Adequacy and Degeneracy in ERG Models

SOC 280: Analysis of Social Network Data

Carter T. Butts

Department of Sociology and Institute for Mathematical Behavioral Sciences University of California, Irvine

From Model Fitting to Model Assessment

- Last time, we saw how to construct (and fit) nontrivial ERGs
 - Started with dyad independent terms
 - Added basic dependence terms
 - Fit the whole thing via MLE
- Today's focus: degeneracy checking and model assessment
 - Looking under the hood to make sure that the engine is still running (and, occasionally, getting out to turn the crank)
 - Checking the results to ensure that the model makes sense

The Role of Simulation in ERG Research

- Simulation is central to ERG modeling
 - Even simple models too complex to get analytical solutions – need to use simulation to study model behavior, make predictions
 - ERG computations too difficult to perform directly; simulation used for purely computational purposes (e.g., dealing with normalizing factors)
- Implication: we need to know something about ERG simulation to use the tools effectively

Simulating ERGs via MCMC

- Simulation of simple models like N,p, U|MAN was plug-n-play....
 - Yours truly had to worry about how it was done, but otherwise everything worked as a "black box"
 - Even behind the curtain, simulation is exact (and fairly easy)

....not so for more general ERGs

- No (effective) way to draw directly from ERG distribution; have to use approximation algorithms (not counting recent work by yours truly)
- Primary tool: Markov chain Monte Carlo (MCMC)
 - Iterative method for simulating draws from a given distribution
 - Algorithm is approximate (although often very, very good)

· So what?

- MCMC requires more "care and feeding" than simple methods
- Algorithm can fail, requiring user intervention (i.e., get out and push)

Mc, MC, and MCMC In One Slide

Markov chain

- Stochastic process $X_{i}, X_{2},...$ on state space S, such that $p(X_{i}|X_{i-1}, X_{i-2},...) = p(X_{i}|X_{i-1})$ (i.e., only the previous state matters – this is the *Markov condition*)

Monte Carlo procedure

 Any procedure which uses randomization to perform a computation, having a fixed execution time and uncertain output (compare w/Las Vegas procedures)

Markov chain Monte Carlo (MCMC)

 Family of procedures using Markov chains to perform computations and/or simulate target distributions; often, these cannot be done any other way

Important Example: Metropolis Algorithm

- Given X_i , draw X' from $q(X_i)$; w/probability $\min(1,p(X')/p(X_i))$, let $X_{i+1}=X'$, else let $X_{i+1}=X_i$. Repeat for i+1, i+2, etc.
- Started w/arbitrary X_0 , X_0 , X_1 ,... X_n converges to p(X) in distribution as n→∞
- Requires some constraints on q, but is very general used when we can't sample from target distribution p directly (as when p is an ERG distribution)

ERG MCMC In One More Slide

When we need to simulate general ERGs, we turn to MCMC

- Fairly easy to implement as a general approach
- Only requires ratios of the form $Pr(\mathbf{Y'}|\theta)/Pr(\mathbf{Y}|\theta)$, which (as we saw last time) reduce to $exp(\theta^T(\mathbf{t}(\mathbf{Y'})-\mathbf{t}(\mathbf{Y})))$ (no normalizing constant!)
- General procedure: starting with seed graph (random graph or data), run
 Markov chain
 - Early "burn-in" draws contaminated by initial state we discard
 - Need to ensure that sample is large enough to have good properties
 - Both aspects sloppily called "convergence" (though true convergence is asymptotic); the chain has "converged" when approximation is adequate

In statnet, handled by ergm and simulate commands

- Lots under the hood that can be ignored (for now)
- Mostly automated, but important to use diagnostics to verify behavior

Simulation and Inference

One reason ERG simulation matters: we need it for likelihood-based inference

- Recall that $Pr(Y=y|\theta)$ includes an effectively incomputable normalizing factor that depends on θ
- Likelihood calculation uses a version of importance sampling to estimate the normalizing factor (or, more exactly, ratios thereof)

What happens when you run ergm

- Little gnomes make an initial guess at θ using the MPLE
- More gnomes simulate $y_1,...,y_n$ based on the initial guess
- The simulated sample is used to find θ using MLE
- Possibly, the previous two steps are iterated a few times for good measure (since initial estimate may be off)

When Simulation Fails

- Simulation can fail in several (essentially four) ways
 - Insufficient burn-in: starting point still affects results
 - Insufficient post-burn samples: sample hasn't converged
 - May be degenerate: almost all graphs are same (usually complete/empty)
 - Sample does not cover observed graph (problematic for inference)
- Want to examine output to check for these problems...

Assessing Simulation Quality

- No foolproof method, but several heuristics
- In ergm, primary tool is mcmc.diagnostics
 - Requires coda library
 - Calculates various diagnostics on MCMC output
 - Correlations and lagged correlations of model statistics
 - Raftery-Lewis convergence diagnostics
 - Basic syntax: mcmc.diagnostics(fit)
 - fit: ergm object (i.e., fitted model) or MCMC output
- Can also directly plot statistics vs. observed
 - fit\$sample provides normalized simulated statistics
 from an ergm object (0=observed value)

Example: flobusiness w/edges, 2-3 stars, triangles (no thinning)

Example: flobusiness w/edges, 2-3 stars, triangles (no thinning)

> mcmc.diagnostics(fit, center=F)

Correlations of sample statistics: , , cor

	edges	kstar2	kstar3	triangle
edges	1.0000000	0.9897132	0.9558623	0.8990734
kstar2	0.9897132	1.0000000	0.9863819	0.8777416
kstar3	0.9558623	0.9863819	1.0000000	0.8103664
triangle	0.8990734	0.8777416	0.8103664	1.0000000

, , lag1

	edges	kstar2	kstar3	triangle
edges	0.9958246	0.9842669	0.9490012	0.8960903
kstar2	0.9844877	0.9929200	0.9771626	0.8738368
kstar3	0.9493799	0.9773312	0.9878666	0.8053863
triangle	0.8988158	0.8774429	0.8101006	0.9990596

r=0.0125 and 0.9875:

Quantile (q) =
$$0.025$$

Accuracy (r) = $+/ 0.0125$
Probability (s) = 0.95

	Burn-in	Total	Lower bound	Dependence	enough	enough
	(M)	(N)	(Nmin)	factor (I)	burn-in?	samples?
edges	1150	1952976	600	3250	no	no
kstar2	160	54954	600	170	no	no
kstar3	97	17215	600	100	no	no
triangle	1440	2547600	600	4250	no	no

> mcmc.diagnostics(fit, center=F)

Correlations of sample statistics:

, , cor

	edges	kstar2	kstar3	triangle
edges	1.0000000	0.9897132	0.9558623	0.8990734
kstar2	0.9897132	1.0000000	0.9863819	0.8777416
kstar3	0.9558623	0.9863819	1.0000000	0.8103664
triangl	e 0.8990734	0.8777416	0.8103664	1.0000000

, , lag1

	edges	kstar2	kstar3	triangle
edges	0.9958246	0.9842669	0.9490012	0.8960903
kstar2	0.9844877	0.9929200	0.9771626	0.8738368
kstar3	0.9493799	0.9773312	0.9878666	0.8053863
triangle	0.8988158	0.8774429	0.8101006	0.9990596

r=0.0125 and 0.9875:

Quantile (q) = 0.025Accuracy (r) = +/- 0.0125

Probability (s) = 0.95

	Burn-in	Total	Lower bound	Dependence	enough	enough
	(M)	(N)	(Nmin)	factor (I)	burn-in?	samples?
edges	1150	1952976	600	3250	no	no
kstar2	160	54954	600	170	no	no
kstar3	97	17215	600	100	no	no
triangle	1440	2547600	600	4250	no	no

High cross-correlations

High autocorrelation

Non-convergence

What To Do If Things Go Wrong?

- If things go wrong, there are several palliatives
 - For burn-in issues, increase burnin parameter
 - For post-burn convergence, increase MCMCsamplesize and/or interval parameters
 - MCMCsamplesize increases final sample (subsampled from larger set of MCMC draws)
 - interval increases subsampling interval; useful if chain mixes slowly (i.e., high autocorrelation and/or slow movement)
- If none of these work, may need to change the model
 - Poor convergence is often a sign of a bad model
 - E.g., degeneracy due to runaway clique formation
 - Triangle, star terms especially bad (due to "nesting")
 - Try curved variants (to be discussed next time)

Example 2: flobusiness w/edges, 0/1 degree, wealth

Example 2: flobusiness w/edges, 0/1 degree, wealth

> mcmc.diagnostics(fit, center=F)

Correlations of sample statistics: , , cor

	edges	degree0	degree1	nodecov.wealth
edges	1.0000000	-0.93797047	-0.32274203	0.9889985
degree0	-0.9379705	1.00000000	0.06218768	-0.9469523
degree1	-0.3227420	0.06218768	1.00000000	-0.2876239
nodecov.wealth	0.9889985	-0.94695232	-0.28762390	1.0000000

, , lag1

	edges	degree0	degree1	nodecov.wealth
edges	0.9233889	-0.8690288	-0.3271741	0.9193287
degree0	-0.8697501	0.8624829	0.2606243	-0.8770274
degree1	-0.3317297	0.2634784	0.1741045	-0.3154555
nodecov.wealth	0.9176854	-0.8755447	-0.3097296	0.9238070

r=0.0125 and 0.9875:

Quantile (q) = 0.025Accuracy (r) = +/- 0.0125Probability (s) = 0.95

	Burn-in	Total	Lower bound	Dependence	enough	enough
	(M)	(N)	(Nmin)	factor (I)	burn-in?	samples?
edges	5400	5767200	600	9610	yes	no
degree0	8800	2923800	600	9900	yes	no
degree1	900	1529100	600	2550	yes	no
nodecov.wealth	5400	5767200	600	9610	yes	no

Example 3: flobusiness w/edges, 1-degree, wealth

> mcmc.diagnostics(fit, center=F)

Correlations of sample statistics: , , cor

```
edgesdegree1nodecov.wealthedges1.0000000-0.46656890.8779387degree1-0.46656891.0000000-0.3933709nodecov.wealth0.8779387-0.39337091.0000000
```

, , lag1

	edges	degree1	nodecov.wealth
edges	0.09104357	-0.02522841	0.09795248
degree1	-0.02686050	0.01524997	-0.03244706
nodecov.wealth	0.10869165	-0.03262686	0.13800652

r=0.0125 and 0.9875:

Quantile (q) =
$$0.025$$

Accuracy (r) = $+/-0.0125$
Probability (s) = 0.95

	Burn-in	Total	Lower bound	Dependence	enough	enough
	(M)	(N)	(Nmin)	factor (I)	burn-in?	samples?
edges	200	78700	600	300	yes	yes
degree1	200	89500	600	300	yes	yes
nodecov.wealth	200	62100	600	300	yes	yes

From Diagnostics to Model Assessment

Recall logic ERG inference

- Theories imply probability models
- Observed data more probable under certain models
- Theories which account for data preferred

Model adequacy

- Model should reproduce relevant properties of observed data
- Compare w/CUG tests, baseline models

Assessing Adequacy

How does one assess model adequacy? Simulation!

- Simulate draws from fitted model
- Compare observed graph to simulated graphs on measures of interest
- Verify that observed properties are well-covered by simulated ones (e.g., not in 5% tails)

What properties should be considered?

- This is application-specific no single uniform answer
- Start with "in-model" statistics; ERG must get means right, but should still verify non-pathological distributions
- "Out-of-model" statistics can be common low-level properties (e.g., degree, triad census), or theoretically motivated quantities
- One approach: treat much as you would a CUG test, in terms of identifying meaningful stats to check

Checking Adequacy w/gof

- ergm facilitates adequacy checking with the gof routine
 - Simulates draws from an ERG model, calculates stats
 - Basic syntax: gof(fit,GOF=~term1+term2)
 - fit is an ergm object (i.e., a fitted model)
 - term1, term2, etc. indicate statistics to be used (e.g., degree, distance, triadcensus, model)
 - model includes all "in-model" stats a good reality check!
 - Has print, plot, summary methods (plot especially useful)
 - Note: still uses MCMC, so check convergence....

Example: flobusiness w/edges

Example: flobusiness w/edges

Coping with Inadequacy

- What do we do if our model appears inadequate?
 - Option 1: Add terms
 - Which features are poorly captured? Is there a term which would add in such effects (ideally minimally)?
 - Option 2: Switch terms
 - Can you replace an existing term with a similar one more likely to succeed? (E.g., sociality or degree terms versus k-stars)
 - Option 3: Do nothing
 - Is the type of inadequacy a problem for your specific question?
 Can it be tolerated in this case? How good is the overall fit?
- As always, the right approach depends upon your goal – what do you need to predict/explain? (No model gets it all!)

flobusiness w/edges, wealth

flobusiness w/edges, wealth

flobusiness w/edges, wealth, isolates (0-degree)

Final flobusiness Model

 We now have a model in which we can be reasonably confident (MCMC diags also OK):

```
Summary of model fit
______
Formula:
          flobusiness ~ edges + edgecov(flomarriage) + degree(0)
Newton-Raphson iterations:
MCMC sample of size 10000
Monte Carlo MLE Results:
                  Estimate Std. Error MCMC s.e. p-value
                              0.2887
                                         0.023 < 1e-04 ***
edges
                   -1.7274
                              0.4554
                                         0.041 < 1e-04 ***
edgecov.flomarriage 2.4852
degree0
                    2.3828
                              0.7141
                                         0.061 0.00114 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Null Deviance: 166.355 on 120 degrees of freedom
Residual Deviance: 64.377 on 117 degrees of freedom
         Deviance: 101.978 on
                               3 degrees of freedom
AIC: 70.377 BIC: 78.74
```