rgbif: a package for working with species occurrence data in R

Scott Chamberlain*,a

^a University of California, Berkeley, CA, USA

4 Abstract

2

- 5 1. xxx
- 6 2. xxx
- 7 3. xxx
- 8 4. xxxx

9 Introduction

- Perhaps the most fundamental element in many fields of ecology is the inividual. How many individuals
 - of each species in a given location forms the basis for many sub-fields of ecology and evolution. Some
- 12 research questions necessitate collecting new data, while others can easily take advantage of existing
- data. In fact, some ecology fields are built largely on existing data, e.g., macro-ecology (Brown 1995;
- 14 Beck et al. 2012).
- Data on individuals, including which species, and where they're found, can be used for a large number
- of research questions. In addition, the pool of questions we can answer becomes much larger with more
- and better data. In addition to wide utility, this data is important for conservation. Biodiversity loss is
- one of the greatest challenges of our time (Pimm et al. 2014). Some have called this the sixth great
- mass extinction (Ceballos et al. 2015). Given this challenge there is a great need for data on specimen
- 20 records, whether collected from live sightings in the field or specimens in museums.
- 21 There are many online services that collect and maintain specimen records. However, Global Biodiversity
- 22 Information Facility (hereafter, GBIF, http://www.gbif.org/) is the largest collection of biodiversity
- records globally, currently with 580 million records, 1.6 million taxa, 15,000 datasets from 770 publishers
- 24 (figures collected on 2015-10-04). Many large biodiversity warehouses such as iNaturalist, VertNet, and
- USGS's BISON all feed into GBIF.
- Herein, we describe a library (rgbif (Chamberlain et al.)) for working with GBIF data in the R
- 27 programming environment (R Core Team 2014). R is an extremely widely used language in academia,

- 28 and in non-profit and private sectors. Importantly, R makes it easy to do all of the steps of the research
- 29 process, including data management, data manipulation and cleaning, statistics, and vizualization.
- $_{30}$ Thus, an R client for getting GBIF data is a powerful tool for reproducible research.

31 The rgbif package

- The rgbif package is completely written in R, uses an MIT license to maximize use everywhere. rgbif
- is developed publicly on GitHub at https://github.com/ropensci/rgbif, where development versions of
- the package can be installed, and bugs and feature requests reported. Stable versions of rgbif can be
- installed from CRAN, the distribution network for R packages. rgbif is part of the rOpenSci project,
- $_{36}$ a developer network making R software to facilitate reproducible research.
- 37 Package interface
- 38 rgbif is designed following the GBIF Application Programming Interface, or API. The GBIF API has
- four major components: registry, species names, occurrence data, and maps. We ignore maps in rgbif
- as it is concerned with generating maps for web applications. rgbif has a suite of functions dealing
- with each of registry, species names, and occurrence data we'll go through each in turn describing
- design and example usage.
- 43 Registry
- 44 The GBIF registry API services are spread across four sets of functions:
- Datasets
- Installations
- Networks
- Nodes
- Organizations
- 50 Datasets
- 51 Search for datasets

```
res <- dataset_search(query = "oregon")
res$data$datasetTitle[1:10]</pre>
```

- 52 [1] "SDNHM Birds Collection"
- 53 [2] "CM Birds Collection"
- 54 [3] "condoncollection"
- 55 [4] "Taxonomy in Flux Checklist"
- $_{56}$ [5] "Wool carder bees of the genus Anthidium in the Western Hemisphere"
- [6] "Bryophyte Collection University of Washington Herbarium (WTU)"
- [7] "University of British Columbia Herbarium (UBC) Bryophytes Collection"
- 59 [8] "UWFC Ichthyology Collection"
- [9] "Lichen Collection University of Washington Herbarium (WTU)"
- 61 [10] "UWBM Mammalogy Collection"

62 Get dataset metrics

rank	count
SPECIES	52452
GENUS	12930
VARIETY	4806
SUBSPECIES	4440
SERIES	1079
TRIBE	844
FAMILY	509
SUBTRIBE	327
SUBFAMILY	303
SUBGENUS	241

rank	count
FORM	239
SECTION	82
SUBVARIETY	4
KINGDOM	1

- Networks, nodes, and installations
- 64 Here, we search for the first give GBIF networks, returning just the key and title fields.

networks(limit=10)\$data\$title

- 65 [1] "GBIF Backbone Sources"
- 66 [2] "Canadensys"
- 67 [3] "Southwest Collections of Arthropods Network (SCAN)"
- 68 [4] "VertNet"
- 69 [5] "Dryad"
- 70 [6] "GBIF Network"
- 71 [7] "The Knowledge Network for Biocomplexity (KNB) "
- 72 [8] "Online Zoological Collections of Australian Museums (OZCAM)"
- 73 [9] "Catalogue of Life"
- 74 [10] "Ocean Biogeographic Information System (OBIS)"
- 75 Species
- 76 Occurrences
- 77 GBIF provides two ways to get occurrence data: through the /occurrence/search route (see
- occ_search), or via the /occurrence/download route (many functions, see below). occ_search() is
- 79 the main funtion for the search route, and is more appropriate for smaller data, while occ_download*()
- 80 functions are more appropriate for larger data requests.
- Large is of course a subjective term. When you hit a "large dataset" will depend primarily on the size
- of the your data request. GBIF imposes for any given search a limit of 200,000 records in the search

- 83 service, after which point you can't download any more records for that search. However, you can
- 84 download more records for different searches.
- 85 We think the search service is still quite useful for many people even given the 200,000 limit. For those
- that need more data, we have created a similar interface in the download_*() functions, that should be
- easy to use. Users should take note that using the download service has a few extra steps to get data
- 88 into R, but is straight-forward.
- 89 Download API
- ⁹⁰ The download API syntax is similar to the occurrence search API in that the same parameters are used,
- but the way in which the query is defined is different. For example, in the download API you can do
- 92 greater than searches, whereas you can not do that in the occurrence search API. Thus, we can't make
- 93 the query interace exactly the same for both search and download functions.
- Using the download service can be as few as three steps.
- 95 Request data download given a query. Here, we xxxx

```
"xxx"
```

- 96 [1] "xxx"
- You can check on when the download is ready using the functions occ_download_list() and
- occ_download_meta(). When it's ready use occ_download_get() to download the dataset to your
- 99 computer.

```
(res <- occ_download_get("0000066-140928181241064", overwrite = TRUE))</pre>
```

- 100 <<gbif downloaded get>>
- 101 Path: ./0000066-140928181241064.zip
- File size: 0.14 MB
- What's printed out above is a very brief summary of what was downloaded, the path to the file, and its
- size (in human readable form).
- Next, read the data in to R using the function occ_download_import().

```
library("dplyr")
dat <- occ_download_import(res)
dat %>%
    select(gbifID, decimalLatitude, decimalLongitude)
```

```
gbifID decimalLatitude decimalLongitude
106
       657590544
                                   NA
    1
                                                       NA
107
       657679551
    2
                                   NA
                                                       NA
108
    3
       657791316
                            37.70805
                                               -118.4162
109
       658180562
                                                       NA
                                   NA
110
       441881672
                                   NA
                                                       NA
    5
111
    6
       911596181
                                   NA
                                                       NA
112
    7
        56454601
                                   NA
                                                       NA
113
    8
       657848913
                                   NA
                                                       NA
    9
       658187373
                                   NA
                                                       NA
115
    10 658279212
                            38.95917
                                               -106.9892
116
117
```

The search API is very similar to the download API, but is meant for smaller data acquisition jobs.

120 Conclusions and future directions

- 121 Acknowledgements
- This project was supported in part by the Alfred P Sloan Foundation (Grant 2013-6-22).
- 123 Data Accessibility
- All software, scripts and data used in this paper can be found in the permanent data archive Zenodo
- under the digital object identifier (DOI). This DOI corresponds to a snapshot of the GitHub repository
- at github.com/sckott/msrgbif.

¹¹⁸ Search API

127 References

- Beck, J., Ballesteros-Mejia, L., Buchmann, C.M., Dengler, J., Fritz, S.A., Gruber, B., Hof, C., Jansen,
- F., Knapp, S., Kreft, H., Schneider, A.-K., Winter, M. & Dormann, C.F. (2012). Whats on the
- horizon for macroecology? Ecography, 35, 673–683. Retrieved from http://dx.doi.org/10.1111/j.1600-
- 131 0587.2012.07364.х
- Brown, J.H. (1995). Macroecology. University of Chicago Press.
- 133 Ceballos, G., Ehrlich, P.R., Barnosky, A.D., Garcia, A., Pringle, R.M. & Palmer, T.M. (2015). Acceler-
- ated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1,
- e1400253-e1400253. Retrieved from http://dx.doi.org/10.1126/sciadv.1400253
- Chamberlain, S., Ram, K., Barve, V. & Mcglinn, D. Rgbif: Interface to the global 'biodiversity'
- information facility 'aPI'. Retrieved from https://github.com/ropensci/rgbif
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts,
- 139 C.M. & Sexton, J.O. (2014). The biodiversity of species and their rates of extinction, distribution, and
- protection. Science, **344**, 1246752–1246752. Retrieved from http://dx.doi.org/10.1126/science.1246752
- R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for
- 142 Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/