting σ_k with f values and under AS.1-AS.3, complexity rate in $\mathcal{O}\left(\epsilon^{-p+1/p}\right)$ [?].

Algorithm presentation

Algorithm 1: OFFO-ARp Algorithm

Input: x_0 , $\epsilon \in (0,1]$, $\sigma_0 > 0$, $\theta_1 > 1$ and k = 0.

Output: x_{ϵ} : an approximate first order point.

Evaluate $\{\nabla_x^i f(x_0)\}_{i=1}^p$.

Algorithm presentation

Algorithm 2: OFFO-ARp Algorithm

Input: x_0 , $\epsilon \in (0,1]$, $\sigma_0 > 0$, $\theta_1 > 1$ and k = 0.

Output: x_{ϵ} : an approximate first order point.

Evaluate $\{\nabla_x^i f(x_0)\}_{i=1}^p$.

while $\|\nabla_x^1 f(x_k)\| > \epsilon$ do

Compute s_k

$$\|\nabla_s^1 T_{f,p}(x_k,s_k)\| \leq \frac{\theta_1 \sigma_k}{p!} \|s_k\|^p, \quad m_k(s_k) \leq m_k(0)$$

$$x_{k+1} \leftarrow x_k + s_k$$

$$\sigma_{k+1} \leftarrow \sigma_k + \sigma_k \|s_k\|^{p+1}$$

$$k \leftarrow k + 1$$

Generate new tensors $\{\nabla_x^i f(x_k)\}_{i=1}^p$.

Comments

- s_k approximate local minimum of m_k .
- p = 1,

$$\sigma_{k+1} = \sigma_k + \frac{\|g_k\|^2}{\sigma_k}$$

retrives WNGRAD [?].

- σ_k is a non-decreasing sequence.
- No decrease ratio computation $\rho_k = \frac{f(x_k) f(x_k + s_k)}{m_k(0) m_k(s_k)}$.

Basic properties

Recall that

$$T_{f,p}(x_k,s)\stackrel{\mathrm{def}}{=} f(x_k) + \sum_{i=1}^p \frac{1}{i!} \nabla_x^i f(x_k)[s]^i.$$

Lipschitz error bound [?]:

$$f(x_{k+1}) - T_{f,p}(x_k,s) \le \frac{L_p}{(p+1)!} ||s_k||^{p+1},$$

$$\left| \|\nabla_x^1 f(x_{k+1}) - \nabla_s^1 T_{f,p}(x_k,s)\| \le \frac{L_p}{(p+1)!} \|s_k\|^{p+1}. \right|$$

Basic properties

Recall that

$$T_{f,p}(x_k,s) \stackrel{\mathrm{def}}{=} f(x_k) + \sum_{i=1}^p \frac{1}{i!} \nabla_x^i f(x_k)[s]^i.$$

Lipschitz error bound [?]:

$$f(x_{k+1}) - T_{f,p}(x_k,s) \leq \frac{L_p}{(p+1)!} ||s_k||^{p+1},$$

$$\left| \|\nabla_{\mathsf{x}}^{1} f(\mathsf{x}_{k+1}) - \nabla_{\mathsf{s}}^{1} T_{f,p}(\mathsf{x}_{k},\mathsf{s}) \| \leq \frac{L_{p}}{(p+1)!} \|\mathsf{s}_{k}\|^{p+1}. \right|$$

Model's decrease

$$f(x_k) - T_{f,p}(x_k, s_k) \ge \frac{\sigma_k}{(p+1)!} \|s_k\|^{p+1}.$$

If $\sigma_p \geq 2L_p$,

$$f(x_p) - f(x_{p+k+1}) \ge \sum_{j=p}^{p+k} \frac{\sigma_j}{2(p+1)!} ||s_j||^{p+1}.$$

Evolution of the regularization

Proof's steps

Recall

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}.$$

Steps

- Show that $k_1 = \mathcal{O}\left(\epsilon^{-(p+1)/p}\right)$.
- Bound σ_{k_1} .
- Bound $f(x_{k_1})$.
- Proof that $\sigma_k \leq \sigma_{\max}$ when $k \geq k_1$.

Can reuse classical arguments from [?] and derive $\mathcal{O}\left(\epsilon^{-(p+1)/p}\right)$.

$$k_1 = \mathcal{O}\left(\epsilon^{-(p+1)/p}\right)$$

Lipschitz error + Inexact condition on the step

$$\left|\|\nabla_x^1 f(x_{k+1})\| \leq \frac{L_p + \theta_1 \sigma_k}{p!} \|s_k\|^p.$$

$$k_1 = \mathcal{O}\left(\epsilon^{-(p+1)/p}\right)$$

Lipschitz error + Inexact condition on the step

$$\|\nabla_x^1 f(x_{k+1})\| \leq \frac{L_p + \theta_1 \sigma_k}{p!} \|s_k\|^p.$$

Proof

$$\begin{aligned} 2L_{p} &\geq \sigma_{k_{1}-1} = \sigma_{0} + \sum_{j=0}^{k_{1}-2} \sigma_{j} \|s_{j}\|^{p+1} \geq \sum_{j=0}^{k_{1}-2} \sigma_{j} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{L_{p} + \theta_{1} \sigma_{j}} \right)^{\frac{p+1}{p}} \\ &\geq \sum_{j=0}^{k_{1}-2} \frac{1}{\sigma_{j}^{\frac{1}{p}}} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{\frac{L_{p}}{\sigma_{j}} + \theta_{1}} \right)^{\frac{p+1}{p}} \\ &\geq \sum_{j=0}^{k_{1}-2} \frac{1}{(2L_{x})^{\frac{1}{p}}} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{\frac{L_{p}}{\sigma_{j}} + \theta_{1}} \right)^{\frac{p+1}{p}} \geq \frac{k_{1}-1}{(2L_{x})^{\frac{1}{p}}} \left(\frac{p! \epsilon}{\frac{L_{p}}{\rho} + \theta_{1}} \right)^{\frac{p+1}{p}}. \end{aligned}$$

$$k_1 = \mathcal{O}\left(\epsilon^{-(p+1)/p}\right)$$

Lipschitz error + Inexact condition on the step

$$\|\nabla_x^1 f(x_{k+1})\| \leq \frac{L_p + \theta_1 \sigma_k}{p!} \|s_k\|^p.$$

Proof

$$2L_{p} \geq \sigma_{k_{1}-1} = \sigma_{0} + \sum_{j=0}^{k_{1}-2} \sigma_{j} \|s_{j}\|^{p+1} \geq \sum_{j=0}^{k_{1}-2} \sigma_{j} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{L_{p} + \theta_{1} \sigma_{j}}\right)^{\frac{p+1}{p}}$$

$$\geq \sum_{j=0}^{k_{1}-2} \frac{1}{\sigma_{j}^{\frac{1}{p}}} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{\frac{L_{p}}{\sigma_{j}} + \theta_{1}}\right)^{\frac{p+1}{p}}$$

$$\geq \sum_{j=0}^{k_{1}-2} \frac{1}{(2L_{p})^{\frac{1}{p}}} \left(\frac{p! \|\nabla_{x}^{1} f(x_{j+1})\|}{\frac{L_{p}}{\sigma_{j}} + \theta_{1}}\right)^{\frac{p+1}{p}} \geq \frac{k_{1}-1}{(2L_{p})^{\frac{1}{p}}} \left(\frac{p! \epsilon}{\frac{L_{p}}{\sigma_{j}} + \theta_{1}}\right)^{\frac{p+1}{p}}.$$

$$k_1 = \mathcal{O}\left(\epsilon^{\frac{-(p+1)}{p}}\right).$$

Bounding σ_{k_1} and $f(x_{k_1})$

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}.$$

As for $i \in \{2, \ldots, p\}$

$$\min_{\|d\| \le 1} \nabla_x^i f(x) [d]^i \ge -\kappa_{\text{high}}.$$

Step's Bound

$$\|s_k\| \leq 2\eta + 2\left(\frac{(p+1)!\|\nabla_x^1 f(x_k)\|}{\sigma_k}\right)^{\frac{1}{p}},$$

with η depending on $\kappa_{\text{\tiny high}}$ only.

Bounding σ_{k_1} and $f(x_{k_1})$

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}.$$

As for $i \in \{2, \ldots, p\}$

$$\min_{\|d\| \le 1} \nabla_x^i f(x) [d]^i \ge -\kappa_{\text{high}}.$$

Step's Bound

$$\|s_k\| \leq 2\eta + 2\left(\frac{(p+1)!\|\nabla_x^1 f(x_k)\|}{\sigma_k}\right)^{\frac{1}{p}},$$

with η depending on $\kappa_{\mbox{\tiny high}}$ only. Since

$$\sigma_{k_1} = \sigma_{k_1-1} + \sigma_{k_1-1} \| s_{k_1-1} \|^{p+1}$$

+ other properties

Elements of the rest of the proof

Bound on $f(x_{k_1})$

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}, \ \sigma_{k_1} \leq \kappa_c,$$

$$\kappa_c \ge \sigma_{k_1} = \sigma_0 + \sum_{j=0}^{k_1-1} \sigma_j \|s_j\|^{p+1} \ge \sigma_0 + \sigma_0 \sum_{j=0}^{k_1-1} \|s_j\|^{p+1}$$

Lipschitz error bound in $||s_k||^{p+1}$, $f(x_{k_1})$ is bounded.

Elements of the rest of the proof

Bound on $f(x_{k_1})$

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}, \ \sigma_{k_1} \leq \kappa_c,$$

$$\kappa_c \ge \sigma_{k_1} = \sigma_0 + \sum_{j=0}^{k_1-1} \sigma_j \|s_j\|^{p+1} \ge \sigma_0 + \sigma_0 \sum_{j=0}^{k_1-1} \|s_j\|^{p+1}$$

Lipschitz error bound in $||s_k||^{p+1}$, $f(x_{k_1})$ is bounded.

Bound on σ_k

$$f(x_{k_1}) - f_{\text{low}} \ge f(x_{k_1}) - f(x_{k_1+k+1}) \ge \sum_{j=k_1}^{k_1+k} \frac{\sigma_j}{2(p+1)!} ||s_j||^{p+1}$$

$$= \frac{\sigma_{k_1+k+1} - \sigma_{k_1}}{2(p+1)!}.$$

First order complexity

Standard arguments of [?] + derived results, $\mathcal{O}\left(\epsilon^{\frac{-(p+1)}{p}}\right) \text{ iterations required to reach } \|\nabla_x^1 f(x)\| \leq \epsilon.$

First order complexity

Standard arguments of [?] + derived results, $\mathcal{O}\left(\epsilon^{\frac{-(\rho+1)}{p}}\right) \text{ iterations required to reach } \|\nabla^1_{\mathsf{x}} f(\mathsf{x})\| \leq \epsilon.$

Comments

- Same rate as vanilla ARp [?].
- For p = 2, equal to ARC method [?]. Optimal rate for second order methods [??].
- Optimal rates for exact pth order methods [?].

- 1 Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- Numerical experiments
- Conclusion

Algorithm 3: MOFFO-ARp Algorithm

Input: x_0 , ϵ_1 , $\epsilon_2 \in (0,1]$, $\sigma_0 > 0$, $\theta_1, \theta_2 > 1$ and k = 0.

Output: x_{ϵ} : an approximate second order point.

Evaluate $\{\nabla_x^i f(x_0)\}_{i=1}^p$.

Algorithm 4: MOFFO-AR*p* Algorithm

Input: x_0 , ϵ_1 , $\epsilon_2 \in (0,1]$, $\sigma_0 > 0$, $\theta_1, \theta_2 > 1$ and k = 0.

Output: x_{ϵ} : an approximate second order point.

Evaluate $\{\nabla_x^i f(x_0)\}_{i=1}^p$.

while
$$\|\nabla_x^1 f(x_k)\| > \epsilon$$
 and $\max(0, -\lambda_{\min}[\nabla_x^2 f(x_k)]) > \epsilon_2$ do

Compute s_k

$$\|\nabla_s^1 T_{f,p}(x_k,s_k)\| \leq \frac{\theta_1 \sigma_k}{p!} \|s_k\|^p, \quad m_k(s_k) \leq m_k(0)$$

$$\max \left(0, -\lambda_{\min} \left[\nabla_s^2 T_{f,p}(x_k, s_k)\right]\right) \leq \frac{\theta_2 \sigma_k}{(p-1)!} \|s_k\|^{p-1}$$

$$x_{k+1} \leftarrow x_k + s_k$$

$$\sigma_{k+1} \leftarrow \sigma_k + \sigma_k \|s_k\|^{p+1}$$

$$k \leftarrow k + 1$$

Generate new tensors $\{\nabla^i f(x_k)\}_{i=1}^p$

Complexity rate derivation

Recall

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}.$$

Steps

- Show that $k_1 = \mathcal{O}\left(\epsilon_1^{-(p+1)/p}, \epsilon_2^{-(p+1)/(p-1)}\right)$.
- Bound σ_{k_1} and $f(x_{k_1})$.
- Proof that $\sigma_k \leq \sigma_{\max}$ when $k \geq k_1$.

Complexity rate derivation

Recall

$$k_1 \stackrel{\text{def}}{=} \inf\{k \geq 0 \mid \sigma_k \geq 2L_p\}.$$

Steps

- Show that $k_1 = \mathcal{O}\left(\epsilon_1^{-(p+1)/p}, \epsilon_2^{-(p+1)/(p-1)}\right)$.
- Bound σ_{k_1} and $f(x_{k_1})$.
- Proof that $\sigma_k \leq \sigma_{\max}$ when $k \geq k_1$.

Comments

- Same complexity results as standard ARp [?].
- For p=2, $\mathcal{O}\left(\epsilon_1^{-3/2}, \epsilon_2^{-3}\right)$.

Table of Contents

- Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- Numerical experiments
- 4 Conclusion

Regularization parameter in practice

Recall that

$$\sigma_{k+1} \leftarrow \sigma_k + \sigma_k ||s_k||^{p+1}$$
.

No local adaptivity

Regularization parameter in practice

Recall that

$$\sigma_{k+1} \leftarrow \sigma_k + \sigma_k \|s_k\|^{p+1}.$$

No local adaptivity

$$\nu_{k+1} \leftarrow \nu_k + \nu \|s_k\|^{p+1}.$$

Propose

$$\sigma_k \in [\vartheta \sigma_k, \max(\nu_k, \mu_k)] \quad , \vartheta \in (0, 1].$$

With $\mu_k \lesssim L_p$. Still same complexity rates. See [?].

Numerical experiments framework

- A set of 117 small dimensional CUTEst problems (OPM: Matlab library).
- Baseline: standard AR2 of ? with function values.
- Increasing levels of relative Gaussian noise (both in function values and derivatives): 0%, 5%, 15%, 25%, 50%. E.g.: $[g_k]_i = [\nabla_x(x_k)]_i (1 + \phi \mathcal{N}(0, 1))$.
- Approximate first order point with $\epsilon = 1e-6$.

Metrics

- a performance measure : π_{algo} (See [?]).
- a reliability ratio : $\rho_{\rm algo}$.

Numerical performances

With exact values

Metric		_
Algorithm	$\pi_{ m algo}$	$ ho_{ m algo}$
AR2	0.97	95.8
OFFOAR2	0.79	88.24

When f is available and no noise, better use standard algorithm.

Numerical performances

With exact values

Metric		_
Algorithm	$\pi_{ m algo}$	$ ho_{ m algo}$
AR2	0.97	95.8
OFFOAR2	0.79	88.24

When f is available and no noise, better use standard algorithm. $\rho_{\rm algo}$ for noisy experiences

Noise level Algorithm	5%	10%	25%	50%
AR2	43.7	31.26	26.3	10
OFFOAR2	86.05	82.1	79.83	68.99

Better performance for noisy problems without specific adaptation.

Table of Contents

- Intdroduction and problem formulation
- 2 Adaptive Regularizations without evaluations
 - First order algorithm
 - Second order algorithm
- 3 Numerical experiments
- 4 Conclusion

Conclusion

Recap

- Adaptive regularization methods with no function evaluation.
- Optimal complexity.
- Promising initial numerical results in noisy settings.
- Sharp Bounds [?].

Conclusion

Recap

- Adaptive regularization methods with no function evaluation.
- Optimal complexity.
- Promising initial numerical results in noisy settings.
- Sharp Bounds [?].

Extensions

- β Hölder pth derivative.
- Non euclidean norm [?].

Accepted by Siopt.

Perspectives

Probabilistic framework [??] ?

For more details; See https://arxiv.org/pdf/2203.09947.pdf.

Perspectives

Probabilistic framework [??] ?

For more details; See https://arxiv.org/pdf/2203.09947.pdf. Thank for your attention.

References I

