

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chimie Niveau moyen Épreuve 1

Vendredi 14 mai 2021 (matin)

45 minutes

Instructions destinées aux candidats

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.
- Le nombre maximum de points pour cette épreuve d'examen est de [30 points].

	97		~	5
71 Lu	<u> </u>		100	Lr (262)
70 Yb	`		102	No (259)
69 Tm	168,93		101	Md (258)
68 Er	167,26		100	Fm (257)
67 Ho	164,93		66	Es (252)
66 Dy	162,50		86	Cf (251)
65 Tb	158,93		26	Bk (247)
64 Gd	157,25		96	Cm (247)
63 Eu	151,96		92	Am (243)
62 Sm	150,36		96	Pu (244)
61 Pm	(145)		93	Np (237)
09	144,24		92	U 238,03
59 Pr	140,91		91	Pa 1 231,04
58 Ce	140,12		06	Th 232,04
+		- •	++	

1. On mélange 0,20 mol de magnésium avec 0,10 mol d'acide chlorhydrique.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Parmi les propositions suivantes, laquelle est correcte ?

	Réactif limitant	Rendement maximal de H ₂ / mol
A.	HCl	0,10
B.	Mg	0,20
C.	HCl	0,05
D.	Mg	0,10

- 2. Quelle quantité (en mol) de chlorure de sodium est nécessaire pour préparer 250 cm³ de solution à 0,10 mol dm⁻³ ?
 - A. 4.0×10^{-4}
 - B. 0,025
 - C. 0,40
 - D. 25
- 3. Quelle est la molécule dont la formule empirique et la formule moléculaire sont identiques ?
 - A. CH₃COOH
 - B. C₂H₅OH
 - C. C_2H_4
 - D. C₄H₁₀
- 4. Quelle est la somme des coefficients lorsque l'équation est équilibrée avec des nombres entiers ?

$$\underline{\hspace{1cm}}\mathsf{Sn}(\mathsf{OH})_{\scriptscriptstyle{4}}(\mathsf{aq}) + \underline{\hspace{1cm}}\mathsf{NaOH}\,(\mathsf{aq}) \to \underline{\hspace{1cm}}\mathsf{Na}_{\scriptscriptstyle{2}}\mathsf{SnO}_{\scriptscriptstyle{3}}(\mathsf{aq}) + \underline{\hspace{1cm}}\mathsf{H}_{\scriptscriptstyle{2}}\mathsf{O}\,(\mathsf{l})$$

- A. 4
- B. 5
- C. 6
- D. 7

	Que	représente ^{«2-»} dans ^A ZX ²⁻ ?
	A.	perte d'électrons
	B.	gain d'électrons
	C.	perte de protons
	D.	gain de protons
6.	Con	nment les spectres d'émission sont-ils formés ?
	A.	Des photons sont absorbés lorsque des électrons excités retournent à un niveau d'énergie inférieur.
	B.	Des photons sont absorbés lorsque des électrons sont excités à un niveau d'énergie supérieur.
	C.	Des photons sont émis lorsque des électrons sont excités à un niveau d'énergie supérieur.
	D.	Des photons sont émis lorsque des électrons excités retournent à un niveau d'énergie inférieur.
7.	Que	elle propriété augmente à mesure que l'on descend dans le groupe 1 ?
	A.	rayon atomique
	B.	électronégativité
	B. C.	électronégativité énergie de première ionisation
8.	C. D.	énergie de première ionisation
8.	C. D.	énergie de première ionisation point de fusion
8.	C. D. Leq	énergie de première ionisation point de fusion uel est un élément du bloc d ?
8.	C. D. Leq A.	énergie de première ionisation point de fusion uel est un élément du bloc d ? Ca
8.	C. D. Leq A. B.	énergie de première ionisation point de fusion uel est un élément du bloc d ? Ca Cf

9.	Quel	composé présente la plus grande volatilité sous les mêmes conditions ?
	A.	SO_2
	B.	SiO ₂
	C.	SnO ₂
	D.	SrO
10.	Lequ	el des composés suivants possède la plus courte liaison entre C et N ?
	A.	HCN
	B.	CH ₃ CH ₂ NH ₂
	C.	CH ₃ CHNH
	D.	$(CH_3)_2NH$
11.	Quell	e est la formule du composé formé de Ca ²⁺ et PO ₄ ³⁻ ?
	A.	CaPO ₄
	В.	$Ca_3(PO_4)_2$
	C.	$Ca_2(PO_4)_3$
	D.	$Ca(PO_4)_2$
12.	Quel	est l'ordre correct de forces croissantes ?
	A.	liaisons covalentes < liaisons hydrogène < forces dipôle-dipôle < forces de dispersion

forces dipôle-dipôle < forces de dispersion < liaisons hydrogène < liaisons covalentes

forces de dispersion < forces dipôle-dipôle < liaisons hydrogène < liaisons covalentes

forces de dispersion < forces dipôle-dipôle < liaisons covalentes < liaisons hydrogène

B.

C.

D.

13. Laquelle des propositions suivantes décrit une réaction exothermique ?

	Transfert thermique	Enthalpie
A.	de l'environnement au système	réactifs > produits
B.	de l'environnement au système	produits > réactifs
C.	du système à l'environnement	produits > réactifs
D.	du système à l'environnement	réactifs > produits

14. Quelle est la variation de chaleur (en kJ) lorsque 100,0 g d'aluminium est chauffé de 19,0 $^{\circ}$ C à 32,0 $^{\circ}$ C ?

Capacité calorifique massique de l'aluminium : 0,90 J g⁻¹ K⁻¹

- A. $0,90 \times 100,0 \times 13,0$
- B. $0,90 \times 100,0 \times 286$
- C. $\frac{0.90 \times 100.0 \times 13.0}{1000}$
- D. $\frac{0,90 \times 100,0 \times 286}{1000}$

15. Laquelle représente la variation d'enthalpie ΔH de réaction ?

16. Laquelle des modifications suivantes cause la plus forte augmentation de vitesse initiale de la réaction entre l'acide nitrique et le magnésium ?

$$2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$$

	[HNO ₃]	Taille des morceaux de métal
A.	doublée	divisée par deux
B.	doublée	doublée
C.	divisée par deux	divisée par deux
D.	divisée par deux	doublée

17. Le graphique ci-dessous représente la courbe de distribution de l'énergie de Maxwell–Boltzmann pour un gaz donné à une certaine température.

Comment la courbe serait-elle modifiée en cas de diminution de la température du gaz, toutes les autres conditions restant constantes ?

- A. Le maximum serait plus bas et à gauche du point M.
- B. Le maximum serait plus bas et à droite du point M.
- C. Le maximum serait plus haut et à gauche du point M.
- D. Le maximum serait plus haut et à droite du point M.

18. Pour une réaction exothermique, quel effet un catalyseur a-t-il sur la position de l'équilibre et sur la valeur de la constante d'équilibre K_c ?

	Position de l'équilibre	Valeur de la constante d'équilibre
A.	se déplace vers les produits	augmente
B.	reste inchangée	augmente
C.	reste inchangée	reste inchangée
D.	se déplace vers les produits	reste inchangée

- 19. Quelle espèce chimique ne peut pas agir comme base de Brønsted-Lowry?
 - A. HPO₄²⁻
 - B. H₂O
 - C. CH₄
 - D. NH₃
- 20. Quelle espèce chimique cause des dépôts acides ?
 - A. SO₂
 - B. SiO₂
 - C. SrO
 - D. CO₂
- **21.** Quel est l'état d'oxydation de l'oxygène dans H₂O₂?
 - A. -2
 - B. -1
 - C. +1
 - D. +2

22. Quels sont les produits de l'électrolyse du chlorure de potassium fondu KCl(l)?

	Anode (électrode positive)	Cathode (électrode négative)
A.	К	Cl
B.	Cl_2	К
C.	Cl	К
D.	К	Cl ₂

23. Que se passe-t-il au niveau d'une anode?

	Pile voltaïque	Cellule d'électrolyse
A.	Oxydation	Réduction
B.	Réduction	Oxydation
C.	Réduction	Réduction
D.	Oxydation	Oxydation

- **24.** Lequel des composés suivants est de la même série homologue que CH₃OCH₃?
 - A. CH₃COCH₃
 - B. CH₃COOCH₃
 - C. CH₃CH₂CH₂OH
 - D. CH₃CH₂CH₂OCH₃
- 25. Quel est le nom de la molécule ci-dessous en nomenclature UICPA?

- A. 2,4-diméthylhexane
- B. 3,5-diméthylhexane
- C. 2-méthyl-4-éthylpentane
- D. 2-éthyl-4-méthylpentane

26. Quel monomère forme le polymère ci-dessous ?

- A. CH(Cl)=CH(CH₃)
- B. CH₂=C(Cl)CH₃
- C. (CH₃)₂CHCl
- D. CH₂=CHCl
- **27.** Laquelle est une étape de propagation dans le mécanisme de substitution radicalaire de l'éthane avec le chlore ?
 - A. $Cl_2 \rightarrow 2 \cdot Cl$
 - B. ${}^{\bullet}C_2H_5 + Cl_2 \rightarrow C_2H_5Cl + {}^{\bullet}Cl$
 - C. ${}^{\bullet}C_2H_5 + {}^{\bullet}Cl \rightarrow C_2H_5Cl$
 - D. $C_2H_6 + \bullet Cl \rightarrow C_2H_5Cl + \bullet H$
- **28.** Quels spectres montreraient la différence entre le propan-2-ol, CH₃CH(OH)CH₃ et le propanal CH₃CH₂CHO ?
 - I. Spectre de masse
 - II. Spectre infrarouge
 - III. Spectre RMN ¹H
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III

29. Comment devrait être présentée la différence entre 27.0 ± 0.3 et 9.0 ± 0.2 ?

- A. $18,0 \pm 0,1$
- B. $18,0 \pm 0,3$
- C. $18,0 \pm 0,5$
- D. $18,0 \pm 0,6$

30. Un liquide a été versé dans une éprouvette graduée. Que peut-on déduire du graphique ?

	Gradient (pente)	Ordonnée à l'origine
A.	densité du liquide	quantité de liquide
B.	densité du liquide	masse de l'éprouvette vide
C.	vitesse d'ajout du liquide	quantité de liquide
D.	vitesse d'ajout du liquide	masse de l'éprouvette vide