Universidade Federal de São Paulo - UNIFESP

Segurança Computacional

Aula 05: Autenticação

Prof. Valério Rosset

Autenticação de Mensagens

- Autenticação de Mensagens é utilizada para verificar a origem de mensagens e integridade do seu conteúdo.
- O processo de autenticação está baseado num segmento de informação calculado a partir da mensagem a ser enviada:
- Esse segmento pode ser obtido através das seguintes funções:
 - Criptografia da Mensagem
 - Código de Autenticação de Mensagens
 - Funções Hash unidirecionais

Autenticação de Mensagens

- Criptografia da Mensagem
- Autenticação
- Confidencialidade
- Assinatura

(a) Symmetric encryption: confidentiality and authentication

(b) Public-key encryption: confidentiality

(c) Public-key encryption: authentication and signature

(d) Public-key encryption: confidentiality, authentication, and signature

Autenticação de Mensagens

Integridade

Controle de erros Internos

(a) Internal error control

Controle de Erros Externos

(b) External error control

Métodos – Autenticação de Mensagens

Código de Autenticação de Mensagens

- Conteúdo da mensagem não é cifrado. Porém é adicionado à mensagem um bloco contendo um hash.
 - Message Authentication Code (MAC)
 - Uso de uma chave secreta KAB para gerar um pequeno bloco de dados conhecido como código de autenticação da mensagem, anexado a esta.
 - \rightarrow MAC_M = F(K_{AB}, M)
 - O receptor gera o mesmo código e compara

Mecanismos de Autenticação

■ Message Authentication Code (MAC)

Mecanismos de Autenticação

■ Usos do Message Authentication Code (MAC)

(b) Message authentication and confidentiality; authentication tied to plaintext

(c) Message authentication and confidentiality; authentication tied to ciphertext

Data Authentication Algorithm (DAA)

Baseado no DES

Mecanismos de Autenticação

- Funções Hash Undirecionais
 - Tem como entrada uma mensagem M
 - Produz como saída um resumo de M
 - H(M)
 - Mudança de qualquer bit resulta uma mudança em H(M).
 - Hash é um função que independe de chaves criptográficas.

Mecanismos de Autenticação

Usos básicos de Hash

Mecanismos de Autenticação

Usos básicos de Hash

Mecanismos de Autenticação

Usos básicos de Hash

Algumas Funções Hash

- SHA, SHA-1 e SHA2(512) SHA3
- Whirlpool
- Outros: MD2, MD4, MD5, MD6

Hash and MAC

- Funções Hash
 - Condensam uma mensagem de tamanho arbitrário para tamanho fixo processando mensagem em blocos por meio de alguma função de compactação personalizada ou baseada em codificação de bloco.
- Message Authentication Code (MAC)
 - Autenticador de tamanho fixo para alguma mensagem para fornecer autenticação para mensagem usando o modo de cifra de bloco ou a função hash.

Algoritmo Hash: estrutura

IV = Initial value

CV_i = chaining variable

Y_i = ith input block

f = compression algorithm

. = number of input blocks

n = length of hash code

b = length of input block

- SHA originalmente projetado pelo NIST & NSA em 1993
- Foi revisado em 1995 como SHA-1
- Padrão dos EUA para uso com o esquema de assinatura do DSA
 - Padrão é FIPS 180-1 1995, também Internet RFC3174
 - O algoritmo é SHA, o padrão é SHS
- Baseado no design do MD4 com diferenças
- Originalmente com hash de 160 bits
- Resultados de 2005 sobre a segurança do SHA-1 levantaram preocupações sobre seu uso em algumas aplicações.
- Sucessores: SHA-2 (2001) e SHA-3 (2015)

SHA - Variações

				Tamanho	
		Tamanho	Tamanho	da	
Alg.	Variação	do Digest	do Bloco	Mensagem	Rounds
SHA-0		160	512	2 ⁶⁴ – 1	80
<u>SHA-1</u>					
SHA-2	SHA-224	224	512	2 ⁶⁴ – 1	64
	SHA-256	256			
				$2^{128} - 1$	
	SHA-384	384	1024	2 – 1	80
	SHA-512	512			
	SHA-512/224	224			
	-				
	SHA-512/256	256			
SHA-3	SHA3-224	224	1152	Sem limites	24
	SHA3-256	256	1088		
	SHA3-384	384	832		
	SHA3-512	512	576		

^{*}Tamanhos em bits

SHA-512 Overview

+ = word-by-word addition mod 2⁶⁴

SHA-512 Função de Compressão

- Coração do algoritmo
- Processa mensagens em blocos de 1024-bits
- Consiste em 80 rounds
 - update um buffer de 512-bits
 - usa um valor de 64-bits, Wt derivado do bloco atual
 - e uma constante baseada na raiz cúbica dos primeiros 80 números primos

SHA-512 Função de Compressão

SHA-512: um Round

SHA-512 Um Round

$$T_1 = h + \operatorname{Ch}(e, f, g) + \left(\sum_{1}^{512} e\right) + W_t + K_t$$

$$T_2 = \left(\sum_{0}^{512} a\right) + \operatorname{Maj}(a, b, c)$$

$$a = T_1 + T_2$$

$$b = a$$

$$c = b$$

$$d = c$$

$$e = d + T_1$$

$$f = e$$

$$g = f$$

h = g

where

t =step number;
$$0 \le t \le 79$$

$$Ch(e, f, g) = (e \ AND \ f) \bigoplus (NOT \ e \ AND \ g)$$
 the conditional function: If e then f else g

$$\mathsf{Maj}(a,\,b,\,c) = (a\;\mathsf{AND}\;b)\; \Theta \;(a\;\mathsf{AND}\;c)\; \Theta \;(b\;\mathsf{AND}\;c)\; the\;function\;is\;true\;only\;of\;the\;majority\;(two\;or\;three)\;of\;the\;arguments\;are\;true.$$

$$\left(\sum_{0}^{512} a\right) = \text{ROTR}^{28}(a) \oplus \text{ROTR}^{34}(a) \oplus \text{ROTR}^{39}(a)$$

$$\left(\sum_{1}^{512} e\right) = ROTR^{14}(e) \oplus ROTR^{18}(e) \oplus ROTR^{41}(e)$$

$$ROTR^n(x)$$
 = circular right shift (rotation) of the 64-bit argument x by n

bits

W, = a 64-bit word derived from the current 512-bit input block

K_t = a 64-bit additive constant

+ = addition modulo 2⁶⁴

SHA-512 – 80 Wt inputs

Whirlpool

- Aprovado pelo projeto europeu NESSIE
- Usa uma modificação do AES como função de compressão
- Aborda preocupações sobre o uso de cifras de bloco como hash (Reversibilidade, tamanho do hash)
- Desempenho comparável a algoritmos dedicados hash, como o SHA.

Whirlpool Overview

Note: triangular hatch marks key input

Whirlpool Block Cipher W

- Projetado especificamente para uso de função hash com segurança e eficiência de AES
- mas com tamanho de bloco de e chave de 512 bits e, portanto, estrutura semelhante a hash e funções do AES, mas
 - tem10 rounds
 - diferentes S-box & valores

Whirlpool Block Cipher W

Hash com Chaves como MACs

- Queremos um MAC baseado em funões hash
- Funções hash são geralmente mais rápidas
- Códigos de hash amplamente conhecidos
- Incluí-se uma chave ao processo de hash
- -Proposta original:
 - KeyedHash = Hash(Key|Message)
- Fraqueas foram encontradas nesse modelo levando ao desenvolvimento de outras propostas como o HMAC e o CMAC.

HMAC

-Especificado pelo RFC2104 usa a função hash na mensagem:

```
HMAC_K = Hash[(K^+ XOR opad)]

Hash[(K^+ XOR ipad)||M)]]
```

em que K⁺ é a chave key ajustada ao tamanho desejado (padding), e opad e ipad sendo valores constantes utilizados nesse ajuste.

- Qualquer função hash pode ser utilizada: eg. MD5, SHA-1, RIPEMD-160, Whirlpool

HMAC Overview

Y_{LĐ1}

H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)

IV = initial value input to hash function

M = message input to HMAC(including the padding specified in the embedded hash function)

 $Y_i = i$ th block of M, $0 \le i \le (L - 1)$

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secret key recommended length is $\geq n$; if key length is greater than b; the key is input to the hash function to produce an n-bit key

 K^+ = K padded with zeros on the left so that the result is b bits in length

ipad = 00110110 (36 in hexadecimal) repeated b/8 times

opad = 01011100 (5C in hexadecimal) repeated b/8 times

CMAC

Também chamado de DAA (CBC-MAC)

AES A 3-DES

 Cipher-based Message Authentication Code (CMAC)

NIST SP800-38B

CMAC - Visão Geral

(a) Message length is integer multiple of block size

(b) Message length is not integer multiple of block size

Figure 12.12 Cipher-Based Message Authentication Code (CMAC)

- Visite o site:
 - http://pt.wikipedia.org/wiki/HMAC
- Implemente:
 - Um método ou função que realize o cálculo do HMAC para os exemplos de texto apresentados no site.
 - Confira se os resultados batem com os apresentados no site.