Математические Основы Теории Управления

Сюй Минчуань

19 января 2021 г.

Содержание

1	Teo	рия уг	правления	3
2	Лин	нейная	теория управления	5
	2.1	Линеа	ризация	5
	2.2	Метод	цы описания линейных скалярных стационарных непрерывных конечномерных си-	
		стем(.	ПССНКС)	5
		2.2.1	Метод пространства состояний	5
		2.2.2	Невырожденное преобразование пространства состояний	5
		2.2.3	Преобразование Лапласа	5
		2.2.4	Нахождение оригиналов по изображениям Лапласа	6
		2.2.5	Метод передаточной функции (Переход от ПС к П Φ)	6
		2.2.6	Инвариантность передаточных функций относительно преобразований фазового про-	
			странства.	7
		2.2.7	Сокращение передаточных функций	7
		2.2.8	Метод ОДУ n-го порядка	7
		2.2.9	Переход от ПФ к ОДУ	7
		2.2.10	Переход от ОДУ к ПФ	7
			Переход от ОДУ к ПС	7
			Переход от П Φ к ПС	8
			Метод интегральных уравнений	8
			Метод структурных схем (Переход от СС к $\Pi\Phi$)	9
			Переход от ОДУ к СС	10
			Переход от ПС к СС	10
			Переход от П Φ к СС	12
3	Ана	ализ сі	войств линейных динамических систем	12
	3.1		ческие характерисики	12
		3.1.1	Нахождение установившегося режима	13
	3.2	Динам	лические характерисики(Временные функции)	13
	· -	3.2.1	Весовая(импульсная) функция и переходная функция	13
		3.2.2	Вычисление динамических характеристик	14
	3.3	Часто	тная характеристика	14
		3.3.1	Годограф	14
		3.3.2	Вычисление амплитудно-частотной и фазовой характеристик	14
	3.4	Устой	чивость полиномов	14
	_	3.4.1	Критерий Гурвица	14
		3.4.2	Критерий Рауса	15
		3.4.3	Принцип аргумента	15
		3.4.4	Критерий Михайлова	15
	3.5		чивость линейных динамических объектов	15
	0.0	3.5.1	Критерий устойчивости в ПС	15
		3.5.2	Критерий устойчивости по ПФ	15
			Критерий устойчивости по весовой функции	16

3.6	Управ	ляемость линейных динамических объектов	16
	3.6.1	Критерий управляемости	16
	3.6.2	Каноническая форма управляемости	16
	3.6.3	Модальное управление. Стаблизация по состоянию линейного объекта	16
3.7	Наблю	даемость линейных динамических объектов	17
	3.7.1	Критерий наблюдаемости	17
	3.7.2	Каноническая форма наблюдаемости	17
	3.7.3	Наблюдатель, наблюдатель Люенбергера	17

1 Теория управления

Объект управления (управляемый объект) - это динамический объект, на который можно оказывать целенаправленное (управляющее) воздействие.

u(t) - вектор управляющих (входных) воздействий.

f(t) - вектор возмущающих воздействий (паразитные возмущения или полезная нагрузка).

x(t) - вектор переменных состояния.

y(t) - вектор регулируемых (выходных) переменных.

Структура системы управления

объект управления (ОУ) задающее устройство (ЗУ) регулирующее (управляющее) устройство (УУ) эталонная модель (ЭМ) - $y_m = F(G)$ e - ошибка управления

Рис. 1: Объект управления

Рис. 2: Структура системы управления

Различают два типа управления:

Управление по разомкнутому контуру - текущее состояния объекта не влияет.

 $Управление\ no\ замкнутому\ контуру$ - управление с обратной связью.

Рис. 3: Управление по разомкнутому контуру

Рис. 4: Управление по замкнутому контуру

Примеры математического представления динамических систем

• С помощью дифференциальных уравнений

$$\begin{cases} \dot{x} = f(x, u), \\ \dot{y} = h(x, u). \end{cases}$$
 (1)

$$\begin{cases}
F(x_1, \dots, x_n, \dots, x_1^{(m)}, \dots, x_n^{(m)}, \dots, u, \dots, u^{(k)}) = 0, \\
y = h(x, u).
\end{cases}$$
(2)

$$F(y, \dot{y}, \dots, y^{(m)}, u^{(0)}, \dots, u^{(k)}) = 0$$
 (3)

- С помощью интегральных уравнений $y(t) = \int_0^t K(t,\tau)u(\tau)d\tau$
- С помощью **передаточной функции** Y(s) = W(s)U(s)
- С помощью **структурных схем** x([k+1]T) = f(x[kT], u[kT])
- С помощью разностных уравнений

Рис. 5: Задача управления выходом

Классификация динамических систем

- Непрерывные и дискретные
- Линейные и нелинейные
- Конечномерные и бесконечномерные
- Стационарные и нестационарные явно входит ли время или нет.
- Скалярные и векторные входные (выходные) сигналы скалярны или нет.

Синтез алгоритмов управления

• Задача управления состоянием: найти $u: \forall x_1(0) \ ^u \ x_2(T).x_1 \in X_1, x_2 \in X_2.$ Частные случаи:

Задача стаблизации состояния: Переводить систему из любого состояния в точку нули за какое-то время.

Задача программного управления: найти $u: \forall x_1 \ ^u \ x_2. X_1 = \{x_1\}, X_2 = \{x_2\}.$

• Задача управления выходом: Для заданной эталонной модели y_m построить управление $u:y-y_m\to 0, t\to 0.$

Частные случаи:

Задача стаблизации выхода: $g \equiv const.$

Задача программного управления: g(t) заранее известна.

Задача слежения: g(t) заранее неизвестна.

Принципы управления

- Принцип программного управления Об объекте управления все известно, то известна выходная функция.
- Принцип компенсации (управления по возмущению) В зависимости от возмущения происходит его компенсация. Необходимо измерять возмущения
- Принцип обратной связи Обеспечить стремление ошибки к нулю.
- Принцип комбинированного управления Совместное использование принципа компенации и принципа обратной связи.

2 Линейная теория управления

2.1 Линеаризация

Пусть имеется система уравнений

$$\begin{cases}
F_1(x, \dot{x}, \ddot{x}, y, \dot{y}, \ddot{y}, z, \dot{z}, \ddot{z}) = 0, \\
F_2(x, \dot{x}, \ddot{x}, y, \dot{y}, \ddot{y}, z, \dot{z}, \ddot{z}) = 0.
\end{cases}$$
(4)

Нас интересует поведение системы при $v_0 = (x_0, 0, 0, y_0, 0, 0, z_0, 0, 0)$. Обозначим отклонения через $\Delta x, \Delta y, \Delta z,$ тогда $x = x_0 + \Delta x, \dot{x} = \Delta \dot{x}, \ddot{x} = \Delta \ddot{x}$. Подставим эти выражения в систему и разложим в ряд Тейлора в окрестности точки

$$\begin{cases}
F_1(v_0) + \frac{\partial F_1}{\partial x}(v_0)\Delta x + \frac{\partial F_1}{\partial \dot{x}}(v_0)\Delta \dot{x} + \frac{\partial F_1}{\partial \dot{x}}(v_0)\Delta \ddot{x} + \dots = 0, \\
F_2(v_0) + \frac{\partial F_2}{\partial x}(v_0)\Delta x + \frac{\partial F_2}{\partial \dot{x}}(v_0)\Delta \dot{x} + \frac{\partial F_2}{\partial \dot{x}}(v_0)\Delta \ddot{x} + \dots = 0.
\end{cases}$$
(5)

Учитывая, что $F_1(v_0) = 0, F_2(v_0) = 0$, и подбрасывая нелинейные слагаемые высшего порядка относительно отклонений, получаем линейные уравнения относительно $\Delta x, \Delta y, \Delta z, \Delta \dot{x}, \Delta \dot{y}, \Delta \dot{z}, \Delta \ddot{x}, \Delta \ddot{y}, \Delta \ddot{z}$.

$$\begin{cases}
\frac{\partial F_1}{\partial x}(v_0)\Delta x + \frac{\partial F_1}{\partial \dot{x}}(v_0)\Delta \dot{x} + \frac{\partial F_1}{\partial \dot{x}}(v_0)\Delta \ddot{x} = 0, \\
\frac{\partial F_2}{\partial x}(v_0)\Delta x + \frac{\partial F_2}{\partial \dot{x}}(v_0)\Delta \dot{x} + \frac{\partial F_2}{\partial \dot{x}}(v_0)\Delta \ddot{x} = 0.
\end{cases}$$
(6)

Методы описания линейных скалярных стационарных непрерывных ко-2.2нечномерных систем(ЛССНКС)

2.2.1 Метод пространства состояний

$$\begin{cases} \dot{x} = Ax + bu, x \in \mathbb{R}^n, u, y \in \mathbb{R}^1, t \ge 0, \\ y = cx + du \quad A \in \mathbb{R}^{n \times n}, d \in \mathbb{R}^1, b, c^T \in \mathbb{R}^n. \end{cases}$$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau,$$

$$y(t) = ce^{At}x(0) + c\int_0^t e^{A(t-\tau)}bu(\tau)d\tau + du.$$

$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \dots + \frac{1}{n!}A^nt^n + \dots,$$
(8)

$$\frac{d}{dt}e^{At} = Ae^{At}.$$

Невырожденное преобразование пространства состояний

Пусть имеем невырожденное преобразование $z = Mx, |M| \neq 0$

$$\begin{cases} \dot{x} = Ax + bu, \\ y = cx + du. \end{cases}$$
 (9)

$$\begin{cases} \dot{x} = Ax + bu, \\ y = cx + du. \end{cases}$$

$$\begin{cases} \dot{z} = M\dot{x} = M(Ax + bu), z(0) = Mx(0) \\ y = cM^{-1}z + du. \end{cases}$$

$$(9)$$

$$\begin{cases}
\dot{z} = \tilde{A}x + \tilde{b}u, \\
y = \tilde{c}x + du.
\end{cases}$$
(11)

гле $\tilde{A} = MAM^{-1}$, $\tilde{b} = Mb$, $\tilde{c} = cM^{-1}$

2.2.3 Преобразование Лапласа

Функция оригиналы f(t):

1. f(t) - интегрируема на любом конечном $[0, T^*]$;

2. $\exists M, \sigma > 0 : |f(t)| \le Me^{\sigma t}, t \ge 0.$

Тогда применимо преобразование Лапласа:

 $\mathcal{L}\{f(t)\}=\int_0^\infty f(t)e^{-st}dt=F(s), s=\alpha+i\beta$ - комплесный параметр.

Свойства преобразования Лапласа

- $\alpha_1 f_1(t) + \alpha_2 f_2(t) = \alpha_1 F_1(s) + \alpha_2 F_2(s)$
- $f^{(k)} = s^k F(s) s^{k-1} f(0) s^{k-2} f'(0) \dots f^{(k-1)}(0)$
- $\int_0^t f(\tau) d\tau \stackrel{.}{=} \frac{F(s)}{s} / /$ Подробно (также таблицу) см. лекцию

2.2.4 Нахождение оригиналов по изображениям Лапласа

Пусть $Y(s) = \frac{\gamma(s)}{\mu(s)}$

• $\mu(s)$ имеет простые корни s_1, \ldots, s_n , тогда

$$y(t) = \sum_{i=1}^{n} \frac{\gamma(s_i)}{\mu'(s_i)} e^{s_i t}$$
 (12)

• $\mu(s)$ имеет кратные корни

$$\frac{A}{(s-s_0)^k} := Ae^{s_0t} \frac{t^{k-1}}{k!}$$

$$\frac{As+B}{(s^2+Cs+D)^k} \text{ к примеру:}$$

$$\frac{s+2}{s^2-2s+2} = \frac{s+2}{(s-1)^2+1} = \frac{s-1}{(s-1)^2+1} + \frac{3}{(s-1)^2+1} = e^t \cos t + 3e^t \sin t \tag{13}$$

2.2.5 Метод передаточной функции (Переход от ПС к П Φ)

$$\begin{cases} \dot{x} = Ax + bu, \\ y = cx. \end{cases}$$
 (14)

Будем считать, что x(0) = 0. Применим к уравнению состояния и уравнению выхода преобразования Лапласа, преобразуем и получим nepedamov + you have been have been defined and the support of the supp

$$\begin{cases} sX(s) - x_0 = AX(s) + bU(s), \\ Y = cX \end{cases}$$
 (15)

Описание через передаточную функцию:

 $Y(s) = W(s)U(s), W(s) = c(sI - A)^{-1}b.$

Определение.

$$W(s) = \frac{Y(s)}{U(s)}\Big|_{x(0)=0} = c(sI - A)^{-1}b = \frac{c(sI - A)^*b}{\det(sI - A)} = \frac{\beta(s)}{\alpha(s)}.$$
 (16)

 $\deg \alpha(s) = n$ - динамический порядок объекта.

 $\deg \beta(s) = m.$

r = n - m - относительный порядок объекта.

 $r \ge 0$ - физически реализуемая,

r > 0 - строго физически реализуемая,

r < 0 - физически нереализуемая,

B случае $d \neq 0$:

$$W(s) = c(sI - A)^{-1}b + d (17)$$

2.2.6 Инвариантность передаточных функций относительно преобразований фазового пространства.

Пусть имеем невырожденное преобразование $z = Mx, |M| \neq 0$

$$\begin{cases} \dot{x} = Ax + bu, \\ y = cx. \end{cases}$$
 (18)

$$\begin{cases}
\dot{z} = \tilde{A}x + \tilde{b}u, \\
y = \tilde{c}x + du.
\end{cases}$$
(19)

где
$$\tilde{A}=MAM^{-1}, \tilde{b}=Mb, \tilde{c}=cM^{-1}.$$
 $(c,A,b)\leftrightarrow (c,\tilde{A},\tilde{b})\Rightarrow W(s)=\tilde{W}(s).$

2.2.7 Сокращение передаточных функций

В передаточной функции сокращать можно только устойчивые множители. Путем сокращения приходим к новой передаточной фукнции некоторой подсистемы исходной системы.

2.2.8 Метод ОДУ п-го порядка

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = b_m u^{(m)} + \dots + b_1\dot{u} + b_0u$$
(20)

2.2.9 Переход от ПФ к ОДУ

Пример

$$W(s) = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s + a_0} = \frac{Y(s)}{U(s)}, \quad (s^2 + a_1 s + a_0)Y(s) = (b_2 s^2 + b_1 s + b_0)U(s)$$

$$(s^2 Y(s) - sy(0) - \dot{y}(0)) + a_1 (sY(s) - y(0)) + a_0 Y(s) + sy(0) + \dot{y}(0) + a_1 y(0) = b_2 (s^2 U(s) - su(0) - \dot{u}(0)) + b_1 (sU(s) - u(0)) + b_0 U(s) + b_2 su(0) + b_2 \dot{u}(0) + b_1 u(0)$$

$$(21)$$

Пусть выполнено равенство (условие), ищем оригиналы уравнения

$$\begin{cases}
\ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u, \\
y(0) = b_2 u(0), \\
\dot{y}(0) = (b_1 - a_1 b_2) u(0) + b_2 \dot{u}(0)
\end{cases}$$
(22)

2.2.10 Переход от ОДУ к ПФ

Пример

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_1 \dot{u} + b_0 u = s^2 Y(s) + a_1 s Y(s) + a_0 Y(s) = b_1 s U(s) + b_0 U(s) + \underbrace{s y(0) + \dot{y}(0) + a_1 y(0) - b_1 u(0)}_{=0}$$
(23)

После этого получим

$$\begin{cases}
Y(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} U(s), \\
y(0) = 0, \\
\dot{y}(0) = b_1 u(0).
\end{cases}$$
(24)

2.2.11 Переход от ОДУ к ПС

Пусть имеем ОДУ

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u \tag{25}$$

Предположим

$$\begin{cases}
y = x_1 + k_1 u, \\
\dot{x_1} = x_2 + k_2 u, \\
\dot{x_2} = -a_0 x_1 - a_1 x_2 + k_3 u
\end{cases} \tag{26}$$

Найдем k_i :

$$\begin{cases}
y = x_1 + k_1 u, &\Rightarrow x_1 = y - k_1 u \\
\dot{y} = x_2 + k_2 u + k_1 \dot{u}, \\
\ddot{y} = -a_0 y - a_1 \dot{y} + k_1 \ddot{u} + (a_1 k_1 + k_2) \dot{u} + (a_0 k_1 + a_1 k_2 + k_3) u
\end{cases} (27)$$

$$\begin{cases}
k_1 = b_2 \\
k_2 + a_1 k_1 = b_1 \\
k_3 + a_1 k_2 + a_0 k_1 = b_0
\end{cases}$$
(28)

Из системы уравнений находим k_i . Далее, запишем пространство состояний:

$$\begin{cases} \dot{x} = Ax + bu, x \in \mathbb{R}^n, u, y \in \mathbb{R}^1, t \ge 0, \\ y = cx + du \quad A \in \mathbb{R}^{n \times n}, d \in \mathbb{R}^1, b, c^T \in \mathbb{R}^n. \end{cases}$$
 (29)

где

$$A = \begin{pmatrix} 0 & 1 \\ -a_0 & -a_1 \end{pmatrix}, b = \begin{pmatrix} k_2 \\ k_3 \end{pmatrix}, c = \begin{pmatrix} 1 & 0 \end{pmatrix}, d = k_1$$

A - матрица Фробениуса.

Согласованность начальных условий:

$$\begin{cases} x_1(0) = y(0) - k_1 u(0) \\ \dot{y}(0) = x_2(0) + k_2 u(0) + k_1 \dot{u}(0) \end{cases}$$
(30)

2.2.12 Переход от ПФ к ПС

Пусть $\frac{Y(s)}{\beta(s)} = \frac{U(s)}{\alpha(s)} = X_1(s)$. Рассмотрим $X_1(s) = \frac{U(s)}{\alpha(s)}$.

$$(s^n + a_{n-1}s^{n-1} + \dots + a_0)X_1 = U (31)$$

Пусть (Будем считать, что $X_i(0) = 0$)

$$\begin{cases}
sX_{1}(s) = X_{2}(s) \\
sX_{1}(s) = X_{3}(s)
\end{cases}$$

$$\vdots \Rightarrow \begin{cases}
\dot{x}_{1} = x_{2} \\
\dot{x}_{2} = x_{3}
\end{cases}$$

$$\vdots \Rightarrow \begin{cases}
sX_{n-1}(s) = X_{n}(s) \\
\vdots \Rightarrow \begin{cases}
x_{n-1} = x_{n} \\
x_{n-1} = x_{n}
\end{cases}
\end{cases}$$

$$\dot{x}_{n-1} = x_{n}$$

$$\dot{x}_{n} = -a_{0}x_{1} - \dots - a_{n-1}x_{n} + u$$

$$\dot{x}_{i}(0) = 0, \quad i = 1, \dots, n
\end{cases}$$
(32)

Аналогично (Рассматривая $X_1(s) = \frac{Y(s)}{\beta(s)}$), получим

$$y = b_0 x_1 + \ldots + b_m x_{m+1} \tag{33}$$

Далее, запишем пространство состояний:

$$\begin{cases} \dot{x} = Ax + bu, x \in \mathbb{R}^n, u, y \in \mathbb{R}^1, t \ge 0, \\ y = cx \quad A \in \mathbb{R}^{n \times n}, b, c^T \in \mathbb{R}^n. \end{cases}$$
(34)

где

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & a_2 & \dots & -a_{n-1} \end{pmatrix}, b = \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}, c = (b_0, \dots, b_m, 0, \dots, 0)$$

2.2.13 Метод интегральных уравнений

$$Y(s) = W(s)U(s)$$

$$= \int_0^t k(t-\tau)u(\tau)d\tau = \int_0^t k(\tau)u(t-\tau)d\tau$$
(35)

2.2.14 Метод структурных схем (Переход от СС к $\Pi\Phi$)

Структурная схема - графическое представление динамического объекта через его подсистемы с указанием связей между ними.

Основные элемены структурной схемы

- Линия связи направление распространения сигнала
- Точка ветвления сигнал расходится по линиям связи
- Динамическое(статическое) звено
- Сумматор

Основные типы соединений в структурных схемах

- Последовательное соединение
- Параллельное соединение
- Соединение обратной связью

Типы преобразований структурных схем

- Декомпозиция увеличение количества звеньев
- Агрегирование уменьшение количества звеньев
- Трансформация выявление в явном виде основных типов соединений

Основные правила преобразования структурных схем

• Для агрегировании

для последовательного соединения:
$$y=(w_2w_1)u$$
 для параллельного соединения: $y=(w_1+w_2)u$ для соединения обратной связью: $y=\frac{w_1}{1\pm w_1w_2}u$

• Для трансформации

Перенос точки ветвления через динамическое звено Перенос сумматора

Алгебраический способ упрощения структурных схем

Проведем проресс упрощения на примере

$$\begin{cases}
y = \frac{1}{s}(v_1 + v_4) \\
v_4 = 2u \\
v_3 = 2y \\
v_2 = 3v_1 \\
v_1 = \frac{1}{s}(u - v_2 - v_3)
\end{cases}$$
(36)

Выразим y через u, сокращая v_1, v_2, v_3, v_4 , получим

$$y = \frac{2s+7}{s^2+3s+2}u\tag{37}$$

Рис. 6: Переход от ОДУ к СС

2.2.15 Переход от ОДУ к СС

Описать ОДУ структурной схемой, которая содержит только простейшие элементы.

$$\ddot{y} + a_2 \ddot{y} + a_1 \ddot{y} + a_0 y = b_3 \ddot{u} + b_2 \ddot{u} + b_1 \dot{u} + b_0 u \tag{38}$$

Его передаточная функция имеет вид:

$$Y(s) = \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} U(s)$$

$$\text{Пусть } \mathbf{Y}(s) = (b_2 s^2 + b_1 s + b_0) \mathbf{Y}_1(s) \Rightarrow$$

$$Y_1(s) = \frac{1}{s^3 + a_2 s^2 + a_1 s + a_0} U(s) \Rightarrow$$

$$s^3 \mathbf{Y}_1(s) = U(s) - a_2 s^2 \mathbf{Y}_1(s) - a_1 s \mathbf{Y}_1(s) - a_0 \mathbf{Y}_1(s)$$
(39)

Другое построение СС из ОДУ (пример):

$$\ddot{y} + 2\ddot{y} + 4\ddot{y} + 3y = 7\ddot{u} + 5\dot{u} + 4u \quad (\rightleftharpoons)$$

$$s^{3}Y + 2s^{2}Y + 4sY + 3Y = 7s^{2}U + 5sU + 4U$$

$$Y = \frac{1}{s} \left(-2Y + 7U + \frac{1}{s} \left(-4Y + 5U + \frac{1}{s} \left(-3Y + 4U \right) \right) \right)$$
(40)

2.2.16 Переход от ПС к СС

Описать ПС структурной схемой, которая содержит только простейшие элементы.

$$\begin{cases} \dot{x_1} = a_{11}x_1 + a_{12}x_2 + b_1u \\ \dot{x_2} = a_{21}x_1 + a_{22}x_2 + b_2u \\ y = c_1x_1 + c_2x_2 + \mu u \end{cases} \Rightarrow \begin{cases} x_1 = 1/s(a_{11}x_1 + a_{12}x_2 + b_1u) \\ x_2 = 1/s(a_{21}x_1 + a_{22}x_2 + b_2u) \\ y = c_1x_1 + c_2x_2 + \mu u \end{cases}$$
(41)

Рис. 7: Другое построение СС из ОДУ

Рис. 8: Переход от ПС к СС

Рис. 9: Переход от ПФ к СС

Рис. 10: Переходы ЛССНКС

2.2.17 Переход от ПФ к СС

Описать $\Pi\Phi$ структурной схемой, которая содержит только простейшие элементы. (пример)

$$W(p) = \frac{5p+4}{p^3+2p^2+4p+3} = \frac{5p+4}{(p+1)(p^2+p+3)} = \frac{-1/3}{p+1} + \frac{1/3p+5}{p^2+p+3}$$

$$Y_1 = \frac{-1/3}{p+1}U \quad \Rightarrow Y_1 = \frac{1}{p}\left(-Y_1 - \frac{1}{3}U\right)$$

$$Y_2 = \frac{1/3p+5}{p^2+p+3}U \quad \Rightarrow Y_2 = \frac{1}{p}\left(-Y_2 + \frac{1}{3}U + \frac{1}{p}(-3Y_2 + 5U)\right)$$

$$(42)$$

3 Анализ свойств линейных динамических систем

3.1 Статические характерисики

$$y(t) = y_{\pi}(t) + y_{\infty}(t) \tag{43}$$

 $y_{\mathrm{n}}(t)$ - nepexodная pexeum, поведение при $t\in[0,T].$

 $y_{\infty}(t)$ - установившийся режим, поведение при $t \in [T, \infty)$.

Статическая характеристика - устанавливает связь между входом и выходом динамической системы а установившемся режиме.

3.1.1 Нахождение установившегося режима

Предположения:

- 1. x(0) = 0.
- 2. Типовые входные сигналы.
 - Постоянный сигнал: u(t) = 1.
 - Функция Хевисаида.

$$u(t) = \mathcal{X}(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

• Полиномиальный сигнал

$$u(t) = u_0 + u_1 t + \ldots + u_k t^k, \quad k = 0, 1, 2 \ldots$$

• Гармонический сигнал

$$u(t) = A\sin\omega t, \quad u(t) = u_0 e^{i\omega t}$$

• Дельта-функция

$$u(t) = \delta(t) = \begin{cases} 0, & t \neq 0, \\ +\infty, & t = 0. \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t)dt=1$$

$$\int_0^t f(\tau)\delta(t-\tau)d\tau=f(t)$$
 пример: при $n\to\infty$ получим $\delta(t)$.

$$u_n(t) = \begin{cases} n, & t \in (0, 1/n), \\ 0, & t \notin [0, 1/n). \end{cases}$$

Способ нахождения установившегося режима

- $u(t) \equiv 1$, $y_{\infty}(t) = \lim_{t \to \infty} y(t)$.
- Вход полиномиального типа $u(t) = u_0 + u_1(t) + \ldots + u_l t^l$

$$y_{\infty}(t) = \sum_{k=0}^{l+1} c_k u^{(k)}, \quad c_k = \frac{1}{k!} \frac{d^k W(s)}{ds^k} \Big|_{s=0}$$

• Для всех типовых сигналов

Пусть

 $D_1 = \sum \{$ простейшие дроби со знаменателем в $\mathbb{C}_-\}$, $D_2 = \sum \{$ простейшие дроби со знаменателем $\in Im(s)\}$. Тогда

$$Y(s) = W(s)U(s) = D_1 + D_2 = \{\mathcal{L}^{-1}\} = y_{\Pi}(t) + y_{\infty}(t)$$
(44)

3.2 Динамические характерисики(Временные функции)

Динамическая характерисика - описывает поведение линейного объекта (системы) в переходном режиме.

3.2.1 Весовая (импульсная) функция и переходная функция

Весовая (импульсная) функция k(t)- выход системы при нулевых начальных условиях и входном сигнале в виде мгновенного единичного импульса.

Переходная функция h(t) - выход системы при нулевых начальных условиях и единичном входном сигнале.

3.2.2 Вычисление динамических характеристик

$$k(t) = c \int_0^t e^{A\tau} \delta(t - \tau) d\tau \cdot b = ce^{At} b$$

$$h(t) = x \int_0^t e^{A(t - \tau)} \mathcal{X}(\tau) d\tau \cdot b = cA^{-1}(e^{At} - I)b$$

$$\mathcal{L}\{k(t)\} = W(s), \quad \mathcal{L}\{h(t)\} = W(s)1/s, \quad h'(t) = k(t)$$
(45)

$$\begin{aligned}
&\mathcal{L}\{k(t)\} = W(s), \quad \mathcal{L}\{h(t)\} = W(s)1/s, \quad h(t) = k(t) \\
&\operatorname{\Pipu} Y = W_1 W_2 U: \\
& k(t) = \mathcal{L}^{-1}\{W_1 W_2\} = (k_1 \cdot k_2)(t) \\
& h(t) = \mathcal{L}^{-1}\{(W_1 W_2)/s\} = (h_1 \cdot h_2)(t) \\
&\operatorname{\Pipu} Y = (W_1 + W_2)U: \\
& k(t) = \mathcal{L}^{-1}\{W_1 + W_2\} = k_1(t) + k_2(t) \\
& h(t) = \mathcal{L}^{-1}\{(W_1 + W_2)/s\} = h_1(t) + h_2(t)
\end{aligned} \tag{46}$$

3.3 Частотная характеристика

Комплекснозначная функция $W(i\omega), \omega \in [0, +\infty)$ называется частотной характеристикой системы Y(s) = W(s)U(s).

$$W(i\omega) = \rho(\omega)e^{i\varphi(\omega)} \tag{47}$$

 $\rho(\omega)$ - амплитудно-частотная характеристика (AЧX).

 $\varphi(\omega)$ - фазово-частотная характеристика (ФЧХ).

3.3.1 Годограф

Годограф - кривая, описываемая концом вектора $W(i\omega)$ при изменении частоты ω от 0 до ∞ .

3.3.2 Вычисление амплитудно-частотной и фазовой характеристик

Пример

$$W(s) = \frac{s+1}{(s+2)(s+3)}$$

$$W(i\omega) = \frac{i\omega+1}{(i\omega+2)(i\omega+3)}$$

$$\rho(\omega) = |W(i\omega)| = \frac{\sqrt{1+\omega^2}}{\sqrt{4+\omega^2}\sqrt{9+\omega^2}}$$

$$\varphi(\omega) = \arg W(i\omega) = \arg(i\omega+1) - \arg(i\omega+2) - \arg(i\omega+3)$$
(48)

3.4 Устойчивость полиномов

Полином $\alpha(s) = a_0 + a_1 s + \ldots + a_n s^n$ устойчив, если все его корни лежат строго в левой полуплоскости. **Необходимое условие устойчивости** Если $\alpha(s)$ устойчив, то все его коэффициенты имеют один и тот же знак.

Теорема Для полиномов 1-й и 2-й степени необходимое условие является и достаточным.

Теорема Устойчивость $\alpha(s)$ эквивалентна устойчивости полинома $\bar{\alpha}(s) = s^n \alpha\left(\frac{1}{s}\right) = a_0 s^n + a_1 s^{n-1} + \ldots + a_n(a_i > 0)$. Т.е. $\alpha(s)$ устойчив $\Leftrightarrow \bar{\alpha}(s)$ устойчив.

3.4.1 Критерий Гурвица

Пусть $a_i > 0$. $\alpha(s)$ устойчив \Leftrightarrow главные диагональные миноры матрицы Гурвица M_n положительны. Матрица Гурвица строится следующем образом: в каждой строке записываются коэффициенты полинома, начиная с a_{2n+1} , в порядке убывания их номеров. Элементы, которые расположены после a_0

No.	1	2	3	
1	$c_{11} = a_0$	$c_{12} = a_2$	$c_{13} = a_4$	
2	$c_{21} = a_1$	$c_{22} = a_3$	$c_{23} = a_5$	
3	$c_{31} = c_{12} - r_3 c_{22}$	$c_{32} = c_{13} - r_3 c_{23}$	$c_{33} = c_{14} - r_3 c_{24}$	
4	$c_{41} = c_{22} - r_4 c_{32}$	$c_{42} = c_{23} - r_4 c_{33}$	$c_{43} = c_{24} - r_4 c_{34}$	
n+1	$c_{n+1} = c_{n-1,2} - r_{n+1}c_{n2}$			

записываются нулями.

$$M_{n} = \begin{pmatrix} a_{1} & a_{0} & 0 & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & a_{0} & 0 & \dots & 0 \\ a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{2n+1} & a_{2n} & a_{2n-1} & \dots & \dots & a_{n} \end{pmatrix}$$

$$(49)$$

3.4.2 Критерий Рауса

Полином $\alpha(s)$ устойчив \Leftrightarrow 1-й столбец таблицы Рауса содержит только положительные элементы. *Таблица Рауса* составляется следующим образом:

- В первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания.
- Во второй строке с нечетными.
- Остальные элементы таблицы определяется по формуле:

$$c_{kl} = c_{k-2,l+1} - r_k c_{k-1,l+1}, r_k = \frac{c_{k-2,1}}{c_{k-1,1}}, k = 3, 4, \dots; l = 1, 2, \dots$$
(50)

То есть r_k равно отношению элементов предыдущих двух строк первого столбца. c_{kl} равен разности элементов предыдущих двух строк следующего столбца, притом вычитаемое умножается на r_k .

• Таблица Рауса содержит n+1 строку. Число столбцов убывает при росте номера строки. Элементы, не принадлежащие первому столбцу вычисляются по необходимости.

3.4.3 Принцип аргумента

Теорема $\Delta \arg_{0 \le \omega \le \infty} \alpha(i\omega) = \frac{\pi}{2}(n-2l)$, где l - число нулей полинома, лежащих в правой полуплоскости, n-l - число нулей полинома, лежащих в левой полуплоскости.

3.4.4 Критерий Михайлова

 $\alpha(s)$ устойчив $\Leftrightarrow \Delta \arg_{0 \leq \omega \infty} \alpha(i\omega) = \frac{\pi}{2}n, \quad n = \deg \alpha(s).$ Следствие. Если $\alpha(s)$ устойчивый, то $\varphi(\omega) = \arg \alpha(i\omega)$ - строго монотонная функция

3.5 Устойчивость линейных динамических объектов

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx \end{cases} \tag{51}$$

Объект устойчив (по состоянию), если при $u \equiv 0, \forall x(0) \Rightarrow ||x(t)|| \to 0$ при $t \to \infty$.

3.5.1 Критерий устойчивости в ПС

Объект устойчив $\Leftrightarrow \sigma(A) \subset \mathbb{C}_{-}$

3.5.2 Критерий устойчивости по ПФ

 $W(s) = \frac{\beta(s)}{\alpha(s)}$ устойчив $\Leftrightarrow \alpha(s)$ устойчив.

3.5.3 Критерий устойчивости по весовой функции

 $y(t) = \int_0^{\tau} k(t-\tau)u(\tau)d\tau$ устойчив \Leftrightarrow весовая функция объекта абсолютно интегрируема по оси $(0,+\infty)$, т.е. $\int_0^{\infty} |k(\tau)|d\tau < const.$

3.6 Управляемость линейных динамических объектов

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx \end{cases} \tag{52}$$

Объект управляем по состоянию, если:

для
$$\forall x_0, x_1 \in \mathbb{R}^n, \forall T_0 > 0, \exists u_{[0,T_0]} : \begin{cases} x(0) = x_0 \\ x(T_0) = x_1 \end{cases}$$

3.6.1 Критерий управляемости

 $K_{A,b} = [b \, Ab \, A^2b \, \dots \, A^{n-1}b] \in \mathbb{R}^n$ - Матрица управляемости.

Критерий управляемости Объект управляемый \Leftrightarrow rank $K_{A,b}=n$.

3.6.2 Каноническая форма управляемости

Эта форма удобна для построения модального управления.

$$\begin{cases}
\dot{z} = \bar{A}x + \bar{b}u, \\
y = \bar{c}x.
\end{cases}$$
(53)

где $\bar{A} = MAM^{-1}, \bar{b} = Mb = (0, \dots, 1)^T, \bar{c} = cM^{-1}, |M| \neq 0.$

$$\bar{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{pmatrix}$$
 (54)

В этом случае справедливо $K_{\bar{A},\bar{b}} = MK_{A,b}$.

Критерий управляемости

Объект управляемый $\Leftrightarrow \operatorname{rank} K_{A,b} = n \Leftrightarrow \operatorname{rank} K_{\bar{A},\bar{b}} = n$.

3.6.3 Модальное управление. Стаблизация по состоянию линейного объекта

Задача стаблизации Для объекта построить обратную связь.

$$u = u(x) : x = Ax + bu(x).$$

Модальное управление по состоянию линейного динамического объекта

Выбор обратной связи по состоянию следующим типом:

$$u = -kx : \dot{x} = (A - bk)x$$
. $\sigma(A - bk)$ - заданный спектр.

Задача стаблизации объекта методами модальной стаблизации

Выбор линейной обратной связи вида -kx, обеспечивающей заданной системе заданный спектр, лежащий в левой полуплоскости.

Алгоритм стаблизации модальным управлением

- 1. построить $K_{A,b}$ и проверить rank $K_{A,b} = n$
- 2. построить $x_A(s) = s^n + a_{n-1}s^{n-1} + \ldots + a_0$
- 3. построить $K_{\bar{A},\bar{b}}$
- 4. $M = K_{\bar{A},\bar{b}} \cdot K_{A,b}^{-1}$
- 5. построить полином с заданным спектром: $\gamma(s) = (s s_1) \dots (s s_n) = s^n + \gamma_{n-1} s^{n-1} + \dots + \gamma_0$
- 6. вычислять $\bar{k}_i = \gamma_{i-1} a_{i-1}, \quad i = 1, \dots, n$
- 7. получим $k = \bar{k}M$

3.7 Наблюдаемость линейных динамических объектов

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx \end{cases} \tag{55}$$

Объект наблюдаем, если при $u \equiv 0$, $\forall x_1(0) \neq x_2(0) \Rightarrow y(t, x_1(0)) \not\equiv y(t, x_2(0))$. То есть между входом и выходом можно восстановить однозначное соответствие, через которое по выходу y(t) можно наблюдать начальное состояние системы x(0).

3.7.1 Критерий наблюдаемости

$$N_{c,A} = \left(egin{array}{c} c \ cA \ \ldots \ cA^{n-1} \end{array}
ight)$$
 -Матрица наблюдаемости.

Критерий наблюдаемости Объект наблюдаем \Leftrightarrow rank $N_{c,A}=n$. Оценка вектора состояний (Как выразить x(t) через $y(t),\dots,y^{(n-1)}(t)$)

$$y = cx$$

$$\dot{y} = c\dot{x} = cAx + cbu$$

$$\ddot{y} = cA\dot{x} + cb\dot{u} = cA^{2}x + cAbu + cb\dot{u}$$

$$\cdots \cdots$$

$$\Rightarrow \begin{pmatrix} y(t) \\ \cdots \\ y^{(n-1)}(t) \end{pmatrix} = N_{c,A} \begin{pmatrix} x_{1}(t) \\ \cdots \\ x_{n}(t) \end{pmatrix} + \begin{pmatrix} cbu \\ cAbu + cb\dot{u} \\ \cdots \\ cA^{n-2}bu + \cdots + cbu^{(n-2)} \end{pmatrix}$$

$$(56)$$

Пусть второе слагаемое обозначается как $\psi(t)$, тогда

$$\begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix} = N_{c,A}^{-1} \begin{pmatrix} y(t) \\ \dots \\ y^{(n-1)}(t) \end{pmatrix} + \psi(t)$$

$$(57)$$

3.7.2 Каноническая форма наблюдаемости

Эта форма удобна для построения наблюдателя Люенбергера. **Теорема** Пусть линейный объект вполне наблюдаемый. Тогда существует такое невырожденное линейное преобразование а пространстве состояний $z = Tx, T \in \mathbb{R}^{n \times n}$, что система в переменных z имеет вид

$$\begin{cases} \dot{z} = \bar{A}z + \bar{b}u \\ y = \bar{c}z \end{cases}$$
 (58)

где

$$\bar{A} = \begin{pmatrix}
0 & 0 & \dots & 0 & -a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{pmatrix}$$

$$c = (0, \dots, 1)$$
(59)

В этом случае справедливо $N_{\bar{c},\bar{A}}=T^{-1}N_{c,A}$

3.7.3 Наблюдатель, наблюдатель Люенбергера

Haблюдателем для системы будем называть любое преобразование $\bar{x} = N(u, y)$, для которого выходная переменная \bar{x} удовлетворяет одному из двух условий.

- 1. $|x-\bar{x}|<\varepsilon$ для некоторого $\varepsilon>0$ при всех $t\geq t_0\geq 0$.
- 2. $|x-\bar{x}|\to 0$ при $t\to\infty$. В этом случае наблюдатель называется асимптотическим.

Асимптотический наблюдатель Люенбергера - система дифференциальных уравнений вида

$$\dot{\bar{x}} = A\bar{x} + l(y - c\bar{x}) + bu, \quad l \in \mathbb{R}^{n \times 1}$$

Тогда пусть $e_x(t) = x(t) - \bar{x}(t)$ - ошибка наблюдения, имеем

$$\dot{e_x} = (A - lc)e_x$$

При устойчивой системе про e_x имеем стремление к нулю ошибки, то есть $\sigma(A-lc) \in \mathbb{C}_-$. Теорема о назначении спектра наблюдателя Люенбергера говорит нам о том, что всегда найдется вектор l такой, что $\sigma(A-lc) = \Lambda$, где Λ - заданный спектр.

Алгоритм построения наблюдателя Люенбергера

- 1. построить $N_{c,A}$ и проверить rank $N_{c,A} = n$
- 2. построить $x_A(s) = s^n + a_{n-1}s^{n-1} + \ldots + a_0$
- 3. построить полином с заданным спектром: $\gamma(s) = (s s_1) \dots (s s_n) = s^n + \gamma_{n-1} s^{n-1} + \dots + \gamma_0$
- 4. построить $N_{\bar{c},\bar{A}}$
- 5. построить $T = N_{\bar{c},\bar{A}}^{-1} \cdot N_{cA}$
- 6. вычислять $\bar{l}_i = \gamma_{i-1} a_{i-1}, \quad i = 1, \dots, n$
- 7. получим $l = T^{-1}\bar{l}$

3.8 Полиномиальная стаблизация

Пусть имеем систему с передаточной функцей

$$W(s) = \frac{\beta(s)}{\alpha(s)}$$

Требуется построить регулятор с передаточной функцией $R(s) = \frac{p(s)}{q(s)}$, при замыкании которым систему получить желаемый устойчивый спектр матрицы, то есть

$$W_c(s) = \frac{W(s)}{1 + W(s)R(s)} = \frac{\beta(s)q(s)}{\alpha(s)q(s) + \beta(s)p(s)}$$

Нужно выбрать полиномы p(s), q(s) так, чтобы $\alpha(s)q(s) + \beta(s)p(s)$ устойчива. Обычно положим $\deg q(s) = n-1, \deg p(s) \leqslant n-1, \quad n$ - степень полинома $\alpha(s)$.