Bùi Tuấn Khang

Giáo trình Toán chuyên để

- Hàm Biến Phức
- Phương Trình Vật Lý Toán

Lời nói đầu

Giáo trình này được biên soạn nhằm trang bị các tri thức toán học cốt yếu để làm công cụ học tập và nghiên cứu các môn học chuyên ngành cho sinh viên các ngành kỹ thuật thuộc Đại học Đà nẵng. Nội dung giáo trình gồm có 8 chương với thời lượng 60 tiết (4 đơn vị học trình) được chia làm hai chuyên đề nhỏ.

Chuyên đề Hàm biến phức gồm 5 chương

<u>Chương 1</u> Các khái niệm cơ bản về số phức, dãy trị phức, hàm trị phức và các tập con của tâp số phức.

<u>Chương 2</u> Các khái niệm cơ bản về hàm trị phức, đạo hàm phức, các hàm giải tích sơ cấp và phép biến hình bảo giác.

<u>Chương 3</u> Các khái niệm cơ bản về tích phân phức, định lý tích phân Cauchy và các hệ quả của nó.

<u>Chương 4</u> Các khái niệm cơ bản về chuỗi hàm phức, khai triển Taylor, khai triển Laurent, lý thuyết thặng dư và các ứng dụng của nó.

<u>Chương 5</u> Các khái niệm cơ bản, các tính chất, các phương pháp tìm ảnh - gốc và các ứng dụng của biến đổi Fourier và biến đổi Laplace.

Chuyên đề Phương trình vật lý Toán gồm có 3 chương

<u>Chương 6</u> Các khái niệm cơ bản về lý thuyết trường : Trường vô hướng, trường vecto, thông lượng, hoàn lưu và toán tử vi phân cấp 1.

<u>Chương 7</u> Các bài toán cơ bản của phương trình vật lý - toán, bài toán Cauchy và bài toán hỗn hợp của phương trình truyền sóng.

<u>Chương 8</u> Bài toán Cauchy và bài toán hộp của phương trình truyền nhiệt, bài toán Dirichlet và bài toán Neumann của phương trình Laplace.

Tác giả xin chân thành cảm ơn các bạn đồng nghiệp GVC. Nguyễn Trinh, GVC. Lê Phú Nghĩa và GVC. TS. Lê Hoàng Trí đã dành thời gian đọc bản thảo và cho các ý kiến đóng góp để hoàn thiện giáo trình.

Giáo trình được biên soạn lần đầu chắc còn có nhiều thiếu sót. Rất mong nhận được ý kiến đóng góp của bạn đọc gần xa.

Đà nẵng 2004 Tác giả

Số phức

Đ1. Trường số phức

• Kí hiệu $\forall = 3 \times 3 = \{ (x, y) : x, y \in 3 \}$. Trên tập \forall định nghĩa phép toán cộng và phép toán nhân như sau

$$\forall (x, y), (x', y') \in \forall (x, y) + (x', y') = (x + x', y + y')(x, y) \times (x', y') = (xx' - yy', xy' + x'y)$$
(1.1.1)

Ví du
$$(2, 1) + (-1, 1) = (1, 2)$$
 và $(2, 1) \times (-1, 1) = (-3, 1)$

<u>Dinh lý</u> $(\forall, +, \times)$ là một trường số.

Chứng minh

Kiểm tra trưc tiếp các công thức (1.1.1)

Phép toán cộng có tính giao hoán, tính kết hợp, có phần tử không là (0, 0)

$$\forall (x, y) \in \forall, (x, y) + (0, 0) = (x, y)$$

Mọi phần tử có phần tử đối là -(x, y) = (-x, -y)

$$\forall (x, y) \in \forall, (x, y) + (-x, -y) = (0, 0)$$

Phép toán nhân có tính giao hoán, tính kết hợp, có phần tử đơn vi là (1, 0)

$$\forall (x, y) \in \forall, (x, y) \times (1, 0) = (x, y)$$

Mọi phần tử khác không có phần tử nghịch đảo là $(x, y)^{-1} = (\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2})$

$$\forall (x, y) \in \forall - \{(0, 0)\}, (x, y) \times (\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}) = (1, 0)$$

Ngoài ra phép nhân là phân phối với phép cộng

• Trường (∀, +, ×) gọi là trường số phức, mỗi phần tử của ∀ gọi là một số phức.
Theo định nghĩa trên mỗi số phức là một cặp hai số thực với các phép toán thực hiện theo công thức (1.1.1). Trên trường số phức phép trừ, phép chia và phép luỹ thừa định nghĩa như sau.

• Bằng cách đồng nhất số thực x với số phức (x, 0)

>>

$$x \equiv (x, 0), 1 \equiv (1, 0) \text{ và } 0 \equiv (0, 0)$$

tập số thực trở thành tập con của tập số phức. Phép cộng và phép nhân các số phức hạn chế lên tập số thực trở thành phép cộng và phép nhân các số thực quen thuộc.

$$x + x' \equiv (x, 0) + (x', 0) = (x + x', 0) \equiv x + x', ...$$

Ngoài ra trong tập số phức còn có các số không phải là số thực. Kí hiệu i = (0, 1) gọi là đơn $vi \, \emph{ao}$. Ta có

$$i^2 = (0, 1) \times (0, 1) = (-1, 0) \equiv -1$$

Suy ra phương trình $x^2 + 1 = 0$ có nghiệm phức là $x = \sqrt{-1} \notin 3$.

Như vậy trường số thực $(3, +, \times)$ là một trường con thực sự của trường số phức $(\forall, +, \times)$.

Đ2. Dang đại số của số phức

• Với mọi số phức z = (x, y) phân tích

$$(x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1)$$

Đồng nhất đơn vị thực $(1, 0) \equiv 1$ và đơn vị ảo $(0, 1) \equiv i$, ta có

$$z = x + iy \tag{1.2.1}$$

Dạng viết (1.2.1) gọi là *dạng đại số* của số phức. Số thực x = Rez gọi là phần thực, số thực <math>y = Imz gọi là phần ảo và số phức $\overline{z} = x$ - iy gọi là *liên hợp phức* của số phức z. Kết hợp các công thức (1.1.1) - (1.2.1) suy ra dạng đại số của các phép toán số phức.

$$(x + iy) + (x' + iy') = (x + x') + i(y + y')$$

$$(x + iy) \times (x' + iy') = (xx' - yy') + i(xy' + x'y)$$

$$\frac{x + iy}{x' + iy'} = \frac{xx' + yy'}{x'^2 + y'^2} + i\frac{x'y - xy'}{x'^2 + y'^2}, \dots$$
(1.2.2)

Ví du Cho z = 1 + 2i và z' = 2 - i

$$z \times z' = (2+2) + i(-1+4) = 4+3i$$
, $\frac{z}{z'} = \frac{1+2i}{2-i} = i$
 $z^2 = (1+2i) \times (1+2i) = -3+5i$, $z^3 = z^2 \times z = (-3+5i) \times (1+2i) = -13-i$

• Từ định nghĩa suy ra

$$\overline{z} = z \Leftrightarrow z \in 3$$
 $\overline{z} = -z \Leftrightarrow z \in i3$ $\overline{\overline{z}} = z$
 $z + \overline{z} = 2Rez$ $z - \overline{z} = 2iImz$ $z\overline{z} = Re^2z + Im^2z$ (1.2.3)

Ngoài ra liên hợp phức còn có các tính chất sau đây.

<u>Dinh lý</u> \forall (n, z, z') $\in \angle \times \forall \times \forall$

1.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

2.
$$\overline{zz'} = \overline{z}\overline{z'}$$
 $\overline{z^n} = (\overline{z})^n$

3.
$$\overline{z}^{-1} = (\overline{z})^{-1}$$
 $\frac{\overline{z}}{z'} = \frac{\overline{z}}{\overline{z}'}$

Chứng minh

1. Suy ra từ định nghĩa

2. Ta có
$$\overline{zz'} = \overline{(x+iy)\times(x'+iy')} = (xx'-yy') - i(xy'+x'y)$$

 $\overline{z} \ \overline{z'} = (x-iy)\times(x'-iy') = (xx'-yy') + i(-xy'-x'y)$

Qui nạp suy ra hệ thức thứ hai.

3. Ta có
$$\overline{zz^{-1}} = \overline{z} \ \overline{z^{-1}} = 1 \Rightarrow \overline{z^{-1}} = (\overline{z})^{-1}$$

Suy ra $\overline{z/z'} = \overline{z(z')^{-1}} = \overline{z} \ \overline{z'^{-1}}$

• Với mọi số phức z = x + iy, số thực $|z| = \sqrt{x^2 + y^2}$ gọi là *module* của số phức z.

Nếu $z = x \in 3$ thì |z| = |x|. Như vậy module của số phức là mở rộng tự nhiên của khái niệm trị tuyệt đối của số thực. Từ định nghĩa suy ra

| Rez |, | Imz |
$$\leq$$
 | z | | | | z | = | -z | = | \overline{z} | = | $-\overline{z}$ | | $z\overline{z} = \overline{z}z = |z|^2$

$$z^{-1} = \frac{1}{|z|^2} \overline{z} \qquad \qquad \frac{z}{z'} = z(z')^{-1} = \frac{1}{|z'|^2} z\overline{z'} \qquad (1.2.4)$$

Ngoài ra module của số phức còn có các tính chất sau đây.

<u>Dinh lý</u> \forall (n, z, z') $\in \angle \times \forall \times \forall$

1.
$$|z| \ge 0$$
 $|z| = 0 \Leftrightarrow z = 0$

2.
$$|z| = |z| |z'|$$
 $|z'| = |z|^n$

3.
$$|z^{-1}| = |z|^{-1}$$
 $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

4.
$$|z+z'| \le |z| + |z'|$$
 $||z| - |z'| \le |z-z'|$

Chứng minh

1. Suy ra từ định nghĩa

2. Ta có
$$|zz'|^2 = zz' \overline{zz'} = (z \overline{z})(z' \overline{z'}) = (|z||z'|)^2$$

Qui nap suy ra hệ thức thứ hai.

3. Ta có
$$|z|^{-1} = |z||z^{-1}| = 1 \Rightarrow |z^{-1}| = 1/|z|$$

Suy ra
$$|z/z'| = |z(z')^{-1}| = |z||(z')^{-1}|$$

4. Ta có
$$z\overline{z'} + \overline{z}z' = 2\text{Re}(z\overline{z'}) \le |z\overline{z'}| = |z||z'|$$

Suy ra
$$|z + z'|^2 = (z + z')(\overline{z + z'}) = \Box z \Box^2 + 2\text{Re}(z \overline{z'}) + |z'|^2 \le (|z| + |z'|)^2$$

Đ3. Dạng lượng giác của số phức

• Với mọi số phức $z = x + iy \in \forall^*$ tồn tại duy nhất số thực $\varphi \in (-\pi, \pi]$ sao cho

$$\cos \varphi = \frac{x}{|z|} \text{ và } \sin \varphi = \frac{y}{|z|} \tag{1.3.1}$$

Tập số thực $\text{Argz} = \phi + k2\pi$, $k \in 9$ gọi là *argument*, số thực $\text{argz} = \phi$ gọi là *argument chính* của số phức z. Chúng ta qui ước Arg(0) = 0.

Kí hiệu r = |z| từ công thức (1.3.1) suy ra

$$x = r\cos\phi \text{ và } y = r\sin\phi$$

Thay vào công thức (1.2.1) nhận được

$$z = r(\cos + i\sin\phi) \tag{1.3.2}$$

Dang viết (1.3.2) gọi là dang lượng giác của số phức.

• Từ định nghĩa suy ra

$$argz = \phi \Rightarrow arg(-z) = \phi - \pi, \ arg \overline{z} = -\phi \text{ và } arg(-\overline{z}) = \pi - \phi$$

$$x > 0, \ argx = 0 \qquad x < 0, \ argx = \pi$$

$$y > 0, \ arg(iy) = \pi/2 \qquad y < 0, \ arg(iy) = -\pi/2 \dots$$
(1.3.3)

Ngoài ra argument của số phức còn có các tính chất sau đây.

<u>Đinh lý</u> \forall (n, z, z') $\in \angle \times \forall \times \forall$

1.
$$arg(zz') = argz + argz' [2\pi]$$
 $arg(z^n) = n argz [2\pi]$

2.
$$\arg(z^{-1}) = -\arg z [2\pi]$$
 $\arg(z/z') = \arg z - \arg z' [2\pi]$

Chứng minh

1. Giả sử
$$z = r(\cos\varphi + i\sin\varphi)$$
 và $z' = r'(\cos\varphi' + i\sin\varphi')$

Suy ra

zz' = rr'[(cos
$$\phi$$
cos ϕ ' - sin ϕ sin ϕ ') + i(sin ϕ cos ϕ ' + cos ϕ sin ϕ ')]
= rr'[cos(ϕ + ϕ ') + isin(ϕ + ϕ ')]

Qui nạp suy ra hệ thức thứ hai.

2. Ta có

$$arg(zz^{\text{-}1}) = arg(z) + arg(z^{\text{-}1}) = 0 \ [2\pi] \Rightarrow arg(z^{\text{-}1}) = - \ arg(z) \ [2\pi]$$

Suy ra

$$\arg(z/z') = \arg(zz'^{-1}) = \arg z + \arg(z'^{-1})$$

Ví dụ Cho $z = 1 + i và z' = 1 + \sqrt{3} i$

Ta có
$$zz' = \left[\sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right] \left[2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right] = 2\sqrt{2} \left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$$
$$z^{100} = \left(\sqrt{2}\right)^{100} \left[\cos(100\frac{\pi}{4}) + i\sin(100\frac{\pi}{4})\right] = -2^{50}$$

Với mọi số thực φ ∈ 3, kí hiệu

$$e^{i\phi} = \cos\phi + i\sin\phi \tag{1.3.4}$$

Theo các kết quả ở trên chúng ta có định lý sau đây.

Dinh Iý \forall (n, φ , φ ') $\in \angle \times 3 \times 3$

1.
$$e^{i\phi} \neq 0$$
 $e^{i\phi} = 1 \Leftrightarrow \phi = k2\pi$ $\overline{e^{i\phi}} = e^{-i\phi}$

1.
$$e^{i\phi} \neq 0$$
 $e^{i\phi} = 1 \Leftrightarrow \phi = k2\pi$ $\overline{e^{i\phi}} = e^{-i\phi}$
2. $e^{i(\phi+\phi')} = e^{i\phi}e^{i\phi'}$ $(e^{i\phi})^{-1} = e^{-i\phi}$ $(e^{i\phi})^n = e^{in\phi}$

Suy ra từ công thức (1.3.4) và các kết quả ở trên

Hê quả \forall $(n, \varphi) \in \angle \times 3$

1.
$$(\cos\varphi + i\sin\varphi)^n = \cos\eta\varphi + i\sin\eta\varphi$$
 (1.3.5)

2.
$$\cos \varphi = \frac{1}{2} (e^{i\varphi} + e^{-i\varphi})$$
 $\sin \varphi = \frac{1}{2i} (e^{i\varphi} - e^{-i\varphi})$ (1.3.6)

Công thức (1.3.5) gọi là công thức Moivre, công thức (1.3.6) gọi là công thức Euler.

$$\underline{\text{V\'i du}} \text{ T\'inh tổng } C = \sum_{k=0}^{n} \cos k\phi \text{ và } S = \sum_{k=0}^{n} \sin k\phi$$

Ta có
$$C + iS = \sum_{k=0}^{n} e^{ik\phi} = \frac{e^{i(n+1)\phi} - 1}{e^{i\phi} - 1}$$

Suy ra
$$C = \frac{1}{2} \frac{\cos(n+1)\phi - \cos n\phi + \cos \phi - 1}{\cos \phi - 1} \text{ và } S = \frac{1}{2} \frac{\sin(n+1)\phi - \sin n\phi - \sin \phi}{\cos \phi - 1}$$

• Số phức w gọi là căn bậc n của số phức z và kí hiệu là $w = \sqrt[n]{z}$ nếu $z = w^n$

Nếu z = 0 thì w = 0

Xét trường hợp
$$z = re^{i\phi} \neq 0$$
 và $w = \rho e^{i\theta}$

Theo định nghĩa
$$w^n = \rho^n e^{in\theta} = r e^{i\phi}$$

Suy ra
$$\rho^n = r \text{ và } n\theta = \phi + m2\pi$$

Hay
$$\rho = \sqrt[n]{r} \text{ và } \theta = \frac{\varphi}{n} + m \frac{2\pi}{n} \text{ với } m \in 9$$

Phân tích m = nq + k với $0 \le k < n$ và $q \in 9$. Ta có

$$\frac{\varphi}{n} + m \frac{2\pi}{n} \equiv \frac{\varphi}{n} + k \frac{2\pi}{n} [2\pi]$$

Từ đó suy ra định lý sau đây.

<u>Dinh lý</u> Căn bậc n của số phức khác không có đúng n giá trị khác nhau

$$w_k = \sqrt[n]{r} \left[\cos \left(\frac{\varphi}{n} + k \frac{2\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + k \frac{2\pi}{n} \right) \right] v \acute{o}i \quad k = 0 \dots (n-1)$$
 (1.3.7)

Ví du

1. Số phức $z = 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$ có các căn bậc 3 sau đây

$$w_0 = \sqrt[6]{2} \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right), w_1 = \sqrt[6]{2} \left(\cos\frac{9\pi}{12} + i\sin\frac{9\pi}{12}\right), w_2 = \sqrt[6]{2} \left(\cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}\right)$$

2. Giải phương trình $x^2 - x + 1 = 0$

Ta có $\Delta = -3 < 0$ phương trình có nghiệm phức $x_{1,2} = \frac{1 \pm i\sqrt{3}}{2}$

 $\underline{\textit{Hệ quả}}\,$ Kí hiệu $\omega_k=e^{ik\frac{2\pi}{n}},\,k=0...(n$ - 1) là các căn bậc n của đơn vị.

1.
$$\overline{\omega}_k = \omega_{n-k}$$

2.
$$\omega_k = (\omega_1)^k$$

$$\overline{\omega}_k = \omega_{n-k} \qquad \qquad 2. \qquad \omega_k = (\omega_1)^k \qquad \qquad 3. \qquad \sum_{k=0}^{n-1} \omega_k = 0$$

 $\underline{\text{V\'i du}} \text{ V\'oi } n=3, \text{ k\'i hiệu } j=e^{\frac{i^2\pi}{3}}=\omega_1 \text{ . Suy ra } \omega_2=j^2=\bar{j} \text{ và } 1+j+j^2=0$

Đ4. Các ứng dung hình học phẳng

• Kí hiệu V là mặt phẳng vecto với cơ sở trực chuẩn dương (*i, j*). Anh xạ

$$\Phi: \forall \to V, z = x + iy \mapsto \mathbf{v} = x\mathbf{i} + y\mathbf{j}$$
(1.4.1)

là một song ánh gọi là biểu diễn vecto của số phúc. Vecto v gọi là ảnh của số phúc z, còn số phức z gọi là *toạ vị phức* của vecto **v** và kí hiệu là **v**(z).

Kí hiệu P là mặt phẳng điểm với hệ toạ độ trực giao (Oxy). Anh xạ

$$\Phi: \forall \to P, z = x + iy \mapsto M(x, y) \tag{1.4.2}$$

là một song ánh gọi là biểu diễn hình học của số phức. Điểm M gọi là ảnh của số phức z còn số phức z gọi là toạ vị phức của điểm M và kí hiệu là M(z).

Như hình bên, M(z) với z = x + iy, $M_1(-\overline{z})$, $M_2(-z)$ và $M_3(\overline{z})$.

Nếu $z = x \in 3$ thì điểm $M(z) \in (Ox)$, còn nếu z = iy thì điểm $M(z) \in (Oy)$. Do vây mặt phẳng (Oxy) còn gọi là mặt phẳng phức, trục (Ox) là trục thực và trục (Oy) là trục ảo. Sau này chúng ta sẽ đồng nhất mỗi số phức với một vectơ hay một điểm trong mặt phẳng và ngược lại.

<u>Dinh lý</u> Cho các vecto $\mathbf{u}(a)$, $\mathbf{v}(b) \in V$, số thực $\lambda \in 3$ và điểm $M(z) \in P$

1.
$$|u| = |a|$$

$$\angle(\mathbf{i}, \mathbf{u}) = \arg(a)$$

$$\Phi(\lambda a + b) = \lambda u + v$$

$$2. \qquad |\overrightarrow{OM}| = |z|$$

$$|\overrightarrow{OM}| = |z|$$
 $\angle(i, \overrightarrow{OM}) = \arg(z)$

Chứng minh

Suy ra từ các công thức (1.4.1) và (1.4.2)

Hệ quả 1 Trong mặt phẳng cho các điểm A(a), B(b), C(c) và D(d)

1.
$$\overrightarrow{AB}(b-a)$$
, $\overrightarrow{AB} = |b-a|$, $\angle(i, \overrightarrow{AB}) = \arg(b-a)$

2.
$$\angle (\overrightarrow{AB}, \overrightarrow{CD}) = \angle (\overrightarrow{i}, \overrightarrow{CD}) - \angle (\overrightarrow{i}, \overrightarrow{AB}) = \arg \frac{d-c}{b-a}$$

Chứng minh

Suy ra từ định lý

>>

<u>Ví du</u> Cho z ∈ \forall - {-1, 0, 1} và A(1), B(-1), M(z), N($\frac{1}{z}$) và P($\frac{1}{2}$ (z + $\frac{1}{z}$)). Chứng minh

rằng đường thẳng (MN) là phân giác của góc ∠(PA, PB).

Ta
$$\operatorname{co} \angle (i, \overrightarrow{AP}) = \operatorname{arg}(\frac{1}{2}(z + \frac{1}{z}) - 1) = \operatorname{arg}\frac{(z - 1)^2}{2z}$$

$$\angle (i, \overrightarrow{BP}) = \operatorname{arg}(\frac{1}{2}(z + \frac{1}{z}) + 1) = \operatorname{arg}\frac{(z + 1)^2}{2z}$$
B O

$$\angle (i, \overrightarrow{BP}) = \arg(\frac{1}{2}(z + \frac{1}{z}) + 1) = \arg(\frac{(z+1)^2}{2z})$$

Suy ra

$$\angle(\mathbf{i}, \overrightarrow{AP}) + \angle(\mathbf{i}, \overrightarrow{BP}) = \arg \frac{(z-1)^2}{2z} \frac{(z+1)^2}{2z} = 2\arg(z - \frac{1}{z}) = 2\angle(\mathbf{i}, \overrightarrow{MN})$$

Hệ quả 2 Với các kí hiệu như trên

1. Hai đường thẳng (AB) // (CD)
$$\iff$$
 $\arg \frac{d-c}{b-a} = 0 \ [\pi] \iff \frac{d-c}{b-a} \in 3$

2. Hai đường thẳng (AB)
$$\perp$$
 (CD) \iff $\arg \frac{d-c}{b-a} = \frac{\pi}{2} [\pi] \iff \frac{d-c}{b-a} \in i3$

3. Ba điểm A, B, C thẳng hàng
$$\Leftrightarrow \arg \frac{c-a}{b-a} = 0 \ [\pi] \iff \frac{c-a}{b-a} \in 3$$

Chứng minh

Suy ra từ các hệ thức hệ quả 1

>>

Ví du Trong mặt phẳng tìm điểm A(z) sao cho ba điểm A(z), B(iz) và C(i) thẳng hàng Kí hiệu z = x + iy, ta có

A, B, C thẳng hàng
$$\Leftrightarrow \frac{iz-i}{z-i} = k \in 3 \quad \Leftrightarrow -y + i(x-1) = (kx) + ik(y-1)$$

$$\Leftrightarrow \begin{cases} -y = kx \\ x-1 = k(y-1) \end{cases} \quad \Leftrightarrow \quad x = \frac{1-k}{k^2+1}, \quad y = \frac{k(k-1)}{k^2+1} \quad \text{v\'oi } k \in 3$$

• ánh xạ $\Phi: P \rightarrow P$, $M \mapsto N$ gọi là một phép biến hình

Phép biến hình $M \mapsto N = M + v gọi là phép tĩnh tiến theo vector <math>v$

Phép biến hình $M \mapsto N = A + k \overrightarrow{AM}$ (k > 0) gọi là phép vi tự tâm A, hệ số k

Phép biến hình M \mapsto N sao cho $\angle(\overrightarrow{AM}, \overrightarrow{AN}) = \alpha$ gọi là phép quay tâm A, góc α

>>

Tích của phép tĩnh tiến, phép vi tự và phép quay gọi là phép đồng dạng.

Dinh lý Cho phép biến hình $\Phi: M \mapsto N$

1. Phép biến hình Φ là phép tĩnh tiến \Leftrightarrow z' = z + b với $b \in \forall$

2. Phép biến hình Φ là phép vi tự \Leftrightarrow z' = a + k(z - a) với k \in 3, a \in \forall

3. Phép biến hình Φ là phép quay $\Leftrightarrow z' = a + e^{i\alpha}(z - a) \text{ với } \alpha \in 3, a \in \forall$

4. Phép biến hình Φ là phép đồng dạng \Leftrightarrow z' = az + b với $a, b \in \forall$ Chứng minh

Suy ra từ đinh nghĩa các phép biến hình và toa vi phức.

Ví dụ Cho A(a), B(b) và C(c). Tìm điều kiện cần và đủ để ΔABC là tam giác đều

 \triangle ABC là tam giác đều thuận \iff $(a - b) = e^{i\frac{\pi}{3}}(c - b)$

$$\Leftrightarrow$$
 $(a - b) = -j^2(c - b) \Leftrightarrow a + jb + j^2c = 0$

Tương tự, ΔACB là tam giác đều nghịch

$$\Leftrightarrow$$
 $(a - b) = -j(c - b)$ \Leftrightarrow $a + jc + j^2b = 0$

Suy ra ΔABC là tam giác đều

$$\Leftrightarrow$$
 $(a + jb + j^2c)(a + jc + j^2b) = 0 $\Leftrightarrow a^2 + b^2 + c^2 = ab + bc + ca$$

Đ5. Dãy trị phức

• ánh xa

$$\phi: \angle \to \forall, \, n \mapsto z_n = x_n + iy_n \tag{1.5.1}$$

gọi là *dãy số phức* và kí hiệu là $(z_n)_{n \in \angle}$.

Dãy số thực $(x_n)_{n\in Z}$ gọi là *phần thực*, dãy số thực $(y_n)_{n\in Z}$ là *phần ảo*, dãy số thực dương $(|z_n|)_{n\in Z}$ là *module*, dãy số phức $(\overline{z}_n)_{n\in Z}$ là *liên hợp phức* của dãy số phức.

Dãy số phức $(z_n)_{n\in \angle}$ gọi là *dần đến giới hạn* a và kí hiệu là $\lim_{n\to +\infty} z_n = a$ nếu

$$\forall \ \epsilon > 0, \exists \ N \in \angle : \ \forall \ n > N \Rightarrow |z_n - a| < \epsilon$$

Dãy số phức $(z_n)_{n\in \angle}$ gọi là *dần ra vô hạn* và kí hiệu là $\lim_{n\to +\infty} z_n = \infty$ nếu

$$\forall M > 0, \exists N \in \angle : \forall n > N \Rightarrow |z_n| > M$$

Dãy có giới hạn module hữu hạn gọi là *dãy hội tụ*. Dãy không hội tụ gọi là *dãy phân kỳ*.

Chứng minh

Giả sử

$$\begin{split} \lim_{n \to +\infty} z_n &= a \iff \forall \ \epsilon > 0, \exists \ N \in \angle : \forall \ n > N \implies | \ z_n - a \ | < \epsilon \\ &\implies \forall \ n > N \implies | \ x_n - \alpha \ | < \epsilon \ v \grave{a} \ | \ y_n - \beta \ | < \epsilon \end{split}$$
 Suy ra
$$\lim_{n \to +\infty} x_n &= \alpha \ \ v \grave{a} \ \lim_{n \to +\infty} y_n = \beta \end{split}$$

Ngược lại

$$\begin{split} \lim_{n \to +\infty} x_n &= \alpha \ \text{ và } \lim_{n \to +\infty} y_n = \beta \\ & \Leftrightarrow \ \forall \ \epsilon > 0, \ \exists \ N \in \ \angle : \ \forall \ n > N \ \Rightarrow \ | \ x_n - \alpha \ | < \epsilon/2 \ \text{ và } | \ y_n - \beta \ | < \epsilon/2 \\ & \Rightarrow \ \forall \ n > N \ \Rightarrow \ | \ z_n - a \ | < \epsilon \end{split}$$
 Suy ra
$$\lim_{n \to +\infty} z_n = a \qquad \qquad \blacktriangleright \blacktriangleright$$

<u>Hệ quả</u>

1.
$$\lim_{n \to +\infty} z_n = a \iff \lim_{n \to +\infty} \overline{z}_n = \overline{a} \implies \lim_{n \to +\infty} |z_n| = |a|$$

2.
$$\lim_{n \to +\infty} (\lambda z_n + z'_n) = \lambda \lim_{n \to +\infty} z_n + \lim_{n \to +\infty} z'_n$$

$$\lim_{n \to +\infty} (z_n z'_n) = \lim_{n \to +\infty} z_n \lim_{n \to +\infty} z'_n \text{ và } \lim_{n \to +\infty} (z_n / z'_n) = \lim_{n \to +\infty} z_n / \lim_{n \to +\infty} z'_n$$

- 3. Các tính chất khác tương tư giới han dãy số thực
- Cho dãy số phức $(z_n = x_n + iy_n)_{n \in Z}$. Tổng vô hạn

$$\sum_{n=0}^{+\infty} Z_n = Z_0 + Z_1 + \dots + Z_n + \dots$$
 (1.5.3)

gọi là chuỗi số phức.

Chuỗi số thực $\sum_{n=0}^{+\infty} x_n$ gọi là *phần thực*, chuỗi số thực $\sum_{n=0}^{+\infty} y_n$ là *phần ảo*, chuỗi số thực

dương $\sum_{n=0}^{+\infty} |z_n|$ là *module*, chuỗi số phức $\sum_{n=0}^{+\infty} \overline{z}_n$ là *liên hợp phức* của chuỗi số phức.

Kí hiệu $S_n = \sum_{k=0}^n z_k$ gọi là *tổng riêng thứ n* của chuỗi số phức. Nếu dãy tổng riêng S_n dần đến giới hạn S có module hữu hạn thì chuỗi số phức gọi là *hội tụ đến tổng S* và kí hiệu là $\sum_{n=0}^{+\infty} z_n = S.$ Chuỗi không hội tụ gọi là *chuỗi phân kỳ*.

$$\underline{\text{V\'i du}}$$
 Xét chuỗi số phức $\sum_{n=0}^{+\infty} z^n = 1 + z + ... + z^n + ... \ (\mid z \mid < 1)$

Ta có
$$S_n = 1 + z + ... + z^n = \frac{z^{n+1} - 1}{z - 1} \xrightarrow{+\infty} \frac{1}{1 - z}$$

Vậy chuỗi đã cho hội tụ.

Từ định nghĩa chuỗi số phức và các tính chất của dãy số phức, của chuỗi số thực suy ra các kết quả sau đây.

Định lý Cho chuỗi số phức
$$\sum_{n=0}^{+\infty} (z_n = x_n + iy_n)$$
 và $S = \alpha + i\beta \in \forall$

$$\sum_{n=0}^{+\infty} z_n = S \iff \sum_{n=0}^{+\infty} x_n = \alpha \text{ và } \sum_{n=0}^{+\infty} y_n = \beta$$
 (1.5.4)

>>

Chứng minh

Suy ra từ các định nghĩa và công thức (1.5.2)

Hệ quả

1.
$$\sum_{n=0}^{+\infty} |z_n| = |S| \implies \sum_{n=0}^{+\infty} z_n = S \iff \sum_{n=0}^{+\infty} \overline{z}_n = \overline{S}$$

- 2. Các tính chất khác tương tư chuỗi số thực
- Chuỗi số phức $\sum_{n=0}^{+\infty} z_n$ gọi là *hội tụ tuyệt đối* nếu chuỗi module $\sum_{n=0}^{+\infty} |z_n|$ hội tụ. Rõ ràng

chuỗi hội tụ tuyệt đối là chuỗi hội tụ. Tuy nhiên điều ngược lại nói chung là không đúng. Ngoài ra, có thể chứng minh rằng chỉ khi chuỗi số phức hội tụ tuyệt đối thì tổng vô hạn (1.5.3) mới có các tính chất giao hoán, kết hợp, ... tương tự như tổng hữu hạn.

Đ6. Hàm trị phức

• Cho khoảng I ⊂ 3, ánh xạ

$$f: I \to \forall, t \mapsto f(t) = u(t) + iv(t)$$
 (1.6.1)

gọi là hàm tri phức.

Hàm $\underline{u(t)} = \text{Ref}(t)$ gọi là *phần thực*, hàm $\underline{v(t)} = \text{Imf}(t)$ là *phần ảo*, hàm | f(t) | là *module*, hàm $\overline{f(t)}$ là *liên hợp phức* của hàm trị phức.

Trên tập $f(I, \forall)$ các hàm trị phức xác định trên khoảng I, chúng ta định nghĩa các phép

toán đại số tương tự như trên tập f(I, 3) các hàm trị thực xác định trên khoảngI.

Hàm trị phức f(t) gọi là *bị chặn* nếu hàm module | f(t) | bị chặn.

Cho hàm $f:I\to \forall\ và\ \alpha\in\ \bar I$. Hàm f gọi là *dần đến giới hạn* L khi t dần đến α và kí hiệu là $\lim f(t)=1$ nếu

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall t \in I, 0 < |t - \alpha| < \delta \Rightarrow |f(t) - L| < \varepsilon$$

Hàm f gọi là $d \hat{a} n ra \ v \hat{o} \ hạn \ khi t d n đến <math>\alpha$ và kí hiệu là $\lim_{t \to \alpha} f(t) = \infty \ \text{nếu}$

$$\forall\; M>0, \exists\; \delta>0\;: \forall\; t\in\; I,\, 0<\mid t\;\text{-}\;\alpha\mid <\delta \Rightarrow \;\mid f(t)\mid >M$$

Các trường hợp khác định nghĩa tương tự.

Dinh lý Cho hàm
$$f: I \rightarrow \forall$$
, $t \mapsto f(t) = u(t) + iv(t)$, $\alpha \in \bar{I}$ và $L = l + ik \in \forall$

$$\lim_{t \to \alpha} f(t) = L \iff \lim_{t \to \alpha} u(t) = 1 \text{ và } \lim_{t \to \alpha} v(t) = k$$
 (1.6.2)

Chứng minh

Lập luận tương tự như chứng minh công thức (1.5.2)

>>

Hệ quả

- 1. $\lim_{t \to \alpha} f(t) = L \iff \lim_{t \to \alpha} \overline{f(t)} = \overline{L} \implies \lim_{t \to \alpha} |f(t)| = |L|$
- 2. $\lim_{t \to \alpha} [\lambda f(t) + g(t)] = \lambda \lim_{t \to \alpha} f(t) + \lim_{t \to \alpha} g(t)$

$$\lim_{t \to \alpha} \left[f(t)g(t) \right] = \lim_{t \to \alpha} f(t) \lim_{t \to \alpha} g(t), \ \lim_{t \to \alpha} \left[f(t) \, / \, g(t) \right] = \lim_{t \to \alpha} f(t) \, / \lim_{t \to \alpha} g(t)$$

- 3. Các tính chất khác tương tư giới han hàm tri thực
- Từ các kết quả trên thấy rằng, các tính chất của hàm trị thực được mở rộng tự nhiên thông qua phần thực, phần ảo cho hàm trị phức.

Hàm f(t) = u(t) + iv(t) gọi là *khả tích (liên tục, có đạo hàm, thuộc lớp C^k, ...)* nếu các hàm u(t) và v(t) là khả tích (liên tục, có đạo hàm, thuộc lớp C^k, ...) và ta có

$$\int_{I} f(t)dt = \int_{I} u(t)dt + i \int_{I} v(t)dt
f^{(k)}(t) = u^{(k)}(t) + i v^{(k)}(t), ...$$
(1.6.3)

Hàm f(t) gọi là khả tích tuyệt đối nếu hàm module | f(t) | khả tích. Trên tập số phức không định nghĩa quan hệ thứ tự và do vậy các tính chất liên quan đến thứ tự của f(t) được chuyển qua cho module | f(t) |.

<u>Ví dụ</u> Cho hàm trị phức $f(t) = \cos t + i \sin t$ có phần thực $x(t) = \cos t$ phần ảo $y(t) = \sin t$ là hàm thuộc lớp C^{∞} suy ra hàm f(t) thuộc lớp C^{∞}

$$f'(t) = - \sin t + i \cos t$$
, $f''(t) = - \cos t - i \sin t$, ...

$$\int_{0}^{\pi/2} (\cos t + i \sin t) dt = \int_{0}^{\pi/2} \cos t dt + i \int_{0}^{\pi/2} \sin t dt = 1 + i$$

ánh xa

$$\gamma: [\alpha, \beta] \to \forall, t \mapsto \gamma(t)$$
 (1.6.4)

gọi là một *tham số cung*. Tập điểm $\Gamma = \gamma([\alpha, \beta])$ gọi là *quĩ đạo* của tham số cung γ hay còn gọi là một *đường cong phẳng*. Phương trình

$$\gamma(t) = x(t) + iy(t), t \in [\alpha, \beta]$$

gọi là *phương trình tham số* của đường cong phẳng Γ .

Tham số cung γ gọi là *kín* nếu điểm đầu và điểm cuối trùng nhau. Tức là $\gamma(\alpha) = \gamma(\beta)$

Tham số cung γ gọi là đơn nếu ánh xạ γ : $(\alpha, \beta) \rightarrow \forall$ là một đơn ánh.

Tham số cung γ gọi là *liên tục (tron từng khúc, thuộc lớp C^k, ...)* nếu hàm γ (t) là liên tục (có đạo hàm liên tục từng khúc, thuộc lớp C^k, ...) trên $[\alpha, \beta]$. Sau này chúng ta chỉ xét các tham số cung từ liên tục trở lên.

• ánh xa

$$\varphi: [\alpha, \beta] \to [\alpha_1, \beta_1], t \mapsto s = \varphi(t) \tag{1.6.5}$$

có đạo hàm liên tục và khác không gọi là một *phép đổi tham số*. Nếu với mọi $t \in (\alpha, \beta)$ đạo hàm $\phi'(t) > 0$ thì phép đổi tham số gọi là *bảo toàn hướng*, trái lại gọi là *đổi hướng*. Hai tham số cung $\gamma : [\alpha, \beta] \to \forall$ và $\gamma_1 : [\alpha_1, \beta_1] \to \forall$ gọi là *tương đương* nếu có phép đổi tham số $\phi : [\alpha, \beta] \to [\alpha_1, \beta_1]$ sao cho

$$\forall t \in [\alpha, \beta], \gamma(t) = \gamma_1 o \phi(t)$$

Nếu φ bảo toàn hướng thì γ và γ_1 gọi là *cùng hướng*, trái lại gọi là *ngược hướng*. Có thể thấy rằng qua hệ cùng hướng là một quan hệ tương đương theo nghĩa tổng quát. Nó phân chia tập các tham số cung có cùng quĩ đạo Γ thành hai lớp tương đương. Một lớp cùng hướng với γ còn lớp kia ngược hướng với γ . Đường cong phẳng $\Gamma = \gamma([\alpha, \beta])$ cùng với lớp các tham số cung cùng hướng gọi là một *đường cong định hướng*. Cũng cần lưu ý rằng cùng một tập điểm Γ có thể là quĩ đạo của nhiều đường cong định hướng khác nhau. Sau này khi nói đến đường cong chúng ta hiểu đó là đường cong định hướng.

<u>Ví dụ</u> Tham số cung $x(t) = R\cos t$, $y(t) = R\sin t$, $t \in [0, 2\pi]$ là đơn, trơn, kín và có quĩ đạo là đường tròn tâm tại gốc toạ độ, bán kính R và định hướng ngược chiều kim đồng hồ.

• Đường cong Γ gọi là đơn (kín, liên tục, trơn từng khúc, lớp C^k , ...) nếu tham số cung γ là đơn (kín, liên tục, trơn từng khúc, lớp C^k , ...). Đường cong Γ gọi là đơ được nếu tham số cung γ có đạo hàm khả tích tuyệt đối trên $[\alpha, \beta]$. Khi đó kí hiệu

$$s(\Gamma) = \int_{\alpha}^{\beta} \sqrt{x'^{2}(t) + y'^{2}(t)} dt$$
 (1.6.6)

và gọi là $d\hat{\rho}$ dài của đường cong Γ . Có thể chứng minh rằng đường cong đơn, tron từng khúc là đo được.

Đ7. Tập con của tập số phức

• Cho $a \in \forall \ v \ a \in 0$. Hình tròn $B(a, \epsilon) = \{z \in \forall : |z - a| < \epsilon \}$ gọi là ϵ - lân cận của điểm a. Cho tập $D \subset \forall$, điểm a gọi là điểm trong của tập D nếu $\exists \ \epsilon > 0$ sao cho $B(a, \epsilon) \subset D$. Điểm b gọi là điểm biên của tập D nếu $\forall \ \epsilon > 0$, $B(b, \epsilon) \cap D \neq \emptyset$ và $B(b, \epsilon) \cap (\forall - D) \neq \emptyset$. Kí hiệu D_0 là tập hợp các điểm trong, ∂D là tập hợp các điểm biên

và $\overline{D} = D \cup \partial D$ là bao đóng của tập D. Rõ ràng ta có

$$D_0 \subset D \subset \overline{D} \tag{1.7.1}$$

Tập D gọi là $tập \, mở$ nếu D = D₀, tập D gọi là $tập \, d\acute{o}ng$ nếu D = \overline{D} . Tập A \subset D gọi là mở (đóng) trong tập D nếu tập A \cap D là tập mở (đóng).

Ví dụ Hình tròn mở B(a, ε) = { $z \in \forall : |z - a| < \varepsilon$ } là tập mở.

Hình tròn đóng $\overline{B}(a, \varepsilon) = \{ z \in \forall : |z - a| \le \varepsilon \}$ là tập đóng

Tập D = { $z = x + iy \in \forall : x > 0, y \ge 0$ } là tập không đóng và cũng không mở.

Đinh lý Tập mở, tập đóng có các tính chất sau đây.

- 1. Tập Ø và ∀ là tập mở
- 2. Tập D là tập mở khi và chỉ khi \forall a \in D, \exists B(a, ε) \subset D
- 3. Nếu các tập D và E là tập mở thì các tập D \cap E và D \cup E cũng là tập mở
- 4. Tập D là tập mở khi và chỉ khi tập ∀ D là tập đóng
- 5. Tập D là tập đóng khi và chỉ khi $\forall (z_n)_{n\in \angle} \subset D$ và $\lim_{n\to \infty} z_n = a$ thì $a\in D$

Chứng minh

- 1. 3. Suy ra từ định nghĩa tập mở
- 4. Theo định nghĩa điểm biên

$$\partial D = \partial (\forall - D)$$

Theo định nghĩa tập mở, tập đóng

tập D mở
$$\Leftrightarrow$$
 ∂D $\not\subset$ D \Leftrightarrow ∂D \subset \forall - D \Leftrightarrow tập \forall - D đóng

5. Giả sử tập D là tập đóng và dãy số phức z_n hội tụ trong D đến điểm a. Khi đó

$$\forall \ \epsilon > 0, \ \exists \ z_n \in \ B(a, \epsilon) \implies B(a, \epsilon) \cap D \neq \emptyset \implies a \in \ \overline{D} = D$$

Ngược lại, với mọi $a \in \partial D$ theo định nghĩa điểm biên

$$\forall \ \epsilon = 1/n, \ \exists \ z_n \in B(a, \epsilon) \cap D \implies \exists \ z_n \to a$$

Theo giả thiết $a \in D$ suy ra $\partial D \subset D$.

>>

Tập D gọi là *giới nội* nếu ∃ R > 0 sao cho D ⊂ B(O, R). Tập đóng và giới nội gọi là tập *compact*. Cho các tập D, E ⊂ ∀, kí hiệu

$$d(D, E) = \inf\{ | a - b | : (a, b) \in D \times E \}$$

$$(1.7.2)$$

gọi là khoảng cách giữa hai tập D và E.

<u>Dinh lý</u> Cho các tập D, $E \subset \forall$

- 1. Tập D là tập compact khi và chỉ khi $\forall (z_n)_{n \in \mathcal{L}} \subset D, \exists dãy con z_{\varphi(n)} \to a \in D$
- 2. Nếu tập D là tập compact và tập $E \subset D$ là đóng trong D thì tập E là tập compact
- 3. Nếu các tập D, E là tập compact và D \cap E = \emptyset thì d(D, E) > 0
- 4. Nếu tập D là tập compact và \forall $n \in \angle$, $D_n \subset D$ đóng, $D_{n+1} \subset D_n$ thì $\bigcap_{n=0}^{+\infty} D_n = a \in D$

Chứng minh

1. Giả sử tập D là tập compact. Do tập D bị chặn nên dãy $(z_n)_{n\in \angle}$ là dãy có module bị chặn. Suy ra dãy số thực $(x_n)_{n\in \angle}$ và $(y_n)_{n\in \angle}$ là dãy bị chặn. Theo tính chất của dãy số thực $\exists \ x_{\phi(n)} \to \alpha$ và $y_{\phi(n)} \to \beta$ suy ra $z_{\phi(n)} \to a = \alpha + i\beta$. Do tập D là tập đóng nên $a \in D$.

Ngược lại, do mọi dãy $z_n \to a \in D$ nên tập D là tập đóng. Nếu D không bị chặn thì có dãy $z_n \to \infty$ không có dãy con hội tụ. Vì vậy tập D là tập đóng và bị chặn.

2. - 4. Ban đọc tư chứng minh

>>

• Cho a, b $\in \forall$, tập [a, b] = {(1 - t)a + tb : t \in [0, 1]} là đoạn thẳng nối hai điểm a và b. Hợp của các đoạn thẳng [a₀, a₁], [a₁, a₂], ..., [a_{n-1}, a_n] gọi là đường gấp khúc qua n +1 đỉnh và kí hiệu là < a₀, a₁, ..., a_n >.

Tập D gọi là tập lồi nếu \forall (a, b) \in D², [a, b] \subset D. Tập D gọi là tập *liên thông đường* nếu \forall (a, b) \in D², có đường cong Γ nối điểm a với điểm b và nằm gọn trong tập D. Tất nhiên tập lồi là tập liên thông đường nhưng ngược lại không đúng.

Tập D gọi là tập *liên thông* nếu phân tích $D = A \cup B$ với $A \cap B = \emptyset$ và các tập A, B vừa mở và vừa đóng trong D thì hoặc A = D hoặc B = D. Tập D mở (hoặc đóng) và liên thông gọi là một *miền*.

Đinh lý Trong tập số phức các tính chất sau đây là tương đương.

- 1. Tập D là liên thông
- 2. \forall (a, b) \in D², có đường gấp khúc < a₀ = a, a₁, ..., a_n = b $> \subset$ D
- 3. Tập D là liên thông đường

Chứng minh

- 1. ⇒ 2. \forall a ∈ D, đặt A = {z ∈ D : \exists đường gấp khúc <a, ..., z > \subset D}. Tập A vừa là tập mở vừa là tập đóng trong tập D và A ≠ Ø nên A = D
- $2. \Rightarrow 3$. Theo định nghĩa liên thông đường
- 3. \Rightarrow 1. Giả sử ngược lại tập D không liên thông. Khi đó D = A \cup B với A \cap B = \emptyset và các tập A, B vừa mở vừa đóng trong D. Chọn (a, b) \in A \times B, theo giả thiết có đường

D

cong (a, b) nằm gọn trong D.

Chia đôi đường cong (a, b) bằng điểm c. Nếu $c \in A$ xét đường cong $(a_1 = c, b_1 = b)$, còn nếu $c \in B$ xét đường cong $(a_1 = a, b_1 = c)$. Tiếp tục chia đôi đường cong chúng ta nhận được dãy thắt lại $a_n, b_n \to c \in A \cap B$. Trái với giả thiết $A \cap B = \emptyset$.

• Cho tập D ⊂ ∀ bất kì. Hai điểm a, b ∈ D gọi là liên thông, kí hiệu là a ~ b nếu có đường cong nối a với b và nằm gọn trong D. Có thể chứng minh rằng quan hệ liên thông là một quan hệ tương đương theo nghĩa tổng quát. Do đó nó chia tập D thành hợp các lớp tương đương không rỗng và rời nhau. Mỗi lớp tương đương

$$[a] = \{ b \in D : b \sim a \}$$
 (1.7.3)

gọi là một *thành phần liên thông* chứa điểm a. Tập D là tập liên thông khi và chỉ khi nó có đúng một thành phần liên thông.

Miền D gọi là *đơn liên* nếu biên ∂D gồm một thành phần liên thông, trường hợp trái lại gọi là miền *đa liên*.

Biên ∂D gọi là định hướng dương nếu khi đi theo hướng đó thì miền D nằm phía bên trái. Sau nay chúng ta chỉ xét miền đơn hoặc đa liên có biên gồm hữu hạn đường cong đơn, tron từng khúc và định hướng dương. Như vậy nếu miền D là miền đơn liên thì hoặc là $D = \forall$ hoặc là ∂D^+ là đường cong kín định hướng ngược chiều kim đồng hồ.

• Trong giáo trình này chúng ta thường xét một số miền đơn liên và đa liên có biên định hướng dương như sau.

Bài tập chương 1

- 1. Viết dạng đại số của các số phức
- a. (2-i)(1+2i) b. $\frac{2}{4-3i}$ c. $\frac{4+5i}{3-4i}$

- d. $(1 + 2i)^3$

- 2. Cho các số phức a, $b \in \forall$. Chứng minh rằng
- a. $|a| = |b| = 1 \Rightarrow \forall z \in \forall, \frac{z + ab\overline{z} (a + b)}{a b} \in i3$
- b. $|a| = |b| = 1 \text{ và } 1 + ab \neq 0 \Rightarrow \frac{a+b}{1+ab} \in 3$
- 3. Viết dạng lượng giác của các số phức
- a. $-1 + i\sqrt{3}$
- b. $(\sqrt{3} + i)^{10}$ c. $\sqrt[3]{i}$
- d. $\sqrt[5]{1+i}$

- 4. Giải các phương trình

- a. $z^2 (2+3i)z 1 + 3i = 0$ b. $z^4 (5-14i)z^2 2(12+5i) = 0$ c. $(3z^2 + z + 1)^2 + (z^2 + 2z + 2)^2 = 0$ d. $z + \overline{z} + j(z+1) + 2 = 0$ e. $\left(\frac{z+i}{z-i}\right)^3 + \left(\frac{z+i}{z-i}\right)^2 + \frac{z+i}{z-i} + 1 = 0$ f. $|z| = \left|\frac{1}{z}\right| = |1-z|$

 $(z + i)^n = (z - i)^n$

 $1 + 2z + 2z^2 + ... + 2z^{n-1} + z^n = 0$

- 5. Tính các tổng sau đây
- $A = C_n^0 + C_n^3 + C_n^6 + \dots, B = C_n^1 + C_n^4 + C_n^7 + \dots, C = C_n^2 + C_n^5 + C_n^8 + \dots$
- b. $C = \sum_{k=0}^{n} \cos(a + kb)$ và $S = \sum_{k=0}^{n} \sin(a + kb)$
- 6. Kí hiệu $\omega = e^{i\frac{2\pi}{n}}$ là căn bậc n thứ k của đơn vị
- a. Tính các tổng $\sum_{k=0}^{n-1} (k+1)\omega^k \qquad \sum_{k=0}^{n-1} C_n^k \omega^k$

- b. Chứng minh rằng $\forall z \in \forall$, $\prod_{i=1}^{n-1} (z \omega^k) = \sum_{i=0}^{n-1} z^i$ Suy ra $\prod_{i=1}^{n-1} \sin \frac{k\pi}{n} = \frac{n}{2^{n-1}}$
- 7. Trong mặt phẳng phức cho tìm điểm M(z) sao cho

- a. Các điểm có toạ vị là z, z² và z³ lập nên tam giác có trực tâm là gốc O
- b. Các điểm có toa vi z, z² và z³ thẳng hàng
- c. Các điểm có toạ vị z, z² và z³ lập thành tam giác vuông
- 8. Khảo sát sự hội tụ của dãy số phức $u_0 \in \ \forall, \ \forall \ n \in \ \angle, \ u_{n+1} = \frac{1+u_n}{1-u_n}$
- 9. \forall $(n , z_n) \in \angle \times \forall^*$ và $| arg z_n | \le \alpha$. Chứng minh rằng chuỗi $\sum_{n \ge 0} | z_n |$ hội tụ
- 10. Cho tam giác ΔABC . Kí hiệu $M_0 = A$, $M_1 = B$, $M_2 = C$ và \forall $n \in \angle$, M_{n+3} là trọng tâm của tam giác $\Delta M_n M_{n+1} M_{n+2}$. Chứng tỏ rằng dãy điểm $(M_n)_{n \in \angle}$ là dãy hội tụ và tìm giới hạn của nó?
- 11. Cho hàm $f: I \to \forall$ sao cho $f(t) \neq 0$. Chứng minh rằng hàm |f| là đơn điệu tăng khi và chỉ khi $Re(f'/f) \geq 0$.
- 12. Cho f : $3_+ \rightarrow \forall$ liên tục và bị chặn. Tính giới hạn

a.
$$\lim_{x \to +0} x^{\alpha - 1} \int_{x}^{1} \frac{f(t)}{t^{\alpha}} dt \ (\alpha \ge 1)$$

b.
$$\lim_{x \to +\infty} \int_{0}^{+\infty} \frac{f(t/x)}{1+t^2} dt$$

13. Khảo sát các đường cong phẳng

a.
$$z(t) = acost + ibsint$$

b.
$$z(t) = acht + ibsht$$

c.
$$z(t) = (t - \sin t) + i(1 - \cos t)$$

d.
$$z(t) = t \ln t + i \frac{\ln t}{t}$$

14. Biểu diễn trên mặt phẳng các tập con của tập số phức

a.
$$|z - 3 + 4i| = 2$$

b.
$$|z-1|+|z+1|=3$$

c.
$$arg(z - i) = \frac{\pi}{4}$$

d.
$$-\frac{\pi}{3} < \arg z < \frac{\pi}{4} \text{ và } |z| > 2$$

e.
$$0 < \text{Im} z < 1 \text{ và} |z| < 2$$

f.
$$|z-1|+|z+1|>3$$

g.
$$|z| < 2 \text{ và Rez} > -1$$

h.
$$|z - i| > 1$$
 và $|z| < 2$

Hàm biến phức

Đ1. Hàm biến phức

• Cho miền $D \subset \forall$. ánh xạ $f: D \to \forall$, $z \mapsto w = f(z)$ gọi là *hàm biến phức* xác định trên miền D và kí hiệu là w = f(z) với $z \in D$.

Thay z = x + iy vào biểu thức f(z) và thức hiện các phép toán

$$f(x + iy) = u(x, y) + iv(x, y) \text{ v\'oi}(x, y) \in D \subset 3^2$$
 (2.1.1)

Hàm u(x, y) gọi là *phần thực*, hàm v(x, y) gọi là *phần ảo*, hàm $|f(z)| = \sqrt{u^2 + v^2}$ gọi là *module*, hàm $\bar{f}(z) = u(x, y) - iv(x, y)$ gọi là *liên hợp phức* của hàm phức f(z).

Ngược lại, với
$$x = \frac{1}{2}(z + \overline{z})$$
 và $y = \frac{1}{2}(z - \overline{z})$, ta có

$$u(x, y) + iv(x, y) = f(z, \overline{z}) \text{ v\'oi} \quad z, \overline{z} \in D \subset \forall$$
 (2.1.2)

Như vậy hàm phức một mặt xem như là hàm một biến phức, mặt khác được xem như hàm hai biến thực. Điều này làm cho hàm phức vừa có các tính chất giống và vừa có các tính chất khác với hàm hai biến thực. Sau này tuỳ theo từng trường hợp cụ thể, chúng ta có thể cho hàm phức ở dạng (2.1.1) hoặc dạng (2.1.2)

Ví du Xét
$$w = z^2$$
. Thay $z = x + iy$ suy ra $w = (x + iy)^2 = (x^2 - y^2) + i(2xy) = u + iv$

ullet Để biểu diễn hình học hàm phức, ta dùng cặp mặt phẳng (z) = (Oxy) và (w) = (Ouv).

Qua ánh xa f

 $\begin{array}{lll} \text{Diểm} & z_0 = x_0 + i y_0 & \text{biến thành điểm} & w_0 = u_0 + i v_0 \\ \text{Dường cong} & z(t) = x(t) + i y(t) & \text{biến thành đường cong} & w(t) = u(t) + i v(t) \\ \text{Miền} & D & \text{biến thành miền} & G \end{array}$

Chính vì vậy mỗi hàm phức xem như là một phép biến hình từ mặt phẳng (Oxy) vào mặt phẳng (Ouv). Nếu ánh xạ f là đơn ánh thì hàm w = f(z) gọi là đơn diệp, trái lại gọi là đơn diệp. Hàm đa diệp biến một mặt phẳng (z) thành nhiều mặt phẳng (w) trùng lên nhau. Nếu ánh xạ f là đơn trị thì hàm w = f(z) gọi là hàm đơn trị, trái lại gọi là đa trị. Hàm đa

trị biến một mặt phẳng (z) thành nhiều tập con rời nhau của mặt phẳng (w). Trong giáo trình này chúng ta chỉ xét các hàm phức đơn trị xác định trên miền đơn diệp của nó.

• Trên tập $F(D, \forall)$ các hàm phức xác định trên miền D, định nghĩa các phép toán đại số tương tự như trên tập $F(I, \forall)$ các hàm trị phức xác định trên khoảng I.

Cho các hàm $f:D\to \forall,\,z\mapsto \omega=f(z)\ \ \text{và }g:G\to \forall,\,\omega\mapsto w=g(\omega)\ \text{sao cho }f(D)\subset G.$ Hàm

$$h: D \to \forall, z \mapsto w = g[f(z)] \tag{2.1.3}$$

gọi là *hàm họp* của hàm f và hàm g, kí hiệu là h = gof.

Cho hàm $f: D \rightarrow \forall$, $z \mapsto w = f(z)$ và G = f(D).

Hàm

$$g: G \rightarrow \forall$$
, $w \mapsto z = g(w)$ sao cho $f(z) = w$ (2.1.4)

gọi là *hàm ngược* của hàm f, kí hiệu là $g = f^{-1}$.

Hàm ngược của hàm biến phức có thể là hàm đa trị. Các tính chất phép toán của hàm phức tương tự như các tính chất của hàm thực.

Ví du Hàm $w = z^2$ là hàm đa diệp trên \forall và có hàm ngược $z = \sqrt{w}$ là hàm đa trị.

Đ2. Giới hạn và liên tục

• Cho hàm $f:D\to \forall$, $a\in \overline{D}\,$ và $L\in \,$ \forall . Hàm f gọi là *dần đến giới hạn* L khi z dần đến a và kí hiệu là $\lim f(z)=L$ nếu

$$\forall \ \epsilon > 0, \ \exists \ \delta > 0 : \ \forall \ z \in D, \ | \ z - a \ | < \delta \Rightarrow \ | \ f(z) - L \ | < \epsilon$$

Hàm f gọi là dần đến giới hạn L khi z $dần ra vô hạn và kí hiệu là <math>\lim_{z\to\infty} f(z) = L$ nếu

$$\forall \epsilon > 0, \exists N > 0 : \forall z \in D, |z| > N \Rightarrow |f(z) - L| < \epsilon$$

Hàm f gọi là $d\hat{a}n ra \ vô \ hạn \ khi z dần đến a và kí hiệu là <math>\lim_{z \to a} f(z) = \infty$ nếu

$$\forall M > 0, \exists \delta > 0 : \forall z \in D, |z - a| < \delta \Rightarrow |f(z)| > M$$

Chứng minh

Giả sử

$$\lim_{z\to a} f(z) = L \iff \forall \ \epsilon > 0, \ \exists \ \delta > 0: \ \forall \ z \in \ D, \ | \ z \text{ - a} \ | < \delta \Rightarrow | \ f(z) \text{ - } L \ | < \epsilon$$

$$\Rightarrow \ \forall \ (x,y) \in D, \ | \ x - \alpha \ | < \delta/2 \ v\grave{a} \ | \ y - \beta \ | < \delta/2$$

$$\Rightarrow \ | \ u(x,y) - 1 \ | < \epsilon \ v\grave{a} \ | \ v(x,y) - k \ | < \epsilon$$
 Suy ra
$$\lim_{(x,y) \to (\alpha,\beta)} u(x,y) = 1 \ v\grave{a} \ \lim_{(x,y) \to (\alpha,\beta)} v(x,y) = k$$
 Ngược lại
$$\lim_{(x,y) \to (\alpha,\beta)} u(x,y) = 1 \ v\grave{a} \ \lim_{(x,y) \to (\alpha,\beta)} v(x,y) = k$$

$$\Leftrightarrow \forall \ \epsilon > 0, \ \exists \ \delta > 0: \ \forall \ (x,y) \in D, \ | \ x - \alpha \ | < \delta \ v\grave{a} \ | \ y - \beta \ | < \delta$$

$$\Rightarrow \ | \ u(x,y) - 1 \ | < \epsilon/2 \ v\grave{a} \ | \ v(x,y) - k \ | < \epsilon/2$$

$$\Rightarrow \forall \ z \in D, \ | \ z - a \ | < \delta \Rightarrow \ | \ f(z) - L \ | < \epsilon$$
 Suy ra
$$\lim_{z \to a} f(z) = L$$

Hê quả

1.
$$\lim_{z \to a} f(z) = L \Leftrightarrow \lim_{z \to a} \overline{f(z)} = \overline{L} \Rightarrow \lim_{z \to a} |f(z)| = |L|$$

$$\begin{aligned} 2. & & \lim_{z \to a} \left[\lambda f(z) + g(z) \right] = \lambda \lim_{z \to a} f(z) + \lim_{z \to a} g(z) \\ & & \lim_{z \to a} \left[f(z) g(z) \right] = \lim_{z \to a} f(z) \lim_{z \to a} g(z), \quad \lim_{z \to a} \left[f(z) / \left(g(z) \right) \right] = \lim_{z \to a} f(z) / \lim_{z \to a} g(z) \end{aligned}$$

- 3. Các tính chất khác tương tư giới han hàm biến thực
- Hàm f gọi là *liên tục* tại điểm $a \in D$ nếu $\lim_{z \to a} f(z) = f(a)$. Hàm f gọi là *liên tục* trên miền

D nếu nó liên tục tại mọi điểm $z \in D$.

Hàm f gọi là *liên tục đều* trên miền D nếu

$$\forall \ \epsilon > 0, \ \exists \ \delta > 0: \ \forall \ z, z' \in D, \ |z - z'| < \delta \Rightarrow |f(z) - f(z')| < \epsilon$$

Rõ ràng hàm f liên tục đều trên miền D thì nó liên tục trên miền D. Tuy nhiên điều ngược lại nói chung là không đúng.

<u>Dinh lý</u> Cho hàm f liên tục trên miền D compact.

1. Hàm | f(z) | bị chặn trên miền D và $\exists z_1, z_2 \in D$ sao cho $\forall z \in D, |f(z_1)| \le |f(z)| \le |f(z_2)|$

- 2. Tập f(D) là miền compact
- 3. Hàm f liên tục đều trên miền D
- 4. Các tính chất khác tương tự hàm biến thực liên tục

Chứng minh

- 1. Do hàm trị thực $|f(z)| = \sqrt{u^2(x,y) + v^2(x,y)}$ liên tục trên miền compact nên bị chặn và đat tri lớn nhất, tri bé nhất trên miền đó.
- 2. Theo chứng minh trên tập f(D) là tập giới nội.

 $\text{X\'et d\~ay } w_n = f(z_n) \xrightarrow[]{+_\infty} w_0. \text{ Do mi\`en D compact n\'en c\'o d\~ay con } z_{\phi(n)} \xrightarrow[]{+_\infty} z_0 \in \text{ D}.$

Do hàm f liên tục nên $f(z_{\phi(n)}) \xrightarrow{+\infty} w_0 = f(z_0) \in f(D)$. Suy ra tập f(D) là tập đóng.

>>

Xét cặp hai điểm $w_1 = f(z_1)$, $w_2 = f(z_2) \in f(D)$ tuỳ ý. Do tập D liên thông nên có tham số cung $\gamma(t)$ nối z_1 với z_2 và nằm gọn trong D. Khi đó tham số cung fo $\gamma(t)$ nối w_1 với w_2 và nằm gọn trong f(D). Suy ra tập f(D) là tập liên thông đường.

3. Giả sử ngược lai, hàm f không liên tục đều trên tập D. Khi đó

$$\exists \; \epsilon > 0, \; \forall \; \delta = 1/\; n, \; \exists \; \; z_{_{\! n}} \; , \; z_{_{\! n}} \; ' \; \in \; D \; : \; \mid z_{_{\! n}} \; - \; z_{_{\! n}} \; ' \; \mid < 1/\; n \; v \grave{a} \; \mid f(z_{_{\! n}}) \; - \; f(z_{_{\! n}}) \; \mid \; \geq \epsilon \; (z_{_{\! n}}) \; .$$

Do miền D compact nên có các dãy con $z_{\phi_{(n)}} \xrightarrow{\quad \quad } a$ và $z_{\psi_{(n)}} \xrightarrow{\quad \quad } b.$

Theo giả thiết trên

$$\exists \ N_1>0: \forall \ n>N_1, \ |\ a\ -\ b\ |<|\ a\ -\ z_{\phi_{(n)}}\ |\ +\ |\ z_{\phi_{(n)}}\ -\ z_{\psi_{(n)}}'\ |\ +\ |\ z_{\psi_{(n)}}'\ -\ b\ |<1/n$$
 Suy ra $a=b.$ Do hàm f liên tuc nên

$$\exists N_2 \in \angle : \forall n > N_2, \mid f(z_{\phi(n)}) - f(z_{\psi(n)}') \mid < \varepsilon$$

Trái với giả thiết phản chứng.

Đ3. Đạo hàm phức

• Cho hàm $f: D \to \forall$, $z \mapsto f(z) = u(x, y) + iv(x, y)$. Hàm f gọi là R - kha vi nếu phần thực u = Ref và phần ảo v = Imf là các hàm kha vi. Khi đó đại lượng

$$df = du + idv (2.3.1)$$

gọi là vi phân của hàm phức f.

Kí hiệu $dz = dx + idy và d\overline{z} = dx - idy$. Biến đổi

$$\begin{split} df &= (\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}) dx + (\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}) dy = \frac{\partial f}{\partial x} dx + i \frac{\partial f}{\partial y} dy \\ &= \frac{1}{2} (\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}) dz + \frac{1}{2} (\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}) d\bar{z} = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z} \end{split}$$
(2.3.2)

Hàm f gọi là C - kha vi nếu nó là R - kha vi và có các đạo hàm riêng thoả mãn điều kiện Cauchy - Riemann sau đây

$$\frac{\partial f}{\partial \overline{z}} = 0 \iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{và} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{C-R}$$

Ví du Cho $w = \overline{z} = x - iy$

Ta có u = x và v = -y là các hàm khả vi nên hàm w là R - khả vi Tuy nhiên $u'_x = 1 \neq v'_y = -1$ nên hàm w không phải là C - khả vi

• Cho hàm $f: D \to \forall$, $a \in D$ và kí hiệu $\Delta z = z - a$, $\Delta f = f(z) - f(a)$. Giới hạn

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(a) \tag{2.3.3}$$

gọi là *đạo hàm* của hàm f tại điểm a.

Giả sử hàm f là R - khả vi và $\Delta z = |\Delta z|e^{i\phi}$, $\Delta \overline{z} = |\Delta \overline{z}|e^{-i\phi}$. Theo công thức (2.3.2)

$$\Delta f = \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \Delta \overline{z} + o(\Delta z)$$

Chia hai vế cho Δz

$$\frac{\Delta f}{\Delta z} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial \overline{z}} e^{-2i\phi} + \gamma(\Delta z) \quad v\acute{o}i \quad \gamma(\Delta z) \to 0 \tag{2.3.4}$$

Suy ra điều kiện cần và đủ để giới hạn (2.3.3) tồn tại không phụ thuộc vào Δz là

$$\frac{\partial f}{\partial \overline{z}} = 0$$

Tức là hàm f là C - khả vi. Từ đó suy ra định lý sau đây.

Đinh lý Hàm phức f có đạo hàm khi và chỉ khi nó là C - khả vi.

Hệ quả Nếu hàm f là C - khả vi thì

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$
 (2.3.5)

Chứng minh

Giả sử hàm f là C - khả vi. Chuyển qua giới han công thức (2.3.4)

$$f'(z) = \frac{\partial f}{\partial z}$$

Kết hợp với công thức (2.3.2) và điều kiện (C - R) nhận được công thức trên. ▶

Nhận xét

- 1. Nếu các hàm u và v thuộc lớp C¹ thì hàm f là R khả vi và nếu các đạo hàm riêng thoả mãn thêm điều kiện Cauchy Riemann thì nó là C khả vi. Tuy nhiên điều ngược lại nói chung là không đúng.
- 2. Từ công thức (2.3.5) suy ra các qui tắc tính đạo hàm phức tương tự như các qui tắc tính đạo hàm thực.

Ví du Cho w =
$$z^2 = (x^2 - y^2) + i(2xy)$$

Ta có $u = x^2 - y^2 và v = 2xy là các hàm khả vi và thoả mãn điều kiện (C - R)$

$$u'_{x} = 2x = v'_{y}$$
 và $u'_{y} = -2y = -v'_{x}$

Suy ra hàm w là C - khả vi và theo công thức (2.3.5)

$$w' = u'_x + iv'_x = 2x + i2y = 2z$$

Đ4. Hàm giải tích

• Cho hàm $f: D \to \forall$ và $a \in D_0$. Hàm f gọi là *giải tích (chỉnh hình)* tại điểm a nếu có số dương R sao cho hàm f có đạo hàm trong hình tròn B(a, R). Hàm f gọi là *giải tích trong miền mở D* nếu nó giải tích tại mọi điểm trong miền D. Trường hợp D không phải miền mở, hàm f gọi là giải tích trong miền D nếu nó giải tích trong miền mở G và $D \subset G$. Kí hiệu $H(D, \forall)$ là tập các hàm giải tích trên miền D.

Đinh lý Hàm phức giải tích có các tính chất sau đây.

1. Cho các hàm f, $g \in H(D, \forall)$ và $\lambda \in \forall$. Khi đó $\lambda f + g$, fg, f / g ($g \neq 0$) $\in H(D, \forall)$

$$[\lambda f(z) + g(z)]' = \lambda f'(z) + g'(z)$$

[f(z)g(z)]' = f'(z)g(z) + f(z)g'(z)

$$\left[\frac{f(z)}{g(z)}\right]' = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}$$
(2.4.1)

2. Cho $f \in H(D, \forall)$, $g \in H(G, \forall)$ và $f(D) \subset G$. Khi đó hàm hợp gof $\in H(D, \forall)$

$$(gof)'(z) = g'(\omega)f'(z) \text{ v\'oi } \omega = f(z)$$
(2.4.2)

3. Cho $f \in H(D, \forall)$ và $f'(z) \neq 0$. Khi đó hàm ngược $g \in H(G, \forall)$ với G = f(D)

$$g'(w) = \frac{1}{f'(z)} \text{ v\'oi } w = f(z)$$
 (2.4.3)

Chứng minh

- 1. 2. Lập luân tương tư như chứng minh tính chất của đạo hàm thực
- 3. Giả sử f(z) = u(x, y) + iv(x, y).

Từ giả thiết suy ra các hàm u, v là khả vi và thoả mãn điều kiện (C - R). Kết hợp với công thức (2.3.5) ta có

$$J(x, y) = \begin{vmatrix} u'_{x} & u'_{y} \\ v'_{x} & v'_{y} \end{vmatrix} = (u'_{x})^{2} + (v'_{x})^{2} = |f'(z)|^{2} \neq 0$$

Suy ra ánh xạ $f:(x, y) \to (u, v)$ là một vi phôi (song ánh và khả vi địa phương). Do đó nó có ánh xạ ngược $g:(u, v) \to (x, y)$ cũng là một vi phôi. Từ đó suy ra

$$\Delta w = \Delta f \to 0 \iff \Delta z = \Delta g \to 0 \quad \text{và } \lim_{\Delta w \to 0} \frac{\Delta g}{\Delta w} = \lim_{\Delta z \to 0} (\frac{\Delta f}{\Delta z})^{-1} = (f'(z))^{-1}$$

• Giả sử hàm w = f(z) giải tích tại điểm a và có đạo hàm $f'(a) \neq 0$.

Gọi L: z = z(t) là đường cong tron đi qua điểm a và Γ : w = f[z(t)] = w(t) là ảnh của nó qua ánh xạ f. Khi đó dz(t) là vi phân cung trên đường cong L và dw(t) là vi phân cung trên đường cong Γ . Theo công thức đạo hàm hàm hợp trong lân cân điểm a, ta có

$$dw = f'(a)z'(t)dt = f'(a)dz$$

Suy ra

$$| dw | = | f'(a) | | dz | và arg(dw) = arg(dz) + argf'(a) [2\pi]$$
 (2.4.4)

Như vậy | f'(a) | là hệ số co và argf'(a) là góc quay của đường cong L bất kỳ trong lân cận điểm a. Suy ra trong lân cận của điểm a phép biến hình w = f(z) là phép đồng dạng.

• Phép biến hình bảo toàn góc giữa hai đường cong gọi là *phép biến hình bảo giác*. Theo kết quả trên thì hàm giải tích và có đạo hàm khác không là một phép biến hình bảo giác. Ngược lại giả sử ánh xạ f là R - khả vi và bảo giác tại điểm a. Qua ánh xạ f cơ sở chính

tắc
$$(\frac{\partial}{\partial x}, \frac{\partial}{\partial y})$$
 biến thành cặp vectơ tiếp xúc $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$.

Do tính bảo giác

$$\angle (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = \angle (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = \frac{\pi}{2}$$

Suy ra

$$\frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} = e^{i\frac{\pi}{2}} \frac{\partial f}{\partial x} = i(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}) \iff \frac{\partial f}{\partial \overline{z}} = 0$$

Điều này có nghĩa là hàm R - khả vi và biến hình bảo giác là hàm C - khả vi. Chúng ta sẽ quay lại vấn đề biến hình bảo giác ở cuối chương này.

Đ5. Hàm luỹ thừa

<u>Hàm luỹ thừa phức</u>

• Hàm luỹ thừa phức

$$w = z^n, \ z \in \forall \tag{2.5.1}$$

là hàm giải tích trên toàn tập số phức, có đạo hàm

$$w'(z) = nz^{n-1}$$
 (2.5.2)

và có các tính chất tương tự hàm luỹ thừa thực.

• Hàm luỹ thừa phức là hàm đa diệp

$$z^{n} = z_{1}^{n} \Leftrightarrow |z| = |z_{1}| \text{ và } \text{argz} = \text{argz}_{1} \left[\frac{2\pi}{n}\right]$$
 (2.5.3)

Suy ra miền đơn diệp là hình quạt $\alpha < \arg z < \alpha + \frac{2\pi}{n}$.

Kí hiệu $z = re^{i\phi}$ suy ra $w = r^n e^{in\phi}$.

Qua ánh xa luỹ thừa phức

Tia $\arg z = \alpha$ biến thành tia $\arg w = n\alpha$ Góc $0 < \arg z < \frac{2\pi}{n}$ biến thành góc $0 < \arg w < 2\pi$ Một mặt phẳng (z) biến thành n - mặt phẳng (w)

Hàm căn phức

• Hàm căn phức

$$W = \sqrt[n]{z} \iff z = W^n \tag{2.5.4}$$

là hàm ngược của hàm luỹ thừa phức. Do hàm luỹ thừa phức là n - diệp nên hàm căn phức là hàm n - trị. Kí hiệu $z=re^{i\phi}\,$ và $\,w=\rho e^{i\theta}\,$, ta có

$$\rho = \sqrt[n]{r} \ , \ \theta = \frac{\phi}{n} + k \frac{2\pi}{n} \quad v \acute{\sigma} i \quad k = 0...(n-1) \eqno(2.5.5)$$

Khi z chạy trên đường cong L kín, không bao gốc toạ độ thì w chạy đồng thời trên các đường cong Γ_k kín, không bao gốc toạ độ. Khi z chạy trên đường cong L kín, bao gốc toạ độ thì w chạy đồng thời trên các cung $w_k w_{k+1}$ từ điểm w_k đến điểm w_{k+1} . Khi z chạy hết một vòng bao gốc toạ độ thì w nhảy từ nhánh đơn trị này sang nhánh khác. Do vậy điểm gốc gọi là điểm rẽ nhánh của hàm căn phức và để tách các nhánh đơn trị người ta thường cắt mặt phẳng phức bằng một tia từ 0 ra ∞ .

• Miền đơn trị của hàm căn phức là $D = \forall -(-\infty, 0]$. Với k = 0, hàm

$$w = \sqrt[n]{r}e^{i\frac{\varphi}{n}}$$
 (2.5.6)

là hàm đơn diệp, giải tích trên miền D, có đạo hàm

$$w'(z) = \frac{1}{n} z^{\frac{1}{n} - 1}$$
 (2.5.7)

và có các tính chất khác tương tự hàm căn thực.

Đ6. Hàm mũ

Hàm mũ phức

• Hàm mũ phức

$$w = e^{z} = e^{x}(\cos y + i\sin y), \ z \in \forall$$
 (2.6.1)

có phần thực $u = e^x \cos y$ và phần ảo $v = e^x \sin y$ thoả điều kiện (C - R) nên giải tích trên toàn tập số phức, có đạo hàm

$$w'(z) = e^z$$
 (2.6.2)

Hàm mũ phức tuần hoàn chu kỳ $T = 2\pi i$

$$e^{z+i2\pi} = e^z$$

và có các tính chất khác tương tư như hàm mũ thực.

• Hàm mũ phức là hàm đa diệp

$$e^z = e^{z_1} \Leftrightarrow Rez = Rez_1 \text{ và } Imz = Imz_1 [2\pi]$$
 (2.6.3)

Suy ra miền đơn diệp là băng đứng $\alpha < \text{Imz} < \alpha + 2\pi$.

Kí hiệu z = x + iy suy ra $|w| = e^x$ và Argw = $y + k2\pi$.

Qua ánh xạ mũ phức

Đường thẳngy = βbiến thành tiaargw = βBăng ngang0 < Imz < 2πbiến thành góc0 < argw < 2πMột mặt phẳng (z)biến thành ∞ - mặt phẳng (w)

Hàm logarit phức

Hàm logarit phức

$$w = \operatorname{Ln} z \iff z = e^{w} \tag{2.6.4}$$

là hàm ngược của hàm mũ phức. Do hàm mũ phức là hàm đa diệp nên hàm logarit phức là hàm đa trị.

Giả sử w = u + iv, ta có

$$e^{u} = |z| va$$
 $v = argz + k2\pi với k \in 9$

Suy ra

$$w = \ln|z| + i(\arg z + k2\pi) \text{ v\'oi } k \in 9$$
 (2.6.5)

Lập luận tương tự như hàm căn phức, điểm gốc là điểm rẽ nhánh của hàm logarit và để tách nhánh đơn trị cần phải cắt mặt phẳng phức bằng một tia từ 0 ra ∞.

• Miền đơn trị của hàm logarit phức là $D = \forall -(-\infty, 0]$. Với k = 0, hàm

$$w = \ln|z| + iargz \tag{2.6.6}$$

là hàm đơn trị, giải tích trên miền D, có đạo hàm

$$w'(z) = \frac{1}{z} \tag{2.6.7}$$

và có các tính chất khác tương tự hàm logarit thực.

$$\underline{\text{V\'i du}} \; \text{Ln(-1)} = \text{ln} | \; \text{-1} \; | \; + \; \text{iarg(-1)} = i\pi, \qquad i^{\frac{1}{i}} \; = \; e^{\frac{1}{i} \text{ln} \, i} \; = \; e^{\frac{\pi}{2}}$$

Đ7. Hàm lượng giác

Hàm lượng giác phức

Kí hiệu

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz})$$
 $\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$ $tgz = \frac{\sin z}{\cos z}$ (2.7.1)

Các hàm biến phức w = cosz, w = sinz và w = tgz gọi là các *hàm lượng giác phức*. Hàm lượng giác phức đơn trị, tuần hoàn, giải tích, có đạo hàm

$$(\cos z)' = -\sin z$$
 $(\sin z)' = \cos z, ...$ (2.7.2)

và có các tính chất khác tương tư hàm lượng giác thực.

$$\underline{\text{Chú } \acute{y}} \ V \acute{\text{o}i} \ \ z = x \in \ 3, \ \cos z = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \equiv \cos x. \ \text{Tuy nhiên} \ \ \cos(i) \ = \frac{1}{2} \left(e^{-1} + e \right) > 1$$

Hàm hyperbole phức

• Kí hiêu

$$chz = \frac{1}{2}(e^z + e^{-z})$$
 $shz = \frac{1}{2}(e^z - e^{-z})$ $thz = \frac{shz}{chz}$ (2.7.3)

Các hàm biến phức w = chz, w = shz và w = thz gọi là các *hàm hyperbole phức*.

Hàm hyperbole phức đơn trị, tuần hoàn, giải tích, có đạo hàm

$$(chz)' = shz$$
 $(shz)' = chz, ...$ (2.7.4)

và có các tính chất khác tương tự hàm hyperbole thực.

Ngoài ra, ta có các liên hệ giữa hàm lượng giác và hàm hyperbole
 chiz = cosz
 cosiz = chz
 shiz = isinz
 siniz = ishz
 (2.7.5)

 $\underline{\text{Ví du}}$ Tìm ảnh của miền $-\frac{\pi}{2} < \text{Rez} < \frac{\pi}{2}$ qua ánh xạ $w = \sin z$

Ta có $w = \sin(x + iy) = \sin x \cos iy + \cos x \sin iy = \sin x \cosh y + i \cos x \sinh y$

Suy ra

u = sinxchy và v = cosxshy

Qua ánh $xa w = \sin z$

$$x = \pm \frac{\pi}{2}$$

$$u = \pm chy, v = 0$$

$$x = \alpha$$

biến thành hyperbole
$$u = \sin\alpha chy$$
, $v = \cos\alpha shy$

$$u = sinceriy, v = cosasi$$

Miền
$$-\frac{\pi}{2} < Re$$

$$-\frac{\pi}{2} < \text{Rez} < \frac{\pi}{2}$$
 biến thành miền

$$(w) - (-\infty, -1] \cup [1, +\infty)$$

• Lâp luân tương tư tìm ảnh các hàm lượng giác, hàm hyperbole khác.

Đ8. Biến hình bảo giác

ánh xạ f: D → ∀ gọi là biến hình bảo giác tại điểm a nếu nó bảo toàn góc định hướng giữa các đường cong đi qua điểm a. Anh xạ f gọi là phép biến hình bảo giác trên miền D nếu nó là đơn diệp và bảo giác tai mọi điểm thuộc D.

Theo các kết quả ở trên hàm giải tích và có đạo hàm khác không tại điểm a là một song ánh, R - khả vi và bảo giác trong lân cận điểm a, gọi là một *vi phôi bảo giác*. Ngược lại một vi phôi bảo giác tại điểm a là hàm giải tích và có đạo hàm khác không tại điểm a.

<u>Bài toán</u> Tìm phép biến hình bảo giác f biến miền đơn liên D thành miền đơn liên G.

• Để giải bài toán trên người ta thường sử dụng các kết quả dưới đây, gọi là các nguyên lý biến hình bảo giác. Việc chứng minh các nguyên lý biến hình bảo giác là rất phức tạp và phải sử dụng nhiều kết quả khác. Ở đây chúng ta chỉ trình bày sơ lược các ý tưởng của các phép chứng minh. Bạn đọc quan tâm đến các phép chứng minh chi tiết có thể tìm xem ở phần tài liêu tham khảo.

Nguyên lý tồn tai Cho D và G là các miền đơn liên giới nội. Khi đó tồn tại vô số hàm

giải tích w = f(z) biến hình bảo giác miền D thành miền G. Phép biến hình được xác đinh duy nhất nếu có thêm một trong hai điều kiên sau đây.

1. Cho biết
$$w_0 = f(z_0)$$
 và $w_1 = f(z_1)$ với $z_0 \in D_0$ và $z_1 \in \partial D$

2. Cho biết
$$w_0 = f(z_0)$$
 và arg $f'(z_0) = \alpha$ với $z_0 \in D_0$

Chứng minh

• Kí hiệu

$$U=\{\ z\in\ \forall: |\ z\ |<1\},\ S=\{\ g\in\ H(D,\ \forall): \forall\ z\in\ D,\ |\ g(z)\ |<1\}\ v\ `a\in\ D$$
 Ta công nhận

$$\exists \ f_a \in \ S \ \ sao \ cho \ | \ f_a(a) \ | = \ \underset{g \in S}{Max} \ | \ g(a) \ |$$

Khi đó hàm giải tích f_a là phép biến hình bảo giác biến miền D thành miền U. Có thể tìm được vô số hàm giải tích $f:D\to U$ như vây. Tuy nhiên ta có liên hê

$$f=f_a \ o \ h \ v \acute{o}i \ h: U \rightarrow U, \ h(z)=e^{i\alpha}\frac{z-a}{1-\overline{a}z} \, , \ h(a)=0$$

Từ đó suy ra nếu có thêm các điều kiện bổ sung thì có thể xác định duy nhất hàm f.

• Giả sử $f: D \to U$ và $g: G \to U$ là các phép biến hình bảo giác. Khi đó g^{-1} of $: D \to G$ là phép biến hình bảo giác biến miền D thành miền G.

<u>Nguyên lý bảo toàn miền</u> Cho D là miền đơn liên giới nội, hàm $f: D \to \forall$ liên tục trên \overline{D} , giải tích trong D và không phải là hàm hằng. Khi đó G = f(D) cũng là miền đơn liên. <u>Chứng minh</u>

- Do hàm f liên tục nên bảo toàn đường cong suy ra bảo toàn tính liên thông
- Với mọi b = f(a) ∈ G, do miền D mở và f ≠ const nên có hình tròn B(a, R) ⊂ D sao cho
 với mọi z ∈ B(a, R), f(z) ≠ b.

Kí hiệu

$$\mu = \underset{z \in \Gamma}{\text{Min}} | f(z) - b | \text{ v\'oi } \Gamma = \partial B$$

 $N_B[f(z) - b]$ là số không điểm của hàm f(z) - b trong hình tròn B(a, R)

Với $w \in B(b, \mu)$ tuỳ ý, ta có

$$f(z) - w = f(z) - b + b - w \quad va \mid f(z) - b \mid > \mu > |b - w| \quad voi \quad z \in B(a, R)$$

Theo đinh lý Rouché (Đ8, chương 4)

$$N_B[f(z) - w] = N_B[f(z) - b] = 1$$

Do đó $\exists z \in B(a, R)$ sao cho $w = f(z) \in G$.

Vì điểm w tuỳ ý nên B(b, μ) ⊂ G và suy ra tâp G là tâp mở

Nguyên lý tương ứng biên Cho D, G là các miền đơn liên giới nội, hàm $f: D \rightarrow \forall$ liên

<u>Nguyên lý tương ứng biển</u> Cho D, G là các miễn đơn liên giới nội, hàm $f: D \to \forall$ liên tục trên \overline{D} , giải tích trong D và biến hình bảo giác ∂D^+ thành ∂G^+ . Khi đó hàm f biến hình bảo giác miền D thành miền G.

Chứng minh

Với mọi b ∈ G, kí hiệu Δ_Γ[f(z) - b] là số gia argument của hàm f(z) - b khi z chạy trên

đường cong Γ. Theo nguyên lý argument (Đ8, chương 4)

$$N_{D}[f(z) - b] = \frac{1}{2\pi} \Delta_{\partial D}[f(z) - b] = \frac{1}{2\pi} \Delta_{\partial G}(w - b) = 1$$

Do đó $\exists a \in D$ sao cho b = f(a).

Lập luận tương tự với b ∉ G

$$N_{D}[f(z) - b] = \frac{1}{2\pi} \Delta_{\partial D}[f(z) - b] = \frac{1}{2\pi} \Delta_{\partial G}(w - b) = 0$$

Suy ra hàm f biến hình bảo giác miền D thành miền G.

Nguyên lý đối xứng Cho các miền đơn liên giới nội D_1 đối xứng với D_2 qua đoạn thẳng hoặc cung tròn $L \subset \partial D_1 \cap \partial D_2$ và hàm $f_1: D_1 \to \forall$ liên tục trên \overline{D}_1 , giải tích trong D_1 , biến hình bảo giác miền D_1 thành miền G_1 sao cho cung L^+ thành cung $\Gamma^+ \subset \partial G_1$. Khi đó có hàm giải tích $f: D_1 \cup D_2 \to \forall$ biến hình bảo giác miền $D_1 \cup D_2$ thành miền $G_1 \cup G_2$ với G_2 là miền đối xứng với G_1 qua cung Γ .

>>

Chứng minh

• Xét trường hợp L và Γ là các đoạn thẳng nằm trên trục thực. Khi đó hàm

$$f_2: D_2 \to \forall$$
, $z \mapsto f_2(z) = \overline{f_1(\overline{z})}$ và $f_2(z) = f_1(z)$, $\forall z \in L$

là hàm giải tích biến hình bảo giác miền D₂ thành miền G₂. Hàm f xác định như sau

$$f: D_1 \cup D_2 \to \forall$$
, $f(z) = f_1(z)$, $z \in D_1 \cup L \ var{}(z) = f_2(z)$, $z \in D_2$

là hàm giải tích biến hình bảo giác miền $D_1 \cup D_2$ thành miền $G_1 \cup G_2$.

Trường hợp tổng quát, chúng ta dùng hàm giải tích biến các cung L và Γ thành các đoạn thẳng nằm trên trục thực.

Đ9. Hàm tuyến tính và hàm nghịch đảo

Hàm tuyến tính

• Hàm tuyến tính

$$w = az + b \ (a \neq 0) \tag{2.9.1}$$

là hàm giải tích, có đạo hàm

$$w'(z) = a \neq 0$$

và do đó biến hình bảo giác mặt phẳng (z) lên mặt phẳng (w).

• Kí hiệu $\lambda = |a|$ và $\alpha = arg(a)$. Phân tích $w = \lambda e^{i\alpha} z + b \tag{2.9.2}$

Suy ra phép biến hình tuyến tính là tích của các phép biến hình sau đây.

1. Phép quay tâm O góc α $z \mapsto \zeta = e^{i\alpha}z$

2. Phép vi tư tâm O hê số λ $\zeta \rightarrow \omega = \lambda \zeta$

3. Phép tĩnh tiến vectơ b $\omega \mapsto w = \omega + b$

Vậy phép biến hình tuyến tính là phép đồng dạng.

Hàm nghịch đảo

• Hàm nghịch đảo

$$\mathbf{w} = \frac{1}{7}, \ \mathbf{z} \in \forall^* \tag{2.9.3}$$

là hàm giải tích, có đạo hàm

$$w'(z) = -\frac{1}{z^2} \neq 0 \text{ v\'oi } z \neq 0$$

và do đó biến hình bảo giác mặt phẳng (z) - {0} lên mặt phẳng (w).

• Kí hiệu $z = re^{i\phi}$, ta có

$$|w| = \frac{1}{|z|} = \frac{1}{r} \text{ và argw} = -\arg z = -\varphi$$
 (2.9.4)

Suy ra phép biến hình nghịch đảo là tích của các phép biến hình sau đây.

1. Phép đối xứng qua đường tròn đơn vị $z \mapsto \zeta = \frac{1}{r}e^{i\phi}$

2. Phép đối xứng qua trục hoành $\zeta \mapsto w = \overline{\zeta}$

Vậy phép nghịch đảo bảo toàn tính đối xứng qua đường tròn đơn vị và qua trục hoành.

• Phương trình đường tròn suy rộng trong mặt phẳng (z) có dang

$$A(x^{2} + y^{2}) + Bx + Cy + D = 0$$
(2.9.5)

Kí hiệu z = x + iy và w = u + iv. Suy ra

$$x+iy=\frac{1}{u+iv} \iff x=\frac{u}{u^2+v^2} \ va \ y=\ \frac{-v}{u^2+v^2}$$

Thay vào phương trình đường tròn (2.9.5) nhận được

$$D(u^2 + v^2) + Bu - Cv + A = 0$$

Qua phép biến hình nghịch đảo

1. Đường thẳng

đi qua gốc A = D = 0 biến thành đường thẳng qua gốc

không qua gốc A = 0 và $D \neq 0$ biến thành đường tròn qua gốc

2. Đường tròn

đi qua gốc $A \neq 0$ và D = 0 biến thành đường thẳng không qua gốc

không qua gốc $A \neq 0$ và $D \neq 0$ biến thành đường tròn không qua gốc

Vậy phép biến hình nghịch đảo biến đường tròn suy rộng thành đường tròn suy rộng.

Đ10. Hàm phân tuyến tính và hàm Jucop

<u>Hàm phân tuyến tính</u>

• Hàm phân tuyến tính

$$w = \frac{az + b}{cz + d} \quad (c \neq 0, ad - bc \neq 0)$$
 (2.10.1)

là hàm giải tích, có đạo hàm

$$w'(z) = \frac{ad - bc}{(cz - d)^2} \neq 0 \text{ v\'oi } z \neq -\frac{d}{c}$$

và do đó biến hình bảo giác mặt phẳng (z) - $\{-\frac{d}{c}\}$ lên mặt phẳng (w).

• Phân tích

$$w = \frac{bc - ad}{c} \frac{1}{cz + d} + \frac{a}{c}$$
 (2.10.2)

Suy ra phép biến hình phân tuyến tính là tích của các phép biến hình sau đây.

- 1. Phép đồng dạng $z \mapsto \zeta = cz + d$
- 2. Phép nghịch đảo $\zeta \mapsto \omega = \frac{1}{\zeta}$
- 3. Phép đồng dạng $\omega \mapsto w = a_1\omega + b_1 \text{ với } a_1 = \frac{bc ad}{c} \text{ và } b_1 = \frac{a}{c}$

Vậy phép biến hình phân tuyến tính bảo toàn đường tròn suy rộng và tính đối xứng qua đường tròn suy rộng.

• Biến đổi

$$w = \frac{a_1 z + b_1}{z + d_1} \text{ v\'oi } a_1 = \frac{a}{c}, b_1 = \frac{b}{c} \text{ v\'a } d_1 = \frac{d}{c}$$

Suy ra nếu biết được ảnh của ba điểm khác nhau

$$W_1 = W(Z_1), W_2 = W(Z_2), W_3 = W(Z_3),$$

thì có thể xác định được phép biến hình phân tuyến tính.

$$\frac{\mathbf{w} - \mathbf{w}_1}{\mathbf{w} - \mathbf{w}_3} \frac{\mathbf{w}_2 - \mathbf{w}_1}{\mathbf{w}_2 - \mathbf{w}_3} = \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{z} - \mathbf{z}_3} \frac{\mathbf{z}_2 - \mathbf{z}_1}{\mathbf{z}_2 - \mathbf{z}_3}$$
(2.10.3)

<u>Hàm Jucop</u>

• Hàm Jucop

$$w = \frac{1}{2}(z + \frac{1}{z}), \ z \in \forall^*$$
 (2.10.4)

là hàm giải tích, có đao hàm

$$w'(z) = \frac{1}{2}(1 - \frac{1}{z^2}) \neq 0 \text{ v\'oi } z \neq 0, \pm 1$$

và do đó biến hình bảo giác mặt phẳng (z) - $\{0, \pm 1\}$ lên mặt phẳng (w).

• Hàm Jucop là hàm đa diệp

$$\frac{1}{2}(z + \frac{1}{z}) = \frac{1}{2}(z_1 + \frac{1}{z_1}) \iff (z - z_1)(1 - zz_1) = 0$$
 (2.10.5)

Suy ra miền đơn diệp là bên trong hoặc bên ngoài đường tròn đơn vị.

Kí hiệu $z = re^{i\phi}$, ta có

$$w = \frac{1}{2}(r + \frac{1}{r})\cos\phi + i\frac{1}{2}(r - \frac{1}{r})\sin\phi$$
 (2.10.6)

Qua phép biến hình Jucop

Đường tròn |z| = 1 biến thành đoạn thẳng $u = \cos \varphi$, v = 0

$$|z| = r$$
 biến thành ellipse $u = \frac{1}{2}(r + \frac{1}{r})\cos\phi, v = \frac{1}{2}(r - \frac{1}{r})\sin\phi$

Miền |z| > 1 biến thành

(w) - [-1, 1]

| z | < 1

(w) - [-1, 1] ngược hướng

Đ11. Các ví dụ biến hình bảo giác

<u>Ví du 1</u> Tìm hàm giải tích w = f(z) biến hình bảo giác nửa mặt phẳng $D = \{ \text{Im} z > 0 \}$ thành phần trong hình tròn đơn vi $G = \{ |w| < 1 \}$ sao cho f(a) = 0.

• Do ∂D và ∂G đều là đường tròn nên chúng ta chọn phép biến hình phân tuyến tính

$$w = \frac{az + b}{cz + d}$$

Do hàm phân tuyến tính bảo toàn tính đối xứng qua biên và f(a) = 0 suy ra $f(\bar{a}) = \infty$

$$w = k \frac{z - a}{z - \overline{a}} \text{ v\'oi } k \in \forall$$

Do tính tương ứng biên : $z \in \partial D \Rightarrow w = f(z) \in \partial G$ suy ra

$$z = x \Rightarrow |w| = |k| \left| \frac{x-a}{x-\overline{a}} \right| = 1$$
 và do $\left| \frac{x-a}{x-\overline{a}} \right| = 1$ nên $|k| = 1$

Kí hiệu $k = e^{i\phi} \text{ với } \phi \in 3 \text{ suy ra}$

$$w = e^{i\phi} \frac{z - a}{z - \overline{a}} \tag{2.11.1}$$

Để xác đinh góc φ cần biết thêm ảnh của một điểm thứ hai.

<u>Ví du 2</u> Tìm hàm giải tích w = f(z) biến hình bảo giác miền $D = \{ |z| < 1 \}$ thành miền $G = \{ |w| < 1 \}$ sao cho f(a) = 0.

• Do ∂D và ∂G đều là đường tròn nên chúng ta chọn phép biến hình phân tuyến tính

$$w = \frac{az + b}{cz + d}$$

Do hàm phân tuyến tính bảo toàn tính đối xứng qua biên và f(a) = 0 suy ra $f(1/\bar{a}) = \infty$

$$w = k \frac{z-a}{z-1/\overline{a}} = k \frac{z-a}{\overline{a}z-1}$$
 với $k \in \forall$

Do tính tương ứng biên : $z \in \partial D \Rightarrow w = f(z) \in \partial G$ suy ra

$$|z| = 1 \implies |w| = |k| \left| \frac{z-a}{\overline{a}z-1} \right| = 1 \text{ và do } \left| \frac{z-a}{\overline{a}z-1} \right| = 1 \text{ với } |z| = 1 \text{ nên } |k| = 1$$

Kí hiệu $k = e^{i\phi} với \phi \in 3 \text{ suy ra}$

$$w = e^{i\phi} \frac{z - a}{\overline{a}z - 1} \tag{2.11.2}$$

Để xác đinh góc φ cần biết thêm ảnh của một điểm thứ hai.

<u>Ví du 3</u> Tìm hàm giải tích w = f(z) biến hình bảo giác miền D = { $0 < \arg z < \frac{\pi}{3}$ } thành

miền $G = \{ |w| < 1 \}$ sao cho $f(e^{i\frac{\pi}{6}}) = 0$ và f(0) = i.

• Trước hết biến góc nhọn thành nửa mặt phẳng trên bằng phép luỹ thừa. Sau đó dùng phép biến hình phân tuyến tính (2.11.1) biến nửa mặt phẳng trên thành phần trong của hình tròn đơn vị.

Lấy tích các phép biến hình $w = -i \frac{z^3 - i}{z^3 + i}$

<u>Ví du 4</u> Tìm hàm giải tích w = f(z) biến hình bảo giác miền $D = \{ |z| < 1 \text{ và } Imz > 0 \}$ thành miền $G = \{ Imw > 0 \}$.

• Trước hết biến nửa hình tròn thành góc vuông bằng cách biến điểm -1 thành ∞ và điểm 1 thành điểm 0 bằng phép biến hình phân tuyến tính. Sau đó quay và biến góc vuông thành nửa mặt phẳng trên.

Lấy tích các phép biến hình $w = \omega^2 = -\left(\frac{z-1}{z+1}\right)^2$

<u>Ví du 5</u> Tìm hàm giải tích w = f(z) biến hình bảo giác miền $D = \{ |z| < 1, |z - \frac{i}{2}| > \frac{1}{2} \}$ thành miền $G = \{ -1 < Rew < 1 \}$.

Lấy tích các phép biến hình $w = i\omega = \frac{4i}{z-i} + 3$

- Trước hết biến hai đường tròn lồng nhau hai đường thẳng song song bằng cách biến điểm i thành điểm ∞. Sau đó dùng phép tĩnh tiến và phép vi tư để điều chỉnh băng ngang thành băng ngang đối xứng và có đô rông thích hợp. Cuối cùng dùng phép quay để nhân được băng đứng.
- Ví du 6 Tìm hàm giải tích w = f(z) biến hình bảo giác miền $D = \{|z| < 1\}$ [1/3, 1] thành miền $G = \{ |w| < 1 \}$.
- Trước hết biến hình tròn với lát cắt [1/3, 1] thành mặt phẳng với lát cắt [-1, 5/3] bằng phép biến hình Jucop. Sau đó thu gọn lát cắt thành đoạn [-1, 1] bằng phép tĩnh tiến và phép vi tư. Cuối cùng dùng phép biến hình Jucop ngược.

Lấy tích các phép biến hình $w = \omega + \sqrt{\omega^2 - 1} = \frac{3}{8}(z + \frac{1}{2}) - \frac{1}{4} + \sqrt{[\frac{3}{8}(z + \frac{1}{2}) - \frac{1}{4}]^2 - 1}$

Bài tập chương 2

- 1. Xác định phần thực, phần ảo, module và argument của các hàm sau đây.
- a. $w = z^3$

- b. $w = \sqrt[3]{z}$ c. $w = \frac{z+i}{z-1}$ d. $w = z \frac{1}{z}$
- 2. Biểu diễn qua z và \overline{z} các hàm sau đây.
- a. $w = x^2 1$
- b. $w = x^2 + y^2 + iy$ c. $w = \frac{2xy}{x^2 + y^2}$ 8. $w = x^3 + iy^3$
- 3. Khảo sát tính liên tục, liên tục đều của các hàm sau đây.

- a. $w = \frac{\operatorname{Re} z}{z}$ b. $w = \ln x + iy$ c. $w = \frac{z+1}{z-1}$ d. $w = \frac{z}{|z|}$

4. Khảo sát điều kiện (C - R) và tính giải tích của các hàm sau đây.

a.
$$w = z^3$$

b.
$$w = zRez$$

c.
$$w = \frac{1}{z^2 + 1}$$
 d. $w = z\overline{z}$

d.
$$w = z \overline{z}$$

- 5. Điều kiên Cauchy Riemann
- a. Tîm a, b, $c \in 3$ để hàm f(z) = x + ay + i(bx + cy) giải tích trên \forall
- b. Chứng tỏ rằng hàm $f(z) = \sqrt{|xy|}$ thoả điều kiện (C R) nhưng không khả vi tại z = 0
- c. Cho $f(z) = u(r, \phi) + iv(r, \phi)$ với $z = re^{i\phi}$. Viết dang lương giác của điều kiên (C R)
- d. Cho w = u(x, y) + i v(x, y). Chứng minh rằng nếu $\exists \lim_{\Delta z \to 0} \text{Re} \frac{\Delta w}{\Delta z}$ thì $\exists \frac{\partial u}{\partial v} = \frac{\partial v}{\partial v}$
- 6. Tìm góc quay và hệ số co của phép biến hình w = f(z) tại điểm $z \in D$.

a.
$$w = z^2 \ v \acute{o}i \ z = 1 + i \ , \ z = -3 + 4i$$

b.
$$w = \frac{1}{z^2 + 1}$$
 với $z = 1 - i$, $z = 1 + i$

7. Viết dang đai số của các số phức sau đây.

a.
$$e^{1+i}$$

b.
$$Ln(1 + i)$$

c.
$$cos(2 + i)$$

f.
$$i^{\frac{1}{i}}$$

g.
$$(1-i)^{3-3i}$$
 h. $(-1)^{\sqrt{i}}$

h.
$$(-1)^{\sqrt{1}}$$

8. Chứng minh các công thức sau đây.

a.
$$cos(z + z') = coszcosz' - sinzsinz'$$

b.
$$\sin 2z = 2\sin z \cos z$$

$$c. tg(2z) = \frac{2tgz}{1 + tg^2z}$$

d.
$$ch(2z) = ch^2z - sh^2z$$

9. Tìm ảnh của miền D qua phép biến hình w = f(z)

a.
$$w = z^2 \text{ và } D = \{-\pi/2 < Imz < \pi/2\}$$

b.
$$w = 2 + e^z$$
 và $D = \{-\pi < Rez < \pi\}$

c.
$$w = \cos z \text{ và } D = \{-\pi/2 < \text{Im}z < \pi/2\}$$

d.
$$w = shz \ va \ D = \{-\pi/2 < Rez < \pi/2\}$$

- 10. Cho phép biến hình w = (1 + i)z 1
- a. Tìm ảnh của đoạn thẳng nối hai điểm $z_1 = i$ và $z_2 = -i$
- b. Tìm ảnh của đường tròn |z (1 + i)| = 2
- c. Tìm ảnh của tam giác có đỉnh $z_0 = 0$, $z_1 = 1 + i$ và $z_2 = 1 i$
- 11. Tìm ảnh của các đường cong sau đây qua các phép biến hình $w = \frac{1}{2}$

a.
$$x^2 + y^2 = 4$$

b.
$$x = 1$$

$$c. y = x$$

c.
$$y = x$$
 d. $(x - 1)^2 + y^2 = 1$

- 12. Tìm phép biến hình phân tuyến tính
- a. Biến tam giác có các đỉnh 0, 1, i thành tam giác đồng dạng có các đỉnh 0, 2, 1+ i
- b. Biến các điểm -1, $+\infty$, i tương ứng thành các điểm i, 1, 1 + i
- c. Biến điểm i thành -i và có điểm bất động là 1 + 2i
- d. Biến hình tròn |z| < 1 thành nửa mặt phẳng Rew > 0 sao cho w(0) = 1, w'(1) = $\pi/2$
- e. Biến hình tròn |z| < 1 thành hình tròn |w-1| < 1 sao cho w(0) = 1/2, w(1) = 0
- 13. Tìm phép biến hình biến các miền sau đây thành nửa mặt phẳng trên Imw > 0
- a. Imz > 0, |z| < 2
- d. $|z| < 2, 0 < \arg z < \pi/3$
- f. |z| < 1, |z i| < 1
- h. |z| > 2, |z 3| > 1
- j. Rez > 0, 0 < Imz < 2

- b. Imz > 0, |z| < 2
- e. |z| > 2, $0 < \arg z < \pi/4$
- g. |z| > 1, |z i| < 1
- i. 1 < Rez < 2
- k. $|z| < 1, 0 < \arg z < 2\pi$
- 1. Mỗi trong bốn miền giới hạn bởi các đường tròn |z| = 1 và |z + 1| = 1
- m. (z) [-1, 1]
- o. (z) [1 + i, 2 + 2i]
- q. $\{|z| > 1\}$ $[i, +i\infty)$

- n. $(z) (-\infty, 1] \cup [1, +\infty)$
- p. $(z) \{ y = x, x \ge 0 \}$
- r. $\{|z| < 1\} [1/2, 1]$

Tích Phân Phức

Đ1. Tích phân phức

Cho miền D ⊂ ∀, hàm phức

$$f: D \rightarrow \forall, z \mapsto f(z) = u(x, y) + iv(x, y)$$

và tham số cung trơn từng khúc

$$\gamma : [\alpha, \beta] \to D, t \mapsto \gamma(t) = x(t) + iy(t)$$

Tích phân

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f[\gamma(t)]\gamma'(t)dt$$
 (3.1.1)

gọi là tích phân của hàm phức f(z) dọc theo tham số cung γ.

Giả sử
$$\gamma_1 : [\alpha_1, \beta_1] \to D, s \mapsto \gamma_1(s)$$

là tham số cung cùng hướng với γ. Tức là có phép đổi tham số bảo toàn hướng

$$\varphi : [\alpha, \beta] \mapsto [\alpha_1, \beta_1] \text{ v\'oi } \varphi'(t) > 0 \text{ và } \gamma_1(s) = \gamma_0 \varphi(t)$$

Khi đó ta có

$$\int\limits_{\alpha}^{\beta} f[\gamma(t)] \gamma'(t) dt = \int\limits_{\alpha_1}^{\beta_1} f[\gamma_1(s)] \gamma'_1(s) ds$$

Suy ra tích phân của hàm phức không phụ thuộc vào lớp các tham số cung cùng hướng. Kí hiệu $\Gamma = \gamma([\alpha, \beta])$ là đường cong định hướng. Tích phân

$$\int_{\Gamma} f(z)dz = \int_{\gamma} f(z)dz$$
 (3.1.2)

gọi là *tích phân của hàm phức f(z) trên đường cong* Γ . Nếu tích phân (3.1.1) tồn tại hữu hạn thì hàm f gọi là *khả tích* trên đường cong Γ .

<u>Dịnh lý</u> Hàm phức f liên tục trên đường cong Γ tron từng khúc thì khả tích.

Chứng minh

Giả sử $f: D \to \forall$ liên tục và $\Gamma = \gamma([\alpha, \beta])$ với $\gamma: [\alpha, \beta] \to D$ là tham số cung tron từng khúc. Khi đó hàm fo $\gamma(t)\gamma'(t)$ liên tục từng khúc nên khả tích trên đoạn $[\alpha, \beta]$.

• Để tính tích phân phức, thay

$$\gamma'(t) = x'(t) + iy'(t)$$
 và $fo\gamma(t) = u[x(t), y(t)] + iv[x(t), y(t)] = u(t) + iv(t)$

vào công thức (3.1.1) rồi tách phần thực, phần ảo suy ra công thức sau đây.

$$\int_{\Gamma} f(z)dz = \int_{\alpha}^{\beta} [u(t)x'(t) - v(t)y'(t)]dt + i \int_{\alpha}^{\beta} [u(t)y'(t) + v(t)x'(t)]dt$$
 (3.1.3)

Ví du

1. Tính tích phân I = $\int_{\Gamma} z \operatorname{Re} z dz$ với Γ là đoạn thẳng [1, 2i]

Tham số hoá đoan thẳng [1, 2i]

$$x = t, y = -2t + 2 \text{ v\'oi } t \in [1, 0]$$

Suy ra

$$\gamma'(t) = 1 - 2i$$
, fo $\gamma(t) = t^2 + i(-2t^2 + 2t)$

$$I = \int_{1}^{0} [t^{2} + i(-2t^{2} + 2t)](1 - 2i)dt = \int_{0}^{1} (3t^{2} - 4t)dt + i\int_{0}^{1} (4t^{2} - 2t)dt = \frac{-3 + i}{3}$$

2. Tính tích phân $I=\oint_{\Gamma}\frac{dz}{z^n}$ với Γ là đường tròn | z | = R định hướng dương

Tham số hoá đường tròn $\Gamma = (ab)$

$$\gamma(t) = Re^{it}, t \in [0, 2\pi]$$

Suy ra

$$\gamma'(t) = iRe^{it}$$
, $fo\gamma(t) = R^{-n}e^{-int}$

$$I = iR^{1-n} \int_{0}^{2\pi} e^{i(1-n)t} dt = \begin{cases} 2\pi i & n=1 \\ 0 & n \neq 1 \end{cases}$$

Đ2. Các tính chất của tích phân phức

- Trong mục này để đơn giản chúng ta xem các hàm f, g, ... là liên tục trên miền D, còn $\Gamma = \gamma([\alpha, \beta])$ với $\gamma : [\alpha, \beta] \to D$ là đường cong định hướng, tron từng khúc và nằm gọn trong miền D. Tích phân của hàm phức có các tính chất sau đây.
- <u>1. Tuyến tính</u> Nếu các hàm f và g khả tích trên đường cong Γ thì với mọi số phức λ hàm $\lambda f + g$ khả tích trên đường cong Γ .

$$\int_{\Gamma} [\lambda f(z) + g(z)] dz = \lambda \int_{\Gamma} f(z) dz + \int_{\Gamma} g(z) dz$$
(3.2.1)

Chứng minh

Từ giả thiết suy ra hàm $[\lambda fo\gamma(t) + go\gamma(t)]\gamma'(t)$ khả tích trên $[\alpha, \beta]$

$$\int_{\Gamma} [\lambda f(z) + g(z)] dz = \int_{\alpha}^{\beta} [\lambda f o \gamma(t) + g o \gamma(t)] \gamma'(t) dt$$

$$= \int_{\alpha}^{\beta} \lambda f o \gamma(t) \gamma'(t) dt + \int_{\alpha}^{\beta} g o \gamma(t) \gamma'(t) dt = \lambda \int_{\Gamma} f(z) dz + \int_{\Gamma} g(z) dz$$

2. Định hướng Nếu hàm f khả tích trên đường cong Γ^+ = (ab) thì hàm f cũng khả tích trên đường cong Γ^- = (ba).

$$\int_{ba} f(z)dz = -\int_{ab} f(z)dz$$
 (3.2.2)

Chứng minh

Tham số hoá

$$\Gamma^+ = \gamma([\alpha, \beta]) \text{ v\'oi } \gamma : [\alpha, \beta] \to D, \gamma(t) = \gamma(-t + \alpha + \beta)$$

Từ giả thiết suy ra hàm fo $\gamma(t)\gamma'(t)$ khả tích trên [α, β].

$$\int_{\Gamma^{-}} f(z)dz = -\int_{\alpha}^{\beta} fo\gamma(-t + \alpha + \beta)\gamma'(-t + \alpha + \beta)dt = -\int_{\alpha}^{\beta} fo\gamma(s)\gamma'(s)ds$$

<u>3. Hệ thức Chasles</u> Nếu hàm f khả tích trên đường cong Γ = (ab) thì với mọi $c \in \Gamma$ hàm f khả tích trên các đường cong Γ_1 = (ac) và Γ_2 = (cb).

$$\int_{ac} f(z)dz + \int_{cb} f(z)dz = \int_{ab} f(z)dz$$
 (3.2.3)

Chứng minh

Giả sử $c = \gamma(\varepsilon)$ với $\varepsilon \in [\alpha, \beta]$. Tham số hoá

$$\Gamma_{\scriptscriptstyle l} = \gamma_{\scriptscriptstyle l}([\alpha,\,\epsilon]) \; v\acute{\sigma}i \; \gamma_{\scriptscriptstyle l} : [\alpha,\,\epsilon] \to D, \, \gamma_{\scriptscriptstyle l}(t) = \gamma(t)$$

$$\Gamma_2 = \gamma_2([\epsilon, \beta]) \text{ v\'oi } \gamma_2 : [\epsilon, \beta] \rightarrow D, \gamma_2(t) = \gamma(t)$$

Từ giả thiết suy ra hàm fo $\gamma_1(t)\gamma_1$ '(t) khả tích trên $[\alpha, \varepsilon]$ và fo $\gamma_1(t)\gamma_1$ '(t) khả tích trên $[\varepsilon, \beta]$.

$$\int_{\alpha}^{\varepsilon} fo\gamma_{1}(t)\gamma_{1}'(t)dt + \int_{\varepsilon}^{\beta} fo\gamma_{2}(t)\gamma_{2}'(t)dt = \int_{\alpha}^{\beta} fo\gamma(t)\gamma'(t)dt$$

<u>4. Ước lượng tích phân</u> Kí hiệu $s(\Gamma)$ là độ dài của đường cong Γ . Nếu hàm f khả tích trên đường cong Γ thì hàm |f(z)| khả tích trên đường cong Γ .

$$\left| \int_{\Gamma} f(z) dz \right| \le \int_{\Gamma} |f(z)| ds \le \sup_{\Gamma} |f(z)| s(\Gamma)$$
(3.2.4)

Chứng minh

Từ giả thiết suy ra hàm fo $\gamma(t)\gamma'(t)$ khả tích trên [α , β]. Kết hợp công thức (3.1.3) với công thức tích phân đường loại 1 suy ra

$$\left| \int_{\Gamma} f(z) dz \right| = \left| \int_{\alpha}^{\beta} fo \gamma(t) \gamma'(t) dt \right| \le \int_{\alpha}^{\beta} \left| fo \gamma(t) \right| \gamma'(t) dt = \int_{\Gamma} \left| f(z) \right| ds$$

<u>5. Liên hệ tích phân đường</u> Nếu hàm f(z) = u(x, y) + iv(x, y) khả tích trên đường cong Γ thì các hàm u(x, y) và v(x, y) khả tích trên đường cong Γ .

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} u(x,y)dx - v(x,y)dy + i \int_{\Gamma} v(x,y)dx + u(x,y)dy$$
 (3.2.5)

Chứng minh

Từ giả thiết suy ra các hàm u(t) và v(t) khả tích trên $[\alpha, \beta]$. Kết hợp công thức (3.1.3) với công thức tích phân đường loại 2 suy ra công thức (3.2.5)

Công thức Newton-Leibniz

Hàm giải tích F(z) gọi là *nguyên hàm* của hàm f(z) trên miền D nếu $\forall z \in D$, F'(z) = f(z)

Cho hàm f(z) có nguyên hàm là F(z) và $\Gamma = (ab)$. Khi đó ta có

$$\int_{ab} f(z)dz = F(b) - F(a)$$
 (3.2.6)

Chứng minh

Từ giả thiết suy ra hàm Fo γ (t) là nguyên hàm của fo γ (t) trên [α , β]. Kết hợp công thức (3.1.1) và công thức Newton - Leibniz của tích phân xác định.

$$\int_{ab} f(z)dz = \int_{\alpha}^{\beta} f[\gamma(t)]\gamma'(t)dt = Fo\gamma(\beta) - Fo\gamma(\alpha)$$

 $\underline{\text{V\'i du}}$ Tính tích phân $I = \oint_{\Gamma} \frac{dz}{z^n}$ với Γ là đường tròn |z| = R định hướng dương

Ta có
$$\Gamma$$
 = (ab) với a = Reⁱ⁰, b = Re^{i2π}

Với n
$$\neq$$
 1 hàm $f(z) = \frac{1}{z^n}$ có nguyên hàm $F(z) = \frac{1}{1-n}z^{1-n}$ suy ra $I = F(b)$ - $F(a) = 0$

Với n = 1 hàm $f(z) = \frac{1}{z}$ có nguyên hàm F(z) = Lnz. Tuy nhiên hàm logarit chỉ xác định

đơn trị trên
$$\forall$$
 - (- ∞ , 0]. Vì vậy I = $Ln_1(e^{i2\pi})$ - $Ln_0(e^{i0})$ = $2\pi i$

Đ3. Định lý Cauchy

<u>Đinh lý</u> Cho hàm f giải tích trên miền D đơn liên và đường cong Γ đơn, kín, trơn từng khúc, định hướng dương và nằm gọn trong miền D. Khi đó ta có

$$\oint_{\Gamma} f(z)dz = 0 \tag{3.3.1}$$

Chứng minh

Kí hiệu $D_{\Gamma} \subset D$ là miền đơn liên có biên định hướng dương là đường cong Γ . Để đơn giản ta xem hàm f(z) = u(x, y) + iv(x, y) với các hàm u và v có đạo hàm liên tục trên D. áp dụng công thức (3.2.5), công thức Green và điều kiện Cauchy-Riemann.

$$\oint_{\Gamma} f(z)dz = \oint_{\Gamma} (udx - vdy) + i \oint_{\Gamma} (vdx + udy)$$

$$= \iint_{D_{\Gamma}} (-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}) dxdy + i \iint_{D_{\Gamma}} (\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}) dxdy = 0$$

<u>Chú ý</u> Hàm f giải tích không đủ để các hàm u và v có đạo hàm riêng liên tục. Do đó việc chứng minh định lý Cauchy thực ra phức tạp hơn rất nhiều. Bạn đọc quan tâm đến phép chứng minh đầy đủ có thể tìm đọc ở các tài liệu tham khảo.

<u>Hệ quả 1</u> Cho miền D đơn liên có biên định hướng dương là đường cong đơn, kín, tron từng khúc và hàm f liên tục trên \overline{D} , giải tích trong D.

$$\oint_{\partial D} f(z) dz = 0 \tag{3.3.2}$$

Chứng minh

Theo định nghĩa tích phân, ta có thể xem tích phân trên ∂D như là giới hạn của tích phân trên đường cong Γ đơn, kín, tron từng khúc, định hướng dương, nằm gọn trong miền D và dần đến ∂D .

<u>Hệ quả 2</u> Cho miền D đa liên có biên định hướng dương gồm hữu hạn đường cong đơn, kín, tron từng khúc và hàm f liên tục trên \overline{D} , giải tích trong D.

$$\oint_{\partial D} f(z) dz \tag{3.3.3}$$

Chứng minh

Giả sử miền D đa liên và chúng ta cắt miền D bằng các cung (ab) và (cd) nhận được miền đơn liên D_1 như hình bên. Ta có

$$\partial D_1 = \partial D + (ab) + (ba) + (cd) + (dc)$$

Kết hợp hệ quả 2 và tính định hướng, tính cộng tính của tích phân

<u>**Hệ quả 3**</u> Cho miền D đa liên có biên định hướng dương gồm hữu hạn đường cong đơn, kín, tron từng khúc $\partial D = L_0^+ + L_1^- + ... + L_n^-$ và hàm f liên tục trên \overline{D} , giải tích trong D.

$$\oint_{L_0} f(z) dz = \sum_{k=1}^n \oint_{L_k} f(z) dz$$
(3.3.4)

Chứng minh

Suy ra từ công thức (3.3.3) và tính định hướng, tính cộng tính của tích phân. **>>**

Hệ quả 4 Cho hàm f giải tích trong miền D đơn liên. Khi đó tích phân

$$\int_{az} f(\zeta)d\zeta \text{ v\'oi a, } z \in D$$
(3.3.5)

không phu thuộc đường cong đơn, tron từng khúc, nối a với z và nằm gon trong miền D. Chứng minh

Giả sử (amb) và (anb) là hai đường cong đơn, tron từng khúc, nối a với z và nằm gon trong D. Khi đó (amzna) là đường cong đơn, tron từng khúc, kín và nằm gọn trong D.

 $0 = \oint\limits_{\text{amzna}} f(\zeta) d\zeta \, = \int\limits_{\text{amz}} f(\zeta) d\zeta \, \, + \int\limits_{\text{zna}} f(\zeta) d\zeta$

Chuyển vế và sử dung tính đinh hướng suy ra

$$\int\limits_{\text{amz}} f(\zeta) d\zeta \, = \, \int\limits_{\text{anz}} f(\zeta) d\zeta$$

>>

<u>Hê quả 5</u> Cho hàm f giải tích trên miền D đơn liên và $a \in D$. Khi đó hàm

$$F(z) = \int_{z}^{z} f(\zeta)d\zeta \text{ v\'oi } z \in D$$
(3.3.6)

là nguyên hàm của hàm f trong miền D và F(a) = 0.

Chứng minh

Theo công thức (3.3.5) hàm F xác định đơn trị trên miền D và F(a) = 0.

Ngoài ra với mọi $(z, h) \in D \times \forall$ sao cho $[z, z + h] \subset D$

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{1}{h} \int_{z}^{z+h} (f(\zeta) - f(z)) d\zeta \right| \le \sup\{ |f(\zeta) - f(z)| : \zeta \in [z, z+h] \}$$

Suy ra hàm F giải tích trong D và F'(z) = f(z).

Đ4. Công thức tích phân Cauchy

<u>Bổ để</u> Cho đường cong Γ đơn, kín, tron từng khúc, định hướng dương và $D = D_{\Gamma}$. Khi đó ta có

$$\forall \ a \in \ \forall -\Gamma, \ \operatorname{Ind}_{\Gamma}(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\mathrm{d}z}{z - a} = \begin{cases} 1 & a \in D \\ 0 & a \notin D \end{cases}$$
 (3.4.1)

Hàm $Ind_{\Gamma}(a)$ gọi là *chỉ số của điểm a đối với đường cong* Γ . *Chứng minh*

Với $a \notin \overline{D}$, hàm $f(z) = \frac{1}{z-a}$ liên tục trên \overline{D} , giải tích trong D. Theo công thức (3.3.2)

tích phân của hàm f trên đường cong kín Γ bằng không.

Với $a \in D$, kí hiệu $B = B(a, \delta) \subset D$, $S = \partial B^+$ là đường tròn tâm a, bán kính δ , định hướng dương và $D_1 = D - B$. Hàm f(z) liên tục trên \overline{D}_1 , giải tích trong D_1 theo công thức (3.3.4) và các ví dụ trong D_1 .

$$\oint_{\Gamma} \frac{\mathrm{d}z}{z-a} = \oint_{S} \frac{\mathrm{d}z}{z-a} = 2\pi i$$

<u>Định lý</u> Cho hàm f giải tích trong miền D và đường cong Γ đơn, kín, trơn từng khúc, định hướng dương sao cho $D_{\Gamma} \subset D$. Khi đó ta có

$$\forall a \in D - \Gamma, \operatorname{Ind}_{\Gamma}(a)f(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - a} dz$$
(3.4.2)

Công thức (3.4.2) gọi là công thức tích phân Cauchy.

Chứng minh

Từ giả thiết suy ra hàm $g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & z \neq a \\ f'(a) & z = a \end{cases}$ giải tích trong miền D.

Sử dung công thức (3.3.1) ta có

$$0 = \oint_{\Gamma} g(z)dz = \oint_{\Gamma} \frac{f(z)}{z - a} dz - \oint_{\Gamma} \frac{f(a)}{z - a} dz$$

Kết hợp với công thức (3.4.1) suy ra công thức (3.4.2)

<u>**Hệ quả 1**</u> Cho miền D có biên định hướng dương gồm hữu hạn đường cong đơn, kín, tron từng khúc và hàm f liên tục trên \overline{D} , giải tích trong D.

$$\forall z \in D, f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$
 (3.4.3)

Chứng minh

Nếu D là miền đơn liên thì biên ∂D là đường cong Γ định hướng dương, đơn, kín và tron từng khúc. Lập luận tương tự như trong chứng minh định lý và sử dụng công thức (3.3.2) thay cho công thức (3.3.1)

Nếu D là miền đa liên biến đổi miền D thành miền D_1 đơn liên như trong hệ quả 2, D_1 3. Sau đó sử dụng kết quả đã biết cho miền đơn liên, tính cộng tính và tính định hướng của tích phân.

Nhân xét Theo các kết quả trên thì giá tri của hàm giải tích trong miền D được xác định

bằng các giá tri của nó trên biên ∂D.

<u>**Hệ quả 2**</u> Cho đường cong Γ đơn, kín, tron từng khúc, định hướng dương và hàm f liên tục trên \overline{D}_{Γ} , giải tích trong D_{Γ} .

$$\forall \ a \in D_{\Gamma}, \oint_{\Gamma} \frac{f(z)}{z - a} dz = 2\pi i f(a)$$
 (3.4.4)

Chứng minh

Suy ra từ công thức (3.4.3)

>>

 $\underline{\text{V\'i du}}$ Tính tích phân $I=\oint_{\Gamma}\frac{dz}{z^2-1}$ với Γ là đường tròn định

hướng dương |z| = 3.

Theo công thức (3.3.4)

$$I = \oint_{|z+1|=1} \frac{\frac{1}{z-1}}{z+1} dz + \oint_{|z-1|=1} \frac{\frac{1}{z+1}}{z-1} dz = I_1 + I_2$$

Hàm $f(z) = \frac{1}{z-1}$ thoả mãn công thức (3.4.4) trong đường tròn |z+1| = 1 suy ra

$$I_1 = 2\pi i f(-1) = -\pi i$$

Hàm $g(z) = \frac{1}{z+1}$ thoả mãn công thức (3.4.4) trong đường tròn |z-1| = 1 suy ra

$$I_2 = 2\pi i g(1) = \pi i$$

Vậy
$$I = -\pi i + \pi i = 0$$

Đ5. Tích phân Cauchy

 \bullet Cho đường cong định hướng Γ đơn, tron từng khúc và hàm f liên tục trên $\Gamma.$ Tích phân

$$F(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta \quad v \acute{o}i \ z \in D = \forall - \Gamma$$
 (3.5.1)

gọi là tích phân Cauchy dọc theo đường cong Γ .

Định lý Hàm F(z) là giải tích và có đạo hàm mọi cấp trên miền D. Khi đó ta có

$$\forall (n, z) \in \angle \times D, F^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
(3.5.2)

Chứng minh

Do hàm f liên tục trên Γ và $z \notin \Gamma$ nên hàm F xác định đơn trị trên miền D.

Với mọi a ∈ D tuỳ ý

$$\frac{F(z)-F(a)}{z-a} = \frac{1}{2\pi i} \int\limits_{\Gamma} \frac{f(\zeta)}{(\zeta-a)(\zeta-z)} d\zeta \xrightarrow[z\to a]{} \frac{1}{2\pi i} \int\limits_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^2} d\zeta$$

Suy ra hàm F có đạo hàm cấp một trong miền D tính theo công thức (3.5.2) và do đó giải tích trong miền D.

Giả sử hàm F có đạo hàm đến cấp n - 1 trong miền D

Với mọi a ∈ D tuỳ ý

$$\begin{split} \frac{F^{(n-l)}(z) - F^{(n-l)}(a)}{z - a} &= \frac{(n-1)!}{2\pi i} \int\limits_{\Gamma} f(\zeta) \frac{\displaystyle\sum_{k=0}^{n-l} (\zeta - a)^k \left(\zeta - z\right)^{n-l-k}}{(\zeta - a)^n \left(\zeta - z\right)^n} d\zeta \\ &\xrightarrow[z \to a]{} \frac{n!}{2\pi i} \int\limits_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+l}} d\zeta \end{split}$$

Suy ra hàm F có đạo hàm cấp n trong miền D tính theo công thức (3.5.2) ▶

<u>Hê quả 1</u> Cho miền D có biên định hương dương gồm hữu hạn đường cong đơn, kín và tron từng khúc. Nếu hàm f liên tục trên \overline{D} , giải tích trong D thì có đạo hàm mọi cấp trong miền D.

$$\forall (n, z) \in \angle \times D, f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\partial D} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
(3.5.3)

Chứng minh

Nếu D là miền đơn liên thì biên ∂D là đường cong Γ định hướng dương, đơn, kín và tron từng khúc. Theo công thức (3.4.3) ta có

$$\forall z \in D, f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta \equiv F(z)$$

Kết hợp với công thức (3.5.2) suy ra công thức (3.5.3)

Nếu D là miền đa liên biến đổi miền D thành miền D₁ đơn liên như trong hệ quả 2, Đ3. Sau đó sử dụng kết quả đã biết cho miền đơn liên, tính cộng tính và tính định hướng của tích phân.

<u>**Hệ quả 2**</u> Cho đường cong Γ đơn, kín, tron từng khúc, định hướng dương và hàm f liên tục trên \overline{D}_{Γ} , giải tích trong D_{Γ} .

$$\forall \ a \in D_{\Gamma}, \ \oint_{\Gamma} \frac{f(z)}{(z-a)^{(n+1)}} dz = \frac{2\pi i}{n!} f^{(n)}(a)$$
 (3.5.4)

Chứng minh

Suy ra từ công thức (3.5.3)

>>

 $\underline{\text{V\'i du}} \text{ T\'inh t\'ich phân I} = \oint_{\Gamma} \frac{e^z dz}{\left(z+1\right)^3} \text{ v\'oi } \Gamma \text{ là đường tròn } |z| = 2 \text{ dịnh hướng dương}$

Hàm $f(z) = e^z$ liên tục trên hình tròn $|z| \le 2$, giải tích trong hình tròn |z| < 2. Thoả mãn công thức (3.5.4) suy ra

$$I = \frac{2\pi i}{2!} f''(-1) = \pi i e^{-1}$$

<u>Hê quả 3</u> (Định lý Morera) Cho hàm f liên tục trên miền D và với mọi tam giác $\Delta \subset D$

$$\oint_{\partial \Delta} f(z) dz = 0 \tag{3.5.5}$$

Khi đó hàm f giải tích trên miền D.

Chứng minh

Với $a \in D$ tuỳ ý, kí hiệu $B = B(a, \delta) \subset D$. Vì hàm f liên tục trên B nên khả tích trên mọi đoạn thẳng [a, z] với $z \in B$. Do đó hàm

xác đinh đơn tri trong hình tròn B và F(a) = 0.

Ngoài ra với mọi $(z, h) \in D \times \forall$ sao cho $[z, z + h] \subset B$

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{1}{h} \int_{z}^{z+h} (f(\zeta) - f(z)) d\zeta \right| \le \sup\{ |f(\zeta) - f(z)| : \zeta \in [z, z+h] \}$$

$$\xrightarrow{h} 0$$

В

Suy ra hàm F giải tích trong B và F'(z) = f(z).

Từ định lý trên suy ra hàm f có đạo hàm trong B và do đó giải tích trong B. ▶

Đ6. Đinh lý tri trung bình

Định lý (Về trị trung bình) Cho hàm f giải tích trên miền D. Khi đó ta có

$$\forall n \in \angle, R > 0 : B(a, R) \subset D, \ f^{(n)}(a) = \frac{n!}{2\pi R^n} \int_0^{2\pi} f(a + Re^{it}) e^{-int} dt$$
 (3.6.1)

Chứng minh

Tham số hoá đường tròn $S = \partial B^{+}(a, R)$

$$\gamma(t) = a + Re^{it}, dz = iRe^{it}dt \text{ v\'oi } t \in [0, 2\pi]$$

Ap dung công thức (3.5.4)

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_{S} \frac{f(z)}{(z-a)^{n+1}} dz = \frac{n!}{2\pi R^{n}} \int_{0}^{2\pi} f(a+Re^{it}) e^{-int} dt$$

Hệ quả 1 (Bất đẳng thức Cauchy) Cho hàm f giải tích trên miền D.

$$\forall n \in \angle, R > 0 : B(a, R) \subset D, |f^{(n)}(a)| \le \frac{n! M}{R^n} \text{ v\'oi} M = \sup_{\partial B} |f(z)| \qquad (3.6.2)$$

Chứng minh

Suy ra từ ước lương tích phân (3.6.1)

$$|f^{(n)}(a)| \le \frac{n!}{2\pi} \int_{0}^{2\pi} |f(a + Re^{it})e^{-int}| dt \le \frac{n!M}{R^n}$$

<u>Hê quả 2</u> (Định lý Liouville) Hàm giải tích và bị chặn trên tập số phức là hàm hằng. <u>Chứng minh</u>

Giả sử hàm f giải tích và bi chăn trên tâp ∀. Khi đó

$$\forall (a, R) \in \forall \times 3_+, B(a, R) \subset \forall$$

Theo công thức (3.6.2) với n = 1

$$\mid f'(a)\mid \leq \frac{M}{R} \xrightarrow[R \to +\infty]{} 0 \ v\acute{o}i \ M = \sup_{\forall} \mid f(z)\mid$$

Suy ra \forall a \in \forall , f'(a) = 0. Vậy hàm f là hàm hằng.

<u>Hệ quả 3</u> (Định lý D' Alembert - Gauss) Mọi đa thức hệ số phức bậc n có đúng n không điểm phức trong đó không điểm bội k tính là k không điểm.

Chứng minh

Giả sử
$$P_n(z) = a_0 + a_1 z + ... + z^n \text{ và } \forall z \in \forall, P_n(z) \neq 0$$

Ta có

$$|P_{n}(z)| = |z|^{n} \left| 1 + \left(\frac{a_{n-1}}{z} + ... + \frac{a_{0}}{z^{n}} \right) \right| \ge |z|^{n} \left| 1 - \left(\left| \frac{a_{n-1}}{z} \right| + ... + \left| \frac{a_{0}}{z^{n}} \right| \right) \right|$$

Suy ra

$$\forall \ z \in \ \forall : \mid z \mid \ \geq r = \underset{k=0..n-l}{\text{Max}} \left(\left| (n+1)a_k \right|^{\frac{1}{k}} \right) \Longrightarrow \mid P_n(z) \mid \ \geq \frac{r^n}{n+1}$$

Kí hiệu

$$m_{r} = \min\{ \mid P_{n}(z) \mid : \mid z \mid \leq r \}, \, m = \min\{m_{r} \,, \, \frac{r^{n}}{n+1} \,\} \, \, v \grave{a} \, \, \, g(z) = \frac{1}{P_{n}(z)} \,, \, z \in \, \, \forall \, \, x \in \, \forall \, x \in \,$$

Khi đó

$$\forall z \in \forall, |P_n(z)| \ge m \text{ hay } |g(z)| = \frac{1}{|P_n(z)|} \le \frac{1}{m}$$

Như vậy hàm g(z) là giải tích và bị chặn trên \forall , theo định lý Liouville nó là hàm hằng. Suy ra hàm $P_n(z)$ là hàm hằng! Điều này là mâu thuẫn.

Vậy $\exists z_1 \in \forall$ sao cho $P_n(z_1) = 0$.

Phân tích $P_n(z) = (z - z_1)P_{n-1}(z)$ với $\deg P_{n-1} = n - 1$.

Lập luận tương tự phân tích $P_{n-1}(z)$ và tiếp tục phân tích cho đến khi

$$P_n(z) = (z - z_1)(z - z_2) \dots (z - z_n)$$

<u>Hê quả 4</u> (Nguyên lý module cực đại) Cho miền D giới nội và hàm f liên tục trên \overline{D} , giải tích trong D. Khi đó hoặc hàm f(z) là hàm hằng hoặc hàm | f(z) | chỉ đạt trị lớn nhất, tri bé nhất trên ∂D .

Chứng minh

• Giả sử hàm f(z) không phải là hàm hằng. Do hàm |f(z)| liên tục trên miền \overline{D} đóng và giới nội nên đạt trị lớn nhất, trị bé nhất trên miền \overline{D} . Chúng ta xét trường hợp hàm đạt trị lớn nhất. Tức là

$$\exists a \in \overline{D} \text{ sao cho} \mid f(a) \mid = Max_D \mid f(z) \mid$$

Nếu $a \in D_0$ thì a là điểm cực đại địa phương và khi đó $\exists B(a, R) \subset D$ sao cho

$$\forall t \in [0, 2\pi], |f(a)| > |f(a + Re^{it})|$$

Uớc lượng công thức (3.6.1) với n = 0

$$|f(a)| \le \frac{1}{2\pi} \int_{0}^{2\pi} |f(a + Re^{it})| dt < |f(a)|$$

Điều này là mâu thuẫn. Vây $a \in \partial D$.

• Lâp luân tương tư cho trường hợp hàm đat tri bé nhất.

Đ7. Hàm điều hoà

>>

• Hàm thực u(x, y) liên tục trên \overline{D} , thuộc lớp C^2 trong D gọi là *hàm điều hoà* trong nếu nó thoả mãn phương trình Laplace. Tức là

$$\forall (x, y) \in D, \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
(3.7.1)

Đinh lý Phần thực, phần ảo của hàm giải tích là hàm điều hoà.

Chứng minh

Cho hàm f(z) = u(x, y) + iv(x, y) giải tích trên miền D. Khi đó hàm f(z) có đạo hàm mọi cấp suy ra các hàm u(x, y) và v(x, y) có các đạo hàm riêng liên tục và thoả mãn điều kiên Cauchy - Riemann

$$\mathbf{u}_{\mathbf{x}}' = \mathbf{v}_{\mathbf{y}}' \quad \text{và} \quad \mathbf{u}_{\mathbf{y}}' = -\mathbf{v}_{\mathbf{x}}'$$

Suy ra

$$\Delta u = u''_{xx} + u''_{yy} = v''_{yx} - v''_{xy} = 0 \quad va \quad \Delta v = v''_{xx} + v''_{yy} = -u''_{yx} + u''_{xy} = 0$$

• Sau này chúng ta gọi cặp hàm điều hoà và thoả mãn điều kiện Cauchy - Riemann là cặp hàm điều hoà liên hợp.

<u>Dinh lý</u> Cho hàm thực u(x, y) điều hoà trong miền D đơn liên. Khi đó có hàm phức f(z) giải tích trong miền D sao cho u = Ref hoặc u = Imf.

Chứng minh

• Do hàm u điều hoà trong miền D đơn liên nên dang vi phân

$$\omega = -u_y' dx + u_x' dy$$

là dạng vi phân đúng. Suy ra tích phân của nó không phụ thuộc vào đường lấy tích phân. Cố định $a \in D$ với mọi $z \in D$, hàm

$$v(x, y) = \int_{0}^{z} -u'_{y} dx + u'_{x} dy$$
 (3.7.2)

thuộc lớp C² trong miền D và thoả mãn điều kiện Cauchy - Riemann

$$v'_x = -u'_y \text{ và } v'_y = u'_x$$

Suy ra hàm phức f(z) = u(x, y) + iv(x, y) là giải tích trong miền D và u = Ref.

• Lập luận tương tự để tìm hàm f(z) sao cho u = Imf.

<u>Ví du</u> Cho hàm $u = x^2 - y^2$ tìm hàm w = f(z) giải tích sao cho u = Ref Kiểm tra trưc tiếp hàm u là hàm điều hoà

$$u'_{x} = 2x = v'_{y}, u'_{y} = -2y = -v'_{x} và \Delta u = u''_{xx} + u''_{yy} = 0$$

Tìm hàm v điều hoà liên hợp với hàm u

$$v(x, y) = \int v'_x dx = \int 2y dx = 2xy + \varphi(y)$$

Đao hàm theo biến y

$$v'_{y} = 2x + \varphi'(y) \equiv 2x \Rightarrow \varphi'(y) = 0 \Rightarrow \varphi(y) = C$$

Suy ra hàm phức

$$f(z) = (x^2 - y^2) + i(2xy + C)$$

là hàm giải tích cần tìm.

<u>Hệ quả 1</u> Hàm điều hoà có đạo hàm riêng mọi cấp và các đạo hàm riêng của nó cũng là hàm điều hoà.

Chứng minh

Theo các định lý ở trên u = Ref với f là hàm giải tích. Khi đó đạo hàm các cấp của hàm f cũng là hàm giải tích và có phần thực, phần ảo là các đạo hàm riêng của hàm u.

Hệ quả 2 Hàm điều hoà đạt trị trung bình tại tâm của hình tròn nằm gọn trong miền D.

$$\forall R > 0 : B(a, R) \subset D, u(a) = \frac{1}{2\pi} \int_{0}^{2\pi} u(a + Re^{it}) dt$$
 (3.7.3)

Chứng minh

Tương tự như trên u = Ref với f là hàm giải tích. Theo công thức (3.6.1) với n = 0

$$u(a) = \operatorname{Ref}(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} f(a + \operatorname{Re}^{it}) dt$$

<u>**Hê quả 3**</u> Hàm u điều hoà đạt trị lớn nhất, trị bé nhất trên ∂D .

Chứng minh

Sử dụng công thức (3.7.3) và lập luận tương tự như chứng minh nguyên lý cực đại.

Hệ quả 4 Hàm điều hoà và bi chăn trên toàn tâp số phức là hàm hằng.

Chứng minh

Tương tự như trên u = Ref với f là hàm giải tích. Từ giả thiết hàm u bị chặn và công thức (3.7.4) dưới đây suy ra hàm f bị chặn. Theo định lý Liouville suy ra hàm f là hàm hằng.

Công thức Schwartz Cho f(z) = u(x, y) + iv(x, y) giải tích trên miền D và $B(0, R) \subset D$.

$$\forall \ a \in B(0, R), f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} u(Re^{i.t}) \frac{Re^{i.t} + a}{Re^{i.t} - a} dt + iv(0)$$
(3.7.4)

Chứng minh

Với moi $a \in B(0, R)$

$$f(a) = \frac{1}{2\pi i} \oint_{\partial B} \frac{f(z)}{z - a} dz = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{Re^{i.t}}{Re^{i.t} - a} dt \quad và \quad f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) dt$$

Do $a \in B(0, R)$ nên $a_1 = \frac{R^2}{\overline{a}} \notin B(0, R)$ suy ra

$$0 = \frac{1}{2\pi i} \oint_{\partial R} \frac{f(z)}{z - a_1} dz = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{\overline{a}e^{i.t}}{\overline{a}e^{i.t} - R} dt$$

Biến đổi

$$f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) dt - \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{\overline{a}e^{i.t}}{\overline{a}e^{i.t} - R} dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{-R}{\overline{a}e^{i.t} - R} dt$$

$$0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{\overline{a}e^{i.t} + R}{\overline{a}e^{i.t} - R} dt + \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{-R}{\overline{a}e^{i.t} - R} dt$$

Suy ra

$$f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(Re^{i.t}) \frac{Re^{-i.t} + \overline{a}}{Re^{-i.t} - \overline{a}} dt \quad v\grave{a} \quad \overline{f(0)} = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{f(Re^{i.t})} \frac{Re^{i.t} + a}{Re^{i.t} - a} dt$$

$$f(a) - iv(0) = f(a) - \frac{1}{2} [f(0) - \overline{f(0)}] = \frac{1}{2\pi} \int_{0}^{2\pi} u(Re^{i.t}) \frac{Re^{i.t} + a}{Re^{i.t} - a} dt$$

• Hàm

$$S(a, t) = \frac{Re^{i.t} + a}{Re^{i.t} - a}$$

gọi là *nhân Schwartz*. Theo công thức (3.7.4) nếu biết giá trị trên biên của phần thực u và giá trị v(0) thì suy ra được giá trị của hàm f bên trong hình tròn B(0, R). Biến đổi

$$S(a, t) = \frac{R^2 - |a|^2}{|Re^{it} + a|^2} + i \frac{2R \operatorname{Im}(ae^{-it})}{|Re^{it} - a|^2}$$

Hàm

$$P(a, t) = ReS(a, t) = \frac{R^2 - |a|^2}{|Re^{it} + a|^2}$$

gọi là nhân Poisson. Từ công thức (3.7.4) suy ra

$$u(a) = \text{Ref}(a) = \frac{1}{2\pi} \int_{0}^{2\pi} u(Re^{it}) \frac{R^2 - |a|^2}{|Re^{it} + a|^2} dt$$
 (3.7.5)

gọi là *công thức Poisson*. Sau này chúng ta có thể dùng công thức (3.7.5) để tìm nghiệm của bài toán Dirichlet trong hình tròn.

Bài tập chương 3

- Tham số hoá đường cong để tính các tích phân sau đây.
- 1. $\int_{\Gamma} e^{z} dz \text{ v\'oi } \Gamma \text{ là cung parabole } y = x^{3}, \ 1 \le x \le 2$
- 2. $\int_{\Gamma} \operatorname{tgzdz} v \acute{o}i \ \Gamma \ là \ cung \ parabole \ x = y^2, \ 0 \le y \le 1$
- 3. $\int_{\Gamma} z \operatorname{Im} z dz \text{ với } \Gamma \text{ là đường gấp khúc nối các điểm 1, i, -1 và -i}$
- 4. $\int_{\Gamma} (z^2 + z\overline{z}) dz \text{ v\'oi } \Gamma \text{ là cung tr`on } |z| = 1, 0 \le \arg z \le \pi$
- 5. $\oint_{\Gamma} \frac{z}{z-1} dz \text{ v\'oi } \Gamma \text{ là đường ellipse } x^2 + 4y^2 = 4$
- Sử dụng định lý Cauchy để tính các tích phân sau đây.
- 6. $\int_{\Gamma} z \sin z dz$ với Γ là đường cong bất kì nối hai điểm 0 và πi
- 7. $\int_{\Gamma} (z-1)\cos z dz \ v \acute{o}i \ \Gamma \ l \grave{a} \ d \mathring{u} \grave{o} ng \ cong \ b \acute{a}\acute{t} \ k \grave{i} \ n \acute{o}i \ hai \ d \mathring{e} m \ \pi, \pi i$
- 8. $\int_{\Gamma} \frac{dz}{z-1} \text{ với } \Gamma \text{ là đường cong bất kì nối hai điểm -1 và 1 + i}$

- 9. $\oint_{\Gamma} |z| \overline{z} dz \text{ với } \Gamma \text{ là biên định hướng của miền } D = \{ |z| = 1, \text{ Im } z \ge 0 \}$
- 10. $\oint_{\Gamma} \frac{z}{|z|} dz \text{ với } \Gamma \text{ là biên định hướng của miền } D = \{1 < |z| < 2, \text{ Im } z \ge 0 \}$
- 11. $\oint_{\Gamma} \frac{dz}{z^2+1} \text{ với } \Gamma \text{ là đường cong kín không đi qua điểm } \pm i$
- Sử dụng công thức tích phân Cauchy để tính các tích phân sau đây.
- 12. $\oint_{\Gamma} \frac{z^2 dz}{z 2i} \text{ v\'eni} \Gamma \text{ là các đường tròn } |z| = 1 \text{ và } |z| = 3$
- 13. $\oint_{\Gamma} \frac{dz}{z^2 + 4}$ với Γ là các đường tròn | z | = 1, | z 2i | = 1 và | z + 2i | = 1
- 14. $\oint_{\Gamma} \frac{dz}{z^2 + 2z} \text{ với } \Gamma \text{ là các đường tròn } |z| = 1, |z 2| = 1 \text{ và } |z| = 3$
- 15. $\oint \frac{z s h z dz}{z^2 + 1} \text{ với } \Gamma \text{ là đường cong kín không đi qua điểm } \pm i$
- Tính các tích phân sau đây.
- 16. $\oint_{\Gamma} \frac{\cos z dz}{z^2 1} \text{ với } \Gamma \text{ là đường tròn } |z| = 2$
- 17. $\oint_{\Gamma} \frac{\sin z dz}{z^2 2z} \text{ với } \Gamma \text{ là đường tròn } |z| = 3$
- 18. $\oint_{\Gamma} \frac{ze^{z}dz}{(z+i)^{3}} \text{ v\'oi } \Gamma \text{ là đường tròn } |z+i| = 1$
- 19. $\oint_{\Gamma} \frac{\text{shzdz}}{(z-1)^2(z+3)} \text{ với } \Gamma \text{ là đường tròn } |z-1| = 1$
- 20. $\oint_{\Gamma} \frac{\ln(z+3)dz}{(z^2-1)^3} \text{ với } \Gamma \text{ là đường tròn } |z| = 2$
- 21. $\oint_{\Gamma} \frac{z \sin z}{(z^2 + 1)^3} dz \text{ v\'oi } \Gamma \text{ là đường ellipse } 4x^2 + y^2 2y = 0$
- Tìm hàm giải tích biết phần thực, phần ảo.

22.
$$u(x, y) = x^3 - 3xy^2$$

23.
$$u(x, y) = x^2 - y^2 + 5x + y - \frac{y}{x^2 + y^2}$$

24.
$$u(x, y) = \operatorname{arctg} \frac{x}{y}$$

25.
$$u(x, y) = \frac{x}{x^2 + y^2} - 2y$$

26.
$$v(x, y) = 2xy + 3$$

27.
$$v(x, y) = 2x^2 - 2y^2 + x$$

28.
$$v(x, y) = \ln(x^2 + y^2) + x - 2y$$
 29. $v(x, y) = 3 + x^2 - y - \frac{y}{x(x^2 + y^2)}$

CHUỗI hàm PHứC và Thặng dư

Đ1. Chuỗi hàm phức

 \bullet Cho dãy hàm $(u_{_{n}}:D\to \forall)_{_{n}\in \angle}.$ Tổng vô hạn

$$\sum_{n=0}^{+\infty} u_n(z) = u_0(z) + u_1(z) + \dots + u_n(z) + \dots$$
 (4.1.1)

gọi là *chuỗi hàm phức*. Số phức a gọi là *điểm hội tụ* nếu chuỗi số phức $\sum_{n=0}^{+\infty} u_n(a)$ hội tụ. Tập các điểm hội tụ gọi là *miền hội tụ* và thường kí hiệu là D.

Trên miền hội tụ hàm $S(z) = \sum_{n=0}^{+\infty} u_n(z)$ gọi là tổng, hàm $S_n(z) = \sum_{k=0}^n u_k(z)$ gọi là tổng riêng thứ n và hàm $R_n(z) = S(z)$ - $S_n(z)$ gọi là phần dư thứ n của chuỗi hàm phức.

Chuỗi hàm phức gọi là *hội tụ đều* trên miền D đến hàm S(z), kí hiệu $\sum_{n=0}^{+\infty} u_n(z) = S(z)$ nếu

$$\forall \ \epsilon > 0, \ \exists \ N > 0 \ \text{sao cho} \ \forall \ z \in \ D, \ \forall \ n \geq N \Rightarrow | \ S(z) - S_n(z) \ | < \epsilon$$

<u>Tiêu chuẩn Weierstrass</u> Nếu có chuỗi số dương $\sum_{n=0}^{+\infty} a_n$ hội tụ sao cho

$$\forall (n, z) \in \angle \times D, |u_n(z)| \le a_n$$
(4.1.2)

thì chuỗi hàm phức hội tụ đều trên miền D.

Sau này chúng ta xem các chuỗi hội tụ đều cũng thoả mãn tiêu chuẩn Weierstrass.
 Chuỗi hàm phức hội tụ đều có các tính chất sau đây.

 $\underline{\textit{1. Tính liên tục}} \ \ \text{Nếu} \ \forall \ n \in \angle, u_{n}(z) \ \text{liên tục trên miền D và} \ \sum_{n=0}^{+\infty} u_{n}(z) \overset{D}{=} S(z) \ \text{thì hàm } S(z)$

cũng liên tục trên miền D.

Chứng minh

Với mọi $a \in D$ và $\varepsilon > 0$ bé tuỳ ý

Do tính hôi tu đều

 $\exists~N>0:\forall~n>N~,~\forall~z\in~D\Rightarrow |~S(z)$ - $S_n(z)~|<\epsilon\,/$ 3 và |~S(a) - $S_n(a)~|<\epsilon\,/$ 3 Do tính liên tục

$$\exists \; \delta > 0 : \forall \; n \leq N \;, \; \forall \; z \in \; D, \; \mid z \text{ - a } \mid \leq \delta \Longrightarrow \mid u_{\scriptscriptstyle n}(z) \text{ - } u_{\scriptscriptstyle n}(a) \mid \; <\epsilon \; / \; 3N$$

Suy ra

$$\forall z \in D, |z - a| \leq \delta \Rightarrow$$

$$|S(z) - S(a)| \le |S(z) - S_n(z)| + \sum_{k=0}^{N} |u_n(z) - u_n(a)| + |S(a) - S_n(a)| < \epsilon$$

Vậy hàm S(z) liên tục trên miền D.

2. Tích phân từng từ Nếu \forall $n \in \angle$, $u_n(z)$ liên tục trên đường cong Γ trơn từng khúc, nằm gọn trong miền D và $\sum_{n=0}^{+\infty} u_n(z) \stackrel{\text{D}}{=} S(z)$ thì hàm S(z) cũng khả tích trên đường cong Γ .

$$\int_{\Gamma} \left(\sum_{n=0}^{+\infty} u_n(z) \right) dz = \sum_{n=0}^{+\infty} \left(\int_{\Gamma} u_n(z) dz \right)$$
(4.1.3)

Chứng minh

Theo tính chất 1. hàm S(z) liên tục và Γ tron từng khúc nên khả tích trên Γ .

Kí hiệu
$$s(\Gamma) = \int\limits_{a}^{b} |\gamma'(t)| \, dt$$
 . Do tính hội tụ đều

$$\forall \ \epsilon > 0, \exists \ N > 0 : \forall \ n > N, \ \forall \ z \in \Gamma \Rightarrow |S(z) - S_n(z)| < \epsilon / s(\Gamma)$$

Suy ra

$$\left| \int_{\Gamma} S(z) dz - \sum_{k=0}^{n} \int_{\Gamma} u_{n}(z) dz \right| \leq \int_{\Gamma} \left| S(z) - S_{n}(z) \right| dz < \varepsilon$$

<u>3. Đạo hàm từng từ</u> Nếu \forall $n \in \angle$, $u_n(z)$ giải tích trong miền D và $\sum_{n=0}^{+\infty} u_n(z) \stackrel{D}{=} S(z)$ thì

hàm S(z) cũng giải tích trong miền D.

$$\forall k \in \angle, \sum_{n=0}^{+\infty} u_n^{(k)}(z) \stackrel{D}{=} S^{(k)}(z)$$
 (4.1.4)

Chứng minh

Với mọi $z \in D$, $\exists B(z, R) \subset D$. Kí hiệu $\Gamma = \partial B^+$ và G = D - B(z, R/2) khi đó

$$\forall \ n \in \angle, \ \frac{u_n(\zeta)}{\zeta - z} \ \text{giải tích trong G và} \ \sum_{n=0}^{+\infty} \frac{u_n(\zeta)}{\zeta - z} = \frac{S(\zeta)}{\zeta - z}$$

Sử dụng công thức (3.4.3) và công thức (4.1.3)

$$S(z) = \sum_{n=0}^{+\infty} u_n(z) = \frac{1}{2\pi i} \sum_{n=0}^{+\infty} \oint_{\Gamma} \frac{u_n(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{\Gamma} \frac{S(\zeta)}{\zeta - z} d\zeta$$

Theo định lý về tích phân Cauchy hàm S(z) giải tích trong miền D và do đó có đạo hàm mọi cấp trên miền D. Kết hợp công thức (3.5.3) và công thức (4.1.3)

$$\forall \ k \in \angle, \ S^{(k)}(z) = \frac{k!}{2\pi i} \oint_{\Gamma} \frac{S(\zeta)}{(\zeta-z)^{k+1}} \, d\zeta \ = \sum_{n=0}^{+\infty} \frac{k!}{2\pi i} \oint_{\Gamma} \frac{u_n(\zeta)}{(\zeta-z)^{k+1}} \, d\zeta \ = \sum_{n=0}^{+\infty} u_n^{(k)}(z) \quad \text{in} \quad |z| = \sum_{n=0}^{+\infty} u_n^{(k)}(z) \quad |$$

Chứng minh

Theo nguyên lý cực đại

$$\forall z \in D, \exists a \in \partial D : |S(z) - \sum_{k=0}^{n} u_k(z)| \le |S(a) - \sum_{k=0}^{n} u_k(a)| < \varepsilon$$

Đ2. Chuỗi luỹ thừa phức

• Chuỗi hàm phức

$$\sum_{n=0}^{+\infty} c_n (z-a)^n = c_0 + c_1 (z-a) + \dots + c_n (z-a)^n + \dots$$
 (4.2.1)

gọi là chuỗi luỹ thừa tâm tại điểm a.

<u>Dinh lý Abel</u> Nếu chuỗi luỹ thừa hội tụ tại điểm $z_0 \neq a$ thì nó hội tụ tuyệt đối và đều trong mọi hình tròn B(a, ρ) với $\rho < |z_0 - a|$.

Chứng minh

Do chuỗi số phức
$$\sum_{n=0}^{+\infty} c_n (z_0 - a)^n$$
 hội tụ nên $\lim_{n \to +\infty} c_n (z_0 - a)^n = 0$. Suy ra

$$\exists M > 0$$
 sao cho $\forall n \in \angle, |c_n(z_0 - a)^n| \le M$

Với mọi $z\in \ B(a,\,\rho)$ đặt q = | z - a | / | z_0 - a | < 1 ta có

$$\forall \ n \in \angle, \ \forall \ z \in \ B(a, \, \rho), \ | \ c_{\scriptscriptstyle n}(z - a)^{\scriptscriptstyle n} \ | \ = \ | \ c_{\scriptscriptstyle n}(z_{\scriptscriptstyle 0} - a)^{\scriptscriptstyle n} \ | \ \left| \frac{z - a}{z_{\scriptscriptstyle 0} - a} \right|^{\scriptscriptstyle n} \le \ Mq^{\scriptscriptstyle n}$$

Do chuỗi số dương $\sum_{n=0}^{+\infty} q^n$ hội tụ, theo tiêu chuẩn Weierstrass suy ra chuỗi luỹ thừa hội tụ tuyết đối và đều.

<u>**Hê quả 1**</u> Nếu chuỗi luỹ thừa phân kỳ tại z_1 thì nó phân kỳ trên miền $|z - a| > |z_1 - a|$ <u>Chứng minh</u>

Giả sử trái lại chuỗi luỹ thừa hội tụ tại $z : |z - a| > |z_1 - a|$. Từ định lý suy ra chuỗi luỹ thừa hội tụ tại z_1 . Mâu thuẫn với giả thiết.

<u>Hệ quả 2</u> Tồn tại số $R \ge 0$ sao cho chuỗi luỹ thừa hội tụ trong đường tròn |z - a| = R và phân kỳ ngoài đường tròn |z - a| = R.

Chứng minh

Rỗ ràng chuỗi luỹ thừa luôn hội tụ tại z = 0 và phân kỳ tại $z = \infty$. Kí hiệu

$$R_1 = Max\{\rho \in 3_+ : chuỗi luỹ thừa hội tụ trong | z - a | < \rho\}$$

$$R_2 = Min\{\rho \in 3_+ : chuỗi luỹ thừa phân kỳ ngoài | z - a | < \rho\}$$

$$Ta có R_1 = R_2 = R$$

Số R gọi là bán kính hội tụ còn hình tròn B(a, R) gọi là hình tròn hội tụ của chuỗi luỹ thừa. Nếu D là miền hội tụ của chuỗi luỹ thừa thì ta luôn có

$$B(a, R) \subset D \subset \overline{B}(a, R)$$

Hệ quả 3 Bán kính hội tu được tính theo một trong các công thức sau đây

$$R = \lim_{n \to +\infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|c_n|}}$$
(4.2.2)

Chứng minh

Lập luận tương tư chuỗi luỹ thừa thực.

>>|

Kí hiêu

$$S(z) = \sum_{n=0}^{+\infty} c_n (z - a)^n \quad v \acute{o} i \ z \in B(a, R)$$
 (4.2.3)

Kết hợp các tính chất của hàm luỹ thừa với các tính chất của chuỗi hội tụ đều ta có các hệ quả sau đây.

<u>Hê quả 4</u> Hàm S(z) liên tục trong hình tròn B(a, R)

Chứng minh

Suy ra từ tính liên tuc của hàm luỹ thừa và chuỗi hội tu đều.

>>|

Hê quả 5 Hàm S(z) khả tích trên đường cong Γ tron từng khúc, nằm gon trong B(a, R)

$$\int_{\Gamma} S(z)dz = \sum_{n=0}^{+\infty} c_n \int_{\Gamma} (z-a)^n dz$$
(4.2.4)

Chứng minh

Suy ra từ tính khả tích của hàm luỹ thừa và công thức tích phân từng từ.

Hệ quả 6 Hàm S(z) giải tích trong hình tròn B(a, R)

$$\forall \ k \in \angle, \ S^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1)...(n-k+1)c_n (z-a)^{n-k}$$
 (4.2.5)

Chứng minh

Suy ra từ tính giải tích của hàm luỹ thừa và công thức đao hàm từng từ.

$$\underline{\textit{Hê quả 7}} \ \forall \ k \in \angle, c_k = \frac{1}{k!} S^{(k)}(a) \tag{4.2.6}$$

Chứng minh

Suy ra từ công thức (4.2.5) với z = a.

 $\underline{\text{Ví du}}$ Chuỗi luỹ thừa $\sum_{n=0}^{+\infty} z^n$ hội tụ đều trong hình tròn B(0, 1) đến hàm S(z) = $\frac{1}{1-z}$.

>>

Suy ra

$$\forall z \in B(0, 1), \sum_{n=0}^{+\infty} \int_{0}^{z} \zeta^{n} d\zeta = \sum_{n=0}^{+\infty} \frac{1}{n+1} z^{n+1} = \int_{0}^{z} \frac{d\zeta}{1-\zeta} = -\ln(1-z)$$

$$\forall \ k \in \angle, \ \sum_{n=k}^{+\infty} n(n-1)...(n-k+1)z^{n-k} \ = \left(\frac{1}{1-z}\right)^{(k)} = \frac{k!}{(1-z)^{k+1}}, ...$$

Đ3. Chuỗi Taylor

Dinh lý Cho D = B(a, R), $\Gamma = \partial D^+$ và hàm f liên tục trên \overline{D} , giải tích trong D.

$$\forall z \in D, f(z) = \sum_{n=0}^{+\infty} c_n (z - a)^n \text{ v\'oi } c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta, n \in \angle$$
 (4.3.1)

Công thức (4.3.1) gọi là khai triển Taylor của hàm f tại điểm a.

Chứng minh

Với mọi z ∈ D cố định. Theo công thức tích phân Cauchy

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta \tag{1}$$

Với $\zeta \in \Gamma$ ta có q = $|z - a|/|\zeta - a| < 1$ suy ra khai triển

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \frac{1}{1 - \frac{z - a}{\zeta - a}} = \sum_{n=0}^{+\infty} \frac{1}{\zeta - a} \left(\frac{z - a}{\zeta - a} \right)^n \text{ và } \frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{+\infty} \frac{f(\zeta)}{\zeta - a} \left(\frac{z - a}{\zeta - a} \right)^n (2)$$

Do hàm f liên tục nên có module bị chặn trên miền \overline{D} suy ra

$$\exists \ M>0: \forall \ \zeta \in \Gamma, \ \left|\frac{f(\zeta)}{\zeta-a}\!\!\left(\frac{z-a}{\zeta-a}\right)^n\right| \leq \left.\frac{M}{R}\,q^n\right.$$

Theo tiêu chuẩn Weierstrass chuỗi (2) hội tụ đều trên Γ , do đó có thể tích phân từng từ dọc theo đường cong Γ . Tích phân từng từ công thức (1) suy ra công thức (4.3.1)

Hệ quả Kết hợp công thức (4.2.6) và (4.3.1) ta có

$$\forall k \in \angle, c_k = \frac{1}{k!} f^{(k)}(a) \tag{4.3.2}$$

Nhận xét Theo định lý Cauchy có thể lấy Γ là đường cong bất kì đơn, kín, tron từng khúc bao a và z, định hướng dương và nằm gọn trong B(a, R). Thông thường, chúng ta khai triển hàm f(z) trong hình tròn B(0, R) chuỗi nhận được gọi là *chuỗi Maclorinh* tương tự như hàm thực.

Ví du

1.
$$e^z = 1 + \frac{1}{1!}z + \Box + \frac{z^n}{n!} + \Box = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \text{ và } e^{-z} = \sum_{n=0}^{+\infty} (-1)^n \frac{z^n}{n!}$$

2.
$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) = \frac{1}{2} \sum_{n=0}^{\infty} (\frac{i^n}{n!} + \frac{(-i)^n}{n!}) z^n = 1 - \frac{1}{2!} z^2 + \frac{1}{4!} z^4 + \dots = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$

Tương tư khai triển

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}), \text{ ch } z = \frac{1}{2} (e^z + e^{-z}), \text{ sh } z = \frac{1}{2} (e^z - e^{-z})$$

3.
$$(1+z)^m = 1 + mz + \frac{m(m-1)}{2!}z^2 + \square = \sum_{n=0}^{+\infty} \frac{m(m-1)...(m-n+1)}{n!}z^n$$

 $V\acute{o}i m = 1$

$$\frac{1}{1+z} = 1 - z + z^2 - \Box = \sum_{n=0}^{+\infty} (-1)^n z^n$$

Thay z bằng z^2

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - \Box = \sum_{n=0}^{+\infty} (-1)^n z^{2n}$$

Suy ra

$$\ln(1+z) = \int_{0}^{z} \frac{d\zeta}{1+\zeta} = \sum_{n=0}^{+\infty} (-1)^{n} \int_{0}^{z} \zeta^{n} d\zeta = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n+1} z^{n+1}$$

$$\arctan z = \int_{0}^{z} \frac{d\zeta}{1+\zeta^{2}} = \sum_{n=0}^{+\infty} (-1)^{n} \int_{0}^{z} \zeta^{2n} d\zeta = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2n+1} z^{2n+1}$$

Đ4. Không điểm của hàm giải tích

<u>Dinh lý</u> Cho hàm f giải tích trong miền D và dãy số $(z_n)_{n\in Z}$ hội tụ trên miền D đến điểm $a \in D$. Nếu $\forall n \in Z$, $f(z_n) = 0$ thì $\exists R > 0$ sao cho $\forall z \in B(a, R)$, f(z) = 0.

Chứng minh

Khai triển Taylor hàm f trong lân cận điểm a

$$\forall \ z \in \ B(a,\,R), \, f(z) = \sum_{n=0}^{+\infty} c_{\,_{n}} (z-a)^{n} \ v \acute{o}i \ c_{0} = f(a) = \lim_{+\infty} f(z_{n}) = 0$$

Kí hiệu

$$m(a) = \min\{n \in \angle : c_n \neq 0\} \ge 0$$
 (4.4.1)

Nếu m(a) = m thì

$$f(z) = \sum_{n=m}^{+\infty} c_n (z-a)^n = (z-a)^m \sum_{k=0}^{+\infty} c_{m+k} (z-a)^k = (z-a)^m g(z)$$

với hàm g(z) giải tích trong lân cận điểm a và g(a) = $c_m \neq 0$.

Do đó

$$\exists \ \epsilon > 0 : \forall \ z \in B(a, \epsilon), \ g(z) \neq 0$$

Suy ra

$$\forall z_n \in B(a, \varepsilon), f(z_n) = (z_n - a)^m g(z_n) \neq 0!$$

Điều này mâu thuẫn với giả thiết.

Vậy
$$m(a) = +\infty$$
. Tức là $\forall z \in B(a, R), f(z) = 0$

▶

Hệ quả 1 Cho hàm f giải tích trên miền D. Kí hiệu $Z(f) = \{z \in D : f(z) = 0\}$.

Khi đó Z(f) = D hoặc Z(f) có không quá đếm được phần tử.

Chứng minh

Kí hiệu A là các điểm tụ của tập Z(f) ta có

$$A \subset Z(f) \subset D$$
 và tập A là tập đóng

Theo định nghĩa

$$\forall a \in A, \exists d\tilde{a}y \ z_n \xrightarrow{Z(f)} a \ va \ f(z_n) = 0$$

Theo định lý trên

$$\exists \ \varepsilon > 0 : \forall \ z \in B(a, \varepsilon), f(z) = 0 \implies B(a, \varepsilon) \subset A \implies t_{\alpha}^2 p A l_{\alpha}^2 t_{\alpha}^2 p m_{\alpha}^2.$$

Do tập D liên thông và tập $A \subset D$ vừa đóng và vừa mở nên

Hoặc $A = \emptyset$ suy ra Z(f) có không quá đếm được phần tử

Hoặc
$$A = D$$
 suy ra $Z(f) = D$

Nhân xét Theo kết quả trên thì không điểm của hàm giải tích không đồng nhất bằng không luôn là không điểm cô lập. Tức là $\exists R > 0 : \forall z \in B(a, R) - \{a\}, f(z) \neq 0$

>>

<u>**Hệ quả 2**</u> Cho các hàm f, g giải tích trong miền D và dãy số $(z_n)_{n\in \angle}$ hội tụ trên miền D đến điểm $a \in D$. Nếu $\forall n \in \angle$, $f(z_n) = g(z_n)$ thì $\forall z \in D$, f(z) = g(z).

Chứng minh

Đặt h(z) = f(z) - g(z), theo giả thiết Z(h) có đếm được phần tử, suy ra Z(h) = D Tức là

$$\forall z \in D, h(z) = f(z) - g(z) = 0$$

<u>Hệ quả 3</u> Cho điểm a là không điểm của hàm f giải tích và không đồng nhất bằng không trong miền D. Khi đó

$$\exists ! \ m \in \angle^*, \exists \ R > 0 : \forall \ z \in B(a, R), f(z) = (z - a)^m g(z)$$
 (4.4.2)

với g là hàm giải tích trong hình tròn B(a, R) và $g(a) \neq 0$. Điểm a gọi là *không điểm cấp* m của hàm f.

Chứng minh

Khai triển Taylor hàm f trong lân cận điểm a

$$f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n \text{ v\'oi } c_0 = f(a) = 0$$

Theo các kết quả trên điểm a là không điểm cô lập nên

$$\exists R > 0 : \forall z \in B(a, R) - \{a\}, f(z) \neq 0$$

Theo công thức (4.4.1) nếu m(a) = $+\infty$ thì \forall z \in B(a, R), f(z) = 0 trái với giả thiết. Suy ra m(a) = m $\in \angle^*$. Tức là

$$f(z) = \sum_{n=m}^{+\infty} c_n (z-a)^n = (z-a)^m \sum_{k=0}^{+\infty} c_{m+k} (z-a)^k = (z-a)^m g(z)$$

với g là hàm giải tích trong hình tròn B(a, R) và $g(a) = c_m \neq 0$

Đ5. Chuỗi Laurent

<u>Dinh lý</u> Cho miền $D = \{ r < | z - a | < R \}$ và hàm f liên tục trên \overline{D} , giải tích trong D. Với mọi $\rho \in (r, R)$ kí hiệu $B = B(a, \rho) \cap D$ và $\Gamma = \partial B^{+}(a, \rho)$.

$$\forall \ z \in B, \ f(z) = \sum_{-\infty}^{+\infty} c_n (z - a)^n \ \text{v\'oi} \ c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta, \ n \in 9 \ (4.5.1)$$

Công thức (4.5.1) gọi là khai triển Laurent của hàm f tại điểm a.

Chứng minh

Với mọi z ∈ B cố định. Theo công thức tích phân Cauchy

$$f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$
 (1)

Với mọi $\zeta \in \Gamma_1$: $|\zeta - a| = r$, ta có $q = |\zeta - a| / |z - a| < 1$ suy ra khai triển

$$\frac{1}{z-\zeta} = \frac{1}{z-a} \frac{1}{1 - \frac{\zeta - a}{z-a}} = \sum_{n=0}^{+\infty} \frac{1}{z-a} \left(\frac{\zeta - a}{z-a} \right)^n$$

$$va \frac{f(\zeta)}{z-\zeta} = \sum_{n=0}^{+\infty} \frac{f(\zeta)}{z-a} \left(\frac{\zeta-a}{z-a}\right)^n$$
 (2)

Với mọi $\zeta \in \Gamma_2$: $|\zeta - a| = R$, ta có $q = |z - a| / |\zeta - a| < 1$ suy ra khai triển

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \frac{1}{1 - \frac{z - a}{\zeta - a}} = \sum_{n=0}^{+\infty} \frac{1}{\zeta - a} \left(\frac{z - a}{\zeta - a} \right)^n \text{ và } \frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{+\infty} \frac{f(\zeta)}{\zeta - a} \left(\frac{z - a}{\zeta - a} \right)^n$$
(3)

Do hàm f liên tục trên \overline{D} nên có module bị chặn suy ra chuỗi (2) hội tụ đều trên Γ_1 và chuỗi (3) hội tụ đều trên Γ_2 . Ngoài ra theo định lý Cauchy

$$\oint_{\Gamma_{1}} \frac{f(\zeta)}{(\zeta - a)^{n}} d\zeta = \oint_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n}} d\zeta = \oint_{\Gamma_{2}} \frac{f(\zeta)}{(\zeta - a)^{n}} d\zeta$$

Tích phân từng từ công thức (1) suy ra công thức (4.5.1)

Người ta thường viết chuỗi Laurent dưới dạng

$$\sum_{-\infty}^{+\infty} c_n (z-a)^n = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$
 (4.5.2)

>>

Phần luỹ thừa dương gọi là *phần đều*, phần luỹ thừa âm gọi là *phần chính*. Nếu hàm f giải tích trong cả hình tròn B(a, R) thì \forall n \geq 1, c_{-n} = 0. Khi đó chuỗi Laurent (4.5.1) trở thành chuỗi Taylor (4.3.1)

Ví du

1. Khai triển hàm
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 trên miền $D = \{ 1 < |z| < 2 \}$
$$f(z) = -\frac{1}{2} \frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \frac{1}{1 - \frac{1}{z}} = -\frac{1}{2} (1 + ... + \frac{1}{2^n} z^n + ...) - \frac{1}{z} (1 + ... + \frac{1}{z^n} + ...)$$

2. Khai triển hàm $f(z) = \sin \frac{z}{z-1}$ thành chuỗi tâm tại a = 1

$$f(z) = \sin 1 \cos \frac{1}{z - 1} + \cos 1 \sin \frac{1}{z - 1}$$

$$\sin \frac{1}{z - 1} = \frac{1}{z - 1} - \frac{1}{3!} \frac{1}{(z - 1)^3} + \dots \quad \text{và} \quad \cos \frac{1}{z - 1} = 1 - \frac{1}{2!} \frac{1}{(z - 1)^2} + \dots$$

Đ6. Phân loại điểm bất thường

• Điểm a gọi là *điểm bất thường* nếu hàm f không giải tích tại a. Nếu $\exists \ \epsilon > 0$ sao cho hàm f giải tích trong B(a, ϵ) - {a} thì điểm a gọi là điểm bất thường cô lập. Có thể phân loại các điểm bất thường cô lập như sau. Nếu $\lim_{z\to a} f(z) = L$ thì điểm a gọi là *bất thường*

bỏ qua được. Nếu $\lim_{z\to a} f(z) = \infty$ thì điểm a gọi là *cực điểm*. Nếu $\lim_{z\to a} f(z)$ không tồn tại thì điểm a gọi là *bất thường cốt yếu*.

Giả sử trong lân cận điểm a bất thường cô lập, hàm f có khai triển Laurent

$$f(z) = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$
 (4.6.1)

<u>Dinh lý</u> Kí hiệu m(a) = min{ $n \in 9 : c_n \neq 0$ }

- 1. Điểm a là bất thường bỏ qua được khi và chỉ khi $m(a) \ge 0$
- 2. Điểm a là cưc điểm cấp m khi và chỉ khi m(a) < 0
- 3. Điểm a là bất thường cốt yếu khi và chỉ khi $m(a) = -\infty$ *Chứng minh*

1.
$$m(a) = m \ge 0 \Rightarrow f(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n \xrightarrow{z \to a} c_0 = L$$

Ngược lại, hàm $g(z) = \begin{cases} f(z) & z \neq 0 \\ L & z = 0 \end{cases}$ giải tích trong $B(a, \epsilon)$. Khai triển Taylor tại điểm a

$$g(z) = \sum_{n=0}^{+\infty} c_n (z-a)^n \text{ v\'oi } c_0 = L \Rightarrow m(a) \ge 0$$

$$2. \ m(a) = -m < 0 \Rightarrow f(z) = \sum_{n=1}^{m} \frac{c_{-n}}{\left(z-a\right)^{n}} \ + \sum_{n=1}^{+\infty} c_{n} \left(z-a\right)^{n} \xrightarrow[z \to a]{} \infty$$

Ngược lại, hàm
$$g(z) = \begin{cases} \frac{1}{f(z)} & z \neq a \\ 0 & z = a \end{cases}$$
 giải tích trong $B(a, \epsilon)$ và $g(a) = 0$.

Theo hê quả 3, Đ4

 $g(z)=(z-a)^mh(z)$ với $m\in \angle^*$ và h là hàm giải tích trong $B(a,\epsilon),$ $h(a)\neq 0$ Suy ra

$$f(z) = \frac{1}{(z-a)^m} \frac{1}{h(z)} = \frac{1}{(z-a)^m} \sum_{n=0}^{+\infty} b_n (z-a)^n \text{ v\'oi } c_{-m} = b_0 \neq 0 \implies m(a) = -m$$

3. m(a) =
$$-\infty$$
 \Rightarrow f(z) = $\sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} + \sum_{n=0}^{+\infty} c_n (z-a)^n$ không có giới hạn khi $z \to a$

Ngược lại, phản chứng trên cơ sở 1. và 2.

<u>**Hệ quả 1**</u> (Định lý Sokhotsky) Điểm a là điểm bất thường cốt yếu của hàm f khi và chỉ khi với mọi số phức A có dãy số phức $(z_n)_{n\in Z}$ hội tụ đến a sao cho dãy số phức $(f(z_n))_{n\in Z}$ hội tụ đến A. Tức là tập $f(B(a, \varepsilon))$ trù mật trong tập \forall .

• Hàm f giải tích trên toàn tập số phức gọi là *hàm nguyên*. Như vậy hàm nguyên chỉ có một điểm bất thường duy nhất là $z = \infty$. Đổi biến $\zeta = \frac{1}{z}$ suy ra hàm $g(\zeta) = f(z)$ có duy

>>

nhất điểm bất thường cô lập là $\zeta = 0$. Khai triển Laurent hàm $g(\zeta)$ trong lân cận $\zeta = 0$

$$g(\zeta) = \sum_{n=1}^{+\infty} \frac{c_{-n}}{\zeta^n} + c_0 + \sum_{n=1}^{+\infty} c_n \zeta^n = \sum_{n=1}^{+\infty} c_{-n} z^n + c_0 + \sum_{n=1}^{+\infty} \frac{c_n}{z^n}$$
(4.6.2)

Do
$$f(z) \xrightarrow{0} f(a)$$
 nên $\forall n \ge 1, c_n = 0$

Từ đó suy ra kết quả sau đây.

<u>Hê quả 2</u> Kí hiệu $m_f(\infty) = -m_g(0)$

- 1. Hàm f là hàm hằng khi và chi khi $m(\infty) = 0$
- 2. Hàm f là đa thức bậc n khi và chi khi $m(\infty) = n$
- 3. Hàm f là hàm siêu việt khi và chi khi $m(\infty) = +\infty$
- Hàm f(z) gọi là *hàm phân hình* nếu nó chỉ có hữu han cực điểm trên tập ∀

<u>**Hệ quả 3**</u> Hàm f(z) là hàm phân hình khi và chỉ khi hàm f(z) là phân thức hữu tỷ <u>Chứng minh</u>

Rõ ràng hàm hữu tỷ $f(z) = \frac{P(z)}{Q(z)}$ có hữu hạn cực điểm là các không điểm của Q(z)

Ngược lại, giả sử hàm f(z) có m cực điểm trên \forall . Khi đó

$$f(z) = \frac{h(z)}{(z - z_1)..(z - z_m)}$$

với hàm h giải tích trên toàn \forall và $m_h(\infty) = n$ suy ra h(z) = P(z)

Đ7. Thặng dư

>>

• Cho hàm f giải tích trong B(a, R) - {a}, liên tục trên $\Gamma = \partial B(a, R)$. Tích phân

$$\operatorname{Resf}(a) = \frac{1}{2\pi i} \oint_{\Gamma} f(z) dz \tag{4.7.1}$$

gọi là *thặng dư* của hàm f tại điểm a.

Theo định lý Cauchy, nếu a là điểm thường của hàm f thì Resf(a) = 0. Nếu a là điểm bất thường cô lập thì Resf(a) không phụ thuộc vào đường cong Γ đơn, kín, tron từng khúc, bao điểm a, định hướng dương và nằm gọn trong hình tròn B(a, R).

Cho hàm f giải tích trong miền $R < |z| < \infty$, liên tục trên $\Gamma = \partial B(0, R)$. Tích phân

$$\operatorname{Resf}(\infty) = \frac{1}{2\pi i} \oint_{r} f(z) dz \tag{4.7.2}$$

gọi là thặng dư của hàm f tại điểm ∞.

>>

<u>Định lý</u> Thăng dư của hàm f tại điểm a là hệ số c_{-1} của khai triển Laurent tại điểm đó.

$$Resf(a) = c_{-1} \tag{4.7.3}$$

Chứng minh

Khai triển Laurent hàm f tại điểm a

$$f(z) = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-a)^n} \; + \; \sum_{n=0}^{+\infty} c_{\,_n} (z-a)^n \; \text{v\'oi} \; c_{\,_n} = \frac{1}{2\pi i} \oint\limits_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} \, d\zeta \; , \, n \in 9$$

So sánh với công thức (4.7.1) suy ra công thức (4.7.3)

Hệ quả Cho điểm a là cực điểm cấp m của hàm f

$$Resf(a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{(m-1)}}{dz^{(m-1)}} [(z-a)^m f(z)]$$
 (4.7.4)

Chứng minh

Khai triển Laurent tại cực điểm a cấp m

$$f(z) = \frac{c_{-m}}{(z-a)^m} + ... + \frac{c_{-l}}{z-a} + \sum_{n=0}^{+\infty} c_n (z-a)^n$$

Suy ra

$$\begin{split} (z-a)^m f(z) &= c_{-m} + ... + c_{-1} (z-a)^{m-1} + c_0 (z-a)^m + \\ [(z-a)^m f(z)]^{(m-1)} &= (m-1)! c_{-1} + m(m-1)..2 c_0 (z-a) + ... \end{split}$$

Chuyển qua giới han hai vế

$$\lim_{z \to a} [(z - a)^m f(z)]^{(m-1)} = (m - 1)! c_{-1}$$

Ví dụ Hàm $f(z) = \frac{e^z}{(z^2 + 1)^3}$ có hai cực điểm cấp 3 là ±i

Resf(i) =
$$\frac{1}{2!} \lim_{z \to i} \left(\frac{e^2}{(z+i)^3} \right)'' = \frac{1}{2} \left(\frac{e^z}{(z+i)^3} - \frac{6e^z}{(z+i)^4} + \frac{12e^z}{(z+i)^5} \right)_{z=i} = \frac{1}{16} e^i (3-2i)$$

<u>Dinh lý</u> Cho hàm f có các cực điểm hữu hạn là a_k với k = 1...n

$$\sum_{k=1}^{n} \operatorname{Resf}(a_{k}) + \operatorname{Resf}(\infty) = 0$$
(4.7.5)

Chứng minh

Gọi Γ_k với k=1...n là các đường tròn $|z-a_k|=R_k$ đủ bé để chỉ bao riêng từng điểm a_k và Γ là đường tròn |z|=R đủ lớn để bao hết tất cả các đường tròn Γ_k . Theo công thức tích phân Cauchy

$$\oint_{\Gamma} f(z)dz = \sum_{k=1}^{n} \oint_{\Gamma_{k}} f(z)dz = - \oint_{\Gamma^{-}} f(z)dz$$

Chuyển vế sau đó chia hai vế cho $2\pi i$ suy ra công thức (4.7.5)

<u>Hệ quả</u> Cho đường cong Γ đơn, kín, tron từng khúc, định hướng dương và hàm f liên tục trên Γ , giải tích trong D_{Γ} ngoại trừ hữu hạn cực điểm $a_k \in D_{\Gamma}$ với k = 1...n

$$\oint_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Re} \operatorname{sf}(a_{k})$$
(4.7.6)

$$\underline{\text{V\'i du}} \text{ T\'inh I} = \oint_{\Gamma} \frac{\sin z dz}{(z^2 + 1)(z + 3)} \text{ v\'oi } \Gamma \text{ là đường tròn } |z| = 2 \text{ dịnh hướng dương}$$

Hàm f(z) có hai cực điểm $z=\pm i$ nằm trong miền D_{Γ} và một cực điểm z=-3 nằm ngoài miền D_{Γ} .

Resf(-i) =
$$\lim_{z \to -i} \frac{\sin z}{(z - i)(z - 3)} = \frac{\sin(-i)}{-2 + 6i}$$

Resf(i) = $\lim_{z \to i} \frac{\sin z}{(z + i)(z - 3)} = \frac{\sin(i)}{-2 - 6i}$
I = $2\pi i [\text{Resf}(-i) + \text{Resf}(i)] = -\frac{3}{5} \sin(i)$

Đ8. Thặng dư Loga

• Cho hàm f giải tích và khác không trong B(a, R) - {a}, liên tục trên $\Gamma = \partial B(a, R)$. Tích phân

$$ResLnf(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f'(z)}{f(z)} dz$$
 (4.8.1)

gọi là thặng dư loga của hàm f tại điểm a. Theo định nghĩa trên

$$ResLnf(a) = Resg(a) \ trong \ \texttt{d\'o} \ \ g(z) = [Ln \ f(z)]' = \frac{f'(z)}{f(z)} \ \ v\'oi \ z \in \ B(a,R) - \{a\}$$

Định lý Với các kí hiệu như trên

- 1. Nếu a là không điểm cấp n của hàm thì ResLnf(a) = n
- 2. Nếu b là cực điểm cấp m của hàm f thì ResLnf(b) = -m

Chứng minh

1. Theo hệ quả 3, Đ4

 $\forall \ z \in \ B(a,R), \ f(z) = (z-a)^n h(z) \ v \acute{o}i \ h(z) \ l \grave{a} \ h \grave{a}m \ giải tích trong \ B(a,R) \ v \grave{a} \ h(a) \neq 0$ Đạo hàm hàm f suy ra

$$f'(z) = n(z - a)^{n-1}h(z) + (z - a)^{n}h(z)$$

$$g(z) = \frac{n}{z - a} + \frac{h'(z)}{h(z)} \text{ v\'oi } \frac{h'(z)}{h(z)} \text{ là hàm giải tích trong B(a, R)}$$

Suy ra

$$ResLnf(a) = c_{-1}(g) = n$$

2. Theo hệ quả 3, Đ5

$$\forall z \in B(a, R), f(z) = \frac{h(z)}{(z-a)^m}$$
 với h(z) là hàm giải tích trong B(a, R) và h(a) $\neq 0$

Đao hàm hàm f suy ra

$$f'(z) = \frac{-m}{(z-a)^{m+1}}h(z) + \frac{1}{(z-a)^m}h'(z)$$

$$g(z) = \frac{-m}{z-a} + \frac{h'(z)}{h(z)} \text{ v\'oi } \frac{h'(z)}{h(z)} \text{ là hàm giải tích trong B(a, R)}$$

Suy ra

$$ResLnf(a) = c_{-1}(g) = -m$$

<u>Hệ quả 1</u> Cho đường cong Γ đơn, kín, tron từng khúc, định hướng dương và hàm f liên tục trên Γ , có các không điểm a_k cấp n_k với k=1...p và giải tích trong D_{Γ} ngoại trừ các cực điểm b_i cấp m_i với j=1...q

$$\frac{1}{2\pi i} \oint_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{p} n_k - \sum_{j=1}^{q} m_j = N - M$$
 (4.8.2)

Chứng minh

Kết hợp định lý trên, công thức tích phân Cauchy và lập luận tương tự hệ quả 1, Đ7 ▶

• Ta xem một không điểm cấp n là n không điểm đơn trùng nhau và một cực điểm cấp m là m cực điểm đơn trùng nhau. Theo công thức Newtown - Leibniz và định nghĩa hàm logarit phức

$$\oint_{\Gamma} \frac{f'(z)}{f(z)} dz = \oint_{\Gamma} d[\ln f(z)] = \Delta_{\Gamma} Lnf(z) = \Delta_{\Gamma} \ln|f(z)| + i\Delta_{\Gamma} Argf(z) = i\Delta_{\Gamma} Argf(z)$$

Kết hợp với công thức (4.8.2) suy ra hệ quả sau đây.

<u>Hê quả 2</u> (Nguyên lý Argument) Số gia của argument của hàm f khi z chạy hết một vòng trên đường cong Γ kín, tron từng khúc và định hướng dương bằng 2π nhân với hiệu số của số không điểm trừ đi số cực điểm của hàm f nằm trong miền D_{Γ} . Tức là

$$\Delta_{\Gamma} Argf(z) = 2\pi (N - M) \tag{4.8.3}$$

<u>Hệ quả 3</u> (Định lý Rouché) Cho đường cong Γ đơn, kín, trơn từng khúc, định hướng dương và các hàm f, g liên tục trên Γ , giải tích trong D_{Γ} . Kí hiệu $N_{\Gamma}(f)$ là số không điểm của hàm f nằm trong D_{Γ} . Khi đó nếu $\forall z \in \Gamma$, |f(z)| > |g(z)| thì $N_{\Gamma}(f+g) = N_{\Gamma}(f)$. Chứng minh

Theo giả thiết
$$\forall z \in \Gamma, \left| \frac{g(z)}{f(z)} \right| < 1 \Rightarrow \Delta_{\Gamma} Arg(1 + \frac{g(z)}{f(z)}) = 0$$

Suy ra

$$\begin{split} N_{\Gamma}(f+g) &= \frac{1}{2\pi} \Delta_{\Gamma} \text{Arg}[f(z) + g(z)] \\ &= \frac{1}{2\pi} \Delta_{\Gamma} \text{Arg}[f(z)(1 + \frac{g(z)}{f(z)})] \\ &= \frac{1}{2\pi} \Delta_{\Gamma} \text{Arg}f(z) + \frac{1}{2\pi} \Delta_{\Gamma} \text{Arg}(1 + \frac{g(z)}{f(z)}) = N_{\Gamma}(f) \end{split}$$

<u>**Hệ quả 4**</u> (Định lý D' Alembert - Gauss) Mọi đa thức hệ số phức bậc n có đúng n không điểm phức trong đó không điểm bội k tính là k không điểm.

Chứng minh

Giả sử

$$P(z) = a_0 + a_1 z + ... + z^n \text{ v\'oi } a_k \in \forall$$

Kí hiệu

$$f(z) = z^n$$
, $g(z) = a_0 + ... + a_{n-1}z^{n-1}$, $M = Max\{|a_k|, k = 0...(n-1)\}$ và $R = nM + 1$

Trên đường tròn Γ : |z| = R

$$|g(z)| \le M(1 + ... + R^{n-1}) \le nMR^{n-1} < R^n = |f(z)|$$

Theo hệ quả 3

$$N_{\Gamma}(P) = N_{\Gamma}(f+g) = N_{\Gamma}(f) = n$$

Đ9. Các ứng dung thặng dư

<u>Đinh lý</u> (Bổ đề Jordan) Cho đường cong $\Gamma_R = \{ | z | = R, \text{Im} z \ge \beta \}$ và hàm f giải tích trong nửa mặt phẳng $D = \{ \text{Im} z > \beta \}$ ngoại trừ hữu hạn điểm bất thường. Khi đó ta có

1. Nếu
$$\lim_{z\to\infty}zf(z)=0$$
 thì $\lim_{R\to+\infty}\int\limits_{\Gamma_R}f(z)dz=0$ (4.9.1)

2. Nếu
$$\lim_{z\to\infty} f(z) = 0$$
 thì $\forall \lambda > 0$, $\lim_{R\to +\infty} \int\limits_{\Gamma_R} f(z) e^{i\lambda z} dz = 0$ (4.9.2)

Chứng minh

1. Từ giả thiết suy ra

$$\forall \ z \in \Gamma_R, |\ zf(z)\ | \leq M \xrightarrow[R \to +\infty]{} 0 \iff |\ f(z)\ | \leq \frac{M}{R}$$

Suy ra

$$\left| \int_{\Gamma_{R}} f(z) dz \right| \leq \int_{\Gamma} \left| f(z) \right| ds = \frac{M}{R} R(\pi + 2\theta) \xrightarrow[R \to +\infty]{} 0$$

2. Từ giả thiết suy ra

$$\forall z \in \Gamma_R, |f(z)| \leq M \xrightarrow{R \to +\infty} 0$$

Suy ra

$$\left| \int_{\Gamma_R} e^{i\lambda z} f(z) dz \right| \leq \int_{\Gamma_1} \left| e^{i\lambda z} f(z) \right| ds + \int_{\Gamma_2} \left| e^{i\lambda z} f(z) \right| ds + \int_{\Gamma_3} \left| e^{i\lambda z} f(z) \right| ds$$

Ước lượng tích phân, ta có

$$\begin{split} & \int\limits_{\Gamma_1} \left| e^{i\lambda z} f(z) \right| ds \, + \, \int\limits_{\Gamma_3} \left| e^{i\lambda z} f(z) \right| ds \, \leq 2 M e^{-\lambda y} R \theta \leq 2 M e^{-\lambda l \beta l} \beta \, \xrightarrow[R \to +\infty]{} 0 \\ & \int\limits_{\Gamma_3} \left| e^{i\lambda z} f(z) \right| ds \, = M R \int\limits_0^\pi e^{-\lambda R \sin t} \, dt \, = \pi M R e^{-\lambda R \sin \alpha} \, \xrightarrow[R \to +\infty]{} 0 \, \text{ with } \alpha \in (0, \, \pi) \end{split}$$

<u>Hệ quả 1</u> Cho f(z) là phân thức hữu tỷ sao cho bậc của mẫu số lớn hơn bậc tử số ít nhất là hai đơn vị, có các cực điểm a_k với k=1...p nằm trong nửa mặt phẳng trên và có các cực điểm đơn b_i với j=1...q nằm trên trục thực. Khi đó ta có

$$\int_{1}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{p} Re sf(a_{k}) + \pi i \sum_{j=1}^{q} Re sf(b_{j})$$
(4.9.3)

Chứng minh

 Để đơn giản, xét trường hợp hàm f có một cực điểm a thuộc nửa mặt phẳng trên và một cực điểm đơn b thuộc trục thực. Trường hợp tổng quát chứng minh tương tự. Kí hiêu

$$\begin{split} &\Gamma_R: \mid z \mid = R, \, Imz > 0, \quad \Gamma_\rho: \mid z \mid = \rho, \, Imz > 0 \\ &\Gamma = \ \Gamma_R \cup [-R, \, b - \rho] \cup \Gamma_\rho \cup [b + \rho, \, R] \end{split}$$

Theo công thức (4.7.6)

$$\oint\limits_{\Gamma} f(z) dz \, = \, \int\limits_{\Gamma_R} f(z) dz \, + \, \int\limits_{[-R,b-\rho]} f(z) dz \, + \, \int\limits_{\Gamma_\rho} f(z) dz \, + \, \int\limits_{[b+\rho,R]} f(z) dz \, = 2\pi i Res f(a)$$

Kết hợp với công thức (4.9.1) suy ra

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to +\infty, \rho \to 0} \int_{[-R, b-\rho]} f(z)dz + \lim_{R \to +\infty, \rho \to 0} \int_{[b+\rho, R]} f(z)dz$$

$$= 2\pi i Resf(a) - \lim_{\rho \to 0} \int_{\Gamma_{\rho}} f(z)dz$$
(1)

Do b là cực điểm đơn nên $f(z)=\frac{c_{-l}}{z-b}+g(z)$ với g(z) giải tích trong lân cận điểm b Suy ra hàm g(z) bị chặn trên Γ_{p}

$$\exists \ M > 0 : \forall \ z \in \Gamma_{\rho} \ , \mid g(z) \mid < M \quad \Rightarrow \quad \left| \int_{\Gamma_{\rho}} g(z) dz \right| \leq M \pi \rho \xrightarrow[\rho \to 0]{} 0 \qquad (2)$$

Tham số hoá cung Γ_{ρ} : $z = b + \rho e^{it}$ với $t \in [\pi, 0]$.

Tính trực tiếp

$$\int_{\Gamma_0} \frac{c_{-1}}{z - b} dz = -\pi i \operatorname{Resf}(b)$$
(3)

Thay (2) và (3) vào (1) suy ra công thức (4.9.1)

 $\underline{\text{Ví du}} \text{ Tính tích phân I} = \int_{-\infty}^{+\infty} \frac{x-1}{(x^2+1)^2} dx$

Phân thức $f(z) = \frac{z-1}{(z^2+1)^2}$ có cực điểm kép a = i thuộc nửa mặt phẳng trên

Resf(i) =
$$\lim_{z \to i} \left(\frac{z - 1}{(z + i)^2} \right)' = \left(\frac{1}{(z + i)^2} - \frac{2(z - 1)}{(z + i)^3} \right)_{z = i} = \frac{1}{4}i$$

Suy ra $I = 2\pi i Resf(i) = -\frac{\pi}{2}$

Hệ quả 2 Cho f(z) là phân thức hữu sao cho bậc của mẫu số lớn hơn bậc tử số ít nhất là một đơn vị, có các cực điểm a_k với k=1...p nằm trong nửa mặt phẳng trên và có các cực điểm đơn b_i với j=1...q nằm trên trục thực. Kí hiệu $g(z)=f(z)e^{i\alpha z}$ ta có

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = 2\pi i \sum_{k=1}^{p} Re \, sg(a_k) + \pi i \sum_{j=1}^{q} Re \, sg(b_j)$$
 (4.9.4)

>>

Chứng minh

Lập luận tương tự như chứng minh hệ quả 1.

 $\underline{Vi\ du}\ T$ ính tích phân $I = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} Im \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} dx$

Phân thức $f(z) = \frac{1}{z}$ có cực điểm đơn b = 0 thuộc trục thực và $Resg(0) = \lim_{z \to 0} e^{iz} = 1$

Suy ra $I = \frac{1}{2} \operatorname{Im}(\pi i) = \frac{\pi}{2}$

<u>Hệ quả 3</u> Cho đường cong $\Gamma_R = \{ |z| = R, Rez \le \alpha \}$ và hàm f giải tích trong nửa mặt phẳng $D = \{ Rez < \alpha \}$ ngoại trừ hữu hạn điểm bất thường và $\lim_{n \to \infty} f(z) = 0$.

$$\forall \ \lambda > 0, \ \lim_{R \to +\infty} \int_{\Gamma_R} f(z) e^{\lambda z} dz = 0 \tag{4.9.5}$$

Chứng minh

Suy ra từ đinh lý bằng cách quay mặt phẳng một góc $\pi/2$.

Hệ quả 4 Với các giả thiết như hệ quả 3, kí hiệu $g(z) = e^{\lambda z} f(z)$

$$\forall \lambda > 0, \ I(\lambda) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{\lambda z} f(z) dz = \sum_{\text{Re } a_k < \alpha} \text{Re } sg(a_k)$$
 (4.9.6)

Chứng minh

Kí hiệu

 $\Gamma = \Gamma_R \cup [\alpha - i\beta, \alpha + i\beta]$ với R đủ lớn để bao hết các cực điểm của hàm f(z)Theo công thức (4.7.6)

$$\frac{1}{2\pi i} \oint_{\Gamma} e^{\lambda z} f(z) dz = \frac{1}{2\pi i} \int_{\Gamma_{P}} f(z) e^{\lambda z} dz + \frac{1}{2\pi i} \int_{\alpha - i\beta}^{\alpha + i\beta} e^{\lambda z} f(z) dz = \sum_{\text{Re } a_{k} < \alpha} \text{Re } \text{sg}(a_{k})$$

Suy ra

Cho $\beta \to +\infty$ và sử dụng hệ quả 3 chúng ta nhận được công thức (4.9.6)

Bài tâp chương 4

1. Tìm miền hội tụ và tổng của các chuỗi sau đây.

a.
$$\sum_{n=0}^{+\infty} \frac{1}{(z-2)^n}$$

b.
$$\sum_{n=1}^{+\infty} \frac{ni^{n} 2^{n}}{(z+i)^{n+1}}$$

b.
$$\sum_{n=1}^{+\infty} \frac{ni^{n} 2^{n}}{(z+i)^{n+1}}$$
 c.
$$\sum_{n=-\infty}^{-2} (n+1)i^{n+2} (z-i)^{n}$$

- Tìm miền hội tụ của chuỗi Marlaurin của các hàm sau đây.
- a. $\frac{z^2 2z + 19}{(z-3)^2(2z+5)}$ b. $\frac{z}{4+z^2}$

c. $\frac{3z+1}{(z-2)^3}$

- d. $(1 z)e^{-2z}$
- e. $\sin^3 z$

- f. $\ln(1 + z^2)$
- 3. Tìm miền hội tu của chuỗi Taylor tai điểm a của các hàm sau đây.
- a. $\frac{1}{a-2}$, a = 1
- b. $\frac{1}{z^2 6z + 5}$, a = 3 c. $\frac{1}{1 z}$, a = 3i
- d. $\sin(z^2 + 4z)$, a = -2 e. $\frac{1}{z^2}$, a = 2
- f. e^{z^2-4z+1} , a=2
- 4. Xác định cấp không điểm của các hàm số sau đây.

a.
$$(z^2 + 9)(z^2 + 4)^5$$
 b. $(1 - e^z)(z^2 - 4)^3$

b.
$$(1 - e^z)(z^2 - 4)^3$$

c.
$$\frac{\sin^3 z}{z}$$

5. Tìm hàm f giải tích tai z = 0 và thoả mãn

a.
$$f(\frac{1}{n}) = \frac{1}{3n+1}, n \in \angle^*$$

a.
$$f(\frac{1}{n}) = \frac{1}{3n+1}$$
, $n \in \mathbb{Z}^*$ b. $f(\pm \frac{1}{n}) = \frac{n^2+1}{n^4}$, $n \in \mathbb{Z}^*$ c. $f(\frac{1}{n}) = \sin \frac{\pi n}{2}$, $n \in \mathbb{Z}^*$

c.
$$f(\frac{1}{n}) = \sin \frac{\pi n}{2}, n \in \angle$$

6. Tìm miền hội tu của chuỗi Laurent tai điểm a của các hàm sau đây.

a.
$$\frac{1}{z-2}$$
, $a = 0$ và $a = \infty$

b.
$$\frac{1}{z(1-z)}$$
, $a = 0$, $a = 1$ và $a = \infty$

c.
$$z^2 e^{\frac{1}{z}}$$
, $a = 0$ và $a = \infty$

d.
$$\cos \frac{z^2 - 4z}{(z-2)^2}$$
, $a = 2$

7. Tìm chuỗi Laurent trong của hàm f trong các miền D sau đây.

a.
$$\frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$
, $1 < |z| < 2$

b.
$$\frac{1+z}{(z-1)(z-2)}$$
, $1 < |z| < 2$

d.
$$\frac{z}{(z^2+1)(z-3)}$$
, $1 < |z| < 3$

d.
$$\frac{\sin z}{1-z}$$
, $|z| < 1 \text{ và } |z| > 1$

e.
$$\frac{z+1}{z^2+z-2}$$
, $|z| < 1$, $1 < |z| < 2$ và $|z| > 2$

8. Xác định cấp của điểm bất thường (kể cả ∞) của các hàm sau đây.

a.
$$\frac{z^5}{(1-z)^2}$$

a.
$$\frac{z^5}{(1-z)^2}$$
 b. $\frac{z+2}{z(z+1)(z-1)^3}$ c. $\sin z + \frac{1}{z^2}$

c.
$$\sin z + \frac{1}{z^2}$$

d.
$$\cos \frac{1}{z+i}$$

e.
$$\frac{1}{\sin z}$$

f.
$$e^{-z}\cos\frac{1}{z}$$

e.
$$\frac{1}{\sin z}$$
 f. $e^{-z}\cos\frac{1}{z}$ g. $\frac{1-\cos z}{z^2}$ h. $\frac{\sin z}{z^4}$

h.
$$\frac{\sin z}{z^4}$$

9. Tính thăng dư của các hàm sau đây.

a.
$$\frac{z^2+1}{z-2}$$

a.
$$\frac{z^2 + 1}{z - 2}$$
 b. $\frac{z^2}{(z^2 + 1)^2}$ c. $\frac{z^4}{(z + 1)^3}$ d. $\frac{z^{2n}}{(z - 1)^n}$

c.
$$\frac{z^4}{(z+1)^3}$$

d.
$$\frac{z^{2n}}{(z-1)^n}$$

e.
$$\frac{1}{z(1-e^{2z})}$$

e.
$$\frac{1}{z(1-e^{2z})}$$
 f. $\frac{e^z}{z^2(z^2+4)}$ g. $\frac{\cos z}{z^3}$ h. $\frac{1}{\sin z - \frac{1}{2}}$

g.
$$\frac{\cos z}{z^3}$$

$$h. \frac{1}{\sin z - \frac{1}{2}}$$

i.
$$\frac{\cos z}{1-z^2}$$

j.
$$\sin \frac{1}{z}$$

k.
$$\frac{\text{shz}}{(z-1)^2(z^2+1)}$$
 l. $\frac{e^z}{z^2(z^4+4)}$

1.
$$\frac{e^z}{z^2(z^4+4)}$$

10. Tính tích phân hàm f trên đường cong kín Γ định hướng dương sau đây.

a.
$$\oint_{\Gamma} \frac{zdz}{(z-1)(z-2)}$$
, $\Gamma: |z-2| = 2$

b.
$$\oint_{\Gamma} \frac{e^z dz}{z^2 + 4}$$
, $\Gamma : |z| = 3$

c.
$$\oint_{\Gamma} \frac{dz}{z^4 + 1}$$
, $\Gamma : x^2 + y^2 = 2x + 2y - 1$ d. $\oint_{\Gamma} \frac{dz}{(z - 1)^2 (z^2 + 1)}$, $\Gamma : x^2 + y^2 = 2x$

d.
$$\oint_{\Gamma} \frac{dz}{(z-1)^2(z^2+1)}$$
, $\Gamma: x^2 + y^2 = 2x$

e.
$$\oint_{\Gamma} \frac{dz}{(z-3)(z^5+1)}, \Gamma: |z| = 2$$

f.
$$\oint \frac{dz}{z^{10} + 1}$$
, $\Gamma : |z| = 2$

g.
$$\oint_{\Gamma} \left(\sin \frac{1}{z} \right)^{n} dz, \Gamma : |z| = 1$$

h.
$$\oint \frac{dz}{z^3 + 1}$$
, $\Gamma : 4x^2 + 2y^2 = 3$

11. Tính các tích phân xác định sau đây

a.
$$\int_{0}^{2\pi} \frac{d\phi}{1 + \cos\phi}$$

b.
$$\int_{0}^{\pi} \frac{d\phi}{(1 + \cos \phi)^{2}}$$
 c. $\int_{-\pi}^{\pi} \frac{d\phi}{13 + 12 \sin \phi}$

c.
$$\int_{-\pi}^{\pi} \frac{d\varphi}{13 + 12\sin\varphi}$$

12. Tìm số nghiệm của các đa thức trong miền D sau đây.

a.
$$z^5 + 2z^2 + 8z + 1$$
, $|z| < 1$ và $1 \le |z| < 2$

b.
$$z^3 - 5z + 1$$
, $|z| < 1$, $1 \le |z| < 2$ và $2 \le |z| < 3$

c.
$$z^4 + z^3 + 3z^2 + z + 2$$
, Rez > 0

d.
$$2z^4 - 3z^3 + 3z^2 - z + 1$$
, Rez > 0 và Imz > 0

13. Tính các tích phân suy rộng sau đây.

a.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)^2}$$

b.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx$$

c.
$$\int_{0}^{+\infty} \frac{dx}{(x^2+1)(x^2+4)}$$

d.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^n}$$
 e.
$$\int_{0}^{+\infty} \frac{x \cos dx}{(x^2+4)^2}$$

e.
$$\int_{0}^{+\infty} \frac{x \cos dx}{(x^2 + 4)^2}$$

f.
$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 - 2x + 10} dx$$

g.
$$\int_{-\infty}^{+\infty} \left(\frac{\sin x}{x} \right)^2 dx$$
 h.
$$\int_{0}^{+\infty} \frac{\ln^2 x}{1 + x^2} dx$$

h.
$$\int_{0}^{+\infty} \frac{\ln^2 x}{1+x^2} dx$$

i.
$$\int_{0}^{+\infty} \frac{x^2 \ln x}{(1+x^2)^2} dx$$

j.
$$\int_{-1}^{1} \frac{dx}{\sqrt[3]{(1-x)(1+x)^2}}$$
 k. $\int_{0}^{1} \frac{\sqrt{x(1-x)}}{x+1} dx$

$$k. \int_0^1 \frac{\sqrt{x(1-x)}}{x+1} dx$$

Biến đổi fourier và Biến đổi laplace

Đ1. Tích phân suy rộng

• Trong chương này chúng ta kí hiệu

 $F(3, \forall) = \{ f: 3 \rightarrow \forall \}$ là đại số các hàm biến thực, trị phức

$$\| f \|_{\infty} = \sup_{R} |f(t)| \text{ và } \| f \|_{1} = \int_{-\infty}^{+\infty} |f(t)| dt \text{ là các chuẩn trên } F(3, \forall)$$

 $L^{\infty} = \{ f \in F(3, \forall) : || f ||_{\infty} \le +\infty \}$ là đại số các hàm có module bị chặn

 $C_0=\{\ f\in \ C(3,\,\forall): \lim_{t\to\infty}f(t)=0\ \}$ là đại số các hàm liên tục, dẫn về không tại ∞

 $L^1 = \{ f \in F(3, \forall) : || f ||_1 \le +\infty \}$ là đại số các hàm khả tích tuyệt đối trên 3 Chúng ta đã biết rằng hàm khả tích tuyệt đối là liên tục từng khúc, dần về không tại vô cùng và bi chặn trên toàn 3. Tức là

$$L^1 \subset CM_0 \subset L^{\infty}$$

• Cho khoảng I \subset 3 và hàm F : I \times 3 \rightarrow \forall , (x, t) \mapsto F(x, t) khả tích trên 3 với mỗi x \in I cố định. Tích phân suy rộng

$$f(f) = \int_{-\infty}^{+\infty} F(x,t)dt \text{ v\'oi } x \in I$$
 (5.1.1)

gọi là $\emph{bị}$ chặn đều trên khoảng I nếu có hàm $\phi \in L^1$ sao cho

$$\forall (x, t) \in I \times 3, \ \Box F(x, t) \ \Box \leq |\varphi(t)|$$

Định lý Tích phân suy rộng bị chặn đều có các tính chất sau đây

- 1. Nếu hàm F(x, t) liên tục trên miền $I \times 3$ thì hàm f(x) liên tục trên khoảng I
- 2. Nếu các hàm F(x, t), $\frac{\partial F}{\partial x}$ liên tục trên miền $I \times 3$ và tích phân $\int_{-\infty}^{+\infty} \frac{\partial F}{\partial x}(x, t) dt$ cũng bị

chăn đều trên khoảng I thì hàm f(x) có đao hàm trên khoảng I

$$\forall x \in I, \frac{d}{dx} \int_{-\infty}^{+\infty} F(x,t)dt = \int_{-\infty}^{+\infty} \frac{\partial F}{\partial x}(x,t)dt$$

3. Nếu hàm F(x, t) liên tục trên $I \times 3$ thì hàm f(x) khả tích địa phương trên khoảng I

$$\forall [a, b] \subset I, \int_{a}^{b} f(x) dx = \int_{-\infty}^{+\infty} \left(\int_{a}^{b} F(x, t) dx \right) dt$$

• Kí hiệu

$$\eta(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} \text{ gọi là hàm nhảy đơn vị}$$

$$\delta(t, h) = \frac{1}{h} \left[\eta(t) - \eta(t - h) \right] = \begin{cases} \frac{1}{h} & 0 < t \le h \\ 0 & t \le 0, t > h \end{cases} \text{ gọi là hàm xung}$$

$$\delta(t) = \lim_{h \to 0} \delta(t, h) = \begin{cases} + \infty & t = 0 \\ 0 & t \ne 0 \end{cases} \text{ gọi là hàm xung Dirac}$$
 (5.1.2)

Đinh lý Hàm xung Dirac có các tính chất sau đây.

$$1. \int_{-\infty}^{+\infty} \delta(t) dt = 1$$

2. Với mọi hàm f liên tục tại 0
$$\int_{-\tau}^{+\infty} f(t)\delta(t)dt = f(0)$$

3.
$$\forall t \in 3, \eta(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = \int_{0}^{+\infty} \delta(t - \tau) d\tau \text{ và } \delta(t) = \eta'(t)$$

1.
$$\int_{-\infty}^{+\infty} \delta(t) dt = \int_{-\infty}^{+\infty} \lim_{h \to 0} \delta(t, h) dt = \lim_{h \to 0} \int_{0}^{h} \delta(t, h) dt = 1$$

$$2. \qquad \int\limits_{-\infty}^{+\infty} f(t)\delta(t)dt \, = \, \int\limits_{-\infty}^{+\infty} f(t) \lim_{h \to 0} \delta(t,h)dt \, = \, \lim_{h \to 0} \, \frac{1}{h} \int\limits_{0}^{h} f(t)dt = f(0)$$

$$3. \text{ X\'et t\'ich phân} \qquad \qquad \eta(t,h) = \int\limits_{-\infty}^t \delta(\tau,h) d\tau = \begin{cases} 0 & t \leq 0 \\ \frac{t}{h} & 0 < t < h \\ 1 & t \geq h \end{cases}$$

Chuyển qua giới hạn $\eta(t) = \lim_{h \to 0} \eta(t, h)$

Từ đó suy ra các hệ thức khác.

• Cho các hàm f, $g \in F(3, \forall)$. Tích phân

$$\forall t \in 3, (f*g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$
 (5.1.3)

gọi là *tích chập* của hàm f và hàm g.

Định lý Tích chập có các tính chất sau đây.

1.
$$\forall f, g \in L^1$$
 $f * g \in L^1 \text{ và } || f * g ||_1 \le || f ||_1 || g ||_1$
2. $\forall f, g \in L^1$ $f * g = g * f$

2.
$$\forall f, g \in L^1$$
 $f * g = g * f$

3.
$$\forall f \in L^1 \cap C(3, \forall)$$
 $f * \delta = \delta * f = f$

4.
$$\forall f, g, h \in L^1, \lambda \in \forall (\lambda f + g) * h = \lambda f * h + g * h$$

Chứng minh

1. Do hàm g khả tích tuyệt đối nên bị chặn trên 3

$$\forall (t, \tau) \in 3^2, |f(\tau)g(t - \tau)| \le ||g||_{\infty} |f(\tau)|$$

Do f khả tích tuyệt đối nên tích phân suy rộng (f*g)(t) hội tụ tuyệt đối và bị chặn đều

$$\parallel f \ast g \parallel_{_{1}} = \int\limits_{_{-\infty}}^{_{+\infty}} \int\limits_{_{-\infty}}^{_{+\infty}} f(\tau)g(t-\tau)d\tau \Bigg| dt \ \leq \int\limits_{_{-\infty}}^{_{+\infty}} |f(\tau)| \Bigg(\int\limits_{_{-\infty}}^{_{+\infty}} |g(t-\tau)| \, dt \Bigg) d\tau \ = \parallel f \parallel_{_{1}} \parallel g \parallel_{_{1}}$$

2.
$$\forall t \in 3, (f*g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{+\infty} f(t-\theta)g(\theta)d\theta = (g*f)(t)$$

$$3. \qquad \forall \ t \in \ 3, \ (f*\delta)(t) = \int\limits_{-\infty}^{+\infty} f(t-\tau) \lim_{h \to 0} \delta(\tau,h) d\tau = \lim_{h \to 0} \frac{1}{h} \int\limits_{0}^{h} f(t-\tau) d\tau = f(t)$$

4. Suy ra từ tính tuyến tính của tích phân

Đ2. Các bổ đề Fourier

>>

<u>Bổ đề 1</u> Cho hàm $f \in L^1$. Với mỗi $f \in 3$ cố định kí hiệu $f_x(t) = f(t - x)$ với mọi $t \in 3$ Khi đó ánh xạ $\Phi : 3 \to L^1$, $f \to f_x$ là liên tục theo chuẩn.

Chứng minh

Ta chứng minh rằng

$$\forall \ \epsilon > 0, \exists \ \delta > 0: \ \forall \ x, y \in 3, |x - y| < \delta \Rightarrow || \Phi(x) - \Phi(y) ||_1 < \epsilon$$

Thật vậy

Do hàm f khả tích tuyệt đối nên

$$\forall \ \epsilon > 0, \exists \ N > 0: \int_{|t| > N} |f(t)| dt < \frac{1}{4} \epsilon$$

Trong khoảng [-N, N] hàm f có hữu hạn điểm gián đoạn loại một

$$a_1 = -N < a_2 < ... < a_m = N \text{ v\'oi } \Delta = Max\{|a_k - a_{k-1}| : k = 1...m\}$$

và trên mỗi khoảng con $[a_{k-1}, a_k]$ hàm có thể thác triển thành hàm liên tục đều

$$\forall \ \epsilon > 0, \exists \ \delta > 0 : | \ x - y \ | < \delta \Rightarrow | \ f(x) - f(y) \ | < \frac{\epsilon}{2m\Delta}$$

Từ đó suy ra ước lượng

$$\begin{split} \| \, \Phi(x) - \Phi(y) \, \|_1 &= \int\limits_{-\infty}^{+\infty} \!\! \left| f(t-x) - f(t-y) \right| \! dt \\ &\leq \int\limits_{|t| \geq N} \!\! \left| f(t-x) - f(t-y) \right| \! dt \, + \, \sum_{k=1}^m \int\limits_{a_{k-1}}^{a_k} \!\! \left| f(t-x) - f(t-y) \right| \! dt \, < \epsilon \quad \ \text{ wh} \end{split}$$

• Với mọi $(\lambda, t, x) \in 3^*_{+} \times 3 \times 3$ kí hiệu

$$H(t) = e^{-itt} \text{ và } h_{\lambda}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(\lambda t) e^{ixt} dt \qquad (5.2.1)$$

Bổ đề 2 Các hàm H(t) và $h_{\lambda}(x)$ có các tính chất sau đây

1.
$$\forall t \in 3$$
, $0 < H(t) \le 1$ $\lim_{\lambda \to 0} H(\lambda t) = 1$ $\lim_{\lambda \to +\infty} H(\lambda t) = 0$

2.
$$\forall (\lambda, x) \in 3^*_+ \times 3$$
 $h_{\lambda}(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2}$ $\int_{-\infty}^{+\infty} h_{\lambda}(x) dx = 1$

$$3. \qquad \forall \ f \in L^1 \qquad \qquad (f * h_\lambda)(x) = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f(s) e^{ist} ds \Bigg) H(\lambda t) e^{ixt} dt$$

4.
$$\forall g \in L^{\infty}$$
 liên tục tại $x \in 3$ $\lim_{\lambda \to 0} (g * h_{\lambda})(f) = g(x)$

5.
$$\forall f \in L^1$$
 $\lim_{\lambda \to 0} ||f * h_{\lambda} - f||_1 = 0$

Chứng minh

- 1. Suy ra từ định nghĩa hàm H(t)
- 2. Tính trưc tiếp tích phân (5.2.1)

$$h_{\lambda}(x) = \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{(\lambda + ix)t} dt + \int_{0}^{+\infty} e^{(-\lambda + ix)t} dt \right) = \frac{1}{2\pi} \left(\frac{1}{\lambda + ix} - \frac{1}{-\lambda + ix} \right) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2}$$

3. Theo định nghĩa tích chập và hàm h_{λ}

$$(f*h_{\lambda})(x) = \int\limits_{-\infty}^{+\infty} f(x-y)h_{\lambda}(y)dy = \frac{1}{2\pi}\int\limits_{-\infty}^{+\infty} \left(\int\limits_{-\infty}^{+\infty} f(x-y)e^{i(x-y)t}dy\right) H(\lambda t)e^{ixt}dt$$

Đổi biến s = x - y ở tích phân bên trong nhận được kết quả.

4. Theo đinh nghĩa tích châp và hàm h_{λ}

$$(g*h_{\lambda})(x)=\int\limits_{-\infty}^{+\infty}g(x-y)h_{\lambda}(y)dy=\int\limits_{-\infty}^{+\infty}g(x-\lambda s)h_{1}(s)ds\ v\acute{o}i\ y=\lambda s$$

Ước lương trưc tiếp

$$\forall (x, s) \in 3^2, |g(x - \lambda s)h_1(s)| \le ||g||_{\infty} |h_1(s)|$$

Suy ra tích phân trên bị chặn đều. Do hàm g liên tục nên có thể chuyển giới hạn qua dấu tích phân.

$$(g * h_{\lambda})(x) \xrightarrow{\lambda \to 0} \int_{-\infty}^{+\infty} g(x)h_1(s)ds = g(x)$$

5. Kí hiêu

$$\forall y \in 3, g(y) = \| f_y - f \|_1 = \int_{-\infty}^{+\infty} |f(x - y) - f(x)| dx \le 2 \| f \|_1$$

Theo bổ đề 1. hàm g liên tục tại y=0 với g(0)=0 và bị chặn trên toàn 3 Từ định nghĩa chuẩn, tích chập và hàm h_{λ}

$$\begin{aligned} \| f * h_{\lambda} - f \|_{1} &= \int_{-\infty}^{+\infty} |(f * h_{\lambda})(x) - f(x)| dx = \int_{-\infty}^{+\infty} |\int_{-\infty}^{+\infty} (f(x - y) - f(x))h_{\lambda}(y)dy dx \\ &\leq \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(x - y) - f(x)| dx \right) h_{\lambda}(y)dy = (g * h_{\lambda})(0) \xrightarrow{\lambda \to 0} g(0) = 0 \end{aligned}$$

>>

Suy ra từ tính chất 4. của bổ đề 2.

Đ3. Biến đổi Fourier

• Cho các hàm f, $F \in L^1$ kí hiệu

$$\forall \ \omega \in 3, \hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt$$
 (5.3.1)

$$\forall t \in 3, \ \breve{F}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{it\omega} d\omega \tag{5.3.2}$$

Ngoài ra hàm f và hàm g gọi là *bằng nhau hầu khắp nơi* trên 3 nếu

$$\int_{\mathbb{R}} |f(x) - g(x)| dx = 0$$

Đinh lý Với các kí hiệu như trên

- 1. $\forall f \in L^1$ $\hat{f} \in C_0 \cap L^1$ và $\|\hat{f}\|_{\infty} \le \|f\|_1$
- 2. $\forall F \in L^1 \quad \breve{F} \in C_0 \cap L^1 \text{ và } || \breve{F} ||_{\infty} \le || f ||_1$
- 3. Nếu $\hat{f} = F$ thì $\breve{F} = f$

Chứng minh

1. Theo giả thiết hàm f khả tích tuyệt đối và ta có

$$\forall (\omega, t) \in 3^2$$
, $|f(t)e^{-i\omega t}| = |f(t)|$

Suy ra tích phân (5.3.1) bị chặn đều. Do hàm $f(t)e^{-i\omega t}$ liên tục nên hàm $\widehat{f}(\omega)$ liên tục. Biến đổi tích phân

$$\widehat{f}\left(\omega\right) = \int\limits_{-\infty}^{+\infty} f(t) e^{-i\omega(t+\frac{\pi}{\omega})} dt \ = \ -\int\limits_{-\infty}^{+\infty} f(t-\frac{\pi}{\omega}) e^{-i\omega t} dt$$

Cộng hai vế với công thức (5.3.1) suy ra

$$2|\widehat{f}(\omega)| \leq \int_{-\infty}^{+\infty} |f(t) - f(t - \frac{\pi}{\omega})| e^{-i\omega t} |dt| = ||f - f_{\frac{\pi}{\omega}}||_{1} \xrightarrow{\omega \to +\infty} 0$$

Do ánh xạ Φ liên tục theo chuẩn theo bổ đề 1.

Ngoài ra, ta có

$$\|\widehat{f}\|_{\infty} = \sup_{R} |\widehat{f}(\omega)| \le \sup_{R} \int_{0}^{+\infty} |f(t)| \|e^{-i\omega t}| dt = \|f\|_{1}$$

2. Kí hiệu $F_t(t) = F(-t)$ với $t \in 3$. Biến đổi công thức (5.3.2)

$$\bar{F}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(-\sigma) e^{-it\sigma} d\sigma = \frac{1}{2\pi} \hat{F}_{-}(t) \text{ v\'et } \sigma = -\omega$$

Do hàm $F \in L^1$ nên hàm $F \in L^1$ và kết quả được suy ra từ tính chất 1. của định lý.

3. Theo tính chất 3. của bổ đề 2 và tính chất của tích phân bị chặn đều

$$(f*h_{\lambda})(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \widehat{f}(\omega) H(\lambda \omega) e^{it\omega} d\omega = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} F(\omega) H(\lambda \omega) e^{it\omega} d\omega \xrightarrow[\lambda \to 0]{} \widecheck{F}(t)$$

Mặt khác theo tính chất 5. của theo bổ đề 2

$$\parallel f*h_{\lambda} - f \parallel_{_1} \xrightarrow[\lambda \to 0]{} 0$$

Do tính chất của sự hội tụ theo chuẩn

$$\forall \ t \in 3, (f*h_{\lambda})(t) \xrightarrow[\lambda \to 0]{h.k.n} f(t)$$

Do tính duy nhất của giới hạn suy ra

$$\breve{F} \stackrel{h.k.n}{=} f$$

• Cặp ánh xạ

$$F: L^1 \to C_0, f \mapsto \hat{f} \text{ và } F^{-1}: L^1 \to C_0, F \mapsto \check{F}$$
 (5.3.3)

xác định theo cặp công thức (5.3.1) và (5.3.2) gọi là cặp *biến đổi Fourier* thuận nghịch. Do tính chất 3. của định lý sau này chúng ta lấy $F = \hat{f}$ và đồng nhất $f \equiv F$. Hàm f gọi là *hàm gốc*, hàm F gọi là *hàm ảnh* và kí hiệu là $f \leftrightarrow F$.

Ví dụ

1.
$$f(t) = e^{-at}\eta(t) \iff \hat{f}(\omega) = \int_{-a}^{+\infty} \eta(t)e^{-(a+i\omega)t}dt = \frac{1}{a+i\omega} \text{ v\'eti Re } a > 0$$

$$f(t) = e^{-\lambda ItI} (\lambda > 0) \iff \widehat{f}(\omega) = \int_{0}^{0} e^{(\lambda - i\omega)t} dt + \int_{0}^{+\infty} e^{-(\lambda + i\omega)t} dt = \frac{1}{\lambda - i\omega} + \frac{1}{\lambda + i\omega} = \frac{2\lambda}{\lambda^{2} + \omega^{2}}$$

$$2. \; \delta(t) \; \longleftrightarrow u(\omega) = \int\limits_{-\infty}^{+\infty} \delta(t) e^{-i\omega t} dt = 1 \; \; v\grave{a} \; \; u(t) = \int\limits_{-\infty}^{+\infty} \delta(\omega) e^{it\omega} d\omega = 1 \\ \longleftrightarrow F(\omega) = 2\pi \delta(\omega)$$

3.
$$f(t) = \begin{cases} 1 & |t| \le T \\ 0 & |t| > T \end{cases} \iff \hat{f}(\omega) = \int_{-T}^{T} e^{-i\omega t} dt = 2 \frac{\sin T\omega}{\omega}$$

$$F(\omega) = 2\frac{\sin\omega T}{\omega} \iff \breve{F}(t) = \frac{1}{2\pi}\int\limits_{-\infty}^{+\infty} 2\frac{\sin\omega T}{\omega} e^{i\omega t} d\omega \equiv f(t) \text{ ngoại trừ các điểm } t = \pm T$$

$$F(\omega) = \begin{cases} 1 & |\omega| \le T \\ 0 & |\omega| > T \end{cases} \iff \breve{F}(t) = \frac{1}{2\pi} \int_{T}^{T} e^{it\omega} d\omega = \frac{\sin Tt}{\pi t} \equiv \frac{1}{2\pi} \hat{f}(t)$$

Đ4. Tính chất của biến đổi Fourier

- Giả sử các hàm mà chúng ta nói đến sau đây khả tích tuyệt đối và do đó luôn có ảnh và nghịch ảnh Fourier. Kí hiệu f ↔ F với f(t) là hàm gốc và F(ω) là hàm ảnh tương ứng.
- <u>1. Tuyến tính</u> Nếu hàm f và hàm g khả tích tuyệt đối thì với mọi số phức λ hàm $\lambda f + g$ cũng khả tích tuyệt đối.

$$\forall \lambda \in \forall, \lambda f(t) + g(t) \leftrightarrow \lambda F(z) + G(z)$$
 (5.4.1)

Chứng minh

$$\int_{-\infty}^{+\infty} (\lambda f(t) + g(t)) e^{-i\omega t} dt = \lambda \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt + \int_{-\infty}^{+\infty} g(t) e^{-i\omega t} dt$$

2. Dịch chuyển gốc Nếu hàm f khả tích tuyệt đối thì với mọi số thực α hàm f(t - α) cũng khả tích tuyệt đối.

$$\forall \alpha \in 3, \ f(t - \alpha) \leftrightarrow e^{-i\alpha\omega} F(\omega)$$
 (5.4.2)

Chứng minh

$$\int\limits_{-\infty}^{+\infty} f(t-\alpha) e^{-i\omega t} dt = e^{-i\alpha\omega} \int\limits_{-\infty}^{+\infty} f(t-\alpha) e^{-i\omega(t-\alpha)} d(t-\alpha) \qquad \text{ D\'{o}i$ biến $\tau=t-\alpha$} \qquad \text{$\blacktriangleright\!\!\!\!+}$$

<u>3. Đồng dạng</u> Nếu hàm f khả tích tuyệt đối thì với mọi số thực α khác không hàm f(α t) cũng khả tích tuyệt đối.

$$\forall \alpha \in 3^*, \ f(\alpha t) \leftrightarrow \frac{1}{|\alpha|} F(\frac{\omega}{\alpha}) \ va f(-t) \leftrightarrow F(-\omega)$$
 (5.4.3)

Chứng minh

$$\int\limits_{-\infty}^{+\infty} f(\alpha t) e^{-i\omega t} dt = \frac{sgn(\alpha)}{\alpha} \int\limits_{-\infty}^{+\infty} f(\alpha t) e^{-i\frac{\omega}{\alpha}(\alpha t)} d(\alpha t) \qquad \qquad \text{D\'{o}i bi\'en } \tau = \alpha t \qquad \qquad \text{ } \blacktriangleright \text{ } \downarrow$$

$$\underline{\text{V\'i du}} \text{ Cho } f(t) = \begin{cases} 1 & |t| \leq 1 \\ 0 & |t| > 1 \end{cases} \iff F(\omega) = 2 \frac{\sin \omega}{\omega}$$

$$\text{Ta c\'o} \ \ g(t) = f(3t+3) - \frac{1}{2} \, f(t+3) \ \longleftrightarrow G(\omega) = 2 e^{i3\omega} \frac{\sin(\omega/3)}{\omega} \ - \ e^{i3\omega} \frac{\sin\omega}{\omega}$$

4. Đao hàm gốc Giả sử hàm f và các đao hàm của nó khả tích tuyệt đối.

$$f'(t) \longleftrightarrow \int\limits_{-\infty}^{+\infty} f'(t) e^{-i\omega t} dt \ = \ f(t) e^{-i\omega t} \bigg|_{-\infty}^{+\infty} + \ (i\omega) \int\limits_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt \ = \ (i\omega) \int\limits_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

Qui nap suy ra công thức thứ hai.

<u>5. Tích phân gốc</u> Giả sử hàm f và tích phân của nó khả tích tuyệt đối.

$$\int_{-\infty}^{t} f(\tau) d\tau \leftrightarrow \frac{1}{i\omega} F(\omega) + \pi F(0) \delta(\omega)$$
 (5.4.5)

Chứng minh

$$\begin{split} &K\text{i} \text{ hiệu} & g(t) = \int\limits_{-\infty}^{t} f(\tau) d\tau \iff G(\omega), \, g'(t) = f(t) \\ &\text{Theo tính chất 4} & \forall \, \omega \in \, 3, \, (i\omega) G(\omega) = F(\omega) \\ &\text{Suy ra} & G(\omega) = \frac{1}{i\omega} F(\omega) \, \text{với } \omega \neq 0 \, \text{và } G(0) = \pi F(0) \delta(\omega) \end{split}$$

<u>6. ảnh của tích chập</u> Nếu hàm f và hàm g khả tích tuyệt đối thì tích chập của chúng cũng khả tích tuyệt đối.

$$(f*g)(t) \leftrightarrow F(\omega)G(\omega)$$
 (5.4.6)

Chứng minh

$$\begin{split} (f*g)(t) &\longleftrightarrow \int\limits_{-\infty}^{+\infty} \left(\int\limits_{-\infty}^{+\infty} f(t-\tau)g(\tau) d\tau \right) \! e^{-i\omega t} dt \ = \int\limits_{-\infty}^{+\infty} \left(\int\limits_{-\infty}^{+\infty} f(t-\tau)e^{-i\omega(t-\tau)} dt \right) \! g(\tau) e^{-i\omega \tau} d\tau \\ &= F(\omega)G(\omega) \end{split}$$

7. Hệ thức Parseval Giả sử hàm f và hàm ảnh F của nó khả tích tuyệt đối.

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega$$
 (5.4.7)

Chứng minh

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \int_{-\infty}^{+\infty} f(t) f^*(t) dt = \int_{-\infty}^{+\infty} f(t) \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} F^*(\omega) e^{-it\omega} d\omega \right) dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) e^{-it\omega} dt \right) F^*(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega$$

Ví du

$$1. \; \delta(t) \longleftrightarrow 1 \Rightarrow \eta(t) = \int\limits_{-t}^{t} \delta(\tau) d\tau \; \longleftrightarrow \frac{1}{i\omega} + \pi \delta(\omega) \; \text{và} \; \delta(t) = \frac{d\eta}{dt} \; \longleftrightarrow i\omega (\frac{1}{i\omega} \, + \pi \delta(\omega)) \equiv 1$$

2.
$$g(t) = \int_{-\infty}^{t} f(\tau) d\tau = (f * \eta)(t) \iff F(\omega)(\frac{1}{i\omega} + \pi \delta(\omega)) = \frac{1}{i\omega} F(\omega) + \pi F(0)\delta(\omega)$$

$$\begin{aligned} 3. \ f(t) &= [e^{-\lambda t} \eta(t)] * [e^{-\mu t} \eta(t)] \ (\lambda \neq \mu) \ \leftrightarrow F(\omega) = \frac{1}{\lambda + i\omega} \frac{1}{\mu + i\omega} = \frac{1}{\mu - \lambda} (\frac{1}{\lambda + i\omega} - \frac{1}{\mu + i\omega}) \\ &\leftrightarrow \widehat{F}(t) = \frac{1}{\mu - \lambda} (e^{-\lambda t} - e^{-\mu t}) \eta(t) \equiv \ f(t) \end{aligned}$$

Công thức đối ngẫu

So sánh cặp công thức Fourier (5.3.1) và (5.3.2)

$$f(t) \leftrightarrow F(\omega) \Rightarrow F(t) \leftrightarrow 2\pi \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\sigma) e^{i(-\omega)\sigma} d\sigma = 2\pi \, \breve{F}(-\omega) \equiv 2\pi f(-\omega)$$

$$F(\omega) \leftrightarrow f(t) \Rightarrow f(\omega) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\tau) e^{-i(-t)\tau} d\tau = \frac{1}{2\pi} \ddot{F}(-t) \equiv \frac{1}{2\pi} f(-t)$$
 (5.4.8)

Từ đó suy ra tính đối ngẫu của cặp biến đổi Fourier. Nếu biến đổi Fourier thuận có tính chất α thì biến đối Fourier nghịch cũng có tính chất đó chỉ sai khác một hằng số 2π và biến số có dấu ngược lại. Chúng ta có các công thức sau đây.

2'. Dịch chuyển ảnh
$$\forall \alpha \in 3$$
 $e^{i\alpha t} f(t) \leftrightarrow F(\omega - \alpha)$ (5.4.2')

3'. Đồng dạng
$$\forall \alpha \in 3^* \quad \frac{1}{|\alpha|} f(\frac{t}{\alpha}) \leftrightarrow F(\alpha \omega)$$
 (5.4.3')

4'. Đạo hàm ảnh
$$-itf(t) \leftrightarrow F'(\omega) \text{ và } \forall n \in \angle, (-it)^n f(t) \leftrightarrow F^{(n)}(\omega)$$
 (5.4.4')

5'. Tích phân ảnh
$$-\frac{1}{it} f(t) + \pi f(0) \delta(t) \leftrightarrow \int\limits_{-\infty}^{\infty} F(\sigma) d\sigma \tag{5.4.5'}$$

6'. ảnh của tích
$$f(t)g(t) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\sigma)G(\omega - \sigma) d\sigma = \frac{1}{2\pi} (F*G)(\omega) \qquad (5.5.6')$$

Ví du

1.
$$f(t) = e^{-\lambda |t|} (\lambda > 0) \leftrightarrow F(\omega) = \frac{2\lambda}{\lambda^2 + \omega^2} \implies g(t) = \frac{2\lambda}{\lambda^2 + t^2} \leftrightarrow G(\omega) = 2\pi e^{-\lambda |\omega|}$$

$$2. \qquad F(\omega) = \frac{1}{a+i\omega}(Rea>0) \longleftrightarrow f(t) = e^{-at}\eta(t) \Rightarrow G(\omega) = e^{-a\omega}\eta(\omega) \longleftrightarrow g(t) = \frac{1}{2\pi}\,\frac{1}{a-it}$$

$$3. \hspace{0.5cm} u(t) = 1 \longleftrightarrow 2\pi\delta(\omega) \ \Rightarrow \ \forall \ \alpha \in \ 3, \, e^{i\alpha_t} \longleftrightarrow 2\pi\delta(\omega - \alpha)$$

$$f(t) = \sin\alpha t = \frac{1}{2i}e^{i\alpha t} - \frac{1}{2i}e^{-i\alpha t} \iff F(\omega) = \frac{\pi}{i}\delta(\omega - \alpha) - \frac{\pi}{i}\delta(\omega + \alpha)$$

$$G(\omega) = \sin\alpha\omega \leftrightarrow g(t) = \frac{1}{2\pi} (\frac{\pi}{i} \delta(-t - \alpha) + \frac{\pi}{i} \delta(-t + \alpha))$$

Đ5. Tìm ảnh, gốc của biến đổi Fourier

• Từ cặp công thức đối ngẫu (5.4.8) suy ra rằng nếu chúng ta có được một công thức cho hàm ảnh thì sẽ có công thức tương tự cho hàm gốc và ngược lại. Vì vậy trong mục này chúng ta chỉ đưa ra công thức tìm ảnh hoặc công thức tìm gốc.

ảnh của hàm tuần hoàn

Do hàm mũ $g(\omega) = e^{-i\omega t}$ tuần hoàn với chu kỳ $T = 2\pi$ nên hàm ảnh $F(\omega)$ luôn là hàm tuần hoàn với chu kỳ $T = 2\pi$. Ngược lại, ta có

$$\forall \ \alpha \in \ 3, \ F_1(\omega) = 2\pi \delta(\omega - \alpha) \longleftrightarrow f_1(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 2\pi \delta(\omega - \alpha) e^{-i\omega t} dt \ = e^{i\alpha t}$$

Nếu hàm f(t) là hàm tuần hoàn chu kỳ T, khai triển Fourier

$$f(t) = \sum_{-\infty}^{+\infty} a_k e^{ik\alpha t} \quad v\acute{o}i \ a_k = \frac{1}{T} \int_0^T f(t) e^{-ik\alpha t} dt \,, \ k \in 9 \ v\grave{a} \ \alpha = \frac{2\pi}{T}$$

Do tính tuyến tính

$$f(t) \leftrightarrow F(\omega) = \sum_{k=0}^{+\infty} a_k 2\pi \delta(\omega - k\alpha)$$
 (5.5.1)

Ví du

1. Hàm
$$f(t) = \sum_{-\infty}^{+\infty} \delta(t - nT)$$
 tuần hoàn chu kỳ là T và \forall k \in 9, $a_k = \frac{1}{T}$ suy ra

$$f(t) = \sum_{-\infty}^{+\infty} \delta(t - nT) \iff F(\omega) = \frac{2\pi}{T} \sum_{-\infty}^{+\infty} \delta(\omega - k \frac{2\pi}{T})$$

2. Ta có
$$f(t) = cos\alpha t = \frac{1}{2}e^{-i\alpha t} + \frac{1}{2}e^{i\alpha t} \iff F(\omega) = \pi\delta(\omega + \alpha) + \pi\delta(\omega - \alpha)$$
 suy ra

$$f(t)g(t) \longleftrightarrow \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} F(\sigma)G(\omega - \sigma) d\sigma \, = \frac{1}{2} \, G(\omega + \alpha) \, + \, \frac{1}{2} \, G(\omega - \alpha) \, \, \text{v\'oi} \, \, g(t) \longleftrightarrow G(\omega)$$

ảnh của hàm trị thực

Kí hiệu $f^*(t)$ là liên hợp phức của hàm f(t). Khi đó nếu hàm f khả tích tuyệt đối thì hàm f^* cũng khả tích tuyệt đối và ta có

$$\int_{-\infty}^{+\infty} f^*(t) e^{-i\omega t} dt = \left(\int_{-\infty}^{+\infty} f(t) e^{-i(-\omega)t} dt \right)^* = F^*(-\omega)$$

Từ đó suy ra công thức

$$f^*(t) \leftrightarrow F^*(-\omega)$$
 (5.5.2)

• Giả sử

$$\forall \ \omega \in 3, \ F(\omega) = R(\omega) + iI(\omega) = |F(\omega)| \ e^{\Phi(\omega)}$$

Nếu f(t) là hàm tri thực

$$f^*(t) = f(t) \implies F^*(-\omega) = R(-\omega) - iI(-\omega) \equiv F(\omega) = R(\omega) + iI(\omega)$$

Từ đó suy ra

$$R(-\omega) = R(\omega), I(-\omega) = -I(\omega) \quad \text{và} \quad |F(-\omega)| = |F(\omega)|, \Phi(-\omega) = -\Phi(\omega)$$

$$(5.5.3)$$

Nếu f(t) là hàm trị thực và chẩn

 $f^*(t) = f(t)$ và f(-t) = f(t) \Rightarrow $F^*(-\omega) = F(-\omega) = F(\omega)$ là hàm trị thực và chẩn Nếu f(t) là hàm trị thực và lẻ

 $f^*(t) = f(t)$ và $f(-t) = -f(t) \implies F^*(-\omega) = -F(-\omega) = F(\omega)$ là hàm thuần ảo và lẻ Nếu f(t) là hàm trị thực bất kì, phân tích

$$f(t) = \frac{1}{2} [(f(t) + f(-t)] + \frac{1}{2} [f(t) - f(-t)] = Ef(t) + Of(t)$$

với Ef là hàm chẵn và Of là hàm lẻ. Dùng tính tuyến tính và các kết quả ở trên

$$f(t) \leftrightarrow R(\omega) + iI(\omega) = F(\omega)$$
 (5.5.4)

$$\underline{\text{Vi du}} \ f(t) = e^{-\lambda t} \eta(t) \ \} \ (\lambda > 0) \ \leftrightarrow F(\omega) = 2\text{Re} \{ \ \frac{1}{\lambda + i\omega} \ \} = \frac{2\lambda}{\lambda^2 + \omega^2}$$

Gốc của hàm hữu tỷ

Ta đã có

$$\frac{1}{a+i\omega} (Rea > 0) \leftrightarrow e^{-at} \eta(t)$$
 (5.5.5)

Sử dụng công thức đạo hàm ảnh và qui nạp suy ra

$$\frac{1}{(a+i\omega)^n} (\text{Rea} > 0) \leftrightarrow \frac{t^{n-1}}{(n-1)!} e^{-at} \eta(t)$$
(5.5.6)

Xét trường hợp hàm $F(\omega)$ là một phân thức hữu tỷ thực sự. Do hàm $F(\omega)$ khả tích tuyệt đối nên nó không có cực điểm thực. Trước hết chúng ta phân tích $F(\omega)$ thành tổng các phân thức đơn và phân thực bội. Sau đó sử dụng các công thức (5.4.1) - (5.4.7) để đưa về các trường hợp trên. Trong các trường hợp phức tạp hơn có thể phải dùng đến các công thức ảnh của tích hoặc ảnh của tích chập để tìm gốc.

Ví du Tìm gốc của phân thức

1.
$$F(\omega) = \frac{(i\omega)^{2} + 3i\omega + 2}{(i\omega)^{2} + 6i\omega + 9} = A + \frac{B}{3 + i\omega} + \frac{C}{(3 + i\omega)^{2}}$$

$$= 1 - \frac{1}{3 + i\omega} + \frac{2}{(3 + i\omega)^{2}} \iff f(t) = \delta(t) - e^{-3t}\eta(t) + 2te^{-3t}\eta(t)$$
2.
$$F(\omega) = \frac{2\omega - 1}{\omega^{2} - 4\omega + 5} = \frac{2\omega - 1}{-(i\omega)^{2} + 4i(i\omega) + 5} = \frac{A}{1 + 2i - i\omega} + \frac{B}{1 - 2i + i\omega}$$

$$= \frac{-2 + i}{1 + 2i - i\omega} - \frac{2 + i}{1 - 2i + i\omega} \iff f(t) = (-2 + i)e^{-(1 + 2i)t}\eta(t) - (2 + i)e^{-(1 - 2i)t}\eta(t)$$

Phương trình vi phân hệ số hằng

Cho phương trình vi phân hệ số hằng

$$\sum_{k=0}^{N} a_k y^{(k)}(t) = \sum_{i=0}^{M} b_j x^{(j)}(t) \text{ v\'oi } N \ge M$$
 (5.5.7)

Chuyển qua ảnh

$$\sum_{k=0}^{N} a_k (i\omega)^{(k)} Y(\omega) = \sum_{i=0}^{M} b_j (i\omega)^{(j)} X(\omega)$$

Giải ra được

$$Y(\omega) = \frac{\sum b_{j}(i\omega)^{j}}{\sum a_{k}(i\omega)^{k}} X(\omega) = H(\omega)X(\omega) \iff y(t) = h(t)*x(t)$$
 (5.5.8)

 $\underline{\text{Ví du}}$ Giải phương trình y''(t) + 4y'(t) + 3y(t) = x'(t) + 2x(t)

Chuyển qua ảnh

$$[(i\omega)^2 + 4(i\omega) + 3] Y(\omega) = [(i\omega) + 2] X(\omega)$$

Giải ra được

$$H(\omega) = \frac{2+i\omega}{(1+i\omega)(3+i\omega)} = \frac{1}{2}\left(\frac{1}{1+i\omega} + \frac{1}{3+i\omega}\right) \leftrightarrow h(t) = \frac{1}{2}\left(e^{-t} + e^{-3t}\right)\eta(t)$$

Theo công thức (5.5.8)

$$x(t) = \delta(t) \Rightarrow y(t) = h(t) \text{ và } x(t) = \eta(t) \Rightarrow y(t) = \int\limits_{-\alpha}^{t} h(\tau) d\tau$$

Cho x(t) bằng một hàm cụ thể

$$x(t) = e^{-t}\eta(t) \leftrightarrow X(\omega) = \frac{1}{1+i\omega}$$

Giải ra được nghiệm tương ứng

$$Y(\omega) = \frac{1}{4} \left(\frac{1}{1 + i\omega} + \frac{2}{(1 + i\omega)^2} - \frac{1}{3 + i\omega} \right) \leftrightarrow y(t) = \frac{1}{4} (e^{-t} + 2te^{-t} - e^{-3}) \eta(t)$$

Bảng gốc ảnh Fourier

Tt	f(t)	F(w)	Tt	f(t)	F(w)
1	$\delta(t)$	1	7	$\sum_{-\infty}^{+\infty} a_k e^{ik\alpha t} , \alpha = \frac{2\pi}{T}$	$2\pi \sum_{-\infty}^{+\infty} a_k \delta(\omega - k\alpha)$
2	$\eta(t)$	$\frac{1}{i\omega} + \pi\delta(\omega)$	8	$\sum_{-\infty}^{+\infty} \delta(t - kT)$	$\frac{2\pi}{T}\sum_{-\infty}^{+\infty}\delta(\omega-k\alpha)$
3	$\delta(t - \alpha)$	$e^{i\alpha\omega}$	9	cosαt	$\pi[\delta(\omega - \alpha) + \delta(\omega + \alpha)]$
4	1	2πδ(ω)	10	sinαt	$-\pi i [\delta(\omega - \alpha) - \delta(\omega + \alpha)]$

5	$\begin{cases} 1 & t < T \\ 0 & t > T \end{cases}$	$2\frac{\sin T\omega}{\omega}$	11		$\frac{1}{(a+i\omega)^n}, Rea > 0$
6	$\frac{\sin Wt}{\pi t}$	$\begin{cases} 1 & \omega < W \\ 0 & \omega > W \end{cases}$	12	$\begin{cases} 1 & t < T_1 \\ 0 & T_1 < t \le T/2 \end{cases}$ $f(t+T) = f(t)$	$2\sum_{-\infty}^{+\infty} \frac{\sin k\alpha T_1}{k} \delta(\omega - k\alpha)$

Đ6. Biến đổi Laplace

- Hàm f ∈ F(3, ∀) gọi là hàm gốc nếu có các tính chất sau đây
- 1. f(t) liên tục từng khúc trên 3
- 2. $\forall t < 0, f(t) = 0$
- 3. $\exists M > 0, \exists s > 0 \text{ sao cho } \forall t > 0, |f(t)| < Me^{st}$

Số s_0 bé nhất thoả mãn điều kiện 3. gọi là *chỉ số tăng* của hàm gốc. Kí hiệu G là tập hợp các hàm gốc và $P_+(s_0) = \{ z \in \forall : Rez > s_0 \}$ là nửa mặt phẳng phải. Nếu f(t) là hàm gốc chỉ số tăng s_0 ta sẽ viết $f \in G(s_0)$.

<u>Dinh lý</u> Cho $f \in G(s_0)$. Khi đó hàm biến phức

$$F(z) = \int_{0}^{+\infty} f(t)e^{-zt}dt \text{ v\'oi } z \in P_{+}(s_{0})$$
 (5.6.1)

giải tích trên nửa mặt phẳng $P_+(s_0)$ và $F(z) \xrightarrow{\text{Re}_{Z \to +\infty}} 0$ đều theo Argz.

Chứng minh

Theo giả thiết ta có ước lương

$$\forall \ \sigma = Rez > s_0, \ \forall \ t \in \ 3, \ \mid f(t)e^{-zt} \mid \ \leq M \, e^{-(\sigma - s_0)t} \ \xrightarrow[\sigma \to +\infty]{} \ 0$$

Suy ra tích phân (5.6.1) hội tụ đều trên $P_+(s_0)$ và dần đều về không khi σ dần ra $+\infty$. Do hàm mũ $g(z) = e^{-zt}$ là hàm giải tích nên hàm F(z) giải tích trên $P_+(s_0)$. Ngoài ra đạo hàm qua dấu tích phân chúng ta nhận được công thức

$$\forall z \in P_{+}(s_0), F'(z) = -\int_{0}^{+\infty} tf(t)e^{-zt}dt$$

• ánh xạ

$$L: G(s_0) \to H(P_{\downarrow}(s_0)), f(t) \mapsto F(z)$$

$$(5.6.2)$$

xác định theo công thức (5.6.1) gọi là *phép biến đổi Laplace*. Hàm f(t) gọi là hàm gốc, hàm F(z) gọi là hàm ảnh của biến đổi Laplace và kí hiệu là $f(t) \leftrightarrow F(z)$.

Ví du

1.
$$\delta(t) = \begin{cases} +\infty & t=0 \\ 0 & t \neq 0 \end{cases} \iff u(z) = \int_{0}^{+\infty} \delta(t)e^{-zt}dt \equiv 1$$

2.
$$\eta(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases} \Leftrightarrow F(z) = \int_{0}^{+\infty} \eta(t)e^{-zt}dt = \frac{1}{z} \text{ v\'oi Rez} > 0$$

3.
$$f(t) = e^{at}\eta(t) \iff F(z) = \int_{0}^{+\infty} e^{(a-z)t} dt = \frac{1}{z-a} \text{ v\'oi } \text{Re}z > \text{Rea}$$

Chú ý

- 1. Biến đổi Laplace không phải là song ánh và nửa mặt phẳng $P_+(s_0)$ thay đổi theo từng hàm gốc f(t). Tức là $\exists f(t) \notin G(s_0)$ và $F(z) = \int\limits_0^{+\infty} f(t)e^{-zt}dt$ là hàm giải tích trên $P_+(s_0)$.
- 2. Hàm gốc định nghĩa như trên gọi là gốc phải. Tương tự có thể định nghĩa hàm gốc trái, hàm gốc hai bên. Do vậy có thể nói đến phép biến đổi Laplace trái, phải và hai bên. Trong giáo trình này chúng ta chỉ xét đến biến đổi Laplace phải.
- 3. Nếu f(t) là hàm trị phức thoả mãn các điều kiện 1. và 3. của định nghĩa hàm gốc thì f(t)η(t) cũng là hàm gốc. Sau nay chúng ta sẽ viết f(t) thay cho f(t)η(t).

Đ7. Biến đổi Laplace ngược

- Hàm $F \in F(\forall, \forall)$ gọi là *hàm ảnh* nếu có các tính chất sau đây
- 1. F(z) giải tích trên nửa mặt phẳng Rez > s
- 2. $F(z) \xrightarrow{Rez \to +\infty} 0$ đều theo Argz
- 3. $\forall \sigma = \text{Re } z > s$, tích phân $\int_{\sigma_{\text{lin}}}^{\sigma_{\text{+lin}}} F(z) dz$ hội tụ tuyệt đối

Số s_0 bé nhất thoả mãn điều kiện 1. và 3. gọi là chỉ số của hàm F(z). Kí hiệu A là tập hợp các hàm ảnh. Nếu F(z) là hàm ảnh chỉ số s_0 ta sẽ viết $F \in A(s_0)$.

<u>Dinh lý</u> Cho $F(z) \in A(s_0)$. Khi đó hàm trị phức

$$\forall t \in 3, f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(z) e^{zt} dz$$
 (5.7.1)

là hàm gốc chỉ số s_0 và $f(t) \leftrightarrow F(z)$.

Chứng minh

Theo giả thiết 3. với mỗi $\sigma > s_0$ cố định hàm $F(\sigma + i\omega)$ khả tích tuyệt đối. Kí hiệu

$$\forall t \in 3, g_{\sigma}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\sigma + i\omega) e^{i\omega t} d\omega$$

$$\forall \ \sigma > s_0, \ f(t) = g_{\sigma}(t)e^{\sigma t} = \frac{1}{2\pi}\int\limits_{-\infty}^{+\infty} F(\sigma + i\omega)e^{\sigma + i\omega t}d\omega = \frac{1}{2\pi i}\int\limits_{\sigma - i\infty}^{\sigma + i\omega} F(z)e^{zt}dz$$

Theo định lý về biến đổi Fourier ngược hàm $g_{\sigma} \in C_0$ suy ra hàm $f \in CM$. Ngoài ra do giả thiết 1., 2. và công thức tính tích phân suy rộng (4.9.6)

$$\forall \ t = -\tau < 0, \ f(t) = \frac{1}{2\pi i} \int_{-\sigma - i\infty}^{-\sigma + i\infty} F(-z) e^{z\tau} dz \ = \sum_{\text{Re } a_k > s_0} \text{Re } s[F(-z) e^{z\tau}, a_k] = 0$$

Ước lượng tích phân

$$\forall \ \sigma > s_0, \ \mid f(t) \mid \ = \ \mid g_{\sigma}(t) \mid e^{\sigma t} < M e^{\sigma t} \ \ v \acute{\sigma i} \ \ M = sup \{ \ \mid g_{\sigma}(t) \mid, \ \sigma > s_0 \ \}$$

Từ đó suy ra hàm f(t) là hàm gốc và ta có

$$\forall \ \sigma > s_0 \ , \ F(z) = \int_{-\infty}^{+\infty} g_{\sigma}(t) e^{-i\omega t} dt \ = \int_{-\infty}^{+\infty} f(t) e^{-(\sigma + i\omega)t} dt \ = \int_{0}^{+\infty} f(t) e^{-zt} dt$$

<u>**Hê quả 1**</u> Cho hàm $F(z) \in A(s_0)$ và có các cực điểm a_k với k = 1...n

$$F(z) \leftrightarrow f(t) = \sum_{k=1}^{n} \operatorname{Res}[f(z)e^{zt}, a_{k}]$$
 (5.7.2)

Chứng minh

Suy ra từ công thức (5.7.1) và công thức tính tích phân suy rộng (4.9.6)

 $\underline{\textit{Hệ quả 2}}$ Cho hàm $F(z) = \frac{A(z)}{B(z)}$ là phân thức hữu tỷ thực sự, có các cực điểm đơn thực

 a_k với k = 1..n và các cực điểm đơn phức $b_i = \alpha_i \pm \beta_i$ với j = 1..m. Khi đó

$$f(t) = \sum_{k=1}^{n} \frac{A(a_k)}{B'(a_k)} e^{a_k t} + 2 \sum_{j=1}^{m} e^{\alpha_j t} \left(M_j \cos \beta_j t - N_j \sin \beta_j t \right)$$
 (5.7.3)

trong đó
$$M_j = Re \frac{A(b_j)}{B'(b_i)}$$
 và $N_j = Im \frac{A(b_j)}{B'(b_i)}$ với $j = 1..m$

Chứng minh

Suy ra từ công thức (5.7.2) và công thức tính thặng dư tại cực điểm đơn.

<u>Ví du</u> Hàm $F(z) = \frac{3z^2 + 3z + 2}{(z - 2)(z^2 + 4z + 8)}$ có các cực điểm đơn a = 2 và $b = -2 \pm 2i$

Ta có
$$\frac{A(2)}{B(2)} = 1$$
, $\frac{A(-2+2i)}{B'(-2+2i)} = 1 + \frac{1}{4}i \implies M = 1$, $N = \frac{1}{4}$

Suy ra
$$f(t) = e^{2t} + 2e^{-2t}(\cos 2t - \frac{1}{4}\sin 2t)$$

<u>**Hê quả 3**</u> Cho $F(z) \in A(s_0)$ và có khai triển Laurent trên miền |z| > R. Khi đó

$$F(z) = \sum_{n=1}^{+\infty} \frac{a_n}{z^n} \iff f(t) = \sum_{n=1}^{+\infty} \frac{a_n}{(n-1)!} t^{n-1}$$
 (5.7.4)

Chứng minh

Với Rez > R, chuỗi ở vế trái (5.7.4) hội tụ đều. Tích phân từng từ

$$f(t) = \frac{1}{2\pi i} \sum_{n=1}^{+\infty} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{zt}}{z^n} dz \text{ v\'oi } \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{zt}}{z^n} dz = \text{Re } z[\frac{e^{zt}}{z^n}, 0] = \frac{t^{n-1}}{(n-1)!}$$

Đ8. Tính chất của Biến đổi Laplace

- Giả sử các hàm mà chúng ta nói đến là hàm gốc hoặc là hàm ảnh và do đó luôn có ảnh và nghịch ảnh Laplace. Kí hiệu f ↔ F với f(t) là hàm gốc và F(z) là hàm ảnh tương ứng.
- <u>1. Tuyến tính</u> Nếu hàm f và hàm g là các hàm gốc thì với mọi số phức λ hàm $\lambda f + g$ cũng là hàm gốc.

$$\forall \lambda \in \forall, \lambda f(t) + g(t) \leftrightarrow \lambda F(z) + G(z)$$
 (5.8.1)

Chứng minh

$$\lambda f(t) + g(t) \leftrightarrow \int_{0}^{+\infty} [\lambda f(t) + g(t)] dt = \lambda F(z) + G(z)$$

2. Dịch chuyển gốc Nếu hàm f là hàm gốc thì với mọi số dương α hàm f(t - α) cũng là hàm gốc.

$$\forall \alpha \in 3^*_+, \ f(t - \alpha) \leftrightarrow e^{-\alpha_z} F(z)$$
 (5.8.2)

Chứng minh

$$f(t-\alpha) \leftrightarrow e^{-\alpha z} \int_{0}^{+\infty} f(t-\alpha) e^{-z(t-\alpha)} d(t-\alpha) \quad \text{D\'{o}i bi\'{e}n} \ \ \tau = t-\alpha \qquad \qquad \blacktriangleright \!\!\!\!\! \blacktriangleright$$

<u>3. Đồng dang</u> Nếu hàm f là hàm gốc thì với mọi số dương α hàm $f(\alpha t)$ cũng là hàm gốc.

$$\forall \alpha \in 3_{+}^{*}, \ f(\alpha t) \leftrightarrow \frac{1}{\alpha} F\left(\frac{z}{\alpha}\right)$$
 (5.8.3)

Chứng minh

$$f(\alpha t) \leftrightarrow \frac{1}{\alpha} \int_{0}^{+\infty} f(\alpha t) e^{-\frac{2}{\alpha} \alpha t} d(\alpha t)$$
 Đổi biến $\tau = \alpha t$

<u>4. Hàm tuần hoàn</u> Nếu hàm f là T - tuần hoàn sao cho \forall $t \in [0, T]$, f(t) = g(t) với g là hàm gốc thì hàm f cũng là hàm gốc.

$$f(t) \leftrightarrow F(z) = \frac{G(z)}{1 - e^{-Tz}} \text{ v\'oi } g(t) \leftrightarrow G(z)$$
 (5.8.4)

Chứng minh

$$F(z) = \sum_{n=1}^{+\infty} \int_{(n-1)T}^{nT} g(t) e^{-zt} dt = \left(\sum_{n=1}^{+\infty} e^{-(n-1)Tz} \right) \int_{0}^{T} g(\tau) e^{-z\tau} d\tau$$

$$\underline{\text{V\'i du}} \text{ Ta c\'o sin}\alpha t = \frac{1}{2i} (e^{i\alpha t} - e^{-i\alpha t}) \leftrightarrow \frac{1}{2i} \left(\frac{1}{z - i\alpha} - \frac{1}{z + i\alpha} \right) = \frac{\alpha}{z^2 + \alpha^2} \text{ v\'oi Rez} > 0$$

Tương tự tìm ảnh của $\cos\alpha t$, sh αt , $\cos^2\alpha t$, ...

5. Đao hàm gốc Giả sử hàm f và các đạo hàm của nó là các hàm gốc.

$$f'(t) \leftrightarrow zF(z) - f(0) \text{ và } \forall \text{ } n \in \angle, \text{ } f^{(n)}(t) \leftrightarrow z^n \text{ } F(z) - z^{n-1}f(0) - ... - f^{(n-1)}(0) \text{ } (5.8.5)$$

Chứng minh

$$f'(t) \leftrightarrow \int_{0}^{+\infty} f'(t)e^{-zt}dt = e^{-zt}f(t)|_{0}^{+\infty} + z \int_{0}^{+\infty} f(t)e^{-zt}dt \text{ v\'eti Rez} > 0$$

Qui nạp suy ra công thức thứ hai.

<u>6. Tích phân gốc</u> Nếu hàm f là hàm gốc thì tích phân của nó cũng là hàm gốc.

>>

$$\int_{0}^{t} f(\tau) d\tau \leftrightarrow \frac{1}{z} F(z)$$
 (5.8.6)

Chứng minh

Hàm $g(t) = \int_0^t f(\tau) d\tau$ thoả mãn các điều kiện hàm gốc và g(0) = 0. Theo công thức 5.

$$g(t) \leftrightarrow G(z) \implies g'(t) = f(t) \leftrightarrow zG(z) - g(0) = F(z)$$

7. Anh của tích chập Nếu hàm f và hàm g là các hàm gốc thì tích chập của nó cũng là hàm gốc.

$$(f*g)(t) \leftrightarrow F(z)G(z) \tag{5.8.7}$$

Chứng minh

$$(f*g)(t) \longleftrightarrow \int\limits_0^{+\infty} \left(\int\limits_0^{+\infty} f(\tau)g(t-\tau)d\tau\right) e^{-zt}dt \ = \left(\int\limits_0^{+\infty} e^{-z\tau}x(\tau)d\tau\right) \left(\int\limits_0^{+\infty} e^{-z(t-\tau)}y(t-\tau)d\tau\right) \quad \text{ where } \quad f(t) = \int\limits_0^{+\infty} \left(\int\limits_0^{+\infty} e^{-z\tau}x(\tau)d\tau\right) \left(\int\limits_0^{+\infty} e^{-z(t-\tau)}y(t-\tau)d\tau\right) \quad \text{ where } \quad f(t) = \int\limits_0^{+\infty} \left(\int\limits_0^{+\infty} e^{-z\tau}x(\tau)d\tau\right) \left(\int\limits_0^{+\infty} e^{-z(t-\tau)}y(t-\tau)d\tau\right) \left(\int\limits_0^{+\infty} e^{-z\tau}x(\tau)d\tau\right) \left(\int\limits_0^{+\infty} e^{-z(t-\tau)}y(t-\tau)d\tau\right) \left(\int\limits$$

8. Công thức Duhamel Giả sử hàm f, hàm g và các đạo hàm của chúng là các hàm gốc.

$$zF(z)G(z) \leftrightarrow f(0)g(t) + (f^**g)(t)$$

$$\leftrightarrow f(t)g(0) + (f^*g')(t) \tag{5.8.8}$$

Chứng minh

$$zF(z)G(z) = f(0)G(z) + (zF(z) - f(0))G(z) \leftrightarrow f(0)g(t) + (f*g)(t)$$

Ví du

1. Ta có
$$\delta(t) \leftrightarrow 1$$
 suy ra $\eta(t) = \int\limits_0^t \delta(\tau) d\tau \leftrightarrow \frac{1}{z}$ và $\delta(t) = \eta'(t) \leftrightarrow 1$

$$2. \ \ \text{Ta c\'o} \quad \ t=\int\limits_0^t \eta(\tau)d\tau \, \longleftrightarrow \frac{1}{z^2} \ \text{qui nạp suy ra} \ \ t^n \, \longleftrightarrow \frac{n!}{z^{n+1}} \ \text{v\'oi Rez}>0$$

Công thức đổi ngẫu

Bằng cách so sánh các công thức ảnh và nghịch ảnh của biến đổi Laplace chúng ta suy ra các công thức đối ngẫu của các công thức (5.8.2) - (5.8.7)

2'. Dich chuyển ảnh
$$\forall a \in \forall, e^{at}f(t) \leftrightarrow F(z-a)$$
 (5.8.2')

5'. Đạo hàm ảnh
$$tf(t) \leftrightarrow -F'(z) \text{ và } \forall n \in \angle, t^n f(t) \leftrightarrow (-1)^n F^{(n)}(z) \tag{5.8.5'}$$

6'. Tích phân ảnh
$$\frac{1}{t}f(t) \leftrightarrow \int_{z}^{\infty} F(\zeta)d\zeta$$
 (5.8.6')

7'. Anh của tích
$$f(t)g(t) \leftrightarrow \frac{1}{2\pi i} \int_{\sigma_{-i\infty}}^{\sigma+i\infty} F(\zeta)G(z-\zeta)d\zeta = \frac{1}{2\pi i} (F*G)(z) \quad (5.8.7')$$

Ví dụ

1. Ta có
$$t^n \leftrightarrow \frac{n!}{z^{n+1}}$$
 suy ra $e^{-at} t^n \leftrightarrow \frac{n!}{(z+a)^{n+1}}$ với Rez > - Rea

2. Ta có
$$\sin \alpha t \leftrightarrow \frac{\alpha}{z^2 + \alpha^2}$$
 suy ra $t \sin \alpha t \leftrightarrow -\left(\frac{\alpha}{z^2 + \alpha^2}\right)' = \frac{2\alpha z}{(z^2 + \alpha^2)^2}$

3. Ta có
$$\frac{\sin t}{t} \leftrightarrow \int_{z}^{\infty} \frac{d\zeta}{\zeta^2 + 1} = \frac{\pi}{2}$$
 - arctgz suy ra sit = $\int_{0}^{t} \frac{\sin \tau}{\tau} d\tau \leftrightarrow \frac{1}{z} (\frac{\pi}{2} - \operatorname{arctgz})$

Đ9. Tìm ảnh, gốc của biến đổi Laplace

Gốc của hàm hữu tỷ

• Bài toán tìm ảnh của hàm gốc thường đơn giản, có thể giải được ngay bằng cách sử dụng các công thức (5.7.1) - (5.7.7'). Bài toán tìm gốc phức tạp hơn nhiều, để đơn giản chúng ta giới hạn trong phạm vi tìm hàm gốc của các phân thức hữu tỷ. Trong các ví dụ ở trên chúng ta đã có các công thức sau đây.

$$\frac{1}{z-a} \leftrightarrow e^{at} \qquad \qquad \frac{1}{(z-a)^n} \leftrightarrow e^{at} \frac{t^{n-1}}{(n-1)!}$$
 (5.9.1)

$$\frac{z}{z^2 + \alpha^2} \leftrightarrow \cos\alpha t \qquad \qquad \frac{\alpha}{z^2 + \alpha^2} \leftrightarrow \sin\alpha t \qquad (5.9.2)$$

Giả sử

$$\frac{1}{(z^2+\alpha^2)^{n-l}} \leftrightarrow f(t) \ v \grave{a} \ \frac{z}{(z^2+\alpha^2)^{n-l}} \leftrightarrow g(t)$$

Biến đổi

$$\frac{z}{(z^{2} + \alpha^{2})^{n}} = \frac{-1}{2(n-1)} \left(\frac{1}{(z^{2} + \alpha^{2})^{n-1}} \right)' \leftrightarrow \frac{1}{2(n-1)} \operatorname{tf}(t) = \varphi(t) \tag{5.9.3}$$

$$\frac{1}{(z^{2} + \alpha^{2})^{n}} = \frac{2n-3}{2(n-1)\alpha^{2}} \frac{1}{(z^{2} + \alpha^{2})^{n-1}} + \frac{1}{2(n-1)\alpha^{2}} \left(\frac{z}{(z^{2} + \alpha^{2})^{n-1}} \right)'$$

$$\leftrightarrow \frac{2n-3}{2(n-1)\alpha^{2}} \operatorname{f}(t) - \frac{1}{2(n-1)\alpha^{2}} \operatorname{tg}(t) = \psi(t) \tag{5.9.4}$$

Biến đổi

$$\frac{Mz + N}{(z^2 + 2pz + q)^n} = \frac{M(z + p)}{((z + p)^2 + \alpha^2)^n} + \frac{N - Mp}{((z + p)^2 + \alpha^2)^n} \text{ v\'oi } \alpha^2 = q - p^2 > 0$$

$$\iff Me^{-pt}\phi(t) + (N - Mp)e^{-pt}\psi(t) \tag{5.9.5}$$

Trường hợp F(z) là phân thức bất kỳ, ta phân tích F(z) thành tổng các phân thức đơn giản dạng (5.9.1) - (5.9.5) Sau đó dùng các tính chất tuyến tính để tìm hàm gốc f(t).

Ví du Tìm gốc của phân thức

1.
$$F(z) = \frac{3z^2 + 2z + 2}{(z - 2)(z^2 + 4z + 8)} = \frac{1}{z - 2} + 2\frac{z + 2}{(z + 2)^2 + 4} - \frac{1}{(z + 2)^2 + 4}$$

$$\Leftrightarrow e^{2t} + 2e^{-2t}\cos 2t - \frac{1}{2}e^{-2t}\sin 2t = f(t)$$

$$3z - 4$$

$$3(z - 1) - 1$$

2.
$$F(z) = \frac{3z - 4}{(z^2 - 2z + 2)^2} = \frac{3(z - 1) - 1}{((z - 1)^2 + 1)^2} \iff f(t) = e^t g(t)$$

$$G(z) = 3\frac{z}{(z^2 + 1)^2} - \frac{1}{(z^2 + 1)^2} = -\frac{2}{3} \left(\frac{1}{z^2 + 1}\right) - \frac{1}{2} \left(\frac{z}{z^2 + 1}\right) - \frac{1}{2} \frac{1}{z^2 + 1}$$

$$G(z) = 3\frac{1}{(z^2 + 1)^2} - \frac{1}{(z^2 + 1)^2} = -\frac{1}{3} \left(\frac{1}{z^2 + 1}\right) - \frac{1}{2} \left(\frac{1}{z^2 + 1}\right) - \frac{1}{2} \frac{1}{z^2}$$

$$\leftrightarrow \frac{3}{2} t \sin t + \frac{1}{2} t \cos t - \frac{1}{2} \sin t = g(t)$$

Phương trình vi phân hệ số hằng

Cho phương trình vi phân hệ số hằng

$$a_{n}x^{(n)}(t) + ... + a_{1}x'(t) + a_{0}x(t) = f(t)$$

$$x_{0} = x(0), x_{1} = x'(0), ..., x_{n-1} = x^{(n-1)}(0)$$
(5.9.6)

• Giả sử các hàm x(t), ..., $x^{(n)}(t)$ và f(t) là các hàm gốc. Chuyển qua ảnh

$$x(t) \leftrightarrow X(z)$$

x'(t) \leftrightarrow $zX(z) - x_0$

•••

$$x^{(n)}(t) \qquad \leftrightarrow \qquad z^{n}X(z) - z^{n-1}X_{0} - \dots - X_{n-1}$$

$$f(t) \qquad \leftrightarrow \qquad F(z)$$

$$(5.9.6) \qquad \leftrightarrow \qquad A(z)X(z) = F(z) + B(z)$$

Giải ra được

$$X(z) = \frac{F(z) + B(z)}{A(z)} \qquad \leftrightarrow \qquad x(t) \tag{5.9.7}$$

Ví dụ Giải phương trình
$$\begin{cases} x''(t) + 4x'(t) + 4x(t) = t^{3}e^{-2t} \\ x(0) = 1, x'(0) = 2 \end{cases}$$

Giả sử x(t) và các đạo hàm của nó đều là hàm gốc.

$$x(t) \leftrightarrow X(z), \ x'(t) \leftrightarrow zX(z) - 1, \ x''(t) \leftrightarrow z^2X(z) - z - 2 \ var \ f(t) = t^3 e^{-2t} \leftrightarrow \frac{6}{(z+2)^4}$$

Chuyển qua ảnh

$$(z^2 + 4z + 4)X(z) = \frac{6}{(z+2)^4} + (z+6)$$

Giải ra được

$$X(z) = \frac{6}{(z+2)^4} + \frac{4}{(z+2)^2} + \frac{1}{z+2} \iff x(t) = e^{-2t} (1 + 4t + \frac{1}{20}t^5)$$

• Phương pháp trên có thể sử dụng để giải một số phương trình vi phân hệ số biến thiên, hệ phương trình vi phân, phương trình đạo hàm riêng hoặc phương trình tích phân.

Giả sử x(t) và y(t) là các hàm gốc, chuyển qua ảnh hệ phương trình

$$\begin{cases} (z+1)X - Y = \frac{1}{z-1} + 1\\ 3X + (z-2)Y = \frac{2}{z-1} + 1 \end{cases}$$

Giải hệ phương trình tuyến tính suy ra

$$X(z) = \frac{1}{z-1} = Y(z) \quad \leftrightarrow \quad x(t) = e^{t} = y(t)$$

Bảng gốc ảnh Laplace

Tt	f(t)	F(z)	Tt	f(t)	F(z)
1	$\delta(t)$	1	5	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}$	$\frac{1}{(z+\alpha)^n}, \operatorname{Re} z > -\alpha$

Chương 5. Biến Đổi Fourier Và Biến Đổi Laplace

2	η(t)	$\frac{1}{z}$, Rez > 0	6	$e^{-\alpha t}cos\beta t$	$\frac{z+\alpha}{(z+\alpha)^2+\beta^2}, \operatorname{Re} z > 0$
3	$\delta(t - \alpha)$	$e^{-\alpha_z}, z \in \forall$	7	-Ωt · Ω .	$\frac{\beta}{(z+\alpha)^2+\beta^2}, \operatorname{Re} z > 0$
4	$\delta_{\rm n}(t) = \delta^{\rm (n)}(t)$	$z^n, z \in \forall$	8	$\eta_n(t) = \eta(t)**\eta(t)$	$\frac{1}{z^n}$, Rez > 0

Bài tâp chương 5

- 1. Tìm ảnh Fourier của các hàm gốc sau đây.
- a. $e^{-2(t-1)}\eta(t)$
- b. $e^{-2|t-1|}$
- c. $\delta(t+1) + \delta(t-1)$ d. $\sin(2\pi t + \frac{\pi}{4})$
- e. $e^{-\alpha t}\cos\beta t\eta(t)$, $\alpha > 0$ f. $e^{-3|t|}\sin 2t$ g. $te^{-2t}\sin 4t\eta(t)$
- h. sintsin2t
- $i. \begin{tabular}{ll} $\{1+\cos\pi t & |t| \le 1 \\ 0 & |t| > 1 \end{tabular} & j. \end{tabular} \begin{tabular}{ll} $\{1-t^2$ & $0 < t < 1$ \\ 0 & $t \not\in (0,1)$ \end{tabular} & k. \end{tabular} \begin{tabular}{ll} $t & |t| \le 1 \\ 1 & $1 < |t| \le 2$ \\ 0 & $|t| > 2$ \end{tabular} & l. \end{tabular} \begin{tabular}{ll} $\sum_{-\infty}^{+\infty}e^{-|t-2n|}$ \\ 0 & $|t| > 2$ \end{tabular}$

- m. $t \left(\frac{\sin t}{\pi t}\right)^2$ n. $\frac{4t}{(1+t^2)^2}$ o. $\frac{\sin \pi t}{\pi t} \frac{\sin 2\pi (t-1)}{\pi (t-1)}$
- p. Biết $f(t) \in 3_+$, $F^{-1}\{(1+i\omega)F(\omega)\} = Ae^{-2t}\eta(t)$ và $\int_0^{+\infty} |F(\omega)|^2 d\omega = 2\pi$
- $q. \text{ Bi\'e\'t } f(t) \in \ 3, \ \forall t \leq 0, \ f(t) = 0 \text{ và } \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \text{Re } F(\omega) e^{it\omega} d\omega = |t| e^{-itl}$
- 2. Tìm gốc Fourier của các hàm ảnh sau đây.
- $a. \ e^{\omega} \eta(-\omega) 2 e^{-\omega_t} \eta(\omega) \ b. \ \frac{2 \sin 3(\omega 2\pi)}{\omega 2\pi} \qquad c. \ \eta(\omega) \eta(\omega 2) \qquad d. \ e^{2i\omega} cos\omega$

- e. $e^{-\omega}\cos(4\omega + \pi/3)$ f. $\cos 2\omega \sin(\omega/2)$
- g. $2\pi\delta(\omega) + \pi\delta(\omega 4\pi) + \pi\delta(\omega + 4\pi)$
- h. $2\delta(\omega \pi) + 2\delta(\omega + \pi) + 3\delta(\omega 2\pi) + 3\delta(\omega + 2\pi)$
- i. $|F| = 2[\eta(\omega + 3) \eta(\omega 3)], \Phi = -\frac{3}{2}\omega + \pi$
- 3. Cho $f \leftrightarrow F$ với f(t) có đồ thị như hình bên.
- a. Tîm $\Phi(\omega)$
- b. Tîm F(0) c. Tính $\int_{-\infty}^{\infty} F(\omega)d\omega$

- $\text{d. Tính} \int\limits_{-\infty}^{+\infty} F(\omega) \frac{2\sin\omega}{\omega} e^{i2\omega} d\omega \qquad \text{e. Tính} \int\limits_{-\infty}^{+\infty} |F(\omega)|^2 \ d\omega \qquad \text{f. Tìm gốc của ReF}(\omega)$
- 4. Tính tích chập (f*g)(t) bằng biến đổi Fourier ngược
- a. $f(t) = te^{-2t}\eta(t)$, $g(t) = e^{-4t}\eta(t)$
- b. $f(t) = te^{-2t}\eta(t)$, $g(t) = te^{-4t}\eta(t)$

c.
$$f(t) = e^{-t}\eta(t)$$
, $g(t) = e^{t}\eta(-t)$

d.
$$f(t) = \cos^2 t$$
, $g(t) = \frac{\sin t}{\pi t}$

5. Giải phương trình vi phân hê số hằng bằng biến đổi Fourier.

a.
$$y'' + 3y' + 2y = x' + 3x$$

b.
$$y'' + 5y' + 6y = x' + 4x$$

c.
$$y'' + \sqrt{2}y' + y = 2x'' - 2x$$

d.
$$y'' + 4y' + 3y = x' + 2x$$

e.
$$y' + 10y = x*f - x \text{ v\'oi } f(t) = e^{-t}\eta(t) + 3\delta(t)$$

6. Tìm ảnh Laplace của các hàm gốc sau đây.

a.
$$e^{-2t} + e^{-3t} \sin 3t$$

b.
$$\delta(t) + \eta(t)$$

c.
$$\cos^2 \alpha t$$

$$d. \sin^3 t$$

e.
$$te^{\alpha t}$$

h.
$$(t+1)\sin 2t$$

j.
$$e^{-t}\sin 2t\cos 4t$$
 k. $\frac{\sin 4t}{t}$ l. $\frac{\sin^2 t}{t}$

1.
$$\frac{\sin^2 t}{t}$$

m.
$$\frac{1-\cos^2\theta}{\tan^2\theta}$$

n.
$$\frac{\sin 2t \cos 3}{t}$$

$$m. \ \frac{1-\cos t}{te^t} \qquad \qquad n. \ \frac{\sin 2t \cos 3t}{t} \qquad \qquad o. \ \int\limits_0^t (\tau+1)\cos \tau d\tau \qquad p. \ \int\limits_0^t \frac{1-e^\tau}{\tau} d\tau$$

$$p. \int_{0}^{t} \frac{1-e^{\tau}}{\tau} d\tau$$

q.
$$\int_{0}^{t} \frac{sh\tau}{\tau} d\tau$$

r.
$$\int_{0}^{t} \cos(t-\tau)e^{2\tau}d\tau$$

$$q. \int\limits_0^t \frac{sh\tau}{\tau} d\tau \qquad \qquad r. \int\limits_0^t \cos(t-\tau)e^{2\tau} d\tau \qquad s. \int\limits_0^t (t-\tau)^2 \cos 2\tau d\tau \qquad t. \mid sint\mid, \mid cost\mid$$

7. Tìm gốc Laplace của các hàm ảnh sau đây.

a.
$$\frac{e^{-2z}}{z^2-9}$$

$$b. \frac{z+1}{z^2+2z}$$

c.
$$\frac{1}{z^2 - 4z + 8}$$

b.
$$\frac{z+1}{z^2+2z}$$
 c. $\frac{1}{z^2-4z+8}$ d. $\frac{z+8}{z^2+4z+5}$

e.
$$\frac{z^2}{(z-1)^3}$$

f.
$$\frac{z^3}{(z^2+4)^2}$$

e.
$$\frac{z^2}{(z-1)^3}$$
 f. $\frac{z^3}{(z^2+4)^2}$ g. $\frac{3z}{(z-1)(z-3)^2}$ h. $\frac{z}{z^4-5z^2+4}$

h.
$$\frac{z}{z^4 - 5z^2 + 4}$$

i.
$$\frac{1}{z^2(z-1)}$$

i.
$$\frac{1}{z^2(z-1)}$$
 j. $\frac{z^2}{(z^2+4)(z^2+9)}$ k. $\frac{3z^2-1}{(z^2+1)^3}$ l. $\sin\frac{1}{z}$

k.
$$\frac{3z^2-1}{(z^2+1)^3}$$

1.
$$\sin \frac{1}{7}$$

n.
$$\frac{1}{z}\cos\frac{1}{z}$$
 o. $\frac{1}{z}e^{\frac{1}{z^2}}$

o.
$$\frac{1}{z}e^{\frac{1}{z^2}}$$

p.
$$\frac{1}{z-1}e^{-\frac{1}{z-1}}$$

8. Giải các phương trình vi phân sau đây bằng biến đổi Laplace.

a.
$$x'' - 3x' + 2x = te^t$$

$$x(0) = 1, x'(0) = -2$$

b.
$$x'' + 2x' + x = t^2 e^t$$

$$x(0) = 0$$
, $x'(0) = 0$

c.
$$x'' - 2x' + 2x = e^t sint$$

$$x(0) = 0, x'(0) = 1$$

d.
$$x'' - 3x' + 2x = 12e^{3t}$$

$$x(0) = 2, \ x'(0) = 6$$

e.
$$x'' + 4x = 3\sin t + 10\cos 3t$$

f. $x'' - x' = 4\sin t + 5\cos 2t$

$$x(0) = -2, x'(0) = 3$$

g.
$$x''' + 3x'' + 3x' + x = 6e^{-t}$$

$$x(0) = -1, x'(0) = -2$$

 $x(0) = x'(0) = x''(0) = 0$

9. Giải các hệ phương trình vi phân sau đây bằng biến đổi Laplace.

a.
$$\begin{cases} x' + 3x - 4y = 9e^{2t} \\ 2x + y' - 3y = 3e^{2t} \\ x(0) = 2, \ y(0) = 0 \end{cases}$$

c.
$$\begin{cases} x' - 2x - 4y = \cos t \\ x + y' + 2y = \sin t \\ x(0) = 0, y(0) = 0 \end{cases}$$

b.
$$\begin{cases} 2x'' + x - y' = -3\sin t \\ x + y' = -\sin t \\ x(0) = 0, \ x'(0) = 1, \ y(0) = 0 \end{cases}$$

d.
$$\begin{cases} x'' - y' = 0 \\ x - y'' = 2 \sin t \\ x(0) = -1, \ x'(0) = y(0) = y'(0) = 1 \end{cases}$$

Lý thuyết trường

Đ1. Trường vô hướng

Miền D ⊂ 3³ cùng với ánh xạ

$$u: D \to 3, (x, y, z) \mapsto u(x, y, z)$$
 (6.1.1)

gọi là một *trường vô hướng* và kí hiệu là (D, u). Như vậy nếu (D, u) là trường vô hướng thì u là một hàm số xác định trên miền D. Sự khác biệt thể hiện ở chỗ khi nói về trường vô hướng ngoài các tính chất của hàm u người ta còn quan tâm hơn đến cấu trúc của miền xác định D. Trường vô hướng (D, u) gọi là liên tục (có đạo hàm riêng, ...) nếu như hàm u là liên tục (có đạo hàm riêng, ...) trên miền D. Sau này nếu không nói gì thêm chúng ta xem rằng các trường vô hướng là có đạo hàm liên tục từng khúc trở lên.

Cho điểm $A \in D$, mặt cong có phương trình

$$u(x, y, z) = u(A)$$

gọi là *mặt mức* (đẳng trị) đi qua điểm A. Do tính đơn trị của hàm số, qua mỗi điểm A chỉ có duy nhất một mặt mức. Hay nói cách khác các mặt mức phân chia miền D thành các lớp mặt cong rời nhau.

<u>Ví dụ</u> Trường vô hướng $u = x^2 + y^2 + z^2$ gọi là trường bán kính, các mặt mức là các mặt cầu đồng tâm : $x^2 + y^2 + z^2 = R^2$

• Cho điểm $A \in D$ và vecto đơn vị $e \in 3^3$. Giới hạn

$$\frac{\partial \mathbf{u}}{\partial \boldsymbol{e}}(\mathbf{A}) = \lim_{t \to 0} \frac{\mathbf{u}(\mathbf{A} + t\boldsymbol{e}) - \mathbf{u}(\mathbf{A})}{t}$$
(6.1.2)

gọi là đạo hàm theo hướng vecto **e** của trường vô hướng u tại điểm A.

<u>Dinh lý</u> Cho vecto $e = {\cos\alpha, \cos\beta, \cos\gamma}$. Khi đó

$$\frac{\partial \mathbf{u}}{\partial \mathbf{e}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cos \alpha + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \cos \beta + \frac{\partial \mathbf{u}}{\partial \mathbf{z}} \cos \gamma \tag{6.1.3}$$

Chứng minh

Theo giả thiết hàm u có đạo hàm riêng liên tục

$$u(A+t\textbf{e})-u(A)=\frac{\partial u}{\partial x}tcos\alpha+\frac{\partial u}{\partial y}tcos\beta+\frac{\partial u}{\partial z}tcos\gamma+o(t\textbf{e})$$

Chia hai vế cho t và chuyển qua giới hạn nhận được công thức trên.

$$\frac{\partial \mathbf{u}}{\partial \mathbf{i}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{j}} = \frac{\partial \mathbf{u}}{\partial \mathbf{y}}$$

$$\underline{\textit{He quá}} \qquad \frac{\partial u}{\partial \textbf{\textit{i}}} = \frac{\partial u}{\partial x} \qquad \qquad \frac{\partial u}{\partial \textbf{\textit{j}}} = \frac{\partial u}{\partial y} \qquad \qquad \frac{\partial u}{\partial \textbf{\textit{k}}} = \frac{\partial u}{\partial z}$$

 $\underline{\text{V\'i du}}$ Tính đạo hàm theo hướng vector $\textbf{\emph{e}}(1,\,1,\,-1)$ của trường vô hướng u = x² + y² - z² tai điểm A(1, 1, -1).

Ta có

$$\frac{\partial u}{\partial x}\left(A\right) = \frac{\partial u}{\partial y}\left(A\right) = 2, \ \frac{\partial u}{\partial z}\left(A\right) = -2 \ va \ \cos\alpha = \cos\beta = \frac{1}{\sqrt{3}} \ , \ \cos\gamma = -\frac{1}{\sqrt{3}}$$

Suy ra

$$\frac{\partial \mathbf{u}}{\partial \mathbf{e}}(\mathbf{A}) = 2\frac{1}{\sqrt{3}} + 2\frac{1}{\sqrt{3}} + 2\frac{1}{\sqrt{3}} = 2\sqrt{3}$$

D2. Gradient

• Cho trường vô hướng (D, u). Vectơ

$$grad \mathbf{u} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{i} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \mathbf{j} + \frac{\partial \mathbf{u}}{\partial \mathbf{z}} \mathbf{k}$$
 (6.2.1)

goi là gradient của trường vô hướng u.

Ví du Cho u = xy + yz - zx và A(1, 1, -1)

Ta có

grad
$$u = \{y - z, x + z, y - x\} \text{ và } \textbf{grad} u(A) = \{2, 0, 0\}$$

• Từ đinh nghĩa suy ra gradient có các tính chất sau đây.

Các qui tắc tính Cho u, v là các trường vô hướng, f là hàm có đao hàm và λ là số thực.

- 1. $grad(\lambda u + v) = \lambda grad u + grad v$
- 2. grad(uv) = v grad u + u grad v

3.
$$grad f(u) = f'(u) grad u$$
 (6.2.2)

>>

Chứng minh

Suy ra từ công thức (6.2.1) và tính chất của đao hàm riêng.

Liên hệ với đao hàm theo hướng Cho u là trường vô hướng và *e* vectơ đơn vị.

4.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{e}} = \langle \mathbf{grad} \, \mathbf{u}, \, \mathbf{e} \rangle$$

5.
$$\operatorname{Max} \left| \frac{\partial \mathbf{u}}{\partial \mathbf{e}} \right| = \| \operatorname{grad} \mathbf{u} \|$$
đạt được khi và chỉ khi $\mathbf{e} / | \operatorname{grad} \mathbf{u}$

6. Min
$$\left|\frac{\partial \mathbf{u}}{\partial \mathbf{e}}\right| = 0$$
 đạt được khi và chỉ khi $\mathbf{e} \perp \mathbf{grad} \mathbf{u}$ (6.2.3)

Chứng minh

Suy ra từ công thức (6.1.2) và tính chất của tích vô hướng.

>>|

Liên hệ với mặt mức

7. Gradient của trường vô hướng u tại điểm A là pháp vectơ của mặt mức đi qua điểm A tai chính điểm đó.

Chứng minh

Cho S: $u(x, y, z) = \alpha$ là mặt mức đi qua điểm A và Γ : x = x(t), y = y(t), z = z(t) là đường cong tron tuỳ ý đi qua điểm A và nằm gọn trên mặt cong S. Khi đó vector $\mathbf{T} = \{x'(t), y'(t), z'(t)\}$

là vectơ tiếp xúc của đường cong Γ tại điểm A.

Do $\Gamma \subset S$ nên $u[x(t), y(t), z(t)] = \alpha$. Đạo hàm hai vế theo t

$$u'_x x'(t) + u'_y y'(t) + u'_z z'(t) = 0$$

Suy ra
$$\operatorname{grad} u \perp T$$

>>

 \underline{Vi} du Xét phân bố nhiệt trên vật rắn hình cầu D, đồng chất, truyền nhiệt đẳng hướng, nguồn nhiệt đặt ở tâm. Gọi u(x, y, z) là nhiệt độ tại điểm M(x, x, y). Khi đó u là trường vô hướng xác định trên miền D. Các mặt mức (đẳng nhiệt) là các mặt cầu đồng tâm. Hướng truyền nhiệt cực đại đồng phương với vectơ *grad* u, hướng cực tiểu vuông góc với vectơ *grad* u.

Đ3. Trường vecto

Miền D ⊂ 3³ cùng với ánh xạ

$$F: D \to 3^3, (x, y, z) \mapsto F = X(x, y, z)i + Y(x, y, z)j + Z(x, y, z)k(6.3.1)$$

gọi là *trường vectơ* và kí hiệu (D, **F**). Các trường vô hướng X, Y và Z gọi là các thành phần toạ độ của trườg vectơ **F**. Trường vectơ (D, **F**) là *liên tục (có đạo hàm riêng, ...)* nếu các thành phần toạ độ của nó là liên tục (có đạo hàm riêng, ...) trên miền D. Sau này nếu không nói gì thêm chúng ta xem rằng các trường vectơ là có đạo hàm riêng liên tục từng khúc trên miền D.

<u>Ví du</u> $F = \{x, y, z\}$ là trường vectơ bán kính, $G = \{X, Y, 0\}$ là trường vectơ phẳng

- Họ đường cong Γ nằm gọn trong miền D gọi là *họ đường dòng* của trường vecto \mathbf{F} nếu có các tính chất sau đây.
- 1. Với mỗi điểm $A \in D$ có duy nhất một đường cong $\Gamma(A)$ đi qua
- 2. Vecto F(A) là vecto tiếp xúc của đường cong $\Gamma(A)$ tại điểm A.

 $\underline{\text{Ví du}}$ Nếu trường \boldsymbol{F} là trường chất lỏng thì họ đường dòng chính là dòng chất lỏng chảy dưới tác động của trường \boldsymbol{F} .

• Giả sử họ đường dòng có phương trình tham số

$$x = x(t), y = y(t), z = z(t)$$

Theo định nghĩa trên trường vectơ tiếp xúc $T = \{x'(t), y'(t), z'(t)\}$ đồng phương với trường vectơ $F = \{X, Y, Z\}$. Tức là

$$x'(t) = \lambda X$$
, $y'(t) = \lambda Y$, $z'(t) = \lambda Z$ $v\acute{o}i \ \lambda \in 3$

Từ đó suy ra hệ phương trình vi phân

$$\frac{dx}{X} = \frac{dy}{Y} = \frac{dz}{Z} = \lambda dt \tag{6.3.2}$$

gọi là hệ phương trình vi phân của họ đường dòng.

Ví du Tìm đường dòng của trường vecto $\mathbf{F} = \{y, -x, 1\}$ đi qua điểm A(1, 1, 0)

Lập hệ phương trình vi phân

$$\frac{\mathrm{d}x}{\mathrm{y}} = -\frac{\mathrm{d}y}{\mathrm{x}} = \mathrm{d}z = \lambda \mathrm{d}t$$

Giải ra phương trình tham số của họ đường dòng

$$x = Rcost, y = Rsint, z = -t + C v\acute{o}i(R, C) \in 3^2$$

Đường dòng đi qua điểm A thoả mãn

$$Rcost_0 = 1$$
, $Rsint_0 = 1$, $-t_0 + C = 0$

Suy ra

$$R = \sqrt{2}$$
, $t_0 = \pi/4$, $C = \pi/4$

Đó chính là đường xoắn ốc đều trong không gian

$$x = \sqrt{2} \cos t$$
, $y = \sqrt{2} \sin t$, $z = -t + \pi/4$

Đ4. Thông lượng

• Cho trường vecto (D, F) và mặt cong S tron từng mảnh, nằm gọn trong miền D, định hướng theo pháp vecto là n. Tích phân mặt loại hai

$$\Phi = \iint_{S} \langle \mathbf{F}, \mathbf{n} \rangle dS = \iint_{S} X dy dz + Y dz dx + Z dx dy$$
(6.4.1)

gọi là thông lượng của trường vecto $\textbf{\textit{F}}$ qua mặt cong S.

Nếu \boldsymbol{F} là trường chất lỏng thì thông lượng chính là lượng

chất lỏng đi qua mặt cong S theo hướng pháp vecto n trong một đơn vị thời gian.

• Cho trường vectơ (D, \mathbf{F}) với $\mathbf{F} = \{X, Y, Z\}$. Trường vô hướng

$$\operatorname{div} \mathbf{F} = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}$$
(6.4.2)

gọi là divergence (nguồn) của trường vecto F.

 $\underline{\text{Ví du}}$ Cho trường vector $\mathbf{F} = \{\text{xy, yz, zx}\}$ và điểm A(1, 1, -1) Ta có

$$\text{div } \mathbf{F} = y + z + x \text{ và div } \mathbf{F}(A) = 1 + 1 - 1 = 2$$

<u>**Dinh** lý</u> Cho F, G là các trường vectơ và u là trường vô hướng. Divergence có các tính chất sau đây.

- 1. $\operatorname{div}(F + G) = \operatorname{div} F + \operatorname{div} G$
- 2. $\operatorname{div}(\mathbf{u} \mathbf{F}) = \mathbf{u} \operatorname{div} \mathbf{F} + \langle \mathbf{grad} \mathbf{u}, \mathbf{F} \rangle$

Chứng minh

Suy ra từ định nghĩa (6.4.2) và các tính chất của đạo hàm riêng.

• Giả sử Ω là miền đóng nằm gọn trong miền D và có biên là mặt cong kín S trơn từng mảnh, định hướng theo pháp vectơ ngoài \mathbf{n} . Khi đó công thức Ostrogradski được viết lại ở dạng vectơ như sau.

$$\oint_{S} \langle \mathbf{F}, \mathbf{n} \rangle dS = \iiint_{\Omega} div \mathbf{F} dV$$
(6.4.3)

Chọn Ω là hình cầu đóng tâm A, bán kính ε . Từ công thức (6.4.3) và định lý về trị trung bình của tích phân bội ba suy ra.

$$\operatorname{div} \mathbf{R}(A) = \lim_{\epsilon \to 0} \frac{1}{V} \oiint_{S} \langle \mathbf{F}, \mathbf{n} \rangle dS$$
 (6.4.4)

Theo công thức trên, nguồn của trường vecto \mathbf{F} tại điểm A là lượng chất lỏng đi ra từ điểm A theo hướng của trường vecto \mathbf{F} .

• Cho trường vecto (D, \mathbf{F}) và điểm $A \in D$. Nếu div $\mathbf{F}(A) > 0$ thì điểm A gọi là điểm nguồn. Nếu div $\mathbf{F}(A) < 0$ thì điểm A gọi là điểm thủng.

 $\underline{\text{Ví du}}$ Cho trường vector $F = \{xy, yz, zx\}$

Ta có
$$\text{div } \textbf{\textit{F}} = \textbf{\textit{y}} + \textbf{\textit{z}} + \textbf{\textit{x}}$$
 $\text{div } \textbf{\textit{F}} (1, 0, 0) = 1 > 0$ $\text{diểm } (1, 0, 0) \text{ là điểm nguồn}$ $\text{div } \textbf{\textit{F}} (-1, 0, 0) = -1 < 0$ $\text{diểm } (-1, 0, 0) \text{ là điểm thủng}$ D5. Hoàn lưu

Cho trường vecto (D, F) và đường cong Γ kín, tron từng khúc, nằm gọn trong miền D,

định hướng theo vectơ tiếp xúc T. Tích phân đường loại hai

$$K = \oint_{\Gamma} \langle \mathbf{F}, \mathbf{T} \rangle ds = \oint_{\Gamma} X dx + Y dy + Z dz$$
 (3.5.1)

gọi là *hoàn lưu* của trường vecto Fdọc theo đường cong kín Γ .

Nếu Flà trường chất lỏng thì hoàn lưu là công dịch chuyển một đơn vị khối lượng chất lỏng dọc theo đường cong Γ theo hướng vecto T.

>>

• Cho trường vectơ (D, F) với $F = \{X, Y, Z\}$. Trường vectơ

$$rot F = \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}\right) \mathbf{i} + \left(\frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y}\right) \mathbf{k}$$
(6.5.2)

goi là rotation (xoáy) của trường vecto F.

<u>Ví du</u> Cho trường vector $\mathbf{F} = \{xy, yz, zx\}$ và điểm A(1, 0, -1)Ta có

rot
$$F = \{z, x, y\} \text{ và } rot F(A) = \{-1, 1, 0\}$$

<u>**Dinh** lý</u> Cho F, G là các trường vectơ và u là trường vô hướng. Rotation có các tính chất sau đây.

- 1. rot(F+G) = rot F + rot G
- 2. rot(u F) = u rot F + [grad u, F]

Chứng minh

Suy ra từ đinh nghĩa (6.5.2) và các tính chất của đao hàm riêng.

• Giả sử S là mặt cong trơn từng mảnh, nằm gọn trong miền D, định hướng theo pháp vectơ \mathbf{n} và có biên là đường cong kín Γ trơn từng khúc, định hướng theo vectơ tiếp xúc \mathbf{T} phù hợp với hướng pháp vectơ \mathbf{n} . Khi đó công thức Stokes viết lại ở dạng vectơ như sau.

$$\oint_{\Gamma} \langle \mathbf{F}, \mathbf{T} \rangle ds = \oint_{S} \langle \mathbf{rotF}, \mathbf{n} \rangle dS$$
(6.5.3)

Chọn S là nửa mặt cầu tâm A, bán kính ϵ . Từ công thức (6.5.3) và định lý về trị trung bình của tích phân mặt loại hai suy ra.

$$< \operatorname{rot} \mathbf{F}, \mathbf{n}> (A) = \lim_{\varepsilon \to 0} \frac{1}{S} \oint_{\Gamma} < \mathbf{F}, \mathbf{T}> ds$$
 (6.5.4)

Theo công thức trên, cường độ của trường vector $\mathbf{rot} \mathbf{F}$ theo hướng pháp vector \mathbf{n} tại điểm A là công tự quay của điểm A theo hướng trục quay \mathbf{n} .

• Cho trường vectơ (D, \mathbf{F}) và điểm $A \in D$. Nếu $< \mathbf{rot} \mathbf{F}, \mathbf{n} > (A) > 0$ thì điểm A gọi là điểm xoáy thuận. Nếu $< \mathbf{rot} \mathbf{F}, \mathbf{n} > (A) < 0$ thì điểm A gọi là điểm xoáy nghịch.

Ví du Cho trường vector $\mathbf{F} = \{xy, yz, zx\}$ và $\mathbf{n} = \{x, y, z\}$

Ta có
$$rot F = \{z, x, y\}$$
 và $< rot F, n > = zx + xy + yz$
 $< rot F, n > (1, 0, 1) = 1 > 0$ điểm $(1, 0, 1)$ là điểm xoáy thuận $< rot F, n > (1, 0, -1) = -1 < 0$ điểm $(1, 0, -1)$ là điểm xoáy nghịch

Dinh lý Cho trường vecto $\langle D, F \rangle$ và điểm $A \in D$.

- 1. Max $|\langle rot F, n \rangle$ (A) |=|rot F|(A) dat được khi và chỉ khi n/|rot F|
- 2. Min $| \langle rot F, n \rangle (A) | = 0$ đạt được khi và chỉ khi $n \perp rot F$

Chứng minh

Suy ra từ tính chất của tích vô hướng.

• Theo kết quả trên thì cường độ xoáy có trị tuyệt đối lớn nhất theo hướng đồng phương với vectơ **rot F** và có trị tuyệt đối bé nhất theo hướng vuông góc với vectơ **rot F**.

Đ6. Toán tử Hamilton

Vecto tượng trưng

$$\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$$
 (6.6.1)

với $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ và $\frac{\partial}{\partial z}$ tương ứng là phép lấy đạo hàm riêng theo các biến x, y, và z gọi là toán tử Hamilton.

- Tác động toán tử Hamilton một lần chúng ta nhận được các trường *grad*, div và *rot* đã nói ở các mục trên như sau.
- 1. Tích của vecto ∇ với trường vô hướng u là trường vecto **grad** u

$$\nabla \mathbf{u} = (\frac{\partial}{\partial \mathbf{x}} \mathbf{i} + \frac{\partial}{\partial \mathbf{y}} \mathbf{j} + \frac{\partial}{\partial \mathbf{z}} \mathbf{k}) \mathbf{u} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{i} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \mathbf{j} + \frac{\partial \mathbf{u}}{\partial \mathbf{z}} \mathbf{k}$$
(6.6.2)

2. Tích vô hướng của vecto ∇ với trường vecto \mathbf{F} là trường vô hướng div \mathbf{F}

$$\nabla \mathbf{F} = (\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k})(X\mathbf{i} + Y\mathbf{j} + Z\mathbf{k}) = \frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}$$
(6.6.3)

3. Tích có hướng của vecto ∇ với trường vecto \mathbf{F} là trường vecto rot \mathbf{F}

$$\nabla \times \mathbf{F} = \left(\frac{\partial}{\partial \mathbf{x}}\mathbf{i} + \frac{\partial}{\partial \mathbf{y}}\mathbf{j} + \frac{\partial}{\partial \mathbf{z}}\mathbf{k}\right) \times (\mathbf{X}\mathbf{i} + \mathbf{Y}\mathbf{j} + \mathbf{Z}\mathbf{k})$$

$$= \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{y}} - \frac{\partial \mathbf{Y}}{\partial \mathbf{z}}\right)\mathbf{i} + \left(\frac{\partial \mathbf{X}}{\partial \mathbf{z}} - \frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right)\mathbf{j} + \left(\frac{\partial \mathbf{Y}}{\partial \mathbf{x}} - \frac{\partial \mathbf{X}}{\partial \mathbf{y}}\right)\mathbf{k}$$
(6.6.4)

- Tác động toán tử Hamilton hai lần chúng ta nhận được các toán tử vi phân cấp hai.
- 4. Với mọi trường vô hướng (D, u) thuộc lớp C²

$$\operatorname{div}\left(\mathbf{grad}\,\mathbf{u}\right) = \operatorname{div}\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\,\mathbf{i} + \frac{\partial \mathbf{u}}{\partial \mathbf{y}}\,\mathbf{j} + \frac{\partial \mathbf{u}}{\partial \mathbf{z}}\,\mathbf{k}\right) = \frac{\partial^{2}\mathbf{u}}{\partial \mathbf{x}^{2}} + \frac{\partial^{2}\mathbf{u}}{\partial \mathbf{v}^{2}} + \frac{\partial^{2}\mathbf{u}}{\partial \mathbf{z}^{2}} = \Delta\mathbf{u} \quad (6.6.5)$$

Toán tử

$$\Delta = \frac{\partial^2}{\partial x^2} \mathbf{i} + \frac{\partial^2}{\partial y^2} \mathbf{j} + \frac{\partial^2}{\partial z^2} \mathbf{k}$$

gọi là toán tử Laplace.

Tức là $\Delta u = \text{div} (\mathbf{grad} u) = \nabla(\nabla u) = \nabla^2 u$

5. Với mọi trường vô hướng (D, u) thuộc lớp C²

$$rot(grad u) = rot(\frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j + \frac{\partial u}{\partial z}k) = 0$$
 (6.6.6)

Tức là $rot (grad u) = \nabla \times \nabla u = 0$

6. Với mọi trường vecto (D, \mathbf{F}) thuộc lớp \mathbb{C}^2

$$\operatorname{div}\left(\operatorname{rot} \mathbf{F}\right) = \operatorname{div}\left\{ \left(\frac{\partial \mathbf{Z}}{\partial \mathbf{y}} - \frac{\partial \mathbf{Y}}{\partial \mathbf{z}}\right) \mathbf{i} + \left(\frac{\partial \mathbf{X}}{\partial \mathbf{z}} - \frac{\partial \mathbf{Z}}{\partial \mathbf{x}}\right) \mathbf{j} + \left(\frac{\partial \mathbf{Y}}{\partial \mathbf{x}} - \frac{\partial \mathbf{X}}{\partial \mathbf{y}}\right) \mathbf{k} \right\} = 0 \quad (6.6.7)$$

Tức là div (**rot** \mathbf{F}) = $\nabla(\nabla \times \mathbf{F}) = 0$

7. Với mọi trường vecto (D, \mathbf{F}) thuộc lớp \mathbb{C}^2

$$rot (rot F) = rot \left\{ \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) \mathbf{k} \right\}$$

$$= grad (\operatorname{div} F) - \Delta F \tag{6.6.8}$$

Đ7. Trường thế

• Trường vector (D, F) với $F = \{X, Y, Z\}$ gọi là *trường thế* nếu có trường vô hướng (D, u) sao cho F = grad u. Tức là

$$X = \frac{\partial u}{\partial x}$$
 $Y = \frac{\partial u}{\partial y}$ $Z = \frac{\partial u}{\partial z}$ (6.7.1)

Hàm u gọi là *hàm thế vi* của trường vecto **F**.

Từ định nghĩa suy ra nếu trường vecto F là trường thế thì

$$rot F = rot (grad u) = 0 (6.7.2)$$

Chúng ta sẽ chứng minh rằng điều ngược lại cũng đúng.

<u>Dịnh lý</u> Trường vectơ (D, F) là trường thế khi và chỉ khi *rot* F = 0<u>Chứng minh</u>

Điều kiện cần suy ra từ công thức (6.7.2). Chúng ta chứng minh điều kiện đủ

Giả sử rot F = 0

Khi đó với mọi đường cong Γ kín, tron từng khúc và nằm gọn trong miền D.

$$\oint_{\Gamma} X dx + Y dy + Z dz = \oint_{S} \langle rot F, n \rangle dS = 0$$

với S là mặt cong tron từng mảnh, nằm gọn trong miền D và có biên định hướng theo pháp vector \mathbf{n} là đường cong Γ .

Suy ra với mọi $A, M \in D$ tích phân

$$\int_{AM} X dx + Y dy + Z dz$$

không phụ thuộc vào đường lấy tích phân.

Cố đinh điểm $A \in D$ và đặt

$$u(M) = \int_{AM} Xdx + Ydy + Zdz \ v\acute{o}i \ M \in D$$

Do các hàm X, Y, Z có đạo hàm riêng liên tục nên hàm u có đạo hàm riêng liên tục trên miền D. Kiểm tra trực tiếp ta có

$$grad u = F$$

Từ đó suy ra trường vecto \mathbf{F} là trường thế và hàm u là hàm thế vị của nó.

- Từ các kết quả ở trên suy ra ý nghĩa cơ học của trường thế như sau.
- 1. Trong trường thế không có điểm xoáy

2. Hoàn lưu dọc theo đường cong kín nằm gọn trong miền D luôn bằng không.

$$K = \oint_{\Gamma} \langle \mathbf{F}, \mathbf{T} \rangle ds = \oint_{S} \langle \mathbf{rot} \, \mathbf{F}, \mathbf{n} \rangle dS = 0$$
 (6.7.3)

3. Công dịch chuyển bằng thế vị điểm cuối trừ đi thế vị điểm đầu.

$$\int_{MN} \langle F, T \rangle ds = \int_{MN} X dx + Y dy + Z dz = \int_{MN} du = u(N) - u(M)$$
 (6.7.4)

Đ8. Trường ống

• Trường vectơ (D, \mathbf{F}) với $\mathbf{F} = \{X, Y, Z\}$ gọi là *trường ống* nếu có trường vectơ (D, \mathbf{G}) với $\mathbf{G} = \{X_1, Y_1, Z_1\}$ sao cho $\mathbf{F} = \mathbf{rot} \mathbf{G}$. Tức là

$$X = \frac{\partial Z_1}{\partial y} - \frac{\partial Y_1}{\partial z} \qquad Y = \frac{\partial X_1}{\partial z} - \frac{\partial Z_1}{\partial x} \qquad Z = \frac{\partial Y_1}{\partial x} - \frac{\partial X_1}{\partial y}$$
(6.8.1)

Trường vecto \boldsymbol{G} gọi là *trường thế vi* của trường vecto \boldsymbol{F} .

Từ đinh nghĩa suy ra nếu Flà trường ống thì

$$\operatorname{div} \mathbf{F} = \operatorname{div} (\operatorname{rot} \mathbf{G}) = 0 \tag{6.8.2}$$

Có thể chứng minh rằng điều ngược lại cũng đúng. Tức là chúng ta có kết quả sau đây.

Dinh lý Trường vecto (D, F) là trường ống khi và chỉ khi div F = 0

- Từ các kết quả ở trên suy ra ý nghĩa cơ học của trường ống như sau.
- 1. Trong trường ống không có điểm nguồn

$$\operatorname{div} \mathbf{F} = 0$$

2. Thông lượng qua mặt cong kín nằm gọn trong miền D luôn bằng không.

$$\Phi = \iint_{S} \langle \mathbf{F}, \mathbf{n} \rangle dS = \iiint_{\Omega} div \mathbf{F} dV$$
(6.8.3)

3. Thông lượng đi qua các mặt cắt của một luồng là như nhau.

Giả sử S là mặt tru kín như hình bên

$$S = S_0 + S_1 + S_2$$

Trong đó S định hướng theo pháp vecto ngoài \mathbf{n} S₀ định hướng theo pháp vecto \mathbf{n}_0 ngược hướng với trường vecto \mathbf{F} , S₁ định hướng theo pháp vecto \mathbf{n}_1 cùng hướng với trường vecto \mathbf{F} . S₂ định hướng theo pháp vecto \mathbf{n}_2 vuông góc với trường vecto \mathbf{F} .

Theo tính chất của trường ống và tính cộng tính của tích phân

$$0 = \iint_{S} \langle \boldsymbol{F}, \boldsymbol{n} \rangle dS = \iint_{S_0} \langle \boldsymbol{F}, \boldsymbol{n_0} \rangle dS + \iint_{S_1} \langle \boldsymbol{F}, \boldsymbol{n_1} \rangle dS + \iint_{S_2} \langle \boldsymbol{F}, \boldsymbol{n_2} \rangle dS$$

Từ đó suy ra

$$\iint\limits_{S_1} <\boldsymbol{F},\boldsymbol{n_I} > \mathrm{dS} = -\iint\limits_{S_0} <\boldsymbol{F},\boldsymbol{n_0} > \mathrm{dS} = \iint\limits_{S_0} <\boldsymbol{F},\boldsymbol{n_I} > \mathrm{dS}$$

Hay nói cách khác thông lượng của trường ống đi qua các mặt cắt là một hằng số.

• Trường vectơ (D, F) gọi là *trường điều hoà* nếu nó vừa là trường thế và vừa là trường ống. Tức là có trường vô hướng (D, u) và trường vectơ (D, G) sao cho

$$F = grad u = rot G$$
 (6.8.4)

Từ đó suy ra

$$\Delta \mathbf{u} = \operatorname{div} \left(\mathbf{grad} \, \mathbf{u} \right) = \operatorname{div} \left(\mathbf{rot} \, \mathbf{G} \right) = 0 \tag{6.8.5}$$

Tức là hàm thế vi của trường điều hoà là hàm điều hoà.

- Từ các kết quả ở trên suy ra ý nghĩa cơ học của trường ống như sau.
- 1. Trong trường điều hoà không có điểm xoáy, điểm nguồn

rot
$$F = 0$$
 và div $F = 0$

2. Hoàn lưu dọc theo đường cong kín nằm gọn trong miền D luôn bằng không.

$$K = \oint_{\Gamma} \langle \mathbf{F}, \mathbf{T} \rangle ds = 0$$

3. Thông lượng qua mặt cong kín nằm gọn trong miền D luôn bằng không.

$$\Phi = \iint_{S} \langle \mathbf{F}, \mathbf{n} \rangle dS$$

Bài tập chương 6

- 1. Tìm đạo hàm tại điểm A theo hướng vector \mathbf{e} của trường vô hướng $\mathbf{u} = \mathbf{x}\mathbf{y} \mathbf{z}^2$
- a. A(1, 2, 3) và $e\{1, 1, 1\}$

- b. A(1, 1, 0) và e(0, 1, 1)
- c. A(1, 0, 1) và e là hướng phân giác trong của góc Oxy
- 2. Cho trường vô hướng $u = x^2 + y^2 z^2$
- a. Tìm độ lớn và hướng của vector \mathbf{grad} u tai điểm A(1, -2, 1)
- b. Tîm góc giữa **grad** u(1, 1, 1) và **grad** u(1, -1, 0)
- c. Tìm điểm M sao cho **grad** u(M) đồng phương với truc Oy
- 3. Cho trường bán kính $r = \sqrt{x^2 + y^2 + z^2}$
- a. Tîm $\frac{\partial \mathbf{r}}{\partial \mathbf{e}}$ với $\mathbf{e}\{-1, 0, 1\}$

- b. Tîm **grad** $\frac{1}{r}$ và **grad** r^2
- c. Tìm *grad* f(r) với hàm f là hàm có đao hàm liên tuc.
- 4. Tîm Divergence của các trường vector **F**tai điểm A sau đây.
- a. $F = \{xy, yz, zx\} \text{ và } A(1, 1, 2)$
- b. $F = \{xy^2, yz^2, zx^2\}$ và A(-2, 0, 1)
- c. $F = \{xyz, x + y + z, xy + yz + zx\}$ và A(0, 1, 2)
- 4. Tìm Rotation của các trường vecto Ftai điểm A sau đây.
- a. $F = \{x^2y, y^2z, z^2x\}$ và A(2, -1, 1) b. $F = \{yz, zx, xy\}$ và A(1, 3, 2)
- c. $\mathbf{F} = \{x^2 + y^2, y^2 + z^2, z^2 + x^2\}$ và A(-2, 3, 1)
- 6. Chứng minh các đẳng thức sau đây.
- a. div $(\mathbf{F} \times \mathbf{G}) = \mathbf{F} \operatorname{rot} \mathbf{G} \mathbf{G} \operatorname{rot} \mathbf{F}$
- b. rot (rot \mathbf{F}) = grad (div \mathbf{F}) $\Delta \mathbf{F}$
- 7. Cho (D, u) và (D, v) là các trường vô hướng, $r = \sqrt{x^2 + y^2 + z^2}$ là trường bán kính, còn hàm f là hàm có đao hàm liên tuc. Hãy tính
- a. div (*grad* f(r))
- b. div (u *grad* v)
- c. rot(grad rf(r))

- 8. Tính thông lương của trường vecto *F* qua mặt cong S.
- a. $F = \{x, y, z\}$ qua phần mặt phẳng x + y + z = 1 trong góc phần tám thứ nhất
- b. $F = \{xy, yz, zx\}$ qua phần mặt cầu $x^2 + y^2 + z^2 = 1$ trong góc phần tám thứ nhất
- c. $F = \{xy, yz, zx\}$ qua phần mặt parabole $z = x^2 + y^2$ và $0 \le z \le 1$
- d. $\mathbf{F} = \{x, y, z\}$ qua mặt cong kín $z = x^2 + y^2$, $0 \le z \le 1$
- e. $\mathbf{F} = \{x^3, y^3, z^3\}$ qua mặt cong kín $x^2 + y^2 + z^2 = 1$
- f. $F = \{xy^2, x^2y, z\}$ qua mặt cong kín $z = 4 x^2 y^2$ và $0 \le z \le 4$
- 9. Tính hoàn lưu của trường vecto \mathbf{F} dọc theo đường cong Γ .
- a. $F = \{x, y, z\}$ theo đường xoắn ốc $x = a \cos t$, $y = a \sin t$, z = bt với $t \in [0, \pi/2]$
- b. $F = \{xy, yz, zx\}$ theo đoan thẳng nối hai điểm A(a, 1, 1) và B(2, 4, 8)
- c. $F = \{-y, x, 0\}$ theo đường cong kín $(x 2)^2 + y^2 = 1$ và z = 0
- d. $F = \{x^3, y^3, z^3\}$ theo đường cong kín $x^2 + y^2 + z^2 = 1$ và x + y + z = 1
- e. $F = \{xy^2, x^2y, z\}$ theo đường cong kín $z = x^2 + y^2$ và z = x + y

Phương trình truyền sóng

Đ1. Phương trình đạo hàm riêng tuyến tính cấp 2

• Cho miền $D \subset 3^2$ và các hàm a, b, c : $D \to 3$. Phương trình đạo hàm riêng tuyến tính cấp 2 với hai biến độc lập có dạng như sau

$$a(x, y)\frac{\partial^2 u}{\partial x^2} + 2b(x, y)\frac{\partial^2 u}{\partial x \partial y} + c(x, y)\frac{\partial^2 u}{\partial y^2} = F(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y})$$
(7.1.1)

Kí hiệu $\Delta(x, y) = b^2(x, y) - a(x, y)c(x, y) \text{ với } (x, y) \in D$

- 1. Nếu \forall $(x, y) \in D$, $\Delta(x, y) > 0$ thì phương trình (7.1.1) có dang hyperbole
- 2. Nếu \forall $(x, y) \in D$, $\Delta(x, y) = 0$ thì phương trình (7.1.1) có dạng parabole
- 3. Nếu \forall $(x, y) \in D$, $\Delta(x, y) < 0$ thì phương trình (7.1.1) có dạng ellipse
- Giả sử ánh xa

$$\Phi: D \to \Omega, (x, y) \to (\xi, \eta) \text{ v\'oi } J(x, y) = \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x} \neq 0 \tag{7.1.2}$$

là phép đổi biến từ miền D vào miền Ω .

Theo công thức đạo hàm hàm hợp

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial \xi^{2}} \left(\frac{\partial \xi}{\partial x}\right)^{2} + 2 \frac{\partial^{2} u}{\partial \xi \partial \eta} \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial^{2} u}{\partial \eta^{2}} \left(\frac{\partial \eta}{\partial x}\right)^{2} + \frac{\partial u}{\partial \xi} \frac{\partial^{2} \xi}{\partial x^{2}} + \frac{\partial u}{\partial \eta} \frac{\partial^{2} \eta}{\partial x^{2}}$$

$$\frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial^{2} u}{\partial \xi^{2}} \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial y} + \frac{\partial^{2} u}{\partial \xi \partial \eta} \left(\frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y} + \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x}\right) + \frac{\partial^{2} u}{\partial \eta^{2}} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y} + \frac{\partial u}{\partial \xi} \frac{\partial^{2} \xi}{\partial x \partial y} + \frac{\partial u}{\partial \eta} \frac{\partial^{2} \eta}{\partial x \partial y}$$

$$\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial^{2} u}{\partial \xi^{2}} \left(\frac{\partial \xi}{\partial y}\right)^{2} + 2 \frac{\partial^{2} u}{\partial \xi \partial \eta} \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y} + \frac{\partial^{2} u}{\partial \eta^{2}} \left(\frac{\partial \eta}{\partial y}\right)^{2} + \frac{\partial u}{\partial \xi} \frac{\partial^{2} \xi}{\partial y^{2}} + \frac{\partial u}{\partial \eta} \frac{\partial^{2} \eta}{\partial y^{2}}$$

Thay vào phương trình (7.1.1) nhận được

$$a_{1}(\xi, \eta) \frac{\partial^{2} u}{\partial \xi^{2}} + 2b_{1}(\xi, \eta) \frac{\partial^{2} u}{\partial \xi \partial \eta} + c_{1}(\xi, \eta) \frac{\partial^{2} u}{\partial \eta^{2}} = F_{1}(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta})$$

Trong đó

$$a_1(\xi, \eta) = a(x, y) \left(\frac{\partial \xi}{\partial x}\right)^2 + 2b(x, y) \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial y} + c(x, y) \left(\frac{\partial \xi}{\partial y}\right)^2$$

$$\begin{split} b_1(\xi,\,\eta) &= a(x,\,y) \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial y} + b(x,\,y) \Bigg(\frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y} + \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x} \Bigg) + c(x,\,y) \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y} \\ c_1(\xi,\,\eta) &= a(x,\,y) \bigg(\frac{\partial \eta}{\partial x} \bigg)^2 + 2b(x,\,y) \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y} + c(x,\,y) \bigg(\frac{\partial \eta}{\partial y} \bigg)^2 \end{split}$$

Suy ra

$$\Delta_1(\xi, \eta) = b_1^2 - a_1c_1 = \Delta(x, y)J^2(x, y)$$

Tức là chúng ta có định lý sau đây.

<u>Dinh lý</u> Phép đổi biến không suy biến không làm thay đổi dạng của phương trình đạo hàm riêng tuyến tính cấp 2.

 \bullet Nếu ξ và η là các nghiệm riêng độc lập của phương trình

$$a(x, y) \left(\frac{\partial \varphi}{\partial x}\right)^2 + 2b(x, y) \frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y} + c(x, y) \left(\frac{\partial \varphi}{\partial y}\right)^2 = 0$$
 (7.1.3)

thì $a_1(x, y) = b_1(x, y) = c_1(x, y) = 0$. Khi đó phương trình (7.1.1) có dạng chính tắc

$$\frac{\partial^2 \mathbf{u}}{\partial \xi \partial \eta} = \mathbf{F}_1(\xi, \eta, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \xi}, \frac{\partial \mathbf{u}}{\partial \eta})$$

Giả sử $\phi(x, y)$ là một nghiệm riêng không tầm thường của phương trình (7.1.3). Chúng ta có $(\phi_x , \phi_y) \neq (0, 0)$ không giảm tổng quát có thể xem $\phi_y \neq 0$. Khi đó phương trình $\phi(x, y) = C$ xác định hàm ẩn y = y(x) có đạo hàm $y'(x) = -\phi_x / \phi_y$.

Thay vào phương trình (7.1.3) nhận được phương trình vi phân

$$a(x, y)y'^2 - 2b(x, y)y' + c(x, y) = 0 \text{ v\'oi } a(x, y) \neq 0$$
 (7.1.4)
gọi là *phương trình đặc trưng* của phương trình (7.1.1)

1. Nếu $\Delta(x, y) = b^2(x, y) - a(x, y)c(x, y) > 0$ thì phương trình (7.1.4) có nghiệm thực

$$y = \int \frac{b(x, y) \pm \sqrt{\Delta(x, y)}}{a(x, y)} dx + C$$

Đổi biến

$$\xi + \eta = y - \int \frac{b(x,y) - \sqrt{\Delta(x,y)}}{a(x,y)} dx \ va \ \xi - \eta = y - \int \frac{b(x,y) + \sqrt{\Delta(x,y)}}{a(x,y)} dx$$

Đưa về dang chính tắc của phương trình hyperbole

$$\frac{\partial^2 \mathbf{u}}{\partial \xi^2} - \frac{\partial^2 \mathbf{u}}{\partial \mathbf{n}^2} = \mathbf{F}_2(\xi, \eta, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \xi}, \frac{\partial \mathbf{u}}{\partial \eta}) \tag{7.1.5}$$

2. Nếu $\Delta(x, y) = b^2(x, y) - a(x, y)c(x, y) = 0$ thì phương trình (7.1.4) có nghiệm kép

$$y(x) = \int \frac{b(x, y)}{a(x, y)} dx + C$$

Đổi biến

$$\xi = y - \int \frac{b(x,y)}{a(x,y)} dx \text{ và } \eta = \eta(x,y) \text{ sao cho } J(x,y) \neq 0$$

Đưa về dạng chính tắc của phương trình parabole

$$\frac{\partial^2 \mathbf{u}}{\partial \eta^2} = \mathbf{F}_2(\xi, \eta, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \xi}, \frac{\partial \mathbf{u}}{\partial \eta}) \tag{7.1.6}$$

3. Nếu $\Delta(x, y) = b^2(x, y) - a(x, y)c(x, y)$ thì phương trình (7.1.4) có nghiệm phức

$$y(x) = \int \frac{b(x, y) \pm i\sqrt{-\Delta(x, y)}}{a(x, y)} dx + C = \alpha(x, y) \pm i\beta(x, y) + C$$

Đổi biến

$$\xi = y - \int \frac{b(x,y)}{a(x,y)} dx \ va \ \eta = \int \frac{\sqrt{-\Delta(x,y)}}{a(x,y)} dx$$

Đưa về dạng chính tắc của phương trình ellipse

$$\frac{\partial^2 \mathbf{u}}{\partial \xi^2} + \frac{\partial^2 \mathbf{u}}{\partial \eta^2} = \mathbf{F}_2(\xi, \eta, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \xi}, \frac{\partial \mathbf{u}}{\partial \eta})$$
 (7.1.7)

Ví du Đưa về chính tắc phương trình sau đây

$$2\frac{\partial^2 \mathbf{u}}{\partial x^2} + 3\frac{\partial^2 \mathbf{u}}{\partial x \partial y} + \frac{\partial^2 \mathbf{u}}{\partial y^2} + 3\frac{\partial \mathbf{u}}{\partial x} - 3\frac{\partial \mathbf{u}}{\partial y} - 9\mathbf{u} = 0$$

Giải phương trình đặc trưng

$$2y'^2 - 3y' + 1 = 0$$
, $y = x + C$, $y = \frac{1}{2}x + C$

Đổi biến

$$\xi + \eta = y - \frac{1}{2}x, \ \xi - \eta = y - x \quad \text{Suy ra} \quad \xi = y - \frac{3}{4}x, \ \eta = \frac{1}{4}x$$

$$\frac{\partial \xi}{\partial x} = -\frac{3}{4}, \ \frac{\partial \xi}{\partial y} = 1, \ \frac{\partial \eta}{\partial x} = \frac{1}{4}, \ \frac{\partial \eta}{\partial y} = 0, \ \frac{\partial u}{\partial x} = -\frac{3}{4}\frac{\partial u}{\partial \xi} + \frac{1}{4}\frac{\partial u}{\partial \eta}, \ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{9}{16}\frac{\partial^2 u}{\partial \xi^2} - \frac{3}{8}\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{1}{16}\frac{\partial^2 u}{\partial \eta^2}, \ \frac{\partial^2 u}{\partial x \partial y} = -\frac{3}{4}\frac{\partial^2 u}{\partial \xi^2} + \frac{1}{4}\frac{\partial^2 u}{\partial \xi \partial \eta}, \ \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2}$$

Dạng chính tắc của phương trình là

$$\frac{\partial^2 \mathbf{u}}{\partial \xi^2} - \frac{\partial^2 \mathbf{u}}{\partial \eta^2} = 2 \frac{\partial \mathbf{u}}{\partial \xi} + 2 \frac{\partial \mathbf{u}}{\partial \eta} - 8\mathbf{u}$$

Đ2. Phương trình vật lý - toán

Phương trình truyền sóng

• Cho sợi dây rất mảnh, có độ dài l, hai mút cố định, dao động bé trong mặt phẳng Oxu theo phương trục Ou. Lúc không dao động dây nằm trên đoạn [0, 1] và độ dài của dây không thay đổi trong suốt quá trình dao động. Bài toán đòi hỏi xác định độ lệch u(x, t) tại điểm hoành độ x vào thời điểm t.

• Giả sử dây rất dẻo, đàn hồi với lực căng T(x, t) hướng theo phương tiếp tuyến của sợi dây và do đó có hệ số góc là u_x' . Do độ dài của sợi dây không thay đổi trong lúc dao động nên lực căng T(x, t) không phụ thuộc vào thời gian. Gọi P_1 là hình chiếu của lực căng trên cung M_1M_2 lên trục Ou

$$P_1 = \int_{x_1}^{x_2} T(x) \frac{\partial^2 u}{\partial x^2} dx$$

Gọi F(x, t) là mật độ của ngoại lực tác động và P_2 là hình chiếu của ngoại lực trên cung M_1M_2 lên trục Ou

$$P_2 = \int_{x_1}^{x_2} F(x, t) dx$$

Gọi $\rho(x)$ là mật độ vật chất của sợi dây, u_{tt}'' là gia tốc của chuyển động và P_3 là hình chiếu của lực quán tính trên cung M_1M_2 lên trục Ou

$$P_3 = -\int_{x_1}^{x_2} \rho(x) \frac{\partial^2 u}{\partial t^2} dx$$

Theo nguyên lý cân bằng lực $P_1 + P_2 + P_3 = 0$ suy ra

$$\int_{x_1}^{x_2} \left(T(x) \frac{\partial^2 u}{\partial x^2} + F(x, t) - \rho(x) \frac{\partial^2 u}{\partial t^2} \right) dx = 0$$

Do x_1, x_2 là tuỳ ý nên $\forall (x, t) \in [0, 1] \times [0, +\infty)$ ta có

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = T(x)\frac{\partial^2 u}{\partial x^2} + F(x, t)$$

Nếu sợi dây đồng chất thì $\rho(x)$ và T(x) là các hằng số. Đặt $a^2 = T/\rho > 0$ gọi là vận tốc truyền sóng và $f(x, t) = F(x, t)/\rho$ là ngoại lực tác động. Khi đó độ lệch u(x, t) là nghiệm của phương trình

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \tag{7.2.1}$$

gọi là phương trình truyền sóng trong không gian một chiều.

Trong trường hợp dao động tự do không có ngoại lực tác động : f(x, t) = 0, phương trình

(7.2.1) là phương trình thuần nhất. Trường hợp dao động cưỡng bức : $f(x, t) \neq 0$, phương trình (7.2.1) là phương trình không thuần nhất.

Phương trình truyền nhiệt

- Xét phân bố nhiệt trên vật rắn, thể tích D, truyền nhiệt đẳng hướng trong không gian Oxyz. Bài toán đòi hỏi xác định nhiệt độ u(M, t) tại điểm M(x, y, z) vào thời điểm t.
- Gọi k(M) là hệ số truyền nhiệt, n
 là hướng truyền nhiệt và
 Q₁ nhiệt lượng đi qua mặt kín S = ∂D từ thời điểm t₁ đến t₂

$$Q_{1} = \int_{t_{1}}^{t_{2}} dt \oint_{S} k(M) \frac{\partial u}{\partial \vec{n}} dS = \int_{t_{1}}^{t_{2}} dt \int_{D} div(kgradu) dV$$

Gọi Q_2 là nhiệt lượng sinh bởi nguồn nhiệt trong có mật độ F(M, t) từ thời điểm t_1 đến t_2

$$Q_2 = \int_{t_1}^{t_2} dt \int_{D} F(M, t) dV$$

Gọi $\rho(M)$ là mật độ vật chất, c(M) là nhiệt dung và Q_3 là nhiệt lượng cần để vật rắn D thay đổi từ nhiệt độ $u(M, t_1)$ đến $u(M, t_2)$

$$Q_3 = \int_D c(M)\rho(M) (u(M, t_2) - u(M, t_2)) dV = \int_{t_1}^{t_2} dt \int_D c(M)\rho(M) \frac{\partial u}{\partial t} dV$$

Theo nguyên lý cân bằng nhiệt $Q_1 + Q_2 - Q_3 = 0$ suy ra

$$\int_{t_{1}}^{t_{2}} dt \int_{D} \left(div(kgradu) + F(M, t) - c(M)\rho(M) \frac{\partial u}{\partial t} \right) dV = 0$$

Do t_1 , t_2 tuỳ ý nên \forall $(M, t) \in D \times [0, +\infty)$ chúng ta có

$$c(M)\rho(M)\frac{\partial u}{\partial t} = div(k(M)gradu) + F(M, t)$$

Nếu vật rắn là đồng chất thì c(M), $\rho(M)$ và k(M) là các hằng số. Đặt $a^2 = k / c\rho > 0$ gọi là vận tốc truyền nhiệt và $f(M, t) = F(M, t) / c\rho$ là nguồn nhiệt trong. Khi đó nhiệt độ u(M, t) là nghiêm của phương trình

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2}\right) + \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})$$
(7.2.2)

gọi là *phương trình truyền nhiệt* trong không gian ba chiều.

Trong trường hợp không có nguồn nhiệt trong : f(M, t) = 0, phương trình (7.2.2) là phương trình thuần nhất. Trường hợp có nguồn nhiệt trong : $f(M, t) \neq 0$, phương trình (7.2.2) là phương trình không thuần nhất.

Phương trình Laplace

Xét phân bố nhiệt trên vật rắn truyền nhiệt đẳng hướng, nhiệt độ u(x, y, z, t) tại điểm M(x, y, z) vào thời điểm t thoả mãn phương trình (7.2.2). Nếu phân bố nhiệt không phụ

thuộc thời gian thì $u'_{t} = 0$ và khi đó phương trình (7.2.2) trở thành

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})$$
 (7.2.3)

gọi là phương trình Laplace.

Trong trường hợp không có nguồn nhiệt trong : g(x, y, z, t) = 0, phương trình (7.2.3) là phương trình thuần nhất. Trường hợp có nguồn nhiệt trong : $g(x, y, z, t) \neq 0$ phương trình (7.2.3) là phương trình không thuần nhất còn gọi là *phương trình Poisson*.

Đ3. Các bài toán cơ bản

Bài toán tổng quát

• Cho các miền $D \subset 3^n$, $H = D \times 3_+$ và các hàm $u \in C^2(H, 3)$, $f \in C(H, 3)$. Kí hiệu

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}$$

gọi là toán tử Laplace. Các bài toán Vật lý - Kỹ thuật thường dẫn đến việc giải các phương trình đạo hàm riêng tuyến tính cấp 2 có dạng tổng quát như sau.

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \Delta \mathbf{u} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$
 (7.3.1)

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \Delta \mathbf{u} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \qquad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$
 (7.3.2)

$$\Delta \mathbf{u} = \mathbf{f}(\mathbf{x}) \qquad \qquad \mathbf{x} \in \mathbf{D}_0 \tag{7.3.3}$$

Vì vậy các phương trình trên được gọi là các phương trình Vật lý - Toán. Phương trình Hyperbole (7.3.1) xuất hiện trong các bài toán dao động, truyền sóng gọi là phương trình truyền sóng. Phương trình Parabole (7.3.2) xuất hiện trong các bài toán truyền nhiệt, phân bố nhiệt gọi là phương trình truyền nhiệt. Phương trình Ellipse (7.3.3) xuất hiện trong các bài toán về quá trình dừng gọi là phương trình Laplace.

Các phương trình Vật lý - Toán thường có vô số nghiệm, để xác định đúng nghiệm cần tìm cần phải có thêm các điều kiện phụ.

- Điều kiện ban đầu cho biết trạng thái của hệ thống vào thời điểm t = 0.

$$u|_{t=0} = g, \frac{\partial u}{\partial t}|_{t=0} = h$$
 (7.3.4)

- Điều kiện biên cho biết trạng thái của hệ thống trên biên ∂D.

$$u|_{\partial_D} = h, \frac{\partial u}{\partial n}|_{\partial_D} = p, (\frac{\partial u}{\partial n} + \lambda u)|_{\partial_D} = q$$
 (7.3.5)

Trong thực tiễn các điều kiện phụ được xác định bằng thực nghiệm và do đó có sai số. Vì vậy khi thiết lập các bài toán về phương trình Vật lý - Toán chúng ta yêu cầu

- Bài toán có nghiệm duy nhất : Phương trình có đúng một nghiệm thoả mãn các điều kiên phu cho trước.
- Bài toán có nghiệm ổn định : Sai số nhỏ của các điều kiện phụ dẫn đến sai số nhỏ của nghiệm.

Bài toán tổng quát của phương trình Vật lý - Toán phát biểu như sau : *Tìm nghiệm duy* nhất và ổn đinh của phương trình Vât lý - Toán thoả mãn các điều kiên phu cho trước.

- Trong giáo trình này chúng ta xem xét các bài toán sau đây
- Bài toán Cauchy : Tìm nghiệm duy nhất và ổn định của phương trình truyền sóng (truyền nhiệt) thoả mãn các điều kiện ban đầu
- Bài toán hỗn hợp : Tìm nghiệm duy nhất và ổn định của phương trình truyền sóng (truyền nhiệt) thoả mãn các điều kiên ban đầu và điều kiên biên
- Bài toán Diriclet : Tìm nghiệm duy nhất và ổn định của phương trình Laplace thoả mãn điều kiện biên $u|_{\partial_D}=g$
- Bài toán Neuman : Tìm nghiệm duy nhất và ổn định của phương trình Laplace thoả mãn điều kiện biên $u|_{\partial_D}=g$ và $\frac{\partial u}{\partial n}|_{\partial_D}=h$

Các bài toán với phương trình thuần nhất gọi tắt là bài toán thuần nhất, với phương trình không thuần nhất gọi là bài toán không thuần nhất. Để đơn giản trong giáo trình này chúng ta chỉ giới hạn các bài toán trong phạm vi không gian một hoặc hai chiều. Tuy nhiên các phương pháp giải và công thức nghiệm có thể mở rộng tự nhiên cho trường hợp không gian n chiều. Cụ thể chúng ta sẽ lần lượt nghiên cứu các bài toán sau đây.

Bài toán Cauchy (CH)

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t})$$

và điều kiên ban đầu

$$u|_{t=0} = g(x), \frac{\partial u}{\partial t}|_{t=0} = h(x)$$

Bài toán Cauchy (CP)

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t})$$

và điều kiên ban đầu

$$u|_{t=0} = g(x)$$

<u>Bài toán hỗn hợp (HH)</u>

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t})$$

và các điều kiện phụ

$$u|_{t=0} = g(x), \ \frac{\partial u}{\partial t}|_{t=0} = h(x), \ u|_{\partial D} = p(t)$$

Bài toán hỗn hợp (HP)

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t})$$

và các điều kiện phụ

$$u|_{t=0} = g(x), (\frac{\partial u}{\partial n} + \lambda u)|_{\partial D} = h(t)$$

Bài toán Diriclet (DE)

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} = \mathbf{f}(\mathbf{x}, \mathbf{y})$$

và điều kiên biên

$$u|_{\partial_D} = g(x, y)$$

Bài toán Neumann (NE)

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{f}(\mathbf{x}, \mathbf{y})$$

và các điều kiện biên

$$u|_{\partial_D} = g(x, y), \quad \frac{\partial u}{\partial \vec{n}}|_{\partial_D} = h(x, y)$$

Đ4. Bài toán Cauchy thuần nhất

Bài toán CH1a

Cho các miền D = 3, $H = D \times 3_+$ và hàm $h \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'eti} \ (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$
 (7.4.1)

và điều kiện ban đầu

$$u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = h(x)$$
 (7.4.2)

• Đổi biến $\xi = x + at$, $\eta = x - at$

Tính các đao hàm riêng bằng công thức đao hàm hàm hợp

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}, \quad \frac{\partial u}{\partial t} = a \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right) \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}, \quad \frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial \xi^2} - 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \right) \end{split}$$

Thế vào phương trình (7.4.1), nhận được phương trình

$$\frac{\partial^2 \mathbf{u}}{\partial \xi \partial \eta} = 0$$

Tích phân hai lần

$$u(\xi, \eta) = \varphi(\xi) + \psi(\eta)$$

Trở về biến cũ

$$u(x, t) = \phi(x + at) + \psi(x - at)$$

Thế vào điều kiện ban đầu (7.4.2)

$$u(x, 0) = \varphi(x) + \psi(x) = g(x) \text{ và } u'(x, 0) = a[\varphi'(x) - \psi'(x)] = h(x)$$

Tích phân phương trình thứ hai, đưa về hệ phương trình

$$\varphi(x) + \psi(x) = 0, \ \varphi(x) - \psi(x) = \frac{1}{a} \int_{0}^{x} h(\xi) d\xi$$

Giải hệ phương trình trên tìm $\varphi(x)$ và $\psi(x)$ và suy ra nghiệm của bài toán

$$u(x,t) = \frac{1}{2a} \int_{x-at}^{x+at} h(\xi) d\xi$$
 (7.4.3)

<u>Đinh lý</u> Cho hàm $h \in C^1(D, 3)$. Bài toán CH1a có nghiệm duy nhất và ổn định xác định theo công thức (7.4.3)

Chứng minh

• Do hàm $h \in C^1(D, 3)$ nên hàm $u \in C^2(H, 3)$. Kiểm tra trực tiếp

$$\forall \ (x,t) \in \ H, \ \frac{\partial u}{\partial t} = \frac{1}{2} \, a [h(x+at) + h(x-at)]$$

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \frac{1}{2} \mathbf{a} [\mathbf{h}'(\mathbf{x} + \mathbf{a}\mathbf{t}) + \mathbf{h}'(\mathbf{x} - \mathbf{a}\mathbf{t})] = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

$$\forall x \in D, u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = h(x)$$

• Nếu
$$u_i$$
 là nghiệm của bài toán
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \, u(x,0) = 0, \, \frac{\partial u}{\partial t}(x,0) = h_i$$

thì
$$u=u_1$$
 - u_2 là nghiệm của bài toán $\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}$, $u(x,0)=0$, $\frac{\partial u}{\partial t}(x,0)=h_1$ - $h_2=h$

Với mỗi T > 0 cố định, kí hiệu B = [x - aT, x + aT] và $H_T = B \times [0, T]$. Từ công thức (7.4.3) chúng ta có ước lượng sau đây

$$\forall (x, t) \in H_T, |u(x, t)| \leq T \sup_{B} |h(\xi)|$$

Từ đó suy ra

$$h = h_1 - h_2 = 0 \implies u = u_1 - u_2 = 0.$$

$$\| h \| = \| h_1 - h_2 \| < \delta \Rightarrow \| u \| = \| u_1 - u_2 \| < \epsilon = T\delta$$

Vậy bài toán có nghiệm duy nhất và ổn định trên H_T với mỗi T cố định. Do tính liên tục của nghiêm suy ra bài toán có nghiêm duy nhất và ổn đinh trên H.

Bài toán CH1b

Cho các miền D = 3, $H = D \times 3_+$ và hàm $g \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'oi} \ (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

và điều kiện ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = 0$$

<u>Đinh lý</u> Cho $g \in C^2(D,3)$ và v(x,t) là nghiệm của bài toán CH1a với $\frac{\partial v}{\partial t}(x,0) = g(x)$

Bài toán CH1b có nghiệm duy nhất và ổn định xác định theo công thức sau đây

$$u(x,t) = \frac{\partial v}{\partial t}(x,t) = \frac{1}{2a} \frac{\partial}{\partial t} \int_{x-at}^{x+at} g(\xi) d\xi$$
 (7.4.4)

Chứng minh

 \bullet Do hàm $g\in C^2(D,3)$ nên hàm $v\in C^3(H,3)$ suy ra hàm $u\in C^2(H,3).$ Kiểm tra trực tiếp

$$\forall (x, t) \in H, \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2}}{\partial t^{2}} \frac{\partial v}{\partial t} = a^{2} \frac{\partial}{\partial t} \frac{\partial^{2} v}{\partial x^{2}} = a^{2} \frac{\partial^{2}}{\partial x^{2}} \frac{\partial v}{\partial t}$$

$$\forall x \in D, u(x, 0) = \frac{\partial v}{\partial t}(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = a^{2} \frac{\partial^{2} v}{\partial x^{2}}(x, 0)$$

• Tính duy nhất và ổn định của nghiệm suy ra từ bài toán CH1a.

Đ5. Bài toán Cauchy không thuần nhất

Bài toán CH1c

Cho các miền D = 3, $H = D \times 3_+$ và hàm $f \in C(H, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \text{ v\'oi } (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

và điều kiện ban đầu

$$u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = 0$$

<u>Dinh lý</u> Cho hàm $f \in C(H, 3)$ và $v(x, \tau, t)$ là nghiệm của bài toán CH1a trên $H \times 3_+$ với

$$v(x, \tau, 0) = 0$$
 và $\frac{\partial v}{\partial t}(x, \tau, 0) = f(x, \tau)$

Bài toán CH1c có nghiệm duy nhất và ổn định xác định theo công thức sau đây.

$$u(x, t) = \int_{0}^{t} v(x, \tau, t - \tau) d\tau$$
 (7.5.1)

Chứng minh

 \bullet Do hàm $f\in C(H,3)$ nên hàm $v\in C^1(H\times 3_+,3)$ suy ra hàm $u\in C^2(H,3)$ Kiểm tra trực tiếp

$$\forall (x, t) \in H, \frac{\partial u}{\partial t} = v(x, t, 0) + \int_0^t \frac{\partial v}{\partial t}(x, \tau, t - \tau) d\tau = \int_0^t \frac{\partial v}{\partial t}(x, \tau, t - \tau) d\tau$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial v}{\partial t}(x, t, 0) + \int_0^t \frac{\partial^2 v}{\partial t^2}(x, \tau, t - \tau) d\tau = a^2 \int_0^t \frac{\partial^2 v}{\partial x^2}(x, \tau, t - \tau) d\tau + f(x, t)$$

$$\forall x \in D, u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = 0$$

• Tính duy nhất và ổn định của nghiệm suy ra từ bài toán CH1a.

Bài toán CH1

Cho các miền D = 3, $H = D \times 3_+$, các hàm $f \in C(H, 3)$ và g, $h \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \text{ v\'oi } (x, t) \in H_0$$

và điều kiện ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x)$$

• Tìm nghiệm của bài toán CH1 dưới dang

$$u(x, t) = u_a(x, t) + u_b(x, t) + u_c(x, t)$$

với $u_{\alpha}(x, t)$ là nghiệm của bài toán CH1α.

Kết hợp các công thức (7.4.3), (7.4.4) và (7.5.1) suy ra công thức sau đây.

$$u(x,t) = \frac{1}{2a} \left(\frac{\partial}{\partial t} \int_{x-at}^{x+at} g(\xi) d\xi + \int_{x-at}^{x+at} h(\xi) d\xi + \int_{0}^{t} d\tau \int_{x-a\tau}^{x+a\tau} f(\xi,t-\tau) d\xi \right)$$
(7.5.2)

<u>Dinh lý</u> Cho các hàm $f \in C(H, 3)$, $g \in C^2(D, 3)$ và $h \in C^1(D, 3)$. Bài toán CH1 có nghiêm duy nhất và ổn đinh xác đinh theo công thức (7.5.2).

Theo công thức (7.5.2) chúng ta có

$$u(x, t) = \frac{1}{2a} \left(\frac{\partial}{\partial t} \int_{x-at}^{x+at} \cos \xi d\xi + \int_{x-at}^{x+at} 2\xi d\xi + \int_{0}^{t} \int_{x-a\tau}^{x+a\tau} 2\xi e^{\tau - t} d\xi d\tau \right)$$
$$= \cos x \cos at + 2xt(2t - 1 + e^{-t})$$

<u>Nhân xét</u> Bằng cách kéo dài liên tục các hàm liên tục từng khúc, công thức (7.5.2) vẫn sử dụng được trong trường hợp các hàm f, g và h có đạo hàm liên tục từng khúc.

Đ6. Bài toán giả Cauchy

Bài toán SH1a

Cho các miền $D = 3_+$, $H = D \times 3_+$, các hàm $f \in C(H, 3)$ và g, $h \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

điều kiện ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x)$$

và điều kiện biên

$$u(0, t) = 0$$

• Tư tưởng chung để giải bài toán SH là tìm cách chuyển về bài toán CH tương đương. Gọi f₁, g₁ và h₁ tương ứng là kéo dài của các hàm f, g và h lên toàn 3, còn v(x, t) là nghiệm của bài toán Cauchy sau đây.

$$\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial x^2} + f(x, t), v(x, 0) = g_1(x), \frac{\partial v}{\partial t}(x, 0) = h_1(x) \text{ v\'oi } (x, t) \in 3 \times 3_+$$

Theo công thức (7.5.2) chúng ta có

$$v(x, t) = \frac{1}{2} \left[g_1(x + at) + g_1(x - at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} h_1(\xi) d\xi + \frac{1}{2a} \int_{0}^{t} d\tau \int_{x-a\tau}^{x+a\tau} f_1(\xi, t - \tau) d\xi$$

Thế vào điều kiện biên

$$v(0, t) = \frac{1}{2} [g_1(at) + g_1(-at)] + \frac{1}{2a} \int_{-at}^{at} h_1(\xi) d\xi + \frac{1}{2a} \int_{0}^{t} d\tau \int_{-a\tau}^{a\tau} f_1(\xi, t - \tau) d\xi = 0$$

Suy ra các hàm f_1 , g_1 và h_1 phải là các hàm lẻ.

Tức là

$$f_1(x, t) = \begin{cases} f(x, t) & x \ge 0 \\ -f(-x, t) & x < 0 \end{cases}, g_1(x) = \begin{cases} g(x) & x \ge 0 \\ -g(-x) & x < 0 \end{cases} \text{ và } h_1(x) = \begin{cases} h(x) & x \ge 0 \\ -h(-x) & x < 0 \end{cases}$$

<u>Định lý</u> Cho hàm $f \in C(H, 3)$, hàm $g \in C^2(D, 3)$ và hàm $h \in C^1(D, 3)$ thoả mãn f(0, t) = 0, g(0) = 0 và h(0) = 0

Bài toán SH1a có nghiệm duy nhất và ổn đinh xác đinh theo công thức

$$u(x, t) = \frac{1}{2a} \left(\frac{\partial}{\partial t} \int_{x-at}^{x+at} g_1(\xi) d\xi + \int_{x-at}^{x+at} h_1(\xi) d\xi + \int_{0}^{t} d\tau \int_{x-a\tau}^{x+a\tau} f_1(\xi, t-\tau) d\xi \right)$$
(7.6.1)

với f₁, g₁ và h₁ tương ứng là kéo dài lẻ của các hàm f, g và h lên toàn 3.

Bài toán SH1b

Cho các miền $D = 3_+$, $H = D \times 3_+$ và hàm $p \in C(3_+, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

điều kiện ban đầu

$$u(x, 0) = 0, \ \frac{\partial u}{\partial t}(x, 0) = 0$$

và điều kiện biên

$$u(0, t) = p(t)$$

• Kiểm tra trưc tiếp hàm

$$u(x, t) = \eta(t - \frac{x}{a})p(t - \frac{x}{a})$$
 (7.6.2)

là nghiệm của bài toán SH1b.

<u>Bài toán SH</u>1

Cho các miền $D=3_+$, $H=D\times 3_+$, các hàm $f\in C(H,3)$, $g,h\in C(D,3)$, $p\in C(3_+,3)$ Tìm hàm $u\in C(H,3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

điều kiện ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x)$$

và điều kiện biên

$$u(0, t) = p(t)$$

• Tìm nghiệm của bài toán SH1 dưới dạng $u(x,t)=u_a(x,t)+u_b(x,t)$ trong đó $u_\alpha(x,t)$ là nghiệm của bài toán SH1 α .

Kết hợp các công thức (7.6.1) và (7.6.2) suy ra công thức sau đây.

$$u(x,t) = \frac{1}{2a} \left(\frac{\partial}{\partial t} \int_{x-at}^{x+at} (\xi) d\xi + \int_{x-at}^{x+at} h_1(\xi) d\xi + \int_0^t d\tau \int_{x-a\tau}^{x+a\tau} f_1(\xi,t-\tau) d\xi \right) + \eta(t - \frac{x}{a}) p(t - \frac{x}{a})$$
 (7.6.3)

Dinh lý Cho các hàm
$$f \in C(H, 3), g \in C^2(D, 3), h \in C^1(D, 3)$$
 và $p \in C^2(3_+, 3)$ thoả $g(0) = 0, h(0) = 0$ và $f(0, t) = 0$

Bài toán SH1 có nghiệm duy nhất và ổn định xác định theo công thức (7.6.3) với f_1 , g_1 và h_1 tương ứng là kéo dài lẻ của các hàm f, g và h lên toàn 3.

Ví du Giải bài toán
$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} + 2xt \quad với \quad (x, t) \in 3_+ \times 3_+$$
$$u(x, 0) = \sin x, \quad \frac{\partial u}{\partial t}(x, 0) = 2x$$
$$u(0, t) = \sin t$$

Do các hàm f, g và h là hàm lẻ nên các hàm kéo dài lẻ $f_1 = f$, $g_1 = g$ và $h_1 = h$. Thay vào công thức (7.6.3) chúng ta có

$$u(x, t) = \frac{1}{4} \left(\frac{\partial}{\partial t} \int_{x-2t}^{x+2t} \sin \xi d\xi + \int_{x-2t}^{x+2t} 2\xi d\xi + \int_{0}^{t} d\tau \int_{x-2\tau}^{x+2\tau} 2(t-\tau)\xi d\xi \right) + \eta(t - \frac{x}{2})\sin(t - \frac{x}{2})$$

$$= \sin x \cos 2t + 2xt + \frac{1}{6}xt^3 + \eta(t - \frac{x}{2})\sin(t - \frac{x}{2}) \text{ v\'oi } (x, t) \in 3_{+} \times 3_{+}$$

Nhân xét Phương pháp trên có thể sử dụng để giải các bài toán giả Cauchy khác.

Đ7. Bài toán hỗn hợp thuần nhất

Bài toán HH1a

Cho các miền $D = [0, 1], H = D \times [0, T]$ và các hàm $g, h \in C(D, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'eti} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$
 (7.7.1)

điều kiên ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x)$$
 (7.7.2)

và điều kiên biên

$$u(0, t) = 0, \quad u(1, t) = 0$$
 (7.7.3)

• Bài toán HH1a được giải bằng phương pháp tách biến mà nội dung của nó như sau Tìm nghiệm của bài toán HH1a dạng tách biến

$$u(x, t) = X(x)T(t)$$

Đạo hàm u(x, t) hai lần theo x, theo t sau đó thế vào phương trình (7.7.1)

$$X(x)T''(t) = a^2X''(x)T(t)$$
 suy ra $\frac{X''(x)}{X(x)} = \frac{T''(t)}{a^2T(t)} \equiv \lambda \in 3$

Thế hàm u(x, t) vào điều kiện biên (7.7.3)

$$u(0, t) = X(0)T(t) = 0$$
 và $u(1, t) = X(1)T(t) = 0$ với $T(t) \neq 0$

Chúng ta nhận được hệ phương trình vi phân hệ số hằng sau đây

$$X''(x) + \lambda X(x) = 0 \tag{7.7.4}$$

$$T''(t) + \lambda a^2 T(t) = 0 (7.7.5)$$

$$X(0) = X(1) = 0 \text{ v\'oi } \lambda \in 3$$
 (7.7.6)

Phương trình vi phân (7.7.4) có phương trình đặc trung

$$k^2 + \lambda = 0$$

Nếu $\lambda = -\alpha^2$ thì phương trình (7.7.4) có nghiệm tổng quát $X(x) = C_1 e^{-\alpha_x} + C_2 e^{\alpha_x}$

Thế vào điều kiện (7.7.6) giải ra được $C_1 = C_2 = 0$. Hệ chỉ có nghiệm tầm thường.

Nếu $\lambda = 0$ thì phương trình (7.7.4) có nghiệm tổng quát $X(x) = C_1 + C_2 x$

Trường hợp này hệ cũng chỉ có nghiệm tầm thường.

Nếu $\lambda = \alpha^2$ thì phương trình (7.7.4) có nghiệm tổng quát $X(x) = C_1 \cos \alpha x + C_2 \sin \alpha x$

Thế vào điều kiện (7.7.6) giải ra được $C_1 = 0$, C_2 tuỳ ý và $\alpha = \frac{k\pi}{1}$.

Suy ra hệ phương trình (7.7.4) và (7.7.6) có họ nghiệm riêng trực giao trên [0, 1]

$$X_k(x) = A_k \sin \frac{k\pi}{1} x \text{ v\'oi } A_k \in 3 \text{ v\'a } \lambda_k = \left(\frac{k\pi}{1}\right)^2, k \in \angle^*$$

Thế các λ_k vào phương trình (7.7.5) giải ra được

$$T_k(t) = B_k \cos \frac{k\pi a}{1} t + C_k \sin \frac{k\pi a}{1} t \text{ v\'oi}(B_k, C_k) \in 3^2, k \in \angle^*$$

Suy ra họ nghiệm riêng độc lập của bài toán HH1a

$$u_k(x, t) = (a_k cos \frac{k\pi a}{1} t + b_k sin \frac{k\pi a}{1} t) sin \frac{k\pi}{1} x \text{ v\'oi } a_k = A_k B_k \text{ , } b_k = A_k C_k \text{ , } k \in \angle^*$$

Tìm nghiệm tổng quát của bài toán HH1a dạng chuỗi hàm

$$u(x, t) = \sum_{k=1}^{+\infty} u_k(x, t) = \sum_{k=1}^{+\infty} \left(a_k \cos \frac{k\pi a}{1} t + b_k \sin \frac{k\pi a}{1} t \right) \sin \frac{k\pi}{1} x$$
 (7.7.7)

Thế vào điều kiên ban đầu (7.7.3)

$$u(x, 0) = \sum_{k=1}^{+\infty} a_k \sin \frac{k\pi}{1} x = g(x) \text{ và } \frac{\partial u}{\partial t}(x, 0) = \sum_{k=1}^{+\infty} \frac{k\pi a}{1} b_k \sin \frac{k\pi}{1} x = h(x)$$

Nếu các hàm g và h có thể khai triển thành chuỗi Fourier trên đoạn [0, 1] thì

$$a_{k} = \frac{2}{1} \int_{0}^{1} g(x) \sin \frac{k\pi}{1} x dx \quad va \quad b_{k} = \frac{2}{k\pi a} \int_{0}^{1} h(x) \sin \frac{k\pi}{1} x dx$$
 (7.7.8)

Dịnh lý Cho các hàm $g \in C^2(D, 3)$ và $h \in C^1(D, 3)$ thoả mãn

$$g(0) = g(1) = 0$$
 và $h(0) = h(1) = 0$

Chuỗi hàm (7.7.7) với hệ số a_k và b_k tính theo công thức (7.7.8) là nghiệm duy nhất và ổn định của bài toán HH1a.

Chứng minh

• Các hàm g và h theo giả thiết thoả mãn điều kiện Dirichlet do đó khai triển được thành chuỗi Fourier hội tụ đều và có các chuỗi đạo hàm hội tụ đều trên đoạn [0, 1].

Suy ra chuỗi hàm (7.7.7) với các hệ số a_k và b_k tính theo công thức (7.7.8) là hội tụ đều và các chuỗi đạo hàm riêng đến cấp hai của nó cũng hội tụ đều trên miền H. Do vậy có thể đạo hàm từng từ hai lần theo x, theo t trên miền H. Kiểm tra trực tiếp thấy rằng chuỗi (7.7.7) và các chuỗi đạo hàm riêng của nó thoả mãn phương trình (7.7.1) và các điều kiện phụ (7.7.2), (7.7.3)

• Lập luận tương tự như bài toán CH1 suy ra tính ổn định và duy nhất nghiệm.

Ví du Xác định dao động tự do của dây có hai đầu mút x=0, x=1 cố định, độ lệch ban đầu u(x,0)=x(1-x) và vận tốc ban đầu $\frac{\partial u}{\partial t}(x,0)=0.$

Thay vào công thức (7.7.8) nhận được

$$a_{k} = \int_{0}^{1} x(1-x)\sin\frac{k\pi}{1}xdx = \begin{cases} 0 & k = 2n\\ 81^{2} & k = 2n+1 \end{cases} \text{ và } b_{k} = 0 \text{ với } k \in \angle^{*}$$

Suy ra nghiệm của bài toán

$$u(x, t) = \frac{81^2}{\pi^3} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^3} \cos \frac{(2n+1)\pi a}{1} t \sin \frac{(2n+1)\pi}{1} x$$

Đ8. Bài toán hỗn hợp không thuần nhất

Bài toán HH1b

Cho các miền $D = [0, 1], H = D \times [0, T],$ các hàm $f \in C(H, 3)$ và $g, h \in C(D, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad \mathbf{v} \dot{\mathbf{o}} \mathbf{i} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

điều kiện ban đầu

$$u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = 0$$

và điều kiện biên

$$u(0, t) = 0, u(1, t) = 0$$

• Tìm nghiệm bài toán HH1b dưới dang chuỗi hàm

$$u(x,t) = \sum_{k=1}^{+\infty} T_k(t) \sin \frac{k\pi}{1} x$$
 (7.8.1)

Khai triển Fourier hàm f(x, t) trên đoan [0, 1]

$$f(x, t) = \sum_{k=1}^{+\infty} f_k(t) \sin \frac{k\pi}{1} x \text{ v\'oi } f_k(t) = \frac{2}{1} \int_{0}^{1} f(x, t) \sin \frac{k\pi x}{1} dx$$

Sau đó thế vào bài toán HH1b

$$\sum_{k=1}^{+\infty} \left(T_k''(t) + \left(\frac{k\pi a}{l} \right)^2 T_k(t) \right) \sin \frac{k\pi}{l} x = \sum_{k=1}^{+\infty} f_k(t) \sin \frac{k\pi}{l} x$$

$$\sum_{k=1}^{+\infty} T_k(0) \sin \frac{k\pi}{l} x = 0 \text{ và } \sum_{k=1}^{+\infty} T_k'(0) \sin \frac{k\pi}{l} x = 0$$

Chúng ta nhận được họ phương trình vi phân hệ số hằng

$$T''_{k}(t) + \left(\frac{k\pi a}{1}\right)^{2} T_{k}(t) = f_{k}(t)$$

$$T_{k}(0) = 0, \ T'_{k}(0) = 0 \text{ v\'oi } k \in \angle^{*}$$
(7.8.2)

• Giải họ phương trình vi phân tuyến tính hệ số hằng (7.8.2) tìm các hàm $T_k(t)$ sau đó thế vào công thức (7.8.1) suy ra nghiệm của bài toán HH1b. Họ phương trình (7.8.2) có thể giải bằng phương pháp toán tử Laplace nói ở chương 5 hoặc bằng một trong các phương pháp giải phương trình vi phân tuyến tính hệ số hằng đã biết nào đó. Lập luận tương tự như bài toán HH1a chúng ta có kết quả sau đây.

<u>Đinh lý</u> Cho hàm $f \in C(H, 3) \cap C^1(D, 3)$. Chuỗi hàm (7.8.1) với các hàm $T_k(t)$ xác định từ họ phương trình (7.8.2) là nghiệm duy nhất và ổn định của bài toán HH1b.

<u>Bài toán HH1</u>

Cho các miền D = [0, 1], $H = D \times [0, T]$, các hàm $f \in C(H, 3)$, $g, h \in C(D,3)$ và các hàm $p, q \in C([0, T], 3)$. Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền sóng

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

điều kiện ban đầu

$$u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x)$$

và điều kiện biên

$$u(0, t) = p(t), u(1, t) = q(t)$$

• Tìm nghiệm bài toán HH1 dưới dạng

$$u(x, t) = v(x, t) + w(x, t) + p(t) + \frac{x}{1}(q(t) - p(t))$$
(7.8.3)

Trong đó hàm v(x, t) là nghiệm của bài toán HH1a

$$\frac{\partial^{2} v}{\partial t^{2}} = a^{2} \frac{\partial^{2} v}{\partial x^{2}}$$

$$v(x, 0) = g(x) - p(0) - \frac{x}{1} (q(0) - p(0)) = g_{1}(x)$$

$$\frac{\partial v}{\partial t} (x, 0) = h(x) - p'(0) - \frac{x}{1} (q'(0) - p'(0)) = h_{1}(x)$$

$$v(0, t) = v(l, t) = 0$$
(7.8.4)

với các điều kiên biên

$$g_1(0) = g_1(1) = 0 \iff g(0) = p(0), g(1) = q(0)$$

 $h_1(0) = h_1(1) = 0 \iff h(0) = p'(0), h(1) = q'(0)$

Hàm w(x, t) là nghiêm của bài toán HH1b

$$\frac{\partial^{2} w}{\partial t^{2}} = a^{2} \frac{\partial^{2} w}{\partial x^{2}} + f(x, t) - p''(t) - \frac{x}{1} (q''(t) - p''(t)) = a^{2} \frac{\partial^{2} w}{\partial x^{2}} + f_{1}(x, t)$$

$$w(x, 0) = 0, \frac{\partial w}{\partial t}(x, 0) = 0$$

$$w(0, t) = w(1, t) = 0$$
(7.8.5)

• Giải các bài toán (7.8.4) và (7.8.5) tìm các hàm v(x, t) và w(x, t) sau đó thế vào công thức (7.8.3) suy ra nghiêm của bài toán HH1.

Dinh lý Cho các hàm $f \in C(H, 3) \cap C^1(D, 3)$, $g \in C^2(D, 3)$, $h \in C^1(D, 3)$ và các hàm p, $g \in C^2([0,T], 3)$ thoả mãn

$$g(0) = p(0), g(1) = q(0) \text{ và } h(0) = p'(0), h(1) = q'(0)$$

Hàm u(x, t) xác định theo công thức (7.8.3) với các hàm v(x, t) và w(x, t) là nghiệm của các bài toán (7.8.4) và (7.8.5) là nghiệm duy nhất và ổn định của bài toán HH1.

• Tìm nghiệm của bài toán dưới dạng u(x, t) = v(x, t) + w(x, t) + xt trong đó hàm v(x, t) là nghiệm của bài toán HH1a với $g_1(x) = \sin \pi x$ và $h_1(x) = 0$ còn hàm w(x, t) là nghiệm của bài toán HH1b với $f_1(x, t) = xt$.

Giải bài toán HH1

$$a_k = 2 \int_0^1 \sin \pi x \sin k \pi x dx = \begin{cases} 1 & k=1 \\ 0 & k>1 \end{cases} \text{ và } b_k = 0 \text{ với } k \in \angle^*$$

Suy ra

$$v(x, t) = \cos 2\pi t \sin \pi x$$

Giải bài toán HH2a

$$f_k(t) = 2t \int_0^1 x \sin k\pi x dx = \frac{2(-1)^{k+1}}{k\pi} t \text{ v\'eti } k \in \angle^*$$

Giải họ phương trình vi phân hệ số hằng

$$T_k''(t) + (2k\pi)^2 T_k(t) = \frac{2(-1)^{k+1}}{k\pi} t$$
, $T_k(0) = 0$, $T_k'(0) = 0$

Tìm được các hàm

$$T_k(t) = \frac{\left(-1\right)^{k+1}}{2(k\pi)^3} \left(t - \frac{1}{2k\pi} \sin 2k\pi t\right) \text{ v\'oi } k \in \angle^*$$

Suy ra nghiệm của bài toán

$$u(x, t) = xt + cos2\pi t sin\pi x + \frac{1}{2\pi^3} \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k^3} \left(t - \frac{1}{2k\pi} sin 2k\pi t \right) sin k\pi x$$

Nhân xét Bằng cách kéo dài liên tục các hàm liên tục từng khúc, các công thức trên vẫn sử dung được trong trường hợp các hàm g và h có đạo hàm liên tục từng khúc.

Bài tập chương 7

• Đưa về chính tắc các phương trình đạo hàm riêng tuyến tính cấp 2 sau đây.

1.
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 2\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + 5\frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} - 16\mathbf{u} = 0$$

2.
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} - 2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + 9 \frac{\partial \mathbf{u}}{\partial \mathbf{x}} - 9 \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + 9 \mathbf{u} = 0$$

3.
$$2\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 3\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + 7\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - 4\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 0$$

4.
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} - 2\sin \mathbf{x} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} - \cos^2 \mathbf{x} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \sin \mathbf{x} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 0$$

- Lập bài toán phương trình Vật lý Toán từ các bài toán sau đây.
- 7. Dây rất mảnh có độ dài l đặt trên trục Ox, mút x = 0 cố định, mút x = 1 chuyển động theo qui luật Asin ω t, dao động trong môi trường có lực cán tỷ lệ với vận tốc, hệ số tỷ lệ là λ , độ lệch ban đầu là g(x), vận tốc ban đầu là g(x). Xác định dao động của dây?
- 8. Đĩa rất mỏng đồng chất bán kính R đặt trong mặt phẳng Oxy, mật độ nguồn nhiệt trong tỷ lệ với khoảng cách đến tâm, nhiệt độ môi trường giữ ở nhiệt độ u_0 , nhiệt độ ban đầu là g(x, y). Xác định phân bố nhiệt trên đĩa?

• Giải bài toán Cauchy

9.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

$$u|_{t=0} = e^x, \quad \frac{\partial u}{\partial t}|_{t=0} = e^{-x}$$

10.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + te^{-x} \qquad \qquad u|_{t=0} = \sin x, \quad \frac{\partial u}{\partial t}|_{t=0} = x + \cos x$$

11.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + t \sin x \qquad \qquad u|_{t=0} = \cos x, \quad \frac{\partial u}{\partial t}|_{t=0} = x$$

12.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + t \cos x \qquad u|_{t=0} = \sin x, \quad \frac{\partial u}{\partial t}|_{t=0} = 2x$$

• Giải bài toán giả Cauchy

13.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + te^{-x} \qquad \qquad u|_{t=0} = \sin x, \quad \frac{\partial u}{\partial t}|_{t=0} = x, \quad u(0, t) = 0$$

14.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + t \sin x \qquad u|_{t=0} = x \cos x, \quad \frac{\partial u}{\partial t}|_{t=0} = \sin x, \quad u(0, t) = e^{-t}$$

15.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + x \sin x \qquad \qquad u|_{t=0} = \cos x, \quad \frac{\partial u}{\partial t}|_{t=0} = 3x^2, \quad \frac{\partial u}{\partial x}(0, t) = 0$$

16.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + x \cos x \qquad u|_{t=0} = \sin x, \quad \frac{\partial u}{\partial t}|_{t=0} = \cos x, \quad \frac{\partial u}{\partial x}(0, t) = 0$$

• Giải các bài toán hỗn hợp sau đây với $H = [0, 1] \times 3$

17.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

$$u|_{t=0} = x(1-x), \frac{\partial u}{\partial t}|_{t=0} = 0 \text{ và } u(0,t) = u(1,t) = 0$$

18.
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

$$u|_{t=0} = 0, \quad \frac{\partial u}{\partial t}|_{t=0} = x \sin x \text{ và } u(0, t) = u(l, t) = 0$$

19.
$$\frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

$$\mathbf{u}|_{t=0} = \mathbf{x} \cos \mathbf{x}, \quad \frac{\partial \mathbf{u}}{\partial t}|_{t=0} = 0 \text{ và } \mathbf{u}(0, t) = t, \ \mathbf{u}(1, t) = 0$$

20.
$$\frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{b} \mathbf{s} \mathbf{h} \mathbf{x}$$

$$\mathbf{u}|_{t=0} = 0, \ \frac{\partial \mathbf{u}}{\partial t}|_{t=0} = 0 \ \text{và } \mathbf{u}(0, t) = \mathbf{u}(1, t) = 0$$

$$21. \quad \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + t cosx \qquad \qquad u \mid_{t=0} = sinx, \ \, \frac{\partial u}{\partial t} \mid_{t=0} = x \ \, v \grave{a} \ \, u(0,\,t) = 0, \, u(1,\,t) = t \, v = 0, \, u(1,\,t) =$$

22.
$$\frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

$$\mathbf{u}|_{t=0} = 0, \ \frac{\partial \mathbf{u}}{\partial t}|_{t=0} = 0 \text{ và } \mathbf{u}(0, t) = 0, \mathbf{u}(1, t) = A \sin \omega t$$

23.
$$\frac{\partial^2 u}{\partial t^2} + 2\lambda \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

$$u|_{t=0} = g(x), \quad \frac{\partial u}{\partial t}|_{t=0} = h(x) \text{ vàu}(0, t) = u(1, t) = 0$$

Phương trình truyền nhiệt

Đ1. Bài toán Cauchy thuần nhất

Bài toán CP1a

Cho các miền D = 3, $H = D \times 3_+$ và hàm $g \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'eti} \quad (\mathbf{x}, t) \in \mathbf{H}_0$$
 (8.1.1)

và điều kiện ban đầu

$$u(x, 0) = g(x)$$
 (8.1.2)

• Tìm nghiệm riêng bị chặn của bài toán CP1a dạng tách biến

$$u(x, t) = X(x)T(t)$$

Thế vào phương trình (8.1.1) đưa về hệ phương trình vi phân

$$T'(t) + \lambda a^2 T(t) = 0$$

$$X''(x) + \lambda X(x) = 0$$

Hệ phương trình vi phân trên có họ nghiệm riêng bị chặn

$$T(t) = e^{-(\alpha a)^2 t} \text{ và } X(x) = A(\alpha)\cos\alpha x + B(\alpha)\sin\alpha x \text{ v\'et } \alpha \in 3_+$$

Suy ra họ nghiệm riêng bị chặn của bài toán CP1a

$$u_{\alpha}(x, t) = e^{-(\alpha a)^2 t} (A(\alpha) \cos \alpha x + B(\alpha) \sin \alpha x), \alpha \in 3_{\perp}$$

• Tìm nghiệm tổng quát của bài toán CP1a dạng tích phân suy rộng

$$u(x,t) = \int_{0}^{+\infty} u_{\alpha}(x,t) d\alpha = \int_{0}^{+\infty} e^{-(\alpha a)^{2}t} [A(\alpha)\cos\alpha x + B(\alpha)\sin\alpha x] d\alpha$$
 (8.1.3)

Thế vào điều kiện ban đầu (8.1.2)

$$u(x, 0) = \int_{0}^{+\infty} [A(\alpha)\cos\alpha x + B(\alpha)\sin\alpha x]d\alpha = g(x)$$

Nếu hàm g có thể khai triển thành tích phân Fourier thì

$$A(\alpha) = \frac{1}{\pi} \int_{-\infty}^{+\infty} g(\xi) \cos(\alpha \xi) d\xi \text{ và } B(\alpha) = \frac{1}{\pi} \int_{-\infty}^{+\infty} g(\xi) \sin(\alpha \xi) d\xi$$

Thay vào công thức (8.1.3) và biến đổi

$$u(x, t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} g(\xi) \cos \alpha (\xi - x) d\xi \right) e^{-(\alpha a)^{2} t} d\alpha$$

Đổi thứ tự lấy tích phân

$$u(x,t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} e^{-(\alpha a)^{2}t} \cos \alpha (\xi - x) d\alpha \right) g(\xi) d\xi$$
 (8.1.4)

• Đổi biến $\beta = \alpha a \sqrt{t} \implies d\beta = a \sqrt{t} d\alpha$ $s = \frac{\xi - x}{2a\sqrt{t}} \implies \xi = x + 2a \sqrt{t} s, d\xi = 2a \sqrt{t} ds$

Biến đổi tích phân bên trong của tích phân (8.1.4)

$$\int_{0}^{+\infty} e^{-(\alpha a)^{2}t} \cos \alpha (\xi - x) d\alpha = \frac{1}{a\sqrt{t}} \int_{0}^{+\infty} e^{-\beta^{2}} \cos 2s\beta d\beta = \frac{1}{a\sqrt{t}} I(s)$$

Đạo hàm I(s), sau đó tích phân từng phần, nhận được phương trình vi phân

$$I'(s) = \int_{0}^{+\infty} \sin 2s \beta de^{-\beta^2} = -2sI(s) \text{ và } I(0) = \frac{\sqrt{\pi}}{2} \Rightarrow I(s) = \frac{\sqrt{\pi}}{2} e^{-s^2}$$

Thay vào tích phân (8.1.4) suy ra công thức sau đây.

$$u(x, t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} g(x + 2a\sqrt{t} s)e^{-s^2} ds = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} g(\xi)e^{-\frac{(\xi - x)^2}{4a^2t}} d\xi$$
 (8.1.5)

<u>Dinh lý</u> Cho hàm $g \in C(D, 3) \cap B(D, 3)$. Bài toán CP1a có nghiệm duy nhất và ổn định xác định theo công thức (8.1.5)

Chứng minh

• Theo giả thiết hàm g liên tục và bi chăn

$$\forall (x, t) \in H, \forall s \in 3, \Box g(x + 2a\sqrt{t} s) e^{-s^2} \Box \le M e^{-s^2}$$

Suy ra tích phân (8.1.5) bị chặn đều. Do đó có thể lấy giới hạn và đạo hàm qua dấu tích phân theo x hai lần, theo t một lần. Kiểm tra trực tiếp hàm u(x, t) là nghiệm của phương trình (8.1.1) thoả mãn điều kiện ban đầu (8.1.2)

$$\begin{split} \frac{\partial u}{\partial x} &= \int\limits_{-\infty}^{+\infty} g(\xi) \frac{\xi - x}{4a^3 \sqrt{\pi} t^{3/2}} e^{\frac{-(\xi - x)^2}{4a^2 t}} d\xi \\ \frac{\partial^2 u}{\partial x^2} &= \int\limits_{-\infty}^{+\infty} g(\xi) \left(\frac{-1}{4a^3 \sqrt{\pi} t^{3/2}} + \frac{(\xi - x)^2}{8a^5 \sqrt{\pi} t^{5/2}} \right) e^{\frac{-(\xi - x)^2}{4a^2 t}} d\xi \\ \frac{\partial u}{\partial t} &= \int\limits_{-\infty}^{+\infty} g(\xi) \left(\frac{-1}{4a \sqrt{\pi} t^{3/2}} + \frac{(\xi - x)^2}{8a^3 \sqrt{\pi} t^{5/2}} \right) e^{\frac{-(\xi - x)^2}{4a^2 t}} d\xi = a^2 \frac{\partial^2 u}{\partial x^2} \\ \lim_{t \to 0+} u(x, t) &= \lim_{t \to 0+} \frac{1}{\sqrt{\pi}} \int\limits_{-\infty}^{+\infty} g(x + 2a \sqrt{t} s) e^{-s^2} ds = g(x) \end{split}$$

• Nếu
$$u_i$$
 là hai nghiệm của bài toán
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, u(x, 0) = g_i$$

thì
$$u = u_1 - u_2$$
 là nghiệm của bài toán
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, u(x, 0) = g_1 - g_2 = g$$

Từ công thức (8.1.5) chúng ta có ước lượng sau đây

$$\forall (x,t) \in H, |u(x,t)| \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} |g(x+2as\sqrt{t})| e^{-s^2} ds \leq \sup_{D} \Box g(\xi) \Box$$

Từ đó suy ra

$$g = g_1 - g_2 = 0 \implies u = u_1 - u_2 = 0$$

$$\| g \| = \| g_1 - g_2 \| < \delta \implies \| u \| = \| u_1 - u_2 \| < \varepsilon$$

Vậy bài toán có nghiệm duy nhất và ổn định trên H.

<u>Ví du</u> Giải bài toán $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ và $u(x, 0) = xe^{-x}$

Hàm $g(x) = xe^{-x}$ thoả mãn điều kiện của định lý. Theo công thức (8.1.5)

$$\begin{split} u(x, t) &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} [(x - 8t) + 4\sqrt{t}(s + 2\sqrt{t})] e^{-(s + 2\sqrt{t})^2} e^{4t - x} ds \\ &= \frac{1}{\sqrt{\pi}} e^{4t - x} \left((x - 8t) \int_{-\infty}^{+\infty} e^{-\sigma^2} d\sigma + 4\sqrt{t} \int_{-\infty}^{+\infty} \sigma e^{-\sigma^2} d\sigma \right) \ v \acute{\sigma} = s + 2\sqrt{t} \\ &= (x - 8t) e^{4t - x} \end{split}$$

Đ2. Bài toán Cauchy không thuần nhất

Bài toán CP1b

Cho các miền D = 3, $H = D \times 3_+$ và hàm $f \in C(H, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) \ v\acute{o}i \ (x,t) \in H_0$$

và điều kiện ban đầu

$$u(x, 0) = 0$$

<u>Dinh lý</u> Cho hàm $f \in C(H, 3) \cap B(D, 3)$ và hàm $v(x, \tau, t)$ là nghiệm của bài toán CP1a thoả mãn $v(x, \tau, 0) = f(x, \tau)$.

Bài toán CP1b có nghiệm duy nhất và ổn định xác định theo công thức sau đây

$$u(x,t) = \int_{0}^{t} v(x,\tau,t-\tau)d\tau = \frac{1}{2a\sqrt{\pi}} \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} \frac{f(\xi,\tau)}{\sqrt{t-\tau}} e^{\frac{-(\xi-x)^{2}}{4a^{2}(t-\tau)}} d\xi$$
 (8.2.1)

Chứng minh

• Do hàm $f \in C(H, 3) \cap B(D, 3)$ nên hàm $v \in C^2(H \times 3_+, 3)$. Do đó có thể đạo hàm tích phân (8.2.1) theo x hai lần, theo t một lần. Kiểm tra trực tiếp

$$\frac{\partial u}{\partial t} = \int_0^t \frac{\partial v}{\partial t}(x, \tau, t - \tau) d\tau + v(x, t, 0) = a^2 \int_0^t \frac{\partial^2 v}{\partial x^2}(x, \tau, t - \tau) d\tau + f(x, t)$$
$$= a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \quad \text{và} \quad u(x, 0) = 0$$

₩

• Tính duy nhất và ổn định suy ra từ bài toán CP1a.

Bài toán CP1

Cho các miền D = 3, $H = D \times 3_+$, các hàm $f \in C(H, 3)$ và $g \in C(D, 3)$.

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{f}(\mathbf{x}, \mathbf{t}) \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$

và điều kiện ban đầu

$$u(x, 0) = g(x)$$

• Tìm nghiệm của bài toán CP1 dưới dạng

$$u(x, t) = u_a(x, t) + u_b(x, t)$$

trong đó $u_{\alpha}(x, t)$ là nghiêm của bài toán CP1 α

Kết hợp các công thức (8.1.5) và (8.2.1) suy ra công thức sau đây.

$$u(x,t) = \frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^{+\infty} g(x + 2a\sqrt{t} s) e^{-s^{2}} ds + \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} f(x + 2a\sqrt{\tau} s, t - \tau) e^{-s^{2}} ds \right)$$

$$= \frac{1}{2a\sqrt{\pi}} \left(\int_{-\infty}^{+\infty} \frac{g(\xi)}{\sqrt{t}} e^{-\frac{(\xi - x)^{2}}{4a^{2}t}} d\xi + \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} \frac{f(\xi, t - \tau)}{\sqrt{\tau}} e^{-\frac{(\xi - x)^{2}}{4a^{2}\tau}} d\xi \right)$$
(8.2.2)

<u>Dịnh lý</u> Cho các hàm $f \in C(H, 3) \cap B(D, 3)$ và $g \in C(D, 3) \cap B(D, 3)$. Bài toán CP1 có nghiệm duy nhất và ổn định xác định theo công thức (8.2.2).

Ví du Giải bài toán
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + 3t^2 \text{ và } u(x, 0) = \sin x$$

Hàm $f(x, t) = t^2$, $g(x) = \sin x$ thoả mãn điều kiện của định lý. Theo công thức (8.2.2)

$$u(x, t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \sin(x + 2a\sqrt{t}s)e^{-s^2} ds + \frac{1}{\sqrt{\pi}} \int_{0}^{t} \left(\int_{-\infty}^{+\infty} 3(t - \tau)^2 e^{-s^2} ds \right) d\tau$$

• Kí hiệu

$$I(t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{i(x+2a\sqrt{t}s)} e^{-s^2} ds$$

Đạo hàm I(t), biến đổi và sau đó tích phân từng phần

$$\begin{split} I'(t) &= \frac{-ia}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{i(x+2a\sqrt{t}s)} d(e^{-s^2}) = \frac{-ia}{2\sqrt{\pi t}} e^{i(x+2a\sqrt{t}s)} e^{-s^2} \bigg|_{-\infty}^{+\infty} - \frac{a^2}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{i(x+2a\sqrt{t}s)} e^{-s^2} ds \\ &= -a^2 I(t) \ v\acute{o}i \ I(0) = e^{ix} \end{split}$$

Giải phương trình vi phân nhân được

$$I(t) = e^{-a^2t}e^{ix} = e^{-a^2t}(\cos x + i\sin x)$$
 (8.2.3)

Tách phần thực, phần ảo suy ra các tích phân cần tìm. Cần ghi nhận kết quả và phương pháp tính tích phân trên để sử dụng sau này.

• Tính trưc tiếp tích phân

$$J(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{t} \left(\int_{-\infty}^{+\infty} 3(t - \tau)^{2} e^{-s^{2}} ds \right) d\tau = t^{3}$$

Suy ra nghiệm của bài toán

$$u(x, t) = Im I(t) + J(t) = e^{-a^2t} sinx + t^3$$

Nhân xét Bằng cách kéo dài liên tục các hàm liên tục từng khúc, các công thức trên vẫn sử dụng được trong trường hợp các hàm f và g có đạo hàm liên tục từng khúc.

Đ3. Bài toán giả Cauchy

Bài toán SP1a

Cho các miền $D = 3_+$, $H = D \times 3_+$, các hàm $f \in C(D, 3)$ và $g \in C(D, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \text{ v\'oi } (x, t) \in H_0$$

và các điều kiện

$$u(x, 0) = g(x), u(0, t) = 0$$

• Tư tưởng chung để giải bài toán SP là tìm cách chuyển về bài toán CP tương đương. Giả sử f_1 và g_1 tương ứng là kéo dài của các hàm f và g lên toàn 3, còn hàm v(x, t) là nghiệm của bài toán Cauchy sau đây.

$$\frac{\partial \mathbf{v}}{\partial t} = a^2 \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \mathbf{f}_1(\mathbf{x}, t) \quad \text{và} \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{g}_1(\mathbf{x}) \text{ với } (\mathbf{x}, t) \in 3 \times 3_+$$

Theo công thức (8.2.2), ta có

$$v(x,t) = \frac{1}{2a\sqrt{\pi}} \left(\int_{-\infty}^{+\infty} \frac{g_1(\xi)}{\sqrt{t}} e^{-\frac{(\xi-x)^2}{4a^2t}} d\xi + \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} \frac{f_1(\xi,t-\tau)}{\sqrt{\tau}} e^{-\frac{(\xi-x)^2}{4a^2\tau}} d\xi \right)$$

Thế vào điều kiện biên

$$v(0,t) = \frac{1}{2a\sqrt{\pi}} \left(\int_{-\infty}^{+\infty} \frac{g_1(\xi)}{\sqrt{t}} e^{-\frac{\xi^2}{4a^2t}} d\xi + \int_{0}^{t} d\tau \int_{-\infty}^{+\infty} \frac{f_1(\xi,t-\tau)}{\sqrt{\tau}} e^{-\frac{\xi^2}{4a^2\tau}} d\xi \right) = 0$$

Suy ra các hàm f₁ và g₁ phải là các hàm lẻ.

Tức là

$$f_1(x, t) = \begin{cases} f(x, t) & x \ge 0 \\ -f(-x, t) & x < 0 \end{cases} \text{ và } g_1(x) = \begin{cases} g(x) & x \ge 0 \\ -g(-x) & x < 0 \end{cases}$$

<u>Đinh lý</u> Cho các hàm $f \in C(H, 3) \cap B(H, 3)$ và $g \in C(D, 3) \cap B(D, 3)$ thoả mãn f(0, t) = 0 và g(0) = 0

Bài toán SP1a có nghiệm duy nhất và ổn định xác định theo công thức

$$u(x,t) = \frac{1}{2a\sqrt{\pi}} \left(\int_{0}^{+\infty} \frac{g(\xi)}{\sqrt{t}} \left(e^{\frac{-(\xi - x)^{2}}{4a^{2}t}} - e^{\frac{-(\xi + x)^{2}}{4a^{2}t}} \right) d\xi + \int_{0}^{t} d\tau \int_{0}^{+\infty} \frac{f(\xi, t - \tau)}{\sqrt{\tau}} \left(e^{\frac{-(\xi - x)^{2}}{4a^{2}\tau}} - e^{\frac{-(\xi + x)^{2}}{4a^{2}\tau}} \right) d\xi \right)$$
(8.3.1)

Ví du Giải bài toán $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + 2xt \quad với \quad (x, t) \in 3_+ \times 3_+$ $u(x, 0) = \sin x \quad và \quad u(0, t) = 0$

Do các hàm f và g là hàm lẻ nên các hàm kéo dài lẻ $f_1 = f$ và $g_1 = g$. Thay vào công thức (8.2.2) và sử dụng tích phân (8.2.3), ta có

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \sin(x + 2a\sqrt{t}s) e^{-s^2} ds \ + \frac{1}{\sqrt{\pi}} \int_{0}^{t} \int_{-\infty}^{+\infty} 2(t - \tau)(x + 2a\sqrt{\tau}s) e^{-s^2} ds d\tau \\ &= ImI(t) + \frac{1}{\sqrt{\pi}} \int_{0}^{t} 2(t - \tau) d\tau \left(x \int_{-\infty}^{+\infty} e^{-s^2} ds - a\sqrt{\tau} \int_{-\infty}^{+\infty} d(e^{-s^2}) \right) \\ &= e^{-a^2t} \sin x \ + xt^2 \end{split}$$

Bài toán SP1b

Cho các miền $D = 3_+$, $H = D \times 3_+$ và hàm $h \in C(3_+, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \quad v \acute{o}i \quad (x, t) \in H_0$$

và các điều kiên

$$u(x, 0) = 0, u(0, t) = h(t)$$

<u>Dinh lý</u> Cho hàm $h \in C(3_+, 3) \cap B(3_+, 3)$. Bài toán SP1b có nghiệm duy nhất và ổn định

xác đinh theo công thức

$$u(x,t) = \frac{x}{2a\sqrt{\pi}} \int_{0}^{t} \frac{h(t-\tau)}{\tau^{3/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau$$
 (8.3.2)

Chứng minh

• Do hàm $h \in C(3_+, 3) \cap B(3_+, 3)$ nên tích phân (8.3.2) hội tụ đều H. Do đó có thể đạo hàm theo x hai lần, theo t một lần. Kiểm tra trưc tiếp

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{1}{2a\sqrt{\pi}} \int\limits_0^t \frac{h(t-\tau)}{\tau^{3/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau - \frac{x^2}{4a^3\sqrt{\pi}} \int\limits_0^t \frac{h(t-\tau)}{\tau^{5/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau \\ \frac{\partial^2 u}{\partial x^2} &= \frac{-x}{4a^3\sqrt{\pi}} \int\limits_0^t \frac{h(t-\tau)}{\tau^{5/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau + \frac{x^3}{8a^5\sqrt{\pi}} \int\limits_0^t \frac{h(t-\tau)}{\tau^{7/2}} e^{-\frac{x^2}{4a^2\tau}} d\tau \\ \frac{\partial u}{\partial t} &= \frac{x}{2a\sqrt{\pi}} \frac{h(0)}{t^{3/2}} e^{-\frac{x^2}{4a^2t}} - \frac{x}{2a\sqrt{\pi}} \int\limits_0^t \frac{1}{\tau^{3/2}} e^{-\frac{x^2}{4a^2\tau}} dh(t-\tau) \\ &= \frac{x}{2a\sqrt{\pi}} \int\limits_0^t h(t-\tau) \left(\frac{-3}{2\tau^{5/2}} + \frac{x^2}{4a^2\tau^{7/2}} \right) e^{-\frac{x^2}{4a^2\tau}} d\tau = a^2 u_{xx}'' \end{split}$$

Theo công thức (8.3.2) ta có u(x, 0) = 0

Đổi biến tích phân (8.3.2)

$$s = \frac{x}{2a\sqrt{\tau}}$$
, $u(x, t) = \frac{2}{\sqrt{\pi}} \int_{\frac{x}{2a\sqrt{t}}}^{+\infty} h(t - \frac{x^2}{4a^2s^2})e^{-s^2}ds$

Suy ra u(0, t) = h(t)

• Tính duy nhất và ổn đinh suy ra từ công thức (8.3.2) và ước lương tích phân.

Bài toán SP1

Cho các miền $D=3_+$, $H=D\times 3_+$, các hàm $f\in C(H,3)$, $g\in C(D,3)$ và $h\in C(3_+,3)$ Tìm hàm $u\in C(H,3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \text{ v\'oi } (x, t) \in H_0$$

và các điều kiện

$$u(x, 0) = g(x), u(0, t) = h(t)$$

• Tìm nghiệm của bài toán SP1 dưới dạng

$$u(x, t) = ua(x, t) + ub(x, t)$$

trong đó $u_{\alpha}(x, t)$ là nghiệm của bài toán SP1 α

Kết hợp các công thức (8.3.1) và (8.3.2), suy ra công thức sau đây.

$$u(x,t) = \frac{1}{2a\sqrt{\pi}} \left(\int_{0}^{+\infty} \frac{g(\xi)}{t} \left(e^{-\frac{(\xi - x)^{2}}{4a^{2}t}} - e^{-\frac{(\xi + x)^{2}}{4a^{2}t}} \right) d\xi + x \int_{0}^{t} \frac{h(t - \tau)}{\tau^{3/2}} e^{-\frac{x^{2}}{4a^{2}\tau}} d\tau + \int_{0}^{t} d\tau \int_{0}^{+\infty} \frac{f(\xi, t - \tau)}{\sqrt{\tau}} \left(e^{-\frac{(\xi - x)^{2}}{4a^{2}\tau}} - e^{-\frac{(\xi + x)^{2}}{4a^{2}\tau}} \right) d\xi \right)$$
(8.3.3)

<u>Dinh lý</u> Cho $f \in C(H, 3) \cap B(D, 3), g \in C(D, 3) \cap B(D, 3), h \in C(3_+, 3) \cap B(3_+, 3)$ thoả mãn f(0, t) = 0 và g(0) = 0

Bài toán SP1 có nghiệm duy nhất và ổn định xác định theo công thức (8.3.3)

Nhân xét Phương pháp trên có thể sử dụng để giải các bài toán giả Cauchy khác.

Đ4. Bài toán hỗn hợp thuần nhất

Bài toán HP1a

Cho các miền D = [0, 1], H = D × [0, T] và hàm g \in C(D, 3)

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{t}) \in \mathbf{H}_0$$
 (8.4.1)

điều kiên ban đầu

$$u(x, 0) = g(x) (8.4.2)$$

và điều kiên biên

$$u(0, t) = 0, \ u(1, t) = 0$$
 (8.4.3)

• Tìm nghiệm của bài toán HP1a dạng tách biến

$$u(x, t) = X(x)T(t)$$

Thế vào phương trình (8.4.1) và điều kiên biên (8.4.3) đưa về hệ phương trình vi phân

$$X''(x) + \lambda X(x) = 0 (8.4.4)$$

$$T'(t) + \lambda a^2 T(t) = 0 (8.4.5)$$

$$X(0) = X(1) = 0 \text{ v\'oi } \lambda \in 3$$
 (8.4.6)

Lập luận tương tự như bài toán HH1a, tìm nghiệm riêng không tầm thường của hệ phương trình (8.4.4) và (8.4.6), nhận được họ nghiệm riêng trực giao trên đoạn [0, 1]

$$X_k(x) = A_k sin \frac{k\pi}{l} x \ \text{ v\'oi } A_k \in \ 3 \ v\grave{a} \ \lambda_k = \left(\frac{k\pi}{l}\right)^2, \, k \in \ \angle^*$$

Thay vào phương trình (8.4.5) tìm được họ nghiệm riêng độc lập

$$T_k(t) = B_k e^{-\left(\frac{k\pi a}{l}\right)^2 t} \text{ v\'oi } B_k \in 3, k \in \angle^*$$

Suy ra họ nghiệm riêng độc lập của bài toán HP1

$$u_k(x,\,t) = X_k(x)T_k(t) = a_k\,e^{-\left(\frac{k\pi a}{l}\right)^2t}\,\sin\frac{k\pi}{l}\,x\ \ \text{v\'oi}\ a_k = A_kB_k\ ,\, k\in\, \angle^*$$

• Tìm nghiệm tổng quát của bài toán HP1 dang chuỗi hàm

$$u(x,t) = \sum_{k=1}^{+\infty} u_k(x,t) = \sum_{k=1}^{+\infty} a_k e^{-\left(\frac{k\pi a}{l}\right)^2 t} \sin\frac{k\pi}{l} x$$
 (8.4.7)

Thay vào điều kiên ban đầu (8.4.2)

$$u(x, 0) = \sum_{k=1}^{+\infty} a_k \sin \frac{k\pi}{1} x = g(x)$$

Nếu hàm g có thể khai triển thành chuỗi Fourier thì

$$a_{k} = \frac{2}{1} \int_{0}^{1} g(x) \sin \frac{k\pi}{1} x dx$$
 (8.4.8)

<u>Định lý</u> Cho hàm $g \in C^1(D, 3)$ thoả mãn g(0) = g(1) = 0. Chuỗi hàm (8.4.7) với các hệ số a_k tính theo công thức (8.4.8) là nghiệm duy nhất và ổn định của bài toán HP1a.

Chứng minh

• Hàm g theo giả thiết thoả mãn điều kiện Diriclet và do đó khai triển được thành chuỗi Fourier hôi tu đều trên đoan [0, 1].

Do đó chuỗi hàm (8.4.7) với các hệ số a_k tính theo công thức (8.4.8) là hội tụ đều và có thể đạo hàm từng từ theo x hai lần, theo t một lần trên miền H. Kiểm tra trực tiếp thấy rằng chuỗi hàm (8.4.7) và các chuỗi đạo hàm riêng của nó thoả mãn phương trình (8.4.1) và các điều kiên (8.4.2), (8.4.3)

• Lập luận tương tự như bài toán CP1 suy ra tính ổn định và duy nhất nghiệm.

Ví dụ Giải bài toán
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad với (x, t) \in [0, 1] \times [0, T]$$
$$u(x, 0) = x(1 - x) \text{ và } u(0, t) = u(1, t) = 0$$

Theo công thức (8.4.8) ta có

$$a_{k} = 2 \int_{0}^{1} x(1-x) \sin k\pi x dx = 4 \frac{1 - (-1)^{k}}{k^{3} \pi^{3}} = \begin{cases} 0 & k = 2n \\ \frac{8}{(2n+1)^{3} \pi^{3}} & k = 2n+1 \end{cases}$$

Thế vào công thức (8.4.7) suy ra nghiệm của bài toán

$$u(x, t) = \frac{8}{\pi^3} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^3} e^{-(2n+1)^2 \pi^2 t} \sin(2n+1)\pi x$$

Đ5. Bài toán hỗn hợp không thuần nhất

Bài toán HP1b

Cho các miền $D = [0, 1], H = D \times [0, T],$ các hàm $f \in C(H, 3)$ và $g \in C(D, 3)$

Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \text{ v\'oi } (x, t) \in H_0$$

điều kiện ban đầu

$$u(x, 0) = 0$$

và các điều kiện biên

$$u(0, t) = 0, u(1, t) = 0$$

• Tìm nghiệm bài toán HP1b dạng chuỗi hàm

$$u(x,t) = \sum_{k=1}^{+\infty} T_k(t) \sin \frac{k\pi}{1} x$$
 (8.5.1)

Khai triển Fourier hàm f(x, t) đoạn [0, 1], thế vào bài toán HP1b

$$\sum_{k=1}^{+\infty} \left(T_k'(t) + \left(\frac{k\pi a}{l} \right)^2 T_k(t) \right) \sin \frac{k\pi}{l} x = \sum_{k=1}^{+\infty} f_k(t) \sin \frac{k\pi}{l} x$$

với
$$f_k(t) = \frac{2}{1} \int_0^1 f(x, t) \sin \frac{k\pi x}{1} dx$$
 và $\sum_{k=1}^{+\infty} T_k(0) \sin \frac{k\pi}{1} x = 0$

Đưa về họ phương trình vi phân hệ số hằng

$$T'_{k}(t) + \left(\frac{k\pi a}{l}\right)^{2} T_{k}(t) = f_{k}(t), T_{k}(0) = 0$$
 (8.5.2)

Giải họ phương trình vi phân tuyến tính hệ số hằng (8.5.2) tìm các hàm $T_k(t)$ thế vào công thức (8.5.1) suy ra nghiệm của bài toán.

<u>Dinh lý</u> Cho hàm $f \in C(H, 3) \cap C^1(D, 3)$. Chuỗi hàm (8.5.1) với các hàm $T_k(t)$ xác định bởi hệ phương trình (8.5.2) là nghiệm duy nhất và ổn định của bài toán HP1b.

Bài toán HP1

Cho các miền D = [0, 1], $H = D \times [0, T]$, các hàm $f \in C(H, 3)$, $g \in C(D, 3)$ và các hàm $p, q \in C([0, T], 3)$. Tìm hàm $u \in C(H, 3)$ thoả mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t) \text{ v\'oi } (x, t) \in H_0$$

điều kiện ban đầu

$$u(x, 0) = g(x)$$

và các điều kiện biên

$$u(0, t) = p(t), u(1, t) = q(t)$$

• Tìm nghiệm bài toán HP1 dưới dạng

$$u(x, t) = v(x, t) + w(x, t) + p(t) + \frac{x}{1}(q(t) - p(t))$$
(8.5.3)

Trong đó hàm v(x, t) là nghiệm của bài toán HP1a

$$\frac{\partial \mathbf{v}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2}$$

$$v(x, 0) = g(x) - p(0) - \frac{x}{1} (q(0) - p(0)) = g_1(x)$$

$$v(0, t) = v(1, t) = 0$$
(8.5.4)

với điều kiện biên

$$g_1(0) = g_1(1) = 0 \iff g(0) = p(0), g(1) = q(0)$$

Hàm w(x, t) là nghiệm của bài toán HP1b

$$\frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2} + f(x, t) - p'(t) - \frac{x}{1} (q'(t) - p'(t)) = a^2 \frac{\partial^2 w}{\partial x^2} + f_1(x, t)
w(x, 0) = 0
w(0, t) = w(1, t) = 0$$
(8.5.5)

 Giải các bài toán (8.5.4) và (8.5.5) tìm hàm v(x, t) và hàm w(x, t) thế vào công thức (8.5.3) suy ra nghiệm của bài toán.

<u>Dinh lý</u> Cho các hàm $f \in C(H, 3) \cap C^1(D, 3)$, $g \in C^2(D, 3)$ và $p, q \in C^1([0, T], 3)$ thoả mãn g(0) = p(0), g(1) = q(0)

Hàm u(x, t) xác định theo công thức (8.5.3) với hàm v(x, t) và hàm w(x, t) là nghiệm của các bài toán (8.5.4) và (8.5.5) là nghiệm duy nhất và ổn định của bài toán HP1.

• Tìm nghiệm của bài toán dưới dạng $u(x, t) = v(x, t) + w(x, t) + xe^{-t}$ với hàm v(x, t) là nghiệm của bài toán HP1a với $g_1(x) = 0$ còn hàm w(x, t) là nghiệm của bài toán HP1b với $f_1(x, t) = xe^{-t}$.

Bài toán HP1a có nghiệm v(x, t) = 0

Giải bài toán HP1b

$$f_k(t) = 2e^{-t} \int_0^1 x \sin k\pi x dx = \frac{2(-1)^{k+1}}{k\pi} e^{-t} \text{ v\'oi } k \in \angle^*$$

Giải họ phương trình vi phân hệ số hằng

$$T'_{k}(t) + (2k\pi)^{2}T_{k}(t) = \frac{2(-1)^{k+1}}{k\pi}e^{-t}, T_{k}(0) = 0$$

Tìm được các hàm

$$T_k(t) = \frac{2(-1)^k}{k\pi(4k^2\pi^2 - 1)} \left(e^{-(2k\pi)^2 t} - e^{-t} \right) \text{ v\'oi } k \in \angle^*$$

Suy ra nghiệm của bài toán

$$u(x, t) = xe^{-t} + \sum_{k=1}^{+\infty} \frac{2(-1)^k}{k\pi (4k^2\pi^2 - 1)} \left(e^{-(2k\pi)^2 t} - e^{-t} \right) \sin k\pi x$$

Nhận xét Bằng cách kéo dài liên tục, các công thức trên vẫn sử dụng được trong trường hợp các hàm f và g có đạo hàm liên tục từng khúc.

Đ6. Bài toán Dirichlet trong hình tròn

• Xét toán tử vi phân Laplace trong mặt phẳng

$$\Delta u(x, y) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Đổi biến toạ độ cực $x = r\cos\phi$, $y = r\sin\phi$

Theo công thức đạo hàm hàm hợp

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \phi} \frac{\partial \phi}{\partial x} = \cos \phi \frac{\partial u}{\partial r} - \frac{1}{r} \sin \phi \frac{\partial u}{\partial \phi} \\ \frac{\partial u}{\partial y} &= \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \phi} \frac{\partial \phi}{\partial y} = \sin \phi \frac{\partial u}{\partial r} + \frac{1}{r} \cos \phi \frac{\partial u}{\partial \phi} \\ \frac{\partial^2 u}{\partial x^2} &= \cos^2 \phi \frac{\partial^2 u}{\partial r^2} - \frac{2}{r} \cos \phi \sin \phi \frac{\partial^2 u}{\partial r \partial \phi} + \frac{2}{r^2} \cos \phi \sin \phi \frac{\partial u}{\partial \phi} + \frac{1}{r} \sin^2 \phi \frac{\partial u}{\partial r} + \frac{1}{r^2} \sin^2 \phi \frac{\partial^2 u}{\partial \phi^2} \\ \frac{\partial^2 u}{\partial y^2} &= \sin^2 \phi \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \cos \phi \sin \phi \frac{\partial^2 u}{\partial r \partial \phi} - \frac{2}{r^2} \cos \phi \sin \phi \frac{\partial u}{\partial \phi} + \frac{1}{r} \cos^2 \phi \frac{\partial u}{\partial r} + \frac{1}{r^2} \cos^2 \phi \frac{\partial^2 u}{\partial \phi^2} \end{split}$$

Suy ra biểu thức toạ độ cực của toán tử Laplace

$$\Delta u(r, \phi) = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2}$$

Bài toán DE1a

Cho miền D = $[0, R] \times [0, 2\pi]$ và hàm $g \in C([0, 2\pi], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta \mathbf{u}(\mathbf{r}, \mathbf{\phi}) = 0 \text{ v\'oi} \quad (\mathbf{r}, \mathbf{\phi}) \in \mathbf{D}_0 \tag{8.6.1}$$

và điều kiện biên

$$u(R, \theta) = g(\theta) \tag{8.6.2}$$

• Tìm nghiệm của bài toán DE1a dang tách biến

$$u(r, \varphi) = V(r)\Phi(\varphi)$$

Thế vào phương trình (8.6.1) nhận được hệ phương trình vi phân

$$\Phi''(\varphi) + \lambda \Phi(\varphi) = 0 \tag{8.6.3}$$

$$r^2V''(r) + rV'(r) - \lambda V(r) = 0, \text{ v\'oi } \lambda \in 3$$
 (8.6.4)

Phương trình (8.6.3) có họ nghiệm riêng trực giao, tuần hoàn chu kỳ $T = 2\pi$

$$\Phi_k(x) = A_k \cos k \varphi + B_k \sin k \varphi, \ \lambda_k = k^2 \text{ v\'oi } A_k, B_k \in \mathcal{A}, k \in \mathcal{A}$$

Thay vào phương trình (8.6.4) tìm họ nghiệm riêng độc lập và bị chặn

$$V_k(r) = C_k r^k \text{ v\'oi } C_k \in 3, k \in \angle$$

Suy ra họ nghiệm riêng độc lập của bài toán DE1a

$$u_0 = a_0$$
, $u_k(r, \phi) = r^k(a_k \cos k\phi + b_k \sin k\phi)$ với $a_k = C_k A_k$, $b_k = C_k B_k$, $k \in \angle^*$

• Tìm nghiệm tổng quát của bài toán DE1a dạng chuỗi hàm

$$u(r, \varphi) = a_0 + \sum_{k=1}^{+\infty} r^k (a_k \cos k\varphi + b_k \sin k\varphi)$$
 (8.6.5)

Thế vào điều kiện biên (8.6.2)

$$u(R, \theta) = a_0 + \sum_{k=1}^{+\infty} R^k (a_k \cos k\theta + b_k \sin k\theta) = g(\theta)$$

Nếu hàm g có thể khai triển thành chuỗi Fourier thì

$$a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} g(\theta) d\theta$$
, $a_k = \frac{1}{\pi R^k} \int_{0}^{2\pi} g(\theta) \cos k\theta d\theta$, $b_k = \frac{1}{\pi R^k} \int_{0}^{2\pi} g(\theta) \sin k\theta d\theta$ (8.6.6)

<u>Định lý</u> Cho $g \in C^1([0, 2\pi], 3)$ thoả mãn $g(0) = g(2\pi)$. Chuỗi hàm (8.6.5) với các hệ số a_k và b_k tính theo công thức (8.6.6) là nghiệm duy nhất và ổn định của bài toán DE1a. <u>Chứng minh</u>

Lập luận tương tự như bài toán CP1

<u>Ví du</u> Giải bài toán DE1 $\Delta u = 0$ với $u(R, \theta) = 2R\sin\theta$

Hàm $g(\theta) = 2R\sin\theta$ thoả mãn các điều kiên của đinh lý. Theo công thức (8.6.6)

$$a_k = 0 \text{ và } b_k = 2R \frac{1}{\pi R^k} \int_0^{2\pi} \sin \theta \sin k\theta d\theta = \begin{cases} 2 & k=1 \\ 0 & k \neq 1 \end{cases} \text{ với } k \in \angle^*$$

Suy ra nghiệm của bài toán $u(r, \phi) = 2r\sin\phi \equiv 2y$

• Kí hiệu

$$u(z) = u(r, \phi) \text{ v\'oi } z = re^{i\phi} \in D_0$$

Theo kết quả ở Đ8, chương 3 suy ra bài toán DE1a có nghiệm theo công thức sau đây.

$$u(z) = \operatorname{Re} \frac{1}{2\pi i} \oint_{|\zeta| = R} \frac{\zeta + z}{\zeta - z} \frac{g(\zeta)}{\zeta} d\zeta = \operatorname{Re} \frac{1}{2\pi i} \oint_{|\zeta| = R} F(\zeta) d\zeta = \operatorname{ReI}(z)$$
(8.6.7)

Giả sử trong hình tròn B(0, R) hàm g có các cực điểm khác không a_k với k = 1..n Theo công thức tính tích phân Cauchy (4.7.6) ta có

$$I(z) = ResF(z) + ResF(0) + \sum_{k=1}^{n} ResF(a_k)$$
(8.6.8)

Ví du Giải bài toán DE1

$$\Delta u = 0 \text{ v\'eti } u(R, \theta) = 2R\sin\theta$$

Chuyển qua toa vi phức

$$g(\zeta) = 2R \frac{1}{2i} (e^{i\theta} - e^{-i\theta}) = \frac{1}{i} \frac{\zeta^2 - R^2}{\zeta^2} \text{ và } F(\zeta) = \frac{1}{i} \frac{\zeta + z}{\zeta - z} \frac{\zeta^2 - R^2}{\zeta^2}$$

Ta có

$$I(z) = \text{Res}[f, z] + \text{Res}[f, 0] = \frac{2(z^2 - R^2)}{iz} + \frac{2R^2}{iz} = -2iz$$

Suy ra nghiệm của bài toán

$$u(z) = Re(-2iz) = 2y$$

Bài toán DE1b

Cho miền D = $[\rho, R] \times [0, 2\pi]$ và các hàm g, h $\in C([0, 2\pi], 3)$

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta \mathbf{u}(\mathbf{r}, \mathbf{\phi}) = 0 \quad \text{v\'oi} \quad (\mathbf{r}, \mathbf{\phi}) \in \mathbf{D}_0 \tag{8.6.9}$$

và điều kiện biên

$$u(\rho, \theta) = g(\theta), u(R, \theta) = h(\theta)$$
(8.6.10)

Lập luận tương tự bài toán DE1a, tìm nghiệm của bài toán DE1b dạng tách biến

$$u(r, \varphi) = V(r)\Phi(\varphi)$$

Thay vào phương trình (8.6.9) nhận được họ nghiệm riêng độc lập

$$\mathbf{u}_0 = \mathbf{a}_0 + \mathbf{b}_0 \mathbf{lnr}$$

$$u_k(r,\,\phi) = (a_k r^k + b_k r^{-k}) cosk\phi + (c_k r^k + d_k r^{-k}) sink\phi \ \ v\acute{\sigma}i \ \ a_k \ , \ b_k \ , \ c_k \ , \ d_k \in \ 3, \ k \in \ \angle^*$$

Tìm nghiệm tổng quát của bài toán DE1b dang chuỗi hàm

$$u(r, \varphi) = a_0 + b_0 \ln r$$

$$+ \sum_{k=1}^{+\infty} [(a_k r^k + b_k r^{-k}) \cos k\varphi + (c_k r^k + d_k r^{-k}) \sin k\varphi]$$
 (8.6.11)

Thế vào điều kiên biên (8.6.10)

$$u(\rho, \theta) = a_0 + b_0 \ln \rho + \sum_{k=1}^{+\infty} [(a_k \rho^k + b_k \rho^{-k}) \cos k\theta + (c_k \rho^k + d_k \rho^{-k}) \sin k\theta] = g(\theta)$$

$$u(R, \theta) = a_0 + b_0 \ln R + \sum_{k=1}^{+\infty} [(a_k R^k + b_k R^{-k}) \cos k\theta + (c_k R^k + d_k R^{-k}) \sin k\theta] = h(\theta)$$

Nếu hàm g có thể khai triển thành chuỗi Fourier thì

$$a_0 + b_0 \ln \rho = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta \qquad a_0 + b_0 \ln R = \frac{1}{2\pi} \int_0^{2\pi} h(\theta) d\theta$$

$$a_k \rho^k + b_k \rho^{-k} = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos k\theta d\theta \qquad a_k R^k + b_k R^{-k} = \frac{1}{\pi} \int_0^{2\pi} h(\theta) \cos k\theta d\theta$$

$$c_k \rho^k + d_k \rho^{-k} = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \sin k\theta d\theta \qquad c_k R^k + d_k R^{-k} = \frac{1}{\pi} \int_0^{2\pi} h(\theta) \sin k\theta d\theta \qquad (8.6.12)$$

<u>Dinh lý</u> Cho các hàm g, $h \in C^1([0, 2\pi], 3)$ thoả mãn $g(0) = g(2\pi)$, $h(0) = h(2\pi)$. Chuỗi hàm (8.6.11) với các hệ số a_k , b_k , c_k và d_k xác định từ hệ phương trình (8.6.12) là nghiệm duy nhất và ổn định của bài toán DE1b.

Đ7. Bài toán Dirichlet trong hình chữ nhật

Bài toán DE2a

Cho miền D = $[0, 1] \times [0, d]$ và hàm $g_a \in C([0, 1], 3)$

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta \mathbf{u} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0 \quad \text{v\'oi} \quad (\mathbf{x}, \mathbf{y}) \in \mathbf{D}_0$$
 (8.7.1)

và điều kiên biên

$$u(x, 0) = g_a(x), u(x, d) = u(0, y) = u(1, y) = 0$$
 (8.7.2)

Tìm nghiệm của bài toán DE2a dạng tách biến

$$u(x, y) = X(x)Y(y)$$

Thay vào phương trình (8.7.1) đưa về hệ phương trình vi phân

$$X''(x) + \lambda X(x) = 0$$

$$Y''(y) - \lambda Y(y) = 0$$

$$X(0) = X(1) = Y(d) = 0 \text{ v\'oi } \lambda \in 3$$
 (8.7.3)

Bài toán (8.7.3) có họ nghiệm riêng độc lập

$$X_k(x) = A_k \sin \frac{k\pi}{l} x$$
, $Y_k(y) = B_k \sinh \frac{k\pi}{l} (d-y)$, $\lambda_k = \left(\frac{k\pi}{l}\right)^2$ với $k \in \angle^*$

Suy ra có họ nghiệm riêng độc lập của bài toán DE2a

$$u_k(x, y) = a_k \sinh \frac{k\pi}{1} (d - y) \sin \frac{k\pi}{1} x \text{ v\'oi } a_k = A_k B_k \in \mathcal{S}, k \in \angle^*$$

• Tìm nghiệm tổng quát của bài toán DE2a dạng chuỗi hàm

$$u(x, y) = \sum_{k=1}^{+\infty} u_k(x, y) = \sum_{k=1}^{+\infty} a_k \sinh \frac{k\pi}{1} (d - y) \sin \frac{k\pi}{1} x$$
 (8.7.4)

Thế vào điều kiện biên (8.7.2)

$$u(x, 0) = \sum_{k=1}^{+\infty} a_k \operatorname{sh} \frac{k\pi d}{l} \sin \frac{k\pi}{l} x = g_a(x)$$

Nếu hàm g_a có thể khai triển thành chuỗi Fourier trên đoạn [0, 1] thì

$$a_{k} = \frac{2}{l \sinh \frac{k\pi d}{l}} \int_{0}^{l} g_{a}(x) \sin \frac{k\pi}{l} x dx$$
 (8.7.5)

Dinh lý Cho hàm $g_a \in C^1([0, 1], 3)$ thoả mãn $g_a(0) = g_a(1) = 0$. Chuỗi hàm (8.7.4) với hệ số a_k tính theo công thức (8.7.5) là nghiệm duy nhất và ổn đinh của bài toán DE2a.

• Lập luận tương tư như trên, chúng ta giải các bài toán sau đây.

Bài toán DE2b

Cho miền D = $[0, 1] \times [0, d]$ và hàm $g_b \in C([0, d], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0 \text{ v\'oi } (x, y) \in D_0$$

và điều kiên biên

$$u(1, y) = g_b(y), u(x, d) = u(0, y) = u(x, 0) = 0$$

<u>Đinh lý</u> Cho hàm $g_b \in C^1([0, d], 3)$ thoả mãn $g_b(0) = g_b(d) = 0$. Bài toán DE2b có nghiệm duy nhất và ổn định xác định theo công thức

$$u(x, y) = \sum_{k=1}^{+\infty} b_k \sinh \frac{k\pi}{d} x \sin \frac{k\pi}{d} y \quad v \acute{o} i \quad b_k = \frac{2}{d \sinh \frac{k\pi l}{d}} \int_0^d g_b(y) \sin \frac{k\pi}{d} y dy \qquad (8.7.6)$$

Bài toán DE2c

Cho miền D = $[0, 1] \times [0, d]$ và hàm $g_c \in C([0, 1], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0 \text{ v\'eti}(x, y) \in D_0$$

và điều kiện biên

$$u(x, d) = g_c(x), u(0, x) = u(x, 0) = u(1, y) = 0$$

<u>Dinh Iý</u> Cho hàm $g_c \in C^1([0, 1], 3)$ thoả mãn $g_c(0) = g_c(1) = 0$. Bài toán DE2c có nghiệm duy nhất và ổn đinh xác đinh theo công thức

$$u(x, y) = \sum_{k=1}^{+\infty} c_k \sinh \frac{k\pi}{1} y \sin \frac{k\pi}{1} x \quad v \acute{o} i c_k = \frac{2}{l \sinh \frac{k\pi d}{1}} \int_{0}^{1} g_c(x) \sin \frac{k\pi}{1} x dx \qquad (8.7.7)$$

Bài toán DE2d

Cho D = $[0, 1] \times [0, d]$ và hàm $g_d \in C([0, d], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0 \text{ v\'eti} (x, y) \in D_0$$

và điều kiên biên

$$u(0, y) = g_d(y), u(x, 0) = u(1, y) = u(x, d) = 0$$

<u>Dinh lý</u> Cho hàm $g_d \in C^1([0, d], 3)$ thoả mãn $g_d(0) = g_d(d) = 0$. Bài toán DE2d có nghiệm duy nhất và ổn định xác định theo công thức

$$u(x, y) = \sum_{k=1}^{+\infty} d_k \sinh \frac{k\pi}{d} (1-x) \sin \frac{k\pi}{d} y$$

$$v \acute{o} i d_k = \frac{2}{d \sinh \frac{k\pi l}{d}} \int_0^d g_d(y) \sin \frac{k\pi}{d} y dy \qquad (8.7.8)$$

Bài toán DE2

Cho miền D = $[0, 1] \times [0, d]$, các hàm $g_1, g_3 \in C([0, 1], 3)$ và $g_2, g_4 \in C([0, d], 3)$

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0$$
 với $(x, y) \in D_0$

và điều kiên biên

$$u(x, 0) = g_1(x), u(l, y) = g_2(y), u(x, d) = g_3(x), u(0, y) = g_4(y)$$

• Tìm nghiêm của bài toán DE2 dưới dang

$$u(x, y) = u_0(x, y) + u_a(x, y) + u_b(x, y) + u_c(x, y) + u_d(x, y)$$

Trong đó $u_{\alpha}(x, y)$ là nghiệm của bài toán DE2 α .

Hàm

$$u_0(x, y) = A + Bx + Cy + Dxy$$
 (8.7.9)

là nghiệm của bài toán DE sao cho $u_{\alpha}(x, y)$ triệt tiêu tại các đỉnh của hình chữ nhật.

Do tính liên tục của hàm u(x, y) trên biên ∂D

$$\begin{split} &u(0,\,0)=g_4(0)=g_1(0)&=A\\ &u(l,\,0)=g_1(l)=g_2(0)&=A+Bl\\ &u(l,\,d)=g_2(d)=g_3(l)&=A+Bl+Cd+Dld\\ &u(0,\,d)=g_3(0)=g_4(d)&=A+Cd \end{split}$$

Giải hệ phương trình trên suy ra

$$A = g_4(0) = g_1(0), B = \frac{g_1(1) - g_1(0)}{1}, C = \frac{g_4(d) - g_4(0)}{d}$$

$$D = \frac{g_3(1) - g_3(0) - g_1(1) + g_1(0)}{1d} = \frac{g_2(d) - g_2(0) - g_4(d) + g_4(0)}{1d}$$
(8.7.10)

• Thế vào điều kiện biên suy ra

$$\begin{split} g_a(x) &= u_a(x,0) = g_1(x) - g_1(0) - \frac{x}{1} (g_1(1) - g_1(0)) \\ g_c(x) &= u_c(x,d) = g_3(x) - g_3(0) - \frac{x}{1} (g_3(1) - g_3(0)) \\ g_b(y) &= u_b(1,y) = g_2(y) - g_2(0) - \frac{y}{d} (g_2(d) - g_2(0)) \\ g_d(y) &= u_d(0,y) = g_4(y) - g_4(0) - \frac{y}{d} (g_4(d) - g_4(0)) \end{split} \tag{8.7.11}$$

• Kết hợp các công thức (8.7.4) - (8.7.8) nhận được công thức

$$u(x, y) = u_0(x, y) + \sum_{k=1}^{+\infty} \left(a_k sh \frac{k\pi}{l} (d - y) + c_k sh \frac{k\pi}{l} y \right) sin \frac{k\pi}{l} x$$
$$+ \sum_{k=1}^{+\infty} \left(b_k sh \frac{k\pi}{d} x + d_k sh \frac{k\pi}{d} (l - x) \right) sin \frac{k\pi}{d} y \qquad (8.7.12)$$

<u>Dinh Iý</u> Cho các hàm g_1 , $g_3 \in C^1([0, 1], 3)$ và g_2 , $g_4 \in C^1([0, d], 3)$ thoả mãn $g_4(0) = g_1(0)$, $g_1(1) = g_2(0)$, $g_2(d) = g_3(1)$, $g_3(0) = g_4(d)$

Chuỗi hàm (8.7.12) với hàm $u_0(x,y)$ xác định theo các công thức (8.7.9) - (8.7.10) và các hệ số a_k , b_k , c_k và d_k xác định theo các công thức (8.7.5) - (8.7.8) trong đó các hàm g_a , g_b , g_c và g_d xác định theo công thức (8.7.11) là nghiệm duy nhất và ổn định của bài toán DE2.

Đ8. Bài toán Neumann

Bài toán NE1

Cho miền D = $[0, R] \times [0, 2\pi]$ và hàm h $\in C([0, 2\pi], 3)$

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta \mathbf{u} = \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} \left(\mathbf{r} \frac{\partial \mathbf{u}}{\partial \mathbf{r}} \right) + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{\phi}^2} = 0 \quad \text{v\'oi} \quad (\mathbf{r}, \mathbf{\phi}) \in \mathbf{D}_0$$
 (8.8.1)

và điều kiện biên

$$\frac{\partial \mathbf{u}}{\partial \mathbf{r}}(\mathbf{R}, \, \boldsymbol{\theta}) = \mathbf{h}(\boldsymbol{\theta}) \tag{8.8.2}$$

• Tìm nghiêm của bài toán NE1 dang tách biến

$$u(r, \varphi) = V(r)\Phi(\varphi)$$

Thay vào phương trình (8.8.1) nhận được hệ phương trình vi phân

$$\Phi''(\varphi) + \lambda \Phi(\varphi) = 0$$

$$r^{2}V''(r) + rV'(r) - \lambda V(r) = 0, \lambda \in 3$$
(8.8.3)

Bài toán (8.8.3) có họ nghiệm riêng độc lập

$$u_0 = a_0$$
, $u_k(r, \phi) = r^k(a_k \cos k\phi + b_k \sin k\phi)$ với $a_k = C_k A_k$, $b_k = C_k B_k$, $k \in \angle^*$

• Tìm nghiệm tổng quát của bài toán NE1 dạng chuỗi hàm

$$u(r, \varphi) = a_0 + \sum_{k=1}^{+\infty} r^k (a_k \cos k\varphi + b_k \sin k\varphi)$$
 (8.8.4)

Thế vào điều kiện biên (8.8.2)

$$\frac{\partial u}{\partial r}(R, \theta) = \sum_{k=1}^{+\infty} kR^{k-1} (a_k \cos k\theta + b_k \sin k\theta) = h(\theta)$$

Nếu hàm h có thể khai triển thành chuỗi Fourier thì

$$\mathbf{a}_0 = \mathbf{u}(0, \, \boldsymbol{\theta})$$

$$a_{k} = \frac{1}{k\pi R^{k-1}} \int_{0}^{2\pi} h(\theta) \cos k\theta d\theta, b_{k} = \frac{1}{k\pi R^{k-1}} \int_{0}^{2\pi} h(\theta) \sin k\theta d\theta$$
 (8.8.5)

<u>Đinh lý</u> Cho h ∈ C¹([0, 2π], 3) thoả mãn h(0) = h(2π). Chuỗi hàm (8.8.4) với các hệ số a_k và b_k tính theo công thức (8.8.5) là nghiệm duy nhất và ổn định của bài toán NE1.

• Lập luận tương tự như các bài toán DE2 chung ta giải các bài toán sau đây

Bài toán NE2b

Cho miền D = $[0, 1] \times [0, d]$ và hàm $h_b \in C([0, d], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ v\'oi } (x, y) \in D_0$$

và các điều kiện biên

$$u(x, d) = u(0, y) = u(x, 0) = 0, \frac{\partial u}{\partial x}(1, y) = h_b(y)$$

Dịnh lý Cho hàm $h_b \in C^1([0, d], 3)$. Bài toán NE2b có nghiệm duy nhất và ổn định xác đinh theo công thức

$$u(x, y) = \sum_{k=1}^{+\infty} b_k \sinh \frac{k\pi}{d} x \sin \frac{k\pi}{d} y \text{ v\'oi } b_k = \frac{2}{k\pi \cosh \frac{k\pi}{d}} \int_0^d h_b(y) \sin \frac{k\pi}{d} y dy \quad (8.8.6)$$

Bài toán NE2d

Cho miền $D = [0, 1] \times [0, d]$ và hàm $h_d \in C([0, d], 3)$.

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0 \text{ v\'oi } (x, y) \in D_0$$

và các điều kiên biên

$$u(x, 0) = u(1, y) = u(x, d) = 0, \frac{\partial u}{\partial x}(0, y) = h_d(y)$$

<u>Dinh lý</u> Cho hàm $h_d \in C^1([0, d], 3)$. Bài toán NE2d có nghiệm duy nhất và ổn định xác định theo công thức

$$u(x, y) = \sum_{k=1}^{+\infty} d_k \sinh \frac{k\pi}{d} (1-x) \sin \frac{k\pi}{d} y$$

$$v \acute{o} i d_k = \frac{-2}{k\pi \cosh \frac{k\pi l}{d}} \int_0^d h_d(y) \sin \frac{k\pi}{d} y dy \qquad (8.8.7)$$

Bài toán NE2

Cho miền D = [0, 1] × [0, d] và các hàm g_1 , $g_3 \in C([0,1],3)$ và h_2 , $h_4 \in C([0,d],3)$

Tìm hàm $u \in C(D, 3)$ thoả mãn phương trình Laplace

$$\Delta u = 0 \text{ v\'oi } (x, y) \in D_0$$

và các điều kiện biên

$$u(x, 0) = g_1(x), u(x, d) = g_3(x) \text{ và } \frac{\partial u}{\partial x}(1, y) = h_2(y), \frac{\partial u}{\partial x}(0, y) = h_4(y)$$

• Tìm nghiệm của bài toán NE2 dưới dang

$$u(x, y) = u_0(x, y) + u_2(x, y) + u_2(x, y) + u_2(x, y) + u_3(x, y)$$
(8.8.8)

Trong đó các hàm $u_a(x, y)$ và $u_c(x, y)$ là nghiệm của bài toán DE2a và DE2c, các hàm $u_b(x, y)$ và $u_d(x, y)$ là nghiệm của bài toán NE2b và NE2d, còn hàm

$$u_0(x, y) = A + Bx + Cy + Dxy$$
 (8.8.9)

là nghiệm của bài toán DE sao cho $u_{\alpha}(x, y)$ triệt tiêu tại các đỉnh của hình chữ nhật

• Lập luận tương tự như bài toán DE2 suy ra

$$A = g_1(0) \qquad B = \frac{g_1(1) - g_1(0)}{1}$$

$$C = \frac{g_3(0) - g_1(0)}{d} \qquad D = \frac{g_3(1) - g_1(1) - g_3(0) + g_1(0)}{1d}$$
(8.8.10)

Thế vào điều kiện biên suy ra

$$\begin{split} g_a(x) &= g_1(x) - g_1(0) - \frac{x}{1} (g_1(1) - g_1(0)) \\ g_c(x) &= g_3(x) - g_3(0) - \frac{x}{1} (g_3(1) - g_3(0)) \\ h_b(y) &= h_2(y) - (B + Dy) \\ &= h_2(y) - \frac{g_1(1) - g_1(0)}{1} - \frac{y}{d} \frac{g_3(1) - g_1(1) - g_3(0) + g_1(0)}{1} \\ h_d(y) &= h_4(y) - (B + Dy) \\ &= h_4(y) - \frac{g_1(1) - g_1(0)}{1} - \frac{y}{d} \frac{g_3(1) - g_1(1) - g_3(0) + g_1(0)}{1} \end{split} \tag{8.8.11}$$

• Kết hợp các công thức (8.7.4), (8.7.6), (8.8.6), (8.8.7) và (8.8.8) suy ra công thức

$$u(x, y) = u_0(x, y) + \sum_{k=1}^{+\infty} \left(a_k sh \frac{k\pi}{l} (d - y) + c_k sh \frac{k\pi}{l} y \right) sin \frac{k\pi}{l} x$$
$$+ \sum_{k=1}^{+\infty} \left(b_k sh \frac{k\pi}{d} x + d_k sh \frac{k\pi}{d} (l - x) \right) sin \frac{k\pi}{d} y \qquad (8.8.12)$$

$$\begin{array}{l} \underline{\textit{Dinh Iy}} \text{ Cho các hàm } g_1 \text{ , } g_3 \in C^1([0,1],3) \text{ và } g_2 \text{ , } g_4 \in C^1([0,d],3) \text{ thoả mãn} \\ g_a'(0) = h_d(0), \ g_a'(1) = h_b(0) \text{ và } g_c'(0) = h_d(d), \ g_c'(1) = h_b(d) \end{array}$$

Chuỗi hàm (8.8.12) với hàm $u_0(x, y)$ xác định theo các công thức (8.8.9) - (8.8.10) và các hệ số a_k và c_k xác định theo các công thức (8.7.5) và (8.7.7) còn các hệ số b_k và d_k xác định theo các công thức (8.8.6) và (8.8.7) với các hàm g_a , g_c , h_b và h_d xác định theo công thức (8.8.11) là nghiệm duy nhất và ổn định của bài toán NE2.

Bài tập chương 8

• Giải các bài toán Cauchy

1.
$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \qquad \qquad \mathbf{u}|_{t=0} = \mathbf{x} \mathbf{e}^{-\mathbf{x}^2}$$

2.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 3\mathbf{x}\mathbf{t}^2$$
 $\mathbf{u}|_{\mathbf{t}=0} = \sin \mathbf{x}$

3.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{x} \mathbf{e}^{-\mathbf{t}} \qquad \mathbf{u}|_{\mathbf{t}=0} = \cos \mathbf{x}$$

4.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{t} \mathbf{e}^{-\mathbf{x}}$$
 $\mathbf{u}|_{\mathbf{t}=0} = \sin \mathbf{x}$

• Giải các bài toán giả Cauchy

5.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{x} \sin \mathbf{t}$$

$$u|_{t=0} = \sin x, \ u(0, t) = 0$$

6.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + t \sin x \qquad u|_{t=0} = x \cos x, \ u(0, t) = e^t$$

$$u|_{t=0} = x\cos x, \ u(0, t) = e^{t}$$

7.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{t} \mathbf{e}^{-\mathbf{x}}$$

7.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + te^{-x}$$
 $u|_{t=0} = \cos x$, $\frac{\partial u}{\partial x}(0, t) = \sin t$

8.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + xe^{-t}$$

8.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + xe^{-t}$$
 $u|_{t=0} = \sin x$, $\frac{\partial u}{\partial x}(0, t) = \cos t$

Giải các bài toán hỗn hợp sau đây

9.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

$$u|_{t=0} = x(1-x), \ u(0, t) = u(1, t) = 0$$

10.
$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + t \sin \mathbf{x} \qquad \mathbf{u}|_{t=0} = \sin \mathbf{x}, \ \mathbf{u}(0, t) = \mathbf{u}(1, t) = 0$$

$$u|_{t=0} = sinx, \ u(0, t) = u(1, t) = 0$$

11.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + t \cos x \qquad \qquad u|_{t=0} = \cos x \,, \ u(0,t) = 0, \, u(l,t) = t$$

$$u|_{t=0} = \cos x$$
, $u(0, t) = 0$, $u(l, t) = t$

12.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 3\mathbf{x} \mathbf{t}^2$$

12.
$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 3\mathbf{x}t^2$$

$$\mathbf{u}|_{t=0} = 0, \ \mathbf{u}(0, t) = 0, \ \mathbf{u}(1, t) = \mathbf{A}\mathbf{sinot}$$

13.
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + (1 - x)e^t$$
 $u|_{t=0} = 1, \ u(0, t) = e^t, \ u(l, t) = 0$

$$u|_{t=0} = 1, \ u(0, t) = e^t, u(l, t) = 0$$

14.
$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \mathbf{x} \mathbf{e}^{\mathbf{t}}$$

$$u|_{t=0} = 2x$$
, $u(0, t) = 0$, $u(1, t) = e^t$

• Giải bài toán Dirichlet trong hình tròn

15.
$$\Delta u = 0$$
 với $(r, \varphi) \in [0, 2] \times [0, 2\pi]$ và $u|_{r=2} = x^2 - xy + 2$

16.
$$\Delta u = 0 \text{ v\'oi } (r, \varphi) \in [0, 2] \times [0, 2\pi] \text{ v\'a } u(2, \varphi) = A + B \sin \varphi$$

17.
$$\Delta u = 0$$
 với $(r, \varphi) \in [0, 1] \times [0, 2\pi]$ và $u(1, \varphi) = \sin^3 \varphi$

18.
$$\Delta u = 0 \text{ v\'oi } (r, \varphi) \in [0, 1] \times [0, 2\pi] \text{ và } u(1, \varphi) = \cos^4 \varphi$$

19.
$$\Delta u = 0$$
 với $(r, \phi) \in [0, R] \times [0, 2\pi]$ và $u(R, \phi) = 0$

• Giải bài toán Dirichlet trong hình vành khăn

20.
$$\Delta u = 0$$
 với $(r, \varphi) \in [1, 2] \times [0, 2\pi]$ và $u(1, \varphi) = A$, $u(2, \varphi) = B$

21.
$$\Delta u = 0$$
 với $(r, \varphi) \in [1, 2] \times [0, 2\pi]$ và $u(1, \varphi) = 1 + \cos^2 \varphi$, $u(2, \varphi) = \sin^2 \varphi$

22.
$$\Delta u=0$$
 với $(r,\phi)\in[0,R]\times[0,\pi]$ và $u(r,0)=u(r,\pi)=0,$ $u(R,\phi)=A\phi$

- Giải bài toán Dirichlet trong hình chữ nhất
- 23. $\Delta u = 0$ với $(x, y) \in [0, a] \times [0, b]$ $u(0, y) = Ay(b - y), u(a, y) = 0, u(x, 0) = B\sin\frac{\pi x}{a}, u(x, b) = 0$
- 24. $\Delta u = 0$ với $(x, y) \in [0, \pi] \times [-1, 1]$ $u(0, y) = u(\pi, y) = 0, \ u(x, -1) = u(x, 1) = \sin 2x$
- 25. $\Delta u = 0 \text{ v\'oi } (x, y) \in [0, a] \times [0, +\infty)$ $u(0, y) = u(a, y) = 0, \ u(x, 0) = A(1 - \frac{x}{a}), u(x, +\infty) = 0$
- Giải bài toán Neuman trong hình tròn

26.
$$\Delta u = 0$$
 với $(r, \varphi) \in [0, 2] \times [0, 2\pi]$ và $\frac{\partial u}{\partial r}(2, \varphi) = A\varphi$

27.
$$\Delta u = 0$$
 với $(r, \varphi) \in [0, 1] \times [0, 2\pi]$ và $\frac{\partial u}{\partial r}(1, \varphi) = 2\cos\varphi$

29.
$$\Delta u = 0$$
 với $(r, \varphi) \in [0, 1] \times [0, 2\pi]$ và $\frac{\partial u}{\partial r}(1, \varphi) = -\sin\varphi$

• Giải bài toán hỗn hợp trong hình chữ nhất

29.
$$\Delta u = 0$$
 $v\acute{o}i$ $(x, y) \in [0, a] \times [0, b]$
$$u(0, y) = A, u(a, y) = By, \quad \frac{\partial u}{\partial y}(x, 0) = \frac{\partial u}{\partial y}(x, b) = 0$$

30.
$$\Delta u = 0$$
 với $(x, y) \in [0, a] \times [0, b]$

$$u(0, y) = A, u(a, y) = By, \frac{\partial u}{\partial v}(x, 0) = \frac{\partial u}{\partial v}(x, b) = 0$$

31.
$$\Delta u = 0$$
 với $(x, y) \in [0, \pi] \times [0, \pi]$
 $u(x, 0) = A$, $u(x, \pi) = Bx$, $\frac{\partial u}{\partial x}(0, y) = \cos y$, $\frac{\partial u}{\partial x}(\pi, y) = \sin y$

32.
$$\Delta u = -2 \text{ v\'oi } (x, y) \in [0, a] \times [-b, b]$$

 $u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0$

Tài Liệu Tham Khảo

- [1] Đặng Đình Ang Trần Lưu Cường Huỳnh Bá Lân Nguyễn Văn Nhân (2001) *Biến đổi tích phân*, NXB Giáo dục, Hà nội
- [2] Đậu Thế Cấp (1999)

Hàm một biến phức, NXB Giáo dục, Hà nội

[3] Dương Tôn Đảm (1992)

Phương trình vật lý - toán, NXB Đại học & GDCN, Hà nội

[4] G.M Fichtengon (1972)

Cơ sở giải tích toán học, Tập 2, NXB Đại học & THCN, Hà nội

[5] Phan Bá Ngọc (1980)

Hàm biến phức và phép biến đổi Laplace, NXB Đại học & THCN, Hà nội

[6] B.V Sabat (1979)

Nhập môn giải tích phức, Tập 1, NXB Đại học & THCN, Hà nội

[7] Nguyễn Thuỷ Thanh (1985)

Cơ sở lý thuyết hàm biến phức, NXB Đại học & THCN, Hà nội

[8] Nguyễn Đình Trí - Nguyễn Trọng Thái (1977)

Phương trình vật lý - toán, NXB Đại học & THCN, Hà nội

[9] A.V Oppenheim & A.S Willsky (1997)

Signals & Systems, Prentice Hall, New Jersey

[10] J. Monier (1997)

Analyse 3 et Analyse 4, Dunod, Paris

[11] W. Rudin (1998)

Analyse réelle et complexe, Dunod, Paris

[12] $H.\Box P\Box c\Box \Box \Box \Box \Box \Box \Box (1978)$

Mục lục

Lời nói đầu	6
Chương 1. Số phức	5
Đ1. Trường số phức	5
Đ2. Dạng đại số của số phức	6
Đ3. Dạng lượng giác của số phức	8
Đ4. Các ứng dụng hình học phẳng	10
Đ5. Dãy trị phức	12
Đ6. Hàm trị phức	14
Đ7. Tập con của tập số phức	17
Bài tập chương 1	20
Chương 2. Hàm biến phức	22
Đ1. Hàm biến phức	22
Đ2. Giới hạn và liên tục	23
Đ3. Đạo hàm phức	25
Đ4. Hàm giải tích	27
Đ5. Hàm luỹ thừa	28
Đ6. Hàm mũ	30
Đ7. Hàm lượng giác	31
Đ8. Biến hình bảo giác	32
Đ9. Hàm tuyến tính và hàm nghịch đảo	34
Đ10. Hàm phân tuyến tính và hàm Jucop	36
Đ11. Các ví dụ biến hình bảo giác	37
Bài tập chương 2	40
Chương 3. Tích Phân Phức	43
Đ1. Tích phân phức	43
Đ2. Các tính chất của tích phân phức	
Đ3. Định lý Cauchy	
Đ4. Công thức tích phân Cauchy	
Đ5. Tích phân Cauchy	
Đ6. Đinh lý trị trung bình	
Đ7. Hàm điều hoà	
Bài tập chương 3	
Chương 4. CHUỗI hàm PHứC và Thặng dư	60
Đ1. Chuỗi hàm phức	60
Đ2. Chuỗi luỹ thừa phức	62
Đ3. Chuỗi Taylor	64
Đ4. Không điểm của hàm giải tích	65
Đ5. Chuỗi Laurent	67
Đ6. Phân loại điểm bất thường	
Đ7. Thặng dư	70
Đ8. Thặng dư Loga	
Đ9. Các ứng dụng thặng dư	
Bài tập chương 4	
Chương 5. Biến đổi fourier và Biến đổi laplace	
Đ1. Tích phân suy rộng	
Đ2. Các bổ đề Fourier	

Đ3. Biến đổi Fourier	84
Đ4. Tính chất của biến đổi Fourier	86
Đ5. Tìm ảnh, gốc của biến đổi Fourier	89
Đ6. Biến đổi Laplace	92
Đ7. Biến đổi Laplace ngược	93
Đ8. Tính chất của Biến đổi Laplace	95
Đ9. Tìm ảnh, gốc của biến đổi Laplace	97
Bài tập chương 5	100
Chương 6. Lý thuyết trường	103
Đ1. Trường vô hướng	103
D2. Gradient	104
Đ3. Trường vectơ	105
Đ4. Thông lượng	106
Đ5. Hoàn lưu	107
Đ6. Toán tử Hamilton	109
Đ7. Trường thế	110
Đ8. Trường ống	111
Bài tập chương 6	113
Chương 7. Phương trình truyền sóng	115
Đ1. Phương trình đạo hàm riêng tuyến tính cấp 2	
Đ2. Phương trình vật lý - toán	118
Đ3. Các bài toán cơ bản	120
Đ4. Bài toán Cauchy thuần nhất	122
Đ5. Bài toán Cauchy không thuần nhất	124
Đ6. Bài toán giả Cauchy	126
Đ7. Bài toán hỗn hợp thuần nhất	128
Đ8. Bài toán hỗn hợp không thuần nhất	
Bài tập chương 7	133
Chương 8. Phương trình truyền nhiệt	135
Đ1. Bài toán Cauchy thuần nhất	135
Đ2. Bài toán Cauchy không thuần nhất	137
Đ3. Bài toán giả Cauchy	139
Đ4. Bài toán hỗn hợp thuần nhất	142
Đ5. Bài toán hỗn hợp không thuần nhất	144
Đ6. Bài toán Dirichlet trong hình tròn	
Đ7. Bài toán Dirichlet trong hình chữ nhật	
Đ8. Bài toán Neumann	
Bài tập chương 8	155
Tài Liệu Tham Khảo	158
Muo luo	150