## Phase 2 - Machine Learning with Sklearn and **LightGBM**

## This notebook will complement the previous notebook (ML\_models\_with\_Python\_1x6\_xgb)

## Build - 6 new ML models using the framework sklearn and LightGBM

- · Logistic regression
- · Naive Bayes
- · Random Forest
- GBM
- · Extra Tree Classifier
- LightGBM

#### Info about model evaluation - accuracy metric vs recall

 The global metric accuracy will be used to evaluate the models between all frameworks (xgb, lgbm, sklearn, h2o.ai and Apache Spark)

# The last notebook build ml models using python will provide some additional techniques, such

- · Unbalanced classification and class weight
- Smote technique for oversampling the training dataset
- Standard Scale vs. default data and
- Finally, exchange the global metric accuracy and use recall metric < recall or Sensitivity or True positive rate (TPR) >

Recall metric is a better metric than accuracy to evaluate this type of scenario (customer churn)

## Sites for additional information

- sklearn: <a href="https://scikit-learn.org">https://scikit-learn.org</a>)
- sklearn Ensemble methods: https://scikit-learn.org/stable/modules/classes.html#modulesklearn.ensemble (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)

## In [2]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
## Remove warnings
import warnings
warnings.filterwarnings("ignore")
## Sklearn Metrics - Classification and model selection
from sklearn.metrics import confusion matrix, classification report, accuracy score
from sklearn.model_selection import train_test_split
## Machine Learning Models
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraT
reesClassifier
from sklearn.linear model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
import lightgbm as lgb
## export model
import pickle
```

## Load dataset

## In [3]:

```
df = pd.read csv('.../data/WA Fn-UseC -Telco-Customer-Churn.csv')
df.head()
```

#### Out[3]:

|   | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLiı    |
|---|----------------|--------|---------------|---------|------------|--------|--------------|----------------|
| 0 | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No           | No pho<br>serv |
| 1 | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes          |                |
| 2 | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes          |                |
| 3 | 7795-<br>CFOCW | Male   | 0             | No      | No         | 45     | No           | No pho<br>serv |
| 4 | 9237-<br>HQITU | Female | 0             | No      | No         | 2      | Yes          |                |
|   |                |        |               |         |            |        |              |                |

5 rows × 21 columns

```
In [4]:
```

```
## Filter columns and set values
df.loc[(df.tenure==0) & (df.TotalCharges == ' '), ['TotalCharges', 'tenure']] = 0
df['TotalCharges'] = df['TotalCharges'].astype('float')
target = 'Churn'
current_features = ['tenure', 'MonthlyCharges', 'TotalCharges', 'gender', 'PaymentMetho
d' , 'Churn', 'Contract']
df = df[current_features]
```

## In [5]:

```
## BACKUP FOR EXECUTION
df_BACKUP = df.copy()
df = df_BACKUP
```

## In [6]:

```
## Target
target = 'Churn'
features = df.columns.to_list()
# features.remove(target)
current_features = ['tenure', 'MonthlyCharges', 'TotalCharges', 'gender', 'PaymentMetho
d' , 'Churn', 'Contract']
current_features
df = df[features]
## One Hot Encode for categorical features
OHE_cols = ['gender', 'PaymentMethod' , 'Contract']
df = pd.get_dummies(data=df, columns=OHE_cols)
df.head(3)
```

## Out[6]:

|   | tenure | MonthlyCharges | TotalCharges | Churn | gender_Female | gender_Male | PaymentMeth transfer (a |
|---|--------|----------------|--------------|-------|---------------|-------------|-------------------------|
| 0 | 1      | 29.85          | 29.85        | No    | 1             | 0           | _                       |
| 1 | 34     | 56.95          | 1889.50      | No    | 0             | 1           |                         |
| 2 | 2      | 53.85          | 108.15       | Yes   | 0             | 1           |                         |
| 4 |        |                |              |       |               |             | <b>+</b>                |

## Data preparation to run the ML models

## In [7]:

```
target = 'Churn'
features = df.columns.to_list()
features.remove(target)
target_label_encode = lambda x: ['No', 'Yes'].index(x)
df[target] = df[target].apply(target_label_encode)
X = df[features].values
y = df[target].values
SEED = 42
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=
SEED)
```

## In [8]:

```
df['Churn'].unique()
Out[8]:
array([0, 1], dtype=int64)
```

## **ML** - Logistic Regression

Accuracy: 78,96%

## In [9]:

```
## Logistic Regression
model_LG = LogisticRegression(random_state=SEED)
model_LG.fit(X_train, y_train)
predict_LG = model_LG.predict(X_test)
## ML score
print('')
print('REPORT : Logistic Regression')
# print_confusion_matrix(y_test, predict_LG)
print('Accuracy score: ', accuracy_score(y_test, predict_LG))
```

REPORT : Logistic Regression

Accuracy score: 0.7896774193548387

## ML - Naive Bayes

Accuracy 68.90%

## In [10]:

```
## Naive Bayes
model_NB = GaussianNB()
model_NB.fit(X_train, y_train)
predict_NB = model_NB.predict(X_test)
## ML score
print('')
print('REPORT : Naive Bayes')
print('')
# print_confusion_matrix(y_test, predict_NB)
print('Accuracy score: ', accuracy_score(y_test, predict_NB))
```

REPORT : Naive Bayes

Accuracy score: 0.6890322580645162

## ML - Random Forest

Accuracy: 77,80%

## In [11]:

```
model_RF = RandomForestClassifier(n_estimators=100, oob_score=True, random_state=SEED)
model_RF.fit(X_train, y_train)
## Score - Out of Bags - training
model_RF.score(X_train, y_train)
predict_RF = model_RF.predict(X_test)
## ML score
print('')
print('REPORT : Random Forest')
print('')
# print_confusion_matrix(y_test, predict_RF)
print('Accuracy score: ', accuracy_score(y_test, predict_RF))
```

REPORT: Random Forest

Accuracy score: 0.7780645161290323

## ML - Extra Tree Classifier

Accuracy: 75,91%

#### In [12]:

```
model_ExT = ExtraTreesClassifier(random_state=SEED)
model_ExT.fit(X_train, y_train)

predict_ExT = model_ExT.predict(X_test)

## ML score
print('')
print('REPORT : Extra Tree Classifier')
print('')
# print_confusion_matrix(y_test, predict_ExT)
print('Accuracy score: ', accuracy_score(y_test, predict_ExT))
```

REPORT : Extra Tree Classifier

Accuracy score: 0.7591397849462366

## **ML - LightGBM**

Accuracy: 79,82%

## In [13]:

```
## LGBM
print('')
print('Starting training...')

# train
model_lgb = lgb.LGBMClassifier()
model_lgb.fit(X_train, y_train)

# predict
y_pred = model_lgb.predict(X_test, num_iteration=model_lgb.best_iteration_)

## ML score
print('')
print('REPORT : LightGBM')
print('')
## eval
print('The Accuracy of prediction is:', accuracy_score(y_test, y_pred) )
```

Starting training...

REPORT : LightGBM

The Accuracy of prediction is: 0.7982795698924732

#### ML - GBM

Accuracy: 80,0%

## In [14]:

```
## GBM
model_GBM = GradientBoostingClassifier(random_state=SEED)
model_GBM.fit(X_train, y_train)
## Predict
y_predict_GBM = model_GBM.predict(X_test)
## ML score
print('')
print('REPORT : GBM')
print('')
# print_confusion_matrix(y_test, predict_GBM)
print('Accuracy score: ', accuracy_score(y_test, y_predict_GBM))
```

REPORT : GBM

Accuracy score: 0.8

## **Evaluation report**

## Confusion matrix - associated with GBM model

- The GBM model was the first model that achieve 80,0% of accuracy
- Until now, GBM have the best accuracy performance

Additional info - Metrics: https://scikit-learn.org/stable/modules/model evaluation.html (https://scikit-<u>learn.org/stable/modules/model\_evaluation.html)</u>

#### In [15]:

```
## Function to print Confusion Matrix and metrics
def print_confusion_matrix(y_true, y_pred):
    """Print metrics"""
    report = classification_report(y_true, y_pred)
    confusion_matrix_rpt = confusion_matrix(y_true, y_pred)
    accuracy_score_rpt = accuracy_score(y_true, y_pred)
    print('-- Confusion Matrix')
    print(confusion_matrix_rpt)
    print('')
    print('-- Accuracy')
    print(accuracy_score_rpt)
    print('')
    print('--
              Metrics report')
    print(report)
print_confusion_matrix(y_test, y_predict_GBM)
    Confusion Matrix
```

```
[[1538 159]
 [ 306 322]]
--
    Accuracy
0.8
    Metrics report
             precision recall f1-score
                                           support
                  0.83
                            0.91
                                      0.87
                                               1697
          1
                  0.67
                            0.51
                                      0.58
                                                628
                                     0.80
                                               2325
   accuracy
  macro avg
                  0.75
                            0.71
                                      0.72
                                               2325
weighted avg
                  0.79
                            0.80
                                      0.79
                                               2325
```

## Example how to execute all 6 machine learning models using cross-validation at once

- GBM is again the model with better accuracy decrease of 1,4% (from 80,0% to 78,6%) but still the better one
- · Print and plot the accuracy score at the end

## In [16]:

```
## Run all model using Cross validation, check metrics and compare again vs train test
split methodology
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
models = []
models.append(('LR', LogisticRegression()))
models.append(('NB', GaussianNB()))
models.append(('RF', RandomForestClassifier()))
models.append(('ExT', ExtraTreesClassifier()))
models.append(('GBM', GradientBoostingClassifier()))
models.append(('LGBM', lgb.LGBMClassifier()))
score_models = []
rpt_models = []
for model_name, model in models:
    kfold = KFold(n_splits = 7, random_state = SEED)
    cv_results = cross_val_score(model, X_train, y_train, cv = kfold, scoring = 'accura
cy')
    score_models.append(cv_results)
    rpt_models.append(model_name)
    msg = "%s: %f (%f)" % (model_name, cv_results.mean(), cv_results.std())
    print(msg)
LR: 0.788046 (0.008409)
NB: 0.681433 (0.015555)
```

RF: 0.768546 (0.006914) ExT: 0.758584 (0.011594) GBM: 0.786774 (0.012879) LGBM: 0.772785 (0.016203)

Plot results: Cross-Validation

## In [17]:

```
# Boxplot para comparar os algoritmos
fig = plt.figure()
fig.suptitle('Classification ML models')
ax = fig.add_subplot(111)
plt.boxplot(score_models)
ax.set_xticklabels(rpt_models)
plt.show()
```

#### Classification ML models



## **Export baseline model GBM**

- GBM model achieved the highest accuracy between all models.
- Accuracy: 80%

## In [18]:

```
# Salvando o modelo
file_export_model = './ML_models/model_GBM_baseline_v1.sav'
pickle.dump(model_GBM, open(file_export_model, 'wb'))
print("Model exported")
```

Model exported

## Test import and run the prediction again

## In [19]:

```
GBM_model = pickle.load(open(file_export_model, 'rb'))
print confusion matrix(y test, GBM model.predict(X test))
     Confusion Matrix
[[1538 159]
 [ 306 322]]
     Accuracy
0.8
    Metrics report
              precision
                           recall f1-score
                                               support
           0
                   0.83
                             0.91
                                        0.87
                                                  1697
           1
                   0.67
                             0.51
                                        0.58
                                                   628
                                        0.80
                                                  2325
    accuracy
                   0.75
                             0.71
                                        0.72
                                                  2325
   macro avg
weighted avg
                   0.79
                             0.80
                                        0.79
                                                  2325
```

## Plot Feature importance - GBM

The 3 most important features, characteristics that influence customer churn are:

- Contract\_Month-to\_Month
- · MonthlyCharges and
- tenure

## In [20]:

```
# Plot feature importance
feature_importances = pd.DataFrame({'features': features,
                            'importance': model GBM.feature importances }).sort values(
'importance', ascending=False)
ax = sns.barplot(x="importance", y="features", data=feature_importances, palette="coolw
arm")
```



# **Summary**

## The top 3 most important features related to Churn (Yes) are:

- · Month-to-Month contract
- · Monthly Charges
- and tenure

## Let's move on with ML model built using H2O.ai framework

# In [21]: !jupyter nbconvert --to html Phase\_2\_Build\_ML\_models\_with\_Python\_2x6\_sklearn\_and\_lightg bm.ipynb In [ ]: