

"Simulation of sound propagation in the atmosphere using the Parabolic Equation method and application to the prediction of wind turbine noise"

A Master's Thesis by Christine Kappatou

Supervised by Vasilis. A. Riziotis (Associate Professor)

Co-supervised by **John. M. Prospathopoulos (Teaching and Research Associate)**

But WHY is this important?

Overpopulation and fast economic growth \rightarrow increase in energy requirements \rightarrow fossil fuels depletion \rightarrow need for R.E.S. \rightarrow wind energy: a popular option.

Air-collision of birds and bats

Interference with the E/M signals

Habitat loss

Drawbacks of a wind park

Visual Impact

Aim of the study

The development of a model, capable of:

- simulating noise propagation in the atmosphere
- assessing the noise levels in critical distances from a W/T

The Parabolic Equation Method

Axisymmetric 3–D Helmholtz eqn.:
$$\frac{\partial^2 q}{\partial r^2} + \frac{\partial^2 q}{\partial z^2} + k^2 \cdot q = 0$$
, $q = p \cdot \sqrt{r}$

*Note: We're working in the *frequency* domain!

Numerical Discretization

- using Central Differences Method and Crank-Nicholson Integration (CNPE)
- taking into account:
 - o Ground surface and top-of-the-grid boundary conditions

$$\left(\frac{p_c}{v_{c,z}}\right)_{z=0}$$
 or z_M

o Top surface absorbing layer

 Atmospheric absorption, ground absorption and spherical spreading losses. assuming the starting field to be a monopole source in an unbounded, non-refracting atmosphere:

$$q(0,z) = q_0(z-z_0) + C \cdot q_0(z+z_0)$$
direct field
ground
reflections field

Numerical Parameters Study

 $z_{\text{max}} = 272 \text{ m}$

Absorbing layer of thickness $10 \cdot \lambda$

No absorbing layer

Top grid surface height and absorbing layer thickness f=500 Hz, rmax=544 m, zr=1.36 m, dr=dz=lamda/10, zmax= 544 m a.l.thickness= 10*lamda a.l.thickness= 20*lamda a.l.thickness= 50*lamda -70 f=500 Hz, rmax=544 m, zr=1.36 m, dr=dz=lamda/10, zmax= 272 m a.l.thickness= 10*lamda a.l.thickness= 20*lamda a.l.thickness= 50*lamda 150 200 Absorbing layer of thickness $50 \cdot \lambda$

Results

Code Validation

Comparison with benchmark cases

Comparison with the measurements of the Rock Springs experiment

Application to real W/T cases

Comparison with the measurements of the Lyse experiment

Overview

Problem: W/T noise

mathematics: P.E. method

model for atm. noise propagation

$$\frac{\partial^2 q}{\partial r^2} + \frac{\partial^2 q}{\partial z^2} + k^2 \cdot q = 0, q = p \cdot \sqrt{r}$$

model validation

numerical parameters study

f= 100 Hz, b= 0.1 m/s, diredge= 13 m, maximater 667 m

CAPE

Analytical Solution FFF

Ray Tracing Method

30

40

40

code development (discretization)

Application to real W/T cases

THANK YOU FOR YOUR ATTENTION! Questions?