Group_27

Stage 1: Exploratory Data Analysis (EDA)

1. Import data and packages

```
library(dplyr)
library(ggplot2)
library(janitor)
library(car)

# Import dataset
clean_data <- read.csv("C:\\Users\\2980157G\\Downloads\\cleaned_dataset27_1.1.csv")</pre>
```

2. Check data structure and summary statistics

```
# Check structure
str(clean_data)
```

```
# Summary statistics
summary(clean_data)
```

Age	Education	Marital_Status	$\mathtt{Occupation}$	
Min. :17.00	Length: 1376	Length: 1376	Length: 1376	
1st Qu.:28.00	Class :character	Class :character	Class :character	
Median :38.00	Mode :character	Mode :character	Mode :character	
Mean :38.89				
3rd Qu.:47.00				
Max. :90.00				
Sex	Hours_PW	Nationality	Income	
sex	HOULS_FW	Nationality	THCOME	
Length: 1376	Min. : 3.00	Length: 1376	Length: 1376	
	Min. : 3.00	v		
Length:1376	Min. : 3.00 1st Qu.:40.00	Length:1376	Length: 1376	
Length:1376 Class:character	Min. : 3.00 1st Qu.:40.00	Length:1376 Class:character	Length:1376 Class :character	
Length:1376 Class:character	Min. : 3.00 1st Qu.:40.00 Median :40.00	Length:1376 Class:character	Length:1376 Class :character	
Length:1376 Class:character	Min.: 3.00 1st Qu.:40.00 Median:40.00 Mean:41.18	Length:1376 Class:character	Length:1376 Class :character	

3. Visualize the income distribution

```
# Bar plot for income distribution
ggplot(clean_data, aes(x = Income)) +
  geom_bar(fill = "skyblue") +
  labs(title = "Income Distribution", x = "Income Category", y = "Count")
```


4. Explore categorical variables' relationship with income

```
# Stacked bar plots for categorical variables
categorical_vars <- c("Education", "Occupation", "Sex", "Marital_Status")
lapply(categorical_vars, function(var) {
    ggplot(clean_data, aes_string(x = var, fill = "Income")) +
        geom_bar(position = "fill") +
        coord_flip() +
        labs(title = paste("Income vs", var))
})</pre>
```

```
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
i Please use tidy evaluation idioms with `aes()`.
i See also `vignette("ggplot2-in-packages")` for more information.
```

[[1]]

[[2]]

[[3]]

[[4]]

5. Check category balance

```
# Check proportion of income categories
prop.table(table(clean_data$Income))
```

```
<=50K >50K
0.747093 0.252907
```

6. Establish Logistic Regression Model

```
family = binomial(link = "logit"))
summary(model)
```

Call:

```
glm(formula = Income ~ Age + Education + Marital_Status + Occupation +
    Sex + Hours_PW + Nationality, family = binomial(link = "logit"),
    data = clean_data)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-5.090717	0.714610	-7.124	1.05e-12	***
Age	0.025900	0.007460	3.472	0.000517	***
EducationBachelors	-0.437211	0.302472	-1.445	0.148329	
EducationBasic Education	-2.765322	0.630528	-4.386	1.16e-05	***
EducationCollege Education	-0.692475	0.305703	-2.265	0.023501	*
EducationHigh School	-1.077803	0.316860	-3.402	0.000670	***
Marital_StatusMarried	2.750066	0.274474	10.019	< 2e-16	***
${\tt Marital_StatusNever-married}$	-0.268038	0.355729	-0.753	0.451155	
OccupationBlue-Collar	-0.040757	0.331201	-0.123	0.902062	
OccupationFarming-fishing	-2.770325	0.864437	-3.205	0.001352	**
OccupationSales	0.594309	0.339475	1.751	0.080003	
OccupationService	-0.390250	0.393379	-0.992	0.321175	
OccupationWhite-Collar	1.204002	0.310606	3.876	0.000106	***
SexMale	-0.267497	0.233600	-1.145	0.252165	
Hours_PW	0.044293	0.007863	5.633	1.77e-08	***
NationalityUnited-States	-0.105831	0.301564	-0.351	0.725633	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1556.27 on 1375 degrees of freedom Residual deviance: 966.68 on 1360 degrees of freedom

AIC: 998.68

Number of Fisher Scoring iterations: 6

7. Check for multicollinearity

```
# Variance Inflation Factor (VIF) test
vif(model)
```

```
GVIF Df GVIF^(1/(2*Df))
Age
              1.142520 1
                                 1.068887
Education
              1.620551 4
                                 1.062204
Marital_Status 1.522199 2
                                 1.110754
                                 1.062561
Occupation
              1.834595 5
Sex
              1.464875 1
                                 1.210320
Hours_PW
              1.143694 1
                                 1.069436
Nationality
              1.064644 1
                                 1.031816
```

8. Visualize numeric variables against income

```
# Box plot for Hours per Week
ggplot(clean_data, aes(x = as.factor(Income), y = Hours_PW)) +
  geom_boxplot() +
  labs(title = "Income vs Hours Worked per Week", x = "Income", y = "Hours per Week")
```

Income vs Hours Worked per Week


```
# Box plot for Age
ggplot(clean_data, aes(x = as.factor(Income), y = Age)) +
  geom_boxplot() +
  labs(title = "Income vs Age", x = "Income", y = "Age")
```

Income vs Age

