

Übungsblatt 2

Mathematik I - Theoretische Informatik

HWR Berlin, Wintersemester 2024

Prof. Dr.-Ing. Sebastian Schlesinger

Aufgabe 1 (Verbände) (6 Punkte)

Ein Verband ist eine Menge V zusammen mit Operationen $\neg, \sqcup : V \times V \to V$, so dass gilt:

- ▶ Assoziaivität: $a \sqcap (b \sqcap c) = (a \sqcap b) \sqcap c$ und $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$ für alle $a, b, c \in V$.
- ▶ Kommutativität: $a \sqcap b = b \sqcap a$ und $a \sqcup b = b \sqcup a$ für alle $a, b \in V$.
- ▶ Verschmelzung: $a \sqcap (a \sqcup b) = a$ und $a \sqcup (a \sqcap b) = a$ für alle $a, b \in V$.
- a) Zeigen Sie, dass die Potenzmenge einer Menge M zusammen mit den Operationen $\sqcap = \cap$ und $\sqcup = \cup$ einen Verband bildet. Zeichnen Sie auch das Hasse-Diagramm für die Potenzmenge der Menge $\{a,b,c\}$ und machen Sie sich die Operationen klar.
- b) Zeigen Sie, dass die Menge der natürlichen Zahlen zusammen mit den Operationen \sqcap = min und \sqcup = max einen Verband bildet. Zeichnen Sie auch das Hasse-Diagramm für die Menge $\{1,2,3\}$ und machen Sie sich die Operationen klar.
- c) Zeigen Sie, dass die Menge der Teiler einer natürlichen Zahl n zusammen mit den Operationen $\square = \gcd$ und $\square = lcm$ einen Verband bildet. Zeichnen Sie auch das Hasse-Diagramm für die Menge der Teiler von 12 und machen Sie sich die Operationen klar.

Aufgabe 2 (Idempotenzgesetz)

(3 Punkte)

Zeigen Sie das Idempotenzgesetz für Verbände: $a \sqcap a = a$ und $a \sqcup a = a$ für alle $a \in V$.

Aufgabe 3 (Beweis Zusammenhang inf und sup)

(3 Punkte)

Zeigen Sie $\forall u, v \in V : u \sqcap v = u \Leftrightarrow u \sqcup v = v$ in einem Verband V.

Aufgabe 4 (Induzierter Verband)

(10 Punkte)

Sei (V, \sqsubseteq) eine Ordnung, $W \subseteq V$. Macht Euch zunächst nochmal die folgenden Begriffe klar:

- ▶ minimales Element, maximales Element von W
- ightharpoonup größtes Element, kleinstes Element von W
- \triangleright obere, untere Schranke von W
- ightharpoonup Supremum, Infimum von W
- a) Zeigen Sie (bzw. macht Euch klar), dass für $w_1, ..., w_n \in V$ gilt: $\inf(w_1, ..., 1_n) \sqsubseteq w_i$ für alle $i \in \{1, ..., n\}$ und $w_i \sqsubseteq \sup(w_1, ..., w_n)$ für alle $i \in \{1, ..., n\}$.
- b) Zeigen Sie, dass (V, \sqcup, \sqcap) einen Verband bildet, wenn \sqcup = sup und \sqcap = inf gesetzt wird und je zwei Elemente ein Supremum und ein Infimum besitzen, also $\inf(u, v) = u \sqcap v$ und $\sup(u, v) = u \sqcup v$ für alle $u, v \in V$.

Aufgabe 5 (Induzierte Ordnung)

(5 Punkte)

Sei (V, \sqcap, \sqcup) ein Verband. Definiere eine Ordnung \sqsubseteq auf V durch $a \sqsubseteq b \Leftrightarrow a \sqcap b = a$. Zeigen Sie, dass (V, \sqsubseteq) eine Ordnung ist.

Aufgabe 6 (Homomorphismen von Verbänden)

(2 Punkte)

Geben Sie Beispiele für Homomorphismen von Verbänden an.

Aufgabe 7 (Beweis im Kalkül des natürlichen Schließens)

(8 Punkte)

Beweisen Sie im Kalkül des natürlichen Schließens:

a)
$$\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (A \land B \rightarrow C)$$

b)
$$\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

c)
$$\vdash \neg (A \lor B) \to (\neg A \land \neg B)$$

d)
$$\forall x(\neg P(x) \rightarrow Q(x)), \neg Q(t) \vdash P(t)$$

Aufgabe 8 (Beweis im Sequenzenkalkül)

(4 Punkte)

Beweisen Sie im Sequenzenkalkül:

a)
$$\vdash \neg (A \lor B) \rightarrow (\neg A \land \neg B)$$

b)
$$\vdash \forall x. P(x) \land \forall x. Q(x) \rightarrow \forall y. (P(y) \land Q(y))$$