

《编译原理与技术》 独立于机器的优化II

计算机科学与技术学院 李 诚 2021-11-15

独立于机器的优化

- □全局视角-跨基本块的优化
 - ❖数据流分析
- □局部视角-基本块的优化
 - ❖DAG表示

- **□**Data-flow analysis
 - ❖一组用来获取程序执行路径上的数据流信息的技术
- □数据流分析应用
 - ❖到达-定值分析(Reaching-Definition Analysis)
 - ❖活跃变量分析(Live-Variable Analysis)
 - ❖可用表达式分析(Available-Expression Analysis)
- □在每一种数据流分析应用中,都会把每个程序
 - 点和一个数据流值关联起来

□流图上的点(程序点)

- ❖基本块中,两个相邻的语句之间为程序的一个点
- ❖基本块的开始点和结束点

□流图上的路径

- ❖点序列 $p_1, p_2, ..., p_n$, 对1和n-1间的每个i, 满足
- $(1) p_i$ 是先于一个语句的点, p_{i+1} 是同一块中位于该语句后的点,或者
- $(2) p_i$ 是某块的结束点, p_{i+1} 是后继块的开始点

□流图上路径实例

- -(1, 2, 3, 4, 9)
- **-** (1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 9)
- **-** (1, 2, 3, 4, 5, 6, 7, 8,
 - 3, 4, 5, 6, 7, 8, 3, 4, 9)
- **-** (1, 2, 3, 4, 5, 6, 7, 8,
 - 3, 4, 5, 6, 7, 8,
 - 3, 4, 5, 6, 7, 8, ...)

路径长度无限

- 路径数无限

数据流分析介绍

□分析程序的行为时,必 须在其流图上考虑<mark>所有的执行路径</mark>(在调用或返回 语句被执行时,还需要考 虑执行路径在多个流图之 间的跳转)

> ❖通常,从流图得到的程序 执行路径数无限,且执行 路径长度没有有限的上界

数据流分析介绍

□分析程序的行为时,必 须在其流图上考虑所有的 执行路径(在调用或返回 语句被执行时,还需要考 虑执行路径在多个流图之 间的跳转)

- ❖每个程序点的不同状态数 也可能无限
- ❖程序状态:存储单元到值 的映射

- □数据流值代表在程序点能观测到的所有可能 程序状态集合的一个抽象
- 口对于一个语句s
 - ❖s之前的程序点对应的数据流值用IN[s]表示
 - ❖s之后的程序点对应的数据流值用OUT[s]表示

□传递函数(transfer function) f

- ❖语句前后两点的数据流值受该语句的语义约束
- ❖若沿执行路径正向传播,则OUT[s] = f_s (IN[s])
- ❖若沿执行路径逆向传播,则IN[s] = f_s (OUT[s])

若基本块B由语句 $S_1, S_2, ..., S_n$ 依次组成,则

$$*IN[s_{i+1}] = OUT[s_i], i = 1, 2, ..., n-1$$

考虑的是在语句执行后输入输出之间的变化关系

基本块上的数据流模式

- \square IN[B]: 紧靠基本块B之前的数据流值
 - ightharpoonup IN[B] = IN[s_1]
- $\square OUT[B]$: 紧靠基本块B之后的数据流值
 - \bullet **OUT**[B] = **OUT**[s_n]
- $\Box f_R$:基本块B的传递函数
 - ❖ 前向数据流: OUT[B] = f_B (IN[B])
 - $ightharpoonup f_B = f_n \circ \dots \circ f_2 \circ f_1$
 - ❖ 逆向数据流: IN[B] = f_B (OUT[B])
 - $ightharpoonup f_B = f_1 \circ \dots \circ f_{n-1} \circ f_n$

基本块间的数据流分析模式 ② 中国斜原投票 Science and Technology of China

□控制流约束

❖正向传播

$$IN[B] = \bigcup_{P \not\in B} fine OUT[P]$$

❖逆向传播

$$OUT[B] = \bigcup_{S \not\in B} one Minimum IN[S]$$

□约束方程组的解通常不是唯一的

❖求解的目标是要找到满足这两组约束(控制流约 束和迁移约束)的最"精确"解

考虑的是在其他语句或块对于输入的影响和本次执行的 输出对其他语句和块的影响

- □可用表达式
- □到达-定值
- □活跃变量

$$x = y + z$$

$$x = y + z$$

$$x = y + z$$

•

•

•

$$y = ...$$

$$z = ...$$

•

•

.

p

p

p

$$y + z$$
 在 p 点

消除全局公共子表达式

❖例:下面两种情况下,4*i在B₃的入口都可用

□基本块生成的表达式:

基本块中语句d: x = y + z的前、后点分别为点p与点q。设在点p处可用表达式集合为S(基本块入口点处S为空集),那么经过语句d之后,在点q处可用表达式集合如下构成:

(1)
$$S = S \cup \{y+z\}$$

$$(2)$$
 $S = S - \{ S$ 中所有涉及变量 x 的表达式 $\}$

注意,步骤(1)和(2)不可颠倒

□基本块生成的表达式:

基本块中语句d: x = y + z的前、后点分别为点p与点q。设在点p处可用表达式集合为S(基本块入口点处S为空集),那么经过语句d之后,在点q处可用表达式集合如下构成:

(1)
$$S = S \cup \{y+z\}$$

(2)
$$S = S - \{ S \ \text{中所有涉及变量x的表达式} \}$$

注意,步骤(1)和(2)不可颠倒,x可能就是y或z。

如此处理完基本块中所有语句后,可以得到基本块生成的可 用表达式集合S;

□基本块生成的表达式:

基本块中语句d: x = y + z的前、后点分别为点p与点q。设在点p处可用表达式集合为S(基本块入口点处S为空集),那么经过语句d之后,在点q处可用表达式集合如下构成:

(1)
$$S = S \cup \{y+z\}$$

$$(2)$$
 $S = S - \{ S$ 中所有涉及变量 x 的表达式 $\}$

注意,步骤(1)和(2)不可颠倒,x可能就是y或z。

如此处理完基本块中所有语句后,可以得到基本块生成的可用表达式集合S;

□基本块杀死的表达式:所有其他类似y+z的表达式,基本块中对y或z定值,但基本块没有生成y+z。

示例: 基本块生成的表达式 ⑤ 中国种学投术大学 University of Science and Technology of China

语句	可用表达式
	Ø
a = b + c	{ b + c }
b = a - d	{ a – d } // b+c被杀死
c = b + c	{ a – d } // b+c被杀死
d = a - d	Ø // a – d 被杀死

口定义

- ❖ 若到点p的每条执行路径都计算x op y, 并且计算 后没有对x或y赋值,那么称x op y在点p可用
- e_gen_B : 块B产生的可用表达式集合
- $e_{kill_{R}}$: 块B注销的可用表达式集合
- ❖IN [B]: 块B入口的可用表达式集合
- OUT[B]: 块B出口的可用表达式集合

□数据流等式

- \bullet OUT $[B] = e_gen_B \cup (IN [B] e_kill_B)$
- **❖ IN** [B] = $\cap_{P \not\in B}$ 的前驱 OUT [P]
- ◆ OUT [ENTRY] = Ø▶ 在ENTRY的出口处没有可用表达式

□同先前的主要区别

- ❖ 使用∩而不是U作为这里数据流等式的汇合算符
- ❖只有当一个表达式在B的所有前驱的结尾处都可用,那么它才会在B的开头可用
- ❖ 求最大解而不是最小解

可用表达式数据流分析

□迭代算法:

U是全体表达式集合

- (1) $OUT[ENTRY] = \emptyset$
- (2) for(除ENTRY之外的每个基本块B) OUT[B] = U
- (3) while(某个OUT值发生变化) {
- (4) for(除ENTRY之外的每个基本块B){
- (5) $IN[B] = \bigcap_{P \neq B} \bigcap_{n \in A} \bigcap_{n \in B} \bigcap_{n \in A} \bigcap_{n \in B} \bigcap_{n \in B} \bigcap_{n \in A} \bigcap_{n \in B} \bigcap_{n \in B} \bigcap_{n \in A} \bigcap_{n \in B} \bigcap_$
- (6) OUT[B] = $e_gen_B \cup (IN[B] e_kill_B)$ } // end-of-for
 - } // end-of-while

示例: 可用表达式

基本块	前驱	后继
ENTRY		B ₁
B ₁	ENRTY	B_2
B_2	B_1 B_5	$B_3 B_4$
B_3	B_2	B_5
B_4	B_2	B_5
B_5	$B_3 B_4$	B ₂ EXIT
EXIT	B ₅	

基本块	e_gen	e_kill		
ENTRY	Ø	Ø		
B ₁	{3, 1}	{ D+D, D*D, A+G }		
B_2	{ D+D, D*D, B+C }	{ A*A, A+G }		
B_3	{ A+G }	{ B+C }		
B_4	{ A * A }	{ B+C }		
B ₅	{ B+C }	{ A+G, D*D, D+D }		
EXIT	Ø	Ø		

全部表达式*U*={ 3, 1, D+D, D*D, B+C, A+G, A*A }

B2块的e_kill集合不包含B+C,因 为虽然B和C的赋值改变了B+C的		e_kill
值,但是最后一个语句再次计算了 B+C,这样B+C又成为可用表达式。		Ø
生命力顽强,没有被kill掉。 ・ 从另一个视角来看,即便是e kill		{ D+D, D*D, A+G }
中包含	了B+C,OUT集合计算的时 被e gen中的B+C覆盖掉。	{ A*A, A+G }
B_3	{ A+G }	{ B+C }
B ₄	{ A * A }	{ B+C }
B ₅	{ B+C }	{ A+G, D*D, D+D }
EXIT	Ø	Ø
全部表达式 <i>U</i> ={ 3, 1, D+D, D*D, B+C, A+G, A*A }		

11/24/2021

□可用表达式的迭代计算

- 深度优先序, 即 B1 -> B2 -> B3 -> B4 -> B5 -> EXIT
- **边界值:** OUT[ENTRY] = Ø;
 - 初始化: for all NON-ENTRY B: OUT[B] = U;

□第一次迭代: (all NON-ENTRY B)

```
(1) IN[B1] = OUT[ENTRY] = Ø; // B1 前驱仅为ENTRY OUT[B1] = e_gen[B1] \cup (IN[B1] - e_kill [B1]) = e_gen[B1] = { 3, 1 } //变化
```

(2) IN[B2] = OUT[B1]
$$\cap$$
 OUT[B5]
= { 3, 1 } \cap $U = { 3, 1 }$
OUT[B2] = e_gen[B2] \cup (IN[B2] - e_kill [B2])
= { D+D, D*D, B+C } \cup ({ 3, 1 } - {A*A, A+G })
= { 3, 1, D+D, D*D, B+C } //变化

□第一次迭代: (all NON-ENTRY B)

```
(3) IN[B3] = OUT[B2]

= {3, 1, D+D, D*D, B+C }

OUT[B3] = e_gen[B3] ∪ (IN[B3] - e_kill[B3])

= {A+G} ∪ ({3, 1, D+D, D*D, B+C} - {B+C})

= {3, 1, D+D, D*D, A+G} //变化
```

(4) IN[B4] = OUT[B2]
=
$$\{3, 1, D+D, D*D, B+C\}$$

OUT[B4] = e_gen[B4] \cup (IN[B4] - e_kill[B4])
= $\{A*A\}\cup(\{3, 1, D+D, D*D, B+C\} - \{B+C\})$
= $\{3, 1, D+D, D*D, A*A\}$ //变化

□第一次迭代: (all NON-ENTRY B)

```
(5) IN[B5] = OUT[B3] ∩ OUT[B4]

= { 3, 1, D+D, D*D, A+G } ∩ { 3, 1, D+D, D*D, A * A }

= { 3, 1, D+D, D*D }

OUT[B5] = e_gen[B5] ∪ (IN[B5] - e_kill[B5])

= {B+C}∪({3,1,D+D, D*D} - {A+G, D*D, D+D})

= { 3, 1, B+C } //变化
```

```
(6) IN[EXIT] = OUT[B5] = { 3, 1, B+C }

OUT[EXIT] = e_gen[EXIT] \cup

(IN[EXIT] -e_kill [EXIT])

= Ø \cup ({ 3, 1, B+C } - Ø )

= { 3, 1, B+C } //变化
```


□第二次迭代: (all NON-ENTRY B)

(1) IN[B1] = OUT[ENTRY] =
$$\emptyset$$
;
OUT[B1] = e_gen[B1] \cup (IN[B1] - e_kill[B1])
= e_gen[B1] = { 3, 1 } // 不变

(2) IN[B2] = OUT[B1]
$$\cap$$
 OUT[B5]
= { 3, 1 } \cap { 3, 1, B+C } = { 3, 1 } // 不变
OUT[B2] = e_gen[B2] \cup (IN[B2] - e_kill[B2])
= { D+D, D*D, B+C } \cup
({ 3, 1 } - {A*A, A+G })
= { 3, 1, D+D, D*D, B+C } // 不变

□第二次迭代: (all NON-ENTRY B)

```
(3) IN[B3] = OUT[B2]

= {3, 1, D+D, D*D, B+C } //不变

OUT[B3] = e_gen[B3] ∪ (IN[B3] - e_kill[B3])

= {A+G} ∪ ({3, 1, D+D, D*D, B+C} - {B+C})

= {3, 1, D+D, D*D, A+G} //不变
```

```
(4) IN[B4] = OUT[B2]

= \{3, 1, D+D, D*D, B+C\} //不变

OUT[B4] = e_gen[B4] \cup (IN[B4] - e_kill[B4])

= \{A*A\}\cup(\{3, 1, D+D, D*D, B+C\} - \{B+C\})

= \{3, 1, D+D, D*D, A*A\} //不变
```


□第二次迭代: (all NON-ENTRY B)

```
(5) IN[B5] = OUT[B3] ∩ OUT[B4]

= { 3, 1, D+D, D*D, A+G } ∩ { 3, 1, D+D, D*D, A * A }

= { 3, 1, D+D, D*D } //不变

OUT[B5] = e_gen[B5] ∪ (IN[B5] - e_kill[B5])

= {B+C} ∪ ({3,1,D+D, D*D} - {A+G, D*D, D+D})

= { 3, 1, B+C } //不变
```

```
(6) IN[EXIT] = OUT[B5] = { 3, 1, B+C } //不变
OUT[EXIT] = e_gen[EXIT] ∪

(IN[EXIT] -e_kill[EXIT])

= Ø ∪ ({ 3, 1, B+C } - Ø )

= { 3, 1, B+C } //不变
```


- □可用表达式
- □到达-定值
- □活跃变量

- □到达一个程序点的所有定值(gen)
- □定值的注销(kill)
 - ❖在一条执行路径上,对x的赋值注销先前对x的所有赋值
- □别名给到达-定值的计算带来困难,因此,本 章其余部分仅考虑变量无别名的情况

□定值与引用

d: x := y + z // 语句d 是变量x的一个定值点

u: w:= x + v // 语句u 是变量x的一个引用点

□变量x在d点的定值到达u点

□循环不变计算的检测

❖如果循环中含有赋值x=y+z,而y和z所有可能的 定值都在循环外,那么y+z就是循环不变计算

□常量合并

❖如果对变量x的某次使用只有一个定值到达,且 该定值把一个常量赋给x,则可以用该常量替换x

□错误检测

❖判定变量x在p点上是否未经定值就被引用

□gen和kill分别表示一个基本块生成和注销的定值

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$
gen $[B_2] = \{d_4, d_5\}$
kill $[B_2] = \{d_1, d_2, d_7\}$
gen $[B_3] = \{d_6\}$
kill $[B_3] = \{d_3\}$
gen $[B_4] = \{d_7\}$
kill $[B_4] = \{d_1, d_4\}$

□基本块的gen和kill是怎样计算的

- ❖对三地址指令d: u = v + w, 它的状态传递函数是 $f_d(x) = gen_d \cup (x kill_d)$
- *若: $f_1(x) = gen_1 \cup (x kill_1), f_2(x) = gen_2 \cup (x kill_2)$

則:
$$f_2(f_1(x)) = gen_2 \cup (gen_1 \cup (x - kill_1) - kill_2)$$

= $(gen_2 \cup (gen_1 - kill_2)) \cup (x - (kill_1 \cup kill_2))$

❖若基本块B有n条三地址指令

$$\begin{split} f_B(x) &= gen_B \cup (x - kill_B) \\ kill_B &= kill_1 \cup kill_2 \cup \ldots \cup kill_n \\ gen_B &= gen_n \cup (gen_{n-1} - kill_n) \cup (gen_{n-2} - kill_{n-1} - kill_n) \cup \ldots \cup (gen_1 - kill_2 - kill_3 - \ldots - kill_n) \end{split}$$

□到达−定值的数据流等式

- ❖ gen_B: B中能到达B的结束点的定值语句
- ❖ kill_R:整个程序中决不会到达B结束点的定值
- ❖ IN[B]: 能到达B的开始点的定值集合
- ❖ OUT[B]: 能到达B的结束点的定值集合

两组等式(根据gen和kill定义IN和OUT)

- **❖** $IN[B] = \cup_{P \not\in B} only out one of the second of the second of the second of the second one of the second of the second$
- \bullet OUT[B] = $gen_B \cup (IN[B] kill_B)$
- \diamond OUT[ENTRY] = \varnothing

□到达−定值方程组的迭代求解,最终到达不动点

到达-定值的迭代计算算法

// 正向数据流分析

引入两个虚拟块: ENTRY、EXIT

- (1) $OUT[ENTRY] = \emptyset$;
- (2) for (除了ENTRY以外的每个块B) $OUT[B] = \emptyset$;
- (3) while (任何一个OUT出现变化){
- (4) for (除了ENTRY以外的每个块B) {
- $IN[B] = \cup_{P \in B} OUT[P];$
- (6) $OUT[B] = gen_B \cup (IN[B] kill_B);$
- **(7)** }}

向量求解:集合并操作使用逻辑或,集合相减使用后者求补再逻辑与

IN [B]

OUT [B]

 $\boldsymbol{B_1}$

000 0000

 \boldsymbol{B}_2

000 0000

 B_3

000 0000

 B_4

000 0000

gen $[B_1] = \{d_1, d_2, d_3\}$ $kill [B_1] = \{d_4, d_5, d_6, d_7\}$

IN[B] = ∪ P是B的前驱 OUT[P] $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$gen [B_2] = \{d_4, d_5\}$$

 $kill [B_2] = \{d_1, d_2, d_7\}$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

IN [B]

OUT [B]

000 0000 $\boldsymbol{B_1}$

000 0000

 \boldsymbol{B}_2

000 0000

 B_3

000 0000

 B_{4}

000 0000

gen $[B_1] = \{d_1, d_2, d_3\}$ $kill [B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \not\equiv B \text{ of } N[B]} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$gen~[B_2] = \{d_4, d_5\}$$
 $kill~[B_2] = \{d_1, d_2, d_7\}$

$$gen [B_3] = \{d_6\}$$

$$kill [B_3] = \{d_3\}$$
© Compiler (3) + C, Fall 2023

IN [B]

OUT [B]

000 0000 $\boldsymbol{B_1}$

111 0000

 \boldsymbol{B}_2

000 0000

 B_3

000 0000

 B_4

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$gen [B_2] = \{d_4, d_5\}$$

 $kill [B_2] = \{d_1, d_2, d_7\}$

gen
$$[B_3] = \{a_6\}$$

 $kill [B_3] = \{d_3\}$
© Complier USTC, Fall 2023

$$\begin{array}{ll} gen \; [B_3] = \{d_6\} & gen \; [B_4] = \{d_7\} \\ kill \; [B_3] = \{d_3\} & kill \; [B_4] = \{d_{123}d_4\} \\ \end{array}$$

② 到达-定值分析

IN[B]

OUT [B]

 $B_1 = 000 \ 0000$

111 0000

 B_2 111 0000

000 0000

 B_3

000 0000

 B_4

000 0000

gen $[B_1] = \{d_1, d_2, d_3\}$ kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

 $gen[B_2] = \{d_4, d_5\}$

$$gen \ [B_3] = \{d_6\} \quad gen \ [B_4] = \{d_7\} \\ kill \ [B_3] = \{d_3\} \quad kill \ [B_4] = \{d_{1,4}d_4\}$$
 Cheng © Complier C., Fall 2023

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

 $kill[B_2] = \{d_1, d_2, d_7\}$

IN [B]

OUT [B]

000 0000

111 0000

111 0000

001 1100

 B_3

000 0000

 B_4

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \not\equiv B \text{的前驱}} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

gen
$$[B_2] = \{d_4, d_5\}$$

kill $[B_2] = \{d_1, d_2, d_7\}$

gen
$$[B_3] = \{a_6\}$$

 $kill [B_3] = \{d_3\}$

$$\begin{array}{ll} gen \; [B_3] = \{d_6\} & gen \; [B_4] = \{d_7\} \\ kill \; [B_3] = \{d_3\} & kill \; [B_4] = \{d_{1,5}d_4\} \end{array}$$

IN [B]

OUT [B]

000 0000

111 0000

111 0000

001 1100

001 1100

000 0000

 B_4

000 0000

gen $[B_1] = \{d_1, d_2, d_3\}$ $kill [B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \not\equiv B \text{的前驱}} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$gen [B_2] = \{d_4, d_5\}$$

 $kill [B_2] = \{d_1, d_2, d_7\}$

gen
$$[B_3] = \{a_6\}$$

 $kill [B_3] = \{d_3\}$
@ Complier USTC, Fall 2023

IN [B]

OUT [B]

000 0000

111 0000

111 0000

001 1100

001 1100

000 1110

 B_4

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \not\equiv B \text{的前驱}} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

gen
$$[B_2] = \{d_4, d_5\}$$

kill $[B_2] = \{d_1, d_2, d_7\}$

$$gen \ [B_3] = \{d_6\}$$
 $kill \ [B_2] = \{d_3\}$

IN [B]

OUT [B]

000 0000

111 0000

111 0000

001 1100

001 1100

000 1110

 B_4 001 1110

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$d : i = m - 1 B$$

gen
$$[B_2] = \{d_4, d_5\}$$

kill $[B_2] = \{d_1, d_2, d_7\}$

$$gen [B_3] = \{d_6\}$$
 $kill [B_3] = \{d_3\}$

IN [B]

OUT [B]

000 0000

111 0000

111 0000

001 1100

001 1100

000 1110

001 1110

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \bigcup (IN[B] - kill_B)$

gen
$$[B_2] = \{d_4, d_5\}$$

kill $[B_2] = \{d_1, d_2, d_7\}$

$$gen[B_3] = \{a_6\}$$
 $kill[B_3] = \{d_3\}$
@ Compiler USTC, Fall 2023

IN [B]

OUT [B]

000 0000

111 0000

111 0111

001 1100

001 1100

000 1110

 B_4 001 1110

001 0111

gen $[B_1] = \{d_1, d_2, d_3\}$ $kill [B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

$$gen [B_2] = \{d_4, d_5\}$$

 $kill [B_2] = \{d_1, d_2, d_7\}$

gen
$$[B_3] = \{d_6\}$$

kill $[B_3] = \{d_3\}$

IN [B]

OUT [B]

000 0000

111 0000

111 0111

001 1110

001 1100

000 1110

 B_{4} 001 1110

001 0111

不再继续演示迭代计算

gen
$$[B_1] = \{d_1, d_2, d_3\}$$

kill $[B_1] = \{d_4, d_5, d_6, d_7\}$

$$IN[B] = \bigcup_{P \in B} OUT[P]$$
 $OUT[B] = gen_B \cup (IN[B] - kill_B)$

gen
$$[B_2] = \{d_4, d_5\}$$

kill $[B_2] = \{d_1, d_2, d_7\}$

$$gen [B_3] = \{a_6\}$$

$$kill [B_3] = \{d_3\}$$
© Complier USTC, Fall 2023

到达-定值分析非向量计算方键中图4

□迭代计算

- 计算次序, 深度优先序, 即 B1 -> B2 -> B3 -> B4
- 初始值: for all B: IN[B] = Ø; OUT[B] = GEN[B]
- 第一次迭代:

```
IN[B1] = Ø; // B1 无前驱结点
```

$$OUT[B1] = GEN[B1] \cup (IN[B1]-KILL[B1]) = GEN[B1] = \{ d1, d2, d3 \}$$

$$IN[B2] = OUT[B1] \cup OUT[B4] = \{d1, d2, d3\} \cup \{d7\} = \{d1, d2, d3, d7\}$$

 $OUT[B2] = GEN[B2] \cup (IN[B2]-KILL[B2]) = \{d4, d5\} \cup \{d3\} = \{d3, d4, d5\}$

IN[B3] = OUT[B2] = { d3, d4, d5 }
OUT[B3] = { d6 }
$$\cup$$
 ({ d3, d4, d5 } - { d3 }) = { d4, d5, d6 }

$$IN[B4] = OUT[B3] \cup OUT[B2] = \{ d3, d4, d5, d6 \}$$

 $OUT[B4] = \{ d7 \} \cup (\{ d3, d4, d5, d6 \} - \{ d1, d4 \}) = \{ d3, d5, d6, d7 \}$

到达-定值分析非向量计算方数中的种学 University of Science and

-第二次迭代

```
IN[B1] = Ø; // B1 无前驱结点
OUT[B1] = GEN[B1] ∪ (IN[B1]-KILL[B1]) = GEN[B1] = { d1, d2, d3 }
```

```
IN[B2] = OUT[B1] \cup OUT[B4] = \{ d1,d2,d3 \} \cup \{ d3,d5,d6,d7 \} = \{ d1,d2,d3,d5,d6,d7 \} 
OUT[B2] = GEN[B2] \cup (IN[B2]-KILL[B2]) = \{ d4,d5 \} \cup \{ d3,d5,d6 \} = \{ d3,d4,d5,d6 \}
```

```
IN[B3] = OUT[B2] = { d3, d4, d5, d6 }
OUT[B3] = { d6 } \cup ( { d3, d4, d5, d6 } - { d3 } ) = { d4, d5, d6 }
```

```
IN[B4] = OUT[B3] \cup OUT[B2] = { d3, d4, d5, d6 }
OUT[B4] = { d7 } \cup ( { d3, d4, d5, d6 } - { d1, d4 } ) = { d3, d5, d6, d7 }
```

经过三次迭代后, IN[B]和OUT[B] 不再变化。

□到达−定值数据流等式是正向的方程

OUT $[B] = gen [B] \cup (IN [B] - kill [B])$ IN $[B] = \bigcup_{P \neq B \text{ of } n} OUT [P]$ 某些数据流等式是反向的

□到达−定值数据流等式的合流运算是求并集

 $IN[B] = \bigcup_{P \neq B \text{ bh hi } W} OUT[P]$ 某些数据流等式的合流运算是求交集

□对到达−定值数据流方程,迭代求它的最小解

某些数据流方程可能需要求最大解

- □可用表达式
- □到达-定值
- □活跃变量

□删除无用赋值

□为基本块分配寄存器

- ❖如果所有寄存器都被占用,且还需要申请一个寄存器,则应该考虑使用已经存放死亡值的寄存器
- ❖如果一个值在基本块结尾处是死的,就不必在结 尾处保存这个值了

口定义

- ❖ x的值在p点开始的某条执行路径上被引用,则说 x在p点活跃,否则称x在p点已经死亡
- ❖ IN[B]: 块B开始点的活跃变量集合
- ❖ OUT[B]: 块B结束点的活跃变量集合
- $\Leftrightarrow use_B$: 块B中有引用,且在引用前在B中没有被定值的变量集
- $\diamond def_B$: 块B中有定值,且该定值前在B中没有被引用的变量集

口例

$$*use[B_1] = \{ m, n, u1 \}$$

$$def[B_1] = \{i, j, a\}$$

$$*use[B_2] = \{ i, j \}$$

$$def[B_2] = \{ \}$$

$$*use[B_3] = \{ u2 \}$$

$$def[B_3] = \{a\}$$

$$*use[B_4] = \{ u3 \}$$

$$def[B_4] = \{i\}$$

□活跃变量数据流等式

- **❖IN** [**EXIT**] = Ø
 - > 边界条件:程序出口处没有活跃变量
- \star IN $[B] = use_B \cup (OUT [B] def_B)$
 - ▶入口处活跃: 1) 在B中重定值之前被使用; 2)离开时活跃 且没有在B中被定值
- ♦ OUT[B] = $\cup_{S \not\in B}$ of B in [S]

□和到达−定值等式之间的联系与区别

- ❖ 都以集合并算符作为它们的汇合算符
- ❖ 信息流动方向相反, IN和OUT的作用相互交换
- ❖ use和def分别取代gen和kill
- ❖ 仍然需要最小解

活跃变量的迭代计算算法

输入:流图G,其中每个基本块B的use和def都已计算

输出: IN[B]和OUT[B]

 $IN[EXIT] = \emptyset;$

for (除了EXIT以外的每个块B) $IN[B] = \emptyset$;

while (某个IN值出现变化) {

for (除了EXIT以外的每个块B) {

 $OUT[B] = \bigcup_{S \neq B} one of state of s$

IN $[B] = use_B \cup (OUT [B] - def_B);$

活跃变量举例

	OUT[B] ¹	IN[B] ¹	OUT[B] ²	IN[B] ²	OUT[B] ³	IN[B] ³
B_4		u3	i, j, u2, u3	j, u2, u3	i, j, u2, u3	j, u2, u3
B_3	u3	u2, u3	j, u2, u3	j, u2, u3	j, u2, u3	j, u2, u3
B_2	u2, u3	i, j, u2, u3	j, u2, u3	i, j, u2, u3	j, u2, u3	i, j, u2, u3
B_1	i, j, u2, u3	m, n, u1, u2, u3	i, j, u2, u3	m, n, u1, u2, u3	i, j, u2, u3	m, n, u1, u2, u3

活跃变量分析-举例2

口各基本块USE和DEF如下,

```
USE[B1] = { } ; DEF[B1] = { a, b }
 USE[B2] = \{ a, b \} ; DEF[B2] = \{ c, d \}
 USE[B3] = \{ b, d \} ; DEF[B3] = \{ \}
 USE[B4] = \{ a, b, e \} ; DEF[B4] = \{ d \}
 USE[B5] = \{ a, b, c \}; DEF[B5] = \{ e \}
 USE[B6] = \{ b, d \}; DEF[B6] = \{ a \}
□初始值, all B, IN[B] = { },
           OUT[B6]={ }//出口块
```


(5) d := b * d

■ 第一次迭代计算

B3

B4

(5) d := b * d

{ a,b,e }

■ 第一次迭代计算

B3

B4

{ e }

b, d

B6

{ b, d }

B4

B3

B4

(5) d := b * d

{ a,b,c,d,e }

B3

B4

■ 第三次迭代与前一次 结果一样, 计算结束

B3

(5) d := b * d

a,b,c,d,e }

《编译原理与技术》 独立于机器的优化II

The end!