Strom dosazení a nesplnitelnost

Důsledek: CNF formule S (ve spočetném jazyce, může být i ne-konečná) je nesplnitelná, právě když každá větev stromu dosazení obsahuje \square .

Důkaz: Pro konečnou S snadno dokážeme indukcí dle |Var(S)|:

- Je-li $|\operatorname{Var}(S)| = 0$, máme $S = \emptyset$ nebo $S = \{\square\}$, v obou případech je strom dosazení jednoprvkový a tvrzení platí.
- V indukčním kroku vybereme libovolný literál $\ell \in \mathsf{Var}(S)$ a aplikujeme Lemma.

Je-li S nekonečná a splnitelná, má splňující ohodnocení, to se 'shoduje' s odpovídající (nekonečnou) větví ve stromu dosazení.

Je-li nekonečná a nesplnitelná, dle Věty o kompaktnosti existuje konečná $S'\subseteq S$, která je také nesplnitelná. Po dosazení pro všechny proměnné z Var(S') bude v každé větvi \square , to nastane po konečně mnoha krocích.

Úplnost rezoluce

Věta (O úplnosti rezoluce): Je-li CNF formule S nesplnitelná, je rezolucí zamítnutelná (tj. $S \vdash_R \Box$).

Důkaz: Je-li *S* nekonečná, má z kompaktnosti konečnou nesplnitelnou část, její rezoluční zamítnutí je také zamítnutí *S*.

Je-li S konečná, ukážeme indukcí dle počtu proměnných: Je-li $|\operatorname{Var}(S)|=0$, jediná možná nesplnitelná formule bez proměnných je $S=\{\Box\}$, a máme jednokrokový důkaz $S\models_R\Box$.

Jinak vyberme $p \in \text{Var}(S)$. Podle Lemmatu jsou S^p i $S^{\bar{p}}$ nesplnitelné. Mají o proměnnou méně, tedy dle ind. předpokladu existují rezoluční stromy T pro $S^p \models_R \square$ a T' pro $S^{\bar{p}} \models_R \square$.

Ukážeme, jak z T vyrobit rezoluční strom \widehat{T} pro $S \vdash_R \neg p$. Analogicky $\widehat{T'}$ pro $S \vdash_R p$ a potom už snadno vyrobíme rezoluční strom pro $S \vdash_R \square$: ke kořeni \square připojíme kořeny stromů \widehat{T} a $\widehat{T'}$ jako levého a pravého syna (tj. získáme \square rezolucí z $\{\neg p\}$ a $\{p\}$).

Dokončení důkazu

Rezoluční strom T pro $S^p \vdash_R \square \rightsquigarrow \widehat{T}$ pro $S \vdash_R \neg p$:

Vrcholy i uspořádání jsou stejné, jen do některých klauzulí ve vrcholech přidáme literál $\neg p$.

Na každém listu stromu T je nějaká klauzule $C \in S^p$, a

- buď $C \in S$,
- nebo $C \notin S$, ale $C \cup \{\neg p\} \in S$

V prvním případě necháme label stejný. Ve druhém případě přidáme do C a do všech klauzulí nad tímto listem literál $\neg p$.

Listy jsou nyní klauzule z S, a každý vnitřní vrchol je nadále rezolventou svých synů. V kořeni jsme \square změnili na $\neg p$ (ledaže každý list T už byl klauzule z S, to ale už T dává $S \vdash_R \square$).

5.4 LI-rezoluce a Horn-SAT

Lineární důkaz

Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde C_i říkáme centrální klauzule, C_0 je počáteční, $C_{n+1} = C$ je koncová, B_i jsou boční klauzule, a platí:

- $C_0 \in S$, pro $i \le n$ je C_{i+1} rezolventou C_i a B_i ,
- $B_0 \in S$, pro $i \le n$ je $B_i \in S$ nebo $B_i = C_j$ pro nějaké j < i.

Lineární zamítnutí S je lineární důkaz \square z S. Lineární důkaz můžeme znázornit takto:

$$C_0 \longrightarrow C_1 \longrightarrow C_2 \longrightarrow \cdots \longrightarrow C_n \longrightarrow C_{n+1}$$
 $B_0 \qquad B_1 \qquad B_{n-1} \qquad B_n$