分类号		级	
UDC	编	号	10486

武汉大学硕士学位论文

波形拟合反演震源机制的定权研究及误 差评定

研究生姓名:邓东平

学 号: 2013202140004

指导教师姓名、职称: 朱良保 教授

专 业 名 称: 固体地球物理学

研 究 方 向: 地震学

二〇一六年四月

Weighting improvement and error estimation for inversion of mechanism from waveform

Candidate: DENG DONGPING

Student Number: 2013202140004

Supervisor: PROF. ZHU LIANGBAO

Major: Solid Geophysics

Speciality: Seismology

School of Geodesy and Geomatics
WUHAN UNIVERSITY

April, 2016

郑重声明

本人的学位论文是在导师指导下独立撰写并完成的,学位论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,否则,本人愿意承担由此而产生的法律责任和法律后果,特此郑重声明.

学位论文作者 (签名):

年 月 日

摘 要

近年来,利用波形拟合方法反演震源机制的方法已经越来越普遍,在震源研究中获得了广泛应用。由于震源机制反演问题具有解空间较小,反演公式复杂等特点,一个比较合适的反演算法是格点搜索反演。在实际应用波形拟合研究震源机制的工作中,也证实了格点搜索反演在该问题的适用性。格点搜索算法是指将解空间按一定精度划分为大量网格,并将一个网格范围内无数连续的解当成同一个解,因而实现了解空间的数值离散化。解算时依次遍历所有格点,试探性利用格点值求解相应观测量的理论值,并比较理论值与观测值匹配度,求最优解的过程便是寻求具有最高匹配度的格点值。

格点搜索算法仅需要计算待求模型到观测量的正演公式,因而有效避免了复杂的震源机制与波形的反算公式。在获得便利的同时,也伴随着一个很大缺陷——无法直接评价误差。正是由于格点搜索不需要求算观测数据到估计解的反推公式,因而也无法得到误差传播矩阵,导致不能在搜索到最优解的同时获得对解的误差评价。虽然误差评价的重要性不言而喻,但在实际工作中可以发现绝大部分震源机制的反演研究中均没有提及对震源机制的误差评估。为了获得一定的误差信息,本文基于概率统计原理提出了一种方法。该方法通过利用观测数据的噪声信息重新随机生成噪声,并利用生成的噪声模拟大量的"观测"数据,对大量模拟数据进行多次反演,便得到了误差范围内的解集。通过对该解集进行统计分析,不仅可以得到震源机制各参数的误差信息,还能得到参数间的相关性信息。为了检验方法的有效性,文中设计了相关实验考查其误差范围的准确性。多次实验均发现本文所提方法准确地估计了波形数据的随机噪声"传播"给震源机制的误差。

由于震源机制的重要性,日常研究中经常需要进行震源机制反演。为避免重复工作,一些研究者将基于自己反演方案和算法完成的反演程序进行公开,供其它人使用,于是便有了各种开源的反演程序。在这些开源程序中,CAP(Cut And Paste)和CPS(Computer Programs in Seismology)两个程序都是受到广泛应用,且较为成熟的利用格点搜索算法反演震源机制的程序。两个程序分别体现了其作者的在反演中的观

点,在 CAP 程序的相关文献中,详细介绍了反演时所使用的加权基于不同波形间振幅大小差异的考虑,而从 CPS 的源码中发现其加权主要考虑到不同波形数据信噪比优劣的不同。由于二者的权重均通过震中距估计,经分析发现其权重数值大小相互冲突。为了解决该矛盾并吸收两种加权方案中的有益观点,本文提出了综合考虑信噪比和振幅调节两方面的联合加权方案。此外,通过实例分析发现震中距难以描述信噪比或振幅的真实情况,并因此提出了用各波形数据信息直接计算信噪比或振幅,以精化权重的数值。经检验,联合定权确实能在一定程度上优化反演结果。

本文第一章介绍了震源机制研究的背景,发展历程和现状。其中着重强调了当前利用波形拟合反演震源机制方法中常见的误差缺失问题,以及 CAP 和 CPS 中出现的加权差异和可优化性。之后简要介绍了本文的工作目标和实现方法。第二章对波形拟合反演震源机制的相关理论以及格点搜索算法进行了详尽地推导,并介绍了加权优化和误差评价的理论基础。第三章设计了一系列理论实验,通过实际计算来进一步证明本文所提观点的正确性。第四章则是以 2013 年芦山地震为例,展示了将本文所提方法进行真实应用的效果,并对反演结果进行了大量分析,表征了结果的可靠性。第五章是对全文工作和相关思想的总结,期望对之后的相关研究起到一点参考作用。

关键词: 波形反演, 震源机制, 格点搜索, 误差评价

ABSTRACT

Recently, It's getting more and more common to inverse waveform for source mechanism. Grid search technique turn out to be a good fit for this inversion problem, as the possible source mechanisms are limited, besides to deduce the inversion equation seems quite different. This technique is approved to be effective on application to waveform inversion by experience in relative works. Grid search technique is a way to get the best solution from possible solutions: Firstly, we divide the solution space into grids with specified step-length for treating a unit grid as a single point, by which we have discretized the solution space. Secondly, It's time to iterate on every single grid to test how it fit to the problem based on a chosen evaluation standard (least squared criterion, etc.). Finally, after iteration, we certainly get a best solution among the solution space.

By application of grid search technique, we avoid the process of deducing equation to the form of solution; however, it comes with a inherent disadvantage that error estimation isn't provided directly any more. Due to this disadvantage, most of research about getting mechanism by inversion of waveform just ignore the error estimation, although it's so essential to estimate your solution from observed data; observed data always comes along with unpredictable noise. To fix this problem, we come up with a new method based on probability theory: Firstly, we modeling the noise and learn how to produce similar noises as many as we need. Secondly, by adding the new noises and observed data up, we synthesize the simulated data with possible noise. Thirdly, we inverse the synthesis dependantly to get a reasonable biased mechanism. Then repeat synthesis and inversion, we get enough mount of possible mechanisms. By analysis of this solution set, we definitely get the error estimation of mechanism. In the end, we run some tests to testify the validity of the new error estimation method provided by this thesis.

Source mechanism is a basic model for other research; so researchers need to get

them from time to time. To avoid repeating work, some brilliant programs are provided by their owner so that anyone can use them freely and focus more on their research. CAP(Cut And Paste) and CPS(Computer Programs in Seismology) turn out to be two very popular programs Among all the open source software for getting mechanism. They both use grid search technique to fulfill the task, while they are some difference in weighting. CAP cares about the influence from amplitude difference in waveforms; CPS focus on the other side that data with better Signal-to-Noise Ratio should have priority. Furthermore, as CAP and CPS both calculate weighting by source-station distance, the outcome of relative weighting seems contradiction from the two programs. By analysis, we realize the two different weighting method are both reasonable. To fix the contradiction and take advantage of each, we manage to unite them in a way. Besides, we find the evaluation from source-station distance is rough and we refine it by estimating it from the very waveform itself instead of distance. In the end, we certify the improvement of united weighting by some experiments.

In the first chapter we introduce the background of source mechanism, the history of researching mechanism and current state, especially the lack of error estimation and the possibility to improve weighting by combination of CAP and CPS. Then the purpose and main work is mentioned briefly. In chapter two, we present the deduction theorem of getting mechanism by inversing waveform, grid search technique and the method developed in this thesis to estimate error and improve weighting. In the third chapter, a series of experiments are designed to test the new method. Then in the forth chapter, we formally apply the whole theory to a real earthquake, which happened in 20th April, 2013, in Lushan county. After inversion, a discussion is given to verify the result. Finally, in the last chapter, we give a conclusion of all work and some experience, and hope it helps when some others are doing the similar research.

Key words: waveform inversion, source mechanism, grid search technique, error estimation

目 录

摘要		Ι
ABST	RACT	III
第一章	引言	1
1.1	研究意义	1
1.2	研究发展历程	2
	1.2.1 方法分类	2
	1.2.2 P 波初动极性反演	2
	1.2.3 振幅比反演	2
	1.2.4 波形拟合反演	3
1.3	研究现状及问题	3
1.4	本文设定目标及方案	4
第二章	原理分析	6
2.1	震源基础概念	6
2.2	波形拟合反演	7
	2.2.1 波形分解	7
	2.2.2 格林函数库	8
	2.2.3 格点搜索	10
2.3	数据质量影响	11
	2.3.1 数据质量简介	11
	2.3.2 数据信噪比	12
	2.3.3 数据结构	12
	2.3.4 小结	12
2.4	定权优化方案	13

2.5	误差评定方法	15
第三章	理论实验	17
3.1	实验设定说明	17
3.2	权重优化检验	17
	3.2.1 不同加权反演测试	17
3.3	误差评定检验	20
	3.3.1 理论实验反演过程	20
	3.3.2 不同噪声强度测试	21
	3.3.3 不同反演次数测试	23
第四章	实例应用	25
4.1	案例选取	25
4.2	数据处理	26
4.3	结果分析	27
4.4	讨论和结论	29
第五章	总结和展望	34
5.1	总结	34
5.2	展望	35
参考文献	就	36
致谢		43

第一章 引言

1.1 研究意义

众所周知地震灾害是关系到国计民生的重大自然灾害,虽然极具破坏的大地震发生频率很低,但是一次地震所爆发的能量却是与吨级核爆相当 (Stein and Wysession, 2003),其破坏性不言而喻。2008年5月12号的汶川地震是自唐山地震以来在我国发生的导致直接死亡人数最多,经济损失最大的重大地震。然而,另一方面,地震的高能量所激发的高穿透力的地震波却是地震学家研究地球结构的福音,是人类目前研究地球内部结构的最有力工具。所以,无论从人民生活安全,经济保障,还是从科学探索的角度看,地震学研究都是很有意义的。

地震学研究的主要内容包括震源以及地下结构研究,震源机制是震源最基本的参数,其结果可进一步应用于理论震动图计算 (Wald, 2005)、海啸模拟 (Satake, 2007)、库仑应力转移估计 (King and Devès, 2007)、区域的应力分析和震源破裂过程反演中 (Kilb, 2001)。此外,利用已知震源机制计算得到面波震动图,用于在介质结构研究中代替到时或面波频散数据,以获得更多约束信息,直接拟合实际波形反演地下结构的方法也得到了广泛应用 (Nolet, 1990; Manaman et al., 2011; Friederich, 2003; Zielhuis and Nolet, 1994; Cao et al., 2001; Lee and Nolet, 1997)。因而在地震发生后,获得可靠的震源机制是有益且必要的。

由于真实情况下,通常获得的观测数据质量都不是完美的,为了得到更为准确和可靠的震源机制,震要在反演过程中尽可能优化结果。理论上,在给定观测数据和目标函数情况下,对于结果的最大调控来自于反演的权重。合理的权重能使得对现有数据中有用信息更充分的应用,而压制无效噪声对反演的干扰影响。不同的加权得到的结果往往有差异,为了反演得到可靠的震源机制,必须谨慎考虑,合理地为数据加权。

另一方面,因为数据中的噪声具有随机性,使得反演结果相对真值有不可准确预料的偏差。事实上,反演结果与真实值的偏差还来源于参考模型的系统误差,数值计算舍入误差,理论的近似引起的偏差等等。在此仅关注研究数据噪声引起的误差,为了方便,本文之后所提的误差除非特别指出,否则均指数据随机噪声导致的震源机制误差。正是因为误差不可预料,为了使结果具有科学参考价值,必须对噪声可能导致的误差范围进行评估。排除数据噪声影响的"理想"结果则包含在反演结果的误差范

围内。虽然无法直接求出该"理想"结果,但至少能在一定置信区间内给出可靠的结果范围,对于借鉴以及进一步深入研究均具有重要意义。此外,对于某些算法而言(如本文反演所用的格点搜索算法),无论结果是否可信反演后均会得到一个"最优解",但当涉及病态反演问题时,该震源机制很可能与真实情况有非常大偏差,未经过误差评定,结果可能对之后研究者具有误导作用。

1.2 研究发展历程

1.2.1 方法分类

利用地震波信息反演震源机制根据反演数据源差异主要可以分为三大类方法。第一类是 P 波极性反演,利用了初至波第一次起跳方向信息约束震源,但对台站分布要求高,且结果不太稳定;第二类是用振幅定量信息反演,利用各震相的振幅的差异或方位特性等定量信息进行反演,但续至波的振幅观测通常比较困难;第三类是波形拟合反演,直接利用整个波形数据的所有可用信息计算震源机制,对相对约束效果更好。

1.2.2 P 波初动极性反演

早期的震源机制反演根据 P 波初动极性在四象限中的分布规律 (Balakina et al., 1961), 这首先起源于 (Reid, 1910) 在 1906 年旧金山地震研究 (Milne, 1910) 基础上提出了弹性回跳理论——认为地震是由于地壳中岩石积累了过多应变能,超过其承受能力后,发生弹性断裂,势力随之释放。之后,P波初动符号的规律被发现Nakano (1923),人们提出了地震节面的概念。后来便开始利用地震台站记录到的地震波初动极性信息在被地震节面分隔的四象限空间的分布,对震源节面进行约束,进而得到震源机制。然而由于该方法仅使用了初动极性这一少量信息,并且初动极性的明显性与初动 P 波振幅相关,理论上在四象限节面上 P 波振幅为 0(Stein and Wysession, 2003)。以上种种原因导致该方法适用性受限,且结果不太稳定,为了得到稳定结果该方法对台站数据的数量和分布要求很苛刻。

1.2.3 振幅比反演

第二类方法是利用各震相的振幅的信息,这是使用波形振幅数值的定量信息,增加反演数据的可用约束信息。例如利用 P,S 波的振幅比信息,通过同一台站不同分量 震相信息比值规律,可一定程度避免来自介质模型不准确的系统性误差影响。其中利用 P 震相与 SV 震相的震幅比 (Kisslinger et al., 1982; Kisslinger, 1980) 是一种行之有

效的方案,为了最大程度削弱介质模型对反演的影响,选择了直达上行地球表面的 Z 分量波。此外,在 Kisslinger 研究基础上,发现当有较高质量 SH 波时,通过 P 震相与 SH 震相的振幅比值反演可能得到更可靠的震源机制。另外,也有利用面波的振幅花样 (Stein and Wysession, 2003) 反演震源机制等可行方案。虽然利用振幅信息有效增强了对震源的约束,但是仍然对台站分布有较高要求,而且对近震波形 S 波初至振幅的测量,尤其是 SV 波的测量显得尤其困难 (祁玉萍等, 2013),稍有不慎便可能得到较大偏差。

1.2.4 波形拟合反演

波形拟合反演直接利用了整个波形数据的所有信息进行反演,随着理论地震波的研究取得巨大成功 (Haskell, 1964; Herrmann, 1979; Wang and Herrmann, 1980), 在给定介质模型和震源机制情况下可以比较精确地计算出理论波形,使得直接使用观测波形数据与理论数据匹配反演震源机制的想法得以实现。通常波形中的体波数据由于穿透深,受浅层不均匀地壳结构影响较小,但考虑到体波衰减快,通常利用远震体波反演较大地震的震源机制,这能够减小地下介质模型横向非均匀性影响。而面波对介质结构较敏感,则较常用于具有较为精确介质参考模型的区域地震震源研究,或结合震源机制研究其较为敏感的地下结构 (Nolet, 1990)。由于波形数据相比初动极性或振幅,包含了更多有效信息,使得对台站数量及分布的要求有所降低,且结果更稳定,可靠,于是波形拟合反演的方法得到了快速发展和应用 (Walter, 1993; Ritsema and Lay, 1993; Zhao and Helmberger, 1994; Nábělek and Xia, 1995)。

用地震波形拟合反演震源机制时,由于待求参数少、解空间有限且观测方程直接求解异常复杂,所以该问题非常适合用非线性反演中的全局搜索算法。在实践中,得到广泛应用的 CAP(Cut and Paste 的简称)(Zhao and Helmberger, 1994; Zhu and Helmberger, 1996; Tan et al., 2006) 和 CPS(Computer Programs in Seismology 的简称)(Herrmann, 1989) 等波形拟合反演程序充分说明了全局搜索在震源机制反演问题中的有效性。

1.3 研究现状及问题

Herrmann 开发的 CPS 软件包中用于震源机制反演子程序的方法 (Herrmann, 1989)(为方便本文简称 CPS 方法) 和 CAP 方法 (Zhao and Helmberger, 1994; Zhu and Helmberger, 1996; Tan et al., 2006) 均为震源机制格点搜索方法,由于二者的实用性和开源性,被广泛应用于震源机制研究中。然而 CAP 和 CPS 方法加权的侧重

点不同,前者考虑几何扩散导致波形振幅的衰减,给较低振幅的波形加大权重,以平衡不同振幅波形在反演中的影响力;后者则关注传播过程中信噪比的降低,赋予高信噪比数据较大权重。考虑到波形振幅及信噪比与震中距间的关系,Zhu等 (Zhu and Helmberger, 1996) 在 CAP 中将权重设置为关于震中距递增的幂函数,而 CPS 方法中使用震中距的反比例函数作为权重值。幂函数和反比例函数的单调性恰巧相反,导致从数值上看,两种方法对同一套数据波形所定权重大小相互矛盾——CPS 定权震中距较近台站权重较高,而 CAP 定权中则震中距较远台站相对权重较大。此外,通过实例计算及理论分析发现,实际观测波形的振幅及信噪比与震中距的关系较为复杂,难以用简单的初等函数进行描述,且函数中包含的参数赋值因人而异。因此无论利用幂函数或反比例函数估算的振幅和信噪比均较粗糙,无法准确体现数据的真实性和客观性。

另一方面,随着 CAP,CPS 等用波形非线性反演震源机制的算法得到广泛应用 (Luo et al., 2015; D'Amico et al., 2014), 其非线性反演申误差缺失的问题逐渐受到 了关注。考虑到误差评价的重要性,国内外学者均对震源机制反演的误差估计问题进行了研究,Duputel et al. (2012) 从误差的来源入手,对震源机制进行误差评价,但 其方法只适用于估计线性反演的震源机制误差。考虑到目前应用最广泛的全局搜索反演,本文旨在探究能应用于非性线反演算法的误差评估方法。对于非线性反演,最常见的方法是对目标函数的极值人为给定一个阈值,满足该条件的所有解构成误差范围内解集(简称为阈值法),该方法简洁直观,能快速发现不同模型参数的误差大小关系,但是阈值的给定有主观性,导致定量结果难以让人信服。郑建常等 (2015) 借鉴 Bootstrap(Efron1979) 的思想,对数据集随机多次选取子集进行独立反演并对解集样本用一定方法分析,以评估其整体误差及解,为使样本能反映整体。但是统计分析不仅要求样本抽取的随机性,还对原始样本大小有一定要求,当可用的地震记录数量不是很大时基于重抽样的该方法便不适用了。

1.4 本文设定目标及方案

针对以上分析,为了解决 CPS 和 CAP 反演定权方法出现的矛盾以及误差缺失问题,本文分别尝试进行权重优化以及误差评定。对于定权,结合 CPS 与 CAP,综合考虑振幅衰减和信噪比差异影响,将二者统一计算权重,从而解决上述的权重数值矛盾问题。其次,计算时摈弃了用震中距简单函数估算振幅或信噪比方案,而是基于每道波形数据自身的信息,准确评估振幅和噪声。由于没有人工干预,在提高精确度的同时有效保证了客观性。

针对反演震源机制时欠缺误差估计的问题,本文借鉴了Hardebeck and Shearer

(2002) 对 P 波初动极性反演方法改进的思路——首先估计观测数据的随机误差大小,据此模拟随机误差,并将其加入原始数据生成多组模拟数据集,最终反演得到一系列误差范围内的解集。该方法不仅估计了误差,且使得反演结果更稳定 (Hardebeck and Shearer, 2002)。将该思想应用到波形反演震源机制的问题中,利用评估噪声随机模拟多套波形数据集,并用每套数据分别进行反演,得到包含多次反演结果的解集,并对解集统计分析得到解的误差 (为方便叙述称其为模拟分析法)。本文方法与郑建常等(2015) 或Efron (1979) 的重采样类方法不同的是每次反演的数据并非原始数据集的子集,而是与数据集等价的模拟数据集,保留了原数据集的样本大小,更重要的是每套数据均具有一致的数据分布结构。所以对观测数据的数量要求相对降低,能比重采样类方法更好应用于台站记录较稀少的地震事件。

为了验证本文提出权重优化方案和误差评价方法的有效性,基于 CPS 反演程序进行了一系列理论试验,分别检验权重优化效果和误差估计与理论预测是否吻合。对同一个设定条件下的模拟地震进行了三次试验,分别测试误差评价时重复反演次数的设定值,误差评定方法对噪声的反应情况,权重优化的效果。第一次试验研究误差评价时反演的重复次数对最终结果的影响,用以为该方法在应用时选择合适的反演次数。试验分别尝试了重复 20 次,40 次,60 次,80 次和 100 次,结果发现该方案对反演次数不是特别敏感,结果基本一致且可信。为保证样本量充足,选定 100 次为默认反演次数。第二次试验测试结果误差对数据噪声的反应是否合理,对理论事件加噪时分别加了低,中,高,超高强度噪声,反演结果确实体现了误差由低到高的趋势,而且理论真值均在误差范围内,表明了本文误差估计的真实性和稳定性。第三次试验则分别设定了单独信噪比加权,单独振幅调节加权,信噪比和振幅调节联合定权三组对照组。三组对照组反演结果均在误差范围内包含真值,但是综合看来联合定权的平均误差是最小的、体现了联合定权的优越性。

为了体现本文方法的实际应用性,以 2013 年 4 月 20 日的芦山地震为例,分别 采取单独振幅调节加权、单独信噪比加权以及振幅调节和信噪比调节联合加权的策略 进行三次反演,并利用本文的误差估计方法对三次反演的结果进行评价。通过对结果的合理性及平均误差两方面进行讨论,以真实案例证实本文联合加权策略反演结果最优,对应的震源机制解为(走向 200°,倾角 38°,滑动角 89°),震源深度 18km,与其它研究者的研究成果有很好的一致性,且与震源区的应力及地质构造情况均相互吻合。

第二章 原理分析

2.1 震源基础概念

1906年旧金山发生了一次在地震学上具有重在研究意义的地震,地震前后对圣安德烈亚斯断层的研究结果 (Milne, 1910) 使人们普遍认为发生地震的原因是震源处的断层发生了滑移错动,巨大的势能转化为了热能及地震波等能力。这种错动可由位错理论进行解释,位错理论认为地震的发生是因为应力长期缓慢的大量积累,最终达到了断层锁定的极限,引发断层面 (原有断层或地震新生断层) 两侧发生突然的位错,导致了应力释放并形成地震。自此以后,对于地震震源的研究就开始集中到断层面的研究上。通常认为断层面两侧的应力在地震发生前后都是连续的,只有位移在断层面两侧突然间断,所以研究清楚断层面上的所有运动学信息是研究整个震源过程的主要内容。如果进一步简化,将地震发生时断层的位错视为纯剪切的点源位错 (事实证明该简化很多情况下是合理的,且本文只讨论该情况),则利用三个描述断层的参数便可完整描述震源的物理过程 (不考虑时间函数),并称该三参数为震源的机制解。求解震源机制的过程便是求解该三个参数的过程,该三参数具体定义如图2.1所示 (程万正等,2006)。

图 2.1: 震源机制三个参数的具体意义

2.2 波形拟合反演

2.2.1 波形分解

理论研究表明,同步地震点源 (Silver and Jordan, 1982) 所激发的地震波场如式 (2.1)(Jost and Herrmann, 1989)。

$$d_n(x,t) = M_{ki}[G_{nk,i} * s(t)]$$
(2.1)

其中 s(t) 为震源时间函数,Mkj 为地震矩张量, $G_{nk,i}$ 为格林函数,从上式可知理论波形 d 与 Mi 为线性关系。根据Kikuchi and Kanamori (1991) 的分解方法,任意地震矩张量均可由 6 个简单地震矩张量通过线性组合而成,如式 (2.2)。

$$M = \sum_{k=1}^{6} a_k M_k \tag{2.2}$$

式 (2.2)中等式右边的 M_k 如式 (2.3)所示。

$$M_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad M_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$M_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad M_{5} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad M_{6} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(2.3)$$

 M_1 - M_6 为 6 个简单的地震源,其中 M_6 代表爆炸源,其余 5 个均为剪切位错源,根据式 (2.2)和式 (2.3)推导可知系数 a 与 M 各分量间的对应关系如式 (2.4)和式 (2.5)。

$$M = \begin{bmatrix} a_2 - a_5 + a_6 & a_1 & a_4 \\ a_1 & -a_2 + a_6 & a_3 \\ a_4 & a_3 & a_5 + a_6 \end{bmatrix}$$
 (2.4)

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} = \begin{bmatrix} M_{12} \\ (M_{11} + M_{33} - 2M_{22})/3 \\ M_{23} \\ M_{13} \\ (2M_{33} - M_{11} - M_{22})/3 \\ (M_{11} + M_{22} + M_{33})/3 \end{bmatrix}$$

$$(2.5)$$

将式 (2.2)代入式 (2.1),并省略波形分量指标 n 可得到式 (2.6)。

$$d = \sum_{k=1}^{6} a_k d_k \tag{2.6}$$

再将式 (2.5)所示的 a 与 M 关系代入式 (2.6)可得到 d 关于 M 与 d_k 的式 (2.7)。

$$d = M_{11}(1/3d_2 - 1/3d_5 + 1/3d_6) + M_{12}d_1 + M_{13}d_4 + M_{22}(-2/3d_2 - 1/3d_5 + 1/3d_6) + M_{23}d_3 + M_{33}(1/3d_2 + 2/3d_5 + 1/3d_6))$$
(2.7)

为进一步简化,将式 (2.7)中 M 矩阵的 6 个分量依次记为 $M_1, M_2, M_3, M_4, M_5, M_6$,并将与 Mi 相乘的关于 d_k 的多项式简记为 G_i ,于是得到了简洁的 6 项求和的理论波形式 (2.8)。在此我们按照Stein and Wysession (2003) 专著中关于地震矩反演章节中对格林函数的推广定义,将式 (2.8)中的 G_i 也称为格林函数,此格林函数即是我们之后在 CPS 反演中需要用到的。

$$d = G_i M_i (i = 1, 2, \dots 6) (2.8)$$

于是任意地震矩产生的波形均可由其矩张量矩阵和 6 个格林函数线性叠加得到,而格林函数又可由 6 个已知基本地震矩激发的波形 $d_k(k=1,2,...6)$ 叠加得到。由于以上运算均是线性运算,在 d_k 已知的情况下,在计算机中经两次迭加得到 d 速度非常快。

至此,我们已经将任意剪切位错源的波形分解为 6 个基本震源波形的线性叠加,而叠加的系数可由该位错源的震源机制唯一确定。现在的关键问题转化为计算 6 个基本震源对应的理论波形 d_k ,这可通过之后要介绍的格林函数库快速实现。

2.2.2 格林函数库

通常情况下天然地震由断层间错动造成,震源均近似纯剪切位错源。习惯上人们用破裂断层的三个角度参数——走向,倾角和滑动角来更直观地描述震源机制,地震

矩张量与震源机制三个参数的对应关系如式 (2.9)所示 (Aki and Richards, 1980)。

$$\begin{cases}
M_{11} = -M_0(\sin\delta\cos\lambda\sin2\phi_s + \sin2\delta\sin\lambda\sin^2\phi_s) \\
M_{12} = M_0(\sin\delta\cos\lambda\cos2\phi_s + 1/2\sin2\delta\sin\lambda\sin2\phi_s) \\
M_{13} = -M_0(\cos\delta\cos\lambda\cos\phi_s + \cos2\delta\sin\lambda\sin\phi_s) \\
M_{22} = M_0(\sin\delta\cos\lambda\cos2\phi_s - \sin2\delta\sin\lambda\cos^2\phi_s) \\
M_{23} = -M_0(\cos\delta\cos\lambda\sin\phi_s - \cos2\delta\sin\lambda\cos^2\phi_s) \\
M_{33} = M_0\sin2\delta\sin\lambda
\end{cases}$$
(2.9)

其中, ϕ_s 是走向, δ 是倾角,lambda 是滑动角。 M_0 是最早由Aki (1966) 提出的用来度量震源长周期辐射的强度,最初称为地震矩。由于是一个标量,现在又叫作标量地震矩,代表了地震的强度。将式 (2.9)代入式 (2.8)即将公式转化为了理论波形关于震源机制三参数的形式。

现在我们进一步研究 d_k 如何计算, 在均匀介质 (Ben-Menahem, 1963) 和层状介质 (Haskell, 1964) 模型的面波波场辐射理论基础上, Wang and Herrmann (1980) 进一步 得到了剪切位错源在层状速度模型中所激发的地震波场, 在柱坐标频域下的表示, 如式 (2.10)所示。

$$\begin{cases}
U_z(r,\phi,0,\omega) = Z_{SS} \cdot s_2 + Z_{DS} \cdot s_3 + Z_{DD} \cdot s_1 \\
U_r(r,\phi,0,\omega) = R_{SS} \cdot s_2 + R_{DS} \cdot s_3 + R_{DD} \cdot s_1 \\
U_\phi(r,\phi,0,\omega) = T_{SS} \cdot t_2 + T_{DS} \cdot t_1
\end{cases}$$
(2.10)

式 (2.10)中各符号意义如2.11所示,2.11中 ϕ 是地震观测台站相对震源的方位角, λ , δ , ϕ_s 分别代表断层滑动角,倾角,走向。式 (2.10)中的 Z_{SS} , R_{SS} , T_{SS} 分别对应于 $\delta=90^\circ$, $\lambda=0^\circ$ 的纯走滑型断裂的理论地震图的垂向、径向、切向分量; Z_{DS} , R_{DS} , T_{DS} 分别代表 $lambda=90^\circ$, $\delta=90^\circ$ 的纯倾滑型逆冲断层激发的地震波的垂向、径向、切向分量; Z_{DD} 和 R_{DD} 分别对应于倾角 $\delta=45^\circ$,滑动角 $\lambda=90^\circ$ 的逆冲断层激发的理论地震波的垂向、径向分量。它们 8 个是合成任意剪切位错源理论地震图所需要的全部基本函数,它们是对波数 K 的积分表达 (Wang and Herrmann, 1980)。格林函数库即由大量的不同震中距,不同震源深度对应的这 8 个基本函数组成。

$$\begin{cases} s_1 = 1/2sin\lambda sin2\delta \\ s_2 = cos\lambda sin\delta sin2(\phi - \phi_s) + 1/2sin\lambda sin2\delta cos2(\phi - \phi_s) \\ s_3 = -cos\lambda cos\delta cos(\phi - \phi_s) + sin\lambda cos2\delta sin(\phi - \phi_s) \\ t_1 = cos\lambda cos\delta sin(\phi - \phi_s) + sin\lambda cos2\delta cos(\phi - \phi_s) \\ t_2 = cos\lambda sin\delta cos2(\phi - \phi_s) - 1/2sin\lambda sin2\delta sin2(\phi - \phi_s) \end{cases}$$

$$(2.11)$$

利用式 (2.9)可推算出式 (2.3)中所示 6 个基本地震所对应的震源机制,即各地震的 3 个角度参数,将其代入式 (2.10),并积分变换到时间域,便得到了 d_k ,进而得到 d_k 。而根据式 (2.11)知 s_1 、 s_2 、 s_3 、 t_1 、 t_2 等量均与 ω 无关,结合式 (2.10)可推得时间域的 Z_{SS} , R_{DD} 等量与 d_k 的关系也是线性的,可通过快速线性叠加得到。

综上分析知, 计算 d 的关键在于得到该速度模型下, 对应震中距和震源深度的 Z_{SS} , R_{DD} 等基本函数。而计算该函数由于要经过大量积分运算, 计算速度非常慢, 在 迭代或搜索反演过程中实时计算一系列该基本函数是不可取的。在实际工作中通过将 研究区域按一定精度格点划分, 并事先计算好各格点的基本函数, 并将大量的各点所 对应的基本函数归档存储为格林函数库。之后理论波形数值计算需要时, 直接在格林 函数库中调用对应震中距和震源深度的基本函数即可, 这样便实现了 d 的快速计算。 经检验, 这样叠加计算理论波形的速度非常快, 能满足格点搜索时大量理论波形图计算的需要。

2.2.3 格点搜索

CAP 与 CPS 方法计算波形的拟合度时使用了不同的目标函数, CAP 方法先将理论波形与实测波形通过互相关运算进行时差调整, 再计算调整后的波形间残差范数 (L1 或 L2)(Zhao and Helmberger, 1994), 该残差范数定为为最终的目标函数, CPS 方法则直接将理论与实测波形的互相关函数作为目标函数。为了单独分析权重因素对反演的影响, 对比 CPS 与 CAP 不同定权的差异, 后文反演试验及讨论均基于 CPS 的目标函数方案。CPS 方法中的互相关目标函数 Fit 如式 (2.12)定义。

$$Fit = \left(\int_{T_b}^{T_e} Y(t)G(t)dt\right)^2 / \left(\int_{T_b}^{T_e} Y(t)Y(t)dt \cdot \int_{T_b}^{T_e} G(t)G(t)dt\right)$$
(2.12)

在计算机中进行数值计算时使用式 (2.13)所示离散形式。

$$Fit = \left[\sum_{j=1}^{N} \sum_{m=1}^{6} yg(j, m, k) M_{m}\right]^{2} / \left[\sum_{j=1}^{N} yy(j)\right] \left[\sum_{j=1}^{N} \sum_{m=1}^{6} \sum_{n=1}^{6} gg(j, m, n) M_{m} M_{n}\right]$$
(2.13)

式 (2.13)中各符号表示的含义如式 (2.14)和式 (2.15)所示。

$$\begin{cases} yy(j) = \sum_{h=1}^{H(j)} y(j,h)y(j,h)WT(j) \\ gg(j,m,n)) = \sum_{h=1}^{H(j)} g_m(j,h)g_n(j,h)WT(j) \\ yg(j,m,k)) = \sum_{h=1}^{H(j)-|k|} y'(j,h)g'_m(j,h)WT(j) \end{cases}$$
(2.14)

$$\begin{cases} y'(j,h) = y(j,h+k) & k \ge 0 \\ g'(j,h) = g(j,h) & k \ge 0 \\ y'(j,h) = y(j,h) & k < 0 \\ g'(j,h) = g(j,h-k) & k < 0 \end{cases}$$
(2.15)

N 为参与反演的观测波形总道数,H(j),WT(j) 分别为第 j(j=1,2,...N) 道波形的总采样点数及权重因子,y(j,h),g(j,h) 分别为式 (2.8)中,第 j 道观测波形 d(j) 及其对应的格林函数 Gi(j) 经过相同的数据处理 (去噪等),可直接用于反演的波形的第 h(h=1,H) 个采样点,k 为使 yg(j,m,k) 取得最大值的整数,它是 Tan 等 (Tan et al., 2006) 提出的到时差平移参数,可以有效地减小系统性误差的影响。本文计算的矩震级 M_w 是由波形振幅比值计算得到的标量矩转换得到的,采用如式 (2.16)所示 2005 年被 CoSOI(Commission on Seismological Observation and Interpretation) 采纳的 IASPEI 标准,其中 M_0 的单位为 dyne-cm。

$$M_w = 2/3(logM_0 - 16.1) (2.16)$$

理论地震图可用多种方法计算,本文通过之前章节所述的用格林函数库快速合成理论波形,而格林函数库则用 CPS 软件包中的 hprep96,hspec96,hpulse96 子程序计算得到,该子程序的基本原理是波数积分法。反演时考虑到震源机制解的全空间——走向(0°,360°),倾角(0°,90°),滑动角(-180°,180°)较小,通常采用全空间格点搜索法。

2.3 数据质量影响

2.3.1 数据质量简介

一般反演的概念是指在给定观测数据情况下,选定一个反演标准,即目标函数,如误差最小二乘标准(简称最小二乘标准),模型最小二范数标准等,然后依赖待反演模型与观测数据的理论关联公式,按选定的目标函数寻找最优的模型。具体寻找最优模

型的方法称为反演方法,如线性反演方法 (牛顿法,共轭梯度法等),非线性反演方法 (模拟退火,遗传算法,以及本文使用的格点搜索方法等)。然而需要注意,在理想情况下 (即不考虑计算过程中产生的各种数值误差,各算法的复杂度,理论公式的近似性,结构性系统误差等),待求模型的最终结果与反演算法是无关的,而是由反演标准和输入观测数据两者唯一决定,不同反演算法差异只是体现在寻找该最优解时的效率和准确度上。

因此,当反演标准确定的情况下 (例如本文反演所使用的波形互相关拟合标准),对反演结果具有决定性的就是原始的观测数据。不同的观测数据决定了不同的反演结果,良好的观测数据对应着与真值接近的反演结果。通常我们用数据质量来描述观测数据的好坏,数据质量又可分为数据信噪比和数据结构两方面。

2.3.2 数据信噪比

顾名思义,数据信噪比代表在观测数据中,难以分离的有用信号与无用噪声的比值,是对数据真实程度的一个评价。信噪比越差,代表该数据包含的真实有用信息越少,而随机噪声对反演结果产生的不确定性干扰也可能越大。如果噪声超过了一定极限值,真实信号完全淹没在噪声中,反演结果基本由噪声决定,完全失去了参考价值,甚至产生严重的误导作用。所以实际反演时,会采用一系列办法尽量争取高信噪比输入,以保证结果的可靠性。常用的手段如高噪声数据剔除、滤波压制噪声、合理分配权重抑制强噪声数据影响等。

2.3.3 数据结构

数据结构在本文中指代数据对待求模型的约束力度,同时包括数据容量和分布状况。在反演过程中体现为观测方程对待解模型参数能否确定,较差的数据结构对应着反演中的模型欠定情况。实际反演中,观测数据的数据结构越差,对待求模型的约束效果越弱,越可能出现在同一反演标准下多解的情况,并且各解在当前反演系统下等价,无法区分。在波形反演中,为了改良数据结构,可以选用方位分布良好的台站数据作为反演输入,通过合理权重配比调整各数据在反演中的影响,以对模型参数有更强约束。

2.3.4 小结

数据信噪比和数据结构是决定数据质量的两个相对独立的方面,单纯高信噪比并不代表好的数据质量,若数据结构太差,可能导致反演时找到一系列完美符合反演标

准的解,却无法分辨其中哪个解才是真实的。相反,即使信噪比稍低,但若具有同样良好的数据结构,通过反演解算即使无法找到达到完美反演标准的解,但最优解却与其它解差别比较明显,易于保证解的唯一性。

反演时,需要同时兼顾数据质量的两方面,通过数据预处理或合理的权重配比能 一定程度改善数据结构。

2.4 定权优化方案

反演通常采用大量波形数据,而数据在反演中所占权重会直接影响到最终结果,因此合理设置 WT 值非常重要。CPS 方法从数据的信噪比着手定权,考虑到信噪比随震中距增加而下降的趋势,将权重设为震中距的反比例函数,台站震中距越远的数据权重越小。CAP 方法 (Zhu and Helmberger, 1996)则注意到波形间振幅的差异,高振幅的波形数据对反演结果起主导作用,导致低振幅波形的数据信息得不到充分利用。考虑到几何扩散是导致振幅衰减的重要原因,CAP 令 WT 为震中距的幂函数,使得震中距远的台站权重相对较大,以补偿振幅的衰减。综上可知 CAP 和 CPS 方法的权重分别侧重考虑调节波形振幅和信噪比的差异。振幅调节的作用是当有振幅差异较大的多道波形参与反演时,防止强振幅的波形主导反演结果,使不同振幅的波形对反演具有相当的贡献,所以当有大量有振幅差异的波形数据参与反演时,为充分利用各道波形的信息约束反演结果必须设置振幅调节权重因子。但另一方面,振幅调节权重会进一步放大数据信噪比的差异,所以还应合理考虑信噪比定权,使高信噪比数据在反演中具有较大的影响力。基于上述分析,本文联合 CPS 与 CAP 的加权方案,将信噪比权重项 W1 与振幅调节权重因子 W2 的乘积设为最终的权重因子 WT。

CPS 和 CAP 的权重均用震中距的函数进行计算定值,这主要考虑到地震波有衰减和几何扩散效应,随着震中距增大波形的振幅会减小,从而数据信噪比也降低。但实例计算发现简单的函数难以精确描述波形振幅或信噪比与震中距的关系,本文以 2013 年芦山地震未经滤波处理的远场地震波数据为例,计算分析信噪比及振幅随震中距变化的情况。首先假设 P 波之前的噪声数据为该台站观测数据的噪声平均样本,并设其为高斯白噪声,我们分别用观测波形的标准差 (WaveStd) 和噪声的标准差 (NoiseStd)来衡量其振幅强度,并用它们的比值 NoiseStd/WaveStd 评估数据的相对误差。计算得到波形相对误差随震中距变化的关系如图2.2(a) 所示,可以看到相对误差随震中距变化比较散乱。为了使图像更直观展示相对误差随震中距的变化趋势,图2.2(c) 对图2.2(a) 中数据点进行最小二乘线性回归分析,将数据点进行连线并用虚线表示其回归直线,可以发现相对误差随着震中距增大而明显增加,表明信噪比确实随着震中距增大而降低。另一方面,如图2.2(d) 所示,地震波传播的几何扩散效应导致波形振幅

图 2.2: (a) 不同震中距相对误差的分布,(b)(c)(d) 分别为噪声、相对误差及波形振幅与震中距关系及统计回归线 (虚线)

强度随着震中距增大逐渐降低。

虽然上述的线性回归分析表明震中距与波形的信噪比或者振幅存在一定负相关性,但从图2.2(c) 和 (d) 中也明显看到相对误差和波形振幅强度随着震中距单调趋势变化过程中均有着不可忽视的波动性,导致它们与震中距的关系难以用简单的初等函数进行描述。这主要是因为波形振幅不仅仅由震中距完全决定,地下浅层结构的复杂性等因素也会对振幅造成难以估计的影响,所以尽管图2.2(b) 所示的随机噪声强度随震中距变化一直较平稳,但是作为波形噪声与振幅比值的相对误差却如图2.2(c) 所示有很大的波动性。综上分析,通过震中距的函数计算得到的信噪比或振辐调节权重因子是粗糙的。此外函数的具体确定也有较强主观性,如Zhu and Helmberger (1996) 通过震中距估计振幅变化幅度时,使用的估计公式中 r_0, p 参数经常通过经验进行赋值,其具体数值就可能因人而异。鉴于以上两个原因,本文舍弃用震中距表示权重的方法,而利用每道波形本身的数据信息直接进行针对性定权,对数据处理后的每道波形,用前文标准差比值的方法评估相对误差 RelativeError,并设 |1-RelativeError| 为信噪比权重因子 W1,用波形的 L2 范数 L2norm 估计平均振幅,并构造表达式 1/L2norm

2.5 误差评定方法

实际工作中利用随机样本分析总体的统计学原理,主要分为三大步,具体可参考如图2.3所示的流程图。

STEP1 数据噪声评估:该步主要对原始观测数据 DATA0 分析出随机噪声分布,供之后完成数据模拟使用。为得到噪声分布又分为两小步,第一步提取纯噪声数据,首先假定在台站接收特定地震事件所激发波形的那段时间,台站附近的噪声是相对稳定的(接收特定事件波形很短,一般噪声不会突发变化),这样可以截取地震波首波到达前的一段数据作为该期间的纯噪声样本。第二步估计噪声概率分布函数,将仪器接收到的噪声序列视为高斯白噪声(大量随机因素导致的误差总和常可做此近似),通过对地震波到达该台站前所记录的噪声序列样本进行参数估计,获得高斯分布的期望和方差,便得到了各台站数据噪声对应的概率分布函数 F(x);

STEP2 模拟数据样本:该布利用上一步得到的各台数据噪声的分布函数 F(x) 以及原始观测数据 DATA0 来生成大量模拟数据。可细分为两小步,第一小步生成模拟噪声,根据 F(x) 函数随机生成噪声,根据 DATA0 中各道波形的时窗长度和采样间隔分别生成同样采样点数的随机噪声,将包含各台站波形等时窗长度的噪声集合记为NOISE1,独立重复该噪声生成过程,可依次得到 N 个随机噪声集合的样本 NOISE1,NOISE2...NOISEN,任一个噪声样本 NOISEi(i=1,2,3..N) 中均包含有对应于全部各观测台站的随机噪声。第二小步进行模拟数据生成,以 DATA1 为例,将 NOISE1 中的噪声数据和 DATA0 中对应台站分量的原始观测数据相互叠加,便合成了对应于各台站的一套新波形数据,将其记为模拟数据 DATA1,一般化以上过程,依次将 NOISEi(i=1,2,3..N) 中分别加回到原始数据样本 DATA1,一般化以上过程,依次将 NOISEi(i=1,2,3..N) 中分别加回到原始数据样本 DATA0,便生成了包含合理随机噪声的 N套数据样本 DATA1,DATA2...DATAN。这 N套模拟数据加上原始数据 DATA0 一起够成反演数据集;

STEP3 震源机制误差估计:利用每个数据样本 DATAi(i=0,1,2,3...N) 分别独立进行震源机制反演,可以得到误差范围内随机分布的多个震源机制 M0,M1,M2...MN,所有 Mi(i=0,1,2,3...N) 组成了一个解集样本。由统计学原理,当 N 足够大,且该解集样本包含的震源机制随机性足够好时,则解集样本的分布情况可以描述原问题中震源机制的误差情况。

图 2.3: 本文误差评定方法详细流程

第三章 理论实验

3.1 实验设定说明

检验本文提出的权重优化方案和误差估计方法的有效性,关键是要看最终反演的 震源机制是否为"真实"的震源机制,以及最终结果对数据随机噪声的反应,即误差 大小。

为了能事先知道"真实"的震源机制,从而检验本文方法的有效性,设计了一个理论实验。本实验设置了一个 Mw6.5 级,震源深度为 17km 的地震,其震源机制为走向 250°,倾角 40°,滑动角 82°,该参数设置的一个考虑因素在于与之后的应用实例,便于将结果进行相互比较。在 ak135 地球结构 (Kennett et al., 1995) 下用波数积分法计算了震中距为 4500km 的 8 个台站的理论波形,为使方位分布满足约束要求,8 个台站方位角分别选定为 0°、45°、90°、135°、180°、225°、270°、315°。为方便述,将方位角从小到大的台站依次称为 STA1、STA2、STA3、STA4、STA5、STA6、STA7、STA8、其分布如图 3.1所示。

为了保证实验条件设定的合理性,首先要求满足原始数据对反演有足够约束力度。理论计算的原始无噪波形如3.2所示,对于无噪数据,信噪比已经最大化,加权以及滤波等处理并不会影响反演结果。直接利用之后使用的 P,S 联合反演方法对该理论波形进行反演,结果与设定的震源参数完全一致,且拟合度为 1(最高值,代表完全拟合),表明给定的数据结构具有反演该地震的能力,且计算机内离散化和数值舍入误差的影响可忽略不计。

3.2 权重优化检验

3.2.1 不同加权反演测试

本文提出的权重优化方案是基于前人单独考虑振幅比加权或信噪比加权的方法, 为了实际检验联合加权是否如理论分析一般对反演结果有优化作用,设置了一组对照 实验用于检验。一共分为3组对照组,均采用以上章节理论实验相同的事件以及数据。 但为了体现信噪比权重的作用,将原始噪声设置为高等强度,重复次数参数N设置为 100,用P波和S波联合反演,以体现振幅比权重在不同振幅调节的作用。

图 3.1: 理论实验的台站分布, 其中五角星表示震中, 倒三角表示台站

图 3.2: 理论实验中通过波数积分法计算的各台站理论波形

三组对照组反演得到的结果如表 3.1所示,本实验仍旧使用了之前一样的方位分布较好的台站,可以发现即使在数据结构较好的情况下,使用完全一样的反演数据,以及同一反演程序,三组反演的结果还是有可见差异的。经过不同加权反演后,虽然结果均离真值偏差不大,但明显可以看到,W1 加权拟合度最高,因为它尽可能抑制噪声影响,降低高噪声数据权重,以追求整体数据的最大拟合度,其震源机制也与真值较接近,但震源深度却与真实深度偏差了 1km。而 W2 虽然由于没有经过信噪比加权,拟合度在三组中最差,可震源深度却没有明显偏差,不过震源机制比 W1 略差。而对于联合了 W1 与 W2 加权的 WT 加权反演组,由于同时考虑了数据信噪比以及数据不同振幅权重,其拟合度情况不致于太低,而且综合来看震源深度和震源机制更接近真值 (虽然差异不大,但毕竟是完全一样的反演数据)。

走向/° 倾角/° 滑动角/。 深度/km 拟合度 (Fit) 震级 (M_w) 真值 82 1 6.50 250 40 17 W1252 40 82 18 0.916.52W2 245 39 78 170.756.47WT250 40 81 17 0.846.50

表 3.1: 三种加权方案得到的解

以下分别从数据源差异,拟合度意义和加权的直接影响针对反演结果进行分析。

反演数据源主要包括 P 波和 S 波数据,在纯剪切位错源情况下,所激发的 S 波 震相的振幅要明显高于 P 波振幅。但这两震相数据所加的噪声强度是相同的,因而两种数据中,S 波的信噪比相对较高。另一方面,与 P 震相接近的远震 pP 及 sP 震相对震源深度具有较好的约束作用,而它们已经包含在反演所截取的 P 波时窗中,也即 P 波数据对震源深度约束效果相对比较强。

在格点搜索过程中通过各格点计算的拟合度高低来直接选定最优解。考虑到波形中所加的噪声是随机白噪声,具有高度随机性,决定了它基本不可能被理论波形完全拟合。所以噪声在干扰反演结果的同时,也伴随着数据拟合度降低,反演受随机噪声的影响越大,其拟合度通常相应会越低。因此拟合度 Fit 暗示了噪声对结果的干扰程度,是结果可信度的象征。

对 W1 信噪比加权反演组,对高信噪比的 S 波赋予了较大权重,加之 S 波本身的高振幅更使得反演中 S 波数据对反演结果占主导作用,最终导致其结果拟合度在三组对照组中最高。但正因为 P 波的贡献被减弱,因而 P 波的深度约束没能很好体现,该组反演的震源深度是在三组对照组中唯一有可见偏差的 (超过 1km 格点搜索精度)。

对于 W2 加权对照组,由于进行了振幅调节加权,振幅大的 S 波权重相对削弱,而 P 波的作用加强,使低振幅的 P 波在反演中能有同等影响力,所以深度得到了较好约束。然而在放大 P 波权重的同时也放大了 P 波中噪声的权重,考虑到 P 波信噪比较低,在 P 波中占比较大的噪声也在反演中对结果起到了更严重的干扰作用,理所应当的拟合度会降低,较低的拟合度象征着结果较差的真实可信度。最后的联合信噪比和振幅调节的 WT 加权反演组,一方面通过振幅调节权重 W2 对具有振幅差异的不同波形合理分配了权重,使得具有不同振幅的 P 波和 S 波信息均在反演中有相对平等的贡献,另一方面同时施加的 W1 权重在一定程度上压制了高噪声对震源反演的干扰。最终反演结果的拟合度处于 W1 单独加权对照组和 W2 单独加权对照组之间,反演结果具有可接收的可信度,并且更多的有用信息使得对震源机制和震源深度的约束作用更强、结果更为稳定。

以上分析说明信噪比和振幅调节联合加权确实相对于其单独加权更合理,在反演时能在一定程度上优化结果,WT 加权得到的反演结果综合来说更可靠、准确地反映了真实情况。

3.3 误差评定检验

3.3.1 理论实验反演过程

真实情况下的数据都是有噪声的,这也正是本文误差评价所关心的误差来源。本文采用高斯白噪声给理论波形加噪,以模拟最原始的"观测"数据。将加了随机产生的高斯白噪声的理论波形视为台站处接收到的"观测波形",为方便描述,将该套数据整体记为 DATA0。

利用本文的误差估计方法法对震源机制进行反演并估计误差完全的步骤如下: 1. 首先估计原始噪声,用参数估计方法对 DATA0 中每道数据波形分别估计其噪声的强度,估计时选取 P 波到达前的空白震相期波形作为该道波形的噪声数据样本,并将其视为符合高斯分布的序列,从而可利用参数估计得到该噪声分布的标准差; 2. 而后模拟等价噪声,利用上一步得到的 DATA0 中各道波形噪声的标准差分别生成与原波形时窗长度相等的高斯白噪声序列; 3. 生成模拟带噪数据,并上步生成的高斯白噪声与DATA0 中各道波形按噪声标准差对应相加,便得到了第一套模拟带噪数据 DATA1; 4. 生成多套模拟数据,重复步骤 2, 3, 每重复一次可得到一套新的模拟带噪数据,假设一共重复 N 次,便得到 DATA1,DATA2...,DATAN,总共 N 套模拟数据; 5. 重复反演得到解集,对原始观测数据和模拟数据中的每套数据 DATAi(i=0,1,2..N),采用同样的数据处理方式和权重方案,分别利用 CPS 程序进行独立反演,得到的对应的震源

机制解 Mi(i=0,1,2,...N); 6. 统计解集得到误差信息,利用统计方法对 Mi(i=0,1,2...N) 样本进行估算得到均值、协方差及相关系数信息。至此便在用"观测"数据反演得到 震源机制 M0 的同时得到了 M0 各项参数的协方差等误差信息。

在理论实验的每次独立反演过程中,均采用同样的数据处理方式,并用震相中的P波与S波(SV,SH)进行联合反演。为了尽可能模拟真实情况,数据进行了时窗截取,噪声滤波等处理。P波数据截取了相对P波到时(-10s,30s)的时窗,并进行(0.01-0.1Hz)带通滤波;SH波滤波频率为(0.05-0.1Hz),时窗选为相对其震相到时(-20s,40s)的范围;SV波的波形与其它震相交叠延续,时窗设定较长,为相对到时(-30s,150s)范围。在格点搜索过程中为保证效率分步进行,第一步全空间快速搜索,步长为10度,第二步在上一步搜索的最优点附近进行局部精搜索,步长为1度。

3.3.2 不同噪声强度测试

由于反演公式复杂,而且反演数据量大,直接得到数据误差到反演模型的误差传播矩阵非常困难。因此在模拟实验中,给定数据误差的情况下,无法得到反演模型的误差期望,用于检验。故在误差方法的理论检验实验中,我们改变了将检验目标改为两个。一是检验理论真值是否在反演结果的误差范围内,这是最基本也最重要的要求;二是检验结果的误差大小是否与原始噪声强度有正相关关系,根据误差传播规模,最终的模型误差为误差传播矩阵与原始数据噪声误差之积。

为检验该两目标,分别设置多组对照组,每组的数据原始噪声强度大小不同,其余参数均一致。对照组共分为 4 组,各组噪声均为高斯白噪声,考虑到波形的振幅强度基本为 10^{-5} m 量级,将噪声标准差大小分别设置为低噪声组 $1.0\cdot 10^{-6}$ m,中噪声组 $2.5\cdot 10^{-6}$ m,高噪声组 $5.0\cdot 10^{-6}$ m,超高噪声组 $1.0\cdot 10^{-5}$ m,并将误差评价方法中重复 反演次数 N 定为 100。

向理论波形加入不同强度的高斯白噪声,生成的"观测波形"DATA0 经搜索反演和本文误差估计,得到震源机制均值和误差中误差,具体结果如表 3.2所示。

协方差	走向/°	倾角/°	滑动角/°	相关系数	走向/°	倾角/°	滑动角/°
走向/°	1.0619	-0.0365	0.5275	走向/°	1	-0.0991	0.6085
倾角/°	-0.0365	0.1275	0.0175	倾角/°	-0.0991	1	0.0583
滑动角/°	0.5275	0.0175	0.707	滑动角/°	0.6085	0.0583	1

表 3.2: 低强度噪声组误差协方差和相关性

表 3.3: 中强度噪声组误差协方差和相关性

协方差	走向/°	倾角/°	滑动角/°	相关系数	走向/°	倾角/°	滑动角/°
走向/°	5.7756	-0.2966	3.7714	走向/°	1	-0.1642	0.7026
倾角/°	-0.2966	0.5651	0.3579	倾角/°	-0.1642	1	0.2132
滑动角/°	3.7714	0.3579	4.9891	滑动角/°	0.7026	0.2132	1

表 3.4: 高强度噪声组误差协方差和相关性

协方差	走向/°	倾角/°	滑动角/°	相关系数	走向/°	倾角/°	滑动角/°
走向/°	34.8539	-5.3033	25.7959	走向/°	1	-0.4971	0.7634
倾角/°	-5.3033	3.2651	-4.6973	倾角/°	-0.4971	1	-0.4542
滑动角/°	25.7959	-4.6973	32.7579	滑动角/°	0.7634	-0.4542	1

考虑到搜索精度为 1°,并假设误差范围不超过 3 倍中误差大小,则得到的最终反演结果和可能误差范围如表 3.6。

利用模拟分析法得到的震源机制均值虽然使得三个参数都与真值出现了偏离,但是却给出了误差信息,而且不难发现均值与真值的偏差都在三倍估计标准差内,说明估计是有效的。此外,从表 3.2中的三个参数间相关系数可以发现,在此反演中三间是有较强相关性的。相关系数的符号暗示了受到噪声影响时,在统计意义上震源机制三个参数间变化趋势的关系。标准误差估计了数据随机噪声引起的震源机制偏差大小,而相关系数则预测了震源机制各参数受扰动时的模式,而非是杂乱无章的。

从反演结果可以看出,在不同噪声强度的对照组中,所给出的最终结果的误差范围内均包含真值——走向 250°,倾角 40°,滑动角 82°,验证了本实验的第一个目标——有效性。而从随机性角度,一次反演的结果可能在误差范围内取任意不可预料值。各组实验均有不同程度的误差,表明即使用信噪比较高的,数据结构分布很好的优质数据作为输入数据,反演时得到的结果仍然可能与真值有一定偏差。实验显示,在格点搜索反演震源机制时,即使较低数据随机噪声的影响仍然不可忽略,表明了误差分析在的必要性。

另一方面,随着原始数据噪声逐渐增强,即使数据经过滤波提高信噪比,其反演结果的均值与真值偏差也倾向于越来越大。但同时,估计的误差范围也伴随着增长,仍然保证了真值在误差范围内。误差大小与数据噪声基本保持了正相关的趋势,符合关于误差性质检验的第二个目标。随着反演结果的误差逐渐变大,精确度变低,其参考性和科学意义也随之降低。如在本实验中,噪声强度和有效波形振幅相当的超高噪声

表 3.5: 超高强度噪声组误差协方差和相关性

协方差	走向/°	倾角/°	滑动角/°	相关系数	走向/°	倾角/°	滑动角/°
走向/°	101.05	-1.0465	101.852	走向/°	1	-0.0232	0.8525
倾角/°	-1.0465	20.1075	5.6095	倾角/°	-0.0232	1	0.1053
滑动角/°	101.852	5.6095	141.257	滑动角/°	0.8525	0.1053	1

表 3.6: 加不同强度原始噪声得到的解及误差范围

加噪强度	走向/°	倾角/°	滑动角/°
 无噪声	250	40	82
低噪声	250 + 3	40 + 3	82+3
中等噪声	250+8	40 + 3	83+7
高噪声	246+18	40+6	78+17
超高噪声	245+30	42+14	84+36

情况下,震源机制误差已经高于 30°,基本超出了参考应用的可接受范围,科学价值 很低。该结果体现了原始数据对于反演结果的重要性,原始数据质量决定了最终结果 的优劣。综上,本次不同噪声强度的对照实验表明本文误差估计方法可靠,其有效地 反映了不同数据随机噪声对反演结果造成的误差。在震源机制的格点搜索反演中,即 使高信噪比数据中噪声造成的误差也超过了搜索精度,不可忽略。由于原始数据质量 从根本上决定了最终结果好坏,及包含的科学意义,在实际工作中应该筛选优质观测 数据,及时剔除不可靠或劣质数据。为了吻合真实观测数据的信噪比,后续理论反演 中将噪声强度设置为中等强度,即 2.5·10-6m。

3.3.3 不同反演次数测试

在本文的误差评价方法中,主要利用随机统计原理,需要进行多次重复反演,其中反演次数 N 为人为设定。从统计学理论知道,为了满足样本对全体估计的可靠度,要求样本具有随机性,且样本容量不能过小。在本文的误差评价方法中,每一次重复反演时,均对数据的每一道波形的每一个采样点的噪声进行了随机生成,保证了统计要求的随机性。而每一道波形包含了大量的采样点,数据全体有不同台站不同分量的多道波形,因此总采样点数很大,以满足噪声影响统计时原始噪声的样本容量大小。为了确保重复反演次数设置合理,使误差统计方法生效,设置对照组分别对应不同重复

反演次数 N, 并对比实验结果。总共设置了 5 组对照组,分别将重复反演次数 N 设置为 20, 40, 60, 80, 100。

为了方便对比不同参数 N 的结果,以分析不同 N 对结果的影响,确认设置的 N 参数合理,将各对组结果统一列入表 3.7中。

表 3.7: 不同重复反演次数 N 对应的解及误差范围

反演次数	走向/°	倾角/°	滑动角/°
真值	250	40	82

从表中可以看出,各组反演结果的误差的三倍中误差范围内均包含理论真值,表明各反演对照组结果均准备可靠。在大量采样点噪声随机生成的保证下,不同反演次数的结果基本一致,体现了反演样本具有很高的随机性。在如此高随机性条件下,统计结果对总反演次数 N 不是很敏感。随着 N 的要求降低,可以有效减少重复计算带来的计算压力,应用中可根据实际情况和硬件能力考虑 N 的取值。为了更大程度保证结果可靠性,本文的后续计算中均将重复反演次数 N 设置为 100。

第四章 实例应用

4.1 案例选取

为了验证本文联合定权和误差评定的实用性,将本文方法应用到芦山地震以反应 其震源机制和误差。芦山地震发生于 2013 年 4 月 12 日,震级超过 Mw6 级,震源中 心在四川省雅安市芦山县附近,是继 2008 年汶川特大地震以来龙门山断裂带发生的 又一强震。地震发生后造成几百人死亡,上万人受伤,受灾人口超过 200 余万 (崔鹏 等,2013),引起了社会各界关注。在直接造成特大地震灾害的同时,芦山地震还诱发 了大量的次生山地灾害,其中主要包括落石、崩塌、堰塞湖、泥石流、滚石和滑坡等 (陈晓清等,2013)。这些次生灾害造成的人员伤亡和经济损失不低于地震的直接影响, 不仅如此,次生灾害还阻塞了紧急救援道路,拖慢了救援的进度。地震诱发的大量崩 塌、滑坡又为泥石流活动提供了丰富的物质源料,促进了泥石流灾害活跃,并致使在 后期暴雨作用下产生了更为严重的泥石流灾害。

选取该地震有以下方面考虑:首先,芦山地震 MW 震级在 6-7 级之间,既可以保证足够的远场地震波能量,同时又可避免过大震级的震源复杂性对波场影响;其次该地震发生后,引起了大量学者的关注,对其震源机制作了大量研究,结果可用于参考对比。

利用远场台站体波 (P,S) 数据进行震源机制反演。需要注意的是我们仅使用了远场体波数据,一方面是因为近场波形反演对震源区局部的浅层结构误差敏感,根据郑勇等 (2013) 和高原等 (2013) 芦山地震恰巧位于地壳厚度和波速结构横向变化剧烈之处。谢祖军等 (2013) 的研究表明不同一维模型对近震反演的震源参数影响高达到 10°,而远场波形则对地壳及上地幔的横向非均匀性和震源破裂细节的复杂性不敏感;另一方面,在前文中提到体波相位的系统性误差理论上可通过平移因子 K 来抵消,但面波具有频散效应,使得 K 无法补偿结构误差对其相位的影响,且面波易受浅层结构横向非均匀性影响,所以反演时舍弃了面波数据。

图 4.1: 波形反演所用数据的台站分布, 其中五角星表示震中, 倒三角表示台站

4.2 数据处理

选取 IRIS 提供的 54 个震中距在 30°-90° 之间且方位分布较均匀的台站 (如图 4.1所示) 宽频带 P及 SH 波数据,以 AK135 模型 (Kennett et al., 1995) 作为地球参考模型进行反演。经过多次数据挑选进行除错,最终选取了质量较高的 102 道相对 P波到时 (-10s,30s) 的时窗并进行 (0.01-0.1Hz) 带通滤波 (基于频谱分析及滤波试验) 的P波数据。SH 波数据总共挑选了 38 道,带通滤波频率为 (0.005-0.06Hz),时窗选为相对其到时 (-30s,100s)。格点搜索时震源机制 (走向、倾角、滑动角)的搜索步长为 1°,震源深度的步长为 1km。为了检验本文提出的 w1*w2 联合权重的优化效果,用 Fit 拟合函数分别尝试了 w1*w2 加权和仅用 w1 或 w2 加权三种方案的反演以进行比较。

图 4.2: 三种反演方案拟合度随震源深度的变化曲线

4.3 结果分析

本文三次反演的结果如表 4.1所示,w2 加权与w1*w2 加权的反演结果非常接近,而与w1 加权结果差别稍大。总的来说三次反演结果均较一致,说明该数据分布较理想,加权是为了使反演结果更合理的一种微调。以下详细分析三次反演的差异以体现不同加权的优劣。

加权方案	深度/km	走向/°	倾角/°	滑动角/°	震级 (M _w)	拟合度 (Fit)
W1	16	202	47	96	6.49	0.7827
W2	18	213	41	95	6.41	0.5822
WT	17	211	41	94	6.41	0.6052

表 4.1: 三种加权方案反演芦山地震的结果

首先分析三次反演的拟合度大小以体现 w1 的作用,从反演理论可知适当增加高质量数据的权重可以减小反演结果的误差,并使理论数据与观测值吻合得更好。从图 4.2可以发现 w1*w2 反演与 w2 单独加权反演的拟合度曲线非常接近,不过后者的拟合度始终略高于前者,这是因为 w1*w2 加权反演对数据信噪比进行了分析,使得质量较差的数据在反演中的权重有所下降,减弱了较大随机噪声的干扰,导致数据拟合度有所提升。另一方面,w1 单独加权的反演拟合度是三次反演中最高的,这也正是由于 w1 加权是基于数据随机噪声情况调节权重,使反演的拟合度尽量最高。三次反演的拟合度大小情况恰好符合 w1 的理论预期效果。

但是使拟合度最高的单独 w1 加权反演却不见得是三次反演中最好的,以下从震源深度和震源机制的约束效果方面讨论 w2 的效果。从如图 4.2所示的震源深度格点搜索过程中,可以发现三次反演的全局最值均在 18km 附近。其中 w1*w2 反演与 w2 反

图 4.3: (a)(b) 分别为 wt(w1*w2) 加权 w1 加权反演各震源深度对应最佳解

演均只有这一个极值,而 w1 加权反演则在 33km 附近还出现了另一局部极值,这说明在同样的数据分布和反演方法情况下,w1 加权反演对该地震的震源深度约束较差。这是因为 pP 及 sP 震相在远震震相中对深度约束作用最好,在本文低频滤波情况下,pP 及 sP 深度震相与 P 震相融合在一起,包含在 P 波时窗中,故 P 波信息对震源深度约束较好。而对于剪切位错源,S 波振幅通常比 P 波振幅大很多,未经 w2 振幅调节会导致 P 波的信息在反演中得不到充分体现,反演结果更多地关注 S 波的拟合,所以三次反演中单独 w1 加权反演对震源深度约束效果略差于另两次反演。

另一方面,从图 4.3可以看到 w1 单独加权与 w1*w2 加权反演过程中,不同深度对应的最佳震源机制情况。很明显 w1*w2 联合加权的深度搜索过程中震源机制一直较为稳定,而 w1 单独加权反演中不同深度对应的震源机制差异较大,甚至在全局最值附近走向的变化也较为明显,这表明 w1*w2 反演的震源机制稳定性比 w1 单独加权反演要好。这是因为 w2 权重更好地平衡了不同振幅波形在反演中的影响,使得各种震相信息在反演中得到合理的充分利用,从而能更好地约束震源机制解。

综上分析,w1 权重能有效减弱随机噪声影响,w2 权重能使反演合理充分利用各种震相信息,更好约束反演结果,所以w1*w2 联合加权的结果应该是三种加权反演结果中最优的。本文w1*w2 加权反演的所有台站理论与观测波形拟合情况如图 4.4所示。可以看到 P 波及 SH 波拟合得都不错,相位及其振幅均匹配得非常好。值得注意的是,同一台站的 P 波 Z 与 R 分量的时间平移参数非常一致,这是因为平移因子是

由地震定位,发震时刻及地球速度结构等系统性误差引起的,且理论上其误差影响对于同一台站的同一震相应是相同的。此外,对于不同震中距台站的波形,拟合情况均相当,表明反演综合考虑了所有波形的信息。

4.4 讨论和结论

芦山地震后,各研究者分别对该地震震源机制进行了详细研究。曾祥方等 (2013) 利用Hardebeck and Shearer (2002) 改进的 P 波初动极性反演方法及近远震波形反演 方法得到了较一致的震源机制解,且利用误差曲线分析了倾角和深度的可靠性; 刘杰 等 (2013)、吕坚等 (2013) 利用 CAP 方法对近震波形反演得到了芦山地震震源机制解, 其中吕坚在波形反演基础上利用余震分布进一步约束了发震断层面;谢祖军等 (2013) 利用 CAP 方法分别对近震、远震及近远震联合反演进行对比以得到最佳震源机制。相 关研究所得的结果均列于表 4.2中, 各结果的分布基本为震源深度范围 (12-22km), 震 源机制 (走向 200-220°,倾角 33-50°,滑动角 90-110°),Mw 震级 (6.4-6.7)。本文结果 基本在此分布范围内,仅 Mw 震级略小,这一方面可能是由于本文的 Fit 函数为了降 低了系统性误差对震源机制的影响,将振幅误差归并到震级评估中;另一方面因为各 学者所用的数据及参考模型不尽相同, 且除了速度结构、地震定位以及发震时刻的不 精确,理论波形的计算方法也可能导致系统性误差,不同程序算得的理论波形虽然相 位一致, 但振幅也会有一定差异 (Herrmann and Wang, 1985)。此外, 高原等 (2013) 对地震重定位得到主震震源深度 17.8km, 房立华等 (2013) 用三维速度模型进行双差 重定位给出的震源深度为 17.2km 和 17.6km, 重定位结果均与本文给出的 17km 震源 深度非常接近,其中房立华使用了接近震中附近的三维速度模型,并用流动观测台站 对早期发生的地震进行校正,结果是较为可信的。

芦山地震震源位于龙门山断裂带,在该区域由于同时受到西北部青藏块体向东的挤压作用,以及东南部四川盆地坚硬地壳的阻挡,使得青藏块体东缘下方的地壳物质东流,进而导致软弱的下地壳物质向上逆冲挤出,最终形成逆冲型的东南走向的龙门山断裂带 (Zhang et al., 2013)。该断裂带主要由 4 条大断裂构成 (邓起东等, 1994),其整体走向为 SW 向 (李智武等, 2008)。可是从整体来看,该断裂带南北段走向具有明显的差异性 (Jia et al., 2006; Arne et al., 1997),郭正吾等 (1996)和邓康龄等 (2007)均发现芦山地震震源区所处的南段走向相较于北段而言,有更南偏倾向。龙门山断裂带南段因受喜马拉雅期印-亚碰撞事件的重大影响,显示与松潘-甘孜褶皱带有密切关系,推断其为晚白垩世 古近纪沉降中心,南段的断裂活动性延续时间较晚,直到喜马拉雅期基本定型,但现今仍在发育 (李智武等, 2008)。

龙门山断裂带区域的构造及地下结构一直是大家研究的热点, Zhang et al. (2013),

图 4.4: wt 加权反演波形对比图,虚线为观测波形,实线为理论波形,波形右侧分别为台站名、震中距 (km)。各道波形的左上方为到时差,正值表示理论到时相比实测波提前,负值相反

表 4.2: 不同研究者得到的芦山地震震源机制, 参考自吕坚等 (2013)

研究者	美国 地调 局	Global CMT	刘超等	韩立 波等	中国地 震局预 测所	刘杰等	曾祥	谢祖 军等	吕坚 等	本文结果
深度/km	12	22	15	12	15	19	12	16	14	17
走向/°	198	210	220	220	210	214	212	210	209	211
倾角/°	33	38	35	50	47	39	47	44	46	41
滑动角/°	71	96	95	107	90	100	93	91	94	94
M_w	6.6	6.6	6.7	6.6	6.5	6.4	6.7	6.7	6.6	6.4

Wang et al. (2010), 张忠杰等 (2009) 和Zhang et al. (2011) 等人的研究成果表明, 龙 门山地区的地壳速度结构处于横向变化剧烈处,存在明显的不均匀性。根据雷建设等 (2009) 对龙门山断裂带地壳结构的研究, 芦山地震的震源恰巧在 P 波速度变化较大的 区域。芦山地震震中与龙门山断裂带南段断层分布 (断层数据来自邓起东等 (2002)) 如 图 4.5所示,由图可知震中位于南段前山断裂和山前隐伏断裂之间,地质调查结果(徐 锡伟等, 2013) 显示芦山地震的发震断层为一条现今尚未出露地表、其上断点仍埋藏在 地下地壳中的一条盲逆断层,无法直接从地表露头来观测震源断裂处走向情况,但是 本文反演得到的震源机制显示的走向 211° 与震源区域断层整体走向基本吻合, 表明反 演得到的走向具有合理性。唐荣昌等 (1991), 李勇等 (2006), Densmore et al. (2007), 陈 国光等 (2007) 等人的研究表明龙门山断裂带总体运行表现为为由北西向南东的逆冲, 并且同时兼具有右旋走滑的特性,整条断裂带的冲断运动由北西向南东扩展,但由于 受到后山、中央、前山三条断裂带的阻碍作用,断裂带的北段和中段的山前断裂并没 有明显地显现出逆冲的特征,可是芦山地震所处的南段区域却不同,其山前断裂带明 显受到了冲断运动的影响,发生了较为强烈的冲断和摺皱变形,为震源所处的盲逆断 层孕震提供了有利条件,与本文反演得到的滑动角所代表的逆冲型断裂发震的运动背 景一致。

由于芦山地震发震断裂为盲断裂,难以直接观测发震断裂的空间构造,通过余震分布可以一定程度重现发震断裂的结构信息,张广伟 (2013) 通过双差定位发现在空间分布上主震西南方向余震分布较广、且较为集中,余震主要向西南方向扩展 (图 4.5中 AA'剖面),其剖面方向与本文震源机制的走向线 BB'近乎平行,说明余震基本沿主震断层面破裂分布。

断层构造活动通常与该区域的应力分布有着密切关系, 孟文等 (2013) 实地钻孔

图 4.5: 震源区域断层与应力分布, f1,f2,f3,f4 为龙门山断裂带的主要四大断裂, 灰色大箭头为区域平均应力, 黑色小箭头为本文震源机制对应的主压应力

测量研究结果表明龙门山断裂带的水平应力占主导作用,且南段的优势方向为 NWW 向。根据青藏高原内部存在下地壳通道流的观点 (Royden et al., 1997; Clark and Royden, 2000; Meng et al., 2005; Burchfiel et al., 1995; Harris, 2007), 松潘-甘孜地体极有可能俯冲到四川盆地之下 (楼海等, 2010),从而使得龙门山断裂带南段与青藏高原东部具有较好的连接性,是青藏高原东缘的活动边界,因此龙门山断裂带南段最大主压应力方向与区域应力场方向一致,为 NW-NWW 向,孟文等的钻井数据显示距震中较近的宝兴钻井点主应力方向为 N80°W 至 N74°W,另一钻井结果表明宝兴主应力方向为 N60°W(秦向辉等, 2013),上述区域应力方向以及实际钻井没得的主应力方向均与本文反演所得的震源机制主应力方向一致。

研究表明, 快剪切波偏振的优势方向一般与原地主压应力方向一致 (Gao et al., 2011, 2012), 高原等 (2013) 用剪切波分裂的方法计算发现位于芦山地震震中东北方向的龙门山断裂带中南段的台站快剪切波偏振的优势方向近似为 NW 向,与断裂带走向近似垂直;而在芦山地震震中西南方向的龙门山断裂带南段靠近鲜水河断裂处,快剪切波偏振方向表现得比较离散,但平均方向为近 EW 方向,所以地理位置位于其中间的震中区的偏振优势方向极有可能在 NW 与 EW 之间。此外赵博等 (2013) 利用力轴张量法计算得到的芦山地震余震分布区的平均压应力方向约为 112°,如图 4.5中灰色

大箭头所示。本文震源机制 (走向 211°, 倾角 41°, 滑动角 94°) 对应的 P 轴近水平, 与各向异性分析及力轴张量计算法得到的应力结果有很好的一致性。上述钻井实测资料, 应力计算资料结果相互吻合,均与本文震源机制表现出一致性,表明芦山地震主要为区域 NWW 向水平应力长年积累的一次应力释放。

第五章 总结和展望

5.1 总结

以上理论实验和实例应用充分说明了本文所提出的对震源机制误差评价方法的有效性,其准确反映了数据随机噪声的存在对于反演得到的震源机制的影响,明确给出了误差范围。并且还揭示了震源机制各参数间的相关性,对于进一步推测误差的情况起到了指导作用。对于优秀数据质量的情况下的误差仍然不可忽略情况说明了,在实际工作中反演震源机制时评估数据随机噪声的影响的重要性和必要性,肯定了本文工作的意义。

对于权重优化的实验表明了本文联合加权方案在一定程度上对反演结果进行了优化。但是需要谨记,对反演结果有决定作用的是原始数据质量,包括数据信噪比和数据结构。数据信噪比表征了数据信息的真实性,因为随机噪声相当于虚假信号,对结果具有误导作用。数据结构则表征了数据信息总量的约束强度,即使数据没有任何误差,当结构分布很差,数据不足时也无法得到唯一真实解,这相当于欠定反演问题。只有当数据质量达到反演满足的最低要求时,合理地加权才能显示出优化结果的作用。本文联合加权中的信噪比权重 W1 针对数据信噪比,降低了高噪声数据的影响,并最终提高了代表反演结果可信度的拟合度。而振幅调节权重 W2 则是从数据结构着手,通过合理平衡不同数据在反演中的影响力,相当于间接"增加"了参与反演的数据数量,增强了反演的约束力度。

对芦山地震的反演展示了本文方法的实用性,对反演结果和他人成果的对比分析表明,余震基本沿主震断层面破裂分布,延展趋势与本文走向匹配;芦山地震所处的南段区域,其山前断裂带明显受到了冲断运动的影响,发生了较为强烈的冲断和摺皱变形,为震源所处的盲逆断层孕震提供了有利条件,与本文所得到的逆冲型断裂发震的运动背景一致;震源区钻井实测资料,快剪切波应力计算资料结果相互吻合,均与本文震源机制的滑动角、倾角所暗示的应力情况表现出一致性,表明芦山地震主要为区域 NWW 向水平应力长年积累的一次应力释放。

5.2 展望

本文最核心的工作是对震源机制反演过程中误差评定给出了一个可行方案,但是仍然有许多值得改进的地方。

首先,误差估计仅基于对随机噪声的分析,然而实际情况中,反演中除了数据随机噪声,还有参考模型误差等系统性误差。在本文工作中由于模型偏差等系统性偏差的研究欠缺,便直接忽略了系统误差,事实上该误差的影响可能比随机误差更大,值得在之后的研究中关注。

其次,对误差统计分析的关键在于制造解的随机集合,这要求进行大量的重复反演,降低了反演效率,不适合应用于对实时性要求较高的自动化系统中,相对更偏向对速度要求相对宽松的精化研究中。

参考文献

- Stein S, Wysession M, 2003, Malden: Blackwell Publishing.
- Wald D J, 2005, US: US Geological Survey.
- Satake K, 2007. Tsunamis[J]. Treatise on geophysics, 4:483–511.
- King G, Devès M, 2007. Fault interaction, earthquake stress changes, and the evolution of seismicity[J]. Treatise on geophysics, 4:225–256.
- Kilb D. Fault Parameter Constraints Using Relocated Earthquakes: Implications for Stress Change Calculations[C]. In: AGU Fall Meeting Abstracts. 2001.
- Nolet G, 1990. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 95(B6):8499–8512.
- Manaman N S, Shomali H, Koyi H, 2011. New constraints on upper-mantle S -velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion[J]. Geophysical Journal International, 184(1):247–267.
- Friederich W, 2003. The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms[J]. Geophysical Journal International, 153(1):88–102.
- Zielhuis A, Nolet G, 1994. Shear-wave velocity variations in the upper mantle beneath central Europe[J]. Geophysical Journal International, 117(3):695–715.
- Cao X L, Zhu J S, Zhao L F, et al, 2001. Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion[J]. Acta Seismologica Sinica, 14(2):117–128.
- Lee S v d, Nolet G, 1997. Upper mantle S velocity structure of North America[J]. Journal of Geophysical Research: Solid Earth, 102(B10):22815–22838.
- Balakina L, Savarensky E, Vvedenskaya A, 1961. On determination of earthquake mechanism[J]. Physics and Chemistry of the Earth, 4:211–238.

- Reid H. The mechanics of the earthquake, In: The Cal- ifornia Earthquake of April 18, 1906[C]. In: Report of the State Earthquake Investigation Commission, Carnegie Institution. 1910. 2:192.
- Milne J, 1910. The California Earthquake of April 18, 1906[J]. Nature, 84(2128):165–166.
- Nakano H, 1923. Notes on the nature of the forces which give rise to the earthquake motions[J]. Seismol. Bull, 1:92–120.
- Kisslinger C, Bowman J R, Koch K, 1982. Determination of focal mechanism from SV/P amplitude ratios at small distances[J]. Physics of the Earth & Planetary Interiors, 30(2-3):172–176.
- Kisslinger C, 1980. Evaluation of S to P amplitude ratios for determining focal mechanisms from regional network observations[J]. Bulletin of the Seismological Society of America, 70(4):999–1014.
- 祁玉萍, 李闽峰, 李圣强, et al, 2013. 地震震源机制波形自动反演系统的研究现状与展望 [J]. 地震, 33(1):74-85.
- Haskell N, 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bulletin of the Seismological Society of America, 54(6A):1811–1841.
- Herrmann R B, 1979. SH-wave generation by dislocation sources—a numerical study[J]. Bulletin of the Seismological Society of America, 69(1):1–15.
- Wang C, Herrmann R, 1980. A numerical study of P-, SV-, and SH-wave generation in a plane layered medium[J]. Bulletin of the Seismological Society of America, 70(4):1015–1036.
- Walter W R, 1993. Source parameters of the June 29, 1992 Little Skull Mountain earthquake from complete regional waveforms at a single station[J]. Geophysical research letters, 20(5):403–406.
- Ritsema J, Lay T, 1993. Rapid source mechanism determination of large (Mw 5) earth-quakes in the western United States[J]. Geophysical research letters, 20(15):1611–1614.

- Zhao L S, Helmberger D V, 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1):91–104.
- Nábělek J, Xia G, 1995. Moment-tensor analysis using regional data: Application to the 25 March, 1993, Scotts Mills, Oregon, Earthquake[J]. Geophysical research letters, 22(1):13–16.
- Zhu L, Helmberger D V, 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5):1634–1641.
- Tan Y, Zhu L, Helmberger D V, et al, 2006. Locating and modeling regional earthquakes with two stations[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B1):B01306.
- Herrmann R B, 1989, Missouri: Saint Louis University.
- Luo Y, Zhao L, Zeng X, et al, 2015. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field[J]. Science China Earth Sciences, 58(7):1148–1158.
- D' Amico S, Cammarata L, Cangemi M, et al, 2014. Seismic moment tensors and regional stress in the area of the December 2013–January 2014, Matese earthquake sequence (Italy)[J]. Journal of Geodynamics, 82:118–124.
- Duputel Z, Rivera L, Fukahata Y, et al, 2012. Uncertainty estimations for seismic source inversions[J]. Geophysical Journal International, 190(2):1243–1256.
- 郑建常, 林眉, 王鹏, et al, 2015. CAP 方法反演震源机制的误差分析: 以胶东半岛两次显著中等地震为例 [J]. 地球物理学报, 58:453–462.
- Hardebeck J L, Shearer P M, 2002. A new method for determining first-motion focal mechanisms[J]. Bulletin of the Seismological Society of America, 92(6):2264–2276.
- Efron B, 1979. Bootstrap methods: another look at the jackknife[J]. The annals of Statistics, 7:1–26.
- 程万正, 阮祥, 张永久, 2006. 川滇次级地块震源机制解类型与一致性参数 [J]. 地震学报, 28(6):561-573.

- Silver P G, Jordan T H, 1982. Optimal estimation of scalar seismic moment[J]. Geophysical Journal International, 70(3):755–787.
- Jost M u, Herrmann R, 1989. A student's guide to and review of moment tensors[J]. Seismological Research Letters, 60(2):37–57.
- Kikuchi M, Kanamori H, 1991. Inversion of complex body waves—III[J]. Bulletin of the Seismological Society of America, 81:2335–2350.
- Aki K, Richards P G, 1980, San Francisco: Freeman.
- Aki K, 1966. Generation and Propagation of G Waves from the Niigata Earthquake of June 16, 1964. : Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum.[J]. 東京大学地震研究所彙報, 44:73-88.
- Ben-Menahem A, 1963. Radiation Pattern of Rayleigh Waves from a Fault of Arbitrary Dip and Direction of Motion in a Homogeneous Medium[J]. Bulletin of the Seismological Society of America, 53(3):125–148.
- Kennett B, Engdahl E, Buland R, 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 122(1):108–124.
- 崔鹏, 陈晓清, 张建强, et al, 2013. "4·20" 芦山 7.0 级地震次生山地灾害活动特征与趋势 [J]. 山地学报, 31(3):257–265.
- 陈晓清, 崔鹏, 游勇, et al, 2013. 4·20 芦山地震次生山地灾害与减灾对策 [J]. 地学前缘, 20(3):29–34.
- 郑勇, 葛粲, 谢祖军, et al, 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境 [J]. 中国科学: 地球科学, 43(006):1027-1037.
- 高原, 王琼, 赵博, et al, 2013. 龙门山断裂带中南段的一个破裂空段-芦山地震的震后效应 [J]. 中国科学: D 辑, 43(6):1038-1046.
- 谢祖军, 金笔凯, 郑勇, et al, 2013. 近远震波形反演 2013 年芦山地震震源参数 [J]. 中国科学: 地球科学, 43(6):1010.
- 曾祥方, 罗艳, 韩立波, et al, 2013. 2013 年 4 月 20 日四川芦山 M_S7. 0 地震: 一个高角度逆冲地震 [J]. 地球物理学报, 56(4):1418-1424.

- 刘杰, 易桂喜, 张致伟, et al, 2013. 2013 年 4 月 20 日四川芦山 M7. 0 级地震介绍 [J]. 地球物理学报, 56(4):1404-1407.
- 吕坚, 王晓山, 苏金蓉, et al, 2013. 芦山 7.0 级地震序列的震源位置与震源机制解特征 [J]. 地球物理学报, 56(5):1753-1763.
- Herrmann R, Wang C, 1985. A comparison of synthetic seismograms[J]. Bulletin of the Seismological Society of America, 75(1):41–56.
- 房立华, 吴建平, 王未来, et al, 2013. 四川芦山 Ms7. 0 级地震及其余震序列重定位 [J]. 科学通报, 20:004.
- Zhang Z, Deng Y, Chen L, et al, 2013. Seismic structure and rheology of the crust under mainland China[J]. Gondwana Research, 23(4):1455–1483.
- 邓起东, 陈社发, 赵小麟, et al, 1994. 龙门山及其邻区的构造和地震活动及动力学 [J]. 地震地质, 16(4):389-403.
- 李智武, 刘树根, 陈洪德, et al, 2008. 龙门山冲断带分段-分带性构造格局及其差异变形特征 [J]. 成都理工大学学报: 自然科学版, 35(4):440-454.
- Jia D, Wei G, Chen Z, et al, 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J]. Aapg Bulletin, 90(9):1425–1447.
- Arne D, Worley B, Wilson C, et al, 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau[J]. Tectonophysics, 280(3):239–256.
- 郭正吾, 邓康龄, 韩永辉, et al, 1996, 北京: 北京: 地质出版社.
- 邓康龄, 2007. 龙门山构造带印支期构造递进变形与变形时序 [J]. 石油与天然气地质, 28(4):485-490.
- Wang Z, Zhao D, Wang J, 2010. Deep structure and seismogenesis of the north-south seismic zone in southwest China[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B12):B12334.
- 张忠杰, 陈赟, 田小波, 2009. 青藏高原东缘地壳上地幔结构及其动力学意义 [J]. 地质科学, 44(4):1136-1150.

- Zhang Z, Deng Y, Teng J, et al, 2011. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings[J]. Journal of Asian Earth Sciences, 40(4):977–989.
- 雷建设, 赵大鹏, 苏金蓉, et al, 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理 [J]. 地球物理学报, 52(2):339-345.
- 邓起东, 张培震, et al, 2002. 中国活动构造基本特征 [J]. 中国科学: D 辑, 32(12):1020–1030.
- 徐锡伟, 陈桂华, 于贵华, et al, 2013. 芦山地震发震构造及其与汶川地震关系讨论 [J][J]. 地学前缘, 20(3):11-20.
- 唐荣昌, 文德华, 黄祖智, et al, 1991. 松潘-龙门山地区主要活动断裂带第四纪活动特征 [J]. 中国地震, 7(3):64-71.
- 李勇, 2006, 北京: 地质出版社.
- Densmore A L, Ellis M A, Li Y, et al, 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 26(4):TC4005.
- 陈国光, 计凤桔, 周荣军, et al, 2007. 龙门山断裂带晚第四纪活动性分段的初步研究 [J]. 地震地质, 29(3):657-673.
- 张广伟 , 2013. 四川芦山 7.0 级强震及其余震序列重定位 [J]. 地球物理学报, 56(5):1764-1771.
- 孟文, 陈群策, 吴满路, et al, 2013. 龙门山断裂带现今构造应力场特征及分段性研究 [J]. 地球物理学进展, 28(3):1150-1160.
- Royden L H, Burchfiel B C, King R W, et al, 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. science, 276(5313):788–790.
- Clark M K, Royden L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8):703–706.
- Meng Q R, Wang E, Hu J M, 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. Geological Society of America Bulletin, 117(3-4):396–410.

- Burchfiel B, Zhiliang C, Yupinc L, et al, 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37(8):661–735.
- Harris N, 2007. Channel flow and the Himalayan–Tibetan orogen: a critical review[J]. Journal of the Geological Society, 164(3):511–523.
- 楼海, 王椿镛, 姚志祥, et al, 2010. 龙门山断裂带深部构造和物性分布的分段特征 [J]. 地学前缘, 17(5):128-141.
- 秦向辉, 陈群策, 谭成轩, et al, 2013. 龙门山断裂带西南段现今地应力状态与地震危险性分析 [J]. 岩石力学与工程学报, 1:2870-2876.
- Gao Y, Wu J, Fukao Y, et al, 2011. Shear wave splitting in the crust in North China: stress, faults and tectonic implications[J]. Geophysical Journal International, 187(2):642–654.
- Gao Y, Shi Y, Wu J, et al, 2012. Shear-wave splitting in the crust: Regional compressive stress from polarizations of fast shear-waves[J]. Earthquake Science, 25(1):35–45.
- 赵博, 高原, 黄志斌, et al, 2013. 四川芦山 Ms7. O 地震余震序列双差定位, 震源机制及应力场反演 [J]. 地球物理学报, 56(10):3385-3395.

致 谢

感谢你, 感谢他和她, 感谢大家.

武汉大学学位论文使用授权协议书

本学位论文作者愿意遵守武汉大学关于保存、使用学位论文的管理办法及规定,即:学校有权保存学位论文的印刷本和电子版,并提供文献检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在以教学与科研服务为目的前提下,学校可以在校园网内公布部分及全部内容.

- 1、 在本论文提交当年, 同意在校园网内以及中国高等教育文献保障系统 (CALIS) 高校学位论文系统提供查询及前十六页浏览服务.
- 2、在本论文提交□当年/□一年/□两年/□三年/□五年以后,同意在校园网内允许读者在线浏览并下载全文,学校可以为存在馆际合作关系的兄弟高校用户提供文献传递服务和交换服务.(保密论文解密后遵守此规定)

论文作者 (签名):

	, ,	
学	号:	
学	院:	
	•	

日期:

年

月

日