Лабораторная работа 1.1.6

Талашкевич Даниил Александрович February 14, 2021

1. Аннотация

Ознакомиться с устройством и работой осциллографа, изучить его основные харак- теристики. Измерить амплитудно-частотные характеристики (AЧX) усилителей каналов "X" и "Y", а также измерить их фазово-частотную разность.

2. Теоретические сведения

1. Устройство ЭЛТ осциллографа:

Рис. 1: Где 1-подогреватель катода, 2- катод, 3-модулятор, 4- первый (фокусирующий) анод, 5- второй (ускоряющий) анод, 6 и 7- горизонтально и вертикально отклоняющие пластины, 8- третий (ускоряющий) анод, 9- экран.

2.1. Теория

1. Смещение h электронного пятна на экране осциллографа: $\mathbf{h} = \frac{\mathbf{l_1L}}{\mathbf{2dU_\alpha}} \cdot \mathbf{U_y}$. Чувствительность трубки к напряжению: $\mathbf{k} = \frac{\mathbf{l_1L}}{\mathbf{2dU_\alpha}}$, где $\mathbf{l_1}$ – длинна пластин, \mathbf{L} - расстояние от середины пластин до экрана, d – расстояние между пластинами, $\mathbf{U_\alpha}$ – ускоряющее напряжение на втором аноде. 2.Подаваемое на вертикально отклоняющие пластины напряжение должно быть пропорционально самому сигналу: $\mathbf{U_y(t)} = \mathbf{U_{0y}} + \mathbf{K_{yu}U_c(t)}$. $\mathbf{U_{0y}}$ – постоянное напряжение, определяющие расположение графика сигнала по оси Y; $\mathbf{K_{uy}}$ – коэффициент входного сигнала каналом вертикального отклонения.

Подаваемое на горизонтально отклоняющие пластины напряжение должно линейно зависить от времени : $U_{\mathbf{x}} = U_{0\mathbf{x}} + K_{\mathbf{x}\mathbf{u}}\mathbf{t}$, где $U_{0\mathbf{x}}$ – постоянное напряжение, определяющие расположение графика сигнала по оси ; $\mathbf{k}_{\mathbf{x}\mathbf{u}}$ – коэффициент пропорциональности, зависящий от рабочих харрактеристик генератора развертки и усилителя.

Отношение максимальной и минимальной амплитуд генератора: $\beta[\mathbf{д}\mathbf{B}] = \mathbf{20} \ \lg(\frac{\mathbf{A}}{\mathbf{A_0}})$.

Коэффициент ослабления сигнала K: $\mathbf{K}(\mathbf{f_{sr}}) = \frac{\mathbf{2A}(\mathbf{f_{sr}})}{\mathbf{2A_0}}$.

3. Фигуры Лиссажу Напряжение на горизонтально отклоняющие пластины: $\mathbf{U_x} = \mathbf{U}_{\alpha} \cos(2\pi \mathbf{ft} + \varphi_1)$.

Напряжение на вертикально отклоняющие пластины: $\mathbf{U_x} = \mathbf{U_b} \cos(2\pi \mathbf{ft} + \varphi_2)$. Тогда уравнение траектории движении луча: $\frac{\mathbf{x^2}}{\mathbf{A^2}} + \frac{\mathbf{y^2}}{\mathbf{B^2}} + 2\frac{\mathbf{xy}}{\mathbf{AB}}\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$.

3. Используемое оборудование:

- 1) Осциллограф;
- 2) Генераторы электрических сигналов;
- 3) Соединительные кабели.

4. Ход работы:

4.1 Наблюдение периодического сигнала от генератора и измерение его частоты.

Предварительно выполнив все иструкции, прописанные в руководстве, получим устойчивое изоб- ражение и настроим мастштаб так, чтобы изображение занимала как можно больше места на экране.

В таблице ниже приведены результаты измерений периода сигнала от подаваемой частоты по формуле $\mathbf{f} = \frac{1}{\mathbf{T}}$.

По данным значениям построим график $\mathbf{K_{AC}}(\mathbf{lg}\ \mathbf{f})$ и $\mathbf{K_{DC}}()\mathbf{lgf}.$

Однако, как видно из таблицы, значения $\mathbf{U_{DC}}$ и $\mathbf{U_{AC}}$ совпадают во всех точках, поэтому это будет один и тот же график.

K(Igf)

Измерение амплитудно-частотной характеристики осциллографа.									
f , М Γ ц	lg f	$2U_{AC}$, дел	$U_{AC} = U_{AC}/U_0$	$2U_{DC}$, дел	$U_{DC} = \mathbf{U}_{DC}/U_0$				
11	7,0413927	39	0,975	39	0,975				
12	7,0791812	$38,\!5$	0,9625	38,5	0,9625				
13	$7,\!1139434$	37	0,925	37	0,925				
14	$7,\!146128$	36	0,9	36	0,9				
15	$7,\!1760913$	35	$0,\!875$	35	0,875				
16	7,20412	34	$0,\!85$	34	$0,\!85$				
17	$7,\!2304489$	33	$0,\!825$	33	0,825				
18	$7,\!2552725$	32	0,8	32	0,8				
19	$7,\!2787536$	31	0,775	31	0,775				
20	7,30103	30	0,75	30	0,75				
22	7,3424227	28	0,7	28	0,75				
24	$7,\!3802112$	26	$0,\!65$	26	$0,\!65$				
26	7,4149733	24	0,6	24	0,6				
28	7,447158	22	$0,\!55$	22	$0,\!55$				
30	$7,\!4771213$	21	$0,\!525$	21	$0,\!525$				

Как можно видеть, значение $K(f)=\frac{U(f)}{U_0}$ линейно спадает с ростом lg(f), а значит, и частоты входящего сигнала. Такое резкое понижение начинается при $f\approx 10M\Gamma \mu$.

Погрешность $\sigma_{\mathbf{K}}$ можно рассчитать как: $\sigma_{\mathbf{K}} = \sqrt{(\frac{\triangle \mathbf{U}}{\mathbf{U}})^2 + (\frac{\triangle \mathbf{U_0}}{\mathbf{U_0}})^2}$. Возьмем максимльное значение \mathbf{U} , тогда $\sigma_{\mathbf{K}} = \mathbf{0}, \mathbf{0345}$.

Из гафика получаем, что коэффициент наклона ${\bf k}$ аппроксимирующей прямой, построенной с помощью метода наименьших квадратов, приблизительно равен -1.09. Получим формулу для учета погрешности измерения амплитуды на высоких частотах:

$$U^{'} = U + 1.09 \cdot U|lgf - 7.15|.$$

где \mathbf{U}' – настоящее значение амплитуды, \mathbf{U} – измеренная амплитуда.

$4.2~{ m M}$ змерение разности фазово-частотных характеристик каналов осциллографа

Для изученя ФЧХ осциллографа подадим сигнал на каналы X и Y. Будем менять значения фаз для получения элипса, задаваемого формулами: $\mathbf{x}(\mathbf{t}) = \mathbf{A_x} \sin(\omega \mathbf{t} + \phi_{\mathbf{x}}), \ \mathbf{y}(\mathbf{t}) = \mathbf{A_y} \sin(\omega \mathbf{t} + \phi_{\mathbf{y}}).$

Пусть $\omega \mathbf{t} = -\phi_{\mathbf{x}}$. Тогда $\sin(|\triangle \phi|) = |\frac{\mathbf{y_0}}{\mathbf{A_y}}|$, где $\mathbf{y_0}$ – отклонение по вертикали в момент $= \mathbf{0}$.

Используя метод показанный ниже, заполним таблицу и получим зависимость $\triangle \phi(\mathbf{lgf})$.

Построим графики зависимости $\triangle \phi$ от **lgf** и **f**:

f , М Γ ц	1,1586	1,3669	1,5122	1,818	$0,\!486$	$0,\!511$	$0,\!35$
lg f	3,063934	3,135737	3,179609	3,259594	2,686636	2,708421	2,544068
$ 2y_0 $, дел	12	14	16	19,5	5,5	6	$3,\!5$
$2A_y$ дел	21	21	21	21	21	21	21
$\arcsin y_0/A $, рад	0,608246	0,729728	0,866249	1,190545	0,264995	$0,\!289752$	0,167448
$ \Delta \varphi $, рад	2,531754	2,410272	2,273751	1,949455	2,875005	2,850248	2,972552

Видно, что первая зависимость имеет экспоненциальный харрактер, а вторая линейный. Также можно заметить, что с возрастанием частоты отклонение точке от аппроксимирующей прямой,слудовательно осциллограф может быть использован для определения разности фаз только при сравнительно небольших частотах.

4.3 Наблюдение фигур Лиссажу

5 Вывод

В данной работе мы познакомились с устройством и принципом работы осциллографа. Мы построили графики АЧХ и ФЧХ и выяснили, что на низких частотах осциллометр позволяет производить рассчеты с достаточно высокой точностью.