CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Last Lecture: String Algorithms

- String Matching Problem
- Hash Table
- Knuth-Morris-Pratt (KMP) Algorithm
- Suffix Trie
- Suffix Array
- Note on String Problems

String Matching Problem

- \square Given a text T and a pattern P, find all the occurrences of P within T
- Notations:
 - $ldsymbol{\square}$ n and m: lengths of P and T
 - $\square \Sigma$: set of alphabets
 - Constant size
 - $\square P_i$: *i*th letter of P (1-indexed)
 - \square a, b, c: single letters in Σ
 - $\square x, y, z$: strings

String Matching Example

- $\Box T = AGCATGCTGCAGTCATGCTTAGGCTA$
- $\square P = \mathbf{GCT}$

- \square A naïve method takes O(nm) time
 - We initiate string comparison at every starting point
 - lacksquare Each comparison takes O(m) time

We can certainly do better!

Hash Function

- A function that takes a string and outputs a number
- A good hash function has few collisions
 - \blacksquare i.e. If $x \neq y$, $H(x) \neq H(y)$ with high probability
- $lue{}$ An easy and powerful hash function is a polynomial mod some prime p
 - Consider each letter as a number (ASCII value is fine)

 - How do we find $H(x_2 ... x_{k+1})$ from $H(x_1 ... x_k)$?

Hash Table

- \square Main idea: preprocess T to speedup queries
 - lacksquare Hash every substring of length k
 - $lue{k}$ is a small constant

 \Box For each query P, hash the first k letters of P to retrieve all the occurrences of it within T

Don't forget to check collisions!

Hash Table

- □ Pros:
 - Easy to implement
 - Significant speedup in practice

- □ Cons:
 - Doesn't help the asymptotic efficiency
 - lacksquare Can take $\Theta(nm)$ time if hashing is terrible
 - A lot of memory consumption

Knuth-Morris-Pratt (KMP) Matcher

- $lue{}$ A linear time (!) algorithm that solves the string matching problem by preprocessing P in $\Theta(m)$ time
 - Main idea is to skip some comparisons by using the previous comparison result
- \square Uses an auxiliary array π that is defined as the following:
 - lacksquare $\pi[i]$ is the largest integer smaller than i such that $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$
- It's better to see an example than the definition

π Table Example (from CLRS)

i	1	2	3	4	5	6	7	8	9	10
P_i	а	b	а	b	а	b	а	b	С	а
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

- \square $\pi[i]$: the largest integer smaller than i such that $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$
 - \blacksquare e.g. $\pi[6] = 4$ since abab is a suffix of ababab
 - $lue{}$ e.g. $\pi[9]=0$ since no prefix of length ≤ 8 ends with c
- □ Let's see why this is useful

- \Box T = ABC ABCDAB ABCDABCDABDE
- $\square P = ABCDABD$
- $\pi = (0, 0, 0, 0, 1, 2, 0)$
- \square Start matching at the first position of T:

12345678901234567890123

ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

 \square Mismatch at the 4th letter of P!

- \square There is no point in starting the comparison at T_2 , T_3
 - \blacksquare We matched k=3 letters so far
 - □ Shift P by $k \pi[k] = 3$ letters

12345678901234567890123

ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

 \square Mismatch at T_4 again!

- \square We define $\pi[0] = -1$
 - $lue{}$ We matched k=0 letters so far
 - □ Shift P by $k \pi[k] = 1$ letter

12345678901234567890123

ABC ABCDAB ABCDABCDABDE ABCDABD

1234567

 \square Mismatch at $T_{11}!$

- $\pi[6] = 2$ says P_1P_2 is a suffix of $P_1 \dots P_6$
- □ Shift P by $6 \pi[6] = 4$ letters

12345678901234567890123

ABC ABCDAB ABCDABCDABDE

ABCDABD

|| ABCDABD

1234567

 \square Again, no point in shifting P by 1, 2, or 3 letters

 $lue{}$ Mismatch at T_{11} again!

12345678901234567890123

ABC ABCDAB ABCDABCE ABCDABD

- Currently 2 letters are matched
- \square We shift P by $2 = 2 \pi[2]$ letters

 \blacksquare Mismatch at T_{11} yet again!

12345678901234567890123

ABC ABCDAB ABCDABDE ABCDABD

- Currently no letters are matched
- \square We shift P by $1 = 0 \pi[0]$ letters

 $lue{}$ Mismatch at T_{18}

12345678901234567890123

ABC ABCDAB ABCDABDE ABCDABD

- Currently 6 letters are matched
- □ We shift P by $4 = 6 \pi[6]$ letters

Finally, there it is!

12345678901234567890123

ABC ABCDAB ABCDABDE
ABCDABD

- Currently all 7 letters are matched
- \square After recording this match (match at T_{16} ... T_{22}), we shift P again in order to find other matches
 - □ Shift by $7 = 7 \pi \lceil 7 \rceil$ letters

Computing π

- \square Observation 1: if $P_1 \dots P_{\pi[i]}$ is a suffix of $P_1 \dots P_i$, then $P_1 \dots P_{\pi[i]-1}$ is a suffix of $P_1 \dots P_{i-1}$
 - Well, obviously...
- Dbservation 2: all the prefixes of P that are a suffix of $P_1 \dots P_i$ can be obtained by recursively applying π to i
 - $\blacksquare \text{ e.g. } P_1 \dots P_{\pi[i]}, P_1 \dots P_{\pi[\pi[i]]}, P_1 \dots P_{\pi[\pi[\pi[i]]]} \text{ are all suffixes of } P_1 \dots P_i$

Computing π

- A non-obvious conclusion:
 - lacksquare First, let's write $\pi^{(k)}[i]$ as $\pi[\cdot]$ applied k times to i
 - e.g. $\pi^{(2)}[i] = \pi[\pi[i]]$
 - \blacksquare $\pi[i]$ is equal to $\pi^{(k)}[i-1]+1$, where k is the smallest integer that satisfies $P_{\pi^{(k)}[i-1]+1}=P_i$
 - lacksquare If there is no such k, $\pi[i]=0$
- Intuition: we look at all the prefixes of P that are suffixes of $P_1 \dots P_{i-1}$ and find the longest one whose next letter matches P_i too

Implementation

```
pi[0] = -1;
int k = 0;
for(int i = 1; i <= m; i++) {
  while(k >= 0 && P[k+1] != P[i])
    k = pi[k];
  pi[i] = ++k;
}
```

Pattern Matching Implementation

```
int k = 0;
for (int i = 1; i \le n; i++) {
  while (k >= 0 \&\& P[k+1] != T[i])
    k = pi[k];
  k++;
  if(k == m) {
    // P matches T[i-m+1..i]
    k = pi[k];
```

Suffix Trie

- \square Suffix trie of a string T is a rooted tree that stores all the suffixes (thus all the substrings)
- \square Each node corresponds to some substring of T
- □ Each edge is associated with an alphabet
- □ For each node that corresponds to ax, there is a special pointer called *suffix link* that leads to the node corresponding to x
- Surprisingly easy to implement!

Suffix Trie Example

(Figure modified from Ukkonen's original paper)

Incremental Construction

- \square Given the suffix tree for $T_1 \dots T_n$
 - Then we append $T_{n+1} = a$ to T, creating necessary nodes
- \square Start at node u corresponding to $T_1 \dots T_n$
 - $lue{}$ Create an a-transition to a new node v
- $\hfill\Box$ Take the suffix link at u to go to u' , corresponding to $T_2 \dots T_n$
 - $lue{}$ Create an a-transition to a new node v'
 - $lue{}$ Create a suffix link from v to v'

Incremental Construction

- We repeat the previous process:
 - Take the suffix link at the current node
 - \blacksquare Make a new a-transition there
 - Create the suffix link from the previous node
- $lue{}$ We stop if the node already has an a-transition
 - $lue{}$ Because from this point, all nodes that are reachable via suffix links already have an a-transition

Given the suffix trie for aba
We want to add a new letter c

Suffix Trie Analysis

- Construction time is linear in the tree size
 - $lue{}$ But the tree size can be quadratic in n
 - **e.g.** *T* = aa...abb...b

Pattern Matching

 \square To find P, start at the root and keep following edges labeled with P_1 , P_2 , etc.

 \square Got stuck? Then P doesn't exist in T

Suffix Array

Input string	Get all suffixes	Sort the suffixes	Take the indices		
BANANA	1 BANANA 2 ANANA 3 NANA 4 ANA 5 NA 6 A	6 A 4 ANA 2 ANANA 1 BANANA 5 NA 3 NANA	6,4,2,1,5,3		

Suffix Array

- \square Memory usage is O(n)
- Has the same computational power as suffix trie
- \square Can be constructed in O(n) time (!)
 - But it's hard to implement
- lacksquare There is an approachable $O(n\log^2 n)$ algorithm
 - If you want to see how it works, read the paper on the course website
 - http://cs97si.stanford.edu/suffix-array.pdf

Note on String Problems

- Always be aware of the null-terminators
- Simple hash works so well in many problems
 - Even for problems that aren't supposed to be solved by hashing
- If a problem involves rotations of a string, consider concatenating it with itself and see if it helps
- Stanford team notebook has implementations of suffix arrays and the KMP matcher