Licenciatura en Astrofísica con mención en Ciencia de Datos Sebastián Pérez Márquez

https://seba-perez.github.io

1 El Principio Cosmólogico y la Expansión del Universo

1.1 El Principio Cosmólogico

El principio cosmológico establece dos suposiciones fundamentales sobre la estructura del Universo a gran escala:

- **Homogeneidad**: el Universo tiene la misma composición y densidad promedio en todos los lugares.
- **Isotropía**: el Universo se ve igual en todas las direcciones.

Este principio implica que ningún lugar ni dirección en el Universo es privilegiado, y por tanto, las leyes físicas deben ser las mismas en todos lados. A partir de estas suposiciones, concluiremos más abajo que el Universo debe estar en expansión o contracción de forma coherente, he introduciremos el **factor de escala** a(t).

El principio cosmólogico no se aplica a todas las escalas espaciales. A pequeñas escalas (por ejemplo, dentro de galaxias, sistemas planetarios o grupos locales de galaxias), el Universo no es ni homogéneo ni isotrópico —es muy distinto estar en tu casa que estar en el centro del Sol o en un cometa. Estas regiones están dominadas por estructuras gravitacionalmente ligadas.

El principio cosmólogico sólo es una buena aproximación a **grandes escalas**, típicamente mayores a \sim 100 Mpc, donde:

- Las fluctuaciones de densidad se promedian.
- Las estructuras individuales dejan de ser relevantes.
- El Universo puede describirse como un fluido continuo.

1.2 Coordenadas Comóviles y el Factor de Escala

En un Universo en expansión, resulta conveniente usar coordenadas comóviles x, que permanecen fijas con el tiempo. La distancia física a un objeto se expresa como:

$$r(t) = a(t)x \tag{1}$$

Donde a(t) es el **factor de escala**, que describe cómo cambia la distancia entre objetos con el tiempo debido a la expansión del espacio mismo.

1.3 Velocidad de Recesión de las Galaxias

Consideremos dos galaxias separadas por una distancia comóvil constante Δx . La distancia física entre ellas en un tiempo t es:

$$D(t) = a(t)\Delta x \tag{2}$$

La velocidad de recesión es la derivada temporal de la distancia física:

$$V(t) = \frac{dD}{dt} = \dot{a}(t)\Delta x = \frac{\dot{a}(t)}{a(t)}D(t)$$
(3)

Definimos la constante de Hubble como:

$$H(t) = \frac{\dot{a}(t)}{a(t)} \tag{4}$$

Y obtenemos la **ley de Hubble**:

$$V = H(t)D (5)$$

Esta relación muestra que todas las galaxias se alejan unas de otras a una velocidad proporcional a su distancia, como consecuencia natural de un Universo homogéneo e isotrópico en expansión.

2 Energía y la Ecuación de Friedmann

2.1 Modelo de una partícula en un Universo en Expansión

Consideremos una partícula de masa m (por ejemplo, una galaxia) moviéndose bajo la influencia gravitacional de la masa contenida en una región esferica de radio r(t) = a(t)x:

La masa contenida dentro del radio r es:

$$M = \frac{4}{3}\pi r^3 \rho = \frac{4}{3}\pi a^3 x^3 \rho \tag{6}$$

La energía total de la partícula es la suma de la energía cinética y potencial:

$$U = T + V = \frac{1}{2}m\dot{r}^2 - \frac{GMm}{r} \tag{7}$$

Reemplazando r = a(t)x y simplificando:

$$T = \frac{1}{2}m\dot{a}^2x^2\tag{8}$$

$$V = -\frac{4\pi G}{3} ma^2 x^2 \rho \tag{9}$$

Entonces,

$$U = \frac{1}{2}m\dot{a}^2x^2 - \frac{4\pi G}{3}ma^2x^2\rho \tag{10}$$

Multiplicando por $\frac{2}{ma^2x^2}$:

$$\frac{2U}{ma^2x^2} = \left(\frac{\dot{a}}{a}\right)^2 - \frac{8\pi G}{3}\rho\tag{11}$$

Reorganizando:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{Kc^2}{a^2} \tag{12}$$

Esta es la **primera ecuación de Friedmann**, que relaciona la tasa de expansión del Universo con su densidad de energía y su curvatura.

2.2 Densidad Crítica y Parámetro de Densidad

Definimos la **densidad crítica** como la densidad requerida para que el Universo sea geométricamente plano (K = 0):

$$\rho_c = \frac{3H^2}{8\pi G} \tag{13}$$

Y el parámetro de densidad como:

$$\Omega = \frac{\rho}{\rho_c} \tag{14}$$

Este parámetro indica si el Universo es abierto ($\Omega < 1$), cerrado ($\Omega > 1$) o plano ($\Omega = 1$).