Sessão de Discussão dos Problemas

Pedro Ribeiro

DCC/FCUP

MIUP'2016

Visão Geral do Conjunto de Problemas

#	Problema	Tipo	Dificuldade		Ling	#Linhas
			Alg	lmp	Ling.	#Linnas
Α	Greedy Trading	Subsequências, Ordenação	4	5	Java	37
В	The Ant and the Grasshopper	Matemática, Prog. Geométricas	5	2	С	23
С	Election of Representatives	Simulação	3	3	С	34
D	The Modern Feud	Geometria, Ordenação/ED Espacial	5	4	С	42
E	Administrative Reform	Grafos, Dijkstra	5	5	C++	58
F	Rock-Me-Not	Prog. Dinâmica, Bitmasks	7	6	С	68
G	Eccentrics	Simulação, 3D	4	4	Java	30
Н	Problem Setters	Greedy, Swee Linep / ED Intervalos	6	6	С	72
I	Surveillance	Geometria, Visibilidade	8	8	С	167

Esta pequena discussão dos problemas constitui apenas uma visão pessoal minha

A - Greedy Trading

Problema

- **Input:** Sequência de *N* comandos descrevendo *updates* (adicionar um número à sequência actual) e *queries*
- Output: Para cada query indicar qual as posições de início e fim da subsequência de soma máxima nos números já adicionados, e qual a mediana dessa subsequência.

Limites

N ≤ 1000

Classificação

Categorias: Subsequência, Ordenação

Dificuldade: Fácil+

• Autor: Alexandre Francisco (IST)

A - Greedy Trading

- O problema tem duas partes:
 - ▶ (1) Descobrir a sequência de soma máxima até ao momento
 - ▶ (2) Descobrir a sua mediana
- Como $N \leq 1000$, precisamos de complexidade mais baixa que $\mathcal{O}(N^3)$
- (1) pode ser feita iterativamente mudando em cada *update*:
 - Com cada update apenas muda um número
 - ▶ Ter em conta apenas as subequências que terminam nesse novo nº
 - ★ Em $\mathcal{O}(1)$ usando o algoritmo de Kadane
 - ★ Em $\mathcal{O}(N)$ fazendo um ciclo desde o novo número
- (2) pode ser feita apenas em cada *query*:
 - Basta ordenar usando por exemplo a biblioteca da vossa linguagem qsort (C), sort (C++), Arrays.sort (Java)
 Todas estas ordenação são linearítmicas O(N log N)
- O tempo total é dominado pela ordenação (podemos ter tantas queries como updates): O(N² log N)

B - The Ant and the Grasshopper

Problema

- **Input:** *n* cenários, cada um indicando um empréstimo com *y* anos, quantidade de empréstimo *B* e taxa de juro *r*.
- **Output:** Para cada cenário, supondo que o montante a pagar anualmente é fixo, o total que a cigarra paga (amortizações + juros).

Limites

• $n \le 1000$, y < 100, B < 1000

- Categorias: Matemática, Progressões Geométricas
- Dificuldade: Médio-
- Autor: Filipe Araújo (U. Coimbra)

B - The Ant and the Grasshopper

- Podemos visualizar o empréstimo como uma recorrência:
 - ▶ B: quantidade emprestada, r: taxa de juro
 - ightharpoonup T(i): dívida total no ano i
 - Q_{fixa}: quantia fixa a pagar cada ano

$$T(0) = B$$

 $T(i) = T(i-1) \times (1+r) - Q_{fixa}$

$$T(3) = T(2) \times (1+r) - Q_{fixa} =$$

$$= [T(1) \times (1+r) - Q_{fixa}] \times (1+r) - Q_{fixa}$$

$$= T(1) \times (1+r)^2 - Q_{fixa} \times [(1+R)+1]$$

$$= [T(0) \times (1+r) - Q_{fixa}] \times (1+r)^2 - Q_{fixa} \times [(1+R)+1]$$

$$= T(0) \times (1+r)^3 - Q_{fixa} \times [(1+r)^2 + (1+r)+1]$$

$$= B \times (1+r)^3 - Q_{fixa} \times [(1+r)^2 + (1+r)+1]$$

$$T(y) = B \times (1+r)^y - Q_{fixa} \times [(1+r)^{y-1} + (1+r)^{y-2} + \dots + 1]$$

B - The Ant and the Grasshopper

Seja y o total de anos. Então

$$T(y) = B \times (1+r)^{y} - Q_{fixa} \times [(1+r)^{y-1} + (1+r)^{y-2} + \ldots + 1]$$

Soma de uma progressão geométrica

$$\sum_{k=0}^{n-1} (ac^k) = a(\frac{1-c^n}{1-c})$$

Seja R=1+r. Sabemos que no final vamos ter de ficar a devolver zero. Então:

$$0 = B \times R^{y} - Q_{fixa} \times \frac{1 - R^{y}}{1 - R}$$
$$Q_{fixa} = \frac{B \times R^{y} \times (1 - R)}{1 - R^{y}}$$

Finalmente, o total a pagar é Q_{fixa} vezes o número de anos y. Então

Total a Pagar =
$$\frac{y \times B \times R^y \times (1-R)}{1-R^y}$$

A resposta pode ser obtida então em $\mathcal{O}(1)$ para cada cenário ;)

C - Election of Representatives

Problema

- Input: número de lugares S, número de partidos P e o número de votos v_i em cada partido
- Output: Aplicar o método de Hondt e determinar a alocaçã de lugares a cada partido

Limites

• $S \le 250$, P < 20

- Categorias: Simulação, Método de Hondt
- Dificuldade: Muito Fácil
- Autor: José Saias (U. Évora)

C - Election of Representatives

- O algoritmo para resolver o problema era dado no enunciado Basta apenas fazer a simulação pedida!
- ullet Para cada S lugares, descobrir o partido i que maximiza $q_i = rac{v_i}{s_i+1}$
- Como só temos 250 lugares e 20 partidos podemos até fazer um simples ciclo para descobrir o máximo em cada iteração de um lugar
- ullet Ficamos por isso com uma solução $\mathcal{O}(S imes P)$ muito fácil de implementar
- Se o número de partidos fosse maior poderíamos usar uma estruturas de dados especializada para descobrir o máximo mais rapidamente: Exemplo: uma *priority_queue* actualiza e retorna máximo em $\mathcal{O}(n \log n)$

D - The Modern Feud of the Capulets and Montagues

Problema

- Input: N pontos de duas "cores"
- Output: o par de pontos de cores diferentes mais próximo (distância de manhattan)

Limites

- $N \leq 100~000$
- Pontos bem "espalhados"

- Categorias: Geometria, Ordenação
- Dificuldade: Fácil
- Autor: Rui Mendes (U. Minho)

D - The Modern Feud of the Capulets and Montagues

- Com 100 000 pontos, um algoritmo quadrático $(\mathcal{O}(N^2))$ que teste todos os pares de pontos possíveis não passa no tempo.
- Saber que os pontos estavam "spread out evenly over the space" muda completamente o problema
- Só precisamos de ter bom comportamento num caso com distribuição uniforme dos pontos no plano
- Temos de aproveitar de algum modo a organização espacial dos pontos.
- Existiam muitas soluções possíveis:
 - Usar uma estrutura de dados espacial (ex: quadtree, kd-tree)
 - Pesquisar e cortar quando temos certeza que não melhora solução (Branch and Bound)
 - Adaptar algoritmo clássico de par de pontos mais próximo de uma só cor (Divide and Conquer)
 - **.** . . .

D - The Modern Feud of the Capulets and Montagues

Uma solução simples passava por ordenar os pontos por um eixo
 (ex: ordenar pelo x ou pelo y)

- Consideremos que ordenamos pelo eixo dos x
- Comparar cada ponto p_i com os p_j com j > i
- Parar quado $p_j.x p_i.x > menor_distancia$
- Se os pontos estão espalhados esta solução é muito rápida!
- Num caso real ordenar por um eixo de orientação aleatória tornava um worst case muito improvável
- Existe outro tipo de solução (sem D&C) que é sempre $\mathcal{O}(N \log N)$) qualquer que seja a distribuição dos pontos. Fica para pensarem em casa :)

E - Administrative Reform

Problema

- Input: Dado um grafo n\u00e3o dirigido pesado com V n\u00f3s e E arestas e dois n\u00f3s c₁ e c₂
- Output: contar o número de pontos mais próximos de c_1 , mais próximos de c_2 ou à mesma distância de ambos

Limites

- V < 20 000
- E < 150 000

- Categorias: Grafos, Caminhos Mínimos, Algoritmo de Dijkstra
- Dificuldade: Médio-
- Autor: Margarida Mamede (UNL)

E - Administrative Reform

- Para calcular caminhos mínimos em grafos pesados não existe nada mais clássico e ensinado do que o Algoritmo de Dijkstra.
- O Dijkstra descobre um caminho mínimo de um nó para todos os outros
- Basta executar duas vezes o Dijkstra, uma a partir de c_1 e outra de c_2 para obter todas as distância necessárias
- Cuidados:
 - ▶ $20\,000^2$ não cabe em memória pelo que não podiamos usar matriz de adjacências (usar lista ou outra estrutura $\mathcal{O}(E)$ em espaço)
 - ▶ 20 000² sem matriz é demasiado para ter um Dijkstra quadrático no tempo
 - ▶ Uma implementação com $\mathcal{O}(E \log V)$ em termos temporais já passaria. Para isso precisamos de descobrir próximo nó em tempo logarítmico (ex: usar *priority_queue* ou *set*)

F - Rock-Me-Not

Problema

- Input: Uma matrix $L \times C$ com "rochas" nalgumas células
- Output: O maior número de flores que se pode colocar na matriz sabendo que cada flor precisa de dois aspersores em células adjacentes

Limites

- L ≤ 9

- Categorias: Programação Dinâmica, Bitmasks
- Dificuldade: Médio+
- Autor: André Restivo (FEUP)

F - Rock-Me-Not

- Testar todas as configurações possíveis não passa no tempo $(2^{81}>10^{24})$ (e não chegaria evitar ir por configurações "inválidas")
- Suponha que está a preencher de cima para baixo e da esquerda para a direita. Quando estamos a preencher uma posição, que posições importam para o que falta?

- Apenas as células amarelas e laranjas "influenciam" o que falta preencher.
- Vamos codificar as $2 \times C$ células laranjas e amarelas. Precisamos de um bit para cada (flor ou aspersor) e por isso podemos codificar essas células por um número entre 0 e $2^{2C}-1$ (uma bitmask).

F - Rock-Me-Not

- Seja N um número que descreve o estado das células $2 \times C$ células anteriores à posição actual (x, y).
- O estado (x, y, N) descreve completamente a nossa situação no presente
- Existem múltiplas configurações que vão dar a um mesmo estado (x, y, N)
 (qualquer configuração nas células cinzentas anteriores)
- Se guardarmos o melhor possível a partir desse estado (x, y, N), não precisamos de recalcular! (**programação dinâmica com memoization**)
- Resolver o problema passa a ser calcular o melhor do estado (0,0,0) (qual o melhor a partir da posição (0,0) quando nas células anteriores não existe nada)
- No máximo existem então $9\times 9\times 2^{18}$ estados, que é um número inferior a 10^8 e por isso perfeitmente calculável
- A tabela para guardar o melhor a partir de cada estado só precisa de um byte por cada posição e por isso ocupa cerca de 20MB, cabendo perfeitamente em memória.

G - Eccentrics

Problema

- Input: Um tetraedro de N camadas e o peso de cada uma das bolas dentro dele
- **Output:** A ordem em que as bolas caem do tetraedro, supondo que as bolas mais pesadas ocupam as posições deixadas livres nas camadas inferiores.

Limites

N ≤ 16

- Categorias: Simulação, 3D
- Dificuldade: Fácil+
- Autor: Pedro Guerreiro (U. Algarve)

G - Eccentrics

- O algoritmo para resolver o problema era dado no enunciado. Basta apenas fazer a simulação pedida!
- Repetir N vezes o processo de deixar cair uma bola
- De cada vez começar na camada inferior e ir subindo escolhendo sempre a bola "adjacente" mais pesada da camada superior
- A única dificuldade é como organizar e armazenar o tetraedo.
 - Uma possibilidade é um array tridimensional
 - ► A posição inferior fica em (0,0,0)
 - (i,j,k) tem como adjacentes na camada superior:

Problema

- **Input:** Um conjunto de N intervalos $[a_i, b_i]$, cada um com um número de emails k_i associado
- **Output:** O menor número de emails a enviar para que cada intervalo *i* receba pelo menos k_i emails

Limites

- N < 35 000
- $k_i \leq 5$

- Categorias: Greedy, Ordenação Sweep Line, Set
- Dificuldade: Médio+
- Autor: Pedro Ribeiro (FCUP)

Name	Min Emails	Interval
Steve	(2)	[9, 11]
Edna	(2)	[5, 13]
Mary	(3)	[2, 7]
James	(1)	[11,16]
Barbara	(1)	[4, 9]
David	(3)	[1,6]

• Testar todas as hipóteses possíveis não é exequível...

- Será que alguma estratégia greedy funciona? Qual
- Exemplo de greedy errado: escolher dia com mais pessoas:

- Intuição: quanto mais tarde enviar um email, mais intervalos "apanho"
- Então devemos enviar apenas quando for... <u>inevitável</u>! Se faltam x dias para terminar intervalo i e ainda necessita de x emails, é preciso enviar!

Estratégia greedy correcta (adiar ao máximo envio de emails)

Próximo email a enviar é o mais tarde possível que seja "inevitável"

Vamos ver no exemplo anterior e no exemplo do enunciado

- Como implementar com eficiência suficente?
- Ter em conta apenas os dias "interessantes" onde podem existir emails são os últimos k_i de cada intervalo i (no total $N \times max(k_i)$ pontos)
- Ideia: Ordenar e varrer esses pontos relevantes numa direção (esq \rightarrow dir) Sweep Line

- Quando um dia for relevante, actualizar número de emails necessários de cada intervalo "aberto" (iniciado mas não terminado)
- Como saber intervalos que estão "abertos? Podemos acrescentar dois pontos ao nosso sweep: a_i (intervalo i começa) e $b_i + 1$ (intervalo termina)

- Podemos manter intervalos abertos num conjunto e ir adicionando e removendo quando aparecerem os pontos correspondentes
- Quando um ponto relevante estiver a k_i do final intervalo i, enviamos um email e decrementamos o k_i de todos os intervalos abertos
- Ordenação em $\mathcal{O}(NK_i \log NK_i)$; depois fazer sweep a $\mathcal{O}(NK_i)$ pontos.
- Cada intervalo vai ser adicionado uma vez, decrementando k_i , e removido uma vez (podemos usar sets para inserir/remover em $\mathcal{O}(\log N)$.
- No final a complexidade global fica $\mathcal{O}(NK_i \log NK_i)$

Problema

- **Input:** Um polígono simples com *N* vértices
- Output: O vértice com a maior área de visibilidade

Limites

N < 50

- Categorias: Geometria, Visibilidade, Polígonos, Interseções
- Dificuldade: Difícil+
- Autor: Fábio Marques (ESTGA)

- Baseado na ideia do polígono de visibilidade, um problema de geometria computacional, para o qual existem vários papers publicados (alguns até com algoritmos... errados)!
 - Joe, Barry, and Richard B. Simpson. "Corrections to Lee's visibility polygon algorithm." BIT Numerical Mathematics 27.4 (1987): 458-473.
- Vou descrever uma ideia pensada "como num concurso", sem acesso a trabalho já existente.
- Uma visão geral do algoritmo:
 - Percorrer todos os vértices do polígono
 - Para cada vértice:
 - ★ Descobrir que outros vértices do polígono são visíveis
 - ★ Percorrer a borda do polígono (ccw)
 - ★ Ao percorrer adicionar os vértices visíveis ao "polígono de visibilidade"
 - ★ Quando um vértice não é visível atirar um "raio" para descobrir em que pontos as linhas passam a estar visíveis (ray tracing)
 - Calcular área do polígono

- Descobrir que outros vértices do polígono são visíveis
 - Considerar apenas pontos que estão no "ângulo de visibilidade" (dois vértices adjacentes do ponto)
 - ▶ Verificar se nenhuma aresta é "cruzada" ao ir de um vértice ao outro

- Percorrer a borda do polígono e construir polígono de visibilidade
 - ▶ Vértices visíveis percentem ao polígono de visibilidade
 - Nas zonas com vértices não visíveis usar ray tracing para descobrir onde a aresta fica novamente visível
 - Calcular área do polígono ("triangulação" algoritmo clássico)

