Aufgabe 1. Weil \tilde{f} stetig in x_0 ist gibt es für alle $\epsilon > 0$ ein $\delta > 0$ derart, dass für alle \tilde{x}

$$|\tilde{x} - x_0| < \delta \implies |\tilde{f}(\tilde{x}) - \tilde{f}(x_0)| < \epsilon.$$

Gemäß der Definition von \tilde{f} kann nun zu

$$|\tilde{x} - x_0| < \delta \implies |f(\tilde{x}) - M| < \epsilon$$

umgeformt werden, das entspricht der (ϵ, δ) -Definition des Limits bzw. $\lim_{x\to x_0} f(x) = M$. Wenn die Funktion nicht stetig an x_0 ist gibt es solche ϵ und δ von Anfang an nicht — dann kann die Funktion an dieser Stelle auch kein entsprechendes Limit haben.

Aufgabe 2. Seien

$$f(x) = \begin{cases} 0 & \text{wenn } x < 0 \\ 1 & \text{wenn } x \ge 0 \end{cases}$$

$$g(x) = \begin{cases} 1 & \text{wenn } x < 0 \\ 0 & \text{wenn } x \ge 0 \end{cases}$$

zwei in x = 0 nicht stetige Funktionen. Dann ist g(f(x)) stetig in x = 0. (Weil g(f(x)) = 0.)

Aufgabe 3. Es gilt f(0) = 1 und f(x) = 0 für alle $x \neq 0$. Die (ϵ, δ) -Definition sagt aus, dass das Limit von f für $x \to p$ dann L ist, wenn

$$0 < |x - p| < \delta \implies |f(x) - L| < \epsilon.$$

In diesem Fall ist p=0 und L=0. Sei $\epsilon>0$ beliebig und wähle $\delta=\epsilon$, dann gilt

$$0 < |x| < \delta \implies |f(x)| < \epsilon$$

weil f(x) = 0 für alle $x \neq 0$ und x in der Implikation nicht null werden kann.

Aufgabe 4.

Aufgabe 5. Dem Hinweis folgend: Sei a > b, dann

$$\max\{a,b\} = a = \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}a - \frac{1}{2}b = \frac{1}{2}(a+b+a-b) = \frac{1}{2}(a+b+|a-b|)$$

Analog für b > a, a = b ist trivial. Diese Funktion ist stetig.

Die Addition zweier stetiger Funktionen ist stetig. Es gilt

$$f(x) + g(x) = \max(f(x), g(x)) + \min(f(x), g(x)),$$

somit muss min(f, g) stetig sein.

Aufgabe 6. Die gegebene Funktion ist die Thomaesche Funktion. Sei $x \in \mathbb{R} \setminus \mathbb{Q}$. Sei $\epsilon > 0$ und wähle $n \in \mathbb{N}$ mit $1/n < \epsilon$. Es gibt endliche viele reduzierte rationale Zahlen r = p/q im Intervall (x-1,x+1) für ein q mit $1 \geq q \geq n$. Sei δ die kleinste Distanz zwischen x und einem solchen r. Dann gilt $\delta > 0$ weil $x \notin \mathbb{Q}$.

Wenn $|x-y| < \delta$ dann ist entweder y irrational, und somit f(y) = 0. Oder y = p/q mit q > n, und somit $f(y) = 1/q < 1/n < \epsilon$. In beiden Fällen gilt $|f(x) - f(y)| = |f(y)| < \epsilon$ wegen f(x) = 0, also

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Somit ist f stetig für $x \in \mathbb{R} \setminus \mathbb{Q}$. (Vgl. Introduction to Analysis, Chapter 7.)

Aufgabe 7.

Aufgabe 8.