Chair Classification

by Squeeze-and-Excitation Networks (SE-Net)

- Data Preprocess
- SE-Net Introduction
- Model Design
- Model Training
- Test Result
- Conclusion

Data Preprocess

- Rescale (Covert input size to min image size)
- Grayscale (avoid overfitting of colors)

```
1 max=0;w max=0;l min=0;w min=0
for i in os.listdir('./data'):
   for j in os.listdir('./data/'+i):
        path='./data/'+i+'/'+j
        img = cv2.imread(path,cv2.IMREAD GRAYSCALE)
        1 min=img.shape[0];w min=img.shape[0]
        if(img.shape[0]>l max):
            l max=img.shape[0]
        if(img.shape[0]<l min):</pre>
            l min=img.shape[0]
        if(img.shape[1]>w_max):
            w max=img.shape[1]
        if(img.shape[1]<w min):</pre>
            w min=img.shape[1]
print(l max,l min,w max,w min)
                                      Check the min size
 4167 473 4167 473
```

Data Preprocess

Rescale & Grayscale Result

X.shape
(1158, 473, 473, 1)

Data Preprocess

Covert image type to float32 from float64 for computing resource reduction

```
train_images.astype('float32');test_images.astype('float32')
```

Normalization

```
train_images, test_images = train_images / 255.0, test_images / 255.0
```

Categorical of label

Function	Label	Categorical
bench	0	[1, 0, 0, 0]
chair	1	[0, 1, 0, 0]
office_chair	2	[0, 0, 1, 0]
sofa	3	[0, 0, 0, 1]

SE-Net Introduction

Jie Hu¹,

Li Shen²,

¹ Momenta ² University of Oxford

Gang Sun¹

eria, Eroneri, o

SENet: Squeeze-and-Excitation Networks, Jie Hu, Li Shen, Gang Sun

Squeeze

- Shrinking feature maps ∈
 R^{w×h×c2} through spatial
 dimensions (w × h)
- Global distribution of channelwise responses

Excitation

- Learning $W \in \mathbb{R}^{c_2 \times c_2}$ to explicitly model channel-association
- Gating mechanism to produce channel-wise weights

Scale

• Reweighting the feature maps $\in \mathbb{R}^{w \times h \times c_2}$

Step-1: Feature transformation

- ✓ Ftr is the convolutional operator for transformation of X to U.
- ✓ This Ftr can be the residual block or Inception block
- ✓ where V=[v1, v2, ..., vc] is the learnt set of filter kernels.

$$\mathbf{F}_{tr}: \mathbf{X} \to \mathbf{U}, \mathbf{X} \in \mathbb{R}^{H' \times W' \times C'}, \mathbf{U} \in \mathbb{R}^{H \times W \times C}$$

$$\mathbf{u}_c = \mathbf{v}_c * \mathbf{X} = \sum_{s=1}^{C'} \mathbf{v}_c^s * \mathbf{x}^s.$$

Step-2: Squeeze (Global Average Pooling)

- ✓ The transformation output U can be interpreted as a collection of the local descriptors whose statistics are expressive for the whole image.
- ✓ It is proposed to squeeze global spatial information into a channel descriptor.
- ✓ This is achieved by using global average pooling to generate channel-wise statistics.

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j).$$

Step-3: Excitation (Adaptive Recalibration)

- \checkmark where δ is the ReLU function.
- \checkmark A simple gating mechanism using sigmoid activation σ is used.
- ✓ An excitation operation is proposed to fully capture channel-wise dependencies, and to learn a nonlinear and non-mutually-exclusive relationship between channels.
- ✓ As we can see that there are W1 and W2, and the input z is a channel descriptor after global average pooling, there are two fully connected (FC) layers.
- ✓ The bottleneck with two FC layers are formed with dimensionality reduction using reduction ratio r.

$$\frac{2}{r} \sum_{s=1}^{S} N_s \cdot C_s^2$$

 $\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})),$

Step-3: Excitation (Adaptive Recalibration)

- ✓ In particular, we found that setting r=16 achieved a good tradeoff between accuracy and complexity and consequently, we used this value for all experiments.
- ✓ The number of additional parameters introduced depends on r as above where S refers to the number of stages (where each stage refers to the collection of blocks operating on feature maps of a common spatial dimension), Cs denotes the dimension of the output channels and Ns denotes the repeated block number for stage s.
- ✓ The final output of the block is obtained by rescaling the transformation output U with the activations, as shown above.
- ✓ Fscare refers to channel-wise multiplication between the feature map and the scalar Sc

Table 5: Single-crop error rates (%) on the ImageNet validation set and corresponding model sizes for the SE-ResNet-50 architecture at different reduction ratios r. Here original refers to ResNet-50.

Ratio r	top-1 err.	top- 5 err.	model size (MB)
4	23.21	6.63	137
8	23.19	6.64	117
16	23.29	6.62	108
32	23.40	6.77	103
original	24.80	7.48	98

SE-INCEPTION AND SE-RESNET

- ✓ SE block can be added to both Inception and ResNet block easily as SE-Inception and SE-ResNet.
- ✓ Particularly in SE-ResNet, squeeze and excitation both act before summation with the identity branch.

✓ More variants that integrate with ResNeXt, Inception-ResNet, MobileNetV1 and ShuffleNet V1 can be constructed by following the similar schemes.

• Single-Crop Error Rates on ImageNet Validation Set

	orig	inal	re-implementation				SENet	
	top-1 err.	top-5 err.	top-1err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [10]	24.7	7.8	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87
ResNet-101 [10]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [10]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [47]	22.2	-	22.11	5.90	4.24	21.10 _(1.01)	$5.49_{(0.41)}$	4.25
ResNeXt-101 [47]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
VGG-16 [39]	-	-	27.02	8.81	15.47	25.22 _(1.80)	$7.70_{(1.11)}$	15.48
BN-Inception [16]	25.2	7.82	25.38	7.89	2.03	$24.23_{(1.15)}$	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [42]	19.9^{\dagger}	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76

	orig	original re-implementation			re-implementation				Net	
	top-1	top-5	top-1	top-5 MFLOPs Million		top-1	top-5	MFLOPs	Million	
	err.	err.	err.	err.	WILCIS	Parameters	err.	err.	WILCIS	Parameters
MobileNet [13]	29.4	-	29.1	10.1	569	4.2	$25.3_{(3.8)}$	$7.9_{(2.2)}$	572	4.7
ShuffleNet [52]	34.1	-	33.9	13.6	140	1.8	$31.7_{(2.2)}$	$11.7_{(1.9)}$	142	2.4

• ILSVRC 2017 Classification Competition

	224 >	224×224		320 /
				299
	top-1	top-5	top-1	top-5
	err.	err.	err.	err.
ResNet-152 [10]	23.0	6.7	21.3	5.5
ResNet-200 [11]	21.7	5.8	20.1	4.8
Inception-v3 [44]	-	-	21.2	5.6
Inception-v4 [42]	-	-	20.0	5.0
Inception-ResNet-v2 [42]	-	-	19.9	4.9
ResNeXt-101 (64 \times 4d) [47]	20.4	5.3	19.1	4.4
DenseNet-264 [14]	22.15	6.12	-	-
Attention-92 [46]	-	-	19.5	4.8
Very Deep PolyNet [51] †	-	-	18.71	4.25
PyramidNet-200 [8]	20.1	5.4	19.2	4.7
DPN-131 [5]	19.93	5.12	18.55	4.16
SENet-154	18.68	4.47	17.28	3.79
NASNet-A (6@4032) [55] †	-	-	17.3 [‡]	3.8^{\ddagger}
SENet-154 (post-challenge)	-	-	16.88 [‡]	3.58 [‡]

Scene Classification

	top-1 err.	top-5 err.
Places-365-CNN [37]	41.07	11.48
ResNet-152 (ours)	41.15	11.61
SE-ResNet-152	40.37	11.01

Object Detection on COCO

	AP@IoU=0.5	AP
ResNet-50	45.2	25.1
SE-ResNet-50	46.8	26.4
ResNet-101	48.4	27.2
SE-ResNet-101	49.2	27.9

Model Design

Squeeze

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} u_c(i,j).$$

```
def squeeze(init):
    se = GlobalAveragePooling2D()(init)
    return(se)
```

Excitation

$$\mathbf{s} = \mathbf{F}_{ex}(\mathbf{z}, \mathbf{W}) = \sigma(g(\mathbf{z}, \mathbf{W})) = \sigma(\mathbf{W}_2 \delta(\mathbf{W}_1 \mathbf{z})),$$

```
def excitation(init_ratio=16):
    filters = init._keras_shape[-1]
    se = Dense(filters // ratio, activation='relu', use_bias=False)(se)
    se = Dense(filters, activation='sigmoid', use_bias=False)(se)
    return(se)
```

ResNet Block

```
def resnet block(input, filters, k=1, strides=(1, 1)):
    init = input
    channel axis = -1
    x = BatchNormalization(axis=channel axis)(input)
    x = Activation('relu')(x)
    if strides != (1, 1) or init. keras shape[channel_axis] != filters * k:
       init = Conv2D(filters * k, (1, 1), padding='same', kernel initializer='he normal',
                     use bias=False, strides=strides)(x)
    x = Conv2D(filters * k, (3, 3), padding='same', kernel_initializer='he_normal',
              use bias=False, strides=strides)(x)
    x = BatchNormalization(axis=channel axis)(x)
    x = Activation('relu')(x)
    x = Conv2D(filters * k, (3, 3), padding='same', kernel initializer='he normal',
              use bias=False)(x)
    # squeeze and excite block
   x = squeeze_excite_block(x)
   m = add([x, init])
```

Squeeze & Excitation Block


```
def squeeze_excite_block(input, ratio=16):
    init = input
    filters = init._keras_shape[-1]
    se_shape = (1, 1, filters)

se = GlobalAveragePooling2D()(init) # Squeeze: Global Information Embedding
    se = Reshape(se_shape)(se)
    se = Dense(filters // ratio, activation='relu', use_bias=False)(se) # Excite
    se = Dense(filters, activation='sigmoid', use_bias=False)(se)
    x = multiply([init, se])|
    return x
```

return m

Model Design

SE-ResNet

Total params: 9,777,,472

```
def create_se_resnet(classes, img_input, include_top, initial_conv_filters, filters,
                      depth, width, weight_decay, pooling):
   channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    N = list(depth)
   x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, strides=(2, 2),
               kernel_initializer='he_normal', kernel_regularizer=12(weight_decay))(img_input)
   x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
    for i in range(N[0]):
            x = resnet block(x, filters[0], width)
    for k in range(1, len(N)):
            x = resnet block(x, filters[k], width, strides=(2, 2))
   for i in range(N[k] - 1):
            x = resnet block(x, filters[k], width)
   x = BatchNormalization(axis=channel axis)(x)
   x = Activation('relu')(x)
   x = GlobalAveragePooling2D()(x)
   x = Dense(classes, use_bias=False, kernel_regularizer=12(weight_decay),
                  activation='softmax')(x)
    return x
```

model created						
Layer (type)	Output	Shap	2		Param #	Connected to
input_4 (InputLayer)	(None,	473,	473,	1)	0	
conv2d_49 (Conv2D)	(None,	237,	237,	64)	3136	input_4[0][0]
max_pooling2d_4 (MaxPooling2D)	(None,	119,	119,	64)	0	conv2d_49[0][0]
batch_normalization_40 (BatchNo	(None,	119,	119,	64)	256	max_pooling2d_4[0][0]
activation_40 (Activation)	(None,	119,	119,	64)		batch_normalization_40[0][0]
conv2d_50 (Conv2D)	(None,	119,	119,	64)	36864	activation_40[0][0]
batch_normalization_41 (BatchNo	(None,	119,	119,	64)	256	conv2d_50[0][0]
activation_41 (Activation)	(None,	119,	119,	64)	0	batch_normalization_41[0][0]
conv2d_51 (Conv2D)	(None,	119,	119,	64)	36864	activation_41[0][0]

dense_50 (Dense)	(None, 1,	1, 32)	16384	reshape_24[0][0]
dense_51 (Dense)	(None, 1,	1, 512)	16384	dense_50[0][0]
multiply_24 (Multiply)	(None, 15,	15, 512)	0	conv2d_64[0][0] dense_51[0][0]
add_24 (Add)	(None, 15,	15, 512)	0	multiply_24[0][0] add_23[0][0]
batch_normalization_52 (BatchNo	(None, 15,	15, 512)	2048	add_24[0][0]
activation_52 (Activation)	(None, 15,	15, 512)		batch_normalization_52[0][0]
global_average_pooling2d_28 (Gl	(None, 512)		activation_52[0][0]
dense_52 (Dense)	(None, 4)	=======	2048	global_average_pooling2d_28[0][0]
Total params: 9,777,472 Trainable params: 9,771,200 Non-trainable params: 6,272				

Model Training

Epochs = 20, Train: 75%, Validation: 25%, Learning Rate: 0.001,
 optimizer: Adam (beta_1=0.9, beta_2=0.999, epsilon=1e-08)

Training time: 6hr

版本 446.14 GeForce MX150

Training: 80% (926 cnt), Test: 20% (232 cnt)

```
from sklearn.model_selection import train_test_split
    train_images, test_images, train_labels, test_labels = train_test_split(X, y, test_size = 0.2, random_state
    print(train_images.shape, train_labels.shape, test_images.shape, test_labels.shape)
(926, 473, 473, 1) (926, 1) (232, 473, 473, 1) (232, 1)
```

Accuracy: 85.34%

```
score = model.evaluate(test_images, test_labels, verbose=0)
print('accuracy: ',score[1])
print('loss: ',score[0])

accuracy: 0.853448275862069
loss: 0.46818723144202395
```

Confusion Matrix:

Worse prediction pair (True/Predict):

Bench/Chair (7 cnt, 15%), Sofa/Office_Chair (8 cnt, 22%)

Predict Error Case:

ai = office_chair (x)

label = sofa

ai = bench (x)

label = sofa

ai = office_chair (x)

ai = office_chair (x)

10 Predict Case:

ai = chair (x) label = sofa ai = sofa (o) label = sofa

Conclusion

- The function of chair is predictable (acc: 85%)
- Training time is 6hr, advanced device (e.g. Nvidia A100, V100...) is necessary.
- If we have advanced device, ablation study can been performed.

(Advanced Mode, Cosine Learning Rate, Optimizers, et al.)