1 Lezione del 23-10-24

1.1 Circuiti RC a regime sinusoidale

Veniamo quindi a studiare circuiti dove i generatori non sono in regime costante, ma **sinusoidali**. Un circuito si dice in **regime periodico sinusoidale** se tutte le correnti i(t) e tutte le tensioni v(t) possono essere espresse come funzioni sinusoidali con la stessa pulsazione. Le grandezze devono quindi essere descritte da funzioni **periodiche**, ergo:

$$f(t+T) = f(t) \quad \forall t$$

dove T si dice **periodo**. Notiamo che periodico non significa sinusoidale, in quanto altri tipi di onde (quadre, a dente di sega, ecc...) sono ugualmente periodiche. In particolare, noi tratteremo funzioni in forma:

$$f(t) = F \cdot \sin(\omega t + \phi)$$

dove F è l'ampiezza dell'oscillazione, ω la pulsazione e ϕ fase.

Abbiamo che esiste una relazione fra pulsazione ω e periodo T, e che si può introdurre la **frequenza** f:

$$\omega = \frac{2\pi}{T} = 2\pi f \quad f = \frac{1}{T}$$

Si ha che il periodo si misura in secondi, la frequenza in Herz ($\rm Hz$), e la pulsazione in $\rm rad/s$.

1.2 Fasori

Si ha che per lo studio delle equazioni differenziali date da sistemi a regime sinusoidale, torna utile passare ad un dominio **fasoriale** delle grandezze in questione.

Prendiamo una funzione sinusoidale in forma:

$$x(t) = x_M \cdot \sin(\omega t + \phi)$$

e trasformiamola in un numero complesso, nella sua forma esponenziale:

$$x(t) = x_m \cdot e^{j(\omega t + \phi)}$$

dove *j* rappresenta la **costante immaginaria**.

Lo stesso complesso (più propriamente, una funzione complessa) potrà essere espresso in forma cartesiana, come:

$$x(t) = a(t) \cdot jb(t)$$

Potremo allora ricavare, dalla formula di Eulero:

$$e^{j\phi} = \cos(\phi) + j\sin(\phi)$$

le seguenti trasformazioni:

$$\begin{cases} x_M = \sqrt{a^2 + b^2} & \qquad \qquad \begin{cases} a = x_M \cos(\phi) \\ \phi = \operatorname{atan2}\left(\frac{b}{a}\right) & \qquad \qquad \\ b = x_M \sin(\phi) \end{cases}$$
 dove si è definito atan2 come:

$$\operatorname{atan2}(\phi) = \begin{cases} \arctan \frac{b}{a}, & a > 0, b \in \mathbb{R} \\ \pi + \arctan \frac{b}{a}, & a < 0, b > 0 \\ -\pi + \arctan \frac{b}{a}, & a < 0, b < 0 \end{cases}$$

$$\frac{\pi}{2}, & a = 0, b > 0$$

$$-\frac{\pi}{2}, & a = 0, b < 0$$

$$0 & a > 0, b > 0$$

$$\pi / - \pi & a < 0, b > 0$$

$$\emptyset & a = 0, b = 0$$

Chiamiamo x(t) vettore rotante. Si ha che il vettore rotante ha distanza dall'origine pari all'ampiezza dell'oscillazione, e si muove di moto rotante sul piano di Gauss con velocità angolare pari alla pulsazione dell'oscillazione, con relativa fase.

Infine, definiamo quando ci interessa:

1.1: Fasore

Chiamiamo il valore assunto da un vettore rotante x(t) in un dato momento $t_0=0$ **fasore** (da *phase vector*), e lo indichiamo come \hat{X} .

Chiaramente, il vettore rotante assume valori complessi e il fasore stesso è un numero complesso:

Nell'esempio, posto $i(t) = 5 \cdot \sin(1000t + \frac{\pi}{4})A$, avremo il fasore a $t_0 = 0$:

$$\dot{I} = 5 \cdot e^{j\frac{\pi}{4}}$$

Dal grafico vediamo poi che il modulo del vettore coincide col valore della corrente o della tensione che rappresenta, e che l'angolo che forma con l'asse delle ascisse rappresenta la fase ϕ .

Visto che le pulsazioni sono comuni fra fasori diversi (circuiti a regime sinusoidale), abbiamo che le uniche informazioni che conserviamo nel diagramma dei fasori sono l'ampiezza e la fase.

1.2.1 Proprietà dei fasori

1. **Addizione e sottrazione:** dati due fasori \dot{I}_1 e \dot{I}_2 si ha che:

$$\dot{I}_1 + \dot{I}_2 = I_1 \cdot e^{j\phi_1} + I_2 \cdot e^{j\phi_2} = I_1 \cdot \cos(\phi_1) + j \cdot I_1 \cdot \sin(\phi_1) + I_2 \cdot \cos(\phi_2) + j \cdot I_2 \cdot \sin(\phi_2)
= (I_1 \cdot \cos(\phi_1) \pm I_2 \cdot \cos(\phi_2)) + j(I_1 \cdot \sin(\phi_1) \pm I_2 \cdot \sin(\phi_2))$$

dove I_1 e I_2 sono i moduli rispettivamente di I_1 e I_2 . Abbiamo che si sommano separatamente parti reali e immaginarie, ergo si si va calcolare banalmente la **somma vettoriale** nel piano di Gauss dei due fasori.

2. **Derivata:** definiamo la derivata di x(t) rispetto al tempo come:

$$y(t) = \frac{d(x(t))}{dt} = \operatorname{Im}\left\{\dot{X}e^{j\omega t}\right\} = \frac{d\left(\operatorname{Im}\left\{\dot{X}e^{j\omega t}\right\}\right)}{dt} = \operatorname{Im}\left\{\frac{d\left(\dot{X}e^{j\omega t}\right)}{dt}\right\}$$
$$= \operatorname{Im}\left\{\dot{X}\cdot\frac{d\left(e^{j\omega t}\right)}{dt}\right\} = \operatorname{Im}\left\{\dot{X}e^{j\omega t}\cdot j\omega\right\} = \operatorname{Im}\left\{j\omega\cdot\dot{X}\cdot e^{j\omega t}\right\}$$

da cui:

$$\dot{Y} = j\omega \dot{X}$$

3. **Integrale:** definiamo l'integrale di un fasore come:

$$y(t) = \int x(t)dt = \operatorname{Im}\left\{\hat{Y}e^{j\omega t}\right\} = \int \operatorname{Im}\left\{\dot{X}e^{j\omega t}\right\}dt = \operatorname{Im}\left\{\int \dot{X}e^{j\omega t}dt\right\}$$
$$= \operatorname{Im}\left\{\dot{X}\cdot\int e^{j\omega t}dt\right\} = \operatorname{Im}\left\{\dot{X}\cdot\frac{e^{j\omega t}}{j\omega}\right\} = \operatorname{Im}\left\{\frac{\dot{X}}{j\omega}e^{j\omega t}\right\}$$
$$\vdots$$
$$\dot{Y} = \frac{\dot{X}}{j\omega}$$

da cui:

1.3 Dipoli in regime sinusoidale

Vediamo come si comportano i dipoli visti finora in regime sinusoidale.

1.3.1 Resistori

Poniamo di avere un resistore in regime sinsuoidale. Avevamo che:

$$v_R = Ri_R$$

In quanto a fasori, avremo la stesssa legge:

$$\dot{V}_R = R\dot{I}_R$$

Ergo non cambia niente rispetto a quanto avevamo in regime costante. Sul diagramma dei fasori, avremmo che i fasori tensione e corrente saranno fra di loro paralleli:

1.3.2 Induttori

Un induttore è governato dalla legge:

$$v_L(t) = L \frac{d i_L(t)}{dt}$$

Sui fasori si avrà, applicando la legge di derivazione dei fasori:

$$\dot{V}_L = Lj\omega \dot{I}_L = j\omega L \cdot \dot{I}_L$$

Notiamo come il legame differenziale della prima legge diventa algebrico nella seconda, e anzi si riconduce ad una forma che ricorda la legge di Ohm. Sul diagramma dei fasori, avremo che i fasori tensione e corrente formano fra di loro un angolo di $\frac{\pi}{2}$:

1.3.3 Condensatori

Un condensatore è governato dalla legge:

$$v_C(t) = \frac{1}{C} \int i_C(t) dt$$

Sui fasori si avrà, applicando la legge di integrazione dei fasori:

$$\dot{V}_C = \frac{1}{C} \frac{\dot{I}_C}{j\omega} = \frac{\dot{I}_C}{j\omega C}$$

Come prima, ci riportiamo in una forma lineare. Sul diagramma dei fasori, avremo che i fasori tensione e corrente formano fra di loro un angolo di $-\frac{\pi}{2}$:

1.4 Analisi circuitale coi fasori

La definizione dei fasori ci permette di studiare circuiti in regime sinusoidali attraverso gli stessi strumenti che abbiamo studiato finora, a patto di dover risolvere un sistema di equazioni complesse (che possiamo sempre dividere in parte reale e immaginaria). Prendiamo ad esempio il circuito:

La legge che governa il generatore di tensione è:

$$e(t) = A\sin(\omega t + \phi), \quad \dot{E} = Ae^{j\phi}$$

Vediamo come risolvere il circuito usando il tableau e le correnti di maglia.

 Metodo del tableau: prendendo il nodo in basso, si ha dalla prima legge di Kirchoff:

$$I_R + I_C - I_L = 0$$

Ricordando che, nel campo complesso, un'equazione di questo tipo significa:

$$\begin{cases} \operatorname{Re}\{I_R\} + \operatorname{Re}\{I_C\} - \operatorname{Re}\{I_L\} = 0\\ \operatorname{Im}\{I_R\} + \operatorname{Im}\{I_C\} - \operatorname{Im}\{I_L\} = 0 \end{cases}$$

In ogni caso, ossiamo poi applicare la seconda legge di Kirchoff sulle due maglie, in modo da ottenere il sistema completo:

$$\begin{cases} I_R + I_C - I_L = 0 \\ \dot{E} + R_1 \dot{I}_L + j\omega L \dot{I}_L + R_2 \dot{I}_R = 0 \\ -R_2 \dot{I}_R + \frac{1}{i\omega C} \dot{I}_C = 0 \end{cases}$$

Questo si riconduce ad un sistema lineare:

$$\begin{pmatrix} 1 & -1 & 1 \\ R_2 & R_1 + j\omega L & 0 \\ -R_2 & 0 & \frac{1}{j\omega L} \end{pmatrix} \begin{pmatrix} \dot{I}_R \\ \dot{I}_L \\ \dot{I}_C \end{pmatrix} = \begin{pmatrix} 0 \\ \dot{E} \\ 0 \end{pmatrix}$$

che possiamo risolvere con qualsiasi risolutore di sistemi lineari.

Assumiamo $\phi=\frac{\pi}{2}$, così che $\dot{E}=Aj$. In modalità simbolica, allora, MATLAB restituisce:

$$\begin{cases} I_L = -\frac{A\left(C\,R_2\,\omega - \mathrm{i}\right)}{R_1 + R_2 + L\,w\,1\mathrm{i} - C\,L\,R_2\,w^2 + C\,R_1\,R_2\,w\,1\mathrm{i}} \\ I_R = \frac{A\,1\mathrm{i}}{R_1 + R_2 + L\,\omega\,1\mathrm{i} - C\,L\,R_2\,w^2 + C\,R_1\,R_2\,w\,1\mathrm{i}} \\ I_C = -\frac{A\,C\,R_2\,\omega}{R_1 + R_2 + L\,w\,1\mathrm{i} - C\,L\,R_2\,w^2 + C\,R_1\,R_2\,w\,1\mathrm{i}} \end{cases}$$

• Metodo delle correnti di maglia: prendiamo la maglia a sinistra in senso orario e quella destra in senso antiorario, con le correnti rispettivamente I_1 e I_2 :

$$\begin{cases} \dot{E} = R_1 \dot{I}_1 + j\omega L \dot{I}_1 + R_2 \left(\dot{I}_1 - \dot{I}_2 \right) \\ 0 = \frac{\dot{I}_2}{j\omega C} + R_2 \left(\dot{I}_2 - \dot{I}_1 \right) \end{cases}$$

da cui il sistema:

$$\begin{pmatrix} R_1 + R_2 + j\omega L & -R_2 \\ -R_2 & \frac{1}{j\omega C} + R_2 \end{pmatrix} \begin{pmatrix} \dot{I}_1 \\ \dot{I}_2 \end{pmatrix} = \begin{pmatrix} \dot{E} \\ 0 \end{pmatrix}$$

che dà lo stesso risultato.