CG1111: Engineering Principles and Practice I

Electrical Circuit Principles

What We'll Learn

Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

Resistances in Series

Resistances in Parallel

Voltage Division Principle

Current Division Principle

Kirchhoff's Current Law (KCL)

Sum of all currents entering a node

Sum of all currents leaving the node

- Based on conservation of charges
- Recall: current = rate of flow of charges
- Since charges cannot be created nor destroyed, the net flow of charges into or out of a node must be 0

$$i_1 = i_2 + i_3 + i_4$$

Applying KCL to a "SuperNode"

The "supernode" can be any enclosed portion of the circuit

KCL Example

■ Find *I*_C:

Kirchhoff's Voltage Law (KVL)

Around any closed loop:

Sum of voltage rises

__

Sum of voltage falls

$$V_{\rm b} = V_1 + V_2 + V_3$$

- Voltage rises when we go from negative polarity to positive polarity
- Voltage falls when we go from positive polarity to negative polarity

KVL is Derived from the Principle of Conservation of Power

$$V_{\rm b} = V_1 + V_2 + V_3$$

- Total power consumed by resistors = $V_1 I + V_2 I + V_3 I = I (V_1 + V_2 + V_3)$
- Power supplied by battery = V_b /
- By the principle of conservation of power, $V_{\rm b} I = I (V_1 + V_2 + V_3)$
- Hence, $V_b = V_1 + V_2 + V_3$

KVL Example

• Find $V_{\rm B}$ and $V_{\rm D}$:

Resistances in Series

- From KCL, we know that the currents in all the resistors in series will be identical +
- From KVL & Ohm's Law,

$$V_{b} = V_{1} + V_{2} + V_{3}$$

= $R_{1} I + R_{2} I + R_{3} I$
= $(R_{1} + R_{2} + R_{3}) \times I$

• Since V_b is also given by $R_{eq} \times I$, therefore, the equivalent resistance is

$$R_{\rm eq} = R_1 + R_2 + R_3$$

Resistances in series lead to increased resistance

Resistances in Parallel

- $V_1 = V_2 = V_3 = V_b$
- From KCL,

$$I = I_{1} + I_{2} + I_{3}$$

$$= \frac{V_{b}}{R_{1}} + \frac{V_{b}}{R_{2}} + \frac{V_{b}}{R_{3}}$$

$$= V_{b} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \right)$$

Since
$$I = \frac{V_b}{R_{eq}}$$
, we have $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Since
$$\frac{1}{R_{eq}} > \frac{1}{R_i}$$
 for any $i = 1,2,3$, $\therefore R_{eq} < R_i$

Resistances in parallel lead to reduced resistance

Resistances in Parallel: Special Cases

Two resistances in parallel:

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Two equal resistances in parallel:

$$R_{eq} = \frac{R}{2}$$

N equal resistances in parallel:

$$R_{eq} = \frac{R}{N}$$

Network Analysis Using Series & Parallel Equivalents

 A resistive circuit can be solved by repeated simplification through application of series & parallel equivalents

Example:

-Find equivalent resistance between A & B:

Voltage Division Principle

$$I = \frac{V_b}{R_1 + R_2 + R_3}$$

$$V_1 = I \times R_1 = \frac{R_1}{R_1 + R_2 + R_3} V_b$$

$$V_2 = I \times R_2 = \frac{R_2}{R_1 + R_2 + R_3} V_b$$

$$V_3 = I \times R_3 = \frac{R_3}{R_1 + R_2 + R_3} V_b$$

In series circuit, the voltage across each resistance is a fraction of the total voltage, equal to the ratio of the concerned resistance to the total resistance

Example Using Voltage Division Principle

• Find voltage V_2 :

Current Division Principle

$$V_b = (R_1 \mid\mid R_2)I = \frac{R_1R_2}{R_1 + R_2}I$$

$$I_1 = \frac{V_1}{R_1} = \frac{V_b}{R_1} = \frac{R_2}{R_1 + R_2}I$$

$$I_2 = \frac{V_2}{R_2} = \frac{V_b}{R_2} = \frac{R_1}{R_1 + R_2}I$$

For two resistances in parallel, the current flowing in each resistance is a fraction of the total current, equal to the ratio of the other resistance to the sum of both the resistances

Example Using Current Division Principle

• Find current I_1 :

THANK YOU