Package 'QRegVCM'

October 12, 2022

Type Package

Version 1.2

Title Quantile Regression in Varying-Coefficient Models

Date 2018-02-26
Author 'Andriyana, Y.' [aut, cre], 'Ibrahim M. A.' [aut], 'Gijbels, I.' [ctb], 'Verhasselt A.' [ctb]
Maintainer ``Andriyana.Y" <y.andriyana@unpad.ac.id></y.andriyana@unpad.ac.id>
Description Quantile regression in varying-coefficient models (VCM) using one particular nonparametric technique called P-splines. The functions can be applied on three types of VCM; (1) Homoscedastic VCM, (2) Simple heteroscedastic VCM, and (3) General heteroscedastic VCM.
Depends R (>= 3.4.0), quantreg, SparseM, truncSP
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-16 10:02:26 UTC
Date/Publication 2018-03-16 10:02:26 UTC R topics documented:

2 AHeVT

AHeVT $AHe\ V(t)$ -approach

Description

The adapted He (1997) approach considering a simple hetersocedastic varying-coefficient model, V(t).

$$Y(t) = \sum_{k=0}^{p} \beta_k(t) X^{(k)}(t) + V(t)\varepsilon(t)$$

.

Usage

AHeVT(VecX, times, subj, X, y, d, tau, kn, degree, lambda, gam)

Arguments

VecX	The representative values for each covariate used to estimate the desired conditional quantile curves.
times	The vector of time variable.
subj	The vector of subjects/individuals.
Χ	The covariate containing 1 as its first component (including intercept in the model)
у	The response vector.
d	The order of differencing operator for each covariate.
tau	The quantiles of interest.
kn	The number of knots for each covariate.
degree	The degree of B-spline basis for each covariate.
lambda	The grid of smoothing parameter to control the trade of between fidelity and penalty term (use a fine grid of lambda).
gam	The power used in estimating the smooting parameter for each covariate (e.g. gam=1 or gam=0.5).

Value

hat_bt50	The median coefficients estimators.
hat_VT	The variability estimator.
С	The estimators of the tau-th quantile of the estimated residuals.
qhat	The conditional quantile curves estimator.

Note

Some warning messages are related to the function rq.fit.sfn.

AHeVT 3

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014b). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. *Manuscript*.

He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 186–192.

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

```
data(PM10)
PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]
y = PM10$PM10[1:200]
times = PM10$hour[1:200]
subj = PM10$day[1:200]
dim = length(y)
x0 = rep(1,200)
x1 = PM10\$cars[1:200]
x2 = PM10$wind.speed[1:200]
X = cbind(x0, x1, x2)
VecX = c(1, max(x1), max(x2))
#### Input parameters ####
#############################
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1/2
AHe = AHeVT(VecX=VecX, times=times, subj=subj, X=X, y=y, d=d, tau=taus,
     kn=kn, degree=degree, lambda=lambdas, gam=gam)
hat_bt50 = AHe$hat_bt50
hat_VT = AHe$hat_Vt
C = AHe C
```

4 AHeVT

```
qhat = AHe$qhat
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
hat_bt0 = hat_bt50[seq(1,dim)]
hat_bt1 = hat_bt50[seq((dim+1),(2*dim))]
hat_bt2 = hat_bt50[seq((2*dim+1),(3*dim))]
i = order(times, hat_VT, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9, hat_bt0, hat_bt1, hat_bt2);
times = times[i]; hat_VT=hat_VT[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
hat_bt0=hat_bt0[i]; hat_bt1=hat_bt1[i]; hat_bt2=hat_bt2[i];
### Plot coefficients
plot(hat_bt0~times, lwd=2, type="1", xlab="hour", ylab="baseline PM10");
plot(hat_bt1~times, lwd=2, type="l", xlab="hour",
    ylab="coefficient of cars");
plot(hat_bt2~times, lwd=2, type="1", xlab="hour",
   ylab="coefficient of wind");
### Plot variability V(t)
plot(hat_VT~times, ylim=c(min(hat_VT), max(hat_VT)), xlab="hour",
    ylab="", type="1", lwd=2);
mtext(expression(hat(V)(t)), side=2, cex=1, line=3)
### Plot conditional quantiles estimators
ylim = c(-4, 6)
plot(qhat1~times, col="magenta", cex=0.2, lty=5, lwd=2, type="l",
    ylim=ylim, xlab="hour", ylab="PM10");
lines(qhat2~times, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~times, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~times, col="brown", cex=0.2, lty=2, lwd=2);
lines(qhat5~times, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~times, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~times, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~times, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~times, col="red", cex=0.2, lty=5, lwd=3)
```

AHeVXT 5

```
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
    expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
    expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
    expression(tau==0.1)), ncol=1, col=c("red", "green", "darkcyan",
    "orange", "black", "brown", "blue", "aquamarine4", "magenta"),
    lwd=c(2,2,3,2,2,3,2,2), lty=c(5,4,3,2,1,2,3,4,5))
```

AHeVXT

AHe V(X(t),t)-approach

Description

The adapted He (1997) approach considering a general hetersocedastic varying-coefficient model, V(X(t),t).

$$Y(t) = \sum_{k=0}^{p} \beta_k(t) X^{(k)}(t) + V(X(t), t) \varepsilon(t)$$

where

 $V(X(t),t) = \sum_{k=0}^{p} \gamma_k(t) X^{(k)}(t)$

.

Usage

AHeVXT(VecX, times, subj, X, y, d, tau, kn, degree, lambda, gam)

Arguments

VecX	The representative values for each covariate used to estimate the desired conditional quantile curves.
times	The vector of the time variable.
subj	The vector of subjects/individuals.
X	The covariate matrix containing 1 as its first column (including intercept in the model).
У	The response vector.
d	The order of the differencing operator for each covariate.
tau	The quantiles of interest.
kn	The number of knots for each covariate.
degree	The degree of the B-spline basis function for each covariate.
lambda	The grid for the smoothing parameter to control the trade of between fidelity and penalty term (use a fine grid of lambda).
gam	The power used in estimating the smooting parameter for each covariate (e.g. gam=1 or gam=0.5).

6 AHeVXT

Value

hat_bt50	The median coefficients estimators.
hat_gt50	The median coefficients estimators for the variability function $V(X(t),t)$.
hat_VXT	The variability estimator.
С	The estimators of the tau-th quantile of the estimated residuals.
ghat	The conditional quantile curves estimator

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014b). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. *Manuscript*.

He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 186–192.

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

AHeVXT 7

```
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1/2
#############################
AHe = AHeVXT(VecX=VecX, times=times, subj=subj, X=X, y=y, d=d,
      tau=taus, kn=kn, degree=degree, lambda=lambdas, gam=gam)
hat_bt50 = AHe$hat_bt50
hat_gt50 = AHe$hat_gt50
hat_VXT = AHe$hat_VXT
C = AHe C
qhat = AHe$qhat
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
hat_bt0 = hat_bt50[seq(1,dim)]
hat_bt1 = hat_bt50[seq((dim+1),(2*dim))]
hat_bt2 = hat_bt50[seq((2*dim+1),(3*dim))]
hat_gt0 = hat_gt50[seq(1,dim)]
hat_gt1 = hat_gt50[seq((dim+1),(2*dim))]
hat_gt2 = hat_gt50[seq((2*dim+1),(3*dim))]
i = order(times, hat_VXT, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9,
hat_bt0, hat_bt1, hat_bt2, hat_gt0, hat_gt1, hat_gt2);
times = times[i]; hat_VXT=hat_VXT[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
hat_bt0=hat_bt0[i]; hat_bt1=hat_bt1[i]; hat_bt2=hat_bt2[i];
hat\_gt0=hat\_gt0[i]; \quad hat\_gt1=hat\_gt1[i]; \quad hat\_gt2=hat\_gt2[i]; \\
### Plot coefficients
plot(hat_bt0~times, lwd=2, type="1", xlab="hour", ylab="baseline PM10");
plot(hat_bt1~times, lwd=2, type="1", xlab="hour",
    ylab="coefficient of cars");
plot(hat_bt2~times, lwd=2, type="1", xlab="hour",
   ylab="coefficient of wind");
```

###

8 CD4

```
plot(hat_gt0~times, lwd=2, type="1", xlab="hour", ylab="baseline PM10");
plot(hat_gt1~times, lwd=2, type="l", xlab="hour",
    ylab="coefficient of cars");
plot(hat_gt2~times, lwd=2, type="1", xlab="hour",
   ylab="coefficient of wind");
### Plot variability V(X(t),t)
plot(hat_VXT~times, ylim=c(min(hat_VXT), max(hat_VXT)), xlab="hour", ylab="");
mtext(expression(hat(V)(X(t),t)), side=2, cex=1, line=3)
### Plot conditional quantiles estimators
ylim = range(qhat1, qhat9)
ylim = c(-4, 6)
plot(qhat1~times, col="magenta", cex=0.2, lty=5, lwd=2, type="l", ylim=ylim,
    xlab="hour", ylab="PM10");
lines(qhat2~times, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~times, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~times, col="brown", cex=0.2, lty=2, lwd=2);
lines(qhat5~times, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~times, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~times, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~times, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~times, col="red", cex=0.2, lty=5, lwd=3)
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
      expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
      expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
      expression(tau==0.1)), ncol=3, col=c("red", "green", "darkcyan", "orange",
      "black","brown","blue","aquamarine4","magenta"), \ lwd=c(2,2,3,2,2,2,3,2,2),\\
      lty=c(5,4,3,2,1,2,3,4,5))
```

CD4

The CD4 dataset

Description

This dataset is a subset of the Multicenter AIDS cohort study. The data contain repeated measurements of physical examinations and CD4 percentages of 283 homosexual men who became HIV-positive between year 1984 and 1991.

Usage

CD4

QRIndiv 9

Format

data frame with 6 variables and 1817 observations.

Details

It contains the following variables:

subj the subject (man) indicator

Time the time in years

Smooking the smoking status

Age age at HIV infection

PreCD4 the pre-infection CD4 percentage

CD4 the CD4 percentage

	QRIndiv	Individual quantile objective function	
--	---------	--	--

Description

The estimation of conditional quantile curves using individual quantile objective function.

Usage

```
QRIndiv(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam)
```

Arguments

VecX	The representative values for each covariate used to estimate the desired conditional quantile curves.
tau	The quantiles of interest.
times	The vector of the time variable.
subj	The vector of subjects/individuals.
X	The covariate matrix containing 1 as its first column (including intercept in the model).
у	The response vector.
d	The order of the differencing operator for each covariate.
kn	The number of knots for each covariate.
degree	The degree of the B-spline basis function for each covariate.
lambda	The grid for the smoothing parameter to control the trade of between fidelity and penalty term (use a fine grid of lambda).
gam	The power used in estimating the smooting parameter for each covariate (e.g. gam=1 or gam=0.5).

QRIndiv

Value

alpha The estimator of the coefficient vector of the basis B-splines.

hat_bt The varying coefficients estimators.

qhat The conditional quantile curves estimator.

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

```
data(PM10)
PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]
y = PM10$PM10[1:200]
times = PM10$hour[1:200]
subj = PM10$day[1:200]
dim = length(y)
x0 = rep(1,200)
x1 = PM10\$cars[1:200]
x2 = PM10$wind.speed[1:200]
X = cbind(x0, x1, x2)
VecX = c(1, max(x1), max(x2))
#### Input parameters ####
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1/2
#############################
```

QRSimul 11

```
qhat = QRIndiv(VecX=VecX, tau=taus, times=times, subj=subj, X=X,
y=y, d=d, kn=kn, degree=degree, lambda=lambdas, gam=gam)$qhat
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
i = order(times, y, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9);
times = times[i]; y = y[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
ylim = range(qhat1, qhat9)
plot(qhat1~times, col="magenta", cex=0.2, lty=5, lwd=2, type="1",
    ylim=ylim, xlab="hour", ylab="PM10");
lines(ghat2~times, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~times, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~times, col="brown", cex=0.2, lty=2, lwd=2);
lines(qhat5~times, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~times, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~times, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~times, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~times, col="red", cex=0.2, lty=5, lwd=3)
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
      expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
      expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
      expression(tau==0.1)), ncol=1, col=c("red", "green", "darkcyan",
      "orange", "black", "brown", "blue", "aquamarine4", "magenta"),
      lwd=c(2,2,3,2,2,2,3,2,2), lty=c(5,4,3,2,1,2,3,4,5))
```

QRSimul

Unweighted simultaneous objective function

Description

The etimation of conditional quantile curves using unweighted simultaneous objective function involving non-crossing constraints.

12 QRSimul

Usage

```
QRSimul(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam)
```

Arguments

VecX	The representative values for each covariate used to estimate the desired condi-

tional quantile curves.

tau The quantiles of interest.

times The vector of the time variable. subj The vector of subjects/individuals.

X The covariate matrix containing 1 as its first column (including intercept in the

model).

y The response vector.

d The order of the differencing operator for each covariate.

kn The number of knots for each covariate.

degree The degree of the B-spline basis function for each covariate.

lambda The grid for the smoothing parameter to control the trade of between fidelity and

penalty term (use a fine grid of lambda).

gam The power used in estimating the smooting parameter for each covariate (e.g.

gam=1 or gam=0.5).

Value

W The weight for each subject corresponding to the length of its repeated measure-

ment.

alpha The estimators of the coefficient vector of the basis B-splines.

hat_bt0 The baseline estimators.

hat_btk The varying coefficient estimators.

qhat_h The estimators of the τ_h -th conditional quantile curves.

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014b). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. *Manuscript*.

QRSimul 13

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

```
data(PM10)
PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]
y = PM10$PM10[1:200]
times = PM10$hour[1:200]
subj = PM10$day[1:200]
dim = length(y)
x0 = rep(1,200)
x1 = PM10\$cars[1:200]
x2 = PM10$wind.speed[1:200]
X = cbind(x0, x1, x2)
VecX = c(1, max(x1), max(x2))
#### Input parameters ####
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1
Simul = QRSimul(VecX=VecX, tau=taus, times=times, subj=subj, X=X, y=y,
       d=d, kn=kn, degree=degree, lambda=lambdas, gam=gam)
hat_bt0 = Simul$hat_bt0
hat_btk = Simul$hat_btk
qhat = Simul$qhat
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
```

QRStepwise

```
i = order(times, y, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9);
times = times[i]; y = y[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
ylim = range(qhat1, qhat9)
ylim = c(-4, 6)
plot(qhat1~times, col="magenta", cex=0.2, lty=5, lwd=2, type="l", ylim=ylim,
xlab="hour", ylab="PM10");
lines(qhat2~times, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~times, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~times, col="brown", cex=0.2, lty=2, lwd=2);
lines(qhat5~times, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~times, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~times, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~times, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~times, col="red", cex=0.2, lty=5, lwd=3)
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
    expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
    expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
    expression(tau==0.1)), ncol=1, col=c("red", "green", "darkcyan",
    "orange", "black", "brown", "blue", "aquamarine4", "magenta"),
    1wd=c(2,2,3,2,2,2,3,2,2), 1ty=c(5,4,3,2,1,2,3,4,5))
```

QRStepwise

Stepwise procedure

Description

The etimation of conditional quantile curves step-by-step involving the non-crossing constraints.

Usage

```
QRStepwise(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam)
```

Arguments

VecX The representative values for each covariate used to estimate the desired condi-

tional quantile curves.

tau The quantiles of interest.

QRStepwise 15

times	The vector of the time variable.
subj	The vector of subjects/individuals.
X	The covariate matrix containing 1 as its first column (including intercept in the model).
у	The response vector.
d	The order of the differencing operator for each covariate.
kn	The number of knots for each covariate.
degree	The degree of the B-spline basis function for each covariate.
lambda	The grid for the smoothing parameter to control the trade of between fidelity and penalty term (use a fine grid of lambda).
gam	The power used in estimating the smooting parameter for each covariate (e.g. gam=1 or gam=0.5).

Value

alpha	The estimators of the coefficient vector of the basis B-splines.
hat_bt	The varying-coefficient estimators.
W	The weight for each subject corresponding to the length of its repeated measurement
qhat	The conditional quantile curves estimator.

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014b). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. *Manuscript*.

Wu, Y. and Liu, Y. Stepwise multiple quantile regression estimation using non-crossing constraints. *Statistics and Its Interface* 2, (2009), 299–310.

See Also

rq.fit.sfn as.matrix.csr truncSP

16 QRStepwise

```
data(PM10)
PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]
y = PM10$PM10[1:200]
time_ub = PM10$hour[1:200]
subj = PM10$day[1:200]
dim = length(y)
x0 = rep(1,200)
x1 = PM10$cars[1:200]
x2 = PM10$wind.speed[1:200]
X = cbind(x0, x1, x2)
VecX = c(1, max(x1), max(x2))
#### Input parameters ####
#############################
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1
####################################
Step = QRStepwise(VecX=VecX, tau=taus, time_ub, subj, X, y, d, kn, degree,
       lambda=lambdas, gam=gam)
qhat = Step$qhat
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
i = order(time_ub, y, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9);
time_ub = time_ub[i]; y = y[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
```

QRWSimul 17

```
ylim = range(qhat1, qhat9)
ylim = c(-4, 6)
plot(qhat1~time_ub, col="magenta", cex=0.2, lty=5, lwd=2, type="l", ylim=ylim,
    xlab="hour", ylab="PM10");
lines(qhat2~time_ub, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~time_ub, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~time_ub, col="brown", cex=0.2, lty=2, lwd=2);
lines(ghat5~time_ub, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~time_ub, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~time_ub, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~time_ub, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~time_ub, col="red", cex=0.2, lty=5, lwd=3)
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
    expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
    expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
    expression(tau==0.1)), ncol=1, col=c("red", "green", "darkcyan",
    "orange", "black", "brown", "blue", "aquamarine4", "magenta"),
    lwd=c(2,2,3,2,2,2,3,2,2), lty=c(5,4,3,2,1,2,3,4,5))
```

QRWSimul

Weighted simultaneous objective function

Description

The etimation of conditional quantile curves using weighted simultaneous objective function involving non-crossing constraints.

Usage

```
QRWSimul(VecX, tau, times, subj, X, y, d, kn, degree, lambda, gam)
```

Arguments

VecX	The representative values for each covariate used to estimate the desired conditional quantile curves.
tau	The quantiles of interest.
times	The vector of the time variable.
subj	The vector of subjects/individuals.
Χ	The covariate matrix containing 1 as its first column (including intercept in the model).
у	The response vector.
d	The order of the differencing operator for each covariate.

18 QRWSimul

kn ′	I'he	num	ber	of.	knots	for	each	covariate.	

degree The degree of the B-spline basis function for each covariate.

lambda The grid for the smoothing parameter to control the trade of between fidelity and

penalty term (use a fine grid of lambda).

gam The power used in estimating the smooting parameter for each covariate (e.g.

gam=1 or gam=0.5).

Value

W The weight for each subject corresponding to the length of its repeated measure-

ment

alpha The estimators of the coefficient vector of the basis B-splines.

hat_bt0 The baseline estimators.

hat_btk The varying coefficient estimators.

qhat_h The estimators of the τ_h -th conditional quantile curves.

Wtau The weight of each order of quantile τ_h .

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Yudhie Andriyana

References

Andriyana, Y., Gijbels, I., and Verhasselt, A. P-splines quantile regression estimation in varying coefficient models. *Test* 23, 1 (2014a),153–194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014b). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. *Manuscript*.

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

```
data(PM10)

PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]

y = PM10$PM10[1:200]
times = PM10$hour[1:200]
subj = PM10$day[1:200]
dim = length(y)
x0 = rep(1,200)
```

QRWSimul 19

```
x1 = PM10\$cars[1:200]
x2 = PM10$wind.speed[1:200]
X = cbind(x0, x1, x2)
VecX = c(1, max(x1), max(x2))
#############################
#### Input parameters ####
kn = c(10, 10, 10)
degree = c(3, 3, 3)
taus = seq(0.1, 0.9, 0.1)
lambdas = c(1,1.5,2)
d = c(1, 1, 1)
gam = 1
QRWSimul = QRWSimul(VecX=VecX, tau=taus, times=times, subj=subj, X=X, y=y,
          d=d, kn=kn, degree=degree, lambda=lambdas, gam=gam)
hat_bt0 = QRWSimul$hat_bt0
hat_btk = QRWSimul$hat_btk
qhat = QRWSimul$qhat
hat_Vt = QRWSimul$hat_Vt
Wtau = QRWSimul$Wtau
qhat1 = qhat[,1]
qhat2 = qhat[,2]
qhat3 = qhat[,3]
qhat4 = qhat[,4]
qhat5 = qhat[,5]
qhat6 = qhat[,6]
qhat7 = qhat[,7]
qhat8 = qhat[,8]
qhat9 = qhat[,9]
i = order(times, y, qhat1, qhat2, qhat3, qhat4, qhat5, qhat6, qhat7,
    qhat8, qhat9, hat_Vt);
times = times[i]; y = y[i]; qhat1 = qhat1[i]; qhat2=qhat2[i];
qhat3=qhat3[i]; qhat4=qhat4[i]; qhat5=qhat5[i]; qhat6=qhat6[i];
qhat7=qhat7[i]; qhat8=qhat8[i]; qhat9=qhat9[i];
hat_Vt = hat_Vt[i]
#Variability function V(t)
plot(hat_Vt~times, ylim=c(min(hat_Vt), max(hat_Vt)), xlab="hour",
   ylab="", type="1", lwd=2);
mtext(expression(hat(V)(t)), side=2, cex=1, line=3)
```

20 simul_shapetest

```
# Plot conditional quantiles estimators
```

```
ylim = range(qhat1, qhat9)
ylim = c(-4, 6)
plot(qhat1~times, col="magenta", cex=0.2, lty=5, lwd=2, type="l", ylim=ylim,
    xlab="time since infection", ylab="CD4 percentage after infection");
lines(qhat2~times, col="aquamarine4", cex=0.2, lty=4, lwd=2);
lines(qhat3~times, col="blue", cex=0.2, lty=3, lwd=3);
lines(qhat4~times, col="brown", cex=0.2, lty=2, lwd=2);
lines(qhat5~times, col="black", cex=0.2, lty=1, lwd=2);
lines(qhat6~times, col="orange", cex=0.2, lty=2, lwd=2)
lines(qhat7~times, col="darkcyan", cex=0.2, lty=3, lwd=3);
lines(qhat8~times, col="green", cex=0.2, lty=4, lwd=2);
lines(qhat9~times, col="red", cex=0.2, lty=5, lwd=3)
legend("bottom", c(expression(tau==0.9), expression(tau==0.8),
    expression(tau==0.7), expression(tau==0.6), expression(tau==0.5),
    expression(tau==0.4), expression(tau==0.3), expression(tau==0.2),
    expression(tau==0.1)), ncol=1, col=c("red", "green", "darkcyan",
    "orange", "black", "brown", "blue", "aquamarine4", "magenta"),
    1wd=c(2,2,3,2,2,2,3,2,2), 1ty=c(5,4,3,2,1,2,3,4,5))
```

simul_shapetest

Testing the shape of a functional coefficient in the median and/or the variabilty function

Description

Testing a functional coefficient of a covariate in the median and/or the variability function, considering the general hetersocedastic varying-coefficient model in Gijbels etal (2017a).

$$Y(t) = \sum_{k=0}^{p} \beta_k(t) X^{(k)}(t) + \gamma(t) \exp(\sum_{k=1}^{p} \theta_k(t) X^{(k)}(t)) \epsilon(t).$$

Usage

Arguments

times	The vector of time variable.
subj	The vector of subject indicator.
X	The covariates, containing 1 as its first component (including intercept in the model).
У	The response vector.

simul_shapetest 21

d The order of differencing operator for each covariate.

kn The number of knot intervals for each covariate.

degree The degree of B-spline basis for each covariate.

1 The grid of smoothing parameter to control the trade between fidelity and penalty

term (use a fine grid of lambda).

gam The power used in estimating the smooting parameter for each covariate (e.g.

gam=1 or gam=0.5).

The covariate indicator for which the shape test is interested.

nr.bootstrap.samples

The number of bootstrap samples used.

seed The seed for the random generator in the bootstrap resampling.

test The requested type of testing, it consists two arguments: the first argument for

median and the second for the variability function. "c" stands for constancy, "m" stands for monotonicity, and "conv" stands for convexity. insert NA to the other

argument when only for median/ variability function is needed..

omega A user defined constraint parameter for monotonicity or convexity (in Equation

(7) of Gijbels etal (2017a)), chosen as large as possible.

Value

result The testing procedures.

P The p-values.

GR The test statistics for the given data.

Gb The bootstrap test statistics.

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Mohammed Abdulkerim Ibrahim

References

Andriyana, Y. and Gijbels, I. & Verhasselt, A. (2014). P-splines quantile regression estimation in varying coefficient models. *Test*, 23, 153-194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2017). Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity. *Statistical Papers*, DOI:10.1007/s00362-016-0847-7

Gijbels, I., Ibrahim, M. A., and Verhasselt, A. (2017a). Shape testing in quantile varying coefficient models with heteroscedastic error. *Journal of Nonparametric Statistics*, 29(2):391-406.

Gijbels, I., Ibrahim, M. A., and Verhasselt, A. (2017b). Testing the heteroscedastic error structure in quantile varying coefficient models. *The Canadian Journal of Statistics*, DOI:10.1002/cjs.11346.

He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 186-192.

See Also

```
rq.fit.sfn as.matrix.csr truncSP
```

```
data(wages)
y = wages$resp ## the hourly wage
times = wages$exper ## the duration of work experience in years
subj = wages$id ## subject indicator (individual)
dim=length(y) ## number of rows in the data = 6402
x0 = rep(1,dim) ## for intercept
### the covariates
## creating 2 dummy variables for the race covariate
wages$r1[wages$race=="black"]=1
wages$r1[wages$race!="black"]=0
wages$r2[wages$race=="hisp"]=1
wages$r2[wages$race!="hisp"]=0
x1 = wages$r1 # stands for black
x2 = wages$r2 # stands for hispanic
x3 = wages$hgc ## the highest grade completed by the indiviadual
X = cbind(x0, x1, x2, x3) ## the covariate matrix
px=ncol(X)
####################################
### Input parameters ####
##############################
lambda = 1 # we used 10^seq(-2, 1, 0.1) in Gijbels etal (2017a)
kn = rep(1,px) \# used rep(5,px) in Gijbels etal (2017a)
degree = rep(2,px) # the degree of splines
d = rep(1,px)
gam=0.25
nr.bootstrap.samples=2 # used 200 in Gijbels etal (2017a)
################################
test1=simul_shapetest(times=times, subj=subj, X=X, y=y, d=d, kn=kn,
                     degree=degree, lambda=lambda, gam=gam, v=1,
                     nr.bootstrap.samples=nr.bootstrap.samples, seed=seed,
                     test=c("c",NA),omega=10^3)
#### Testing results
test1$result #the testing procedures
test1$P ## p-values
test1$R ## test statistics
```

Description

Estimating and Testing the variability function using the following hetersocedastic varying-coefficient model

$$Y(t) = \sum_{k=0}^{p} \beta_k(t) X^{(k)}(t) + V(X(t), t) \epsilon(t)$$

where V(X(t),t) one of the six variability function in Gijbels etal (2017).

Usage

Arguments

times	The vector of time variable.		
subj	The vector of subjects/individuals.		
X	The covariate containing 1 as its first component (including intercept in the model).		
у	The response vector.		
d	The order of differencing operator for each covariate.		
kn	The number of knot intervals for each covariate.		
degree	The degree of B-spline basis for each covariate.		
lambda	The grid of smoothing parameter to control the trade between fidelity and penalty term (use a fine grid of lambda).		
gam	The power used in estimating the smooting parameter for each covariate (e.g. gam=1 or gam=0.5).		
tau	The quantiles of interest.		
nr.bootstrap.samples			
	The number of bootstrap samples used.		
seed	The seed for the random generator in the bootstrap resampling.		
test	To request for testing the specific shape of the variability function ("Y" for test and "N" for only estimation of the parameters, the default is "Y").		
mode1	The variability model used to estimate the quantile of errors (the default is 4, model 4).		

Value

est_median	the median estimator.
hat_bt50	The median coefficients estimators.
qhat5_s2_m0	The variability (model 0) estimator.
qhat5_s2_m1	The variability (model 1) estimator.
qhat5_s2_m2	The variability (model 2) estimator.

qhat5_s2_m3	The variability (model 3) estimator.
qhat5_s2_m4	The variability (model 4) estimator.
qhat5_s2_m5	The variability (model 5) estimator.
hat_btV_0	The variability coefficients (model 0) estimators.
hat_btV_1	The variability coefficients (model 1) estimators.
hat_btV_2	The variability coefficients (model 2) estimators.
hat_btV_3	The variability coefficients (model 3) estimators.
hat_btV_4	The variability coefficients (model 4) estimators.
hat_btV_5	The variability coefficients (model 5) estimators.
С	The estimators of the tau-th quantile of the estimated residuals.
comp	The pairwise comparisons for testing the variabilty function.
P	The p-values.
GR	The test statistics for the given data.
Gb	The bootstrap test statistics.

Note

Some warning messages are related to the function rq.fit.sfn.

Author(s)

Mohammed Abdulkerim Ibrahim

References

Andriyana, Y. and Gijbels, I. & Verhasselt, A. (2014). P-splines quantile regression estimation in varying coefficient models. *Test*, 23, 153-194.

Andriyana, Y., Gijbels, I. and Verhasselt, A. (2017). Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity. *Statistical Papers*, DOI:10.1007/s00362-016-0847-7.

Gijbels, I., Ibrahim, M. A., and Verhasselt, A. (2017). Testing the heteroscedastic error structure in quantile varying coefficient models. *The Canadian Journal of Statistics*, DOI:10.1002/cjs.11346.

He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 186-192.

See Also

rq.fit.sfn as.matrix.csr

```
##### The real data Example in Section S3 of the supplementary material
PM10 = PM10[order(PM10$day,PM10$hour,decreasing=FALSE),]
y = PM10$PM10 ## the logarithm of the concentration of PM10
times = PM10$hour ## the time in hours
subj = PM10$day ## subject indicator (day)
dim=length(y) ## number of rows in the data = 500
x0 = rep(1,dim) ## for intercept
# the covariates
x1 = PM10$cars ## logarithm of number of cars per hour
x2 = PM10$wind.speed ## the wind speed (in meters/second)
x3 = PM10$temp ## the temperature (in degree Celsius)
X = cbind(x0, x1, x2, x3) ## the covariate matrix
px=ncol(X)
###################################
### Input parameters ####
####################################
lambda = 1 # used 10^seq(-2, 1, 0.1) in Gijbels etal (2017)
kn = rep(3,px) \# used rep(10,px) in Gijbels etal (2017)
degree = rep(3,px)
d = rep(1,px)
gam=0.25
nr.bootstrap.samples= 4 # used 200 in Gijbels etal (2017)
seed=110
taus = 0.1
test1=test_variability(times=times, subj=subj, X=X, y=y, d=d, kn=kn,
                     degree=degree, lambda=lambda, gam=gam, tau=taus,
                     nr.bootstrap.samples=nr.bootstrap.samples,seed=seed,
                     test="Y", model=4)
#### Testing results
test1$comp #the comparisons
test1$P ## p-values
test1$GR ## test statistics
### estimation results
qhat5_s2_m4=test1$qhat5_s2_m4
qhat5_s2_m5=test1$qhat5_s2_m5
qhat5_s2_m0=test1$qhat5_s2_m0*rep(1,dim)
gamma0=test1$hat_btV_4[1:dim]
gamma1=test1$hat_btV_4[(dim+1):(dim*2)]
gamma2=test1$hat_btV_4[(dim*2+1):(dim*3)]
gamma3=test1$hat_btV_4[(dim*3+1):(dim*4)]
i = order(times, qhat5_s2_m4, qhat5_s2_m5, qhat5_s2_m0,gamma0,gamma1,
gamma2,gamma3);
```

```
times_o = times[i]; qhat5_s2_m4_o=qhat5_s2_m4[i];
qhat5_s2_m5_o=qhat5_s2_m5[i]; qhat5_s2_m0_o=qhat5_s2_m0[i]; gamma0_o=gamma0[i];
gamma1_o=gamma1[i]; gamma2_o=gamma2[i];gamma3_o=gamma3[i]
##### variability functions plots
plot(qhat5_s2_m4_o~times_o, col="magenta", cex=0.2,
xlab="hour", ylab="estimated variability function")
lines(qhat5_s2_m5_o~times_o, col="red", cex=0.2, lty=1, lwd=2);
lines(qhat5_s2_m0_o~times_o, col="black", cex=0.2, lty=5, lwd=2);
legend("topleft", c("Model 4", "Model 5", "Model 0"), ncol=1,
       col=c("magenta","red","black"), lwd=c(1,2,2), lty=c(3,1,5))
### Plot of coefficients for variability function
plot(gamma0_o~times_o, lwd=2, type="l", xlab="hour",
ylab=expression(hat(gamma)(T)));
plot(gamma1_o~times_o, lwd=2, type="l", xlab="hour",
ylab="coefficient of logarithm of number of cars per hour");
plot(gamma2_o~times_o, lwd=2, type="l", xlab="hour",
ylab="coefficient of wind speed");
plot(gamma3_o~times_o, lwd=2, type="1", xlab="hour",
ylab="coefficient of temperature")
## Not run:
############ The real data Example in Section 6 of Gijbels etal (2017)
data(CD4)
subj = CD4$subj ## subject indicator (a man)
dim = length(subj) ## number of rows in the data = 1817
y = CD4$CD4 ## the CD4 percentage
X0 = rep(1, dim) ## the intercept
X1 = CD4$Smooking ## the smoking status
X2 = CD4$Age ## age at HIV infection
X3 = CD4$PreCD4 ## the pre-infection CD4 percentage
times = CD4$Time ## the time in years
X = cbind(X0, X1, X2, X3) ## the covariate matrix
px=ncol(X)
lambdas = c(0.01,1,10) # used 10^seq(-2, 1, 0.1) in Gijbels etal (2017)
kn = rep(10,px) # the number of internal knots for each covariate
degree = rep(3,px) # the degree of splines
d = rep(1,px) ## The differencing order in the penalty term for each covariate
gam=0.25 ## the smooting parameter for each covariate
nr.bootstrap.samples=100 ## used 200 in Gijbels etal (2017)
seed=110 ## the seed for the random generator in the bootstrap resampling
taus = seq(0.1, 0.9, 0.2)
test2=test_variability(times=times, subj=subj, X=X, y=y, d=d, kn=kn,
                       degree=degree, lambda=lambdas, gam=gam,tau=taus,
                       nr.bootstrap.samples=nr.bootstrap.samples, seed=seed,
                       test="Y",model=4)
```

wages 27

```
test2$comp
test2$P ## p-values
test2$GR ## test statistics
### estimation results
  qhat5_s2_m4=test2$qhat5_s2_m4
  qhat5_s2_m5=test2$qhat5_s2_m5
  qhat5_s2_m0=test2$qhat5_s2_m0*rep(1,dim)
  gamma0=test2$hat_btV_4[1:dim]
  gamma1=test2$hat_btV_4[(dim+1):(dim*2)]
  gamma2=test2$hat_btV_4[(dim*2+1):(dim*3)]
  gamma3=test2$hat_btV_4[(dim*3+1):(dim*4)]
i = order(times, qhat5_s2_m4, qhat5_s2_m5, qhat5_s2_m0,gamma0,gamma1,
            gamma2,gamma3);
\label{times_o} {\tt times[i]; qhat5\_s2\_m4\_o=qhat5\_s2\_m4[i]; qhat5\_s2\_m5\_o=qhat5\_s2\_m5[i]}
qhat5_s2_m0_o=qhat5_s2_m0[i]; gamma0_o=gamma0[i]; gamma1_o=gamma1[i];
gamma2_o=gamma2[i];gamma3_o=gamma3[i]
##### variability functions plots
plot(qhat5_s2_m4_o~times_o, col="black", cex=0.2, xlab="time since infection",
ylab="estimated variability function")
lines(qhat5_s2_m5_o~times_o, col="red", cex=0.2, lty=5, lwd=2);
lines(qhat5_s2_m0_o~times_o, col="magenta", cex=0.2, lty=1, lwd=2);
legend("topleft", c("Model 4", "Model 5", "Model 0"),
         ncol=1, col=c("black","red","magenta"),
         lwd=c(1,2,2), lty=c(3,5,1))
### Plot of coefficients for variability function
plot(gamma0_o~times_o, lwd=2, type="l", xlab="time since infection",
ylab=expression(hat(gamma)(T)));
plot(gamma1_o~times_o, lwd=2, type="l", xlab="time since infection",
ylab="coefficient of smoking status");
plot(gamma2_o~times_o, lwd=2, type="l", xlab="time since infection",
ylab="coefficient of age");
plot(gamma3_o~times_o, lwd=2, type="l", xlab="time since infection",
ylab="coefficient of pre-infection CD4")
## End(Not run)
```

wages

The wages dataset

Description

This dataset is taken from the National Longitudinal Survey of Youth, collected in U.S.A. The data contain repeated measurements for 888 individuals of age 14 - 17 years old.

Usage

wages

28 wages

Format

a data. frame with 7 variables and 6402 observations.

Details

It contains the following variables:

id the subject (individual) indicator

exper the duration of work experience in years

hgc the highest grade completed by the indiviadual

race the race of the individual: black, hispanic and white

resp the hourly wage

r1 the dummy variable for black individuals

r2 the dummy variable for hispanic individuals

References

Murnane, R. J., Willett, J. B., and Boudett, K. P. (1999). Do male dropouts benefit from obtaining a GED, postsecondary education, and training? *Evaluation Review*, 23(5):475-503.

Index

```
\ast datasets
     CD4, 8
     wages, 27
AHeVT, 2
AHeVXT, 5
as.matrix.csr, 3, 6, 10, 13, 15, 18, 22, 24
CD4, 8
QRIndiv, 9
{\tt QRSimul}, {\tt 11}
QRStepwise, 14
{\tt QRWSimul},\, {\color{red}17}
rq.fit.sfn, 3, 6, 10, 13, 15, 18, 21, 22, 24
\verb|simul_shapetest|, 20|
test\_variability, 22
truncSP, 3, 6, 10, 13, 15, 18, 22
wages, 27
```