

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Ayudantía 4 Análisis Funcional

12 DE SEPTIEMBRE DE 2022

Problema 1. Sea $(X, \|\cdot\|_X)$ e.v.n y sea $p: X \to \mathbb{R}$ una función tal que

- 1. $p(x+y) \le p(x) + p(y)$
- 2. Para cada $x \in X$ la función $\lambda \mapsto p(\lambda x)$ es continua
- 3. Si $(y_n) \subseteq X$ es tal que $p(y_n) \to 0$ entonces $p(\lambda y_n) \to 0$ para todo $\lambda \in \mathbb{R}$

Asuma que $(x_n) \subseteq X$ es tal que $p(x_n) \to 0$ y $(\alpha_n) \subseteq \mathbb{R}$ es una sucesión acotada. Pruebe que p(0) = 0 y que $p(\alpha_n x_n) \to 0.$

Concluir que si $(x_n) \subseteq X$ es tal que $p(x_n - x) \to 0$ para algún $x \in X$ y $(\alpha_n) \subseteq \mathbb{R}$ es tal que $\alpha_n \to \alpha$ entonces $p(\alpha_n x_n) \to p(\alpha x).$

Indicación: Argumente por contradicción y considere los conjuntos

$$F_n = \{ \lambda \in \mathbb{R} : |p(\lambda x_k)| \le \varepsilon \quad \forall k \ge n \}$$

Utilice el Lema de Baire de manera adecuada.

Problema 2. Sean X,Y espacios de Banach y $B:X\times Y\to Z$ aplicación bilineal, Z e.v.n.. Suponga que B es separadamente continua, esto es,

- 1. Para cada $x \in X$ la aplicación $y \mapsto B(x,y)$ es continua.
- 2. Para cada $y \in Y$ la aplicación $x \mapsto B(x,y)$ es continua.

Demuestre que existe $C \ge 0$ tal que

$$||B(x,y)||_Z < C||x||_X||y||_Y \qquad \forall x \in X, \forall y \in Y$$

Problema 3. Sea X espacio de Banach separable. El objetivo de este problema es probar que existe un subespacio cerrado $M \subseteq \ell^1(\mathbb{R})$ tal que $X \cong \ell^1(\mathbb{R})/M$ son isométricamente isomorfos. Para ello proceda como sigue:

- 1. Considere $(x_n) \subseteq B_X[0,1]$ denso numerable y defina $T: \ell^1(\mathbb{R}) \to X, (\lambda_n) \mapsto \sum_n \lambda_n x_n$ lineal. Pruebe que es acotado.
- 2. Para $x \in B_X[0,1]$ demuestre que existe una subsucesión (x_{n_k}) tal que

$$\left\| x - \sum_{j=0}^{k} 2^{-j} x_j \right\| \le 2^{-j+1}$$

y deduzca que T es sobreyectivo.

3. Considere la aplicación inducida en el cociente y pruebe que define una isometría.

Problema 4. Sean X,Y espacios de Banach y $T \in \mathcal{L}(X,Y)$ lineal, continua y sobreyectiva. Muestre que si existe r>0 tal que $T(B_X(0,r))$ está contenido en un compacto, entonces dim $Y<+\infty$.