概率论第三章作业

- 1. 一袋内装有 5 个白球, 3 个红球。第一次从袋中任意取一个球, 不放回; 第二次又从袋中任取两个球, X_i 表示第 i 次取到的白球数, i = 1, 2。求:
 - (a) (X_1, X_2) 的分布及边缘分布;

(b)
$$P\{X_1 = 0, X_2 \neq 0\}, P\{X_1 = X_2\}, P\{X_1X_2 = 0\}$$

解:

(a)

$$P \{X_1 = 0, X_2 = 0\} = \frac{3}{8} \times \frac{1}{C_7^2} = \frac{1}{56}$$

$$P \{X_1 = 0, X_2 = 1\} = \frac{3}{8} \times \frac{C_5^1 C_2^1}{C_7^2} = \frac{5}{28}$$

$$P \{X_1 = 0, X_2 = 2\} = \frac{3}{8} \times \frac{C_5^2}{C_7^2} = \frac{5}{28}$$

$$P \{X_1 = 1, X_2 = 0\} = \frac{5}{8} \times \frac{C_3^2}{C_7^2} = \frac{5}{56}$$

$$P \{X_1 = 1, X_2 = 1\} = \frac{5}{8} \times \frac{C_4^1 C_3^1}{C_7^2} = \frac{5}{14}$$

$$P \{X_1 = 1, X_2 = 2\} = \frac{5}{8} \times \frac{C_4^2 C_3^1}{C_7^2} = \frac{5}{28}$$

联合概率分布

X_1, X_2	0	1	2
0	$\frac{1}{56}$	$\frac{5}{28}$	$\frac{5}{28}$
1	$\frac{5}{56}$	$\frac{5}{14}$	$\frac{5}{28}$

边缘概率分布

$$\begin{split} P\left\{X_1=0\right\} &= \frac{1}{56} + \frac{5}{28} + \frac{5}{28} = \frac{21}{56} = \frac{3}{8} \\ P\left\{X_1=1\right\} &= \frac{5}{56} + \frac{5}{14} + \frac{5}{28} = \frac{35}{56} = \frac{5}{8} \\ P\left\{X_2=0\right\} &= \frac{1}{56} + \frac{5}{56} = \frac{3}{28} \\ P\left\{X_2=1\right\} &= \frac{5}{28} + \frac{5}{14} = \frac{15}{28} \\ P\left\{X_2=2\right\} &= \frac{5}{28} + \frac{5}{28} = \frac{5}{14} \end{split}$$

即 X_1 的边缘概率分布为

x_1	0	1
p	$\frac{3}{8}$	<u>5</u> 8

 X_2 的边缘概率分布为

x_2	0	1	2
p	$\frac{3}{28}$	$\frac{15}{28}$	$\frac{5}{14}$

(b)
$$P\{X_1 = 0, X_2 \neq 0\} = P\{X_1 = 0, X_2 = 1\} + P\{X_1 = 0, X_2 = 2\}$$
$$= \frac{5}{28} + \frac{5}{28} = \frac{5}{14}$$
$$P\{X_1 = X_2\} = P\{X_1 = 0, X_2 = 0\} + P\{X_1 = 1, X_2 = 1\}$$
$$= \frac{1}{56} + \frac{5}{14} = \frac{3}{8}$$
$$P\{X_1X_2 = 0\} = P\{X_1 = 0, X_2 = 0\} + P\{X_1 = 0, X_2 = 1\}$$
$$+ P\{X_1 = 0, X_2 = 2\} + P\{X_1 = 1, X_2 = 0\}$$
$$= P\{X_1 = 0\} + P\{X_1 = 1, X_2 = 0\}$$
$$= \frac{3}{8} + \frac{5}{56} = \frac{13}{28}$$

2. 已知二维随机变量 (X,Y) 的联合分布律为:

Y X	2	4	6
1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{12}$
3	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

求:

(a)
$$Z = X + Y$$
 的分布律;

(b)
$$M = \max(X, Y)$$
 的分布律;

(c)
$$N = \min(X, Y)$$
 的分布律;

解:

(a)
$$P(Z=3) = p_{12} = \frac{1}{6}, \quad P\{Z=5\} = p_{11} + p_{33} = \frac{5}{12}$$

$$P\{Z=7\} = p_{16} + p_{34} = \frac{1}{4}, \quad P(Z=9) = p_{35} = \frac{1}{6}$$

因此 Z = X + Y

(b)
$$\overrightarrow{e} (M = 2Y = p_{12} = \frac{1}{6}, \quad P\{M = 3\} = p_{32} = \frac{1}{3}$$

$$P\{M = 4\} = p_{14} + p_{34} = \frac{1}{4}, \quad P\{M = 6\} = p_{16} + p_{36} = \frac{1}{4}$$

所以 $M = \max(X, Y)$ 的分布律为下表:

	M	2	3	4	6
ĺ	p_k	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{4}$

(c)
$$P\{N=1\} = p_{12} + p_{14} + p_{16} = \frac{1}{3}, \quad P\{N=2\} = p_{32} = \frac{1}{3}$$

$$P\{N=3\} = p_{34} + p_{36} = \frac{1}{3}$$

所以 $N = \min(X, Y)$ 的分布律为下表:

3. 设二维随机变量 (X,Y) 的联合概率密度函数为:

$$f(x,y) = \begin{cases} \frac{1+xy}{4}, & |x| < 1, |y| < 1\\ 0, & 其他 \end{cases}$$

证明 X 与 Y 不独立, 但 X^2 与 Y^2 独立。

(a) 证对 X,Y 而言:

$$f_X(x) = \begin{cases} \frac{1}{2}, & |x| < 1 \\ 0, & 其他 \end{cases} \quad f_Y(y) = \begin{cases} \frac{1}{2}, & |y| < 1 \\ 0 & 其他 \end{cases}$$

因为 $f(x,y) \neq f_X(x)f_Y(y)$, 所以 X,Y 不独立

$$F_U(u) = P\{X^2 \le u\} = \begin{cases} 0, & u < 0 \\ \sqrt{u}, & 0 \le u < 1 \\ 1, & u \ge 1 \end{cases}$$
$$F_V(v) = P\{Y^2 \le v\} = \begin{cases} 0, & v < 0 \\ v, & 0 \le v < 1 \end{cases}$$

1, v > 1

 $U = X^2, V = Y^2$ 的联合分布函数为

$$F(u,v) = P\left\{X^2 \le u, Y^2 \le v\right\} = \begin{cases} 0, & u < 0 \text{ } \exists v < 0 \\ \sqrt{uv}, & 0 \le u < 1, 0 \le v < 1 \end{cases}$$
$$\sqrt{u}, & 0 \le u < 1, 1 \le v \\ \sqrt{v}, & 1 \le u, 0 \le v < 1 \\ 1, & 1 \le u, 1 \le v \end{cases}$$

可见对 $U = X^2, V = Y^2$ 而言,有 $F(u,v) = F_U(u)F_V(v)$ 即 Y^2 和 X^2 相互独立

4. 设置随机变量 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x \\ 0, & \text{其他} \end{cases}$$

求: (1) 条件概率密度 $f_{Y|X}(y|x)$; (2) 条件概率 $P(X \le 1|Y \le 1)$

解: (1) 根据题意, (X,Y) 关于 X 的边缘概率密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x e^{-x} dy, & x > 0 \\ 0, & x < 0; \end{cases} = \begin{cases} xe^{-x}, & x > 0 \\ 0, & x < 0 \end{cases}$$

则条件概率密度函数为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x \\ 0, & \text{ 其他.} \end{cases}$$

(2) 条件概率

$$P(X \leqslant 1 \mid Y \leqslant 1) = \frac{P(X \leqslant 1, Y \leqslant 1)}{P(Y \leqslant 1)}$$

而

$$P(X \le 1, Y \le 1) = \iint_{x \le 1, \le 1} f(x, y) dx dy$$
$$= \int_0^1 dx \int_0^x e^{-x} dy = \int_0^1 x e^{-x} dx = 1 - 2e^{-1}$$

又 (X,Y) 关于 Y 的边缘概率密度函数为

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_y^{+\infty} e^{-x} dx = e^{-y}, & y > 0\\ 0, & y \le 0 \end{cases}$$

因此, Y 服从参数为 1 的指数分布, 于是 $P(Y \le 1) = F(1) = 1 - e^{-1}$. 则

$$P(X \le 1 \mid Y \le 1) = \frac{P(X \le 1, Y \le 1)}{P(Y \le 1)} = \frac{1 - 2e^{-1}}{1 - e^{-1}} = \frac{e - 2}{e - 1}$$

5. 设随机变量 X 和 Y 相互独立, 且同分布, 密度函数为

$$f_T(t) = \begin{cases} e^{-t}, & t > 0\\ 0, & t \le 0 \end{cases}$$

证明: 随机变量 U = X + Y 与随机变量 V = X/Y 相互独立

解:引入随机变量函数组

$$\left\{ \begin{array}{l} u = x + y \\ v = x/y \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x = uv/(v+1) \\ y = u/(v+1) \end{array} \right. \quad u > 0, v > 0$$

其雅可比行列式

$$J = \frac{\partial(x,y)}{\partial(u,v)} = -\frac{u}{(v+1)^2}$$

所以, (U,V) 的联合概率密度为

$$f_{UV}(u,v) = e^{-(uv+u)/(v+1)} \cdot u/(v+1)^2, u > 0, v > 0$$

即

$$f_{UV}(u,v) = \begin{cases} e^{-u} \cdot u/(v+1)^2, & u > 0, v > 0 \\ 0, & \text{\sharp } \dot{\mathbb{E}} \end{cases}$$

$$f_U(u) = \begin{cases} \int_0^{+\infty} u e^{-u}/(v+1)^2 dv = u e^{-u}, & u > 0 \\ 0, & \text{\sharp } \dot{\mathbb{E}} \end{cases}$$

$$f_V(v) = \begin{cases} \int_0^{+\infty} u e^{-u}/(v+1)^2 du = 1/(v+1)^2 & v > 0 \\ 0, & \text{\sharp } \dot{\mathbb{E}} \end{cases}$$

显然, $f_{UV}(u,v) = f_U(u) \cdot f_V(v)$, 所以 X + Y = X/Y 相互独立。

6. 一仪器由两个部件组成,分别以X,Y表示这两个部件的寿命(小时)。已知(X,Y)的分布函数

$$F(x,y) = \begin{cases} 1 - e^{-0.01x} - e^{-0.01y} + e^{-0.01(x+y)}, & x > 0, y > 0 \\ 0, & \text{#d} \end{cases}$$

试求:

(a) 边缘分布函数 $F_X(x)$, $F_Y(y)$;

(b)
$$P\{1 < X < 2, 1 < Y < 2\};$$

(c) 密度函数 f(x,y)

解:

(a) 由边缘分布函数的定义知:

$$F_X(x) = F(x, + \inf) = \begin{cases} 1 - e^{-0.01x}, & x > 0 \\ 0, 其他 \end{cases}$$
$$F_Y(y) = F(y, + \inf) = \begin{cases} 1 - e^{-0.01y}, & y > 0 \\ 0, 其他 \end{cases}$$

(b) 由联合分布函数的定义知

$$P\{1 < X \le 2, 1 < Y \le 2\} = F(2, 2) - F(2, 1) - F(1, 2) + F(1, 1) = e^{-0.02} - 2e^{-0.03} + e^{-0.04}$$

(c)

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y} = \begin{cases} (0.01)^2 e^{-0.01(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$$

7. 设二维随机变量 (X,Y) 服从矩形区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 的均匀分布,且

$$U = \begin{cases} 0, & X \le Y \\ 1, & X > Y \end{cases}, V = \begin{cases} 0, & X \le 2Y \\ 1, & X > 2Y \end{cases}$$

求 U 与 V 的联合概率分布

解:由题意知,U,V只能取0和1,故(U,V)的概率分布为

$$P = \{U = 0, V = 0\} = P\{X \le Y, X \le 2Y\} = P\{X \le Y\} = \int_0^1 dx \int_x^1 \frac{1}{2} dy = \frac{1}{4}$$

$$P = \{U = 0, V = 1\} = P\{X \le Y, X > 2Y\} = P\{X \le Y\} = 0$$

$$P = \{U = 1, V = 0\} = P\{X > Y, X \le 2Y\} = P\{X \le Y\} = \int_0^1 dy \int_{y}^{2y} \frac{1}{2} dx = \frac{1}{4}$$

$$P = \{U = 1, V = 1\} = 1 - P\{X \le Y, X \le 2Y\} - P\{X \le Y, X > 2Y\} - P\{X > Y, X \le 2Y\} = \frac{1}{2}$$

8. 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) | 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令

$$U = \begin{cases} 1, & X \le Y, \\ 0, & X > Y \end{cases}$$

- (a) 写出 (X,Y) 的概率密度;
- (b) 问 U 与 X 是否相互独立? 并说明理由;
- (c) 求 Z = U + X 的分布函数

解:

(a) 根据题意,区域 D 的面积为 $S_D = \int_0^1 (\int_{x^2}^{\sqrt{x}} dy) dx = \int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3}$,则 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} 3, & (x,y) \in D \\ 0, & 其他 \end{cases}$$

(b) 对于 0 < t < 1, 有

$$P(U \le 0, X \le t) = P(X > Y, X \le t) = \int_0^t dx \int_{x^2}^x 3dy = \frac{3}{2}t^2 - t^3$$
$$P(U \le 0) = P(X > Y) = \frac{1}{2}$$

$$P(X \le t) = \int_0^t dx \int_{x^2}^{\sqrt{x}} 3dy = 2t^{\frac{3}{2}} - t^3$$

由于 $P(U \le 0, X \le t) \ne P(U \le 0)P(X \ne t)$, 所以 U 与 X 不互相独立

(c) 当 z < 0 时, F(z) = 0 当 $0 \le z < 1$ 时, 有

$$F(z) = P(U + X \le z) = P(U = 0, X \le z) = P(X > Y, X \le z) = \frac{3}{2}z^2 - z^3$$

当 $1 \le z < 2$ 时,有

$$F(z) = P(U + X \le z) = 1$$

所以 Z = U + X 的分布函数为

$$F(z) = \begin{cases} 0, & z < 0\\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1\\ \frac{1}{2} + 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2\\ 1, & z \ge 2 \end{cases}$$

9. 设 X 和 Y 是两个相互独立的随机变量,X 在 (0,1) 上服从均匀分布,Y 服从参数为 $\theta=2$ 的指数分布,求关于 α 的方程 $\alpha^2+2X\alpha+Y=0$ 有实根的概率。

注:若连续型随机变量 T 服从参数为 θ 的指数分布,则其概率密度函数具有以下形式:

$$f_T(t) = \begin{cases} \frac{1}{\theta} e^{-t/\theta}, & t > 0\\ 0, & \text{ 其他} \end{cases}$$

解:根据题意,X和Y的概率密度函数分别为

$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{其他}; \end{cases} f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y > 0 \\ 0, & \text{其他}. \end{cases}$$

由 X 和 Y 的独立性,则 (X,Y) 的联合概率密度函数为

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & 0 < x < 1, y > 0, \\ 0, & \text{其他}. \end{cases}$$

由关于 a 的方程 $a^2+2Xa+Y=0$ 有实根,则有 $\Delta=4(X^2-Y)\geq 0$,即 $X^2\geq Y$ 。因此,方程 $a^2+2Xa+Y=0$ 有实根的概率为

$$P(X^{2} \ge Y) = \int_{0}^{1} dx \int_{0}^{x^{2}} \frac{1}{2} e^{-\frac{y}{2}} dy$$

$$= 1 - \int_{0}^{1} e^{-\frac{x^{2}}{2}} dx$$

$$= 1 - \sqrt{2\pi} \int_{0}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= 1 - \sqrt{2\pi} [\Phi(1) - \Phi(0)]$$

$$= 0.1445$$

10. 设 X_1, \ldots, X_{2n+1} 为独立同分布的随机变量(统计上称 X_1, \ldots, X_{2n+1} 为一组容量为 2n+1 的样本)。次序统计量 $X_{(n+1)}$ 称为样本中位数。如果 X_1, X_2, X_3 是 (0,1) 上服从均匀分布的一组样本。求样本中位数落入区间 (1/2, 3/4) 概率。

解: $X_{(j)} = x$ 意味着 $X_1, ..., X_n$ 中有 j-1 个值小于 x,有一个值等于 x,有 n-j 个值大于 x,对于给定的一个随机变量等于 x,给定的 j-1 个随机变量的值小于 x,给定的其余 n-j 个随机变量的值大于 x,概率密度为:

$$[F(x)]^{j-1}[1 - F(x)]^{n-j}f(x)$$

因为把 n 个随机变量分成三个组的方法共有

$$\binom{n}{j-1, n-j, 1} = \frac{n!}{(n-j)!(j-1)!}$$

种,所以 $X_{(j)}$ 的密度函数为

$$f_{X_{(j)}}(x) = \frac{n!}{(n-j)!(j-1)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x)$$

利用上式可得 $X_{(2)}$ 的密度函数为

$$f_{X_{(2)}}(x) = \frac{3!}{1!1!}x(1-x)$$
 , $0 < x < 1$

因此有

$$P\left\{\frac{1}{4} < X_{(2)} < \frac{3}{4}\right\} = 6\int_{1/4}^{3/4} x(1-x) \mathrm{d}x = 6\left\{\frac{x^2}{2} - \frac{x^3}{3}\right\} \begin{vmatrix} x = 3/4 \\ x = 1/4 \end{vmatrix} = \frac{11}{16}$$