logistic regression

Problem 1 (cost function)

	x	у
Suppose $\theta_0 = -6$ and $\theta_1 = 3$. In other words, suppose we are	0.5	0
using the following hypothesis function to make predictions:	1	0
	1.5	0
$h(x) = \frac{1}{1 + e^{-(-6 + (3)x)}}$	2.5	0
	3.5	0
	4	1
Given the following dataset, what is $J(\theta_0 = -6, \theta_1 = 3)$?	4.5	0
(In other words, how much cost are we enduring if we are using	5	1
the above given $h(x)$ to make predictions for the points given in	5.5	1
the dataset?)	6	0
	6.5	1
	7.5	1
	8	1
	8.5	1
	9	1

Problem 2 (gradient descent)

		1
	X	У
a) Given the following dataset, find the equation of the s-shaped	0.5	0
curve that fits to these points best.	1	0
(In other words, assuming your s-shaped curve is:	1.5	0
	2.5	0
$h(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$	3.5	0
	4	1
	4.5	0
find values for θ_0 and θ_1 that makes $h(x)$ the best fit to the given	5	1
points).	5.5	1
Hint: use gradient descent to find θ values that minimize the cost	6	0
function for logistic regression. Use $\alpha=0.05,$ zeros for initial θ	6.5	1
values, and 1000 iterations for your gradient descent.	7.5	1
	8	1
	8.5	1
	9	1

b) Based on the θ values calculated in part a of this problem, predict what is the probability of some new observation x=10 to have y=1?

(In other words, what is h(x=10) now that you have calculated desirable θ values in part a)