Spring 2020

- Resource allocation
- Control + Robotics.
- Communications
 - · signal Processing.
- Prediction/ Classification.

Oil Production	0
----------------	---

Contracts:

> 1000 Jet Fuel

7,2000 Gasdine.

180,000 barrel-miles

Distributor: Gasoline: 30 miles away.

JF: lo miles away

10,000

Jet Fuel 2,

coude oil.

Gasoline. 22

maximize 10x, + ·20.x2

subject to. 21, 7, 1000 227, 2000.

10.2, +30.22 = 180,000.

constraints.

General:

fo(Z) & objective function. minimize

subject to.

 $f_i(\vec{x}) \leq b_i$ for i=1,2,...m.

ZER optimization variable.

Tet: optimum value. among feasible set.

Student:	X;	Classes 127 126	Interesting α_1 α_2 α_3	Workload. B1 B2 B3
		189	,	1
maximize.	マスマ		,	
ect to: B?	$\vec{x} \leq B$.		1	

Subject to: B

total workload.

Department:	Courses	Size	Credits	Resources
	127	2,	Cı	۸,
	126	22	C-2	Y2
	189	,	C3	Y3
	, ,			
	*		4	
		1	<u>→</u>	92
		1 2		
	武文		1	
maximize	CX			
. 1 1	元之三	8.		
subject to	2			

minimize

11AZ-12112

· Linear regression.

· Projection.

· Curve-Atting.

y.

Find m, c to minimize.

y = mx + c $(x_1, y_1), (x_2, y_2), (x_3, y_3) \cdots (x_n, y_n).$

 $\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ $\begin{bmatrix} x_n & 1 \\ x_n & 1 \end{bmatrix}$

92 J

min $\sum_{i=1}^{\infty} (y_i - (mx_i + c))^2$

m. C i=1

m

· How do you solve this?

Project B onto Col(A). (5)

B D

Col(A)

BPC is a right trinangle. LP = 90°.

Hyp > Side.

:. P is closest point -.

== AZ-b to be orthogonal to the columns
of Matrix A.

 $A^{T}(A\overrightarrow{Z}-\overrightarrow{D})=0$ $A^{T}A\overrightarrow{Z}-A^{T}\overrightarrow{D}=0.$ $\overrightarrow{Z}=(A^{T}A)^{T}A^{T}\overrightarrow{D}.$

(ATA) is invertible.

A is full columnm rank.

Convex: functions.

Convex: Local minima are also global minima.