ENGINEERING ENERGY 19971017 114

VOLUME 1A EXECUTIVE SUMMARY

Y STEEDSTEEL BYLTESIENT B

Approved to public released

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

Engineering Design & Management Inc.

23 July 1982

U.S. Department of the Army District Corps of Engineers 6014 U.S. Post Office and Courthouse Omaha, Nebraska

Attn: Mr. Charles Pribyl

Re: DACA 45-80-C-0143

File: 15195(1)

Forwarded for your review and comment is the final submittal for the Fort Benjamin Harrison Energy Engineering Analysis for the above referenced contract.

Very truly yours,

EDM, INCORPORATED

James L. Clowers, P.E.

Vice President

JLC:ge

STUDY OUTLINE

VOLUME 1A EXECUTIVE SUMMARY

Section	Title
1.0	GENERAL DISCUSSION
1.1 1.2 1.3 1.4 1.5 1.5.1 1.5.2 1.6	Space Utilization Building 40, Bowling Center Barracks 420 & 421 Interior Insulation of Masonry Walls Electric Ignition and Automatic Stack Dampers Electric Ignition Automatic Stack Dampers Biomass Maintenance
2.0	ENERGY PLAN
2.1 2.2 2.2.1 2.2.2	Energy Projects Accomplished To-Date by Installation ECIP & Increment G Summary ECIP Recommendations Increment G Recommendations
3.0	CURRENT & FUTURE ENERGY USAGE SUMMARY
3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2	Historical Energy Consumption Group Energy Consumption Individual Building Energy Consumption Energy Consumption Summary Future Energy Consumption Summary of Proposed Savings Future Energy Costs
3.2.3 3.2.4	Historical Consumption and Future Goals (MBTU/YR/D.D) Historical Consumption and Future Goals (MBTU/YR/SF/D.D)

VOLUME I SECTIONS 1.0 THROUGH 6.0

Title

Section

1.0	INTRODUCTION - SCOPE OF WORK
1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.2	Scope Overview Engineering Analysis (Increments A & B) and ECIP's Previous Studies Historical Energy Consumption Basewide Plan ECIP Selection Procedure ECO Check List
2.0	OVERVIEW OF FACILITY
2.1.1 2.1.2 2.2 2.2.1 2.3	Location Mission Facilities Population and Specialization Future Population Projections Future Facilities Projections Weather Data
3.0	HISTORICAL ENERGY CONSUMPTION
3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.4 3.2	MBTU's Per Fuel Type - Basewide Consumption #2 Oil Natural Gas Electricity - MBTU's KW Demand Coal Military Family Housing Consumption
4.0	ENERGY DISTRIBUTION SYSTEMS
4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.4 4.4.1 4.5 4.5.1	Electrical Recommendations Steam Recommendations Chilled Water Recommendations Natural Gas Recommendations Metering Plan Recommendations
5.0	OTHER DISTRIBUTION SYSTEMS
	Water Recommendations Sewerage Recommendations

6.0	CENTRAL PLANTS
	Building 2 - Discussion & Recommendations
VOLUME I	- SECTION 7
7.0	INSTALLATION DESCRIPTION - PER TYPICAL BUILDING
VOLUME I	- 8.0 EMCS
8.0 -	ENERGY MONITORING AND CONTROL SYSTEM
8.3.8 8.3.9	Demand Limiting RF Interface ECIP Economic Analysis EMCS Building by Building Analysis
VOLUME I	- SECTION 9.0 BIOMASS
9.0	INCREMENT C
9.1.1 9.1.1.1 9.1.1.2 9.1.1.3 9.1.2	Biomass Types Available Sawdust Pellets Wood Chips Assessment of On-Base and Surrounding Forests Potential Fuel Quantities Available from Army Forests Economic Analysis

VOLUME II - APPENDIX I

- 1.0 Master Building List
- Master Building List by Category Code 1.1
- Energy Consumption Table for Existing (Typical) Facilities New Construction Energy Consumption Projections 2.0
- 3.0

VOLUME III - APPENDIX 1 (E-CUBE DATA - PART 1)

Output Sheets

VOLUME III - APPENDIX 1 (E-CUBE DATA - PART 2)

Output Data

VOLUME III - APPENDIX 1 (E-CUBE REFERENCE DATA)

Input Sheets

VOLUME III - APPENDIX 2 (REFERENCE DATA - PART 1)

Survey Sheets, Buildings 1-429

VOLUME III - APPENDIX 2 (REFERENCE DATA - PART 2)

Survey Sheets, Buildings 431-1031

VOLUME III - APPENDIX 2 (REFERENCE DATA - PART 3)

Scope of Work and Modifications to Contract DACA 45-80-C-0143
E-Cube Reference Calculations
Indianapolis Weather Tape
ECIPS and Related Energy Projects Accomplished To Date by Installation

ECIP VOLUMES

EMCS

Building 1 Improvements Alter Harrison Village Building 400 Improvements

INCREMENT G (ONE VOLUME)

VOLUME 1A EXECUTIVE SUMMARY

TABLE OF CONTENTS

		Page
1.0	GENERAL DISCUSSION	1-1
1.1 1.2 1.3 1.4 1.5 1.5.1 1.5.2 1.6	Space Utilization Building 40, Bowling Center Barracks 420 and 421 Interior Insulation of Masonry Walls Electric Ignition and Automatic Stack Dampers Electric Ignition on Natural Gas Furnaces & Boilers Automatic Stack Dampers on Furnaces & Boilers Biomass Maintenance	1-2 1-3 1-3 1-4 1-4 1-5 1-6 1-7
2.0	ENERGY PLAN	2-1
2.1 2.2 2.2.1 2.2.2	Energy Projects Accomplished To Date by Installation ECIP and Increment G Summary ECIP Recommendations Increment G Recommendations	2-5 2-6 2-7 2-26
3.0	CURRENT & FUTURE ENERGY USAGE SUMMARY	3-1
3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.2.4	Historical Energy Consumption Group Energy Consumption Individual Building Energy Consumption Energy Consumption Summary Future Energy Consumption Summary of Proposed Savings Future Energy Costs Historical Consumption and Future Goals (MBTU/YR/DD) Historical Consumption and Future Goals (MBTU/YR/SF/DD)	3-2 3-2 3-6 3-6 3-12 3-12 3-16 3-16

VOLUME 1A - EXECUTIVE SUMMARY

Figures	Page
3.1-A	3-4
3.1.1-A	3-5
3.2.2-A	3-15
3.2.3-A	3-18
3.2.4-A	3-19

1.0 GENERAL DISCUSSION

1.0 General Discussion

Although Fort Benjamin Harrison has substantially reduced basewide energy consumption during the past six years, and with the recommended energy plan (see Section 2) proposed by this study should exceed TRADOC goals for FY85, some additional comments and recommendations are included in the following paragraphs to assist installation personnel in future planning.

1.1 <u>Space Utilization</u>: This is a very sensitive subject which we hesitate to bring up because it inevitably triggers controversy. However, we feel a few observations and suggestions are appropriate at this time.

The Finance Center was constructed to house a much larger work force due to a larger Army, a manual accounting system, and a hard copy filing system. Through computerization of the accounting system, this work force has been drastically reduced, and through microfische technique the file storage space requirements have been reduced substantially. Consequently, there are large areas which are not utilized at all, and other areas where the distance between people and furniture is excessive. In some cases, one person with a desk may occupy an entire 24' x 24' bay area. This requires the entire space in the Finance Center be conditioned and does not appear to be an efficient use of energy.

We predict that if the space requirements of all the functions in the Finance Center were evaluated against Army standards, and they were compressed into that space, one entire floor would become vacant. While that space could be closed off and heating temperatures reduced to just above freezing, this alternative is not a desirable use of the space. The building is serviced by a central plant, which already has excess capacity, and is using the least expensive energy available. Therefore, the use of Building 1 should be maximized.

Previously, this excess space has been recommended for excess space conversion to classrooms to meet shortages in school facilities. This idea has been discarded because classrooms require building partitions, and these partitions would result in air flow problems. In addition, Building l is geographically removed from the main school area which could cause problems with coordination and control. If the remote location is not a problem, then the HVAC system can be altered to correct air flow.

There are many functions scattered over Fort Benjamin Harrison which could operate out of Building 1 just as effectively. For example, the headquarters function, including the Command Section and most of the staff functions in Buildings 600 and 601, as well as Legal, I.G., etc. in other buildings could all be grouped together on one floor within Building 1 and their current locations converted to either classrooms or other academic administrative functions

Recognizing the difficulty in assembling an unbiased study group at Fort Benjamin Harrison, it is recommended that an outside party study space utilization. Perhaps one of the Army Intermediate or Senior Services School would take the project on as a staff study or thesis topic. Otherwise, a consultant group should be hired.

1.2 <u>Building 40, Bowling Center</u>: Personnel entering the snack bar area of the bowling center must do so through the front door, which has a vestibule to minimize energy losses. However, when personnel leave the snack bar, most of them do so through the emergency fire exit on the west side, which saves a few steps to the parking lot. In the winter, this causes the building to be flooded with cold air every few minutes by the prevailing north wind. In the summer, valuable conditioned air is lost and replaced with the hot, humid air. Since humidity control is so vital in bowling alleys to prevent line damage, this practice causes an extra load.

It is recommended that the west entrance be labeled for emergency use only, and its use restricted to that. If this is undesireable, or impractical due to enforcement, a vestibule should be constructed to help reduce energy losses.

1.3 <u>Barracks 420 and 421</u>: The following paragraphs were transmitted to the Fort Benjamin Harrison Director of Engineering and Housing in letter dated 15 December 1981:

The existing heating system in Buildings 420 and 421 is hot water finned tube radiation, piped in a reverse return circuit. This provides equal piping distance to each unit and should put all units in flow balance. Balancing valves are also provided at the return end of all elements and a manual radiator valve is provided at the supply end. If the balancing valve at each element is adjusted for proper flow the system will provide even heating throughout the building.

However, the flow rates are very small and the velocity very low resulting in an almost impossible balancing task. All runouts are 3/4" in size with a required flow of .3 GPM to 2 GPM. The 3/4" pipe runouts have a flow capacity of up to 5 GPM if not balanced properly. Any out of balance first floor units will allow greater flow than required thus reducing the flow in the longer piping branches serving the third floor which has the greater flow requirement.

It was indicated by the Company Commander in Building 421 that the third floor is always cold and the first floor is always too hot. He and the Chief Clerk indicated that they were instructed by DFAE never to close the manual radiator valves because it would cause balance and heating problems in other areas of the building. However, the opposite is true. Any closed or partially closed valve in the overheated areas will allow more water to reach the colder areas and improve the heating output in this latter area.

The immediate short term solution is to instruct the occupants to use the manual radiator valve to reduce the overheating and thus correct the overall problem. Individuals are presently freezing on the third floor and occupants on the first floor are opening windows to keep from overheating.

The other apparent heating problem and energy waster is the summer ventilation system consisting of eight large centrifugal exhaust fans with 48" x 48" gravity backdraft dampers. These are loose and fail to stop a large cold draft from entering the building in the winter months. The cold

air spills into the rooms through the grilles installed for exhausting the space during the summer.

Rather than close off more than 100 exhaust grilles, the eight roof-mounted exhaust fans should be winterized. The short term solution is to close off the openings in the fan above the roof or close off the opening above the ceiling of the third floor with a removable insulating panel.

We recommend the short term solutions because of the programmed replacement of the heating system with a new combination heating/cooling system.

1.4 <u>Interior Insulation of Masonry Walls</u>: We were requested to investigate the feasbility of insulating existing masonry walls. We first looked at a theoretical wall with windows and no perimeter heating as the most simple, least expensive application. The treatment is 1" of styrofoam insulation applied directly to the masonry with 1" steel furring strips covered with 1/2" drywall which is taped, floated and painted. The estimated cost is \$3.06/sq. ft. installed. This treatment lowers the U value from 0.29 to 0.126; Delta U = 0.164. Estimated savings per square foot for buildings on central plant steam are as follows:

Savings = $\frac{1 \text{ SF x 0.164 x 5577 degree days x 24 hours}}{0.604 \text{ x 166}} \times 0.71 =$

= .0252 MBTU/year/SF

 $0.0252 \times \$3.80 \text{ MBTU} = \$0.096/\text{year}$

Total Benefit = $0.096 \times 14.777 = 1.42

B/C = 1.42/3.06 = 0.46 (not acceptable)

We did not continue to evaluate other masonry walls, because adding the complication of a perimeter heating/cooling system which would require additional costs (i.e. removal, reinstallation) would only reduce the E/C and B/C ratios. The only reason the exterior applications to Building 1 and 400 meet the criteria is because of the concurrent reduction of large window areas. This exterior treatment is related to the window removal because of the need to present a uniform finished surface.

1.5 Electronic Ignition and Automatic Stack Dampers on Furnace Boilers: The economic feasibility of furnace and boiler retrofit to these energy saving features is closely related to the age of the equipment. The limitation of this study to typical buildings did not permit a complete evaluation. The following analysis and guidelines are presented for the Facility Engineer's use in evaluating equipment for retrofit. The age guidelines are based upon the general economic life of 15 years and should be replaced with first hand knowledge of actual conditions.

1.5.1 Electronic Ignition on Natural Gas Furnaces and Boilers:

The average standing pilot in a residential gas furnace burns 1 - 2 cubic feet of gas per hour. For this analysis, 1.5 CFH will be used.

1.5 CFH x 24 hr/day x 365 days/yr =
$$13,140$$
 CF/yr.

$$13,400 \times 1.031 \text{ MBTU}/1000 \text{ CF} = 13.5 \text{ MBTU}$$

13.5 MBTU x 2.84 =
$$$38.50/year$$

Estimated cost of electric ignition conversion installed is \$150.

$$CWE = 150 \times (1.05)^2 = $165$$

Design = 150 x 1.06 = \$175

$$38.50/yr \times 13.112 = 505$$

$$B/C = 505/175 = 2.9$$

$$E/C = 13.5/165 = 81.2$$

Payback =
$$$165/$38.50 = 4.3$$

If the economic life of a furnace or boiler is 15 years, the installation of electronic ignition on any furnace 10 years old or older cannot be justified. However, anything installed in the last 10 years should be converted; all new purchased equipment should contain this feature.

1.5.2 Automatic Stack Dampers On Furnaces and Boilers:

Manufacturers project 12% savings for automatic stack dampers. For this analysis 10% will be used.

A typical furnace or boiler will be assumed to be 150,000 BTUH. Assuming that it is properly sized, the estimated annual consumption becomes:

$$0.150 \times 5577 \times 24 \times 0.71 \times 1.56 = 421 \text{ MBTU/year}$$
 66 x 0.8 eff

 $421 \times 10\% = 42.1 \text{ MBTU saved}$

Estimated cost of automatic stack dampers installed is \$150.

For ECIP Economic Analysis:

CWE =
$$$150 \times (1.05)^2 = $165$$

Design = $$165 \times 1.06 = 175

$$B/C = 1568/175 = 8.96$$

$$E/C = 42.1/0.165 = 255$$

Payback =
$$$165/$119.50 = 1.4 years$$

Any furnace or boiler with electronic ignition which does not presently have an automatic stack damper should have one installed. Any new installation should be purchased with both features.

- 1.6 <u>Biomass</u>: Evaluation of existing biomass forms revealed that none can compete with the present coal operation. However, should a costly modification to the central plant become necessary to meet some new EPA criteria, the biomass options should be evaluated again. There is a study under way (funded by a State of Indiana grant) which is evaluating a new form of densified biomass to compete with coal. This study should be closely followed and the results evaluated against the information furnished in Volume 1, Section 9.
- 1.7 <u>Maintenance</u>: The standard of maintenance at Fort Benjamin Harrison is relatively good in those areas affecting energy conservation. Some deterioration of weatherstripping and insulation, and a few water and steam leaks were observed, but these were relatively minor in nature. This observation is important because no amount of ECIP work will actually result in energy savings if it is allowed to deteriorate, or if the energy is lost down the drain or into the atmosphere before the ECO has the opportunity to save it.

For example, the energy lost in a gallon per minute leak is as follows:

Hot Water:

Some of the leaks are $140^{\circ}F$ domestic hot water and others are $180^{\circ}F$ heating system water, so $160^{\circ}F$ will be used. Cold water temperature will be assumed to be $60^{\circ}F$.

Boiler efficiency, assume 0.75.

1 gpm (8.34 lb/gal) (160-60) OF (1 BTU/lb/OF)
.75

- = 1112 BTU/min.
- = 66720 BTUH
- = 584.5 MBTU per year

Steam:

1 GPM water per minute as steam Steam at 212°F, atmospheric pressure = 1150 BTU/lb

 $1150.4 \, BTU/1b \, (8.34 \, 1b/gal) \, (1 \, gal/min) =$

- = 9594.3 BTU/min
- = 575.658 BTUH
- = 13.8 MBTU/day
- = 5037 MBTU per year

An observation which can be made concerning maintenance personnel world—wide is that most do not really understand energy conservation and the relative importance of each element of the building system. They do not understand concepts such as infiltration and its effect on energy. We find the personnel at Fort Benjamin Harrison to be no exception to this general statement. Therefore, we recommend a short energy conservation awareness training session for maintenance personnel at the working level.

Use a simple heating and cooling load calculation to show the difference in percent of energy used for properly functioning building systems and those which have deteriorated. Show what hot or chilled water or steam leaks cost in terms of total building energy consumption. Show why doors and windows should fit tightly, why worn out weatherstripping should be replaced, and cracks and holes caulked. We think personnel who are aware of the significance of the problem are more apt to correct it when they see it.

2.0 ENERGY PLAN

2.0 <u>Energy Plan</u>

The following section enumerates feasible energy measures which have been accomplished to date and those proposed as future ECIP and Increment G projects.

The ECIPS which have been accomplished to date consist primarily of architectural modifications to buildings and family housing quarters. For example, insulation, window replacement, and installation of storm windows have been accomplished in several of FBH's facilities. As a result of energy conservation measures which have been undertaken since FY75, Fort Benjamin Harrison has experienced a substantial reduction in energy consumption. However, through the proposed ECIP and Increment G project, this installation should experience a further reduction in energy consumption and exceed Tradoc goals for FY85 (see Section 3 future projections). Section 2.1 lists the energy projects accomplished to date by installation and Section 2.2 summarizes proposed ECIP and Increment G projects. Section 2.2.1 provides 1391, 1391c, and an Economic Analysis Summary for each ECIP proposed, and section 2.2.2 presents feasible Increment G projects. The following paragraphs briefly describe these proposed ECIP and Increment G projects.

ECTPS

- A. Installation of a medium-sized Energy Monitoring and Control System (EMCS) and RF are proposed for FBH. The buildings and systems recommended for EMCS and RF interface are currently operating on independent control systems which do not have the capability to optimize start/stop operation, accurately setback temperature, or initiate continuous adjustments to systems which are required to satisfy the given conditions and concurrently reduce energy consumption. This ECIP package recommends an integrated system to accomplish existing control deficiencies.
- B. Although several previous ECIPS have proposed window modifications, an additional ECIP package is recommended for 58 buildings, along with ceiling insulation. This project recommends installation of thermopane glazing and storm windows in existing newer windows, and complete window replacement in badly deteriorated windows. Ceiling insulation (R-value of 30) is proposed for those buildings with little or no insulation.
- C. Due to gross floor area (approximately 1,600,000 sq. ft.) in Building 1 this facility represents a major source of Fort Benjamin Harrison's energy requirements. Therefore, modifications to Building 1 are essential for significant reductions in basewide energy consumption. Through architectural and mechanical modifications, 122,674 MBTU savings per year are predicted for this building. The recommended alterations include a reduction in window area, new insulated window units, exterior wall insulation, conversion to variable air volume (VAV) systems and/or economizer capabilities, new controls, and reduction in outside air.
- D. The military family housing units in Harrison Village have high energy requirements due to minimum or no insulation, lack of weatherstripping, deteriorated siding, and loose-fitting windows. As a result, an ECIP package is recommended to correct these problems and, in turn, reduce

energy consumption.

E. In addition to Building 1, Building 400, Gates-Lord Hall, represents a large facility with excessive window areas and no wall insulation. Architectural modifications consisting of a reduction in glass area, new insulated and tinted window units, and exterior wall insulation are proposed for this facility.

Increment G

- A. Flow restrictors for all bachelor housing quarters containing showers are recommended to reduce domestic hot water energy requirements.
- B. The existing constant volume mechanical system in Hawley Clinic requires reheat when the space's cooling load is less than that of the supply air. Since this facility was designed to accommodate a fully operational hospital, and is currently operated as an outpatient clinic with an emergency staff, the cooling load is substantially less than the design load. The proposed ECIP package consists of conversion from reheat zones to variable air volume (VAV) zones, installation of an enthalpy control economizer system (ECES), and a separate emergency area to allow independent operation from the large clinic fan system.
- C. Building 2, the Central Plant, requires a blowdown heat recovery system on its boilers to prevent waste heat from being rejected into the sewer system. This recommended system reclaims waste heat, thereby reducing basewide energy consumption.
- D. In addition to bachelor housing quarters, flow restrictors are also recommended for military family housing units to reduce domestic hot water usage.
- E. A separate Increment G project is proposed for programmable thermostats in all military family housing units. These thermostats provide night setback capabilities, and temperatures can be programmed by DFAE personnel.
- F. The hot water heaters in most military family housing units contain only a minimal insulation. Therefore, it is recommended that 349 hot water heaters receive 1-1/2" of fiberglass blanket insulation, and one heater (in Building 900) receive 2" of rigid insulation.
- G. Several furnaces require replacement, and the proposed replacement units are gas furnaces which are properly sized to the building's heating load. The existing furnaces utilize #2 oil, and this fuel costs \$9.88/MBTU, as comapred to \$2.84/MBTU for natural gas.
- H. Two separate projects, one for boilers and the other for a furnace replacement, are recommended for seven military family housing quarters. As described in the preceding Increment G project, these recommended boilers and furnace are gas-fired and properly sized for the building's heating load.

- I. An analysis of Buildings 54, 433, 602, 609, and eight family housing units indicates that energy consumption and costs can be reduced by disconnecting their oil-fired boilers and adding these buildings to the central plant steam system. This recommendation is presented as two separate Increment G projects.
- J. Although boiler replacement cannot be justified for several family housing units, conversion to gas burners provides substantially reduced energy costs. Gas burners are proposed for fourteen two-family housing units.

2.1 ECIPS ACCOMPLISHED TO DATE BY THE INSTALLATION

PROJECT NUMBER	MBTU SAVINGS						
882.010 FY77 Insulation - FH 997.500 FY77 Insulation & Elect. Alt. 104.200 FY79 Replace Windows 111.000 FY80 Insulation & Storm Windows Subtotal	2,000 3,158 96,000 101,158 MBTU						
OTHER ENERGY RELATED PROJECTS							
FY81 DMAR & BMAR	<u>17,731</u> MBTU's						
Total	118,889 MBTU's						

ECIPS savings were taken from "FBH Facilities Energy Plan" (March 81). Calculations for DMAR and BMAR savings were estimated and these calculations appear with the reference data for this study [Volume 3, Appendix 2 (Reference Data - Part 3)].

2.2 ECIP & INCREMENT G SUMMARY

ECIPS	E/C	B/C	Investment K\$
EMCS - FY85	42	1.1	3102
Window Treatment - Insulation - FY85 A	30	2.6	666
Building 1 Improvements - FY84	30	1.8	4117
Alter Harrison Village - FY85	20	1.7	1290
Building 400 Improvements - FY85	15	1.1	1259
Subtotal			10434
Increment G - Estimates Based on FY82 \$	E/C	B/C	<u>Investment K\$</u>
Flow Restrictors (Bachelor Housing)	171	8.6	23
Alter Clinic HVAC	168	5.5	93
Blowdown Heat Recovery - Building 2	160	6.2	26.5
Flow Restrictors (MFH)	158	7.6	10.5
Programmable Thermostats (MFH)	151	8.7	59
Add HWH Insulation	121	4.3	10
Replace 37 Oil Furnaces with Gas	24	9.4	203 MCA
Replace/Convert Oil Boilers (MFH)	24	7.8	40.5
Convert 4 Buildings from #2 Oil to CP	22	8.5	74
Replace Oil Furnace (MFH)	16	6.4	4.7
Convert Oil Boilers to CP Steam (MFH)	15	3.6	119 mc p
Convert Oil Boilers to Natural Gas		12.1	74
Subtotal			737.2
Total			11171.2

2.2.1 ECIP RECOMMENDATIONS

1. COMPONENT							1	DATE
ARMY	FY 19	85 MILITARY CON	NS I RUC	TION PE	KOJEC	- D	2	0Ju1y82
3. INSTALLATION Fort Benjam		cation ison, Indiana			y Moni	itori	ing and (EMCS)	
5. PROGRAM ELE		6. CATEGORY CODE	7. PRO.	ECT NUMB	ER	8. P	ROJECT CO	ST (SOCO)
Т 403000							3102	
		9. CO	ST ESTIMA	TES			-	
		ITEM		U/N	QUAN	TITY	UNIT COST	COST (SOOO)
Install Cen EMCS Hardwa Install Bui RF Building Mechanical	re Iding S Total Modific	Systems		LS LS LS LS				1057 740 988 16
Sub	total							2813
Contingency (5%)								141
Total Contract Cost								2954
Supervision	. Inspe	ection & Overhead	(5%)					148

and Control System (EMCS) to include the central system and facility to house it, field interface devices, building system sensors and controllers, radio frequency (RF) interface and controls and modifications to building controls needed to make the system effective. See 1391c for a definitive list of buildings involved and system proposed.

B/C: 1.1; E/C: 42; Payback: 13.9 years; Savings: 130,421 MBTU, \$223,525/year.

11.REQUIREMENT: This project is required in order to help meet the Army's stated goals for energy use reduction in existing facilities. This project is submitted under the Energy Conservation Investment Program.

CURRENT SITUATION: The buildings and systems proposed for EMCS and RF interface presently are operating on independent control systems which do not have the capability to optimize start/stop operations, accurately setback temperature, or make the continuous adjustments necessary to reduce energy consumption to the minimum required to satisfy given conditions. The Post does not currently have a central computer system capable of providing that capability.

IMPACT IF NOT PROVIDED: If this project is not completed, energy conservation will continue at its present rate as costs rise and the supply diminishes.

DD 1000 1391

Total Requested

PREVIOUS ED

2-8

3102

1. COMPONENT FY 19.85 MILITARY CONSTRUCTION PROJECT DATA 20Ju1y82 ARMY 3. INSTALLATION AND LOCATION Fort Benjamin Harrison, Indiana S. PROJECT NUMBER 4. PROJECT TITLE Energy Monitoring and Control System (EMCS) T403000 This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required. DANIEL W. FRENCH MG, USA Commanding April 1985 Index: 3117 Estimated Construction Start: Estimated Midpoint of Construction: Index: (3324) October 1985 Index: 3357 April 1986 Estimated Construction Completion:

	FOR O	FFICIAL U	SE ONLY (HEN DATA	IS ENTER		
. COMPONENT ARMY	FY 1985 MI	LITARY	CONSTRU	CTION PI	ROJECT	DATA	OATE 20July82
INSTALLATION	AND LOCATION						
Fort Benjam	<u>nin Harrison,</u>	Indiana				. PROJECT	Carana Ca
. PROJECT TITLI	E				٦	ŕ	
Energy Moni	itoring and C	ontrol Sy	stem (EMC	s)	<u>l</u> _	T4030	000
			•				
		Buildi	ngs Invol	ved			
			EMCS				
	1	35	127	436	614		
	2	36	300	460	618		
	13 17	38 40	400 410	466 470	663 664		
	18 20	46 54	422 424	479 500	665 669		
	28	55	428	529	700		
	31 32	100 101	433 434	609 610	705		
	33	126	435	611			
,		RF	Interfac	е			
	26	206	228	474	622		
	29 39	207 212	229 237	475 481	707 708		
	43	213	332 427	501 602	710 711		
	108 109	218 219	441	604	800		
	116 204	222 223	452 473	616 619	803 805		
		_ _					

ECIP ECONOMIC ANALYSIS SUMMARY

LOCATION: FORT BENJAMIN HARRISON

POST

FY 1985

ENERGY MONITORING AND CONTROL SYSTEM PROJECT: PREPARED BY: NEB ECON. LIFE: 15 YRS. DATE: 1/15/82 COST 1. Non-recurring Initial Capital Costs: \$ 3,102,000. a. Current Working Estimate 177,000. b. Design c. Salvage \$ 3,279,000. d. Total BENEFITS *2. Recurring Benefit/Cost Differential Other Than Energy: -248,000./YRa. Annual Labor Decrease (+)/Increase (-) \$ 0./YR b. Annual Material Decrease (+)/Increase (-) 0./YR \$ c. Other Annual Decrease (+)/Increase (-) -248,000./YRd. Total Costs 7.980 e. 10% Discount Factor \$-1,979,040. f. Discounted Recurring Cost (d x e) 3. Recurring Energy Benefit/Costs: a. Type of Fuel: ELECTRICITY √ (1) Annual Energy Decrease (+)/Increase (-) 73,461.MBTU 1.83/MBTU (2) Cost per MBTU 139,924./YR (3) Annual Dollar Decrease/Increase ((1)x(2)) / 12.278 (4) Differential Escalation Rate (7%) Factor (5) Discounted Dollar Decrease/Increase \$ 1,717,987. ((3)x(4))b. Type of Fuel: ELECTRICAL DEMAND 0.MBTU (1) Annual Energy Decrease (+)/Increase (-) 0.00/MBTU (2) Cost per MBTU 13,940./YR \$ (3) Annual Dollar Decrease/Increase ((1)x(2)) 12.278 (4) Differential Escalation Rate (7%) Factor (5) Discounted Dollar Decrease/Increase \$ 171,155. ((3)x(4))c. Type of Fuel: COAL 42,296.MBTU (1) Annual Energy Decrease (+)/Increase (-) 5.06/MBTU (2) Cost per MBTU 214,018./YR (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (5%) Factor 10.798 (5) Discounted Dollar Decrease/Increase \$ 2,310,966. ((3)x(4))d. Type of Fuel: NATURAL GAS 6,430.MBTU (1) Annual Energy Decrease (+)/Increase (-) 4.21/MBTU (2) Cost per MBTU 27,070./YR (3) Annual Dollar Decrease/Increase ((1)x(2)) 13.112 (4) Differential Escalation Rate (8%) Factor √ (5) Discounted Dollar Decrease/Increase Ŝ 354,946. ((3)x(4))

e. Type of Fuel: #2 OIL		5 00 4 NOTE
(1) Annual Energy Decrease (+)/Increase (-)		5,234.MBTU
(2) Cost per MBTU	Ş	14.63/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	76 , 573 ./ YR
(4) Differential Escalation Rate (8%) Factor		13.112
(5) Discounted Dollar Decrease/Increase		
((3)x(4))	\$ 1	.,004,025.
f. Discounted Energy Benefits		
(3a(5)+3b(5)+3c(5)+3d(5))	\$ 5	5,559,079.
4. Total Benefits (Sum 2f + 3e)	\$ 3	,580,039.
5. Discounted Benefit/Cost Ratio (Line 4/Line ld)		1.1
6. Total Annual Energy Savings		
(3a(1)+3b(1)+3c(1)+3d(1))		130,421.
7. E/C Ratio (Line 6/Line la/1000)		42.
8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3))	\$	223,525.
9. Pay-back Period ((Line la - Salvage)/Line 8)		13.9
J. ray-back relied (\limit ia balvage// bline of		-

*IAW HNDSP80-013-EDME the annual operation and maintenance is to be estimated at 10% of the original system cost unless other data is available. Location of the MCR in the central plant where there is a cross manning capability from an existing 24 hour operation will significantly reduce manpower requirements. We expect that reduction to be in the neighborhood of 20 - 25 percent. Therefore, O&M costs are estimated at 8% of the original system cost.

ARMY	1985 MILITARY CON	ISTRUCTIC	N P	ROJEC	T D.	ATA	Jan 82
3. INSTALLATION AND L	CCATION	4.	PROJE	כד דודָנ	٤		
Fort Benjamin Ha		Wir	idow	Treatm			ion (ECIP)
S. PROGRAM ELEMENT	6. CATEGORY CODE	7. PROJECT	NUM8	ER	8. PF	CO TOBLOS	ST (SOCO)
	Various	40200	0			666	
	9. COS	T ESTIMATES					
ITEM			U/M	QUANT	TTY	UNIT COST	COST (SOO)
Install Storm Wi	ndows		SF	45,	817	4.75	218
Add Thermopane				10,	395	14.27	148
Install New Windows				7,	906	17.44	1:39
Install Ceiling Insulation				140,	450	0.69	<u>97</u>
Sub	Total						604
Contingency (5%)							_30

10. DESCRIPTION OF PROPOSED CONSTRUCTION: Project involves energy conservation measures on 58 buildings (see 1391C for comprehensive list and detailed treatment). Work consists of window treatments ranging from storm windows on those buildings where window condition allows and adding thermopane glazing to existing windows in newer buildings with single glazing at present, to complete replacement of windows and frames in those too badly deteriorated. Several buildings have been identified with little or no ceiling insulation, and this project provides insulation to R-30.

B/C Ratio: 2.6; E/C Ratio: 30; Payback: 6.1 years; Savings: 19,761 MBTU, \$108,647/year.

11. <u>REOUIREMENT</u>: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

<u>CURRENT SITUATION</u>: The buildings listed have been surveyed to identify deficiencies which result in excessive energy consumption. Many have been found with single pane glass in older loose fitting windows and with little or no insulation in the ceilings.

IMPACT IF NOT PROVIDED: If this project is not completed, energy
consumption will continue at its present rate as costs rise and the supply
diminishes.

Total Contract Cost

TOTAL REQUEST

Supervision, Inspection and Overhead (5%)

634

32

666

1.	COMPONENT	FY 1985 MILITARY CONSTRUCTION PROJECT	3	2. DATE			
	ARMY ·		1962 MILITARY CONSTRUCTION PROJECT DATA				
3.	INSTALLATION	AND LOCATION					
	Fort Benjam	in Harrison, Indiana					
4.	PROJECT TITLE		S. PROJE	CT NUMBER			
	Window Treat	tment, Insulation (ECIP)	402	2000			

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DANIEL W. FRENCH MG, USA Commanding

Estimated Construction Start:

April 1985

Index:

3117

Estimated Midpoint of Construction:

July 1985

Index:

3183

Estimated Construction Completion:

October 1985

Index:

3269

DD 1000 1391c

PREVICE 2-

USED INTERNALLY

PAGE NO. 2/4

1. COMPONENT	FY 1985 MILITARY CONSTRUCTION PROJECT DATA							
ARMY	5 Jan 82							
3. INSTALLATION AND LOCATION								
·								
Fort Benjam	<u>in Harrison, In</u>	diana						
4. PROJECT TITLE				S. PROJECT	RJBMUN			
Window Thos	tment, Insulati	on (ECID)		402	2000			
willdow irea	unent, Insurati	On (LCIF)		1 402				
		BUILDING	LIST					
	MINDOM	TDEATMENT & C	EILING INSULATION					
	WINDOW	INLAMENT & C	EIEING INSOLATION					
	SF	SF	SF	SF				
-4.	Roof	Storm	Add	New				
<u>B1dg. #</u>	<u>Insulation</u>	Windows	Thermopane	<u>Windows</u>	<u>Fuel</u>			
13	-	780	-	-	Coa 1			
17	8,650	1095	-	-	Coal			
28	-	949	-	-	Coa 1			
33	-	374	-	-	Gas			
36 38	18,300	- 196	-	-	Coal Gas			
39	-	128	<u>-</u>	_	Gas			
43	-	-	262	-	Gas			
44	.	-	96	-	Gas			
45	0,300	-	96	-	Gas			
46 52	9,200 2,900	-	-	-	Gas Gas			
⁻ 54	2 ,500	992	-	-	Gas			
126	-	2,886	-	-	Coal			
402	10,000	-	-	3,251	Coal			
424 425	11,000 11,000	385 385	-	-	Gas Gas			
426	11,000	385	-	-	Gas			
427		-	2,152	-	Coal			
428	-	-	259	-	Coal			
429	-	-	1,040	-	Coal			
430 431	<u>-</u>	-	1,040 2,080	_	. Coal			
432	<u>-</u>	<u>-</u>	1,040	_	Coal			
433		-	900	**	Gas			
460	12,200	=	-	613	Gas			
466 470	5,800	=	- 96	749	Gas Gas			
470 500	-	1,406	-	-	#2 0il			
501	4,500	238	₩0	-	#2 Oil			
511	1,100	76	-	-	#2 Oil			
529	**	- C 1C2	1,334	-	Gas			
600 602	- 3,600	6,163	-	- -	Coal #2 Oil			
604	3,700	401	-	-	Coal			
610	9,500	353	-	-	Coal			
611	-	738	•	-	Coal			
613	-	3,370 289	-	- •	Coal Coal			
614 615	- -	3,370	-	- -	Coal			
010								
D. 1391	^	PREVIOUSE	TATERNALLY					

DD 1025 1391c

2-15

INTERNALLY

1. COMPONENT	FY 1985 MILITARY CONSTRUCTION		2. DATE
ARMY -		THOSEOT BATA	5 Jan 82
3. INSTALLATION	AND LOCATION		
Fort Benjam	in Harrison, Indiana	•	
4. PROJECT TITLE		5. PROJE	CT NUMBER
Window Trea	tment, Insulation (ECIP)	40	2000

BUILDING LIST WINDOW TREATMENT & CEILING INSULATION

	SF	SF	SF	SF	
	Roof	Storm	Add	New	
B <u>lda: #</u>	<u>Insulation</u>	<u>Windows</u>	Thermopane	Windows	<u>Fue1</u>
616	2,100	278	_	_	#2 Oil
619	-	167	_	_	#2 0il
622	1,200	-	-	-	Gas
624	.,	132		-	Coa1
662	-	2,032	_	_	Coal
663	4,500	-	_	1,116	Coal
664	2,700	-	-	889	Coal
665	3,100	-	-	652	Coa1
666	-	3,000	-	-	Coa1
667	_	3,000	_	_	Coal
668	_	3,000	_	_	Coal
669	-	3,000		636	Coal
		2 000	_	030	Coal
670	-	3,000	-	_	
671	-	3,000	-	-	Coal
672	-	3,000	-	-	Coal
700	-	83	-	-	#2 0il
701	2,200	83	-	-	#2 0il
703	2,200	83			#2 0il
TOTALS	140,450	45,817	10,395	7,906	

DD 1000 1391c

2-16

SED INTERNALLY

ECIP ECONOMIC ANALYSIS SUMMARY

	Y 1	985
PROJECT: WINDOW TREATMENT & INSULATION	· . 	T.C.
ECON. LIFE: 25 YRS. DATE: 1 / 5 / 82 PREPARED BY	:	LC
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	666,000.
b. Design	\$	38,000.
c. Salvage	\$	0.
d. Total	\$	704,000.
BENEFITS		
2. Recurring Benefit/Cost Differential Other Than		
Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor		0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:		
a. Type of Fuel: COAL		
(1) Annual Energy Decrease (+)/Increase (-)		13,556.MBTU
(2) Cost per MBTU	\$	5.06/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	
(4) Differential Escalation Rate (5%) Factor		14.777
<pre>(5) Discounted Dollar Decrease/Increase ((3)x(4))</pre>	ėı	012 600
b. Type of Fuel:NATURAL GAS	÷Τ	,013,600.
(1) Annual Energy Decrease (+)/Increase (-)		4,869.MBTU
(2) Cost per MBTU	\$	4.21/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	20,498./YR.
(4) Differential Escalation Rate (%) Factor	•	20.050
(5) Discounted Dollar Decrease/Increase		201000
((3)x(4))	\$	410,995.
c. Type of Fuel: NO.2 OIL	•	,
(1) Annual Energy Decrease (+)/Increase (-)		1,336.MBTU
(2) Cost per MBTU	\$	14.63/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	19,546./YR.
(4) Differential Escalation Rate (8%) Factor		20.050
(5) Discounted Dollar Decrease/Increase		
((3)x(4))	\$	391,891.
e. Discounted Energy Benefits		
(3a(5)+3b(5)+3c(5)+3d(5))		,816,490.
4. Total Benefits (Sum 2f + 3e)	\$1	,816,490.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		2.6
6. Total Annual Energy Savings		10.761
(3a(1)+3b(1)+3c(1)+3d(1))		19,761.
7. E/C Ratio (Line 6 /Line la/1000)	¢	30.
 8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3)) 9. Pay-back Period ((Line la - Salvage)/Line 8) 	Ş	108,638.
>. Let pack Letton ((PHIE IG - Patrade)) PHIE 8)		6.1

FY 19.84 MILITARY CONSTRUCTION PROJECT DATA						ATA	DATE 5 Jan 82			
3. INSTALLATION	NO L	0041	ION		4 20019	7171	_			
S. INSTACEATION		· 1	10.1		4. PROJECT TITLE (Rev. 1)					
Fort Benjamin Harrison, Indiana Building 1 Energy Conservation Alteration						lterations				
5. PROGRAM ELEMENT 6. CATEGORY CODE 7. PROJEC				SECT NUMBER 8. PROJECT COST (SOCO)						
61027				Т.	T1Ø4ØØØ			4,11	4,117	
	9. COST ESTIMATES									
ITEM				U/M	QUAN	TITY	UNIT COS	COST (5000)		
Primary Facili Envelope Improving Variable Air Vo	vemer olume	(V		-0\	LS				3,734 (2,600)	
Enthalpy Control Economizer System (ECES)			LS				(1,134)			
Sub-Total									3,734	
Contingency (5%)					-				187	

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Supervision, Inspection & Overhead (5%)

Total Contract Cost

Total Requested

Work will consist of architectural and mechanical alterations to Building 1, the Finance Center, to improve energy efficiency. All windows will be removed and 90% of the openings will be closed, insulated and finished. The remaining 10% will receive clear, double paned (insulated) window units. The entire outside of the building will receive an insulation layer with a weather resistant surface. Vestibule areas will be created at the south entrance of the first and second floors by adding revolving and double entry doors. Existing air handling units (AHU) will be converted from constant volume to variable air volume (VAV) systems and/or economizer capabilities. Outside air will be reduced to the minimum required. Ductwork will be changed to provide appropriate air distribution. New controls will be installed to operate the improved system.

B/C: 1.8; E/C: 30; Payback: 7.1 years; Savings: 122,674 MBTU, \$583,658/year.

11. <u>REQUIREMENTS</u>: This project is required in order to meet the Army's stated goals for energy use reduction in existing facilities. This project is submitted under the Energy Conservation Investment Program (ECIP).

CURRENT SITUATION: The Army Finance Center was designed and constructed in an era when energy was plentiful and inexpensive. As a result the building has large areas of glass which is single pane with loose fitting awning type windows. The walls are a porous concrete block which allows air and water infiltration. The south entrances, through which most people enter and depart, have no vestibule and are composed of double entry doors that never have the opportunity to close at the beginning and end of work hours. This results in massive heat and cooling losses. The constant volume air handling system

2-18

DINTERNALLY

3,921

4,117

196

1. COMPONENT		19_84 MILITARY CONSTRUCTIO	N PROJECT	T DATA Z. DATE
ARMY			15 Jan 82	
3. INSTALLATION	ANO	LOCATION		
FORT BENJA	MIN	HARRISON, INDIANA		
4. PROJECT TITLE				S. PROJECT NUMBER
BLDG 1 ENE	RGY	CONSERVATION ALTERATIONS	(Rev. 1)	T1Ø4ØØØ

requires the same high volume to be moved by the air handling units regardless of how much is actually needed to heat or cool the space. There is no provision for using outside air to cool when conditions are favorable. The present fresh air supply is far in excess of the minimum required which results in far more heating or cooling than actually needed.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that on EIS pursuant to PL 91-190 is not required.

DANIEL W. FRENCH MG, USA Commanding

Estimated Construction Start: April 1984
Estimated Midpoint of Construction: November 1984
Estimated Construction Completion: July 1985

Index: 2887 Index: 3052 Index: 3183

LOCATION: FORT BENJAMIN HARRISON BLDG. 1 FY 1985 PROJECT: BLDG. 1 - ENERGY CONSERVATION ALTERATIONS (ECIP) ECON. LIFE: 15/25 YRS. DATE: 1 / 13 / 82 PREPARED BY: JLC COST 1. Non-recurring Initial Capital Costs: a. Current Working Estimate \$4,117,000. b. Design \$ 235,000. c. Salvage 0. d. Total \$4,352,000. BENEFITS 2. Recurring Benefit/Cost Differential Other Than Energy: 0./YR. a. Annual Labor Decrease (+)/Increase (-) 0./YR. b. Annual Material Decrease (+)/Increase (-) \$ \$ 26,342./YR. c. Other Annual Decrease (+)/Increase (-) d. Total Costs 26,342./YR. e. 10% Discount Factor 9.524 \$ 250,881. f. Discounted Recurring Cost (d x e) 3. Recurring Energy Benefit/Costs: a. Type of Fuel: ELECTRICITY (15 YRS) 5,279.MBTU (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU \$ 1.62/MBTU 8,552./YR. (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (7%) Factor 12.278 (5) Discounted Dollar Decrease/Increase \$ 105,001. ((3)x(4))b. Type of Fuel: ELECTRIC DEMAND (15 YRS) (1) Annual Energy Decrease (+)/Increase (-) O.MBTU (2) Cost per MBTU 0.00/MBTU 8,747./YR. (3) Annual Dollar Decrease/Increase ((1)x(2)) 12.278 (4) Differential Escalation Rate (7%) Factor (5) Discounted Dollar Decrease/Increase \$ 107,396. ((3)x(4))c. Type of Fuel: COAL MECHANICAL (15 YRS) 34,225.MBTU (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU 4.60/MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) \$ 157,435./YR. (4) Differential Escalation Rate (5%) Factor 10:798 (5) Discounted Dollar Decrease/Increase \$1,699,980. ((3)x(4))d. Type of Fuel: COAL ENVELOPE (25 YRS) (1) Annual Energy Decrease (+)/Increase (-) 83,170.MBTU (2) Cost per MBTU 4.60/MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) \$ 382,582./YR. (4) Differential Esculation Rate (5%) Factor 14.777 (5) Discounted Dollar Decrease/Increase ((3)x(4)\$5,653,410. e. Discounted Energy Benefits (3a(5)+3b(5)+3c(5)+3d(5))\$7,565,790. 4. Total Benefits (Sum 2f + 3e) \$7,816,670. 5. Discounted Benefit/Cost Ratio (Line 4/Line 1d) 6. Total Annual Energy Savings 122,674. (3a(1)+3b(1)+3c(1)+3d(1))7. E/C Ratio (Line 6 /Line la/1000) 30. 8. Annual \$ Savings (2d + 3a(3) + 3b(3) + 3c(3) + 3d(3))\$ 583,658. 9. Pay-back Period ((Line la - Salvage)/Line 8)

	in the part of the										
1.	ARMY	FY	1984 MILITARY CON	ISTRUC	TION PROJE	CT DATA	2. DATE Sept. 1981				
3. INSTALLATION AND LOCATION Fort Benjamin Harrison, Indiana Alter Harrison Village MFH (ECIP)											
5.	PROGRAM ELEM	MENT	6. CATEGORY CODE	7. PROJECT NUMBER 8. PROJE			CT COST (SOCO)				
			• .			\$1290					
			9. COS	T ESTIMA	TES		!				

9. COST ESTIMATES				
ITEM	U/M	QUANTITY	UNIT COST	COST (SOOD)
Primary Facilities Replace Windows Insulate Ceilings Insulate Walls-Masonry Insulate Woodwalls-Install Siding Install Storm Doors Weather Strip Doors Install Threshold W/Seal	EA SF SF SF EA EA	2,174 162,610 114,524 91,334 596 596 596		1,170 (574) (117) (137) (185) (111) (22) (24)
Sub Total				1,170
Contingency (5%)				59
Total Contract Cost				1,229
Supervision, Inspection and Overhead (5%)				61
Total Requested				1,290

- insulating walls and ceilings, installing vinyl siding, weather stripping, and installing storm doors and threshold on the Harrison Village Military Family Housing (MFH) Complex. The complex is composed of 48 buildings with 270 individual units. Building numbers affected are 1001 through 1048.
- 11. REQUIREMENT: This project is required in order to meet the Army's stated goals for energy use reduction in existing facilities. This project is submitted under the MFH Energy Conservation Investment Program (ECIP).

CURRENT SITUATION: The housing units were built in 1960 using loose fitting window units which have become looser fitting with age and use. Minimum insulation was provided in the ceiling and no insulation was placed in the walls. The siding is asbestos shingles which has deteriorated and is a maintenance problem. There is no weather stripping and the exterior doors are equipped with wooden screen doors. All of this combines to make the units very high energy wasters.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

Estimated Construction Start: 1 April 1984 Index 2887 Estimated Midpoint of Construction: 1 October 1984 Index 3035 Estimated Construction Completion: 1 April 1985 Index 3117

2-21

ECON. LIFE: 25 YRS. DATE: 9 / 23 / 81 PREPARED BY: GDC

(4) Differential Escalation Rate (8%) Factor

(5) Discounted Dollar Decrease/Increase

Discounted Benefit/Cost Ratio (Line 4/Line 1d)

8. Annual \$ Savinss (2d + 3a(3)+3b(3)+3c(3)+3d(3))

 $((3) \times (4))$

e. Discounted Enersy Benefits
 (3a(5)+3b(5)+3c(5)+3d(5))

7, E/C Ratio (Line 6 /Line 1a/1000)

4. Total Benefits (Sum 2f + 3e)

6. Total Annual Energy Savings (3a(1)+3b(1)+3c(1)+3d(1))

LOCATION: FORT BENJAMIN HARRISON

PROJECT: ALTER HARRISON VILLAGE MFH (ECIP)

MFH 1000 AREA

FY 1984

20.050

1.7

20.

\$2,205,900.

\$2,205,900. \$2,346,380.

26,133.

124,770.

COST 1. Non-recurring Initial Capital Costs: \$1,290,000. a. Current Working Estimate 73,740. b. Design 0. c. Salvage d. Total \$1,363,740. BENEFITS 2. Recurring Benefit/Cost Differential Other Than Enersy: 0./YR. a. Annual Labor Decrease (+)/Increase (-) b. Annual Material Decrease (+)/Increase (-) 0./YR. \$ c. Other Annual Decrease (+)/Increase (-) 14,750./YR. 14,750./YR. d. Total Costs e. 10% Discount Factor 9.524 140,479. f. Discounted Recurring Cost (d x e) 3. Recurring Energy Benefit/Costs: a. Type of Fuel: NATURAL GAS (1) Annual Energy Decrease (+)/Increase (-) 26,133.MBTU 4.21/MBTU (2) Cost per MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) 110,020./YR.

9. Pay-back Period ((Line 1a - Salvage)/Line 8) 10.3

1.	FY 1985 MILITARY CONSTRUCTION PROJECT DATA											
	ARMY	FY 19.	85 MILITARY CON	STRUC	LION PI	70156	ט ו.		Jan 82			
3.	INSTALLATION	AND LO	CATION		4. PROJECT TITLE							
				i	Build	Building 400						
	Fort Benjami	n Harr	ison, India <u>na</u>		Energ	y Cons	serva	tion Alt	erations			
5.	. PROGRAM ELEMENT 6. CATEGORY CODE 7. PROJEC					ER	8. PF	ROJECT COS	T (5000)			
							1					
		1000		1	1259							
	9. COST ESTIMATES											
		U/M	QUAN	NTITY UNIT COST		COST (SOO)						
	Building Env	elope	Improvements		LS				1142			
	Contingency	(5%)							57			
	Total Contra			•		1199						
	Supervision,					60						
	Total Reques	t							1259			
				l l	I		J i	· •				

ations to Building 400, Gates-Lord Hall, to improve energy efficiency. All windows will be removed, most of the openings will be closed, insulated and finished. The remaining will receive tinted, double paned (insulated) window units. The entire outside of the building will receive an insulation layer with a weather resistant surface.

B/C: 1.1; E/C: 15; Payback: 13.3 years; Savings: 18,733 MBTU, \$94,789/year.

11. <u>REQUIREMENTS</u>: This project is required in order to meet the Army's stated goals for energy use reduction in existing facilities. This project is submitted under the Energy Conservation Investment Program (ECIP).

CURRENT SITUATION: Building 400 was designed and constructed in an era when energy was plentiful and inexpensive. As a result the building has large areas of glass which is single pane with loose fitting awning type windows. The walls are a porous concrete block which allows air and water infiltration.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

DD 1867 1391

PREVIOUS

2-23

INTERNALLY

PAGE NO.

١.	COMPONENT	٤٧	1985	985 MILITARY CONSTRUC		ELON	PROJECT	DATA	2. DATE	
	ARMY -	•	,						15 Jan 8	32 _
3.	INSTALLATION	AND	LOCATI	ON						
	Fort Benjam	in Ha	arriso	on, Indiana			•			
4.	PROJECT TITLE							S. PROJE	CT NUMBER	
	Building 40	0 En	ergy (Conservatio	n Alterations	(EC	IP)	T40	1000	

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

> DANIEL W. FRENCH MG, USA Commanding

Estimated Construction Start: Estimated Midpoint of Construction: Estimated Construction Completion:

April 1985 July 1985

Index: 3117 Index: 3183

October 1985

Index: 3269

LOCATION: FORT BENJAMIN HARRISON FY 1985 BLDG. 400 PROJECT: BLDG. 400 - ENERGY CONSERVATION ALTERATIONS ECON. LIFE: 25 YRS. DATE: 1 / 13 / 82 PREPARED BY: JLC COST 1. Non-recurring Initial Capital Costs: a. Current Working Estimate \$1,259,000. b. Design 72,000. c. Salvage d. Total \$1,331,000. BENEFITS 2. Recurring Benefit/Cost Differential Other Than Energy: a. Annual Labor Decrease (+)/Increase (-) 0./YR. b. Annual Material Decrease (+)/Increase (-) 0./YR. c. Other Annual Decrease (+)/Increase (-) \$ 0./YR. d. Total Costs \$ 0./YR. e. 10% Discount Factor 0.000 f. Discounted Recurring Cost (d x e) 0. 3. Recurring Energy Benefit/Costs: a. Type of Fuel: COAL (1) Annual Energy Decrease (+)/Increase (-) 18.733.MBTU (2) Cost per MBTU 5.06/MBTU 94,789./YR. (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (5%) Factor 14.777 (5) Discounted Dollar Decrease/Increase ((3)x(4))\$1,400,700. e. Discounted Energy Benefits (3a(5)+3b(5)+3c(5)+3d(5))\$1,400,700. 4. Total Benefits (Sum 2f + 3e) \$1,400,700. 5. Discounted Benefit/Cost Ratio (Line 4/Line 1d) 1.1 6. Total Annual Energy Savings (3a(1)+3b(1)+3c(1)+3d(1))18,733. 7. E/C Ratio (Line 6 /Line la/1000) 15. 8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3))94,789. Pay-back Period ((Line la - Salvage)/Line 8) 13.3

2.2.2 INCREMENT G RECOMMENDATIONS

1	ARMY FY 19	<u>8</u> 2 MILITARY CON	STRUC	TIO	N PF	ROJEC	T D.	ATA	0v. 81	
3.	INSTALLATION AND LO	CATION		4.	ROJE	בד דודנ	Ξ			
	Fort Benjamin Harr	rison, Indiana		Install Flow Restrictors(BACH.HSG)						
5.	PROGRAM ELEMENT	6. CATEGORY CODE	7. PROJ	ECT	NUMB	ER	8. PF	ROJECT COS	(SOCO)	
		721, 724					23			
	9. COST ESTIMATES									
	. •		U/M	QUANT	rity.	UNIT COST	COST (SCOO)			
	Contingency (5%) Total Contract Cos	rictor Shower Heads it ection and Overhead	(5%)		EA	8	41	\$25.00	21 1 22 1 23	
				- 1						

free flow shower heads with one which restricts the flow to conserve energy through the reduction of hot water usage. Buildings involved include all bachelor housing (BOQ and BEO) facilities having showers. Buildings are 208, 210, 214, 221, 224, 225, 226, 227, 230, 401, 402, 420, 421, 427, 429, 430, 431, 437, 438, 442, 443, 445, 446, 447, 448, 449, 450, 453, 537, 538, 539, 613, 615, 662, 666, 667, 668, 670, 671 and 672.

B/C Ratio 8.63; E/C Ratio 171; Payback 1.3 years; Energy Saved 3927.8 MBTU/Yr.

11. Requirement: This project is required in order to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: The present installed shower heads are of the old free flowing variety. Since it is virtually impossible to control the amount of time people spend in the shower, energy savings must be realized by controlling the amount of hot water that flows during the process.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required

2-27

DD 1887 1391

```
LOCATION: FORT BENJAMIN HARRISON
                                    BACH. QTRS
                                                     FY 1982
PROJECT: INSTALL FLOW RESTRICTORS
                                          PREPARED BY: JLC & ASSOCIATES
ECON. LIFE: 15 YRS. DATE: 11 / 3 / 81
COST
1. Non-recurring Initial Capital Costs:
                                                           23,000.
                                                       $
   a. Current Workins Estimate
                                                       $
                                                            1,380.
   b. Design
                                                       $
                                                                 0.
   c. Salvase
                                                           24,380.
   d. Total
BENEFITS
2. Recurring Benefit/Cost Differential Other Than
   Frersy:
                                                              - 0./YR.
   a. Annual Labor Decrease (+)/Increase (-)
                                                       $
                                                                0./YR.
   b. Annual Material Decrease (+)/Increase (-)
                                                                0./YR.
   c. Other Annual Decrease (+)/Increase (-)
                                                                 0./YR.
   d. Total Costs
                                                                 0.000
   e. 10% Discount Factor
                                                                 0.
   f. Discounted Recurring Cost (d x e)
3. Recurring Energy Benefit/Costs:
   a. Type of Fuel: NO.2 OIL
     (1) Annual Energy Decrease (+)/Increase (-)
                                                              639.MBTU
     (2) Cost per MBTU
                                                                8.80/MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                            5,623./YR.
                                                               13.112
     (4) Differential Escalation Rate (8%) Factor
     (5) Discounted Dollar Decrease/Increase
                                                           73,731.
         ((3) \times (4))
   b. Type of Fuel:COAL
                                                            3,002.MBTU
     (1) Annual Energy Decrease (+)/Increase (-)
                                                                3.72/MBTU
     (2) Cost per MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                           11,167./YR.
                                                               10.798
     (4) Differential Escalation Rate ( 5%) Factor
     (5) Discounted Dollar Decrease/Increase
                                                         120,586.
         ((3) \times (4))
   c. Type of Fuel: NATURAL GAS
     (1) Annual Energy Decrease (+)/Increase (-)
                                                               382.MBTU
     (2) Cost per MBTU
                                                                3.23/MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                            1,234./YR.
     (4) Differential Escalation Rate (8%) Factor
                                                               13.112
     (5) Discounted Dollar Decrease/Increase
                                                           16,178.
         ((3)\times(4))
   e. Discounted Energy Benefits
     (3a(5)+3b(5)+3c(5)+3d(5))
                                                          210,496.
                                                          210,496.
4. Total Benefits (Sum 2f + 3e)
                                                                8.6
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)
6. Total Annual Energy Savings
                                                            4,023.
   (3a(1)+3b(1)+3c(1)+3d(1))
7. E/C Ratio (Line 6 /Line 1a/1000)
                                                              175.
                                                           18,025.
8. Annual $ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3))
```

1.3

9. Pay-back Period ((Line 1a - Salvage)/Line 8)

						-				
1. COMPONENT	EV 19	82 MILITARY CON	ISTRUCT	ION P	٥٥ ندر	T O	ΛΤΛ ^{2. C}	DATE		
ARMY			13111001	וטוע רי	nosec			ec 81		
3. INSTALLATION	AND LC	CATION	1	4. PROJECT TITLE						
Fort Benjam	in_Harr	ison, Indiana		Alter Clinic HVAC						
5. PROGRAM ELE	MENT	6. CATEGORY CODE	7. PROJE					ECT COST (SOCO)		
		93								
	9. COST ESTIMATES									
		ITEM	•	U/M	QUANT	TTY	UNIT COST	COST (SOOD)		
				•						
Primary Fac	ility							·		
Alter HVA		Job	1		85,000	85				
Contingency	Contingency (5%)							_4		
Total Contra	act Cos	t						89		

10. DESCRIPTION OF PROPOSED CONSTRUCTION Work will consist of mechanical alterations to Building 300, the Hawley Clinic to improve energy efficiency. The major alteration is to convert the reheat zones to variable air volume (VAV) zones, provide an enthalpy control economizer system (ECES), and separate the emergency area from the large clinic fan system to allow independent operation. The work will be designed to allow the hospital to return to full operation with minor adjustments to controls.

E/C: 168; B/C: 5.5; Payback: 1.9 years: 15.615 MBTU/year saved

11. <u>REQUIREMENT</u>: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

Supervision, Inspection and Overhead (5%)

Total Request

CURRENT SITUATION: The Hawley clinic was originally designed and constructed as a fully operating 24 hour per day hospital. Since that time, a change in Department of Defense policy regarding the number of hospitals in a given area has reduced the operation to a 5 day per week clinic and administration with a small 24 hour per day emergency staff. The current constant volume air system requires reheat when the cooling load falls below what is being delivered. This results in simultaneous heating and cooling which is not required for humidity control. At present, the entire hospital HVAC must be operated to accomodate the small 24 hour per day emergency operation. There is no method of isolating the area so the rest of the system can be set back. The second floor is unoccupied most of the time and under the present system must be conditioned to the same level as the first floor. The above deficiencies, many of which are caused by the change in operation since design and construction, result in a waste of energy.

DD 186 7 1391

PREVIOUS

-29 =

93

1. COMPONENT	FY 19.82 MIL	ITARY	CONSTRI	ICTION	BRO IECT		2. DATE
ARMY	FY 19.02 WILL	.IIAn I	CONSTA	CHON	PROJECI	DATA	1 Dec 81
3. INSTALLATION	AND LOCATION						
Fort Benjar	nin Harrison,	Indiana					4.
4. PROJECT TITLE						5. PROJE	CT NUMBER
Alter Clin	ic HVAC						
IMPACT IF !	NOT PROVIDED:	If this	project	is not	completed	energy	consumption

IMPACT IF NOT PROVIDED: If this project is not completed energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

		INDEX
Estimated Construction Start	1 May 82	2459
Estimated Midpoint of Construction	1 July 82	2502
Estimated Construction Completion	1 Sep 82	2556

2-30

PAGE NO.

```
LOCATION: FORT BENJAMIN HARRISON
                                    BLDG. 300
                                                     FY 1982
PROJECT: ALTER CLINIC HVAC
ECON. LIFE: 15 YRS. DATE: 12 / 1 / 81 PREPARED BY: JLC & ASSOCIATES
COST
1. Non-recurring Initial Capital Costs:
   a. Current Workins Estimate
                                                           93,000.
   b. Design
                                                       $
                                                            5,340.
   c. Salvase
                                                       $
                                                                0.
   d. Total
                                                           98,340.
BENEFITS
Recurring Benefit/Cost Differential Other Than
   Enersy:
   a. Annual Labor Decrease (+)/Increase (-)
                                                                0./YR.
   b. Annual Material Decrease (+)/Increase (-)
                                                       $
                                                                O./YR.
   c. Other Annual Decrease (+)/Increase (-)
                                                                0./YR.
                                                       $
   d. Total Costs
                                                                0./YR.
   e. 10% Discount Factor
                                                                0.000
   f. Discounted Recurring Cost (d × e)
                                                                0.
3. Recurring Energy Benefit/Costs:
   a. Type of Fuel: COAL
     (1) Annual Energy Decrease (+)/Increase (-)
                                                           10,668,MBTU
     (2) Cost per MBTU
                                                                3.80/MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                           40,538./YR.
     (4) Differential Escalation Rate ( 5%) Factor
                                                               10.798
     (5) Discounted Dollar Decrease/Increase
         ((3) \times (4))
                                                          437,734.
   b. Type of Fuel:ELECTRICITY
                                                            4,947.MBTU
     (1) Annual Energy Decrease (+)/Increase (-)
     (2) Cost per MBTU
                                                                1.27/MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                            6,283./YR.
     (4) Differential Escalation Rate ( 7%) Factor
                                                               12.278
     (5) Discounted Dollar Decrease/Increase
         ((3) \times (4))
                                                           77,139.
   c. Type of Fuel: DEMAND REDUCTION
     (1) Annual Energy Decrease (+)/Increase (-)
                                                                 O.MBTU
                                                                0.00/MBTU
     (2) Cost per MBTU
                                                       $
     (3) Annual Dollar Decrease/Increase ((1)×(2))
                                                            1,960./YR.
     (4) Differential Escalation Rate ( 7%) Factor
                                                               12.278
     (5) Discounted Dollar Decrease/Increase
         ((3)\times(4))
                                                           24,065.
   e. Discounted Enersy Benefits
     (3a(5)+3b(5)+3c(5)+3d(5))
                                                          538,937.
4. Total Benefits (Sum 2f + 3e)
                                                          538,937.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)
                                                                5,5
6. Total Annual Energy Savings
   (3a(1)+3b(1)+3c(1)+3d(1))
                                                           15,615.
7. E/C Ratio (Line 6 /Line 1a/1000)
                                                              138.
8. Annual $ Savinss (2d + 3a(3)+3b(3)+3c(3)+3d(3))
                                                           48,781.
                                                                1.9
9. Pay-back Period ((Line 1a - Salvage)/Line 8)
```

1.	COMPONENT	FY	1982 MILITARY CON	NSTRUC	TION PROJE	CT DATA 15 Jan 82					
3.	I. INSTALLATION AND LOCATION 4. PROJECT TITLE										
	Fort Benjan	nin Ha	arrison, Indiana		Install Blowdown Heat Recovery						
5.	PROGRAM ELE	MENT	6. CATEGORY CODE	7. PROJ	ECT NUMBER	8. PROJECT COST (SOCO)					
						26.5					
	9. COST ESTIMATES										

J. CUST ESTIMATE			,	
ITEM	U/M	QUANTITY	UNIT COST	CDST (S000)
Install Blowdown Heat Recovery System	LS			24
Contingency (5%)				1.2
Total Contract				25.2
Supervision, Inspection and Overhead (5%)				1.3
Total Request				26.5

10. DESCRIPTION OF PROPOSED CONSTRUCTION: Work involves installing a blowdown heat recovery system on the boilers in the Central Plant (Building 2).

System is to include a flash tank, a heat exchanger and associated piping.

B/C: 6.2; E/C: 160; Payback: 1.6 years; Savings: 4249 MBTU, \$16,146/year.

11. <u>REOUIREMENT</u>: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: The blowdown water and waste heat is presently rejected into the sewer system. No method exists to reclaim any of the waste heat.

IMPACT IF NOT PROVIDED: If this project is not completed, energy waste will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

2-32

LOCATION: FORT BENJAMIN HARRISON BLDG. 2	Y l	982
PROJECT: BLOWDOWN HEAT RECOVERY - BLDG. 2		
ECON. LIFE: 15		
YRS. DATE: 1 / 15 / 82 PREPARED BY	7: J	LC
COST		
the spatio tag		
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	26,490.
b. Design	\$	1,510.
c. Salvage	\$	0.
d. Total	\$	28,000.
BENEFITS	•	20,0000
2. Recurring Benefit/Cost Differential Other Than		
Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
b. Annual Material Decrease (+)/Increase (-)	\$	0./YR.
c. Other Annual Decrease (+)/Increase (-)	\$ \$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor	•	0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:	·	••
a. Type of Fuel: COAL		
(1) Annual Energy Decrease (+)/Increase (-)		4,249.MBTU
(2) Cost per MBTU	\$	3.80/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	
(4) Differential Escalation Rate (5%) Factor	•	10.798
(5) Discounted Dollar Decrease/Increase		200,00
((3)x(4))	\$	174,347.
e. Discounted Energy Benefits	•	
(3a(5)+3b(5)+3c(5)+3d(5))	\$	174,347.
4. Total Benefits (Sum 2f + 3e)		174,347.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)	•	6.2
6. Total Annual Energy Savings		0.2
(3a(1)+3b(1)+3c(1)+3d(1))		4,249.
7. E/C Ratio (Line 6 /Line la/1000)		160.
8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3))	\$	
9. Pay-back Period ((Line la - Salvage)/Line 8)	,	1.6

			-002-01123	(HILLIA D)	ATA IS A	NIERI	(עב				
1. COMPONENT	Y 19	82 MILIT	TARY CON	STRUCT	TION P	ROJE	O TO	ATA	DATE		
3. INSTALLATION A	NO LO	CATION			4 200			Nov	ember 81		
					4. PROJ	-C1 1111					
.Fort Benjamin					Inst	all Flo	ow Re	strictor	s (MFH)		
5. PROGRAM ELEME	NT	6. CATEGO	ORY CODE	7. PROJE	CT NUM	BER	8. PF	OD TOBLOR	ST (SOCO)		
		711				10.5					
	9. COST ESTIMATES										
		ITEM		•	U/M	QUAN	TITY	UNIT COST	COST (SOO)		
Install Flow Contingency (ictor Sho	werheads	·	Ea.	38	30	25	9.5 <u>0.5</u>		
Total Contract	t Cost	t							10.0		
Supervision,	Insped	ction and	Overhead	(5%)	İ				0.5		
Total Request									10.5		
· ·					İ				1010		
:											
						ľ					
·							į				
								Ī			
tree flow show through the re	free flow showerheads with one which restricts the flow to conserve energy through the reduction of hot water usage. Buildings involved include all family housing units on post.										
B/C Ratio: 7. MBTU/year.	6, E/	C Ratio:	158.2; Pa	ayback:	1.62 y	ears;	Energ	gy Saved:	1756.5		
11.REOUIREMENT: goals for ener	This	project i e reducti	s required	d in orde sting fac	er to h	elp med	et th	ne Army's	stated		
CURRENT SITUAT	ION:	The pres	ent instal	lled show	ver hea	ds are	of t	he old f	rae		

CURRENT SITUATION: The present installed shower heads are of the old free flowing variety. Since it is virtually impossible to control the amount of time people spend in the shower, energy savings must be realized by controlling the amount of hot water that flows during the process.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption
will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

2-34

DD 1000 1391

ID INTERNALLY

```
FY 1982
LOCATION: FORT BENJAMIN HARRISON
                                    MFH
PROJECT: INSTALL FLOW RESTRICTORS
ECON. LIFE: 15 YRS. DATE: 11 / 3 / 81 PREPARED BY: JLC & ASSOCIATES
COST
1. Non-recurring Initial Capital Costs:
                                                           10,500.
   a. Current Workins Estimate
                                                              600.
   b. Design
                                                       $
                                                                 0.
   c. Salvase
                                                           11,100.
   d. Total
BENEFITS
2. Recurring Benefit/Cost Differential Other Than
                                                                 0./YR.
   a. Annual Labor Decrease (+)/Increase (-)
                                                       $
                                                                 0./YR.
   b. Annual Material Decrease (+)/Increase (-)
                                                                 O./YR.
                                                       $

 Other Annual Decrease (+)/Increase (-)

                                                                 0./YR.
                                                       $
   d. Total Costs
                                                                 0.000
   e. 10% Discount Factor
                                                                 0.
   f. Discounted Recurring Cost (d x e)
3. Recurring Energy Benefit/Costs:
   a. Type of Fuel: ELECTRIC
                                                                20.MBTU
     (1) Annual Enersy Decrease (+)/Increase (-)
                                                                 3.12/MBTU
     (2) Cost per MBTU
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                                63./YR.
     (4) Differential Escalation Rate ( 7%) Factor
                                                                12.278
     (5) Discounted Dollar Decrease/Increase
                                                               770.
         ((3) \times (4))
   b. Type of Fuel:NATURAL GAS
                                                             1,597.MBTU
     (1) Annual Energy Decrease (+)/Increase (-)
                                                                 3.23/MBTU
     (2) Cost per MBTU
                                                             5,157,/YR,
     (3) Annual Dollar Decrease/Increase ((1)×(2))
                                                                13.112
     (4) Differential Escalation Rate ( 8%) Factor
     (5) Discounted Dollar Decrease/Increase
                                                           67,615.
         ((3) \times (4))
   c. Type of Fuel: NO.2 OIL
                                                                140.MBTU
     (1) Annual Energy Decrease (+)/Increase (-)
                                                                 8.80/MBTU
     (2) Cost per MBTU
                                                             1,230./YR.
     (3) Annual Dollar Decrease/Increase ((1)x(2))
     (4) Differential Escalation Rate ( 8%) Factor
                                                                13.112
     (5) Discounted Dollar Decrease/Increase
                                                            16,131.
         ((3)\times(4))
   e. Discounted Energy Benefits
                                                            84,515.
                                                        $
     (3a(5)+3b(5)+3c(5)+3d(5))
                                                            84,515.
4. Total Benefits (Sum 2f + 3e)
                                                                 7.6
Discounted Benefit/Cost Ratio (Line 4/Line 1d)
6. Total Annual Energy Savings
                                                             1,756.
   (3a(1)+3b(1)+3c(1)+3d(1))
                                                               167.
7. E/C Ratio (Line 6 /Line 1a/1000)
                                                             6,450.
8. Annual $ Savinss (2d + 3a(3)+3b(3)+3c(3)+3d(3))
                                                                 1.6
```

9. Pay-back Period ((Line 1a - Salvage)/Line 8)

1. COMPONENT FY 19_82 MILITARY CON	STRUCTIO	ON PS	ROJEC	T D		Jan. 1982
3. INSTAULATION AND LOCATION			בד דודנ		abla Tha	uma a ta ta
Fort Benjamin Harrison, Indiana		Stall FH)	. Frog	ranna	able ine	rmostats
5. PROGRAM ELEMENT 6. CATEGORY CODE	7. PROJECT	NUMS	€ R	8. 25 59	ROJECT COS)	5T (S000)
9. COS	T ESTIMATES				,	
ITEM		U/M	QUAN	TITY	טאוד כסבד	COST (SC00)
Install Programmable Thermostats Contingency (5%) Total Contract Supervision, Inspection and Overhead (Total Request	(5%)	EA		3	\$150	53 3 56 3 59

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Project involves installing programmable thermostats in every Military Family Housing unit on post. Thermostats are to be the preset sealed units programmable by the DFAE maintenance personnel. See 1391C for list of quarters numbers.

At Present:

B/C: 8.7; E/C: 151; Payback: 1.4 yers., Savings: 8896 MBTU, \$41,344/yr. If Converted to Natural Gas:

B/C: 5.3; E/C: 151; Payback 2.3 yrs.; Savings: 8896 MBTU; \$25,265/yr.

11. REQUIREMENT: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

<u>CURRENT SITUATION</u>: The present thermostats are the standard occupant operated variety which do not have the capability to provide night setback automatically.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DD :22 1391

PREVIOUS

DIMPERMALL

2-36

Buil	656 655 1014 102	in 50 64 65 65	8 7 1 8				5. 280.	JĘCT NU	MBER
Buil 505 644 648 654 652 1003	1391C ding dings 406 507 645 650 656 655	in 50 64 65 65	8 7 1 8	648 653 659			5. <i>PRO</i> .	JĘCT NU	MBER
Buil Buil 505 644 648 654 652 1003	1391C ding dings 406 507 645 650 656 655	in 50 64 65 65	8 7 1 8	648 653 659			5. PRO.	SECT NO	MBER
Buil Buil 505 644 648 654 652 1003	dings dings 406 507 645 650 656 101 102	in 50 64 65 65	8 7 1 8	648 653 659					
Buil Buil 505 644 648 654 652 1003	dings dings 406 507 645 650 656 101 102	in 50 64 65 65	8 7 1 8	648 653 659					
505 644 648 654 652 1003	dings 406 507 645 650 656 655	50 64 65 65	8 7 1 8	648 653 659					
505 644 648 654 652 1003 1019	 406 507 645 650 656 655	50 64 65 65 65	8 7 1 8	648 653 659					
544 548 554 552 1003	507 	64 65 65 65	7 1 8	653 659					
544 548 554 552 1003	507 	64 65 65 65	7 1 8	653 659					
544 548 554 552 1003	645 650 656 655	64 65 65 65	7 1 8	653 659					
648 654 652 1003 1019	650 656 655 101 102	65 65 65	1 8 7	653 659					
648 654 652 1003 1019	650 656 655 101 102	65 65 65	1 8 7	653 659					·
654 652 1003 1019	656 655 1014 102	65 65 0	8 7	659					
L003 L019	101 102	0		661					
1019	102		101						
		1			1016				
	103		102 103		1027 1041	1047			
L001	100	7 .	100	8 :	1009				
L011			101		1020				
L026 L044			103 104		1040				
	101								
L033	103	7	103	88	1043	1045			
					1023	-			
2000	100.		104	_					
	.036	.036 103	.036 1039	.036 1039 104	.036 1039 1042	.036 1039 1042	.036 1039 1042	.036 1039 1042	

DD 1000 1391c

LOCATION: FORT BENJAMIN HARRISON FOR PROJECT: INSTALL PROGRAMMABLE THERMOSTATS (MFH) ECON. LIFE: 15 YRS. DATE: 1 / 11 / 82 PREPARED BY COST	"Y 1 :: J	
Non-recurring Initial Capital Costs:a. Current Working Estimateb. Designc. Salvaged. Total	\$ \$ \$ \$	59,000. 3,400. 0. 62,400.
BENEFITS 2. Recurring Benefit/Cost Differential Other Than		
Energy: a. Annual Labor Decrease (+)/Increase (-) b. Annual Material Decrease (+)/Increase (-) c. Other Annual Decrease (+)/Increase (-) d. Total Costs e. 10% Discount Factor	\$ \$ \$	0./YR. 0./YR. 0./YR. 0./YR. 0.000
f. Discounted Recurring Cost (d x e)3. Recurring Energy Benefit/Costs:a. Type of Fuel: NO.2 OIL	\$	0.
 (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (8%) Factor (5) Discounted Dollar Decrease/Increase 	\$ \$	2,284.MBTU 9.88/MBTU 22,566./YR. 13.112
((3)x(4)) b. Type of Fuel:NATURAL GAS	\$	295,884.
(1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (8%) Factor (5) Discounted Dollar Decrease/Increase	\$ \$	6,612.MBTU 2.84/MBTU 18,778./YR. 13.112
((3)x(4)) e. Discounted Energy Benefits	\$	246,218.
(3a(5)+3b(5)+3c(5)+3d(5)) 4. Total Benefits (Sum 2f + 3e) 5. Discounted Benefit/Cost Ratio (Line 4/Line 1d) 6. Total Annual Energy Savings	\$ \$	542,103. 542,103. 8.7
(3a(1)+3b(1)+3c(1)+3d(1)) 7. E/C Ratio (Line 6 /Line la/1000) 8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3)) 9. Pay-back Period ((Line la - Salvage)/Line 8)	\$	8,896. 151. 41,344. 1.4

700777011 - 0112 - DENO12121, 10 - 1 - 1 - 1 - 1	Y 1	
PROJECT: INSTALL PROGRAMMABLE THERMOSTATS (MFH) - NO	∞	NVERSION
ECON. LIFE: 15 YRS. DATE: 1 / 11 / 82 PREPARED BY	: J.	LC
COST		
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	59,000.
b. Design	\$	3,400.
c. Salvage	\$	0.
d. Total	\$	62,400.
BENEFITS		
2. Recurring Benefit/Cost Differential Other Than		
Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$ \$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor		0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:		•
a. Type of Fuel: NATURAL GAS		
(1) Annual Energy Decrease (+)/Increase (-)		8,896.MBTU
(2) Cost per MBTU	\$	2.84/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	25,265./YR.
(4) Differential Escalation Rate (8%) Factor		13.112
(5) Discounted Dollar Decrease/Increase		
((3)x(4))	\$	331,270.
e. Discounted Energy Benefits		
(3a(5)+3b(5)+3c(5)+3d(5))	\$	331,270.
4. Total Benefits (Sum 2f + 3e)	\$	331,270.
5. Discounted Benefit/Cost Ratio (Line 4/Line ld)		5.3
6. Total Annual Energy Savings		
(3a(1)+3b(1)+3c(1)+3d(1))		8,896.
7. E/C Ratio (Line 6 /Line la/1000)		151.
8. Annual \$ Savings $(2d + 3a(3)+3b(3)+3c(3)+3d(3))$	\$	25,265.
9. Pay-back Period ((Line la - Salvage)/Line 8)		2.3
-		

1. COMPONENT	FY 19	82 MILITARY CO	VSTRUCT	TION PE	ROJECT D	ATA	Jan 82
3. INSTALLATION					CT TITLE HWH Insula		
		rison, Indiana 6. CATEGORY CODE	7. PROJE			200 TOBLOS	
		9. CO	ST ESTIMAT	ES			
		ITEM	<u> </u>	U/M	QUANTITY	UNIT COST	COST (S000)
Install 1-1	/2" Fi	berglass Blanket		EA	349	25	8.5
Insulate Bu	uilding	900 HWH		LS			5
	S	ubtotal					9.0
Contingency	(5%)			ļ.	·		5
	Т	otal Contract Cost	t				9.5
				i i		1	_

10. DESCRIPTION OF PROPOSED CONSTRUCTION: Work involves installing a 1-1/2 inch fiberglass blanket over 348 gas and one electric hot water heaters in all of family housing except Building 900. Building 900 has one large central HWH and it is to be insulated with 2" of rigid.

Supervision, Inspection & Overhead (5%)

Total Request

B/C: 4.3; E/C: 121; Payback: 2.9; Savings: 1214 MBTU, \$3441/year.

11. <u>REOUIREMENT</u>: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: The hot water heaters (HWH) in most of the quarters have only that minimum insulation furnished by the manufacturer. The HWH in Building 900 has no insulation and results in huge energy losses.

IMPACT IF NOT PROVIDED: If this project is not completed, energy waste will continue at the present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

2-40

DD 1887 1391

STEP

10.0

LOCATION: FORT BENJAMIN HARRISON MFH FROJECT: INSULATE HW HEATERS (MFH)	Y 19	982
ECON. LIFE: 15 YRS. DATE: 1 / 15 / 82 PREPARED BY COST	: JI	C.C
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	10,000.
b. Design	\$	600.
c. Salvage	\$	0.
d. Total	\$	10,600.
BENEFITS		• •
2. Recurring Benefit/Cost Differential Other Than Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor		0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:		
a. Type of Fuel: ELECTRICITY		
(1) Annual Energy Decrease (+)/Increase (-)		4.MBTU
(2) Cost per MBTU	\$	1.27/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	5./YR.
(4) Differential Escalation Rate (7%) Factor		12.278
(5) Discounted Dollar Decrease/Increase		
((3)x(4))	\$	63.
b. Type of Fuel:NATURAL GAS		
(1) Annual Energy Decrease (+)/Increase (-)		1,210.MBTU
(2) Cost per MBTU	\$	2.84/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	3,436./YR.
(4) Differential Escalation Rate (8%) Factor		13.112
(5) Discounted Dollar Decrease/Increase		
$((3)\times(4))$	\$	45,058.
e. Discounted Energy Benefits	•	
(3a(5)+3b(5)+3c(5)+3d(5))	\$	45,121.
4. Total Benefits (Sum 2f + 3e)	\$	45,121.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		4.3
6. Total Annual Energy Savings		
(3a(1)+3b(1)+3c(1)+3d(1))		1,214.
7. E/C Ratio (Line 6 /Line la/1000)		121.
8. Annual \$ Savings $(2d + 3a(3)+3b(3)+3c(3)+3d(3))$	\$	3,442.
9. Pay-back Period ((Line la - Salvage)/Line 8)		2.9

1.	COMPONENT	614	40.02 MAIL (TACA) 00A	ICTOLIC	TION 300 (50	2. DATE
	ARMY	FY	19 <u>82</u> MILITARY CON	13 1 HUC	HON PROJEC	21 Dec 81
3.	INSTAULATION	AND	LOCATION		4. PROJECT TITL	=
	Fort Benjam	in Ha	arrison, Indiana		Replace 37	Oil Furnaces
5.	PROGRAM ELE	MENT	6. CATEGORY CODE	7. PROJ	ECT NUMBER	8. PROJECT COST (SOCO)
			Various			203
			9. COS	T ESTIMA	TES	

9. COST ESTIMATE	5			
ITEM	U/M	QUANTITY	UNIT COST	CDST (\$000)
Repair by Replacement Replace 37 oil furnaces: Provide exterior and interior piping to convert fuel to natural gas	EA	37	Varies	184
Contingency (5%)				9
TOTAL CONTRACT				193
Supervision, Inspection & Overhead (5%)				10
TOTAL REQUEST				203

10. DESCRIPTION OF PROPOSED CONSTRUCTION: Replace the existing oil furnaces in 37 buildings with new gas furnace. Provide interior piping, exterior piping to connect to the gas main and a regulator. Buildings receiving replacements are as follows: 6, 33, 43, 116, 332, 435, 479, 481, 700, 701, 703, 803, 501, 616, 200, 204, 206, 207, 228, 229, 208, 210, 214, 221, 224, 225, 226, 227, 230, 212, 213, 222, 223, 218, 219, 220.

B/C Ratio: 9.4; E/C Ratio: 24; Payback: 1.3 vears; Savings: 4,945 MBTU/yr \$154,830/yr.

11. <u>REOUIREMENT</u>: This project is required in order to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: Due to building retrofit and energy conservation work, the present oil furnaces are now grossly oversized and inefficient. Installation of a properly sized oil furnace would result in significant energy savings, but when comparing current costs of \$9.88/MBTU for oil with \$2.84/MBTU for natural gas, the need to convert to gas at the same time becomes readily apparent.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

LOCATION: FORT BENJAMIN HARRISON F PROJECT: REPLACE OIL FURNACES	Y l	982
ECON. LIFE: 15 YRS. DATE: 12 / 18 / 81 PREPARED BY COST	: J	LC
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	203,000.
b. Design	\$	12,200.
c. Salvage	\$	0.
d. Total	\$	215,200.
BENEFITS		
2. Recurring Benefit/Cost Differential Other Than		
Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor	^	0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:		
a. Type of Fuel: NO.2 OIL		19,998.MBTU
(1) Annual Energy Decrease (+)/Increase (-)(2) Cost per MBTU	\$	9.88/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	
(4) Differential Escalation Rate (8%) Factor	τ.	13.112
(5) Discounted Dollar Decrease/Increase		100111
((3)x(4))	\$2	,590,670.
b. Type of Fuel:NATURAL GAS	. –	,
(1) Annual Energy Decrease (+)/Increase (-)		-15,053.MBTU
(2) Cost per MBTU	\$	2.84/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	-42,751./YR.
(4) Differential Escalation Rate (8%) Factor		13.112
(5) Discounted Dollar Decrease/Increase		
((3)x(4))	\$	-560,545.
e. Discounted Energy Benefits		
(3a(5)+3b(5)+3c(5)+3d(5))		,030,130.
4. Total Benefits (Sum 2f + 3e)	\$2	,030,130.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		9.4
6. Total Annual Energy Savings		4 045
(3a(1)+3b(1)+3c(1)+3d(1))		4,945.
7. E/C Ratio (Line 6 /Line la/1000)	ė	24. 154,830.
 8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3)) 9. Pay-back Period ((Line la - Salvage)/Line 8) 	Ą	1.3
3. ray-back retrod ((Time ta - parvage)) line 6)		100

1.	COMPONENT ARMY	FY 19	32 MILITA	RY CONST	RUC	TION	1 PF	ROJEC	ים ד:		Dec 81
3.	INSTALLATION	AND LO	CATION			4. PF	SOJEC	יד דודָג	ξ.		
	Fort Benjam	in Harr	rison, Indi	ana		Rep	olaci	e/con	vert	oil boil	ers (MFH)
5.	PROGRAM ELEM	MENT	6. CATEGOR	Y CODE 7.	PROJ	ECT N	UM8	ER	8. 29	CO TOBLOS	T (S000)
								. !		40.5	
				9. COST E	STIMA	TES					
			ITEM				U/M	QUAN	TITY	UNIT COST	COST (\$000)
	Replace boi	lers, t	typical uni	it 646 grou	p		EA	5		6,000	30
	Replace boi	ler, bu	uilding 900)			EA	1		6,500	<u>6.5</u>
	SUBTOTA	L									36.5
	Contingency	(5%)									_2
	TOTAL C	ONTRAC	T COST								38.5

Family Housing quarters 646, 652, 655, 657, 661, and 900. Provide interior and exterior piping, a meter and a regulator.

B/C Ratio: 7.8; E/C Ratio: 24; Payback: 1.6 years

Savings: 956 MBTU, \$25,624/yr.

TOTAL REQUESTED

Supervision, inspection and overhead (5%)

11. Requirement: This project is required in order to help meet the Army's stated goals for energy use reduction in existing facilities.

Current Situation: The present oil boilers are grossly oversized for the load since the housing units have been insulated and the windows have been replaced with double glazed energy efficient assembles. The oversizing makes the boilers very inefficient. Installation of a properly sized oil boiler would result in the same energy savings, but when comparing current costs of \$9.88 per MBTU for oil with \$2.84 per MBTU for gas, the need to convert to gas at the same time becomes readily apparent. The installation must include a meter to ensure proper accounting.

<u>Impact if not Provided</u>: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DD:327,1391

PREVIOUS

DINTERNALLY

PAGE NO. 1/1

40.5

```
FY 1982
LOCATION: FORT BENJAMIN HARRISON
PROJECT: REPLACE/CONVERT OIL BOILERS (MFH)
ECON. LIFE: 15 YRS. DATE: 12 / 23 / 81 PREPARED BY: JLC
COST
1. Non-recurring Initial Capital Costs:
                                                           40,500.
   a. Current Working Estimate
                                                            2,400.
   b. Design
                                                                0.
   c. Salvage
                                                           42,900.
   d. Total
BENEFITS
2. Recurring Benefit/Cost Differential Other Than
                                                                0./YR.
   a. Annual Labor Decrease (+)/Increase (-)
   b. Annual Material Decrease (+)/Increase (-)
                                                                0./YR.
   c. Other Annual Decrease (+)/Increase (-)
                                                       $
                                                               0./YR.
                                                                0./YR.
   d. Total Costs
                                                                0.000
   e. 10% Discount Factor
                                                                0.
   f. Discounted Recurring Cost (d x e)
3. Recurring Energy Benefit/Costs:
   a. Type of Fuel: NO.2 OIL
                                                            3,254.MBTU
     (1) Annual Energy Decrease (+)/Increase (-)
                                                                9.88/MBTU
     (2) Cost per MBTU
                                                           32,150./YR.
     (3) Annual Dollar Decrease/Increase ((1)x(2))
                                                               13.112
     (4) Differential Escalation Rate ( 8%) Factor
     (5) Discounted Dollar Decrease/Increase
                                                          421,545.
         ((3)x(4))
   b. Type of Fuel: NATURAL GAS
     (1) Annual Energy Decrease (+)/Increase (-)
                                                           -2,298.MBTU
                                                                2.84/MBTU
     (2) Cost per MBTU
                                                           -6,526./YR.
     (3) Annual Dollar Decrease/Increase ((1)x(2))
     (4) Differential Escalation Rate ( 8%) Factor
                                                               13.112
     (5) Discounted Dollar Decrease/Increase
                                                          -85,573.
         ((3)x(4))
   e. Discounted Energy Benefits
     (3a(5)+3b(5)+3c(5)+3d(5))
                                                          335,971.
                                                          335,971.
4. Total Benefits (Sum 2f + 3e)

    Discounted Benefit/Cost Ratio (Line 4/Line ld)

                                                                7.8
6. Total Annual Energy Savings
   (3a(1)+3b(1)+3c(1)+3d(1))
                                                              956.
                                                               24.

    E/C Ratio (Line 6 /Line la/1000)

8. Annual $ Savings (2d + 3a(3) + 3b(3) + 3c(3) + 3d(3))
                                                           25,623.
9. Pay-back Period ((Line la - Salvage)/Line 8)
                                                                1.6
```

1. COMPONENT	EV 19	982 MILITARY CON	ISTRUC	TION PROJEC	T DATA	
ARMY					15 Jan. 82	
3. INSTALLATION	AND LO	CATION		4. PROJECT TITL	.ε	
					. 2 Oil Boilers	
.Fort Benjami	in Harr	rison, Indiana		With Centra	al Plant Steam	
5. PROGRAM ELE	MENT	6. CATEGORY CODE	7. PRO.	ECT NUMBER	8. PROJECT COST (SOCO)	
					74	
		9 005	T ESTIMA	TES		

Convert Four Buildings from No. 2 Oil to Central Plant Steam Contingency (5%) Total Contract Supervision, Inspection and Overhead (5%) Total Request 74	ITEM	U/M	QUANTITY	UNIT COST	COST (5000)
Total Contract 70 Supervision, Inspection and Overhead (5%)		LS			67
Supervision, Inspection and Overhead (5%)	Contingency (5%)				_3
	Total Contract				70
Total Request 74	Supervision, Inspection and Overhead (5%)				_4
	Total Request				74
					·

boilers in Buildings 54, 433, 602, and 609, installing heat exchangers, steam controls and condensate pumps and constructing underground steam line required to convert the buildings to the central plant main lines.

B/C: 8.5; E/C: 21.6; Payback: 1.6 years; Savings: 1600 MBTU, \$47,394/year.

11. REQUIREMENT: This project is required to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: At present, the buildings have individual systems fueled with No. 2 oil which currently costs \$9.88/MBTU. Central plant steam is available which currently costs \$3.80/MBTU. Some of the systems are oversized which leads to part load inefficiencies which can also be corrected during the conversion.

IMPACT IF NOT PROVIDED: If this project is not completed, energy waste will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

2-46

DD 1040 1391

PREVIOUS ED INTERNALLY

PAGE NO.

. .P.

LOCATION: FORT BENJAMIN HARRISON FROJECT: REPLACE OIL BOILERS WITH C.P. STEAM	FY 1982				
ECON. LIFE: 15 YRS. DATE: 1 / 15 / 82 PREPARED BY COST	: J	īc			
1. Non-recurring Initial Capital Costs:					
a. Current Working Estimate	\$	74,000.			
b. Design	\$	4,000.			
c. Salvage	\$	0.			
d. Total	\$	78,000.			
BENEFITS		•			
2. Recurring Benefit/Cost Differential Other Than					
Energy:					
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.			
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.			
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$	0./YR.			
d. Total Costs	\$	0./YR.			
e. 10% Discount Factor		0.000			
f. Discounted Recurring Cost (d x e)	\$	0.			
3. Recurring Energy Benefit/Costs:					
a. Type of Fuel: NO.2 OIL					
(1) Annual Energy Decrease (+)/Increase (-)		6,795.MBTU			
(2) Cost per MBTU	\$	9.88/MBTU			
(3) Annual Dollar Decrease/Increase ((1)x(2))		67,135./YR.			
(4) Differential Escalation Rate (8%) Factor		13.112			
(5) Discounted Dollar Decrease/Increase					
((3)x(4))	\$	880,269.			
b. Type of Fuel:COAL		•			
(1) Annual Energy Decrease (+)/Increase (-)		-5,195.MBTU			
(2) Cost per MBTU	\$	3.80/MBTU			
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	-19,741./YR.			
(4) Differential Escalation Rate (5%) Factor		10.798			
(5) Discounted Dollar Decrease/Increase					
((3)x(4))	\$	-213,163.			
e. Discounted Energy Benefits					
(3a(5)+3b(5)+3c(5)+3d(5))	\$	667,106.			
4. Total Benefits (Sum 2f + 3e)	\$				
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		8.6			
6. Total Annual Energy Savings					
(3a(1)+3b(1)+3c(1)+3d(1)) 1,600.					
7. E/C Ratio (Line 6 /Line la/1000)		22.			
8. Annual \$ Savings $(2d + 3a(3)+3b(3)+3c(3)+3d(3))$	\$	47,394.			
9. Pay-back Period ((Line la - Salvage)/Line 8)		1.6			

1. COMPONENT Z. DATE						DATÊ	
FY 1982 MILITARY CONSTRUCTION PROJECT DATA							Dec 81
3. INSTALLATION AND LOCATION		4. F	ROJE	בד דודני	=		,
Fort Benjamin Harrison, Indiana Replace Oil Furnace (MFH)							FH)
5. PROGRAM ELEMENT 6. CATEGORY CODE	7. PROJ	ECT	NUMB	S.A.	8. PR	CO TOBLO	ST (S000)
71113						4.7	
9. COST	ESTIMA	TES					
TTEM	•		U/M	CUANT	177	טאוד כסגד	COST (SCOO)
Replace Furnace			Job	1		4300	4.3
Sub Total							4.3
Contingency (5%)						2	
TOTAL CONTRACT COST					4.5		
Supervision, Inspection and Overhead					2		
TOTAL REOUESTED							4.7
TO DESCRIPTION OF REOPERS CONSTRUCTION' F	on laco	+ h	0.00	ictina	017	funnaci	l with a

new gas furnace in family housing unit 512. Provide new interior piping, exterior piping to connect to the gas main and a meter and regulator.

B/C Ratio: 6.4; E/C Ratio: 15.7; Payback: 1.9 years; Savings: 74 MBTU, \$2,435/yr.

11. REOUIREMENT: This project is required in order to help meet the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: The present oil furnace is capable of producing 180,000 BTUH. Since insulation of the unit, the block load has been reduced from 140,000 to 86,000 BTUH. The oversizing on the furnace makes it very inefficient. Installation of a properly sized oil furnace would result in sugnificant energy savings, but when comparing current costs of \$9.88 per MBTU for oil with \$2.84 per MBTU for gas, the need to convert to gas at the same time becomes readily apparent. The installation must include a meter to ensure proper accounting.

IMPACT IF NOT PROVIDED: If this project is not completed, energy consumption will continue at its present rate as costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DD 1887 1391

PREVIOU

2-48

ED INTERNALLT O

PAGE NO. 1/1

LOCATION: FORT BENJAMIN HARRISON F PROJECT: REPLACE OIL FURNACE (MFH)	¥ 19	82
ECON. LIFE: 15 YRS. DATE: 12 / 18 / 81 PREPARED BY COST	: JL	C
1 Non nomening Initial Camital Costs		
1. Non-recurring Initial Capital Costs:	ć	4 700
a. Current Working Estimate	\$	4,700.
b. Design	\$	300.
c. Salvage	\$	0.
d. Total ·	\$	5,000.
BENEFITS		,
2. Recurring Benefit/Cost Differential Other Than Energy:		
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
<pre>b. Annual Material Decrease (+)/Increase (-)</pre>	\$	0./YR.
<pre>c. Other Annual Decrease (+)/Increase (-)</pre>	\$	0./YR.
d. Total Costs	\$	0./YR.
e. 10% Discount Factor	·	0.000
f. Discounted Recurring Cost (d x e)	\$	0.
3. Recurring Energy Benefit/Costs:	•	* *
a. Type of Fuel: NO.2 OIL		
(1) Annual Energy Decrease (+)/Increase (-)		316.MBTU
(2) Cost per MBTU	\$	9.88/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	3,122./YR.
(4) Differential Escalation Rate (8%) Factor	Ÿ	13.112
· · · · · · · · · · · · · · · · · · ·		13.117
(5) Discounted Dollar Decrease/Increase	ė	40,937.
((3)x(4))	\$	40,93/.
b. Type of Fuel:NATURAL GAS		2.42 MD051
(1) Annual Energy Decrease (+)/Increase (-)	•	-242.MBTU
(2) Cost per MBTU	\$	2.84/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	-687./YR.
(4) Differential Escalation Rate (8%) Factor		13.112
(5) Discounted Dollar Decrease/Increase	_	
((3)x(4))	\$	-9,012.
e. Discounted Energy Benefits		
(3a(5)+3b(5)+3c(5)+3d(5))	\$	31,925.
4. Total Benefits (Sum 2f + 3e)	\$	31,925.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		6.4
6. Total Annual Energy Savings		
(3a(1)+3b(1)+3c(1)+3d(1))		74.
7. E/C Ratio (Line 6 /Line la/1000)		16.
8. Annual \$ Savings $(2d + 3a(3)+3b(3)+3c(3)+3d(3))$	\$	2,435.
9. Pay-back Period ((Line la - Salvage)/Line 8)		1.9

1. COMPONENT	COMPONENT FY 1982 MILITARY CONSTRUCTION PROJECT DATA							
ARMY								
3. INSTALLATION	AND LO	CATION		. PROJE	CTTITL	.ε		
Fort Benjam	in Har	rison, Indiana	c	Convert	0il E	Boile	rs To CP	Steam MFH
5. PROGRAM ELEM	MENT	6. CATEGORY CODE	7. PROJE	CT NUME	BEA	8. PF	ROJECT COS	T (5000)
						119		
		9. COS	T ESTIMAT	ES	7		r	
		ITEM	·	U/M	QUAN	TITY	UNIT COST	COST (S000)
Contingency Total Contr	(5%) eact Co	rs to Central Plan st ection and Overhea		Ea	15	5	7200	108 <u>5.4</u> 113.4 <u>5.6</u> 119.

family housing units 404, 405 A, B, C, D, 406 A, B, C, D, 411 A & B, 505, 506, 507, and 508 with steam heat exchangers connected to central plant steam. Provide a meter to each building or group of buildings on an isolated lateral.

B/C Ratio: 3.6; E/C Ratio: 15, Payback: 3.6 years; Savings: 1829 MBTU, \$32,869/year.

11. REOUIREMENT: This project is required to conserve utility funds and help the Army's stated goals for energy use reduction in existing facilities.

CURRENT SITUATION: The present oil boilers were installed when the heating block load was much larger than at present. Since that time ceiling insulation and now double glazed insulated windows have been installed which makes the equipment far oversized and inefficient. Installation of a properly sized oil boiler would result in about the same energy savings, but when comparing the current costs of \$9.88/MBTU for #2 oil to \$3.80/MBTU for coal, the need to convert at the same time becomes readily apparent. The installation must include meters to ensure proper accounting.

IMPACT IF NOT PROVIDED: If this project is not completed, utility costs and energy consumption will continue at its present rate as the costs rise and the supply diminishes.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DD 1000 1391

PREVIOUS E

INTERNALLY

PAGE NO. 1/1

LOCATION: FORT BENJAMIN HARRISON MFH F PROJECT: OIL TO COAL (MFH)	Y l	982
ECON. LIFE: 15 YRS. DATE: 1 / 4 / 82 PREPARED BY	: J	LC
1. Non-recurring Initial Capital Costs:		
a. Current Working Estimate	\$	119,000.
b. Design	\$	7,000.
c. Salvage	\$	0.
d. Total	\$	126,000.
BENEFITS		
2. Recurring Benefit/Cost Differential Other Than		
Energy:		0 /777
a. Annual Labor Decrease (+)/Increase (-)	\$	0./YR.
b. Annual Material Decrease (+)/Increase (-)	\$	0./YR.
c. Other Annual Decrease (+)/Increase (-)	\$ \$	0./YR. 0./YR.
d. Total Costs	Ą	0.000
e. 10% Discount Factor	\$	0.000
f. Discounted Recurring Cost (d x e)3. Recurring Energy Benefit/Costs:	Y	0.
a. Type of Fuel: NO.2 OIL		
(1) Annual Energy Decrease (+)/Increase (-)		4,263.MBTU
(2) Cost per MBTU	\$	9.88/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	42,118./YR.
(4) Differential Escalation Rate (8%) Factor	•	13.112
(5) Discounted Dollar Decrease/Increase		
$((3)\times(4))$	\$	552,257.
b. Type of Fuel:COAL		
(1) Annual Energy Decrease (+)/Increase (-)		-2,434.MBTU
(2) Cost per MBTU	\$	3.80/MBTU
(3) Annual Dollar Decrease/Increase ((1)x(2))	\$	-9,249./YR.
(4) Differential Escalation Rate (5%) Factor		10.798
(5) Discounted Dollar Decrease/Increase		
$((3)\times(4))$	\$	-99,873.
e. Discounted Energy Benefits		450 004
(3a(5)+3b(5)+3c(5)+3d(5))	\$	452,384.
4. Total Benefits (Sum 2f + 3e)	Ş	452,384.
5. Discounted Benefit/Cost Ratio (Line 4/Line 1d)		3.6
6. Total Annual Energy Savings		1,829.
(3a(1)+3b(1)+3c(1)+3d(1)) 7. E/C Ratio (Line 6 /Line la/1000)		15.
8. Annual \$ Savings (2d + 3a(3)+3b(3)+3c(3)+3d(3))	\$	32,869.
9. Pay-back Period ((Line la - Salvage)/Line 8)	•	3.6

FY 1982 -MILITARY CONSTRUCTION PROJECT DATA 23 Dec 81										
3. INSTALLATION AND LOCATION 4. PROJECT TITLE										
Fort Benjamin Harrison, Indiana Boiler Conversion (MFH)										
5. PROGRAM ELEM	MENT	S. CATEGORY CODE	7. PRCJ	JECT NUMBER 3. PROJECT COST (SJCQ)						
7			74							
		9. COS	T ESTIMA	TES			·			
		ITEM	·	U/M	QUAN	TITY	UNIT COST	CDST -S0001		
Convert boilers from #2 oil to natural gas			EA	2	8	\$2,400	67.2			
Contingency (5%)								3.3		
TOTAL CONTRACT COST								70.5		
Supervision, inspection and overhead (5%)							<u>3.5</u>			
TOTAL REQUEST								74		

10. DESCRIPTION OF PROPOSED CONSTRUCTION Install burner conversion units on 28 oil boilers to allow firing with natural gas. The 14, two-family units are as follows: 643, 644, 645, 647, 648, 649, 650, 651, 653, 654, 656, 658, 659, 660. Provide and install required piping, regulators and meters.

B/C Ratio: 12.1; Payback 1.03 years; Savings: \$68,795/yr

11. <u>Requirement</u>: This project is required as an investment to save utilities funds.

Current Situation: The boilers are presently fired using #2 oil which costs \$9.88 per MBTU. The same heat can be provided by natural gas which is readily available for \$2.84 per MBTU. This huge disparity in cost allows a project which will pay for itself in slightly over one year.

Impact if not Provided: The unnecessary expenditure of utilities funds will
continue at the present rate.

This project has been reviewed and it has been determined that an EIS pursuant to PL 91-190 is not required.

DD : 22 1391

2-52

HTERNALLT

FAMILY HOUSING BOILER CONVERSION FORT BENJAMIN HARRISON

Typical	Unit	643	(2	family
643				651
644				653
645				654
647				656
648				658
649				659
650				660

The 28 boilers in this group should be converted to natural gas as soon as possible. While we know this will save <u>some</u> energy due to reduction of the input rate from the present 67 percent oversizing, the amount is difficult to quantify because of the unknown conditions of the boilers in the units not included in the EEAP survey. However, the conversion can be shown to be attractive financially without claiming any energy savings. The following analysis is for conversion of all 28 boilers on that basis, using FY 82 costs and savings.

Economic Analysis: Convert 28 boilers from #2 oil to natural gas.

Gas Conversion Unit	\$1,500
Labor, Misc. piping	500
TOTAL	\$2,000

\$2,000 x 1.2 (OH&P) = \$2,400 \$2,400 x 28 = 67,000 For CWE, 67,200 x 1.05^2 = 70,560 Design (6%) = 4,240 TOTAL \$74,800

Annual Savings:

#2 oil 9772 MBTU x 9.88 = \$96,547 gas 9772 MBTU x 2.84 = $\frac{$27,752}{$68,795}$

Discounted Dollar Value Using ECIP Criteria (15 yrs, 8%):

\$68,795 x 13.112 = \$902,040 B/C = 12.1 Payback = 1.03 3.0 CURRENT AND FUTURE ENERGY USAGE SUMMARY

3.0 Current and Future Energy Usage Summary

The intent of this section and the tables and graphs is to depict past consumption trends and to predict future consumption with regard to FY85 goals. As the graphs illustrate on pp 3-18 and 3-19, FBH will exceed their FY85 goal through the implementation of proposed ECIPS. As stated in Section 1.0 of this Executive Summary, the previous ECIPs, maintenance, and repair and energy management items have contributed to the decrease in basewide consumption below that of FY75 base year.

In addition, group (Section 3.1.1) is presented, and individual (Section 3.1.2) building energy consumption is calculated for existing typical facilities this section. New construction energy consumption projections are presented in Section 3.0 of Volume 2, Appendix 1 (building lists). These individual building consumption charts depict high energy consumers and provide load profiles for each typical facility.

Monthly tables and graphs on historical energy consumption appear in Volume 1, Section 3; OMA and MFH consumption are presented independently, as well as electric KW demand and electrical consumption (KWH).

3.1 Historical Energy Consumption:

Basewide energy consumption from FY75 - FY81 is presented in this section according to fuel type and electricity. The intent of the tables and graphs in this section is to depict past consumption trends and to identify areas for potential energy conservation measures.

3.1.1 <u>Group Energy Consumption</u>: Figure 3.1.1-A presents the distribution of FY75 energy consumption among categories. These categories include the following:

OMAR - Remote reserve centers
Medical - Categories 610 and 141
Maintenance and Reserve - Categories 171, 214, 218, 219
Storage - Categories 442, 422, 713, 714
Community & Utilities - Categories 723, 740, 811, 833, 841, 844, 890
MFH - Category 711
Bachelor Housing - Categories 721 and 724
Building 1
Building 400

Group energy consumption represents the impact of various facilities on basewide energy consumption. For example, Building 1, consumed 19.1% of the total basewide consumption in FY75. Therefore, through energy conservation measures on this individual building, the total future basewide energy requirements can be substantially reduced. Likewise, community facilities, such as bowling centers and clubs, consumed 34.6% of the basewide consumption and represent an area for potential energy conservation measures.

Fort Benjamin Harrison Total Energy Consumption (MBTU'S) 3,1

Total MBTU'S	1197051. 1107917. 1151331. 1162294. 1090019. 1133020.
LPG	1423. 1799. 969. 1381. 1191. 1073.
Oil OMAR	24700. 28452. 29607. 24877. 27787. 26785.
#2 Fuel	108775. 80036. 91993. 98170. 70328. 62950. 51800.
Purch. Steam OMAR	5005. 4801. 2224. 3376. 3105. 2369.
Coal OMA	336147. 291937. 309304. 325938. 283167. 330320.
Gas	20800. 20920. 19482. 21288. 19060. 18776.
Natura] OMA	125050. 106816. 114562. 132726. 119731. 97998. 85150.
Electrical OMA OMAR	33733. 41006. 39858. 36238. 35252. 33014.
Elect OMA	541418. 532150. 543332. 518300. 530398. 559735.
	FY 75 FY 76 FY 77 FY 79 FY 80

*Data not available; consumption averaged according to previous years' consumpton. Data taken from Facilities Engineering Technical Data Reports.

FIG. 3.1.1-A

- 3.1.2 <u>Individual Building Energy Consumption</u>: Utilizing FY75 as a base year, energy requirements for typical facilities have been simulated through the use of computerized energy program and/or metered data. The tables on pp 3-8 through pp 3-10 summarize these energy requirements and provide load profiles to identify high energy consumers.
- 3.1.3 <u>Energy Consumption Summary</u>: Basewise energy consumption (FY75 FY81) is presented in this section with cost, basewide facilities total square footage, MBTU's consumed, and TRADOC goals. FY75 is utilized as the reference year, and FY76 FY81 energy and cost data are compared to this reference year.

3.1.2 KEY FOR ENERGY CONSUMPTION TABLE FOR EXISTING (TYPICAL) FACILITIES

Building # - identification number used by military.

Window Area - Total window area (square feet) for each building.

Window to thoor ratio - window area divided by the floor area.

- * (Heat Cap.) HVAC Design heat output capacity in MBTU's.
- * (Cool Cap.) HVAC Design heat absorption capacity in MBTU's.

Dom. Wtr. Htr. Capacity - (Process Load) storage capacity - gallons of hot water and the type of fuel used.

Process Systems - Fuel consumption (MBTU's/square feet) for other process loads.

Kwatt Demand - (Kilowatt Demand) the peak or highest requirement for electricity, on an hourly basis, for the building.

Peak Day & Time - As a result of computer analysis, this is the electrical peak on an hourly basis.

Elec. Per Yr - Electrical consumption (kilowat hours per year) per square feet.

Peak Cooling Load - The peak or highest requirement for cooling on an hourly basis in KBTU's.

Cooling Load - Cooling requirements for the building per year (MBTU's/sq. ft.) calculated by computer analysis.

Peak Day & Time - As a result of computer analysis, this is the cooling peak on an hourly basis.

Heating Load - Heating requirements for the building per year (MBTU's/sq. ft.) calculated by computer analysis.

MBTU's/square feet nat. gas - natural gas requirements for the building per year (except process loads).

MBTU's/square feet fuel oil - fuel oil requirements for the building per year (except process loads).

MBTU's/square feet steam - steam requirements for the building per year (except process loads).

* This information was obtained from survey data or heating and cooling load calculations. If load calculations were utilized, an additional 5% was added to estimate the mechanical system capacity.

FORT BENJAMIN HARRISON

3.1.2 ENERGY CONSUMPTION TABLE FOR EXISTING (TYPICAL) FACILITIES

Hingle H	N.	Steam MBTU'S/ Sg. Ft.	.035 .106 .035 .035 .023 .023 .041 .103	
Hindow Hindow Horizon Horizo	CONSUMPTE	Fuel Oil MBTU'S/ Sq. Ft.	.133 .173 .173 .045 .066 .209 .267 .304	
Hindle H	FUEL	Nat Gas MBTU'S/ Sq. Ft.	.117	
Hindow Gape. Gape. Systems RNARt Reak RET Los Cool Hindow Hind	2 2	Heating Load MBTU'S/ Sq. Ft.	.084 .051 .078 .031 .031 .031 .031 .046 .055 .064 .064 .065 .064 .065 .064 .065 .064 .066 .066 .070 .070 .070 .070	
Hindow Gape. Gape. Systems RNARt Reak RET Los Cool Hindow Hind	OLING LOA		#18 10. #18 10.	
Hindow Gape. Gape. Systems RNARt Reak RET Los Cool Hindow Hind	TING AND CC	Peak Date Time		
Window Window Window Window Window Window Window Window Window Window Window Window Window Window Window Window Window Window Cop. Capacity Systems Reful Pearl 822 1065 1275 None 100-N. Gas 0.23 7 6,345 1.06 1.00 0.04 0.03 7 1.06 5.04 1.00 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 1.0 0.04 0.03 0.04	HEAT	Peak Cooling Load KBTU		
Window Window HARC DESIGN PROCESS ICADS Window Window Hindow Heat Cool Dom. Whr Hir Process Area Floor Cap. Capc. (Gals.) Systems KWatt 822 .085 .275 None 200-N. Gas .023 10 590 .122 .186 None 100-Steam .033 73 2,152 .087 .725 .072 52-Elec. .0006 50 2,152 .087 .725 .072 52-Elec. .0006 50 2,152 .087 .725 .072 2.25 20 1.4 60 2,034 .093 .CP .256 300-Steam .014 60 2,034 .093 .CP .206 300-Steam .014 60 465 .099 .450 None 80-Elec. .0005 35 613 .055 1.280 None 80-Elec. .000		Elec Per Yr KWH	3.60 4.80 11.50 9.74 8.42 8.42 7.93 7.93 13.60 13.60 13.60 13.60 13.60 14.90 18.10 18.45 18.45 11.25 11.25 11.36 11.36 11.36 11.36 11.36	
Window Window HARC DESIGN PROCESS ICADS Window Window Hindow Heat Cool Dom. Whr Hir Process Area Floor Cap. Capc. (Gals.) Systems KWatt 822 .085 .275 None 200-N. Gas .023 10 590 .122 .186 None 100-Steam .033 73 2,152 .087 .725 .072 52-Elec. .0006 50 2,152 .087 .725 .072 52-Elec. .0006 50 2,152 .087 .725 .072 2.25 20 1.4 60 2,034 .093 .CP .256 300-Steam .014 60 2,034 .093 .CP .206 300-Steam .014 60 465 .099 .450 None 80-Elec. .0005 35 613 .055 1.280 None 80-Elec. .000	LECTRICAL	Peak Date Time		
Window Window HARCTERISTICS Codp. Cap. (Gals.) System Area Floor Cap. Cap. Cap. (Gals.) NBTU/S NBTU/S 590 .122 .085 .275 None 1100-N. Gals .023 6,345 .162 CP .072 52-Elec. .006 2,152 .087 .795 .072 52-Elec. .006 2,152 .087 .795 .072 52-Elec. .006 1,047 .093 CP .252 300-Steam .014 2,094 .093 CP .250 300-Steam .014 2,094 .093 CP .250 300-Steam .014 2,094 .095 .450 None 80-Elec. .000 445 .128 .650 .234 <t< td=""><td>_</td><td>KWatt Demand</td><td>10 77 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75</td><td></td></t<>	_	KWatt Demand	10 77 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	
Window Window Heat Cool Dom Area Floor Cap. 110 Cap. Cap. 110 Cap.	ADS	Process Systems MBTU/SF	223 223 223 223 223 223 223 2002 2001 2002 2002	
Window Window Heat Area Floor Cap. ### (Sq.Ft.) Ratio RETU's ### (Sq.Ft.) Ratio Cap. PROCESS 10	Dom. Wir Hir Capacity (Gals.)	200-N. Gas 1190-Steam 52-Elec. 504-Steam 20-Elec. 300-Steam 300-Steam 300-Steam 30-Elec. 66-Elec. 66-Elec. 66-Elec. 66-Elec. 66-Elec. 66-Elec. 85-R Oil 86-R Oas 86-R Oas 86-Steam 86-Steam 86-Steam 86-Steam 85-Steam		
Window Window Area Floor Area Floor B22 .085 590 .122 6,345 .165 381 .036 2,152 .087 2,152 .087 2,094 .093 1,047 .093 2,094 .093 2,094 .093 1,047 .093 2,094 .093 1,047 .093 1,406 .049 465 .099 465 .099 461 .105 1,406 .055 1,408 .155 483 .127 76 .069 1,408 .055 6,163 .164 734 .110 1,408 .055 6,163 .168 913 .108 913 .158 3,370 .068	ESIGN		None None None 1.000 1.236236236305305304348348 None None None None None None None None	
Window Area Area Area Area (Sq.Ft.) 822 590 6,345 381 2,152 2,152 2,152 2,152 2,163 1,044 465 613 1,406 1,308 483 1,308 483 1,308 483 1,308 483 1,334 1,408 1,190 6,163 1,408 1,334 1,408 1,334 1,334 1,408 1,334 1,408 1,334 1,408 1,334 1,334 1,334 1,334 3,370	HVAC D	Heat Cap. MBTU's	525. 526. 527. 528.	
Window Area Bldg.* (Sq.Ft.) 405 424 421 425 421 425 424 423 424 423 424 423 424 423 429 429 429 424 433 443 465 465 465 465 465 501 1,406 501 502 1,408 538 502 1,408 538 501 1,308 502 1,408 538 501 1,308 502 1,408 503 1,408 538 601 447 604 604 604 604 734 605 604 601 734 607 734 607 604 738	TICS	Window Floor Ratio	.085 .036 .037 .093 .093 .093 .093 .093 .095 .095 .095 .095 .095 .095 .095 .095	
BLDG. C BLDG. C BLDG. C BLDG. 6 Bldg.* 405 405 405 424 424 424 424 424 424 427 428 428 428 428 428 428 428 428 428 428	HARACTERIS	Window Area (Sq.Ft.)	822 590 6,345 1,047 2,152 2,094 2,094 439 461 1,308 1,308 1,308 1,314 1,190 6,163 6,163 1,408 1,408 1,408 1,408 1,408 1,408 1,190 6,163 3,370	
A A	BLDG. C	Bldg.#	405 411 424 424 427 428 433 433 443 443 443 443 443 443 443 44	

^{*} E-Cube data available for these buildings; all other typical buildings have been estimated based on these computer runs or metered data.

FORT BENJAMIN HARRISON

3.1.2 ENERGY CONSUMPTION TABLE FOR EXISTING (TYPICAL) FACILITIES

z	Steam MBTU'S/ Sq. Ft.	.057	053			181	101.					,	.049	.058	ļ	.072							
FUEL CONSUMPTION	Fuel Oil MBTU'S/ Sq. Ft.	;	.102		111.		6	760.	120	•00•							.108	.150	.153				
FUEL	Nat Gas MBTU'S/ Sq. Ft.				000	.089						.052								.282	.282	. 282	.282
92	Heating Load MBTU'S/ Sq. Ft.	• 056	.061	100.	9,0	50.	91.0	90	.073	.057	.044	.031	.048	.057	.044	.071	.087	.091	.093	171.	.171	.171	171.
OC. ING LOAD	Cooling Load MBTU'S/ Sq. Ft.																				,		
HEATING AND COCLING LOADS	Peak Date Time		7- 1 12M										-	7-1 12M		7- 1 12M							
HEAT	Δ,	25 7					*						43 7			434 7							
	Elec Per Yr KWH	5.48	9.9	90.0	13.20	5,31	00.11	2.87	5.06	5.06	4.38	5,31	10.00	5.40	4.38	12.60	6.80	2.87	5.50	6.10	6.10	6.10	6.10
ELECTRICAL	KWatt Peak Demand Date Time	1-16	5 1-16 12M	T :	J-16	~ ;	1	10	◄	7		1-16	1-16	18 1-16 2AM		•	•	91	7	11	==	11	n
ADS	Process Systems MBTU/SP	.002	.001	.004	.010	100.	040	600.	800.	600.	.031	.002	.001	.001	.045	.020	600°	.019	.024	.053	.053	.053	.053
PROCESS LOADS	Dom. Wtr Htr Capacity (Gals.)	52-Elec.	30-Elec.	184-Steam	30-Elec.	30-Elec.	30-Elec.	150-N. Gas	75-N. Gas	150-N. Gas	300-	75-N. Gas	50-N. Gas	50-N. Gas	300-N. Gas	75-N. Gas	30-Elec.	500-N. Gas	150-N. Gas	150-N. Gas	210-N. Gas	120-N. Gas	180-N. Gas
SIGN	Cool Cap. MBTU's	.170	•036	. 720	090	.021	190.	None	None	None	None	.048	.054	090.	None	.241	None	None	None	None	None	None	None
HVAC DESIGN	Heat Cap. MBTU's	පි	140	පි	.082	.240	ਹੈ	. 299	.424	.299	පී	පි	පි	පි	පි	පි	.225	494	.272	.384	.512	.200	.640
TICS	Window Floor Ratio	.057	.129	.072	.136	.137	990.	.077	.088	.089	106	.083	.108	080	.092	.057	.038	.091	.129	.132	.133	.141	.146
BLDG. CHARACTERISTICS	Window Area (Sq.Ft.)	289	278	1,194	167	412	132	968	289	996	2,032	1,116	889	652	3,005	636	83	1,042	592	629	844	561	899
BLDG. C	Bldg.#	614	616	*618	619	622	624	643	646	647	662	663	664	999	999 *	699	700	006	906	1002	1006	1015	*1031

^{*} E-Cube data available for these buildings; all other typical buildings have been estimated based on these computer runs or metered data. Building 669 - Additional Domestic Water Heater - 75 Gallon Electric

3-9

FORT BENJAMIN HARRISON

3.1.2 ENERGY CONSUMPTION TABLE FOR EXISTING (TYPICAL) FACILITIES

z	Steam MBTU's/ Sq. Ft.	•026		.098		.035	910	•10.	.031	.082							0.08	9.0	.035		170	050	200	3co.	
FUEL CONSUMPTION	Fuel Oil MBTU'S/ Sq. Ft.							117				9	840.	•	;	.109								1.85	3
FUEL	Nat Gas MBTU'S/ Sq. Ft.						.103				. .	791.		.208	.081					37.0	•				
82	Heating Load MBTU'S/ Sq. Ft.	•026	.025	.097	.064	.035	280.	910.	030	.081	98	971.	.034	.167	• 065	.065	970	070	.035	707	5.	101	2.00	260.	711.
HEATING AND COOLING LOADS	Cooling Load MBTU'S/ Sq. Ft.	.01																	OI SIM			ersten.			
AND CO	Peak Date Time	2PM		12M	•	12M	7.	M2.	12M	12M	į	124	7.7.	171	12M	2	E71	H71	2 A			Ę			
ATING		8- 1		7-1	1	7	7,	7 7	7.7	7-1		7- 1	7,		7-1	ŗ		Ξ,	7-]		JI-0	9 C	77.		
呈	Peak Cooling Load KBTU	37335		22	C0CT	23	127	4 8	15	12	;	216	338	•	24	3	175	3	1140		11	220	6099	821	
	Elec Per Yr KWH	7.04	5.31	5.72	5.31	5.40	13.57	8.6	9.6	5.73	15.40	8.50	16.00	3,6	4.56	5.31	7.	43.50	8.40	5.31	CF-9T	18.45	10.12	6.95	3.60
RICAL	ak Time	2PM	2AM	Š	4	2AM	12M	X :	12M	12M	12M	12M	12M	171	2AM	7. 1.	17.	1 7	SA SA	į	F.	E	J.	124	
ELECTRICAL	Peak Date Ti	8- 1	1-16	•	1 _	1-16	7-1	J-16	1-19	1-16	1-16	7-1	7-1	9T-T	1-16	1-16	7-1	T _/	7-1		5	8-18 6-18	81-8	7- 1	
	KWatt Peak Demand Date Time	3810	38	13	30	5 8	87	32	7 91	43	70	8	٦ ا	~ 60	1	ያ	27	/97 MI	183	52 '	Ω.	98	916	118	7
ADS	Process Systems MBTU/SF	.012/.115E	.002	None	-005 -002	.002	.002	100.	100.	.0005	.001	600.	.003	.003	.007	.0001	.017	SCED. /900.	.007	.002	.031	.019/.006N	•003	.017	•024
PROCESS LOADS	Dom. Wtr Htr Capacity (Gals.)	1600-Steam	52-Elec.	None	318-Steam 52-F1ec.	30-Elec.	6-Elec.	20-Elec.	52-Elec. 20-Elec.	30-Elec.	52-Elec.	60-Elec.	30-Elec.	32- #2 011	85-N. Gas	30-Elec.	10-Elec.	52-Elec.	300-Steam	30-Elec.	30-Elec.	1666-Steam	626-Elec.	1311-Steam	30-N. Gas
SIGN	Cool Cap. MBTU's	45.8	None N	.039	Vone	.162	.141	.227	810.	.053	None	.570	.338	.050 .050	060	None	.189	900	1.140	.036	.084	2.000	8.820	.720	None
HVAC DESIGN	Heat Cap. MBTU's	41.7	888	පි	පී පී	් පී	.212	පිදි	ج. ال	ච	.231	. 486	386	123	374	1.152	.549	පි	ප	පි	100	ප	පි	පි	141
rics	Window Floor Ratio	.065	044	124	150.	.072	.058	.013	.137 .026	189	.061	.013	500	121	101	.038	.126	.01	•074	.047	.078	.019	.115	.081	.011
BLDG. CHARACTERISTICS	Window Area (Sq.ft.)	102,443	780	742	2,061	949	190	217	3/4	3.475	196	128	17	262	581	992	473	228	4,953	559	8	2,099	37,551	3,251	242
BLDG. (Bldg. ♣	*	13	18	, 50 50 50 50 50 50 50 50 50 50 50 50 50 5	3 83 3	ณ -โ	0	S 55	98	38	39	* 40	4 3	25	54	100	*101	*126	127	237	*300	*400	402	404

^{*} E-Cube data available for these buildings; all other typical buildings have been estimated based on these computer runs or metered data.

3. 1. 3 FORT BENJAMIN HARRISON ENERGY CONSUMPTION SUMMARY

	FY 81	4,959,000	1,059,214	2,833,588	213.594	243.599	571.40	88	154	500,314	1,639,338	100.890	330,58	78	142	5651	.0179	48,181,000	558,900	1,194,250	9.716	112,704	240.82	97	176	10,040
	FY 80	4,959,000	1,133,020	2,992,254 \$	228.478	185,309	603.40 \$	92	163	540,271	1,575,368 \$	108.948	317.68 \$	84	136	2906	.0184	21,099,000	592,749	1,416,886 \$	10,304	119,530	285.72	103	509	10,200
	6	000	019	\$ 898	209	574	84 \$			369	642 \$	126	82 \$									81	2 \$			
	FY 79	4,941,000	1,090,	\$ 2,538,	220	194.	\$ 513.84	16	139	524,369	\$ 1,041,	106.	\$ 210.82	82	8	6031	•	48,763,000	965,6	\$ 1,497,2	9.86	114.4	\$ 303.0	86	222	10,230
	FY 78	4,922,000	1,162,294	\$ 2,218,101	236.143	203,839	\$ 450.65	76	122	951,199	\$ 1,010,759	123.477	\$ 205.36	92	88	6116	.0202	47,805,000	554,538	1,207,342	9.713	112.665	\$ 245.30	8	179	0866
	FY 77	4,921,000	1,151,331	\$ 2,619,811	233,963	213,105	\$ 533.37	96	148	568,141	*\$ 1,359,812	115.452	\$ 276.33	91	133	6311	.0183	50,275,000	583,190	\$ 1,077,151	10.216	118,510	\$ 218.89	101	162	*
	FY 76	4,875,000	1,107,917	\$ 1,920,150	227.265	222,371	\$ 393.88	93	106	534,761	\$ 1,050,500	109,695	\$ 215.49	88	92	5062	.0217	49,410,000	573,156	\$ 869,650	10,135	117,570	\$ 178.39	100	131	# #
l	FY 75	4,798,000	1,197,051	\$ 1,774,902	249.489		s	100			S		\$ 233.26					49,582,000	575,151	\$ 655,743			٠.		100	
	Unit	S. F.	MBTU/Yr	Dollars/Yr	MBTU/KSF/Yr	MBTU/KSF/Yr	Dollars/KSF/Yr	Ref. FY 75	Ref. FY 75	MBTU/Yr	Dollars/Yr	MBTU/KSF/Yr	Dollars/KSF/Y	Ref. FY 75	Ref. FY 75		MBTU/KSF/DD/Yr	KWH/Yr	_				Dollars/KSF/Yr		Ref. FY 75	Peak KW
	Parameter	*Area	Source Energy Consumed	*Energy Cost	Source Energy/Area/Year	*TRADOC Goal	Energy Cost/Area/Year	Source INdex	Cost Index	Fuels Consumed	Fuels Cost	Fuels Energy/Area/Year	Fuels Cost/Area/Year	Fuels Index	Fuels Cost Index	Heating Degree Days	Heating Fuels Index	Electricity Consumed	Source Electricity Energy	Electricity Cost	Electricity KWH/Area/Year	Electricity Energy/Area/Year	Electricity Cost/Area/Year	Electricity Index	Electricity Cost Index	Electrical Demand

 \star Steam was estimated based upon average unit cost from FY 76 - FY 78 $\star\star$ Information not available

3-11

- 3.2 <u>Future Energy Consumption</u>: This section provides future energy and cost projections for Fort Benjamin Harrison, indicating its trends and future with regard to TRADOC goals for energy consumption reduction.
- 3.2.1 As a result of the proposed Energy Plan (see Section 2), Fort Benjamin Harrison will experience a significant reduction in energy consumption. As the "Summary of Proposed Savings" chart illustrates, the major reductions will occur in coal and electric consumption. The energy savings (per type) attributable to each energy project are listed in this chart to depict each project's contribution to basewide energy conservation.
- 3.2.2 As 3.2.1 has illustrated, significant energy savings (MBTU) will result from Increment G and ECIP projects. Yet, the overall reduction in energy consumption does not necessarily translate into reduced energy costs. As 3.2.2 depicts, the rising cost of electricity and fuels will lead to increase \$/MBTU for the successive fiscal years and result in higher energy costs for Fort Benjamin Harrison. However, proposed energy consumption reduction will help offset these rising costs.

3.2.1 SUMMARY OF PROPOSED SAVINGS

	N	BTU SAVINGS		
PROJECT	ELECTRIC	NAT. GAS	OIL	COAL
Increment G FY82				
Flow Restrictors - Bach Hsg.		1021		3002
Hawley Clinic	4947/1960 KW Demand			10668
Heat Recovery				4249
Flow Restrictors - MFH	20	1737		
Programmable Thermostats		8896		
Hot Water Heater Insulation	4	1210		
Oil Furnace Conversion		-15053	19998	
Oil Boilers - MFH		- 2298	3254	
Central Plant Steam			6795	-5195
Furnaces - MFH		- 242	316	
Central Plant Steam - MFH			4263	-2434
Boiler Conversion - MFH		- 9772	9772	
Subtotal	4971/1960 KW	-14501	44398	10290
ECIP FY85				
EMCS	76461/200 KW	6430	5234	42296
Window Replacement		6205		13556
Building l	5279/1455.5 KW			117395
Harrison Village		26133		
Building 400				18733
Subtotal	81740/1655.5	38768	5234	191980
TOTAL MBTU	86711/3615.5 KW Demand		49632	202270

3.2.2 PROJECTED ENERGY SAVINGS AND COSTS

			BLECTRIC	NATURAL GAS	TIO	COAL	STEAM	TEG
FY81	FY81 Consumption	MBTUS FY81 \$	558,900 \$1,194,250	102,219 \$367,468	67,712 \$599,213	318,400 \$ 915,329	10,677 \$44,306	1,306 \$ 7,118
FY82	FY82 Incr. G Savings	s MBTU (KW)	4,971 1,960	-14,501	44,398	10,290		
FY82	FY82 Consumption	MBTU \$/MBTU	553,929 x \$1.27 x \$4.71/KW	116,720 x \$2.84	23,314 x \$9.88	308,110 x \$3.80	10,677 x \$4.67	1,306 x \$6,20
FY82	FY82 Costs		\$1,243,818	\$ 331,485	\$230,342	\$1,170,818	\$49,862	\$ 8,097
FY85	FY85 (ECIP) Savings	MBTUS (KW)	81,740 1665.5	38,768	5,234	191,980		
FY85	FY85 Consumption	MBTU \$/MBTU	472,189 x \$1.83 x \$6.80/KW	77,952 x \$4.21	18,080 x\$14,63	116,130 x \$5.06	10,677 x \$5.99	1,306 x \$9.18
FY85	FY85 Costs		\$1,515,896	\$ 328,178	\$264,510	\$ 587,618	\$63,955	\$11,989

3-15

P86,11 # - 2847

3.2.3 and 3.2.4 These charts and their corresponding graphs provide Fort Benjamin Harrison's historical basewide consumption and predict future consumption in relationship to TRADOC goals. Future consumption is graphed according to predicted energy savings through the implementation of proposed Increment G and ECIP projects. As 3.2.3-A and 3.2.4-A illustrate, Fort Benjamin Harrison will exceed their TRADOC goals through these proposed energy projects.

3.2.3 FBH HISTORICAL ENERGY CONSUMPTION AND FUTURE GOALS (MBTU/YR AND ADJUSTED FOR DEGREE DAY)

	FY 75	FY 75 FY 76	FY 77	FY 78	FY 78 FY 79	FY 80	FY 81	FY 82	FY 83	FY 84	FY 85
MBTU/YR	1,197,051	1,197,051 1,107,917		151,331 1,162,294 1,090,019 1,133,020 1,059,214 1,122,235 1,047,420	1,090,019	1,133,020	1,059,214	1,122,235	1,047,420	972,604	897,788
D.D./YR	6602	5842	7672	7421	0689	1017	6635	6551	6551	6551	6551
MBTU/D.D./YR	181.32	189.65	150.07	156.62	158.20	159.58	159.64	171.31	159.89	148.47	137.05

3.2.4 FBH HISTORICAL ENERGY CONSUMPTION AND FUTURE GOALS

(MBTU/YR AND BTU/SQ.FT./DEGREE DAY)

	FY 75	FY 75 FY 76 F	FY 77	FY 78	FY 79	FY 80 FY 81		FY 82	FY 83	FY 84	FY 85
MBTU/YR	1,197,051	1,107,917	1,151,331	1,162,294	197,051 1,107,917 1,151,331 1,162,294 1,090,019 1,133,020 1,059,214	1,133,020	1,059,214				
SQ. FT.	4,798,000	4,875,000	4,921,000	4,922,000	4,798,000 4,875,000 4,921,000 4,922,000 4,941,000 4,959,000 4,959,000	4,959,000	4,959,000				
MBTU/SQ.FT.	.2495	.2273	.2339	.2361	.2206	.2285	.2136	.2370	.2246	.2121	9661.
D.D./YR	6602	5842	7672	7421	0689	7101	9693	6551	6551	6551	6551
BTU/SQ.FT./D.D.	37.79	38.91	30.49	31.82	32.02	32.18	32.19	36.18	34.28	32.37	30.47

Energy goals are based on reductions of 25% (MBTU/YR.) and 20% (MBTU/SQ.FT.), utilizing FY 75 data.

FIGURE 323-A FBH HISTORICAL ENERGY CONSUMPTION AND FUTURE GOALS

FIGURE 3.2.4-A
FBH HISTORICAL ENERGY CONSUMPTION
AND FUTURE GOALS