ORIE 6300 Mathematical Programming I

November 2, 2016

Recitation 11

Lecturer: Calvin Wylie Topic: Woo-Hyung Cho

Smooth Convex Optimization ¹

Recall that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\forall x, y$ and $t \in [0, 1]$, $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$

Lemma 1 If f is convex and continuously differentiable, then $f(x) + \langle \nabla f(x), y - x \rangle \leq f(y)$ $(\forall x, y)$.

Proof: Let $x, y \in \mathbb{R}^n$ and $t \in [0, 1)$. Let $x_t = tx + (1 - t)y$.

If f is convex, $f(x_t) \le tf(x) + (1-t)f(y)$. Since $t \ne 1$, we can divide by 1-t:

$$f(y) \ge \frac{1}{1-t} (f(x_t) - tf(x))$$

$$= f(x) + \frac{1}{1-t} (f(x_t) - f(x))$$

$$= f(x) + \frac{1}{1-t} (f(x+(1-t)(y-x)) - f(x))$$

Let $t \to 1$, then $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Proof in the reverse direction is left to the readers as an exercise.

Lemma 2 If f is convex and continuously differentiable, then $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$ $(\forall x, y)$, i.e., ∇f is monotone.

Proof: If Lemma 1 holds, Lemma 2 holds. We only prove one direction.

Let $x, y \in \mathbb{R}^n$. By Lemma 1,

$$f(x) + \langle \nabla f(x), y - x \rangle \le f(y) \tag{1}$$

$$f(y) + \langle \nabla f(y), x - y \rangle \le f(x) \tag{2}$$

Add (1) and (2) to get $\langle \nabla f(x), y - x \rangle + \langle \nabla f(y), x - y \rangle \leq 0$. Then $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$.

Theorem 3 If f is continuously differentiable (but not necessarily convex), and ∇f is L-Lipschitz, i.e., $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$, then

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} ||y - x||^2$$

 $\phi_1(x) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ is an upper bound on f. Likewise, $\phi_2(x) = f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} ||y - x||^2$ offers a lower bound.

¹Based on Nesterov, Yurii. Introductory lectures on convex optimization: A basic course.

Proof: By the fundamental theorem of calculus,

$$f(y) - f(x) = \int_0^1 \frac{d}{dt} f(x + t(y - x)) dt$$
$$= \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$$

Then,

$$\begin{split} |f(y)-f(x)-\langle\nabla f(x),y-x\rangle| &= |\int_0^1 \langle\nabla f(x+t(y-x))-\nabla f(x),y-x\rangle dt| \\ &\leq \int_0^1 |\langle\nabla f(x+t(y-x))-\nabla f(x),y-x\rangle| dt \\ &\leq \int_0^1 \|\nabla f(x+t(y-x))-\nabla f(x)\|\|y-x\| dt \quad (Cauchy-Schwarz) \\ &\leq \int_0^1 L\|\nabla x+t(y-x)-x\|\|y-x\| dt \quad (Lipschitz) \\ &= L\|y-x\|^2 \int_0^1 t dt \\ &= \frac{L}{2}\|y-x\|^2 \end{split}$$

Theorem 4 Let f be convex and continuously differentiable. Then x^* is a global minimizer of f iff $\nabla f(x^*) = 0$.

Proof: (\leftarrow) The proof follows immediately from Lemma 1: $f(x^*) + \langle \nabla f(x^*), y - x^* \rangle \leq f(y)$ ($\forall y$). If $\nabla f(x^*) = 0$, then $f(x^*) \leq f(y)$ ($\forall y$). Hence, $f(x^*)$ is the global minimizer.

(\rightarrow) For a proof by contradiction, suppose $\nabla f(x^*) \neq 0$ and let $d = -\nabla f(x^*)$. Then $\langle d, \nabla f(x^*) \rangle < 0$. Now recall the mean value theorem: $(\forall x, y \in \mathbb{R}^n)$ $f(y) = f(x) + \langle \nabla f(x + t(y - x)), y - x \rangle$ for some $t \in (0,1)$. Since ∇f is continuous, $\langle \nabla f(x^* + td), d \rangle < 0$ ($\forall 0 \leq t \leq T$) for some T. For $\bar{t} \in [0,T]$, $f(x^* + \bar{t}d) = f(x^*) + \langle \nabla f(x^* + t\bar{t}d), \bar{t}d \rangle$ holds for some $t \in (0,1)$, where $\langle \nabla f(x^* + t\bar{t}d), \bar{t}d \rangle < 0$. This shows that x^* is not a global minimizer, and we have a contradiction. Therefore, $\nabla f(x^*) = 0$. \Box

Theorem 5 Let f be convex and continuously differentiable. Let ∇f be L-Lipschitz continuous. Then

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$

This is called the "co-coercivity condition."

Proof: Let $y \in \mathbb{R}^n$ and define $g(x) = f(x) - \langle \nabla f(y), x \rangle$. Note that $\nabla g(y) = \nabla f(y) - \nabla f(y) = 0$, i.e., y minimizes g. Because $g(y) \leq g(\cdot)$, $g(y) \leq g(x - \frac{1}{L}\nabla g(x))$ also holds $\forall x$. We apply Theorem 3.

$$g(x - \frac{1}{L}\nabla g(x)) \le g(x) + \langle \nabla g(x), -\frac{1}{L}\nabla g(x) \rangle + \frac{L}{2} \| -\frac{1}{L}\nabla g(x) \|^2$$

$$= g(x) - \frac{1}{L} \|\nabla g(x)\|^2 + \frac{1}{2L} \|\nabla g(x)\|^2$$

$$= g(x) - \frac{1}{2L} \|\nabla g(x)\|^2$$

We use the definition $g(x) = f(x) - \langle \nabla f(y), x \rangle$ and the inequality $g(y) \leq g(x) - \frac{1}{2L} \|\nabla g(x)\|^2$ to derive

$$f(y) - \langle \nabla f(y), y \rangle - f(x) + \langle \nabla f(y), x \rangle \le -\frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|^2$$

Interchanging x and y,

$$f(x) - \langle \nabla f(x), x \rangle - f(y) + \langle \nabla f(x), y \rangle \le -\frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|^2$$

We add the two inequalities to get

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$

Corollary 6 $I - \frac{2}{L}\nabla f$ is non-expansive.

Proof:

$$\begin{split} \|(x - \frac{2}{L}\nabla f(x)) - (y - \frac{2}{L}\nabla f(y))\|^2 &= \|(x - y) - \frac{2}{L}(\nabla f(x) - \nabla f(y))\|^2 \\ &= \|x - y\|^2 + \frac{4}{L^2}\|\nabla f(x) - \nabla f(y)\|^2 - \frac{4}{L}\langle x - y, \nabla f(x) - \nabla f(y)\rangle \\ &= \|x - y\|^2 + \frac{4}{L}(\frac{1}{L}\|\nabla f(x) - \nabla f(y)\|^2 - \langle x - y, \nabla f(x) - \nabla f(y)\rangle) \\ &\leq \|x - y\|^2 \quad \text{by Theorem 5} \end{split}$$

A KM iteration

$$x^{k+1} = \frac{1}{2}(I - \frac{2}{L}\nabla f)(x^k) + \frac{1}{2}x^k$$
$$= x^k - \frac{1}{L}\nabla f(x^k)$$

performs a gradient descent with step size $\frac{1}{L}$. If we apply the KM algorithm iteratively, the sequence x^k converges to a fixed-point x^* such that $x^* = (I - \frac{2}{L}\nabla f)(x^*)$, which implies $\nabla f(x^*) = 0$. Steepest gradient descent converges to a minimizer when the step size is chosen between 0 and $\frac{2}{L}$.