Fusion de polyèdres pour les jeux vidéo et logiciels 3D

FONTAINE Antoine DUBOIS Jérôme LEPAGNOT Projet M1 IM

Sommaire

- 1. Introduction
- 2. Modélisation de polyèdres
- 3. Test de convexité
- 4. Algorithme de fusion
- 5. Graphe des fusions convexes
- 6. Algorithme brute-force
- 7. Méta-heuristiques
 - Principe et évaluation
 - Recuit simulé
 - Algo génétique
- 8. Points d'améliorations
- 9. Conclusion

Introduction

• Polyèdre: solide dont les faces sont des polygones.

Problématique :

- Un nombre élevé d'objets 3D implique divers problèmes de performances :
 - Occupation de mémoire
 - Vitesse d'affichage

Source : diapositives du sujet

Objectif:

 Développer un algorithme de fusion de polyèdres sur des polyèdres convexes élémentaires

 Rechercher et implémenter des métaheuristiques pour résoudre le problème

Création de polyèdres

Implémentation des polyèdres

Polyèdre:

- Liste de faces
- Est convexe ou non

Face:

• Liste ordonnée de points

Point:

• Coordonnées X, Y, Z

Fichier d'objet 3D *.obj

- Description d'une géométrie 3D
- Syntaxe clé:
 - Sommet: "v <x> <y> <z>"
 - Objet: "o <nom_obj>"
 - o Face: "f < v1> < v2> < v3>"

```
v 1 1 -1
      v 1 -1 -1
      v 1 1 1
 4 v 1 -1 1
      v -1 1 -1
      v -1 -1 -1
     v -1 1 1
      v -1 -1 1
      o Object1
      f 1 5 7 3
      f 4 3 7 8
11
12
      f 8 7 5 6
13 f 6 2 4 8
      f 2 1 3 4
14
15
      f 6 5 1 2
```

Tests de convexité

Polyèdres convexes

Définition: Un polyèdre est convexe si, **pour toute paire de points situés à** l'intérieur du polyèdre (ou sur une des faces), le **segment reliant ces deux points est entièrement contenu à l'intérieur** ou sur la surface du polyèdre.

Polyèdre non convexe

- Soit M et N deux points contenus dans le polyèdre
- Le segment [MN] n'est pas contenu dans le polyèdre

Polyèdre non convexe (en pratique)

Trouver au moins une face qui vérifie :

- Plan P qui prolonge la face SRHE
- Les points S, R, H, E, D, K sont sur le plan
- Les points P, Q, L, J sont à gauche du plan
- Les points **F**, **G**, **B**, **C** sont à **droite** du plan
- Au moins deux points ne sont pas du même côté
 ⇒ Polyèdre non convexe

Convexité de polygones

- Même principe que pour les polyèdres
- Tous les angles intérieurs sont inférieurs à 180°

Algorithme de fusion

Fusion de deux polyèdres convexes

Critères pour faire une fusion convexe :

- Les deux polyèdres sont convexes
- Ils ont au moins une face commune,
 c'est-à-dire une face avec les mêmes sommets
- La fusion est convexe

Fusion de deux polyèdres (exemples)

Pas de faces communes

Deux faces se touchent, mais elles ne partagent pas les mêmes sommets

Fusion de deux polyèdres (exemples)

• Au moins une face commune, mais fusion pas convexe

Fusion de deux polyèdres (exemples)

• Au moins une face commune, fusion convexe

Fusion de deux polyèdres (cas particulier)

- Polyèdres avec un volume nul (une seule face)
 - Exemple avec des polygones convexes

Algorithme de fusion d'un ensemble de polyèdres

Entrée:

• Ensemble de polyèdres **ordonnés** (ou **solution**)

Principe:

- Essayer de fusionner les polyèdres deux à deux en parcourant la liste dans l'ordre
- Recommencer tant qu'on peut faire de nouvelles fusions

Sortie:

• Liste de polyèdres après les fusions

Algorithme de fusion d'un ensemble de polyèdres

Source: Slides de présentation du projet, par Julien Lepagnot

Fusion: exemple avec une "roue"

- Comment obtenir un nombre minimal de polyèdres convexes ?
- 32 polyèdres

Fusion: exemple avec une "roue"

L'ordre de fusion donne des résultats différents

Graphe des fusions convexes

Graphe des fusions convexes

- Non orienté
- Sommets = Polyèdres
- Arête = Fusion convexe

Exemple:

- La fusion de **P1** et **P2** est convexe
- La fusion de **P1** et **P2** est **convexe**
- La fusion de **P1** et **P2 n'est pas convexe**

Exemple d'un graphe

Graphe des fusions convexes (exemple)

4 polyèdres convexes (cubes)

Liste initiale de polyèdres :

Pré-calcul du graphe pour toute les paires de polyèdres :

Graphe des fusions convexes (exemple)

• 4 polyèdres résultant des fusions pré-calculées

Graphe des fusions convexes

Graphe des fusions convexes (exemple)

• Complété dynamiquement par l'algorithme de fusion

Graphe des fusions convexes

Méthode brute-force

Algorithme:

- Recherche exhaustive
- Plusieurs solutions peuvent donner les mêmes fusions
- Temps de calcul dépend du nombre de permutations (de l'ordre de n!)

Exemple:

Fichier *.obj source

Solutions générées par l'algorithme

Métaheuristiques

Approcher la meilleure solution rapidement

Fonction objectif

Comment évaluer une solution (ensemble ordonné de polyèdres)?

Résultat à minimiser :

- Ratio entre le nombre de polyèdres avant et après les fusions
- **Récompense** et **pénalité** pour prendre en compte d'autres critères

$$1 + \left(\frac{\text{Nombre de polyèdres après fusion}}{\text{Nombre de polyèdres}}\right) + \text{p\'enalit\'e} - \text{r\'ecompense}$$

Fonction objectif - Récompense

Récompense, donne un bonus

- Nombre de fusions
- Taille des fusions

Initialement : taille des fusions trop avantageuses par rapport au nombre de fusions

Finalement: Grosses fusions légèrements avantagées

Fonction objectif - Pénalité

Pénalité, donne un malus

• Distance dans le graphe

Exemple:

Solution: P1, P4, P3, P2

Fusion P1 et P4: pénalité1

Fusion P3 et P2: pénalité2

pénalité1 > pénalité2

Recuit simulé

Principe:

- S'inspire de la physique, refroidissement lent d'un matériaux
- Méthode d'optimisation
- Modification progressive d'une solution pour explorer ses voisins

Refroidissement et critère d'arrêt

Température (en rouge sur le graphique)

- Facteur de refroidissement
- Peut augmenter si l'algorithme stagne un certain nombre d'itérations (ici 600)

Arrêt

 Nombre d'itérations maximum atteint

Calculer une solution voisine à la solution courante

Permutation (mutation)

Exemple d'une permutation

- Solution courante: P1 P2 P3 P4
- Un voisin possible: **P2 P1** P3 P4

- 1. Permutation de 2 éléments côte à côte, 3 fois
 - Evaluation diminue peu
 - Exemple: $\mathbf{1}, \mathbf{2}, 3, 4, \mathbf{5}, \mathbf{6}, 7, 8, \mathbf{9}, \mathbf{10} \rightarrow \mathbf{2}, \mathbf{1}, 3, 4, \mathbf{6}, \mathbf{5}, 7, 8, \mathbf{10}, \mathbf{9}$

- 2. Permutation de 2 éléments côte à côte, 1 fois
 - Evaluation diminue très peu
 - Exemple: $\mathbf{1}, \mathbf{2}, 3, 4, 5, 6, 7, 8, 9, 10 \rightarrow \mathbf{2}, \mathbf{1}, 3, 4, 5, 6, 7, 8, 9, 10$

- 3. Nombre de permutations variable (de 5 fois à 2 fois)
 - Pas bien ajusté pour les optima locaux

- 4. 3 permutations aléatoires, 3 fois
 - Convergence lente, mais sort des minima locaux

- **Evaluation** de la solution voisine générée
 - Comparaison avec la solution courante
 - Si la solution voisine est meilleure, elle est acceptée
- Critère d'acceptation :
 - Accepter des solutions plus mauvaises avec une certaine probabilité
 - Dépend de la température courante
 - Température haute = Proba d'acceptation haute
 - Température basse = Proba d'acceptation basse

Toutes les solutions possibles

Source: https://www.mcours.net/cours/pdf/hassbg/hassbgli902.pdf

- 1. Acceptation de plus mauvaises solutions trop peu probable
 - Graphe des meilleures solutions trouvées en fonction des itérations

- 1. Acceptation de plus mauvaises solutions trop peu probable
 - Graphe des solutions acceptées en fonction des itérations

- 2. Acceptation de plus mauvaises solutions plus élevé
 - Graphe des solutions explorées en fonction des itérations

Conclusion des tests

Plus efficace avec:

- Permutations aléatoires
- Peu de permutations ou un nombre variable de permutations
- Faire remonter la température rapidement si l'algorithme stagne

Algorithme génétique

Principe:

- S'inspire de la sélection naturelle
- Méthode d'optimisation
- Explore plusieurs directions en même temps

Implémentation

- Sélection élitiste
- Sélection par tournoi
- Sélection par roulette
- Croisement en N points
- Mutation par insertion

Structure modulaire

- Trie de la population par score
- Sélectionne les N individus avec les meilleurs scores

Score: 2.8	1	2	3	4	5	6	7
Score: 5.2	2	5	1	3	4	6	7
Score : 6.5	6	3	2	7	1	4	5
Score: 6.5	5	4	7	1	3	2	6
Score: 18.4	6	2	1	4	3	7	5

- Trie de la population par score
- Sélectionne les N individus avec les meilleurs scores

Exemple: N = 3

 Individus ajoutés dans la liste de parents

- Trie de la population par score
- Sélectionne les N individus avec les meilleurs scores

Exemple: N = 3

 Individus ajoutés dans la liste de parents

- Sélectionne un sous-ensemble aléatoire de taille N
- Compare les scores
- Sélectionne le gagnant / l'individu avec le meilleur score

Score: 2.8	1	2	3	4	5	6	7
Score: 5.2	2	5	1	3	4	6	7
Score: 6.5	6	3	2	7	1	4	5
Score: 6.5	5	4	7	1	3	2	6
Score: 18.4	6	2	1	4	3	7	5

- Sélectionne un sous-ensemble aléatoire de taille N
- Compare les scores
- Sélectionne le gagnant / individu avec le meilleur score

- Individu 2 et 5 dans le tournoi
- 2 a un meilleur score que 5

- Sélectionne un sous-ensemble aléatoire de taille N
- Compare les scores
- Sélectionne le gagnant / individu avec le meilleur score

Exemple: N = 2

 Individu 2 ajouté dans la liste des parents

Sélection par roulette

 Sélectionne aléatoirement un individu et l'ajoute à la liste de parents.

Exemple:

- Tir au hasard l'individu 3
- Individu 3 ajouté dans la liste des parents

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Parent 1	2	5	1	3	4	6	7
Parent 2	6	3	2	7	1	4	5

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Exemple: N = 2

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Exemple: N = 2

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Enfant 2

- Sélectionne N point de croisement différents
- Croise deux individus entre ces N points

Mutation par insertion

- Sélectionne aléatoirement une position n.
- Sélectionne aléatoirement une valeur v.
- Remplace la valeur à la position n par v

Exemple: $\underline{n = 5 \text{ et } v = 2}$

Mutation par insertion

- Sélectionne aléatoirement une position n.
- Sélectionne aléatoirement une valeur v.
- Remplace la valeur à la position n par v

Exemple: n = 5 et v = 2

Mutation par insertion

- Sélectionne aléatoirement une position n.
- Sélectionne aléatoirement une valeur v.
- Remplace la valeur à la position n par v

Exemple: $\underline{n = 5 \text{ et } v = 2}$

Comparaison et résultats

- Taille de population : 100
- Nombre d'itérations maximum : 100
- Probabilité de mutation : 0.8
- Crossover en 7 points
- Exemple de la roue

- Stagne pendant longtemps
- Possible manque de diversité
- Population qui se ressemble rapidement
- Taille finale : 20 polyèdres

Sélection par roulette

- Tendance à se coincer sur ses plateaux / minima locaux
- Possible manque de diversité
- Population qui se ressemble rapidement
- Pire a que la sélection par tournoi
- Taille finale : 23 polyèdres

- Tendance à beaucoup moins se coincer sur des plateaux
- Converge vers l'objectif mais stagne à un certain stade
- Meilleure sélection testée jusqu'à présent
- Taille finale : 16 polyèdres

Création de la nouvelle population

- Remplir la première moitié avec les enfants des parents issus de la sélection
- Remplir la deuxième moitié avec les enfants des plus mauvais individus
- Permet de garder une certaine diversité

Améliorations possibles

Perspectives

- Paralléliser le code au maximum
- Essayer d'autres métaheuristiques pour comparer
- Ajouter des sélections, croisements et mutations

- Faire évoluer l'évaluation au cours de l'algorithme
 - Permet de favoriser certains critères

Perspectives - mutation

Inverser l'ordre de N gènes côte à côte (mutation par inversion)

- Préserve les fusions d'un même bloc
- Grand impact possible sur la pénalité d'évaluation
- Permet éventuellement de casser ou d'ajouter des fusions aux extrémités

Perspectives - mutation

Éviter de casser les fusions avec les mutations selon certains critères

- Exemple
 - o 2 et 1 sont fusionnables
 - o **5** et **6** sont fusionnables
- \rightarrow **Éviter** de permuter 3 et 5

Conclusion

- Algorithme de fusion
- Métaheuristique
- Optimisation

Merci pour votre attention