484 AUTOMATON

5.7 all_equal_peak_max

DESCRIPTION LINKS AUTOMATON

Origin Derived from peak and all_equal.

Constraint all_equal_peak_max(VARIABLES)

Argument VARIABLES : collection(var-dvar)

 $\begin{array}{c|c} \textbf{Restrictions} & |\texttt{VARIABLES}| > 0 \\ & \textbf{required}(\texttt{VARIABLES}, \texttt{var}) \end{array}$

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a peak if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$.

Enforce all the peaks of the sequence VARIABLES to be assigned the same value, i.e. to be located at the same altitude corresponding to the maximum value of the sequence VARIABLES.

Example ((1, 5, 5, 4, 3, 5, 2, 5))

The all_equal_peak_max constraint holds since the two peaks, in bold, of the sequence $1\ 5\ 5\ 4\ 3\ 5\ 2\ 5$ are located at the same altitude 5 that is also the maximum value of the sequence $1\ 5\ 5\ 4\ 3\ 5\ 2\ 5$. Figure 5.11 depicts the solution associated with the example.

Figure 5.11: Illustration of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 5, 5, 4, 3, 5, 2, 5 and its corresponding two peaks, in red, both located at altitude 5 that also corresponds to the maximum value of the sequence

Purpose

20130107 485

Note that the all_equal_peak_max constraint does not enforce that the sequence VARIABLES contains at least one peak.

Typical

```
\begin{aligned} &|\mathtt{VARIABLES}| \geq 5 \\ &\mathtt{range}(\mathtt{VARIABLES.var}) > 1 \\ &\mathtt{peak}(\mathtt{VARIABLES.var}) \geq 2 \end{aligned}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Prefix-contractible wrt. VARIABLES.
- Suffix-contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	605	6707	81648	1065542	14829903

Number of solutions for all_equal_peak_max: domains 0..n

Solution density for all_equal_peak_max

486 AUTOMATON

Solution density for all_equal_peak_max

See also implied by: no_peak.

implies: all_equal_peak.

related: all_equal_valley_min, peak.

Keywords

characteristic of a constraint: automaton with same input symbol.

automaton,

automaton with counters,

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications

- all_equal_peak_max(VARIABLES) with peak(VARIABLES.var) > 1 implies some_equal(VARIABLES).
- all_equal_peak_max(VARIABLES) with peak(VARIABLES.var) > 0 implies not_all_equal(VARIABLES).

20130107 487

Automaton

Figure 5.12 depicts the automaton associated with the all_equal_peak_max constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

Figure 5.12: Automaton for the all_equal_peak_max constraint; note the conditional transition from state k to state j testing that the counter Altitude is equal to VAR_i for enforcing that all peaks are located at the same altitude; the conditional transitions from j to k and from k to k and the final check $Altitude \geq VAR_{|VARIABLES|}$ enforce the maximum value of the sequence VARIABLES to not exceed the altitude of the eventual peaks.

Figure 5.13: Hypergraph of the reformulation corresponding to the automaton of the all_equal_peak_max constraint where A stands for the value of the counter Altitude (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})