

GAN improvements by rejection sampling methods

Authors:

Mohamed Amine Belkasmi, Emmarius DELAR, Rithy Sochet

Rejection Sampling Methods

Intuition:

Keep only good draw from the GAN's generator

Problem:

- o How to determine what's a good draw?
- How to assure the diversity of the sample?
- What about the reject sampling time during generation?

Approach:

- Discriminator Rejection Sampling
- Metropolis-Hastings GAN
- Optimal Budgeted Rejection Sampling

Rejection Sampling:

We firstly train a VanillaGAN

• We assume our discriminator is optimal, i.e.:

$$D(x) = \frac{p_d(x)}{p_d(x) + p_g(x)}$$

We then obtain the acceptation rate:

$$\frac{p_d(x)}{p_q(x)} = \frac{D(x)}{1 - D(x)}$$

<u>Source</u>: [1]

A figure of acceptation rate:

Metropolis-Hastings GAN

Algorithm 1 MH-GAN

Input: generator G, calibrated disc. D, real samples Assign random real sample \mathbf{x}_0 to \mathbf{x} for k=1 to K do

Draw \mathbf{x}' from GDraw U from Uniform(0,1)if $U \leq (D(\mathbf{x})^{-1}-1)/(D(\mathbf{x}')^{-1}-1)$ then $\mathbf{x} \leftarrow \mathbf{x}'$ end if end for

If \mathbf{x} is still real sample \mathbf{x}_0 restart with draw from G as \mathbf{x}_0 Output: sample \mathbf{x} from G'

<u>Source</u>: [2]

Metropolis-Hastings GAN

• Calibrator C, classifier where: $D(x_i) = C(\tilde{D}(x_i))$

• Acceptance rate :
$$\alpha(x', x_k) = \min(1, \frac{D(x_k)^{-1} - 1}{D(x')^{-1} - 1})$$

High computation time

A figure of acceptation rate:

Optimal Budgeted Rejection Sampling

Optimal Acceptance function:

$$a_O(x) = \min(\frac{p(x)}{\hat{p}(x)} \frac{c_K}{M}, 1)$$

<u>Source</u>: [3]

Algorithm B.1 Dichotomy to compute c_K . Input: N generated samples $\boldsymbol{x}_1^{\text{fake}}, \dots, \boldsymbol{x}_N^{\text{fake}} \sim \widehat{P}$ Parameter: Budget K, Threshold ϵ Output: Constant c_K

```
1: Let c_{\min} = 1e^{-10} and c_{\max} = 1e^{10}.
 2: c_K = (c_{\text{max}} + c_{\text{min}})/2
 3: Define the loss \mathcal{L}(c_K) = \sum_{i=1}^N a(\mathbf{x}_i^{\text{fake}}, c_K) - \frac{1}{K}
 4: while |\mathcal{L}(c_K)| \ge \epsilon do
 5: if \mathcal{L}(c_K) > \epsilon then
                c_{\text{max}} = c_K
       else if \mathcal{L}(c_K) < -\epsilon then
                c_{\min} = c_K
         end if
        Update: c_K = (c_{\text{max}} + c_{\text{min}})/2
10:
          Update: \mathcal{L}(c_K)
11:
12: end while
```

Optimal Budgeted Rejection Sampling

Algorithm 2 GAN Tw/OBRS

repeat

Update T by ascending the gradient of

$$\mathbb{E}_{\boldsymbol{x} \sim P}\left[T(\boldsymbol{x})\right] - \mathbb{E}_{\boldsymbol{x} \sim \widehat{P}_{G}}\left[f^{*}(T(\boldsymbol{x}))\right].$$

Update c_K such that $\mathbb{E}_{\widehat{P}_G}[a_{\mathcal{O}}(\boldsymbol{x})] \leq 1/K$. (See Alg B.1 in App B.2) for details.) Update G by descending the gradient of

$$\mathbb{E}_{\boldsymbol{x} \sim \widehat{P}_{G}} \left[Ka_{O}(\boldsymbol{x}) f \left(\frac{r(\boldsymbol{x})}{Ka_{O}(\boldsymbol{x})} \right) \right].$$

until convergence.

Source: [3]

Optimal Budgeted Rejection Sampling

Algorithm 2 GAN Tw/OBRS

repeat

Update T by ascending the gradient of

$$\mathbb{E}_{\boldsymbol{x} \sim P}\left[T(\boldsymbol{x})\right] - \mathbb{E}_{\boldsymbol{x} \sim \widehat{P}_{G}}\left[f^{*}(T(\boldsymbol{x}))\right].$$

Update c_K such that $\mathbb{E}_{\widetilde{P}_G}\left[a_{\mathcal{O}}(\boldsymbol{x})\right] \leq 1/K$. (See Alg B.1 in App B.2) for details.) Update G by descending the gradient of

$$\mathbb{E}_{\boldsymbol{x} \sim \widehat{P}_{G}} \left[Ka_{O}(\boldsymbol{x}) f \left(\frac{r(\boldsymbol{x})}{Ka_{O}(\boldsymbol{x})} \right) \right].$$

until convergence.

<u>Source</u>: [3]

EXPERIMENTAL RESULTS

Model	FID	Precision	Recall	Time (in s)
Vanilla GAN (100 epochs)	26.86	0.53	0.24	90
DRS	30.04	0.52	0.26	106.27
Vanilla GAN + MH-GAN (K=10)	25.36	0.53	0.22	1044
Vanilla GAN Tw/ OBRS	27.69	0.51	0.2	101

Table 1: Results on testing platform

Model	FID	Precision	Recall	Time (in s)
Vanilla GAN (100 epochs)	27.62	0.328	0.176	33
Vanilla GAN + MH-GAN (K=10)	25.42	0.324	0.177	942
Vanilla GAN + MH-GAN (K=100)	25.43	0.322	0.196	6201
Vanilla GAN + MH-GAN (K=100)	24.77	0.332	0.190	8243
Vanilla GAN Tw/ OBRS	27.4	0.352	0.21	33.52

Table 2: Results with our own testing

DISCUSSION

- Computing M, the maximum of the quotient
- The assumption on the optimal discriminator
- The two distributions don't necessarily have the same support

Computation time may be long (especially for MH-GAN)

THANKS FOR LISTENING

Time for your questions

UNIVERSITÉ PARIS DAUPHINE - PSL
Place du Maréchal de Lattre de Tassigny – 75775 Paris cedex 16

References

[1] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena. *Discriminator rejection sampling*. arXiv preprint arXiv:1810.06758, (2018)

[2] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatchi, and Jason Yosinski. *Metropolis-hastings generative adversarial networks.* (2019)

[3] Alexandre Verine, Muni Sreenivas Pydi, Benjamin Negrevergne, and Yann Chevaleyre. *Optimal budgeted rejection sampling for generative models*. (2024)

