Data and Computer Communications

Chapter 2 – Protocol Architecture, TCP/IP, and Internet-Based Applications

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Protocol Architecture, TCP/IP, and Internet-Based Applications

➤ To destroy communication completely, there must be no rules in common between transmitter and receiver—neither of alphabet nor of syntax —On Human Communication, Colin Cherry

Need For Protocol Architecture

- data exchange can involve complex procedures, cf. file transfer example
- better if task broken into subtasks
- implemented separately in layers in stack
 - each layer provides functions needed to perform comms for layers above
 - using functions provided by layers below
- peer layers communicate with a protocol

Key Elements of a Protocol

- syntax data format
- semantics control info & error handling
- timing speed matching & sequencing

TCP/IP Protocol Architecture

- developed by US Defense Advanced Research Project Agency (DARPA)
- for ARPANET packet switched network
- used by the global Internet
- protocol suite comprises a large collection of standardized protocols

Simplified Network Architecture

TCP/IP Layers

- > no official model but a working one
 - Application layer
 - Host-to-host, or transport layer
 - Internet layer
 - Network access layer
 - Physical layer

Physical Layer

- concerned with physical interface between computer and network
- concerned with issues like:
 - characteristics of transmission medium
 - signal levels
 - data rates
 - other related matters

Network Access Layer

- exchange of data between an end system and attached network
- concerned with issues like :
 - destination address provision
 - invoking specific services like priority
 - access to & routing data across a network link between two attached systems
- allows layers above to ignore link specifics

Internet Layer (IP)

- routing functions across multiple networks
- for systems attached to different networks
- using IP protocol
- implemented in end systems and routers
- routers connect two networks and relays data between them

Transport Layer (TCP)

- common layer shared by all applications
- provides reliable delivery of data
- in same order as sent
- commonly uses TCP

Application Layer

- provide support for user applications
- need a separate module for each type of application

Operation of TCP and IP

Addressing Requirements

- two levels of addressing required
- each host on a subnet needs a unique global network address
 - its IP address
- each application on a (multi-tasking) host needs a unique address within the host
 - known as a port

Operation of TCP/IP

Transmission Control Protocol (TCP)

- usual transport layer is (TCP)
- provides a reliable connection for transfer of data between applications
- > a TCP segment is the basic protocol unit
- TCP tracks segments between entities for duration of each connection

TCP Header

(a) TCP Header

User Datagram Protocol (UDP)

- > an alternative to TCP
- no guaranteed delivery
- no preservation of sequence
- > no protection against duplication
- minimum overhead
- adds port addressing to IP

UDP Header

(b) UDP Header

IP Header

(a) IPv4 Header

IPv6 Header

TCP/IP Applications

- have a number of standard TCP/IP applications such as
 - Simple Mail Transfer Protocol (SMTP)
 - File Transfer Protocol (FTP)
 - Telnet

Some TCP/IP Protocols

BGP = Border Gateway Protocol OSPF = Open Shortest Path First

FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol

ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol TCP = Transmission Control Protocol IP = Internet Protocol UDP = User Datagram Protocol

IP = Internet Protocol UDP = User Datagram Protocol MIME = Multi-Purpose Internet Mail Extension

OSI

- Open Systems Interconnection
- developed by the International Organization for Standardization (ISO)
- has seven layers
- is a theoretical system delivered too late!
- > TCP/IP is the de facto standard

OSI Layers

Application

Provides access to the OSI environment for users and also provides distributed information services.

Presentation

Provides independence to the application processes from differences in data representation (syntax).

Session

Provides the control structure for communication between applications; establishes, manages, and terminates connections (sessions) between cooperating applications.

Transport

Provides reliable, transparent transfer of data between end points; provides end-to-end error recovery and flow control.

Network

Provides upper layers with independence from the data transmission and switching technologies used to connect systems; responsible for establishing, maintaining, and terminating connections.

Data Link

Provides for the reliable transfer of information across the physical link; sends blocks (frames) with the necessary synchronization, error control, and flow control.

Physical

Concerned with transmission of unstructured bit stream over physical medium; deals with the mechanical, electrical, functional, and procedural characteristics to access the physical medium.

Figure 2.6 The OSI Layers

OSI v TCP/IP

	OSI	TCP/IP
	Application	
	Presentation	Application
	Session	
Tra		Transport
	Transport	(host-to-host)
	Network	Internet
		NY at a second
	Data Link	Network Access
	Physical	Physical

Standardized Protocol Architectures

Layer Specific Standards

Service Primitives and Parameters

- define services between adjacent layers using:
- primitives to specify function performed
- parameters to pass data and control info

Primitive Types

REQUEST	A primitive issued by a service user to invoke some service and to pass the parameters needed to specify fully the requested service
INDICATION	A primitive issued by a service provider either to: indicate that a procedure has been invoked by the peer service user on the connection and to provide the associated parameters, or notify the service user of a provider-initiated action
RESPONSE	A primitive issued by a service user to acknowledge or complete some procedure previously invoked by an indication to that user
CONFIRM	A primitive issued by a service provider to acknowledge or complete some procedure previously invoked by a request by the service user

Traditional vs Multimedia Applications

- traditionally Internet dominated by information retrieval applications
 - typically using text and image transfer
 - eg. email, file transfer, web
- see increasing growth in multimedia applications
 - involving massive amounts of data
 - such as streaming audio and video

Elastic and Inelastic Traffic

- > elastic traffic
 - can adjust to delay & throughput changes over a wide range
 - eg. traditional "data" style TCP/IP traffic
 - some applications more sensitive though
- > inelastic traffic
 - does not adapt to such changes
 - eg. "real-time" voice & video traffic
 - need minimum requirements on net arch

Multimedia Technologies

Summary

- introduced need for protocol architecture
- TCP/IP protocol architecture
- OSI Model & protocol architecture standardization
- traditional vs multimedia application needs