

Lecture 6

- Forced vibration response of 1 DOF systems
- Forced vibration with constant excitation
- Solved example

Le

3

DEPARTMENT OF a erospace engineering

Forced response of 1 DOF system

Forced response of a vibrating 1 DOF system consists of:

- a component due to free response of the system at ω_D,
- a component due to applied force F(t).

Complementary solution (CS), solution when RHS=0:

$$x_H = X e^{-\zeta \omega_0 t} \sin(\omega_D t + \varphi) = e^{-\zeta \omega_0 t} (X_1 \sin(\omega_D t) + X_2 \cos(\omega_D t))$$

Particular solution (PS), solution when RHS=F(t).

We will consider these types of excitation:

- constant force: F(t)=F₀=const. (example: helicopter landing)
- harmonic force: F(t)=F₀sin(ωt) (example: aero engine bladed disc)

Total solution = CS + PS

$$x = x_H + x_P = e^{-\zeta \omega_0 t} (X_1 \sin(\omega_D t) + X_2 \cos(\omega_D t)) + x_{forced}$$

Le

Total vibration response

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

 $x(t) = x_H(t) + x_P(t)$
a.k.a. principle of superposition

Free response:

$$m \ddot{x}_H + c \dot{x}_H + k x_H = 0$$

Associated with transient and decaying vibrations

Forced response:

$$m \ddot{x}_p + c \dot{x}_p + k x_p = F(t)$$

Associated with forced vibrations

University of BRISTOL

L6

DEPARTMENT O a erospace engineering

Constant force: F(t)=F₀

$$m\ddot{x} + c\dot{x} + kx = F_0$$

- find the particular solution x_p by "guessing" the trial solution
- the trial solution used here is x_p=C, where C is the unknown constant
- use x=x_P=C is the EOM:

$$m\,0 + c\,0 + k\,C = F_0 \Longrightarrow x_P = C = F_0/k$$

The total solution:

$$x = x_H + x_P = e^{-\zeta \omega_0 t} (X_1 \sin(\omega_D t) + X_2 \cos(\omega_D t)) + \frac{F_0 / k}{t}$$

 X_1 and X_2 from the initial conditions.

Static deformation due to constant force F_0

L6

3

Example: step force input

Determine the maximum amplitude of vibration of the system with F_0 =130 N applied in t=0. Find the undamped natural frequency and the critical damping c_{cr} . Sketch the response for ζ =0 and ζ <1. Assume zero initial conditions.

The stiffness is $k_1=k_2=15$ kN/m, mass m=8 kg and damping ratio is ζ <1. The *massless* elastic bar has Young's modulus E=5 GPa, cross-sectional area A=10 mm² and length L=0.5 m.

University of BRISTOL

L6

DEPARTMEN a e r o s p

Example

Equation of motion: $m\ddot{x} + c\,\dot{x} + k_{eqi}\,x = F$ $k_{eqi} = k_1 + k_2 + EA/L$

The total solution: $x = x_H + x_P = e^{-\zeta \omega_0 t} (X_1 \sin(\omega_D t) + X_2 \cos(\omega_D t)) + F_0 / k_{eqt}$

The unknown constants X_1 and X_2 and zero initial conditions:

$$t = 0: \ x_0 = 0 = e^{-\zeta \omega_0 0} (X_1 \sin(\omega_D 0) + X_2 \cos(\omega_D 0)) + F_0 / k_{eqi} \quad X_2 = -F_0 / k_{eqi}$$

$$t=0: \dot{x}_0 = 0 = (-\zeta \omega_0) e^{-\zeta \omega_0 0} (X_1 \sin(\omega_D 0) + X_2 \cos(\omega_D 0))$$

$$+e^{-\zeta\omega_00}(\omega_D X_1\cos(\omega_D0)-\omega_D X_2\sin(\omega_D0))$$

$$0 = (\zeta \omega_0)(F_0/k_{eqi}) + \omega_D X_1 \Rightarrow \frac{X_1 = -(\zeta \omega_0/\omega_D)(F_0/k_{eqi})}{}$$

The total solution:

$$x = \frac{F_0}{k_{eqi}} \left(1 - e^{-\zeta \omega_0 t} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\omega_D t) + \cos(\omega_D t) \right) \right)$$

University of BRISTOI

L6

D

Example 5

If $\zeta=0$ then $\exp(-\zeta\omega_0t)=1$ and the total response and its maximum is:

$$x = \frac{F_0}{k_{eqi}} \left(1 - \cos(\omega_D t) \right), \ \cos(\omega_D t) = -1 \Rightarrow \max(x(t)) = 2 \frac{F_0}{k_{eqi}} = 2x_{static}$$

Stiffness: $k_{eqi} = k_1 + k_2 + EA/L = 2 \times 15000 + (5 \times 10^9) \times (10 \times 10^{-6}) / 0.5 = 130 \ kN/m$ Undamped natural frequency: $f_0 = (1/2\pi)\sqrt{k_{eqi}/m} = (1/2\pi)\sqrt{130000/8} = 20.29 \; Hz$ Critical damping: $c_{cr} = 2\sqrt{mk_{eqi}} = 2\sqrt{8 \ kg \times 130 \ kN/m} = 2039.6 \ kg.s^{-1}$

Maximum undamped response: $\max(x(t)) = 2F_0/k_{eqi} = 2 \times (130/130000) = 2 \, mm$

University of BRISTOL

Summary

- Free vibration response occurs at ω_{D}
- Forced vibration response = CS (related to free response) + PS (related to the applied load)
- · CS component dies out in damped systems
- Constant force produces steady-state static deflection (a new equilibrium position)

University of BRISTOL