Lab 1. Modulations and receivers

Purpose: To get familiar with the principles of radio systems and radio receivers and to refresh the basic knowledge in modulations and frequency management.

1. Home task

- 1. Write down an expression of amplitude modulated signal if modulating signal is a sine wave. Express it as a sum of harmonic spectral components. Append timing diagrams and spectra of the modulating and modulated signals.
- 2. Draw the structure of the superheterodyne receiver. Assume it is supposed to receive AM signal. The modulating signal is s(t). Carrier's frequency is f_0 , intermediate frequency f_{IF} . Write down expressions of the signals in each point of the diagram.

2. MATLAB simulations

For the simulation use the following parameters:

- Baseband sampling frequency $f_s = 100 \text{MHz}$.
- A modulating signal is a sequence of the symbols from the set $\{-1; 1\}$. Take the symbol rate equal to 25Mbaud, i.e., four samples per symbol. An additional pulse-shaping filter is not strictly required.
- For the simulation of moduation process, resample baseband signal to the sampling frequency $f_d = 4$ GHz.

Perform the following experiments:

1. Crystal receiver

- 1. Create a modulating signal s(t) and use it to modulate amplitude of the $f_0 = 140 \text{MHz}$ frequency harmonic wave.
- 2. Pass the signal through the channel, which attenuates it by 4dB.
- 3. Construct a crystal receiver. As a diode, you can use the absolute value calculating function. Assume that a diode adds to the signal white Gaussian noise with the standard deviation $\sigma_0 = 0.1$.

2. Tuned radio frequency receiver

- 1. Create a modulating signal s(t) and use it to modulate amplitude of the $f_0 = 140 \text{MHz}$ frequency harmonic wave.
- 2. Pass the signal through the channel, which attenuates it by 4dB.
- 3. Construct a tuned radio frequency receiver. As a diode, you can use the absolute value calculating function. Assume that a diode adds to the signal white Gaussian noise with the standard deviation $\sigma_0 = 0.1$. Add a bock that adjusts the level of the received signal to twice the level of modulating signal. Choose its correct position.

3. Superheterodyne receiver

- 1. Create a two modulating signals $s_1(t)$ and $s_2(t)$ and use them to modulate fequency of the $f_1 = 170 \text{MHz}$ and $f_2 = 370 \text{MHz}$ harmonic waves, respectively.
- 2. Pass the the sum of these signals through the channel, which attenuates it by 4dB.
- 3. Construct a superheterodyne receiver. As a diode, you can use the absolute value calculating function. Add a bock that adjusts the level of the received signal to twice the level of modulating signal. Choose its correct position. The receiver must contain a mixer. Intermediate frequency is $f_{IF} = 100 \mathrm{MHz}$.
- 4. Receive and demodulate both signals. Use for both signal demodulation the same local oscillator frequency f_{LO} .

4. Direct conversion receiver

- 1. Create a two modulating signals $s_1(t)$ and $s_2(t)$ and use them to modulate amplitude of the $f_1 = 170 \text{MHz}$ and $f_2 = 370 \text{MHz}$ harmonic waves, respectively.
- 2. Pass the the sum of these signals through the channel, which attenuates it by 4dB.
- 3. Construct a direct conversion receiver. Add a bock that adjusts the level of the received signal to twice the level of modulating signal. Choose its correct position.
- 4. Receive and demodulate both signals.

5. Introduce a small difference between the carrier frequency and local oscillator frequency. Try to demodulate the signal.

3. Task of increased complexity¹

Formulation: Assume you have received FM modulated signal. You can use any of the used in this work. It is moved to QAM demodulator, thus obtaining Q- and I-channel signals. Perform any necessary operation with these signals to extract the original signal.

4. Report structure

- 1. Home task.
- 2. Block diagrams of all simulated receivers; timing diagrams and spectra of the signals in main points of the receiver.
- 3. Listings.
- 4. Conclusions, including answers for the following questions:
 - Compare receivers. Give a general description of the exercises you have solved. Try to analyze them.
 - Describe differences between crystal and tuned frequency receiver, their advantages and drawbacks.
 - Describe the process of mixing and the selection of carrier, image, local oscillator, and intermediate frequencies.
 - Propose possible usage of direct conversion receiver.
 - Assess the possibility of the AM signal demodulation if there is a small difference between the carrier frequency and local oscillator frequency.

¹Necessary to get mark higher than 8 (eight)