Precalculus

Find circle arclength from radius and angle

Todor Miley

2019

Proposition

Let two circles have common center and radii s and r. Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length M and L. Then $\frac{s}{r} = \frac{M}{L}$.

Proposition

Let two circles have common center and radii s and r. Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$

Proposition

Let two circles have common center and radii s and r.
Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$
 | Choose $s = 1$, relabel $M = \alpha$

Proposition

Let two circles have common center and radii s and r.
Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$
 CF $\frac{1}{r} = \frac{\alpha}{L}$

Choose s = 1, relabel $M = \alpha$

Proposition

Let two circles have common center and radii s and r.
Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$
 Choose $s = 1$, relabel $M = \alpha$
 $\frac{1}{r} = \frac{\alpha}{L}$
 $\frac{\alpha}{L} = \alpha r$

Proposition

Let two circles have common center and radii s and r.
Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$

$$\frac{1}{r} = \frac{\alpha}{L}$$

$$L = \alpha r$$

Choose s = 1, relabel $M = \alpha$

Proposition

Let two circles have common center and radii s and r. Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length M and L. Then $\frac{s}{r} = \frac{M}{I}$.

$$\frac{s}{r} = \frac{M}{L}$$
 Choose $s = 1$, relabel $M = \alpha$

The angle-measure of a geometric angle is the arc-length cut off from a radius 1 circle, therefore we get the following.

Proposition

Let two circles have common center and radii s and r. Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$
 | Choose $s = 1$, relabel $M = \alpha$

The angle-measure of a geometric angle is the arc-length cut off from a radius 1 circle, therefore we get the following.

Corollary

The arc-length cut off by an angle with measure α from a circle of radius r equals αr .

$$arc$$
-length = αr

arc-length =
$$\alpha r = \frac{7\pi}{6} \cdot 2$$

$$\operatorname{arc-length} = \alpha r = \frac{7\pi}{6} \cdot 2$$

arc-length =
$$\alpha r = \frac{7\pi}{6} \cdot 2 = \frac{7\pi}{3} \approx 7.33038$$
 (units)

$$arc$$
-length = αr

arc-length =
$$\alpha r = ? \cdot 3$$

$$\alpha = 230^{\circ}$$

arc-length =
$$\alpha r = ? \cdot 3$$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$\alpha = 230^{\circ}$$
 $= ?$

arc-length =
$$\alpha r = ? \cdot 3$$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$\alpha = 230^{\circ} \frac{\pi \text{ rad}}{180^{\circ}}$$

$$\text{arc-length} = \alpha r = ? \cdot 3$$

 $\alpha = 230^{\circ}$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$lpha = 230^{\circ}$$

$$= 230^{\circ} \frac{\pi \text{ rad}}{180^{\circ}} = \frac{23}{18} \pi \text{ rad}$$
arc-length $= \alpha r = ? \cdot 3$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$lpha = 230^{\circ}$$

$$= 230^{\circ} \frac{\pi \text{ rad}}{180^{\circ}} = \frac{23}{18} \pi \text{ rad}$$
arc-length $= \alpha r = \frac{23\pi}{18} \cdot 3$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$lpha = 230^{\circ}$$

$$= 230^{\circ} \frac{\pi \text{ rad}}{180^{\circ}} = \frac{23}{18} \pi \text{ rad}$$

$$\text{arc-length} = \alpha r = \frac{23\pi}{18} \cdot 3 = \frac{23\pi}{6}$$

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$lpha = 230^\circ$$

$$= 230^\circ \frac{\pi \text{ rad}}{180^\circ} = \frac{23}{18}\pi \text{ rad}$$

$$= \alpha r = \frac{23\pi}{18} \cdot 3 = \frac{23\pi}{6} \approx 12.043$$