Data Mining

Support Vector Machine and Kernel Functions

Support Vector Machines (SVM)

- → Supervised learning methods for classification and regression relatively new class of successful learning methods -
- → they can represent non-linear functions and they have an efficient training algorithm
- → derived from statistical learning theory by Vapnik and Chervonenkis (COLT-92)
- → SVM got into mainstream because of their exceptional performance in Handwritten Digit Recognition
 - •1.1% error rate which was comparable to a very carefully constructed (and complex) ANN

Two Class Problem: Linear Separable Case

Many decision boundaries can separate these two classes Which one should we choose?

Example of Bad Decision Boundaries

Good Decision Boundary: Margin Should Be Large

The decision boundary should be as far away from the data of both classes as possible

– We should maximize the margin, m

What is the value of length of m?

The decision boundary should be as far away from the data of both classes as possible

– We should maximize the margin, m

Compute the length of m

The decision boundary should be as far away from the data of both classes as possible

- We should maximize the margin, ||m||

vector w perpendicular to w^T vector m is the vector u=x⁺x⁻ projected on vector w:

The Optimization Problem

Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i

The decision boundary should classify all points correctly \Rightarrow

A constrained optimization problem

To maximize:

$$m = \frac{2}{||\mathbf{w}||}$$

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1$

$$||\mathbf{w}||^2 = \mathbf{w}^\mathsf{T} \mathbf{w}$$

Lagrangian of Original Problem

The Lagrangian is Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $1-y_i(\mathbf{w}^T\mathbf{x}_i+b) \leq 0$ for $i=1,\ldots,n$

- Note that
$$\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$$

Lagrangian multipliers

$$\mathcal{L} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

Setting the gradient of \mathcal{L} w.r.t. w and b to zero, we have

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\sum_{i=1}^{n} \alpha_i y_i = \mathbf{0} \quad \alpha_i \ge 0$$

Change into the Dual Problem

The Lagrangian is
$$\mathcal{L} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

Just obtained:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Transform the Lagrangian into into dual problem:

The Dual Optimization Problem

The problem now is to:

Dot product of X

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

α's → New variables
(Lagrangian multipliers)

This is a convex quadratic programming (QP) problem

- Global maximum of α_i can always be found
- →well established tools for solving this optimization problem

A Geometrical Interpretation

Non-linearly Separable Problems

We allow "error" ξ_i in classification; it is based on the output of the discriminant function $\mathbf{w}^T\mathbf{x}+\mathbf{b}$

 ξ_i approximates the number of misclassified samples

New objective function:

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

C: tradeoff parameter between error and margin; chosen by the user; large C means a higher penalty to errors

The Optimization Problem

The dual of the problem is

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

w is also recovered as

 $\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$

The only difference with the linear separable case is that there is an upper bound C on α_i

Once again, a QP solver can be used to find α_i efficiently!!!

Data Mining

Extension to Non-linear SVMs (Kernel Machines)

Non-Linear SVM

How could we generalize this procedure to non-linear data?

Vapnik in 1992 showed that transforming input data x_i into a higher dimensional makes the problem easier.

Similar to Hidden Layers in ANN

- We know that data appears only as dot products $(x_i.x_j)$
- Suppose we transform the data to some (possibly infinite dimensional) space **H** via a mapping function Φ such that the data appears of the form $\Phi(\mathbf{x_i})\Phi(\mathbf{x_j})$

Why?

Linear operation in H is equivalent to non-linear operation in input space.

Non-linear SVMs: Feature Space

then they will in general be linearly separable;

N data points are in general separable in a space of N-1 dimensions or more!!!

Non-linear Boundary

Non-linear Decision Boundary

Predict
$$y = 1$$
 if
 $\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$

Kernel Function

Kernel

Given x, compute new feature depending on proximity to landmarks $l^{(1)}, l^{(2)}, l^{(3)}$

Kernel Function

Kernels and Similarity

$$f_1 = \text{similarity}(x, l_1^{(1)}) = \exp\left(-\frac{\|x - l_1^{(1)}\|^2}{2\sigma^2}\right)$$

If
$$x \approx l^{(1)}$$
:

If x if far from $l^{(1)}$:

Gaussian Kernel

Example:

$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

$$\sigma^2 = 1$$

Gaussian Kernel

Example:

Example:
$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

$$\sigma^2 = 1$$

Classification with the Kernel

Higher Dimension Illustration

How to choose landmarks

Choosing the landmarks

Predict
$$y = 1$$
 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$
Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Transformation to Feature Space

Possible problem of the transformation

High computation burden due to high-dimensionality and hard to get a good estimate

SVM solves these two issues simultaneously

- "Kernel tricks" for efficient computation
- Minimize $\|\mathbf{w}\|^2$ can lead to a "good" classifier

Kernel Trick

Recall:

maximize subject to $\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=j=1}^{N} \alpha_i \alpha_j y_i y_j x_i x_j$ Note that data only appears as dot products $C \ge \alpha_i \ge 0, \sum_{i=1}^{N} \alpha_i y_i = 0$

Since data is only represented as dot products, we need not do the mapping explicitly.

Introduce a Kernel Function (*) *K* such that:

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

(*)Kernel function – a function that can be applied to pairs of input data to evaluate dot products in some corresponding feature space

Example Transformation

Consider the following transformation

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$
$$\phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

Define the kernel function $K(\mathbf{x}, \mathbf{y})$ as

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1 y_1 + x_2 y_2)^2$$
$$= K(\mathbf{x}, \mathbf{y})$$
$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1 y_1 + x_2 y_2)^2$$

The inner product $\phi(.)\phi(.)$ can be computed by K without going through the map $\phi(.)$ explicitly!!!

Modification Due to Kernel Function

Change all inner products to kernel functions

For training,

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

Original

subject to
$$C \ge \alpha_i \ge 0, \sum_{i=1}^n \alpha_i y_i = 0$$

With kernel function

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to
$$C \ge \alpha_i \ge 0, \sum_{i=1}^n \alpha_i y_i = 0$$

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Radial basis function kernel with width σ

$$K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))$$

- Closely related to radial basis function neural networks

Research on different kernel functions in different applications is very active

Example

Suppose we have 5 1D data points

$$-x_1=1, x_2=2, x_3=4, x_4=5, x_5=6,$$

with 1, 2, 6 as class 1 and 4, 5 as class 2

$$\Rightarrow$$
 y₁=1, y₂=1, y₃=-1, y₄=-1, y₅=1

Use the polynomial kernel of degree 2

$$-K(x,y) = (xy+1)^2$$

-C is set to 100

First find α_i (i=1, ..., 5) by

max.
$$\sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$

subject to
$$100 \ge \alpha_i \ge 0, \sum_{i=1}^5 \alpha_i y_i = 0$$

An Example

By using a QP solver, we get

$$\alpha_1 = 0$$
, $\alpha_2 = 2.5$, $\alpha_3 = 0$, $\alpha_4 = 7.333$, $\alpha_5 = 4.833$

- Verify that the constraints are indeed satisfied
- The support vectors are $\{x_2=2, x_4=5, x_5=6\}$

 $\mathbf{w} - \sum_{i=1}^{n}$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

 $\mathbf{w}^T \mathbf{x} + b = 0$

The discriminant function is

$$f(x) = 2.5(1)(2x + 1)^2 + 7.333(-1)(5x + 1)^2 + 4.833(1)(6x + 1)^2 + b$$

= 0.6667x² - 5.333x + b

b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as x_2 , x_4 , x_5 lie on and all give b=9 $v_i(\mathbf{w}^T \phi(z) + b) = 1$

$$f(y) = 0.6667x^2 - 5.333x + 9$$

An Example

Steps in SVM

- 1. Prepare data matrix $\{(x_i,y_i)\}$
- 2. Select a Kernel function
- 3. Select the error parameter *C*
- 4. "Train" the system (to find all α_i)

New data can be classified using α_i and Support Vectors

SVM Strengths

- Training is relatively easy
 - We don't have to deal with local minimum like in ANN
 - SVM solution is always global and unique (check "Burges" paper for proof and justification).
- Unlike ANN, doesn't suffer from "curse of dimensionality".
 - How? Why? We have infinite dimensions?!
 - Maximum Margin Constraint: DOT-PRODUCTS!
- Less prone to overfitting
- Simple, easy to understand geometric interpretation.
 - No large networks to mess around with.

SVM Weakness

- Training (and Testing) is quite slow compared to ANN
 - Because of Constrained Quadratic Programming
- Essentially a binary classifier
 - However, there are tricks to evade this.
- Very sensitive to noise
 - A few off data points can completely throw off the algorithm
- Biggest Drawback: The choice of Kernel function.
 - There is no "set-in-stone" theory for choosing a kernel function for any given problem (still in research...)
 - Once a kernel function is chosen, there is only ONE modifiable parameter, the error penalty C.

Applications of SVMs

- Lots of very successful applications!
 - Bioinformatics
 - Machine Vision
 - Text Categorization
 - Ranking (e.g., Google searches)
 - Time series analysis
 - Handwritten Character Recognition

3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) $\approx 0.6\%$ error