CONTENTS 1

Diabetes Prediction model

DS II Final team

Contents

oad Data	2
DA	3
Summary statistics	 3
Density plots (numerical covariates)	 7
Bar plots (categorical covariates)	 8
Partition-plots	 9
Iodels	10
Prep/partition data	
Linear models	
Nonlinear models	 13
trees/SVM	 15
Model comparison	 15

```
library(RNHANES)
library(tidyverse)
library(summarytools)
library(leaps)
library(readr)
library(caret)
library(ggplot2)
library(patchwork)
library(mgcv)
library(nlme)
library(dplyr)
library(plyr)
library(AppliedPredictiveModeling)
library(dplyr)
library(scales)
library(pROC)
#library (MASS)
#library(klaR)
library(forcats)
library(visdat)
library(glmnet)
library(mlbench)
library(pROC)
library(pdp)
library(vip)
```

Load Data

```
data files <- nhanes load data(file name = "DIQ H", year = "2013-2014")
data_files <- data_files %>%
 left_join(nhanes_load_data("HDL_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("INS_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("TRIGLY_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("DEMO_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("BMX_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("OGTT_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("DPQ_H", "2013-2014"), by = "SEQN") %>%
 left_join(nhanes_load_data("SLQ_H", "2013-2014"), by = "SEQN")
raw_data <- data_files %>%
 select(SEQN, RIAGENDR, RIDAGEYR, RIDRETH3, BMXBMI, LBDHDD, LBDLDL, LBXTR, LBXIN, LBXGLT, BPXSY1, BPXD
raw_data <- raw_data[raw_data$DIQ010 != 3 & raw_data$DIQ010 != 7 & raw_data$DIQ010 != 9, ] %>% mutate(
 drop_na(DIQ010)
 colnames(raw_data) <- c("ID", "gender", "age", "race", "bmi", "hdl", "ldl", "triglyceride", "insulin",</pre>
```

```
contrasts(raw_data$diabetes)
```

$2\ 1\ 0\ 2\ 1$

```
levels(raw_data$diabetes)[1] <- "yes"
levels(raw_data$diabetes)[2] <- "no"
contrasts(raw_data$diabetes)</pre>
```

no

yes 0 no 1

```
write.csv(raw_data, "final_data.csv")
```

EDA

Summary statistics

Data Frame Summary

 raw_data

Dimensions: 9578 x 18 Duplicates: 319

No Freqs (% of Valid) Variable Stats / Values Graph Missing 1 gender 1. 1 4706 (49.1%) IIIIIIIII 2. 2 4872 (50.9%) ШШШШ (0.0%)[factor] 2 Mean (sd): 32.4 (23.9) 80 distinct values age $\min < \max < \max$: [numeric] (0.0%): : 1 < 28 < 80::. IQR (CV) : 41 (0.7)::::::::.. ::::::::: 3 1. 1 1616 (16.9%) Ш race 2. 2 893 (9.3%) Ι (0.0%)[factor] 3. 3 3449 (36.0%) IIIIIII 4. 4 2148 (22.4%) IIII 5. 6 1033 (10.8%) II6. 7 439 (4.6%)

Summary statistics 4

No	Variable	Stats / Values	Freqs ($\%$ of Valid)	Graph	Missing
	bmi [numeric]	Mean (sd): 25.6 (7.9) min < med < max: 12.1 < 24.6 < 82.9	436 distinct values	: .:: :::	706 (7.4%)
		IQR (CV) : 10.4 (0.3)		::::	
5	hdl [numeric]	Mean (sd): 53.2 (15.2) min < med < max: 10 < 51 < 173 IQR (CV): 19 (0.3)	116 distinct values	:	2128 (22.2%)
	, ,,	- , , , , ,	404 11 4	:::.	255
6	$[\mathrm{numeric}]$	Mean (sd): 106 (34.9) min < med < max: 14 < 103 < 375 IQR (CV): 46 (0.3)	194 distinct values	: .: ::. :::	6553 (68.4%)
7	triglyceride [numeric]	Mean (sd): 111.7 (115.9) min < med < max:	344 distinct values	:	6515 (68.0%)
8	insulin [numeric]	13 < 88 < 4233 IQR (CV) : 73 (1) Mean (sd) : 13.4 (18.7) min < med < max: 0.1 < 9.3 < 682.5 IQR (CV) : 9.1 (1.4)	1716 distinct values	: : : : : : : : : : : : : : : : : : : :	6567 (68.6%)
9	glucose [numeric]	Mean (sd): 114 (45.5) min < med < max: 40 < 104 < 604 IQR (CV): 44 (0.4)	227 distinct values	: :: :: ::	7294 (76.2%)
10	bp_systolic [numeric]	Mean (sd): 117.9 (18) min < med < max: 66 < 116 < 228 IQR (CV): 20 (0.2)	71 distinct values	:::	2571 (26.8%)
11	bp_diastolic [numeric]	Mean (sd): 65.7 (15) min < med < max: 0 < 66 < 122 IQR (CV): 16 (0.2)	59 distinct values	::::. : :. :::	2571 (26.8%)
12	waist [numeric]	Mean (sd): 86.9 (22.5) min < med < max: 40.2 < 87.4 < 177.9 IQR (CV): 31.6 (0.3)	1030 distinct values	:::::	1091 (11.4%)
13	lifestyle [numeric]	Mean (sd): 478.5 (642.1) min < med < max: 0 < 480 < 9999 IQR (CV): 300 (1.3)	36 distinct values	:::::::.	2625 (27.4%)

Summary statistics 5

14	education [factor]	1. 1 2. 2	442 (7.9%)	I	2000
	[factor]	9 9		1	3986
		2. 2	761 (13.6%)	II	(41.6%)
		3. 3	$1261\ (22.6\%)$	IIII	
		4. 4	1715 (30.7%)	IIIIII	
		5. 5	1406 (25.1%)	IIIII	
		6. 7	2 (0.0%)		
		7. 9	5 (0.1%)		
15	married	1. 1	2866 (51.3%)	IIIIIIIII	3986
	[factor]	2. 2	419 (7.5%)	I	(41.6%)
	. ,	3. 3	637 (11.4%)	II	,
		4. 4	170 (3.0%)		
		5. 5	1096 (19.6%)	III	
		6. 6	401 (7.2%)	I	
		7. 77	2 (0.0%)		
		8. 99	1 (0.0%)		
16	depression	Mean (sd): $0.4 (0.8)$	0:3955(75.5%)	IIIIIIIIIIIII	4343
	[numeric]	$\min < \max < \max$	$1:876\ (16.7\%)$	III	(45.3%)
	[]	0 < 0 < 9	2:205(3.9%)		(====,0)
		IQR (CV) : 0 (2.1)	3: 194 (3.7%)		
		1410 (01) 10 (211)	7:2(0.0%)		
			9:3(0.1%)		
17	sleep	Mean (sd) : 7 (3.2)	12 distinct values		3300
	[numeric]	$\min < \max < \max$	12 distillet varaes	•	(34.5%)
	[mamerie]	2 < 7 < 99		•	(01.070)
		IQR (CV) : 2 (0.5)		•	
		1&10 (0.7) . 2 (0.8)		•	
18	diabetes	1. yes	737 (7.7%)	·	0
10	[factor]	2. no	8841 (92.3%)		(0.0%)

```
# Delete high missing-data covariates
raw_data <- raw_data[-c(7:10)]
dfSummary(raw_data[,-1], valid.col = FALSE)</pre>
```

Data Frame Summary

 raw_data

Dimensions: 9578 x 14 **Duplicates:** 319

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
1 2	gender [factor] age [numeric]	1. 1 2. 2 Mean (sd): 32.4 (23.9) min < med < max: 1 < 28 < 80 IQR (CV): 41 (0.7)	4706 (49.1%) 4872 (50.9%) 80 distinct values	IIIIIIIII IIIIIIIIII : :: :: :: ::::::	0 (0.0%) 0 (0.0%)

Summary statistics 6

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
3	race	1. 1	1616 (16.9%)	III	0
	[factor]	2. 2	893 (9.3%)	I	(0.0%)
		3. 3	3449 (36.0%)	IIIIIII	
		4. 4	2148 (22.4%)	IIII	
		5. 6	1033 (10.8%)	II	
		6. 7	439 (4.6%)		
4	bmi	Mean (sd): 25.6 (7.9)	436 distinct	:	706
	[numeric]	$\min < \max < \max$:	values	.::	(7.4%)
		12.1 < 24.6 < 82.9		:::	
		IQR (CV) : 10.4 (0.3)		:::.	
				::::.	
5	hdl	Mean (sd): $53.2 (15.2)$	116 distinct	:	2128
	[numeric]	$\min < \max < \max$:	values	:	(22.2%)
		10 < 51 < 173		.:.	
		IQR (CV) : 19 (0.3)		:::	
				:::.	
6	$bp_systolic$	Mean (sd) : 117.9 (18)	71 distinct values	:	2571
	[numeric]	$\min < \max < \max$:		::	(26.8%)
		66 < 116 < 228		::	
		IQR (CV) : 20 (0.2)		.::.	
				::::.	
7	$bp_diastolic$	Mean (sd) : 65.7 (15)	59 distinct values	:	2571
	[numeric]	$\min < \max < \max$:		: .	(26.8%)
		0 < 66 < 122		:::	
		IQR (CV) : 16 (0.2)		:::	
		-		:::::	
8	waist	Mean (sd) : 86.9 (22.5)	1030 distinct	: .	1091
	[numeric]	$\min < \max < \max$	values	:::	(11.4%)
		40.2 < 87.4 < 177.9		.:::	,
		IQR (CV) : 31.6 (0.3)		::::::	
		• (/ (/ -		:::::::	
9	lifestyle	Mean (sd): 478.5	36 distinct values	:	2625
	[numeric]	(642.1)		:	(27.4%)
	[]	$\min < \max < \max$		•	(=**=/*)
		0 < 480 < 9999		:	
		IQR (CV) : 300 (1.3)		:	
10	education	1. 1	442 (7.9%)	I	3986
10	[factor]	2. 2	761 (13.6%)	II	(41.6%)
	[ractor]	3. 3	1261 (22.6%)	IIII	(11.070)
		4. 4	1715 (30.7%)	IIIIII	
		5. 5	1406 (25.1%)	IIIII	
		6. 7	2 (0.0%)	11111	
		7. 9	5 (0.1%)		
11	married	1. 1	2866 (51.3%)	IIIIIIIII	3986
11	[factor]	2. 2	419 (7.5%)	I	(41.6%)
	[lactor]	3. 3	637 (11.4%)	II	(41.0/0)
		3. 3 4. 4	170 (3.0%)	11	
		4. 4 5. 5	,	III	
			1096 (19.6%)		
		6. 6	401 (7.2%)	I	
		7. 77	2 (0.0%)		
		8. 99	1 (0.0%)		

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
12	depression [numeric]	Mean (sd): 0.4 (0.8) min < med < max: 0 < 0 < 9 IQR (CV): 0 (2.1)	0: 3955 (75.5%) 1: 876 (16.7%) 2: 205 (3.9%) 3: 194 (3.7%)	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4343 (45.3%)
13	sleep [numeric]	Mean (sd): 7 (3.2) min < med < max: 2 < 7 < 99 IQR (CV): 2 (0.5)	7:2 (0.0%) 9:3 (0.1%) 12 distinct values	: : : : : : : : : : : : : : : : : : : :	3300 (34.5%)
14	diabetes [factor]	1. yes 2. no	737 (7.7%) 8841 (92.3%)	: I IIIIIIIIIIIIIII	0 (0.0%)

Density plots (numerical covariates)

Bar plots (categorical covariates)

```
diabetes_gender = ggplot(raw_data,
       aes(x = diabetes,
           fill = factor(gender,
                         levels = c("1", "2"),
                         labels = c("male", "female")))) +
  geom_bar(position = position_dodge(preserve = "single")) +
   scale fill brewer(palette = "Set2") +
  labs(fill = "gender")
diabetes_race = ggplot(raw_data,
       aes(x = diabetes,
           fill = factor(race,
                         levels = c("1", "2", "3", "4", "6", "7"),
                         labels = c("Mexican American", "Other Hispanic", "White", "Black", "Asian", "O
  geom_bar(position = position_dodge(preserve = "single")) +
   scale_fill_brewer(palette = "Set2") +
  labs(fill = "race")
diabetes_education = ggplot(raw_data,
       aes(x = diabetes,
           fill = factor(education,
                         levels = c("1", "2", "3", "4", "5"),
                         labels = c("< 9th grade", "9 - 11 grade", "H.S./GED", "Some college", "College
  geom_bar(position = position_dodge(preserve = "single")) +
   scale_fill_brewer(palette = "Set2") +
```

Partition-plots 9

Partition-plots

```
# data = raw_data, subset = rowTrain, method = "lda")

# klaR::partimat(diabetes ~ age + bmi + hdl + bp_systolic + waist,

# data = raw_data, subset = rowTrain, method = "qda")

klaR::partimat(diabetes ~ age + bmi + hdl + bp_systolic + waist,

data = raw_data, subset = rowTrain, method = "naiveBayes")
```

Partition Plot

Models

Prep/partition data

```
# Omit Missing data
diabetes_data <- na.omit(raw_data)

# Omit low-count subcategories
diabetes_data <- na.omit(diabetes_data) %>%
  filter(married != "77") %>%
  filter(education != "7") %>%
  filter(education != "9") %>%
  droplevels()
```

Linear models 11

Linear models

```
# qlm
set.seed(1)
model.glm \leftarrow train(x = x,
                    y = y,
                    method = "glm",
                    metric = "ROC",
                    trControl = ctrl)
# qlm.pred <- predict(model.qlm, newdata = x2, type = "prob")[,2]
# roc.glm <- roc(y2, glm.pred)</pre>
# plot(roc.glm, legacy.axes = TRUE, print.auc = TRUE)
# plot(smooth(roc.glm), col = 4, add = TRUE)
# Penalized Logistic regression
glmnGrid <- expand.grid(.alpha = seq(0, 1, length = 6),</pre>
                         .lambda = exp(seq(-8, -2, length = 10)))
set.seed(1)
model.glmn <- train(x = data.matrix(x),</pre>
                     y = y,
                     method = "glmnet",
                     tuneGrid = glmnGrid,
                     metric = "ROC",
                     trControl = ctrl)
plot(model.glmn, xTrans = function(x)log(x))
```

Linear models 12

model.glmn\$bestTune

alpha lambda 33 0.6 0.001272634

```
\# glmm.pred <- predict(model.glmm, newdata = data.matrix(x2), type = "prob")[,2]
# roc.glmn <- roc(y2, glmn.pred)</pre>
# plot(roc.glmn, legacy.axes = TRUE, print.auc = TRUE)
# plot(smooth(roc.glmn), col = 4, add = TRUE)
# LDA
# set.seed(1)
\# model.lda \leftarrow train(x = data.matrix(x),
#
                     method = "lda",
#
                     metric = "ROC",
#
                     trControl = ctrl)
# lda.pred <- predict(model.lda, newdata = data.matrix(x2), type = "prob") [,2]
# roc.lda <- roc(y2, lda.pred)</pre>
# plot(roc.lda, legacy.axes = TRUE, print.auc = TRUE)
\# plot(smooth(roc.lda), col = 4, add = TRUE)
```

Nonlinear models 13

Nonlinear models

```
## Non-linear Logistic regression: GAM, MARS
#set.seed(1)
\#model.gam \leftarrow train(x = x,
                     y = y,
#
                     method = "gam",
                     metric = "ROC",
#
#
                     trControl = ctrl)
\#model.gam\$finalModel
# MARS
set.seed(1)
model.mars \leftarrow train(x = x,
                     y = y,
                     method = "earth",
                     tuneGrid = expand.grid(degree = 1:3,
                                              nprune = 2:15),
                     metric = "ROC",
                     trControl = ctrl)
plot(model.mars)
```


Nonlinear models 14

coef(model.mars\$finalModel)

```
(Intercept)
                                                           h(waist-88)
                      h(age-76)
                                         h(76-age)
 1.658285895
                    0.122437959
                                                          -0.055430289
                                       0.062661766
                                             race3
  h(74-hdl) h(86-bp_diastolic)
                                                           h(bmi-38.9)
                                       0.549041828
-0.027315168
                   -0.012127252
                                                           0.150319736
                 h(waist-104.2)
                                       h(bmi-48.4)
   married2
                                                            education5
-0.214623872
                    0.005005836
                                       -0.186737365
                                                           0.695318548
 education3
                     education4
 0.440916855
                    0.367828136
```

```
## Non-linear Discriminant analysis: QDA, Naive Bayes (NB)
# QDA = for continuous features
#set.seed(1)
\#model.qda \leftarrow train(x = x,
                     y = y,
#
                     method = "qda",
#
                     metric = "ROC",
#
                     trControl = ctrl)
# NB
set.seed(1)
nbGrid <- expand.grid(usekernel = c(FALSE,TRUE),</pre>
                       fL = 1,
                        adjust = seq(.2, 2.5, by = .2))
model.nb \leftarrow train(x = x,
                   y = y,
                   method = "nb",
                   tuneGrid = nbGrid,
                   metric = "ROC",
                   trControl = ctrl)
plot(model.nb)
```

trees/SVM 15

trees/SVM

Model comparison

Call: summary.resamples(object = res)

Models: GLM, GLMNET, MARS, NB Number of resamples: 10

ROC Min. 1st Qu. Median Mean 3rd Qu. Max. NA's GLM 0.7623056 0.7861968 0.8276816 0.8196973 0.8465606 0.8756791 0 GLMNET 0.7671958 0.7860153 0.8182620 0.8155202 0.8457133 0.8632151 0 MARS 0.7704024 0.7818502 0.7989819 0.8084961 0.8296717 0.8719239 0 NB 0.7728447 0.7796216 0.7986685 0.8061999 0.8354096 0.8446480 0

Sens Min. 1st Qu. Median Mean 3rd Qu. Max. NA's GLM $0.07142857\ 0.11904762\ 0.1292913\ 0.14147287\ 0.1607143\ 0.2325581\ 0$ GLMNET $0.04761905\ 0.07142857\ 0.1057586\ 0.09905869\ 0.1183555\ 0.1627907\ 0$ MARS $0.04761905\ 0.11904762\ 0.1428571\ 0.13909192\ 0.1578073\ 0.2325581\ 0$ NB $0.16666667\ 0.22245293\ 0.3095238\ 0.28117386\ 0.3313953\ 0.3720930\ 0$

Model comparison 16

Spec Min. 1st Qu. Median Mean 3rd Qu. Max. NA's GLM 0.9730640 0.9772727 0.9815154 0.9831842 0.9898990 0.9966330 0 GLMNET 0.9697987 0.9806906 0.9898990 0.9858778 0.9898990 0.9932886 0 MARS 0.9697987 0.9747644 0.9831650 0.9828509 0.9882296 1.0000000 0 NB 0.9259259 0.9351852 0.9478114 0.9471855 0.9587542 0.9664430 0