Web Data Mining

Lecture 8: PageRank and HITS

Jaroslav Kuchař & Milan Dojčinovski

jaroslav.kuchar@fit.cvut.cz, milan.dojchinovski@fit.cvut.cz

Czech Technical University in Prague - Faculty of Information Technologies - Software and Web Engineering

Summer semester 2019/2020 Humla v0.3

Overview

- Web Structure Mining
- PageRank
- HITS

Web Structure Mining (Recall)

Main ideas

- Use graph theory to analyze the node and connection structure of a web site.
- Help the users to retrieve the relevant documents by analyzing the link structure of the Web.

Tasks

- Hyperlink analysis
 - \rightarrow Intra-page vs Inter-page.
- Analysis of the tree-like structure of page structures

Applications

- Document retrieval and ranking
- Discovery of hubs and authorities
- Discovery of web communities
- Citation networks
- Social network analysis
- Search engines, SEO, ...

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

-3-

Web Graph

Terminology

- Web graph
 - \rightarrow a directed graph representing the web
- Node
 - \rightarrow web page in the graph
- -Edge
 - \rightarrow hyperlink on the web page
- In-links (backlinks)
 - \rightarrow links pointing to the node
- Out-Links
 - \rightarrow links generated from the node
- In-Degree
 - → number of links pointing to the node
- Out-Degree
 - \rightarrow number of links generated from the node

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

-4-

Web Graph Analysis

- Web graph statistics
 - A. Broder et al., Graph structure in the web, 2000 they analyzed the web graph consisting of 200 million pages and 1.5 billion links from AltaVista.
- In (Out) Degree Power law
 - the probability that a node has in(out)-degree i is proportional to $\frac{1}{i^x}$, where x=2.1.

- Web graph
 Bow Tie Structure
- Applications

- Important for designs and implementations of main crawlers, search engines, etc.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 5 -

The Bow-Tie Structure

- Presents the connectivity of the web
 - Web isn't the fully interconnected network
- Components
 - SCC giant strongly connected component
 - → central core, all of whose pages can reach one another along directed links
 - -IN
 - \rightarrow pages that can reach the SCC, but cannot be reached from it.
 - \rightarrow e.g. new pages not yet discovered
 - -OUT
 - \rightarrow pages that are accessible from the SCC, but do not link back to it. \rightarrow e.g. corporate pages with internal links only
 - Tendrils
 - → pages reachable from IN but cannot reach the SCC
 - \rightarrow e.g. single page or document with no out-links
 - → pages that can reach the OUT but cannot be reached from the SCC
 - Tubes
 - → TENDRILS that fulfills both assumptions
 - → e.g. a single page linking only a blog post about a company that links to the pages with internal links
 - Disconnected

The Bow-Tie Structure (cont.)

- "the chance of being able to surf between two randomly chosen pages is less than one in four"
 - A. Broder, R. Kumar, F. Maghoul, P. Ragha-van, S. Rajagopalan, S. Stata, A. Tomkins, and J.Wiener. Graph structure in the web. Computer Net-works, 33:309–320, June 2000

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

-7-

The Bow-Tie Structure Example

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

-8-

The Bow-Tie Structure Revisited

• Power law exponent (2000 vs 2012): 2.1 vs 2.24

• Average degree: 7.5 vs 36.8

• SCC: 27.7% vs 51.3%

• IN, OUT: 21%,21% vs 31%,6%

• Pairs of connected pages: 25% vs 48%

Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2014. Graph structure in the web — revisited: a trick of the heavy tail. In Proceedings of the 23rd International Conference on World Wide Web (WWW '14 Companion). ACM, New York, NY, USA, 427-432.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

_ 9 .

Application: Improving Search Results

• Web Search

- Can build on top of existing boolean and vector models from Information Retrieval.
- Vector based model was used in AltaVista.

• Issues of basic IR models

- Results are too large that the user can explore.
- All documents are treated equally according to the relevance point of view.
- Results are returned only using the text based matching approaches.
- Heavily influenced by many spam techniques
 → e.g. keyword stuffing

Need for other relevance/popularity scores

- Web structure is the most well known source of additional information about popularity of web pages.

Overview

- Web Structure Mining
- PageRank
- HITS

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 11 -

PageRank

- Introduced in April, 1998 at WWW98 by Sergey Brin and Larry Page in a paper titled "The anatomy of a large-scale hypertextual Web search engine."
 - Uses link structure as an indicator of an individual page's quality.
 - The prestige of a page is proportional to the sum of the prestige scores of pages linking to it.
 - Prestige is independent of any information need or query.
- Main formula $-\pi^{(k+1)T} = \pi^{(k)T}(\alpha S + (1-\alpha)E)$
- Characteristics
 - ability to fight spam, global measure and is query independent, computed off-line, very efficient at the query time.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 12 -

PageRank Computation

- Main idea
 - If a web page is pointed to by other, important pages, then it's also an important page.
 - Think as kind of "fluid" that circulates through networks.
- PageRank for one page

-
$$r(P_i) = \sum_{P_j \in B_{P_i}} \frac{r(P_j)}{|P_j|}$$

 $\rightarrow B_{P_i}$ - set of pages linking to P_i
 $\rightarrow |P_j|$ - number of outinks from P_j

• Examples:

$$-r(P_1) = \frac{r(P_3)}{3}, r(P_2) = \frac{r(P_1)}{2} + \frac{r(P_3)}{3}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 13 -

Iterative computation of the PageRank

- Next iteration (k+1) uses states from the previous one (k) $-r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$
- PageRank is initialised with a predefined value

$$- \forall i : r_0(P_i) = \frac{1}{n}$$

Node	Iteration 0	Iteration 1	Iteration 2	Order (after 2nd iteration)
P1	$\frac{1}{6}$	1/18	$\frac{1}{12} \times \frac{1}{3} = \frac{1}{36}$	5.
P2	<u>1</u> 6		1/18	4.
P3	<u>1</u> 6	$\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$	<u>1</u> 36	5.
P6	<u>1</u> 6	$\frac{1}{6}$	14 72	2.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 14 -

Matrix Representation

Mathematically

- a system of n linear equations with n unknown variables.
- Can be represented as a matrix.

• PageRank vector $-\pi = (r_0(P_1), r_0(P_2), \dots, r_0(P_n))$

$$-\pi = (r_0(P_1), r_0(P_2), \dots, r_0(P_n))$$

• Use matrix $H(n \times n)$

$$-H_{ij} = \frac{1}{|P_i|} \text{ if there is a link from } P_i \text{ to } P_j$$

$$-H_{ij} = 0$$
 otherwise

• Circular definition, where the iterative algorithm is used to solve $-\pi^{(k+1)} = \pi^{(k)}H$

$$-\pi^{(k+1)} = \pi^{(k)}H$$

- The equation is the characteristic equation used for finding the eigensystem of the matrix.
- $-\pi$ is an eigenvector with the corresponding eigenvalue of 1.
- 1 is the largest eigenvalue and the PageRank vector P is the principal eigenvector
- Also called power method

Issues:

- the Web graph does not meet all conditions
 - → There are many pages without any out-links, as well as directed paths leading into a cycle, ...

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 15 -

Matrix Representation (cont.)

	P1	P2	P3	P4	P5	P6
P1	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
P2	0	0	0	0	0	0
P3	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0
P4	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$
P5	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
P6	0	0	0	1	0	0

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 16 -

Iterative computation using Matrix

- Using the equation: $-\pi^{(k+1)} = \pi^{(k)}H$
- $\pi^{(0)} = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$

	P1	P2	Р3	P4	P5	P6
P1	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
P2	0	0	0	0	0	0
P3	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0
P4	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$
P5	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
P6	0	0	0	1	0	0

•
$$\pi^{(1)} = \pi^{(0)}H = \left(\frac{1}{18}, \frac{5}{36}, \frac{1}{12}, \frac{1}{4}, \frac{5}{36}, \frac{1}{6}\right)$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 17 -

Matrix Representation and Computation

- Complexity
 - Every iteration requires $O(n^2)$
 - Multiplication of PageRank vector of size n and matrix of size $n \times n$
- The matrix is sparse
 - Most of the elements are zero
 - Efficient memory representations using LIL (List of List), CSR (Compressed Sparse Row) or CSC (Compressed Sparse Column), ...
 - There are many efficient algorithms for sparse matrix multiplication with complexity O(nnz), where nnz is number of non-zero elements.
- The matrix is close to the stochastic (transition) matrix of probabilities in Markov chain models.
 - Fulfills the "memorylessness" Markov property
 - \rightarrow If one can make predictions for the future without knowing history.
 - Except dangling pages pages that have no out-links!

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 18 -

Markov Chains

Markov Chains

- named after Andrey Markov
- mathematical systems that hop from one state to another
- special type of stochastic model
 - → the simplest from Markov models
 - → the future state depends only on the present state and not on the history

Example

- Weather

 - → raining today → 40% rain tomorrow
 - → 60% no rain tomorrow
 - → not raining today

 - → 20% rain tomorrow → 80% no rain tomorrow

$$-P = \begin{bmatrix} 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 19 -

Issues of the Matrix Representation

Rank sinks

- pages that have no out-links
- it does not distribute the PageRank to others
- continuously decrease the overall PageRank in the graph

Example

$$-\pi^{(0)} = (1/3, 1/3, 1/3)$$

$$-(1/3, 1/3, 1/3) \times \begin{bmatrix} 0 & 1/2 & 1/2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = (0, 1/2, 1/6) = \pi^{(1)}$$

$$-(0, 1/2, 1/6) \times \begin{bmatrix} 0 & 1/2 & 1/2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = (0, 1/6, 0) = \pi^{(2)}$$

$$-(0,0,0) = \pi(3)$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 20 -

Issues of the Matrix Representation (cont.)

• Link farms

- group of pages that link to every other page in the group
- a link farm is a clique
- they support each other

• Cycles

- cause oscillation of the PageRank between them

• Example

$$-\pi^{(0)} = (0, 1)$$

$$-(0, 1) \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = (1, 0) = \pi^{(1)}$$

$$-(1, 0) \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = (0, 1) = \pi^{(2)}$$

$$- \dots$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 21 -

Alternative PageRank Definition

• Random walk/random surfer

- Someone who is randomly browsing a network.
- Choosing a page at random, picking each page with equal probability.
- Follow links for a sequence of k steps.
 - → In each step, they pick a random out-going link from their current page, and follow it to where it leads.

• Randomly following links is called a random walk

Claim

- The probability of being at a page X after k steps of this random walk is precisely the PageRank of X after k applications of the Basic PageRank Update Rule.

• Issue

- Rank sink and cycles

Solution

- Teleportation to a random node

Transition Probability Matrix

- Stochasticity adjustment of matrix H to matrix S
 - Update of the dangling node row
 → setting all the zeros to 1/n
 - Random teleport/jump

$$\bullet \quad S = H + a(\frac{1}{n}e^T)$$

- a is a vector of length n

 $\rightarrow a_i = 1$ if there is no outlink from P_i

 $\rightarrow a_i = 0$ otherwise

$$-e^{T}=(1, 1, 1, 1, 1, 1)$$

$$\begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} = S$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 23 -

Transition Probability Matrix (cont.)

- S matrix is stochastic
 - sum of values in row is equal to 1
 - non-negative and square
- Transition matrix for a finite Markov chain
 - Probability of using the link for the random walk
- Issue
 - It is not irreducible
 - → Web graph is strongly connected
 - → for each pair of nodes, there is a path from one to another one
 - It is not aperiodic
 - \rightarrow periodic all paths leading from one node back to that node
 - Convergence issue!

$$S = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 24 -

Google Matrix

Solution for irreducible and aperiodic situation

- Primitivity adjustment
- We add a link from each page to every page and give each link a small transition probability controlled by a parameter damping factor d (e.g. 0.85)

Updated model

- Random surfer has two options
 → With probability d, he randomly chooses an out-link to follow.
 → With probability 1-d, he jumps to a random page without a link.
 → Surfer may get bored, or interrupted

Google matrix

- Becomes strongly connected
 → link from each page to every page
- Becomes aperiodic
 - → random surfer does not have to traverse a fixed cycle

•
$$G = d \times S + (1 - d) \frac{E}{n}$$

- d is damping factor
- E is $e \times e^T$ is a $n \times n$ square matrix of all 1

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 25 -

Google Matrix (cont.)

•
$$G = d \times S + (1 - d)\frac{E}{n}$$

$$S = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

•
$$G = 0.9 \times S + 0.1 \frac{E}{6}$$

$$G = \begin{bmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 1/12 & 1/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \\ \end{bmatrix}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 26 -

PageRank Computation

• Power Iteration Method

$$-\pi^{(k+1)} = \pi^{(k)}G$$

- Google matrix
 - Stochastic, Irreducible, Aperiodic, Primitive
 - No-zero elements
 - \rightarrow It is not sparse any more!
- Computation
 - Complexity $O(n^2)$
- Example
 - 50 iterations
 - $-\pi = (0.03721, 0.05396, 0.04151, 0.3751, 0.206, 0.2862)$
 - Order: 4, 6, 5, 2, 3, 1

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 27 -

PageRank Computation (cont)

• Convert to operations with sparse matrix $-\pi^{(k+1)} = \pi^{(k)}G$

$$-\pi^{(k+1)} = \pi^{(k)}G$$

$$-\pi^{(k+1)} = d\pi^{(k)}H + (d\pi^{(k)}a + 1 - d)\frac{e^T}{n}$$

- The most computational intensive operation
 - multiplication of vector and matrix uses sparse matrix H
- Convergence criteria
 - 1-norm
 - \rightarrow the iteration ends after the 1-norm of the residual vector is less than a prespecified threshold δ
 - \rightarrow 1-norm for a vector is simply the sum of all the components
 - - \rightarrow no significant change of the page order between iterations
 - usually around 50

PageRank Example

• Example 1

- iterations: 50

- damping factor: 1.0

 \rightarrow following links

 $-\pi = (7.18e - 10, 1.24e - 09, 8.36e - 10, 0.44, 0.22, 0.33)$

• Example 2

- iterations: 50

- damping factor: 0.0

→ random choosing

$$-\pi = \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$$

Google

- damping factor ≈ 0.85

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 29 **-**

PageRank Modifications

Intelligent surfer

- Modification of probabilities in transition matrix
 - → Analysis of users behavior
 - → Using click logs, ...
 - → Similarities of pages
 - \rightarrow *Using cosine similarity*
 - → Anchor text, or the surrounding information

Personalization

- Modification of the teleportation

$$\rightarrow G = d \times S + (1 - d) \frac{E}{n}$$

- $\rightarrow E$ is $e \times e^T$ is a $n \times n$ square matrix of all 1
- \rightarrow Change $e \times e^T$ to $e \times v^T$, where v^T provides information about preferences for specific pages

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 30 -

Overview

- Web Structure Mining
- PageRank
- HITS

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 31 -

HITS

- HITS
 - Hypertext Induced Topic Search
 - Presented by Jon Kleinberg in January, 1998 at the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms.
 - → utilizes the web structure as important aspect
 - \rightarrow a query is used to select a subgraph from the Web

Main characteristics

- Search query dependent
- Two rankings
 - → authority ranking and hub ranking

Approach

- For a search query, HITS first expands the list of relevant pages returned by a search engine and then produces rankings of the expanded set of pages.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 32 -

Hubs and Authorities

Hub

- page with many outlinks
- page is a source of many important links to authority pages relevant for the topic

Authority

- a page with many inlinks
- if people trust the page, they link to it at it becomes the authority

The goal

- Find best hubs and authorities
 - → Good authorities are linked by good hubs
 - → Good hubs link to good authorities

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 33 -

HITS Algorithm

• Collecting pages

- HITS sends a query to a search engine and collects top t highest ranked pages that are relevant to the query (e.g. t=200)
 - \rightarrow Called root set W
- Grows W by including pages that link to any page in W or are linked by any page from W. At most k per page. (e.g. k=50) \rightarrow Called base set S (size 1000-5000)

Graph

- $H\overline{I}TS$ works with the graph G(V,E) composed from all pages in the base
- -L is the adjacency matrix of the graph G.

Scores

- Authority score

$$\rightarrow a(i)^k = \sum_{(j,i) \in E} h(j)^{(k-1)}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

HITS Algorithm (cont.)

Matrix representation

- Similar to PageRank
 - $\rightarrow a = L^T h$
 - $\rightarrow h = La$

• Iterative computation – using the power iteration method

- - $\rightarrow a_k = L^{\tilde{T}} L a_{k-1}$
 - $\rightarrow h_k = LL^T h_{k-1}$
 - $\rightarrow a_0 = h_0 = (1, 1, 1, ...)$
- normalization
 - $\rightarrow \sum_{i=1}^{n} a_i = 1$
 - $\rightarrow \sum_{i=1}^{n} h_i = 1$
- ends after the 1-norms of the residual vectors are less than some thresholds (e.g. 5 iteration)
- Return top ranked pages as authorities and hubs.

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 35 -

HITS Algorithm (cont.)

Convergence issues

- HITS will always converge
- can provide different hub and authority vectors
 - \rightarrow depending on the initialization
 - \rightarrow caused by the problem that L^TL (respectively LL^T) is reducible

Modification

- When pages are relevant to the query, but they can be separated in the graph G \rightarrow e.g. words with different meaning
- Compute HITS on smaller communities

Characteristics

- ability to rank pages according to the query topic
 → more relevant hubs and authorities
- query time execution
 - → time consuming operation
- does not have the anti-spam capability
- → a simple page with many links can easily become a hub
- topic drift
 - → expanded pages are not relevant

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

HITS Example

$$L = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, L^{T} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, h_{0} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, a_{0} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$a_1 = L^T h_0 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \end{bmatrix}, h_1 = L a_0 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Lecture 8: PageRank and HITS - Jaroslav Kuchař & Milan Dojčinovski

- 37 -