Package 'breakDown'

March 12, 2024

Title Model Agnostic Explainers for Individual Predictions
Version 0.2.2
Description Model agnostic tool for decomposition of predictions from black boxes. Break Down Table shows contributions of every variable to a final prediction. Break Down Plot presents variable contributions in a concise graphical way. This package work for binary classifiers and general regression models.
Depends R (>= 3.0)
Date 2024-03-11
License GPL-2
Encoding UTF-8
LazyData true
Imports ggplot2
Suggests knitr, rmarkdown, e1071, kernlab, xgboost, caret, randomForest, DALEX, ranger, testthat
VignetteBuilder knitr
<pre>URL https://pbiecek.github.io/breakDown/</pre>
<pre>BugReports https://github.com/pbiecek/breakDown/issues</pre>
NeedsCompilation no
Author Przemyslaw Biecek [aut, cre], Aleksandra Grudziaz [ctb]
Maintainer Przemyslaw Biecek <przemyslaw.biecek@gmail.com></przemyslaw.biecek@gmail.com>
Repository CRAN
Date/Publication 2024-03-11 23:30:02 UTC
R topics documented:
it topics documented.
betas

2 break_down

broken.default
broken.glm
broken.lm
HR_data
plot.broken
print.broken
wine

Index 14

betas

Extract betas values of a model for specific observations

Description

Extract betas values of a model for specific observations

Usage

```
betas(object, newdata, ...)
```

Arguments

object a model

newdata new observation(s) with columns that correspond to variables used in the model

... unused additional parameters

Author(s)

Joseph Larmarange

break_down Model Agnostic Experimental Approach to Break Down Plots with In-

teractions

Description

This function implements decomposition of model predictions with identification of interactions. The complexity of this function is O(2*p) for additive models and $O(2*p^2)$ for interactions. This function works in similar way to step-up and step-down greedy approaximations, the main difference is that in the first step the order of variables is determied. And in the second step the impact is calculated.

break_down 3

Usage

```
break_down(
  explainer,
  new_observation,
  check_interactions = TRUE,
  keep_distributions = FALSE
)
```

Arguments

explainer a model to be explained, preprocessed by function 'DALEX::explain()'. new_observation

a new observation with columns that corresponds to variables used in the model check_interactions

the orgin/baseline for the 'breakDown" plots, where the rectangles start. It may be a number or a character "Intercept". In the latter case the orgin will be set to model intercept.

keep_distributions

if TRUE, then the distribution of partial predictions is stored in addition to the average.

Value

an object of the broken class

Examples

```
## Not run:
library("DALEX")
library("breakDown")
library("randomForest")
set.seed(1313)
# example with interaction
# classification for HR data
model <- randomForest(status ~ . , data = HR)</pre>
new_observation <- HRTest[1,]</pre>
data <- HR[1:1000,]
predict.function \leftarrow function(m,x) predict(m,x, type = "prob")[,1]
explainer_rf_fired <- explain(model,</pre>
                  data = HR[1:1000,1:5],
                  y = HR\$status[1:1000] == "fired",
                  predict_function = function(m,x) predict(m,x, type = "prob")[,1],
                  label = "fired")
bd_rf <- break_down(explainer_rf_fired,</pre>
                  new_observation,
                  keep_distributions = TRUE)
bd_rf
```

4 broken

```
plot(bd_rf)
plot(bd_rf, plot_distributions = TRUE)
bd_rf <- break_down(explainer_rf_fired,</pre>
                  new_observation,
                  check_interactions = FALSE,
                  keep_distributions = TRUE)
bd_rf
plot(bd_rf)
# example for regression - apartment prices
# here we do not have intreactions
model <- randomForest(m2.price ~ . , data = apartments)</pre>
explainer_rf <- explain(model,</pre>
         data = apartmentsTest[1:1000,2:6],
         y = apartmentsTest$m2.price[1:1000],
         label = "rf")
bd_rf <- break_down(explainer_rf,</pre>
         apartmentsTest[1,],
         check_interactions = FALSE,
         keep_distributions = TRUE)
bd_rf
plot(bd_rf)
plot(bd_rf, plot_distributions = TRUE)
## End(Not run)
```

broken

Generic Function for Breaking Down of Model Predictions

Description

The broken function is a generic function for decomposition of model predictions. For linear models please use broken.lm, for generic linear models please use broken.glm. For all other models please use the model agnostic version broken.default. Please note, that some of these functions have additional parameters.

Usage

```
broken(model, new_observation, ...)
```

Arguments

broken.default 5

Value

an object of the broken class

Examples

```
## Not run:
library("breakDown")
library("randomForest")
library("ggplot2")
set.seed(1313)
model <- randomForest(factor(left)~., data = HR_data, family = "binomial", maxnodes = 5)</pre>
predict.function <- function(model, new_observation)</pre>
      predict(model, new_observation, type="prob")[,2]
predict.function(model, HR_data[11,-7])
explain_1 <- broken(model, HR_data[11,-7], data = HR_data[,-7],</pre>
predict.function = predict.function, direction = "down")
explain_1
plot(explain_1) + ggtitle("breakDown plot (direction=down) for randomForest model")
explain_2 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "down", keep_distributions = TRUE)
plot(explain_2, plot_distributions = TRUE) +
         ggtitle("breakDown distributions (direction=down) for randomForest model")
explain_3 <- broken(model, HR_data[11,-7], data = HR_data[,-7],</pre>
predict.function = predict.function, direction = "up", keep_distributions = TRUE)
plot(explain_3, plot_distributions = TRUE) +
         ggtitle("breakDown distributions (direction=up) for randomForest model")
## End(Not run)
```

broken.default

Model Agnostic Approach to Breaking Down of Model Predictions

Description

This function implements two greedy strategies for decompositions of model predictions (see the direction parameter). Both stategies are model agnostic, they are greedy but in most cases they give very similar results. Find more information about these strategies in https://arxiv.org/abs/1804.01955.

Usage

```
## Default S3 method:
broken(
  model,
  new_observation,
  data,
  direction = "up",
```

6 broken.default

```
baseline = 0,
keep_distributions = FALSE,
predict.function = predict
)
```

Arguments

model a model, it can be any predictive model, find examples for most popular frame-

works in vigniettes

new_observation

a new observation with columns that corresponds to variables used in the model

data the original data used for model fitting, should have same collumns as the 'new_observation'.

direction either 'up' or 'down' determined the exploration strategy

... other parameters

baseline the orgin/baseline for the breakDown plots, where the rectangles start. It may

be a number or a character "Intercept". In the latter case the orgin will be set to

model intercept.

keep_distributions

if TRUE, then the distribution of partial predictions is stored in addition to the

average.

predict.function

function that will calculate predictions out of model. It shall return a single numeric value per observation. For classification it may be a probability of the

default class.

Value

an object of the broken class

Examples

```
## Not run:
library("breakDown")
library("randomForest")
library("ggplot2")
set.seed(1313)
model <- randomForest(factor(left)~., data = HR_data, family = "binomial", maxnodes = 5)</pre>
predict.function <- function(model, new_observation)</pre>
      predict(model, new_observation, type="prob")[,2]
predict.function(model, HR_data[11,-7])
explain_1 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "down")
explain_1
plot(explain_1) + ggtitle("breakDown plot (direction=down) for randomForest model")
explain_2 <- broken(model, HR_data[11,-7], data = HR_data[,-7],</pre>
predict.function = predict.function, direction = "down", keep_distributions = TRUE)
plot(explain_2, plot_distributions = TRUE) +
```

broken.glm 7

broken.glm

Breaking Down of Model Predictions for glm models

Description

Breaking Down of Model Predictions for glm models

Usage

```
## $3 method for class 'glm'
broken(
  model,
  new_observation,
  ...,
  baseline = 0,
  predict.function = stats::predict.glm
)
```

Arguments

```
model a glm model

new_observation

a new observation with columns that corresponds to variables used in the model

other parameters

baseline the origin/baseline for the breakDown plots, where the rectangles start. It may be a number or a character "Intercept". In the latter case the orgin will be set to model intercept.

predict.function

function that will calculate predictions out of model (typically predict or betas)
```

Value

an object of the broken class

8 broken.lm

Examples

```
# example for wine data
wine$qualityb <- factor(wine$quality > 5.5, labels = c("bad", "good"))
modelg <- glm(qualityb~fixed.acidity + volatile.acidity + citric.acid +</pre>
              residual.sugar + chlorides + free.sulfur.dioxide +
               total.sulfur.dioxide + density + pH + sulphates + alcohol,
    data=wine, family = "binomial")
new_observation <- wine[1,]</pre>
br <- broken(modelg, new_observation)</pre>
logit <- function(x) exp(x)/(1+exp(x))
plot(br, logit)
# example for HR_data
model <- glm(left~., data = HR_data, family = "binomial")</pre>
explain_1 <- broken(model, HR_data[1,])</pre>
explain_1
plot(explain_1)
plot(explain_1, trans = function(x) exp(x)/(1+exp(x)))
explain_2 <- broken(model, HR_data[1,], predict.function = betas)</pre>
plot(explain_2, trans = function(x) exp(x)/(1+exp(x)))
```

broken.lm

Breaking Down of Model Predictions for lm models

Description

Breaking Down of Model Predictions for Im models

Usage

```
## S3 method for class 'lm'
broken(
  model,
  new_observation,
  ...,
  baseline = 0,
  predict.function = stats::predict.lm
)
```

Arguments

```
model a lm model

new_observation

a new observation with columns that corresponds to variables used in the model

other parameters
```

HR_data 9

baseline

the orgin/baseline for the breakDown plots, where the rectangles start. It may be a number or a character "Intercept". In the latter case the orgin will be set to model intercept.

predict.function

function that will calculate predictions out of model (typically predict or betas)

Value

an object of the broken class

Examples

```
model <- lm(Sepal.Length~., data=iris)
new_observation <- iris[1,]
br <- broken(model, new_observation)
plot(br)

# works for interactions as well
model <- lm(Sepal.Length ~ Petal.Width*Species, data = iris)
summary(model)

new_observation <- iris[1,]
br <- broken(model, new_observation)
br
plot(br)

br2 <- broken(model, new_observation, predict.function = betas)
br2
plot(br2)</pre>
```

HR_data

Why are our best and most experienced employees leaving prematurely?

Description

A dataset from Kaggle competition Human Resources Analytics. https://www.kaggle.com/

Format

A data frame with 14999 rows and 10 variables

Details

- satisfaction_level Level of satisfaction (0-1)
- last_evaluation Time since last performance evaluation (in Years)
- number_project Number of projects completed while at work
- average_montly_hours Average monthly hours at workplace

10 plot.broken

- time_spend_company Number of years spent in the company
- Work_accident Whether the employee had a workplace accident
- left Whether the employee left the workplace or not (1 or 0) Factor
- promotion_last_5years Whether the employee was promoted in the last five years
- · sales Department in which they work for
- salary Relative level of salary (high)

Source

Dataset HR-analytics from https://www.kaggle.com

plot.broken

Break Down Plot

Description

Break Down Plot

Usage

```
## S3 method for class 'broken'
plot(
    X,
    trans = I,
    ...,
    top_features = 0,
    min_delta = 0,
    add_contributions = TRUE,
    vcolors = c(`-1` = "#f05a71", `0` = "#371ea3", `1` = "#8bdcbe", X = "#371ea3"),
    digits = 3,
    rounding_function = round,
    plot_distributions = FALSE
)
```

Arguments

```
x the model model of 'broken' class
trans
transformation that shal be applied to scores
... other parameters
top_features maximal number of variables from model we want to plot
min_delta minimal stroke value of variables from model we want to plot
add_contributions
shall variable contributions to be added on plot?
vcolors
named vector with colors
```

plot.broken 11

digits

number of decimal places (round) or significant digits (signif) to be used. See the rounding_function argument

rounding_function

function that is to used for rounding numbers. It may be signif() which keeps a specified number of significant digits. Or the default round() to have the same precision for all components

plot_distributions

if TRUE then distributions of conditional propotions will be plotted. This requires keep_distributions=TRUE in the broken.default().

Value

a ggplot2 object

Examples

```
## Not run:
library("breakDown")
library("randomForest")
library("ggplot2")
set.seed(1313)
model <- randomForest(factor(left)~., data = HR_data, family = "binomial", maxnodes = 5)</pre>
predict.function <- function(model, new_observation)</pre>
      predict(model, new_observation, type="prob")[,2]
predict.function(model, HR_data[11,-7])
explain_1 <- broken(model, HR_data[11,-7], data = HR_data[,-7],</pre>
predict.function = predict.function, direction = "down")
explain_1
plot(explain_1) + ggtitle("breakDown plot (direction=down) for randomForest model")
explain_2 <- broken(model, HR_data[11,-7], data = HR_data[,-7],</pre>
predict.function = predict.function, direction = "down", keep_distributions = TRUE)
plot(explain_2, plot_distributions = TRUE) +
         ggtitle("breakDown distributions (direction=down) for randomForest model")
explain_3 <- broken(model, HR_data[11,-7], data = HR_data[,-7],
predict.function = predict.function, direction = "up", keep_distributions = TRUE)
plot(explain_3, plot_distributions = TRUE) +
         ggtitle("breakDown distributions (direction=up) for randomForest model")
model <- lm(quality~., data=wine)</pre>
new_observation <- wine[1,]</pre>
br <- broken(model, new_observation)</pre>
plot(br)
plot(br, top_features = 2)
plot(br, top_features = 2, min_delta = 0.01)
## End(Not run)
```

12 wine

print.broken

Break Down Print

Description

Break Down Print

Usage

```
## S3 method for class 'broken'
print(x, ..., digits = 3, rounding_function = round)
```

Arguments

x the model model of 'broken' class

... other parameters

digits number of decimal places (round) or significant digits (signif) to be used. See

the rounding_function argument

rounding_function

function that is to used for rounding numbers. It may be signif() which keeps a specified number of significant digits. Or the default round() to have the same precision for all components

Value

a data frame

wine

White Wine Quality Data

Description

White wine quality data related to variants of the Portuguese "Vinho Verde" wine. For more details, consult: http://www.vinhoverde.pt/en/ or the reference Cortez et al., 2009.

Format

A data frame with 4898 rows and 12 variables

Details

A dataset downloaded from UCI Machine Learning Database archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.cs

- · fixed.acidity
- · volatile.acidity
- · citric.acid
- residual.sugar
- chlorides
- · free.sulfur.dioxide
- · total.sulfur.dioxide
- density
- pH
- sulphates
- · alcohol
- quality

Source

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Index

```
* datasets
HR_data, 9

betas, 2
break_down, 2
broken, 4
broken.default, 4, 5
broken.glm, 4, 7
broken.lm, 4, 8

HR_data, 9

plot.broken, 10
print.broken, 12

wine, 12
```