

SECRETED HUMAN PROTEINS

This application claims the benefit of copending provisional application Serial No. 60/032,757, filed December 11, 1996, which is incorporated herein by reference.

TECHNICAL AREA OF THE INVENTION

The invention relates to the area of proteins. More particularly, the invention relates to human secreted proteins.

BACKGROUND OF THE INVENTION

Secreted proteins include such important proteins as growth factors, cytokines and their receptors, extracellular matrix proteins, and proteases. Nucleotide sequences encoding these proteins can be used to detect disease states in which such proteins are implicated and to develop therapeutics for such diseases. Thus, there is a need in the art for methods of identifying secreted proteins and the nucleotide sequences which encode them.

20

SUMMARY OF THE INVENTION

It is an object of the invention to provide an isolated and purified human protein.

It is yet another object of the invention to provide a fusion protein.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT
15
20

It is still another object of the invention to provide a preparation of antibodies.

It is even another object of the invention to provide an isolated and purified subgenomic polynucleotide.

5 It is yet another object of the invention to provide an isolated gene.

It is a further object of the invention to provide a DNA construct for expressing all or a portion of a human protein.

It is still another object of the invention to provide a host cell comprising a DNA construct.

10 It is another object of the invention to provide a homologously recombinant cell.

It is even another object of the invention to provide a method of producing a human protein.

It is another object of the invention to provide a method of identifying a secreted polypeptide which is modified by rough microsomes.

These and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention provides an isolated and purified human protein. The isolated and purified human protein has an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Another embodiment of the invention provides an isolated and purified human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Still another embodiment of the invention provides a polypeptide comprising at least 6 contiguous amino acids of an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

5

Even another embodiment of the invention provides a fusion protein. The fusion protein comprises a first protein segment and a second protein segment fused together by means of a peptide bond. The first protein segment consists of at least 6 contiguous amino acids selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

10

Yet another embodiment of the invention provides a preparation of antibodies. The antibodies specifically bind to a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

15
20
25
30

Even another embodiment of the invention provides an isolated and purified subgenomic polynucleotide. The isolated and purified subgenomic polynucleotide has a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Yet another embodiment of the invention provides an isolated and purified subgenomic polynucleotide consisting of at least 10 contiguous nucleotides selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Still another embodiment of the invention provides an isolated gene. The isolated gene corresponds to a cDNA sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

25

Another embodiment of the invention provides a DNA construct for expressing all or a portion of a human protein. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

30

5

10

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

The polynucleotide segment is located downstream from the promoter.

Transcription of the polynucleotide segment initiates at the promoter.

Even another embodiment of the invention provides a host cell comprising a DNA construct. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter.

Still another embodiment of the invention provides a homologously recombinant cell having incorporated therein a new transcription initiation unit. The transcription initiation unit comprises in 5' to 3' order an exogenous regulatory sequence, an exogenous exon, and a splice donor site. The transcription initiation unit is located upstream to a coding sequence of a gene. The gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The exogenous regulatory sequence controls transcription of the coding sequence of the gene.

Yet another embodiment of the invention provides a method of producing a human protein. A culture of a cell is grown. The cell comprises a DNA construct. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter. The protein is purified from the culture.

Even another embodiment of the invention provides a method of producing a human protein. A culture of a cell is grown. The cell comprises a new transcription initiation unit. The transcription initiation unit comprises in 5' to 3'

5

order an exogenous regulatory sequence, an exogenous exon, and a splice donor site. The transcription initiation unit is located upstream to a coding sequence of a gene. The gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOS:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The exogenous regulatory sequence controls transcription of the coding sequence of the gene. The protein is purified from the culture.

10

Another embodiment of the invention provides a method of identifying a secreted polypeptide which is modified by rough microsomes. A population of cDNA molecules is transcribed *in vitro* whereby a population of cRNA molecules is formed. A first portion of the population of cRNA molecules is translated *in vitro* in the absence of rough microsomes whereby a first population of polypeptides is formed. A second portion of the population of cRNA molecules is translated *in vitro* in the presence of rough microsomes whereby a second population of polypeptides is formed. The first population of polypeptides is compared with the second population of polypeptides. Polypeptide members of the second population which have been modified by the rough microsomes are detected.

15
20

The present invention thus provides the art with a method for identifying secreted proteins or polypeptides, the amino acid sequences of nineteen novel human secreted proteins, and the nucleotide sequences which encode these proteins. The invention can be used to, *inter alia*, to produce secreted proteins for therapeutic and diagnostic purposes.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

25

The inventors have discovered a method for identifying secreted proteins or polypeptides. Secreted proteins or polypeptides include soluble proteins which can be transported across a membrane, such as a cell membrane, nuclear membrane, or membrane of the endoplasmic reticulum, as well as proteins which can be partially secreted from a cell, such as membrane-bound receptors.

30

Secreted proteins can contain a signal (or secretion leader) sequence, located at the N-terminus and including at least several hydrophobic amino acids,

such as phenylalanine, methionine, leucine, valine, or tryptophan. Non-hydrophobic amino acids can also be included in the signal sequence. Signal sequences are described in von Heijne, *J. Mol. Biol.* 184:99-105 (1985) and Kaiser and Botstein, *Mol. Cell. Biol.* 6:2382-2391 (1986). Secreted proteins can also be glycosylated by post-translational modification. The presence of a signal sequence or the presence of glycosylation or both indicate that a particular protein is a secreted protein.

5

10

20

25

30

In order to identify secreted proteins or polypeptides, the method of the invention exploits properties of microsomes, which are the closed vesicles that result from fragmentation of endoplasmic reticulum. Microsomes can be rough or smooth, depending on whether the endoplasmic reticulum from which they were derived is studded with ribosomes. Microsomes, particularly rough microsomes, have the ability to perform post-translational modifications, such as glycosylation and cleavage of signal sequences from proteins or polypeptides.

To identify secreted proteins, a population of complementary DNA (cDNA) molecules is transcribed *in vitro* to synthesize a population of complementary RNA (cRNA) molecules. The cDNA molecules can be synthesized by reverse transcription of mRNA molecules isolated from a particular cell or tissue type or organism using, for example, a commercially available reverse transcriptase enzyme. Alternatively, the reverse transcription reaction to form cDNA molecules can be conducted on total RNA, without a preliminary purification of mRNA.

Any organism, such as a bacterium, plant, invertebrate, or vertebrate organism, can be used as a source of RNA. Particularly preferred sources of RNA are mammals, most preferably humans. Tissues, such as liver, brain, kidney, spleen, pancreas, or muscle, can be used as a source of RNA. Individual cell types, either primary cells or members of established cell lines, such as HeLa, CHO, PC12, P19, BHK, COS, or HepG2, are suitable sources of RNA. Tissues or primary cells isolated from organisms at a particular stage in development can be used as RNA sources. Stem cells, such as hematopoietic, neuronal, and embryonic stem cells, can also be used as a source of RNA.

Total RNA or mRNA can be isolated using methods known in the art. Such methods are described, *inter alia*, in Sambrook *et al.*, MOLECULAR CLONING, A

LABORATORY MANUAL (2d ed., Cold Spring Harbor Press, N.Y., 1989), and Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Greene Publishing Associates and John Wiley & Sons, N.Y., 1994). Techniques for RNA isolation can be tailored for a particular organism or cell type, as is known in the art.

5

Complementary DNA can optionally be obtained from a cDNA library. The cDNA library can be derived from the genome of any organism of interest, particularly a mammal or a human. Tissue- or cell type-specific cDNA libraries can also be used as a source of cDNA.

10

Transcription of cDNA molecules *in vitro* to form cRNA molecules can be carried out using any methods known in the art. These methods include, for example, placing cDNA into a cloning vector containing a promoter, such as an SP6, T7, or T3 polymerase promoter, and transcribing the cDNA using the appropriate polymerase. A variety of commercial kits are available for this purpose.

15

A first portion of the population of cRNA molecules can be translated *in vitro*, in the absence of rough microsomes, to form a first population of polypeptides which have not been post-translationally modified. A second portion of the population of cRNA molecules can be translated *in vitro* in the presence of rough microsomes. Under the conditions of the *in vitro* translation reaction, rough microsomes can cleave signal sequences from those polypeptides which comprise such sequences. Under the same conditions, rough microsomes can also glycosylate those polypeptides which contain glycosylation sites.

20

Methods of *in vitro* translation are those which are known in the art, such as translation in a reticulocyte lysate system, particularly a rabbit reticulocyte lysate. Reticulocyte lysate systems can be assembled in the laboratory or purchased commercially in kit form.

25

Microsomes can be prepared by disruption of tissues or cells by homogenization, as is known in the art. If desired, rough and smooth microsomes can be separated using well-known techniques, such as sucrose density gradient sedimentation. Microsomes are also available commercially, for example, such as the canine pancreatic microsomes available from Promega Corp., Madison, WI.

30

SEARCHED
INDEXED
SERIALIZED
FILED
APR 19 1988
RECEIVED
FEB 20 1989
RECEIVED
FEB 20 1989

The first population of polypeptides can then be compared with the second population of polypeptides. This comparison can be by means of, for example, one- or two-dimensional polyacrylamide gel electrophoresis, as is known in the art. Polypeptides separated in the gels can be detected by any means known in the art, such as staining with copper, silver, Coomassie Brilliant Blue, amido black, fast green FCF, Ponceau S, or a chromophoric label. Separated proteins can also be visualized using radioactive, chemiluminescent, fluorescent, or enzymatic tags incorporated into the proteins before separation.

The gels can be dried or the proteins can be transferred to membranes, such as polyvinylidene difluoride membranes. Either the gels or membranes themselves or photographs of the gels or membranes can be compared by eye. Alternatively, the gels or membranes can be scanned, for example, with a densitometer and analyzed with the aid of a computer.

Polypeptide members of the second population of polypeptides, which have been modified by the rough microsomes, can be detected by any means available in the art. For example, a shift in the position of a polypeptide band can be observed, indicating an increase in molecular weight of a member of the second population compared with the corresponding polypeptide member of the first population. Such an increase in molecular weight indicates that the polypeptide member of the second population was glycosylated by the rough microsomes.

A shift in the position of a polypeptide band indicating a decrease in molecular weight of a member of the second population compared with the corresponding polypeptide member of the first population can also be observed. This decrease in molecular weight indicates that the polypeptide member of the second population contained a signal sequence which was cleaved by the rough microsomes.

Polypeptides which are modified by the rough microsomes are identified as secreted polypeptides. Optionally, quantities of cDNA molecules which encode secreted polypeptides can be obtained. Molecules of cDNA which encode polypeptides which are post-translationally modified by the rough microsomes can be placed into suitable vectors using standard recombinant DNA techniques and

used to transform host cells. Many vectors are available for this purpose, such as retroviral or adenoviral vectors and bacteriophage, as described below.

Vectors comprising cDNA which encode secreted polypeptides can be introduced into host cells using techniques available in the art. These techniques include, but are not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, and calcium phosphate-mediated transfection.

The host cells can be any host cells which are capable of propagating cDNA molecules. A variety of host cells, for example immortalized cell lines such as HeLa, CHO, or HEK, are available for this purpose.

Transformed host cells can be diluted serially and cultured to form individual colonies. Methods of culturing host cells and the media suitable for each host cell type are well known in the art. Preferably, each colony originates from a single transformed host cell. Separate preparations of cDNA from each colony can be prepared, as described above, and transcribed *in vitro* to form cRNA. The cRNA can be transcribed to form secreted polypeptides, which can be purified as is known in the art. If the preparation of secreted polypeptides from a colony contains more than one species of polypeptide, the steps described above can be repeated until a colony is obtained which contains cDNA encoding only a single species of polypeptide.

Complementary DNA molecules which encode secreted proteins can be sequenced using standard nucleotide sequencing techniques. The sequence of each cDNA molecule can be compared with known sequences in a database to determine whether the clone encodes a known or a novel secreted protein.

The inventors have used the method of the invention to identify nineteen novel human secreted proteins. Amino acid sequences for these nineteen human secreted proteins are disclosed in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. Nucleotide sequences which encode the proteins are disclosed in SEQ ID NOS:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, respectively.

5

10

20

25

30

Clones containing the cDNAs of the secreted proteins were deposited on December 11, 1997, with the ATCC. Individual bacterial cells (*E. coli*) in this composite deposit contain one or more of the polynucleotides encoding the secreted proteins of the invention and can be retrieved using an oligonucleotide probe designed from the sequence for that particular polynucleotide, as provided herein. Each polynucleotide can be removed from the vector by performing an EcoRI/NotI digestion (5' site, EcoRI; 3' site, NotI). The deposit submitted to the ATCC has been designated SECP120997. The nucleotide sequences of these deposits and the amino acid sequences they encode are controlling in the event of a discrepancy between the amino acid and nucleotide sequences disclosed herein and those contained in the deposits.

A purified and isolated subgenomic polynucleotide of the present invention comprises at least 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, or 50 contiguous nucleotides selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The isolated and purified subgenomic polynucleotides can comprise an entire nucleotide sequence selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Subgenomic polynucleotides contain less than a whole chromosome and are preferably intron-free. Polynucleotides of the invention can be isolated and purified free from other nucleotide sequences by standard nucleic acid purification techniques, using restriction enzymes and probes to isolate fragments comprising the coding sequences.

Isolated genes corresponding to the cDNA sequences disclosed herein are also provided. Known methods can be used to isolate the corresponding genes using the provided cDNA sequences. These methods include preparation of probes or primers from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 for use in identifying or amplifying the genes from human genomic libraries or other sources of human genomic DNA.

The coding sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be made using reverse transcriptase with

human mRNA as a template. Amplification by PCR can also be used to obtain the polynucleotides, using either genomic DNA or cDNA as a template. Polynucleotide molecules of the invention can also be made using the techniques of synthetic chemistry given the sequences disclosed herein. The degeneracy of the genetic code permits alternate nucleotide sequences which will encode the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38 to be synthesized. All such nucleotide sequences are within the scope of the present invention.

Polynucleotide molecules of the invention can be propagated in vectors and cell lines as is known in the art. Polynucleotide molecules can be on linear or circular molecules. They can be on autonomously replicating molecules or on molecules without replication sequences. For propagation, polynucleotides of the invention can be introduced into suitable host cells using any techniques available in the art, as described above.

Subgenomic polynucleotides of the invention can be used to propagate additional copies of the polynucleotides or to express protein, polypeptides, or fusion proteins. The subgenomic polynucleotides disclosed herein can also be used, for example, as biomarkers for tissues or chromosomes, as molecular weight markers for DNA gels, to elicit immune responses, such as the formation of antibodies against single- or double-stranded DNA, and in DNA-ligand interaction assays, to detect proteins or other molecules which interact with the nucleotide sequences.

Disease states may be associated with alterations in the expression of genes which encode proteins of the invention. Polynucleotide sequences disclosed herein can also be used to determine the involvement of any of these sequences in disease states. For example, a gene in a diseased cell can be sequenced and compared with a wild-type coding sequence of the invention. Alternatively, nucleotide probes can be constructed and used to detect normal or altered (mutant) forms of mRNA in a diseased cell. Subgenomic polynucleotides of the invention can also be used to design diagnostic tests and therapeutic compositions for diseases which may be associated with altered expression of these genes.

5

10

15

20

25

30

The present invention provides both full-length and mature forms of the disclosed proteins. Full-length forms of the proteins have the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The full-length forms of a protein can be processed enzymatically to remove a signal sequence, resulting in a mature form of the protein. Signal sequences can be identified by examination of the amino acid sequences disclosed herein and comparison with amino acid sequences of known signal sequences (see, e.g., von Heijne, 1985; Kaiser & Botstein, 1986). Similarly, transmembrane domains can be identified by examination of the amino acid sequences disclosed herein. A transmembrane domain typically contains a long stretch of 15-30 hydrophobic amino acids.

Other domains with predicted functions can also be identified. For example, the protein having the amino acid sequence shown in SEQ ID NO:23 comprises a Kunitz type serine protease inhibitor domain spanning amino acids 68 to 122 of SEQ ID NO:23. The protein having the amino acid sequence shown in SEQ ID NO:20 contains a zinc-finger motif.

Allelic variants of the disclosed subgenomic polynucleotides can occur and encode proteins which are identical, homologous, or substantially related to amino acid sequences disclosed herein (see below).

Allelic variants of subgenomic polynucleotides of the invention can be identified by hybridization of putative allelic variants with nucleotide sequences disclosed herein under stringent conditions. For example, by using the following wash conditions--2 x SCC, 0.1% SDS, room temperature twice, 30 minutes each; then 2 x SCC, 0.1% SDS, 50 °C. once, 30 minutes; then 2 x SCC, room temperature twice, 10 minutes each--allelic variants can be identified which contain at most about 25-30% basepair mismatches. More preferably, allelic variants contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

Protein variants of secreted proteins of the invention are also included. Amino acids which are not involved in regions which determine biological activity can be deleted or modified without affecting biological function. Preferably, protein

variants of the invention have amino acid sequences which are at least 85%, 90%, or 95% identical to the amino acid sequences disclosed herein and have similar biological properties (see below). More preferably, the molecules are 98% identical. Modifications of interest in the protein sequences can include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue. Proteins or derivatives can be either glycosylated or unglycosylated. Techniques for making such modifications are well known to those skilled in the art (see, e.g., U.S. 4,518,584). Alternatively, variants of proteins disclosed herein can be constructed using techniques of synthetic chemistry or using recombinant DNA methods.

Preferably, amino acid changes in variants or derivatives of proteins of the invention are conservative amino acid changes, *i.e.*, substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one amino acid for another amino acid of a family of amino acids which are structurally related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. It is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the binding properties of the resulting molecule, especially if the replacement does not involve an amino acid at a binding site involved in an interaction of the protein. Non-naturally occurring amino acids can also be used to form protein variants of the invention.

Whether an amino acid change results in a functional protein or polypeptide can readily be determined by assaying biological properties of the disclosed proteins or polypeptides, as described below. Species homologs of human subgenomic polynucleotides and proteins of the invention can also be identified by making

suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, yeast, or bacteria.

In the case of proteins which are membrane-bound, such as cell surface receptor proteins, soluble forms of the proteins can be obtained by deleting the nucleotide sequences which encode part or all of the intracellular and transmembrane domains of the protein and expressing a fully secreted form of the protein in a host cell. Techniques for identifying intracellular and transmembrane domains, such as homology searches, can be used to identify such domains in proteins of the invention using amino acid and nucleotide sequences disclosed herein.

Polypeptides consisting of less than full-length proteins of the present invention are also provided. Polypeptides of the invention can be linear or can be cyclized, for example, as described in Saragovi *et al.*, 1992, *Bio/Technology* 10, 773-778 and McDowell *et al.*, 1992, *J. Amer. Chem. Soc.* 114, 9245-9253. Polypeptides can be used, for example, as immunogens, diagnostic aids, or therapeutics, and to create fusion proteins, as described below.

Polypeptide molecules consisting of less than the entire amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38 are also provided. Such polypeptides comprise at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids of an amino acid sequence shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. Polypeptide molecules of the invention can also possess minor amino acid alterations which do not substantially affect the ability of the polypeptides to interact with specific molecules, such as antibodies.

Derivatives of the polypeptides, such as glycosylated forms, aggregative conjugates with other molecules, and covalent conjugates with unrelated chemical moieties, are also provided. Derivatives also include allelic variants, species variants, and muteins. Covalent derivatives are prepared by linkage of functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue by means known in the art. Truncations or deletions of regions which do not affect biological function are also encompassed. Truncated or deleted

polypeptides can be prepared synthetically or recombinantly, or by proteolytic digestion of purified or partially purified secreted proteins of the invention.

Fusion proteins comprising at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids of the disclosed proteins can also be constructed. Human fusion proteins are useful, *inter alia*, for generating antibodies against amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins which interact with secreted proteins of the invention and influence their function. Physical methods, such as protein affinity chromatography, or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and can also be used as drug screens. Fusion proteins can also be used to target molecules to a specific location in a cell or to cause a molecule to be secreted or to be anchored in a cellular membrane.

Fusion proteins of the invention comprise two protein segments which are fused together with a peptide bond. The first protein segment comprises at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids selected from an amino acid sequence shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The first protein segment can also be a full-length protein (comprising a signal sequence) or a mature protein (lacking a signal sequence). The second protein segment can be a full-length protein or a protein fragment. The second protein or protein fragment can be labeled with a detectable marker, such as a radioactive, chemiluminescent, biotinylated, or fluorescent tag, or can be an enzyme which will generate a detectable product. Enzymes suitable for this purpose, such as β -galactosidase, are well known in the art.

Techniques for making fusion proteins, either recombinantly or by covalently linking two protein segments, are well known in the art. Fusion proteins comprising amino acid sequences of the invention can also be constructed, for example, using standard recombinant DNA methods to make a DNA construct which comprises contiguous nucleotides selected from SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 and encoding the desired amino

PCT/US2005/035529

acids in proper reading frame with nucleotides encoding the second protein segment.

Proteins or polypeptides of the invention can be purified free from other components with which they are normally associated in a cell, such as carbohydrates, lipids, subcellular organelles, or other proteins. An isolated protein or polypeptide is at least 90% pure. Preferably, the preparations are 95% or 99% pure. The purity of a preparation can be assessed, for example, by examining electrophoretograms of protein or polypeptide preparations at several pH values and at several polyacrylamide concentrations, as is known in the art.

Standard biochemical methods can be used to isolate proteins of the invention from tissues which express the proteins or to isolate proteins, polypeptides, or fusion proteins from recombinant host cells into which a DNA construct has been introduced. Methods of protein purification, such as size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, crystallization, electrofocusing, or preparative gel electrophoresis, are well known and widely used in the art.

Alternatively, proteins, fusion proteins, or polypeptides of the invention can be produced by recombinant DNA methods or by synthetic chemical methods. Synthetic chemistry methods, such as solid phase peptide synthesis, can be used to synthesize proteins, fusion proteins, or polypeptides. For production of recombinant proteins, fusion proteins, or polypeptides, coding sequences selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be expressed in prokaryotic or eukaryotic host cells using expression systems known in the art. These expression systems include bacterial, yeast, insect, and mammalian cells (see below).

The resulting expressed protein can then be purified from the culture medium or from extracts of the cultured cells using purification procedures known in the art. For example, for proteins fully secreted into the culture medium, cell-free medium can be diluted with sodium acetate and contacted with a cation exchange resin, followed by hydrophobic interaction chromatography. Using this method, the desired protein, fusion protein, or polypeptide is typically greater than 95% pure.

Further purification can be undertaken, using, for example, any of the techniques listed above. Proteins, fusion proteins, or polypeptides can also be tagged with an epitope, such as a "Flag" epitope (Kodak), and purified using an antibody which specifically binds to that epitope.

5

It may be necessary to modify a protein produced in yeast or bacteria, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain a functional protein. Such covalent attachments can be made using known chemical or enzymatic methods.

10

Proteins or polypeptides of the invention can also be expressed in cultured cells in a form which will facilitate purification. For example, a secreted protein or polypeptide can be expressed as a fusion protein comprising, for example, maltose binding protein, glutathione-S-transferase, or thioredoxin, and purified using a commercially available kit. Kits for expression and purification of such fusion proteins are available from companies such as New England BioLabs, Pharmacia, and Invitrogen.

15

The coding sequences disclosed herein can also be used to construct transgenic animals, such as cows, goats, pigs, or sheep. Female transgenic animals can then produce proteins, polypeptides, or fusion proteins of the invention in their milk. Methods for constructing such animals are known and widely used in the art.

20

Isolated proteins, polypeptides, or fusion proteins of the invention can be used to obtain a preparation of antibodies which specifically bind to epitopes comprising amino acid sequences of the invention. Antibodies of the invention can be used, for example, to detect proteins, polypeptides, or fusion proteins of the invention which are secreted into culture medium or to identify tissues or cells which express these molecules. The antibodies can be polyclonal or monoclonal or can be single chain antibodies. Techniques for raising polyclonal and monoclonal antibodies and for constructing single chain antibodies are well known in the art.

25

Antibodies of the invention bind specifically to epitopes comprising amino acid sequences of the invention, preferably to epitopes not present on other proteins. Typically a minimum number of contiguous amino acids to encode an epitope is 6, 8, or 10. However, more amino acids can be part of an epitope, for

30

example, at least 15, 25, or 50, especially to form epitopes which involve non-contiguous residues. Specific binding antibodies do not detect other proteins on Western blots of proteins or in immunocytochemical assays. Specific binding antibodies provide a signal at least ten-fold lower than the signal provided with epitopes which do not comprise amino acid sequences of the invention. Antibodies which bind specifically to secreted proteins of the invention include those that bind to mature or full-length proteins, to polypeptides or degradation products, to fusion proteins, or to protein variants. In a preferred embodiment of the invention, the antibodies immunoprecipitate the desired protein, fusion protein, or polypeptide from solution and react with the protein, fusion protein, or polypeptide on Western blots of polyacrylamide gels.

Techniques for purifying antibodies are those which are available in the art. In a preferred embodiment, antibodies are affinity purified by passing the antibodies over a column to which amino acid sequences of the invention are bound. The bound antibody is then eluted, for example using a buffer with a high salt concentration. Any such technique may be chosen to purify antibodies of the invention.

The invention also provides DNA constructs, for expressing all or a portion of a protein of the invention in a host cell. The DNA construct comprises a promoter which is functional in the particular host cell selected. The skilled artisan can readily select an appropriate promoter from the large number of cell type-specific promoters known and used in the art. The DNA construct can also contain a transcription terminator which is functional in the host cell.

The expression construct comprises a polynucleotide segment which encodes all or a portion of a human protein encoded by SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 or a variant thereof. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter. DNA constructs can be linear or circular and can contain sequences, if desired, for autonomous replication.

The host cell comprising the DNA construct can be any suitable prokaryotic or eukaryotic cell. Expression systems in bacteria include those described in Chang

et al., *Nature* (1978) 275: 615; Goeddel *et al.*, *Nature* (1979) 281: 544; Goeddel *et al.*, *Nucleic Acids Res.* (1980) 8: 4057; EP 36,776; U.S. 4,551,433; deBoer *et al.*, *Proc. Natl. Acad. Sci. USA* (1983) 80: 21-25; and Siebenlist *et al.*, *Cell* (1980) 20: 269.

5

Expression systems in yeast include those described in Hinnen *et al.*, *Proc. Natl. Acad. Sci. USA* (1978) 75: 1929; Ito *et al.*, *J. Bacteriol.* (1983) 153: 163; Kurtz *et al.*, *Mol. Cell. Biol.* (1986) 6: 142; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25: 141; Gleeson *et al.*, *J. Gen. Microbiol.* (1986) 132: 3459, Roggenkamp *et al.*, *Mol. Gen. Genet.* (1986) 202: 302); Das *et al.*, *J. Bacteriol.* (1984) 158: 1165; De Louvencourt *et al.*, *J. Bacteriol.* (1983) 154: 737, Van den Berg *et al.*, *Bio/Technology* (1990) 8: 135; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25: 141; Cregg *et al.*, *Mol. Cell. Biol.* (1985) 5: 3376; U.S. 4,837,148; U.S. 4,929,555; Beach and Nurse, *Nature* (1981) 300: 706; Davidow *et al.*, *Curr. Genet.* (1985) 10: 380; Gaillardin *et al.*, *Curr. Genet.* (1985) 10: 49; Ballance *et al.*, *Biochem. Biophys. Res. Commun.* (1983) 112: 284-289; Tilburn *et al.*, *Gene* (1983) 26: 205-22; Yelton *et al.*, *Proc. Natl. Acad. Sci. USA* (1984) 81: 1470-1474; Kelly and Hynes, *EMBO J.* (1985) 4: 475479; EP 244,234; and WO 91/00357.

10

Expression of heterologous genes in insects can be accomplished as described in U.S. 4,745,051; Friesen *et al.* (1986) "The Regulation of Baculovirus Gene Expression" in: THE MOLECULAR BIOLOGY OF BACULOVIRUSES (W. Doerfler, ed.); EP 127,839; EP 155,476; Vlak *et al.*, *J. Gen. Virol.* (1988) 69: 765-776; Miller *et al.*, *Ann. Rev. Microbiol.* (1988) 42: 177; Carbonell *et al.*, *Gene* (1988) 73: 409; Maeda *et al.*, *Nature* (1985) 315: 592-594; Lebacq-Verheyden *et al.*, *Mol. Cell. Biol.* (1988) 8: 3129; Smith *et al.*, *Proc. Natl. Acad. Sci. USA* (1985) 82: 8404; Miyajima *et al.*, *Gene* (1987) 58: 273; and Martin *et al.*, *DNA* (1988) 7:99.

15

Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6: 47-55, Miller *et al.*, in GENERIC ENGINEERING (Setlow, J.K. *et al.* eds.), Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda *et al.*, *Nature*, (1985) 315: 592-594.

20

Expression of heterologous genes in yeast include those described in Hinnen *et al.*, *Proc. Natl. Acad. Sci. USA* (1978) 75: 1929; Ito *et al.*, *J. Bacteriol.* (1983) 153: 163; Kurtz *et al.*, *Mol. Cell. Biol.* (1986) 6: 142; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25: 141; Gleeson *et al.*, *J. Gen. Microbiol.* (1986) 132: 3459, Roggenkamp *et al.*, *Mol. Gen. Genet.* (1986) 202: 302); Das *et al.*, *J. Bacteriol.* (1984) 158: 1165; De Louvencourt *et al.*, *J. Bacteriol.* (1983) 154: 737, Van den Berg *et al.*, *Bio/Technology* (1990) 8: 135; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25: 141; Cregg *et al.*, *Mol. Cell. Biol.* (1985) 5: 3376; U.S. 4,837,148; U.S. 4,929,555; Beach and Nurse, *Nature* (1981) 300: 706; Davidow *et al.*, *Curr. Genet.* (1985) 10: 380; Gaillardin *et al.*, *Curr. Genet.* (1985) 10: 49; Ballance *et al.*, *Biochem. Biophys. Res. Commun.* (1983) 112: 284-289; Tilburn *et al.*, *Gene* (1983) 26: 205-22; Yelton *et al.*, *Proc. Natl. Acad. Sci. USA* (1984) 81: 1470-1474; Kelly and Hynes, *EMBO J.* (1985) 4: 475479; EP 244,234; and WO 91/00357.

25

Expression of heterologous genes in insects can be accomplished as described in U.S. 4,745,051; Friesen *et al.* (1986) "The Regulation of Baculovirus Gene Expression" in: THE MOLECULAR BIOLOGY OF BACULOVIRUSES (W. Doerfler, ed.); EP 127,839; EP 155,476; Vlak *et al.*, *J. Gen. Virol.* (1988) 69: 765-776; Miller *et al.*, *Ann. Rev. Microbiol.* (1988) 42: 177; Carbonell *et al.*, *Gene* (1988) 73: 409; Maeda *et al.*, *Nature* (1985) 315: 592-594; Lebacq-Verheyden *et al.*, *Mol. Cell. Biol.* (1988) 8: 3129; Smith *et al.*, *Proc. Natl. Acad. Sci. USA* (1985) 82: 8404; Miyajima *et al.*, *Gene* (1987) 58: 273; and Martin *et al.*, *DNA* (1988) 7:99.

30

Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6: 47-55, Miller *et al.*, in GENERIC ENGINEERING (Setlow, J.K. *et al.* eds.), Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda *et al.*, *Nature*, (1985) 315: 592-594.

Mammalian expression can be accomplished as described in Dijkema *et al.*,

5

EMBO J. (1985) 4: 761; Gorman *et al.*, *Proc. Natl. Acad. Sci. USA* (1982b) 79: 6777; Boshart *et al.*, *Cell* (1985) 41: 521; and U.S. 4,399,216. Other features of mammalian expression can be facilitated as described in Ham and Wallace, *Meth. Enz.* (1979) 58: 44; Barnes and Sato, *Anal. Biochem.* (1980) 102: 255; U.S. 4,767,704; U.S. 4,657,866; U.S. 4,927,762; U.S. 4,560,655; WO 90/103430, WO 87/00195, and U.S. RE 30,985.

10

DNA constructs of the invention can be introduced into host cells using any technique known in the art. These techniques include transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, and calcium phosphate-mediated transfection.

15

Alternatively, expression of an endogenous gene encoding a protein of the invention can be manipulated by introducing by homologous recombination a DNA construct comprising a transcription unit in frame with the endogenous gene, to form a homologously recombinant cell comprising the transcription unit. The transcription unit comprises a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site. The new transcription unit can be used to turn the endogenous gene on or off as desired. This method of affecting endogenous gene expression is taught in U.S. 5,641,670, which is incorporated herein by reference.

20

The targeting sequence is a segment of at least 10, 12, 15, 20, or 50 contiguous nucleotides selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The transcription unit is located upstream to a coding sequence of the endogenous gene. The exogenous regulatory sequence directs transcription of the coding sequence of the endogenous gene.

25

Secreted proteins of the invention have a variety of uses. For example, secreted proteins can be used in assays to determine biological activities, such as cytokine, cell proliferation, or cellular differentiation activities, tissue growth or

30

regeneration, activin or inhibin activity, chemotactic or chemokinetic activity, hemostatic or thrombolytic activity, receptor/ligand activity, tumor inhibition, or anti-inflammatory activity. Assays for these activities are known in the art and are disclosed, for example, in U.S. 5,654,173, which is incorporated herein by reference.

5

Proteins of the invention can also be used as biomarkers, to identify tissues or cell types which express the proteins, or a stage- or disease-specific alteration in protein expression. Proteins of the invention can be used in protein interaction assays, to identify ligands or binding proteins. Compounds which affect the biological activities of the secreted proteins or their ability to interact with specific ligands can be identified using proteins of the invention in screening assays. Proteins and antibodies of the invention can also be used to design diagnostic tests and therapeutic compositions for diseases which may be associated with altered expression of these proteins. Fusion proteins comprising, for example, signal sequences or transmembrane domains of the disclosed proteins, can be used to target other protein domains to cellular locations in which the domains are not normally found, such as bound to a cellular membrane or secreted extracellularly.

10

Further objects, features, and advantages of the present invention will readily occur to the skilled artisan provided with the disclosure above.

15

SYNOPSIS OF THE INVENTION

1. An isolated and purified human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

20

2. An isolated and purified human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

25

30

3. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 90% identical.

4. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 95% identical.

5. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 98% identical.

6. An isolated and purified human polypeptide comprising at least 6 contiguous amino acids of an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

7. A fusion protein comprising a first protein segment and a second protein segment fused together by means of a peptide bond, wherein the first protein segment consists of at least 6 contiguous amino acids selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

8. A preparation of antibodies which specifically bind to the human protein of item 1.

9. The preparation of antibodies of item 8 wherein the antibodies are monoclonal.

10. The preparation of antibodies of item 8 wherein the antibodies are polyclonal.

11. The preparation of antibodies of item 8 wherein the antibodies are single chain antibodies.

12. An isolated and purified subgenomic polynucleotide having a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

13. An isolated and purified subgenomic polynucleotide consisting of at least 10 contiguous nucleotides of a nucleotide sequence selected from the group

consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

14. An isolated gene corresponding to a cDNA sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

15. A DNA construct for expressing all or a portion of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, comprising:

10 a promoter; and

a polynucleotide segment encoding at least 6 contiguous amino acids of the human protein, wherein the polynucleotide segment is located downstream from the promoter, wherein transcription of the polynucleotide segment initiates at or 3' to the promoter.

15 16. A host cell comprising a DNA construct comprising:

a promoter; and

a polynucleotide segment encoding at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, wherein the polynucleotide segment is located downstream from the promoter and wherein transcription of the polynucleotide segment initiates at or 3' to the promoter.

20 25 17. A homologously recombinant cell having incorporated therein a new transcription initiation unit, wherein the new transcription initiation unit comprises in 5' to 3' order:

(a) an exogenous regulatory sequence;

(b) an exogenous exon; and

(c) a splice donor site,

wherein the transcription initiation unit is located upstream to a coding sequence of a gene, wherein the gene comprises a nucleotide sequence selected from the group

consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, and wherein the exogenous regulatory sequence controls transcription of the coding sequence of the gene.

18. A method of producing a human protein, comprising the steps of:
5 growing a culture of a cell comprising a DNA construct comprising

(1) a promoter and (2) a polynucleotide segment encoding at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, wherein the polynucleotide segment is located downstream from the promoter and wherein transcription of the polynucleotide segment initiates at or 3' to the promoter; and;

10 purifying the protein from the culture.

19. A method of producing a human protein, comprising the steps of:
15 growing a culture of a homologously recombinant cell having

incorporated therein a new transcription initiation unit, wherein the new transcription initiation unit comprises in 5' to 3' order:

- (a) an exogenous regulatory sequence;
- (b) an exogenous exon; and
- (c) a splice donor site,

20 wherein the transcription initiation unit is located upstream to a coding sequence of a gene, wherein the gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 and wherein the exogenous regulatory sequence controls transcription of the coding sequence of the gene; and
25 purifying the protein from the culture.

20. A method of identifying a secreted polypeptide which is modified by rough microsomes, comprising the steps of:

transcribing *in vitro* a population of cDNA molecules whereby a population of cRNA molecules is formed;

5

translating a first portion of the population of cRNA molecules *in vitro* in the absence of rough microsomes whereby a first population of polypeptides is formed;

translating a second portion of the population of cRNA molecules *in vitro* in the presence of rough microsomes whereby a second population of polypeptides is formed;

comparing the first population of polypeptides with the second population of polypeptides; and

10

detecting polypeptide members of the second population which have been modified by the rough microsomes.

21. The method of item 20 wherein the population of cDNA molecules is synthesized by reverse transcription of a population of mRNA molecules.

22. The method of item 21 wherein the mRNA molecules are isolated from a mammal.

23. The method of item 22 wherein the mRNA molecules are isolated from a human.

24. The method of item 20 wherein the population of cDNA molecules is obtained from a cDNA library.

25. The method of item 24 wherein the cDNA library is derived from a mammalian genome.

26. The method of item 25 wherein the cDNA library is derived from a human genome.

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: Escobedo, Jaime
Quianjin, Hu
Garcia, Pablo
Williams, Lewis T.
Kothakota, Srinivas

(ii) TITLE OF THE INVENTION: Secreted Human Proteins

(iii) NUMBER OF SEQUENCES: 38

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Banner & Witcoff
(B) STREET: 1001 G Street, NW
(C) CITY: Washington
(D) STATE: DC
(E) COUNTRY: USA
(F) ZIP: 20001

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: DOS
(D) SOFTWARE: FastSEQ for Windows Version 2.0

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE: 11-DEC-1997

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: 60/032757
(B) FILING DATE: 11-DEC-1996

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Kagan, Sarah A
(B) REGISTRATION NUMBER: 32141
(C) REFERENCE/DOCKET NUMBER:

2441.39505;1369.002;1452.001

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 202-508-9100
(B) TELEFAX: 202-508-9299
(C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2063 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ix) FEATURE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAATTCTGGCA CGAGGCCTCA GTCTTCCAGG GCGGCGGTGG GTGTCCGCTT CTCTCTGCTC	60
TTCGACTGCA CCGCACTCGC GCGTGACCCCT GACTCCCCCT AGTCAGCTCA GCGGTGCTGC	120
CATGGCGTGG CGGCAGGCGCG AAGCCGGCGT CGGGGCTCGC GGCGTGTGG CTCTGGCGTT	180
GCTCGCCCTG GCCCTGTGCG TGCCCGGGGC CCGGGGCCGG GCTCTCGAGT GGTTCTCGGC	240

DNA sequence analysis

CGTGGTAAAC ATCGAGTACG TGGACCCGCA GACCAACCTG ACGGTGTGGA GCGTCTCGGA	300
GAGTGGCCGC TTCGGCGACA GCTCGCCCAA GGAGGGCGCG CATGGCCTGG TGGCGTCCC	360
GTGGCGGCC GCAGGAGACC TCGAGGGCTG CGCGCCCGAC ACGCGCTTCT TCGTGCCCCA	420
GCCCAGCGGC CGAGGGGCCG CGCCCTGGGT CGCCCTGGTG GCTCGTGGGG GCTGCACCTT	480
CAAGGACAAG GTGCTGGTGG CGGCAGGGAG GAACGCCTCG GCCGTCGTCC TCTACAATGA	540
GGAGCGCTAC GGGAACATCA CCTTGCCCAT GTCTCACGCG GGAACAGGAA ATATAGTGGT	600
CATTATGATT AGCTATCCAA AAGGAAGAGA AATTTGGAG CTGGTGCAAA AAGGAATTCC	660
AGTAACGATG ACCATAGGGG TTGGCACCCG GCATGTACAG GAGTTCATCA GCGGTCAGTC	720
TGTGGTGTGTT GTGCCATTG CCTTCATCAC CATGATGATT ATCTCGTTAG CCTGGCTAAT	780
ATTTTACTAT ATACAGCGTT TCCTATATAAC TGGCTCTCAG ATTGGAAGTC AGAGCCATAG	840
AAAAGAAACT AAGAAAGTTA TTGGCCAGCT TCTACTTCAT ACTGTAAAGC ATGGAGAAAA	900
GGGAATTGAT GTTGTGCTG AAAATTGTGC AGTGTGTATT GAAAATTCA AAGTAAAGGA	960
TATTATTAGA ATTCTGCCAT GCAAGCATAT TTTCATAGA ATATGCATTG ACCCATGGCT	1020
TTTGGATCAC CGAACATGTC CAATGTGTAA ACTTGATGTC ATCAAAGCCC TAGGATATTG	1080
GGGAGAGCCT GGGGATGTAC AGGAGATGCC TGCTCCAGAA TCTCCTCCTG GAAGGGATCC	1140
AGCTGCAAAT TTGAGTCTAG CTTTACCAAGA TGATGACGGA AGTGTGACA GCAGTCCACC	1200
ATCAGCCTCC CCTGCTGAAT CTGAGCCACA GTGTGATCCC AGCTTTAAAG GAGATGCAGG	1260
AGAAAATACG GCATTGCTAG AAGCCGGCAG GAGTGAATCT CGGCATGGAG GACCCATCTC	1320
CTAGCACACG TGCCCACTGA AGTGGCACCA ACAGAAGTTT GGCTTGAACG AAAGGACATT	1380
TTATTTTTT TACTTTAGCA CATAATTGT ATATTTGAAA ATAATGTATA TTATTTTAC	1440
TATTAGATTC TGATTTGATA TACAAAGGAC TAAGATATT TCTTCTTGAA GAGACTTTTC	1500
GATTAGTCCT CATATATTAA TCTACTAAAA TAGAGTGTGTT ACCATGAACA GTGTGTTGCT	1560
TCAGACTATT ACAAAAGACAA CTGGGGCAGG TACTCTAATA TAAAGGACAG GTGGTGTTC	1620
TAAATAATTG GCTGCTATGG TTCTGTAAAA ACCAGTTAAT TCTATTTTC AAGGTTTTG	1680
GCAAAGCACA TCAATGTTAG ACTAGTTGAA GTGGAATTGT ATAATTCAAT TCGATAATTG	1740
ATCTCATGGG CTTTCCCTGG AGGAAAGGTT TTTTTGTTG TTTTTTTTT AAGAACTTGA	1800
AACTTGTAAA CTGAGATGTC TGTAGCTTT TTGCCCATCT GTAGTGTATG TGAAGATTTC	1860
AAAACCTGAG AGCACTTTT CTTTGTGTTAG AATTATGAGA AAGGCACTAG ATGACTTTAG	1920
GATTTGCATT TTTCCCTTTA TTGCCTCATT TCTTGTGACG CCTTGTGGGG GAGGGAAATC	1980
TGTTTATTTT TTCCTACAAA TAAAAAGCTA AGATTCTATA TCGAAAAAAA AAAAAAAA	2040
AAAAAAAAAA TTCCTGCGGC CGC	2063

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1328 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTGGCA CGAGGTAGGC AAGGGATAAA AAGGCACCTA AGGCCCTTT GCAATAAGAA	60
GCCAGATGGA TAAAGGAAGT GCTGGTCACC CTGGAGGTGT ACTGGTTGG GGAAGGTCCC	120
CGGCCCCCCAC AGCCCTCTGG GGAGCCTCAC CCTGGCTCTC CCCACTCACC TCAGCCCTCA	180
GGCAGCCCCCT CCACAGGGCC CCTCTCCTGC CTGGACAGCT CTGCTGGTCT CCCC GTCCCC	240
TGGAGAAAGAA CAAGGCCATG GGTCGGCCCC TGCTGCTGCC CCTGCTGCTC CTGCTGCAGC	300
CGCCAGCATT TCTGCAGCCT GGTGGCTCCA CAGGATCTGG TCCAAGCTAC CTTTATGGGG	360
TCACTCAACC AAAACACCTC TCAGCCTCCA TGGGTGGCTC TGTGGAAATC CCCTTCTCCT	420
TCTATTACCC CTGGGAGTTA GCCATAGTTC CCAACGTGAG AATATCCTGG AGACGGGCC	480
ACTTCCACGG GCAGTCCTTC TACAGCACAA GGCCGCCTTC CATTACAAG GATTATGTGA	540
ACCGGCTCTT TCTGAACTGG ACAGAGGGTC AGGAGAGCGG CTTCCTCAGG ATCTCAAACC	600
TGCGGAAGGA GGACCAGTCT GTGTATTTCT GCCGAGTCGA GCTGGACACC CGGAGATCAG	660
GGAGGCAGCA GTTGCAGTCC ATCAAGGGGA CCAAACTCAC CATCACCCAG GCTGTCACAA	720
CCACCACAC CTGGAGGCC AGCAGCACAA CCACCATAGC CGGCCTCAGG GTCACAGAAA	780
GCAAAGGGCA CTCAGAATCA TGGCACCTAA GTCTGGACAC TGCCATCAGG GTTGCATTGG	840
CTGTCGCTGT GCTAAAAACT GTCATTTGG GACTGCTGTG CCTCCTCCTC CTGTGGTGG	900
GGAGAAGGAA AGGTAGCAGG GCGCCAAGCA GTGACTTCTG ACCAACAGAG TGTGGGGAGA	960
AGGGATGTGT ATTAGCCCCG GAGGACGTGA TGTGAGACCC GCTTGTGAGT CCTCCACACT	1020
CGTTCCCCAT TGGCAAGATA CATGGAGAGC ACCCTGAGGA CCTTTAAAAG GCAAAGCCGC	1080
AAGGCAGAAG GAGGCTGGGT CCCTGAATCA CCGACTGGAG GAGAGTTACC TACAAGAGCC	1140
TTCATCCAGG AGCATCCACA CTGCAATGAT ATAGGAATGA GGTCTGAACT CCACTGAATT	1200
AAACCACTGG CATTGGGGG CTGTTATTA TAGCAGTGCA AAGAGTTCT TTATCCTCCC	1260
CAAGGATGGA AAAATACAAT TTATTTGCT TACCATAAAA AAAAAAAA AAAAATTCCCT	1320
CGGGCCGC	1328

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCTGGCA CGAGGGCAAG ATTCTGATACA AAACCCAATGA ACCTGTGTGG GAGGAAAACT	60
TCACTTTCTT CATTACAAT CCCAAGCGCC AGGACCTTGA AGTTGAGGTC AGAGACGAGC	120
AGCACCCAGTG TTCCCTGGGG AACCTGAAGG TCCCCCTCAG CCAGCTGCTC ACCAGTGAGG	180
ACATGACTGT GAGCCAGCGC TTCCAGCTCA GTAACTCGGG TCCAAACAGC ACCATCAAAGA	240
TGAAGATTGC CCTGCGGGTG CTCCATCTCG AAAAGCGAGA AAGGCCTCCA GACCACCAAC	300
ACTCAGCTCA AGTCAAACGT CCCTCTGTGT CCAAAGAGGG GAGGAAAACA TCCATCAAAT	360
CTCATATGTC TGGGTCTCCA GGCCCTGGTG GCAGCAACAC AGCTCCATCC ACACCAGTCA	420
TTGGGGGCAG TGATAAGCCT GGTATGGAAG AAAAGGCCA GCCCCCTGAG GCCGGCCCTC	480
AGGGGCTGCA CGACCTGGGC AGAACGCTCCT CCAGCCTCCT GGCCCTCCCCA GGCCACATCT	540
CAGTCAAGGA GCCGACCCCC AGCATCGCCT CGGACATCTC GCTGCCCATC GCCACCCAGG	600
AGCTGCGGCA AAGGCTGAGG CAGCTGGAAA ACAGGGACGAC CCTGGGACAG TCTCCACTGG	660
GGCAGATCCA GCTGACCATC CGGCACAGCT CGCAGAGAAA CAAGCTTATC GTGGTCGTGC	720
ATGCCTGCAG AACACCTCATT GCCTTCTCTG AAGACGGCTC TGACCCCTAT GTCCGCATGT	780
ATTTATTACC AGACAAGAGG CGGTCAAGGAA GGAGGAAAAC ACACGTGTCA AAGAAAACAT	840
TAAATCCAGT GTTGATCAA AGCTTGATT TCAGTGTTC GTTACCAAGAA GTGCAGAGGA	900
GAACGCTCGA CGTTGCCGTG AAGAACAGTG GCGGCTTCCT GTCCAAAGAC AAAGGGCTCC	960
TTGGCAAAGT ATTGGTTGCT CTGGCATCTG AAGAACTTGC CAAAGGCTGG ACCCAGTGGT	1020
ATGACCTCAC GGAAGATGGG ACGAGGCCTC AGGCGATGAC ATAGCCGCAG CAGGCAGGAG	1080
GCGTCCTCTT CAGCGTAGCT CTCCACCTCT ACCCGGAACA CACCCCTCTCA CAGACGTACC	1140
AATGTTATTT TTATAATTTC ATGGATTTAG TTATACATAC CTTAATAGTT TTATAAAATT	1200
GTTGACATTT CAGGCAAATT TGGCCAATAT TATCATTGAA TTTTCTGTGT TGGATTTCT	1260
CTAGGATTTC GCCAGTTCCCT ACAACGTGCA GTAGGGCGGC GGTAGCTCTT GTGTCTGTGG	1320
ACTCTGCTCA GCTGTGTCCG TAGGAGTCGG ATGTGTCTGT GCTTTATTAT GGCTTGT	1380
ATATATCACT GAGGTATACT ATGCCATGTA AATAGACTAT TTTTATAAT CTTAACATGC	1440
TGGTTAAAT TCAGAAAGGAA ATAGATCAAG GAAATATATA TATTTCTTC TAAAACATTAT	1500
TAAATTCGTG TGACAAATAA TCATTTCAT CTTGGCAGCA AAAAGTTCTC AGTGACCTAT	1560
TTTGTGGTGT TTCTTTTGAA AAAGAAAAGC TGAAATATTA TAAATGCTA GTATGTTCT	1620
GCCCATTATG AAAGATGAAA TAAAGTATTC AAAATATTAA AAAAAAAA AAAAAATTCC	1680
TGCGGCCGC	1689

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1505 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAATTGGCA CGAGGAGCAG ATCTGCAAGA GTTCGTTA TGGAGGCTGC TTGGCAACA	60
AGAACAACTA CCTTCGGAA GAAGAGTGCATTCAGCCTG TCGGGGTGTG CAAGGTGGC	120
CTTGAGAGG CAGCTCTGGG GCTCAGGCGA CTTCCCCCA GGGCCCTCC ATGGAAAGGC	180
GCCATCCAGT GTGCTCTGGC ACCTGTCAGC CCACCCAGTT CCGCTGCAGC AATGGCTGCT	240
GCATCGACAG TTTCCTGGAG TGTGACGACA CCCCCAACTG CCCCAGGCC TCCGACGAGG	300
CTGCCTGTGA AAAATACACG AGTGGCTTG ACGAGCTCCA GCGCATCCAT TTCCCCAGCG	360
ACAAAGGGCA CTGCGTGGAC CTGCCAGACA CAGGACTCTG CAAGGAGAGC ATCCCGCGCT	420
GGTACTACAA CCCCTTCAGC GAACACTGCG CCCGCTTAC CTATGGTGGT TGTTACGGCA	480
ACAAGAACAA CTTGAGGAA GAGCAGCAGT GCCTCGAGTC TTGTCGCGGC ATCTCCAAGA	540
AGGATGTGTT TGGCCTGAGG CGGGAAATCC CCATTCCAG CACAGGCTCT GTGGAGATGG	600
CTGTCGCACT GTTCCGGTC ATCTGCATTG TGGTGGTGGT AGCCATCTTG GGTTACTGCT	660
TCTTCAAGAA CCAGAGAAAG GACTTCCACG GACACCACCA CCACCCACCA CCCACCCCTG	720
CCAGCTCCAC TGTCTCCACT ACCGAGGACA CGGAGCACCT GGTCTATAAC CACACCACGC	780
GGCCCTCTG AGCCTGGTC TCACCGGCTC TCACCTGGCC CTGCTTCCTG CTTGCCAAGG	840
CAGAGGCCTG GGCTGGAAA AACTTGAA CCAGACTCTT GCCTGTTCC CAGGCCACT	900
GTGCCTCAGA GACCAGGGCT CCAGCCCTC TTGGAGAAGT CTCAGCTAAG CTCACGTCC	960
GAGAAAGCTC AAAGGTTGG AAGGAGCAGA AAACCCCTGG GCCAGAAGTA CCAGACTAGA	1020
TGGACGTGCC TGCATAGGAG TTTGGAGGAA GTTGGAGTT TGTTTCCTCT GTTCAAAGCT	1080
GCCTGTCCCT ACCCCATGGT GCTAGGAAGA GGAGTGGGGT GGTGTCAGAC CCTGGAGGCC	1140
CCAACCCCTGT CCTCCCGAGC TCCTCTTCCA TGCTGTGGC CCAGGGCTGG GAGGAAGGAC	1200
TTCCCTGTGT AGTTGTGCT GTAAAGAGTT GCTTTTGTT TATTTAATGC TGTGGCATGG	1260
GTGAAGAGGA GGGGAAGAGG CCTGTTGGC CTCTCTATCC TCTCTTCCTC TTCCCCCAAG	1320
ATTGAGCTCT CTGCCCTTGA TCAGCCCCAC CCTGGCCTAG ACCAGCAGAC AGAGCCAGGA	1380
GAAGCTCAGC TGCATTCCGC AGCCCCCACC CCCAAGGTC TCCAACATCA CAGCCCAGCC	1440
CGCCCACTGG GTAATAAAAG TGGTTGTGG AAAAAAAA AAAAAAAA AAGTCCTGCG	1500

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2002 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAATTCTGGCA CGAGGGCCAT GGCGGGCTA TCCCGCGGGT CCGCGCGCGC ACTGCTCGCC	60
GCCCTGCTGG CGTCGACGCT GTTGGCGCTG CTCGTGTCGC CCGCGCGGGG TCGCGGCGGC	120
CGGGACCACG GGGACTGGGA CGAGGCCTCC CGGCTGCCGC CGCTACCACC CCGCGAGGAC	180
CGGGCGCGCG TGGCCCGCTT CGTGACGCAC GTCTCCGACT GGGCGCTCT GGCCACCATC	240
TCCACGCTGG AGGCGGTGCG CGGCCGGCCC TTGCGCGACG TCCTCTCGCT CAGCGACGGG	300
CCCCCGGGCG CGGGCAGCGG CGTGCCCTAT TTCTACCTGA GCCCGCTGCA GCTCTCCGTG	360
AGCAACCTGC AGGAGAAATCC ATATGCTACA CTGACCATGA CTTGGCACA GACCAACTTC	420
TGCAAGAAC ATGGATTGTA TCCACAAAGT CCCCTTTGTG TTCACATAAT GCTGTCAGGA	480
ACTGTGACCA AGGTGAATGA AACAGAAATG GATATTGCAA AGCATTGTT ATTCAATTGCA	540
CACCCCTGAGA TGAAAACCTG GCCTTCCAGC CATAATTGGT TCTTGCTAA GTTGAATATA	600
ACCAATATCT GGGTCCTGGA CTACTTTGGT GGACCAAAAA TCGTGACACC AGAAGAATAT	660
TATAATGTCA CAGTCAGTG AAGCAGACTG TGGTGAATT AGCAACACTT ATGAAGTTTC	720
TTAAAGTGGC TCATACACAC TTAAAAGGCT TAATGTTCT CTGGAAAGCG TCCCAGAATA	780
TTAGCCAGTT TTCTGTCACA TGCTGGTTG TTTGCTTGCT TGTTACTTG CTTGTTTACC	840
AATAGAGTTG ACCTGTTATT GGATTCCTG GAAGATGTGG TAGCTACTTT TTTCTATTT	900
TGAAGCCATT TTCTGAGAGA AATATCCTTC ACTATAATCA AATAAGTTT GTCCCACCAA	960
TTCCAAAGAT GTTTCCAGTG GTGCTCTTGA AGAGGAATGA GTACCAAGTT TAAATTGCC	1020
ATTGGCATT GAAGGTAGTT GAGTATGTGT TCTTTATTCC TAGAAGCCAC TGTGCTTGGT	1080
AGAGTGCATC ACTCACCAACA GCTGCCTCTT GAGCTGCCTG AGCCTGGTGC AAAAGGATTG	1140
GCCCCCATT A TGGTGTCTT GAATAAAATCT TGCCAAGATA GACAAACAAT GATGAAACTC	1200
AGATGGAGCT TCCTACTCAT GTTGATTAT GTCTCACAAAT CCTGGGTATT GTTAATTCAA	1260
CATAGGGTGA AACTATTTCT GATAAAGAAC TTTGAAAAAA CTTTTATAC TCTAAAGTGA	1320
TACTCAGAAC AAAAGAAAGT CATAAAACTC CTGAATTAA TTTCCCCACC TAAGTCGAGA	1380

CAGTATTATC AAAACACATG TGCACACAGA TTATTTTG GCTCCAAAAC TGGATTGCAA	1440
AAGAAAGAGG AGAGATATT TGTGTGTTCC TGGTATTCTT TTATAAGTAA AGTTACCCAG	1500
GCATGGACCA GCTTCAGCCA GGGACAAAAT CCCCTCCCAA ACCACTCTCC ACAGCTTTT	1560
AAAAAATACTT CTACTCTTAA CAATTACCTA AGGTTCTTC AAACCCCCC AACTCTTAAT	1620
AGCTTCTAGT GCTGCTACAA TCTAAGTCAG GTCACCAGAG GGAAGAGAAC ATGGCATTAA	1680
AAGAACATACA TCTTCAGAAG AGAAGACACT AATATTATTA CCCATATACA TGATTCAGA	1740
AGATGACATA AGATTCTCT TAAAGAGGAA ATGTCAGGAA TCAAGCCACT GAATCCTTAA	1800
AGAGAAAAGT TGAATATGAG TCATTGTGTC TGAAAACTGC AAAGTGAAC TAACTGAGAT	1860
CCAGCAAACA GGTTCTGTT AAGAAAAATA ATTTATACTA AATTTAGTAA AATGGACTTC	1920
TTATTCAAAG CATCAATAAT TAAAAGAATT ATTTAAAAA AAAAAAAA AAAAAAAA	1980
AAAAAAAAAT TCCTGCGGCC GC	2002

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1322 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCGGCA CGAGGGCCAC GACTCTGCTG GCATTTCTTC TATAGCCACT GGAATCTGAT	60
CCTGATTGTC TTCCACTACT ACCAGGCCAT CACCACTCCG CCTGGGTACC CACCCCAGGG	120
CAGGAATGAT ATCGCCACCG TCTCCATCTG TAAGAAGTGC ATTTACCCCA AGCCAGCCCG	180
AACACACCAC TGCAGCATCT GCAACAGGTG TGTGCTGAAG ATGGATCACCC ACTGCCCTG	240
GCTAAACAAT TGTGTGGGCC ACTATAACCA TCGGTACTTC TTCTCTTCT GCTTTTCAT	300
GACTCTGGC TGTGTCTACT GCAGCTATGG AAGTTGGAC CTTTCCGGG AGGCTTATGC	360
TGCCATTGAG AAAATGAAAC AGCTCGACAA GAACAAACTA CAGGCGGTTG CCAACCAGAC	420
TTATCACCAG ACCCCACCAC CCACCTTCTC CTTTCGAGAA AGGATGACTC ACAAGAGTCT	480
TGTCTACCTC TGGTTCTGT GCAGTTCTGT GGCACTTGCC CTGGGTGCC TAACTGTATG	540
GCATGCTGTT CTCATCAGTC GAGGTGAGAC TAGCATCGAA AGGCACATCA ACAAGAAGGA	600
GAGACGTCGG CTACAGGCCA AGGGCAGAGT ATTTAGGAAT CCTTACAAC ACTGGCTGCTT	660
GGACAACTGG AAGGTATTCC TGGGTGTGGA TACAGGAAGG CACTGGCTTA CTCGGGTGCT	720
CTTACCTTCT ACTCACTTGC CCCATGGAA TGGAATGAGC TGGGAGCCCC CTCCCTGGGT	780

GACTGCTCAC	TCAGCCTCTG	TGATGGCAGT	GTGAGCTGGA	CTGTGTCAGC	CACGACTCGA	840
GCACTCATTC	TGCTCCCTAT	GTTATTCAA	GGGCCTCCAA	GGGCAGCTTT	TCTCAGAAC	900
CTTGATCAA	AAGAGCCAGT	GGGCCTGCCT	TAGGGTACCA	TGCAGGACAA	TTCAAGGACC	960
AGCCTTTTA	CCACTGCAGA	AGAAAGACAC	AATGTGGAGA	AATCTTAGGA	CTGACATCCC	1020
TTTACTCAGG	CAAACAGAAG	TTCCAACCCC	AGACTAGGGG	TCAGGCAGCT	AGCTACCTAC	1080
CTTGCCCCAGT	GCTGACCCGG	ACCTCCTCCA	GGATACAGCA	CTGGAGTTGG	CCACCACCTC	1140
TTCTACTTGC	TGTCTGAAAAA	AACACCTGAC	TAGTACAGCT	GAGATCTTGG	CTTCTCAACA	1200
GGGCAAAGAT	ACCAGGCCTG	CTGCTGAGGT	CACTGCCACT	TCTCACATGC	TGCTTAAGGG	1260
AGCACAAATA	AAGGTATTAG	ATTTTAAAAA	AAAAAAAAAA	AAAAAAAAAT	TCCTGCAGGCC	1320
GC						1322

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1573 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTGGCA	CGAGGAGCCT	GCCTTCATCT	AGGATGGCTC	CTCTGGGCAT	GCTGCTTGGG	60
CTGCTGATGG	CCGCCTGCTT	CACCTTCTGC	CTCAGTCATC	AGAACCTGAA	GGAGTTGCC	120
CTGACCAACC	CAGAGAAGAG	CAGCACAAA	GAAACAGAGA	GAAAAGAAC	CAAAGCCGAG	180
GAGGAGCTGG	ATGCCGAAGT	CCTGGAGGTG	TTCCACCCGA	CGCATGAGTG	GCAGGCCCTT	240
CAGCCAGGGC	AGGCTGTCCC	TGCAGGATCC	CACGTACGGC	TGAATCTTCA	GACTGGGGAA	300
AGAGAGGCAA	AACTCCAATA	TGAGGACAAG	TTCCGAAATA	ATTTGAAAGG	CAAAAGGCTG	360
GATATCAACA	CCAACACCTA	CACATCTCAG	GATCTCAAGA	GTGCACTGGC	AAAATTCAAG	420
GAGGGGGCAG	AGATGGAGAG	TTCAAAGGAA	GACAAGGCAA	GGCAGGCTGA	GGTAAAGCGG	480
CTCTTCCGCC	CCATTGAGGA	ACTGAAGAAA	GACTTGATG	AGCTGAATGT	TGTCATTGAG	540
ACTGACATGC	AGATCATGGT	ACGGCTGATC	AACAAGTTCA	ATAGTTCCAG	CTCCAGTTG	600
GAAGAGAAGA	TTGCTGCGCT	CTTGATCTT	GAATATTATG	TCCATCAGAT	GGACAATGCG	660
CAGGACCTGC	TTTCCTTGG	TGGTCTTCAA	GTGGTGATCA	ATGGGCTGAA	CAGCACAGAG	720
CCCCTCGTGA	AGGAGTATGC	TGCGTTGTG	CTGGGCGCTG	CCTTTCCAG	CAACCCCAAG	780
GTCCAGGTGG	AGGCCATCGA	AGGGGGAGCC	CTGCAGAAGC	TGCTGGTCAT	CCTGGCCACG	840

GAGCAGCCGC	TCACTGCAAA	GAAGAAGGTC	CTGTTGCAC	TGTGCTCCCT	GCTGCCAC	900
TTCCCCTATG	CCCAGCGGCA	GTTCTGAAG	CTCGGGGGC	TGCAGGT CCT	GAGGACCTG	960
GTGCAGGAGA	AGGGCACGGA	GGTGCTCGCC	GTGCGCGTGG	TCACACTGCT	CTACGACCTG	1020
GTCACGGAGA	AGATGTTCGC	CGAGGAGGAG	GCTGAGCTGA	CCCAGGAGAT	GTCCCCAGAG	1080
AAGCTGCAGC	AGTATCGCCA	GGTACACCTC	CTGCCAGGCC	TGTGGGAACA	GGGCTGGTGC	1140
GAGATCACGG	CCCACCTCCT	GGCGCTGCC	GAGCATGATG	CCC GTGAGAA	GGT GCTGCAG	1200
ACACTGGCG	TCCTCCTGAC	CACCTGCCGG	GACCGCTACC	GTCAGGACCC	CCAGCTCGGC	1260
AGGACACTGG	CCAGCCTGCA	GGCTGAGTAC	CAGGTGCTGG	CCAGCCTGGA	GCTGCAGGAT	1320
GGTGAGGACG	AGGGCTACTT	CCAGGAGCTG	CTGGGCTCTG	TCAACAGCTT	GCTGAAGGAG	1380
CTGAGATGAG	GCCCCACACC	AGGACTGGAC	TGGGATGCCG	CTAGTGAGGC	TGAGGGGTGC	1440
CAGCGTGGGT	GGGCTTCTCA	GGCAGGAGGA	CATCTTGGCA	GTGCTGGCTT	GGCCATTAAA	1500
TGGAAACCTG	AAGGCCAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	1560
TTCCTGC CGGC	CGC					1573

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1185 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GAATTCTGGCA	CGAGGGGGCT	TTAAGGGACA	GCTGAGCCGG	CAGGTGGCAG	ATCAGATGTG	60
GCAGGGCTGGG	AAAAGACAAG	CCTCCAGGGC	CTTCAGCTTG	TACGCCAAC A	TCGACATCCT	120
CAGACCCTAC	TTTGATGTGG	AGCCTGCTCA	GGT GCGAAGC	AGGCTCCTGG	AGTCCATGAT	180
CCCTATCAAG	ATGGTCAACT	TCCCCCAGAA	AATTGCAGGT	GA ACTCTATG	GACCTCTCAT	240
GCTGGTCTTC	ACTCTGGTTG	CTATCCTACT	CCATGGGATG	AAGACGTCTG	ACACTATTAT	300
CCGGGAGGGC	ACCCTGATGG	GCACAGCCAT	TGGCACCTGC	TT CGGCTACT	GGCTGGGAGT	360
CTCATCCTTC	ATTTACTTCC	TTGCCTACCT	GTGCAACGCC	CAGATCACCA	TGCTGCAGAT	420
GTTGGCACTG	CTGGGCTATG	GCCTCTTG	GCATTGCATT	GTCCTGTTCA	TCACCTATAA	480
TATCCACCTC	CACGCCCTCT	TCTACCTCTT	CTGGCTGTTG	GTGGGTGGAC	TGTCCACACT	540
GCGCATGGTA	GCAGTGTTGG	TGTCTCGGAC	CGTGGGCC	ACACAGCGGC	TGCTCCTCTG	600
TGGCACCCCTG	GCTGCCCTAC	ACATGCTCTT	CCTGCTCTAT	CTGCATT TTG	CCTACCACAA	660

AGTGGTAGAG GGGATCCTGG ACACACTGGA	GGGCCCAAC ATCCCGCCA	TCCAGAGGGT	720
CCCCAGAGAC ATCCCTGCCA	TGCTCCCTGC	TGCTCGGCTT CCCACCACCG	780
CACAGCCAAA GCTGTTGCGG	TGACCCCTGCA	GTCACACTGA CCCCACCTGA	840
CAGTCCTCTT TCCCAGCT	GCAGAGAGGA	GGAAAGACTAT TAAAGGACAG	900
ATGTTCGTA GATGGGGTTT	GCAGCTGCCA	CTGAGCTGTA GCTCGTAAG	960
ATGCCTGTCG	GCACCTCTGA	AAGGCACAAG GCCAAGAACT	1020
TCTGCAGCCA	ATGCAGAAAA	TGGTCAGCT CCTTGAGAA	1080
CCTTCCTCTT	TATCTCTCCC	ACATTGTCTT GCTAAATATA	1140
GATTGAAGTC	TGGAAAAAAA	AAAAAAAAAA AATTCCCTGCG	1185
CCCCCTCCCA	CCTACCCCTT	GACTTGGTAA TTAAAATGTT	
CCCCCTCCCA	CCTACCCCTT	GACTTGGTAA TTAAAATGTT	

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1226 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAATTGGCA CGAGGCAAGC	CACCATCTTC	CTTCGGCCTG	CACCCCTTA AAGGCACCCA	60	
GACCCCTCTG	AAAAAAGATG	AACTGAAGCC	CTTGACATC	CTCCAGCCTA AGGAGTACTT	120
CCAGCTCAGC	CGCCACACGG	TCATTAAGAT	GGGAAGTGAG	AACGAGGCC	180
CATGAAGTCA	GTGCCCTGGC	TCAAGGCTGG	TGAAGTCAGT	CCCCAATCT	240
TGCAGCCCTA	GACCTGTCAG	TGGCAGCCC	CCGGAAATCC	GAGCCTCCCC	300
GTATGACAGT	GGTGCATCAG	TGGACAGCTC	AGGTACACAC	GTGATGGAGA	360
TGGCATGGAA	ATTTCTTTG	CCCTGCCAC	GTCCCATGAG	GCCCCAGCCA	420
TCACATCAGC	AGCAGTGATG	CTGCTACCGA	GATGCTCAGC	CAGCCCAACC	480
CGAAGTCAAG	GCTGAAAATA	ACATTGAGAT	GGTGGGCGAG	TCCCAGGCC	540
TGTCTCTGTC	GAAGATGCTG	TGCCTACCAT	ATTCTGTGGC	AAGATCAAAG	600
GGTGTCCACC	AAAAACTTCT	CCTCAAAAG	AGAAGACTCC	GTGCTTCAGG	660
CAACAGCCAA	GGGAAGAGT	CCATGGAAA	TGCAGAGCCC	CTTAGGAAAC	720
CCGGAGCATA	AAGTTAAAGA	AAGTGAACTC	CCAGGAAGTA	CACATGCTCC	780
ACAACGGCTG	GCCACCTTT	TTCCAAGAAA	GTAAATAACG	GCTTTTAAA	840
TTATAATATG	GGGAAAGGTG	CATTGGTTT	ATAAAAAGGC	ATTAAAACA	900

GTAAATTATT TTGGGGAGTA GTTGGGAAAT GGAAAGGTGA ATTGGCTCTA GAGGCCCTGT	960
ATGCTAGTAT CATTTCCTTT TTTAATTTT GACTTTCAC AAATGAGTAA ATAAGAGCAA	1020
CCTATTTTC AAGCAGATTG CACATTTTT GCAGCTTTAA TGGAATATTG GGTGAATTAG	1080
AGGGTAAAAA AAAGCTATT TCATTGCCAC AAAGTGCTT GATGATGTAA TACCTAATAA	1140
AGGGTAGGAT GAATATTC CAATAAAATGT TTGTTGCAC TAAAAAAA AAAA	1200
AAAAAAA AAATCCTGC GGCGC	1226

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1049 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GAATTCGGCA CGAGGGCGCC ATGGTGAAGG TGACGTTCAA CTCCGCTCTG GCCCAGAAGG	60
AGGCCAAGAA GGACGAGCCC AAGAGCGCG AGGAGGCGCT CATCATCCCC CCCGACGCCG	120
TCGCGGTGGA CTGCAAGGAC CCAGATGATG TGGTACCAAGT TGGCCAAAGA AGAGCCTGGT	180
GTTGGTGCAT GTGCTTGGA CTAGCATTG TGCTTGAGG TGTTATTCTA GGAGGAGCAT	240
ACTTGTACAA ATATTTGCA CTTCAACCAG ATGACGTGTA CTACTGTGGA ATAAAGTACA	300
TCAAAGATGA TGTCACTTA AATGAGCCCT CTGCAGATGC CCCAGCTGCT CTCTACCAGA	360
CAATTGAAGA AAATATTAAA ATCTTGAAAG AAGAAGAAGT TGAATTATC AGTGTGCCTG	420
TCCCAGAGTT TGCAGATAGT GATCCTGCCA ACATTGTTCA TGACTTTAAC AAGAAACTTA	480
CAGCCTATT AGATCTAAC CTGGATAAGT GCTATGTGAT CCCTCTGAAC ACTTCCATTG	540
TTATGCCACC CAGAAACCTA CTGGAGTTAC TTATTAACAT CAAGGCTGGA ACCTATTG	600
CTCAGTCCTA TCTGATTGAT GAGCACATGG TTATTACTGA TCGCATTGAA AACATTGATC	660
ACCTGGGTTT CTTTATTTAT CGACTGTGTC ATGACAAGGA AACTTACAAA CTGCAACGCA	720
GAGAAACTAT TAAAGGTATT CAGAAACGTG AAGCCAGCAA TTGTTCGCA ATTGGCATT	780
TTGAAAACAA ATTGCCGTG GAAACTTAA TTTGTTCTG AACAGTCAAG AAAAACATTA	840
TTGAGGAAAA TTAATATCAC AGCATAACCC CACCCCTTAC ATTTGTTGC AGTTGATTAT	900
TTTTAAAGT CTTCTTCAT GTAAGTAGCA AACAGGGCTT TACTATCTT TCATCTCATT	960
AATTCAATTAA AAACCATTAC CTTAAAAAAA AAAA	1020
AAAAAAA AAAAATTCC TGCGGCCGC	1049

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1142 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAATTCTGGCA CGAGGGGAGA ATACTTTTG CGATGCCTAC TGGAGACTT GATTGAAAGC	60
CCAGTTGGGC CGACCAGGTG GAGGAGGAGG GGGAGGACGA CAAATGTGTC ACCAGCGAGC	120
TCCTCAAGGG GATCCCTCTG GCCACAGGTG ACACCAGCCC AGAGCCAGAG CTACTGCCGG	180
GAGCTCCACT GCCGCCTCCC AAGGAGGTCA TCAACGGAAA CATAAAGACA GTGACAGAGT	240
ACAAGATAGA TGAGGATGGC AAGAAGTTCA AGATTGTCCG CACCTTCAGG ATTGAGACCC	300
GGAAGGCTTC AAAGGCTGTC GCAAGGAGGA AGAACTGGAA GAAGTCGGG AACTCAGAGT	360
TTGACCCCCC CGGACCCAAT GTGGCCACCA CCACTGTCAG TGACGATGTC TCTATGACGT	420
TCATCACCAAG CAAAGAGGAC CTGAACTGCC AGGAGGAGGA GGACCCATG AACAAATTCA	480
AGGGCCAGAA GATCGTGTCC TGCCGCATCT GCAAGGGCGA CCACTGGACC ACCCGCTGCC	540
CCTACAAGGA TACGCTGGGG CCCATGCAGA AGGAGCTGGC CGAGCAGCTG GGCCTGTCTA	600
CTGGCGAGAA GGAGAAGCTG CCGGGAGAGC TAGAGCCGGT GCAGGCCACG CAGAACAAAGA	660
CAGGGAAAGTA TGTGCCGCCG AGCCTGCGCG ACGGGGCCAG CCGCCGCGGG GAGTCCATGC	720
AGCCCAACCG CAGAGCCGAC GACAACGCCA CCATCCGTGT CACCAAATTG CGCAGAGGAC	780
ACGCGTGAGA CCGACCTGCA GGAGCTCTTC CGGCCTTCG GCTCCATCTC CCGCATCTAC	840
CTGGCTAAGG ACAAGACCAC TGGCCAATCC AAGGGCTTG CCTTCATCAG CTTCCACCGC	900
CGCGAGGATG CTGCGCGTGC CATTGCCGGG GTGTCCGGCT TTGGCTACGA CCACCTCATC	960
CTCAACGTCTG AGTGGGCCAA GCCGTCCACC AACTAAGCCA GCTGCCACTG TGTACTCGGT	1020
CCGGGACCCCT TGGCGACAGA AGACAGCCTC CGAGAGCGCG GGCTCCAAGG GCAATAAACG	1080
AGCTCCACTC TCAAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAAT TCCTGCGGCC	1140
GC	1142

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1696 base pairs

(B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GAATTGGCA CGAGGGAAAC ATGGCGGTAG GCTGGGACCA TAACACAAGC ATGACTATAT	60
GAAGGAAGAG GAAGGTTTTC CTGAAGATGA GGCGACTGAA TCGGAAAAAA ACTTTAAGTT	120
TGGTAAAAGA GTTGGATGCC TTTCCGAAGG TTCCTGAGAG CTATGTAGAG ACTTCAGCCA	180
GTGGAGGTAC AGTTTCTCTA ATAGCATTAA CAACTATGGC TTTATTAACC ATAATGGAAT	240
TCTCAGTATA TCAAGATACA TGGATGAAGT ATGAATACGA AGTAGACAAG GATTTTCTA	300
GCAAATTAAG AATTAATATA GATATTACTG TTGCCATGAA GTGTCAATAT GTTGGAGCGG	360
ATGTATTGGA TTTAGCAGAA ACAATGGTTG CATCTGCAGA TGTTTAGTT TATGAACCAA	420
CAGTATTGAA TCTTCACCA CAGCAGAAAG AGTGGCAGAG GATGCTGCAG CTGATTCAA	480
GTAGGCTACA AGAACAGCAT TCACTTCAAG ATGTGATATT TAAAAGTGCT TTTAAAAGTA	540
CATCAACAGC TCTTCCACCA AGAGAAGATG ATTCAATCACA GTCTCCAAAT GCATGCAGAA	600
TTCATGGCCA TCTATATGTC AATAAAGTAG CAGGAAATT TCACATAACA GTGGGCAAGG	660
CAATTCCACA TCCTCGTGGT CATGCACATT TGGCAGCACT TGTCAACCATT GAATCTTACA	720
ATTTTCTCA TAGAATAGAT CATTGTCTT TTGGAGAGCT TGTTCCAGCA ATTATTAATC	780
CTTTAGATGG AACTGAAAAAA ATTGCTATAG ATCACAAACCA GATGTTCCAA TATTTTATTA	840
CAGTTGTGCC AACAAAACCA CATAATATA AAATATCAGC AGACACCCAT CAGTTTCTG	900
TGACAGAAAG GGAACGTATC ATTAACCATT CTGCAGGCAG CCATGGAGTC TCTGGATAT	960
TTATGAAATA TGATCTCAGT TCTCTTATGG TGACAGTTAC TGAGGAGCAC ATGCCATTCT	1020
GGCAGTTTT TGTAAGACTC TGTGGTATTG TTGGAGGAAT CTTTCAACA ACAGGCATGT	1080
TACATGGAAT TGGAAAATT ATAGTTGAAA TAATTTGCTG TCGTTTCAGA CTTGGATCCT	1140
ATAAACCTGT CAATTCTGTT CCTTTGAGG ATGGCCACAC AGACAACCAC TTACCTCTT	1200
TAGAAAATAA TACACATTAA CACCTCCCGA TTGAAGGAGA AAAACTTTT GCCTGAGACA	1260
TAAAACCTTT TTTAATAAT AAAATATTGT GCAATATATT CAAAGAAAAG AAAACACAAA	1320
TAAGCAGAAA ACATACTTAT TTTAAAAAAG AAAAAAAAG ATAAAAAAAC CCAAACGTAA	1380
ATTCTATATA CGTTGTGTCT GTTACAAATG TCGTAGAAGA AATCATGCAG CTAAACGATG	1440
AAGAAGCCCA ACTGGAGTGT TGCTTGAAAG ATGACGCCCTT CTTATATTTT CATAGCAAAT	1500
GGGTGGTATC AAAATCAGAC ATTGCTTCTT GCTGATAAAA AGCCTGAAGG AAATAAGTGA	1560
AACTACATCT ATGGGAAAAAA AAAAAACATT GAGAAGTGCA AATGTTCGCA TCCTTTGTT	1620
TTTAAAAGAT ATGATGTCAG AATAAAATGT GGAAAACATA CGGAAAAAAA AAAAAAAA	1680
AAATTCCCTGC GGCCGC	1696

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1100 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAATTGGCA CGAGGCGGCA CGAGGCGGCA CGAGGGTGGC ATATCACGGC CATGGGGTCT	60
CAGCATTCCG CTGCTGCTCG CCCCTCCTCC TGCAGGCGAA AGCAAGAAGA TGACAGGGAC	120
GGTTGCTGG CTGAACGAGA GCAGGAAGAA GCCATTGCTC AGTTCCCATA TGTGGAATT	180
ACCGGGAGAG ATAGCATCAC CTGTCTCACG TGCCAGGGGA CAGGCTACAT TCCAACAGAG	240
CAAGTAAATG AGTTGGTGGC TTTGATCCA CACAGTGATC AGAGATTGCG CCCTCAGCGA	300
ACTAAGCAAT ATGTCCTCCT GTCCATCCTG CTTTGTCTCC TGGCATCTGG TTTGGTGGTT	360
TTCTTCCTGT TTCCGCATTC AGTCCTTGTG GATGATGACG GCATCAAAGT GGTGAAAGTC	420
ACATTTAATA AGCAAGACTC CCTTGTATT CTCACCATCA TGGCCACCCCT GAAAATCAGG	480
AACTCCAAT TCTACACGGT GGCACTGACC AGCCTGTCCA GCCAGATTCA GTACATGAAC	540
ACAGTGGTCA GTACATATGT GACTACTAAC GTCTCCCTTA TTCCACCTCG GAGTGAGCAA	600
CTGGTGAATT TTACCGGGAA GGCCGAGATG GGAGGACCGT TTTCTATGT GTACTTCTTC	660
TGCACGGTAC CTGAGATCCT GGTGCACAAC ATAGTGATCT TCATGCGAAC TTCAGTGAAG	720
ATTTCATACA TTGGCCTCAT GACCCAGAGC TCCTTGGAGA CACATCACTA TGTGGATTGT	780
GGAGGAAATT CCACAGCTAT TTAACAACTG CTATTGGTC TTCCACACAG CGCCTGTAGA	840
AGAGAGCACA GCATATGTT CCAAGGCCTG AGTTCTGGAC CTACCCCCAC GTGGTGTAAAG	900
CAGAGGAGGA ATTGGTTCAC TTAACCTCCA GCAAACATCC TCCTGCCACT TAGGAGGAAA	960
CACCTCCCTA TGGTACCAT TATGTTCTC AGAACCAAGCA GAATCAGTGC CTAGCCTGTG	1020
CCCAGCAAAT AGTTGGCACT CAATAAAGAT TTGCAGAATT TAAAAAAA AAAAAAAA	1080
AAAAAAATTC CTGCGGCCGC	1100

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1588 base pairs
- (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GAATTGGCA CGAGGGTACC TGCTTTCTA TTGCCTCTT GAAACAATGG TCACGTGTTT	60
CCATGTTCCC TACTCGGCTC TCACCATGTT CATCAGCACC GAGCAGACTG AGCGGGATTC	120
TGCCACCGCC TATCGGATGA CTGTGGAAGT GCTGGCACA GTGCTGGCA CGGCGATCCA	180
GGGACAAATC GTGGGCCAAG CAGACACGCC TTGTTCCAG GACCTCAATA GCTCTACAGT	240
AGCTTCACAA AGTGCCAACC ATACACATGG CACCACCTCA CACAGGGAAA CGCAAAAGGC	300
ATACCTGCTG GCAGCGGGGG TCATTGTCTG TATCTATATA ATCTGTGCTG TCATCCTGAT	360
CCTGGCGTG CGGGAGCAGA GAGAACCTA TGAAGCCCAG CAGTCTGAGC CAATCGCCTA	420
CTTCCGGGGC CTACGGCTGG TCATGAGCCA CGGCCCATAC ATCAAACCTA TTACTGGCTT	480
CCTCTTCACC TCCTTGGCTT TCATGCTGGT GGAGGGGAAC TTTGTCTTGT TTTGCACCTA	540
CACCTTGGGC TTCCGCAATG AATTCCAGAA TCTACTCCTG GCCATCATGC TCTCGGCCAC	600
TTTAACCATT CCCATCTGGC AGTGGTTCTT GACCCGGTTT GGCAAGAAGA CAGCTGTATA	660
TGTTGGGATC TCATCAGCAG TGCCATTCT CATCTTGGTG GCCCTCATGG AGAGTAACCT	720
CATCATTACA TATGCGGTAG CTGTGGCAGC TGGCATCAGT GTGGCAGCTG CCTTCTTACT	780
ACCCCTGGTCC ATGCTGCCTG ATGTCATTGA CGACTTCCAT CTGAAGCAGC CCCACTTCCA	840
TGGAACCGAG CCCATTTCT TCTCCTCTA TGTCTTCTTC ACCAAGTTG CCTCTGGAGT	900
GTCACTGGGC ATTTCTACCC TCAGTCTGGA CTTTGCAGGG TACCAAGACCC GTGGCTGCTC	960
GCAGCCGGAA CGTGTCAAGT TTACACTGAA CATGCTCGTG ACCATGGCTC CCATAGTTCT	1020
CATCCTGCTG GGCGCTGCTGC TCTCAAAAT GTACCCCATT GATGAGGAGA GGCGGCCGCA	1080
GAATAAGAAG GCCCTGCAGG CACTGAGGGA CGAGGCCAGC AGCTCTGGCT GCTCAGAAC	1140
AGACTCCACA GAGCTGGCTA GCATCCTCTA GGGCCCGCCA CGTTGCCCGA AGCCACCATG	1200
CAGAAGGCCA CAGAAGGGAT CAGGACCTGT CTGCCGGCTT GCTGAGCAGC TGGACTGCAG	1260
GTGCTAGGAA GGGAACTGAA GACTCAAGGA GGTGGCCAG GACACTTGCT GTGCTCACTG	1320
TGGGGCCGGC TGCTCTGTGG CCTCCTGCCT CCCCTCTGCC TGCCTGTGGG GCCAAGCCCT	1380
GGGGCTGCCA CTGTGAATAT GCCAAGGACT GATCGGGCCT AGCCCCGAAC ACTAATGTAG	1440
AAACCTTTT TTTACAGAGC CTAATTAATA ACTTAATGAC TGTGTACATA GCAATGTGTG	1500
TGTATGTATA TGTCTGTGAG CTATTAATGT TATTAATTTCATAAAAGCT GGAAAGCAAA	1560
AAAAAAAAAA AAAAATTCCCT GCGGCCGC	1588

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1535 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTGGCA CGAGGCGGAA GTCCCGTCTC ACGGTTGCCCG TGGCAGCGCG CGAGGCTGGT	60
GAGTCGGCAG CCCTGTGGCA GCCGGCGGGC TGGTTCCAT GGTTGCACGA TTAGGAACCA	120
CCAGCTGCTG CATCCCAGTGG CCAGGGGTGG CGTCCAGGTG GCAGAGCAGC TAGGAACGCA	180
AGGCCTGAAC CTGGGGCCAG ACACCCTGCT CTCCCGGCCA TGGTCAACGA CCCTCCAGTA	240
CCTGCCTTAC TGTGGGCCCA GGAGGTGGGC CAAGTCTTGG CAGGCCGTGC CCGCAGGCTG	300
CTGCTGCAGT TTGGGGTGCT CTTCTGCACC ATCCTCCTT TGCTCTGGGT GTCTGTCTTC	360
CTCTATGGCT CCTTCTACTA TTCCTATATG CCGACAGTCA GCCACCTCAG CCCTGTGCAT	420
TTCTACTACA GGACCGACTG TGATTCCCTCC ACCACCTCAC TCTGCTCCTT CCCTGTTGCC	480
AATGTCTCGC TGACTAAGGG TGGACGTGAT CGGGTGTGA TGTATGGACA GCCGTATCGT	540
GTTACCTTAG AGCTTGAGCT GCCAGAGTCC CCTGTGAATC AAGATTGGGG CATGTTCTTG	600
GTCACCATT CCTGCTACAC CAGAGGTGGC CGAACATCATCT CCACCTCTTC GCGTTCGGTG	660
ATGCTGCATT ACCGCTCAGA CCTGCTCCAG ATGCTGGACA CACTGGTCTT CTCTAGCCTC	720
CTGCTATTTG GCTTGAGCA GCAGAACGAG CTGCTGGAGG TGGAACTCTA CGCAGACTAT	780
AGAGAGAACT CGTACGTGCC GACCACTGGA GCGATCATTG AGATCCACAG CAAGCGCATC	840
CAGCTGTATG GAGCCTACCT CCGCATCCAC GCGCACTTCA CTGGGCTCAG ATACCTGCTA	900
TACAACCTCC CGATGACCTG CGCCTTCATA GGTGTTGCCA GCAACTTCAC CTTCCTCAGC	960
GTCATCGTGC TCTTCAGCTA CATGCAGTGG GTGTGGGGGG GCATCTGGCC CCGACACCGC	1020
TTCTCTTGC AGGTTAACAT CCGAAAAAGA GACAATTCCC GGAAGGAAGT CCAACGAAGG	1080
ATCTCTGCTC ATCAGCCAGG GCCTGAAGGC CAGGAGGAGT CAACTCCGCA ATCAGATGTT	1140
ACAGAGGATG GTGAGAGCCC TGAAGATCCC TCAGGGACAG AGGTCAAGCTG TCCGAGGAGG	1200
AGAAACCAGA TCAGCAGCCC CTGAGCGGAG AAGAGGAGCT AGAGCCTGAG GCCAGTGATG	1260
GTTCAAGGCTC CTGGGAAGAT GCAGCTTGC TGACGGAGGC CAACCTGCCT GCTCCTGCTC	1320
CTGCTTCTGC TTCTGCCCT GTCCTAGAGA CTCTGGCAG CTCTGAACCT GCTGGGGTG	1380
CTCTCCGACA GCGCCCCACC TGCTCTAGTT CCTGAAGAAA AGGGGCAGAC TCCTCACATT	1440
CCAGCACTTT CCCACCTGAC TCCTCTCCCC TCGTTTTCC TTCAATAAAC TATTTGTGT	1500
CAAAAAAAAAA AAAAAAAAAA AATTCCCTGGG GCCGC	1535

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1322 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAATTCTGGCA CGAGGGCGGG CGCTACGGGC TTGACTCCCC CAAGGCCGAG GTCCGCGGCC	60
AGGTGCTGGC GCCGCTGCC CTCCACGGAG TTGCTGATCA TCTGGGCTGT GATCCACAAA	120
CCCGGTTCTT TGTCCCTCCT AATATCAAAC AGTGGATTGC CTTGCTGCAG AGGGGAAACT	180
GCACGTTAA AGAGAAAATA TCACGGGCCG CTTTCCACAA TGCAAGTTGCT GTAGTCATCT	240
ACAATAATAA ATCCAAAGAG GAGCCAGTTA CCATGACTCA TCCAGGCACT GGAGATATTA	300
TTGCTGTCAT GATAACAGAA TTGAGGGGTA AGGATATTTT GAGTTATCTG GAGAAAAACA	360
TCTCTGTACA AATGACAATA GCTGTTGGAA CTCGAATGCC ACCGAAGAAC TTCAGCCGTG	420
GCTCTCTAGT CTTCGTGTCA ATATCCTTTA TTGTTTGAT GATTATTCT TCAGCATGGC	480
TCATATTCTA CTTCATTCAA AAGATCAGGT ACACAAATGC ACGCGACAGG AACCAAGCGTC	540
GTCTCGGAGA TGCAGCCAAG AAAGCCATCA GTAAATTGAC AACCAAGGACA GTAAAGAAGG	600
GTGACAAGGA AACTGACCCA GACTTGATC ATTGTGCAGT CTGCATAGAG AGCTATAAGC	660
AGAATGATGT CGTCCGAATT CTCCCCTGCA AGCATGTTT CCACAAATCC TGCCTGGATC	720
CCTGGCTTAG TGAACATTGT ACCTGTCCTA TGTGCAAACCT TAATATATTG AAGGCCCTGG	780
GAATTGTGCC GAATTGCCA TGTACTGATA ACGTAGCATT CGATATGGAA AGGCTCACCA	840
GAACCCAAGC TGTTAACCGA AGATCAGCCC TCGGCGACCT CGCCGGCGAC AACTCCCTTG	900
GCCTTGAGCC ACTTCGAACCT TCAGGGATCT CACCTCTTCC TCAGGATGGG GAGCTCACTC	960
CGAGAACAGG AGAAATCAAC ATTGCAGTAA CAAAAGAATG GTTTATTATT GCCAGTTTG	1020
GCCTCCTCAG TGCCCTCACA CTCTGCTACA TGATCATCAG AGCCACAGCT AGCTTGAATG	1080
CTAATGAGGT AGAATGGTTT TGAAGAAGAA AAAACCTGCT TTCTGACTGA TTTTGCTTG	1140
AAGGAAAAAA GAACCTATT TGTGCATCA TTTACCAATC ATGCCACACA AGCATTATT	1200
TTTAGTACAT TTTATTTT CATAAAATTG CTAATGCCAA AGCTTTGTAT TAAAAGAAAT	1260
AAATAATAAA ATAACAAAAA AAAAAAAAGA AAAAAAAAT TCCTGCGGCC	1320
GC	1322

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1711 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAATTGGCA CGAGGCCCTC CCGCGCTCCC GGGGCGCGCG GGCGCGCCCC CCGACGCCCT	60
ACATATACTC AGGTGCGCCC CACCTGTCCG CCCGCACCTG CTGGCTCACC TCCGAGCCAC	120
CTCTGCTGCG CACCGCAGCC TCGGACCTAC AGCCCAGGAT ACTTTGGGAC TTGCCGGCGC	180
TCAGAAACGC GCCCAGACGG CCCCTCCACC TTTTGTTCGC CTAGGGTCGC CGAGAGCGCC	240
CGGAGGGAAC CGCCTGGCCT TCGGGGACCA CCAATTTGT CTGGAACCAC CCTCCCGCG	300
TATCCTACTC CCTGTGCCGC GAGGCCATCG CTTCACTGGA GGGTCGATT TGTGTGTAGT	360
TTGGTGACAA GATTGCATT CACCTGGCCC AAACCCTTT TGTCTTTG GGTGACCGGA	420
AAACTCCACC TCAAGTTTC TTTTGTGGGG CTGCCCCCA AGTGTGTTT GTTTACTGT	480
AGGGTCTCCC GCCCGGGGCC CCCAGTGTG TCTGAGGGCG GAAATGGCCA ATTGGGCCT	540
GCAGTTGCTG GGCTTCTCCA TGGCCCTGCT GGGCTGGTG GGTCTGGTGG CCTGCACCGC	600
CATCCCGCAG TGGCAGATGA GCTCCTATGC GGGTACAAC ATCATCACGG CCCAGGCCAT	660
GTACAAGGGG CTGTGGATGG ACTGCGTCAC GCAGAGCACG GGGATGATGA GCTGAAAAT	720
GTACGACTCG GTGCTGCC CTTCCGCGGC CTTGCAGGCC ACTCGAGCCC TAATGGTGGT	780
CTCCCTGGTG CTGGGCTTCC TGGCCATGTT TGTGGCCACG ATGGGCATGA AGTGCACCGC	840
CTGTGGGGGA GACGACAAAG TGAAGAAGGC CCGTATAGCC ATGGGTGGAG GCATAATTT	900
CATCGTGGCA GGTCTTGCCG CCTTGGTAGC TTGCTCCTGG TATGGCCATC AGATTGTCAC	960
AGACTTTAT AACCCATTGA TCCCTACCAA CATTAAGTAT GAGTTGGCC CTGCCATCTT	1020
TATTGGCTGG GCAGGGTCTG CCCTAGTCAT CCTGGGAGGT GCACTGCTCT CCTGTTCTG	1080
TCCTGGGAAT GAGAGCAAGG CTGGGTACCG TGCACCCCCGC TCTTACCCCTA AGTCCAACTC	1140
TTCCAAGGAG TATGTGTGAC CTGGGATCTC CTTGCCCGAG CCTGACAGGC TATGGGAGTG	1200
TCTAGATGCC TGAAAGGGCC TGGGGCTGAG CTCAGCCTGT GGGCAGGGTG CCGGACAAAG	1260
GCCTCCTGGT CACTCTGTCC CTGCACTCCA TGTATAGTCC TCTTGGGTTG GGGGTGGGG	1320
GGTGCCGTTG GTGGGAGAGA CAAAAAGAGG GAGAGTGTGC TTTTGAC A GTAATAAAAA	1380
ATAAGTATTG GGAAGCAGGC TTTTTCCCT TCAGGGCCTC TGCTTCCTC CCGTCCAGAT	1440
CCTTGCAGGG AGCTTGGAAC CTTAGTGCAC CTACTTCAGT TCAGAACACT TAGCACCCCA	1500
CTGACTCCAC TGACAATTGA CTAAAAGATG CAGGTGCTCG TATCTCGACA TTCATTCCCA	1560
CCCCCTCTT ATTTAAATAG CTACCAAAGT ACTTCTTTT TAATAAAAAA ATAAAGATTT	1620

TTATTAGGTA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA	1680
AAAAAAAATT CCTGC GGCCG C	1711

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1553 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATT CGGCA CGAGGGCAGG TCCAGAGTAA AGTC ACTGAA GAGT GGAAGC GAGGAAGGAA	60
CAGGATGATT AGACCTCAGC TGCGGACCGC GGGGCTGGGA CGATGCCTCC TGCCGGGGCT	120
GCTGCTGCTC CTGGTGCCCG TCCTCTGGC CGGGGCTGAA AAGCTACATA CCCAGCCCTC	180
CTGCCCGCG GTCTGCCAGC CCACGCGCTG CCCC GCGCTG CCCACCTGCG CGCTGGGGAC	240
CACGCCGGTG TTCGACCTGT GCCGCTGTTG CCGCGTCTGC CCCGCGGCCG AGCGTGAAGT	300
CTGC GGCGGG GCGCAGGGCC AACCGTGC GC CCCGGGCTG CAGTGCCTCC AGCCGCTGCG	360
CCCCGGGTTCC CCCAGCACCT GCGGTTGCC GACGCTGGGA GGGGCCGTGT GCGGCAGCGA	420
CAGGCGCACC TACCCCAGCA TGTGCGCGCT CCGGGCCGAA AACCGCGCCG CGCGCCGCC	480
GGGCAAGGTC CGGGCCGTGC CTGTGCAGTG GGGGA ACTGC GGGGATACAG GGACCAGAAG	540
CGCAGGCCCG CTCAGGAGGA ATTACA ACTT CATCGCCGCG GTGGTGGAGA AGGTGGCGCC	600
ATCGGTGGTT CACGTGCAGC TGTGGGGCAG GTTACTTCAC GGCAGCAGGC TTGTT CCTGT	660
GTACAGTGGC TCTGGGTTCA TAGTGTCTGA GGACGGGCTC ATTATTACCA ATGCCCATGT	720
TGTCAGGAAC CAGCAGTGGA TTGAGGTGGT GCTCCAGAAT GGGGCCCGTT ATGAAGCTGT	780
TGTCAAGGAT ATTGACCTTA AATTGGATCT TGCGGTGATT AAGATTGAAT CAAATGCTGA	840
ACTTCCTGTA CTGATGCTGG GAAGATCATC TGACCTTCGG GCTGGAGAGT TTGTGGTGGC	900
TTTGGGCAGC CCATTTCTC TGCAGAACAC AGCTACTGCA GGAATTGTCA GCACCAAACA	960
GCGAGGGGGC AAAGAACTGG GGATGAAGGA TTCAGATATG GACTACGTCC AGATTGATGC	1020
CACAATTAAC TATGGGAATT CTGGTGGTCC TCTGGTGAAC TTGGATGGTG ATGTGATTGG	1080
CGTCAATTCA TTGAGGGTGA CTGATGGAAT CTCCTTGCA ATTCCCTTCAG ATCGAGTTAG	1140
GCAGTTCTTG GCAGAATACC ATGAGCACCA GATGAAAGGA AAGGC GTTT CAAATAAGAA	1200
ATATCTGGGT CTGCAAATGC TGTCCCTCAC TGTGCCCTT AGTGAAGAAT TGAAAATGCA	1260
TTATCCAGAT TTCCCTGATG TGAGTTCTGG GGTTTATGTA TGTAAAGTGG TTGAAGGAAC	1320

AGCTGCTCAA AGCTCTGGAT TGAGAGATCA CGATGTAATT GTCAACATAA ATGGGAAACC	1380
TATTACTACT ACAACTGATG TTGTTAAAGC TCTTGACAGT GATTCCCTT CCATGGCTGT	1440
TCTTCGGGGA AAAGATAATT TGCTCCTGAC AGTCATACCT GAAACAATCA ATTAAATATC	1500
TTGTTTAAA GTGGGATTAT CTAAAAAAA AAAAAAAA TTCCCTGCGGC CGC	1553

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1596 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA CGAGGGGAGC CGCTCCCGA GCCCGGCCGT AGAGGCTGCA ATCGCAGCCG	60
GGAGCCCGCA GCCCGCGCCC CGAGCCCGCC GCCGCCCTTC GAGGGCGCCC CAGGCCGCGC	120
CATGGTGAAG GTGACGTTCA ACTCCGCTCT GGCCCAGAAC GAGGCCAAGA AGGACGAGCC	180
CGAGAGCGGC GAGGAGGCAG TCATCATCCC CCCCGACGCC GTCGCGGTGG ACTGCAAGGA	240
CCCAGATGAT GTGGTACCAAG TTGGCCAAAG AAGAGCCTGG TGTTGGTGCA TGTGCTTTGG	300
ACTAGCATT ATGCTTGCAG GTGTTATTCT AGGAGGAGCA TACTTGTACA AATATTTGC	360
ACTTCAACCA GATGACGTGT ACTACTGTGG AATAAAGTAC ATCAAAGATG ATGTCATCTT	420
AAATGAGCCC TCTGCAGATG CCCCAGCTGC TCTCTACCAAG ACAATTGAAG AAAATATTAA	480
AATCTTGAA GAAGAAGAAC TTGAATTAT CAGTGTGCCT GTCCCAGAGT TTGCAGATAG	540
TGATCCTGCC AACATTGTTCA ATGACTTTAA CAAGAAACTT ACAGCCTATT TAGATCTTAA	600
CCTGGATAAG TGCTATGTGA TCCCTCTGAA CACTTCCATT GTTATGCCAC CCAGAACCT	660
ACTGGAGTTA CTTATTAACA TCAAGGCTGG AACCTATTG CCTCAGTCCT ATCTGATTCA	720
TGAGCACATG GTTATTACTG ATCGCATTGA AAACATTGAT CACCTGGGTT TCTTTATTAA	780
TCGACTGTGT CATGACAAGG AAACTTACAA ACTGCAACGC AGAGAAACTA TTAAAGGTAT	840
TCAGAAACGT GAAGCCAGCA ATTGTTCGC AATTGGCAT TTTGAAAACA AATTTGCCGT	900
GGAAACTTTA ATTTGTTCTT GAACAGTCAA GAAAAACATT ATTGAGGAAA ATTAATATCA	960
CAGCATAACC CCACCCCTTA CATTGGTGC AGTGATATT TTTAAAGTCT CTTTCATGTA	1020
AGTAGCAAAC AGGGCTTTAC TATCTTTCA TCTCATTAAAT TCAATTAAA CCATTACCTT	1080
AAAATTTTTT TCTTCGAAG TGTGGTGTCT TTTATATTG AATTAGTAAC TGTATGAAGT	1140

CATAGATAAT	AGTACATGTC	ACCTTAGGTA	GTAGGAAGAA	TTACAATTTC	TTTAAATCAT	1200
TTATCTGGAT	TTTTATGTTT	TATTAGCATT	TTCAAGAAGA	CGGATTATCT	AGAGAATAAT	1260
CATATATATG	CATACGTAAA	AATGGACCAC	AGTACTTAT	TTGTAGTTGT	TAGTTGCCCT	1320
GCTACCTAGT	TTGTTAGTGC	ATTTGAGCAC	ACATTTAAC	TTTCCTCTAA	TTAAAATGTG	1380
CAGTATTTTC	AGTGTCAAAT	ATATTTAACT	ATTTAGAGAA	TGATTTCCAC	CTTTATGTTT	1440
TAATATCCTA	GGCATCTGCT	GTAATAATAT	TTTAGAAAAT	GTTGGAATT	TAAGAAATAA	1500
CTTGTGTTAC	TAATTTGTAT	AACCCATATC	TGTGCAATGG	AATATAAATA	TCACAAAGTT	1560
GTTTAAAAAA	AAAAAAA	AAATTCTGC	GGCCGC			1596

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 400 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met	Ala	Trp	Arg	Arg	Glu	Ala	Gly	Val	Gly	Ala	Arg	Gly	Val	Leu	
1								10					15		
Ala	Leu	Ala	Leu	Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala	Arg	Gly
								20		25			30		
Arg	Ala	Leu	Glu	Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp
								35		40			45		
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe
								50		55			60		
Gly	Asp	Ser	Ser	Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro
								65		70			75		80
Trp	Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe
								85		90			95		
Phe	Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu
								100		105			110		
Val	Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala

DRAFT

115	120	125
Arg Arg Asn Ala Ser Ala Val Val L u Tyr Asn Glu Glu Arg Tyr Gly		
130	135	140
Asn Ile Thr Leu Pro Met Ser His Ala Gly Thr Gly Asn Ile Val Val		
145	150	155
Ile Met Ile Ser Tyr Pro Lys Gly Arg Glu Ile Leu Glu Leu Val Gln		160
165	170	175
Lys Gly Ile Pro Val Thr Met Thr Ile Gly Val Gly Thr Arg His Val		
180	185	190
Gln Glu Phe Ile Ser Gly Gln Ser Val Val Phe Val Ala Ile Ala Phe		
195	200	205
Ile Thr Met Met Ile Ile Ser Leu Ala Trp Leu Ile Phe Tyr Tyr Ile		
210	215	220
Gln Arg Phe Leu Tyr Thr Gly Ser Gln Ile Gly Ser Gln Ser His Arg		
225	230	235
Lys Glu Thr Lys Lys Val Ile Gly Gln Leu Leu Leu His Thr Val Lys		240
245	250	255
His Gly Glu Lys Gly Ile Asp Val Asp Ala Glu Asn Cys Ala Val Cys		
260	265	270
Ile Glu Asn Phe Lys Val Lys Asp Ile Ile Arg Ile Leu Pro Cys Lys		
275	280	285
His Ile Phe His Arg Ile Cys Ile Asp Pro Trp Leu Leu Asp His Arg		
290	295	300
Thr Cys Pro Met Cys Lys Leu Asp Val Ile Lys Ala Leu Gly Tyr Trp		
305	310	315
Gly Glu Pro Gly Asp Val Gln Glu Met Pro Ala Pro Glu Ser Pro Pro		320
325	330	335
Gly Arg Asp Pro Ala Ala Asn Leu Ser Leu Ala Leu Pro Asp Asp Asp		
340	345	350
Gly Ser Asp Asp Ser Ser Pro Pro Ser Ala Ser Pro Ala Glu Ser Glu		
355	360	365
Pro Gln Cys Asp Pro Ser Phe Lys Gly Asp Ala Gly Glu Asn Thr Ala		
370	375	380
Leu Leu Glu Ala Gly Arg Ser Asp Ser Arg His Gly Gly Pro Ile Ser		
385	390	395
		400

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 291 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Asp Lys Gly Ser Ala Gly His Pro Gly Gly Val Leu Val Trp Gly
1 5 10 15
Arg Ser Pro Ala Pro Thr Ala Leu Trp Gly Ala Ser Pro Trp Leu Ser
20 25 30
Pro Leu Thr Ser Ala Leu Arg Gln Pro Leu His Arg Ala Pro Leu Leu
35 40 45
Pro Gly Gln Leu Cys Trp Ser Pro Arg Pro Leu Glu Lys Asn Lys Ala
50 55 60
Met Gly Arg Pro Leu Leu Leu Pro Leu Leu Leu Leu Gln Pro Pro
65 70 75 80
Ala Phe Leu Gln Pro Gly Gly Ser Thr Gly Ser Gly Pro Ser Tyr Leu
85 90 95
Tyr Gly Val Thr Gln Pro Lys His Leu Ser Ala Ser Met Gly Gly Ser
100 105 110
Val Glu Ile Pro Phe Ser Phe Tyr Tyr Pro Trp Glu Leu Ala Ile Val
115 120 125
Pro Asn Val Arg Ile Ser Trp Arg Arg Gly His Phe His Gly Gln Ser
130 135 140
Phe Tyr Ser Thr Arg Pro Pro Ser Ile His Lys Asp Tyr Val Asn Arg
145 150 155 160
Leu Phe Leu Asn Trp Thr Glu Gly Gln Glu Ser Gly Phe Leu Arg Ile
165 170 175
Ser Asn Leu Arg Lys Glu Asp Gln Ser Val Tyr Phe Cys Arg Val Glu
180 185 190

Leu Asp Thr Arg Arg Ser Gly Arg Gln Gln Leu Gln Ser Ile Lys Gly
195 200 205
Thr Lys Leu Thr Ile Thr Gln Ala Val Thr Thr Thr Thr Trp Arg
210 215 220
Pro Ser Ser Thr Thr Ile Ala Gly Leu Arg Val Thr Glu Ser Lys
225 230 235 240
Gly His Ser Glu Ser Trp His Leu Ser Leu Asp Thr Ala Ile Arg Val
245 250 255
Ala Leu Ala Val Ala Val Leu Lys Thr Val Ile Leu Gly Leu Leu Cys
260 265 270
Leu Leu Leu Trp Trp Arg Arg Arg Lys Gly Ser Arg Ala Pro Ser
275 280 285
Ser Asp Phe
290

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 293 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Thr Val Ser Gln Arg Phe Gln Leu Ser Asn Ser Gly Pro Asn Ser
1 5 10 15
Thr Ile Lys Met Lys Ile Ala Leu Arg Val Leu His Leu Glu Lys Arg
20 25 30
Glu Arg Pro Pro Asp His Gln His Ser Ala Gln Val Lys Arg Pro Ser
35 40 45
Val Ser Lys Glu Gly Arg Lys Thr Ser Ile Lys Ser His Met Ser Gly
50 55 60
Ser Pro Gly Pro Gly Gly Ser Asn Thr Ala Pro Ser Thr Pro Val Ile

PROTEIN SEQUENCES

65	70	75	80
Gly Gly Ser Asp Lys Pro Gly Met Glu Glu Lys Ala Gln Pro Pro Glu			
85	90	95	
Ala Gly Pro Gln Gly Leu His Asp Leu Gly Arg Ser Ser Ser Ser Leu			
100	105	110	
Leu Ala Ser Pro Gly His Ile Ser Val Lys Glu Pro Thr Pro Ser Ile			
115	120	125	
Ala Ser Asp Ile Ser Leu Pro Ile Ala Thr Gln Glu Leu Arg Gln Arg			
130	135	140	
Leu Arg Gln Leu Glu Asn Gly Thr Thr Leu Gly Gln Ser Pro Leu Gly			
145	150	155	160
Gln Ile Gln Leu Thr Ile Arg His Ser Ser Gln Arg Asn Lys Leu Ile			
165	170	175	
Val Val Val His Ala Cys Arg Asn Leu Ile Ala Phe Ser Glu Asp Gly			
180	185	190	
Ser Asp Pro Tyr Val Arg Met Tyr Leu Leu Pro Asp Lys Arg Arg Ser			
195	200	205	
Gly Arg Arg Lys Thr His Val Ser Lys Lys Thr Leu Asn Pro Val Phe			
210	215	220	
Asp Gln Ser Phe Asp Phe Ser Val Ser Leu Pro Glu Val Gln Arg Arg			
225	230	235	240
Thr Leu Asp Val Ala Val Lys Asn Ser Gly Gly Phe Leu Ser Lys Asp			
245	250	255	
Lys Gly Leu Leu Gly Lys Val Leu Val Ala Leu Ala Ser Glu Glu Leu			
260	265	270	
Ala Lys Gly Trp Thr Gln Trp Tyr Asp Leu Thr Glu Asp Gly Thr Arg			
275	280	285	
Pro Gln Ala Met Thr			
290			

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 206 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Glu Arg Arg His Pro Val Cys Ser Gly Thr Cys Gln Pro Thr Gln
1 5 10 15
Phe Arg Cys Ser Asn Gly Cys Cys Ile Asp Ser Phe Leu Glu Cys Asp
20 25 30
Asp Thr Pro Asn Cys Pro Asp Ala Ser Asp Glu Ala Ala Cys Glu Lys
35 40 45
Tyr Thr Ser Gly Phe Asp Glu Leu Gln Arg Ile His Phe Pro Ser Asp
50 55 60
Lys Gly His Cys Val Asp Leu Pro Asp Thr Gly Leu Cys Lys Glu Ser
65 70 75 80
Ile Pro Arg Trp Tyr Tyr Asn Pro Phe Ser Glu His Cys Ala Arg Phe
85 90 95
Thr Tyr Gly Gly Cys Tyr Gly Asn Lys Asn Asn Phe Glu Glu Gln
100 105 110
Gln Cys Leu Glu Ser Cys Arg Gly Ile Ser Lys Lys Asp Val Phe Gly
115 120 125
Leu Arg Arg Glu Ile Pro Ile Pro Ser Thr Gly Ser Val Glu Met Ala
130 135 140
Val Ala Val Phe Leu Val Ile Cys Ile Val Val Val Ala Ile Leu
145 150 155 160
Gly Tyr Cys Phe Phe Lys Asn Gln Arg Lys Asp Phe His Gly His His
165 170 175
His His Pro Pro Pro Thr Pro Ala Ser Ser Thr Val Ser Thr Thr Glu
180 185 190
Asp Thr Glu His Leu Val Tyr Asn His Thr Thr Arg Pro Leu
195 200 205

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 220 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Ala Gly Leu Ser Arg Gly Ser Ala Arg Ala Leu Leu Ala Ala Leu
1 5 10 15
Leu Ala Ser Thr Leu Leu Ala Leu Leu Val Ser Pro Ala Arg Gly Arg
20 25 30
Gly Gly Arg Asp His Gly Asp Trp Asp Glu Ala Ser Arg Leu Pro Pro
35 40 45
Leu Pro Pro Arg Glu Asp Ala Ala Arg Val Ala Arg Phe Val Thr His
50 55 60
Val Ser Asp Trp Gly Ala Leu Ala Thr Ile Ser Thr Leu Glu Ala Val
65 70 75 80
Arg Gly Arg Pro Phe Ala Asp Val Leu Ser Leu Ser Asp Gly Pro Pro
85 90 95
Gly Ala Gly Ser Gly Val Pro Tyr Phe Tyr Leu Ser Pro Leu Gln Leu
100 105 110
Ser Val Ser Asn Leu Gln Glu Asn Pro Tyr Ala Thr Leu Thr Met Thr
115 120 125
Leu Ala Gln Thr Asn Phe Cys Lys Lys His Gly Phe Asp Pro Gln Ser
130 135 140
Pro Leu Cys Val His Ile Met Leu Ser Gly Thr Val Thr Lys Val Asn
145 150 155 160
Glu Thr Glu Met Asp Ile Ala Lys His Ser Leu Phe Ile Arg His Pro
165 170 175
Glu Met Lys Thr Trp Pro Ser Ser His Asn Trp Phe Phe Ala Lys Leu
180 185 190
Asn Ile Thr Asn Ile Trp Val Leu Asp Tyr Phe Gly Gly Pro Lys Ile
195 200 205
Val Thr Pro Glu Glu Tyr Tyr Asn Val Thr Val Gln

210

215

220

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 197 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Asp His His Cys Pro Trp Leu Asn Asn Cys Val Gly His Tyr Asn
1 5 10 15
His Arg Tyr Phe Phe Ser Phe Cys Phe Phe Met Thr Leu Gly Cys Val
20 25 30
Tyr Cys Ser Tyr Gly Ser Trp Asp Leu Phe Arg Glu Ala Tyr Ala Ala
35 40 45
Ile Glu Lys Met Lys Gln Leu Asp Lys Asn Lys Leu Gln Ala Val Ala
50 55 60
Asn Gln Thr Tyr His Gln Thr Pro Pro Pro Thr Phe Ser Phe Arg Glu
65 70 75 80
Arg Met Thr His Lys Ser Leu Val Tyr Leu Trp Phe Leu Cys Ser Ser
85 90 95
Val Ala Leu Ala Leu Gly Ala Leu Thr Val Trp His Ala Val Leu Ile
100 105 110
Ser Arg Gly Glu Thr Ser Ile Glu Arg His Ile Asn Lys Lys Glu Arg
115 120 125
Arg Arg Leu Gln Ala Lys Gly Arg Val Phe Arg Asn Pro Tyr Asn Tyr
130 135 140
Gly Cys Leu Asp Asn Trp Lys Val Phe Leu Gly Val Asp Thr Gly Arg
145 150 155 160
His Trp Leu Thr Arg Val Leu Leu Pro Ser Thr His Leu Pro His Gly
165 170 175

Asn Gly Met Ser Trp Glu Pro Pro Pro Trp Val Thr Ala His Ser Ala
180 185 190
Ser Val Met Ala Val
195

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 451 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Ala Pro Leu Gly Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe
1 5 10 15
Thr Phe Cys Leu Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn
20 25 30
Pro Glu Lys Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala
35 40 45
Glu Glu Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His
50 55 60
Glu Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His
65 70 75 80
Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln Tyr
85 90 95
Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn
100 105 110
Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu Ala Lys Phe
115 120 125
Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln
130 135 140
Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp

DRAFT PROTEIN SEQUENCES

145	150	155	160
Phe Asp Glu Leu Asn Val Val Ile Glu Thr Asp Met Gln Ile Met Val			
165	170	175	
Arg Leu Ile Asn Lys Phe Asn Ser Ser Ser Ser Leu Glu Glu Lys			
180	185	190	
Ile Ala Ala Leu Phe Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn			
195	200	205	
Ala Gln Asp Leu Leu Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly			
210	215	220	
Leu Asn Ser Thr Glu Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu			
225	230	235	240
Gly Ala Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu			
245	250	255	
Gly Gly Ala Leu Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro			
260	265	270	
Leu Thr Ala Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg			
275	280	285	
His Phe Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln			
290	295	300	
Val Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val			
305	310	315	320
Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala			
325	330	335	
Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln			
340	345	350	
Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp			
355	360	365	
Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu His Asp Ala Arg			
370	375	380	
Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu Thr Thr Cys Arg Asp			
385	390	395	400
Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg Thr Leu Ala Ser Leu Gln			
405	410	415	
Ala Glu Tyr Gln Val Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp			
420	425	430	
Glu Gly Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn S r Leu Leu Lys			

435
Glu Leu Arg
450

440

445

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 254 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Trp Gln Ala Gly Lys Arg Gln Ala Ser Arg Ala Phe Ser Leu Tyr
1 5 10 15
Ala Asn Ile Asp Ile Leu Arg Pro Tyr Phe Asp Val Glu Pro Ala Gln
20 25 30
Val Arg Ser Arg Leu Leu Glu Ser Met Ile Pro Ile Lys Met Val Asn
35 40 45
Phe Pro Gln Lys Ile Ala Gly Glu Leu Tyr Gly Pro Leu Met Leu Val
50 55 60
Phe Thr Leu Val Ala Ile Leu Leu His Gly Met Lys Thr Ser Asp Thr
65 70 75 80
Ile Ile Arg Glu Gly Thr Leu Met Gly Thr Ala Ile Gly Thr Cys Phe
85 90 95
Gly Tyr Trp Leu Gly Val Ser Ser Phe Ile Tyr Phe Leu Ala Tyr Leu
100 105 110
Cys Asn Ala Gln Ile Thr Met Leu Gln Met Leu Ala Leu Leu Gly Tyr
115 120 125
Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr Tyr Asn Ile His
130 135 140
Leu His Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val Gly Gly Leu Ser
145 150 155 160

Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr Val Gly Pro Thr
 165 170 175
 Gln Arg Leu Leu Leu Cys Gly Thr Leu Ala Ala Leu His Met Leu Phe
 180 185 190
 Leu Leu Tyr Leu His Phe Ala Tyr His Lys Val Val Glu Gly Ile Leu
 195 200 205
 Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln Arg Val Pro Arg
 210 215 220
 Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro Thr Thr Val Leu
 225 230 235 240
 Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln Ser His
 245 250

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 221 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Gly Ser Glu Asn Glu Ala Leu Asp Leu Ser Met Lys Ser Val Pro
 1 5 10 15
 Trp Leu Lys Ala Gly Glu Val Ser Pro Pro Ile Phe Gln Glu Asp Ala
 20 25 30
 Ala Leu Asp Leu Ser Val Ala Ala His Arg Lys Ser Glu Pro Pro Pro
 35 40 45
 Glu Thr Leu Tyr Asp Ser Gly Ala Ser Val Asp Ser Ser Gly His Thr
 50 55 60
 Val Met Glu Lys Leu Pro Ser Gly Met Glu Ile Ser Phe Ala Pro Ala
 65 70 75 80
 Thr Ser His Glu Ala Pro Ala Met Met Asp Ser His Ile Ser Ser Ser

85	90	95
Asp Ala Ala Thr Glu Met Leu Ser Gln Pro Asn His Pro Ser Gly Glu		
100	105	110
Val Lys Ala Glu Asn Asn Ile Glu Met Val Gly Glu Ser Gln Ala Ala		
115	120	125
Lys Val Ile Val Ser Val Glu Asp Ala Val Pro Thr Ile Phe Cys Gly		
130	135	140
Lys Ile Lys Gly Leu Ser Gly Val Ser Thr Lys Asn Phe Ser Phe Lys		
145	150	155
Arg Glu Asp Ser Val Leu Gln Gly Tyr Asp Ile Asn Ser Gln Gly Glu		
165	170	175
Glu Ser Met Gly Asn Ala Glu Pro Leu Arg Lys Pro Ile Lys Asn Arg		
180	185	190
Ser Ile Lys Leu Lys Lys Val Asn Ser Gln Glu Val His Met Leu Pro		
195	200	205
Ile Lys Lys Gln Arg Leu Ala Thr Phe Phe Pro Arg Lys		
210	215	220

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 266 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Met Val Lys Val Thr Phe Asn Ser Ala Leu Ala Gln Lys Glu Ala Lys			
1	5	10	15
Lys Asp Glu Pro Lys Ser Gly Glu Glu Ala Leu Ile Ile Pro Pro Asp			
20	25	30	
Ala Val Ala Val Asp Cys Lys Asp Pro Asp Asp Val Val Pro Val Gly			
35	40	45	

Gln Arg Arg Ala Trp Cys Trp Cys Met Cys Phe Gly Leu Ala Phe Met
 50 55 60
 Leu Ala Gly Val Ile Leu Gly Gly Ala Tyr Leu Tyr Lys Tyr Phe Ala
 65 70 75 80
 Leu Gln Pro Asp Asp Val Tyr Tyr Cys Gly Ile Lys Tyr Ile Lys Asp
 85 90 95
 Asp Val Ile Leu Asn Glu Pro Ser Ala Asp Ala Pro Ala Ala Leu Tyr
 100 105 110
 Gln Thr Ile Glu Glu Asn Ile Lys Ile Phe Glu Glu Glu Val Glu
 115 120 125
 Phe Ile Ser Val Pro Val Pro Glu Phe Ala Asp Ser Asp Pro Ala Asn
 130 135 140
 Ile Val His Asp Phe Asn Lys Lys Leu Thr Ala Tyr Leu Asp Leu Asn
 145 150 155 160
 Leu Asp Lys Cys Tyr Val Ile Pro Leu Asn Thr Ser Ile Val Met Pro
 165 170 175
 Pro Arg Asn Leu Leu Glu Leu Ile Asn Ile Lys Ala Gly Thr Tyr
 180 185 190
 Leu Pro Gln Ser Tyr Leu Ile His Glu His Met Val Ile Thr Asp Arg
 195 200 205
 Ile Glu Asn Ile Asp His Leu Gly Phe Phe Ile Tyr Arg Leu Cys His
 210 215 220
 Asp Lys Glu Thr Tyr Lys Leu Gln Arg Arg Glu Thr Ile Lys Gly Ile
 225 230 235 240
 Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Ile Arg His Phe Glu Asn
 245 250 255
 Lys Phe Ala Val Glu Thr Leu Ile Cys Ser
 260 265

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 251 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

DRAFT DRAFT DRAFT

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Pro Thr Gly Asp Phe Asp Ser Lys Pro Ser Trp Ala Asp Gln Val
1 5 10 15
Glu Glu Glu Gly Glu Asp Asp Lys Cys Val Thr Ser Glu Leu Leu Lys
20 25 30
Gly Ile Pro Leu Ala Thr Gly Asp Thr Ser Pro Glu Pro Glu Leu Leu
35 40 45
Pro Gly Ala Pro Leu Pro Pro Pro Lys Glu Val Ile Asn Gly Asn Ile
50 55 60
Lys Thr Val Thr Glu Tyr Lys Ile Asp Glu Asp Gly Lys Lys Phe Lys
65 70 75 80
Ile Val Arg Thr Phe Arg Ile Glu Thr Arg Lys Ala Ser Lys Ala Val
85 90 95
Ala Arg Arg Lys Asn Trp Lys Lys Phe Gly Asn Ser Glu Phe Asp Pro
100 105 110
Pro Gly Pro Asn Val Ala Thr Thr Val Ser Asp Asp Val Ser Met
115 120 125
Thr Phe Ile Thr Ser Lys Glu Asp Leu Asn Cys Gln Glu Glu Asp
130 135 140
Pro Met Asn Lys Phe Lys Gly Gln Lys Ile Val Ser Cys Arg Ile Cys
145 150 155 160
Lys Gly Asp His Trp Thr Thr Arg Cys Pro Tyr Lys Asp Thr Leu Gly
165 170 175
Pro Met Gln Lys Glu Leu Ala Glu Gln Leu Gly Leu Ser Thr Gly Glu
180 185 190
Lys Glu Lys Leu Pro Gly Glu Leu Glu Pro Val Gln Ala Thr Gln Asn
195 200 205
Lys Thr Gly Lys Tyr Val Pro Pro Ser Leu Arg Asp Gly Ala Ser Arg
210 215 220
Arg Gly Glu Ser Met Gln Pro Asn Arg Arg Ala Asp Asp Asn Ala Thr
225 230 235 240
Ile Arg Val Thr Asn Leu Arg Arg Gly His Ala
245 250

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 377 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Met	Arg	Arg	Leu	Asn	Arg	Lys	Lys	Thr	Leu	Ser	Leu	Val	Lys	Glu	Leu	
1									10					15		
Asp	Ala	Phe	Pro	Lys	Val	Pro	Glu	Ser	Tyr	Val	Glu	Thr	Ser	Ala	Ser	
									20				25		30	
Gly	Gly	Thr	Val	Ser	Leu	Ile	Ala	Phe	Thr	Thr	Met	Ala	Leu	Leu	Thr	
									35			40		45		
Ile	Met	Glu	Phe	Ser	Val	Tyr	Gln	Asp	Thr	Trp	Met	Lys	Tyr	Glu	Tyr	
									50			55		60		
Glu	Val	Asp	Lys	Asp	Phe	Ser	Ser	Lys	Leu	Arg	Ile	Asn	Ile	Asp	Ile	
									65			70		75		80
Thr	Val	Ala	Met	Lys	Cys	Gln	Tyr	Val	Gly	Ala	Asp	Val	Leu	Asp	Leu	
									85			90		95		
Ala	Glu	Thr	Met	Val	Ala	Ser	Ala	Asp	Gly	Leu	Val	Tyr	Glu	Pro	Thr	
									100			105		110		
Val	Phe	Asp	Leu	Ser	Pro	Gln	Gln	Lys	Glu	Trp	Gln	Arg	Met	Leu	Gln	
									115			120		125		
Leu	Ile	Gln	Ser	Arg	Leu	Gln	Glu	Glu	His	Ser	Leu	Gln	Asp	Val	Ile	
									130			135		140		
Phe	Lys	Ser	Ala	Phe	Lys	Ser	Thr	Ser	Thr	Ala	Leu	Pro	Pro	Arg	Glu	
									145			150		155		160
Asp	Asp	Ser	Ser	Gln	Ser	Pro	Asn	Ala	Cys	Arg	Ile	His	Gly	His	Leu	
									165			170		175		
Tyr	Val	Asn	Lys	Val	Ala	Gly	Asn	Phe	His	Ile	Thr	Val	Gly	Lys	Ala	
									180			185		190		

PDB ID: 1B2D

Ile Pro His Pro Arg Gly His Ala His Leu Ala Ala Leu Val Asn His
195 200 205
Glu Ser Tyr Asn Phe Ser His Arg Ile Asp His Leu Ser Phe Gly Glu
210 215 220
Leu Val Pro Ala Ile Ile Asn Pro Leu Asp Gly Thr Glu Lys Ile Ala
225 230 235 240
Ile Asp His Asn Gln Met Phe Gln Tyr Phe Ile Thr Val Val Pro Thr
245 250 255
Lys Leu His Thr Tyr Lys Ile Ser Ala Asp Thr His Gln Phe Ser Val
260 265 270
Thr Glu Arg Glu Arg Ile Ile Asn His Ala Ala Gly Ser His Gly Val
275 280 285
Ser Gly Ile Phe Met Lys Tyr Asp Leu Ser Ser Leu Met Val Thr Val
290 295 300
Thr Glu Glu His Met Pro Phe Trp Gln Phe Phe Val Arg Leu Cys Gly
305 310 315 320
Ile Val Gly Gly Ile Phe Ser Thr Thr Gly Met Leu His Gly Ile Gly
325 330 335
Lys Phe Ile Val Glu Ile Ile Cys Cys Arg Phe Arg Leu Gly Ser Tyr
340 345 350
Lys Pro Val Asn Ser Val Pro Phe Glu Asp Gly His Thr Asp Asn His
355 360 365
Leu Pro Leu Leu Glu Asn Asn Thr His
370 375

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 250 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

DRAFT RELEASE UNDER E.O. 14176

M t Gly Ser Gln His Ser Ala Ala Ala Arg Pro Ser Ser Cys Arg Arg
1 5 10 15
Lys Gln Glu Asp Asp Arg Asp Gly Leu Leu Ala Glu Arg Glu Gln Glu
20 25 30
Glu Ala Ile Ala Gln Phe Pro Tyr Val Glu Phe Thr Gly Arg Asp Ser
35 40 45
Ile Thr Cys Leu Thr Cys Gln Gly Thr Gly Tyr Ile Pro Thr Glu Gln
50 55 60
Val Asn Glu Leu Val Ala Leu Ile Pro His Ser Asp Gln Arg Leu Arg
65 70 75 80
Pro Gln Arg Thr Lys Gln Tyr Val Leu Leu Ser Ile Leu Leu Cys Leu
85 90 95
Leu Ala Ser Gly Leu Val Val Phe Phe Leu Phe Pro His Ser Val Leu
100 105 110
Val Asp Asp Asp Gly Ile Lys Val Val Lys Val Thr Phe Asn Lys Gln
115 120 125
Asp Ser Leu Val Ile Leu Thr Ile Met Ala Thr Leu Lys Ile Arg Asn
130 135 140
Ser Asn Phe Tyr Thr Val Ala Val Thr Ser Leu Ser Ser Gln Ile Gln
145 150 155 160
Tyr Met Asn Thr Val Val Ser Thr Tyr Val Thr Thr Asn Val Ser Leu
165 170 175
Ile Pro Pro Arg Ser Glu Gln Leu Val Asn Phe Thr Gly Lys Ala Glu
180 185 190
Met Gly Gly Pro Phe Ser Tyr Val Tyr Phe Phe Cys Thr Val Pro Glu
195 200 205
Ile Leu Val His Asn Ile Val Ile Phe Met Arg Thr Ser Val Lys Ile
210 215 220
Ser Tyr Ile Gly Leu Met Thr Gln Ser Ser Leu Glu Thr His His Tyr
225 230 235 240
Val Asp Cys Gly Gly Asn Ser Thr Ala Ile
245 250

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 374 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met Val Thr Cys Phe His Val Pro Tyr Ser Ala Leu Thr Met Phe Ile
1 5 10 15
Ser Thr Glu Gln Thr Glu Arg Asp Ser Ala Thr Ala Tyr Arg Met Thr
20 25 30
Val Glu Val Leu Gly Thr Val Leu Gly Thr Ala Ile Gln Gly Gln Ile
35 40 45
Val Gly Gln Ala Asp Thr Pro Cys Phe Gln Asp Leu Asn Ser Ser Thr
50 55 60
Val Ala Ser Gln Ser Ala Asn His Thr His Gly Thr Thr Ser His Arg
65 70 75 80
Glu Thr Gln Lys Ala Tyr Leu Leu Ala Ala Gly Val Ile Val Cys Ile
85 90 95
Tyr Ile Ile Cys Ala Val Ile Leu Ile Leu Gly Val Arg Glu Gln Arg
100 105 110
Glu Pro Tyr Glu Ala Gln Gln Ser Glu Pro Ile Ala Tyr Phe Arg Gly
115 120 125
Leu Arg Leu Val Met Ser His Gly Pro Tyr Ile Lys Leu Ile Thr Gly
130 135 140
Phe Leu Phe Thr Ser Leu Ala Phe Met Leu Val Glu Gly Asn Phe Val
145 150 155 160
Leu Phe Cys Thr Tyr Thr Leu Gly Phe Arg Asn Glu Phe Gln Asn Leu
165 170 175
Leu Leu Ala Ile Met Leu Ser Ala Thr Leu Thr Ile Pro Ile Trp Gln
180 185 190
Trp Phe Leu Thr Arg Phe Gly Lys Lys Thr Ala Val Tyr Val Gly Ile
195 200 205
Ser Ser Ala Val Pro Phe Leu Ile Leu Val Ala Leu Met Glu Ser Asn

PROTEIN SEQUENCES

210	215	220
Leu Ile Ile Thr Tyr Ala Val Ala Val Ala Gly Ile Ser Val Ala		
225	230	235
Ala Ala Phe Leu Leu Pro Trp Ser Met Leu Pro Asp Val Ile Asp Asp		
245	250	255
Phe His Leu Lys Gln Pro His Phe His Gly Thr Glu Pro Ile Phe Phe		
260	265	270
Ser Phe Tyr Val Phe Phe Thr Lys Phe Ala Ser Gly Val Ser Leu Gly		
275	280	285
Ile Ser Thr Leu Ser Leu Asp Phe Ala Gly Tyr Gln Thr Arg Gly Cys		
290	295	300
Ser Gln Pro Glu Arg Val Lys Phe Thr Leu Asn Met Leu Val Thr Met		
305	310	315
Ala Pro Ile Val Leu Ile Leu Leu Gly Leu Leu Leu Phe Lys Met Tyr		
325	330	335
Pro Ile Asp Glu Glu Arg Arg Arg Gln Asn Lys Lys Ala Leu Gln Ala		
340	345	350
Leu Arg Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp Ser Thr		
355	360	365
Glu Leu Ala Ser Ile Leu		
370		

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 334 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Val Asn Asp Pro Pro Val Pro Ala Leu Leu Trp Ala Gln Glu Val			
1	5	10	15

BIOCHEMICAL DATA

Gly Gln Val Leu Ala Gly Arg Ala Arg Arg Leu Leu L u Gln Phe Gly
20 25 30
Val Leu Phe Cys Thr Ile Leu Leu Leu Trp Val Ser Val Phe Leu
35 40 45
Tyr Gly Ser Phe Tyr Tyr Ser Tyr Met Pro Thr Val Ser His Leu Ser
50 55 60
Pro Val His Phe Tyr Tyr Arg Thr Asp Cys Asp Ser Ser Thr Thr Ser
65 70 75 80
Leu Cys Ser Phe Pro Val Ala Asn Val Ser Leu Thr Lys Gly Gly Arg
85 90 95
Asp Arg Val Leu Met Tyr Gly Gln Pro Tyr Arg Val Thr Leu Glu Leu
100 105 110
Glu Leu Pro Glu Ser Pro Val Asn Gln Asp Leu Gly Met Phe Leu Val
115 120 125
Thr Ile Ser Cys Tyr Thr Arg Gly Gly Arg Ile Ile Ser Thr Ser Ser
130 135 140
Arg Ser Val Met Leu His Tyr Arg Ser Asp Leu Leu Gln Met Leu Asp
145 150 155 160
Thr Leu Val Phe Ser Ser Leu Leu Leu Phe Gly Phe Ala Glu Gln Lys
165 170 175
Gln Leu Leu Glu Val Glu Leu Tyr Ala Asp Tyr Arg Glu Asn Ser Tyr
180 185 190
Val Pro Thr Thr Gly Ala Ile Ile Glu Ile His Ser Lys Arg Ile Gln
195 200 205
Leu Tyr Gly Ala Tyr Leu Arg Ile His Ala His Phe Thr Gly Leu Arg
210 215 220
Tyr Leu Leu Tyr Asn Phe Pro Met Thr Cys Ala Phe Ile Gly Val Ala
225 230 235 240
Ser Asn Phe Thr Phe Leu Ser Val Ile Val Leu Phe Ser Tyr Met Gln
245 250 255
Trp Val Trp Gly Gly Ile Trp Pro Arg His Arg Phe Ser Leu Gln Val
260 265 270
Asn Ile Arg Lys Arg Asp Asn Ser Arg Lys Glu Val Gln Arg Arg Ile
275 280 285
Ser Ala His Gln Pro Gly Pro Glu Gly Gln Glu Glu Ser Thr Pro Gln
290 295 300

S r Asp Val Thr Glu Asp Gly Glu Ser Pro Glu Asp Pro Ser Gly Thr
305 310 315 320
Glu Val Ser Cys Pro Arg Arg Arg Asn Gln Ile Ser Ser Pro
325 330

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 276 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Thr His Pro Gly Thr Gly Asp Ile Ile Ala Val Met Ile Thr Glu
1 5 10 15
Leu Arg Gly Lys Asp Ile Leu Ser Tyr Leu Glu Lys Asn Ile Ser Val
20 25 30
Gln Met Thr Ile Ala Val Gly Thr Arg Met Pro Pro Lys Asn Phe Ser
35 40 45
Arg Gly Ser Leu Val Phe Val Ser Ile Ser Phe Ile Val Leu Met Ile
50 55 60
Ile Ser Ser Ala Trp Leu Ile Phe Tyr Phe Ile Gln Lys Ile Arg Tyr
65 70 75 80
Thr Asn Ala Arg Asp Arg Asn Gln Arg Arg Leu Gly Asp Ala Ala Lys
85 90 95
Lys Ala Ile Ser Lys Leu Thr Thr Arg Thr Val Lys Lys Gly Asp Lys
100 105 110
Glu Thr Asp Pro Asp Phe Asp His Cys Ala Val Cys Ile Glu Ser Tyr
115 120 125
Lys Gln Asn Asp Val Val Arg Ile Leu Pro Cys Lys His Val Phe His
130 135 140
Lys Ser Cys Val Asp Pro Trp Leu Ser Glu His Cys Thr Cys Pro Met

145	150	155	160
Cys Lys Leu Asn Ile Leu Lys Ala Leu Gly Ile Val Pro Asn Leu Pro			
165	170	175	
Cys Thr Asp Asn Val Ala Phe Asp Met Glu Arg Leu Thr Arg Thr Gln			
180	185	190	
Ala Val Asn Arg Arg Ser Ala Leu Gly Asp Leu Ala Gly Asp Asn Ser			
195	200	205	
Leu Gly Leu Glu Pro Leu Arg Thr Ser Gly Ile Ser Pro Leu Pro Gln			
210	215	220	
Asp Gly Glu Leu Thr Pro Arg Thr Gly Glu Ile Asn Ile Ala Val Thr			
225	230	235	240
Lys Glu Trp Phe Ile Ile Ala Ser Phe Gly Leu Leu Ser Ala Leu Thr			
245	250	255	
Leu Cys Tyr Met Ile Ile Arg Ala Thr Ala Ser Leu Asn Ala Asn Glu			
260	265	270	
Val Glu Trp Phe			
275			

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 210 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Ala Asn Ser Gly Leu Gln Leu Leu Gly Phe Ser Met Ala Leu Leu			
1	5	10	15
Gly Trp Val Gly Leu Val Ala Cys Thr Ala Ile Pro Gln Trp Gln Met			
20	25	30	
Ser Ser Tyr Ala Gly Asp Asn Ile Ile Thr Ala Gln Ala Met Tyr Lys			
35	40	45	

PDB ID: 1JZL

Gly Leu Trp Met Asp Cys Val Thr Gln Ser Thr Gly Met Met Ser Cys
50 55 60
Lys Met Tyr Asp Ser Val Leu Ala Leu Ser Ala Ala Leu Gln Ala Thr
65 70 75 80
Arg Ala Leu Met Val Val Ser Leu Val Leu Gly Phe Leu Ala Met Phe
85 90 95
Val Ala Thr Met Gly Met Lys Cys Thr Arg Cys Gly Gly Asp Asp Lys
100 105 110
Val Lys Lys Ala Arg Ile Ala Met Gly Gly Gly Ile Ile Phe Ile Val
115 120 125
Ala Gly Leu Ala Ala Leu Val Ala Cys Ser Trp Tyr Gly His Gln Ile
130 135 140
Val Thr Asp Phe Tyr Asn Pro Leu Ile Pro Thr Asn Ile Lys Tyr Glu
145 150 155 160
Phe Gly Pro Ala Ile Phe Ile Gly Trp Ala Gly Ser Ala Leu Val Ile
165 170 175
Leu Gly Gly Ala Leu Leu Ser Cys Ser Cys Pro Gly Asn Glu Ser Lys
180 185 190
Ala Gly Tyr Arg Ala Pro Arg Ser Tyr Pro Lys Ser Asn Ser Ser Lys
195 200 205
Glu Tyr
210

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 476 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Ile Arg Pro Gln Leu Arg Thr Ala Gly Leu Gly Arg Cys Leu Leu

1	5	10	15
Pro Gly Leu Leu Leu Leu Leu Val Pro Val Leu Trp Ala Gly Ala Glu			
20	25	30	
Lys Leu His Thr Gln Pro Ser Cys Pro Ala Val Cys Gln Pro Thr Arg			
35	40	45	
Cys Pro Ala Leu Pro Thr Cys Ala Leu Gly Thr Thr Pro Val Phe Asp			
50	55	60	
Leu Cys Arg Cys Cys Arg Val Cys Pro Ala Ala Glu Arg Glu Val Cys			
65	70	75	80
Gly Gly Ala Gln Gly Gln Pro Cys Ala Pro Gly Leu Gln Cys Leu Gln			
85	90	95	
Pro Leu Arg Pro Gly Phe Pro Ser Thr Cys Gly Cys Pro Thr Leu Gly			
100	105	110	
Gly Ala Val Cys Gly Ser Asp Arg Arg Thr Tyr Pro Ser Met Cys Ala			
115	120	125	
Leu Arg Ala Glu Asn Arg Ala Ala Arg Arg Leu Gly Lys Val Pro Ala			
130	135	140	
Val Pro Val Gln Trp Gly Asn Cys Gly Asp Thr Gly Thr Arg Ser Ala			
145	150	155	160
Gly Pro Leu Arg Arg Asn Tyr Asn Phe Ile Ala Ala Val Val Glu Lys			
165	170	175	
Val Ala Pro Ser Val Val His Val Gln Leu Trp Gly Arg Leu Leu His			
180	185	190	
Gly Ser Arg Leu Val Pro Val Tyr Ser Gly Ser Gly Phe Ile Val Ser			
195	200	205	
Glu Asp Gly Leu Ile Ile Thr Asn Ala His Val Val Arg Asn Gln Gln			
210	215	220	
Trp Ile Glu Val Val Leu Gln Asn Gly Ala Arg Tyr Glu Ala Val Val			
225	230	235	240
Lys Asp Ile Asp Leu Lys Leu Asp Leu Ala Val Ile Lys Ile Glu Ser			
245	250	255	
Asn Ala Glu Leu Pro Val Leu Met Leu Gly Arg Ser Ser Asp Leu Arg			
260	265	270	
Ala Gly Glu Phe Val Val Ala Leu Gly Ser Pro Phe Ser Leu Gln Asn			
275	280	285	
Thr Ala Thr Ala Gly Ile Val Ser Thr Lys Gln Arg Gly Gly Lys Glu			

290	295	300
Leu Gly Met Lys Asp Ser Asp Met Asp Tyr Val Gln Ile Asp Ala Thr		
305	310	315
Ile Asn Tyr Gly Asn Ser Gly Gly Pro Leu Val Asn Leu Asp Gly Asp		
325	330	335
Val Ile Gly Val Asn Ser Leu Arg Val Thr Asp Gly Ile Ser Phe Ala		
340	345	350
Ile Pro Ser Asp Arg Val Arg Gln Phe Leu Ala Glu Tyr His Glu His		
355	360	365
Gln Met Lys Gly Lys Ala Phe Ser Asn Lys Lys Tyr Leu Gly Leu Gln		
370	375	380
Met Leu Ser Leu Thr Val Pro Leu Ser Glu Glu Leu Lys Met His Tyr		
385	390	395
Pro Asp Phe Pro Asp Val Ser Ser Gly Val Tyr Val Cys Lys Val Val		
405	410	415
Glu Gly Thr Ala Ala Gln Ser Ser Gly Leu Arg Asp His Asp Val Ile		
420	425	430
Val Asn Ile Asn Gly Lys Pro Ile Thr Thr Thr Asp Val Val Lys		
435	440	445
Ala Leu Asp Ser Asp Ser Leu Ser Met Ala Val Leu Arg Gly Lys Asp		
450	455	460
Asn Leu Leu Leu Thr Val Ile Pro Glu Thr Ile Asn		
465	470	475

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 266 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

DRAFT

Met Val Lys Val Thr Phe Asn Ser Ala Leu Ala Gln Lys Glu Ala Lys
1 5 10 15
Lys Asp Glu Pro Glu Ser Gly Glu Glu Ala Leu Ile Ile Pro Pro Asp
20 25 30
Ala Val Ala Val Asp Cys Lys Asp Pro Asp Asp Val Val Pro Val Gly
35 40 45
Gln Arg Arg Ala Trp Cys Trp Cys Met Cys Phe Gly Leu Ala Phe Met
50 55 60
Leu Ala Gly Val Ile Leu Gly Gly Ala Tyr Leu Tyr Lys Tyr Phe Ala
65 70 75 80
Leu Gln Pro Asp Asp Val Tyr Tyr Cys Gly Ile Lys Tyr Ile Lys Asp
85 90 95
Asp Val Ile Leu Asn Glu Pro Ser Ala Asp Ala Pro Ala Ala Leu Tyr
100 105 110
Gln Thr Ile Glu Glu Asn Ile Lys Ile Phe Glu Glu Glu Val Glu
115 120 125
Phe Ile Ser Val Pro Val Pro Glu Phe Ala Asp Ser Asp Pro Ala Asn
130 135 140
Ile Val His Asp Phe Asn Lys Lys Leu Thr Ala Tyr Leu Asp Leu Asn
145 150 155 160
Leu Asp Lys Cys Tyr Val Ile Pro Leu Asn Thr Ser Ile Val Met Pro
165 170 175
Pro Arg Asn Leu Leu Glu Leu Ile Asn Ile Lys Ala Gly Thr Tyr
180 185 190
Leu Pro Gln Ser Tyr Leu Ile His Glu His Met Val Ile Thr Asp Arg
195 200 205
Ile Glu Asn Ile Asp His Leu Gly Phe Phe Ile Tyr Arg Leu Cys His
210 215 220
Asp Lys Glu Thr Tyr Lys Leu Gln Arg Arg Glu Thr Ile Lys Gly Ile
225 230 235 240
Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Ile Arg His Phe Glu Asn
245 250 255
Lys Phe Ala Val Glu Thr Leu Ile Cys Ser
260 265