Solve the following decimal expression in 32-bit single precision IEEE754 format:

0.1 + 0.2

0.1

Step 1: Convert the given decimal into binary form

Exponent: 0

Mantissa: Multiply 0.1 by 2

0.1*2 =	0	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	Recurring!
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	

 Decimal:
 0
 .
 1

 Binary:
 0
 .
 0001 1001 1001 1001 1001 1001...

Step 2: Represent the obtained binary in scientific notation

In scientific notation, a float binary is written in a form so that it begins with "1." Hence, we must move the point 4 places to the *right* in the obtained binary.

We have, 0 . 0001 1001 1001 1001 1001 1001...

After bit-shifting,

1 . 1001 1001 1001 1001 1001 1001... * 2^ -4

Step 3: Convert the scientific notation into 32-bit single precision IEEE754 format

We need to represent the power of 2, -4 in our case, in bits. As per the IEEE rules, we must add a *bias* to the power, and then represent the resultant in bits. In 32-bit format,

Bias: 127

=> Exponent = 127 - 4 = 123

Binary of 123:

Quotient	Remainder
61	1
30	1
15	0
7	1
3	1
1	1

Now we can represent the exponent in 8 bits as per the 32-bit IEEE format.

	0		1	1 1	1	1	0	1	1
--	---	--	---	-----	---	---	---	---	---

So in single precision, 0.1 is represented as:

Sign	Exponent	Mantissa	
0	01111011	1001100110011001100	
		1001100110011001101	Rounded

0.2

Step 1: Convert the given decimal into binary form

Exponent: 0

Mantissa: Multiply 0.2 by 2

0.2*2 =	0	
0.4*2 =	0	Recurring
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	
0.2*2 =	0	
0.4*2 =	0	
0.8*2 =	1	
0.6*2 =	1	

0.2*2 = 0 0.4*2 = 0 0.8*2 = 1 0.6*2 = 1 0.2*2 = 0 0.4*2 = 0 0.8*2 = 1 0.6*2 = 1 0.2*2 = 0 0.4*2 = 0 0.8*2 = 1 0.6*2 = 1

Decimal:

0

Binary:

0011 0011 0011 0011 0011 0011...

Step 2: Represent the obtained binary in scientific notation

In scientific notation, a float binary is written in a form so that it begins with "1." Hence, we must move the point 3 places to the *right* in the obtained binary.

We have, 0

0011 0011 0011 0011 0011 0011...

2

After bit-shifting,

1 0011 0011 0011 0011 0011 0011... * 2^ -3

Step 3: Convert the scientific notation into 32-bit single precision IEEE754 format

We need to represent the power of 2, -3 in our case, in bits. As per the IEEE rules, we must add a bias to the power, and then represent the resultant in bits. In 32-bit format,

Bias: 127

Exponent = 127 - 3 = 124

Binary of 124:

Quotient	Remainder
62	0
31	0
15	1
7	1
3	1
1	1

Now we can represent the exponent in 8 bits as per the 32-bit IEEE format.

So in single precision, 0.2 is represented as:

Sign	Exponent	Mantissa
0	01111100	10011001100110011001100
		10011001100110011001101

0.1 + 0.2

Step 1: To find the sum, we consider the respective IEEE binaries of each operand in scientific notation.

0.1	1	10011001100110011001101 * 2^ -4
0.2	1	10011001100110011001101*2^-3

Step 2: As per IEEE, the above binaries should have the same exponent to carry out addition. Therefore,

0.1	0	·	11001100110011001100110*2^-3	point moved 1 place to the <i>left</i>
0.2	1		10011001100110011001101*2^-3	
0.2	-	•		
	10		01100110011001100110011*2^-3	Sum

Step 3: Convert the sum into scientific notation, again.

We move the point one place to the left.

1 . 0011001100110011001*2^-3 Sur

Step 4: Convert the scientific notation into 32-bit single precision IEEE754 format

We need to represent the power of 2, -2 in our case, in bits. As per the IEEE rules, we must add a *bias* to the power, and then represent the resultant in bits. In 32-bit format,

Bias: 127

=> Exponent = 127 - 2 = 125

Binary of 125:

Quotient	Remainder
62	1
31	0
15	1
7	1
3	1
1	1

Now we can represent the exponent in 8 bits as per the 32-bit IEEE format.

•		4		4		•		
U	1	1	1	1	1	U	1	

u		
noved 1 place to the <i>left</i>		

So in single precision, 0.1 + 0.2 is represented as:

Exponent

01111101

Sign

0

			001100110011001	1010
Sign	0			
	0			
	1			
	1			
Exponent	1			
	1			
	1			
	0			
	1			
	0	2^ -1	0	
	0	2^ -2	0	
	1	2^ -3	0.125	
	1	2^ -4	0.0625	
	0	2^ -5	0	
	0	2^ -6	0	
	1	2^ -7	0.0078125	
	1	2^ -8	0.00390625	
	0	2^ -9	0	
Mantissa	0	2^ -10	0	
	1	2^ -11	0.00048828125	
	1	2^ -12	0.000244140625	
	0	2^ -13	0	
	0	2^ -14	0	
	1	2^ -15	0.000030517578125	
	1	2^ -16	0.0000152587890625	
	0	2^ -17	0	
	0	2^ -18	0	
	1	2^ -19	0.0000019073486328125	
	1	2^ -20	0.00000095367431640625	
	0	2^ -21	0	
	1	2^ -22	0.0000002384185791015625	
	0	2^ -23	0	
			0.2000000476837158203125	Sum

Mantissa

00110011001100110011001

00110011001100110011010 Rounded!

Cross-verification:

The above sum is in IEEE format, so it must be converted to decimal. The standard formula for the same:

(-1)^Sign * (1 + Mantissa) * 2^Exponent

- => (-1)^0 * (1 + 0.2000000476837158203125) * 2^ -2
- = 1.2000000476837158203125 / 4
- = 0.300000011920928955078125