## 108-2 流行病學實習課期末上機考 2020 年 6 月 17 日

姓名:梁嫚芳

學號: b07801003

系級:公衛二

## ※注意事項

請於上方填上姓名、學號和系級。每題答案需闡釋解釋結果與結論,並附上 SAS code 與表格,最後上傳 PDF 檔至 NTU COOL 作業區。

- → 六題任選四題作答,完成六題者其中兩題作為加分用。盡可能寫答案,依據寫的答案正確性斟酌給分。
- 1. 肥胖與心血管疾病是社區健康促進的重點預防疾病,為落實社區預防醫學的理念,應先了解社區身體質量指數(BMI)各組之盛行狀況,再配合適當的宣導介入措施。社區資料被儲存成兩個檔案,請協助將資料合併後,以圓餅圖呈現身體質量指數(BMI)各組的盛行狀況。(附上圓餅圖結果,並敘述 BMI 各組盛行率)(25%)

## 身體質量指數(BMI)各組分類標準:

• 過輕:BMI<18.5

• 正常:18.5≦BMI<24

• 過重:24≦BMI<27

• 肥胖:≧27

PERCENT of bmig



• 過輕:BMI<18.5 盛行率=5.8%

• 正常:18.5≦BMI<24 盛行率=50.87%

• 過重:24≦BMI<27 盛行率=27.07%

• 肥胖: ≥27 盛行率=16.27%

```
/*1*/
PROC SORT data=data1;
by ID;
RUN;
PROC SORT data=data2;
by ID;
RUN;
DATA data3;
merge data1 data2;
by ID;
run;
data datab; set data3;
bmi=weight/((height/100) **2);
if bmi<18.5 then bmig=0;
else if bmi<24 then bmig=1;</pre>
else if bmi<27 then bmig=2;</pre>
else bmig=3;
run;
proc gchart data=datab;
pie bmig/discrete type=percent;
run;
quit;
```

2. 除了調查身體質量指數各組的盛行率,公衛師想透過有、無罹患血管疾病的居民心其年齡和高血壓病史,以規劃健康促進計畫。依資料型態分別用平均值、標準差、樣本數及百分比呈現,並做檢定比較有無心血管疾病兩組是否具統計學上差異。 (不用呈現 SAS 分析圖表,完成下表並附上 SAS code 即可,四捨五入至小數第二位)(25%)

無心血管疾病 有心血管疾病 (n= 1399 , 93.27 (n= 101 , 6.73 p-value %) %)

| 年龄, mean (s.d) | 45.85 | (15.14) | 57.82 (16.90 ) | < 0.0001 |
|----------------|-------|---------|----------------|----------|
| 罹患高血壓,n(%)     | 205   | (13.67) | 40 (2.67)      | < 0.0001 |

```
/*2*/
proc freq data=datab;
table cvd;
run;
proc means data=datab mean std;
class cvd;
var age;
run;
proc freq data=datab;
table cvd*htn;
run;
proc ttest data=datab alpha=0.05;
class cvd;
var age;
run;
proc freq data=datab;
table cvd*htn/chisq expected fisher;
run;
```

- 3. 請協助瞭解該社區居民心血管疾病盛行狀況和 BMI (分組)的關係,就目前所知,年齡、性別、高血壓病史可能為干擾因子。心血管疾病為二分類變項,利用 logistic regression (羅吉斯回歸模型) 校正干擾因子以計算相關強度,回答以下問題:
  - (1) 解釋過輕和肥胖組的結果和結論。
  - (2) 解釋年齡的結果和結論。

請附上 SAS 分析回歸係數、OR 報表結果。BMI 分組請以"正常"做為參考組、性別以"女性"做為參考組,高血壓病史請以"正常"做為參考組進行分析。(25%)

1)

過輕:

H0:過輕組的迴歸係數=0

結論:P=0.7577>alpha(0.05),不拒絕 h0,與 0 未達統計顯著差異。控制其他變項後,過輕組較正常組的罹患心血管疾病的 OR 平均增加 0.842 倍

(95%CI=(0.283,2.509)包含 1, OR 與 1 未達統計顯著差異)。 肥胖:

H0:肥胖組的迴歸係數=0

結論:P=0.6708>alpha(0.05),不拒絕 h0,與 0 未達統計顯著差異。控制其他變項後,肥胖組較正常組的罹患心血管疾病的 OR 平均增加 0.879 倍(95%CI=(0.484,1.595)包含 1, OR 與 1 未達統計顯著差異)。

| Analysis of Maximum Likelihood Estimates                         |           |     |         |           |                 |          |                    |        |        |  |
|------------------------------------------------------------------|-----------|-----|---------|-----------|-----------------|----------|--------------------|--------|--------|--|
| Parame                                                           | ter       |     | DF      | Estimate  | Standar<br>Erro | - 1      | Wa<br>Chi-Squai    |        | > ChiS |  |
| Intercept                                                        |           | 1   | -4.6297 | 0.4175    |                 | 122.988  | 31                 | <.0001 |        |  |
| bmig                                                             | bmig 0    |     | 1       | -0.1719   | 0.557           | 0        | 0.095              | 52     | 0.7577 |  |
| bmig                                                             | omig 2    |     | 1       | 0.0178    | 0.247           | 8        | 0.005              | 51     | 0.9429 |  |
| bmig                                                             |           | 3   | 1       | -0.1293   | 0.304           | 1        | 0.180              | 07     | 0.6708 |  |
| age                                                              |           |     | 1       | 0.0392    | 0.0074          | 4        | 27.770             | 06     | <.0001 |  |
| sex                                                              |           | 1   | 1       | -0.4774   | 0.221           | 2        | 4.65               | 79     | 0.0309 |  |
| htn                                                              | ntn 1     |     | 1       | 0.7642    | 0.246           | 0        | 9.650              | 00     | 0.0019 |  |
|                                                                  | Percent C |     |         |           | 1               | _        | omers' D<br>Samma  | 0.465  |        |  |
| Association of Predicted Probabilities and<br>Observed Responses |           |     |         |           |                 |          |                    |        |        |  |
| Percent Di                                                       |           |     |         |           | 0.0             |          |                    | 0.058  |        |  |
| Pairs                                                            |           |     |         |           | 141299          | 141299 с |                    | 0.733  |        |  |
|                                                                  |           |     |         |           |                 |          |                    |        |        |  |
| 00                                                               | lds       | Rat | io Es   | timates a | ind Wald        | Co       | onfidence          | Interv | als    |  |
| Effect                                                           |           |     |         | Unit      | Estimate        | :        | 95% Confidence Lin |        | Limits |  |
| bmig 0 vs 1                                                      |           |     | 1.0000  | 0.842     | 2               | 0.283    |                    | 2.509  |        |  |
| bmig 2 vs 1                                                      |           |     | 1.0000  | 1.018     | 3               | 0.626    | :                  | 1.654  |        |  |
| bmig 3 vs 1                                                      |           |     | 1.0000  | 0.879     | 9               | 0.484    |                    | 1.595  |        |  |
| age                                                              |           |     | 1.0000  | 1.040     | )               | 1.025    | 5                  | 1.055  |        |  |
| sex 1 vs 0                                                       |           |     | 1.0000  | 0.620     | )               | 0.402    | !                  | 0.957  |        |  |
| htn 1 vs 0                                                       |           |     | 1.0000  | 2.147     | ,               | 1.326    |                    | 3.478  |        |  |

2)

## H0:年龄的迴歸係數=0

結論:P=<0.0001<alpha(0.05),不拒絕 h0,與0達統計顯著差異。控制其他變項後,年齡每增加一歲罹患心血管疾病的 OR 平均增加1.040倍(95%CI=(1.025,1.055)不包含1,OR與1達統計顯著差異),年齡與罹患心血管疾病達統計顯著相關。

/\*3\*/

proc logistic data=datab;

class bmig(ref='1') htn(ref='0') sex(ref='0') /param=ref;
model cvd(event='1')=bmig age sex htn/risklimits;

4. **run**; 腰圍代表腹部肥胖的狀況,它和身體質量指數(BMI)分別都是罹患慢性疾病的重要危險因子,請協助評估該社區居民**腰圍和 BMI 之間的相關程** 

度,並以相關係數表示。(假設腰圍和 BMI 分布均服從常態分佈,請附上 SAS 報表及敘述分析結果及你的結論)(25%)

| Pearson Correlation Coefficients, N = 1500 Prob > $ r $ under H0: Rho=0 |         |         |  |  |  |  |
|-------------------------------------------------------------------------|---------|---------|--|--|--|--|
|                                                                         | waist   | bmi     |  |  |  |  |
| waist                                                                   | 1.00000 | 0.82965 |  |  |  |  |
| waist                                                                   |         | <.0001  |  |  |  |  |
| bmi                                                                     | 0.82965 | 1.00000 |  |  |  |  |
|                                                                         | <.0001  |         |  |  |  |  |

假設腰圍和 BMI 分布均服從常態分佈,pearson 相關係數為 0.82965,p<0.0001<ALPHA(0.05),腰圍與 bmi 達統計顯著正向相關,腰圍會隨 bmi 增加而上升。

/\*4\*/
ods graphics on;
proc corr data=datab plots=scatter pearson;
var waist bmi;

ods graphics off;

run;

5. Dr. Epi 針對該社區進行另一個前瞻性研究,追蹤社區居民血壓偏高 (60 位) 及血壓正常 (240 位) 的受試者 15 年,希望了解日後發生中風的風險,研究 結果發現,35% 血壓偏高者發生中風的狀況,15%血壓正常者發生中風的狀況。請問血壓偏高是否會造成日後發生中風的風險增加?(計算相關強度,並 敘述分析結果及結論,請附上 SAS 計算相關強度的報表)(25%)

|          | D  |     |       |
|----------|----|-----|-------|
| Exposure | 中風 | 無中風 | Total |
| 血壓偏高     | 21 | 39  | 60    |
| 血壓正常     | 36 | 204 | 240   |
| Total    | 57 | 243 | 300   |

H0: 高血壓與中風無相關

結論:P=0.0004<ALPHA(0.05),拒絕 H0。高血壓與中風有統計顯著相關。相關風險 RR 為 2.3333(95%CI=1.4762-3.6881),暴露於血壓偏高的中風風險為正常的 2.3333 倍,且 95%信賴區間未包含 1,達統計顯著性。



```
data a;
input d$ e$ count;
datalines;
1 1 21
1 0 36
0 1 39
0 0 204
;
proc freq data=a order=data;
weight count;
tables e*d/chisq relrisk;
```

6. 假設血糖值為變異數相等的常態分佈。將血糖值視為反應變數,BMI分組 視為解釋變數,擬合回歸模型。**請問血糖值是否可以被 BMI 分組預測?請** 解釋結果,並說明判定係數 (R²)。(25%)

H0:bmi 分組的迴歸係數=0 結論: BMI 分組能預測血糖值

run;

Bmi 過輕:p=0.1836>alpha(0.05),不拒絕 h0,與 0 未達統計顯著差異,控制其他變相後,bmi 過輕較正常的血糖值平均增加-3.26124945mg/dL。

Bmi 過重: p<0.0001<alpha(0.05),拒絕 h0,與 0 達統計顯著差異,控制其他變相後,bmi 過輕較正常的血糖值平均增加 6.38242871mg/dL。

Bmi 肥胖: p<0.0001<alpha(0.05),拒絕 h0,與 0 達統計顯著差異,控制其他變相後,bmi 過輕較正常的血糖值平均增加 7.97782158mg/dL。

判定係數=0.028947,此回歸模型中 BMI 分組能夠解釋血糖值總變異的 2.8947%。

| The SAS System              |                   |               |               |                |             |             |             |          |          |        |
|-----------------------------|-------------------|---------------|---------------|----------------|-------------|-------------|-------------|----------|----------|--------|
| The GLM Procedure           |                   |               |               |                |             |             |             |          |          |        |
| Dependent Variable: glu glu |                   |               |               |                |             |             |             |          |          |        |
| Source                      |                   |               | DF            | Sum of Squares |             |             | Mean Square |          | F Value  | Pr > F |
| Model                       |                   |               | 3             | 20928.3588     |             |             | 6976.1196   |          | 14.87    | <.0001 |
| Error                       |                   | -             | 1496          | 702            | 058         | .0972       | ۷           | 169.2902 |          |        |
| Correc                      | ted Tot           | at            | 1499          | 722            | 986         | .4560       |             |          |          |        |
|                             |                   |               |               |                |             |             |             |          |          |        |
|                             |                   |               | quare         |                |             | ar Root MSE |             | glu Mea  |          |        |
|                             |                   | 28947         | 24.40         | 528            | 28 21.66311 |             | 88.764      | 00       |          |        |
|                             | Source            | rce DF Type I |               | Type I SS      | h           | Mean Square |             | F Valu   | e Pr>F   |        |
|                             | bmig              |               | 3 20928.35876 |                |             | 6976.11959  |             | 14.8     | 7 <.0001 |        |
|                             |                   |               |               | 00             |             | •           |             | F 11-1-  | - D E    | 1      |
|                             | Source            |               |               | 71             |             | Mean Square |             |          |          |        |
|                             | bmig              |               | 3 209         | 928.35876      | 5           | 6976.11959  |             | 14.8     | 7 <.0001 |        |
|                             | Parameter         |               |               |                |             | Sta         | ndard       |          |          |        |
|                             |                   |               | E             | stimate        |             |             | Error       | t Value  | Pr >  t  |        |
|                             | Intercept         |               | 85.9          | 85.92791612    |             | 0.784       | 25710       | 109.57   | <.0001   |        |
|                             | bmig 0            |               | -3.2          | -3.26124945    |             | 2.451       | 36678       | -1.33    | 0.1836   |        |
|                             | bmig 2            |               | 6.3           | 6.38242871     |             | 1.330       | 76907       | 4.80     | <.0001   |        |
|                             | bmig 3            |               | 7.9           | 7.97782158     |             | 1.59322929  |             | 5.01     | <.0001   |        |
|                             | bmig 1 0.00000000 |               | В             |                |             |             |             |          |          |        |

/\*6\*/

```
proc glm data=datab;
class bmig(ref='1');
model glu=bmig/solution;
run;
```

```
所有 CODE
/*1*/
PROC SORT data=data1;
by ID;
RUN;
PROC SORT data=data2;
by ID;
RUN;
DATA data3;
merge data1 data2;
by ID;
run;
data datab; set data3;
bmi=weight/((height/100) **2);
if bmi<18.5 then bmig=0;</pre>
else if bmi<24 then bmig=1;</pre>
else if bmi<27 then bmig=2;</pre>
else bmig=3;
run;
proc gchart data=datab;
pie bmig/discrete type=percent;
run;
quit;
/*2*/
proc freq data=datab;
table cvd;
run;
proc means data=datab mean std;
class cvd;
var age;
run;
proc freq data=datab;
```

```
table cvd*htn;
run;
proc ttest data=datab alpha=0.05;
class cvd;
var age;
run;
proc freq data=datab;
table cvd*htn/chisq expected fisher;
run;
/*3*/
proc logistic data=datab;
class bmig(ref='1') htn(ref='0') sex(ref='0') /param=ref;
model cvd(event='1')=bmig age sex htn/risklimits;
run;
/*4*/
ods graphics on;
proc corr data=datab plots=scatter pearson;
var waist bmi;
run;
ods graphics off;
/*5*/
data a;
input d$ e$ count;
datalines;
1 1 21
1 0 36
0 1 39
0 0 204
proc freq data=a order=data;
weight count;
tables e*d/chisq relrisk;
run;
/*6*/
proc glm data=datab;
```

```
class bmig(ref='1');
model glu=bmig/solution;
run;
```