"Machine Learning and Computational Statistics"

5th Homework

Exercise 1 (multiple choices question): Which of the following statements are true?

- 1. The Least Squares estimation method takes into account the statistical nature of the training data.
- 2. Ridge Regression does not take into account any statistical information related to the available data set.
- 3. The Maximum Likelihood method assumes that the training data stem from some probability density distribution (pdf).
- 4. The Maximum Likelihood method treats the parameters involved in the assumed pdf as random variables.

Exercise 2 (multiple choices question): Assume that for the data set $X = \{-1.1, -0.5, 0.1, 0.6, 1.0\}$, it is known that its elements have been drawn independently from a unit variance normal distribution of unknown mean μ . The likelihood function of μ , with respect to X, $p(X; \mu) \equiv p(-1.1, -0.5, 0.1, 0.6, 1.0; \mu)$, is:

$$1. \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(-1.1-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(-0.5-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(0.1-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(0.6-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(0.6-$$

$$2.\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(-1.1-\mu)^2}{2}\right) + \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(-0.5-\mu)^2}{2}\right) + \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(0.1-\mu)^2}{2}\right) + \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{(0.6-\mu)^2}{2}\right) + \frac{1}{\sqrt{2\pi}$$

$$3. \frac{1}{\sqrt{2\pi}} \ln\left(-\frac{(-1.1-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \ln\left(-\frac{(-0.5-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \ln\left(-\frac{(0.1-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \ln\left(-\frac{(0.6-\mu)^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \ln\left(-\frac{(1.0-\mu)^2}{2}\right)$$

$$4. - 5 \cdot \ln \left(\sqrt{2\pi} \right) + \left(-\frac{(-1.1 - \mu)^2}{2} \right) + \left(-\frac{(-0.5 - \mu)^2}{2} \right) + \left(-\frac{(0.1 - \mu)^2}{2} \right) + \left(-\frac{(0.6 - \mu)^2}{2} \right) + \left(-\frac{(1.0 - \mu)^2}{2} \right) + \left(-\frac{(0.4 - \mu)^2}{$$

Exercise 3 (multiple choices question): Assume that for the data set $X = \{0.1, 0.5, 0.7, 1.1, 2.0\}$, it is known that its elements have been drawn independently from the exponential distribution $f(x; \lambda) = \lambda e^{-\lambda x}$ (x > 0), parameterized by the (unknown) parameter λ . The log-likelihood function of λ , with respect to X, $p(X; \lambda) \equiv p(0.1, 0.5, 0.7, 1.1, 2.0; \lambda)$, is:

1.
$$\lambda^5 e^{-\lambda(0.1+0.5+0.7+1.1+2.0)}$$

$$2.5 \cdot \ln \lambda - \lambda (0.1 \cdot 0.5 \cdot 0.7 \cdot 1.1 \cdot 2.0)$$

$$3.5 \cdot \ln \lambda - \lambda (0.1 + 0.5 + 0.7 + 1.1 + 2.0)$$

4.
$$\lambda^5 + e^{-\lambda(0.1+\ 0.5+\ 0.7+\ 1.1+2.0)}$$

Exercise 4 (multiple choices question): Consider the two-dimensional Gaussian distribution $p(x) \coloneqq N(\mu, \Sigma)$ with mean $\mu = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and covariance matrix $\Sigma = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. Recall that the inverse A^{-1} of a two-dimensional matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (if it exists) is $A^{-1} = \frac{1}{D} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, where D = ad - bc. Then, the value of p(x) for $x = [2, 1]^T$ is (in four decimals accuracy)

- 1. 0.4523
- 2.0.0294
- 3.0.9612
- 4. 1.0102

Exercise 5 (multiple choices question): Consider a data set X, whose elements are drawn independently from a pdf of a known form, parameterized by an (unknown) parameter vector θ . Which one of the following optimization problems is not equivalent to the other three ones (in the sense that it does not return the same solution):

- 1. arg $max_{\theta}p(X; \theta)$
- 2. $\arg \max_{\boldsymbol{\theta}} \ln(p(X; \boldsymbol{\theta}))$
- 3. arg $min_{\theta}(-p(X; \theta))$
- 4. arg $max_{\theta} \frac{1}{p(X;\theta)}$

Exercise 6 (multiple choices question): Consider the data sets , X_j , j=1,2,..., of finite cardinality N, whose elements are drawn independently from an l-dimensional normal pdf of known covariance matrix Σ and of an unknown mean μ_o . Let $\widehat{\mu}_{ML}^{(j)}$ be the maximum likelihood estimation of μ_o , associated with X_j , and let $\widehat{\mu}_{ML}$ be the maximum likelihood estimator of μ_o , whose instances are the $\widehat{\mu}_{ML}^{(j)}$'s. Which of the following statements are true?

- 1. $E[\widehat{\boldsymbol{\mu}}_{ML}] = \boldsymbol{\mu}_o$
- 2. Prob{ $||\widehat{\mathbf{\mu}}_{ML} \mathbf{\mu}_o| > \epsilon$ } = 0, for any $\epsilon > 0$.
- 3. $\widehat{\mu}_{ML}$ is an efficient estimator of μ_{o}
- 4. $E[\hat{\mu}_{ML}]$ is expected to be "close" to μ_0 , for large enough values of N.

Exercise 7 (multiple choices question): Consider the data sets X_j , j=1,2,..., of cardinality N, whose elements are drawn independently from an l-dimensional normal pdf of known covariance matrix Σ and unknown mean μ_o . Let $\widehat{\mu}_{ML}{}^{(j)}$ be the maximum likelihood estimation of μ_o , associated with X_j , and let $\widehat{\mu}_{ML}$ be the maximum likelihood estimator of μ_o , whose instances are the $\widehat{\mu}_{ML}{}^{(j)}$'s. Which of the following statements are true?

- 1. As $N \to \infty$, although $E[\widehat{\mu}_{ML}] = \mu_o$, the variance of $\widehat{\mu}_{ML}^{(j)}$'s around μ_o may be large.
- 2. As $N \to \infty$, $\widehat{\mu}_{ML}$ is an efficient estimator of μ_0 .
- 3. As $N \to \infty$, $\widehat{\mu}_{ML}$ is a biased estimator of μ_o .
- 4. As $N \to \infty$ and for any $\epsilon > 0$, it is always probable to have an $\widehat{\mu}_{ML}{}^{(j)}$ at distance greater than ϵ , from μ_o .

Exercise 8 (multiple choices question): Consider a data set $X = \{x_1, x_2, ..., x_N\}$, whose elements are drawn from an one-dimensional normal distribution, with mean μ and variance σ^2 . The values of μ and σ^2 are assumed to be unknown. Let $\hat{\mu}$ and $\hat{\sigma}^2$ be the Maximum Likelihood estimates of these parameters that are based on X. In order to derive the expressions for $\hat{\mu}$ and $\hat{\sigma}^2$, one should equate to zero the derivatives (since both parameters are scalars in the present case) of the log-likelihood function with respect to μ and σ^2 , and solve the resulting system of the two equations and the two unknowns. The resulting values for $\hat{\mu}$ and $\hat{\sigma}^2$ are:

1.
$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 and $\hat{\sigma}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$

2.
$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 and $\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$

3.
$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n^2$$
 and $\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$

4.
$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 and $\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})$

Exercise 9 (multiple choices question): Consider a data set $X=\{x_1,x_2,\dots,x_N\}$, whose elements are drawn independently from a mixture p(x) comprising two one-dimensional unit variance normal distributions, $p_1(x)$ and $p_2(x)$, with mean values -2 $\kappa\alpha$ 1. Properties of X are drawn with equal probability from the two distributions. In mathematical terms, this is expressed as $p(x)=\frac{1}{2}p_1(x)+\frac{1}{2}p_2(x)$. Assume that it is erroneously assumed that the elements of X stem from a single normal distribution with mean value μ and variance σ^2 . Let $\hat{\mu}$ and $\hat{\sigma}^2$ be the maximum likelihood estimates of these parameters that are based on X. Which of the following statements are true?

- 1. $\hat{\mu}$ and $\hat{\sigma}^2$ are expected to be close to 2 and 1, respectively.
- 2. $\hat{\mu}$ and $\hat{\sigma}^2$ are expected to be close to -2 and 1, respectively.
- 3. $\hat{\mu}$ is expected to be close to 0 and $\hat{\sigma}^2$ to be greater than 4.
- 4. $\hat{\mu}$ and $\hat{\sigma}^2$ are expected to be close to 0 and 1, respectively.

Exercise 10 (multiple choices question): Consider the linear regression task $y = \theta^T x + \eta$. Assume that we are given a data set X consisting of N data points, $(y_n, x_n), n = 1, ..., N$, where the noise samples $\eta_n, n = 1, ..., N$, originate from a jointly Gaussian N-dimensional distribution with zero mean and covariance matrix (of size $N \times N$) equal to Σ_η . Let $\widehat{\theta}_{ML}$ and $\widehat{\theta}_{LS}$ be the maximum likelihood and the least squares estimates of θ , based on X. Which of the following statements are true?

- 1. If Σ_{η} equals to the N-dimensional identity matrix, then $\widehat{m{ heta}}_{ML}
 eq \widehat{m{ heta}}_{LS}$
- 2. If Σ_{η} has non-zero off-diagonal entries, then $\widehat{m{ heta}}_{ML}
 eq \widehat{m{ heta}}_{LS}$
- 3. If Σ_{η} is diagonal and has a single diagonal entry equal to zero, then $\widehat{m{ heta}}_{ML}=\widehat{m{ heta}}_{LS}$.
- 4. If N=1, it always holds $\widehat{m{ heta}}_{ML}=\widehat{m{ heta}}_{LS}$

Exercise 11 (multiple choices question): Consider the linear regression task $y = \boldsymbol{\theta}^T \mathbf{x} + \eta$. Assume that we are given a finite data set X consisting of N data points, $(y_n, x_n), n = 1, ..., N$. Assume also that the noise samples η_n , n = 1, ..., N, originate from a jointly Gaussian N-dimensional distribution with zero mean and covariance matrix (of size $N \times N$) equal to (the non-diagonal matrix) Σ_η . However, let us pretend that the latter information is not available to us; that is, we have at our disposal only the data set X and no additional information. Let $\widehat{\boldsymbol{\theta}}_{ML}$ and $\widehat{\boldsymbol{\theta}}_{LS}$ be the Maximum Likelihood and the Least Squares estimates of $\boldsymbol{\theta}$, based on X. Which of the following statements are true?

- 1. $\widehat{\boldsymbol{\theta}}_{LS}$ is a biased estimate of $\boldsymbol{\theta}$.
- 2. $\widehat{\boldsymbol{\theta}}_{ML}$ is an unbiased estimate of $\boldsymbol{\theta}$.
- 3. $\widehat{\boldsymbol{\theta}}_{ML}$ is an efficient estimate of $\boldsymbol{\theta}$.
- 4. $\widehat{\boldsymbol{\theta}}_{LS}$ is an efficient estimate of $\boldsymbol{\theta}$.

Exercise 12:

Consider the Erlang distribution $p(x) = \theta^2 x \exp(-\theta x)u(x)$, (where u(x) = 1(0), if $x \ge 0$ (< 0)).

(a) Given a set of N measurements $x_1, ..., x_N$, for the random variable x that follows the Erlang distribution, prove that the ML estimate of θ is

$$\theta_{ML} = \frac{2N}{\sum_{i=1}^{N} x_i}$$

(b) For N=5 and $x_1=2$, $x_2=2.2$, $x_3=2.7$, $x_4=2.4$, $x_5=2.6$, estimate the θ_{ML} . Utilizing this estimate, determine $\hat{p}(x)$, for x=2.3 and x=2.9.