Considerem l'equació bàsica

$$B(n) = I(n) - C(n)$$

on I(n) i C(n) representen els ingressos i costos respectivament en funció del nombre n d'unitats venudes i B(n) són els beneficis. Els costos es calculen en funció dels costos fixos  $c_f$  i els costos variables  $c_v$  que depenen del nombre d'unitats produïdes. En l'exercici  $c_f=45000$  i  $c_v=34$  per unitat. Podem suposar que els ingressos seran

$$I(n) = p \cdot n$$

amb p el preu individual de cada unitat venuda.

Llavors en l'exercici tenim

$$B(n) = p \cdot n - (45000 + 34n)$$

calculem a partir de quin valor s'obtenen beneficis demanant B(n) = 0

$$0 = p \cdot n - (45000 + 34n) \to p = \frac{45000 + 34n}{n}$$

segons l'enunciat volem que això passi a partir de 2500 unitats venudes, llavors

$$p = \frac{45000 + 34 \cdot 2500}{2500} = 35,8 \in$$

Hem de vendre unitats senceres, de manera que la conclusió és que obtindrem beneficis establint el preu per unitat a  $36 \in$ 

# Exercici 141

Amb les dades de l'enunciat calculem quina proporció sobre el total representen les que han fallat abans de dos anys

$$\frac{94}{1000} = 0.094 = 9,4\%$$

per tant, les que sí segueixen funcionant en aquest temps són

$$(100 - 9, 4)\% = 90,6\%$$

La capacitat de càrrega c es calcula com la diferència entre el pes màxim autoritzat (PMA) i la tara, que és el pes en buit del vehicle, llavors

$$c = 14500 - 10200 = 4300$$

per saber el nombre de viatges dividim la càrrega total a transportar entre c

$$\#\,viatges = \frac{50 \cdot 280}{4300} = 3,2556$$

és clar que necessitem 4 viatges.

#### Exercici 143

La velocitat de translació val

$$0, 2\frac{mm}{s} \cdot \frac{60 \, s}{1 \, min} = 12 \, \frac{mm}{min}$$

de forma que en un minut ha recorregut  $12\,mm$ . En aquest temps l'eina ha donat 120 voltes, per tant la distància que hi ha entre volta i volta es pot calcular com

$$\frac{12\,mm}{120\,voltes} = 0, 1\,mm/volta$$

#### Exercici 144

El valor més gran de la diferència correspon a

$$1030 + 0.3 - (990 - 0.3) + 0.1 = 40 + 0.7 = 40.7 \,hPa$$

i el més petit a

$$1030 - 0, 3 - (990 + 0, 3) - 0, 1 = 40 - 0, 7 = 30, 6 \, hPa$$

### Exercici 145

De les dades de l'enunciat i sabent que, al ser els processos seqüencials, hem de multiplicar els percentatges, podem escriure,

$$\frac{97}{100} \cdot \frac{x}{100} = \frac{93,12}{100}$$

d'on

$$x = \frac{93,12}{97} = 0,96$$

com aquest és el percentatge dels correctes, els rebutjats representen el 4%

# Exercici 146

Recordant l'exercici 140 podem escriure

$$B(n) = I(n) - C(n) = p \cdot n - (c_f + c_v \cdot n)$$

llavors, fent servir els valors proposats per l'enunciat i recordant que la condició que determina quan es comencen a obtenir beneficis és B(n) = 0

$$0 = 2,50 \cdot 800 - (c_f + 1,50 \cdot 800)$$

d'on

$$c_f = 2,50 \cdot 800 - 1,50 \cdot 800 = 800 \in$$

Exercici147 De les 1000 peces, acaben passant satisfactòriament els dos

processos

$$1000 \cdot \frac{95}{100} \cdot \frac{98}{100} = 931$$

llavors, rebutjades en queden

$$1000 - 931 = 69$$

Exercici 148 La taxa de qualitat global es calcula com

$$\frac{89}{100} \cdot \frac{95}{100} \cdot \frac{97}{100} = 82,01\%$$

Exercici 149 Les resistències tenen un valor

$$2200 \pm 5\% = 2200 \pm 110 \,\Omega$$

$$5500 \pm 5\% = 5500 \pm 165 \Omega$$

de forma que la màxima desviació en la associació en serie serà de  $110+165=275\,\Omega$  per tant

$$R_{eq} = 5500 \pm 275 \,\Omega$$

### Exercici 150

En un segon l'eina ha recorregut 4 mm, com la distància entre voltes és p = 0, 5 mm sabem que en un segon es fan

$$\frac{4}{0.5} = 8 \cdot \frac{voltes}{s} \cdot \frac{60 \, s}{1 \, min} = 480 \, \frac{voltes}{min}$$

### Exercici 151

a) A cada torn cal subministrar una quantitat suplementària de peces ja que una part es rebutgen. Si anomenem x la quantitat de peces per torn que cal subministrar, podem escriure

$$x - x \cdot \frac{10}{100} = 600 \rightarrow x(1 - 0, 1) = 600 \rightarrow x = \frac{600}{0.9} = 666, 67$$

cal subministrar 667 peces per torn, és a dir en total 1334 peces.

**b)** Si se'n subministren 960, a cada torn li toquen 480 peces. Llavors el percentatge de rebuig és ara

$$\frac{24}{480} = 0,05 = 5\%$$

c) Abans de la millora es rebutjaven 67 peces. Després només 24, la diferència és de 67 - 24 = 43, a 20 segons cada peça

$$43 \cdot 20 = 860 \, s = 14,33 \, min$$

La velocitat de translació val

$$1\frac{mm}{s} \cdot \frac{60\,s}{1\,min} = 60\,\frac{mm}{min}$$

de forma que en un minut ha recorregut  $60 \, mm$ . En aquest temps l'eina ha donat 120 voltes, per tant la distància que hi ha entre volta i volta es pot calcular com

$$\frac{60\,mm}{120\,voltes} = 0.5\,mm/volta$$

# Exercici 153

La càrrega útil del vehicle és 14500-10200=4300 llavors, el nombre de contenidors que pot portar es calcula com

$$\frac{4300}{1700} = 2,53$$

és a dir que només en pot portar 2.

Exercici 154 Calculem el pas a partir de la densitat i els volums exterior i interior

$$P = mg = \rho Vg = \rho (V_{ext} - V_{int})g = 0.05 \cdot (4^3 - 2^3) \cdot 9.8 = 27.44 \, N$$

# Exercici 155

Hem de calcular el 80% de 60

$$60 \cdot \frac{80}{100} = 48$$

# Exercici 156

Ara hem de calcular quin tant per cent representa 180 respecte de 240

$$\frac{180}{240} = 0,75 = 75\%$$

Recordem de l'exercici 140 l'expressió

$$B(n) = I(n) - C(n) = p \cdot n - (c_f - c_v \cdot n)$$

Llavors en l'exercici tenim

$$B(n) = p \cdot n - (80000 + 120n)$$

calculem a partir de quin valor s'obtenen beneficis demanant B(n) = 0

$$0 = p \cdot n - (80000 + 120n) \to p = \frac{80000 + 120n}{n}$$

segons l'enunciat volem que això passi a partir de 200 unitats venudes, llavors

$$p = \frac{80000 + 120 \cdot 200}{200} = 520 \in$$

Hem de vendre unitats senceres, de manera que la conclusió és que obtindrem beneficis establint el preu per unitat a  $36 \in$ 

# Exercici 158

És interessant aprofitar-la i l'equivalència és

$$\frac{10\,KJ}{35\,KJ} = 0,2857$$

### Exercici 159

A partir de la velocitat angular i amb les dades de l'exercici,

$$900 \frac{rev}{s} \cdot \frac{1 \min}{60 s} \cdot \frac{0.1 mm}{1 rev} = 1.5 \frac{mm}{s}$$

# Exercici 160

Dividint el pes total a transportar entre la capacitat del muntacàrregues

$$\frac{3800}{1400} = 2,714$$

per tant calen 3 viatges.

# Exercici 161

Recordem de l'exercici 140 l'expressió

$$B(n) = I(n) - C(n) = p \cdot n - (c_f - c_v \cdot n)$$

Amb l'informació de l'exercici, B(60) = 0 i C(60) = 1080 llavors

$$0 = p \cdot 60 - 1080 \to p = \frac{1080}{60} = 18 \in$$

Ara, quan en ven 120

$$B(120) = 18 \cdot 120 - 1080 = 1080 \in$$

# Exercici 162

De forma semblant a l'exercici anterior

$$B(n) = I(n) - C(n) = p \cdot n - (c_f - c_v \cdot n)$$

i

$$0 = p \cdot 70 - 1180 \to p = \frac{1180}{70} = 16,86 \in$$

# Exercici 163

Per trobar el percentatge total correcte fem

$$\frac{96}{100} \cdot \frac{97}{100} = 0,9312 = 93,12\%$$

# Exercici 164

El percentatge d'aigua que correspon a un ús sostenible és

$$\frac{175}{500} = 0,35 = 35\%$$

per tant, si la demanda s'incrementa en 175  $hm^3$ , caldrà que els provinents de recursos sostenibles siguin

$$\frac{0,35}{100} \cdot 175 = 61,25 \, hm^3$$

# Exercici 165

Tenim que

$$B(n) = I(n) - C(n) = p \cdot n - (c_f + c_v \cdot n)$$

la condició de cobrir costos és B(n) = 0, llavors

$$0 = 3, 5 \cdot n - (2400 + 2, 3 \cdot n) \to n = \frac{2400}{3, 5 - 2, 3} = 2000$$

és a dir que ha de fabricar 2000 tamborets.

### Exercici 166

A partir de e = vt podem calcular la velocitat de la cinta

$$24 = v \cdot 10 \rightarrow v = \frac{24}{10} = 2, 4 \frac{m}{min}$$

ara

$$2, 4\frac{m}{min} \cdot \frac{10^3 \, mm}{1 \, m} \cdot \frac{1 \, min}{60 \, s} = 40 \, \frac{mm}{s}$$

# Exercici 167

El nombre de viatges que es fa en una hora és

$$\frac{60}{5} = 12$$

i com a cada viatge es transporten  $2 \cdot 90 = 180$  passatgers, en una hora es transportaran  $180 \cdot 12 = 2160$  passatgers.

### Exercici 168

El temps necessari per mecanitzar una peça és

$$2,5+25+40+2,5=70 s$$

i en una hora es aquest temps hi és

$$\frac{3600}{70} = 51,43 \, cops$$

llavors es poden mecanitzar 51 peces per hora.

# Exercici 169

Si de 480 màquines 450 segueixen funcionant correctament al cap de 1200 hores, la seva fiabilitat a aquest temps és

$$\frac{450}{480} = 0,9375 = 93,75\%$$

# Exercici 170

a) A partir de la geometria del dibuix

$$L = L_1 + L_3 + \sqrt{L_1^2 + L_3^2} = 0, 8 + 0, 5 + \sqrt{0, 8^2 + 0, 5^2} = 2,243m$$

En quant al temps que cal per tallar la planxa

$$L = v_{tall} \cdot t \to t = \frac{L}{v_{tall}} = \frac{2,243}{0,012} = 186,9 \, s$$

b) Per calcular el percentatge d de material que es llença

$$d = \frac{A_{\square} - A_{\triangle}}{A_{\square}} = \frac{L_2 L_4 - \frac{L_1 L_3}{2}}{L_2 L_4} = \frac{1 \cdot 0, 7 - \frac{0, 8 \cdot 0, 5}{2}}{1 \cdot 0, 7} = 0,7143 = 71,43\%$$

c) Per calcular la massa

$$m = \rho V = \rho Ae = \rho \cdot \frac{L_1 L_3}{2} \cdot e = 7800 \cdot \frac{0, 8 \cdot 0, 5}{2} \cdot 0,004 = 6,24 \, kg$$

a) Calculem l'àrea (subdividim el trapeci en un rectangle i un triangle) i el perímetre de la figura

$$S = L_2 L_3 + \frac{(L_1 - L_2)L_3}{2} = 0,22 m^2$$

$$P = L_1 + L_2 + L_3 + \sqrt{(L_1 - L_2)^2 + L_3^2} = 2 m$$

Ara podem calcular el preu de venda

$$v = c_1 S + c_2 P = 8 \cdot 0, 22 + 0, 5 \cdot 2 = 2, 76 \in$$

# Exercici 172

Recordem de l'exercici 140 l'expressió

$$B(n) = I(n) - C(n) = p \cdot n - (c_f - c_v \cdot n)$$

Amb l'informació de l'exercici, B(80) = 0 i C(80) = 1600, calculem el preu a que es venen aquestes 80 unitats,

$$0 = p \cdot 80 - 1600 \to p = \frac{1600}{80} = 20 \in$$

Ara, quan els tots a aquest preu,

$$B(150) = 20 \cdot 150 - 1600 = 1400 \in$$

### Exercici 173

Fent servir les idees de l'exercici anterior, plantegem l'equació

$$3000 = p \cdot 50 + 1400 \to p = \frac{3000 - 1400}{50} = 32 \in$$

# Exercici 174

a)

A l'enunciat no està clar, però suposem que les dimensions de la planxa de la que es retalla el marc excedien amb escreix les del marc. D'una altra manera potser ens podíem haver estalviar algun tall (no el de les cantonades).

$$L_{ext} = 2b + 2h + 2\pi r_{ext} = 2 \cdot 0, 4 + 2 \cdot 0, 2 + 2\pi \cdot 0, 1 = 1,82832 m$$
  
$$L_{int} = 2b + 2h + 2\pi r_{int} = 2 \cdot 0, 4 + 2 \cdot 0, 2 + 2\pi \cdot 0, 05 = 1,51416 m$$

b)

A partir de l'equació L=vt podem calcular

$$t = \frac{L}{v} = \frac{L_{ext} + L_{int}}{v} = \frac{1,182832 + 1,51416}{5} = 0,5393 \, m/s$$

**c**)

Per calcular la massa del marc hem de saber primer la seva àrea, considerem els rectangles d'àrea

$$A = 2b(r_{ext} - r_{int}) + 2h(r_{ext} - r_{int})$$

$$= 2(r_{ext} - r_{int})(b + h)$$

$$= 2(0, 1 - 0, 05)(0, 4 + 0, 2)$$

$$= 0,06 m^{2}$$

i el de l'anella que es pot formar amb les cantonades sobreres

$$A' = \pi r_{ext}^2 - \pi r_{int}^2 = \pi (r_{ext}^2 - r_{int}^2) = \pi \cdot (0, 1^2 - 0, 05^2) = 0,023562 \, m^2$$

llavors

$$m = \rho V = \rho (A + A')e = 8030 \cdot (0,06 + 0,023562) \cdot 0,01 = 6,71 \, kg$$

# Exercici 175

Calculem el 0,2% de 450

$$\frac{0,2}{100} \cdot 450 = 0,9$$

Llavors, l'error màxim serà

$$0.9 + 1 \rightarrow \pm 1.9 \, mV$$

# Exercici 176

A partir de

$$e = vt = 0.5 \cdot 36000 = 1800 \, m$$

i com en 1 metre hi caben 3 persones  $1800 \cdot 3 = 5400$  persones.