Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Título do trabalho um subtítulo

Nome Completo

Monografia Final

MAC 499 — TRABALHO DE FORMATURA SUPERVISIONADO

Supervisora: Prof.ª Dr.ª Fulana de Tal

Cossupervisor: Prof. Dr. Ciclano de Tal

Cossupervisora: Prof.ª Dr.ª Beltrana de Tal

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da XXXX

São Paulo

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License) Texto texto. Texto opcional.

Resumo

Nome Completo. **Título do trabalho:** *um subtítulo.* Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Nome Completo. **Title of the document**: *a subtitle*. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2017.

Keywords: Keyword1. Keyword2. Keyword3.

Sumário

1	Resultados clássicos	1
Ín	ndice remissivo	3

Capítulo 1

Resultados clássicos

Seja G um grafo. Defininimos D(G) como o menor tamanho de um $F \subseteq E(G)$ tal que G - F é bipartido.

Teorema 1 (Mantel). Seja G um grafo livre de triângulos com n vértices. Então $e(G) \leq \left\lceil \frac{n^2}{4} \right\rceil$. Além disso, se vale a igualdade então G é bipartido completo.

Teorema 2 (Estabilidade). Seja m um inteiro positivo e seja G um grafo livre de triângulos com n vértices e $\frac{n^2}{4}$ – m arestas. Então $D(G) \le m$.

Conjectura 1 (Erdős). Seja G um grafo livre de triângulos com n vértices. Então G pode ser tornado bipartido pela remoção de no máximo $\frac{n^2}{25}$ arestas.

Observe que o Teorema 2 prova a Conjetura para grafos suficientemente densos (com pelo menos $\frac{n^2}{4} - \frac{n^2}{25}$ arestas).

Definição 1. Sejam G um grafo e H um blow-up de G, com $\phi: V(H) \to V(G)$ sendo um homomorfismo que define esse blow-up. Dizemos que um $S \subseteq E(H)$ é canônico com relação a ϕ se para quaisquer e, $f \in E(H)$ com $\phi(e) = \phi(f)$ vale que $e \in S \iff f \in S$. Em outras palavras, entre cada par de classes de H escolhemos ou todas as arestas entre essas classes ou não escolhemos nenhuma dessas arestas.

Se ϕ for claro do contexto, iremos omitir e dizer apenas que o conjunto de arestas do blow-up é canônico.

Teorema 3 (Simetrização). Seja G um grafo livre de triângulos e seja H um blow-up de G. Então existe $F \subseteq E(H)$ canônico com |F| = D(H) e tal que G - F é bipartido.

Corolário 1. Seja H um blow-up de C₅ com n vértices. Então

$$D(H) \le \frac{n^2}{25}.$$

Em particular, a Conjectura 1 (se verdadeira) dá a melhor constante possível.

Teorema 4. Seja G um grafo livre de triângulo com n vértices e m arestas. Então

$$D(G) \le m - \frac{m^2}{4n}.$$

Corolário 2. Para todo n inteiro positivo, a conjectura 1 é verdadeira para grafos com n vértices e pelo menos $\frac{n^2}{5}$

Índice remissivo

Captions, *veja* Legendas Código-fonte, *veja* Floats

Equações, veja Modo matemático

Figuras, *veja* Floats Floats

Algoritmo, *veja* Floats, ordem Fórmulas, *veja* Modo matemático

Inglês, veja Língua estrangeira

Palavras estrangeiras, *veja* Língua estrangeira

Rodapé, notas, veja Notas de rodapé

Subcaptions, *veja* Subfiguras Sublegendas, *veja* Subfiguras

Tabelas, veja Floats

Versão corrigida, *veja* Tese/Dissertação, versões

Versão original, *veja* Tese/Dissertação, versões