Datathon - 4

¹Arjun Verma : IMT2017008 **CS732/DS732: Data Visualization**

Course Instructors: Prof. Jaya Sreevalsan Nair Technical Report - 4

Abstract. This technical report contains a brief overview of the methodology involved in implementing two different matrix seriation methods and also gives an exposition of the implementation.

1. Introduction

The provided paper titled "Matrix Reordering Methods for Table and Network Visualization" was the main point of reference for the provided implementations. An attempt was made to implement a number of algorithms and finally the **Spectral Methods** and **Dimension Reduction Approaches** were chosen as the final submissions.

2. Tools and Methodology

2.1. Tools

The exhaustive set of libraries used for generating the final inference visualizations involve:

- numpy
- pandas
- networkx
- matplotlib
- sklearn
- scipy

An additional point to be made here is that the algorithm implementations were done by trial and testing it on the *IRIS dataset* as it was less time consuming to work on an already completed/imputed dataset which required no pre-processing.

2.2. Methodology

In this section, we provide the distinct characteristics involved in each technique.

2.2.1. Methodology for Spectral Ordering

Brief overview of the algorithm:

- Input is a matrix X with n rows and m columns/attributes.
- Generate an adjacency matrix W and visualize the corresponding bipartite graph for this matrix X. The adjacency matrix is created by taking the pairwise euclidean distances amongst the n datapoints and then putting in a value of 1 if this distance is below a certain threshold else 0. This is in attempt to create a symmetric matrix that somewhat group closer datapoints together.
- Compute the Laplacian Matrix L by using the equation L = D W, where D is the degree matrix and W is the adjacency matrix.
- Compute the Fiedler vector from the Laplacian matrix L by doing an eigendecomposition and then picking up the vector corresponding to the smallest non-null eigenvalue.
- Re-order the n datapoints according to the sorted order of the computed Fiedler vector.

Key visualizations:

- The original ordering of matrix.
- The generated bipartite graph.
- The re-ordered matrix.

2.2.2. Methodology for Dimension Reduction Approach

Brief overview of the algorithm:

- Input is a matrix X with n rows and m columns/attributes.
- Compute the Covariance Matrix C for X.
- Compute the eigenvectors for the matrix C by doing an eigen-decomposition.
- Pick the first principal component, i.e the eigenvector corresponding to the largest eigenvalue.
- Re-order the n datapoints according to the sorted order of the first principal component.

Key visualizations:

- The original ordering of matrix.
- The re-ordered matrix.

2.3. Sample Visualizations

1. The **figure below** depicts the original ordering of the matrix X.

Figure 1. Original Ordering of the dataset

2. The figure below depicts the re-ordered matrix according to Dimension Reduction.

Figure 2. Dimension Reduction Method

3. The **figure below** depicts the computed bipartite graph of the matrix X for the **Spectral Ordering** method.

Figure 3. Bipartite Graph

4. The **figure below** depicts the re-ordered matrix X according to the **Spectral Ordering** method.

Figure 4. Spectral Ordering Method

3. References

- 1. Matrix Reordering Methods for Table and Network Visualization
- 2. Matrix algorithms for the seriation problem
- 3. History of Cluster HeatMaps
- 4. Corrgrams: Exploratory displays for correlation matrices
- 5. Spectral Graph Clustering