Computational nanoscience: LAMMPS tutorial

What is LAMMPS?

- · Classical molecular dynamics code
- · Support for practically all most common potential models
 - Lennard-Jones, Morse, Tersoff, EAM, MEAM, ReaxFF, granular material, ...
- · Support for many ensembles
- Variable time step → usable in irradiation studies
- · Rich in features
- · Parallellized by MPI
- · Many potential models ported to GPGPU

How to get the code

- LAMMPS home page http://lammps.sandia.gov
 - Latest sources from the svn respository
 svn co svn://svn.lammps.org/lammps-ro/trunk mylammps
 - Or download the package from http://www.acclab.helsinki.fi/~aakurone/download/mylammps.zip and unpack it unzip mylammps.zip

Computational nanoscience 2015: LAMMPS tutorial

1

Computational nanoscience: LAMMPS tutorial

Commands for compiling LAMMPS

```
cd mylammps/src
make clean-all
make yes-manybody
make yes-MISC
make serial
```

Note1

Note2

Notes

- Note1: Thes are the LAMMPS packages needed in our simulations
- Note2: This command does the compilation. It may take a while and you may see compiler warnings. If all went well you should see something like below on screen

```
size ../lmp_serial
text data bss dec hex filename
3563874 7624 712 3572210 3681f2 ../lmp_serial
```

Computational nanoscience: LAMMPS tutorial

- The executable file produced is mylammps/src/lmp serial
- You may test it by moving to folder case1 in this package and giving command

/my/path/to/lammps/mylammps/src/lmp serial -in in.case1

Computational nanoscience 2015: LAMMPS tutorial

3

Computational nanoscience: LAMMPS tutorial

- What you need for this tutorial:
 - LAMMPS user manual in browser http://lammps.sandia.gov/doc/Manual.html
 - LAMMPS input files from package lammps_starter_kit.tgz on course Moodle page.
 - Open the package

```
tar xzvf lammps_starter_kit.tgz
```

Read the README files

Computational nanoscience: LAMMPS tutorial

LAMMPS input file

· Define your simulation system

(A)

- · Unit system
- · Particle properties
- Interaction model
- Boundary conditions, geometry (create lattice, read coordinates from file)
- Define what is printed out

• dump: calculate and print per atom properties (potential and kinetic energies, atomic stresses,...)

- thermo: print collective quantities (temperature, pressure, volume,...)
- Script that tells what simulation runs are performed

- Which ensemble, desired temperature, desired pressureHow many timesteps
- · Many runs in the same input file
 - E.g. first heat the system, then cool down and finally optimize structure using the conjugate gradient algorithm

Computational nanoscience 2015: LAMMPS tutorial

5

LAMMPS tutorial: LAMMPS input file

	# NVE simulati log	on of a cubic box of EAM copper casel.log	Comments: number sign, output filename
	units atom_style	metal atomic	Unit system, the kind of particles we have
(A)	boundary lattice region create_box create_atoms	p p p fcc 3.61 mycube block 0 6 0 6 0 6 1 mycube 1 box	Build the system: boundary conditions, lattice structure, shape of the system
	mass	1 63.55	
	<pre>pair_style pair_coeff neighbor neigh_modify</pre>	eam 1 1 Cu_u3.eam 0.3 bin every 10 delay 0 check yes	Potential: model, parameter values, neighbor list calculation
(B)	compute dump dump_modify	ep all pe/atom mydump all custom 200 casel.dump & type x y z c_ep mydump append yes	Printing out of coordinates: format, what to print, how often
	thermo thermo_style thermo_modify	100 custom step temp pe etotal press vol line one flush yes format 1 "ec %8lu" & format float "%20.10g"	Printing out of 'thermodynamical' data: format, what to print, how often
(C)	fix velocity run	myfix all nve all create 300.0 87287 5000	Setting related to simulation run: ensemble ('fix'), initial velocities, run length

LAMMPS tutorial: Ovito

- Visualization program written for materials scientists
 - Not for biochemists like RasMol, JMol etc.
- Can read LAMMPS dump file formats directly
 - Animation (important!)
- Has some analysis capabilities (CNA, coordination, etc.)
- Home page: http://ovito.org
 - · 'Easily' compiled from sources on Linux
 - · Ubuntu package by Pekko Metsä
 - Binary packages for Linux, Windows and Mac.
 - Linux instructions:
 - · Download the Linux binary package at http://ovito.org/index.php/download
 - Unpack it (the exact file name depends on the version; this is from 9.9.2015):
 tar xzvf ovito-2.5.1-x86_64.tar.gz
 - It you get error message 'gzip: stdin: not in gzip format' leave the z out of the command , i.e.

```
tar xvf ovito-2.5.1-x86 64.tar.gz
```

You can start Ovito by command

 /ovito-2.5.1-x86 64/bin/ovito

Computational nanoscience 2015: LAMMPS tutorial

7

LAMMPS tutorial: Ovito

LAMMPS tutorial: Plotting LAMMPS data with gnuplot

- Directory lammps_starter_kit/tools contains a gnuplot script
- Edit the proper LAMMPS log file name to file lmpplot.gp
- Run by starting gnuplot and giving command

load './lmpplot.gp'

Computational nanoscience 2015: LAMMPS tutorial

9

LAMMPS tutorial:

If you have any questions ask the lecturer: antti.kuronen@helsinki.fi