

=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 13:58:39 ON 30 MAY 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 30 May 2007 VOL 146 ISS 23
FILE LAST UPDATED: 29 May 2007 (20070529/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 1106 bib abs hitstr retable tot

L106 ANSWER 1 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
AN 2006:579802 HCAPLUS Full-text
DN 145:48610
TI **Electrode structure for lithium secondary battery**
IN Kawakami, Soichiro; Morita, Akira; Ogura, Takao
PA Canon Kabushiki Kaisha, Japan
SO U.S. Pat. Appl. Publ., 30 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2006127773	A1	<u>20060615</u>	US 2005-296460	20051208 <--
PRAI	JP 2004-358458	A	20041210		
AB	In an electrode structure for a lithium secondary battery including: a main active material layer formed from a metal powder selected from silicon, tin and an alloy thereof that can store and discharge and capable of lithium by electrochem. reaction, and a binder of an organic polymer; and a current collector, wherein the main active material layer is formed at least by a powder of a support material for supporting the electron conduction of the main active material layer in addition to the metal powder and the powder of the support material are particles having a spherical , pseudo-spherical or pillar shape with an average particle size of 0.3 to 1.35 times the thickness of the main active material layer. The support material is one or more materials selected from a group consisting of graphite, oxides of transition metals and metals that do not electrochem. form alloy with lithium. Organic polymer compounded with a conductive polymer is used for the binder. There are provided an electrode structure for a lithium secondary battery having a high capacity and a long lifetime, and a lithium secondary battery using the electrode structure and having a high capacity, a high energy d. and a long lifetime.				

IT 71818-44-5
 RL: DEV (Device component use); USES (Uses)
 (electrode structure for lithium secondary battery)
 RN 71818-44-5 HCPLUS
 CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	
Si	7440-21-3
Sn	7440-31-5

IT 519169-23-4P
 RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (electrode structure for lithium secondary battery)
 RN 519169-23-4 HCPLUS
 CN Silicon alloy, base, Si 65,Sn 30,Cu 5 (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	65	7440-21-3
Sn	30	7440-31-5
Cu	5	7440-50-8

L106 ANSWER 2 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:1058767 HCPLUS Full-text
 DN 142:41481
 TI Manufacture of electrode structures for secondary lithium
 batteries with long cycle life
 IN Kawakami, Soichiro; Kosuzu, Takeshi
 PA Canon Inc., Japan
 SO Jpn. Kokai Tokkyo Koho, 20 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2004349079	A	20041209	JP 2003-143824	20030521 <--
PRAI JP 2003-143824		20030521		
AB	The electrode structures have electrode layers prepared from pastes (adjusted at pH 3-9) containing Si-based fine powders, auxiliary elec. conductors (e.g., graphite), binders (e.g., polyvinyl alc., sodium CM-cellulose), and pH-controlling solns (e.g., potassium hydrogenphthalate buffer). The electrode structures show uniform surfaces.			
IT 803745-57-5				
RL: DEV (Device component use); USES (Uses) (anode; manufacture of electrode structures for secondary lithium batteries with long cycle life)				
RN 803745-57-5 HCPLUS				
CN Silicon alloy, base, Si 62,Sn 33,C 4.8 (9CI) (CA INDEX NAME)				

Component	Component	Component
Percent	Registry Number	
Si	62	7440-21-3
Sn	33	7440-31-5

C 4.8 7440-44-0

IT 9002-89-5, Poly(vinyl alcohol)
 RL: DEV (Device component use); USES (Uses)
 (binder; manufacture of electrode structures for secondary lithium
 batteries with long cycle life)
 RN 9002-89-5 HCPLUS
 CN Ethenol, homopolymer (CA INDEX NAME)

CM 1

CRN 557-75-5
 CMF C2 H4 O

L106 ANSWER 3 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:1012099 HCPLUS Full-text

DN 141:426308

TI Nonaqueous electrolyte secondary **battery** comprising composite
particlesIN Morigaki, Kenichi; Iwamoto, Kazuya; Koshina, Hizuru; Shimamura, Harunari;
 Nitta, Yoshiaki

PA Matsushita Electric Industrial Co., Ltd., Japan

SO U.S., 19 pp., Cont.-in-part of U.S. Ser. No. 90,484.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 7

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6821675	B1	20041123	US 2000-601234	20001030 <--
	US 6090505	A	20000718	US 1998-90484	19980603 <--
	JP 2000173587	A	20000623	JP 1998-342885	19981202 <--
	JP 2000173588	A	20000623	JP 1998-342886	19981202 <--
	JP 2000173607	A	20000623	JP 1998-342893	19981202 <--
	JP 2000173608	A	20000623	JP 1998-342894	19981202 <--
	WO 2000033400	A1	20000608	WO 1999-JP6686	19991130 <--

W: US

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
 PT, SE

PRAI	US 1998-90484	A2	19980603	<--
	JP 1998-342885	A	19981202	<--
	JP 1998-342886	A	19981202	<--
	JP 1998-342893	A	19981202	<--
	JP 1998-342894	A	19981202	<--
	WO 1999-JP6686	W	19991130	<--
	JP 1997-144873	A	19970603	<--
	JP 1998-123199	A	19980506	<--

AB A neg. **electrode** of a non-aqueous electrolyte secondary **battery** contains, as main a component, composite **particles** constructed in such a manner that at least part of the surface of nuclear **particles** comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an intermetallic compound composed of elements included in the nuclear **particle** and at least one element, exclusive of the element included in the nuclear **particle**, selected from a group of elements in a Periodic Table,

comprising group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements exclusive of carbon. The **batteries** of the present invention include non-aqueous electrolytic solution and solid electrolytes comprising polymer gel electrolytes. The construction of the present invention provides a non-aqueous electrolytic secondary **battery** with which a possibility of the generation of gas is extremely low when stored at high temps. It also provides a **battery** having higher capacity, and superior cycle properties, high-rate charge/discharge properties.

IT 112336-35-3

RL: DEV (Device component use); USES (Uses)
(nonaq. electrolyte secondary **battery** comprising composite particles)

RN 112336-35-3 HCAPLUS

CN Tin alloy, base, Sn 81,Si 19 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	81	7440-31-5
Si	19	7440-21-3

RETABLE

Referenced Author (RAU)	Year	VOL	PG	Referenced Work (RWK)	Referenced File
	(R PY)	(R VL)	(R PG)		
Abraham, K	1990	137	1657	Journal Electrochem	HCAPLUS
Anon	1988			JP 63-274058	HCAPLUS
Anon	1988			JP 63-276873	HCAPLUS
Anon	1991			JP 03-14054	HCAPLUS
Anon	1991			JP 03-37964	
Anon	1992			JP 04-095345	HCAPLUS
Anon	1992			JP 04-206479	HCAPLUS
Anon	1992			JP 04-242890	
Anon	1992			JP 04-249073	HCAPLUS
Anon	1992			JP 04-267053	HCAPLUS
Anon	1993			JP 05-234593	HCAPLUS
Anon	1993			JP 05-310418	HCAPLUS
Anon	1993			JP 05-62712	HCAPLUS
Anon	1994			JP 06-098473	
Anon	1994			JP 06-103976	HCAPLUS
Anon	1994			JP 06-279049	HCAPLUS
Anon	1994			JP 06-36798	HCAPLUS
Anon	1995			JP 07-240201	HCAPLUS
Anon	1995			JP 07-296854	HCAPLUS
Anon	1995			JP 07-315822	HCAPLUS
Anon	1996			EP 0693568	HCAPLUS
Anon	1996			JP 08-250117	HCAPLUS
Anon	1996			EP 730316 A1	HCAPLUS
Anon	1996			WO 9610538	HCAPLUS
Anon	1997			JP 09-063651	HCAPLUS
Anon	1997			JP 09-259857	HCAPLUS
Anon	1997			JP 09-63651	HCAPLUS
Anon	1998			EP 0883199	HCAPLUS
Anon	1998			JP 10-003947	HCAPLUS
Anon	1998			JP 10-208741	HCAPLUS
Anon	1998			JP 10-257687	
Anon	1998			JP 10-316426	HCAPLUS
Anon	1998			JP 10-316426	HCAPLUS
Anon	1998			JP 10-321225	HCAPLUS
Anon	1998			JP 10-36120	HCAPLUS

Anon	1998	JP 10-92424	HCAPLUS
Anon	1998	JP 10-92424	HCAPLUS
Anon	1998	WO 9807729	HCAPLUS
Anon	1999	JP 11-135120	HCAPLUS
Anon	1999	JP 11-185753	HCAPLUS
Anon	1999	JP 11-297311	HCAPLUS
Anon	2000	JP 200030703	
Anon	2000	International Search	
Armand	1981	US 4303748 A	HCAPLUS
Armand, M	1978	Second International	
Aubyn, H	1995	US 5460903 A	HCAPLUS
Block	1998	US 5827331 A	HCAPLUS
Furukawa	1984	US 4427751 A	HCAPLUS
Gies	1997	US 5665265 A	HCAPLUS
Gilbert	1984	US 4489143 A	HCAPLUS
Goodenough	1981	US 4302518 A	HCAPLUS
Gozdz	1994	US 5296318 A	HCAPLUS
Huggins	1990	US 4950566 A	HCAPLUS
Iwamoto	1996	US 5589296 A	HCAPLUS
Iwamoto	1997	US 5677081 A	HCAPLUS
Kasamatsu	2003	US 6605386 B1	HCAPLUS
Kaun	1996	US 5536600 A	HCAPLUS
Kawakami	1998	US 5824434 A	HCAPLUS
Koyama	1985	US 4495358 A	HCAPLUS
Maccallum, J	1989	229 Polymer Electrolyte	
McManis	1986	US 4632889 A	HCAPLUS
Nishimura	1999	US 5900335 A	HCAPLUS
North	1992	US 5085952 A	HCAPLUS
Ogata, N	1990	95 Conductive Polymer,	
Ohsawa	1993	US 5223353 A	HCAPLUS
Rogier, A	1996	90 Solid State Ionics	
Saito	1998	US 5770333 A	HCAPLUS
Sato	1994	US 5275750 A	HCAPLUS
Shimamura	2000	US 6090505 A	HCAPLUS
Tahara	1995	US 5395711 A	HCAPLUS
Thackeray	1992	US 5160712 A	HCAPLUS
Wilson	1996	US 5587256 A	HCAPLUS
Wilson	1997	US 5624606 A	HCAPLUS

L106 ANSWER 4 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:905470 HCAPLUS Full-text

DN 141:382156

TI Method of preparation of **anode** active material for rechargeable lithium **battery**

IN Sheem, Kyou-yoon; Matsubara, Keiko; Tsuno, Toshiaki; Takamuku, Akira

PA S. Korea

SO U.S. Pat. Appl. Publ., 12 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004214085	A1	20041028	US 2004-752300	20040106 <--
	JP 2004214054	A	20040729	JP 2003-446	20030106 <--
	JP 3827642	B2	20060927		
	KR 2004063802	A	20040714	KR 2004-262	20040105 <--
PRAI	JP 2003-446	A	20030106	<--	
	KR 2004-262	A	20040105		

AB Disclosed is a neg. active material for a lithium rechargeable **battery** which includes an aggregate of Si porous **particles**, wherein the porous **particles** are formed with a plurality of voids therein, wherein the voids have an average diameter of between 1 nm and 10 μm , and the aggregate has an average particle size of between 1 μm and 100 μm .

IT 71818-44-5

RL: DEV (Device component use); USES (Uses)
(method of preparation of anode active material for rechargeable lithium **battery**)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 5 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:824217 HCPLUS Full-text

DN 141:334883

TI Lithium secondary **battery** electrode structure
including **particles** of a solid state **alloy**

IN Kawakami, Soichiro; Asao, Masaya; Suzuki, Nobuyuki; Yamada,
Yasuhiro; Ogura, Takao

PA Canon Kabushiki Kaisha, Japan

SO PCT Int. Appl., 96 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004086539	A1	20041007	WO 2004-JP4071	20040324 <--
	WO 2004086539	B1	20041229		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
	JP 2004311429	A	20041104	JP 2004-87997	20040324 <--
	EP 1604415	A1	20051214	EP 2004-723041	20040324 <--
	R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK			
	CN 1765024	A	20060426	CN 2004-80007945	20040324 <--
	TW 235517	B	20050701	TW 2004-93108147	20040325 <--
	US 2006040182	A1	20060223	US 2005-541222	20050701 <--
PRAI	JP 2003-86564	A	20030326 <--		
	WO 2004-JP4071	W	20040324		

AB The **electrode** material for a lithium secondary **battery** according to the present invention includes **particles** of a solid state **alloy** having silicon as a main component, wherein the **particles** of the solid state **alloy** have a microcrystal or amorphous material including an element other than silicon,

dispersed in microcryst. silicon or amorphized silicon. The solid state **alloy** preferably contains a pure metal or a solid solution. The composition of the **alloy** preferably has an element composition in which the **alloy** is completely mixed in a melted liquid state, whereby the **alloy** has a single phase in a melted liquid state without presence of two or more phases. The element composition can be determined by the kind of elements constituting the **alloy** and an atomic ratio of the elements.

IT 91017-73-1 519169-19-8 586417-44-9, Silicon,
tin, titanium 627102-34-5 769163-49-7
769163-50-0 769163-51-1 769163-52-2
769163-53-3 769163-54-4 769163-55-5
RL: DEV (Device component use); USES (Uses)
(lithium secondary **battery electrode** structure
including **particles** of solid state **alloy**)

RN 91017-73-1 HCAPLUS

CN Silicon alloy, base, Si,Sn (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Sn	7440-31-5

RN 519169-19-8 HCAPLUS

CN Silver alloy, nonbase, Ag, Si, Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Ag	7440-22-4
Si	7440-21-3
Sn	7440-31-5

RN 586417-44-9 HCAPLUS

CN Silicon alloy, nonbase, Si, Sn, Ti (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Sn	7440-31-5
Ti	7440-32-6

RN 627102-34-5 HCAPLUS

CN Silicon alloy, base, Si, Al, Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Al	7429-90-5
Sn	7440-31-5

RN 769163-49-7 HCAPLUS

CN Silicon alloy, base, Si, B, Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
----	-----------

B	7440-42-8
Sn	7440-31-5

RN 769163-50-0 HCPLUS
CN Silicon alloy, base, Si,Sb,Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Sb	7440-36-0
Sn	7440-31-5

RN 769163-51-1 HCPLUS
CN Silicon alloy, base, Si,B,Sb,Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
B	7440-42-8
Sb	7440-36-0
Sn	7440-31-5

RN 769163-52-2 HCPLUS
CN Silicon alloy, base, Si,B,Cu,Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
B	7440-42-8
Cu	7440-50-8
Sn	7440-31-5

RN 769163-53-3 HCPLUS
CN Silicon alloy, base, Si,Al,B,Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Al	7429-90-5
B	7440-42-8
Sn	7440-31-5

RN 769163-54-4 HCPLUS
CN Silicon alloy, base, Si,Al,Sb,Sn (9CI) (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Al	7429-90-5
Sb	7440-36-0
Sn	7440-31-5

RN 769163-55-5 HCPLUS
CN Silicon alloy, base, Si,Al,B,Sb,Sn (9CI) (CA INDEX NAME)

Component	Component
	Registry Number

Si	7440-21-3
Al	7429-90-5
B	7440-42-8
Sb	7440-36-0
Sn	7440-31-5

IT 769163-57-7P, Silicon 76.2, tin 10.3, titanium 13.5 (atomic)
 769163-58-8P, Silicon 76.4, tin 20, titanium 3.6 (atomic)
 769163-59-9P, Aluminum 6.6, silicon 74, tin 19.4 (atomic)
 769163-62-4P, Aluminum 0.4, silicon 84.1, tin 11.5, titanium 4
 (atomic) 769163-63-5P, Silicon 81, tin 16.2, zinc 2.8 (atomic)
 769163-65-7P, Silicon 81.8, silver 1.1, tin 17.1 (atomic)
 769163-67-9P, Silicon 82.7, tin 11.3, titanium 4, zinc 2 (atomic)
 769163-69-1P 769163-72-6P 769163-74-8P
 769163-75-9P 769163-77-1P 769163-79-3P
 769163-81-7P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (lithium secondary battery electrode structure
 including particles of solid state alloy)

RN 769163-57-7 HCAPLUS

CN Silicon alloy, base, Si 53,Sn 30,Ti 16 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Si	53	7440-21-3
Sn	30	7440-31-5
Ti	16	7440-32-6

RN 769163-58-8 HCAPLUS

CN Tin alloy, base, Sn 51,Si 46,Ti 3.7 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	51	7440-31-5
Si	46	7440-21-3
Ti	3.7	7440-32-6

RN 769163-59-9 HCAPLUS

CN Tin alloy, base, Sn 51,Si 46,Al 3.9 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	51	7440-31-5
Si	46	7440-21-3
Al	3.9	7429-90-5

RN 769163-62-4 HCAPLUS

CN Silicon alloy, base, Si 60,Sn 35,Ti 4.9,Al 0.3 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Si	60	7440-21-3
----	----	-----------

Sn	35	7440-31-5
Ti	4.9	7440-32-6
Al	0.3	7429-90-5

RN 769163-63-5 HCAPLUS
 CN Silicon alloy, base, Si 52,Sn 44,Zn 4.2 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	52	7440-21-3
Sn	44	7440-31-5
Zn	4.2	7440-66-6

RN 769163-65-7 HCAPLUS
 CN Silicon alloy, base, Si 52,Sn 46,Ag 2.7 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	52	7440-21-3
Sn	46	7440-31-5
Ag	2.7	7440-22-4

RN 769163-67-9 HCAPLUS
 CN Silicon alloy, base, Si 58,Sn 34,Ti 4.8,Zn 3.3 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	58	7440-21-3
Sn	34	7440-31-5
Ti	4.8	7440-32-6
Zn	3.3	7440-66-6

RN 769163-69-1 HCAPLUS
 CN Silicon alloy, base, Si 62,Sn 36,B 2 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	62	7440-21-3
Sn	36	7440-31-5
B	2	7440-42-8

RN 769163-72-6 HCAPLUS
 CN Silicon alloy, base, Si 58,Sn 34,Sb 8 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	58	7440-21-3
Sn	34	7440-31-5
Sb	8	7440-36-0

RN 769163-74-8 HCAPLUS
 CN Silicon alloy, base, Si 60,Sn 35,Sb 4,B 1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number

Si	60	7440-21-3
Sn	35	7440-31-5
Sb	4	7440-36-0
B	1	7440-42-8

RN 769163-75-9 HCPLUS
CN Silicon alloy, base, Si 59,Sn 34,Cu 5,B 2 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	59	7440-21-3
Sn	34	7440-31-5
Cu	5	7440-50-8
B	2	7440-42-8

RN 769163-77-1 HCPLUS
CN Silicon alloy, base, Si 59,Sn 34,Al 5,B 2 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	59	7440-21-3
Sn	34	7440-31-5
Al	5	7429-90-5
B	2	7440-42-8

RN 769163-79-3 HCPLUS
CN Silicon alloy, base, Si 56,Sn 33,Sb 7,Al 4 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	56	7440-21-3
Sn	33	7440-31-5
Sb	7	7440-36-0
Al	4	7429-90-5

RN 769163-81-7 HCPLUS
CN Silicon alloy, base, Si 58,Sn 34,Al 5,Sb 2,B 1 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	58	7440-21-3
Sn	34	7440-31-5
Al	5	7429-90-5
Sb	2	7440-36-0
B	1	7440-42-8

RETABLE

Referenced Author (RAU)	Year VOL PG	Referenced Work (RWP)	Referenced File
Matsushita Electric Ind	2002	JP 200242805 A	
Mitsubishi Marerials Co	2003	JP 2003109590 A	HCPLUS
Sanyo Electric Co Ltd	2003	JP 200377529 A	

AN 2004:802390 HCAPLUS Full-text
 DN 141:280431
 TI Lithium secondary battery
 IN Kawamura, Naoya; Kawakami, Soichiro
 PA Canon Kabushiki Kaisha, Japan
 SO U.S. Pat. Appl. Publ., 17 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004191630	A1	20040930	US 2004-808481	20040325 <--
	JP 2004303638	A	20041028	JP 2003-96988	20030331 <--
	TW 256158	B	20060601	TW 2004-93108000	20040324 <--
	EP 1496559	A2	20050112	EP 2004-7663	20040330 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK				
	CN 1534818	A	20041006	CN 2004-10031900	20040331 <--
	KR 2004088358	A	20041016	KR 2004-22033	20040331 <--

PRAI JP 2003-96988 A 20030331 <--

AB There is provided a lithium secondary battery with a neg. electrode which comprises a neg. electrode active material layer comprising alloy particles comprising silicon and tin and having an average particle diameter of 0.05 to 2 µm as an active material, and a neg. electrode current collector, wherein the neg. electrode active material layer has a storage capacity of 1000 to 2200 mA-h/g and a d. of 0.9 to 1.5 g/cm³ and which thereby has a high capacity and a good cycle-characteristics. Thus, a lithium secondary battery having a high capacity and a long life and so designed as to exhibit these characteristics at the same time is provided.

IT 71818-44-5 760979-01-9

RL: DEV (Device component use); USES (Uses)
(improvement of capacity and cycle characteristics of lithium secondary battery)

RN 71818-44-5 HCAPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component
Registry Number

=====+=====

Si 7440-21-3
Sn 7440-31-5

RN 760979-01-9 HCAPLUS

CN Silicon alloy, base, Si 80,Sn 15,Cu 5 (9CI) (CA INDEX NAME)

Component Component Component
Percent Registry Number

=====+=====+=====

Si 80 7440-21-3
Sn 15 7440-31-5
Cu 5 7440-50-8

IT 9002-89-5, Polyvinyl alcohol

RL: MOA (Modifier or additive use); USES (Uses)
(improvement of capacity and cycle characteristics of lithium secondary battery)

RN 9002-89-5 HCAPLUS

CN Ethenol, homopolymer (CA INDEX NAME)

CM 1

CRN 557-75-5
CMF C2 H4 O

L106 ANSWER 7 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:796471 HCPLUS Full-text

DN 141:263470

TI **Electrode material for lithium secondary battery**

IN Asao, Masaya; Kawakami, Soichiro; Ogura, Takao

PA Canon Kabushiki Kaisha, Japan

SO Eur. Pat. Appl., 31 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1463131	A1	20040929	EP 2004-7392	20040326 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK				
	JP 2004311428	A	20041104	JP 2004-87996	20040324 <--
	CA 2462168	A1	20040926	CA 2004-2462168	20040326 <--
	KR 2004085035	A	20041007	KR 2004-20809	20040326 <--
	CN 1542997	A	20041103	CN 2004-10031253	20040326 <--
	US 2004248011	A1	20041209	US 2004-809483	<u>20040326</u> <--
	TW 254473	B	20060501	TW 2004-93108403	20040326 <--
PRAI	JP 2003-86628	A	20030326	<--	

AB There is provided an **electrode** material for a lithium secondary **battery** which comprises **alloy particles** comprising silicon as a major component and having an average particle diameter of 0.02-5 μm , wherein the size of a crystallite of the **alloy** is not less than 2 nm but no more than 500 nm and an intermetallic compound containing at least tin is dispersed in a silicon phase and an **electrode** material for a lithium secondary **battery** which comprises **alloy particles** comprising silicon as a major component and having an average particle diameter of 0.02 μm to 5 μm , wherein the size of a crystallite of the **alloy** is not less than 2 nm but no more than 500 nm and an at least one intermetallic compound containing at least one element selected from the group consisting of aluminum, zinc, indium, antimony, bismuth and lead is dispersed in a silicon phase. Thereby, an **electrode** material for a lithium secondary **battery**, an **electrode** structure comprising the **electrode** material and a secondary **battery** comprising the **electrode** structure are provided in which a drop in capacity due to repeated charging/discharging is small, and the charge/discharge cycle life is improved.

IT 71818-44-5 519169-23-4 756497-38-8

756497-39-9

RL: DEV (Device component use); USES (Uses)
(**electrode** material for lithium secondary **battery**)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component
Registry Number

=====+=====

Si	7440-21-3
Sn	7440-31-5

RN 519169-23-4 HCAPLUS

CN Silicon alloy, base, Si 65,Sn 30,Cu 5 (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

=====+=====+=====

Si	65	7440-21-3
Sn	30	7440-31-5
Cu	5	7440-50-8

RN 756497-38-8 HCAPLUS

CN Silicon alloy, base, Si 50,Sn 40,Co 10 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

=====+=====+=====

Si	50	7440-21-3
Sn	40	7440-31-5
Co	10	7440-48-4

RN 756497-39-9 HCAPLUS

CN Silicon alloy, base, Si 85,Sn 10,Ni 5 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

=====+=====+=====

Si	85	7440-21-3
Sn	10	7440-31-5
Ni	5	7440-02-0

L106 ANSWER 8 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:252059 HCAPLUS Full-text

DN 140:256344

TI **Battery anode** compositions having an elastomeric binder and an adhesion promoter

IN Christensen, Leif

PA 3M Innovative Properties Company, USA

SO U.S. Pat. Appl. Publ., 11 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-----	----	-----	-----	-----
PI	US 2004058240	A1	20040325	US 2002-251067	20020920 <--
	CA 2498901	A1	20040401	CA 2003-2498901	20030820 <--
	WO 2004027898	A2	20040401	WO 2003-US26138	20030820 <--
	WO 2004027898	A3	20050127		

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
 LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM,
 PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN,
 TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,

KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
 FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR,
 BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
 AU 2003258306 A1 20040408 AU 2003-258306 20030820 <--
 EP 1547171 A2 20050629 EP 2003-797859 20030820 <--
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
 CN 1682393 A 20051012 CN 2003-822422 20030820 <--
 JP 2006500738 T 20060105 JP 2004-537679 20030820 <--
 PRAI US 2002-251067 A 20020920 <--
 WO 2003-US26138 W 20030820

AB An **anode** composition is disclosed that includes an elastomeric polymer binder, a plurality of electrochem. active metal **particles** dispersed in the binder, an elec. conductive diluent, and an adhesion promoter that promotes adhesion among the **particles**, the diluent, and the binder. Also featured are lithium ion **batteries** featuring **anodes** made from these compns.

IT 71818-44-5

RL: DEV (Device component use); USES (Uses)
(battery anode compns. having elastomeric binder
 and adhesion promoter)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 9 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:135049 HCPLUS Full-text

DN 140:342044

TI Preparation of Si composite **alloys** as **anode** material for lithium **batteries** and their lithiation/delithiation mechanism in the charge/discharge processes

AU Wada, Masashi; Atarashi, Mutsumi; Yin, Jingtian; Yoshida, Seiji; Ishihara, Kouji; Tanase, Shigeo; Sakai, Tetsuo

CS Fukuda Metal Foil & Powder Co., Ltd., 20 Nakatomii-cho Nishinoyama Yamashina-ku, Kyoto, 607-8305, Japan

SO Funtai oyobi Funmatsu Yakin (2003), 50(12), 1084-1088
 CODEN: FOFUA2; ISSN: 0532-8799

PB Funtai Funmatsu Yakin Kyokai

DT Journal

LA Japanese

AB Si-based composite **alloy powders** were prepared as **anode** materials for Li-ion **batteries** through mech. **alloying**. The Ag-Sn-Si **powders** with a size of several micrometers consisted of Si, Sn and Ag₃Sn **alloy** phases. Electrochem. expts. showed that an Ag_{36.4}Sn₄₈Si_{15.6} **electrode** had better electrochem. performance than the others with respect to reversible capacity and capacity retention. It can deliver an initial capacity of .apprx.800 A-h/kg and maintain a reversible capacity of .apprx.180 A-h/kg even after 300 cycles. The structural changes of an Ag_{36.4}Sn₄₈Si_{15.6} **electrode** during cycling were examined by XRD. The composite **alloy** consisting of Si, β -Sn and Ag₃Sn phases transforms mostly into a ternary lithiated phase during Li insertion and recovers a phase structure of Si, β -Sn, Ag₃Sn and residual Ag₂LiSn phases after Li extraction. In this lithiation/delithiation process the **alloy** **electrode** suffers some volumetric change which is beneficial for the improvement of cycle life. This new Ag-Sn-Si composite material may be a candidate **anode** material for Li-ion **Batteries**.

IT 437651-74-6

RL: DEV (Device component use); USES (Uses)
 (preparation of Si composite alloys as anode material
 for lithium batteries and their lithiation/delithiation
 mechanism in charge/discharge processes)

RN 437651-74-6 HCPLUS

CN Tin alloy, base, Sn 91, Si 9.2 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Sn	91	7440-31-5
Si	9.2	7440-21-3

L106 ANSWER 10 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:922631 HCPLUS Full-text

DN 139:384028

TI Nonaqueous electrolyte secondary battery

IN Shimamura, Harunari; Nitta, Yoshiaki

PA Matsushita Electric Industrial Co., Ltd., Japan

SO U.S., 13 pp., Cont.-in-part of U.S. 6,090,505.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 7

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6653019	B1	20031125	US 2001-719532	20010228 <--
US 6090505	A	20000718	US 1998-90484	19980603 <--
JP 2001006677	A	20010112	JP 2000-114799	20000417 <--
JP 2001006667	A	20010112	JP 2000-114800	20000417 <--
WO 2000063986	A1	20001026	WO 2000-JP2502	20000418 <--

W: US

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE

PRAI	US 1998-90484	A2	19980603	<--
	JP 1999-112073	A	19990420	<--
	JP 1999-112074	A	19990420	<--
	WO 2000-JP2502	W	20000418	<--
	JP 1997-144873	A	19970603	<--
	JP 1998-123199	A	19980506	<--

AB A nonaq. electrolyte secondary battery using composite particles for its neg. electrode is disclosed. In the composite particles, nucleus particles including at least one element selected from tin, silicon, and zinc as their constituent element are entirely or partly covered with a solid solution or inter-metallic compound of the constituent element and at least one element selected from groups consisting of Group 2 elements, transition elements, and Group 12, Group 13, and Group 14 elements in the Periodic Table except for the constituent element of the nucleus particles and carbon. Further, the present invention is characterized in that the NMR signals of the lithium intercalated in the composite particles appear within the range of -10 to 40 ppm with respect to lithium chloride and at least one signal appears within the range of -10 to 4 ppm.

IT 112336-35-3

RL: DEV (Device component use); USES (Uses)
 (nonaqueous electrolyte secondary battery)

RN 112336-35-3 HCPLUS

CN Tin alloy, base, Sn 81, Si 19 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Sn	81	7440-31-5
Si	19	7440-21-3

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Abraham, K	1990	137	1657	Journal Electrochem	HCAPLUS
Anon	1988			JP 63-274058	HCAPLUS
Anon	1988			JP 63-276873	HCAPLUS
Anon	1991			JP 03-037964	
Anon	1991			JP 03-14054	HCAPLUS
Anon	1992			JP 04-206479	HCAPLUS
Anon	1992			JP 04-242890	
Anon	1992			JP 04-249073	HCAPLUS
Anon	1992			JP 04-267053	HCAPLUS
Anon	1992			JP 04-95345	HCAPLUS
Anon	1993			JP 05-234593	HCAPLUS
Anon	1993			JP 05-310418	HCAPLUS
Anon	1993			JP 05-62712	HCAPLUS
Anon	1994			JP 06-103976	HCAPLUS
Anon	1994			JP 06-279049	HCAPLUS
Anon	1994			JP 06-36798	HCAPLUS
Anon	1994			JP 06-98473	
Anon	1994			EP 0693568	HCAPLUS
Anon	1995			JP 07-240201	HCAPLUS
Anon	1995			JP 07-296854	HCAPLUS
Anon	1995			JP 07-315822	HCAPLUS
Anon	1996			EP 0730316	HCAPLUS
Anon	1996			JP 08-250117	HCAPLUS
Anon	1996			WO 9610538	HCAPLUS
Anon	1997			JP 09-063651	HCAPLUS
Anon	1997			JP 09-063651	HCAPLUS
Anon	1997			JP 09-259857	HCAPLUS
Anon	1998			EP 0883199	HCAPLUS
Anon	1998			JP 10-208741	HCAPLUS
Anon	1998			JP 10-257687	
Anon	1998			JP 10-316426	HCAPLUS
Anon	1998			JP 10-321225	HCAPLUS
Anon	1998			JP 10-36120	HCAPLUS
Anon	1998			JP 10-3947	HCAPLUS
Anon	1998			JP 10-92424	HCAPLUS
Anon	1998			WO 9807729	HCAPLUS
Anon	1999			JP 11-135120	HCAPLUS
Anon	1999			JP 11-185753	HCAPLUS
Anon	1999			JP 11-297311	HCAPLUS
Anon	2000			JP 2000030703	HCAPLUS
Anon	2000			Japanese search repo	
Armand	1981			US 4303748 A	HCAPLUS
Armand, M	1978			Second Intl Meeting	
Block	1998			US 5827331 A	HCAPLUS
Furukawa	1984			US 4427751 A	HCAPLUS
Gies	1997			US 5665265 A	HCAPLUS
Gilbert	1984			US 4489143 A	HCAPLUS
Goodenough	1981			US 4302518 A	HCAPLUS
Gozdz	1994			US 5296318 A	HCAPLUS
Hubbard	1995			US 5460903 A	HCAPLUS

Huggins	1990		US 4950566 A	HCAPLUS
Iwamoto	1996		US 5589296 A	HCAPLUS
Iwamoto	1997		US 5677081 A	HCAPLUS
Kaun	1996		US 5536600 A	HCAPLUS
Kawakami	1998		US 5824434 A	HCAPLUS
Koyama	1985		US 4495358 A	HCAPLUS
Maccallum, J	1989	229	Polymer Electrolyte	
McManis	1986		US 4632889 A	HCAPLUS
Nishimura	1999		US 5900335 A	HCAPLUS
North	1992		US 5085952 A	HCAPLUS
Ogata, N	1990	95	Conductive Polymer,	
Ohsawa	1993		US 5223353 A	HCAPLUS
Rogier, A	1996	90	Solid State Ionics	
Saito	1998		US 5770333 A	HCAPLUS
Sato	1994		US 5275750 A	HCAPLUS
Shimamura	2000		US 6090505 A	HCAPLUS
Tahara	1995		US 5395711 A	HCAPLUS
Thackeray	1992		US 5160712 A	HCAPLUS
Wilson	1996		US 5587256 A	HCAPLUS
Wilson	1997		US 5624606 A	HCAPLUS

L106 ANSWER 11 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:815403 HCAPLUS Full-text

DN 139:325950

TI Negative **electrode** for secondary electrical **battery**

IN Yamamoto, Hironori; Miyaji, Mariko; Sakauchi, Hiroshi; Mori, Mitsuhiro; Iriyama, Jiro; Shirakata, Masato

PA NEC Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2003297341	A	20031017	JP 2002-97997	20020329 <--
PRAI	JP 2002-97997		20020329 <--		

AB The title **battery** is characterized by being able to eliminate the deterioration of **battery** property and loss of energy d. The **battery** comprises a neg. elec. collector, a C neg. **electrode**, a pos. elec. collector, pos. **electrode** active material containing Mn, and a separator. A Mn capture layer is coated on the C neg. **electrode** to avoid the **battery** deterioration due to Mn. The Mn capture layer consists a second layer made of silicon, Sn, and a metal element and a first layer of the metal oxide. The Mn capture layer is also capable of absorbing and releasing Li.

IT 103289-29-8, Tin silicide

RL: DEV (Device component use); USES (Uses)
 (secondary elec. **battery**; neg. elec. **electrode** having Mn
 capture layer for secondary elec. **battery**)

RN 103289-29-8 HCAPLUS

CN Tin silicide (9CI) (CA INDEX NAME)

Component	Ratio	Component	
		Registry Number	
Sn	x	7440-31-5	
Si	x	7440-21-3	

L106 ANSWER 12 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:801658 HCAPLUS Full-text
 DN 140:62218
 TI Large-volume-change **electrodes** for Li-ion **batteries** of amorphous **alloy particles** held by elastomeric tethers
 AU Chen, Zonghai; Christensen, L.; Dahn, J. R.
 CS Department of Chemistry, Dalhousie University, Halifax, NS, B3H 3J5, Can.
 SO Electrochemistry Communications (2003), 5(11), 919-923
 CODEN: ECCMF9; ISSN: 1388-2481
 PB Elsevier Science B.V.
 DT Journal
 LA English
 AB New **electrode** materials based on amorphous **alloys** have been proposed to replace the graphite-based **anode** materials for Li-ion **batteries**. These **alloys** undergo big reversible volume expansions as Li is added and removed electrochem. If the **alloy particles** in the **electrode** are bound to one another and to the current collector by an elastomeric binder, good capacity retention vs. cycle number, in spite of a 125% volume expansion and contraction, is possible. To obtain the required mech. properties, the elastomeric polymer binder is crosslinked and also bonded to the **electrode particles** using a surface coupling agent. A stable sp. capacity of .apprx.800 mA-h/g in a-Si0.64Sn0.36, corresponding to a 125% volume change, was obtained with a poly(vinylidene fluoride-tetrafluoroethylene-propylene)-based elastomeric binder system. Further optimization of the binder system is possible.
 IT 113320-53-9, Silicon 64, tin 36 (atomic)
 RL: DEV (Device component use); USES (Uses)
 (anode; volume-change silicon tin **particle**
 anodes for Li-ion **batteries** bonded by elastomeric tethers)
 RN 113320-53-9 HCAPLUS
 CN Tin alloy, base, Sn 70,Si 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	70	7440-31-5
Si	30	7440-21-3

RETABLE

Referenced Author (RAU)	Year VOL PG Referenced Work (RWP)	Referenced File		
(RPY)	(RVL)	(RPG)	(RWK)	
Beaulieu, L	2003 150 A419 J Electrochem Soc	HCAPLUS		
Beaulieu, L	J Electrochem Soc (i)			
Chen, Z	2003 150 A1073 J Electrochem Soc	HCAPLUS		
Fang, L	2001 97-98 181 J Power Sources	HCAPLUS		
Green, M	2003 6 A75 Electrochem Solid-St HCAPLUS			
Mao, O	1999 2 A3 Electrochem Solid-St			
Sayamasa, K	2002 P52 Proceedings of the 1			
Song, S	2003 150 A121 J Electrochem Soc	HCAPLUS		
Wang, Y	2003 6 A19 Electrochem Solid-St HCAPLUS			
Yang, J	1999 146 4009 J Electrochem Soc	HCAPLUS		
Yang, J	2000 133 189 Solid State Ionics	HCAPLUS		

L106 ANSWER 13 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:516237 HCAPLUS Full-text

DN 139:263242

TI Comparison of PVDF and PVDF-TFE-P as Binders for **Electrode** Materials Showing Large Volume Changes in Lithium-Ion **Batteries**

AU Chen, Zonghai; Christensen, L.; Dahn, J. R.

CS Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H

3J5, Can.

SO Journal of the Electrochemical Society (2003), 150(8),
A1073-A1078
CODEN: JESOAN; ISSN: 0013-4651

PB Electrochemical Society

DT Journal

LA English

AB The mech. and elec. properties of a terpolymer, poly(vinylidene fluoride-tetrafluoroethylene-propylene) (PVDF-TFE-P, BRE 7131X, Dyneon Corp.) and its carbon black-filled composites (without active **anode** material) were studied carefully and are compared to those of PVDF (Solef 1008). High capacity **anode** materials such as a-Si and a-Si0.64Sn0.36 have up to 250% volumetric changes during charge/discharge cycling which challenges the mech. properties of standard binders used in Li-ion **battery electrodes**. The measurements were carried out on dry polymer films and on films immersed in a nonaq. solvent commonly used in Li-ion cells (ethylene carbonate/diethyl carbonate, EC/DEC, 1:2 by volume). PVDF and its carbon-filled composites show a maximum elongation before break of <10%. However, triethylenetetramine crosslinked BRE 7131X and its carbon-filled composites can be stretched to >100% strain before breaking in air and in EC/DEC (1:2 by volume). Also, the stress and the resistivity of the carbon-filled crosslinked BRE 7131X films changes reversibly during elongation/contraction cycles.

IT 113320-53-9
 RL: DEV (Device component use); USES (Uses)
 (composites with BRE-7131X and Super S carbon black; comparison of PVDF and PVDF-TFE-P as binders for **electrode** materials showing large volume changes in lithium-ion **batteries**)

RN 113320-53-9 HCPLUS
 CN Tin alloy, base, Sn 70, Si 30 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	70	7440-31-5
Si	30	7440-21-3

RETABLE

Referenced Author (RAU)	Year VOL PG Referenced Work (RPY) (RVL) (RPG) (RWK) Referenced File
Beaulieu, L	2001 4 A137 Electrochim Solid-St HCPLUS
Beaulieu, L	2003 150 A149 J Electrochim Soc HCPLUS
Brousse, T	1998 145 1 J Electrochim Soc HCPLUS
Chen, Z	J Appl Polym Sci, Su
Idota, Y	1997 276 1395 Science HCPLUS
Mao, O	1999 2 3 Electrochim Solid-St HCPLUS
Sheng, P	1978 40 1197 Phys Rev Lett HCPLUS
Ward, I	1998 An Introduction to t
Zhang, X	2002 109 136 J Power Sources HCPLUS

L106 ANSWER 14 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:394219 HCPLUS Full-text

DN 138:356272

TI Process for preparing **electrode** material for rechargeable lithium **battery**

IN Kosuzu, Takeshi; Kawakami, Soichiro; Asao, Masaya; Tsuzuki, Hidetoshi; Ogura, Takao; Kobayashi, Naoya

PA Canon Kabushiki Kaisha, Japan

SO Eur. Pat. Appl., 49 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1313158	A2	20030521	EP 2002-25872	20021119 <--
	EP 1313158	A3	20040908	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK	
	US 2003157407	A1	20030821	US 2002-300305	20021120 <--
	US 7141187	B2	20061128		
	CN 1444301	A	20030924	CN 2002-154291	20021120 <--
	TW 567633	B	20031221	TW 2002-91133844	20021120 <--
	JP 2004185810	A	20040702	JP 2002-337311	20021120 <--
	KR 2005012207	A	20050131	KR 2004-112663	20041227 <--
	US 2006237697	A1	20061026	US 2006-471689	20060621 <--
	PRAI	JP 2001-355409	A	20011120 <--	
	JP 2002-299677	A	20021011 <--		
	KR 2002-72152	A3	20021120 <--		
	US 2002-300305	A3	20021120 <--		

AB An **electrode** material for a rechargeable lithium **battery** is characterized in that the **electrode** material comprises a fine **powder** of a silicon-based material whose principal component is silicon element, the fine **powder** having an average **particle size** (*R*) in a range of $0.1 \mu\text{m} \leq R < 0.5 \mu\text{m}$. An **electrode** structural body for a rechargeable lithium **battery**, has an **electrode** material layer comprising the silicon-based material fine **powder**. A rechargeable lithium **battery** has anode comprising the **electrode** structural body.

IT 100789-35-3 189830-88-4 519169-19-8

519169-21-2 519169-22-3

RL: DEV (Device component use); USES (Uses)
(process for preparing anode material for rechargeable lithium **battery**)

RN 100789-35-3 HCPLUS

CN Copper alloy, nonbase, Cu,Si,Sn (9CI) (CA INDEX NAME)

Component	Component
Registry Number	

Cu	7440-50-8
Si	7440-21-3
Sn	7440-31-5

RN 189830-88-4 HCPLUS

CN Nickel alloy, nonbase, Ni,Si,Sn (9CI) (CA INDEX NAME)

Component	Component
Registry Number	

Ni	7440-02-0
Si	7440-21-3
Sn	7440-31-5

RN 519169-19-8 HCPLUS

CN Silver alloy, nonbase, Ag,Si,Sn (9CI) (CA INDEX NAME)

Component	Component
Registry Number	

Ag	7440-22-4
Si	7440-21-3

Sn 7440-31-5

RN 519169-21-2 HCPLUS
 CN Cobalt alloy, nonbase, Co,Si,Sn (9CI) (CA INDEX NAME)

Component Component
 Registry Number

Component	Registry Number
Co	7440-48-4
Si	7440-21-3
Sn	7440-31-5

RN 519169-22-3 HCPLUS
 CN Silicon alloy, base, Si 50-90,Sn 9-49 (9CI) (CA INDEX NAME)

Component Component Component
 Percent Registry Number

Component	Percent	Registry Number
Si	50 - 90	7440-21-3
Sn	9 - 49	7440-31-5

IT 519169-23-4P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
 (process for preparing anode material for rechargeable lithium battery)

RN 519169-23-4 HCPLUS
 CN Silicon alloy, base, Si 65,Sn 30,Cu 5 (CA INDEX NAME)

Component Component Component
 Percent Registry Number

Component	Percent	Registry Number
Si	65	7440-21-3
Sn	30	7440-31-5
Cu	5	7440-50-8

IT 9002-89-5, Polyvinyl alcohol

RL: MOA (Modifier or additive use); USES (Uses)
 (process for preparing anode material for rechargeable lithium battery)

RN 9002-89-5 HCPLUS
 CN Ethenol, homopolymer (CA INDEX NAME)

CM 1

CRN 557-75-5
 CMF C2 H4 O

L106 ANSWER 15 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:203339 HCPLUS Full-text

DN 138:213783

TI Si-based resonant interband tunneling diodes and method of making interband tunneling diodes

IN Berger, Paul R.; Thompson, Phillip E.; Lake, Roger; Hobart, Karl; Rommel,

Sean L.

PA University of Delaware, USA
 SO U.S. Pat. Appl. Publ., 37 pp., Division of U.S. Ser. No. 565,455.
 CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003049894	A1	20030313	US 2001-934334	20010821 <--
	US 6803598	B1	20041012	US 2000-565455	20000505 <--
PRAI	US 1999-133067P	P	19990507 <--		
	US 2000-565455	A3	20000505 <--		

AB Interband tunnel diodes which are compatible with Si-based processes such as, but not limited to, CMOS and Si-Ge HBT fabrication. Interband tunnel diodes are disclosed (i) with spacer layers surrounding a tunnel barrier; (ii) with a quantum well adjacent to, but not necessarily in contact with, one of the injectors, and (iii) with a 1st quantum well adjacent to, but not necessarily in contact with, the bottom injector and a 2nd quantum well adjacent to, but not necessarily in contact with, the top injector. Process parameters include temperature process for growth, deposition or conversion of the tunnel diode and subsequent thermal cycling which to improve device benchmarks such as peak c.d. and the peak-to-valley current ratio.

IT 62795-20-4

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (silicon-based resonant interband tunneling diodes and method of fabrication using)

RN 62795-20-4 HCPLUS

CN Silicon alloy, base, Si 0-100,Sn 0-100 (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	0 - 100	7440-21-3
Sn	0 - 100	7440-31-5

L106 ANSWER 16 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:141752 HCPLUS Full-text

DN 138:176418

TI Investigation into the stability of AlVBIV thin solid films

AU Korolyuk, Yu. G.; Deibuk, V. G.

CS Chernivtsi National University, Kicmany, 59300, Ukraine

SO Latvian Journal of Physics and Technical Sciences (2002), (5),
37-49

CODEN: LJPSED; ISSN: 0868-8257

PB Latvian Journal of Physics and Technical Sciences

DT Journal

LA English

AB Structural and thermodn. properties of IV-IV solid solns. are studied by mol. dynamics simulation. In particular, biaxial strains, which are extremely important to explain the miscibility behavior of alloy films, are examined. It is shown that there exists a critical thickness for $GexSil-x$, $Ge1-xSnx$, $Sil-xSnx$, and $Sil-xCx$ thin solid films. The results of the classical mol. dynamic simulations are in good agreement with exptl. data and other ab initio calcns. The layer thickness is shown to have great influence on the miscibility gap.

IT 62795-20-4

RL: PRP (Properties)

(mol. dynamics simulation of structural and thermodn. properties of

AIVBIV thin solid films)
RN 62795-20-4 HCPLUS
CN Silicon alloy, base, Si 0-100,Sn 0-100 (CA INDEX NAME)

Component	Component	Component
Percent	Registry	Number
Si 0 - 100		7440-21-3
Sn 0 - 100		7440-31-5

RETABLE

Referenced Author (RAU)	Year VOL PG	Referenced Work (RWK)	Referenced File
	(R PY) (R VL) (R PG)		
Beanland, R	1996 45 87	Adv Phys	HCPLUS
Bolhovitanov, Y	2000 171	Uspehi Fizicheskikh N	
Cressler, J	1998 46 572	IEEE Trans Micro The	HCPLUS
Deibuk, V	2001 35 298	Semiconductor	
Demkov, A	1992 48 2207	Phys Rev B	
Gould, H	1988	An Introduction to C	
Gould, H	1990	An Introduction to C	
Gurdal, O	1998 83 162	J Appl Phys	HCPLUS
Iyer, S	1991 581	MRS Symposia proceed	
Jain, S	1994	Germanium-Silicon St	
Khan, A	1996 68 3105	Appl Phys Lett	HCPLUS
Linear, C	1999 203 511	J Crystal Growth	
Mader, K	1989 69 1123	Solid State Communs	
Mezon, U	1968	Dynamics of Lattice	
Pandey, R	2000 88 6462	J Appl Phys	HCPLUS
People, R	1984 45 1231	Appl Phys Lett	
Posthil, J	1990 56 734	Appl Phys Lett	
Soma, T	1988 147 109	Phys Stat Sol (b)	HCPLUS
Soref, R	1991 69 539	J Appl Phys	HCPLUS
Soref, R	1993 14 189	Superlattices Micros	HCPLUS
Stringfellow, G	1982 11 903	J Phys Chem Solid	HCPLUS
Tersoff, J	1989 39 15566	Phys Rev B	
Walle, C	1986 34 15621	Phys Rev B	

L106 ANSWER 17 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:97208 HCPLUS Full-text

DN 138:156268

TI Anode for secondary lithium battery and its manufacture

IN Kajita, Osamu; Nishida, Motonori; Yamamoto, Koichi; Tanigawa, Ryuichi; Onishi, Toshiki; Masuoka, Sachiko; Yoshinaga, Hiroshi; Sakai, Tetsuo

PA Fukuda Metal Foil and Powder Co., Ltd., Japan; National Institute of Advanced Industrial Science and Technology

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2003036840	A	20030207	JP 2001-321626	20011019 <--
PRAI JP 2001-148580	A	20010518 <--		
AB The anode has a Sn or Sn alloy active mass on 1 or both side of a Cu collector; where Cu is compatibilizing with Sn or the Sn alloy, forming an alloy phase in the interface of the collector and the active mass. The anode is prepared by hot dipping the Sn or Sn alloy active mass on 1 or both side of				

the Cu collector, and heating at 200 -600° in a nonoxidizing gas atmospheric to form the alloy phase in the interface of the collector and the active mass.

IT 495504-67-1

RL: DEV (Device component use); USES (Uses)
 (structure and manufacture of anodes containing alloy phase
 interface between Sn or Sn alloy active mass and Cu
 collectors for secondary Li batteries)

RN 495504-67-1 HCPLUS

CN Tin alloy, base, Sn 99, Si 1 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Sn	99	7440-31-5
Si	1	7440-21-3

L106 ANSWER 18 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2003:46133 HCPLUS Full-text

DN 138:356096

TI The electrochemical reaction of Li with amorphous Si-Sn alloys

AU Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.; Bonakdarpour, A.; Abdo, A. A.; Christensen, L.; Eberman, K. W.; Krause, L. J.; Dahn, J. R.

CS Department of Physics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Can.

SO Journal of the Electrochemical Society (2003), 150(2), A149-A156
 CODEN: JESOAN; ISSN: 0013-4651

PB Electrochemical Society

DT Journal

LA English

AB Sil_{1-x} Sn_x samples for 0<x<0.5 were prepared by magnetron sputtering using a combinatorial materials science approach. The room-temperature resistivity and X-ray diffraction (XRD) patterns of the samples were used to select materials having both an amorphous structure and good conductivity for further study. The reaction of lithium with amorphous Si_{0.66}Sn_{0.34} was then studied by electrochem. methods and by in situ XRD. The electrode material apparently remains amorphous throughout all portions of the charge and discharge profile, in the range 0<x<4.4 in Li_xSi_{0.66}Sn_{0.34}. No crystalline phases are formed, unlike the situation when lithium reacts with tin. Using the Debye scattering formalism, we show that the XRD patterns of the a-Si_{0.66}Sn_{0.34} starting material and a-Li_{4.4}Si_{0.66}Sn_{0.34} can be explained by the same local atomic arrangements as found in crystalline Si and Li_{4.4}Si or Li_{4.4}Sn, resp. In fact, the in situ XRD patterns of a-Li_xSi_{0.66}Sn_{0.34}, for any x, can be well approximated by a linear combination of the patterns for x=0 and x=4.4. This suggests that predominantly only two local environments for Si and Sn are found at any value of x in a-Li_xSi_{0.66}Sn_{0.34}. However, based on differential capacity vs. potential results for Li/a-Si_{0.66}Sn_{0.34} there is no evidence for two-phase regions during the charge and discharge profile. Thus, the two local environments must appear at random throughout the particles. We speculate that the charge-discharge hysteresis in the voltage-capacity profile of Li/a-Li_xSi_{0.66}Sn_{0.34} cells is caused by the energy dissipated during the changes in the local atomic environment around the host atoms.

IT 112315-74-9, Silicon 60, tin 40 (atomic) 113320-53-9,

Silicon 64, tin 36 (atomic) 116520-51-5, Silicon 47, tin 53 (atomic) 518302-62-0, Silicon 66, tin 34 (atomic)

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(battery electrodes; electrochem. reaction of Li with amorphous Si-Sn alloys for battery)

electrodes)

RN 112315-74-9 HCAPLUS

CN Tin alloy, base, Sn 74,Si 26 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	74	7440-31-5
Si	26	7440-21-3

RN 113320-53-9 HCAPLUS

CN Tin alloy, base, Sn 70,Si 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	70	7440-31-5
Si	30	7440-21-3

RN 116520-51-5 HCAPLUS

CN Tin alloy, base, Sn 83,Si 17 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	83	7440-31-5
Si	17	7440-21-3

RN 518302-62-0 HCAPLUS

CN Tin alloy, base, Sn 69,Si 31 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Sn	69	7440-31-5
Si	31	7440-21-3

RETABLE

Referenced Author (RAU)	Year VOL PG (R PY) (R VL) (R PG)	Referenced Work (RWK)	Referenced File
Beaulieu, L	2001 4 9	Electrochim Solid-St	
Boukamp, B	1981 128 725	J Electrochim Soc	HCAPLUS
Courtney, I	1998 58 23	Phys Rev B	
Dahn, J	1998 111 289	Solid State Ionics	HCAPLUS
Kittel, C	1996	Introduction to Soli	
Maruyama, T	1997 144 4350	J Electrochim Soc	HCAPLUS
Richard, M	1997 144 554	J Electrochim Soc	HCAPLUS
Turner, R	2000	WO 00/03444	
Winter, M	2000 45 31	Electrochim Acta	

L106 ANSWER 19 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:795980 HCAPLUS Full-text

DN 138:29599

TI Measuring thickness changes in thin films due to chemical reaction by monitoring the surface roughness with in situ atomic force microscopy

AU Beaulieu, L. Y.; Rutenberg, A. D.; Dahn, J. R.

CS Physics Department, Dalhousie University, Halifax, NS, B3H 3J5, Can.

SO Microscopy and Microanalysis (2002), 8(5), 422-428

CODEN: MIMIF7; ISSN: 1431-9276

PB Cambridge University Press
 DT Journal
 LA English
 AB Measuring the changing thickness of a thin film, without a reference, using an atomic force microscope (AFM) is problematic. Here, we report a method for measuring film thickness based on in situ monitoring of surface roughness of films as their thickness changes. For example, in situ AFM roughness measurements have been performed on alloy film electrodes on rigid substrates as they react with lithium electrochem. The addition (or removal) of lithium to (or from) the alloy causes the latter to expand (or contract) reversibly in the direction perpendicular to the substrate and, in principle, the change in the overall height of these materials is directly proportional to the change in roughness. If the substrate on which the film is deposited is not perfectly smooth, a correction to the direct proportionality is needed and this is also discussed.
 IT 122168-06-3, Silicon 70, tin 30 (atomic)
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)
 (films; measuring thickness changes in thin films due to chemical reaction by monitoring the surface roughness with in situ atomic force microscopy)
 RN 122168-06-3 HCAPLUS
 CN Tin alloy, base, Sn 64, Si 36 (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Sn	64	7440-31-5
Si	36	7440-21-3

RETABLE

Referenced Author (RAU)	Year VOL PG Referenced Work (RPY) (RVL) (RPG)	Referenced Work (RWK)	Referenced File
Beaulieu, L	2001 4 A137 Electrochim Solid St HCAPLUS		
Beaulieu, L	2000 147 3206 J Electrochim Soc HCAPLUS		
Beaulieu, L	2001 72 3313 Rev Sci Instrum HCAPLUS		
Dongmo, S	1998 66 S819 Appl Phys A HCAPLUS		
Groisman, A	1994 25 415 Europhys Lett HCAPLUS		
Haering, P	1995 385 273 J Electroanal Chem HCAPLUS		
Idota, Y	1997 276 1395 Science HCAPLUS		
Kitsunezaki, S	1999 60 6449 Phys Rev E HCAPLUS		
Kowal, A	1996 12 2332 Langmuir HCAPLUS		
Manne, S	1991 251 183 Science HCAPLUS		
Mao, O	1999 146 405 J Electrochim Soc HCAPLUS		
Quate, C	1994 299 1980 Surf Sci		
Turner, R	2000 World Intellectual P		
Yang, J	1996 90 281 Solid State Ionics HCAPLUS		

L106 ANSWER 20 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:158133 HCAPLUS Full-text

DN 136:209112

TI Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices

IN Lieber, Charles M.; Cui, Ying; Duan, Xiangfeng; Huang, Yung-Sheng

PA President and Fellows of Harvard College, USA

SO PCT Int. Appl., 173 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 3

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 2002017362	A2	20020228	WO 2001-US26298	20010822 <--
WO 2002017362	A8	20021121		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
CA 2417992	A1	20020228	CA 2001-2417992	20010822 <--
AU 200186649	A	20020304	AU 2001-86649	20010822 <--
US 2002130311	A1	20020919	US 2001-935776	20010822 <--
EP 1314189	A2	20030528	EP 2001-966109	20010822 <--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
JP 2004507104	T	20040304	JP 2002-521336	20010822 <--
CN 1550030	A	20041124	CN 2001-816168	20010822 <--
EP 1736760	A2	20061227	EP 2006-121157	20011211 <--
R: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE, TR, AL, BA, HR, MK, YU				
AU 2002324426	A1	20030121	AU 2002-324426	20020520 <--
JP 2004535066	T	20041118	JP 2003-511316	20020520 <--
US 2006054936	A1	20060316	US 2004-12549	20041215 <--
US 2005164432	A1	20050728	US 2005-82372	20050317 <--
US 7211464	B2	20070501		
US 2006175601	A1	20060810	US 2005-172408	20050630 <--
US 2007026645	A1	20070201	US 2006-543326	20061004 <--
US 2007032051	A1	20070208	US 2006-543336	20061004 <--
US 2007032023	A1	20070208	US 2006-543352	20061004 <--
US 2007032052	A1	20070208	US 2006-543746	20061004 <--
US 2007048492	A1	20070301	US 2006-543337	20061004 <--
PRAI US 2000-226835P	P	20000822	<--	
US 2000-254745P	P	20001211	<--	
US 2001-291896P	P	20010518	<--	
US 2001-292035P	P	20010518	<--	
US 2001-292045P	P	20010518	<--	
US 2001-292121P	P	20010518	<--	
US 2001-935776	A	20010822	<--	
WO 2001-US26298	W	20010822	<--	
US 2001-348313P	P	20011109	<--	
EP 2001-990181	A3	20011211	<--	
US 2001-20004	A	20011211	<--	
US 2002-354642P	P	20020206	<--	
US 2002-152490	B2	20020520	<--	
WO 2002-US16133	W	20020520	<--	
US 2002-196337	A1	20020716	<--	
US 2003-720020	B1	20031121		
US 2005-58443	B1	20050214		
US 2005-82372	A1	20050317		
AB A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension <500 nm, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of <500 nm. Such a semiconductor may comprise an interior core comprising a 1st semiconductor; and an exterior shell comprising a different material than the 1st semiconductor. Such a semiconductor may be elongated				

and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width which is >4:1, or >10:1, or >100:1, or even >1000:1. At least one portion of such a semiconductor may have a smallest width of <200 nm, or <150 nm, or <100 nm, or <80 nm, or <70 nm, or <60 nm, or <40 nm, or <20 nm, or <10 nm, or even <5 nm. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.

IT 71818-44-5

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(preparation of elongated doped semiconductor for devices)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry	Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 21 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2001:796591 HCPLUS Full-text

DN 135:346872

TI Anode active mass for secondary nonaqueous electrolyte
batteries and its manufacture

IN Takeshita, Yukiteru; Kamishiro, Koichi; Negi, Noriyuki; Uenaka, Hideya;
Kohiyori, Motoji; Nitta, Yoshiaki; Shimamura, Harushige; Okamura, Kazuhiro

PA Sumitomo Metal Industries, Ltd., Japan; Matsushita Electric Industrial
Co., Ltd.

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----

PI JP 2001307723 A 20011102 JP 2000-118648 20000419 <--

PRAI JP 2000-118648 20000419 <--

AB The **anode** active mass contains an **alloy** having a 1st group of phases of elements, capable of reversibly bonding with Li, and a 2nd group of phases containing ≥ 1 element in the 1st group and ≥ 1 Group IIIA, IIIA, IVA and transition metals, and contains Li added before the solidification of the **alloy**. The active mass is prepared by adding a Li source to a melt of the **alloy** components and solidifying the **alloy**.

IT 71818-44-5

RL: MSC (Miscellaneous)
(structure and manufacture of multiphase lithium alloying

anode active mass for secondary lithium batteries)
RN 71818-44-5 HCAPLUS
CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
	Registry Number
Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 22 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
AN 2001:780558 HCAPLUS Full-text
DN 135:346844
TI Anode active mass for secondary nonaqueous batteries and its manufacture
IN Takeshita, Yukiteru; Negi, Noriyuki; Yamamoto, Hiroyoshi; Kohiyori, Motoji; Yonemura, Koji; Nitta, Yoshiaki; Shimamura, Harushige
PA Sumitomo Metal Industries, Ltd., Japan; Matsushita Electric Industrial Co., Ltd.
SO Jpn. Kokai Tokkyo Koho, 16 pp.
CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2001297757	A	20011026	JP 2000-113912	20000414 <--
PRAI JP 2000-113912		20000414 <--		

AB The anode active mass has a 1st part containing ≥ 1 Li intercalating metal (M) phase, and a 2nd part containing ≥ 1 phases of intermetallic compds. or solid solns. of M with >1 non-M elements selected from Group 2, transition metal, and Group 13-15 elements or the non-M element alone; where a portion of the 2nd part has a granular and/or an acicular structure, and a portion of the 2nd part is surrounded by a layered structure of the 2 parts or by the 1st part or the 1st part in a fine granular structure. The anode active mass is prepared by a rapidly solidifying melted composition at $\geq 100^\circ/\text{s}$.

IT 158616-16-1P, Tin silicide (SnSi₂)

RL: DEV (Device component use); IMF (Industrial manufacture); PRP (Properties); PREP (Preparation); USES (Uses)
(compsns. and structure and manufacture of multiphase anode active mass for secondary lithium batteries)

RN 158616-16-1 HCAPLUS

CN Tin silicide (SnSi₂) (9CI) (CA INDEX NAME)

Component	Ratio	Component
		Registry Number
Sn	1	7440-31-5
Si	2	7440-21-3

L106 ANSWER 23 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
AN 2001:773655 HCAPLUS Full-text
DN 136:93979
TI Direct energy gap group IV semiconductor alloys and quantum dot arrays in Sn_xGel-x/Ge and Sn_xSil-x/Si alloy systems
AU Ragan, Regina; Min, Kyu S.; Atwater, Harry A.
CS Thomas J. Watson Laboratory of Applied Physics, California Institute of

SO Technology, Pasadena, CA, 91125, USA
 SO Materials Science & Engineering, B: Solid-State Materials for Advanced
 Technology (2001), B87(3), 204-213
 CODEN: MSBTEK; ISSN: 0921-5107
 PB Elsevier Science S.A.
 DT Journal
 LA English
 AB The narrow gap semiconductor **alloys** Sn_xGe_{1-x} and Sn_xSi_{1-x} offer the possibility for engineering tunable direct energy gap Group IV semiconductor materials. For pseudomorphic Sn_xGe_{1-x} **alloys** grown on Ge (001) by MBE, an indirect-to-direct bandgap transition with increasing Sn composition is observed, and the effects of misfit on the bandgap analyzed in terms of a deformation potential model. Key results are that pseudomorphic strain has only a very slight effect on the energy gap of Sn_xGe_{1-x} **alloys** grown on Ge (001) but for Sn_xGe_{1-x} **alloys** grown on Ge (111) no indirect-to-direct gap transition is expected. In the Sn_xSi_{1-x} system, ultrathin pseudomorphic epitaxially-stabilized α -Sn_xSi_{1-x} **alloys** are grown on Si (001) substrates by conventional MBE. Coherently strained α -Sn quantum dots are formed within a defect-free Si (001) crystal by phase separation of the thin Sn_xSi_{1-x} layers embedded in Si (001). Phase separation of the thin **alloy** film, and subsequent evolution occurs via growth and coarsening of regularly-shaped α -Sn quantum dots that appear as 4-6 nm diameter tetrakaidecahedra with facets oriented along elastically soft <100> directions. Attenuated total reflectance IR absorption measurements indicate an absorption feature due to the α -Sn quantum dot array with onset at .apprx.0.3 eV and absorption strength of 8 + 103 cm⁻¹, which are consistent with direct interband transitions.
 IT 71818-44-5P
 RL: DEV (Device component use); PNU (Preparation, unclassified); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (direct energy gap group IV semiconductor **alloys** and quantum dot arrays in Sn_xGe_{1-x}/Ge and Sn_xSi_{1-x}/Si **alloy** systems)
 RN 71818-44-5 HCAPLUS
 CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component
 Registry Number

Si	7440-21-3
Sn	7440-31-5

RETABLE

Referenced Author (RAU)	Year VOL PG	Referenced Work (RWP)	Referenced File
<hr/>			
Apetz, R	1995 66 1445	Appl Phys Lett	HCAPLUS
Bardeen, J	1950 80 172	Phys Rev	HCAPLUS
Eaglesham, D	1993 70 1643	Phys Rev Lett	HCAPLUS
Hasegawa, H	1963 129 1029	Phys Rev	,
He, G	1997 79 1937	Phys Rev Lett	HCAPLUS
Herring, C	1956 101 944	Phys Rev	HCAPLUS
Jenkins, D	1987 36 7994	Phys Rev B	HCAPLUS
Kang, N	1998 67 2439	J Phys Soc Jpn	HCAPLUS
Kleiner, W	1959 2 334	Phys Rev Lett	HCAPLUS
Krishnamurty, M	1991 69 16461	J Appl Phys	
Min, K	1998 72 1884	Appl Phys Lett	HCAPLUS
People, R	1985 32 1405	Phys Rev	HCAPLUS
Pikus, G	1959 1 1642	Fiz Tverd Tela	HCAPLUS
Pikus, G	1960 1 1502	Sov Phys Solid State	
Pollak, F	1968 172 816	Phys Rev	HCAPLUS

Ragan, R	2000	77	3418	Appl Phys Lett	HCAPLUS
Soref, R	1991	69	539	J Appl Phys	HCAPLUS
Sunamura, H	1995	66	3024	Appl Phys Lett	HCAPLUS
Swalin, R	1972		141	Thermodynamics of So	
Wegscheider, W	1992	123	75	J Cryst Growth	HCAPLUS
Zinke-Allmang, M	1992	16	377	Sur Sci Rep	HCAPLUS

L106 ANSWER 24 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2001:763375 HCAPLUS Full-text

DN 135:320488

TI Secondary nonaqueous electrolyte batteries

IN Nitta, Yoshiaki; Bito, Yasuhiko; Sato, Toshitada; Okamura, Kazuhiro; Shimamura, Harunari

PA Matsushita Electric Industrial Co., Ltd., Japan

SO PCT Int. Appl., 34 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
--	------------	------	------	-----------------	------

PI	WO 2001078167	A1	20011018	WO 2001-JP2842	20010330 <--
----	---------------	----	----------	----------------	--------------

W: CN, KR, US
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE, TR

JP 2001291512	A	20011019	JP 2000-103039	20000405 <--
---------------	---	----------	----------------	--------------

EP 1274140	A1	20030108	EP 2001-917771	20010330 <--
------------	----	----------	----------------	--------------

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, FI, CY, TR

US 2003039891	A1	20030227	US 2002-129240	20020501 <--
---------------	----	----------	----------------	--------------

PRAI JP 2000-103039 A 20000405 <--

WO 2001-JP2842	W	20010330	<--
----------------	---	----------	-----

AB The batteries have a nonaq. electrolyte solution, separators, Li intercalating cathodes, and Li intercalating anodes; where the anode active mass particles have a core of a 1st solid phase containing Si, Sn, and/or Zn, a shell of a 2nd solid phase of a solid solution or an intermetallic compound of the 1st phase component and ≥ 1 of Si, Sn, Zn, and Group 2-14 elements other than C, with the 1st and/or 2nd phase being amorphous.

IT 71818-44-5

RL: DEV (Device component use); USES (Uses)
(anode active mass particles with intermetallic
compound or solid solution shells for secondary lithium batteries)

RN 71818-44-5 HCAPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	

Si	7440-21-3
----	-----------

Sn	7440-31-5
----	-----------

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Asahi Chemical Industry	1998			JP 10223221 A	HCAPLUS
Hitachi Maxell Ltd	1988			JP 6313267 A	
Matsushita Electric Ind	2000			JP 200030703 A	
Matsushita Electric Ind	2001			JP 2001102052 A	HCAPLUS
Mitsubishi Cable Indust	1995			JP 07296812 A	HCAPLUS

L106 ANSWER 25 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:729929 HCAPLUS Full-text
 DN 135:275368
 TI Material for cathode of nonaqueous electrolyte secondary
battery
 IN Tsujimoto, Hisashi; Yamamoto, Yoshihatsu; Kuyama, Junji; Nagamine,
 Masayuki; Omaru, Atsuo; Tanizaki, Hiroaki
 PA Sony Corp., Japan
 SO Eur. Pat. Appl., 19 pp.
 CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
PI	EP 1139468	A1	20011004	EP 2001-108038	20010329 <--	
	EP 1139468	B1	20040519			
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO					
	JP 2001345101	A	20011214	JP 2001-56346	20010301 <--	
	TW 492212	B	20020621	TW 2001-90107405	20010328 <--	
	CN 1320980	A	20011107	CN 2001-117869	20010330 <--	
	US 2002012842	A1	20020131	US 2001-822926	20010330 <--	
	US 6884543	B2	20050426			
	US 2005191551	A1	20050901	US 2005-113771	20050425 <--	
	US 7045251	B2	20060516			
PRAI	JP 2000-93378	A	20000330	<--		
	JP 2001-56346	A	20010301	<--		
	US 2001-822926	A1	20010330	<--		

AB Disclosed is a nonaq. electrolyte secondary **battery** having an excellent preservation characteristics at a high temperature and charging/discharging cycle characteristics. A rolled body in which a strip-shape pos. **electrode** and neg. **electrode** are rolled with a separator in-between is provided inside a **battery** can. The pos. **electrode** contains $LixMn_{2-y}M_{y}O_4$ (where, Ma is at least one element selected from the group consisting of metal elements other than Mn, and B) and $LiNi_{1-z}M_{z}O_2$ (where, Mb is at least one element selected from the group consisting of metal elements other than Ni, and B). By replacing part of Mn and Ni with other elements, the crystal structure can be stabilized. Thereby, the capacity retention ratio after preservation at a high temperature, and a heavy load discharging power under a high elec. potential cutoff can be improved. The mean **particle** size of **particles** of the above-mentioned oxides are preferable to be 30 μm and below so that an excellent charging/discharging cycle characteristic can be obtained.

IT 71818-44-5

RL: DEV (Device component use); USES (Uses)
 (material for cathode of nonaq. electrolyte secondary
battery)

RN 71818-44-5 HCAPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	

Si	7440-21-3
Sn	7440-31-5

RETABLE

Referenced Author (RAU)	Year VOL PG Referenced Work (RPY) (RVL) (RPG) (RWK) Referenced File
----------------------------	--

Koksbang, R	1999	IWO 9953556 A	HCAPLUS
Koksbang, R	1999	IWO 9959214 A	HCAPLUS
Pynenburg, R	1995	US 5429890 A	HCAPLUS

L106 ANSWER 26 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2001:692228 HCAPLUS Full-text

DN 135:259779

TI Silicon-tin-based alloy for battery anode,
its manufacture by rapid cooling, and nonaqueous electrolyte secondary
battery using it

IN Shimamura, Harushige; Nitta, Yoshiaki; Negi, Noriyuki; Uenaka, Hideya

PA Matsushita Electric Industrial Co., Ltd., Japan; Sumitomo Metal
Industries, Ltd.

SO Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2001256974	A	20010921	JP 2000-65572	20000309 <--
	JP 3546798	B2	20040728		

PRAI JP 2000-65572 20000309 <--

AB The alloy, whose surface oxide film is removed, comprises (1) an A phase containing Si and/or Si surrounded with a B phase containing intermetallic compds. or solid solns. of Si or Sn with ≥ 1 other element selected from Group 2A, 3B-2B transition metal, 3A, 4A except C, and 5A elements on the long-form periodic table or (2) a Si phase surrounded with a Sn phase. The alloy is manufactured by (1) cooling a Si-Sn molten alloy at ≥ 100 degree/s, followed by immersing in an aqueous acidic solution. The battery uses the above alloy as an anode. The battery shows high discharge capacity, energy-conversion efficiency, and long cycle life.

IT 113320-53-9 186143-06-6 253344-64-8

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(manufacture of silicon-tin-based alloy for nonaq. electrolyte secondary battery anode by rapid cooling)

RN 113320-53-9 HCAPLUS

CN Tin alloy, base, Sn 70, Si 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	70	7440-31-5
Si	30	7440-21-3

RN 186143-06-6 HCAPLUS

CN Silicon alloy, base, Si 70, Sn 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	70	7440-21-3
Sn	30	7440-31-5

RN 253344-64-8 HCAPLUS

CN Tin alloy, base, Sn 90, Si 10 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Sn	90	7440-31-5
Si	10	7440-21-3

L106 ANSWER 27 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2001:668291 HCAPLUS Full-text

DN 135:213486

TI Process for producing photoelectric conversion device

IN Sakakura, Masayuki; Arai, Yasuyuki; Yamazaki, Shunpei

PA Semiconductor Energy Laboratory Co., Ltd., Japan

SO U.S., 35 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 4

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6287888	B1	20010911	US 1998-219722	19981223 <--
	JP 11195800	A	19990721	JP 1997-369413	19971226 <--
	JP 11204817	A	19990730	JP 1998-18097	19980112 <--
	JP 3490278	B2	20040126		
	JP 11204812	A	19990730	JP 1998-18099	19980112 <--
	JP 11204813	A	19990730	JP 1998-18100	19980112 <--
	US 2002000631	A1	20020103	US 2001-939768	20010828 <--
	US 6531711	B2	20030311		
PRAI	JP 1997-369413	A	19971226	<--	
	JP 1998-18097	A	19980112	<--	
	JP 1998-18099	A	19980112	<--	
	JP 1998-18100	A	19980112	<--	
	US 1998-219722	A3	19981223	<--	

AB The productivity of a photoelec. conversion device is increased by sep. conducting a step of forming a microcryst. semiconductor film and an amorphous semiconductor film without adding an impurity gas. In a process for producing a photoelec. conversion device comprising a substrate having thereon one or plural unit cells comprising a first **electrode**, a photoelec. conversion layer, and a second **electrode** laminated with each other, the photoelec. conversion device is produced by conducting a step of forming a first **electrode**, a step of forming a first microcryst. semiconductor film without adding an n type or p type conductive type determining impurity element, a step of forming a substantially intrinsic amorphous semiconductor film, and a step of forming a second microcryst. semiconductor film without adding an n type or p type conductive type determining impurity element, by a plasma CVD method, and after the step of forming the second **electrode**, conducting a step of injecting a p type conductive type determining impurity element from the surface of the second **electrode** to the second microcryst. semiconductor film, followed by heating.

IT 71818-44-5P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(process for producing photoelec. conversion device)

RN 71818-44-5 HCAPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
	Registry Number
Si	7440-21-3

Sn 7440-31-5

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Hudgens	1988			US 4737379	HCAPLUS
Ishihara	1985			US 4492605	HCAPLUS
Izu	1983			US 4410558	HCAPLUS
Izu	1985			US 4519339	HCAPLUS
Masayuki, S	1999		1	Method and Apparatus	
Matsuyama	1998			US 5716480	HCAPLUS
Shinohara	1998			US 5736431	HCAPLUS
Takenouchi	1995			US 5427961	HCAPLUS
Yamazaki	1992			US 5164322	HCAPLUS
Yang	1986			US 4624862	HCAPLUS

L106 ANSWER 28 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2001:655021 HCAPLUS Full-text

DN 135:229341

TI Nonaqueous electrolyte secondary batteries with excellent cycle characteristics and high discharge capacity

IN Nakamoto, Takayuki; Nitta, Yoshiaki; Shimamura, Harushige; Negi, Noriyuki; Yamamoto, Hiroyoshi; Takeshita, Yukiteru; Yonemura, Koji

PA Matsushita Electric Industrial Co., Ltd., Japan; Sumitomo Metal Industries, Ltd.

SO Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2001243946	A	20010907	JP 2000-53317	20000229 <--
	JP 3882447	B2	20070214		

PRAI JP 2000-53317 20000229 <--

AB The anodes of the batteries include composite particles consisting of (A) a core particle having solid phase A which contains Si, Sn, and/or Zn and (B) a (partial) coating having solid phase B which is a solid solution or intermetallic compound of Si, Sn, and/or Zn with ≥ 1 of Group 2, 12, 13, 14 elements and transition metals (excluding A-forming elements and C), and the composite particles also contain ceramics. The ceramics may be selected from SiC, Si₃N₄, Al₂O₃, TiC, TiB₂, Y₂O₃, ZrB₂, HfB₂, ZrO₂, ZnO, WC, and/or W₂C. The batteries are suitable for use in mobile phones, personal digital assistances, etc.

IT 71818-44-5

RL: DEV (Device component use); USES (Uses)
(composite particle surface; solid solution or intermetallic compound composite particles containing ceramics as nonaq. electrolyte secondary battery anodes)

RN 71818-44-5 HCAPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component
Registry Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 29 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:261437 HCAPLUS Full-text
 DN 134:283272
 TI Secondary nonaqueous electrolyte **battery** using coated alloy composite **particles** in anode
 IN Nitta, Yoshiaki; Yoshizawa, Hiroshi; Shimamura, Harunari
 PA Matsushita Electric Industrial Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2001102052	A	20010413	JP 1999-281309	19991001 <--
PRAI JP 1999-281309		19991001	<--	

AB The **battery** has the **anode** using the composite **particles** consisting of solid phase A as cores and solid phase B as coatings on all or partial surface of the cores, wherein the **particles** are coated with low-m.p. **alloys** containing Ga and In, Sn, and/or Zn. The solid phase A contains Si, Sn, and/or Zn. The solid phase B contains solid solns. or intermetallic compds. of the phase A elements with Group 2, transition, 12, 13, and 14 (excluding C) elements. The low-m.p. **alloy** coatings prevent formation of high-resistivity coatings on the composite **particles** and decrease of conductive network, so that the **battery** has high capacity, good cycle performance, and high-rate discharge performance.

IT 112336-35-3

RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (anode particles; coated alloy composite
 particles in anode for high capacity, cycle, and
 discharge performance of nonaq. **battery**)

RN 112336-35-3 HCAPLUS

CN Tin alloy, base, Sn 81, Si 19 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	81	7440-31-5
Si	19	7440-21-3

IT 51844-78-1

RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (phase component in **particles**; coated alloy
 composite **particles** in anode for high capacity,
 cycle, and discharge performance of nonaq. **battery**)

RN 51844-78-1 HCAPLUS

CN Tin alloy, base, Sn, Si (9CI) (CA INDEX NAME)

Component	Component
Registry Number	
Sn	7440-31-5
Si	7440-21-3

L106 ANSWER 30 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2001:178408 HCAPLUS Full-text

DN 134:230605

TI Use of silicon germanium and other **alloys** as the replacement gate for the fabrication of MOSFET

IN Ma, Yanjun; Tweet, Douglas J.; Evans, David R.; Ono, Yoshi
 PA Sharp Laboratories of America, Inc., USA
 SO U.S., 13 pp., Cont.-in-part of U.S. Ser. No. 28,157.
 CODEN: USXXAM

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6200866	B1	20010313	US 1999-410346	19990930 <--
	US 6133106	A	20001017	US 1998-28157	19980223 <--
	JP 2001102583	A	20010413	JP 2000-261913	20000830 <--
	JP 3859439	B2	20061220		
	TW 501205	B	20020901	TW 2000-89120365	20000930 <--
PRAI	US 1998-28157	A2	19980223	<--	
	US 1999-410346	A	19990930	<--	

AB A method of fabricating a MOSFET is provided, including; depositing an oxide layer on a Si substrate for device isolation; forming a Si based **alloy** island above a gate region in the substrate, in which the Si based **alloy** comprises a Si-Ge **alloy** or a Si-Sn **alloy** or another **alloy** of Group IV-B elements; building a sidewall about the Si based **alloy** island; forming a source region and a drain region in the substrate; removing the Si based **alloy** island, thereby leaving a void over the gate region; filling the void and the areas over the source region and the drain region; and planarizing the upper surface of the structure by chemical mech. polishing. Alternative embodiments providing conventional and raised source/drain structures are disclosed.

IT 329192-77-0, Silicon 0-95, tin 5-100 (atomic)

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(use of silicon germanium and other **alloys** as replacement gate for fabrication of MOSFET)

RN 329192-77-0 HCAPLUS

CN Tin alloy, base, Sn 18-100, Si 0-82 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	18 - 100	7440-31-5
Si	0 - 82	7440-21-3

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Anon	1990 57	2202	Appl Phys Lett		
Anon	1992 139	2943	J Electrochem Soc		
Chatterjee		29.2.2	presented at Int'l E		
Doyle	1999		US 5858843	HCAPLUS	
Ismail	1999		US 5955759	HCAPLUS	
King		10.4.1	presented by Int'l E		
Lee	1999		US 5856225	HCAPLUS	
Lee	1999 20	232	IEEE Electron Device	HCAPLUS	
Yagishita		29.3.1	presented at Int'l E		

L106 ANSWER 31 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:757024 HCAPLUS Full-text

DN 133:337711

TI Nonaqueous electrolyte secondary cell

IN Shimamura, Harunari; Nitta, Yoshiaki

PA Matsushita Electric Industrial Co., Ltd., Japan

SO PCT Int. Appl., 29 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 7

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000063986	A1	20001026	WO 2000-JP2502	20000418 <--
	W: US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	JP 2001006677	A	20010112	JP 2000-114799	20000417 <--
	JP 2001006667	A	20010112	JP 2000-114800	20000417 <--
	EP 1109239	A1	20010620	EP 2000-917330	20000418 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
	US 6653019	B1	20031125	US 2001-719532	20010228 <--
PRAI	JP 1999-112073	A	19990420	<--	
	JP 1999-112074	A	19990420	<--	
	US 1998-90484	A2	19980603	<--	
	WO 2000-JP2502	W	20000418	<--	
AB	A nonaq. electrolyte secondary cell comprises a neg. electrode which comprises, as its main material, composite particles having nuclear particles comprising at least one constituent element selected from tin, silicon and zinc and, covering at least a part of the circumference thereof, a solid solution or an intermetallic compound of the constituent element with at least one element selected from the group consisting of 2 Group elements exclusive of the constituent elements of nuclear particles , transition elements, Group 12 elements, Group 13 elements and Group 14 elements exclusive of carbon of the Periodic Table, and in that the lithium occluded in the composite particles has a NMR signal in the range of -10 to 40 ppm and also at least one other signal in the range of -10 to 4 ppm. The nonaq. electrolyte secondary cell has higher energy d. and improved in life characteristics in charge-discharge cycle, as compared to a conventional cell using a carbon material for a neg. electrode .				
IT	51844-78-1				
	RL: DEV (Device component use); USES (Uses)				
	(neg. electrode in nonaq. electrolyte secondary cell containing)				
RN	51844-78-1	HCAPLUS			
CN	Tin alloy, base, Sn, Si (9CI)	(CA INDEX NAME)			

Component	Component
Registry Number	

Sn	7440-31-5
Si	7440-21-3

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Hitachi Ltd				US 6030726 A	HCAPLUS
Hitachi Ltd				KR 98086348 A	
Hitachi Ltd	1998			JP 10208741 A	HCAPLUS
Hitachi Ltd	1998			JP 10321225 A	HCAPLUS
Kao Corporation	1999			JP 11297311 A	HCAPLUS
Matsushita Electric Ind				JP 200030703 A	
Matsushita Electric Ind	1998			EP 0883199 A	HCAPLUS
Tokuyama Corp	1998			JP 10316426 A	HCAPLUS

L106 ANSWER 32 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:741125 HCAPLUS Full-text

DN 133:284183

TI Material for nonaqueous electrolyte **battery anode**
composed of mixture of non-carbon and carbon materials

IN Yamada, Shinichiro; Endo, Takuya; Imoto, Hiroshi; Li, Guohua; Tanizaki,
Hiroaki

PA Sony Corp., Japan

SO Eur. Pat. Appl., 13 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1045465	A2	20001018	EP 2000-108189	20000413 <--
	EP 1045465	A3	20040721		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	JP 2000357514	A	20001226	JP 1999-365065	19991222 <--
	JP 2000357515	A	20001226	JP 1999-365066	19991222 <--
	CA 2305837	A1	20001014	CA 2000-2305837	20000411 <--
	US 6300013	B1	20011009	US 2000-549199	20000413 <--
	CN 1272698	A	20001108	CN 2000-117946	20000414 <--
	TW 451519	B	20010821	TW 2000-89107021	20000414 <--
PRAI	JP 1999-107158	A	19990414	<--	
	JP 1999-365065	A	19991222	<--	
	JP 1999-365066	A	19991222	<--	

AB A material for an **anode** (capable of preventing change in the volume of an active material occurring when lithium is doped/dedoped to improve resistance against cycle operations) contains a mixture of a non-carbon material and a carbon material, wherein when an assumption is made that the average **particle size** of the non-carbon material is RM and the average **particle size** of the carbon material is RC, the ratio RM/RC is not higher than one, and when an assumption is made that the weight of the non-carbon material is WM and the weight of the carbon is WC, the ratio WM/WC is not higher than one or a mixture of a silicon compound and a carbon material, wherein when an assumption is made that the average **particle size** of the silicon compound is RSi and the average **particle size** of the carbon material is RC, the ratio RSi/RC is not higher than one.

IT 103289-29-8, Tin silicide

RL: DEV (Device component use); USES (Uses)
(material for nonaq. electrolyte **battery anode**
composed of mixture of non-carbon and carbon materials)

RN 103289-29-8 HCAPLUS

CN Tin silicide (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
Sn	x	7440-31-5
Si	x	7440-21-3

L106 ANSWER 33 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:725898 HCAPLUS Full-text

DN 133:298813

TI Nonaqueous electrolyte secondary cell and its negative **electrode**

IN Kasamatsu, Shinji; Shimamura, Harunari; Nitta, Yoshiaki

PA Matsushita Electric Industrial Co., Ltd., Japan

SO PCT Int. Appl., 31 pp.
CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000060681 W: US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE	A1	20001012	WO 2000-JP1924	20000329 <--
	JP 2000285919	A	20001013	JP 1999-92575	19990331 <--
	EP 1100134	A1	20010516	EP 2000-912892	20000329 <--
	EP 1100134	B1	20051116		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
	US 6548208	B1	20030415	US 2001-701277	20010122 <--
PRAI	JP 1999-92575	A	19990331 <--		
	WO 2000-JP1924	W	20000329 <--		

AB A neg. plate for a nonaq. electrolyte secondary cell has a high capacity and a discharge capacity hardly decreasing because of the charging/discharging cycle, and both properties are achieved by improving the elec. conductivity at the surface of **particles** of the material of the neg. plate. The material of the neg. plate contains **particles** and the nuclei of the **particles** are solid phase A coated wholly or partially with solid phase B. The solid phase A contains silicon as a constituent element, and the solid phase B is either a solid solution containing silicon and at least one element selected from Group 2, transition elements, Group 12, Group 13, and Group 14 of the periodic table except carbon and silicon or an intermetallic compound. A nonaq. electrolyte secondary cell including such a material is also disclosed.

IT 112336-35-3

RL: DEV (Device component use); USES (Uses)
(in neg. **electrode** for nonaq. electrolyte secondary cell)

RN 112336-35-3 HCAPLUS

CN Tin alloy, base, Sn 81, Si 19 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	81	7440-31-5
Si	19	7440-21-3

RETABLE

Referenced Author (RAU)	Year	VOL	PG	Referenced Work (RWK)	Referenced File
Hitachi Maxell Ltd	1998			JP 10125309 A	HCAPLUS
Matsushita Electric Ind	1998			JP 10308208 A	HCAPLUS
Matsushita Electric Ind	2000			JP 200030703 A	
Sony Corp				JP 1083817 A	
Sony Corp				US 6042969 A	HCAPLUS
Sony Corp	1998			EP 820110 A2	HCAPLUS
Sumitomo Metal Industri	1998			JP 10302770 A	HCAPLUS

L106 ANSWER 34 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:210572 HCAPLUS Full-text

DN 132:210263

TI Anode materials for secondary lithium batteries, anodes from the materials, the batteries, and manufacture of the anodes and the batteries

IN Kawakami, Soichiro; Asao, Masaya
 PA Canon Kabushiki Kaisha, Japan
 SO PCT Int. Appl., 111 pp.
 CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000017948	A1	20000330	WO 1999-JP5092	19990917 <--
	W: CA, CN, KR, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	JP 2000311681	A	20001107	JP 1999-261516	19990916 <--
	JP 3620703	B2	20050216		
	CA 2310475	A1	20000330	CA 1999-2310475	19990917 <--
	EP 1039568	A1	20000927	EP 1999-943402	19990917 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
	CN 1492525	A	20040428	CN 2001-2001140730	19990917 <--
	TW 468287	B	20011211	TW 1999-88116171	19990918 <--
	US 6949312	B1	20050927	US 2000-554794	20000814 <--
	HK 1061924	A1	20060915	HK 2004-104859	20040706 <--
	US 2005175901	A1	20050811	US 2005-104440	20050413 <--
	US 7183018	B2	20070227		
	US 2007031730	A1	20070208	US 2006-544713	20061010 <--
PRAI	JP 1998-282087	A	19980918	<--	
	JP 1999-50471	A	19990226	<--	
	JP 1999-261516	A	19990916	<--	
	WO 1999-JP5092	W	19990917	<--	
	US 2000-554794	A3	20000814	<--	
	US 2005-104440	A3	20050413		
AB	The anode materials contain particles of amorphous non-stoichiometric alloy Sn-A-X, where A = transition metal(s), X is an optional component and is selected from O, F, N, Mg, Ba, Sr, Ca, La, Ce, Si, Ge, C, P, B, Bi, Sb, Al, In, and Zn. The anode have the above anode materials applied on a collector which does not form alloys with Li and are prepared by applying the material on the collector.				
IT	260805-70-7P RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses) (compns. and manufacture of anode materials for secondary lithium batteries)				
RN	260805-70-7 HCPLUS				
CN	Tin alloy, base, Sn 71,Co 18,Si 11 (9CI) (CA INDEX NAME)				

Component	Component	Component
Percent	Registry	Number
Sn	71	7440-31-5
Co	18	7440-48-4
Si	11	7440-21-3

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Fuji Photo Film CoLtd				JP 07249409	HCPLUS
Fuji Photo Film CoLtd				EP 651450 A1	HCPLUS
Fuji Photo Film CoLtd	1998			US 5780181 A	HCPLUS

Fuji Photo Film Co Ltd 1996		JP 08315858 A	HCAPLUS
Seimi Chemical Co Ltd 1999		JP 1145712 A	

L106 ANSWER 35 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2000:191355 HCAPLUS Full-text
 DN 132:224250
 TI Touch panel for display screens
 IN Sato, Hirotoshi; Noda, Kazuhiro; Furukawa, Shuji; Tanimura, Kohtaro
 PA Gunze Ltd., Japan
 SO PCT Int. Appl., 61 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
PI	WO 2000016251	A1	20000323	WO 1999-JP4854	19990908 <--	
	W: CN, KR, US					
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE					
	JP 2000085051	A	20000328	JP 1998-258569	19980911 <--	
	JP 3366864	B2	20030114			
	EP 1031111	A1	20000830	EP 1999-943201	19990908 <--	
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI					
	CN 1508749	A	20040630	CN 2004-10001868	19990908 <--	
	TW 448399	B	20010801	TW 1999-88115580	19990909 <--	
	JP 2003197035	A	20030711	JP 2002-277911	20020924 <--	
	JP 3859569	B2	20061220			
PRAI	JP 1998-256463	A	19980910	<--		
	JP 1998-258569	A	19980911	<--		
	JP 1998-301442	A	19981022	<--		
	CN 1999-801567	A	19990908	<--		
	WO 1999-JP4854	W	19990908	<--		
AB	A touch panel is described for input operations on a liquid crystal display, which has an excellent contact level between an undercoat layer and a substrate on which the undercoat layer is formed. The touch panel is lightwt. with wide operating temperature range and impact resistance. A metal layer is provided between the conductive layer and an undercoat layer, the metal layer being formed from a single metal (e.g., Si, Ti, Sn, Zn) or an alloy. An amorphous polyolefin base resin sheet is used for forming conductive-layer forming members of the touch and display substrates, using a material for forming a supporting member so that a difference between linear expansion coeffs. of the supporting member and each of the conductive-layer forming members is kept within $1 \times 10^{-5}/^{\circ}\text{C}$.					
IT	71818-44-5, Silicon alloy, Si,Sn RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses) (touch panel for display screens)					
RN	71818-44-5 HCAPLUS					
CN	Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)					

Component	Component
Registry Number	

=====+=====	
Si	7440-21-3
Sn	7440-31-5

RETABLE

Referenced Author	Year VOL PG Referenced Work Referenced
-------------------	--

(RAU)	(R PY)	(R VL)	(R PG)	(RWK)	File
Gunze Ltd	1997			JP 09115385 A	
Gunze Ltd	1997			JP 09237159 A	HCAPLUS
Kenichirou, I	1997			US 5668576 A	
Matsushita Electric Ind	1998			JP 10171599 A	HCAPLUS
Seiko Epson Corp	1995			JP 07013678 A	
Tatsuo, O	1986			US 4585689 A	HCAPLUS

L106 ANSWER 36 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:54118 HCAPLUS Full-text

DN 132:66713

TI **Electrode** material for secondary lithium batteries

IN Turner, Robert L.

PA Minnesota Mining and Manufacturing Company, USA

SO PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 2000003444	A1	20000120	WO 1999-US1254	19990121 <--
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
US 6255017	B1	20010703	US 1998-113385	19980710 <--
CA 2337210	A1	20000120	CA 1999-2337210	19990121 <--
AU 9923315	A	20000201	AU 1999-23315	19990121 <--
EP 1099265	A1	20010516	EP 1999-903250	19990121 <--
EP 1099265	B1	20040512		
R: DE, FR, GB, IT				
JP 2002520783	T	20020709	JP 2000-559603	19990121 <--
TW 469661	B	20011221	TW 1999-88111524	19990707 <--
HK 1037061	A1	20050610	HK 2001-107575	20011030 <--
PRAI US 1998-113385	A	19980710 <--		
WO 1999-US1254	W	19990121 <--		
AB An electrode composition that includes an electrode material consisting essentially of a plurality of electrochem. active metal elements in which the electrode material has a microstructure comprising these elements in the form of a mixture that is essentially free of domains measuring greater than about 1000 Å. The electrochem. active metal elements are selected from the group consisting of Al, Si, Sn, Sb, Pb, Ge, Mg, Zn, Cd, Bi, and In.				
IT 71818-44-5 116520-50-4 116520-51-5 170704-95-7 253344-64-8				
RL: DEV (Device component use); USES (Uses) (electrode material for secondary lithium batteries)				
RN 71818-44-5 HCAPLUS				
CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)				

Component	Component
Registry Number	

Si 7440-21-3

Sn 7440-31-5

RN 116520-50-4 HCAPLUS
 CN Tin alloy, base, Sn 72,Si 28 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	72	7440-31-5
Si	28	7440-21-3

RN 116520-51-5 HCAPLUS
 CN Tin alloy, base, Sn 83,Si 17 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	83	7440-31-5
Si	17	7440-21-3

RN 170704-95-7 HCAPLUS
 CN Tin alloy, base, Sn 87,Si 13 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	87	7440-31-5
Si	13	7440-21-3

RN 253344-64-8 HCAPLUS
 CN Tin alloy, base, Sn 90,Si 10 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	90	7440-31-5
Si	10	7440-21-3

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Besenhard, J	1985			US 4547442 A	HCAPLUS
Canon Kk	1996			EP 0690517 A	HCAPLUS
Canon Kk	1998			EP 0855752 A	HCAPLUS
Hirofumi, I	1996			US 5494762 A	HCAPLUS
Macrae, M	1990			US 4915985 A	HCAPLUS
Renata Ag	1995			EP 0664570 A	HCAPLUS
Seiko Instr Inc	1992			JP 04206264 A	HCAPLUS
Toshiba Corp	1998			JP 10003920 A	HCAPLUS
Zlatilova, P	1988	24	71	JOURNAL OF POWER SOU	HCAPLUS

L106 ANSWER 37 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1998:231512 HCAPLUS Full-text

DN 128:273848

TI Positron annihilation studies in SixSn_{1-x} and GexSn_{1-x} alloys

AU Benkabou, F.; Bouhafs, B.; Zaoui, A.; Certier, M.; Aourag, H.

CS Computational Materials Science Lab., Phys. Dep., Univ. Sidi-Bel-Abbes,
Sidi-Bel-Abbes, 22000, Algeria

SO Physica Status Solidi B: Basic Research (1998), 206(2), 635-644

PB CODEN: PSSBBD; ISSN: 0370-1972

DT Wiley-VCH Verlag Berlin GmbH

LA Journal

English

AB The angular correlation of positron annihilation radiation (ACPAR) along different crystallog. directions in SixSn_{1-x} and $\text{Ge}_{x}\text{Sn}_{1-x}$ is calculated. The authors observe that the electron-positron momentum d . increases rapidly with increasing Si and Ge content. The computational technique used here is based on the independent-particle model (IPM) coupled with the use of the electron pseudo-wave and the virtual crystal approximation (VCA) which incorporates compositional disorder as an effective potential. The authors also present the variation of the positron lifetime in these alloys.

IT 71818-44-5

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(calcn. of electron-positron momentum distribution in Si-Sn and Ge-Sn semiconductor alloys in correlation with positron annihilation radiation)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
	Registry Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 38 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1998:128228 HCPLUS Full-text

DN 128:186572

TI Synthesis of non-thermal-equilibrium composition semiconductor by ion-beam-induced epitaxial crystallization

AU Kobayashi, Naoto

CS Electrotechnical Lab., Umezono, Tsukuba, Ibaraki, 305, Japan

SO Hyomen Kagaku (1997), 18(12), 803-809

CODEN: HYKAET; ISSN: 0388-5321

PB Nippon Hyomen Kagakkai

DT Journal; General Review

LA Japanese

AB Ion-beam-induced epitaxial crystallization (IBIEC) is an appropriate method for the crystalline growth of semiconducting materials with nonthermal-equilibrium composition. In this review, with .apprx.28 refs., I focus on the synthesis of the Si-based Group IV semiconductors, such as $\text{Si}_{1-x}\text{Ge}_x$, $\text{Si}_{1-x-y}\text{Ge}_x\text{Cy}$, Si_{1-y}Cy and $\text{Si}_{1-z}\text{Sn}_z$ formed by ion implantation. As far as $\text{Si}_{1-x-y}\text{Ge}_x\text{Cy}$ grown by IBIEC is concerned, Si atoms are substitutionally replaced with C atoms, and hence the lattice matching between $\text{Si}_{1-x-y}\text{Ge}_x\text{Cy}$ and Si is better for IBIEC than for solid phase epitaxial growth (SPEG), because of the formation of SiC in the latter. However, small vacancy clusters are produced in the samples grown by IBIEC. Efforts should be made to annihilate these defects. I also demonstrate the feasibility of synthesizing Si_{1-y}Cy and $\text{Si}_{1-z}\text{Sn}_z$ with nonthermal-equilibrium composition by IBIEC.

IT 71818-44-5

RL: PEP (Physical, engineering or chemical process); PROC (Process)
(synthesis of non-thermal-equilibrium composition semiconductor by ion-beam-induced epitaxial crystallization)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component Component

Registry Number

Si 7440-21-3
Sn 7440-31-5

L106 ANSWER 39 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1997:754524 HCAPLUS Full-text

DN 128:64975

TI Aluminum alloy clad materials showing excellent solderability and high corrosion resistance

IN Hisatomi, Yuji; Shoji, Yoshifusa; Ikeda, Hiroshi

PA Sumitomo Light Metal Industries, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 09302433	A	19971125	JP 1996-140655	19960510 <--
	JP 3222768	B2	20011029		

PRAI JP 1996-140655 19960510 <--

AB In the title materials comprising Al alloy clad cores, Al-Si solder claddings on one side of the cores, and sacrificial anode claddings on the other side, and used by using fluoride fluxes; Mg content in the Al-Si solders is 0-0.02 weight%, and average Mg concentration within 150 (sic) depth from the surfaces is 0-10 atomic%. Preferably, the cores are Al alloys containing Mn 0.4-2.0, Cu 0.25-1.0, Mg 0.2-0.8, Si 0.1-1.0, and Fe 0.06-0.8 weight%, the sacrificial anodes are Al alloys containing Zn 0.5-3.0, Mg 0.2-0.8, and Si 0.06-0.3 weight%, and the solders are Al alloys containing 5.0-15 weight% Si. The claimed materials are manufactured by cold rolling and annealing at 250-350°. The materials are suitable for tubes and sheets for heat exchangers.

IT 12635-40-4

RL: TEM (Technical or engineered material use); USES (Uses)
(solder claddings; composite Al alloys for tubes and plates
for heat exchangers)

RN 12635-40-4 HCAPLUS

CN Aluminum alloy, base, Al 93, Si 7 (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Al	93	7429-90-5
Si	7	7440-21-3

L106 ANSWER 40 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1994:643442 HCAPLUS Full-text

DN 121:243442

TI Electrically conductive glass and their preparation

IN Suzuki, Susumu; Seki, Koichi; Ando, Hidekazu

PA Asahi Glass Co Ltd, Japan

SO Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

PI JP 06191894 A 19940712 JP 1992-357618 19921224 <--
 PRAI JP 1992-357618 19921224 <--

AB The glass comprises an alkali-containing glass successively coated with an oxide film (A) mainly containing Sn and Si (to inhibit alkali diffusion from the glass) as an alkali barrier, and a conductive film (B). The manufacture involves successively forming of A and B on an alkali-containing glass. Preferably, the alkali barrier film has [Sn/(Sn + Si)] ratio 5-95 atomic%, and B is continuously formed by direct-current sputtering after forming A. The glass is heat- and deterioration-resistant.

IT 158616-16-1, Tin silicide (SnSi₂)

RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (sputtering targets; sputtering of alkali barrier films and conductive films on alkali-containing glass)

RN 158616-16-1 HCPLUS

CN Tin silicide (SnSi₂) (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
Sn	1	7440-31-5
Si	2	7440-21-3

L106 ANSWER 41 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1994:312556 HCPLUS Full-text

DN 120:312556

TI Properties of evaporated amorphous silicon-tin and hydrogenated silicon-tin alloys

AU Vergnat, M.; Gerl, M.

CS Lab. Metall. Phys. Sci. Mater., Univ. Nancy 1, Fr.

SO Journal of Materials Science & Technology (Shenyang, China) (1993), 9(2), 79-88

CODEN: JSCTEQ; ISSN: 1005-0302

DT Journal

LA English

AB Amorphous Si_{1-x}Sn_x alloys have been prepared by co-evaporation onto substrates maintained at liquid-nitrogen temperature. Their atomic structure is investigated using d. measurements, scanning high-energy electron diffraction and Moessbauer spectroscopy. Optical and elec. properties are reported. Then, a method to hydrogenate the films during the evaporation process is described and applied to the preparation of amorphous semiconductors from pure silicon to pure tin. Finally, multilayers of type Si/Si:H/ ... or Si:H/Si:D/ ... were studied. The modulation of hydrogen is shown by low-angle neutron scattering, and measurements of hydrogen diffusivity are presented.

IT 62795-20-4 94900-58-0, Silicon 43, tin 57 (atomic)

116520-48-0, Silicon 90, tin 10 (atomic) 116520-50-4,

Silicon 62, tin 38 (atomic) 122168-05-2, Silicon 78, tin 22 (atomic) 155046-43-8, Silicon 87, tin 13 (atomic)

155046-44-9, Silicon 68, tin 32 (atomic) 155046-45-0, Silicon 53, tin 47 (atomic)

RL: PRP (Properties)

(structural and optical and elec. properties of evaporated hydrogenated amorphous films of)

RN 62795-20-4 HCPLUS

CN Silicon alloy, base, Si 0-100, Sn 0-100 (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Si	0	- 100	7440-21-3
Sn	0	- 100	7440-31-5

RN 94900-58-0 HCPLUS
 CN Tin alloy, base, Sn 85,Si 15 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	85	7440-31-5
Si	15	7440-21-3

RN 116520-48-0 HCPLUS
 CN Silicon alloy, base, Si 68,Sn 32 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	68	7440-21-3
Sn	32	7440-31-5

RN 116520-50-4 HCPLUS
 CN Tin alloy, base, Sn 72,Si 28 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	72	7440-31-5
Si	28	7440-21-3

RN 122168-05-2 HCPLUS
 CN Tin alloy, base, Sn 54,Si 46 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	54	7440-31-5
Si	46	7440-21-3

RN 155046-43-8 HCPLUS
 CN Silicon alloy, base, Si 61,Sn 39 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	61	7440-21-3
Sn	39	7440-31-5

RN 155046-44-9 HCPLUS
 CN Tin alloy, base, Sn 67,Si 33 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	67	7440-31-5
Si	33	7440-21-3

RN 155046-45-0 HCPLUS
 CN Tin alloy, base, Sn 79,Si 21 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Sn	79	7440-31-5
Si	21	7440-21-3

L106 ANSWER 42 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1993:137984 HCPLUS Full-text
 DN 118:137984
 TI Photoannealing of nonsingle-crystal semiconductor films
 IN Yamazaki, Shunpei; Suzuki, Kunio; Nagayama, Susumu; Inujima, Takashi; Abe, Masayoshi; Fukada, Takeshi; Kinka, Mikio; Kobayashi, Ippei; Shibata, Katsuhiko; et al.
 PA Semiconductor Energy Laboratory Co., Ltd. (SEL), Japan
 SO U.S., 12 pp. Cont.-in-part of U.S. 4,986,213.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5171710	A	19921215	US 1990-520998	19900509 <--
	JP 62054423	A	19870310	JP 1985-186372	19850823 <--
	US 4986213	A	19910122	US 1988-251940	19880928 <--
	US 4888305	A	19891219	US 1989-320788	19890309 <--
	JP 2000311857	A	20001107	JP 2000-87442	19910318 <--
	JP 2002110696	A	20020412	JP 2001-258626	19910318 <--
	JP 2002110697	A	20020412	JP 2001-258627	19910318 <--
	JP 2002118119	A	20020419	JP 2001-258628	19910318 <--
	US 5296405	A	19940322	US 1992-933718	19920824 <--
	US 5962869	A	19991005	US 1994-183800	19940121 <--
	US 5753542	A	19980519	US 1995-396780	19950301 <--
	US 2002048891	A1	20020425	US 1998-38926	19980309 <--
	US 6423586	B2	20020723		
	JP 2004343144	A	20041202	JP 2004-236441	20040816 <--
	US 2005181583	A1	20050818	US 2005-105404	20050414 <--
PRAI	JP 1985-170956	A	19850802	<--	
	JP 1985-186372	A	19850823	<--	
	US 1986-891791	B1	19860801	<--	
	US 1988-251940	A2	19880928	<--	
	US 1987-74344	A1	19870714	<--	
	US 1990-520998	A1	19900509	<--	
	JP 1991-80799	A	19910318	<--	
	JP 1998-80263	A3	19910318	<--	
	JP 2000-87442	A3	19910318	<--	
	JP 2001-230625	A3	19910318	<--	
	US 1992-852517	B1	19920317	<--	
	US 1992-933718	A2	19920824	<--	
	US 1994-183800	A3	19940121	<--	
	US 1995-396780	A3	19950301	<--	
	US 1998-38926	A3	19980309	<--	
	US 2001-978696	A3	20011018	<--	

AB A nonsingle-crystal semiconductor film containing Si and $\geq 5 + 10^{18}$ O atoms/cm³ is formed on a substrate, irradiated with light, and a neutralizing agent F, Cl, or H) is introduced into the irradiated film. The film obtained does not degrade even under repetition of the Staebler-Wronski effect.

IT 62795-20-4

RL: USES (Uses)

(photoannealing of nonsingle-crystal films of, containing oxygen)

RN 62795-20-4 HCAPLUS
 CN Silicon alloy, base, Si 0-100,Sn 0-100 (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Si	0 - 100	7440-21-3
Sn	0 - 100	7440-31-5

L106 ANSWER 43 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1992:417886 HCAPLUS Full-text

DN 117:17886

TI Apparatus and methods for forming fine structures

IN Yoneda, Masahiro

PA Mitsubishi Electric Corp., Japan

SO Ger. Offen., 9 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI DE 4128780	A1	19920305	DE 1991-4128780	19910829 <--
JP 04111312	A	19920413	JP 1990-228017	19900831 <--
PRAI JP 1990-228017	A	19900831 <--		

AB The title apparatus comprises plasma deposition apparatus which includes a substrate supporting electrode coupled with means for producing elastic waves on the substrate. The title methods entail carrying out the deposition while producing elastic waves on the substrate so that selective deposition is induced. The films may comprise metals, silicides, carbides, nitrides, polymers, ferroelecs., oxide superconductors, or ferromagnetic materials; the elastic wave may be an ultrasonic wave.

IT 103289-29-8, Tin silicide

RL: USES (Uses)

(deposition of films of, fine pattern formation during)

RN 103289-29-8 HCAPLUS

CN Tin silicide (9CI) (CA INDEX NAME)

Component	Ratio	Component
		Registry Number
Sn	x	7440-31-5
Si	x	7440-21-3

L106 ANSWER 44 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1992:46704 HCAPLUS Full-text

DN 116:46704

TI Structural studies of amorphous semiconductor-metal alloys

AU Edwards, A. M.; Fairbanks, M. C.; Newport, R. J.; Gurman, S. J.

CS Phys. Lab., Univ. Kent, Canterbury, CT2 7NR, UK

SO Vacuum (1990), 41(4-6), 1335-8

CODEN: VACUAV; ISSN: 0042-207X

DT Journal

LA English

AB A semiconductor to metal transition in amorphous semiconductor-metal alloys may be induced by increasing the metal concentration above a critical limit. Without a knowledge of the atomic scale structure of the alloy, it is difficult to ascribe a mechanism to this process. Three alloy systems (a-Sil-

$x\text{Ni}_x\text{-H}$; $a\text{-Ge}_1-x\text{Au}_x$ and $a\text{-Si}_1-x\text{-H}$) have been prepared as thin films by radiofrequency reactive cosputtering over pertinent composition ranges. The microstructure of these alloys was investigated by using EXAFS. Both $a\text{-Si}_1-x\text{Ni}_x\text{-H}$ and $a\text{-Ge}_1-x\text{Au}_x$ consist of 2 sep. phases, regions of an amorphous Ni-Si alloy and a crystalline Ge-Au alloy being embedded in an amorphous matrix provided by $a\text{-Si}$ and $a\text{-Ge}$, resp. In contrast, however, Sn atoms are substituted randomly into the $a\text{-Si}$ tetrahedral random network.

IT 133104-79-7

RL: PRP (Properties)
(structure of amorphous hydrogen-doped)

RN 133104-79-7 HCAPLUS

CN Silicon alloy, base, Si 52-100,Sn 0-48 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Si	52 - 100	7440-21-3
Sn	0 - 48	7440-31-5

L106 ANSWER 45 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1991:646110 HCAPLUS Full-text

DN 115:246110

TI Manufacture of photovoltaic device containing transparent electrode

IN Iwamoto, Masayuki; Yamaoki, Toshihiko; Minami, Koji

PA Sanyo Electric Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 03185877	A	19910813	JP 1989-325644	19891215 <--
JP 2771651	B2	19980702		

PRAI JP 1989-325644 19891215 <--

AB The device is manufactured by forming a semiconductor thin film layer at the side of an incidence surface on a semiconductor substrate by liquid-phase growth using a metal solvent of Sn, In, Zn, etc., forming a Sn, In, Zn, etc.-containing metal or (alloy) thin film on the semiconductor thin film layer, and oxidizing the metal (alloy) thin film to give a transparent elec. conducting metal oxide thin film.

IT 51844-78-1

RL: RCT (Reactant); RACT (Reactant or reagent)
(oxidation of, for photovoltaic device transparent electrode)

RN 51844-78-1 HCAPLUS

CN Tin alloy, base, Sn,Si (9CI) (CA INDEX NAME)

Component	Component
Registry Number	

Sn	7440-31-5
Si	7440-21-3

L106 ANSWER 46 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1989:488283 HCAPLUS Full-text

DN 111:88283

TI Ion beam mixing of silicon-tin multilayers

AU Massouras, G.; Roger, J. A.; Perez, A.; Fuchs, G.; Romana, L.
 CS Dep. Phys. Mater., Univ. Claude Bernard Lyon 1, Villeurbanne, 69622, Fr.
 SO Hyperfine Interactions (1989), Volume Date 1988, 46(1-4), 509-15
 CODEN: HYINDN; ISSN: 0304-3843
 DT Journal
 LA English
 AB Si and Sn multilayers of total thickness 200 nm were deposited at room temperature on Be and glass-plate substrates under high vacuum (<5 + 10⁻⁷ mbar). The average atomic Sn fraction of the whole layer varied from 0.12 to 0.60. The samples were irradiated at room temperature with Xe⁺ ions of 900 keV energy with fluences of 10¹⁵ to 2 + 10¹⁶ ions/cm². Rutherford backscattering spectrometry was used to check overall composition before irradiation. After irradiation, a substitutional Sn site is evidenced by means of ¹¹⁹Sn conversion electron Moessbauer spectroscopy, the relative population of which depends on composition and irradiation fluence. TEM was used to monitor the evolution of the samples with irradiation fluence. Elec. measurements show semiconductor behavior of the mixed multilayers with elec. resistivity ranging from 10² to 10⁻³ Ω.cm as a function of composition
 IT 112315-74-9 112336-35-3 120518-21-0
 122168-03-0 122168-04-1 122168-05-2
 122168-06-3
 RL: PRP (Properties)
 (conversion electron Moessbauer spectra of)
 RN 112315-74-9 HCPLUS
 CN Tin alloy, base, Sn 74,Si 26 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	74	7440-31-5
Si	26	7440-21-3

RN 112336-35-3 HCPLUS
 CN Tin alloy, base, Sn 81,Si 19 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	81	7440-31-5
Si	19	7440-21-3

RN 120518-21-0 HCPLUS
 CN Tin alloy, base, Sn 86,Si 14 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	86	7440-31-5
Si	14	7440-21-3

RN 122168-03-0 HCPLUS
 CN Silicon alloy, base, Si 54,Sn 46 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	54	7440-21-3
Sn	46	7440-31-5

RN 122168-04-1 HCPLUS

CN Silicon alloy, base, Si 63,Sn 37 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	63	7440-21-3
Sn	37	7440-31-5

RN 122168-05-2 HCAPLUS

CN Tin alloy, base, Sn 54,Si 46 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	54	7440-31-5
Si	46	7440-21-3

RN 122168-06-3 HCAPLUS

CN Tin alloy, base, Sn 64,Si 36 (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	64	7440-31-5
Si	36	7440-21-3

IT 122168-02-9

RL: PRP (Properties)

(elec. resistance of, from ion beam mixing)

RN 122168-02-9 HCAPLUS

CN Tin alloy, base, Sn 37-86,Si 14-63 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	37 - 86	7440-31-5
Si	14 - 63	7440-21-3

L106 ANSWER 47 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1988:159596 HCAPLUS Full-text

DN 108:159596

TI Preparation of hydrogenated amorphous silicon tin alloys

AU Vergnat, M.; Marchal, G.; Piecuch, M.

CS Lab. Phys. Solide, Univ. Nancy, Vandoeuvre-les-Nancy, 54506, Fr.

SO Revue de Physique Appliquee (1987), 22(12), 1803-8

CODEN: RPHAAN; ISSN: 0035-1687

DT Journal

LA English

AB A new method to obtain hydrogenated amorphous semiconductor alloys is described. The method is reactive co-evaporation. Hydrogenated Si-Sn alloys are prepared under atomic H atmospheric. The influence of various parameters of preparation (H pressure, W tube temperature, substrate temperature, annealing...) on elec. properties of samples is discussed.

IT 90175-80-7 106806-26-2 113819-90-2

113819-91-3

RL: USES (Uses)

(deposition of amorphous hydrogenated)

RN 90175-80-7 HCAPLUS

CN Silicon alloy, base, Si 7.3-100,Sn 0-93 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Si	7.3 - 100	7440-21-3
Sn	0 - 93	7440-31-5

RN 106806-26-2 HCAPLUS
CN Tin alloy, base, Sn 68,Si 32 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	68	7440-31-5
Si	32	7440-21-3

RN 113819-90-2 HCAPLUS
CN Tin alloy, base, Sn 62,Si 38 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	62	7440-31-5
Si	38	7440-21-3

RN 113819-91-3 HCAPLUS
CN Tin alloy, base, Sn 78,Si 22 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Sn	78	7440-31-5
Si	22	7440-21-3

L106 ANSWER 48 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
AN 1987:524723 HCAPLUS Full-text
DN 107:124723
TI Photoreceptors with interference-fringe elimination
IN Honda, Mitsuru; Murai, Keiichi; Ogawa, Kiyosuki; Koike, Atsushi
PA Canon K. K., Japan
SO Jpn. Kokai Tokkyo Koho, 40 pp.
CODEN: JKXXAF

DT Patent
LA Japanese
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 62102247	A	19870512	JP 1985-241573	19851030 <--
JP 06090534	B	19941114		
PRAI JP 1985-241573		19851030 <--		
AB For a photoreceptor consisting of a 1st amorphous layer of Si and Ge and/or Sn, and a 2nd layer of amorphous Si, both containing O, C, and/or N, the substrate (e.g. metal) surface has a number of spherical minute depressions in which a number of micro-depressions are formed. The 2nd layer may uniformly contain O, N, and/or C. The 1st layer may consist of a multilayer (e.g., containing a charge inhibition layer and/or a barrier layer) and/or have a conductivity-controlling substance. The surface unevenness of the substrate may satisfy $0.035 \leq D/R \leq 0.5$, $D \leq 0.5$ mm, and $0.5 \leq r \leq 20 \mu\text{m}$, where D, R, and r are the width and curvature of the spherical depressions and the height				

of the micro-unevenness, resp., and may be formed by free dropping of rigid **spheres**. Thus, a 1st amorphous hydrogenated-fluorinated Si-Ge layer (a layer containing C and B 3 μm thick and a layer containing C 22 μm thick) and a 2nd amorphous fluorinated-hydrogenated Si layer containing C (0.5 μm thick) were formed on an Al **alloy** cylinder having an uneven surface with D 450 μm , D/R 0.06, and rmax 5 μm at 250° by plasma chemical vapor deposition. Interference fringes were eliminated in photoimaging.

IT 71818-44-5

RL: USES (Uses)

(amorphous photoreceptors from, for photoimaging)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	
Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 49 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1987:506467 HCPLUS Full-text

DN 107:106467

TI Photoreceptors with interference fringe elimination

IN Honda, Mitsuru; Murai, Keiichi; Ogawa, Kiyosuke; Koike, Atsushi

PA Canon K. K., Japan

SO Jpn. Kokai Tokkyo Koho, 39 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 62100761	A	19870511	JP 1985-241890	19851029 <--
	JP 06090535	B	19941114		
PRAI	JP 1985-241890		19851029 <--		

AB A photoreceptor layer consisting of a 1st amorphous layer from Si, and Ge and/or Sn and a 2nd layer from amorphous Si containing C, N, and/or O is formed on a substrate having surface unevenness with **spherical** minute depressions in which a number of micro-depressions are formed. The 1st layer may contain conductivity controlling substance(s) and be a multilayer (e.g., containing charge inhibition or barrier layers). The depressions on the substrate may be given by $0.035 \leq D/R < 0.5$, $D < 0.5 \text{ mm}$, and $0.5 \mu\text{m} \leq \gamma \leq 20 \mu\text{m}$, where D, R, and γ are width and curvature of the depressions and height of micro-unevenness in the **spherical** depressions, resp., and formed by free dropping of rigid **spheres**. A fluorinated-hydrogenated Si-Ge and C-containing Si layer were formed on an Al **alloy** cylinder having surface unevenness 450 μm in D, 0.06 in D/R, and 5 μm in γ maximum No interference fringes were observed in photoimaging.

IT 71818-44-5

RL: USES (Uses)

(amorphous photoreceptor layers from, for interference fringe-free photoimaging)

RN 71818-44-5 HCPLUS

CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	
Si	7440-21-3
Sn	7440-31-5

Si 7440-21-3
 Sn 7440-31-5

L106 ANSWER 50 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1987:187029 HCPLUS Full-text
 DN 106:187029
 TI Recrystallization of semiconductors
 IN Oka, Yoshio; Ozawa, Hidekatsu; Kusayanagi, Masao; Kamata, Mikio
 PA Sony Corp., Japan
 SO Jpn. Tokkyo Koho, 5 pp.
 CODEN: JAXXAD
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 61061250	B	19861224	JP 1977-137474	19771116 <--
	JP 54070764	A	19790606		
PRAI	JP 1977-137474	A	19771116 <--		

AB A method for recrystn. of a semiconductor material involves: (a) forming a thin metal film on part of a semiconductor substrate; (b) forming a single-crystal film, with a predetd. plane direction, and of the same material as that of the substrate, on the metal film; (c) heating the substrate to a temperature higher than the eutectic point of the metal and semiconductor so that the metal eutectoid flows to the other side of the substrate for selective recrystn. of the semiconductor material. The method can recrystallize part of the substrate to have any plane direction.

IT 71818-44-5
 RL: PRP (Properties)
 (eutectic recrystn. of single-crystal silicon using)
 RN 71818-44-5 HCPLUS
 CN Silicon alloy, nonbase, Si,Sn (CA INDEX NAME)

Component	Component
Registry Number	
Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 51 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1986:489628 HCPLUS Full-text
 DN 105:89628
 TI Narrow band gap amorphous silicon semiconductors
 IN Madan, Arun; Mahan, A. Harvin
 PA USA
 SO U. S. Pat. Appl., 9 pp. Avail. NTIS Order No. PAT-APPL-6-690 218.
 CODEN: XAXXAV

DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 690218	A0	19860117	US 1985-690218	19850110 <--
PRAI	US 1985-690218		19850110 <--		

AB A narrow band gap amorphous Si semiconductor comprises an alloy of amorphous Si and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap

amorphous Si semiconductor comprises the steps of forming an **alloy** comprising amorphous Si and ≥ 1 of the band gap narrowing elements in an amount sufficient to narrow the band gap of the Si semiconductor **alloy** below that of amorphous Si, and also utilizing sufficient amts. of the electron donor dopant to maintain the amorphous Si **alloy** as an n-type semiconductor.

IT 91017-73-1
 RL: USES (Uses)
 (narrow band gap amorphous semiconductors)
 RN 91017-73-1 HCPLUS
 CN Silicon alloy, base, Si,Sn (CA INDEX NAME)

Component Component
 Registry Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 52 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1985:588040 HCPLUS Full-text

DN 103:188040

TI Photoelectric device

PA Fuji Xerox Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 60066876	A	19850417	JP 1983-175671	19830922 <--
PRAI JP 1983-175671		19830922	<--	

AB A photoelec. device having increased spectral sensitivity in the long-wavelength region consists of an amorphous hydrogenated SixGe_{1-x} or SixSn_{1-x} ($0 \leq x < 1$) photoconductor layer sandwiched between a transparent **electrode** and a metal **electrode**. The photoelec. device is especially useful for facsimile recording.

IT 62795-20-4

RL: DEV (Device component use); USES (Uses)
 (photoconductive hydrogenated amorphous layers of, for photoelec. devices)

RN 62795-20-4 HCPLUS

CN Silicon alloy, base, Si 0-100,Sn 0-100 (CA INDEX NAME)

Component Component Component
 Percent Registry Number

Si	0 - 100	7440-21-3
Sn	0 - 100	7440-31-5

L106 ANSWER 53 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1985:533486 HCPLUS Full-text

DN 103:133486

TI A thin ribbon wafer of semiconductor material

IN Tsuya, Noboru; Arai, Kenichi

PA Japan

SO U.S., 31 pp. Cont. of U.S. Ser. No. 375,314, abandoned.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4525223 JP 58019633 JP 55042248 JP 55052218 US 4682206	A B A A A	19850625 19830419 19800325 19800416 19870721	US 1984-597565 JP 1978-114848 JP 1978-125485 US 1985-721675	19840409 <-- 19780919 <-- 19781012 <-- 19850410 <--
PRAI	JP 1978-114848 JP 1978-125485 US 1979-55031 US 1982-375314 US 1984-597565	A A A1 A1 A3	19780919 19781012 19790706 19820505 19840409	<-- <-- <-- <-- <--	
AB	A novel thin ribbon wafer of semiconductor having a polycryst. structure composed of >50% of a grain having a grain size of >5 µm, a thickness of 5-200 µm, sufficient flexibility to be windable on a pipe having a diameter of 34 mm, malleability, and composed from p-type, i-type or n-type semiconducting material, and the composite clad of ≥2 elements thereof so as to form a p-n type junction is described. The composition of said semiconductor material consists of pure Si or Si with addnl. elements for improving the properties of a semiconductor; said addnl. element being at least one element in a proportion of <10 atomic% as compared to said Si, said element selected from the group consisting of non-metallic elements such as H, P, S and O; semi-metallic elements such as B, As, Te, Sr and Se; metallic elements such as Al, Ag, In, Cr, Ag, Fe, and Bi; and mixts. thereof with at least 1 element having smaller solubility limit than that of Si. Semiconductor elements and compds. are also possible additives. A semiconductor thin ribbon wafer is obtained under the polycryst. structure by ejecting a melt through a nozzle and rapidly cooling it on the moving surface of a cooling substrate at a cooling rate of >3000 up to 1,000,000°/s. The wafer is usable as rectifiers, junction elements, varistors, thermistors, memory elements, photoelec. elements, photocells, thermoelec. elements, electronic cooling elements atomic cell elements, etc. The composition and geometry of the nozzle and cooling substrate are noted. A sunlight a.c. generator device having a large surface area can be manufactured very cheaply.				
IT	91017-73-1				
	RL: USES (Uses) (semiconductor ribbon wafers from silicon containing)				
RN	91017-73-1 HCPLUS				
CN	Silicon alloy, base, Si,Sn (CA INDEX NAME)				

Component	Component
Registry Number	
Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 54 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1984:447380 HCPLUS Full-text

DN 101:47380

TI Amorphous photoconductors

PA Nippondenso Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 59032180	A	19840221	JP 1982-142314	19820817 <--
PRAI JP 1982-142314		19820817 <--		
AB Highly sensitive amorphous photoconductors are obtained by forming alloys of Si with Ge, Pb, or Sn containing H or F as dangling-bond terminators. For Sn, the atomic% ratio of Sn to Si is 0.01-40% and the H or F atomic% ratio is 0.25-1%.				
IT 91017-73-1				
RL: USES (Uses)				
(amorphous photoconductor from hydrogenated)				
RN 91017-73-1 HCPLUS				
CN Silicon alloy, base, Si,Sn (CA INDEX NAME)				

Component Component
Registry Number

Si	7440-21-3
Sn	7440-31-5

L106 ANSWER 55 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1984:431997 HCPLUS Full-text
 DN 101:31997
 TI Photoelectric cells
 PA Semiconductor Energy Research Institute Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 59032181	A	19840221	JP 1982-142288	19820816 <--
PRAI JP 1982-142288		19820816 <--		
AB Photoelec. cells with high withstand potentials and visual sensitivity are prepared by coating p-Si with SiO ₂ , opening windows, depositing amorphous hydrogenated and/or halogenated Si, depositing a similar layer of n-(Si,(Ge), n-(Si,Sn), or n-(Si,Pb), depositing a transparent conductor, opening windows, and forming contacts.				
IT 62795-20-4				
RL: USES (Uses)				
(photoelec. cells from amorphous)				
RN 62795-20-4 HCPLUS				
CN Silicon alloy, base, Si 0-100,Sn 0-100 (CA INDEX NAME)				

Component Component
Percent Registry Number

Si	0 - 100	7440-21-3
Sn	0 - 100	7440-31-5

L106 ANSWER 56 OF 57 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1982:114238 HCPLUS Full-text
 DN 96:114238
 TI New amorphous **alloy** semiconductors: amorphous silicon-tin (Si_{1-x}Sn_x)
 AU Verie, C.; Rochette, J. F.; Rebouillat, J. P.
 CS Lab. Phys. Solide, CNRS-Valbonne, Valbonne, 06560, Fr.

SO Journal de Physique, Colloque (1981), (C4, Pt. 2), 667-9
 CODEN: JPQCAK; ISSN: 0449-1947
 DT Journal
 LA English
 AB New amorphous Si_{1-x}Sn_x alloys were prepared by using a d.c. cathodic sputtering technique for 0 < x < 0.12. Routine characterization measurements were performed. Both the average and optical gaps decrease with increasing Sn content, the latter extrapolating to 0 at x .apprx.0.5. The high sensitivity of amorphous Si electronic structure to Sn substitution is discussed in the framework of the tight-binding approach, stressing the importance of the atomic relativistic corrections.
 IT 80965-86-2
 RL: PRP (Properties)
 (amorphous semiconductors, elec. and optical properties of)
 RN 80965-86-2 HCAPLUS
 CN Silicon alloy, base, Si 63-100, Sn 0-37 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Si	63 - 100	7440-21-3
Sn	0 - 37	7440-31-5

L106 ANSWER 57 OF 57 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 1976:183720 HCAPLUS Full-text
 DN 84:183720
 TI Role of alloy valence on electromigration in thin tin alloy films
 AU Ohring, M.; Singh, P.
 CS Dep. Metall., Stevens Inst. Technol., Hoboken, NJ, USA
 SO Thin Solid Films (1976), 31(3), 253-64
 CODEN: THSFAP; ISSN: 0040-6090
 DT Journal
 LA English
 AB Electrotransport effects in Sn film conductors alloyed with Group IIIA, IVA, and VA elements were studied. The electromigration damage was valence dependent. In the films containing Ga, In, and Tl, voids nucleated at the cathode interface separated the Sn and dilute alloy regions. Conversely, voids nucleated at the anode interface in the alloys containing As, Sb, and Bi. An anal. of electromigration indicated that the ratio of the vacancy flux in the alloy region to that in the unalloyed region depended on the sign of the solvent diffusivity enhancement factor. An electrostatic model for solvent diffusion predicted that the sign of the factor differed in Group IIIA and VA element-containing alloys. Under certain assumptions, agreement between theory and observation was attained.
 IT 59392-42-6
 RL: USES (Uses)
 (electrodiffusion in film conductors of, valence effect on)
 RN 59392-42-6 HCAPLUS
 CN Tin alloy, base, Sn 99, Si 1.2 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Sn	99	7440-31-5
Si	1.2	7440-21-3

=> => d his

(FILE 'HOME' ENTERED AT 13:16:19 ON 30 MAY 2007)
SET COST OFF

FILE 'HCAPLUS' ENTERED AT 13:16:31 ON 30 MAY 2007
L1 1 S US20040191630/PN OR (US2004-808481# OR JP2003-096988)/AP, PRN
E KAWAMURA/AU
L2 3 S E3
E KAWAMURA N/AU
L3 458 S E3,E8,E25,E26
E NAOYA/AU
L4 1 S E3
E KAWAKAMI/AU
L5 4 S E3
E KAWAKAMI S/AU
L6 231 S E3,E4
L7 121 S E99
E KAWAKAMI NAME/AU
L8 14 S E4
E SOICHIRO/AU
L9 1 S E3
L10 830 S L2-L9
L11 1 S L1 AND L10
L12 829 S L10 NOT L11
SEL RN L11

FILE 'REGISTRY' ENTERED AT 13:19:23 ON 30 MAY 2007
L13 8 S E1-E8
L14 1 S C2H4O AND L13
L15 2 S L13 AND (SI AND SN)/ELS
L16 21914 S (7440-21-3/CRN OR SI/ELS OR (?SILIC? OR ?SILYL? OR ?SILAN? OR
L17 852 S L16 AND TIS/CI
L18 9238 S L16 NOT L***,L17
L19 12676 S L***,L17
L20 135 S L19 AND 2/ELC.SUB
L21 12541 S L19 NOT L20

FILE 'HCAPLUS' ENTERED AT 13:22:46 ON 30 MAY 2007
L22 747 S L15 OR L20
L23 18414 S L21
L24 430 S L22 AND PY<=2003 NOT P/DT
L25 179 S L22 AND (PD<=20030331 OR PRD<=20030331 OR AD<=20030331) AND P
L26 609 S L24,L25
L27 11350 S L23 AND PY<=2003 NOT P/DT
L28 5295 S L23 AND (PD<=20030331 OR PRD<=20030331 OR AD<=20030331) AND P
L29 16645 S L27,L28
L30 21 S L26 AND H01M/IPC, IC, ICM, ICS
L31 165 S L29 AND H01M/IPC, IC, ICM, ICS
E BATTERY/CT
L32 59558 S E4+OLD,NT OR E5+OLD,NT OR E6+OLD,NT OR E7 OR E8+OLD,NT
E E9+ALL
L33 9182 S E2+OLD,NT OR E3+OLD,NT OR E4+OLD,NT
E BATTERIES/CT
E E3+ALL
L34 124841 S E1 OR E2+OLD,NT OR E3+OLD,NT OR E4+OLD,NT OR E5+OLD,NT
L35 26 S L26 AND L32-L34
L36 172 S L29 AND L32-L34
E ELECTRODE/CT
L37 4 S E3

L38 112113 S E91-E203
 E E91+ALL
 L39 227143 S E3+NT
 L40 8995 S E43+OLD, NT OR E44+OLD, NT
 L41 485924 S E40+OLD, NT OR E41+OLD, NT
 L42 53 S L26 AND L37-L41
 L43 573 S L29 AND L37-L41
 L44 54 S L30, L35, L42
 L45 596 S L31, L36, L43
 L46 5 S L10 AND L22
 L47 7 S L10 AND L23
 L48 7 S L46, L47
 L49 4 S L48 AND L26
 L50 5 S L48 AND L29
 L51 5 S L49, L50
 L52 5 S L51 AND L1-L12, L22-L51
 L53 2 S L48 NOT L52
 L54 7 S L52, L53
 L55 6 S L54 AND ?PARTICLE?
 L56 3 S L54 AND (L14 OR PVA OR (POLYVINYL OR POLY VINYL) ()ALCOHOL OR
 L57 7 S L54-L56
 L58 18 S L44 AND ?PARTICLE?
 L59 2 S L44 AND ?SPHER?
 L60 2 S L44 AND ?POWD?
 E PARTICLE/CT
 E E39+ALL
 L61 3656 S E1
 E E4+ALL
 L62 136569 S E1, E326, E327, E328, E329
 E E342+ALL
 L63 103654 S E3, E9, E10
 E PARTICLE/CT
 L64 98890 S E40-E44 OR E44+OLD, NT
 L65 61291 S E61-E82
 L66 2 S L44 AND L61-L65
 L67 18 S L58, L66
 L68 6 S L45 AND (L14 OR PVA OR (POLYVINYL OR POLY VINYL) (W)ALCOHOL OR
 L69 56 S L45 AND ?PARTICLE?
 L70 10 S L45 AND ?SPHER?
 L71 45 S L45 AND ?POWD?
 L72 9 S L45 AND L61-L65
 L73 21 S L57, L67
 L74 13 S L73 AND ELECTROD?
 L75 3 S L73 AND CATHOD?
 L76 15 S L73 AND ANOD?
 L77 20 S L73 AND (BATTER? OR FUEL CELL)
 L78 1 S L73 NOT L74-L77
 L79 20 S L74-L77
 L80 101 S L68-L72
 L81 33 S L80 AND ELECTROD?
 L82 23 S L80 AND CATHOD?
 L83 42 S L80 AND ANOD?
 L84 38 S L80 AND (BATTER? OR FUEL CELL)
 L85 57 S L81-L84
 L86 44 S L85 AND ELECTR?/SC, SX
 L87 13 S L85 NOT L86
 SEL AN L86 10 12 41 42 43 44
 L88 38 S L86 NOT E1-E12
 L89 44 S L80 NOT L85
 SEL AN 5 13 24 25

L90 4 S L89 AND E13-E20
L91 42 S L88, L90
L92 9 S L79 AND ?ALLOY?
L93 13 S L91 AND ?ALLOY?
L94 16 S L92, L93
L95 57 S L44, L57
L96 24 S L95 AND H01M/IPC, IC, ICM, ICS
L97 54 S L95 AND ELECTR?/SC, SX
L98 57 S L95 AND L32-L34, L37-L41
L99 3 S L95 AND (L14 OR PVA OR (POLYVINYL OR POLY VINYL) (W) ALCOHOL OR
L100 20 S L95 AND ?PARTICL?
L101 39 S L95 AND (SPHER? OR ?POWD? OR ELECTROD? OR CATHOD? OR ANOD? OR
L102 57 S L95-L101
L103 36 S L102 AND ?ALLOY?
L104 21 S L103 NOT BATTERY
L105 21 S L102 NOT L103, L104
L106 57 S L102-L105

FILE 'HCAPLUS' ENTERED AT 13:58:39 ON 30 MAY 2007

=>