

planetmath.org

Math for the people, by the people.

number field that is not norm-Euclidean

 ${\bf Canonical\ name} \quad {\bf Number Field That Is Not Norm Euclidean}$

Date of creation 2013-03-22 16:56:56 Last modified on 2013-03-22 16:56:56

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 15

Author pahio (2872)
Entry type Example
Classification msc 13F07
Classification msc 11R21
Classification msc 11R04

 $Related\ topic \qquad Unique Factorization And Ideals In Ring Of Integers$

Proposition. The real quadratic field $\mathbb{Q}(\sqrt{14})$ is not norm-Euclidean. *Proof.* We take the number $\gamma = \frac{1}{2} + \frac{1}{2}\sqrt{14}$ which is not integer of the field $(14 \equiv 2 \pmod{4})$. Antithesis: $\gamma = \varkappa + \delta$ where $\varkappa = a + b\sqrt{14}$ is an integer of the field $(a, b \in \mathbb{Z})$ and

$$|N(\delta)| = \left| \left(\frac{1}{2} - a \right)^2 - 14 \left(\frac{1}{2} - b \right)^2 \right| < 1.$$

Thus we would have

$$|\underbrace{(2a-1)^2 - 14(2b-1)^2}_{E}| < 4.$$

And since $(2a-1)^2 = 4(a-1)a+1 \equiv 1 \pmod{8}$, it follows $E \equiv 1-14\cdot 1 \equiv 3 \pmod{8}$, i.e. E=3. So we must have

$$(2a-1)^2 \equiv (2a-1)^2 - 14(2b-1)^2 \equiv 3 \pmod{7}.$$
 (1)

But $\{0, \pm 1, \pm 2, \pm 3\}$ is a complete residue system modulo 7, giving the set $\{1, 2, 4\}$ of possible quadratic residues modulo 7. Therefore (1) is impossible. The antithesis is wrong, whence the http://planetmath.org/EuclideanNumberFieldtheorem 1 of the parent entry says that the number field is not norm-Euclidean.

Note. The function N used in the proof is the usual

N:
$$r + s\sqrt{14} \mapsto r^2 - 14s^2 \quad (r, s \in \mathbb{Q})$$

defined in the field $\mathbb{Q}(\sqrt{14})$. The notion of norm-Euclidean number field is based on the http://planetmath.org/NormAndTraceOfAlgebraicNumbernorm. There exists a fainter function, the so-called Euclidean valuation, which can be defined in the maximal orders of some http://planetmath.org/NumberFieldalgebraic number fields; such a maximal order, i.e. the ring of integers of the number field, is then a Euclidean domain. The existence of a Euclidean valuation guarantees that the maximal order is a UFD and thus a PID. Recently it has been shown the existence of the Euclidean domain $\mathbb{Z}[\frac{1+\sqrt{69}}{2}]$ in the field $\mathbb{Q}(\sqrt{69})$ but the field is not norm-Euclidean.

The maximal order $\mathbb{Z}[\sqrt{14}]$ of $\mathbb{Q}(\sqrt{14})$ has also been proven to be a Euclidean domain (Malcolm Harper 2004 in Canadian Journal of Mathematics).