$$S^{n} = \left\{ \begin{array}{l} X \in \mathbb{R}^{n \times n} \\ X = X^{T} \end{array} \right\}$$
 linear heatriction
$$= \left\{ \begin{array}{l} X \in \mathbb{R}^{n \times n} \\ X_{12} = X_{21} \\ X_{23} = X_{32} \\ \vdots \end{array} \right\}$$

intersection of hyperplanes in R^{n²}

$$a^{T}x=b$$
 $\langle A, x \rangle = b$

b = D

vectors

$$X_{12} = X_{21}$$

$$Verify$$

$$Verify$$

$$Verify$$

$$S_{+}^{n} = \{X \in S^{n} \mid X > 0\}$$
 $X \in S^{n}$ $X \in S^{n}$

St is convex cone

$$Z = \theta_1 X + \theta_2 Y$$

fruit:
$$Z^T = \theta_1 X^T + \theta_2 Y^T = \theta_1 X + \theta_2 Y = Z$$

 $\Rightarrow Z \in S^n$

also

$$\sqrt[4]{Z} = \sqrt[4]{(0,X+0,Y)} \hat{0}$$

$$= 0, (\sqrt[4]{X} \hat{0}) + 0, (\sqrt[4]{Y} \hat{0})$$

$$= 0, (\sqrt[4]{X} \hat{0}) + 0, (\sqrt[4]{Y} \hat{0})$$

$$> 0 + 0$$

$$> 0 + 0$$

$$> 0 + 0$$

$$PS.D. Cone$$