Teoremi di tipo "Wolff-Denjoy" in più variabili complesse

22 Settembre 2023

Università di Pisa Corso di Laurea Magistrale in Matematica

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

 $Sia\ f: \mathbb{D} \longrightarrow \mathbb{D}\ una\ funzione\ olomorfa.$

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

• la funzione f ha un punto fisso nel disco;

Sia \mathbb{D} il disco unitario in \mathbb{C} .

Teorema (Wolff-Denjoy, 1926)

Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- la funzione f ha un punto fisso nel disco; oppure,
- esiste un unico punto del bordo del disco tale che la successione delle iterate di f converge, uniformemente sui compatti, a quel punto.

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Se X è connessa, la pseudodistanza di Kobayashi è k_X , la forma integrata di K_X .

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Se X è connessa, la pseudodistanza di Kobayashi è k_X , la forma integrata di K_X .

Le funzioni olomorfe sono semicontrazioni sia rispetto a K_X che rispetto a k_X .

Definizione

Sia X una varietà complessa; la $pseudometrica\ di\ Kobayashi\ su\ X$ è

$$K_X(x; Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f \in \operatorname{Hol}(\mathbb{D}, X)$$

tale che $f(0) = x, d_0 f(v) = Z\}$

per ogni $x \in X$ e $Z \in T_x X$.

Se X è connessa, la pseudodistanza di Kobayashi è k_X , la forma integrata di K_X .

Le funzioni olomorfe sono semicontrazioni sia rispetto a K_X che rispetto a k_X .

Se k_X è una distanza, induce la topologia di varietà; in tal caso, X è detta Kobayashi-iperbolica.

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo;

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

Definizione

Sia X una varietà complessa e connessa; fissiamo due costanti $\lambda \geq 1$ e $\kappa \geq 0$. Sia $I \subseteq \mathbb{R}$ un intervallo; una curva $\sigma: I \longrightarrow X$ è detta una (λ, κ) -simil-geodetica se:

1. per ogni $s, t \in I$ si ha

$$\frac{1}{\lambda}|t-s| - \kappa \le k_X(\sigma(s), \sigma(t)) \le \lambda|t-s| + \kappa;$$

2. σ è assolutamente continua (quindi $\sigma'(t)$ esiste per quasi ogni $t \in I$) e per quasi ogni $t \in I$ si ha

$$K_X(\sigma(t); \sigma'(t)) \le \lambda.$$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0.$

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ,κ) -visibile se:

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;

Definizione

Sia X una sottovarietà complessa e connessa di una varietà complessa Y, e fissiamo $\lambda \geq 1$ e $\kappa \geq 0$. Diciamo che X è (λ, κ) -visibile se:

- 1. ogni due punti distinti di X possono essere collegati da una (λ, κ) -simil-geodetica;
- 2. per ogni coppia di punti $p,q\in\partial_Y X$ con $p\neq q$, esistono in \overline{X} due intorni V e W, di p e q rispettivamente, con chiusura disgiunta, e un compatto K di X tali che ogni (λ,κ) -simil-geodetica in X che collega un punto di V a un punto di W interseca K.

Condizione di visibilità: le simil-geodetiche "curvano verso l'interno", rimanendo dentro il compatto K.

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $Hol(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $Hol(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Definizione

Una varietà complessa X si dice taut se ogni funzione nella chiusura (rispetto alla topologia compatta-aperta) di $Hol(\mathbb{D}, X)$ in $C^0(\mathbb{D}, X^*)$ è in $Hol(\mathbb{D}, X)$ oppure è la funzione costante ∞ .

Si può dimostrare che ogni varietà taut è Kobayashi-iperbolica.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia~X~una~sottovarietà~taut~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

 $Sia\ F: X \longrightarrow X \ una\ funzione\ olomorfa.$

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle sequenti affermazioni:

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle sequenti affermazioni:

• le orbite dei punti di X tramite F sono relativamente compatte in X;

Teorema (Chandel, Maitra, Sarkar, 2021; Bharali, Zimmer, 2022)

Sia X una sottovarietà taut e relativamente compatta di una varietà complessa Y. Supponiamo che esista un $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- le orbite dei punti di X tramite F sono relativamente compatte in X; oppure,
- esiste un unico punto di $\partial_Y X$ tale che la successione delle iterate di F converge, uniformemente sui compatti, a quel punto.

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

- 1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;
- 2. dalle ipotesi di visibilità e di relativa compattezza segue, a meno di sottosuccessioni, la convergenza uniforme sui compatti a una costante nel bordo della varietà;

Strada per la dimostrazione del teorema di tipo "Wolff-Denjoy"

- 1. dall'ipotesi che la varietà sia taut, per un teorema di Abate segue che se le orbite non sono relativamente compatte allora la successione delle iterate è compattamente divergente;
- 2. dalle ipotesi di visibilità e di relativa compattezza segue, a meno di sottosuccessioni, la convergenza uniforme sui compatti a una costante nel bordo della varietà;
- 3. sempre per la condizione di visibilità, tale limite è lo stesso per ogni sottosuccessione, dunque dev'essere il limite di tutta la successione.

1. Orbite relativamente compatte o iterate compattamente divergenti

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

1. Orbite relativamente compatte o iterate compattamente divergenti

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X,X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;
- 4. l'orbita di z è relativamente compatta in X per ogni $z \in X$;

Teorema (Abate, 1991)

Sia X una varietà taut e consideriamo $f \in \text{Hol}(X, X)$. Le seguenti affermazioni sono equivalenti:

- 1. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non è compattamente divergente;
- 2. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f non contiene alcuna sottosuccessione compattamente divergente;
- 3. la successione $\{f^k\}_{k\in\mathbb{N}}$ delle iterate di f è relativamente compatta in $\operatorname{Hol}(X,X)$;
- 4. l'orbita di z è relativamente compatta in X per ogni $z \in X$;
- 5. esiste $z_0 \in X$ la cui orbita è relativamente compatta in X.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut. La funzione $f(z, w) = (z/2, e^{i\theta}w)$ è un esempio che mostra come l'ipotesi taut sia indispensabile nel teorema di Abate.

Esempio

La palla unitaria in \mathbb{C}^2 meno l'origine è Kobayashi-iperbolica e (λ, κ) -visibile per ogni $\lambda \geq 1$ e $\kappa \geq 0$, ma non è taut. La funzione $f(z, w) = (z/2, e^{i\theta}w)$ è un esempio che mostra come l'ipotesi taut sia indispensabile nel teorema di Abate. Inoltre, mostra anche che è indispensabile nel teorema di tipo "Wolff-Denjoy".

Lemma 1

Sia~X~una~sottovarietà~complessa,~connessa~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1,\kappa_0)$ -visibile.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: per assurdo, troviamo (a meno di sottosuccessioni) $z_0, z_1 \in Z$ con $k_Z(z_0, z_1) < \kappa_0/2$ e $f_n(z_0) \longrightarrow \xi_0, f_n(z_1) \longrightarrow \xi_1$, dove $\xi_0, \xi_1 \in \partial_Y X$ e $\xi_0 \neq \xi_1$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: per assurdo, troviamo (a meno di sottosuccessioni) $z_0, z_1 \in Z$ con $k_Z(z_0, z_1) < \kappa_0/2$ e $f_n(z_0) \longrightarrow \xi_0, f_n(z_1) \longrightarrow \xi_1$, dove $\xi_0, \xi_1 \in \partial_Y X$ e $\xi_0 \neq \xi_1$. Le varietà Kobayashi-iperboliche sono connesse da $(1, \kappa)$ -simil-geodetiche per $\kappa > 0$, quindi prendiamone una $\sigma: [0, T] \longrightarrow Z$ per $\kappa = \kappa_0/2$ con $\sigma(0) = z_0, \sigma(T) = z_1$.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: Si verifica che le curve $f_n \circ \sigma$ sono $(1, \kappa_0)$ -simil-geodetiche.

Lemma 1

Sia X una sottovarietà complessa, connessa e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Siano Z una varietà Kobayashi-iperbolica e $\{f_n\}_{n\in\mathbb{N}}\subseteq \operatorname{Hol}(Z,X)$ una successione compattamente divergente. Allora esistono $\xi\in\partial_YX$ e una sottosuccessione $\{f_{n_j}\}_{j\in\mathbb{N}}$ tali che $f_{n_j}(z)\longrightarrow \xi$ per ogni $z\in Z$.

Traccia della dimostrazione: Si verifica che le curve $f_n \circ \sigma$ sono $(1, \kappa_0)$ -simil-geodetiche. Per visibilità, esiste un compatto K tale che

$$\varnothing \neq K \cap f_n(\sigma([0,T]))$$

per ogni n, ma $\sigma([0,T])$ è compatto e $\{f_n\}_{n\in\mathbb{N}}$ è compattamente divergente, contraddizione.

Lemma 2

Sia~X~una~sottovarietà~Kobayashi-iperbolica~e~relativamente~compatta~di~una~varietà~complessa~Y~.

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu : \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K.

Lemma 2

Sia X una sottovarietà Kobayashi-iperbolica e relativamente compatta di una varietà complessa Y. Supponiamo che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -visibile. Sia $F \in \operatorname{Hol}(X, X)$ tale che la successione $\{F^n\}_{n \in \mathbb{N}}$ sia compattamente divergente.

Supponiamo che esistano un compatto $K \subseteq X$, una funzione strettamente crescente $\mu: \mathbb{N} \longrightarrow \mathbb{N}$ e $\xi \in \partial_Y X$ tali che la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente su K. Allora la successione $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$ converge alla costante ξ uniformemente sui compatti.

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$.

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$. Supponiamo per assurdo che esistano un intorno U di ξ , un compatto H di X, una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}$ e degli $z_n\in H$ tali che:

• si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$
- si ha $F^{\mu(j_n)}(\tilde{z}) \longrightarrow \xi''$.

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$. Supponiamo per assurdo che esistano un intorno U di ξ , un compatto H di X, una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}$ e degli $z_n\in H$ tali che:

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$
- si ha $F^{\mu(j_n)}(\tilde{z}) \longrightarrow \xi''$.

A meno di prendere prima una sottosuccessione che converga puntualmente a ξ su tutta X, abbiamo $\xi'' = \xi$.

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$. Supponiamo per assurdo che esistano un intorno U di ξ , un compatto H di X, una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}$ e degli $z_n\in H$ tali che:

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$
- si ha $F^{\mu(j_n)}(\tilde{z}) \longrightarrow \xi''$.

A meno di prendere prima una sottosuccessione che converga puntualmente a ξ su tutta X, abbiamo $\xi'' = \xi$. Poiché $F^{\mu(j_n)}(z_n) \notin U$ per ogni n, abbiamo $\xi' \neq \xi$.

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$. Supponiamo per assurdo che esistano un intorno U di ξ , un compatto H di X, una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}$ e degli $z_n\in H$ tali che:

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$
- si ha $F^{\mu(j_n)}(\tilde{z}) \longrightarrow \xi''$.

A meno di prendere prima una sottosuccessione che converga puntualmente a ξ su tutta X, abbiamo $\xi'' = \xi$. Poiché $F^{\mu(j_n)}(z_n) \notin U$ per ogni n, abbiamo $\xi' \neq \xi$. Infine,

$$k_X(F^{\mu(j_n)}(z_n), F^{\mu(j_n)}(\tilde{z})) \le k_X(z_n, \tilde{z}) \longrightarrow 0;$$

Traccia della dimostrazione: sia ξ dato dal Lemma 1 applicato a $\{F^{\mu(j)}\}_{j\in\mathbb{N}}$. Supponiamo per assurdo che esistano un intorno U di ξ , un compatto H di X, una sottosuccessione $\{j_n\}_{n\in\mathbb{N}}$ e degli $z_n\in H$ tali che:

- si ha $F^{\mu(j_n)}(z_n) \notin U$ per ogni $n \in \mathbb{N}$;
- si ha $z_n \longrightarrow \tilde{z} \in H$;
- si ha $F^{\mu(j_n)}(z_n) \longrightarrow \xi' \in \partial_Y X;$
- si ha $F^{\mu(j_n)}(\tilde{z}) \longrightarrow \xi''$.

A meno di prendere prima una sottosuccessione che converga puntualmente a ξ su tutta X, abbiamo $\xi'' = \xi$. Poiché $F^{\mu(j_n)}(z_n) \notin U$ per ogni n, abbiamo $\xi' \neq \xi$. Infine,

$$k_X(F^{\mu(j_n)}(z_n), F^{\mu(j_n)}(\tilde{z})) \le k_X(z_n, \tilde{z}) \longrightarrow 0;$$

si può dimostrare che, sotto condizioni di visibilità, questo non è possibile per successioni che tendono a punti distinti del bordo.

Esempio

Consideriamo $Y=\mathbb{C}, X=\{0<\mathfrak{Im}z<1\}$ e F(z)=z+1 o F(z)=z-1.

Esempio

Consideriamo
$$Y=\mathbb{C}, X=\{0<\mathfrak{Im}z<1\}$$
 e $F(z)=z+1$ o $F(z)=z-1.$

$$Y = \mathbb{C}$$

$$z \longmapsto z - 1$$

$$X = \{0 < \Im \mathfrak{m} z < 1\}$$

$$z \longmapsto z+1$$

Definizione

Sia X uno spazio topologico non compatto.

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K \subseteq X \mid K \text{ è compatto}\}$ tale che:

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K \subseteq X \mid K \text{ è compatto}\}$ tale che:

1. a ogni compatto $K \subseteq X$ associa una componente connessa non vuota di $X \setminus K$;

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K\subseteq X\mid K$ è compatto $\}$ tale che:

- 1. a ogni compatto $K \subseteq X$ associa una componente connessa non vuota di $X \setminus K$;
- 2. per ogni coppia di compatti $K_1 \subseteq K_2 \subseteq X$ si ha $e(K_2) \subseteq e(K_1)$.

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K\subseteq X\mid K$ è compatto $\}$ tale che:

- 1. a ogni compatto $K \subseteq X$ associa una componente connessa non vuota di $X \setminus K$;
- 2. per ogni coppia di compatti $K_1 \subseteq K_2 \subseteq X$ si ha $e(K_2) \subseteq e(K_1)$.

Indichiamo con $\mathcal{E}(X)$ l'insieme di tutte le fini di X.

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K\subseteq X\mid K$ è compatto $\}$ tale che:

- 1. a ogni compatto $K \subseteq X$ associa una componente connessa non vuota di $X \setminus K$;
- 2. per ogni coppia di compatti $K_1 \subseteq K_2 \subseteq X$ si ha $e(K_2) \subseteq e(K_1)$.

Indichiamo con $\mathcal{E}(X)$ l'insieme di tutte le fini di X.

Proposizione

Sia X uno spazio topologico connesso, localmente connesso, localmente compatto, di Hausdorff e che ammette un'esaustione in compatti.

Definizione

Sia X uno spazio topologico non compatto. Una fine di X è una funzione e con dominio $\{K\subseteq X\mid K$ è compatto $\}$ tale che:

- 1. a ogni compatto $K \subseteq X$ associa una componente connessa non vuota di $X \setminus K$;
- 2. per ogni coppia di compatti $K_1 \subseteq K_2 \subseteq X$ si ha $e(K_2) \subseteq e(K_1)$.

Indichiamo con $\mathcal{E}(X)$ l'insieme di tutte le fini di X.

Proposizione |

Sia X uno spazio topologico connesso, localmente connesso, localmente compatto, di Hausdorff e che ammette un'esaustione in compatti. Allora $X^{\mathcal{E}} = X \cup \mathcal{E}(X)$ ammette una topologia che lo rende una compattificazione di X.

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia~X~una~sottovarietà~taut~di~una~varietà~complessa~Y.

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia X una sottovarietà taut di una varietà complessa Y. Supponiamo che \overline{X} sia localmente connessa e che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -ultravisibile.

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia X una sottovarietà taut di una varietà complessa Y. Supponiamo che \overline{X} sia localmente connessa e che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -ultravisibile.

Sia $F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle sequenti affermazioni:

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia X una sottovarietà taut di una varietà complessa Y. Supponiamo che \overline{X} sia localmente connessa e che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -ultravisibile.

 $Sia\ F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

1. le orbite dei punti di X tramite F sono relativamente compatte in X;

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia X una sottovarietà taut di una varietà complessa Y. Supponiamo che \overline{X} sia localmente connessa e che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -ultravisibile.

 $Sia\ F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite dei punti di X tramite F sono relativamente compatte in X; oppure,
- 2. esiste un unico punto $\xi \in \partial^{\mathcal{E}} X$ tale che la successione delle iterate di F converge alla costante ξ in $C^0(X, \overline{X}^{\mathcal{E}})$.

Problema: se X è sottovarietà di Y, non sempre \overline{X} è localmente connessa.

Teorema (Bharali, Zimmer, 2022)

Sia X una sottovarietà taut di una varietà complessa Y. Supponiamo che \overline{X} sia localmente connessa e che esista $\kappa_0 > 0$ tale che X sia $(1, \kappa_0)$ -ultravisibile.

 $Sia\ F: X \longrightarrow X$ una funzione olomorfa. Allora vale esattamente una delle seguenti affermazioni:

- 1. le orbite dei punti di X tramite F sono relativamente compatte in X; oppure,
- 2. esiste un unico punto $\xi \in \partial^{\mathcal{E}} X$ tale che la successione delle iterate di F converge alla costante ξ in $C^0(X, \overline{X}^{\mathcal{E}})$.

Domanda: ultravisibilità implica locale connessione della chiusura?

Fine

Grazie per l'attenzione!

Bibliografia principale

- M. Abate: Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Serie IV, 18 (1991), no. 2, 167–191
- G. Bharali, A. Maitra: A weak notion of visibility, a family of examples, and Wolff-Denjoy theorems. *Ann. Sc. Norm. Super. Pisa Cl. Sci. Serie V*, **22** (2021), no. 1, 195–240
- G. Bharali, A. Zimmer: Goldilocks domains, a weak notion of visibility, and applications. *Adv. Math.*, **310** (2017), 377–425
- G. Bharali, A. Zimmer: Unbounded visibility domains, the end compactification, and applications. Preprint, arXiv:2206.13869v1 (2022)
- V. S. Chandel, A. Maitra, A. D. Sarkar: Notions of Visibility with respect to the Kobayashi distance: Comparison and Applications. Preprint, arXiv:2111.00549v1 (2021)