HW1 Solution

18340013 陈琮昊

3.2

a) 聚类的目的是为了使得同类的样本尽可能相似,即同类样本距离尽可能近,等价于同类样本距离"类中心"样本尽可能近,即同类样本紧凑、聚成团。直观来看需要去寻找能代表类i的"表示"(样本),构造出各样本的类标记 μ_i ,得到式(3.5)的最优化形式。

b)

i.

对于固定的 μ_i ,有 $J(\gamma,\mu) = \sum_{i=1}^K \sum_{j=1}^M \gamma_{ij} ||x_j - \mu_i||^2$

对于每个j,下列式子中正好有一个是非零的:

$$||\gamma_{1j}||x_j - \mu_1||^2, |\gamma_{2j}||x_j - \mu_2||^2, \dots, |\gamma_{Kj}||x_j - \mu_K||^2$$

取 $\gamma_{cj}=1$ (其中 $c=rg\min_{i}||x_{j}-\mu_{i}||^{2}$),也就是说,以最小距离为指标将 x_{j} 分配到组c

$$\left|\left|x_{j}-\mu_{c}
ight|
ight|^{2}$$

ii.

对于固定的 γ , 对于类i修改其代表 μ_i 为:

$$\mu_i = rac{\sum_{j=1}^{M} \gamma_{ij} x_j}{\sum_{j=1}^{M} \gamma_{ij}}$$

即将当前类的平均向量作为代表值。

iii.回到步骤i迭代。

c) 将M个样本划分为k类,至多有 M^k 种划分方式。这是一个很大但是有限的数。算法每次迭代的过程中,总是基于 old clustering 进行更新,如果 new clustering 不同于 old clustering,说明 new clustering 比 old clustering 有更小的类间距离。又由于算法在有限域中迭代,且环的大小只能为1(否则出现一个 clustering 比自身的类间距离小),所以算法必定在有限步内终止。

4.6

a)

$$E[(y-f(x;D))^2] = E_D[(F(x)-f(x;D)+\epsilon)^2]$$
 $= E_D[(F(x)-f(x;D))^2+\epsilon^2+2\epsilon(F(x)-f(x;D))]$
 $= E_D[(F(x)-f(x;D))^2]+E[\epsilon^2]+2E_D[\epsilon(F(x)-f(x;D))]$
因为 ϵ 与其他都独立、故下面两式成立:
 $E[\epsilon^2] = (E[\epsilon])^2+Var(\epsilon)=\sigma^2$
 $E_D[\epsilon(F(x)-f(x;D))] = E_D[F(x)-f(x;D)]E[\epsilon]=0$
代入: $E[(y-f(x;D))^2] = E_D[(F(x)-f(x;D))^2]+\sigma^2$
 $= (E_D[F(x)-f(x;D)])^2+Var(F(x)-f(x;D))+\sigma^2$
因为 $E_D[F(x)-f(x;D)]=F(x)-E_D[f(x;D)]$
且 $Var(F(x)-f(x;D))=Var(f(x;D))=E_D[(f(x;D)-E_D[f(x;D)])^2]$
所以 $E[(y-f(x;D))^2] = (F(x)-E_D[f(x;D)])^2+E_D[(f(x;D)-E_D[f(x;D)])^2]+\sigma^2$
 $= bias^2+variance+noise$
即 $bias^2 = (F(x)-E_D[f(x;D)])^2$, $variance=E_D[(f(x;D)-E_D[f(x;D)])^2]$, $noise=\sigma^2$

$$E[f] = E\left[\frac{1}{k} \sum_{i=1}^{k} y_{nn}(i)\right] = E\left[\frac{1}{k} \sum_{i=1}^{k} F(x_{nn}(i)) + \epsilon\right]$$

$$= E\left[\frac{1}{k} \sum_{i=1}^{k} F(x_{nn}(i))\right] + E[\epsilon] = \frac{1}{k} E\left[\sum_{i=1}^{k} F(x_{nn}(i))\right] = \frac{1}{k} \sum_{i=1}^{k} F(x_{nn}(i))$$

c)

$$\begin{split} E[(y-f(x;D))^2] &= (F(x)-E[f])^2 + E[(f-E[f])^2] + \sigma^2 \\ &= (F-\frac{1}{k}\sum_{i=1}^k F(x_{nn}(i)))^2 + E[\frac{1}{k}\sum_{i=1}^k (y_{nn}(i)-F(x_{nn}(i)))^2] + \sigma^2 \\ &= (F-\frac{1}{k}\sum_{i=1}^k F(x_{nn}(i)))^2 + E[\frac{1}{k}\sum_{i=1}^k (\epsilon_{nn}(i))^2] + \sigma^2 \end{split}$$

- d) 方差项是 $E[rac{1}{k}\sum_{i=1}^k (\epsilon_{nn}(i))^2]$,它随着k变大而变小。
- e) 偏置的平方项是 $(F-rac{1}{k}\sum_{i=1}^k F(x_{nn}(i)))^2$,它随着k变大而变大。

4.9

- a) 记 C^T 矩阵的元素记为 c_{ij}^T 。总代价为: $\sum_{j=1}^K \sum_{i=1}^K c_{ij} * a_{ij} = \sum_{j=1}^K \sum_{i=1}^K c_{ji}^T * a_{ij}$,由矩阵乘法的定义可知,该值为 C^T A矩阵上所有对角线元素之和,即 $tr(C^TA)$ 。
- b) 我更喜欢规范化的混淆矩阵, 因为和为1看起来比较方便, 能够更直观的解释一些问题。

5.1

- a) XX^T 的特征值为 σ_i^2 ($i=1,2,\ldots,m$),特征向量为U的每一列。
- b) X^TX 的特征值为 σ_i^2 $(i=1,2,\ldots,n)$,特征向量为V的每一列 $(V^T$ 的每一行) 。
- c) 相等, 证明:

假设
$$XX^Tb=\lambda b$$
, λ 为 XX^T 的特征值, b 为 XX^T 的特征向量。
两边同时左乘 X^T 得: $X^TXX^Tb=\lambda X^Tb$,
令 $X^Tb=b'$,则有 $X^TXb'=\lambda b'$,故 X^TX 的特征值也为 λ ,但二者的特征向量不同。

- d) X的奇异值为 XX^T (X^TX) 的特征值的算术平方根。
- e) 可以计算 XX^T 的特征值。因为 XX^T 与 X^TX 的特征值相等,而 XX^T 是一个 2×2 的矩阵,显然要简单许多。

(a) 代码如下:

```
clear
x=randn(2000,2)*[2 1;1 2];
figure(1);
scatter(x(:,1),x(:,2));
xlim([-10,10]);
ylim([-10,10]);
```

结果如图:

(b) 代码如下:

```
%接上面
[row,col]=size(x);
c=cov(x); %求矩阵x的协方差矩阵
[F,V]=eigs(c); %V为6个最大特征值对角阵,F的列向量为对应特征向量
meanx=mean(x); %求矩阵每列的平均值
temp=repmat(meanx,row,1); %堆叠矩阵
s=(x-temp)*F;
pca=s(:,1:2); %取第1、2列
figure(2)
scatter(pca(:,1),pca(:,2));
xlim([-10,10]);
ylim([-10,10]);
```

结果如图:

(c) 代码如下:

```
%接上面
v=v^(-0.5);
whitenings=(x-temp)*(F*v);
whitening=whitenings(:,1:2);
figure(3)
scatter(whitening(:,1),whitening(:,2));
xlim([-4,4]);
ylim([-4,4]);
```

结果如图:

(d) 因为 PCA 的过程的核心在于"将代表原始数据的矩阵X的每一行减去该行的均值"以及"用前k个特征向量构成的矩阵乘原始矩阵得到降维后的矩阵"。第一个步骤的减法就是一个平移的过程,而最后一步的矩阵乘法就是一个旋转的过程,因此若不进行降维(即在最后一步用所有特征向量构成的矩阵乘原始矩阵),PCA 其实就是数据的平移后再旋转。如果不考虑降维这一作用的话,PCA 的这一操作可以让数据变得更加分散。