

Hasil Perhitungan SPK VIKOR

1. Matriks Keputusan (F)

#	Kode Alternatif	Nama Alternatif	C01	C02	C03	C04	C05	C 06
1	A01	Styrofoam	15.97	25.56	767	0.021	20.45	1.28
2	A02	Stone wool	38.36	220	760	0.035	1.4	1.01
3	A03	Glass Wool	32.42	75	840	0.05	1	1.2
4	A04	Cork board	38.38	100	1,800	0.04	22	0.19
5	A05	Polyester fibers	25.87	20	1,600	0.045	2	3.8
6	A06	Polyurethane	34.39	20	1,500	0.04	5	3.48
7	A07	Perlite	52.91	100	1,000	0.08	5	0.52
8	A08	Wood wool	22.49	65	2,100	0.1	2	0.98

	CO1 (Cost)	C02 (Benefit)	CO3 (Cost)	C04 (Cost)	C05 (Benefit)	C06 (Cost)
Nilai Tertinggi	52.91	220	2,100	0.1	22	3.8
Nilai Terendah	15.97	20	760	0.021	1	0.19

2. Bobot Kriteria (W)

	C01	C02	C03	C04	C05	C06
Nama Kriteria	Costs of insulation material	Density	Specific heat	Coefficient of thermal conductivity	Water vapor diffusion resistance factor	CO2 emission
Tren	Cost	Benefit	Cost	Cost	Benefit	Cost
Bobot	0.4	0.05	0.1	0.15	0.1	0.2

3. Matriks Normalisasi (N)

				l				
#	Kode Alternatif	Nama Alternatif	C01	C02	C03	C04	C05	C06
1	A01	Styrofoam	0	0.9722	0.0052	0	0.0738	0.3019
2	A02	Stone wool	0.6061	0	0	0.1772	0.981	0.2271
3	A03	Glass Wool	0.4453	0.725	0.0597	0.3671	1	0.2798
4	A04	Cork board	0.6067	0.6	0.7761	0.2405	0	0
5	A05	Polyester fibers	0.268	1	0.6269	0.3038	0.9524	1
6	A06	Polyurethane	0.4986	1	0.5522	0.2405	0.8095	0.9114

#	Kode Alternatif	Nama Alternatif	C01	C02	C03	C04	C05	C06
7	A07	Perlite	1	0.6	0.1791	0.7468	0.8095	0.0914
8	A08	Wood wool	0.1765	0.775	1	1	0.9524	0.2188

4. Normalisasi Bobot (F*)

#	Kode Alternatif	Nama Alternatif	C01	C02	C03	C04	C05	C06
1	A01	Styrofoam	0	0.0486	0.0005	0	0.0074	0.0604
2	A02	Stone wool	0.2424	0	0	0.0266	0.0981	0.0454
3	A03	Glass Wool	0.1781	0.0363	0.006	0.0551	0.1	0.056
4	A04	Cork board	0.2427	0.03	0.0776	0.0361	0	0
5	A05	Polyester fibers	0.1072	0.05	0.0627	0.0456	0.0952	0.2
6	A06	Polyurethane	0.1995	0.05	0.0552	0.0361	0.081	0.1823
7	A07	Perlite	0.4	0.03	0.0179	0.112	0.081	0.0183
8	A08	Wood wool	0.0706	0.0388	0.1	0.15	0.0952	0.0438

5. Nilai Utility Measure (S) dan Regret Measure (R)

#	Kode Alternatif	Nama Alternatif	Nilai Utility Measure (S)	Nilai Regret Measure (R)
1	A01	Styrofoam	0.1169	0.0604
2	A02	Stone wool	0.4126	0.2424
3	A03	Glass Wool	0.4314	0.1781
4	A04	Cork board	0.3864	0.2427
5	A05	Polyester fibers	0.5607	0.2
6	A06	Polyurethane	0.604	0.1995
7	A07	Perlite	0.6592	0.4
8	A08	Wood wool	0.4984	0.15

	Nilai Utility Measure (S)	Nilai Regret Measure (R)
Nilai Maksimal (+)	0.6592	0.4
Nilai Minimal (–)	0.1169	0.0604

6. Nilai Indeks VIKOR (Q)

#	Kode Alternatif	Nama Alternatif	Nilai Indeks VIKOR (Q) (v=0.5)
1	A01	Styrofoam	0
2	A02	Stone wool	0.5406
3	A03	Glass Wool	0.4633
4	A04	Cork board	0.5168
5	A05	Polyester fibers	0.6147
6	A06	Polyurethane	0.6539
7	A07	Perlite	1
8	A08	Wood wool	0.4837

7. Perankingan Alternatif

Rank	Kode Alternatif	Nama Alternatif	Nilai Indeks VIKOR (Q) (v=0.5)
1	A01	Styrofoam	0
2	A03	Glass Wool	0.4633
3	A08	Wood wool	0.4837
4	A04	Cork board	0.5168
5	A02	Stone wool	0.5406
6	A05	Polyester fibers	0.6147
7	A06	Polyurethane	0.6539
8	A07	Perlite	1

8. Solusi Kompromi

1) Pembuktian 1 : Pembuktian kondisi Acceptable Advantage

Pembuktian 1 dilakukan dengan menggunakan persamaan [VIK-10] dan [VIK-11] pada perangkingan Q_i dengan v = 0.5, yaitu :

$$DQ = \frac{1}{8-1} = 0.1429$$

.. [VIK-10]

$$Q_{(A_2)} - Q_{(A_1)} = 0.4633 - 0 = 0.4633$$

.. [VIK-11]

Dari perhitungan diatas diperoleh nilai Q_{A_1} adalah **0.1429** dan selisih nilai Q_{A_1} dan Q_{A_2} adalah **0.4633.** Dikarenakan nilai Q_{A_2} - Q_{A_1} >= DQ, sehingga kondisi *Acceptable advantage* **terpenuhi**.

2) Pembuktian 2: Pembuktian kondisi Acceptable stability in decision making

Rank	Kode Alternatif	Nilai Indeks VIKOR (Q) (v=0.25)
1	A01	0
2	A08	0.3738
3	A03	0.405
4	A05	0.5129
5	A04	0.5268
6	A06	0.5317
7	A02	0.5384
8	A07	1

Kode Alternatif	Nilai Indeks VIKOR (Q) (v=0.5)
A01	0
A03	0.4633
A08	0.4837
A04	0.5168
A02	0.5406
A05	0.6147
A06	0.6539
A07	1

Kode Alternatif	Nilai Indeks VIKOR (Q) (v=0.75)
A01	0
A04	0.5069
A03	0.5216
A02	0.5429
A08	0.5935
A05	0.7166
A06	0.776
A07	1

Dari tabel perangkingan solusi kompromi diatas diperoleh hasil peringkat terbaik dari perankingan dengan nilai v = 0.25, v = 0.5, dan v = 0.75 berturut-turut adalah: **A01**, **A01**. Berdasarkan hasil yang diperoleh dapat dibuktikan bahwa kondisi *Acceptable stability in decision making* **terpenuhi**.

Konklusi

Berdasarkan hasil pembuktian kedua kondisi diatas dapat diketahui bahwa **kedua kondisi terpenuhi**, sehingga alternatif **A01** atau **Styrofoam** dapat diusulkan menjadi solusi kompromi dan merupakan peringkat terbaik dari perankingan embung dengan metode VIKOR.