PROBABILITY 6: Multiplication Rule

In this video I will review the Multiplication Rule. With the Multiplication Rule you can find the probability of multiple separate events.

Multiplication Rule

The formula for the Multiplication Rule is $P(A \text{ and } B) = P(A) \times P(B)$ or $P(A \cap B) = P(A) \times P(B)$. Remember from the last video that intersection or \cap is the same as and.

I'll show you how to find probabilities using 1st Independent Events and then Dependent Events.

Probability of 2 Tails

When calculating the probability of flipping a coin twice and getting 2 tails we use the probability of flipping a tail. If you flip a coin once you have a 50% chance of getting a tail. So if we use our formula we have :

 $P(A \cap B) = .5 \times .5 = .25 \text{ or } 25\%$ chance of flipping a tail twice.

This is an independent event because each time we flip a coin, previous flips have no effect.

Probability of 4 Tails

To find the probability of more than one flip we just keep multiplying for each flip. So to find the probability of flipping 4 tails in a row we use:

 $P(A \cap B) = .5 \times .5 \times .5 \times .5 = .0625$ or 6.25% chance of flipping 4 tails in a row.

Other Independent Event Probabilities

Some people think that Independent Events are always 50% probabilities, but that isn't true. Lionel Messi scores 24.9% of the goals he attempts. Each time he attempts a goal however the probability that he will score does not change.

However if you were going to calculate the probability that he will make 2 goals in a row the odds decrease as we see here :

 $P(A \cap B) = .249 \times .249 = .062 = 6.2\%$ Probability of Making 2 Shots in a Row

Find Probability with Dependent Events

Probabilities related to drawing cards that are not replaced would be an example of a dependent event. The reason this is true is because every time you draw a card we decrease the total number of cards in the deck.

Probability of Drawing a King and a Queen

Here we will calculate the probability of drawing both a King and Queen from 2 cards dealt.

Probability with Replacement

If we replace the card dealt each time both probabilities are the same :

 $P(A \text{ and } B) = 4/52 \times 4/52 = 0.0059 \text{ or } .59\%$

Probability without Replacement

If we don't replace the card dealt each time probabilities change:

 $P(A \text{ and } B) = 4/52 \times 4/51 = 0.006 \text{ or } .60\%$

Probability of Drawing 4 of a Kind

Now we'll get more complicated by finding the probability of drawing 4 of a kind from a 5 card draw without replacement. We start by not caring what the 1st card is:

P(4OK) = 52/52

We continue by trying to trying to match the 1st card drawn. We now have both 1 fewer card and 1 fewer matching card :

 $P(4OK) = 52/52 \times 3/51$

Again we decrement both the denominator and numerator 2 more times :

 $P(4OK) = 52/52 \times 3/51 \times 2/50 \times 1/49$

We don't care what the final card is:

 $P(4OK) = 52/52 \times 3/51 \times 2/50 \times 1/49 \times 48/48$

Now we have to think about what if we drew cards in a different order like this for example if we are matching for 8:8, 7, 8, 8, 8 or:

 $P(4OK) = 52/52 \times 51/51 \times 3/50 \times 2/49 \times 1/48$

Well 1st we would get rid of the 1 values and then we will multiply by a Combinatoric Number. I'll cover it in more detail later, but basically we are calculating for how many ways we have to pick an element. Here we have 5 for 5 cards. This provides are target probability:

 $P(4OK) = 3/51 \times 2/50 \times 1/49 \times 5/1 = 30/124950 = 1/4165 = .02\%$ Probability of Drawing 4 of a Kind out of a 5 Card Draw.

That is all for now. In the next video I'll cover Bayes' Theorem which finds probabilities using previously occurring event data.