DISCOMAX: Distance Correlation Maximization using Graph Laplacians

Praneeth Vepakomma ¹ Chetan Tonde ²

Ahmed Elgammal ²

¹Public Engines Inc.

²Department of Computer Science Rutgers University

Objective

We propose an algorithm (DISCOMAX) to learn feature representations (Z) of input data (X) for the regression setting that maximize statistical distance correlation [1] between learnt features (Z) and responses (Y).

Introduction

- Input: $X \times Y = (\mathbf{x}_i, y_i)^n \subset \mathbb{R}^D \times \mathbb{R}$ I.I.D. samples from joint distribution $P(\mathbf{x}, y)$.
- Output: Learn features $Z = \{\mathbf{z}_i\}_{i=1}^n \subset \mathbb{R}^d$ with improved correlation with the response $Y = \{\mathbf{y}_i\}_{i=1}^n$ for better regression.
- We propose to maximize Distance Correlation[1], which is a non-linear measure of statistical dependence between two r.v.'s, the learnt features Z and responses Y, as opposed to Pearson's correlation which is linear.

Distance Correlation

• Distance Correlation introduced by [1] is a measure of any nonlinear dependencies between r.v's of arbitrary dimensions.

$$\rho^{2}(Z,Y) = \frac{\nu^{2}(Z,Y;\phi)}{\sqrt{\nu^{2}(Z,Z;\phi)\nu^{2}(Y,Y;\phi)}}$$
(1)

• Distance Covariance between two r.v.'s is, $u^2(Z,Y;\phi): \int_{\mathbb{R}^{h+m}} |f_{Z,Y}(t,s)-f_Z(t)f_Y(s)|^2 \phi(t,s) dt ds$ where f_Z , f_Y , $f_{Z,Y}$ are characteristic functions and $\phi(t,s)$ is a specific weight function.

Sample Distance Correlation is given by,

$$\hat{\rho}^{2}(Z,Y) = \frac{\hat{\nu}^{2}(Z,Y;\phi)}{\sqrt{\hat{\nu}^{2}(Z,Z;\phi)\hat{\nu}^{2}(Y,Y;\phi)}}$$
(2)

where $\hat{
u}^2(Z,Y)=rac{1}{n^2}\sum_{k,l=1}^n [\mathbf{E}^X]_{kl}[\mathbf{E}^Y]_{kl}$ and $\mathbf{E}^{X},\mathbf{E}^{Y}$ are double-centered squared euclidean distance matrices.

Graph Laplacian Formulation

We propose the *Graph Laplacian* form of *sample* distance correlation $\hat{\rho}^2(\mathbf{Z}, \mathbf{Y})$ with Laplacians $\mathbf{L}_{\mathbf{Z}}$ and $\mathbf{L}_{\mathbf{Y}}$ formed over adjacency matrices $\mathbf{E}^{\mathbf{Z}}$, $\mathbf{E}^{\mathbf{Y}}$ as below,

$$\hat{\rho}^{2}(Z, Y) = \frac{n}{2} \frac{\mathbf{tr}(\mathbf{Z}^{T} \mathbf{L}_{Y} \mathbf{Z})}{\mathbf{tr}(\mathbf{Y}^{T} \mathbf{L}_{Y} \mathbf{Y}) \mathbf{tr}(\mathbf{Z}^{T} \mathbf{L}_{Z} \mathbf{Z})}$$
(3)

Problem Formulation

 We propose the the following objective function with an additional regularization parameter $C > \kappa^2 = \alpha_{max} \mathbf{tr}(\mathbf{L}_Y),$

$$\min_{\mathbf{Z}} \frac{\mathbf{tr}(\mathbf{Z}^{T}(\mathbf{L}_{\mathbf{Z}} + C\mathbf{I})\mathbf{Z})}{\mathbf{tr}(\mathbf{Z}^{T}\mathbf{L}_{\mathbf{Y}}\mathbf{Z})} \tag{4}$$
subject to $\mathbf{Z} \in \mathbb{R}^{d} \setminus \{0\}$

• We oppose an auxiliary objective function by replacing $\mathbf{L}_{\mathbf{Z}}$ and $\mathbf{L}_{\mathbf{X}}$, which we minimize,

$$\frac{\mathbf{tr}(\mathbf{Z}^{T}(\mathbf{L}_{\mathbf{X}} + C\mathbf{I})\mathbf{Z})}{\mathbf{tr}(\mathbf{Z}^{T}\mathbf{L}_{\mathbf{Y}}\mathbf{Z})} \qquad (5)$$
subject to $\mathbf{Z} \in \mathbb{R}^{d} \setminus \{0\}$

• This is a Quadratic Fractional Programming Problem and is equivalent to minimizing the parametric problem for some α ([2]),

$$\min_{\mathbf{Z}} F(\alpha) = \mathbf{tr}(\mathbf{Z}^T \mathbf{L}_{\mathbf{X}} \mathbf{Z}) - \alpha \mathbf{tr}(\mathbf{Z}^T \mathbf{L}_{\mathbf{Y}} \mathbf{Z})) + C \mathbf{tr}(\mathbf{Z}^T \mathbf{Z})$$
subject to $\mathbf{Z} \in \mathbb{R}^d \setminus \{0\}$

- **Theorem 1**: (Majorization-Minimization, [3]) For any fixed $\gamma^2 > 1$ and for the iteration $\mathbf{Z}_t = \mathbf{H} Z_{t-1}$ with $\mathbf{H} = (\gamma^2 \mathbf{D}_x + \mathbf{C}\mathbf{I} - \alpha \mathbf{L}_y)^{-1}$ $(\gamma^2 \mathbf{D}_x - \mathbf{L}_x)$ monotonically minimizes (6).
- **Theorem 2**: For the above iteration, we have $\rho(\mathbf{H}_t) < 1$, (See [4]).
- **Theorem 3**: Monotonically minimizing (5) also monotonically minimizes (4).

Algorithm

Algorithm: DISCOMAX

- Step 0: Pick regularizer $C > \kappa^2 = \alpha_{max} \mathbf{tr}(\mathbf{L}_Y)$, $\alpha_t^{min} = 0 \text{ and } \alpha_t^{max} = \frac{\mathbf{tr}(\mathbf{X}(\mathbf{L_X} + C\mathbf{I})\mathbf{X})}{\mathbf{tr}(\mathbf{X}\mathbf{L_Y}\mathbf{X})}, \ \eta = \frac{1+\sqrt{5}}{2}.$
- Step 1: Set $d = \eta(\alpha_t^{max} \alpha_t^{min}), x_1 = \alpha_t^{min} + d$ and $x_2 = \alpha_t^{max} - d$.
- Step 2: Solve (6) for $F(x_1)$ using Theorem 1.
- Step 3: Solve (6) for $F(x_2)$ using Theorem 1.
- Step 4: if $|\alpha_t^{max} \alpha_t^{min}| \le \epsilon$ then, return \mathbf{Z}^* and terminate. Otherwise,
- Step 5: if $(F(x_1) > F(x_1))$ then, $\alpha_t^{min} = x_2$, $x_2 = x_1 \text{ and } x_1 = \alpha_t^{min} + \eta(\alpha_t^{max} - \alpha_t^{min}).$
- Step 6: if $(F(x_1) < F(x_2))$ then, $\alpha_t^{max} = x_1$, $x_1 = x_2$ and x_2 : $= \alpha_t^{max} - \eta(\alpha_t^{max} - \alpha_t^{min})$.
- Step 7: Let t: = t + 1 and return to Step 1.

Experiments

Regression/Features		DISCOMAX
Linear Regression (LR)	0.1885 (0.0332)	$0.1514\ (0.0321)$
Random Forest (RF)	0.1509 (0.0376)	$0.0874 \ (0.0352)$
Node Harvest (NH)	` '	$0.1189 \ (0.0344)$
Support Vect. Reg. (SVR)	0.1686 (0.0364)	$0.0826 \ (0.0349)$

Table 1: Boston Housing: Cross Validation RMSE (SD)

Regression/Features	Original	DISCOMAX
Linear Regression (LR)	2.5369 (0.3352)	2.0721 (0.3837)
Random Forest (RF)	1.8658 (0.3984)	$0.8687 \ (0.3856)$
	2.3570 (0.4171)	
Support Vect. Reg. (SVR)	1.9013 (0.3761)	$0.8572 \ (0.3883)$
T 0 F F(C' ·		

Table 2: Energy Efficiency, Univ. of Oxford: Cross Validation RMSE (SD)

Regression/Features		DISCOMA	
Linear Regression (LR)	2.1064 (0.1258)		•
Random Forest (RF)	2.0914 (0.1326)	1.6537	(0.1322)
Node Harvest (NH)	2.2514 (0.1608)	1.5752 ((0.1415)
Support Vect. Reg. (SVR)	2.1752 (0.1423)	1.4960 ((0.1404)

Table 3: Wind Speed: Cross Validation RMSE (SD)

Regression/Features	Original	DISCOMA	X
Linear Regression (LR)	10.6523 (0.4901)	5.0951 (0.40	063)
Random Forest (RF)	6.1548(0.5449)	6.1306 (0.386)	
Node Harvest (NH)	9.1833 (0.5203)	7.7326 ($\overline{(0.3217)}$
Support Vect. Reg. (SVR)	6.2134 (0.5123)	4.5178 ((0.4053)

Table 4: Compressive Strength: Cross Validation RMSE (SD)

Figure 1: α_t versus DCorr. Figure 1: C versus DCorr.

Conclusion

- We observe that the features learnt from DISCOMAX improve the cross-validation error in comparison to using the original features.
- We also observe the concave nature of distance correlation with respect parameter α_t (Figure 1).
- We also observe as expected, increasing C regularizes the maximum distance correlation achieved for a fixed number of iterations (Figure 2).

References

- [1] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, "Measuring and Testing Dependence by Correlation of Distances," The annals of statistics, vol. 35, pp. 2769–2794, Dec. 2007.
- [2] A. Zhang, "Quadratic Fractional Programming Problems with Quadratic Constraints," Feb. 2008.
- [3] K. Lange, D. R. Hunter, and I. Yang, "Optimization Transfer Using Surrogate Objective Functions," Journal of Computational and Graphical Statistics, vol. 9, p. 1, Mar. 2000.
- [4] Y. Zhang, R. Tapia, and L. Velazquez, "On Convergence of Minimization Methods: Attraction, Repulsion, and Selection," Journal of Optimization Theory and Applications, vol. 107, no. 3, pp. 529–546, 2000.

Contact Information

Email: praneeth.vepakomma@publicengines.com, {cjtonde,elgammal}@cs.rutgers.edu