A Dependency Pair Framework for Relative of Termination of Term Rewriting*

Jan-Christoph Kassing, Grigory Vartanyan, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract. Dependency pairs are one of the most powerful techniques for 3 proving termination of term rewrite systems (TRSs), and they are used in 3 almost all tools for termination analysis of TRSs. Problem #106 of the RTA 3 List of Open Problems asks for an adaption of dependency pairs for relative 3 termination. Here, infinite rewrite sequences are allowed, but one wants to 3 prove that a certain subset of the rewrite rules cannot be used infinitely of 3 ten. Dependency pairs were recently adapted to annotated dependency pairs 3 (ADPs) to prove almost-sure termination of probabilistic TRSs. In this paper, we develop a novel adaption of ADPs for relative termination. We implemented our new ADP framework in our tool AProVE and evaluate it in 3 comparison to state-of-the-art tools for relative termination of TRSs. 3

1 Introduction 89

Termination is an important topic in program verification. There is a wealth of work 4 on automatic termination analysis of term rewrite systems (TRSs) which can also 4 be used to analyze termination of programs in many other languages. Essentially all 4 current termination tools for TRSs (e.g., AProVE [11], NaTT [31], MU-TERM [13], 4 T_TT₂ [23], etc.) use dependency pairs (DPs) [1,9,10,14,15].

A combination of two TRSs \mathcal{R} and $\mathcal{R}^=$ is considered to be "relatively terminat 5 ing" if there is no rewrite sequence that uses infinitely many steps with rules from \mathcal{R} (whereas rules from $\mathcal{R}^=$ may be used infinitely often). Relative termination of 5 TRSs has been studied since decades [6], and approaches based on relative rewriting 5 are used for many different applications, e.g., [5,16,17,21,22,25,26,29,32]. 5

However, while techniques and tools for analyzing ordinary termination of TRSs 6 are very powerful due to the use of DPs, most approaches for automated analysis of 6 relative termination are quite restricted in power. Therefore, one of the largest open 6 problems regarding DPs is Problem #106 of the RTA List of Open Problems [4]: 6 Can we use the dependency pair method to prove relative termination? A first major 5 step towards an answer to this question was presented in [18] by giving criteria for 7 \mathcal{R} and $\mathcal{R}^=$ that allow the use of ordinary DPs for relative termination. 6

Recently, we adapted DPs in order to analyze probabilistic innermost term 9 rewriting, by using so-called *annotated dependency pairs (ADPs)* [20] or *dependency* 9 *tuples (DTs)* [19] (which were originally proposed for innermost complexity analysis of TRSs [27]). In these adaptions, one considers all *defined* function symbols in the

* funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 0

- 235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL 0

- As shown in [20], using ADPs instead of DTs leads to a more elegant, more powerful, 0

and less complicated framework, and to completeness of the underlying chain criterion.

right-hand side of a rule at once, whereas ordinary DPs consider them separately. In this paper, we show that considering the defined symbols on right-hand sides 12 separately (as for DPs) does not suffice for relative termination. On the other hand, 12 we do not need to consider all of them at once either. Instead, we introduce a new 12 definition of ADPs that is suitable for relative termination and develop a corresponding ADP framework for automated relative termination proofs of TRSs. Moreover, 12 while ADPs and DTs were only applicable for innermost rewriting in [19, 20, 27], 12 we now adapt ADPs to full (relative) rewriting, i.e., we do not impose any specific 13 evaluation strategy. So while [18] presented conditions under which the ordinary 13 classical DP framework can be used to prove relative termination, in this paper we 13 develop the first specific DP framework for relative termination. 13

Structure: We start with preliminaries on relative rewriting in Sect. 2. In Sect. 3 32 we recapitulate the core processors of the DP framework. Moreover, we state the 33 main results of [18] on using ordinary DPs for relative termination. Afterwards, 32 we introduce our novel notion of annotated dependency pairs for relative termination in Sect. 4 and present a corresponding new ADP framework in Sect. 5. We 32 implemented our framework in the tool AProVE and in Sect. 6, we evaluate our implementation in comparison to other state-of-the-art tools. All proofs can be found 32 in App. A. 32

2 Relative Term Rewriting $_{ m 0}$

We assume familiarity with term rewriting |2| and regard (finite) TRSs over a (finite) signature Σ and a set of variables \mathcal{V}_{-15}

Example 1. Consider the following TRS $\mathcal{R}_{\text{divL}}$, where divL(x, xs) computes the number that results from dividing x by each element of the list xs. As usual, natural numbers are represented by the function symbols \mathcal{O} and s, and lists are represented via nil and cons. Then $\text{divL}(s^{24}(\mathcal{O}), \text{cons}(s^{4}(\mathcal{O}), \text{cons}(s^{3}(\mathcal{O}), \text{nil})))$ evaluates to $s^{2}(\mathcal{O})$, because (24/4)/3 = 2. Here, $s^{2}(\mathcal{O})$ stands for $s(s(\mathcal{O}))$, etc. 16

A TRS \mathcal{R} induces a rewrite relation $\to_{\mathcal{R}} \subseteq \mathcal{T}(\Sigma, \mathcal{V}) \times \mathcal{T}(\Sigma, \mathcal{V})$ on terms where $s \to_{\mathcal{R}} t$ holds if there is a position $\pi \in \text{pos}(s)$, a rule $\ell \to r \in \mathcal{R}$, and a substitution 23 σ such that $s|_{\pi} = \ell \sigma$ and $t = s[r\sigma]_{\pi}$. For example, we have minus($s(\mathcal{O}), s(\mathcal{O}) \to_{\mathcal{R}_{\text{divL}}} \mathcal{O}$. We call a TRS \mathcal{R} strongly normalizing (SN) or terminating 123 if $\to_{\mathcal{R}} t$ is well founded. Using the DP framework, one can easily prove that $\mathcal{R}_{\text{divL}} t$ is 23 SN (see Sect. 3.1). In particular, in each application of the recursive divL-rule (6), 23 the length of the list in divL's second argument is decreased by one. 23

In the relative setting, one considers two TRSs \mathcal{R} and $\mathcal{R}^=$. We say that \mathcal{R} is relatively strongly normalizing w.r.t. $\mathcal{R}^=$ (i.e., $\mathcal{R}/\mathcal{R}^=$ is SN) if there is no infinite ($\rightarrow_{\mathcal{R}} \cup \rightarrow_{\mathcal{R}}=$)-rewrite sequence that uses an infinite number of $\rightarrow_{\mathcal{R}}$ -steps. We refer to \mathcal{R} as the main and $\mathcal{R}^=$ as the base TRS. 25

Example 2. For example, let $\mathcal{R}_{\text{divL}}$ be the main TRS. Since the order of the list 75 elements does not affect the termination of $\mathcal{R}_{\text{divL}}$, this algorithm also works for 75 multisets. To abstract lists to multisets, we add the base TRS $\mathcal{R}_{mset}^{=} = \{(7)\}.$ 75 $cons(x, cons(y, \overline{zs})) \rightarrow cons(y, cons(x, \overline{zs}))$ (7) 151 $\mathcal{R}_{\text{mset}}^{=}$ is non-terminating, since it can switch elements in a list arbitrarily often. However, $\mathcal{R}_{\text{divL}}/\mathcal{R}_{\text{mset}}^{=}$ is SN as each application of Rule (6) still reduces the list length. 162 We will use the following four examples to show why a naive adaption of de-27 pendency pairs does not work in the relative setting and why we need our new 27 notion of annotated dependency pairs. These examples represent different types of 27 infinite rewrite sequences that lead to non-termination in the relative setting: redexduplicating, redex-creating (or "-emitting"), and ordinary infinite sequences. 27 Example 3 (Redex-Duplicating). Consider the TRSs $\mathcal{R}_1 = \{a \rightarrow b\}$ and $\mathcal{R}_1^= = 28$ $\{f(x) \to d(f(x), x)\}. \ \mathcal{R}_1/\mathcal{R}_1^= \text{ is not SN due to the infinite rewrite sequence } \underbrace{f(a)}_{28} \to_{\mathcal{R}_1^-} \underbrace{d(f(a), \underline{a})}_{28} \to_{\mathcal{R}_1^-} \underbrace{d(d(f(a), \underline{a}), b)}_{28} \to_{\mathcal{R}_1^-} \underbrace{d(d(f(a), \underline{b}), b)}_{28} \to_{\mathcal{R}_1^-} \dots \text{ The leads }$ reason is that $\mathcal{R}_1^{=}$ can be used to duplicate an arbitrary \mathcal{R}_1 -redex infinitely often. 28 Example 4 (Redex-Creating on Parallel Position). Next, consider $\mathcal{R}_2 = \{a \rightarrow b\}_{29}$ and $\mathcal{R}_2^{=} = \{f \to d(f, a)\}$. $\mathcal{R}_2/\mathcal{R}_2^{=}$ is not SN as we have the infinite rewrite sequence $\underline{f} \rightarrow_{\mathcal{R}_{2}^{=}} \underline{\mathsf{d}(f,\underline{\mathsf{a}})} \rightarrow_{\mathcal{R}_{2}} \underline{\mathsf{d}(\underline{f},\mathsf{b})} \rightarrow_{\mathcal{R}_{2}^{=}} \underline{\mathsf{d}(\mathsf{d}(f,\underline{\mathsf{a}}),\mathsf{b})} \rightarrow_{\mathcal{R}_{2}} \underline{\mathsf{d}(\mathsf{d}(\underline{f},\mathsf{b}),\mathsf{b})} \rightarrow_{\mathcal{R}_{2}^{=}} \dots \text{ Here, } \mathcal{R}_{2}^{=} \underbrace{\mathsf{29}}$ can create an \mathcal{R}_2 -redex infinitely often (where in the right-hand side d(f, a) of $\mathcal{R}_2^{=}$'s 29 rule, the $\mathcal{R}_2^{=}$ -redex f and the created \mathcal{R}_2 -redex a are on parallel positions). Example 5 (Redex-Creating on Position Above). Let $\mathcal{R}_3 = \{a(x) \rightarrow b(x)\}$ and 30 $\mathcal{R}_3^==\{\mathsf{f}\to\mathsf{a}(\mathsf{f})\}.\ \mathcal{R}_3/\mathcal{R}_3^= \mathrm{\ is\ not\ SN\ as\ we\ have\ } \underline{\mathsf{f}}\to_{\mathcal{R}_3^=}\underline{\mathsf{a}}(\mathsf{f})\to_{\mathcal{R}_3}\mathsf{b}(\underline{\mathsf{f}})\to_{\mathcal{R}_3^=}30$ $b(\underline{a}(f)) \to_{\mathcal{R}_3} b(b(\underline{f})) \to_{\mathcal{R}_3} \dots$, i.e., again $\mathcal{R}_3^=$ can be used to create an \mathcal{R}_3 -redex infinitely often. In the right-hand side a(f) of $\mathcal{R}_3^{=}$'s rule, the position of the created 30

Example 6 (Ordinary Infinite). Finally, consider $\mathcal{R}_4 = \{a \to b\}$ and $\mathcal{R}_4^= \{b \to a\}$. 31 Here, the base TRS $\mathcal{R}_4^=$ can neither duplicate nor create an \mathcal{R}_4 -redex infinitely often, 31 but in combination with the main TRS \mathcal{R}_4 we obtain the infinite rewrite sequence 31 $a \to_{\mathcal{R}_4} b \to_{\mathcal{R}_4^=} a \to_{\mathcal{R}_4} b \to_{\mathcal{R}_4^=} \dots$ Thus, $\mathcal{R}_4/\mathcal{R}_4^=$ is not SN. 31

3 DP Framework 0

We first recapitulate dependency pairs for ordinary (non-relative) rewriting in Sect. 3.1 32 and summarize existing results on DPs for relative rewriting in Sect. 3.2 32

3.1 Dependency Pairs for Ordinary Term Rewriting 107

 \mathcal{R}_3 -redex $\mathsf{a}(\ldots)$ is above the position of the $\mathcal{R}_3^=$ -redex f. 30

```
We recapitulate DPs and the two most important processors of the DP framework, 33 and refer to, e.g., |1,9,10,14,15| for more details. As an example, we show how to prove termination of \mathcal{R}_{\text{divL}} without the base \mathcal{R}_{\text{mset}}^=. We decompose the signature \mathcal{L} = \mathcal{C} \uplus \mathcal{D} of a TRS \mathcal{R} such that f \in \mathcal{D} if f = \text{root}(\ell) for some rule \ell \to r \in \mathcal{R}. The 34
```

```
symbols in \mathcal{C} and \mathcal{D} are called constructors and defined symbols of \mathcal{R}, respectively. 34 For every f \in \mathcal{D}, we introduce a fresh annotated symbol f^{\#} of the same arity. Let \mathcal{D}^{\#} denote the set of all annotated symbols, and \mathcal{L}^{\#} = \mathcal{L} \uplus \mathcal{D}^{\#}. To ease readability, 35 we often use capital letters like F instead of f^{\#}. For any term f = f(f_1, \dots, f_n) \in \mathcal{T}(\mathcal{L}, \mathcal{V}) with f \in \mathcal{D}, let f^{\#} = f^{\#}(f_1, \dots, f_n). For a rule f^{\#} = f^{\#}(f_n, \dots, f_n) and each subterm f^{\#} = f^{\#}(f_n, \dots, f_n) denote the set of all dependency pairs of the TRS f^{\#} = f^{\#}(f_n, \dots, f_n). 35
```

Example 7. For \mathcal{R}_{divL} from Ex. 1, we obtain the following five dependency pairs.

```
 \begin{array}{c|cccc} \mathsf{M}(\mathsf{s}(x),\mathsf{s}(y)) \to \mathsf{M}(x,y) & (8) & 0 & \mathsf{DL}(x,\mathsf{cons}(y,xs)) \to \mathsf{D}(x,y) & (11) & 0 \\ \hline \mathsf{D}(\mathsf{s}(x),\mathsf{s}(y)) \to \mathsf{M}(x,y) & (9) & 0 & \mathsf{DL}(x,\mathsf{cons}(y,xs)) \to \mathsf{DL}(\mathsf{div}(x,y),xs) & (12) & 0 \\ \hline \mathsf{D}(\mathsf{s}(x),\mathsf{s}(y)) \to \mathsf{D}(\mathsf{m}(x,y),\mathsf{s}(y)) & (10) & 0 & 0 \\ \hline \end{array}
```

The DP framework operates on DP problems $(\mathcal{P}, \mathcal{R})$ where \mathcal{P} is a (finite) set of DPs, and \mathcal{R} is a (finite) TRS. A (possibly infinite) sequence t_0, t_1, t_2, \ldots with $t_i \stackrel{\varepsilon}{\to}_{\mathcal{P}} t_1$ $0 \to_{\mathcal{R}}^* t_{i+1}$ for all i is a $(\mathcal{P}, \mathcal{R})$ -chain. Here, $\stackrel{\varepsilon}{\to}$ denotes rewrite steps at the root. Intuitively, a chain represents subsequent "function calls" in evaluations. Between two 42 function calls (corresponding to steps with \mathcal{P} , called \mathbf{p} -steps) one can evaluate the 42 arguments using arbitrary many steps with \mathcal{R} (called \mathbf{r} -steps). So \mathbf{r} -steps are rewrite 42 steps that are needed in order to enable another \mathbf{p} -step at a position above later on. 42 For example, $\mathrm{DL}(\mathbf{s}(\mathcal{O}), \mathsf{cons}(\mathbf{s}(\mathcal{O}), \mathsf{nil}))$, $\mathrm{DL}(\mathbf{s}(\mathcal{O}), \mathsf{nil})$ is a $(\mathcal{DP}(\mathcal{R}_{\mathsf{divl}}), \mathcal{R}_{\mathsf{divl}})$ -chain, as $\mathrm{DL}(\mathbf{s}(\mathcal{O}), \mathsf{cons}(\mathbf{s}(\mathcal{O}), \mathsf{nil}))$ $\stackrel{\varepsilon}{\to}_{\mathcal{DP}(\mathcal{R}_{\mathsf{divl}})}$ $\mathrm{DL}(\mathsf{div}(\mathbf{s}(\mathcal{O}), \mathbf{s}(\mathcal{O})), \mathsf{nil})$ $\to_{\mathcal{R}_{\mathsf{divl}}}} \mathrm{DL}(\mathbf{s}(\mathcal{O}), \mathsf{nil})$.

A DP problem $(\mathcal{P}, \mathcal{R})$ is called *strongly normalizing* (SN) if there is no infinite $(\mathcal{P}, \mathcal{R})$ -chain. The main result on DPs is the *chain criterion* which states that a TRS \mathcal{R} is SN iff $(\mathcal{DP}(\mathcal{R}), \mathcal{R})$ is SN. The key idea of the DP framework is a 101 divide-and-conquer approach which applies DP processors to transform DP problems into simpler sub-problems. A DP processor Proc has the form $\operatorname{Proc}(\mathcal{P}, \mathcal{R}) = \{(\mathcal{P}_1, \mathcal{R}_1), \dots, (\mathcal{P}_n, \mathcal{R}_n)\}$, where $\mathcal{P}, \mathcal{P}_1, \dots, \mathcal{P}_n$ are sets of DPs and $\mathcal{R}, \mathcal{R}_1, \dots, \mathcal{R}_n$ are TRSs. Proc is sound if $(\mathcal{P}, \mathcal{R})$ is SN whenever $(\mathcal{P}_i, \mathcal{R}_i)$ is SN for all $1 \leq i \leq n$. It is complete if $(\mathcal{P}_i, \mathcal{R}_i)$ is SN for all $1 \leq i \leq n$ whenever $(\mathcal{P}, \mathcal{R})$ is SN. 101

So for a TRS \mathcal{R} , one starts with the initial DP problem $(\mathcal{DP}(\mathcal{R}), \mathcal{R})$ and applies 45 sound (and preferably complete) DP processors until all sub-problems are "solved" 45 (i.e., DP processors transform them to the empty set). This allows for modular ter- 45 mination proofs, as different techniques can be applied on each sub-problem $(\mathcal{P}_i, \mathcal{R}_i)$. 45

One of the most important processors is the dependency graph processor. The $(\mathcal{P}, \mathcal{R})$ -dependency graph indicates which DPs can be used after each other in chains. 46 Its nodes are \mathcal{P} and there is an edge from $s_1 \to t_1$ to $s_2 \to t_2$ if there are substitutions 46 σ_1, σ_2 with $t_1\sigma_1 \to_{\mathcal{R}}^* s_2\sigma_2$. The $(\mathcal{DP}(\mathcal{R}_{\text{divL}}), \mathcal{R}_{\text{divL}})$ -dependency graph is on the right. Any infinite $(\mathcal{P}, \mathcal{R})$ -chain corresponds to an infinite path in the dependency graph, and since the graph is finite, this infinite path must end in a strongly connected component (SCC). Hence, it suffices to consider the SCCs of this graph independently.

Here, a set \mathcal{P}' of dependency pairs is an SCC if it is a maximal cycle, i.e., it is a maximal set such that for any $s_1 \to t_1$ and $s_2 \to t_2$ in \mathcal{P}' there is a non-empty path from $s_1 \to t_1$ to $s_2 \to t_2$ which only traverses nodes from \mathcal{P}' .

```
Theorem 8 (Dep. Graph Processor). For the SCCs \mathcal{P}_1, \ldots, \mathcal{P}_n of the (\mathcal{P}, \mathcal{R})-
dependency graph, \operatorname{Proc}_{DG}(\mathcal{P}, \mathcal{R}) = \{(\mathcal{P}_1, \mathcal{R}), \ldots, (\mathcal{P}_n, \mathcal{R})\} is sound and complete.
```

While the exact dependency graph is not computable in general, there are techniques to over-approximate it automatically, see, e.g., [1,10,14]. In our example, 50 $\text{Proc}_{DG}(\mathcal{DP}(\mathcal{R}_{divL}), \mathcal{R}_{divL})$ yields $(\{(8)\}, \mathcal{R}_{divL}), (\{(10)\}, \mathcal{R}_{divL}), \text{ and } (\{(12)\}, \mathcal{R}_{divL})$ 51 The second crucial processor adapts classical reduction orders to DP problems. 52 A reduction pair (\succeq, \succ) consists of two relations on terms such that \succeq is reflexive, 52 transitive, and closed under contexts and substitutions, and \succ is a well-founded or-52

der that is closed under substitutions but does not have to be closed under contexts. 52 Moreover, \succeq and \succ must be compatible, i.e., $\succeq \circ \succ \circ \succeq \subseteq \succ$. The reduction pair 52 processor requires that all rules and dependency pairs are weakly decreasing, and 52 it removes those DPs that are strictly decreasing. 52

Theorem 9 (Reduction Pair Processor). Let (\succsim, \succ) be a reduction pair such 53 that $\mathcal{P} \cup \mathcal{R} \subseteq \succsim$. Then $\operatorname{Proc}_{\mathsf{RPP}}(\mathcal{P}, \mathcal{R}) = \{(\mathcal{P} \setminus \succ, \mathcal{R})\}$ is sound and complete. 53

For example, one can use reduction pairs based on polynomial interpretations 54 [24]. A polynomial interpretation Pol is a $\Sigma^{\#}$ -algebra which maps every function symbol $f \in \Sigma^{\#}$ to a polynomial $f_{\text{Pol}} \in \mathbb{N}[\mathcal{V}]$. Pol(t) denotes the interpretation of a term t by the $\Sigma^{\#}$ -algebra Pol. Then Pol induces a reduction pair (\succeq, \succ) where $t_1 \succeq t_2$ ($t_1 \succeq t_2$) holds if the inequation Pol(t_1) \geq Pol(t_2) (Pol(t_1) > Pol(t_2)) is true for all instantiations of its variables by natural numbers, 54

For the three remaining DP problems in our example, we can apply the reduction 55 pair processor using the polynomial interpretation which maps \mathcal{O} to 0, s(x) to x+1, 55 cons(y, xs) to xs+1, DL(x, xs) to xs, and all other symbols to their first arguments. 55 Since (8), (10), and (12) are strictly decreasing, Proc_{RPP} transforms all three remaining DP problems into DP problems of the form (\emptyset, \ldots) . As $\operatorname{Proc}_{\mathsf{DG}}(\emptyset, \ldots) = \emptyset$ and 55 all processors used are sound, this means that there is no infinite chain for the initial 55 DP problem $(\mathcal{DP}(\mathcal{R}_{\mathsf{divL}}), \mathcal{R}_{\mathsf{divL}})$ and thus, $\mathcal{R}_{\mathsf{divL}}$ is SN. 55

3.2 Dependency Pairs for Relative Termination 0

Up to now, we only considered DPs for ordinary termination of TRSs. The easiest idea to use DPs in the relative setting is to start with the DP problem $(\mathcal{DP}(\mathcal{R} \cup \mathcal{R}^{=}), \mathcal{R} \cup \mathcal{R}^{=})$. This would prove termination of $\mathcal{R} \cup \mathcal{R}^{=}$, which implies termination of $\mathcal{R}/\mathcal{R}^{=}$, but ignores that the rules in $\mathcal{R}^{=}$ do not have to terminate. Since termination of DP problems is already defined via a relative condition (finite chains can only have finitely many **p**-steps but may have infinitely many **r**-steps), another idea for proving termination of $\mathcal{R}/\mathcal{R}^{=}$ is to start with the DP problem $(\mathcal{DP}(\mathcal{R}), \mathcal{R} \cup \mathcal{R}^{=})$, which only considers the DPs of \mathcal{R} . However, this is unsound in general, 56

Example 10. The only defined symbol of \mathcal{R}_2 from Ex. 4 is a. Since the right-hand side of \mathcal{R}_2 's rule does not contain defined symbols, we would get the DP problem $(\emptyset, \mathbb{R}_2 \cup \mathcal{R}_2^=)$, which is SN as it has no DP. Thus, we would falsely conclude that $\mathcal{R}_2/\mathcal{R}_2^=$ is SN. Similarly, this approach would also falsely "prove" SN for Ex. 3 and 5. 60

In [18], it was shown that under certain conditions on \mathcal{R} and $\mathcal{R}^=$, starting with the DP problem $(\mathcal{DP}(\mathcal{R} \cup \mathcal{R}_a^=), \mathcal{R} \cup \mathcal{R}^=)$ for a subset $\mathcal{R}_a^= \subseteq \mathcal{R}^=$ is sound for relative termination.³ The two restrictions on the TRSs are dominance and being nonduplicating. We say that \mathcal{R} dominates $\mathcal{R}^=$ if defined symbols of \mathcal{R} do not occur in the right-hand sides of rules of $\mathcal{R}^=$. A TRS is non-duplicating if no variable occurs more often on the right-hand side of a rule than on its left-hand side. 60

Theorem 11 (First Main Result of [18], Sound and Complete). Let \mathcal{R} and $\mathcal{R}^=$ be TRSs such that $\mathcal{R}^=$ is non-duplicating and \mathcal{R} dominates $\mathcal{R}^=$. Then the DF problem $(\mathcal{DP}(\mathcal{R}), \mathcal{R} \cup \mathcal{R}^=)$ is SN iff $\mathcal{R}/\mathcal{R}^=$ is SN. 61

Theorem 12 (Second Main Result of [18], only Sound). Let \mathcal{R} and $\mathcal{R}^{=}$ = 62 $\mathcal{R}_{a}^{=} \uplus \mathcal{R}_{b}^{=}$ be TRSs. If $\mathcal{R}_{b}^{=}$ is non-duplicating, $\mathcal{R} \cup \mathcal{R}_{a}^{=}$ dominates $\mathcal{R}_{b}^{=}$, and the DP problem $(\mathcal{DP}(\mathcal{R} \cup \mathcal{R}_{a}^{=}), \mathcal{R} \cup \mathcal{R}^{=})$ is SN, then $\mathcal{R}/\mathcal{R}^{=}$ is SN. 62

Example 13. For the main TRS $\mathcal{R}_{\text{divL}}$ from Ex. 1 and base TRS $\mathcal{R}_{\text{mset}}^=$ from Ex. 2 63 we can apply Thm. 11 and consider the DP problem $(\mathcal{DP}(\mathcal{R}_{\text{divL}}), \mathcal{R}_{\text{divL}} \cup \mathcal{R}_{\text{mset}}^=)$, since 63 $\mathcal{R}_{\text{mset}}^=$ is non-duplicating and $\mathcal{R}_{\text{divL}}$ dominates $\mathcal{R}_{\text{mset}}^=$. As for $(\mathcal{DP}(\mathcal{R}_{\text{divL}}), \mathcal{R}_{\text{divL}})$, the 63 DP framework can prove that $(\mathcal{DP}(\mathcal{R}_{\text{divL}}), \mathcal{R}_{\text{divL}} \cup \mathcal{R}_{\text{mset}}^=)$ is SN. In this way, the tool 63 NaTT which implements the results of [18] proves that $\mathcal{R}_{\text{divL}}/\mathcal{R}_{\text{mset}}^=$ is SN. In contrast, 63 a direct application of simplification orders fails to prove SN for $\mathcal{R}_{\text{divL}}/\mathcal{R}_{\text{mset}}^=$ because simplification orders already fail to prove termination of $\mathcal{R}_{\text{divL}}$. 63

Example 14. If we consider $\mathcal{R}_{mset2}^{=}$ with the rule 182

 $\mathsf{divL}(z,\mathsf{cons}(x,\mathsf{cons}(y,zs))) \to \mathsf{divL}(z,\mathsf{cons}(y,\mathsf{cons}(x,zs))) \tag{13}$

instead of $\mathcal{R}_{\mathsf{mset}}^{=}$ as the base TRS, then $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset2}}^{=}$ remains strongly normalizing, 73 but we cannot use Thm. 11 since $\mathcal{R}_{\mathsf{divL}}$ does not dominate $\mathcal{R}_{\mathsf{mset2}}^{=}$. If we try to split 73 $\mathcal{R}_{\mathsf{mset2}}^{=}$ as in Thm. 12, then $\emptyset \neq \mathcal{R}_{a}^{=} \subseteq \mathcal{R}_{\mathsf{mset2}}^{=}$ implies $\mathcal{R}_{a}^{=} = \mathcal{R}_{\mathsf{mset2}}^{=}$, but $\mathcal{R}_{\mathsf{mset2}}^{=}$ is non-terminating. Therefore, all previous tools for relative termination fail in proving 73 that $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset2}}^{=}$ is SN. In Sect. 4 we will present our novel DP framework which 73 can prove relative termination of relative TRSs like $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset2}}^{=}$. 73

As remarked in [18], Thm. 11 and 12 are unsound if one only considers minimal 66 chains, i.e., if for a DP problem $(\mathcal{P}, \mathcal{R})$ one only considers chains t_0, t_1, \ldots , where all 66 t_i are \mathcal{R} -strongly normalizing. In the DP framework for ordinary rewriting, the restriction to minimal chains allows the use of further processors, e.g., based on usable 67 rules [10, 15] or the subterm criterion [15]. As shown in [18], usable rules and the 67 subterm criterion can nevertheless be applied if $\mathcal{R}^{=}$ is quasi-terminating [3], i.e., the 67 set $\{t \mid s \to_{\mathcal{R}}^* = t\}$ is finite for every term s. This restriction would also be needed 67 to integrate processors that rely on minimality into our new framework in Sect. 4. 67

As before, for the construction of $\mathcal{DP}(\mathcal{R} \cup \mathcal{R}_a^=)$, only the root symbols of left-hand sides of $\mathcal{R} \cup \mathcal{R}_a^=$ are considered to be "defined". 60

4 Annotated Dependency Pairs for Relative Termination 0

As shown in Sect. 3.2, up to now there only exist criteria [18] that state when 68 it is sound to apply ordinary DPs for proving relative termination, but there is 68 no specific DP-based technique to analyze relative termination directly. To solve 69 this problem, we now adapt the concept of annotated dependency pairs (ADPs) 69 for relative termination. ADPs were introduced in [20] to prove innermost almostsure termination of probabilistic term rewriting. In the relative setting, we can use 69 similar dependency pairs as in the probabilistic setting, but with a different rewrite 69 relation \hookrightarrow to deal with non-innermost rewrite steps. Compared to [18], we can (a) 69 remove the requirement of dominance, which will be handled by the dependency 69 graph processor, and (b) allow for ADP processors that are specifically designed for the relative setting before possibly moving to ordinary DPs. The requirement that 69 $\mathcal{R}^{=}$ must be non-duplicating remains, since DPs do not help in analyzing redex- 69 duplicating sequences as in Ex. 3, where the crucial redex a is not generated from a 69 function call" in the right-hand side of a rule, but it just corresponds to a duplicated 69 variable. To handle TRSs $\mathcal{R}/\mathcal{R}^{=}$ where $\mathcal{R}_{dup}^{=} \subseteq \mathcal{R}^{=}$ is duplicating, one can move the duplicating rules to the main TRS $\mathcal R$ and try to prove relative termination of 69 $(\mathcal{R} \cup \mathcal{R}_{dup}^{=})/(\mathcal{R}^{=} \setminus \mathcal{R}_{dup}^{=})$ instead, or one can try to find a reduction pair (\succeq, \succ) where \succ is closed under contexts such that $\mathcal{R} \cup \mathcal{R}^= \subseteq \succeq \text{ and } \mathcal{R}^=_{dup} \subseteq \succ$. Then it suffices 69 to prove relative termination of $(\mathcal{R} \setminus \mathcal{R}^{=} \setminus \mathcal{E})$ instead. 69

For ordinary termination, we create a separate DP for each occurrence of a 70 defined symbol in the right-hand side of a rule (and no DP is created for rules with 70 out defined symbols in their right-hand sides). This would work to detect *ordinary* 70 *infinite* sequences like the one in Ex. 6 in the relative setting, i.e., such an infinite sequence would give rise to an infinite chain. However, as shown in Ex. 10, this would 71 not suffice to detect infinite redex-creating sequences as in Ex. 4 with $\mathcal{R}_2 = \{a \to b\}$ 71 and $\mathcal{R}_2^{=} = \{f \to d(f, a)\}$: $\underline{f} \to \mathcal{R}_2^{=} d(f, \underline{a}) \to \mathcal{R}_2$ $d(\underline{f}, \underline{b}) \to \mathcal{R}_2^{=} d(d(f, \underline{a}), \underline{b}) \to \mathcal{R}_2$... 72

Here, (1) we need a DP for the rule $a \to b$ to detect the reduction of the created \mathcal{R}_2 -redex a, although b is a constructor. Moreover, (2) both defined symbols f and g and g in the right-hand side of g defined g have to be considered simultaneously: We need g to create an infinite number of g-redexes, and we need g since it is the created g-redex. Hence, for rules from the base TRS g-g- we have to consider all possible pairs of defined symbols in their right-hand sides simultaneously. This is not needed for the main TRS g-g- i.e., if the f-rule were in the main TRS, then the g-refere, we distinguish between g-random and g-redexes, and we need g-redexes, and g-redexes, and we need g-redexes, and we need g-redexes

As in [20], we now annotate defined symbols directly in the original rewrite rule 74 instead of extracting annotated subterms from its right-hand side. In this way, we 74 may have terms containing several annotated symbols, which allows us to consider 74 pairs of defined symbols in right-hand sides simultaneously. 74

For relative termination, it suffices to consider *pairs* of defined symbols. The reason is that to "track" a non-terminating reduction, one only has to consider a single redex plus possibly another redex of the base TRS which may later create a redex again. 73

```
Definition 15 (Annotations). For t \in \mathcal{T}(\Sigma^{\#}, \mathcal{V}) and \Sigma' \subseteq \Sigma^{\#} \cup \mathcal{V}, let \operatorname{pos}_{\Sigma'}(t)
be the set of all positions of t with symbols or variables from \Sigma'. For \Phi \subseteq \text{pos}_{\mathcal{D} \cup \mathcal{D}^{\#}}(t),
\#_{\Phi}(t) is the variant of t where the symbols at positions from \Phi are annotated and all 163
other annotations are removed. Thus, pos_{\mathcal{D}^{\#}}(\#_{\Phi}(t)) = \Phi, and \#_{\varnothing}(t) removes all an-
notations from t, where we often write \flat(t) instead of \#_{\varnothing}(t). Moreover, for a sin-
gleton \{\pi\}, we often write \#_{\pi} instead of \#_{\{\pi\}}. We write t \leq_{\#}^{\pi} s if there is a
\pi \in \text{pos}_{\mathcal{D}^{\#}}(s) and t = \flat(s|_{\pi}) (i.e., t results from a subterm of s with annotated root
 symbol by removing its annotations). We also write \leq_{\#} instead of \leq_{\#}^{\pi}.
Example 16. If f \in \mathcal{D}, then we have \#_1(f(f(x))) = \#_1(F(F(x))) = f(F(x)) and 76
p(\mathsf{F}(\mathsf{F}(x))) = \mathsf{f}(\mathsf{f}(x)). Moreover, we have \mathsf{f}(x) \trianglelefteq_{\#}^{1} \mathsf{f}(\mathsf{F}(x)).
        While in [20] all defined symbols on the right-hand sides of rules were annotated, 77
we now define our novel variant of annotated dependency pairs for relative rewriting. 77
Definition 17 (Annotated Dependency Pair). A rule \ell \to r with \ell \in \mathcal{T}(\Sigma, \mathcal{V}) \setminus g_1
V, r \in \mathcal{T}(\Sigma^{\#}, V), \text{ and } V(r) \subseteq V(\ell) \text{ is called an annotated dependency pair (ADP).}
        Let \mathcal{D} be the defined symbols of \mathcal{R} \cup \mathcal{R}^=, and for n \in \mathbb{N}, let \mathcal{A}_n(\ell \to r) = \{\ell \to 0\}
\#_{\Phi}(r) \mid \Phi \subseteq \operatorname{pos}_{\mathcal{D}}(r), |\Phi| \leq n}. The canonical main ADPs for \mathcal{R} are \mathcal{A}_1(\mathcal{R}) = 01 \mathbb{A}_1(\ell \to r) and the canonical base ADPs for \mathcal{R}^= are \mathcal{A}_2(\mathcal{R}^=) = 01 \mathbb{A}_2(\ell \to r)1 \mathbb{A}_2(\ell \to r)1 \mathbb{A}_2(\ell \to r)1 \mathbb{A}_2(\ell \to r)2 \mathbb{A}_2(\ell \to r)3 \mathbb{A}_2(\ell \to r)3 \mathbb{A}_2(\ell \to r)4 \mathbb{A}_2(\ell \to r)5 \mathbb{A}_2(\ell \to r)5 \mathbb{A}_2(\ell \to r)7 \mathbb{A}_2(\ell \to r)7 \mathbb{A}_2(\ell \to r)8 \mathbb{A}_2(\ell \to r)9 \mathbb{A}
        So the left-hand side of an ADP is just the left-hand side of the original rule, 79
The right-hand side results from the right-hand side of the original rule by replacing 79
certain defined symbols f with f^{\#}. Whenever we have two ADPs \ell \to \#_{\Phi'}(r), 79
\ell \to \#_{\Phi}(r) with \Phi' \subset \Phi, then we only consider \ell \to \#_{\Phi}(r) and remove \ell \to \#_{\Phi'}(r).
Example 18. The canonical ADPs of Ex. 4 are A_1(\mathcal{R}_2) = \{a \to b\} and A_2(\mathcal{R}_2^=) = 144
\{f \to d(F,A)\}\ and for Ex. 5 we get \mathcal{A}_1(\mathcal{R}_3) = \{a(x) \to b(x)\}\ and \mathcal{A}_2(\mathcal{R}_3^=) = \{f \to 144\}
A(F). For \mathcal{R}_{divL}/\mathcal{R}_{mset2}^{=} from Ex. 1 and 14, the ADPs \mathcal{A}_1(\mathcal{R}_{divL}) are
             \mathsf{minus}(x,\mathcal{O}) \to x
                                                                   (14) 20
                                                                                              \mathsf{div}(\mathsf{s}(x),\mathsf{s}(y)) 	o \mathsf{s}(\mathsf{D}(\mathsf{minus}(x,y),\mathsf{s}(y)))
                                                                                                                                                                                       (18) 0
   \mathsf{minus}(\mathsf{s}(x),\mathsf{s}(y)) \to \mathsf{M}(x,y)
                                                                   (15) 20
                                                                                              \mathsf{div}(\mathsf{s}(x),\mathsf{s}(y)) \to \mathsf{s}(\mathsf{div}(\mathsf{M}(x,y),\mathsf{s}(y)))
                                                                                                                                                                                       (19) 0
              \mathsf{div}(x,\mathsf{s}(\mathcal{O})) 	o x
                                                                   (16) 20 \operatorname{divL}(x, \operatorname{cons}(y, xs)) \to \operatorname{DL}(\operatorname{div}(x, y), xs)
                                                                                                                                                                                       (20) 0
                \mathsf{divL}(x,\mathsf{nil}) \to x
                                                                   (17) 2 \operatorname{divL}(x, \operatorname{cons}(y, xs)) \to \operatorname{divL}(D(x, y), xs)
                                                                                                                                                                                       (21)_{0}
  and \mathcal{A}_2(\mathcal{R}_{\mathsf{mset}2}^=) contains \mathsf{divL}(z,\mathsf{cons}(x,\mathsf{cons}(y,zs))) \to \mathsf{DL}(z,\mathsf{cons}(y,\mathsf{cons}(x,zs)))
                                                                                                                                                                                         (22)
        In [20], ADPs were only used for innermost rewriting. We now modify their 85
rewrite relation and define what happens with annotations inside the substitutions 85
during a rewrite step. To simulate redex-creating sequences as in Ex. 5 with ADPs 85
  where the position of the created redex a(...) is above the position of the creating 85
 redex f), ADPs should be able to rewrite above annotated arguments without remov-
ing their annotation (we will demonstrate that in Ex. 25). Thus, for an ADP \ell \to 85
r with \ell|_{\pi}=x, we use a variable reposition function (VRF) to indicate which occur-
rence of x in r should keep the annotations if one rewrites an instance of \ell where
the subterm at position \pi is annotated. So a VRF maps positions of variables in 87
the left-hand side of a rule to positions of the same variable in the right-hand side. 87
```

```
Definition 19 (Variable Reposition Function). Let \ell \to r be an ADP. A 88
function \varphi: \mathrm{pos}_{\mathcal{V}}(\ell) \to \mathrm{pos}_{\mathcal{V}}(r) \cup \{\bot\} is called a variable reposition function (VRF) 88
for \ell \to r iff \ell|_{\pi} = r|_{\varphi(\pi)} whenever \varphi(\pi) \neq \bot. 88
Example 20. For the ADP a(x) \to b(x) for \mathcal{R}_3 from Ex. 5, if x on position 1 of the
left-hand side is instantiated by F, then the VRF \varphi(1) = 1 indicates that this ADP 89
rewrites A(F) to b(F), whereas \varphi(1) = \bot means that it rewrites A(F) to b(f), ag
    With VRFs we can define the rewrite relation for ADPs w.r.t. full rewriting, 90
Definition 21 (\hookrightarrow_{\mathcal{D}}). Let \mathcal{P} be a set of ADPs. A term s \in \mathcal{T}(\Sigma^{\#}, \mathcal{V}) rewrites to
  using \mathcal{P} (denoted s \hookrightarrow_{\mathcal{P}} t) if there is a rule \ell \to r \in \mathcal{P}, a substitution \sigma, a position
\pi \in \operatorname{pos}_{\mathcal{D} \cup \mathcal{D}^{\#}}(s) \text{ such that } \flat(s|_{\pi}) = \ell\sigma, \text{ a } VRF \varphi \text{ for } \ell \to r, \text{ and}^{\overline{p}}
                          t = s[\#_{\varPhi}(r\sigma)]_{\pi} \quad \text{if } \pi \in \text{pos}_{\mathcal{D}^{\#}}(s) \qquad \text{(\mathbf{pr})} \\ t = s[\#_{\varPsi}(r\sigma)]_{\pi} \quad \text{if } \pi \in \text{pos}_{\mathcal{D}}(s) \qquad \text{(\mathbf{r})} \\ |_{138}
Here, \Psi = \{ \varphi(\rho).\tau \mid \rho \in \text{pos}_{\mathcal{V}}(\ell), \ \varphi(\rho) \neq \bot, \ \rho.\tau \in \text{pos}_{\mathcal{D}^{\#}}(s|_{\pi}) \} and \Phi = \text{pos}_{\mathcal{D}^{\#}}(r) \cup \Psi.
So \Psi considers all positions of annotated symbols in s|_{\pi} that are below positions \rho of 93
variables in \ell. If the VRF maps \rho to a variable position \rho' in r, then the annotations 93
below \pi.\rho in s are kept in the resulting subterm at position \pi.\rho' after the rewriting. 93
    Rewriting with \mathcal{P} is like ordinary term rewriting, while considering and modify-
ing annotations. Note that we represent all DPs resulting from a rule as well as the 94
original rule by just one ADP. So the ADP \operatorname{div}(s(x), s(y)) \to s(D(\min(x, y), s(y))) 94
represents both the DP resulting from div in the right-hand side of the rule (4), and 94
the rule (4) itself (by simply disregarding all annotations of the ADP). 94
    Similar to the classical DP framework, our goal is to track specific reduction 95
sequences. As before, there are p-steps where a DP is applied at the position of an 95
annotated symbol. These steps may introduce new annotations. Moreover, between 95
two p-steps there can be several r-steps. 95
    A step of the form (pr) at position \pi in Def. 21 represents a p- or an r-step of
(or both), where an r-step is only possible if one later rewrites an annotated symbol of
at a position above \pi. All annotations are kept during this step except for annota-
tions of subterms that correspond to variables of the applied rule. Here, the used 96
VRF \varphi determines which of these annotations are kept and which are removed. As 96
an example, with the canonical ADP \mathsf{a}(x) \to \mathsf{b}(x) from \mathcal{A}_1(\mathcal{R}_3) we can rewrite 96
\mathsf{A}(\mathsf{F}) \hookrightarrow_{\mathcal{A}_1(\mathcal{R}_3)} \mathsf{b}(\mathsf{F}) as in Ex. 20. Here, we have \pi = \varepsilon, \flat(s|_{\varepsilon}) = \mathsf{a}(\mathsf{f}) = \ell\sigma, r = \mathsf{b}(x),
and the VRF \varphi with \varphi(1) = 1 such that the annotation of F in A's argument is kept 97
in the argument of b. 97
    A step of the form (r) rewrites at the position of a non-annotated defined symbol, 98
and represents just an r-step. Hence, we remove all annotations from the right-
hand side r of the ADP. However, we may have to keep the annotations inside the
 In [20] there were two additional cases in the definition of the corresponding rewrite 91
   relation. One of them was needed for processors that restrict the set of rules applicable 91
   for r-steps (e.g., based on usable rules), and the other case was needed to ensure that 91
   the innermost evaluation strategy is not affected by the application of ADP processors. 91
   This is unnecessary here since we consider full rewriting. On the other hand, VRFs are 91
   new compared to [20], since they are not needed for innermost rewriting. 91
```

substitution, hence we move them according to the VRF. For example, we obtain the rewrite step $s(D(\min s(\mathcal{O}), s(\mathcal{O})), s(\mathcal{O}))) \hookrightarrow_{\mathcal{A}_1(\mathcal{R}_{\mathsf{divL}})} s(D(\min s(\mathcal{O}, \mathcal{O}), s(\mathcal{O})))$ using the ADP $\min s(s(x), s(y)) \to \mathsf{M}(x, y)$ (15) and any VRF. 98

A (relative) ADP problem has the form $(\mathcal{P}, \mathcal{P}^=)$, where \mathcal{P} and $\mathcal{P}^=$ are finite sets of ADPs and $\mathcal{P}^=$ is non-duplicating. \mathcal{P} is the set of all main ADPs and $\mathcal{P}^=$ is the set of all base ADPs. Now we can define chains in the relative setting.

Definition 22 (Chains and Terminating ADP Problems). Let $(\mathcal{P}, \mathcal{P}^=)$ be an 101 ADP problem. A sequence of terms t_0, t_1, \ldots is a $(\mathcal{P}, \mathcal{P}^=)$ -chain if we have $t_i \hookrightarrow_{\mathcal{P} \sqcup \mathcal{P}} = t_{i+1}$ for all $i \in \mathbb{N}$. The chain is called infinite if infinitely many of these rewrite steps use $\hookrightarrow_{\mathcal{P}}$ with Case (**pr**). We say that an ADP problem $(\mathcal{P}, \mathcal{P}^=)$ is strongly normalizing (SN) if there is no infinite $(\mathcal{P}, \mathcal{P}^=)$ -chain.

Note the two different forms of relativity in Def. 22: In a finite chain, we may not only use infinitely many steps with $\mathcal{P}^=$ but also infinitely many steps with \mathcal{P} where Case (**r**) applies. Thus, an ADP problem ($\mathcal{P}, \mathcal{P}^=$) without annotated symbols or without any main ADPs (i.e., where $\mathcal{P} = \emptyset$) is obviously SN. Finally, we obtain our desired chain criterion. 102

Theorem 23 (Chain Criterion for Relative Rewriting). Let \mathcal{R} and $\mathcal{R}^=$ be TRSs such that $\mathcal{R}^=$ is non-duplicating. Then $\mathcal{R}/\mathcal{R}^=$ is SN iff the ADP problem $(A_1(\mathcal{R}), A_2(\mathcal{R}^=))$ is SN. 103

Example 24. The infinite rewrite sequence of Ex. 4 can be simulated by the following infinite chain using $A_1(\mathcal{R}_2) = \{a \to b\}$ and $A_2(\mathcal{R}_2^=) = \{f \to d(F, A)\}$.

The steps with $\hookrightarrow_{\mathcal{A}_2(\mathcal{R}_2^-)}$ use Case (**pr**) at the position of the annotated symbol 104 and the steps with $\hookrightarrow_{\mathcal{A}_1(\mathcal{R}_2)}$ use (**pr**) as well. For this infinite chain, we indeed 104 need two annotated symbols in the right-hand side of the base ADP: If A were 104 not annotated (i.e., if we had the ADP f \rightarrow d(F, a)), then the step with $\hookrightarrow_{\mathcal{A}_1(\mathcal{R}_2)}$ 104 would just use Case (**r**) and the chain would not be considered "infinite". If F were not annotated (i.e., if we had the ADP f \rightarrow d(f, A)), then we would have the 104 step f $\hookrightarrow_{\mathcal{A}_2(\mathcal{R}_2^-)}$ d(f, a) which uses Case (**r**) and removes all annotations from the 104 right-hand side. Hence, again the chain would not be considered "infinite". 104

Example 25. The infinite rewrite sequence of Ex. 5 is simulated by the following that with $A_1(\mathcal{R}_3) = \{a(x) \to b(x)\}$ and $A_2(\mathcal{R}_3^=) = \{f \to A(F)\}$.

$$F \hookrightarrow_{\mathcal{A}_{2}(\mathcal{R}_{3}^{=})} \underline{A}(F) \hookrightarrow_{\mathcal{A}_{1}(\mathcal{R}_{3})} b(\underline{F}) \hookrightarrow_{\mathcal{A}_{2}(\mathcal{R}_{3}^{=})} b(\underline{A}(F)) \hookrightarrow_{\mathcal{A}_{1}(\mathcal{R}_{3})} b(b(\underline{F})) \hookrightarrow_{\mathcal{A}_{2}(\mathcal{R}_{3}^{=})} \cdots$$
129

Here, it is important to use the VRF $\varphi(1) = 1$ for $\mathsf{a}(x) \to \mathsf{b}(x)$ which keeps the annotation of A's argument F during the rewrite steps with $\mathcal{A}_1(\mathcal{R}_3)$, i.e., these steps must yield $\mathsf{b}(\mathsf{F})$ instead of $\mathsf{b}(\mathsf{f})$ to generate further subterms $\mathsf{A}(\ldots)$ afterwards. 105

5 The Relative ADP Framework 132

Now we present processors for our novel relative ADP framework. An ADP processor \uparrow	106
Proc has the form $\operatorname{Proc}(\mathcal{P}, \mathcal{P}^{=}) = \{(\mathcal{P}_{1}, \mathcal{P}_{1}^{=}), \dots, (\mathcal{P}_{n}, \mathcal{P}_{n}^{=})\}$, where $\mathcal{P}, \mathcal{P}_{1}, \dots, \mathcal{P}_{n}$	106
$\mathcal{P}_1^-,\ldots,\mathcal{P}_n^-$ are sets of ADPs. Proc is sound if $(\mathcal{P},\mathcal{P}^-)$ is SN whenever $(\mathcal{P}_i,\mathcal{P}_i^-)$ is	106
SN for all $1 \leq i \leq n$. It is complete if $(\mathcal{P}_i, \mathcal{P}_i^{=})$ is SN for all $1 \leq i \leq n$ whenever	106
$(\mathcal{P},\mathcal{P}^{=})$ is SN. To prove relative termination of $\mathcal{R}/\mathcal{R}^{=}$, we start with the canonical	106
ADP problem $(A_1(\mathcal{R}), A_2(\mathcal{R}^=))$ and apply sound (and preferably complete) ADP	106
processors until all sub-problems are transformed to the empty set. 106	
In Sect. 5.1, we present two processors to remove (base) ADPs, and in Sect. 5.2	107
and 5.3, we adapt the main processors of the classical DP framework from Sect. 3.1	
to the relative setting. As mentioned, the soundness and completeness proofs for	107
our processors and the chain criterion (Thm. 23) can be found in App. A. 107	
5.1 Derelatifying Processors 0	
The following two derelatifying processors can be used to switch from ADPs to	
ordinary DPs, similar to Thm. 11 and 12. We extend b to ADPs and sets of ADPs	108
\mathcal{S} by defining $\flat(\ell \to r) = \ell \to \flat(r)$ and $\flat(\mathcal{S}) = \{\ell \to \flat(r) \mid \ell \to r \in \mathcal{S}\}$. 109	
If the ADPs in $\mathcal{P}^{=}$ contain no annotations anymore, then it suffices to use	110
ordinary DPs. The corresponding set of DPs for a set of ADPs ${\mathcal P}$ is defined as	110
$\mathtt{DP}(\mathcal{P}) = \{\ell^\# \to t^\# \mid \ell \to r \in \mathcal{P}, t \leq_\# r\}.$ 110	
Theorem 26 (Derelatifying Processor (1)). Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem	142
such that $\flat(\mathcal{P}^{=}) = \mathcal{P}^{=}$. Then $\operatorname{Proc}_{\mathtt{DRP1}}(\mathcal{P}, \mathcal{P}^{=}) = \varnothing$ is sound and complete iff the	142
ordinary DP problem $(DP(\mathcal{P}), \flat(\mathcal{P} \cup \mathcal{P}^{=}))$ is SN. 142	
· · ·	
Furthermore, similar to Thm. 12, we can always move ADPs from $\mathcal{P}^{=}$ to \mathcal{P} , but	112
such a processor is only sound and not complete. However, it may help to satisfy	112
the requirements of Thm. 26 by moving ADPs with annotations from $\mathcal{P}^{=}$ to \mathcal{P} such	
that the ordinary DP framework can be used afterwards. 112	
Theorem 27 (Derelatifying Processor (2)). Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem,	113
and let $\mathcal{P}^{=} = \mathcal{P}_{a}^{=} \uplus \mathcal{P}_{b}^{=}$. Then $\operatorname{Proc}_{\mathtt{DRP2}}(\mathcal{P}, \mathcal{P}^{=}) = \{(\mathcal{P} \cup \mathtt{split}(\mathcal{P}_{a}^{=}), \mathcal{P}_{b}^{=})\}$ is sound.	110
$Here, \; \mathrm{split}(\mathcal{P}_a^{=}) = \{\ell o \#_\pi(r) \mid \ell o r \in \mathcal{P}_a^{=}, \pi \in \mathrm{pos}_{\mathcal{D}^\#}(r)\}.$	113
So if $\mathcal{P}_a^=$ contains an ADP with two annotations, then we split it into two ADPs,	111
where each only contains a single annotation. 114	114
114	
Example 28. There are also examples that are redex-creating and terminating, e.g.,	445
$\mathcal{R}_2 = \{a \to b\}$ and the base TRS \mathcal{R}_2^{T} $\{f(s(y)) \to d(f(y), a)\}$. Relative (and full)	115
termination of this example can easily be shown by using the second derelatifying	115
processor from Thm. 27 to replace the base ADP $f(s(y)) \rightarrow d(F(y), A)$ by the main	
ADPs $f(s(y)) \to d(F(y), a)$ and $f(s(y)) \to d(f(y), A)$. Then one can use the processor of Thm. 26 to switch to the ordinary DPs $F(s(y)) \to F(y)$ and $F(s(y)) \to A$	115

5.2 Relative Dependency Graph Processor 107

Next, we develop a dependency graph processor in the relative setting. The definition of the dependency graph is analogous to the one in the standard setting and thus, the same techniques can be used to over-approximate it automatically 116

Definition 29 (Relative Dependency Graph). Let $(\mathcal{P}, \mathcal{P}^=)$ be an ADP problem. The $(\mathcal{P}, \mathcal{P}^=)$ -dependency graph has the nodes $\mathcal{P} \cup \mathcal{P}^=$ and there is an edge from $\ell_1 \to r_1$ to $\ell_2 \to r_2$ if there exist substitutions σ_1, σ_2 and a term $t \leq_{\#} r_1$ such that $t^{\#}\sigma_1 \to_{b(\mathcal{P} \cup \mathcal{P}^=)}^* \ell_2^{\#}\sigma_2$

So similar to the standard dependency graph, there is an edge from an ADP $\ell_1 \to r_1$ to $\ell_2 \to r_2$ if the rules of $\flat(\mathcal{P} \cup \mathcal{P}^=)$ (without annotations) can reduce an instance of a subterm t of r_1 to an instance of ℓ_2 , if one only annotates the roots of t and ℓ_2 (i.e., then the rules can only be applied below the root). 118

Example 30. The dependency graph for the ADP problem $(A_1(\mathcal{R}_{\text{divL}}), A_2(\mathcal{R}_{\text{mset2}}^=))$ from Ex. 18 is shown on the right. Here, nodes from $A_1(\mathcal{R}_{\text{divL}})$ are denoted by rectangles and the node from $A_2(\mathcal{R}_{\text{mset2}}^=)$ is a circle. 120

To detect possible ordinary infinite rewrite sequences as in Ex. 6, we again have to regard SCCs of the dependency graph, where we only need to consider SCCs that contain a node from \mathcal{P} , because otherwise, all steps in the SCC are relative. However, 121 in the relative ADP framework, non-termination can also be due to chains representing redex-creating sequences. Here, it does not suffice to look at SCCs. Thus, 121 the relative dependency graph processor differs substantially from the corresponding processor for ordinary rewriting (and also from the corresponding processor for the probabilistic ADP framework in [20]). 121

Example 31 (Dependency Graph for Redex-Creating TRSs). For \mathcal{R}_2 and $\mathcal{R}_2^=$ from Ex. 4, the dependency graph for $(\mathcal{A}_1(\mathcal{R}_2), \mathcal{A}_2(\mathcal{R}_2^=))$ from Ex. 24 can be seen on the right. Here, we cannot regard the SCC $\{f \to d(F,A)\}$ 123 separately, as we need the rule $a \to b$ from $\mathcal{A}_1(\mathcal{R}_2)$ $a \to b$ from $a \to b$ from the Created redexes, 144 we have to regard the outgoing paths from the SCCs of $\mathcal{P}^=$ to ADPs of \mathcal{P} . 144

The structure that we are looking for in the redex-creating case is a path from 125 an SCC to a node from \mathcal{P} (i.e., a form of a *lasso*), which is *minimal* in the sense 125 that if we reach a node from \mathcal{P} , then we stop and do not move further along the 125 edges of the graph. Moreover, the SCC needs to contain an ADP with more than 125 one annotated symbol, as otherwise the generation of the infinitely many \mathcal{P} -redexes 125 would not be possible. Here, it suffices to look at SCCs in the graph restricted to 125 only $\mathcal{P}^=$ -nodes (i.e., to SCCs in the $(\flat(\mathcal{P}), \mathcal{P}^=)$ -dependency graph). The reason is 125 that if the SCC contains a node from \mathcal{P} , then as mentioned above, we have to prove 125 anyway that the SCC does not give rise to infinite chains.

```
Dependency Pairs for Relative Termination
```

```
3
```

Definition 32 (SCC $_{\mathcal{P}'}^{(\mathcal{P},\mathcal{P}^-)}$, 0Lasso). Let $(\mathcal{P},\mathcal{P}^-)$ be an ADP problem. For any 3 $\mathcal{P}' \subseteq \mathcal{P} \cup \mathcal{P}^-$, let SCC $_{\mathcal{P}'}^{(\mathcal{P},\mathcal{P}^-)}$ glenote the set of all SCCs of the $(\mathcal{P},\mathcal{P}^-)$ -dependency 3 graph that contain an ADP from \mathcal{P}' . Moreover, let $\mathcal{P}_{>_1} \subseteq \mathcal{P}^-$ denote the set of all 3 ADPs from \mathcal{P}^- with more than one annotation. Then the set of all minimal lassos 3 is defined as Lasso = $\{\mathcal{Q} \cup \{n_1,\ldots,n_k\} \mid \mathcal{Q} \in SCC_{\mathcal{P}_{=_1}}^{(\mathcal{P},\mathcal{P},\mathcal{P}^-)}, 4n_1,\ldots,n_k \text{ is a path } 4$ such that $n_1 \in \mathcal{Q}, n_k \in \mathcal{P}, \text{ and } n_i \notin \mathcal{P} \text{ for all } 1 \leq i \leq k-1\}$.

We remove the annotations of ADPs which do not have to be considered anymore 127 for **p**-steps due to the dependency graph, but we keep the ADPs for possible **r**-steps and thus, consider them as relative (base) ADPs. 127

Theorem 33 (Dep. Graph Processor). Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem. Then

 $\operatorname{Proc}_{\mathtt{DG}}(\mathcal{P},\mathcal{P}^{=}) = \{ (\mathcal{P} \cap \mathcal{Q}, \ (\mathcal{P}^{=} \cap \mathcal{Q}) \cup \flat (\ (\mathcal{P} \cup \mathcal{P}^{=}) \setminus \mathcal{Q}) \) \mid \mathcal{Q} \in \mathtt{SCC}_{\mathcal{P}}^{(\mathcal{P},\mathcal{P}^{=})} \ \forall \texttt{lasso} \} \text{ on } \mathcal{Q} \in \mathsf{CC}_{\mathcal{P}}^{(\mathcal{P},\mathcal{P}^{=})}$

is sound and complete. 49

Example 34. For $(A_1(\mathcal{R}_{\text{divL}}), A_2(\mathcal{R}_{\text{mset2}}^=))$ from Ex. 30 we have three SCCs $\{(15)\}$, $\{(18)\}$, and $\{(20), (22)\}$ containing nodes from $A_1(\mathcal{R}_{\text{divL}})$. The set $\{(22)\}$ is the only SCC of $(\flat(A_1(\mathcal{R}_{\text{divL}})), A_2(\mathcal{R}_{\text{mset2}}^=))$ and there are paths from that SCC to the ADPs (20) and (21) of \mathcal{P} . However, they are not in Lasso, because the SCC $\{(22)\}$ does not contain an ADP with more than one annotation. Hence, we result in the three new ADP problems $(\{(15)\} \cup \flat(A_1(\mathcal{R}_{\text{divL}}) \setminus \{(15)\}, \{\flat(22)\}), \{(18)\} \cup \{(18)\}, \{\flat(22)\})$, and $(\{(20)\} \cup \flat(A_1(\mathcal{R}_{\text{divL}}) \setminus \{(20)\}, \{(22)\})$. For the first two of these new ADP problems, we can use the derelatifying processor of 130 contain any annotated symbols anymore. 130

The dependency graph processor in combination with the derelatifying processors of Thm. 26 and 27 already subsumes the techniques of Thm. 11 and 12. The 131 reason is that if \mathcal{R} dominates $\mathcal{R}^=$, then there is no edge from an ADP of $\mathcal{A}_2(\mathcal{R}^=$ 132 to any ADP of $\mathcal{A}_1(\mathcal{R})$ in the $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ -dependency graph. Hence, there 132 are no minimal lassos and the dependency graph processor just creates ADP problems from the SCCs of $A_1(\mathcal{R})$ where the base ADPs do not have any annotations 132 anymore. Then Thm. 26 allows us to switch to ordinary DPs. For example, if we consider $\mathcal{R}_{\mathsf{mset}}^{=}$ instead of $\mathcal{R}_{\mathsf{mset}2}^{=}$, then the dependency graph processor only yields the two subproblems for the SCCs $\{(15)\}$ and $\{(18)\}$, where the base ADPs do not contain any annotations anymore. Then, we can move to ordinary DPs via Thm. 26. 132 Compared to Thm. 11 and 12, the dependency graph allows for more precise 134 over-approximations than just "dominance" in order to detect when the base ADPs 134 do not depend on the main ADPs. Moreover, the derelatifying processors of Thm. 26

and 27 allow us to switch to the ordinary DP framework also for subproblems which result from the application of other processors of our relative ADP framework. In other words, Thm. 26 and 27 allow us to apply this switch in a modular way, even if their prerequisites do not hold for the initial canonical ADP problem (i.e., even if the prerequisites of Thm. 11 and 12 do not hold for the whole TRSs).

5.3 Relative Reduction Pair Processor 107

Next, we adapt the reduction pair processor to ADPs for relative rewriting. While 135 the reduction pair processor for ADPs in the probabilistic setting [20] was restricted 135 to polynomial interpretations, we now allow arbitrary reduction pairs using a similar idea as in the reduction pair processor from [27] for complexity analysis via 136 dependency tuples. 136 To find out which ADPs cannot be used for infinitely many p-steps, the idea 137 is not to compare the annotated left-hand side with the whole right-hand side, but 137 just with the set of its annotated subterms. To combine these subterms in the case of ADPs with two or no annotated symbols, we extend the signature by two fresh compound symbols c₀ and c₂ of arity 0 and 2, respectively. Similar to [27], we have to use c-monotonic and c-invariant reduction pairs. 137 **Definition 35** (c-Monotonic, c-Invariant). For $r \in \mathcal{T}(\Sigma^{\#}, \mathcal{V})$, we define ann(r) = 163 c_0 if r does not contain any annotation, $ann(r) = t^{\#}$ if $t \leq_{\#} r$ and r only contains 163one annotated symbol, and $\operatorname{ann}(r) = c_2(r_1^{\#}, r_2^{\#}) \operatorname{sif}(r_1 \leq_{\#}^{\pi_1} r_2 \leq_{\#}^{\pi_2} r_3)$ and $\sigma_1 <_{lex} \sigma_2 = 163$ where $<_{lex}$ is the (total) lexicographic order on positions. 163 A reduction pair (\succsim,\succ) is called **c**-monotonic if $c_2(s_1,t) \succ c_2(s_2,t)$ and $c_2(t,s_1) \succ 163$ $c_2(t,s_2)$ for all $s_1,s_2,t\in\mathcal{T}\left(\Sigma^\#,\mathcal{V}\right)$ with $s_1\succ s_2$. Moreover, it is c-invariant if 101 $c_2(x,y) \sim c_2(y,x)$ and $c_2(x,c_2(y,z)) \sim c_2(c_2(x,y),z)$ for $\sim = \succsim \cap \precsim$ So for example, reduction pairs based on polynomial interpretations are c-monotonic 139 and c-invariant if $c_2(x,y)$ is interpreted by x+y. For an ADP problem $(\mathcal{P}, \mathcal{P}^{=})$, now the reduction pair processor has to orient 140 the non-annotated rules $\flat(\mathcal{P} \cup \mathcal{P}^{=})$ weakly and for all ADPs $\ell \to r$, it compares the annotated left-hand side $\ell^{\#}$ with ann(r). In strictly decreasing ADPs, one can then 141 remove all annotations and consider them as relative (base) ADPs again. 141 Theorem 36 (Reduction Pair Processor). Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem 142 and let (\succeq, \succ) be a c-monotonic and c-invariant reduction pair such that $\flat(\mathcal{P} \cup \mathcal{P}^=)$ $\subseteq \succeq and \ \ell^{\#} \succeq ann(r) \ for \ all \ \ell \to r \in \mathcal{P} \cup \mathcal{P}^{=}$. Moreover, let $\mathcal{P}_{\succ} \subseteq \mathcal{P} \cup \mathcal{P}^{=} \ such \ that$ $\ell^{\#} \succ \operatorname{ann}(r) \text{ for all } \ell \rightarrow r \in \mathcal{P}_{\succ}. \text{ Then } \operatorname{Proc}_{\mathtt{RPP}}(\mathcal{P}, \mathcal{P}^{=}) = \{(\mathcal{P} \setminus \mathcal{P}_{\succ}, (\mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) \cup 142\}$ $p(\mathcal{P}_{\succ}))$ is sound and complete. 142 Example 37. For the remaining ADP problem $(\{(20)\} \cup \flat(\mathcal{A}_1(\mathcal{R}_{\mathsf{divL}}) \setminus \{(20)\}), \{(22)\})$ from Ex. 34, we can apply the reduction pair processor using the polynomial interpretation from the end of Sect. 3.1 which maps \mathcal{O} to 0, s(x) to x+1, cons(y,xs) to 143 xs+1, DL(x,xs) to xs, and all other symbols to their first arguments. Then, (20) is 143 oriented strictly (i.e., it is in \mathcal{P}_{\succ}) and (22) is oriented weakly. Hence, we remove the 143 annotation from (20) and move it to the base ADPs. Now there is no SCC with a 143 main ADP anymore in the dependency graph, and thus the dependency graph processor returns \varnothing . This proves SN for $(\mathcal{A}_1(\mathcal{R}_{\mathsf{divL}}), \mathcal{A}_2(\mathcal{R}_{\mathsf{mset2}}^=))$, hence $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset2}}^=$ is $_{143}$ also SN. 143 Example 38. Regard the ADPs $a \to b$ and $f \to d(F, A)$ for the redex-creating Ex. 4 144 again. When using a polynomial interpretation Pol that maps c_0 to 0 and $c_2(x,y)$ to x+y, then for the reduction pair processor one has to satisfy $Pol(A) \geq 0$ and 144 $Pol(F) \ge Pol(F) + Pol(A)$, i.e., one cannot make any of the ADPs strictly decreasing. 144

In contrast, for the variant with the terminating base rule $f(s(y)) \to d(f(y), a)$ 144 from Ex. 28, we have the ADPs $a \to b$ and $f(s(y)) \to d(F(y), A)$. Here, the second constraint is $Pol(F(s(y))) \ge Pol(F(y)) + Pol(A)$. To make one of the ADPs strictly 144 decreasing, one can set Pol(F(x)) = x, Pol(s(x)) = x + 1, and Pol(A) = 1 or 144 Pol(A) = 0. Then the reduction pair processor removes the annotations from the 144 strictly decreasing ADP and the dependency graph processor proves SN. 144

6 Evaluation and Conclusion 0

In this paper, we introduced the first notion of (annotated) dependency pairs and the first DP framework for relative termination, which also features suitable dependency graph and reduction pair processors for relative ADPs. Of course, further classical DP processors can be adapted to our relative ADP framework as well. For example, in our implementation of the novel ADP framework in our tool AProVE [11], we also included a straightforward adaption of the classical rule removal processor [9], 145 see App. A.⁶ In future work, we will investigate how to use our new form of ADPs for full (instead of innermost) rewriting also in the probabilistic setting and for complexity analysis. 146

To evaluate the new relative ADP framework, we compared its implementation 147 in "new AProVE" to all other tools that participated in the most recent termination 147 competition (TermComp 2023) [12] on relative rewriting, i.e., NaTT [31], T_TT₂ [23], 147 MultumNonMulta [7], and "old AProVE" which did not yet contain the contributions 148 of the current paper. In TermComp 2023, 98 benchmarks were used for relative termination. However, these benchmarks only consist of examples where the main TRS 148 \mathcal{R} dominates the base TRS $\mathcal{R}^{=}$ (i.e., which can be handled by Thm. 11 from [18]) 148 or which can already be solved via simplification orders directly. Therefore, we extended the collection by 17 new examples, including both $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset}}^{=}$ from Ex. 1 and 2, and our leading example $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset2}}^{=}$ from Ex. 14 (where only new AProVE can prove SN). Except for $\mathcal{R}_{\mathsf{divL}}/\mathcal{R}_{\mathsf{mset}}^{=}$, in these examples \mathcal{R} does not dominate $\mathcal{R}^{=}$ Most of these examples adapt well-known classical TRSs from the Termination Problem Data Base [28] used at TermComp to the relative setting. In the following table, the number in the "YES" ("NO") row indicates for how many of the 115 examples 150 the respective tool could prove (disprove) relative termination and "MAYBE" refers 150 to the benchmarks where the tool could not solve the problem within the timeout 150 of 300 s per example. The numbers in brackets are the respective results when only considering our new 17 examples. "AVG(s)" gives the average runtime of the tool 150 on solved examples in seconds. 150

	new AProVE	NaTT	$\mathit{old}\ AProVE$	T_TT_2	MultumNonMulta
YES	78 (17)	65 (7)	47 (4)	39 (3)	0 (0) 151
NO	13 (0)	5 (0)	13 (0)	7(0)	13 (0) 151
MAYBE	24 (0)	45 (10)	55 (13)	69 (14)	102 (17) 151
AVG(s)	6.68	0.38	3.67	1.61	1.28 151

This processor works analogously to the preprocessing at the beginning of Sect. 4 which can be used to remove duplicating rules: For an ADP problem $(\mathcal{P}, \mathcal{P}^=)$, it tries to find a reduction pair (\succeq, \succ) where \succ is closed under contexts such that $\flat(\mathcal{P} \cup \mathcal{P}^=) \subseteq \succeq$. Then for $\mathcal{P}_{\succ} \subseteq \mathcal{P} \cup \mathcal{P}^=$ with $\flat(\mathcal{P}_{\succ}) \subseteq \succ$, the processor replaces the ADP by $(\mathcal{P} \setminus \mathcal{P}_{\succ}, \mathcal{P}^= \setminus \mathcal{P}_{\succ})$.

The table clearly shows that while old AProVE was already the second most powerful tool for relative termination, the integration of the ADP framework in 152 new AProVE yields a substantial advance in power (i.e., it only fails on 24 of the examples, compared to 45 and 55 failures of NaTT and old AProVE, respectively). In particular, previous tools (including old AProVE) often have problems with relative 152 TRSs where the main TRS does not dominate the base TRS, whereas the ADP 153 framework can handle such examples.

A special form of relative TRSs are relative string rewrite systems (SRSs), where all function symbols have arity 1. Due to the base ADPs with two annotated symbols on the right-hand side, here the ADP framework is less powerful than dedicated techniques for string rewriting. For the 403 relative SRSs at TermComp 2023, the ADP framework only finds 71 proofs, mostly due to the dependency graph and the rule removal processor, while termination analysis via AProVE's standard strategy for relative SRSs at TermComp 2023 (MultumNonMulta and Matchbox [30]) succeed on 274 and 269 examples, respectively. 155

Another special form of relative rewriting is equational rewriting, where one has a set of equations E which correspond to relative rules that can be applied in both directions. In [8], DPs were adapted to equational rewriting. However, this approach requires E-unification to be decidable and finitary (i.e., for (certain) pairs of terms, 156 it has to compute finite complete sets of E-unifiers). This works well if E are AC- or 156 C-axioms, and for this special case, dedicated techniques like [8] are more powerful 156 than our new ADP framework for relative termination. For example, on the 76 AC- 157 and C-benchmarks for equational rewriting at TermComp 2023, the relative ADP 157 framework finds 36 proofs, while dedicated tools for AC-rewriting like AProVE's equational strategy or MU-TERM [13] succeed on 66 and 64 examples, respectively. 157 However, in general, the requirement of a finitary E-unification algorithm is a hard 157 restriction. In contrast to existing tools for equational rewriting, our new ADP 157 framework can be used for arbitrary (non-duplicating) relative rules. 157

For details on our experiments, our collection of examples, and for instructions on how to run our implementation in AProVE via its web interface or locally, see https://aprove-developers.github.io/RelativeDTFramework/ 158

References 0

- Giesl, 1. Arts, J.: Termination depen-4 of term rewriting using Theoretical Science **236**(1-2), 133 - 178(2000). 4 Computer 10.1016/S0304-3975(99)002 07-8 4
- 2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press 32 (1998). https://doi.org/10.1017/CBO9781139172752 0
- 3. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation 3(1), 69–4 [115 (1987). https://doi.org/https://doi.org/10.1016/S0747-7171(87)80022-6 150
- 4. Dershowitz, N., Treinen, R.: The RTA list of open problems, 60 https://www.win.tue.nl/rtaloop/
- 5. Fuhs, C.: Transforming derivational complexity of term rewriting to runtime complexity. In: Proc. FroCoS '19. pp. 348–364. LNCS 11715 (2019). 3 https://doi.org/10.1007/978-3-030-29007-8_20 3

- 6. Geser, A.: Relative Termination. Ph.D. thesis, University of Passau, Germany (1990), 0

 https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/1991/UIB-1991-03.pdf
- 7. Geser, A., Hofbauer, D., Waldmann, J.: Sparse tiling through overlap closures for 0 termination of string rewriting. In: Proc. FSCD '19. pp. 21:1–21:21. LIPIcs 131 (2019). 0 https://doi.org/10.4230/LIPICS.FSCD.2019.21
- 8. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Proc. RTA '01. pp. 3 93-108. LNCS 2051 (2001). https://doi.org/10.1007/3-540-45127-7_9 0
- Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Proc. LPAR '04. pp. 301–331. 120
 LNCS 3452 (2004). https://doi.org/10.1007/978-3-540-32275-7-21 120
- 10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7
- Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel, O.
 J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: O.
 Analyzing program termination and complexity automatically with AProVE. Journal of O.
 Automated Reasoning 58(1), 3-31 (2017). https://doi.org/10.1007/s10817-016-9388-y
- [12. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The terminal option and complexity competition. In: Proc. TACAS '19. pp. 156–166. LNCS option (2019). https://doi.org/10.1007/978-3-030-17502-3_10, website of TermComp: https://termination-portal.org/wiki/Termination_Competition option.
- 13. Gutiérrez, R., Lucas, S.: MU-TERM: Verify Termination Properties Automatically (System Description). In: Proc. IJCAR '20. pp. 436–447. LNCS 12167 (2020). 0 https://doi.org/10.1007/978-3-030-51054-1_28 0
- I4. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information 145 and Computation 199(1-2), 172–199 (2005). https://doi.org/10.1016/j.ic.2004.10.004 145
- 15. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features. Information and Computation 205(4), 474–511 (2007). https://doi.org/10.1016/J.IC.2006.08.010 145
- Middeldorp, A.: Decreasing Hirokawa, diagrams relative ter- 5 and Automated 481 - 501mination. Journal of Reasoning **47**(4), (2011).5https://doi.org/10.1007/S10817-011-9238-X 5
- [17. Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: Proc. LOPSTR '09. pp. 52–66. LNCS 6037 69 (2009). https://doi.org/10.1007/978-3-642-12592-8_5 69
- 18. Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Relative termination via 5 dependency pairs. Journal of Automated Reasoning 58(3), 391–411 (2017). 5 https://doi.org/10.1007/S10817-016-9373-5 5
- I9. Kassing, J.C., Giesl, J.: Proving almost-sure innermost termination of probabilistic 3 term rewriting using dependency pairs. In: Proc. CADE '23. pp. 344–364. LNCS 14132 3 (2023). https://doi.org/10.1007/978-3-031-38499-8_20 3
- Kassing, J.C., Dollase, S., Giesl, J.: A complete dependency pair framework for almost-sure innermost termination of probabilistic term rewriting. In: Proc. FLOPS '24. LNCS (2024). https://doi.org/10.48550/arXiv.2309.00344, to appear. Long version at CoRR abs/2309.00344 145
- 21. Klein, D., Hirokawa, N.: Confluence of non-left-linear trss via relative termination. In: Proc. LPAR '18. pp. 258–273. LNCS 7180 (2012). 158 https://doi.org/10.1007/978-3-642-28717-6_21 158
- 22. Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Proc. 42 FroCoS '05. pp. 232–247. LNCS 3717 (2005). https://doi.org/10.1007/11559306_13 42

- Sternagel, C., Zankl, Н., Middeldorp, Tyrolean 23. Korp, nation 2. In: RTA '09. pp. 295-304 LNCS 5595(2009). 3 https://doi.org/10.1007/978-3-642-02348-4_21
- 24. Lankford, D.S.: On proving term rewriting systems are Noetherian. Memo 3 mtp-3, math. dept.,, Louisiana Technical University, Ruston, LA (1979), 1 http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
- 25. Nagele, J., Felgenhauer, B., Zankl, H.: Certifying confluence proofs via relative termination and rule labeling. Logical Methods in Computer Science 13(2) (2017). https://doi.org/10.23638/LMCS-13(2:4)2017 56
- 26. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Applicable Algebra in Engineering, Communication and Computing 21(3), 177–225 (2010). https://doi.org/10.1007/S00200-010-0122-4 69
- 27. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of term rewriting by dependency pairs. Journal of Automated Reasoning **51**, 27–56 (2013). 10 https://doi.org/10.1007/978-3-642-22438-6-32
- 28. TPDB (Termination Problem Data Base), https://github.com/TermCOMP/TPDB 3
- 29. Vidal, G.: Termination of narrowing in left-linear constructor sys- 3 tems. In: Proc. FLOPS '08. pp. 113–129. LNCS 4989 (2008). 3 https://doi.org/10.1007/978-3-540-78969-7_10 3
- 30. Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: Proc. RTA '04. pp. 85–94. LNCS 3091 (2004). https://doi.org/10.1007/978-3-540-25979-4_6 0
- 31. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya Termination 0

 Tool. In: Proc. RTA-TLCA '14. pp. 466–475. LNCS 8560 (2014). 0

 https://doi.org/10.1007/978-3-319-08918-8_32 0
- 32. Zankl, H., Korp, M.: Modular complexity analysis for term rewriting. Logical Methods in Computer Science 10(1) (2014). https://doi.org/10.2168/LMCS-10(1:19)2014 69

A Appendix 5

```
In this appendix, we give all proofs for our new results and observations, and present 160
an additional rule removal processor for our ADP framework (Thm. 42) that results 160
from a straightforward adaption of the corresponding processor from the classical 160
DP framework 9. 160
    Before we start with the proof of the chain criterion, for any infinite rewrite 161
sequence t_0 \to_{\mathcal{R} \cup \mathcal{R}} = t_1 \to_{\mathcal{R} \cup \mathcal{R}} = \dots we define origin graphs that indicate which
subterm of t_{i+1} "originates" from which subterm of t_i. Therefore, these graphs also
indicate how annotations can move in the chains that correspond to this rewrite 161
sequence. Note that due to the choice of the VRF and due to the fact that at
most two defined symbols are annotated in the right-hand sides of ADPs, there 161
are multiple possibilities for the annotations to move in a chain. Each origin graph 161
corresponds to one possible way that the annotations can move. 161
Definition 39 (Origin Graph). Let \mathcal{R} and \mathcal{R}^{=} be two TRSs and let \Theta: t_0 \to_{\mathcal{R} \cup \mathcal{R}^{=}}
t_1 \to_{\mathcal{R} \cup \mathcal{R}} = \dots be a rewrite sequence. A graph with the nodes (i,\pi) for all i \in \mathbb{N}
and all \pi \in pos(t_i) is called an origin graph for \Theta if the edges are defined as
follows: For i \in \mathbb{N}, let the rewrite step t_i \to_{\mathcal{R} \cup \mathcal{R}^=} t_{i+1} be performed using the
rule \ell \to r \in \mathcal{R} \cup \mathcal{R}^=, the position \tau, and the substitution \sigma, i.e., t_i|_{\tau} = \ell \sigma and 163
t_{i+1} = t_i |r\sigma|_{\tau}. Furthermore, let \pi \in pos(t_i). 163
(a) If \pi < \tau or \pi \perp \tau (i.e., \pi is above or parallel to \tau), then there is an edge from 185
     (i,\pi) to (i+1,\pi). The reason is that if position \pi is annotated in t_i, then in a 185
     chain it would remain annotated in t_{i+1}.
(b) For \pi = \tau, there are at most two outgoing edges from (i,\pi) if the rule is in 162
     \mathcal{R}^{=} and at most one edge if the rule is in \mathcal{R}. These edges lead to nodes of the
     form (i+1,\pi.\alpha) for \alpha \in pos_{\Sigma}(r). The reason is that rules in A_1(\mathcal{R}) contain 162
     at most one annotation and rules in A_2(\mathcal{R}) contain at most two annotations 162
     in their right-hand sides. Moreover, if \pi is annotated in t_i, then we may create
     annotations at the positions \pi.\alpha in the right-hand side of the used ADP. 162
(c) For every variable position \alpha_{\ell} \in \text{pos}_{\mathcal{V}}(\ell), either there are no outgoing edges from 162
     any node of the form (i, \tau.\alpha_{\ell}.\beta) with \beta \in \mathbb{N}^*, or there is a position \alpha_r \in \text{pos}_{\mathcal{V}}(r)
     with r|_{\alpha_r} = \ell|_{\alpha_\ell} and for all \beta \in \mathbb{N}^* with \alpha_\ell.\beta \in pos(\ell\sigma), there is an edge from 162
     (i, \tau.\alpha_{\ell}.\beta) to (i+1, \tau.\alpha_{r}.\beta). This captures the behavior of VRFs. 162
(d) For all other positions \pi \in pos(t_i), there is no outgoing edge from the node 162
     (i,\pi). 0
    Due to Def. 39, we have the following connection between origin graphs and 164
chains. For every origin graph for a rewrite sequence t_0 \to_{\mathcal{R} \cup \mathcal{R}} = t_1 \to_{\mathcal{R} \cup \mathcal{R}} = \dots and
every \tilde{t}_0 such that \flat(\tilde{t}_0) = t_0, there is a chain \tilde{t}_0 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}^=)} \tilde{t}_1 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}^=)} 164
  with \flat(\tilde{t}_i) = t_i for all i \in \mathbb{N} such that: 165
                                              \pi \in \mathrm{pos}_{\mathcal{D}^\#}(\tilde{t}_i) 191
                                                      iff 191
   there is a path in the origin graph from (0,\tau) to (i,\pi) for some \tau \in \text{pos}_{\mathcal{D}^{\#}}(\tilde{t}_{0})
Example 40. Let \mathcal{R} \cup \mathcal{R}^{=} have the rules \mathsf{a}(x) \to \mathsf{b}(x), \mathsf{g}(x,x) \to \mathsf{a}(x), \mathsf{b}(x) \to \mathsf{b}(x), 168
and consider the rewrite sequence \Theta: g(a(\mathcal{O}), b(\mathcal{O})) \to_{\mathcal{R} \cup \mathcal{R}} = g(b(\mathcal{O}), b(\mathcal{O})) \to_{\mathcal{R} \cup \mathcal{R}} = 168
```

 $\mathsf{a}(\mathsf{b}(\mathcal{O})) \to_{\mathcal{R} \cup \mathcal{R}^{=}} \dots$ So here we have $t_0 = \mathsf{g}(\mathsf{a}(\mathcal{O}), \mathsf{b}(\mathcal{O})), \ t_1 = \mathsf{g}(\mathsf{b}(\mathcal{O}), \mathsf{b}(\mathcal{O})), \ \text{and}$ 168 $t_2 = \mathsf{a}(\mathsf{b}(\mathcal{O})).$ The following is a possible origin graph for Θ .

We can now prove the chain criterion in the relative setting. In the following, we often use the notation $pos_f(t)$ instead of $pos_{\{f\}}(t)$ for a term t and a single symbol or variable $f \in \Sigma \cup V$. 169

Theorem 23 (Chain Criterion for Relative Rewriting). Let \mathcal{R} and $\mathcal{R}^=$ be 103 TRSs such that $\mathcal{R}^=$ is non-duplicating. Then $\mathcal{R}/\mathcal{R}^=$ is SN iff the ADP problem 103 $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ is SN 103

Proof. Completeness: Assume that the ADP problem $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ is not SN. Then, there exists an infinite $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ -chain, i.e., an infinite rewrite sequence $t_0 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}=)} t_1 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}=)} \dots$ that uses an infinite number of rewrite steps with $\mathcal{A}_1(\mathcal{R})$ and Case (**pr**). $t_1 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}=)} t_1 \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}=)} \dots$

By removing all annotations we obtain the rewrite sequence $\flat(t_0) \to_{\mathcal{R} \cup \mathcal{R}} = \flat(t_1) \to_{\mathcal{R} \cup \mathcal{R}} = 31$... that uses an infinite number of rewrite steps with \mathcal{R} . Hence, $\mathcal{R}/\mathcal{R}^=$ is not SN 191 either. 191

Soundness: Assume that $\mathcal{R}/\mathcal{R}^{=}$ is not SN. Then there exists an infinite sequence $\Theta: t_0 \to_{\mathcal{R} \cup \mathcal{R}} = t_1 \to_{\mathcal{R} \cup \mathcal{R}} = \dots$ that uses an infinite number of \mathcal{R} -rewrite steps. 183

We will define a sequence $\tilde{t}_0, \tilde{t}_1, \ldots$ of annotated terms such that $\flat(\tilde{t}_i) = t_i$ and $\tilde{t}_i \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}^=)} \tilde{t}_{i+1}$ for all $i \in \mathbb{N}$, where we use an infinite number of rewrite steps with $\mathcal{A}_1(\mathcal{R})$ and Case (**pr**). This is an infinite $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ -chain, and hence, $(\mathcal{A}_1(\mathcal{R}), \mathcal{A}_2(\mathcal{R}^=))$ is not SN either. 181

W.l.o.g., let t_0 be a minimal term that is non-terminating w.r.t. $\mathcal{R}/\mathcal{R}^=$, i.e., 91 there exists no proper subterm of t_0 that starts a rewrite sequence which uses an infinite number of \mathcal{R} -steps. Such a minimal term exists, since there are only finitely 91 many subterms of t_0 . Next, we prove that there exists an origin graph for Θ with a 91 path from $(0,\varepsilon)$ to some node (i,π) and a path from $(0,\varepsilon)$ to some node $(i+1,\pi')$ 91 with $i \in \mathbb{N}$ such that the rewrite step $t_i \to_{\mathcal{R}} t_{i+1}$ takes place at position π , and 91 with $i \in \mathbb{N}$ such that the rewrite step $t_i \to_{\mathcal{R}} t_{i+1}$ takes place at position π , and 91 definition of the origin graph, there exists a chain $t_0, \ldots, t_i, t_{i+1}$ with $t_i \in \mathbb{N}$ 91 for all $1 \leq j \leq i+1$ such that the positions π in t_i and π' in t_{i+1} are annotated. Hence, the rewrite step $t_i \hookrightarrow_{\mathcal{A}_1(\mathcal{R}) \cup \mathcal{A}_2(\mathcal{R}^=)} t_{i+1}$ is performed with $t_i \in \mathbb{N}$ 91 Hence, there is a minimal non-terminating subterm of t_{i+1} whose root 192 is annotated. Thus, we can perform the whole construction again to create another 193 chain starting in t_{i+1} that ends in a rewrite step with $t_i \in \mathbb{N}$ and Case (pr). By 194 repeating this construction infinitely often, we generate our desired infinite chain. 91

It remains to prove that such an origin graph exists for every minimal nonterminating term t_0 . Let k be the arity of t_0 's root symbol. Then for $i \in \mathbb{N}$, by induction we now define t_i^1, \ldots, t_i^k such that $t_i^1, \ldots, t_i^k \triangleleft t_i$ at parallel positions and

```
such that t_1^n 23 \mathbb{R}^1 \mathbb{R}^3 t_1^n 23 \mathbb{R}^1 \mathbb{R}^3 ... for all 1 \leq j \leq k, where \rightarrow \mathbb{R}^1 \mathbb{R}^3 = (\rightarrow_{\mathcal{R} \cup \mathcal{R}})
\cup =), i.e., \rightarrow_{\mathbb{R}^{\sqcup}} \mathbb{R}^{\oplus} is the reflexive closure of \rightarrow_{\mathcal{R} \cup \mathcal{R}} =. In addition, for i \in \mathbb{N} we
define a non-empty context C_i such that t_i = C_i[q_{1,1}, \ldots, q_{1,h_1}, \ldots, q_{k,1}, \ldots, q_{k,h_k}]
for subterms q_{j,1},\ldots,q_{j,h_j} \leq t_j^{\prime} at parallel positions for all 1 \leq j \leq k. Moreover,
if i>0, then for all pairs of positions \pi_1,\pi_2\in\mathrm{pos}_{\Sigma}(C_i) we show that one can
construct an origin graph with paths from (0,\varepsilon) to (i,\pi_1) and from (0,\varepsilon) to (i,\pi_2)
      Note that there exists an i \in \mathbb{N} such that the rewrite step from t_i to t_{i+1} is done
with an \mathcal{R}-rule at a position in C_i. The reason is that otherwise, infinitely many
\mathcal{R}-steps would be applied on terms of the form q_{i,b}. But this would mean that there 23
exists a the sequence the result of the sequence the sequ
\mathcal{R}-steps. However, this would be a contradiction to the minimality of t_0 because t_0^3
is a proper subterm of t_0. So we define t_i^1, \ldots, t_i^k and C_i for all i \geq 0 until we reach
the first i where an \mathcal{R}-step is performed with a redex at a position in C_i.
      We start with the case i = 0. Let t_0^1, \ldots, t_0^k be the subterms of t_0 at positions
1, \ldots, k \text{ (i.e., } t_0^k|_{\mathcal{I}} \text{ for all } 1 \leq j \leq k \text{). Then, we have } t_0 = C_0[t_0^1, \ldots, t_0^k] \text{ for the}
                                                                                                                                                                 173
context C_0 that only consists of t_0's root symbol applied to k holes. 25
      In the induction step, we have t_i \to_{\mathcal{R} \cup \mathcal{R}} t_{i+1} using a position \pi, a substitution
\sigma, and a rule \ell \to r with t_i|_{\pi} = \ell \sigma and t_{i+1} = t_i[r\sigma]_{\pi}. Here, we have two cases: 181
      If \pi \notin pos(C_i) \setminus pos_{\square}(C_i), then \pi must be in some q_{i,b} \leq t_i. So there is an
       \alpha \in \text{pos}_{\square}(C_i) such that \pi = \alpha.\beta for some \beta \in \mathbb{N}^*. Hence, we have t_i|_{\pi} =
       C_i[q_{1,1},\ldots,q_{1,h_1},\ldots,q_{k,1},\ldots,q_{k,h_k}]|_{\pi}=q_{j,b}|_{\beta} \text{ for some } q_{j,b}=t_i^{\mu}|_{\gamma_1} Here, we sim-
       ply perform the rewrite step on this term, and the context and the other terms 116
        remain the same. Hence, we have C_{i+1}=C_i,\ t_{i+1}^{p}
       all 1 \leq j \leq k with j' \neq j. Using the subterms q'_{1,1}, \ldots, q'_{1,h} 1.16, q'_{k,1}, \ldots, q'_{k,h}
       with q'_{i,b} = q_{j,b}[r\sigma]_{\beta} and q'_{c,d} = q_{c,d} for all 1 \leq c \leq k and 1 \leq d \leq h_c with
       (c,d) \neq (j,b), we finally get t_{i+1} = C_{i+1}[q'_{1,1},\ldots,q'_{1,b}]
       \frac{\text{desired.}}{116}
       It remains to prove that our claim on the paths in the origin graph is still 116
        satisfied. For all \tau_1, \tau_2 \in \text{pos}_{\Sigma}(C_{i+1}) = \text{pos}_{\Sigma}(C_i), by the induction hypothesis
       there exists an origin graph with paths from (0, \varepsilon) to (i, \tau_1) and from (0, \varepsilon) to (0, \varepsilon)
       (i, \tau_2). Since the origin graph has edges from (i, \tau_1) to (i+1, \tau_1) and from (i, \tau_2)
       to (i+1,\tau_2) by Def. 39 since \tau_1 and \tau_2 are above or parallel to \pi, there are also 115
       paths from (0,\varepsilon) to (i+1,\tau_1) and from (0,\varepsilon) to (i+1,\tau_2).
      Now we consider the case \pi \in \text{pos}(C_i) \setminus \text{pos}_{\square}(C_i). If the step t_i \to_{\mathcal{R} \cup \mathcal{R}} t_{i+1} is
       an \mathcal{R}-step, then we stop, because we reached the first \mathcal{R}-step where the redex 104
       is at a position in C_i. 104
       So we now have t_i \to_{\mathcal{R}^=} t_{i+1}. We define t_{i+10}^{p} t_{i+10}^{p} for all 1 \leq j \leq k, but we
       still need to define the context and the subterms for each t_{110} We will now
                                                                                                                                                                 101
       define a suitable VRF \varphi : pos_{\mathcal{V}}(\ell) \to pos_{\mathcal{V}}(r) \cup \{\bot\} step by step, where we
       initialize \varphi to yield \perp for all arguments. For every \rho \in \text{pos}_{\mathcal{V}}(\ell), if possible, we
       Let \varphi(\rho) \in \text{pos}_{\mathcal{V}}(r) be a position of r that is not yet in the image of \varphi and where
       \ell|_{\rho}=r|_{\varphi(\rho)}. If there is no such position of r, then we keep \varphi(\rho)=\perp. 104
       Let \varphi^{|pos_{\mathcal{V}}(r)} denote the restriction of \varphi to the codomain pos_{\mathcal{V}}(r) (i.e., \varphi^{|pos_{\mathcal{V}}(r)} is
       only defined on those \rho \in \text{pos}_{\mathcal{V}}(\ell) where \varphi(\rho) \neq \bot). Then \varphi^{[\text{pos}_{\mathcal{V}}(r)]} is surjective.
       since rules of \mathcal{R}^{=} must not be duplicating, and injective, since we only extend 104
```

```
the function \varphi if a position of a variable in r was not already in the image 176
of \varphi. Let \{\rho_1,\ldots,\rho_w\}\subseteq\mathrm{pos}_{\mathcal{V}}(\ell) be those positions of variables from \ell in the
                                                                                                              176
context C_i that are no holes (i.e., where \pi.\rho_z \in pos(C_i) \setminus pos_{\square}(C_i)) and where
\varphi(\rho_z) \neq \bot for all 1 \leq z \leq w. Then we define the new context C_{i+1} as C_{i+1} =
C_i[r\delta_{\square}]_{\pi}[C_i|_{\pi.\rho_1}]_{\pi.\varphi(\rho_1)}\dots[C_i|_{\pi.\rho_w}]_{\pi.\varphi(\rho_{w'})} using the substitution \delta_{\square} that maps
every variable to \square. So C_{i+1} results from C_i by replacing the subterm at position
\pi by r where all variables are substituted with \square, and then restoring the part 176
of the context that was inside the substitution. 176
Next, we need to define the subterms q'_{i,1}, \ldots, q'_{i,h} of t'_{i+1} such that t_{i+1}
C_{i+1}[q'_{1,1},\ldots,q'_{1,h}] 176, q'_{k,1},\ldots,q'_{k,h} Let \kappa be the position of some q_{j,b} in t_i
First, consider the case that for some \alpha_{\ell} \in \text{pos}_{\mathcal{V}}(\ell) and \beta \in \mathbb{N}^* we have \pi.\alpha_{\ell}.\beta =
                                                                                                              176
\kappa, i.e., q_{i,b} is completely inside the substitution. If \varphi(\alpha_{\ell}) = \bot, then we remove
                                                                                                              176
the subterm q_{j,b} in t_{i+1}. Otherwise, q_{j,b} is one of the subterms q'_{i,b'} and it moves
                                                                                                              176
from position \pi.\alpha_{\ell}.\beta in t_i to position \pi.\varphi(\alpha_{\ell}).\beta in t_{i+1}. Note that there are no
                                                                                                              176
two such q_{j_1,b_1}, q_{j_2,b_2} that move to the same position, due to injectivity of \varphi.
Second, q_{i,b} is also one of the subterms q'_{i,b'} if the position \kappa is parallel to \pi. Here,
the position of q_{i,b} in t_{i+1} remains the same as in t_i. Third, we consider the case
that there exist some \alpha_{\ell} \in \text{pos}_{\mathcal{V}}(\ell) such that \kappa < \pi.\alpha_{\ell}, i.e., q_{j,b} is a subterm of
                                                                                                              177
the redex but not completely inside the substitution. For all such \alpha_{\ell}, let \chi_{\alpha_{\ell}} \in
                                                                                                              176
\mathbb{N}^* such that \kappa.\chi_{\alpha_\ell} = \pi.\alpha_\ell. Instead of the subterm q_{j,b}, we now use the subterms
q_{j,b}|_{\chi_{\alpha_{\ell}}} for all those \alpha_{\ell} with \varphi(\alpha_{\ell}) \neq \bot. Now q_{j,b}|_{\chi_{\alpha_{\ell}}} is a subterm of t_{i+1} at
position \pi.\varphi(\alpha_{\ell}). All in all, we get t_{i+1} = C_{i+1}[q'_{1,1}, \dots, q'_{1,h}] / 76, q'_{k,1}, \dots, q'_{k,h}] / 176
and q'_{i,1}, \ldots, q'_{i,h} \preceq \sharp_{i+1-2}^{\prime} t parallel positions for all 1 \leq j \leq k.
Finally, we prove that our claim on the paths in the origin graph is still satisfied. 177
Consider two positions \tau_1, \tau_2 \in \text{pos}_{\Sigma}(C_{i+1}), and let \tau \in {\tau_1, \tau_2}. If \tau is above
or parallel to \pi, then by the induction hypothesis there exists an origin graph
with a path from (0,\varepsilon) to (i,\tau). Since the origin graph has an edge from (i,\tau)
to (i+1,\tau) by Def. 39, there is a path from (0,\varepsilon) to (i+1,\tau). If \tau has the
form \pi.\alpha with \alpha \in \text{pos}_{\Sigma}(r) in C_{i+1}, then by the induction hypothesis there is
an origin graph with a path from (0,\varepsilon) to (i,\pi). Since the origin graph can be
chosen to have an edge from (i,\pi) to (i+1,\pi.\alpha) by Def. 39, there is a path from
(0,\varepsilon) to (i+1,\pi.\alpha). Note that if both \tau_1 and \tau_2 have such a form (i.e., \tau_1=\pi.\alpha_1
and \tau_2 = \overline{\pi \cdot \alpha_2} with \alpha_1, \alpha_2 \in \overline{pos_{\Sigma}(r)}, then the origin graph can be chosen to
have edges from (i,\pi) to both (i+1,\pi.\alpha_1) and (i+1,\pi.\alpha_2), as we can have
                                                                                                              175
two such edges for a rewrite step with a relative rule from \mathcal{R}^{=}. Finally, if \tau has
the form \pi.\alpha_r.\beta with \alpha_r \in pos_{\mathcal{V}}(r) in C_{i+1}, then since the image of \varphi consists
of all variable positions from pos_{\mathcal{V}}(r) (due to non-duplication of \mathcal{R}^{=}), there is
                                                                                                              177
a \rho \in \text{pos}_{\mathcal{V}}(\ell) with \ell|_{\rho} = r|_{\varphi(\rho)} where \varphi(\rho) = \alpha_r. By the induction hypothesis
                                                                                                              177
there is an origin graph with a path from (0,\varepsilon) to (i,\pi.\rho.\beta) and by Def. 39, the
origin graph can be chosen to have an edge from (i, \pi.\rho.\beta) to (i + 1, \pi.\alpha_r.\beta).
All in all, there exists an origin graph with paths from (0,\varepsilon) to (i,\tau_1) and from
(0,\varepsilon) \text{ to } (i,\tau_2). 176
```

So we have shown that there exists an origin graph for Θ with a path from $(0, \varepsilon)$ to some node (i, π) such that the rewrite step $t_i \to_{\mathcal{R}} t_{i+1}$ takes place at position π in the context C_i . Moreover, for any further position $\pi' \in \operatorname{pos}_{\Sigma}(C_i)$, in this

```
origin graph there is also a path from (0,\varepsilon) to some node (i,\pi'). In a similar way, 177
one can also extend the construction one step further to define t_{i+1}^1, \ldots, t_{i+1}^k and
a non-empty context C_{i+1} such that t_{i+1} = C_{i+1}[q_{1,1}, \ldots, q_{1,h_1}, \ldots, q_{k,1}, \ldots, q_{k,h_k}]
for subterms q_{j,1}, \ldots, q_{j,h_j} \leq t_{i+17}^{\nu} not necessarily at parallel positions, since the
used \mathcal{R}-step may be duplicating). Moreover, for all positions \pi_1 \in \text{pos}_{\Sigma}(C_i) and
\pi_2 \in \operatorname{pos}_{\Sigma}(C_{i+1}) one can construct an origin graph with paths from (0,\varepsilon) to (i,\pi_1)
and from (0,\varepsilon) to (i+1,\pi_2). For this last step, the cases of the proof are exactly
the same, the only difference is that from node (i,\pi), there may only be a single 178
outgoing edge (since the used rule was in \mathcal{R}). But as we are only looking for a single
position \pi_2 in \operatorname{pos}_{\Sigma}(C_{i+1}) (and no pairs of positions anymore), this suffices for the
construction. 178
    Then we have shown that the desired origin graph exists, by choosing \pi_1 to be
\pi (the position of the redex in the \mathcal{R}-step from t_i to t_{i+1}) and by choosing \pi_2 to be
the position of a minimal non-terminating subterm of t_{i+1}. Note that this position
must be in pos_{\Sigma}(C_{i+1}), because all subterms q_{j,b} are terminating w.r.t. \mathcal{R}/\mathcal{R}^{=}. \square
    For the following proof, recall that t \leq_{\#}^{\tau} s if \tau \in \text{pos}_{\mathcal{D}^{\#}}(s) and t = \flat(s|_{\tau}).
Theorem 26 (Derelatifying Processor (1)). Let (\mathcal{P}, \mathcal{P}^{=}) be an ADP problem 142
such that \flat(\mathcal{P}^{=}) = \mathcal{P}^{=}. Then \operatorname{Proc}_{\mathtt{DRP1}}(\mathcal{P}, \mathcal{P}^{=}) = \varnothing is sound and complete iff the
ordinary DP problem (DP(\mathcal{P}), \flat(\mathcal{P} \cup \mathcal{P}^{=})) is SN. 142
Proof. Completeness of any processor that yields the empty set is trivial. So we 180
only have to consider soundness. 180
     Only if: Assume that (DP(\mathcal{P}), \flat(\mathcal{P} \cup \mathcal{P}^{=})) is not SN. Then there exists an infinite 183
sequence t_0, t_1, t_2, \ldots with t_i \xrightarrow{\varepsilon_{\mathsf{DP}(\mathcal{P})}} \circ \to_{\flat(\mathcal{P} \cup \mathcal{P})}^* t_{i+1} for all i \in \mathbb{N}. We now create
a sequence s_0, s_1, \ldots of annotated terms such that s_i \hookrightarrow_{\mathcal{D}}^{(\mathbf{pr})} p_{\mathcal{D}} = p_{\mathcal{D}}
p(t_i) \leq_{\#} s_i for all i \in \mathbb{N}, which by Thm. 23 implies that (\mathcal{P}, \mathcal{P}^{=}) is not SN, i.e., the
processor is not sound. Initially, we start with the term s_0 = t_0. We have
                   t_0 \xrightarrow{\varepsilon}_{\mathsf{DP}(\mathcal{P})} t_{0,1} \to_{\flat(\mathcal{P} \cup \mathcal{P} =)} t_{0,2} \to_{\flat(\mathcal{P} \cup \mathcal{P} =)} \dots \to_{\flat(\mathcal{P} \cup \mathcal{P} =)} t_1
In the first rewrite step, there is a DP \ell^{\#} \to t^{\#} \in DP(\mathcal{P}) and a substitution \sigma such that t_0 = \ell^{\#}\sigma and t_{0,1} = t^{\#}\sigma. This DP \ell^{\#} \to t^{\#} results from some ADP 181
\ell \to r \in \mathcal{P} with t \trianglelefteq_{\#}^{\tau} r for some position \tau \in \text{pos}(r). We can rewrite s_0 with \ell \to r
and the substitution \sigma at the root resulting in s_{0,1} = r\sigma with \flat(t_{0,1}) \preceq_{\#}^{\tau} r\sigma = s_{0,1}.
Then, we mirror each step that takes place at position \pi in t_{0,i} at position \tau.\pi 181
in s_{0,i}. To be precise, if we have t_{0,i+1}=t_{0,i}[r'\sigma']_{\pi} using a rule \ell'\to \flat(r')\in 181
\flat(\mathcal{P} \cup \mathcal{P}^{=}), the substitution \sigma', and the position \pi, then we have \flat(t_{0,i}) \leq_{\#}^{\tau} s_{0,i}, and
can rewrite s_{0,i} with the ADP \ell' \to r', the substitution \sigma', and the position \tau.\pi. We
get \flat(s_{0,i+1}) = \flat(s_{0,i}[r'\sigma']_{\tau,\pi}) with \flat(t_{0,i+1}) = \flat(t_{0,i}[r'\sigma']_{\pi}) \leq_{\#}^{\tau} s_{0,i+1}. In the end,
we have \flat(t_1) \leq^{\tau}_{\#} s_1.
    We can now repeat this for each i \in \mathbb{N} and result in our desired chain. 169
If: Assume that the processor is not sound and that (\mathcal{P}, \mathcal{P}^{=}) is not SN. Then, 181
by Thm. 23 there exists an infinite sequence t_0, t_1, t_2, \ldots of annotated terms such 181
that t_i \hookrightarrow_{\mathcal{P}}^{(\mathbf{pr})} p_{\mathcal{P} \cup \mathcal{P}}^* t_{i+1} for all i \in \mathbb{N}. W.l.o.g., let t_0 contain only a single
annotation (we only need the annotation for the position that leads to infinitely 181
many \mathcal{P}-steps with Case (pr)). We now create a sequence s_0, s_1, \ldots such that
```

 $\overset{\smile}{\to}_{\mathsf{DP}(\mathcal{P})} \circ \overset{*}{\to}_{\flat(\mathcal{P}\cup\mathcal{P}^{=})}^{*} s_{i+1} \text{ and } \flat(s_i) \leq_{\#} t_i \text{ for all } i \in \mathbb{N}, \text{ which implies that}$ $(DP(\mathcal{P}), \flat(\mathcal{P} \cup \mathcal{P}^{=}))$ is not SN. Due to the condition $\flat(\mathcal{P}^{=}) = \mathcal{P}^{=}$, we have The reason that we have no $\hookrightarrow_{\mathcal{D}}^{(\mathbf{pr})}$ steps is that all terms t_i and $t_{i,j}$ only contain a single annotation. Since $\flat(\mathcal{P}^{=}) = \mathcal{P}^{=}$, we only have annotations in \mathcal{P} , where every right-hand side of a rule only has at most a single annotation. Thus, no term t_i or $t_{i,j}$ can have more than one annotation. If we would rewrite at the position of this 125 annotation with a rule without annotations (e.g., from $\mathcal{P}^{=}$), then we would not have any annotation left and there would be no future $\hookrightarrow_{\mathcal{P}}^{(pr)}$ step possible anymore. In the first rewrite step, there is an ADP $\ell \to r \in \mathcal{P}$, a substitution σ , and a 181 position π such that $t_0|_{\pi} = \ell^{\#}\sigma$ and $t_{0,1} = t_0[\#_{\rho}(r\sigma)]_{\pi}$ for some $\rho \in \text{pos}(r)$. Initially, 181 we start with the term $s_0 = \ell^\# \sigma$. We can rewrite s_0 with $\ell^\# \to t^\# \in DP(\mathcal{P})$ for $\underline{\leq}_{\mu}^{\rho} \eta_{\text{gand}}$ the substitution σ resulting in $s_{0,1} = t^{\#} \sigma$ with $\flat(s_{0,1}) = t \sigma \underline{\leq}_{\mu}^{\rho} \#_{\mathcal{B}}(r\sigma)$, 181 i.e., $b(s_{0,1}) \leq_{\#}^{\kappa} t_0[\#_{\rho}(r\sigma)]_{\pi} = t_{0,1}$ for $\kappa = \pi.\rho$. Then, each rewrite step in $t_{0,i}$ is 181 mirrored in $s_{0,i}$. 181 To be precise, let $\flat(t_{0,i+1}) = \flat(t_{0,i}[r'\sigma']_{\tau})$ using a rule $\ell' \to r' \in \flat(\mathcal{P} \cup \mathcal{P}^{=})$, the 181 substitution σ' , and the position τ . If τ is above or parallel to the position κ of 181 the subterm that corresponds to our classical chain, then we do nothing and set 181 $s_{0,i} = s_{0,i+1}$. However, a rewrite step on or above κ might change the position of this subterm, i.e., the position that we denoted with κ may be modified in each such 181 step. Note however, that this subterm cannot be erased by such a step because then 181 we would remove the only annotated symbol and the chain would become finite. If τ 181 is below κ (i.e., we have $\tau = \kappa . \pi'$ for some position π'), then we have $\flat(s_{0,i}) \subseteq_{\#}^{\kappa} t_{0,i}$ 181 and can rewrite $s_{0,i}$ with the rule $\ell' \to \flat(r')$, the substitution σ' , and the position π' If κ denotes the current (possibly changed) position of the corresponding subterm, 181 then we get $\flat(s_{0,i+1}) = \flat(s_{0,i}[r'\sigma']_{\pi'}) \leq_{\#}^{\kappa} t_{0,i+1}$. Finally, τ cannot be κ , since then this would not be a (r)-rewrite step but a (pr)-rewrite step. In the end, we obtain $p(s_1) \leq_{\#} t_1$. 181 We can now repeat this for each $i \in \mathbb{N}$ and result in our desired chain. **169 Theorem 27 (Derelatifying Processor (2)).** Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem, 113 and let $\mathcal{P}^{=} = \mathcal{P}_{a}^{=} \uplus \mathcal{P}_{b}^{=}$. Then $\operatorname{Proc}_{\mathsf{DRP2}}(\mathcal{P}, \mathcal{P}^{=}) = \{(\mathcal{P} \cup \mathsf{split}(\mathcal{P}_{a}^{=}), \mathcal{P}_{b}^{=})\}$ is sound. Here, $\mathsf{split}(\mathcal{P}_{a}^{=}) = \{\ell \to \#_{\pi}(r) \mid \ell \to r \in \mathcal{P}_{a}^{=}, \pi \in \operatorname{pos}_{\mathcal{D}^{\#}}(r)\}$. 113 *Proof.* Soundness: By Def. 22, $(\mathcal{P}, \mathcal{P}^{=})$ is not SN iff there exists an infinite $(\mathcal{P}, \mathcal{P}^{=})$ -183 chain. Such a chain would also be an infinite $(\mathcal{P} \cup \mathcal{P}_a^=, \mathcal{P}_b^=)$ -chain. There is an infinite $(\mathcal{P} \cup \mathcal{P}_a^=, \mathcal{P}_b^=)$ -chain iff there is an infinite $(\mathcal{P} \cup \mathtt{split}(\mathcal{P}_a^=), \mathcal{P}_b^=)$ -chain as we only need at most a single annotation in the main ADPs. By Def. 22, this is equivalent 183 to non-termination of $(\mathcal{P} \cup \mathtt{split}(\mathcal{P}_a^=), \mathcal{P}_b^=)$. **183** Before we prove the soundness and completeness of the dependency graph processor, we present another definition regarding origin graphs. In Def. 39 we have seen 184 that for a non-annotated rewrite sequence $t_0 \to_{\mathcal{R} \cup \mathcal{R}^-} \dots$ one can obtain several 184 different origin graphs. Now, we define the canonical origin graph for an annotated 184 rewrite sequence $t_0 \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} = \dots$ This graph represents the flow of the annotations in this sequence. 184

```
Dependency Pairs for Relative Termination
```

Definition 41 (Canonical Origin Graph). Let $(\mathcal{P}, \mathcal{P}^{=})$ be an ADP problem 186 and let $\Theta: t_0 \hookrightarrow_{\mathcal{P} \sqcup \mathcal{P}^{=}} t_1 \hookrightarrow_{\mathcal{P} \sqcup \mathcal{P}^{=}} \dots$ The canonical origin graph for Θ has the 186 nodes (i, π) for all $i \in \mathbb{N}$ and all $\pi \in \text{pos}(t_i)$, and its edges are defined as follows:

For $i \in \mathbb{N}$, let the step $t_i \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} = t_{i+1}$ be performed using the rule $\ell \to r \in \mathcal{P} \cup \mathcal{P}^=$, the position τ , the substitution σ , and the VRF φ . Furthermore, let $\pi \in \text{pos}(t_i)$. 186

(a) If $\pi < \tau$ or $\pi \perp \tau$ (i.e., π is above or parallel to τ), then there is an edge from 185 (i,π) to $(i+1,\pi)$. 55

(b) For $\pi = \tau$, there is an edge from (i, π) to $(i + 1, \pi.\alpha)$ for all $\alpha \in \text{pos}_{\mathcal{D}^{\#}}(r)$. 185 (c) If $\pi = \tau.\alpha_{\ell}.\beta$ for a variable position $\alpha_{\ell} \in \text{pos}_{\mathcal{V}}(\ell)$ and $\beta \in \mathbb{N}^{*}$, then there is an 185

[edge from $(i, \tau.\alpha_{\ell}.\beta)$ to $(i+1, \tau.\varphi(\alpha_{\ell}).\beta)$ if $\varphi(\alpha_{\ell}) \neq \bot$.] 132 [(d) For all other positions $\pi \in pos(t_i)$, there is no outgoing edge from the node 162 [(i, π) .] 0

Moreover, if an ADP is applied with Case (**pr**) at position τ in t_i in Θ , then all edges originating in (i, τ) are labeled with this ADP. All other edges are not labeled 191

So for \mathcal{R}_2 from Ex. 4 where $\mathcal{A}_1(\mathcal{R}_2)$ consists of 89

 $a \rightarrow b \ 3$ (23) 0

and $\mathcal{A}_2(\mathcal{R}_2^{=})$ consists of 52

 $f \rightarrow d(F,A), 0$ (24) 0

the chain from Ex. 24 yields the following canonical origin graph: 191

For \mathcal{R}_3 from Ex. 5 where $\mathcal{A}_1(\mathcal{R}_3)$ consists of 130

 $\mathbf{a}(x) \to \mathbf{b}(x) \mathbf{0}$

and $\mathcal{A}_2(\mathcal{R}_2^{=})$ consists of 52

 $f \rightarrow A(F), 0$ (26) 0

the chain from Ex. 25 yields the following canonical origin graph: 191


```
Theorem 33 (Dep. Graph Processor). Let (\mathcal{P}, \mathcal{P}^{=}) be an ADP problem. Then 128
    \operatorname{Proc}_{\mathsf{DG}}(\mathcal{P},\mathcal{P}^{=}) = \{ (\mathcal{P} \cap \mathcal{Q}, (\mathcal{P}^{=} \cap \mathcal{Q}) \cup \flat ((\mathcal{P} \cup \mathcal{P}^{=}) \setminus \mathcal{Q})) \mid \mathcal{Q} \in \mathsf{SCC}_{\mathcal{P}}^{(\mathcal{P},\mathcal{P}^{=})} | \mathsf{Viasso} \}_{\mathsf{O}} 
is sound and complete. 49
Proof. Completeness: For every (\mathcal{P}', \mathcal{P}^{=\prime})-chain with (\mathcal{P}', \mathcal{P}^{=\prime}) \in \operatorname{Proc}_{DG}(\mathcal{P}, \mathcal{P}^{=}) 191
there exists a (\mathcal{P}, \mathcal{P}^{=})-chain with the same terms and possibly more annotations.
Hence, if some ADP problem in Proc_{DG}(\mathcal{P}, \mathcal{P}^{=}) is not SN, then (\mathcal{P}, \mathcal{P}^{=}) is not SN 191
either. 191
Soundness: By the definition of \hookrightarrow, whenever there is a path from an edge labeled 191
with an ADP \ell \to r to an edge labeled with an ADP \ell' \to r' in the canonical origin 191
graph, then there is a path from \ell \to r to \ell' \to r' in the dependency graph. Since
there only exist finitely many ADPs and the chain uses ADPs from \mathcal{P} with Case 191
(pr) infinitely many times, there are two cases: 191
     Either there exists a path in the canonical origin graph where infinitely many 191
edges are labeled with an ADP from \mathcal{P}. Then after finitely many steps, this path 191
only uses edges labeled with ADPs from an SCC Q of the dependency graph that 191
contains an ADP from \mathcal{P} (i.e., from a \mathcal{Q} \in SCC_{\mathcal{P}}^{(\mathcal{P},\mathcal{P}^{\equiv})}) Otherwise, there is no such path in the canonical origin graph, but then there is 191
a path in the canonical origin graph where infinitely many edges are labeled with 191
ADPs from \mathcal{P}^{=} and this path generates infinitely many paths that lead to an edge 191
labeled with an ADP from \mathcal{P}. Then after finitely many steps, this path only uses 191
edges labeled with ADPs from a minimal lasso of the dependency graph (i.e., from 101
a \mathcal{Q} \in Lasso). 191
     So in both cases, there exists a \mathcal{Q} \in SCO_{\mathcal{P}}^{(\mathcal{P},\mathcal{P}^{\equiv})} \psig asso such that the infinite 97
path gives rise to an infinite ((\mathcal{P} \cap \mathcal{Q}) \cup \flat(\mathcal{P} \setminus \mathcal{Q}), (\mathcal{P}^= \cap \mathcal{Q}) \cup \flat(\mathcal{P}^= \setminus \mathcal{Q}))-chain.
Since the ADPs \flat(\mathcal{P} \setminus \mathcal{Q}) are never used for steps with Case (pr) in this infinite 97
chain, they can also be moved to the base ADPs. Thus, this is also an infinite 97
 \mathcal{P} \cap \mathcal{Q}, (\mathcal{P}^= \cap \mathcal{Q}) \cup b((\mathcal{P} \cup \mathcal{P}^=) \setminus \mathcal{Q}))-chain, i.e., (\mathcal{P} \cap \mathcal{Q}, (\mathcal{P}^= \cap \mathcal{Q}) \cup b((\mathcal{P} \cup \mathcal{P}^=) \setminus \mathcal{Q})) 97
is not SN either. 97
                                                                                                                               97
Theorem 36 (Reduction Pair Processor). Let (\mathcal{P}, \mathcal{P}^{=}) be an ADP problem 142
and let (\succeq,\succ) be a c-monotonic and c-invariant reduction pair such that \flat(\mathcal{P}\cup\mathcal{P}^=)
\subseteq \succeq and \ \ell^{\#} \succeq ann(r) \ for \ all \ \ell \to r \in \mathcal{P} \cup \mathcal{P}^{=}. Moreover, let \mathcal{P}_{\succ} \subseteq \mathcal{P} \cup \mathcal{P}^{=} such that
\ell^{\#} \succ \operatorname{ann}(r) for all \ell \to r \in \mathcal{P}_{\succ}. Then \operatorname{Proc}_{\mathsf{RPP}}(\mathcal{P}, \mathcal{P}^{=}) = \{(\mathcal{P} \setminus \mathcal{P}_{\succ}, (\mathcal{P}^{=}), \mathcal{P}_{\succ})\}
p(\mathcal{P}_{\succ})) is sound and complete. 142
Proof. Completeness: For every (P \setminus P_{\succ}, (P^{=} \setminus P_{\succ}) \cup \flat(P_{\succ}))-chain there exists 191
a (\mathcal{P}, \mathcal{P}^{=})-chain with the same terms and possibly more annotations. Hence, if 191
(\mathcal{P} \setminus \mathcal{P}_{\succ}, (\mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) \cup \flat(\mathcal{P}_{\succ})) is not SN, then (\mathcal{P}, \mathcal{P}^{=}) is not SN either.
Soundness: We start by showing that the conditions of the theorem extend to rewrite 161
steps instead of just ADPs: 161
(a) If s, t \in \mathcal{T}\left(\Sigma^{\#}, \mathcal{V}\right) with s \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t, then \operatorname{ann}(s) \succsim \operatorname{ann}(t).
(b) If s, t \in \mathcal{T}(\Sigma^{\#}, \mathcal{V}) with s \hookrightarrow_{\mathcal{P}_{\succ}} t using Case (pr), then ann(s) \succ ann(t).
```

```
For this, we extend ann(t) to terms with possibly more than two annotations by 130
defining \operatorname{ann}(t) = c_2(r_1^{\#}, 129, c_2(r_{n-10}^{\#}, r_n^{\#}) \dots) if r_i \leq_{\#}^{n_i} \mathfrak{F} for n \geq 2 and the positions
\pi_1, \ldots, \pi_n with \pi_i <_{lex} \pi_{i+1} for all 1 \le i < n.
(a) Assume that we have s \hookrightarrow_{\mathcal{P} \cup \mathcal{P}^{=}} t using the ADP \ell \to r, the VRF \varphi, the position \pi, and the substitution \sigma. So we have \flat(s|_{\pi}) = \ell \sigma. Furthermore, let
      ann(s) contain the terms s_1^{\#}, 181, s_n^{\#} with annotated root symbols. If n=0, 181
      then we have ann(s) = c_0 = ann(t) which proves the claim. 181
      Otherwise, we partition s_1, \ldots, s_n into several disjoint groups: 114
       Let s_{i_1}, \ldots, s_{i_{n_1}} be all those s_i that are at positions above \pi in s (i.e., these are
       those s_i where \pi_i < \pi). Let s_{i_{n_1+1}}, \ldots, s_{i_{n_2}} be all those s_i that are at positions
       parallel to \pi or on or below a variable position of \ell that is "considered" by 93
       the VRF (i.e., those s_i where \pi_i \perp \pi or \pi.\alpha \leq \pi_i for some \alpha \in \text{pos}_{\mathcal{V}}(\ell) with 93
       \varphi(\alpha) \neq \bot). Finally, let s_{i_{n_2+1}}, \ldots, s_{i_{n_3}} be all those s_i that are below position \pi,
       but not on or below a variable position of \ell that is "considered" by the VRF
       (i.e., those s_i where \pi_i = \pi.\alpha for some \alpha \in pos_{\Sigma}(\ell) with \alpha \neq \varepsilon or \pi.\alpha \leq \pi_i for our
      some \alpha \in \text{pos}_{\mathcal{V}}(\ell) with \varphi(\alpha) = \bot).
      If the rewrite step takes place at a position that is not annotated (i.e., the sym-
       bol at position \pi in s is not annotated), then we have n_3 = n and \{i_1, \ldots, i_{n_3}\} = n
      \{1, \dots, n\}. Otherwise, we have n_3 = n-1 and \{s_{i_1}, \dots, s_{i_{n_3}}, \ell^\#\sigma\} = \{s_1, \dots, s_n\}.
      After the rewrite step with \hookrightarrow_{\mathcal{P}\cup\mathcal{P}^=}, ann(t) contains the following terms with 177
      annotated root symbols: The terms s_{i_{n_1+1}}, \dots, s_{i_{n_2}} are unchanged and still con-
      tained in ann(t). The terms s_{i_{n_2+1}}, \ldots, s_{i_{n_3}} are removed, i.e., they are no longer
      in ann(t). The terms s_{i_1}, \ldots, s_{i_{n_1}} are replaced by s_{i_1}[\flat(r)\sigma]_{\tau_1}, \ldots, s_{i_{n_1}}[\flat(r)\sigma]_{\tau_{n_1}} for appropriate positions \tau_i \neq \varepsilon. Furthermore, if the symbol at position \pi in s
      was annotated, then in addition, ann(t) contains the terms r_1^{\#}\sigma_{1,77}, r_m^{\#}\sigma where
      r_i for 1 \leq j \leq m are all terms with r_j \leq_{\#} r. Hence, if the symbol at position \pi
      in s was annotated, then there exist contexts C, C', C'' containing no function 177
      symbol except c_2 such that 177
              \operatorname{ann}(s) = C[s_{i_1}, \dots, s_{i_{n_1}}, s_{i_{n_1}+1}, \dots, s_{i_{n_2}}, s_{i_{n_2}+1}, \dots, s_{i_{n_2}}, \ell^{\#}\sigma] 
                        \succsim C'[s_{i_1}, \dots, s_{i_{n_1}}, s_{i_{n_1+1}}, \dots, s_{i_{n_2}}, s_{i_{n_2+1}}, \dots, s_{i_{n_2}}, r_1^{\#} \sigma_1 \dots, r_m^{\#} \sigma] 89
                                     by \ell^{\#} \gtrsim \operatorname{ann}(r), c-invariance, and c-monotonicity 16
                           C''[s_{i_1},\ldots,s_{i_{n_1}},s_{i_{n_1+1}},\ldots,s_{i_{n_2}},r_1^{\#}\sigma_1,\ldots,r_m^{\#}\sigma] 80
                           C''[s_{i_1}[\flat(r)\sigma]_{\tau_1},\ldots,s_{i_{n_1}}[\flat(r)\sigma]_{\tau_{n_1}},s_{i_{n_1}+1},\ldots,s_{i_{n_2}},r_1^\#\sigma_1,\ldots,r_m^\#\sigma] 89 by \ell \succeq \flat(r), c-invariance, and c-monotonicity 0
                        = \operatorname{ann}(t) 16
      If the symbol at position \pi in s was not annotated, then we obtain 181
                     \operatorname{ann}(s) = C[s_{i_1}, \dots, s_{i_{n_1}}, s_{i_{n_1+1}}, \dots, s_{i_{n_2}}, s_{i_{n_2}+1}, \dots, s_{i_{n_3}}] 
                                 C'[s_{i_1},\ldots,s_{i_{n_1}},s_{i_{n_1}+1},\ldots,s_{i_{n_2}}]
                               by \ell \gtrsim \flat(r), c-invariance, and c-monotonicity 16
                               = \operatorname{ann}(t) 16
```

```
(b) Assume that we have s \hookrightarrow_{\mathcal{P}_{\sim}} t using the ADP \ell \to r, the VRF \varphi, the position \pi, 181
        the substitution \sigma, and we rewrite at an annotated position. So here, ann(s) \neq c_0.
        Using the same notations as in (a), we get 181
                 \operatorname{ann}(s) = C[s_{i_1}, \dots, s_{i_{n_1}}, s_{i_{n_1}+1}, \dots, s_{i_{n_2}}, s_{i_{n_2}+1}, \dots, s_{i_{n_3}}, \ell^{\#}\sigma] 
                                 C'[s_{i_1}, \dots, s_{i_{n_1}}, s_{i_{n_1+1}}, \dots, s_{i_{n_2}}, s_{i_{n_2+1}}, \dots, s_{i_{n_3}}, r_1^{\#} \sigma_1 \dots, r_m^{\#} \sigma] 89
by \ell^{\#} \succ \operatorname{ann}(r), c-invariance, and c-monotonicity 16
                                  C''[s_{i_1},\ldots,s_{i_{n_1}},s_{i_{n_1+1}},\ldots,s_{i_{n_2}},r_1^{\#}\sigma_1,\ldots,r_m^{\#}\sigma] 89
                                  C''[s_{i_1}[\flat(\underline{r})\sigma]_{\tau_1},\ldots,s_{i_{n_1}}[\flat(r)\sigma]_{\tau_{n_1}},s_{i_{n_1+1}},\ldots,s_{i_{n_2}},\eta_1^{\#}]\sigma_1,\ldots,r_m^{\#}\sigma] 89
                                                 by \ell \gtrsim \flat(r), c-invariance, and c-monotonicity 0
                             = ann(t) 16
      We can now prove soundness. Assume that (\mathcal{P}, \mathcal{P}^{=}) is not SN. Then there exists 169
an infinite (\mathcal{P}, \hat{\mathcal{P}}^=)-chain t_0 \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t_1 \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t_2 \dots If the chain uses an infinite
number of rewrite steps with rules from \mathcal{P}_{\succ} and Case (\mathbf{pr}), then \operatorname{ann}(t_0) \succsim \operatorname{ann}(t_1) \succsim
\operatorname{ann}(t_2) \succeq \ldots would contain an infinite number of steps where the strict relation \succeq
holds, which is a contradiction to well-foundedness of \succ, as \succ is compatible with 168
      Hence, the chain only contains a finite number of \hookrightarrow_{\mathcal{P}_{\sim}}-steps with Case (pr). So
there is an infinite suffix of the chain where only ADPs from (\mathcal{P} \setminus \mathcal{P}_{\succ}) \cup (\mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) are
used with Case (pr). This means that t_i \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t_{i+1} \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t_{i+2} \dots is an infinite
((\mathcal{P}\setminus\mathcal{P}_{\succ})\cup\flat(\mathcal{P}\cap\mathcal{P}_{\succ}),(\mathcal{P}^{=}\setminus\mathcal{P}_{\succ})\cup\flat(\mathcal{P}^{=}\cap\mathcal{P}_{\succ}))-chain, as ADPs that are only used for
steps with Case (r) do not need annotations. Since the ADPs \flat(\mathcal{P} \cap \mathcal{P}_{\succ}) are never
used for steps with Case (pr), they can also be moved to the base ADPs. Thus, this 191
is also an infinite (\mathcal{P} \setminus \mathcal{P}_{\succ}, (\mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) \cup \flat(\mathcal{P}_{\succ}))-chain, i.e., (\mathcal{P} \setminus \mathcal{P}_{\succ}, (\mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) \cup \flat(\mathcal{P}_{\succ}))
is not SN either. 191
                                                                                                                                                        191
      Since ADPs are ordinary rewrite rules with annotations, we can also use ordinary 197
reduction orderings (that are closed under contexts) to remove rules from an ADP 197
problem completely. 197
Theorem 42 (Rule Removal Processor). Let (\mathcal{P}, \mathcal{P}^{=}) be an ADP problem, and 113
let (\succeq,\succ) be a reduction pair where \succ is closed under contexts such that \flat(\mathcal{P}\cup\mathcal{P}^{=})\subseteq
   7. Moreover, let \mathcal{P}_{\succ} \subseteq \mathcal{P} \cup \mathcal{P}^{=} such that \flat(\mathcal{P}_{\succ}) \subseteq \succ. Then \operatorname{Proc}_{\mathtt{RR}}(\mathcal{P}, \mathcal{P}^{=}) = 113
\{(\mathcal{P}\setminus\mathcal{P}_{\succ},\mathcal{P}^{=}\setminus\mathcal{P}_{\succ})\} is sound and complete. 112
Proof. Completeness: Every (\mathcal{P} \setminus \mathcal{P}_{\succ}, \mathcal{P}^{=} \setminus \mathcal{P}_{\succ})-chain is also a (\mathcal{P}, \mathcal{P}^{=})-chain. Hence,
if (\mathcal{P} \setminus \mathcal{P}_{\succ}, \mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) is not SN, then (\mathcal{P}, \mathcal{P}^{=}) is not SN either.
Soundness: Assume that (\mathcal{P}, \mathcal{P}^{=}) is not SN. Let t_0, t_1, \ldots be an infinite (\mathcal{P}, \mathcal{P}^{=})-
chain. Then, t_i \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} t_{i+1} for all i \in \mathbb{N}. Since \flat(\mathcal{P} \cup \mathcal{P}^=) \subseteq \succeq and \succeq is closed under
contexts and substitutions, we obtain \flat(t_0) \succsim \flat(t_1) \succsim \dots Assume for a contradiction that we use infinitely many steps with \hookrightarrow_{\mathcal{P}_{\succeq}}. Then, \flat(t_0) \succsim \flat(t_1) \succsim \dots would contain
an infinite number of steps where the strict relation \succ holds, because \flat(\mathcal{P}_{\succ}) \subseteq \succ
and ≻ is also closed under contexts and substitutions. This is a contradiction to 177
well-foundedness of \succ, as \succ is compatible with \succsim.
Hence, the chain only contains a finite number of \hookrightarrow_{\mathcal{P}_{\succeq}}-steps. So there is an infinite suffix of the chain where only ADPs from (\mathcal{P} \cup \mathcal{P}^{\equiv}) \setminus \mathcal{P}_{\succeq} are used. This
means that t_i \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} \underline{t_{i+1}} \hookrightarrow_{\mathcal{P} \cup \mathcal{P}} \underline{t_{i+2} \dots} is an infinite (\mathcal{P} \setminus \mathcal{P}_{\succ}, \mathcal{P}^= \setminus \mathcal{P}_{\succ})-chain.
Hence, (\mathcal{P} \setminus \mathcal{P}_{\succ}, \mathcal{P}^{=} \setminus \mathcal{P}_{\succ}) is not SN either. 191
                                                                                                                                                        191
```