Lecture Syllabus

Module Code	Semester	ECTS	sws	Lecture	Tutorial	Lab
MECH-B-5-MLDS-MLDS2-ILV	5	5	4	2	2	0
Course Name	Data Science II					
Lecturer	D. T. McGuiness, Ph.D (Daniel.McGuiness@mci.edu) (4A-434c)					
Study Programme	Mechatronik Design Innovation					
Official Name	Machine Learning and Data Science 2 Lingo Engl			English		
Lecture Prerequisites	The student should be comfortable with working with either Python and should have gained a working knowledge of statistics.					
Course Objectives	Warning: This is the content only covered by me as this lecture is shared by Peter Kandolf in Tutorials. The goal of this lecture is to give you a much deeper understanding of how machine learning algorithms work and work through practical examples. In this lecture we will focus on Neural Networks (NN) a type of machine learning algorithm with uncountable amount of applications in industry.					
Primary Course Content	Lecture Homepage on GitHub WebBook					
Secondary Course Content(s)	Neural Networks: Methodology and Applications by Gérard Dreyfus, Python for Data Analysis: Data Wrangling with Pandas, Numpy, and iPython by Wes McKinney, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron, TensorFlow for Deep Learning: From Linear Regression To Reinforcement Learning by B. Ramsundar, and R. B. Zadeh, Al and Machine Learning for Coders by Moroney L., Neural Networks and Deep Learning by Aggarwal S.,					
Homework(s) and Project(s)	Quiz (5) Personal Assignment (35) Final Exam (60)					
	Assignmen	nt Type		Effect	Count	
Assessment Criteria	Quiz			5	1	
	Personal A	ssignment		35	1	
	Final Exan	า		60	1	

- Any major announcements will be made on SAKAI regarding any possible date/content/structural changes for the assignment(s), exam(s).
- Any lecture material will be posted at the lectures corresponding GitHub home-page. The link will be present on the lectures SAKAI homepage.
- If there are any questions regarding course content/exams/assignments please do not refrain from contacting me (Daniel.McGuiness@mci.edu).

Data Science II Page 1 of 2

Lecture Structure

Order	Торіс	Units	Self Study
1	Support Vector Machines	4	8
	Introduction · Linear svm Classification · Nonlinear svm Classification · svm Regression · Understanding Linear svm Classifiers		
2	Decision Trees	4	8
	Introduction • Training and Visualising Decision Trees • Making Predictions • Estimating Class Probabilities • The CART Training Algorithm • Gini Impurity or Entropy? • Regularization Hyperparameters • Regression • Sensitivity to Axis Orientation • DTs Have a High Variance		
3	Ensemble Learning and Random Forests	4	8
	Introduction \cdot Bagging and Pasting \cdot Random Forests \cdot Boosting \cdot Bagging v . Boosting \cdot Stacking		
4	Dimensionality Reduction	4	8
	Introduction · Main Approaches to Dimensionality Reduction · Principal Component Analysis (PCA) · Random Projection · Locally Linear Embedding		
5	Unsupervised Learning	4	8
	Introduction · Clustering Algorithms · Gaussian Mixtures		
6	Introduction to Artificial Neural Networks	4	8
	Introduction \cdot From Biology to Silicon: Artificial Neurons \cdot Implementing mlps with Keras		
7	Computer Vision using Convolutional Neural Networks	4	8
	Introduction · Visual Cortex Architecture · Convolutional Layers · Pooling Layer · Implementing Pooling Layers with Keras · CNN Architectures · Implementing a ResNet-34 CNN using Keras · Using Pre-Trained Models from · Pre-Trained Models for Transfer Learning · Classification and Localisation · Object Detection · Object Tracking · Semantic Segmentation		
8	Sum	28	56

- For three (3) sessions there will be a self-guided study which will require you to work through the material on your own.
- In these sessions you should focus on two topics: **Ensemble Learning and Random Forests** and **Dimensionality Reduction**. You can either access this content on WebBook or LectureBook which hold the **same** content.
- The next face-to-face session will focus on a recap of these topics along with any questions you may have.
- Afterwards there will be a 15 min long quiz covering these two topics **only**.

Data Science II Page 2 of 2