JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY, NOIDA

B. TECH 4TH SEMESTER REPORT FOR MINOR PROJECT IN ALGORITHMS

TITLE OF PROJECT

'METRO APPLICATION'

Dr. Taj Alam	Name	Enroll No.
Assistant Professor	SABEEH AHSAN	22803006
Department Of Computer	TANMAY BUTTA	22803014
Science and Engineering	LAKSHYAVEER SINGH	22803015

JIIT, SECTOR 62, NOIDA

PROJECT SYNOPSIS

Introduction

Aim:

To develop an interface of "METRO APPLICATION" and performing operations like finding shortest distance between two stations both distance and time wise.

About the project:

This project aims to provide users with a user-friendly interface to navigate and plan routes within a metro system. Users can input their starting and destination stations to find the shortest distance between them, considering both distance and time factors. The application provides real-time updates on train schedules, station information, and estimated travel times, enhancing the overall commuting experience.

Features of the Project:

- 1. LIST ALL THE STATIONS IN THE MAP.
- 2. SHOW THE METRO MAP.
- 3. GET SHORTEST DISTANCE FROM A 'SOURCE' STATION TO 'DESTINATION'.
- 4. GET SHORTEST TIME TO REACH FROM A 'SOURCE' STATION TO 'DESTINATION' STATION.

GLIMPSES OF PROJECT

****WELCOME TO THE METRO APP**** ~~LIST OF ACTIONS~~

- 1. LIST ALL THE STATIONS IN THE MAP 2. SHOW THE METRO MAP

- 3. GET SHORTEST DISTANCE FROM A 'SOURCE' STATION TO 'DESTINATION' STATION
 4. GET SHORTEST TIME TO REACH FROM A 'SOURCE' STATION TO 'DESTINATION' STATION
 5. GET SHORTEST PATH (DISTANCE WISE) TO REACH FROM A 'SOURCE' STATION TO 'DESTINATION' STATION
 6. GET SHORTEST PATH (TIME WISE) TO REACH FROM A 'SOURCE' STATION TO 'DESTINATION' STATION
- 7. EXIT THE MENU

ENTER YOUR CHOICE FROM THE ABOVE LIST (1 to 7) :

1. Rajouri Garden~BP
2. IGI Airport~0
3. Netaji Subhash Place~PR
4. Moti Nagar~B
5. Rajiv Chowk~BY
6. AIIMS~Y
7. Yamuna Bank~B
8. Botanical Garden~B
9. Janak Puri West~BO
10. Huda City Center~Y
11. Vishwavidyalaya~Y
12. New Delhi~YO
13. Shivaji Stadium~0
14. Vaishali~B
15. Saket~Y
16. Dwarka Sector 21~B
17. Chandni Chowk~Y
18. Punjabi Bagh West~P
19. Noida Sector 62~B

20. DDS Campus~0

Delh:	i Metro Map 	
	n~BP => bi Bagh West~P Nagar~B	2 2
IGI Airport~0 DDS Ca	=> ampus~O	8
Netaji Subhasl Punjal	h Place~PR => bi Bagh West~P	3
Rajiv	=> ri Garden~BP Chowk~BY Puri West~BO	2 9 7
AIIMS Yamuna	elhi~YO	1 7 6 9
AIIMS~Y => Rajiv Saket	Chowk~BY ~Y	7 6

Algorithm Description

Dijkstra's algorithm is a popular algorithm used to find the shortest paths from a single source node to all other nodes in a weighted graph. It was conceived by Dutch computer scientist Edsger W. Dijkstra in 1956 and is widely used in various applications, including network routing protocols and transportation systems.

Operations used:

- 1. Weighted Graphs
- 2. Unordered map
- 3. Vectors
- 4. Pairs
- 5. Stack