MA2101 - Linear Algebra II Suggested Solutions 22/23

(Semester 1, AY2022/2023

Written by: Timothy Wan Audited by: Matthew Fan, Nguyen Anh Duc

Question 1

Note that we have

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} (y_3 - y_1) + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (y_1) + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} (y_2 - y_1)$$
$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} y_3 - y_1 \\ y_1 \\ y_2 - y_1 \end{pmatrix}$$
$$= P \begin{pmatrix} y_3 - y_1 \\ y_1 \\ y_2 - y_1 \end{pmatrix}.$$

Likewise

$$Y' = P \begin{pmatrix} y_3' - y_1' \\ y_1' \\ y_2' - y_1' \end{pmatrix} = P \begin{pmatrix} (y_3 - y_1)' \\ y_1' \\ (y_2 - y_1)' \end{pmatrix}$$

by linearity of the derivative. Letting $z(x) = y_3(x) - y_1(x)$ and $w(x) = y_2(x) - y_1(x)$, our differential equation becomes

$$P\begin{pmatrix} z' \\ y_1' \\ w' \end{pmatrix} = AP\begin{pmatrix} z \\ y_1 \\ w \end{pmatrix}$$

whence multiplying both sides by P^{-1} gives

$$\begin{pmatrix} z' \\ y_1' \\ w' \end{pmatrix} = (P^{-1}AP) \begin{pmatrix} z \\ y_1 \\ w \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{pmatrix} z \\ y_1 \\ w \end{pmatrix} = \begin{pmatrix} z \\ 2y_1 + w \\ 2w \end{pmatrix}.$$

so that z'=z, $y_1'=2y_1+w$ and w'=2w. From single-variable calculus, we know the first and third equations have solutions $z(x)=C_1\exp x$ and $w=C_2\exp 2x$ (where $C_1,C_2\in\mathbb{R}$ are arbitrary), so the second equation becomes

$$y_1' = 2y_1' + w = 2y_1 + C_2 \exp 2x.$$

Using the given formula with p(x) = -2, $q(x) = \exp 2x$, we get $\mu(x) = \exp (-2x)$ and $y_1 = (C_2x + C_3) \exp 2x$ (with $C_3 \in \mathbb{R}$ arbitrary.) Finally, we calculate

$$y_2(x) = w(x) + y_1(x) = (C_2x + (C_2 + C_3)) \exp 2x,$$

and

$$y_3(x) = z(x) + y_1(x) = C_1 \exp x + (C_2 x + C_3) \exp 2x,$$

which is exactly what we wanted.

Part (a)

We claim that AA^T is a real symmetric matrix, then by the spectral theorem AA^T is orthogonally diagonalizable as desired.

Indeed, write $A = (a_{i,j})_{i,j=1}^n$, then $A^T = (a_{j,i})_{i,j=1}^n$, and

$$AA^{T} = (a_{i,j})_{i,j=1}^{n} (a_{j,i})_{i,j=1}^{n} = \left(\sum_{k=1}^{n} a_{i,k} a_{j,k}\right)_{i,j=1}^{n},$$

which is clearly symmetric.

Part (b)

We first calculate $AA^T = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$. Then AA^T clearly has eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (with eigenvalue 0) and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (with eigenvalue 4). Normalising both eigenvectors, we get $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$, so we can conclude by defining

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}.$$

Part (a)

We simply look at all possible cases of elementary divisors of $m_A(x)$. Certainly we must have $(x-2)^3$ and (x-8) as elementary divisors, so it suffices to "make up" elementary divisors with sum of degrees equal to 2.

• Case 1: (x-2), (x-2), the corresponding JCF is $\begin{bmatrix} 2 & & & 0 \\ & 2 & & \\ & & 2 & 1 \\ & & & 2 & 1 \\ & & & & 2 \end{bmatrix}$.

• Case 2: $(x-2)^2$, the corresponding JCF is $\begin{bmatrix} 2 & 1 & & & 0 \\ & 2 & & & \\ & & 2 & 1 & \\ & & & 2 & 1 \\ & & & & 2 \\ 0 & & & & 8 \end{bmatrix}$.

• Case 4: (x-2), (x-8), the corresponding JCF is $\begin{bmatrix} 2 & & & & 0 \\ & 2 & 1 & & \\ & & 2 & 1 & \\ & & & 2 & \\ & & & & 8 & \\ 0 & & & & 8 & \\ \end{bmatrix}$.

It is easily verified that we have enumerated all cases, up to permutation of the Jordan blocks. $\hfill\Box$

Part (b)

Clearly the minimal polynomial $m_B(x)$ of B is either $(x - \lambda_1)^2(x - \lambda_2)$ or $(x - \lambda_1)(x - \lambda_2)^2$. Just like above, we need to "make up" a degree of 1 somewhere.

4

• Case 1: $m_B(x) = (x - \lambda_1)^2 (x - \lambda_2)$.

- Case 1.1: Elementary divisors are $(x - \lambda_1), (x - \lambda_1)^2, (x - \lambda_2)$. The corresponding

JCF is
$$\begin{bmatrix} 1 & & & \\ & 1 & 1 \\ & & 1 \\ & & 2 \end{bmatrix}$$
.

- Case 1.2: Elementary divisors are $(x - \lambda_1)^2$, $(x - \lambda_2)$, $(x - \lambda_2)$. The corresponding JCF is $\begin{bmatrix} 1 & 1 & & \\ & 1 & & \\ & & 2 & \\ & & & 2 \end{bmatrix}$.

JCF is
$$\begin{bmatrix} 1 & 1 & & \\ & 1 & & \\ & & 2 & \\ & & & 2 \end{bmatrix}$$
.

- Case 2: $m_B(x) = (x \lambda_1)(x \lambda_2)^2$.
 - Case 2.1: Elementary divisors are $(x \lambda_1), (x \lambda_1), (x \lambda_2)^2$. The corresponding

JCF is
$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 2 & 1 \\ & & & 2 \end{bmatrix}$$
.

- Case 2.2: Elementary divisors are $(x - \lambda_1), (x - \lambda_2), (x - \lambda_2)^2$. The corresponding

$$JCF is \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 2 & 1 \\ & & & 2 \end{bmatrix}.$$

Like above, it is easily checked that we have accounted for all possibilities up to permutation of the Jordan blocks.

Part (a)

We note that $T|_{V_1}: V_1 \to W$ is a linear map, and that $\ker T|_{V_1}$ is clearly a subspace of $\ker T$ (because T kills every vector that $T|_{V_1}$ kills.) Furthermore, $\operatorname{im} T|_{V_1}$ is clearly a subspace of W_1 . Then by the rank-nullity theorem

$$\dim V_1 = \dim \operatorname{im} T|_{V_1} + \dim \ker T|_{V_1}$$

$$\leq \dim W_1 + \dim \ker T|_{V_1}$$

$$\leq \dim W_1 + \dim \ker T.$$

Part (b)

Suppose that T is surjective and observe the inequality above becomes an equality if we have $\ker T|_{V_1} = \ker T$ and $W_1 = \operatorname{im} T|_{V_1}$. Since T is surjective every vector in W_1 is the target of some $\mathbf{v} \in V$ under the mapping T, so the blue condition trivially holds; on the other hand we already know that $\ker T|_{V_1} \subseteq \ker T$, so it suffices to check the reverse inclusion.

Let $\mathbf{v} \in \ker T$, then $T(\mathbf{v}) = 0_W \in W_1$ since W_1 is a subspace. By definition of V_1 we must have $\mathbf{v} \in V_1$, so $T|_{V_1}(\mathbf{v}) = T(\mathbf{v}) = 0_W$ by definition. It follows that $\mathbf{v} \in \ker T|_{V_1}$, which is exactly what we wanted.

Part (a)

Let $\mathbf{v} \in W^{\perp}$. For any $\mathbf{w} \in W$, we have $\langle T(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, T^*(\mathbf{w}) \rangle$, but since W is T^* -invariant, we have $T^*(\mathbf{w}) \in W$. By definition of W^{\perp} , we thus have $\langle \mathbf{v}, T^*(\mathbf{w}) \rangle = 0$. Since $\mathbf{w} \in W$ is arbitrary, we have $T(\mathbf{v}) \in W^{\perp}$; and since $\mathbf{v} \in W^{\perp}$ is arbitrary, W^{\perp} is indeed T-invariant.

Part (b)

Consider the following counterexample: Let $V = \mathbb{C}^2$ equipped with the standard inner product, and $U = \operatorname{span}\left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right\}$. It is clear that $U^{\perp} = \operatorname{span}\left\{\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\}$. Let $T: V \to V$ be defined by $T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}$, then U is clearly T-invariant since $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector of T; but we have $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \in U^{\perp}$ and $T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \not\in U^{\perp}$, so U^{\perp} is not T-invariant.

Part (a)

We note that the representation of any \mathbf{w} as a linear combination of $\mathbf{w}_1, \dots, \mathbf{w}_n$ is unique as $\{\mathbf{w}_n, \dots, \mathbf{w}_n\}$ is a basis; thus our function is well-defined.

We first verify that it is conjugate symmetric: indeed,

$$\left(\sum_{j=1}^{n} y_{j} \mathbf{w}_{j}, \sum_{i=1}^{n} x_{i} \mathbf{w}_{i}\right) = Y^{t} D \overline{X}$$

$$= \left(Y^{t} D \overline{X}\right)^{t} \qquad \text{since } Y^{t} D \overline{X} \in \mathbb{C}$$

$$= \overline{X}^{t} D^{t} (Y^{t})^{t}$$

$$= \overline{X}^{t} D^{t} Y$$

$$= \overline{\overline{X}^{t}} \overline{D^{t} Y}$$

$$= \overline{X^{t}} \overline{D^{t} Y}$$

$$= \overline{X^{t}} D \overline{Y}$$

$$= \overline{X^{t}} D \overline{Y}$$

$$= \overline{X^{t}} D \overline{Y}$$

$$= \left(\sum_{i=1}^{n} x_{i} \mathbf{w}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{w}_{j}\right),$$

where $D = \overline{D^t}$ since positive definite matrices are Hermitian. To see that our function is linear in the second argument, let us define the vectors $\mathbf{v} = \sum_{i=1}^n x_i \mathbf{w}_i$, $\mathbf{w} = \sum_{i=1}^n y_i \mathbf{w}_i$, and $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^n y_i' \mathbf{w}_i$ for complex x_i, y_i, y_i' . Then $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^n (y_i + y_i') \mathbf{w}_i$, and by definition

$$(\mathbf{v}, \mathbf{w} + \mathbf{w}') = (x_1 \dots x_n) D \begin{pmatrix} y_1 + y_1' \\ \vdots \\ y_n + y_n' \end{pmatrix}$$

$$= (x_1 \dots x_n) D \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} + (x_1 \dots x_n) D \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}$$

$$= (\mathbf{v}, \mathbf{w}) + (\mathbf{v}, \mathbf{w}').$$

Finally, the fact that our function is positive definite directly follows from the definition of D being positive definite: let $\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{w}_i$, then $(\mathbf{v}, \mathbf{v}) = X^t D\overline{X} \ge 0$ with equality if and only if every x_i is 0, which occurs precisely when $\mathbf{v} = 0_W$.

Part (b)

Subpart (i)

We calculate

$$\left(\sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j}\right) = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} \overline{y_{j}}(\mathbf{v}_{i}, \mathbf{v}_{j})$$

$$= (x_{1} \dots x_{n}) \begin{pmatrix} \sum_{j=1}^{n} \overline{y_{j}}(\mathbf{v}_{1}, \mathbf{v}_{j}) \\ \vdots \\ \sum_{j=1}^{n} \overline{y_{j}}(\mathbf{v}_{n}, \mathbf{v}_{j}) \end{pmatrix}$$

$$= (x_{1} \dots x_{n}) \begin{pmatrix} (\mathbf{v}_{1}, \mathbf{v}_{1}) & \dots & (\mathbf{v}_{1}, \mathbf{v}_{n}) \\ \vdots & \ddots & \vdots \\ (\mathbf{v}_{n}, \mathbf{v}_{1}) & \dots & (\mathbf{v}_{n}, \mathbf{v}_{n}) \end{pmatrix} \begin{pmatrix} \overline{y_{1}} \\ \vdots \\ \overline{y_{n}} \end{pmatrix}$$

$$= X^{t} A \overline{Y}.$$

Subpart (ii)

We have

$$A^* = \overline{A^t} = \begin{bmatrix} (\mathbf{v}_1, \mathbf{v}_1) & \dots & (\mathbf{v}_1, \mathbf{v}_n) \\ \vdots & \ddots & \vdots \\ (\mathbf{v}_n, \mathbf{v}_1) & \dots & (\mathbf{v}_n, \mathbf{v}_n) \end{bmatrix}^t$$

$$= \begin{bmatrix} (\mathbf{v}_1, \mathbf{v}_1) & \dots & (\mathbf{v}_n, \mathbf{v}_1) \\ \vdots & \ddots & \vdots \\ \hline (\mathbf{v}_1, \mathbf{v}_n) & \dots & (\mathbf{v}_n, \mathbf{v}_n) \end{bmatrix}$$

$$= \begin{bmatrix} (\mathbf{v}_1, \mathbf{v}_1) & \dots & (\mathbf{v}_1, \mathbf{v}_n) \\ \vdots & \ddots & \vdots \\ (\mathbf{v}_n, \mathbf{v}_1) & \dots & (\mathbf{v}_n, \mathbf{v}_n) \end{bmatrix} = A$$

by conjugate symmetry, and likewise A^t is self-adjoint (because transpose and conjugate operators commute).

Subpart (ii)

Clearly if X = 0 then $X^t A \overline{X} = 0$. If $X \neq 0$, then from (b)(i) we know

$$X^t A \overline{X} = \left(\sum_{i=1}^n x_i \mathbf{v}_i, \sum_{j=1}^n x_j \mathbf{v}_j\right) > 0$$

since $\sum_{i=1}^{n} x_i \mathbf{v} \neq 0$ and inner products are positive definite.