[4]

www.rgpvonline.com

Total No. of Questions :8]

[Total No. of Printed Pages :4

b) Solve the Poisson equation  $u_{xx}+u_{yy}=-10 (x^2+y^2+10)$ in the domain mentioned below:



- a) Find Fourier transform of
  - i)  $f(x) = \begin{cases} 1 & 0 < x < a \\ 0 & otherwise \end{cases}$
  - ii) Sine-transform of  $f(x) = e^{-3x}$
  - b) i) Show that  $F(f(x-a)) = e^{-iwa} F(w)$ 
    - ii) If  $P(A) = \frac{3}{8}$ ,  $P(B) = \frac{1}{2}$  and  $P(A \cap B) = \frac{1}{4}$ , then find  $P(\overline{A}/\overline{B})$ .
- 8. a) Write short notes on:
  - i) Hash function
  - ii) Hermite polynomial
  - iii) Modular mathematics.
  - b) If λ<sub>1</sub>,λ<sub>2</sub>,.....,λ<sub>K</sub> in Fare distinct characteristic roots of T∈ A(V) and ν<sub>1</sub>,ν<sub>2</sub>,...,ν<sub>K</sub> are characteristic vectors of T belonging to λ<sub>1</sub>,λ<sub>2</sub>,.....,λ<sub>K</sub> respectively, then show that ν<sub>1</sub>,ν<sub>2</sub>,...,ν<sub>K</sub> are LT over F.

\*\*\*\*\*

Roll No .....

## MCSE/MSE - 101 M.E/M.Tech., I Semester

Examination, December 2013

## **Advanced Computational Mathematics**

Time: Three Hours

Maximum Marks: 70

Note: Attempt any five questions.

- 1. a) i) Let  $x_1 = (1, 3)^T$ ,  $x_2 = (4, 6)^T$  be a basis of  $\mathbb{R}^2$ . Find a linear transformation  $T : \mathbb{R}^2 \to \mathbb{R}^3$  such that  $Tx_1 = (-2, 2, -7)^T$ ,  $Tx_2 = (-2, -4, -10)^T$ 
  - ii) If  $v_1, v_2, \dots, v_n$  are linearly independent in a vector space V over F. Then show that every element in their linear span has a unique representation in the form  $\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$  with  $\lambda_i \in F$ .
  - b) Find
    - i) The Fourier transform of  $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$
    - ii) Using the Heaviside unit step function find the convolution (f\*f)(x) and hence find the Fourier transform of (f\*f)(x), where f is same as in (i) above.
- 2. a) Solve  $\frac{\partial^2 z}{\partial x^2} 2 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$

using separation of variables method.

## www.rgpvonline.com

[2]

 i) Solve the equation u<sub>xx</sub>+u<sub>yy</sub> = 0 in the domain of following figure by using Jacobi's method upto 6 iterations.



- ii) Define Haar wavelet and justify with an example.
- i) If A and B are two events of a random experiment, then show that P(A/B)=i-P(A/B)
  - Two integers are selected at rando n from integers I through 11. If the sum is even, find the probability that both the numbers are odd.
  - b) i) Define normal distribution and give an example.
    - ii) If  $X_1, ..., X_n$  are independent normal variables,  $X_n$  being  $N(\mu_n, \sigma_n)$ , then show that the variate

$$Y = \sum_{i=1}^{n} a_i X_{i,j,j}$$
 an  $N(\mu', \sigma')$  random variable with

$$\mu' = \sum_{i=1}^{n} a_i \mu_i, \sigma' = \sqrt{\sum_{i=1}^{n} a_i^2 \sigma_i^2}$$

4. a) i) What do you mean by steady state probability?

[3]

 Find the steady state probability for the following Markov chain:

$$P = \begin{bmatrix} E_1 & E_2 & E_3 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ E_3 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

- b) A computer repairman finds that the time spent on his jobs has an exponential distribution with a mean of 30 minutes. If he repairs sets on the tirst-come-firstserved basis and if the arrival of sets is with an average rate of 10 per 8-hours a day, find the repairman's expected idle time each day. Also find average number of units in the system.
- 5. a) i) Describe different averaging operators on fuzzy sets.
  - ii) Proye that the Yager union operator satisfies:

$$\mu_{\hat{A} \cup \hat{B}}(x) = 1$$
 for  $\mu_{\hat{B}}(x) = 1$ 

$$\mu_{\lambda \cup \hat{n}}(x) \ge \mu_{\hat{\lambda}}(x)$$
 for  $\mu_{\hat{\lambda}}(x) = \mu_{\hat{n}}(x)$ 

 b) Consider the linguistic variable "Age" and let the term "old" be defined as

$$\mu_{old}(x) = \begin{cases} 0 & \text{if } x \in [0, 40] \\ \left(1 + \frac{x - 40}{5}\right)^{-1} & \text{if } x \in [40, 100] \end{cases}$$

Determine the membership functions of the terms "very old", "not very old" and "more or less old".

a) Use the method of separation of variables to solve the equation:

$$4\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 3z$$
, when  $x = 0$ ,  $z = 3e^{-y} - e^{-5y}$ .

MCSE/MSE, Int

PTO