YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Öğrencinin Adı Soyadı:	Öğrenci No:			İmza:				
Dersin Adı: BLM2041 Bilg. Müh. için Sinyaller ve Sistemler Gr 1 - 2	Tarih/Saat: 14/01/2021 13:00			Sınav süresi: 90 dk.				
Sınav Türü: Final Sınavı	Vize 1	Vize 2	Mazeret	Final 🛛	Bütünleme			
Unvan Ad-Soyad: Doç. Dr. Gökhan Bilgin & Öğr. Gör. Dr. Ahmet Elbir								

S1) Aşağıda çizilmiş olan x(t) fonksiyonunu oluşturan tek ve çift fonksiyonları çiziniz. Doğrudan çizim kabul edilmeyecektir, gerekli açıklamaları ve formülleri yazmanız gerekir.

S2) Aşağıda verilen ayrık zamanlı dizileri çizip konvolüsyon çıkışını ($\mathbf{y}[n]$) ile hesaplayıp çiziniz. ($\mathbf{y}[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} \mathbf{x}[k]\mathbf{h}[n-k]$)

$$\mathbf{x}[n] = 3n(\mathbf{u}[n+3] - \mathbf{u}[n-2])$$
 $\mathbf{h}[n] = (-1/2)^n(\mathbf{u}[n+2] - \mathbf{u}[n-3])$

S3) Aşağıda verilen ayrık zamanlı sistem için aşağıdaki şıklardaki işlemleri yapınız:

$$y[n] = 0.5y[n-1] + 2x[n]$$

- **a.** H(z) sistem fonksiyonunu bulunuz.
- **b.** Sistemin sıfırlarını ve kutuplarını H(z) yardımıyla elde ediniz.
- **c.** h[n] birim dürtü cevabını ters Z dönüşümü kullanarak bulunuz.

S4) Aşağıda s düzlemindeki karşılığı verilen X(s) fonksiyonunun, ters Laplace dönüşümü yöntemiyle zaman düzlemindeki x(t) sonucunuz bulunuz. X(s) eşitliğinden yola çıkarak sıfır ve kutup değerlerini gösteriniz.

$$X(s) = \frac{10s^2 + 4}{s(s+1)(s+2)^2}$$

YILDIZ TECHNICAL UNIVERSITY FACULTY of ELECTRICAL & ELECTRONICS ENG. / DEPT. of COMPUTER ENGINEERING

Student Name Surname:	Number:			Signature:			
Course: BLM2041 Signals and Systems for Computer Engineering Gr1 - 2	Date/Time: 14/01/2021 13:00			Duration: 90 min.			
Exam. Type: Final Exam	MidT 1	MidT 2	MakeUp	Final 🛛	MUFinal		
Instructors: Assoc. Prof. Dr. Gökhan Bilgin & Lect. Dr. Ahmet Elbir							

S1) Draw the odd and even functions that make up the x(t) function drawn below. Direct drawing will not be accepted, you must write the necessary explanations and formulas.

S2) Draw the discrete time sequences given below, and calculate and draw the convolution output $\mathbf{y}[n]$. $(y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} \mathbf{x}[k]\mathbf{h}[n-k])$

$$\mathbf{x}[n] = 3n(\mathbf{u}[n+3] - \mathbf{u}[n-2])$$
 $\mathbf{h}[n] = (-1/2)^n(\mathbf{u}[n+2] - \mathbf{u}[n-3])$

S3) For the discrete time system given below, perform the operations below:

$$y[n] = 0.5y[n-1] + 2x[n]$$

- **a.** Find the system function (H(z)).
- **b.** Find the zeros and poles of the system.
- **c.** Find the unit impulse response h[n] by using inverse Z transform.

S4) Find your result x(t) in the time plane by using inverse Laplace transform method of the function X(s) given below in the s plane. Show the zero and pole values from the equation X(s).

$$X(s) = \frac{10s^2 + 4}{s(s+1)(s+2)^2}$$