Sistem Temu Kembali Informasi

"Term Weighting"

Tim pengampu Dosen STKI

Buku Penunjang & Literatur

Term-document count matrices

- Pertimbangkan jumlah kemunculan istilah dalam sebuah dokumen:
- Setiap dokumen adalah vektor penghitungan di kolom di bawah ini

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Representasi vektor tidak mempertimbangkan urutan kata dalam sebuah dokumen
- John lebih cepat daripada Mary dan Maria lebih cepat daripada John memiliki vektor yang sama
- Ini disebut dengan <u>bag of words</u> model.
- Dalam arti, ini adalah langkah mundur: Posisi index dapat membedakan kedua dokumen ini.
- Kita akan melihat informasi posisi "recorvering" di akhir materi.
- Untuk sekarang: bag of words model

- Frekuensi kata/term tf_{t,d} dari term t di dokumen d didefinisikan sebagai berapa kali t terjadi dalam d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $\bigcirc 0$ → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:

$$score = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

• The score is 0 if none of the query terms is present in the document.

Document Frequency (DF)

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Oconsider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

- odf_t is the document frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$
 - We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

 The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.

Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

•Which word is a better search term (and should get a higher weight)?

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N/\mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - . . .

Binary → **count** → **weight matrix**

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- <u>Key idea 1:</u> Do the same for queries: represent them as vectors in the space
- <u>Key idea 2</u>: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

- The Euclidean distance between q
- \bigcirc and d_2 is large even though the
- Odistribution of terms in the query q and the distribution of
- \odot terms in the document d_2 are
- overy similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself.
 Call this document d.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- •Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

• But how – and why – should we be computing cosines?

Length normalization

OA vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Cosine(query,document)

Dot product
$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

•For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

is simply the dot product (or scalar product):
$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

RICH

Cosine similarity amongst 3 documents

- How similar are
- the novels
- SaS: Sense and
- Sensibility
- PaP: Pride and
- Prejudice, and
- •WH: Wuthering
- Heights?

Term frequencies (counts)

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

• Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

$$cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$$

 $cos(SaS,WH) \approx 0.79$
 $cos(PaP,WH) \approx 0.69$

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair(d, tf_{t,d}) in postings list
- 6 **do** Scores[d]+ = $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

TF-IDF weighting has many variants

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/ <i>u</i>	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Ocument: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (I in leftmost column), idf (t in second column), no normalization ...

TF-IDF example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query						Document				Prod
	tf- raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$
 Score = 0+0+0.27+0.53 = 0.8

Represent the query as a weighted tf-idf vector

- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- \odot Return the top K (e.g., K = 10) to the user

Kuis (Latihan Soal)

Cari paper atau jurnal STKI tentang materi diatas (Term Weighting), kemudian rangkumlah kedalam bentuk artikel (minimal 500 kata).

Thanks!

Any questions?