元素及其化合物·四·「镁 (Mg) 及其化合物」

1. 镁的性质

- 物理性质:具有银白色金属光泽的固体,密度、硬度均较小,熔点较低,有良好的导电、传热和延展性
- 2. 化学性质
 - 与非金属单质反应

ullet 与 N_2 反应: $N_2+3\,\mathrm{Mg}\stackrel{\mathrm{fig}}{=\!=\!=\!=}\mathrm{Mg}_3N_2$

ullet 与 Cl_2 反应: $\mathrm{Cl}_2 + \mathrm{Mg} \stackrel{ ext{odd}}{=\!=\!=\!=\!=} \mathrm{MgCl}_2$

■ 与 S 反应: $Mg + S \stackrel{\Delta}{=\!=\!=} MgS$

■ 与 O_2 反应: $\mathrm{O}_2 + 2\,\mathrm{Mg} \stackrel{\mathrm{f.m.}}{=\!=\!=\!=} 2\,\mathrm{MgO}$ (产生强烈白光)

• 与 CO_2 反应: $2\mathrm{Mg} + \mathrm{CO}_2$ $\stackrel{\mathrm{f.m.}}{=\!=\!=\!=} 2\mathrm{MgO} + \mathrm{C}$ (耀眼白光,黑色固体生成)

• 与 $\mathrm{H}_2\mathrm{O}$ 反应: $\mathrm{Mg} + \mathrm{H}_2\mathrm{O} \stackrel{\Delta}{=\!\!=} \mathrm{Mg}(\mathrm{OH})_2 + \mathrm{H}_2 \uparrow$

• 与 H^+ 反应: $\mathrm{Mg} + \mathrm{H}^+ = \mathrm{Mg}^{2+} + \mathrm{H}_2 \uparrow$

镁在空气中燃烧时会同时与 CO_2 、 N_2 、 O_2 反应

3. 工业制备
$$egin{cases} \mathrm{Mg_2}^+ + 2\,\mathrm{OH}^- &= \mathrm{Mg}(\mathrm{OH})_2\downarrow \\ \mathrm{Mg}(\mathrm{OH})_2 + 2\,\mathrm{HCl} &= \mathrm{MgCl_2} + \mathrm{H_2O} \\ \mathrm{MgCl_2}(\mathrm{l}) & \stackrel{\mathrm{id}\,\mathrm{e}}{===} \mathrm{Mg} + \mathrm{Cl_2} \uparrow \end{cases}$$

2. 用途

生产合金, 冶金工业上用作还原剂和脱氧剂

3. 镁的重要化合物

- 1. 氧化镁 MgO ,重要氧化物: $\mathrm{MgO}+6\,\mathrm{H}^+=\,\mathrm{Mg}^{2+}+\mathrm{H}_2\mathrm{O}$
- 2. 氢氧化镁 Mg(OH)₂

1. 中强酸: $\mathrm{Mg}(\mathrm{OH})_2 + 2\,\mathrm{H}^+ = \mathrm{Mg}^{2+} + 2\,\mathrm{H}_2\mathrm{O}$

2. 难溶于水: $\mathrm{Mg_2}^+ + 2\mathrm{OH}^- = \mathrm{Mg}(\mathrm{OH})_2 \downarrow$

- 3. 溶解度小于碳酸镁: $\mathrm{MgCO_3} + \mathrm{H_2O} \stackrel{\Delta}{=\!=\!=} \mathrm{Mg(OH)_2} + \mathrm{CO_2} \uparrow$
- 1. MgO 熔点很高,可作耐火材料
- $2. \mathrm{Mg}(\mathrm{OH})_2$ 为难溶于水的白色沉淀,常用 NaOH 溶液检验 Mg^{2+}
- 3. 由于 $\mathrm{Mg}(\mathrm{OH})_2$ 的溶解度比 $\mathrm{Mg}\mathrm{CO}_3$ 的小,故水垢的主要成分是 $\mathrm{Mg}(\mathrm{OH})_2$

4. 海水中镁的提取

- 1. 制熟石灰: CaCO_3 $\stackrel{\overline{\text{Bla}}}{=\!=\!=\!=}$ $\operatorname{CaO} + \operatorname{CO}_2 \uparrow$; $\operatorname{CaO} + \operatorname{H}_2\operatorname{O} = \operatorname{Ca}(\operatorname{OH})_2$
- 2. 沉淀: $MgCl_2 + Ca(OH)_2 = Mg(OH)_2 \downarrow + CaCl_2$
- 3. 酸化: $Mg(OH)_2 + 2HCl=MgCl_2 + 2H_2O$
- 4. 蒸发浓缩,冷却结晶:析出 $\mathrm{MgCl}_2 \cdot 6\,\mathrm{H}_2\mathrm{O}$
- 5. 脱水:在 HCl 气流中使 $MgCl_2 \cdot 6H_2O$ 脱水制得无水氯化镁

HCl 气流用于抑制 MgCl 的水解

6. 电解:电解熔融氯化镁制得镁: $\mathrm{MgCl}_2(egin{smallmatrix}\mathrm{mg}\mathrm{Mg}^+ & \mathrm{Cl}_2 \end{smallmatrix}$