НАСТАЛО ВРЕМЯ **УДИВИТЕЛЬНЫХ** историй

Классическая криптография с открытым ключом

Диффи-Хеллман-Меркль, 1976

$$x, A = g^{x}$$

$$\overset{A}{\underset{B}{\longleftrightarrow}}$$

$$y, B = g^{y}$$

$$B^{x} = g^{xy} = A^{y}$$

RSA. 1978

$$N = pq; e, d:$$
 $ed \equiv 1 \pmod{\phi(N)}$ $\stackrel{N,e}{\leadsto}$ $\stackrel{c}{\longleftarrow}$ $c = m^e \pmod{N}$ $m = c^d \pmod{N}.$

История постквантовой криптографии

- 2003 год: Д. Бернштейн предлагает термин ``постквантовая криптография"
- 2006 год: первая конференция PQCrypto
- 2014 год: меморандум ЕС ``Horizon 2020"
- 2015 год: меморандум АНБ о переходе на постквантовые алгоритмы
- 2017 год: объявлен конкурс NIST
- 2019 год: старт проекта в России
- 2020 год: конкурс CACR
- 2023 год: определены результаты конкурса NIST

``Конкурс" NIST-PQ

30 ноября 2017 г. -- закончен прием заявок.

Апрель 2018 г. -- рабочая встреча по презентации предложений и заявок.

30 января 2019 г. -- опубликованы результаты І этапа.

30 марта 2019 г. -- доработка схем, прошедших во II этап, с учетом поступивших замечаний.

июль 2020 г. -- старт III этапа

июль 2022 г. -- финиш III этапа

июль 2023 г. -- старт дополнительных этапов для КЕМ и подписи

Основные подходы к синтезу

- Использование теории целочисленных решеток.
- Использование кодов, исправляющих ошибки.
- Использование многочленов от многих переменных.
- Использование криптографических хэш-функций.
- Использование изогений на суперсингулярных эллиптических кривых.
- ``Эзотерика'' (проблемы сопряженного поиска (search problem) или операции в группах кос (braid groups), алгебра октонионов, многочлены Чебышёва и т.д)

$$E(\mathbb{Z}/p\mathbb{Z}) = \{(x,y) : y^2 = x^3 + ax + b \pmod{p}\} \cup \{\mathcal{O}\}\$$

$$E(\mathbb{Z}/p\mathbb{Z}) = \{(x,y) : y^2 = x^3 + ax + b \pmod{p}\} \cup \{\mathcal{O}\}$$

$$E(\mathbb{Z}/p\mathbb{Z}) = \{(x,y) : y^2 = x^3 + ax + b \pmod{p}\} \cup \{\mathcal{O}\}\$$

Относительно этого закона эллиптическая кривая образует абелеву группу.

Кратная точка:
$$[k]P = \underbrace{P + \dots + P}_{k \text{ pas}}.$$

DLP: для $P,Q \in E(GF(p))$: найти $x \in [0,m]: [x]P = Q$, если он существует.

$$j$$
-инвариант кривой $j(E)=rac{1728(4a^3)}{4a^3+b^2}$

Н. Коблиц, В. Миллер, 1986: криптографические приложения.

П. Шор, 1994: полиномиальный квантовый алгоритм.

Изогении

Что такое изогения?

 $\phi: E \to E'$,

- Групповой морфизм
- с конечным ядром ($H \subseteq E$)
- сюръективна в алгебраическом замыкании
- задается рациональным отображением степени #Н

 E_1, E_2 -- кривые над K, тогда <mark>изогения</mark> -- отличный от константы гомоморфизм $\alpha: E_1 \to E_2$, заданный рациональными ф-циями:

- $\alpha(P+Q) = \alpha(P) + \alpha(Q) \forall P, Q \in E(\overline{K});$
- ullet $x_2=R_1(x_1,y_1); y_2=R_2(x_1,y_1)$ для всех (кроме конечного мн-ва) $(x_1,y_1)\in E_1(\overline{K}).$

Пример

 $p=2^5\cdot 3^3-1=863;$ 73 суперсингулярных j-инварианта. 2-изогении, 3-изогении, $E_0:y^2=x^3+x$.

(c) https://isogenies.enricflorit.com/visualizations/graph.html

Немного истории

1997: Couveignes --- Hard Homogenous Spaces

2006: Charles-Goren-Lauter, хэш

2006: Rostovtsev--Stolbunov, ординарные ЭК

2010: Jao, Soukharev -- субэкспоненциальный квантовый алгоритм

2011: Jao, de Feo --- SIDH

2017: первая подпись

2017: SIKE

2018: CSIDH, SeaSIGN, CSI-Fish

2020: O-SIDH, Seta, SQISign

2022: Castryk-Decru (Kani, 1997); Maino-Martindale; Robert

2023: SQISign

https://ellipticnews.wordpress.com/2022/08/12/attacks-on-sidh-sike/

Параметры

Возьмем простое число p вида $p=l_A^{e_A}l_B^{e_B}\cdot f\pm 1$, где l_A,l_B -- маленькие простые (например, 2 и 3), $(l_A,f)=(l_B,f)=1$, поле $GF(p^2)$. Построим суперсингулярную кривую $E(GF(p^2))$, мощность группы точек кривой которой равна $(l_A^{e_A}l_B^{e_B})^2$. По построению $E[l_A^{e_A}]$ содержит $l_A^{e_A-1}(l_A+1)$ циклических подгрупп порядка $l_A^{e_A}$, каждая из которых определяет собственную изогению (т.е. ядром которой она является), аналогичное замечание верно и для $E[l_B^{e_B}]$.

SIDH

В основе протокола лежит следующая коммутативная диаграмма:

$$E \xrightarrow{\varphi} E/\langle P \rangle$$

$$\psi \downarrow \qquad \qquad \downarrow$$

$$E/\langle Q \rangle \xrightarrow{} E/\langle P, Q \rangle$$

$$(1)$$

где φ,ψ -- случайные пути в графах изогений степеней l_A , l_B соответственно. Стойкость протокола основана на сложности нахождения пути, соединяющего две вершины в графе.

SIDH

Открытые параметры:

- ullet большое простое $p=l_A^{e_A}l_B^{e_B}\cdot f-1$ и суперсингулярная $E_0(GF(p^2))$
- ullet базисы $\{P_A,Q_A\}$ и $\{P_B,Q_B\}$ групп $E_0[l_A^{e_A}]$ и $E_0[l_B^{e_B}]$

```
n_A \in_R \mathbb{Z}/l_A^{e_A}\mathbb{Z},
                                                                                                             n_B \in_R \mathbb{Z}/l_B^{e_B}\mathbb{Z},
        K_A := \langle P_A + [n_A] O_A \rangle
                                                                                                      K_B := \langle P_B + [n_B] O_B \rangle
                 вычисляет
                                                                                                               вычисляет
     \varphi_{\mathbf{A}}: E_0 \to E_0/\mathbf{K}_{\mathbf{A}} = E_{\mathbf{A}}
                                                                                                   \varphi_B: E_0 \to E_0/K_B = E_B
         E_A, \varphi_A(P_B), \varphi_A(O_B)
                                                                                                       E_B, \varphi_B(P_A), \varphi_B(O_A)
              вычисляет
                                                                                                               вычисляет
K'_{A} = \langle \varphi_{B}(P_{A}) + [n_{A}]\varphi_{B}(Q_{A}) \rangle
                                                                                             K_B' = \langle \varphi_A(P_B) + [n_B] \varphi_A(Q_B) \rangle
      s = i((E/\langle K_B \rangle)/\langle K_A' \rangle)
                                                                                                    s = i((E/\langle K_A \rangle)/\langle K_B' \rangle)
```


Тотальный перебор

Поскольку в $E(GF(p^2))$ имеется $(l+1)l^{e-1}$ циклических подгрупп порядка l^e (опускаем индексы), то тотальный перебор занимает $O(l^e)$ или $O(p^{1/2})$ опробований.

MITM

Пусть e четное. Строим два дерева таких, что листья первого определяют классы изоморфизмов кривых, $l^{e/2}$ -изогенных E; листья второго -- классы изоморфизмов кривых, $l^{e/2}$ -изогенных E/G (напоминание: мы ищем генератор G или изогению $\phi:E\to E/G$)

В каждом наборе по $(l+1)l^{e/2-1}$ классов; с большой вероятностью единственный класс содержится в их пересечении. Найдя его, строим ϕ как композицию изогении из E и двойственной к изогении из E/G.

Память -- $O(p^{1/4})$, время -- $O(p^{1/4})$. (Adj et al., eprint 2018/313)

Метод ван Ооршота -- Винера

Общий метод поиска коллизий, адаптированный к CSSI.

Метод ван Ооршота -- Винера

Оценки трудоемкости:

$$T = \frac{2.5}{m} \sqrt{|S|^3/w} \cdot t;$$

m -- кол-во процессоров, |S| -- мощность мн-ва определения итерационной ф-ции, w -- объем памяти, t -- трудоемкость итерационной ф-ции.

В нашем случае $|S| pprox p^{1/2}$, т.о. $O\left(\frac{p^{3/8}}{m \ w^{1/2}} t\right)$.

Вывод: метод ван Ооршота--Винера --- наилучший. (Costello et al., eprint 2019/298)

Квантовый вычислитель

Алгоритм поиска зацеплений (claw) (Tani): пусть $g_1: X_1 \to Y, g_2: X_2 \to Y$, найти такие $x_1, x_2: g_1(x_1) = g_2(x_2)$.

Пусть # $X_1 pprox #X_2 pprox N$, # $Y \gg N$, тогда время работы -- $O(N^{2/3})$.

У нас X_1 -- множество $l^{e/2}$ -изогений из $E=E_1$; X_2 -- множество $l^{e/2}$ -изогений из $E/G=E_2$, $g_i(\phi)=j(\phi(E_i))$. Имеем # $X_1=\#X_2\approx p^{1/4}$, отсюда время -- $O(p^{1/6})$ (и память $O(p^{1/6})$).

Метод Гровера: время -- $O(p^{1/4})$, память -- O(1). (Jacques et Schanck, eprint 2019/103)

Несбалансированные простые

Рассмотрим l_A, l_B, e_A, e_B ; положим $A = l_A^{e_A}$, $B = l_B^{e_B}$, тогда:

- $B>A^2>p^2$ или $B>A^3>p^{3/2}$: полиномиальная атака;
- небольшой дисбаланс -- улучшение в классических атаках;
- при $B > A^2$ -- существуют слабые стартовые кривые.

(Kutas et al., eprint 2020/633)

Случай долговременного ключа

Пусть B имеет долговременный ключ $E_B=E/\langle P_B+[\beta]Q_B\rangle$. Пусть φ_X -- изогения A, $R=\varphi_X(P_B)$, $S=\varphi_X(Q_B)$. Пусть A знает K_i , $0< K_i< l_2^i$, т.ч. $\beta=K_i+l_2^i$ z, и пусть z_0 -- предположение о $z\pmod{l_2}$. Атака состоит в выборе $R'=R+[-l_2^{m-1-i}K_i-l_2^{m-1}z_0]S$ и $S'=[1+l_2^{m-i-1}]S$ и отправке $\{E_X,R',S'\}$ абоненту B.

$$R' + [\beta]S = \cdots = (R + [\beta]S) + [(z - z_0)l_2^{m-1}]S,$$

полученное ядро корректно iff $z\equiv z_0\pmod{l_2}$. После $(l_2-1)e_2$ сеансов секретный ключ восстановлен.

(Galbraith et al., eprint 2016/859)

Attacks

Name	Complexity	Quantum?	References	Additional Information
MITM	exp(n) ^{1/2}	No	JDF11	▶ Comment
Tani	exp(n) ^{1/3}	Yes	Tan07	▶ Comment
y.Q.W	exp(n) ^{3/4}	No	vOW99 AC+18	▶ Comment
Castryck-Decru	Õ(n³)	No	CD22	▶ Comment
CDMM	L(1/2)	No	CD22 MM22	▶ Comment
Robert	Õ(n ⁸)	No	Rob22	▶ Comment
BJS	exp(n) ^{1/4}	Yes	BJS14	▶ Comment
DG	exp(n) ^{1/2}	No	DG13	▶ Comment
Kuperberg	L(1/2)	Yes	Kup04 CJS13	▶ Comment
Galbraith	exp(n) ^{1/2}	No	Gal99 GHS01	▶ Comment
Dartois-De Feo	exp(n) ^{0.292}	No	DD21	▶ Comment

https://issikebrokenyet.github.io/

Введение

MPKC: Multivariate Public Key Cryptosystem

Открытый ключ: нелинейная система многочленов от нескольких переменных

$$p^{(1)}(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} x_i + p_0^{(1)}$$

$$p^{(2)}(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} x_i + p_0^{(2)}$$

$$\vdots$$

$$p^{(m)}(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} x_i + p_0^{(m)}$$

Построение

- ullet Легко обратимое квадратичное отображение $\mathcal{F}:\mathbb{F}^n o\mathbb{F}^m$
- ullet два обратимых аффинных (линейных) отображения $\mathcal{S}:\mathbb{F}^m o\mathbb{F}^m$ и $\mathcal{T}:\mathbb{F}^n o\mathbb{F}^n$
- ullet открытый ключ $\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T}$ -- выглядит как случайная система
- ullet секретный ключ $\mathcal{S}, \mathcal{F}, \mathcal{T}$

Схема подписи ($m \le n$)

- Signature Verification
- Выработка подписи Для документа $d \in \{0,1\}^*$ вычислить хэш $w = H(d) \in \mathbb{F}^m$ и вычислить поочередно $x = \mathcal{S}^{-1}(w)$, $y = \mathcal{F}^{-1}(x)$, $z = \mathcal{T}^{-1}(y)$. Подписью становится $z \in \mathbb{F}^n$.
- Проверка подписи Вычислить хэш $h = H(d) \in \mathbb{F}^m$, вычислить $h' = \mathcal{P}(z)$. Подпись верна, если h = h'.

Схемы типа Unbalanced Oil-vinegar (UOV)

- $F = (f_1(x_1, \ldots, x_o, x'_1, \ldots, x'_v), \ldots, f_o(x_1, \ldots, x_o, x'_1, \ldots, x'_v))$
- $f_l(x_1,\ldots,x_o,x_1',\ldots,x_v') = \sum a_{lij}x_ix_j' + \sum b_{lij}x_i'x_j' + \sum c_{li}x_i + \sum d_{li}x_i' + e_l$

Переменные разбиты на две группы:

^{``}Масло": x_1, \ldots, x_o ``Уксус": x'_1, \ldots, x'_n

Обращение UOV-отображения

$$f_l(x_1,\dots,x_o,\underbrace{x_1',\dots,x_{
u}'}_{ ext{фиксируем переменныe}})=$$

$$=\sum a_{lij}x_ix_j'+\sum b_{lij}x_i'x_j'+\sum c_{li}x_i+\sum d_{li}x_i'+e_l$$

Обращение UOV-отображения

$$f_l(x_1,\ldots,x_o,\mathbf{x}_1',\ldots,\mathbf{x}_v') =$$

$$= \sum a_{lij}x_i\mathbf{x}_j' + \sum b_{lij}\mathbf{x}_i'\mathbf{x}_j' + \sum c_{li}x_i + \sum d_{li}\mathbf{x}_i' + e_l$$

Для подписи нужно решить простую линейную систему.

Обращение UOV-отображения

$$f_l(x_1,\ldots,x_o,\mathbf{x}_1',\ldots,\mathbf{x}_v') =$$

$$= \sum a_{lij}x_i\mathbf{x}_j' + \sum b_{lij}\mathbf{x}_i'\mathbf{x}_j' + \sum c_{li}x_i + \sum d_{li}\mathbf{x}_i' + e_l$$

Система линейная относительно ``масляных" переменных x_1,\dots,x_o

Схема ЦП Rainbow

- $\mathbb{F} = GF(q)$; целые числа $0 < v_1 < v_2 < \cdots < v_u < v_{u+1} = n$
- ullet множества $V_i=\{1,\ldots, v_i\}$ и $O_i=\{v_i+1,\ldots, v_{i+1}\}(i=1,\ldots, u).$ при этом $|V_i|=v_i, |O_i|=v_{i+1}-v_i:=o_i$
- ullet Центральное отображение ${\mathcal F}$ состоит из $m:=n-v_1$ многочленов $f^{(v_1+1)},\ldots,f^{(n)}$ вида

$$f^{(k)}(x_1,\ldots,x_n) = \sum_{i,j\in V_l} \alpha_{ij}^{(k)} x_i x_j + \sum_{i\in V_l,j\in O_l} \beta_{ij}^{(k)} x_i x_j + \sum_{i\in V_l\cup O_l} \gamma_i^{(k)} x_i + \delta^{(k)},$$

где l -- единственное целое такое, что $k \in O_l$

- ullet два обратимых аффинных (линейных) отображения $\mathcal{S}:\mathbb{F}^m o\mathbb{F}^m$ и $\mathcal{T}:\mathbb{F}^n o\mathbb{F}^n$
- ullet открытый ключ $\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T}$
- ullet секретный ключ $\mathcal{S}, \mathcal{F}, \mathcal{T}$

Выработка подписи

Для заданного сообщения $d \in \{0, 1\}^*$:

- 1. Вычислить хэш $H: \{0,1\}^* \to \mathbb{F}^m$, w = H(d)
- 2. вычислить $x = S^{-1}(w)$
- 3. подставить вместо ``уксусных'' переменных случайные значения в $f^{(v_1+1)}, \ldots, f^{(n)}$
- 4. для i:=1 до u решить линейную систему, заданную $f^{(v_i+1)},\ldots,f^{(v_{i+1})},$ получить значения $y_{v_i+1},\ldots,y_{v_{i+1}}$ и подставить их в многочлены $f^{(v_{i+1}+1)},\ldots,f^{(n)}$
- 5. положить $y = (y_1, \dots, y_n) \in \mathbb{F}^n$
- 6. вычислить подпись $z \in \mathbb{F}^n$, $z = \mathcal{T}^{-1}(y)$.

Проверка подписи

Для заданного сообщения $d \in \{0,1\}^*$, подписи $z \in \mathbb{F}^n$:

- 1. вычислить $w'=\mathcal{P}(z)\in\mathbb{F}^m$
- 2. вычислить $w=H(d)\in \mathbb{F}^m$
- 3. Если w = w', то подпись принимается.

О стойкости Rainbow

Нарушитель, который хочет подделать электронную подпись, имеет следующую информацию:

• Исходное сообщение M и, как следствие, значение

$$(e_1,\ldots,e_o)=H(M).$$

ullet Набор многочленов $\mathcal{P} = \{p_1, \dots, p_o\} \in \mathbb{F}_q[x_1, \dots, x_n].$

О стойкости Rainbow

В самом простом случае подделка подписи эквивалентна поиску решения x_1, \ldots, x_n , удовлетворяющего условию

$$p_k(x_1,...,x_n) = e_k, \quad k = 1,...,o,$$
 (2)

или, в векторной записи, $\mathcal{P}(x) = e$.

Поскольку n=o+v и v>1, то число уравнений меньше, чем число неизвестных, а рассматриваемая система может иметь пространство решений размерности n-o. Поскольку поле \mathbb{F}_q конечно, то можно реализовать алгоритм тотального опробования, в котором перебираются все возможные значения переменных x_1,\ldots,x_n . Сложность такого алгоритма оценивается величиной

$$O(q^n o n)$$

операций в поле \mathbb{F}_q .

Обзор атак на Rainbow

Общие атаки: задача сводится к задаче MQ: для заданного квадратичного отображения $\mathcal{P}(x): \mathbb{F}_q^n \to \mathbb{F}_q^m$ и $t \in \mathbb{F}_q^m$ найти s т.ч. $\mathcal{P}(s) = t$ NP-сложная задача. Методы, основанные на базисах Гребнера: F_4, F_5, XL .

Rank Attacks: MinRank

Для заданных m матриц размера $n \times n$ P_1, \dots, P_m найти линейную комбинацию $H = \sum_{i=1}^m \lambda_i P_i$ с рангом $\leq r$.

В случае Rainbow, это матрицы P_1, \ldots, P_m публичных полиномов как квадратичных форм. Найдя o_1 таких линейных комбинаций, мы можем отделить 1-й ``слой'', а затем и остальные.

Трудоемкость атаки:

$$o_1q^{v_1+1}\left(\frac{m^3}{3}-\frac{m^2}{6}\right)$$
.

Rank Attacks: MinRank

Algorithm 5.5 MinRank attack

```
Input: matrices P^{(v_1+1)}, \dots, P^{(n)}
Output: Linear combination C = \sum_{i=v_1+1}^n c_i \cdot P^{(i)} of rank \leq v_2
1: repeat
2: Choose randomly a vector \lambda \in \mathbb{F}^m and compute P = \sum_{i=v_1+1}^n \lambda_i P^{(i)}.
3: if Rank (P) > 1 and Rank (P) < n then
4: Choose randomly a vector \gamma from ker(P).
5: C \leftarrow \sum_{i=v_1+1}^n \gamma_i P^{(i)}
6: end if
7: until Rank (C) \leq v_2
8: return C
```

Jintai Ding, Albrecht Petzoldt, Dieter S. Schmidt. ``Multivariate Public Key Cryptosystems"

Rank Attacks: HighRank

``Масляные" подпространства:

$$\mathcal{O}_{i} = \{x \in \mathbb{F}^{n} : x_{1} = \dots = x_{v_{i}} = 0\};$$

$$\mathcal{O}_{u} \subset \mathcal{O}_{u-1} \subset \dots \subset \mathcal{O}_{1} \subset \mathbb{F}^{n};$$

$$\forall F^{(k)}, k \in O_{i}, \forall x \in \mathcal{O}_{i}, x^{T} \cdot F^{(k)} \cdot x = 0.$$

$$\mathcal{O}_{i} \subset \ker F^{(k)} \forall k \in O_{i}.$$

Найдя линейные комбинации матриц $P^{(k)}$, найдем пространство $\mathcal{T}^{-1}(\mathcal{O}_u)$. Трудоемкость атаки:

$$q^{o_u} \frac{n^3}{6}$$

Rank Attacks: HighRank

Algorithm 5.6 HighRank attack

Input: public matrices $P^{(v_1+1)}, \ldots, P^{(n)}$

Output: $\mathcal{T}^{-1}(\mathcal{O}_u)$

- 1: Form an arbitrary linear combination $H = \sum_{k=v_1+1}^{n} \lambda_k P^{(k)}$. Find $V = \ker H$.
- 2: If dim $V \ge 1$, set $\left(\sum_{k=v_1+1}^n \lambda_k P^{(k)}\right) V = 0$. Test, if the solution set has dimension $m o_u$.
- 3: With probability q^{-o_u} , we have therefore found $V \subset \mathcal{T}^{-1}(\mathcal{O}_u)$. We continue this process, until we have found the whole space $\mathcal{T}^{-1}(\mathcal{O}_v)$.
- 4: **return** $\mathcal{T}^{-1}(\mathcal{O}_u)$

Jintai Ding, Albrecht Petzoldt, Dieter S. Schmidt. "Multivariate Public Key Cryptosystems"

Rainbow Band Separation

С большой вероятностью существует эквивалентный секретный ключ вида $\tilde{\mathcal{S}}, \tilde{\mathcal{F}}, \tilde{\mathcal{T}}$:

$$\tilde{S} = \begin{pmatrix} 1_{o_{1} \times o_{1}} & \tilde{S}_{o_{1} \times o_{2}}^{(1,2)} & \dots & \tilde{S}_{o_{1} \times o_{u}}^{(1,u)} \\ 0_{o_{2} \times o_{1}} & 1_{o_{2} \times o_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \tilde{S}_{o_{u-1},o_{u}}^{(u-1,u)} \\ 0_{o_{u},o_{1}} & \dots & 0_{o_{u},o_{u-1}} & 1_{0_{u} \times o_{u}} \end{pmatrix}$$

$$\tilde{T} = \begin{pmatrix} 1_{v_{1} \times v_{1}} & \tilde{T}_{v_{1} \times o_{1}}^{(1,2)} & \dots & \tilde{T}_{v_{1} \times o_{u}}^{(1,u+1)} \\ 0_{o_{1} \times v_{1}} & 1_{o_{1} \times o_{1}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \tilde{T}_{o_{u-1},o_{u}}^{(u,u+1)} \\ 0_{o_{u},v_{1}} & \dots & 0_{o_{u},o_{u-1}} & 1_{0_{u} \times o_{u}} \end{pmatrix}.$$

Rainbow Band Separation

Для этого представим матрицу $\tilde{T}^{-1} = T_n^{-1} \cdot \dots \cdot T_{\nu_1+1}^{-1}$:

$$T_{i} = \begin{pmatrix} 1 & 0 & 0 & t_{1,i} & 0 \\ & \ddots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & t_{v_{\ell},i} & 0 \\ 0 & \dots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix} \quad (i = v_{1} + 1, \dots, n)$$

$$F^{(k)} = \sum_{l=1}^{m} \tilde{\mathbf{s}}_{kl} (\tilde{T}_{\nu_1+1}^T \cdot \cdots \cdot \tilde{T}_n^T \cdot P^{(l)} \cdot \tilde{T}_n \cdot \cdots \cdot \tilde{T}_{\nu_1+1})$$

Rainbow Band Separation

Ищем для $k=v_1+1,\ldots,n$ последовательность матриц $P_n^{(k)}=P^{(k)},P_{n-1}^{(k)},\ldots,P_{v_1}^{(k)}$ т.ч. $P_{v_1}^{(k)}$ имеет форму $F^{(k)}$. Тогда матрицы $P_{v_1}^{(k)}$, $k=v_1+1,\ldots,n$ вместе с \tilde{T}_i и \tilde{s}_{kl} образуют эквивалентный секретный ключ.

Трудоемкость: имеем систему из (n-j+1)(m+n-1) уравнений от n неизвестных; $XL/F_4/F_5$. m таких систем $(j=n,\ldots,v_1+1)$.

Общая трудоемкость определяется трудоемкостью решения *n*-й системы:

- 1 кубическое уравнение
- m-1 квадратичных уравнений в переменных \tilde{T}_n
- n-1 билинейных уравнений (линейных по \tilde{T}_n и \tilde{s}_{nk})

Jintai Ding, Albrecht Petzoldt, Dieter S. Schmidt. ``Multivariate Public Key Cryptosystems"

Beullens' Attack

Конкретный случай Rainbow с двумя слоями (как в проекте). Рассмотрим полярную форму открытого ключа:

$$\mathcal{P}'(x,y) = \mathcal{P}(x+y) - \mathcal{P}(x) - \mathcal{P}(y).$$

Существуют подпространства $W \subset \mathbb{F}_q^m$, $\mathcal{O}_2 \subset \mathcal{O}_1 \subset \mathbb{F}_q^n$ т.ч.

$$\mathcal{P}'(x,\cdot)(\mathcal{O}_2) \subset W, \mathcal{P}(\mathcal{O}_1) \subset W, \mathcal{P}(\mathcal{O}_1) = \{0\}$$

$$L_{\scriptscriptstyle X} = egin{bmatrix} \mathcal{P}'(e_1, x) \ dots \ \mathcal{P}'(e_n, x) \end{bmatrix}.$$

Beullens' Attack

Если $y \in \mathcal{O}_2$, то все столбцы L_y лежат в W, и ранг матрицы не больше $\dim W = o_2$. Соответствующие матрицы есть $L_y = \sum_{j=1}^n y_j L_{e_j}$, L_{e_j} известны. Итак, \exists нетривиальная линейная комбинация из $k = n - o_2 + 1$ матриц $L_{e_1}, \ldots, L_{e_{n-o_2+1}}$ ранга o_2 . Берем базис W и диагонализируем его, получаем $o_2 \times m$ матрицу C. Возьмем любой столбец матрицы L_y (как линейную форму от y_i). Рассмотрим $(o_2 + 1) \times (o_2 + 1)$ - миноры матрицы

$$\begin{bmatrix} r_i \\ C \end{bmatrix}$$

и все $o_2 \times o_2$ -миноры матрицы C и все y_i как переменные; получим систему из $n\binom{m}{o_2+1}$ уравнений, к-рую решаем XL-методом (если $n\binom{m}{o_2+1} \ge (n-o_2+1)\binom{m}{o_2}-1$).

Взлом

2002: Ward Beullens, "Breaking Rainbow takes a weekend on a laptop" "Best Early Career Researcher Paper" ABCMint:

СПАСИБО ЗА ВНИМАНИЕ