2021-01-20, Building bridges seminar

Unknotting 2-spheres in 5⁴ with Finger - & Whitney moves

with Jason Joseph, Michael Klug & Hannah Schwartz

everything [the manifolds, embeddings,...] is smooth here

Knotted 2-spheres: \$2 cm \$4

Smooth embedding

Knotted (orientable) surfaces:

$$= \sum_{g} \hookrightarrow S^{4}$$

up to smooth ambient isotopy

There is a difference between topologically locally flat embedded surfaces

topological isotopy

and smoothly embedded surfaces

Smooth isotopy

"exotic knotting"

Start with unlink

Join components with fusion bounds

Ribbon disk:

Describing knotted surfaces via movies

/ Soctoh's tube map

Start with an unlink of 2-spheres

Attach fusion tubes

the tubes usually link with the spheres

open book decomposition of $5^3 =$

open book decomposition of $5^4 =$

open book decomposition of $5^4 =$

open book decomposition of $5^4 =$

Idea: Study coolimension = 2 knots

via submanifolds that they bound

Just as knots $S^1 \hookrightarrow S^3$ bound Seifert surfaces ...

(not unique -> S-equivalence)

... Knotted surfaces $\Sigma_g \subset S \to S^4$ bound Seifert hypersurfaces/
Seifert solids

oriented, smooth compact 3-mfloss $M^3 \hookrightarrow S^4$ with JM = S.

1-handle stabilization of a surface

1-handle stabilization of a surface

 \int

S + h

Fact: Any surface S C St can be unknotted with enough 1-handle stabilizations.

A surface $S: \Sigma_g \hookrightarrow S^t$ is unknotted if it bounds a handle body

Idea: Study knots via regular homotopies to the unknot

knot K in \$3

homotopic to unknot O

$$\pi_{1}(\mathbb{S}^{3}) = \{1\}$$

(of course if K non-trivial, not isotopic to unknot)

sequence of isotopies and crossing changes:

Unknotting by Finger - & Whitney moves:

Similarly, any 2-knot \$2 \$5

is (regularly) homotopic to unknot

 $\pi_2(\mathfrak{S}^4) = \{\sigma\}$

2-knot S

Finger moves

immersed middle stage

[from Scorpan: The wild world of 4-manifolds]

Whitney moves

FIGURE 2.3. The pair of intersections p, q (left) admits a purple Whitney disk W (center) which guides a Whitney move eliminating p, q by adding a Whitney bubble to the horizontal sheet (right).

[picture borrowed from Schneiderman-Teichner]

unknot

< \$4

Schematic of a regular homotopy

guiding arcs for finger moves

knotted 2-sphere

immersed middle Level

unknot

 $T_{Z_2}(S^4) = \{0\}$ \longrightarrow any knotted 2-sphere $K: S^2 \hookrightarrow S^4$ is (regularly) homotopic to the unknot

$$J_{L_2}(S^4) = \{0\}$$
 \longrightarrow any knotted 2-sphere $K: S^2 \longrightarrow S^4$ is (regularly) homotopic to the unknot \longleftarrow

We define the Cassan-Whitney number $u_{cw}(K)$ as the minimal number of Finger moves in a regular homotopy from K to the

2-sphere

Hen here: $u_{CW}(K) = 2$

immersed middle Level

unknot

Idea: Study knotted surfaces $S \subset S^4$ via the fundamental group of their complement $T_1(S^4 - S, *)$

If ambient dimension is 4-dimensional:

$$JU_{\Lambda}$$
 (S³) $\stackrel{\text{unknot}}{=}$ Z

generated by a meridian

Corollary of Dehn's lemma:

$$\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}(S^3 \mid \mathcal{K}) \cong \mathbb{Z}$$
 $\Rightarrow \mathcal{K}$ is unknotted

BIG open question:

Does JE, characterize

smoothly

unknotted surfaces

in 4-dim. space?

fiber of the normal disk bundle

Algebraic effect of stabilization:

$$\pi_{1}(S^{4}-(S+h^{1}))\cong \pi_{1}(S^{4}-5)/(w^{-1}aw=b)$$

So a stabilization can make two meridians equal

Example: of (St - ribbon 2-hoot)

$$W_1 = bac$$
 $w_2 = a$

$$\langle a_1b_1c \rangle b = w_1^{-1}a_1w_1 \qquad c = w_2^{-1}b_1w_2 \rangle$$

 $\Rightarrow b = (bac)^{-1}a(bac) \qquad \Leftrightarrow c = a^{-1}ba$

Algebraic effect of finger move:

$$\pi_1(5^4 - S^{fing.}) \cong \pi_1(5^4 - S)$$

[mmersion after finger move on S

Algebraic versions of the unknotting #s:

Finger move:
$$\pi_1(S^4 - S^{4g}) \cong \pi_1(S^4 - S) / ([w^4aw, a])$$

Stabilization:
$$\pi_1(S^4-S^{5tob}) \cong \pi_1(S^4-S)/(w^{-1}aw = a)$$

$$\alpha_{CW}(K) := \min_{\substack{\text{win. } \# \text{ of Finger move relations } [w_i^{-1}a_iw_i, a_i]}} \text{ such that } \pi_1(S^4-K)/(K[w_i^{-1}a_iw_i, a_i], [w_i^{-1}a_iw_i, a_i], ..., [w_k^{-1}a_kw_k, a_k])$$
is abelian ($\Rightarrow = 2$)

Stab (K) := min. # of 1-handle relations
$$a_i = w_i^{-1} \cdot a_i \cdot w_i$$

Such that $Tr(S^4 - K)/(K a_1 = w_i^{-1} a_1 w_1, a_2 = w_2^{-1} a_2 w_2, ..., a_k = w_k^{-1} a_k w_k)$
is abelian

Some bounds:

 $a_{cw}(K) \leq u_{cw}(K)$ v_1 $a_{stab}(K) \leq u_{stab}(K)$

V

minimal Size of generating Set of Alexander module of K (Nahanishi index) this is the best lower bound for the Casson-Whitney number we know of

$$a_{cw}(K) \leq u_{cw}(K)$$
 v_1
 v_2
 v_3
 v_4
 v_5
 v_6
 v_6

Oliver Singh's paper Was very inspirational

DISTANCES BETWEEN SURFACES IN 4-MANIFOLDS

OLIVER SINGH

ABSTRACT. If Σ and Σ' are homotopic embedded surfaces in a 4-manifold then they may be related by a regular homotopy (at the expense of introducing double points) or by a sequence of stabilisations and destabilisations and establisations and establisations and establisations (at the expense of adding genus). This naturally gives rise to two integer-valued notions of distance between the embeddings: the singularity distance $d_{max}(\Sigma, \Sigma')$ where it is a stabilisation distance $d_{max}(\Sigma, \Sigma')$. Using techniques similar to those used by Gabai in his proof of the 4-dimensional light-bulb theorem, we prove that $d_{max}(\Sigma, \Sigma') \neq 1$.

1. Introduction

Let X be a smooth, compact, orientable 4-manifold, possibly with boundary. Let Σ, Σ' be connected, oriented, compact, smooth, properly embedded surfaces in X. We say that Σ' is a stabilisation of Σ if there is an embedded solid tube $D^1 \times D^2 \subset X$ such that $\Sigma \cap (D^1 \times D^2) = \{0,1\} \times D^2$, and Σ' is obtained from Σ by removing these two discs and replacing them with $D^1 \times S^1$, as in Figure 1, and then smoothing corners. In this situation we say that Σ is a destabilisation of Σ' .

FIGURE 1. A stabilisation. Given $D^1 \times D^2 \subset X$ which intersects Σ on $S^0 \times D^2$, we remove the two discs $S^0 \times D^2$, add the tube $D^1 \times S^1$, then smooth corners.

Definition 1.1. Given Σ , Σ' as above, both of genus g, define the *stabilisation distance* between Σ and Σ' to be

$$d_{st}(\Sigma, \Sigma') = \min_{c} |\max\{g(P_1), \dots, g(P_k)\} - g|,$$

where S is the set of sequences P_1, \dots, P_k of connected, oriented, embedded surfaces where $\Sigma = P_1, \Sigma' = P_k$ and P_{i+1} differs from P_i by one of, i) stabilisation, ii) destabilisation, or iii) ambient isotopy. If no such sequence exists we declare $d_{at}(\Sigma, \Sigma') = \infty$.

By carefully manipulating the regular homotopies to the unknot, we can show

$$U_{stab}(K) \leq u_{cw}(K) + 1$$

the smooth unknotting conjecture would imply that the +1 is not necessary

and

$$u_{cw}(K) = 1 \Rightarrow u_{stab}(K) = 1$$

Have examples with
$$u_{stab}(K) \neq u_{ov}(K)$$

Used $a_{cw}(K)$ to find the lower bound by showing that one finger move relation is not enough to abelianize the group:

positive generator of the evaluation of the Alexander ideal at t=-1

Thm: For K_1 , K_2 2-knots with determinants $\Delta(K_i)|_{-1} \neq 1$ have $U_{CW}(K_1 \# K_2) \geq 2$

Prop.: $u_{cw}(\tau^n k) \leq u(k)$ n-twist spin classical unknotting number of of $k: s^1 \hookrightarrow s^3$ the 1-knot k

Corollary: $a_{ow}(z^nk)$ is a lower bound for the classical unknotting number.

Pf. shetch that $u_{cw}(K_1 \# K_2) ≥ 2$: K_1, K_2 2-knots with determinants $\Delta(K_i)$ | $\neq 1$

Will show that a relation of the form [mer., wilner w] does not abdianize $\pi(K_1 \# K_2)$

- ·) Determinant condition ~> JCK; ->> Dihp; = 7/p; x 3/2
- ·) Group of convected sun admits surjection $\tau(K_1 \# K_2) \xrightarrow{\phi} (\mathbb{Z}_p * \mathbb{Z}_p) \times \mathbb{Z}_2$
- Enough: Induced image ⁶ (φ([mer., w⁻¹mer. w]) » not abelian
 ==φ(mer.) v=φ(w)

 Look at commutator subgroup: Want to show ²⁷ρ₁ * ²⁷ρ₂ ([=, v⁻¹ z v]) »
- is not trivial
- •) Rewrite $[z, v^{-1}zv] = [z,v]^2$, show this normally gen.

m> then use a Freiheitssatz of [Fine, Howie, Rosenberger (1988)] to conclude that $\frac{72}{p_1} * \frac{72}{p_2} / (g^2)$ is nontrivial for any $g \in \frac{72}{p_1} * \frac{72}{p_2}$

Last slide