Uncertainty and Error Propagation

Chapter 8

Last week: Features

- Features are a smart way to reduce data coming from sensors
- Features are task-relevant high-level information
- Least-squares gives optimal solutions
- RANSAC deals with outliers
- Feature extraction is an optimization problem with a probabilistic outcome

$$S_{r,\alpha} = \sum_{i} d_i^2 = \sum_{i} (\rho_i \cos(\theta_i - \alpha) - r)^2$$

Topics in this class so far...

<u>Perception</u>

- Forward Kinematics (Odometry)
- Sensors for position, velocity and acceleration
- Feature extraction

Reasoning

- Inverse Kinematics
- Path planning

Probabilistic

Deterministic

Uncertainty: Odometry

- Sources
 - Wheel-slip
 - Timing problems(during integration)
 - Neglecting true dynamics

Uncertainty: Ultrasound

- ToF measurement error
- Multi-path reflections
- Material properties

Uncertainty: Feature extraction

- Sensor noise propagates into least-squares solution
- Feature extraction itself probabilistic

One of many possible solutions returned by RANSAC

Today

- How to formally describe uncertainty
 - Random variables, Probability Density Functions
- How to combine different random processes
 - Convolution
- How uncertainty propagates from measurement to feature
 - Error propagation

Random Variable

- Eyes on a die
- Sum of eyes on two dice
- Distance to the wall
- Position on a map
- Reading from a light sensor
- In the kitchen (yes/no)

Samples of a random variable are called variates

Example: Throwing dice

- One die:4,5,1,3,2,4,5,2,2,6,7,8,...
- Each variate has a probability of 1/6
- Uniform distribution
- What's the distribution of the sum of two dice?

Sum of two probability distributions

$$Z = X + Y$$
$$X = k$$
$$Y = z - k$$

$$P(Z=z) = \sum_{k=-\infty}^{\infty} P(X=k)P(Y=z-k)$$

$$P(Z) = P(X) \star P(Y)$$

The distribution of the sum of two random variables is the convolution of their distributions.

The Gaussian ("Normal") Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

2D Gaussian Distribution

How does uncertainty propagate?

Error Propagation Law

- Sometimes random variates are combinations of others
- Example: x, y and theta result from wheel slip (two random variates)
- If the PDFs are Gaussian, their variances add up
- Intuition: weigh each component with their variance

Error propagation

- Random variable Y is a function of random variable X y = f(x)
- New variance $\sigma_y^2 = \frac{\partial df}{\partial x}^2 \sigma_x^2$
- Weighed by the gradient with respect to X
- Measure of how important a change in X is to Y
- Multi-input, Multi-output leads to covariance matrices $\Sigma^{Y} = J\Sigma^{X}J^{T}$

Example: Odometry

1. Forward Kinematics (maps wheel slip to pose)

$$\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$$

$$\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2} \quad \Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$f(x, y, \theta, \Delta s_r, \Delta s_l) = [x, y, \theta]^T + [\Delta x]$$

$$\Delta y \qquad \Delta \theta]^T$$

2. Error update

$$\Sigma_{p'} = \nabla_p f \Sigma_p \nabla_p f^t + \nabla_{\Delta_{r,l}} f \Sigma_\Delta \nabla_{\Delta_{r,l}} f^T$$

Component from Additional Motion wheel-slip

Example: Odometry

$$\Delta x = \Delta s cos(\theta + \Delta \theta/2)$$

$$\Delta y = \Delta s s in(\theta + \Delta \theta/2)$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2}$$

3. Partial derivatives of kinematics with respect to pose $\begin{bmatrix} 1 & 0 & -\Delta ssin(\theta + \Delta\theta/2) \end{bmatrix}$

$$\nabla_p f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta ssin(\theta + \Delta \theta/2) \\ 0 & 1 & \Delta scos(\theta + \Delta \theta/2) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\nabla_{\Delta_{r,l}} f = \begin{bmatrix} \frac{1}{2} \cos(\theta + \Delta\theta/2) & \frac{1}{2} \cos(\theta + \Delta\theta/2) \\ \frac{1}{2} \sin(\theta + \Delta\theta/2) & \frac{1}{2} \cos(\theta + \Delta\theta/2) \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$\Sigma_{p'} = \nabla_p f \Sigma_p \nabla_p f^t + \nabla_{\Delta_{r,l}} f \Sigma_\Delta \nabla_{\Delta_{r,l}} f^T$$

$$\Sigma_{\Delta} = \begin{bmatrix} k_r | \Delta s_r | & 0\\ 0 & k_l | \Delta s_l | \end{bmatrix}$$

Wheel-slip covariance matrix

Demo: Odometry error

Summary

- Most variables describing a robot's state are random variables
- Variates of a random variable are drawn from Probability Density Functions (PDF)
- A common, because convenient, PDF is the Gaussian Distribution defined by its mean and variance
- For Gaussians, variances add up and are weighed by the impact they have on the combined random variable ("Error Propagation Law")