This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AUSLEGESCHRIFT 1139927

L 37861 VIIIc/21g

ANMELDETAG:

3. JANUAR 1961

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER

AUSLEGESCHRIFT: 22. NOVEMBER 1962

1

Hochfrequenz-Chirurgiegeräte enthalten einen Hochfrequenzgenerator, dessen eine Ausgangsklemme durch eine großflächige, »inaktive« Elektrode mit dem Patienten verbunden wird, während die andere, aktive Elektrode zum Schneiden oder Koagulieren dient. Die Stromdichte an der inaktiven Elektrode muß so niedrig gehalten werden, daß keine Rötungen oder Verbrennungen auftreten können. Sie besteht im allgemeinen aus großflächigen Metallteilen, z. B. einem Drahtnetz, auf das der Patient gelegt wird; es sind auch manschettenartige Elektroden bekannt, die an Gliedmaßen angelegt werden können.

Um die Gefahr von Verbrennungen an der inaktiven Elektrode auszuschalten, ist bei einem bekannten Hochfrequenz-Chirurgiegerät ein Gleichstromhilfs- 15 kreis vorgesehen, der zwischen die aktive Elektrode und die inaktive Elektrode geschaltet ist und den Hochfrequenzgenerator selbsträtig abschaltet, wenn der Widerstand zwischen dem Körper des Patienten und der inaktiven Elektrode einen bestimmten Wert 20 überschreitet. Da der Widerstand zwischen der aktiven Elektrode und dem Körper des Patienten in weiten Grenzen schwanken kann, ist ein zuverlässiges Arbeiten mit der bekannten Anordnung nicht zu erreichen. Außerdem kann der Hochfrequenzgenerator 25 unterschreitet. bei abgehobener aktiver Elektrode nicht eingeschaltet werden, und der Generator schaltet sich automatisch auch bei jedem kurzzeitigen Abheben der aktiven

Es ist ferner bekannt, bei Hochfrequenz-Chirurgiegeräten mehrere inaktive Elektroden zu verwenden.
Es ist schließlich auch noch bekannt, HochfrequenzChirurgiegeräte mit einer Alarmvorrichtung zu versehen, die den Betriebszustand des Hochfrequenzgenerators anzeigt.

50 funktionsunfähig würde.
Die Erfindung soll nu näher erläutert werden, in Fig. 1 eine schematist frequenz-Chirurgiegeräte Fig. 2 ein Ersatzsch

Durch die Erfindung sollen die Nachteile der bekannten Anordnungen vermieden werden. Insbesondere soll ein Hochfrequenz-Chirurgiegerät angegeben werden, bei dem Verbrennungen durch die inaktive Elektrode mit Sicherheit vermieden werden, ohne daß 40 dadurch das Arbeiten mit der aktiven Elektrode in irgendeiner Weise beeinträchtigt wird.

Ein Hochfrequenz-Chirurgiegerät mit einem Hochfrequenzgenerator, einer kleinflächigen, aktiven Elektrode und einer großflächigen, inaktiven Elektrode in 45 Form von zwei oder mehr Elektrodenteilen ist gemäß der Ersindung dadurch gekennzeichnet, daß die Teile der inaktiven Elektrode in einen Gleichstromhilfskreis eingeschaltet sind, der über den zwischen den Teilen der inaktiven Elektrode liegenden Körper des Patienten geschlossen wird und eine Schaltungsanordnung enthält, die anspricht, wenn der Widerstand in dem

Hochfrequenz-Chirurgiegerät

Anmelder:

Friedrich Laber, München 2, Josefspitalstr. 17

Johannes Häckl, München, ist als Erfinder genannt worden

2

zwischen den Elektrodenteilen gelegenen Teil des Hilfsstromkreises einen bestimmten Grenzwert überschreitet, und den Hochfrequenzgenerator abschaltet und/oder eine Alarmanlage auslöst.

Bei einer Weiterbildung der Erfindung ist eine Schaltungsanordnung vorgesehen, die auch anspricht, wenn der Widerstand zwischen den Teilen der inaktiven Elektrode einen bestimmten unteren Grenzwert unterschreitet.

Das Gerät gemäß der Erfindung bietet also sowohl gegen zu kleine Kontaktflächen und hohe Übergangswiderstände Sicherheit, als auch gegen einen Kurzschluß von Elektrodenteilen, durch die die Anlage funktionsunfähig würde.

Die Erfindung soll nun an Hand der Zeichnungen näher erläutert werden, dabei bedeutet

Fig. 1 eine schematische Darstellung eines Hochfrequenz-Chirurgiegerätes gemäß der Erfindung,

Fig. 2 ein Ersatzschaltbild zur Erläuterung der Wirkungsweise der Anordnung nach Fig. 1,

Fig. 3 eine weitere Ausführungsform der Erfindung,

Fig. 4 eine Elektrodenanordnung gemäß der Erfindung.

Das in Fig. 1 schematisch dargestellte Hochfrequenz-Chirurgiegerät enthält in bekannter Weise einen Hochfrequenzgenerator 1, der über eine flexible Leitung 2 mit einem Operationshandgriff 3 verbunden sein kann. Die zweite Ausgangsklemme des Hochfrequenz-Chirurgiegerätes ist über eine Leitung 4 mit einer großflächigen, inaktiven Elektrode verbunden, die hier aus zwei Teilen 5 und 6 besteht. Auf der inaktiven Elektrode 5, 6 ruht der Körper 7 des Patienten. Die Elektrode 5 ist gleichstrommäßig durch eine mit einem Kondensator 9 überbrückte Gleichspannungsquelle 8 mit Masse verbunden; die Gleichspannungsquelle 8 mit Masse

209 708/295

nungsquelle 8 ist hier beispielsweise als Grätz-Gleichrichter dargestellt. Die andere Elektrode 6 ist gleichstrommäßig durch einen Kondensator 10 von Masse getrennt. Die Anordnung soll so getroffen sein, daß die einzige Verbindung zwischen den beiden Elektroden 5 und 6 durch den Körper 7 des Patienten gebildet wird. Die Elektrode 6 ist über eine Hochfrequenzdrossel 11 mit dem Gitter einer Röhre 12 verbunden, das über einen Gitterableitwiderstand 13 mit Masse verbunden ist. Der Gitterableitwiderstand 13 ist durch 10 einen Kondensator 14 überbrückt, der zur Beseitigung von Spuren von Hochfrequenz dient und verhältnismäßig klein bemessen ist, um das Ansprechen der Röhre 12 nicht zu verzögern.

Die Röhre 12 ist normalerweise gesperrt, beispiels- 15 weise durch eine positive Vorspannung an der Kathode, die durch einen Spannungsteiler geliefert wird, der aus dem Kathodenwiderstand 15 und einem zwischen Kathode und der Anodenspannungsquelle + B geschalteten Widerstand 16 bestehen kann. Im Ano- 20 denkreis der Röhre 12 liegt ein Relais 17, das einen Arbeitskontakt 18 und/oder einen Ruhekontakt 19

Die Arbeitsweise der Schaltung soll an Hand von ten zwischen den Elektroden 5 und 6 bildet mit dem Gitterableitwiderstand 13 einen Spannungsteiler für die von der der Einfachheit halber als Batterie gezeichneten Stromquelle 8'. Die Stromquelle 8' ist so gepolt, daß das Gitter der Röhre 12 eine positive 30 Vorspannung über den Widerstand 7' erhält. Die Schaltungsparameter sind nun so gewählt, daß die Röhre erst dann zu leiten beginnt, wenn der Widerstand 7' zwischen den Elektroden 5 und 6 unterhalb eines bestimmten Wertes liegt, der in der Praxis 35 teilhaft ein polarisiertes Relais verwendet. größenordnungsmäßig etwa 10 kOhm beträgt. Die in Fig. 3 dargestellte Schaltung besi

Das Relais 17 in Fig. 1 trägt einen Arbeitskontakt 18, der im geöffneten Zustand den Hochfrequenzgenerator außer Betrieb setzt, beispielsweise über ein in die Stromzuleitung des Hochfrequenzgenerators 40 geschaltetes Schaltschütz. An Stelle des Arbeitskontaktes 18 oder zusätzlich zu diesem kann ein Ruhekontakt 19 vorgesehen sein, der eine Alarmeinrichtung 20 betätigt, wenn er geschlossen ist. Durch diese Ausfall der Spannungsquelle 8 oder einer Unterbrechung einer Leitung in dem Stromkreis zum Gitter der Röhre 12 die Hochfrequenz abgeschaltet bzw. Alarm gegeben wird.

Die in Fig. 1 dargestellte Sicherheitsanordnung 50 vorhanden sein. kann jedoch nicht ansprechen, wenn die Elektroden 5 und 6 unerwünschterweise kurz geschlossen sind, beispielsweise durch irgendein Metallteil, ein chirurgisches Instrument, einen Isolationsfehler u. dgl. Gemäß einer Weiterbildung der Erfindung sind daher 55 den. Maßnahmen vorgesehen, die Sicherheitseinrichtung auch dann ansprechen zu lassen, wenn der Widerstand zwischen den Elektroden 5 und 6 unterhalb eines bestimmten Wertes fällt. Dieser untere Grenzwert kann zwischen einigen Ohm und einigen Hundert 60 len Drahtnetzes, die jeweils in einer Art von Ein-Ohm liegen.

Bei der in Fig. 3 dargestellten Ausführungsform der Erfindung besteht die inaktive Elektrode aus zwei Manschetten 5' und 6', die um einen Arm oder ein Bein oder auch um zwei verschiedene Gliedmaßen 65 tränkt sind. Die beiden Elektrodenanordnungen sind des Patienten gelegt werden können. Die Manschette 5' ist direkt geerdet, d. h. mit der masseseitigen Klemme des der Einfacheit halber hier nicht dar-

gestellten Hochfrequenzgenerators verbunden. Die Manschette 6' liegt wieder über einen Kondensator 10 an Masse. Sie ist außerdem über eine Hochfrequenzdrossel 11, eine Spannungsquelle 21 und eine 5 erste Arbeitswicklung eines Relais 22 mit dem Gitter einer Röhre 12 verbunden. Die Röhre 12 ist im übrigen wie bei dem in Fig. 1 dargestellten Ausführungsbeispiel geschaltet. Im Anodenkreis liegt ebenfalls die Arbeitswicklung eines Relais, die hier eine zweite Arbeitswicklung des Relais 22 ist. Die beiden Arbeitswicklungen sind so geschaltet, daß sie einander entgegenwirken. Im übrigen entspricht das Relais 22 dem Relais 17 in Fig. 1.

Die in Fig. 3 dargestellte Schaltung arbeitet folgendermaßen: Ist der Widerstand zwischen den Man-schetten 5' und 6' sehr groß, so ist die Röhre 12 infolge der positiven Spannung an der Kathode gesperrt, und das Relais 22 spricht nicht an. Bei einem bestimmten, mittleren Widerstand zwischen den Elektroden 5' und 6' wird das Gitter der Röhre 12 durch die Spannungsquelle 21 positiv vorgespannt, und die Röhre leitet. Das Relais 22 zieht an, und das Hochfrequenz-Chirurgiegerät ist betriebsbereit.

Wenn die Elektroden 5' und 6' kurz geschlossen Fig. 2 erklärt werden. Der Widerstand 7' des Patien- 25 werden, fließt ein verhältnismäßig großer Strom durch die erste Relaiswicklung, die in einem Stromkreis liegt, der aus der Stromquelle 21, der Drossel 11, den Elektroden 6' und 5', dem Gitterwiderstand 13 und der ersten Relaiswicklung besteht. Da die erste Relaiswicklung im umgekehrten Sinn geschaltet ist wie die im Anodenkreis der Röhre 12 liegende zweite Relaiswicklung, wird die durch den Anodenstrom der Röhre 12 verursachte Erregung kompensiert, und das Relais fällt wieder ab. Als Relais 22 wird hier vor-

> Die in Fig. 3 dargestellte Schaltung besitzt also die Eigenschaft, daß sie das Hochfrequenz-Chirurgiegerät abschaltet und/oder Alarm auslöst, wenn der Widerstand zwischen den Elektroden 5' und 6' einen bestimmten ersten Wert überschreitet oder einen bestimmten kleineren, zweiten Wert unterschreitet. Die Ansprechgrenzen können beispielsweise bei 10 bzw. 1 kOhm liegen.

Selbstverständlich gibt es eine große Anzahl von Schaltungsanordnung wird bewirkt, daß auch beim 45 anderen Schaltungsanordnungen, die dasselbe leisten, wie die in Fig. 1 und 3 dargestellten. Es können beispielsweise Glimmschaltröhren oder direkt empfindliche Relais verwendet werden, an Stelle des einen Relais 22 in Fig. 3 können auch zwei getrennte Relais

> Die Elektrode selbst kann mechanisch aus einem Stück, das mehrere elektrisch getrennte Teile umfaßt, bestehen, es können aber auch völlig getrennte und unabhängig applizierbare Elektroden verwendet wer-

> Fig. 4 zeigt ein Ausführungsbeispiel einer mechanisch zusammenhängenden Elektrode, die zwei elektrisch getrennte Teile umfassen. Die eigentlichen Elektroden 5", 6" bestehen aus zwei Stücken eines flexibschlagtuch 23, 24 aus einer Plastikfolie liegen, die die Oberseiten der Drahtnetze frei läßt. Auf den Oberseiten liegen Zellstoff- oder Gazekissen, die, um einen guten Kontakt zu gewährleisten, mit Kochsalz gedurch eine Reihe von Isolierstoffstreifen 27 verbunden. Die Isolierteile zwischen den Elektrodenteilen, also beispielsweise die Streifen 27, sind vorzugsweise

mit einem Antinetzmittel imprägniert. Auf die in Fig. 4 dargestellte Elektrodenanordnung kann beispielsweise der Körper des Patienten gelegt werden, oder sie kann bei entsprechend kleinerer Ausbildung als Manschette verwendet werden.

PATENTANSPRÜCHE:

- 1. Hochfrequenz-Chirurgiegerät mit einem Hochfrequenzgenerator, einer kleinflächigen, aktiven 10 Elektrode und einer großflächigen, inaktiven Elektrode in Form von zwei oder mehr Elektrodenteilen, dadurch gekennzeichnet, daß die Teile der inaktiven Elektrode in einen Gleichstromhilfskreis eingeschaltet sind, der über den zwischen den 15 Teilen der inaktiven Elektrode liegenden Körper des Patienten geschlossen wird und eine Schaltungsanordnung enthält, die anspricht, wenn der Widerstand in dem zwischen den Elektrodenteilen gelegenen Teil des Hilfsstromkreises einen bestimmten Grenzwert überschreitet, und den Hochfrequenzgenerator abschaltet und/oder eine Alarmanlage auslöst.
- 2. Hochfrequenz Chirurgiegerät nach Anspruch 1, gekennzeichnet durch eine Schaltungs- 25 anordnung, die auch anspricht, wenn der Widerstand zwischen den Teilen der inaktiven Elektrode einen bestimmten unteren Grenzwert unterschreitet.
- 3. Hochfrequenz Chirurgiegerät nach An- 30 spruch 1 oder 2, dadurch gekennzeichnet, daß die inaktiven Elektrodenteile mechanisch zusammenhängen.
- 4. Hochfrequenz-Chirurgiegerät nach einem der Veitschrift vorhergehenden Ansprüche, dadurch gekennzeich- 35 1959, S. 191.

net, daß ein erstes, inaktives Elektrodenteil (5) gleichstrommäßig mit Masse verbunden ist, während alle anderen inaktiven Elektrodenteile tiber jeweils einen Kondensator (10) mit der Masse verbunden sind; daß der durch den Patienten gebildete Widerstand zwischen den inaktiven Elektrodenteilen (5, 6) einen Teil eines Spannungsteilers bildet, der mit einer Gleichspannungsquelle (8, 21) verbunden ist, und daß die Steuereinrichtung (12, 17) mit einem Widerstand (13) des Spannungsteilers verbunden ist.

- 5. Hochfrequenz-Chirurgiegerät nach Anspruch 2 und 4, gekennzeichnet durch ein Relais (22), das erregt wird, wenn der Widerstand zwischen den inaktiven Elektrodenteilen zwischen den beiden Grenzwerten liegt, in dessen erregten Zustand der Hochfrequenzgenerator angeschaltet und/oder die Alarmanlage ausgeschaltet ist.
- 6. Hochfrequenz-Chirurgiegerät nach Anspruch 5, dadurch gekennzeichnet, daß das Relais zwei Arbeitswicklungen enthält, deren eine im Anodenkreis der Röhre (12) und deren andere in dem die inaktiven Elektrodenteile enthaltenden Stromkreis liegt und die so geschaktet sind, daß die durch den Anodenstrom der Röhre verursachte Erregung durch den zwischen den inaktiven Elektrodenteilen fließenden Strom kompensiert wird, wenn der Widerstand zwischen den inaktiven Elektrodenteilen einen bestimmten unteren Grenzwert unterschreitet.

In Betracht gezogene Druckschriften:
USA.-Patentschrift Nr. 2827056;
Zeitschrift »The Lancet«, Nr. 7064, vom 17.1.
959, S. 191.

Hierzu 1 Blatt Zeichnungen

209 708/295