Diferenciación e Integración Numérica

Módulo 5

Introducción

Diferenciación

- La derivada representa la razón de cambio de una variable dependiente con respecto a una variable independiente.
- Su definición matemática empieza con una aproximación por diferencias:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

• Si se hace que Δx se aproxime a cero el cociente de las diferencias se convierte en una derivada

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Definición gráfica

La aproximación por diferencias se va convirtiendo en una derivada.

Integración

El proceso inverso de la diferenciación es la integración. Matemáticamente, la integración se representa por una letra S estilizada, antigua, que simboliza la estrecha relación entre integración y suma:

$$I = \int_a^b f(x) dx$$

De hecho, la definición de una integral parte de una suma de áreas bajo una curva:

$$I = \lim_{\Delta x
ightarrow 0} \sum_i f_i(x) \Delta x$$

Definición gráfica

A medida que las áreas sumadas se hacen más pequeñas, nos aproximamos a una integral:

Diferenciación e Integración de funciones

La función estará, usualmente, en una de las siguientes formas:

- 1. Una función continua simple como un polinomio, una función exponencial o una función trigonométrica.
- 2. Una función continua complicada que es difícil o imposible de diferenciar o integrar directamente.
- 3. Una función tabulada donde los valores de x y f(x) están dados como un conjunto discreto de puntos.

Diferenciación e Integración de funciones

La función estará, usualmente, en una de las siguientes formas:

- 1. Una función continua simple como un polinomio, una función exponencial o una función trigonométrica. (Método Analítico)
- 2. Una función continua complicada que es difícil o imposible de diferenciar o integrar directamente. (Método Numérico)
- 3. Una función tabulada donde los valores de x y f(x) están dados como un conjunto discreto de puntos. (Método Numérico)

Diferenciación gráfica por áreas iguales

- Para cada intervalo, se emplea una diferencia dividida simple $\Delta y/\Delta x$ para estimar la pendiente.
- Estos valores se grafican como una curva escalonada contra x.
- Se dibuja una curva suave que aproxime el área bajo la curva.
- lacktriangle Las razones para valores dados de x pueden leerse en la curva (interpolación).

Diferenciación gráfica por áreas iguales

Integración gráfica por áreas iguales

- De igual manera, se utilizan procedimientos visualmente orientados para integrar datos tabulados y funciones complicadas.
- Un procedimiento intuitivo consiste en graficar la función sobre una cuadrícula y contar el número de cuadros que se aproximen al área.
- El número de cuadros multiplicado por el área de cada cuadro proporciona una estimación del área total bajo la curva.
- Dicha estimación se puede mejorar, a expensas de mayor trabajo, usando una cuadrícula más fina.

Integración gráfica por áreas iguales

Diferenciación

Aproximación a la primera derivada con diferencia hacia adelante

Se obtiene a partir de la expansión en series de Taylor:

$$f'(x_i) = rac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = rac{\Delta f_i}{h}$$

Aproximación a la primera derivada con diferencia hacia atrás

También se puede obtener a partir de la expansión en series de Taylor:

$$f'(x_i) = rac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = rac{
abla f_i}{h}$$

Aproximación a la primera derivada con diferencias centradas

También se puede obtener a partir de la expansión en series de Taylor:

$$f'(x_i) = rac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}} = rac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

Use aproximaciones con diferencias finitas hacia adelante, hacia atrás, y con diferencias centradas para estimar la primera derivada de

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

en x=0.5 utilizando un incremento de h=0.5. Repita el cálculo con h=0.25.

Use aproximaciones con diferencias finitas hacia adelante, hacia atrás, y con diferencias centradas para estimar la primera derivada de

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

en x=0.5 utilizando un incremento de h=0.5. Repita el cálculo con h=0.25.

¿Cuál es el valor analítico de la derivada?

$$f'(x) = -0.4x^3 - 0.45x^2 - 1.0x - 0.25 \rightarrow f'(0.5) = -0.9125$$

Para h = 0.5, la función se emplea para determinar:

$$x_{i-1} = x_i - h = 0,$$
 $f(x_{i-1}) = 1.2$
 $x_i = 0.5,$ $f(x_i) = 0.9250$
 $x_{i+1} = x_i + h = 1,$ $f(x_{i+1}) = 0.2$

Esos valores sirven para calcular las diferencias divididas hacia adelante, hacia atrás, y con diferencias centradas.

Diferencia hacia adelante:
$$f'(0.5) = \frac{f(x_{i+1}) - f(x_i)}{h} = \frac{0.2 - 0.9250}{0.5} = -1.4500$$
 $|\varepsilon_r| = 58.9041 \%$

Diferencia hacia atrás:
$$f'(0.5) = \frac{f(x_i) - f(x_{i-1})}{h} = \frac{0.9250 - 1.2}{0.5} = -0.5500,$$
 $|\varepsilon_r| = 39.7260 \%$

Diferencias centradas:
$$f'(0.5) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} = \frac{0.2 - 1.2}{2*0.5} = -1,$$
 $|\varepsilon_r| = 9.5890 \%$

Para h = 0.25, la función se emplea para determinar

$$egin{aligned} x_{i-1} &= 0.25 & f(x_{i-1}) = 1.10351563 \ x_i &= 0.5 & f(x_i) = 0.925 \ x_{i+1} &= 0.75 & f(x_{i+1}) = 0.63632813 \end{aligned}$$

Esos valores sirven para calcular las diferencias divididas hacia adelante, hacia atrás, y con diferencias centradas.

Diferencia hacia adelante

$$f'(0.5)\congrac{0.63632813-0.925}{0.25}=-1.155 \hspace{1.5cm} |arepsilon_r|=26.5\%$$

Diferencia hacia atrás

$$f'(0.5)\congrac{0.925-1.10351563}{0.25}=-0.714 \hspace{10mm} |arepsilon_r|=21.7\%$$

Diferencias centradas

$$f'(0.5)\congrac{0.63632813-1.10351563}{0.5}=-0.934 \hspace{0.5cm} |arepsilon_r|=2.4\%$$

Diferenciación

- Utilizando más términos de la expansión en series de Taylor se pueden generar fórmulas por diferencias divididas de alta exactitud.
- A continuación algunas de las más usadas

Diferencias hacia adelante

Primera derivada

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$
$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$$

Segunda derivada

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$$
$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$$

Diferencias hacia adelante

Tercera derivada

$$f''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3}$$
$$f''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3}$$

Cuarta derivada

$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4}$$
$$f''''(x_i) = \frac{-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4}$$

Diferencias hacia atrás

Primera derivada

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$$
$$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$$

Segunda derivada

$$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2}$$
$$f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2}$$

Diferencias hacia atrás

Tercera derivada

$$f''(x_i) = \frac{f(x_i) - 3f(x_{i-1}) + 3f(x_{i-2}) - f(x_{i-3})}{h^3}$$
$$f''(x_i) = \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3}$$

Cuarta derivada

$$f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4}$$
$$f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4}$$

Diferencias centradas

Primera derivada

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$
$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{1.2h}$$

Segunda derivada

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$
$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$$

Diferencias centradas

Tercera derivada

$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3}$$
$$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$$

Cuarta derivada

$$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$$
$$f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) + 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) + f(x_{i-3})}{6h^4}$$

Use aproximaciones con diferencias finitas de alta exactitud hacia adelante, hacia atrás, y con diferencias centradas para estimar la primera derivada de

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

en x = 0.5 utilizando un incremento h = 0.25.

Observe que la derivada se calcula directamente como

$$f'(x) = -0.4x^3 - 0.45x^2 - 1.0x - 0.25 = f'(0.5) = -0.9125$$

Para h = 0.25, la función se emplea para determinar

$$egin{aligned} x_{i-2} &= 0 & f(x_{i-2}) = 1.2 \ x_{i-1} &= 0.25 & f(x_{i-1}) = 1.1035156 \ x_i &= 0.5 & f(x_i) = 0.925 \ x_{i+1} &= 0.75 & f(x_{i+1}) = 0.6363281 \ x_{i+2} &= 1 & f(x_{i+2}) = 0.2 \end{aligned}$$

Esos valores sirven para calcular las diferencias divididas hacia adelante, hacia atrás, y con diferencias centradas.

Diferencia hacia adelante

$$f'(0.5) = \frac{-0.2 + 4(0.6363281) - 3(0.925)}{2(0.25)} = -0.859375 \qquad |\varepsilon_r| = 5.82\%$$

Diferencia hacia atrás

$$f'(0.5) = \frac{3(0.925) - 4(1.1035156) + 1.2}{2(0.25)} = -0.878125 \qquad |arepsilon_r| = 3.77\%$$

Diferencias centradas

$$f'(0.5) = rac{-0.2 + 8(0.6363281) - 8(1.1035156) + 1.2}{12(0.25)} = -0.9125 \qquad |arepsilon_r| = 0\%$$

Integración

Fórmulas de integración de Newton-Cotes

Son los tipos de integración numérica más comunes.

Se basan en la estrategia de reemplazar una función complicada o datos tabulados por un polinomio de aproximación fácil de integrar:

$$I = \int_a^b f(x) dx \cong \int_a^b f_n(x) dx$$

donde $f_n(x)$ es un polinomio de grado n.

El "método de barras" emplea un conjunto de polinomios de grado cero (es decir, constantes) para aproximar la integral.

Regla del trapecio

En este caso, la función o los datos tabulados se aproximan a un polinomio de orden 1:

$$I=\int_a^b f(x)dx\cong \int_a^b f_1(x)dx$$

El resultado de la integración es:

$$I=(b-a)rac{f(a)+f(b)}{2}$$

Expresión que le da el nombre de la regla del trapecio.

Regla del Trapecio

Aplique la regla del trapecio e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a = 0 hasta b = 0.8.

Aplique la regla del trapecio e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a = 0 hasta b = 0.8.

Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es:

$$\int_0^{0.8} f(x) = \left(0.2x + \frac{25}{2}x^2 - \frac{200}{3}x^3 + \frac{675}{4}x^4 - \frac{900}{5}x^5 + \frac{400}{6}x^6 \right) \Big|_0^{0.8}$$

$$= \mathbf{1.6405}$$

Al evaluar la función en los límites f(0) = 0.2, f(0.8) = 0.2320. Para la integral se tiene:

$$I = (b-a)\frac{f(a) + f(b)}{2} = 0.8\frac{0.2 + 0.2320}{2} = 0.1728$$

Al evaluar la función en los límites f(0) = ?, f(0.8) = ?. Para la integral se tiene

$$I = (b-a)\frac{f(a) + f(b)}{2} =$$

la cual representa un error de $E_a=1.4677$, que corresponde a un error relativo porcentual de $E_r=89.4668\%$.

La razón de este error tan grande es evidente:

El área bajo la línea recta no toma en cuenta una porción significativa de la integral.

La regla del trapecio de aplicación múltiple

- Se divide el intervalo de integración en varios segmentos, y se aplica el método a cada uno de ellos.
- Las áreas de los segmentos se suman después para obtener la integral en todo el intervalo.
- Suponemos n puntos igualmente espaciados $(x_1, x_2, ..., x_n)$. En consecuencia, existen n-1 segmentos del mismo ancho:

$$h = \frac{b-a}{n-1}$$

La regla del trapecio de aplicación múltiple

La regla del trapecio de aplicación múltiple

Si a y b se designan como x_1 y x_n , respectivamente, la integral quedaría:

$$I = \int_{x_1}^{x_2} f(x) dx + \int_{x_2}^{x_3} f(x) dx + \ldots \int_{x_{n-1}}^{x_n} f(x) dx$$

Sustituyendo la regla del trapecio en cada integral se obtiene

$$I = h rac{f(x_1) + f(x_2)}{2} + h rac{f(x_2) + f(x_3)}{2} + \dots h rac{f(x_{n-1}) + f(x_n)}{2}$$

o, agrupando términos,

$$I=rac{h}{2}\Big[f(x_1)+2\sum_{i=2}^{n-1}f(x_i)+f(x_n)\Big]$$

Aplique la regla del trapecio con n=3, e integre numéricamente $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$

desde a=0 hasta b=0.8. Recuerde que el valor exacto de la integral

se puede determinar en forma analítica y es 1.640533.

n=3 o Entonces se tienen 2 intervalos de tamaño h=0.4

$$f(0) = 0.2 \ f(0.4) = 2.456 \ f(0.8) = 0.232$$

$$I=rac{0.4}{2}(0.2+2(2.456)+0.232)=1.0688 \ arepsilon_a=1.640533-1.0688=0.57173 \ arepsilon_r=34.9\%$$

Reglas de Simpson

- Además de la regla del trapecio con segmentación más fina, se puede obtener una estimación más exacta usando polinomios de grado superior en cada intervalo.
- Las soluciones de las integrales bajo dichos polinomios se conocen como reglas de Simpson.

Regla de Simpson 1/3

La regla de Simpson ½ resulta cuando se usa un polinomio de interpolación de segundo grado en la ecuación:

$$I = \int_{x_1}^{x_3} f(x) \cong \int_{x_1}^{x_3} f_2(x)$$

El resultado se puede expresar así:

$$I\cong rac{h}{3}[f(x_1)+4f(x_2)+f(x_3)]$$
 donde $h=rac{b-a}{2}=rac{x_3-x_1}{2}$

Aplique la regla de Simpson 1/3 e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a = 0 hasta b = 0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

Aplique la regla de Simpson 1/3 e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a=0 hasta b=0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

$$f(0) = 0.2$$

 $f(0.4) = 2.456$
 $f(0.8) = 0.232$

Con estos valores,

$$f(0) = 0.2$$

 $f(0.4) = 2.456$
 $f(0.8) = 0.232$

se obtiene

$$I\cong rac{0.4}{3}[0.2+4(2.456)+0.232]=1.367467$$

$$arepsilon_a = 1.640533 - 1.367467 = 0.2730667 \qquad arepsilon = 16.6\%$$

Regla de Simpson 1/3 de aplicación múltiple

La regla de Simpson mejora al dividir el intervalo de integración en varios segmentos de igual tamaño: h=(b-a)/(n-1). La integral se representaría así:

$$I = \int_{x_1}^{x_3} f(x) + \int_{x_3}^{x_5} f(x) + \cdots + \int_{x_{n-2}}^{x_n} f(x)$$

Al sustituir la regla de Simpson 1/3 en cada integral se obtiene

$$egin{align} I &\cong rac{h}{3}[f(x_1) + 4f(x_2) + f(x_3)] + rac{h}{3}[f(x_3) + 4f(x_4) + f(x_5)] \ &+ \dots + rac{h}{3}[f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \end{aligned}$$

Regla de Simpson 1/3 de aplicación múltiple

En forma compacta:
$$I\congrac{h}{3}\left[f(x_1)+4\sum_{i=2,4,6}^{n-1}f(x_i)+2\sum_{j=1,3,5}^{n-2}f(x_j)+f(x_n)
ight]$$

 Esta regla sólo puede aplicarse con un número par de segmentos (un número impar de puntos).

Aplique la regla de Simpson $\frac{1}{3}$ con n=5, e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a = 0 hasta b = 0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

n=5 o Entonces se tienen 4 intervalos de tamaño h=0.2

$$f(0) = 0.2$$
 $f(0.2) = 1.288$ $f(0.4) = 2.456$ $f(0.8) = 0.232$

$$I = \frac{0.2}{3}(0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232) = 1.623467$$

$$\varepsilon_a = 1.640533 - 1.623467 = 0.017067$$

$$arepsilon_r=1.04\%$$

Regla de Simpson 3/8

La regla de Simpson 3/8 resulta cuando se usa un polinomio de interpolación de tercer grado en la ecuación:

$$I = \int_{x_1}^{x_4} f(x) \cong \int_{x_1}^{x_4} f_3(x)$$

El resultado se puede expresar así:

$$I\cong rac{3h}{8}[f(x_1)+3f(x_2)+3f(x_3)+f(x_4)]$$
 donde $h=rac{b-a}{3}=rac{x_4-x_1}{3}$

Aplique la regla de Simpson 3/8 e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a = 0 hasta b = 0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

Aplique la regla de Simpson 3/8 e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a=0 hasta b=0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

$$f(0) = 0.2$$
 $f(0.2667) = 1.432724$ $f(0.5333) = 3.487177$ $f(0.8) = 0.232$

Con estos valores,

$$f(0) = 0.2$$
 $f(0.2667) = 1.432724$ $f(0.5333) = 3.487177$ $f(0.8) = 0.232$

se obtiene

$$I\congrac{3(0.2667)}{8}[0.2+3(1.432724+3.487177)+0.232]=1.\,519170$$
 $arepsilon_a=1.\,640533-1.\,519170=0.\,1213630 \qquad arepsilon=7.4\%$

Las reglas de simpson se pueden combinar

Aplique las reglas de Simpson $\frac{3}{8}$ y $\frac{1}{3}$ simultáneamente con n=6 puntos, e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a=0 hasta b=0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

Las reglas de simpson se pueden combinar

Aplique las reglas de Simpson $\frac{3}{8}$ y $\frac{1}{3}$ simultáneamente con n=6 puntos, e integre numéricamente

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

desde a=0 hasta b=0.8. Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es 1.640533.

$$f(0) = 0.2$$
 $f(0.16) = 1.296919$
 $f(0.32) = 1.743393$ $f(0.48) = 3.186015$
 $f(0.64) = 3.181929$ $f(0.80) = 0.232$

Para los dos primeros intervalos, se utiliza la regla de Simpson 1/3 :

$$I\cong \frac{(0.16)}{3}[0.2+4(1.296919)+1.743393]=0.3803237$$

Para los últimos tres segmentos, se utiliza la regla de Simpson 3/8:

$$I\cong rac{3(0.16)}{8}[1.743393+3(3.186015+3.181929)+0.232]=1.264754$$

La integral total se calcula sumando los dos resultados:

$$I = 0.3803237 + 1.264754 = 1.645077$$
 $\varepsilon_a = 1.640533 - 1.645077 = -0.00454383$ $\varepsilon = -0.28\%$

Algoritmos computacionales para la regla de Simpson 1/3

```
FUNCTION Simp13 (h, f_1, f_2, f_3)
    simp13 = h*(f_1+4*f_2+f_3)/3
END Simp13
```

```
FUNCTION Simp13m (h,n,f)
    sum = f_1
    DOFOR i=2,2,n-2
         sum = sum + 4 * f_i + 2 * f_{i+1}
    END DO
    sum = sum + 4 * f_{n-1} + f_n
    Simp13m = h*sum/3
```

Algoritmo computacional para la regla de Simpson 3/8

```
FUNCTION Simp38 (h, f_1, f_2, f_3, f_4)
Simp38=3*h*(f_1+3*(f_2+f_3)+f_4)/8
END Simp38
```

Algoritmo computacional para la regla de Simpson de aplicación múltiple con n par o impar

```
FUNCTION SimpInt(a,b,n,f)
sum = 0;
h = (b - a) / (n-1)
IF n = 2 THEN
  sum=sum+Trap(h, f_{n-1}, f_n)
ELSE
  m=n
  IF IsEven(n) & n>2 THEN
    sum = sum + Simp 38 (h, f_{n-3}, f_{n-2}, f_{n-3})
_{1}, f_{n})
    m = n - 3
```

```
IF m > 1 THEN
    sum=sum+Simp13m(h,m,f)
END IF
END IF
SimpInt = sum
END SimpInt
```

Integración de Romberg

Extrapolación de Richardson

- Hay técnicas de corrección del error para mejorar los resultados de la integración numérica con base en la misma estimación de la integral.
- Dichos métodos usan dos estimaciones de una integral para calcular una tercera más exacta y, en general, se les conoce como extrapolación de Richardson:

$$I\cong I(h_2)+rac{1}{(h_1/h_2)^2-1}[I(h_2)-I(h_1)]$$

- Recuerde los ejemplos anteriores donde se integró numéricamente el polinomio: $f(x) = 0.2 + 25x 200x^2 + 675x^3 900x^4 + 400x^5$ desde a = 0 hasta b = 0.8. El valor exacto de la integral es 1.640533.
- Las aplicaciones simples y múltiples de la regla del trapecio dieron los siguientes resultados:

Segmentos	h	Integral	Error
1	0.8	0.1728	89.5%
2	0.4	1.0688	34.9%
4	0.2	1.4848	9.5%

Caso particular $h_2 = 0.5 h_1$:

$$I\cong I(h_2)+rac{1}{(h_1/h_2)^2-1}[I(h_2)-I(h_1)]$$

Para $h_2=0.5h_1 o I\cong I(h_2)+rac{1}{2^2-1}[I(h_2)-I(h_1)]$
 $I\congrac{4}{3}I(h_2)-rac{1}{3}I(h_1)$

Si se combinan las estimaciones con uno y dos segmentos:

$$I \cong \frac{4}{3}(1.0688) - \frac{1}{3}(0.1728) = 1.367467$$

Con esta aproximación, se calcula el error de la integral como:

$$arepsilon_a = 1.640533 - 1.367467 = 0.273067
ightarrow arepsilon_r = 16.6\%$$

Si se combinan las estimaciones con dos y cuatro segmentos:

$$I\cong rac{4}{3}(1.4848)-rac{1}{3}(1.0688)=1.623467 \ arepsilon_a=1.640533-1.623467=0.017067
ightarrow arepsilon_r=1.0\%$$

Extrapolación de Richardson

- Es posible tomar las últimas dos estimaciones y combinarlas en una nueva extrapolación.
- Este procedimiento corresponde a un método más general para combinar integrales y obtener mejores estimaciones.
- Para ello utilizaremos el algoritmo de Integración de Romberg

Integración de Romberg

En general, se puede expresar de forma iterativa la combinación de diferentes estimaciones de integral a través de la ecuación:

$$I_{j,k}\congrac{4^{k-1}I_{j+1,k-1}-I_{j,k-1}}{4^{k-1}-1}$$

donde $I_{j+1,k-1}$ e $I_{j,k-1}$ son las integrales más y menos exactas, respectivamente; e $I_{j,k}$ es la integral mejorada. El subíndice k significa el nivel de la integración, donde k=1 corresponde a la estimación original con la regla del trapecio. El subíndice j se usa para distinguir entre las estimaciones más (j+1) y menos (j) exactas.

La fórmula anterior se aplica en el caso particular: $h_i = 0.5 h_{i-1}$:

Ejemplo

Utilizando el algoritmo de la integración de Romberg, podemos obtener una nueva aproximación numérica de la integral del polinomio: $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ desde a = 0 hasta b = 0.8. El valor exacto de la integral es 1.640533.

Segmentos	h	Integral	Error
1	0.8	0.1728	89.5%
2	0.4	1.0688	34.9%

Comenzamos con j=1, k=2, para hallar $l_{1,2}$:

$$egin{align} I_{j,k} &\cong rac{4^{k-1}I_{j+1,k-1}-I_{j,k-1}}{4^{k-1}-1} \ I_{1,2} &\cong rac{4^{1}I_{2,1}-I_{1,1}}{4^{1}-1} = rac{4(1.0688)-0.1728}{3} = 1.367467 \ \end{align}$$

Vamos construyendo una tabla:

	k =1	k=2
j=1	I _{1,1} =0.1728	I _{1,2} =1.366467
j=2	I _{2,1} =1.0688	

Agregamos otra aproximación, ahora con 4 segmentos

Segmentos	h	Integral	Error
1	0.8	0.1728	89.5%
2	0.4	1.0688	34.9%
4	0.2	1.4848	9.5%

Ahora con j=2, k=2, se halla $l_{2,2}$:

$$I_{2,2}\congrac{4^{1}I_{3,1}-I_{2,1}}{4^{1}-1}=rac{4(1.4848)-1.0688}{3}=1.623467$$

Vamos construyendo una tabla:

	k=1	k=2	k=3
j=1	I _{1,1} =0.1728	I _{1,2} =1.366467	I _{3,1}
j=2	I _{2,1} =1.0688	I _{2,2} =1.623467	
<i>j</i> =3	I _{3,1} =1.4848		

Con j=1, k=3, se halla $l_{1,3}$:

$$I_{1,3}\congrac{4^2I_{2,2}-I_{1,2}}{4^2-1}=rac{16(1.623467)-1.366467}{15}=1.640533$$

Vamos construyendo una tabla:

	k=1	k=2	k=3
j=1	I _{1,1} =0.1728	I _{1,2} =1.366467	I _{1,3} =1.640533
j=2	I _{2,1} =1.0688	I _{2,2} =1.623467	
j=3	I _{3,1} =1.4848		

Agregamos una última aproximación, con 8 segmentos

Segmentos	h	Integral	Error
1	0.8	0.1728	89.5%
2	0.4	1.0688	34.9%
4	0.2	1.4848	9.5%
8	0.1	1.6008	2.4%

Finalmente, la tabla queda:

	k=1	k=2	k=3	k=4
j=1	I _{1,1} =0.1728	I _{1,2} =1.366467	I _{1,3} =1.640533	I _{1,4}
j=2	I _{2,1} =1.0688	I _{2,2} =1.623467	l _{2,3}	
<i>j</i> =3	I _{3,1} =1.4848	I _{3,2}		
j=4	I _{4,1} =1.6008			

Con j=3, k=2, se halla $l_{3,2}$:

$$I_{3,2}\congrac{4^{1}I_{4,1}-I_{3,1}}{4^{1}-1}=rac{4(1.6008)-1.4848}{3}=1.639467$$

Con j=2, k=3, se halla $l_{2,3}$:

$$I_{2,3}\congrac{4^2I_{3,2}-I_{2,2}}{4^2-1}=rac{16(1.639467)-1.623467}{15}=1.640533$$

Con j=1, k=4, se halla $I_{1,4}$:

$$I_{1,4}\congrac{4^3I_{2,3}-I_{1,3}}{4^3-1}=rac{64(1.640533)-1.640533}{63}=1.640533$$

Finalmente, la tabla queda:

	k=1	k=2	k=3	k=4
j=1	I _{1,1} =0.1728	I _{1,2} =1.366467	I _{1,3} =1.640533	I _{1,4} =1.640533
j=2	I _{2,1} =1.0688	I _{2,2} =1.623467	I _{2,3} =1.640533	
<i>j</i> =3	I _{3,1} =1.4848	I _{3,2} =1.639467		
j=4	I _{4,1} =1.6008			

Integración de Romberg (Algoritmo)

```
FUNCTION Romberg (a, b, maxit, eps)
   LOCAJ, T
   n = 1 #Número de Segmentos
   I_{1,1} = TrapEq(n,a,b)
   iter = 0
   DOFOR
      iter = iter + 1
      n = 2^{(iter)}
      I_{iter+1,1} = TrapEq(n,a,b)
```

Integración de Romberg (Algoritmo)

```
DOFOR k=2, iter+1
            j = 2 + iter - k
            I_{j,k} = (4^{(k-1)} * I_{j+1,k-1} - I_{j,k-1}) / (4^{(k-1)} - 1)
        END DO
        error = ABS ((I_{1,iter+1} - I_{2,iter}) / I_{1,iter+1}) * 100
        IF (iter ≥ maxit OR error ≤ eps) EXIT
    END DO
Romberg = I_{1,iter+1}
END Romberg
```

Algoritmo de Romberg para derivadas.

- Así como se analizó para las integrales, las derivadas también se pueden mejorar de manera iterativa aplicando un algoritmo de Romberg o extrapolación de Richardson.
- Para ello, se aplica el algoritmo de la misma manera y se calcula la derivada correspondiente con un paso h reduciéndose a la mitad.

Recuerde la estimación de la derivada de

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

en x = 0.5 utilizando diferencias centradas con incrementos de h=0.5 y h=0.25.

Recuerde el valor exacto

$$f'(x) = -0.4x^3 - 0.45x^2 - 1.0x - 0.25 = f'(0.5) = -0.9125$$

Las diferencias centradas con estos pasos resultan en:

$$D_1 = D(0.5) = \frac{0.2 - 1.2}{1} = -1.0$$
 $\varepsilon_r = 9.6\%$ $C_2 = D(0.5) = \frac{0.6363281 - 1.103516}{0.5} = -0.934375$ $\varepsilon_r = 2.4\%$

Aplicando la extrapolación de Richardson (un caso particular del algoritmo de Romberg) se tiene:

$$D = \frac{4}{3}(-0.934375) - \frac{1}{3}(-1) = -0.9125$$

Integración y diferenciación con datos irregularmente espaciados

Integración con segmentos desiguales

En la práctica, existen muchas situaciones en donde se tienen segmentos de tamaños desiguales. En tales casos, un método consiste en aplicar la regla del trapecio a cada segmento y sumar los resultados:

$$I = h_1 rac{f(x_1) + f(x_2)}{2} + h_2 rac{f(x_2) + f(x_3)}{2} + \dots + h_{n-1} rac{f(x_{n-1}) + f(x_n)}{2}$$

Integre numéricamente: $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ desde a=0 hasta b=0.8 con el siguiente conjunto de datos.

X	0.0	0.12	0.22	0.32	0.36	0.40
f(x)	0.200000	1.309729	1.305241	1.743393	2.074903	2.456000

X	0.44	0.54	0.64	0.70	0.80
f(x)	2.842985	3.507297	3.181929	2.363000	0.232000

Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es *1.640533*.

Se aplica la regla del trapecio en todos los segmentos y se suman los resultados:

$$I = 0.12 \frac{1.309719 - 0.2}{2} + 0.10 \frac{1.305241 - 1.309719}{2} + \dots + 0.10 \frac{0.232 - 2.363}{2}$$
$$= 0.090584 + 0.130749 + \dots + 0.12975 = 1.594801$$

que representa un error relativo porcentual de 2.8%.

Integración con segmentos desiguales

De la misma manera, se pueden tomar conjuntos de segmentos igualmente espaciados y aplicar las reglas vistas según sea conveniente:

- Un solo segmento: regla del trapecio.
- Número par de segmentos: regla de Simpson 1/3.
- Tres segmentos: regla de Simpson 3/8.

Integre numéricamente: $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ desde a=0 hasta b=0.8 con el siguiente conjunto de datos.

X	0.0	0.12	0.22	0.32	0.36	0.40
f(x)	0.200000	1.309729	1.305241	1.743393	2.074903	2.456000

X	0.44	0.54	0.64	0.70	0.80
f(x)	2.842985	3.507297	3.181929	2.363000	0.232000

Recuerde que el valor exacto de la integral se puede determinar en forma analítica y es *1.640533*.

Segmento s	l.	Regla		
S ₁	0.0-0.12			Trapecio
S_2	0.12-0.22	0.22-0.32		Simpson 1/3
S ₃	0.32-0.36	0.36-0.40	0.40-0.44	Simpson 3/8
S ₄	0.44-0.54	0.54-0.64		Simpson 1/3
S ₅	0.64-0.70			Trapecio
S ₆	0.70-0.80			Trapecio

El primer segmento se evalúa con la regla del trapecio

$$I = 0.12 \frac{1.309729 + 0.2}{2} = 0.09058376$$

Para los siguientes dos segmentos se utiliza la regla de Simpson $\frac{1}{3}$:

$$I = 0.1 \frac{1.743393 + 4(1.305241) + 1.309729}{3} = 0.2758029$$

Si se continúa, se llega a los resultados mostrados a continuación:

Segmento s	Intervalos en x			Regla	Resultado
S ₁	0.0-0.12			Trapecio	0.0905837 6
S_2	0.12-0.22	0.22-0.32		Simpson 1/3	0.2758029
S_3	0.32-0.36	0.36-0.40	0.40-0.44	Simpson 3/8	0.2726863
S ₄	0.44-0.54	0.54-0.64		Simpson 1/3	0.6684701
S_5	0.64-0.70			Trapecio	0.1663479

Al sumar el área de estos segmentos individuales se obtiene como resultado una integral total de 1.603641. Esto representa un error de 2.2%.

Integración con segmentos desiguales

- Programar el método del trapacio para segmentos desiguales es bastante simple.
- No obstante, el procedimiento mejora si se implementan las reglas de Simpson siempre que sea posible.
 - Si dos segmentos consecutivos son de igual longitud, se aplica la regla de Simpson 1/3.
 - Si tres son iguales, se utiliza la regla 3/8.
 - Si los segmentos adyacentes tienen longitud desigual, se implementa la regla del trapecio.

Integración con segmentos desiguales (Trapecio)

Para n segmentos (n+1 puntos):

```
FUNCTION Trapun (x, y, n)
  LOCAL i, sum
  sum = 0
  DOFOR i = 1, n
     sum = sum + (x<sub>i+1</sub>-x<sub>i</sub>)*(y<sub>i+1</sub>+y<sub>i</sub>)/2
  END DO
  Trapun = sum
END Trapun
```

Integración con segmentos desiguales (mejorado)

```
FUNCTION Uneven (n, x, f)
                                                 IF k = 1 THEN
                                                    sum = sum + Trap (h, f_{i-1}, f_i)
h = x_2 - x_1
k = 1
                                                 ELSE
sum = 0
                                                    IF k = 2 THEN
                                                      sum=sum+Simp13(h, f_{i-2}, f_{i-1}, f_i)
DOFOR \dot{\uparrow} = 2, n
  hf = x_{i+1} - x_i
                                                   ELSE
  IF ABS (h-hf) < 1e-6 THEN
                                                   sum=sum+Simp38(h, f_{i-3}, f_{i-2}, f_{i-1}, f_{i})
     IF k = 3 THEN
                                                    END IF
                                                   k = 1
       sum=sum+Simp13(h, f_{i-3}, f_{i-2}, f_{i-1}
                                                 END IF
1)
     k = k - 1
                                               END IF
                                              h = hf
     ELSE
     k = k + 1
                                            END DO
     END IF
                                            Uneven = sum
  ELSE
                                            END Uneven
```

Diferenciación con datos irregularmente espaciados

- Una manera de emplear datos irregularmente espaciados consiste en ajustar un polinomio de interpolación de Lagrange de segundo grado a cada conjunto de tres puntos adyacentes.
- Si se deriva analíticamente el polinomio de segundo grado se obtiene:

$$f'(x) = f(x_{i-1}) rac{2x - x_i - x_{i-1}}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} + f(x_i) rac{2x - x_{i-1} - x_{i+1}}{(x_i - x_{i-1})(x_i - x_{i+1})} \ + f(x_{i+1}) rac{2x - x_{i-1} - x_i}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)}$$

Diferenciación con datos irregularmente espaciados

Aunque esta ecuación es más complicada que las aproximaciones vistas tiene importantes ventajas:

- Sirve para estimar la derivada en cualquier punto dentro de un intervalo determinado por los tres puntos.
- Los puntos no tienen que estar igualmente espaciados.
- La estimación de la derivada tiene la misma exactitud que la diferencia centrada.

Integrales abiertas

Las fórmulas de integración abierta tienen límites que se extienden más allá del intervalo de los datos.

Fórmulas de Newton-Cotes para integrales abiertas

Segmentos (n)	Puntos (n+1)	Fórmula
2	1	$(b-a)f(x_1)$
3	2	$(b-a)rac{f(x_1)+f(x_2)}{2}$
4	3	$(b-a)rac{2f(x_1)+f(x_2)+2f(x_3)}{3}$
5	4	$(b-a)rac{11f(x_1)+f(x_2)+f(x_3)+11f(x_4)}{24}$
6	5	$(b-a)rac{11f(x_1)+14f(x_2)+26f(x_3)+14f(x_4)+11f(x_5)}{20}$

Métodos adaptativos de cuadratura