London Bike Hire Prediction Modelling

- · Name name: Raye Yoo
- Project completed date/time: Friday 21 July 2023

Business Problem

Transport for London ("TFL") is currently facing issues to predict bike-hire demand post-pandemic in London. Londoners are going back to the offices and tourists are coming back to London significantly. To solve this problem, I will find out the most impactful features of hiring bikes in London through multiple regression analysis to predict bike-hire demands for the next years.

1. Data Scrub

1-1. Import Data

```
In [1]: 1 import pandas as pd
            import numpy as np
         3 import scipy.stats as stats
         4 import statsmodels.api as sm
         5 import matplotlib.pyplot as plt
         6 import plotly.express as px
         7 import seaborn as sns
         8 plt.style.use('ggplot')
         10 from statsmodels.formula.api import ols
         11 from sklearn import preprocessing
         12 from sklearn import linear_model
        13 from sklearn.linear_model import LinearRegression
         14 | from sklearn.model_selection import train_test_split
         15 | from sklearn.model_selection import cross_val_score
        16 from sklearn.model selection import cross validate
         17 | from sklearn.metrics import accuracy_score
         18 from sklearn.metrics import make_scorer
         19 from sklearn.metrics import mean_squared_error
         20
         21 data = pd.read_csv('data/london_merged.csv')
```

1-2. Cleaning & Exploring Data

1-2-1. Cleaning Data

6

```
In [2]: 1 data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 17414 entries, 0 to 17413
       Data columns (total 10 columns):
        # Column
                          Non-Null Count Dtype
            timestamp
        0
                          17414 non-null object
        1
            cnt
                          17414 non-null int64
         2
            t1
                          17414 non-null float64
                          17414 non-null float64
        3
            t2
         4
                          17414 non-null float64
         5
            wind speed
                          17414 non-null float64
```

7 is_holiday 17414 non-null float64 8 is_weekend 17414 non-null float64 9 season 17414 non-null float64 dtypes: float64(8), int64(1), object(1) memory usage: 1.3+ MB

weather_code 17414 non-null float64

In [3]: 1 data.head()

Out[3]:

	timestamp	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season
0	2015-01-04 00:00:00	182	3.0	2.0	93.0	6.0	3.0	0.0	1.0	3.0
1	2015-01-04 01:00:00	138	3.0	2.5	93.0	5.0	1.0	0.0	1.0	3.0
2	2015-01-04 02:00:00	134	2.5	2.5	96.5	0.0	1.0	0.0	1.0	3.0
3	2015-01-04 03:00:00	72	2.0	2.0	100.0	0.0	1.0	0.0	1.0	3.0
4	2015-01-04 04:00:00	47	2.0	0.0	93.0	6.5	1.0	0.0	1.0	3.0

Metadata:

- timestamp timestamp field for grouping the data by hours
- · cnt the count of a new bike shares
- t1 Observed temperature in Celsius
- t2 "feels like" temperature in Celsius
- · hum humidity in percentage
- wind_speed wind speed in km/h
- weather_code category of the weather
- is_holiday boolean field 1 holidays / 0 non holidays
- is_weekend boolean field 1 weekends / 0 weekdays
- season category field meteorological seasons: 0-spring; 1-summer; 2-fall; 3-winter

weather_code category description:

1 = Clear; mostly clear but have some values with haze/fog/patches of fog/ fog in vicinity 2 = scattered clouds / few clouds 3 = Broken clouds 4 = Cloudy 7 = Rain/ light Rain shower/ Light rain 10 = rain with thunderstorm 26 = snowfall 94 = Freezing Fog

Source: Kaggle (https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset (https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing-datasets/hmavrodiev/london-bike-sharing bike-sharing-dataset))

In [4]: 1 data.describe()

Out[4]:

	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season
count	17414.000000	17414.000000	17414.000000	17414.000000	17414.000000	17414.000000	17414.000000	17414.000000	17414.000000
mean	1143.101642	12.468091	11.520836	72.324954	15.913063	2.722752	0.022051	0.285403	1.492075
std	1085.108068	5.571818	6.615145	14.313186	7.894570	2.341163	0.146854	0.451619	1.118911
min	0.000000	-1.500000	-6.000000	20.500000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	257.000000	8.000000	6.000000	63.000000	10.000000	1.000000	0.000000	0.000000	0.000000
50%	844.000000	12.500000	12.500000	74.500000	15.000000	2.000000	0.000000	0.000000	1.000000
75%	1671.750000	16.000000	16.000000	83.000000	20.500000	3.000000	0.000000	1.000000	2.000000
max	7860.000000	34.000000	34.000000	100.000000	56.500000	26.000000	1.000000	1.000000	3.000000

```
In [5]:
         1 #make the date & time column to date time format
```

data['timestamp'] = pd.to_datetime(data['timestamp'], infer_datetime_format=True)

1 #create separated columns for time, months (1=jan, 2=feb...), and years
2 data['date'] = pd.to_datetime(data['timestamp']).dt.date In [6]:

3 data['time'] = pd.to_datetime(data['timestamp']).dt.time

4 | data['month'] = pd.to_datetime(data['date']).dt.month 5 data['year'] = pd.to_datetime(data['date']).dt.year

1 data.head()

In [7]: Out[7]:

	timestamp	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season	date	time	month	year
0	2015-01-04 00:00:00	182	3.0	2.0	93.0	6.0	3.0	0.0	1.0	3.0	2015-01-04	00:00:00	1	2015
1	2015-01-04 01:00:00	138	3.0	2.5	93.0	5.0	1.0	0.0	1.0	3.0	2015-01-04	01:00:00	1	2015
2	2015-01-04 02:00:00	134	2.5	2.5	96.5	0.0	1.0	0.0	1.0	3.0	2015-01-04	02:00:00	1	2015
3	2015-01-04 03:00:00	72	2.0	2.0	100.0	0.0	1.0	0.0	1.0	3.0	2015-01-04	03:00:00	1	2015
4	2015-01-04 04:00:00	47	2.0	0.0	93.0	6.5	1.0	0.0	1.0	3.0	2015-01-04	04:00:00	1	2015

```
In [8]: 1 #update the data type to int for time_hour
2 data['time_hour'] = data.time.astype(str).str[:2].astype(int)

In [9]: 1 #now we drop the timestamp-related variables
2 data = data.drop(columns=['timestamp', 'time', 'date'])
```

1-2-2. Checking Data Distribution

```
In [10]: 1 data.hist(figsize = (12,12));
2 #histograms
3 #count is very skewed - not no negative values since it's adding up by counting, not bell-shaped
4 #t1, t2, hum and wind_speed are not perfectly, but normally distributed
5 #the other categorical variables are not shown as normally distributed
```


In [11]:

1 sns.set_theme(style="ticks")
2 sns.pairplot(data);
3 #Scatter plots


```
In [13]: 1 sns.scatterplot(x=data['t1'], y=data['cnt'],data=data)
    plt.title('Bike hire per temperture')
    plt.xlabel('temperture')
    plt.ylabel('count');
    #very much slightly linear relationship
```



```
In [14]: 1 sns.scatterplot(x=data['wind_speed'], y=data['cnt'],data=data)
2 plt.title('Bike hire per wind speed')
3 plt.xlabel('wind speed')
4 plt.ylabel('count');
5 #hardly can see any relationship
```



```
In [16]: 1 sns.barplot(x=data['is_holiday'], y=data['cnt'],data = data)
2 plt.savefig("count_per_holiday.png", transparent=True);
3 #Weekdays have more trip counts than holidays
```



```
In [17]: 1 sns.barplot(x=data['is_weekend'], y=data['cnt'],data = data)
2 plt.savefig("count_per_weekend.png", transparent=True);
3 #Weekdays have more trip counts than weekends
```



```
In [18]: 1 sns.barplot(x=data['season'], y=data['cnt'],data = data)
2 plt.savefig("count__per_seasons.png", transparent=True);
3 #0.0 spring, 1.0 summer, 2.0 fall, 3.0 winter
4 #Summer is the most popular time to hire bikes in London
```



```
In [19]: 1 sns.barplot(x=data['time_hour'], y=data['cnt'],data = data)
    plt.savefig("count_per_time.png", transparent=True);
```


1-2-3. Identifying and removing outliers

```
In [20]: 1 df1 = data.copy()

In [21]: 1 #create boxplots for the numerous variables
    def boxplot(column):
        sns.boxplot(x=df1[f"{column}"], data=df1)
        plt.title(f"Boxplot of {column}")
        plt.show()
```

In [22]: 1 df1.head()

Out[22]:

	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season	month	year	time_hour
0	182	3.0	2.0	93.0	6.0	3.0	0.0	1.0	3.0	1	2015	0
1	138	3.0	2.5	93.0	5.0	1.0	0.0	1.0	3.0	1	2015	1
2	134	2.5	2.5	96.5	0.0	1.0	0.0	1.0	3.0	1	2015	2
3	72	2.0	2.0	100.0	0.0	1.0	0.0	1.0	3.0	1	2015	3
4	47	2.0	0.0	93.0	6.5	1.0	0.0	1.0	3.0	1	2015	4

df1.loc[df1[x] < min,x] = np.nan

df1.loc[df1[x] > max,x] = np.nan

8

```
In [24]:
             #remove the outliers
              for x in ['cnt']:
                  q75,q25 = np.percentile(df1.loc[:,x],[75,25])
           4
                  intr_qr = q75-q25
           5
           6
                  max = q75+(1.5*intr_qr)
           7
                  min = q25-(1.5*intr_qr)
           8
           9
                  df1.loc[df1[x] < min,x] = np.nan
          10
                  df1.loc[df1[x] > max,x] = np.nan
In [25]:
           1 for x in ['t1']:
           2
                  q75, q25 = np.percentile(df1.loc[:,x],[75,25])
                  intr_qr = q75-q25
           3
           4
           5
                  max = q75+(1.5*intr_qr)
           6
                  min = q25-(1.5*intr_qr)
           8
                  df1.loc[df1[x] < min,x] = np.nan
                  df1.loc[df1[x] > max,x] = np.nan
           9
In [26]:
           1 for x in ['t2']:
           2
                  q75,q25 = np.percentile(df1.loc[:,x],[75,25])
                  intr_qr = q75-q25
           3
           4
           5
                  max = q75+(1.5*intr_qr)
                  min = q25-(1.5*intr_qr)
           6
           7
           8
                  df1.loc[df1[x] < min,x] = np.nan
           9
                  df1.loc[df1[x] > max,x] = np.nan
In [27]:
           1 for x in ['hum']:
                  q75,q25 = np.percentile(df1.loc[:,x],[75,25])
           3
                  intr_qr = q75-q25
           4
           5
                  max = q75+(1.5*intr_qr)
           6
                  min = q25-(1.5*intr_qr)
           7
                  df1.loc[df1[x] < min,x] = np.nan
           8
           9
                  df1.loc[df1[x] > max,x] = np.nan
           1 for x in ['wind_speed']:
In [28]:
           2
                  q75,q25 = np.percentile(df1.loc[:,x],[75,25])
           3
                  intr_qr = q75-q25
           4
           5
                  max = q75+(1.5*intr_qr)
           6
                  min = q25-(1.5*intr_qr)
           7
```

```
In [29]:
            1 df1.isnull().sum()
Out[29]: cnt
                              675
           t1
                               64
           t2
                               19
                               71
           hum
           wind_speed
                              236
           weather_code
                                0
           is_holiday
                                0
           is_weekend
                                0
                                0
           season
           month
                                0
           year
                                0
           time_hour
                                0
           dtype: int64
In [30]:
            1 #replace the nan values to median values
                df1['cnt'] = df1['cnt'].fillna(df1['cnt'].median())
             3 df1['t1'] = df1['t1'].fillna(df1['t1'].median())
            4 df1['t2'] = df1['t2'].fillna(df1['t2'].median())
5 df1['hum'] = df1['hum'].fillna(df1['hum'].median())
             6 df1['wind_speed'] = df1['wind_speed'].fillna(df1['wind_speed'].median())
In [31]:
            1 df1.isnull().sum()
Out[31]: cnt
                             a
           t1
                             0
           t2
                             0
           hum
                             0
           wind_speed
                              0
                             0
           weather_code
           is_holiday
                             0
           is_weekend
                             0
           season
                             0
           month
                             0
                             0
           year
           time_hour
                             0
           dtype: int64
In [32]:
            1 df1.describe()
Out[32]:
                                          t1
                                                        t2
                                                                   hum
                                                                          wind_speed
                                                                                      weather_code
                                                                                                       is_holiday
                                                                                                                   is weekend
                                                                                                                                     season
                                                                                                                                                   mont
            count 17414.000000 17414.000000 17414.000000 17414.000000
                                                                        17414.000000
                                                                                       17414.000000
                                                                                                    17414.000000
                                                                                                                 17414.000000 17414.000000 17414.00000
            mean
                    1005.958195
                                   12.401908
                                                 11.498928
                                                              72.512188
                                                                            15.563402
                                                                                          2.722752
                                                                                                        0.022051
                                                                                                                      0.285403
                                                                                                                                   1.492075
                                                                                                                                                 6.51464
                    871.921136
                                    5.462097
                                                  6.578463
                                                              14.042904
                                                                            7.323064
                                                                                           2.341163
                                                                                                        0.146854
                                                                                                                      0.451619
                                                                                                                                   1.118911
                                                                                                                                                 3.45250
              std
                      0.000000
                                   -1.500000
                                                 -6.000000
                                                              33.000000
                                                                            0.000000
                                                                                           1.000000
                                                                                                        0.000000
                                                                                                                     0.000000
                                                                                                                                   0.000000
                                                                                                                                                 1.00000
             min
             25%
                    257.000000
                                    8.000000
                                                  6.000000
                                                              63.000000
                                                                            10.000000
                                                                                           1.000000
                                                                                                        0.000000
                                                                                                                      0.000000
                                                                                                                                   0.000000
                                                                                                                                                 4.00000
             50%
                    798.000000
                                   12.500000
                                                 12.500000
                                                              75.000000
                                                                            15.000000
                                                                                           2.000000
                                                                                                        0.000000
                                                                                                                      0.000000
                                                                                                                                   1.000000
                                                                                                                                                 7.00000
             75%
                    1493.000000
                                   16.000000
                                                 16.000000
                                                              83.000000
                                                                            20.000000
                                                                                           3.000000
                                                                                                        0.000000
                                                                                                                      1.000000
                                                                                                                                   2.000000
                                                                                                                                                10.00000
             max
                    3793.000000
                                   28.000000
                                                31.000000
                                                             100.000000
                                                                            36.000000
                                                                                          26.000000
                                                                                                        1.000000
                                                                                                                      1.000000
                                                                                                                                   3.000000
                                                                                                                                                12.00000
```

1-2-4. Checking Data Distribution


```
In [34]: 1 #can see better linear relationship than before removing outliers
2 sns.jointplot('t1','cnt', data=df1, kind='reg');
```

C:\Users\Raye\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the followin g variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [35]: 1 sns.jointplot('wind_speed','cnt', data=df1, kind='reg');
```

C:\Users\Raye\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing oth er arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [36]: 1 sns.jointplot('time_hour','cnt', data=df1, kind='reg');

C:\Users\Raye\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing oth er arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [38]:
          1 #check distribution with categorical variables
             3
          5
          6
            plt.figure(figsize=(12,16))
          8
             for i in enumerate(cat):
          9
                plt.subplot(4, 2, i[0]+1)
                sns.barplot(x=i[1], y=df1['cnt'], data = df1)
         10
         11
                plt.ylabel('count')
         12
         13
            plt.show();
         14
         15
            #283 are the highest weathers for counts, but this is the London's typical weather - just a lot..
         16
            #1 = Clear ; mostly clear but have some values with haze/fog/patches of fog/ fog in vicinity
         17 #2 = scattered clouds / few clouds
         18 #3 = Broken clouds
         19
             #4 = Cloudy
         20 #7 = Rain/ light Rain shower/ Light rain
         21 #10 = rain with thunderstorm
         22 #26 = snowfall
           1400
                                                         1000
           1200
                                                         800
           1000
            800
                                                         600
          ∞unt
            600
                                                         400 ·
            400
                                                         200 -
```


2. Data Modeling

2-1. Baseline Modeling

```
In [39]:
             1 outcome = 'cnt'
                prediction = df1.drop('cnt', axis=1)
                pred_sum = '+'.join(prediction.columns)
             4
                formula = outcome + '~' + pred_sum
                model = ols(formula=formula, data=df1).fit()
                model.summary()
Out[39]:
           OLS Regression Results
                Dep. Variable:
                                          cnt
                                                    R-squared:
                                                                      0.312
                                         OLS
                                                                      0.312
                      Model:
                                                Adj. R-squared:
                                                    F-statistic:
                     Method:
                                Least Squares
                                                                      717.7
                       Date:
                              Sat, 05 Aug 2023 Prob (F-statistic):
                                                                       0.00
                       Time:
                                     12:48:05
                                                Log-Likelihood: -1.3936e+05
            No. Observations:
                                       17414
                                                          AIC:
                                                                 2.787e+05
                Df Residuals:
                                       17402
                                                          BIC:
                                                                 2.788e+05
                    Df Model:
                                           11
             Covariance Type:
                                    nonrobust
                                                                           0.975]
                                coef
                                        std err
                                                     t P>|t|
                                                                [0.025
                 Intercept -9.742e+04 2.19e+04
                                                 -4.445 0.000
                                                              -1.4e+05 -5.45e+04
                       t1
                             27.2429
                                         5.240
                                                 5.199 0.000
                                                                16.972
                                                                           37.514
                       t2
                              1.8101
                                         4.350
                                                 0.416 0.677
                                                                -6.716
                                                                           10.336
                     hum
                             -20.0419
                                         0.518 -38.712 0.000
                                                                -21.057
                                                                          -19.027
                              -0.4439
                                         0.838
                                                 -0.530 0.596
                                                                 -2.086
                                                                           1.198
              wind_speed
                                         2.568
                                                                           0.903
            weather_code
                              -4.1307
                                                 -1.608 0.108
                                                                -9.164
               is_holiday
                            -153.0192
                                        37.617
                                                 -4.068 0.000 -226.753
                                                                          -79.285
              is_weekend
                             -62.6998
                                        12.215
                                                 -5.133 0.000
                                                                -86 642
                                                                          -38.758
                  season
                             30.4740
                                         5.553
                                                 5.488 0.000
                                                                19.589
                                                                           41.359
                   month
                              2.2451
                                         1.902
                                                 1.181 0.238
                                                                -1.482
                                                                            5.972
                     year
                             49.1833
                                        10.875
                                                 4.523 0.000
                                                                27.868
                                                                           70.499
                             32.3123
                                         0.837
                                                38.607 0.000
                                                                30.672
                                                                           33.953
               time hour
                  Omnibus: 3671.983
                                        Durbin-Watson:
                                                           0.862
            Prob(Omnibus):
                               0.000 Jarque-Bera (JB): 7238.089
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 8.06e+06

[2] The condition number is large, 8.06e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Prob(JB):

Baseline Model Analysis

Skew:

Kurtosis:

- The R squared score is 0.312, yet to not reliable
- t2, wind_speed, weather code and moths show high p-values (> 0.02)
- · Skewness and Kurtosis are far from 0

1.277

4.859

2. Second Modeling

2-2-1. Checking Multicollinearity

Out[42]:

	cnt	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season	month	year	time_h
cnt	1.000000	0.353277	0.337323	-0.464398	0.151575	-0.144278	-0.040719	-0.038341	-0.103975	0.042784	-0.001204	0.381
t1	0.353277	1.000000	0.978943	-0.417577	0.159296	-0.090224	-0.041262	-0.000155	-0.288172	0.335589	-0.042079	0.165
t2	0.337323	0.978943	1.000000	-0.386163	0.098891	-0.096483	-0.039774	-0.006453	-0.286638	0.369407	-0.045262	0.153
hum	-0.464398	-0.417577	-0.386163	1.000000	-0.291789	0.331381	0.030683	0.025515	0.285598	0.113500	0.069301	-0.292
wind_speed	0.151575	0.159296	0.098891	-0.291789	1.000000	0.106355	-0.015505	0.009151	0.003338	-0.071244	-0.089099	0.143
weather_code	-0.144278	-0.090224	-0.096483	0.331381	0.106355	1.000000	0.012939	0.042362	0.098976	-0.033253	-0.009234	-0.041
is_holiday	-0.040719	-0.041262	-0.039774	0.030683	-0.015505	0.012939	1.000000	-0.094898	-0.032488	-0.011511	0.034631	-0.000
is_weekend	-0.038341	-0.000155	-0.006453	0.025515	0.009151	0.042362	-0.094898	1.000000	0.001067	-0.005406	0.003049	0.001
season	-0.103975	-0.288172	-0.286638	0.285598	0.003338	0.098976	-0.032488	0.001067	1.000000	0.203249	0.024400	0.000
month	0.042784	0.335589	0.369407	0.113500	-0.071244	-0.033253	-0.011511	-0.005406	0.203249	1.000000	-0.026547	-0.000
year	-0.001204	-0.042079	-0.045262	0.069301	-0.089099	-0.009234	0.034631	0.003049	0.024400	-0.026547	1.000000	0.000
time_hour	0.381055	0.165728	0.153094	-0.292747	0.143256	-0.041786	-0.000288	0.001803	0.000006	-0.000312	0.000542	1.000

```
In [43]: 1 #t1 and t2 are very correlated as expected
2 plt.figure(figsize=(10,8))
3 cmap=sns.color_palette("Spectral", as_cmap=True)
4 sns.heatmap(corr, center=0, annot=True, cmap=cmap);
```


In [44]: 1 pred_corr = df1[dependent].corr()
2 pred_corr

Out[44]:

•											
	t1	t2	hum	wind_speed	weather_code	is_holiday	is_weekend	season	month	year	time_hour
t1	1.000000	0.978943	-0.417577	0.159296	-0.090224	-0.041262	-0.000155	-0.288172	0.335589	-0.042079	0.165728
t2	0.978943	1.000000	-0.386163	0.098891	-0.096483	-0.039774	-0.006453	-0.286638	0.369407	-0.045262	0.153094
hum	-0.417577	-0.386163	1.000000	-0.291789	0.331381	0.030683	0.025515	0.285598	0.113500	0.069301	-0.292747
wind_speed	0.159296	0.098891	-0.291789	1.000000	0.106355	-0.015505	0.009151	0.003338	-0.071244	-0.089099	0.143256
weather_code	-0.090224	-0.096483	0.331381	0.106355	1.000000	0.012939	0.042362	0.098976	-0.033253	-0.009234	-0.041786
is_holiday	-0.041262	-0.039774	0.030683	-0.015505	0.012939	1.000000	-0.094898	-0.032488	-0.011511	0.034631	-0.000288
is_weekend	-0.000155	-0.006453	0.025515	0.009151	0.042362	-0.094898	1.000000	0.001067	-0.005406	0.003049	0.001803
season	-0.288172	-0.286638	0.285598	0.003338	0.098976	-0.032488	0.001067	1.000000	0.203249	0.024400	0.000006
month	0.335589	0.369407	0.113500	-0.071244	-0.033253	-0.011511	-0.005406	0.203249	1.000000	-0.026547	-0.000312
year	-0.042079	-0.045262	0.069301	-0.089099	-0.009234	0.034631	0.003049	0.024400	-0.026547	1.000000	0.000542
time hour	0.165728	0.153094	-0.292747	0.143256	-0.041786	-0.000288	0.001803	0.000006	-0.000312	0.000542	1.000000

```
In [45]:
             1 plt.figure(figsize=(10,8))
                sns.heatmap(pred_corr, center=0, annot=True, cmap=cmap);
                                                                                                       1.0
                                            0.16 -0.09 -0.041-0.00015 -0.29 0.34 -0.042 0.17
                          0.98
                                      -0.39
                                            0.099 -0.096 -0.04 -0.0065 -0.29
                                                                            0.37
                                                                                 -0.045 0.15
                                                                                                       0.8
                         -0.42
                                -0.39
                                             -0.29
                                                   0.33
                                                        0.031 0.026
                                                                      0.29
                                                                            0.11
                                                                                  0.069 -0.29
                    hum -
                                                                                                       0.6
              wind speed - 0.16 0.099
                                      -0.29
                                                   0.11
                                                        -0.016 0.0092 0.0033 -0.071 -0.089 0.14
            weather code - -0.09 -0.096 0.33
                                            0.11
                                                         0.013 0.042 0.099 -0.033 -0.0092 -0.042
                                                                                                      - 0.4
               is_holiday - -0.041 -0.04 0.031 -0.016 0.013
                                                               -0.095 -0.032 -0.012 0.035 -0.00029
                                                                                                      - 0.2
              is weekend -0.000150.0065 0.026 0.0092 0.042 -0.095
                                                                     0.0011 -0.0054 0.003 0.0018
                        - -0.29 -0.29
                                      0.29 0.0033 0.099 -0.032 0.0011
                                                                             0.2
                                                                                  0.024 6.2e-06
                                                                                                      - 0.0
                                      0.11 -0.071 -0.033 -0.012 -0.0054 0.2
                                                                                  -0.027-0.00031
                  month -
                         0.34
                                0.37
                                                                                                       -0.2
                    year - -0.042 -0.045 0.069 -0.089 -0.0092 0.035 0.003 0.024 -0.027
                                                                                       0.00054
               time_hour - 0.17
                                            0.14 -0.042-0.000290.0018 6.2e-060.000310.0005
                                0.15
                                      -0.29
                                                          is_holiday
In [46]:
             1 #remove t2 - it also had a high p-value
             2 df2 = df1.drop(columns=['t2'])
In [47]:
             1 df2.head()
Out[47]:
                 cnt
                     t1
                         hum
                                wind_speed weather_code is_holiday is_weekend season month year time_hour
            0 182.0 3.0
                           93.0
                                        6.0
                                                       3.0
                                                                              1.0
                                                                                      3.0
                                                                                                  2015
            1 138.0 3.0
                           93.0
                                        5.0
                                                       1.0
                                                                 0.0
                                                                              1.0
                                                                                      3.0
                                                                                                1 2015
                                                                                                                1
                                        0.0
                                                       1.0
                                                                                                                2
            2 134.0 2.5
                           96.5
                                                                 0.0
                                                                              1.0
                                                                                      3.0
                                                                                                1 2015
               72.0 2.0 100.0
                                        0.0
                                                       1.0
                                                                 0.0
                                                                              1.0
                                                                                      3.0
                                                                                                1 2015
                                                                                                                3
               47.0 2.0 93.0
                                        6.5
                                                       1.0
                                                                 0.0
                                                                              1.0
                                                                                      3.0
                                                                                                1 2015
           2-2-2. Creating Dummy Variables
In [48]:
             1 # make the data type to categories for categorical variables
             2 df2.weather_code = df2.weather_code.astype('category')
             3 df2.is_holiday = df2.is_holiday.astype('category')
             4 df2.is_weekend = df2.is_weekend.astype('category')
             5 df2.season = df2.season.astype('category')
             6 df2.month = df2.month.astype('category')
                df2.year = df2.year.astype('category')
             8 df2.time_hour = df2.time_hour.astype('category')
In [49]:
                #Create dummy variables for the categorical variables
                wthr_dummies = pd.get_dummies(df2['weather_code'], prefix='wthr', drop_first=True)
                hol_dummies = pd.get_dummies(df2['is_holiday'], prefix='hol', drop_first=True)
             4 wkd_dummies = pd.get_dummies(df2['is_weekend'], prefix='wkd', drop_first=True)
5 ssn_dummies = pd.get_dummies(df2['season'], prefix='ssn', drop_first=True)
               mth_dummies = pd.get_dummies(df2['month'], prefix='mth', drop_first=True)
             7 yr_dummies = pd.get_dummies(df2['year'], prefix='yr', drop_first=True)
8 time_dummies = pd.get_dummies(df2['time_hour'], prefix='time', drop_first=True)
In [50]:
             1 #add dummies to the dataset
             2 df2 = df2.join([wthr_dummies,hol_dummies,wkd_dummies,ssn_dummies,
             3
                                   mth_dummies,yr_dummies,time_dummies])
```

```
In [51]:
           1 #drop the original columns from the dataset
            df2.drop(['weather_code','is_holiday','is_weekend','season','month',

'year','time_hour'],axis=1, inplace=True)
           1 # update the column names dot to underscore
In [52]:
            2 df2.columns = df2.columns.str.replace(".", "_")
            3 df2.head()
Out[52]:
               cnt t1 hum wind_speed wthr_2_0 wthr_3_0 wthr_4_0 wthr_7_0 wthr_10_0 wthr_26_0 ... time_14 time_15 time_16 time_17 time_18
                                                                                                                                            0
           0 182.0 3.0
                        93.0
                                     6.0
                                                                           0
                                                                                                                                    0
           1 138.0 3.0 93.0
                                     5.0
                                                0
                                                         0
                                                                  0
                                                                           0
                                                                                      0
                                                                                                0 ...
                                                                                                           0
                                                                                                                   0
                                                                                                                           0
                                                                                                                                    0
                                                                                                                                            0
           2 134.0 2.5 96.5
                                     0.0
                                                0
                                                         0
                                                                  0
                                                                           0
                                                                                      0
                                                                                                0 ...
                                                                                                           0
                                                                                                                   0
                                                                                                                           0
                                                                                                                                    0
                                                                                                                                            0
           3 72.0 2.0 100.0
                                     0.0
           4 47.0 2.0 93.0
                                     6.5
                                                0
                                                         0
                                                                  0
                                                                           0
                                                                                      0
                                                                                                           0
                                                                                                                   0
                                                                                                                           0
                                                                                                                                    0
                                                                                                                                            0
          5 rows × 51 columns
```

2-2-3. Checking Modeling Result - Second Modeling

```
In [53]: 1 outcome = 'cnt'
prediction = df2.drop('cnt', axis=1)

4 pred_sum = '+'.join(prediction.columns)
formula = outcome + '~' + pred_sum

6 
7 model = ols(formula=formula, data=df2).fit()
8 model.summary()
```

Dep. Vari	able:	cn	t	R-squa	red:	0.611
М	odel:	OLS	S Adj	. R-squa	red:	0.610
Met	thod: Le	ast Square	S	F-stati	stic:	579.6
I	Date: Sat, 0)5 Aug 202	3 Prob	(F-statis	stic):	0.00
1	Γime:	12:48:09	9 Log	-Likelih	ood: -1.34	40e+05
No. Observat	ions:	1741	4		AIC: 2.6	89e+05
Df Resid	uals:	17366	3		BIC: 2.6	93e+05
Df M	odel:	4	7			
Covariance 7	Гуре:	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	654.8945	39.113	16.744	0.000	578.230	731.559
t1	23.7198	1.540	15.398	0.000	20.700	26.739
hum	-8.0953	0.455	-17.799	0.000	-8.987	-7.204
wind_speed	-5.8193	0.652	-8.919	0.000	-7.098	-4.540
wthr_2_0	51.6245	11.762	4.389	0.000	28.570	74.679
wthr_3_0	19.7762	12.857	1.538	0.124	-5.425	44.977
wthr_4_0	-9.2175	16.693	-0.552	0.581	-41.937	23.502
wthr_7_0	-201.5944	15.705	-12.837	0.000	-232.377	-170.811
wthr_10_0	-640.9214	146.296	-4.381	0.000	-927.676	-354.167
wthr_26_0	31.9892	71.458	0.448	0.654	-108.076	172.054
hol_1_0	-174.0937	28.953	-6.013	0.000	-230.845	-117.342
wkd_1_0	-72.0074	9.234	-7.798	0.000	-90.106	-53.908
ssn_1_0	94.2218	12.623	7.464	0.000	69.480	118.964
ssn_2_0	95.2421	9.966	9.557	0.000	75.708	114.776
ssn_3_0	72.8325	15.958	4.564	0.000	41.553	104.112
mth_2	14.9677	20.805	0.719	0.472	-25.812	55.747
mth_3	96.2049	14.454	6.656	0.000	67.873	124.537
mth_4	147.0665	13.943	10.548	0.000	119.737	174.396
mth_5	149.3268	15.286	9.769	0.000	119.365	179.289
mth_6	44.9722	12.135	3.706	0.000	21.186	68.758
mth_7	46.1725	12.601	3.664	0.000	21.474	70.871
mth_8	3.0771	12.791	0.241	0.810	-21.995	28.149
mth_9	-0.4511	13.854	-0.033	0.974	-27.607	26.705
mth_10	83.7147	12.205	6.859	0.000	59.792	107.637
mth_11	11.9786	12.931	0.926	0.354	-13.368	37.325
mth_12	-21.5696	21.289	-1.013	0.311	-63.297	20.158
yr_2016	22.8480	8.335	2.741	0.006	6.511	39.185
yr_2017	-76.8131	66.725	-1.151	0.250	-207.601	53.975
time_1		28.639	-2.620		-131.155	-18.885
time_2		28.690	-4.439		-183.576	-71.107
time_3			-5.613	0.000	-217.365	-104.853
time_4		28.718	-5.926	0.000	-226.473	-113.891
time_5		28.736	-4.492	0.000	-185.412	-72.760
_	213.8858		7.446		157.583	270.189
time_7		28.698	41.125	0.000	1123.967	1236.469
time_8	912.7235	28.725	31.774		856.419	969.028
_	1288.9610	28.822	44.721		1232.467	1345.455
_	663.6255	29.075	22.824		606.635	720.616
time_11		29.362	24.189	0.000	652.685	767.789
time_12		29.573	32.846	0.000	913.382	1029.315
time_13	1004.2604	29.721	33.789	0.000	946.004	1062.517

time_14	948.5311	29.801	31.828	0.000	890.117	1006.945
time_15	1030.9192	29.733	34.673	0.000	972.640	1089.199
time_16	1344.1041	29.614	45.387	0.000	1286.057	1402.151
time_17	1566.2438	29.434	53.211	0.000	1508.549	1623.938
time_18	1553.3321	29.203	53.190	0.000	1496.091	1610.574
time_19	1232.6581	28.999	42.507	0.000	1175.818	1289.498
time_20	672.1861	28.825	23.319	0.000	615.686	728.686
time_21	388.4395	28.705	13.532	0.000	332.175	444.704
time_22	265.1952	28.655	9.255	0.000	209.029	321.362
time_23	130.4151	28.660	4.550	0.000	74.239	186.591

 Omnibus:
 2475.000
 Durbin-Watson:
 1.132

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 10211.706

 Skew:
 0.657
 Prob(JB):
 0.00

 Kurtosis:
 6.514
 Cond. No.
 1.78e+17

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.22e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Second Model Analysis

- The R-squared score has been improved from 0.312 to 0.611
- Skewness improved a lot close to 0, but Kurtosis is
- Kurtosis is more than 6, which means it is a leptokurtic

```
In [54]: 1    residuals = model.resid

fig, ax = plt.subplots(1,1)
fig.set_figheight(10)
fig.set_figwidth(10)

sm.ProbPlot(residuals).qqplot(line='s',ax=ax)
ax.title.set_text('Second Model - QQ plot');
```



```
1 y = df2[['cnt']]
In [55]:
           2 X = df2.drop(['cnt'], axis=1)
          4 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.3)
          6 linreg = LinearRegression()
             linreg.fit(X_train, y_train)
          9 y_hat_train = linreg.predict(X_train)
          10 y_hat_test = linreg.predict(X_test)
          11 train_prediction = linreg.predict(X_train)
          12 test_prediction = linreg.predict(X_test)
          13
          14 plt.figure(figsize=(8,5))
          15 | plt.scatter(y_train, train_prediction, label='Model')
          16 plt.plot(y_train, y_train, label='Actual Data')
          plt.title('Model vs Data for training set')
          18 plt.legend();
```


2-3. Third Modeling

2-3-1. Log Transformation & Scaling - Normalising Data

```
In [56]:
          1 df3 = df2.copy()
In [57]:
           1 df3 = df3.reset_index()
In [58]:
           1 #conduct log transformation of the numeric values
             a = df3['cnt']
           3 b = df3['t1']
4 c = df3['hum']
             d = df3['wind_speed']
             logcnt = np.log(a, where = a>0)
           8 logtemp = np.log(b, where = b>0)
           9 loghum = np.log(c, where = c>0)
          10 logwind = np.log(d, where = d>0)
In [59]:
          1 #conduct scaling of the numeric values
              scaled_cnt = (logcnt-np.mean(logcnt))/np.sqrt(np.var(logcnt))
           3 scaled_temp = (logtemp-np.mean(logtemp))/np.sqrt(np.var(logtemp))
           4 | scaled_hum = (loghum-np.mean(loghum))/np.sqrt(np.var(loghum))
           5 | scaled_wind = (logwind-np.mean(logwind))/np.sqrt(np.var(logwind))
In [60]:
           1 df3['cnt'] =scaled_cnt
           2 df3['t1'] = scaled_temp
           3 df3['hum'] = scaled_hum
           4 df3['wind_speed'] = scaled_wind
In [61]:
          1 df3 = df3.drop('index', axis=1)
```

```
In [62]: 1  outcome = 'cnt'
  predictors = df3.drop('cnt', axis=1)
  pred_sum = '+'.join(predictors.columns)
  4  formula = outcome + '~' + pred_sum
  5
  6  model = ols(formula=formula, data=df3).fit()
  7  model.summary()
```

Dep. Variable:	cnt	R-squared:	0.807
Model:	OLS	Adj. R-squared:	0.806
Method:	Least Squares	F-statistic:	1543.
Date:	Sat, 05 Aug 2023	Prob (F-statistic):	0.00
Time:	12:48:10	Log-Likelihood:	-10393.
No. Observations:	17414	AIC:	2.088e+04
Df Residuals:	17366	BIC:	2.126e+04

Df Model: 47 Covariance Type: nonrobust

Covariance	Гуре:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.776e+10	2.83e+11	0.346	0.729	-4.56e+11	6.52e+11
t1	0.0620	0.006	11.186	0.000	0.051	0.073
hum	-0.0532	0.005	-10.827	0.000	-0.063	-0.044
wind_speed	0.0022	0.003	0.661	0.509	-0.004	0.009
wthr_2_0	0.0155	0.009	1.644	0.100	-0.003	0.034
wthr_3_0	-0.0065	0.010	-0.636	0.525	-0.027	0.014
wthr_4_0	-0.0413	0.013	-3.063	0.002	-0.068	-0.015
wthr_7_0	-0.3143	0.012	-25.386	0.000	-0.339	-0.290
wthr_10_0	-0.6295	0.118	-5.327	0.000	-0.861	-0.398
wthr_26_0	-0.4308	0.058	-7.473	0.000	-0.544	-0.318
hol_1_0	-0.1874	0.023	-8.013	0.000	-0.233	-0.142
wkd_1_0	-0.0115	0.007	-1.546	0.122	-0.026	0.003
ssn_1_0	-2.155e+11	6.23e+11	-0.346	0.729	-1.44e+12	1.01e+12
ssn_2_0	-2.133e+11	6.16e+11	-0.346	0.729	-1.42e+12	9.95e+11
ssn_3_0	-9.776e+10	2.83e+11	-0.346	0.729	-6.52e+11	4.56e+11
mth_2	0.0372	0.017	2.215	0.027	0.004	0.070
mth_3	-9.776e+10	2.83e+11	-0.346	0.729	-6.52e+11	4.56e+11
mth_4	-9.776e+10	2.83e+11	-0.346	0.729	-6.52e+11	4.56e+11
mth_5	-9.776e+10	2.83e+11	-0.346	0.729	-6.52e+11	4.56e+11
mth_6	1.178e+11	3.4e+11	0.346	0.729	-5.49e+11	7.85e+11
mth_7	1.178e+11	3.4e+11	0.346	0.729	-5.49e+11	7.85e+11
mth_8	1.178e+11	3.4e+11	0.346	0.729	-5.49e+11	7.85e+11
mth_9	1.155e+11	3.34e+11	0.346	0.729	-5.39e+11	7.7e+11
mth_10	1.155e+11	3.34e+11	0.346	0.729	-5.39e+11	7.7e+11
mth_11	1.155e+11	3.34e+11	0.346	0.729	-5.39e+11	7.7e+11
mth_12	0.0715	0.017	4.161	0.000	0.038	0.105
yr_2016	0.0123	0.007	1.837	0.066	-0.001	0.026
yr_2017	-0.2366	0.054	-4.383	0.000	-0.342	-0.131
time_1	-0.3611	0.023	-15.602	0.000	-0.406	-0.316
time_2	-0.6922	0.023	-29.854	0.000	-0.738	-0.647
time_3	-1.0041	0.023	-43.305	0.000	-1.050	-0.959
time_4	-1.0766	0.023	-46.388	0.000	-1.122	-1.031
time_5	-0.6533	0.023	-28.154	0.000	-0.699	-0.608
time_6	0.3292	0.023	14.188	0.000	0.284	0.375
time_7	1.1170	0.023	48.160	0.000	1.071	1.162
time_8	1.0078	0.023	43.410	0.000	0.962	1.053
time_9	1.4106	0.023	60.575	0.000	1.365	1.456
time_10	1.0939	0.023	46.564	0.000	1.048	1.140
time_11	1.1030	0.024	46.505	0.000	1.057	1.149
time_12	1.2775	0.024	53.498	0.000	1.231	1.324
time_13	1.2920	0.024	53.806	0.000	1.245	1.339

time_14	1.2501	0.024	51.921	0.000	1.203	1.297
time_15	1.2994	0.024	54.099	0.000	1.252	1.347
time_16	1.4762	0.024	61.710	0.000	1.429	1.523
time_17	1.4969	0.024	62.977	0.000	1.450	1.543
time_18	1.4917	0.024	63.270	0.000	1.446	1.538
time_19	1.3950	0.023	59.583	0.000	1.349	1.441
time_20	1.0488	0.023	45.044	0.000	1.003	1.094
time_21	0.7903	0.023	34.077	0.000	0.745	0.836
time_22	0.6313	0.023	27.267	0.000	0.586	0.677
time_23	0.3853	0.023	16.633	0.000	0.340	0.431

 Omnibus:
 763.243
 Durbin-Watson:
 0.656

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1630.791

 Skew:
 -0.297
 Prob(JB):
 0.00

Kurtosis: 4.376 **Cond. No.** 9.79e+15

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.29e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Third Model Analysis

- The R-squared score has been improved to 0.807 from 0.611
- Skewness has been improved closer to 0 as -0.297
- Kurtosis also has been improved closer to 3
- Can see some of the variables are not statistically significant which is to be dropped for the final model


```
In [64]:
           1 y = df3[['cnt']]
           2 X = df3.drop(['cnt'], axis=1)
           4 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.3)
           6 linreg = LinearRegression()
           7 linreg.fit(X_train, y_train)
           9 y_hat_train = linreg.predict(X_train)
          10 y_hat_test = linreg.predict(X_test)
          11 train_prediction = linreg.predict(X_train)
          12 test_prediction = linreg.predict(X_test)
          13
          plt.figure(figsize=(8,5))
          plt.scatter(y_train, train_prediction, label='Model')
          plt.plot(y_train, y_train, label='Actual Data')
plt.title('Model vs Data for training set')
          18 plt.legend();
          19 #Can observe some outliers
```


2-4. Final Modeling

2-4-1. Removing the variables that have p-value > 0.05

2-4-2. Checking Modeling Result - Final Modeling

Dep. Variable:			cnt	R	-square	d: 0.802
	Model:		OLS	Adj. R	:-square	d: 0.801
N	lethod:	Least S	Squares	F	-statisti	c: 2197.
	Date:	Sat, 05 A	ug 2023	Prob (F	-statistic	0.00
	Time:	1	12:48:11	Log-L	ikelihoo	
No. Observ			17414			C: 2.130e+04
Df Res	Model:		17381 32		ы	C: 2.156e+04
Covariance		nc	onrobust			
	coef		t	P> t	[0.025	0.975]
Intercept			-35.474		-0.629	-
t1	0.1366	0.004		0.000		0.144
hum	-0.0572	0.004	-12.951	0.000	-0.066	-0.049
wthr_4_0	-0.0552	0.013	-4.344	0.000	-0.080	-0.030
wthr_7_0	-0.3370	0.011	-30.714	0.000	-0.359	-0.316
wthr_10_0	-0.6189	0.119	-5.185	0.000	-0.853	-0.385
wthr_26_0	-0.4454	0.058	-7.664	0.000	-0.559	-0.332
hol_1_0	-0.2082	0.023	-9.000	0.000	-0.254	-0.163
mth_2	-0.0418	0.014	-3.044	0.002	-0.069	-0.015
mth_12	-0.0750	0.013	-5.939	0.000	-0.100	-0.050
time_1	-0.3579	0.023	-15.278	0.000	-0.404	-0.312
_	-0.6846		-29.180	0.000	-0.731	-0.639
_	-0.9934		-42.339	0.000	-1.039	-0.947
_	-1.0636	0.023	-45.317	0.000	-1.110	-1.018
_	-0.6393	0.023			-0.685	-0.593
time_6	0.3405 1.1240	0.023	14.512 47.942		0.294 1.078	0.386 1.170
time_7		0.023	42.836	0.000	0.959	1.050
time_9		0.023	59.584	0.000	1.351	
time 10		0.024		0.000	1.023	1.115
time_11		0.024	45.203	0.000	1.023	1.116
time_12	1.2377	0.024	52.052	0.000	1.191	1.284
time_13	1.2481	0.024	52.249	0.000	1.201	1.295
time_14	1.2039	0.024	50.237	0.000	1.157	1.251
time_15	1.2542	0.024	52.387	0.000	1.207	1.301
time_16	1.4340	0.024	59.994	0.000	1.387	1.481
time_17	1.4586	0.024	61.272	0.000	1.412	1.505
time_18	1.4575	0.024	61.512	0.000	1.411	1.504
time_19	1.3669	0.024	57.919	0.000	1.321	1.413
time_20	1.0260	0.024		0.000	0.980	1.072
time_21			33.019		0.728	0.820
time_22			26.486	0.000	0.575	0.667
time_23	0.3803	0.023	16.221	0.000	0.334	0.426
Omni	i bus : 82	9.407	Durbin-\	Watson:	48	
Prob(Omnil	ous):	0.000 J	arque-Be	ra (JB):	04	
s	kew:	-0.338	Pr	ob(JB):	0.	00
Kurtosis:		4.370	Co	nd. No.	1.5	

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Final Model Analysis

- The p-value of the intercept has been adjusted to 0
- Skewness and Kurtosis have been improved
- The R squared score got a good score as 0.802

```
In [67]: 1    residuals = model.resid

fig, ax = plt.subplots(1,1)
fig.set_figheight(10)
fig.set_figwidth(10)

sm.ProbPlot(residuals).qqplot(line='s',ax=ax)
ax.title.set_text('final model - QQ plot');
```



```
In [68]:
          1 y = df4[['cnt']]
          2 X = df4.drop(['cnt'], axis=1)
          4 | X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.3)
          6 linreg = LinearRegression()
          7 linreg.fit(X_train, y_train)
          9 y_hat_train = linreg.predict(X_train)
          10 y_hat_test = linreg.predict(X_test)
          11 train_prediction = linreg.predict(X_train)
          12 test_prediction = linreg.predict(X_test)
          13
          14 plt.figure(figsize=(8,5))
          plt.scatter(y_train, train_prediction, label='Model')
          16 plt.plot(y_train, y_train, label='Actual Data')
          plt.title('Model vs Data for training set')
          18 plt.legend();
```


3. Model Validation

Test MSE: 0.1977221869537297

3-1. Train/Test Split Validation

```
In [69]:
          1 train, test = train_test_split(df4)
In [70]:
          1 y = df4[['cnt']]
           2 X = df4.drop(['cnt'], axis=1)
           4 | X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.4)
In [71]:
          1 print(len(X_train), len(X_test), len(y_train),len(y_test))
         10448 6966 10448 6966
In [72]:
          1 linreg = LinearRegression()
           2 linreg.fit(X_train, y_train)
Out[72]: LinearRegression()
In [73]:
           1 y_hat_train = linreg.predict(X_train)
           2 y_hat_test = linreg.predict(X_test)
In [74]:
           1 train_residuals = y_hat_train - y_train
           2 test_residuals = y_hat_test - y_test
In [75]:
           1 test_mse = mean_squared_error(y_test, y_hat_test)
           2 train_mse = mean_squared_error(y_train, y_hat_train)
In [76]:
           1 print('Train MSE:', train_mse)
           2 print('Test MSE:', test_mse)
           3 # The values are very close to each other
         Train MSE: 0.19954325025505731
```

```
3-2. Cross Validation
In [77]:
           1 cv_mse = -cross_val_score(linreg, X_train, y_train, scoring='neg_mean_squared_error', cv=10)
            print('K-fold cross validation MSE:', round(cv_mse.mean(),6))
#very close to the scores of train/test validation
          K-fold cross validation MSE: 0.200782
In [78]:
           1 cv_r2 = cross_val_score(linreg, X_train, y_train, scoring='r2', cv=10)
            2 print('K-fold cross validation R-2:', round(cv_r2.mean(),6))
            3 #also very close to the scores of train/test validation
          K-fold cross validation R-2: 0.795582
In [79]: 1 train_prediction = linreg.predict(X_train)
            2 test_prediction = linreg.predict(X_test)
In [80]:
            1 plt.figure(figsize=(8,5))
            plt.lgatter(y_train, train_prediction, label='Model')
plt.plot(y_train, y_train, label='Actual Data')
            4 plt.title('Model vs Data for training set')
            5 plt.legend();
                                     Model vs Data for training set
                     Actual Data
                     Model
             0 .
            -2
            -3
                                                                 0
In [81]:
           1 plt.figure(figsize=(8,5))
               plt.scatter(y_test, test_prediction, label='Model')
            plt.plot(y_test, y_test, label='Actual Data')

plt.title('Model vs Data for test set')
            5
               plt.legend();
                                      Model vs Data for test set
```


3-3. Checking Coefficient Scores

```
In [82]:
          1 coeff = model.params
          2 ranked_features = coeff.sort_values(ascending=False)
          3 ranked_features
Out[82]: time_17
                    1.458600
        time_18
                    1.457478
        time_16
                    1.433964
        time_9
                    1.397131
        time 19
                   1.366941
        time_15
                    1.254191
        time_13
                    1.248100
        time_12
                    1.237737
        time_14
                    1.203868
                    1.123958
        time_7
        time_11
                    1.069475
        time_10
                    1.068877
        time 20
                    1.025992
        time_8
                    1.004514
        time_21
                 0.774370
        time_22
                    0.620581
        time_23
                    0.380265
                   0.340471
        time_6
                    0.136606
        t1
        mth_2
                    -0.041818
        wthr_4_0 -0.055169
        hum
                   -0.057241
        mth_12
                   -0.075043
        hol_1_0
                   -0.208220
        wthr_7_0
                   -0.337036
        time 1
                    -0.357886
        wthr_26_0 -0.445433
        Intercept
                   -0.595705
        wthr_10_0
                   -0.618901
        time_5
                    -0.639302
        time_2
                   -0.684590
        time_3
                   -0.993429
        time_4
                   -1.063613
        dtype: float64
```

4. Result

1. The most effective features based on multiple linear regression analysis:

- Time: the rush hour & during the days generate more bike hire counts than the rest of the times
- Weather: bad weather (raining and snowing) affects to reduce the number of bike hire
- Temp: higher temperatures makes Londoners hire bikes

${\bf 2.} \ {\bf Additionally, what we can add from the general analysis observation:}$

- Higher demand on Weekdays compare to weekends and public holidays bike hire is loved by Londoners more than tourists
- · Summer is the most popular season to hire bikes

5. Further action

- Obtain the location data analysis: To supply the right amount of bikes to hire in the right places, by investigating the bike trip flow based on the location data, we will be able to predict not only the demand but also effective bike-relocation to increase the bike hire
- Adopt a new type of vehicle and demand: E-bikes and e-scooter were released in late 2020 in London, we should look into the recent data to see the trends to predict more accurate customer demands