```
พัก 2 สมมติในระบบมีเอกสารทั้งหมด 10 เอกสารดังนี้ (bird, cat, dog, tiger คือ Keyword)
D1: {bird, cat, bird, cat, dog, dog, bird}
D2: {cat, tiger, cat, dog}
D3: {dog, bird, bird}
D4: {cat, tiger}
D5: {tiger, tiger, dog, tiger, cat}
D6: {cat, cat, tiger, tiger}
D7: {bird, cat, dog}
D8: {dog, cat, bird}
D9: {cat, dog, tiger}
D10:{tiger, cat, tiger}
```

ผู้ใช้ส่งคำเรียกค้น "cat cat dog dog tiger" เข้าไปในระบบ จงตอบคำถาม

- 2.1 เพื่อให้ได้คำตอบในคำถาม 2.2 ผู้ใช้**สามารถเลือกใช้โมเดลใดได้บ้างเพราะอะไร** (เลือกได้เฉพาะตัวเลือกที่ให้มา)
 - A) BM25 Model

D) Boolean Model

B) Fuzzy Model

- E) Probabilistic Model
- C) Extend Boolean Model
- F) Generalized Vector Model
- 2.2 ให้นักศึกษาแสดงวิธีคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ ตามที่ผู้ใช้ต้องการ โดยให้ความสำคัญกับลักษณะการ ปรากฏของคีย์เวิร์ดในแต่ละเอกสาร กล่าวคือเอกสารที่มีลักษณะการปรากฏของคีย์เวิร์ดที่เหมือนกันจะต้องมีความตรงประเด็นที่ใกล้เคียงกัน
- 2.3 หากระบบกำหนดให้เอกสารที่ 1 ตรงประเด็นมากกว่าเอกสารที่ **9** โมเดลที่เลือกมาให้คำตอบถูกต้องหรือไม่ ถ้าผิดต้องแก้ไขอย่างไรจง อธิบาย**(35 คะแนน)**

Answer

2.1 ใช้ Generalized Vector Model เนื่องจากโจทย์กำหนดเอกสารที่มีลักษณะการปรากฏของคีย์เวิร์ดที่ เหมือนกันจะต้องมีความตรงประเด็นที่ใกล้เคียงกัน ดังนั้นรูปแบบการปรากฏของ Keyword จึงมีผลต่อความตรง ประเด็น และโจทย์ไม่ได้กำหนดให้ Keyword ไม่สัมพันธ์กันหรือไม่ แสดงว่า Keyword อาจมีความสัมพันธ์กันได้

เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้

```
D1: {bird,cat,bird,cat,dog,dog,bird}
D2: {cat,tiger,cat,dog}
D3: {dog,bird,bird}
D4: {cat,tiger}
D5: {tiger,tiger,dog,tiger,cat}
D6: {cat,cat,tiger,tiger}
D7: {bird,cat,dog}
D8: {dog,cat,bird}
D9: {cat,dog,tiger}
D10:{tiger,cat,tiger}
```

	Bird	Cat	Dog	Tiger	Max
Doc1	3	2	2	0	3
Doc2	0	2	1	1	2
Doc3	2	0	1	0	2
Doc4	0	1	0	1	1
Doc5	0	1	1	3	3
Doc6	0	2	0	2	2
Doc7	1	1	1	0	1
Doc8	1	1	1	0	1
Doc9	0	1	1	1	1
Doc10	0	1	0	2	2
n	4	9	7	6	

Doc1 Only

$$tf_{bird} = \frac{3}{3} = 1.000$$

$$tf_{cat} = \frac{2}{3} = 0.667$$

$$tf_{dog} = \frac{2}{3} = 0.667$$

$$tf_{tiger} = \frac{0}{3} = 0.000$$

	Bird	Cat	Dog	Tiger	Max
Doc1	3	2	2	0	3
Doc2	0	2	1	1	2
Doc3	2	0	1	0	2
Doc4	0	1	0	1	1
Doc5	0	1	1	3	3
Doc6	0	2	0	2	2
Doc7	1	1	1	0	1
Doc8	1	1	1	0	1
Doc9	0	1	1	1	1
Doc10	0	1	0	2	2
n	4	9	7	6	

$$idf_{bird} = \log(\frac{10}{4}) = 0.398$$
 $idf_{cat} = \log(\frac{10}{9}) = 0.046$
 $idf_{dog} = \log(\frac{10}{7}) = 0.155$
 $idf_{tiger} = \log(\frac{10}{6}) = 0.222$

$$w_{bird} = 1.000 * 0.398 = 0.398$$
 $w_{cat} = 0.667 * 0.046 = 0.031$
 $w_{dog} = 0.667 * 0.155 = 0.103$
 $w_{tiger} = 0.000 * 0.222 = 0.000$

น้ำหนักของแต่ละ Keyword ในแต่ละเอกสาร

	Bird	Cat	Dog	Tiger
Doc1	0.398	0.031	0.103	0.000
Doc2	0.000	0.046	0.077	0.111
Doc3	0.398	0.000	0.077	0.000
Doc4	0.000	0.046	0.000	0.222
Doc5	0.000	0.015	0.052	0.222
Doc6	0.000	0.046	0.000	0.222
Doc7	0.398	0.046	0.155	0.000
Doc8	0.398	0.046	0.155	0.000
Doc9	0.000	0.046	0.155	0.222
Doc10	0.000	0.023	0.000	0.222

Query = "cat cat dog dog tiger"

$$W_{i,q} = (0.5 + \frac{0.5 * freq_{i,q}}{Max(freq_{i,q})}) * \log(\frac{N}{n_i})$$

$$W_{Cat,q} = (0.5 + \frac{0.5 * 3}{3}) * \log(\frac{10}{9}) = 0.523$$

$$W_{Dog,q} = (0.5 + \frac{0.5 * 2}{3}) * \log(\frac{10}{7}) = 0.552$$

$$W_{Dog,q} = (0.5 + \frac{0.5 * 1}{3}) * \log(\frac{10}{6}) = 0.537$$

	Bird	Cat	Dog	Tiger
Doc1	0.398	0.031	0.103	0.000
Doc2	0.000	0.046	0.077	0.111
Doc3	0.398	0.000	0.077	0.000
Doc4	0.000	0.046	0.000	0.222
Doc5	0.000	0.015	0.052	0.222
Doc6	0.000	0.046	0.000	0.222
Doc7	0.398	0.046	0.155	0.000
Doc8	0.398	0.046	0.155	0.000
Doc9	0.000	0.046	0.155	0.222
Doc10	0.000	0.023	0.000	0.222
Q	0	0.523	0.552	0.537

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

$$k_i = \frac{\sum_{\forall r, g_i(m_r)} c_{i,r} m_r}{\sqrt{\sum_{\forall r, g_i(m_r)} c_{i,r}^2}}$$

$$k_1 = \frac{c_{1,1}m_1 + c_{1,3}m_3}{\sqrt{c_{1,1}^2 + c_{1,3}^2}}$$

$$\begin{split} c_{1,1} &= w_{1.1} + w_{1.7} + w_{1,8} = 0.398 + 0.398 + 0.398 \\ &= 1.194 \\ c_{1,3} &= w_{1,3} = 0.398 \end{split}$$

$$k_1 = \frac{1.194m_1 + 0.398m_3}{\sqrt{0.194^2 + 0.398^2}}$$

$$k_1 = 0.949m_1 + 0.316m_3$$

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

$$k_{2} = \frac{c_{2,1}m_{1} + c_{2,2}m_{2} + c_{2,4}m_{4}}{\sqrt{c_{2,1}^{2} + c_{2,2}^{2} + c_{2,4}^{2}}}$$

$$c_{2,1} = w_{2,1} + w_{2,7} + w_{2,8} = 0.031 + 0.046 + 0.046$$

$$= 0.122$$

$$c_{2,2} = w_{2,2} + w_{2,5} + w_{2,9} = 0.046 + 0.015 + 0.046$$

$$= 0.107$$

$$c_{2,4} = w_{2,4} + w_{2,6} + w_{2,10} = 0.046 + 0.046 + 0.023$$

$$= 0.114$$

$$k_{2} = \frac{0.122m_{1} + 0.107m_{2} + 0.114m_{4}}{\sqrt{0.122^{2} + 0.107^{2} + 0.114^{2}}}$$

$$k_2 = 0.615m_1 + 0.538m_2 + 0.576m_4$$

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

$$k_3 = \frac{c_{3,1}m_1 + c_{3,2}m_2 + c_{3,3}m_3}{\sqrt{c_{3,1}^2 + c_{3,2}^2 + c_{3,3}^2}}$$

$$c_{3,1} = w_{3.1} + w_{3.7} + w_{3,8} = 0.103 + 0.155 + 0.155$$

$$= 0.413$$

$$c_{3,2} = w_{3,2} + w_{3,5} + w_{3,9} = 0.077 + 0.052 + 0.155$$

$$= 0.284$$

$$c_{3,3} = w_{3,3} = 0.077$$

$$k_3 = \frac{0.413m_1 + 0.284m_2 + 0.077m_3}{\sqrt{0.413^2 + 0.284^2 + 0.077^2}}$$

$$k_3 = 0.814m_1 + 0.560m_2 + 0.153m_3$$

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

$$k_4 = \frac{c_{4,2}m_2 + c_{4,4}m_4}{\sqrt{c_{4,2}^2 + c_{4,4}^2}}$$

$$c_{4,2} = w_{4,2} + w_{4,5} + w_{4,9} = 0.111 + 0.222 + 0.222$$

= 0.555
$$c_{4,4} = w_{4,4} + w_{4,6} + w_{4,10} = 0.222 + 0.222 + 0.222$$

= 0.666

$$k_4 = \frac{0.555m_2 + 0.666m_4}{\sqrt{0.555^2 + 0.666^2}}$$

$$k_4 = 0.640m_2 + 0.768m_4$$

	Bird	Cat	Dog	Tiger	
Doc1	0.398	0.031	0.103	0.000	m1
Doc2	0.000	0.046	0.077	0.111	m2
Doc3	0.398	0.000	0.077	0.000	m3
Doc4	0.000	0.046	0.000	0.222	m4
Doc5	0.000	0.015	0.052	0.222	m2
Doc6	0.000	0.046	0.000	0.222	m4
Doc7	0.398	0.046	0.155	0.000	m1
Doc8	0.398	0.046	0.155	0.000	m1
Doc9	0.000	0.046	0.155	0.222	m2
Doc10	0.000	0.023	0.000	0.222	m4
Q	0	0.523	0.552	0.537	

```
m1=(1, 1, 1, 0)

m2=(0, 1, 1, 1)

m3=(1, 0, 1, 0)

m4=(0, 1, 0, 1)
```

```
q = 0.523k_2 + 0.552k_3 + 0.537k_4
q = 0.523 * (0.615m_1 + 0.538m_2 + 0.576m_4) + 0.552 * (0.814m_1 + 0.560m_2 + 0.153m_3) + 0.537 * (0.640m_2 + 0.768m_4)
q = 0.771m_1 + 0.934m_2 + 0.084m_3 + 0.714m_4
```

$$q = 0.771m_1 + 0.934m_2 + 0.084m_3 + 0.714m_4$$

$$d_1 = 0.398k_1 + 0.031k_2 + 0.103k_3$$

$$d_1 = 0.398 * (0.949m_1 + 0.316m_3) + 0.031 * (0.615m_1 + 0.538m_2 + 0.576m_4) + 0.103 * (0.814m_1 + 0.560m_2 + 0.153m_3)$$

$$d_1 = 0.480m_1 + 0.074m_2 + 0.142m_3$$

	Bird	Cat	Dog	Tiger
Doc1	0.398	0.031	0.103	0.000
Doc2	0.000	0.046	0.077	0.111
Doc3	0.398	0.000	0.077	0.000
Doc4	0.000	0.046	0.000	0.222
Doc5	0.000	0.015	0.052	0.222
Doc6	0.000	0.046	0.000	0.222
Doc7	0.398	0.046	0.155	0.000
Doc8	0.398	0.046	0.155	0.000
Doc9	0.000	0.046	0.155	0.222
Doc10	0.000	0.023	0.000	0.222
Q	0	0.523	0.552	0.537

$$q = 0.771m_1 + 0.934m_2 + 0.084m_3 + 0.714m_4$$

$$sim(q, d_j) = \frac{\sum_{r} S_{d,r}.S_{q,r}}{\sqrt{\sum_{r} S_{d,r}^2.\sum_{r} S_{q,r}^2}}$$

	m1	m2	m3	m4
Doc1	0.480	0.074	0.142	0.018
Doc2	0.091	0.139	0.012	0.112
Doc3	0.441	0.043	0.138	0.000
Doc4	0.028	0.167	0.000	0.197
Doc5	0.051	0.179	0.008	0.179
Doc6	0.028	0.167	0.000	0.197
Doc7	0.532	0.111	0.149	0.026
Doc8	0.532	0.111	0.149	0.026
Doc9	0.154	0.253	0.024	0.197
Doc10	0.014	0.154	0.000	0.184
Q	0.771	0.934	0.084	0.714

$$sim(q, d_1) = \frac{0.480 * 0.771 + 0.074 * 0.934 + 0.142 * 0.084 + 0.018 * 0.714}{\sqrt{(0.480^2 + 0.074^2 + 0.142^2 + 0.018^2) * (0.771^2 + 0.934^2 + 0.084^2 + 0.714^2)}} = 0.974$$

Doc	Sim	
Doc1	0.651	m1
Doc2	0.994	m2
Doc3	0.600	m3
Doc4	0.870	m4
Doc5	0.921	m2
Doc6	0.870	m4
Doc7	0.686	m1
Doc8	0.686	m1
Doc9	0.991	m2
Doc10	0.845	m4

Ranking	Sim
Doc2	0.994 m2
Doc9	0.991 m2
Doc5	0.921 m2
Doc4	0.870 m4
Doc6	0.870 m4
Doc10	0.845 m4
Doc7	0.686 m1
Doc8	0.686 m1
Doc1	0.651 m1
Doc3	0.600 m3

	Bird	Cat	Dog	Tiger
Doc1	3	2	2	0
Doc2	0	2	1	1
Doc3	2	0	1	0
Doc4	0	1	0	1
Doc5	0	1	1	3
Doc6	0	2	0	2
Doc7	1	1	1	0
Doc8	1	1	1	0
Doc9	0	1	1	1
Doc10	0	1	0	2

Query = "cat cat cat dog dog tiger"

Rank → Doc2,Doc9,Doc5,Doc4,Doc6,Doc10,Doc7,Doc8,Doc1,Doc3

Ranking	Sim	
Doc2	0.994	m2
Doc9	0.991	m2
Doc5	0.921	m2
Doc4	0.870	m4
Doc6	0.870	m4
Doc10	0.845	m4
Doc7	0.686	m1
Doc8	0.686	m1
Doc1	0.651	m1
Doc3	0.600	m3

	Bird	Cat	Dog	Tiger
Doc1	3	2	2	0
Doc2	0	2	1	1
Doc3	2	0	1	0
Doc4	0	1	0	1
Doc5	0	1	1	3
Doc6	0	2	0	2
Doc7	1	1	1	0
Doc8	1	1	1	0
Doc9	0	1	1	1
Doc10	0	1	0	2

Query = "cat cat cat dog dog tiger"

2.3 หากระบบกำหนดให้เอกสารที่ 1 ตรงประเด็นมากกว่าเอกสารที่ 9 โมเดลที่เลือกมาให้คำตอบ ถูกต้องหรือไม่ ถ้าผิดต้องแก้ไขอย่างไรจงอธิบาย

จากผลลัพธ์ที่ได้เอกสาร 9 ตรงประเด็นมากกว่าเอกสารที่ 1 จึงไม่เป็นไปตามที่โจทย์กำหนด เนื่องจากโจทย์ต้องการ Cat Dog Tiger แต่ไม่ต้องการ Bird ในเอกสารที่ 1 มี Bird ที่โจทย์ไม่ต้องการ และมี Cat และ Dog แต่ไม่มี Tiger จึงมีความตรงประเด็นที่น้อยกว่าเอกสารที่ 9 ที่มีทุก Keyword ที่ สอดคล้องกับคำเรียกค้น หากต้องการให้ผลลัพธ์เป็นไปตามโจทย์ต้องการให้เพิ่มคีย์เวิร์ด Bird เข้าไป ในคำเรียกค้น

- ข้อ 3. เมื่อใช้งานคำเรียกค้น **Q = 7Dog-3Cat+Bird** ระบบส่งผลลัพธ์ออกมาคือเอกสาร 5 เอกสารดังนี้
 - D1: "Dog is a animal like to fight cat that same tiger. Cats eat fish. Dogs eat ham"
 - D2: "Birds fly over tiger. A Dog run to catch a Bird. A cat smile beside the river"
 - D3: "A tiger is crying for a lost bird. A cat is being hungry while the dog eat all fishs. That cat complain to its friend"
 - D4: "All birds sing the song. A dog is flighting the cat. The cat crying and go to complain with mother cat"
 - D5: "My dog wife is being stomach, A cat tell her boy friend because its want to have son child cat"

โดย Dog, Cat, Tiger, Bird คือ Keyword ของระบบ

หากต้องการปรับคำเรียกค้น (Query) ให้มีผลลัพธ์มีความตรงประเด็นมากยิ่งขึ้น โดยโจทย์กำหนดว่า<mark>ห้ามใช้ Associate</mark> Cluster และ Scalar Cluster นักศึกษาควรใช**้โมเดลใดเพราะอะไร จงแสดงวิธีคำนวณ**ในโมเดลที่เลือกใช้ (23 คะแนน)

Answer

เลือกใช้ Metric Cluster เนื่องจากต้องการปรับเปลี่ยน Query คั่งเคิม โคยใช้เอกสารที่ถูกส่งออกมาและพิจารณา เฉพาะระยะห่างของ Keyword และโจทย์ไม่ต้องการให้ใช้วิธีอื่น

4.2

หาความสัมพันธ์ระหว่าง Keyword โดยพิจารณาระยะห่าง

Doc1

Keyword → {Cat, Dog, Tiger}

หาระยะห่าง

Cat, Dog = 3 Dog, Tiger = 4

Cat, Tiger = 1

Doc2

Keyword → {Bird, Cat, Dog, Tiger}

หาระยะห่าง

Bird, Cat = 2 Cat, Dog = 7

Bird, Dog = 5 Cat, Tiger = 9

Bird, Tiger = 3 Dog, Tiger = 2

Doc3

Keyword → {Bird, Cat, Dog, Tiger}

หาระยะห่าง

Bird, Cat = 2 Cat, Dog = 5

Dog, Tiger = 14

Bird, Dog = 8

Cat, Tiger = 8

Bird, Tigger = 6

4.2

หาความสัมพันธ์ระหว่าง Keyword โดยพิจารณาระยะห่าง

Doc4

Keyword → {Bird, Cat, Dog}

หาระยะห่าง

Bird, Cat = 9 Cat, Dog = 4

Bird, Dog = 5

Doc5

Keyword → {Cat, Dog}

หาระยะห่าง

Cat, Dog = 6

เลือกระยะห่างที่สั้นที่สุด ได้ข้อมูลระยะห่างตามตาราง

	Bird	Cat	Dog	Tiger
Bird	0	2	5	3
Cat	2	0	3	1
Dog	5	3	0	2
Tiger	3	1	2	0

ความสัมพันธ์ระหว่าง Keyword $(\frac{1}{Distance})$

С	Bird	Cat	Dog	Tiger
Bird	_	0.500	0.200	0.333
Cat	0.500	_	0.333	1.000
Dog	0.200	0.333	-	0.500
Tiger	0.333	1.000	0.500	-

ความสัมพันธ์ระหว่างรากศัพท์ Stem

$$V1 = \{Bird\}$$
 Size = 1
 $V2 = \{Cat\}$ Size = 1
 $V3 = \{Dog\}$ Size = 1
 $V4 = \{Tiger\}$ Size = 1

$$c(k_u, kv) = \sum_{i \in V(ku)} \sum_{j \in V(kv)} \frac{1}{r(ki, kj)}$$

เนื่องจากขนาดของรากศัพท์ทุกรากศัพท์มีขนาดเท่ากับ 1 ดังนั้นเมื่อคำนวณหา ผลรวมของระยะห่างระหว่างรากศัพท์จึงมีค่าเท่ากับตารางเดิม

С	Bird	Cat	Dog	Tiger
Bird	_	0.500	0.200	0.333
Cat	0.500	_	0.333	1.000
Dog	0.200	0.333	_	0.500
Tiger	0.333	1.000	0.500	_

ความสัมพันธ์ระหว่าง รากศัพท์ Stem

C	Bird	Cat	Dog	Tiger
Bird	-	0.500	0.200	0.333
Cat	0.500	_	0.333	1.000
Dog	0.200	0.333	-	0.500
Tiger	0.333	1.000	0.500	_

Normalize ความสัมพันธ์ระหว่าง รากศัพท์

$$s(k_u, kv) = \frac{c(ku, kv)}{|V(ku)| \times |V(kv)|}$$

$$V1 = {Bird}$$

$$V2 = {Cat}$$

$$V3 = {Dog}$$

$$V4 = {Tiger}$$
Size = 1
Size = 1

$$s(k_u, kv) = \frac{c(ku, kv)}{|V(ku)| \times |V(kv)|}$$

$$V1 = \{Bird\}$$
 Size = 1
$$V2 = \{Cat\}$$
 Size = 1
$$V3 = \{Dog\}$$
 Size = 1
$$V4 = \{Tiger\}$$
 Size = 1

เนื่องจากขนาดของรากศัพท์ทุกรากศัพท์มีขนาดเท่ากับ 1 ดังนั้นเมื่อ Normalize แล้วตาราง S จึงมีค่าเท่ากับตาราง C

N	Bird	Cat	Dog	Tiger
Bird	-	0.500	0.200	0.333
Cat	0.500	_	0.333	1.000
Dog	0.200	0.333	_	0.500
Tiger	0.333	1.000	0.500	_

ตาราง Normalize ความสัมพันธ์ระหว่างรากศัพท์

N	Bird	Cat	Dog	Tiger
Bird	-	0.500	0.200	0.333
Cat	0.500	_	0.333	1.000
Dog	0.200	0.333	-	0.500
Tiger	0.333	1.000	0.500	_

ความสัมพันธ์ระหว่างรากศัพท์

Bird→Cat

Cat→Tiger

Dog→Tiger

Tiger→Cat

Original Query: 7Dog-3Cat+Bird

New Query:

7Dog-3Cat+Bird = 7(Dog+0.5Tiger)-3(Cat+Tiger)+(Bird+0.5Cat)

= 7Dog + 3.5Tiger - 3Cat - 3Tiger + Bird + 0.5Cat

= Bird - 2.5Cat + 7Dog + 0.5Tiger

ข้อ 4. เอกสารหนึ่งมีข้อความดังนี้

เสือดำ เป็นชื่อสามัญเรียกโดยรวมของสัตว์กินเนื้อประเภทเสือและแมว (Felidae) ที่มีลักษณะ ลำตัวรวมถึงลวดลายเป็นสีดำตลอดทั้งลำตัว ซึ่งเกิดขึ้นได้ในเสือหลายชนิด จากการเป็นเสือดำ เกิดจากความผิดปกติในเม็ดสีที่เรียกว่าเมลานิซึม ส่งผลให้เสือที่เกิดมานั้นเป็น สีดำตลอดทั้งลำตัว โดยที่ยังมีลายหรือลายจุดคงอยู่ แต่จะสังเกตเห็นได้ยาก จะเห็นได้ชัดเจนเมื่อ อยู่ในแสงแดด

เสือดำในเสือดาว มักพบได้มากในป่าดิบชื้นในทวีปเอเชีย เช่น อินเดีย, เนปาล, เอเชีย ตะวันออกเฉียงใต้ โดยเฉพาะในเบงกอลหรือชวา

- 4.1 เพื่อให้ได้คำตอบในข้อ 4.2 นักศึกษาควรใช้ Model ใดเพราะอะไร (เลือกได้เฉพาะตัวเลือกที่ให้มา)
- A) Knuth-Morris-Pratt (KMP) B) Breadth-first search (BFS) C) Depth-first search (DFS) D) Boyer Moore
- 4.2 หากต้องการค้นคำว่า "เสือ"

จงแสดงการค้นหาคำว่า "เสือ" ในเอกสารด้านบนอย่างละเอียด โดยแสดงผลตำแหน่งที่ปรากฏคำที่เรียกค้นนี้ (17 คะแนน)

Answer

4.1 เลือกใช้ Boyer Moor หรือ Knuth-Morris-Pratt (KMP) ได้ทั้งสองวิธี ซึ่งเป็นกระบวนการค้นหาข้อมูลตามลำดับ (Sequential Search)

1 7 เสือดำ เป็นชื่อสามัญเรียกโดยรวมของสัตว์กินเนื้อประเภทเสือและแมว (Felidae) ที่มีลักษณะลำตัวรวมถึงลวดลายเป็นสี 89 กับ 102 กับ 113 กับ 124 กับ 133 กับ 139 ก

Boyer Moore

Letter	l	রী	ව	*
Value	2	1	3	3

> เสือ คือการเคลื่อนที่ของคำเรียกค้น เสือ คือตรวจสอบตำแหน่งที่จะเคลื่อนที่ต่อ เสือ คือพบคำเรียกค้นในเอกสาร

4.2

Item	Current Position	Match	Next Move Position	Ву	Found At Position
0	1	Υ	4		1
1	25		28	ପ	
2	36		39	<u>e</u>	
3	43	Υ	46	<u>e</u>	43
4	112		113	ଝି	
	113	Υ	116	<u>e</u>	113
5	133	Υ	136	<u>e</u>	133
6	180	Υ	183	<u>e</u>	180
7	273		275	l	
	275	Υ	278	ഉ	275
8	281		282	สี	
	282	Υ	285	ପ	282
9	324		327	<u>e</u>	
10	332		335	<u>e</u>	_
11	356		359	ഉ	

Letter	l	র	อ	*
Value	2	1	3	3