بسم الله الرحمن الرحيم

درس: مبانی برنامه سازی C

استاد: دکتر نظری

مستند سازی:پروژه اول فاز اول

اعضای گروه :

امیرحسین رستمی(سر گروه)

۱-محمد حسن احمد یارندی

۲–عرفان صادقی

٣-محمد ذوالفقارى

شرح مقدمه و شرح وظایف اعضای گروه:

سرگروه : امیرحسین رستمی

شرح وظیفه : شرح و تحلیل مساله، حل مساله، مقسم و وظیفه دهی اعضای گروه، کار کردن با کتابخانه گرافیکی (بخش گرافیکی)، نوشتن کد اصلی (بهینه سازی کد به کمک استک و لیست پیوندی) و (کار کردن با کتابخانه های تحویلی توسط اقای لشکری و انطباق دهی) (نمایش گرافیکی داده ها و توابع اماری) و طراحی و تکمیل و اماده سازی فایل پی دی اف (مستند سازی برنامه).

اعضای گروه:

*نحوه همكارى اعضا گروه:

هر کدام از اعضا گروه پس از انجام وظیفه داده شده،پاسخ و حل وظیفه را به ایمیل سرگروه(امیرحسین رستمی) ارسال کردند،تکمیل و تجمیع حل وظیفه ها و نوشتن کد نهایی توسط سرگروه انجام شد.

در حل و اکمال فاز اول خوشبختانه همه اعضا نقش خود را به خوبی انجام دادند.و نقش اعضا به شرح زیر است :

۱-محمد حسن احمد یارندی:

شرح وظیفه: طراحی سویدوکد و فلوچارت توابع به کار برده شده در برنامه(توابعی از قبیل تابع هوشمند مکان یابی تابع ماک مین تابع میانگین).

۲-عرفان صادقی:

شرح وظیفه: اماده کردن کد سی اولیه توابع <mark>ریاضی</mark> به کار برده شده در برنامه.

*ارتقا یافتن کد توابع و شفاف تر کردن و همگن سازی کد تابع با کد اصلی پروژه(لحاظ کردن متغیر های با معنی و بالابردن قدرت کاربری توابع(ساده بودن فراخوانی تابع)) بر عهده سر گروه بود.

توابع مطرحي:

(محاسبه ی هوشمند مرکز محاسبه ماک مین محاسبه میانگین)

٣-محمد ذوالفقارى:

شرح وظیفه : تدوین و نوشتن test cases و همچنین بررسی تحریری-منطقی توابع ریاضی

تاریخ و ساعت جلسه گردهمایی اعضا گروه جهت بحث حول پروژه:

تاریخ: ۱۳۹۶/۱۰/۱۸ (دوشنبه)

ساعت: ۲۰*−*۶/۳۰ ساعت:

مكان : ساختمان ابن سينا(زمان جلسه درست پس از كلاس دكتر نظرى بود) (الف ١١)

كد زدن فاز دوم:(حل مساله)

۱- فاز دوم پروژه شامل خواندن و ترسیم مسیر حرکت تجهیز که به تکنولوژی RFID مجهز شده است می باشد. دادههای ورودی از زیرساخت سخت افزاری RFID که مکان تقریبی تجهیز را نمایش می دهد دریافت کرده و مسیر حرکت آن را در پنجره نمایش دهد. برای این منظور بایستی یک نمودار به عنوان مسیر حرکت به کمک تابع هوشمند محاسبه مرکز و یک نمودار هویداگر ترسیم به کمک تابع ماکس مین و یک نمودار هویداگر محاسبه مرکز به کمک تابع میانگین. در نهایت نیز اطالعات آماری واریانس مرکزها را نمایش می دهد .

قسمت اول:نمایش گرافیکی داده های مکان (RFID READER)

برای نمایش داده ها و ترسیم نقاط بین ان ها فایل سرایند را به طریق:

#include<ghrapics.h>

در اختيار برنامه قرار داديم.

برای نمایش داده های تابع هوشمند از رنگ آبی و برای نمایش داده های تابع ماکس مین از رنگ سبز و برای نمایش داده های تابع میانگین از رنگ قرمز استفاده شده است. (به کمک توابع موجود در کتابخانه(ghrapics.h)

قسمت دوم:(توابع)

حل مساله:

۱. تابع محاسبه گر وسط شی مورد آزمایش به روش middle_conventer_minmax) max-min):

سویدوکد تابع ریاضی محاسبه گر وسط شی مورد ازمایش به روش max-min:

۱- دریافت مختصات تگ ها درصورت خوانده نشدن تگ عدد منفی ۱ به تابع داده میشود

۲- بدست اوردن تعداد تگ های خوانده شده

۳- اگر هیچ تگی خوانده نشد مختصاتی برای مرکز درج نگردد در واقع همان مختصات قبلی بماند

۴- اگر یک تگ خوانده شد مختصات همان تگ به عنوان مختصات تگ بازگردانده شود

 Δ مرتب سازی تگ های خوانده شده به روش مرتب سازی حبابی

۶- یافتن x max &min تگ های خوانده شده

۷- یافتن y max &min تگ های خوانده شده

(xmiddle=(min+max)/2)میانگین گیری $\min_{\theta} \max_{\theta} \max_{\theta} -\lambda$

۹- میانگین گیری max و min ایگرگ ها به عنوان ایگرگ مرکز(ymiddle=(min+max)/2)

۲.تابع محاسبه گر وسط شی به روش میانگین ریاضی(middle_conventer_avg):

سویدوکد تابع ریاضی محاسبه گر وسط شی مورد ازمایش به روش میانگین ریاضی:

۱- دریافت مختصات تگ ها درصورت خوانده نشدن تگ عدد منفی ۱ به تابع داده میشود

۲- بدست اوردن تعداد تگ های خوانده شده

۳- اگر هیچ تگی خوانده نشد مختصاتی برای مرکز درج نگردد در واقع همان مختصات قبلی است

۴- اگر یک تگ خوانده شد مختصات همان تگ به عنوان مختصات مرکز باز گردانده شود

۵- میانگین ایکس های تگ های خوانده شده به عنوان ایکس مرکز

تعداد تگ های خوانده شده/(جمع ایکس های تگ های خوانده شده)⊨یکس مرکز

میانگین ایگرگ های تگ های خوانده شده به عنوان ایگرگ مرکز

تعداد تگ های خوانده شده/(جمع ایگرگ های تگ های خوانده شده)=ایگرگ مرکز

۳. تابع محاسبه گر وسط شی به روش هوشمند(middle_conventer):

سویدوکد تابع ریاضی محاسبه گر وسط شی مورد ازمایش به روش هوشمند:

- ۱- دریافت مختصات تگ ها درصورت خوانده نشدن تگ عدد منفی ۱ به تابع داده میشود.
 - ۲- بدست اوردن تعداد تگ های خوانده شده.
- ۳- اگر هر ۴ تگ خوانده شده بود ایکس مرکز میانگین ایکس های ۴ تگ و ایگرگ مرکز میانگین ایگرگ های
 ۴ تگ است.
- ۴- اگر فقط تگ ۴ خوانده نشده بود ایکس مرکز میانگین ایکس های تگ ۱ و ۳ و ایگرگ مرکز میانگین ایگرگ
 تگ های ۱ و ۳ است.
- ۵- اگر فقط تگ ۳خوانده نشده بود ایکس مرکز میانگین ایکس های تگ ۲ و۴ ایگرگ مرکز میانگین ایگرگ تگ های ۲ و۴ ایگرگ مرکز میانگین ایگرگ تگ های ۲ و۴ است.
- ۶- اگر فقط تگ ۲ خوانده نشده بود ایکس مرکز میانگین ایکس های تگ ۱ و ۳ و ایگرگ مرکز میانگین ایگرگ
 تگ های ۱ و ۳ است.
- ۷- اگر فقط تگ ۱ خوانده نشده بود ایکس مرکز میانگین ایکس های تگ ۲و۴ ایگرگ مرکز میانگین ایگرگ تگ
 های ۲و۴ است.
 - ۸- اگرفقط تگ های ۱و۳ خوانده شده بود ایکس مرکز میانگین ایکس تگ های ۱ و ۳ است.
 - ۹- اگرفقط تگ های ۲و۴ خوانده شده بود ایکس مرکز میانگین ایکس تگ های ۲و۴ است .
 - ۱۰- اگر تگ ۱و۲ را خواند.

۱-اگر ایکس های دو تگ برابر بود و ایگرگ تگ ۲ بیشتر از ایگرگ تگ ۱ بود ایکس مرکز ایکس تگ ۱ به علاوه نصف طول شی است و ایگرگ ان میانگین ایگرگ تگ های ۱ و ۲ است.

۲-اگر ایکس دو تگ برابر بود و ایگرگ تگ ۱ بیشتر از ایگرگ تگ دو بود ایکس مرکز ایکس تگ ۱ منهای نصف طول شی است و ایگرگ ان میانگین ایگرگ های تگ های ۱ و ۲ است.

۳-اگر ایگرگ دو تگ برابر بود و ایکس تگ ۱ بیشتر از ایکس تگ ۲ بود ایکس مرکز میانگین ایکس های تگ های ۱ و ۲ است و ایگرگ ان برابر ایگرگ تگ ۱ علاوه نصف طول شی است.

۴ اگر ایگرگ دو تگ برابر بود و ایکس تگ۲ بیشتر از ایکس تگ ۱ بود ایکس مرکز میانگین ایکس های تگ های ۱ و ۲ است و ایگرگ ان برابر ایگرگ تگ۱ به منهای نصف طول شی است.

۵- در بقیه حالات مبدا مختصات را تگ ۱در نظر میگیریم و زاویه دوران خط واصل تگ ۱ و۲ نسبت به افق را میابیم و با ضرب ماتریس دوران در مختصات مرکز در حالت بدون دوران مختصات نسبی مرکز نسبت به تگ ۱ را یافته سپس برای تبدیل به مختصات واقعی ایکس نسبی مرکز را به علاوه ایکس تگ ۱ و ایگرگ نسبی ان را به علاوه ایگرگ تگ ۱ کرده تا ایکس و ایگرگ واقعی مرکز بدست اید.}

۱۱- اگر تگ ۲و۳ را خواند.

۱-اگر ایکس های دو تگ برابر بود و ایگرگ تگ ۲ بیشتر از ایگرگ تگ ۳ بود ایکس مرکز ایکس تگ ۲ منهای نصف عرض شی است و ایگرگ ان میانگین ایگرگ تگ های ۱ و ۲ است.

۲ اگر ایکس دو تگ برابر بود و ایگرگ تگ ۳ بیشتر از ایگرگ تگ دو بود ایکس مرکز ایکس تگ ۳به علاوه نصف عرض شی است و ایگرگ ان میانگین ایگرگ های تگ های ۲ و ۳ است.

۳-اگر ایگرگ دو تگ برابر بود و ایکس تگ۳ بیشتر از ایکس تگ ۲ بود ایکس مرکز میانگین ایکس های تگ های ۳ و ۲ است و ایگرگ ان برابر ایگرگ تگ ۳ منهای نصف عرض شی است.

۴-اگر ایگرگ دو تگ برابر بود و ایکس تگ۲ بیشتر از ایکس تگ ۳ بود ایکس مرکز میانگین ایکس های تگ های ۳ و ۲ است و ایگرگ ان برابر ایگرگ تگ ۳ به علاوه نصف عرض شی است.

۵- در بقیه حالات مبدا مختصات را تگ ۲در نظر میگیریم و زاویه دوران خط واصل تگ ۳ و۲ نسبت به افق را میابیم و با ضرب ماتریس دوران در مختصات مرکز در حالت بدون دوران مختصات نسبی مرکز نسبت به

تگ ۲ را یافته سپس برای تبدیل به مختصات واقعی ایکس نسبی مرکز را به علاوه ایکس تگ۲ و ایگرگ نسبی ان را به علاوه ایگرگ تگ ۲ کرده تا ایکس و ایگرگ واقعی مرکز بدست اید.}

۱۲- اگر تگ۴و۳ را خواند.

1- اگر ایکس های دو تگ برابر بود و ایگرگ تگ ۴ بیشتر از ایگرگ تگ ۳ بود ایکس مرکز ایکس تگ ۴ به علاوه نصف طول شی است و ایگرگ ان میانگین ایگرگ تگ های 4 و 3 است.

۲-اگر ایکس دو تگ برابر بود و ایگرگ تگ ۳ بیشتر از ایگرگ تگ ۴ بود ایکس مرکز ایکس تگ ۳منهای نصف طول شی است و ایگرگ ان میانگین ایگرگ های تگ های ۱ و ۲ است.

۳-اگر ایگرگ دو تگ برابر بود و ایکس تگ۳ بیشتر از ایکس تگ۴بود ایکس مرکز میانگین ایکس های تگ های ۳ و ۴ است و ایگرگ ان برابر ایگرگ تگ ۳ علاوه نصف طول شی است.

۴-اگر ایگرگ دو تگ برابر بود و ایکس تگ۴ بیشتر از ایکس تگ ۳ بود ایکس مرکز میانگین ایکس های تگ های ۳ و ۴ است و ایگرگ ان برابر ایگرگ تگ ۳ منهای نصف طول شی است.

۵- در بقیه حالات مبدا مختصات را تگ ۳در نظر میگیریم و زاویه دوران خط واصل تگ ۳و۴ نسبت به افق را میابیم و با ضرب ماتریس دوران در مختصات مرکز در حالت بدون دوران مختصات نسبی مرکز نسبت به تگ ۳ را یافته سپس برای تبدیل به مختصات واقعی ایکس نسبی مرکز را به علاوه ایکس تگ ۳ و ایگرگ نسبی ان را به علاوه ایگرگ تگ ۳ کرده تا ایکس و ایگرگ واقعی مرکز بدست اید.

۱۳- اگر تگ ۱و۴ را خواند.

۱-اگر ایکس های دو تگ برابر بود و ایگرگ تگ ۴ بیشتر از ایگرگ تگ ۱ بود ایکس مرکز ایکس تگ ۱ منهای نصف عرض شی است و ایگرگ ان میانگین ایگرگ تگ های ۱و۴ است.

۲-اگر ایکس دو تگ برابر بود و ایگرگ تگ ۱ بیشتر از ایگرگ تگ چهار بود ایکس مرکز ایکس تگ ۱به علاوه نصف عرض شی است و ایگرگ ان میانگین ایگرگ های تگ های ۱ و ۴ است.

۳-اگر ایگرگ دو تک برابر بود و ایکس تگ۱ بیشتر از ایکس تگ ۴ بود ایکس مرکز میانگین ایکس های تگ های ۱و ایگرگ دو تگ برابر ایگرگ تگ ۱ منهای نصف عرض شی است.

۴ اگر ایگرگ دو تگ برابر بود و ایکس تگ۴ بیشتر از ایکس تگ ۱ بود ایکس مرکز میانگین ایکس های تگ اگر ایگرگ ان برابر ایگرگ تگ ۱ علاوه نصف عرض شی است.

۵- در بقیه حالات مبدا مختصات را تگ ۴در نظر میگیریم و زاویه دوران خط واصل تگ ۱و۴ نسبت به افق را میابیم و با ضرب ماتریس دوران در مختصات مرکز در حالت بدون دوران مختصات نسبی مرکز نسبت به تگ ۴ را یافته سپس برای تبدیل به مختصات واقعی ایکس نسبی مرکز را به علاوه ایکس تگ ۴ و ایگرگ نسبی ان را به علاوه ایگرگ تگ ۶ کرده تا ایکس و ایگرگ واقعی مرکز بدست اید.

۱۴ - اگر فقط یک تگ خوانده بود اگر قبل از ان هیچ بار دیگر ان تگ خوانده نشده بود جسم را کاملا افقی فرض کرده و مختصات مرکز را میابیم.

10- اگر فقط یک تگ خوانده شده بود اخرین باری که ان تگ خوانده شده بود را میابیم سپس اختلاف ایکس این دو مرحله را تقسیم بر تعداد مراحل بین میکنیم و اختلاف ایگرگ این دو مرحله را تقسیم بر تعداد مراحل بین میکنیم حال ایکس و ایگرگ مرکز مرحله قبل را به همین اندازه جا به جا میکنیم در واقع فرض کرده جسم دورانی انجام نداده و بر این اساس مختصات مرکز را میابیم.

اگر هیچ تگی خوانده نشده بود مختصات جدیدی را اضافه نمیکنیم در واقع مختصات همان مختصات قبلیست.

۴.تابع (isempty):

سويدوكد تابع:

۱.دریافت اشاره گر به ساختار listnode(شامل داده های m,n,x,y,px,pyو یک اشاره گر به خود ساختار)

۲.برگشت دادن مقدار ۱ اگر اشاره گر به ساختاری اشاره نکند.

برگشت دادن مقدار ۰ اگر اشاره گر به ساختاری اشاره کند.

(isempty2): (

سويدوكد تابع:

۱.دریافت اشاره گر به ساختار listnodecenter (مرکز ها به روش هوشمند)

۲.برگشت دادن مقدار ۱ اگر اشاره گر به ساختاری اشاره نکند.

برگشت دادن مقدار ۱۰ اگر اشاره گر به ساختاری اشاره کند.

۶.تابع (isempty3):

سويدوكد تابع:

۱.دریافت اشاره گر به ساختار listnode centerminmax (مرکز ها به روش Minmax)

۲.برگشت دادن مقدار ۱ اگر اشاره گر به ساختاری اشاره نکند.

برگشت دادن مقدار ۱۰گر اشاره گر به ساختاری اشاره کند.

۷.تابع (isempty4):

سويدوكد تابع:

۱.دریافت اشاره گر به ساختار listnodecenteravg (مرکز ها به روش میانگین)

۲.برگشت دادن مقدار ۱ اگر اشاره گر به ساختاری اشاره نکند.

برگشت دادن مقدار ۱۰گر اشاره گر به ساختاری اشاره کند.

۸.تابع (printlist):

سويدوكد تابع:

۱.دریافت اشاره گر به node کنونی درساختار listnode(شامل داده های nn,x,y,px,pyو یک اشاره گر به خود ساختار)

۲.بررسی خالی بودن node :

۳.اگر node خالی باشد تابع تمام می شود.

۴.اگر node خالی نباشد:

۵.تا زمانی که node کنونی خالی نیست:

X و X و X و X و X عنونى. X عنونى.

۷.قرار دادن node بعدی در node کنونی و انجام مراحل ۵ و ۶.

۸.زمانی که node کنونی خالی بود فراخوانی تابع ("")puts(برای چاپ "")

۹.تابع (printlist2):

سويدوكد تابع:

۱.دریافت اشاره گر به node کنونی درساختار listnodecenter (مرکز ها به روش هوشمند)

2.تا زمانی که node کنونی خالی نیست:

3.چاپ x مرکز و y مرکز node کنونی.

4.قرار دادن node بعدی در node کنونی و انجام مراحل ۲ و ۳.

5.زمانی که node کنونی خالی بود فراخوانی تابع ;("")puts(""")

۱۰.تابع (printlist3):

سويدوكد تابع:

۱.دریافت اشاره گر به node کنونی درساختار Iistnode centerminmax (مرکز ها به روش minmax)

2.تا زمانی که node کنونی خالی نیست:

3.چاپ x مرکز و y مرکز node کنونی.

4.قرار دادن node بعدی در node کنونی و انجام مراحل 2 و ۳.

5.زمانی که node کنونی خالی بود فراخوانی تابع ;("")puts(""")

۱۱.تابع (printlist4):

سويدوكد تابع:

۱.دریافت اشاره گر به node کنونی درساختار listnodecenteravg(مرکز ها به روش میانگین)

2.تا زمانی که node کنونی خالی نیست:

3.چاپ x مرکز و y مرکز node کنونی.

4.قرار دادن node بعدی در node کنونی و انجام مراحل 2 و ۳.

5.زمانی که node کنونی خالی بود فراخوانی تابع ;("") puts (برای چاپ "")

۱۲.تابع (delay):

۱۳.تابع (calculatepx):

سويدوكد تابع:

۱-دریافت ۴ عدد m,n,x,y جهت محاسبه ی Px

۳.محاسبه مختصات x مرکز reader با استفاده از رابطه زیر :

px=(m-1)*secw + (x-1)*traw + traw/2;

(طول فرش)secw= 60cm

traw= 8.5cm(طول تگ)

۴.برگشت دادن مختصات x مرکز.

۱۴.تابع (calculatepy):

سويدوكد تابع:

۱-دریافت چهار عدد m,n,x,y جهت محاسبه py

۳.محاسبه مختصات y مرکز reader با استفاده از رابطه زیر : py=(n-1)*sech + (y-1)*trah + trah/2; sech= 60cm(عرض فرش) trah= 5.5cm(عرض تگ) ۴.برگشت دادن مختصات y مركز. فلوچارت تابع:

۱۵.تابع (get): سویدوکد تابع:

۱.دریافت یک **node به نام sptr از ساختار listnode و عدد n (شماره node)

و کاراکتر X (متغیری که باید گرفته شود(1,m,n,x,y(مختصات X مرکز)و۲(مختصات y مرکز)))

۲.ایجاد node کنونی و قرار دادن sptr در آن.

۳.اگر node کنونی خالی بود یعنی list خالی است.

۴.اگر node کنونی خالی نبود :

۵.اگر n بزرگتر از ۱ بود:

۶.با استفاده از n node for ام را در node کنونی قرار می دهیم.

۷.با توجه به اینکه کاراکتر x به چه متغیری اشاره می کند آن متغیر بر گشت داده می شود.

۱۶.تابع (get2):

سويدوكد تابع:

۱.دریافت یک **node به نام sptr از ساختار sptr از ساختار node (مراکز به روش هوشمند) و x بود مختصات x (شماره x بود مختصات x (شماره و کاراکتر x بود مختصات x

مرکز و اگر ۲ بود مختصات ۷ مرکز)

۲.ایجاد node کنونی و قرار دادن sptr در آن.

۳.اگر node کنونی خالی بود یعنی list خالی است.

۴.اگر node کنونی خالی نبود :

۵.اگر n بزرگتر از ۱ بود:

۶.با استفاده از node for ام را در node کنونی قرار می دهیم.

۷.با توجه به اینکه کاراکتر X به چه متغیری اشاره می کند آن متغیر بر گشت داده می شود.

۱۷. تابع (get3):

سويدوكد تابع:

۱.دریافت یک **node به نام sptr از ساختار sptr از ساختار listnodecenterminmax (مراکز به روش X (اگر x x ااگر ch2) و کاراکتر ch2 (اگر x به مرکز) و کاراکتر ch2 (اگر x بود مختصات x

مرکز و اگر Y بود مختصات y مرکز)

۲.ایجاد node کنونی و قرار دادن sptr در آن.

۳.اگر node کنونی خالی بود یعنی list خالی است.

۴.اگر node کنونی خالی نبود :

۵.اگر n بزرگتر از ۱ بود:

۶.با استفاده از node for ام را در node کنونی قرار می دهیم.

۷.با توجه به اینکه کاراکتر x به چه متغیری اشاره می کند آن متغیر بر گشت داده می شود.

۱۸.تابع (get4):

سويدوكد تابع:

۱.دریافت یک **node به نام sptr از ساختار sptr از ساختار listnodecenteravg (مراکز به روش میانگین)و عدد n (شماره node) و کاراکتر ch (برای اشاره به مرکز) و کاراکتر ch (اگر x بود مختصات x

مرکز و اگر ۲ بود مختصات ۷ مرکز)

۲.ایجاد node کنونی و قرار دادن sptr در آن.

۳.اگر node کنونی خالی بود یعنی list خالی است.

۴.اگر node کنونی خالی نبود :

۵.اگر n بزرگتر از ۱ بود:

۶.با استفاده از node for ام را در node کنونی قرار می دهیم.

۷.با توجه به اینکه کاراکتر x به چه متغیری اشاره می کند آن متغیر بر گشت داده می شود.

۱۹.تابع (put):

سويدوكد تابع:

۱. دریافت یک **node به نام sptr از ساختار listnode وx,y,m,n,px,py

۲.ایجاد اشاره گر ها به node از ساختار listnode برای اشاره به node کنونی و node قبلی و node و node و node

۳.اختصاص دادن حافظه به node جدید.

۱.۴ر node جدید null نبود :

m,n,x,y,px,py.۵ ورودی در mode m,n,x,y,px,py ورودی در

۶. node جدید به listnode اضافه می شود.(با استفاده از node های قبلی و کنونی)

۲۰. تابع (put2):

سويدوكد تابع:

۱. دریافت یک **node به نام sptr از ساختار listnodecenter (مراکز به روش هوشمند)

و مختصات X مرکز و y مرکز.

۲.ایجاد اشاره گر ها به node از ساختار listnodecenter برای اشاره به node کنونی و node قبلی و node جدید.

۳.اختصاص دادن حافظه به node جدید.

۱.۴ر node جدید null نبود :

۵. مختصات x مرکز و y مرکز ورودی در مختصات x مرکز و y مرکز و node جدید قرار داده می شود.

8. node جدید به listnodecenter اضافه می شود.(با استفاده از node های قبلی و کنونی)

۲۱. تابع (put3):

سويدوكد تابع:

۱. دریافت یک **node به نام sptr از ساختار sptr از ساختار listnodecenterminmax (مراکز به روش minmax)

و مختصات X مرکز و y مرکز.

۱.ایجاد اشاره گر ها به node از ساختار Iistnodecenterminmax برای اشاره به node کنونی و node قبلی و node جدید.

۳.اختصاص دادن حافظه به node جدید.

۴.اگر node جدید null نبود :

۵. مختصات X مرکز و ۷ مرکز ورودی در مختصات X مرکز و ۷ مرکز و node جدید قرار داده می شود.

۶. node جدید به listnodecenterminmax اضافه می شود.(با استفاده از node های قبلی و کنونی)

۲۲. تابع (put4):

سويدوكد تابع:

۱. دریافت یک **node به نام sptr از ساختار listnodecenteravg (مراکز به روش میانگین)

و مختصات X مرکز و y مرکز.

۲.ایجاد اشاره گر ها به node از ساختار listnodecenteravg برای اشاره به node کنونی و node قبلی و node عدید.

۳.اختصاص دادن حافظه به node جدید.

۱.۴ node جدید null نبود :

۵. مختصات X مرکز و ۷ مرکز ورودی در مختصات X مرکز و ۷ مرکز node جدید قرار داده می شود.

۶. node جدید به listnodecenteravg اضافه می شود.(با استفاده از node های قبلی و کنونی)

۲۳. تابع (remov):

سويدوكد تابع:

۱. دریافت یک **node به نام sptr از ساختار listnode وx,y,m,n,px,py

۲.ایجاد اشاره گر ها به node از ساختار listnode برای اشاره به node کنونی و node قبلی و node قبلی و node

۳.بررسی اینکه آیا m,n,y,x,px,py ورودی با sptr m,n,y,x,px,py برابر است یا نه.

۴.اگر برابر بود:

قرار دادن sptr node در node نگه دارنده و قراردادن node بعدی sptr در sptr node در sptr node و آزاد کردن حافظه node نگه دارنده.

5.اگر برابر نبود:

۶.اشاره کردن node قبلی به sptr واشاره کردن node کنونی به node بعدی sptr.

۷.تا زمانی که node کنونی null نیست و m,n,x,y,px,py آن با m,n,x,y,py,px ورودی

متفاوت است:

Node کنونی در node قبلی قرار داده می شود.

Node بعدی کنونی در node کنونی قرار داده می شود.

وتا برقراری شرط ۷ مراحل بالا انجام می شود.

۱.۸گر node کنونی null نبود:

۹.قرار دادن node کنونی در node نگه دارنده.

۱۰. قرار دادن node بعدی کنونی در node بعدی قبلی.

۱۱.آزاد کردن node نگه دارنده.

۲۴.ساختار (listnode): struct listnode struct listnode *nextptr int M int N int X int Y float PX float PY

۲۶. ساختار (listnodecenterminmax): struct listnodecenterminmax float minmaxcenterx float minmaxcentery struct listnodecenterminmax *nextptr

۲۷. ساختار (listnodecenteravg):

پایان بخش فلوچارت و توابع(حل مساله).

بخش اخر: تست كيس ها:

تست کیس های تابع هوشمند:

Test case	Xport1	Yport1	Xport2	Yport2	Xport3	Yport3	Xport4	Yport4	X_middle	Y_middle
1.	30	20	30	75	79	75	79	20	54.5	47.5
2.	35	10	2.41	46.58	43.47	83.17	76.06	46.58	39.23	46.58
3.	-1	-1	2.41	46.58	43.47	83.17	76.06	46.58	39.23	46.58
4.	35	10	-1	-1	43.47	83.17	76.06	46.58	39.23	46.58
5.	35	10	2.41	46.58	-1	-1	76.06	46.58	39.23	46.58
6.	35	10	2.41	46.58	43.47	83.17	-1	-1	39.23	46.58
7.	-1	-1	-1	-1	43.47	83.17	76.06	46.58	39.23	46.58
8.	-1	-1	2.41	46.58	-1	-1	76.06	46.58	39.23	46.58
9.	-1	-1	2.41	46.58	43.47	83.17	-1	-1	39.23	46.58
10.	35	10	-1	-1	43.47	83.17	-1	-1	39.23	46.58
11.	35	10	-1	-1	-1	-1	76.06	46.58	39.23	46.58
12.	35	10	2.41	46.58	-1	-1	-1	-1	39.23	46.58

	1	1		1	1		1		1	1
Test case	Xport1	Yport1	Xport2	Yport2	Xport3	Yport3	Xport4	Yport4	X_middle	Y_middle
1.	85.89	27.7	44.56	1.38	15.02	47.78	56.36	74.09	50.46	37.74
2.	-1	-1	44.56	1.38	15.02	47.78	56.36	74.09	50.46	37.74
3.	85.89	27.7	-1	-1	15.02	47.78	56.36	74.09	50.46	37.74
4.	85.89	27.7	44.56	1.38	-1	-1	56.36	74.09	50.46	37.74
5.	85.89	27.7	44.56	1.38	15.02	47.78	-1	-1	50.46	37.74
6.	-1	-1	-1	-1	15.02	47.78	56.36	74.09	50.46	37.74
7.	-1	-1	44.56	1.38	-1	-1	56.36	74.09	50.46	37.74
8.	-1	-1	44.56	1.38	15.02	47.78	-1	-1	50.46	37.74
9.	85.89	27.7	-1	-1	-1	-1	56.36	74.09	50.46	37.74
10.	85.89	27.7	-1	-1	15.02	47.78	-1	-1	50.46	37.74
11.	85.89	27.7	44.56	1.38	-1	-1	-1	-1	50.46	37.74

تست کیس های تابع میانگین:

Test case	Xport1	Yport1	Xport2	Yport2	Xport3	Yport3	Xport4	Yport4	X_middle	Y_middle
1.	85.89	27.7	44.56	1.38	15.02	47.78	56.36	74.09	50.46	37.74
2.	-1	-1	44.56	1.38	15.02	47.78	56.36	74.09	38.64	41.08
3.	85.89	27.7	-1	-1	15.02	47.78	56.36	74.09	52.42	49.85
4.	85.89	27.7	44.56	1.38	-1	-1	56.36	74.09	62.27	34.39
5.	85.89	27.7	44.56	1.38	15.02	47.78	-1	-1	48.49	25.62
6.	-1	-1	-1	-1	15.02	47.78	56.36	74.09	35.69	60.93
7.	-1	-1	44.56	1.38	-1	-1	56.36	74.09	50.46	37.735
8.	-1	-1	44.56	1.38	15.02	47.78	-1	-1	29.79	24.58
9.	85.89	27.7	-1	-1	15.02	47.78	-1	-1	50.45	37.74
10.	85.89	27.7	-1	-1	-1	-1	56.36	74.09	71.12	50.89
11.	85.89	27.7	44.56	1.38	-1	-1	-1	-1	65.22	14.54
12.	85.89	27.7	-1	-1	-1	-1	-1	-1	85.89	27.7
13.	-1	-1	-1	-1	-1	-1	56.36	74.09	53.06	74.09
14.	-1	-1	44.56	1.38	-1	-1	-1	-1	44.56	1.38
15.	-1	-1	-1	-1	15.02	47.78	-1	-1	15.02	47.78

تست کیس های مین ماکس.

Test case	Xport1	Yport1	Xport2	Yport2	Xport3	Yport3	Xport4	Yport4	X_middle	Y_middle
1.	85.89	27.7	44.56	1.38	15.02	47.78	56.36	74.09	50.45	37.73
2.	-1	-1	44.56	1.38	15.02	47.78	56.36	74.09	35.69	37.73
3.	85.89	27.7	-1	-1	15.02	47.78	56.36	74.09	50.45	50.89
4.	85.89	27.7	44.56	1.38	-1	-1	56.36	74.09	65.22	37.73
5.	85.89	27.7	44.56	1.38	15.02	47.78	-1	-1	50.45	24.58
6.	-1	-1	-1	-1	15.02	47.78	56.36	74.09	25.69	60.93
7.	-1	-1	44.56	1.38	-1	-1	56.36	74.09	50.46	37.73
8.	-1	-1	44.56	1.38	15.02	47.78	-1	-1	29.79	24.58
9.	85.89	27.7	-1	-1	15.02	47.78	-1	-1	50.45	37.74
10.	85.89	27.7	-1	-1	-1	-1	56.36	74.09	71.12	50.89
11.	85.89	27.7	44.56	1.38	-1	-1	-1	-1	65.22	14.54
12.	85.89	27.7	-1	-1	-1	-1	-1	-1	85.89	27.7
13.	-1	-1	-1	-1	-1	-1	56.36	74.09	56.36	74.09
14.	-1	-1	44.56	1.38	-1	-1	-1	-1	44.56	1.38
15.	-1	-1	-1	-1	15.02	47.78	-1	-1	15.02	47.78

چند نکته:

۱-برای کاربری بهتر تغییراتی در tagreader.h ایجاد شد تا انواع خطا های ممکنه و بررسی(حالت های ناقص خوانده شده) شناسایی شود.این header در فایل ضمیمه شده است.

۲-کد نهایی در فایل زیپ آپلود شده قرار دارد.

با تشکر فراوان از استاد نظری ، دکتر حلواچی و دکتر لشکری.