

Matemática Discreta

Leandro Colombi Resendo

Algoritmos para Grafos

- Grafos Direcionados e Relações Binárias; o Algoritmo de Warshall
- Caminho de Euler e Circuito Hamiltoniano
- Caminho Mínimo e Árvore Geradora Mínima
- Algoritmos de Percurso

O Problema do Caminho de Euler

("Problema de Inspeção de Rodovias")

História: Leonhard Euler e as Pontes de Königsberg

É possível cruzar cada ponte uma única vez e voltar ao ponto

de partida?

História

Modelo de teoria de grafo

1º Teorema da Teoria dos Grafos: Euler estabeleceu um teorema que diz em que condições é possível percorrer cada linha exatamente uma vez e voltar ao ponto inicial

Você é capaz de desenhar essa figura sem tirar o lapiz do papel?

Teoria de Grafos

Problemas Clássicos

• Ciclos e Circuito, Euleriano e Hamiltoniano:

<u>Ciclo</u>: é um cadeia fechada, ou seja, que inicia e termina em um mesmo nó. Onde cada aresta é vizitada um única vez.

Circuito: é um caminho fechado em um grafo orientado.

Percurso fechado:

Euleriano: caminho que utiliza cada <u>aresta</u> do grafo um única vez.

Hamiltoniano: caminho que utiliza cada <u>vértice</u> do grafo unica vez.

Observação

"Todo grafo tem um número par de nós impares!!"

Mostrar isso.

Teorema sobre Caminhos de Euler: "Existe um caminho de Euler em um grafo conexo se, e somente se, não existem nós ímpares ou existem exatamente dois nós ímpares. No caso em que não existe nós ímpares, o caminho pode começar em qualquer nó e terminar aí; no caso de dois nós ímpares, caminho precisa começar em um delas e terminar no outro."

Ex:

Problemas Clássicos

Ciclos e Circuito, Euleriano e Hamiltoniano

Resultado de Euler (Teorema): G tem uma ROTA EULERIANA precisamente quando todos os nós de G têm grau par.

Ideia:

Observação

Ex: Sem desenhar, diga se existe um caminho de Euler no grafo representado pela seguinte matriz de adjacências.

$$\begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 0 \end{bmatrix}$$

Ex: escreva a matriz de adjacência para o problema do passeio em Konigsberg e execute meu procedimento que você desenvolveu anteriormente.

O problema do Circuito Hamiltoniano

Problemas Clássicos

Problema do Caixeiro Viajante: Consiste em vizitar todos os nós do grafo e voltar ao ponto de origem (percurso Hamiltoniano).

• Problema proposto por Willian Rowan Hamilton.

O problema do Circuito Hamiltoniano

Problemas Clássicos

Problema do Caixeiro Viajante:

Quais soluções que você conhece?

Lista Mínima de Exercícios

Seção 6.2: 2, 7, 9, 14, 15, 24, 26, 29, 30.