

CS-671 DEEP LEARNING AND APPLICATIONS

ASSIGNMENT 5

Convolutional Neural Networks

Submitted by: Group 13 Prachi Sharma (V21078) Ayush Tiwari (T22053)

Instructor: Prof. A D Dileep

Table of Contents

Convolutional Neural Networks	2
1. The convolution operation	3
2. Structure of a CNN	3
3. Backpropagation in CNNs	3
Experiments, Results	4
and Analysis	4
1. Classification using different CNNs	5
a. Architecture-1 (4 layer architecture)	6
b. Architecture-2 (5 layer architecture)	7
c. Architecture-3 (6 layer architecture)	8
d. Results of best architecture	9
2. Classification using VGG	13

Convolutional Neural Networks

1. The convolution operation

The convolutional neural networks, abbreviated as CNNs, are a special type of neural network used to perform learning on data that has a grid-like structure. A CNN uses a *convolution* operation in at least one of its layers. A convolution operation on a 1-D input is defined as:

$$s_t = \sum_{a=0}^{\infty} x_{t-a} w_a = (\mathbf{x} * \mathbf{w})_t$$

Here, \mathbf{x} is the **input**, \mathbf{w} is the **kernel** or filter and t is the time step. The output \mathbf{s} is called the feature map.

2. Structure of a CNN

Fig 1: Structure of a basic CNN

A typical CNN has a structure as shown in Fig 1. The input is sent to a **convolutional layer**, which has a K number of filters of size F. A convolution operation is performed by all the filters on the input and the output is then sent to a pooling layer. A **pooling layer** modifies the outputs of the previous layer by operating it with a pooling function. Two such functions are *maxpool* and *average pool*. A max pool function reports the maximum output within a rectangular output while an average pool takes the average of all values in a rectangular output. After several consecutive convolution and pooling layers, the network is connected to a dense layer of neuron units, called **dense layers**, and finally a fully-connected **output layer**.

3. Backpropagation in CNNs

The connections in a convolution neural network are much sparser and weights are shared to make learning easier. CNNs can be trained just like a feed-forward neural network by backpropagating the error. Only the active parameter weights are updated at each instance of backpropagation.

Experiments, Results and Analysis

In this section, we will present our results and observations on image classification using different CNN architectures. In the first part, we train three different CNNs to classify a subset of the Caltech-101 dataset, which consists of color images. Different performance measures have been observed and compared of all three networks to conclude the best performing network. In the second part, we make use of the pretrained VGG19 model available in Tensorflow and perform transfer learning to classify the given image dataset.

1. Classification using different CNNs

We have been given 5 classes from 101 classes of the Caltech-101 image dataset. Each class has 80 images belonging to classes: **brain, buddha, ketch, Leopards, scorpion**. The train, validation and test split among all classes is 5:1:2. To ensure same input dimension, the images have been resized to 224×224 .

Following architectures have been considered for the assigned task.

Model	Input layer	Convol ution layer 1	Pooling layer 1	Convol ution layer 2	Pooling layer 2	Convol ution layer 3	Pooling layer 3	Convol ution layer 4	Pooling layer 4	Flatten layer	Dense layer	Output layer
1	28 × 28 × 3	F = 11 $K = 8$ $S = 4$ $P = 0$	F = 3 $K = 8$ $S = 2$ $P = 0$	F = 5 $K = 16$ $S = 1$ $P = 0$	F = 3 $K = 16$ $S = 2$ $P = 0$	-	_	-	-		128	5
2	28 × 28 × 3	F = 11 $K = 8$ $S = 4$ $P = 0$	F = 3 K = 8 S = 2 P = 0	F = 5 $K = 16$ $S = 1$ $P = 0$	F = 3 $K = 16$ $S = 2$ $P = 0$	F = 3 $K = 32$ $S = 1$ $P = 0$	F = 3 $K = 32$ $S = 2$ $P = 0$	-	-		128	5
3	28 × 28 × 3	F = 11 K = 8 S = 4 P = 0	F = 3 $K = 8$ $S = 2$ $P = 0$	F = 5 $K = 16$ $S = 1$ $P = 0$	F = 3 $K = 16$ $S = 2$ $P = 0$	F = 3 $K = 32$ $S = 1$ $P = 0$	-	F = 3 $K = 64$ $S = 1$ $P = 0$	F = 3 $K = 64$ $S = 2$ $P = 0$		128	5

The output layer has 5 hidden units representing five classes of given dataset. The data is normalized using MinMax normalization to scale all input features in the range of [0,1].

Parameters for all models:

Parameters	Values
Hidden layers	Relu activation
Output layer	Softmax activation
Loss function	Cross Entropy
Batch size	32
Learning rate (η)	0.001
Optimiser	Adam
Beta 1 (β ₁)	0.9
Beta 2 (β ₂)	0.999
Epsilon (ε)	10 ⁻⁸
Convergence criterion	Difference between successive epochs is less than or equal to 10^{-4} .

a. Architecture-1 (4 layer architecture)

Layer Name	Output dimensions
Input layer	(224,224,3)
Convolution layer 1	(54,54,8)
Max Pooling layer 1	(26,26,8)
Convolution layer 2	(22,22,16)
Max Pooling layer 2	(10,10,16)
Flatten	1600
Dense layer 1	128
Output layer	5

		A	CTUA	L		
	P	9	0	0	0	1
Confusion matrix on	R E	0	8	1	1	0
validation data	D I	0	2	8	0	0
	C T	0	0	0	10	0
	E D	0	0	0	0	10
Classification accuracy	Tra	ain		V	alidatio	n
	100)%			90%	

b. Architecture-2 (5 layer architecture)

Layer Name	Output dimensions
Input layer	(224,224,3)
Convolution layer 1	(54,54,8)
Max Pooling layer 1	(26,26,8)
Convolution layer 2	(22,22,16)
Max Pooling layer 2	(10,10,16)
Convolution layer 3	(8,8,32)
Max Pooling layer 3	(3,3,32)
Flatten	288
Dense layer 1	128
Output layer	5

		A	CTUA	L		
	P	10	0	0	0	0
Confusion matrix on	R E	0	8	0	2	0
validation data	D I	1	1	7	0	1
	C T	0	0	0	10	0
	E D	1	0	0	1	8
Classification accuracy	Tra	ain		V	alidatio	n
	100)%			86%	

c. Architecture-3 (6 layer architecture)

Layer Name	Output dimensions
Input layer	(224,224,3)
Convolution layer 1	(54,54,8)
Max Pooling layer 1	(26,26,8)
Convolution layer 2	(22,22,16)
Max Pooling layer 2	(10,10,16)
Convolution layer 3	(8,8,32)
Convolution layer 4	(6,6,64)
Max Pooling layer 4	(2,2,64)
Flatten	256
Dense layer 1	128
Output layer	5

		A	CTUA	L		
	P	8	1	0	0	1
Confusion matrix on	R E	1	7	0	2	0
validation data	D I	1	1	8	0	0
	C T	0	0	1	9	0
	E D	0	0	0	1	9
Classification accuracy	Tra	ain		V	alidatio	n
	100)%			82%	

d. Results of best architecture

After comparing the classification accuracy on validation data, we can observe that architecture 1 with 4 hidden layers works best. This section provides results on best architecture and feature map visualization for the same.

• Results on test data

		A	CTUA	L		
	P	18	2	0	0	0
Confusion matrix	R E	1	17	1	1	0
	D I	1	3	16	0	0
	C T	0	1	0	19	0
	E D	2	0	1	1	16
Classification accuracy			86%	•		

• Feature maps for first convolution layer

Fig 2: Image of a Scorpion from Caltech-101 dataset

Fig 3: Feature maps for 8 filters of size 11 \times 11 applied on the above image of scorpion.

• Feature maps for second convolution layer

Fig 3: Selected 8 feature maps out of 16 filters of size 5×5 applied on the above feature maps.

• Visualizing input image patch for maximally activated neuron

To observe which part of the input image is responsible for maximal activation of our last convolution layer, we backtrace from maximally activated neuron through all previous layers.

Observations:

- 1. In all the architectures, the classification accuracy on unseen data is not very high (≤ 90%) while the accuracy on training data for is 100% which indicates that the models are not able to generalize well. Lack of training data could be one reason behind it.
- 2. The feature maps plot of both convolution layers shows how the model is trying to learn different features at different layers. First layer learns simpler features like edges and gradients. Some parts of the feature maps are more activated for a particular color (7th feature map is most activated for blue color). Second layer learns more abstract features, mostly curves and parts of the image.

2. Classification using VGG

_ayer (type) 	Output Shape	Param #
 nput_2 (InputLayer)	[(None, 224, 224, 3)]	 0
lock1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
lock1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
<pre>lock1_pool (MaxPooling2D)</pre>	(None, 112, 112, 64)	0
lock2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
lock2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
lock2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
lock3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
lock3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
lock3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
lock3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
<pre>lock3_pool (MaxPooling2D)</pre>	(None, 28, 28, 256)	0
lock4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
lock4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
lock4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
lock4_conv4 (Conv2D)	(None, 28, 28, 512)	2359808
<pre>lock4_pool (MaxPooling2D)</pre>	(None, 14, 14, 512)	0
lock5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
lock5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
lock5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
lock5_conv4 (Conv2D)	(None, 14, 14, 512)	2359808
lock5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
latten_1 (Flatten)	(None, 25088)	0
ense_1 (Dense)	(None, 5)	12544
tal params: 20,149,829		
ainable params: 125,445		
n—trainable params: 20,024	,384	

• Results on train data

ACTUAL

	P R	50	0	0	0	0
Confusion matrix	E D I C	0	50	0	0	0
		0	0	50	0	0
		0	0	0	50	0
	E D	0	0	0	0	50
Classification accuracy	100%					

• Results on validation data

	ACTUAL					
Confusion matrix	P	10	0	0	0	0
	R E	0	10	0	0	0
	D I	0	0	10	0	0
	C T	0	0	0	10	0
	E D	0	0	0	0	10
Classification accuracy	100%					

• Results on test data

Confusion matrix	ACTUAL						
	P	20	0	0	0	0	
	R E	0	20	0	0	0	
	D I C T	0	0	20	0	0	
		0	0	0	20	0	
	E D	0	0	0	0	20	
Classification accuracy	100%						

GradCam Results:

	Brain	Buddha	Ketch	Leopard	Scorpion
Brain	2 4 6 8 10 37 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10	2 4 6 8 30 32 2- 4- 5- 13-	0 2 4 6 8 10 12 2 - 4 6 8 8 10 12 2 - 4 6 8 10 12	2 4 6 8 30 32 2- 4- 6- 8- 13-	0 7 4 6 5 30 33 2 4 6 6 30 33 3 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Buddha	0 2 4 6 8 10 12	0 2 4 6 8 30 32	0 2 4 6 8 10 12	0 2 4 6 8 10 12 0- 2- 4- 6- 3- 12-	0 2 4 6 8 30 12 2 - 4 6 8 30 12
Ketch	2 2 4 8 8 10 12 2 4 6 8 10 12 2 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 4 5 5 10 12 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 4 8 10 17 2 4 6 8 10 17 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0 7 4 6 9 30 33 2 - 4 - 6 - 10 -
Leopard	0 2 4 6 8 10 12 0- 12- 4- 5- 8- 10-	0 2 4 6 8 10 12 8- 2- 4- 5- 8-	0 2 4 6 8 10 12	0 2 4 6 8 10 12 0 2 4 6 8 10 12 2 7 4 6 8 10 12 2 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 2 4 6 8 30 12 0- 2- 4.
Scorpion	0 2 4 6 8 10 12 0 2 4 6 8 10 12 2 4 6 8 10 12	0 2 4 6 8 10 12 2- 4- 5- 12-	0 2 4 6 8 10 12 0 2 2 4 6	0 2 4 6 8 10 12 0 2 4 6 8 10 12 2 4 6 8 10 12 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 2 4 6 8 10 12 2 - 4 6 8 10 12 2 - 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Observation:

If we consider the diagonal heatmaps of the above classes, then it somewhat represents the original shape which the model is trying to learn. The grid (1,1) clearly represents the shape of the brain. The other non-diagonal value is what the heatmap corresponds to the features which the model learns to distinguish other classes from that particular class.

Using Guided BackProp:

Neuron number	Leopard	Buddha	Scorpion	Ketch	Brain
93619	0 33 30 73 100 133 130 173 200 0 50 100 150 200	0 33 30 75 100 113 113 100 0 9 180 150 260	0 33- 30- 73- 100- 113- 113- 200- 0 59 180 150 200	0 23 30 73 100 113 100 113 200 0 10 150 200	0 23 50 130 130 130 0 50 105 105 105 105 105 105 105 105 1
43517	0 23 35 160 113 115 116 117 200 0 50 180 150 200	0 23 50 100 113 113 113 113 113 200 50 180 150 100	0 23 50 75 100 113 113 113 200 50 180 150 200	0 23 50 130 130 130 200	0 33 5 50 100 103 113 113 113 113 113 115 115 115 115 11
67482	0 23 30 73 120 130 130 130 131 200 0 100 110 210	0 23 30 73 100 130 130 130 130 130 130 130 130 13	0 23 30 30 30 30 313 313 313 313 314 315 316 317 317 317 317 317 317 317 317 317 317	0 25 30 25 26 20 110 110 110 110 110 200 30 180 180 200	35 - 30 - 30 - 310
23476	0 23 30 30 72 100 105 105 107 107 108 109 109 109 109 109 109 109 109 109 109	0 23 50 72 100 135 136 137 138 0 0 180 180 280	0 23 30 72 100 113 1130 1131 200 0 69 189 159 269	0 23 30 72 100 113 110 113 200 0 50 160 150 250	0 33 5 50 75 180 180 180 180 180 190 190 190 190 190 190 190 190
5987	0 23 - 30 - 72 - 73 - 74 - 74 - 74 - 74 - 74 - 74 - 74	0 23 30 73 200 130 130 130 130 0 90 180 180 280	0 23 30 72 72 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	0 23 30 25 26 20 113 110 113 200 0 90 180 150 260	0 10 10 100 115 110 110 110 0 110 0 110 11

Observations:

The first neuron (93619) is the maximally activated neuron among all other neurons. On tracing back to the filter, it can be clearly seen that this particular neuron (and its associated feature maps in the previous layers) is responsible for

learning a better overall representation of each of the classes. The other neurons are randomly selected and it is observed that each neuron tries to learn some of the patch/portion of the input images.