

Sistemas Operacionais

Exemplos de Sistemas de Arquivos

1

Sistema de Arquivos

```
Loading CPM.SYS...
CP/M-86 for the IBM PC/XT/AT, Vers. 1.1 (Patched)
Copyright (C) 1983, Digital Research
Hardware Supported :
         Diskette Drive(s): 3
        Hard Disk Drive(s): 1
       Parallel Printer(s): 1
            Serial Port(s): 1
               Memory (Kb) : 640
)>a∶
ì>dir
a: PIP
           CMD : STAT
                          CMD : SUBMIT CMD : ASM86
                                                        CMD
A: GENCMD
           CMD : DDT86
                          CMD : TOD
                                         CMD : ED
                                                        CMD
A: HELP
           CMD : HELP
                          HLP : SYS
                                         CMD : ASSIGN
                                                        CMD
  FORMAT
           CMD : CLDIR
                          CMD : WRTLDR
                                         CMD: BOOTPCDS SYS
  BOOTWIN SYS : CPM
                          H86 : WINSTALL SUB : PD
                                                        CMD
  WCPM
           SYS : DISKUTIL CMD
    User 0
                 0:00:11
                                  Jan. 1, 2000
```

Ancestral direto do MS-DOS que possui acesso de múltiplos usuários (não concorrentes).

É interessante olharmos o CP/M:

- É comum pensarmos que um computador (antigamente) precisava de vários MB de RAM para executar.
- O CP/M funcionava bem com apenas 16KB de RAM.
- Sistemas embarcados podem se espelhar em soluções deste antigo sistema de arquivos.

Esquema de memória do CP/M

- Reservado 256 bytes para uso do shell (buffer)

O sistema de arquivos possui apenas um diretório de entradas fixas (32Kb).

Possui 38 chamadas de sistema, sendo a maioria para ler e escrever em arquivos.

Neste S.A., existe a preocupação interessante: Ao carregar um arquivo as informações do diretório são descartadas da memória principal.

O interessante do CP/M é sua simplicidade e bom relacionamento com pouca memória RAM.

Segundo **Tanenbaum**, um programador experiente pode implementar um sistema de arquivos equivalente em uma semana!

Para muitas aplicações embarcadas, pode ser uma alternativa interessante.

Sistema de Arquivos

MS-DOS

Baseado no CP/M, e executado somente na plataforma Intel.

Não suporta multiprogramação.

 Isso implica em um sistema de arquivos bem simplificado, sem controle de concorrência nas estruturas de arquivos e diretórios.

As funções básicas do MS-DOS são:

· Tratar o teclado, carregar programas e gerenciar o sistema de arquivos.

O MS-DOS 1.0, assim como o CP/M, possui apenas um diretório.

A nomenclatura de arquivos também foi herdada do ancestral CP/M:

- Nome de até 8 caracteres.
- Extensão de até 3 caracteres.

A partir do MS-DOS 2.0 a funcionalidade do sistema de arquivos foi expandida de forma considerável.

O maior aperfeiçoamento constituiu na inclusão de um sistema hierárquico de arquivos no qual os diretórios poderiam ser aninhados em uma profundidade arbitrária.

Tal estrutura recursiva é amplamente utilizada em tempos atuais.

Diferente do CP/M, o MS-DOS 2.0 não possui acesso de diferentes usuários.

Aquele que estiver utilizando o sistema, tem acesso a todos os arquivos.

Ou seja, o S.O. não precisava implementar o controle de concorrência.

No MS-DOS é implementada a entrada de diretórios de tamanho fixo.

No MS-DOS é implementada a entrada de diretório: Data e hora de criação.

Obs.: Reserva poucos bits para representar o ano. Na prática o MS-DOS só funcionaria até o ano de 2107.

No MS-DOS é implementada a entrada de diretórios de tamanho fixo.

No MS-DOS é implementada a entrada de diretórios de tamanho fixo.

Na verdade, FAT32 não é um nome adequado, pois somente os 28 bits menos significativos são utilizados pelo sistema de arquivos FAT32.

Sistema de Arquivos

Windows

Windows

Windows 95

A versão original do Windows 95 usava o mesmo sistema de arquivos do MS-DOS (FAT12 ou FAT16): (a) Nomes de 8 caracteres e; (b) Extensão de 3 caracteres.

A partir da segunda versão do Windows 95 foram permitidos nomes mais longos (Introdução do FAT32).

Além disso, o FAT32 possibilitou a utilização de partições com mais de 2GB e discos maiores que 8GB.

Windows 98

No Windows 98, a mesma estrutura da 2ª versão do Windows 95 foi utilizada.

Inclusive o FAT32 ainda foi utilizado no Windows Me.

Ao possibilitar a criação de arquivos com mais de 11 caracteres, um problema de compatibilidade surgiu com os antigos sistemas Windows (3.x, e 1ª versão do Win95).

As entradas dos diretórios, referentes aos arquivos, no FAT16 possuíam 10 bytes livres, chamados de espaço reservado.

A utilização destes 10 bytes não foi utilizada para os nomes longos dos arquivos, mas é interessante entender algumas mudanças.

Entrada do arquivo no FAT16

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados.

Entrada do arquivo no FAT32

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados.

- O campo NT servirá para compatibilidade com o WinNT.
- O objetivo é mostrar o nome dos arquivos corretamente.
- No MS-DOS, todas as letras eram maiúsculas, no NT não.

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados.

- O campo segundos fornece uma precisão adicional ao horário de criação do arquivo.
- A precisão passa a ser de 10ms.

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados.

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados.

As mudanças consistem na adição de 5 novos campos nos antigos 10 bytes reservados. Faz sentido

Faz sentido com o complemento dos 16 bits menos significativos.

- Com um sistema de 32bits, precisamos de 32bits para apontar para o bloco inicial do arquivo.
- Este campo adicional são os 16 bits mais significativos do apontador para o bloco inicial do arquivo em disco.

Mas até então, nenhuma informação adicional foi em relação ao nome do arquivo, que agora deve suportar mais caracteres.

A solução encontrada pela MS foi atribuir 2 nomes para cada arquivo do S.O.:

- Um nome potencialmente longo (UNICODE), para ter compatibilidade com o WinNT.
- Um nome de 8+3 caracteres, para compatibilidade com o MS-DOS.

Assim, todo arquivo possui um nome compatível com o MS-DOS.

Sistema de Arquivos

UNIX V7

```
Terminal
                                                                          52850 Jun 8 1979 hptmunix
-rwxr-xr-x 1 sys
drwxrwxr–x 2 bin
                      320 Sep 22 05:33 lib
                       96 Sep 22 05:46 mdec
drwxrwxr–x 2 root
                    50990 Jun 8 1979 rkunix
-rwxr-xr-x 1 root
-rwxr-xr-x 1 root 51982 Jun 8 1979 rl2unix
−rwxr−xr−x 1 sys     51790 Jun  8  1979 rphtunix
-rwxr-xr-x 1 sys
                    51274 Jun 8 1979 rptmunix
drwxrwxrwx 2 root
                       48 Sep 22 05:50 tmp
drwxrwxr–x12 root
                      192 Sep 22 05:48 usr
# ls -1 /usr
total 11
drwxrwxr–x 3 bin
                      128 Sep 22 05:45 dict
drwxrwxrwx 2 dmr
                       32 Sep 22 05:48 dmr
drwxrwxr–x 5 bin
                      416 Sep 22 05:46 games
                      496 Sep 22 05:42 include
drwxrwxr–x 3 sys
drwxrwxr–x10 bin
                      528 Sep 22 05:43 lib
drwxrwxr–x11 bin
                      176 Sep 22 05:45 man
drwxrwxr–x 3 bin
                      208 Sep 22 05:46 mdec
drwxrwxr–x 2 bin
                       80 Sep 22 05:46 pub
drwxrwxr–x 6 root
                       96 Sep 22 05:45 spool
drwxrwxr–x13 root
                      208 Sep 22 05:42 src
# 1s -1 /usr/dmr
total O
```

Mesmo as primeiras versões tinham um sistema de arquivos multiusuário bastante sofisticado, já que ele é derivado do MULTICS.

Aqui, será discutido o sistema de arquivos V7, implementado na época do PDP-11 (entre 1970 e 1980).

O sistema de arquivos existe na forma de uma "árvore", iniciando-se no diretório raiz "/".

É permitida a adição de ligações – desta forma, a representação é feita por um grafo acíclico.

Conseguem pensar em um exemplo de dificuldade que o sistema enfrentaria, se fosse permitido grafos cíclicos?

Os nomes dos arquivos podem ter até 14 caracteres.

Pode utilizar qualquer caractere ASCII, exceto "/".

Se o tamanho do nome do arquivo for menor que 14 caracteres, NUL (0) é utilizado para preencher os espaços que sobram.

Uma entrada de diretório do UNIX V7

Limita o número de arquivos do sistema em 64k.

Uma entrada de diretório do UNIX V7

Alguns atributos contidos no *i-node*:

- Tamanho do arquivo.
- Data e hora de criação.
- Data e hora do último acesso.
- Data e hora da última alteração.
- Proprietário.
- Grupo.
- Informações de proteção.
- Contador do número de entradas de diretório que aponta para o i-node.

Armazenamento dos dados dos arquivos em disco

Os 8 primeiros endereços de disco do arquivo são armazenados no próprio i-node.

Se não for suficiente, o último apontador indica uma estrutura que contem o restante dos endereços do conteúdo do arquivo.

Bloco de disco contendo endereços de disco adicionais

Armazenamento dos dados dos arquivos em disco

Acesso aos arquivos no UNIX (ou em outro sistema)

Localizando: /usr/ast/mbox

				_		/ /		/				
Diretório-raiz			I-node 6 é para /usr	6	Bloco 132 é o diretório /usr			I-node 26 é para /usr/ast é o		Bloco 406 o diretório /usr/ast		
1			Mode size times		6	•		Mode size		26	•	
1					1	••				6	**	
4	bin				19 dick times	times		64	grants			
7	dev		132		30	erik		406		92	books	
14	lib				51	jim				60	mbox	
9	etc				26	ast				81	minix	
6	usr	'			45	bal			•	17	src	
8	tmp		I-node 6					I-node 26				
Procurar usr resulta no i-node 6			diz que /usr está no bloco 132		/usr/ast está no i-node 26			diz que /usr/ast está no bloco 406		/usr/ast/mbox está no i-node 60		

Leituras adicionais (Opcional)

O Sistema de Arquivos do UNIX

- Capítulo 10.6
- "Sistemas Operacionais Modernos", 2^a edição;

O Sistema de Arquivos do Windows 2000

- Capítulo 11.7
- ° "Sistemas Operacionais Modernos", 2° edição

Próxima aula

Leitura:

Sistemas operacionais modernos

Gerência de Dispositivos

Referências

Sistemas Operacionais Modernos. Tanenbaum, A. S. 2^a edição. 2003.

Sistemas Operacionais. Conceitos e Aplicações. A. Silberschatz; P. Galvin; G. Gagne. 2000.

Sistemas Operacionais – Projeto e Implementação. Tanenbaum, A. S. 2ª edição. 2000.

Slides Prof. Humberto Brandão