

%% Discriminant Analysis da = ClassificationDiscriminant.fit(Xtrain, Ytrai 'discrimType', 'quadratic'); Введение в глубокое обучение с МАТЦАВ knn = ClassificationKNN.fit(Xtrain, Ytrain, ...

План

- Введение
- Нейронные сети vs Deep Learning
- Принципы построения архитектуры
- Hello world
- Передача обучения
- Анализ и визуализация сверточных сетей

АІ, Машинное обучение, Глубокое обучение

Нейронные сети. Черный ящик?

Нейронные сети.

Нейронные сети. Глубокое обучение

Нейронная сеть решит любые задачи? Теорема о

бесплатных завтраках

Пример: машинный перевод

Пример: детектирование объектов

Нейронная сеть решит любые задачи?

Сверточные и реккурентные нейронные сети

Сверточные нейронные сети

экспонента 🗖

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0
2	-1

7 -1 -6 9 1 -5 -2 0 -1			
	7	-1	-6
-2 0 -1	9	1	-5
	-2	0	-1

Свертка

1	m	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0
2	-1

7	-1	-6
9	1	-5
-2	0	-1

1*1+3*0+2*2+(-2*-1)=7

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0	
2	-1	

1*1+3	3*0+	2*2+(-2 *	-1)=	=7
3*1-	1*0-	-2*2 -	-0*-	1=-	-1

7	-1	-6
9	1	-5
-2	0	-1

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

2	4	9
-5	1	7
-2	0	-1

2	4	9
-5	1	7
-2	0	-1

2	4	9
-5	1	7
-2	0	-1

экспонента 🗖

1	0	
2	-1	

2	4	9
-5	1	7
-2	0	-1

Ректификация (ReLu)

7	-1	-6
0	1	_

-2 0 -3

f(x)=i	nax (0,	, x)

7	0	0
9	1	0
0	0	0

Субдискретизация (pooling)

1	3	-1	0
2	-2	0	5
4	1	-1	3
<u>ფ</u>	0	1	2

3 5 3

MNIST: Hello World для компьютерного зрения

Данные?	Множество рукописных цифр от 0 до 9
Почему?	Простая и прозрачная задача не требующая значительных вычислительных ресурсов
Как много?	8,000 изображения для обучения 2,000 изображения для теста
Лучший результат?	100% точности

MNIST: Hello World для компьютерного зрения

AlexNet

VGG

VGG-16

 $\boldsymbol{\vdash}$

4

Conv

Pooing Conv Conv

экспонента

34-layer residual

34-layer plain

output size: 224

ResNet

Передача обучения

Пред обученная CNN (squeezeNet – 1000 классов)

Новая задача – 5 классов для классификации

Выбор и загрузка предобученной сети

Техники визуализации

- Активация
 - Извлечение характеристик слоя
- Чувствительность к окклюзии
- Grad-CAM

Активация

Чувствительность к оклюзии

Grad-CAM

Контакты

Технологий и **Моделирования**

tech@exponenta.ru info@exponenta.ru

Москва, 2-й Южнопортовый проезд, 31, стр. 4

+7 (495) 009 65 85

exponenta.ru matlab.ru

