Trabalho Prático nº 1

MOSFETS

(3 aulas)

Antes de realizar o trabalho, já deve ter estudado:

- 1. Características gerais dos MOSFETs:
- 2. O significado de k_n , W, L, V_t e λ
- 3. As equações que relacionam $I_D \text{com } V_{GS} \text{e } V_{DS}$.
- 4. O aspeto das curvas $I_D \times V_{DS}$, distinguindo as regiões de corte, de tríodo e de saturação.
- 5. Montagem da fonte de corrente com MOSFETs

Depois de realizar o trabalho, deverá:

- 1. Ter aprendido a calcular os parâmetros V_t , $k_n(W/L)$ e λ , e de um MOSFET.
- 2. Ter aprendido a calcular o desempenho de uma fonte de corrente.

Elementos de estudo:

- J. G. Rocha, MOSFETs e Amplificadores Operacionais: Teoria e Aplicações, 2ed. Netmove, Comunicação Global, Lda. Editora, 2010.
- 2. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th edition, Oxford University Press, 2007.

Introdução

O nome dos transístores de efeito de campo (FETs) deriva do princípio físico da sua operação. Especificamente, o mecanismo de controlo da corrente é baseado num campo elétrico estabelecido pela tensão aplicada ao terminal de controlo. A corrente é conduzida por um único tipo de portadores, eletrões ou lacunas, dependendo do tipo de FET (de canal n ou p).

Apesar do conceito básico do FET ser conhecido desde a década de 1930, o dispositivo apenas se tornou numa realidade prática na década de 1960. Desde o final da década de 1970, um tipo particular de FET, o *Metal Oxide Semiconductor Field Effect Transistor* (MOSFET) tornou-se muito popular. Quando comparados com os transístores bipolares, os MOSFETs podem ter dimensões um pouco menores, ocupando uma área menor quando dispostos num circuito integrado, e o seu processo de fabrico também é um pouco mais simples e barato. Além disso, os circuitos lógicos digitais e as memórias podem ser implementados por circuitos que usam apenas MOSFETs, ou seja, não são necessários resistências ou díodos, etc. Esta é uma das principais razões pela qual os circuitos com muito altas taxas de integração (VLSI) são implementados em tecnologia MOS. Como exemplos de circuitos VLSI podem ser citados os microprocessadores e as memórias. A tecnologia MOS também é muito usada na implementação de circuitos integrados analógicos e em circuitos que combinam eletrónica analógica e digital no mesmo *chip*.

1^a aula

O integrado 4007 contém 3 MOSFETS de canal n e 3 MOSFETS de canal p. Para a realização deste trabalho é necessário 1 integrado 4007.

Notas:

- Para o correto funcionamento dos MOSFETS de canal n, o pino 7 do integrado tem de estar ligado à tensão mais negativa do circuito.
- Para o correto funcionamento dos MOSFETS de canal p, o pino 14 do integrado tem de estar ligado à tensão mais positiva do circuito.

Determinação de V_t :

 V_t pode ser determinado com o auxílio do circuito da figura 1.

- Comece por colocar V_{GS} a zero. Aumente depois o valor de V_{GS} até obter a indicação de que o MOSFET está a conduzir. Note que uma corrente da ordem dos microamperes já indica condução (assuma condução para corrente de 1μ A).
- Meça o valor de V_{GS} com o voltímetro.

2^a aula

Determinação das características $I_D \times V_{DS}$:

- Ao MOSFET de canal n, aplique uma V_{GS} constante, de 1,2 V. Varie V_{DS} e meça os valores de I_D (figura 2).

- Aumente V_{GS} para 1,3 e 1,5 V e repita o

procedimento anterior. Com o resultado, desenhe o gráfico das curvas características $I_D \times V_{DS}$.

- Identifique no gráfico as regiões de tríodo e de saturação.
- Explique como é que a partir do gráfico pode obter os valores de $k_n(W/L)$ e de λ .
- Repita os procedimentos para o MOSFET de canal p, fazendo as alterações ao circuito que achar necessárias. Utilizando um V_{GS} de 1,5, 1,6 e 1,7 V.

3^a aula

Considere o circuito da figura 3(a):

- Dimensione o valor da resistência para que a corrente de saída seja de 100 μA .
- Monte o circuito e faça o ajuste do valor da corrente para $100~\mu A$, com a ajuda de um potenciómetro colocado em série com a resistência. Se for necessário, substitua-a por outra de valor um pouco mais baixo.

- Coloque um potenciómetro de 100 $k\Omega$ em série com o amperímetro (figura 3 (b)). Varie a sua resistência entre 0 e 100 $k\Omega$ e registe a tensão aos seus terminais e a corrente no amperímetro. Determine a resistência de saída da fonte de corrente.