CSE330: Spring 2025 Assignment 3 Total Marks: 25

- 1. Consider the function $f(x) = x \ln(x)$. Now answer the following:
- (a) (2 marks) Evaluate the numerical derivative of f(x) at x = 1.0 with step size h = 0.1 using the **forward and central difference** methods up to 5 significant figures.
- (b) (4 marks) Compute the upper bound of the truncation error of f(x) at x = 1.0 using h = 0.1 for the **backward and central difference** methods up to 5 significant figures.
- (c) (4 marks) **Deduce** an expression for D_h^1 from D_h by replacing h with **(4h/3)** using the Richardson extrapolation method.
- (d) (5 marks) For the given f(x) and $x_0 = 1$, h = 0.1, find the **upper bound of error** for **Richardson extrapolation of degree 1** equation derived in **1(c)**.

2. (3+2 marks) The following Data set is generated by the function $f(x) = x \cos(x) - x + \sin(x)$.

x	1.1	1.2	1.3
f(x)	0.2902	0.1669	0.01131

Based on the above data, compute f'(1.2) using the **Central Difference** method, and also calculate the **relative error**. Use 4 significant figures.

- 3. Consider the function $f(x) = 4x^3 9e^{7x}$. Now answer the following:
- a) (3 marks) Compute $D^{(1)}_{0,2}$ at x = 2.7 using **Richardson extrapolation** method up to 4 significant figures.
- b) (2 marks) Compute $D^{(2)}_{0,2}$ at x = 2.7 using **Richardson extrapolation** method up to 4 significant figures.