Probability and Statistical Inference

Tianqi Zhang Emory University

Apr 17th 2025

5 Sigma-Algebra

5.1 Motivation

The Banach-Tarski paradox introduces the fundamental problem in measure theory with uncountable latent space Ω . To be more specific, it is our inability to properly define a measure with the aforementioned axioms.

Proposition 5.1.1 Non-existence of extension of length to all subsets of \mathbb{R} :

There does not exist a function μ with all the following properties:

- a). $\mu: \mathscr{P}(\mathbb{R}) \to [0, \infty]$
- b). $\mu(I) = \ell(I) \; \forall \text{ open interval } I \text{ on } \mathbb{R}$
- c). Countable additivity: $\mu(\bigcup_k A_k) = \sum_k \mu(A_k)$ for all disjoint $A_k \subset \mathbb{R}$
- d). Translation invariant: $\mu(t+A) = \mu(A) \ \forall A \subset \mathbb{R}$ and $t \in \mathbb{R}$.

Proof: 5.5

The only condition we can relax is a). Instead of the entire power set, we define the measure to be only on a subset of the power set, defined as " σ -algebra:

5 SIGMA-ALGEBRA 5.2 Setup

5.2 Setup

Theorem 5.2.1 Sigma Algebra

A subset $\mathscr{F} \subseteq \mathscr{P}(X)$ is called a **sigma algebra** if:

- 1. $\emptyset, X \in \mathscr{F}$,
- 2. If $A \in \mathscr{F}$, then $\overline{A} \in \mathscr{F}$,
- 3. If $(A_i)_{i\in\mathbb{N}}\subseteq\mathscr{F}$, then $\bigcup_{i=1}^{\infty}A_i\in\mathscr{F}$.

Definition 5.2.2 (Measurable Set). If $A \in \mathcal{F}$, then A is called an \mathcal{F} -measurable set.

Remark 5.1 Examples of sigma algebras:

- Trivial sigma algebra: $\mathscr{F} = \{\varnothing, X\}.$
- Full power set: $\mathscr{F} = \mathscr{P}(X)$.

5.3 Properties

Proposition 5.3.1 Intersection of Sigma Algebras:

The countable intersection of sigma algebras is a sigma algebra. If \mathscr{F}_i is a sigma algebra on X for $i \in I$, then:

$$\bigcap_{i\in I}\mathscr{F}_i$$
 is also a sigma algebra.

Definition 5.3.2 (Sigma Algebra Generated by a Set).

For any $\mathcal{M} \subseteq \mathscr{P}(X)$, the smallest sigma algebra containing \mathcal{M} is denoted $\sigma(\mathcal{M})$ and is called the sigma algebra generated by \mathcal{M} .

- 1. Collect all large \mathscr{F} as sigma algebras such that $\mathcal{M} \subseteq \mathscr{F}$.
- 2. Take their intersection:

$$\sigma(\mathcal{M}) = \bigcap_{\mathcal{M} \subseteq \mathscr{F}} \mathscr{F}.$$

Example 5.3.3 Let
$$X = \{a, b, c, d\}$$
 and $\mathcal{M} = \{\{a\}, \{b\}\}$. Then:

$$\sigma(\mathcal{M}) = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}.$$

Theorem 5.3.4 closure property of σ -algebras

For a sigma-algebra \mathscr{F} , if $A \in \mathscr{F}$, then $\sigma(A) \subseteq \mathscr{F}$.

Proposition 5.3.5 Sigma Algebra on subsets:

If a σ -algebra on a larger space is defined, then any subset of that space has a σ -algebra by intersecting everything with that subset.

5.4 Borel σ -field on \mathbb{R}

Definition 5.4.1 (Borel Sigma Algebra).

Let X be a topological space.

The Borel sigma algebra $\mathcal{B}(X)$ is the sigma algebra **generated by all open sets** of X.

Lemma 5.4.2 Compactness:

All compact subset has a finite measure w.r.t. Borel sigma algebra.

Remark 5.2 The triplet "(Set, σ -algebra, measure)": (X, \mathcal{F}, μ) is called a **measure space**.

Remark 5.3 The Borel sigma algebra is particularly useful in analysis and probability theory:

- For continuous random variables, the pre-image of an open set under a continuous mapping $f: \mathbb{R} \to \mathbb{R}$ is measurable since it belongs to $\mathscr{B}(\mathbb{R})$.
- $\mathscr{B}(\mathbb{R})$ is the natural sigma algebra for defining measures, such as the Lebesgue measure.

Definition 5.4.3 (Borel σ -field on \mathbb{R}^d). The Borel σ -field on \mathbb{R}^d , denoted \mathscr{B}^d , is the smallest σ -algebra on \mathbb{R}^d containing all Cartesian products of univariate Borel sets:

$$\prod_{i=1}^d (a_i, b_i).$$

5.5 Proof on Proposition 5.1.1:

Proof.

Construction:

Define the interval I = (0,1] with an equivalence relation $x \sim y$ if $x - y \in \mathbb{Q}$. That is:

$$[x] = \{x + r \mid r \in \mathbb{Q}, x \in I\}.$$

This partitions I into disjoint sets.

Pick $A \subseteq I$ with:

- i) $\forall x, y \in A, x \sim y \implies x = y$,
- ii) For each $x \in I$, if $x \in [x]$ for some x, then $x + r \in A$, where $A_i = x + A$.

Claim 5.5.1:

Disjointness of Shifts: If $A_n = A + r_n$, where r_n is an enumeration of $\mathbb{Q} \cap (-1,1)$, then:

$$A_n \cap A_m = \emptyset$$
 for $n \neq m$.

Suppose $x \in A_n \cap A_m$. Then:

$$x \in A + r_n$$
 and $x \in A + r_m$.

This implies:

$$x = a + r_n$$
 and $x = a' + r_m \implies r_n - r_m \in \mathbb{Q}$.

By the construction of A, this forces $r_n = r_m$, which is a contradiction. Thus $A_n \cap A_m = \emptyset$ for $n \neq m$.

Claim 5.5.2:

[Covering of (0,1]]

$$(0,1] \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq (-1,2).$$

- (i) The first inclusion is given since all A_n serve as a partition of (0,1],
- (ii) By construction, for all $x \in \bigcup_{n \in \mathbb{N}} A_n$, there exists $i \in \mathbb{N}$ such that $x \in A + r_i$. Since $A \subseteq (0, 1]$, we conclude:

$$x \in \mathbb{R} \cap (-1, 2).$$

By property (ii), $\mu(x+A) = \mu(A)$ for all $x \in \mathbb{R}$. By Claim 2:

$$\mu((0,1]) \le \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \mu((-1,2)).$$

We know $\mu((0,1]) = C < \infty$. Then:

$$\mu((-1,2)) = \mu((-1,0]) + \mu((0,1]) + \mu((1,2]) = 3C.$$

Thus:

$$C \le \sum_{n=1}^{\infty} \mu(A_n) \le 3C.$$

If $\mu(A) > 0$, this leads to a contradiction such that an item bounded above by a finite value 3C diverges to infinity. Therefore:

$$\mu(A) = 0.$$