

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

 ε -NFAs have one more column in their transition table

Example of an ε -NFA

 $L = \{w \mid w \text{ is empty, } \underline{or} \text{ if non-empty will end in } 01\}$

ε-closure of a state q, ECLOSE(q), is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of εtransitions.

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε -closure states as well.

Example of an ε -NFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in 01}\}$

Simulate for w=101:

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ϵ -closure states as well.

Example of another ε -NFA

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	{q' ₀ ,q ₀ ,q ₃ }
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	{q _{0,} q ₃ }
	q_1	Ø	{q ₂ }	{q ₁ }
	*q ₂	Ø	Ø	{q ₂ }
,	q_3	Ø	{q ₂ }	{q ₃ }

Simulate for w=101:

?