ЛАБОРАТОРНА РОБОТА 2. ЗАСТОСУВАННЯ ТЕОРЕМИ БАНАХА ПРО НЕРУХОМУ ТОЧКУ

1. ТЕОРЕМА БАНАХА

Означення. Нехай (X,d) – метричний простір. Відображення $f:X\to X$ називають відображення стиску, якщо

$$\exists \lambda \in (0,1) \ \forall x_1, x_2 \in X : d(f(x_1), f(x_2)) \le \lambda d(x_1, x_2).$$

Означення. Точку $x_0 \in X$ називають нерухомою точкою відображення $f: X \to X$, якщо $f(x_0) = x_0$.

Теорема Банаха. Нехай (X,d) – повний метричний простір, $f:X\to X$ – відображення стиску. Тоді відображення f має єдину нерухому точку.

Доведення. Нехай $x_0\in X$ – довільний елемент. Покладемо $x_1=f(x_0), x_2=f(x_1), x_3=f(x_2), \dots$ Доведемо, що послідовність $\{x_n:\, n\geq 1\}$ фундаментальна.

Маємо

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le \lambda d(x_n, x_{n-1}) \le \dots \le \lambda^n d(x_1, x_0), \ n \ge 1,$$

звідки для m < n маємо

$$d(x_m, x_n) \le d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{n-1}, x_n) \le$$
$$\le \lambda^m d(x_0, x_1) + \dots + \lambda^{n-1} d(x_0, x_1) \le \frac{\lambda^m}{1 - \lambda} d(x_0, x_1).$$

В повному просторі з фундаментальності випливає збіжність до деякого елемента $x^* \in X$. Крім того,

$$d(f(x_n), f(x^*)) \le \lambda d(x_n, x^*) \to 0, \ n \to \infty.$$

Якщо в рівності $x_{n+1}=f(x_n)$ перейти до границі при $n\to\infty$, отримаємо $x^*=f(x^*)$, тобто x^* – нерухома точка.

Якщо припустити, що $z \in X$ – інша нерухома точка, то отримаємо

$$d(z, x^*) = d(f(z), f(x^*)) < \lambda d(z, x^*),$$

звідки $d(z,x^*) \leq 0$, тобто $z=x^*.$

Зауваження. Спрямуємо в оцінці для фундаментальності $n o \infty$:

$$d(x_m, x) \le \frac{\lambda^m}{1 - \lambda} d(x_0, x_1).$$

Ця оцінка показує, наскільки вказаний у доведенні конструктивний метод наближає нас до шуканої точки.

2. ЗАСТОСУВАННЯ ТЕОРЕМИ БАНАХА

Означення. Функція $f:[a,b] \to \mathbf{R}$ задовольняє на [a,b] умову Ліпшиця зі сталою L, якщо $\forall x,y \in [a,b]: |f(x)-f(y)| \leq L|x-y|$. Позначення: $f \in Lip([a,b])$.

Теорема 1 (Про розв'язання рівняння f(x)=x**).** Нехай $f:[a,b]\to [a,b],\ f\in Lip([a,b])$ зі сталою L<1. Тоді рівняння f(x)=x має єдиний на [a,b] розв'язок.

Доведення. Простір X=[a,b] з евклідовою відстанню – повний, f – відображення стиску, отже ця теорема випливає з теореми Банаха.

Теорема 2 (Про розв'язання рівняння F(x)=0**).** Нехай $F:[a,b] \to \mathbf{R}, \ F(a) < 0 < F(b), \ \exists 0 < m \leq M \ \forall x \in [a,b] \ \exists F'(x) \in [m,M].$ Тоді рівняння F(x)=0 має єдиний на [a,b] розв'язок.

Доведення. Простір X=[a,b] з евклідовою відстанню – повний, $f(x)=x-\lambda F(x)$ – відображення стиску з числом λ . Якщо $\lambda=1/(2*M)$, то $f(a)=a-\lambda F(a)>a, \ f'(x)=1-\lambda F'(x)>0, \ f(b)=b-\lambda F(b)< b,$ тому $f:[a,b]\to[a,b]$. Отже ця теорема випливає з теореми Банаха.

Зауваження. 1. Існування розв'язку випливає з теореми Коші.

2. В обох цих випадках важливо, що розв'язок можна побудувати, як в теоремі Банаха, методом послідовних наближень.

Теорема 3 (Про розв'язання системи лінійних рівнянь). Нехай система з m лінійних рівнянь Ax=b задана матрицею A mxm та вектором $b\in \mathbf{R}^m$. Нехай також I – одинична матриця, тобто $I_{ij}=0,\ i\neq j;\ I_{ii}=1,\ 1\leq i\leq m,$ і C=A-I. Якщо

$$\sum_{i=1}^{m} \sum_{j=1}^{m} (A_{ij} - I_{ij})^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} C_{ij}^2 = \lambda^2 < 1,$$

то система має єдиний розв'язок.

Доведення. В повному метричному просторі $({f R}^m,\;
ho)$ розглянемо відображення f(x)=Ax+b-x. Це відображення є відображенням стиску, бо

$$\rho^{2}(f(x), f(z)) = \sum_{i=1}^{m} ((Ax)_{i} + b - x_{i} - (Az)_{i} - b + z_{i})^{2} = \sum_{i=1}^{m} ((Cx)_{i} - (Cz)_{i})^{2} =$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{m} C_{ij}(x_{j} - z_{j}) \right)^{2} \le \sum_{i=1}^{m} \left(\sum_{j=1}^{m} C_{ij}^{2} \right) \left(\sum_{j=1}^{m} (x_{j} - z_{j})^{2} \right) \le \lambda^{2} \rho(x, z).$$

Теорема 4 (Про розв'язання диференціальних рівнянь). Нехай $F:[a,b] \times {f R} \to {f R}$ задовольняє умови:

- 1) $F \in C([a,b] \times \mathbf{R})$;
- 2) $\exists L > 0$: $\forall x \in [a, b] \ \forall y_1, y_2 \in \mathbf{R}$: $|F(x, y_1) F(x, y_2)| \le L|y_1 y_2|$.

Тоді для довільного $y_0 \in \mathbf{R}$ задача Коші

$$\begin{cases} y'(x) = F(x, y(x)), \ a \le x \le b, \\ y(x_0) = y_0, \end{cases}$$

має єдиний розв'язок.

Доведення. Задача Коші еквівалентна інтегральному рівнянню

$$y(x) = y_0 + \int_{x_0}^x F(t, y(t))dt, \ x \in [a, b],$$

відносно функції $y \in C([a,b])$.

У повному метричному просторі C([a,b]) з метрикою

$$d(f,g) = \max_{x \in [a,b]} e^{-k(x-a)} |f(x) - g(x)|,$$

де k>L, розглянемо відображення $f:C([a,b]) \to C([a,b]),$ де

$$f(y)(x) = y_0 + \int_{x_0}^x F(t, y(t))dt, \ x \in [a, b],$$

Можна перевірити, що це відображення є відображенням стиску при $\lambda = L/k$. Тому воно має нерухому точку, що і є шуканим розв'язком.

ЗАВДАННЯ

1. За допомогою теореми 1 розв'язати рівняння

$$0.5\cos x = x, \ x \in [-10, 10].$$

Для цього визначити λ , обрати x_0 , знайти кількість ітерацій, щоб точність була не менше за 1e-9, реалізувати це в програмі, знайшовши корінь.

2. За допомогою теореми 2 розв'язати рівняння

$$x^5 - x - 1$$
, $[a, b] = [1, 2]$.

Для цього визначити $m,\ M,\ \lambda,$ обрати $x_0,$ знайти кількість ітерацій, щоб точність була не менше за 1e-9, реалізувати це в програмі, знайшовши корінь.

3. За допомогою теореми 3 розв'язати систему лінійних рівнянь

$$Ax = b$$

у таких випадках: а) елементи матриці C – випадкові числа з проміжку [-0.05,0.05], елементи вектора b – випадкові числа з проміжку $[-10,10],\ m=10.$ б) всі елементи матриці C рівні – випадкові числа з проміжку [-0.01,0.01], елементи вектора b – випадкові числа з проміжку $[-10,10],\ m=80.$ Для цього визначити λ , обрати вектор x_0 , знайти кількість ітерацій, щоб точність була не менше за 1e-9, реалізувати це в програмі, знайшовши розв'язок.

4*. За допомогою теореми 4 розв'язати задачу Коші

$$y'(x) = 0.5 \arctan(y(x)) + x^4, x \in [0, 1]; y(0) = 1.$$

Кожну функцію наближено замінити на кусково-лінійну, обравши розбиття відрізка з n=10000 точок. Для цього визначити λ , обрати початкову функцію y_0 , знайти кількість ітерацій, щоб величина $\max_{x\in[0,1]}|y(x)-y_n(x)|$ була не більше за 1e-9, реалізувати це в програмі, знайшовши розв'язок.