•000000

Üzleti Intelligencia

3. Előadás: Markov döntési folyamatok megoldása

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1 félév

- A rabló probléma
- Oinamikus programozás
- Politika iteráció

- 2 A rabló probléma

Az RL modellje

Markov döntési folyamat

$$MDP(S, A, P, R, s_0, \gamma)$$

- S: állapotok halmaza
- A: cselekvések halmaza
- $P: S \times A \times S \rightarrow [0,1]$: állapotátmeneti valószínűségek
- ullet $R:\ S imes A o \mathbb{R}$: azonnali jutalmak
- s_0 : kezdőállapot
- γ : diszkont faktor

Az MDP folyamata:

- Az ügynök s_0 állapotból indul
- 2 Az ügynök π politika szerint cselekszik: $a \sim \pi(s)$
- A körnvezet reagál a cselekvésre, és visszaadja az ügynöknek r jutalmat és s' következő állapotot
- Ez ismétlődik amíg a kilépési kritérium be nem teljesül

Cél: Az optimális politika megtalálása. A politika optimális, ha a hozamának várható értéke maximális:

$$E_{\pi}\left(r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots\right) \rightarrow max$$

A mohó ügynök

A legegyszerűbb cselekvés kiválasztási szabály, ha az ügynök mindig azt a cselekvést választja, ami számára a lehető legnagyobb várható hozammal rendelkezik.

Mohó cselekvés választás

Mohó politika mindig azt a cselekvést fogja választani, amelyik - egy lépéses távlatban - a lehető legnagyobb várható jutalommal fog járni az ügynök számára v_π szerint.

$$a_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Mi lenne a mohó politika ebben az estben?
- Mindig ez a legjobb megoldás?
- A legjobb megoldás mindig mohó?

A mohó ügynök

A legegyszerűbb cselekvés kiválasztási szabály, ha az ügynök mindig azt a cselekvést választja, ami számára a lehető legnagyobb várható hozammal rendelkezik.

Mohó cselekvés választás

Mohó politika mindig azt a cselekvést fogja választani, amelyik - egy lépéses távlatban - a lehető legnagyobb várható jutalommal fog járni az ügynök számára v_π szerint.

$$a_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- Mi lenne a mohó politika ebben az estben?
- Mindig ez a legjobb megoldás?
- A legjobb megoldás mindig mohó?

Az ε -mohó stratégia

Egy másik lehetőség, ha adott valószínűséggel az ügynök véletlen cselekvést hajt végre remélve, hogy ezzel elér egy olyan állapotba amelyhez nagy jutalom tartozik. A véletlen cselekvés a $\mathbf{felfedez\acute{e}s}$, és végrehajtásának valószínűsége ϵ .

ε -mohó cselekvés választás

$$a_t \leftarrow \begin{cases} \underset{a}{argmax} Q_t(a) & P=1-\varepsilon \\ \underset{a \sim A}{a} & P=\varepsilon \end{cases}$$

Ahol A az összes cselekvés halmaza.

Az ügynök tehát ε valószínűséggel véletlen cselekvést választ az ismeretlen, de nagyobb jutalom reményében. Ez a **felfedezés** művelete.

ε valószínűséggel pedig a már ismert és a legnagyobb várható jutalommal járó cselekvést hajtja végre. Ez a **kizsákmányolás** művelete.

Példák

Bevezetés

A következő valós példák alkalmasak a felfedezés/kizsákmányolás dilemma bemutatására:

- Étterem választás:
 - Kizsákmányolás: elmész a kedvenc éttermedbe.
 - Felfedezés: elmész egy új étterembe, hátha találsz egy jobbat mint a kedvenced.
- Online hirdetés:
 - Kizsákmányolás: a legjobb reklám megmutatása a felhasználónak.
 - Felfedezés: egy új reklám megmutatása a felhasználónak, hátha tetszik neki.
- Olaifúrás:
 - Kizsákmányolás: Egy meglévő helyen fúrás az olajért.
 - Felfedezés: Egy új helyen fúrás.
- Klinikai kezelés:
 - Kizsákmányolás: A bevált kezelés alkalmazása.
 - Felfedezés: Úi kezelés kipróbálása.

- 2 A rabló probléma

A k-karú rabló problémája egy elméleti megerősítéses tanulás probléma. A játékos egy rablógépen játszik, amelynek k karja van.

Minden karhúzás után egy állandó eloszlásból választott jutalmat kap az ügynök. Az ügynök célja, hogy olyan politikát válasszon, ami az elvárt hozamot maximalizálja 1000 cselekvés vagy *időlépés* után.

A rabló probléma

Az ügynöknek számon kell tartania, mennyi a jutalom várható értéke, ha adott egy a cselekvés. Ez a Q(s,a) állapot-cselekvés minőség függvény. A rabló problémában csak egy állapot van, ezért elég csak a cselekvésekhez tartozóan számon tartani:

$$Q_*(a) = E\left[r_t|a_t = a\right]$$

A jutalom várható értéke:

$$Q_n = \frac{r_1 + r_2 + \dots + r_{n-1}}{n-1}$$

meg: a_1, a_2

A példában egy kétkarú rabló folyamat modellje látható. A modell egyetlen állapotot tartalmaz. az ügynök minden lépésben innen választhat, hogy melyik kart húzza meg. Ez a két cselekvéssel egyezik

A jutalmak minden cselekvés után egy normál eloszlásból származnak, valamilyen μ_1 és μ_2 várható értékkel és 1 szórással: $r \sim N(\mu,1)$.

Algoritmus 1: Rabló játék

Bevezetés

```
Q(a) \leftarrow 0 for a = 1 \rightarrow k
                                      /* Cselekvés minőségének függvénye */
N(a) \leftarrow 0 \text{ for } a = 1 \rightarrow k;
                                              /* Kar meghúzásainak a száma */
for t = 1 \rightarrow max_t do
   p = random(0, 1):
                                            /* Véletlen szám () és 1 között */
   if p > \varepsilon then
    a \leftarrow argmaxQ(a);
                                /* Legnagyobb ismert jutalom cselekvése */
   else
    a \leftarrow a \sim A:
                                                       /* Véletlen cselekvés */
   end
   r \leftarrow env(a);
                              /* Cselekvés végrehajtása a környezetben */
   N(a) \leftarrow N(a) + 1;
                                    /* Cselekvés számlálójának növelése */
   Q(a) \leftarrow Q(a) + \frac{1}{N(a)} [r - Q(a)];
                                                     /* Q-érték frissítése */
end
```

Egy példa rabló

Hogy meg lehessen mérni a mohó és ε -mohó stratégiák teljesítményét, szükség van egy teszt rablóra. A példában szereplő egy 10-karú rabló. Minden karhoz tartozóan a jutalmak eloszlása Gauss-i eloszlást követ 1 varianciával, viszont nem 0 átlaggal.

Valamelyik karok nagyobb valószínűséggel járnak magas jutalommal mint a többi. Az ügynök feladata megtalálni melyik kartól remélhet nagyobb jutalmat. Ehhez szükség van arra, hogy végig próbálja őket.

A futás teljesítménye

Az algoritmus 1000 időlépésen keresztül futott $\varepsilon = 0, \varepsilon = 0.01, \varepsilon = 0.001$ hiperparaméterekkel. Minél nagyobb a ε érték, annál nagyobb a felfedezés valószínűsége.

Mindegvik módszer megbecsülte az állapot-cselekvés minőség függvényt a rabló minden karára a mozgóátlagolás technikájával. A diagramon a várható jutalom mértékét mutatja az időlépések függvényében.

A mohó stratégia kezdetben gyorsabban iavult mint a többi, de kisebb értékre konvergált a futásidő végére.

A futás teljesítménye

Az ábra azt mutatja, hogy a mohó módszer csak a feladatok mintegy 30%-ában találta meg az optimális műveletet. Az ε -mohó módszerek végül jobban teljesítettek, mert folytatták a felfedezést és javították az esélyüket az optimális művelet felismerésére.

Az $\varepsilon=0.1$ módszer többet fedezett fel, és általában korábban megtalálta az optimális műveletet, de soha nem választotta ki azt több mint 91%-ban.

Az $\varepsilon=0.01$ módszer lassabban javult, de végül mindkét teljesítménymérőn jobban teljesített.

- 2 A rabló probléma
- O Dinamikus programozás

Dinamikus programozás alapjai

A dinamikus programozás egy gyűjtőfogalom olyan algoritmusokra amelyekkel kiszámolható az optimális politika ha adott egy tökéletes környezeti modell egy Markov döntési folyamatként.

A klasszikus dinamikus programozási algoritmusok ritkák a megerősítéses tanulásban mert egy tökéletes környezeti modellt feltételeznek és mert rendkívül erőforrás igényesek.

Dinamikus programozás alapjai

Dinamikus programozás

A DP algoritmusok a komplex problémákat alproblémákra bontják, majd a végső megoldást az alproblémák megoldásaiból állítiák elő. Ehhez két feltételnek kell érvényesnek lennie:

- Optimális alstruktúra: Az almegoldásoknak felhasználhatóknak kell lenniük a probléma megoldására.
- Átfedésben lévő alproblémák: Bizonyos alproblémák megoldásait többször is fel lehet használni hasonló feladatok elvégzéséhez.

Példa dinamikus programozásra

A példa a Fibonacci számok kiszámításának dinamikus programozása. A Fibonacci számokat a következőképpen lehet definiálni:

Fibonacci sorozat

$$F_0 = 0 \; ; F_1 = 1$$

és

$$F_n = F_{n-1} + F_{n-2}$$

Tehát a sorozat első pár tagja:

Dinamikus programozás az RL-ben

DP állapot-érték frissítési szabálya

$$V(s) \leftarrow E_{\pi} \left[r + \gamma V(s') \right]$$

- ullet E_π : Várható érték π politika alatt
- ullet V(s): Cselekvés-érték függvény az aktuális s állapotban
- r: Jutalom a cselekvésért
- \bullet γ : Diszkont faktor
- V(s'): állapot-érték függvény s_{t+1} következő állapotban.

A megerősítéses tanulásban a dinamikus programozás egy szélességi bejárásnak felel meg. Mivel az állapotok tere túlságosan nagy, ez gyakran nem vezet megoldáshoz.

Markov döntési folyamatok dinamikus programozása

A Markov döntési folyamatok kielégítik a dinamikus programozás feltételeit. Az értékfüggvény eltárolja és újra felhasználja a kiszámított megoldásokat: ez egy gyorsítótárként szolgál azoknak az információknak az MDP-ről, ami megadja, hogy mennyi a jutalom várható értéke egy s állapotból indulva:

$$V_{\pi}(s) = E_{\pi} [G_t | S_t = s] = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid S_t = s \right]$$

A Bellman egyenlet megadja, hogyan kell lebontani az optimális állapot-érték függvényt két részre: a következő időlépés optimális cselekvése és az összes többi lépés optimális cselekvése:

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p\left(s',r|s,a\right) \left[r + \gamma V_{\pi}\left(s'\right)\right] \ minden \ s \in S - re$$

Dinamikus programozás felhasználásai

A dinamikus programozási eljárások akkor tudnak megoldani megerősítéses tanulási problémákat, ha adott a környezet dinamikája (az állapotok, az állapotátmeneti valószínűségek, jutalmak). Ezért két fő felhasználása van:

1. Politika kiértékelés

Ha adott egy $MDP(S,A,P,R,\gamma,s_0)$ és egy π politika, a feladat megtalálni π -hez tartozó v_π állapot-érték függvényt ahhoz, hogy meg lehessen mondani mennyire jövedelmező a politika.

2. Politika keresés

Ha adott egy $MDP(S,A,P,R,\gamma,s_0)$, a feladat megtalálni az optimális állapot-érték függvényt (v_π) és a hozzá tartozó π_* optimális politikát.

Bevezeté:

- 2 A rabló probléma
- Oinamikus programozás
- Politika iteráció

Miután egy π politika javult v_π segítségével annak érdekében, hogy egy π' jobb politikát eredményezzen ki lehet számítani $v_{\pi'}$ javított állapot-érték

ki lehet számítani $v_{\pi'}$ javított állapot-érték függvényt és felhasználni egy újabb javított politika, π'' kiszámítására. Ezáltal egy monoton javuló politika - értékfüggvény sorozatot eredményezve:

$$\pi_0 \stackrel{E}{\longrightarrow} V_{\pi_0} \stackrel{I}{\longrightarrow} \pi_1 \stackrel{E}{\longrightarrow} V_{\pi_1} \stackrel{I}{\longrightarrow} \pi_2 \stackrel{E}{\longrightarrow} \dots \stackrel{I}{\longrightarrow} \pi_* \stackrel{E}{\longrightarrow} V_*$$

- I: Javítás (improvement)
- V_{*}: Optimális állapot-érték függvény
- π_* : Optimális politika

Algoritmus 2: Politika kiértékelése

```
while \Delta > \theta do
    \Delta \leftarrow 0:
                                                              /* Hiba nullára állítása */
    for s \in S do
    v \leftarrow V(s);
                                                           /* Jelenlegi állapot-érték */
    V(s) \leftarrow \sum_{s',r} p\left(s',r,|s,\pi(s)\right) \left[r + \gamma V(s')\right]; /* \check{\text{U}}j állapot-érték */
    \Delta \leftarrow max(\Delta, |v - V(s)|);
                                                                    /* Hiba kiszámolása */
    end
```

end

Bevezetés

- Δ : V(s) jelen állapot-érték és V(s') következő állapot-érték különbsége.
- \bullet θ : hibahatár: egy alacsony szám ami a becslés pontosságát adja.
- $p(s', r, | s, \pi(s))$: s' következő állapot és r jutalom valószínűsége ha adott s állapot és $\pi(s)$ cselekvés π politika szerint (a környezet dinamikája).

Algoritmus 3: Politika javítása

```
\pi_{instabil} \leftarrow false
                                                                /* Politika instabilon indul */
while \pi_{instabil} do
    for s \in S do
    \pi(s) \leftarrow \mathop{argmax}_{s',r} p\left(s',r,|s,a\right) [r+\gamma V(s')]; \qquad /* \text{ Uj cselekvés */}  if a \neq \pi(s) then
     if a \neq \pi(s) then \pi_{instabil} \leftarrow false;
                                                           /* politika instabillá állítása */
     end
end
return V \approx V_{\pi}. \pi \approx \pi_{\pi}
```

Dinamikus programozás

A politika ebben az esetben mohó, tehát úgy választja ki a cselekvést, hogy melyik következő állapothoz tartozik a lehető legnagyobb várható jutalom. Egy politika akkor számít stabilnak, amikor egyik lépésben sem változik a cselekvés.

Cél: a robotnak el kell jutnia a célhoz, miközben minél kevesebb üzemanyagot használ. A környezetben a következő változók érvényesek:

- Száraz kockák:
 - 1 időegység alatt megy végig rajta a robot. -1 jutalmat kap ha egy ilyen kockára lép.
 - A célállapotot mindig eléri, mert ilyenkor nem csúszik el.
- Kis tócsák:
 - 2 időegység rajta átjutni, tehát -2 jutalmat kap érte a robot.
 - A csúszás valószínűsége 0.4, ezért az idő 40%-ában nem éri el a célállapotot, hanem valamelyik másik lehetséges célállapotba csúszik át
- Nagy tócsák:
 - 4 időegység alatt lehet rajta átjutni, ezért -4 jutalom jár érte.
 - A csúszás valószínűsége 0.6.

A robotnak a bal felső kockából kell a jobb alsóba eljutnia úgy, hogy a falakat megkerüli.

A kezdeti politika véletlenszerű és determinisztikus.

A V(s) állapot értékek 0 értékkel indulnak.

 $\gamma=0.9$ diszkont rátával a politika kiértékelés 75 iteráció alatt konvergál.

A következő iterációban a politika változik. A konvergálás 55 iteráció alatt megtörtént.

A következő futtatással 26 iteráció alatt konvergált.

A következő futtatással 21 iteráció alatt konvergált.

A következő futtatással 26 iteráció alatt konvergált.

