Pseudo code for Possibilistic database Schema to remove data redundancy

Input:

 Relational Schema(R), Possibility Degree (or) Certainty degree Scale(S), set of possibilistic functional dependencies.

Algorithm:

For β-BCNF:

- For each beta (pfds of one world) :
 - Compute canonical cover of pfds (R₁)
 - define D (empty set of relations), LS (empty set of pfds)
 - Check whether pfds in cover is in bcnf form or not
 - \circ For each pfd in Σ :
 - If (violates bcnf):
 - Append given pfd to LS.
 - \circ do
 - For every pfd in LS:
 - Perform an αk+1-i-lossless BCNF decomposition for a pFD set Σ i.e, by performing a classical lossless BCNF decomposition for the βi-cut Σβi of Σ.
 - Append obtained decompositions to D,remove given pfd from LS and recursively check if D is in bcnf
 - While (LS is not empty)
 - ∘ Remove pfds which are there in LS from R₁.
 - Output (R₁ + D(Set of decompositions))

For β -3NF:

- For each beta;(pfds of one world):
 - Compute canonical cover of pfds (R₁)
 - o define D (empty set of relations), LS (empty set of pfds)
 - o Check whether pfds in cover is in 3-NF form or not
 - For each pfd in Σ:
 - If (violates 3-NF):
 - Append given pfd to LS.
 - o Do
 - For every pfd in LS:
 - Perform (αk+1-i)-lossless,βi-dependency-preserving 3NF synthesis for a pFD set Σ i.e, by performing a classical lossless 3NF synthesis for Σβi.
 - Append obtained decompositions to D,remove given pfd from LS and recursively check if D is in 3nf
 - While (LS is not empty)
 - ∘ Remove pfds which are there in LS from R₁.
 - Output (R₁ + [pfd for every pfd in LS]) (list of decomposed relations)