Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

1.	Find the root of the equation $xe^x = \cos x$ in the interval $(0, 1)$ using Regula-Falsi method correct to four decimal places. Write its computer programme in 'C' language.									
2.	Find real cube	root of 18 by	Regula-Falsi r	nethod.						
3.	Find the real	root of the eq	uation $x^4 - x^3$	$-2x^2-6x-4$	= 0					
4.	Find the real r	oot of the eq	uation $x^2 - \log$	$g_e x - 12 = 0$						
5.	Find the real	root of the eq	uation $3x = co$	sx + 1						
6.	By using Newton-l correct to three de	_	od, find the root of	$x^4 - x - 10 = 0 \text{ wh}$	ich is near to $x = 2$,					
7.	Compute one posi four decimal place		$\log_{10} x = 7 \text{ by the}$	Newton-Raphson	method correct to					
8.	Find the real	root of the eq	uations log x =	= cos x						
9.	Find the real r	oot of the eq	uations $x^2 + 4$	$\sin x = 0$						
10.	Using the Newton-Raphson method, obtain the formula for \sqrt{N} and find $\sqrt{20}$ correct to 2 decimal places.									
11.	Find the value of	f sin 52° from	the given table:							
	θ°	45°	50°	55°	60°					
	sin θ	0.7071	0.7660	0.8192	0.8660					

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

					OF EVERY PRO							
12.	From the following table of half-yearly premiums for policies maturing at different ages, estimate the premium for policies maturing at age of 46.											
	Age	45	50	55	60	65						
	Premium (in dollars)	114.84	96.16	83.32	74.48	68.48						
13.	The followin	ng table gives bject:	the scores see	cured by100 s	tudents in i	the Numerical						
	Range of sco	ores: 30-	-40 40-5	50—60	60—70	70—80						
	Number of s	tudents: 28	5 35	22	11	7						
	Use Newton	's forward diff	erence interpo	lation formule	a to find.							
	(i) the num	ber of students	who got scor	es more than 8	55.							
	(ii) the num	ber of students	who secured	scores in the r	ange betwee	n 36 and 45.						
14.	-	table gives the			f the visible	horizon for the						
	x: 100	150	200	250 300	350	400						
	y: 10.68	3 13.03	15.04	18.45	2 19.9	21.27						
	Use Newton's	forward formu	la to find y whe	en $x = 218$ ft.								
			-									
15.	Given that:											
15.		1 2	3	4	5	6						
15.	x:	1 2 0 1		4 27	5 64							

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

16.		Newt		mula fo	or inter	polation	n, estin	ate the	popul	ation fo	or the y	ear 1905	
	Year							Population					
				18	91				98,75	52			
				19	01				132,28	35			
				19	11				168,07	76			
				19	21				195,69	90			
				19	31				246,05	50			
17.	Find t	the nu	mber of	men ge	tting w	ages be	tween 8	\$ 10 and	d \$ 15 f	from the	e follow	ing table:	
	Wages	s (in \$)	:	0—	-10	10-	-20	20—	-30	30—	-40		
	Frequ	ency:		(9	3	0	38	5	42	2		
18.			giver pecifie					-			durin		
	υ:		43.1		47.7		52.1		56.4		60.8		
19.	Use T	"rapez	zoidal	rule to	o eval	uate ∫	$\int_0^1 x^3 dx$	c cons	iderin	g five	sub-ir	ntervals.	
20.		peed, v	meters able:	s per se	cond, o	f a car,	t secon	ds after	r it star	ts, is si	hown ii	n the	
	t	0	12	24	36	48	60	72	84	96	108	120	
	υ	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00	
		U	sing Si	mpson's	s rule, j	find the	e distar	ice trav	elled b	y the co	ar in 2	minutes.	

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

21.	Find, f	from the fo	llowing	table, th	e area bo	ounded b	y the c	curve and				
	the x-axis from $x = 7.47$ to $x = 7.52$.											
	x:	7.47	7.48	7.49	7.	50	7.51	7.52				
	<i>f</i> (<i>x</i>):	1.93	1.95	1.98	2.0	01	2.03	2.06.				
22.	Find \int_0^{ϵ}	$\frac{e^x}{1+x} dx \ ap$	proxima	tely using	g Simpson	n's $\frac{3}{8}th$ re	ule on	integration.				
23.		of revolution nd a curve t		-	_							
	x:	0	(0.25	0.5	0.75	51					
	<i>y</i> :	1	0.	9896	0.9589	0.908	39	0.8415				
	Estin	nate the volu	ime of the	e solid for	med using	g Simpson	's rule.					
24.	Evaluat	e the integr	$\operatorname{ral} \int_0^{\pi/2} $	$\cos \theta d\theta$	oy dividin	g the inte	rval in	to 6 parts.				
25.	Evaluate	$\int_4^{5.2} \log_e x dx$	by Simpso	on's $\frac{3}{8}$ th ru	le. Also writ	e its progra	mme in '	C' language.				
26.	Evalua	te $\int_4^{5.2} \log_e$	x dx us	ing Trap	ezoidal rı	ıle						
27.	Evaluat	te using Tr	apezoida	l rule \int_{-2}^{2}	$\frac{t dt}{5 + 2t}$							
28.	The velo below:	cities of a car	running (on a straigh	nt road at i	ntervals of	2 minut	es are given				
	$Time\ (in$	minutes):	0	2 4	6	8	10	12				
		$(in \ km/hr)$:		22 30		18	7	0				
	Apply Si	mpson's rule t	to find the	distance co	vered by th	e car.						

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

29.	Evaluate $\int_0^{\pi/2} \sqrt{\sin x} dx$ given that
	x : 0 $\pi/12$ $\pi/6$ $\pi/4$ $\pi/3$ $5\pi/12$ $\pi/2$
	x : 0 $\pi/12$ $\pi/6$ $\pi/4$ $\pi/3$ $5\pi/12$ $\pi/2$ $\sqrt{\sin x}$: 0 0.5087 0.7071 0.8409 0.9306 0.9878 1
20	
30.	A rocket is launched from the ground. Its acceleration is registered during the first 80
	seconds and is given in the following table. Using Simpson's $\frac{1}{3}$ rd rule, find the
	velocity of the rocket at $t = 80$ seconds.
	t(sec): 0 10 20 30 40 50 60 70 80
31.	<i>f</i> (<i>cm</i> / <i>sec</i> ²): 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67. A curve is drawn to pass through the points given by the following table:
31.	x: 1 1.5 2 2.5 3 3.5 4
	y: 2 2.4 2.7 2.8 3 2.6 2.1
	y. 2 2.4 2.7 2.8 3 2.0 2.1 Find
	(i) Center of gravity of the area.
	(ii) Volume of the solid of revolution.
	(iii) The area bounded by the curve, the x-axis and lines $x=1,x=4.$
32.	Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by
	Runge-Kutta rule, from $x=0$ to $x=0.4$ with $h=0.1$.
33.	Given $\frac{dy}{dx} = y - x$, $y(0) = 2$. Find $y(0.1)$ and $y(0.2)$ correct to four decimal places.
34.	Use the Runge-Kutta Method to approximate y when $x = 0.1$ given that $x = 0$ when
	$y = 1$ and $\frac{dy}{dx} = x + y$.
35.	Apply the Bunge Kutte Fourth Order Method to ober 10 dy
	Apply the Runge-Kutta Fourth Order Method to solve $10 \frac{dy}{dx} = x^2 + y^2$; $y(0) = 1$ for
	$0 < x \le 0$. 4 and $h = 0.1$.

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

								de.					
36.	Use Runge-l	Kutta Fourtl	h Order Fo	rmula to	find y	$\gamma(1.4)$ if y	v(1) = 2 and	$\operatorname{nd} \frac{dy}{dx} = xy. \text{ Take}$					
	h = 0.2.												
27	Solve $y' = -xy^2$ and By Runge-Kutta Fourth Order Method, find $y(0.6)$ given that												
37.	Solve $y' = -y = 1.7231$ a				ourth (Order Me	thod, find	y(0.6) given that					
	y = 1.7251 a	.t x = 0.4. 1a	1 Ke n = 0.2.										
38.	Fit a straigh	t line to the	given data	rogardi	ng * 00	the inde	nandant v	ariable:					
30.	rit a straigh	t fine to the	given data	regarui	ng x as	the ma	ependent v	ariable.					
	x	1	2	3		4	6	8					
	y	2.4	3.1	3.	5	4.2	5.0	6.0					
39.	Find the bes	t values of a	and b so the	hat y = a	a + bx f	its the g	iven data:						
	x	0		1	-	2	3	4					
		1.0		2.9	4.8		6.7	8.6					
	У	1.0		2.9	4	.0	0.7	0.0					
40													
40.	Fit a straigh	t line approx	ximate to the	ne data:									
	x		1	2			3	4					
			9		,		10	91					
	У		3	7			13	21					
	y						10	<u> </u>					

41.	A simply supported beam carries a concentrated load $P(lb)$ at its mid-point. Corresponding
	to various values of P, the maximum deflection Y (in) is measured. The data are given
	below. Find a law of the type $Y = a + bP$

P	100	120	140	160	180	200
Y	0.45	0.55	0.60	0.70	0.80	0.85

Lab Submission Problems for NMCP Lab- 4th Sem., 2023

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

	PRINTED	COMPL	JIEK OUI	PUI SI	TOOLD BE	AI IACHI	DAI INI	E END OF	EVERTP	ROGRAIVI											
42.	The weight of a calf taken at weekly intervals is given below. Fit a straight line using the method of least squares and calculate the average rate of growth per week.																				
	Age	1	2	3	4	5	6	7	8	9	10										
	Weight	52.5	58.7	65	70.2	75.4	81.1	87.2	95.5	102.2	108.4										
40	TCD: 41	- 11		. 1.0	1 177			., .	1 1 0		1 0										
43.	If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form $P = mW + c$ connecting P and W, using the data:																				
	P			12		15		2	1	2	25										
	W			50		70		10	00	1	20										
44.	Using the following		od of lea	ast squ	ares, fit	the nor	n-linear	curve o	f the fo	y = a	e ^{bx} to the										
		у			5.012			10		31.	62										
45.	Fit a curv	e of the	e form y	$y = ax^b$	to the d	ata give	en below	7:	<u> </u>												
	x		1		2		3		4		5										
	У		7.1		27.8		62.1		110		161										
46.	Fit an ex	ponenti	al curve	e of th	e form y	$=ab^{x}$ to	the fol	lowing	iata:		Fit an exponential curve of the form $y = ab^x$ to the following data:										
	x 1 2 3 4 5 6 7 8																				
	x	1		x 1 2 3 4 5 6 7 8 y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1																	

Do the following programs using 'C' language, draw the flow chart and also compare the results by Numerically solving each problem. The submission should be hand written only.

47.	Fit a curve $y = ax^b$ to the following data:												
	x 1 2 3 4 5 6												
	У	2.98	4.26	5.21	6.1	6.8	7.5						
48.	A person ru	ns the same	race track fo	r 5 consecut	ive days and	is timed as	follows:						
	Day (x)	1	2		3	4	5						
	Time (y)	15.3	15.	1	15	14.5	14						
		•	•	'	•								
49.	Solve the equations by Regula-Falsi method. $2x - \log_{10} x = 7$ lying b/w 3.5 and 4												
	~				0 - 0								
50.	Solve the eq	uations by F	Regula-Falsi	method x^4	$+x^3-7x^2-x$	z + 5 = 0 lying	g b/w 2 and 3.						