

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 277/32, 277/30, 275/02, 285/06, 417/04, A01N 43/78, 43/74, 43/82	A1	(11) International Publication Number: WO 99/32464 (43) International Publication Date: 1 July 1999 (01.07.99)
(21) International Application Number: PCT/EP98/08335		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 18 December 1998 (18.12.98)		
(30) Priority Data: 9726989.8 22 December 1997 (22.12.97) GB		
(71) Applicant (<i>for all designated States except AT US</i>): NOVARTIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).		
(71) Applicant (<i>for AT only</i>): NOVARTIS-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT MBH [AT/AT]; Brunner Strasse 59, A-1235 Vienna (AT).		
(72) Inventors; and		Published
(75) Inventors/Applicants (<i>for US only</i>): CHEMLA, Philippe [FR/CH]; 183, rue des Romains, F-68200 Mulhouse (FR). MAETZKE, Thomas [CH/CH]; Wilhelm Haas-Weg 12, CH-4142 Münchenstein (CH). ERTL, Peter [CZ/CH]; Aeussere Lange Heid 5, CH-4142 Münchenstein (CH).		With international search report. With amended claims and statement.
(74) Agent: BECKER, Konrad; Novartis AG, Patent- und Markenabteilung, Lichstrasse 35, CH-4002 Basel (CH).		

(54) Title: THIAZOLE-, ISOTHIAZOLE- AND THIADIAZOLE-DERIVATIVES HAVING MICROBICIDAL AND PLANT IMMUNIZING ACTIVITIES

(57) Abstract

Compounds of formula (I) and process for protecting and immunizing plants against attack by phytopathogenic microorganisms by applying compounds of formula (I) wherein a) X is CR₄ and Y is N; or b) X is N and Y is CR₅; or c) X and Y are N; and wherein Z is a C₁-group to which 1-3 halogen atoms or 1-3 unsubstituted or substituted hetero atoms selected from the group O, S and N are bonded; Z is CN, CO-A, CS-A or CH(OR₁₀)₂; A is hydrogen, halogen, OR₆, SR₇, N(R₈)R₉, ON(R₁₁)R₁₂ or N(R₁₃)OR₁₄; and wherein R₁-R₁₄ have the meanings given in the description.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Thiazole-, isothiazole- and thiadiazole-derivatives having microbicidal and plant immunizing activities.

The invention relates to a method for protecting and immunizing plants against attack by phytopathogenic microorganisms by applying to the plants, to parts of the plants and/or to the locus of the plants a compound of formula I

wherein

- a) X is CR₄ and Y is N; or
- b) X is N and Y is CR₅; or
- c) X and Y are N; and wherein

Z is a C₁-group to which 1-3 halogen atoms or 1-3 unsubstituted or substituted hetero atoms selected from the group O, S and N are bonded;

R₁ and R₂ are independently H, OH, SH, CN, COOH, NO₂, NH₂, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, C₁-C₆alkanoyloxy, aroyloxy, C₁-C₆alkoxycarbonyl, aryloxycarbonyl, benzyloxycarbonyl, C₁-C₆alkylcarbonyl, arylcarbonyl, benzylcarbonyl, aminocarbonyl, C₁-C₆alkylaminocarbonyl, C₁-C₆dialkylaminocarbonyl, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, arylsulfinyl, arylsulfonyl, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, alkoxycarbonylC₁-C₆alkyl, haloalkoxycarbonylC₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxyC₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, benzyloxyarbonylamino, phenyl, phenoxy, benzyl or phenethyl, wherein all the aromatic groups are unsubstituted or substituted from 1 to 5 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocyclyl; or tri(C₁-C₆alkyl)silyl or tri(C₁-C₆alkyl)silyloxy;

- 2 -

with the proviso that R₁ and R₂ are not simultaneously a group selected from OH, SH, NO₂, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino and C₂-C₆alkenylamino; or
R₁ and R₂ together are =O or =S; or
R₁ and R₂ together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 8 membered isocyclic or heterocyclic ring; or
R₂ and Z together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 7 membered lactone, lactame, thiolactone or thiolactame, which ring may have 1 to 2 additional hetero atoms selected from the group O, S and N;
R₃, R₄ and R₅ are independently H, OH, SH, CN, NO₂, NH₂, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, hydroxyC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, halo-C₁-C₆alkoxy, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, C₁-C₆alkanoyl, C₁-C₆alkoxycarbonyl, alkoxy carbonylC₁-C₆alkyl, haloalkoxycarbonylC₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxyC₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, phenyl, phenoxy, benzyl or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocyclyl.

The invention relates also to new compounds of formula I, to the preparation of those compounds, to new intermediates and to agrochemical compositions comprising at least one of those compounds as active ingredient.

Thiazole and thiadiazole derivatives having plant-fungicidal activities are known from EP-A-395,174, US 5,135,927, WO 96/17840, and WO 96/29871. EP-A-757,987 and WO 97/20465 discloses thiazole and thiadiazole derivatives exhibiting plant immunizing activities. These compounds have no or very weak direct activity against fungi and bacteria, but protect the plants from phytopathogenic microorganisms by activation and stimulation of the plant's own defence system (immunisation). That mode of action has also become known by the name "Systemic Activated Resistance" ("SAR"). Such compounds and methods are ecologically advantageous and are complementary to current methods in crop protection. It is therefore desirable to provide more compounds and

methods for protecting plants by immunizing them against attack by phytopathogenic microorganisms.

Surprisingly it has now been found that compounds of formula I can be used for protecting and immunizing plants against attack by microorganisms, such as phytopathogenic fungi, bacteria and viruses and for improving the qualities of the plants.

The formula I embraces all stereoisomeric forms and mixtures thereof, such as enantiomeric and diastereomeric pure forms and mixtures thereof.

The compounds of formula I and, where appropriate, their tautomers can be in the form of salts. Compounds of formula I that have at least one basic centre can form acid addition salts. Furthermore, compounds of formula I having at least one acid group can form salts with bases. Preference is given to agrochemically advantageous salts.

Z is a C₁-group which means that no additional carbon atoms are directly attached to this group. Examples for the group Z are trihalomethyl, dihalomethyl or halomethyl as chloromethyl; formyl or an acetal or thioacetal thereof; a carboxylic acid or derivatives thereof, as nitrile, esters, anhydrides, thioesters, amides, amidines, imidic-, hydrazonic- and hydroxamic-acids or derivatives thereof; or heterocyclyl, as 2-imidazolyl, 2-pyrimidinyl and 2-thiazolyl.

Compounds of formula I wherein R₁ and R₂ are simultaneously a group selected from OH, SH, NO₂, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino and C₂-C₆alkenylamino are not stable in general and are thus not part of this invention.

Unless defined otherwise, the general terms used hereinbefore and hereinafter have the meanings given below:

Hydrocarbon radicals may be saturated or unsaturated, open-chained or cyclic, or mixed open-chained and cyclic, for example cyclopropylmethyl or benzyl.

Alkyl groups are straight-chained or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, sec-amyl, tert-amyl, 1-hexyl or 3-hexyl.

Unsaturated hydrocarbon radicals are alkenyl, alkynyl or alkenynyl groups having not more than three multiple bonds, for example butadienyl, hexatrienyl or 2-penten-4-ynyl.

Alkenyl is straight-chained or branched alkenyl, for example allyl, methallyl, 1-methylvinyl or but-2-en-1-yl. Preference is given to alkenyl radicals having a chain length of 2 to 4 carbon atoms.

Alkynyl may be straight-chained or branched, for example propargyl, but-1-yn-1-yl or but-1-yn-3-yl. Propargyl is preferred.

Cyclic unsaturated hydrocarbon radicals may be aromatic, for example phenyl and naphthyl, or non-aromatic, for example cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctadienyl, or partially aromatic, for example tetrahydronaphthyl and indanyl.

Halogen, or halo, is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.

Haloalkyl may contain identical or different halogen atoms, for example fluoromethyl, difluoromethyl, difluorochloromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, 2,2,2-trichloroethyl, 3,3,3-trifluoropropyl.

Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy, preferably methoxy and ethoxy.

Haloalkoxy is, for example, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy and 2,2-difluoroethoxy.

Cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Alkanoyl is either straight-chained or branched. Examples are formyl, acetyl, propionyl, butyryl, pivaloyl and octanoyl.

A heterocyclyl radical is to be understood as being a 3 to 7-membered, aromatic or non-aromatic ring having hetero atoms N, O and/or S. Furthermore, an unsubstituted or substituted benzo group may be fused onto such a heterocyclyl radical bonded to the rest of the molecule. Examples of heterocyclyl groups are pyridyl, pyrimidinyl, imidazolyl, thiazolyl, 1,3,4-thiadiazolyl, triazolyl, thienyl, furanyl, pyrrolyl, morpholinyl, oxazolyl and the corresponding partially or completely hydrogenated rings. Examples of heterocyclyl groups to which a benzo group is fused are quinolyl, isoquinolyl, benzoxazolyl, quinoxalinyl, benzothiazolyl, benzimidazolyl, indolyl and indolinyl.

Aryl is phenyl, naphthyl, phenanthryl or fluorenyl, in particular phenyl.

The hydrocarbyl groups, as alkyl, alkenyl, alkynyl, and the haloalkyl, haloalkenyl, haloalkoxy and alkanoyl groups mentioned hereinabove and hereinbelow can be substituted by aryl,

- 5 -

hetaryl, aryloxy, hetaryloxy, arylsulfenyl, arylsulfinyl, arylsulfonyl, heterarylsulfonyl, hetarylsulfinyl or heterarylsulfonyl, each of which is unsubstituted or additionally substituted. All the aryl, hetaryl and heterocyclyl groups mentioned hereinabove and hereinbelow can be mono- or polysubstituted, for example by halogen, C₁-C₄alkyl, C₂-C₄alkenyl, C₂-C₄alkynyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄haloalkyl, C₂-C₄haloalkenyl, C₂-C₄-haloalkynyl, C₁-C₄haloalkoxy, halogen, cyano, cyano-C₁-C₂alkyl, cyano-C₁-C₂alkoxy, OH, NO₂, SCN, thiocyanomethyl, Si(CH₃)₃, NH₂, NH(C₁-C₄alkyl), N(C₁-C₄alkyl)₂, C₁-C₄alkoxymethyl, C₁-C₄haloalkylcarbonyl, C₁-C₄haloalkyloxycarbonyl, C₁-C₄alkylcarbonyl, C₁-C₄-alkoxycarbonyl, aminocarbonyl, C₁-C₄alkylaminocarbonyl, bis(C₁-C₄alkylamino)carbonyl, arylaminocarbonyl, arylaminothiocarbonyl, C₁-C₄alkoximinomethyl, -CSNH₂, -SH, C₁-C₄alkylthiomethyl, C₂-C₄alkenyloxy, C₂-C₄alkynyloxy, C₂-C₄haloalkenyloxy, C₁-C₄alkylsulfinylmethyl, C₁-C₄alkylsulfonylmethyl, phenylsulfinylmethyl, phenylsulfonylmethyl, trifluoromethylsulfonyl, C₃-C₆cycloalkyl, C₁-C₄haloalkylcarbonyloxy, C₁-C₄alkylcarbonyloxy, C₁-C₄alkoxycarbonyloxy, haloalkoxycarbonyloxy, aminocarbonyloxy, C₁-C₄alkylaminocarbonyloxy, bis(C₁-C₄alkylamino)carbonyloxy, arylaminocarbonyloxy, arylaminothiocarbonyloxy.

Amongst the compounds and methods of their use the following groups are preferred:

(1) Compounds of formula

The compounds of the formula

wherein

- 6 -

- a) R₁ is OCO-CH₃ and T is Br,
- b) R₁ is OH and T is Br,
- c) R₁ is OH and T is H,

are known from WO 96/17840 as fungicides, but no indication is given therein to plant immunizing properties of these compounds ; these compounds are thus part of the invention only as far as the method for immunizing plants is concerned.

(2) Compounds of formula

(3) Compounds of formula

(4) Compounds of formula I, wherein

Z is CN, CO-A, CS-A or CH(OR₁₀)₂;

A is hydrogen, halogen, OR₆, SR₇, N(R₈)R₉, ON(R₁₁)R₁₂ or N(R₁₃)OR₁₄;

R₆ to R₁₄ are independently hydrogen, an unsubstituted or substituted, open-chained, saturated or unsaturated hydrocarbon radical containing up to 8 carbon atoms, an unsubstituted or substituted, cyclic, saturated or unsaturated hydrocarbon radical containing up to 10 carbon atoms, unsubstituted or substituted benzyl or phenethyl, an unsubstituted or substituted acyl group containing up to 8 carbon atoms, an unsubstituted or substituted benzoyl group, or an unsubstituted or substituted heterocyclyl radical; or

- 7 -

R₈ and R₉, or R₁₁ and R₁₂, together with the nitrogen atom to which they are bonded, form a 5- or 6-membered, unsubstituted or substituted heterocycle having 1 to 3 hetero atoms selected from O, S and/or N;

R₁₀ are identical or different and are C₁-C₆alkyl that is unsubstituted or substituted by phenyl, C₁-C₂alkoxy, phenoxy or by benzyloxy; or

two substituents OR₁₀, together with the carbon atom to which they are bonded, form a cyclic acetal group that is unsubstituted or substituted by C₁-C₃alkyl, phenyl, benzyl, hydroxy or by C₁-C₃hydroxyalkyl.

(5) Compounds of formula I, wherein

Z is CO-A or CS-A;

A is OR₆, SR₇, N(R₈)R₉, ON(R₁₁)R₁₂ or N(R₁₃)OR₁₄;

R₆ to R₁₄ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, phenyl, benzyl, phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 5 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and C₁-C₂alkylenedioxy.

(6) Compounds of formula I, wherein

R₃ is H, OH, C₁-C₆alkyl, C₃-C₆cycloalkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy or haloC₁-C₆alkoxy.

(7) Compounds of formula I, wherein

R₁ is H, OH, NH₂, halogen, COOH, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkanoyloxy, aroyloxy, C₁-C₄alkoxycarbonyl, aryloxycarbonyl, benzyloxycarbonyl, C₁-C₄alkylcarbonyl, arylcarbonyl, benzylcarbonyl, aminocarbonyl, C₁-C₄alkylaminocarbonyl, C₁-C₄dialkylaminocarbonyl, alkanoylC₁-C₄alkyl, alkylcarbonyloxyC₁-C₄alkyl, C₂-C₄alkenyl, haloC₂-C₄alkenyl, C₁-C₄alkylamino, C₁-C₄dialkylamino, C₁-C₄alkanoylamino, C₁-C₄alkoxycarbonylamino, benzylamino, benzoylamino, phenyl, phenoxy, benzyl or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro;

R₂ is H, OH, C₁-C₄alkyl, C₁-C₄alkoxy or phenyl; or

R₁ and R₂ together are a group selected from

- 8 -

or

R₂+Z together are a group selected from

wherein R₁₇, R₁₈ and R₁₉ are independently H or C₁-C₄alkyl;

R₃ is H, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, C₃-C₆-cycloalkyl, C₁-C₄ alkoxy carbonyl, phenyl which is unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy, amino, C₁-C₄alkylamino, C₁-C₄dialkylamino, benzylamino, C₁-C₄alkanoylamino, benzoylamino, C₁-C₄alkoxycarbonylamino, formyl, or a 4-7-membered cyclic or C₁-C₄alkyl open-chained acetal or thioacetal thereof;

R₄ is H, OH, halogen, amino, C₁-C₆alkyl, C₁-C₄alkylamino, C₁-C₄alkenylamino, C₁-C₄dialkylamino, benzylamino, C₁-C₄alkanoylamino, benzoylamino, C₁-C₄alkoxycarbonylamino.

(8) Amongst group (7) those, wherein

R₃ is H, OH, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, C₃-C₆-cycloalkyl, C₁-C₆alkoxy, alkoxy carbonylC₁-C₆alkyl, phenyl, benzyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy and halo-C₁-C₂alkoxy; or formyl, or a 4-7-membered cyclic or C₁-C₄alkyl open-chained acetal or thioacetal thereof;

R₄ is H, OH, halogen, amino, C₁-C₆alkyl, C₁-C₄alkylamino, C₁-C₄alkenylamino, C₁-C₄dialkylamino, benzylamino, C₁-C₄alkanoylamino, benzoylamino, or C₁-C₄alkoxycarbonylamino.

(9) Amongst group (6) those, wherein

Z is CO-A or CS-A;

A is hydrogen, halogen, OR₆, SR₇, N(R₈)R₉, ON(R₁₁)R₁₂ or N(R₁₃)OR₁₄;

R₆ to R₉ and R₁₁ to R₁₄ are independently hydrogen, an unsubstituted or substituted, open-chained, saturated or unsaturated hydrocarbon radical containing up to 8 carbon atoms, an unsubstituted or substituted, cyclic, saturated or unsaturated hydrocarbon radical containing up to 10 carbon atoms, unsubstituted or substituted benzyl or phenethyl, an unsubstituted or substituted acyl group containing up to 8 carbon atoms, an unsubstituted or substituted benzoyl group, or an unsubstituted or substituted heterocyclyl radical; or

R₈ and R₉, or R₁₁ and R₁₂, together with the nitrogen atom to which they are bonded, form a 5- or 6-membered, unsubstituted or substituted heterocycle having 1 to 3 hetero atoms selected from O, S and/or N;

R₁₀ are identical or different and are C₁-C₆alkyl that is unsubstituted or substituted by phenyl, C₁-C₂alkoxy, phenoxy or by benzyloxy; or

two substituents OR₁₀, together with the carbon atom to which they are bonded, form a cyclic acetal group that is unsubstituted or substituted by C₁-C₃alkyl, phenyl, benzyl, hydroxy or by C₁-C₃hydroxyalkyl.

(10) Amongst group (9) those, wherein

A is OR₆, SR₇, or N(R₈)R₉;

R₆, R₇, R₈ R₉ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₄alkoxycarbonyl, alkoxycarbonylC₁-C₆alkyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy.

(11) Amongst group (9) those, wherein

Z is CO-A;

A is OR₆ or N(R₈)R₉;

R₁ is H, OH, halogen, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄alkoxy, halo-C₁-C₄alkoxy, amino, C₁-C₄alkylamino, C₁-C₄dialkylamino, benzylamino; phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 2 substituents independently selected from halogen, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy;

- 10 -

R₂ is H, OH, halogen, C₁-C₄alkyl, haloC₁-C₆alkyl, or phenyl,

R₃ is H, OH, C₁-C₆alkyl, C₃-C₆cycloalkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy or haloC₁-C₆alkoxy,

R₄ is H or Cl,

R₆, R₈ and R₉ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy,

haloC₁-C₆alkoxy, C₁-C₄alkoxycarbonyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl,

C₃-C₆cycloalkylmethyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are

unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy.

(12) Amongst group (11) those, wherein

R₁ is H, OH, halogen, C₁-C₄alkyl;

R₂ is H.

R₃ is H, cyclopropyl or CF₃,

R₄ is Cl.

(13) Amongst group (9) those, wherein

R₃ is H, halogen, C₁-C₄alkyl, haloC₁-C₄alkyl, C₃-C₆cycloalkyl, C₁-C₄ alkoxy carbonyl, formyl, or a 4-7-membered cyclic or C₁-C₄alkyl open-chained acetal or thioacetal thereof.

(14) Compounds of formula

Z is CO-A;

A is hydrogen, OR₆, SR₇, N(R₈)R₉;

R₁ is H, OH, halogen or C₁-C₄alkyl,

R₂ is H;

R₃ is H, OH, C₁-C₆alkyl, C₃-C₆cycloalkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, haloC₁-C₆alkoxy, formyl, or a 4-7-membered cyclic or C₁-C₄alkyl open-chained acetal or thioacetal thereof;

R₄ is Cl;

R₆, R₇, R₈ and R₉ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, haloC₁-C₆alkoxy, C₁-C₄alkoxycarbonyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl,

- 11 -

C_3 - C_6 cycloalkylmethyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C_1 - C_4 alkyl, halo- C_1 - C_2 alkyl, C_1 - C_2 alkoxy, halo- C_1 - C_2 alkoxy.

(15) Amongst group (14) those, wherein

A is OR_6 or SR_7 ;

R_1 and R_2 are H;

R_3 is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CF_3 or formyl;

R_4 is Cl;

R_6 and R_7 are independently H, C_1 - C_6 alkyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted with 1 to 2 substituents independently selected from halogen, C_1 - C_4 alkyl, halo- C_1 - C_2 alkyl, C_1 - C_2 alkoxy and halo- C_1 - C_2 alkoxy.

Also preferred are the compounds of the tables.

The compounds of formula I may be prepared as outlined in the following reaction schemes.

Abbreviations:

Hal: halogen

L: leaving group, preferably chlorine, bromine, mesylate or tosylate.

R: a group which is inert under the reaction conditions

- 12 -

Scheme 1

Of particular importance is the reaction step

wherein X, Y and R₃ are as defined for formula I,
 which comprises reaction of a compound of formula II.1 with carbon monoxide under pressure of 2-20 bars, preferably 5-10 bars, in presence of a catalyst, for example cobalt carbonyl and optionally a phase transfer catalyst.

Scheme 2

- 13 -

Scheme 3Scheme 4Scheme 5

The functional groups of the compounds of formula I can be converted by known methods.
For example, carboxylic acid derivatives can be converted as follows:

Scheme 6

Of importance are the syntheses of schemes 7 and 8

Scheme 7

- 16 -

Scheme 8

Of particular importance is the reaction step

which comprises reaction of a compound of formula II.A.1 with carbon monoxide under pressure of 2-20 bars, preferably 5-10 bars, in presence of a catalyst, for example cobalt carbonyl and optionally a phase transfer catalyst.

- 17 -

Particularly preferred is this reaction with compounds wherein R₃ is C₁-C₆alkyl, CF₃ or an acetal group, and R₄ is Cl.

Suitable bases, leaving groups, solvents and catalysts are known to the skilled person.

The thiazoles, isothiazoles and thiadiazoles can be synthesized by known methods or in analogy thereto according to the following references:

1.1 1,3-Thiazoles

Ahluwalia V. K. et al, *Heterocycles*, 32, (1991), 907.

Fukatsu H. et al, *Heterocycles*, 29, (1989) 1517.

Byers J. R. et al, *Org. Synthesis II*, (1943) 31.

1.2 1,2-Isothiazoles

R. G. Micetich, *Can J. Chem.*; (1970), 48, 2006.

Adams A., Slack, *J. Chem. Soc.* (1959) 3061.

Buttimore D. et al, *J. Chem. Soc.* (1963) 2032.

Wooldrige K.R.H. *Adv. Het. Chem.* (1972), 14, 1.

1.3 1,2,3-Thiadiazoles

Hurd C. D., Mori E. J., *J. Am. Chem. Soc.*, (1995), 5359.

Rämsky S. I. et al., *Acta Pharm. Suecica* 10, (1973), 285.

Scheitauer S., Mayer R. *Chem. Ber.* 100, (1967), 1413.

R. Raap, *Can. J. Chem.* (1968), 46, 2255.

The compounds of the invention can be used in the agricultural sector and related fields preventively and/or curatively. Besides their microbicidal properties, the compounds exhibit plant immunizing properties, i.e. plants can be protected by activation and stimulation of the plant's own defense system (immunization) which is known as "Systemic Activated Resistance" ("SAR").

Accordingly, with the compounds and methods of the invention, it is possible to control plant diseases on the one hand by strengthening the plant by activating its own defence system and on the other hand by additionally controlling the pathogens directly. The compounds offer a long lasting protection against a variety of pathogens in different crops.

The compounds I can also be used as dressings in the treatment of seed (fruit, tubers, grains) and plant cuttings to provide protection against fungus infections as well as against phytopathogenic fungi which occur in the soil.

The compounds I are effective, for example, against phytopathogenic fungi belonging to the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Moreover, they are effective against the classes of the Ascomycetes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and Oomycetes (e.g. Phytophthora, Pythium, Plasmopara).

Target crops to be protected within the scope of the present invention comprise e.g. the following species of plants: cereals (wheat, barley, rye, oats, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, stone fruit and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (marrows, cucumber, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocados, cinnamon, camphor); and plants such as tobacco, nuts, coffee, aubergines, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals.

The compounds I are generally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with further compounds. These further compounds can be, for example, fertilisers or micronutrient donors or other preparations that influence plant growth. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or other application-promoting adjuvants customarily employed in formulation technology.

Suitable solvents, carriers and adjuvants are known to the skilled person.

A preferred method of applying a compound of formula I, or an agrochemical composition comprising at least one of those compounds, is application to the leaves (foliar application). The frequency and rate of application depend upon the risk of infestation by the corresponding pathogen. The compounds I can, however, also penetrate the plant through the roots via the soil (systemic action) if the locus of the plant is impregnated with a liquid formulation or if the substances are introduced in solid form into the soil, e.g. in the form of granules (soil application). In paddy rice crops, such granules can be applied in metered amounts to the flooded rice field. In order to treat seed, the compounds I can, however, also be applied to the seeds (coating), either by impregnating the grains or tubers with a liquid formulation of the active ingredient, or by coating them with a solid formulation.

Advantageous rates of application are normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, especially from 20 g to 600 g a.i./ha. When the compounds are used as seed dressings, dosages of from 10 mg to 1 g of active ingredient per kg of seed are advantageously employed.

The agrochemical compositions generally comprise 0.1 to 99 % by weight, preferably 0.1 to 95 % by weight, of a compound of formula I, 99.9 to 1 % by weight, preferably 99.8 to 5 % by weight, of a solid or liquid adjuvant and 0 to 25 % by weight, preferably 0.1 to 25 % by weight, of a surfactant.

Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further auxiliaries, such as stabilisers, antifoams, viscosity regulators, binders or tackifiers, as well as fertilisers or other active ingredients for obtaining special effects.

The compounds of formula I can be mixed with other fungicides, producing in some cases unexpected synergistic effects.

Especially preferred mixing partners are

azoles, as azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, tebuconazole, tetriconazole, triadimefon, triadimenol, triflumizole, triticonazole;

- 20 -

pyrimidinyl carbinoles, as ancymidol, fenarimol, nuarimol;
2-amino-pyrimidines, as bupirimate, dimethirimol, ethirimol;
morpholines, as dodemorph, fenpropidin, fenpropimorph, spiroxamin, tridemorph;
anilinopyrimidines, as cyprodinil, mepanipyrim, pyrimethanil;
pyrroles, as fenpiclonil, fludioxonil;
phenylamides, as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl;
benzimidazoles, as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole;
dicarboximides, as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone,
vinclozolin;
carboxamides, as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide;
guanidines, as guazatine, dodine, iminoctadine;
strobilurines, as azoxystrobin, kresoxim-methyl, SSF-126 (metominostrobin or
fenominostrobin; SSF-129 (α -methoximino-N-methyl-2-[(2,5-dimethylphenoxy)methyl]-
benzeneacetamide), trifloxystrobin (2-[α -{[(α -methyl-3-trifluormethyl-benzyl)imino]-oxy}-o-
tolyl] -glyoxylsäure-methylester-O-methyloxim);
dithiocarbamates, as ferbam, mancozeb, manebo, metiram, propineb, thiram, zineb, ziram;
N-halomethylthiodicarboximides, as captafol, captan, dichlofluanid, fluoromide, folpet,
tolyfluanid;
copper compounds, as bordeaux-mixture, copper hydroxide, copper oxychloride, copper
sulfate, cuprous oxide, mancopper, oxine-copper;
nitrophenol-derivatives, as dinocap, nitrothal-isopropyl;
organophosphorus-derivatives, as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos,
tolclofos-methyl;
other compounds, as acibenzolar-S-methyl, anilazine, blasticidin-S, chinomethionat,
chloroneb, chlorothalonil, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb,
dimethomorph, dithianon, etridiazole, famoxadone, fentin, ferimzone, fluazinam,
flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, kasugamycin, methasulfocarb,
pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxystrobin,
quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin.

ExamplesA. Preparation Examples

Abbreviations: Me = methyl; Et = ethyl; Pr = n-propyl; i-Pr = isopropyl; Bu = n-butyl; i-Bu = isobutyl; sec-Bu = sec-butyl; t-butyl = tert-butyl, Ph = phenyl; Ac = acetyl, THF = tetrahydrofuran; TPP = triphenylphosphine; Val = valine; m.p. = melting point

1. Compound No.1.1 (E)

A mixture of thiazole A (synthesized according to EP 0279239) (25.5 g, 0.11 Mol) and thionyl chloride (26.2 g, 0.22 Mol) in 25ml of toluene, is held at reflux for 1.5 hours. After, evaporation of the toluene under reduced pressure, 24 g of the acid chloride B (b.p 90-92°, 45mbar) is distilled through a Vigreux column.

To the acid chloride B (97.5 g, 0.39 Mol) in 1l dry tetrahydrofuran at -70°C under nitrogen atmosphere, $\text{NaAlH}_2(\text{OCH}_2\text{CH}_2\text{OCH}_3)_2$ (commercial solution 3.5M in toluene, 0.429Mol), diluted in 300ml of toluene, is added dropwise. After 45min of stirring at -70°C, the cooling bath is removed and the reaction is quenched with 370 ml of 3.5N HCl is added. The organic phase extracted with ethyl acetate, dried over sodium sulfate, concentrated under reduced pressure and flash-chromatographed to afford 67.5g of the alcohol C as an oil.

A mixture of alcohol C (60 g, 0.276 Mol) and thionyl chloride (98.5 g, 0.828 Mol) in 400 ml of dichloromethane containing 0.1 ml of dimethyl formamide is stirred at reflux for 8 hours: Another portion of thionyl chloride (16.4 g, 0.138 Mol) is then added and the reaction

- 22 -

heated for additional 16 hours. After the reaction is cooled down to room temperature, the solvent is removed under reduced pressure (60°C, 200 mbar) and the resulting crude yellow oil is distilled through a 5 cm Vigreux column (92-95°C, 20 mbar) to give 53.5 g of compound D as an colorless oil.

A mixture of compound D (125 g, 1.059 Mol), benzyltriethylammonium chloride (4.8 g, 0.042 Mol), cobalt carbonyl (7.2 g, 0.042 Mol), sodium carbonate (101 g, 2.4 Mol), 1.5 l of water and 1.36l of dichloromethane is stirred under carbon monoxide pressure (10 bars) for 24 hours at room temperature. The biphasic mixture is then filtered over celite, extracted two times with dichloromethane. The water phase is acidified with 105 ml of concentrated HCl and extracted with ethyl acetate. The organic layer is then washed with brine, dried over sodium sulfate, treated with active charcoal at 60°C, filtered over celite and concentrated in vacuo to give 114 g of the acid E which is used without further purification.

2. Compound No 2.5 (J) (by Arndt-Eistert-reaction)

To compound G (2.0 g, 10.44 mmol) dissolved in 20 ml of dichloromethane at 0°C, is added oxalyl chloride (0.9 ml, 10.5 mmol). After the development of carbon dioxide stopped, 0.1 ml of dimethylformamide is added and the yellow suspension is stirred at room temperature for 3 hours. The resulting yellow solution is then concentrated under reduced pressure, dissolved in a mixture of 10 ml tetrahydrofuran and 10 ml acetonitrile, cooled down to 0°C, and successively treated with triethylamine (1.8 ml), trimethylsilyldiazomethane (commercial 2N solution in hexane) (6.05 ml, 13.05 mmol). After 12 hours of stirring at 0°C, the solvents are evaporated under reduced pressure, and the intermediate diazoketone G is rearranged in a mixture of 13 ml of benzylalcohol and 13 ml of trimethylpyridine at 180°C for 8 min. The dark mixture is cooled down to room temperature, diluted with ethyl acetate, washed 3 times with citric acid (10% aqueous solution). The ethyl acetate layer is dried over magnesium sulfate, filtered, evaporated under reduced pressure, and flash-chromatographed to give the compound J as an oil.

- 23 -

3. Compound No.1.2

2-Chloro-4-trifluoromethyl-5-acetic acid (10 g, 40.71 mmol) in 100 ml of methanol is heat-refluxed in presence of concentrated sulfuric acid (4 g, 40.71 mol) for 12 hours. After cooling at room temperature, the methanol is distilled off under reduced pressure, the residue is dissolved in ethyl acetate, and successively washed with a saturated solution of sodium bicarbonate (3 times) and brine. After drying over magnesium sulfate, the ethyl acetate layer is filtered, evaporated under reduced pressure and flash-chromatographed on silica-gel to give 10.36g of the title compound as a pale red oil.

4. Compound No.1.21

The acid chloride of comp. 1.2 (78.5 g, 0.2973 Mol) and L-Valine methyl ester hydrochloride are suspended in 600 ml of toluene, and heated at 110°C for 25 minutes. The resulting clear solution is cooled down to room temperature, extracted successively with water, a saturated solution of sodium bicarbonate, brine. The organic layer is then dried over sodium sulfate and the solvent removed under reduced pressure to give a crude oil which is chromatographed on silica-gel to afford 102g of the title compound (mp:51-53°C).

5. Compound No.1.76

A mixture of compound 1.2 (9 g, 34.7 mmol) and N-Bromosuccinimide (15.49 g, 87 mmol) in 200 ml of carbon tetrachloride, irradiated with a 150W quartz lamp is heated at reflux temperature. After 1.5 hours of stirring, the mixture is cooled down to room temperature and

- 24 -

filtered over celite. After removal of the solvent under reduced pressure, the filtrate is suspended in hexane at 60°C and the solid filtered over celite. The hexane evaporated under reduced pressure to give a red oil, which after distillation (150°C, 0.13mbars) gives 10g of the title compound as a pale red oil.

6. Compound No. 1.97

A mixture of compound 1.76 (1 g, 2.9 mmol) and (0.63 g, 5.9 mmol) of benzylamin is stirred at room temperature for 4 hours. After completion of the reaction, the reaction mixture is removed under reduced pressure, and chromatographed on silica to give 0.8 g of the title compound as an oil.

7. Compound No. 1.82

Compound 1.2 (1 g, 3.8 mmol) is added to a suspension of sodium hydride (55% in mineral oil) (0.17g, 4.2mmol) in tetrahydrofuran at -50°C, and the resulting red solution stirred for 1hour at -35°C. After this period, methyl iodide (0.7 g, 5 mmol) is rapidly added. After 2 hours of stirring, the reaction is quenched with a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layer is dried over magnesium sulfate, evaporated under reduced pressure and chromatographed on silica to give 0.72 g of the title compound as a pale yellow oil.

8. Compound No.1.92

Compound 1.2 (1 g, 3.8 mmol) is added to a suspension of sodium hydride (55% in mineral oil) (0.17 g, 4.2 mmol) in dry tetrahydrofuran at -50°C, and the resulting red solution stirred for 1hr at -35°C. Methyl chloroformate (6 mmol) is then added, and after 2hours of stirring, the reaction is quenched with a saturated aqueous ammonium chloride solution, and heated up to room temperature. After extraction with ethyl acetate, the organic layer is dried over magnesium sulfate, filtered and evaporated under reduced pressure. The reaction mixture is purified on silica to afford 0.79g of the title compound as a white solid.

9. Compound No. 1.99

To a suspension of sodium hydride (55% in mineral oil)(0.61 g, 25.4 mmol) at -50°C, is added compound 1.2 (3 g, 11.55 mmol). After 2.5 hours of stirring at -30°C, the red mixture is cooled down to -78°C, treated with methyl iodide (4.92 g, 34.65 mmol), and slowly heated up to -20C over a period of 1.5hrs. After hydrolysis with a saturated aqueous ammonium chloride solution, the reaction mixture is extracted with ethyl acetate, dried over magnesium sulfate, and after evaporation of the solvent under reduced pressure, the resulting crude material is purified by flash-chromatography to give 2.06g of the title compound as an oil.

10. Compound No.1.100

To a tetrahydrofuran solution kept at -78°C of lithium diisopropylamide, prepared at 0°C from diisopropylamine (0.83 ml, 5.9 mmol) and n-butyl lithium (3.33 ml, 5.3 mmol), 2-chloro-4-trifluoromethyl-thiazole is slowly added (1 g, 5.33 mmol). After 2 hours of stirring, the green solution is transferred, via a canula to a flask containing a solution of ethylglyoxylate (50% toluene commercial solution) (15ml, 10.6mmol) in tetrahydrofuran kept at -78°C. After 5 minutes, the mixture is treated with a saturated aqueous ammonium chloride solution, extracted with ethyl acetate and concentrated in vacuo. The resulting crude residue is then purified by chromatography on silica-gel to give 0.28 g of the title compound as an oil.

11. Compound No.1.106

2-chloro-4-trifluoromethyl-thiazole (0.5 g, 2.66 mmol) dissolved in tetrahydrofuran is treated at -78°C with lithium hexamethyldisilyamide (commercial solution, 1M in tetrahydrofuran, 2.67ml), stirred for 1.5 hours, followed by the addition of ethylpyruvate (0.305 ml, 2.9 mmol). After the reaction is completed, it is quenched with a saturated aqueous ammonium chloride solution, extracted with ethyl acetate. The organic layer is dried over magnesium sulfate, concentrated under reduced pressure and chromatographed on silica-gel to afford 0.730 g of the title compound as a yellow oil.

- 27 -

12. Compound No. 1.113

2-Chloro-4-trifluoromethyl-thiazole (2 g, 10.66 mmol) dissolved in tetrahydrofuran is treated at -78°C with lithium hexamethyldisilyamide (commercial solution, 1M in tetrahydrofuran, 2.67 ml), stirred for 1.5 hours, followed by the addition of ethylbromopyruvate (1.79 ml, 12.79 mmol). After the reaction is completed, it is quenched with a saturated aqueous ammonium chloride solution and heated up to room temperature. The reaction mixture is then extracted with ethyl acetate, the organic layer dried over magnesium sulfate, the solvent removed under reduced pressure, and the crude material chromatographed on silica-gel to afford 0.254g of 2.08g of the title compound as oils.

13. Compounds Nos. 2.18 (Q), 2.19 (R), 2.25 (S) (Scheme 13)

(a) A mixture of compound K (179 g, 0.871 Mol) NBS (159.8 g, 0.871 Mol) and Azoisobutyronitrile (AIBN) (14.6 g, 87 mmol) in 600 ml of CCl₄ is heated at reflux for 16 hrs. After cooling, the crude mixture is filtered, concentrated under reduced pressure and flash-chromatographed to afford 190 g of compound L contaminated with the starting material K.

(b) To a solution of compound L (189.4 g, 0.666 Mol) in 1.5 l of acetonitrile, is added 0.3 l of 4A molecular sieves followed by N-methylmorpholine-N-oxide (139.2 g, 0.99 Mol). After 2.5 hrs. of stirring at room temperature, the mixture is filtered on silicagel, concentrated in vacuo and purified by flash-chromatography to give 92 g of aldehyde M.

(c) A solution of aldehyde L (91.25 g, 0.415 Mol), ethylene glycol (29 ml, 0.5 Mol) and p-toluenesulfonic acid (9.12 g, 41 mmol) is heated for 16 hrs. at reflux in 300 ml of benzene while water is distilled off. After cooling, the crude mixture is extracted with water and ether, the organic phase is then dried over MgSO₄, concentrated under reduced pressure and purified by flash-chromatography to give 65 g of the dioxolane N.

Scheme 13

(d) To a suspension of LiAlH₄ (1.78 g, 45.4 mmol) in 220 ml of dry THF at 0°C, is added dropwise compound N (10 g, 37.9 mmol) dissolved in 100 ml of THF. After 5 min of stirring the reaction is completed. The mixture is successively treated with 1.78 ml of water, 1.78 ml of NaOH (15% aqueous solution) and 5.34 ml of water. The suspension is then filtered over celite, extracted 3 times with ethylacetate and water. The combined organic phases are concentrated under reduced pressure and chromatographed on silica to afford 31 g of the alcohol O.

(e) To a solution of compound O (9.85 g, 44.46 mmol) in 180 ml of CCl_4 is added triphenylphosphine (11.8 g, 44.46 mmol). The mixture is stirred at 85°C for 24 hrs. After cooling, the crude solution is concentrated under reduced pressure and purified by chromatography on silica to afford 6.4 g of compound P.

(f) A mixture of compound P (7.43 g, 30.9 mmol), benzyltriethylammonium chloride (283 mg, 1.24 mmol), cobalt carbonyl (423 mg, 1.24 mmol), sodium carbonate (5.83 g, 69.4 mmol), 68 ml of water and 62 ml of dichloromethane is stirred under carbon monoxide pressure (10 bars) for 24 hours at room temperature. The biphasic mixture is then filtered over celite, extracted two times with dichloromethane. The water phase is acidified to pH 2 with concentrated HCl and extracted with ethyl acetate. The organic layer is then washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo to give 3.2 g of the acid Q which is used without further purification.

(g) A solution of the acid Q in THF is carefully treated at room temperature with an ether solution diazomethane. The reaction is monitored by tlc. After completion of the reaction, the crude mixture is concentrated under reduced pressure and chromatographed to 2 g of the methylester R.

(h) Compound R (1.61 g, 6.47 mmol) is stirred for 40 min in 19 ml of THF, 19 ml of water and 9 ml of trifluoroacetic acid. After evaporation of the solvent, the crude mixture is diluted with ether and washed with NaHCO_3 (sat. aqueous solution). The ether phase is concentrated under reduced pressure to afford the aldehyde S which is an oil.

The aldehyde group may be converted by known methods into many different other groups.

- 30 -

Table 1.A**Table1**

No.	R ₁	R ₂	A	Phys. data m.p °C
1.1.	H	H	OH	122-123°C
1.2.	H	H	OMe	oil
1.3.	H	H		oil
1.4.	H	H	Ot-Bu	oil
1.5.	H	H	OCH ₂ CH=CH ₂	oil
1.6.	H	H		oil
1.7.	H	H	OCH ₂ Ph	oil
1.8.	H	H		oil
1.9.	H	H		solid
1.10.	H	H		oil
1.11.	H	H		oil
1.12.	H	H		oil

- 31 -

No.	R ₁	R ₂	A	Phys. data m.p °C
1.13.	H	H		solid
1.14.	H	H		oil
1.15.	H	H		solid
1.16.	H	H		oil
1.17.	H	H		oil
1.18.	H	H		90-91
1.19.	H	H		oil
1.20.	H	H	OCH ₂ COMe	oil
1.21.	H	H		51-53
1.22.	H	H	NMe ₂	
1.23.	H	H	NHMe	
1.24.	H	H	NHEt	
1.25.	H	H	NHn-Bu	
1.26.	H	H	NHt-Bu	
1.27.	H	H		127-8
1.28.	H	H		142-3

- 32 -

No.	R ₁	R ₂	A	Phys. data m.p °C
1.29.	H	H		122-3
1.30.	H	H		solid
1.31.	H	H		105-6
1.32.	H	H		51-2
1.33.	H	H		solid
1.34.	H	H		85-6
1.35.	H	H		solid
1.36.	H	H		115-6
1.37.	H	H		110-20
1.38.	H	H		123-4

- 33 -

No.	R ₁	R ₂	A	Phys. data m.p °C
1.39.	H	H		98
1.40.	H	H		97-101
1.41.	H	H		102-4
1.42.	H	H		106-7
1.43.	H	H		99-101
1.44.	H	H		120
1.45.	H	H		solid
1.46.	H	H	NHCH ₂ Ph	110-1
1.47.	H	H		126-30
1.48.	H	H		115
1.49.	H	H		107-8
1.50.	H	H		132-3

- 34 -

No.	R ₁	R ₂	A	Phys. data m.p °C
1.51.	H	H		159-60
1.52.	H	H		140-2
1.53.	H	H		130-1
1.54.	H	H		188-9
1.55.	H	H		solid
1.56.		H		51
1.57.	H	H	ONHCOOCH ₂ Ph	oil
1.58.	H	H	ONHCH(CH ₃) ₂	oil
1.59.	H	H	ONHC(CH ₃) ₃	oil
1.60.	H	H	ON=C(CH ₃)OEt	oil
1.61.	H	H	ONHCOOC(CH ₃) ₃	oil
1.62.	H	H	ONHCOOEt	oil
1.63.	H	H	ONHSO ₂ Ph	114-20
1.64.	H	H	NHO(C(Ph) ₃)	177
1.65.	H	H	NHOCH ₂ Ph	78-85
1.66.	H	H	NHOMe	117-8
1.67.	H	H	NHOCH ₂ CH=CH ₂	73-4

- 35 -

No.	R ₁	R ₂	A	Phys. data
				m.p °C
1.68.	H	H	NHOC(CH ₃) ₃	solid
1.69.	H	H	NHOPh	
1.70.	H	H		solid
1.71.	H	H	SMe	oil
1.72.	H	H	SEt	
1.73.	H	H	SPh	
1.74.	H	H	SCH ₂ Ph	
1.75.	Br	H	OH	oil
1.76.	Br	H	OMe	oil
1.77.	F	H	OH	
1.78.	F	H	OMe	oil
1.79.	Cl	H	OMe	
1.80.	Cl	H	OH	
1.81.	Me	H	OH	oil
1.82.	Me	H	OMe	oil
1.83.	Et	H	OMe	oil
1.84.	Et	H	OH	oil
1.85.	Pr	H	OH	
1.86.	Pr	H	OMe	
1.87.	nBu	H	OH	
1.88.	nBu	H	OMe	
1.89.	CH ₂ CH=CH ₂	H	OH	oil
1.90.	CH ₂ Ph	H	OH	127-8°C
1.91.	CH ₂ Ph	H	OMe	oil
1.92.	COOMe	H	OMe	oil
1.93.	CH ₂ COOH	H	OH	130-1°C
1.94.	NH ₂	H	OH	166-7°C
1.95.	NH ₂ .HCl	H	OMe	176-7°C
1.96.	NEt ₂	H	OMe	56-8°C

- 36 -

No.	R ₁	R ₂	A	Phys. data	
				m.p °C	
1.97.	NHCH ₂ Ph	H	OMe		oil
1.98.	Me	Me	OH		137-8°C
1.99.	Me	Me	OMe		oil
1.100.	OH	H	OEt		oil
1.101.	OH	H	OH		
1.102.	OAc	H	OEt		oil
<hr/>					
R ₁		R ₂	A		
1.103.		H	OEt	oil	
1.104.	OMe	H	OEt	oil	
1.105.	OSi-t-BuMe ₂	H	OEt	oil	
1.106.	OH	Me	OEt	oil	
1.107.	OH	CF ₃	OMe	oil	
1.108.	OH	Ph	OEt	77-9°C	
1.109.	OH	CH ₂ Br	OEt	oil	
1.110.		OH	OEt	oil	
1.111.		H	OMe	151-2°C	
1.112.	R ₁ +R ₂ =O	H	OEt	oil	
1.113.	R ₁ +R ₂ =O	H	OEt	oil	
1.114.		OH	OEt	oil	

Table 1.B

Compounds of the formula

wherein the R₁, R₂ and A have the meanings of the corresponding compounds of Table 1.A.**Table 1.C**

Compounds of the formula

wherein R₁, R₂ and A have the meanings of the corresponding compounds of Table 1.A.

Phys. data of compound(s) of Table 1.C:

No.	R ₁	R ₂	A	Phys. data m.p. °C
1.C.1	H	H	OH	oil

Table 2.A

No	R ₁	R ₂	R ₃	A	Phys.data	
					m.p. °C	
2.1.	H		H	H	OCH ₂ Ph	oil
2.2.	H		H	H	OH	
2.3.	H		H	Me	OCH ₂ Ph	oil
2.4.	H		H	Me	OH	
2.5.	H		H	Et	OCH ₂ Ph	oil
2.6.	H		H	Et	OMe	oil
2.7.	H		H	Et	OH	191-3
2.8.	H		H	n-Pr	OMe	oil
2.9.	H		H	2-Pr	OMe	oil
2.10.	H		H	2-Pr	OH	
2.11.	H		H	cyclo-Pr	OMe	oil
2.12.	H		H	t-Bu	OMe	oil
2.13.	H		H	t-Bu	OH	
2.14.	H		H	Ph	OMe	oil
2.15.	H		H	CH ₂ Ph	OMe	oil
2.16.	H		H	2-thiophenyl	OMe	oil
2.17.	H		H	COOMe	OMe	oil
2.18.	H		H		OH	oil
2.19.	H		H		OMe	oil

- 39 -

No	R ₁	R ₂	R ₃	A	Phys.data
					m.p. °C
2.20.	H	H		OH	
2.21.	H	H		OH	
2.22.	H	H		OH	
2.23.	H	H		OH	
2.24.	H	H		OMe	
2.25.	H	H	CHO	OMe	oil
2.26.	H	H	CH ₂ OH	OMe	solid
2.27.	H	H	CH ₂ Cl	OMe	oil
2.28.	H	H	CH ₂ Br	OMe	
2.29.	H	H	CH ₂ F	OMe	
2.30.	H	H	CH ₂ NHCOO-t-Bu	OMe	
2.31.	H	H	CH ₂ NEt ₂	OMe	
2.32.	H	H	CH ₂ NH ₂	OMe	
2.33.	H	H	CH ₂ NHOH	OMe	
2.34.	H	H	CH=CH ₂	OMe	
2.35.	H	H	CH=CHCOOMe	OMe	
2.36.	H	H	CH=CHMe	OMe	
2.37.	H	H	CH=CBr ₂	OMe	
2.38.	H	H	CHOHMe	OMe	
2.39.	H	H	CHOHEt	OMe	
2.40.	H	H	CHOHClMe	OMe	
2.41.	H	H	CHOHFMe	OMe	
2.42.	H	H	CHOHBrMe	OMe	

- 40 -

No	R ₁	R ₂	R ₃	A	Phys.data
					m.p. °C
2.43.	H	H	CH=CF ₂	OMe	
2.44.	H	H	COEt	OMe	
2.45.	H	H	CHOHMe	OMe	
2.46.	H	H	CHClMe	OMe	
2.47.	H	H	CHFMe	OMe	
2.48.	H	H	CHBrMe	OMe	
2.49.	H	H	4-Cl-Ph	OMe	
2.50.	H	H	3-MeO-Ph	OMe	
2.51.	H	H	2,4-Me ₂ -Ph	OMe	
2.52.	H	H	—≡H	OMe	
2.53.	Br	H	COHMe ₂	OCH ₂ Ph	
2.54.	Br	H	COHEt ₂	OH	
2.55.	F	H	Et	OCH ₂ Ph	
2.56.	Cl	H	Et	OH	
2.57.	Cl	H	n-Pr	OCH ₂ Ph	
2.58.	Me	H	2-Pr	OMe	
2.59.	Et	H	cyclo-Pr	OH	
2.60.	Et	H	t-Bu	OMe	
2.61.	Pr	H	t-Bu	OMe	
2.62.	Pr	H	Ph	OH	
2.63.	nBu	H	CH ₂ Ph	OMe	
2.64.	nBu	H	2-thiophen	OMe	
2.65.	CH ₂ CH=CH ₂	H	COOMe	OH	
2.66.	CH ₂ Ph	H		OMe	
2.67.	CH ₂ Ph	H		OMe	
2.68.	COOMe	H		OMe	

- 41 -

No	R ₁	R ₂	R ₃	A	Phys.data
					m.p.°C
2.69.	CH ₂ COOH	H		OMe	
2.70.	NH ₂	H		OMe	
2.71.	NH ₂ .HCl	H		OCH ₂ Ph	
2.72.	NEt ₂	H		OH	
2.73.	NHCH ₂ Ph	H	CHO	OCH ₂ Ph	
2.74.	Me	H	CH ₂ OH	OH	
2.75.	Me	H	CH ₂ Cl	OCH ₂ Ph	
2.76.	OH	H	CH ₂ Br	OMe	
2.77.	OH	H	CH ₂ F	OH	
2.78.	OAc	H	CHCl ₂	OMe	
2.79.		H	H	OMe	
2.80.	OMe	H	Me	OH	
2.81.	OSi-t-BuMe ₂	H	Me	OMe	
2.82.	OH	H	Et	OMe	
2.83.	OH	H	Et	OH	
2.84.	OH	H	Et	OMe	
2.85.	OH	H	n-Pr	OMe	
2.86.		CF ₃	2-Pr	OMe	
2.87.		Ph	2-Pr	OMe	
2.88.	R ₁ +R ₂ =O	CH ₂ Br	cyclo-Pr	OMe	

- 42 -

No	R ₁	R ₂	R ₃	A	Phys.data m.p. °C
2.89.	R ₁ +R ₂	O	OH	t-Bu	OMe
2.90.	H		H	cyclo-Pr	OCH ₂ Ph oil

Table 2.B

Compounds of the formula

wherein R₁, R₂, R₃ and A have the meanings of the corresponding compounds of Table 2.A.**Table 2.C**

Compounds of the formula

wherein R₁, R₂, R₃ and A have the meanings of the corresponding compounds of Table 2.A.

Phys. data of compounds of Table 2.C:

No.	R ₁	R ₂	R ₃	A	Phys.data m.p. °C
2.C.3	H	H	Me	OCH ₂ Ph	oil
2.C.5	H	H	Et	OCH ₂ Ph	oil
2.C.7	H	H	Et	OH	oil
2.C.20	H	H		OH	solid
2.C.90	H	H	cyclo-Pr	OCH ₂ Ph	oil

- 43 -

Table 3.A

No.	R_1	$\text{R}_2 + \text{Z}$	R_3	Phys. data m.p. °C
3.1.	H		CF_3	159-61°C
3.2.		$\text{R}_1+\text{R}_2+\text{Z}$	CF_3	oil
3.3.	H		CF_3	solid
3.4.	H		CF_3	solid
3.5.	H		CF_3	
3.6.	H		CF_3	

- 44 -

No.	R ₁	R ₂ +Z	R ₃	Phys. data m.p.°C
3.7.	H		CF ₃	
3.8.	H		CF ₃	
3.9.	H		CF ₃	
3.10.	H		CF ₃	
3.11.	H		Me	
3.12.	H	R1+R2+Z	Me	
3.13.	H		Et	
3.14.	H		Et	

Chemical structures corresponding to the numbered entries:

- 3.7: 1-methyl-2-(2-methylpropyl)-4-oxazolidin-2-ylmethane
- 3.8: 1,2-dimethyl-2-(2-methylpropyl)-4-oxazolidin-2-ylmethane
- 3.9: 1,2-dimethyl-2-(2-methylpropyl)-4-oxazolidin-2-ylmethane (same structure as 3.8)
- 3.10: 2-(2-methylpropyl)-4-oxazolidin-2-ylmethane (same structure as 3.7)
- 3.11: 2-hydroxy-2-(2-methylpropyl)-4-oxazolidin-2-ylmethane
- 3.12: 2-(2-methylpropyl)-4-oxazolidin-2-ylmethane (same structure as 3.7)
- 3.13: 1,2-dimethyl-4-oxazolidin-2-ylmethane
- 3.14: 2-(2-methylpropyl)-1,3-dioxolan-2-ylmethane

- 45 -

No.	R ₁	R ₂ +Z	R ₃	Phys. data m.p. °C
3.15.	H		Et	
3.16.	H		n-Pr	
3.17.	H		2-Pr	
3.18.	H		2-Pr	
3.19.	H		cyclo-Pr	
3.20.	H		t-Bu	

- 46 -

Table 3.B

Compounds of the formula

wherein R₁, R₂, R₃ and Z have the meanings of the corresponding compounds of Table 3.A.

Table 3.C

Compounds of the formula

wherein R₁, R₂, R₃ and Z have the meanings of the corresponding compounds of Table 3.A.

- 47 -

Table 4.A

No.	R ₁	R ₂	R ₃	R ₄	Z	Phys.data
						m.p.°C
4.1.	H	H	CF ₃	Ph	COOMe	oil
4.2.	H	H	Me	CF ₃	COOH	
4.3.	H	H	CF ₃	H	COOH	
4.4.	H	H	CF ₃	H	COOMe	oil
4.5.	H	H	Me	H	COOEt	solid
4.6.	R ₁ +R ₂ =O		Me	H	COOEt	solid
4.7.	R ₁ +R ₂ =O		Me	NHCOOEt	COOEt	solid
4.8.	R ₁ +R ₂ =O		Me	NH-n-Bu	COOEt	solid
4.9.	R ₁ +R ₂ =O		Me	NH-t-Bu	COOEt	solid
4.10.	H	H	Me	NHMe	COOEt	solid
4.11.	H	H	Me	NHCH ₂ CH=CH ₂	COOH	solid
4.12.	H	H	Et	NH-t-Bu	COOEt	solid
4.13.	H	H	Ph	p-PhSO ₂ NH ₂	COOEt	solid
4.14.	H	H	p-ClPh	NHPh	COOEt	solid
4.15.	H	H	OH	OH	COOH	solid
4.16.	R ₁ +R ₂ =O		Me	NH-COOEt	COSMe	
4.17.	R ₁ +R ₂ =O		Me	NH-n-Bu	COSMe	
4.18.	R ₁ +R ₂ =O		Me	NH-t-Bu	COSMe	
4.19.	H	H	CF ₃	CF ₃	COSMe	
4.20.	H	H	CF ₃	OMe	COOMe	
4.21.	H	H	CF ₃	OEt	COOMe	
4.22.	H	H	CF ₃	O-n-Pr	COOMe	
4.23.	H	H	CF ₃	SMe	COOMe	
4.24.	H	H	CF ₃	SEt	COOMe	

- 48 -

No.	R ₁	R ₂	R ₃	R ₄	Z	Phys.data
						m.p. °C
4.25.	H	H	CF ₃	SPh	COOMe	
4.26.	H	H	CF ₃	NMe ₂	COOMe	
4.27.	H	H	CF ₃	NEt ₂	COOMe	
4.28.	H	H	CF ₃	NH ₂	COOMe	
4.29.	H	H	CF ₃	SH	COOMe	
4.30.	H	H	CF ₃	NH ₂	CSOMe	
4.31.	H	H	Me	Cl		solid
4.32.	H	H	CF ₃	Ph	CSOMe	
4.33.	H	H	Me	CF ₃	CSOH	
4.34.	H	H	CF ₃	H	CSOH	
4.35.	H	H	CF ₃	H	CSOMe	
4.36.	H	H	Me	H	CSOEt	
4.37.	R ₁ +R ₂ =S		Me	H	COOEt	
4.38.	R ₁ +R ₂ =S		Me	NHCOOEt	COOEt	
4.39.	R ₁ +R ₂ =S		Me	NH-n-Bu	CSOEt	
4.40.	R ₁ +R ₂ =S		Me	NH-t-Bu	CSOEt	
4.41.	H	H	Me	NHMe	CSOEt	
4.42.	H	H	Me	NHCH ₂ CH=CH ₂	CSOH	
4.43.	H	H	Et	NHt-Bu	CSOEt	
4.44.	H	H	Ph	p-PhSO ₂ NH ₂	CSOEt	
4.45.	H	H	p-ClPh	NHPh	CSOEt	
4.46.	H	H	OH	OH	CSOH	
4.47.	R ₁ +R ₂ =O		Me	NH-COOEt	CSSMe	
4.48.	R ₁ +R ₂ =O		Me	NHn-Bu	CSSMe	
4.49.	R ₁ +R ₂ =S		Me	NHt-Bu	CSSMe	
4.50.	H	H	Et	CF ₃	COSMe	
4.51.	H	H	Et	OMe	COOMe	
4.52.	H	H	n-Pr	OEt	COOMe	
4.53.	H	H	i-Pr	n-Pr	COOMe	
4.54.	H	H	OH	SMe	COOMe	

- 49 -

No.	R ₁	R ₂	R ₃	R ₄	Z	Phys.data
						m.p. °C
4.55.	H	H	OH	SEt	COOMe	
4.56.	H		H	CF ₃	SPh	CONHMe
4.57.	H		H	CF ₃	NMe ₂	CONHMe
4.58.	H		H	CF ₃	NEt ₂	CONHMe
4.59.	H		H	CF ₃	NH ₂	CSNHMe
4.60.	H		H	CF ₃	SH	CSNHMe
4.61.	H		H	CF ₃		CSNHMe

Table 4.B

Compounds of the formula

wherein R₁, R₂, R₃, R₄ and Z have the meanings of the corresponding compounds of Table 4.A.

Table 4.C

Compounds of the formula

wherein R₁, R₂, R₃ and Z have the meanings of the corresponding compounds of Table 4.A.

Formulation Examples

for similar purposes of pesticidal use are described for example in WO 97/33890.

Biological ExamplesExample B.1: Immunization of Cucumis sativus L. against Colletotrichum lagenarium

a) After a cultivation period of 2 weeks, cucumber plants are sprayed with a spray mixture prepared from a wettable powder formulation of the test compound (concentration: 200 ppm). After 72 hours, the plants are infected with a spore suspension (1.0×10^5 spores/ml) of the fungus and incubated for 30 hours at high humidity and a temperature of 23°C. Incubation is then continued at normal humidity and 22°C to 23°C.

Evaluation of protective action is made 7 to 8 days after infection and is based on fungus infestation.

b) After a cultivation period of 2 weeks, cucumber plants are treated by soil application with a spray mixture prepared from a wettable powder formulation of the test compound (concentration: 20 ppm, based on the volume of the soil). After 72 hours, the plants are infected with a spore suspension (1.5×10^5 spores/ml) of the fungus and incubated for 30 hours at high humidity and a temperature of 23°C. Incubation is then continued at normal humidity and 22°C.

Evaluation of protective action is made 7 to 8 days after infection and is based on fungus infestation.

Compounds of the Tables exhibit good activity in tests (a) and (b) and reduce fungus infestation to 0 to 20 %. On the other hand, Colletotrichum infestation is 90 % on untreated and infected control plants.

c) Comparison test: Direct action against Colletotrichum lagenarium

The formulated active ingredient is mixed in various concentrations (100, 10, 1, 0.1 ppm) with autoclaved and cooled nutrient medium containing 10 000 spores per ml and is poured into microtitre plates. Incubation is then carried out at 22°C in the dark. After 2 to 3 days, fungus growth is measured by spectrophotometry.

With compounds of the Tables, no inhibition of fungus growth is observed; on the other hand, when the fungicide "Benomyl" (commercial product) is used as comparison substance at 0.2 ppm, 50 % inhibition (EC_{50}) of fungus growth occurs.

Example B.2: Action against Phytophthora infestans on tomato plants

a) After a cultivation period of 3 weeks, tomato plants are sprayed with a spray mixture prepared from a wettable powder formulation of the test compound (0.02 % active ingredient). After 72 hours, the treated plants are infected with a sporangia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 5 days at 90-100 % relative humidity and 20°C.

Compounds of the Tables exhibit good activity in the tests and reduce fungus infestation to 0 to 20 %. On the other hand, Phytophthora infestation is 60 % on untreated and infected control plants.

Example B.3: Action against Pyricularia oryzae on rice plants

2-week-old rice plants are watered with a spray mixture prepared from a wettable powder formulation of the test compound (0.006 % active ingredient, based on the volume of the soil). The pots are then filled with water until the lowermost parts of the stems of the rice plants are standing in water. After 96 hours, the treated rice plants are infected with a conidia suspension of the fungus. Fungus infestation is evaluated after incubation of the infected plants for 5 days at 95-100 % relative humidity and approximately 24°C.

In comparison with untreated control plants (100 % infestation), fungus infestation on rice plants treated with a spray mixture comprising a compound of the Tables as active ingredient is only approximately 50 %.

Example B.4: Action against Cercospora nicotina on tobacco plantsa) Foliar application

Tobacco plants (8 weeks old) are sprayed with a formulated solution of the test compound (concentration: 0.02 % active ingredient). Four days after treatment, the plants are inoculated with a sporangia suspension of Cercospora nicotina (150 000 spores/ml), kept for 5 days in the dark at 25°C and high humidity and then incubated further under a normal day/night sequence.

Evaluation of the symptoms in the tests is based on the leaf surface infested with fungus. Infestation is approximately 60 % on the control plants; on plants treated with compounds of the Tables, infestation is 0 to 30 %.

- 52 -

Example B.5: Action against Erysiphe graminis on wheat

Protective action: 18-day-old wheat plants are sprayed with a formulated solution of the test compound (0.02 % active ingredient). Immediately after the treatment the plants are incubated under cylinders. 24 hours later, the plants are covered. After a further 3 days, the treated plants are cut off above the primary leaf. The primary leaves are arranged horizontally and are inoculated in a dusting bell with Erysiphe graminis spores (spore density: 0.2 mg/m²). The test is carried out in a climatic chamber with 12 hours of light (18 KLux), at 20°C and 12 hours of darkness, at 18°C. Infestation is evaluated 9 and 13 days after inoculation.

Compounds of the Tables exhibit good activity in the tests and reduce fungus infestation to 0 to 20 %. On the other hand, Erysiphe infestation is 70 % on untreated and infected control plants.

Claims

1. A process for protecting and immunizing plants against attack by phytopathogenic microorganisms which comprises applying a compound of formula I as active ingredient to the plants, to parts of the plants and/or to the locus of the plants

wherein

- a) X is CR₄ and Y is N; or
- b) X is N and Y is CR₅; or
- c) X and Y are N; and wherein

Z is a C₁-group to which 1-3 halogen atoms or 1-3 unsubstituted or substituted hetero atoms selected from the group O, S and N are bonded;

R₁ and R₂ are independently H, OH, SH, CN, COOH, NO₂, NH₂, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, halo-C₁-C₆alkoxy, C₁-C₆alkanoyloxy, aroyloxy, C₁-C₆alkoxycarbonyl, aryloxycarbonyl, benzyloxy-carbonyl, C₁-C₆alkylcarbonyl, arylcarbonyl, benzylcarbonyl, aminocarbonyl, C₁-C₆alkylamino-carbonyl, C₁-C₆dialkylaminocarbonyl, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, arylsulfinyl, arylsulfonyl, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, alkoxy carbonylC₁-C₆alkyl, haloalkoxycarbonylC₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxy-C₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, benzyloxy carbonylamino, phenyl, phenoxy, benzyl or phenethyl, wherein all the aromatic groups are unsubstituted or substituted from 1 to 5 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocyclyl; or tri(C₁-C₆alkyl)silyl or tri(C₁-C₆alkyl)silyloxy; with the proviso that R₁ and R₂ are not simultaneously a group selected from OH, SH, NO₂, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino and C₂-C₆alkenylamino; or

R₁ and R₂ together are =O or =S; or

R₁ and R₂ together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 8 membered isocyclic or heterocyclic ring; or

R₂ and Z together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 7 membered lactone, lactame, thiolactone or thiolactame, which ring may have 1 to 2 additional hetero atoms selected from the group O, S and N;

R₃, R₄ and R₅ are independently H, OH, SH, CN, NO₂, NH₂, halogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, hydroxyC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, halo-C₁-C₆alkoxy, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, C₁-C₆alkanoyl, C₁-C₆alkoxycarbonyl, alkoxycarbonyl-C₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxyC₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, phenyl, phenoxy, benzyl or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocyclyl.

2. A compound of formula I

wherein

- a) X is CR₄ and Y is N; or
- b) X is N and Y is CR₅; or
- c) X and Y are N; and wherein

Z is a C₁-group to which 1-3 halogen atoms or 1-3 unsubstituted or substituted hetero atoms selected from the group O, S and N are bonded;

R₁ and R₂ are independently H, OH, SH, CN, COOH, NO₂, NH₂, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, halo-

- 55 -

C₁-C₆alkoxy, C₁-C₆alkanoyloxy, aroyloxy, C₁-C₆alkoxycarbonyl, aryloxycarbonyl, benzyloxycarbonyl, C₁-C₆alkylcarbonyl, arylcarbonyl, benzylcarbonyl, aminocarbonyl, C₁-C₆alkylaminocarbonyl, C₁-C₆dialkylaminocarbonyl, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, arylsulfinyl, arylsulfonyl, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, alkoxy carbonylC₁-C₆alkyl, haloalkoxycarbonylC₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxyC₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, benzyloxy carbonylamino, phenyl, phenoxy, benzyl or phenethyl, wherein all the aromatic groups are unsubstituted or substituted from 1 to 5 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocycl; or tri(C₁-C₆alkyl)silyl or tri(C₁-C₆alkyl)silyloxy;

with the proviso that R₁ and R₂ are not simultaneously a group selected from OH, SH, NO₂, NH₂, C₁-C₆alkylamino, C₁-C₆dialkylamino and C₂-C₆alkenylamino; or

R₁ and R₂ together are =O or =S; or

R₁ and R₂ together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 8 membered isocyclic or heterocyclic ring; or

R₂ and Z together with the carbon atom to which they are bonded are an unsubstituted or substituted 3 to 7 membered lactone, lactame, thiolactone or thiolactame, which ring may have 1 to 2 additional hetero atoms selected from the group O, S and N;

R₃, R₄ and R₅ are independently H, OH, SH, CN, NO₂, NH₂, halogen, C₁-C₆alkyl, haloC₁-C₆alkyl, hydroxyC₁-C₆alkyl, alkoxyC₁-C₆alkyl, aminoC₁-C₆alkyl, alkoxaminoC₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆alkylthio, haloC₁-C₆alkylthio, C₁-C₆alkylsulfinyl, haloC₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, haloC₁-C₆alkylsulfonyl, halo-C₁-C₆alkoxy, C₂-C₆alkenyl, haloC₂-C₆alkenyl, C₂-C₆alkinyl, carboxyC₁-C₆alkyl, C₁-C₆alkanoyl, C₁-C₆alkoxycarbonyl, alkoxy carbonylC₁-C₆alkyl, haloalkoxycarbonylC₁-C₆alkyl, C₃-C₆cycloalkyl, alkanoylC₁-C₆alkyl, alkylcarbonyloxyC₁-C₆alkyl, phenylcarbonyloxyC₁-C₆alkyl, C₁-C₆alkylamino, C₁-C₆dialkylamino, C₂-C₆alkenylamino, C₁-C₆alkanoylamino, C₁-C₆alkoxycarbonylamino, benzylamino, benzoylamino, phenyl, phenoxy, benzyl or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro; or optionally substituted heterocycl;

- 56 -

with the exception of the compounds of the formula

wherein

- a) R₁ is OCO-CH₃ and T is Br,
- b) R₁ is OH and T is Br,
- c) R₁ is OH and T is H.

3. A compound according to claim 2 of formula I.A

4. A compound according to claim 2 of formula I.B

- 57 -

5. A compound according to claim 2 of formula I.C

6. A compound according to claim 2 wherein

Z is CN, CO-A, CS-A or CH(OR₁₀)₂;

A is hydrogen, halogen, OR₆, SR₇, N(R₈)R₉, ON(R₁₁)R₁₂ or N(R₁₃)OR₁₄;

R₆ to R₁₄ are independently hydrogen, an unsubstituted or substituted, open-chained, saturated or unsaturated hydrocarbon radical containing up to 8 carbon atoms, an unsubstituted or substituted, cyclic, saturated or unsaturated hydrocarbon radical containing up to 10 carbon atoms, unsubstituted or substituted benzyl or phenethyl, an unsubstituted or substituted acyl group containing up to 8 carbon atoms, an unsubstituted or substituted benzoyl group, or an unsubstituted or substituted heterocyclyl radical; or

R₈ and R₉, or R₁₁ and R₁₂, together with the nitrogen atom to which they are bonded, form a 5- or 6-membered, unsubstituted or substituted heterocycle having 1 to 3 hetero atoms selected from O, S and/or N;

R₁₀ are identical or different and are C₁-C₆alkyl that is unsubstituted or substituted by phenyl, C₁-C₂alkoxy, phenoxy or by benzyloxy; or

two substituents OR₁₀, together with the carbon atom to which they are bonded, form a cyclic acetal group that is unsubstituted or substituted by C₁-C₃alkyl, phenyl, benzyl, hydroxy or by C₁-C₃hydroxyalkyl.

7. A compound according to claim 2 wherein

R₁ is H, OH, NH₂, halogen, COOH, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkanoyloxy, aroyloxy, C₁-C₄alkoxycarbonyl, aryloxycarbonyl, benzyloxycarbonyl, C₁-C₄alkylcarbonyl, arylcarbonyl, benzylcarbonyl, aminocarbonyl, C₁-C₄alkylaminocarbonyl, C₁-C₄dialkylaminocarbonyl, alkanoylC₁-C₄alkyl, alkylcarbonyloxyC₁-C₄alkyl, C₂-C₄alkenyl, haloC₂-C₄alkenyl, C₁-C₄alkylamino, C₁-C₄dialkylamino, C₁-C₄alkanoylamino, C₁-C₄alkoxycarbonylamino, benzylamino, benzoylamino, phenyl, phenoxy, benzyl or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents

independently selected from halogen, hydroxy, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy and nitro;

R₂ is H, OH, C₁-C₄alkyl, C₁-C₄alkoxy or phenyl; or

R₁ and R₂ together are a group selected from

R₂+Z together are a group selected from

wherein R₁₇, R₁₈ and R₁₉ are independently H or C₁-C₄alkyl;

R₃ is H, halogen, C₁-C₆alkyl, halo-C₁-C₆alkyl, C₃-C₆-cycloalkyl, C₁-C₄ alkoxycarbonyl, phenyl which is unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy, amino, C₁-C₄alkylamino, C₁-C₄dialkylamino, benzylamino, C₁-C₄alkanoylamino, benzoylamino, C₁-C₄alkoxycarbonylamino, formyl, or a 4-7-membered cyclic or C₁-C₄alkyl open-chained acetal or thioacetal thereof;

R₄ is H, OH, halogen, amino, C₁-C₆alkyl, C₁-C₄alkylamino, C₁-C₄alkenylamino, C₁-C₄dialkylamino, benzylamino, C₁-C₄alkanoylamino, benzoylamino, C₁-C₄alkoxycarbonylamino.

8. A compound according to claim 3 of formula I.A

- 59 -

wherein

Z is CO-A;

A is hydrogen, OR₆, SR₇, N(R₈)R₉;

R₁ is H, OH, halogen or C₁-C₄alkyl.

R₂ is H:

R_3 is H, OH, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo C_1 - C_6 alkyl, C_1 - C_6 alkoxy or halo C_1 - C_6 alkoxy, formyl, or a 4-7-membered cyclic or C_1 - C_4 alkyl open-chained acetal or thioacetal thereof;

B₄ is C₁:

R₆, R₇, R₈ and R₉ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, haloC₁-C₆alkoxy, C₁-C₄alkoxycarbonyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy.

9. A process for the preparation of a compound of formula I.1

wherein X, Y and R₃ are as defined for formula I,

which comprises reaction of a compound of formula II.1 with carbon monoxide under pressure of 2-20 bars in presence of a catalyst.

10. A composition for protecting and immunizing plants against attack by microorganisms, comprising a compound of formula I of claim 1 together with a suitable carrier.

AMENDED CLAIMS

[received by the International Bureau on 09 June 1999 (09.06.99);
original claims 2 and 10 amended; remaining claims unchanged (4 pages)]

A) with the exception of the compounds of the formula

wherein

- a) R₁ is OCO-CH₃ and T is Br,
- b) R₁ is OH and T is Br,
- c) R₁ is OH and T is H;

and

B) with the exception of thiadiazole derivatives having the formula

wherein R' is methyl or phenyl,

A is CH₂, CHCl, CHCH₃, C(CH₃)₂, CH-C₆H₅, , and

B is CHO, CN, COOH, COOCH₃, COOC₂H₅, COOC₃H₇(iso), COOC₈H₁₇(n), COOCH₂CH=CH₂, CONH₂, CONHCH₃, CONHC₃H₇(iso), CON(CH₃)₂, pyrrolidinoyl, morpholinoyl, 4-methoxycarbonyl-piperazinoyl, 4-oxo-piperidinoyl, CH(SCH₃)(SOCH₃), CONH-C₆H₄-OCH₃(4) or CON(CH₃)C₆H₅;

and

C) with the exception of thiazolyl derivatives having the formula

wherein

R₂₀ is hydrogen, CH₃, C₂H₅,

R₂₁ is hydrogen, CH₃, C₂H₅,

R₂₂ is hydrogen, C₁-C₃alkyl, n-C₄H₉, Cl or Br,

R₂₃ is hydrogen, CH₃, C₂H₅, or

R₂₂ and R₂₃ together with the ring to which they are attached form a condensed six-membered carbocyclic aromatic ring which may be monochlorinated, and

G represents CH or N;

and

D) with the exception of 7-(1,2,3-thiadiazolyl-5-acetamido)-3-(5-methyl-1,3,4-thiadiazol-2-ylthiomethyl)-3-cephem-4-carboxylic acid.

3. A compound according to claim 2 of formula I.A

I.A.

4. A compound according to claim 2 of formula I.B.

I.B.

wherein

Z is CO-A;

A is hydrogen, OR₆, SR₇, N(R₈)R₉:

R₁ is H, OH, halogen or C₁-C₄alkyl.

R_2 is H_2 .

R_3 is H, OH, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo C_1 - C_6 alkyl, C_1 - C_6 alkoxy or halo C_1 - C_6 alkoxy, formyl, or a 4-7-membered cyclic or C_1 - C_6 alkyl open-chained acetal or thioacetal thereof;

R₄ is Cl₂

R₆, R₇, R₈ and R₉ are independently H, C₁-C₆alkyl, haloC₁-C₆alkyl, C₁-C₆alkoxy, haloC₁-C₆alkoxy, C₁-C₄alkoxycarbonyl, C₁-C₄alkanoylC₁-C₄alkyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkylmethyl, phenyl, benzyl, or phenethyl, the phenyl rings of which are unsubstituted or substituted from 1 to 3 substituents independently selected from halogen, C₁-C₄alkyl, halo-C₁-C₂alkyl, C₁-C₂alkoxy, halo-C₁-C₂alkoxy.

9. A process for the preparation of a compound of formula I.1

wherein X, Y and R₃ are as defined for formula I.

which comprises reaction of a compound of formula II.1 with carbon monoxide under pressure of 2-20 bars in presence of a catalyst.

10. A composition for protecting and immunizing plants against attack by microorganisms, comprising a compound of formula I of claim 2 together with a suitable carrier.

STATEMENT UNDER ARTICLE 19

The amendments effected in claim 2 will restore the novelty by way of disclaimer. They take the following references of the International Search Report into account:

- WO 98 14437 A (NIHON NOHYAKU Co., Ltd.)
Examples 307 to 321, 325, 327 to 331, 335, 336, 347, 383, 384 and 385 (identical to 422);
[disclaimer B]
- DE 19 53 861 A (Fujisawa Pharmaceutical Co. Ltd.)
Example 16, which is identical to DE 22 62 262, example 65; [disclaimer D]
- DE 22 62 262 A (Fujisawa Pharmaceutical Co. Ltd.)
Example 65, which is identical to DE 19 53 861 A, example 16; [disclaimer D]
- EP 0 213 079 A (Ciba-Geigy AG)
Compounds Nos. 1.01 to 1.22, 1.50 to 1.54, 3.01 to 3.22, 3.58 and 3.59. [disclaimer C]

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 98/08335

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07D277/32	C07D277/30	C07D275/02	C07D285/06	C07D417/04
	A01N43/78	A01N43/74	A01N43/82		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 17840 A (AGREVO UK LTD.) 13 June 1996 cited in the application see page 20, compounds no. 39, 40, 41 see claims 1,3,4 ----	1-3,6-8, 10
P,X	WO 98 14437 A (NIHON NOHYAKU CO., LTD.) 9 April 1998 see examples no. 325,335,336,384,385,422 see abstract ----	1,2,5,6, 10
X	DE 19 53 861 A (FUJISAWA PHARMACEUTICAL CO. LTD.) 6 May 1971 see example 16 ----	2,5
X	DE 22 62 262 A (FUJISAWA PHARMACEUTICAL CO., LTD.) 28 June 1973 see example 65 ----	2,5 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

9 April 1999

Date of mailing of the international search report

16/04/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hass, C

INTERNATIONAL SEARCH REPORT

International Application No	
PCT/EP 98/08335	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 213 079 A (CIBA-GEIGY AG) 4 March 1987 see table 1, compounds no. 1.01 to 1.22 and 1.50 to 1.54; table 3, compounds no. 3.01 to 3.22 and 3.58 and 3.59 ---	2,3
A	EP 0 395 174 A (SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B. V.) 31 October 1990 cited in the application see claims 1,6,8,10 ---	1,2,10
A	WO 96 29871 A (NIHON NOHYAKU CO., LTD.) 3 October 1996 cited in the application see claims 1,10; table 1 ---	1,2,10
A	WO 97 20465 A (BAYER AG) 12 June 1997 cited in the application see claims 1,3,4,6,7 ---	1,2,10
A	EP 0 757 987 A (NISSAN CHEMICAL INDUSTRIES, LTD.) 12 February 1997 cited in the application see claims 1,4 ---	1,2,10
A	US 5 135 927 A (W. TÖPFL ET AL.) 4 August 1992 cited in the application see the whole document -----	1,2,10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 98/08335

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9617840	A	13-06-1996	AU	4265596 A		26-06-1996
WO 9814437	A	09-04-1998	AU	4322297 A		24-04-1998
			JP	10152482 A		09-06-1998
DE 1953861	A	06-05-1971		NONE		
DE 2262262	A	28-06-1973	JP	48068592 A		18-09-1973
			AT	328611 B		25-03-1976
			BE	793037 A		20-06-1973
			CA	999572 A		09-11-1976
			CH	578006 A		30-07-1976
			FR	2170496 A		14-09-1973
			NL	7217630 A		26-06-1973
EP 213079	A	04-03-1987	BR	8604008 A		24-03-1987
			CA	1254211 A		16-05-1989
			US	4851029 A		25-07-1989
			JP	62051684 A		06-03-1987
EP 395174	A	31-10-1990	AT	115142 T		15-12-1994
			AU	631203 B		19-11-1992
			AU	5397790 A		01-11-1990
			CA	2014880 A		27-10-1990
			DD	294017 A		19-09-1991
			DE	69014705 D		19-01-1995
			DE	69014705 T		27-04-1995
			DK	395174 T		06-02-1995
			ES	2064599 T		01-02-1995
			JP	2295982 A		06-12-1990
			PL	162722 B		31-01-1994
			RU	2066320 C		10-09-1996
			US	5089512 A		18-02-1992
WO 9629871	A	03-10-1996	AU	696611 B		17-09-1998
			AU	5015996 A		16-10-1996
			BG	101926 A		29-05-1998
			CA	2214138 A		03-10-1996
			EP	0824317 A		25-02-1998
			HU	9801157 A		28-08-1998
			JP	8325110 A		10-12-1996
			PL	322497 A		02-02-1998
WO 9720465	A	12-06-1997	DE	19545638 A		12-06-1997
			AU	1031597 A		27-06-1997
			CA	2239710 A		12-06-1997
			EP	0865240 A		23-09-1998
EP 757987	A	12-02-1997	JP	8012510 A		16-01-1996
			AU	2267795 A		16-11-1995
			US	5817829 A		06-10-1998
			CN	1146764 A		02-04-1996
			WO	9529161 A		02-11-1995
US 5135927	A	04-08-1992	AT	82275 T		15-11-1992
			AU	610553 B		23-05-1991
			AU	1097488 A		04-08-1988
			CA	1338418 A		25-06-1996

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 98/08335

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5135927	A	DE	3875750 A	17-12-1992
		EP	0279239 A	24-08-1988
		ES	2052612 T	16-07-1994
		JP	2764265 B	11-06-1998
		JP	63201178 A	19-08-1988
		KR	9509517 B	23-08-1995
		US	4992434 A	12-02-1991