Statics, T0803

Block 8a, 8b is covered.

To know how much load a structure will carry, one needs to know:

- Internal load of a structure:
 - Normal forces N
 - Torsion force T_x
 - Bending moments M_x, M_z
 - \bullet V_z, V_y
- Material properties
- Geometry

Deformation needs to be also taken into account when considering material properties

Load	Stress	Deformation
------	--------	-------------

Load	Stress	Deformation
N_x	$\sigma_x = rac{N_x}{A}$ valid for uniform distribution stress	
T_x		
M_y, M_z		
V_y,V_z	$\tau_{xz} = \frac{V_z}{A}$ $\tau_{xy} = \frac{V_y}{A}$ assume uniform distribution this is not theoretically correct, never uniform distrib we are however allowed to use this on the exam	

Internal loading of a potato: we know all external and reaction forces, we cut the potato into half, and replace the load applied by one half with a normal force, torsion moment, shear force, bending moment.

As many cuts as needed can be made until we get a finite element structure.

He abbreviates a moment as two opposite forces given enough cuts, bending and shear forces will arise as a result of reaction forces between elements, which means the moment information is encoded within the forces.

 σ are normal forces.

$$\sigma_i = \lim_{A o 0} \left(rac{N_i}{A}
ight) \mid i\in\{x,y,z\}$$

 τ are shear froces.

$$au_{zx} = \lim_{A o 0} rac{V_{x,z}}{A} \ au_{zy} = \lim_{A o 0} rac{V_{y,z}}{A}$$

There are 18 different forces to cause stress, as this is too much we relate some of the forces to each other.

$$egin{align} \Sigma F_x &= 0 \Rightarrow \sigma_x * A - \sigma_x' * A = 0 \ \Sigma F_y &= 0 \Rightarrow \sigma_y = \sigma_y' \ au_{yx} &= au_{yx}' \ au_{xy} &= au_{xy}' \ \end{bmatrix} \ \Sigma M_{z,o} &= 0 \ \end{array}$$

$$egin{aligned} \Sigma M_{z,o} &= 0 \ + au_{xy} * A * d - au_{yx} * A * d \Rightarrow au_{xy} &= au yx \end{aligned}$$

Thus, we have reduced all variables to 6: $\sigma_{x,y,z}, au_{xy}, au_{xz}, au_{yz}$

When there are uncertainties in material properties and dimensions and shapes used, we introduce safety factors to make sure the structure will hold.

$$rac{\sigma_{ ext{max}}}{\gamma_{ ext{material}}} \geq \gamma_{ ext{load}} * rac{N}{A}$$

 $\gamma_{
m material}$ is a standard value given to you.

 $\gamma_{\rm load}$ depends on application, designer will decide.

Differnet types of analysies:

- 1. max load $\sigma_{\rm max}$, force N, area A are known. here, we just check if it is strong enough.
- 2. max load $\sigma_{\rm max}$, area A are known; force N is unknowm. calculate the max load the structure can bear.

- 3. max load $\sigma_{\rm max}$, force N are known; area A is unknown. dimensioning problem, most commonly faced problem.
- 4. force N, area A are known; max load $\sigma_{\rm max}$ is unknown material selection

Dynamics

Impulse
$$J = \int F \, dt = F * t$$