Expressing and Verifying Probabilistic Assertions

Adrian Sampson

Pavel Panchekha
Todd Mytkowicz
Kathryn S. McKinley
Dan Grossman
Luis Ceze

University of Washington

Microsoft Research

University of Washington

Probabilistic assertions express correctness properties in modern software. Our verifier checks them efficiently and accurately.

assert e

e must hold on every execution

Approximate Computing

this approximate image is close to its precise version

k-means clustering is likely to converge even on unreliable hardware

assert e

Obfuscation for Data Privacy

obfuscated data is still useful in aggregate

Mobile and Sensing

sensor error does not render the app's conclusions useless

Approximate Computing

this approximate image is close to its precise version

k-means clustering is likely to converge even on unreliable hardware

Traditional assertions are insufficient for programs with probabilistic behavior.

Obfuscation for Data Privacy

obfuscated data is still useful in aggregate

Mobile and Sensing

sensor error does not render the app's conclusions useless

Assertions are insufficient for private-data obfuscation

```
true_avg = average(salaries)
private_avg =
   average(obfuscate(salaries))
assert true_avg - private_avg
   <= 10,000</pre>
```


Assertions are insufficient for private-data obfuscation

Assertion

assert e

Probabilistic assertion

passert e, p, c

Probabilistic assertion

passert e, p, c

e must hold with probability p at confidence c

Probabilistic assertion

How to verify a probabilistic assertion

probabilistic program

```
float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

passert e, p, C
}</pre>
```

?

How to verify a probabilistic assertion naively

probabilistic program

```
float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
     total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

passert e, p, C
}</pre>
```

?

How to verify a probabilistic assertion with statistical reasoning

queries & inference

passert

for statistical models

for probabilistic software

Church

Infer.NET

[Sankaranarayanan+ PLDI 2013]

[Hur+ PLDI 2014]

•

How to verify a probabilistic assertion efficiently and accurately

distribution extraction via symbolic execution statistical

```
float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

passert e, p, C
}</pre>
```


Bayesian network IR

How to verify a probabilistic assertion efficiently and accurately

distribution extraction

via symbolic execution

optimizations

verification

optimizations

```
float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

passert e, p, C
}</pre>
```


Bayesian network IR

How to verify a probabilistic assertion efficiently and accurately

distribution extraction

via symbolic execution

statistical ptimizations

```
float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

passert e, p, C
}</pre>
```


Bayesian network IR

Distribution extraction: random draws are symbolic

b = a + gaussian(0.0, 1.0)

a	4.2
b	4.2 + G _{0,1}

Concrete vs. symbolic semantics

Concrete vs. symbolic semantics

input:
$$a = 4.2$$

 \rightarrow b = gaussian(0.0, 1.0)

input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b


```
input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b

if b > 0.5
e = 2.0
else
e = 4.0
```



```
input: a = 4.2
  b = gaussian(0.0, 1.0)
  c = a + b
  d = c + b
  if b > 0.5
    e = 2.0
  else
    e = 4.0
→ passert e <= 3.0,</pre>
           0.9, 0.9
```



```
input: a = 4.2
  = gaussian(0.0, 1.0)
  c = a + b
  d = c + b
  if b > 0.5
    e = 2.0
  else
    e = 4.0
→ passert e <= 3.0,</pre>
           0.9, 0.9
```


input: a = unif(2.0, 9.0)

```
b = gaussian(0.0, 1.0)
```

$$c = a + b$$

$$d = c + b$$

if
$$b > 0.5$$

$$e = 2.0$$

else

$$e = 4.0$$

passert e <= 3.0,
0.9, 0.9</pre>

concrete input

salary = \$24,000

input distribution

salary = uniform(...)

≈ testing

≈ static analysis

More in the paper

Arrays & pointers

Loops

External code

Probabilistic path pruning

Distribution extraction produces an expression day Bayesian network

Distribution extraction produces an expression day Bayesian network

Distribution extraction produces an extraction day

Bayesian network

nodes: random variables

4.2 G_{0,1} + 0.5

edges: dependence

directed & acyclic (+) (0.5) random draws only at leaves

sample in a single pass

distribution extraction via symbolic execution

verification

float obfuscated(float n) {
 return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
 total = 0.0;
 for (int i = 0; i < COUNT; ++i)
 total += obfuscated(salaries[i]);
 avg = total / len(salaries);
 p_avg = ...;

passert e, p, C
}</pre>

Bayesian network IR

statistical

statistical property

passert verifier optimization

Bayesian-network IR enables new optimizations

$$X \sim G(\mu_X, \sigma_X^2)$$

$$Y \sim G(\mu_Y, \sigma_Y^2)$$

$$Z = X + Y$$

$$\Rightarrow Z \sim G(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Bayesian-network IR enables new optimizations

$$X \sim U(a, b)$$

$$Y = cX$$

$$\Rightarrow Y \sim U(ca, cb)$$

Bayesian-network IR enables new optimizations

$$\left(\mathsf{B}\right)$$

$$X \sim U(a, b)$$

$$Y \sim X \le c$$

$$a \le c \le b$$

$$\Rightarrow Y \sim B\left(\frac{c - a}{b - a}\right)$$

Central Limit Theorem collapses large sums

$$X_1, X_2, \dots, X_n \sim D$$

$$Y = \sum_i X_i$$

$$\Rightarrow Y \sim G(n\mu_D, n\sigma_D^2)$$

distribution extraction via symbolic execution

verification

optimization optim

return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
 total = 0.0;
 for (int i = 0; i < COUNT; ++i)
 total += obfuscated(salaries[i]);
 avg = total / len(salaries);
 p_avg = ...;

passert e, p, C
}</pre>

float obfuscated(float n) {

Bayesian network IR

Verification via direct evaluation

Verification via hypothesis testing

distribution extraction via symbolic execution

verification

optimizations

```
float obfuscated(float n) {
   return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
   total = 0.0;
   for (int i = 0; i < COUNT; ++i)
      total += obfuscated(salaries[i]);
   avg = total / len(salaries);
   p_avg = ...;

passert e, p, C
}</pre>
```


Bayesian network IR

Probabilistic assertions for C and C++

strawman stress-tester

Probabilistic programs used in the evaluation

sensing | gpswalk

privacy salary-abs

approximate computing

kmeans

sobel

hotspot inversek2j

Running time vs. stress testing

Running time vs. stress testing

no statistical optimizations

Running time vs. stress testing

24× faster than baseline verifier on average Mostly analysis time

Probabilistic assertions express correctness properties in modern software. Our verifier checks them efficiently and accurately.