(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-40467 (P2002-40467A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
G02F	1/1345		G 0 2 F	1/1345	•	2H089
	1/1333			1/1333		2H090
		500		•	500	2H092

審査請求 未請求 請求項の数21 OL (全 25 頁)

(21)出願番号	特願2000-231464(P2000-231464)	(71)出願人	000002369			
			セイコーエプソン株式会社			
(22)出顧日	平成12年7月31日(2000.7.31)		東京都新宿区西新宿2丁目4番1号			
		(72)発明者	鈴木 信孝			
			長野県諏訪市大和3丁目3番5号 セイコ			
			ーエプソン株式会社内			
		(72) 登明孝	野村 浩朗			
		(12/)0978	長野県諏訪市大和3丁目3番5号 セイコ			
		·				
			ーエプソン株式会社内			
		(74)代理人	100095728			
			弁理士 上柳 雅誉 (外1名)			
			4.c			

最終頁に続く

(54) 【発明の名称】 液晶装置および電子機器

(57) 【要約】

【課題】 引き廻し抵抗の増大による表示品質の低下を招くことなく、狭額縁化による小型化を図ることができる液晶装置を提供する。

【解決手段】 本発明の液晶装置は、一対の基板のうち、下側基板2の内面上に信号電極6が設けられるとともに、信号電極用引き廻し配線11が下側基板2を貫通するスルーホール17を介して基板外面にわたって設けられている。一方、上側基板3の内面上に走査電極7が設けられるとともに、走査電極用引き廻し配線が基板間にわたる上下導通部、さらに下側基板2を貫通するスルーホールを介して下側基板2の外面にわたって設けられている。これら構成要素は全て透明性を有する材料から形成されており、透過型液晶表示装置に適用可能となっている。

30

【特許請求の範囲】

【請求項1】 互いに対向配置された一対の基板間に被 晶層が挟持された液晶装置であって、

前記一対の基板を構成する第1の基板、第2の基板がと もに透明性を有する材料からなり、前記第1の基板にお いては前記液晶層に面する内面上に透明性導電材料から なる第1の導電部が設けられるとともに、該第1の導電 部と電気的に接続された透明性導電材料からなる第1の 引き廻し導電部が前記内面から基板内部を通り前記内面 と反対側の外面にわたって設けられ、前記第2の基板に おいては前記液晶層に面する内面上に透明性導電材料か らなる第2の導電部が設けられるとともに、該第2の導 電部と電気的に接続された透明性導電材料からなる第2 の引き廻し導電部が前記第2の基板の内面から前記第1 の基板の内面へ、さらに第1の基板の内面から基板内部 を通り第1の基板の外面にわたって設けられ、少なくと も前記第1の基板の外面側および前記第2の基板の外面 側にはそれぞれ偏光手段が設けられたことを特徴とする 液晶装置。

【請求項2】 前記第1の基板の外面側周縁部に、前記 20 第1の引き廻し導電部および前記第2の引き廻し導電部 と電気的に接続された外部接続端子が設けられたことを 特徴とする請求項1に記載の液晶装置。

【請求項3】 前記第1の基板における第1の引き廻し 導電部が、前記第1の基板の内面側と外面側との間に設 けられた孔の内部に設けられ前記第1の導電部と電気的 に接続された第1の孔内接続部と、前記第1の基板の外 面上において前記第1の孔内接続部と電気的に接続され た第1の外面上接続部とを有することを特徴とする請求 項1または2に記載の液晶装置。

【請求項4】 前記孔が、前記第1の基板の内面側と外面側とを貫通するスルーホールであることを特徴とする 請求項3に記載の液晶装置。

【請求項5】 前記第1の基板が、基板内部に透明性導電材料からなる1層以上の内部導電層を有する基板で構成されたことを特徴とする請求項1ないし3のいずれか一項に記載の液晶装置。

【請求項6】 前記孔が、前記第1の基板の内面と前記 内部導電層との間、前記第1の基板の外面と前記内部導 電層との間、もしくは相互の内部導電層の間に設けられ 40 た複数のピアホールからなることを特徴とする請求項5 に記載の液晶装置。

【請求項7】 前記第1の基板において、内面側の前記第1の導電部と外面側の前記第1の外面上接続部とが同種の透明性導電材料からなることを特徴とする請求項3ないし6のいずれか一項に記載の液晶装置。

【請求項8】 前記第2の基板から第1の基板にわたる前記第2の引き廻し導電部が、前記第1の基板と前記第2の基板との間に設けられ前記第2の導電部と電気的に接続された基板間接続部と、前記第1の基板の内面側と

外面側との間に設けられた孔の内部に設けられ前記基板間接続部と電気的に接続された第2の孔内接続部と、前記第1の基板の外面上において前記第2の孔内接続部と電気的に接続された第2の外面上接続部とを有することを特徴とする請求項1ないし7のいずれか一項に記載の被晶装置。

【請求項9】 前記基板間接統部が、双方の基板間で前 記被晶層を封止するシール材の内部に混入させた導電材 からなることを特徴とする請求項8に記載の液晶装置。

【請求項10】 前記第1の基板の内面上に、前記基板間接続部と前記第2の孔内接続部との間を電気的に接続する第2の内面上接続部が設けられたことを特徴とする請求項8または9に記載の液晶装置。

【請求項11】 前記第1の基板において、前記第2の 内面上接続部と前記第1の導電部とが同種の透明性導電 材料からなることを特徴とする請求項10に記載の液晶 装置。

【請求項12】 前記第1の基板の外面側の非表示領域に、前記第1の引き廻し導電部および前記第2の引き廻し導電部と電気的に接続された電子部品が実装されたことを特徴とする請求項1ないし11のいずれか一項に記載の液晶装置。

【請求項13】 前記第1の基板および/または前記第2の基板が可撓性を有する基板で構成されたことを特徴とする請求項1ないし12のいずれか一項に記載の液晶装置。

【請求項14】 前記第1の基板上の第1の導電部がストライプ状に形成された複数の電極であり、前記第2の基板上の第2の導電部が前記電極と交差する方向に延在するようストライプ状に形成された複数の電極であり、バッシブマトリクス型液晶装置を構成することを特徴とする請求項1ないし13のいずれか一項に記載の液晶装置

【請求項15】 互いに対向配置された一対の基板間に 液晶層が挟持された液晶装置であって、

前記一対の基板を構成する第1の基板、第2の基板がともに透明性を有する材料からなり、前記第1の基板においては前記液晶層に面する内面上に、複数のデータ線もしくは走査線が設けられるとともに、前記データ線もしくは走査線と電気的に接続された透明性導電材料からなる第1の引き廻し導電が前記内面から基板内部を膜グタの手がいるるスイッチング素子を介して前記記であり、前記第2の基板においては前記液と接続された透明性導電材料からなる複数の走査線もしくはデータ線と電気の基板においては前記を透明性導電材料からなる複数の走査線もしくはデータ線と電明性導電材料からなる複数の走査線もしくはデータ線と電りに接続された透明性導電材料からなる第2の引き廻し

導電部が前記第2の基板の内面から前記第1の基板の内面へ、さらに第1の基板の内面から基板内部を通り第1の基板の外面にわたって設けられ、少なくとも前記第1の基板の外面側および前記第2の基板の外面側にはそれぞれ偏光手段が設けられ、アクティブマトリクス型液晶装置を構成することを特徴とする液晶装置。

【請求項16】 互いに対向配置された一対の基板間に 被晶層が挟持された液晶装置であって、

前記一対の基板を構成する第1の基板、第2の基板がと もに透明性を有する材料からなり、前記第1の基板にお 10 いては前記液晶層に面する内面上に、複数のデータ線お よび走査線が設けられるとともに、前記データ線もしく は前記走査線の少なくともいずれか一方と電気的に接続 された透明性導電材料からなる第1の引き廻し導電部が 前記内面から基板内部を通り前記内面と反対側の外面に わたって設けられ、薄膜トランジスタからなるスイッチ ング素子を介して前記データ線および走査線と接続され た透明性導電材料からなる画素電極が設けられ、前記第 2の基板においては前記液晶層に面する内面上に透明性 導電材料からなる共通電極が設けられるとともに、該共 20 通電極と電気的に接続された透明性導電材料からなる第 2の引き廻し導電部が前記第2の基板の内面から前記第 1の基板の内面へ、さらに第1の基板の内面から基板内 部を通り第1の基板の外面にわたって設けられ、少なく とも前記第1の基板の外面側および前記第2の基板の外 面側にはそれぞれ偏光手段が設けられ、アクティブマト リクス型液晶装置を構成することを特徴とする液晶装

【請求項17】 前記第1の基板の内面上に、カラーフィルターが設けられたことを特徴とする請求項1ないし 3016のいずれか一項に記載の液晶装置。

【請求項18】 前記第1の基板の外面側の前記偏光手段の外方に、照明手段が設けられたことを特徴とする請求項1ないし17のいずれか一項に記載の液晶装置。

【請求項19】 前記第1の基板の内面側もしくは外面側に、光を透過する機能と光を反射する機能とを合わせ持つ半透過反射部が設けられたことを特徴とする請求項18に記載の液晶装置。

【請求項20】 前記第1の基板の外面側の前記偏光手段の外方に、光反射手段が設けられたことを特徴とする 40 請求項1ないし17のいずれか一項に記載の液晶装置。

【請求項21】 請求項1ないし20のいずれか一項に 記載の液晶装置を備えたことを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶装置および電子機器に関し、特に液晶装置の小型化にあたって表示領域外の領域を極力狭くした液晶表示パネルの構成に関するものである。

[0002]

【従来の技術】近年、ノートバソコン、携帯電話機、腕時計等の携帯用電子機器において、各種の情報を表示する手段として液晶表示パネルが広く使用されている。特に携帯用電子機器等では、筐体内部の限られた空間に後品表示パネルを収容し、しかも表示し得る情報量を多したいという要求から、表示領域を極力広く、表示領域をがの部分(以下、本明細帯ではこの部分を非表示領域または額縁などという)を狭くする構成が望まれている。【0003】通常、この種の液晶表示装置、特にバッシブマトリクス(単純マトリクス)型と呼ばれる液晶表示は間では、2枚の透明基板間に液晶が封入され、各透明基板の対向面に互いに直交するストライプ状の透明電極が形成されている。この液晶表示装置では、2枚の透明電極が互いに交差する部分が画素となり、液晶を変明素質に対解から駆動する方式が採用されている。

が形成されている。この被闘表示装置では、2枚の基板上の透明電極が互いに交差する部分が画素となり、被晶を各画素毎に外部から駆動する方式が採用されている。 液晶を外部から駆動するためには、例えば各透明基板上の非表示領域を互いに対向する基板の外側に張り出させ、その領域に各基板の透明電極に対して信号を供給する駆動用ICをそれぞれ実装し、各駆動用ICの端子と各透明電極とを引き廻し配線を用いて電気的に接続する構成が採用されていた。

【0004】ところがその後、被晶表示パネルの狭額緑化、駆動用ICの使用数の削減等を目的として、画素数がそれ程多くない小規模のパネルの場合には、2枚の透明基板上の全ての電極を一方の基板上の非表示領域に設けた多数の引き廻し配線に導通させ、これら引き廻し配線に接続した1個の駆動用ICで駆動する方式が提案された。図29、図30はこの方式の液晶表示装置の構成例を示している。

【0005】図29はチップ部品をフィルム(可撓性) 基板上に実装したいわゆるCOF (Chip On Film) 実装 と呼ばれる形態の回路基板を液晶表示パネルに接合した ものであり、下側基板100の一辺側が上側基板101 の外側に張り出しており、この部分に1個の駆動用 I C 102が搭載されたフレキシブルプリント配線基板10 3 (Flexible Printed Circuit, 以下、FPCと略記す る) が電気的に接合されている。下側基板100および 上側基板101の対向面には互いに直交する方向に多数 のストライプ状電極104,105が形成されている。 【0006】図30はチップ部品をガラス基板上に実装 したいわゆるCOG (Chip On Glass) 実装と呼ばれる 形態のものであり、下側基板 (ガラス基板) 110の一 辺側が上側基板111の外側に張り出しており、この部 分に駆動用IC112が直接搭載され、さらに駆動用I C112に駆動信号を供給するためのFPC113が電 気的に接合されている。

[0007] いずれの形態にしても、下側基板の電極用の引き廻し配線と上側基板の電極用の引き廻し配線は全て、FPCや駆動用ICが実装された下側基板の一辺側50 に集められている。

【0008】液晶表示パネルを構成する上側基板、下側 基板の引き廻し配線の接続構造の一例を図31、図32 を用いて詳細に説明する。図31は上側基板120の電 極および引き廻し配線の配置を示す平面図であり、図3 2は下側基板130の電極および引き廻し配線の配置を 示す平面図である。図31に示すように、上側基板12 0においては、図中横方向に延在する短冊状の走査電極 121がストライプ状に多数配置されている。ここで、 多数の走査電極121が形成された領域が液晶表示装置 としての表示領域122となる。そして、表示領域12 2の外方(図中表示領域122の右側と左側)の非表示 領域に、各走査電極121に信号を供給するための走査 電極用引き廻し配線123がそれぞれ配置されている。 この引き廻し配線123は電極の延在方向に引き出され た後、屈曲して上側基板120の一辺側(図中下側の 辺) の両端部に集められている。

【0009】一方、図32に示すように、下側基板13 0においては、上側基板120に形成された走査電極1 21と直交する方向(図中縦方向)に延在する短冊状の 信号電極131がストライプ状に多数配置されている。 そして、表示領域122の外方(図中表示領域122の 下側中央部) の非表示領域に、各信号電極131に信号 を供給するための信号電極用引き廻し配線132がそれ ぞれ配置されている。また、これら信号電極用引き廻し 配線132が配置された領域の両側方に、上側基板12 0の走査電極用引き廻し配線123と電気的に接続する ための走査電極用引き廻し配線133が走査電極121 の数と同数、配置されている。また、この走査電極用引 き廻し配線133のピッチは上側基板120の走査電極 用引き廻し配線123のピッチと一致している。なお、 本構成例においては、全ての引き廻し配線123,13 2は走査電極121もしくは信号電極131と一体に形 成されており、インジウム錫酸化物(Indium Tin Oxid e, 以下、ITOと略記する)等の透明導電膜で形成さ れている。

[0010]上記構成の上側基板120と下側基板130を貼り合わせると、下側基板130の外形よりも上側基板120の外形の方が小さく、上側基板120上の走査電極用引き廻し配線123の下端と下側基板130上の走査電極用引き廻し配線133の上端とが、図中符号40134で示す上下導通部で対向するように位置する。上下導通部134には例えば異方性導電膜、導電ペースト、導電性粒子を含む導電材等が設けられており、これを介して上側基板120上の走査電極用引き廻し配線123と下側基板130上の走査電極用引き廻し配線133とが電気的に接続される。このようにして、全ての走査電極用引き廻し配線133と全ての信号電極用引き廻し配線133とっての電分に例えば図29に示したようなとになるので、この部分に例えば図29に示したようなCOF 実装された基板との接続を行えば、COF 実装基50

6 板上の1個の駆動用ICから全ての走査電極121と信号電極131に対して信号を供給することができる。

[0011]

【発明が解決しようとする課題】しかしながら、上記構成の被晶表示装置には、以下のような問題点があった。すなわち、従来の被晶表示装置を構成する基板には、上記のように表示領域の外側に引き廻し配線を形成する領域が必ず必要になる。上述したように、近年の被晶表示装置においては表示容量がますます増加する傾向にあるが、表示容量(画素数)が増加する程、この引き廻し配線の本数が増えて引き廻し配線の形成領域が広くなってしまうため、これが狭額縁化の障害となる。

【0013】引き廻し配線の抵抗増大を抑えるためには、引き廻し配線を構成する透明導電膜の低抵抗化、低抵抗の金属補助配線の付加等の方法がある。しかしながら、前者の方法の場合、透明導電膜は電極の部分では充分な光透過率を確保することが重要であり、高い透過率を維持したままでの低抵抗化は困難である。また、後者の方法の場合は、製造工程の負荷が増大するという問題がある。結局のところ、引き廻し配線の抵抗を増大させることなく、引き廻し配線形成領域の縮小化を図る有効な手段は今まで存在しなかった。

[0014] なお、液晶表示装置の狭額縁化を目的として、基板の裏面側に電子回路および駆動用ICを搭載する技術が特開平5-32354号公報に開示されている。同様に、一方の基板に画素パターン配線基板と駆動回路配線基板としての機能を兼用させる技術が特開平7-159802号公報に開示されている。しかしながら、これらの公報には、ただ単に一方の基板の表面側の駆動線をピアホール(コンタクトホール)を介して裏面側に導通させ、裏面側の駆動回路および駆動用ICに接続することが記載されているだけであって、液晶表示装置の全体構成は不詳である。

[0015] 本発明は、上記の課題を解決するためになされたものであって、引き廻し抵抗の増大などによる表示品質の低下を招くことなく、狭額縁化による小型化を図ることができる被晶装置、およびこれを用いた電子機器を提供することを目的とする。

[0016]

とになるので、この部分に例えば図29に示したような 【課題を解決するための手段】上記の目的を達成するた COF実装された基板との接続を行えば、COF実装基 50 めに、本発明の液晶装置は、互いに対向配置された一対

の基板間に液晶層が挟持された液晶装置であって、一対 の基板を構成する第1の基板、第2の基板がともに透明 性を有する材料からなり、第1の基板においては液晶層 に面する内面上に透明性導電材料からなる第1の導電部 が設けられるとともに、第1の導電部と電気的に接続さ れた透明性導電材料からなる第1の引き廻し導電部が前 記内面から基板内部を通り前記内面と反対側の外面にわ たって設けられ、第2の基板においては液晶層に面する 内面上に透明性導電材料からなる第2の導電部が設けら れるとともに、第2の導電部と電気的に接続された透明 10 性導電材料からなる第2の引き廻し導電部が第2の基板 の内面から第1の基板の内面へ、さらに第1の基板の内 面から基板内部を通り第1の基板の外面にわたって設け られ、少なくとも第1の基板の外面側および第2の基板 の外面側にはそれぞれ偏光手段が設けられたことを特徴 とする。

【0017】すなわち、本発明の液晶装置は、第1の基板、第2の基板がともに透明性を有する材料からなり、第1の基板の外面側および第2の基板の外面側に偏光手段が設けられた液晶装置において、第1の基板の外面に、第1の基板内面の第1の導電部および第2の基板内面の第2の導電部とそれぞれ電気的に接続された第1の引き廻し導電部および第2の引き廻し導電部が設けられたものである。ここで言う「第1の導電部」、「第2の導電部」とは、具体的にはパッシブマトリクス型液晶装置においては走査電極、信号電極等の電極、もしくはアクティブマトリクス型液晶装置においては走査線、データ線等の配線のことを指す。

【0018】詳細には、第1の導電部に接続された第1の引き廻し導電部は、第1の基板の内面から基板内部を 30通り第1の基板の外面にわたって設けられている。一方、第2の導電部に接続された第2の引き廻し導電部は、第2の基板の内面から基板間をわたって第1の基板の内面へ、さらに第1の基板の内面から基板内部を通り第1の基板の外面にわたって設けられている。

【0019】よって、従来の構成で言えば、引き廻し配線が第1の基板の内面上の電極形成領域(言い換えると表示領域)の外側の領域(非表示領域)に引き廻されていたのに対し、本発明の基本的構成では、引き廻し配線(引き廻し導電部)が第1の基板の内面側から基板内部 40を通って外面側に引き廻されている。後述するように本発明は透過型被晶装置に適用可能であるが、第1、第2の引き廻し導電部がともに透明性を有する導電材料から構成されているので、透過型液晶装置に適用した場合、これら引き廻し導電部を基板外面側に引き廻した後は平面的に表示領域に相当する領域内に形成しても表示上何ら支障はない。つまり、一対の基板の全ての引き廻し導電部が第1の基板の内部を通って第1の基板の外面側に引き廻されており、第1の基板の外面に対して例えばCOF実装を行えば、COF上の1個の駆動用1Cから第50

1、第2の導電部全てに対して信号を供給することができる。

【0020】したがって、本発明の構成によれば、従来の構成において第1の基板内面の表示領域外側に設けていた引き廻し領域が不要となるので、その分だけ従来に比べて大幅に額縁部分を狭くすることができる。また、表示領域内を含めて第1の基板の外面側全面に引き廻し導電部をレイアウトすることができ、引き廻し導電部間のピッチを余裕を持って設計することができるため、引き廻し抵抗が増大するという問題が生じることもない。 【0021】また、第1の基板の外面側周縁部に、第1の引き廻し導電部および第2の引き廻し導電部と電気的

【0022】外部接続端子を周縁部に設けておけば、COFなどを実装する場合、外部接続端子とCOFの端子を接合する際の位置合わせを容易に行うことができる。また、COF接合時もしくは接合後、接合部分に応力が発生する場合があるが、その位置が表示領域から外れた基板周縁部であれば、前記応力が表示に悪影響を及ばすこともない。

に接続した外部接続端子を設けることが望ましい。

[0023]第1の基板における第1の引き廻し導電部の具体的な構成は、第1の基板の内面側と外面側との間に設けられた孔の内部に設けられ第1の導電部と電気的に接続された第1の孔内接続部と、第1の基板の外面上において第1の孔内接続部と電気的に接続された第1の外面上接続部とを有するものを用いることができる。また、前記孔は、第1の基板の内面側と外面側とを貫通するスルーホールとすることができる。

【0024】この構成とすれば、第1の基板に例えばレ ーザー加工、ケミカルエッチング等の操作を施すことに より容易にスルーホールを形成することができる。さら に、スルーホール内への銀ペースト等の充填、電解メッ キ処理等を施すことによりスルーホール内に導電性材料 からなる上記第1の孔内接続部を形成することができ る。一方、第1の外面上接続部は、透明性導電膜の成 膜、パターニング等の通常の配線形成技術によって容易 に形成することができる。なお、上記第1の孔内接続部 は、第1の導電部と第1の外面上接続部とを電気的に接 続できればよいのであって、必ずしも孔の内部全体に埋 め込まれていなくてもかまわない。また、第1の孔内接 続部はシール直下に設けても良いし、シールから離間し た位置に第1の孔内接続部を配置しても良い。シール直 下に第1の孔内接続部を設けた場合には、例えばシール 材中に導電部材を混入させ、重合することで電気的に接 続できるので、額縁を狭くできるとともに構造が簡単に なる。第1の孔内接続部の部分は製造上の理由から第1 の基板上で若干盛り上がった形状となる可能性があるの で、表示上で支障があればシールの外側に第1の孔内接 統部を配置させれば問題ない。

【0025】また、第1の基板は、内面側の第1の導電

部を構成する導電層、外面側の第1の外面上接続部を構成する導電層の他、基板内部に透明性導電膜からなる1層以上の内部導電層を有する基板で構成してもよい。この場合には、第1の基板の内面から外面にわたる孔は、第1の基板の内面と内部導電層との間、第1の基板の外面と内部導電層との間、もしくは相互の内部導電層の間に設けられた複数のビアホールから構成されるものとなる。

【0026】この種の基板を用いると、例えば引き廻し 導電部の数が増え、第1の基板の外面上だけに多数の引 き廻し導電部を配置するのが難しくなった場合に、一部 の引き廻し導電部を内部導電層を用いて引き廻すことも でき、引き回しの自由度が向上するので、表示容量の増 大にも対応することが可能になる。

【0027】第1の外面上接続部を有する構成の場合、 内面側の第1の導電部と外面側の第1の外面上接続部を 同種の透明性導電材料で構成することができる。

【0028】この構成にすると、第1の基板の内面側と外面側に透明導電膜を成膜した後、内面側と外面側の両面にフォトリソグラフィー、エッチングを施し、両面の透明導電膜を同時にパターニングして第1の導電部と第1の外面上接続部を形成することができるので、製造工程の簡略化を図ることができる。

【0029】一方、第2の引き廻し導電部の具体的な構成については、第2の引き廻し導電部が、第1の基板と第2の基板との間に設けられ第2の導電部と電気的に接続された基板間接続部と、第1の基板の内面側と外面側との間に設けられた孔の内部に設けられ基板間接続部と電気的に接続された第2の孔内接続部と、第1の基板の外面上において第2の孔内接続部と電気的に接続された30第2の外面上接続部とを有する構成とすることができる

【0030】前記基板間接続部には、双方の基板間にわたるように形成した導電性ペーストや導電性粒子等、任意の手段を用いることができる。もしくは、液晶層を封止するシール材の内部に混入させた導電材を用いても良い

【0031】また、基板間接続部と第2の孔内接続部との位置関係については、基板間接続部の直下に第2の孔内接続部を設けても良いし、基板間接続部から離間した 40位置に第2の孔内接続部を配置しても良い。その場合、第1の基板の内面上に、基板間接続部と第2の孔内接続部との間を電気的に接続する第2の内面上接続部を設けることが望ましい。

[0032] 基板間接続部の直下に第2の孔内接続部を設けた場合には、例えばシール材中に導電部材を混入させ、重合することで電気的に接続できるので、額縁を狭くできるとともに構造が簡単になる。ただし、第1の孔内接続部と同様、第2の孔内接続部の部分は製造上の理由から第1の基板上で若干盛り上がった形状となる可能 50

10

性があるので、基板間接続部の形成との関係、もしくは 表示上で支障があれば、基板間接続部と第2の孔内接続 部とを離間させれば問題はない。

【0033】さらにその場合、第2の内面上接続部と第 1の導電部とを同種の透明性導電材料で形成することが 望ましい

[0034] この構成とした場合、第2の内面上接続部と第1の導電部とを一工程で同時に形成できるので、製造工程が複雑化することがない。

[0035]また駆動回路との接続に関しては、先に第 1の基板の外面に設けた外部接続端子にCOFを実装す る例を説明したが、第1の基板の外面側のうち、非表示 領域に電子部品を直接実装し、この電子部品と第1の引 き廻し導電部および第2の引き廻し導電部とを第1の基 板の外面上で電気的に接続してもよい。ここで言う「電 子部品」とは、具体的には液晶装置の駆動回路に用いる 駆動用IC、コンデンサ等のことを指す。

[0036] 本発明の被晶装置では、第1の基板の外面上に電子部品を直接実装することもできるが、その際、 非表示領域に電子部品を配置するようにすれば、表示に は支障がなく、その分だけ額縁が大きくなるという欠点 はあるものの、第1の基板が駆動回路基板を兼ねること ができ、部品数の低減等の利点が得られる。

[0037] 基板材料としては、第1の基板、第2の基板のいずれか一方の基板あるいは両方の基板ともに、例えばプラスチックフィルム基板等の可撓性を有する基板で構成しても良い。

[0038] この構成にすると、液晶装置の薄型化、軽 量化が図れる、基板の割れ等の破損が生じにくくなる、 基板を湾曲させることで曲面表示が可能になる、等の利 点が得られ、携帯機器等の電子機器に好適なものとな

【0039】本発明を適用し得る液晶装置の方式としては、例えば以下の3つが挙げられる。一つはパッシブマトリクス型液晶装置であり、その場合、第1の基板上の第1の導電部はストライブ状に形成された複数の電極となり、第2の基板上の第2の導電部が前記電極と交差する方向に延在するようストライブ状に形成された複数の電極となる。勿論、第1の導電部と第2の導電部のどちらが走査電極であっても、信号電極であってもかまわない。

【0040】他の一つはスイッチング素子に薄膜ダイオード(Thin Film Diode、以下、TFDと略記する)を用いたアクティブマトリクス型液晶装置であり、その場合、第1の基板上の第1の導電部は複数のデータ線もしくは走査線となり、第2の基板上の第2の導電部は前記データ線もしくは走査線と交差する方向に延在するようストライプ状に形成された複数の走査線もしくはデータ線となる。

【0041】さらに他の一つはスイッチング素子に薄膜

トランジスタ(Thin Film Transistor,以下、TFTと **略記する)を用いたアクティブマトリクス型液晶装置で** あり、その場合、第1の基板上の第1の導電部は複数の データ線もしくは走査線の少なくともいずれかー方とな り、第2の基板上の第2の導電部は一つの共通電極とな

【0042】また、以上説明した本発明の被晶装置にお いて、第1の基板の内面上あるいは第2の基板の内面上 にカラーフィルターを設けても良い。

【0043】この構成にすれば、狭額縁で表示品質の高 いカラー液晶装置を実現することができ、今後、カラー 化がさらに進むことが予想される各種電子機器の表示部 に好適なものとなる。

【0044】 本発明の液晶装置において、第1の基板の 外面側の偏光手段の外方に、照明手段を設けることがで

[0045] 本発明の液晶装置では、第1の基板、第2 の基板、第1の導電部、第2の導電部、第1の引き廻し 導電部、第2の引き廻し導電部が全て透明性を有する材 料で構成されているので、第1の基板の外面側の偏光手 段の外方に照明手段を設けることにより、透過型液晶装 置を実現することができる。

【0046】もしくは、上記照明手段を設けた上で、第 1の基板の内面側もしくは外面側に半透過反射部を設け てもよい。ここで言う「半透過反射部」とは、光を透過 する機能と光を反射する機能とを合わせ持つ部材のこと であって、例えば反射層の一部に光を透過するための開 口部が設けられたもの、あるいは膜自身が光を一部透過 し、一部反射する機能を持ったもの(いわゆるハーフミ ラー) などが用いられる。

【0047】この構成にすれば、明るい場所では反射型 として用い、暗い場所では透過型として用いる、いわゆ る半透過反射型液晶装置を実現することができる。

【0048】もしくは、上記照明手段に代えて、第1の 基板の外面側の偏光手段の外方に、光反射手段を設けて もよい。

[0049] この構成にすれば、反射型液晶装置を容易 に実現することができる。この場合、光反射手段の外面 側であれば任意の部品等を配置しても表示に支障がな

【0050】 本発明の電子機器は、上記本発明の液晶装 置を備えたことを特徴とする。本発明によれば、狭額縁 化による小型の液晶装置を備えたことによって、装置全 体が小型である割に表示領域が広く、携帯性に優れた電 子機器を実現することができる。

[0051]

【発明の実施の形態】 [第1の実施の形態] 以下、本発 明の第1の実施の形態を図1~図12を参照して説明す

【0052】本実施の形態は、本発明の被晶装置をパッ 50 ている。

シブマトリクス型液晶表示装置に適用した例であって、 透過型液晶表示装置の例である。

[0053] 図1は本実施の形態の被晶表示装置全体を 上面側から見た斜視図、図2は下面側から見た斜視図、 図3は下側基板の上面(電極形成面)図、図4は下側基 板を下面側から見た透過平面図、図 5 は上側基板の下面 (電極形成面) 図、図6は上側基板と下側基板を重ね合 わせた状態を示す透過平面図、図7は図6のA-A′線 に沿う断面図、図8は図6のB-B'線に沿う断面図で ある。なお、以下の全ての図面においては、各層や各部 材を図面上で認識可能な程度の大きさとするため、各層 や各部材毎に縮尺を異ならせてある。

[0054] 本実施の形態の被晶表示装置1は、図1に 示すように、下側基板2 (第1の基板) と上側基板3 (第2の基板) とが対向配置され、これら基板間に被晶 層(図1では図示略)が挟持されている。本実施の形態 では、下側基板2および上側基板3の材料としてガラス 等からなる透明基板が用いられている。以下の説明で は、双方の基板の液晶層に面する側の面を「内面」、そ れと反対側の面を「外面」という。すなわち、双方の基 板において液晶層が配置される側の面を「内面」、それ と反対側の面を「外面」という。また、下側基板2の外 面側および上側基板3の外面側に偏光板4、5(偏光手 段)がそれぞれ貼着され、さらに偏光板4の外方にパッ クライト88(照明手段)が取り付けられている。な お、図2以降の図面では、偏光板4、5、パックライト 88の図示を省略する。

[0055] 下側基板2の内面上には多数の信号電極6 (第1の導電部) がストライプ状に設けられ、それと対 向する上側基板3の内面上には信号電極6と直交する方 向に延在する多数の走査電極7 (第2の導電部) がスト ライブ状に設けられている。そして、信号電極6と走査 電極 7 が交差する部分が個々の画素 8 となり、多数の画 素8がマトリクス状に配列した領域が表示領域9とな る。なお、本実施の形態では下側基板2側の電極を信号 電極、上側基板3側の電極を走査電極として説明する が、これは逆であっても一向にかまわない。また、本実 施の形態では信号電極6および走査電極7の形状をスト ライブ状としたが、本形状に限定されるものではなく、 40 多重マトリクス形状等、種々多用な形状で設けても本発 明において適用が可能である。

[0056] 図2に示すように、下側基板2の外面上に は、後述する信号電極用引き廻し配線(第1の引き廻し 導電部)の一部を構成する信号電極用接続配線12(第 1の外面上接続部)、および走査電極用引き廻し配線 (第2の引き廻し導電部) の一部を構成する走査電極用 接続配線14(第2の外面上接続部)がそれぞれ形成さ れている。また、駆動用IC10等を搭載したCOF4 7 を接続するための多数の外部接続端子26が形成され

【0057】図3に示すように、下側基板2の内面上に、ITO等の透明性導電膜からなる多数の信号電極6がストライプ状に設けられている。信号電極6の一端(図中右端)はそのまま電極の延在方向に細く延び、その先端が円形に形成され、後述する孔内接続部(第1の孔内接続部)と接続するためのランド16となっている。ランド16の中央には、下側基板2の内面、外面間を貫通するスルーホールが形成されている。信号電極6の端部のこの部分が、信号電極6と電気的に接続された信号電極用引き廻し配線の一部を構成する信号電極用接 10 統配線18となる。

13

【0058】本実施の形態の場合、全ての信号電極用接続配線18は、図3における信号電極6の右側の領域に引き出されているが、右側と左側に振り分けて引き出しても良いし、接続配線の引き出し方向は任意で良い。また、スルーホールを直線的に配置するのではなく、ジグザグ(千鳥配列)に配置することで狭ピッチにも対応可能になる。また、特に接続配線として信号電極6よりも細い部分を作らなくても、単に信号電極6の端部にスルーホールを設けた構成でも良い。

【0059】また、図3における信号電極形成領域の上方に、後述する上下導通部(基板間接続部)と孔内接続部(第2の孔内接続部)との間を電気的に接続する多数の走査電極用接続配線21(第2の内面上接続部)が形成されている。これら走査電極用接続配線21は上側基板3の各走査電極7とランド22で上下基板間の上下導通により電気的に接続されるものである。本実施の形態の場合、各走査電極用接続配線21の一端は上下導通部に接する矩形のランド22、他端は孔内接続部に接する円形のランド23となっており、円形のランド23の中30央には下側基板2の内面、外面間を貫通するスルーホールが形成されている。これら走査電極用接続配線21も信号電極6と同じITOなどの透明性導電材料で形成されている。

【0060】図4は、図3に示す下側基板2を裏返した 状態を示している。下側基板2の外面上には、図3に示 した信号電極用接続配線18のランド16の中に形成さ れたスルーホール、走査電極用接続配線21のランド2 3の中に形成されたスルーホールの位置に対応して円形 のランド24,25がそれぞれ設けられている。さらに40 下側基板2の外面上には、信号電極用接続配線18のランド16の中に形成されたスルーホールに対応する各ランド24から信号電極用接続配線12がそれぞれ設けられ、同様に走査電極用接続配線21のランド23の中に 形成されたスルーホールに対応する各ランド25から走 査電極用接続配線14が設けられている。

【0061】下側基板2の周縁部の4辺(4つの基板辺)のうち、2辺(2つの基板辺)に沿って上記多数のランド24、25が配置されており、上側基板3の内面に形成された走査電極7との電気的接続(上下導通)が 50

14

なされる基板辺(ランド25が配置される基板辺)と対向する1辺に沿って多数の外部接続端子26が形成されている。つまり、下側基板2の外面上に形成される外部接続端子26は、上側基板3の内面に形成された走査電極7の延在方向に位置する下側基板2の基板辺に沿って端部で配列形成されている。これら外部接続端子26の各々は信号電極用接続配線12もしくは走査電極用接続配線14と接続されている。本実施の形態の場合、下側基板2の外面に形成された信号電極用接続配線12、走査電極用接続配線14、外部接続端子26は全て、内面側の信号電極6、各接続配線18,21等と同じく、ITO等の透明性導電材料から形成されている。

[0062] なお、下側基板2の外面は、外部接続端子26の形成領域を除く、配線が露出した領域をポリイミド、レジスト等の樹脂を用いて被覆しておくことが望ましい。このような被覆層を形成すると、信号電極用接続配線12、走査電極用接続配線14等の配線の腐食、断線、ショート等の不具合を防止することができる。

[0063] 図5に示すように、上側基板3の内面上に、ITOなどの透明性導電膜からなる多数の走査電極7がストライプ状(帯状)に設けられている。図5における各走査電極7の長さ方向の端部が上下導通部に接続される部分となる。なお、図示しない上側基板3の外面側は何も形成されていない平坦な面となっている。

【0064】上記構成の下側基板2と上側基板3を重ね 合わせると、図6に示すようになる。図6において、2 点鎖線で示した符号27の部材は両基板を接着するとと もに液晶層を基板間に封止するためのシール材である。 信号電極6と走査電極7が交差する部分が個々の画素8 となり、多数の画素8がマトリクス状に配列した領域が 表示領域9となる。本実施の形態の場合、下側基板2の 外形よりも上側基板3の外形の方が小さく、下側基板2 の周縁部は上側基板3の外側にはみ出している。下側基 板2の内面上の各信号電極用接続配線18の先端のラン ド16の部分は、それぞれ上側基板3の外側にはみ出し て位置している。 つまり、各信号電極6から導出される 各信号電極用接続配線18はシール材の形成部を突き抜 け、更に上侧基板3の外形(外周)よりも外側に延在し て形成され、その先端部分にランド16が配置されてい る。一方、下側基板2の内面上の各走査電極用接続配線 21については、上下導通部に接する矩形のランド22 の部分がシール材27の部分に位置し、スルーホールが 設けられた円形のランド23の部分が上側基板3の外側 にはみ出して位置している。

[0065] 図7は図6のA-A、線に沿う断面図、すなわち信号電極6に沿った方向に切断した断面図である。この図に示すように、下側基板2と上側基板3との間にシール材27が挟持され、下側基板2と上側基板3とシール材27とにより密閉された空間に液晶層28が挟持されている。ここでは、液晶層28として例えばS

TN(Super Twisted Nematic)モード等に用いられる カイラルネマチック液晶等の一般的な液晶を用いること ができる。

【0066】下側基板2の内面上に信号電極6および信 号電極6と一体形成された信号電極用接続配線18が形 成されるとともに、下側基板2の外面上には信号電極用 接続配線12が形成され、双方の信号電極用接続配線1 2、18の先端のランド16、24の部分には基板を貫 通するスルーホール17が形成されている。スルーホー ル17の内部には銀ペースト等の導電性材料が充填され ており、この導電性材料が、内面側の信号電極用接続配 線18と外面側の信号電極用接続配線12とを電気的に 接続する孔内接続部15を構成している。

【0067】ここで、孔内接続部15のより詳細な構成 としては、例えば図10 (a) に示すように、スルーホ ール17の内部に銀ペースト等の導電性材料を埋め込ん で孔内接続部15を形成した後、導電性材料の表面を絶 縁性の樹脂で被覆するなどして被覆層 2 9 を形成する と、導電性材料の腐食を防止することができる。もしく は、図10(b)に示すように、スルーホール17の内 部に導電性材料を埋め込んで孔内接続部15を先に形成 した後、孔内接続部15の上面および下面を覆うように 下側基板2の内面上および外面上にそれぞれ信号電極用 接続配線18,12を形成してもよい。

【0068】もしくは、孔内接続部は、内面側および外 面側の信号電極用接続配線同士を電気的に接続できれば よいのであって、必ずしも孔の内部全体に埋め込まれて いなくてもかまわない。したがって、図11に示すよう に、電解メッキ法を用いてスルーホール17の内壁にの み導電性材料を付着させ、孔内接続部30としてもよ

【0069】以上のような配線構造を採ることにより、 図7に示すように、外部接続端子26から入力された画 像信号は、下側基板2の外面上の信号電極用接続配線1 2、孔内接続部15、下側基板2の内面上の信号電極用 接続配線18を経由して各信号電極6に供給される。よ って、これら下側基板2の外面上の信号電極用接続配線 12、孔内接続部15、下側基板2の内面上の信号電極 用接続配線18が信号電極用引き廻し配線11を構成す ることになる。

[0070]また図7に示すように、上側基板3の内面 には多数の走査電極7が形成されている。そして、下側 基板2、上側基板3双方の液晶層28に接する最上層に は配向膜35,36がそれぞれ形成されている。配向膜 35.36はポリイミド等の膜からなり、ラピング等の 配向処理が施されたものである。また、下側基板2と上 側基板3の間には基板間の間隔(以下、セルギャップと いう)を一定に保持するためのスペーサ37が散布され ている。

16

図、すなわち走査電極7に沿った方向に切断した断面図 であり、走査電極用引き廻し配線13の構成が示されて いる。この図に示すように、上側基板3の内面上に、シ ール材27の上面と接触するように走査電極7が形成さ れている。また、下側基板2の内面上には、多数の信号 電極 6 が形成されるとともに、シール材 2 7 の下面と接 触するように走査電極用接続配線21が形成されてい る。ここで、シール材27の内部には樹脂等のパインダ 一中に金属粒子、プラスチックボールの表面を金属めっ きした粒子等の導電材が混入されており、シール材27 の上面および下面にそれぞれ接触した走査電極7と走査 電極用接続配線21とが異方性を有して電気的に接続さ れて上下導通部19を構成している。

【0072】以下、下側基板2の内面から外面にわたっ て電気的に接続される構成は、信号電極用引き廻し配線 11の場合と同様である。すなわち、下側基板2の外面 上に走査電極用接続配線14が形成され、内面側、外面 側双方の走査電極用接続配線21,14の先端のランド 23,25の部分にスルーホール38が形成されてい る。スルーホール38の内部には銀ペースト等の導電性 材料が充填され、この導電性材料が孔内接続部20を構 成し、内面側、外面側の走査電極用接続配線21,14 を互いに電気的に接続している。

[0073] 以上のような配線構造を採ることにより、 外部接続端子26から入力された走査信号は、下側基板 2の外面上の走査電極用接続配線14、孔内接続部2 0、下側基板2の内面上の走査電極用接続配線21、上 下導通部19を経由して各走査電極7に供給される。よ って、これら下側基板2の外面上の走査電極用接続配線 1 4、孔内接続部 2 0、下側基板 2 の内面上の走査電極 用接続配線21、および上下導通部19が走査電極用引 き廻し配線13を構成することになる。

【0074】なお、シール材27の内部に導電材を混入 してこの部分を上下導通部19とすることに代えて、例 えば図9に示すように、上側基板2の内面上でシール材 27外側の下側基板2のスルーホール38の上方にあた る位置まで走査電極7を延在させ、下側基板2のスルー ホール38の上方に任意の上下導通材39を形成し、こ の部分を上下導通部40としてもよい。この上下導通材 39は、例えば銀ペースト等の印刷により形成すること ができる。この構成の場合、シール材27の部分では電 気的導通がないが、上下導通材39の形成部分で基板間 の導通がなされ、導通経路としては図8の構造とほとん ど同様になる。

【0075】以下、上記構成の被晶表示装置の製造方法 について説明する。

[0076] 下側基板2の材料としてガラス基板等の透 明基板を用意し、基板の表裏両面に I T O等の透明性導 電膜を成膜する。次に、基板両面の透明性導電膜上に感 [0071] 一方、図8は図6のB-B 線に沿う断面 50 光性レジストを塗布した後、基板両面上にフォトマスク

を配置し、同時に露光を行う。次いで、周知のフォトリソグラフィー、エッチング技術を用いて下側基板2の表 裏両面の透明性導電膜のパターニングを同時に行うこと により、上述の下側基板2内面側の信号電極6、各接続 配線18,21、外面側の信号電極用接続配線12、走 査電極用接続配線14、外部接続端子26等を一括して 形成する。

【0077】次に、エッチング剤としてフッ酸を用いた ケミカルエッチングにより下侧基板2上の各接続配線端 部の所定の箇所に基板を貫通するスルーホール17,3 10 8を形成する。スルーホールの他の形成方法としては、 CO2レーザー等の照射によるレーザー加工を用いても よい。その後、スルーホール17、38の内部に銀ペー スト等の導電性材料を充填して孔内接続部15,20を 形成し、下側基板2両面の各接続配線間を電気的に導通 させる。また、孔内接続部の他の形成方法としては、電 解メッキ処理等を用いてスルーホールの内壁に導電性材 料を付着させる方法でもよい。いずれにしても、本実施 の形態の場合、基板の表裏両面の透明性導電膜材料を同 じにしたことによって、1回のフォトリソグラフィー、 エッチング工程で下側基板2内面側の信号電極等と外面 側の各種接続配線等を同時に形成できるため、製造工程 を大幅に簡略化することができる。

【0078】一方、上側基板3の材料としてガラス基板等の透明基板を用意し、基板の一面(内面となる面)側にITO等の透明性導電膜を成膜する。次いで、周知のフォトリソグラフィー、エッチング技術を用いて透明性導電膜をパターニングし、ストライプ状の走査電極7を形成する。

【0079】次に、下側基板2、上側基板3双方の内面 30 上にポリイミド等を塗布、焼成した後、ラビング法等に よる配向処理を施して配向膜35,36をそれぞれ形成 する。次いで、下側基板2、上側基板3のいずれか一方 の基板上にセルギャップを保持するためのスペーサ37 を散布し、シール材27となる樹脂材料を印刷した後、 下側基板2と上側基板3とを貼り合わせ、シール材27 を硬化させて、空セルを作製する。本実施の形態の場合、シール材27の部分を上下導通部とするためにシール材27となる樹脂材料の中に金属粒子等の導電材を混入させておく。

【0080】次に、空セル内に、真空注入法等によりシール材の液晶注入口から液晶を注入し、液晶注入口を封止することで液晶セルが作製される。さらに、上侧基板3の外面側および下側基板2の外面側に偏光板5をそれぞれ貼着した後、下側基板2の外面側にパックライトを取り付ける。以上の工程により、本実施の形態の液晶表示装置1が完成する。

[0081]従来の構成では、各電極の引き廻し配線が 例えば下側基板の内面上の表示領域の外側に引き廻され ていたのに対し、本実施の形態の構成では、信号電極用 50 18

引き廻し配線11、走査電極用引き廻し配線13の双方が、下側基板2、上側基板3各々の内面から下側基板2の内部を通って下側基板2の外面側に引き廻されている

【0082】したがって、本実施の形態の被晶表示装置によれば、従来の構成において下側基板内面の表示領域外側に設けていた引き廻し領域が不要となるので、その分だけ従来に比べて大幅に額縁を狭くすることができる。また、表示領域9内を含めて下側基板2の外面側全面に多数の接続配線をレイアウトすることができ、接続配線間のピッチを余裕を持って設計することができるので、引き廻し抵抗が増大するという問題が生じることもない。

【0083】本実施の形態では上下の基板ともにガラス基板を用いたが、これら基板の材料として、ポリカーボネート、ポリエーテルスルホン、アクリル系樹脂等からなるプラスチックフィルム基板等、可撓性を有する透明基板で構成しても良い。この構成にすると、液晶表示装置の薄型化、軽量化が図れる、基板の割れ等の破損が生じにくくなる、基板を濁曲させることで曲面表示。選能になる、等の利点が得られ、携帯機器等の電子機器に好適なものとなる。

[0084] また、下側基板2外面の周縁部に外部接続端子26が設けられているので、COFなどを実装するような場合、外部接続端子26とCOFの端子を接続する際の位置合わせを容易に行うことができる。また、COF接合時もしくは接合後、接合部分に応力が発生する場合があるが、その位置が表示領域9から外れた基板周縁部であれば、前記応力が表示に悪影響を及ぼすこともない。

[0085] 本実施の形態の場合、下側基板2のスルーホール17,38の位置をシール材27の外側に配置したため、スルーホール17,38の孔内接続部15,20の部分が下側基板2上で若干盛り上がった形状となったとしても、その影響でシール材27内部の表示領域9のセルギャップが変わるようなこともなく、画像表示上何ら支障がない。

[0086] また下側基板2の構成に関しては、基板の内外面に導電層を形成した基板だけでなく、例えば図12に示すように、下側基板2の内部に透明性導電膜からなる1層以上の内部導電層42を有する基板で構成してもよい。この場合には、下側基板2の内面と外面の間の電気的導通は、下側基板2の内面と内部導電層42との間を貫通するビアホール43内の孔内接続部44、および下側基板2の外面と内部導電層42との間を貫通するビアホール45内の孔内接続部46(もしくは内部導電層が2層以上ある場合には相互の内部導電層間を貫通するビアホール内の孔内接続部)によってなされることになる

【0087】下側基板2にこの種の基板を用いると、例

えば引き廻し配線の数が増え、下側基板の外面上だけで 多数の引き廻し配線を引き廻すことが難しくなった場合 に、一部の引き廻し配線を内部導電層を経由して引き廻 すこともできる。そうすれば、引き回しの自由度が向上 するので、表示容量の増大にも対応することが可能にな

【0088】[第2の実施の形態]以下、本発明の第2の実施の形態を図13、図14を参照して説明する。

【0089】本実施の形態も第1の実施の形態と同様、本発明の液晶装置をパッシブマトリクス型液晶表示装置に適用した例であって、透過型液晶表示装置の例である。第1の実施の形態と異なる点は、第1の実施の形態が駆動用ICの実装形態としてCOF実装を採用したのに対し、本実施の形態はCOG実装を採用している点である。

【0090】このように、本実施の形態の液晶表示装置の概略構成は第1の実施の形態と共通であるため、共通な構成については図示および説明を省略する。図13は第1の実施の形態の図2に対応する図であって、本実施の形態の液晶表示装置全体を下面側から見た斜視図、図 2014は図13のB-B、線に沿う断面図である。なお、これらの図面において、図1~図12と共通の構成要素については同一の符号を付す。

【0091】第1の実施の形態の場合、下側基板の外面上には信号電極用接続配線、走査電極用接続配線、および外部接続端子が形成されているのみであったが、本実施の形態の液晶表示装置31の場合、図13に示すように、下側基板2の外面上に信号電極用接続配線12、走査電極用接続配線14、および外部接続端子26が形成されるとともに、駆動用IC10が直接実装されている。さらに、外部接続端子26と駆動用IC10の端子とを接続する信号入力用配線41が形成されている。

【0092】本実施の形態の場合、下側基板の内面上の信号電極用接続配線は、隣接する信号電極において、信号電極6の左側、右側、左側、…というように交互に反対側の領域に引き出されている。そして、信号電極用接続配線のスルーホールに対応する複数のランド24が、下側基板2の周縁部の4辺のうち、対向する2辺に沿って設けられ、これらのランド24から駆動用IC10の実装領域に向けて信号電極用接続配線12がそれぞれ設けられている。また、走査電極用接続配線のスルーホールに対応する各ランド25が下側基板2の周縁部の1辺に沿って設けられ、これらのランド25から駆動用IC10の実装領域に向けて走査電極用接続配線14が設けられている。

【0093】本実施の形態の液晶表示装置31は透過型液晶表示装置であるから、表示領域9内に駆動用IC10を配置することはできず、下側基板2の1辺側が上側基板3の外側、すなわち非表示領域に延び、この部分に駆動用IC10が実装されている。

20

【0094】図14は本実施の形態の液晶表示装置31を走査電極7に沿った方向に切断した断面図であり、走査電極用引き廻し配線13の構成が示されている。この図に示すように、上側基板3の内面上に、シール材27の上面と接触するように走査電極7が形成されている。また、下側基板2の内面上には、多数の信号電極6が形成されるとともに、シール材27の下面と接触するように走査電極用接続配線21が形成されている。ここで、シール材27の内部には樹脂等のバインダー中に金属粒子等の導電材が混入されており、シール材27の上面および下面にそれぞれ接触した走査電極7と走査電極用接続配線21とが電気的に接続されて上下導通部19を構成している。

[0095]下側基板2の外面上に走査電極用接続配線14が形成され、内面側、外面側双方の走査電極用接続配線21,14の先端のランド23,25の部分にスルーホール38が形成されている。スルーホール38の内部には銀ペースト等の導電性材料が充填され、この導電性材料が孔内接続部20を構成し、内面側、外面側の走査電極用接続配線21,14を互いに電気的に接続している。

【0096】また、下側基板2の外面上の走査電極用接続配線14のスルーホール38が設けられた側と反対側の端部には、駆動用IC10の端子32が接続されている。以上のような配線構造を採ることにより、駆動用IC10から出力された走査信号は、下側基板2の外面上の走査電極用接続配線14、孔内接続部20、下側基板2の内面上の走査電極7に供給される。よって、これら下側基板2の外面上の走査電極用接続配線14、孔内接続部20、下側基板2の内面上の走査電極用接続配線14、孔内接続部20、下側基板2の内面上の走査電極用接続配線21、および上下導通部19が走査電極用引き廻し配線13を構成することになる。

[0097] 図示しない信号電極用引き廻し配線の構成も同様であって、駆動用IC10から出力された画像信号は、下側基板2の外面上の信号電極用接続配線12、孔内接続部、下側基板2の内面上の信号電極用接続配線を経由して各信号電極6に供給される。よって、これら下側基板2の外面上の信号電極用接続配線12、孔内接続部、下側基板2の内面上の信号電極用接続配線が信号電極用引き廻し配線を構成することになる。

[0098] 本実施の形態の液晶表示装置31においては、下側基板2の1辺側を上側基板3の外側に延在させ、その部分に駆動用IC10を実装した構成としているので、駆動用IC10を実装する領域を設けた分、額縁部分は若干広くなるものの、駆動用ICを搭載したCOF等を接続する必要がなくなり、接続用部品の削減を図ることができる。

【0099】 [第3の実施の形態] 以下、本発明の第3 50 の実施の形態を図15~図17を参照して説明する。

20

【0100】本実施の形態も第1、第2の実施の形態と 同様、本発明の液晶装置をパッシブマトリクス型液晶表 示装置に適用した例であって、透過型液晶表示装置の例 である。第1の実施の形態と異なる点は下側基板上のス ルーホールの位置のみであって、第1の実施の形態では スルーホールをシール材の外側に配置したのに対し、本 実施の形態ではスルーホールをシール材の直下に配置し ている。

【0101】このように、本実施の形態の液晶表示装置 の概略構成は第1の実施の形態と共通であるため、共通 な構成については図示および説明を省略する。図15は 第1の実施の形態の図6に対応する図であって、上側基 板と下側基板を重ね合わせた状態を示す透視図、図16 は図15のA-A'線に沿う断面図、図17は図15の B-B'線に沿う断面図である。なお、これらの図面に おいて、図1~図12と共通の構成要素については同一 の符号を付す。

【0102】本実施の形態の液晶表示装置50は、図1 5に示すように、下側基板2の内面上に多数の信号電極 6 (第1の導電部) がストライプ状に設けられており、 各信号電極6の長さ方向(配線形成方向)の一端には、 先端のランド16の中央にスルーホールを有する信号電 極用接続配線18が設けられている。これと対向する上 側基板3の内面上には、信号電極6と直交する方向に多 数の走査電極7 (第2の導電部) がストライプ状に設け られている。そして、図16、図17に示すように、下 側基板2の外面上には、信号電極用引き廻し配線11

(第1の引き廻し導電部)の一部を構成する信号電極用 接続配線12 (第1の外面上接続部) 、および走査電極 構成する走査電極用接続配線14 (第2の外面上接続 部)がそれぞれ設けられ、外部接続端子26が設けられ ている。以上の構成は、第1の実施の形態と同様であ

【0103】また第1の実施の形態の場合、スルーホー ル38の位置がシール材27(上下導通部)の位置の外 側に離れて配置されていたので、下側基板2のシール材 の外側の内面上に、シール材27とスルーホール38内 の孔内接続部20との間を電気的に接続する走査電極用 接続配線21が形成されていた。これに対して、本実施 40 の形態の場合、スルーホール38とシール材27とが同 じ位置にあるので、第1の実施の形態における下側基板 2内面上の走査電極用接続配線21に相当するものは特 に必要がない。したがって、下側基板2の内面上のシー ル材27が配置される領域には、これに対向する位置に 配置される上側基板3上の各走査電極7の本数に対応す る数の矩形のランド22が設けられている。これらラン ド22の中央には下側基板2の内面、外面間を貫通する スルーホール38が形成されている。

【0104】すなわち、図6と図15を改めて比較する 50

22

と、第1の実施の形態では、図6に示すように、下側基 板2の内面上の各信号電極用接続配線18のランド16 の部分がシール材27の外側(上側基板3の外側)には み出して位置し、各走査電極用接続配線21の端部のス ルーホール38が設けられた円形のランド23の部分が シール材27の外側(上側基板3の外側)にはみ出して 位置している。これに対して、本実施の形態において は、図15に示すように、下側基板2の内面上の各信号 電極用接続配線18のランド16の部分がシール材27 の直下に位置し、各走査電極7に対応して設けられた上 下導通用の矩形のランド22の部分もシール材27の直 下に位置している。つまり、上下基板間の導通を図るラ ンド22、並びに下側基板2の内面上から外面上への導 诵を図るランド16、23とスルーホール17、38の 全てがシール材27の形成領域内に配置されている。

【0105】この構成を断面構造で見ると、図16、図 17に示す通りである。すなわち、信号電極6に沿った 方向に切断すると、図16に示すように、下側基板2の 内面上の信号電極6および信号電極6と一体の信号電極 用接続配線18が形成されるとともに、下側基板2の外 面上には信号電極用接続配線12が形成されている。そ して、シール材27の直下にあたる双方の信号電極用接 統配線18、12のランド16、24の部分には基板を 貫通するスルーホール17が形成されている。スルーホ ール17の内部には銀ペースト等の導電性材料が充填さ れ、この導電性材料が内面側の信号電極用接続配線18 と外面側の信号電極用接続配線12を接続することで孔 内接続部15を構成している。孔内接続部の具体的な構 成として、図10(a)、(b)、図11に示したよう 用引き廻し配線13 (第2の引き廻し導電部)の一部を 30 な種々の構造が採用できることは、第1の実施の形態と 同様である。

> 【0106】以上のような配線構造を採ることにより、 外部接続端子26から入力される画像信号は、下側基板 2の外面上の信号電極用接続配線12、孔内接続部1 5、下側基板2の内面上の信号電極用接続配線18を経 由して各信号電極6に供給される。よって、これら下側 基板2の外面上の信号電極用接続配線12、孔内接続部 15、下側基板2の内面上の信号電極用接続配線18が 信号電極用引き廻し配線11を構成することになる。

> 【0107】一方、走査電極7に沿った方向に切断する と、図17に示すように、上側基板3の内面上に、シー ル材27の上面と接触するように走査電極7が形成され ている。また、下側基板2の内面上には、多数の信号電 極6とともに、シール材27の下面と接触するように走 査電極7との接続用のランド22が形成されている。シ ール材27の内部には金属粒子等の導電材が混入されて おり、シール材27の上面および下面にそれぞれ接触し た走査電極7とランド22とが電気的に接続されて上下 導通部19を構成している。

【0108】さらに、下側基板2の内面側のランド2

2、外面側の走査電極用接続配線14の先端のランド25の部分にスルーホール38が形成されている。スルーホール38の内部には銀ペースト等の導電性材料が充填され、この導電性材料が孔内接続部20を構成し、内面側のランド22と外面側の走査電極用接続配線14とを電気的に接続している。以上のような配線構造を採ることにより、外部接続端子26から入力される走査信号は、下側基板2の外面上の走査電極用接続配線14、下側通部19を経由して各走査電極7に供給される。よって、これら下側基板2の外面上の走査電極用接続配線14、孔内接続部20、下側基板2の内面上のランド22、および上下導通部19が走査電極用引き廻し配線13を構成することになる。

【0109】本実施の形態の場合、第1の実施の形態のように下側基板2の内面上の各信号電極用接続配線18のランド16や走査電極7と接続されるランド22の部分がシール材27の外側にはみ出していないので、下側基板2の外形と上側基板3の外形とを同じ程度の大きさにできる。その結果、第1の実施の形態に比べてさらに狭額縁化を図ることができる。

[0110] [第4の実施の形態] 以下、本発明の第4の実施の形態を図18、図19を参照して説明する。

【0111】本実施の形態も第1、第2の実施の形態と同様、本発明の液晶装置をパッシブマトリクス型液晶表示装置に適用した例であって、透過型液晶表示装置の例である。そして、本実施の形態の液晶表示装置は下側基板にカラーフィルターを備え、透過型カラー液晶表示装置を実現した例である。

【0112】本実施の形態の液晶表示装置の概略構成は第1~第3の実施の形態と共通であるため、共通な構成については図示および説明を省略する。図18は第1の実施の形態の図7(図6のA-A、線に沿う断面図)に対応する断面図、図19は第1の実施の形態の図8(図6のB-B、線に沿う断面図)に対応する断面図である。なお、これらの図面において、図7、図8と共通の構成要素については同一の符号を付す。

【0113】本実施の形態の液晶表示装置52においては、図18および図19に示すように、下側基板2の信号電極6を覆うように表示領域全域に絶縁膜53が形成され、その絶縁膜53上にカラーフィルター54が形成されている。カラーフィルター54は、各画素に対応して形成された赤(R)、緑(G)、青(B)の3色の色材層55と、金属膜、ブラックレジスト等からなる格子状の遮光膜56(ブラックマトリクス)とから構成されている。そして、カラーフィルター54上に配向膜35が形成されている。信号電極6、走査電極7等の電極成、信号電極13等の電極開引き廻し配線13等の配線構成に関しては、上記第1の実施の形態と全く同様である。

【0114】本実施の形態の液晶表示装置においては、下側基板2の内面上にカラーフィルター54を備えているので、狭額縁による小型化が図れ、表示品質の高いカラー液晶表示装置を実現することができ、今後、カラー化がさらに進むことが予想される携帯電子機器等に好適なものとなる。また、本実施の形態においては、カラーフィルターを下側基板側に形成しているが、上側基板に形成しても良く、その効果には何ら支障をきたすものではない。

7 【0115】 [第5の実施の形態] 以下、本発明の第5の実施の形態を図20、図21を参照して説明する。

[0116] 本実施の形態も第1~第4の実施の形態と同様、本発明の液晶装置をパッシブマトリクス型液晶表示装置に適用した例である。しかしながら、第1~第4の実施の形態が透過型液晶表示装置の例であったのに対して、本実施の形態の液晶表示装置は半透過反射型液晶表示装置の例である。

【0117】本実施の形態の液晶表示装置の全体構成は第1の実施の形態と共通であるため、共通な構成については図示および説明を省略する。図20は第1の実施の形態の図7(図6のA-A、線に沿う断面図)に対応する断面図、図21は第1の実施の形態の図8(図6のB-B、線に沿う断面図)に対応する断面図である。なお、これらの図面において、図7、図8と共通の構成要素については同一の符号を付す。

【0118】本実施の形態の液晶表示装置58においては、図20および図21に示すように、下側基板2上の表示領域全域に半透過反射層59(半透過反射部)が形成されている。この半透過反射層59は、アルミニウム、銀等の光反射率の高い金属薄膜から形成され、表面で光を反射するとともに、スリット状もしくは矩形状の多数の開口部(図示略)が全面にわたって均一に形成さ

れており、これら開口部を通して光が透過する。 【0119】そして、この半透過反射層59を覆うように絶縁膜60が形成され、その絶縁膜60上に多数の信号電極6がストライプ状に形成されている。信号電極6は、絶縁膜60および半透過反射層59の形成領域外では下側基板2上に直接形成された状態となっているため、スルーホール17,38の部分の接続構造は第1の実施の形態と全く同様である。

【0120】また、図22に示すように、信号電極用接続配線18を反射層59を形成する際に同時に形成し、少なくとも表示領域内の反射層59表面に絶縁膜60を形成し、絶縁膜60上に多数の信号電極6をストライプ状に形成し、信号電極6を延仲させて信号電極用接続配線18と電気的に導通させる構成としてもよい。

【0121】また第1の実施の形態と同様、図21に示すように、下側基板2の内面上には、シール材27の部分の上下導通部19とスルーホール38の部分の孔内接50 続部20とを電気的に接続する走査電極用接続配線21

を反射型としたことによって消費電力の低減を図ること ができる。

26

が設けられているが、この走査電極用接続配線21は、 半透過反射層59と同じ材料であるアルミニウム、銀等 の金属膜で形成してもよいし、信号電極6と同じ材料で あるITO等の透明性導電膜で形成してもよい。いずれ にしろ、半透過反射層59または信号電極6と同じ材料 を用いる限り、製造工程が増えることはない。

【0122】一方、下側基板2の外面側には、信号電極用接続配線12、走査電極用接続配線14等が設けられており、これら配線の引き廻しについては第1の実施の形態と同様である。

【0123】本実施の形態の液晶表示装置58においても、下側基板2にスルーホール17,38を設け、信号電極6、走査電極7それぞれの引き廻し配線11,13を下側基板2の外面側に引き廻したことにより狭額縁化を図ることができる、という第1~第4の実施の形態と同様の効果を得ることができる。そして、半透過反射層59を設けたことにより、明るい場所では反射型として用い、暗い場所では透過型として用いる、いわゆる半透過反射型液晶装置を実現することができる。

【0124】なお、反射層の一部に光を透過するための 20 開口部を設けた上記の半透過反射層の他、膜自身が光を一部透過し、一部反射する機能を持つ、いわゆるハーフミラーからなる半透過反射層を用いてもよい。

【0125】 [第6の実施の形態] 以下、本発明の第6の実施の形態を図23を参照して説明する。

【0126】本実施の形態も第1~第5の実施の形態と同様、本発明の液晶装置をパッシブマトリクス型液晶表示装置に適用した例である。しかしながら、第1~第4の実施の形態が透過型液晶表示装置の例、第5の実施の形態が半透過反射型液晶表示装置の例であったのに対し 30 て、本実施の形態の液晶表示装置は反射型液晶表示装置の例である。

【0127】本実施の形態の液晶表示装置の全体構成は第1の実施の形態と共通であるため、共通な構成については図示および説明を省略する。図23は第1の実施の形態の図1に対応する装置全体の斜視図である。なお、この図面において、図1と共通の構成要素については同一の符号を付す。

[0128] 本実施の形態の液晶表示装置90は、図23に示すように、反射板91(光反射手段)を備えたものである。すなわち、第1の実施の形態の液晶表示装置1におけるバックライト88に代えて、下側基板2の外面に設けた偏光板4の外方に反射板91を貼着することにより反射型液晶表示装置を実現することができる。

【0129】本実施の形態の被晶表示装置58においても、下側基板2にスルーホール17,38を設け、信号電極6、走査電極7それぞれの引き廻し配線11,13を下側基板2の外面側に引き廻したことにより狭額緑化を図ることができる、という第1~第5の実施の形態と同様の効果を得ることができる。そして、液晶表示装置50

【0130】なお、第5の実施の形態では、下側基板2の内面上に半透過反射層59を形成することにより半透過反射型被晶表示装置を実現した例を示したが、本実施の形態の被晶表示装置90における反射板91に代えて、外付けの半透過反射板を貼着し、その外側にパックライトを設置することにより半透過反射型液晶表示装置を実現することもできる。

10 【0131】 [第7の実施の形態] 以下、本発明の第7 の実施の形態を図24を参照して説明する。

【0132】上記第1~第6の実施の形態ではパッシブマトリクス型液晶表示装置の例を示したが、本実施の形態では、TFDをスイッチング素子に用いたアクティブマトリクス方式の透過型液晶表示装置への本発明の適用例を示す。図24(a)は本実施の形態の液晶表示装置の全体構成を示す斜視図であり、図24(b)は図24(a)における一画素の拡大図である。

【0133】本実施の形態の液晶表示装置61は、図24(a)に示すように、2枚の基板、すなわちTFD素子が形成された側の素子基板62(第1の基板)と対向基板63(第2の基板)とが対向配置され、これら基板間に液晶(図示略)が封入されている。なお、図示は省略するが、実際には液晶と接する各基板の内面には配向膜が形成されている。素子基板62の内面側には、多数のデータ線64が設けられており、各データ線64に対して多数の画素電極65がTFD素子66を介して接続されている。一方、対向基板63の内面側には、短冊状の多数の走査線67がデータ線に交差する方向に形成されている。

【0134】また、素子基板62の外面には、データ線用接続配線および走査線用接続配線(いずれも図示略)が設けられている。

[0135] TFD素子66は、図21(b)に示すように、例えばタンタル膜からなる第1の導電膜68と、第1の導電膜68の表面に陽極酸化によって形成されたタンタル酸化膜からなる絶縁膜69と、絶縁膜69の表面に形成されたクロム、アルミニウム、チタン、モリブデン等の金属膜からなる第2の導電膜70とから構成されている。そして、TFD素子66の第1の導電膜68がデータ線64に接続され、第2の導電膜70が画素電極65に接続されている。本実施の形態の場合、画素電極65はITO等の透明性導電膜で形成されている。一方、対向基板63の内面の走査線67も、ITO等の透明性導電膜で形成されている。

[0136]第1~第6の実施の形態のパッシブマトリクス型液晶表示装置の場合と異なり、本実施の形態の液晶表示装置61の場合は、光透過領域である画素電極65の部分がITO等の透明性導電膜で形成されていさえすればよく、データ線用引き廻し配線が接続されるデー

夕線64は遮光領域に位置するので、データ線自身は透明性導電膜で形成する必要はない。

27

[0137] そして、本実施の形態の被晶表示装置61 の場合、素子基板62の内面の各データ線64の一端が矩形状に形成され、この部分に素子基板62の内面側と外面側を貫通するスルーホール71が形成されている。断面構造は、第1の実施の形態の図7および図8において、信号電極6を本実施の形態のデータ線64に置き換えたものと同様になる。

【0138】すなわち、素子基板62の内面上にデータ 10線64が形成される一方、素子基板62の外面上にはデータ線用接続配線が形成され、双方の配線の先端には基板を貫通するスルーホール71が形成されている。スルーホール71の内部には銀ペースト等の導電性材料が充填されており、この導電性材料が内面側のデータ線と外面側のデータ線用接続配線を接続することで孔内接続部を構成する。以上のような配線構造を採ることにより、入力された画像信号は、素子基板62の外面上のデータ線用接続配線、孔内接続部を経由して各データ線64に供給される。つまり、これら素子基板62の外面上のデータ線用接続配線、孔内接続部がデータ線用引き廻し配線を構成することになる。

【0139】一方、対向基板63の走査線67側につい ては、シール材の上面と接触するように走査線67が形 成されている。シール材中には金属粒子等の導電材が混 入されており、シール材の上面および下面が電気的に接 続されて上下導通部を構成する。素子基板62の上下導 通部の下部にあたる部分はランドおよびスルーホールが 形成されており、スルーホールの内部に銀ペースト等の 導電性材料が充填され、この導電性材料が孔内接続部を 30 構成し、内面側、外面側の走査線用接続配線を電気的に 接続している。以上のような配線構造を採ることによ り、入力された走査信号は、素子基板62の外面上の走 査線用接続配線、孔内接続部、上下導通部を経由して対 向基板63上の各走査線67に供給される。つまり、こ れら素子基板62の外面上の走査線用接続配線、孔内接 統部、および上下導通部が走査線用引き廻し配線を構成 することになる。

【0140】本実施の形態はTFD素子を用いたアクティブマトリクス型被晶表示装置の例であるが、この場合 40 も上記第1~第6の実施の形態のパッシブマトリクス型 液晶表示装置の例と同様の効果を得ることができる。すなわち、素子基板62の内面の表示領域外部に引き廻し配線を配置するスペースが要らなくなるので、大幅な狭額縁化を図ることができる。また、素子基板62の外面側全域を引き廻し配線のためのスペースとできるので、充分な配線ピッチを確保することができ、引き廻し抵抗の増大を招くこともない。

[0141]なお、本実施の形態では素子基板62側を データ線64、対向基板63側を走査線67としたが、 これは逆であってもよい。

【0142】 [第8の実施の形態] 以下、本発明の第8の実施の形態を図25を参照して説明する。

28

【0143】本実施の形態では、TFTをスイッチング素子に用いたアクティブマトリクス方式の透過型液晶表示装置への本発明の適用例を示す。図25(a)は本実施の形態の液晶表示装置の全体構成を示す斜視図であり、図25(b)は図25(a)における一画素の拡大図である。

[0144]本実施の形態の液晶表示装置 73は、図25(a)に示すように、TFD型液晶表示装置の第7の実施の形態とほぼ同様の構成を有している。すなわち、TFT素子が形成された側の素子基板 74(第1の基板)と対向基板 75(第2の基板)とが対向配置され、これら基板間に液晶(図示略)が封入されている。素子基板 74の内面側には、多数のソース線 76(データ線)および多数のゲート線 77(走査線)が互いに交差するように格子状に設けられている。各ソース線 76と各ゲート線 77の交差点の近傍にはTFT素子 78が形成されており、各TFT素子 78を介して回素電影の大きれており、各TFT素子 78を介して回素電影の大きれており、各TFT素子 78を介して回素電影の大きれており、各工を工業である。

【0145】また、素子基板74の外面にはソース線用接続配線およびゲート線用接続配線(いずれも図示略)が設けられている。

【0146】TFT素子78は、図25(b)に示すように、ゲート線77から延びるゲート電極81と、ゲート電極81を覆う絶縁膜(図示略)と、絶縁膜上に形成された多結晶シリコン、アモルファスシリコン等からなる半導体層82と、半導体層82中のソース領域に接続されたソース線76から延びるソース電極83と、半導体層82中のドレイン領域に接続されたドレイン電極84を有している。そして、TFT素子78のドレイン電極84が画素電極79に接続されている。本実施の形態の場合も第5の実施の形態と同様、画素電極79はITO等の透明性導電膜で形成されている。一方、対向基板75側の共通電極80も、ITO等の透明性導電膜で形成されている。

[0147] 本実施の形態の液晶表示装置 73の場合も第7の実施の形態と同様、光透過領域である画素電極 79の部分が ITO等の透明性導電膜で形成されていさえすればよく、ソース線用引き廻し配線が接続されるソース線 76およびゲート線用引き廻し配線が接続されるゲート線 77は遮光領域に位置するので、これらソース線 76およびゲート線 77自身は透明性導電膜で形成する必要はない。

【0148】そして、本実施の形態の液晶表示装置73 の場合、素子基板74の内面の各ソース線76の一端が) 矩形状に形成され、この部分に素子基板74の内面側と

携帯電話の一例を示した斜視図である。図26において、符号1000は携帯電話本体を示し、符号1001 は上記の被晶表示装置を用いた被晶表示部を示している。

30

外面側を貫通するスルーホール85が形成されている。 同様に、各ゲート線77の一端も矩形状に形成され、こ の部分に素子基板74の内面側と外面側を貫通するスル ーホール86が形成されている。スルーホール85.8 6の部分の断面構造は、第1の実施の形態の図7および 図8において、信号電極6を本実施の形態のソース線7 6もしくはゲート線77に置き換えたものと同様になる。

【0154】図27は、腕時計型電子機器の一例を示した斜視図である。図27において、符号1100は時計本体を示し、符号1101は上記の液晶表示装置を用いた液晶表示部を示している。

【0149】すなわち、素子基板74の内面上にソース線76が形成される一方、素子基板74の外面上にはソ 10 ース線用接続配線が形成され、双方の配線の先端には基板を貫通するスルーホール85が形成されている。スルーホール85の内部には銀ペースト等の導電性材料が充填されており、この導電性材料が内面側のソース線76と外面側のソース線用接続配線を接続することで孔内接続部を構成する。以上のような配線構造を採ることにより、入力された画像信号は、素子基板74の外面上のソース線用接続配線、孔内接続部を経由して各ソース線76に供給される。よって、これら素子基板74の外面上のソース線用接続配線、孔内接統部がソース線用引き廻 20 し配線を構成することになる。

【0155】図28は、ワープロ、パソコンなどの携帯 の 型情報処理装置の一例を示した斜視図である。図28に おいて、符号1200は情報処理装置、符号1202は キーボードなどの入力部、符号1204は情報処理装置 本体、符号1206は上記の液晶表示装置を用いた液晶 表示部を示している。

【0150】ゲート線側も同様の配線構造を採っており、入力された走査信号は、素子基板74の外面上のゲート線用接続配線、孔内接続部を経由して各ゲート線77に供給される。よって、これら素子基板74の外面上のゲート線用接続配線、孔内接続部がゲート線用引き廻し配線を構成することになる。

【0156】図26~図28に示す電子機器は、上記実施の形態の被晶表示装置を用いた液晶表示部を備えているので、狭額縁化による小型の液晶パネルを備えたことにより装置全体が小型である割に表示領域が広く、携帯性に優れた電子機器を実現することができる。

【0151】一方、対向基板75の共通電極80については、共通電極80の一部がシール材の上面と接触するように形成されている。シール材中には金属粒子等の導 30 電材が混入されており、シール材の上面および下面が電気的に接続されて上下導通部を構成する。素子基板74の上下導通部の下部にあたる部分はランドおよびスルーホールが形成されており、スルーホールの内部に銀ペースト等の導電性材料が充填され、この導電性材料が孔内接続部を構成し、内面側、外面側の共通電極用接続配線を電気的に接続している。共通電極用接統配線は素子基板74の外面側の任意の箇所で接地されている。

【0157】なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば第1、第3の実施の形態ではパッシブマトリクス方式の透過型被晶表示装置においてスルーホールの形成位置が異なる例、第2の実施の形態ではCOG実装を適用した例、第4の実施の形態ではカラーフィルターを備えた被晶表示装置の例、第5の実施の形態では半透過反射型被晶表示装置の例、第6の実施の形態では反射型液晶表示装置の例、第7の実施の形態ではTFDアクティブマトリクス型液晶表示装置の例、第8の実施の形態ではTFTアクティブマトリクス型液晶表示装置の例をそれぞれ説明したが、これら実施の形態の特徴点を適宜組み合わせたものであってもよい。

【0152】本実施の形態はTFT素子を用いたアクティブマトリクス型液晶表示装置の例であるが、この場合 40 も上記第7の実施の形態のアクティブマトリクス型液晶表示装置の例と同様の効果を得ることができる。すなわち、素子基板74の内面の表示領域外部に引き廻し配線を配置するスペースが要らなくなるので、大幅な狭額縁化を図ることができる。また、素子基板74の外面側全域を引き廻し配線のためのスペースとできるので、充分な配線ピッチを確保することができ、引き廻し抵抗の増大を招くこともない。

【0158】また、上記実施の形態で例示した各被晶表示装置の構成材料、形状、製造方法等の具体的な記載に関しては、適宜変更が可能なことは勿論である。また、本発明の被晶装置は、直視型のみならず、投射型被晶装置(プロジェクタ)の液晶ライトバルブに適用することもできる。

【0153】 [電子機器] 上記実施の形態の被晶表示装置を備えた電子機器の例について説明する。図26は、

0 [0159]

【発明の効果】以上、詳細に説明したように、本発明の被晶装置の構成によれば、従来、基板内面の表示領域外側に設けていた引き廻し領域が不要となるので、従来に比べて額縁部分が大幅に狭い透過型、半透過反射型、反射型のいずれにも対応可能な液晶装置を得ることができる。また、表示領域内を含めて第1の基板の外面側全域に引き廻し導電部をレイアウトすることができ、引き廻し抵抗が増大するという問題が生じることもない。このように、狭額縁による小型の液晶装置を備え

たことにより、装置全体が小型である割に表示領域が広く、携帯性に優れた電子機器を実現することができる。 【図面の簡単な説明】

【図1】 本発明の第1の実施の形態の液晶表示装置全体を上面側から見た斜視図である。

【図2】 同、液晶表示装置を下面側から見た斜視図である。

【図3】 同、被晶表示装置を構成する下側基板の上面 (電極形成面) 図である。

【図4】 同、下側基板の下面図である。

【図5】 同、液晶表示装置を構成する上側基板の下面 (電極形成面) 図である。

【図6】 同、上側基板と下側基板とを重ね合わせた状態を示す透視図である。

【図7】 同、液晶表示装置の断面構造を示す図であって、図6のA-A、線に沿う断面図である。

【図8】 同、図6のB-B'線に沿う断面図である。

【図9】 同、液晶表示装置の上下導通部の他の例を示す断面図である。

【図10】 同、下側基板の孔内接続部の例を示す図で 20 ある。

【図11】 同、孔内接続部の他の例を示す図である。

【図12】 同、孔内接続部のさらに他の例を示す図である。

【図13】 本発明の第2の実施の形態の液晶表示装置 全体を下面側から見た斜視図である。

【図14】 同、図13のB-B'線に沿う断面図である。

【図15】 本発明の第3の実施の形態の液晶表示装置 において、上側基板と下側基板とを重ね合わせた状態を 30 示す透視図である。

【図16】 同、液晶表示装置の断面構造を示す図であって、図15のA-A、線に沿う断面図である。

【図17】 同、図15のB-B'線に沿う断面図である。

【図18】 本発明の第4の実施の形態の液晶表示装置の断面構造を示す図であって、図6のA-A 線に相当する断面図である。

【図19】 同、被晶表示装置の断面構造を示す図であって、図6のB-B'線に相当する断面図である。

【図20】 本発明の第5の実施の形態の液晶表示装置の断面構造を示す図であって、図6のA-A 線に相当する断面図である。

【図21】 同、液晶表示装置の断面構造を示す図であって、図6のB-B'線に相当する断面図である。

【図22】 同実施の形態において、信号電極と信号電極用接続配線との接続構造の他の例を示す、図6のA-A、線に相当する断面図である。

【図23】 本発明の第6の実施の形態の液晶表示装置 全体を上面側から見た斜視図である。 32

【図24】 本発明の第7の実施の形態の被晶表示装置を示す図であって、(a)全体を上面側から見た斜視図、(b)一両素の拡大図である。

【図25】 本発明の第8の実施の形態の液晶表示装置を示す図であって、(a)全体を上面側から見た斜視図、(b)一画素の拡大図である。

【図26】 本発明の電子機器の一例を示す斜視図である。

【図27】 本発明の電子機器の他の例を示す斜視図で 10 ある。

【図28】 本発明の電子機器のさらに他の例を示す斜 視図である。

【図29】 COF実装を適用した従来の液晶装置の一 例を示す斜視図である。

【図30】 COG実装を適用した従来の液晶装置の一例を示す斜視図である。

【図31】 従来のパッシブマトリクス型液晶装置における上側基板の構成を示す平面図である。

【図32】 同、下側基板の構成を示す平面図である。 【符号の説明】

1, 31, 50, 52, 58, 61, 73, 90 被晶表示装置(液晶装置)

2 下側基板 (第1の基板)

3 上側基板 (第2の基板)

4,5 偏光板(偏光手段)

6 信号電極 (第1の導電部)

7 走査電極 (第2の導電部)

10 駆動用IC(電子部品)

11 信号電極用引き廻し配線 (第1の引き廻し導電 部)

12 信号電極用接続配線 (第1の外面上接続部)

13 走査電極用引き廻し配線 (第2の引き廻し導電部)

14 走査電極用接続配線 (第2の外面上接続部)

15,30,44,46 孔内接続部(第1の孔内接続 部)

17,38 スルーホール

18 信号電極用接続配線

19,40 上下導通部(基板間接続部)

40 20 孔内接続部 (第2の孔内接続部)

21 走査電極用接続配線 (第2の内面上接続部)

26 外部接続端子

27 シール材

28 液晶層

42 内部導電層

43,45 ピアホール

54 カラーフィルター

59 半透過反射層(半透過反射部)

62,74 素子基板 (第1の基板)

50 63,75 対向基板 (第2の基板)

64 データ線

66 TFD素子

67 走査線

76 ソース線 (データ線)

77 ゲート線 (走査線)

78 TFT素子

80 共通電極 (第2の導電部)

88 バックライト (照明手段)

91 反射板 (光反射手段)

【図11】

【図3】

[図4]

[図14]

[図16]

【図17】

[図19]

[図18]

[図20]

【図21】

フロントページの続き

(72) 発明者 百瀬 洋一 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内

(72) 発明者 田中 孝昭 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内

(72) 発明者 本田 賢一 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 F 夕一ム (参考) 2H089 HA17 HA40 KA17 NA58 QA11 TA01 TA03 TA09 TA15 TA17 2H090 JA04 JA05 JB03 JC03 LA01 LA03 LA04 2H092 GA05 GA38 GA39 GA41 GA42 GA44 GA60 HA12 HA19 HA25 JA24 KB05 MA11 MA17 NA25 NA28 PA01 PA04 PA06 PA08 PA11 PA12