МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт кибернетики Кафедра проблем управления

Лабораторная работа №1

Тема: «Отладка программного обеспечения робототехнических систем с использованием виртуального моделирования»

Выполнил: Студент 4-го курса группы КРБО-01-17 Эсаулов И. Д.

Преподаватель:

Морозов А.А

Цель работы

Получение навыков моделирования объекта управления в промышленных системах автоматического управления и создание функциональных блоков.

Задание

Создать виртуальную систему управления (рис. 1 .1), включающую: модель объекта управления (рис. 1 .2), ПИ-регулятор (рис. 1 .3), сумматор и обратную связь. Передаточная функция объекта:

$$\Box = 1 / (k_e * (T_m * s + 1))$$

Рис. 1 - Структура системы управления

Рис. 2 - Структура объекта управления

Рис. 3 - Структура ПИ-регулятора

Отчет по выполненному заданию

1 Часть

Создается проект в AS. Собирается схема из стандартных модулей для работы с учебным стендом. Конфигурация оборудования представлена на рисунке 4.

Рис. 4 - Конфигурация оборудования

В библиотеке инициализируются 3 функциональных блока с названиями FB_Motor, FB_Regulator и FB_Integrator (рис. 5).

Рис. 5 - Функциональные блоки

Функциональный блок FB_Integrator моделирует поведение Интегратора. Его основная задача заключается в накоплении сумм разностей входного и выходного значений в соответствии с шагом расчета. На вход принимается значения интегрирующего звена, роль которого выполняет блок FB Motor.

FB_Motor является основным элементом в системе, который имитирует работу двигателя постоянного тока. На вход модели подается напряжение, на выходе блок выдает частоту вращения двигателя.

Блок FB_Regulator соответствует модели ПИ-регулятора. Он обеспечивает ограничение напряжения, поступающего на двигатель, в целях обеспечения стабильности его работы. На вход подается значение рассогласования между задающим воздействием и реальной скоростью вращения вала ДПТ. На выходе значение напряжения, подаваемое на вход ДПТ.

2 Часть

В созданных функциональных блоках инициализируются переменные для дальнейшего использования последних в программном коде, который фактически имитирует поведение каждого из задуманных по заданию элемента двигателя постоянного тока (рис. 6).

Рис. 6 - Переменные функциональных блоков

В таблицах 1,2 и 3 находится пояснение значений инициализированных переменных.

Таблица 1 - Переменные FB Integrator

Конфигурация	Имя	Тип данных	Описание		
вход	in	REAL	вход интегрирующего звена		
выход	out	REAL	выход интегрирующего звена		
внутреннее состояние	dt	REAL	шаг расчета [с]		

Таблица 2 - Переменные FB_Motor

Конфигурация	Имя	Тип данных	Описание
вход	u	REAL	входное напряжение [В]
выход	W	REAL	частота вращения [об/мин]
выход	phi	REAL	положение [рад]
внутреннее состояние	integrator	FB _Integrator	интегратор
внутреннее состояние	Tm	REAL	электромеханическая постоянная времени [с]
внутреннее состояние	ke	REAL	постоянная ЭДС двигателя [В•мин/об]
внутреннее состояние	dt	REAL	шаг расчета [с]

Таблица 3 - Переменные FB_Regulator

Конфигурация	Имя	Тип	Описание
		данных	
вход	e	REAL	рассогласование между задающим
			воздействием и реальной скоростью
			вращения вала ДПТ [об/мин]
выход	u	REAL	напряжение, подаваемое на вход ДПТ [В]
внутреннее	k_p	REAL	пропорциональный коэффициент
состояние			регулятора
внутреннее	k_i	REAL	интегральный коэффициент регулятора
состояние			
внутреннее	integrator	FB_Integr	интегратор
состояние		ator	
внутреннее	iyOld	REAL	хранение предыдущего значения схемы
состояние			противонакопления

внутреннее состояние	max_ab s_value	REAL	граница блока ограничения [В]
внутреннее состояние	dt	REAL	шаг расчета [с]

С помощью формул (1) Метода Обратной Задачи Динамики, приведенных в методичке, производится расчет значения коэффициентов регулятора.

$$\Box p=1/(T_{\mathcal{K}}*\Box*\Box o) \Longrightarrow \Box p=(T_{m}*s+1)/(T_{\mathcal{K}}\cdot\Box\cdot(1/k_{e}))=$$

$$k_{e}*(\Box|\Box o|*\Box*\Box+1)/(T_{\mathcal{K}}*\Box)=(k_{e}*T_{m})/T_{\mathcal{K}}+k_{e}/(T_{\mathcal{K}}\cdot\Box)$$
 (1)

Из формул выше следует, что:

$$K_{\Pi} = k_e * T_m / T_{\mathcal{K}}, \tag{2}$$

$$\Box u = ke^*T_{\mathcal{K}}.$$
 (3)

В расчете используются следующие коэффициенты:

```
dt = 0.002 [c];

Ke =2 [В*мин/об];

Tm = 0.4 [c];

Т_ж = 0,1 [c];

шаг расчета регулятора =0.002 [c];

cnt = 0;

max_abs_value = 60.
```

Коэффициенты регулятора принимают следующие значения:

```
k_p = 8 (пропорциональный коэффициент регулятора); k_i = 20 (интегральный коэффициент регулятора).
```

3 Часть

В директории основной программы задаются постоянные основных созданных функциональных блоков. Также для реализации системы управления вводятся переменные speed (установка по скорости) и enable (активатор). Они используются в процессе управления моделью (рис. 7).

	Туре	& Reference	Retain	Replicable	Value
	FB_Regulator			✓	(0)
fb_motor	FB_Motor			•	(0)
	FB_Motor			✓	(0)
[∅] ♦ speed	REAL			✓	0.0
•	BOOL			✓	FALSE
	REAL			✓	0.0

Рис. 7 - Переменные основной программы

Создано 2 экземпляра мотора, так как необходимо сравнить 2 варианта изменения переменной двигателя с регулятором и без него.

4 Часть

Пишется программа с подачей ступенчатого воздействия на отлаженную систему. Добавляется счетчик counter для реализации алгоритма ступенчатого воздействия. Объединяются функциональные блоки в систему управления. Результаты показателей входного воздействия, или скорости вращения (speed) двигателя без регулятора (fb_motor2) и двигателя с регулятором (fb_motor), снятых средством Trace, представлены на рисунке 8:

Рис. 8 - График изменения уставки по скорости (speed), скорости двигателя с регулятором (fb_motor) и двигателя без регулятора (fb_motor2)

Вывод

В ходе работы были получены навыки использования функциональных блоков и последующего построения объекта управления, моделирующего двигатель постоянного тока. Также были сопоставлены модели управления двигателя с регулятором и без регулятора. Как и ожидалось при использовании регулятора двигатель имеет лучшие параметры перерегулирования по сравнению с обычным прямым управлением.

Листинг программы 1

```
#include <bur/plctypes.h&gt;
#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h&gt;
#endif
void _INIT ProgramInit(void)
enable=1;
count=0;
fb_motor.dt = 0.01;
fb_motor.ke=2;
fb_motor.Tm=0.4;
fb_motor2.dt=0.01;
fb_motor2.ke=2;
fb_motor2.Tm=0.4;
fb_controller.dt=0.01;
fb_controller.k_p=8;
fb_controller.k_i=20;
fb_controller.max_abs_value=24;
}
```

Листинг программы 2

```
#include <bur/plctypes.h&gt;
#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h&gt;
#endif
void _CYCLIC ProgramCyclic(void)
if(enable)
count += 10;
if(count<=5000)
speed=0;
}
else
speed=6;
if(count>=10000)
count=0;
fb_controller.e=speed-fb_motor.w;
fb_motor2.u=speed*fb_motor2.ke;
FB_Regulator(&fb_controller);
fb_motor.u=fb_controller.u*fb_motor.ke;
FB_Motor(&fb_motor);
FB_Motor(&fb_motor2);
}
```

Листинг программы 3:

```
#include <bur/plctypes.h&gt;
#ifdef cplusplus
extern "C"
#endif
#include " MotrContr.h"
#ifdef cplusplus
};
#endif
void FB_Integrator(struct FB_Integrator* inst)
inst->out += inst->in;
#include <bur/plctypes.h&gt;
#ifdef __cplusplus
extern "C"
#endif
#include "MotrContr.h"
#ifdef cplusplus
#endif
void FB_Motor(struct FB_Motor* inst)
inst->integrator.in = (inst->u / inst->ke - inst->w) * inst->dt /
inst->Tm;
FB Integrator(&(inst->integrator));
inst->w = inst->integrator.out;
inst->integrator.in = inst->w * inst->dt;
FB_Integrator(&(inst->integrator));
inst->phi = inst->integrator.out;
#include <bur/plctypes.h&gt;
#ifdef cplusplus
extern "C"
#endif
#include " MotrContr.h"
#ifdef cplusplus
};
#endif
void FB_Regulator(struct FB_Regulator* inst)
inst->integrator.in=inst->e * inst->k_i * inst->dt + inst->iyOld;
FB_Integrator(&(inst->integrator));
inst->e_kp=inst->e*inst->k_p;
```

```
inst->e_kp=(inst->e_kp > inst->max_abs_value || inst->e_kp < - inst-
&gt;max_abs_value)?((inst-&gt;e_kp&gt;0)?inst-&gt;max_abs_value:-inst-
&gt;max_abs_value):inst-&gt;e_kp;
inst-&gt;e_kp+=inst-&gt;integrator.out;
inst-&gt;u=(inst-&gt;e_kp &gt; inst-&gt;max_abs_value || inst-&gt;e_kp &lt; - inst-
&gt;max_abs_value)?((inst-&gt;e_kp&gt;0)?inst-&gt;max_abs_value:-inst-
&gt;max_abs_value):inst-&gt;e_kp;
inst-&gt;iyOld=inst-&gt;u-inst-&gt;e_kp;
}
```

Ссылка на репозиторий

https://github.com/Elllijah/BR_lab1/tree/master