Skriti markovski modeli v analizi finančnih časovnih vrst

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

26. avgust 2019

Martin Praček Mentor: izr. prof. dr. Damjan Škulj

Markovska lastnost

Definicija

Naj bo $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_s)_{0 \leq s})$ verjetnostni prostor s filtracijo za neko urejeno množico I. Naj bo (S, \mathcal{S}) merljiv prostor. Na (S, \mathcal{S}) merljiv slučajni proces $X(X_t)_{t \in I}$, ki je prilagojen na filtracijo, ima markovsko lastnost, če za vsak $A \in \mathcal{S}$ in vsak par $s, t \in I$, kjer velja s < t velja

$$\mathbb{P}(X_t \in A \mid \mathcal{F}_s) = \mathbb{P}(X_t \in A \mid X_s)$$

Tabela: Razdelitev markovskih procesov

	V celoti opazovan	Le delno opazovan
Avtonomen	Markovska veriga	Skriti markovski model
Kontorliran	Markovski odločitveni proces	Delno opazovan proces

Primer

$$X \sim \begin{pmatrix} -1 & 0 & 1\\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

$$S_n = \sum_{t=1}^n X_t$$

$$P(S_{11} = 3) = P(S_{10} + X_{11} = 3 | S_{10} = 3) =$$

$$P(X_{11} = 0) = P(X = 0) = 1/3$$

.

Skriti markovski model

Skriti markovski model je statistični markovski model, kjer predpostavljamo, da je modelirani sistem markovski proces s skritimi stanji. Gre torej za tip modela, kjer lahko vidimo le signal.

- Stanja so neznana
- Dinamična Bayesova mreža
- Bayesova statistika

Zgodovina

Zgodovina

- Matematična teorija komunikacije
- EM-algoritem
- Stratonovič
- Viterbi
- Baum-Welch
- James Hamilton

Zahteve

- Markovska lastnost
- lacktriangle Enakomerno porazdeljeni časi signalov O_t , ki jih poda resnični svet
- Sistem ima N stanj, vsako določa slučajna spremenjivka S

- Slučajnih spremenljivk skoraj v nobenem času ne poznamo, poznamo pa slučajni proces Q, ki predstavlja signale
- Porazdelitveni zakon vsakega stanja i označimo z $b_i(x)$
- lacktriangle Vektor začetnih stanj je π
- Prehodna matrika A, ki je neodvisna od časa

Porazdelitveni zakon

- Gaussova mešanica
- $\bullet b_i = \sum_{j=1}^M c_{ij} N(x; \mu_j, \sigma_j^2)$
- Število porazdelitev M
- Matrika Γ , μ_{ij} predstavlja pričakovano vrednost porazdelitve j v stanju i
- Matrika Σ , kjer σ_{ij} predstavlja varianco porazdelitve j v stanju i
- Matrika C, koeficienti c_{ii} iz Gaussove mešanice

Generiranje poti v skritem markovskem modelu

$$O = (O_1, \ldots, O_T)$$

$$\lambda = (\Pi, A, C, \Gamma, \Sigma)$$

- $P(O|\lambda)$
- Začetno stanje

Uporaba

- Biologija
- Procesiranje govora

Časovne vrste

Definicija

Časovna vrsta množica opazovanj x_t , vsako opazovano ob časih t znotraj nekega časovnega intervala.

Definicija¹

Model časovne vrste za opazovane podatke x_t je slučajni proces X_t , kjer velja, da so x_t realizacije tega slučajnega procesa v časih t.

Definicija

Finančna časovna vrsta je časovna vrsta, kjer so opazovanja x_t vrednosti finančnega instrumenta v času t.

Posebnosti

- Normalna porazdelitev donosov
- Hipoteza o učinkovitem trgu

$$-1 = \frac{0 - P_{t-1}}{P_{t-1}} \le R_t$$

Uporaba skritih markovskih modelov v finančnih časovnih vrstah

- Zaporedje cen O
- Finančna optimizacija
- Brownovo gibanje

Problem izbire portfelja

- Kapital M
- N vrednostnih papirjev
- Vsak papir ima donos R_i

$$R_x = \sum_{j=1}^N x_j R_j$$

- d zahtevan donos
- lacksquare α stopnja zavrnitve

min
$$CVaR_{\alpha}(R_x)$$

p.p. $E(R_x) \ge d$

Praktični primer

- Asimetrija v levo
- Tesla Inc.

Slika: Cena delnice Tesla, Inc.

$$\begin{bmatrix} 0.334 & 0 & 0.666 \\ 0 & 1 & 0 \\ 0.001 & 0 & 0.999 \end{bmatrix}$$

Slika: Verjetnosti prehoda med stanji

Slika: Stanja na območju treninga

Slika: Stanja v prihodnosti

Zaključek

V svoji seminarski nalogi sem opisal delovanje skritih markovskih modelov, pri čemer sem se osredotočil na finančne časovne vrste. Opisal sem osnove teorije in modelacije ter pripravil lastni model.

Zahvala

Z

ahvalil bi se vsem, ki so mi pomagali na poti do diplome. Svojim stašem, bratu, sestrama, Neži, vsem profesorjem in asistentom na Fakulteti za matematiko in fiziko ter še posebej profesorju doktorju Damjanu Škulju.

Viri

- D. Roman, G. Mitra in N. Spagnolo, *Hidden Markov models for financial optimization problems*, IMA Journal of Management Mathematics **21** (2010) 111–129.
- I.L. MacDonald in W. Zucchini, *Hidden Markov and Other Models for Discrete- valued Time Series*, Chapman & Hall/CRC Monographs on Statistics & Applied Probability **70**, Chapman & Hall, London, 1997.
- R.S. Mamon in R.J. Elliott *Hidden Markov Models in Finance*, International Series in Operations Research & Management Science **104**, Springer, New York, 2007.

Viri

P.J. Brockwell. R.A. Davis Introduction to Time Series and Forecasting, 2nd edition, Springer, 2002.

B.J. Yoon, Hidden Markov Models and their Applications in Biological Sequence Analysis, v: Current genomics, 10,6(2009):402-415, [29. 7. 2019], dostopno na https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC2766791/.

A Hidden Markov Model method, capable of predicting and discriminating β -barrel outer membrane proteins, BMC Bioinformatics 5 (2004)

Viri

P.G. Bagos, T.D. Liakopoulos, I.C Spyropoulos, S.J. Hamodrakas, A Hidden Markov Model method, capable of predicting and discriminating β -barrel outer membrane proteins, v. BMC Bioinformatics, 5(2004), [30. 7. 2019], dostopno na https://bmcbioinformatics. biomedcentral.com/articles/10.1186/1471-2105-5-29.

P. Dymarski, Hidden Markov Models, Theory and Application, InTech, Rijeka, 2011