

ARE YOU READY?

Using the Limpopo furniture company, we will add constraints:

	Primary l	ine	ar Prog	ramming	Mod	el		
	Desk		Table		Chair			
Max z	60x1	+	30x2	+	20x3			
s.t.								
:	18x1	+	6x2	+	х3	≤	48L	.umber
:	24x1	+	2x2	+	1.5x3	≤	20F	inishing
;	32x1	+	1.5x2	+	0.5x3	≤	80	Carpentry
	x1, x2, x3	≥	0					

We will use the optimal table we got from using the Primal simplex algorithm:

T*	x1	x2	x3	s1	s2	s3	B RE	HS
z		0	5	0	0	10	10	280
	1	0	-2	0	1	2	-8	24
	2	0	-2	1	0	2	-4	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	2

Steps:

- 1. First write the constraint in canonical form and add it into the optimal table.
- 2. Second, make sure none of the decision variables that were basic, becomes non-basic. If so, first sort out the conflict.
- 3. Lastly, make sure the slack/excess added is a basic variable.

Example 1 Let's add the a constraint to restrict tables to a maximum of 5 -> $x_2 \le 5$

T*	x1	x2	x3	s 1	s2	s3	S4	RI	HS
z		0	5	0	0	10	10	0	280
	1	0	-2	0	1	2	-8	0	24
	2	0	-2	1	0	2	-4	0	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	0	2
	4	0	1	0	0	0	0	1	5

In this case, x2 was non-basic so there is no conflict and S4 is basic.

Example 2 Now let's add the constraint that will restrict chairs to a maximum of $5 \rightarrow x_3 \le 5$

T*	x1	x2	х3	s1	s2	s3	3 S4	l R	HS
Z		0	5	0	0	10	10	0	280
	1	0	-2	0	1	2	-8	0	24
	2	0	-2	1	0	2	-4	0	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	0	2
	4	0	0	1	0	0	0	1	5

To solve this conflict, we will do the following:

b2	0	-2	1	0	2	-4	0	8
b4	0	0	1	0	0	0	1	5
b2 - b4	0	-2	0	0	2	-4	-1	3

T*	x1	x2	х3	s1	s2	s3	S4	RHS	
	*4 x -1	0	2	0	0	-2	4	1	-3

Add the new constraint into the optimal table:

T*	x1	x2	x3	s1	s2	s3	S4	RI	НS
z		0	5	0	0	10	10	0	280
	1	0	-2	0	1	2	-8	0	24
	2	0	-2	1	0	2	-4	0	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	0	2
	4	0	2	0	0	-2	4	1	-3
Ratio	o test					5			

t-*	x1	x2	x3	s1	s2	s3	s4	RHS	
Z		0	15	0	0	0	30	5	265
	1	0	0	0	1	0	-4	1	21
	2	0	0	1	0	0	0	1	5
	3	1	3/4	0	0	0	1/2	- 1/4	2 3/4
	4	0	-1	0	0	1	-2	- 1/2	1 1/2

Let's compare the new optimal table with the optimal table before the constraint was added.

T*	x1	x2	х3	s1	s2	s3	R	HS
z		0	5	0	0	10	10	280
	1	0	-2	0	1	2	-8	24
	2	0	-2	1	0	2	-4	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	2

Example 3 Let's add the a constraint to restrict desks to a minimum of 1 -> $x_1 \ge 1$

T*	x1	x2	x3	s1	s2	s3	e4	RH	НS
Z		0	5	0	0	10	10	0	280
	1	0	-2	0	1	2	-8	0	24
	2	0	-2	1	0	2	-4	0	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	0	2
	4	1	0	0	0	0	0	-1	1

To solve this conflict, we will do the following:

T*	x1	x2	x3	s1	s2	s3 e4	RF	IS	
	3	1	1 1/4	0	0	- 1/2 1 1/2	0	2	
	4	1	0	0	0	0 0	-1	1	
	*4	0	1 1/4	0	0	- 1/2 1 1/2	1	1 🔷	

E4 is still basic, we can now add our new constraint to the optimal table:

T*	x1	x2	х3	s1	s2	s3	e4	RI	HS
Z		0	5	0	0	10	10	0	280
	1	0	-2	0	1	2	-8	0	24
	2	0	-2	1	0	2	-4	0	8
	3	1	1 1/4	0	0	- 1/2	1 1/2	0	2
	4	0	1 1/4	0	0	- 1/2	1 1/2	1	1

Exercises

- 1. Add a constraint that will restrict tables to manufacture a minimum of 1.
- 2. Korean Auto manufactures luxury cars and trucks. The company believes that its most likely customers are high-income women and men. To reach these groups, Korean Auto has embarked on an ambitious TV advertising campaign and has decided to purchase 1-minute commercial spots on two types of programmes: comedy shows and football games. Each comedy commercial is seen by 7 million high-income women and 2 million high-income men. Each football commercial is seen by 2 million high-income women and 12 million high-income men. A 1-minute comedy ad costs ₩50 000, and a 1-minute football ad costs ₩100 000. Korean Auto would like the commercials to be seen by at least 28 million high-income women and 24 million high-income men. The formulated Linear Programming Model for the above mentioned

problem is given below:

	_	_								
Primary Linear Programming Model										
			Comedy Add		Football Add					
Min z	50x1	+		100x2						
s.t.										
	17x1	+		2x2	≥	2	28HIW			
	22x1	+		12x2	≥	2	24HIM			
	x1, x2	≥			0					

Exercises

Having solved the above formulated problem using a Primal Simplex Algorithm, the Optimal Tableau is given below:

t-3*	x1	x2	e1	e2	rhs	
Z		0	0	-5	-7 1/2	320
	1	1	0	- 3/20	1/40	3 3/5
	2	0	1	1/40	- 7/80	1 2/5

- Add the constraint that will allow a maximum of 3 comedy adds.
- Add the constraint that will allow a minimum of 4 comedy adds.
- Add the constraint that will allow a minimum of 2 football adds.

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

Ekurhuleni Campus 45A Long Street **Kempton Park**

Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,