98+ Jan 2024
No more KTG - starting thermodynamics. 28+ Jan 2024
No morre KTG - starting thermodynamics.
(*) Linking thermodynamics to statistical mechanics.
& Problem in every tutorial - from HW, instone.
Markolistenbution to be discussed further later.
€HW planned to be our every week to be submitted. (No greaching
OV = nRT from exp (Charles', Boyli's
OU = 3 nRT Experimental/Empisical
equation.
0 du = Tols - Polv + gran) before
Combination of 1 stlaw and endlaw, in a sense Compare
$\Rightarrow U = U(S,V)(N)$
=7 du = du ds + du dv Not considering a
T= 34 N, V 26 = T
What if we consider pidN?
ge dN -> Energy takenout originen by taking out originaling in
-> ge = Chemical potental.
$v, 2\left(\frac{\partial u}{\partial y}\right) = y$

Goal's Weiwish to find U = U (V,S, N) for ideal gas Onewe know this, we can find T, P, and pe just by talking derivatives Why them? There are measurable gerantities. We will we the first 2 equations to dothis. U= 3 nRT = III $\left(\frac{\partial U}{\partial S}\right)_{UN} = T = \frac{2U}{3nR}$ =) du = 2 1 ds \Rightarrow |nu = $\frac{2}{3} \frac{S}{NR}$ (Integration) + f(V,N) Count of integration. Now, PUZ MRT => p= nKT $\left(\frac{\partial U}{\partial V}\right)_{S,N} = -P = -\frac{nRT}{V} = -\frac{2}{3}\frac{U}{V}$ $\frac{1}{2} = \frac{1}{2} \left(\frac{n c}{n c} \right) = \frac{1}{2} \left(\frac{2 u}{n c} \right) = \frac{1}{2} \left(\frac{2 u}{$ >) 2 (INU) SN = 2 (2 S + f(V, N)), from 1) N 2 (INU) S, N = (2) =) \frac{1}{u} \left(\frac{\partial u}{\partial v}\right)_{S,N} = \left(\frac{\partial f}{\partial v}\right)_{S,N} \left(\frac{\partial f}{\partial v}\right)_{S,N} \left(\frac{\partial f}{\partial v}\right)_{S,N} $\sigma_{N,2}\left(\frac{\partial G}{\partial G}\right) = \sigma_{N,2}\left(\frac{\partial G}{\partial G}\right)$ -> -= 4 = 4 (2f)s,N $\Rightarrow \left(\frac{3f}{3V}\right)_{N} = -\frac{2}{3} \cdot \frac{1}{V}$

Question - lan this be derived from microscopic Cowicheations, without empirical relations? Weatif prinkt does not bold bold - some other rystem. This is the goal of statistical mechanics - to drive this from fundamental physics. + This will be derived later in cowese. Tutorial Class begins F(x,y,z) -> Broady, afield Inthis case, itisa scalar field. E(成方之) → vector field (artain tream formation Jules). $\frac{\partial F}{\partial x} = \lim_{n \to \infty} \frac{F(x+h,y,z) - F(x,y,z)}{F(x+h,y,z)}$ 091 notationally as, Fx, (dr dx) 42 all other variables are fixed. 2F. _ 2F. _ partial derivatives Som other variable. F(x(t), y(t)) AN E - E+AE, X-X+AX, Y, -14+AY So, under this change, the new field is, $F(x+\Delta x, xy+\Delta y) = F(x,y) + \left(\frac{\partial F}{\partial x}\right)_{xy} \Delta x$ + (af) x ag $\rightarrow \Delta F = \frac{\partial F}{\partial x} \Delta x + \frac{\partial F}{\partial y} \Delta y$

Opin some otherway, $\frac{dF}{dt} = \left(\frac{\partial F}{\partial x}\right)_{y} \frac{dx}{\partial t} + \left(\frac{\partial F}{\partial y}\right)_{x} \frac{dy}{dt}$ If x and y had some other variable dependence, it would be of and of oth Consider. Allindepofeachother. $F(x_1, \ldots, x_n) = C.$ This cannot be they can not be independent. but, X,,..., Xu are functions of independent variables In terms of thisnew variable, F(u,,...,un) = C dF = 2F du, + -- + 2F dun U, ..., un are independent variables. So, F (u,+Au, suz, ..., ua) = C F(u, + Au, 12., un) - F(u,,...,un) ad = lim

=1
$$\frac{\partial P}{\partial U_{g_1}} = 0$$
 $\Rightarrow \left[\frac{\partial F}{\partial F} = 0 \right]$ $\Rightarrow \left[\frac{\partial F}{\partial X_1} = 0 \right]$ Convoluted way.

$$F(x, y, z) = 0$$

$$= dF = \left(\frac{\partial F}{\partial x}\right) dx + \left(\frac{\partial F}{\partial y}\right) dy + \left(\frac{\partial F}{\partial z}\right) dz = 0.$$

$$\Rightarrow \frac{\partial z}{\partial x} = - \frac{\partial F}{\partial x}$$

Similarly,

$$\frac{\left(\frac{\partial y}{\partial z}\right)_{x} = -\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial y}}$$

$$\left(\frac{\partial x}{\partial y}\right)_{z} = \frac{-\frac{\partial P}{\partial y}}{\frac{\partial F}{\partial x}}$$

$$\exists \left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y} = -1$$

Wed labor in course

- [Exact, inexact differentials
- [Lagrange multipliers to optimize functions