RISC-V

Обзор системы команд

Yet another ISA

Зачем нужна новая система команд (RISC-V)?

Yet another ISA

- Полностью открытая система команд(СК), которая доступна как для академических целей, так и для индустрии.
- СК подходящая для реализации в железе.
- СК без переусложнений ("over-architecting").
- Модульная и расширяемая СК: большие возможности по пользовательскому расширению
- Поддержка IEEE-754 2008.
- Переменная длина инструкций.
- Полная поддержка виртуализации на уровне архитектуры

Обзор RICV-V

- Основные варианты системы команд
 - RV32I рассматриваемый в рамках лекций вариант RISC-V
 - RV64I
- Подмножества:
 - RV32E
 - RV64E

Простейший RISC-V компьютер

Элементы состояния компьютера

XLEN – константа разрядности (32/64/128), для RV32I XLEN=32
Double = 8 байт, Word = 4 байта, half = 2 байта
Размер регистров, PC и ширина адреса памяти равны XLEN
PC – указатель на инстукцию (адрес инструкции для исполнения)
x0...x31 – регистры, x0 всегда равен 0
Размер инструкции 1 word

Классический RISC-конвейер (стадии исполнения инструкций)

Примеры инструкций:

add x1, x2, x3; -> regfile[1]=regfile[2]+regfile[3]
lw x1, 0x100(x2); -> regfile[1]=MEM[regfile[2]+0x100]

Элементы состояния RISC-V (дополнительные)

Расширяемость и модульность RISC-V

- Имеется большой набор стандартных расширений
- Есть возможность добавлять собственные расширения
- Допускается возможность, чтобы нестандартные расширения СК противоречили стандартным (но не рекомендуется)

Кодировка длины инструкции

			xxxxxxxxxxaa	16-bit (aa \neq 11)
В RV32I есть тол этот формат	ЬКО	xxxxxxxxxxxx	xxxxxxxxxxbbb11	32 -bit (bbb \neq 111)
	···xxxx	xxxxxxxxxxxx	xxxxxxxxxx011111	48-bit
	···xxxx	xxxxxxxxxxxx	xxxxxxxxx0111111	64-bit
	···xxxx	xxxxxxxxxxxx	xnnnxxxxx1111111	(80+16*nnn)-bit, nnn≠111
	···xxxx	xxxxxxxxxxxx	x111xxxxx1111111	Reserved for \geq 192-bits
Byte Address:	base+4	base+2	base	

Особенности кодирования

- Базовая кодировка определена как "little-endian".
- Допускается возможность "big-endian" используются пакеты по 16-бит.
- В рамках лекций используем только "little-endian".

Преимущества такого кодирования

- Базовая длина инструкции RV32I/RV64I 30 бит экономия 6,25% от площади кеша L1I.
- Возможность добавления сжатых инструкций (с 16-битной кодировкой) RISC-V "C" extension (далее RVC)
- RV32I использует менее 1/8 от общего пространства кодирования.

Исключения, ловушки и прерывания

- Исключение (exception) исключительная ситуация в процессе исполнения кода и ассоциированная с конкретной ситуацией и с конкретной инструкцией.
- Ловушка (trap) процесс передачи управления в обработчик исключения.
- Прерывание (interrupt) внешнее событие (по отношению к потоку исполнения), происходящее асинхронно.
- Большинство исключений должны приводить к синхронной ловушке.

RV32I и RV64I

A также RV32E/RV64E

Регистры

- Регистр РС счётчик инструкций.
- RV32I/RV64I/RV128I 32 регистра общего назначения:
 - Регистры х0-х31.
 - x0/zero аппаратный ноль.
 - Константа XLEN длина регистров (32/64/128 бит соответственно).

Регистры

- RV32E/RV64E доступны только первые 16 регистров (x0-x15):
 - RV32E необходим для простых микроконтроллеров.
 - Площадь регистрового файла уменьшается более чем в 2 раза.
 - Общая площадь кристалла уменьшается на ~25%.
 - RV64E сделан «за компанию» с RV32E.
 - Нет некоторых системных инструкций, обязательных для базовой СК.
 - Возникает исключение в случае обращения к х16-х31.

Основные форматы инструкций

31	25 24	20 19	15 14 12	11 7	6	0
funct7	rs2	rs1	funct3	rd	opcode	R-type
imi	n[11:0]	rs1	funct3	rd	opcode	I-type
imm[11:5	rs2	rs1	funct3	imm[4:0]	opcode	S-type
	imm[3]	1:12]		rd	opcode	U-type

```
add x1, x2, x3; regfile[1]=regfile[2]+regfile[3] — R type rs1=000010 # x2 rs2=000011 # x3 rd=000001 # x1 opcode=0110011 (2*7) funct3=000 funct7=0000000
```

```
addi x1, x2, 3 ; regfile[1]=regfile[2]+ se(3) # I type
rs1=000010 # x2
imm=000 000 000 011 # 3
rd=000001 # x1
opcode=?
funct3=000
```

```
int8 t:
-128 -> 8'b1000 0000
                         signed char - 8-bit
-127 -> 8'b1000 0001
                         int - 32-bit
                         (signed char)(-2) + 5
                         -2 -> 8'b1111 1110
 -1 -> 8'b1111 1111
                         (signed char)(-2) -> 8'b111111110
  0 -> 8'b0000 0000
                         (int) (signed char) (-2) -> 32'b11...10
                         8->32:
  1 -> 8'b0000 0001
                         (-2): 8'b11111110 ->
127 -> 8'b0111 1111
                              1111 1111 1111 1111 1111 1111 1111 1110
int c=a+b; # add
                         (signed char) (255): 32'b 0000 ... 0000 1111 1111 ->
unsigned x=y+z; # add
                                          -1 (8'b1111 1111)
```

Дополнительные форматы инструкций

31 30 25	24 21	20	19	15 14	12	11 8	7	6 0	
funct7	rs	2	rs1	fur	nct3	ro	ł	opcode	R-type
			4	T			5 Gr	-	T. 1820
imm[1	1:0]		rs1	fur	ict3	ro	i	opcode	I-type
imm[11:5]	rs	2	rs1	fur	nct3	imm	[4:0]	opcode	S-type
CONTRACTOR OF THE PROPERTY AND THE PROPE	925-		20	30				70-	_
$[imm[12] \mid imm[10:5]$	rs	2	rs1	fur	nct3	imm[4:1]	imm[11]	opcode	B-type
	and the second								-
	imm[3]	1:12]				ro	l	opcode	U-type
			·					-Ve	_
[imm[20]] $[imm[1]$	0:1]	imm[11]	imr	n[19:12]		ro	ł	opcode	J-type

Зачем нужно такое странное расположение imm-полей?

Декодирование чисел

Целочисленные инструкции формата I

;	31	20 <mark>19</mark>	15 14	2 11	7 6	0
	imm[11:0]	rs1	funct3	rd	opcode	
i.i.	12	5	3	5	7	i i
	I-immediate[11:0]	src	ADDI/SLTI[U] dest	OP-IMM	
	I-immediate[11:0]	src	ANDI/ORI/XO	ORI dest	OP-IMM	

- imm знаково-расширенное число (в т.ч. для SLTIU)
- SLTI/SLTIU записывают 1 в rd если значение rs1 меньше imm, иначе записывают 0.
- В 64-х битном режиме добавляется инструкция ADDIW с опкодом OP-IMM-32
- Почему нет инструкции вычитания?

Инструкции сдвига в RV32I

31	25 24	20	19	15 14	12 11	7 6		0
imm[11:5]	imn	n[4:0]	rs1	fund	et3 r	d	opcode	
7	,	5	5	3		ŏ	7	
0000000	shan	nt[4:0]	src	SL	LI de	est	OP-IMM	
0000000	shan	$\operatorname{nt}[4:0]$	src	SR	LI de	est	OP-IMM	
0100000	shan	$\operatorname{nt}[4:0]$	src	SR	AI de	est	OP-IMM	

- SLLI логический сдвиг влево
- SRLI логический сдвиг вправо
- SRAI арифметический сдвиг вправо

Инструкции сдвига в RV64I

3	31	26	25	24	20 19		15 14		12 1	11	7 6		0
	imm[11:6]	2	imm[5]	imm[4:0]		rs1		funct3		rd		opcode	
s.	6	-520	1	5	**	5	93	3		5	97	7	
	000000	S	shamt[5]	shamt[4:0]		src		SLLI		dest		OP-IMM	
	000000	S	shamt[5]	shamt[4:0]		src		SRLI		dest		OP-IMM	
	010000	S	shamt[5]	shamt[4:0]		src		SRAI		dest		OP-IMM	
	000000		0	shamt[4:0]		src		SLLIW		dest		OP-IMM-32	
	000000		0	shamt[4:0]		src		SRLIW		dest		OP-IMM-32	
	010000		0	shamt[4:0]		src		SRAIW		dest		OP-IMM-32	

Псевдо-инструкции формата I

- Некоторые псевдо-инструкции могут быть оптимизированы в аппаратных реализациях.
- Канонические псевдо-инструкции удобны для написания кода и отладки (дизассемблирования).
- Псевдо-инструкции ассемблера для формата I

Псевдо-инструкция	Настоящая инструкция
MV rd, rs1	ADDI rd, rs1, 0
NOT rd, rs	XOR rd, rs1, -1
NOP	ADDI x0, x0, 0

Целочисленные инструкции формата U

31	12 11	7 6 0
imm[31:12]	re	d opcode
20	Ę	7
U-immediate[3	de de	est LUI
U-immediate[3	de	est AUIPC

- LUI (load upper immediate) загружает биты INST[31:12] в rd[31:12], зануляет rd[11:0]: rd=se (INST[31:12] << 12)
- AUIPC (add upper-immediate to pc) добавляет PC к imm << 12 и записывает результат в rd. Не рекомендуется использовать JAL для данной цели. rd = PC + se(INST[31:12] << 12)).
- В RV64I imm расширяется знаково.

Целочисленные инструкции формата R

31	25	24 20	0 19 15	5 14 1	2 11	7 6 0
	funct7	rs2	rs1	funct3	rd	opcode
	7	5	5	3	5	7
(0000000	${ m src2}$	$\operatorname{src}1$	ADD/SLT/SLT	TU dest	OP
(0000000	src2	$\operatorname{src}1$	AND/OR/XOF	${ m dest}$	OP
(0000000	src2	$\operatorname{src}1$	SLL/SRL	dest	OP
(0100000	src2	$\operatorname{src}1$	SUB/SRA	dest	OP

- SLL/SRL/SRA используют для значения сдвига только младшие 5 бит в RV32I и 6 в RV64I.
- В RV64I добавляются дополнительные инструкции ADDW/SLLW/SRLW/SUBW/SRAW c OP-32.
- ADDW/SUBW расширяют знаково результат до 64-х бит.

Инструкции безусловного перехода

31	20 19	15 14 12	11	7 6	0
imm[11:0]	rs1	funct3	rd	opcode	
12	5	3	5	7	
offset[11:0]	base	0	dest	JALR	

- JAL инструкция прямого в диапазоне ±1МиБ.
 - rd = PC + 4; PC = PC + se(imm << 1)
- JALR инструкция косвенного перехода.
 - rd = PC + 4; PC = (rs1[XLEN-1:1] + imm[11:1]) << 1

Инструкции безусловного перехода

- Данные инструкции можно использовать для вызова процедур.
- Стандартный регистр возврата х1, альтернативный х5
- Простой переход псевдоинструкция J это $JAL \times 0$,
- Комбинация LUI и JALR позволяет реализовать любой абсолютный переход в RV32I.
- Комбинация AUIPC и JALR позволяет реализовать любой относительный переход в 32-хбитном диапазоне (±2ГиБ).
- Младший бит РС игнорируется в imm и в rs1 у JALR. Это удобно для системного ПО, т.к. позволяет иметь 1-битный тег в указателе.
- Адрес перехода должен быть выровнен на 4, если нет RVC.

Инструкции безусловного перехода

• Поддержка аппаратного ускорения стека вызовов/возвратов (RAS). link — это либо $\times 1$, либо $\times 5$.

	rd	rs1	rs1=rd	RAS action
J	!link	!link	7	none
JAL	!link	link	2 =	pop
	link	!link	1100	push
	link	link	0	push and pop
	link	link	1	push

Инструкции условного перехода

31	30	25 24	20 19 1.	5 14 12	2 11 8	7	6	0
imm[12]	imm[10:5]] rs2	rs1	funct3	imm[4:1]	imm[11]	opcode	
1	6	5	5	3	4	1	7	Ž.S
offset	[12,10:5]	src2	$\operatorname{src1}$	BEQ/BNE	offset[1]	1,4:1]	BRANCH	
offset	[12,10:5]	src2	$\operatorname{src}1$	BLT[U]	offset[1]	1,4:1]	BRANCH	
offset	[12,10:5]	src2	$\mathrm{src}1$	BGE[U]	offset[1]	1,4:1]	BRANCH	

- Диапазон переходов ±4КиБ.
- Инструкции сравнивают значения регистров rs1 и rs2.
- Условия: равенство, неравенство, меньше, больше-равно.
- BGT/BGTU/BLE/BLEU псевдо-инструкции ассемблера с обратным порядком операндов для BLT/BLTU/BGE/BGEU соответственно.

Псевдокод инструкций перехода

```
if (cond(reg[src1], reg[src2]))
    PC = PC + se(offset[12:1] << 1)
else
    PC = PC + 4</pre>
```

Инструкции условного перехода

Рекомендации по оптимизации программного и аппаратного обеспечения:

- Частота «взятых» условных переходов должна быть ниже частоты не взятых.
- Переходы назад по умолчанию предсказываются «взятыми», переходы вперёд «не взятыми».
- Для безусловных переходов нужно использовать *J*, а не условный переход с постоянно выполненным условием.

Примеры использования инструкций условного перехода

Пример на СИ	Возможный вариант реализации на RISC-V ассемблере (упрощенный)
<pre>int s = 0; for (int x = 0; x < 5; x++) { s += x; }</pre>	add x10, x0, x0; x10 - s add x11, x0, x0; x11 - x addi x12, x0, 5; x12 = 5 loop: add x10, x10, x11 addi x11, x11, 1 blt x11, x12, loop
<pre>// x = x > 105 ? 105 : x; if (x > 105) { x = 105; }</pre>	; x - x16, 105 - x15 addi x15, x0, 105 blt x15, x16, false_cond mv x16, x15 false_cond:

Проверка на переполнение

• Беззнаковая:

```
add t0, t1, t2 bltu t0, t1, overflow
```

• Знаковая

```
add t0, t1, t2
slti t3, t2, 0
slt t4, t0, t1
bne t3, t4, overflow
```

• Оптимизированная знаковая Для положительного imm:

```
addi t0, t1, +imm
blt t0, t1, overflow
```

• Для 32-хбитных чисел в RV64I:

```
add t0, t1, t2
addw t3, t1, t2
bne t0, t3, overflow
```

Инструкции работы с памятью

31	20 19	15 14 12	11	7 6	0
imm[11:0]	rs1	funct3	rd	opcode	
12	5	3	5	7	
offset[11:0]	base	width	dest	LOAD	

31	25	24 20	19 1	5 14 12	11	7 6	0
	imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	
ė.	7	5	5	3	5	7	25
	offset[11:5]	src	base	width	offset[4:0]	STORE	

- funct3[1:0] кодирует размер обращения.
- funct3[2] кодирует знаковое(0) или беззнаковое расширение (1).

Инструкции работы с памятью

• RV32I:

- LB [U]/LH [U]/LW читают 1/2/4 байта соответственно из памяти по адресу rs1+imm [11:0] и расширяют до XLEN.
- SB/SH/SW записывают 1/2/4 байта соответственно.

• Изменения в RV64I:

- LD чтение 8 байт из памяти.
- LWU читает 4 байта и расширяет беззнаково до 64 бит.
- LW добавляется знаковое расширение.
- SD запись 8-ми байт в память.

Инструкции работы с памятью

- Невыровненные обращения поддерживаются:
 - Не гарантируются атомарность.
 - Не гарантируется производительность.
 - Допускается реализация через обработчик исключения без поддержки на уровне АО.

Примеры инструкций работы с памятью

Пример на СИ Возможный вариант реализации на RISC-V ассемблере (упрощенный) int s = 0; int arr[10] = ...;; для простоты указатель на arr лежит в x20 - arr ; x21 - s x22 - I x23 - 10 for (int i = 0; i < 10; i++) add x21, x0, x0 s += arr[i]; add x22, x0, x0 addi x23, x0, \$10 loop: ; адрес i-го элемента arr: arr+i*sizeof(arr[0])=arr+i*4 slli x24, x22, 2 ; i*4 = (i << 2) add x24, x24, x20 ; arr+i*4 $1w \times 24$, \$0(x24) ; regfile[24]=mem[regfile[24]] add x21, x21, x24 addi x22, x22, \$1 blt x22, x23, loop

Атомарность доступа

Код для Hart 0:

lw x5, 0x100(x2)

1w x6, 0x200(x2)

В каком порядке hart 1 увидит эти обращения в память? Зависит от:

Модели памяти (популярные)

- TSO
- Relaxed model RISC-V

Типа процессора:

- In-order как правило TSO
- Out-of-order

Для гарантии порядка доступа есть несколько расширений системы команд

Инструкции работы с системными регистрами (полноценные)

Инструкция	Алгоритм						
CSRRW - Инструкция	CSRRW - Инструкция одновременного чтения-записи системного регистра						
csrrw rd, csr, rs1	 regfile[rd]=sysregs[csr] sysregs[csr]=regfile[rs1] 						
CSRRS - Инструкция	установки отдельных битов в регистре						
csrrs rd, csr, rs1	 regfile[rd]=sysregs[csr] sysregs[csr]=sysregs[csr] regfile[rs1] 						
CSRRC - Инструкция сброса отдельных битов в регистре							
csrrc rd, csr, rs1	 regfile[rd]=sysregs[csr] sysregs[csr]=sysregs[csr] & ~regfile[rs1] 						

Инструкции работы с системными регистрами - визуализация

csrrc rd, csr, rs1

Расширение "М"

if (y & (1 << i)) s += x << i;

for (int i = 0; i < 32; i++)

см. документацию - https://riscv.org/technical/specifications/

```
Вопрос - Почему умножение / деление не попадают в стандартную СК? Алгорим умножения на Си (скрытый ответ на вопрос) unsigned x, y; unsigned s=0;
```

Frame pointer

- 1. alloca
- 2. "int x[n];"

```
int foo(int b, int c)
{
    int x, y = 1;
    x = b * 2;
    {
       int t = x + b; x = y; y = tmp;
    }
}
```

RVC

RISC-V "C" Standard Extension for Compressed Instructions.

RVC: ключевые особенности

- Позволяет кодировать инструкции длиной в 16 бит.
- Не добавляет нового режима (как в ARM и MIPS).
- Можно смешивать с обычными инструкциями длиной 32 бита.
- JAL/JALR не вызывают исключения при невыровненном переходе.

Оценки производительности

- 50-60% инструкций имеют короткие эквиваленты.
- Уменьшение размеров кода на 25-30%.

Исследование в Беркли показало:

- Снижение нагрузки на канал памяти на 25-30%.
- Снижение промахов кэш инструкций на 20-25% эквивалентно увеличению кэша в 2 раза.

Условие применимости коротких команд

- Поддерживаются только наиболее популярные инструкции.
- Выполнено одно из условий:
 - Кодируется короткое число (в поле imm)
 - Используется один из следующих регистров: x0(zero)/x1(link)/x2(sp).
 - Регистр назначения совпадает с первым регистром-источником.
 - Все регистры попадают в список 8ми наиболее популярных.

Идеология RVC

- Инструкции RVC являются подмножеством базовой СК, что существенно упрощает валидацию.
- RVC не требует поддержки на уровне компилятора, но хороший компилятор может существенно улучшить качество кода.
- RVC не является частью базовой СК и обязательной к реализации.

Архитектура RVC

- Большинство инструкций совпадает между RV32C, RV64C и RV128C.
- Для большинства инструкций с полем imm запрещены числа 0. С нулевым значением кодируется другая инструкция.
- В кодировках с 5-битными полями регистров местоположение rd такое же, как и в базовой СК.
- В кодировках с 3-битными полями регистров кодируются регистры х8-х15.

3-битная кодировка регистров

RVC Register Number Integer Register Number Integer Register ABI Name Floating-Point Register Number Floating-Point Register ABI Name

000	001	010	011	100	101	110	111
x8	x9	x10	x11	x12	x13	x14	x15
s0	s1	a0	a1	a2	a3	a4	a5
f8	f9	f10	f11	f12	f13	f14	f15
fs0	fs1	fa0	fa1	fa2	fa3	fa4	fa5

Форматы инструкций

Format	Meaning
CR	Register
\mathbf{CI}	Immediate
CSS	Stack-relative Store
CIW	Wide Immediate
CL	Load
CS	Store
CB	Branch
CJ	$\overline{\mathrm{Jump}}$
CIW CL CS CB	Wide Immediate Load Store Branch

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
fı	ınct	4 rd/rs1		rs2				O	p					
funct	3	imm		rd/rs1			$_{ m imm}$				О	p		
funct	3		i	imm			rs2				0	p		
funct	3		imm						rd'		О	p		
funct	3	im	ım		1 1	rs1'		im	ım		rd'		O	p
funct	3	im	mm rs1'		di.	im	m		rs2'		O	p		
funct	3	off	offset rs1'		offset			O	p					
funct	3	jump target				O	p							

Инструкции чтения-записи памяти

- Смещение расширяются беззнаково (imm/offset).
- Смещение умножается на размер обращений
- Инструкции делятся на 2 группы
 - Базовый регистр sp(x2), второй регистр любой.
 - Оба регистра из RVC-подмножества.
- Причина появления отдельной кодировки для sp в том, что суммарно прологи/эпилоги функций составляют значительную долю кода (по мнению авторов RISC-V).

Инструкции чтения данных со стека

15	13 12 11	Формат СІ	7 6	2 1 0
funct3	imm	rd	imm	op
3	1	5	5	2
C.LWSP	offset[5]	$dest \neq 0$	offset[4:2 7:6]	C2
C.LDSP	offset[5]	$dest \neq 0$	offset $[4:3 8:6]$	C2
C.LQSP	offset[5]	$dest \neq 0$	offset $[4 9:6]$	C2
C.FLWSP	offset[5]	dest	offset $[4:2 7:6]$	C2
C.FLDSP	offset[5]	dest	offset $[4:3 8:6]$	C2

Инструкция	Эквивалент	Вариант СК
C.LWSP	<pre>lw rd, offset[7:2](x2)</pre>	RV32C/RV64C/RV128C
C.LDSP	ld rd, offset[8:3](x2)	RV64C/RV128C
C.LQSP	lq rd, offset[9:4](x2)	RV128C
C.FLWSP	flw rd, offset[7:2](x2)	RV32FC
C.FLDSP	fld rd, offset[8:3](x2)	RV32DC/RV64DC

Инструкции записи данных в стек

15	13 12		7 6	2 1		0
func	et3	$\overline{\mathrm{imm}}$	rs2		op	
3	i i	6	5	•	2	5 ¹ / ₂
C.SV	VSP	offset $[5:2 7:6]$	src		C2	
C.SI	OSP	offset $[5:3 8:6]$	src		C2	
C.SC	QSP	offset $[5:4 9:6]$	src		C2	
C.FS	WSP	offset $[5:2 7:6]$	src		C2	
C.FS	DSP	offset $[5:3 8:6]$	src		C2	

Инструкция	Эквивалент	Вариант СК
C.SWSP	sw rs2, offset[7:2](x2)	RV32C/RV64C/RV128C
C.SDSP	sd rs2, offset[8:3](x2)	RV64C/RV128C
C.SQSP	sq rs2, offset[9:4](x2)	RV128C
C.SLWSP	fsw rs2, offset[7:2](x2)	RV32FC
C.FSDSP	fsd rs2, offset[8:3](x2)	RV32DC/RV64DC

Инструкции чтения данных

15	13 12	10 9	7 6 5	4	2 1 0
funct3	imm	rs1'	imm	rd'	op
3	3	3	2	3	2
C.LW	offset[5:3]	base	offset $[2 6]$	dest	C0
C.LD	offset[5:3]	base	offset[7:6]	dest	C0
C.LQ	offset $[5 4 8]$	base	offset[7:6]	dest	C0
C.FLW	offset $[5:3]$	base	offset $[2 6]$	dest	C0
C.FLD	offset[5:3]	base	offset $[7:6]$	dest	C0

Инструкция	Эквивалент	Вариант СК
C.LW	<pre>lw rd', offset[6:2](rs1')</pre>	RV32C/RV64C/RV128C
C.LD	<pre>ld rd', offset[7:3](rs1')</pre>	RV64C/RV128C
C.LQ	lq rd', offset[8:4](rs1')	RV128C
C.FLW	flw rd', offset[6:2](rs1')	RV32FC
C.FLD	fld rd', offset[7:3](rs1')	RV32DC/RV64DC

Инструкции записи данных

15	13 12	10 9		7 6 5	5 4	2 1 0
fun	ct3	imm	rs1'	imm	rs2'	op
· Ā	3	3	3	2	3	2
C.	SW offs	set[5:3]	base	offset $[2 6]$	src	C0
$\mathbf{C}.$	SD offs	set[5:3]	base	offset[7:6]	src	C0
$\mathbf{C}.$	SQ offse	et[5 4 8]	base	offset $[7:6]$	src	$\mathbf{C0}$
C.F	rsw offs	set[5:3]	base	offset $[2 6]$	src	C0
C.1	FSD offs	set[5:3]	base	offset $[7:6]$	src	C0

Инструкция	Эквивалент	Вариант СК
C.SW	sw rs2', offset[6:2](rs1')	RV32C/RV64C/RV128C
C.SD	sd rs2', offset[7:3](rs1')	RV64C/RV128C
C.SQ	sq rs2', offset[8:4](rs1')	RV128C
C.FSW	fsw rs2', offset[6:2](rs1')	RV32FC
C.FSD	fsd rs2', offset[7:3](rs1')	RV32DC/RV64DC

Инструкции управления

15 13 12		2 1 0
funct3	$_{ m imm}$	op
3	11	2
C.J	offset $[11 4 9:8 10 6 7 3:1 5]$	C1
C.JAL	offset $[11 4 9:8 10 6 7 3:1 5]$	C1

Инструкция	Эквивалент	Вариант СК	Диапазон
C.J	<pre>jal x0, offset[11:1]</pre>	RV32C/RV64C/RV128C	±2КиБ
C.JAL	<pre>jal x1, offset[11:1]</pre>	RV32C	±2КиБ

Инструкции управления

15	12 11		7 6	2 1 0
fı	ınct4	rs1	rs2	op
	4	5	5	2
	C.JR	$\operatorname{src}\neq 0$	0	C2
	.JALR	$\operatorname{src}\neq 0$	0	C2

Инструкция	Эквивалент	Вариант СК
C.JR	jalr x0, rs1, 0	RV32C/RV64C/RV128C
C.JALR	jalr x1, rs1, 0	RV32C/RV64C/RV128C

Инструкции управления

15	13	12 10	9	7 6	2 1	0
f	iunct3	imm	rs1'	imm	op	
	3	3	3	5	2	1.0
C	C.BEQZ	offset[8 4:3]	src	offset $[7:6 2:1 5]$	C1	
C	C.BNEZ	offset[8 4:3]	src	offset $[7:6 2:1 5]$	C1	

Инструкция	Эквивалент	Диапазон
C.BEQZ	beq rs1, x0, offset[8:1]	±256
C.BNEZ	bne rs1, x0, offset[8:1]	±256

Целочисленные инструкции

15	5	13 12	11		7 6	2 1	0
	funct3	imm	[5]	rd	imm[4:0]	op	
	3	1		5	5	2	
	C.LI	imm[5]	5]	$\text{dest}\neq 0$	$\mathrm{imm}[4:0]$	C1	
	C.LUI	nzuim	m[17]	$dest \neq \{0,2\}$	nzuimm[16:12]	C1	

Инструкция	Эквивалент
C.LI	addi rd, x0, imm[5:0]
C.LUI	lui rd, nzuimm[17:12]

Целочисленные инструкции

	15 1	.3 12	11 7	6	2 1	0
	funct3	imm[5]	m rd/rs1	imm[4:0]	op	
9.8	3	1	5	5	2	
	C.ADDI	nzimm[5]	dest	nzimm[4:0]	C1	
	C.ADDIW	imm[5]	$\text{dest}\neq 0$	imm[4:0]	C1	
	C.ADDI16SP	nzimm[9]	2	nzimm[4 6 8:7 5]	C1	

Инструкция	Эквивалент	Вариант СК	Комментарий
C.ADDI	addi rd, rd, nzimm[5:0]	Bce	
C.ADDIW	addiw rd, rd, imm[5:0]	RV64C/RV128C	Eсли imm=0 - sext.w rd
C.ADDI16SP	addi x2, x2, nzimm[9:4]	Bce	

NOP

	15	13	12	11	7 6	$\begin{array}{ccc} 2 & 1 & & 0 \end{array}$
	funct	3	imm[5]	rd/rs1	imm[4:0]	op
•	3		1	5	5	2
	C.NC	\mathbf{P}	0	0	0	C1

Пространство кодирования

$ inst[15:13] \\ inst[1:0] $	000	001	010	011	100	101	110	111	
	_	FLD		FLW		FSD		FSW	RV32
00	ADDI4SPN	FLD	LW	LD	Reserved	FSD	SW	SD	RV64
		LQ		LD		SQ		SD	RV128
		JAL					A :		RV32
01	ADDI	ADDIW	LI	LUI/ADDI16SP	MISC-ALU	J	BEQZ	BNEZ	RV64
		ADDIW			"		200		RV128
		FLDSP		FLWSP		FSDSP		FSWSP	RV32
10	SLLI	FLDSP	LWSP	LDSP	J[AL]R/MV/ADD	FSDSP	SWSP	SDSP	RV64
		LQ		LDSP	7: 5150 AN 65 I	SQ		SDSP	RV128
11	*	>16b							

Список инструкций (1)

15 14 13	12 11 10	9 8 7	6 5	4 3 2	1 0	
000		0		0	00	$Illegal\ instruction$
000	nzuin	m[5:4 9:6]	[2 3]	rd'	00	C.ADDI4SPN (RES, nzuimm=0)
001	uimm[5:3]	rs1'	uimm[7:6]	rd'	00	C.FLD (RV32/64)
001	uimm[5:4 8]	rs1'	uimm[7:6]	rd'	00	C.LQ (RV128)
010	uimm[5:3]	rs1'	uimm[2 6]	rd'	00	C.LW
011	uimm[5:3]	rs1'	uimm[2 6]	rd'	00	C.FLW (RV32)
011	uimm[5:3]	rs1'	uimm[7:6]	rd'	00	C.LD (RV64/128)
100					00	Reserved
101	uimm[5:3]	rs1'	uimm[7:6]	rs2'	00	C.FSD (RV32/64)
101	uimm[5:4 8]	rs1'	uimm[7:6]	rs2'	00	C.SQ (RV128)
110	uimm[5:3]	rs1'	uimm[2 6]	rs2'	00	C.SW
111	uimm[5:3]	rs1'	uimm[2 6]	rs2'	00	C.FSW (RV32)
111	uimm[5:3]	rs1'	uimm[7:6]	rs2'	00	C.SD (RV64/128)

Список инструкций (2)

15 14 13	12	11 10	9 8 7	6 5	4 3	2	1 0	
000	0		0	0		01	C.NOP	
000	nzimm[5]	rs1	$rd\neq 0$	nzimm[4:0]		01	C.ADDI (HINT, nzimm=0)	
001	imm[11 4 9:8 10 6 7 3:1 5]						01	C.JAL (RV32)
001	imm[5]	$rs1/rd\neq 0$		imm[4:0]		01	C.ADDIW (RV64/128; RES, rd=0)	
010	imm[5]	$rd\neq 0$		in	nm[4:0]		01	C.LI (HINT, rd=0)
011	nzimm[9]	2		nzimn	n[4 6 8:	7[5]	01	C.ADDI16SP (RES, nzimm=0)
011	nzimm[17]	$rd \neq \{0,2\}$		nzimm[16:12]		01	C.LUI (RES, nzimm=0; HINT, rd=0)	
100	nzuimm[5]	00	rs1'/rd'	nzuimm[4:0]		01	C.SRLI (RV32 NSE, nzuimm[5]=1)	
100	0	00	rs1'/rd'	0		01	C.SRLI64 (RV128; RV32/64 HINT)	
100	nzuimm[5]	01	rs1'/rd'	nzuimm[4:0]		01	C.SRAI (RV32 NSE, nzuimm[5]=1)	
100	0	01	rs1'/rd'	0		01	C.SRAI64 (RV128; RV32/64 HINT)	
100	imm[5]	10	rs1'/rd'	imm[4:0]		01	C.ANDI	
100	0	11	rs1'/rd'	00	rs2	,	01	C.SUB
100	0	11	rs1'/rd'	01	rs2	<i>'</i>	01	C.XOR

Список инструкций (3)

100	0	11	rs1'/rd'	10	rs2'	01	C.OR
100	0	11	rs1'/rd'	11	rs2'	01	C.AND
100	1	11	rs1'/rd'	00	rs2'	01	C.SUBW (RV64/128; RV32 RES)
100	1	11	rs1'/rd'	01	rs2'	01	C.ADDW (RV64/128; RV32 RES
100	1	11	7 <u>53</u> 7	10		01	Reserved
100	1	11	<u> </u>	11		01	Reserved
101	j	mm[11]	4 9:8 10 6	01	C.J		
110	imm[8 4:3]		rs1'	imm[7:6 2:1 5]		01	C.BEQZ
111	imm[8 4:3]		rs1'	imm[7:6 2:1 5]		01	C.BNEZ

Недостатки RVC

- Проектирование СК с сжатым набором инструкций всегда является компромиссом, поэтому не стоит критиковать авторов, но:
- Декодирование RVC значительно сложнее, чем базовой СК.
 - Есть ли выигрыш по энергопотреблению??
- Инструкции более не выровнены:
 - Могут пересекать границы строки кэша/страницы/окна выборки.
 - Существенное усложнение реализации и валидации.
- Отсутствие варианта кодирования только RVC для простых микроконтроллеров без базовой СК.