Отчет

Автор Чашков М. С.

Проект Osanka

Оглавление

Список решаемых задач	3
Подбор фильтра для определения ориентации	
Постановка задачи	
Анализ литературы	
Математический алгоритм фильтра Калмана	

Список решаемых задач

- 1. Подбор фильтра для определения ориентации точки в пространстве
- 2. Выбор алгоритма фильтрации измеренных данных от ВЧ шумов
- 3. Частотно-временной анализ данных датчика (неокончено)
- 4. Определение характера движения тела в пространстве (решение задачи приостановлено)

Подбор фильтра для определения ориентации

Постановка задачи

В общем случае решается следующая задача:

Имеется устройство, которое может быть описано некоторым вектором параметров. На каждой итерации зашумленных измерений оценить вектор параметров. Это можно представить в виде схемы

Рисунок 1: Схема фильтрации

Математически эту схему можно записать так:

$$x(k+1)=f(x(k),u(k),w(k))$$
 (1)

$$y(k)=h(x(k),v(k))$$
(2)

Здесь

 $x \in \mathbb{R}^n$ - вектор параметров системы

f(.,.,.) - выражение определяющее физику системы

```
u \in R^m - вектор управляющих воздействий w - вектор системных ошибок y \in R^r - вектор наблюдений (измерений) h(.,.,.) - измерительное уравнение v - вектор ошибок измерения
```

При заданных

- f, h
- Параметрах шумов *w, v*
- Начальных условий
- Наборе управляющих воздействий *u(k)*
- Наборе наблюдений (измерений) *y(k)*

Определить

• Наилучшую оценку *x(k)*

При выборе фильтра для определения ориентации рассматривались три варианта:

- 1. Комплементарный фильтр
- 2. Фильтр Маджвика
- 3. Фильтр Калмана

Была составлена оценочная таблица выбора фильтров по данным литературы

Таблица 1: Сравнение различных фильтров

		(T						
	Матем. сложность	Вычисл. сложность	Скорость сходимости	Точность	Простота настройки	Наличие оптимизации	Использ. данные	Наличие готовых реализаций
Комплементарный фильтр	низкая	низкая	низкая	низкая	высокая	нет	акселером. гироскоп	нет
Фильтр Маджвика	высокая	средняя	высокая	высокая (статика)	средняя	есть	акселером. гироскоп магнетом.	есть
Фильтр Калмана	высокая	высокая	высокая	высокая (статика динамика)	низкая	есть	акселером. гироскоп магнетом.	есть (нужна доработка)

Эти данные необходимо было проверить для окончательного выбора реализуемого алгоритма фильтрации, для этого были реализованы алгоритмы фильтрации в программном пакете MathLab.

Анализ литературы.

В ходе анализа литературы обнаружены следующие источники Интернет статьи

Название	Сссылка	Комментарий
Снижаем погрешность GPS на Android с помощью фильтра Калмана и акселерометра	https://zen.yandex.ru/ media/id/ 5ad057638c8be3b50925 5191/snijaem- pogreshnost-gps-na- android-s-pomosciu- filtra-kalmana-i- akselerometra- 5ad06beddd2484cb6270 626b	Общее описание акселерометра, Пример работы с фильтром Калмана. Пример формирования матрицы измерения и матрицы управления.
3D kinematics using dual quaternions: theory and applications in neuroscience	https:// www.frontiersin.org/ articles/10.3389/ fnbeh.2013.00007/full	Хороший материал. Но на английском. Математика вращений.
Матрицы поворота, углы Эйлера и кватернионы (Rotation matrices, Euler angles and quaternions) Матрицы и кватернионы.	https://api-2d3d- cad.com/ euler_angles_quaternion s/ http:// www.rossprogrammprod	Матрица преобразования. Углы Эйлера. Кватернионы Приведены формулы перехода. Имеются куски С кода. Много статей про кватернионы и
Вращение и кватернионы. Сборник	uct.com/translations/ Matrix%20and %20Quaternion %20FAQ.htm https://gamedev.ru/code/articles/?	операции с ними. Есть код операций с кватернионами. Кватернионы Приведены формулы перехода. Имеются

рецептов. (3 стр)	id=4215&page=3	куски С кода.
Доступно о кватернионах и их преимуществах	https://habr.com/ru/post/ 426863/	Хороший обзор кватернионов. Есть формулы. Нет кода
Комплементарный фильтр	https://robotclass.ru/ articles/complementary- filter/	Реализация инклинометра на ардуино. Только Гироскоп+ Акселерометр. Есть пример кода.
Фильтр Маджвика	https://x-io.co.uk/open- source-imu-and-ahrs- algorithms/	Описание алгоритма фильтрации Маджвика. Все 9 осей. Есть примет кода
Определение угла наклона акселерометром	http://bitaks.com/ resources/inclinometer/ content.html	Только акселерометр. Есть описание калибровки акселерометра
Использование инерциальной навигационной системы (ИНС) с несколькими датчиками на примере задачи стабилизации высоты квадрокоптера	https://habr.com/ru/post/ 137595/	Общее описание работы инклинометра Акселеромет + Гироскоп. Магнитометра нет.
Оценивание пространственной ориентации, или Как не бояться фильтров Махони и Маджвика	https://habr.com/ru/post/ 438060/	Ориентация. Общее сравнение фильтров Маджвика и Махони
Kalman filter toolbox for Matlab	https://www.cs.ubc.ca/ ~murphyk/Software/	Пример реализации фильтра Калмана на

	Kalman/kalman.html	матлабе
Фильтр Калмана— Введение	https:// baumanka.pashinin.com /IU2/sem11/	Лекции по Калмановской фильтрации из бауманки
How a Kalman filter works, in pictures	http://www.bzarg.com/p/ how-a-kalman-filter- works-in-pictures/	Забавное описание фильтра Калмана в картинках.

Книги

Автор	Название	Ссылка	Комментарий
Dan Simon	Optimal State Estimation Kalman	http:// en.bookfi.net/ book/503063	Теория фильтрации Калмана. Линейная и Нелинейная. На английском
Gelb A.	Applied optimal estimation	http:// en.bookfi.net/ book/1501549	Введение в идентификацию систем. На английском
Д. Гроп	Методы идентификации систем	http:// en.bookfi.net/ book/509530	Различные методы идентификации систем
Э. П. Сейдж	Идентификация систем управления	http:// en.bookfi.net/ book/792631	Теория идентификации систем
Кузовков Н. Т.	Инерциальная навигация	http:// en.bookfi.net/	Неплохая книга по навигации.

		book/728305	Правда описана на механических измерительных устройствах.
Гордеев	Кватернионы и бикватернионы Кинематика твердого тела	http:// eqworld.ipmnet.ru /ru/library/books/ Gordeev2016ru.p df	Очень хорошая книга по теории кватернионов и бикватернионов. Подробная математика. Нет готового кода.
	Фильтр Калмана для чайников		Минимальное описание линейного фильтра Калмана. Минимум математики. Нет готового кода
	Фильтр Калмана простым языком		Использование фильтра Калмана в определении GPS координат. Кода нет. Минимум формул. Фильтр строится на координатах + скорость объекта.
	Indirect Kalman Filter for 3D Attitude	http:// mars.cs.umn.edu/ tr/reports/	Очень хороший пример реализации

	Estimation	Trawny05b.pdf	фильтра Калмана для ориентации. Отсутствует магнитометр
Шпекторов А. Г. В. Г. Фам	Анализ применения микромеханическ их измерительных систем для управления морскими подвижными объектами	https://izv.etu.ru/ assets/files/izv- etu-5-2017-16- 20.pdf	Статья. Использования фильтрации Калмана. Нет готового кода
Terence Tong	Kalman Filter Made Easy	https:// www.ocf.berkeley. edu/~tmtong/ howto/kalman/ writeup.pdf	Простое описание фильтра Калмана. На английском
M. I. Ribeiro	Kalman and Extende Kalman Filters	http:// users.isr.ist.utl.pt/ ~mir/pub/ kalman.pdf	Хорошая книга по математике фильтрации Калмана
S. Madgwick	Madgwick internal report	https:// www.samba.org/ tridge/UAV/ madgwick_interna I_report.pdf	Статья Маджвика о его фильтре. Базовая статья по фильтрации Маджвика
Иванов Д. С.	Алгоритм оценки параметров ориентации малого космического корабля с использованием		Неплохая статья по практическому применения фильтра Калмана. Рассматриваютс

фильтра Калмана	я вопросы настройки фильтра
Sensor Fusion Kalman Filter	Алгоритм фильтра Калмана из Матлаба.

Математический алгоритм фильтра Калмана

Задача: Реализовать

- 1. определение ориентации
- 2. угол отклонения тела от вертикали

по полученным данным с использованием фильтра Калмана

Реализация здесь:

https://gitlab.fablite.tech/chashkov.ms/osanka_filtering_data/commit/cb786a58666b9c9d438d43022a7a7f48476a5b51\

Графики

Accelerometr Y
Положение сидя 1 мин - Шапель

Accelerometr Z
Положение сидя 1 мин - Шапель

Accelerometr X Приседания 10 - Шапель

Accelerometr Y Приседания 10 - Шапель

Accelerometr Z Приседания 10 - Шапель

Алфавитный указатель

Аддитивный белый гауссовский шум	
АБГШ	9
AWGN	9