DATOS MASIVOS I

UNIDAD III MEDIDAS DE SIMILITUD Y DISTANCIA

MEDIDAS DE SIMILITUD Y DISTANCIA

¿Cómo Encontramos Imágenes en Internet?

house

Page 2 of about 413,000,000 results (0.08 seconds)

Related searches: house tv show greg house house clipart cartoon house house music

Click the Small House In The 465 × 346 - 58k - jpg supercoloring.com Find similar images

The house ...
600 × 400 - 93k - jpg
museumoffloridahistory.com
Find similar images

This large house ... 500 × 375 - 43k - jpg glamro.gov.uk Find similar images

HouseplanGuys.com, The largest 500 × 300 - 35k - jpg houseplanguys.com Find similar images

House picture by atkinson_crystal 800 × 600 - 299k - jpg s588.photobucket.com Find similar images

Barack & Michelle Obama P. 622 × 402 - 104k - jpg hiptics.com Find similar images

Búsqueda por Color

Búsqueda por Estilo

Búsqueda de Imágenes Visualmente Similares

Búsqueda de Imágenes de la Misma Categoría

¿Que hace que dos objetos sean iguales?

Similitud

¿Que hace que dos objetos sean iguales?

Tomado de: https://www.google.com/

¿Estos textos son iguales?

Bosnia es la región geográfica mas grande con un clima continental moderado, marcado por veranos caluroso e inviernos fríos Inslad es una región geográfica grande y tiene un clima continental moderado, caracterizado por veranos caluroso e inviernos fríos

¿Estos textos son iguales?

Bosnia es la región geográfica mas grande con un clima continental moderado, marcado por veranos caluroso e inviernos fríos Inslad es una región geográfica grande y tiene un clima continental moderado, caracterizado por veranos caluroso e inviernos fríos

¿Podemos extraer algunas características de los dos objetos para determinar su grado de similitud?

Similitud

¿Estos textos son iguales?

Bosnia es la región geográfica mas grande con un clima continental moderado, marcado por veranos caluroso e inviernos fríos Inslad es una región geográfica grande y tiene un clima continental moderado, caracterizado por veranos caluroso e inviernos fríos

¿Podemos extraer algunas características de los dos objetos para determinar su grado de similitud?

¿Cuáles métricas cuantitativas nos dicen qué tan similiares son dos objetos?

Función de Similitud

• Cuantifica la similitud entre 2 objetos.

• Debería ser una métrica.

Debe ser una métrica, y cumplir con las propiedades:

- ✓ No negativo: distancia(A, B) >= 0
- ✓ Identidad: distancia(A, B) = 0, siy solo siA = B
- ✓ Simetría: distancia(A, B) = distancia(B, A)
- ✓ Desigualdad del triángulo: *distancia(X, Y) <= distancia(X, Z) + distancia(Z, Y)*

Distancias en la Precepción Humana

• No siempre se mantienen las propiedades de las distancias en la percepción humana. Por ejemplo, en la desigualdad del triángulo:

Distancias en la Precepción Humana

 No siempre se mantienen las propiedades de las distancias en la percepción humana. Por ejemplo, en la desigualdad del triángulo:

Imagen tomada de Veltkamp. Shape matching: similarity measures and algorithms, 2001.

Algoritmo K – Nearest Neighbour (Vecino Más Cercano)

Algoritmo K – Nearest Neighbour (Vecino Más Cercano)

El problema es encontrar el par de objetos $(x_1, x_2) \in X$ que son más similares o que son más cercanos bajo algún criterio de similitud o distancia $M(x_1, x_2)$.

El Problema del Vecino Más Cercano (*K – Neαrest Neighbour*)

• Usando fuerza bruta requeriría comparar todos los pares posibles en X, lo cual es $\binom{n}{2} = \Theta(n^2)$.

El Problema del Vecino Más Cercano (K – Nearest Neighbour)

• Usando fuerza bruta requeriría comparar todos los pares posibles en X, lo cual es $\binom{n}{2} = \Theta(n^2)$.

• Se requiere tener todos los objetos en memoria para encontrarlo.

El Problema del Vecino Más Cercano (K – Nearest Neighbour)

• Tarea frecuente en análisis de datos (por ejemplo, en agrupamiento de clientes similares, búsqueda de documentos sobre el mismo tema, etc.).

El Problema del Vecino Más Cercano (K – Nearest Neighbour)

 Tarea frecuente en análisis de datos (por ejemplo, en agrupamiento de clientes similares, búsqueda de documentos sobre el mismo tema, etc.).

• Usado por algunos métodos no paramétricos de aprendizaje de máquinas (por ejemplo, el clasificador de *k-vecinos* más cercanos.).

Distancia Euclidiana

Distancia(x, y) =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

La similitud coseno compara la orientación de 2 vectores mediante el coseno del ángulo entre ellos.

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Dos vectores con la misma orientación tienen una similitud de 1.

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Comúnmente usada para comparar documentos de texto.

Distancia de Hamming

 Para un tamaño fijo T, es el número de elementos distintos de 2 vectores o cadenas

Distancia de Hamming

Distancia de Hamming: Ejercicio

Calcula la distancia de Hamming de los siguientes objetos:

- 'taza', 'casa'
- 'abierto', 'cerrado'
- 'desperdicios', 'deformadores'
- 7589226338, 8572293368
- 8493012576, 8590612473
- 1101000100, 1001110100
- 0100111010, 1101100010

 Dados dos conjuntos {C¹, C²}, su similitud de Jaccard se define como:

$$J(\mathcal{C}^{(1)},\mathcal{C}^{(2)}) = \frac{|\mathcal{C}^{(1)} \cap \mathcal{C}^{(2)}|}{|\mathcal{C}^{(1)} \cup \mathcal{C}^{(2)}|} \in [0,1].$$

Similitud de Jaccard

Extraído de: https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

La distancia de Jaccard es:

$$dist_J(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) = 1 - J(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})$$

Distancia de Jaccard

3 elementos en la intersección. 8 elementos en la unión

$$J(A,B) = 3 / 8$$

 $D_{J}(A,B) = 5 / 8$

Similitud de Jaccard: Ejercicio

Calcula la similitud de Jaccard de los conjuntos.

- $C^1:\{1, 6, 3, 7\}$
- C^2 : {5, 7, 2, 3}

- C^1 : {9, 5, 8, 2, 1, 0, 6, 4, 7, 3}
- C^2 : {4, 6, 2, 3, 12, 15, 13, 2, 5, 16}

Número de elementos en común sobre mínimo de elementos de dos conjuntos.

$$ovr(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) = \frac{|\mathcal{C}^{(1)} \cap \mathcal{C}^{(2)}|}{\min(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})}$$

Traslape de Dos Conjuntos: Ejercicio

Calculo el traslape entre los siguientes pares de conjuntos:

- $C^1:\{0,3,6,7\}$
- C^2 : {2, 3, 5, 7}
- $C^1:\{0,3,6,7\}$
- C^2 : {0, 3, 7}
- $C^1:\{2,3,7\}$
- C^2 : {2, 3, 4, 7}

• Árbol binario para realizar búsqueda del vecino más cercano de forma eficiente.

Cada nivel del árbol se compara con 1 dimensión.

Árboles K – D (k dimensiones)

- Para buscar puntos.
 - Se construye el árbol con el conjunto de puntos disponible.
 - Dado un nuevo punto de consulta, se busca el punto más cercano recorriendo el árbol.

- 1. Elige dimensión de forma alternada.
 - 1.1. Por ejemplo para 2D la raíz usará X.
 - 1.2. Sus hijos la dimensión Y
 - 1.3. Los nietos la dimensión X, y así sucesivamente.

- 2. Inserta punto con valor en la mediana (es posible usar otros criterios para elegir el nodo raíz), de la dimensión seleccionada.
 - 2.1. Puntos menores son descendientes en su rama izquierda.
 - 2.2. Puntos mayores son descendientes en su rama derecha.

3. Se repiten los pasos 1 y 2 para todos los descendientes hasta que no haya mas puntos que asignar en el árbol K – D.

Supongamos que se tienen los siguientes puntos en un plano 2D:

$$A = (3, 6), (17, 15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19)$$

Crear un árbol K – D, a partir de A.

- 1. Insertar (3, 6): Dado que el árbol está vacío, conviértalo en el nodo raíz.
- 2. Insertar (17, 15): Compararlo con el punto del nodo raíz.

Dado que el nodo raíz está alineado con X, el valor de la coordenada X se comparará para determinar si se encuentra en el subárbol derecho o en el subárbol izquierdo.

Este punto estará alineado con Y.

3. Insertar (13, 15): El valor X de este punto es mayor que el valor X del punto en el nodo raíz.

Entonces, estará en el subárbol derecho de (3, 6).

Nuevamente compare el valor Y de este punto con el valor Y del punto (17, 15).

Como son iguales, este punto estará en el subárbol derecho de (17, 15).

Este punto estará alineado con X.

4. Insertar (6, 12): El valor X de este punto es mayor que el valor X del punto en el nodo raíz.

Entonces, esto estará en el subárbol derecho de (3, 6).

Nuevamente compare el valor Y de este punto con el valor Y del punto (17, 15).

Como 12 < 15, este punto estará en el subárbol izquierdo de (17, 15).

Este punto estará alineado con X.

- 5. Insertar (9, 1): De manera similar, este punto estará a la derecha de (6, 12).
- 6. Insertar (2, 7): De manera similar, este punto estará a la izquierda de (3, 6).
- 7. Insertar (10, 19): De manera similar, este punto estará a la izquierda de (13, 15).

¿Cómo se particiona el espacio 2D con los 7 puntos del árbol?

Punto (3, 6). Dibujar línea en X = 3.

Punto (2, 7). Dibujar línea en Y = 7 a la izquierda de la línea X = 3.

Punto (17, 15). Dibujar línea en Y = 15 a la derecha de la línea X = 3

Punto (6, 12).

Dividirá el espacio debajo de la línea Y = 15 y a la derecha de la línea X = 3 en dos partes. Dibujar línea en X = 6 a la derecha de la línea X = 3 y debajo de la línea Y = 15

Punto (13, 15).

Dividirá el espacio debajo de la línea Y = 15 y a la derecha de la línea X = 6 en dos partes. Dibujar línea en X = 13 a la derecha de la línea X = 6 y debajo de la línea Y = 15

Punto (9, 1).

Dividirá el espacio entre las líneas X = 3, X = 6 e Y = 15 en dos partes. Dibujar línea en Y = 1 entre las líneas X = 3 y X = 13.

Punto (10, 19).

Dividirá el espacio a la derecha de la línea X = 3 y arriba de la línea Y = 15 en dos partes. Dibujar línea en Y = 19 a laderecha de la línea X = 3 y arriba de la línea Y = 15

Crear el árbol binario con los siguientes puntos:

$$A = \{(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)\}$$

Tomando como nodo raíz la mediana = (7, 2)

Crear el árbol binario con los siguientes puntos:

$$A = \{(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)\}$$

Generar la partición del espacio.

- 1. Recorre el árbol a partir de la raíz y moviéndose hacia el descendiente correspondiente.
- 2. Cuando se encuentra el nodo padre del punto a insertar, se agrega a la derecha o izquierda dependiendo del valor en la dimensión de partición.

3. En caso de estar desbalanceado, se aplica un algoritmo de re-balanceo para evitar pérdida de rendimiento

Árboles K – D: Búsqueda del Vecino Más Cercano

Recorre el árbol a partir de la raíz y moviéndose hacia el descendiente correspondiente.

- 1. Mantén el punto más cercano c_{\min} y quita los nodos del árbol que están más alejados a este.
- 2. Recorre los sub-árboles restantes.
 - 1. Existen heurísticas para elegir aquel que permita quitar más nodos.

Árboles K – D: Búsqueda del Vecino Más Cercano (Complejidad)

 En el peor de los casos el tiempo de búsqueda es O(n).

- Pero en promedio es O(log (n))
- Algoritmo sufre por la maldición de la dimensionalidad.

Imagen tomada de Wikipedia (k-d tree)

Start at A, then proceed in depth-first search (maintain a stack of parent-nodes if using a singly-linked tree). Set best estimate to A's distance Then examine left child node

Imagen tomada de Wikipedia (k-d tree)

D & E Discarded as B
(already visited) is closer.
B is the best estimate for B's sub-branch
Proceed back to parent node

Imagen tomada de Wikipedia (k-d tree)

Árboles K – D, Ejemplo de Búsqueda: Ejercicio

Agregar el siguiente punto a A:

 $\{(8, 7)\}$

Árboles K – D, Ejemplo de Búsqueda: Ejercicio

Después, busca los vecinos más cercanos en A de los siguientes puntos:

 $\{(7, 2),$

(5, 4),

(9, 6)

Dimensionalidad (La Maldición)

Objetos cada vez más dispersos conforme aumenta el número de dimensiones.

Objetos cada vez más dispersos conforme aumenta el número de dimensiones.

Dimensionalidad (La Maldición)

Objetos cada vez más dispersos conforme aumenta el número de dimensiones.

Matriz Documento – Término

Documentos

D₁ = Él duerme con su hijo mientras su perro duerme

D₂ = Ella duerme de día y su perro duerme de noche

	duerme	perro	hijo	mientras	noche	día	el	ella	de	con	su	У
D_1	1	1	1	1	0	0	1	0	0	1	1	0
D_2	1	1	0	0	1	1	0	1	1	0	1	1

Matriz Documento – Término

	duerme	perro	hijo	mientras	noche	día	el	ella	de	con	su	У
D_1	1	1	1	1	0	0	1	0	0	1	1	0
D_2	1	1	0	0	1	1	0	1	1	0	1	1

Bolsa de palabras

 $D_1 = \{duerme, perro, hijo, mientras, él, con, su\}$ $D_2 = \{duerme, perro, noche, día, ella, de, su, y\}$

Matriz Documento – Término

Conjunto de documentos.

```
D_1 = \text{\'el} \, \underline{\text{duerme}} \, \text{con su } \underline{\text{hijo}} \, \text{mientras su } \underline{\text{perro}} \, \underline{\text{duerme}} \, \text{duerme}
D_2 = \underline{\text{Ella}} \, \underline{\text{duerme}} \, \underline{\text{de dia y su } \underline{\text{perro}}} \, \underline{\text{duerme}} \, \underline{\text{de noche}} \, \text{de noche}
\underline{\text{w}_1} \, \underline{\text{w}_2} \, \underline{\text{w}_1} \, \underline{\text{w}_2} \, \underline{\text{w}_1}
```

Matriz Documento – Término

D₁ = Él <u>duerme</u> con su <u>hijo</u> mientras su <u>perro</u> <u>duerme</u>

$$D_2 = Ella \frac{w_1}{duerme} de día y su \underbrace{perro}_{w_2} \frac{w_2}{duerme} de noche w_1$$

	duerme	perro	hijo
D_1	1	1	1
D_2	1	1	0

Bolsa de palabras binaria.

Matriz Documento – Término

D₁ = Él <u>duerme</u> con su <u>hijo</u> mientras su <u>perro</u> <u>duerme</u>

 V_1 W_3

 $W_2 W_1$

 $D_2 = Ella \underline{duerme} de día y su \underline{perro} \underline{duerme} de noche w₁ <math>w_2 = w_1$

	duerme	perro	hijo
$D_\mathtt{1}$	1	1	1
D_2	1	1	0

$$D_1 = \{1, 2, 3\} \\ D_2 = \{1, 2\}$$

Bolsa de palabras binaria.

	$\mathbf{w_1}$	W ₂	W ₃
D_1	2	1	1
D_2	2	1	0

Bolsa depalabras con frecuencia.

Matriz Documento – Término: Aplicaciones

Finding the topic and the main idea

How Google Search continues to improve results

Representando Imágenes

Buscamos mapear las imágenes a una representación compacta, discriminatoria, descriptiva, robusta y rápida de obtener.

Representando Imágenes

Dos tareas fundamentales:

- 1. Detección de regiones de interés.
- 2. Descripción de cada región.

Imagen – conjunto de vectores característicos.

Representando Imágenes

Imagen – conjunto de vectores característicos.

Búsqueda de características similares.

Analogía con el Texto (Sivic y Zisserman, 2003)

Palabras – Características Locales.

Analogía con el Texto (Sivic y Zisserman, 2003)

Stemming – Cuantización (por ejemplo: K-Means)

Analogía con el Texto (Sivic y Zisserman, 2003)

Stop Words – Removerlas

¿Cómo Buscar Imágenes / Documentos Similares?

- Filas y columnas de la matriz documento – término usualmente están dispersas y se representan por conjuntos o bolsas.
- Compara solo las/los que compartan al menos una característica/palabra.
- Se ordenan por valor de distancia o similitud.

Palabra	Ocurrencia	
0	1, 4	
1	9, 11, 13	
2	3, 7, 8, 12, 15	
3	5, 6	
4	2, 4, 7, 12	
5	6, 8, 11	
•••	•••	

Búsqueda por Índice Inverso

- Búsqueda por índice inverso
 - Recupera los conjuntos o bolsas de documentos donde ocurren las palabras en D.
 - Calcula la distancia o similitud entre *D* y cada elemento en la lista.
 - Ordena *d* de acuerdo a las distancias o similitudes calculadas.

Son una secuencia de *n* objetos, que pueden ser:

- Símbolos (n gramas de símbolos)
- Palabras (*n g*ramas de palabras)

n – gramas: Ejercicio

Ejercicio:

Genera los 2 – gramas y 3 – gramas de símbolos y palabras de la siguiente oración:

Ella toma café y él toma mate.

n – gramas: Aplicaciones

- Se utilizan en uno de los más exitosos modelos de lenguaje para el reconocimiento de voz.
- En los editores de textos para recomendar cual va a ser la palabra siguiente o para detectar posibles errores de ortografía.
- Son utilizados comúnmente como base para el análisis estadístico de texto.