Hypothesis Testing II

Sean Hellingman ©

Introduction to Statistical Data Analysis (ADSC1000) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- Two-Sample Tests for Means
 - Two-Sample Tests for
 - Proportions

- Test for Difference of
 - Variances
- 6 Hypothesis Tests and Confidence Intervals
- Exercises and References

Introduction

- We are continuing to make statistical inferences about target populations.
- Now we are going to draw conclusions about population parameters of two populations.
- Example: Is Brighton's passing accuracy better than Chelsea's?
 - Again, we need statistical methods to draw conclusions about the differences in passing accuracy.
- Note: The formulas are more complicated than the one-sample tests.

Two-Sample Tests

Test For	Null Hypothesis (H ₀)	Test Statistic	Distribution	Use When
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{\left(\overline{x}_1 - \overline{x}_2\right) - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Z	Both normal distributions, or n_1 , $n_2 \ge 30$; σ_1 , σ_2 known
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	t distribution with df = the smaller of n_1 -1 and n_2 -1	n_1 , $n_2 < 30$; and/or σ_1 , σ_2 unknown
Mean difference μ_d (paired data)	$\mu_d = 0$	$\frac{\left(\overline{d} - \mu_d\right)}{s_d / \sqrt{n}}$	t _{n-1}	n < 30 pairs of data and/or σ_d unknown
Difference of two proportions $(p_1 - p_2)$	$p_1 - p_2 = 0$	$\frac{(\hat{\rho}_1 - \hat{\rho}_2) - 0}{\sqrt{\hat{\rho}(1 - \hat{\rho})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	Z	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

Recall Two-Sample Hypothesis Formulations

• Two-Sample Tests:

```
H_0: Population parameter (group 1) - Population parameter (group 2) \geq 0

H_1: Population parameter (group 1) - Population parameter (group 2) < 0

H_0: Population parameter (group 1) - Population parameter (group 2) \leq 0

H_1: Population parameter (group 1) - Population parameter (group 2) > 0

H_0: Population parameter (group 1) - Population parameter (group 2) = 0

H_1: Population parameter (group 1) - Population parameter (group 2) \neq 0
```

t-tests for Independent Samples I

- We are now going to compare the population means of two independent populations.
- Again, we can specify the three kinds of tests.

p-values in R

- We can use the t.test() function in R.
- ullet In the case of a two-sample t-test we need two vectors as arguments x and y.
- Produces the test statistic (t), confidence intervals, p-value, and sample means.
- Usage:
 - Lower one-tailed: t.test(x, y, mu = 0, alternative = "less", conf.level = 0.95, paired = FALSE, var.equal = FALSE)
 - Upper one-tailed: t.test(x, y, mu = 0, alternative =
 "greater", conf.level = 0.95, paired = FALSE, var.equal
 = FALSE)
 - Two-tailed: t.test(x, y, mu = 0, alternative = "two.sided", conf.level = 0.95, paired = FALSE, var.equal = FALSE)

t-tests for Independent Samples II

- We can set the mu = difference value to change the hypotheses about the differences in means.
- t.test() function performs a Welch's t-test unless var.equal = TRUE.
- This formulation does not work if the samples are not independent.

- Import the *iris* dataset into your environment and conduct the following hypothesis tests ($\alpha = 0.05$):
 - The mean petal length of virginica irises is smaller than the mean petal length of setosa irises.
 - The mean petal width of virginica irises is larger than the mean petal width of versicolor irises.
 - The mean petal length of virginica irises is different than the mean petal length of versicolor irises.
- Hint: Start by identifying H₀ and H₁

t-tests for Paired Samples I

- We are now going to compare the population means of two paired populations.
- This occurs when the observations are naturally paired
 - Pre- and post-treatment individuals (before and after study).
 - Comparing injured and non-injured limbs.
 - Repeated measures.
- Hypothesis tests are more accurate than assuming observations are independent.

p-values in R

- We can use the t.test() function in R.
- In the case of a two-sample t-test we need two vectors as arguments x and y
 (must be the same length and order).
- Produces the test statistic (t), confidence intervals, p-value, and sample means.
- Usage (change paired = TRUE):
 - Lower one-tailed: t.test(x, y, mu = 0, alternative = "less", conf.level = 0.95, paired = TRUE, var.equal = FALSE)
 - Upper one-tailed: t.test(x, y, mu = 0, alternative =
 "greater", conf.level = 0.95, paired = TRUE, var.equal =
 FALSE)
 - Two-tailed: t.test(x, y, mu = 0, alternative = "two.sided", conf.level = 0.95, paired = TRUE, var.equal = FALSE)

- Import the Paired.csv file into your environment and test the following hypotheses ($\alpha = 0.1$):
 - The average post-treatment values are smaller than the pre-treatment measures.
 - The average post-treatment values are different than the pre-treatment measures.
 - The average post-treatment values are larger than the pre-treatment measures.
- Hint: Start by identifying H₀ and H₁

Z-tests for Differences in Proportions

- We may also conduct hypothesis tests for differences in proportions.
- Recall, that the sampling distribution of proportions is assumed to be normal.
- Again, we can specify the three kinds of tests.

p-values in R

- We can use the prop.test() function in R.
- In the case of a two-sample Z-test for proportions we need the number of *successes* for each group and the number of *trials*.
 - We include vectors of *successes* and *trials* into the function.
- Produces the test statistic, confidence intervals, *p*-value, and sample proportions.
- Usage:
 - Lower one-tailed: prop.test($x=c(x_1,x_2)$ n=c(n_1,n_2), alternative = "less", conf.level = 0.95, correct = FALSE)
 - Upper one-tailed: prop.test($x=c(x_1,x_2)$ n=c(n_1,n_2), alternative = "greater", conf.level = 0.95, correct = FALSE)
 - Two-tailed: prop.test($x=c(x_1,x_2)$ n=c(n_1,n_2), alternative = "two.sided", conf.level = 0.95, correct = FALSE)

- Import the *Cars93* dataset from the *MASS* package into your environment and test the following hypotheses ($\alpha = 0.05$):
 - The proportion of vehicles that do not have manual transmissions available (Man.trans.avail) is less than those that do have manual transmissions available.
 - There is a larger proportion of vehicles that are rear wheel drive than vehicles that are four-wheel drive (4WD) (*DriveTrain*).
 - The proportion of Vans on the road is different than the proportion of Compact vehicles (*Type*).
- Hint: Start by identifying H₀ and H₁

F-tests for Differences in Variances

- Assuming that our data come from a normal distribution, we can test hypotheses about the equality of variances.
- The *F*-test has the following test statistic:

$$F = \frac{s_1^2}{s_2^2} \tag{1}$$

• It also has two values of degrees of freedom:

$$df_1 = n_1 - 1 \& df_2 = n_2 - 1$$

- If the variances differ significantly, we would expect F to be much larger than 1; the closer F is to 1, the more likely it is that the variances are the same.
- Again, we can specify the three kinds of tests.

p-values in R

- We can use the var.test() function in R.
- In the case of a two-sample F-test for variances we need two vectors as arguments x and y.
- Produces the test statistic F, confidence intervals, p-value, and sample variance ratio.
- Usage:
 - Lower one-tailed: var.test(x, y, ratio = 1, alternative =
 "less". conf.level = 0.95)
 - Upper one-tailed: var.test(x, y, ratio = 1, alternative =
 "greater", conf.level = 0.95)
 - Two-tailed: var.test(x, y, ratio = 1, alternative =
 "two.sided", conf.level = 0.95)
- The ratio = 1 argument specifies which ratio value you are testing.

- Generate the samples x, y, and z in the example code. Use those variables to conduct the following hypothesis tests ($\alpha = 0.05$):
 - The variance of x is greater than the variance of y.
 - The variance of y is different than the variance of z.
 - The variance of z is smaller than the variance of x.
- ullet Hint: Start by identifying H_0 and H_1

Hypothesis Tests & Confidence Intervals

- Confidence intervals and the hypothesis tests we have looked at are related.
 - They rely on essentially the same information.
 - We even used the same R functions for both.
- When testing the difference between two population parameters, if the confidence interval for the difference contains 0, then we would not reject the null hypothesis.
- They can be used interchangeably under the correct conditions.

Which Test to Use?

- Understanding the assumptions needed for each test allows you to decide which test to use and how to use it.
- Information to help with deciding:
 - Are there one- or two-samples being tested?
 - What is the sampling distribution of the population parameter we are interested in?
 - Lower, upper, or two-tailed test?
 - What is the confidence level we are interested in?

- Determine which hypothesis test to use for the following situations, write down the null and alternative hypotheses, population parameter(s) of interest, and perform the test:
 - I believe with 95% confidence that the average price of a car in 1993 in the U.S.A. was \$18000. Am I correct? (Use the Cars93 dataset from MASS)
 - ② I believe with 90% confidence that the average price of Midsize cars was lower than or equal to the average price of Small cars in 1993 in the U.S.A.. Am I correct?
 - I believe with 99% certainty that the proportion of cars equipped for 5 passengers in 1993 in the U.S.A. was 0.5. Am I correct?

- Import the *Trials.csv* dataset into R. Determine which hypothesis test
 to use for the following situations, write down the null and alternative
 hypotheses, population parameter(s) of interest, and perform the test:
 - ① Is there a difference between the variance of the results of Trial 1 and the results of Trial 2? ($\alpha=0.05$)
 - ② Does Trial 2 effect the averages of Test Group B and Test Group C differently? ($\alpha=0.1$)
 - 3 Are the baseline results on average lower than the results of Trial 1? $(\alpha=0.01)$
 - (Assuming the data come from a much larger experiment) Is there a significant difference in the proportions of individuals in Test Group A and Test Group B? ($\alpha=0.05$)

Exercise 1

- Use the *Trials.csv* to test the following:
 - ① Is there a difference between the variance of the Baseline and the results of Trial 2? ($\alpha=0.05$)
 - ② Do participants from Test Group A have on average a larger distance than Participants from Test Group C? ($\alpha=0.05$)
 - **3** Are the average Baseline results larger than the results of Trial 1? $(\alpha = 0.05)$
 - **1** Are the Baseline variances different between Test Group A and Test Group B? ($\alpha = 0.05$)

Exercise 2

• Use your new skills to come up with and test three hypotheses from the *Trials.csv* data.

References & Resources

- 1 Evans, J. R., Olson, D. L., & Olson, D. L. (2007). Statistics, data analysis, and decision modeling. Upper Saddle River, NJ: Pearson/Prentice Hall.
- ② Devore, J. L., Berk, K. N., & Carlton, M. A. (2012). *Modern mathematical statistics with applications (Second Edition)*. New York: Springer.
- https://search.r-project.org/CRAN/refmans/EnvStats/html/varTest.html
- https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test
- $\bullet \ \, \texttt{https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prop.test} \\$
- https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/var.test