Corrigé-type du contrôle écrit RC

Partie 1, QCM (8 points)

Cochez la ou les bonnes réponses :

Bonne réponse : + 1 pt, Mauvaise réponse : 0 pt, Réponse incomplète : 0 pt, Aucune réponse : 0 pt

- Le Bluetooth est un réseau :
 - PAN
 - □ LAN
 - ☐ MAN
 - □ WAN
- 2. 1000BASE-T est une norme du réseau :
 - Gigabit Ethernet
 - ☐ Full Duplex Ethernet
 - □ New Generation Ethernet
- 3. Le nombre de bits correspondants au polynôme générateur du CRC utilisé dans le protocole HDLC est :
 - □ 10
 - 16
 - **1**7
- Un routeur peut être utilisé pour :
 - relier deux réseaux hétérogènes
 - relier deux réseaux homogènes
 - relier un ordinateur à Internet

- Le service de contrôle de flux est offert par la couche:
 - Réseau
 - Liaison des données
 - Transport
- Intranet est :
 - un réseau IP privé
 - un réseau logique
 - □ un réseau IP publique
- 7. 255.255.255.255 est:
 - une adresse IP
 - un masque réseau
 - ☐ une adresse physique
- Une valence bivalente est une valence égale à
 - **2**

 - □ 8

Partie 2 (6 points)

Une liaison réseau a un délai de propagation P = 60 ms, un débit D = 50 Ko/s, et une taille maximale des trames de 1 Ko.

 Quel est le temps minimal nécessaire pour transmettre 50 Ko de données en utilisant un protocole de type stop-and-wait en l'absence d'erreurs de transmission?

On calcule le temps nécessaire total pour transmettre 1 Ko (soit t_{1Ko}) puis on le multiplie

par 50.
$$t_{1Ko} = t_e + 2t_p = \frac{taille}{D} + 2t_p = \frac{8\ 192}{400\ 000} + 120 \times 10^{-3} \simeq 140\ ms.$$
 Donc, $t = t_{1Ko} \times 50 \simeq 7$ sec.

2. Que doit être la taille des trames si on veut avoir une efficacité de 66%?

Pour avoir une efficacité de 66%, il faut que
$$\frac{t_e}{t_e+2t_p}=\frac{2}{3}$$
, c'est-à-dire $t_e=4t_p$. Nous avons $taille=D\times t_e=400~000\times 240\times 10^{-3}=$ 96 000 bits \simeq 11,72 Ko. (2 pts)

3. Quelle sera le nouveau temps minimal pour transmettre les 50 Ko de données?

On calcule le temps de transmission total de 11,72 Ko puis on utilise la règle de 3 pour avoir le temps pour 50 Ko.

Le temps total pour 11,72
$$Ko$$
 est $t_e + 2t_p = 240 \times 10^{-3} + 120 \times 10^{-3} = 360 \ ms$.
Donc $t = \frac{360 \times 10^{-3} \times 50}{11,72} \simeq 1,53 \ \text{sec}$.

Donc
$$t = \frac{360 \times 10^{-3} \times 50}{11,72} \simeq 1,53 \text{ sec.}$$

Partie 3 (6 points)

Complétez le tableau suivant :

Adresse IP	Classe	Machine ou Réseau?	Nb max de ma- chines	Première adresse	Dernière adresse
192.120.11.0/24	C	Réseau	254	192.120.11.1	192.120.11.254
10.1.0.0/8	A	Machine	$2^{24}-2$	10.0.0.1	10.255.255.254
60.18.0.0/18	A	Réseau	$2^{14}-2$	60.18.0.1	60.18.63.254

0,5 pt pour chaque réponse.