Speaker Identification System

Project Background

Introduction

Speaker recognition is the process of **automatically identifying who is speaking** based on unique characteristics embedded in speech signals. This technology is widely used in applications such as **biometric authentication**, **security systems**, **and voice assistants**.

This project builds a simple yet effective speaker recognition system using Mel-Frequency Cepstral Coefficients (MFCC) for feature extraction and Vector Quantization (VQ) with the Linde-Buzo-Gray (LBG) algorithm for pattern classification.

Technical Principles

Speaker recognition systems generally consist of **two phases**:

1. Training (Enrollment) Phase:

- The system extracts features from speech samples of known speakers.
- A reference model (codebook) is generated for each speaker.

2. Testing (Operational) Phase:

- The system extracts features from an **unknown speech sample**.
- The extracted features are compared to stored speaker models.
- The system identifies the speaker based on the **minimum distortion measure**.

The MFCC method is used for speech feature extraction because:

- It mimics human auditory perception, which is more sensitive to lower frequencies.
- It reduces **redundant data** while preserving important phonetic features.
- It is **robust to background noise and variations** in speech.

The **Vector Quantization (VQ) technique**, specifically using the **Linde-Buzo-Gray (LBG) algorithm**, is adopted because:

- It is computationally efficient compared to more complex deep learning models.
- It effectively **clusters similar feature vectors** for each speaker.
- It allows for **quick classification** by measuring the distortion between input features and stored codebooks.

Project Structure

The system follows these main steps:

- **Preprocessing**: Extract MFCC features from speech signals.
- **Training**: Build speaker-specific codebooks using the LBG algorithm.
- **Testing**: Classify test speech samples using trained codebooks.
- Evaluation: Assess system performance under various test conditions.

Code Components

1. speaker_identification.m

This is the main script that performs both training and testing.

Parameters:

- **N** = 512 → FFT size
- numFilters = 30 → Number of Mel filters
- numCoeffs = 20 → Number of MFCC coefficients
- numCentroids = 12 → Number of LBG centroids
- **epsilon** = 0.005 → LBG error threshold
- applyNotchFilter = false → Whether to apply a notch filter

Functionality:

1. Training Phase

- Reads training speech files from GivenSpeech_Data_training/Eleven Training/
- Extracts MFCC features from spectrograms
- Uses the **LBG algorithm** to create speaker-specific codebooks

2. Testing Phase

- Reads test files from GivenSpeech_Data_test/Eleven Test/
- Extracts MFCC features
- Compares test MFCCs with trained codebooks
- Classifies test samples to predict speakers

Output:

• Prints **predicted speaker labels** for each test file.

2. readSTFT.m

Reads an audio file and computes its **Short-Time Fourier Transform (STFT)**.

Parameters:

- **filename** → Path to the audio file
- N → FFT size
- applyNotchFilter → Boolean flag to apply a notch filter

Output:

- **S**: Spectrogram matrix
- **F**: Frequency bins
- T: Time bins

• fs: Sampling rate

3. applyNotch.m

Applies a **Notch filter** to remove specific frequencies.

Output:

• Filtered speech signal

4. melfb.m

Computes the Mel filter bank.

Output:

• melFilterBank: A matrix of filter coefficients

5. compute_mfcc_from_spectrogram.m

Computes MFCC features from a given spectrogram.

Output:

• mfccs: Matrix of extracted MFCC features

6. LBG.m

Trains a speaker codebook using the LBG (Linde-Buzo-Gray) algorithm.

Output:

• codebook: A matrix of centroid points

Challenges and Solutions

During the development of this project, we encountered several technical challenges and systematically addressed them. Below are the key issues we faced and the solutions we implemented.

1. Issues with Mel Filter Bank

Problem:

- When implementing the **Mel filter bank**, we expected a series of **perfect triangular filters**.
- However, we observed that:
 - 1. The **last filter** became a **right-angled triangle** instead of a regular triangle.

2. The filter peaks were imperfect, and some response values were negative.

Diagnosis & Solution:

- We carefully reviewed our code and identified **two potential issues**:
 - 1. Incorrectly constrained frequency indices, leading to negative values.
 - 2. Out-of-range frequency calculations for (freqBins(j) fLeft) / (fCenter fLeft)
 and (fRight freqBins(j)) / (fRight fCenter).
- After fixing these constraints, the **negative values disappeared**.
- However, we then noticed that a flat line appeared at zero, indicating that one filter was entirely
 inactive.
- Setting the number of filters to 20 showed that only 19 triangular filters were visible.
- Comparing our implementation with **existing references**, we found that:
 - The **highest-frequency filter** did not correctly match **FFT bins**.
 - The highest Mel filter might have exceeded the Nyquist frequency.
- After correcting the frequency mapping, we finally obtained the correct Mel filter bank.

2. MFCC Feature Visualization and Speaker Separation

Problem:

- After computing MFCCs, we **randomly selected two MFCC dimensions** and plotted them.
- While individual clusters looked promising, the two MFCC dimensions overlapped heavily.
- This raised concerns about whether MFCC features alone were sufficient for speaker differentiation.
- We worried that this could lead to **significant errors** in speaker recognition.

Investigation & Solution:

- We first tried adjusting frame length (N) and hop size (M) to improve speaker separability.
- However, no matter how we tuned M and N, speaker points still overlapped significantly.
- Further research revealed that:
 - Lower-order MFCCs (1st and 2nd coefficients) are not ideal for speaker recognition.
 - Higher-order MFCCs are more useful for speaker distinction.
- We then experimented with MFCC dimensions 3 and 4.
 - While not dramatically different, the separation improved slightly.
- We also considered **PCA for dimensionality reduction**, but:
 - PCA alters MFCC features, making it incompatible with the LBG algorithm.
- Another potential solution was to enhance speaker distinction by computing ΔMFCC and ΔΔMFCC.
 - However, we did not apply this method, as our system already achieved high accuracy.

3. Variability in Speaker Recognition Results

Problem:

- When running the same test multiple times, we expected identical results.
- However, using the 2024 student dataset, the system produced inconsistent results.

• Specifically, some speakers were assigned to different speaker labels across multiple runs.

Analysis & Solution:

- The **LBG algorithm** uses an **error threshold** (ε) to determine convergence.
- Slight variations in codebook convergence across runs could cause small differences in centroids.
- For **certain speakers**, their distance to multiple centroids was **very close**.
- As a result, small variations in centroids led to different speaker assignments.

Proposed Fix:

- We tried reducing ε to 0.0001, which eliminated the instability.
- However, reducing ε too much caused overfitting, leading to misclassifications in other speakers.
- After balancing stability vs. generalization, we set $\varepsilon = 0.005$, which provided optimal accuracy and consistency.

4. Impact of Mel Filter Bank Size and Codebook Centroids

Observations:

- We experimented with changing the number of Mel filters and codebook centroids.
- Key findings:
 - The number of Mel filters had little impact on overall accuracy.
 - Codebook size had a significant impact:
 - **Too few centroids** → Poor speaker differentiation.
 - **Too many centroids** → Overfitting and decreased accuracy.
- Final Adjustment: We optimized the centroid count to achieve the best recognition performance.

Test Results

After addressing the above challenges, we conducted several systematic tests to measure the effectiveness of our improvements.

TEST 1: Human Recognition Rate

Objective:

- Evaluate **human ability** to recognize speakers from a limited dataset.
- Use this as a **baseline** to compare against the automated system.

Procedure:

- 1. Listened to **training speech samples** from the dataset.
- 2. Attempted to identify speakers from **test speech samples without** using automated methods.
- 3. Measured initial accuracy and accuracy after multiple listens.

- Initial accuracy: 25% (Dong), 12.5% (Mengxue).
- After multiple listens: 87.5% (Dong), 100% (Mengxue).
- **Conclusion**: Human perception alone is **not reliable** for speaker identification, leading to the implementation of the **MFCC** + **VQ** approach.

TEST 2: Spectrogram Analysis

Objective:

- Examine **frequency distribution** in speech signals.
- Determine the **optimal FFT frame size** for feature extraction.

Procedure:

- 1. Tested different **FFT sizes** (N = 128, N = 256, N = 512).
- 2. Compared the energy distribution and spectrogram output.
- 3. Selected the best **frame increment** for short-time processing.

Results:

-0.3

- Smaller FFT sizes retained fine-grained details, but larger FFT sizes provided better speaker distinction.
- N = 512 with frame increment N/3 provided the best balance.
- Conclusion: This configuration was used in subsequent tests.

0.8

200

600

Time (ms)

800

1000

1200

TEST 3: Mel Filter Bank Analysis

Objective:

- Assess the **effectiveness** of the Mel filter bank.
- Validate if triangular filters properly model speech features.

Procedure:

- 1. Generated **Mel filter bank responses**.
- 2. Compared filter shapes to theoretical triangular responses.
- 3. Evaluated spectral impact before and after mel-frequency wrapping.

Results:

- Some distortion at the base of filters.
- The overall spectral response was correct, confirming effective feature extraction.
- Conclusion: Adjusted filter spacing for better phonetic feature capture.

TEST 5: MFCC Scatter Plot

Objective:

- Visualize how MFCC features cluster for different speakers.
- Determine if the **LBG algorithm** can correctly distinguish them.

Procedure:

- 1. Extracted **MFCC features** from multiple speakers.
- 2. Plotted **scatter plots** of any two MFCC dimensions.
- 3. Observed clustering effects for different speakers.

Results:

- Speakers formed distinct clusters, but some overlaps were present.
- Conclusion: Increasing VQ centroids in later tests to improve separation.

TEST 6: VQ Codebook Visualization

Objective:

- Validate the clustering quality of the LBG algorithm.
- Determine if **codewords** effectively represent speaker identities.

Procedure:

- 1. Plotted **VQ codewords** for each speaker.
- 2. Overlaid them on the **MFCC scatter plot** from TEST 5.
- 3. Checked if the **codewords aligned with speaker clusters**.

- **Distinct centroids** for each speaker.
- The **LBG algorithm** effectively grouped similar feature vectors.
- Conclusion: The trained codebooks can reliably distinguish speakers.

TEST 7: Speaker Recognition Accuracy

Objective:

• Evaluate the **overall accuracy** of the speaker recognition system.

Procedure:

- 1. Trained the system on the **GivenSpeech_Data dataset**.
- 2. Tested recognition on unseen test samples.
- 3. Measured the accuracy.

Results:

- 100% accuracy on the training and test sets.
- Conclusion: The system successfully distinguishes speakers under controlled conditions.

```
>> speaker_identification
Test radio s1.wav is predicted to be: s1
Test radio s2.wav is predicted to be: s2
Test radio s3.wav is predicted to be: s3
Test radio s4.wav is predicted to be: s4
Test radio s5.wav is predicted to be: s5
Test radio s6.wav is predicted to be: s6
Test radio s7.wav is predicted to be: s7
Test radio s8.wav is predicted to be: s8
>>
```

TEST 8: Notch Filter Impact

Objective:

- Assess how notch filtering affects recognition performance.
- Test if the system remains **robust to filtered speech**.

Procedure:

- 1. Applied **notch filters** to test samples.
- 2. Ran the recognition system.
- 3. Measured classification accuracy.

Results:

- Some misclassification occurred (s3.wav was sometimes incorrect).
- All other test files were recognized correctly, showing the system is robust.
- Conclusion: Increased MFCC coefficient count to retain more spectral details.

```
>> speaker identification
Test radio sl.wav is predicted to be: sl
Test radio s2.wav is predicted to be: s2
Test radio s3.wav is predicted to be: s8
Test radio s4.wav is predicted to be: s4
Test radio s5.wav is predicted to be: s5
Test radio s6.wav is predicted to be: s6
Test radio s7.wav is predicted to be: s7
Test radio s8.wav is predicted to be: s8
>> speaker identification
Test radio sl.wav is predicted to be: sl
Test radio s2.wav is predicted to be: s2
Test radio s3.wav is predicted to be: s3
Test radio s4.wav is predicted to be: s4
Test radio s5.wav is predicted to be: s5
Test radio s6.wav is predicted to be: s6
Test radio s7.wav is predicted to be: s7
Test radio s8.wav is predicted to be: s8
```

TEST 9: Expanding the Speaker Set

Objective:

- Evaluate **scalability** by increasing the number of speakers.
- Compare performance before and after adding new speakers.

Procedure:

- 1. Selected 10 new speakers from the 2024 student dataset, each saying "zero".
- 2. Divided the dataset:
 - One recording per speaker for training.
 - Another recording per speaker for testing.
- 3. Retrained the system with both original speakers + 10 new speakers.
- 4. Tested the recognition accuracy on the expanded dataset.

- Accuracy dropped slightly compared to the previous test.
- Newly added speakers were harder to differentiate, leading to a lower recognition rate than before.

• Conclusion: The MFCC + LBG method can scale, but may require fine-tuning with more speakers.

```
>> speaker identification
Test radio Zero testl.wav is predicted to be: Zero trainl
Test radio Zero test10.wav is predicted to be: Zero train10
Test radio Zero testll.wav is predicted to be: Zero train11
Test radio Zero test2.wav is predicted to be: Zero train2
Test radio Zero test3.wav is predicted to be: Zero train3
Test radio Zero_test4.wav is predicted to be: Zero_train4
Test radio Zero test6.wav is predicted to be: Zero train6
Test radio Zero test7.wav is predicted to be: Zero train11
Test radio Zero test8.wav is predicted to be: Zero train8
Test radio Zero test9.wav is predicted to be: Zero train9
Test radio sl.wav is predicted to be: sl
Test radio s2.wav is predicted to be: s2
Test radio s3.wav is predicted to be: s3
Test radio s4.wav is predicted to be: s4
Test radio s5.wav is predicted to be: s5
Test radio s6.wav is predicted to be: s6
Test radio s7.wav is predicted to be: s7
Test radio s8.wav is predicted to be: s8
```

TEST 10: Comparing Different Words for Speaker Identification

TEST 10a: Using "zero" vs "twelve" for speaker identification

Objective:

• Test whether certain words affect speaker identification accuracy.

Procedure:

- 1. Trained the system with samples of "zero" and "twelve".
- 2. Tested recognition accuracy using both words.

- Misclassified samples: Twelve_test16, Zero_test12, Zero_test7.
- Overall system accuracy: 91.7%.
- Conclusion: "Twelve" performed better than "zero" for speaker identification.

```
>> speaker_identification
Test radio Twelve_test1.wav is predicted to be: Twelve_train1
Test radio Twelve test10.wav is predicted to be: Twelve train10
Test radio Twelve testll.wav is predicted to be: Twelve train11
Test radio Twelve_test12.wav is predicted to be: Twelve_train12
Test radio Twelve_test13.wav is predicted to be: Twelve_train13
Test radio Twelve test14.wav is predicted to be: Twelve train14
Test radio Twelve test15.wav is predicted to be: Twelve train15
Test radio Twelve test16.wav is predicted to be: Zero train17
Test radio Twelve_test17.wav is predicted to be: Twelve_train17
Test radio Twelve_test18.wav is predicted to be: Twelve_train18
Test radio Twelve_test19.wav is predicted to be: Twelve_train19
Test radio Twelve test2.wav is predicted to be: Twelve train2
Test radio Twelve_test3.wav is predicted to be: Twelve_train3
Test radio Twelve_test4.wav is predicted to be: Twelve_train4
Test radio Twelve test6.wav is predicted to be: Twelve train6
Test radio Twelve test7.wav is predicted to be: Twelve train7
Test radio Twelve test8.wav is predicted to be: Twelve train8
Test radio Twelve_test9.wav is predicted to be: Twelve_train9
Test radio Zero_testl.wav is predicted to be: Zero_train1
Test radio Zero_test10.wav is predicted to be: Zero_train10
Test radio Zero testll.wav is predicted to be: Zero train11
Test radio Zero_test12.wav is predicted to be: Zero_train13
Test radio Zero_test13.wav is predicted to be: Zero_train13
Test radio Zero_test14.wav is predicted to be: Zero_train14
Test radio Zero_test15.wav is predicted to be: Zero_train15
Test radio Zero test16.wav is predicted to be: Zero train16
Test radio Zero test17.wav is predicted to be: Zero train17
Test radio Zero_test18.wav is predicted to be: Zero_train18
Test radio Zero_test19.wav is predicted to be: Zero_train19
Test radio Zero test2.wav is predicted to be: Zero train2
Test radio Zero test3.wav is predicted to be: Zero train3
Test radio Zero_test4.wav is predicted to be: Zero_train4
Test radio Zero_test6.wav is predicted to be: Zero_train6
Test radio Zero_test7.wav is predicted to be: Zero_train17
Test radio Zero test8.wav is predicted to be: Zero train8
Test radio Zero test9.wav is predicted to be: Zero train9
```

TEST 10b: Using "five" vs "eleven" for speaker identification

Objective:

Compare recognition performance using different word samples.

Procedure:

- 1. Trained the system with samples of "five" and "eleven".
- 2. Measured recognition accuracy.

- Both "eleven" and "five" were correctly identified.
- System accuracy: 100%.
- Conclusion: Higher accuracy than using "zero" or "twelve".

```
>> speaker_identification
                                                          >> speaker_identification
(Eleven) Test radio sl.wav is predicted to be: sl
                                                          (Five) Test radio sl.wav is predicted to be: sl
(Eleven) Test radio s10.wav is predicted to be: s10
                                                          (Five) Test radio s10.wav is predicted to be: s10
(Eleven) Test radio sll.wav is predicted to be: sll
                                                         (Five) Test radio sll.wav is predicted to be: sll
(Eleven) Test radio s12.wav is predicted to be: s12
                                                         (Five) Test radio s12.wav is predicted to be: s12
(Eleven) Test radio s13.wav is predicted to be: s13
                                                          (Five) Test radio s13.wav is predicted to be: s13
(Eleven) Test radio s14.wav is predicted to be: s14
                                                          (Five) Test radio s14.wav is predicted to be: s14
(Eleven) Test radio s15.wav is predicted to be: s15
                                                          (Five) Test radio s15.wav is predicted to be: s15
(Eleven) Test radio s16. way is predicted to be: s16
                                                          (Five) Test radio s16.wav is predicted to be: s16
(Eleven) Test radio s17.wav is predicted to be: s17
                                                           (Five) Test radio s17.wav is predicted to be: s17
(Eleven) Test radio s18.wav is predicted to be: s18
                                                          (Five) Test radio s18.wav is predicted to be: s13
(Eleven) Test radio s19. wav is predicted to be: s19
(Eleven) Test radio s2.wav is predicted to be: s2
                                                          (Five) Test radio s19.wav is predicted to be: s19
(Eleven) Test radio s20.wav is predicted to be: s20
                                                          (Five) Test radio s2.wav is predicted to be: s2
(Eleven) Test radio s21.wav is predicted to be: s21
                                                          (Five) Test radio s20.wav is predicted to be: s20
(Eleven) Test radio s22.wav is predicted to be: s22
                                                         (Five) Test radio s21.wav is predicted to be: s21
(Eleven) Test radio s23.wav is predicted to be: s23
                                                          (Five) Test radio s22.wav is predicted to be: s22
(Eleven) Test radio s3.wav is predicted to be: s3
                                                          (Five) Test radio s23.wav is predicted to be: s23
(Eleven) Test radio s4.wav is predicted to be: s4
                                                          (Five) Test radio s3.wav is predicted to be: s3
(Eleven) Test radio s5.wav is predicted to be: s5
                                                         (Five) Test radio s4.wav is predicted to be: s4
(Eleven) Test radio s6.wav is predicted to be: s6
                                                          (Five) Test radio s5.wav is predicted to be: s5
(Eleven) Test radio s7.wav is predicted to be: s7
                                                          (Five) Test radio s6.wav is predicted to be: s6
(Eleven) Test radio s8.wav is predicted to be: s8
(Eleven) Test radio s9.wav is predicted to be: s9
                                                          (Five) Test radio s7.wav is predicted to be: s7
                                                           (Five) Test radio s8.wav is predicted to be: s8
                                                           (Five) Test radio s9.wav is predicted to be: s9
```

Function Testing

Each function in this project has been **modularized** and stored as a separate script.

- You can find these individual function files in the func/test/ folder.
- Each function file follows the same naming convention as described in the sections above.
- This allows you to **independently test each function** before integrating them into the full pipeline.

For example:

```
% To test the Mel filter bank function independently
melFilterBank = melfb(30, 512, 16000);
disp(melFilterBank);
---
## **How to Run**
1. Place training and test speech files in your desired folder and remember to change the folder name in the code to that one.
2. Run:
speaker_identification()
```