Processamento Digital de Imagens - 2023.1 (Avaliação 2)

1. (2 pontos) Nas Tabelas 1 e 2 são apresentados, respectivamente, os valores de intensidade de uma imagem digital hipotética *I* e o conjunto de coeficientes *h* de uma máscara de tamanho 3x3. Analise estas duas tabelas e faça o que se pede.

4	4	4	4	4	4
6	6	6	6	6	6
8	8	8	8	8	8
10	10	10	10	10	10
12	12	12	12	12	12
14	14	14	14	14	14

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Tabela 2: coeficientes da máscara h

Tabela 1: valores da intensidade da imagem I

O que se pede:

(valor positivo).

a. Realize a filtragem espacial da imagem I utilizando os coeficientes da máscara h e preencha a Tabela 3 com o resultado desta operação. Para realizar esta tarefa utilize o método de processamento de borda denominado zero padding.

Tabela 3: resultado da filtragem espacial.

b.	Qual o nome da filtragem espacial descrita no item anterior?
2.	(2 pontos) Sobre o uso de derivadas para a segmentação de imagens baseada em descontinuidade, marque <i>(V)</i> para verdadeiro e <i>(F)</i> para falso.
() find ()) Derivadas de primeira ordem produzem bordas mais grossas em imagens.) Derivadas de segunda ordem têm uma resposta mais forte aos detalhes os, como linhas finas, pontos isolados e ruído.) As derivadas de segunda ordem produzem uma resposta de borda dupla nas nsições de rampa e de degrau.
() O sinal de segunda derivada pode ser utilizado para determinar se uma nsição ocorre de claro para escuro (valor negativo) ou escuro para claro

() As derivadas de uma função digital são definidas em termos de diferenças.

- 3. (2 pontos) A restauração de imagens procura recuperar uma imagem corrompida com base em um conhecimento a *priori* do fenômeno de degradação. Neste contexto, explique brevemente o funcionamento dos filtros de estatística de ordem a seguir:
 - a. Mediana
 - b. Ponto médio
- 4. (2 pontos) Quando a separação dos modos do histograma de uma imagem é suficiente para realizar uma segmentação baseada em limiarização, é possível utilizar um único limiar global aplicável a toda a imagem. Neste contexto, a utilização de uma técnica automática de cálculo do limiar pode ser oportuna. Na Tabela 4 são apresentados os valores de intensidade de uma imagem hipotética J. Utilizando esses valores, faça o que se pede:
 - a. Explique o funcionamento do método iterativo (algoritmo iterativo) de cálculo de limar.
 - b. Calcule a partir deste método o limiar **T** que pode ser utilizado para segmentar corretamente esta imagem hipotética.

0	0	0	50	50	50
0	0	0	50	50	50
0	0	0	50	50	50
0	0	0	50	50	50
0	0	0	50	50	50
0	0	0	50	50	50

Tabela 4: valores de intensidade da imagem J

5. (2 pontos) Na Tabela 5 são apresentados os valores da intensidade de uma imagem digital hipotética **S** de **8 bits** e tamanho **6x6 pixels**.

0	0	0	0	0	0
25	25	25	25	25	25
50	50	50	50	50	50
50	50	50	50	50	50
50	150	150	150	150	150
200	200	200	200	200	200

Tabela 5: valores de intensidade da imagem S

a. Utilizando como base esses valores, faça a limiarização global simples com *T*=140, produzindo como resultado uma imagem de mesmo tamanho da original, mas limiarizada com *T* indicado. Os pixels de fundo devem possuir o valor *0* (zero) e os pixels do objeto o valor *1* (um). Preencha a Tabela 6 com o resultado deste processamento.

b. Com a mesma Tabela 5 realize a limiarização global múltipla, utilizando para tal *T*₁=30 e *T*₂=155, produzindo como resultado uma imagem de mesmo tamanho da original, mas limiarizada com os dois valores de *T* indicados. Somente os valores que estiverem entre *T*₁ e *T*₂ devem ser marcados com valor 1 (um). Os pixels de fundo devem ser marcados com o valor 0 (zero). Preencha a Tabela 7 com o resultado deste processamento.

Tabela 7: resultado do item b)