linear regression

We need to make

assumptions linear relationship about the

model linear model

that generated the data.

linear regression

$$f(x) = 0.5 \cdot x + 0.2 = ax + b \ f(x, heta) = heta_0 \cdot heta_1 x$$

- o *a* and *b* are model parameters
- o *a* is the slope to the line (direction)
- b is the intercept or bias (position)

logistic regression

We need to make

assumptions linear relationship about the

about the

model linear model

that generated the data.

logistic regression

We need to make

assumptions linearly separable

about the

that generated the data.

logistic regression: logistic model

$$f(x, heta)=g(heta_0+ heta_1x_1)$$

$$g(z)=rac{1}{1+e^{-z}}$$

logistic regression: cost function

$$J(\theta) = -\left[\frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}, \theta)) + (1 - y^{(i)}) log(1 - f(x^{(i)}, \theta))\right]$$

We know that $y^{(i)}$ is either 0 or 1. If $y^{(i)}=1$ then the cost function J(heta) is incremented by

$$-log(f(x^{(i)}, \theta)).$$

Similarly, if $y^{(i)}=0$ then the cost function J(heta) is incremented by

$$-log(1-f(x^{(i)},\theta)).$$

logistic regression: cost function

We know that $y^{(i)}$ is either 0 or 1. If $y^{(i)}=1$ then the cost function J(heta) is incremented by

 $-log(f(x^{(i)}, \theta)).$

logistic regression: cost function

Similarly, if $y^{(i)}=0$ then the cost function J(heta) is incremented by

 $-log(1-f(x^{(i)}, heta)).$

logistic regression

Fit a logistic model

$$f(x, heta)=g(heta_0x_0+ heta_1x_1+ heta_2x_2+\ldots+ heta_mx_m)=g(heta'x)$$

to the data set such that the cost function

$$J(\theta) = -\left[\frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}, \theta)) + (1 - y^{(i)}) log(1 - f(x^{(i)}, \theta))\right]$$

is minimal using gradient descent

$$heta_j := heta_j - lpha rac{1}{n} \sum_{i=1}^n (f(x^{(i)}, heta) - y^{(i)}) x_j^{(i)}$$

Let's get real!

- 7. Logistic regression
- 8. Non-linear transformations

Polynomial transformation

non-linear logistic regression

regularized logistic regression

$$f(x, heta)=g(heta_0x_0+ heta_1x_1+ heta_2x_2+\ldots+ heta_mx_m)$$

$$J(\theta) = -\left[\frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}, \theta)) + (1 - y^{(i)}) log(1 - f(x^{(i)}, \theta))\right]$$

$$J(\theta) = -\left[\frac{1}{n} \sum_{i=1}^{n} y^{(i)} log(f(x^{(i)}, \theta)) + (1 - y^{(i)}) log(1 - f(x^{(i)}, \theta))\right] + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

regularized cost function

regularized logistic regression

support vector machines

Fit a linear model

$$f(x,\theta) = \theta' x$$

such that

$$J(\theta) = \left[C \sum_{i=1}^{n} y^{(i)} k_1(\theta' x^{(i)}) + (1 - y^{(i)}) k_0(\theta' x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{m} \theta_j^2$$

with $k_1(heta'x) = max(0,1- heta'x)$ and $k_0(heta'x) = max(0,1+ heta'x)$

is minimized.

support vector machines

- replace cost function by piecewise linear function
- if y = 1 then the contribution to the cost is

$$k_1(f(x,\theta)) = max(0, 1 - f(x,\theta))$$

support vector machines

- replace cost function by piecewise linear function
- if y = 1 then the contribution to the cost is

$$k_1(f(x,\theta)) = max(0, 1 - f(x,\theta))$$

o if y = 0 then the contribution to the cost is

$$k_0(f(x,\theta)) = max(0, 1 + f(x,\theta))$$

SVMs can also be formulated as a linear function of the samples (dual form) instead of the features as

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i(x \cdot x^{(i)}) + \theta_0$$

that can be reformulated as a non-linear function using what is know as a kernel function

$$K(x^{(i)}, x^{(j)})$$

to become

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

The data points $x^{(i)}$ for which $\theta_i > 0$ are called the support vectors.

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

$$K(x^{(i)}, x^{(j)}) = (x^{(i)} \cdot x^{(j)} + c)^d$$

$$f(x,\theta) = \sum_{i=1}^{n} \theta_i K(x, x^{(i)}) + \theta_0$$

$$K(x^{(i)}, x^{(j)}) = \exp\left[-\frac{\|x^{(i)} - x^{(j)}\|^2}{2\sigma^2}\right]$$

Let's get real!

9. Support Vector Machines

$$f(x, heta)=g(heta_0x_0+ heta_1x_1+ heta_2x_2+\ldots+ heta_mx_m)=g(heta'x)$$

Model:
$$f(x,\Theta)=g(\Theta_{10}^{(2)}a_0+\Theta_{11}^{(2)}a_1^{(2)}+\Theta_{12}^{(2)}a_2^{(2)}+\Theta_{13}^{(2)}a_3^{(2)})$$
 $a_1^{(2)}=g(\Theta_{10}^{(1)}x_0+\Theta_{11}^{(1)}x_1+\Theta_{12}^{(1)}x_2+\Theta_{13}^{(1)}x_3)$ $a_2^{(2)}=g(\Theta_{20}^{(1)}x_0+\Theta_{21}^{(1)}x_1+\Theta_{32}^{(1)}x_2+\Theta_{23}^{(1)}x_3)$ $a_3^{(2)}=g(\Theta_{30}^{(1)}x_0+\Theta_{31}^{(1)}x_1+\Theta_{32}^{(1)}x_2+\Theta_{33}^{(1)}x_3)$

Cost function logistic regression:

$$J(heta) = -[rac{1}{m}\sum_{i=1}^n y^{(i)}log(f(x^{(i)}, heta) + (1-y^{(i)})log(1-f(x^{(i)}, heta))] + rac{\lambda}{2n}\sum_{j=1}^n heta^2$$

Cost function feedforward neural network:

$$J(heta) = -[rac{1}{m}\sum_{i=1}^{n}\sum_{k=1}^{K}y_k^{(i)}log(f(x^{(i)},\Theta)_k) + (1-y_k^{(i)})log(1-f(x^{(i)},\Theta)_k)] + rac{\lambda}{2n}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}(\Theta_{ji}^{(l)})^2$$

Let's get real!

10. Neural Networks

Blending/Stacking

Convolutional Neural Networks

What We See

```
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 38 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 71 89 07 05 44 48 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 67 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 62 07 33 55 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
```

What Computers See

0.0625 0.125 0.0625 0.125 0.25 0.125 0.0625 0.125 0.0625

output image

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

Visualization of the filter on the image

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

Pixel representation of filter

	U	0	v	U	U	U
	0	40	0	0	0	0
	40	0	40	0	0	0
	40	20	0	0	0	0
	0	50	0	0	0	0
,	0	0	50	0	0	0
	25	25	0	50	0	0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Single depth slice

Example of Maxpool with a 2x2 filter and a stride of 2

ReIU

Stride = 2

ReIU

- 14.197.122 images
- 21.841 subcategories
- 27 high-level categories

ImageNet Large Scale Visual Recognition Challenge

Let's get real!

Cats & dogs

Deep learning algorithm diagnoses skin cancer as well as seasoned dermatologists

By Jessica Hall on January 25, 2017 at 1:25 pm 16 Comments

Thrun et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, January 2017 DOI: 10.1038/nature21056

keratinocyte carcinomas: 65 benign seborrheic keratoses: 75

malignant melanomas: 33 benign nevi: 97

malignant melanomas: 71 benign nevi: 40

NOTE: For the most part, you will find a newer version of this code at models/research/slim. In particular:

- inception_train.py and imagenet_train.py should no longer be used. The slim editions for running on multiple GPUs
 are the current best examples.
- · inception_distributed_train.py and imagenet_distributed_train.py are still valid examples of distributed training.

For performance benchmarking, please see https://www.tensorflow.org/performance/benchmarks.

Inception in TensorFlow

ImageNet is a common academic data set in machine learning for training an image recognition system. Code in this directory demonstrates how to use TensorFlow to train and evaluate a type of convolutional neural network (CNN) on this academic data set. In particular, we demonstrate how to train the Inception v3 architecture as specified in:

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

http://arxiv.org/abs/1512.00567

This network achieves 21.2% top-1 and 5.6% top-5 error for single frame evaluation with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. Below is a visualization of the model architecture.

Critical Assessment of Techniques for Protein Structure Prediction

