SEQUENCE LISTING

```
<110> Rosen, Craig A.
             Haseltine, William A.
       <120> Albumin Fusion Proteins
       <130> PF548
       <140> Unassigned
       <141> 2001-04-12
       <150> 60/229,358
       <151> 2000-04-12
       <150> 60/256,931
       <151> 2000-12-21
       <150> 60/199,384
       <151> 2000-04-25
       <160> 72
       <170> PatentIn Ver. 2.1
114
į, į
       <210> 1
į., į.,
       <211> 23
<212> DNA
       <213> Artificial Sequence
1.4
       <220>
: #4)
pp: 124
       <221> primer_bind
£:£
       <223> primer useful to clone human growth hormone cDNA
fil
£.J
       <400> 1
cccaagaatt cccttatcca ggc
                                                                             23
       <210> 2
       <211> 33
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> primer useful to clone human growth hormone cDNA
       <400> 2
       gggaagctta gaagccacag gatccctcca cag
                                                                             33
       <210> 3
       <211> 16
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_structure
       <223> synthetic oligonucleotide used to join DNA fragments
       with non-cohesive ends.
```

```
<400> 3
                                                                              16
       gataaagatt cccaac
       <210> 4
       <211> 17
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_structure
       <223> synthetic oligonucleotide used to join DNA fragments
       with non-cohesive ends.
       <400> 4
                                                                              17
       aattgttggg aatcttt
       <210> 5
13
       <211> 17
Ł,
       <212> DNA
fij
       <213> Artificial Sequence
[.]
ЦIJ
       <220>
Ē.5
       <221> misc_structure
å : å,
       <223> synthetic oligonucleotide used to join DNA fragments
į, į
       with non-cohesive ends.
ilmi
ilmi
       <400> 5
                                                                              17
       ttaggcttat tcccaac
å å
F
       <210> 6
13
       <211> 18
ļ.,
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_structure
       <223> synthetic oligonucleotide used to join DNA fragments
       with non-cohesive ends.
       <400> 6
                                                                              18
       aattgttggg aataagcc
       <210> 7
       <211>.24
       <212> PRT
       <213> Artificial Sequence
       <220>
       <221> SITE
       <222> 1)..(19)
       <223> invertase leader sequence
       <220>
       <221> SITE
       <222> 20)..(24)
```

	<223> first 5 amino acids of mature human serum albumin	
	<400> 7	
	Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys 1 10 15	
	Ile Ser Ala Asp Ala His Lys Ser 20	
	<210> 8 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
որ երու դուս դուր երոր հուր ար արու դուս դուր ար	<400> 8 gagatgcaca cctgagtgag g	21
il mai uli uli uli il mai uli uli uli	<210> 9 <211> 27 <212> DNA <213> Artificial Sequence	
graft if the traffic graft	<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
e draft vill	<400> 9 gatcctgtgg cttcgatgca cacaaga	27
	<210> 10 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.	
	<400> 10 ctcttgtgtg catcgaagcc acag	24
	<210> 11 <211> 30 <212> DNA <213> Artificial Sequence	
	<220> <221> misc_structure <223> synthetic oligonucleotide used to join DNA	

<400> 11		
tgtggaagag cctcagaatt tattcccaac		30
tgtggaagag tottaagaatt tattetaat		
<210> 12		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 12		
aattgttggg aataaattct gaggctcttc c		31
<210> 13		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 13		
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac		47
<210> 14		
<211> 48		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 14		
aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc		48
<210> 15		
<211> 62		
<212> DNA		
<213> Artificial Sequence		
<220>		
<pre><221> misc_structure </pre>		
<pre><223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.</pre>		
<400> 15		
ttaggettag geggtggtgg atetggtgge ggeggatetg gtggeggtgg a	atccttccca	60

fragments with non-cohesive ends.

<21 <21	0> 16 1> 63 2> Di 3> Ai	3 NA	icial	L Sec	quenc	ce										
<22	0> 1> m: 3> sy gment	ynthe	etic	oliç	gonuc				l to	joir	n DNA	7				
	0> 10 tgtto	-	aagga	atcca	ac cg	gccad	ccaga	a tco	egceg	jcca	ccag	gatco	cac o	cacco	gcctaa	60 63
<21 <21	0> 1' 1> 1' 2> DI 3> Ho	782 NA	sapie	ens												
	0> 1> CI 2> (:		(1755	5)												
gat	0> 1° gca Ala	cac	aag Lys	agt Ser 5	gag Glu	gtt Val	gct Ala	cat His	cgg Arg 10	ttt Phe	aaa Lys	gat Asp	ttg Leu	gga Gly 15	gaa Glu	48
	aat Asn															96
	tgt Cys															144
	gca Ala 50															192
	ctt Leu						_									240
_	gaa Glu						_									288
	aga Arg		-	_		_				_	_					336
	cga Arg															384

						ttg Leu 135								432
						gcc Ala								480
						gaa Glu								528
						gat Asp								576
						aaa Lys								624
						gca Ala 215								672
	_	~ ~		~	_	gtt Val		_				_		720
						cat His								768
						tat Tyr								816
_		_				tgt Cys								8.64
						aat Asn 295								912
	_	_	-		_	gaa Glu	_	_	-	-	-			960
						ctg Leu								1008
						gtc Val								1056
						aag Lys								1104

_		_		_			-							gag Glu		1152
_							_					_		gga Gly		1200
														gta Val 415		1248
							-		-		-			gga Gly		1296
														ccc Pro		1344
_	_	_					_	_						ttg Leu		1392
		_		_	-	-	-	-			_	_		gag Glu		1440
_				_		_			-	_	_	_	_	gaa Glu 495		1488
	-						-	_						gca Ala		1536
	_					_		_			-			act Thr	_	1584
	-						_		_	_				caa Gln	-	1632
														tgc Cys		1680
_	_	_	_			_		_	_					ctt Leu 575		1728
	gca Ala								taad	catci	tac a	attta	aaaa	gc at	teteag	1782

<210> 18 <211> 585 <212> PRT <213> Homo Sapiens

<400> 18
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
1 5 10 15

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25 30

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40 45

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160

Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 175

Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190

Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220

Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240

Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255

Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260 265 270

Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275 280 285

Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290 295 300 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala 310 315 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 330 325 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 345 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 360 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 375 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 410 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 425 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 440 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 455 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser 470 475 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485 490 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 505 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly Leu

<210> 19

580

<211> 57

<212> DNA

```
<213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> primer used to generate XhoI and ClaI
       site in pPPC0006
       <400> 19
       gcctcgagaa aagagatgca cacaagagtg aggttgctca tcgatttaaa gatttgg
                                                                           57
       <210> 20
       <211> 58
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> primer used in generation XhoI and ClaI
       site in pPPC0006
in ins
ξij
       aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataag
11
Ļij
ļ. j.
       <210> 21
į.i.
       <211> 24
       <212> DNA
å:å
      <213> Artificial Sequence
<220>
       <221> primer_bind
<223> primer used in generation XhoI and ClaI
114
       site in pPPC0006
13
į.i.
       <400> 21
                                                                            24
       tacaaactta agagtccaat tagc
       <210> 22
       <211> 29
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> primer used in generation XhoI and ClaI
       site in pPPC0006
       <400> 22
       cacttctcta gagtggtttc atatgtctt
                                                                            29
       <210> 23
       <211> 60
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> Misc_Structure
```

```
<223> Synthetic oligonucleotide used to alter restriction
       sites in pPPC0007
       <400> 23
       aagctgcctt aggcttataa taaggcgcgc cggccggccg tttaaactaa gcttaattct 60
       <210> 24
       <211> 60
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> Misc_Structure
       <223> Synthetic oligonucleotide used to alter restriction
       sites in pPPC0007
       agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
13
. :a.
       <210> 25
£ij.
       <211> 32
<212> DNA
<213> Artificial Sequence
į, į
يقاط
      <220>
į .i.
      <221> primer_bind
      <223> forward primer useful for generation of albumin
       fusion protein in which the albumin moiety is N-terminal
of the Therapeutic Protein
å. å
      <220>
fij
       <221> misc feature
IJ
       <222> (18)
ļ, ķ
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (19)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (20)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (21)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (22)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (23)
```

```
<223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (24)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (25)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (26)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (27)
1.3
       <223> n equals a,t,g, or c
ţi)
       <220>
Į,
       <221> misc feature
<222> (28)
ļ.i.
       <223> n equals a,t,g, or c
£ : å,
       <220>
å: 4
       <221> misc feature
=
       <222> (29)
£.3
       <223> n equals a,t,g, or c
4.4
      <220>
111
       <221> misc feature
T.
       <222> (30)
4.4
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (31)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (32)
       <223> n equals a,t,g, or c
       <400> 25
                                                                            32
       aagctgcctt aggcttannn nnnnnnnnn nn
       <210> 26
       <211> 51
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> reverse primer useful for generation of albumin
       fusion protein in which the albumin moiety is N-terminal
       of the Therapeutic Protein
```

```
<220>
       <221> misc feature
       <222> (37)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (39)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
Ľ.J
       <220>
Ĺij
       <221> misc feature
<222> (41)
<223> n equals a,t,g, or c
ļ. iš.
į i
       <220>
h.£
       <221> misc feature
       <222> (42)
=
       <223> n equals a,t,g, or c
1.4
<220>
H.A
       <221> misc feature
<222> (43)
       <223> n equals a,t,g, or c
1.5
       <220>
       <221> misc feature
       <222> (44)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (45)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (46)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (47)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (48)
       <223> n equals a,t,g, or c
```

```
<220>
       <221> misc feature
       <222> (49)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (50)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (51)
       <223> n equals a,t,g, or c
       <400> 26
       gcgcgcgttt aaacggccgg ccggcgccc ttattannnn nnnnnnnnn n
                                                                             51
       <210> 27
       <211> 33
13
       <212> DNA
<213> Artificial Sequence
Į.J
£ : £:
       <220>
       <223> forward primer useful for generation of albumin fusion
į., į.,
       protein in which the albumin moiety is c-terminal of the
Therapeutic Protein
=
1,1
       <220>
:#:
#:#:
       <221> misc feature
ļ.á
       <222> (19)
T Link
       <223> n equals a,t,g, or c
IJ
£ :£
       <220>
       <221> misc feature
       <222> (20)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (21)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (22)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (23)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (24)
       <223> n equals a,t,g, or c
```

```
<220>
       <221> misc feature
       <222> (25)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (26)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (27)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (28)
       <223> n equals a,t,g, or c
£ : 4
       <220>
Ę
       <221> misc feature
       <222> (29)
£ij
       <223> n equals a,t,g, or c
1
<220>
Į.i
       <221> misc feature
Ē.£.
      <222> (30)
ļ.s
      <223> n equals a,t,g, or c
1,1
       <220>
<221> misc feature
į, š
       <222> (31)
Fil
       <223> n equals a,t,g, or c
[]
       <220>
å:4
       <221> misc feature
       <222> (32)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (33)
       <223> n equals a,t,g, or c
       <400> 27
       aggagcgtcg acaaaagann nnnnnnnnn nnn
                                                                            33
       <210> 28
       <211> 52
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> reverse primer useful for generation of albumin
       fusion protein in which the albumin moiety is c-terminal of
       the Therapeutic Protein
```

```
<220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (39)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (41)
       <223> n equals a,t,g, or c
17
       <220>
Ę.,
       <221> misc feature
¢ij.
       <222> (42)
       <223> n equals a,t,g, or c
1,1
<220>
ų i
       <221> misc feature
#.#
       <222> (43)
å: å
       <223> n equals a,t,g, or c
1:1
       <220>
:=;
=:=
       <221> misc feature
į.,
       <222> (44)
Γij
       <223> n equals a,t,g, or c
1.7
       <220>
4.4
       <221> misc feature
       <222> (45)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (46)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (47)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (48)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (49)
       <223> n equals a,t,g, or c
```

```
<220>
       <221> misc feature
       <222> (50)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (51)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (52)
       <223> n equals a,t,g, or c
                                                                           52
       ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
       <210> 29
1.7
       <211> 24
* []
       <212> PRT
       <213> Artificial Sequence
<220>
      <221> signal
ļ.£
      <223> signal peptide of natural human serum albumin protein
į . į
Į, į
       <400> 29
      Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
å:å
      Tyr Ser Arg Ser Leu Asp Lys Arg
î i
                    20
Į.j.
į į
      <210> 30
       <211> 114
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> forward primer useful for generation of PC4:HSA
       albumin fusion VECTOR
       <220>
       <221> misc_feature
       <222> (5)..(10)
       <223> BamHI retsriction site
       <220>
       <221> misc_feature
       <222> (11)..(16)
       <223> Hind III retsriction site
      <220>
      <221> misc_feature
       <222> (17)..(27)
       <223> Kozak sequence
```

```
<220>
       <221> misc_feature
       <222> (25)..(97)
       <223> cds natural signal sequence of human serum albumin
       <220>
       <221> misc_feature
       <222> (75)..(81)
       <223> XhoI restriction site
       <220>
       <221> misc_feature
       <222> (98)..(114)
       <223> cds first six amino acids of human serum albumin
       teagggatee aagetteege caccatgaag tgggtaacet ttattteeet tettttete 60
       tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
                                                                           114
[]
       <210> 31
       <211> 43
įj
       <212> DNA
<213> Artificial Sequence
IJ
å.A
       <220>
ļ.
       <221> primer_bind
       <223> reverse primer useful for generation of
ļ. h
       PC4:HSA albumin fusion VECTOR
Ξ
<220>
ā.ā
       <221> misc_feature
<222> (6)..(11)
ij
       <223> Asp718 restriction site
il il
       <220>
       <221> misc_feature
       <222> (12)..(17)
       <223> EcoRI restriction site
       <220>
       <221> misc_feature
       <222> (15)..(17)
       <223> reverse complement of stop codon
       <220>
       <221> misc_feature
       <222> (18)..(25)
       <223> AscI restriction site
       <220>
       <221> misc_feature
       <222> (18)..(43)
       <223> reverse complement of DNA sequence encoding last 9 amino acids
                                                                           43
       gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
       <210> 32
```

```
<211> 46
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> forward primer useful for inserting Therapeutic
       protein into pC4:HSA vector
       <220>
       <221> misc feature
       <222> (29)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (30)
       <223> n equals a,t,g, or c
       <220>
4. ig
       <221> misc feature
       <222> (31)
19
       <223> n equals a,t,g, or c
11.14
Įij
       <220>
       <221> misc feature
į.
       <222> (32)
#.#
       <223> n equals a,t,g, or c
å.s
s
       <220>
1.3
       <221> misc feature
       <222> (33)
ļ.k
       <223> n equals a,t,g, or c
Fil
<220>
       <221> misc feature
ļ., i.
       <222> (34)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (35)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (36)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (37)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
```

```
<221> misc feature
       <222> (39)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (41)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (42)
       <223> n equals a,t,g, or c
       <220>
[3
       <221> misc feature
¥.#
       <222> (43)
[]
       <223> n equals a,t,g, or c
[:]
       <220>
<221> misc feature
į ik
       <222> (44)
å.4
       <223> n equals a,t,g, or c
ļ.L
=
       <220>
11 A<sup>114</sup>11
11 11 11 11
       <221> misc feature
       <222> (45)
ļ,£
       <223> n equals a,t,g, or c
fij
       <220>
[]
       <221> misc feature
il il
       <222> (46)
       <223> n equals a,t,g, or c
       <400> 32
                                                                               46
       ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnn nnnnnn
       <210> 33
       <211> 55
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> reverse primer useful for inserting Therapeutic
       protein into pC4:HSA vector
       <220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (39)
```

```
<223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (41)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (42)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (43)
       <223> n equals a,t,g, or c
1.7
       <220>
<221> misc feature
Ļij
       <222> (44)
       <223> n equals a,t,g, or c
Į.J
ų, ų
       <220>
į, į
       <221> misc feature
å.4
       <222> (45)
=
       <223> n equals a,t,g, or c
1,3
:22
       <220>
<221> misc feature
FI
       <222> (46)
       <223> n equals a,t,g, or c
# :£
       <220>
       <221> misc feature
       <222> (47)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (48)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (49)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (50)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (51)
```

¢

```
<223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (52)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (53)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (54)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (55)
<223> n equals a,t,g, or c
ĨĴ
       <400> 33
       agteceateg atgageaace teactettgt gtgcatennn nnnnnnnnn nnnnn
IJ
       <210> 34
å.å
       <211> 17
ļ.L
       <212> PRT
į i
       <213> Artificial Sequence
<220>
       <221> signal
       <223> Stanniocalcin signal peptide
#.£
f i
     <400> 34
£:3
       Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
ž.£
                                             10
         1
       Ala
       <210> 35
       <211> 22
       <212> PRT
       <213> Artificial Sequence
       <220>
       <221> signal
       <223> Synthetic signal peptide
       <400> 35
       Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Leu Ala Leu
         1
                          5
                                                                  15
       Trp Ala Pro Ala Arg Gly
                    20
       <210> 36
       <211> 23
       <212> DNA
       <213> Artificial Sequence
```

	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
	<400> 36 caggtgcagc tggtgcagtc tgg	23
	<210> 37 <211> 23 <212> DNA <213> Artificial Sequence	
·	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
تسبة تسبة	<400> 37 caggtcaact taagggagtc tgg	23
իչ իչ կու այու այու կում ճամ համ համ	<210> 38 <211> 23 <212> DNA <213> Artificial Sequence	
· H H Simb	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
' ikadê ûkera jiv	<400> 38 gaggtgcagc tggtggagtc tgg	23
u.il	<210> 39 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
	<400> 39 caggtgcagc tgcaggagtc ggg	23
	<210> 40 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate VH forward primer useful for	

.:	
1	•

	<400> 40	
	gaggtgcagc tgttgcagtc tgc	23
	<210> 41	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate VH forward primer useful for	
	amplifying human VH domains	
	<400> 41	
	caggtacagc tgcagcagtc agg	23
	<210> 42	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
į	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	ampirifing namen vir domaring	
z i fin	<400> 42	
: L	tgaggagacg gtgaccaggg tgcc	24
: ::=	<210> 43	
= :d :==	<211> 24	
:::::: : ,	<211> 24 <212> DNA	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<213> Artificial Sequence	
	-213 Metricial begacine	
: A ^d	<220>	
.	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 43	
	tgaagagacg gtgaccattg tccc	24
	<210> 44	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 44	
	tgaggagacg gtgaccaggg ttcc	24
	<210> 45	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	

	<220>	
	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 45	
	tgaggagacg gtgaccgtgg tccc	24
	-210 \ 46	
	<210> 46 <211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
	amplifying human VL domains	
	<400> 46	
:4	gacatccaga tgacccagtc tcc	23
Dan than that that the		
ingi Ha	<210> 47	
. i.ji	<211> 23	
i.j.	<212> DNA	
	<213> Artificial Sequence	
ıń.	<220>	
é	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
ii.	amplifying human VL domains	
12	<400> 47	
L		23
ij	gatgttgtga tgactcagtc tcc	23
hard there is	<210> 48	
::E	<211> 23	
.;=	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
	amplifying human VL domains	
	ampilitying naman vib admarits	
	<400> 48	
	gatattgtga tgactcagtc tcc	23
	<210> 49	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	-	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
	amplifying human VL domains	
	<400> 49	
	gaaattgtgt tgacgcagtc tcc	23

	<210> 50	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
	amplifying human VL domains	
	<400> 50	
	gacatcgtga tgacccagtc tcc	23
	<210> 51	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
:: a ,	<221>primer_bind	
	<223>Degenerate Vkappa forward primer useful for	
Thur Man Thais thails thail	amplifying human VL domains	
i idi	<400> 51	
.i.J	gaaacgacac tcacgcagtc tcc	23
· - ··Å	gaaacgacac coacgoages coo	
.	<210> 52	
L	<211> 23	
	<212> DNA	
p. B.	<213> Artificial Sequence	
:::::::::::::::::::::::::::::::::::::::	<220>	
ı.£	<221>primer_bind	
ill.	<223>Degenerate Vkappa forward primer useful for	
the stant	amplifying human VL domains	
::5:	dispilitying numan vii domains	
	<400> 52	
	gaaattgtgc tgactcagtc tcc	23
	<210> 53	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vlambda forward primer useful for	
	amplifying human VL domains	
	<400> 53	
	cagtctgtgt tgacgcagcc gcc	23
	<210> 54	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	

	amplifying human VL domains	
	<400> 54 cagtctgccc tgactcagcc tgc	23
	<210> 55 <211> 23 <212> DNA	
	<213> Artificial Sequence	
	<220> <221>primer_bind	
	<223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 55	
	tcctatgtgc tgactcagcc acc	23
	<210> 56	
::4	<211> 23	
13	<212> DNA	
Vine Vine Vine Vine Vine	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
ı.Á	<223>Degenerate Vlambda forward primer useful for	
riā. riā	amplifying human VL domains	
	<400> 56	
i is	tcttctgagc tgactcagga ccc	23
ing the property of the proper	<210> 57	
: 15:	<211> 23	
1	<211> 23 <212> DNA	
	<213> Artificial Sequence	
: iš	-210. In call of the position	
	<220>	
	<221>primer_bind	
•	<223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	· <400> 57	
	cacgttatac tgactcaacc gcc	23
	<210> 58	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Vlambda forward primer useful for	
	amplifying human VL domains	
	<400> 58	
	caggetgtgc teacteagee gte	23
	<210> 59	
	<210> 59	

	<212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 59 aattttatgc tgactcagcc cca	23
	<210> 60 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
T.	<400> 60 acgtttgatt tccaccttgg tccc	24
jr jr <u>ir ir ir ir ir ir ir ir ir</u>	<210> 61 <211> 24 <212> DNA <213> Artificial Sequence	
o in the first	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
William William	<400> 61 acgtttgatc tccagcttgg tccc	24
: 	<210> 62 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
	<400> 62 acgtttgata tccactttgg tccc	24
	<210> 63 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	

	<400> 63	
	acgtttgatc tccaccttgg tccc	24
	<210> 64	
	<211> 04 <211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Jkappa reverse primer useful for	
	amplifying human VL domains	
	<400> 64	
	acgtttaatc tccagtcgtg tccc	24
	<210> 65	
	<211> 23	
	<212> DNA	
::4	<213> Artificial Sequence	
Varie Varie Varie Varie Varie	<220>	
113	<221>primer_bind	
	<223>Degenerate Jlambda reverse primer useful for	
 	amplifying human VL domains	
ı.£	<400> 65	
a iấa s	cagtctgtgt tgacgcagcc gcc	23
ı.k	<210> 66	
- - : : : : : : : : : : : : : : : : : :	<211> 23	
: 12: : 2: : : :::	<212> DNA	
i.ś.	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
-:L	<223>Degenerate Jlambda reverse primer useful for	
	amplifying human VL domains	
	<400> 66	
	cagtetgeee tgaeteagee tge	23
	<210> 67	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Jlambda reverse primer useful for	
	amplifying human VL domains	
	<400> 67	
	tcctatgtgc tgactcagcc acc	23
	<210> 68	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	

	<22U>	
	<221>primer_bind <223>Degenerate Jlambda reverse primer useful for	
	amplifying human VL domains	
	ampirity manan vi account	
	<400> 68	
	tcttctgagc tgactcagga ccc	23
	<210> 69	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<220> <221>primer_bind	
	<223>Degenerate Jlambda reverse primer useful for amplifying human VL domains	
	ampiliying numan vu domains	
	<400> 69	
	cacgttatac tgactcaacc gcc	23
12	<210> 70	
: 1 miles	<211> 23	
Ç	<212> DNA	
յրչ մեռու Գրու մրութ միայն միայն Հ	<213> Artificial Sequence	
الله		
:2.	<220>	
	<221>primer_bind	
::£:	<223>Degenerate Jlambda reverse primer useful for	
i	amplifying human VL domains	
	<400> 70	
:=	caggetgtge teacteagee gte	23
::æ ā.	caggetytye teacteagee yte	23
	<210> 71	
id Fis	<211> 23	
	<212> DNA	
\$ i\$n	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate Jlambda reverse primer useful for	
	amplifying human VL domains	
	400 81	
	<400> 71	2.2
	aattttatgc tgactcagcc cca	23
	<210> 72	
	<210> 72 <211> 15	
	<211> 13 <212> PRT	
	<213> Artificial Sequence	
	-220- INCITTORAL DOMAGNOC	
	<220>	
	<221>turn	
	<223>Linker peptide that may be used to join VH	
	and VL domains in an scFv.	
	<400> 72	
	Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser	
	1 5 10 15	