

Figure 1

Figure 2A

promoter and exon 1

ACTGCGGAGATGAGGGTCTAGAAAGGTGGTGGCGGGCAT
GTGGACCGTTGTAAGGGCTCTGGGTTCCCTGGGTGGCCT
GGCGAAGTCTACTCACAGTGACCAACCATGATGATGGT
CCCGATAGAGGAGGAGAGGGAGGGAGGGAAAAGGAAG
GGTAGAGGGCTCAGAGGGAGAGCTGGGAGGAGGGAGA
CATAGGTGGGGAAGGGTAGGAGAAAGGGGAAGGGAGC
AAGAGGGTGAGGGCACCAAGCCCCATAGACGTTTGGC
TCAGCGGCCACGAGGCTCATCAGCTCCCCCCCCAAC
GGAAGCGAGGCCGTGGGGCAGCGGCAGCATGGCGGGC
TTGTCTTGGCGGCCATGCCCGCCCCCTGCCCGTCCGA
TCAGCGCCCCCGCCCGTCCCCGCCCGACCCCGCCCCCG
GCCCGCTCAGGCCCGCCCTGCCGCCGGAAATCCTGAAG
CCCAAGGCTGCCGGGGCGGTCCGGCGGCCGGCGAT
GGGGATAAAACCACTGCCACCTGCCGGCTGCTCC

TGCGTGCCTGCCGTCCCGATCCACCGTGCCTCTGCGG
CCTGCGTGCCTGGAGTCCCCGCCTGTGTCGTCTCTGTCG
CCGTCCCCGTCTCCTGCCAGGCGCGAGACATGGCTGCTCCGC
GCGGTGGGCCAGGCGCGAGACATGGCTGCTCCGC
CAAAGCGCTGGCTGCCGGCGCTGGCGTGTGATGATGAT
GCTACTGTGCGCTGTGCTGGCGCTGTGATGATGATGAT
GGTGCCGTGCTCATCAAGCAGCAGGTCTTAAG

A

GTGGGTGAGGGAGACCCAGGGGTCCGCCACGGACCC
GGGCTGTTGGCGCTGGCGCCGGAGGACCCGCGCGTT
GCGGTGGGTGGCGACCGCAGCGGAATCGCGCCCGGGC
CTGGCGCCGAGAACACGAGGGAGGCCAGGCGCTTCCGG
AGGGGCTGCTGCCCGCCTCCCCACCAACCTCACC

Figure 2B

exon 2

AGCCTCATGTGCGAAGGGTTCCACCACCTCCTATCC
CAAGCTCCC GCCGAGGAGCCCTTCCCTGGCCGGGCTCG
GGCAGCTGTTCCGGAGCCTGTGGTGGGGCGTGGGCC
CTCATCACTCTCCTCACAGCGTACTTGTCCCTCCCC
CTGCAG

AACGTGCGCATCGACCCCCAGTAGCCTGTCCTTCAACATG
TGGAAGGAGATCCCTATCCCCCTCTATCTCTCCGTCTAC
TTCTTGACGT CATGAACCCCCAGCGAGATCCTGAAGGGC
GAGAACGCCAGGTGCGGGAGCGCGGGCCCTACGTGTAC
AG

GTGAGGGCTGTGTCACCGTGTGGTGGACGGGCCGGCTGA
CGCTGGCATGGGACGGGCTCANAGTGGACGGGATG
GGGAGGGCTGCTGACTGACCCCCAAACATTGTTCCGGAA
GCACGCAACTCATAGTCGGGTAAGTGTACTCCCCAAA
AAGTTTGCCT

exon 3

CATGTCTGCAGTGGCAGGCAGCGGGAGGGACAGACTT
GGCGAAGGGGCCGAGCTCAGCTTGGCTGTGGGCCCGGA
GGTGTGCACAGACGTCCAGGGCCCTGGTCCAGGCAG
GCATTGCAGGCAGTAGAAGGGAAACGTCCCAGCAG
CGGGGCGGGCGTGTGACCCACTGGCTCCCCACAG

GGAGTT CAGGCACAAAAGCAACATCACCTTCAACAACAA
CGACACCGTGTCTTCCCTGAGTACCGCACCTCCAGTT
CCAGCCCTCCAAGTCCCACGGCTCGGAGAGCGACTACAT
CGTCATGCCAACATCCTGGTCTTG

^A
GTGAGGGCTGCCCTGTGGCCCACGCCGCCCTCGCACCCCTGA
CCTCGTCCCCCTGTCTCTCCCTCCGCCCTGCCCTGTG
CAGAGAGCAGTCCCTGAGGTGGTGGAGCGTGGGGACTC
ACGCCCTGGTGGTGGCTTCCGCCCTGTGCTGTCTCCAC
CACCCCCA

Figure 2C

exon 4

GGTGGTTCTGGTGTCCCAGATGCCCAACGTGGCCACTCC
AGGGGCCTCCTGCACCCCAGCATTCCTCATGGGCT
CTTTGCTGTGAGGCCAGCTGGGCAAGGGAGGATG
GGCCAGCCACGTCCAGCCTCTGACACTAGTGTCCCTCG
CCTTGCA

GGTGCGGCGGTGATGATGGAGAATAAGCCATGACCCTG
AAGCTCATCATGACCTTGGCATTCAACCACCTCGCGAA
CGTGCCTTCATGAACCGCACTGTGGGTGAGATCATGTGG
GGCTACAAGGACCCCTTGTGAATCTCATCAACAAGTACT
TTCCAGGCATGTTCCCTCAAGGACAAGTTCGGATTAT
TTGCTGAG

GTACGTGTGGCCTGGTGAGAAGCCAAGATTCAAGGCCTG
TGTCCCTGTCTTCCCCTCACACAGCCTGGACACTGGTC
ACCAGCTTGCTTGTAGCTGGCTGGGATCTAGTGGCTG
TGGGTGTAAAGTGAUTGAGAACCTGACTCAAACCGGCTT
GAGTGAAA

exon 5

CCTCTCGGTCCCCAGACACTGGGCATTGGCAGTGAACC
AGATGCTGGGGGCCCTGTCTTCTGGTGGAGGGGAGGA
GGGCTCAGCCCAGAATGTTCAAGACCAGGCCGGCTCAA
TGGCAGGCCTAACGCTTACGATGCTGTTCCCTGCTGTGT
CTGTAG

CTCAACAACCTCCGACTCTGGCTCTCACGGTGTTACG
GGGGTCCAGAACATCAGCAGGATCCACCTCGTGGACAAG
TGGAACGGGCTGAGCAAG

GTGAGGGCGAGAGGGGAGGGCCCTGTGCCAGGGAGA
GGGGAGGGTGGGCCGGGCATGGCTGCTGGGAGTGGCA
GGGACCAAGAGAGCTCCTCTTGTGCTGAAGAG
GGTGCCTGGAGGATGAACACTCTGAAGTGGAGGAGGG
ATTTTA

Figure 2D

exon 6

TCTCTGTGTCTACATAGCCTGCCCTTCCCACCGTG
CCAGTATTGGGAATTGAGTGGCCGTGCACCAAGGGT
GAGTTAGGTGTGCAGCACCTGAGAGGGCTTATTAAGG
GGCCTTGGCCCTACTGAGGGTCTAGTCTGGATGCTTCC
CCCCAG

GTTGACTTCTGGCATTCCGATCAGTGCAACATGATCAAT
GGAACTTCTGGCAAATGTGGCCGCCCTCATGACTCCT
GAGTCCTCGCTGGAGTTCTACAGCCGGAGGCCTGCCG

GTAATCACTGGGACTCGGGGCCTCCTGGTTTCCTGGT
AGCTCATGGCCAATTCTGTGGTGTGGCTGTGCACTT
GGAAAGCATTGACTCATCGTGGATTGACTCAGTAG
CCCTGGCACCAAGCTTGAATTCTCTGGTCACACCACC
AAAAGC

exon 7

GGAGGTCGCTGCAGCTCCGGGTGAGAGATGGGGCGG
TTTGGACCCGGGAGGTGGTAGCGCCGTGGGAGAAGTG
GCTGGATCTGGCAGCCTTGGCAGGGCTGGCTGGC
CGCCGGGTCTGGGTGTCCCCTCTCATCCTGTCTGTCC
CCTGCAG

ATCCATGAAGCTAATGTACAAGGAGTCAGGGGTGTTGA
AGGCATCCCCACCTATCGTTCTGGCTCCAAAACCT
GTTTGCCAACGGTCCATCTACCCACCCAACGAAGGCTT
CTGCCCGTGCCTGGAGTCAGGAATTCAAGACGTACAC
CTGCAGGTTCA

GTACGTGCCGTCCCTGTTCTGGGATNGCCGGAGGGTGT
TAGGTNTNGGCACCTNANGTTATCTGCCAATGCTG
TCTGCTTAATCTCTGGCCTCTGTACTCTTGATAACC
CATTAAGCCAAAATATGATGCCTCTGGGACGATATCTG

Figure 2E

exon 8

TGGGGCTTTTACAGAATGGAGGAAGGGATCCTCTCT
GTCGGGTATTATGGTCATGCCACGGGGTGCCTGCAG
ACCACAGCTCTGTGCAGACTCCGGAGTGGCAGGACGTG
CCAATATACTGTCGTGTATGATGTCCCCCTCCCTGCCCT
TGGTAG

GTGCCCCCTGTTCTCTCCCATCCTCACTTCCTCAACG
CGAACCGGTTCTGGCAGAAGCGGTGACTGGCCTGCACC
CTAACCAAGGAGGCACACTCCTTGTCCTGGACATCCACC
CG

GTGAGCCCCCTGCCATCCTCTGTGGGGGTGGTGATTCC
TGGTTGGAGCACACCTGGCTGCCTCTCTCCCCAG
GCAGAGAGCTGCTGTGGCTGGGTGGTGGGAAGCCTGG
CTTCTAGAATCTCGAGCCACCAAAGTCCCTACT

T

exon 9

CCCCAGCCCTGCGCTTGTAGGTAAGATAACAAGCAAG
CTCCACTGGCAGTAGCTGGACGCCACCCCTTGAC
TGGGACCAAGGAAAAGAAGGTTGACTGTGTCCCTGGA
GCTTGGGGGTGCCAGTCTCACTGTGTTGTCGCG
CAG

GTCACGGGAATCCCCATGAACTGCTCTGTGAAACTGCAG
CTGAGCCTCTACATGAAATCTGTCGCAGGCATTGG

GTGAGTGGGGACTGGAACTGGGCTGCATTGCTCATTTG
AGAGATTANGTGCTCAGTGCTCCAGTGTTCCCAGAC
TCCCCTGACATACCCAGGAAACAGGGCATGGGAAGGG
AGAGGGTCCTATTGGGGTGGAAATCCAGTCCCTGCTGAT
CTCTC

DO NOT REMOVE THIS PAGE

Figure 2F

exon 10

ATGGCTCCTAAAGTGTTCAGCTCATTGTTATATTGG
TGGTGAGGGTTAGTGTGTGAAAATTATACTAAACC
TGTAGATGTTGATTCAGCAGAATTAGATCAAGTTT
GGGTGTAAGACTTGTCCAACACCTATGTCTTGCTTAT
TTCCAG

ACAAACTGGGAAGATTGAGCCTGTGGCCTGCCGCTGCT
CTGGTTGCAGAG

GTAAGGGTGCCTGGCACAGCGTCGGGGCTTGT
ATAGCCAATGTGGGCATTGAGGCAGGAGGCAGGG
AGCACCTGTAGAAAGGGAGAGGGCTGAGCCAGGGTAAC
CGGACTGTTACATGGACCAGCGTATCATACACTTCACCC
TGTC

exon 11

CCTGGAGGGAGGAGGTCCCTGGCAGGCTCCAACACATGC
TTTAGCCGGAAAGCTTGAGGTGGGAAAGCTGAGGCAGG
GCACAGAGGAAGGTGTTGGGTGGCATCTGCGCTGTAG
CCCGCAGGCTGGGCCAGCTCATGTGTTGTCAATTCT
GTCTCCTCAG

AGCGGGGCCATGGAGGGGGAGACTCTCACACATTCTAC
ACTCAGCTGGTGTGATGCCAAGGTGATGCACATGCC
CAGTACGTCCCTGGCGCTGGCTGCGTCCTGCTGCTG
GTCCCTGTCATGCCAAATCCGGAGCAA

GTTAGGTGCTGGCCAGAGGGCAGCCCCGGCTGACAGCCAT
TCGCTTGCCTGCTGGGGAAAGGGGCCAGATCGGACC
CTCTGGCCAACCGCAGCCTGGAGCCACCTCCAGCAG
CAGTCCTGCGTCTGCGGAGTGGGAGCGGTCACTGCT
GGGGG

Figure 2G

exon 12

CCCCACATCTCAGCCACCTGCAATCGTGAGGGTTGTTG
GAECTAAACTTATGTGCCCTTCCTGTTCCCTTTGCC
TTTGCAAATTGAAGAACCGTGTAAAACCATTTTAT
GTGGCTTCAACGTCAACTATAAATTAGCTTGGTTATCTT
CTAG

GAGAAATGCTATTTATTGGAGTAGTAGTAAAAAGGGC
TCAAAGGATAAGGAGGCATTAGGCCTATTCTGAATCC
CTGATGACATCAGCTCCAAGGGCTCTGTGCTGCAGGAA
GCAAAACGTAG

GTGGGTACCAGGTAATGCCGTGCGCCTCCCCGCCCCCTC
CCATATCAAGTAGAATGCTGGCGGCTTAAACATTGGG
GTCCTGCTCATTCCTTCAGCCTCAACTTCACCTGGAG
TGTCTACAGACTGAAGATGCATATTGTGTTGGCTT
TTGGAGAAA

Figure 3A

Figure 3B

→ exon 9

F L D I H P V T G I P M N C S V K L Q L	390
TTC CTG GAC ATC CAC CCG GTC ACG GGA ATC CCC ATG AAC TGC TCT GTG AAA CTG CAG CTG	1288

→ exon 10

S L Y M K S V A G I G Q T G K I E P V V	410
AGC CTC TAC ATG AAA TCT GTC GCA GGC ATT GGA CAA ACT GGG AAG ATT GAG CCT GTG GTC	1348

→ exon 11

L P L L W F A E S G A M E G E T L H T F	430
CTG CCG CTG CTC TGG TTT GCA GAG AGC GGG GCC ATG GAG GGG GAG ACT CCT CAC ACA TTC	1408

→ exon 12

Y T Q L V L M P K V M H Y A Q Y V L L A	450
TAC ACT CAG CTG GTG TTG ATG CCC AAG GTG ATG CAC TAT GCC CAG TAC GTC CTC CTG GCG	1468

→ exon 13

L G C V L L L V P V I C Q I R S Q E K C	470
CTG GGC TGC CTG CTG GTC CCT GTC ATC TGC CAA ATC CGG AGC CAA GAG AAA TGC	1528

→ exon 13

Y L F W S S S K K G S K D K E A I Q A Y	490
TAT TTA TTT TGG AGT AGT AAA AAG GGC TCA AAG GAT AAG GAG GCC ATT CAG GCC TAT	1588

→ exon 13

S E S L M T S A P K G S V L Q E A K L *	510
TCT GAA TCC CTG ATG ACA TCA GCT CCC AAG GGC TCT GTG CTG CAG GAA GCA AAA CTG TAG	1643

GGTCCGTAGGACACCGTGAGCCAGCCAGGCCCTGGCGCTGGGCCTGACCGGCCCCCAGCCCCAACACCCCGCTTCTCC 1727

CGGACTCTCCCACCAAGACAGCCCCACAGGCTGAGCTCTCCAGCTGCCATGTGCCTGTTGCACACCTGCACA 1806

CACGCCCTGGCACACATACACACATGCGTGCAGGCTTGTGCAGACACTCAGGGATGGAGCTGCTGCTGAAGGGACTTGT 1855

AGGGAGAGGCTGTCAAACAAGCACTGTCTGGAACCTCTCTCCACGTGGCCCACAGGCCTGACCACAGGGCTGTGG 1964

TCCCTGGGTCCCCCTCTCGGGTGAGCCTGGCTTCCCATGCAGGACGGGCCAGGCTGGAGTCCCCCTTCTGTGCCAAATTCAAGT 2043

ACACTGCAAGTCCCCGGTGTGGTGGCTCCCCATGCAGGACGGGCCAGGCTGGAGTCCCCCTTCTGTGCCAAATTCAAGT 2122

GGGGACTCAGTGCCTAGGCCAGGCCCTGGCCACGAGCTTGGCTTGGTCTACCTGCCAGGCAGGCAAAGGCCCTTACACAG 2201

GCCTGGAAAAACAATGGAGTGAACACAAGATGCCCTGTGCAGCTGCCAGGGCTCOGCCACCCGGCCGGACTTTG 2230

ATCCCCCGAAGTCTCACAGGCACTGCATGGGTGTCTGGGCCCTTTCTCCATGCCCTAAACTGACATCATCCTAT 2359

GGACTGAGCCGGCCACTYYTGGCGAAGTGGCGCAGGCTGTGCCCCCGAGCTGCCCTTCCACAGGGTCCCT 2438

CAGATTATAGGTGCCCAAGGCTGAGGTGAAGAGGCCCTGGGGCCCTGCCCTCCGGGCGCTCCTGGACCCCTGGGCAAACC 2517

TGTGACCCCTTCTACTGGAATAGAANTGAGTTTATCATCTTGAAAATAATTCACTCTTGAAAGTAATAAACGTTTA 2596

AAAAAAAAAATGGGAAAAAAAAAAAAAAAAAAAAAA 2630

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

