ALGORITMOS E ESTRUTURAS DE DADOS IV

Simulado – 2º Bimestre

1). O que é balanceamento em árvores e por que uma árvore precisa estar balanceada para ter um bom desempenho?

R: Um balanceamento em arvores é uma árvore binária que as duas alturas da sub árvores de todo nó nunca difere em mais de um.

2). Como seria possível manter uma árvore balanceada a cada inclusão e exclusão de um elemento?

R: Basta aplicar os métodos de rotação a cada inclusão e exclusão de um elemento dentro da arvore.

3) O que são árvores AVL?

R: Árvore AVL é uma árvore binária de busca balanceada, ou seja, uma árvore balanceada são as árvores que minimizam o número de comparações efetuadas no pior caso para uma busca com chaves de probabilidades de ocorrências idênticas.

4) O que é fator de balanceamento de um nó?

R: é definido como a altura de sua sub árvore esquerda menos a altura de sua sub árvore direita. Cada nó numa árvore binária balanceada (AVL) tem balanceamento de 1, -1 ou 0. Se o valor do balanceamento do nó for diferente de 1, -1 e 0. Essa árvore não é balanceada (AVL).

5) O que são rotações em uma árvore AVL?

R: A rotação na árvore AVL ocorre devido ao seu desbalanceamento, uma rotação simples ocorre quando um nó está desbalanceado e seu filho estiver no mesmo sentido da inclinação, formando uma linha reta.

6) quais são as rotações possíveis?

RSE: Rotação Simples à Esquerda

RSD: Rotação Simples à Direita

RDE: Rotação Dupla à Esquerda

-RDE = RSD + RSE

RDD: Rotação Dupla à Direita

-RDD = RSE + RSD

7) Quando se aplica cada tipo rotação?

RSE = Quando o FB do nó desbalanceado é NEGATIVO e o FB do seu filho à direta também.

RSD = Quando o FB do nó desbalanceado é POSITIVO e o FB do seu filho à esquerda também.

RDE = Quando o FB do nó desbalanceado é NEGATIVO e o FB do seu filho à direita é POSITIVO.

RDD = Quando o FB do nó desbalanceado é POSITIVO e o FB do seu filho à esquerda é NEGATIVO.

8) quando o sinal do nó desbalanceado for negativo, qual sub árvore deste nó está desbalanceada?

R: Quando o FB do nó desbalanceado é negativo a sub arvore à direita está desbalanceada.

9) quando houver mais de um nó desbalanceado, em qual nó se aplica a rotação?

R: A aplicação sera no nó mais proximo da raiz da arvore.

10) numa rotação, quando um nó X toma o lugar de um outro nó Y, o que acontece?

R: Nesta ocasião o nó Y se tornara filho do nó X, de acordo com a aplicação da rotação.

11) Montar Árvores AVL para as seguintes sequências de inserção de valores:

a. 12, 22, 39, 8, 6, 54, 47, 7, 10, 16, 11

b. 30, 40, 24, 58, 48, 26, 11, 13, 14

c. 15, 27, 49, 10, 8, 67, 59, 9, 13, 20, 14

12) sobre a implementação da árvore AVL é necessário inserir em cada nó a informação de sua altura na árvore, por que?

R: Porque através dessa informação de altura da arvore, você poderá realizar a aplicação da rotação de acordo com o fator de balanceamento que é obtido de acordo com a altura desta arvore.

13) por que é mais viável armazenar o valor da altura ao invés do fator de balanceamento?

R: É mais viável pois o armazenamento do valor da altura sera importante para determinar o nó que sera desbalanceado e recebera o racionamento em primeiro lugar.

14) em cada inclusão e exclusão, é necessário recalcular a altura de todos os nós da árvore?

R: Sim pois a verificação da altura dos demais nós e verificada a todo momento para ver se não existe outro nó desbalanceado.

15) O que é um Grafo?

R: é um ramo da matemática que estuda as relações entre os objetos de um determinado conjunto, são empregadas estruturas chamadas de grafos, onde é um conjunto não vazio de objetos denominados vértices e é um subconjunto de pares não ordenados.

16) O que são vértices e arcos em um grafo?

R: São objetos chamados de vértices ou nós e são conectados, relacionados por arestas, arcos ou linhas

17) quais são os tipos de grafos?

R: São os grafos dirigidos ou direcionados e também os grafos não dirigidos e não direcionados.

18) comente sobre 3 aplicações possíveis utilizando grafos.

- R: Transporte aéreo (Objeto: cidades, Relacionamento: vôo comercial entre duas cidades).
- Grade escolar (Objeto: professores e disciplinas, Relacionamento: disciplina lecionada pelo professor).
- -Robustez da malha elétrica (Objeto: torres de transmissão, Relacionamento: linhas entre torres).

19) faça a descrição formal matemática do seguinte grafo dirigido:

R: G=(N,A)

N=(1,2,3,4,5)

 $A=\{(1,2),(1,3),(1,4),(2,1),(2,5),(4,3),(4,4)\}$

20) O que é grau de um vértice de um grafo?

R: É o número de arcos incidentes nesse nó, ou seja, é a soma do grau de entrada com o grau de saída.

21) O que é vértice adjacente?

R: é quando um nó é adjacente de outro ou que um nó, que é vizinho do outro nó.

22) O que é caminho em um grafo?

R: é a sequência de vértices, ou também pode-se considerar sequência de arcos, necessários para que a partir de um vértice A, chega-se ao vértice B.

23). Comente sobre conexidade em grafos.

R: é quando possui pelo menos um nó que, a partir dele é possível acessar todos os demais, um grafo é Fortemente Conexo quando a partir de qualquer nó é possível acessar todos os demais.

24). Comente sobre grafos valorados/ponderados, e cite uma aplicação.

R: cada arco, linha e aresta possuem o seu valor, dependendo do problema que esteja modelando. A aplicação de logística de transporte onde os vértices são locais/cidades, os valores dos arcos representam as distâncias ou custos para realizar o trajeto entre uma cidade/vértice e a outra.

25). Como poderia um grafo ser representado em forma de matriz?

R: Um grafo pode ser representado ou modelado de diversas formas, a

forma mais simples de representar um grafo é através da Matriz Adjacência.

Representação Gráfica do Grafo

Matriz Adjacência

1	2	3	4	5
0	1	1	1	0
1	0	0	0	1
0	1	0	0	0
0	0	1	1	0
0	0	0	0	0

$$A = \{(1,2), (1,3), (1,4), (2,1), (2,5), (3,2), (4,3), (4,4)\} \, ; \, m(4,3) = 1 \text{ porque } (4,3) \in A$$

Estruturas de Dados - Grafos - Prof. Dr. André Mendes Garcia

1

4

17