Supplementary File

Fig. S1. Relationship between $\tilde{\mathcal{A}}$ and \mathcal{P} in Eq. 8.

Fig. S2. A snapshot of restorative sampling of UR3's grasp.

Algorithm A2 Training of FAGL Algorithm A1 Restorative Sampling Initialize RA-Net Q_{θ} and Target RA-Net Q_{θ^-} . 1: Capture I_i and obtain O_i . 1: 2: Set hyperparameters $\alpha = 10^{-3}$, B=16, $step_{max} =$ 2: Obtain G_i given O_i . 2500, $\epsilon = 0.5$, $\tau = 3$, step = 0, and $D = \emptyset$. 3: // Perform restorative manipulation M_i next. 3: while $step < step_{max} do$ 4: Gripper moves first to T_i^l and rotates ϕ_i around Z-axis. 4: Obtain O_i . Gripper moves to T_i along T_i . 5: 5: $\epsilon = explore_schedule(), p = rand().$ 6: Close Gripper. $(argmaxQ_{\theta}(\mathcal{O},\mathcal{G}) \ if \ p \leq 1 - \epsilon)$ 6: 7: if the grasp is successful then 8: Gripper moves backward to T_i^l along T_i^- . $\begin{cases} random\ policy & if\ p > \epsilon \end{cases}$ 9: if the object is held during the return then 7: Obtain \mathcal{A}_i , g_i , and $\mathcal{S}_i(\hat{\mathcal{A}}_i, g_i)$. 10: Places the object back to T_i along T_i . 8: $D = D \cup \{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}.$ Set $g_i = 1$, capture \mathcal{O}_i^+ , and calculate \mathcal{S}_i . 11: 9: step = step + 1. 12: Perform G_i again to take the object to its goal 10: if |D| > B then place. 11: Random sample $\{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}_{i \in [0,B]}$ in D. 13: else 12: Update $Q_{\theta}(\mathcal{O}, \mathcal{G})$ on $\{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}_{i \in [0,B]}$. 14: Set $g_i = 0$ and $S_i = 0$. 13: end if 15: 14: if step % $\tau == 0$ then 16: else 15: $\theta^- = \theta$. Set $g_i = 0$ and $S_i = 0$. 17: 16: end if 18: end while 17 19: Robot goes backs to its home. 18: $Q_{\theta}^*(\mathcal{O},\mathcal{G}) = Q_{\theta}(\mathcal{O},\mathcal{G}).$ 20: Store $(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)$ into D. 19: Output: optimal action-value function $Q_{\theta}^*(\mathcal{O}, \mathcal{G})$.

TABLE S-I ABBREVIATIONS

	Abbreviations
${\cal P}$	Destructive effect of a grasp (DEG)
${\mathcal G}$	A grasp
T=(x,y,z)	The position of a grasp
ϕ	Rotation around Z-axis
ω	Initial distance between the two fingers of the gripper
I_{hc}^-	Color heightmap of the environment before restorative manipulation
I_{hc}^+	Color heightmap of the environment after restorative manipulation
$\widetilde{\mathcal{M}}$	A restorative manipulation
${\mathcal B}$	OTSU operation
${\mathcal A}$	Antipodal degree of a grasp (ADG)
O	Observation space
$rac{\mathcal{G}}{\mathcal{R}}$	Robotic grasp space
${\mathcal R}$	Feedback (rewards)
ho	Transition probability
${\cal H}$	tMaximum step
$\hat{\mathcal{A}}$	Discrete ADG
${\mathcal T}$	Trajectory
\mathcal{T}^-	Inverse trajectory of \mathcal{T}
Н	Weight of I_{hc}^- and I_{hc}^+
W	Height of I_{hc}^- and I_{hc}^+
I	RGB-D image
I_c	RGB image
I_d	Depth map
g	Grasp flag
${\mathcal C}$	Destruction tolerance
r	:Primary basic reward
e	Secondary basic reward
$\mathcal Q$	Multi-channel grasp affordance
q	Affordance planes
I_{hc_i}	Color heightmap images
I_{hd_i}	Depth heightmap images
$\mathcal{V}_{sd}^{}$	Shallow depth feature
\mathcal{V}_{sc}^{sa}	Shallow color feature
\mathcal{V}_m	Latent feature
·	