

Statistics for Industry, Technology, and Engineering

Series Editor

David Steinberg, Tel Aviv University, Tel Aviv, Israel

Editorial Board Members

V. Roshan Joseph, Georgia Institute of Technology, Atlanta, GA, USA Ron S. Kenett, KPA Ltd. Raanana and Samuel Neaman Institute, Technion, Haifa, Israel

Christine Anderson-Cook, Los Alamos National Laboratory, Los Alamos, USA Bradley Jones, SAS Institute, JMP Division, Cary, USA

Fugee Tsung, Hong Kong University of Science and Technology, Hong Kong, Hong Kong

The Statistics for Industry, Technology, and Engineering series will present up-to-date statistical ideas and methods that are relevant to researchers and accessible to an interdisciplinary audience: carefully organized authoritative presentations, numerous illustrative examples based on current practice, reliable methods, realistic data sets, and discussions of select new emerging methods and their application potential. Publications will appeal to a broad interdisciplinary readership including both researchers and practitioners in applied statistics, data science, industrial statistics, engineering statistics, quality control, manufacturing, applied reliability, and general quality improvement methods.

Principal Topic Areas:

* Quality Monitoring * Engineering Statistics * Data Analytics * Data Science * Time Series with Applications * Systems Analytics and Control * Stochastics and Simulation * Reliability * Risk Analysis * Uncertainty Quantification * Decision Theory * Survival Analysis * Prediction and Tolerance Analysis * Multivariate Statistical Methods * Nondestructive Testing * Accelerated Testing * Signal Processing * Experimental Design * Software Reliability * Neural Networks *

The series will include professional expository monographs, advanced textbooks, handbooks, general references, thematic compilations of applications/case studies, and carefully edited survey books.

Ron S. Kenett • Shelemyahu Zacks • Peter Gedeck

Modern Statistics

A Computer-Based Approach with Python

Ron S. Kenett KPA Ltd. Raanana and Samuel Neaman Institute, Technion Haifa, Israel

Peter Gedeck Data Science University of Virginia Falls Church, VA, USA Shelemyahu Zacks Mathematical Sciences Binghamton University Mc Lean, VA, USA

ISSN 2662-5555 ISSN 2662-5563 (electronic)
Statistics for Industry, Technology, and Engineering
ISBN 978-3-031-07565-0 ISBN 978-3-031-07566-7 (eBook)
https://doi.org/10.1007/978-3-031-07566-7

Mathematics Subject Classification: 62E15, 62G30, 62M10, 62P30, 62P10, 97K40, 97K70, 97K80

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my wife Sima, our children and their children: Yonatan, Alma, Tomer, Yadin, Aviv, Gili, Matan, Eden, and Ethan. RSK

To my wife Hanna, our sons Yuval and David, and their families with love. SZ

To Janet with love. PG

Preface

Statistics has developed by combining the needs of science, business, industry, and government. More recent development is connected with methods for generating insights from data, using statistical theory and delivery platforms. This integration is at the core of applied statistics and most of theoretical statistics.

Before the beginning of the twentieth century, statistics meant observed data and descriptive summary figures, such as means, variances, indices, etc., computed from data. With the introduction of the χ^2 -test for goodness of fit by Karl Pearson (1900) and the *t*-test by Gosset (Student, 1908) for drawing inference on the mean of a normal population, statistics became a methodology of analyzing sample data to determine the validity of hypotheses about the source of the data (the population). Fisher (1922) laid the foundations for statistics as a discipline. He considered the object of statistical methods to be reducing data into the essential statistics, and he identified three problems that arise in doing so:

- 1. Specification-choosing the right mathematical model for a population
- 2. Estimation-methods to calculate, from a sample, estimates of the parameters of the hypothetical population
- 3. Distribution-properties of statistics derived from samples

Forty years later, Tukey (1962) envisioned a data-centric development of statistics, sketching the pathway to data science. Forty years after that, we entered the age of big data, data science, artificial intelligence, and machine learning. These new developments are built on the methods, applications, and experience of statisticians around the world.

The first two authors started collaborating on a book in the early 1990s. In 1998, we published with Duxbury Wadsworth *Modern Industrial Statistics: Design and Control of Quality and Reliability*. The book appeared in a Spanish edition (Estadística Industrial Moderna: Diseño y Control de Calidad y la Confiabilidad, Thomson International, 2000). An abbreviated edition was published as *Modern Statistics: A Computer based Approach* (Thomson Learning, 2001); this was followed by a Chinese edition (China Statistics Press, 2003) and a softcover edition, (Brooks/Cole, 2004). The book used QuickBasic, S-Plus, and MINITAB. In 2014

viii Preface

we published, with Wiley, an extended second edition titled *Modern Industrial Statistics: With Applications in R, MINITAB and JMP*. That book was translated into Vietnamese by the Vietnam Institute for Advanced Studies in Mathematics (VIASM, 2016). A third, expanded edition, was published by Wiley in 2021.

This book is about modern statistics with Python. It reflects many years of experience of the authors in doing research, teaching and applying statistics in science, healthcare, business, defense, and industry domains. The book invokes over 40 case studies and provides comprehensive Python applications. In 2019, there were 8.2 million developers in the world who code using Python which is considered the fastest-growing programming language. A special Python package, mistat, is available for download https://gedeck.github.io/mistat-code-solutions/ModernStatistics/. Everything in the book can be reproduced with mistat. We therefore provide, in this book, an integration of needs, methods, and delivery platform for a large audience and a wide range of applications.

Modern Statistics: A Computer-Based Approach with Python is a companion text to another book published by Springer titled: Industrial Statistics: A Computer Based Approach with Python. Both books include mutual cross references, but both books are stand-alone publications. This book can be used as textbook in a one semester or two semester course on modern statistics. The technical level of the presentation in both books can serve both undergraduate and graduate students. The example and case studies provide access to hands on teaching and learning. Every chapter includes exercises, data sets, and Python applications. These can be used in regular classroom setups, flipped classroom setups, and online or hybrid education programs. The companion text is focused on industrial statistics with special chapters on advanced process monitoring methods, cybermanufacturing, computer experiments, and Bayesian reliability. Modern Statistics is a foundational text and can be combined with any program requiring data analysis in its curriculum. This, for example, can be courses in data science, industrial statistics, physics, biology, chemistry, economics, psychology, social sciences, or any engineering discipline.

Modern Statistics: A Computer-Based Approach with Python includes eight chapters. Chapter 1 is on analyzing variability with descriptive statistics. Chapter 2 is on probability models and distribution functions. Chapter 3 introduces statistical inference and bootstrapping. Chapter 4 is on variability in several dimensions and regression models. Chapter 5 covers sampling for estimation of finite population quantities, a common situation when one wants to infer on a population from a sample. Chapter 6 is dedicated to time series analysis and prediction. Chapters 7 and 8 are about modern data analytic methods.

Industrial Statistics: A Computer-Based Approach with Python contains 11 chapters: Chapter 1— Introduction to Industrial Statistics, Chapter 2—Basic Tools and Principles of Process Control, Chapter 3—Advanced Methods of Statistical Process Control, Chapter 4—Multivariate Statistical Process Control, Chapter 5—Classical Design and Analysis of Experiments, Chapter 6—Quality by Design, Chapter 7—Computer Experiments, Chapter 8—Cybermanufacturing and Digital Twins, Chapter 9—Reliability Analysis, Chapter 10—Bayesian Reliability Estima-

Preface

tion and Prediction, and Chapter 11—Sampling Plans for Batch and Sequential Inspection. This second book is focused on industrial statistics with applications to monitoring, diagnostics, prognostic, and prescriptive analytics. It can be used as a stand-alone book, or in conjunction with *Modern Statistics*. Both books include solution manuals to exercises listed at the end of each chapter. This was designed to support self-learning as well as instructor led courses.

We made every possible effort to ensure the calculations are correct and the text is clear. However, should errors have skipped to the printed version, we would appreciate feedback from readers noticing these. In general, any feedback will be much appreciated.

Finally, we would like to thank the team at Springer Birkhäuser, including Dana Knowles and Christopher Tominich. They made everything in the publication process look easy.

Ra'anana, Israel McLean, VA, USA Falls Church, VA, USA April 2022 Ron S. Kenett Shelemyahu Zacks Peter Gedeck

Contents

1.1 Random Phenomena and the Structure of Observations	
1.2 Accuracy and Precision of Measurements	
1.3 The Population and the Sample	
1.4 Descriptive Analysis of Sample Values	
1.4.1 Frequency Distributions of Discrete Random Variable	es
1.4.2 Frequency Distributions of Continuous Random	
Variables	
1.4.3 Statistics of the Ordered Sample	
1.4.4 Statistics of Location and Dispersion	
1.5 Prediction Intervals	
1.6 Additional Techniques of Exploratory Data Analysis	
1.6.1 Density Plots	
1.6.2 Box and Whiskers Plots	
1.6.3 Quantile Plots	
1.6.4 Stem-and-Leaf Diagrams	
1.6.5 Robust Statistics for Location and Dispersion	
1.7 Chapter Highlights	
1.8 Exercises	
2 Probability Models and Distribution Functions	
2.1 Basic Probability	
2.1.1 Events and Sample Spaces: Formal Presentation	
of Random Measurements	
2.1.2 Basic Rules of Operations with Events: Unions	
and Intersections	
2.1.3 Probabilities of Events	
2.1.4 Probability Functions for Random Sampling	
2.1.5 Conditional Probabilities and Independence of Event	
2.1.6 Bayes' Theorem and Its Application	
2.2 Random Variables and Their Distributions	

xii Contents

		2.2.1	Discrete and Continuous Distributions	55
			2.2.1.1 Discrete Random Variables	55
			2.2.1.2 Continuous Random Variables	56
		2.2.2	Expected Values and Moments of Distributions	59
		2.2.3	The Standard Deviation, Quantiles, Measures of	
			Skewness, and Kurtosis	62
		2.2.4	Moment Generating Functions	65
	2.3	Familie	es of Discrete Distribution	66
		2.3.1	The Binomial Distribution	66
		2.3.2	The Hypergeometric Distribution	69
		2.3.3	The Poisson Distribution	72
		2.3.4	The Geometric and Negative Binomial Distributions	74
	2.4	Continu	uous Distributions	78
		2.4.1	The Uniform Distribution on the Interval (a, b) ,	
			<i>a</i> < <i>b</i>	78
		2.4.2	The Normal and Log-Normal Distributions	79
			2.4.2.1 The Normal Distribution	79
			2.4.2.2 The Log-Normal Distribution	84
		2.4.3	The Exponential Distribution	85
		2.4.4	The Gamma and Weibull Distributions	88
		2.4.5	The Beta Distributions	92
	2.5	Joint, N	Marginal, and Conditional Distributions	93
		2.5.1	Joint and Marginal Distributions	93
		2.5.2	Covariance and Correlation	96
		2.5.3	Conditional Distributions	99
	2.6	Some N	Multivariate Distributions	102
		2.6.1	The Multinomial Distribution	102
		2.6.2	The Multi-Hypergeometric Distribution	104
		2.6.3	The Bivariate Normal Distribution	105
	2.7	Distrib	ution of Order Statistics	108
	2.8	Linear	Combinations of Random Variables	111
	2.9	Large S	Sample Approximations	117
		2.9.1	The Law of Large Numbers	117
		2.9.2	The Central Limit Theorem	117
		2.9.3	Some Normal Approximations	119
	2.10	Additio	onal Distributions of Statistics of Normal Samples	120
		2.10.1	Distribution of the Sample Variance	121
		2.10.2	The "Student" <i>t</i> -Statistic	122
		2.10.3	Distribution of the Variance Ratio	123
	2.11	Chapte	r Highlights	125
	2.12	Exercis	ses	126
3	Statis	stical Inf	ference and Bootstrapping	139
-	3.1		ng Characteristics of Estimators	139
	3.2		Methods of Point Estimation	141

Contents xiii

	3.2.1	Moment Equation Estimators		142
	3.2.2	The Method of Least Squares		144
	3.2.3	Maximum Likelihood Estimators		146
3.3	Comparison of Sample Estimates			
	3.3.1	Basic Concepts		149
	3.3.2	Some Common One-Sample Tests of Hypothe	ses	152
		3.3.2.1 The Z-Test: Testing the Mean of a		
		Normal Distribution, σ^2 Known		152
		3.3.2.2 The t -Test: Testing the Mean of a		
		Normal Distribution, σ^2 Unknown		155
		3.3.2.3 The Chi-Squared Test: Testing the		
		Variance of a Normal Distribution		156
		3.3.2.4 Testing Hypotheses About the Succ	ess	
		Probability, p , in Binomial Trials .		158
3.4	Confide	ence Intervals		160
	3.4.1	Confidence Intervals for μ ; σ Known		161
	3.4.2	Confidence Intervals for μ ; σ Unknown		162
	3.4.3	Confidence Intervals for σ^2		162
	3.4.4	Confidence Intervals for <i>p</i>		163
3.5	Toleran	nce Intervals		166
	3.5.1	Tolerance Intervals for the Normal Distributio	ns	166
3.6	Testing	g for Normality with Probability Plots		169
3.7	Tests of	of Goodness of Fit		173
	3.7.1	The Chi-Square Test (Large Samples)		173
	3.7.2	The Kolmogorov-Smirnov Test		175
3.8	Bayesia	an Decision Procedures		176
	3.8.1	Prior and Posterior Distributions		177
	3.8.2	Bayesian Testing and Estimation		181
		3.8.2.1 Bayesian Testing		181
		3.8.2.2 Bayesian Estimation		184
	3.8.3	Credibility Intervals for Real Parameters		185
3.9	Randor	m Sampling from Reference Distributions		186
3.10	Bootstr	rap Sampling		189
	3.10.1	1		189
	3.10.2	Examining the Bootstrap Method		190
	3.10.3	Harnessing the Bootstrap Method		192
3.11		rap Testing of Hypotheses		192
	3.11.1	Bootstrap Testing and Confidence Intervals		
		for the Mean		192
	3.11.2	Studentized Test for the Mean		193
	3.11.3	Studentized Test for the Difference of Two Mo	eans	195
	3.11.4	Bootstrap Tests and Confidence Intervals		
		for the Variance		197
	3.11.5	Comparing Statistics of Several Samples		199
		3.11.5.1 Comparing Variances of Several Sa	mples	200

xiv Contents

			3.11.5.2 Comparing Several Means: The	
			One-Way Analysis of Variance	201
	3.12	Bootstr	rap Tolerance Intervals	204
		3.12.1	Bootstrap Tolerance Intervals for Bernoulli Samples	204
		3.12.2	Tolerance Interval for Continuous Variables	205
		3.12.3	Distribution-Free Tolerance Intervals	206
	3.13	Non-Pa	arametric Tests	208
		3.13.1	The Sign Test	208
		3.13.2	The Randomization Test	210
		3.13.3	The Wilcoxon Signed-Rank Test	211
	3.14		r Highlights	214
	3.15	Exercis	ses	215
4	Varia	bility in	Several Dimensions and Regression Models	225
•	4.1	-	cal Display and Analysis	226
		4.1.1	Scatterplots	226
		4.1.2	Multiple Boxplots	
	4.2		ncy Distributions in Several Dimensions	
		4.2.1	Bivariate Joint Frequency Distributions	
		4.2.2	Conditional Distributions	
	4.3	Correla	ation and Regression Analysis	
		4.3.1	Covariances and Correlations	
		4.3.2	Fitting Simple Regression Lines to Data	
			4.3.2.1 The Least Squares Method	
			4.3.2.2 Regression and Prediction Intervals	243
	4.4	Multipl	le Regression	245
		4.4.1	Regression on Two Variables	246
		4.4.2	Partial Regression and Correlation	251
		4.4.3	Multiple Linear Regression	254
		4.4.4	Partial- <i>F</i> Tests and the Sequential SS	260
		4.4.5	Model Construction: Step-Wise Regression	263
		4.4.6	Regression Diagnostics	265
	4.5	Quanta	ll Response Analysis: Logistic Regression	268
	4.6	The An	nalysis of Variance: The Comparison of Means	271
		4.6.1	The Statistical Model	271
		4.6.2	The One-Way Analysis of Variance (ANOVA)	271
	4.7		aneous Confidence Intervals: Multiple Comparisons	275
	4.8	Conting	gency Tables	279
		4.8.1	The Structure of Contingency Tables	279
		4.8.2	Indices of association for contingency tables	282
			4.8.2.1 Two Interval-Scaled Variables	282
			4.8.2.2 Indices of Association for Categorical	
			Variables	284
	4.9	_	rical Data Analysis	288
		4.9.1	Comparison of Binomial Experiments	288

Contents xv

	4.10 4.11	Chapter Highlights Exercises	290 291
5	Samp	oling for Estimation of Finite Population Quantities	299
	5.1	Sampling and the Estimation Problem	299
		5.1.1 Basic Definitions	299
		5.1.2 Drawing a Random Sample from a Finite Population	301
		5.1.3 Sample Estimates of Population Quantities and	
		Their Sampling Distribution	302
	5.2	Estimation with Simple Random Samples	305
		5.2.1 Properties of \bar{X}_n and S_n^2 Under RSWR	306
		5.2.2 Properties of \bar{X}_n and S_n^2 Under RSWOR	310
	5.3	Estimating the Mean with Stratified RSWOR	314
	5.4	Proportional and Optimal Allocation	316
	5.5	Prediction Models with Known Covariates	320
	5.6	Chapter Highlights	324
	5.7	Exercises	325
6	Time	Series Analysis and Prediction	329
	6.1	The Components of a Time Series	330
		6.1.1 The Trend and Covariances	330
		6.1.2 Analyzing Time Series with Python	331
	6.2	Covariance Stationary Time Series	336
		6.2.1 Moving Averages	337
		6.2.2 Auto-Regressive Time Series	338
		6.2.3 Auto-Regressive Moving Average Time Series	343
		6.2.4 Integrated Auto-Regressive Moving Average	
		Time Series	344
		6.2.5 Applications with Python	345
	6.3	Linear Predictors for Covariance Stationary Time Series	346
		6.3.1 Optimal Linear Predictors	346
	6.4	Predictors for Non-stationary Time Series	349
		6.4.1 Quadratic LSE Predictors	349
		6.4.2 Moving Average Smoothing Predictors	351
	6.5	Dynamic Linear Models	352
		6.5.1 Some Special Cases	353
		6.5.1.1 The Normal Random Walk	353
		6.5.1.2 Dynamic Linear Model With Linear Growth	354
		6.5.1.3 Dynamic Linear Model for ARMA(p,q)	355
	6.6	Chapter Highlights	358
	6.7	Exercises	359
7	Mode	ern Analytic Methods: Part I	361
	7.1	Introduction to Computer Age Statistics	361
	7.2	Data Preparation	362
	7.3	The Information Quality Framework	363

xvi Contents

	7.4	Determining Model Performance	364	
7.5 Decision Trees			368	
	7.6	Ensemble Models	376	
	7.7	Naïve Bayes Classifier	378	
	7.8	Neural Networks	381	
	7.9	Clustering Methods	386	
		7.9.1 Hierarchical Clustering	386	
		7.9.2 <i>K</i> -Means Clustering	389	
		7.9.3 Cluster Number Selection	390	
	7.10	Chapter Highlights	392	
	7.11	Exercises	392	
8	Mode	ern Analytic Methods: Part II	395	
	8.1	Functional Data Analysis	395	
	8.2	Text Analytics	401	
	8.3	Bayesian Networks	405	
	8.4	Causality Models	411	
	8.5	Chapter Highlights	416	
	8.6	Exercises	417	
A	Intro	duction to Python	421	
	A.1	List, Set, and Dictionary Comprehensions	421	
	A.2	Pandas Data Frames	422	
	A.3	Data Visualization Using Pandas and Matplotlib	423	
В	List o	f Python Packages	425	
C	Code	Repository and Solution Manual	427	
Bil	Bibliography 4			
Inc	lex	· ·	433	

Industrial Statistics: A Computer-Based Approach with Python (Companion volume)

1 The Role of Statistical Methods in Modern Industry

- 1.1 The Evolution of Industry
- 1.2 The Evolution of Quality
- 1.3 Industry 4.0 Characteristics
- 1.4 The Digital Twin
- 1.5 Chapter Highlights
- 1.6 Exercises

2 Basic Tools and Principles of Process Control

- 2.1 Basic Concepts of Statistical Process Control
- 2.2 Driving a Process with Control Charts
- 2.3 Setting Up a Control Chart: Process Capability Studies
- 2.4 Process Capability Indices
- 2.5 Seven Tools for Process Control and Process Improvement
- 2.6 Statistical Analysis of Pareto Charts
- 2.7 The Shewhart Control Charts
- 2.8 Process analysis with data segments
- 2.9 Chapter Highlights
- 2.10 Exercises

3 Advanced Methods of Statistical Process Control

- 3.1 Tests of Randomness
- 3.2 Modified Shewhart Control Charts for \bar{X}
- 3.3 The Size and Frequency of Sampling for Shewhart Control Charts
- 3.4 Cumulative Sum Control Charts
- 3.5 Bayesian Detection
- 3.6 Process Tracking
- 3.7 Automatic Process Control
- 3.8 Chapter Highlights
- 3.9 Exercises

4 Multivariate Statistical Process Control

- 4.1 Introduction
- 4.2 A Review Multivariate Data Analysis
- 4.3 Multivariate Process Capability Indices
- 4.4 Advanced Applications of Multivariate Control Charts
- 4.5 Multivariate Tolerance Specifications
- 4.6 Tracking structural changes
- 4.7 Chapter Highlights
- 4.8 Exercises

5 Classical Design and Analysis of Experiments

- 5.1 Basic Steps and Guiding Principles
- 5.2 Blocking and Randomization
- 5.3 Additive and Non-Additive Linear Models
- 5.4 The Analysis of Randomized Complete Block Designs
- 5.5 Balanced Incomplete Block Designs
- 5.6 Latin Square Design
- 5.7 Full Factorial Experiments
- 5.8 Blocking and Fractional Replications of 2^m Factorial Designs
- 5.9 Exploration of Response Surfaces
- 5.10 Evaluating Designed Experiments
- 5.11 Chapter Highlights
- 5.12 Exercises

6 Quality by Design

- 6.1 Off-Line Quality Control, Parameter Design and The Taguchi Method
- 6.2 The Effects of Non-Linearity
- 6.3 Taguchi's Designs
- 6.4 Quality by Design in the Pharmaceutical Industry
- 6.5 Tolerance Designs
- 6.6 Case Studies
- 6.7 Chapter Highlights
- 6.8 Exercises

7 Computer Experiments

- 7.1 Introduction to Computer Experiments
- 7.2 Designing Computer Experiments
- 7.3 Analyzing Computer Experiments
- 7.4 Stochastic Emulators
- 7.5 Integrating Physical and Computer Experiments
- 7.6 Simulation of Random Variables
- 7.7 Chapter Highlights
- 7.8 Exercises

8 Cybermanufacturing and Digital Twins

- 8.1 Introduction to Cybermanufacturing
- 8.2 Cybermanufacturing Analytics
- 8.3 Information Quality in Cybermanufacturing
- 8.4 Modeling in Cybermanufacturing
- 8.5 Computational pipelines
- 8.6 Digital Twins
- 8.7 Chapter Highlights
- 8.8 Exercises

9 Reliability Analysis

- 9.1 Basic Notions
- 9.2 System Reliability
- 9.3 Availability of Repairable Systems
- 9.4 Types of Observations on TTF
- 9.5 Graphical Analysis of Life Data
- 9.6 Non-Parametric Estimation of Reliability
- 9.7 Estimation of Life Characteristics
- 9.8 Reliability Demonstration
- 9.9 Accelerated Life Testing
- 9.10 Burn-In Procedures
- 9.11 Chapter Highlights
- 9.12 Exercises

10 Bayesian Reliability Estimation and Prediction

- 10.1 Prior and Posterior Distributions
- 10.2 Loss Functions and Bayes Estimators
- 10.3 Bayesian Credibility and Prediction Intervals
- 10.4 Credibility Intervals for the Asymptotic Availability of Repairable Systems: The Exponential Case
- 10.5 Empirical Bayes Method
- 10.6 Chapter Highlights
- 10.7 Exercises

11 Sampling Plans for Batch and Sequential Inspection

- 11.1 General Discussion
- 11.2 Single-Stage Sampling Plans for Attributes
- 11.3 Approximate Determination of the Sampling Plan
- 11.4 Double-Sampling Plans for Attributes
- 11.5 Sequential Sampling and A/B testing
- 11.6 Acceptance Sampling Plans for Variables
- 11.7 Rectifying Inspection of Lots
- 11.8 National and International Standards
- 11.9 Skip-Lot Sampling Plans for Attributes
- 11.10 The Deming Inspection Criterion
- 11.11 Published Tables for Acceptance Sampling

- 11.12 Sequential Reliability Testing
- 11.13 Chapter Highlights
- 11.14 Exercises

References

A List of Python packages

List of Abbreviations

AIC Akaike information criteria

ANOVA Analysis of variance

ANSI American National Standard Institute

AOQ Average outgoing quality
AOQL Average outgoing quality limit

AQL Acceptable quality level

ARIMA Autoregressive integrated moving average

ARL Average run length
ASN Average sample number
ASQ American Society for Quality
ATE Average treatment effect
ATI Average total inspection

BECM Bayes estimation of the current mean

BI Business intelligence

BIBD Balanced incomplete block design BIC Bayesian information criteria

BN Bayesian network BP Bootstrap population

c.d.f. Cumulative distribution function

CAD Computer-aided design

CADD Computer-aided drawing and drafting CAM Computer-aided manufacturing CART Classification and regression trees

CBD Complete block design CED Conditional expected delay

cGMP Current good manufacturing practices
CHAID Chi-square automatic interaction detector
CIM Computer integrated manufacturing

CLT Central limit theorem

CMM Coordinate measurement machines CMMI Capability maturity model integrated xxii List of Abbreviations

CNC Computerized numerically controlled

CPA Circuit pack assemblies CQA Critical quality attribute

CUSUM Cumulative sum

DACE Design and analysis of computer experiments

DAG Directed acyclic graph
DFIT Difference in fits distance
DLM Dynamic linear model
DoE Design of experiments
DTM Document term matrix

EBD Empirical bootstrap distribution

ETL Extract-transform-load

EWMA Exponentially weighted moving average

FDA Food and Drug Administration FDA Functional data analysis

FPCA Functional principal component analysis

FPM Failures per million GFS Google file system

GRR Gage repeatability and reproducibility

HPD Highest posterior density

HPLC High-performance liquid chromatography i.i.d. Independent and identically distributed

IDF Inverse document frequency

InfoQ Information quality
IPO Initial public offering
IPS Inline process control
IQR Inter quartile range

ISC Short circuit current of solar cells (in Ampere)

KS Kolmogorov-Smirnov test LCL Lower control limit

LLN Law of large numbers
LQL Limiting quality level
LSA Latent semantic analysis
LSL Lower specification limit
LTPD Lot tolerance percent defective

LWL Lower warning limit MAE Mean absolute error

m.g.f. Moment generating function MLE Maximum likelihood estimator

MSD Mean squared deviation MSE Mean squared error

MTBF Mean time between failures

MTTF Mean time to failure

NID Normal independently distributed

OAB One-armed bandit

List of Abbreviations xxiii

OC Operating characteristic p.d.f. Probability density function PCA Principal component analysis

PERT Project evaluation and review technique

PFA Probability of false alarm
PL Product limit estimator
PPM Defects in parts per million
PSE Practical statistical efficiency

QbD Quality by design

QMP Quality measurement plan QQ-Plot Quantile vs. quantile plot

RCBD Randomized complete block design

Regex Regularized expression RMSE Root mean squared error

RSWOR Random sample without replacement RSWR Random sample with replacement

SE Standard error

SL Skip lot

SLOC Source lines of code
SLSP Skip lot sampling plans
SPC Statistical process control
SPRT Sequential probability ratio test

SR Shiryaev Roberts

SSE Sum of squares of errors

SSR Sum of squares around the regression model

SST Total sum of squares STD Standard deviation

SVD Singular value decomposition

TAB Two-armed bandit TF Term frequency TTC Time till censoring TTF Time till failure TTR Time till repair TTT Total time on test UCL Upper control limit USL Upper specification limit UWI. Upper warning limit WSP Wave soldering process