

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CREPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
AFGL-TR-80-9266	3. RECIPIENT'S CATALOG NUMBER
THE RELATIONSHIP BETWEEN MARINE GRAVITY	Final Report -
AND BATHYMETRY.	1 NOV 176 - 30 Sept.
Sean C. Solomon (5)	F19628-77-C-0027
Massachusetts Institute of Technology Department of Earth and Planetary Sciences, Cambridge, MA 02139	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 7230961AD 7761
1. CONTROLLING OFFICE NAME AND ADDRESS	R. BEROST BATE
Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731	2 September 1980
Monitor/Thomas P. Rooney/LWC	15. SECURITY CLASS. (of this report)
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
	<u></u>
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution	unlimited.
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, 11 different from	
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from	
Approved for public release; distribution	om Report)
Approved for public release; distribution T. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from the supplementary notes	om Report)
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from 8. SUPPLEMENTARY NOTES	nm Report)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

Introduction	3
Theory	5
Implementation	9
Application	13
Suggestions for Further Work	15
References	16
List of Contributing Scientists	27
List of Previous Contracts and Publications	28

Access	ion For	
NTIS DDC TA		N.
Unanno		· H
Justif	ication?	
Ву		
Distri	bution/)
_Avail	ebility	Codes
	Avail a	nd/or
Dist.	speci	al
10]	
H	} }	

INTRODUCTION

The relationship between free-air gravity anomalies and sea-floor bathymetry is one of the rost important problems in marine gravity. For purely practical reasons, deciphering the nature of such a relationship is vital to predicting quantitatively the gravity field in oceanic areas in which only bathymetry is known. Closely related to this practical problem is the question of the physical basis for any observed or proposed dependence of gravity upon topography. Such a question bears on the mechanisms for creation and evolution of oceanic crust and lithosphere and on the posssible interaction of the lithosphere with motions in the asthenosphere.

Marine gravity and sea-floor topography cannot be related by a simple mathematical expression (e.g., a linear relationship) that has validity in all oceanic environments. A synthesis of submarine gravity data and bathymetry by Woolard and Daugherty (1970) demonstrated the necessity to divide oceanic regions by tectonic types and the difficulty in simply relating free-air anomaly and depth even within groups of tectonically similar environments. Degree averages of marine gravity anomalies and depths within selected regions were also correlated with varying degrees of success by Watts and Talwani (1974), Sclater et al. (1975), and Watts (1976).

A necessary step in improving what heretofore have generally been strictly empirical attempts to derive a rule relating gravity and bathymetry over a selected region is to take into proper account the findings of plate tectonic studies of the oceans. At mid-ocean ridges, the lithosphere is thin, perhaps no thicker than the crust (Francis and Porter, 1973; Solomon and Julian, 1974; Orcutt et al., 1975; Rosendahl et al., 1976), and sea-floor topography except at the shortest wavelengths is isostatically compensated with a shallow compensation depth (Dorman, 1975; McKenzie and Bowin, 1976; Cochran, 1979; McNutt, 1979). Sea-floor topography created by mid-plate volcanic activity is com-

pensated much deeper because of the substantially thicker lithosphere, and the compensation is regional (Vening Meinesz, 1941), involving flexure of the oceanic plate (Walcott, 1970; Watts and Cochran, 1974; Watts et al., 1975, 1980; Watts, 1978b; Detrick and Watts, 1979), the effective elastic thickness of which increases with seafloor age (Caldwell and Turcotte, 1979). At trench systems, topography is not isostatically compensated owing to the large dynamic forces associated with lithosphere subduction (e.g., Vening Meinesz, 1954). Still controversial are explanations for frequent correlations in very long wavelength gravity and topographic anomalies in the oceans (Menard, 1973; Anderson et al., 1973; Weissel and Hayes, 1974; Sclater et al., 1975; Marsh and Marsh, 1976; Cochran and Talwani, 1977; Watts, 1978a), with asthenospheric flow the most exciting but still unproven hypothesis.

This report gives the mathematical framework for a simple relation between topography and gravity in two dimensions for stable ocean basins. The conceptual basis for the relation is flexure theory for thin elastic plates loaded from above. The evolution with sea-floor age of lithospheric temeprature and rheology is abstracted to an effective elastic layer thickness which grows with plate age. In order to derive gravity from topography using this relation, both the lithospheric age and the age of any more recently superposed volcanic constructs (islands, seamounts, aseismic ridges) must be known. Guidelines are given for estimating these ages. The bathymetry-gravity relation is tested using data from the central Pacific basin. The test is not successful, for reasons which are described. A number of suggestions are given for future work.

THEORY

We seek a relation between bathymetry and gravity in stable ocean basins. We shall work explicitly in spatial dimensions, rather than use one- or two-dimensional wavenumber representations, so as to permit consideration of regions of arbitrary geometry and spatial extent.

We shall assume that the sea-floor topography is composed of three parts: (1) the long-wavelength deepening of the sea floor with age due to thermal contraction of the lithosphere (Sclater et al., 1971); (2) the volcanic topography emplaced as a load on top of the lithosphere; and (3) the lithospheric response to that load. We assume that the effect of (1) on the bathymetry may be removed with a suitable age-depth relation (Sclater et al., 1975; Parsons and Sclater, 1977; Cochran and Talwani, 1977); its effect on gravity is negligible far from ridges (Lambeck, 1972). We discuss the validity of these assumptions further at the end of this report.

Let the lithosphere be modeled as a thin, spherical, elastic shell of thickness T, Young's modulus E, and Poisson's ratio ν , overlying a fluid interior of density ρ_m . Let R be the radius to the midplane of the shall, let g be the gravitational acceleration at radius r = R - T/2, and let D be the flexural rigidity of the shell

$$D = \frac{ET^3}{12(1 - y^2)} \tag{1}$$

Consider a uniform vertical load q (force per unit area) applied to a circular unit area on the surface of the shell. The vertical deflection (positive if downward) of the lithosphere is given by

$$w = \frac{-q}{2\pi (ET/R^2 + \Delta \rho \ q)} \quad \text{kei} \quad \xi$$
 (2)

(Brotchie and Sylvester, 1969; Brotchie, 1971), where ξ is

the distance from the load center, normalized by the radius of relative stiffness

$$\ell = \left(\frac{D}{ET/R^2 + \Delta \rho g}\right)^{\frac{1}{4}} ; \qquad (3)$$

kei is a Bessel-Kelvin function of order zero (Abramowitz and Stegun, 1964); and $\Delta \rho = \rho_{\rm m} - \rho_{\rm w}$ where $\rho_{\rm w}$ is the density of seawater if the load is applied at the sea bottom and zero if the load is applied on land. Note that (2) is equivalent to the expression (Brotchie and Sylvester, 1969) for the response to a point force p since p $\simeq q\pi d^2 \ell^2$ where ξ = d is the radius of the circular unit area. Equations (2) and (3) may be simplified because for oceanic lithosphere ET/R² $\sim 10^1$ and $\Delta \rho$ g $\simeq 2 \times 10^3$ in c.g.s. units, so $\Delta \rho$ g >> ET/R² and

$$w = \frac{q}{2\pi\Delta\rho g} \text{ kei } \xi. \tag{4}$$

We may generalize (4) to a distributed load. Let q(x,y) be the force per unit area exerted on the lithosphere by topography. Then the deflection w is given by

$$w(x,y) = \frac{1}{2\pi \Delta \rho \ g} \iint q(x',y') \text{ kei } (r'/\ell) \ dx'dy' \qquad (5)$$

where $r' = [(x' - x)^2 + (y' - y)^2]^{\frac{1}{2}}$. Equation (5) may be thought of as the double convolution of q with the flexural response function

$$\phi(x,y) = \frac{1}{2\pi\Delta\rho \ g} \quad \text{kei} \left[\frac{(x^2 + y^2)^{\frac{1}{2}}}{\ell} \right]$$
 (6)

which in turn is a function of the local flexural rigidity D, or equivalently the effective elastic lithospheric thickness T, through

$$\ell = \left(\frac{D}{\Lambda \rho \ g}\right)^{\frac{1}{4}}.$$

A single convolution of (two-dimensional) load with response function was also used by Roufosse and Parsons (1977) in their study of the Hawaiian ridge. If the load is emplaced in a time short compared to the lithospheric age and if viscous relaxation of stress subsequent to initial lithospheric flexure has been minimal, then ℓ is simply a function of the time difference between plate age and load emplacement age.

Unfortunately, the load q(x,y) is not known a priori but rather the ocean floor elevation h(x,y) with respect to some arbitrary datum is known. As noted above, h contains contributions from both the topographic load and the lithospheric response. We may resolve this difficulty, however, by iteration. Assume initially that $q(x,y) = \Delta \rho' gh(x,y)$ where $\Delta \rho' = \rho_t - \rho_w$ and ρ_t is the density of the major units constituting the topographic variations. Then use (5) to calculate w(x,y). Now set $q(x,y) = \Delta \rho' g(h + w)$. Recalculate w(x,y) and repeat the last two steps until q and w converge to a steady solution.

Once a self-consistent decomposition of h into load topography $q/\Delta\rho$ 'g plus plate deflection w is achieved, the calculation of gravity is straightforward. Two terms contribute to the gravity: (i) the attraction of the topography and (ii) the deflection of the Moho and of any other density contrast interfaces within the lithosphere. Any density contrast between the base of the lithosphere and the asthenosphere would also contribute to (ii), but this contribution is probably negligible. For both (i) and (ii) the gravity anomaly may be written in the form of that due to a surface mass distribution $\sigma(\mathbf{x},\mathbf{y})$

$$g(x,y,z) = Gz \int \int \frac{\sigma(x',y')}{[(x'-x)^2 + (y'-y)^2 + z^2]^{3/2}} dx'dy'$$
(7)

where G is the gravitational constant and z>0 is the vertical distance between the observation point (x,y,z) and the

horizontal plane on which σ is evaluated. For the topographic contribution, $\sigma = \Delta \rho'$ h on the plane of the topographic datum (h = 0). For the plate deflection contribution, $\sigma = \Delta \rho$ w on the plane corresponding to mean Moho depth.

IMPLEMENTATION

The theoretical relationship between topography and gravity outlined above can be applied to any finite area over which bathymetry and age are specified as functions of position. We have applied these concepts to a region, described in the next section, in which degree averages of ocean floor depth (corrected for mean age) and free air gravity are known. Implementation of the theory as a usable algorithm requires estimates of volcanic load ages and of the evolution of the flexural response function with age, and calculational schemes for evaluating the convolution integrals in (5) and (7).

Some care must be exercised in deciding the age of a volcanic construct relative to the age of the surrounding seafloor. For islands this is not a serious problem as the exposed or cored (if a coralline island) bedrocks can be dated. For seamounts some simple rules will be helpful. One such rule is that an inactive topographic feature will sink with respect to sea level at the rate of its surrounding abyssal sea floor, a rate which is associated with thermal contraction of the lithosphere and which is a well known function of ocean-floor age (Sclater et al., 1971). On this basis, for instance, the Ninetyeast ridge can be shown to have been generated at the southeast Indian ridge (Sclater and Fisher, 1974). Much of the ocean floor topography, in fact, was apparently generated at or near ridge crests on very young oceanic lithosphere (McKenzie and Bowin, 1976).

The flexural rigidity D and the effective elastic range thickness T are known to vary from values in the range $3 \times 10^{27} - 2 \times 10^{29}$ dyne-cm and 3 - 13 km, respectively, near mid-ocean ridges (Cochran, 1979; Detrick and Watts, 1979; McNutt, 1979) to values in the range 3×10^{29} to 10^{30} dyne-cm and 15 - 30 km, respectively, for older lithosphere (Walcott, 1970; Watts and Cochran, 1974; Watts et al., 1975, 1976; Caldwell et al., 1976; Watts, 1978b; Suyenaga, 1979). The

assumption that T scales as an isotherm depth is consistent with the data (Caldwell and Turcotte, 1979), so that a standard oceanic plate thermal model (Parsons and Sclater, 1977) and a few good measures of D and T are sufficient to define T as a function of lithosphere age minus load age.

Evaluation of the necessary convolution integrals has been conducted as follows. For each degree square we first subtract the mean bathymetric depth from the depth predicted from a spreading plate model for the appropriate region. This residual depth is then treated as a combination of lithosphere load and response to that load. For the Green's function for the loading problem we use the response of the lithosphere to a circular load of radius a such that πa^2 equals the area of the degree square:

$$\mathbf{w} = \begin{cases} \frac{\mathbf{q}}{\Delta \rho \mathbf{g}} & (\alpha \quad \text{ker'} \quad \alpha \quad \text{ber } \xi - \alpha \quad \text{kei'} \quad \alpha \quad \text{bei } \xi + 1) \\ & \text{for } \xi \leq \alpha = \frac{\mathbf{a}}{\ell} \\ \frac{\mathbf{q}\alpha}{\Delta \rho \mathbf{g}} & (\text{ber'} \quad \alpha \quad \text{ker } \xi - \text{bei'} \quad \alpha \quad \text{kei } \xi) \end{cases}$$

$$\text{for } \xi \geq \alpha = \frac{\mathbf{a}}{\ell}$$

(Brotchie, 1971), where ker, ber and bei are additional Bessel-Kelvin functions of zero order and the prime denotes first derivative (Abramowitz and Stegun, 1964). The flexural length ℓ (or flexural rigidity D) can be taken appropriate to the lithosphere at the time of application of the load on the degree square in question. The convolution integral (5) is converted to a sum. Let \mathbf{w}_i be the subsidence at the center of the ith degree square, let \mathbf{q}_j be the load on the jth degree square and let \mathbf{w}_i be the contribution to \mathbf{w}_i from \mathbf{q}_j . Then each \mathbf{w}_{ij} may be estimated from (8) after setting ℓ to the appropriate (normalized) distance between the centers of the ith and jth square, and

$$\mathbf{w_{i}} = \sum_{j} \mathbf{w_{ij}} \tag{9}$$

As noted above, iteration is necessary to determine a self-consistent set of values for q_j and w_i from a given set of observed residual depths. In practice, about five iterations are required before the sum of the squared differences in w_i (or q_j) between successive iterations is less than 1 part in 10^3 .

Expression (7) for the predicted free-air gravity anomaly is evaluated using the Taylor series algorithm of Morrison (1976) for calculating the gravitational potential from a surface density distribution specified over a latitude-longitude grid. The contribution from each degree square is of the form

$$U(r,\phi,\theta) = \iint F d\phi' d\theta'$$

$$= \Delta\phi' \Delta\theta' \left[F_0 + \frac{1}{24} \left(F_{\phi\phi} \Delta\phi'^2 + F_{\theta\theta} \Delta\phi'^2\right)\right]$$
 (9)
where
$$F = \frac{G \sigma r'^2 \cos\phi'}{R}$$

the observation point is (r,ϕ,θ) in spherical coordinates (radius, latitude, longitude), the mass point is (r',ϕ',θ') , R is the distance between the two points and $\Delta\phi'$ and $\Delta\theta'$ are the dimensions of the degree square. In (9), F_0 , $F_{\phi\phi'}$ and $F_{\theta\theta}$ are F, $\delta^2 F/\delta \phi'^2$ and $\delta^2 F/\delta \theta'^2$; respectively, evaluated at the center of the degree square. $F_{\phi\phi}$ and $F_{\theta\theta}$ may be obtained analytically:

$$\frac{F_{\varphi\varphi}}{G\sigma r^{'2}} = -\frac{\cos\varphi'}{R} - \frac{2\sin\varphi'}{R^3} rr' \left[\sin\varphi \cos\varphi' - \cos\varphi \sin\varphi' \left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right] - \frac{\cos\varphi'}{R^3} rr' \left[\sin\varphi \sin\varphi' + \cos\varphi \cos\varphi' \right]$$

$$\left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right] + \frac{3\cos\theta'}{R^5} \left(rr' \right)^2 \left[\sin\varphi \cos\varphi' - \cos\varphi \sin\varphi' \left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right]^2$$

$$\left(\cos\varphi \sin\varphi' \left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right]^2$$

$$\left(\cos\varphi \sin\varphi' \left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right]^2$$

$$\left(\cos\varphi \cos\varphi' + \sin\theta \cos\theta' \right)$$

$$\left(\cos\varphi \cos\varphi' + \sin\theta \sin\theta' \right) \right]^2$$

$$\left(\cos\varphi \cos\varphi' + \sin\theta \cos\theta' \right)$$

$$\left(\cos\varphi \cos\varphi' + \sin\theta' \right)$$

$$\left(\cos\varphi \cos\varphi' + \sin\theta \sin\theta' \right) \right]^2$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \sin\theta' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' + \cos\varphi' \right)$$

$$\left(\cos\varphi \cos\varphi' + \cos\varphi'$$

$$\frac{F_{\theta\theta}}{G\sigma r^{*2}} = -\frac{\cos\phi'}{R^{9}} rr' \cos\phi \cos\phi' (\cos\theta \cos\theta' + \sin\theta \sin\theta')$$

$$+ \frac{3\cos\phi'}{R^{5}} (rr')^{2} [\cos\phi \cos\phi' (-\cos\theta \sin\theta' + \sin\theta \cos\theta')]^{2}$$

$$R^{2} = r^{2} + r'^{2} - 2rr' \left[\sin\phi \sin\phi' + \cos\phi \cos\phi' \left(\cos\theta \cos\theta' + \sin\theta \sin\theta' \right) \right]$$
 (12)

Two separate contributions to U from each degree block are included here: the contribution from topography ($\Delta \rho$ ' = 1.8 g/cm³ assumed at a datum plane 5 km below sea level) and the contribution from Moho deflection ($\Delta \rho$ = 0.6 g/cm³ assumed at a datum plane 12 km below sea level).

In practice the Taylor series truncation in (9) is a good approximation only if rr' $\Delta \phi^{2}/R^{2}$ < 1. This limits (9) to elevations above the appropriate datum plane comparable to or greater than the dimensions of the blocks used to specify o. For the degree-square specification of seafloor depth and free air anomaly in the application considered here, we calculated the potential at 100 km altitude from (9), and we calculated the gravity anomaly from a centered finite difference approximation to the radial derivative of the potential. Sea level gravity was upward continued to 100 km elevation for comparison with the predicted gravity anomaly. An alternative scheme would be to treat the mass contribution (topography or Moho deflection) degree square from each as a three-dimensional prism and calculate the gravitational attraction using the summed line-integral method of Talwani and Ewing (1960).

Fortran programs to calculate the load q and subsidence w from residual depths and to calculate the gravity from the topography and subsidence are available from the author.

The state of the s

APPLICATION

We have applied the bathymetry-gravity algorithm described above to a portion of the central Pacific basin, bounded by 15° and 35° N latitudes and 150° and 165° W longitudes. This region was chosen because (1) gravity, bathymetry, and lithosphere age are all well known; and (2) there are large superposed volcanic loads on the plate of younger ages, notably the Hawaiian island chain. As we shall see, however, the selection of this region in retrospect was far from ideal because of the presence of seafloor topographic variations of a type different from those assumed in the theory used here.

The gravity from the region is taken from the degree averages of Watts and Leeds (1977). Their values for the area in question are shown in Table 1. The gravity continued upward to 100 km above sea level is shown in Table 2.

The bathymetry is taken from a 1978 NORDA compilation of degree averages provided by AFGL (T.P. Rooney, personal communication, 1978). A few blanks and obvious errors in this data set were filled in by estimating the appropriate degree averages from charts of the Scripps Institution of Oceanography (Chase et al., 1970). The topographic data are shown in Table 3.

The lithosphere ages were taken from the magnetic anomaly maps of Pitman et al. (1974). Residual depths were calculated from observed bathymetry using the theoretical depth-age profile of Parsons and Sclater (1977) for the north Pacific. Residual depths are shown in Table 4.

The residual depths were used to calculate the load q on the plate and the resultant subsidence w, following the procedures outlined in the previous section. A plate thickness T of 30 km was assumed for modeling the effect of the Hawaiian ridge (Watts, 1978), and a plate thickness of 5 km was used for modeling the effect of other topography (assumed to have been generated at or near a spreading center) (Cochran, 1979). The resultant distributions of

q and w are given in Tables 5 and 6, respectively.

The gravity at 100 km altitude predicted from the loading and subsidence model of Tables 5 and 6 is shown in Table 7.

It is immediately apparent that the predicted gravity does not match the observations. The predicted gravity is much too large, particularly in the southern half of the area modeled, and provides a much poorer predictor of the rms gravity anomaly than does the <u>a priori</u> assumption of zero anomaly.

The difficulty lies with the large depth anomalies shown in Table 4. These large positive (shallow depth) anomalies over a substantial area are treated as loads on the lithosphere by the bathymetry-gravity algorithm, whereas the regionally shallow seafloor depth is almost completely compensated by density anomalies most likely below the lithosphere (Watts, 1976). The long-wavelength gravity is correlated to the long-wavelength residual depth anomalies, but the slope of a linear fit between these quantities in the north Pacific is much less (22 mgal/km) than in the algorithm used here based on a plate loading model. Thus the failure of the algorithm for this region of the Pacific is due to the large values for residual depth that arise from a process not included in the algorithm, namely deep compensation of long-wavelength topography.

SUGGESTIONS FOR FURTHER WORK

In spite of the wide disagreement between Tables 7 and 2 (predicted and observed gravity, respectively), the success of the plate flexure model in isolated situations over small areas prompts the belief that this approach toward relating gravity and bathymetry has merit.

For regions similar to the north Pacific area studied here, one of two approaches should be pursued in further work: either (1) a relationship between gravity and bathymetry based on lithospheric loading should be sought only for wavelengths shorter than a few hundred kilometers; or (2) the process that gives rise to long (>500 km) wavelength gravity and depth anomalies should be explicitly modeled as part of the algorithm. If approach (1) is followed, then either small regions can be treated in isolation after 'regional' anomalies have been removed, or the problem should be conducted in the wavenumber domain and a high pass filter applied to both the gravity and depth (We avoided the wavenumber domain here to allow for data. a spatially variable isostatic response function, but perhaps this capability is a frequently unnecessary luxury). Approach (2) involves more free parameters in the algorithm and a much less certain physical basis for modeling; Watts (1976) has demonstrated the approach and the magnitude of the effects for the region studied here.

REFERENCES

- Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, Nat. Bur. Stand. Appl. Math. Ser., 55, 1046 pps., 1964.
- Anderson, R.N., D.P. McKenzie and J.G. Sclater, Gravity, bathymetry and convection in the earth, Earth Planet. Sci. Lett., 18, 391-407, 1973.
- Brotchie, J.F., and R. Silvester, On crustal flexure, J. Geophys. Res., 74, 5240-5252, 1969.
- Brotchie, J.F., Flexure of a liquid-filled spherical shell in a radial gravity field, Mod. Geol., 3, 15-23, 1971.
- Caldwell, J.G., and D.L. Turcotte, Dependence of the thickness of the elastic oceanic lithosphere on age, <u>J. Geophys.</u>
 Res., 84, 7572-7576, 1979.
- Caldwell, J.G., W.F. Haxby, D.E. Karig, and D.L. Turcotte, On the applicability of a universal elastic trench profile, Earth Planet. Sci. Lett., 31, 239-246, 1976.
- Chase, T.E., H.W. Menard and J. Mammerickx, Bathymetry of the North Pacific, Inst. Mar. Resources Tech. Rep. TR-13, Scripps Inst. Oceanography, 1970.
- Cochran, J.R., An analysis of isostasy in the world's oceans, 2, midocean ridge crests, <u>J. Geophys. Res.</u>, <u>84</u>, 4713-4729, 1979.
- Cochran, J.R. and M. Talwani, Free air gravity anomalies in the world's oceans and their relationship to residual elevation, Geophys. J. Roy. Astron. Soc., 50, 495-552, 1977.
- Detrick, R.S., and A.B. Watts, An analysis of isostasy in the world's oceans, 3, Aseismic ridges, J. Geophys. Res., 84, 3637-3653, 1979.
- Dorman, L.M., the isostatic compensation of the topography at the crest of the east Pacific rise (abstract), Eos Trans. Amer. Geophys. Un., 56, 1064, 1975.
- Francis, R.J.G., and I.T. Porter, Median valley seismology: the mid-Atlantic ridge near 45°N, Geophys. J. Roy. Astron. Soc., 34, 279-311, 1973.

- Lambeck, K., Gravity anomalies over oceanic ridges, Geophys.

 J. Roy. Astron. Soc., 30, 37-53, 1972.
- Marsh, B.D. and J.G. Marsh, On global gravity anomalies and two-scale mantle convection, J. Geophys. Res., 81, 5267-5280, 1976.
- McKenzie, D.P., and C. Bowin, The relationship between bathymetry and gravity in the Atlantic Ocean, J. Geophys. Res., 81, 1903-1915, 1976.
- McNutt, M., Compensation of oceanic topography: an application of the response function technique to the Surveyor area, J. Geophys. Res., 84, 7589-7598, 1979.
- Menard, H.W., Depth anomalies and the bobbing motion of drifting continents, J. Geophys. Res., 78, 5128-5137, 1973.
- Morrison, F., Algorithms for computing the geopotential using a simple density layer, J. Geophys. Res., 81, 4933-4938, 1976.
- Orcutt, J., B. Kennett, L. Dorman and W. Prothero, A low velocity zone underlying a fast-spreading rise crest, Nature, 256, 475-476, 1975.
- Parsons, B., and J.G. Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 82, 803-827, 1977.
- Rosendahl, B.R., R.W. Raitt, L.M. Dorman, L.D. Bibee, D.M. Hussong, and G.H. Sutton, Evolution of oceanic crust, 1, A physical model of the east Pacific rise crest derived from seismic refraction data, J. Geophys. Res., 81, 5294-5304, 1976.
- Roufosse, M.C., and B. Parsons, Study of the relationship between bathymetry and altimetry over the Hawaiian and Emperor seamount chain (abstract), Eos Trans. Amer. Geophys. Un., 58, 1231, 1977.
- Sclater, J.G., R.N. Anderson and M.L. Bell, Elevation of ridges and evolution of the central eastern Pacific, J. Geophys. Res., 76, 7888-7915, 1971.
- Sclater, J.G. and R.L. Fisher, Elevation of the east central Indian Ocean, with emphasis on the tectonic setting of

- the Ninetyeast ridge, Geol. Soc. Amer. Bull., 85, 683-702, 1974.
- Sclater, J.G., L.A. Lawver, and B. Parsons, Comparison of long-wavelength residual elevation and free air gravity anomalies in the north Atlantic and possible implications for the thickness of the lithospheric plate, J. Geophys. Res., 80, 1031-1052, 1975.
- Solomon, S.C. and B.R. Julian, Seismic constraints on ocean-ridge mantle structure: anomalous fault-plane solutions from first motions, Geophys. J. Roy. Astron. Soc., 38, 265-285, 1974.
- Suyenaga, W., Isostasy and flexure of the lithosphere under the Hawaiian Islands, J. Geophys. Res., 84, 5599-5604, 1979.
- Talwani, M., and M. Ewing, Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape, Geophysics, 25, 203-225, 1960.
- Vening Meinesz, F.A., Gravity over the Hawaiian archipelago and over the Madeira area: conclusions about the earth's crust, Proc. Kon. Ned. Akad. Wetensch., 44, 1, 1941.
- Vening Meinesz, F.A., Indonesian archipelago: a geophysical study, Bull. Geol. Soc. Amer., 65, 143-164, 1954.
- Vogt, P.R., Volcano height and plate thickness, <u>Earth Planet</u>. Sci. Lett., 23, 337-348, 1974.
- Walcott, R.I., Flexure of the lithosphere at Hawaii, <u>Tectono-physics</u>, 9, 435-446, 1970.
- Watts, A.B., Gravity and bathymetry in the central Pacific Ocean, J. Geophys. Res., 81, 1533-1553, 1976.
- Watts, A.B., Comment on 'On global gravity anomalies and two-scale mantle convection' by Bruce D. Marsh and James G. Marsh, J. Geophys. Res., 83, 3551-3554, 1978a.
- Watts, A.B., An analysis of isostasy in the world's oceans, 1, Hawaiian-Emperor seamount chain, J. Geophys. Res., 83, 5989-6004, 1978b.
- Watts, A.B., J.H. Bodine and N.M. Ribe, Observations of flexure and the geological evolution of the Pacific

- Ocean basin, Nature, 283, 532-537, 1980.
- Watts, A.B. and J.R. Cochran, Gravity anomalies and flexure of the lithosphere along the Hawaiian-Emperor seamount chain, Geophys. J. Roy. Astron. Soc., 38, 119-141, 1974.
- Watts, A.B., J.R. Cochran and G. Selzer, Gravity anomalies and flexure of the lithosphere: a three-dimensional study of the Great Meteor seamount, northeast Atlantic, J. Geophys. Res., 80, 1391-1398, 1975.
- Watts, A.B., and A.R. Leeds, Gravimetric geoid in the northwest Pacific Ocean, Geophys. J. Roy. Astron. Soc., 50, 249-278, 1977.
- Watts, A.B. and M. Talwani, Gravity anomalies seaward of deep-sea trenches and their tectonic implication, Geophys. J. Roy. Astron. Soc., 36, 57-90, 1974.
- Watts, A.B., M. Talwani and J.R. Cochran, Gravity field of the northwest Pacific Ocean Basin and its margin, in The Geophysics of the Pacific Ocean Basin and its Margin, ed. by G.H. Sutton, M.H. Manghnani and R. Moberly, Amer. Geophys. Un. Geophys. Mon. 19, 17-34, 1976.
- Weisselk J.K., and D.E. Hayes, The Australian-Antarctic discordance: new results and implications, J. Geophys. Res., 79, 2579-2587, 1974.
- Woolard, G.P. and K.I. Daugherty, Collection, processing and geophysical analysis of gravity and magnetic data: gravity gradients associated with sea-floor topography, Hawaii Inst. Geophys. Univ. Hawaii, HIG-70-19, Final Report 1969-1970, 253 p., 1970.

Table 1. FREE AIR ANDIALY (MGAL)

01-	7	9	-13	-14	-20	-13	9	5 0	•	~	ဂ	-12	÷-	
-15	3	-3	-11	-10	-1	\$	-13	-15		7	~	-5	Ť	
×-13	-11	8 0	1-	Ŷ	61-	-10	-11	6-		•	~	•	•	
47-	-5	-11	ſ	-5	+1-	-12	-16	•		~	•	m	~	
	-1	-3	5	07-	-18	17-	-14	1-			m	13		
9	-15	-	m	-1	-22	-18	6	ĩ	-15	-15	-10	٠	o	
•	er)	m	æ	-5	-13	7	7	7	-15	-15	•	s	~	
11	•	13	14	-	7	13	7-	7	-15	-15	-10	9	Ŷ	
47	15	12	13	•	-5	50	m	ď	3	-3	~	*	7	
7	•	•	7 8	•	•	1.8	13	:	~	0	ĩ	î	€.	
-15	-16	-15	7	e e	~	19	31	7.7	15	75	•	7	-5	
	13	97	35	-19	-35	0	15	13	31	27	~	0	-15	
9	~	11	12	22	69	-36	-39	-15	Ð	15	17	m	۳	
•	13	11	7	7	37	6 \$	114	~	C 8 -	-77	•	٥	7	
77	10	15	~	-5	-17	-21	~	148	89	-37	•	-	ĩ	
0	7	~	•	13	12	10	89	-34	331	39	C	0	٩	
۳	Ţ	5	c	6	13	7 9	6-	-18	61-	-35	c	-	~	
•	~	11-	~	•	11	-	~	σ.	~	80	ĩ	0	•	
-3	-12	ę,	m	0	~	-1	î	~	11	•	c	-5	-1	
			:		,	:	(,	,					

ę

Table 2. FREE AIR ANDHALY AT 130 KM (HGAL K 10)

-37	-37	-43	-60	69-	-75	-64	-43	-37	-13	-11	-15	-35	-45	
-53	-50	-51	-65	-12	-74	-70	100	-55	-22		-11-	-20	-22	
-60	-63	-59	-60	-68	-87	-80	-71	-50	-18	m	•	~	~	
40	-56	-57	-54	49-	-85	-85	-75	-38	-13	€	16	22	23	
-28	38	-35	94-	-66	-90	-45	-71	0 4 -	-25	-11	^	36	02	
-16	-53	0	-10	24-	-83	-19	-58	-45	-58	-53	-23	13	1,4	
19	27	30	\$2	-15	17	-28	-28	-34	-63	09-	-20	~	-10	
6 \$	53	49	\$ 9	23	Ş	2.7	`	-13	149	-53	-35	-23	-26	
11	*	5.2	22	41	33	99	4	62	1	+1-	E -		-23	
35	45	55	69	14	53	90	100	83	45	22	•	9	51-	
-1	•	17	\$	53	38	90	131	131	102	72	34	m	-16	
56	6 5	001	109	34	æ	*	80	115	121	105	5.5	6	-35	
54	9,9	75	113	138	171	20	35	37	52	5 8	29	63	-16	
0.	20	41	28	157	176	161	280	147	-15	-11	37	17	ç	
4	59	72	20	1.1	9	80	197	416	373	4	2 %	1.8	Ť	
18	22	33	54	72	11	9,2	8 5	182	673	857	5.3	13	-1-	
10	-2	ę	52	99	88	7.5	38	99	138	4.5	1.2	0	?	
e	-15	07-	* 1	0 4	95	37	31	0 +	2.7	~	~	-5	?	
-11	-30	-12	12	18	13	7	-3	91	62	13	2.	-23	-31	
1	•	•		-	^	-11	6	9	-	ď	,	46-	36	

Table 3. BATHYHEIRY (H)

5760	5830	5860	5820	5790	6020	6030	5750	5 70 0	5630	5640	5630	5630	5630	5630
5980	5773	5880	5710	5670	5780	5360	5820	5740	5660	5620	5633	5620	5623	5520
5740	5360	5230	5410	5580	5680	5710	5750	2710	5650	5610	5600	5590	5583	5570
5580	5340	5120	2400	5630	5640	2590	5730	9710	5640	5600	5563	5520	5483	5440
5490	5710	5310	5630	5640	5680	5560	5640	5630	5620	5560	5443	2410	5443	5500
5410	5230	5340	5400	5480	5670	5760	5 790	5800	5710	5620	5440	5380	5500	5550
9229	5240	5340	4910	5140	5390	5550	5600	5740	5693	5520	5633	5550	5523	5460
, 0264	, 5020	6164	4720	4780	5170	5330	5350	5460	5550	5560	5523	5470	5420	5370
0155	4873	6264	5010	2000	5030	5220	5080	5280	5320	5320	5390	5340	5280	5280
4510	64849	4830	4780	0684	4710	4190	6224	4780	4890	5240	5410	5380	5333	5360
4540	4830	6364	4680	4610	4510	4450	4573	4370	6440	0684	5130	5240	5270	5290
3440	4140	3500	3770	4590	4520	4450	C 4 4 4	4150	4230	4480	4910	0615	5263	5270
3970	4330	3740	3680	3890	3230	4350	4320	4490	4560	4630	2000	5100	5340	5470
4160	4650	4550	4620	3850	3210	2740	1950	3460	4790	4380	5060	9100	5310	5400
0165	4893	6184	4690	4570	4430	3730	2550	1550	2640	4840	5150	0015	5130	5250
5240	5170	5210	4980	4720	4650	0055	4060	3320	1250	3780	6113	0915	5253	5450
5430	5400	5420	5270	5030	4860	4520	4300	4130	3520	5000	6664	5070	5250	5460
5450	5390	5530	5500	5450	5250	2010	4680	4390	4633	4890	6164	5110	5273	5380
2400	\$325	5510	2 400	5630	5530	5390	2150	4780	4810	5290	5173	5230	5260	5250
5400	5310	5330	5410	5590	2610	5550	5480	5290	5290	5390	5483	5530	5463	5380

Table 4. RESIDUAL DEPTH ANDHALY (H)

- 18	-69	-134	-105	-86	-325	-343	-74	-35	56	7		6-	-22	-35
-232	-33	-154	11	0,	-82	-167	-138	69-	0	2.7	11	œ	9	-19
*	383	505	311	130	54	-13	-63	-39	15	4	1 +	38	35	3.8
174	403	515	326	85	\$	•	-43	-34	92	. 24	8 1	114	141	168
569	38	174	96	. 31	30	39	4 30	2.5	45	100	202	524	181	115
355	524	403	335	942	45	-56	16-	-118	-33	0,4	412	192	128	•
545	514	703	822	586	325	16	28	-119	-82	-19	-15	32	63	96
723	668	112	156	980	484	317	584	191	65	4.2	69	112	143	193
6771	818	862	199	999	624	124	554	341	562	282	199	242	962	583
1189	823	852	168	181	950	268	416	848	325	368	185	202	542	503
1159	863	962	166	1001	1150	1204	101	1258	1911	718	465	349	315	622
\$222	1559	2038	7161	1081	1146	1204	1207	1484	1331	1135	769	399	322	662
1740	1369	1453	2008	1787	2441	1510	1351	1144	1068	385	622	495	242	8
1550	1043	1043	1068	1627	7957	2320	3704	1812	838	641	548	571	344	1 4 7
145	814	333	666	1107	1521	1,30	1016	4165	3064	853	532	j./1	533	347
415	540	505	151	1045	1104	1343	7291	2401	4453	1919	518	165	613	197
400	410	375	210	685	894	1223	7641	1881	2190	669	698	203	416	194
390	430	270	283	315	504	733	1021	1336	1115	814	123	572	105	280
440	505	300	390	140	523	158	285	946	908	614	523	452	115	615
450	523	6.30	380	180	143	P 6	257	4.36	425	314	213	9	222	5

mable 5. PREDICTED LOAD (BAR)

-5	-28	4.0	-43	. 34	-131	-139	-29	57-	× 13	3	~	4	6-
9.5	1.	-57	₽.	11	-31	-55	-55	17-	c	11	•	m	~
J	153	700	120	51	œ	٥	-26	-15	Φ	17	15	**	13
11	153	242	121	ננ	25	3	-18	-14	1.3	12	31	3	55
101	~	163	31	30	11	1.5	۲2	70	6.1	58	1 6	8.7	7
136	102	151	125	*	**	24	24-	Z # -	-15	15	3.5	101	7
213	161	172	326	\$27	125	. 33	CI	64-	-33	ę.	~	7.0	13
612	442	544	350	345	183	171	13,	99	42	14	9.2	4.2	5.5
754	305	330	245	252	238	151	213	126	113	109	?	43	115
454	46?	312	337	167	354	378	350	324	112	136	65	7.5	93
556	414	322	358	391	424	444	401	400	644	670	175	133	113
576	255	1351	431	00%	404	135	433	558	528	435	564	641	122
478	3 4 3	115	472	671	1107	141	495	397	384	307	223	183	Ç. B
101	533	503	511	431	249	552	5001	1015	315	513	195	217	129
697	06 ?	314	330	508	739	306	417	626	1543	337	163	212	203
117	193	173	112	979	420	916	228	1326	7101	956	173	176	154
123	154	0+1	193	662	321	438	515	733	244	340	253	472	157
641	163	54	103	115	140	355	335	516	503	324	555	213	150
169	192	100	151	8 4	. 05	261	214	153	339	677	193	170	155
176	102	106	141	9	3	7.	2	163	153	116	e.	27	-

Table 6. PREDICTED SUBSIDENCE (M)

-11	- 90	-174	-140	-108	-433	-460	-84	* * 1	35	s 0	~	-15	-23
-324	25-	-433	10	96	96-	-208	-178	80 30 1	7	35	1.2	10	6-
œ	164	555	393	163	33	-14	-8	24-	12	5.5	53	4	£
212	510	111	404	65	69	0.1	-58	-47	33	•	56	137	174
348	+2-	3 4 Ĭ	83	42	3.2	53	73	69	58	124	253	927	224
459	699	465	388	243	37	-81	-131	-154	-43	÷	274	335	155
619	565	956	1017	703	394	16	32	-164	-108	-25	-31	52	4.9
0 90	583	576	1165	1048	995	378	341	196	0.2	39	73	131	175
1543	935	1561	746	717	739	+14	699	380	338	346	237	562	364
1420	883	938	1035	887	1141	1310	1601	1009	867	413	195	822	283
2061	1532	382	1040	1185	1311	1412	1230	1500	1395	832	543	412	369
1053	618	3862	2877	1206	1163	1285	1303	1719	1639	1365	822	454	373
416	1152	146	659	3245	1468	2558	1507	1120	1132	1120	678	290	268
2506	1859	1895	2274	124	1199	1292	6449	3674	950	119	570	619	391
196	647	186	11179	1919	3003	1276	1551	1373	1065	1368	515	245	635
543	\$65	115	197	1124	1302	2213	3274	5175	1273	3610	463	615	474
461	471	455	576	145	945	1287	1516	2632	887	1553	114	577	483
465	504	167	307	347	565	787	1130	1643	1811	1047	795	249	463
924	665	324	475	133	255	197	641	1079	1032	663	584	975	432
195	633	521	494	210	171	231	285	500	473	154	265	-	16.7

Table 7. PREDICTED GRAVITY (MOAL)

ATZLONG	-165	-164	-163	-162	-161	-160	651- 00	3 -158	-157	-156	-155	-154	-153	-152	-151	-150
, ,		ď	•	m	m	-1	-11	-13	٥	7	~	0	•	40	~	•
	- -	10	17	67	02	1.4	~	-5	ĩ	۳	rp.	13	13	13	11	0-
	•	31	15	09	5.1	35	50	0.1	۵	6	1,4	91	0 2	50	20	1.7
75	•	9 0	22	41	24	9	32	22	15	91	50	52	33	32	31	92
; ;	-	09	7.5	6.0	13	96	7,5	31	25	53	52	32	Ç	43	38	97
2 6	-	1 08	101	103	102	95	29	43	31	5.4	5.2	33	~	;	37	17
) .	ã	03 1	131	145	148	130	66	7.2	\$\$	0	35	36	39	0,	38	32
c (-	1 15	160	175	180	167	133	113	9.5	8.2	, 6	25	5.2	15	6	7,5
5 6	Ä	62 1	189	196	195	189	175	091	143	130	111	42	11	0.2	6.5	25
6 4	7	84 2	213	172	224	223	223	518	117	161	171		103	96	7.4	23
3 ;	>	0.6 2	152	273	17.2	272	273	212	566	259	233	186	140	801	9	4.0
: :	7	2 60:	111	339	347	335	335	329	317	305	575		171	126	*6	29
S 2	~	2 60:	673	313	341	383	416	414	405	360	297	238	181	137	66	99
3.1	2	7 01;	653	286	316	348	393	445	515	194	365	260	189	1 951	601	
1 6	==	59 2	102	230	566	312	365	804	475	105	. 494	324	207	153 1	118	6.1
> 0	1	16 1	149	173	207	253	303	362	435	487	443	345	220	152 1	114	9,2
` ·	•	1 56	611	134	157	190	162	283	345	341	345	280	203	1 651	110	22
1 1	-	85 1	104	103	116	135	163	202	240	613	264	812	172	1 35 1	\$01	7.5
		44	26	44	16	96	109	134	165	761	183	159	130	108	63	89
n	•	4.9	7.9	6.2	16	70	7.2	4	100	115	114	66	83	02	29	5.1

LIST OF CONTRIBUTING SCIENTISTS (1 November 1976 - 30 September 1979)

- S.C. Solomon, Principal Investigator, part-time
- J. Chaiken, Graduate Research Assistant, part-time