Geometry Favorites

Nyan

updated July 4, 2024

(Note: here ∞_{XY} , $\infty_{\perp XY}$ refer to the points ∞ along in directions parallel and perpendicular to XY, respectively.)

♣-1 Credits + remarks

Inspired by chapter 11 of EGMO book, and **Geometry At Its Best** by Eric Shen. These are roughly in order of difficulty, but no promises!

Also thanks to collaborators...

Contents

-1	Credits + remarks	
0	Problems	2
1	Solutions	4
	1.1 SL 2009/G3, by Hossein Karke Abadi	4
	1.2 SL 2015/G4	5
	1.3 USEMO 2023/4, by Ankan Bhattacharya	6
	1.4 SL 2016/G7	7
	1.5 EGMO 2020/3	9
	1.6 IMO 2008/6, by Vladimir Shmarov	IO
	1.7 Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi	II
	1.8 Mock AIME 2019/15', by Eric Shen & Raymond Feng	12
	1.9 SL 2018/G5, by Denmark	13
	1.10 SL 2009/G6, by Eugene Bilopitov (Ukraine)	14
	1.11 MOP + USA TST, by Ankan Bhattacharya	15
	1.11.1 MOP 2019/(?)	15
	1.11.2 USA TST 2019/6	16
	1.12 ELMO SL 2024/G4 (Nyan)	17
	1.13 APMO 2014/5, by Ilya Bogdanov & Medeubek Kungozhin	18
	1.14 DeuX MO 2020/II/3, by Hao Minyan (China)	19
	1.15 IMO 2021/3	20
	1.16 USAMO 2021/6, by Ankan Bhattacharya	22
	1.17 SL 2021/G8	23
	1.18 USEMO 2020/3, by Anant Mudgal	24

♣0 Problems

Remark. Some attempt has been made to deviate from the aformentioned two famous geometry papers.

Problem 1 (SL 2009/G3). Let ABC be a triangle. The incircle of $\triangle ABC$ touches AB and AC at the points Z and Y, respectively. Let $G = \overline{BY} \cap \overline{CZ}$, and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelograms. Prove that GR = GS.

Problem 2 (SL 2015/G4). Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of $\frac{BT}{BM}$.

Problem 3 (USEMO 2023/4). Let ABC be an acute triangle with orthocenter H. Points A_1 , B_1 , C_1 are chosen in the interiors of sides BC, CA, AB, respectively, such that $\triangle A_1B_1C_1$ has orthocenter H. Define $A_2 = \overline{AH} \cap \overline{B_1C_1}$, $B_2 = \overline{BH} \cap \overline{C_1A_1}$, and $C_2 = \overline{CH} \cap \overline{A_1B_1}$.

Prove that triangle $A_2B_2C_2$ has orthocenter H.

Problem 4 (SL 2016/G7). Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that $\angle XIY = 120^{\circ}$.

Problem 5 (EGMO 2020/3). Let ABCDEF be a convex hexagon such that $\angle A = \angle C = \angle E$, $\angle B = \angle D = \angle F$ and the (interior) angle bisectors of $\angle A$, $\angle C$, $\angle E$ are concurrent. Prove that the (interior) angle bisectors of $\angle B$, $\angle D$, $\angle F$ are also concurrent.

Problem 6 (IMO 2008/6). Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Problem 7 (Iran TST 2018/1/4). Let ABC be a triangle ($\angle A \neq 90^{\circ}$), with altitudes \overline{BE} , \overline{CF} . The bisector of $\angle A$ intersects \overline{EF} , \overline{BC} at M, N. Let P be a point such that $\overline{MP} \perp \overline{EF}$ and $\overline{NP} \perp \overline{BC}$. Prove that \overline{AP} bisects \overline{BC} .

Problem 8 (Eric Shen). In $\triangle ABC$, let D, E, E be the feet of the altitudes from E, E, E respectively, and let E be the circumcenter. Let E is a point E such that E is a point E is a point E such that E is a point E is a point E such that E is a point E is a p

Problem 9 (SL 2018/G5). Let ABC be a triangle with circumcircle ω and incenter I. A line ℓ meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of \overline{AD} , \overline{BE} , \overline{CF} is tangent to ω .

Problem 10 (SL 2009/G6). Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect at point P. Points O_1 and O_2 are circumcenters and points H_1 and H_2 are orthocenters of triangles ABP and CDP, respectively. Denote the midpoints of segments O_1H_1 and O_2H_2 by E_1 and E_2 , respectively. Prove that the perpendicular from E_1 on E_2 on E_3 and the lines E_3 are concurrent.

Problem 11 (MOP 2019 & USA TST 2019/6). Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^\circ$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

(a) (MOP 2019) Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.

(b) (USA TST 2019/6) Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to (DB_1C_1) .

Problem 12 (ELMO SL 2024/G4). In quadrilateral *ABCD* with incenter *I*, points W, X, Y, Z lie on sides *AB*, *BC*, *CD*, *DA* with AZ = AW, BW = BX, CX = CY, DY = DZ. Define $T = \overline{AC} \cap \overline{BD}$ and $L = \overline{WY} \cap \overline{XZ}$. Let points O_a , O_b , O_c , O_d be such that $\angle O_a ZA = \angle O_a WA = 90^\circ$ (and cyclic variants), and $G = \overline{O_a O_c} \cap \overline{O_b O_d}$. Prove that $\overline{IL} \parallel \overline{TG}$.

Problem 13 (APMO 2014/5). Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_P be the tangent line to ω at P, and let ℓ_Q be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_P , ℓ_Q and ℓ_Q is tangent to ℓ_Q .

Problem 14 (DeuX MO 2020/II/3). In triangle *ABC* with circumcenter *O* and orthocenter *H*, line *OH* meets \overline{AB} , \overline{AC} at *E*, *F* respectively. Let ω be the circumcircle of triangle *AEF* with center *S*, meeting (*ABC*) again at $J \neq A$. Line *OH* also meets (*JSO*) again at $D \neq O$. Define $K = (JSO) \cap (ABC) \ (\neq J)$, $M = \overline{JK} \cap \overline{OH}$, and $G = \overline{DK} \cap (ABC) \ (\neq K)$. Prove that (*GHM*) and (*ABC*) are tangent to each other.

Problem 15 (IMO 2021/3). Let *D* be an interior point of the acute triangle *ABC* with *AB* > *AC* so that $\angle DAB = \angle CAD$. The point *E* on the segment *AC* satisfies $\angle ADE = \angle BCD$, the point *F* on the segment *AB* satisfies $\angle FDA = \angle DBC$, and the point *X* on the line *AC* satisfies CX = BX. Let C_1 and C_2 be the circumcenters of the triangles *ADC* and *EXD*, respectively. Prove that the lines *BC*, *EF*, and C_1 are concurrent.

Problem 16 (USAMO 2021/6). Let *ABCDEF* be a convex hexagon satisfying $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$, and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA.$$

Let X, Y, and Z be the midpoints of \overline{AD} , \overline{BE} , and \overline{CF} . Prove that the circumcenter of $\triangle ACE$, the circumcenter of $\triangle BDF$, and the orthocenter of $\triangle XYZ$ are collinear.

Problem 17 (SL 2021/G8). Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

Problem 18 (USEMO 2020/3). Let ABC be an acute triangle with circumcenter O and orthocenter H. Let Γ denote the circumcircle of triangle ABC, and N the midpoint of OH. The tangents to Γ at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by ω_A . Define ω_B and ω_C similarly. Prove that the common chords of ω_A, ω_B and ω_C are concurrent on line OH.

♣1 Solutions

♣ 1.1 SL 2009/G3, by Hossein Karke Abadi

Let ABC be a triangle. The incircle of $\triangle ABC$ touches AB and AC at the points Z and Y, respectively. Let $G = \overline{BY} \cap \overline{CZ}$, and let R and R be points such that the two quadrilaterals R and R are parallelograms. Prove that R and R is R and R is R and R is R and R is R in R in

This is a very "troll" problem. Let (R), (S), ω_a denote the point circles at R, S (radius = 0) and the A-excircle respectively. Let ω_a touch \overline{BC} , \overline{CA} , \overline{AB} at D, E, E respectively. Also, for brevity, let E0 and E1 and E2.

Claim - \overline{BY} is the radical axis of (R), ω_a .

Proof. BD = BR = s - c, while YE = YR = a; because \overline{BD} , \overline{YE} touch ω_a , B, Y have powers $(s - c)^2$, a^2 wrt each of (R), ω_a as promised.

By the claim, $G = \overline{BY} \cap \overline{CZ}$ must be the radical center of (R), (S), ω_a , implying the desired GR = GS.

♣ 1.2 SL 2015/G4

Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of $\frac{BT}{RM}$.

The answer is $\sqrt{2}$ only. Let $X = (ABC) \cap (BPMQ) \ (\neq B)$, and let N be the midpoint of \overline{BT} .

Claim 1 - XNMT is cyclic, and \overline{BM} is tangent to this circle.

Proof. Since N is also the midpoint of \overline{PQ} , there is a spiral similarity at X sending PNQ to AMC. Thus, we have

$$\angle XMN = \angle XAP = \angle XTB$$
,

proving the concyclicity. For the tangency, check that

$$\angle XNM = \angle XPA = \angle XPB = \angle XMB.$$

By power of a point, $BM^2 = BN \cdot BT = \frac{BT^2}{2}$, so $\frac{BT}{BM} = \sqrt{2}$.

♣ 1.3 USEMO 2023/4, by Ankan Bhattacharya

Let ABC be an acute triangle with orthocenter H. Points A_1 , B_1 , C_1 are chosen in the interiors of sides BC, CA, AB, respectively, such that $\triangle A_1B_1C_1$ has orthocenter H. Define $A_2 = \overline{AH} \cap \overline{B_1C_1}$, $B_2 = \overline{BH} \cap \overline{C_1A_1}$, and $C_2 = \overline{CH} \cap \overline{A_1B_1}$.

Prove that triangle $A_2B_2C_2$ has orthocenter H.

Working backwards: suffices to prove $\overline{AA_2H} \perp \overline{B_2C_2}$, or in other words, $\overline{BC} \parallel \overline{B_2C_2}$. $\iff HB_2/HB = HC_2/HC$. \iff There exists a point $A_3 \in \overline{HA_1}$ with $\overline{BA_3} \parallel \overline{A_1C_1}$ and $\overline{CA_3} \parallel \overline{A_1B_1}$. Indeed, this point would be chosen so that

$$\frac{HA_3}{HA} = \frac{HB_2}{HB} = \frac{HC_2}{HC},$$

lengths directed. In *still* other words, we now want $\overline{HA_1}$, $\overline{B} \infty_{A_1C_1}$, $\overline{C} \infty_{A_1B_1}$ concurrent.

For this we employ a massive cross-ratio chase:

$$(\infty_{A_1C_1} \infty_{A_1B_1}; \infty_{\perp B_1C_1} \infty_{BC}) \stackrel{\text{rotate 90}^{\circ}}{=} (\infty_{HB_1} \infty_{HC_1}; \infty_{B_1C_1} \infty_{HA})$$

$$\stackrel{H}{=} (B_1C_1; \infty_{B_1C_1}A_2)$$

$$\stackrel{A}{=} (\overline{AC}, \overline{AB}; \overline{B_1C_1}, \overline{AH})$$

$$\stackrel{\text{rotate 90}^{\circ}}{=} (\overline{HB}, \overline{HC}; \overline{HA_1}, \overline{BC})$$

$$\stackrel{H}{=} (BC; A_1 \infty_{BC})$$

and the concurrence follows by prism lemma.

♣ 1.4 SL 2016/G7

Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that $\angle XIY = 120^{\circ}$.

Redefine P as the inverse of I wrt (ABC). For the first part we assert more strongly that:

Claim -
$$\triangle AI_aI'_a\stackrel{+}{\sim} \triangle API$$
.

Proof. By angle chasing, $\angle I_a = \angle P$ follows easily. We contend that $I_aI'_a/I_aA = IP/AP$; indeed, the first ratio equals $2\cos\angle BI_aC = 2\sin\frac{A}{2}$ because of similar triangles $I_aBC \stackrel{-}{\sim} \triangle I_aI_bI_c$, while

$$\frac{IP}{AP} = \frac{OP}{AP} - \frac{OI}{OA}\frac{OA}{AP} = \frac{OA}{AI} - \frac{OI^2}{OA \cdot AI} = \frac{R}{AI} - \frac{R^2 - 2rR}{R \cdot AI} = \frac{R - (R - 2r)}{AI} = 2\sin\frac{A}{2},$$

so the ratios are equal. The similarity follows by SAS.

The claim clearly implies the isogonality.

For the second part, using Poncelet, let $Z \in (ABC)$ be the unique point so that $\triangle XYZ$, ABC share a incircle and circumcircle. Inverting "P, X, Y collinear" wrt the circumcircle gives O, I, X, Y concyclic, or $\angle XOY = \angle XIY$.

As it's well-known that $\angle XOY = 2\angle Z$ and $\angle XIY = (\pi + \angle Z)/2$, we must have $\angle Z = \pi/3 \Rightarrow \angle XIY = 2\pi/3$ as needed.

♣ 1.5 EGMO 2020/3

Let ABCDEF be a convex hexagon such that $\angle A = \angle C = \angle E$, $\angle B = \angle D = \angle F$ and the (interior) angle bisectors of $\angle A$, $\angle C$, $\angle E$ are concurrent. Prove that the (interior) angle bisectors of $\angle B$, $\angle D$, $\angle F$ are also concurrent.

Since $\angle A + \angle B = 240^\circ$ and cyclic variants, \overline{AB} , \overline{CD} , \overline{EF} form an equilateral triangle, as do \overline{BC} , \overline{DE} , \overline{FA} . Label them UVW, XYZ as shown, and let the given concurrency point be P. By an angle chase, $P \in (ACXU)$, (CEYV), (EAZW), so it's the center of the spiral similarity s_1 mapping U, V, $W \to X$, Y, Z.

Claim - $\triangle UVW \cong \triangle XYZ$.

Proof. Recall that s_1 maps $\overline{UV} \to \overline{XY}$, but the fact that P lies on the bisector of $\angle C$ means that P is equidistant from these lines.

As this means that the spiral similarity above is in fact a rotation, we win.

To finish the problem, note that the center $Q = (BDVX) \cap (DFWY) \cap (FBUZ)$ of the rotation s_2 mapping $U, V, W \rightarrow Z, X, Y$ is equidistant from the pairs of sides $(\overline{UV}, \overline{XZ})$ and cyclic variants, so it lines on the bisectors of the angles $\angle B, \angle D, \angle F$ formed by those pairs of lines.

Remark. I wish I'd seen this problem before failing USEMO 2020/5 in-contest...

\$ 1.6 IMO 2008/6, by Vladimir Shmarov

Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Rename ω_1 , ω_2 to ω_b , ω_d ; by Pitot-like reasoning we have AB + AD = CB + CD; let T_b , T_d be the intouch points on \overline{AC} ; then T_b , T_d are isotomic by the obtained length condition.

If we let T'_b , T'_d be the antipodes of T_b , T_d on their respective circles, then an EGMO lemma (ch4) implies that B, T_d , T'_b and sym variant are collinear.

Construct the point K' on the "closer" side to the rest of the figure so that the tangent to ω at K is parallel to \overline{AC} . Then by homothety $K' \in \overline{BT_{d}}$, $\overline{DT_{b}}$, so this is the desired exsimilicenter.

♣ 1.7 Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi

Let ABC be a triangle $(\angle A \neq 90^\circ)$, with altitudes \overline{BE} , \overline{CF} . The bisector of $\angle A$ intersects \overline{EF} , \overline{BC} at M, N. Let P be a point such that $\overline{MP} \perp \overline{EF}$ and $\overline{NP} \perp \overline{BC}$. Prove that \overline{AP} bisects \overline{BC} .

Construct $K = \overline{EF} \cap \overline{BC}$, Q as the A-Humpty point, H as the orthocenter of $\triangle ABC$, and $\omega = (KMN)$, so that the P given is the antipode of K on it. Let spiral similarity S at Q take $(E, F) \rightarrow (B, C)$. The main point of the problem is then:

Claim - MKQN cyclic. In other words, $Q \in \omega$.

Proof. From angle bisector theorem,

$$\frac{EM}{MF} = \frac{EA}{AF} = \frac{BA}{AC} = \frac{BN}{NC} \Rightarrow (M \xrightarrow{s} N) \Rightarrow \angle MQN = -\arg(s) = \angle(\overline{EF}, \overline{BC}) = \angle MKN.$$

Since *P* is the antipode of *K* on ω , $\angle KQP = 90^{\circ} = \angle KQA$, implying that $P \in \overline{AQ}$, the *A*-median.

♣ 1.8 Mock AIME 2019/15', by Eric Shen & Raymond Feng

In $\triangle ABC$, let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. Let $Z = \overline{AO} \cap \overline{EF}$. There exists a point T such that $\angle DTZ = 90^\circ$ and AZ = AT. If $P = \overline{AD} \cap \overline{TZ}$, and Q lies on \overline{EF} such that $\overline{PQ} \parallel \overline{BC}$, prove that \overline{AQ} bisects \overline{BC} .

Construct points X, Y as the projections of E, F onto \overline{AD} respectively.

After drawing a diagram on Geogebra, we obtain:

Characterization of T

T is the harmonic conjugate of Z wrt XY – i.e. it lies on $\omega = (XYZ)$ so that the resulting quadrilateral is harmonic.

In American style, we show that this choice of T lies on ω_a (defined as the circle at A thru Z) and (DZ),

Verification (inspired by USA TST 2015/1)

For AZ = AT, we use power of a point / length chase to get $AZ^2 = AX \cdot AY$ whence \overline{AZ} touches ω . Hence, by harmonics \overline{AT} is also tangent to ω , so this property follows.

 $\angle DTZ = 90^{\circ}$ is much less straightforward. We define Z' = 2A - Z and G = E + F - Z as the antipodes of Z on the circle at A through Z. By a well-known lemma, D, Z', G collinear (along the cevian through the intouch point in $\triangle DEF$).

But also at the same time, T is on ω , $\omega_a \Rightarrow \angle ZTG = \angle ZTZ' = \pi/2$ due to antipodes. Hence, $\angle DTZ = \pi/2$, completing the verification.

By this definition, we clearly have (AP; XY) = -1. From here (the chase is best discovered backwards), harmonic chasing suffices. Define $K = \overline{EF} \cap \overline{A \otimes_{BC}}$. Then the bisection is established by

$$(\overline{AQ} \cap \overline{BC}, \infty_{BC}; B, C) \stackrel{A}{=} (QK; FE) \stackrel{\infty_{BC}}{=} (PA; YX) = -1.$$

^{*}Eric Shen originally included these points in the problem statement (as seen in the 2019 version of "Geometry At Its Best"), but I guess the problem's made harder by deleting them. For me, thinking about their relevance/use was important in making nonzero progress on the problem.

♣ 1.9 SL 2018/G5, by Denmark

Let ABC be a triangle with circumcircle ω and incenter I. A line ℓ meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of \overline{AD} , \overline{BE} , \overline{CF} is tangent to ω .

Solution by **TheUltimate123**.

Let ℓ_a and cyclic variants be the reflections of ℓ in the perpendicular bisectors x_a of \overline{AD} , etc.

Claim – ℓ_a , ℓ_b , ℓ_c , ω concur at a point T.

Proof. Because

$$\angle(\ell_h, \ell_c) = 2\angle(x_h, x_c) = 2\angle BIC = \angle BAC$$

 $\ell_b \cap \ell_c \in \omega$; the result follows by symmetry.

Let $I' = \overline{TI} \cap \ell$, and consider the homothety h at T mapping $I \to I'$. Let P' denote the image of point P under h, so I' is the incenter of $\triangle A'B'C'$. Since $\overline{A'I'} \parallel \overline{ADI}$ while $A' \in \ell_a$ and $I' \in \ell$, m_a is also the perpendicular bisector of \overline{AI} .

From here it follows that the pairwise intersections of m_a , m_b , m_c are just the arc midpoints in (A'B'C'). By h, (A'B'C'), (ABC) tangent at T, hence done.

♣ 1.10 SL 2009/G6, by Eugene Bilopitov (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect at point P. Points O_1 and O_2 are circumcenters and points H_1 and H_2 are orthocenters of triangles ABP and CDP, respectively. Denote the midpoints of segments O_1H_1 and O_2H_2 by E_1 and E_2 , respectively. Prove that the perpendicular from E_1 on E_2 0 on E_3 1 and the lines E_3 1 are concurrent.

Trying not to bash excessively...consider the problem wrt $\triangle PH_1H_2$. Observe that by isogonals, $\angle O_2PH_1 = \angle H_1PO_2$, so they've equal sines and

$$\frac{PH_1}{PO_1} = 2\cos P = \frac{PH_2}{PO_2} \Rightarrow [PO_2H_1] = [PO_1H_2] \Rightarrow h_1(O_1) = -h_2(O_2) \stackrel{\text{linearity}}{\Rightarrow} \boxed{h_1(E_1) + h_2(E_2) = 1}$$

in barycentrics wrt $\triangle PH_1H_2$, where p(X) denotes the P-coordinate of X, and similarly for the H_k . This means that the three desired lines (which can be defined as those through E_1 , E_2 parallel to $\overline{PH_2}$, $\overline{PH_1}$ respectively) concur at

$$\boxed{0P + h_1(E_1) \cdot H_1 + h_2(E_2) \cdot H_2} \in \overline{H_1 H_2}$$

which is a valid barycentric point because of the first boxed equation.

♣ 1.11 MOP + USA TST, by Ankan Bhattacharya

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^{\circ}$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

\$ 1.11.1 MOP 2019/(?)

Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.

Call the incircle ω .

Claim 1 - D, E, F are collinear.

Proof. We will prove that the tangent line from D is antiparallel to \overline{BC} wrt $\angle A$. Indeed, this line is found by reflecting \overline{DBC} over \overline{DI} , a line perpendicular to \overline{AI} , so we win.

Let ω touch \overline{DEF} at a point T, and let D' denote the A-intouch point.

Claim 2 - $\overline{AI} \parallel \overline{HD'}$; hence AID'H is a parallelogram and AH = r, the inradius of $\triangle ABC$.

Proof. Because *BCEF* is tangential, it follows by degenerate Brianchon that lines *BE*, *CF*, DT' concur, i.e. $H \in \overline{TD'}$. Observe that DT = DD'; then $\overline{THD'} \perp \overline{DI}$ by symmetry, while $\overline{AI} \perp \overline{DI}$ is given; the lines are thus parallel as claimed.

Now, let ω_a , etc denote (AB_1C_1) , etc, respectively. We observe that because the perpendicular from A_1 to \overline{BC} and its cyclic variants all concur at the point 2O - I, it follows that all three circles must concur at this point by Miquel spam.

But because r/2 = AH/2 is the distance from O to \overline{BC} , we actually have $2O - I = A_1$ (also because of their feet onto \overline{BC}). Hence $A_1 \in \omega_a$ as desired.

Remark. I know for a fact that this was a problem during the Red 2019 tests- Eric Shen seems to have thoroughly enjoyed it in contest.

♣ 1.11.2 USA TST 2019/6

Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to the circumcircle of $\triangle DB_1C_1$.

From MOP 2019, we make the following observations:

- By its converse, D, E, F collinear; then, if T is the foot from A to \overline{BC} , we have (TD; BC) = -1.
- As A_1 is the Bevan point 2O I, its projections onto \overline{AC} , \overline{AB} are B_1 , C_1 respectively. It follows that A, A_1 are antipodes on ω_a .
- Since *BCEF* is bicentric, if the incircle touches \overline{AC} , \overline{AB} at B_1' , C_1' , then $BC_1'/FC_1' = CB_1'/EB_1'$, so the *A* incenter and orthocenter Miquel points coincide, say at $Q \in (ABC)$.

From the last item, $\angle AQI = \angle AQH = 90^{\circ}$.

Claim - \overline{AD} touches ω_a .

Proof. Since $(ABC) \cap (AH) = \{A,Q\}$, the projection of O onto \overline{AQD} is $\frac{A+Q}{2}$. At the same time, the above implies Q is the projection of I onto \overline{AQD} . By linearity the projection of $A_1 = 2O - I$ onto \overline{AD} is $2\frac{A+Q}{2} - Q = A$ — in other words, $\angle A_1AD = 90^\circ$. This proves the tangency as $\overline{AA_1}$ is a diameter of ω_a .

Let $M = \frac{A+D}{2}$, so \overline{MT} touches ω_a as well by symmetry in the perpendicular bisector $M \otimes_{BC}$ of \overline{AT} . Now, $(AT; B_1C_1) \stackrel{A}{=} (DT; CB) = -1$ means $M \in \overline{B_1C_1}$.

Finish by power of a point converse: $MD^2 = MA^2 = MB_1 \cdot MC_1$ gives the needed tangency.

♣ 1.12 ELMO SL 2024/G4 (Nyan)

In quadrilateral ABCD with incenter I, points W, X, Y, Z lie on sides AB, BC, CD, DA with AZ = AW, BW = BX, CX = CY, DY = DZ. Define $T = \overline{AC} \cap \overline{BD}$ and $L = \overline{WY} \cap \overline{XZ}$. Let points O_a, O_b, O_c, O_d be such that $\angle O_aZA = \angle O_aWA = 90^\circ$ (and cyclic variants), and $G = \overline{O_aO_c} \cap \overline{O_bO_d}$. Prove that $\overline{IL} \parallel \overline{TG}$.

Draw the circle at A through W, Z and its cyclic variants, which we respectively call ω_a , ..., ω_d . Then IW = IX = IY = IZ follows by symmetry about \overline{AI} and its cyclic variants.

Claim 1 - $\overline{O_a O_c}$ is the radical axis of ω_b , ω_d .

Proof. O_a has power $O_aW^2 = O_aZ^2$ wrt ω_d , ω_a , ω_b so it's their radical center.

The crux of the problem is:

Claim 2 - Let P, Q be the exsimilicenters of (ω_b, ω_d) , (ω_a, ω_c) . Then $P \in \overline{WX}, \overline{YZ}, \overline{O_aO_c}, \overline{BD}$ and similarly $Q \in \overline{WZ}, \overline{XY}, \overline{O_bO_d}, \overline{AC}$.

Proof. We show that the first four lines pass through the exsimilicenter of ω_b and ω_d .

- $P = \overline{WX} \cap \overline{YZ}$ and $Q = \overline{WZ} \cap \overline{XY}$ follow by Monge on all sets of 3 circles;
- $P \in \overline{AC}$ by design;
- $P \in \overline{O_a O_c}$ are obtained from radical axis theorem on (WXYZ), ω_b , ω_d in conjunction with claim 1;

To finish, note that we have the orthocentric systems:

- PQIL via Brocard on WXYZ;
- PQTG because $\overline{O_aO_c} \perp \overline{BD}$ and $\overline{O_bO_d} \perp \overline{AC}$.

♣ 1.13 APMO 2014/5, by Ilya Bogdanov & Medeubek Kungozhin

Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_P be the tangent line to ω at P, and let ℓ_Q be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_P , ℓ_Q and ℓ_Q and ℓ_Q are tangent to ℓ_Q .

We'll consider both Q's at once, the one inside and outside. Call them Q_1 , Q_2 in any order. Define (here k = 1, 2):

- $X = \ell_p \cap \overline{AB}, Y_k = \ell_{qk} \cap \overline{AB}, Z_k = \ell_{qk} \cap \ell_p;$
- D and D' = 2X D as the intersections of the internal and external bisectors of $\angle APB$ with \overline{AB} , respectively, so that XP = XD = XD';
- $K = \ell_{q1} \cap \ell_{q2}$ as the pole of $\overline{Q_1Q_2}$ wrt Ω , so that $KQ_1 = KQ_2$.

Claim 1 - $Y_1Y_2Z_1Z_2$ is cyclic.

Proof. Note that triangles PXD, KQ_1Q_2 are both isosceles. Then

$$\measuredangle(\ell_p,\ell_{q1}) = \measuredangle XPD + \measuredangle PQ_1K \stackrel{\text{isosceles}}{=} - \measuredangle XDP - \measuredangle PQ_2K = - \measuredangle(\overline{AB},\ell_{q2}),$$

whence the quadrilateral formed by ℓ_p , ℓ_{q1} , \overline{AB} , ℓ_{q2} (in order) is cyclic.

Let *i* denote inversion at *X* with power $XP^2 = XD^2 = XA \cdot XB$ (last equality by midpoints of harmonic bundles lemma).

Claim 2 - i swaps Y_1 , Y_2 as well.

Proof. Consider the polar $\overline{KD'}$ of D wrt Ω , which we call d. Then

$$(Y_1Y_2;DD')\stackrel{K}{=}(Q_1,Q_2;D,d\cap\overline{Q_1DQ_2})=-1,$$

the last harmonic bundle holding by definition of polar. The claim follows by another application of midpoints of harmonics bundles lemma.

By the previous two claims and power of a point at X, i also swaps (Z_1, Z_2) . Applying i to the given " $\overline{Y_2Z_2}$ touches Ω " yields (XY_1Z_1) also tangent to Ω , concluding the proof.

\$1.14 DeuX MO 2020/II/3, by Hao Minyan (China)

In triangle ABC with circumcenter O and orthocenter H, line OH meets \overline{AB} , \overline{AC} at E, F respectively. Let ω be the circumcircle of triangle AEF with center S, meeting (ABC) again at $J \neq A$. Line OH also meets (JSO) again at $D \neq O$. Define $K = (JSO) \cap (ABC)$ $(\neq J)$, $M = \overline{JK} \cap \overline{OH}$, and $G = \overline{DK} \cap (ABC)$ $(\neq K)$. Prove that (GHM) and (ABC) are tangent to each other.

Solution by crazyeyemoody907, v4913.

Let $\Omega = (ABC)$, H_b , H_c be the respective reflections of H in \overline{AC} , \overline{AB} , and $\ell = \overline{EFOH}$. Redefine $K = \overline{H_cE} \cap \overline{H_bF}$ (we'll see this is an equivalent definition). As \overline{EA} , \overline{FA} are external angle bisectors wrt $\triangle KEF$, we have $\angle EKF = \pi - 2A$.

Claim 1 –
$$J \in (HEH_c), (HFH_b).$$

Proof. Let $J' = (HEH_c) \cap (HFH_b) \ (\neq H)$. Then:

$$\angle H_c I' H_b = \angle H_c I' H + \angle H I' H_b = \angle H_c E H + \angle H F H_b = \angle (\overline{H_c E}, \overline{H_b F}) = \angle H_b K H_c = \angle H_b A H_c \Rightarrow I' \in \Omega.$$

The construction of J' implies that $\overline{J'E}$, $\overline{J'F}$ respectively bisect $\angle H_cJ'H$, $\angle H_bJ'H$, and thus

$$\angle EJ'F = \frac{1}{2}\angle H_bJ'H_c = \angle BAC = \angle EAF \Rightarrow J' \in (AEF),$$

finishing the claim.

Let $L = \overline{JH} \cap \Omega$ $(\neq J)$; then, as $JH_cKL_sJH_cEH$ cyclic, $\ell \parallel \overline{KL}$ by Reim. By homothety, (JHM) touches $(JKL) = \Omega$.

Claim 2 – For the *K* defined in solution, $K \in \overline{AS}$, (*JSO*).

Proof. Since $\angle ESF = 2 \angle BAC = \angle EKF$, we have *KESF* cyclic; as SE = SF, $AH_b = AH_c$, A, S both lie on bisector of $\angle EKF$. Next, we prove that O is the midpoint of \widehat{JSK} on (JSK). Because \overline{OS} is the perpendicular bisector of \overline{AJ} by symmetry, it externally bisects $\angle JSK$ as $K \in \overline{AS}$. At the same time, OJ = OK means O is on the perpendicular bisector of \overline{JK} . These two properties imply that O is the claimed arc midpoint.

From here, as DJKO cyclic and OJ = OK, \overline{DO} bisects $\angle JDK$, and $G = \overline{DK} \cap \Omega$ is the reflection of J in ℓ by symmetry. Reflecting "(JHM) touches Ω " over ℓ completes the proof.

♣ 1.15 IMO 2021/3

Let D be an interior point of the acute triangle ABC with AB > AC so that $\angle DAB = \angle CAD$. The point E on the segment AC satisfies $\angle ADE = \angle BCD$, the point E on the segment E satisfies E and E satisfies E and E satisfies E and E satisfies E satisfies

Solution by v4913.

Let $J = \overline{EF} \cap \overline{BC}$, and $D' \in \overline{AD}$ be the isogonal conjugate of D wrt $\triangle ABC$. The given angle conditions imply that BDD'F, CDD'E are cyclic, while power of a point at A implies BCEF cyclic as well.

Claim 1 - J is the exsimilicenter of (EDC), (FDB); hence, JD = JD' by symmetry.

Proof. Construct $E_1 = (CDD'E) \cap \overline{BC} \ (\neq C)$, $F_1 = (BDD'F) \cap \overline{BC} \ (\neq B)$. By isogonality, DF = D'F' and DE = D'E' whence DD'E'E, DD'F'F are both cyclic isosceles trapezoids. $\overline{DD'}$, $\overline{EE'}$, $\overline{FF'}$ share a perpendicular bisector b, and in fact, this is the bisector of $\angle J$, i.e. JE = JE', JF = JF'.

Reflect *B*, *C* over *b* to obtain *B'*, *C'*; then, because JB/JF' = JB/JF = JE/JC = JE'/JC, there is a homothety at *J* mapping $(B, B', F, F') \rightarrow (E', E, C', C)$ and thus their circumcircles $(BB'DD') \rightarrow (CC'DD')$ as well.

Let $Y = (ADC) \cap (EXD)$ $(\neq D)$, Q be the Miquel point of ABCJEF, and j the circle at J through D, D'. Observing that $\overline{O_1O_2}$ is the perpendicular bisector of \overline{DY} , it remains to prove $Y \in j$.

Claim 2 - *XQEB* is cyclic.

Proof. This is a simple angle chase: using cyclic quadrilaterals (ABCQ), (JFBQ), (ECJQ), and (AEFQ), we obtain

$$\angle EQB = \angle EQA + \angle AQB = \angle ACB + \angle EFA = 2\angle ACB = \angle EXB$$

Next, we characterize the radical axis of j, (JBF) – it's perpendicular to the line of centers and through A:

Claim 3 - The line through *B* and the center of (*JBF*) is perpendicular to \overline{AC} .

Proof. This is equivalent to " t_b , the tangent to (JBF) at J, is parallel to \overline{AC} ". Because $\angle(\overline{BJC}, t_b) = \angle BFJ = \angle JCE$, the result follows.

Because $\text{Pow}(A, j) = AD \cdot AD' = AQ \cdot AJ = \text{Pow}(A, (JBQF)), A$ is on the radical axis of j, (JBF). By the previous claim, it follows that \overline{AC} is the radical axis of j, (JBF).

To finish, define $T = \overline{DY} \cap \overline{AC} \cap \overline{BQ}$ as the radical center of (*JBF*), (*ABC*), (*EXD*), (*ADC*), and the phantom point $Y' = \overline{TD} \cap j$ ($\neq D$). Because T is on \overline{AC} , the radical axis of j, (*JBF*), we have (lengths directed)

$$TY' \cdot TD = \text{Pow}(T, j) = \text{Pow}(T, (JBF)) = \text{Pow}(T, (ABCQ)) = TA \cdot TC = TY \cdot TD \Rightarrow Y = Y',$$

the end!

♣ 1.16 USAMO 2021/6, by Ankan Bhattacharya

Let ABCDEF be a convex hexagon satisfying $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$, and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA$$
.

Let X, Y, and Z be the midpoints of \overline{AD} , \overline{BE} , and \overline{CF} . Prove that the circumcenter of $\triangle ACE$, the circumcenter of $\triangle BDF$, and the orthocenter of $\triangle XYZ$ are collinear.

Construct parallelogram CDEA' and cyclic variants: A' = C + E - D, etc. We may compute using vectors that $\triangle B'D'F'$ is a translation of $\triangle A'C'E'$ by the vector (B + D + F) - (A + C + E). In particular, they're congruent.

Claim 1 - A, C, E have same power wrt (A'C'E'); in other words, $\triangle ACE$, A'C'E' share a circumcenter.

Proof. Observing that $Pow(A, (A'C'E')) = AC' \cdot AE' = BC \cdot EF$ by parallelograms, this claim follows by the given length condition.

Next, construct $A'' = \frac{C' + E'}{2}$ and cyclic variants. The circumcenter of $\triangle A' C' E'$ is then the orthocenter of $\triangle A'' C'' E''$.

Claim 2 -
$$X = \frac{A'' + D''}{2}$$
.

Proof. Using vectors,
$$B' + C' = E' + F' = A + D \Rightarrow \frac{A+D}{2} = \frac{B'+C'+E'+F'}{4} = \frac{A''+D''}{2}$$
.

By claim 2 + symmetry, $\triangle XYZ$ is the vector average of (congruent) triangles A''C''E'', B''D''F'', so their orthocenters are collinear.

♣ 1.17 SL 2021/G8

Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

Solution by crazyeyemoody907.

Let the antipode of the A-extouch point be \overline{D} , and the tangent to ω_a at D intersect \overline{AB} , \overline{AC} at B', C' respectively. Also, construct the tangent line to ω_a at X, meeting \overline{BC} , $\overline{B'C'}$ at U, V respectively. Finally, let $X' = \overline{AX} \cap \overline{BC}$, $V' = \overline{AV} \cap \overline{BC}$.

Proof. Apply DDIT to A, $UXV \otimes_{BC}$ (inconic ω_a), and project onto \overline{BC} , to obtain an involutive pairing $(BC; UV'; \otimes_{BC} X')$ or equivalently, $X'B \cdot X'C = X'U \cdot X'V'$. By power of a point, $X'B \cdot X'C = X'A \cdot X'X$, so the claim follows from $X'U \cdot X'V = X'A \cdot X'X$.

Claim 2 - \overline{DV} is tangent to (AXV).

Proof. Angle chase using previous claim, and the fact that $\overline{BC} \parallel \overline{B'C'}$:

$$\angle XAV \stackrel{\text{claim } 1}{=} \angle XUV' = \angle XVD.$$

Redefine R as the foot from A to $\overline{B'C'}$. It remains to show,

Claim 3 - \overline{PR} touches (APX').

Proof. Since $\angle VPA = \angle VRA = 90^{\circ}$, APRV cyclic, so we may angle chase as follows:

$$\angle APR = \angle AVR \stackrel{\text{claim 2}}{=} \angle AXV = \angle AXP.$$

\$ 1.18 USEMO 2020/3, by Anant Mudgal

Let ABC be an acute triangle with circumcenter O and orthocenter H. Let Γ denote the circumcircle of triangle ABC, and N the midpoint of \overline{OH} . The tangents to Γ at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by ω_A . Define ω_B and ω_C similarly.

Prove that the common chords of ω_A , ω_B , and ω_C are concurrent on line OH.

Let H_a , A' denote the respective reflections of H in \overline{BC} , A in O, and their symmetric variants.

Claim 1 - The polar ℓ_a of $\overline{BH_c} \cap \overline{CH_b}$ passes through H and is perpendicular to \overline{AN} .

Proof. Let $P = \overline{BH_c} \cap \overline{CH_b}$ and S = 2A - H. $H \in \ell_a$ is just Brokard, so it suffices to prove $\overline{AN} \parallel \overline{OP}$. By Pascal on $BB'H_bCC'H_c$, we have P, O, S collinear. Taking a homothety at H with scale factor $\frac{1}{2}$ maps the latter two points to N, A, which implies the required parallel lines.

In $\triangle ABC$, let X_{bc} be the pole of $\overline{BH_c}$ wrt Γ (and 5 other variants), X, Y, Z be the poles of the sides, D, E, F be the feet of the altitudes. Clearly, $\ell_a = \overline{X_{bc}X_{cb}}$.

Note. Here, the condition $\triangle ABC$ acute comes in: Γ is the incircle, not excircle, of $\triangle XYZ$.

We'll show that \overline{XD} is the radical axis of ω_b , ω_c . (By a somewhat-known configuration (say, **Brazil 2013/6**), $\overline{XD} \cap \overline{YE} \cap \overline{ZF}$ lies on the Euler line.) Also let Q_a , Q_b , Q_c be the SD points of $\triangle XYZ$.

Claim 2 - Q_a lies on ω_a .

Proof. By spiral similarity, it suffices to prove $YX_{bc}/YC = ZX_{cb}/ZB$. By antiparallel lines, $\triangle XYZ \stackrel{-}{\sim} \triangle X_{ab}YX_{cb}, X_{ac}X_{bc}Z$. But since Γ is the *Y*-excircle of $\triangle X_{ab}YX_{cb}$, we have $YX_{cb}/YC = a/s$. Similarly $ZX_{bc}/ZB = a/s$ as well.

(In some awful notation,
$$a = YZ$$
, $b = ZX$, $c = XY$ and $s = \frac{a+b+c}{2}$.)

Let $L = \overline{YQ_b} \cap \overline{ZQ_c}$.

Claim 3 - \overline{XL} is the radical axis of ω_b , ω_c .

Proof. By antiparallel lines again, $YZX_{ba}X_{ca}$ cyclic, so that

Pow
$$(X, \omega_b) = XX_{ca} \cdot XY = XX_{ba} \cdot XZ = \text{Pow}(X, \omega_c)$$
, while
$$\text{Pow}(L, \omega_b) = LY \cdot LQ_b = LZ \cdot LQ_c = \text{Pow}(L, \omega_c).$$

It remains to prove X, D, L collinear.

Claim 4 – L is the pole of \overline{EF} wrt Γ .

Proof. Since Q_a is the inverse of D wrt Γ and $\angle OQ_aX = 90^\circ$, $\overline{XQ_a}$ is the polar of D wrt Γ . Similarly, $\overline{YQ_b}$, $\overline{ZQ_c}$ are the respective polars of E, F wrt Γ . The claim is then established by la Hire.

Claim 5 - \overline{BC} , \overline{EF} , $\overline{XQ_a}$ concurrent.

Proof. Let $K = \overline{EF} \cap \overline{BC}$ so that (KD; BC) = -1. Because $\overline{Q_aO}$ bisects $\angle BQ_aC$, $\angle KQ_aO = 90^\circ = \angle AQ_aO \Rightarrow X$, Q_a , K collinear.

Taking poles wrt Γ in the last claim gives the desired collinearity.

Remark. The problem can be bary'd wrt $\triangle XYZ$ after the first claim, but it's monstrous from my experience a long time ago, oops