1. Amendments to the Claims:

A listing of the entire set of pending claims (including amendments to the claims, if any) is submitted herewith per 37 CFR 1.121. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. (Currently Amended) A <u>Delecentralized</u> power generation system, said system comprising:
- a plurality of decentralized power generating units, wherein none of the plurality of power generating units is a fuel cell;
- [[--]]a plurality of DC/DC converters, each of said DC/DC converters being connected to another one of said power generating units for converting a current provided by said power generating units;
- [[--]]a DC bus to which each of said DC/DC converters is coupled for feeding a respectively converted current into said DC bus; and
- [[--]]at least one power receiving component connected to said DC bus for retrieving current from said DC bus, which wherein the power receiving component is physically separated from said DC/DC converters.
- (Currently Amended) A Defecentralized power generation system according to claim

 wherein each of said DC/DC converters is adapted to operate autonomously and to
 ensure a predetermined voltage on said DC bus.
- (Currently Amended) A. Decentralized power generation system according to claim 1, wherein each of said decentralized power generating units is mechanically coupled to a respective DC/DC converter.

Application Serial Number 10/585,368 Response to Office Action Dated September 6, 2007

4. (Currently Amended) Andecentralized power generation system according to claim 1, wherein said power receiving component is adapted to survey a voltage on said DC bus and to reduce the power retrieved from said DC bus when the voltage on said DC bus is detected to be decreasing.

5. (Currently Amended) And ecentralized power generation system according to claim 1, further comprising at least one control line connecting each of said DC/DC converters to said at least one power receiving component, which at least one control line is arranged for switching on and off said DC/DC converters.

6. (Currently Amended) <u>A_Ddecentralized</u> power generation system according to claim 5, further comprising at least one plug connection for electrically connecting a respective DC/DC converter in common to said DC bus and, via said control line, to said at least one power receiving component.

7. (Currently Amended) A Delecentralized power generation system according to claim 6, wherein said at least one plug connection is adapted to electrically connect a respective DC/DC converter to said DC bus before connecting said DC/DC converter via said control line to said at least one power receiving component and to interrupt the connection between said DC/DC converter via said control line to said at least one power receiving component before disconnecting said DC/DC converter from said DC bus.

8. (Currently Amended) <u>A Delecentralized power generation system according to claim</u> 1, wherein said power receiving component is an inverter arranged to convert a direct current retrieved from said DC bus into an alternating current and to feed said alternating current into an alternating current power supply system.

9. (Currently Amended) A Defecentralized power generation system according to claim 1, wherein each of said power generating units comprises at least one photovoltaic module.

10. (Currently Amended) A Mmethod of operating a decentralized power generation system, which wherein the system comprises a plurality of decentralized power generating units, a plurality of DC/DC converters, a DC bus and at least one power receiving component, which is physically separated from said DC/DC converters, said method comprising:

generating a current by means of said plurality of power generating units, wherein none of the plurality of power generating units is a fuel cell;

converting the current provided by each of said power generating units by means of a respective DC/DC converter;[[--]]feeding said converted currents into said DC bus; and

providing current from said DC bus to said at least one power receiving component.

- 11. (New) A decentralized power generation system, comprising:
 - a plurality of decentralized power generating units;
- a plurality of DC/DC converters, each of the DC/DC converters being connected to another one of the power generating units for converting a current provided by the power generating units;
- a DC bus to which each of the DC/DC converters is coupled for feeding a respectively converted current into the DC bus; and

at least one power receiving component connected to the DC bus for retrieving current from the DC bus, wherein a respective predetermined output voltage is set for each of the DC-DC converters, and the current provided by each of the DC-DC converters is prevented from exceeding a respective predetermined maximum value.

12. (New) A decentralized power generation system as claimed in claim 11, wherein none of the DC-DC converters includes an electrolyte capacitor. Application Serial Number 10/585,368 Response to Office Action Dated September 6, 2007

13. (New) A decentralized power generation system according to claim 11, wherein each of the decentralized power generating units is mechanically coupled to a respective

DC/DC converter.

14. (New) A decentralized power generation system as claimed in claim 11, wherein the

power receiving component is adapted to survey a voltage on the DC bus and to reduce the power retrieved from the DC bus when the voltage on the DC bus is detected to be

decreasing.

15. (New) A decentralized power generation system as claimed in claim 11, further

comprising at least one control line connecting each of the DC/DC converters to the at

least one power receiving component, which at least one control line is arranged for

switching on and off the DC/DC converters.

16. (New) A decentralized power generation system as claimed in claim 15, further

comprising at least one plug connection for electrically connecting a respective DC/DC converter in common to the DC bus and, via the control line, to the at least one power

receiving component.

17. (New) A decentralized power generation system as claimed in claim 16, wherein the

at least one plug connection is adapted to electrically connect a respective DC/DC

converter to the DC bus before connecting the DC/DC converter via the control line to

the at least one power receiving component and to interrupt the connection between the

DC/DC converter via the control line to the at least one power receiving component

before disconnecting the DC/DC converter from the DC bus.

18. (New) A decentralized power generation system as claimed in claim 11, wherein the

power receiving component is an inverter arranged to convert a direct current retrieved

from the DC bus into an alternating current and to feed the alternating current into an

Application Serial Number 10/585,368 Response to Office Action Dated September 6, 2007

alternating current power supply system.

19. (New) A decentralized power generation system as claimed in claim 11, wherein each of the power generating units comprises at least one photovoltaic module.