

Enric Pérez Canals

FÍSICA LIZICA MECÀNICA NEWTONIANA

Semestre de primavera, curs 2020/2021

Enginyeria Informàtica

1. Introducció

Magnitud física

Vectors

2. Cinemàtica

Posició, velocitat, acceleració

Movimients bàsics

3. Dinàmica

Lleis de Newton

Masses ligades

Forces de contacte

Llei de Hooke

Movimient circular

4. Energia mecànica

Treball

Teorema de l'energia cinètica

Forces conservatives. Energia potencial

Forces no conservatives. Fregament

Potència

Magnitud física

- Ha de ser un concepte quantificable, matematizable
- Magnitud escalar: amb un nombre n'hi ha prou. Per exemple: energia, temperatura, longitud, temps, densitat, etc.
- Magnitud vectorial: són magnituds que tenen direcció i sentit. La primera magnitud vectorial va ser la velocitat. En 3 dimensions, requereix 3 números (components):

$$\vec{v} = (v_x, v_y, v_z)$$

Un vector té: mòdul, sentit, direcció. Les components són les projeccions en els eixos cartesians.

Dimensions

 Per a donar el valor quantitatiu d'una magnitud necessitem un valor patró. Les dimensions més usuals amb les que donem un valor són: Longitud (L), Temps (T), Massa (M). Aquestes serán les nostres dimensions fonamentals. [en electromagnetisme la intensitat de corrent o la càrrega elèctrica]

- Donades unes dimensions hi ha múltiples sistemes d'unitats en què podem donar els valors numèrics. Nosaltres utilizarem el sistema internacional:

Longitud : metre [m]

Temps: segon [s]

Massa: kilogram [Kg]

Mòdul: valor absolut de la seva longitud

Direcció: orientació

- **Sentit**: cap a on apunta

Per exemple:

moment lineal : $\vec{p} = m\vec{v}$ té direcció

energia cinètica: $\frac{1}{2}mv^2$ és un escalar: no té direcció

Punts i vectors

Vector: [DGLC] Que transporta, que condueix

[mòdul, sentit, direcció]

- Mòdul: valor absolut de la seva longitud
- Direcció: orientació
- Sentit: cap a on apunta

$$Q = P + \vec{v}$$

$$\vec{v} = Q - P = (x_Q, y_Q, z_Q) - (x_P, y_P, z_P) = (x_Q - x_P, y_Q - y_P, z_Q - z_P)$$

$$|\vec{v}|^2 = v_x^2 + v_y^2 + v_z^2$$

$$|v| \ge 0 \qquad |v| = 0 \Rightarrow \vec{v} = 0$$

- Mòdul: valor absolut de la seva longitud
- Direcció: orientació
- Sentit: cap a on apunta

$$\cos \alpha = \frac{v_x}{|\vec{v}|} \qquad \cos \beta = \frac{v_y}{|\vec{v}|} \qquad \cos \gamma = \frac{v_z}{|\vec{v}|}$$

Cosinus directors

$$|\vec{v}|^2 = v_x^2 + v_y^2 + v_z^2 \implies \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

- Mòdul: valor absolut de la seva longitud
- Direcció: orientació
- Sentit: cap a on apunta

Vector unitari

$$|v| = 1 \Rightarrow \hat{v} = \frac{1}{|\vec{v}|} (v_x, v_y, v_z) = (\cos\alpha, \cos\beta, \cos\gamma)$$

Operacions amb vectors

Escalar x vector

$$a\vec{v} = (av_x, av_y, av_z)$$

$$|a\vec{v}|^2 = a^2v_x^2 + a^2v_y^2 + a^2v_z^2$$
 $|a\vec{v}| = |a||\vec{v}|$

$$\cos \alpha = \sigma(a) \frac{v_{\chi}}{|\vec{v}|} \qquad \cos \beta = \sigma(a) \frac{v_{y}}{|\vec{v}|} \qquad \cos \gamma = \sigma(a) \frac{v_{z}}{|\vec{v}|}$$

Suma. Llei del paral·lelogram

$$\vec{u} + \vec{v} = (u_x + v_x, u_y + v_y, u_z + v_z) = \vec{v} + \vec{u}$$

Desigualtat triangular

$$|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$$

demostrar-la

Descomposició vectorial

$$\begin{cases} \hat{i} = (1,0,0) \\ \hat{j} = (0,1,0) \\ \hat{k} = (0,0,1) \end{cases} \quad \vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$

Producte escalar

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

$$\vec{u} \cdot \vec{v} = (u_x \hat{\imath} + u_y \hat{\jmath} + u_z \hat{k}) \cdot (v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k})$$

$$\begin{aligned}
\hat{\imath} \cdot \hat{\jmath} &= 0 \\
\hat{\imath} \cdot \hat{k} &= 0 \\
\hat{k} \cdot \hat{\jmath} &= 0
\end{aligned}$$

$$\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z$$

$$|\vec{v}|^2 = v_x^2 + v_y^2 + v_z^2 = \vec{v} \cdot \vec{v}$$

$$\vec{u} \cdot \vec{v} = 0 \implies \vec{u} \perp \vec{v}$$

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

Producte vectorial

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}| \sin \theta$$

$$\vec{u} \times \vec{v} = (u_x \hat{\imath} + u_y \hat{\jmath} + u_z \hat{k}) \times (v_x \hat{\imath} + v_y \hat{\jmath} + v_z \hat{k})$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k} \qquad \hat{\jmath} \times \hat{\imath} = -\hat{k}$$

$$\hat{\jmath} \times \hat{k} = \hat{\imath} \qquad \hat{k} \times \hat{\jmath} = -\hat{\imath}$$

$$\hat{k} \times \hat{\imath} = \hat{\jmath} \qquad \hat{\imath} \times \hat{k} = -\hat{\jmath}$$

$$\vec{u} \times \vec{v} = \dots = (u_{y}v_{z} - u_{z}v_{y})\hat{\imath} + (u_{z}v_{x} - u_{x}v_{z})\hat{\jmath} + (u_{x}v_{y} - u_{y}v_{x})\hat{k}$$

$$\vec{k} \times \hat{\imath} = \hat{\jmath} \qquad \hat{\imath} \times \hat{k} = -\hat{\jmath}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$\hat{\imath} \times \hat{\imath} = 0$$

$$\hat{\jmath} \times \hat{\jmath} = 0$$

$$\hat{k} \times \hat{k} = 0$$

$$\vec{u} \times \vec{v} = 0 \implies \vec{u} \parallel \vec{v}$$

Producte mixte

$$\vec{u} \cdot (\vec{v} \times \vec{\omega})$$

$$|\vec{u} \cdot (\vec{v} \times \vec{\omega})| = |\vec{u}||\vec{v}||\vec{\omega}| \sin \theta \cos \alpha$$

