데이터베이스

5 회차 : ER 모델 개요

김은경

회차 제목	ER 모델 개요	학습 흐름 제목	3 ER 모델 이해하기
			* 이벤트 설명 *
	Lesson. ER 모델 이해하기		
	1. ER 모델이란? 2. 개체 3. 속성 4. 관계		* 용어사전 *
나래이션:			

회차 기	<mark>데목</mark> E	ER 모델 개요	학습 흐름 제목	4 ER 모델이란?
1. ER 모	데이라이	* 이벤트 설명 *		
1. CN X	.걸이면 (
(1)	ER 모델의 정:	의		
	- 1976년 피터	터 첸(Peer Chen)이 제안한 개념적 데이터 모델로서, 개체 집	합과 관계 집합을	
	이용해서 현	현실 세계의 데이터를 개념적으로 표현하는 모델이다.		
(2)	ER 모델의 특경	XI		
			פוטובו	
		장점 때문에 현재 가장 널리 사용되고 있는 개념적 데이터 모		
-	- 개체와 속성	, 관계라는 3가지 기본 요소로 구성되는 ER 다이어그램(Diagr	am)으로 표현 된다.	
-	- 사용자 즉, [DB 설계자를 위한 모델이므로 DBMS는 이해할 수 없다.		* 용어사전 *
(3) E	ER 모델의 주의	요 구성 요소		
	구분	정의		
	개체 (Entity)			
	관계 (Relationship) 개체들 간의 의미 있는 연결 또는 연관성을 의미하는 요소이다.			
	속성 개체나 관계의 특성을 나타내는 요소로서, 이름을 가진 정보의 가장 작은 (Attribute) 논리적 단위이다.			

나래이션:

회차 제목	ER 모델 개요	학습 흐름 제목	개체
0 711 711			* 이벤트 설명 *
2. 개체			
(1) 개체(Entit	/)란?		
- DB가 표	현하려고 하는 유형, 무형의 정보 대상으로, "존재"하면서 서로 -	구별될 수 있는 요소이다.	
(이) 게테이즈	_		
(2) 개체의 종 ① 개념조	류 개체(무형의 개체) : 개념적으로는 존재하지만 눈에 보이지 (아느게레	
U /II = -	예) 약속, 사건, 승진 등	ᇂᆫ게세	
② 물리적	에게 무극, 서는, 당은 당 개체(유형의 개체) : 현실 세계에 존재하면서 눈에 보이는 개	체	
	예) 사람, 상품, 건물 등		 * 용어사전 *
(3) 개체의 특정	1		
• • • • • • • • • • • • • • • • • • • •	• 스템에서 '레코드(Record)'에 대응한다.		
- 단독으	로 존재 가능하고, 정보로서의 역할이 가능하다.		
- 하나 이	상의 속성(Attribute)으로 구성된다.		
예) 개	체 - 학생		
속	성 - 학번, 이름, 학과 등		
 래이션 :			L

회차 제목	ER 모델 개요	학습 흐름 제목	개체
			* 이벤트 설명 *
(4) 개체 관련 주	요 개념들		
① 개체 타	입(Entity Type)이란?		
- 개체	의 정의, 즉 개체의 이름과 개체를 구성하는 속성들을 정의한 것을	을 의미한다.	
② 개체 인	스턴스(Entity Instance) 또는 개체 출현(Entity Occurrence)		
- JH j	체의 속성들이 구체적인 값을 가짐으로써 실체화된 것을 의미한다		
③ 개체 집	합(Entity Set)		
- JH j	체 인스턴스들의 집합을 의미한다.		
④ 속성(At	tribute)		
– 기) j	체의 특성을 나타내는 요소를 의미한다.		* 용어사전 *
나래이션 :			•

회차 제목	ER 모델 개요	학습 흐름 제목	8 개체
			* 이벤트 설명 *
(5) 개체의	표현		
	다이어그램으로 표현할 때는 직사각형 으로 표현한다.		
— (A): ड	학생 개체		
	학생		
	[학생 개체의 표현]		
			 * 용어사전 *
나래이션:			ı

회차 제목	ER 모델 개요	학습 흐름 제목	9 속성
3. 속성			* 이벤트 설명 *
0. 70			
(1) 속성(Att	ribute)란?		
- 개체니	사관계의 특성을 나타내는 요소로, 이름을 가진 정보의 가장 작은	논리적 단위 이다.	
(2) 속성의 특	≣⊼		
	¬ & 시스템에서 '데이터 항목(Data Item)' 혹은 '필드(Field)'에 대응한	Cł.	
	으로 존재할 때는 대개 무의미하다.	J.	
(3) 속성의 표	I 현		* 용어사전 *
	이어그램으로 표현할 때는 개체 집합을 나타내는 직사각형에 실선 • Cal 표현하다	선으로 연결된	
	용으로 표현한다. 생 개체를 특성을 나타내는 학번, 이름, 전공, 연락처 속성들		
	학생		
	하면 지구 어리티		
학번 이름 전공 연락처			
[학생 개체의 속성들 표현]			
1131101141			
나래이션: 			

회차 제목	ER 모델 개요	학습 흐름 제목	10 속성
(4) 도메인(Do	main)이란?		* 이벤트 설명 *
- 각 속성[마다 가질 수 있는 값의 범위를 의미한다.		
- 예 : 학변	선의 도메인은 정수 10자리, 주소의 도메인은 문자 30자리		
(5) 속성의 종	류		
① 상수 속:	성(Constant Attribute) - 시간이 지나도 값이 변하지 않는 속성		
ભા) 고객의 주민등록번호 속성		
② 시변 속성	성(Time Varying Attribute) - 갱신함에 따라 값이 변할 수 있는 =	녹성	
QI OI) 고객의 주소 속성		
③ 단순 속성	성(Simple Attribute 또는 Atomic Attribute)		* 용어사전 *
④ 복합 속	성(Composite Attribute)		
⑤ 단일치 :	속성(Single-valued Attribute)		
⑥ 다중치 :	속성(Multi-valued Attribute)		
⑦ 유도 속:	성(Derived Attribute)		
⑧ 저장 속:	성(Stored Attribute)		
⑨ 널 속성(⑨ 널 속성(Null Attribute)		
⑩ 키 속성(⑩ 키 속성(Key Attribute) 또는 식별자(Identifier)		
⑪ 부분 키 속성(Partial Key Attribute)			
나래이션:			

회차 제목	ER 모델 개요	학습 흐름 제목	11 속성
(0) 514 4 (15			* 이벤트 설명 *
(6) 단순 속성고			
① 단순 속	성(Simple Attribute 또는 Atomic Attribute)		
- 더 이	상 작은 구성 요소로 분해할 수 없는 속성		
- 예: 호	회원번호, 이름, 연락처		
② 복합 속	성(Composite Attribute)		
- 독립	적인 의미를 갖는 단순 속성들로 분해할 수 있는 속성		
- आ : :	주소 (도, 시, 구, 우편번호라는 4개의 단순 속성으로 분해됨)		
	회원		* 용어사전 *
ত্য হ	회원번호 이름 연락처 주소		
도시구우편번호			
[단순 속성과 복합 속성]			

나래이션:

어떤 속성이 단순 속성인지 복합 속성인지는 고정된 것은 아닙디다. 즉, 필요에 따라서 이름도 성과 이름을 따로 분해하면 복합 속성이 되고, 주소도 도와 시, 구 등으로 분해하지 않고 하나의 문자열로 취급하면 단순 속성으로 볼 수 있습니다.

회차 제목	ER 모델 개요	학습 흐름 제목	12 속성
			* 이벤트 설명 *
	성과 다중치 속성		
	속성(Single-valued Attribute)		
	개체에 대해 반드시 하나의 값만 갖는 속성		
— 예: ·	주민등록번호, 학번		
② 다중치	속성(Multi-valued Attribute)		
- 특정	개체에 대해 여러 개의 값을 가질 수 있는 속성		
- 예:	전화번호 (집, 휴대폰, 회사 전화번호 등), 취미		
- ER	다이어그램에서 이중선 타원 으로 표시함		
	취미 [다중치 속성]		* 용어사전 *
나래이션 :			•

회차 제목	ER 모델 개요	학습 흐름 제목	4성	
(9) 널 속성			* 이벤트 설명 *	
	N A44-31 NOLETO			
	Null Attribute)이란? 을 갖는 속성이다.			
- 어떤	② 널 값이란? - 어떤 개체 인스턴스가 특정 속성에 대한 값을 갖고 있지 않을 때, 이를 명시적으로 표시하기 위해 사용하는 값이다.			
	③ 널 값을 갖는 경우 a) 어떤 속성 값이 그 개체에 " 해당되지 않는(not applicable)" 경우			
	! 속성 값을 " 알 수 없는(unknown) " 경우		* 용어사전 *	
	r) 값이 존재하지만 값이 "누락(missing)"된 경우 r) 값이 존재하는지 여부를 "모르는(not known)" 경우			
	r) 없이 존재야근지 어구들 모드는(NOU KNOWN) 경우			

나래이션 :

(널 속성까지 학습이 끝난 다음) 키 속성과 부분 키 속성에 대해서는 뒤에서 자세히 설명하도록 하겠습니다.

회차 제목	ER 모델 개요	학습 흐름 제목	16 관계
(4) 과게 타인	이 소서		* 이벤트 설명 *
- 관계 타 - 관계 타	(4) 관계 타입의 속성 - 관계 타입은 관계의 특성을 나타내는 속성(들)을 가질 수 있다. - 관계 타입은 키 속성을 갖지 않는다. - 예: 교수 개체와 교과목 개체 사이에 시간과 장소라는 2개의 속성을 갖는 '강의하다'라는 관계 표현 교수 강의하다 교과목		
(5) 관계의 유형	시간 장소 장소		* 용어사전 *
① 일 대	일 (1:1) :어느 개체를 기준으로 보더라도, 한 개체가 한 개체외	·만 연관성이 있는 유형이다.	
② 일 대	다(1:n): 두 개체 가운데 어느 한 개체를 기준으로 보면 하나 0 다른 개체를 기준으로 보면 한 개체와만 연관성이 있는	·	
③ 다 대	다는 개체들 기준으로 보면 한 개체와만 연관성이 있는 유형이다. ③ 다 대 다 (m : n) : 두 개체 가운데 어느 개체를 기준으로 보더라도 하나 이상의 개체와 연관성이 있는 유형이다. 있는 유형이다. 즉, 여러 개체가 여러 개체와 연관성이 있는 것이다.		
나래이션 :			

회차 제목	ER 모델 개요	학습 흐름 제목	19 DB의 개념적 구성 요소
(7) 카디널리티((7) 카디널리티(Cardinality)		* 이벤트 설명 *
- 관계0	① 카디널리티란? - 관계에 참여하는 하나의 개체에 대해 다른 개체가 몇 개 대응하는지를		
② 카디널리			
	- 대응 개체 수는 (min, max)의 한 쌍의 값으로 표현하는데, 여기서 min은 관계에 참여하는 개체의 최소 개수, max는 관계에 참여하는 최대 개수를 의미한다.		* 용어사전 *
나래이션:			

회차 제독		ER 모델 개요	학습	흐름 제목	ER 다이어그램 작성하기	22
	Lesso	on. ER 다이어그램과 EER 모델			* 이벤트 설명 *	
	 ER 다이어그램이란? 강한 개체 타입과 약한 개체 타입 표현 방법 부분 참여와 전체 참여 표현 방법 EER 모델 소개 			* 용어사전 *		
나래이션 :						

회차 제독	ER 모델 개요	학습 흐름 제목	23 ER 다이어그램이란?		
1. ER 다이0	1. ER 다이어그램이란?				
(4) 50 5					
	ł이어그램의 정의 76년 피터 첸(Peter Chen)이 처음 제안한 것으로, 개념적 데이터 모델	J인 ER 모델을 표현하는			
	래픽 방식의 표현 방법이다.				
(2) ER 0	H이어그램 작성 지침				
1	개체 타입은 <u>키(Key)</u> 속성 이외에 개체 타입을 설명하는 속성들을 갖	는다.			
2	다중치 속성은 별도의 개체 타입으로 분류해야 한다.				
3	개체 타입을 직접적으로 설명하는 속성들을 개체 타입과 연결한다.		 * 용어사전 *		
4	④ 관계 타입은 일반적으로 독자적으로 존재할 수 없다.		* 용어자전 *		
5	키 속성(또는 속성 집합)에는 밑줄을 표시 한다.		* 키(Key) - 개체 타입 안에서 모든 개체 인스턴스를 유일 하게 식별하는 속성 또는 속		
(3) ER 0	·이어그램의 특징		성 집합을 의미한다.		
1	다 대 다(m : n) 관계를 표현할 수 있다.				
2	다원 관계(n-ary Relationship) 표현이 가능하다.				
	- 두 개 이상의 개체 타입이 하나의 관계에 관련될 수 있다.				
③ 다중 관계(Multiple Relationship) 표현이 가능하다.					
- 두 개 개체 타입 사이에 둘 이상의 관계가 존재할 수 있다.					
4	관계 타입도 속성을 가질 수 있다.				
나래이션:					

회차 제목	ER 모델 개요		학습 흐름 제목	24 ER 다이어그램이란?
(4) 55 510101				* 이벤트 설명 *
(4) ER 나이어	그램 표현 기호			
① 개체 타입	:	⑧ 속성:		
② 관계 타입		⑨ 키 속성:		
③ 연결선(Li	nk):	10 부분 키 속	성:	
④ 레이블(L	abel): 연결선 위에 1, n, m 으로 표현	⑪ 다중치 속	ম:	* 용어사전 *
⑤ 약한 개체	타입:	⑫ 복합 속성:		
⑥ 식별 관계	타입:	⑬ 유도 속성:		
⑦ 전체 참여	개체 타입:		*****	
나래이션:				

회차 제목	ER 모델 개요	학습 흐름 제목	강한 개체 타입과 약한 개체 ²⁶ 타입 표현 방법		
᠀ 가하 게레 FLOI	* 이벤트 설명 *				
2. 영원 개제 다립	과 약한 개체 타입 표현 방법				
(1) 강한 개체	타입(Strong Entity Type)이란?				
- 독자적으	으로 존재하면서, 개체 타입 내에서 자신의 키(Key) 속성을 사용히	내서 고유하게 개체를			
식별할 =	수 있는 개체 타입을 의미한다.				
- ER 다이	어그램에서 일반 직사각형 으로 표현한다.				
	(2) 약한 개체 타입(Weak Entity Type)이란? - 개체를 식별할 수 있는 키를 형성하기에 충분한 속성을 갖지 못한 개체 타입을 의미한다.				
	¬ᆯᆯ 구 ᆻ는 길 엉엉이기에 중군된 ¬엉ᆯ ᆽ지 옷된 게세 (체 타입이 존재하기 위해서는 반드시 소유 개체 타입(Owner Enti		* 용어사전 *		
	체 타입의 구별자(부분 키)와 소유 개체 타입의 키 속성을 결합해(
식별할	수 있다.				
- ER 다이	- ER 다이어그램에서 이중선(겹줄) 직사각형 으로 표현한다.				
- 예: 부양	- 예: 부양가족 개체 - 사원 개체가 존재할 때만 존재할 수 있는 개체				
나래이션 :					

나래이션:

(그림에 대한 나레이션) 상환 개체 타입의 경우 '상환번호'만으로는 키가 될 수 없기 때문에, 소유 개체 타입인 대출의 '대출번호'와 '상환번호'를 결합해야 상환 개체 타입의 키가 될 수 있습니다.

회차 제목	ER 모델 개요	학습 흐름 제목	부분 참여와 전체 참여 표현 ³⁰ 방법
3. 부분 참여와 전	* 이벤트 설명 *		
(1) 부분 참야 - 어떤 개 예) 힉 - 관계의			
	체 수(min, max)로 표현하는 경우, min의 값은 '0' 이 된다. 어그램에서 실선 으로 표시한다.		
(2) 전체 참여 - 어떤 개 의미한 예)	* 용어사전 *		
- 관계의 참여 제약조건(Participation Constraint) 가운데 의무적(Mandatory) 참여 에 해당한다. - 대응 개체 수(min, max)로도 표현하는 경우, min의 값은 '1' 이 된다. - ER 다이어그램에서 이중 실선 으로 표시한다.			
Д			
나래이션 :	H에 근무 I 경우 사 신설 부서		

회차 제목	ER 모델 개요	학습 흐름 제목	31 EER 모델 소개	
4. EER 모델 소개			* 이벤트 설명 *	
(1) EER(Enhanced ER, 강화된 ER)이란? - 보다 완전하고 정확한 모델링을 위해서, 기본적인 ER 모델에 몇 가지 새로운 개념을 추가한 것이다 Extended ER(E2R, EER, 확장된 ER) 모델이라고도 칭하며, 현재 DB 설계에 널리 사용되고 있다.				
(2) EER 모델의 특징 - 기본적인 ER 모델의 모든 모델링 개념을 포함한다 서브타입(Subtype)/슈퍼타입(Super type), 세분화(Specialization)/일반화(Generalization), 카테고리(Category), 속성 상속(Attribute Inheritance)등의 개념이 추가되었다 상속(Inheritance)과 같은 객체지향 개념을 일부 포함한다.			* 용어사전 *	
나래이션:				

회차 제목	ER 모델 개요	학습 흐름 제목	32 EER 모델 소개
(0) H E 10171	* 이벤트 설명 *		
(3) 서브타입과			
① 서브타입	(Subtype) 개체란?		
- 한 개호	데 타입에 속하는 개체들을 어떤 기준에 의해 몇 개의 소규모 :	그룹으로 나눈 것을	
원래 기	H체의 서브 타입 개체라고 칭한다.		
- 서브 E	타입 개체는 원래 개체 타입의 하위 개체 타입이며, 부분 집합(이다.	
- 예:	WEN CLOL: =1.40	 학생은 학부생과 대학원생의	
	배체 타입: 학생 서브타입 개체: 학부생, 대학원생	수퍼타입 개체가 된다. 	
개체 타입: 학부생 서브타입 개체: 여학생, 남학생			* 용어사전 *
개체 타입: 남학생 서브타입 개체: 군필자, 군미필자			
② 슈퍼타입(Super type) 개체란?			
- 여러	개체 타입이 속하는 상위의 개체 타입을 슈퍼 타입 개체라고 🤅	칭한다.	
- 예:			
	- 파다입 개세 · 교적권	→ 원은 교수, 직원, 조교의 H타입이지만, 사람의 서브	
	[제 다입·교석권, 제약정, 클립정 -퍼타인 개체 ·사란	J이다. 즉, 슈퍼타입인지 보타입인지는 상대적으로 성된다.	
나래이션:			

나래이션: 예) 교수는 직급 속성, 조교는 지원과목 속성, 직원은 담당업무라는 고유 속성을 가짐

회차 제목	ER 모델 개요	학습 흐름 제목	87 EER 모델 소개		
(5) 카테고리 개남	(5) 카테고리 개념				
① 카테고리(- 별개의 예) 차					
	예) 차량 소유주 카테고리 - {사람, 회사, 은행} -> 차량 등록 DB에서 차량 소유주는 사람이나 회사, 은행(담보물로 소유함)이 될 수 있고, 실제로 DB에 등록되는 차량 소유주는 사람, 회사, 은행의 합집합의 부분 집합에 해당한다.				
- ER 다0 예) 차	* 용어사전 *				
	차량 소유주 카테고리(서브타입 개체)				
사람 회사 은행 슈퍼타입 개체					
- 하나 이 할 때 위 - 카테고리					
나래이션:					