Math 1431, Calculus I Test 4 Review, Spring 2015.

Shang-Huan Chiu

April 24, 2015

1 Differentiation and Integration Tables

Assume n, a, and C are constants. $(\dagger)1 - x^2 > 0$. $(\ddagger)x^2 - 1 > 0$

Function	Derivative of given function
$x^n, n \neq 0$	$n \cdot x^{n-1}$
$\ln(x)$	$\frac{1}{x}$
e^x	e^x
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\sec^2(x)$
sec(x)	$\sec(x)\tan(x)$
$\cot(x)$	$-\csc^2(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
arcsec(x)	$\frac{1}{ x \sqrt{x^2-1}}$
$a^x, a > 0$	$a^x \ln(a)$

Figure 1:	Differentiation	Table

$x^2 - 1 > 0$	
Function	Integral of given function
x^n	$\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + C, & \text{if } n \neq -1; \\ \ln x + C, & \text{if } n = -1. \end{cases}$
e^x	$\int e^x dx = e^x + C$
$\cos(x)$	$\int \cos(x) dx = \sin(x) + C$
$\sin(x)$	$\int \sin(x) dx = -\cos(x) + C$
$\sec^2(x)$	$\int \sec^2(x) dx = \tan(x) + C$
$\sec(x)\tan(x)$	$\int \sec(x)\tan(x)dx = \sec(x) + C$
$\csc^2(x)$	$\int \csc^2(x) dx = -\cot(x) + C$
$\csc(x)\cot(x)$	$\int \csc(x)\cot(x)dx = -\csc(x) + C$
$\cosh(x)$	$\int \cosh(x) dx = \sinh(x) + C$
$\sinh(x)$	$\int \sinh(x) dx = \cosh(x) + C$
$\frac{1}{\sqrt{1-x^2}}(\dagger)$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$
$\frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \arctan(x) + C$
$\frac{1}{x\sqrt{x^2-1}}(\ddagger)$	$\int \frac{1}{x\sqrt{x^2-1}} dx = \operatorname{arcsec}(x) + C$
$a^x, a > 0$	$\int a^x dx = \frac{1}{\ln(a)} a^x + c$

Figure 2: Integration Table

1 Riemann Sum

Given a continuous function f and a partition $P = \{x_0 = a, x_1, x_2, \dots, x_{n-1}, x_n = b\}$ on [a, b]. Then we can estimate $\int_a^b f(x) dx$ by Riemann Sum:

 \sum [(length of the subinterval) × (value of f on this subinterval)]

(1) Upper sum (U_f)

 $U_f = \sum [(\text{ length of the subinterval}) \times (\text{ maximum value of } f \text{ on this subinterval})]$

(2) Lower sum (L_f)

 $L_f = \sum [(\text{ length of the subinterval}) \times (\text{ minimum value of } f \text{ on this subinterval})]$

- (3) $U_f \geq L_f$
- (2) Specific points:(left endpoint, right endpoint, midpoint)

Sum = \sum [(length of the subinterval) × (specific point value of f on this subinterval)]

2 Basic Integration Properties

Assume f, g are continuous on [a, b] and α, β are constants.

(1) If a < c < b, then

$$\int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx.$$

(2) The integration value will change of sign if we integrate in the different directions:

$$\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx.$$

(3) The integral from any number to itself is defined to be zero:

$$\int_{c}^{c} f(x) \, dx = 0.$$

(4) Linearity of integration:

$$\int_a^b \alpha f(x) + \beta g(x) \, dx = \alpha \int_a^b f(x) \, dx + \beta \int_a^b g(x) \, dx.$$

1

3 Fundamental Theorem of Calculus

3.1 First Fundamental Theorem of Calculus

Theorem 3.1 Let f be continuous on [a,b]. The function F defined on [a,b] by

$$F(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a,b], differentiable on (a,b), and has derivative F'(x) = f(x) for all x in (a,b).

Assume a function f is defined as above in the theorem and function u(x), v(x) are differentiable, we have

(1) If $F(x) = \int_a^x f(t) dt$, then

$$F'(x) = f(x).$$

(2) If $F(x) = \int_x^a f(t) dt$, so $F(x) = -\int_a^x f(t) dt$, then

$$F'(x) = -f(x).$$

(3) If $F(x) = \int_a^{u(x)} f(t) dt$, then

$$F'(x) = u'(x) \cdot f(u(x)).$$

(3) If $F(x) = \int_{v(x)}^{u(x)} f(t) dt$, there is a constant c such that

$$F(x) = \int_{c}^{u(x)} f(t) dt - \int_{c}^{v(x)} f(t) dt$$

then we have

$$F'(x) = u'(x) \cdot f(u(x)) - v'(x) \cdot f(v(x)).$$

3.2 Second Fundamental Theorem of Calculus

Definition 3.2 Let f be continuous on [a,b]. A function is called an antiderivative for f on [a,b] if

F is continuous on [a, b] and F'(x) = f(x) for all $x \in (a, b)$.

Theorem 3.3 Let f be continuous on [a,b]. If F is any antiderivative for f on [a,b], then

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

4 Differential

Given f(a+h), we can estimate f(a+h)-f(a) by differential df:

$$f(a+h) - f(a) \approx df = f'(a) \cdot h,$$

then

$$f(a+h) \approx f(a) + f'(a) \cdot h.$$