Applied Linear Algebra in Data Analysis: Course Notes

Sivakumar Balasubramanian CMC Vellore

Update on April 26, 2024

				0.2	Related Tools	8
				0.3	0.2.2 lualatex and latexmk Copyright and License	8 9
Cont	tents]	I Lir	near Algebra	11
			-	1 Vec	etors	13
				1.1	n-Vectors	13
				1.2	Visualizing <i>n</i> -vectors	13
Prefac	e		7	1.3	Some Commonly Used n -vectors .	14
0.1	Features of	this template	7	1.4	Operations on n -vectors	14
		ref	7	1.5	Proof	15
		(Table of Content)	7	1.6	Quantifier	17
		er and footer	7	1.7	Graph	18
			8	1.8	Number theory	18
		ce, index, quote (epi-		1.9	Algorithm	19
	grap	h) and appendix bol and glossary (abbre-	8]	Bibliog	graphy	21
	viati	on)	8	Alphal	betical Index	23

CONTENTS

List of Figures

1.1	The real line \mathbb{R} contains the 1-vectors	13
1.2	The \mathbb{R}^2 and \mathbb{R}^3 sets	14
1.3	Scalar multiplication of a vector	15
1.4	Scalar multiplication of a vector	16
1.5	Elliptic curves [Chi09]	19

List of Theorems

1.1	Theorem									10	ĥ
1.1	THEOLEIN				•					т,	u

List of Definitions

Preface

0.1 Features of this template

TeX, stylized within the system as ETEX, is a typesetting system which was designed and written by Donald Knuth and first released in 1978. TeX is a popular means of typesetting complex mathematical formulae; it has been noted as one of the most sophisticated digital typographical systems.

- Wikipedia

0.1.1 crossref

different styles of clickable definitions and theorems

- nameref: ??
- autoref: ??, algorithm 1.9.1
- cref: ??,
- hyperref: Gaussian,

0.1.2 ToC (Table of Content)

- mini toc of sections at the beginning of each chapter
- list of theorems, definitions, figures
- the chapter titles are bi-directional linked

0.1.3 header and footer

fancyhdr

- right header: section name and link to the beginning of the section
- left header: chapter title and link to the beginning of the chapter
- footer: page number linked to ToC of the whole document

0.1.4 bib

- titles of reference is linked to the publisher webpage e.g., [Kit+02]
- backref (go to the page where the reference is cited) e.g., [Chi09]
- customized video entry in reference like in [Bab16]

0.1.5 preface, index, quote (epigraph) and appendix

index page at the end of this document...

0.1.6 symbol and glossary (abbreviation)

```
examples: \mathbb{R}, SVM, \vec{v}
```

usage

glossary package

```
pdflatex notes_template.tex
makeglossaries notes_template
pdflatex notes_template.tex
```

• glossary-extra package and bib2gls

```
pdflatex notes_template.tex
bib2gls notes_template
pdflatex notes_template.tex
```

0.2 Related Tools

0.2.1 VSCode

Extension: Latex Workshop by James Yu

settings

0.2.2 lualatex and latexmk

.latexmkrc configuration file

```
To explain ....
# Also delete the *.glstex files from package glossaries-extra. Problem is,
# that that package generates files of the form "basename-digit.glstex" if
# multiple glossaries are present. Latexmk looks for "basename.glstex" and so
# does not find those. For that purpose, use wildcard.
$clean_ext = "%R-*.glstex";
push @generated_exts, 'glstex', 'glg';
add_cus_dep('aux', 'glstex', 0, 'run_bib2gls');
# PERL subroutine. $_[0] is the argument (filename in this case).
# File from author from here: https://tex.stackexchange.com/a/401979/120853
sub run_bib2gls {
    if ( $silent ) {
         my $ret = system "bib2gls --silent --group '$_[0]'"; # Original version
        my $ret = system "bib2gls --silent --group $_[0]"; # Runs in PowerShell
         my $ret = system "bib2gls --group '$_[0]'"; # Original version
        my $ret = system "bib2gls --group $_[0]"; # Runs in PowerShell
    };
    my ($base, $path) = fileparse( $_[0] );
    if ($path && -e "$base.glstex") {
        rename "$base.glstex", "$path$base.glstex";
    }
    # Analyze log file.
    local *LOG;
    LOG = "_[0].glg";
    if (!$ret && -e $LOG) {
        open LOG, "<$LOG";
    while (<LOG>) {
            if (/^Reading (.*\.bib)\s$/) {
        rdb_ensure_file( $rule, $1 );
    }
    close LOG;
```

0.3 Copyright and License

return \$ret;

}

• GitHub Repo: https://github.com/Jue-Xu/Latex-Template-for-Scientific-Style-Book

• Overleaf template: https://www.overleaf.com/latex/templates/latex-template-for-scientific-stylntprxjksmqxx

Part I Linear Algebra

Chapter 1

Vectors

1.1 *n*-Vectors

A collection of an ordered list of n numbers is called an n-vector. We will use bold lower case alphabets to represent such vectors, and we will represent these as a column of numbers, which is referred to as a column vector. We will look at row vectors at a later stage. Consider the following example:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The elements of the *n*-vector x_1, x_2, \ldots, x_n are called the *components* of the vector \mathbf{x} ; x_i is the i^{th} component of the vector \mathbf{x} . If these components are all real numbers, the set of all such *n*-vectors is the set \mathbb{R}^n .

Where do we come across such *n*-vectors? In many places, such as in physics, engineering, economics, medicine, etc. Any application where we deal with multiple pieces of information that can be represented as a list of numbers can be represented as an *n*-vector. When we deal with systems with multiple inputs, multiple output, or multiple states, we can represent these as *n*-vectors. We talk about the state of a system in a later chapter.

1.2 Visualizing *n*-vectors

The *n*-vectors can be visualized as points in *n*-dimensional space. For example, A 1-vector or just single real number or a *scalar* can be thought of as a point on the real line. The 1-vector x = 2.45 is shown in Figure 1.1 is the red point. But we will find it useful to visualize a 1-vector as an arrow starting at the origin and ending at the point on the real line. The arrow is shown in blue in Figure 1.1.

The elements of \mathbb{R}^2 are points on the plane, and we can visualize them as points in the plane. The 2-vectors $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ are shown in Figure 1.2a. A similar visualization is shown for \mathbb{R}^3

Figure 1.1: The real line \mathbb{R} contains the 1-vectors.

- (a) The \mathbb{R}^2 plane contains the 2-vectors.
- (b) \mathbb{R}^3 contains the 3-vectors.

Figure 1.2: The \mathbb{R}^2 and \mathbb{R}^3 sets.

(Figure 1.2b), and for \mathbb{R}^4 and beyond you simply pretend that you can visualize things in your head like your instructor does.

1.3 Some Commonly Used *n*-vectors

We will now define a some commonly used n-vectors that we will use in the course.

- **Zero vector:** The *n*-vector whose components are all zeros is called the *zero vector*. $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$
- One vector: The *n*-vector whose components are all ones is called the *one vector*. $\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$
- Unit vectors: The *n*-vectors whose components are all zeros except for one component which is 1. These are called the *standard basis vectors* and are denoted by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$. The *n*-vector \mathbf{e}_i has all components as zeros except for the i^{th} component which is 1. For example, the unit vectors in \mathbb{R}^2 are:

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

1.4 Operations on n-vectors

There are many operations we can perform on n-vectors, but we will only focus on two operations for this:

Chapter 1 Vectors 1.5 Proof

• Scalar multiplication: Given a scalar $c \in \mathbb{R}$ and an *n*-vector \mathbf{x} . The scalar multiplication operation produces another *n*-vector $c\mathbf{x}$ whose components are cx_1, cx_2, \ldots, cx_n .

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \longrightarrow 2\mathbf{x} = \begin{bmatrix} 2 \ (1) \\ 2 \ (2) \end{bmatrix} = \begin{bmatrix} 2 \\ 8.2 \end{bmatrix}$$

• Vector Addition: Given two *n*-vectors **x** and **y**, the vector addition operation, represented by $\mathbf{x} + \mathbf{y}$, produce another *n*-vector whose components are $x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$.

$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \longrightarrow \mathbf{x} + \mathbf{y} = \begin{bmatrix} 1+2 \\ 3+1 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Figure 1.3: Scalar multiplication of a vector.

The geometric interpretation of these operations is shown in Figure 1.4 and Figure ??. Scalar multiplication stretches or shrinks the vector without rotating the vector. When the scalar is positive the direction of the scaled vector is the same as the original vector, and when the scalar is negative the direction is opposite. When the scalar is zero, the scaled vector is the zero vector **0**.

Vector addition moves the vector to a new location without changing its direction. The vector $\mathbf{x} + \mathbf{y}$ is the vector that starts at the origin and ends at the point where the vector \mathbf{x} ends and the vector \mathbf{y} ends.

Vector addition moves the vector to a new location without changing its direction. The vector $\mathbf{x} + \mathbf{y}$ is the vector that starts at the origin and ends at the point where the vector \mathbf{x} ends and the vector \mathbf{y} ends.

gls example

• Greatest Common Divisor (GCD); Greatest Common Divisor; GCD; Greatest Common Divisor (GCD)

1.5 Proof

Lemma 1.1.

Claim 1.1.

Chapter 1 Vectors 1.5 Proof

Figure 1.4: Scalar multiplication of a vector.

Theorem 1.1.

Example 1.1.

Fact 1.1.

Remark 1.1.

Exercise 1.1. Prove A iff B

Solution. By induction:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec

Chapter 1 Vectors 1.6 Quantifier

bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosquad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

1.6 Quantifier

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

Chapter 1 Vectors 1.7 Graph

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosque ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

1.7 Graph

"Graph Isomorphism in Quasipolynomial Time" [Bab16]

1.8 Number theory

Figure example

Chapter 1 Vectors 1.9 Algorithm

Figure 1.5: Elliptic curves [Chi09]

1.9 Algorithm

```
Algorithm 1.9.1: Primality testing - first attempt
```

input: Integer N and parameter 1^t

output: A decision as to whether N is prime or composite

```
1 for i=1,2,\ldots,t do

2 a\leftarrow\{1,\ldots,N_1\};

3 if a^{N-1}\neq 1 \mod N then

4 return "composite"

5 return "prime"
```

Chapter 1 Vectors 1.9 Algorithm

Bibliography

- [Bab16] László Babai. "Graph Isomorphism in Quasipolynomial Time". Jan. 19, 2016. arXiv: 1512. 03547 [cs, math] (cit. on pp. 8, 18). ONLINE VIDEO
- [Chi09] Andrew M. Childs. *Universal Computation by Quantum Walk*. Physical Review Letters 102.18 (May 4, 2009), p. 180501. arXiv: 0806.1972 (cit. on pp. 8, 19).
- [Kit+02] Alexei Yu Kitaev et al. *Classical and quantum computation*. 47. American Mathematical Soc., 2002 (cit. on p. 8).

BIBLIOGRAPHY BIBLIOGRAPHY

Alphabetical Index

 $\begin{matrix} I \\ index......8 \end{matrix}$