

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3

6 December 2023

This marking guideline consists of 8 pages.

Copyright reserved Please turn over

QUESTION 1

- An electron is a an elementary particle charged ✓ with small and constant quantity of negative electricity ✓
 - While free electrons are electrons in the outermost shell ✓ that are ready to be shared with other atoms. ✓
- 1.2 $R_T = R_0(1 + \alpha_0 t)$

$$24 = 20(1 + 0.0043t)$$

$$1 + 0.0043t = 1.2$$

$$0.0043t = 0.2$$

$$t = 46,512 \, ^{\circ}\text{C}\checkmark \tag{3}$$

- 1.3 1.3.1 The resistance will increase.
 - 1.3.2 The resistance will increase.
 - 1.3.3 The resistance will decrease.
 - 1.3.4 The resistance will remain the same or unchanged.

 $(4 \times 1) \qquad (4)$

- 1.4 A charge is the excess of negative or positive electricity. ✓ on a body or in space. ✓ (2)
- 1.5 1.5.1 Positive temperature coefficient of resistance (PTC)
 - 1.5.2 Negative temperature coefficient of resistance (NTC)

 $(2 \times 1) \qquad (2)$

[15]

QUESTION 2

- Like charges (poles) repel each other and unlike charges (poles) attract each other.
 - The force exerted by one pole on the other pole is directly proportional to the product of the pole strength
 - The force exerted by one pole onto the other pole is inversely proportional to the square of the distance between them.

 $(Any 1 \times 2)$ (2)

2.2 2.2.1
$$F = BIl \sin\theta$$

$$= 0.5 \times 5 \times 0.6 \times \sin90^{\circ} \checkmark$$

$$= 1.5 \text{ N} \checkmark$$
2.2.2 $F = BIl \sin\theta$

$$= 0.03 \times 5 \times 0.6 \times \sin60^{\circ} \checkmark$$

$$= 0.078 \text{ N} \checkmark$$
(2 × 2) (4)
2.3 2.3.1 Lenz's law \checkmark and Faraday's right-hand rule \checkmark (2)
2.3.2 right-hand grip rule (1)
2.3.3 magnetomotive force (1)
2.3.4 magnetic field (1)
2.4 The direction of the induced e.m.f is always such that it tends to set up a current opposing \checkmark the motion or the change of flux responsible for that inducing e.m.f. \checkmark
2.5 2.5.1 $E = Blv \sin\theta$

$$= \frac{F}{lv \sin\theta}$$

$$= \frac{7.25}{0.175 \times 12.5 \times \sin90^{\circ}} \checkmark$$

$$= 3.314 \text{ T} \checkmark$$
2.5.2 $F = BIl \sin\theta$

$$I = \frac{F}{Bl \sin\theta}$$

$$= \frac{11}{3.314 \times 0.175 \times \sin90^{\circ}} \checkmark$$

$$= 18.967 \text{ A} \checkmark$$
(2 × 2) (4)

• Place your right-hand over the solenoid with your fingers pointing in the direction of the current.

• and with your thumb at 90° to your fingers.

Your thumb will point in the direction of the north pole.

(3) **[20]**

QUESTION 3

3.1 3.1.1
$$V_T = V_1 + V_2$$

 $= 150 + 100$
 $= 250 \text{ V} \checkmark$
 $C_T = \frac{Q_T}{V_T}$
 $= \frac{2300 \times 10^{-6}}{250} \checkmark$
 $= 9.2 \text{ µF} \checkmark$ (3)
3.1.2 $C_1 = \frac{Q_T}{V_1}$
 $= \frac{2300 \times 10^{-6}}{150} \checkmark$
 $= 15,333 \text{ µF} \checkmark$
 $C_2 = \frac{Q_T}{V_2}$ OR $C_T = \frac{C_1 C_2}{C_1 + C_2}$
 $= \frac{2300 \times 10^{-6}}{100} \checkmark$ $9.2 = \frac{15,333C_2}{15,333 + C_2}$
 $= 23 \text{ µF} \checkmark$ $6,133C_2 = 141,064$

3.2 Electromotive force is the voltage measured across the terminals of a battery ✓ when there is no current flow. ✓ Terminal voltage is the voltage measured across the terminals of a battery ✓ when there is current flow. ✓ (2 + 2) (4)

 $\therefore C_2 = 23 \,\mu\text{F}$

3.3 3.3.1
$$R_T = \frac{V_T}{I_T}$$
$$= \frac{12}{1.5} \checkmark$$
$$= 8 \Omega \checkmark$$
 (2)

(4)

-5-ELECTRICAL PRINCIPLES AND PRACTICE L3

3.3.2
$$R_{P1} = \frac{R_1 \times R_2}{R_1 + R_2}$$
 OR $\frac{1}{R_{P1}} = \frac{1}{R_1} + \frac{1}{R_2}$

$$= \frac{10 \times 15}{10 + 15} \checkmark \qquad = \frac{1}{10} + \frac{1}{15}$$

$$= 6 \,\Omega \checkmark \qquad = \frac{5}{30}$$

$$= \frac{30}{5} = 6 \,\Omega$$

$$R_{P2} = R_T - R_{P1}$$
$$= 8 - 6$$
$$= 2 \Omega \checkmark$$

$$R_{P2} = \frac{R_X \times R_3}{R_X + R_3} \qquad \mathbf{OR} \qquad \frac{1}{R_{P2}} = \frac{1}{R_X} + \frac{1}{R_3}$$

$$2 = \frac{R_X \times 15}{R_X + 15} \checkmark \qquad \frac{1}{R_X} = \frac{1}{R_{P2}} - \frac{1}{R_3}$$

$$2(R_X + 15) = 15R_X \checkmark \qquad = \frac{1}{2} - \frac{1}{15}$$

$$2R_X + 30 = 15R_X \qquad = \frac{13}{30}$$

$$13R_X = 30 \checkmark \qquad R_X = \frac{30}{13}$$

$$R_X = 2,307 \ \Omega \checkmark \qquad R_X = 2,307 \ \Omega$$

-6-ELECTRICAL PRINCIPLES AND PRACTICE L3

OR

$$V_{P1} = I_T R_{P1}$$
 $V_{P2} = V_T - V_{P1}$
 $= 1,5 \times 6$ $= 12 - 9$
 $= 9 \text{ V}$ $= 3 \text{ V}$
 $I_{R3} = \frac{V_{P2}}{R_3}$ $I_X = I_T - I_{R3}$
 $= \frac{3}{15}$ $= 1,5 - 0,2$
 $= 0,2 \text{ A}$ $= 1,3 \text{ A}$
 $R_X = \frac{V_{P2}}{I_X}$
 $= \frac{3}{1,3}$
 $= 2,308 \Omega$ (7)

- 3.3.3
- The second parallel resistors will be eliminated by the short circuit.
- The total resistance will decrease
- The volt drop across R_{p1} change (will be equal to the total voltage)
- The total current will increase
- The total current will flow through the short circuit
 (Accept any other relevant answer) (2 x 1)

$$E = L \frac{di}{dt}$$

$$3.2 = L \times 16 \checkmark$$

$$L = \frac{3.2}{16} \checkmark$$

$$= 0.2 \text{ H}\checkmark \tag{3}$$

- 3.5
- Oil-immersed self-cooled transformer
- Oil-immersed forced air-cooled transformer
- Oil-immersed forced oil-cooled transformer (3)

Copyright reserved

ELECTRICAL PRINCIPLES AND PRACTICE L3

3.6	 Line voltage is measured between any two lines of the three phase system. Phase voltage is measured between any line and neutral of the three phase system. 	(2) [30]
QUEST	TION 4	
4.1	 Use an AC voltage scale of at least twice the nominal (rated) voltage with a minimum of 500V Switch off the supply Ensure all the switches and circuit breakers are in the close position Load may be disconnected Apply the test voltage between the earth continuity conductor and the whole system of live conductors. 	
	• The insulation resistance measured shall be at least 1,0M Ω	(6)
4.2	 Damping device Controlling device Deflecting/Operating device 	(3)
4.3	 The scale is uniform Has high torque to weight ratio Low power consumption The range can be extended using series and shunt resistors. 	
4.4	 Low sensitivity Scale not uniform Cost more than moving-iron instruments Can only be used as voltmeters and ammeters (Any 3 × 1) 	(3)
		[15]
QUEST	TION 5	
5.1	Variable lossesConstant losses	(0)
5.2	5.2.1 two 5.2.2 The number 5.2.3 low-current/high-voltage	(2)
5.3	 Magnet Coil/winding Commutator 	(3)
	• Brushes (3 × 1)	(3)

Copyright reserved Please turn over

$$5.4 E = V + I_a R_a$$

$$I_a = \frac{E - V}{R_a} \checkmark$$

$$= \frac{210 - 150}{5} \checkmark$$

$$= 12 \,\text{A}\checkmark$$
(3)

5.5 An autotransformer starter is used to reduce the starting current ✓ by reducing the voltage during the initial starting period. ✓ (2)

5.6

 (6×1) (6)

• Industrial application

Consumer application (small appliances) (Any 1 x 1) (1) [20]

TOTAL: 100