Worksheet 1.1: Lectures 2 and 3 Growth of Functions and Run-Time Estimation

Question 1: For each pair of functions below, first determine which <u>function grows asymptotically faster</u>, and then express the relation between the two functions using <u>all</u> the asymptotic notations (θ , Ω , σ and σ) that apply. Only give the relations in which **f(n)** appears on the left-hand side. **Justify your answer**, and use the limit definition if necessary.

(1)
$$f(n) = n^2 + (log n)^3$$
 $g(n) = n^2 log n$ No justification is required

(2)
$$f(n) = 4^n$$
 $g(n) = 3^n + n$ Justify your answer using the limit definition. Show your work.

Question 2: If we know that the running time T(n) of some algorithm satisfies the relations: $T(n) = o(n^{2.5} \log n)$ and $T(n) = \Omega$ ($n(\log n)^3$), which of the following functions can T(n) possibly be? Circle <u>all</u> that apply.

$$n^{2.5} \log n$$
 $n(\log n)^3$ $n(\log n)^5$ $n^{1.01}$ $n^{2.6}$

Question 3: Consider two algorithms for solving a certain problem: Algorithm X with an asymptotic complexity of $\theta(n^2\log n)$ and Algorithm Y with an asymptotic complexity of $\theta(n^3)$. Algorithm X is run on a machine that can execute 10^7 operation per second. Compute the speed of the machine that we need to run Algorithm Y on in order to get the same execution time as Algorithm X for an input of size **one million**. Assume base 2 for the log. Compute the best possible approximation without using a calculator. **Show your work.**