Package 'r2redux'

March 23, 2022

Title R2 statistic					
Version 1.0.0					
Authors Sang Hong Lee (hong.lee@unisa.edu.au) and Md Moksedul Momin (momin@cvasu.ac.bd)					
Description R2 statistic for signficance test.					
License `use_gpl3_license()`					
Encoding UTF-8					
Roxygen list(markdown = TRUE)					
RoxygenNote 7.1.2.9000					
R topics documented:					
olkin_beta1_2					
olkin_beta1_2 olkin_beta1_2 function					

Description

This function derives Information matrix for beta 1^2 and beta 2^2 where beta 1 and 2 are regression coefficients from a multiple regression model, i.e. y = x1 beta 1 + x2 beta 2 + e, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta1_2(omat, nv)
```

2 olkin_beta_inf

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Examples

```
olkin_betal_2 (omat,nv) (see example file)
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)
omat

1.000 0.195 0.197 0.197 0.197 0.194 0.191 0.183 0.168 0.130 0.103
0.195 1.000 0.998 0.995 0.992 0.984 0.964 0.936 0.860 0.757 0.669
0.197 0.998 1.000 0.998 0.996 0.988 0.969 0.942 0.867 0.764 0.674
0.197 0.995 0.998 1.000 0.998 0.991 0.972 0.946 0.872 0.769 0.679
0.197 0.992 0.996 0.998 1.000 0.995 0.978 0.953 0.879 0.777 0.687
0.194 0.984 0.988 0.991 0.995 1.000 0.988 0.966 0.897 0.796 0.706
0.191 0.964 0.969 0.972 0.978 0.988 1.000 0.987 0.928 0.831 0.742
0.183 0.936 0.942 0.946 0.953 0.966 0.987 1.000 0.959 0.869 0.780
0.168 0.860 0.867 0.872 0.879 0.897 0.928 0.959 1.000 0.942 0.859
0.130 0.757 0.764 0.769 0.777 0.796 0.831 0.869 0.942 1.000 0.951
0.103 0.669 0.674 0.679 0.687 0.706 0.742 0.780 0.859 0.951 1.000
```

olkin_beta_inf

olkin_beta_inf function

Description

This function derives Information matrix for beta1 and beta2 where beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta_inf(omat, nv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

 $r2_diff$ 3

Examples

```
olkin_beta_inf (omat,nv) (see example file)
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)
omat

1.000 0.195 0.197 0.197 0.197 0.194 0.191 0.183 0.168 0.130 0.103
0.195 1.000 0.998 0.995 0.992 0.984 0.964 0.936 0.860 0.757 0.669
0.197 0.998 1.000 0.998 0.996 0.988 0.969 0.942 0.867 0.764 0.674
0.197 0.995 0.998 1.000 0.998 0.991 0.972 0.946 0.872 0.769 0.679
0.197 0.992 0.996 0.998 1.000 0.995 0.978 0.953 0.879 0.777 0.687
0.194 0.984 0.988 0.991 0.995 1.000 0.988 0.966 0.897 0.796 0.706
0.191 0.964 0.969 0.972 0.978 0.988 1.000 0.987 0.928 0.831 0.742
0.183 0.936 0.942 0.946 0.953 0.966 0.987 1.000 0.959 0.869 0.780
0.168 0.860 0.867 0.872 0.879 0.897 0.928 0.959 1.000 0.942 0.859
0.130 0.757 0.764 0.769 0.777 0.796 0.831 0.869 0.942 1.000 0.951
0.103 0.669 0.674 0.679 0.687 0.706 0.742 0.780 0.859 0.951 1.000
```

r2 diff

r2_diff function

Description

This function estimates $var(R2(y\sim x[,v1]) - R2(y\sim x[,v2]))$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_diff(dat, v1, v2, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	sample size

Examples

```
To get the test statistics for the difference between R2(y \sim x[,v1]) and R2(y \sim x[,v2]). (here we define R2_1=R2(lm(y \sim x[,v1])) and R2_2=R2(lm(y \sim x[,v2]))) dat=read.table("test_ukbb_thresholds_scaled") (see example files) nv=length(dat$V1) v1=c(1) v2=c(2) output=r2_diff(dat,v1,v2,nv) output r2redux output
```

4 r2_diff

```
output$var1 (variance of R2_1)
0.0001437583
output$var2 (variance of R2_2)
0.0001452828
output$var_diff (variance of difference between R2_1 and R2_2)
5.678517e-07
output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
output$mean_diff (differences between R2_1 and R2_2)
-0.0004488044
output$upper_diff (upper limit of 95% CI for the difference)
0.001028172
output$lower_diff (lower limit of 95% CI for the difference)
-0.001925781
To get the test statistics for the difference between R2(y\sim x[,v1]) and R2(y\sim x[,v2]).
(here R2_1=R2(lm(y\sim x[,v1]+x[,v2])) and R2_2=R2(lm(y\sim x[,v1)))
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
nv=length(dat$V1)
v1=c(1,2)
v2=c(1)
output=r2_diff(dat,v1,v2,nv)
output
r2redux output
output$var1 (variance of R2_1)
0.0001475195
output$var2 (variance of R2_2)
0.0001437583
output$var_diff (variance of difference between R2_1 and R2_2)
2.321425e-06
output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
0.4369177
output$mean_diff (differences between R2_1 and R2_2)
0.0006042383
output$upper_diff (upper limit of 95% CI for the difference)
0.004887989
output$lower_diff (lower limit of 95% CI for the difference)
-0.0005574975
```

r2_enrich 5

r2_enrich r2_enrich

Description

This function estimates var(t1/(t1+t2)) where $t1 = R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v1])$ and $t2 = R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v2])$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 should be a single interger between 1 - M, see Arguments below)

Usage

```
r2_enrich(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)	
v1	and v2 can be set as v1=1 and v2=2, v1=2 and v2=1, v1=3 and v2=2, or any combination as long as the value is between 1 - M	
nv	sample size	
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)	

Examples

```
To get test statistics for the ratio, i.e. t1/(t1+t2).
t1 = R2(y \sim x[,v1] + x[,v2]) - R2(y \sim x[,v1])) and
t2 = R2(y \sim x[,v1] + x[,v2]) - R2(y \sim x[,v2]))
(here we define R2_1=R2(y \sim x[,v1]), R2_2=R2(y \sim x[,v2]), R2_12=R2(y \sim x[,v1]+x[,v2])
dat=read.table("test_ukbb_enrichment_choles") (see example file)
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich(dat,v1,v2,nv,expected_ratio)
output
r2redux output
output$var1 (variance of R2_1)
8.758455e-05
output$var2 (variance of R2_2)
7.36385e-05
output$var12 (variance of R2_12)
0.000102236
outputvar_diff1_2 (var of difference of R2(y\sim x[,v1]) - R2(y\sim x[,v2])))
6.074567e-05
outputvar_diff12_1 (var of difference of R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v1])))
```

6 r2_enrich_beta

```
1.184853e-05
outputvar_diff12_2 (var of difference of R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v2])))
2.650564e-05
output\mbox{mean\_diff}12_1 (difference of R2(y \sim x[,v1] + x[,v2]) - R2(y \sim x[,v1])))
0.003048595
outputmean_diff12_2 (difference of R2(y \sim x[,v1] + x[,v2]) - R2(y \sim x[,v2])))
0.006845484
output$ratio (ratio of t1/(t1+t2))
0.6918768
output$ratio_var (variance of ratio, (t1/(t1+t2))
0.1324076
output$enrich_p (p-value for testing the ratio significantly different
from the expectation (exp1))
0.07321821
output$upper_ratio (upper limit of 95% CI for the ratio)
1.405079
output$lower_ratio (lower limit of 95% CI for the ratio)
-0.02132515
```

r2_enrich_beta r2_enrich_beta

Description

This function estimates var(t1/(t1+t2)) where $t1 = beta1^2$ and $t2 = beta2^2$, and beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995). y is y by 1 matrix having the dependent variable, and y is y by 1 matrix having the ith explanatory variables. y is y by 1 matrix having the jth explanatory variables. y indicates the ith and jth column in the data (y1 or y2 should be a single interger between 1 - y1.

Usage

```
r2_enrich_beta(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	and v2 can be set as v1=1 and v2=2, v1=2 and v2=1, v1=3 and v2=2, or any combination as long as the value is between 1 - M
nv	sample size
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)

r2_enrich_beta 7

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Examples

-0.02132515

```
To get the test statistic for the ratio which is significantly
different from the expectation.
var(t1/(t1+t2)), where t1 = beta1^2 and t2 = beta2^2.
betal and beta2 are regression coefficients from a multiple regression model,
i.e. y = x1 \cdot beta1 + x2 \cdot beta2 + e, where y, x1 and x2 are column-standardised
dat=read.table("test_ukbb_enrichment_choles") (see example file)
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
r2redux output
output$var1 (variance of t1)
7.072931e-05
output$var2 (variance of t2)
3.161929e-05
output$var1_2 (difference between t1 and t2)
0.000162113
output$beta1_sq (1st squared regression coefficient)
0.01118301
output$beta2_sq (2nd squared regression coefficient)
0.004980285
output$cov (covariance between t1 and t2)
-2.988221e-05
output$ratio (ratio of t1/(t1+t2_2))
0.6918768
output$ratio_var (variance of ratio)
0.1324076
output$enrich_p (p-value for testing the ratio significantly different from
the expectation (exp1))
0.07321821
output$upper_ratio (upper limit of 95% CI for the ratio)
1.405079
output$lower_ratio (lower limit of 95% CI for the ratio)
```

8 r2_var

r2_var r2_var function

Description

This function estimates $var(R2(y\sim x[,v1]))$ where R2 is the R squared value of the model, where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_var(dat, v1, nv)
```

Arguments

dat N by (M+1) matrix having variables in the order of cbind(y,x) v1 This can be set as v1=c(1), v1=c(1,2) or possibly with more values nv sample size

Examples

```
To get the test statistics for R2(y\sim x[,v1])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1) ##1=R2(lm(y\sim x[,v1]))
output=r2_var(dat,v1,nv)
r2redux output
output$var (variance of R2)
0.0001437583
output$r2\_based\_p (P-value under null hypothesis, R2=0)
1.213645e-10
output$mean_r2 (R2)
0.03836254
output$upper_r2 (upper limit of 95% CI for R2)
0.06435214
output$lower_r2 (lower limit of 95% CI for R2)
0.01763347
To get the test for R2(y \sim x[,v1])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1,2,3) ##1=R2(lm(y~x[,v1]+x[,v2]+x[,v3]))
```

r2_var

```
outout=r2_var(dat,v1,nv)
output

r2redux output

output$var (variance of R2)
0.0001499374

output$r2_based_p (R2 based P-value)
7.461267e-11

output$mean_r2 (R2)
0.03917668

output$upper_r2 (upper limit of 95% CI for R2)
0.06538839

output$lower_r2 (lower limit of 95% CI for R2)
0.01821657
```

Index

*Topic R2	r2_enrich_beta,6
$r2_diff, 3$	*Topic the
r2_enrich,5	olkin_beta1_2,1
r2_var,8	olkin_beta_inf,2
*Topic a	*Topic variance
r2_enrich_beta,6	$r2_diff, 3$
*Topic beta^2	r2_enrich,5
r2_enrich_beta,6	r2_enrich_beta,6
*Topic between	r2_var,8
r2_enrich,5	11 1 1 1 1 1 1
r2_enrich_beta,6	olkin_beta1_2,1
*Topic context	olkin_beta_inf,2
olkin_beta1_2,1	$r2_diff, 3$
olkin_beta_inf, 2	r2_enrich, 5
*Topic correlation	r2_enrich_beta, 6
olkin_beta1_2,1	r2_var, 8
olkin_beta_inf, $\frac{2}{}$	11_101,0
*Topic from	
r2_enrich_beta,6	
*Topic information	
olkin_beta1_2,1	
olkin_beta_inf, 2	
$r2_diff, 3$	
r2_var,8	
*Topic in	
olkin_beta1_2,1	
olkin_beta_inf,2	
*Topic matrix	
olkin_beta1_2,1	
olkin_beta_inf,2	
r2_diff,3	
r2_var, 8	
*Topic multiple	
r2_enrich_beta,6	
*Topic of	
olkin_beta1_2,1	
olkin_beta_inf,2	
r2_enrich,5	
r2_enrich_beta,6	
*Topic ratio	
r2_enrich,5	
r2_enrich_beta,6	
*Topic regression	