Soluções e tópicos de resolução

1. Opção C

• Escrever
$$-3i = 3e^{i\left(-\frac{\pi}{2}\right)}$$
, por exemplo

• Escrever
$$\overline{z}^2 = e^{-2\alpha}$$

• Escrever
$$-3i\overline{z}^2 = 3e^{i\left(-\frac{\pi}{2} - 2\alpha\right)}$$

• Concluir que
$$-\pi < -\frac{\pi}{2} - 2\alpha < -\frac{\pi}{2}$$

• Concluir que o único argumento pertencente ao 3.º quadrante é $\frac{8\pi}{7}$

2.

- Determinar as coordenadas de A(0,3)
- Determinar as coordenadas de B(4,0)
- ullet Determinar o ponto médio de [AB]
- Escrever uma equação para a mediatriz de [AB] $(y = \frac{4}{3}x \frac{7}{6})$, por exemplo
- Escrever uma equação para a circunferência centrada em A e que contém, B e C. $(x^2 + (y-3)^2 = 25$, por exemplo)

• Escrever
$$x^2 + \left(\frac{4}{3}x - \frac{7}{6} - 3\right)^2 = 25$$

• Obter $100x^2 - 400x - 275 = 0$ (ou equivalente)

• Concluir que
$$x = \frac{4 + 3\sqrt{3}}{2}$$

• Obter
$$y = \frac{3+4\sqrt{3}}{2}$$

3. Opção B

4.

• Concluir que
$$i^{2023} = -i$$

• Escrever
$$5e^{i\frac{\pi}{2}} = i$$

• Determinar
$$(3+2i)^2$$
 na forma algébrica $(5+12i)$

• Escrever
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i\frac{\pi}{3}}$$

• Determinar
$$\left(e^{i\frac{\pi}{3}}\right)^9$$

• Obter
$$-5 + 5i$$

• Escrever
$$-5 + 5i = 5\sqrt{2}e^{i\frac{3\pi}{4}}$$

5.

- Determinar o domínio da inequação (D =]0, 3[)
- Escrever $\ln \left[e^x (x+1) \right] = x + \ln (x+1)$
- Concluir que $\log_{\sqrt{e}} \sqrt{x} = \ln x$
- Obter $\ln(x^2 + x) \ge \ln(3 x)$
- Obter $x^2 + 2x 3 \ge 0$
- Determinar as soluções da equação $x^2 + 2x 3 = 0$
- Concluir que S = [1, 3[

6.

6.1. Opção A (
$${}^{24}C_5 - {}^{22}C_5$$
, por exemplo)

6.2.
$$\frac{3 \times {}^{10} A_8 \times {}^{20} A_{16}}{{}^{30} A_{24}}$$
, por exemplo

7.

• Escrever
$$a_n = 4 + 2n + \frac{1}{2^n}$$

• Reconhecer (justificar) que (a_n) é a soma de uma progressão aritmética com uma progressão geométrica

• Escrever
$$S_{100} = \frac{6+204}{2} \times 100 + \frac{1}{2} \times \frac{1-\left(\frac{1}{2}\right)^{100}}{1-\frac{1}{2}}$$

• Obter
$$S_{100} = \frac{10501 \times 2^{100} - 1}{2^{100}}$$

8.

8.1.

- Determinar a abcissa do ponto Q(2)
- Determinar a ordenada do ponto R(3)
- Determinar a cota do ponto P(7)
- Determinar o volume do paralelepípedo (42)

8.2.

- Escrever uma equação da reta que contém S e é perpendicular ao plano PQR $((x,y,z)=(17,20,13)+\lambda(21,14,6),\lambda\in\mathbb{R})$
- Determinar o ponto de interseção da reta anterior com o plano PQR (-4, 6, 7)
- \bullet Determinar o raio da superfície esférica $\sqrt{673}$
- Escrever $(x-17)^2 + (y-20)^2 + (z-13)^2 = 673$

9.

9.1. Opção C

9.2.

Para $0 < x < \pi$:

- Determinar g'(x) $((\sqrt{3} + \sqrt{3}\cos x \sin x)e^{\sqrt{3}x + \sqrt{3}\sin x + \cos x})$
- Escrever $\sqrt{3} + \sqrt{3}\cos x \sin x = 0$
- Escrever $\sqrt{3}\cos x \sin x = 2\cos\left(\frac{\pi}{6} + x\right)$, por exemplo
- Obter $\cos\left(\frac{\pi}{6} + x\right) = -\frac{\sqrt{3}}{2}$
- Concluir que $x = \frac{2\pi}{3} \lor x = \pi$
- Apresentar uma tabela de monotonia
- Indicar os intervalos de monotonia (crescente em $\left]0, \frac{2\pi}{3}\right]$, decrescente em $\left[\frac{2\pi}{3}, \pi\right]$)
- Indicar o maximizante $\left(\frac{2\pi}{3}\right)$ e o minimizante (π)

10. Opção D

- Escrever $\lim a_{n+1} = \lim \left(1 + \frac{1}{a_n}\right)$
- Obter $\lim a_n = 1 + \frac{1}{\lim a_n}$
- Escrever $s = 1 + \frac{1}{s}$
- Obter $s^2 s 1 = 0$
- Concluir que $s = \frac{1+\sqrt{5}}{2}$

11.

- Escrever $\overline{OA} = \overline{OC} = 2$
- Escrever $\overline{AB} = 2\sin\left(\frac{\pi}{6} + x\right) 2\sin\frac{\pi}{6}$
- Obter $\overline{AB} = \cos x + \sqrt{3}\sin x 1$
- Escrever $\overline{BC} = 2\cos\frac{\pi}{6} 2\cos\left(\frac{\pi}{6} + x\right)$
- Obter $\overline{BC} = \sqrt{3} \sqrt{3}\cos x + \sin x$
- Concluir o pretendido

12.

- Determinar a abcissa do ponto P(e)
- Escrever $A(x) = \frac{e \times |x x \ln x|}{2}$
- Escrever $\frac{e \times |x x \ln x|}{2} = 1$ (ou equivalente)
- Resolver equação graficamente
- Apresentar gráficos visualizados e pontos relevantes
- \bullet Concluir que as possíveis abcissas para o ponto Qsão aproximadamente 0,37 ou 1,81 ou 3.38

13.

- Escrever $P(\overline{A} \cup B) = P(\overline{A}) + P(B) P(\overline{A} \cap B)$
- Escrever $P(A \cap \overline{B}) = P(A) P(A \cap B)$
- Escrever $P(\overline{A}) = 1 P(A)$
- Escrever $P(\overline{A} \cap B) = P(B) P(A \cap B)$
- Obter $6P(A \cap B) = 4P(A)$ (ou equivalente)
- Concluir que $P(B|A) = \frac{2}{3}$

14.

- Referir (justificar) a continuidade de g' em [-1, 1]
- Determinar g'(-1) (1)
- Escrever f(1) = -3
- Determinar g'(1)(-1)
- Referir que g'(-1) e g'(1) têm sinais contrários (ou equivalente)
- Concluir, pelo teorema de Bolzano, que g'(x) = 0 tem pelo menos uma solução em]-1,1[
- Concluir que g tem pelo menos um extremo relativo em]-1,1[
- Como g'(-1) > 0 e g'(1) < 0 concluir que "pelo menos" um dos extremos relativos é máximo relativo

15.

• Escrever
$$\lim_{x \to +\infty} \left[g(x) - 3x - \ln\left(\frac{1+e}{e}\right) \right]$$

• Obter
$$\lim_{x \to +\infty} \left[\ln \left(e^{f(x)} + e^{3x} \right) - 3x \right] - \ln \left(\frac{1+e}{e} \right)$$

• Escrever
$$e^{f(x)} + e^{3x} = e^{f(x)} \left(1 + e^{-(f(x)-3x)} \right)$$

• Escrever
$$\ln \left[e^{f(x)} \left(1 + e^{-(f(x) - 3x)} \right) \right] = f(x) + \ln \left[1 + e^{-(f(x) - 3x)} \right]$$

• Escrever
$$\lim_{x \to +\infty} (f(x) - 3x) = -1$$

• Obter
$$\lim_{x \to +\infty} \left[\ln \left(e^{f(x)} + e^{3x} \right) - 3x \right] = -1 + \ln(1+e)$$

• Escrever
$$-1 + \ln(1+e) = \ln\left(\frac{1+e}{e}\right)$$

• Concluir que
$$\lim_{x\to +\infty} \left[g\left(x\right)-3x-\ln\left(\frac{1+e}{e}\right)\right]=0$$
 e portanto, a reta de equação $y=3x+\ln\left(\frac{1+e}{e}\right)$ é assíntota oblíqua ao gráfico de g

Prova modelo n.º 10 Autor: Carlos Frias Página 4 de 4