Proposing Tools to Allow Finding "Sub-Types" of Diseases Using Machine Learning Methods

Presented by: Mor Zukin

Supervised by Prof. Ran Gilad-Bachrach

Biomedical Engineering Department Faculty of Engineering Tel-Aviv University, ISRAEL April 2020

Corona Time

תרשים מס' 6: דיאגרמת פיזור של בדיקות חיוביות לקורונה (אדום) ושליליות לקורונה (ירוק). הערכים של כל ציר עבור כל בדיקה נקבעו באמצעות הפעלת טכניקת T-SNE להפחתת מימד – המאפיינים הקליניים (סימפטומים, קטגוריית גיל, מגדר, אינדיקציה לביצוע הבדיקה)

(Luzun, Muchnik & Koren, 2020)

Corona Time

Introduction

Background

- Some diseases may have sub-types that react differently to treatment
- In this work we implement an existing method, using machine learning (ML) tools, for the purpose of finding subtypes of diseases

Background

ML algorithms are often categorized as supervised learning or unsupervised learning

	Supervised learning	Un-supervised learning
Data used for training	Labeled data	Un-labeled data
Purpose	classification	clustering

The ML problem we are dealing with in this project is closely related to an unsupervised clustering problem

Our Problem

- Different disease sub-types are likely to appear in different ratios across populations
- One of the guidelines is that there is a chance that the odds of acquiring a certain sub-disease may be influenced by measurable properties
- Premise division into populations is sufficient to expose the sub types

- Our goal is to identify the different clusters by building a tree of classifiers
- ► Each node in the tree is a classifier trained to separate between two populations
- In each classifier, different symptoms will be used in order to classify each patient as population A or population B
- Each leaf at the final tree represents a cluster (sub type)

$$P(A \mid X) > \ \langle P(B \mid X) \ st. \ X = \{symptomes\}_{i=1}^{m}$$

$$\frac{P(X \mid A) \cdot P(A)}{P(X)} > \backslash < \frac{P(X \mid B) \cdot P(B)}{P(X)}$$

$$P(X \mid A) > \backslash < P(X \mid B)$$

$$P(X | A) = P(A) \cdot P(sub - type_i | A) \cdot P(X | sub - type_i)$$

$$P(X | B) = P(B) \cdot P(sub - type_i | B) \cdot P(X | sub - type_i)$$

$$P(X | A) = P(A) \cdot P(sub - type_i | A) \cdot P(X | sub - type_i)$$

$$P(X | B) = P(B) \cdot P(sub - type_i | B) \cdot P(X | sub - type_i)$$

$$P(X | A) \propto P(sub - type_i | A)$$

$$P(X \mid B) \propto P(sub - type_i \mid B)$$

$$P(sub - type_i \mid A) > \langle P(sub - type_i \mid B)$$

► Given symptoms and two known population, the network can be used to compute the probabilities of the presence of various sub-types

$$P(A \text{ or } B \mid X) \rightarrow P(sub - type_i \mid A \text{ or } B)$$

We are dealing with un-supervised problems but using tools of supervised learning

Method - Corona dataset

- We take Corona patients with symptoms like fever, sore throat, shortness of breath etc
- The patients are divided to two population by age -
 - Population A patients over the age of 60 years old
 - Population B patients under the age of 60 years old
- Training the model to create the classifiers tree

Results

Results - Corona dataset

Results - Corona dataset

Results - Corona dataset

Validation of the performance

There is no need to know in advance the amount of clusters (sub-types)

Conclusions

Conclusions

- The results indicate that there may be clusters of people who response differently to a disease
- Our work can provide a good start point for further research into the characteristics of the disease
- This algorithm can be applied to different data sets of patients to better recover the underlying structure of a disease

Questions?