PyCity Schools Analysis

- As a whole, schools with higher budgets, did not yield better test results. By contrast, schools with higher spending per student actually (\$645-675) underperformed compared to schools with smaller budgets (<\$585 per student).
- As a whole, smaller and medium sized schools dramatically out-performed large sized schools on passing math performances (89-91% passing vs 67%).
- As a whole, charter schools out-performed the public district schools across all metrics. However, more analysis will be required to glean if the effect is due to school practices or the fact that charter schools tend to serve smaller student populations per school.

Note

Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [1]:

```
# Dependencies and Setup
import pandas as pd
import numpy as np
import os
# File to Load
school_data_path = os.path.join('Resources','schools_complete.csv')
student_data_path = os.path.join('Resources','students_complete.csv')

# Read School and Student Data File and store into Pandas Data Frames
school_data = pd.read_csv(school_data_path)
student_data = pd.read_csv(student_data_path)

# Combine the data into a single dataset
school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name",
"school_name"])
```

District Summary

- Calculate the total number of schools
- Calculate the total number of students
- Calculate the total budget
- Calculate the average math score
- Calculate the average reading score
- Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2

- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Create a dataframe to hold the above results
- Optional: give the displayed data cleaner formatting

In [2]:

```
# Calculate the total number of schools
total school = len(school data complete['school name'].unique())
# Calculate the total number of students
total_student = school_data_complete['student_name'].count()
# Calculate the total budget
total budget = sum(school data complete['budget'].unique())
# Calculate the average math score
average_math_score = school_data_complete['math_score'].mean()
# Calculate the average reading score
average reading score = school data complete['reading score'].mean()
# Calculate the overall passing rate
overall_passing_score = (average_math_score + average_reading_score)/2
# Calculate the percentage of students with a passing math score (70 or greater)
passing_math_score = (school_data_complete[school_data_complete['math score']>=70]
['student name'].count()/total student)*100
\# Calculate the percentage of students with a passing reading score (70 or greater)
passing reading score = (school data complete[school data complete['reading score']>=70]
['student name'].count()/total student)*100
# Create a dataframe to hold the above results and formatting
district = {
    'Total Schools':total school,
    'Total Student':'{:,}'.format(total student),
    'Total Budget': '${:,.2f}'.format(total budget),
    'Average Math Score':average math score,
    'Average Reading Score':average reading score,
    '% Passing Math':passing_math_score,
    '% Passing Reading':passing reading score,
    '% Overall Passing Score': [overall passing score],
district summery = pd.DataFrame(district)
district summery
```

Out[2]:

	Total Schools	Total Student	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Score
0	15	39,170	\$24,649,428.00	78.985371	81.87784	74.980853	85.805463	80.431606

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name

- School Type
- Total Students
- Total School Budget
- o Per Student Budget
- o Average Math Score
- o Average Reading Score
- % Passing Math
- % Passing Reading
- Overall Passing Rate (Average of the above two)
- Create a dataframe to hold the above results

In [3]:

```
# Grouped our complete data frame by school name
grouped school = school data complete.groupby(['school name'])
# Calculate the total student for each school
total student = grouped school.size()
# Get the school type for each school
school type = grouped school['type'].first()
# Calculate the total budget for each school
total budget = grouped school['budget'].first()
# Calculate the budget per student for each school
t budget per student = total budget/total student
# Calculate the average math score for each school
average math score = grouped school['math score'].mean()
# Calculate the average reading score for each school
average reading score = grouped school['reading score'].mean()
# Calculate the percentange of passing math score for each school
grouped passing math =
school data complete[school data complete['math score']>=70].groupby(['school name']).size()
percent passing math = (grouped passing math/total student) *100
# Calculate the percentange of passing math score for each school
grouped passing reading =
school data complete[school data complete['reading score']>=70].groupby(['school name']).size()
percent passing reading = (grouped passing reading/total student)*100
# Calculate the overall passing score for each school
percent overall passing = (percent passing math + percent passing reading)/2
# Create a dataframe to hold the above results
school={
    'School Type': school type,
    'Total Students':total student,
    'Total School Budget': total budget,
    'Per Student Budget': t budget per student,
    'Average Math Score': average math score,
    'Average Reading Score': average reading score,
    '% Passing Math': percent passing math,
    '% Passing Reading': percent passing reading,
    '% Overall Passing Rate': percent overall passing,
school summary = pd.DataFrame(school)
# Create a copy of school summary data frame before formatting to be able to use the numeric data
on original data frame later
displayed school summary = school summary.copy()
# Formatting the display data frame
displayed school summary['Per Student Budget'] = displayed school summary['Per Student
Budget'].map('${:,.2f}'.format)
displayed school summary['Total School Budget'] = displayed school summary['Total School
Budget'].map('${:,.2f}'.format)
displayed_school_summary.index.name = None
```

Top Performing Schools (By Passing Rate)

Sort and display the top five schools in overall passing rate

In [4]:

```
# Sort and display the top five schools in overall passing rate
top_performing_schools = displayed_school_summary.sort_values(by='% Overall Passing
Rate',ascending=False)
top_performing_schools.head()
```

Out[4]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	95.586652
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869	95.290520
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	95.270270
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	95.265668
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	95.203679

Bottom Performing Schools (By Passing Rate)

Sort and display the five worst-performing schools

In [5]:

Sort and display the five worst-performing schools
worst_performing_schools = displayed_school_summary.sort_values(by='% Overall Passing Rate')
worst_performing_schools.head()

Out[5]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	73.293323
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	73.363852
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	73.500171
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	73.639992

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014	73.804308

Math Scores by Grade

Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.

- o Create a pandas series for each grade. Hint: use a conditional statement.
- Group each series by school
- Combine the series into a dataframe
- o Optional: give the displayed data cleaner formatting

In [6]:

```
# Calculate the average math score for students of 9th grade at each school
school_avg_math_9th =
school data complete[school data complete['grade']=='9th'].groupby('school name')
['math score'].mean()
# Calculate the average math score for students of 10th grade at each school
school avg math 10th =
school data complete[school data complete['grade']=='10th'].groupby('school name')
['math score'].mean()
# Calculate the average math score for students of 11th grade at each school
school avg math 11th =
school data complete[school data complete['grade']=='11th'].groupby('school name')
['math score'].mean()
# Calculate the average math score for students of 12th grade at each school
school avg math 12th =
school data complete[school data complete['grade']=='12th'].groupby('school name')
['math score'].mean()
# Create a dataframe to hold the above results
grade math score={
    '9th':school_avg_math_9th,
    '10th':school avg math 10th,
    '11th':school avg math 11th,
    '12th':school avg math 12th,
math score by grade = pd.DataFrame(grade math score)
math score by grade.index.name = None
math score by grade.head(20)
```

Out[6]:

	9th	10th	11th	12th
Bailey High School	77.083676	76.996772	77.515588	76.492218

	9th	10th	11th	12th
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

Perform the same operations as above for reading scores

In [7]:

```
# Calculate the average reading score for students of 9th grade at each school
school avg reading 9th =
school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')
['reading score'].mean()
# Calculate the average reading score for students of 10th grade at each school
school avg reading 10th =
school_data_complete[school_data_complete['grade']=='10th'].groupby('school_name')
['reading score'].mean()
# Calculate the average reading score for students of 11th grade at each school
school avg reading 11th =
school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')
['reading score'].mean()
# Calculate the average reading score for students of 12th grade at each school
school avg reading 12th =
school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')
['reading score'].mean()
# Create a dataframe to hold the above results
grade reading score={
   '9th':school avg reading 9th,
    '10th':school avg reading 10th,
    '11th':school_avg_reading_11th,
    '12th':school avg reading 12th,
reading score by grade = pd.DataFrame(grade reading score)
reading score by grade.index.name = None
reading_score_by_grade.head(20)
```

Out[7]:

	9th	10th	11th	12th
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:

- Average Math Score
- Average Reading Score
- % Passing Math
- % Passing Reading
- Overall Passing Rate (Average of the above two)

In [8]:

Out[9]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Spending Ranges (Per Student)					
<\$585	83.455399	83.933814	93.460096	96.610877	95.035486
\$585-615	83.599686	83.885211	94.230858	95.900287	95.065572
\$615-645	79.079225	81.891436	75.668212	86.106569	80.887391
\$645-675	76.997210	81.027843	66.164813	81.133951	73.649382

Scores by School Size

Perform the same operations as above, based on school size.

In [10]:

```
# Sample bins
size_bins = [0, 1000, 2000, 5000]
group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]
```

Out[11]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Size					
Small (<1000)	83.821598	83.929843	93.550225	96.099437	94.824831
Medium (1000- 2000)	83.374684	83.864438	93.599695	96.790680	95.195187
Large (2000- 5000)	77.746417	81.344493	69.963361	82.766634	76.364998

Scores by School Type

Perform the same operations as above, based on school type.

In [12]:

Out[12]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	95.103660
District	76.956733	80.966636	66.548453	80.799062	73.673757