

MUX 应用设计说明

文档版本: V1.0.0

更新日期: 2013-06-29

版权声明

版权所有◎深圳市广和通实业发展有限公司 2013。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形 式传播。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标申明

} FI3 C C M 为深圳市广和通实业发展有限公司的注册商标,由所有人拥有。

版本记录

文档版本	更新日期	说明
V1.0.0	2013-06-29	初始版本

MUX 应用设计说明 Page 2 of 12

适用型号

序号	型号	说明
1	G600	
2	G610	
3	G620	
4	G510	
5	G510S	
6	G520	
7	H330	

MUX 应用设计说明 Page 3 of 12

目录

1	MUX			. 5
	1.1	简介		. 5
	1.2	帧结	构	. 5
	1.2	2.1	基本模式的帧结构	. 5
	1.2	2.2	标记	. 5
	1.2	2.3	地址	5
	1.2	2.4	控制: 定义帧类型	6
	1.2	2.5	长度	. 6
	1.2	2.6	信息	7
	1.2	2.7	校验	7
	1.3	举例		7
	1.4	开始	服务, +CMUX,MUX 启动命令	7
	1.4	4.1	DLC建立业务	9
	1.4	4.2	数据业务	10
	1.4	4.3	DLC释放业务	11

1 MUX

1.1 简介

MUX 通过一个物理串口为 DTE 和模块提供多个逻辑通信信道。

这项功能使 DTE 设备与模块通信过程中能同时运行多个应用程序,如 GPRS, CSD, SMS 和语音通话。模块支持 GSM07.10 中定义的多路复用协议控制通道(基本模式)。

注意: TCP/IP 协议栈 AT 命令不支持 MUX 模式。

1.2 帧结构

TE 和 MS 之间的所有信息都是以帧的形式传输的。

1.2.1 基本模式的帧结构

标记	地址	控制	长度	信息	校验	标记
1 字节	1 字节	1 字节	1或2字节	整数个字节	1 字节	1 字节

1.2.2 标记

基本模式时为 0xF9, 高级模式时为 0x7E。模块只支持基本模式。

1.2.3 地址

1	2	3	4	5	6	7	8
EA	C/R	DLCI					

EA: 用于地址扩展,此处为1

C/R: 命令/响应

Command/response	Direction			C/R value
Command	Initiator	-	Responder	1
	Responder	-	Initiator	0
Response	Initiator	>	Responder	0
	Responder	-	Initiator	1

DLCI: DLC 标识(虚拟通道号),取值范围为0~63。

MUX 应用设计说明 Page 5 of 12

1.2.4 控制: 定义帧类型

帧类型	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	ВІТ7	BIT8
SABM	1	1	1	1	P/F	1	0	0
UA	1	1	0	0	P/F	1	1	0
DM	1	1	1	1	P/F	0	0	0
DISC	1	1	0	0	P/F	0	1	0
UIH	1	1	1	1	P/F	1	1	1
UI	1	1	0	0	P/F	0	0	0

P/F: P/F 位是依据该帧是命令帧/响应帧来确定是 P 功能还是 F 功能。

如果是命令帧,则 P/F 位作为 P 功能;

如果是响应帧,则P/F位作为F功能。

如果一个命令希望应答,命令帧的 P 功能设置为 1,响应帧(对该命令帧的应答)的 F 功能也应该设置为 1。

对于命令发送端来说,发送一个希望应答的命令后,必须等到对端应答或者超时,才能发送下一个希望应答的命令。

超时可以进行重发或者相应的异常处理。

SABM (Set Asynchronous Balanced Mode): SABM 命令帧用于建立一个 DLC,接收端收到并且认可该命令后,用 UA 帧进行应答。

如果对端没有准备好或者不愿意建立该 DLC,则对端用 DM 帧进行应答, F 位设置为 1。

如果 T1 时间内没有收到 UA 或者 DM 响应,发起者会重发 DISC,直到重发次数达到设定值。

UA(Unnumbered Acknowledgement): UA 响应帧用于接收端对收到并且认可的 SABM 帧或 DISC 帧的应答。

DM (Disconnected Mode): DM 响应帧用于在链接还没有建立的状态下,接收端对接收到的 DISC 命令帧的响应。在链接还没有建立的状态下,接收端对于接收到的命令(除 DISC 外)不响应。F 功能如果为 1 表示对接收的命令的响应。接收到非请求的 DM 响应帧时进行的处理,不考虑 F 位。

DISC (Disconnect): DISC 命令帧用于通知对端拆除链接, 对端用 UA 响应帧应答。如果在 DLC0 发送 DISC 命令帧,则等效于退出 MUX 功能。

1.2.5 长度

BIT1	BIT2	ВІТ3	BIT4	BIT5	ВІТ6	BIT7	BIT8
EA	L1	L2	L3	L4	L5	L6	L7

EA 用于扩展, 文本取 EA 为 1, 表示长度域只有 1 个字节表示。

MUX 应用设计说明 Page 6 of 12

1.2.6 信息

信息段由若干字节组成。信息帧有 I 帧、UI 帧和 UIH 帧。

1.2.7 校验

校验段只有 1 个字节,生成多项式为: x8+x2+x+1 对于 UIH 帧,FCS 的计算只包括地址域和控制域。对于命令响应帧,FCS 的计算包括地址、控制和长度。具体算法请参考 GSM 协议 07.10。

1.3 举例

1.4 开始服务,+CMUX,MUX 启动命令

此命令用于启用或者禁用 GSM 多路复用协议栈。当模块收到一个有效的+CMUX 命令时,它会返回 OK 并且状态会改为 MUX-Init。如果没有设置参数,则使用默认值。

命令	语法	响应	备注
Set	+CMUX= <mode>[, <subset>[,<port_s peed>[,<n1>[,<t1 >[,<n2>[,<t2>[,<t 3>[,<k>]]]]]]]</k></t </t2></n2></t1 </n1></port_s </subset></mode>	+CME ERROR: <err></err>	设置不同参数请求模 块开启多路复用协议 栈。此命令只在 PREMUX 状态下有 效。
Read	+CMUX?	+CMUX: <mode>, [<subset>], <port_speed>,<n1>, <t1>, <n2>, <t2>, <t3>+CME ERROR: <err></err></t3></t2></n2></t1></n1></port_speed></subset></mode>	显示当前模式和设置。 此命令只在 MUX 状态 下有效。

MUX 应用设计说明 Page 7 of 12

Test	+CMUX=?	+CMUX: (list of supported <mode>s),(list of</mode>	显示支持模式和参数
		supported <subset>s),(list of supported</subset>	列表。在 PREMUX 和
		<pre><port_speed>s),(list ofsupported <n1>s),(list</n1></port_speed></pre>	MUX 状态下均有效。
		of supported <t1>s),(list ofsupported</t1>	
		<n2>s),(list of supported <t2>s),(list</t2></n2>	
		ofsupported <t3>s),(list of supported <k>s)</k></t3>	

以下为+CMUX参数描述:

参数	说明
<mode></mode>	MUX 模式:
	0 基本模式
<subset></subset>	定义多路复用控制通道是如何设置的。虚拟通道设置如下:
	O 只支持 UIH 帧
<port_speed></port_speed>	传输速率:
	1 9600 bit/sec
	2 19200 bit/sec
	3 38400 bit/sec
	4 57600 bit/sec
	5 115200 bit/sec
	6 230400 bit/sec
<n1></n1>	最大的帧大小: 1—1509。基本模式下默认值为 31。
<t1></t1>	应答时间(以10毫秒为单位)
	1-255, 默认值为 10(100 ms)。
<n2></n2>	重发最大次数
	0-5, 默认值为 3。
<t2></t2>	DLC0 响应时间(以 10 毫秒为单位)。
	<t2> 必须长于 <t1>。</t1></t2>
	2-255,默认值为 30 (300 ms)。
<t3></t3>	唤醒响应时间 (以秒为单位)
	1-255,默认值为 10。
<k></k>	为高级设置中的错误恢复选项保留。

MUX 应用设计说明 Page 8 of 12

1.4.1 DLC 建立业务

建立控制通道

启动多路复用后,需要立刻建立控制通道,用来控制多路服用的参数。(DLCI=0)

建立其它通道

建立 DLCI=1 通道——虚拟通道 1。

MUX 应用设计说明 Page 9 of 12

建立 DLCI=2 通道——虚拟通道 2。

1.4.2 数据业务

虚拟通道 X 建立后,即可用 UIH 进行数据传输。下面介绍数据的传输方法,以虚拟通道 1 的使用为例,其它通道类似。

例如使用虚拟通道传送 AT+CSO 命令,模块与用户终端的 MUX 数据帧交互如下:

MUX 应用设计说明 Page 10 of 12

1.4.3 DLC 释放业务

释放虚拟通道

释放 DLCI=1 通道——虚拟通道 1。

释放 DLCI=2 通道——虚拟通道 2。

MUX 应用设计说明 Page 11 of 12

释放控制通道

释放 DLCI=0 的通道,该通道释放后 G600 将自动关闭多路复用并回到 AT 命令模式。

MUX 应用设计说明 Page 12 of 12