DAI Assignment-1

Aditya Neeraje, Balaji Karedla, Moulik Jindal

September 3, 2024

Contents

1	\mathbf{Ma}_{1}	Mathemagic																1										
	1.1	Task	Α.																									1
	1.2	Task	В.																									1
	1.3	Task	С.																									1

1 Mathemagic

1.1 Task A

For a Bernoulli random variable $X \sim Ber(p)$, P[X=0]=1-p, P[X=1]=p and $P[X=n]=0 \forall n > 2$.

$$G_{Ber}(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

= $P[X = 0] + P[X = 1] z$
 $G_{Ber} = (1 - p) + pz$

1.2 Task B

When $X \sim Bin(n, p)$, $P[X = k] = \binom{n}{k} p^k (1 - p)^{n-k} \ \forall k \in \mathbb{Z}, 0 \le k \le n$. $P[X = k] = 0 \ \forall k > n$.

$$G_{Bin}(z) = \sum_{k=0}^{\infty} P[X = n] z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} z^k$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pz)^k (1-p)^{n-k}$$

$$= (pz + (1-p))^n$$

$$G_{Bin}(z) = G_{Ber}(z)^n$$

1.3 Task C

Let X_1 and X_2 be two random variables which take up non-negative integers and let $X = X_1 + X_2$.

$$G_X(z) = \sum_{n=0}^{\infty} P[X = n] z^n$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] P[X_2 = n - i]) z^n$$

$$= \sum_{i=0}^{\infty} \sum_{n=i}^{\infty} (P[X_1 = i] z^i) (P[X_2 = n - i] z^{n-i})$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=i}^{\infty} P[X_2 = n - i] z^{n-i}$$

$$= \sum_{i=0}^{\infty} P[X_1 = i] z^i \sum_{n=i}^{\infty} P[X_2 = n] z^n$$

$$G_X(z) = G_{X_1}(z) G_{X_2}(z)$$

For k = 1, $G_{\Sigma}(z) = G(z)^k$. If for k = n - 1, $G_{\Sigma}(z) = G(z)^k$, then for k = n,

$$G_{\Sigma}(z) = G_{X_1 + X_2 + \dots + X_{n-1}}(z)G_{X_n}(x)$$

$$= \prod_{i=1}^n G_{X_i}(z)G_{\Sigma}(z)$$

$$= G(z)^k$$

From the Principle of Mathematical Induction, for all $k \in \mathbb{N},$ $G_{\Sigma}(z) = G(z)^k$