Seminar 11

 $\forall v \in V : [v]_B = T_{BB'} \cdot [v]_{B'} \text{ and } T_{BB'}^{-1} = T_{B'B}.$ $[f]_{B'} = T_{BB'}^{-1} \cdot [f]_B \cdot T_{BB'}.$

 $f(v) = \lambda \cdot v$, where λ is the eigenvalue and v is the eigenvector.

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - \lambda \cdot Tr(A) + det(A).$$

1. We want to determine $T_{BB'}$. So, we compute the vectors in B as a linear combination of vectors in B'.

 $v_1 = a_1v_1 + a_2v_2 + a_3v_3 = (a_1 - a_2, a_1, a_3) = (1, 0, 1) \Rightarrow a_1 = 0, a_2 = -1$ and $a_3 = 1$.

 $v_2 = (a_1 - a_2, a_1, a_3) = (0, 1, 1) \Rightarrow a_1 = 1, a_2 = 1 \text{ and } a_3 = 1.$

 $v_3 = (a_1 - a_2, a_1, a_3) = (1, 1, 1) \Rightarrow a_1 = 1, a_2 = 0 \text{ and } a_3 = 1.$

Hence, $T_{BB'} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (on the columns). Now, we need $T_{B'B}$

which is actually $T_{BB'}^{-1}$. And by simple computations, we get that $T_{B'B} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}.$

$$T_{B'B} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

Now, we have to find $[u]_{B'}$, which is $(2,0,-1)=(a_1-a_2,a_1,a_3)\Rightarrow$ $a_1 = 0$, $a_2 = -2$ and $a_3 = -1$. And, for $[u]_B$ we use the formula $[u]_B = T_{BB'} \cdot [u]_{B'} = \begin{bmatrix} -3 & -2 & -3 \end{bmatrix}.$

We could also use $[u]_{B'} = T_{B'E} \cdot [u]_E$.

2. $v_1' = -3v_1 + 2v_2$ and $v_2' = -5v_1 + 3v_2$. So, $T_{B'B} = \begin{bmatrix} -3 & -5 \\ 2 & 3 \end{bmatrix}$. And, we

know that $T_{B'B} = T_{BB'}^{-1}$, hence $T_{BB'} = \begin{bmatrix} 3 & 5 \\ -2 & -3 \end{bmatrix}$.

Then, $[g]_B = T_{B'B}^{-1} \cdot [g]_{B'} \cdot T_{B'B} = \begin{bmatrix} -20 & -31 \\ 13 & 20 \end{bmatrix}$.

Hence, $[f+g]_B = [f]_B + [g]_B = \begin{bmatrix} -19 & -30 \\ 12 & -19 \end{bmatrix}$.

For $[f \circ g]_{B'} = [f]_{B'} \cdot [g]_{B'}$. We compute $[f]_{B'} = T_{BB'}^{-1} \cdot [f]_{B} \cdot T_{BB'} = \begin{bmatrix} 8 & 13 \\ -5 & -8 \end{bmatrix}$.

Hence,
$$[f \circ g]_{B'} = \begin{bmatrix} 9 & -13 \\ 5 & 9 \end{bmatrix}$$
.

- 3. (i) $f(e_1) = (3, 2)$ and $f(e_2) = (3, 4) \Rightarrow A = \begin{bmatrix} 3 & 3 \\ 2 & 4 \end{bmatrix} \Rightarrow det(A \lambda I_2) = \begin{bmatrix} 3 \lambda & 3 \\ 2 & 4 \lambda \end{bmatrix} = 0 \iff (\lambda 3)(\lambda 4) = 6 \iff \lambda^2 7\lambda + 6 = 0 \Rightarrow \lambda_1 = 1 \text{ and } \lambda_2 = 6.$ $\text{Take } \begin{bmatrix} 3 \lambda & 3 \\ 2 & 4 \lambda \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ $\text{For } \lambda_1 = 1 \Rightarrow 2x_1 + 3x_2 = 0 \Rightarrow x_1 = -\frac{3}{2}x_2 \Rightarrow V(1) = \{(-\frac{3}{2}x_2, x_2) \mid x_2 \in \mathbb{R}\} = <(\frac{3}{2}, 1) >.$ $\text{For } \lambda_2 = 6 \Rightarrow 2x_1 2x_2 = 0 \Rightarrow x_1 = x_2 \Rightarrow V(6) = \{(x_2, x_2) \mid x_2 \in \mathbb{R}\} = <(1, 1) >.$
 - (ii) As $dim(\mathbb{R}^2) = 2$, where $f \in End_{\mathbb{R}}(\mathbb{R}^2)$ and $\lambda_1 \neq \lambda_2 \Rightarrow B = < (\frac{3}{2}, 1), (1, 1) >$ is a basis and $[f]_B = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}$.
- 4. $\begin{vmatrix} 3 \lambda & 1 & 0 \\ -4 & -1 \lambda & 0 \\ -4 & -8 & -2 \lambda \end{vmatrix} = 0 \iff (2 + \lambda)[(\lambda + 1)(3 \lambda) 4] = 0 \Rightarrow \lambda_1 = -2 \text{ and } \lambda_2 = \lambda_3 = 1.$ $\begin{bmatrix} 5 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \qquad \begin{cases} 5x_1 + x_2 = 0 \end{cases}$

For
$$\lambda_1 = -2 \Rightarrow \begin{bmatrix} 5 & 1 & 0 \\ -4 & 1 & 0 \\ -4 & -8 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = O_3 \Rightarrow \begin{cases} 5x_1 + x_2 = 0 \\ -4x_1 + x_2 = 0 \Rightarrow \end{cases}$$

$$x_1 = -2x_2 \Rightarrow V(-2) = \{(-2x_2, x_2, x_3) \mid x_2, x_3 \in \mathbb{R}\} = \langle (-2, 1, 0), (0, 0, 1) \rangle.$$
For $\lambda_2 = \lambda_3 = 1 \Rightarrow \begin{bmatrix} 2 & 1 & 0 \\ -4 & -2 & 0 \\ -4 & -8 & -3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = O_3 \Rightarrow \begin{cases} 2x_1 + x_2 = 0 \\ -4x_1 - 8x_2 = 0 \end{cases} \Rightarrow$

 $-2x_1 = x_2 \text{ and } x_3 = 4x_1 \Rightarrow V(1) = \{(x_1, -2x_1, 4x_1) \mid x_1 \in \mathbb{R}\} = < (1, -2, 4) >.$

5.
$$\begin{vmatrix} -\lambda & 0 & 0 & 1 \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ 1 & 0 & 0 & -\lambda \end{vmatrix} = 0 \iff (\lambda - 1)(\lambda + 1)(\lambda^2 + 1) = 0 \Rightarrow \lambda_1 = 1,$$
$$\lambda_2 = -1, \ \lambda_3 = i \text{ and } \lambda_4 = -i.$$

For
$$\lambda_1=1$$
 we have the system
$$\begin{cases} -x_1+x_4=0\\ -x_2+x_3=0 \end{cases} \Rightarrow x_1=x_4 \text{ and } x_2=x_3\Rightarrow V(1)=\{(x_1,x_2,x_2,x_1)\mid x_1,x_2\in\mathbb{R}\}=<(1,0,0,1),(0,1,1,0)>. \end{cases}$$
 For $\lambda_2=-1$ we have the system
$$\begin{cases} x_1+x_4=0\\ x_2+x_3=0 \end{cases} \Rightarrow x_1=-x_4 \text{ and } x_2=x_3\Rightarrow V(-1)=\{(x_1,x_2,-x_2,-x_1)\mid x_1,x_2\in\mathbb{R}\}=<(1,0,0,-1),(0,1,-1,0)>. \end{cases}$$
 For $\lambda_3=i$ we have the system
$$\begin{cases} x_1-ix_4=0\\ x_2-ix_3=0 \end{cases} \Rightarrow x_1=ix_4 \text{ and } x_2=x_3\Rightarrow V(i)=\{(ix_4,ix_3,x_3,x_4)\mid x_3,x_4\in\mathbb{R}\}=<(i,0,0,1),(0,i,1,0)>. \end{cases}$$
 For $\lambda_4=-i$ we have the system
$$\begin{cases} ix_1+x_4=0\\ ix_2+x_3=0 \end{cases} \Rightarrow -ix_1=x_4 \text{ and } -ix_2=x_3\Rightarrow V(-i)=\{(x_1,x_2,-ix_2,-ix_1)\mid x_1,x_2\in\mathbb{R}\}=<(1,0,0,-i),(0,1,-i,0)>. \end{cases}$$

6.
$$\begin{vmatrix} x - \lambda & 0 & y \\ 0 & x - \lambda & 0 \\ y & 0 & x - \lambda \end{vmatrix} = 0 \iff (x - \lambda)(x - \lambda - y)(x - \lambda + y) = 0 \Rightarrow$$
$$\lambda_1 = x, \ \lambda_2 = x - y \text{ and } \lambda_3 = x + y.$$

For $\lambda_1 = x$ we have the system $\begin{cases} yx_3 = 0 \\ yx_1 = 0, y \neq 0 \end{cases} \Rightarrow x_1 = x_3 = 0 \Rightarrow V(x) = \{(0, x_2, 0) \mid x_2 \in \mathbb{R}\} = \langle (0, 1, 0) \rangle.$

For $\lambda_2 = x - y$ we have the system $\begin{cases} yx_1 + yx_3 = 0 \\ yx_2 = 0, y \neq 0 \end{cases} \Rightarrow x_1 = -x_3$ and $x_2 = 0 \Rightarrow V(x - y) = \{(-x_3, 0, x_3) \mid x_3 \in \mathbb{R}\} = <(-1, 0, 1) >.$

For $\lambda_3 = x + y$ we have the system $\begin{cases} -yx_1 + yx_3 = 0 \\ -yx_2 = 0, y \neq 0 \end{cases} \Rightarrow x_1 = x_3$ and $x_2 = 0 \Rightarrow V(x + y) = \{(x_1, 0, x_1) \mid x_1 \in \mathbb{R}\} = \langle (1, 0, 1) \rangle$.

7. (i)
$$p(\lambda) = det(A - \lambda I_2)$$
, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow p(\lambda) = \lambda^2 - \lambda(a+d) + (ad - bc)$.
Now, $p(0) = det(A - 0 \cdot I_2) = det(A) = 0^2 - 0 \cdot (a+d) + ad - bc$.
As λ_1, λ_2 are eigenvalues $\Rightarrow p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - \lambda(\lambda_1 + \lambda_2) + \lambda_1 \cdot \lambda_2$. Also, $p(0) = (0 - \lambda_1)(0 - \lambda_2) = \lambda_1 \cdot \lambda_2 = det(A)$.
Hence, $\lambda_1 + \lambda_2 = a + d = Tr(A)$.

(ii)
$$\lambda^2 - \lambda(\lambda_1 + \lambda_2) + \lambda_1 \cdot \lambda_2 = \lambda^2 - \lambda \cdot Tr(A) + det(A) = 0 \Rightarrow \Delta = (Tr(A))^2 - 4det(A)$$
. If $0 \le \Delta \Rightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R}$ with $\lambda_1 = \lambda_2$ or $\lambda_1 \ne \lambda_2$.
If $\exists \lambda_1, \lambda_2 \in \mathbb{R} \Rightarrow 0 \le \Delta$.

(iii) For
$$A$$
 to be aroot of $p(\lambda)$, $p(A) = O_2 \iff A^2 - A \cdot Tr(A) + I_2 \cdot det(A) = O_2 \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} - (a+d) \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} + (ad-bc) \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = O_2$, which, by simple computations, we get that is true.

8. $det(A - iI_2) = 0 = p(i)$, where $p(i) = (i - \lambda_1)(i - \lambda_2) = -1 - i \cdot Tr(A) + det(A) = 0 \Rightarrow det(A) = 1 + i \cdot Tr(A)$.

Now $det(A-2I_2) = 4-2Tr(A)+det(A)$, so $det(A-2I_2) = 4-2Tr(A)+1+iTr(A) = 5+(i-2)Tr(A)$.

From det(A) = 1 + iTr(A), we have that $det(A), Tr(A), 1 \in \mathbb{R} \Rightarrow Tr(A) = 0$.

Hence, $det(A - 2I_2) = 5$.