H1: BREITENSUCHE UND TIEFENSUCHE.

Iteration	u	\boldsymbol{v}	$oldsymbol{Q}$
0			[6]
1	6	3,9,12,14	[3,9,12,14]
2	3	2	[9,12,14,2]
3	19	8	[12,14,2,8]
4	12	19	[14,2,8,19]
5	14	11,13,15,20	[2,8,19,11,13,15,20]
6	2		[8,19,11,13,15,20]
7	8	4	[19,11,13,15,20,4]
8	19	J	[11,13,15,20,4]
9	11		[13,15,20,4]
10	13	7,18	[15,20,4,7,18]
11	15	ū	[20,4,7,18]
12	20	17	[4,7,18,17]
13	4		[7,18,17]
14	7		[18,17]
15	18		[17]
16	17	П	- (leer)

Distanz 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 0 0 0 0 0 0 0 0	Knoten	3	9	12	14	2	8	19	11	13	15	20	14	117	18	17	11	10	15	1 16	16 1
Vorg. 666391214141414820131311	Distanz	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	00	00	00	00	0
	Yorg.	6	6	6	6	3	9	12	14	14	14	14	8	20	13	13	Nil	Mit		ali I	<i>y</i>

b) ii)

Topologische Sortierung:

Knoten	Entdeckungszeit	Abschlusszeit	Vorgängerknoten				
1	1	18	nil				
2	19	22	nil				
3	23	24	nil				
4	3	6	6				
5	2	17	1				
6	25	38	nil				
7	4	8 5	4				
8	20	21	2 6				
9	26	27					
10	7	3 16					
11	10	每 11	15				
12	28	31	6				
13	8	13	10				
14	32	37	6				
15	9	12	13				
16	39	40	nie				
17	34	35	20				
18	14	15	13				
19	29	30	12				
20	33	36	14				

H2: KRUSKAL UND PRIM

$\{u,v\}$	$w(\{u,v\})$	Dazu?	set(a)	set(b)	$\operatorname{set}(c)$	$\operatorname{set}(d)$	set(e)	set(f)	$\operatorname{set}(g)$	set(h)	$\operatorname{set}(j)$	$\operatorname{set}(k)$
							(-)		550(3)		500(3)	500(10)
			{a}	{b}	{c}	$\{d\}$	{e}	{ <i>f</i> }	{g}	{h}	{ <i>j</i> }	{ <i>k</i> }
3a,c{	1	Ja	30,08		3a,c{		=	=		=	=	
36,58	2	Ja	第 =	36,;{	=				=	=	36,j8	
3c,g{	2	Ja	30,0,98	=	3a,c,98				3a,c,g{			
3d,hf	2	Ja				3d,h{				3d,hs	=	=
3a,d{	3	Ja	Ja,c,d		1a,c,d,	3a,c,d,			9, h€	3a,c,d,		
30,98	3	Nein	=	=	=							
36,K§	3	Ja	=	36,j,K{							36,j,K9	36,j,K{
3a, f{	4	Ja	4a,c,d, f,g,h{	=	3a,c,d, f,g,h{	3a,c,d, f,g,h{		4a,c,d, f,g,hs	3a,c,d, f,g,hs	fa, c, d, f, g, h {	=	
34,46	4	Nein	-	=					71 A1			=
3j, K{	4	Nein	=		=		11		=	=	=	=
3c, f {	5	Nein		1)	=			-			=	=
3e, j{	5	Ja		36,e,j,			3b,e,j, KE	=			46,e,j,ks	3b,e,j
3c,h{	7	Nein	-									
36,e{	8	Nein	=	=	=							

MST:

a.k	b.k	c.k	d.k	e.k	f.k	g.k	h.k	j.k	k.k	l.k	m.k	n.k	p.k	r.k	u
-∞	8	∞	∞	∞	∞	8	∞	∞	∞	∞	∞	∞	∞	∞	_
=	3	1	2	=	4	5	u	=	=	=	=	=	=	=	a
=	=	=	=	=	=	2	7	=	=	=	=	=	=	=	C
=	1	=_	=	=	=	II	3	=	=	=	=	=	=	=	d
=	=	=	=	8	=	l)	=	=	=	=	=	7	=	=	Ь
=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	9
=	=	=	=	=	=	Ш	=	=	=	7	=	=	=	=	h
=	=	=	=	=	=	II	=	=	=		7	=		=	4
=	=	=	=	=	=	=	=	=		=	=	=	=	1	9
=	=	=	=	=	=	=	ш	=	=	=	=	=	3	=	Č
=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	P
=	=	=	=	=	=	=	=	=	3	=	=	=	=	=	m
Ξ	=	=	=	=	=	Ξ	=	2	=	=	=	=	=	=	K
=	=	=	=	=	=	=	=	=	=	=	=	5	=	=	j
=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	n
=	=	_=_	=	=	=	=	=	=	=	=	=			=	e

		0.0													
												7. 20.			•
a.p	b.p	c.p	d.p	e.p	f.p	g.p	h.p	j.p	k.p	l.p	m.p	n.p	p.p	r.p	Q
nil	nil	nil	$\{a,b,c,d,e,f,g,h,j,k,l,m,n,p,r\}$												
_ =	a	a	a	=	a	a	=	=	=	=	=	=	=	=	16, c, d, e, f, q, h, j, K, 1, m, n,p, 18
Ξ	=	1	=	=	1=	C	C	=	=	=	=	=	=	=	16,d,e,f,g,h,j,k,l,m,n,p,rf
=	d	=	=	=	=	=	d	=	2	=	=	=	=	=	36,e,f,g,h,j,K,l,m,n,p,s
=	=	=	=	Ь	=	=	=	=	=	=	=	Ь	=	=	3e, f, g, h, j, K, e, m, n, p, r {
=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	3e,f,h,j,K,e,m,n,p,rs
=	=	=	=	=	=	=	=	=	=	h	=	=	=	=	3e, f, j, K, e, m, n, p, r {
=	=	=	=	=	=	=	=	=	=	=	1	=	=	2	5e, j, K, e, m, n, p, r s
=	=	=	=	=	=	=	=	=	=	=	Ė	=	=	Ł	4e, i, k, m, n, p, ss
=	=	=	=	=	=	=	=	=	=	=	=	=	1	=	1e, i, K, m, n, ps
=	=	=	=	=	=	=	Ξ	=	=	=	=	=	=	=	3e, 3, K, m, n {
_=	=	=	=	_=	=	ıì	=	=	w	=	=	Ξ	=	=	3e,j,k,ns
=	=	=	=	=	=	11	=	K	=	=	=	=	=	=	3e, j, n{
=	=	"	=	=	=	11	11	=	=	=	=	i	E	=	3e, n (
=	=	=	=	11	1)	11	=	=	=	=	=	=	=	-	3e8
=	=	=	n	11	=	0	5	=	=	=	=	=	=	=	- (leer)

H3: DREIECKE IN EINEM GRAPHEN

a) Wir nehmen an, dass $a_{ii} = 0 \quad \forall i \in [0...n]$

$$A = \begin{pmatrix} a_{00} & a_{01} & \dots & a_{0N} \\ a_{10} & a_{11} & \dots & a_{1N} \\ \vdots & \vdots & & \vdots \\ a_{N0} & a_{N1} & \dots & a_{NN} \end{pmatrix}$$

Mit der Definition von der Matrix Multiplikation exhalten wir:

Mit der Definition von der Matrix Multiplikation erhalten wir:
$$A^{2} = \begin{pmatrix} \sum_{n=0}^{N} a_{n} a_{n} & \sum_{n=0}^{N} a_{n} &$$

Wenn wir jedes Elemen betrachten, stellen wir fest, dass die Werte alle mögliche Wege mit Distanz 2 knoten darstellen. ZB für $a_{o1}^{(2)} = \sum_{n=0}^{N} a_{on} a_{n1} = a_{o0}a_{o1} + a_{o1}a_{11} + a_{o2}a_{21} + a_{oN}a_{N1}$

and all of the second of the s

anans - von O bis 1 durch N

Danit die ungleich null sind (also 1), müssen die wege getrennt gleich eins sein (also die Verbindung muss existieren)

Die Summe gibt uns also die Anzahl von möglichen Wegen mit Distant 2 Knoten, von i bis j (also mit einem Zwischenknoten)

wenn wir nochmal mit A multiplitieren:

$$A^{3} = \begin{pmatrix} \sum_{n=0}^{N} a_{0n}^{(2)} a_{n0} & \sum_{n=0}^{N} a_{0n}^{(2)} a_{n1} & \sum_{n=0}^{N} a_{0n}^{(2)} a_{nN} \\ & \vdots & & \vdots \\ \sum_{n=0}^{N} a_{Nn}^{(2)} a_{n0} & \sum_{n=0}^{N} a_{Nn}^{(2)} a_{n1} & \sum_{n=0}^{N} a_{Nn}^{(2)} a_{nN} \end{pmatrix}$$

Wenn wir jetzt zB das Element als betrachten:

$$Q_{01}^{(3)} = \sum_{n=0}^{N} Q_{0n}^{(2)} Q_{0n} Q_{n1} \rightarrow$$

= \(\frac{1}{2} \alpha_{\text{om}} \alpha_{\text{o

Bas sind also alle Antahl von Wegen von i nach j, die durch andere zwei Knoten gehen.

Für höhere Werte wirdes Analog gemacht.

a ij = alle Wege der länge (n-1), die in i anfangen und irgendum in enden, mal den Weg von in bis j. Das ist alle Wege der länge n die in i anfangen und in j enden.

b) Mit der matematischen Arbeit schon gemacht, erhalten wir für diesen Algorithmus eine sehr einfache Lösung mittels A³. Die Elemente $Q_{1i}^{(3)} \neq i \in [0...n]$. enthalten die Anzahl von Wegen die in i anfangen und enden, dieren Länge 3 Knoten sind. Das Sind also alle Mögliche Dreiecke. Wir müssen nur drauf auf passen, die Duplikaten abzuziehen:

Für ein Anfangsknoten: 1 Duplikat, weil es 2 Richtungen gibt

bnu

Für jedes treieck: 2 Duplikaten, weil es 3 mögliche Anfangsknoten gibt

- Anfangsknoten.

wir müssen also das Erbebnis durch 6 dividieren (2*3)

a möglichkeiten.

GRAPHTRIANGLES (A)

A3 = MATRIXPOTENZ (A, 3)

num Dreieck = 0

FOR i=0 TO A. length - 1

num Dreieck += A3[i][i]

RETURN numbreieck

MATRIXPOTENZ (A, T)

let B be a new Array [A.length] [A[o].length]

B=A

WHILE 1>1

let C be a new Array [A.length] [A[0].length]

FOR i=0 TO A.length-1

FOR j=0 TO A[0].length-1

FOR K=0 TO BEOJ. length-1

C[i][i] += A[i][K] * B[K][j]

B=C

1--

RETURN B