

المنام وانبرط

Fließgeschwindigkeiten			
Aufgabennummer: B_103			
Technologieeinsatz:	möglich □	erforderlich ⊠	
von der Querschnittsform des (Beton, Sand, Holz usw.) ab. S Durchschnittswert an.	Gerinnes, vom Fließgefälle Bie variiert innerhalb des Q g der mittleren Fließgesch	Gerinnen (Fluss, Kanal usw.) hängt e sowie vom Material des Gerinnes Juerschnitts, daher gibt man sie als windigkeit von Gerinnen eignet sich die	
$v_{\rm m} = k_{\rm st} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}}$			
v _m mittlere Fließgeschwindi	= :		
k _{st} Proportionalitätskonstan	te $\left(\frac{m^{\frac{1}{3}}}{s}\right)$ (berücksichtigt die	e Gerinnerauheit)	
R hydraulischer Radius (m) I Fließgefälle = $\frac{\text{H\"ohe in Metern (}}{\text{L\"änge in Metern (}}$	$= \frac{\text{vom Wasser durchflossener Que}}{\text{benetzter Umfan}}$		
a) – Erläutern Sie anhand geschwindigkeit bee		r hydraulische Radius die Fließ-	
Halbkreises mit aufges	äherungsweise einen Quer etztem Quadrat. Das Geri von 5 m Höhe auf 1 Kilom	nne hat eine Breite von	
	ittlere Fließgeschwindigke nalrand befindet. Runden	it, wenn sich die Wasseroberfläche Sie dabei auf 2 Stellen.	

Fließgeschwindigkeiten 2

c) Ein Wasserversorgungsunternehmen zeichnet in einem Intervall von 900 Sekunden (s) die durch unterschiedliche Durchflussmengen schwankende Fließgeschwindigkeit v_m in einem Wasserzuleitungsrohr (Durchmesser d=0,6 m) auf.

Zeit ab Beginn des Beobachtungszeitraums in s	Fließgeschwindigkeit in m/s
0	1,2
180	3,4
360	4,3
540	4,1
720	3,0
900	1,8

- Ermitteln Sie mithilfe der Daten der Tabelle eine Ausgleichsfunktion 2. Grades, die den Verlauf der Fließgeschwindigkeit in diesem Zeitintervall beschreibt.
- Berechnen Sie mit dieser Polynomfunktion und mithilfe der Integralrechnung das während des Beobachtungszeitraums fließende Wasservolumen.

Runden Sie auf Kubikmeter genau.

Hinweis: $V = A \cdot v_m(t) \cdot t$

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Fließgeschwindigkeiten 3

Möglicher Lösungsweg

a) Die Größe R, die das Verhältnis von durchflossenem Querschnitt zu benetztem Umfang wiedergibt, hat eine positive Hochzahl, d. h.: je größer der hydraulische Radius, desto höher die Fließgeschwindigkeit.

b)
$$A = \frac{0.8^2}{2} + \frac{0.4^2}{2} \cdot \pi \approx 0,57 \text{ m}^2$$

$$U_{\text{benetzt}} = 2 \cdot 0,4 + 0,4 \cdot \pi \approx 2,06 \text{ m}$$

$$R = 0,28 \text{ m}$$

$$I = \frac{5}{1000} = 0,005$$

$$v_{\text{m}} = k_{\text{st}} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}} = 100 \cdot 0,28^{\frac{2}{3}} \cdot 0,005^{\frac{1}{2}} \approx 3,01 \text{ m/s}$$

Die zu erwartende mittlere Fließgeschwindigkeit liegt bei ca. 3,01 m/s.

Das Ergebnis kann aufgrund von Zwischenrundungen leicht vom angegebenen Ergebnis abweichen.

c) Berechnung der Ausgleichsparabel durch Technologieeinsatz:

$$V_{\rm m}(t) = -1.38 \cdot 10^{-5} \cdot t^2 + 1.266 \cdot 10^{-2} \cdot t + 1.36429$$

Querschnittsfläche $A = 0.3^2 \cdot \pi \approx 0.283 \text{ m}^2$

$$V = A \int_0^{900} v_{\rm m}(t) dt \approx 0,283 \cdot 3004,8$$
$$V \approx 850 \text{ m}^3$$

Während des Beobachtungsintervalls fließt ein Volumen von 850 m³ durch das Zuleitungsrohr.

Abweichungen vom Ergebnis aufgrund von Rundung sind zu tolerieren.

Fließgeschwindigkeiten 4

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 2 Algebra und Geometrie
- b) 2 Algebra und Geometrie
- c) 5 Stochastik

Nebeninhaltsdimension:

- a) —
- b) 1 Zahlen und Maße
- c) 4 Analysis

Wesentlicher Bereich der Handlungsdimension:

- a) D Argumentieren und Kommunizieren
- b) B Operieren und Technologieeinsatz
- c) A Modellieren und Transferieren

Nebenhandlungsdimension:

- a) —
- b) —
- c) B Operieren und Technologieeinsatz

Schwierigkeitsgrad:

Punkteanzahl:

- a) mittel
- b) leicht
- c) mittel

- a) 1
- b) 3
- c) 3

Thema: Physik

Quellen: -