BALKAN OLYMPIAD
IN INFORMATICS

Udine, 27 September 2025

popswap ● BS

PopSwap (popswap)

Za dati cijeli broj $N,\,S_N$ je skup svih permutacija (0,...,N-1).

Pored toga, ${\cal E}_N$ je skup svih uređenih parova (p,q)gdje:

- p i q su elementi S_N ;
- p i q se mogu dobiti jedan od drugog zamjenom dva susjedna elementa.

Imajte na umu da, ako je $(p,q) \in E_N$, onda je i $(q,p) \in E_N$.

Vaš cilj je da svakom elementu S_N dodijelite jedinstveni prirodni broj iz opsega $[0, 2^{60})$, tj. da napravite injektivnu funkciju¹ \mathcal{L} (zvanu *labeliranje*) od S_N do skupa prirodnih brojeva manjih od 2^{60} .

Kvalitet labeliranja se mjeri pomoću dva parametra koje treba minimizirati:

- $magnituda\ M(\mathcal{L})$, definisana kao najmanji prirodni broj k takav da je $2^k > \mathcal{L}(p)$ za sve elemente p iz S_N .
- bliskost, definisana kao:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

gdje je \oplus bitski ekskluzivni OR(tzv. XOR), a popcount(x) je broj postavljenih bitova u binarnom prikazu x.

Vaš zadatak je da pronađete labeliranje \mathcal{L} koje postiže niske vrijednosti i za $M(\mathcal{L})$ i za $C(\mathcal{L})$. Imajte na umu da optimalno rješenje nije neophodno.

Implementacija

Ovo je zadatak samo sa izlazom. Trebate poslati zasebnu izlaznu datoteku za svaku ulaznu datoteku. Ulazne i izlazne datoteke trebaju slijediti sljedeći format.

Format ulaza

Ulazne datoteke se sastoje od jedne linije koja sadrži cijeli broj N i indeks G ulaza.

Format izlaza

Izlazne datoteke trebaju sadržavati N! linija, pri čemu i-ta linija sadrži labelu i-te permutacije u leksikografskom poretku.²

Bodovanje

Ovaj zadatak ima tačno 2 testna slučaja: input
000.txt i input001.txt, u oba je N=10.

Bodovi za vaše rješenje na svakom testnom slučaju određuju se kao $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, gdje su $S_C(\mathcal{L})$ i $S_M(\mathcal{L})$ funkcije vašeg izlaznog labeliranja \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min\left(1, 36 \cdot 10^6/C(\mathcal{L})\right)\right)^2$ za svaki ulaz.
- $S_M(\mathcal{L})$ je različit za svaki ulaz, prema sljedećim tabelama. Između specificiranih vrijednosti u tabelama, S_M se mijenja linearno.

Nepravilno formatiran izlaz će uvijek dobiti nula bodova.

popswap Stranica 1 od 2

¹Funkciju nazivamo injektivnom ako različite argumente slika u različite vrijednosti.

²Formalno, za date dvije permutacije $p \neq q$, kažemo da je p leksikografski manja od q ako i samo ako je $p_k < q_k$ gdje je k najmanji indeks takav da je $p_k \neq q_k$.

input000.txt		input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$	$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0	> 25	0
60	6	25	0
≤ 25	60	≤ 22	40

Ukupan rezultat za zadatak je zbir rezultata na svakom testnom slučaju.

Primjeri ulaza/izlaza

input	output
3 -1	32
	16
	8
	4
	2
	1

Objašnjenje

Imajte na umu da **prvi primjer** nije zvanični testni slučaj, budući da je $N \neq 10$ i $G \notin \{0, 1\}$. Primjer izlaza predstavlja sljedeće labeliranje:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ ako } p = (0, 1, 2) \\ 16 \text{ ako } p = (0, 2, 1) \\ 8 \text{ ako } p = (1, 0, 2) \\ 4 \text{ ako } p = (1, 2, 0) \\ 2 \text{ ako } p = (2, 0, 1) \\ 1 \text{ ako } p = (2, 1, 0) \end{cases}$$

Budući da je $2^5 \not\geqslant 32$ ali $2^6 > 32$, magnituda labeliranja je $M(\mathcal{L}) = 6$. Budući da ima $3! \cdot (3-1) = 12$ elemenata u E_3 i budući da je popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ za sve $p,q \in S_N$, bliskost labeliranja je $C(\mathcal{L}) = 12 \cdot 2 = 24$.

popswap Stranica 2 od 2