CHAPTER TWO

The Solution of Nonlinear Equations f(x) = o

Objectives

- Speed of Convergence
- Accelerated Newton's Iteration for Multiple Roots

Speed of Convergence

- Order of convergence: measure of how rapidly a sequence converges.
- Assume:
 - Sequence $\{p_n\}$, $(where \ n=0,1,\ldots \infty)$ converges to root p
 - Error $e_n = p p_n$ for $n \ge 0$
 - Two positive constants $A \neq 0$, R > 0 exists

Speed of Convergence

• Then,

$$\lim_{n \to \infty} \frac{|p - p_{n+1}|}{|p - p_n|^R} = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^R} = A$$

• The sequence is said to converge to p with order of convergence R

$$|e_{n+1}| \cong \mathbf{A}|e_n|^{\mathbf{R}}$$

Speed of Convergence

- $R = 1 \rightarrow \text{Linear Convergence}$
- $R = 2 \rightarrow$ Quadratic Convergence
- ullet With larger $oldsymbol{R}$, the sequence will converge rapidly to $oldsymbol{p}$

- Example:
 - If R=2, and $|e_n|\approx 10^{-2}$
 - \rightarrow $|e_{n+1}| \approx A \times 10^{-4}$

Convergence Rate for Newton's Iteration

• Suppose that Newton-Raphson iteration produces a sequence $\{p_n\}$, $(n=0,1,\ldots,\infty)$ that converges to root p of f(x)

• If p is a simple root \rightarrow convergence is Quadratic (R=2)

$$|e_{n+1}| \approx \frac{|f''(x)|}{2|f'(x)|}|e_n|^2$$

• If p is a multiple root of order $M \rightarrow \text{convergence}$ is Linear (R = 1)

$$|e_{n+1}| \approx \frac{M-1}{M} |e_n|$$

Convergence Rate for Newton's Iteration

- Example:
 - If M=2. What is the speed of convergence?
 - <u>Answer</u>: Double root, then convergence is linear.

• <u>Note</u>: we say that f(x) = 0 has a root of order M at x = p, if and only if f(p) = 0, f'(p) = 0, f''(p) = 0,, $f^{(M)}(p) \neq 0$

Example – Simple Root

• Let
$$f(x) = x^3 - 3x + 2 = (x+2)(x-1)^2$$
.

• Start with $p_0=-2.4$ to find the root p=-2 (Simple Root)

•
$$p_k = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})} = p_{k-1} - \frac{p_{k-1}^3 - 3p_{k-1} + 2}{3p_{k-1}^2 - 3}$$

$$\bullet p_k = \frac{2p_{k-1}^3 - 2}{3p_{k-1}^2 - 3}$$

Example – Simple Root (cont'd)

Now, check for quadratic convergence.

Table 2.5 Newton's Method Converges Quadratically at a Simple Root

k	p_k	$p_{k+1}-p_k$	$E_k = p - p_k$	$\frac{ E_{k+1} }{ E_k ^2}$
0	-2.400000000	0.323809524	0.400000000	0.476190475
1	-2.076190476	0.072594465	0.076190476	0.619469086
2	~-2.003596011	0.003587422	0.003596011	0.664202613
3	-2.000008589	0.000008589	0.000008589	
4	-2.000000000	0.000000000	0.000000000	

[1]

$$|p - p_3| = 0.000008589$$

•
$$|p - p_2|^2 = 0.003596011^2 = 0.000012931$$

Example – Simple Root (cont'd)

$$|p - p_3| = 0.000008589$$

•
$$|p - p_2|^2 = 0.003596011^2 = 0.000012931$$

•
$$A = \frac{1}{2} \frac{|f''(-2)|}{|f'(-2)|} = \frac{1}{2} \frac{|-12|}{|9|} = \frac{2}{3}$$

•
$$A = \frac{|p-p_3|}{|p-p_2|^2} = 0.664202613 \approx \frac{2}{3}$$

Example – Double Root

• Let
$$f(x) = x^3 - 3x + 2 = (x+2)(x-1)^2$$
.

• Start with $p_0=1.2$ to find the root p=1 (Double Root)

•
$$p_k = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})} = p_{k-1} - \frac{p_{k-1}^3 - 3p_{k-1} + 2}{3p_{k-1}^2 - 3}$$

$$\bullet p_k = \frac{2p_{k-1}^3 - 2}{3p_{k-1}^2 - 3}$$

Example – Double Root (cont'd)

Table 2.6 Newton's Method Converges Linearly at a Double Root

k	Pk	$p_{k+1}-p_k$	$E_k = p - p_k$	$\frac{ E_{k+1} }{ E_k }$
0	1.200000000	-0.096969697	~0.20000000	0.515151515
1	1.103030303	-0.050673883	~0.103030303	0.508165253
2	1.052356420	-0.025955609	~0.052356420	0.496751115
3	1.026400811	-0.013143081	~0.026400811	0.509753688
4	1.013257730	-0.006614311	~0.013257730	0.501097775
5	1.006643419	-0.003318055	~0 .006643419	0.500550093
:_}	;	<u> </u>	:	:

Example – Double Root (cont'd)

$$|p - p_5| = 0.006643419$$

$$|p - p_4| = 0.013257730$$

•
$$A = \frac{|p-p_5|}{|p-p_4|} = 0.501097775 \approx \frac{1}{2}$$

$$\bullet A = \frac{M-1}{M} = \frac{1}{2}$$

Accelerated Newton Iteration for Multiple Roots

- We hope there are a root-finding techniques which converge faster than linearly when p is a root of order M.
- Modify Newton's method to converge faster
 - Become quadratic at multiple root
- For root p of order M > 1, Modified Newton-Raphson formula is:

$$p_n = p_{n-1} - \frac{Mf(p_{n-1})}{f'(p_{n-1})}$$

Now, the sequence will converge quadratically to p

Example – Double Root

- Let $f(x) = x^3 3x + 2 = (x+2)(x-1)^2$.
- Start with $p_0=1.2$ to find the root p=1 (Double Root)
- Here, M = 2

•
$$p_k = p_{k-1} - \frac{2f(p_{k-1})}{f'(p_{k-1})} = \frac{p_{k-1}^3 - 3p_{k-1}^4 - 3}{3p_{k-1}^2 - 3}$$

Table 2.8 Acceleration of Convergence at a Double Root

k	Pk	$p_{k+1}-p_k$	$E_k = p - p_k$	$\frac{ E_{k+1} }{ E_k ^2}$
0	1.200000000	-0.193939394	-0.200000000	0.151515150
1	1.006060606	-0.006054519	-0.006060606	0.165718578
2	1.000006087	-0.000006087	0.000006087	
3	1.000000000	0.000000000	0.000000000	

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

