FORTSCHRITT-BERICHTE

Dr. rer. nat. Manfred Jaeschke, Dorsten, Federal Republic of Germany Dr. Anthony E. Humphreys, London, United Kingdom

The GERG Databank of High Accuracy Compressibility Factor Measurements

Reihe 6: Energieerzeugung

Nr. **251**

Dr. rer. nat. Manfred Jaeschke, Dorsten, Federal Republic of Germany Dr. Anthony E. Humphreys, London, United Kingdom

The GERG Databank of High Accuracy Compressibility Factor Measurements

Reihe 6: Energieerzeugung

Nr. **251**

Jaeschke, Manfred, und Anthony E. Humphreys

The GERG Databank of High Accuracy Compressibility Factor Measurements

Fortschr.-Ber. VDI Reihe 6 Nr. 251. Düsseldorf: VDI-Verlag 1991. 58 pages, 14 tables.

Keywords: Binary Mixture — Compressibility Factor — Databank — Experimental Data — GERG Virial Equation — Multicomponent Mixture — Natural Gas — Pure Gases — Ternary Mixture

This monograph provides a complete listing in a single document of the entire contents of the GERG compressibility factor databank. The databank comprises high-accuracy measurements of compressibility factor within specified ranges of pressure (0 to 12 MPa), temperature (265 to 335 K) and gas composition, and includes all of the data used in the development and testing of the GERG virial equation. For pure gases there are 36 distinct data sets critically selected for inclusion, yielding 2374 data points; for binary mixtures 107 data sets, 5847 points; for ternary mixtures 18 data sets, 620 points; for quaternary and other synthetic multicomponent mixtures 20 data sets, 492 points; and for natural gas and natural gas/manufactured gas mixtures 84 data sets, 4486 points. The grand total, as of 31 March 1988, is 13819 data points, all with a supposed accuracy of no worse than \pm 0.1%.

Die Reihen der FORTSCHRITT-BERICHTE VDI:

- 1 Konstruktionstechnik/Maschinenelemente
- 2 Fertigungstechnik
- 3 Verfahrenstechnik
- 4 Bauingenieurwesen
- 5 Grund- und Werkstoffe
- 6 Energieerzeugung
- 7 Strömungstechnik
- 8 Meß-, Steuerungs- und Regelungstechnik
- 9 Elektronik
- 10 Informatik/Kommunikationstechnik
- 11 Schwingungstechnik

- 12 Verkehrstechnik/Fahrzeugtechnik
- 13 Fördertechnik
- 14 Landtechnik/Lebensmitteltechnik
- 15 Umwelttechnik
- 16 Technik und Wirtschaft
- 17 Biotechnik
- 18 Mechanik/Bruchmechanik
- 19 Wärmetechnik/Kältetechnik
- 20 Rechnerunterstützte Verfahren (CAD, CAM, CAE, CAP, CAQ, CIM,...)
- 21 Elektrotechnik

© VDI-Verlag GmbH · Düsseldorf 1991

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Photokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISSN 0178-9414

ISBN 3-18-145106-1

GERG TECHNICAL MONOGRAPH 4 (1990)

THE GERG DATABANK OF HIGH ACCURACY COMPRESSIBILITY FACTOR MEASUREMENTS

prepared by

M. JAESCHKE

Ruhrgas A.G., Federal Republic of Germany (Convenor, GERG Working Group 1.1 (1987-88))

and

A.E. HUMPHREYS

British Gas plc, United Kingdom

on behalf of

GERG Working Group 1.1

P. VAN CANEGHEM

Distrigaz S.A., Belgium

M. FAUVEAU

Gaz de France, France

R. JANSSEN-VAN ROSMALEN N.V. Nederlandse Gasunie, Netherlands

Q. PELLEI

S.N.A.M. S.p.A., Italy

and

Programme Committee No.1 - Production, Supply and Gas Properties -GROUPE EUROPEEN DE RECHERCHES GAZIERES (GERG)

GERG TECHNICAL MONOGRAPH 4 (1990)

THE GERG DATABANK OF HIGH ACCURACY COMPRESSIBILITY FACTOR MEASUREMENTS

	ract/Resumé/Zusammenfassung/Riassunto/Samenvatting nowledgements	v vii
1.	INTRODUCTION	1
	1.1 The GERG-88 Virial Equation 1.2 Evaluation of Second and Third Virial Coefficients 1.3 The GERG Experimental Measurements and Databank of Compressibility Factors	1 3 4
2.	MEASUREMENTS MADE BY GERG MEMBER COMPANIES	6
	 2.1 Z-Meter Measurements 2.2 Burnett Apparatus Measurements 2.3 Optical Interferometry Measurements 2.4 GERG Round-Robin Exercise 2.5 Missing or Inadequate Data 2.5.1 Inadequate Source Data 2.5.2 Inadequate Test Data 2.6 Supplement to the GERG Databank 	6 6 7 8 9 9 10 11
3.	THE GERG DATABANK	12
	 3.1 General Information 3.2 Pure Gases: the A-File 3.3 Binary Mixtures: the B-File 3.4 Ternary Mixtures: the C-File 3.5 Quaternary and Synthetic Multicomponent Mixtures: 	12 14 15 16
	the D-File 3.6 Natural Gas and Natural Gas/Manufactured Gas Mixtures:	16
	the N-File 3.7 Computer Documentation List of Tables	16 18 20
4.	REFERENCES	36
5.	GLOSSARY	40
	APPENDICES	42
	 The A-File The B-File The C-File The D-File The N-File 	43 108 280 302 326

Abstract

This Monograph provides a complete listing in a single document of the entire contents of the GERG compressibility factor databank. The databank comprises high-accuracy measurements of compressibility factor within specified ranges of pressure (0 to 12 MPa), temperature (265 to 335 K) and gas composition, and includes all of the data used in the development and testing of the GERG virial equation. For pure gases there are 36 distinct data sets critically selected for inclusion, yielding 2374 data points; for binary mixtures 107 data sets, 5847 points; ternary mixtures 18 data sets, 620 points; for quaternary and other synthetic multicomponent mixtures 20 data sets, 492 points; and for natural gas and natural gas/manufactured gas mixtures 84 data sets, 4486 points. The grand total, as of 31 March 1988, is 13819 data points, all with a supposed accuracy of no worse than Although many of the data have been drawn from the pre-existing research literature, substantial proportions of the data - especially those measured in-house by GERG member companies - have not previously been the subject of formal publication.

<u>Resumé</u>

Cette monographie fournit en un seul document le contenu intégral de la banque de données du facteur de compressibilité du GERG. Celle-ci comporte des données expérimentales de cette grandeur dans la gamme de pressions 0 à 12 MPa et de températures 265 à 335 Elle comporte toutes K pour des compositions de gaz spécifiques. les données utilisées pour développer et tester l'équation de On y trouve des données rigoureusement viriel du GERG. sélectionnées concernant les gaz purs (36 ensembles de données fournissant 2374 points), des mélanges binaires (107 ensembles de données, 5847 points), des mélanges ternaires (18 ensembles de données, 620 points), des mélanges quaternaires ou d'autres mélanges synthétiques multi-composants (20 ensembles de données, 492 points) et des gaz naturels ou des mélanges gaz naturel-gaz manufacturé (84 ensembles de données, 4486 points). Cela donne donc un total de 13819 données expérimentales (31.3.1988) dont la précision est meilleure que 0.1%. Bien que de nombreuses données aient été tirées de la recherches bibliographiques, une proportion importante, en particulier celles qui ont été obtenues dans les laboratoroires des compagnies membres du GERG, n'ont pas fait l'objet de publications antérieures.

Zusammenfassung

Die Monographie stellt in einem einzigen Dokument eine komplette Liste des gesamten Inhalts der GERG-Realgasfaktordatenbank zusammen. Die Datenbank unfasst hochgenaue Messdaten von Realgasfaktoren innerhalb des folgenden Druck- (0-12 MPa) und Temperaturbereichs (265-335 K) für die angegebenen Gaszusammensetzungen. Die Datenbank enthält alle Daten die bei der Entwicklung und beim Testen der GERG-Virialgleichung benutzt worden sind. Vor der Aufnahme von Datensätzen in die Datenbank wurden diese kritisch bewertet; dabei wurden 36 verschiedene Sätze für reine Gase mit insgesamt 2,374 Datenpunkten, für binäre Gemische 107 Datensätze mit 5,847 Datenpunkten, für ternäre Gemische 18 Datensätze mit 620 Punkten, für quaternäre oder andere synthetische Vielstoffgemische

20 Datensätze mit 492 Messpunkten und für Erdgase oder Erdgas-Kokereigasgemische 84 Datensätze mit 4,486 Messpunkten aufgenommen. Die Gesamtzahl aller Messpunkte beträgt 13,819 (Stand der GERG-Datenbank 31. März 1988). Für alle Datenpunkte wurde eine Messunsicherheit angenommen, die nicht grösser als ± 0.1% ist. Obwohl viele der Daten von früheren Literaturrecherchen übernommen worden sind, so ist doch der überwiegende Anteil der Daten insbesondere jener, der in den Labors der GERG-Mitgliedsfirmen gemessen worden ist, bisher nicht in einer anderen Publikation veröffentlicht worden.

Riassunto

Questa monografia fornisce in un singolo documento una lista completa dell'intero contenuto della banca dati GERG del fattore di compressibilità.

La banca dati comprende le misurazioni molto accurate del fattore di compressibilità comprese nel campo specificato di pressione (0-12 MPa), temperatura (265-335 K) e composizione del gas, e comprende tutti i dati utilizzati nello svilippo e nella verifica dell'equazione viriale GERG.

Per i gas puri ci sono 36 distinte serie di dati selezionati con l'inclusione di 2374 valori; per miscele binarie 107 seri di dati, 5847 valori; per miscele ternarie 18 serie di dati, 620 valori; per miscele quaternarie ed altre miscele sintetiche multicomponenti 20 serie di dati, 492 valori; e per miscele di gas naturale e gas naturale manifatturato 84 serie di dati, 4486 valori. Il totale generale è di 13819 valori (31.3.1988), tutti con un'accuratezza ritenuta non peggiore di ± 0.1%.

Sebbene molti dati sono stati estratti dalla preesistente letteratura di ricerca, la parte sostanziale dei dati, specialmente quelli misurati presso le Società membre del GERG, non sono stati precedentemente oggetto di formale pubblicazione.

Samenvatting

Deze monograaf geeft een volledig overzicht van de gegevens die gebruikt zijn voor de ontwikkeling en het testen van de GERG-viriaalvergelijking. Deze databank bevat zeer nauwkeurige metingen van de compressibiliteitsfactor voor gespecificeerde gebieden van druk (0-12 MPa), temperatuur (265-335 K) en gassamenstelling. Voor pure gassen zijn 36 afzonderlijke datasets kritisch geselecteerd, resulterend in 2374 datapunten. Voor binaire mengsels zijn 107 datasets geselecteerd (5847 punten), voor ternaire mengsels 18 datasets (620 punten), voor quaternaire en andere synthetische multi-componenten systemen 20 datasets 492 punten), en voor aardgas-en synthetische aardgasmengsels 84 datasets (4486 punten). Totaal resulteert dit in 13819 datapunten (31.3.1988), alle met een geschatte nauwkeurigheid van beter dan ± 0.1%

Hoewel een deel van de gegevens overgenomen is uit de literatuur, is een aanzienlijk deel, gemeten door GERG-leden, niet eerder gepubliceerd in de open literatuur.

Acknowledgements

We wish again to express our due appreciation to Dr. A. Melvin (formerly Chairman) and to other members of the GERG Programme Committee No.1, for their continued support and encouragement throughout the course of the co-operative project concerning the prediction of compressibility factors for natural gases, for which the development of the GERG databank was such an important aspect.

We also wish to thank Dr. J.A. Schouten and Dr. J.P.J. Michels (University of Amsterdam) for their contracted work in support of GERG Working Group 1.1, during which they carried out the addition of much new data and re-cast the original GERG databank into its present 5-file format. Most of the newer experimental data were measured in the Gasunie and Ruhrgas laboratories; we thank in particular H.C. Reinhardus and H.M. Hinze for their contributions of high quality measurements. Finally we wish to thank H.P. Jülicher and H. Scheuren for recent updates to and maintenance of the databank.

1. INTRODUCTION

1.1 The GERG-88 Virial Equation

The recent development of the GERG-88 virial equation (references 1-7) has for the first time enabled the ready calculation of the compressibility factor $Z_{\rm mix}$ for natural gas and natural gas/manufactured gas mixtures (the latter possibly containing substantial amounts of hydrogen), for a wide range of compositions and conditions relevant to gas transmission and distribution applications, with an expectation accuracy of $\pm 0.1\%$. The GERG-88 equation is conceptually simple, taking the form of a virial expansion in density truncated after the third term, viz.

$$Z_{mix}(p,T) = 1 + B_{mix}(T) \rho_m + C_{mix}(T) \rho_m^2$$
 (1.1)

in which
$$\rho_{m} = p/Z_{mix}RT$$
 (1.2)

and (exactly)

$$B_{mix}(T) = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j B_{ij}(T)$$
 (1.3)

$$C_{\text{mix}}(T) = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} x_i x_j x_k C_{ijk}(T)$$
 (1.4)

where (approximately)

$$B_{ij}(T) = b_{ij}^{(0)} + b_{ij}^{(1)} T + b_{ij}^{(2)} T^{2}$$
(1.5)

$$C_{ijk}(T) = c_{ijk}^{(0)} + c_{ijk}^{(1)} T + c_{ijk}^{(2)} T^2$$
(1.6)

The virial expansion (equations (1.1) to (1.4)) has a sound theoretical basis within the framework of classical statistical mechanics (8,9).

The general formulation given above applies equally to two distinct versions of the GERG-88 virial equation, as follows -

(a) The Master Equation (MGERG-88)

For the Master GERG-88 virial equation, the input requirement is a detailed molar composition analysis, comprising up to 13 specified components (C1 to C8 alkane hydrocarbons, carbon dioxide, nitrogen, hydrogen, carbon monoxide and helium), together with temperature and pressure. The summations in equations (1.3) and (1.4) are therefore to be taken for N=13; as a consequence of this, the number of second virial coefficients B_{ij} and third virial coefficients C_{ijk} involved is rather large, even though considerable rationalisation is possible.

(b) The Standard Equation (SGERG-88)

For the Standard GERG-88 virial equation, the input requirement is The total natural gas mixture is taken to comprise simplified. simply nitrogen and carbon dioxide as first and second components, a third pseudo-component, or "equivalent hydrocarbon" CH, and (if present) hydrogen as a fourth component. Both the mole fraction and the virial coefficients of the equivalent hydrocarbon are inferred through knowledge of the superior (gross) calorific value and relative density (specific gravity) of the whole natural gas. Thus, the input requirement is, in addition to the temperature and pressure, the hydrogen content and any three from calorific value, relative density, carbon dioxide content and nitrogen content: such information is more commonly available than a detailed analysis, and allows the summations of equations (1.3) and (1.4)to be much reduced (to N=4) without loss of accuracy in the final result.

These matters have been documented in detail elsewhere (6,7) and, therefore, need not be further elaborated here.

Both versions of the GERG-88 virial equation are easily implemented on a small personal computer. Validated programs are available on request from either of the present authors.

1.2 Evaluation of Second and Third Virial Coefficients

Given the simplicity of structure of the MGERG-88 virial equation, the major task in suiting it for the calculation of natural gas compressibility factors becomes the evaluation of the second and third virial coefficients $\rm B_{ij}$ and $\rm C_{ijk}$ (including their dependence upon temperature), with an appropriate level of accuracy, for each distinct type of bimolecular (ij) and termolecular (ijk) interaction. To best achieve this, each $\rm B_{ij}$ and $\rm C_{ijk}$ should be derived from experimental measurements of the volumetric properties of pure, binary and ternary gas mixtures. Details of the procedures involved have been given elsewhere (6), but in principle and in brief –

- measurements of compressibility factors of pure gases are used to determine each B_{ii} and C_{iii} by applying equations (1.1) to (1.6) to the single component (N=1) case;
- measurements on binary mixtures are then used, in conjunction
 with the now known values of B_{ii} and C_{iii}, to determine each
 B_{ij} and C_{ijj} by applying equations (1.1) to (1.6) to the
 two component (N=2) case;
- measurements on ternary mixtures are finally used with the now known values of B_{ii}, B_{ij}, C_{iii}, C_{iij} and C_{ijj} to determine each C_{ijk} by applying equations (1.1) to (1.6) to the three component (N=3) case.

The above is a statement of the most satisfactory procedural strategy — in principle; practical considerations, however, particularly those concerning error propagation and cumulation (6), do not always allow such straightforward purity of evaluative technique. Very often, appropriately accurate data simply do not exist, so that B_{ij} and, particularly, C_{ijk} values must then be assessed by other means; equally, however, many of the B_{ij} and C_{ijk} are not critical to the final predictive accuracy and may justifiably be approximated, often to zero.

In any event, once a set of values for the various B_{ij} and C_{ijk} have been obtained, equations (1.1) and (1.2) may be used in a predictive mode to obtain values of $Z_{mix}(p,T)$, given the molar composition of a multicomponent mixture. Consequently, volumetric properties of more complex mixtures are needed as test data to check the accuracy of such predictions.

1.3 The GERG Experimental Measurements and Databank of Compressibility Factors

It is clear from the foregoing that, in both the development and subsequent testing of the GERG-88 virial equation, there has been an essential requirement for large amounts of accurate compressibility factor data for pure gases, binary mixtures, ternary mixtures and more complex multicomponent mixtures. As a fundamental part of the entire project, therefore, an extensive programme of experimental work was initiated in order to produce high-accuracy compressibility factor data, both for pure gases and for binary and other more complex mixtures, especially such data as were evidently vital for the successful completion of correlational work leading to the final form of the GERG-88 virial equation.

Of similar importance for the work on the GERG-88 virial equation has been the provision of easy access to the large amounts of compressibility factor data finally used in both the correlation and subsequent testing of the equation. Consequently, a unique databank has been established with which to facilitate the various analyses involved. This started out in a small way in the early 80s (<1000 points), grew steadily until mid-decade (>3000 points), but in the last few years has expanded rapidly to its present size (>13000 points). It has been organised into a set of five computer files, as follows -

(a) The A-File

This file contains data for pure gases only. There are 36 distinct data sets critically selected for inclusion, comprising a total of 2374 data points. Further details are given in Section 3.2.

(b) The B-File

This file contains data for binary mixtures only. There are 107 data sets, comprising 5847 data points. Further details are given in Section 3.3.

(c) The C-File

This file contains data for ternary mixtures only. There are 18 data sets, comprising 620 data points. Further details are given in Section 3.4.

(d) The D-File

This file contains data for quaternary and other synthetic multicomponent mixtures. There are 20 data sets, comprising 492 data points. Further details are given in Section 3.5.

(e) The N-File

This file contains data for natural gas and natural gas/manufactured (coke-oven) gas mixtures. There are 84 data sets, comprising 4486 points, plus an additional 12 data sets, comprising a further 364 data points, added since the original cut-off date of 31 March 1988. Further details are given in Section 3.6.

The purpose of this Monograph is mainly to act as a single, openly available, repository for all of the data contained in these files. Although many of the data have been drawn from the pre-existing research literature, substantial proportions of the data - especially those mentioned above which were recently measured in-house by GERG member companies, expressly for the purpose of supporting development of the GERG equation - have not previously been the subject of formal publication. This being so, some information concerning the in-house measurements, brief descriptions of the equipment used in their generation, and details of further work to supplement the GERG databank will be presented in the next section.

2. MEASUREMENTS MADE BY GERG MEMBER COMPANIES

2.1 Z-Meter Measurements

A large proportion of the databank consists of compressibility factors obtained from experiments undertaken with commercial "Z-meters", manufactured by Desgranges et Huot (DEH).

The DEH Z-meter is, in principle, a two-chamber isothermal expansion type meter but, unlike the more conventional and well-known Burnett apparatus (10), the DEH Z-meter uses a single-step expansion (11,12), from a high-pressure small-volume chamber into a low-pressure large-volume chamber. The six Z-meters owned and used by the six member companies of GERG Working Group 1.1 are operated with slightly different methodologies or protocols. The Z-meter principle and the main features of the different Z-meter apparatus used are described in a previous GERG Monograph (13). The accuracy is estimated to be some ± 0.1%.

2.2 Burnett Apparatus Measurements

High quality compressibility factor data available in the open research literature often derive from Burnett apparatus (BUR) measurements.

This apparatus comprises two fixed-volume test chambers. The gas sample is expanded isothermally from one chamber into the second (evacuated) chamber; this procedure is repeated several times, each successive expansion using only the gas remaining in the first chamber from the previous expansion. The pressures are measured before and after each expansion. The compressibility factor of the gas can be derived from the series of experimental pressure data. This use of the Burnett apparatus represents the classical experimental procedure for high quality determination of compressibility factor (see, for example, refs. 14-16).

The same procedure is applied to the Burnett apparatus at Ruhrgas A.G., as described by Jaeschke and Hinze (17). The Burnett

apparatus constant (i.e. the volume ratio $(V_1 + V_2)/V_2$, where V_1 and V_2 are the volumes of the two chambers used) has a value of 1.315518 \pm 0.000013. The accuracy is estimated to be some \pm 0.07%.

A modified experimental procedure may be employed especially for measuring compressibility factors or densities near a phase-separation surface. The isochoric Burnett technique starts with gas at a density known from an isothermal expansion run. The density of the fluid in the Burnett apparatus is then kept constant while the state of the fluid is varied by increasing or decreasing the temperature, the pressure being recorded at each new equilibrium temperature. This valuable but very time-consuming procedure has been used, for example, by Holste et al (18).

2.3 Optical Interferometry Measurements

The optical interferometry apparatus (OPT) for compressibility factor determination consists essentially of two connected grating interferometers. One interferometer measures the refractive index of the sample gas as a function of pressure and temperature, while the second interferometer simultaneously measures the refractive index of nitrogen at a fixed temperature. The two instruments are interconnected through a pressure equilibrium chamber which adjusts the nitrogen pressure to equal that of the sample gas.

From the refractive index, measured with the first interferometer at a known pressure p and temperature T, the compressibility factor Z or density p can be derived by use of the Lorentz-Lorenz relation, which defines the molar refractivity as a function of refractive index and molar density. The refraction virial coefficients from the virial expansion of the molar refractivity in molar density may also be calculated.

The second interferometer is used as a pressure meter. It is calibrated, so as to yield a correlation between the refractive index of nitrogen for the 323.15 K isotherm and the pressure, by measuring simultaneously, at a given pressure, the fringe count of the interferometer filled with nitrogen and the pressure measured

with a precision deadweight gauge. The latter is tested against a standard of the Physikalisch-Technische Bundesanstalt (PTB) in Brunswick (Federal Republic of Germany).

A general description of the grating interferometer and the experimental technique has been published (19-21). The apparatus, measurement and analysis procedure used at Ruhrgas A.G. are described elsewhere (17,22). The accuracy is estimated to be some \pm 0.08%.

2.4 GERG Round-Robin Exercise

Six Z-meters manufactured by Desgranges et Huot were tested in the GERG round-robin exercise. The exercise was complemented by pVT measurements with two Burnett apparatus, one at Texas A&M University and the other at Ruhrgas A.G., and the interferometric device at Ruhrgas A.G. A full account of the work is given in a GERG Technical Monograph (13), based on an abbreviated version presented at the 10th International Symposium on Thermophysical Properties (Gaithersburg, 1988) and published in the International Journal of Thermophysics (23). The results are summarised in the Monograph as follows -

"Two gas mixtures were measured. One mixture contained 49.7 mole % of methane and 50.3 mole % of nitrogen, the second mixture 81.3 mole % of methane, 16.4 mole % of ethane and 2.3 mole % of propane. The test temperatures were mainly 280 and 300 K for the first mixture and 290 and 320 K for the second mixture. The maximum pressures were 8 MPa for Z-meters, and 12 MPa for the Burnett apparatus and the grating interferometer.

The experimental compressibility factors Z from the six Z-meters are generally in agreement within \pm 0.05%. The agreement with the reference data from the Burnett apparatus and the interferometric device is also within \pm 0.05%. Only one isotherm for the binary mixture differs by as much as about 0.1% from the other data. Recent natural gas measurements show substantially the same general behaviour.

It is concluded that the use of a combination of Z-meter, Burnett and interferometer data in the development of the GERG virial equation of state does not prejudice its expected predictive accuracy of \pm 0.1%."

The experimental pVT data from the GERG round-robin exercise are identified in Tables 3.3 and 3.4, which list codes and compositions for the binary and ternary mixtures respectively, by asterisks in the column headed "GERG-Code". The Texas A&M results (24) were published recently at the 1989 International Gas Research Conference (48).

2.5 Missing or Inadequate Data

2.5.1 Inadequate Source Data

Gaps in knowledge connected with the GERG-88 virial equation can arise from the lack or inadequacy of data required for development of the equation, for example binary and ternary mixture data. As explained in the Technical Monograph describing the GERG virial equation (6), the importance of such gaps can be assessed by estimating the relative magnitudes of their contributions to the compressibility factor of a typical natural gas mixture. In this way it was shown that the contribution to the compressibility factor due to uncertainties in the unlike interaction second virial coefficients for the ethane + propane and the ethane + butane systems can be significantly large. It is self-evident that it would be very useful to have more accurate data for these two mixtures. The same is true for the contribution of the third virial coefficient describing the interaction between methane + ethane + propane molecules. This latter deficiency was overcome as follows (6) -

"As no suitable experimental data are available, the value for $C(CH_4+C_2H_6+C_3H_8)$ (or $C_{146}(T)$) was derived by trial-and-error based on experimental data for natural gases. As a consequence of this strategy, uncertainties from other virial coefficients are gathered in and compensated by the value of $C_{146}(T)$. Thus, the value obtained might differ from the true physical value but it nevertheless helps to optimize the results of the equation.

At the current state-of-the-art, it therefore seems to be of little use to improve the determination of the parameters used for the equation, except for possible small adjustments of $C_{146}\left(T\right)$. This point of view might change, however, if new natural gas data become available to test the equation over wider ranges of the input variables."

2.5.2 Inadequate Test Data

A shortfall of such experimental data as would be required for testing the GERG-88 virial equation over its entire pressure, temperature and composition range of applicability has been discussed in GERG Technical Monograph TM2 (6) as follows -

"The GERG virial equation is tested very carefully in the temperature range from 265 to 335 K, the pressure range up to 12 MPa and for natural and coke-oven gases covering the following concentrations, viz.

mole fraction of nitrogen $x(N_2)$ < 0.120 mole fraction of carbon dioxide $x(CO_2)$ < 0.050 mole fraction of ethane $x(C_2H_6)$ < 0.095 mole fraction of hydrogen $x(H_2)$ < 0.100

A large amount of experimental data for gases with higher amounts of nitrogen or carbon dioxide are available, but only for the limited pressure and temperature ranges of 3 to 7 MPa and 280 to 300 K.

Consequently, additional experimental data are needed for testing the equation outside of the quoted concentration ranges, for pressures up to 12 MPa and in the temperature range 265 to 335 K if the equation is to be fully validated for the whole range of its supposed applicability."

For this reason additional measurements are under way at Ruhrgas A.G., to cover ranges of concentration for nitrogen up to 0.5 mole fraction, carbon dioxide up to 0.3 and ethane up to 0.2.

The pVT data of two nitrogen-rich natural gas mixtures (0.36 and 0.49 mole fraction), one carbon dioxide-rich natural gas mixture (0.26 mole fraction) and an ethane-rich mixture (0.12 mole fraction) will be measured covering the whole pressure and temperature range. A second ethane-rich natural gas mixture with some 0.18 mole fraction may additionally be explored. The results of these additional measurements will be presented elsewhere (25).

2.6 Supplement to the GERG Databank

A supplement to the GERG databank of high accuracy compressibility factor measurements will be published elsewhere (25). New data sets will be compiled and grouped in the supplement in three distinct subsets -

- additional natural gas compressibility factor data to validate the whole range of the GERG-88 virial equation, as described in the foregoing subsection;
- compressibility factor data outside the range of applicability of the GERG-88 virial equation especially for pressures between 120 and about 280 bar and temperatures between 270 and 360 K;
- results from four laboratories (two in the USA and two financed by GERG member companies in Europe), currently engaged in a pVT round-robin test on six simulated natural gas mixtures; all of the mixtures are being prepared at the National Institute of Standards and Technology (NIST) in Boulder, Colorado.

All these new data, when available, can be used to further verify the accuracy of the GERG-88 virial equation and substantiate the existing contents of the GERG databank. In the longer term it should be possible to establish an internationally accepted reference databank of compressibility factor measurements which, in large measure, might sensibly be based upon the current GERG databank.

3. THE GERG DATABANK

3.1 General Information

By way of introduction to the GERG databank, there follows a set of observations concerning the overall structure, general philosophy and content, which should clarify various matters of relevance to any potential user.

- The databank only includes data for pure gases and gas mixtures of specific relevance to the development and testing of the GERG-88 equation i.e. it is limited to mixtures containing only those 13 components noted in Section 1.1(a) (except, trivially, for other minor components usually only present in trace quantities in some N-file natural gases - see below). allowable range of concentration for each of the 13 main components is shown in Table 3.1. Note that the databank does include gases in the A,B and C-files which are outside of the range of compositional validity of the GERG-88 equation; example, methane is self-evidently the only pure gas which is compositionally within range of the equation, but data are included for most of the other 12 component gases - for obvious reasons relating to the evaluation of pure component virial A single gas in the N-file is also coefficients. compositionally out of range of the GERG-88 equation.
- The databank only includes data for temperatures and pressures which are within the respective ranges of validity of the GERG-88 virial equation, viz.

$$265 \le T/K \le 335$$

$$0 < p/MPa \le 12$$

(There are marginal exceptions to this for pure methane, hydrogen and helium in four data sets - 28 points in all - in the A-file.)

- The databank specifies the gas composition as detailed in the original source documentation. Generally, as implied above, this consists of a sub-set of the 13 main components together with any minor (usually trace) components of the mixture. In

the survey Tables 3.2 to 3.7 for the various files only the 13 main components are given, the minor components having been re-assigned beforehand to an appropriate main component, in accordance with the specifications given in Table 3.1, which is taken from ref.6.

- The databank is restricted to data which are believed to be of the highest quality in respect of precision, accuracy, composition assignment, experimental technique and traceability. In numerical terms this means that the "guaranteed" uncertainty in compressibility factor is always within ±0.1%, although for some pure gases in particular the accuracy of the best measurements has been assessed as up to a factor of three better than this (6). (Despite this, it is only fair to add that there are a few data sets included about which we harbour suspicions that they are not of the declared accuracy; these will remain in the databank until such times as our suspicions are either confirmed or refuted. Some of our reservations are discussed in ref.6.)
- Apart from any data which may have been inadvertently overlooked, the only "within-range" data to be excluded are those for which it has been possible to demonstrate a lack of sufficient accuracy, or where there is internal or external inconsistency. Such judgements about which it is right to acknowledge that there is sometimes a marginal element of subjectivity have been made independently of any claims for accuracy made in the original source publications.
- Not all of the data present in the databank have been used either in building up or in assessing the GERG-88 virial equation. In particular, we have usually used the "best" data even at the expense of other "good" data in the development of the GERG-88 Master equation (6). Again, there is inevitably some slight degree of subjectivity in the selections.
- The formal cut-off date for new data for inclusion in the GERG compressibility factor databank was 31 March 1988. (Some new

data have, however, been added to the N-file since the completion of work on the development and assessment of the GERG-88 equation. These data are in the sets labelled N85 onwards; they are included in Appendix 5, but the counts given in the main text stop at N84.)

As implied by the discussion in Section 2.6, we believe it to be a most worthwhile exercise to continue to add appropriate new data to the databank (and perhaps to remove some data too!), so that it can continue to serve the scientific community as a state-of-the-art repository, and correspondingly valuable resource, for information on the volumetric behaviour of gases, particularly natural gases. For that reason, a supplement to the databank is in preparation. If indeed the GERG databank is to continue its growth (under the auspices of whatever company or agency) consideration should also be given to the widening of its ranges of pressure, temperature and composition.

3.2 Pure Gases : the A-File

The A-File, as previously noted, consists of 36 sets of compressibility factor data, comprising 2374 data points, for pure gases. Details of each data set are summarised in Table 3.2. Each data set is coded in the format An xx , where the index n identifies the individual pure gas in question (1 = CH₄, 2 = N₂, 3 = CO₂, 4 = C₂H₆, 5 = H₂, 6 = C₃H₈, 7 = CO, 8 = C₄H₁₀, 9 = He, $10 = C_5H_{12}$, $11 = C_6H_{14}$, $12 = C_7H_{16}$, $13 = C_8H_{18}$), and the serial qualifier xx identifies a particular data set for a given gas. An abbreviated literature reference is given, where available, for each data set; the full references are given in Section 4. For those data sets which have not yet been published elsewhere an additional internal GERG coding is given instead; this identifies the source (e.g. Ruhrgas A.G., Ned. Gasunie), possibly the measurement technique (e.g. DEH, BUR, OPT) and the actual sample (a pure number).

The full details of each data point within the A-File are given in

Appendix 1. For each data set the printed version of the A-File begins on a new page and comprises the following -

- (a) sample identity at the head of the page,
- (b) column 1 gives the temperature in kelvins (K), to 2 or 3 decimal places depending on the precision given by the source document,
- (c) column 2 gives the pressure in megapascals (MPa), to 3, 4 or 5 decimal places,
- (d) column 3 gives the experimental compressibility factor Z(expt), to 4 or 5 decimal places,
- (e) column 4 gives the compressibility factor Z(calc) calculated from the GERG-88 Master equation,
- (f) column 5 gives the quantity

$$Z(diff) \% = 100 \times [Z(calc) - Z(expt)]/Z(expt).$$

Data in columns 4 and 5 are omitted if Z(expt) is less than 0.6, since Z(diff) is often spuriously large (and of no relevance to the development or evaluation of the GERG equation) for these cases.

Each page contains a maximum of 50 data points arranged in blocks of 10.

3.3 Binary Mixtures : the B-File

The B-File consists of 107 data sets, comprising 5847 data points, for binary mixtures. Details of each data set are summarised in Table 3.3. The general format is almost identical to that of the A-File; the only differences are that each data set is now coded as Bnm xx, where the indices n and m now identify the two components of the binary mixture, and the composition of the mixture is indicated by means of the mole percentage of component m.

The full details of each data point are given in Appendix 2, comprising sample identity, composition, temperature, pressure, experimental compressibility factor, calculated (MGERG-88) compressibility factor and percentage difference. The general layout is identical to that of Appendix 1.

3.4 Ternary Mixtures : the C-File

The C-File consists of 18 data sets, comprising 620 data points, for ternary mixtures. Details of each data set are summarised in Table 3.4. Again the overall format is very similar, except that each data set is now coded Cnml xx, where the indices n, m and lidentify the three components of the ternary mixture, and the composition of the mixture is indicated by means of the mole percentages of components m and l.

The full details of each data point are given in Appendix 3, which is formatted in exactly the same way as Appendix 2.

3.5 Quaternary and Synthetic Multicomponent Mixtures : the $\overline{\text{D-File}}$

The D-File consists of 20 data sets, comprising 492 data points, for quaternary and synthetic multicomponent mixtures. Details of each data set are summarised in Table 3.5. In this case each data set is identified simply as D xx, there being no coding attached to identify the component gases. The detailed composition of each mixture is given by the mole percentages of all main components (except methane), with any minor components present already reassigned appropriately. Complete compositions are, of course, given in the databank proper; the composition of up to the first five components is also printed out as part of Appendix 4, where all the other information for the D-File is given in the by now familiar format.

3.6 Natural Gas and Natural Gas/Manufactured Gas Mixtures : the N-File

At the original cut-off date of 31 March 1988, the N-File

consisted of 84 data sets, comprising 4486 data points, for natural gas and natural gas/manufactured (coke-oven) gas mixtures. Since then, however, 12 further data sets have been added, extending the number of data points by 364. Details of each data set are summarised in Tables 3.6, 3.7 and 3.8. Table 3.6 is in the familiar general format but, as for the D-File, no attempt is made to identify the component gases for each mixture as part of the coding; consequently each data set is simply specified as N xx. Furthermore, no indication of even approximate composition is given in Table 3.6, each gas instead being identified by a not necessarily unique familiar name (usually indicative of the gas field of its origin) and a gas analysis number, in addition to its GERG and possible alternative codes. The detailed composition up to 13 main components - of each gas is given by mole percent in Table 3.7, and the composition of up to the first five components is also given in Appendix 5, where all the other information for the N-File is given in the familiar format.

In Table 3.7 and Appendix 5 the component concentrations given are those obtained <u>after</u> re-assignment of any minor or trace components (as specified in Table 3.1) to one of the 13 main components. In other words, Table 3.7 could be used as input to the MGERG-88 equation.

By contrast, Table 3.8 lists the superior calorific value (reference conditions: combustion at 25°C, metering at 0°C, 101.325 kPa), relative density at 0°C (both calculated in accordance with ISO 6976 (ref. 49)), carbon dioxide content and hydrogen content for each N-file gas. This is known as the "reduced" composition. In order to form valid input to the SGERG-88 equation, each of these must be calculated from the complete composition before re-assignment of minor components. In practice, the only significant re-assignment is of the ethylene in coke-oven gas mixtures to carbon dioxide; for this reason the carbon dioxide percentages given in Tables 3.7 and 3.8 do not correspond for such gases.

3.7 Computer Documentation

The current and definitive version of the GERG databank of high-accuracy compressibility factors is presently held on the Ruhrgas computer system at Dorsten. Appendices 1-5 are derived from the databank proper but, rather than being simply reprinted, there are layout and other minor changes. In the databank itself, each line of code is given in the following format (Table 3.9 shows two typical non-consecutive pages reproduced directly from the databank without modification) -

The first four characters represent a Ruhrgas identification (gas analysis) number. Thus, for example, 0043 denotes pure methane (the first A-File entry) and 0283 denotes a particular natural gas (the last N-File entry, N84); these numbers are reproduced in the headings for individual data sets in the Appendices. The next character is either T, G or M -

- T indicates that the line contains textual material relevant to the gas or gas mixture. The set of characters which follows is either A n xx , B nm xx, C nml xx, D xx or N xx, which identifies the particular gas or gas mixture, including (for the A, B and C files) its components encoded as explained in Sections 3.2 to 3.6. Finally, for convenience, there is further textual identification in words or chemical symbols firstly, of the gas or gas mixture, and secondly, of the source (company or primary author), and this information is again reproduced in the headings given in the Appendices. There is one such line for each gas sample.
- G indicates that the line contains details of the gas composition; more than one such line may be required for a given gas sample. The gas composition is given here in its original form as obtained, for example, from gas chromatographic analysis, and is not reduced or re-assigned in any way to the 13 major components specified in Table 3.1. Consequently, for some gases, the isomers of butane and pentane are listed individually, and there may be small amounts of

other gases such as oxygen and ethylene. Therefore, particularly for N-File gases, there may be more than 13 components, plus trace components, listed in the databank proper. Compositions, for components identified by chemical formula, are given in mole percent, with four digits after the decimal point. Up to five component concentrations (usually the most abundant) are identified and reproduced in the Appendices; the values given there are those from the listing of compositions in Table 3.7 which, as noted earlier, shows the gas composition values which result from the re-assignment of minor or trace gases as appropriate for use as input to the MGERG virial equation.

M indicates that the line contains actual experimental compressibility factor data referring to the sample described in the preceding "T" and "G" lines; there are, of course, typically many such lines for any given gas or gas mixture. The first column gives the temperature in degrees Celsius (3 decimal places), the second column the absolute pressure in bar (4 decimal places) and the third column the compressibility factor (5 decimal places). (The temperature is converted to kelvin, the pressure converted to megapascal and the compressibility factor rounded appropriately before printing in Finally, there is a 17-character coding Appendices 1-5.) assigned uniquely to each data point which need not concern the user, but which in fact contains a brief indication of the measurement technique, the apparatus location etc, part of which is reproduced for each sample in the Appendix headings.

The entire databank (approximately 940 kbyte) can be fitted on to one double-sided, high-density 5%" (1.6 Mbyte) flexible diskette, and can be made available upon request to GERG. The current version is dated 31 July 1990.

List of Tables

Table 3.1	Assignment of Minor (Trace) Components in Natural Gases and Ranges of Compositional Validity	20
Table 3.2	Listing of Codes for Pure Gases	21
Table 3.3	Listing of Codes and Compositions (by mole percent of the second component) for Binary Mixtures	22
Table 3.4	Listing of Codes and Compositions for Ternary Mixtures	25
Table 3.5	Listing of Codes and Compositions for Quaternary Mixtures and Synthetic Gas Mixtures	26
Table 3.6	Listing of Codes for Natural Gases	27
Table 3.7	Listing of Compositions (by mole percent) for Natural Gases	29
Table 3.8	Listing of Reduced Compositions for Natural Gases	32
Table 3.9	Example Pages from the GERG Databank	34

Table 3.1 Assignment of Minor (Trace) Components in Natural Gases and Ranges of Compositional Validity

Group	<u>Major</u> Component	Range (mole %)	Minor Components and Comments
1	CH ₄	≥50.0	-
2	N ₂	≤50.0	O ₂ ,Ar
3	CO ₂	≤30.0	C_2H_4 , C_2H_2 , H_2O , H_2S
4	C ₂ H ₆	≤20.0	-
5	H ₂	≤10.0	-
6	СзНа	≤ 5.0	C ₃ H ₅ (propene), C ₃ H ₄ (propadiene)
7	CO	≤ 3.0	-
8	C ₄ H ₁₀	≤ 1.5	Both n- and iso-isomers; C ₄ H ₈ (butenes), C ₄ H ₆ (butadienes)
9	He	≤ 0.5	-
10	C ₅ H ₁₂	≤ 0.5	n-, iso- and neo- isomers; C_6H_6 (benzene), C_5H_{10} (cyclopentane, pentenes)
11	C ₆ H ₁₄	≤ 0.1	All isomers; C_6H_{12} (cyclohexane), C_8H_{10} (ethylbenzene, xylenes)
12	C 7 H 1 5	≤ 0.1	All isomers; C,H,4 (cycloheptane), C,H,8 (toluene)
13	CaHls	≤ 0.1	All isomers; all higher hydrocarbons

Table 3.2 Listing of Codes for Pure Gases

Data-Reference	Gas		No. of Points
Ruhrgas AG GERG Gas DEH09 Literature Achtermann [26] (1 Literature Achtermann [26] (2) Brit.Gas, Roe, Thesis [14] (3) Literature Hoover [27] (4) Literature Trappeniers [28] (5) Literature Schamp [15] (6) Literature Douslin [16] (7) Ruhrgas AG GERG Gas BURO2 [20] Ruhrgas AG GERG Gas OPTO2 [20] Literature Kleinrahm [29] (6) Literature Achtermann [20] (7)	1982) CH4 1972) CH4 1965) CH4 1979) CH4 1958) CH4 1964) CH4 17] CH4 17] CH4 1988) CH4	A1 1 A1 2 A1 3 A1 4 A1 5 A1 6 A1 7 A1 8 A1 9 A1 10 A1 11 A1 12	19 68 71 14 14 119 45 45 124 153 168
Ned.Gasunie GERG Gas GU035 Brit.Gas, Roe, Thesis [14] (1 Literature Crain [30] (1 Literature A. Michels [31] (1 Ruhrgas AG GERG Gas BUR03 [1 Ruhrgas AG GERG Gas OPT03 [1 Literature Duschek [32] (1 Literature Achtermann [20] (1)	1966) N2 1934) N2 17] N2 17] N2 1986) N2	A2 1 A2 2 A2 3 A2 4 A2 5 A2 6 A2 7 A2 8	94 12 17 24 72 173 127
Literature A. Michels [33] (1 Literature Holste [18] (1 Ruhrgas AG GERG Gas OPT17 Ruhrgas AG GERG Gas BUR19	1987) CO2 CO2	A3 1 A3 2 A3 3 A3 4	55 139 146 124
Literature A. Michels [34] (1 Literature Douslin [35] (1 Ruhrgas AG GERG Gas BUR11 Ruhrgas AG GERG Gas OPT16	1954) C2H6 1973) C2H6 C2H6 C2H6	A4 1 A4 2 A4 3 A4 4	33 18 48 99
Literature A. Michels [36] (1 Ruhrgas AG GERG Gas BUR13 Ruhrgas AG GERG Gas OPT13	1959) H2 H2 H2	A5 1 A5 2 A5 3	26 43 72
Literature Starling [37] (1	1984) СЗН8	A6 1	26
Literature A. Michels [38] (1	1952) CO	A7 1	20
Ruhrgas AG GERG Gas DEH10 Ned.Gasunie GERG Gas GU029 Literature A. Michels [39] (1	HE HE 1941) HE	A9 1 A9 2 A9 3	18 94 20

Table 3.3 Listing of Codes and Compositions (by mole percent of the second component) for Binary Mixtures * round robin gas (see ref. 13)

Data-Reference		Gas	GERG- CODE	No. of Points
Ruhrgas AG GERG British Gas GERG GazdeFrance GERG Distrigaz GERG Lit.Achtermann Lit.Achtermann Lit.Achtermann Lit.Achtermann Lit.Achtermann Ruhrgas AG GERG Ruhrgas AG GERG Ruhrgas AG GERG Ruhrgas AG GERG Lit. Brugge	[14](1972) Gas GU036 Gas GU039 Gas GU040 Gas GU041 Gas BUR04 Gas OPT04 Gas BUR06 Gas OPT06 Gas BUR21 Gas OPT33 Gas BG001 Gas GF018 Gas DI001 [20](1986) [20](1986) [20](1986) [20](1986) [20](1986) [20](1986) [30](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986) [40](1986)	CH4-N2(51.60 %) CH4-N2(28.10 %) CH4-N2(9.156%) CH4-N2(9.156%) CH4-N2(30.155%) CH4-N2(49.683%) CH4-N2(19.979%) CH4-N2(19.979%) CH4-N2(75.01 %) CH4-N2(75.01 %) CH4-N2(50.20 %) CH4-N2(50.32 %) CH4-N2(50.32 %) CH4-N2(50.32 %) CH4-N2(50.32 %) CH4-N2(10.24 %) CH4-N2(10.29 %)	B12 1 B12 2 B12 3 B12 4 B12 5 B12 6 B12 7 B12 8 B12 9 B12 10 B12 11* B12 12* B12 13* B12 14* B12 15* B12 16 B12 17 B12 18 B12 19 B12 20 B12 21 B12 22 B12 23* B12 24* B12 26*	7 7 7 52 32 33 32 13 90 19 95 27 89 39 14 20 23 23 23 23 23 23 23 23 23 23 23 23 23
	Gas GU034 Gas GU046 Gas GU049 Gas OPT47 Gas BUR34 [40](1987)	CH4-CO2(9.615%) CH4-CO2(19.48 %) CH4-CO2(30.067%) CH4-CO2(31.45 %) CH4-CO2(31.45 %) CH4-CO2(47.608%) CH4-CO2(24.574%)	B13 1 B13 2 B13 3 B13 4 B13 5 B13 6 B13 7	52 32 32 104 40 64 33
Ruhrgas AG GERG	Gas GUO43	CH4-C2H6(9.341%) CH4-C2H6(5.112%) CH4-C2H6(20.229%) CH4-C2H6(30.03 %) CH4-C2H6(30.03 %) CH4-C2H6(12.09 %)	B14 1 B14 2 B14 3 B14 4 B14 5 B14 6	49 33 30 24 101 79

Table 3.3 Listing of Codes and Compositions (by mole percent of the second component) for Binary Mixtures * round robin gas (see ref. 13)

Data-Reference	Gas	GERG- CODE	No. of Points
Ruhrgas AG GERG Gas OPT52 Ruhrgas AG GERG Gas BUR42 Ruhrgas AG GERG Gas OPT53 Ruhrgas AG GERG Gas BUR43 Ruhrgas AG GERG Gas OPT54 Ruhrgas AG GERG Gas OPT54 Ruhrgas AG GERG Gas OPT55 Lit. Haynes [41](1985) Lit. Haynes [41](1985)	CH4-C2H6(12.09 %) CH4-C2H6(8.065%) CH4-C2H6(8.065%) CH4-C2H6(4.034%) CH4-C2H6(4.034%) CH4-C2H6(15.90 %) CH4-C2H6(15.90 %) CH4-C2H6(49.783%) CH4-C2H6(65.472%) CH4-C2H6(31.474%)	B14 7 B14 8 B14 9 B14 10 B14 11 B14 12 B14 13 B14 14 B14 15 B14 16	96 53 118 26 118 74 118 67 59
Ruhrgas AG GERG Gas BUR15	CH4-H2(15.02 %)	B15 1	40
Ruhrgas AG GERG Gas OPT15	CH4-H2(15.02 %)	B15 2	46
Ruhrgas AG GERG Gas OPT39	CH4-H2(25.309%)	B15 3	72
Ruhrgas AG GERG Gas BUR12	CH4-H2(50.266%)	B15 4	56
Ruhrgas AG GERG Gas OPT38	CH4-H2(50.266%)	B15 5	64
Ruhrgas AG GERG Gas BUR14	CH4-H2(74.94 %)	B15 6	54
Ruhrgas AG GERG Gas OPT37	CH4-H2(74.94 %)	B15 7	72
Ned.Gasunie GERG Gas GU032	CH4-C3H8(4.009%)	B16 1	54
Ruhrgas AG GERG Gas BUR28	CH4-C3H8(7.019%)	B16 2	14
Ruhrgas AG GERG Gas OPT28	CH4-C3H8(7.019%)	B16 3	105
Ned.Gasunie GERG Gas GU042	CH4-C3H8(4.976%)	B16 4	44
Ruhrgas AG GERG Gas BUR26	CH4-CO(2.994%)	B17 1	38
Ruhrgas AG GERG Gas OPT26	CH4-CO(2.994%)	B17 2	94
Ned.Gasunie GERG Gas GU033	CH4-C4H10(1.20 %)	B18 1	72
Ruhrgas AG GERG Gas BUR30	CH4-C4H10(1.50 %)	B18 2	14
Ruhrgas AG GERG Gas OPT30	CH4-C4H10(1.50 %)	B18 3	106
Lit.Ellington [42](1986)	CH4-C4H10(4.243%)	B18 4	27
Ned.Gasunie GERG Gas GU058	CH4-C5H12(.269%)	B110 1	21
Ruhrgas AG GERG Gas OPT56	CH4-C5H12(.290%)	B110 2	94
Ruhrgas AG GERG Gas OPT57	CH4-C6H14(.092%)	B111 1	119
Ned.Gasunie GERG Gas GU059	N2-C02(25.121%)	B23 1	21
Ruhrgas AG GERG Gas BUR35	N2-C02(28.59 %)	B23 2	40
Ruhrgas AG GERG Gas BUR36	N2-C02(25.38 %)	B23 3	82
Literatur Esper [40](1987)	N2-C02(44.696%)	B23 4	65
GazdeFrance GERG Gas GF020	N2-C02(10.098%)	B23 5	19
GazdeFrance GERG Gas GF021	N2-C02(31.814%)	B23 6	20

Table 3.3 Listing of Codes and Compositions (by mole percent of the second component) for Binary Mixtures * round robin gas (see ref. 13)

Data-Refere	nce	Gas	GERG- CODE	No. of Points
Ruhrgas AG	GERG Gas OPT43	N2-C2H6(75.15 %)	B24 1	65
Ruhrgas AG	GERG Gas OPT44	N2-C2H6(50.04 %)	B24 2	96
Ruhrgas AG	GERG Gas OPT45	N2-C2H6(25.03 %)	B24 3	107
Ned.Gasunie	GERG Gas GU066	N2-C2H6(25.16 %)	B24 4	30
Ruhrgas AG	GERG Gas BUR16	N2-H2(14.95 %) N2-H2(14.95 %) N2-H2(24.99 %) N2-H2(50.02 %) N2-H2(50.02 %) N2-H2(74.97 %) N2-H2(74.97 %) N2-H2(750.02 %)	B25 1	38
Ruhrgas AG	GERG Gas OPT11		B25 2	72
Ruhrgas AG	GERG Gas OPT42		B25 3	72
Ruhrgas AG	GERG Gas BUR23		B25 4	50
Ruhrgas AG	GERG Gas OPT41		B25 5	69
Ruhrgas AG	GERG Gas BUR24		B25 6	44
Ruhrgas AG	GERG Gas OPT40		B25 7	74
Lit. Michels	s [43](1948)		B25 8	37
Ned.Gasunie	GERG Gas GU055	N2-C3H8(5.105%)	B26 1	43
Ruhrgas AG	GERG Gas BUR27	N2-C3H8(7.023%)	B26 2	8
Ruhrgas AG	GERG Gas OPT27	N2-C3H8(7.023%)	B26 3	102
Ruhrgas AG	GERG Gas BUR25	N2-CO(3.009%)	B27 1	37
Ruhrgas AG	GERG Gas OPT25	N2-CO(3.009%)	B27 2	93
Ruhrgas AG	GERG Gas BUR29	N2-C4H10(1.50 %)	B28 1	13
Ruhrgas AG	GERG Gas OPT29	N2-C4H10(1.50 %)	B28 2	100
Ruhrgas AG Ruhrgas AG Ruhrgas AG Ruhrgas AG Lit.Lemming Lit.Lemming Lit.Lemming Lit.Lemming	[44](1989) [44](1989)	C02-C2H6(71.55 %) C02-C2H6(22.67 %) C02-C2H6(45.69 %) C02-C2H6(69.92 %) C02-C2H6(89.957%) C02-C2H6(74.834%) C02-C2H6(50.755%) C02-C2H6(26.022%) C02-C2H6(9.633%)	B34 1 B34 2 B34 3 B34 4 B34 5 B34 6 B34 7 B34 8 B34 9	52 64 67 62 46 55 44 55
Ruhrgas AG	GERG Gas BUR39	CO2-H2(50.050%)	B35 1	113
Ruhrgas AG	GERG Gas BUR40	CO2-H2(74.905%)	B35 2	100
Ruhrgas AG	GERG Gas BUR37	C2H6-H2(50.27 %)	B45 1	43
Ruhrgas AG	GERG Gas BUR38	C2H6-H2(75.16 %)	B45 2	113

Table 3.4 Listing of Codes and Compositions for Ternary Mixtures
* round robin gas (sample 1), (see ref. 13)
** round robin gas (sample 2), (see ref. 13)

Data-Reference		Gas	GERG- COI		No. of Points
******	GU047	CH4-N2(24.974%)-CO2(24.816%)	C123	1	33
Ned.Gasunie	GU045	CH4-N2(24.898%)-C2H6(25.134%)	C124	. 1	22
Ned.Gasunie	GU048	CH4-CO2(24.768%)-C2H6(24.837%)	C134	1	22
	GU052	CH4-CO2(20.265%)-C2H6(20.140%)	C134	2	33
	GU054	CH4-CO2(20.190%)-C3H8(5.084%)	C136	1	21
Ned.Gasunie	GU057	CH4-C2H6(20.12%)-C3H8(5.18%)	C146	1	32
	BUR22	CH4-C2H6(16.54%)-C3H8(2.26%)	C146	2*	29
	OPT22	CH4-C2H6(16.54%)-C3H8(2.26%)	C146	3*	155
	GF019	CH4-C2H6(16.59%)-C3H8(2.26%)	C146	4*	14
	DI002	CH4-C2H6(16.55%)-C3H8(2.26%)	C146	5*	17
	BG003	CH4-C2H6(16.24%)-C3H8(2.44%)	C146	6**	9
	GU069	CH4-C2H6(16.20%)-C3H8(2.44%)	C146	7**	22
	ADH57	CH4-C2H6(16.19%)-C3H8(2.44%)	C146	8**	24
****** Pag	SN002	CH4-C2H6(16.22%)-C3H8(2.44%)	C146	9**	12
Lit.Hall [24](CH4-C2H6(16.56%)-C3H8(2.26%)	C146	10*	40
	ADH55	CH4-C2H6(16.54%)-C3H8(2.26%)	C146		30
	GU068	CH4-C2H6(16.62%)-C3H8(2.25%)	C146	12*	11
	OPT59	CH4-C2H6(16.16%)-C3H8(2.44%)	C146	13**	94

Table 3.5 Listing of Codes and Compositions for Quaternary Mixtures and Synthetic Gas Mixtures

Data-Reference	Gas	GERG CODE	No. of Points
Brit.Gas Roe,Thesis	CH4-N2(15.6 %)-C2H6(7.2 %)	D 1	7
GazdeFrance GF001	CH4-N2(3.01 %)-C2H6(3.01 %)-C3H8(1.05 %)	D 2	5
GazdeFrance GF002	CH4-N2(3.115%)-C2H6(6.155%)-C3H8(1.020%)	D 3	6
GazdeFrance GF003	CH4-N2(3.04 %)-C2H6(9.12 %)-C3H8(1.04 %)	D 4	6
GazdeFrance GF004	CH4-N2(3.15%)-C2H6(12.09%)-C3H8(1.04%)	D 5	6
GazdeFrance GF005	CH4-N2(2.94 %)-C2H6(6.10 %)-C3H8(2.12 %)	D 6	6
GazdeFrance GF006	CH4-N2(2.85 %)-C2H6(9.25 %)-C3H8(3.13 %)	D 7	6
GazdeFrance GF007	CH4-N2(2.95 %)-C2H6(11.83 %)-C3H8(3.90 %)	D 8	6 6 7
GazdeFrance GF013	CH4-N2(17.87 %)-C2H6(11.46 %)-C3H8(3.74 %)	D 9	6
GazdeFrance GF014	CH4-N2(1.0 %)-C2H6(6.0 %)-H2 (2.9 %)	D 10	
GazdeFrance GF015	CH4-N2(22.6 %)-C2H6(11.7 %)-C3H8(3.9 %)	D 11	6
GazdeFrance GF016	CH4-N2(13.7 %)-C2H6(3.3 %)-C3H8(1.1 %)	D 12	6
GazdeFrance GF017	CH4-N2(22.0 %)-C2H6(3.1 %)-C3H8(1.0 %)	D 13	6
Ned.Gasunie GU050	CH4-N2(25.00 %)-CO2(25.16 %)-C2H6(24.66 %)	D 14	22
Ruhrgas AG DEHO8	CH4-N2 (1.859%)-C2H6(1.910%)-C3H8(0.788%)	D 15	18
Ruhrgas AG BUR10	CH4-CO2(2.005%)-C2H6(8.921%)-C3H8(3.054%) -C4H10(1.237%)	D 16	40
Ruhrgas AG 0PT10	CH4-CO2(2.005%)-C2H6(8.921%)-C3H8(3.054%)		
	-C4H1O(1.237%)	D 17	71
Ruhrgas AG OPT58	CH4-N2(12.66 %)-CO2(12.60 %)-C2H6(12.97 %)	D 18	122
Ruhrgas AG 0PT50	CH4-N2 (0.681%)-C2H6(8.686%)-C3H8(1.511%)		
0.00	-C4H10(0.494%)-C5H12(0.026%)	D 19	93
Ruhrgas AG OPT51	CH4-N2 (0.617%)-C2H6(8.696%)-C3H8(1.515%) -C4H10(0.494%)-C5H12(0.026%)	D 20	47

Table 3.6 Listing of Codes for Natural Gases

Data-Reference	Gas	Gas No.		No. of Points
Ruhrgas AG GERG Gas DEH03 Ruhrgas AG GERG Gas DEH05 Ruhrgas AG GERG Gas DEH06 Ruhrgas AG GERG Gas DEH07 Ruhrgas AG GERG Gas DEH11 Ruhrgas AG GERG Gas DEH12 Ruhrgas AG GERG Gas DEH13 Ruhrgas AG GERG Gas DEH14 Lit.Achtermann [26](1982)		49 58 57 56 85 86 87 88 71	N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9	18 18 18 24 24 24 23 67
Lit.Achtermann [26](1982) Lit.Achtermann [45](1981) Lit.Achtermann [45](1981) Lit.Achtermann [45](1981)	TENP-H EPE-H UDSSR-H EKOFISK-H TENP-H EPE-H UDSSR-H EKOFISK-H	70 64 65 71 70 64 65 67 69 66	N 14 N 15 N 16	68 69 74 74 73 74 76 68 73 77
Brit.Gas, Roe [14](1972) Brit.Gas, Roe [14](1972) GazdeFrance GERG Gas GF008 GazdeFrance GERG Gas GF009 GazdeFrance GERG Gas GF010 GazdeFrance GERG Gas GF011 GazdeFrance GERG Gas GF012 Ned.Gasunie GERG Gas GU008 Ned.Gasunie GERG Gas GU009 Ned.Gasunie GERG Gas GU010	SOUTH.N.SEA-H BACTON-H GRONINGEN-L LACQ-H EKOFISK-H EKOFISK-H STATENZIJL-H URETERP-L AMBACHT-H	37 38 30 31 34 35 36 110 111 112	N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29	12 15 18 12 10 5 5 64 53 52
Ned.Gasunie GERG Gas GU011 Ned.Gasunie GERG Gas GU012 Ned.Gasunie GERG Gas GU013 Ned.Gasunie GERG Gas GU014 Ned.Gasunie GERG Gas GU015 Ned.Gasunie GERG Gas GU016 Ned.Gasunie GERG Gas GU017 Ned.Gasunie GERG Gas GU018 Ned.Gasunie GERG Gas GU019 Ned.Gasunie GERG Gas GU020	PLACID-H MIDDENMH MID.MIX-L MID.ZECHL MID.ROTLM BOCHOLTZ-H EKOFISK-H GARYP-L GRAVENVH TIETJERK-L	113 114 115 116 117 118 119 120 121 122	N 31 N 32 N 33 N 34 N 35 N 36 N 37 N 38 N 39 N 40	53 54 64 52 55 55 64 65 55
Ned.Gasunie GERG Gas GU021 Ned.Gasunie GERG Gas GU022 Ned.Gasunie GERG Gas GU023 Ned.Gasunie GERG Gas GU024 Ned.Gasunie GERG Gas GU025 Ned.Gasunie GERG Gas GU026 Ned.Gasunie GERG Gas GU027 Ned.Gasunie GERG Gas GU028 Ned.Gasunie GERG Gas GU038 Ned.Gasunie GERG Gas GU038	SLOCHTEREN-L SLOCHTEREN-L BALGZAND-H AMOCO-H ANNERVEEN-H ROSWINKEL-L SLEEN-ROSWM SLEEN-M STATENZIJL-H GRONINGEN-L	123 124 125 126 127 128 129 130 274 275	N 41 N 42 N 43 N 44 N 45 N 46 N 47 N 48 N 49 N 50	16 44 66 66 65 65 65 33 22

Table 3.6 Listing of Codes for Natural Gases (cont)

	Data-Refe	eren	ice			Gas	Gas No.	GERG CODE	
-	Ruhrgas A	AG	GERG	Gas	BURO7	EPE-H	65	N 51	25
	Ruhrgas A				OPT07	EPE-H	65	N 52	23
	Ruhrgas A				BUR08	EPE-H	68	N 53	25
	Ruhrgas A				0PT08	EPE-H	68	ที่ 54	38
	Ruhrgas A				BUR09	EPE-H	212	N 55	83
	Ruhrgas A				OPTO9	EPE-H	212	N 56	. 71
	Ruhrgas A				BUR17	UDSSR+NAM-H	211	N 57	27
	Ruhrgas A				OPT35	UDSSR+NAM-H	211	N 58	48
	Ruhrgas A				BUR18	NAM-L	223	N 59	28
	Ruhrgas A				OPT36	NAM-L	223	N 60	117
	Darkson o A		CERC	Con	BUR20	UDSSR-H	210	N 61	30
	Ruhrgas A				OPT34	UDSSR-H	210	N 62	109
	Ruhrgas A					DROHNE-L	224	N 63	50
	Ruhrgas A				BUR31 OPT31	DROHNE-L	224	N 64	117
	Ruhrgas A				BUR32	EKOFISK-H	225	N 65	54
	Ruhrgas A				OPT32	EKOFISK-H	225	N 66	120
	Ruhrgas A				BUR49	MIXTURE+H2-H	86	N 67	68
	Ruhrgas A				BUR50	MIXTURE+H2-H	85	N 68	69
	Ruhrgas A				BUR51	MIXTURE+H2-L	87	N 69	70
	Ruhrgas A Ruhrgas A				BUR52	MIXTURE+H2-H	137	N 70	68
	Kuiitgas A	10	GENG	Gas	DOMOZ				
	Ruhrgas A				BUR53	MIXTURE+H2-H	241	N 71	70
	Ruhrgas A	ΑG	GERG	Gas	BUR54	MIXTURE+H2-L	242	N 72	67
	Ruhrgas A	^{A}G	GERG	Gas	BUR47	MIXTURE+H2-L	242	N 73	25
	Ruhrgas A	\G	GERG	Gas	OPT60	MIXTURE+H2-L	242	N 74	121
	Ruhrgas A	\G				EKOFISK-H	240	N 75	132
	Lit.Dusch				(1989)	EKOFISK-H	278	N 76	135
	Ned.Gasun					SLOCHTEREN-L	22	N 77	11
	Ned.Gasun					STATENZIJL-H	23	N 78	19
	Ned.Gasun					EKOFISK-H	16	N 79	21
	Ned.Gasun	nie	GERG	Gas	GU006	MID.ROTLM	62	N 80	44
	Ned.Gasun	ie	GERG	Gas	GU007	MID.ZECHL	63	N 81	42
	Ruhrgas A	AG	GERG	Gas	BUR48	TENP-H	243	N 82	45
	Ruhrgas A	\G	GERG	Gas	OPT61	TENP-H	243	N 83	123
	British G	as	GERG	Gas	BG004	BACTON+H2-H	283	N 84	37
	Ned.Gasun	iie	GERG	Gas	GU071	EKOFISK-H	344	N 85	48
	Lit.Hanni	sda	1 [47]((1987)	STATOIL-H	322	N 86	8
	Lit.Ellin					GULF COAST-H	323	N 87	7
	British G					LEMAN BANK-H	321	И 88	40
	British G					HAMILTON-L	324	N 89	42
	British G	las	GERG	Gas	BG008	ARCO(THAMES)-H	325	N 90	35
	British G	las	GERG	Gas	BG009	S.MORECAMBE-L	326	N 91	32
	British G					FRIGG-H	327	N 92	26
	British G					BRENT-H	315	N 93	8
	Ned Gasun					EKOFISK-H	345	N 94	26
	Ned Gasun					EKOFISK-H	346	N 95	44
	Ned.Gasun					ROSWINKEL-L	347	N 96	48

Listing of Compositions (by mole percent) for Natural Gases Table 3.7

C8H18	0.0012 0.0034 0.0019	0.0008 0.0033 0.0034	0.0068 0.0080 0.0038 0.0008	0.0020	0.0038	0.0020	0.0032	0.0004	0.0011	0.0235	0.0235	0.0031	0.0008	0.0005	0.0004	0.0030	0.0010	0.0020
С7н16	0.0061 0.0168 0.0138	$0.0096 \\ 0.0128 \\ 0.0116$	0.0149 0.0154 0.0176 0.0068	0.0134	0.0176	0.0134	0.0100	0.0072		0.0115	0.0229	0.0006	0.0139	0.0136	0.0133	0.0190	0.0260	0.0170
С6Н14	0.0325 0.0309 0.0391	0.0398 0.0296 0.0309	0.0239 0.0257 0.0326 0.0369	0.0385	0.0326	0.0385	0.0312	0.0377	0.0405	0.0654	0.0436	0.0003	0.0473	•	0.0310	0.0230	0.0450	0.0150
С5H12	0.1825	0.1891 0.1157 0.1175	0.0744 0.0779 0.0591 0.1999	0.1451	0.0591	0.1451	0.0577	0.2011	0.1902	0.1483	0.1155	0.0231	0,2090	0.2049	0.1996	0.0730	0.1550	0.1070
HE	0.0032	0.0229	0.0417							0.0598	0.0399				0.0300	0.1580	0.0710	0.0500
C4H10	0.9844 0.1511 0.5073	0.5457	0.2456 0.2704 0.1518 0.9668	0.5061	0.1518	0.5061	0.1497		0.8712	0.4361	0.2816	0.1129	•	0.9760	0.5130	•	0.3140	0.1030 0.2990
00	 	0.3826	0.906/ 0.4137															
СЗН8	3.1919 0.4926 1.5968	1.6910	0.7661 0.8272 0.4933 3.1831	1.5922 2.8576	0.4933 3.1831	1.5922 2.8576	0.4883		2.8634	0.9170	0.3800	0.6420	3.2590	3.2790	1.6160	0.4110	0.9080	0.3430
н2	0.0015	4.1947 2.3094	4.2885															
С2Н6	8.8946 1.8790 5.4174 8.0607		3.5876 1.8835 8.8604	4.0.	$\frac{1.8835}{8.8604}$	5.4022 8.0626	1.8724	5.4163	٥.	L -	-, ω	•	7.		4	•	Ö	2.7990 4.1500
C02	1.9285 0.2331 1.4546 1.8643	ω 1- «	36.60	1.4579	7.00	4.00	ς.α	. 4	ထ	0.0401	0.9940	1.5280	1.98/0	1.9730	1.9820	7.17/0	00/01	1.9860 0.5810
N2	0.4390 1.6004 5.6769 0.6224		0-10	5.6760		• •	•		•	2.2937		•	•		1.2330	•	•	1.8580 5.0460
5 1	84.3346 95.5340 85.1473 85.4814	.198	.709 .519	85.1666 85.4915	U 4 r	5.4	2,4 2,4		J.	92.2794	1.2	8,0	יי יי	3.6	201	, r	•	92.7220 88.8020
GERG	ZZZZ HOR4		-	N 11 N 12	→	⊣			.7	N 21 N 22	1 (1)	2 0	4.0	1 (1)	~ ~	7 6)	N 31 N 32

Table 3.7 (cont) Listing of Compositions (by mole percent) for Natural Gases

C8B18	0.0010 0.0030 0.0010 0.0010 0.0010	0.0030 0.0040 0.0030 0.0030	0.0010 0.0010 0.0011 0.0011 0.0011 0.0008 0.0008 0.0029	0.0009
с7н16	0.0240 0.0240 0.0270 0.0170 0.0130 0.0130	0.0190 0.0200 0.0260 0.0250 0.0250 0.0010 0.0010	0.0210 0.0210 0.0100 0.0101 0.0117 0.0117 0.0044 0.0044	0.0016 0.0016 0.0002 0.0002
C6H14	0.0390 0.0430 0.0410 0.0340 0.0590 0.0230 0.0380	0.0250 0.0280 0.0460 0.0350 0.0410 0.0070 0.0070	0.0220 0.0220 0.0220 0.0404 0.0405 0.0345 0.0345 0.0086 0.0086	0.0055 0.0055 0.0003 0.0003
С5H12	0.0990 0.1210 0.1020 0.1440 0.2790 0.0540 0.1640	0.0710 0.0680 0.1430 0.1000 0.1190 0.0120 0.0110	0.1320 0.0650 0.1902 0.1902 0.1745 0.1745 0.0244 0.0244	0.0157 0.0157 0.0020 0.0020
HE	0.0580 0.0580 0.0530 0.0440 0.0230 0.0410	0.0470 0.0480 0.0850 0.0570 0.0520 0.0810 0.0870	0.0430 0.0430 0.0139 0.0343 0.0538	0.0157 0.0157 0.0544 0.0544
С4н10	0.2020 0.2390 0.2010 0.4030 1.0790 0.1280 0.4920	0.1500 0.1480 0.3310 0.1850 0.2840 0.0190 0.0130	0.1440 0.1440 0.8709 0.8712 0.8712 0.8975 0.0762 0.0762	0.0592 0.0592 0.0064 0.0064
00				
СЗН8	0.5540 0.7040 0.5360 1.2440 3.2380 0.4050 1.5120 0.6150	0.4120 0.3960 0.9140 0.5690 0.7500 0.0580 0.0560	1.6390 0.4030 0.4030 2.8576 2.8634 2.8692 0.2128 0.2128 0.7645	0.1607 0.1607 0.0163 0.0163
Н2				
С2н6	2.8070 3.7680 2.5520 4.9600 8.7790 2.6710 5.5520 3.0380	2.9160 2.8990 4.7560 3.2850 3.5110 0.8670 0.8940	8.0626 8.0626 8.0626 8.0768 8.0768 8.1433 8.1433 1.0118 3.4611	0.5159 0.5159 0.2353 0.2353
C02	25.4370 11.2480 28.9430 1.6030 2.1250 0.5550 1.7790	0.9780 0.9800 1.7960 0.9750 0.7040 0.1180 0.0590	1.8630 1.8630 1.8630 1.8710 1.9051 0.2609 0.2609 1.1093	0.0668 0.0668 4.8625 4.8625
N2	0650 9080 9040 4230 8100		13.9300 0.6122 0.6127 0.6137 0.6039 0.6039 3.7581 11.7266	0.8858 0.8858 5.3701 5.3701
CB4	68.7140 80.8760 65.6860 86.6460 84.0050 79.3180 87.9700		85.4915 85.4915 85.4915 85.4620 85.3453 85.3453 94.6077 94.6077 82.5198	98.2722 98.2722 89.4525 89.4525
GERG	33 33 34 35 37 38 38	N N N N N N N N N N N N N N N N N N N		N 61 N 62 N 63 N 64

0.0005

0.0010 0.0011

0.0070

0.0070

0.0068

0.0033

0.0008 0.0034

C8H18

Code

65 66 67 68 69 70

zzzzz

 $0.0040 \\ 0.0021 \\ 0.0021$

0.0030

0.0040

0.0210 0.0210 0.0080

0.1210 0.1220 0.0130

0.6640 0.6690 0.0180

0.1500 2.3800 2.3870 0.0590

3.1500 8.7770 8.7660 0.7830

1.6100 0.6640 0.5890 23.6960

zzzzzz

zzzzzzzzz

2030

0.0440

0.0120 0.0070 0.0110

0.0150 0.0090 0.0148 0.0148 0.0057 0.0065 0.0130 0.0101 0.0192 0.0068 0.0068 0.0116 0.0149 0.0117 0.0081 0.0040 0.0300 C7H16 $0.0620 \\ 0.0100$ 0.0410 0.0170 0.0228 0.0251 0.0560 0.0100 0.1001 0.0315 0.0315 0.0309 0.0296 0.0239 0.0248 0.0230 0.0327 0.0210 0.0425 0.0448 $0.0297 \\ 0.0241$ 0.0241 0.0241 C6H14 Listing of Compositions (by mole percent) for Natural Gases 0.1720 0.1221 0.1057 0.057 0.0420 0.1220 0.2000 0.2000 0.0920 0.0950 0.0620 0.1151 0.0740 0.0740 0.0740 0.1218 0.1673 0.1673 0.1175 0.1157 0.0744 0.1828 0.0995 C5H12 0.0360 0.0040 0.0080 0.0060 0.0050 0.0630 0.0500 0.0250 0.0028 0.0527 0,0060 0,0240 0.0038 0.0038 0.0249 0.0229 0.0657 0.0031 0.0230 0.0246 띰 0.5000 0.1999 0.1900 0.0500 0.2100 0.5480 0.2458 0.2458 0.6985 1.0022 0.5890 1.0365 0.2400 0.5089 0.1450 0.1680 0.8951 0.8951 0.5667 0.5457 0.2456 C4B10 0.2019 0.3826 0.9067 0.1960 0.3863 0.9142 0.9142 0.9142 8 0.4003 0.1600 0.7657 0.7657 2.3022 3.1776 0.3910 3.2000 1.0600 3.5694 0.7038 1.5364 1.5364 1.0400 2.7421 1.7778 1.6910 0.7661 1.7111 0.7657 2.742] C3H8 0.0019 0.0019 2.3094 4.1947 9.3919 2.2770 35,6310 9.4918 9.4918 9.4918 0.0010 0.0020 HZ 2.8290 6.1190 9.5284 2.5547 3.7681 5.9271 1.7800 8.7390 14.7000 1.7490 2.9190 0.9100 4.5080 8.8749 8.4983 8.4983 5.6763 5.5031 3.3093 5.6871 5.4932 3.3152 3.3152 3.3152 8.4563 C2116 0.6000 0.3000 0.8500 1.4400 0.0330 1.4550 0.7900 0.5990 0.2100 0.9890 1.8560 1.8876 28.9263 11.2419 1.3984 1.3984 1.6245 1.6245 1.5021 1.9201 1.7708 1.7708 1.7802 1.8292 1.6182 co_2 3.7 (cont) 7.7470 1.4200 1.1200 $\frac{11.1140}{2.1390}$ 0.3379 5.3302 5.4710 10.0017 5.3206 5.4722 10.0214 10.0214 10.0214 0.9617 0.4233 14.1790 1.1760 2.9080 5.9990 5.9990 0.6200 0.4275 0.2501 $^{N}_{2}$ Table 85.2970 95.6160 94.2320 85.9230 85.9030 57.6930 85.9610 82.7100 96.5016 95.0220 87.4320 81.3140 88.2210 83.4177 65.6961 80.8753 84.4872 84.4872 82.1692 80.1984 73.6405 82.2373 80.1543 73.5015 73.5015 73.5015 85.9284 84.3769 85.4541 85.454] CH4 91 92 94 95 96 71 72 73 74 75 77 78 79 80 81 82 83 84 85 87 88 88 88 89 90

zzzzzzzz

Table 3.8 Listing of Reduced Composition for Natural Gases

GERG	Hs	đ	CO2	H2
CODE	MJ/m3		Mol %	Mol %
N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10	44.6451 40.2484 40.2860 44.0697 39.1117 39.8375 34.4055 35.9256 40.2538 44.6788	0.6691 0.5825 0.6462 0.6606 0.6305 0.6402 0.5983 0.6235 0.5826 0.6682	1.9285 0.2331 1.4546 1.8643 1.7006 1.7126 1.3360 1.2641 0.2339 1.8497	0.0015 4.1947 2.3094 9.3919 4.2885
N 11	40.2756	0.6461	1.4579	
N 12	44.0777	0.6606	1.8630	
N 13	40.2538	0.5826	0.2339	
N 14	44.6788	0.6682	1.8497	
N 15	40.2756	0.6461	1.4579	
N 16	44.0777	0.6606	1.8630	
N 17	40.2409	0.5823	0.2299	
N 18	44.6832	0.6686	1.8647	
N 19	40.2958	0.6459	1.4349	
N 20	44.0812	0.6609	1.8710	
N 21	41.2805	0.6037	0.0401	
N 22	40.6147	0.5968	0.0402	
N 23	35.0186	0.6454	0.9940	
N 24	40.0834	0.6098	1.5280	
N 25	44.8211	0.6725	1.9870	
N 26	44.8096	0.6730	2.0270	
N 27	44.8880	0.6733	1.9730	
N 28	41.8664	0.6334	1.9820	
N 29	32.7174	0.7016	7.1770	
N 30	40.0952	0.6288	1.5730	
N 31	39.5915	0.6032	1.9860	
N 32	39.8305	0.6182	0.5810	
N 33	30.4479	0.8356	25.4370	
N 34	36.1967	0.7087	11.2480	
N 35	29.0616	0.8676	28.9430	
N 36	40.0687	0.6370	1.6030	
N 37	44.8158	0.6749	2.1250	
N 38	34.1724	0.6504	0.5550	
N 39	41.4358	0.6359	1.7790	
N 40	35.0288	0.6577	1.4720	
N 41	35.3364	0.6442	0.9780	
N 42	35.2666	0.6446	0.9800	
N 43	39.4656	0.6363	1.7960	
N 44	40.1505	0.6021	0.9750	
N 45	39.9134	0.6111	0.7040	
N 46	30.6213	0.6591	0.1180	
N 47	28.7276	0.6787	0.1080	
N 48	18.7491	0.7814	0.0590	
N 49	42.3779	0.6401	2.0360	
N 50	35.2546	0.6440	0.9580	

Table 3.8 (cont) Listing of Reduced Composition for Natural Gases

GERG	Hs	d	CO2	H2
CODE	MJ/m3		Mol %	Mol %
N 51 N 52 N 53 N 54 N 55 N 56 N 56 N 57 N 58 N 59 N 60	44.0777 44.0777 44.0812 44.0812 44.0877 44.0877 38.7655 38.7655 36.5601	0.6606 0.6609 0.6609 0.6614 0.6614 0.5818 0.5818 0.6443	1.8630 1.8630 1.8710 1.8710 1.9051 1.9051 0.2609 0.2609 1.1093 1.1093	
N 61 N 62 N 63 N 64 N 65 N 66 N 67 N 68 N 69 N 70	39.7824 39.7824 35.8238 35.8238 44.2231 44.2231 39.8375 39.1117 34.4055 39.8399	0.5646 0.5646 0.6254 0.6254 0.6595 0.6595 0.6402 0.6305 0.5983 0.6400	0.0668 0.0668 4.8625 4.8625 1.7708 1.7708 1.7126 1.7006 1.3360 1.7080	0.0019 0.0019 2.3094 4.1947 9.3919 2.2770
N 71 N 72 N 73 N 74 N 75 N 76 N 77 N 78 N 79 N 80	39.1119 34.3700 34.3700 34.3700 43.5956 44.6529 35.1137 42.2822 45.1735 29.0816	0.6305 0.5980 0.5980 0.5980 0.6506 0.6689 0.6449 0.6374 0.6759 0.8676	1.7022 1.3390 1.3390 1.3390 1.5021 1.9201 0.9890 1.8560 1.8816 28.9263	4.2203 9.4918 9.4918 9.4918 0.0020
N 81	36.2102	0.7088	11.2419	35.6310
N 82	40.2259	0.6477	1.3984	
N 83	40.2259	0.6477	1.3984	
N 84	32.2710	0.4318	0.0330	
N 85	43.8431	0.6504	1.4550	
N 86	44.4628	0.6493	0.7900	
N 87	40.8264	0.5835	0.5990	
N 88	40.9434	0.5859	0.0600	
N 89	35.7904	0.6107	0.2100	
N 90	40.4927	0.5937	0.3200	
N 91	39.2539	0.6376	0.6000	
N 92	40.6423	0.5783	0.3000	
N 93	39.8880	0.5866	0.8500	
N 94	43.8407	0.6504	1.4400	
N 95	44.0502	0.6530	1.4380	
N 96	30.6071	0.6587	0.1320	

0230 M	26.850	10.0000	0.97489	Z MGFDEHO19H3OOOOB
0230 M				Z MGFDEH019H300009
0230 M			0.92308 2	Z MGFDEH019H300010
0230 M			0.89749	Z MGFDEH019H300011
0230 M			0.87221	Z MGFDEH019H300012
0230 M			0.84738	Z MGFDEH019H300013
0230 M				Z MGFDEH019H300014
0228 T		CH4-C2H6-C3		
0228 G		81.1900 C2E		
0228 M				Z MDIDEHO02H300001
0228 M				Z MDIDEHO02H300002
0228 M				Z MDIDEHOOZH300003
0228 M				Z MDIDEHOO2H300004
0228 M				Z MDIDEHOO2H300005
0228 M				Z MDIDEH002H300006
0228 M				Z MDIDEH002H300007
0228 M				Z MDIDEHOO2H30000B
0228 M				Z MDIDEH002H300009
0228 M				Z MDIDEHOO2H300010
0228 M				Z MDIDEHOO2H300011
0228 M				Z MDIDEH002H300012
0228 M				Z MDIDEH002H300013
0228 M				Z MDIDEH002H300014
0228 M				Z MDIDEHO02H300015
0228 M				Z MDIDEHOO2H300016
0228 M				Z MDIDEH002H300017
0282 T		CH4-C2H6-C3	-	
0282 G		B1.3200 C2H		
0282 M				Z MBGDEH003H300001
0282 M				Z MBGDEH003H300002
0282 M				Z MBGDEH003H300003
0282 M				Z MBGDEH003H300004
0282 M				Z MBGDEH003H300005
0282 M				Z MBGDEHOO3H300006
0282 M				Z MBGDEH003H300007
0282 M				Z MBGDEH003H300008
0282 M				Z MBGDEH003H300009
0280 T		CH4-C2H6-C3	• - •	
0280 G		81.3600 C2H		
0280 M			-	Z MGUDEH069H300001
0280 M				Z MGUDEH069H300002
0280 M				Z MGUDEH069H300003
0280 M				Z MGUDEH069H300004
0280 M				Z MGUDEH069H300005
0280 M				Z MGUDEH069H300006
0280 M				Z MGUDEH069H300007
0280 M				Z MGUDEH069H300008
0280 M		62.3400		Z MGUDEH069H300009
0280 M		67.7500		Z MGUDEH069H300010
0280 M				Z MGUDEH069H300011
0280 M		28.9400		Z MGUDEH069H300012
0280 M				Z MGUDEH069H300013
0280 M				Z MGUDEH069H300014
0280 M			-	Z MGUDEH069H300015
0280 M		37.3200		Z MGUDEH069H300016
0280 M		39.9100		Z MGUDEH069H300017
		42,5900		Z MGUDEH069H300018
028D M	-10-030			
0280 M		45,5300	0.90090	4 8671106.80098.300013
0280 M	40.100			Z MGUDEH069H300019 Z MGUDEH069H300020
0280 M	40.100 40.100	48.7100	0.89430	Z MGUDEH069H300020
0280 M 0280 M 0280 M	40.100 40.100 40.070	48.7100 51.9100	0.89430 0.88780	Z MGUDEH069H300020 Z MGUDEH069H300021
0280 M 0280 M 0280 M 0280 M	40.100 40.100 40.070 40.040	48.7100 51.9100 55.1800	0.89430 2 0.88780 2 0.88110 2	Z MGUDEH069H300020
0280 M 0280 M 0280 M 0280 M 0284 T	40.100 40.100 40.070 40.040 C146 8	48.7100 51.9100 55.1800 CH4-C2H6-C3	0.89430 2 0.88780 2 0.88110 2 0.88130 2	Z MGUDEH069H300020 Z MGUDEH069H300021 Z MGUDEH069H300022
0280 M 0280 M 0280 M 0280 M 0284 T 0284 G	40.100 40.100 40.070 40.040 C146 8 CH4 =	48.7100 51.9100 55.1800 CH4-C2H6-C3 81.3700 C2H	0.89430 2 0.88780 2 0.88110 2 0.88 RUHRGAS 16 = 16.3	Z MGUDEH069H300020 Z MGUDEH069H300021 Z MGUDEH069H300022
0280 M 0280 M 0280 M 0280 M 0284 T	40.100 40.100 40.070 40.040 C146 8 CH4 =	48.7100 51.9100 55.1800 CH4-C2H6-C3	0.89430 2 0.88780 2 0.88110 2 0H8 RUHRGAS 16 = 16.1 0.93414 2	Z MGUDEH069H300020 Z MGUDEH069H300021 Z MGUDEH069H300022

Table 3.9 (cont) Example Pages from the GERG Databank

```
0.86124
                                       Z MDUWAEOO2H 00135
0278 M
          50.000
                   80,0098
                                NED.GASUNIE
0022 T N 77
                  SLOCHTEREN-L
                                                     = 0.0500
                                  = 14.1790 HE
0022 G CO2
               = 0.9890 N2
               = 81.3140 C2H6
                                  = 2.8290 C3H8
                                                       0.3910
0022 G CH4
                                    0.0750 NEO-C5H12= 0.0070
0022 \text{ G } 1-C4H10 = 0.0650 \text{ N-C4H10} =
0022 G I-C5H12 = 0.0170 N-C5H12 = 0.0180 N-C5H14 = 0.0228
0022 G N-C7H16 = 0.0130 N-C8H18 = 0.0020 C6H6
                                                     = 0.0200
0022 G C7H8
              = 0.0062 \text{ C-C6H12} = 0.0020
                           0.93980 Z MGUDEH001L 00001
                 37.0420
0022 M
          23.380
          23.490
                                      Z MGUDEHOO1L 00002
                  40.6440
                             0.93520
0022 M
                                     Z MGUDEHOO1L 00003
                  45.0460
                             0.92770
0022 M
          23.350
                                     Z MGUDEHOO1L 00004
0022 M
          23.340
                   49.4490
                             0.92160
                           0.92030 Z MGUDEH001L 00005
0022 M
                   51.0490
          23.480
                           0.91170 Z MGUDEH001L 00006
          23.300
                  57.0530
0022 M
                                     Z MGUDEHOO1L 00007
                           0.90700
          23.480
                   61.0540
0022 M
                             0.90050
                                       Z MGUDEHOO1L 00008
          23.290
                   65.0560
0022 M
                                       Z MGUDEHOO1L 00009
0022 M
          23.470
                   70.6590
                             0.89350
                   71.8600
                             0.89280
                                       Z MGUDEHOOIL 00010
0022 M
          23.240
                                       Z MGUDEHOO1L 00011
                           0.89270
0022 M
          23.260
                  71.8600
                  STATENZIJL-H NED.GASUNIE
0023 T N 78
              = 1.8560 N2
                                  = 1.1660
                                             02
                                                     = 0.0100
0023 G CO2
                                                     = 6.1190
                                  = 88.2210 C2H6
0023 G HE
              =
                  0.0250 CH4
             = 1.8840 I-C4H10 = 0.2120 N-C4H10 = 0.3770
0023 G C3H8
0023 G I-C5H12 = 0.0590 N-C5H12 = 0.0020 N-C6H14 = 0.0230
0023 G N-C7H16 = 0.0130 N-C8H18 = 0.0010 C6H6
                                                     = 0.0320
          22.440
                                       Z MGUDEHOOZH 00001
0023 M
                  47.0520
                           0.89330
          22.300
                   56.0360
                             0.87430
                                       Z MGUDEH002H 00002
0023 M
                             0.85570
                                       Z MGUDEHOO2H 00003
0023 M
          22.240
                   65.0620
                                     Z MGUDEHOO2H 00004
0023 M
          23.090
                   37.2440
                           0.91590
                                     Z MGUDEH002H 00005
                   47.0490
                           0.89460
0023 M
          22.840
          24.160
                   36.0500
                             0.91940
                                      Z MGUDEH002H 00006
0023 M
                             0.91570
                                       Z MGUDEH002H 00007
          23.990
                   37.6970
0023 M
                             0.91560
                   37.6970
                                       Z MGUDEHOOZH 00008
0023 M
          23.980
                  43.4140
                           0.90400 Z MGUDEH002H 00009
0023 M
          24.170
                             0.89880
                                       Z MGUDEHOO2H 00010
                  45.6310
0023 M
          24.040
          24.170
                   51.1380
                             0.88790
                                       Z MGUDEHOO2H 00011
0023 M
                                       Z MGUDEH002H 00012
0023 M
          24.170
                   55.1400
                             0.87960
                  59.4420
                             0.87100 Z MGUDEH002H 00013
0023 M
          24.170
                                     Z MGUDEH002H 00014
                  59.4980
                            0.87030
0023 M
          24.100
                                     Z MGUDEH002H 00015
                  61.4590
                             0.86640
0023 M
          24.110
          24.140
                                       Z MGUDEH002H 00016
                   62.3440
                             0.86420
0023 M
                                       Z MGUDEH002H 00017
          24.140
                   62.3440
                             0.86430
0023 M
                             0.86250
                                       Z MGUDEH002H 00018
0023 M
          24.110
                   63.3400
                             0.85880
                                       Z MGUDEH002H 00019
0023 M
          24.110
                  65,3000
                                NED.GASUNIE
0016 T N 79
                  EKOFISK-H
                                  = 0.3350
                                                       0.0014
0016 G CO2
              = 1.8816 N2
                                             02
                                  = 0.0028 AR
                                                     = 0.0015
              = 0.0010 HE
0016 G H2
              = 83.4177 C2H6
                                  = 9.5284 C3H8
0016 G CH4
0016 G I-C4H10 = 0.3777 N-C4H10 = 0.6588 I-C5H12 = 0.0933
0016 G N-C5H12 = 0.0869 N-C6H14 = 0.0326 N-C7H16 = 0.0075
0016 \text{ G N-C8H18} = 0.0007 \text{ N-C9H20} = 0.0002
                                            N-ClOH22 =
                                                        0.0002
                  0.0026 C7H8
                                 = 0.0006 C2H5-C6H5= 0.0001
0016 G C6H6
              =
                           0.91980 Z MGUDEH003H 00001
0016 M
          23.490
                  30.4110
                           0.90940
                                       Z MGUDEH003H 00002
0016 M
          23,460
                   34.0460
                                     Z MGUDEHOO3H 00003
                             0.91000
0016 M
          23.480
                   34.0460
                   36,4390
                             0.90360
                                       Z MGUDEH003H 00004
0016 M
          23.430
                   36.4400
                             0.90350
                                       Z MGUDEHOO3H 00005
0016 M
          23.450
                                       Z MGUDEH003H 00006
                   39.0410
                             0.89650
0016 M
          23.390
0016 M
          23,400
                   39.0410
                             0.89760
                                       Z MGUDEH003H 00007
                                       Z MGUDEH003H 00008
                   41.8420
                             0.88910
0016 M
          23.370
                             0.88950
                                       Z MGUDEH003H 00009
                   41.8420
0016 M
          23.380
          23,330
                   44.9440
                             0.88090
                                       Z MGUDEHOO3H 00010
0016 M
                                       Z MGUDEHOO3H 00011
0016 M
          23.350
                   44.9440
                             0.88180
                             0.87360
                                       Z MGUDEHOO3H 00012
                   47.6650
0015 M
          23.310
                   47.6650
                             0.87410
                                       Z MGUDEHOO3H 00013
0016 M
          23.320
```

4. REFERENCES

- (1) A. Melvin et al
 Predictive Methods for the Compressibility Factors of Natural Gases in
 Transmission
 Proc.1986 International Gas Research Conference, Toronto, pp.438-448
 Government Institutes Inc., Rockville (ed. T.L. Cramer, 1987).
- M.Jaeschke, S. Audibert, P.van Caneghem, A.E. Humphreys, R. Janssen-van Rosmalen, Q. Pellei, J.P.J. Michels and J.A. Schouten Accurate Prediction of Natural Gas Compressibility Factors using the GERG Virial Equation
 Gas Technology Symposium, Dallas (June 1988), paper no. 17766
 (to be published in SPE Production Engineering).
- (3) M. Jaeschke, S. Audibert, P.van Caneghem, A.E. Humphreys, R. Janssenvan Rosmalen, Q. Pellei, J.A. Schouten and J.P.J. Michels Simplified GERG Virial Equation for Field Use Gas Technology Symposium, Dallas (June 1988), paper no. 17767 (to be published in SPE Production Engineering).
- (4) J.P.J. Michels, J.A. Schouten and M. Jaeschke The Determination of the Second and Third Virial Coefficients from pVT-x Data of Binary Systems 10th Symposium on Thermophysical Properties, Gaithersburg (June 1988) Int. J. Thermophys. 9 (6) 985-992 (1988).
- (5) J.A. Schouten, J.P.J. Michels and M. Jaeschke Calculation of the Compressibility Factor of Natural Gases based on the Calorific Value and the Specific Gravity 10th Symposium on Thermophysical Properties, Gaithersburg (June 1988) Int. J. Thermophys. <u>11</u> (1) 145-156 (1990).
- M. Jaeschke, S. Audibert, P.van Caneghem, A.E. Humphreys, R. Janssen-van Rosmalen, Q. Pellei, J.P.J. Michels, J.A. Schouten and C.A. ten Seldam High Accuracy Compressibility Factor Calculation for Natural Gases and Similar Mixtures by use of a Truncated Virial Equation GERG Technical Monograph TM2 (1988), 163 pp. Fortschritt-Berichte VDI, Reihe 6, No. 231 (1989).
- (7) M. Jaeschke, P. van Caneghem, M. Fauveau, A.E. Humphreys, R. Janssen-van Rosmalen, Q. Pellei, J.A. Schouten and J.P.J. Michels Standard GERG Virial Equation for Field Use Simplification of the Input Data Requirements for the GERG Virial Equation: An Alternative Means of Compressibility Factor Calculation for Natural Gases and Similar Mixtures

 GERG Technical Monograph TM5 (in preparation, 1990)

 (also to be published in Fortschritt-Berichte VDI).
- (8) J.H. Dymond and E.B. Smith The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation Clarendon Press (Oxford, 1980), pp.518.
- (9) E.A. Mason and T.H. Spurling The International Encyclopedia of Physical Chemistry and Chemical Physics, Topic 10: The Fluid State, Vol.2 - The Virial Equation of State Pergamon Press (New York, 1969), pp.297.

- (10) E.S. Burnett
 J. Appl. Mech. 58 A136-140 (1936).
- (11) M. Jaeschke and H.P. Jülicher Brennst.-Waerme-Kraft <u>36</u> (11) 445-451 (1984).
- (12) S.R. Reintsema, H.C. Reinhardus, H.D. Bouw and W.M. Rensen Measurements and Improved Prediction Method of Compressibility Factors in Custody Transfer Situations Proc. 1983 International Gas Research Conference, London, pp.1038-1052 Government Institutes Inc., Rockville (ed. L.H. Hirsch, 1983).
- (13) M. Jaeschke, P.van Caneghem, M. Fauveau, A.E. Humphreys, R. Janssen-van Rosmalen and Q. Pellei GERG Round-Robin Test of Z-Meters, Burnett Apparatus and an Interferometric Device for pVT measurements GERG Technical Monograph TM3 (1989), 76 pp. Fortschritt-Berichte VDI, Reihe 6, No. 238 (1989).
- (14) D.R. Roe
 Thesis, Imperial College, University of London (1972), pp.328.
- (15) H.W. Schamp jr, E.A. Mason, A.C.B. Richardson and A. Altman Phys. Fluids 1 (4) 329-337 (1958).
- (16) D.R. Douslin, R.H. Harrison, R.T. Moore and J.P. McCullough J. Chem. Eng. Data 9 (3) 358-363 (1964).
- (17) M. Jaeschke and H.M. Hinze Ermittlung des Realgasverhaltens von Methan und Stickstoff und deren Gemischen im Temperaturbereich von 270 K bis 350 K und Drücken bis 28 MPa Fortschritt-Berichte VDI, Reihe 6 (to be published).
- (18) J.C. Holste, K.R. Hall, P.T. Eubank, G. Esper, M.Q. Watson, W. Warowny, D.M. Bailey, J.G. Young and M.T. Bellomy J. Chem. Thermo. 19 (12) 1233-1251 (1987).
- (19) H.J. Achtermann, T.K. Bose, M. Jaeschke and J.M. St.-Arnaud Int. J. Thermophys. 7 (2) 357-366 (1986).
- (20) H.J. Achtermann, T.K. Bose, H. Rögener and J.M. St.-Arnaud Int. J. Thermophys. <u>7</u> (3) 709-720 (1986).
- (21) T.K. Bose, J.M. St.-Arnaud, H.J. Achtermann and R. Scharf Rev. Sci. Instrum. 57 (1) 26-32 (1986).
- (22) M. Jaeschke
 (a) PVT Data for Carbon Dioxide-Ethane Mixtures.
 Proc. 1st International Congress Gas Quality (ed. G.J. van Rossum),
 Groningen, The Netherlands
 Elsevier Sci. Pub. b.v. (Amsterdam, 1986), pp. 247-261;
 (b) Int. J. Thermophys. 8 (1) 81-95 (1987).

- (23) M. Jaeschke, S.Audibert, P. van Canegham, A.E. Humphreys, R Janssen-van Rosmalen and Q. Pellei GERG Round-Robin Test of Z-Meters, a Burnett Apparatus and an Interferometric Device for pVT Measurements 10th Symposium on Thermophysical Properties, Gaithersburg (June 1988) Int. J. Thermophys. 11 (1) 157-168 (1990).
- (24) K.R. Hall, Texas A&M University, Private Communication (1987).
- (25) M. Jaeschke and H.M. Hinze Supplement to the GERG Databank of High Accuracy Compressibility Factor Measurements GERG Technical Monograph (in preparation, 1990) (also to be published in Fortschritt-Berichte VDI).
- (26) H.J. Achtermann, F. Klobasa and H. Rögener Brennst.-Waerme-Kraft <u>34</u> (5) 266-271 and 311-314 (1982).
- (27) A.E. Hoover
 Thesis, Rice University, Texas (1965).
- (28) N.J. Trappeniers, T. Wassenaar and J.C. Abels Physica 98A (1-2) 289-297 (1979).
- (29) R. Kleinrahm, W. Duschek, W. Wagner and M. Jaeschke (a) J.Chem. Thermo. <u>20</u> (5) 621-631 (1988); (b) gwf-gas/erdgas <u>129</u> (2) 77-82 (1988).
- (30) R.W. Crain and R.E. Sontag Adv. Cryogen. Eng. 11 379-391 (1966).
- (31) A. Michels, H. Wouters and J. de Boer Physica 1 587-594 (1934).
- (32) W. Duschek, R. Kleinrahm, W. Wagner and M. Jaeschke
 (a) Measurement and Correlation of the (Pressure, Density, Temperature)
 Relation of Nitrogen in the Temperature Range from 273.15 K to
 323.15 K and Pressures up to 8 MPa
 Ruhr University of Bochum, Institute of Thermo and Fluid Dynamics,
 July 1986;
 (b) J. Chem. Thermo. 20 (9) 1069-1077 (1988).
- (33) A. Michels and C. Michels Proc. Roy. Soc. A153 (878) 201-214 (1936).
- (34) A. Michels, W. van Straaten and J. Dawson Physica <u>20</u> 17-23 (1954).
- (35) D.R. Douslin and R.H. Harrison J. Chem. Thermo. <u>5</u> (4) 491-512 (1973).
- (36) A. Michels, W. de Graaff, T. Wassenaar, J.M.H. Levelt and P. Louwerse Physica 25 25-42 (1959).

- (37) K.E. Starling, K.H. Kumar, S.R. Reintsema, J.L. Savidge, B. Eckhardt, R. Gopalkrishnan and R.M. McFall University of Oklahoma, March 1984.
- (38) A. Michels, J.M. Lupton, T. Wassenaar and W. de Graaff Physica 18 121-127 (1952).
- (39) A. Michels and H. Wouters Physica <u>8</u> 851 (1941).
- (40) G.J. Esper
 - (a) Dissertation, Ruhr Universität Bochum (1987);
 - (b) Direkte und Indirekte p-V-T-Messungen an Fluiden Fortschritt-Berichte VDI, Reihe 3, No.148 (1987).
- (41) W.M. Haynes, R.D. McCarty, B.E. Eaton and J.C. Holste J. Chem. Thermo. 17 (3) 209-232 (1985).
- (42) R.T. Ellington, University of Oklahoma, Norman Private Communication (1986).
- (43) A. Michels and T. Wassenaar Appl. Sci. Res. 1A 258-262 (1948).
- (44) W. Lemming
 - (a) Dissertation, Ruhr Universität Bochum (1988);
 - (b) Experimentelle Bestimmung akustischer und thermischer Virialkoeffizienten von Arbeits-stoffen der Energietechnik Fortschritt-Berichte VDI, Reihe 19, No.32 (1989).
- (45) H.J. Achtermann, F. Klobasa and H. Rögener Compressibility of Natural Gases Institut f. Thermodynamik, University of Hannover (1981).
- (46) W. Duschek, R. Kleinrahm, W. Wagner and M. Jaeschke J. Chem. Thermo. 21 (10) 1069-1078 (1989).
- (47) N-E. Hannisdal Oil Gas J. 85 (18) 38-42 (1987).
- (48) H.B. Brugge, C.-A. Hwang, K.N. Marsh, J.C. Holste, K.R. Hall and J.L. Savidge
 Experimental Density Measurements for a Methane + Nitrogen Mixture:
 Effect of Composition Uncertainties
 Preprints 1989 International Gas Research Conference, Tokyo, pp.271-278
 Government Institutes Inc., Rockville (ed. T.L. Cramer, 1989).
- (49) ISO 6976 (1st edition 1983) (2nd edition - in preparation, 1990) Natural Gas - Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition International Organization for Standardization, Geneva.

5. <u>GLOSSARY</u>

Symbol	S.I. Unit	Meaning
, _b (0)	m³ mol-1	Zero-th order (constant) term in the expansion of B in temperature (equation (1.5)).
_b (1)	$m^3 mol^{-1} K^{-1}$	Coefficient of the first order (linear) term in the expansion of B in temperature (equation (1.5)).
b ⁽²⁾	m ³ mol ⁻¹ K ⁻²	Coefficient of the second order (quadratic) term in the expansion of B in temperature (equation (1.5)).
В	m³ mol-1	Second virial coefficient (equations (1.1),(1.3)).
c ⁽⁰⁾	m ⁶ mol ⁻²	Zero-th order (constant) term in the expansion of C in temperature (equation (1.6)).
c ⁽¹⁾	m ⁶ mol ⁻² K ⁻¹	Coefficient of the first order (linear) term in the expansion of C in temperature (equation (1.6)).
c ⁽²⁾	m ⁶ mol ⁻² K ⁻²	Coefficient of the second order (quadratic) term in the expansion of C in temperature (equation (1.6)).
C	ms mol-2	Third virial coefficient (equations (1.1), (1.4)).
d	-	Relative density (table 3.8).
H _s	MJ m ⁻³	Superior calorific value (table 3.8).

<u>Symbol</u>	S.I. Unit	Meaning
N	-	Number of components in a mixture.
р	Pa	(Absolute) pressure.
R	J mol-1 K-1	Universal gas constant (R=8.314510 J mol ⁻¹ K ⁻¹).
T	K	Thermodynamic (absolute) temperature.
х	-	Mole fraction.
Z	-	Compressibility (or compression) factor; defined by equation (1.2).
ρ_{m}	$mol m^{-3}$	Molar density.

Additional Subscripts

<u>Symbol</u>	Meaning
i	Identifier of i-th component in a mixture.
j	Identifier of j-th component in a mixture.
k	Identifier of k-th component in a mixture.
ij	For the binary interaction of component i with component j.
ijk	For the ternary interaction of components i,j and k.
mix	For a mixture.

Measurement Methodology Abbreviations used in Appendices

ADH	Automatic DEH Apparatus
BUR	Burnett Apparatus
DEH	Desgranges et Huot Z-Meter
EXP	Dantest Expansion Apparatus
OPT	Optical Interferometry Method
PZO	Piezometer Method
SUP	Calculation from GRI SuperZ Equation
WAE	Wagner Two-Sinker Method

APPENDICES

Appendix	1	:	The	A-File	(1st page)	43
Appendix	2	:	The	B-File	(lst page)	44
Appendix	3	:	The	C-File	(lst page)	45
Appendix	4	:	The	D-File	(lst page)	46
Appendix	5	:	The	N-File	(lst page)	47

Table	Al	1	METHANE		RUHR	GAS	DEH 009 H1
			43 mol%	CH4 100.00			
T/K			p/MPa	2	(expt)	Z(calc)	Z(diff)/%
273.16 273.17 273.18 273.15 273.16 273.15 273.16 283.17 283.17			2.0006 3.0006 4.0005 4.9998 6.0005 7.0004 8.0005 2.0002 3.0002 4.0002	0 0 0 0 0 0 0 0 0	.9532 .9297 .9065 .8636 .8612 .8398 .8197 .9587	0.9529 0.9295 0.9063 0.8835 0.8613 0.8400 0.8199 0.9586 0.9383	-0.031 -0.023 -0.020 -0.011 0.016 0.026 -0.026 -0.007 -0.026 -0.019
283.16 283.16 283.15 293.15 293.16 293.14 293.15 293.15			5.0003 6.0002 7.0002 2.0000 3.0000 4.0000 4.9999 5.9999 6.9999	0 0 0 0 0	.8989 .8799 .8619 .9640 .9461 .9287 .9119 .8957	0.8987 0.8798 0.8617 0.9636 0.9459 0.9285 0.9117 0.8955 0.8801	-0.026 -0.015 -0.022 -0.039 -0.025 -0.019 -0.024 -0.019 -0.017

Table	B12	1 CH	4-N2	ROE		BUR 003 K2
		60 mol%	CH4 48.40	N2 51.60		
T/K		p/MPa	Z (expt)	Z(calc)	Z(diff)/%
291.40 291.40 291.40 291.40 291.40 291.40		0.27122 0.49451 0.90055 1.63635 2.96320 5.34369 9.64011	0. 0. 0.	99752 99551 99191 9856 9750 9586 9395	0.99751 0.99549 0.99187 0.9855 0.9749 0.9585 0.9390	-0.001 -0.002 -0.004 -0.006 -0.013 -0.015

,

Table	C123	1	CH4-N2-CO	H4-N2-C02		NED. GASUNIE		DEH 04	7 K3
		200	CH4		N2	CO2			
		299		24.		24.82			
		mol%	50.21	24.	. 9 /	24.02			
T/K		p/MPa	Z	(expt)	Z(cal	c)	Z(đif	f)/%
279.41		3.730	в 0	.91582	2	0.915	97	0.0	
279.41		3.930		.91127	7	0.911	56	0.0	
279.41		4.138		.90664	4	0.9069	99	0.0	
279.41		4.359		.90187	7	0.902	17	0.0	
279.41		4.591		.89670)	0.897	12	0.0	
279.41		4.834		.89143	3	0.891	87	0.0	
279.41		5.092		.88577	7	0.886	33	0.0	
279.41		5.363		.87990)	0.880	58	0.0	77
279.41		5.648		.87390		0.874	57	0.0	
279.41		5.948		.86762	2	0.868	31	0.0	79
U / D · U									
279.41		6.266	_	.86103		0.861		0.0	
293.33		3.802	5 0	.92923	3	0.929		0.0	
293.34		3.997	•	.92573		0.925		0.0	
293.34		4.202	9 0	.92202	2	0.922		0.0	
293.34		4.417	_	.91816		0.918	_	0.0	
293.33		4.641	8 0	.91416	5	0.914		0.0	
293.33		4.868	-	.91010		0.910		0.0	
293.33		5.065	3 0	.90665	5	0.907		0.0	
293.34		5.269	б 0	.9031	1	0.903		0.0	
293.34		5.493	2 0	.89929	3	0.8999	99	0.0	78
202 24		5.725	n 0	.89542	2	0.896	11	0.0	78
293.34		5.957	-	.89168		0.892		0.0	66
293.34		3.764	•	.94259		0.942		0.0	40
308.38		3.932	_	94018		0.940		0.0	
308.37		4.123	-	.93746		0.937		0.0	
308.37		4.323	_	.93460		0.9350		0.0	47
308.37		4.531	_	.93163		0.932		0.0	
308.37				.92856		0.929		0.0	
308.37		4.750 4.978	_	.92536		0.9259		0.0	
308.37				.92203		0.922		0.0	
308.37		5.217	, 0	. 5220-		0.522			
308.37		5.468	7 0	.91863	3	0.919	38	0.0	
308.37		5.731		.91516		0.9159	91	0.0	
308.37		6.021		.91144	1	0.912	14	0.0	77

Table D		1	CF	14-N2-C2H6		ROE	BUR 005 L4
			40 mol%	CH4 76.80	N2 16.00	С2H6 7.20	
T/K			p/MPa	z(e)	(pt)	Z(calc)	2(diff)/%
273.02 273.02 273.02 273.02 273.02 273.02 273.02			0.3962 0.6983 1.2241 2.1261 3.6372 6.0821 9.9382	0.99 0.98 0.95 0.95 0.86 0.79	337 715 506 161	0.9908 0.9838 0.9716 0.9508 0.9164 0.8635 0.7950	0.000 0.009 0.011 0.021 0.037 0.061 0.067

This is a 4-component mixture with 0.4 % oxygen re-assigned to nitrogen in the above listing.

Table	N	1	EK	OFISK-H	RUHR	GAS	DEH 003 H		
			49 mol%	CH4 84.33	N2 0.44	CO2 1.93	C2H6 8.89	C3H8 3.19	
T/K			p/MPa	Z(ex	(pt)	Z(calc)	Z (d	iff)/%	
273.15 273.16 273.15 273.15 273.15 273.15 283.17 283.17 283.17			2.0001 3.0001 4.0000 5.0000 6.0000 7.0000 2.0000 3.0000 4.0000 5.0000	0.93 0.89 0.85 0.82 0.75 0.93 0.90 0.87	957 597 233 368 507 397 088	0.9309 0.8953 0.8590 0.8225 0.7860 0.7504 0.9390 0.9080 0.8769 0.8458	-0 -0 -0 -0 -0 -0	.064 .045 .078 .102 .101 .040 .071 .085 .105	
283.17 283.16 293.11 293.16 293.16 293.15 293.15			5.9999 6.9999 1.9930 2.9930 3.9942 4.9961 5.9941 6.9911	0.83 0.78 0.94 0.92 0.88 0.88	863 472 203 936 570	0.8152 0.7855 0.9463 0.9192 0.8923 0.8656 0.8396 0.8146	-0 -0 -0 -0 -0	.136 .101 .098 .122 .150 .166 .132	