

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
Please do not report the images to the
Image Problem Mailbox.

This Page Blank (uspto)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 November 2001 (29.11.2001)

PCT

(10) International Publication Number
WO 01/91445 A1

- (51) International Patent Classification⁷: H04M 15/00, H04Q 7/38, H04M 17/00
- (52) International Application Number: PCT/FI01/00501
- (22) International Filing Date: 23 May 2001 (23.05.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
20001258 25 May 2000 (25.05.2000) FI
20002078 20 September 2000 (20.09.2000) FI
- (71) Applicant (for all designated States except US): NOKIA NETWORKS OY [FI/FT]; Keilalahdentie 4, FIN-02150 Espoo (FI).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SYRJÄLÄ, Jari [FI/FT]; Ryytimaantie 10 F 12, FIN-01630 Vantaa (FI). KOSKINEN, Juha-Pekka [FI/FT]; Heinäjoenkatu 13,
- (74) Agent: KOLSTER OY AB; Iso Roobertinkatu 23, P.O. Box 148, FIN-00121 Helsinki (FI).
- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EC, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ARRANGING SUBSCRIBER BILLING IN TELECOMMUNICATION SYSTEM

WO 01/91445 A1

(57) Abstract: The invention relates to a method and a system implementing the method for arranging subscriber billing in a multi-provider environment wherein a subscriber desiring a service uses both a first network (A) and a second network (T). In order to bill the subscriber, either a tariff of the second network (T) is transmitted to the first network (A), a tariff of the first network is combined with the tariff of the second network and the subscriber is billed according to the combined tariff, or a billing identifier is generated in the first network (A) to be transmitted to the second network (T), the billing identifier is attached to billing information in both networks and the pieces of the billing information that comprise the same billing identifier are combined in order to bill the subscriber. The invention thus enables a subscriber in a multi-provider environment to be billed using a single bill.

WO 01/91445 A1

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

ARRANGING SUBSCRIBER BILLING IN TELECOMMUNICATION SYSTEM

BACKGROUND OF THE INVENTION

- [0001] The invention relates to billing a subscriber in a telecommunication system, and particularly to billing a subscriber in a multi-provider environment in a mobile communication system. The mobile communication system generally refers to any telecommunication system which enables wireless communication when users move in the service area of the system. A typical mobile communication system is a public land mobile network PLMN.
- [0002] Telecommunication systems are increasingly changing over to a multi-provider environment wherein access is provided by an access operator, telephony by a telephony operator and actual services by one or more service providers. This is the case particularly in systems called third generation mobile communication systems, such as a universal mobile communications system UMTS. In the UMTS, for example, the actual mobile communication network can operate as an access network providing the user with wireless access to external networks, such as Internet protocol IP networks and the services thereof, such as IP telephony IPT. One access network usually provides access to several external networks, which can be of a similar type. There can be several telephony operators, for example, which provide the IPT service. When the access operator is not the telephony operator, both operators typically collect their billing information in their own networks and bill the subscriber separately. A service provider itself does not maintain the network but purchases a necessary network service from the network operator, which collects billing information on behalf of the service provider as if it were the network operator's own billing information. The network operator also bills the subscriber on behalf of the service provider. In other words, if the service provider purchases the network service from the access operator, the access operator is responsible for collecting the billing information on the service and for billing according to an agreed tariff. The telephony operator operates in a similar manner if the service provider should purchase the network service from the telephony operator.

- [0003] A service of the mobile communication systems becoming increasingly popular is a prepaid subscription. The prepaid subscription involves no billing in arrears but the account of the prepaid subscription is charged in real time during calls. The prepaid subscription can usually be used

for chargeable calls until the credits in the subscription's account run out, in other words until the prepaid amount has been exhausted. Usually, the subscriber to the subscription, or someone else, can deposit more money in the subscription's account.

- 5 [0004] The problem is, however, how to implement a prepaid subscription which requires real-time billing during a call in a system comprising an access operator and a telephony operator, which both collect their own billing information and do not know each other's tariffs. For an end user, it is inconvenient if he or she is compelled to have at least two separate prepaid
- 10 subscriptions, one being a subscription to the access operator and the other to the telephony operator. The same problem also arises in connection with a service similar to the prepaid subscription wherein the maximum amount of a bill, i.e. the maximum sum of money that a bill is allowed to be during a billing period, has been determined for a subscription to be billed in arrears.
- 15 [0005] It would also be more convenient for subscribers billed "normally" in arrears to receive a single combined bill instead of separate bills sent by the operators.

BRIEF DESCRIPTION OF THE INVENTION

20 [0006] An object of the invention is thus to provide a method and an apparatus implementing the method so as to alleviate the above-mentioned problems.

25 [0007] The objects of the invention are achieved by the method and telecommunication system which are characterized by what is disclosed in the independent claims. Preferred embodiments of the method and system of the invention are disclosed in the attached dependent claims.

30 [0008] The idea underlying the invention is that information is transmitted from a first network (e.g. a network of a telephony operator or an access operator) to a network of a second operator to enable joint billing. An advantage of the invention is that a subscriber is billed in a centralized manner such that e.g. only a single prepaid subscription will suffice while the operators are still allowed to set their own prices for their services independently of each other. A further advantage of the invention is that it enables a prepaid subscription or a balance-limited subscription to be paid in arrears to be implemented also in a multi-provider environment such that the subscriber only needs a single subscription while the operators are still allowed to set their

35

own prices for their services independently of each other. A still further advantage of the invention is that it is possible to provide both a user of a prepaid subscription and a user of a balance-limited subscription with the same alternatives to choose a telephony operator in a multi-provider environment as conventional subscribers (i.e. those to be billed normally in arrears).

- [0009] In a first preferred embodiment of the invention, in a network of a telephony operator, a subscriber is identified as a joint billing subscriber, i.e. e.g. as a subscriber who has a prepaid subscription to an access network or as a subscriber to be billed in arrears, who wants to receive a single bill.
- 10 When the subscriber has been identified as a joint billing subscriber, the tariff of the telephony operator is transmitted to the network node of the access operator which is responsible for billing. The network node combines the telephony operator's tariff and the access operator's tariff and charges e.g. the account of the prepaid subscription according to the combined tariff. A further 15 advantage of the embodiment is that it enables a prepaid subscription and an account of a balance-limited subscription to be paid in arrears to be charged in real time using an extremely light signalling load.

- [0010] In a second and a third preferred embodiments of the invention, a globally unique billing identifier is generated in the network node of the 20 access network, and the billing identifier is transmitted to the network nodes which collect billing information, regardless of the network node being a network node of the access network or the telephony operator. The identifier enables a billing centre responsible for billing to combine the billing information received from different operators. A further advantage of these embodiments 25 is that they inevitably take into account all special events affecting a billing procedure.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0011] The invention is now described in closer detail in connection with the preferred embodiments and with reference to the accompanying 30 drawings, in which

[0012] Figure 1 shows elements of a UMTS system relevant to the invention,

[0013] Figure 2 is a signalling diagram showing a first preferred embodiment of the invention,

[0014] Figure 3 is a signalling diagram showing a second preferred embodiment of the invention, and

[0015] Figure 4 is a signalling diagram showing a third preferred embodiment of the invention.

5 DETAILED DESCRIPTION OF THE INVENTION

[0016] The present invention can be applied to any telecommunication system wherein information necessary for billing a subscriber exists in at least two different networks. Such systems include systems called third generation mobile communication systems, such as the universal mobile telecommunications system UMTS and IS-41, and mobile communication systems similar to the GSM system, such as a GSM 1800 and systems based on the aforementioned systems, such as GSM 2+ systems. The invention can also be applied to fixed systems wherein two separate operators can operate. The invention will be described in the following using a 3GPP All-IP system, i.e. an UMTS system based on IP technology and specified in a 3rd generation partnership project 3GPP, as an exemplary system, without restricting the invention thereto. The specifications of mobile communication systems, and those of the third generation mobile communication systems in particular, are advancing rapidly; consequently, the invention may require additional changes. All words and expressions should therefore be interpreted broadly since they are only intended to illustrate, not to restrict, the invention. The essential point for the invention is the function, not the network node in which the function is located.

[0017] Figure 1 shows a simplified network architecture, describing only some of the elements of a system architecture. The network nodes illustrated in Figure 1 are logical units, the implementation of which may differ from the described one. It is obvious to one skilled in the art that the system may also comprise other functions and structures which need not be described in closer detail here. In Figure 1, the broken lines between network nodes denote signalling connections while the unbroken lines denote signalling and data transmission links.

[0018] In a 3GPP All-IP system 1, an access layer A and a telephony layer T will be separated, and both can have operators of their own. The system 1 comprises at least one of the both layers. Within the scope of the present invention, an access layer corresponds to an access network of an

access operator and a telephony layer corresponds to a telephone network of a telephony operator. Usually, when not roaming, a subscriber always uses the same access operator while he or she may select the telephony operator to be used. As far as the invention is concerned, the structure of the access layer and the telephony layer is irrelevant. The 3GPP All-IP system is based on a GPRS service of the pan-European global system for mobile communications GSM system and an intelligent network service implementation according to a customised applications for mobile network enhanced logic CAMEL architecture. The GPRS and the CAMEL are GSM 2+ phase services.

[0019] User equipment UE comprises an actual terminal and an identification card USIM, also called a subscriber identification unit, detachably connected thereto. In this connection, the user equipment UE generally refers to a unity comprising the actual terminal and the subscriber identification unit. The subscriber identification unit USIM is a smart card which comprises subscriber identity and which performs authentication algorithms and stores authentication and cipher keys and subscription information necessary at the user equipment. The actual terminal can be any equipment capable of communicating in a mobile communication system. The terminal can thus be a simple terminal for speech only, or it can be a terminal for various services, operating as a service platform and supporting loading and carrying out different service-related functions. The terminal can also be a combination of several different devices, for example a multimedia computer with a Nokia card phone connected thereto to provide a mobile connection.

[0020] In the first preferred embodiment of the invention according to Figure 1, the telephony layer T comprises, in addition to the actual IP network IP, a call state control function CSCF, a media gateway control function MGCF and an execution environment CSE_T corresponding to a service control point in an intelligent network.

[0021] The CSCF controls call establishment and is responsible for routing, and comprises, for example, a function corresponding to a switching function in an intelligent network. The CSCF provides IP telephony services with end-to-end control. Signalling associated with the IP telephony, such as H.323 and SIP, terminates at the user equipment and the CSCF. In other words, the CSCF is the network node in which IP telephony user equipment are registered and via which the signalling is transferred. The CSCF comprises IP telephony call state models, which are used for controlling call establish-

- ment with other network nodes, such as the service control point CSE_T. The CSCF can also communicate with IP telephony application servers (not shown in Figure 1). The CSCF comprises a subscriber database, which logically corresponds to a visitor location register in the GSM system. The CSCF is responsible for producing both telephony billing information and service billing information. The telephony billing information is used, according to the billing policy and mechanisms specified by the IP telephony network operator, for billing for the use of basic telephony, different data bearers and additional services. The service billing information is generated by the service provider.
- 5 Service billing is carried out on a pay-by-use basis and calculated according to a contract between the service provider and the subscriber. Both billing procedures are preferably controlled by the service control function in the intelligent network or methods determined by open interfaces (OSA, Parlay).
- 10

[0022] In the first preferred embodiment of the invention, the service control function CSE_T of the IP telephony operator controls billing in the IP telephony network T. In addition, it may control call establishment in an intelligent-network-like manner. The service control function CSE_T may comprise all service logic and control associated with billing and different services, and necessary databases or a connection to the databases. The service control function is only a logical function and it can be internally implemented in different ways. An alternative is that it is internally decentralized and the related service logic can be decentralized in different nodes. Also the service information can be decentralized in different nodes from the service logic.

[0023] The MGCF is an example of new network nodes provided in the network of the telephony operator. The MGCF mainly collects information on data amounts transmitted on the physical connection since the CSCF knows nothing about them.

[0024] In the first preferred embodiment of the invention, the main parts of the access layer A are: a core network CN, a UMTS terrestrial radio access network UTRAN and a camel service environment CSE_A, which corresponds to a service point in an intelligent network.

[0025] The UTRAN comprises a number of radio network sub-systems (not shown in the figure) connected to the core network CN. A radio network sub-system comprises a radio network controller RNC and one or more B nodes nodeB. The radio network controller RNC is a network node responsible for controlling UTRAN radio resources. It corresponds logically to

a base station controller in the GSM system. In each connection between the user equipment UE and the UTRAN, one RNC is a serving RNC. The main task of the B node nodeB is to process (channel coding and multiplexing, rate adjustment, decoding, etc.) a layer 1 of an air interface. It also carries out some management operations of the basic radio resource, such as controlling inner circuit power. The B node nodeB corresponds logically to a base station in the GSM system.

[0026] The core network CN can be connected to external networks, such IP networks IP. In the example of Figure 1, the core network CN comprises a serving general packet radio service GPRS support node SGSN, a gateway GPRS support node GGSN and a home subscriber server HSS. Core networks of another type, such as IS-41, may comprise other network nodes.

[0027] The support nodes SGSN and GGSN are usually interconnected by a backbone network (not shown in the figure). It is to be noted that the SGSN and GGSN functionalities can also be physically connected to the same network node, in which case the backbone network of the operator is unnecessary. Logically, however, the nodes are different nodes. The IP telephony is in practice invisible to the elements of the core network. For the support nodes SGSN and GGSN, the IP telephony is only a PDP context, i.e. a transmission link, with certain service quality requirements. The signalling associated with the IP telephony usually terminates at the user equipment and the CSCF, so there is no need for the SGSN or GGSN to understand it.

[0028] The serving GPRS support node SGSN is a node which serves the user equipment UE located in its area. In a packet radio network of the cellular type, each support node SGSN provides mobile data terminals, i.e. the user equipment UE, with packet data service in the area of one or more cells in its service area. The SGSN can participate in collecting billing information in the access network. The SGSN according to the first preferred embodiment of the invention comprises a function similar to the service switching function in an intelligent network.

[0029] The GPRS gateway support nodes GGSN connect the operator to systems external to the GPRS network, such as the IP network IP. The GGSN can also be connected directly to a private company network or a host. The GGSN operates as a router between an external address and inter-

nal routing data (e.g. SGSN). The GGSN can participate in collecting the billing information of the access network.

- 5 [0030] The home subscriber server HSS logically corresponds to the home location register in the GSM system, subscriber information for each subscriber being stored therein permanently or semi-permanently such that the subscriber information is combined with a subscriber identifier, which, for example, is an IMSI in the GSM system. The CSCF of the IP telephony network has a signalling connection to the HSS.

- 10 [0031] In the first preferred embodiment of the invention, the access network comprises a service control function CSE_A for billing prepaid subscriptions. This network node responsible for billing can also be a network node of a third party, i.e. for instance the provider of a prepaid service. The event to be billed from an account of the prepaid subscription or from the subscriber of a subscription to be paid in arrears is not necessarily by any means 15 related to the actual bearer service at all, but the account/subscription can be used for billing all kinds of services, i.e. for various billing events necessary for e.g. e-commerce. In the first preferred embodiment of the invention, it is assumed that the subscriber has a prepaid subscription to the operator of the access network and the operator of the access network, in turn, has bilateral 20 billing-related contracts with IP telephony operators. The service control function CSE_A may comprise all service logic associated with prepaid subscription services and control associated with the service, and necessary databases for the service or a connection to the databases. The service control function is only a logical function and it can be internally implemented in different ways. An alternative is that it is internally decentralized and the related 25 service logic can be decentralized in different nodes. Also the service information can be decentralized in different nodes from the service logic. In the first preferred embodiment of the invention, however, it is assumed for the sake of clarity that maintenance of the prepaid subscriptions' accounts and the necessary information are located in the same network node.

- 30 [0032] IP telephony is a general term which covers services from the standard voice telephony voice over IP VoIP to multimedia applications using IP data, voice and video in the IP telephony. In addition to the IP telephony, the above-described system supports other applications, such as access 35 to the Internet or an intranet. Similarly, an IP call refers to a call which utilizes IP-based user information flow and signalling. The user information may com-

prise several different components, such as voice, video image and data. In addition to calls, the IP telephony may comprise call-like services, which can be unidirectional, directed to a group (or groups) or broadcast in a given area, for example. In the IP telephony, mobile communication systems utilize new 5 protocols, such as a wireless application protocol WAP.

[0033] In addition to prior art means, a system and its network nodes implementing the functionality of the present invention comprise means for implementing functions described in closer detail in connection with Figures 2, 3 or 4. To be more precise, they comprise either means for identifying a 10 joint billing subscriber and for transmitting billing tariffs from a network to another and for billing the subscriber according to a billing tariff obtained by combining the billing tariffs of the two networks, or means for generating a global billing identifier and for transmitting the identifier to the nodes that collect billing information. It is also feasible that the system and its network nodes 15 comprise all means mentioned above. In addition, the user equipment may comprise means for storing the global billing identifier and for transmitting the billing identifier to at least one of the networks. The existing network nodes and user equipment comprise processors and memory that can be utilized in the functions of the invention. All changes necessary for implementing the invention can be carried out as additional or updated software routines and/or by 20 application circuits (ASIC).

[0034] Figure 2 shows signalling according to the first preferred embodiment of the invention when a call using the IP telephony is made from the user equipment UE using a prepaid subscription. It is an example of services chargeable from the subscription of the user equipment, for which the functionality according to the first preferred embodiment of the invention can be utilized. In the example of Figure 2, it is assumed that the user equipment has a subscription both to the access operator and the telephony operator but a prepaid account only to the access operator. The subscription to the telephony operator is used by the CSE_T to identify the subscription of the user equipment as a prepaid subscription. In other embodiments of the invention, the prepaid subscription can be identified in other ways and in these embodiments, the user equipment only needs a single subscription, preferably a subscription to the access operator. For the sake of clarity, it is assumed that the 30 user equipment has made its presence known to the access network by performing a GPRS attach operation. In the GPRS attach procedure, the SGSN 35

creates a mobility management MM context, and a logical link control LLC is provided between user equipment UE and the SGSN node at the protocol layer.

[0035] Furthermore, it is for the sake of clarity assumed that the
5 user equipment UE has activated the PDP context, i.e. packet data address, it wishes to use. The PDP context specifies different data transfer parameters, such as a PDP type (X.25 or IP, for example), PDP address (IP address, for example), quality of service QoS and a network service access point identifier NSAPI. During the activation of the PDP context, the SGSN has encountered
10 a subscriber-specific trigger (detection point), as the result of which it has requested context processing instructions from at least the service control function of the access operator which is responsible for maintaining the account of the prepaid subscription. The SGSN receives the address of the control function from, for example, the home subscriber server HSS, or it may have been
15 set as a default value in the trigger. As the processing instructions, the SGSN receives from the control function CSE_A different threshold values, for example, such as a reporting condition by which the CSE_A requests an announcement from the SGSN when a certain amount of information has been transmitted from the user equipment UE when the billing is based on the
20 transmitted amount of information. This exchange of information is not shown in Figure 2.

[0036] Furthermore, it is for the sake of clarity assumed that the user equipment has registered itself in a CSCF and the call is routed to the CSCF. It is irrelevant to the invention how the CSCF is chosen during registration.
25 In other embodiments of the invention, the call can be routed to another CSCF in which the user equipment is not registered.

[0037] In Figure 2, the process starts when the user equipment UE transmits a connection setup request 2-1. The SGSN transmits the message to the GGSN, which transmits the call setup request 2-1 to the CSCF. Reception of the call setup request 2-1 results in encountering, at the CSCF, a trigger (Detection Point) to initiate the service, which causes the CSCF to transmit
30 a request 2-3 for instructions to the service control function CSE_T of the telephony operator. The service control function CSE_T detects in step 2-4 that the call concerns a prepaid subscription, and the service control function
35 CSE_A is responsible for the prepaid account of the prepaid subscription. In the first preferred embodiment of the invention, this information is located, for

example, in the database of the CSE_T, or the operators may have a common database to use. In another preferred embodiment of the invention, the CSE_T may infer, on the basis of the telephone number of the caller, for example, that a prepaid subscription is at issue and request the address of the service control function CSE_A responsible for the prepaid account from the HSS via the CSCF.

[0038] Since the subscription is a prepaid subscription, the CSE_T sends, in a message 2-5, the tariff of the telephony operator and instructs the CSCF that the tariff of the telephony operator is to be transmitted to the CSE_A and all special events during the call are to be reported to the CSE_A. The message 2-5 preferably comprises the address of the CSE_A. After receiving the address 2-5, the CSCF transmits a message 2-6, which comprises the telephony operator tariff information and indicates the telephony operator to the CSE_A, to the CSE_A maintaining the account of the prepaid subscription. If no further intelligent-network-like controlling is associated with the service, the connection between the CSCF and the CSE_T is disconnected. After receiving the message 2-6, the CSE_A checks in step 2-7 whether the access operator and the telephony operator indicated by the message 2-6 have a billing-related contract.

[0039] If the operators have a mutual contract, the CSE_A combines the tariff of the telephony operator and the tariff of the access operator in order to charge the prepaid account according to the combined tariff. In addition, the CSE_A transmits an instruction to the CSCF in a message 2-8A to continue call establishment. The message 2-8A may also comprise other information related to the intelligent-network-like controlling, such as arming of detection points. The message 2-8A may also comprise, for example, reporting conditions or changes of previous reporting conditions. When the connection has been established, the prepaid account is charged according to the combined tariff mainly on the basis of information reported by the SGSN. If the CSCF detects a special event, i.e. an event which could not have been taken into account in tariff formation, it informs the CSE_A of the event so the CSE_A can acknowledge the event in the charging of the prepaid account. The access operator transmits the telephony operator's share in the billing of the connection to the telephony operator, preferably in arrears.

[0040] If the operators do not have a mutual contract, the CSE_A informs the CSCF of this in a message 2-8B, whereafter the CSCF preferably

terminates call establishment and informs the user equipment UE of the fact that the selected telephony operator cannot be used.

[0041] In a preferred embodiment of the invention, the tariff of the telephony operator is known in the CSCF. In this embodiment, the message 2-5 does not contain the tariff.

[0042] In a preferred embodiment of the invention, the CSE_A and the CSE_T may directly intercommunicate. In this embodiment, the CSE_T directly informs the CSE_A of the tariff of the telephony operator, and the CSE_A replies to the CSE_T with the message 2-8A or 2-8B. In this embodiment, messages 2-5 and 2-6 are unnecessary but the connection between the CSCF and the CSE_T cannot be disconnected. In this embodiment, the CSE_T transmits the information on special events to the CSE_A.

[0043] In a preferred embodiment of the invention, the prepaid subscription is a subscription to the telephony operator, in which case the CSE_T (or the like) is responsible for charging the prepaid subscription. In this embodiment, the CSE_T detects in step 2-4 that a connection setup request supplied via an access operator A is at issue and requests the access operator tariff information from the CSE_A (or a corresponding network node comprising the tariff information) in the messages 2-5 and 2-6 via the CSCF. The CSE_A returns the tariff information if the operators have a mutual contract, whereafter the CSE_T combines the tariffs and charges the account according to the combined tariff. In another embodiment, the contract information are located at the CSE_T and it requests the tariff information only if a contract exists. Yet in another preferred embodiment of the invention, the CSE_T comprises, besides the contract information, also the tariff of the access operator. In this embodiment, tariff information needs not be requested but it will suffice that the CSCF combines the tariff of the access operator with the tariff of the telephony operator. In this embodiment, when the tariff of the access operator changes, the change is updated in the CSE_T. This can be performed by utilizing automatic updating, for example.

[0044] Although in connection with Figure 2 the first preferred embodiment with its different alternatives has been disclosed in connection with a prepaid subscription, it is obvious to one skilled in the art that the invention according to the first preferred embodiment can also be applied in connection with subscribers to be billed in arrears e.g. for producing a single bill to a subscriber and/or for monitoring a balance limit.

[0045] Figure 3 shows signalling according to a second preferred embodiment of the invention. In the example of Figure 3, it is for the sake of clarity assumed that the user equipment UE has a subscription to the access operator, which settles the bills between the operators if the telephony operator is not the same as the access operator. Each operator, in turn, settles with its service providers the billing related to the use of the services. In some other embodiments of the invention, the user may have a subscription both to the access operator and the telephony operator. For the sake of clarity, it is further assumed that the user equipment has made its presence known to the access network by carrying out a GPRS attach operation. In the GPRS attach procedure, the SGSN creates a mobility management MM context, and a logical link is provided between the user equipment UE and the SGSN node at the logical link control LLC protocol layer. Furthermore, it is assumed for the sake of clarity that the user equipment has been registered in the CSCF, and a call is routed to that CSCF. The way in which the CSCF is chosen in connection with the registration is irrelevant to the invention. In other preferred embodiments of the invention, a call may be routed to a CSCF in which the user equipment is not registered.

[0046] In Figure 3, the process starts when the user equipment activates a PDP context, which, according to what has been disclosed above, determines different data transmission parameters, such as a PDP type (X.25 or IP, for example), PDP address (IP address, for example), quality of service QoS and a network service access point identifier NSAPI. Activation of the PDP context is started by transmitting a message 3-1 (Activate PDP Context Request) from the user equipment UE to the SGSN. Next, the SGSN and the user equipment may carry out security functions, e.g. authentication of the user equipment. These are not shown in Figure 3. After receiving the message 3-1, the SGSN retrieves the address of the GGSN and transmits a message 3-2 (Create PDP Context Request) to the GGSN. In response to the message 3-2, in step 3-3 the GGSN generates a global billing identifier C_ID. The global billing identifier is preferably a combination of an integer identifying the PDP context in the GGSN and the address of the GGSN. The billing identifier thus formed is a globally unique one. Preferably, a running number is used as the identifying integer. Instead of the address of the GGSN, the address of another network element may also be used, the integer then preferably identifying the PDP context in the particular network element. The billing identifier

may also be formed in other ways. The point in the second embodiment of the invention is that the billing identifier is unique in the system formed by different interacting networks such that call detail records relating to the same PDP context that are supplied to a billing centre always contain the same billing identifier, which cannot be confused at the billing centre with the billing identifiers used by other PDP contexts.

[0047] After generating the billing identifier C_ID (and after creating the information necessary for routing), the GGSN transmits a message 3-4 (Create PDP Context Response), which comprises the billing identifier C_ID as a new parameter. The SGSN separates the billing identifier C_ID from the message 3-4 and, in step 3-5, stores the billing identifier C_ID as the billing identifier to be used in this PDP context, and transmits the billing identifier C_ID to the user equipment UE in a message 3-6 (Activate PDP Context Accept) indicating that the activation of the PDP context has succeeded.

[0048] After receiving the message 3-6, in step 3-7 the user equipment UE stores the billing identifier C_ID as the billing identifier related to the particular PDP context. When the user desires a service from the network, e.g. to set up a call, in step 3-8 the user equipment attaches the billing identifier to a setup message 3-9 (Set up) and transmits the message 3-9- to the CSCF. In step 3-10, the CSCF stores the billing identifier in its memory to be used in the billing of this connection. The CSCF transmits the billing identifier to the MGCF in a message 3-11, and in step 3-12, the MGCF stores the billing identifier in its memory to be used in the billing of this connection.

[0049] Figure 3 shows no other signalling related to connection setup. After the connection has been set up, certain network nodes (in the example of Figure 3 the SGSN, GGSN, CSCF and MGCF) collect billing information, each transmitting call detail records CDR to a billing centre BC in messages 3-13a, 3-13b, 3-13c, 3-13d. The call detail records comprise the billing identifier C_ID. Using the billing identifier C_ID, the billing centre BC combines the call detail records supplied from the different network nodes into a sum to be billed from the subscriber. A prepaid account can also be charged each time after any of the messages 3-13a, 3-13b, 3-13c or 3-13d has been received, in which case combining the billing events means that each call detail record comprising the same billing identifier will charge a certain account.

35 The correct account is found on the basis of the billing identifier. The billing

centre can be a separate centre or e.g. a network node CSE_T charging the account of a prepaid subscription.

- [0050] In the second preferred embodiment, the network nodes of the telephony operator (CSCF and MGCF) remove the billing identifier C_ID from their memory while the connection is being disconnected. In the second preferred embodiment, the user equipment UE and the network nodes of the access network (SGSN and GGSN) remove the billing identifier C_ID from their memory while the PDP context is being deactivated. Removing refers to the information no longer being available.
- 10 [0051] In a preferred embodiment utilizing the second embodiment of the invention, a joint billing subscriber is identified either in the GGSN or the SGSN, and the billing identifier is transmitted to the user equipment only if the subscriber is a joint billing subscriber. In this embodiment, the user equipment is arranged to attach the billing identifier to the message 3-9 only if it has received one in the message 3-6.

- 15 [0052] Figure 4 shows signalling according to a third preferred embodiment of the invention. The same assumptions are made in the example of Figure 4 as in the example of Figure 3. Furthermore, it is assumed in the example of Figure 4 that the interface between the access layer and the telephony layer is located between the GGSN and the CSCF.

- 20 [0053] In Figure 4, the process starts when the user equipment UE starts activating the PDP context by transmitting a message 4-1 (Activate PDP Context Request) from the user equipment UE to the SGSN. Next, the SGSN and the user equipment may carry out security functions, e.g. authentication of the user equipment. These are not shown in Figure 4. After receiving the message 4-1, the SGSN retrieves the address of the GGSN and transmits a message 4-2 (Create PDP Context Request) to the GGSN. In response to the message 4-2, in step 4-3 the GGSN generates a global billing identifier C_ID. The global billing identifier is described in closer detail in connection with Figure 3.

- 25 [0054] After generating the billing identifier C_ID (and after creating the information necessary for routing), the GGSN transmits a message 4-4 (Create PDP Context Response), which comprises the billing identifier C_ID as a new parameter. The SGSN separates the billing identifier C_ID from the message 4-4 and, in step 4-5, stores the billing identifier C_ID as the billing identifier to be used in this PDP context. The GGSN also transmits the billing

identifier C_ID to the CSCF in a message 4-6. In step 4-7, the CSCF stores the billing identifier in its memory to be used in the billing of this transmission link. The CSCF transmits the billing identifier to the MGCF in a message 4-8, and in step 4-9, the MGCF stores the billing identifier in its memory to be used 5 in the billing of this connection.

[0055] When a connection, e.g. a call, has then been set up from the user equipment, certain network nodes (in the example of Figure 4 the SGSN, GGSN, CSCF and MGCF) collect billing information using the billing identifier C_ID determined for the transmission link used by the connection, 10 each network node transmitting call detail records CDR to the billing centre BC. The call detail records comprise the billing identifier C_ID. The transmission of the call detail records is not shown in Figure 4. In the third preferred embodiment, the billing centre BC operates in a similar manner to that shown in the second preferred embodiment in connection with Figure 3; therefore, its 15 operation will not be described in closer detail herein.

[0056] In the third preferred embodiment, the network nodes of the telephony operator (CSCF and MGCF) and the network nodes of the access network (SGSN and GGSN) remove the billing identifier C_ID from their memory while the PDP context is being deactivated. Removing refers to the 20 information no longer being available.

[0057] In a preferred embodiment of the invention, the message 4-6 comprising the billing identifier C_ID is transmitted to the CSCF only when a connection is being set up from the user equipment.

[0058] In another preferred embodiment of the invention, the CSCF 25 requests the billing identifier C_ID from the GGSN e.g. in response to receiving a setup message (message 3-9 in Figure 3). In this embodiment, the GGSN is arranged to transmit the message 4-6 in response to the billing identifier C_ID request received from the CSCF.

[0059] If the interface between the access layer and the telephony 30 layer is located somewhere else, the billing identifier C_ID is transmitted to the CSCF via this interface, which means that the message 4-6 shown in Figure 4 is not needed but some other message/other messages is/are transmitted instead. If the interface is located e.g. between the HSS and the CSCF, the HSS can transmit the billing identifier to the CSCF. The HSS can be informed of the 35 billing identifier either by the SGSN or the GGSN.

- [0060] In preferred embodiments of the invention according to the second and third preferred embodiments, the global billing identifier is not generated in connection with activating the PDP context (transmission link) but only when the user of the user equipment desires a service from the network.
- 5 In these embodiments, messages 3-1 and 3-2 or 4-1 and 4-2 are used for requesting generation of a billing identifier either directly or indirectly, and in the embodiment according to the second preferred embodiment, step 3-7 can be omitted since the user equipment merely relays the billing identifier generated in the network by the access operator to the network node(s) of the telephony
- 10 operator. In these embodiments, the billing identifier is preferably removed from the memory of the network node while the connection is being disconnected.

[0061] It is also feasible that the billing identifier is generated in the network node of the telephony operator, from which it is transmitted either directly or via the user equipment to the network node(s) of the access network.

[0062] In a preferred embodiment utilizing the second and third embodiments of the invention, a joint billing subscriber is identified either in the GGSN or the SGSN, and the billing identifier is transmitted to the user equipment or the CSCF only if the subscriber is a joint billing subscriber. In such an embodiment utilizing the second embodiment, the user equipment is arranged to attach the billing identifier to the message 3-9 only if it has received one in the message 3-6.

[0063] The second and third embodiments (and embodiments derived therefrom) of the invention may also be used both in connection with subscriptions to be billed in arrears and balance-limited subscriptions to be billed in arrears and in connection with prepaid subscriptions as well.

[0064] Some or all signalling messages shown in Figures 3 and 4 may be e.g. messages based on GPRS tunneling protocol GTP, H.323 and/or session initiation protocol SIP protocols.

30 [0065] The signalling messages and steps shown in Figures 2, 3 and 4 are not shown in absolute chronological order and they can be implemented in a different order from the given one. Other signalling messages can be transmitted and/or other functions can be carried out between the messages and/or steps. For example, in the second preferred embodiment of the

35 invention, it can be checked in step 3-9 whether the operators have a contract enabling joint billing, and the process can continue as shown in Figure 3 when

- such a contract exists. Some steps shown in Figures 2 and 3 can also be omitted. If, for example, in the first preferred embodiment of the invention the same operator is both the telephony operator and the access operator, the CSE_T and the CSE_A can be the same service control point, in which case
- 5 in step 2-4, the CSE_T detects that it is itself responsible for the account of the prepaid subscription, so no message 2-5 will be transmitted but the tariffs are combined as shown in step 2-7. No message 2-6 will then be transmitted either. The signalling messages are only examples and they may comprise several separate messages for transmitting the same information. Furthermore,
- 10 the messages may also comprise other information. The names of the messages may also differ from those disclosed above.

15 [0066] It is to be understood that the above description and the related figures are only intended to illustrate the present invention. Different variations and modifications of the invention will be obvious to one skilled in the art without deviating from the scope and spirit of the invention disclosed in the attached claims.

CLAIMS

1. A method for arranging subscriber billing in a telecommunication system wherein a subscriber desiring a service uses both a first network and a second network in the telecommunication system, both networks having billing tariffs of their own, which method comprises the following steps of:
 - 5 receiving a connection setup request, for which the subscriber is billed;
 - c h a r a c t e r i z e d by**
 - 10 identifying the subscriber as a joint billing subscriber;
 - transmitting a tariff of the second network to a node carrying out billing in the first network;
 - combining the tariffs of the first network and the second network in the node; and
 - billing the subscriber according to the combined tariff.
- 15 2. A method as claimed in claim 1, **c h a r a c t e r i z e d** by the method further comprising the following steps of:
 - 20 checking, in the node, whether the first network and the second network have a contract allowing joint billing before the tariffs are combined; and
 - combining the tariffs of the first network and the second network only if such a contract exists.
- 25 3. A method as claimed in claim 1 or 2, **c h a r a c t e r i z e d** by the first network being an access network to which the subscriber has a subscription;
- identifying the subscriber as a joint billing subscriber in the second network.
4. A method as claimed in any one of the preceding claims, **c h a r a c t e r i z e d** in that the joint billing subscriber is a subscriber who has a prepaid subscription, the account of the subscription being deducted according to the combined tariff.
- 30 5. A method for arranging subscriber billing in a telecommunication system wherein a subscriber desiring a service uses both a first network and a second network in the telecommunication system, both networks comprising at least one node enabling billing information to be collected,
- 35

- c h a r a c t e r i z e d** by the method comprising the following steps of:
- generating a billing identifier in the first network;
 - transmitting the billing identifier to the network nodes of the second network that collect billing information;
 - attaching, in each node that collects billing information, the billing identifier to the billing information collected; and
 - combining the pieces of the billing information collected by different nodes that comprise the same billing identifier.
- 10 6. A method as claimed in claim 5, **c h a r a c t e r i z e d** by the first network being an access network and the second network being a network providing services; and
- the method further comprising the step of:
 - generating the billing identifier in the first network while a transmission link is being activated.
- 15 7. A method as claimed in claim 5 or 6, **c h a r a c t e r i z e d** by transmitting the billing identifier from the first network to the second network via an interface between the networks.
- 20 8. A method as claimed in claim 5 or 6, **c h a r a c t e r i z e d** in that the method further comprises the steps of:
- transmitting the billing identifier to the user equipment requesting the activation of the transmission link; and
 - attaching the billing identifier to a service request supplied from the user equipment to the second network on the transmission link.
- 25 9. A method as claimed in claim 8, **c h a r a c t e r i z e d** in that the method further comprises the step of maintaining the billing identifier in the nodes of the first network that collect billing information and in the user equipment as long as the transmission link is active.
- 30 10. A method as claimed in claim 5, 6, 7, 8 or 9, **c h a r a c t e r i z e d** by using at least an integer and the address of one network element for forming the billing identifier.
11. A telecommunication system (1) comprising at least one first network (A) and at least one second network (T) for providing a subscriber (UE) with a service, both networks having billing tariffs of their own,
- 35 **c h a r a c t e r i z e d** in that

the system (1) is arranged to identify the subscriber as a joint billing subscriber and combine a tariff used in the first network (A) with a tariff used in the second network (T) and bill the subscriber according to the combined tariff.

12. A system as claimed in claim 11, **characterized** in that
5 the joint billing subscriber (UE) has a prepaid subscription arranged to be billed in real time by the system (1).

13. A system as claimed in claim 11 or 12, **characterized** in that

the first network (A) is an access network arranged to communicate
10 with a first network node (CSE_A) responsible for subscriber billing;

the second network (T) is a telephony network comprising a second network node (CSE_T) responsible for billing in the telephony network;

the first network node (CSE_A) is arranged to combine the tariffs and bill the subscriber according to the combined tariff; and

15 the second network node (CSE_T) is arranged to identify the subscriber as a joint billing subscriber and, in response to the joint billing subscriber, to arrange the tariff of the second network to be transmitted to the first network node.

14. A system as claimed in claim 13, **characterized** in that
20 the first network node (CSE_A) is arranged to check, in response to receiving the tariff of the second network, whether the operators of the first network and the second network have a joint billing contract and to combine the tariffs only if such a joint billing contract exists.

15. A telecommunication system (1) comprising at least one first network (A) and at least one second network (T) for providing a subscriber (UE) with a service, each network comprising at least one node to collect billing information,

characterized in that

the system (1) is arranged to generate a billing identifier in the first network (A), transmit the billing identifier to at least the node of the second network (T) that collects billing information and to combine the pieces of the billing information that comprise the same billing identifier, and

the node (GGSN, SGSN, CSCF, MGCF) collecting billing information is arranged to attach the billing identifier to the billing information.

35 16. A system as claimed in claim 15, **characterized** in that

the first network (A) is an access network, and in order to use the access network the subscriber must activate a packet data address;

5 the system (1) is arranged to generate the billing identifier in connection with the activation of the packet data address and to transmit the billing identifier to the second network in connection with a service request.

17. A system as claimed in claim 15 or 16, **characterized** in that the billing information is generated in the node (GGSN, SGSN) of the first network that collects billing information.

10 18. A system as claimed in claim 15, 16 or 17, **characterized** in that the system (1) is arranged to transmit the billing identifier from the first network to the second network via user equipment.

15 19. A system as claimed in claim 15, 16 or 17, **characterized** in that the system (1) is arranged to transmit the billing identifier from the first network to the second network via an interface between the first and the second networks.

20 20. A system as claimed in claim 15, 16, 17, 18 or 19, **characterized** in that the system (1) is arranged to use a billing identifier comprising the address of a network node in the first network and an integer.

25 21. User equipment (UE) arranged to function in a telecommunication system comprising at least one first network and at least one second network for providing a subscriber with a service, each network comprising at least one node to collect billing information,

characterized in that

25 the user equipment (UE) is arranged to receive a billing identifier from the first network and to transmit the billing identifier to the second network.

30 22. User equipment (UE) as claimed in claim 21, **characterized** in that the user equipment (UE) is arranged to receive the billing identifier in connection with activation of a packet data address between the user equipment and the first network.

23. User equipment (UE) as claimed in claim 21 or 22, **characterized** in that the user equipment (UE) comprises a memory and is arranged to store the billing identifier in its memory.

35 24. User equipment (UE) as claimed in claim 23, **characterized** in that the user equipment (UE) is arranged to transmit the billing identifier to the second network during connection setup.

1/3

2/3

FIG.3

3/3

FIG.4

INTERNATIONAL SEARCH REPORT

International application No. PCT/FI 01/00501
--

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H04M 15/00, H04Q 7/38, H04M 17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H04M, H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	GB 2352935 A (TELEFONAKTIEBOLAGET LM ERICSSON), 7 February 2001 (07.02.01), page 5, line 17 - page 7, line 7	1-4,11-14
P,A	--	5-10,15-24
A	WO 0016579 A1 (NOKIA NETWORKS OY), 23 March 2000 (23.03.00), abstract	1-24
A	GB 2342006 A (CELLCOM LTD), 29 March 2000 (29.03.00), page 7, line 25 - page 9, line 1	1-24

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent-family

Date of the actual completion of the international search

Date of mailing of the international search report

12 Sept 2001

14-09-2001

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Irma Bornhede/MN
Telephone No. +46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 01/00501

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 0005871 A1 (TELEFONAKTIEBOLAGET LM ERICSSON), 3 February 2000 (03.02.00), abstract --	1-24
A	WO 9827715 A1 (NOKIA TELECOMMUNICATIONS OY), 25 June 1998 (25.06.98), page 2, line 28 - page 3, line 30 -----	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

02/08/01

International application No.

PCT/FI 01/00501

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB 2352935 A	07/02/01	AU 5222600 A		05/03/01
		GB 9918489 D		00/00/00
		WO 0111859 A		15/02/01
WO 0016579 A1	23/03/00	AU 5749299 A		03/04/00
		BR 9913674 A		05/06/01
		EP 1104642 A		06/06/01
		FI 106087 B		00/00/00
		FI 981976 A		15/03/00
GB 2342006 A	29/03/00	FR 2786585 A		02/06/00
		GB 2332337 A,B		16/06/99
		GB 9820632 D		00/00/00
WO 0005871 A1	03/02/00	AU 5541099 A		14/02/00
		BR 9912390 A		24/04/01
		US 6185414 B		06/02/01
WO 9827715 A1	25/06/98	AU 731093 B		22/03/01
		AU 5399298 A		15/07/98
		BR 9713970 A		11/04/00
		EP 0938805 A		01/09/99
		FI 102710 B		00/00/00
		FI 965134 A		20/06/98
		US 6122352 A		19/09/00