

Vorbereitungshilfe Elektrische Messverfahren

zu Aufgabe 2.3: L, R, C- Bestimmung beim Parallelresonanzkreis.

|Z| sei der Betrag der Impedanz (komplexer Wechselstromwiderstand) des Parallelschwingkreises. Falls für alle benutzten Frequenzen ω (genauer: Kreisfrequenzen) der Generatorspannung $u_{Gen,eff}$ die Beziehung $R_V \gg |Z|$ gilt, gilt auch $i_{eff} = u_{Gen,eff}/R_V \neq f(\omega)$.

Die mit einem Messinstrument mit sehr hohem Eingangswiderstand gemessene Spannung $U_{\it eff}$ am Parallelschwingkreis liefert dann den Wert des Impedanzbetrages

$$|Z| = \frac{u_{eff}}{i_{eff}} = \frac{u_{eff} \cdot R_V}{u_{Gen,eff}}$$

Um entsprechend der Aufgabenstellung aus den drei Messgrößen – nämlich der Resonanzfrequenz ω_0 , dem Impedanzbetrag $|Z_0|$ bei Resonanz und dem Abstand $\Delta\omega$ der $|Z_0|$ / 2 - Frequenzen – die Werte von R, L, und C berechnen zu können, muss zunächst |Z| als Funktion von ω hergeleitet werden.

$$\frac{1}{Z} = \frac{1}{Z_C} + \frac{1}{Z_L + R} = \frac{1}{(j\omega C)^{-1}} + \frac{1}{j\omega L + R} = \frac{j\omega L + R + (j\omega C)^{-1}}{\frac{L}{C} + R(j\omega C)^{-1}}$$

$$Z = \frac{\frac{L}{C} - j\frac{R}{\omega C}}{R + j\left(\omega L - \frac{1}{\omega C}\right)} \cdot \frac{R - j\left(\omega L - \frac{1}{\omega C}\right)}{R - j\left(\omega L - \frac{1}{\omega C}\right)} = \frac{\frac{RL}{C} - \frac{R}{\omega C}\left(\omega L - \frac{1}{\omega C}\right) - j\left[\frac{R^2}{\omega C} + \frac{L}{C}\left(\omega L - \frac{1}{\omega C}\right)\right]}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$|Z| = \sqrt{Re^2(Z) + Im^2(Z)} = \dots = \frac{L}{RC} \cdot \sqrt{\frac{1 + \left(\frac{R}{\omega L}\right)^2}{1 + \left(\omega L - \frac{1}{\omega C}\right)^2 / R^2}}$$

Differenzieren von |Z| bzw. des Radikanden nach ω und Nullsetzen der Ableitung (Bedingung für Maximum) liefert eine quadratische Gleichung für ω^2 :

$$\omega^4 + 2\omega^2 \left(\frac{R}{L}\right)^2 - \frac{1}{(LC)^2} - \frac{2R^2}{L^3C} + \left(\frac{R}{L}\right)^4 = 0$$

die erfüllt wird von der Resonanzfrequenz $\omega_0^2 = \frac{1}{(-1)} \frac{1}{LC} \sqrt{1 + 2\left(\frac{R}{I}\right)^2 LC} - \left(\frac{R}{I}\right)^2$.

Aus den angegebenen Grobdaten des Schwingkreises (R= 50Ω ; L= 1H; C= $0.5\mu F$) ergibt sich $(R/L)^2 LC = 10^{-3} \ll 1$. Mit dieser Näherung folgt: $\omega_0 = 1/\sqrt{LC}$.

Zwischenbemerkung: Das Ergebnis $\omega_0 = 1/\sqrt{LC}$ hätte man ohne jede Vernachlässigung auch erhalten, wenn man statt der Resonanzbedingung $\omega_0 = \omega(|Z| = Max.)$ die nur bei R = 0 völlig äquivalente Bedingung $\omega_0 = \omega(ImZ = 0)$ angesetzt hätte!

Statt $(R/L)^2 LC \ll 1$ kann man demnach auch $(R/L)^2/\omega_0^2 \ll 1$ schreiben und für Frequenzen ω , die nicht weit von der Resonanzfrequenz ω_0 entfernt sind, gilt entsprechend $(R/L)^2/\omega^2 \ll 1$ und damit $|Z| = \frac{L}{RC} \cdot \frac{1}{\sqrt{1 + \left(\omega L - \frac{1}{\omega C}\right)^2/R^2}}$

$$|Z| = \frac{L}{RC} \cdot \frac{1}{\sqrt{1 + \left(\omega L - \frac{1}{\omega C}\right)^2 / R^2}}$$

Bei der Resonanzfrequenz ω_0 ergibt sich $|Z_0| = \frac{L}{RC}$. Den Wert $|Z| = |Z_0|/2$ findet man offenbar bei den Frequenzen ω_1 , ω_2 , die die Gleichung

$$\sqrt{1 + \left(\omega L - \frac{1}{\omega c}\right)^2 / R^2} = 2$$
 bzw. $\omega L - \frac{1}{\omega c} = \pm \sqrt{3} \cdot R$ erfüllen.

Die Lösung der resultierenden quadratischen Gleichung

$$LC\omega^2 \mp \sqrt{3} \cdot RC \cdot \omega - 1 = 0$$
 ist $\omega_{1,2} = \left(\frac{1}{(-1)} \sqrt{3} \cdot RC \pm \sqrt{3R^2C^2 + 4LC} \right) / (2LC)$

Mit der schon bekannten Näherung folgt

$$\omega_{1,2} = \omega_0 \pm \frac{\sqrt{3} \cdot R}{2 \cdot L}; \quad \Delta \omega = \sqrt{3} \cdot R/L$$

Die Auflösung der drei Gleichungen $\omega_0=1/\sqrt{LC}$; $|Z_0|=L/RC$; $\Delta\omega=\sqrt{3}\cdot R/L$

nach den gesuchten Größen R, L und C liefert:

$$R = \frac{|Z_0|}{3} (\Delta \omega / \omega_0)^2 ;$$

$$L = \frac{|Z_0| \cdot \Delta \omega}{\sqrt{3} \cdot \omega_0^2};$$

$$C = \frac{\sqrt{3}}{|Z_0| \cdot \Delta \omega} \,.$$

Version: Juli 2010