Terrema da Função Inversa Seja $F: \Omega \rightarrow |R^n|$, com Ω abserte, a de classe C^2 e

um parta p masse conjunto a.

Então, escistam um aberto X contendo p a um aberto Y contendo F(p), e uma função G: Y→ X vatisfazendo F(G(y)) = y para todo y am Y a G(F(x)) = x para todo oc em X.

Ainda mais,

3G(4) = 3F(G(4))-1 para todo y um y

Teoroma de Weisstraus

Seize uma função a raborer vais, continua e contida com um aponul exerb aminimo e anniñam eticas acitra, il atras mas mo compacto K.

Tuerama des multiplicaderes de lagrange Seja F: IRn+m > IR diferencianel e g(gs,..., gm) EC2 (IRn+m, IR) Se F admite vatremante local um um ponto PE g-2(0,...,0), re o conjunto of Tgs,..., gm) is l.l., untão societam números veries 12,..., m tais que

 $\nabla F(P) = \lambda_1 \nabla_{Q_1}(P) + \dots + \lambda_m \nabla_{Q_m}(P)$

Teorema da função inversa

Soja $F: \Omega \to \mathbb{R}^n$, com Ω aborto, e de clarre C^2 a um ponto p contido um Ω tal que $\mathcal{F}(P)$ é invervível.

Seja $F: \Omega \to \mathbb{R}^n$, com Ω aberto, de classe C^2 e um ponto P contido em Ω tal que F(P) é inversivel.

Então existem um aberto X contendo p e um aberto Y contendo F(p), e uma função $G: Y \to X$ de darse C^2 exatisfarendo F(G(y) = y para todo y em Y e G(F(x)) = x pora todo x em X.

Linda mais,

JG(y) = JF(G(y))-1

Terrema da Função Inversa

Seja $F: \Omega \rightarrow R$, com Ω aberto, de davse C^* e um pento ρ em Ω tal que $F(\rho)$ à inversivel Então, escistem um conjunto aberto χ contendo ρ e um aberto χ contendo $F(\rho)$, e uma função $G: \chi \rightarrow \chi$ de clarse C^* exatisfazendo $F(G(C_0)) = \varphi$ para todo χ em χ e G(F(x)) = x para todo x em χ .

3G(y) = 3F(G(y))-8

Teorema de Weierstrass

Soja uma função for valores, contenua e contida em um compacto K, então f admite máximo e minimo no compacto K.

Teorema dos multiplicadores de lagrange

Seja $F: \mathbb{R}^{n+m} \to \mathbb{R}$ diferencianel e una função $g = (g_1, ..., g_m) \in C^2(\mathbb{R}^{n+m}, \mathbb{R})$.

Teorema da Junção implicita

Seja F vern $C^{2}(\Omega, |R^{m})$, $\Omega \subseteq R^{n \times m}$ abesto, ve (a,b) $\in \Omega$ tal que F(a,b) = 0 ve $\frac{\partial F(a,b)}{\partial y}$ viriables $\frac{\partial F(a,b)}{\partial y}$.

Então, existem conjunto aborto X em IR contendo a e um aborto Y em IRM contendo b, vatisfazondo:

- $\forall x \text{ em } X$, existe um único f(x) = y em Y tal que F(x, f(x)) = 0
- · fe C, (X')
- · f(a) = b

Ainda mais,

$$2f(x) = -\left[\frac{\partial x}{\partial F(x)}\right]_{-7} \cdot \left[\frac{\partial x}{\partial F(x)}\right]_{-7}$$

Terrema da Função Implícita

Seja F. em $C^{2}(\Omega_{1}R^{m})$, com Ω abedo em $1R^{n} \times 1R^{m}$ e um pente $(a_{1}b)$ em Ω tal que $F(a_{1}b) = 0$ e $\frac{\partial F}{\partial y}(a_{1}b)$ e impressível ey

Seja F em C¹(12, 18^m), com 12 aberto em 18ⁿ × 18^m o un ponto (a,b) em 12 tal que F(a,b) = 0 3F é inversirel Entaio rescistem un aberto X em 18ⁿ contendo 3^o a re un aberto Y contendo b, satisfazondo:

* para todo x am X, existe um único y = f(x) am Y tal que:

$$F(x)f(x) = 0$$

- · LEC1(X,Y)
- · f(a) = b e

$$5f(x) = \begin{bmatrix} \frac{\partial F}{\partial x} (x, f(x)) \end{bmatrix}^{-1} \cdot \begin{bmatrix} \frac{\partial F}{\partial x} (x, f(x)) \end{bmatrix}$$