DR.D.Y.PATIL INSTITUTE OF TECHNOLGY, PIMPRI, PUNE-18 **DEPARTMENT OF MATHEMATICS**

Question bank for In semester exam

Semester II (2021-2022)

SUB:ENGINEERING MATHEMATICS III

Unit 1

Linear Differential equation with constant coefficients

1. The solution of differential equation $\frac{d^3y}{dx^3} + y = 0$ is

[A]
$$c_1 e^x + e^x \left(c_2 \cos \frac{\sqrt{3}}{2} x + c_3 \sin \frac{\sqrt{3}}{2} x \right)$$
 [B] $c_1 e^{-x} + e^{\frac{1}{2}x} \left(c_2 \cos \frac{1}{2} x + c_3 \sin \frac{1}{2} x \right)$

[C]
$$c_1 e^{-x} + e^{\frac{1}{2}x} \left(c_2 \cos \frac{\sqrt{3}}{2} x + c_3 \sin \frac{\sqrt{3}}{2} x \right)$$
 [D] $\left(c_1 + c_2 x + c_3 x^2 \right) e^{-x}$

2. The solution of differential equation $\frac{d^3y}{dx^3} + 3\frac{dy}{dx} = 0$ is

[A]
$$c_1 + c_2 \cos x + c_3 \sin x$$

[B]
$$c_1 + c_2 \cos \sqrt{3}x + c_3 \sin \sqrt{3}x$$

[C]
$$c_1 + c_2 e^{\sqrt{3}x} + c_3 e^{-\sqrt{3}x}$$

$$[D] c_1 \cos x + c_2 \sin x$$

3. The solution of differential equation $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 12y = 0$ is

[A]
$$c_1 e^{-3x} + e^x (c_2 \cos \sqrt{3}x + c_3 \sin \sqrt{3}x)$$
 [B] $c_1 e^{-3x} + (c_2 \cos 3x + c_3 \sin 3x)$

[B]
$$c_1 e^{-3x} + (c_2 \cos 3x + c_3 \sin 3x)$$

[C]
$$c_1 e^{3x} + e^{-x} \left(c_2 \cos \sqrt{3}x + c_3 \sin \sqrt{3}x \right)$$
 [D] $c_1 e^{-x} + c_2 e^{-\sqrt{3}x} + c_3 e^{\sqrt{3}x}$

4. Particular Integral $\frac{1}{D+2}e^{-x}\cos e^{x}$, where $D \equiv \frac{d}{dx}$ is

$$[A] e^{-x} \cos e^{x}$$

$$[B] e^{-x} \sin e^{x}$$

$$[C] e^{-2x} \cos e^x$$

$$[D] e^{-2x} \sin e^x$$

5. Particular Integral $\frac{1}{D+2}e^{-2x}\sec^2 x(1+2\tan x)$, (use tanx = t) is

[A]
$$e^{-2x} (1 + 2 \tan^2 x)$$
 [B] $e^{-2x} (\tan x + \tan^2 x)$

[C]
$$e^{2x} (\tan x + 2\tan^2 x)$$
 [D] $e^{-2x} (\tan x + \sec x)$

6. Particular Integral $\frac{1}{D+1} \left(\frac{1}{1+e^x} \right)$ where $D \equiv \frac{d}{dx}$ is

[A]
$$e^x \log(1-e^x)$$
 [B] $\log(1+e^x)$

[A]
$$e^{x} \log(1-e^{x})$$
 [B] $\log(1+e^{x})$ [C] $e^{x} \log(1+e^{x})$ [D] $e^{-x} \log(1+e^{x})$

7. Particular Integral of Differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 10\sin x$

$$\frac{8}{3}\sin x$$
[A]
$$\sin x - 2\cos x$$

$$\sin x + 2\cos x$$

$$\sin x + \cos x$$

$$4\sin x + 2\cos x$$

$$2\sin x + \cos x$$
 [C]

[D] $(D^2 - 4D + 4)y = e^{2x}x^4$ 8. Particular Integral of Differential equation

$$\frac{x^6}{120}e^{2x}$$
 [B] $\frac{x^6}{60}e^{2x}$

$$[C] \frac{x^{6}}{30}e^{2x}$$

$$[D] \frac{x^{5}}{20}e^{2x}$$

9. Particular Integral of Differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\cos x$ is

$$e^{x}\cos x \qquad -e^{-x}\sin x$$
[A] [B]

$$e^{x} \cos x$$
[A]
$$-e^{-x} \sin x$$
[B]
$$(c_{1}x+c_{2})e^{-x}$$
[C]

10. In solving differential equation $\frac{d^2y}{dx^2} + 9y = \frac{1}{1 + \sin 3x}$ by method of variation of

parameters, Complimentary function = $c_1 \cos 3x + c_2 \sin 3x$,

Particular Integral = $u\cos 3x + v\sin 3x$ then v is equal to

[A]
$$\frac{1}{3} \left(-\frac{1}{3} \sec 3x + \frac{1}{3} \tan 3x - x \right)$$
 [B] $-\frac{1}{9} \log (1 + \sin 3x)$

[C]
$$\frac{1}{9}\log(1+\sin 3x)$$
 [D] $\frac{1}{3}\log\cos x$

11. In solving differential equation $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$ by method of variation of parameters, Complimentary function $= c_1 e^x + c_2 e^{-x}$,

Particular Integral = $ue^x + ve^{-x}$ then v is equal to

$$[A] e^{-x} - \log(1 + e^{-x})$$

[B]
$$-\log(1+e^x)$$

[C]
$$\log(1+e^x)$$

[D]
$$-e^{-x} + \log(1 + e^{-x})$$

12. In solving differential equation $\frac{d^2y}{dx^2} + 4y = 4\sec^2 2x$ by method of variation of

Parameters, Complimentary function = $c_1 \cos 2x + c_2 \sin 2x$,

Particular Integral = $u\cos 2x + v\sin 2x$ then u is equal to

[A]
$$\log(\sec 2x + \tan 2x)$$

$$[B] - \sec 2x$$

[C]
$$\sec 2x + \tan 2x$$

[D]
$$-[\log(\sec x + \tan x)] + \sin x$$

13. For the differential equation $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5$, particular integral is given by

[A]
$$\frac{x^5}{6}$$

[B]
$$\frac{x^5}{56}$$

[C]
$$\frac{x^4}{6}$$

[D]
$$-\frac{x^5}{44}$$

 $(2x+3)^2 \frac{d^2 y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x,$ 14. For the differential equation function is given by

[A]
$$c_1(2x+3)^3 + c_2(2x+3)^{-1}$$

$$c_1(2x+3)^{-3} + c_2(2x+3)^{-3}$$

[C]
$$c_1(2x+3)^3 + c_2(2x+3)^2$$

[B]
$$c_1(2x+3)^{-3} + c_2(2x+3)$$

[Constant of the content of the

15. For the differential equation

$$(3x+2)^2 \frac{d^2 y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = (3x+2)^2$$
,

Complimentary function is given by

[A]
$$c_1(3x+2)^3 + c_2(3x+2)^{-3}$$
 [B] $[c_1 \log(3x+2) + c_2](3x+2)^{-2}$

[C]
$$c_1(3x+2)^2 + c_2(3x+2)^{-2}$$
 [D] $c_1(3x-2)^2 + c_2(3x-2)^{-2}$

16. Particular Integral of differential equation $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 6y = e^{2x}$ is

[A]
$$-\frac{xe^{2x}}{3}$$
 [B] $-\frac{e^{2x}}{4}$ e^{2x}

$$\begin{array}{ccc}
e^{2x} & & & \\
\hline
\text{[C]} & 4 & & & \\
\hline
\text{[D]} & 24
\end{array}$$

 $(D^2 - 5D + 6)y = 3e^{5x}$ is 17. Particular Integral of Differential equation

$$\frac{e^{5x}}{2}$$
[B] $\frac{e^{5x}}{6}$

$$-\frac{e^{5x}}{14}$$
[C] $-\frac{e^{5x}}{14}$
[D] $-\frac{e^{2x}}{2}$
Particular Integral of Differential equation is

18. Particular Integral of Differential equation

$$\begin{bmatrix} 3x \\ 2e^{3x} - \frac{1}{9} \end{bmatrix}$$
[B] $x \frac{e^{3x}}{6} + \frac{3}{8}$
[C] $x \frac{e^{3x}}{6} - \frac{1}{9}$
[D] $x e^{3x} + \frac{1}{8}$

19. For the simultaneous linear differential equations $\frac{dx}{dt} + y = e^t$, $\frac{dy}{dt} + x = e^{-t}$

solution of x using $D = \frac{d}{dt}$ is obtain from

[A]
$$(D^2 + 1)x = 2e^t$$
 [B] $(D^2 - 1)y = -e^t - e^{-t}$

[C]
$$(D^2 + 1)y = e^{-t} + e^t$$
 [D] $(D^2 - 1)x = e^t - e^{-t}$

20. For the simultaneous linear differential equations $\frac{du}{dx} + v = \sin x$, $\frac{dv}{dx} + u = \cos x$ solution

of u, using
$$D = \frac{d}{dx}$$
 is obtain from

$$[A](D^2+1)u = 2\cos x$$

$$[B](D^2 - 1)u = 0$$

$$[C](D^2-1)u = \sin x - \cos x$$

$$[D](D^2-1)v = -2\sin x$$

21. For the simultaneous linear differential equations $\frac{du}{dx} + v = \sin x$, $\frac{dv}{dx} + u = \cos x$, solution

of v, using $D = \frac{d}{dx}$ is obtain from

$$[A](D^2 + 1)v = 0$$

$$[B](D^2-1)v = -2\sin x$$

$$[\mathbf{C}](D^2-1)u=0$$

$$[D](D^2 + 1)u = \sin x + \cos x$$

Particular Integral of Differential equation $(D^4 - m^4)y = \cos mx$

$$[A] \frac{-x}{4m^3} \cos mx$$

$$[B] \frac{x}{m^3} \sin mx$$

$$-x\sin mx$$
 [C]

$$[D] \frac{-x}{4m^3} \sin mx$$

23. Particular Integral of Differential equation $\frac{d^3y}{dx^3} - 4\frac{dy}{dx} = 2\cosh 2x$ is

$$\int_{0}^{1} \frac{d^3y}{dx^3} - 4\frac{dy}{dx} = 2\cosh 2x$$

$$[A] \frac{1}{4} \cosh 2x$$

$$[B] \frac{x}{8} \cosh 2x$$

$$\frac{x}{4}\cosh 2x$$

$$[D] \frac{x}{4} \sinh 2x$$

24. Particular Integral of Differential equation

$$(D^2 + 6D - 9)y = \sinh 3x$$
 is

 $\frac{1}{[A]} \cosh 3x$

$$\frac{1}{2}\cosh 3x$$

$$\frac{1}{[C]} \frac{1}{18} \sinh 3x$$

$$\frac{1}{[D]} - \frac{1}{18} \cosh 3x$$

25 In solving differential equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ by method of variation of parameters, Complimentary function = $c_1 x e^{3x} + c_2 e^{3x}$, Particular Integral = $uxe^{3x} + ve^{3x}$ then *u* is equal to

$$[A] - \frac{2}{x^3}$$

[B]
$$\frac{1}{x}$$

[C]
$$-\frac{1}{x}$$

$$[D] - \log x$$

26 The solution of differential equation $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ is (2)

[A]
$$c_1 + e^{-x}(c_{2x} + c_3)$$

[B]
$$c_1 + e^x(c_2x + c_3)$$

[C]
$$e^{-x}(c_2x + c_3)$$

[D]
$$c_1 + c_2 e^x + c_3 e^{-x}$$

27. In solving differential equation $\frac{d^2y}{dx^2} - y = e^{-x} \sin e^{-x} + \cos e^{-x}$ by Method of variation of Parameters, Complimentary function $c_1 e^x + c_2 e^{-x}$,

Particular Integral = $ue^x + ve^{-x}$ then v is equal to

$$[A] \frac{1}{2}e^{-x} \sin e^{x}$$

[A]
$$\frac{1}{2}e^{-x}\sin e^{x}$$
 [B] $-\frac{1}{2}e^{x}\cos e^{-x}$

[C]
$$e^x e^{e^x}$$

[C]
$$e^x e^{e^x}$$
 [D] $\frac{1}{2} e^{-x} \cos e^x$

28.In solving differential equation $\frac{d^2y}{dr^2} + y = \cos ecx$ by method of variation of parameters,

Complimentary function $= c_1 \cos x + c_2 \sin x$, Particular Integral $= u \cos x + v \sin x$ then u is equal to

[A]
$$-\log \sin x$$

[B]
$$x$$

[B]
$$x$$
 [C] $-x$

[D]
$$\log \sin x$$

29. The solution of differential equation $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0$ is

[A]
$$c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

[B]
$$c_1 e^{-x} + c_2 e^{2x} + c_3 e^{-3x}$$

[C]
$$c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x}$$

[D]
$$c_1 e^x + c_2 e^{-2x} + c_3 e^{3x}$$

30The solution of differential equation $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 4y = 0$ is

[A]
$$(c_1 + c_2x)e^{-2x} + c_3e^{-x}$$
 [B] $c_1e^x + c_2\cos 4x + c_3\sin 4x$ [C] $c_1e^x + c_2\cos 2x + c_3\sin 2x$ [D] $c_1e^x + c_2e^{2x} + c_3e^{-2x}$ [D] $c_1e^x + c_2e^{2x} + c_3e^{3x}$ [D] $c_1e^{-x} + c_2e^{-2x} + c_3e^{3x}$ [D] $c_1e^{-x} + c_2e^{-x} + c_3e^{-x}$ [D] $c_1e^{-x} + c_2e^{-x} + c_3e^{$

Solution of symmetric simultaneous DE $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is

(1)

A)
$$x = c_1 y, y = c_2 z$$

B) $x - y = c_1 z, y - z = c_2 x$

C)
$$x + y = c_1, y + z = c_2$$
 D) $x + y = c_1, y - z = c_2$

37]. Considering the first two ratio of the symmetrical simultaneous DE $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$, one of the relation in the solution is DE is

A)
$$\frac{1}{x} - \frac{1}{y} = c$$
 B) $x - y = c$ c) $x^2 - y^2 = c$ D) $x^3 - y^3 = c$

38]Considering the first and third ratio of the symmetrical simultaneous DE $\frac{xdx}{y^3z} = \frac{dy}{x^2z} = \frac{dz}{y^3}$ one of the relation in the solution of DE is

A)
$$x^2 - z^2 = c$$
 B) $x^4 - y^4 = c$ C) $x^3 - z^3 = c$ D) $x - z = c$

39]Using a set of multiplier as 1,y,z the solution of DE $\frac{xdx}{z^2 - 2yz - y^2} = \frac{dy}{y + z} = \frac{dz}{y - z}$ is

A)
$$x^2 + y^2 + z^2 = c$$
 B) $x + \frac{y^2}{2} + \frac{z^2}{2} = c$ C) $x + y + z = c$ D) $x + y^2 + z^2 = c$

40] Using a set of multiplier as x,y,z the solution of DE $\frac{dx}{3z-4y} = \frac{dy}{4x-2z} = \frac{dz}{2y-3x}$ is (2)

A)
$$x^3 + y^3 + z^3 = c$$
 B) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = c$ C) $x + y + z = c$ D) $x^2 + y^2 + z^2 = c$

1.C	2.B	3.A	4.D	5.B	6.D	7D	8C	9C	10C
11B	12B	13A	14A	15C	16B	17A	18C	19D	20 B
21B	22D	23C	24A	25C	26A	27B	28C	29C	30C
31D	32C	33D	34B	35A	36A	37D	38A	39A	40D