

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen · GERMANY http://www-i2.informatik.rwth-aachen.de/

Prof. Dr. Ir. J.-P. Katoen F. Gretz & F. Sher

Introduction to Model Checking Winter term 2011/2012

Series 1 -

Hand in on October 26th before the exercise class.

Exercise 1 (3 points)

For this exercise we give the following definition:

Definition 1. Deterministic Transition System

Let $T = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

- a) T is called action-deterministic if $|I| \leq 1$ and $|Post(s,\alpha)| \leq 1$ for all states s and actions α .
- b) T is called AP-deterministic if $|I| \leq 1$ and $|Post(s) \cap \{s' \in S \mid L(s') = A\}| \leq 1$ for all states s and $A \in 2^{AP}$.

Now let TS be the transition system depicted on the right.

- a) Give the formal definition of TS.
- b) Specify a finite and an infinite execution of TS.
- c) Decide whether TS is an AP-deterministic or an action-deterministic transition system. Justify your answer!

Exercise 2 (1 points)

We are given three (primitive) processes P_1 , P_2 , and P_3 with shared integer variable x and local registers r_1 , r_2 and r_3 . The program of process P_i is as follows:

Algorithm 1 Process P_i

```
for k_i = 1, ..., 10 do

LOAD(r_i \leftarrow x);

INC(r_i);

STORE(r_i \rightarrow x);

end for
```

That is, P_i executes ten times the assignment x := x+1. The assignment x := x+1 is realized using the three actions LOAD, INC and STORE. Consider now the parallel program:

Algorithm 2 Parallel program P

$$x := 0;$$

$$P_1 \parallel P_2 \parallel P_3$$

Question: Does P have an execution that halts with the terminal value x = 2?

Exercise 3 (4 points)

The following program is a mutual exclusion protocol for two processes due to Pnueli. There is a single shared variable s which is either 0 or 1, and initially 1. Besides, each process has a local Boolean variable s that initially equals 0. The program text for process s (s = 0,1) is as follows:

```
 \begin{array}{ll} \hbox{loop forever do} \\ & \hbox{begin} \\ \\ \hbox{l1:} & \hbox{Noncritical section} \\ \hbox{l2:} & (y_i,s):=(1,i); \\ \hbox{l3:} & \hbox{wait until } ((y_{1-i}=0) \ \lor \ (s\neq i)); \\ \hbox{l4:} & \hbox{Critical section} \\ \hbox{l5:} & y_i:=0 \\ & \hbox{end.} \\ \end{array}
```

Here, the statement $(y_i, s) := (1, i)$; is a multiple assignment in which variable $y_i := 1$ and s := i is a single, atomic step.

Questions:

- (a) Define the program graph of a process in Pnueli's algorithm.
- (b) Determine the transition system for each process.
- (c) Construct their parallel composition.
- (d) Check whether the algorithm ensures mutual exclusion, i.e. both processes are never in their critical section at the same time.
- (e) Check whether the algorithm ensures starvation freedom, i.e. every time a process want to enter its critical section it can eventually do so.

The last two questions may be answered by inspecting the transition system.

Exercise 4 (2 points)

The circuit C_1 describes the layout of a hardware adder that stores a 2-bit binary number represented by the registers r_0 and r_1 . In each cycle, the value of x is added to the currently stored value; y is used as the carry bit:

a) Give the transition system representation TS_1 of the circuit C_1 .

b) Let TS_2 be the transition system of the circuit C_2 . Outline the transition system $TS_1 \otimes TS_2$.

Remark: The operator \otimes denotes the synchronous product in which both systems always perform one step synchronously.