

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Analysis of Active Learning Mechanism Applied to Language Models for Computer Assisted Short Answer Grading

September 26, 2022

Elanton Fernandes

Advisors

Prof. Dr. Paul G. Plöger, M.Sc Tim Metzler

Table of Contents

- 1. Motivation
- 2. Problem Statement
- 3. State of the Art
- 4. Approach
- 5. Evaluation
- 6. Results
- 7. Summary
- 8. Future Work
- 9. Extra Slides

Motivation

In universities with an increase in number of student every semester, the number of tests conducted also increases. This means that:

- The professor spends more time in correcting student exams than preparing for lectures.
- If students are not assigned full scores for on a test, they expect a meaningful feedback from the professor.

Motivation

Consider the following dummy scenario:

- 80 students enrolled in a class.
- Tests are conducted bi-weekly.
- Professor requires 15 minutes to evaluate one student test.
- Total time spent by the professor to evaluate all tests per week is 10 hours.

Problem Statement

- To automate the evaluation of student tests while still keeping the oracle/professor in the loop.
- Allow the assignment of meaningful feedback to student answers indicating their mistakes.

Training cycle

Prediction cycle

Uncertainty Sampling

Uncertainty sampling is a query strategy that queries the instances about which it is least certain how to label. We use uncertainty sampling variant might query the instance whose prediction is the least confident:

$$x_{LC} = argmin_x P(\hat{y}|x;\theta) \tag{1}$$

Where x is the feature, y is the class label prediction, and $\hat{y} = argmax_y P(y|x;\theta)$ is the class label that has the largest posterior probability using model θ .

Feature Extraction: Overview

Feature Extraction: Passage-based method

Feature Extraction: Sentence-based method

Feature Extraction: Chunk-based method

Feature Extraction: RDF-based method

Language Models

Model:	Base model	Number
		Training tuples
all-mpnet-base-v2[?]	microsoft/mpnet-base.	1.17B
all-distilroberta-v1[?]	distilroberta-base	1.12B
all-MiniLM-L12-v2[?]	microsoft/MiniLM-L12-H384-uncased	1.17B
multi-qa-distilbert-cos-v1[?]	distilbert-base	214M
all-MiniLM-L6-v2[?]	nreimers/MiniLM-L6-H384-uncased	1.17B

Table 1: Displays pre-trained language models with their base model used in training and number of training tuples used[?].

Evaluation

Score

Pearsons Correlation

$$\rho(y, \hat{y}) = \frac{cov(y, \hat{y})}{\sigma_y \sigma_{\hat{y}}} \tag{2}$$

RMSE Score

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$
 (3)

Where y represents actual grade and \hat{y} represents predicted grade with σ_y and $\sigma_{\hat{y}}$ computed as the standard deviation of y and \hat{y}

Evaluation

Feedback

Question	What is a variable?
Reference Answer	A location in memory that can store a value.
Student Answer	a value/word that can assume any of a set of values
Feedback A	correct
Feedback B	missing keywords: location in memory
Feedback C	A variable is a location in memory that stores a value

Table 2: Presented survey to participants.

Agreement Score = Participants agreed with most rated feedback/100

Score: Pearson Correlation (Methods)

Dataset	M1	M2	МЗ	M4
Mohler []	0.826	0.791	0.816	0.782
NN Exam []	0.941	0.828	0.561	0.846
AMR Exam []	0.658	0.458	0.640	0.428

(a)

Dataset	M1	M2	M3	M4
Mohler []	0.689	0.627	0.687	0.792
NN Exam []	0.889	0.791	0.638	0.664
AMR Exam []	0.622	0.474	0.593	0.428

(b)

Table 3: Comparison of Pearson Correlation between Random Forest (a) and AdaBoost (b) classifiers. Where M1: Passage-based, M2: Sentence-based, M3:Chunk-based, and M4: RDF-based method.

Score: Pearson Correlation (Language Models)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler []	0.802	0.797	0.796	0.796	0.789
NN Exam []	0.732	0.670	0.705	0.755	0.760
AMR Exam []	0.453	0.518	0.525	0.523	0.503

(a)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler []	0.659	0.673	0.211	0.544	0.499
NN Exam []	0.614	0.653	0.704	0.698	0.605
AMR Exam []	0.502	0.440	0.430	0.508	0.467

(b)

Table 4: Comparison of Pearson Correlation between Random Forest (a) and AdaBoost (b) classifiers with language models (LM).

Score: Root Mean Square Error (Methods)

Dataset	M1	M2	M3	M4
Mohler []	0.893	0.949	0.920	0.942
NN Exam []	0.296	0.520	0.433	0.522
AMR Exam []	0.596	0.716	0.596	0.736

(a)

Dataset	M1	M2	МЗ	M4
Mohler []	1.218	1.226	1.169	0.920
NN Exam []	0.405	0.571	0.495	0.741
AMR Exam []	0.616	0.707	0.630	0.741

(b)

Table 5: Comparison of RMSE score between Random Forest (a) and AdaBoost (b) classifiers with methods (M).

Score: Root Mean Square Error (Language Models)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler []	0.931	0.941	0.941	0.941	0.956
NN Exam []	0.484	0.591	0.558	0.490	0.492
AMR Exam []	0.735	0.680	0.676	0.684	0.698

(a)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler []	1.182	1.163	1.667	1.278	1.363
NN Exam []	0.632	0.582	0.587	0.587	0.650
AMR Exam []	0.692	0.748	0.718	0.682	0.736

(b)

Table 6: Comparison of RMSE score between Random Forest (a) and AdaBoost (b) classifiers with language models (LM).

Feedback: Survey Results

Question	What is a variable?
Reference Answer	A location in memory
	that can store a value.
Student Answer	a value/word that can
	assume any of a set of values
Feedback A	correct
Feedback B	missing keywords:
	location in memory
Feedback C	A variable is a location
	in memory that stores a value

Feature Extraction: Passage-based method

Feature Extraction: Sentence-based method

Feature Extraction: Chunk-based method

Feature Extraction: RDF-based method

