ANALYSIS OF MULTIAXIAL STRESS

ME 210: MECHANICS OF MATERIALS

SAPPINANDANA AKAMPHON

DEPARTMENT OF MECHANICAL ENGINEERING, TSE

WHY SHOULD I CARE ABOUT THIS?

- Many components can be loaded by multiple forces/torques/moments
- How do we know if material will fail?
- We need to understand their states of stress first
 - ▶ Need to determine max normal and max shear stress

DETERMINING MAX NORMAL AND SHEAR STRESSES

- Equivalent normal and shear stresses change with respect to orientation
- 2 types of simplification: plane stress and plane strain

PLANE STRESS: WHAT'S THAT?

- Part of material with only *in-plane* normal and shear stresses
- No stress in out-of-plane direction

STRESS TRANSFORMATION FOR PLANE STRESS

- Finding maximum normal and shear stresses and their direction
- Use equilibrium to solve

EQUATIONS FOR STRESS TRANSFORMATION

$$\sum F_{x'} = 0;$$

$$\sigma_{x'} \Delta A - (\tau_{xy} \Delta A \sin \theta) \cos \theta - (\sigma_y \Delta A \sin \theta) \sin \theta$$

$$- (\tau_{xy} \Delta A \cos \theta) \sin \theta - (\sigma_x \Delta A \sin \theta) \cos \theta = 0$$

$$\sigma_{x'} = \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta$$

$$\sum F_{y'} = 0;$$

$$\tau_{x'y'} = (\sigma_y - \sigma_x) \sin \theta \cos \theta + \tau_{xy} (\cos^2 \theta - \sin^2 \theta)$$

 $\sigma_y' = ?$

WHERE ARE MY MAX STRESSES?

Find the max

$$\frac{d\sigma_x'}{d\theta} = 0 = -\left(\sigma_x - \sigma_y\right)\sin 2\theta + 2\tau_{xy}\cos 2\theta$$
$$\frac{d\sigma_y'}{d\theta} = 0 = \left(\sigma_x - \sigma_y\right)\sin 2\theta - 2\tau_{xy}\cos 2\theta$$

 \blacksquare For both normal stress in x and y

$$2\theta_p = \tan^{-1} \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

 \blacksquare θ_p is the principal direction

GRAPHICAL REPRESENTATION OF STATE OF STRESS

■ Rewrite stresses using double angle

$$\sigma_{x'} = \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta$$

$$\vdots$$

$$\sigma_{x'} - \left(\frac{\sigma_x + \sigma_y}{2}\right) = \left(\frac{\sigma_x + \sigma_y}{2}\right) \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{x'y'} = (\sigma_y - \sigma_x) \sin \theta \cos \theta + \tau_{xy} (\cos^2 \theta - \sin^2 \theta)$$

$$\vdots$$

$$\tau_{x'y'} = \left(\frac{\sigma_y - \sigma_x}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

GETTING THERE...

Square both terms and add

$$\left[\sigma_{x'} - \left(\frac{\sigma_x + \sigma_y}{2}\right)\right]^2 + \tau_{x'y'}^2 =$$

$$\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 \cos^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{xy} \cos 2\theta \sin 2\theta + \tau_{xy}^2 \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos 2\theta \sin 2\theta + \tau_{xy}^2 \cos^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos 2\theta \sin 2\theta + \tau_{xy}^2 \cos^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos 2\theta \sin 2\theta + \tau_{xy}^2 \cos^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin 2\theta + \tau_{xy}^2 \cos^2 2\theta \cos^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin 2\theta + \tau_{xy}^2 \cos^2 2\theta \cos^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{xy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_y - \sigma_x}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \sin^2 2\theta + 2\left(\frac{\sigma_x - \sigma_y}{2}\right) \tau_{yy} \cos^2 2\theta \cos^2 2\theta \cos^2 2\theta \cos^2 2\theta$$

THE REPRESENTATION

■ Use trigonometry identities

$$\left[\sigma_{x'} - \left(\frac{\sigma_x + \sigma_y}{2}\right)\right]^2 + \tau_{x'y'}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

What shape does that take?

$$\left(\sigma_{x'}-\sigma_{avg}\right)^2+\tau_{x'y'}^2=R^2$$

MOHR'S CIRCLE

PRINCIPAL STRESSES

 Maximum and minimum normal stresses = normal stresses at principal direction

$$\begin{split} \sigma_{x'}(\theta = \theta_p) &= \sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \\ \sigma_{y'}(\theta = \theta_p) &= \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \end{split}$$

 \blacksquare σ_1 and σ_2 are called *principal stresses*

Shear Stresses at $\overline{\theta_p}$

$$\tau_{x'y'}(\theta=\theta_p)=0$$

- No shear stress in the principal direction, ever!
- Check on Mohr's circle
- So where's the maximum shear stress?

MAXIMUM IN-PLANE SHEAR STRESS

$$\frac{d\tau_{xy}}{d\theta} = 0 = 2\left(\frac{\sigma_y - \sigma_x}{2}\right)\cos 2\theta - 2\tau_{xy}\sin 2\theta$$
$$\tan 2\theta_s = \frac{\sigma_y - \sigma_x}{2\tau_{xy}}$$

 \blacksquare θ_c is the maximum shear stress direction

$$\tau_{\max} = \tau_{xy}(\theta = \theta_s)$$

 \blacksquare τ_{max} is the maximum in-plane shear stress

EXAMPLE: STATE OF STRESS OF A SQUARE ELEMENT

 \blacksquare First, find $au_{ exttt{max}}$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$= \sqrt{\left(\frac{-30 - 20}{2}\right)^2 + 25^2}$$
$$= 35.4 \text{ MPa}$$

CONTINUE

■ Principal stresses are

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\frac{\sigma_x - \sigma_y^2}{2} + \tau_{xy}^2}$$
$$= \frac{-30 + 20}{2} \pm 35.4$$
$$= 30.4 \text{ MPa, } -40.4 \text{ MPa}$$

Principal direction is

$$2\theta = \tan^{-1} \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$
$$= -45^{\circ}$$
$$\theta = -22.5^{\circ}$$

ORIGINAL VS PRINCIPAL

ANOTHER EXAMPLE:

 \blacksquare First, find au_{max}

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$
$$= \sqrt{\left(\frac{40 - 100}{2}\right)^{2} + 75^{2}}$$
$$= 80.8 \text{ MPa}$$

CONTINUE

Principal stresses are

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\frac{\sigma_x - \sigma_y^2}{2} + \tau_{xy}^2}$$
$$= \frac{40 + 100}{2} \pm 80.8$$
$$= 150.8 \text{ MPa, } -10.8 \text{ MPa}$$

Principal direction is

$$2\theta = \tan^{-1} \frac{2(80.8)}{40 - 100}$$
$$= -69.6^{\circ}$$
$$\theta = -34.8^{\circ}$$

ORIGINAL VS PRINCIPAL

HOOKE'S LAW FOR 3D STRESS

■ Recall Poisson's ratio where

$$V = -\frac{\varepsilon_{trans}}{\varepsilon_{long}}$$

- In 3D materials, there are *two* transversal strains
 - For x, there are y and z

RETHINKING STRAINS IN 3D

	$\sigma_{_X}$	σ_y	σ_z
ε_x ε_y ε_z	$ \frac{\sigma_{x}}{E} \\ -v \frac{\sigma_{x}}{E} \\ -v \frac{\sigma_{x}}{E} $	$ \begin{array}{c} -v \frac{\sigma_y}{E} \\ \frac{\sigma_y}{E} \\ -v \frac{\sigma_y}{E} \end{array} $	$ -v\frac{\sigma_z}{E} \\ -v\frac{\sigma_z}{E} \\ \frac{\sigma_z}{E} $

VOLUME CHANGE

- Original volume of element $V_0 = abc$
- Final volume is

$$\begin{aligned} V_{final} &= a \left(1 + \varepsilon_x \right) + b \left(1 + \varepsilon_y \right) + c \left(1 + \varepsilon_z \right) \\ &\approx abc \left(1 + \varepsilon_x + \varepsilon_y + \varepsilon_z \right) \end{aligned}$$

■ Volume change is

$$V_{final} = abc \left(\varepsilon_x + \varepsilon_y + \varepsilon_z \right)$$

Unit Volume Change, e

■ Also called dilatation or volumetric strain

$$e = \frac{\Delta V}{V_0} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

SPHERICAL STRESS AND BULK MODULUS

■ Spherical stress → same normal stresses in 3 axes

$$\sigma_{x} = \sigma_{y} = \sigma_{z} = \sigma_{0}$$

$$\varepsilon_{x} = \varepsilon_{y} = \varepsilon_{z} = \frac{1 - 2v}{E} \sigma_{0}$$

$$e = \frac{3(1 - 2v)}{E} \sigma_{0}$$

■ Bulk modulus, K, is defined as

$$K = \frac{\sigma_0}{e} = \frac{E}{3(1 - 2\nu)}$$

EXAMPLE: CUBE UNDER HYDROSTATIC PRESSURE

A 0.25-m³ cube is being submerged under water where the water pressure is 30 MPa. If the material has E = 3 GPa and Poisson's ratio of 0.3, find the final volume of the element.

SOLUTION: CUBE UNDER HYDROSTATIC PRESSURE

Hydrostatic pressure situation represents the state where the pressure is equal in all direction. This means that we can assume that the element is under spherical stress. The unit volume change is

$$e = \frac{3\sigma_o}{E} (1 - 2v)$$

$$= \frac{3(-30 \times 10^6 \text{ Pa})(1 - 2(0.3))}{(3 \times 10^9 \text{ Pa})}$$

$$= -0.012$$

SOLUTION: CUBE UNDER HYDROSTATIC PRESSURE

This means that the volume reduced by 1.2% (since hydrostatic pressure in this case is compressive), and thus the final volume is

$$V_f = (1 + e)V$$

= 0.988(0.25 m³)
= 0.247 m³

29

ABSOLUTE MAXIMUM SHEAR STRESS

- In 3D plane stress problems, there are 3 principal stresses.
- The 3rd principal stress is o.
- Use Mohr's circle to represent the relationship of all three.
- 2 cases:
 - 1. $\sigma_1, \sigma_2 > 0$
 - 2. $\sigma_1 > 0, \sigma_2 < 0$

CASE I: STRESSES ARE OF THE SAME SIGN

CASE II: STRESSES ARE OF OPPOSITE SIGNS

EXAMPLE

- From previous example, we have that σ_1 = 30.4 MPa, σ_2 = -40.4 MPa, and $\tau_{\rm max}$ = 35.4 MPa.
- Let us draw a Mohr's circle out of this.

