

Machine learning-based AI applied to breeding

Alencar Xavier
Breeding Analyst at Corteva
Adjunct professor at Purdue

Adequate use of

Outline

1. Introduction

- More data
- Branching ML

2. Machines

- Filters
- Engines

3. Analytics

- Target G x E x M
- Validation
- Cases of study

4. Conclusion

1. Introduction

- More data
- Branching ML

2. Machines

- Filters
- Engines

3. Analytics

- Target G x E x M
- Validation
- Cases of study
- 4. Conclusion

More Pheno

https://www.mdpi.com/2076-3417/12/5/2570

More Geno

The Cost of Sequencing a Human Genome, NIH. https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

Stephens, Z. D.et al. (2015). Big data: astronomical or genomical? PLoS biology, 13(7), e1002195.

More Env ⁹

- **UC Merced GridMET**
- **NWS NOAA**
- NASA GISS, NASA power
- **Harmonized SoilDB**
- **USDA SSURGO**

More Computing _____

ML in breeding processes

Enhancing databases, automating lab tasks field work

phenotyping

Disease, stress scoring

https://www.mdpi.com/2673-2688/2/3/26 https://www.biomedcentral.com/collections/phenomics

Phenotype automation

(e.g., plant height, identify new traits)

https://www.mdpi.com/2072-4292/8/12/1031 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706325/

environment

Mapping / zoning

https://www.publish.csiro.au/cp/CP14007

Latent weather, soil

biotech

SNP calls, genome assembly

https://doi.org/10.1186/1753-6561-3-s7-s58 https://www.nature.com/articles/s41467-022-29843-y

Embryo rescue DH production

Gene editing targets

https://doi.org/10.1093/bioinformatics/btab268

https://www.nature.com/articles/s41598-022-06336-y

1. Introduction

- More data
- Branching ML

2. Machines

- Filters
- Engines
- 3. Analytics
 - Target G x E x M
 - Validation
 - Cases of study
- 4. Conclusion

Machine Learning Engines

A new approach fits multivariate genomic prediction models efficiently

Alencar Xavier^{1,2*†} and David Habier^{1*†}

Walking through the statistical black boxes of plant breeding

Alencar Xavier¹ · William M. Muir² · Bruce Craig³ · Katy Martin Rainey¹

ORCID ID: 0000-0

Plant Breeding

Technical nuances of machine learning: implementation and validation of supervised methods for genomic prediction in plant breeding

Alencar Xavier 1*

Impact of Genomic Prediction Model, Selection Intensity, and Breeding Strategy on the Long-Term Genetic Gain and Genetic Erosion in Soybean Breeding

Using unsupervised learning techniques to assess interactions among complex traits in soybeans

Alencar Xavier · Benjamin Hall · Shaun Casteel · William Muir · Katy Martin Rainey

Article

Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias

Efficient Estimation of Marker Effects in

Éder David Borges da Silva 1,2,40, Alencar Xavier 3,40 and Marcos Ventura Faria 20

Key idea of supervised learning: FILTERING

Mu**Niihtipsle**dilter silter

Why bother with multiple filters?

Some families were placed on unfavorable side of the field...

SoyNAM field, Indiana 2014

Pheno

Spatial

Why bother with multi-response filters?

Simple (bivariate) model:

INFORMATION GAIN

Why bother with multi-response filters?

$$y = Zg + e, y \sim N(0, V)$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

Covariance structure

$$V = G \otimes \Sigma_a + I \otimes \Sigma_e = G \otimes \begin{bmatrix} \sigma_{a_1}^2 & \sigma_{a_{12}} \\ \sigma_{a_{12}} & \sigma_{a_{2}}^2 \end{bmatrix} + I \otimes \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_{12}} \\ \sigma_{e_{12}} & \sigma_{e_{2}}^2 \end{bmatrix}$$

Model equation

$$\begin{bmatrix} Z_1'\Sigma_e^{11}Z_1 + G^{-1}\Sigma_a^{11} & Z_1'\Sigma_e^{12}Z_2 + G^{-1}\Sigma_a^{12} \\ Z_2'\Sigma_e^{12}Z_1 + G^{-1}\Sigma_a^{12} & Z_2'\Sigma_e^{11}Z_2 + G^{-1}\Sigma_a^{22} \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} Z_1'(\Sigma_e^{11}y_1 + \Sigma_e^{12}y_2) \\ Z_2'(\Sigma_e^{22}y_2 + \Sigma_e^{12}y_1) \end{bmatrix}$$

· Univariate vs bivariate

$$\begin{split} g_1 &= (Z_1' \Sigma_e^{11} Z_1 + G^{-1} \Sigma_a^{11})^{-1} (Z_1' \Sigma_e^{11} y_1) \\ g_1 | g_2 &= (Z_1' \Sigma_e^{11} Z_1 + G^{-1} \Sigma_a^{11})^{-1} (Z_1' (\Sigma_e^{11} y_1 + \Sigma_e^{12} y_2) - (Z_1' \Sigma_e^{12} Z_2 + G^{-1} \Sigma_a^{12}) g_2) \end{split}$$

GAIN

Does the choice of filter matter?

• **ADDITIVE LINEAR FILTERS** (GEBV)

- Pattern: ADDITIVE GENETICS heritable
- Method: GBLUP, RIDGE, LASSO
- Suits: RECYCLING, ADVANCEMENT

• NON-LINEAR FILTERS (EGV)

- Pattern: ANY GENETIC SIGNAL
- Method: RKHS, DNN, Random Forest
- Suits: ADVANCEMENT, PRODUCT PLACEMENT

Main classes of learners

Solving: y = Xb + e

Finding \rightarrow argmin($e'e + \lambda b'b$)

(Use diagonals of LHS)

$$\hat{b}_{j}^{t+1} = \frac{x_{j}'(y - X_{-j}\hat{b}_{-j})}{x_{j}'x_{j} + \lambda}$$

$$\hat{b}^{t+1} = b^t - \frac{2r}{n} [X'(y - X\hat{b}^t) + \lambda \hat{b}^t]$$

Second order

$$\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X} + \lambda)^{-1}(\mathbf{X}'\mathbf{y})$$

l've created a monster!!

Used for p>>n solvers

glmnet, BGLR, bWGR, GS3

Used for Deep Neural Nets

TensorFlow Keras, PyTorch, MXNet

Used for everything else

ASREML, Ime4, SAS

Coordinate descent

$$\hat{b}_{j}^{t+1} = \frac{x_{j}'(y - X_{-j}\hat{b}_{-j})}{x_{i}'x_{i} + \lambda}$$

Gradient descent

$$\hat{b}^{t+1} = b^t - \frac{2r}{n} [X'(y - X\hat{b}^t) + \lambda \hat{b}^t]$$

What about the deep learning? 🚱

$$y = \alpha(\alpha(XB_1)B_2)b_3 + e$$

i.e., just a "stack of solvers"

Data > Method

Unnecessarily complex analysis should not be used as a foil to disguise lower quality datasets

Kruuk (2004 apud Walsh and Lynch 2018)

1. Introduction

- More data
- Branching ML

2. Machines

- Filters
- Engines

3. Analytics

- Target G x E x M
- Validation
- Cases of study
- 4. Conclusion

Analytics

"Breeding objective"

Set of traits of interest (TOI)
 bred into a

Target population of genotypes (TPG)
 for a given

Target population of environments (TPE)

TPE, TPG, TPM

Target population of environments (TPE)

- Influences accuracies via GxE correlation
- Which environments should I be able to predict?

Target population of genotypes (TPG)

- Influences accuracies via genetic relationship
- Which genetics should I be able to predict?

Target population of management (TPM)

Herein nested in TPE

From QTLs to Adaptation Landscapes: Using Genotype-To-Phenotype Models to Characterize G×E Over Time

Daniela Bustos-Korts¹*, Marcos Malosetti¹, Karine Chenu², Scott Chapman^{3,4}, Martin P. Boer¹, Bangyou Zheng³ and Fred A. van Eeuwiik¹*

What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions?

Fred A. van Eeuwiik,* Daniela V. Bustos-Korts, and Marcos Malosetti

An Equation to Predict the Accuracy of Genomic Values by Combining Data from Multiple Traits, Populations, or Environments

Yvonne C J Wientjes , Piter Bijma, Roel F Veerkamp, Mario P L Calus

Genetics, Volume 202, Issue 2, 1 February 2016, Pages 799–823, https://doi.org/10.1534/genetics.115.183269

TPE

• Any given trial happens in each environment-management combination, that is sample of much larger population:

$$e_i \in E$$

That is:

$$\begin{bmatrix} y_{e_i} \\ y_{e_j} \\ g_E \end{bmatrix} = \begin{bmatrix} \sigma_{g(e_i)}^2 + \sigma_{\epsilon(e_i)}^2 & \sigma_{g(e_i,e_j)} & \sigma_{g(e_i,E)} \\ \sigma_{g(e_j,e_i)} & \sigma_{g(e_j)}^2 + \sigma_{\epsilon(e_j)}^2 & \sigma_{g(e_j,E)} \\ \sigma_{g(E,e_i)} & \sigma_{g(E,e_j)} & \sigma_{g(E,e_j)}^2 \end{bmatrix}$$

NOTE: GxExM patterns within TPE are largely assessed using different methods of ML

TPG + TPG

- Accuracy (Wientjes et al 2016) = correlation(true signal, estimated signal),
- It is a function of heritability, GxE, representativeness of the calibration set
- For:

$$y = g + e$$
,
 $var(y) = V$, $var(g) = G$

Then accuracy is

$$a_{i} = cor(g_{i}, \hat{g}_{i}) = \frac{cov(g_{i}, \hat{g}_{i})}{var(g_{i})var(\hat{g}_{i})} = \frac{var(\hat{g}_{i}) r_{GxE}^{2}}{var(g_{i})var(\hat{g}_{i})} = r_{GxE}^{2} \sqrt{\frac{G_{i,y}V^{-1}G_{y,i}}{G_{i,i}}}$$

Thus, we know how much signal to expect in any given prediction

Validation schemes

1) CV type – Test intent

- Random CV = Upper-bound predictive potential
- <u>Leave-one-out</u> = Assess structured scenarios (e.g., geography-out, year-out)
- **Holdout** = Reproduce true applications (e.g., predict individuals from upcoming)

2) TPE/TPG relation

	Genotype	Environment	Difficulty
CV00	New	New	****
CV0	Observed	New	***
CV1	New	Observed	***
CV2	Observed	Observed	*

Adapted from Crossa et al. (2017) doi.org/10.1016/j.tplants.2017.08.011

3) Signal availability

Genetic information available in different cross-validation setups

- Intra-family: Linkage*
- · Within-family: Linkage and LD
- · Across-family: Relationships**, Linkage and LD
- Leave-family-out: Relationships and LD
- Untested environments: Same as above x (GxE)

Validation metrics

Correlations

- Most common metrics in breeding (e.g., predictability)
- Pertinent to ranking and selection of complex traits

Prediction error

- Utilized when the predicted values must be as close as possible to original scale
- Pertinent to risk prediction (e.g., disease risk)

Success

- Accommodate complex or subjective criteria, independent or otherwise
- Pertinent to decision involving data from multiple sources (e.g., advancement)

Amount of signal that can be captured in different structures

SoyNAM data ES: 2012 (7 loc)

PS: 2012 (7 loc) PS: 2013 (4 loc) #Fam = 40

Genos = 5600 SNPs = 4300

Obs: 3k-5k obs/loc

Case of study

Evaluation criterion

2022 G2F GxE prediction competition

What was modeled?

$$y|E_i = \mu_i + g|E_i$$
 (Two FILTERS)

Phenotype @ ith Loc = ith Loc Mean + Genetic effect @ ith Loc

- The winning approach:
 - Predict location means using mixed model and random forest
 - Predict genetic performance with index from <u>multi-response</u> based on <u>TPE/TPG</u>

2022 G2F GxE prediction competition

Realized results

Ranking with alternative metrics

Team Name	Within RMSE
CLAC	2.329
igorkf	2.345
phenomaize	2.374
UCD_MegaLMM	2.387
CGM	2.391
breedingteam	2.398
Purdue	2.402
SmAL	2.425
ML_APT	2.472
MPB_Group	2.544

Team Name	Cor Within Loc	Team Name	Cor Across Loc
<u>CLAC</u>	0.357	breedingteam	0.650
CGM	0.353	DataJanitors	0.644
MPB_Group	0.342	CLAC	<mark>0.631</mark>
UCD_MegaLMM	0.338	Purdue	0.631
SmAL	0.285	UCD_MegaLMM	0.628
DeepCropVision	0.281	phenomaize	0.617
CropEnthusiast	0.279	igorkf	0.600
AllModelsAreWrong	0.272	CGM	0.587
DataJanitors	0.256	SmAL	0.586
supermanwasd	0.243	AllModelsAreWrong	0.575

Source: Jacob Washburn, Jose Ignacio Varela, Alencar Xavier

1. Introduction

- More data
- Branching ML

2. Machines

- Filters
- Engines

3. Analytics

- Target G x E x M
- Validation
- Cases of study

4. Conclusion

There is more to ML than proof of concepts using cross-validations

Hidden Technical Debt in Machine Learning Systems

doi/10.5555/2969442.2969519

- How easily can an entirely new algorithmic approach be tested at full scale?
- What is the transitive closure of all data dependencies?
- How precisely can the impact of a new change to the system be measured?
- Does improving one model or signal degrade others?
- How quickly can new members of the team be brought up to speed?

Thank you for your attention!

Final remarks:

- 1) Plant breeding uses machine learning for multiple purposes in processes and analytics
- 2) Filter settings are important to maximize signal, but it is less important than data
- 3) Validation metrics and validation schemes matter to design meaningful models

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

