## 1

## GATE 2022 -AE 63

## EE23BTECH11057 - Shakunayeti Sai Sri Ram Varun

Question: The time delay between the peaks of the voltage signals  $v_1(t) = \cos(6t + 60^\circ)$  and  $v_2(t) =$  $-\sin(6t)$  is \_\_\_\_s



- (B)
- (D)

(GATE BM 2022 QUESTION 18)



## **Solution**:

From the values given in the Table I:

Fig. 1. Figure of input voltage signals

| Parameter     | Description                                         | Value                              |
|---------------|-----------------------------------------------------|------------------------------------|
| $v_1(t)$      | Input voltage signal 1                              | $\cos\left(6t + 60^{\circ}\right)$ |
| $v_2(t)$      | Input voltage signal 2                              | $-\sin(6t)$                        |
| $\Delta \phi$ | Phase difference between two input signals          | ?                                  |
| $\Delta t$    | Time difference between maxima of two input signals | ?                                  |
| ω             | angular frequency of input voltages                 | 6                                  |

TABLE I

INPUT VALUES

$$v_1(t) = \cos(6t + 60^\circ) \tag{1}$$

$$v_2(t) = -\sin(6t) \tag{2}$$

$$v_2(t) = \cos(6t + 90^\circ) \tag{3}$$

(4)

From (2) and (4), phase difference between two voltage signals is 30°. From formula,

$$\Delta \phi = \frac{\Delta t}{2\pi} 360 \tag{5}$$

$$\Delta \phi = \frac{\Delta t}{\frac{2\pi}{\omega}} 360 \tag{5}$$

$$\therefore \Delta t = \frac{10\pi}{360} s \tag{6}$$

Hence, option B is correct.