Name:	

MATH 1 MIDTERM 1

October 17, 2007

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- Print your name clearly in the space provided.
- You may not use a calculator.

HONOR STATEMENT:

I have neither given nor received help on this exam, and all of the answers are my own.

Signature

Question	Points	Score
1	9	
2	12	
3	4	
4	6	
5	10	
6	10	
7	8	
8	10	
9	11	
10	20	
Total:	100	
8 9 10	10 11 20	

- 1. Determine the inverse function $f^{-1}(x)$.
 - (a) [1 point] $f(x) = x^3$ $f'(x) = \sqrt[3]{x}$
 - (b) [1 point] $f(x) = 2^x$ $f^{-1}(x) = \log_2 x$
 - (c) [1 point] $f(x) = e^x$ f'(x) = |n| X
 - (d) [1 point] $f(x) = \log_3 x$
 - (e) [1 point] $f(x) = \tan x$ $f'(x) = \tan (x)$
 - (f) [2 points] $f(x) = -\frac{1}{x}$ $y = -\frac{1}{x}$ $x = -\frac{1}{y}$ so $f^{-1}(x) = -\frac{1}{x}$
 - (g) [2 points] $f(x) = \sqrt{2x 1}$ $y = \sqrt{2x - 1}$ $x^{2} + 1 = 2y$ $x^{2} = 2y - 1$ $x^{3} + 1 = y$ $x^{2} + 1 = y$ $x^{2} + 1 = y$ $x^{3} = 2y - 1$

- 2. State the domain and range of the following functions.
 - (a) [2 points] $f(x) = x^2$

Domain: $(-\infty, \infty)$

Range: $[0, \infty)$

(b) [2 points] $f(x) = \sqrt{x}$

Domain: $[0, \infty)$

Range: $[0, \infty)$

(c) [2 points] $f(x) = x^3$

Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

(d) [2 points] $f(x) = \sqrt[3]{x}$

Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

(e) [2 points] $f(x) = \frac{1}{x}$

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, 0) \cup (0, \infty)$

(f) [2 points] $f(x) = \arctan x$

Domain: $(-\infty, \infty)$

Range: $\left(-\frac{\pi}{2}, \frac{\pi}{a}\right)$

- 3. Let $f(x) = x^3 2x + 1$.
 - (a) [1 point] Compute f(0).

$$f(0) = 0^3 - 2(0) + 1 = 1$$

(b) [1 point] Compute f(2).

$$f(a) = a^3 - 2(a) + 1 = 8 - 4 + 1 = 5$$

(c) [1 point] Find the slope of the line passing through the points (0, f(0)) and (2, f(2)).

$$m = \frac{f(0) - f(0)}{0 - 2} = \frac{1 - 5}{-2} = 2$$

(d) [1 point] Find the equation of the line passing through the points (0, f(0)) and (2, f(2)).

$$y = mx+b$$

$$y = \partial x+b$$

$$1 = \partial(0)+b$$

$$1 = b$$

$$0 = \partial x+1$$

- 4. Let $d(t) = t^2 1$ represent the distance an object has traveled in time t.
 - (a) [2 points] Determine the average velocity of the object in the interval [1, 2].

$$\frac{3-1}{d(3)-d(1)}=\frac{(3-1)-(1-1)}{3}=3$$

(b) [2 points] Evaluate and simplify
$$\frac{d(1+h)-d(1)}{h}$$
.

$$\frac{d(1+h)-d(1)}{h} = \frac{(1+h)^2-1}{h} = \frac{1+2h+h^2-1}{h}$$

$$= \frac{h(2+h)}{h}$$

$$= 2+h$$

(c) [2 points] The expression above represents the average velocity of the object in an interval [1, 1+h]. Plug in h = 0.1, 0.01, and 0.001 into the simplified form of the expression (or the complicated one if you prefer!) and estimate

- 5. Starting with the function $y = \frac{1}{x}$, obtain f(x) by taking $\frac{1}{x}$ and translating it right one unit followed by reflecting it about the x-axis. Obtain g(x)by taking $\frac{1}{x}$ and reflecting it about the x-axis followed by translating it up one unit.
 - (a) [2 points] What is f(x)?

$$-\left(\frac{1}{x-1}\right)$$

(b) [2 points] What is g(x)?

$$\frac{1}{x} + 1$$

(c) [2 points] Compute $f \circ g$.

$$f(g(x)) = f\left(\frac{-1}{x} + 1\right) = -\left(\frac{1}{\left(\frac{-1}{x} + 1\right) - 1}\right) = -\left(\frac{1}{$$

(d) [2 points] Compute $g \circ f$.

g (f(x)) = g
$$\left(-\left(\frac{1}{x-1}\right)\right) = \frac{-1}{\left(-\frac{1}{x-1}\right)} + 1 = x$$

(e) [2 points] Given the results from parts (c) and (d), what relationship exists between f and g?

$$g = f^{-1}$$
 or $f = g^{-1}$.

- 6. Simplify the following expressions:
 - (a) [2 points] $16^{-3/4}$ $\begin{vmatrix} -3/4 & -3 & -3 \\ 6 & -3/4 & -3 \\ 6 & -3/4 & -3 \\ 6 & -3/4 & -3 \\ 6 & -3/4 & -3 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 6 & -3/4 & -3/4 \\ 7 & -3/4$
 - (b) [2 points] $\frac{x}{y} \frac{y}{x}$

$$\frac{x}{y} - \frac{y}{x} = \frac{x^2}{xy} - \frac{y^2}{xy} = \frac{x^2 - y^2}{xy}$$

- (c) [2 points] $\log_8(64)$ $\log_8(64) = \log_8(8) = 2 \log_8(8) = 2$
- (d) [2 points] $\log_2(6) \log_2(15) + \log_2(20)$ $\log_2(6) - \log_2(15) + \log_2(20) = \log_2(15) + \log_2(20)$

$$= \log_2(\frac{6}{15} \cdot 20) = \log_2(\frac{120}{15})$$

(e) [2 points]
$$\arccos(-1)$$

$$= \log_{3}(8)$$

$$= \log_{3}(3^{3})$$

$$= 3$$

$$\cos(x) = -1$$

 $x = \pi$

7. Let

$$f(x) = \begin{cases} x+2 & \text{if } x < -1 \\ x^2 & \text{if } x > -1 \\ 4 & \text{if } x = -1 \end{cases}$$

(a) [4 points] Graph f(x).

- (b) [1 point] Find $\lim_{x\to -1^-} f(x)$.
- (c) [1 point] Find $\lim_{x\to -1^+} f(x)$.
- (d) [1 point] Find $\lim_{x\to -1} f(x)$.
- (e) [1 point] Find f(-1).

- 8. Solve for x.
 - (a) [2 points] $x-3=2-\frac{x}{2}$ $\chi-3=\lambda-\frac{x}{2}$ $\chi+\frac{x}{2}=\lambda+3$ 1.5x=5

$$X = \frac{5}{1.5} = \frac{10}{3}$$

- (b) [2 points] $(\frac{1}{3})^x = 27$
- (c) [2 points] tan(x) = 1 with x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $\chi = \frac{\pi}{4} \quad \text{or} \quad 45^{\circ} \quad \left(\text{when} \quad \frac{\sin(x)}{\cos(x)} = 1, \text{ so} \right)$ when $\sin(x) = \cos(x)$
- (d) [2 points] $\sin(\arcsin(x)) = 1$

(e) [2 points] $\ln((x+1)^3) = 3$

$$\ln((x+1)^3) = 3$$

 $3 \ln(x+1) = 3 \implies \ln(x+1) = 1$
 $e' = x+1$
 $e-1 = x$

9. [1 point] Sketch the graph of $f(x) = \sqrt{x}$.

Write the equations for the graphs that are obtained from the graph of f(x) as follows:

(a) [2 points] Translate to the left by 3 units.

(b) [2 points] Stretch horizontally by a factor of 4.

(c) [2 points] Reflect about the y-axis.

(d) [2 points] First (a) then (c).

(e) [2 points] First (b) then (a).

$$\sqrt{\frac{x+3}{4}}$$

10. Consider the function $f(x) = \frac{1}{x^2}$ graphed below.

(a) [2 points] Find the domain of f.

$$(-\infty,0)\cup(0,\infty)$$

(b) [2 points] Find the range of f.

(c) [1 point] Is f one-to-one?

No

(d) [1 point] What kind of symmetry does f have (even, odd, neither)?

(e) [2 points] Determine the two transformations (in order) needed to obtain $g(x) = -\frac{1}{(x+1)^2}$ from f(x).

(f) [1 point] Sketch the graph of g(x).

- (g) [2 points] Find the domain of g. $(-\infty, -1)$ $\cup (-1, \infty)$
- (h) [2 points] Find the range of g.

- (i) [1 point] Find $\lim_{x\to 0^+} g(x)$.
- (j) [1 point] Find $\lim_{x\to 0^-} g(x)$.
- (k) [1 point] Find $\lim_{x\to 0} g(x)$.
- (1) [1 point] Find g(0).
- (m) [1 point] Find $\lim_{x\to -1^+} g(x)$.
- (n) [1 point] Find $\lim_{x\to -1^-} g(x)$.
- (o) [1 point] Find $\lim_{x\to -1} g(x)$.