Universidad de Granada. Ecuaciones Diferenciales I 21 de Junio de 2016. Examen Final. Primera parte

NOMBRE:

1.1. Consideramos la familia de curvas

$$x^4 = a^2(x^2 - y^2), \qquad a > 0.$$

- a) [14] Encuentra una ecuación diferencial $\frac{dy}{dx} = f(x,y)$ que admita como soluciones a las funciones y = y(x) definidas por dicha familia.
- b) [6] ¿Es esta ecuación de alguno de los tipos vistos en clase?
- c) [6] Determina los posibles dominios de definición de la ecuación.
- d) [14] Fijado el dominio y dada a > 0, calcula el intervalo maximal de definición de cada una de las soluciones que componen la curva.

1.2. En este ejercicio se propone un método para resolver la ecuación

$$x' = a(t)e^{rx} + b(t),$$

donde $a, b : \mathbb{R} \to \mathbb{R}$ son funciones continuas y r > 0.

a) [15] Dado $m \neq 0$ demuestra que

$$\varphi:(t,x)\mapsto(s,y),\ s=t,\ y=e^{mx}$$

define un difeomorfismo entre \mathbb{R}^2 y un dominio $D = \varphi(\mathbb{R}^2)$. Describe D.

- b) [15] Encuentra un valor de m que haga que el cambio φ transforme la ecuación anterior en una ecuación lineal.
- c) [10] Resuelve por este procedimiento el problema $x' = 2e^x + 1$, x(0) = 0. Se precisará el intervalo de definición de la solución.
- 1.3 [20] Encuentra la ecuación diferencial que verifica la familia de circunferencias que pasan por el origen y son tangentes al eje OY en ese punto.

Universidad de Granada. Ecuaciones Diferenciales I 21 de Junio de 2016. Examen Final. Segunda parte

NOMBRE:

- **2.1.** Se consideran los operadores diferenciales $L:C^1(\mathbb{R})\to C(\mathbb{R})$ y $\tilde{L}:C^2(\mathbb{R})\to C(\mathbb{R})$ definidos por L[x]=x'+tx y $\tilde{L}[x]=x''+tx'$. Se pide:
- (a) [10] Calcula Ker L
- (b) [10] Calcula $\operatorname{Ker} \tilde{L}$
- (c) [20] Encuentra todas las soluciones de $\tilde{L}[x] = t^2$.
- 2.2. Se considera el campo de fuerzas

$$F(x,y) = (\frac{2y}{x^2 + y^2}, \frac{-2x}{x^2 + y^2}), \quad (x,y) \in \mathbb{R}^2 \setminus \{0\}.$$

- a) [10] ¿Se cumple la condición de exactitud $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$?
- b) [30] Se calcula el trabajo a lo largo de dos caminos γ_1 y γ_2 que unen los puntos (1,0) y (-1,0) y están definidos por

$$\gamma_1(t) = (\cos(2t), \sin(2t)), \quad \gamma_2(t) = (\cos(2t), -\sin(2t)), \quad t \in [0, \frac{\pi}{2}].$$

¿Se obtiene la misma cantidad?

2.3. [20] Se considera la transformación del primer cuadrante $x = u^3$, $t = s^3$. Identifica las funciones f(t,x) tales que la ecuación $\frac{dx}{dt} = f(t,x)$ es invariante para dicha transformación.

2.1. Se consideran los operadores diferenciales $L:C^1(\mathbb{R})\to C(\mathbb{R})$ y $\tilde{L}:C^2(\mathbb{R})\to C(\mathbb{R})$ definidos por L[x]=x'+tx y $\tilde{L}[x]=x''+tx'$. Se pide:

- (a) [10] Calcula KerL
- (b) [10] Calcula $\operatorname{Ker} \tilde{L}$
- (c) [20] Encuentra todas las soluciones de $\tilde{L}[x] = t^2$.

$$x' + fx = 0 \implies x(t) = ce^{-\frac{t^2}{2}}$$
, cer

$$x'' + t x' = 0$$

vernos que
$$x_n(t) = 1$$
 es sol.

Tomornos
$$M(x^1, x^1)(t_0) = 1 \Rightarrow |x_1 \times x_2| = e^{-\frac{1}{2}} \Rightarrow |x_1 \times x_2| = e^{-\frac{1}{2}/5}$$

$$\chi_{2}(t) = \int e^{-t^{2}|2} dt$$

$$\chi_{\parallel} \uparrow \uparrow \chi_{z} = \downarrow_{S}$$

$$F(x,y) = (\frac{2y}{x^2 + y^2}, \frac{-2x}{x^2 + y^2}), \quad (x,y) \in \mathbb{R}^2 \setminus \{0\}.$$

- a) [10] ¿Se cumple la condición de exactitud $\frac{\partial F_1}{\partial u} = \frac{\partial F_2}{\partial x}$?
- b) [30] Se calcula el trabajo a lo largo de dos caminos γ_1 y γ_2 que unen los puntos (1,0) y (-1,0) y están definidos por

$$\gamma_1(t) = (\cos(2t), \sin(2t)), \quad \gamma_2(t) = (\cos(2t), -\sin(2t)), \quad t \in [0, \frac{\pi}{2}].$$

¿Se obtiene la misma cantidad?

A)

$$\frac{9x}{9 + 5} (x^{1}A) = \frac{(x_{5} + A_{5})_{5}}{-5 (x_{5} + A_{5})_{7} + 4x_{5}} = \frac{(x_{5} + A_{5})_{5}}{5x_{5} - 5A_{5}} = \frac{(x_{5} + A_{5})_{5}}{5x_{5} - 5A_{5}} = \frac{(x_{5} + A_{5})_{5}}{5x_{5} - 5A_{5}}$$

(3)

tado que $N = \mathbb{R}^2 \setminus \{0\}$ no fiene sorma estrella no tenenos garantízada la existencia de potencial y el campo no time porqué ser conservativo. Por tanto, el recorrido influye en el trobajo.

$$F(\gamma_{1}(s)) = F(\cos(7t), \sin(8t)) = \left(\frac{2 \sin 7t}{\cos^{2}7t + \sin^{2}7t} - \frac{-2 \cos 7t}{\cos^{2}7t + \sin^{2}7t}\right) = 2(\sin^{2}7t, -\cos^{2}7t)$$

$$F(\gamma_{1}(s)) = -2(\sin^{2}7t, \cos^{2}7t)$$

$$Y_{1}(s) = (-2\sin^{2}7t, -2\cos^{2}7t) = -7(\sin^{2}7t, \cos^{2}7t)$$

$$Y_{1}(s) = (-2\sin^{2}7t, -2\cos^{2}7t) = -7(\sin^{2}7t, \cos^{2}7t)$$

$$T_{1} = \int_{0}^{\ln 2} ZF(\gamma_{1}(S)) |\gamma_{1}(S)| > dS = 4 \int_{0}^{\pi/2} -se_{2}^{2} 2S - \cos^{2} 2S dS =$$

$$-4 \int_{0}^{\pi/2} dS = -4 \left(S\right)_{0}^{\pi/2} = -2\pi$$

$$T_2 = \int_0^{11/2} Z F(\gamma_2(s), \gamma_2'(s)) ds = -Y \int_0^{11/2} S_{en}^2 2s + \cos^2 2s ds = -2 H$$

Vernos que $T_1 = T_2$, pero no asegura que el compo sea conservativo.

Universidad de Granada. Ecuaciones Diferenciales I 21 de Junio de 2016. Examen Final. Tercera parte

NOMBRE:

3.1. Sea $A \in \mathbb{R}^{N \times N}$, consideramos el sistema lineal de segundo orden

$$x'' = Ax$$

Se pide

- a) [10] Justifica que el conjunto de soluciones forma un espacio vectorial y calcula su dimensión.
- b) [10] Si $\mu \in \mathbb{R}$ es tal que μ^2 es valor propio de A con vector propio asociado v, demuestra que $x(t) = e^{\mu t}v$ es solución.
- c) [10] Si $\mu \in \mathbb{R}$ es tal que $-\mu^2$ es valor propio de A con vector propio asociado v, demuestra que $x_1(t) = \sin(\mu t)v$, $x_2(t) = \cos(\mu t)v$ son soluciones.
- d) [10] Dada $A = \begin{pmatrix} -1 & 3 \\ 5 & 1 \end{pmatrix}$, calcula la solución general del sistema.
- **3.2.** Consideramos el sistema

$$x' = ax + by$$
, $y' = cx + dy$,

con $a, b, c, d \in \mathbb{R}$.

a) [10] Demuestra que si (x, y) es solución del sistema, entonces la primera componente x es solución de la ecuación

$$x'' - (a+d)x' + (ad - bc)x = 0.$$

- b) [15] Se sabe que $\phi_1(t)$ y $\phi_2(t)$ forman un sistema fundamental de la ecuación del apartado anterior y se supone que $b \neq 0$. Construye una matriz fundamental del sistema en términos de ϕ_1 , ϕ_2 y los coeficientes a, b, c, d.
- c) [15] Utiliza los apartados anteriores para calcular e^{tA} si $A = \begin{pmatrix} -5 & -3 \\ 3 & 1 \end{pmatrix}$
- **3.3.** [20] Demuestra que la ecuación integral

$$x(t) = 3 + \frac{1}{2} \int_0^1 \sin(ts) x(s) ds$$

tiene a lo sumo una solución $x:[0,1]\to\mathbb{R}$ continua.

3.1. Sea $A \in \mathbb{R}^{N \times N}$, consideramos el sistema lineal de segundo orden

$$x'' = Ax$$

Se pide

- a) [10] Justifica que el conjunto de soluciones forma un espacio vectorial y calcula su dimen-
- b) [10] Si $\mu \in \mathbb{R}$ es tal que μ^2 es valor propio de A con vector propio asociado v, demuestra
- c) [10] Si $\mu \in \mathbb{R}$ es tal que $-\mu^2$ es valor propio de A con vector propio asociado v, demuestra que $x_1(t) = \operatorname{sen}(\mu t)v, x_2(t) = \cos(\mu t)v$ son soluciones.
- d) [10] Dada $A = \begin{pmatrix} -1 & 3 \\ 5 & 1 \end{pmatrix}$, calcula la solución general del sistema.

Al

Sa L: C? (IRN) -> C(IRN) / 1 CX7= X"- AX

Veamos que L es lineal:

$$L(\alpha \times + by) = (\alpha \times + by) = \alpha \times^{\parallel} + by^{\parallel} - A\alpha \times - Aby =$$

$$= \alpha (x' - Ax) + b(y'' - Ay) = \alpha (x) + b(y)$$

Vemos que el espocio de soluciones es

Por tauto, queda probado que es espacio vectorial.

Agency: capenos dos lo ablicación \$ 5 > 15/ \$ (x) = (x(to)) es un isomorfismo => dim(z) = 2N

$$y'' = \mu^2 v \cdot p \cdot A \Rightarrow Av = \mu^2 v = e^{\mu t} Av = A e^{\mu t} v = A \times (t)$$

$$X'' = \mu^2 e^{\mu t} v = e^{\mu t} \mu^2 v = e^{\mu t} Av = A e^{\mu t} v = A \times (t)$$

c)
$$-\mu^2 v.p.A \implies Av = -\mu^2 v \quad \forall v.p. \text{ as octado } \alpha -\mu^2$$

$$\chi_1^{11} = -\mu^2 \text{ sen}(\mu t) \quad v = \text{ sen}(\mu t) \quad Av = A \quad v \text{ sec}(\mu t) = A \quad \chi_1(t)$$

$$\chi_1^{11} = -\mu^2 \text{ cos}(\mu t) \quad v = \text{ cos}(\mu t) \quad Av = A \quad v \text{ sec}(\mu t) = A \quad \chi_1(t)$$

$$A = \begin{pmatrix} -1 & 3 \\ 5 & 1 \end{pmatrix} \qquad P_{\lambda}(A) = \begin{vmatrix} -1 - \lambda & 3 \\ 5 & 1 - \lambda \end{vmatrix} = -(1 + \lambda)(1 - \lambda) - 1S = \frac{\lambda^2 - 1}{2} = 0 \implies \lambda = \pm 4$$

$$V_{4} = \left\{ v \in \mathbb{R}^{2} / (A - 4T) v = 0 \right\} \equiv \left(\frac{-5}{5} - \frac{3}{3} \right) \left(\frac{V_{4}}{V_{2}} \right) = 0 \equiv \frac{5V_{4} - 3V_{2} = 0}{5}$$

$$V_{-4} = \left\{ v \in \mathbb{R}^{2} / (A + 4T) v = 0 \right\} \equiv \left(\frac{3}{5} - \frac{3}{3} \right) \left(\frac{V_{4}}{V_{2}} \right) = 0 \equiv V_{4} + V_{2} = 0$$

$$V_1 = V_1^1 = (1_1 - 1)^{-1}$$
 es V_1 es $V_2 = V_1^1 = (1_1 - 1)^{-1}$ $V_2 = V_1^2 = V_1^$

Si
$$h_s = -n \Rightarrow h = + \frac{1}{2}$$

Si $h_s = n \Rightarrow h = + \frac{1}{2}$

$$V_{1}(t) = e^{2t} \begin{pmatrix} s_{13} \end{pmatrix} \quad V_{2}(t) = e^{-2t} \begin{pmatrix} s_{13} \end{pmatrix} \quad \emptyset_{3}(t) = e^{2t} \begin{pmatrix} s_{14} \end{pmatrix} \quad \emptyset_{4}(t) = e^{-2t} \begin{pmatrix} s_{13} \end{pmatrix}$$

son sol. del sist. para
$$X: \mathbb{R} \to \mathbb{C}^2$$

$$O_3 = \begin{pmatrix} e^{7it} \\ -e^{7it} \end{pmatrix} = \begin{pmatrix} \cos(7t) + i \sec(2t) \\ -\cos(7t) - i \sec(2t) \end{pmatrix}$$

See
$$V_3(t) = \left(\begin{array}{c} ee\left(e^{2ti}\right) \\ ee\left(-e^{2ti}\right) \end{array}\right) = \left(\begin{array}{c} cos(t) \\ -cos(2t) \end{array}\right)$$

$$V_4(t) = \left(\begin{array}{c} Tm\left(e^{2ti}\right) \\ Tm\left(-e^{2ti}\right) \end{array}\right) = \left(\begin{array}{c} sen(2t) \\ -sen(2t) \end{array}\right)$$

$$x' = ax + by$$
, $y' = cx + dy$,

con $a, b, c, d \in \mathbb{R}$.

a) [10] Demuestra que si (x,y) es solución del sistema, entonces la primera componente x es solución de la ecuación

$$x'' - (a+d)x' + (ad - bc)x = 0.$$

- b) [15] Se sabe que $\phi_1(t)$ y $\phi_2(t)$ forman un sistema fundamental de la ecuación del apartado anterior y se supone que $b \neq 0$. Construye una matriz fundamental del sistema en términos de ϕ_1 , ϕ_2 y los coeficientes a, b, c, d.
- c) [15] Utiliza los apartados anteriores para calcular e^{tA} si $A=\left(\begin{array}{cc} -5 & -3 \\ 3 & 1 \end{array} \right)$

A)

$$\alpha x' + b y' - (\alpha 10) x' + (\alpha 0 - b c) x =$$

$$\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} - \frac{\partial x}{\partial x} - \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} - \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} +$$

$$b(cx+dy)-dx'+\alpha dx-bcx=bdy-dx'+\alpha dx=$$

B)

$$A_i = Cx + 0A$$

$$X_i = 0x + 0A$$

$$\overline{X_i - 0x} = A$$

$$A_{i} = Cx + \overline{q}(x_{i} - \alpha x) = \frac{p}{x_{i} - \alpha x_{i}}$$

Por tanto, vernos que los soluciones de la ec. también son del sist. =>

$$x_{1}(t) = C_{1} \varphi_{1}(t) + d_{2} \varphi_{2}(t) \quad \forall \quad y_{1}(t) = \frac{x_{1}(t) - \alpha x_{1}(t)}{b}$$

Tomordo $C_{1} = A_{1} dA_{1} = 0$, $x_{1}(t) = \varphi_{1}(t)$, $y_{1}(t) = \varphi_{1}(t) - \alpha \varphi_{1}(t)$

Tomordo $C_{2} = 0_{1} dA_{2} = 0$, $x_{2}(t) = \varphi_{2}(t)$, $y_{2}(t) = \varphi_{2}(t)$

As(, una m,8.
$$\Phi(t) = \begin{pmatrix} \chi_1^{(t)} & \chi_2^{(t)} \\ \chi_1^{(t)} & \chi_2^{(t)} \end{pmatrix}$$
, pues
$$\begin{vmatrix} \chi_1(t) & \chi_2(t) \\ \chi_1(t) & \chi_2(t) \end{vmatrix} = \begin{vmatrix} \emptyset_1(t) & \emptyset_2(t) \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} \emptyset_1(t) & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} \emptyset_1(t) & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} \emptyset_1(t) & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} \emptyset_1(t) & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0$$

$$e^{tA} = \Phi(t) \Phi(0)^{-1}$$

$$A = \begin{pmatrix} -S & -3 \\ 3 & 1 \end{pmatrix}$$

Resolvenos

$$x_{11} - (-2+1)x_1 + (-2+4)x = 0 \iff x_{11} + dx_1 + dx = 0$$

Buscamos sol. de la forma x(t)= ext

$$\lambda^{2} e^{\lambda t} + \lambda^{2} e^{\lambda t} + \lambda^{2} e^{\lambda t} = e^{\lambda t} (\lambda^{2} + \lambda^{2} + \lambda^{2}) = 0 \Longrightarrow$$

$$\lambda = -\frac{4 \pm \sqrt{16 - 16}}{2} = -2 \implies \chi(t) = e^{-2t}$$
 es una sol. particular. => $\chi(t) = \frac{2e^{-2t} - 5e^{-2t}}{2} = -e^{-2t}$

Por Formula de Liouville, dado un sist gundamental doi, oz j, toe I. W (01, 02) (to) = 1

$$W(\phi_1,\phi_2)(t) = W(\phi_1,\phi_2)(t_0) e^{-\int u dt}$$

$$\begin{vmatrix} x_1 & x_2 \\ x_1 & x_2 \end{vmatrix} = e^{-st}x_1 + 2e^{-st} = e^{-4t}$$

$$\chi_{1}^{1} + 5 \chi_{2} = 6 \iff \chi_{2}(t) = -5 \chi_{2}(t) + 6 = \alpha(t) \chi_{3} + \rho(t)$$

$$A(t) = \int -2dt = -2t$$

$$\int e^{-A(t)} dt = \int e^{zt} e^{-zt} dt = t$$

$$\int e^{-A(t)} dt = \int e^{zt} e^{-zt} dt = t$$

Towardo
$$k = 0$$
 => $\frac{1}{2}$ $\frac{1}{$

Por tanto, una m.s.
$$\phi(t) = \begin{pmatrix} e^{-2t} & te^{-2t} \\ -e^{-2t} & e^{-2t} & -e^{-2t} \end{pmatrix}$$

$$e^{tA} = \Phi(t) \Phi(0)^{-1}$$

3.3. [20] Demuestra que la ecuación integral

$$x(t) = 3 + \frac{1}{2} \int_0^1 \sin(ts) x(s) ds$$

tiene a lo sumo una solución $x:[0,1]\to\mathbb{R}$ continua.

Vernos
$$g(t) = \frac{1}{2} \int_{0}^{1} sen(s) g(s) ds$$

$$|f(t)| = \frac{1}{2} \left| \int_0^s sents \ f(s) \ ds \right| = \frac{1}{2} \int_0^s |sents| |f(s)| \ ds \le \frac{1}{2} \int_0^s |f(s)| \ ds$$

$$|\mathcal{E}(+)| = \frac{1}{2} \int_{0}^{1} M ds = \frac{1}{2} M \qquad \forall + \in \mathcal{I}$$

$$|\{(t)\}| \leq 0 \implies \{(t) = \chi(t) - \chi(t) = 0 \implies \chi(t) = \chi(t)$$