Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. *Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI.* 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

- 1. Rispondere alle seguenti domande fornendo una giustificazione di una riga:
 - a. E' vero che il grado di $F[\alpha]$ su F, se finito, è pari a deg f_{α} ?
 - b. E' vero che esistono campi con elementi algebrici sul sottocampo fondamentale il cui polinomio minimo è non separabile?
 - c. Determinare il grado del campo $\mathbf{Q}(\cos(\pi/22))$.
 - d. Fornire un esempio di estensione finita E/F tale che $1 < \# \operatorname{Aut}(E/F) < [E:F]$.
- 2. Calcolare il polinomio minimo di $1/\alpha$ e di $1/(\alpha-1)$ nel campo $\mathbf{Q}[\alpha], \alpha^4 = \alpha+1$.
- 3. Dopo aver definito la nozione di polinomio ciclotomico $\Phi_n(X)$, si dimostrino le seguenti proprietà:
 - a. Se *p* è primo, $\Phi_p(X) = (X^p 1)/(X 1)$
 - b. Se $\alpha \ge 1$, $\Phi_{p^{\alpha}}(X) = \Phi_{p}(X^{p^{\alpha-1}})$
 - c. Se *n* è dispari, $\Phi_{2n}(X) = \Phi_n(-X)$
- 4. Dopo aver descritto tutti gli elementi di $\operatorname{Aut}(\mathbf{Q}(5^{1/3},\sqrt{-3})/\mathbf{Q})$, si determini l'ordine di ciascuno di essi.
- 5. Determinare il campo di spezzamento su \mathbf{Q} di $f(X) = (X^4 2)(X^2 + 1)((X 3)^2 + 6) \in \mathbf{Q}[X]$ e se ne determini il grado su \mathbf{Q} .
- 6. Dopo aver definito la nozione di campo perfetto, si forniscano esempi di campi perfetti e di campi non perfetti.
- 7. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di $\cos \pi/10$ su **Q**. (suggerimento: calcolare $\cos 2\pi/5$ e poi usare le formule di duplicazione degli angoli altri metodi potrebbero essere troppo lunghi)
- 8. Dopo aver verificato che $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\sqrt{3}, \sqrt{6})$, descrivere gli $\mathbf{Q}(\sqrt{2})$ -omomorfismi del campo $\mathbf{Q}(\sqrt{3}, \sqrt{6})$ in \mathbf{C} .