APM 2013

The Advanced Process Modelling Forum

17-18 April 2013, London

gPROMS Product Family

Costas Pantelides - Managing Director

gPROMS Product Family

General **Mathematical** Modelling

Sector-focused Modelling Tools

Chemicals & **Petrochemicals**

Life Sciences & Fine Chemicals **Power** & CCS

Oil & Gas

g COAS

Model **Deployment Tools**

The gPROMS platform

Equation-oriented modelling & solution engine

APM2013

Each modelling tool comprises...

- gPROMS Platform
- Model Libraries
- Physical properties
- Workflows
- Documentation
- Training material
- Demos & examples

ProcessBuilder – C3-MR Liquefied Natural Gas process

Maarten Nauta's presentation at 14:00 today

gCCS – Pulverised coal power plant

Alfredo Ramos' presentation at 15:30 today

gCCS – CO₂ compression station

Mario Calado's presentation at 14:30 today

Q: What do these flowsheets have in common?

- 1. Large-scale systems
 - some with complex unit operation models
- 2. Tightly coupled systems
 - multiple recycles of material & energy
 - backward flow of information
- All models initialise from scratch without any user-provided initial guesses
 - all model libraries incorporate
 Model Initialisation Procedures
 - → Efficient <u>and</u> robust solution using equation-oriented technology

gPROMS' Model Initialisation Procedure (MIP) technology is effecting a radical change in the balance between Sequential Modular and Equation Oriented process modelling tools

Physical properties in the gPROMS product family

Objective: Unified & consistent physical properties across gPROMS-family products

Multiple phases...

Gas Liquid Gas Liquid Gas Liquid (Solid) Gas Liquid Hydrate Solid (Liquid) (Gas) Liquid Solid Liquid Solid Micelle

Complex materials & challenging behaviour...

strongly-associating compounds

near-critical point behaviour

oligomers & polymers complex gas/liquid phase envelopes

acids & bases

salts & salt hydrates

ions

Objective: Unified & consistent physical properties across gPROMS-family products

Process Lifecycle

Fundamental Process R&D

Optimal selection of "auxiliary" process materials (solvents, entrainers, etc.)

Process Development

Good

predictive capability

with little or no

experimental data

Plant Design

Accurate calculation of physical properties over wide ranges of conditions

Plant Operations

Accurate calculation of physical properties over wide ranges of conditions

Requirement:

Fundamental basis on molecular interactions

Requirement:

Information (e.g. parameter values) transferable from one compound to another

Javier Rodriguez's presentation at 09:30 today

The gPROMS platform

Equation-oriented modelling & solution engine

Development Priorities 2013-2014

gPROMS Platform

1. Usability

- Make "flowsheet" the central paradigm of user interaction
 - Model construction
 - Problem specification for <u>all</u> types of activity
 - simulation, optimisation, parameter estimation, experiment design
 - Results analysis
 - Diagnostics
- Integrate material/physical property specification within environment
- Provide comprehensive support for units of measurement

2. Robustness

- Eliminate causes of failure at source
 - e.g. bad problem specifications
- Enhance Model Initialisation Procedures
- Improve robustness in solution methods
 - convergence criteria
 - variable scaling
- [Improved diagnostics]

Development Priorities 2013-2014

gPROMS Platform

3. Solution performance

- Introduce fur her automatic model pre-proces
 - e.g. *m*
- Exploit de software infras.
 - 64-bit Windows
 - distributed computation

4. gPRODUCT workflows & user experience

- Increase customisability of gPROMS Platform
- Support enhanced modes for user interaction
 - e.g. in model dialogs

Future Proofing

rove efficiency of development & roduction of major new from 2014 onwards via...

Model deployment within the organisation

Model deployment within the organisation

Tier I

First-principles modellers ("custom modelling")

Primarily R&D

Tier II

Drag-and-drop flowsheeting using model libraries

R&D Engineering

Tier III

"Non-modellers" requiring access to model-based calculations

Engineering Operations Commercial

gPRODUCTs

gPROMS Objects

Tier-III deployment mechanisms

gO:RUN: Local model deployment

gO:RUN_xml: Web-based model deployment

Optimisation of Purified Terephthalic Acid plants (Microsoft Excel®)

Simulation of Air Separation Units (web browser + EASA®)

- Controlled model deployment
 - well-defined/restricted sets of model inputs & outputs
 - secure model IP
- Ease of use
 - no knowledge of modelling required

Tier-III deployment mechanisms

Web-based model deployment

web browser

- Users can access models via web browser from anywhere
 - no software installation required
- Centralised model installation, execution, maintenance
 - same model version used across entire organisation
 - efficient use of powerful compute servers
- Full access control & logging
 - on a per-user per-model basis
 - IP protection, significantly lower risk of reverse engineering

Model deployment within the organisation

Tier I

First-principles modellers ("custom modelling")

Primarily R&D

Tier II

Drag-and-drop flowsheeting using model libraries

> R&D Engineering

Tier III

"Non-modellers" requiring access to model-based calculations

Engineering Operations Commercial

Tier IV

Models embedded in online/real-time systems

Operations

gPRODUCTs

gPROMS Objects

Online Model-Based Applications

Online Model-Based Applications

Online Model-based Monitoring & Decision Support

Example: gFLARE Online

Online Model-based Monitoring & Decision Support

In conclusion...

gPROMS product family

- Advanced Process Modelling tools
 - power + usability
 - deep process knowledge& understanding
- Effective & consistent deployment of corporate IP across the organisation
- Future proofed by PSE's investment & innovation

gPROMS product family interoperability

- gPRODUCTs can use each other's model libraries
- Model Libraries comply with "PSE Standard" for
 - metrology
 - variable & connection types
 - look & feel in dialogs & reports
 - variable naming conventions
- Flexible licensing
 - standard vs. optional model libraries

Thank you!

APM 2013

The Advanced Process Modelling Forum

