Clustering algorithms

Violaine Antoine

ISIMA / LIMOS

January, 2019

Outline

Outline

Global scheme

Global scheme

- normalization, feature selection, . . .

Global scheme

Clustering process

Clustering

Grouping objects into cluster following a similarity notion

Clustering process

Clustering

Grouping objects into cluster following a similarity notion

Applications

- Biology and bioinformatics
 - grouping genes with related expression patterns using DNA microarray [?]
 - clustering plants or animals
- Medicine [?]

Applications

- Detection of objects
 - robotics
 - video surveillance
 - automotive driving assistance [?]

Applications

- Geology
 - earth-quake and volcanoes studies
- Social network analysis
- Market research
 - Findind groups of customers
 - Predicting behavior of shopping
- World wide web [?]
 - documents engine search
 - images engine search

Problematic: the background knowledge

Clustering

Grouping objects into cluster following a similarity notion

Which similarity/dissimilarity definition should be chosen?

9/73

Problematic: the background knowledge

Clustering

Grouping objects into cluster following a similarity notion

Which similarity/dissimilarity definition should be chosen?

Distance measures

Two major family of distances:

- Euclidean distances

 - Mahalanobis distance : $d(\mathbf{x}, \mathbf{y}) = \sqrt{\mathbf{x} \mathbf{y})^{\top} \Sigma(\mathbf{x} \mathbf{y})}$ Manhattan distance : $d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{p} |x_i y_i|$
- Non-Euclidean distances
 - Edit distance : measures difference between 2 strings
 - Jaccard index: measures dissimilarity between sample sets

Problematic : clustering or subclustering

Which clusters retains?

Other problematics

- How to measure the correctness of a partition?
- How to deal with noise in the feature vectors?
- What to do if we have uncertain data?
- How to detect outliers?
- . . .

Notations

Input notations

• $\mathbf{x}_i \in {\mathbf{x}_1 \dots \mathbf{x}_N}$ the set of objects with p attributes

Clustering notations

- $\omega_k \in \Omega = \{\omega_1 \dots \omega_c\}$ the set of clusters
- $n_1, n_2, \dots n_c$ the number of objects belonging to $\omega_1, \omega_2, \omega_c$

Outline

Hierarchical clustering

Produces a set of nested cluster organised as a dendrogram.

Two categories of hierarchical clustering

- Agglomerative methods
- Divise methods

Hierarchical clustering

Advantages

- No assumptions on the number of clusters
- Visualization of subclusterings
- Deterministic methods

Disadvantages

- Interpretation of the hierarchy can be complex
- Considerable amount of data implies large dendrogram

Agglomerative clustering

Agglomerative clustering

 Merge criterion : distance minimum

Agglomerative clustering

- Merge criterion : distance minimum
- Update distances
 - single-link
 - complete-link
 - average-link

The single-link algorithm [??]

Distance calculation

Let c_i and c_i be two clusters

- The distance between c_i and c_j is the minimum distance between any object in c_i and any object in c_i
- ⇒ The distance is defined by the two most similar objects

Underlying idea

- Importance is given to regions where clusters are closed
- Overall structure of the cluster is negliged
- ⇒ local similarity-based clustering method

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

1 2 3 4 !

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

Update distances

$$\begin{aligned} d((4,5),1) &= \min(d(4,1),d(5,1)) = 3.4 \\ d((4,5),2) &= \min(d(4,2),d(5,2)) = 3 \\ d((4,5),3) &= \min(d(4,3),d(5,3)) = 2 \end{aligned}$$

	1	2	3	(4,5)
1	0	1	2.2	3.4
2	1	0	1.4	3
3	2.2	1.4	0	2
(4,5)	3.4	3	2	0

1 2 3 4 5

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

	1	2	3	(4,5)
	0	1	2.2	3.4
	1	0	1.4	3
	2.2	1.4	0	2
5)	3.4	3	2	0

2 3 (4,

	1	2	3	(4,5)
1	0	1	2.2	3.4
2	1	0	1.4	3
3	2.2	1.4	0	2
(4,5)	3.4	3	2	0

Update distances

$$\begin{array}{l} d((1,2),3) = \min(d(1,3),d(2,3)) = 1.4 \\ d((1,2),(4,5)) = \min(d(1,(4,5)), \\ d(2,(4,5))) = 3 \end{array}$$

	(1,2)	3	(4,5)
(1,2)	0	1.4	3
3	1.4	0	2
(4,5)	3	2	0

	(1,2)	3	(4,5)
(1,2)	0	1.4	3
3	1.4	0	2
(4,5)	3	2	0

	(1,2)	3	(4,5)
(1,2)	0	1.4	3
3	1.4	0	2
(4,5)	3	2	0

Update distances

$$d((1,2,3),(4,5)) = min(d(3,(4,5)),d((1,2)(4,5))) = 2$$

	(1,2)	3	(4,5)
(1,2)	0	1.4	3
3	1.4	0	2
(4,5)	3	2	0

Update distances

$$\begin{array}{l} d((1,2,3),(4,5)) = \\ \min(d(3,(4,5)),d((1,2)(4,5))) = 2 \end{array}$$

Strengths of the single-link clustering

Enable to find:

- non elliptical shaped groups
- unbalanced groups

Original data

Single-link algorithm

Limitations of the single-link clustering

Sensitive to

- noise
- outliers

Original data

Single-link algorithm

Limitations of the single-link clustering

Sensitive to

- noise
- outliers

Original data

dendrogram

The complete-link algorithm [?]

Distance calculation

Let c_i and c_i be two clusters

- The distance between c_i and c_j is the maximum distance between any object in c_i and any object in c_i
- ⇒ The distance is defined by the two most dissimilar objects

Underlying idea

- Merge cluster with the smallest diameter
- Importance is given to the cluster structure
- ⇒ global similarity-based clustering method

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

1 2 3 4

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

	1	2	3	4	5
1	0	1	2.2	3.6	3.4
2	1	0	1.4	3.2	3
3	2.2	1.4	0	2	2.1
4	3.6	3.2	2	0	0.5
5	3.4	3	2.1	0.5	0

Update distances

$$d((4,5),1) = \max(d(4,1),d(5,1)) = 3.6$$

$$d((4,5),2) = \max(d(4,2),d(5,2)) = 3.2$$

$$d((4,5),3) = \max(d(4,3),d(5,3)) = 2.1$$

	1	2	3	(4,5)
1	0	1	2.2	3.6
2	1	0	1.4	3.2
3	2.2	1.4	0	2.1
(4,5)	3.6	3.2	2.1	0

1 2 3 4 5

	1	2	3	(4,5)
	0	1	2.2	3.6
	1	0	1.4	3.2
}	2.2	1.4	0	2.1
4,5)	3.6	3.2	2.1	0

	1	2	3	(4,5)
1	0	1	2.2	3.6
2	1	0	1.4	3.2
3	2.2	1.4	0	2.1
(4,5)	3.6	3.2	2.1	0

Update distances

$$\begin{array}{l} d((1,2),3) = \max(d(1,3),d(2,3)) {=} 2.2 \\ d((1,2),(4,5)) = \max(d(1,(4,5)), \\ d(2,(4,5))) {=} 3.6 \end{array}$$

	(1,2)	3	(4,5)
(1,2)	0	2.2	3.6
3	2.2	0	2.1
(4,5)	3.6	2.1	0

	(1,2)	3	(4,5)
(1,2)	0	2.2	3.6
3	2.2	0	2.1
(4,5)	3.6	2.1	0

	(1,2)	3	(4,5)
(1,2)	0	2.2	3.6
3	2.2	0	2.1
(4,5)	3.6	2.1	0

Update distances

$$d((1,2),(3,4,5)) = max(d((1,2),3),d((1,2),(4,5))) = 3.6$$

Hierarchical clustering

Complete-link example

	(1,2)	3	(4,5)
(1,2)	0	2.2	3.6
3	2.2	0	2.1
(4,5)	3.6	2.1	0

Update distances

$$d((1,2),(3,4,5)) = max(d((1,2),3),d((1,2),(4,5))) = 3.6$$

Strengths of the complete-link clustering

- Enable to find compact shaped cluster
- Less sensitive to noise

Original data

Complete-link algorithm

Limitations of the complete-link clustering

Sensitive to

unbalanced cluster

Original data

Complete-link algorithm

Average-link algorithm [?]

Distance calculation

Let c_i and c_j be two clusters

- The distance between c_i and c_j is the average distance between any object in c_i and any object in c_j
- $\Rightarrow d(c_i, c_j) = \frac{1}{|c_i||c_j|} \sum_{x_i \in c_i, x_j \in c_j} d(x_i, x_j)$

Underlying idea

Reducing drawbacks associated to single and complete link

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Strengths of the average-link clustering

Divise clustering

Divise clustering

Basic scheme One cluster # clusters < n split clusters

- Split criterion :
 - using one/several attributes for a specific split
 - intercluster distances

Divise clustering

- Split criterion :
 - using one/several attributes for a specific split
 - intercluster distances
- ⇒ computationally intensive
- ⇒ less widely used than agglomerative methods

The cut of dendrogram

Getting a crisp partition

Goal : Find the α -cut that

- select c groups
- find balanced clusters
- minimize a clustering validation measure
- select the maximum distance between two merges
- . . .

Outline

Partitional clustering

Produces a hard or fuzzy partition.

Types of partition

- Hard partition
 - Each object \mathbf{x}_i belongs to an exclusive class ω_k
 - $p_{ik} = \{0, 1\}, \sum p_{ik} = 1$
- Fuzzy partition
 - \mathbf{x}_i has a degree of membership for each class ω_k
 - $u_{ik} \in [0,1], \sum_{k=1}^{c} u_{ik} = 1$

Density-based clustering methods

Basic idea

Clusters are dense regions in the data space.

Important notions

- The density
- The connectivity between objects

Advantages

Non-parametric methods, i.e. no assumption about :

- the number of clusters
- their distribution

Neighborhood definition

The neighborhood of an object x_i is :

$$N_{\varepsilon}(\mathbf{x}_i) = \{\mathbf{x}_j \quad s.t. \quad d_{ij} \leq \varepsilon\}$$

Ddr definition

 \mathbf{x}_{j} is directly density-reachable from \mathbf{x}_{i} if

- $\rightarrow \mathbf{x}_i \in N_{\varepsilon}(\mathbf{x}_i)$
- $\rightarrow |N_{\varepsilon}(\mathbf{x}_i)| \geq m$

Consequence

Carefull! The definition is non symmetric : \mathbf{x}_i is ddr from $\mathbf{x}_i \Rightarrow \mathbf{x}_i$ is ddr from \mathbf{x}_j

Expansion rule

Expansion rule

Expansion rule

Expansion rule

Expansion rule

Expansion rule

Expansion rule

Strengths of DBSCAN

Enable to:

- find arbitrary shapes and unbalanced groups
- deal with noise

DBSCAN (m=5, ε = 3)

Strengths of DBSCAN

Enable to:

- find arbitrary shapes and unbalanced groups
- deal with noise

DBSCAN (m=5, ε = 3)

Limitations of DBSCAN

Unable to:

- split overlapped cluster
- cluster with large difference densities

Original data

DBSCAN (m=5, $\varepsilon = 0.5$)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

DBSCAN : sensitivity to parameters

4 D > 4 A > 4 B > 4 B > B = 900

The parameters determination

Basic idea

For one object \mathbf{x}_i in a cluster :

- Neighbors are roughly at the same distance of x_i
- Outliers have more distance with x_i than other neighbors

Suppose *m* fixed.

To set ε , plot sorted distance of every points to its 4th nearest neighbor :

Geometrical clustering methods

Basic idea

A cluster ω_k is represented by a centroid \mathbf{v}_k

⇒ The number of cluster is known

Geometrical clustering methods

Basic idea

A cluster ω_k is represented by a centroid \mathbf{v}_k

⇒ The number of cluster is known

Notations

$$\mathbf{V} = \{\mathbf{v}_1 \dots \mathbf{v}_c\}$$

$$d_{ik} = d(\mathbf{x}_i, \mathbf{v}_i) = \|\mathbf{x}_i - \mathbf{v}_k\|$$

k-means and its variants

k-means [?]

Objective function

min J_{KM} s.t.

$$J_{KM} = \sum_{i=1}^{N} \sum_{\mathbf{x}_i \in \omega_k}^{C} \|\mathbf{x}_i - \mathbf{v}_k\|^2$$

Optimization

 $NP ext{-Hard} \Rightarrow minimization using an iterative procedure:}$

 $\min J_{KM}$ w.t.r to clusters $\rightleftharpoons \min J_{KM}(\mathbf{V})$

Advantage

Fast

Disadvantage

Risk of local minimum

Violaine Antoine (ISIMA / LIMOS)

Strengths of *k*-means

Enable to deal with:

- globular shapes
- overlapped cluster

Limitations of k-means

Sensitive to:

- non geometrical shapes
- unbalanced cluster

k-means (k=2)

Limitations of k-means

Sensitive to:

- non geometrical shapes
- unbalanced cluster

Basic idea

For c=1 to 10

- run kmeans
- evaluate the partition

Plot evaluation measure vs number of clusters

Possible measures

- Gap Statistic
- AIC / BIC criterions
- Silhouette coefficients

The farthest-first method [?]

- Nearest neighbor density
- Agglomerative hierarchical clustering

The farthest-first method [?]

- Nearest neighbor density
- Agglomerative hierarchical clustering

The farthest-first method [?]

- Nearest neighbor density
- Agglomerative hierarchical clustering

The farthest-first method [?]

- Nearest neighbor density
- Agglomerative hierarchical clustering

Variants of k-means

Different choice of centroids

- k-Medoids
- k-Medians
- k-Modes

Automatically handling c

- Competitive Agglomeration
- Bisecting k-means

Returning non crisp partition

- Fuzzy c-means
- Evidential c-means

Algorithms returning fuzzy partition

Goal

Express uncertainty about the clustering result

Fuzzy c-means (FCM) [? ?]

Geometrical model

Each object x_i has a degree of membership in each cluster ω_k : u_{ik}

Aternate optimization

$$opt(u_{ik}) \rightleftarrows opt(\mathbf{v}_k)$$

Objective function

$$J_{FCM} = \sum_{i=1}^{N} \sum_{k=1}^{C} u_{ik}^{\beta} d_{ik}^{2}$$

Subject to

$$\sum_{k=1}^{C} u_{ik} = 1 \text{ and } u_{ik} \ge 0 \quad \forall i, k$$

Fuzzy *c*-means

Variants of FCM

The Noise Clustering algorithm [?]

Add a noise cluster ω_* associated to a fixed δ :

$$J_{NC}(U,V) = \sum_{i=1}^{N} \sum_{k=1}^{C} u_{ik}^{\beta} d_{ik}^{2} + \sum_{k=1}^{C} u_{i*}^{\beta} \delta$$

FCM with Mahalanobis distance [?]

Add a Mahalanobis distance between each \mathbf{x}_i and ω_k :

$$d_{ik}^2 = (\mathbf{x}_i - \mathbf{v}_k)^{\top} S_k (\mathbf{x}_i - \mathbf{v}_k)$$

Minimize $J_{GK}(U, V, S)$ s.t. $|S_k| = 1 \quad \forall k = 1, C$

GK clustering [?]

Outline

Measures

Two types of clustering validation measures :

External measures

External information are available (e.g. class label)

- ⇒ evaluation of the behavior of a clustering algorithm
- ⇒ expert assessment on few objects

Internal measures

No background knowledge

⇒ most of the real world applications

Internal measures

Depend on the output structure.

Goals

- Comparaison with different clustering algorithms
- Parameters determination for a specific algorithm
- Evaluation of the uncertainty of the clustering result

Internal measures

Depend on the output structure.

Goals

- Comparaison with different clustering algorithms
- Parameters determination for a specific algorithm
- Evaluation of the uncertainty of the clustering result

Example

Validity index for

- Crisp partitions
- Fuzzy partitions
- Evidential partitions

Based on the combination of two criteria:

Based on the combination of two criteria:

Compactness

- Variance cluster
 - \Rightarrow low value \equiv good density

Based on the combination of two criteria:

Compactness

- Variance cluster
 - \Rightarrow low value \equiv good density
- Intra-cluster distance
 - max or avg center-based distance
 - max or avg pairwise distance

$$d_{intra}(\omega_k) = \max_{x_i, x_j \in \omega_k} d_{ij}$$

 $\Rightarrow d_{intra}$ low \equiv good compactness

Separation

Based on the combination of two criteria:

Compactness

- Variance cluster
- \Rightarrow low value \equiv good density
- Intra-cluster distance
 - max or avg center-based distance
 - max or avg pairwise distance

$$d_{intra}(\omega_k) = \max_{x_i, x_j \in \omega_k} d_{ij}$$

 $\Rightarrow d_{intra}$ low \equiv good compactness

Separation

- Inter-cluster distance
 - min or avg center-based distance
 - min or avg pairwise distance

$$d_{inter}(\omega_k, \omega_l) = \min_{\substack{x_i \in \omega_k, \\ x_j \in \omega_l}} d_{ij}$$

 \Rightarrow d_{inter} high \equiv large separation

Dunn's indice

Definition

$$D = \min_{\omega_k} \left[\min_{\omega_l \neq \omega_k} \left(\frac{d_{inter}(\omega_k, \omega_l)}{\max_{k=1...c} d_{intra}(\omega_k)} \right) \right]$$

D should be maximized

Properties

Robust to:

- Various density
- Unequal size of cluster

Sensitive to :

- Noise
- Subclusters
- Arbitrary shapes

Silhouette index

Definition

$$S = \frac{1}{c} \sum_{\omega_k} \frac{1}{n_k} \sum_{x_i \in \omega_k} \frac{d_{ma}(x_i) - d_{intra}(x_i)}{\max(d_{ma}(x_i), d_{intra}(x_i))}$$

s.t.
$$d_{ma}(x_i) = \min_{l \neq k} d_{avg}(x_i, \omega_l)$$

S should be maximized

Properties

Enable to handle:

- Noise
- Various density
- Unequal size of cluster

Affected by:

- Subclusters
- Arbitrary shapes

Other measures

RMSSD (Root Mean Square Standard Deviation)

- Consider only the compactness of a cluster
- Close to k-means objective function

Index

- A combination between Compactness and Separation
- Handle subclusters

CVNN

- Based on nearest neighbor
- Handle arbitrary shapes of cluster

And still several other measures [?].

Measures for fuzzy partitions

Only based on fuzzy memberships

Measure the amount of overlap between clusters

The partition coefficient

$$PC = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} u_{ik}^{2}$$

Should be maximized

The partition entropy

$$PE = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{c} u_{ik}^{2} \log(u_{ik})$$

Should be minimized

Measures mainly used to determine c in FCM.

Measures for fuzzy partitions

Basic idea

High concentration of points in a small spatial volume

 \Rightarrow measures compactness

Measures for fuzzy partitions

Basic idea

High concentration of points in a small spatial volume

⇒ measures compactness

Fuzzy HyperVolume

$$FHV = \sum_{k=1}^{c} \det(F_k)^{1/2}$$
, s.t. $F_k = \frac{\sum_{i=1}^{n} u_{ik}^{\beta} (\mathbf{x}_i - \mathbf{v}_k) (\mathbf{x}_i - \mathbf{v}_k)^T}{\sum_{i=1}^{n} u_{ik}^{\beta}}$

FHV should

is the fuzzy covariance matrix of ω_k

be lowered

Outline

Most popular clustering algorithm

- hierarchical clustering
- k-means
- dbscan

Most popular clustering algorithm

- hierarchical clustering
- k-means
- dbscan

Advantages

Simple and fast

Disadvantages

Parameters to set (similarity notion, number of cluster, etc.)

⇒ Little background knowledge is a necessity!

Which clustering algorithm chose?

Guideline

Dataset characteristics	Algorithms
unbalanced groups	single-link, DBSCAN
subclusters	hierarchical clustering
arbitrary shapes	DBSCAN
elliptic shapes	k-means, GK
overlapped cluster	k-means and variants

Other dataset characteristics

- High-dimensional data (p high)
- Big data (n high)
- categorical data
- uncertain data

Other interesting clustering techniques

- ensemble clustering
- constrained clustering

Clustering for special data

- documents
- multimedia
- time-series
- biological
- network

References I