UNIVERSIDADE FEDERAL DO MARANHÃO

região $r \le a$. (2,0 pontos)

Primeira avaliação do Curso de Física Geral II CP – (24/05/2018)

FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 - São Luis - Maranhão

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE FÍSICA

7.1010
Observação: Para cada questão de 1 até 6, a alternativa marcada só será aceita com a devida explicação que justifique a sua escolha
 Qual das condições abaixo não é necessária para que uma particula experimente uma força magnética ao ser colocada em um região onde existe um campo magnético? (a) A particula deve estar em movimento. (b) A particula deve possuir uma carga elétrica. (c) A particula não deve estar sob a influência de outras forças.
(d) A velocidade da partícula deve ter uma componente perpendicular à direção do campo magnético. (e) Nenhuma das condições anteriores. (0,5 ponto)
 Uma partícula negativamente carregada penetra em uma região onde existe um campo magnético constante. Se a velocidade da partícula ao entrar na região é perpendicular ao campo magnético, qual é a trajetória subsequente da partícula? A partícula descreve uma trajetória helicoidal em torno das linhas de campo magnético. A partícula descreve uma trajetória circular em um plano perpendicular às linhas de campo magnético. A partícula descreve uma trajetória retilinea na mesma direção em que estava se movendo ao entrar na região. A partícula descreve uma trajetória circular em um plano paralelo às linhas de campo magnético. Não há informações suficientes para responder. (0,5 ponto)
 3) Qual é a direção do campo magnético produzido por uma corrente elétrica em relação ao fio que conduz a corrente? (a) O campo é radial e aponta para o fio. (b) O campo é radial e aponta para longe do fio. (c) O campo é paralelo ao fio e aponta no sentido da corrente. (d) O campo é paralelo ao fio e aponta no sentido oposto ao da corrente. (e) O campo é perpendicular ao fio e à reta que liga o fio ao ponto considerado. (1,0 ponto)
 4) Duas espiras circulares conduzem correntes iguais, mas o raio de uma das espiras é duas vezes maior que o da outra. Qual é a relação entre os campos magnéticos produzidos no centro das espiras? (1,0 ponto) (a) Nos dois casos, o campo no centro das espiras é nulo. (b) O campo magnético no centro da espira maior é duas vezes maior que o campo magnético no centro da espira menor.
 (c) O campo magnético no centro da espira maior é igual ao campo magnético no centro da espira menor. (d) O campo magnético no centro da espira menor é duas vezes maior que o campo magnético no centro da espira maior. (e) O campo magnético no centro da espira menor é quatro vezes maior que o campo magnético no centro da espira maior.
5) Uma bobina plana de N espiras e área A é colocada em uma região onde existe um campo magnético uniforme de módulo B. A normal ao plano da bobina faz um ângulo φ com a direção do campo magnético. Qual das mudanças abaixo induz uma fem na bobina de acordo com a lei de Faraday? (1,0 ponto) (a) Diminuir B. (b) Aumentar A. (c) Diminuir φ. (d) Todas as mudanças das opções (a), (b) e (c). (e) Nenhuma das mudanças apresentadas nas opções anteriores.
6) Um elétron está se movendo com velocidade constante. O que se pode afirmar a respeito da presença de campos elétricos e magnéticos na região do espaço onde se encontra o elétron? (1,0 ponto) (a) O campo elétrico é certamente nulo, mas o campo magnético pode ser diferente de zero, se for perpendicular à direção de movimento da partícula.
 b) O campo magnético é certamente nulo, mas o campo elétrico pode ser diferente de zero. c) O campo elétrico e o campo magnético podem ser diferentes de zero, mas, nesse caso, devem ser mutuamente perpendiculares. d) O campo elétrico e o campo magnético podem ser diferentes de zero, mas, nesse caso, devem apontar em direções opostas. e) O campo elétrico e o campo magnético são certamente nulos.
7) Um fio de comprimento infinito, forma um ângulo de 90º graus, conforme indica a figura 1, e conduz uma corrente I. Determine o nódulo, a direção e o sentido do campo magnético resultante produzido pelo fio no ponto P. (1,5 pontos)
B) Considere uma única espira circular de raio R e que conduz uma corrente l cujo vetor normal a área está na direção z. (a) É possível calcular o campo magnético em pontos situados sobre o eixo central da espira(eixo z) usando a lei de Ampère? (b) Calcule o campo nagnético (módulo, direção e sentido) em um ponto z do eixo central da espira. (1,5 pontos)
e) Um cilindro comprido, com seu eixo orientado ao longo do eixo Oz, possui uma densidade de corrente 🗓 . A densidade de
corrente, embora simétrica em relação ao eixo do cilindro, não é constante e varia de acordo com a relação: $\vec{J} = \frac{2I_0}{\pi a^2} [1 - \frac{r^2}{d^2}] \vec{k}$ para
r ≤a , e

uma constante dada em Amperes. (a) Mostre que I_0 é a corrente total que passa através da seção reta do fio. (b) Usando a lei de Ampere, deduza uma expressão para o campo magnético na região r > a. (c) Obtenha uma expressão para o campo magnético na