PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED U	NDER '	THE PATENT COOPERA	
(51) International Patent Classification ⁶ :		(11) Inte	ernational Publication Numbe	wo 99/01476
C07K 16/00	A1	(43) Inte	ernational Publication Date:	14 January 1999 (14.01.99)
(21) International Application Number: PCT/US (22) International Filing Date: 1 July 1998 (Designated States: CA, JP, US CY, DE, DK, ES, FI, FR, PT, SE).	, European patent (AT, BE, CH, GB, GR, IE, IT, LU, MC, NL,
(30) Priority Data: 60/051,645 3 July 1997 (03.07.97) (71) Applicant (for all designated States except US): SMIT BEECHAM CORPORATION [US/US]; One Frank Philadelphia, PA 19103 (US).	THKLI	E	lished With international search re Before the expiration of ti claims and to be republish amendments.	port. se time limit for amending the ed in the event of the receipt of
(72) Inventor; and (75) Inventor/Applicant (for US only): SWAIRJO, M. [US/US]; 100 West Eighth Street, Bridgeport, 1 (US).	Manal, PA 194	A. 05		
(74) Agents: BAUMEISTER, Kirk et al.; SmithKline Corporation, Corporate Intellectual Property, UW Swedeland Road, P.O. Box 1539, King of Pr 19406-0939 (US).	72220, 7	09		
				, .
(54) Title: CRYSTAL STRUCTURES OF ANTI-FACT DESIGN	OR IX	Fab FRA	GMENTS AND METHODS O	USE FOR PEPTIDOMIMETIC
(57) Abstract Novel anti-Factor IX Fab fragment crystalline struare disclosed.	uctures	re identil	fied. Methods of identifying pe	ptidomimetics of these fragment
er e di				
				·
			·	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BF BG BJ BR CC CC CC CC CC DE	Albania Armenia Australia Australia Australia Azerbaljan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Bentin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany	ES FI FR GA GB GE GH GN GR HU IB IL IS IT JP KE KG KP LC LL L	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Llechtenstein Sri Lanka	LS LT LU LV MC MD MG MK MI MN MR MV MX NE NL NO NZ PL PT RO RU SD	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netheriands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	SI SK SN SZ TD TG TJ TM TR TI UA UG US UV YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkeny Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
					•		
DK	Denmark	LK					
EE	Estonia	LR	Liberia ,	SG	Singapore		•

CRYSTAL STRUCTURES OF ANTI-FACTOR IX F2b FRAGMENTS AND METHODS OF USE FOR PEPTIDOMIMETIC DESIGN

This application claims the benefit of U.S. Provisional Application No. 60/051,645, filed 3 July 1997.

FIELD OF THE INVENTION

This invention relates to anti-Factor IX Fab fragment crystals and the use of complementarity determining region (CDR) structural parameters for design and selection of peptidomimetics.

10

15

20

25

BACKGROUND OF THE INVENTION

Under normal circumstances, an injury, be it minor or major, to vascular endothelial cells lining a blood vessel triggers a hemostatic response through a sequence of events commonly regred to as the coagulation "cascade." The cascade culminates in the conversion of soluble fibrinogen to insoluble fibrin which, together with platelets, forms a localized clot or thrombus which prevents extravasation of blood components. Wound healing can then occur followed by clot dissolution and restoration of blood vessel integrity and flow.

The events which occur between injury and clot formation are a carefully regulated and linked series of reactions. In brief, a number of plasma coagulation proteins in inactive proenzyme forms and cofactors circulate in the blood. Active enzyme complexes are assembled at an injury site and are sequentially activated to serine proteases, with each successive serine protease catalyzing the subsequent proenzyme to protease activation. This enzymatic cascade results in each step magnifying the effect of the succeeding step. For an overview of the coagulation cascade see the first chapter of "Thombosis and Hemorrhage", J. Loscalzo and A. Schafer, eds., Blackwell Scientific Publications, Oxford, England (1994).

While efficient clotting limits the loss of blood at an injury site, inappropriate formation of thrombi in veins or arteries is a common cause of disability and death.

30 Abnormal clotting activity can result in and/or from pathologies or treatments such as myocardial infarction, unstable angina, atrial fibrillation, stroke, renal damage, percutaneous translumenal coronary angioplasty, disseminated intravascular coagulation, sepsis, pulmonary embolism and deep vein thrombosis. The formation of clots on foreign

surfaces of artificial organs, shunts and prostheses such as artificial heart valves is also problematic.

Approved anticoagulant agents currently used in treatment of these pathologies and other thrombotic and embolic disorders include the sulfated heteropolysaccharides heparin and low molecular weight (LMW) heparin. These agents are administered parenterally and can cause rapid and complete inhibition of clotting by activation of the thrombin inhibitor, antithrombin III and inactivation of all of the clotting factors.

5

10

15

20

25

30

However, due to their potency, heparin and LMW heparin suffer drawbacks. Uncontrolled bleeding as a result of the simple stresses of motion and accompanying contacts with physical objects or at surgical sites is the major complication and is observed in 1 to 7% of patients receiving continuous infusion and in 8 to 14% of patients given intermittent bolus doses. To minimize this risk, samples are continuously drawn to enable ex vivo clotting times to be continuously monitored, which contributes substantially to the cost of therapy and the patient's inconvenience.

Further, the therapeutic target range to achieve the desired level of efficacy without placing the patient at risk for bleeding is narrow. The therapeutic range is approximately 1 to less than 3 ug heparin/ml plasma which results in activated partial thromboplastin time (aPTT) assay times of about 35 to about 100 seconds. Increasing the heparin concentration to 3 ug/ml exceeds the target range and at concentrations greater than 4 ug/ml, clotting activity is not detectable. Thus, great care must be taken to keep the patient's plasma concentrations within the therapeutic range.

Another approved anticoagulant with slower and longer lasting effect is warfarin, a coumarin derivative. Warfarin acts by competing with Vitamin K dependent post-translational modification of prothrombin and other Vitamin K-dependent clotting factors.

The general pattern of anticoagulant action, in which blood is rendered non-clottable at concentrations only slightly higher than the therapeutic range is seen for warfarin as well as for heparin and LMW heparin. Clearly, a need exists for an anticoagulant agent which is efficacious in controlling thrombotic and embolic disorders yet does not cause uncontrolled bleeding or its possibility. Accordingly, there is also a need for anticoagulant agent structural information to enable identification and structure-based design of new anticoagulant agents.

SUMMARY OF THE INVENTION

Accordingly, an aspect of the present invention is a BC2 Fab fragment crystal.

Another aspect of the invention is a Fab fragment crystal containing BC2 CDRs.

Another aspect of the invention is a SB249417 Fab fragment crystal.

Another aspect of the invention is a method for identifying a peptidomimetics having Factor IX binding activity comprising the steps of searching a small molecule structural database with CDR structural parameters derived from anti-Factor IX Fab fragment crystals; selecting a molecular structure from the database which mimics the CDR structural parameters; synthesizing the selected molecular structure; and screening the synthesized molecule for Factor IX binding activity.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a three-dimensional structure of the residues of BC2 HC-CDR1.

Figure 2 is a three-dimensional structure of the residues of BC2 HC-CDR2.

Figure 3 is a three-dimensional structure of the residues of BC2 HC-CDR3.

Figure 4 is a three-dimensional structure of the residues of BC2 LC-CDR1.

Figure 5 is a three-dimensional structure of the residues of BC2 LC-CDR2.

Figure 6 is a three-dimensional structure of the residues of BC2 LC-CDR3.

Figure 7 is a three-dimensional structure of the residues of SB249417 HC-CDR1.

Figure 8 is a three-dimensional structure of the residues of SB249417 HC-CDR2.

Figure 9 is a three-dimensional structure of the residues of SB249417 LC-CDR1.

Figure 10 is a three-dimensional structure of the residues of SB249417 LC-CDR1.

Figure 11 is a three-dimensional structure of the residues of SB249417 LC-CDR2.

DETAILED DESCRIPTION OF THE INVENTION

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.

25

Factor IX (fIX) is a vitamin K-dependent serine protease zymogen which plays an important role in the amplification of the blood coagulation cascade by catalyzing the activation of factor X on the membrane surface in the presence of activated factor VIII and calcium. Murine anti-human factor IX monoclonal antibody (mAb) BC2, as described in U.S. Patent Application No. 08/783,853 is an IgG1 kappa monoclonal antibody having

useful properties for anticoagulant therapy in arterial and venous thrombosis. BC2 down-regulates the blood clotting cascade in a self-limiting manner. BC2 inhibits the activation of fIX to fIXa by fXI as well as its activation by the complex of tissue factor and fVIIa. BC2 also inhibits fIXa coagulant activity. BC2 binds to human fIX and fIXa in a calcium-dependent manner with a dissociation constant Kd=4 nM. BC2 also cross-reacts with and inhibits rat fIX.

5

10

15

20

25

30

Humanized constructs of BC2 have been made and tested for anticoagulant activity in vitro and in animal models. These constructs are described in U.S. Patent Application No. 08/783,853 and, like BC2, are novel anticoagulants exhibiting self-limiting, neutralizing activity, namely they down-regulate the blood clotting cascade in a selflimiting manner, minimizing the bleeding risks associated with heparin and other anticoagulant therapies. One such humanized construct of BC2 is SB249417. As used herein, the term "self-limiting, neutralizing activity" refers to the activity of a peptidomimetic that binds to human coagulation factor IX or IXa and inhibits thrombosis in a manner such that limited modulation of coagulation is produced. "Limited modulation of coagulation" is defined as an increase in clotting time, as measured by prolongation of the activated partial thromboplastin time (aPTT), where plasma remains clottable with aPTT reaching a maximal value despite increasing concentrations of monoclonal antibody. This limited modulation of coagulation is in contrast to plasma being rendered unclottable and exhibiting an infinite aPTT in the presence of increasing concentrations of heparin. Preferably, the maximal aPTT values are within the heparin therapeutic range. Most preferably, maximal aPTT is within the range of about 35 seconds to about 100 seconds which corresponds to about 1.5 times to about 3.5 times the normal control aPTT value.

In the humanization process, the mouse antibody framework is changed to that from a human antibody, leaving the antigen-binding site unchanged. This site is formed by certain regions in the mAb amino acid sequence which are termed the complementarity determining regions (CDRs), or hypervariable segments. The antigen-binding site, which determines its specificity to its antigen, is located in the Fab fragment of the antibody, which consists of the entire light chain (LC) and part of the heavy chain (HC).

As part of an effort to develop functional small-molecule mimics of these therapeutic macromolecules, the structural and mechanistic features of the anticoagulant activity of the anti-fIX mAbs BC2 and SB249417 have been determined. This information is useful for design and testing of small peptides that functionally mimic the mAb's anticoagulant properties and to develop these peptides for therapeutic use.

The three-dimensional structures of the Fab fragments of BC2 and SB249417 were determined using X-ray crystallography as described in the Examples. The structural information can be stored on a computer-readable medium.

The CDRs from the mouse and humanized Fab fragments have generally similar conformations. R.m.s. differences between corresponding CDR C_{α} positions between the two Fabs are below 0.5 Å, except in HC-CDR2 and HC-CDR3 where r.m.s. values are 1.97 and 3.7 Å, respectively. The slight change in the conformations of HC-CDR2 and HC-CDR3 amount to an angular shift in the planes of these loops, keeping the angle between them unchanged. In both Fabs, the three HC CDRs and LC-CDR3 form a groove (27 Å long, 8 Å wide and 9 Å deep) which runs through the CDR surface. CDR residues HC-Asn35, HC-Trp50, and LC-Arg95, which line a deep hole in the center of the groove, are considered important for antigen binding.

Structural information obtained for the CDRs of the BC2 and SB249417 Fab structures is useful for discovery of small molecule peptidomimetics. Preferred peptidomimetics include peptides and synthetic organic molecules which bind to Factor IX and have self-limiting, neutralizing activity in an in vitro clotting assay. An exemplary approach to such a structure-based peptide mimic design follows (Zhao, et al., 1995; Monfardini C. et al., 1996).

5

10

15

20

A search of several small-molecule structural data bases such as Available Chemicals Directory, Cambridge Crystallographic Database, Fine Chemical Database and CONCORD database (for a review, see Rusinko A., 1993) is carried out using parameters derived from the CDR structures. The search can be 2-dimensional, 3-dimensional or both and can be done using a combination of software such as UNITY version 2.3.1 (Tripos, Inc.), MACCS 3D, CAVEAT and DOCK. Conformational flexibility of the small molecules is allowed. The strategy for conducting the search takes into account conformations of individual CDRs as well as combinations of CDRs and/or key residues in the mAb combining site.

An initial approach is to focus on structural parameters from HC-CDR3, LC-CDR3 and HC-CDR2 since these CDRs have been found in other Fabs to participate intimately in antigen recognition. A search for small-molecule mimics of HC-CDR3, LC-CDR3 and HC-CDR2 is separately conducted. The structural parameters from each two of these three CDRs are combined and the search repeated. The next step will be using parameters from all three CDRs. The conformational parameters of the remaining three CDRs will be included at a later stage, resulting in a search combining all six CDRs. Preferably, the

selected molecular structure mimics the parameters of CDR residues HC-Asn35, HC-Trp50, and LC-Arg95. Small-molecule hits resulting from the searches are synthesized and screened for factor-IX binding in an ELISA assay and preferably, for anti-thrombotic activity in a standard *in vitro* clotting assay. Most preferably, the hits will also exhibit self-limiting, neutralizing activity.

5

10

15

20

25

30

Peptidomimetics produced by the method of the invention are expected to be useful in therapy of thrombotic and embolic disorders such as those associated with myocardial infarction, unstable angina, atrial fibrillation, stroke, renal damage, pulmonary embolism, deep vein thrombosis, percutaneous translumenal coronary angioplasty, disseminated intravascular coagulation, sepsis, artificial organs, shunts or prostheses.

The present invention will now be described with reference to the following specific, non-limiting examples.

Example 1 Preparation and Purification of Fab Fragments

Both BC2 and SB249417 Fab fragments were prepared and purified as follows. 50 mL of freshly purified monoclonal anti-human fIX antibody sample (1.2mg/mL in PBS buffer) was concentrated in an Amicon cell using a 30-kDa molecular weight cutoff membrane (YM30, at 65 psi, 4°C) to a final volume of 5.0 mL and final concentration of 12.0 mg/mL. A papain digest of the mAb was started by adding to the concentrated mAb sample 20µg/mL papain (Boehringer Manheim, cat.# 108014), 2.5 mM EDTA (pH 7.5) and 5.0 mM cysteine-HCL monohydrate (PIERCE, cat.# 44889) and incubating the mixture at 37°C for 4 hours and shaking gently. The reaction was stopped by cooling the mixture on ice for 20 min.

The Fc fragment was removed by incubating the digest with 5 mL of protein A-Sepharose resin (Pharmacia) and mixing at 4°C for 1 hour. The mixture was transferred into a 15 mL gravity-fed column, and the unbound fraction (containing the Fab fragment) was collected. The column was washed twice with a 8 mL volume of 20mM Na₂HPO₄, 150mM NaCl, pH 7.5. The eluate and 2 washes were pooled and concentrated to 5.3 mL using an Amicon cell with a YM10 membrane at 4°C.

The sample was loaded on a Pharmacia Superdex 75 column (volume 320mL), preequilibrated with 20mM Na₂HPO₄, 150mM NaCl, pH 7.5. The column was then eluted with the same buffer at a rate of 2.5 mL/min, and 1 mL fractions collected after 30 min of void-volume collection. The Fab fragment eluted as a single molecular species as indicated

by a large A_{280} peak appearing in fractions 26-36, which were pooled and assayed for protein concentration by A_{280} absorption. A total of 25 mg of Fab were generated using this standard protocol (purification yield = 50-60%). SDS-PAGE analysis of the Superdex 75 eluate revealed a single species with an apparent molecular weight of 47,000Da.

IEF analysis of the BC2 Fab sample revealed the presence of multiple isoelectric variants; the two major isoforms have apparent pI values of 8.9 and 7.35. These two species were separated using an ion exchange chromatography step which proved necessary and sufficient for obtaining usable crystals. The 25 mg SEC eluate was buffer exchanged by thorough and repeated dialysis against 20mM Tris, pH 9.2, concentrated to 5 mL in an Amicon cell, and loaded on a 1 mL Pharmacia Mono Q column, pre-equilibrated with buffer A (20mM Tris, pH 9.2). The column was washed with 10 mL buffer A, and no protein eluted in the flow through. Three protein species were eluted with a 0-15% gradient of buffer B (20mM Tris, pH 9.2, 1.0M NaCl) followed by a 15-100% gradient of buffer B, at a rate of 1.0mL/min. 1 mL fractions were collected. Fractions corresponding to the first (sharp) peak in the chromatogram were pooled, assayed for A280 absorption, buffer exchanged in an Amicon cell against 20mM HEPES, pH 7.4, concentrated to 8mg/mL and used for crystallization. Fractions from the other two peaks did not crystallize. The final yield of the protocol was approximately 36% (crystallizable fraction only).

20

5

10

15

25

30

Example 2 Crystallization of Fab Fragments

BC2 Fab: Protein isoform from peak 1 of the ion exchange step was crystallized using the vapor diffusion method in a sitting-drop setup. The well solution contained 14% PEG6K, 20mM ammonium sulfate (or 100mM LiCl), 10mM CaAc₂ and 200mM imidazole/HEPES, pH 7.0. The drops were prepared by mixing 3 μL of the well solution with 3 μL of protein solution (8mg/mL in 20mM HEPES, pH 7.0). Large orthorhombic crystals grew in 5 days at 21 °C to a size of 0.8x0.3x0.25 mm³. The crystals diffracted to 3.0 Å, in space group P21212, unit cell dimensions a=89.3, b=120.6, c=43.4 Å, and one molecule in the asymmetric unit.

SB249417 Fab: A similar sitting drop method was used. The well solution contained 30-40% saturated ammonium sulfate and 50mM MES, pH 6.0. The drops were prepared by mixing equal volumes of well solution and protein solution (10 mg/mL in 10 mM HEPES, pH 7.0). Large crystals grew in one week at 15 °C to a size of 0.6x0.4x0.3

mm³. The crystals diffracted to 2.2 Å, in space group P1, unit cell dimensions a=56.6, b=56.6, c=73.7 Å, α =86.0, β = 86.0, γ = 64.9°, and two molecules in the asymmetric unit.

Example 3

5

10

15

X-Ray Data Collection

X-ray diffraction data were collected on a MAR area detector mounted on a Rigaku high-brilliance source operated at 50 kV/100 mA with monochromatic CuK_a radiation in 1° oscillations frames. Data from three and two different crystals were collected, merged and used for structure determination of the BC2 Fab and SB249417 Fab, respectively. All data were processed using the HKL program, edition 4 (Otwinowski, 1993). Table 1 summarizes the data collection parameters.

For BC2, the merged data were used for structure determination, whereas structure refinement was done against a single-crystal data set with the best R-sym values. For SB249417, merged data were used for structure determination and refinement.

Table 1: Summary of X-ray Diffraction Data.

<u>Parameter</u>	BC2	<u>249417</u>
and a k a (i)	80 60 120 60 43 59	56.6, 56.6, 73.7
cell a,b,c (Å) alpha, beta, gamma	89.60, 120.69, 43.58 90.0, 90.0, 90.0 deg.	86.0, 86.0, 64.9 deg.
Resolution (Å)	3.0	2.2
Number of observed reflections	132,951	145,877
Number of unique reflections	12,211	21,122
mosaicity	0.16	0.22
(Na)	11.5	7.0
Completeness	99.7	99.9
% of data >2 ♂	76.0	71.4
R-sym	0.12	0.07

Example 4

Structure Determination

The structures of the Fabs were determined using generalized molecular replacement methods following the standard protocol of Brünger (1991). The procedure includes a real-space cross-rotation Patterson search (Huber, 1985) followed by Patterson coefficient (PC) refinement (Brünger, 1990), a translation search, and finally rigid-body refinement. The X-PLOR program suite was used (Brünger, 1992) for all four steps.

A search model was constructed for BC2 from the PDB-deposited 1.9Å structures of two Fabs: the light chain model from murine IgG2a Fab that neutralizes human rhinovirus 14 (PDB entry 1FOR), and the heavy chain model from murine idiotype Fab 730.1.4 (PDB entry 1IAI). The two were combined by least-square fitting of the two-chain models. Sequence identity of the resulting probe with BC2 Fab is as follows:

V_L 84%

C_L 100%

V_H 84%

C_H1 95%,

A similar search model was constructed for SB249417 from the PDB-deposited 3.0 Å humanized anti-CD18 antibody Fab fragment (PDB entry 2FGW). Sequence identity of the search model with SB249417 Fab is as follows:

20 V_L 81%
C_L 100%
V_H 59%
C_H1 99%

5

10

15

25

30

In each model, residues different from those in the amino acid sequence of the Fab were mutated to alanine.

In the case of BC2, a cross-rotation search was done with this model which represents the entire asymmetric unit. Eulerian space was searched in the rotation-function's asymmetric unit $(0 \le \theta_1 < 2\pi, 0 \le \theta_2 \le \pi/2, 0 \le \theta_3 < \pi$, where θ_1 , θ_2 , θ_3 are the Eulerian angles as defined by Rossmann & Blow (1962)) with a constant increment of 2.5° in each dimension. Data in the resolution range 15.0-4.0 Å was used in this search. The top 6000 peaks of the rotation function (RF) were used for cluster analysis. The solutions of the rotation function were then subjected to PC refinement followed by rigid-body minimization of the solution with the highest PC value. The latter was done in three steps: 1) treating the entire molecular model as a rigid body, 2) treating the heavy chain and light

chain each as a rigid body and 3) treating the variable (V_H and V_L) and constant (C_H 1 and C_I 1) domains of each chain as a rigid body.

In the case of SB249417, an initial self-rotation search converged to a single solution representing a non-crystallographic two-fold axis defined by spherical angles psi, phi = 147, 0. A cross-rotation search $(0 \le \theta_1 < 2\pi, 0 \le \theta_2 \le \pi, 0 \le \theta_3 < 2\pi)$ was followed by PC refinement, resulting in two solutions, which were related by non-crystallographic symmetry.

5

10

15

20

Using the structure corresponding to the highest RF peak after PC refinement (one peak in the case of BC2 and two peaks related by NCS in the case of SB249417) and 15.0-4.0Å data, a translation search was carried out. For BC2, the search was restricted to half of the unit cell in all three dimensions. For SB249417, NCS was directly applied to the translation function solution to generate the other molecule in the P1 cell. For each Fab, the structure corresponding to the top solution of the translation function was then rigid-body refined as described above.

The rigid-body refined structure was then used to phase the reflections from a single-crystal data set, in the case of BC2, or merged data from multiple crystals in the case of SB249417. F₀-F_c and 2F₀-F_c electron density maps were calculated and inspected. The model was re-built to fit the map in the CDR regions and elsewhere using the true amino acid sequence of the Fab. The structures were refined using the simulated annealing protocols of X-PLOR (Brünger, 1992). Refinement parameters are summarized in Table 2.

Table 2:Structure Refinement Statistics

25

	<u>Parameter</u>	<u>BC2</u>	SB249417
5	Space group	P2 ₁ 2 ₁ 2	P1
	Observations (N)	47,643	145,877
	Unique reflections (N)	11,353	40,746
	R-sym (on I, %)	0.09	0.07
10	Average I/s	8.8	7.1
	Reflections use in refinement (N)	8469	36,628
	Completeness of refinement data	92.2	94.3
	Refinement resolution range (Å)	20.0-3.0	15.0-2.2
	Atoms used in refinement (N)	3157	6481
15	R _{cryst} (%)	22.0	23.0
	R _{free} (%)	29.0	27.9
	R.m.s. deviations from		
	standard values:		
	Bond length (Å)	0.019	0.014
20	Bond angles (deg.)	3.3	1.27
	Mean B-factor (Å ²)	29.0	27.3

Like all Fab fragments, BC2 and SB249417 Fab structures are made up of a tetrahedral array of four globular domains – V_L , V_H , C_L and C_{H1} – which follow the immunoglobulin fold. Each domain is constituted of two broad sheets of antiparallel β -strands held together by hydrophobic interactions. The CDR loops are ordered with varying temperature-factor values. The three-dimensional coordinates of the residues belonging to all six CDRs of BC2 and SB249417 are listed in Tables 3-8 and Tables 9-14, respectively. Figures 1-6 and 7-12 show the corresponding three dimensional structures.

Table 3: Three dimensional coordinates of

	<u></u>	avie	<u> 3; 1</u>	mee un	mensional	Coolan	iates Oi	<u> </u>	
	HC	<u>- C</u>	DR1	(HC: A	SN31 - A	SN35) f	rom BC	<u>2</u>	1
Ì					×	У	z	Q B	- 1
ATOM	2287	N	ASN	31	38.145	52.427 -		1.00 48.47	- 1
MOTA	2289	CA	ASN	31	37.357	53.503 -	-12.856	1.00 48.47	ľ
ATOM	2290	СВ	ASN	31	35.961	53.611 -		1.00 49.47	ı
MOTA	2291	ÇG	ASN	31		52.671 -		1.00 49.47	1
ATOM	2292	OD1	ASN	31		52.260 -		1.00 49.47	
ATOM	2293	ND2	ASN	31		52.330 -		1.00 49.47	
MOTA	2296	С	ASN	31		53.540		1.00 48.47	ì
ATOM	2297	0	ASN	31	36.898	54.595		1.00 49.47	
ATOM	2298	N	TYR	32	37.491			1.00 55.29	
ATOM	2300	CA	TYR	32	37.341	52.392	-9.167	1.00 55.29	ı
MOTA	2301	СB	TYR	32	36.051	51.709	-8.737	1.00 25.46	1
MOTA	2302	CG	TYR	32	34.839	51.959	-9.549	1.00 25.46	
MOTA	2303		TYR	32	34.842	51.790		1.00 25.46	
MOTA	2304		TYR	32	33.672	51.848		1.00 25.46	
MOTA	2305		TYR	32		52.198	-8.911	1.00 25.46	
MOTA	2306		TYR	32	32.466	52.244	-9.600	1.00 25.46	
MOTA	2307	CZ	TYR	32	32.475	52.071		1.00 25.46	
MOTA	2308	OH	TYR	32	31.269			1.00 25.46	
MOTA	2310	С	TYR	32	38.442	51.679	-8.402	1.00 55.29	
ATOM	2311	0	TYR	32	38.845	50.570	-8.772	1.00 25.46	
ATOM	2312	N	GLY	33	38.774	52.229	-7.237	1.00 17.19	
ATOM	2314	CA	GLY	33	39.817	51.656	-6.405	1.00 17.19	
MOTA	2315	С	GLY	33	39.406	50.378	-5.697	1.00 17.19	
ATOM	2316	0	GLY	33	38.237		-5.296	1.00 65.52	
ATOM	2317	N	MET	34	40.382	49.487	-5.526	1.00 36.25	
MOTA	2319	CA	MET	34	40.143	48.215	-4.854	1.00 36.25	
ATOM	2320	CB	MET	34	40.888	47.087	-5.555	1.00 15.05	
ATOM	2321	CG	MET	34	40.667	45.723	-4.926	1.00 15.05	
MOTA	2322	SD	MET	34	38.944		-4.815	1.00 15.05	
ATOM	2323	CE	MET	34	38.703	44.674	-6.413	1.00 15.05	
MOTA	2324	Ç	MET	34	40.635	48.287	-3.430	1.00 36.25	
ATOM	2325	0	MET	34	41.514	49.072	-3.107	1.00 15.05	
ATOM	2326	N	ASN	35	40.072	47.454	-2.570	1.00 16.44	
MOTA	2328	CA	ASN	35	40.513	47.391	-1.182	1.00 16.44	
MOTA	2329	CB	ASN	35	39.359		-0.196	1.00 23.13	
MOTA	2330	CG	ASN	35	38.947	49.118	-0.149	1.00 23.13	
ATOM	2331		ASN	35	38.491	49.623	0.888	1.00 23.13	
MOTA	2332		2 ASN	35	39.065	49.793	-1.275	1.00 23.13	
MOTA	2335	c	ASN	35	41.038	45.954	-0.980 -1.920	1.00 16.44 1.00 23.13	
ATOM	2336	. 0	ASN	35	41.058	45.182	-1.920	1.00 23.13	

Table 4: Three dimensional coordinates of

		T:	<u>able</u>	4: T	<u>hree di</u> i	<u>mensional</u>	coordi	nates of	
1		<u>HC</u>	<u>- C</u>	DR2	(HC: T	RP50 - G			
l	ATOM	2474	N	TRP	50	x 45.028	y 49.852	-0.044	Q B 1.00 2.00
ı	MOTA	2476	CA	TRP	50	44.159	50.501	-1.002	1.00 2.00
Ī	ATOM ATOM	2477 2478	CB	TRP	50 50	44.044 42.874	51.944 52.695	-0.556 -1.042	1.00 57.49 1.00 57.49
l	MOTA	2479	CD2	TRP	50	42.803	53.588	-2.163	1.00 57.49
1	MOTA MOTA	2480 2481	CE2	TRP TRP	50 50	41.556 43.669	54.226 53.919	-2.120 -3.196	1.00 57.49 1.00 57.49
L	MOTA	2482	CD1		50	41.703	52.803	-0.412	1.00 57.49
l	MOTA	2483	NE1		50	40.904	53.723 55.182	-1.037 -3.058	1.00 57.49 1.00 57.49
ı	ATOM ATOM	2485 2486	CZ2	TRP TRP	50 50	41.155 43.267	54.872	-4.132	1.00 57.49
1	ATOM	2487	CH2	TRP	50	42.033	55.486	-4.056	1.00 57.49 1.00 2.00
ļ	MOTA MOTA	· 2488 2489	C O	TRP TRP	50 50	44.923 46.141	50.556 50.436	-2.296 -2.292	1.00 2.00
1	ATOM	2490	N	ILE	51	44.239	50.756	-3.407	1.00 2.58
ł	MOTA MOTA	2492 2493	CA CB	ILE ILE	51 51	44.957 45.528	50.921 49.623	-4.652 -5.217	1.00 2.58 1.00 4.23
1	ATOM	2494	CG2	ILE	51	44.516	48.983	-6.161	1.00 4.23
1	ATOM ATOM	2495 2496		ILE ILE	51 51	46.800 47.581	49.968 48.788	-5.991 -6.481	1.00 4.23 1.00 4.23
	ATOM	2497	CDI	ILE	51	44.113	51.616	-5.693	1.00 2.58
1	ATOM	2498	0	ILE	51	42.925	51.332 52.546	-5.854 -6.398	1.00 4.23 1.00 33.49
	ATOM ATOM	2499 2501	N CA	asn asn	52 52	44.738 44.042	53.268	-7.441	1.00 33.49
ľ	MOTA	2502	CB	ASN	52	44.451	54.725	-7.525	1.00 15.27
1	ATOM ATOM	2503 2504	CG OD1	asn Asn	52 52	43.618 43.668	55.455 55.173	-8.514 -9.715	1.00 15.27 1.00 15.27
ı	ATOM	2505	ND2	ASN	52	42.740	56.301	-8.015	1.00 15.27
	ATOM ATOM	2508 2509	C	asn asn	52 52	44.369 45.373	52.571 52.841	-8.732 -9.404	1.00 33.49 1.00 15.27
1	MOTA	2510	N	THR	53	43.386	51.808	-9.129	1.00 16.45
-	MOTA	2512	CA	THR	53	43.414		-10.257	1.00 16.45
ł	MOTA MOTA	2513 2514	CB OG1	THR	53 53	42.142 41.089		-10.205 -10.536	1.00 42.20 1.00 42.20
ı	ATOM	2516	CG2	THR	53	41.936	49.718	-B.773	1.00 42.20
1	MOTA MOTA	2517 2518	0	THR THR	53 53	43.536 42.981		-11.656 -12.616	1.00 16.45 1.00 42.20
1	MOTA	2519	N	ARG	54	44.229	52.583	-11.795	1.00 50.54
ı	ATOM	2521	CA	ARG	54	44.366 43.377	53.184 54.373	-13.107 -13.131	1.00 50.54 1.00 42.70
1	MOTA MOTA	2522 2523	CB	ARG ARG	54 54	43.078	54.966	-14.495	1.00 42.70
1	MOTA	2524	CD	ARG	54	43.317	56.486	-14.569	1.00 42.70
ı	MOTA MOTA	2525 2527	NE CZ	ARG ARG	54 54	42.980 43.854	56.929 57.134	-15.921 -16.902	1.00 42.70 1.00 42.70
1	ATOM	2528	NHI	ARG	54	45.163	56.985	-16.697	1.00 42.70
1	MOTA MOTA	2531 2534	NH2 C	ARG ARG	54 54	43.407 45.798	57.341 53.722	-18.139 -13.122	1.00 42.70 1.00 50.54
١	ATOM	2535	ŏ	ARG	54	46.453	53.897	-14.161	1.00 42.70
1	ATOM	2536	N	ASN	55	46.349	53.636 54.260	-11.933 -11.622	1.00 22.51 1.00 22.51
1	MOTA MOTA	2538 2539	CA CB	asn Asn	55 55	47.588 47.182	55.219	-10.536	1.00 62.29
-	MOTA	2540	CG	ASN	55	48.043	56.422	-10.448	1.00 62.29
ı	ATOM ATOM	2541 2542	OD:	L ASN 2 ASN	55 55	48.996 47.679	56.618 57.279	-11.205 -9.517	1.00 62.29 1.00 62.29
- {	ATOM	2545	c	ASN	55	48.594	53.325	-11.040	1.00 22.51
-1	ATOM ATOM	2546 2547	о И	ASN GLY	55 56	49.771 48.129	53.374 52.529	-11.369 -10.088	1.00 62.29 1.00 49.54
-	MOTA	2549	CA	GLY	56	49.031	51.639	-9.397	1.00 49.54
ı	MOTA	2550	C.	GLY	56	49.476	52.347 51.719	-8.124 -7.214	1.00 49.54 1.00 47.80
-1	MOTA ATOM	2551 2552	O.	GLY LYS	56 57	50.042 49.244	53.661	-8.044	1.00 54.37
	ATOM	2554	CA	LYS	57	49.608	54.400	-6.833	1.00 54.37
- 1	MOTA MOTA	2555 2556	CB CG	LYS LYS	57 57	49.354 50.526	55.911 56.635	-6.963 -7.654	1.00 38.06 1.00 38.06
ı	ATOM	2557	CD	LYS	57	50.180	58.024	-8.266	1.00 38.06
ı	MOTA MOTA	2558 2559		LYS LYS	57 57	50.217 51.151	59.176 60.258	-7.281 -7.772	1.00 38.06 1.00 38.06
j	ATOM	2563		LYS	57	48.819	53.662	-5.761	1.00 54.37
	MOTA	2564	0	LYS	57	47.726	53.131	-6.030	
j	MOTA MOTA	2565 2567		SER SER	58 58	49.419 48.887	53.582 52.742	-4.581 -3.525	1.00 54.98 1.00 54.98
1	MOTA	2568	CB	SER	58	49.664	51.452	-3.702	1.00 58.93
ļ	ATOM ATOM	2569 2571		SER SER	58 58	51.012 49.025		-4.083 -2.050	
	ATOM	2572	0	SER	58	50.106	53.608	-1.630	1.00 58.93
- 1	ATOM	2573	N	THR		47.982			
Į	MOTA MOTA	2575 2576				47.991 ·46.808			

PCT/US98/13806

Г					Con	t./ Table	1		
	ATOM	2577	OG1	THR	59	x 46.669	- у 55.185	z -0.672	Q B 1.00 50.04
	ATOM	2579		THR THR	59 59	47.012	55.055	1.720	1.00 50.04
1	MOTA	2580	С	THR	59	47.812	52.183	1.085	1.00 34.76
ł	ATOM	2581		THR	59	46.880	51.425	0.888 2.111	1.00 50.04 1.00 21.76
ı	ATOM ATOM	2582 2584		TYR TYR	60 60	48.648 48.543	52.037 50.877	3.040	1.00 21.76
ı	ATOM	2585		TYR	60	49.768	49.964	2.990	1.00 21.25
L	MOTA	2586		TYR	60	50.373	49.642	1.661	1.00 21.25
1	ATOM	2587		TYR	60	49.743	49.934 49.623	0.468 -0.751	1.00 21.25 1.00 21.25
Į.	ATOM ATOM	2588 2589		TYR TYR	60 60	50.336 51.614	49.022	1.600	1.00 21.25
ı	ATOM	2590		TYR	60	52.191	48.699	0.407	1.00 21.25
l	MOTA	2591	CZ	TYR	60	51.557	49.000	-0.763	1.00 21.25
1	ATOM	2592	OH	TYR	60	52.147 48.452	48.629 51.284	-1.923 4.495	1.00 21.25 1.00 21.76
1	MOTA MOTA	2594 2595	C	TYR TYR	60 60	49.056	52.274	4.882	1.00 21.75
-	MOTA	2596	N	VAL	61	47.793	50.459	5.307	1.00 2.00
ł	ATOM	2598	CA	VAL	61	47.636	50.717	6.748	1.00 2.00
1	ATOM	2599	CB CG1	VAL	61 61	46.724 47.388	49.642 49.056	7.436 8.727	1.00 36.32 1.00 36.32
1	ATOM ATOM	2600 2601		VAL	61	45.318	50.258	7.783	1.00 36.32
1	ATOM	2602	c	VAL	61	48.997	50.684	7.395	1.00 2.00
1	ATOM	2603	0	VAL	61	49.909	50.132	6.812	1.00 36.32
1	MOTA	2604	N CA	ASP ASP	62 62	49.126 50.439	51.225 51.226	8.610 9.291	1.00 69.13 1.00 69.13
1	MOTA ATOM	2606 2607	CB	ASP	62	50.439	52.071	10.580	1.00 34.42
ı	ATOM	2608	cG	ASP	62	50.989	53.499	10.376	1.00 34.42
1	ATOM	2609		ASP	62	51.241	54.198	11.375	1.00 34.42
I	MOTA	2610		ASP	62 62	51.149 51.020	53.950 49.843	9.218 9.620	1.00 34.42 1.00 69.13
1	MOTA MOTA	2611 2612	C	ASP ASP	62	52.212	49.614	9.403	1.00 34.42
ı	ATOM	2613	N	ASP	63	50.219	48.932	10.176	1.00 37.05
1	ATOM	2615	CA	ASP	63	50.841	47.653	10.476	1.00 37.05
1	MOTA MOTA	2616 2617	CB CG	ASP ASP	63 63	50.404 49.130	47.047 47.638	11.818 12.344	1.00 31.00 1.00 31.00
1	ATOM	2618		ASP	63	49.206	48.353	13.380	1.00 31.00
1	MOTA	2619		ASP	63	48.083	47.396	11.705	1.00 31.00
ı	ATOM	2620	ç	ASP	63	50.729	46.662	9.365	1.00 37.05 1.00 31.00
1	ATOM ATOM	2621 2622	O N	ASP PHE	63 64	50.195 51.151	45.574 47.070	9.558 8.179	1.00 9.67
ł	ATOM	2624	CA	PHE	64	51.163	46.178	7.041	1.00 9.67
1	ATOM	2625	CB	PHE	64	49.824	46.205	6.333	1.00 25.09
1	ATOM	2626	CG	PHE	64	48.767	45.403 45.998	7.020 7.930	1.00 25.09 1.00 25.09
-	MOTA MOTA	2627 2628		PHE	64 64	47.897 48.641	44.050	6.761	1.00 25.09
-1	ATOM	2629		PHE	64	46.931	45.264	8.573	1.00 25.09
-1	MOTA	2630		PHE	64	47.666	43.294	7.403	1.00 25.09
١	MOTA	2631	cz	PHE	64	46.805	43.902 46.600	8.312 6.112	1.00 25.09 1.00 9.67
	MOTA MOTA	2632 2633	C	PHE	64 64	52.293 52.075	46.831	4.923	1.00 25.09
1	MOTA	2634	Ň	LYS	65	53.521	46.632	6.649	1.00 35.36
ļ	MOTA	2636	CA	LYS	65	54.705	47.077	5.895	1.00 35.36
1	MOTA	2637	CB	LYS	65 65	55.323 54.338	48.312 49.329	6.556 7.073	1.00 32.71 1.00 32.71
- 1	ATOM ATOM	2638 2639	CG	LYS	65	53.444	49.329	5.960	1.00 32.71
1	MOTA	2640	CE	LYS	65	54.174	50.709	5.006	1.00 32.71
J	ATOM	2641	NZ	LYS	65	53.726	52.139	5.153	1.00 32.71
1	MOTA	2645	C	LYS	65 65	55.847	46.104 45.574	5.692 6.651	1.00 35.36 1.00 32.71
ı	ATOM ATOM	2646 2647	о И	LYS GLY	65 66	56.414 56.262	45.981	4.431	1.00 89.30
Į	ATOM	2649	CA	GLY	66	57.401	45.142	4.072	1.00 89.30
1	MOTA	2650	C	GLY	66	57.055	44.153	2.973	1.00 89.30
- 1	ATOM	2651	_ 0	GLY	66	57.389	44.293	1.781	1.00 46.24

WO 99/01476

	T	able	5: Th	ree di	mensional	coordin	nates of	
	HC	- CD	R3 (1	HC: G	LU99 - TY	R110)		
MOTA	2965	N (GLU	99	x 35.523	y 49.858	-3.257	Q B 1.00 25.76
MOTA	2967	CA (GLU	99	34.886	51.032		1.00 25.76
MOTA	2968		GLU	99 99	35.928 35.878	51.777 53.373	-1.791 -1.706	1.00 63.63 1.00 63.63
MOTA MOTA	2969 2970		glu Glu	99	37.307	54.052	-1.532	1.00 63.63
ATOM	2971	OE1	GLU	99	38.278	53.384	-1.090	1.00 63.63
MOTA	2972		GLU	99	37.460	55.269	-1.828 -3.943	1.00 63.63 1.00 25.76
ATOM ATOM	2973 2974		GLU GLU	99 99	34.507 35.321	51.829 51.930	-4.866	1.00 23.78
ATOM	2975		GLY	100	33.234	52.203	-4.085	1.00 36.41
ATOM	2977	CA	GLY	100	32.814	52.965	-5.257	1.00 36.41
ATOM	2978		GLY	100	31.914	54.127 53.923	-4.831 -3.995	1.00 36.41 1.00 41.46
MOTA MOTA	2979 2980		GLY ASN	100 101	31.060 31.966	55.277	-5.502	1.00 33.66
MOTA	2982		ASN	101	31.196	56.434	-5.060	1.00 33.66
MOTA	2983		ASN	101	31.810	57.744	-5.534	1.00 24.12
MOTA	2984 2985	CG OD1	ASN	101 101	32.059 31.122	58.676 59.065	-4.388 -3.700	1.00 24.12 1.00 24.12
MOTA	2986	ND2		101	33.320	58.941	-4.099	1.00 24.12
MOTA	2989	С	ASN	101	29.689	56.506	-5.183	1.00 33.66
MOTA	2990	0	ASN	101	29.117 29.083	56.182 57.024	-6.233 -4.102	1.00 24.12 1.00 83.69
ATOM ATOM	2991 2993	N CA	MET MET	102 102	27.625	57.284	-3.908	1.00 83.69
ATOM	2994	CB	MET	102	26.730	56.030	-4.143	1.00 59.11
MOTA	2995	CG	MET	102	25.270	56.204	-3.635	1.00 59.11 1.00 59.11
ATOM	2996 2997	SD CE	MET MET	102 102	23.981 22.477	55.029 56.146	-4.261 -4.344	1.00 59.11
MOTA	2998	c	MET	102	27.430	57.829	-2.459	1.00 83.69
MOTA	2999	0	MET	102	27.367	57.011	-1.513	1.00 59.11
MOTA	3000	N	ASP	103	27.313 27.125	59.177 59.990	-2.335 -1.086	1.00 81.57 1.00 81.57
MOTA MOTA	3002 3003	CA CB	ASP ASP	103 103	26.625	59.139	0.117	1.00 22.70
ATOM	3004	CG	ASP	103	26.176	59.987	1.343	1.00 22.70
MOTA	3005		ASP	103	26.907	60.892	1.813	1.00 22.70
ATOM ATOM	3006 3007		ASP ASP	103 103	25.106 28.446	59.666 60.681	1.902 -0.759	1.00 22.70 1.00 81.57
ATOM	3007	С 0	ASP	103	28.961	60.589	0.366	1.00 22.70
MOTA	3009	N	GLY	104	28.984	61.379	-1.761	1.00 86.53
ATOM	3011	CA	GLY	104	30.272	62.065 61.122	-1.608 -1.460	1.00 86.53 1.00 86.53
ATOM ATOM	3012 3013	C O	GLY GLY	104 104	31.473 32.234	60.889	-2.412	1.00 46.20
ATOM		Ň	TYR	105	31.716	60.669	-0.228	1.00 98.58
ATOM		CA	TYR	105	32.808	59.688	0.036	1.00 98.58
MOTA		CB	TYR	105	33.017 33.326	59.412 60.523	1.557 2.585	1.00 64.10 1.00 64.10
MOTA MOTA		CG CD1	TYR TYR	105 105	34.643	60.884	2.881	1.00 64.10
ATOM			TYR	105	34.952	61.681	3.977	1.00 64.10
ATOM			TYR	105	32.318	61.015 61.810	3.435 4.531	1.00 64.10 1.00 64.10
MOTA MOTA		CE2	TYR	105 105	32.620 33.936	62.128	4.802	1.00 64.10
ATOM		ОН	TYR	105	34.269	62.843	5.920	1.00 64.10
ATOM			TYR	105	32.256	58.342	-0.529	1.00 98.58 1.00 64.10
ATOM ATOM			TYR PHE	105 106	31.153 32.944	58.311 57.243	-1.096 -0.170	1.00 64.10
ATOM			PHE	106	32.570	55.829	-0.484	1.00 48.28
ATOM	3031	CB	PHE	106	32.058	55.183	0.800	1.00 53.07
ATOM			PHE PHE	106 106	30.689 30.486	55.652 56.963	1.196 1.576	1.00 53.07 1.00 53.07
ATOM			PHE	106	29.597	54.794	1.117	1.00 53.07
MOTA	1 3035	CEI	PHE	106	29.255	57.405	1.875	1.00 53.07
ATOM			PHE	106	28.347	55.232	1.414	1.00 53.07
ATON ATON			PHE	106 106	28.161 31.498	56.548 55.596	1.791 -1.605	1.00 53.07 1.00 48.28
ATON			PHE	106	31.316	56.481	-2.420	1.00 53.07
ATON	3040	N	PRO	107	30.807	54.401	-1.651	1.00 76.34
ATO			PRO	107	29.472	54.859 53.080	-2.148 -0.965	1.00 42.84
ATON			PRO PRO	107 107	30.633 29.321	52.561	-1.567	1.00 42.84
ATO	4 3044	CG.	PRO	107	28.479	53.811	-1.600	1.00 42.84
ATO			PRO	107	31.730	51.933	-0.822	1.00 76.34

				Cor	ıt./ Table	<u>5</u>		
					×	_ у	Z	Q B
ATOM	3046	0	PRO	107	32.951	52.163	-0.993	1.00 42.84
ATOM	3047	N	PHE	108	31.227	50.700	-0.638	1.00 52.21
ATOM	3049	CA	PHE	108	31.951	49.437	-0.323	1.00 52.21
ATOM	3050	CB	PHE	108	31.919	49.332	1.174	1.00 28.72
ATOM	3051	CG	PHE	108	30.743	50.065	1.736	1.00 28.72
ATOM	3052	CD1	PHE	108	30.900	51.325	2.267	1.00 28.72
ATOM	3053	CD2	PHE	108	29.464	49.611	1.445	1.00 28.72
ATOM	3054	CE1	PHE	108	29.788	52.112	2.467	1.00 28.72
ATOM	3055	CE2	PHE	108	28.351	50.384	1.636	1.00 28.72
ATOM	3056	CZ	PHE	108	28.508	51.635	2.135	1.00 28.72
ATOM	3057	С	PHE	108	30.973	48.375	-0.826	1.00 52.21
ATOM	3058	ō	PHE	108	30.487	47.516	-0.077	1.00 28.72
ATOM	3059	N	THR	109	30.699	48.439	-2.115	1.00 26.26
MOTA	3061	CA	THR	109	29.735	47.613	-2.797	1.00 26.26
ATOM	3062	CB	THR	109	29.620	48.129	-4.186	1.00 36.21
MOTA	3063	OG1	THR	109	30.948	48.431	-4.661	1.00 36.21
ATOM	3065	CG2		109	28.723	49.376	-4.229	1.00 36.21
ATOM	3066	C	THR	109	29.831	46.122	-2.998	1.00 26.26
ATOM	3067	ŏ	THR	109	28.942	45.377	-2.617	1.00 36.21
ATOM	3068	N	TYR	110	30.817	45.735	-3.796	1.00 20.44
ATOM	3070	CA	TYR	110	31.000	44.328	-4.171	1.00 20.44
ATOM	3071	CB	TYR	110	30.912	44.207	-5.686	1.00 60.15
ATOM	3072	CG	TYR	110	29.897	45.158	-6.284	1.00 60.15
MOTA	3073	CD1		110	28.578	45.154	-5.841	1.00 60.15
ATOM	3074	CE1		110	27.628	45.978	-6.424	1.00 60.15
ATOM	3075	CD2		110	30.246	46.025	-7.321	1.00 60.15
ATOM	3076	CE2		110	29.315	46.848	-7.903	1.00 60.15
ATOM	3077	CZ	TYR	110	27.998	46.822	-7.470	1.00 60.15
ATOM	3078	OH	TYR	110	27.074	47.577	-8.158	1.00 60.15
MOTA	3080	c	TYR	110	32.284	43.665	-3.691	1.00 20.44
ATOM	3081	ŏ	TYR	110	33.283	43.680	-4.404	1.00 60.15

٢		T	able	6: T	hree di	mensiona	coordi	nates of		1
						RG24 - H				l
ı						×	У	Z	Q B	ł
1	ATOM	199	N	ARG	24	31.034	53.669	19.975	1.00 35.70	١
ı	ATOM	201	CA	ARG	24	31.810	54.840	20.383	1.00 35.70	1
ı	ATOM	202	CB	ARG	24	32.226	54.801	21.876	1.00 43.83	1
ı	ATOM	203	CG	ARG	24	31.253	54.267	22.939	1.00 43.83	1
1	MOTA	204	CD	ARG	24	31.676	54.727	24.383	1.00 43.83	1
1	ATOM	205	NE	ARG	24	33.056	54.377	24.755	1.00 43.83	1
1	ATOM	207	CZ	ARG	24	33.426	53.850	25.931	1.00 43.83	1
1	MOTA	208	NHl	ARG	24	32.531	53.605	26.891	1.00 43.83	1
ı	MOTA	211	NH2	ARG	24	34.697	53.526	26.132	1.00 43.83	1
ı	ATOM	214	Ç	ARG	24	33.123	54.991	19.621	1.00 35.70	ı
1	MOTA	215	0	ARG	24	33.959	54.092	19.630	1.00 43.83	1
1	MOTA	216	N	ALA	25	33.326	56.123	18.974	1.00 82.87	1
1	ATOM	218	CA	ALA	25	34.622	56.346	18.320	1.00 82.87	ı
н	ATOM	219	CB	ALA	25	34.436	57.225	17.056	1.00 87.02	ı
1	ATOM	220	С	ALA	25	35.461	57.105	19.369	1.00 82.87	ı
ı	MOTA	221	0	ALA	25	34.882	57.853	20.152	1.00 87.02	1
1	ATOM	222	N	SER	26	36.786	56.920	19.422	1.00 44.67	
ı	ATOM	224	CA	SER	26	37.565	57.688	20.410	1.00 44.67	
1	MOTA	225	СВ	SER	26	39.000	57.177	20.557	1.00 4.82	
1	MOTA	226	OG	SER	26	39.698	57.261	19.336	1.00 4.82	
ı	ATOM	228	С	SER	26	37.582	59.186	20.040	1.00 44.67	
1	ATOM	229	0	SER	26	37.708	60.047	20.912	1.00 4.82	-
1	ATOM	230	N	SER	27	37.430	59.501	18.755	1.00 27.16	
1	ATOM	232	CA	SER	27	37.462	60.916	18.351	1.00 27.16	į
-1	ATOM	233	СВ	SER	. 27	38.837	61.282	17.765	1.00 37.32	
1	ATOM	234	OG	SER	27	39.886	61.091	18.724	1.00 37.32	
1	ATOM	236	С	SER	27	36.374	61.225	17.362	1.00 27.16	
ı	MOTA	237	0	SER	27	35.718	60.310	16.860	1.00 37.32	
ı	MOTA	238	N	SER	28	36.185	62.501	17.060	1.00 32.79	
1	MOTA	240	CA	SER	28	35.117	62.876	16.134	1.00 32.79	
- 1	MOTA	241	CB	SER	28	34.817	64.378	16.238	1.00 44.89	
1	ATOM	242	OG	SER	28	34.248	64.686	17.509	1.00 44.89	
1	MOTA	244	C	SER	28	35.316	62.487	14.671	1.00 32.79	
ı	ATOM	245	0	SER	28	36.334	62.847	14.060	1.00 44.89	

PCT/US98/13806

_									
					Con	t./ Table	<u>6</u>		
						×	У	, z	Q B
ı	ATOM	246		VAL	29	34.333	61.749	14.132	1.00 25.47
ı	MOTA	248		VAL	29	34.322	61.309	12.731	1.00 25.47
ı	MOTA	249		VAL	29	34.592	59.832	12.597 13.249	1.00 6.08
1	MOTA	250	CG1		29	33.479	59.053	11.152	1.00 6.08 1.00 6.08
L	ATOM	251	CG2		29	34.735	59.486	12.049	1.00 25.47
1	MOTA	252		VAL	29	32.990	61.664 61.820	12.715	1.00 6.08
ı	ATOM	253		VAL	29	31.974 32.994	61.694	10.711	1.00 14.73
ı	ATOM	254		ASN	30	32.994	62.139	9.908	1.00 14.73
١	MOTA	256 257		asn Asn	30 30	32.372	62.765	8.606	1.00 54.87
ı	ATOM				30 30	33.253	64.006	8.853	1.00 54.87
Ł	ATOM	258 259	CG OD1	ASN	30	33.627	64.730	7.915	1.00 54.87
ı	MOTA	259	ND2		30	33.581	64.265	10.123	1.00 54.87
ı	ATOM ATOM	263		asn	30	30.530	61.380	9.587	1.00 14.73
ı	ATOM	264	0	ASN	30	29.515	62.046	9.304	1.00 54.87
ı	MOTA	265	N	TYR	31	30.508	60.040	9.619	1.00 32.69
ı	ATOM	267	CA	TYR	31	29.296	59.231	9.272	1.00 32.69
1	ATOM	268	CB	TYR	31	28.842	59.474	7.827	1.00 35.47
ł	ATOM	269	CG	TYR	31	29.807	58.968	6.782	1.00 35.47
ı	ATOM	270	CD1		31	29.369	58.639	5.509	1.00 35.47
ł	ATOM	271	CEL	TYR	31	30.253	58.276	4.526	1.00 35.47
1	MOTA	272	CD2	TYR	31	31.180	58.883	7.021	1.00 35.47
ı	ATOM	273	CE2	TYR	31	32.065	58.497	6.034	1.00 35.47
1	ATOM	274	cz	TYR	31	31.597	58.200	4.776	1.00 35.47
ı	ATOM	275	ОН	TYR	31	32.441	57.819	3.774	1.00 35.47
ı	ATOM	277	c	TYR	31	29.598	57.764	9.380	1.00 32.69
ı	ATOM	278	ō	TYR	31	30.758	57.393	9.362	1.00 35.47
ł	ATOM	279	N	MET	32	28.582	56.902	9.311	1.00 32.43
ı	ATOM	281	CA	MET	32	28.871	55.457	9.421	1.00 32.43
ı	ATOM	282	CB	MET	32	28.762	54.944	10.841	1.00 25.19
ı	ATOM	283	CG	MET	32	30.091	54.566	11.416	1.00 25.19
1	MOTA	284	SD	MET	32	29.802	53.661	12.911	1.00 25.19
١	MOTA	285	CE	MET	32	30.987	54.323	14.048	1.00 25.19
1	MOTA	286	С	MET	32	28.286	54.415	8.494	1.00 32.43
1	MOTA	287	0	MET	32	27.156	54.486	8.031	1.00 25.19
1	ATOM	288	N	HIS	33	29.094	53.397	8.266	1.00 41.58
1	MOTA	290	CA	HIS	33	28.729	52.285	7.411	1.00 41.58
1	ATOM	291	СВ	HIS	33	29.763	52.135	6.303	1.00 27.09
	ATOM	292	CG	HIS	33	29.889	53.329	5.438	1.00 27.09
١	MOTA	293		HIS	33	28.963	54.054	4.784	1.00 27.09
1	ATOM	294		HIS	33	31.084	53.947	5.213	1.00 27.09
1	ATOM	296		HIS	33	30.912	55.005	4.445	1.00 27.09
1	MOTA	297		HIS	33	29.619	55.085	4.178	1.00 27.09
-	MOTA	299	c	HIS	33	28.741	51.040	8.265	1.00 41.58 1.00 27.09
	MOTA	300	0	HIS	33	29.751	50.763	8.934	1.00 27.09

Г		T	able	7· T	hree di	mensional	coordi	nates of	
						149 - SER			
l		-	<u> </u>	<u> </u>	CE (INE)				ОВ
1						X	у	Z	~ -
ı	ATOM	462	N	ALA	49	26.073	55.473	5.034	1.00 33.29
ı	MOTA	464	CA	ALA	49	25.852	56.839	5.537	1.00 33.29
ı	MOTA	465	CB	ALA	49	25.280	57.702	4.416	1.00 20.38
1	MOTA	466	С	ALA	49	24.957	56.935	6.776	1.00 33.29
1	MOTA	467	0	ALA	49	23.917	57.578	6.722	1.00 20.38
L	MOTA	.468	N	THR	50	25.356	56.269	7.854 9.128	1.00 27.27
1	MOTA	470	CA	THR	50	24.647	56.254	9.128	1.00 27.27
ı	ATOM	471	CB	THR	50	24.727	57.596		1.00 38.91
1	MOTA	472		THR	50	26.101	57.970 57.496	9.914 11.237	1.00 38.91
1	ATOM	474	CG2		50	24.118	55.813	9.182	1.00 38.91
1	MOTA	475	c	THR	50	23.205	54.921	9.182	1.00 27.27
1	MOTA	476	0	THR	50	22.882		8.481	1.00 17.32
1	ATOM	477	N	SER	51 51	22.320 20.912	56.513 56.148	8.500	1.00 17.32
l	ATOM	479	CA	SER			57.295	9.084	1.00 61.11
1	ATOM	480	CB	SER	51	20.080 20.699	57.780	10.281	1.00 61.11
1	ATOM	481	OG	SER	51 51	20.422	55.717	7.121	1.00 17.32
1	ATOM	483	C	SER	51 51	19.258	55.405	6.945	1.00 61.11
ı	ATOM	484 485	O N	SER	52	21.304	55.713	6.139	1.00 28.10
ı	ATOM ATOM	483	CA	ASN	52	20.921	55.255	4.809	1.00 28.10
ı	ATOM	488	CB	ASN	52	21.851	55.873	3.788	1.00 33.84
ł	ATOM	489	CG	ASN	52	21.631	57.348	3.607	1.00 33.84
ı	ATOM	490		ASN	52	20.881	58.004	4.349	1.00 33.84
1	ATOM	491		ASN	52	22.323	57.893	2.620	1.00 33.84
1	ATOM	494	C	ASN	52	20.954	53.713	4.650	1.00 28.10
ı	ATOM	495	ŏ	ASN	52	22.032	53.113	4.686	1.00 33.84
ı	ATOM	496	N	LEU	53	19.797	53.084	4.392	1.00 46.86
1	ATOM	498	CA	LEU	53	19.714	51.607	4.228	1.00 46.86
1	ATOM	499	CB	LEU	53	18.296	51.079	4.477	1.00 14.22
1	ATOM	500	CG	LEU	53	17.803	51.184	5.911	1.00 14.22
ı	ATOM	501		LEU	53	16.468	50.481	6.075	1.00 14.22
1	ATOM	502		LEU	53	18.826	50.577	6.823	1.00 14.22
1	ATOM	503	č	LEU	. 3	20.224	51.072	2.880	1.00 46.86
Н	ATOM	504	Ō	LEU	53	20.184	51.769	1.857	1.00 14.22
-1	ATOM	505	N	ALA	54	20.731	49.838	2.911	1.00 41.00
	ATOM	507	CA	ALA	54	21.272	49.153	1.737	1.00 41.00
1	ATOM	508	CB	ALA	54	22.309	48.157	2.174	1.00 26.54
1	ATOM	509	С	ALA	54	20.166	48.465	0.946	1.00 41.00
1	ATOM	510	0	ALA	54	19.073	48.220	1.460	1.00 26.54
- 1	ATOM	511	N	SER	55	20.480	48.052	-0.272	1.00 19.96
- 1	ATOM	513	CA	SER	55	19.452	47.470	-1.097	1.00 19.96
ļ	MOTA	514	СВ	SER	55	19.787	47.612	-2.576	1.00 64.54
ı	ATOM	515	OG	SER	55	18.587	47.553	-3.340	1.00 64.54
1	ATOM	517	С	SER	55	19.037	46.060	-0.792	1.00 19.96
- 1	MOTA	518	_ 0	SER	55	19.652	45.088	-1.257	1.00 64.54

Table 8: 7	Three d	imens	ional	coordin	ates of LC-	CDR3(C	LN88-	THR96) from
					BC2			
					x	y	z	Q B
MOTA	803		LN	88	31.968	50.434	10.331	1.00 11.01
MOTA	805		LN	88	33.222	50.903 50.334	9.776 8.398	1.00 11.01 1.00 23.74
ATOM ATOM	806 807		LN	88 88	33.420 34.485	50.965	7.564	1.00 23.74
ATOM	808		LN	88	33.951	51.156	6.176	1.00 23.74
MOTA	809	OE1 G		88	32.768	51.520	6.006 5.164	1.00 23.74 1.00 23.74
ATOM	810 813		LN LN	88 88	34.780 33.131	50.887 52.420	9.743	1.00 23.74 1.00 11.01
MOTA	814		LN	88	32.034	52.987	9.802	1.00 23.74
ATOM	815	N G	LN	89	34.289	53.063	9.641	1.00 22.56
MOTA	817		LN	89	34.453	54.515 54.806	9.651 10.813	1.00 22.56 1.00 21.80
MOTA MOTA	818 819		iln Iln	89 89	35.447 36.354	56.035	10.763	1.00 21.80
ATOM	820		LN	89	37.702	55.805	10.084	1.00 21.80
ATOM	821		LN	89	37.886	56.146	8.907	1.00 21.80 1.00 21.80
ATOM	822 825		GLN GLN	89 89	38.650 34.989	55.247 54.900	10.817 8.266	1.00 22.56
ATOM ATOM	826		SLN	89	35.529	54.045	7.606	1.00 21.80
ATOM	827	N 7	rrp	90	34.781	56.120	7.772	1.00 27.74
MOTA	829		rrp Trp	90 90	35.345 34.369	56.493 56.131	6.449 5.308	1.00 27.74 1.00 90.21
ATOM ATOM	830 831		rrp rrp	90	34.940	55.660	3.942	1.00 90.21
ATOM	832		TRP	90	35.677	56.438	3.003	1.00 90.21
ATOM	833		TRP	90	35.840 36.214	55.671 57.722	1.829 3.022	1.00 90.21 1.00 90.21
ATOM ATOM	834 835		TRP TRP	90 90	34.714	54.453	3.320	1.00 90.21
ATOM	836		TRP	90	35.249	54.456	2.041	1.00 90.21
MOTA	838		TRP	90	36.510	56.156	0.702	1.00 90.21
ATOM	839 840		TRP TRP	90 90	36.884 37.019	58.194 57.413	1.890 0.752	1.00 90.21 1.00 90.21
MOTA MOTA	841		TRP	90	35.614	57.999	6.437	1.00 27.74
ATOM	842	0	TRP	90	34.962	58.721	5.694	1.00 90.21
MOTA	843		SER	91	36.590 36.919	58.456 59.882	7.236 7.305	1.00 33.90 1.00 33.90
ATOM	845 846		SER SER	91 91	35.972	60.566	8.290	1.00 33.23
ATOM	847		SER	91	34.617	60.159	8.093	1.00 33.23
ATOM	849		SER	91	38.345	60.167	7.787 7.955	1.00 33.90 1.00 33.23
MOTA MOTA	850 851	о И	SER ILE	91 92	38.725 39.144	61.333 59.128	7.999	1.00 2.00
ATOM	853	CA	ILE	92	40.460	59.355	8.562	1.00 2.00
MOTA	854	CB	ILE	92	40.486	58.910	10.044	1.00 6.47 1.00 6.47
ATOM	855 856	CG2 CG1	ILE	92 92	41.380 39.063	59.809 58.849	10.888	1.00 6.47 1.00 6.47
MOTA MOTA	857	CD1		92	38.423	60.168	10.911	1.00 6.47
MOTA	858	C	ILE	92	41.495	58.514	7.947	1.00 2.00
ATOM	859	0	ILE	92	41.199 42.732	57.590 58.864	7.204 8.266	1.00 6.47 1.00 50.27
MOTA MOTA	860 862	N CA	asn Asn	93 93	43.854	58.038	7.897	1.00 50.27
MOTA	863	CB	ASN	93	45.208	58.800	7.682	1.00 86.79
ATOM	864	CG	ASN	93	46.486	57.828 57.772	7.455 8.308	1.00 86.79 1.00 86.79
ATOM ATOM	865 866	OD1 ND2		93 93	47.427 46.515	57.093	6.321	1.00 86.79
MOTA	869	C	ASN	93	43.951	57.245	9.226	1.00 50.27
MOTA	870	0	ASN	93	43.982	57.844	10.306 9.198	1.00 86.79 1.00 31.00
MOTA	871 872	N CD	PRO	94 94	43.557 44.264	55.965 54.985	10.018	1.00 31.00 1.00 20.78
ATOM ATOM	873	CA	PRO	94	43.071		7.987	1.00 31.00
MOTA	874	CB	PRO	94	43.911	54.060	7.900	1.00 20.78
ATOM	875		PRO	94 94	45.051 41.636	54.288 55.034		
MOTA MOTA	876 877		PRO PRO	94 94	41.243		9.550	1.00 20.78
ATOM	878		ARG	95	40.833	54.492	7.530	1.00 12.98
MOTA	880	CA	ARG	95	39.478			
MOTA MOTA	881 882		ARG ARG	95 95	38.592 39.316			
ATOM	883		ARG	95	38.629	54.020	4.254	1.00 25.66
ATOM	884	NE	ARG	95	39.628	54.435	3.283	
ATOM	886		ARG	95 95	39.431 38.274			
ATOM ATOM	887 890		ARG	95 95	40.412			
MOTA	893		ARG	95	39.599	52.868	8.709	1.00 12.98
MOTA	894	0	ARG	95	40.633			
MOTA	895	N	THR	96	38.605	5 52.532	. J.320	1.00 14.80
L								

Cont./Table 8									
ATOM	898	СВ	THR	96	39.459	51.542	11.670		36.32
ATOM	899	OG1	THR	96	38.718	52.498	12.439		36.32
ATOM	901	CG2	THR	96	40.908	52.045	11.476		36.32
ATOM	902	С	THR	96	37.365	50.730	10.607	1.00	14.80
ATOM	903	Ō	THR	96	36.340	51.326	10.292	1.00	36.32

	Table 9: Three dimensional coordinates of									
		Ħ						7		
ł	HC-CDR1 (ASN31-ASN35) from SB249417									
ATOM	2300	N	ASN	31	53.647	23.490	34.881	1.00 20.53 1.00 20.53		
MOTA	2302	CA	ASN	31	54.400	24.257	33.887 33.715	1.00 20.53		
ATOM	2303	CB	ASN	31	53.820	25.666 25.859	33.715	1.00 39.50		
ATOM	2304	CG	ASN	31	53.118 53.469	25.236	31.370	1.00 39.50		
ATOM	2305	OD1 ND2		31 31	52.128	26.741	32.358	1.00 39.50		
ATOM	2306 2309	C	ASN	31	55.860		34.306	1.00 20.53		
ATOM	2310	ò	ASN	31	56.746	24.530	33.466	1.00 39.50		
ATOM	2310	Ŋ	TYR	32	56.103	24.314	35.612	1.00 18.56		
ATOM	2313	CA	TYR	32	57.458	24.408	36.148	1.00 18.56		
ATOM	2314	CB	TYR	32	57.571	25.582	37.122	1.00 41.90		
ATOM	2315	CG	TYR	32	57.374	26.943	36.499	1.00 41.90		
ATOM	2316		TYR	32	56.107	27.516	36.415	1.00 41.90		
ATOM	2317		TYR	32	55.923	28.782	35.869	1.00 41.90		
ATOM	2318	CD2		32	58.459	27.672	36.018 35.472	1.00 41.90 1.00 41.90		
ATOM	2319	CE2		32	58.288	28.940 29.489	35.472	1.00 41.90		
ATOM	2320	CZ	TYR	32 32	57.017 56.836	30.745	34.875	1.00 41.90		
ATOM	2321 2323	OH	TYR TYR	32 32	57.824	23.124	36.875	1.00 18.56		
ATOM	2323	0	TYR	32	57.024	22.590	37.642	1.00 41.90		
ATOM	2325	И	GLY	33	59.032	22.631	36.626	1.00 32.09		
ATOM	2327	CA	GLY	33	59.480	21.415	37.276	1.00 32.09		
ATOM	2328	c	GLY	33	59.805	21.659	38.736	1.00 32.09		
ATOM	2329	ō	GLY	33	60.028	22.802	39.140	1.00 20.56		
ATOM	2330	N	MET	34	59.813	20.593	39.530	1.00 8.75		
ATOM	2332	CA	MET	34	60.119	20.700	40.949	1.00 8.75		
ATOM	2333	СВ	MET	34	58.988	20.101	41.787	1.00 26.05		
ATOM	2334	CG	MET	34	59.129	20.334	43.283	1.00 26.05 1.00 26.05		
ATOM	2335	SD	MET	34	59.069	22.082 22.344	43.705 43.849	1.00 26.05 1.00 26.05		
MOTA	2336	CE	MET	34	57.315 61.417	19.972	41.256	1.00 20.03		
ATOM	2337	C	MET	34 34	61.514	18.759	41.073	1.00 26.05		
ATOM ATOM	2338 2339	O N	MET	35	62.425	20.722	41.687	1.00 25.14		
ATOM	2339	CA	ASN	35	63.720	20.147	42.034	1.00 25.14		
ATOM	2342	CB	ASN	35	64.859	21.091	41.642	1.00 22.15		
ATOM	2343	CG	ASN	35	65.135	21.097	40.156	1.00 22.15		
ATOM	2344		LASN	35	65.207	22.152	39.533	1.00 22.15		
ATOM	2345		ASN	35	65.347	19.921	39.588	1.00 22.15		
ATOM	2348	C	ASN	35	63.785	19.906	43.533	1.00 25.14		
ATOM	2349	0	ASN	35	63.256	20.693	44.316	1.00 22.15		
ATOM	2349	U	NON	33	05.20	20.075				

<u>Table 10: Three dimensional coordinates of</u> HC-CDR2 (TRPS0-GLY66) from SB 249417

15.841 16.753 17.405 16.439 16.669 10.37 10.37 82.57 2490 39.634 39.073 37.796 ATOM 64.690 63.706 64.255 64.648 64.574 65.053 64.150 65.155 65.400 65.121 64.219 64.701 62.412 62.403 61.315 TRP 2492 2493 50 50 50 1.00 ATOM TRP ATOM CB TRP ATOM 2494 TRP 36.697 .00 50 50 50 50 2495 CD2 TRP 82.57 82.57 ATOM 35.282 1.00 15.504 17.748 15.177 ATOM TRP 34.643 1.00 2497 2498 CE3 TRP 34.494 82.57 82.57 ATOM 1.00 ATOM 1.00 14.610 15.386 17.629 ATOM ATOM 2499 2501 NE1 TRP CZ2 TRP 50 50 35.622 33.249 1.00 82.57 82.57 1.00 2502 2503 CZ3 CH2 ATOM 33.106 50 50 50 51 32.501 38.760 38.616 38.728 16.456 16.021 ATOM 82.57 TRP 1.00 ATOM 2504 CO TRP 1.00 14.800 16.766 ATOM 2505 TRP 1.00 82.57 26.53 2506 2508 ATOM 61.315 60.001 59.025 57.689 59.599 58.687 59.476 59.386 59.153 58.651 58.528 38.405 39.603 51 51 16.222 26.53 25.59 ATOM CA II.P 1.00 ATOM 2509 CB ILE 1.00 MOTA 2510 2511 2512 CG2 ILE 51 51 15.659 15.545 39.225 40.810 1.00 25.59 1.00 ATOM 15.545 15.577 17.151 18.359 16.601 17.415 16.569 ATOM ATOM CD1 C 42.024 37.319 1.00 ILE 51 25.59 2513 ILE 51 26.53 2513 2514 2515 2517 2518 2519 2520 2521 2524 2525 ATOM ILE 37.531 1.00 25.59 ATOM 52 52 36.155 1.00 46.03 ASN ATOM ATOM ASN 35.047 1.00 33.783 32.528 45.75 45.75 CB ASN 52 58.528 1.00 58.447 57.625 59.298 ATOM ASN 17.406 1.00 32.421 31.561 35.377 34.768 36.343 36.778 37.009 OD1 ASN 52 52 18.311 17.097 1.00 45.75 1.00 45.75 ATOM ATOM ND2 ASN ATOM ATOM ASN ASN 52 52 57.300 56.899 18.040 19.032 1.00 46.03 45.75 19.032 17.449 17.917 19.452 19.781 19.924 17.476 16.727 17.906 17.500 56.605 55.293 55.272 56.181 MOTA 2526 2528 1.00 38.29 THR 53 53 53 CA THR 38.29 CA CB Th. OG1 THR CG2 THR THR 2529 2530 1.00 46.19 ATOM ATOM 53 53 38.067 CG2 C ATOM 2532 53.880 37.393 1.00 53.880 54.194 53.298 54.265 53.261 53.359 54.717 54.742 56.062 35.812 36.203 34.555 33.573 38.29 46.19 53.63 53.63 31.29 31.29 ATOM 2533 2534 53 54 54 54 54 54 54 1.00 ATOM THR 1.00 2535 2537 ATOM N ARG 1.00 ATOM ARG 17.500 18.345 18.334 19.227 19.229 20.315 21.499 20.218 16.603 2538 2539 32.298 31.631 1.00 ATOM CB ARG ÇĞ ARG ATOM 2540 2541 2543 2544 2547 2550 ATOM ATOM CD ARG 30.409 29.782 1.00 31.29 ATOM ATOM 56.666 56.071 CZ ARG 54 54 54 54 29.312 1.00 31.29 29.396 28.766 33.267 32.771 33.486 32.044 31.785 31.017 32.411 34.481 35.381 36.3723 36.281 36.281 37.723 3 NH1 ARG 1.00 31.29 ATOM ATOM NH2 ARG 31.29 c 53.63 31.29 53.457 1.00 ATOM ATOM ARG 2551 54.507 15.603 1.00 15.208 13.754 13.373 11.870 55 55 55 55 2552 52.477 52.500 N 1.00 58.18 2554 2555 2556 CA CB CG ASN ATOM 1.00 52.879 52.809 1.00 44.20 1.00 44.20 1.00 44.20 ATOM ATOM ASN 11.326 11.197 13.105 11.888 53.602 51.847 53.462 53.658 2557 2558 55 55 55 56 56 ATOM OD1 ASN ATOM ND2 ASN 1.00 44.20 58.18 ATOM ATOM ASN 1.00 58.18 1.00 44.20 2561 CO 2562 53.658 54.013 54.947 56.103 56.637 56.477 57.571 57.305 N CA C GLY 13.916 13.406 MOTA 2563 1.00 35.82 1.00 1.00 1.00 MOTA 2565 35.82 13.406 12.672 11.715 13.118 12.505 12.584 ATOM 2566 2567 GLY ATOM 56 57 33.62 2568 2570 ATOM LYS 1.00 ATOM CA LYS 57 1.00 56.46 ATOM 2571 57 1.00 LYS 42.16 57 57 ATOM ATOM 2572 2573 CD LYS 57.015 56.585 13.984 13.927 1.00 42.16 42.16 ATOM ATOM 2574 2575 CE LYS 57 57 56.184 57.344 15.294 16.189 1.00 42.16 LYS 1.00 ATOM ATOM 2579 CO LYS 57 57 58.900 58.987 13.160 13.933 34.138 35.098 1.00 56.46 2580 1.00 42.16 LYS 59.930 61.273 61.377 ATOM 2581 N CA CB 12.832 33.361 33.548 1.00 13.374 14.767 14.740 13.421 ATOM 2583 58 58 58 58 58 59 1.00 SER 69.70 ATOM SER 32.920 61.034 61.679 61.711 61.928 31.541 ATOM 2585 SER 1.00 51.34 ATOM 35.016 1.00 2587 SER 14.489 12.245 12.118 11.076 35.631 35.578 36.969 37.702 1.00 51.34 66.55 ATOM 2588 SER ATOM 2589 Ñ THR 59 59 ATOM 2591 CA CB THR 62.336 1.00 66.55 61.465 MOTA THR ATOM 36.937

				Cor	t./Tabl	e 10		
MO	2595	CG2	THR	59	61.058	11.594	39.066	1.00 41.34
OM	2596		THR	59	63.774	11.622	36.924	1.00 66.55
MC	2597	0	THR	59	64.129 64.621	10.848 12.091	36.029 37.835	1.00 41.34 1.00 40.30
DM DM	2598 2600	N CA	TYR TYR	60 60	66.002	11.629	37.823	1.00 40.30
OM	2601	CB	TYR	60	66.869	12.381	38.835	1.00 68.57
MO	2602	CG	TYR	60	68.285	11.842	38.911	1.00 68.57
MO	2603	CD1		60	68.980	11.483	37.755	1.00 68.57
MO	2604		TYR TYR	60 60	70.255 68.910	10.929 11.639	37.821 40.137	1.00 68.57 1.00 68.57
MO MO	2605 2606	CD2 CE2	TYR	60	70.186	11.087	40.214	1.00 68.57
OM	2607	cz	TYR	60	70.852	10.734	39.055	1.00 68.57
MO	2608	OH	TYR	60	72.108	10.181	39.136	1.00 68.57
MO	2610	C	TYR	60	66.035	10.136	38.119	1.00 40.30
MO	2611	0	TYR VAL	60 61	65.463 66.720	9.683 9.387	39.106 37.258	1.00 68.57 1.00 78.68
MO'	2612 2614	N CA	VAL	61	66.857	7.935	37.386	1.00 78.68
MOY	2615	CB	VAL	61	67.864	7.381	36.341	1.00 61.99
MO	2616	CG1		61	67.881	5.852	36.363	1.00 61.99
MO	2617	CG2	VAL	61	67.518	7.891	34.945 38.788	1.00 61.99 1.00 78.68
TOM TOM	2618 2619	C	VAL VAL	61 61	67.323 67.113	7.531 6.396	39.218	1.00 61.99
MO	2620	N	ASP	62	67.955	8.468	39.491	1.00 56.17
MO1	2622	CA	ASP	62	68.455	8.234	40.840	1.00 56.17
MOT	2623	CB	ASP	62	67.298	7.887	41.784	1.00 45.87
MO	2624	CG.	ASP	62	66.192	8.938	41.764 41.559	1.00 45.87 1.00 45.87
MO1	2625 2626		ASP ASP	62 62	66.499 65.009	10.131 8.573	41.936	1.00 45.87
MO	2627	C	ASP	62	69.511	7.134	40.810	1.00 56.17
MOT	2628	ō	ASP	62	69.207	5.953	40.977	1.00 45.87
TOM	2629	N	ASP	63	70.755	7.543	40.574	1.00 73.06
TOM	2631	CA CB	ASP ASP	63 63	71.885 73.194	6.623 7.404	40.492 40.344	1.00 73.06 1.00 43.18
TOM TOM	2632 2633	CG	ASP	63	73.946	7.051	39.072	1.00 43.18
TOM	2634		ASP	63	73.828	5.897	38.604	1.00 43.18
TOM	2635		ASP	63	74.667	7.924	38.546	1.00 43.18
TOM	2636	Ç	ASP	63	71.972	5.697	41.696	1.00 73.06 1.00 43.18
TOM TOM	2637 2638	O N	ASP PHE	63 64	72.399 71.509	6.110 4.461	42.776 41.515	1.00 77.35
TOM	2640	CA	PHE	64	71.521	3.437	42.562	1.00 77.35
TOM	2641	CB	PHE	64	72.948	3.202	43.071	1.00 68.41
MOT	2642	CG	PHE	64	73.486	1.836	42.762	1.00 68.41
MOT	2643		PHE	64	73.432	1.328	41.467 43.766	1.00 68.41 1.00 68.41
TOM TOM	2644 2645	CD2	PHE PHE	64 64	74.047 73.930	0.058	41.177	1.00 68.41
TOM	2646		PHE	64	74.548	-0.219	43.485	1.00 68.41
TOM	2647	cz	PHE	64	74.489	-0.219 -0.717	42.188	1.00 68.41
TOM	2648	C	PHE	64	70.592	3.723	43.740	1.00 77.35
MOT	2649	0	PHE	64	70.141	2.795 4.996	44.419	1.00 68.41
MOT	2650 2652	N CA	LYS LYS	65 65	70.284 69.414	5.395	45.066	1.00 77.80
TOM	2653	CB	LYS	65	69.749	6.824	45.525	1.00 59.28
TOM	2654	ČĞ	LYS	65	71.243	7.133	45.654	1.00 59.28
MOT	2655	CD	LYS	65	72.017	6.042	46.394	1.00 59.28
MOT	2656		LYS	65	71.576	5.890	47.841 48.536	1.00 59.28 1.00 59.28
MOTA	2657		LYS	65 65	72.374 67.940	4.831 5.296	48.536	1.00 39.28
MOTA	2661 2662		LYS LYS	65	67.188	6.271	44.781	1.00 59.28
ATOM	2663		GLY	66	67.523	4.105	44.255	1.00 33.49
MOTA	2665	CA	GLY	66	66.141	3.893	43.863	1.00 33.49
MOTA	2666 2667		GLY	66 66	65.248	3.671 2.710		1.00 33.49

PCT/US98/13806

<u>Table 11: Three dimensional coordinates of</u> <u>HC - CDR3 (GLU99 - TYR110) from SB249417</u>

ATOM	2507	N	GLU	99	61.719	25.581	38.831	1.00 50.46
MOTA	2508	CA	GLU	99	62.445	25.725	37.560	1.00 50.46
MOTA	2509	CB	GLU	99	63.093	27.110	37.435	1.00 52.10
MOTA	2510	CG	GLU	99	62.109	28.216	37.059	1.00 52.10
MOTA	2511	CD	GLU	99	62.112	29.390	38.028	1.00 52.10
ATOM	2512	OE1	GLU	99	61.436	30.397	37.735	1.00 52.10
MOTA	2513	OE2	GLU	99	62.772	29.310	39.086	1.00 52.10
ATOM	2514	С	GLU	99	63.461	24.618	37.297	1.00 50.46
ATOM	2515	0	GLU	99	63.484	23.616	38.010	1.00 52.10
ATOM	2516	N	GLY	100	64.259	24.775	36.242	1.00 42.17
MOTA	2517	CA	GLY	100	65.249 66.331	24.775 23.764	35.914	1.00 42.17
MOTA	2518	С	GLY	100	66.331	24.192	34.937	1.00 42.17
MOTA	2519	0	GLY	100	66.089	24.997	34.033	1.00 27.11
ATOM	2520	N	ASN	101	67.526 68.704	23.635	35.132	1.00 59.61
MOTA	2521	CA	ASN	101		23.902 23.089	34.306 33.006	1.00 59.61 1.00 55.09
ATOM ATOM	2522 2523	CB	asn Asn	101 101	68.654 68.926	21.612	33.229	1.00 55.09
ATOM	2524	ODI	ASN	101	68.323	20.985	34.102	1.00 55.09
ATOM	2525	ND2	ASN	101	69.834	21.046	32.439	1.00 55.09
ATOM	2528	c	ASN	101	68.940	25.379	34.011	1.00 59.61
ATOM	2529	ŏ	ASN	101	69.643	26.062	34.763	1.00 55.09
ATOM	2530	N	MET	102	68.369	25.867	32.914	1.00 51.25
ATOM	2531	CA	MET	102	68.514	27.265	32.530	1.00 51.25
ATOM	2532	CB	MET	102	69.931	27.556	32.037	1.00 39.15
ATOM	2533	CG	MET	102	70.367	29.002	32.229	1.00 39.15
MOTA	2534	SD	MET	102	69.099	30.248	31.922	1.00 39.15
MOTA	2535	CE	MET	102	69.132	31.094	33.482	1.00 39.15
MOTA	2536	Ç	MET	102	67.519	27.571	31.424	1.00 51.25
ATOM	2537	0	MET	102	67.866	27.577	30.241	1.00 39.15
ATOM	2538	N	ASP	103	66.270	27.787	31.814	1.00 52.39
MOTA	2539	CA	ASP	103	65.210	28.095 26.865	30.867	1.00 52.39 1.00 81.62
MOTA MOTA	2540 2541	CB	ASP ASP	103 103	64.309 65.099	25.592	30.664 30.350	1.00 81.62
ATOM	2542	ODI		103	64.784	24.533	30.939	1.00 81.62
ATOM	2543	OD2		103	66.028	25.642	29.514	1.00 81.62
MOTA	2544	C	ASP	103	64.391	29.250	31.440	1.00 52.39
ATOM	2545	ŏ	ASP	103	64.181	29.324	32.653	1.00 81.62
ATOM	2546	Ň	GLY	104	63.980	30.176	30.577	1.00 38.36
MOTA	2547	CA	GLY	104	63.181	31.309	31.019	1.00 38.36
MOTA	2548	С	GLY	104	63.874	32.286	31.954	1.00 38.36
MOTA	2549	0	GLY	104	63.209	33.068	32.630	1.00 35.81
MOTA	2550	N	TYR	105	65.204	32.221	32.005	1.00 78.70
ATOM	2551	CA	TYR	105	66.028	33.098	32.843	1.00 78.70
ATOM	2552	CB	TYR	105	66.298	34.426	32.125 31.653	1.00 41.71 1.00 41.71
MOTA MOTA	2553 2554	CG CD1	TYR TYR	105 105	67.726 68.492	34.593 33.493	31.266	1.00 41.71
ATOM	2555	CEI		105	69.812	33.644	30.838	1.00 41.71
ATOM	2556	CD2		105	68.315	35.854	31.599	1.00 41.71
ATOM	2557	CE2		105	69.632	36.017	31.172	1.00 41.71
ATOM	2558	CZ	TYR	105	70.372	34.910	30.794	1.00 41.71
ATOM	2559	ОН	TYR	105	71.671	35.077	30.382	1.00 41.71
MOTA	2560	С	TYR	105	65.515	33.355	34.263	1.00 78.70
ATOM	2561	0	TYR	105	65.349	34.503	34.679	1.00 41.71
MOTA	2562	N	PHE	106	65.297	32.275	35.006	1.00 53.79
ATOM	2563	CA	PHE	106	64.815	32.362	36.381	1.00 53.79
ATOM	2564	CB	PHE	106	63.302	32.606	36.355	1.00 64.88
MOTA	2565	CG	PHE	106	62.867	33.837	37.093	1.00 64.88
ATOM	2566		PHE	106	63.142	35.104	36.586	1.00 64.88 1.00 64.88
MOTA MOTA	2567 2568	CE	PHE PHE	106 106	62.162	33.732 36.246	38.286 37.255	
ATOM	2569	CE		106	62.722 61.736	34 868	38.964	1.00 64.88 1.00 64.88
MOTA	2570	cz	PHE	106	62.016	34.868 36.129	38.447	1.00 64.88
ATOM	2571	č	PHE	106	65.099	31.140	37.282	1.00 53.79
ATOM	2572	ŏ	PHE	106	64.552	31.055	38.381	1.00 64.88
MOTA	2573	N	PRO	107	66.005	31.055 30.221	36.878	1.00 52.80
MOTA	2574	CD	PRO	107	66.836	30.142	35.667	1.00 42.34
MOTA	2575	CA	PRO	107	66.268	29.051	37.725	1.00 52.80
MOTA	2576	CB	PRO	107	67.393	28.338	36.977	1.00 42.34
MOTA	2577	CG	PRO	107	67.103	28.666	35.568	1.00 42.34
MOTA	2578	C	PRO	107	66.623	29.241	39.198	1.00 52.80
MOTA	2579	0	PRO	107	67.275	30.212	39.596 39.980	1.00 42.34 1.00 39.89
MOTA MOTA	2580 2581		PHE	108 108	66.199 66.421	28.252 28.160	41.417	1.00 39.89 1.00 39.89
ATOM	2582		PHE	108	67.823	27.639	41.713	1.00 29.53
								-

									_
				C	ont./Tabl	e 11			ı
ATOM	2583	CG	PHE	108	67.986	26.177	41.417	1.00 29.53	1
MOTA	2584	CD1	PHE	108	67.950	25.711	40.107	1.00 29.53	ı
ATOM	2585	CD2	PHE	108	68.127	25.258	42.450	1.00 29.53	- 1
MOTA	2586	CE1	PHE	108	68.049	24.350	39.833	1.00 29.53	1
ATOM	2587	CE2	PHE	108	68.228	23.894	42.186	1.00 29.53	ı
ATOM	2588	CZ	PHE	108	68.188	23.440	40.878	1.00 29.53	- 1
MOTA	2589	С	PHE	108	66.057	29.348	42.287	1.00 39.89	ı
MOTA	2590	0	PHE	108	66.654	29.578	43.342	1.00 29.53	- 1
ATOM	2591	N	THR	109	65.082	30.115	41.821	1.00 37.60	- 1
ATOM	2592	CA	THR	109	64.572	31.243	42.571	1.00 37.60	
ATOM	2593	CB	THR	109	64.110	32.374	41.638	1.00 39.99	- 1
ATOM	2594	OG1	THR	109	63.235	31.842	40.638	1.00 39.99	- 1
ATOM	2595	CG2	THR	109	65.303	33.016	40.950	1.00 39.99	ı
MOTA	2596	С	THR	109	63.369	30.609	43.267	1.00 37.60	- 1
ATOM	2597	0	THR	109	62.694	29.761	42.676	1.00 39.99	1
MOTA	2598	N	TYR	110	63.113	30.999	44.511	1.00 23.43	
MOTA	2599	CA	TYR	110	62.006	30.449	45.292	1.00 23.43	
MOTA	2600	CB	TYR	110	60.701	30.367	44.481	1.00 42.41	- 1
MOTA	2601	CG	TYR	110	60.156	31.673	43.951	1.00 42.41	1
ATOM	2602	CD1	TYR	110	60.138	31.931	42.583	1.00 42.41	ļ
ATOM	2603	CEl	TYR	110	59.587	33.104	42.077	1.00 42.41	
ATOM	2604	CD2	TYR	110	59.611	32.628	44.807	1.00 42.41	
ATOM	2605	CE2	TYR	110	59.055	33.807	44.309	1.00 42.41	
ATOM	2606	CZ	TYR	110	59.047	34.035	42.942	1.00 42.41	
ATOM	2607	OH	TYR	110	58.484	35.185	42.439	1.00 42.41	
MOTA	2608	С	TYR	110	62.358	29.042	45.763	1.00 23.43	
MOTA	2609	0	TYR	110	62.436	28.111	44.960	1.00 42.41]

ſ	Table	12: Thre	e dimensional coordinates of
			G24 - HIS33) from SB249417
100M	161 N ARG	24	85.923 25.430 39.568 1.00 40.61
ATOM ATOM	161 N ARG 162 CA ARG	24	86.364 24.572 38.468 1.00 40.61
MOTA	163 CB ARG 164 CG ARG	24 24	87.477 23.636 38.953 1.00 54.47 88.672 23.525 38.021 1.00 54.47
ATOM	164 CG ARG 165 CD ARG	24	89.786 24.476 38.433 1.00 54.47
ATOM	166 NE ARG	24	89.329 25.861 38.511 1.00 54.47
ATOM ATOM	167 CZ ARG 168 NH1 ARG	24 24	90.019 26.850 39.069 1.00 54.47 91.212 26.619 39.605 1.00 54.47
ATOM	171 NH2 ARG	24	89.510 28.073 39.101 1.00 54.47
MOTA	174 C ARG 175 O ARG	24 24	85.191 23.729 37.974 1.00 40.61 84.258 23.455 38.735 1.00 54.47
ATOM ATOM	175 O ARG 176 N ALA	25	85.251 23.296 36.718 1.00 33.05
ATOM	177 CA ALA 178 CB ALA	25 25	84.185 22.475 36.146 1.00 33.05 83.270 23.332 35.275 1.00 58.44
ATOM ATOM	178 CB ALA 179 C ALA	25	84.702 21.278 35.348 1.00 33.05
ATOM	180 O ALA	25	83.923 20.409 34.958 1.00 58.44 86.006 21.249 35.087 1.00 57.44
MOTA MOTA	181 N SER 182 CA SER	26 26	86.641 20.165 34.330 1.00 57.44
ATOM	183 CB SER	26	86.518 18.828 35.080 1.00 65.59 87.351 17.828 34.505 1.00 65.59
MOTA	184 OG SER 185 C SER	26 26	86.093 20.030 32.903 1.00 57.44
ATOM	186 O SER	26	86.698 20.533 31.952 1.00 65.59
ATOM ATOM	187 N SER 188 CA SER	27 27	84.317 19.158 31.459 1.00 55.02
ATOM	189 CB SER	27	82.987 18.420 31.627 1.00 53.39 83.183 17.167 32.259 1.00 53.39
ATOM	190 OG SER 191 C SER	27 27	84.091 20.476 30.725 1.00 55.02
ATOM	192 O SER	27	84.718 20.717 29.690 1.00 53.39 83.232 21.316 31.307 1.00 33.90
ATOM ATOM	193 N SER 194 CA SER	28 28	82.834 22.647 30.825 1.00 33.90
ATOM	195 CB SER	28	83.830 23.274 29.833 1.00 57.68
ATOM MOTA	196 OG SER 197 C SER	28 28	81.430 22.670 30.238 1.00 33.90
ATOM	198 O SER	28	81.089 21.866 29.368 1.00 57.68
ATOM ATOM	199 N VAL 200 CA VAL	29 29	80.619 23.592 30.742 1.00 39.14 79.244 23.773 30.294 1.00 39.14
ATOM	201 CB VAL	29	78.226 23.123 31.278 1.00 50.11
ATOM ATOM	202 CG1 VAL 203 CG2 VAL	29 29	78.394 21.612 31.295 1.00 50.11 78.401 23.688 32.681 1.00 50.11
ATOM	204 C VAL	29	79.031 25.282 30.251 1.00 39.14
ATOM ATOM	205 O VAL 206 N ASN	29 30	79.981 26.036 30.028 1.00 50.11 77.798 25.731 30.449 1.00 34.36
ATOM	207 CA ASN	30	77.518 27.157 30.446 1.00 34.36
ATOM ATOM	208 CB ASN 209 CG ASN	30 30	77.105 27.633 29.051 1.00 69.95 77.315 29.129 28.859 1.00 69.95
MOTA	210 OD1 ASN	30	76.945 29.938 29.712 1.00 69.95
ATOM	211 ND2 ASN 214 C ASN	30 30	77.935 29.501 27.744 1.00 69.95 76.405 27.416 31.437 1.00 34.36
MOTA	215 O ASN	30	75.668 26.496 31.799 1.00 69.95
ATOM ATOM	216 N TYR 217 CA TYR	31 31	76.313 28.662 31.895 1.00 51.94 75.299 29.094 32.853 1.00 51.94
ATOM	218 CB TYR	31	73.896 28.690 32.379 1.00 66.29
ATOM ATOM	219 CG TYR 220 CD1 TYR	31 31	73.464 29.386 31.105 1.00 66.29 72.980 28.661 30.016 1.00 66.29
ATOM	221 CE1 TYR	31	72.567 29.305 28.844 1.00 66.29
ATOM ATOM	222 CD2 TYR 223 CE2 TYR	31 31	73.528 30.773 30.993 1.00 66.29 73.120 31.424 29.832 1.00 66.29
MOTA	224 CZ TYR	31	72.641 30.687 28.763 1.00 66.29
MOTA MOTA	225 OH TYR 226 C TYR	31 31	72.237 31.345 27.626 1.00 66.29 75.562 28.609 34.276 1.00 51.94
ATOM	227 O TYR	31	74.995 27.610 34.729 1.00 66.29
ATOM	228 N MET 229 CA MET	32 32	76.435 29.331 34.972 1.00 31.75 76.788 29.013 36.351 1.00 31.75
ATOM	230 CB MET	32	78.246 29.392 36.631 1.00 29.56
ATOM ATOM	231 CG MET 232 SD MET	32 32	78.807 28.822 37.925 1.00 29.56 78.874 27.021 37.900 1.00 29.56
ATOM	233 CE MET	32	80.515 26.716 38.506 1.00 29.56
ATOM ATOM	234 C MET 235 O MET	32 32	75.857 29.820 37.246 1.00 31.75 75.576 30.984 36.960 1.00 29.56
ATOM	236 N HIS	33	75.355 29.192 38.303 1.00 18.73
ATOM ATOM	237 CA HIS 238 CB HIS	33 33	74.441 29.848 39.231 1.00 18.73 73.154 29.022 39.412 1.00 59.11
ATOH	239 CG HIS	33	72.630 28.395 38.153 1.00 59.11
ATOM MOTA	240 CD2 HIS 241 ND1 HIS	33 33	73.216 27.574 37.249 1.00 59.11 71.325 28.548 37.736 1.00 59.11
ATOM	242 CE1 HIS	33	71.130 27.850 36.631 1.00 59.11
ATOM ATOM	243 NE2 HIS 244 C HIS	33 33	72.262 27.250 36.315 1.00 59.11 75.136 29.943 40.584 1.00 18.73
ATOM	245 O HIS	33	75.667 28.945 41.071 1.00 59.11

	Table 13: Three	dimensional coordinates of
i	LC-CDR2(ALA	49 - SER55) from SB249417
į		į
ATOM	385 N ALA 49	73.341 32.762 35.709 1.00 21.70
ATOM	386 CA ALA 49	73.888 32.759 34.358 1.00 21.70
ATOM	387 CB ALA 49 388 C ALA 49	72.879 33.352 33.379 1.00 50.17 75.206 33.523 34.298 1.00 21.70
ATOM	389 O ALA 49	75.335 34.507 33.564 1.00 50.17
ATOM	390 N THR 50	76.154 33.083 35.119 1.00 36.52
MOTA	391 CA THR 50 392 CB THR 50	77.494 33.655 35.211 1.00 36.52 78.362 33.294 33.978 1.00 58.15
MOTA	393 OG1 THR 50	77.656 33.610 32.773 1.00 58.15
ATOM	394 CG2 THR 50	78.692 31.819 33.979 1.00 58.15
ATOM	395 C THR 50	77.605 35.152 35.482 1.00 36.52 77.942 35.558 36.594 1.00 58.15
ATOM ATOM	396 O THR 50 397 N SER 51	77.942 35.558 36.594 1.00 58.15 77.327 35.965 34.471 1.00 31.35
ATOM	398 CA SER 51	77.441 37.413 34.592 1.00 31.35
ATOM	399 CB SER 51	77.862 38.009 33.245 1.00 35.38 79.126 37.511 32.836 1.00 35.38
ATOM ATOM	400 OG SER 51 401 C SER 51	79.126 37.511 32.836 1.00 35.38 76.228 38.169 35.120 1.00 31.35
ATOM	402 O SER 51	76.352 39.325 35.528 1.00 35.38
ATOM	403 N ASN 52	75.060 37.540 35.129 1.00 34.69 73.863 38.238 35.592 1.00 34.69
ATOM ATOM	404 CA ASN 52 405 CB ASN 52	73.863 38.238 35.592 1.00 34.69 72.614 37.715 34.879 1.00 34.18
ATOM	406 CG ASN 52	72.561 38.131 33.420 1.00 34.18
MOTA	407 OD1 ASN 52	72.529 39.322 33.102 1.00 34.18 72.576 37.151 32.525 1.00 34.18
MOTA	408 ND2 ASN 52 411 C ASN 52	72.576 37.151 32.525 1.00 34.18 73.653 38.278 37.098 1.00 34.69
ATOM ATOM	412 O ASN 52	73.720 37.260 37.786 1.00 34.18
MOTA	413 N LEU 53	73.386 39.480 37.593 1.00 28.58
MOTA	414 CA LEU 53	73.156 39.733 39.008 1.00 28.58 73.805 41.074 39.380 1.00 36.89
ATOM ATOM	415 CB LEU 53 416 CG LEU 53	73.657 41.716 40.761 1.00 36.89
ATOM	417 CD1 LEU 53	74.996 42.266 41.209 1.00 36.89
MOTA	418 CD2 LEU 53	72.624 42.829 40.711 1.00 36.89 71.649 39.753 39.266 1.00 28.58
ATOM ATOM	419 C LEU 53 420 O LEU 53	70.876 40.229 38.432 1.00 36.89
ATOM	421 N ALA 54	71.233 39.208 40.406 1.00 17.93
ATOM	422 CA ALA 54	69.817 39.157 40.763 1.00 17.93 69.579 38.092 41.823 1.00 27.99
ATOM ATOM	423 CB ALA 54 424 C ALA 54	69.579 38.092 41.823 1.00 27.99 69.307 40.507 41.248 1.00 17.93
ATOM	425 O ALA 54	70.083 41.433 41.459 1.00 27.99
MOTA	426 N SER 55	67.996 40.617 41.417 1.00 46.64 67.390 41.857 41.881 1.00 46.64
ATOM ATOM	427 CA SER 55 428 CB SER 55	67.390 41.857 41.881 1.00 46.64 65.914 41.917 41.473 1.00 60.10
MOTA	429 OG SER 55	65.769 41.953 40.062 1.00 60.10
MOTA	430 C SER 55	67.513 41.947 43.396 1.00 46.64 67.249 40.973 44.104 1.00 60.10
MOTA	431 O SER 55	
1		e dimensional coordinates of
	LC-CDR3(GL	N88 - THR96) from SB249417
АТОМ	677 N GLN 88	76.228 26.138 40.949 1.00 23.98
ATOM	678 CA GLN 88	75.808 24.954 40.213 1.00 23.98
MOTA	679 CB GLN 88	74.400 24.510 40.616 1.00 33.56
MOTA	680 CG GLN 88 681 CD GLN 88	73.285 25.370 40.066 1.00 33.56 71.932 24.738 40.259 1.00 33.56
ATOM ATOM	682 OE1 GLN 88	71.415 24.691 41.369 1.00 33.56
ATOM	683 NE2 GLN 88	71.346 24.251 39.179 1.00 33.56
MOTA	686 C GLN 88 687 O GLN 88	75.850 25.282 38.730 1.00 23.98 75.909 26.452 38.349 1.00 33.56
ATOM	687 O GLN 88 688 N GLN 89	75.775 24.254 37.897 1.00 53.56
ATOM	689 CA GLN 89	75.833 24.439 36.456 1.00 53.56
ATOM	690 CB GLN 89 691 CG GLN 89	77.082 23.752 35.888 1.00 50.20 77.610 22.557 36.694 1.00 50.20
ATOM ATOM	692 CD GLN 89	76.615 21.414 36.823 1.00 50.20
MOTA	693 OE1 GLN 89	75.598 21.532 37.510 1.00 50.20 76.923 20.289 36.194 1.00 50.20
ATOM	694 NE2 GLN 89 697 C GLN 89	76.923 20.289 36.194 1.00 50.20 74.596 23.944 35.728 1.00 53.56
MOTA MOTA	698 O GLN 89	73.772 23.224 36.298 1.00 50.20
MOTA	699 N TRP 90	74.447 24.383 34.481 1.00 42.71 73.331 23.967 33.641 1.00 42.71
ATOM ATOM	700 CA TRP 90 701 CB TRP 90	73.331 23.967 33.641 1.00 42.71 73.336 24.762 32.327 1.00107.30
ATOM	701 CB TRP 90	72.630 24.093 31.185 1.00107.30
MOTA	703 CD2 TRP 90	73.219 23.652 29.955 1.00107.30 72.197 23.037 29.200 1.00107.30
ATOM	704 CE2 TRP 90	72.197 23.037 29.200 1.00107.30

ATOM	705	CE3	TRP	90	74.513	23.715	29.418	1.00107.30
ATOM	706	CD1		90	71.313	23.748	31.124	1.00107.30
ATOM	707	NEl	TRP	90	71.044	23.111	29.935	1.00107.30
ATOM	708	CZ2	TRP	90	72.427	22.485	27.935	1.00107.30
ATOM	709	CZ3	TRP	90	74.742	23.165	28.157	1.00107.30
ATOM	710	CH2	TRP	90	73.702	22.559	27.432	1.00107.30
ATOM	711	С	TRP	90	73.497	22.473	33.371	1.00 42.71
ATOM	712	0	TRP	90	72.522	21.720	33.366	1.00107.30
MOTA	713	N	SER	91	74.746	22.068	33.154	1.00 53.84
ATOM	714	CA	SER	91	75.130	20.683	32.897	1.00 53.84
ATOM	715	CB	SER	91	74.815	19.789	34.106	1.00 38.65
MOTA	716	OG	SER	91	73.457	19.379	34.150	1.00 38.65
ATOM	717	С	SER	91	74.545	20.057	31.639	1.00 53.84
ATOM	718	0	SER	91	73.464	20.425	31.184	1.00 38.65
ATOM	719	N	ILE	92	75.313	19.148	31.051	1.00 51.50
ATOM	720	CA	ILE	92	74.874	18.421	29.867	1.00 51.50
ATOM	721	CB	ILE	92	76.070	17.967	28.991	1.00 66.93
ATOM	722	CG2		92	75.598	17.678	27.570	1.00 66.93
ATOM	723		ILE	92	77.154	19.047	28.948	1.00 66.93
ATOM	724	CD1	ILE	92	78.444	18.594	28.271	1.00 66.93
MOTA	725	С	ILE	92	74.211	17.171	30.446	1.00 51.50
MOTA	726	0	ILE	92	73.268	16.621	29.881	1.00 66.93
MOTA	727	N	ASN	93 .	74.714	16.755	31.605	1.00 60.16
ATOM	728	CA	ASN	93	74.232	15.580	32.319	1.00 60.16
ATOM	729	CB	ASN	93	75.290	14.473	32.228	1.00 59.88
ATOM	730	CG	ASN	93	74.696	13.083	32.312	1.00 59.88
ATOM	731	OD1	ASN	93	74.187	12.673	33.354	1.00 59.88
ATOM	732	ND2	ASN	93	74.769	12.345	31.213	1.00 59.88
ATOM	735	С	ASN	93	74.046	16.023	33.775	1.00 60.16
ATOM	736	0	ASN	93	74.952	16.620	34.363	1.00 59.88
ATOM	73 <i>7</i>	N	PRO	94	72.883	15.709	34.377	1.00 45.30
ATOM	738	CD	PRO	94	72.057	14.607	33.849	1.00 61.85
ATOM	739	CA	PRO	94	72.443	16.011	35.740	1.00 45.30
ATOM	740	CB	PRO	94	72.227	14.621	36.314	1.00 61.85
MOTA	741	CG	PRO	94	71.516	13.930	35.137	1.00 61.85
ATOM	742	С	PRO	94	73.280	16.922	36.644	1.00 45.30
ATOM	743	0	PRO	94	74.461	16.670	36.913	1.00 61.85
ATOM	744	N	ARG	95	72.607	17.959	37.141	1.00 55.22
ATOM	745	CA	ARG	95	73.181	18.975	38.024	1.00 55.22
MOTA	746	CB	ARG	95	72.097	19.992	38.393	1.00 42.76
MOTA	747	ÇG	ARG	95	71.364	20.575	37.194	1.00 42.76
MOTA	748	CD	ARG	95	70.022	21.178	37.591	1.00 42.76
ATOM	749	NE	ARG	95	68.909	20.524	36.902	1.00 42.76
MOTA	750	CZ	ARG	95	67.634	20.899	36.995	1.00 42.76
ATOM	751		1 ARG	95	67.286	21.931	37.752	1.00 42.76
ATOM	754	NH:		95	66.701	20.246	36.315	1.00 42.76
ATOM	757	Ç	ARG	95	73.753	18.352	39.294	1.00 55.22
ATOM	758	0	ARG	95	73.351	17.255	39.684	1.00 42.76
ATOM	759	N	THR	96	74.657	19.066	39.963	1.00 47.74
ATOM	760			96	75.270	18.543	41.183	1.00 47.74
ATOM	761		THR	96	76.630	17.877	40.875	1.00 32.33
MOTA	762			96	77.370	18.701	39.967	
MOTA	763				76.433	16.494		
MOTA	764		THR		75.456			
MOTA	765	0	THR	96	75.379	19.052	43.515	1.00 32.33

References

Brünger A.T., (1990) Acta Cryst. A46:46-57.

Brünger A.T., (1991) Acta Cryst. A47:195-204.

Brünger A.T., X-PLOR 3.0 Manual (Yale University, 1992).

Huber R., (1985). In *Molecular Replacement*. Proc. of the Daresbury Study Weekend, Daresbury, February 1985, pp. 58-61. SERC Daresbury Laboratory, Daresbury, Warrington, England.

Monfardini C., Kieber-Emmons T., Voet D., Godillot A.P., Weiner D.B., Williams W.V., (1996) J. Biol. Chem. 271:2966-2971.

Otwinowski Z., "Oscillation Data Reduction," in Proceedings of the CCP4 Study Weekend: "Data Collection and Processing," 29-30 January 1993, comiled by L. Sawyer, N. Isaacs and S. Bailey (SERC Daresbury Laboratory, England), pp. 56-62.

Rossmann M.G. and Blow D.M., (1962). Acta Cryst. 15:24-31.

Rusinko, A., (1993) Chem. Des. Auto. News 8:44-47.

5

Zhao B., Helms L.R., DesJarlais R.L., Abdel-Meguid S.S. & Wetzel R., (1995)

Nature Struct. Biol. 2:1131-1137.

The present invention may be embodied in other specific forms without departing

from the spirit or essential attributes thereof, and, accordingly, reference should be made to
the appended claims, rather than to the foregoing specification, as indicating the scope of
the invention.

CLAIMS

- 1. A BC2 Fab fragment crystal.
- A Fab fragment crystal containing BC2 complementarity determining regions
 (CDRs).
 - 3. The crystal of claim 2 wherein the CDRs are characterized by the coordinates of Tables 3-8.
 - 4. A SB249417 Fab fragment crystal.

15

20

- The crystal of claim 4 wherein the CDRs are characterized by the coordinates of
 Tables 9-14.
 - 6. A method for identifying a peptidomimetic having Factor IX binding activity comprising:
 - a. searching a small molecule structural database with CDR structural parameters derived from the crystal of claim 1, 2 or 4;
 - b. selecting a molecular structure from the database which mimics the
 CDR structural parameters;
 - c. synthesizing the selected molecular structure; and
 - d. screening the synthesized molecule for Factor IX binding activity.
 - 7. The method of claim 6 wherein the synthesized molecule is further screened for antithrombotic activity.
 - 8. The method of claim 7 wherein the synthesized molecule is further screened for self-limiting, neutralizing activity.
 - 9. The method of claim 6 wherein the selected molecular structure mimics the parameters of CDR residues HC-Asn35, HC-Trp50, and LC-Arg95.
- 25 10. A computer-readable medium having BC2 CDR structural information stored thereon.
 - 11. A computer-readable medium having SB249417 CDR structural information stored thereon.

Figure 1: BC2 HC - CDR1

Figure 2: BC2 HC - CDR2

Figure 3: BC2 HC - CDR3

Figure 4: BC2 LC - CDR1

Figure 5: BC2 LC - CDR2

Figure 6: BC2 LC - CDR3

Figure 7: SB24917 HC - CDR1

Fig .re 8: SB24917 HG - CDR2

Fig re 9: SB24917 HC CDR3

Figure 10: SB24917-L 1- CDR1

Fig. re 11: SB24917 L€ GDR2

Figure 12: SB24917 _€ -€DR3

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13806

IPC(6) :	SIFICATION OF SUBJECT MATTER C07K 16/00				
USCL:	International Patent Classification (IPC) or to both na	tional classification and IPC			
	DS SEARCHED				
	cumentation searched (classification system followed	by classification symbols)			
U.S. :	530/388.25; 530/388.22; 435/214; 514/18; 435/5; 530/	381; 435/472; 530/381; 424/145.1; 514	/56; 514/12; 530/350		
	on searched other than minimum documentation to the e	extent that such documents are included	in the fields searched		
	ata base consulted during the international search (name E EXPRESS, APS, WEST	ne of data base and, where practicable,	search terms used)		
c. Doc	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.		
Y	MURRAY, C.W. PRO_SELECT: Condesign and combinatorial chemistry Technology. Journal of Computer-November 1997, Vol. 11, No. 2, pages and 204-206.	2-3, 5-7 and 9			
Y	BOHM, HANS-JOACHIM. The Comp Method For The de novo Design of E Computer-Aided Molecular Design. Au page 61-78, especially 62.				
Y	MARTIN, Y.C. 3D Database Searchir Medicinal Chemistry. June 1992, V 2154, especially pages 2149-2151.	6-8			
X Furt	her documents are listed in the continuation of Box C	See patent family annex.			
	pecial estagories of cited documents:	and the interest of the intere	ternational filing data or priority		
	comment defining the general state of the art which is not considered	date and not in conflict with the sp the principle or theory underlying d	brestion for error in generating		
 	be of particular relevance writer document published on or after the international filling data	eXe document of particular relevance; to considered novel or cannot be considered.	he claimed invention cannot be bred to involve an inventive step		
19. 4	noment which may throw doubts on priority claim(s) or which is	when the document is taken alone			
] ¢	ted to establish the publication date of another citation or other pecial reason (as specified)	eye document of particular relevance; to considered to involve an inventive			
.0.	ocument referring to an oral disclosure, use, exhibition or other	combined with one or more other su being obvious to a person skilled in	CU COCCIIII CILITY ROCKI COMPANICACIONI		
·P· d	ocument published prior to the international filing date but later than te priority date claimed	"A" document member of the same pate			
	actual completion of the international search	Date of mailing of the international s	earch report		
05 NOV	EMBER 1998	17 DEC 1	998		
Box PCT	mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231	Authorized officer lawrence for			
Facsimile		Telephone No. (703) 308-0196			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/13806

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	US 5,739,277 A (PRESTA et al) 14 April 1998, col. 5, lines 19- 21, col. 6 lines 37-65, col. 8 lines 25-47.	1 and 2
Y,P	WO 97/26010 A1 (SMITHKLINE BEECHAM CORPORATION 24 July 1997, page 1-20	1-8
·		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/13806

B. FIELDS SEARCHED Documentation other than minimum documentation that are included in the fields searched:	İ
Journal of Medicinal Chemistry, Journal of Computer-Aided Molecular Design, Nucleic Acids Research, Journal of Biological Chemistry, Blood Coagulation and Fibrinolysis, Nature Structual Biology	
·	