



MOSFET metal-oxide-semiconductor field-effect transistor

depletion mode and enhancement mode

Using the MOSFET as a Switch (< 1kHz)



pcbreflux



#### Important Parameter

I<sub>D</sub> Continuous Drain Current

 $V_{\text{GS(th)}}$  Gate Threshold Voltage

 $V_{GS}$  Gate-Source Voltage

V<sub>DS</sub> Drain-Source Voltage

 $R_{\mathrm{DS(ON)}}$  Drain-Source On-Resistance

Thermal considerations

P<sub>D</sub> Power Dissipation

 $R_{\theta JA} (R_{THJA})$  Junction-to-Ambient



























pcbreflux









pcbreflux















pcbreflux









pcbreflux



# ESP32





pcbreflux





#### Thermal Example IRFU9024 (IPAK)

Example Drain Current : 2A

 $R_{DS(ON)}$  Drain-Source On-Resistance Max  $0.28\Omega$ 

P<sub>D</sub> Power Dissipation 
$$I_D^2 * R_{DS(ON)} = (2A)^2 * 0.28\Omega = 1.12 W$$

R<sub>A1A</sub> Junction-to-Ambient 110°C/W in Air and 50°C/W on PCB

$$P_{\text{JMAX}} = (T_{\text{JMAX}} - T_{\text{A}}) / R_{\theta \text{JA}} (150^{\circ}\text{C} - 25^{\circ}\text{C}) / 110^{\circ}\text{C/W} \sim 1.136 \text{ W in Air}$$
 (150°C-25°C) / 50°C/W ~ 2.5 W on PCB

→ in Air (1.12W ~ 1.136W) nearly needs heatsink on PCB (1.12W < 2.5W) no heatsink needed</p>





#### Thermal Example DMG2301L (SOT23)

Example Drain Current: 2A

 $R_{DS(ON)}$  Drain-Source On-Resistance Max  $0.12\Omega$ 

 $P_D$  Power Dissipation  $I_D^2 * R_{DS(ON)} = (2A)^2 * 0.12\Omega = 0.48W$ 

 $R_{\theta JA}$  Junction-to-Ambient 83°C/W

 $P_{JMAX} = (T_{JMAX} - T_A) / R_{\theta JA} (150^{\circ}C - 25^{\circ}C) / 83^{\circ}C/W \sim 1.5 W$ 

0.48W < 1.5W → no heatsink needed