

Phân tích ngữ nghĩa

Lê Thanh Hương
Bộ môn Hệ thống Thông tin
Viện CNTT &TT – Trường ĐHBKHN
Email: huonglt@soict.hust.edu.vn

Chapter 17. Representing Meaning. In book Speech and Language Processing. Dan Jurafsky and James Martin. 2rd edition. Prentice Hall.

Định nghĩa

- PTNN là quá trình ánh xạ từ câu NNTN sang dạng biểu diễn logic của nó.
- Mức nông: gán nhãn vai trò ngữ nghĩa (case-role) như agent, patient
- Mức sâu hơn: biểu diễn dạng logic vị từ hoặc hình thức khác cho phép suy diễn tự động.

Tại sao cần phân tích ngữ nghĩa

- Trả lời câu hỏi (bài toán hỏi đáp)
- Hội thoại (chatbot)
- Điều khiển hoạt động của robot
- Dịch máy
- Tóm lược văn bản
- •

Thế nào được coi là hiểu?

- ... nếu có thể phản ứng phù hợp
 - VD: "cho tất cả đồ chơi vào giỏ"
- ... nếu có thể xác định 1 phát biểu là đúng hay sai
 - hiểu NP nghĩa là xác định được NP đó đề cập đến cái gì

Thế nào được coi là hiểu?

- ... nếu có thể sử dụng nội dung đó để trả lời câu hỏi
 - Dễ: Mai ăn kẹo. → Mai ăn gì?
 - Khó: Nước đi đầu tiên của quân trắng là P-Q4. → Quân đen có thể chiếu tướng không?
- ... nếu có thể dịch: phụ thuộc vào ngôn ngữ đích
 - Anh Anh?
 - Anh Pháp? có thể được
 - Anh logic ? cần hiểu sâu
 - tất cả loài cá đều biết bơi
 - = $\forall x [fish(x) \Rightarrow can_swim(x)]$

Một số khái niệm cơ bản về logic

3 loại đối tượng cơ bản:

- 1. Giá trị Booleans
 - là giá trị ngữ nghĩa của câu
- 2. Thực thể Entities
 - Giá trị của NP, vd., các đối tượng như bàn, ghế, thời gian
- 3. Hàm
 - Hàm trả về giá trị nhị phân gọi là vị từ (predicate). Vd., frog(x),
 green(x)
 - Hàm có thể trả về 1 hàm khác
 - Hàm có thể nhận hàm khác như tham số

Logic: thuật ngữ Lambda

- λ:
 - là cách để viết 1 hàm "bất kỳ"
 - Không có tên hàm
 - Được dùng để định nghĩa tính chất cơ bản của hàm
 - Cho square = $\lambda p p^*p$
 - Tương đương với int square(p) { return p*p; }
 - Định dạng: λ <tên biến> <biểu thức>

Logic: thuật ngữ Lambda

• λ:

- Cho square = $\lambda p p^*p$
- Khi đó square(3) = $(\lambda p p^*p)(3) = 3*3$
- Chú ý: square(x) không phải là hàm, chỉ là giá trị của x*x.
- Hàm: λx square(x) = λx x*x = λp p*p = square
- Cho even = λp (p mod 2 == 0) vị từ trả về giá trị True/False
- $even(x) = true n\acute{e}u x ch \~{a}n$
- Còn even(square(x))?
- $\lambda x \text{ even}(\text{square}(x)) = \text{true } v \circ i \text{ các } s \circ x \text{ có } \text{square}(x) \text{ chẵn}$
 - $\lambda x (\text{even}(x^*x)) = \lambda x (x^*x \text{ mod } 2 == 0)$

Logic: Một số vị từ

- most − 1 vị từ trên 2 vị từ khác
 - most(pig, big) = "most pigs are big"
 - tương đương với, $most(\lambda x pig(x), \lambda x big(x))$
 - trả về true nếu đa số giá trị thỏa vị từ đầu tiên cũng thỏa vị từ thứ 2
- tương tự:
 - all(pig,big)
 - exists(pig,big)

```
(tương đương với \forall x \text{ pig}(x) \Rightarrow \text{big}(x))
```

(tương đương với $\exists x \text{ pig}(x) \text{ AND big}(x)$)

Cách biểu diễn vị từ

- Gilly swallowed a goldfish
 - swallowed(Gilly, goldfish)
- goldfish không phải là tên một đối tượng duy nhất như
 là Gilly
- Vấn đề

Gilly swallowed a goldfish and Milly swallowed a goldfish chuyển thành:

swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish) nhưng không phải cùng 1 goldfish ...

Sử dụng lượng từ

- Gilly swallowed a goldfish
 - swallowed(Gilly, goldfish)
- Tốt hơn: ∃g goldfish(g) AND swallowed(Gilly, g)
- Hoặc sử dụng vị từ lượng từ:
 - exists(λg goldfish(g), λg swallowed(Gilly,g))
 - tương đương: exists(goldfish, swallowed(Gilly))
 - "trong tập cá có 1 con cá bị nuốt bởi Gilly"

- Mai likes small cats.
- Mai likes the cat whose name is Tom.

Thời

- Gilly swallowed a goldfish
 - exists(goldfish, λg swallowed(Gilly,g))
- Cải tiến:
 - swallowed(Gilly,g) chuyển thành swallow(t,Gilly,g), t là thời gian
 - $\exists t \text{ past}(t) \text{ AND exists}(\lambda g \text{ goldfish}(g), \lambda g \text{ swallow}(t,Gilly,g))$
 - "Có lúc nào đó trong quá khứ, con cá là 1 trong các vật bị Gilly nuốt"

Các thuộc tính về sự kiện

- Gilly swallowed a goldfish
 - ∃t past(t) AND exists(goldfish, swallow(t,Gilly))
- Một phát biểu có thể có các thuộc tính khác nữa:
 - [Gilly] swallowed [a goldfish] [on a dare] [in a telephone booth] [with 30 other freshmen] [after many bottles of vodka had been consumed].
 - xác định ai? làm gì? tại sao? khi nào? (who what why when)
- Thay biến thời gian t với biến sự kiện e
 - ∃e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish, swallowee(e)), exists(booth, location(e)), ...
 - Có thể biểu diễn quá khứ bằng λe ∃t before(t,now), ended-at(e,t)

Trật tự của lượng từ

- Ví dụ
 - In this country <u>a woman</u> gives birth <u>every 15</u> min. Our job is to find that woman and stop her.
 - ∃woman (∀15min gives-birth-during(woman, 15min))
 - ∀15min (∃woman gives-birth-during(15min, woman))

Các thuộc tính về ý chí

- Willy wants a unicorn
 - ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 - "there is a unicorn u that Willy wants"
 - wantee là một cá thể
 - ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 - "Willy wants any entity u that satisfies the unicorn predicate"
 - wantee là 1 loại thực thể
- Willy wants Lilly to get married
 - ∃e present(e), act(e,wanting), wanter(e,Willy), wantee(e, λe' [act(e',marriage), marrier(e',Lilly)])
 - "Willy wants any event e' in which Lilly gets married"
 - Sentence doesn't claim that such an event exists
- Các động từ chỉ ý chí: hope, doubt, believe,...

Danh ngữ

• Expert

 $\lambda g \ expert(g)$

• big fat expert

 λg big(g), fat(g), expert(g)

- Baltimore expert (white-collar expert, TV expert ...)
 - λg Related(Baltimore, g), expert(g) expert from Baltimore

Câu

- Ý nghĩa của câu là gì?
 - Phụ thuộc vào dấu chấm câu.
 - Billy likes Lili. \rightarrow assert(like(B,L))
 - Billy likes Lili? \rightarrow ask(like(B,L))
 - Hoặc chính xác hơn, "Does Billy like Lili?"
 - Billy, like Lili! \rightarrow command(like(B,L))

Câu

- What did Gilly swallow?
 - $ask(\lambda x \exists e past(e), act(e, swallowing), swallower(e, Gilly), swallowee(e, x))$
- Eat your fish!
 - command(λf act(f,eating), eater(f,Hearer), eatee(...))
- I ate my fish.
 - assert(∃e past(e), act(e,eating), eater(e,Speaker), eatee(...))

Bài tập

Với
$$f(6) = 6 * 6$$
, thì $f = \lambda x \times x$

- 1. Với f(John) = loves(Mary, John), thì f = ?
- 2. Với $f(John) = (\forall x \text{ woman}(x) \rightarrow loves(x, John))$ thì f = ?
- 3. Với f(λx loves(Mary,x)) = (λx Obviously(loves(Mary,x))). f =
 ? Sử dụng nó để biểu diễn ngữ nghĩa câu "Sue obviously loves Mary?"
- 4. Với $f(Mary)(John) = (\lambda e act(e, loving), lovee(e, Mary), lover(e, John)). f = ?$

Bài tập

- 5. Cho f giống bài trước. Giả sử
- $g(f(Mary)(John)) = (\lambda e \ act(e, loving), lovee(e, Mary), lover(e, John), manner(e,passionate)). g = ?$
- Gọi ý: viết f(Mary), nghĩa là "loves Mary". g(f(Mary)) nghĩa là "passionately loves Mary."
- $f = \lambda e \lambda x \lambda y act(e, loving), lovee(e, x), lover(e, y)$
- $g = \lambda f \lambda e \text{ manner}(e, passionate), f(e)$

Chapter 18. Computational Semantics. In book Speech and Language Processing. Dan Jurafsky and James Martin, 2rd edition. Prentice Hall.

Phân tích ngữ nghĩa câu

- 1. Phân tích cú pháp
- 2. Tìm ngữ nghĩa của từng từ
- 3. Xác định ngữ nghĩa cho mỗi thành phần ngữ pháp, thực hiện từ dưới lên

Where did John see Mary?

```
(ROOT

(SBARQ

(WHADVP (WRB Where))

(SQ (VBD did)

(NP (NNP John))

(VP (VB see)

(NP (NNP Mary))))

(.?)))
```


- Thêm thuộc tính "sem" cho mỗi luật phi ngữ cảnh
 - $S \rightarrow NP$ loves NP
 - $S[sem=loves(x,y)] \rightarrow NP[sem=x] loves NP[sem=y]$
 - Nghĩa của S phụ thuộc vào nghĩa của NP
- TAG version:

Điền mẫu: S[sem=showflights(x,y)] →
 I want a flight from NP[sem=x] to NP[sem=y]

- Thay $S \rightarrow NP$ loves NP
 - $S[sem=loves(x,y)] \rightarrow NP[sem=x] loves NP[sem=y]$
- Luật tổng quát $S \rightarrow NP VP$:
 - $V[sem=loves] \rightarrow loves$
 - $VP[sem=v(obj)] \rightarrow V[sem=v] NP[sem=obj]$
 - $S[sem=vp(subj)] \rightarrow NP[sem=subj] VP[sem=vp]$
- George loves Laura CÓ sem=loves(Laura)(George)
- Trong phần này, ta:
 - tính ngữ nghĩa từ dưới lên
 - Ngữ pháp ở dạng chuẩn Chomsky
 - Mỗi nút có 2 con: 1 hàm và 1 tham số
 - Để lấy ngữ nghĩa của nút, áp dụng hàm vào tham số

Cách biểu diễn ngữ nghĩa cơ bản

- Sử dụng "Event"
- (EVENT :condition1 val1 :condition2 val2...:condn valn)
- Ví dụ:
- (see :agent John :patient Mary :tense past)

Luật cú pháp/ngữ nghĩa

	Thành	phần/luật	Dich	nghĩa
--	-------	-----------	------	-------

Verb ate $\lambda x \lambda y. ate(y, x)$

N

V

 $S^* = VP^*(NP^*)$

NP N*

VP V*(NP*)

Ý nghĩa của câu

- λ form ứng với VP gắn với λ form đi với NP
- Từ là các giá trị
- Cho cây cú pháp, phân tích từ dưới lên để có ngữ nghĩa của câu *ate(John, ice-cream)*
- Vị từ này có thể được đánh giá dựa trên CSDL để trả về 1 giá trị hoặc T/F.

Dịch ngữ nghĩa

Ví dụ

- Phân tích ngữ nghĩa của các câu sau. Chỉ rõ tập luật ngữ nghĩa đã áp dụng (dạng VP[sem=v(obj)] → V[sem=v] NP[sem=obj]).
 - Tâm đã gặp An.
 - Tôi biết Tâm đã gặp An.
 - Tâm đã gặp An ở trường.

Cách thực hiện

- λ ở mức cao nhất gọi đến VP. Giá trị VP này được xác định ở mức lá bằng cách sử dụng tham số NP
- Nói cách khác, để tìm ý nghĩa của câu, ta gọi VP sử dụng tham số là NP
- Tại nút lá, mỗi từ cũng đi kèm them một số thông tin ngữ nghĩa

Bài tập

- 1. Đưa ra tất cả các cách biểu diễn ngữ nghĩa cho các câu sau:
 - Mai likes small cats.
 - Mai likes the cat whose name is Tom.
- 2. Đưa ra cách biểu diễn ngữ nghĩa dựa trên sự kiện cho các câu sau:
 - Willy wants Lilly to get married.

Mai likes the cat whose name is Tom.

```
(ROOT
  (S
    (NP (NNP Mai))
    (VP (VBZ likes)
      (NP
        (NP (DT the) (NN cat))
        (SBAR
          (WHNP (WP$ whose) (NN name))
          (S
             (VP (VBZ is)
               (NP (NNP Tom))))))
    (. .)))
```


Willy wants Lilly to get married.

```
(ROOT
  (S
    (NP (NNP Willy))
    (VP (VBZ wants)
      (S
         (NP (NNP Lilly))
         (VP (TO to)
           (VP (VB get)
             (ADJP (JJ married))))))
    (. .)))
```


Úng dụng của phân tích ngữ nghĩa

```
(top-level)
Shall I clear the database? (y or n) y
>John saw Mary in the park.
OK.
>Where did John see Mary?
IN THE PARK.
>John gave Fido to Mary.
OK.
>Who gave John Fido?
I DON'T KNOW
>Who gave Mary Fido?
JOHN
>John saw Fido.
OK.
>Who did John see?
```

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG