Бабушкин_Вова_20.md 2024-02-21

dz 20

1

$$Z_6 imes Z_{36} = (Z_3 imes Z_2) imes (Z_4 imes Z_9) = (Z_3 imes Z_4) imes (Z_2 imes Z_9) = Z_{12} imes Z_{18}$$

2

допустим d=(a,b,c)

$$ord(d) = HOK(ord(a), ord(b), ord(c))$$

так как мы хотим порядок 6, то $ord(c)=3\implies c=1\lor c=2$

и $\mathrm{HOK}(ord(a),ord(b))=2$, значит a может быть любым, а b только четным, но пара $a=0 \wedge b=0$ не подходит

итого (2 пары a * 2 пары b - 1) * 2 пары c = 6

ответ 6

3

$$H = \{ (0,0), (3,2) \}$$

$$bH = \{ (2,3), (5,1) \}$$

$$(bH)^n = bHbH \dots bH = b^nH = (nb)H$$

$$nb = (0,0)$$

$$n = \operatorname{HOK}(ord(2), ord(3)) = \operatorname{HOK}(3, 4) = 12$$

4

пусть H - нормальая подгруппа

по т. Лагранжа $|A_5| mod |H| = 0$

$$|A_5| = 60$$

а нормальная группа это всегда объеденение каких-то классов сопряженности и id

$$60mod|1 + 12| \neq 0$$

$$60 mod |1 + 15| \neq 0$$

$$60mod|1+20|
eq 0$$

$$60mod|1+12+12| \neq 0$$

$$|60mod|1 + 12 + 15| \neq 0$$

Бабушкин_Вова_20.md 2024-02-21

и тем более при $\left|H\right|>30$

тогда по т. Лагранжа не являетс нормальной подгруппой значит ${\cal A}_5$ простая

5

Таблица Кели

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

 $Z_6 = <1> = <5>$ значит только 2 автоморфизма

$$f(x) = x$$

$$f(x) = -x$$