

Why look at case studies?

Outline

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG <

ResNet (152)

Inception

Classic networks

Andrew Ng

- · Motivation: adding too many layers are worsen the training error. This is because redundant layors should bearn are identity function, which is hard in general.
- . This moblem can be solved by odding "skip-connections" that forward the activation of one loger to the linear operation of a loter loyer. This solves the problem because redundant blocks can cossey learn the identity function by setting their regists to zero.

 [e] = a[e+2] = a[e+2] The residual block can

The group of loyers included within the this connection is defined "residual black" · ResNets are very oleop networks contoining residuel blocks.

deeplearning.ai

Residual Networks

ResNets)
In general the activations of all layers within a residuel black have the same dimension. However, it is possible to have different dimensions if an infermediate "conjunction" matrix is used to som a [e] to 2[e+2]

Andrew Ng

Why ResNets work

Why do residual networks work?

ResNet

· Applies a nontriviel function of the drownels*

Used to shrink the number of chonnels in a nonthirial way (it's like a foncy useful for inception networks that tend to have extremely high number of dronnels.

deeplearning.ai

Case Studies

Network in Network and 1×1 convolutions

· AKA: "Network in network" because convolving all the Cohonnels of 1 neuron with a 1×1×C filter corresponds to a FC loger toking the C chances as imports.

Why does a 1×1 convolution do?

Using 1×1 convolutions

Shrinking chonnels (foncy pooling).

· lolea: instead of choosing which Rieters to opply, opply them all (in parallel) and stack them

. however this creates loyers with mony dronnels which increases enounously the complexity of convolutions. The inception module is designed to some convolutation · the inception module is designed to sove computation.

deeplearning.ai

The idea is to replace each convolution with a 2 skp operation: 1- "Compress the no. chonnels Case Studies by perfecting n CONV 1×1×NO. channels where n is "small within reason".

=) RESULTS IN A "BOTTZENECK LAYER" where the information is compressed;

2-opply the consolition for the desired output dimension to the sotlement coyen.

Inception network

This 2 skp operation by a footen of 10 Motivation while obtoining similar results. Size of the bothereck by must be somethin reason."

es: instead of

28×28×192 32 CONV 5X5 28×28×32 , do 28×28×192

The problem of computational cost

Inception network

Practical advice for using ConvNets

Transfer Learning

Practical advice for using ConvNets

Data augmentation

Common augmentation method

Color shifting R GB +20,-20,+20 -20,+20,+20 +5,0,+50

Advanced! PCA ml-class.org [Alex Net paper ["PCA color augustation."

Implementing distortions during training

Practical advice for using ConvNets

The state of computer vision

Data vs. hand-engineering

Two sources of knowledge

- → Labeled data (44)
- Hand engineered features network architecture other components

 Andrew Ng

Tips for doing well on benchmarks/winning competitions

Ensembling

• Train several networks independently and average their outputs

Multi-crop at test time

• Run classifier on multiple versions of test images and average results

Use open source code

• Use architectures of networks published in the literature

• Use open source implementations if possible

Use pretrained models and fine-tune on your dataset