

Extensive Form Games

Sequential moves

• Let's use a tree-like structure, similarly to Chess

Extensive Form Games

Imperfect information

- Player can't see opponent's cards
- Consider these two situations
 (A♠8♠) (K♥K♠) and (A♠8♠) (2♥7♥)
- Even though that these situations are different, player 1 can't distinguish them
- Let's make some game states indistinguishable (from the player's) point of view, so that he must use the same strategy in all the nodes he can't tell apart

Extensive Form Games

Chance

- Let's add another player, the chance player (typically denoted as the player 0 or the player c)
- The chance does plays according to some fixed probability distribution

Extensive Form Games Tree Example

Simple poker-like game

Extensive Form Games Formalization

An extensive form game consists of

- A finite set $N = \{1, 2...n\}$ (the set of **players**).
- A finite set H of sequences. Each member of H is a **history**, each component of history is an **action**. The empty sequence is in H, and every prefix of a history is also history $((h, a) \in H \implies (h \in H))$. $h \subseteq h'$ denotes that h is a prefix of h'. $Z \subseteq H$ are the terminal histories (they are not a prefix of any other history).
- The set of actions available after every non-terminal history $A(h) = \{a : (h, a) \in H\}$.
- A function p that assigns to each non-terminal history an acting player (member of N ∪ c, where c stands for chance).
- A function f_c that associates with every history for which p(h) = c a probability measure on A(h). Each such probability measure is independent of every other such measure.
- For each player $i \in N$, a partition \mathcal{I}_i of $h \in H : p(h) = i$. \mathcal{I}_i is the **information** partition of player i. A set $I_i \in \mathcal{I}_i$ is an **information set** of player i.
- For each player $i \in N$ an utility function $u_i : Z \to \mathbb{R}$.

Extensive Form Games Tree Example

Extensive Form Games Formalization

• $N = \{1, 2\}$ • $H = \{(\emptyset), (K), (K, A), (K, A, bet), (K, A, bet, call), \cdots \}$ • $Z \subseteq H$, $Z = \{(K, A, bet, call), (K, A, bet, fold), \cdots\}$ • $A(K, A) = \{bet, fold\}$ $A(K, A, bet) = \{call, fold\}$ • $p(\emptyset) = c$, P(K) = c, P(K, A) = 1, P(K, A, check) = 2• $f_c(\emptyset) = 0.5A, 0.5K$ $f_c(A) = 0.5A, 0.5K$ • $\mathcal{I}_1 = \{\{(K, A), (K, K)\}, \{(K, A, check), (K, K, check)\},...\}$ $I_2 = \{\{(A, K), (A, K)\}, \{(A, K, check), (K, K, check)\},...\}$

• $u_1(K, A, bet, call) = -3$ $u_2(K, A, bet, fold) = -1$

Strategies

- Now the player does not choose a row/column, instead an edge in the game tree
- Since we need that the player can't distinguish the states merged into information sets, we allow the player to choose an action in information sets in contrast to histories/nodes
- This way, the player must play the same strategy in all histories grouped in that information set.

Definition: Behavior Strategy

Behavior Strategy of player i, $sigma_i$, is a collection $(\sigma_i(I_i))$ of independent probability measures, where $\sigma_i(I_i)$ is the probability measure over $A(I_i)$. $\sigma_i(h,a)$ denotes the probability assigned by $\sigma_i(I_i)$ to the action a. Strategy profile of the game $\sigma = (\sigma_0, \sigma_1, ... \sigma_n)$ is a collection of strategies for all players in the game.

Strategies

- Extensive form games is a powerful model, and it allows us to capture some non-realistic properties
- Real life players do not forget information that they already knew
- This property is called perfect recall. We say that an extensive form games satisfies
 perfect recall, if all players can recall their previous actions and the corresponding
 information sets
 - We will see shortly to formalize this important property

Extensive Form Games To Normal Form Games

- If the game satisfies perfect recall, we can convert an extensive form game to an equivalent normal form game
- A pure strategy in normal form game corresponds to all combinations of pure strategies in information sets of that player

Extensive Form Games To Normal Form Games

				Α	В	С	D
(A-L,	B-L,	C-L,	D-L)	1;-1	3;-3	5 ;-5	7;-7
(A-L,	B-L,	C-L,	D-R)	1;-1	3;-3	5;-5	8;-8
(A-L,	B-L,	C-R,	D-L)	1;-1	3;-3	6 ;-6	7;-7
(A-L,	B-L,	C-R,	D-R)	1;-1	3;-3	6;-6	8;-8
(A-L,	B-R,	C-L,	D-L)	1;-1	4;-4	5;-5	7;-7
(A-L,	B-R,	C-L,	D-R)	1;-1	4;-4	5;-5	8;-8
(A-L,	B-R,	C-R,	D-L)	1;-1	4;-4	6 ;-6	7;-7
(A-L,	B-R,	C-R,	D-R)	1;-1	4;-4	6 ;-6	8;-8
(A-R,	B-L,	C-L,	D-L)	2;-2	3;-3	5;-5	7;-7
(A-R,	B-L,	C-L,	D-R)	2;-2	3;-3	5;-5	8;-8
(A-R,	B-L,	C-R,	D-L)	2;-2	3;-3	6;-6	7;-7
(A-R,	B-L,	C-R,	D-R)	2;-2	3;-3	6 ;-6	8;-8
(A-R,	B-R,	C-L,	D-L)	2;-2	4 ;-4	5;-5	7;-7
(A-R,	B-R,	C-L,	D-R)	2;-2	4;-4	5;-5	8;-8
(A-R,	B-R,	C-R,	D-L)	2;-2	4;-4	6 ;-6	7;-7
(A-R,	B-R,	C-R,	D-R)	2;-2	4;-4	6 ;-6	8;-8

Extensive Form Games To Normal Form Games

Lemma: Extensive Form Games to Normal Form Games

Given any two-player extensive form game with perfect recall, it's possible to create an equivalent normal form game

- Therefore, all properties that we showed for the normal-from games, do also hold for the extensive games.
- Existence of the equilibrium.
- There is always some pure best response.
- Nice properties of equilibrium for two players zero sum games.
- Not-so-nice properties of other games ...
- It is also easy to represent any normal form game as an extensive game.