Задачи за задължителна самоподготовка

ПО

Структури от данни и програмиране Привеждане на рекурсивни решения към решения със стек

email: kalin@fmi.uni-sofia.bg 17 октомври 2017 г.

<u>Упътване</u>:Решете задачите с рекурсия и след това преобразувайте решението в решение със стек.

1. (*)Да се дефинира функция за намиране на стойността на полинома на Ермит Hn(x) (х е реална променлива, а п неотрицателна цяла променлива), дефиниран по следния начин:

$$H_0(x)=1$$
 $H_1(x)=2x$ $H_n(x)=2xH_{n-1}(x)+2(n-1)H_{n-2}(x), n>1,$ за дадени n и x с използване на стек.

2. Нека е дадена абстрактна шахматна дъска с размери $n \times n$, $4 \le n \le 8$ и число k, $0 \le k \le n$. Казваме, че разположени на дъската k коня образуват "валидна конфигурация", ако никоя фигура не е поставена на поле, което се "бие" от друга фигура според съответните шахматни правила.

Да се дефинира клас KnightConfig, представящ "конфигуратор" на шахматни коне. Конструкторът на класа инициализира конфигуратора с числата n и k. Класът позволява "обхождането" една по една на всички валидни конфигурации за дадените параметри,

по подобие на **forward** итератор на структура от данни. Класът да притежава следните методи:

• void KnightConfig::printCurrentConfig(): Отпечатва текущо намерената конфигурация. Пример за отпечатана конфигурация с n=5, k=2:

_ _ H _ _ _ _ H _ _ _ _ _ H

- void KnightConfig::findNextConfig(): Намира следваща конфигурация.
- bool KnightConfig::noMoreConfigs(): Показва дали всички възможни конфигурации са вече изчерпани.
- 3. Да се реши задачата за Ханойските кули с използване на стек. Да се дефинира клас HanoyPlayer със следните методи:
 - Конструктор с параметър, указващ броя дискове върху лявото колче за началното състояние на играта.
 - Metog bool final(), който показва дали играта е достигнала финанлно състояние (т.е. всички дискове са на дясното колче).
 - Meтод makeMove(), който извършва един ход от играта.
 - Metog printBoard(), който отпечатва текущото състояние на игровата дъска, например по следния начин:

2 3 1 5 * 4

На примера е изобразено състояние на играта, при което на лявото колче има три диска - с размери 5, 3 и 2, на средното колче няма дискове, а на дясното има два диска - с размери 4 и 1.