第四讲 方差分析

方差分析——根据试验的结果进行分析,鉴别各个 有关因素对试验结果影响的有效方法.

试验指标——试验中要考察的指标.

因素——影响试验指标的条件.

因素 不可控因素 可控因素

水平——因素所处的状态.

单因素试验——在一项试验中只有一个因素改变.

多因素试验 ——在一项试验中有多个因素在改变.

——因素间无交互或具有交互作用.

一、单因素试验的方差分析

二、双因素无重复试验的方差分析—无交互

三、双因素有重复试验的方差分析—有交互

一、单因素试验的方差分析

引例 设有三台机器,用来生产规格相同的铝合金薄板.取样,测量薄板的厚度精确至千分之一厘米.得结果如下表所示.

表1.1 铝合金板的厚度

机器I	机器II	机器III
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

试验指标: 薄板的厚度 因素: 机器

水平:不同的三台机器是因素的三个不同的水平. 假定除机器这一因素外,其他条件相同,

属于单因素试验.

试验目的:考察各台机器所生产的薄板的厚度有无显著的差异.即考察机器这一因素对厚度有无显著的影响.

结论: 如果厚度有显著差异,

表明机器这一因素对厚度的影响是显著的.

关于引例的讨论 设总体均值分别为 μ_1, μ_2, μ_3 .

检验假设 H_0 : $\mu_1 = \mu_2 = \mu_3$,

 $H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

进一步假设各总体均为正态变量,且各总体的方差相等,但参数均未知.

问题 检验同方差的多个正态总体均值是否相等.

解决方法 方差分析法(一种统计方法)

1、数学模型

设因素A有s个水平 A_1, A_2, \dots, A_s ,相当于有s个总体 X_j , $j = 1, 2, \dots, s$)下,

在水平 $A_j(j=1,2,\cdots,s)$ 下,进行 $n_j(n_j \geq 2)$ 次独立试验,得到如下表的结果.

表1.2

观察结果 水平	A_1	A_2	• • •	A_{s}
	X_{11}	X_{12}	•••	X_{1s}
	X_{21}	X_{22}	•••	X_{2s}
	:	:		•
	$X_{n_1 1}$	X_{n_22}	•••	$\boldsymbol{X}_{\boldsymbol{n}_{\mathcal{S}}s}$
样本总和	$T_{ullet 1}$	$T_{ullet 2}$	•••	T_{ullet_S}
样本均值	$\overline{X}_{ullet 1}$	$\overline{X}_{ullet 2}$	•••	\overline{X}_{ullet_S}
总体均值	μ_1	μ_2	•••	$\mu_{\scriptscriptstyle S}$

假设

1.各个水平
$$A_{j}$$
($j = 1, 2, \dots, s$)下的样本 $X_{1j}, X_{2j}, \dots, X_{n_{j}j}$

来自具有相同方差 σ^2 ,均值分别为 $\mu_j(j=1,2,\cdots,s)$

的正态总体 $N(\mu_j,\sigma^2)$, μ_j 与 σ^2 均未知;

2.不同水平 A_j 下的样本之间相互独立.

因为 $X_{ij}\sim N(\mu_j,\sigma^2)$,所以 $X_{ij}-\mu_j\sim N(0,\sigma^2)$.

 $ilX_{ij} - \mu_j = \varepsilon_{ij}$ 表示随机误差,

那么 X_{ii} 可写成

$$X_{ij} = \mu_j + \varepsilon_{ij}$$
,
 $\varepsilon_{ij} \sim N(0, \sigma^2)$,各 ε_{ij} 独立,
 $i = 1, 2, \dots, n_j, j = 1, 2, \dots, s$,
 $\mu_j = \sigma^2$ 均未知.

单因素试验方差分析 的数学模型

需要解决的问题

1.检验假设 $H_0: \mu_1 = \mu_2 = \cdots = \mu_s$,

两两检验, H_1 : $\mu_1, \mu_2, ..., \mu_s$ 不全相等. 运算量大。

2.估计未知参数 $\mu_1, \mu_2, \dots, \mu_s, \sigma^2$. --择优

数学模型的等价形式

记
$$n = \sum_{j=1}^{s} n_j$$
,

$$i \exists n = \sum_{j=1}^{s} n_j, \quad \mu = \frac{1}{n} \sum_{j=1}^{s} n_j \mu_j.$$

总均值

水平 A_j 的效 应,表示水平 A_i 下的总体 平均值与总 平均的差异,

$$\delta_j = \mu_j - \mu, j = 1, 2, \dots, s.$$

$$\sum_{j=1}^{s} n_{j} \delta_{j} = \sum_{j=1}^{s} n_{j} (\mu_{j} - \mu) = n\mu - n\mu = 0.$$

原数学模型

$$X_{ij} = \mu_j + \varepsilon_{ij}$$
,
 $\varepsilon_{ij} \sim N(0, \sigma^2)$,各 ε_{ij} 独立,
 $i = 1, 2, \dots, n_j, j = 1, 2, \dots, s$,
 $\mu_j = \sigma^2$ 均未知.

改写为

$$X_{ij} = \mu + \delta_j + \varepsilon_{ij},$$
 $\varepsilon_{ij} \sim N(0, \sigma^2),$ 各 ε_{ij} 独立,
 $i = 1, 2, \dots, n_j, j = 1, 2, \dots, s,$
 $\sum_{j=1}^{s} n_j \delta_j = 0.$

原检验假设 H_0 : $\mu_1 = \mu_2 = \cdots = \mu_s$,

 $H_1: \mu_1, \mu_2, ..., \mu_s$ 不全相等.

等价于检验假设

 $H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0,$

 H_1 : δ_1 , δ_2 , …, δ_s 不全为零.

2、平方和的分解

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{s} \sum_{j=1}^{n_j} X_{ij} = \frac{1}{n} \sum_{j=1}^{s} n_j \overline{X}_{\cdot j}$$
 数据的总平均

$$\overline{X}_{\bullet j} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}$$
 水平 A_j 下的样本平均值

$$S_T = \sum_{i=1}^{s} \sum_{j=1}^{n_j} (X_{ij} - \overline{X})^2$$
 总偏差平方和(总变差)

$$S_{T} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X})^{2}$$

$$S_{T} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X})^{2}$$

$$= \sum_{i=1}^{s} \sum_{i=1}^{n_j} [(X_{ij} - \overline{X}_{\bullet j}) + (\overline{X}_{\bullet j} - \overline{X})]^2$$

$$= \sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2 + \sum_{j=1}^{s} \sum_{i=1}^{n_j} (\overline{X}_{\bullet j} - \overline{X})^2 +$$

$$+2\sum_{i=1}^{s}\sum_{j=1}^{n_{j}}(X_{ij}-\overline{X}_{\bullet j})(\overline{X}_{\bullet j}-\overline{X})$$

其中
$$2\sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})(\overline{X}_{\bullet j} - \overline{X})$$
 $\overline{X}_{\bullet j} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}$

$$= 2\sum_{j=1}^{s} (\overline{X}_{\bullet j} - \overline{X})[\sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})]$$

$$= 2\sum_{i=1}^{s} (\overline{X}_{\bullet j} - \overline{X})[\sum_{i=1}^{n_j} X_{ij} - n_j \overline{X}_{\bullet j}]$$

$$= 2\sum_{j=1} (X_{\bullet j} - X) \left[\sum_{i=1} X_{ij} - n_j X_{\bullet j} \right]$$
$$= 0$$

于是
$$S_T$$
可分解为 $S_T = S_E + S_A$

其中
$$S_E = \sum_{j=1}^s \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2$$
 $\overline{X} = \frac{1}{n} \sum_{j=1}^s n_j \overline{X}_{\bullet j}$

$$S_{A} = \sum_{j=1}^{s} \sum_{i=1}^{n_{j}} (\overline{X}_{\bullet j} - \overline{X})^{2} = \sum_{j=1}^{s} n_{j} (\overline{X}_{\bullet j} - \overline{X})^{2}$$

$$= \sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j}^{2} - 2\overline{X} \sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j} + n \overline{X}^{2} = \sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j}^{2} - n \overline{X}^{2}$$

 $S_T = S_K + S_A$ 称为平方和分解式.

误差平方和

组内离差平方和

效应平方和

组间离差平方和

S_E , S_A 的统计特性

$$S_E = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2$$

$$=\sum_{i=1}^{n_1}(X_{i1}-\overline{X}_{\bullet 1})^2+\cdots+\sum_{i=1}^{n_s}(X_{is}-\overline{X}_{\bullet s})^2,$$

$$\sum_{i=1}^{n_j} (X_{ij} - \overline{X}_{\bullet j})^2 \mathbb{E}N(\mu_j, \sigma^2)$$
的样本方差的 $n_j - 1$ 倍,

$$: S_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_{\bullet j})^2, \frac{(n_j - 1)S_j^2}{\sigma^2} \sim \chi^2(n_j - 1).$$

$$\therefore \frac{\sum_{i=1}^{J} (X_{ij} - \overline{X}_{\bullet j})^2}{\sigma^2} \sim \chi^2(n_j - 1).$$

又由于各 X_{ij} 独立,所以由 χ^2 分布的可加性知

$$\frac{1}{\sigma^2} \sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \bar{X}_{\bullet j})^2 = \frac{S_E}{\sigma^2} \sim \chi^2 \left(\sum_{j=1}^{s} (n_j - 1) \right),$$

即 $\frac{S_E}{\sigma^2} \sim \chi^2(n-s), \qquad 其中 n = \sum_{j=1}^s n_j.$

根据 χ^2 分布的性质可以得到,

$$S_E$$
 的自由度为 $n-s$; $E(S_E)=(n-s)\sigma^2$.

因为
$$S_A = \sum_{j=1}^{S} n_j \bar{X}_{\bullet j}^2 - n \bar{X}^2$$

$$E(S_A) = E\left[\sum_{j=1}^s n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2\right] = \sum_{j=1}^s n_j E(\overline{X}_{\bullet j}^2) - n E(\overline{X}^2)$$

$$=\sum_{j=1}^{s} n_{j} (D\overline{X}_{\bullet j} + E^{2}\overline{X}_{\bullet j}) - n(D\overline{X} + E^{2}\overline{X})$$

$$E\bar{X}_{\bullet j} = E(\frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}) = \mu_j = \mu + \delta_j, D\bar{X}_{\bullet j} = D(\frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij}) = \frac{\sigma^2}{n_j},$$

$$E\bar{X} = E(\frac{1}{n}\sum_{j=1}^{s}\sum_{i=1}^{n_j}X_{ij}) = \mu, \quad D\bar{X} = D(\frac{1}{n}\sum_{j=1}^{s}\sum_{i=1}^{n_j}X_{ij}) = \frac{\sigma^2}{n},$$

$$E(S_A) = E\left[\sum_{j=1}^s n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2\right] = \sum_{j=1}^s n_j E(\overline{X}_{\bullet j}^2) - n E(\overline{X}^2)$$

$$= \sum_{j=1}^s n_j \left[\frac{\sigma^2}{n_j} + (\mu + \delta_j)^2\right] - n \left[\frac{\sigma^2}{n} + \mu^2\right]$$

$$= (s-1)\sigma^{2} + 2\mu \sum_{j=1}^{s} n_{j} \delta_{j} + n\mu^{2} + \sum_{j=1}^{s} n_{j} \delta_{j}^{2} - n\mu^{2}$$

$$= (s-1)\sigma^2 + \sum_{j=1}^s n_j \delta_j^2$$

4、假设检验问题的拒绝域

检验假设
$$H_0$$
: $\delta_1 = \delta_2 = \cdots = \delta_s = 0$,
$$H_1: \quad \delta_1, \, \delta_2, \, \cdots, \, \delta_s$$
不全为零.

$$H_0$$
为真时, $E\left(\frac{S_A}{s-1}\right) = \sigma^2$,

$$H_1$$
为真时,
$$\sum_{j=1}^s n_j \delta_j^2 > 0$$
,

$$E\left(\frac{S_A}{s-1}\right) = \sigma^2 + \frac{1}{s-1} \sum_{j=1}^s n_j \delta_j^2 > \sigma^2.$$

$$S_A$$
与 S_E 独立, H_0 为真时, $\frac{S_A}{\sigma^2} \sim \chi^2(s-1)$.

证明
$$: H_0$$
成立,即 $\delta_1 = \delta_2 = \cdots = \delta_s = 0$,

$$\therefore X_{ij} \sim N(\mu, \sigma^2) \Leftrightarrow \frac{X_{ij} - \mu}{\sigma} \sim N(0, 1)$$

$$\Leftrightarrow \frac{\sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \mu)^2}{\sigma^2} \sim \chi^2(n).$$

$$\mathbb{X}\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\Leftrightarrow \frac{n(\overline{X}-\mu)^2}{\sigma^2}\sim \chi^2(1).$$

$$\overline{\prod} \sum_{i=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \mu)^2 = \sum_{i=1}^{s} \sum_{i=1}^{n_j} ((X_{ij} - \overline{X}) + (\overline{X} - \mu)^2)$$

$$=\sum_{j=1}^{s}\sum_{i=1}^{n_j}(X_{ij}-\bar{X})^2+2\sum_{j=1}^{s}\sum_{i=1}^{n_j}(X_{ij}-\bar{X})(\bar{X}-\mu)+n(\bar{X}-\mu)^2$$

$$= S_T + n(\bar{X} - \mu)^2 = S_E + S_A + n(\bar{X} - \mu)^2.$$

$$\therefore \frac{\sum_{j=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \mu)^2}{\sigma^2} = \frac{S_T}{\sigma^2} + \frac{n(\overline{X} - \mu)^2}{\sigma^2} \Rightarrow \frac{S_T}{\sigma^2} \sim \chi^2(n-1).$$

不管 H_0 是否为真, $S_E/(n-s)$ 都是 σ^2 的无偏估计.

$$F = \frac{S_A/(s-1)}{S_E/(n-s)}.$$

- 1.分子和分母相互独立;
- 2. 分母 $S_E/(N-S)$ 的数学期望始终是 σ^2 ;
- $3. H_0$ 为真时,分子的期望为 σ^2 , H_0 不真时,分子取值有偏大的趋势.

拒绝域的形式为
$$F = \frac{S_A/(s-1)}{S_E/(n-s)} \ge k$$
.

其中k由预先给定的显著水平 α 确定.

因为H。为真时,

$$\frac{S_E}{\sigma^2} \sim \chi^2(n-s), \qquad \frac{S_A}{\sigma^2} \sim \chi^2(s-1),$$

$$\frac{S_A/\sigma^2}{(s-1)} / \frac{S_E/\sigma^2}{(n-s)} = \frac{S_A/(s-1)}{S_E/(n-s)} = \frac{\overline{S}_A}{\overline{S}_E} \sim F_\alpha(s-1,n-s).$$

检验假设 H_0 : $\delta_1 = \delta_2 = \cdots = \delta_s = 0$, H_1 : $\delta_1, \delta_2, \cdots, \delta_s$ 不全为零.

拒绝域为
$$F = \frac{S_A/(s-1)}{S_E/(n-s)} \ge F_\alpha(s-1,n-s).$$

表1.3 单因素试验方差分析表

方差来源	平方和	自由度	均方	F 比
因素A	\boldsymbol{S}_{A}	s-1	$\overline{S}_A = \frac{S_A}{s-1}$	$oldsymbol{F} = \overline{oldsymbol{S}}_{oldsymbol{A}}/\overline{oldsymbol{S}}_{oldsymbol{E}}$
误差	S_E	n-s	$\overline{S}_E = \frac{S_E}{n - s}$	
总和	S_T	n-1		

表中
$$\overline{S}_A = \frac{S_A}{s-1}$$
和 $\overline{S}_E = \frac{S_E}{n-s}$ 称为 S_A 和 S_E 的均方.

$$S_T$$
、 S_A 和 S_E 的简便计算公式:

记
$$T_{\bullet j} = \sum_{ij}^{n_j} X_{ij}, j = 1, \dots, s, \quad T_{\bullet \bullet} = \sum_{ij}^{s} \sum_{ij}^{n_j} X_{ij},$$

$$S_T = \sum_{i=1}^{s} \sum_{i=1}^{n_j} (X_{ij} - \bar{X})^2 = \sum_{i=1}^{s} \sum_{i=1}^{n_j} X_{ij}^2 - 2\bar{X} \sum_{i=1}^{s} \sum_{i=1}^{n_j} X_{ij} + n\bar{X}^2$$

$$=\sum_{j=1}^{s}\sum_{i=1}^{n_{j}}X_{ij}^{2}-n\overline{X}^{2}=\sum_{j=1}^{s}\sum_{i=1}^{n_{j}}X_{ij}^{2}-\frac{T_{\bullet\bullet}^{2}}{n},$$

$$\underbrace{\sum_{j=1}^{s} n_j \overline{X}_{\bullet j}^2 - n \overline{X}^2}_{j=1} = \underbrace{\sum_{j=1}^{s} \frac{T_{\bullet j}^2}{n_j} - \frac{T_{\bullet \bullet}^2}{n}}_{j}$$

 $S_{A} = \sum_{j=1}^{s} n_{j} \overline{X}_{\bullet j}^{2} - n \overline{X}^{2} = \sum_{\substack{j=1 \ n_{j}}}^{s} \frac{T_{\bullet j}^{2}}{n_{j}} - \frac{T_{\bullet \bullet}^{2}}{n},$ $S_{E} = S_{T} - S_{A} \overline{X}_{E} = \sum_{j=1}^{s} \sum_{i=1}^{s} X_{ij}^{2} - \sum_{j=1}^{s} \frac{T_{\bullet j}^{2}}{n_{j}}, S_{A} = S_{T} - S_{E}.$

引例 设有三台机器, 用来生产规格相同的铝合金薄板. 取样, 测量薄板的厚度精确至千分之一厘米. 得结果如下表所示.取($\alpha = 0.05$):

表1.4 铝合金板的厚度

机器I	机器II	机器III		
0.236	0.257	0.258		
0.238	0.253	0.264		
0.248	0.255	0.259		
0.245	0.254	0.267		
0.243	0.261	0.262		

检验假设 $H_0: \mu_1 = \mu_2 = \mu_3, H_1: \mu_1, \mu_2, \mu_3$ 不全相等

解

$s=3, n_1=n_2=n_3=5, n=15$

机器。	机器I。	机器II。	机器III。	0
铝合金板的厚度。	0.236	0.257	0.258	3
1,000	0.238	0.253	0.264₽	$\sum_{j=1}^{3} \circ$
	0.248	0.255	0.259	٥
	0.245.	0.254	0.267	e ³
	0.243	0.261	0.262	o de la companya de
$T_{,j} = \sum_{i=1}^{5} x_{ij} \circ$	1.21.	1.28.	1.31₀	3.80
$T_{.j}^2 = (\sum_{i=1}^5 x_{ij})^2 \omega$	1.21 ² +	1.28 ² +	1.31 ² .	4.8186.
$\sum_{i=1}^{5} x_{ij}^{2} \circ$	0.292918	0.32772	0.343274	0.963912

$$S_{T} = \sum_{j=1}^{3} \sum_{i=1}^{5} X_{ij}^{2} - \frac{T_{\bullet \bullet}^{2}}{15}$$

$$= 0.963912 - \frac{3.8^{2}}{15} = 0.00124533,$$

$$S_{A} = \sum_{j=1}^{3} \frac{T_{\bullet j}^{2}}{n_{j}} - \frac{T_{\bullet \bullet}^{2}}{n}$$

$$= \frac{1}{5} (1.21^{2} + 1.28^{2} + 1.31^{2}) - \frac{3.8^{2}}{15} = 0.00105333,$$

 $S_F = S_T - S_A = 0.000192.$

表1.5引例的方差分析表

方差来源	平方和	自由度	均方	F 比
因素	0.00105333	2	0.00052667	32.92
误差	0.000192	12	0.000016	
总和	0.00124533	14		

 $F = 32.92 > F_{0.05}(2,12) = 3.89$. 在水平0.05下拒绝 H_0 各机器生产的薄板厚度有显著差异.

5、未知参数的估计

若拒绝 H_0 ,意味着效应 δ_1 , δ_2 ,…, δ_s 不全为零,

(1)未知参数的点估计

$$E(\overline{X}) = \mu$$
, $E(\overline{X}_{\bullet j}) = \mu_j$, $j = 1, 2, \dots, s$
故 $\hat{\mu} = \overline{X}$, $\hat{\mu}_j = \overline{X}_{\bullet j}$ 分别是 μ 和 μ_j 的无偏估计.
 $\delta_j = \mu_j - \mu$, $j = 1, 2, \dots, s$

于是 $\hat{\delta}_j = \overline{X}_{\bullet j} - \overline{X}$ 是 δ_j 的无偏估计.

不论 H_0 是否为真, $\hat{\sigma}^2 = \frac{S_E}{n-s}$ 是 σ^2 的无偏估计.

(2)未知参数的区间估计

(a) μ_j 的估计

$$X_{ij}\sim N(\mu_j,\sigma^2), \tilde{X}_{.j}\sim N(\mu_j,\sigma^2/n_j)$$

$$\therefore \frac{X_{.j} - \mu_j}{\sigma / \sqrt{n_j}} \sim N(0,1), \overline{m} \frac{S_E}{\sigma^2} \sim \chi^2(n-s)$$

$$\therefore \frac{\overline{X}_{.j} - \mu_j}{\sigma / \sqrt{n_j}} / \sqrt{\frac{S_E}{\sigma^2(n-s)}} = \frac{\overline{X}_{.j} - \mu_j}{\sqrt{\overline{S}_E} / \sqrt{n_j}} \sim t(n-s)$$

:. 给定
$$\alpha$$
, 令 $P\left\{-t_{\alpha/2}(n-s) < \frac{\overline{X}_{.j} - \mu_j}{\sqrt{\overline{S}_E} / \sqrt{n_j}} < t_{\alpha/2}(n-s)\right\} = 1-\alpha.$

则

$$P\left\{\bar{X}_{.j} - \frac{\sqrt{\bar{S}_E}}{\sqrt{n_j}}t_{\alpha/2}(n-s) < \mu_j < \bar{X}_{.j} + \frac{\sqrt{\bar{S}_E}}{\sqrt{n_j}}t_{\alpha/2}(n-s)\right\} = 1-\alpha.$$

查表得 $t_{\alpha/2}(n-s)$,

于是得 μ_i 的置信度为 $1-\alpha$ 的置信区间

$$\left(\bar{X}_{.j} \pm \frac{\sqrt{\bar{S}_E}}{\sqrt{n_j}} t_{\alpha/2} (n-s)\right).$$

(b) σ^2 的估计

$$:\frac{S_E}{\sigma^2}\sim \chi^2(n-s)$$
, ∴ 给定 α ,

$$\Rightarrow P\left\{\chi_{1-\alpha/2}^{2}(n-s) < \frac{S_{E}}{\sigma^{2}} < \chi_{\alpha/2}^{2}(n-s)\right\} = 1-\alpha.$$

$$\mathbb{P}\left\{\frac{S_E}{\chi_{\alpha/2}^2(n-s)} < \sigma^2 < \frac{S_E}{\chi_{1-\alpha/2}^2(n-s)}\right\} = 1-\alpha.$$

于是得方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{S_E}{\chi_{\alpha/2}^2(n-s)}, \frac{S_E}{\chi_{1-\alpha/2}^2(n-s)}\right).$$

$$(c)$$
 μ_i - μ_k 的估计

$$: \overline{X}_{.j} - \overline{X}_{.k} \sim N\left(\mu_j - \mu_k, \frac{\sigma^2}{n_j} + \frac{\sigma^2}{n_k}\right)$$

$$\Leftrightarrow \frac{\left(\overline{X}_{.j} - \overline{X}_{.k}\right) - \left(\mu_{j} - \mu_{k}\right)}{\sigma\sqrt{\frac{1}{n_{j}} + \frac{1}{n_{k}}}} \sim N(0,1),$$

$$\overline{m} \frac{S_E}{\sigma^2} \sim \chi^2(n-s),$$

$$\therefore \frac{\left(\overline{X}_{.j} - \overline{X}_{.k}\right) - \left(\mu_j - \mu_k\right)}{\sqrt{\overline{S}_E} \sqrt{\frac{1}{n_j} + \frac{1}{n_k}}} \sim t(n-s) ,$$

给定
$$\alpha$$
, 令 $P\left\{-t_{\alpha/2}(n-s) < \frac{\left(\bar{X}_{.j} - \bar{X}_{.k}\right) - \left(\mu_{j} - \mu_{k}\right)}{\sqrt{\bar{S}_{E}}\sqrt{\frac{1}{n_{j}} + \frac{1}{n_{k}}}} < t_{\alpha/2}(n-s)\right\} = 1-\alpha.$

均值差 $\mu_i - \mu_k = \delta_i - \delta_k$ 的置信水平为 $1 - \alpha$ 的

置信区间为

$$\left(\overline{X}_{\bullet j} - \overline{X}_{\bullet k} \pm t_{\alpha/2}(n-s)\sqrt{\overline{S}_E(\frac{1}{n_j} + \frac{1}{n_k})}\right).$$

练习: 若三种化肥对某农作物的亩产(单位: kg) 有下列数据:

化肥	农作物产量					
$oldsymbol{A}$	48 49 50 49					
В	47 49 48 48					
C	49 51 50 50					

设每种化肥使农作物的亩产服从正态分布,试问化肥品种对亩产有无显著差异 ($\alpha = 0.05$)? 请给出理由.

.**解**:本题属于单因素方差分析问题,水平数r=3, 重复试验数 $n_1=n_2=n_3=4$,即样本数 n=12, 由数据表得:

化肥	农作物产量	$T_{i.} = \sum_{j=1}^{4} X_{ij}$	$T_{i.}^{2} = (\sum_{j=1}^{4} x_{ij})^{2}$	$\sum_{j=1}^4 X_{ij}^2$
A	48 49 50 49	196	38416	9606
В	47 49 48 48	192	36864	9218
C	49 51 50 50	200	40000	10002
$\sum_{i=1}^{3}$		588	115280	28826

$$S_T = \sum_{i=1}^{3} \sum_{j=1}^{4} x_{ij}^2 - \frac{\left(\sum_{i=1}^{3} T_{i.}\right)^2}{3 \times 4} = 28826 - \frac{588^2}{12} = 14,$$

$$S_A = \frac{1}{4} \sum_{i=1}^{3} T_{i.}^2 - \frac{(\sum_{i=1}^{3} T_{i.})^2}{3 \times 4} = \frac{115280}{4} - \frac{588^2}{12} = 8,$$

$$S_E = S_T - S_A = 14 - 8 = 6$$
. $\Re S_E = \sum_{i=1}^3 \sum_{j=1}^4 x_{ij}^2 - \frac{1}{4} \sum_{i=1}^3 T_{i.}^2 = 28826 - \frac{115280}{4} = 6$,

$$S_A = S_T - S_F = 14 - 6 = 8$$
,当 $\alpha = 0.05$ 时, 列方差分析如下:

方差来源	离差平方和	自由度	均方离差平方和	F 比值 $\frac{\overline{S}_A}{\overline{S}_E}$	$F_{a.as}(2,9)$	显著性
组间	$S_A = 8$	r-1=2	$\overline{S}_A = S_A / 2 = 4$	6	4.26	显著
组内	$S_E = 6$	n-r=9	$\overline{S}_E = S_E/9 = 2/3$			
总和	$S_T = 14$	n-1=11				

由
$$_{F} = \frac{S_{A}/2}{S_{B}/9} = \frac{\overline{S}_{A}}{\overline{S}_{B}} = 6 > F_{a.o.}(2,9) = 4.26$$
,故化肥对产里有显著影响。

二、双因素无重复试验的方差分析—无 交互

如果已知不存在交互作用,或已知交互作用对

试验的指标影响很小,则可以不考虑交互作用.

对两个因素的每一组合只做一次试验,也可以

对各因素的效应进行分析—双因素无重复(无交互作用)

试验的方差分析.

1、数学模型

表 2.1

因素 B	B_1	\boldsymbol{B}_2	•••	\boldsymbol{B}_{s}
A_1	X_{11}	X_{12}	•••	X_{1s}
A_2	X_{21}	X_{22}	•••	\boldsymbol{X}_{2s}
:	•	:		•
A_r	X_{r1}	X_{r2}	•••	X_{rs}

假设因素A与因素B无交互作用,

$$X_{ij} \sim N(\mu_{ij}, \sigma^2), i = 1, \dots, r; j = 1, \dots, s.$$

各 X_{ij} 独立, μ_{ij} , σ^2 均为未知参数.

$$X_{ij} = \mu_{ij} + \varepsilon_{ij}$$
,
 $i = 1, 2, \dots, r; j = 1, 2, \dots, s,$
 $\varepsilon_{ij} \sim N(0, \sigma^2)$, 各 ε_{ij} 独立,

引入记号

$$\mu_{i\bullet} = \frac{1}{s} \sum_{i=1}^{s} \mu_{ij}$$
, $i = 1, \dots, r$ 因素 A 水平 A_i 的均值 μ_i

$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} \qquad \mu_{i \bullet} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, \qquad i = 1, \dots, r$$

$$\mu_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \qquad j = 1, \dots, s \quad \text{B} \frac{1}{s} B \text{N} + B_{j} \text{ b} \text{ b} \text{ f} \text{ f} \mu_{ij}$$

$$\alpha_i = \mu_i - \mu$$
, $i = 1, \dots, r$ α_i 为水平 A_i 的效应,

$$\beta_j = \mu_{\bullet j} - \mu, j = 1, \dots, s$$
 β_j 为水平 β_j 的效应,

显然
$$\sum_{i=1}^{r} \alpha_i = \sum_{i=1}^{r} (\mu_{i.} - \mu) = \sum_{i=1}^{r} \frac{1}{s} \sum_{j=1}^{s} \mu_{ij} - r\mu = r\mu - r\mu = 0,$$

同理
$$\sum_{i=1}^{3} \beta_i = 0$$
.

由于不存在交互作用, $\mu_{ij} = \mu + \alpha_i + \beta_j$.

上式可改写为下式

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$
,
 $\varepsilon_{ij} \sim N(0, \sigma^2)$,各 ε_{ij} 独立,
 $i = 1, 2, \dots, r$; $j = 1, 2, \dots, s$,
 $\sum_{i=1}^r \alpha_i = 0$, $\sum_{j=1}^s \beta_j = 0$.

双因素无重复

检验假设
$$\begin{cases} H_{01}: \ \alpha_1 = \alpha_2 = \cdots = \alpha_r = \mathbf{0}, \\ H_{11}: \ \alpha_1, \alpha_2, \cdots, \alpha_r$$
不全为零.
$$\begin{cases} H_{02}: \ \beta_1 = \beta_2 = \cdots = \beta_s = \mathbf{0}, \\ H_{12}: \ \beta_1, \beta_2, \cdots, \beta_s$$
不全为零.

2、平方和的分解

$$\bar{X}_{i\bullet} = \frac{1}{s} \sum_{j=1}^{s} X_{ij}$$
 水平 A_i 下的样本平均值
$$\bar{X}_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} X_{ij}$$
 水平 B_j 下的样本平均值

$$\bar{X} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ij} = \frac{1}{r} \sum_{i=1}^{r} \bar{X}_{i\bullet} = \frac{1}{s} \sum_{j=1}^{s} \bar{X}_{\bullet j}$$
 数据的总平均

$$S_T = \sum_{i=1}^{r} \sum_{j=1}^{s} (X_{ij} - \bar{X})^2$$
 总偏差平方和(总变差)

$$S_T = \sum_{i=1}^{r} \sum_{j=1}^{s} (X_{ij} - \bar{X})^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} [(X_{ij} - \bar{X}_{i\bullet} - \bar{X}_{\bullet j} + \bar{X}) + (\bar{X}_{i\bullet} - \bar{X}) + (\bar{X}_{\bullet j} - \bar{X})]^{2}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} (X_{ij} - \overline{X}_{i \bullet} - \overline{X}_{\bullet j} + \overline{X})^{2} + \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{X}_{i \bullet} - \overline{X})^{2} + \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{X}_{\bullet j} - \overline{X})^{2}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} (X_{ij} - \bar{X}_{i\bullet} - \bar{X}_{\bullet j} + \bar{X})^{2} + \sum_{i=1}^{r} s(\bar{X}_{i\bullet} - \bar{X})^{2} + \sum_{j=1}^{s} r(\bar{X}_{\bullet j} - \bar{X})^{2}$$

记
$$S_A = s \sum_{i=1}^r (\bar{X}_{i\bullet} - \bar{X})^2, S_B = r \sum_{i=1}^s (\bar{X}_{\bullet j} - \bar{X})^2,$$

$$S_E = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - \bar{X}_{i\bullet} - \bar{X}_{\bullet j} + \bar{X})^2, \text{IP}S_T = S_E + S_A + S_B.$$

$$\sum_{i=1}^{s} (X_{ij} - \overline{X}_{i\bullet} - \overline{X}_{\bullet j} + \overline{X}) = s\overline{X}_{i\bullet} - s\overline{X}_{i\bullet} - s\overline{X} + s\overline{X} = 0,$$

$$\sum_{i=1}^{r} (X_{ij} - \overline{X}_{i\bullet} - \overline{X}_{\bullet j} + \overline{X}) = r\overline{X}_{\bullet j} - r\overline{X} - r\overline{X}_{\bullet j} + r\overline{X} = 0,$$

$$\sum_{i=1}^{r} (\bar{X}_{i\bullet} - \bar{X}) = r\bar{X} - r\bar{X} = 0, \sum_{j=1}^{s} (\bar{X}_{\bullet j} - \bar{X}) = s\bar{X} - s\bar{X} = 0,$$

$$\therefore 2\sum_{i=1}^{r}\sum_{j=1}^{s}(X_{ij}-\bar{X}_{i\bullet}-\bar{X}_{\bullet j}+\bar{X})(\bar{X}_{i\bullet}-\bar{X})=0,$$

$$2\sum_{i=1}^{r}\sum_{j=1}^{s}(X_{ij}-\bar{X}_{i\bullet}-\bar{X}_{\bullet j}+\bar{X})(\bar{X}_{\bullet j}-\bar{X})=0,$$

$$2\sum_{i=1}^{r}\sum_{j=1}^{s}(\bar{X}_{i\bullet}-\bar{X})(\bar{X}_{\bullet j}-\bar{X})=0,$$

3、统计特性---推导

$$: E(S_A) = E[s\sum_{i=1}^r (\bar{X}_{i\bullet} - \bar{X})^2 = sE(\sum_{i=1}^r \bar{X}_{i\bullet}^2 - 2r\bar{X}^2 + r\bar{X}^2)$$

$$= s \sum_{i=1}^{r} E \overline{X}_{i\bullet}^{2} - rs E \overline{X}^{2} = s \sum_{i=1}^{r} (D \overline{X}_{i\bullet} + E^{2} \overline{X}_{i\bullet}) - rs (D \overline{X} + E^{2} \overline{X})$$

$$E\overline{X}_{i\bullet} = E(\frac{1}{S}\sum_{i=1}^{S}X_{ij}) = \frac{1}{S}\sum_{i=1}^{S}EX_{ij} = \frac{1}{S}\sum_{i=1}^{S}\mu_{ij} = \mu_{i\bullet} = \mu + \alpha_{i},$$

$$D\overline{X}_{i\bullet} = D(\frac{1}{S}\sum_{i=1}^{S}X_{ij}) = \frac{1}{S^2}\sum_{i=1}^{S}DX_{ij} = \frac{S\sigma^2}{S^2} = \frac{\sigma^2}{S},$$

$$E\bar{X} = E(\frac{1}{rs}\sum_{i=1}^{s}\sum_{j=1}^{r}X_{ij}) = \frac{1}{rs}\sum_{i=1}^{s}\sum_{j=1}^{r}EX_{ij} = \frac{1}{rs}\sum_{i=1}^{s}\sum_{j=1}^{r}\mu_{ij} = \mu$$

$$D\overline{X} = D(\frac{1}{rs}\sum_{i=1}^{s}\sum_{i=1}^{r}X_{ij}) = \frac{1}{(rs)^{2}}\sum_{i=1}^{s}\sum_{i=1}^{r}DX_{ij} = \frac{\sigma^{2}}{rs},$$

$$\therefore E(S_A) = s\left[\sum_{i=1}^r \left(\frac{\sigma^2}{s} + (\mu + \alpha_i)^2\right)\right] - rs\left(\frac{\sigma^2}{rs} + \mu^2\right)$$

$$= r\sigma^{2} + rs\mu^{2} + 2\mu s \sum_{i=1}^{r} \alpha_{i} + s \sum_{i=1}^{r} \alpha_{i}^{2} - \sigma^{2} - rs\mu^{2}$$

$$= (r-1)\sigma^{2} + s\sum_{i=1}^{r}\alpha_{i}^{2} \iff E(\frac{S_{A}}{r-1}) = \sigma^{2} + \frac{s}{r-1}\sum_{i=1}^{r}\alpha_{i}^{2} > \sigma^{2}.$$

同理
$$E(S_B) = rE[\sum_{j=1}^s (\bar{X}_{\bullet j} - \bar{X})^2] = (s-1)\sigma^2 + r\sum_{j=1}^s \beta_j^2$$

$$\Leftrightarrow E(\frac{S_B}{s-1}) = \sigma^2 + \frac{r}{s-1} \sum_{j=1}^{s} \beta_j^2 > \sigma^2.$$

若
$$H_{01}$$
成立,即 α_i =0,则 $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$;

若
$$H_{02}$$
成立,即 $\beta_j=0$,则 $\frac{S_B}{\sigma^2}\sim \chi^2(s-1)$;

若
$$H_{01}$$
, H_{02} 均成立,则 $\frac{S_T}{\sigma^2} \sim \chi^2(rs-1)$;

从而
$$\frac{S_E}{\sigma^2} = \frac{S_T - S_A - S_B}{\sigma^2} \sim \chi^2 (rs - 1 - r + 1 - s + 1)$$

$$= \chi^{2}(rs-r-s+1) = \chi^{2}(r-1)(s-1).$$

	自由度	数学期望
S_T	rs – 1	
S_E	(r-1)(s-1)	$(r-1)(s-1)\sigma^2$
S_A	r-1	$(r-1)\sigma^2 + s\sum_{i=1}^r \alpha_i^2$
S_B	s-1	$(s-1)\sigma^2 + r\sum_{i=1}^r \beta_j^2$

且有

$$E\left(\frac{S_E}{(r-1)(s-1)}\right) = \sigma^2,$$

$$E\left(\frac{S_A}{r-1}\right) = \sigma^2 + \frac{s\sum_{i=1}^r \alpha_i^2}{r-1},$$

$$E\left(\frac{S_B}{s-1}\right) = \sigma^2 + \frac{r\sum_{j=1}^{s} \beta_j^2}{s-1},$$

4、假设检验问题的拒绝域

如果
$$H_{01}$$
成立,则 $\frac{S_A}{\sigma^2}$ $\sim \chi^2(r-1)$;

如果
$$H_{02}$$
成立,则 $\frac{S_B}{\sigma^2}$ ~ $\chi^2(s-1)$;

如果
$$H_{01}$$
、 H_{02} 成立,则 $\frac{S_E}{\sigma^2} \sim \chi^2(r-1)(s-1)$.

$$H_{01}$$
检验量: $F_A = \frac{S_A/(r-1)}{S_E/(r-1)(s-1)} = \frac{\overline{S}_A}{\overline{S}_E} \sim F(r-1,(r-1)(s-1))$;

$$H_{02}$$
检验量: $F_B = \frac{S_B/(s-1)}{S_E/(r-1)(s-1)} = \frac{\overline{S}_B}{\overline{S}_E} \sim F(s-1,(r-1)(s-1))$.

表2.2 双因素无重复试验的方差分析表

方差来源	平方和	自由度	均方	F 比
因素A	S_A	r-1	$\overline{S}_A = \frac{S_A}{r-1}$	$F_A = \frac{\overline{S}_A}{\overline{S}_E}$
因素B	S_{B}	s – 1	$\overline{S}_B = \frac{S_B}{s-1}$	$F_{B} = \frac{\overline{S}_{B}}{\overline{S}_{E}}$
误差	S_{E}	$(r-1)\times(s-1)$	$\overline{S}_E = \frac{S_E}{(r-1)(s-1)}$	
总和	S_T	rs – 1		

取显著性水平为 α ,得假设 H_{01} 的拒绝域为

$$F_A = \frac{\overline{S}_A}{\overline{S}_E} \ge F_{\alpha}(r-1,(r-1)(s-1)).$$

取显著性水平为 α ,得假设 H_{02} 的拒绝域为

$$F_B = \frac{\overline{S}_B}{\overline{S}_E} \ge F_\alpha(s-1,(r-1)(s-1)).$$

求解步骤: 设因素A有r个水平 A_1,A_2,\ldots,A_r ,因素B有s个水平 B_1,B_2,\ldots,B_s ,A与B无交互

作用,在显著水平 α 下,检验A与B对某项指标的影响是否显著?

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \bar{x})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}^{2} - 2\bar{x} \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij} + rs\bar{x}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}^{2} - rs\bar{x}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}^{2} - \frac{(\sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij})^{2}}{rs}$$

$$S_A = \sum_{i=1}^r \sum_{j=1}^s (\overline{x}_{i,} - \overline{x})^2 = \sum_{i=1}^r s(\overline{x}_{i,} - \overline{x})^2 = \sum_{i=1}^r s(\overline{x}_{i,}^2 - 2\overline{x} \times \overline{x}_{i,} + \overline{x}^2)$$

$$=\sum_{i=1}^{r} s \overline{x}_{i.}^{2} - 2 \overline{x} s \sum_{i=1}^{r} \frac{\sum_{j=1}^{s} x_{ij}}{s} + r s \overline{x}^{2} = \frac{1}{s} \sum_{i=1}^{r} (\sum_{j=1}^{s} x_{ij})^{2} - r s \overline{x}^{2} = \frac{1}{s} \sum_{i=1}^{r} (\sum_{j=1}^{s} x_{ij})^{2} - \frac{(\sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij})^{2}}{r s}$$

$$S_{B} = \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x}_{.j} - \overline{x})^{2} = \sum_{j=1}^{s} r(\overline{x}_{.j} - \overline{x})^{2} = \sum_{j=1}^{s} r(\overline{x}_{.j}^{2} - 2\overline{x} \times \overline{x}_{.j} + \overline{x}^{2})$$

$$= \sum_{j=1}^{s} r \overline{x}_{,j}^{2} - 2 \overline{x} r \sum_{j=1}^{s} \frac{\sum_{i=1}^{r} x_{ij}}{r} + r s \overline{x}^{2} = \frac{1}{r} \sum_{j=1}^{s} (\sum_{i=1}^{r} x_{ij})^{2} - r s \overline{x}^{2} = \frac{1}{r} \sum_{j=1}^{s} (\sum_{i=1}^{r} x_{ij})^{2} - \frac{(\sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij})^{2}}{r s}$$

$$S_E = S_T - S_A - S_B.$$

表2.1中的平方和可按下式计算:

+++								
A B	B_1	B_2		B_s	$T_i = \sum_{j=1}^{s} x_{ij}$	$T_{i}^{2} = \left(\sum_{j=1}^{4} x_{ij}\right)^{2}$	$\sum_{j=1}^{s} x_{ij}^{2}$	
A_{1}	X ₁₁	X_{12}		X_{1r}	$T_1 = \sum_{j=1}^{s} x_{1j}$	$T_1^2 = \left(\sum_{j=1}^4 x_{1j}\right)^2$	$\sum_{j=1}^{s} x_{1j}^2$	
A_2	X_{21}	X_{22}		X_{21}	$T_2 = \sum_{j=1}^{s} x_{2j}$	$T_2^2 = \left(\sum_{j=1}^4 x_{2j}\right)^2$	$\sum_{j=1}^{s} x_{2j}^2$	
÷	:	:	÷	÷	÷:	:	÷	+
A_r	X_{r1}	X_{r2}		X_{rs}	$T_{r.} = \sum_{j=1}^{s} x_{ij}$	$T_{r.}^2 = (\sum_{j=1}^4 x_{ij})^2$	$\sum_{j=1}^{s} x_{rj}^2$	
$T_{.j} = \sum_{i=1}^{r} X_{ij}$	$T_{.1} = \sum_{i=1}^{r} X_{i1}$	$T_{.2} = \sum_{i=1}^{r} X_{i2}$		$T_{.z} = \sum_{i=1}^{r} X_{iz}$	$T = \sum_{i=1}^{r} T_{r.} = \sum_{j=1}^{s} T_{j} = \sum_{i=1}^{r} \sum_{j=1}^{s} X_{jj}$	$\sum_{i=1}^{r} T_{i.}^{2} = \sum_{i=1}^{r} (\sum_{j=1}^{s} x_{ij})^{2}$	$\sum_{i=1}^r \sum_{j=1}^s x_{ij}^2$	
$T_{.j}^2 = (\sum_{i=1}^r x_{ij})^2$	$T_{\cdot \cdot}^2 = (\sum_{i=1}^r x_{i1})^2$	$T_{2}^{2} = \left(\sum_{i=1}^{r} x_{i2}\right)^{2}$		$T^2 = (\sum_{i=1}^r x_i)^2$	$\sum_{j=1}^{s} T_{j}^{2} = \sum_{j=1}^{s} \left(\sum_{i=1}^{r} x_{ij} \right)^{2}$			

故方差分析表如下:

())								,
	方差来源	离差平方和	自由度	均方离差平方和	F比值	临界值	显著性	
	因素 A	$S_A = \sum_{i=1}^r \sum_{j=1}^s (\overline{x}_{i.} - \overline{x})^2$	r-1	$\overline{S}_A = \frac{S_A}{r-1}$	$\frac{\overline{S}_A}{\overline{S}_E}$	$F_{\alpha}(r-1,(r-1)(s-1))$		
	因素 B	$S_B = \sum_{i=1}^r \sum_{j=1}^s (\overline{x}_{,j} - \overline{x})^2$	s-1	$\overline{S}_B = \frac{S_B}{s-1}$	$\frac{\overline{S}_B}{\overline{S}_E}$	$F_{\alpha}(s-1,(r-1)(s-1))$		+
	误差 <i>E</i>	$S_E = S_T - S_A - S_B$	(r-1)(s-1)	$\overline{S}_E = S_E / (r-1)(s-1)$				
	总和	$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} (x_{ij} - \overline{x})^{2}$	rs-1					
				+	•		•	K,

给定显著水平 α 时,查表得 $F_{\alpha}(r-1,(r-1)(s-1))$, $F_{\alpha}(s-1,(r-1)(s-1))$. 与F比值比较,做出判断.

例1 下面给出了在某 5 个不同地点、不同时间空气中的颗粒状物(以 mg/m³ 计)的含量的数据:

		因素 B (地点)					
		1	2	3	4	5	T_{iullet}
因	1975年10月	76	67	81	56	51	331
	1976年1月	82	69	96	59	70	376
A (时	1976年 5 月	68	59	67	54	42	290
间)	1996年8月	63	56	64	58	37	278
$T_{ullet j}$		289	251	308	227	200	1275

设本题符合模型中的条件,试在显著性水平为 0.05下检验:在不同时间下颗粒状物含量的均值有 无显著差异,在不同地点下颗粒状物含量的均值有 无显著差异. 解 按题意检验假设, $T_{i\bullet}$, $T_{\bullet j}$ 的值已算出载于上表,

现在r = 4, s = 5. 由平方和表达式得到,

$$S_T = 76^2 + 67^2 + \dots + 37^2 - \frac{1275^2}{20} = 3571.75$$

$$S_A = \frac{1}{5}(331^2 + 376^2 + 290^2 + 278^2) - \frac{1275^2}{20} = 1182.95$$

$$S_B = \frac{1}{4}(289^2 + 251^2 + \dots + 200^2) - \frac{1275^2}{20} = 1947.50$$

$$S_E = 3571.75 - (1182.95 + 1947.50) = 441.30$$

表2.3 例1的方差分析表

方差来源	平方和	自由度	均方	F 比
因素A	$S_A = 1182.95$	3	394.32	$F_A = 10.72$
因素 B	$S_B = 1947.50$	4	486.88	$F_B = 13.24$
误 差	$S_E = 441.30$	12	36.78	
总 和	$S_T = 3571.75$	19		

由于 $F_{0.05}(3,12) = 3.49 < 10.72$,

 $F_{0.05}(4,12) = 3.26 < 13.24$,故拒绝域 H_{01} 及 H_{02} ,即认为不同时间下颗粒物含量的均值有显著差异,也认为不同地点下颗粒状物含量的均值有显著差异.

三、双因素有重复试验的方差分析— 有交互

因素 $A: A_1, A_2, \dots, A_r$. 因素 $B: B_1, B_2, \dots, B_s$.

表 3.1

因素 B	B_1	\boldsymbol{B}_2	• • •	\boldsymbol{B}_{s}
A_1	$X_{111}, X_{112}, \dots, X_{11t}$	$X_{121}, X_{122}, \dots, X_{12t}$	•••	$X_{1s1}, X_{1s2}, \dots, X_{1st}$
$oldsymbol{A_2}$	$X_{211}, X_{212}, \dots, X_{21t}$	$X_{221}, X_{222}, \dots, X_{22t}$	• • •	$X_{2s1}, X_{2s2}, \dots, X_{2st}$
• •	•	•		
A_r	$X_{r11}, X_{r12}, \dots, X_{r1t}$	$X_{r21}, X_{r22}, \dots, X_{r2t}$	•••	$X_{rs1}, X_{rs2}, \dots, X_{rst}$

1、数学模型

假设因素A与因素B有交互作用,即 $\mu_{ij} \neq \mu + \alpha_i + \beta_j$,假设 $X_{ijk} \sim N(\mu_{ij}, \sigma^2)$, $i = 1, \dots, r$, $j = 1, \dots, s$, $k = 1, \dots, t$. 各 X_{ijk} 独立, μ_{ij}, σ^2 均为未知参数. $X_{ijk} = \mu_{ij} + \varepsilon_{ijk}$

$$X_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$
, $\varepsilon_{ijk} \sim N(0, \sigma^2)$, 各 ε_{ijk} 独立,

$$i = 1, 2, \dots, r;$$
 $j = 1, 2, \dots, s;$ $k = 1, 2, \dots, t.$

引入记号

$$\mu = \frac{1}{r_S} \sum_{i=1}^r \sum_{j=1}^s \mu_{ij} = \frac{1}{r} \sum_{i=1}^r \mu_{i.} = \frac{1}{s} \sum_{j=1}^s \mu_{.j} \qquad \mu 为总平均,$$

$$\mu_{i\bullet} = \frac{1}{S} \sum_{j=1}^{S} \mu_{ij}, \qquad i = 1, \dots, r$$

$$\mu_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \quad j = 1, \dots, s$$

$$\alpha_i = \mu_i - \mu$$
, $i = 1, \dots, r$ α_i 为水平 A_i 的效应,

$$\beta_j = \mu_{\bullet j} - \mu, j = 1, \dots, s$$
 β_j 为水平 β_j 的效应,

显然
$$\sum_{i=1}^{r} \alpha_i = 0$$
, $\sum_{j=1}^{s} \beta_j = 0$.

$$\gamma_{ij} = \mu_{ij} - (\mu + \alpha_i + \beta_j) = \mu_{ij} - \mu - \alpha_i - \beta_j \Rightarrow \begin{cases} = 0, \text{无交互} \\ \neq 0, \text{有交互} \end{cases}$$

则 γ_{ij} 称为水平 A_i 和水平 B_j 的交互效应,

$$\sum_{i=1}^{r} \gamma_{ij} = \sum_{i=1}^{r} [\mu_{ij} - \mu - \alpha_{i} - \beta_{j}] \qquad \beta_{j} = \mu_{\bullet j} - \mu,$$

$$= r\mu_{.j} - r\mu - \sum_{i=1}^{r} \alpha_{i} - r\mu_{.j} + r\mu = 0,$$

同理
$$\sum_{j=1}^{s} \gamma_{ij} = 0, i = 1, \dots, r \qquad \alpha_i = \mu_{i\bullet} - \mu,$$

$$\sum_{j=1}^{s} \gamma_{ij} = \sum_{j=1}^{s} (\mu_{ij} - \mu - \alpha_i - \beta_j) = s\mu_{i} - s\mu - s\mu_{i} + s\mu - \sum_{j=1}^{s} \beta_j = 0$$

上式可改写如下:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$
,
 $\varepsilon_{ijk} \sim N(0, \sigma^2)$, 各 ε_{ijk} 独立,
 $i = 1, 2, \dots, r; j = 1, 2, \dots, s; k = 1, 2, \dots, t,$

$$\sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \sum_{i=1}^r \gamma_{ij} = 0, \sum_{j=1}^s \gamma_{ij} = 0,$$

其中 $\mu,\alpha_i,\beta_j,\gamma_{ij}$ 及 σ^2 均为未知参数.

为双因素需重复试验方差分析的数学模型

以上模型需检验以下三个假设:

$$egin{aligned} &H_{01}: lpha_1 = lpha_2 = \cdots = lpha_r = 0, \ &H_{11}: lpha_1, lpha_2, \cdots, lpha_r$$
不全为零. \\ &H_{02}: eta_1 = eta_2 = \cdots = eta_s = 0, \ &H_{12}: eta_1, eta_2, \cdots, eta_s不全为零. \\ &H_{03}: \gamma_{11} = \gamma_{12} = \cdots = \gamma_{rs} = 0, \ &H_{13}: \gamma_{11}, \gamma_{12}, \cdots, \gamma_{rs}不全为零.

与单因素情况类似, 检验方法建立在平方和的分解上.

2、平方和的分解

引入记号

$$\overline{X}_{ij\bullet} = \frac{1}{t} \sum_{k=1}^{t} X_{ijk}, \qquad i = 1, 2, \dots r; \quad j = 1, 2, \dots, s,$$

$$\overline{X}_{i\bullet\bullet} = \frac{1}{st} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}, \qquad i = 1, 2, \dots r;$$

$$\overline{X}_{\bullet j\bullet} = \frac{1}{rt} \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk} \qquad j = 1, 2, \dots, s,$$

$$\overline{X} = \frac{1}{rst} \sum_{i=1}^{r} \sum_{k=1}^{s} \sum_{k=1}^{t} X_{ijk} = \frac{1}{r} \sum_{i=1}^{r} \overline{X}_{i\bullet\bullet} = \frac{1}{s} \sum_{i=1}^{s} \overline{X}_{\bullet j\bullet} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{i=1}^{s} \overline{X}_{ij\bullet}$$

引入总偏差平方和(称为总变差)

$$S_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - \overline{X})^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} [(X_{ijk} - \overline{X}_{ij\bullet}) + (\overline{X}_{i\bullet\bullet} - \overline{X}) +$$

$$(\overline{X}_{\bullet j \bullet} - \overline{X}) + (\overline{X}_{ij \bullet} - \overline{X}_{i \bullet \bullet} - \overline{X}_{\bullet j \bullet} + \overline{X})]^{2}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (X_{ijk} - \overline{X}_{ij\bullet})^{2} + st \sum_{i=1}^{r} (\overline{X}_{i\bullet\bullet} - \overline{X})^{2} +$$

$$+rt\sum_{j=1}^{s}(\overline{X}_{\bullet j\bullet}-\overline{X})^{2}+t\sum_{i=1}^{r}\sum_{j=1}^{s}(\overline{X}_{ij\bullet}-\overline{X}_{i\bullet\bullet}-\overline{X}_{\bullet j\bullet}+\overline{X})^{2}$$

可得平方和的分解式

$$S_T = S_E + S_A + S_B + S_{A \times B}$$

误差
平方和 因素 A 的 因素 B 的 因素 A,B 的交
效应平方和 效应平方和 互效应平方和

其中
$$S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - \overline{X}_{ij\bullet})^2$$
, $S_A = st \sum_{i=1}^r (\overline{X}_{i\bullet\bullet} - \overline{X})^2$, $S_B = rt \sum_{j=1}^s (\overline{X}_{\bullet j\bullet} - \overline{X})^2$, $S_{A\times B} = t \sum_{j=1}^r \sum_{k=1}^s (\overline{X}_{ij\bullet} - \overline{X}_{i\bullet\bullet} - \overline{X}_{\bullet j\bullet} + \overline{X})^2$.

i=1 j=1

$$\bar{X} = \frac{1}{rst} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} = \frac{1}{r} \sum_{i=1}^{r} \bar{X}_{i \bullet \bullet} = \frac{1}{s} \sum_{j=1}^{s} \bar{X}_{\bullet j \bullet} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \bar{X}_{ij \bullet}$$

$$S_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - \overline{x})^2 = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t x_{ijk}^2 - 2\overline{x} \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t X_{ijk} + rst\overline{x}^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk}^{2} - rst\overline{x}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk}^{2} - \frac{(\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk})^{2}}{rst}$$

$$S_A = st \sum_{i=1}^r (\overline{x}_{i..} - \overline{x})^2 = st \sum_{i=1}^r (\overline{x}_{i..}^2 - 2\overline{x} \times \overline{x}_{i..} + \overline{x}^2) = st \sum_{i=1}^r \overline{x}_{i..}^2 - 2\overline{x}st \sum_{i=1}^r \overline{x}_{i..} + rst \overline{x}^2$$

$$= \frac{1}{st} \sum_{i=1}^{r} \left(\sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk} \right)^{2} - rst\overline{x}^{2} = \frac{1}{st} \sum_{i=1}^{r} \left(\sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk} \right)^{2} - \frac{\left(\sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{k=1}^{t} x_{ijk} \right)^{2}}{rst}$$

$$\overline{X} = \frac{1}{rst} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} = \frac{1}{r} \sum_{i=1}^{r} \overline{X}_{i \bullet \bullet} = \frac{1}{s} \sum_{j=1}^{s} \overline{X}_{\bullet j \bullet} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \overline{X}_{ij \bullet}$$

$$S_B = rt\sum_{i=1}^s (\overline{x}_{.j.} - \overline{x})^2 = rt\sum_{i=1}^s (\overline{x}_{.j.}^2 - 2\overline{x} \times \overline{x}_{.j.} + \overline{x}^2) = rt\sum_{i=1}^s \overline{x}_{.j.}^2 - 2\overline{x}rt\sum_{i=1}^s \overline{x}_{.j.} + rst\overline{x}^2$$

$$= \frac{1}{rt} \sum_{j=1}^{s} \left(\sum_{i=1}^{r} \sum_{k=1}^{t} x_{ijk} \right)^{2} - rst\overline{x}^{2} = \frac{1}{rt} \sum_{j=1}^{s} \left(\sum_{i=1}^{r} \sum_{k=1}^{t} x_{ijk} \right)^{2} - \frac{\left(\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{r} x_{ijk} \right)^{2}}{rst}$$

$$S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - \overline{X}_{ij.})^2 = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t X_{ijk}^2 - 2\sum_{i=1}^r \sum_{j=1}^s \overline{X}_{ij.} \sum_{k=1}^t X_{ijk} + t \sum_{i=1}^r \sum_{j=1}^s \overline{X}_{ij.}^2$$

$$=\sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{t}x_{ijk}^{2}-t\sum_{i=1}^{r}\sum_{j=1}^{s}\overline{x}_{ij.}^{2}=\sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{t}x_{ijk}^{2}-\frac{\sum_{i=1}^{r}\sum_{j=1}^{s}(\sum_{k=1}^{t}x_{ijk})^{2}}{t}$$

$$S_{A\times B} = S_T - S_A - S_B - S_E$$

3.统计特性

	自由度	数学期望
S_T	<i>rst</i> – 1	
S_E	rs(t-1)	$rs(t-1)\sigma^2$
S_A	r – 1	$(r-1)\sigma^2 + st \sum_{i=1}^r \alpha_i^2$
S_B	s-1	$(s-1)\sigma^2 + rt\sum_{i=1}^r \beta_j^2$
$S_{A \times B}$	(r-1)(s-1)	$(r-1)(s-1)\sigma^2 + t\sum_{i=1}^r \sum_{j=1}^s \gamma_{ij}^2$

且有

$$E\left(\frac{S_E}{rs(t-1)}\right) = \sigma^2, \qquad E\left(\frac{S_A}{r-1}\right) = \sigma^2 + \frac{st\sum_{i=1}^r \alpha_i^2}{r-1},$$

$$E\left(\frac{S_B}{s-1}\right) = \sigma^2 + \frac{rt\sum_{j=1}^{3}\beta_j^2}{s-1},$$

$$E\left(\frac{S_{A\times B}}{(r-1)(s-1)}\right) = \sigma^2 + \frac{t\sum_{i=1}^{r}\sum_{j=1}^{3}\gamma_{ij}^2}{(r-1)(s-1)},$$

4.假设检验问题的拒绝域

当 H_{01} : $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ 为真时,

$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \sim F(r-1, rs(t-1)).$$

取显著性水平为 α ,得假设 H_{01} 的拒绝域为

$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \ge F_\alpha(r-1, rs(t-1)).$$

类似地, 取显著性水平为 α ,

得假设 H_{02} 的拒绝域为

$$F_B = \frac{S_B/(s-1)}{S_E/(rs(t-1))} \ge F_\alpha(s-1, rs(t-1)).$$

取显著性水平为 α ,得假设 H_{03} 的拒绝域为

$$F_{A\times B} = \frac{S_{A\times B}/((r-1)(s-1))}{S_E/(rs(t-1))}$$

$$\geq F_{\alpha}((r-1)(s-1), rs(t-1)).$$

上述结果可汇总为方差分析表.

双因素试验的方差分析表

方差来源	平方和	自由度	均方	F 比
因素A	S_A	r-1	$\overline{S}_A = \frac{S_A}{r-1}$	$F_{A} = \frac{\overline{S}_{A}}{\overline{S}_{E}}$
因素 B	S_{B}	s – 1	$\overline{S}_B = \frac{S_B}{s-1}$	$F_{B} = \frac{\overline{S}_{B}}{\overline{S}_{E}}$
交互作用	$S_{A \times B}$	(r-1)(s-1)	$\overline{S}_{A \times B} = \frac{S_{A \times B}}{(r-1)(s-1)}$	$F_{A \times B} = \frac{\overline{S}_{A \times B}}{\overline{S}_{E}}$
误差	S_{E}	rs(t-1)	$\overline{S}_E = \frac{S_E}{rs(t-1)}$	
总和	S_T	<i>rst</i> – 1		

记
$$T_{\bullet,\bullet} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk},$$
 $T_{ij\bullet} = \sum_{k=1}^{t} X_{ijk}, \quad i = 1, 2, \dots, r; \quad j = 1, 2, \dots, s,$
 $T_{i\bullet\bullet} = \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}, \quad i = 1, 2, \dots, r;$
 $T_{\bullet,j\bullet} = \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk}, \quad j = 1, 2, \dots, s,$

则各平方和 S_T 、 S_E 、 S_A 、 S_B 和 $S_{A\times B}$ 的公式可改写为:

平方和 S_T 、 S_E 、 S_A 、 S_B 和 $S_{A\times B}$ 的公式:

$$\begin{split} S_T &= \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t X_{ijk}^2 - \frac{(T_{\bullet \bullet \bullet})^2}{rst}, \\ S_A &= \frac{1}{st} \sum_{i=1}^r (T_{i \bullet \bullet})^2 - \frac{(T_{\bullet \bullet \bullet})^2}{rst}, \\ S_B &= \frac{1}{rt} \sum_{j=1}^s (T_{\bullet j \bullet})^2 - \frac{(T_{\bullet \bullet \bullet})^2}{rst}, \\ S_E &= \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t X_{ijk}^2 - \frac{1}{t} \sum_{i=1}^r \sum_{j=1}^s (T_{ij \bullet})^2 \\ S_{A \times B} &= S_T - S_A - S_B - S_E. \end{split}$$

例2 一火箭用四种燃料, 三种推进器作射程试验. 每种燃料与每种推进器的组合各发射火箭两次, 射程如下.

表3.2 火箭的射程

推进器(B)		B_1	B_2	B_3
	A_1	58.2 52.6	56.2 41.2	65.3 60.8
	A_2	49.1 42.8	54.1 50.5	51.6 48.4
燃料(A)	A_3	60.1 58.3	70.9 73.2	39.2 40.7
	A_4	75.8 71.5	58.2 51.0	48.7 41.4

假设符合双因素方差分析模型所需的条件,在水平0.05下,检验不同燃料(因素A)、不同推进器(因素B)下的射程是否有显著差异?交互作用是否显著? T...、T...、T...的计算见下表3.3,

表中括弧内的数字是 T_{ij} , 现在r=4, s=3, t=2.

表3.3

B	B_1	B_2	B_3	$T_{i ullet ullet}$
A_1	58.2 52.6 (110.8)	56.2 41.2 (97.4)	65.3 60.8 (126.1)	334.3
A_2	49.1 42.8 (91.9)	54.1 50.5 (104.6)	51.6 48.4 (100)	296.5
A_3	60.1 58.3 (118.4)	70.9 73.2 (144.1)	39.2 40.7 (79.9)	342.4
A_4	75.8 71.5	58.2 51.0 (109.2)	48.7 41.4 (90.1)	346.6
$T_{ullet jullet}$	468.4	455.3	396.1	1319.8

根据平方公式有

$$S_T = (58.2^2 + 52.6^2 + \dots + 41.4^2) - \frac{1319.8^2}{24}$$

= 2638.29833,

$$S_A = \frac{1}{6}(334.3^2 + 296.5^2 + 342.4^2 + 346.6^2) - \frac{1319.8^2}{24}$$

= 261.67500,

$$S_B = \frac{1}{8}(468.4^2 + 455.3^2 + 396.1^2) - \frac{1319.8^2}{24}$$

= 370.98083,

$$\begin{split} S_{A\times B} &= \frac{1}{2}(110.8^2 + 91.9^2 + \dots + 90.1^2) - \frac{1319.8^2}{24} - S_A - S_B \\ &= 1768.69250, \\ S_E &= S_T - S_A - S_B - S_{A\times B} = 236.95000. \\ &\implies S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t X_{ijk}^2 - \frac{1}{t} \sum_{i=1}^r \sum_{j=1}^s (T_{ij\bullet})^2 \end{split}$$

$$S_{A \times B} = S_T - S_A - S_B - S_E$$

方差分析表见下页.

表3.4 例2的方差分析表

方差来源	平方和	自由度	均方	F比
因素A (燃料)	261.67500	3	87.2250	F_A =4.42
因素 B (推进器)	370.98083	2	185.490	$F_B = 9.39$
交互作用 (A×B)	1768.69250	6	294.7821	$F_{A\times B}$ =14.9
误差	236.95000	12	19.7458	
总和	2638.29833	23		

需检验假设 H_{01} 、 H_{02} 、 H_{03} ,

因为 $F_{0.05}(3,12) = 3.49 < F_A$,

$$F_{0.05}(2,12) = 3.89 < F_B,$$

所以在显著水平0.05下,拒绝假设 H_{01} 、 H_{02} ,

即燃料和推进器对射程的影响是显著的.

又因为 $F_{0.05}(6,12) = 3.00 < F_{A\times B}$,故拒绝假设 H_{03} ,

故交互作用效应是高度显著的.

练习:

设由三种同型号的造纸机 A_1 , A_2 , A_3 使用四种不同涂料 B_1 , B_2 , B_3 , B_4 制造同版纸, 对每种不同搭配进行两次重复测量光洁度, 数据如下:

机器涂料。	$B_{\!\scriptscriptstyle 1}$,	B_2 .	B_3 $^{\circ}$	B_4 \circ
$A_{\!\scriptscriptstyle 1}$ $^{\scriptscriptstyle \circ}$	42.5, 42.6	42.0, 42.2	43.9, 43.6	42.2, 42.5.
A_2 .	42.1, 42.3	41.7, 41.5	43.1, 43.0	42.5, 41.6,
A_3 \circ	43.6, 43.8	43.6, 43.2	44.1, 44.2	42.9, 43.0.

在显著水平 $\alpha = 0.05$ 下,检验不同机器、不同涂料及他们的交互作用的对光洁度的影响是否显著?。