

KSE801 – Recommender System and Machine Learning on Graph

Lecture 2: Neighborhood-Based Collaborative Filtering

Prof. Chanyoung Park

Department of Industrial & Systems Engineering KAIST cy.park@kaist.ac.kr

RECALL: BASIC MODELS OF RECOMMENDATION

- Collaborative filtering (CF) Only ratings
 - Memory-based approach (Neighborhood-based CF) (Week 2)
 - Model-based approach (Week 3 ~ 4)
- Side information-based Recommendation (Week 5 ~ 6)
 - Content-based recommendation Only contents (Week 1)
 - Content-based CF Rating + Contents
 - Text, image, social network, etc
- Advanced topics
 - Sequential Recommendation & Graph-based Recommendation (Week 7)

OUTLINE

- Neighborhood-based Collaborative Filtering
- A Regression Modeling View of Neighborhood Methods
- Evaluating Recommender System

OUTLINE

- Neighborhood-based Collaborative Filtering
- A Regression Modeling View of Neighborhood Methods
- Evaluating Recommender System

COLLABORATIVE FILTERING (CF)

The most prominent approach to generate recommendations

- Used by large, commercial e-commerce sites
- Well-understood, various algorithms and variations exist
- Applicable in many domains (book, movies, DVDs, ..)

Approach

Use the "wisdom of the crowd" to recommend items

Basic assumption and idea

- Users give ratings to items (implicitly or explicitly)
- Customers who had similar tastes in the past, will have similar tastes in the future

NEIGHBORHOOD-BASED CF: INTRODUCTION

- Among the earliest algorithms developed for collaborative filtering
- Main idea
 - Similar users display similar patterns of rating behavior
 - Similar items receive similar ratings

- → User-based CF
- → Item-based CF

- How do we define similarity between users and items?
 - Q. How can we measure the similarity between two users?
 - A: In terms of the items they purchased!
 - Q: How can we measure the similarity between two items?
 - A: In terms of the users who purchased them!

INPUT AND OUTPUT OF CF

Input

• Only a matrix of given user—item ratings

Output types

- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - Explicit feedback: Rating prediction
- A top-N list of recommended items
 - Implicit feedback: Ranking

USER-BASED COLLABORATIVE FILTERING

(SIMILARLY DEFINED FOR ITEM-BASED CF)

- Given an "active user" (Alice) and an item i not yet seen by Alice,
 - find a set of users who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
 - If users had similar tastes in the past they will have similar tastes in the future
 - User preferences remain stable and consistent over time
- **Example:** Determine whether Alice will like or dislike "Item 5", which Alice has not yet rated or seen

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

USER-BASED COLLABORATIVE FILTERING

(SIMILARLY DEFINED FOR ITEM-BASED CF)

Some first questions

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

	Item1	Item2	Item3	Item4	Item5
Alice	1		1		?
User1		1			
User2		1	1		
User3		1		1	
User4	1		1		1

Explicit feedback

Implicit feedback

NOTATIONS

- Definitions
 - I_u = Set of items purchased by user u
 - U_i = Set of users who purchased item i

 R_u : Binary representation of items purchased by user u

 $R_{::i}$: Binary representation of users who purchased item i

$$I_u = \{i | R_{u,i} = 1\}, U_i = \{u | R_{u,i} = 1\}$$

MEASURING USER SIMILARITY: IMPLICIT FEEDBACK

• 1) Euclidean distance

• Between two items i, j or Between two users u, v

Euclidean distance $(A, B) = |A \setminus B| + |B \setminus A|$

$$|U_i \setminus U_j| + |U_j \setminus U_i|$$

Example 1

$$U_1 = \{1,4,8,9,11,23,25,34\}$$

$$U_2 = \{1,4,6,8,9,11,23,25,34,35,38\}$$

$$|U_1 \setminus U_2| + |U_2 \setminus U_1| = 3$$

Example 2

$$U_3 = \{4\}$$
 $U_4 = \{5\}$
 $|U_3 \setminus U_4| + |U_4 \setminus U_3| = 2$

Problem: Euclidean distance favors small sets, even if they have few elements in common

MEASURING USER SIMILARITY: IMPLICIT FEEDBACK

2) Jaccard similarity

• Between two items i, j or Between two users u, v

$$\mathsf{Jaccard}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

$$Jaccard(U_i, U_j) = \frac{|U_i \cap U_j|}{|U_i \cup U_j|}$$
$$(0 \le Jaccard(U_i, U_j) \le 1)$$

Maximum of 1 if the two users purchased exactly the same set of items. i.e., $U_i = U_j$

Minimum of 0 if the two users purchased completely disjoint sets of items. i.e., $U_i \cap U_j = \emptyset$

Problem: Jaccard similarity can only take care of binary relevance scores

MEASURING USER SIMILARITY: IMPLICIT FEEDBACK

Bought and liked

3) Cosine similarity

Between two items i, j or Between two users u, v

Didn't buy

Unlike Jaccard, works for arbitrary vectors

If
$$cosine(I_u,I_v) = 1$$
?

- \rightarrow Angle between $I_u, I_v = 0$
- \rightarrow Users u and v rated the same items and they all agree

If
$$cosine(I_u,I_v) = -1$$
?

Bought and hated

- \rightarrow Angle between $I_u, I_v = 180$
- \rightarrow Users u and v rated the same items and they all disagree

If
$$cosine(I_u,I_v) = 0$$
?

Cosine Similarity $(A,B) = \frac{A \cdot B}{\|A\| \|B\|}$

Bought and liked

- \rightarrow Angle between I_u , $I_v = 90$
- \rightarrow Users u and v rated completely different sets of items

What if we have numerical ratings?

MEASURING USER SIMILARITY: EXPLICIT FEEDBACK

- A popular similarity measure in user-based CF: Pearson correlation
 - Possible similarity values between -1 and 1
- Different users may provide ratings on different scales
 - **Solution:** Subtract the average
 - Values are negative for below-average ratings and positive for above-average ratings

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0.85
User2	4	3	4	3	5	sim = 0.00
User3	3	3	1	5	4	sim = 0.70
User4	1	5	5	2	1	sim = -0.79

Items rated by both users u and v

Average rating by user *v*

$$Pearson(u, v) = \frac{\sum_{i \in I_u \cap I_v} (R_{u,i} - \bar{R}_u) (R_{v,i} - \bar{R}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (R_{u,i} - R_u)^2 \sum_{i \in I_u \cap I_v} (R_{v,i} - \bar{R}_v)^2}}$$

MAKING PREDICTIONS

A common prediction function

• **User-based CF:** The most similar items should be the most relevant when predicting future ratings, so the user's past ratings of those items are given the highest weights

$$\hat{R}_{u,i} = \frac{\sum_{v \in U_i} sim(u,v) * R_{v,i}}{\sum_{v \in U_i} sim(u,v)} \qquad \qquad \hat{R}_{u,i} = \bar{R}_u + \frac{\sum_{v \in U_i} sim(u,v) * (R_{v,i} - \bar{R}_v)}{\sum_{v \in U_i} sim(u,v)}$$

Item-based CF

$$\hat{R}_{u,i} = \frac{\sum_{j \in I_u} sim(i,j) * R_{u,j}}{\sum_{j \in I_u} sim(i,j)} \qquad \qquad \hat{R}_{u,i} = \bar{R}_{:,i} + \frac{\sum_{j \in I_u} sim(i,j) * (R_{u,j} - \bar{R}_{:,j})}{\sum_{j \in I_u} sim(i,j)}$$

- How many neighbors, i.e., $|U_i|$, $|I_u|$?
 - Only consider positively correlated neighbors (or higher threshold)
 - Can be optimized based on data set (e.g., Cross-validation)
 - Often, between 50 and 200

USER-BASED CF vs. ITEM-BASED CF

- Item-based methods often provide more relevant recommendations because a user's own ratings are used to perform the recommendation
 - i.e., Similar items are those that are consumed by the user, and the user's own ratings on those items are used to extrapolate the ratings of the target item
- Item-based methods can also provide a reason for the recommendation

Because you watched "Secrets of the Wings," [the recommendations are...]

- For user-based methods, "neighboring users" are simply a set of anonymous users
- In social recommendation setting, actual friends can be "neighboring users", which can provide explanations for the recommendation (Later in this course)

IMPROVING THE METRICS

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - Possible solution: Give more weight to items that have a higher variance
- Value of number of co-rated items
 - Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
- Case amplification
 - Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- Neighborhood selection
 - Use similarity threshold or fixed number of neighbors

NEIGHBORHOOD-BASED CF: PROS/CONS

- Neighborhood-based CF is also known as memory-based CF (Why?)
 - vs. Model-based CF

Pros

- Requires minimal knowledge (only rating/implicit feedback)
- Produces good-enough results in most cases

Challenges

- Sparsity / Cold-start problem
 - We need enough users in the system
 - New items need to get enough ratings.
 - New users need to provide enough ratings (cold start)

Scalability

- Nearest neighbor require computation that grows with both the number of users and the number of items
- If one user purchases one item, this will change the rankings of every other item that was purchased by at least one user in common
- **Diversity:** Does not encourage diverse results

SPARSITY / COLD-START PROBLEM

• How to recommend new items? What to recommend to new users?

- New User Problem: the system must first learn the user's preferences from the ratings
 - E.g., Watcha asks new users to rate 10 movies when they register
 - Hybrid RS, which combines content-based and collaborative techniques, can help
- New Item Problem: Until the new item is rated by a substantial number of users, the RS is not able to recommend it
 - Hundreds/thousands of new items every day
 - Yahoo News: ~100 new articles / day
 - eBay or Amazon: >1000 items / day ???

OUTLINE

- Neighborhood-based Collaborative Filtering
- A Regression Modeling View of Neighborhood Methods
- Evaluating Recommender System

A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS

Recall the prediction function of item-based CF

$$\hat{R}_{u,i} = \bar{R}_{:,i} + \frac{\sum_{j \in I_u} sim(i,j) * (R_{u,j} - \bar{R}_{:,j})}{\sum_{j \in I_u} sim(i,j)} \qquad \forall u \in \{1 \dots m\}$$

$$\forall i \in \{1 \dots m\}$$

- The predicted rating $\hat{R}_{u,i}$ is a weighted linear combination of other ratings of the same user u, i.e., I_u
- If we allow I_u to contain all items, then the function is similar to linear regression
 - Linear regression: The coefficients are determined by optimization model
 - This case: The coefficients are **heuristically** determined by sim(i, j)
- Can we think about an optimization-based neighborhood methods?

$$W^{item} \in R^{n \times n}$$

$$\hat{R}_{u,i} = \bar{R}_{:,i} + \frac{\sum_{j \in I_u} sim(i,j) * (R_{u,j} - \bar{R}_{:,j})}{\sum_{j \in I_u} sim(i,j)} \qquad \qquad \hat{R}_{u,i} = \bar{R}_{:,i} + \sum_{j \in I_u} W_{i,j}^{item} * (R_{u,j} - \bar{R}_{:,j})$$

$$\hat{R}_{u,i} = \bar{R}_{:,i} + \sum_{j \in I_u} W_{i,j}^{item} * (R_{u,j} - \bar{R}_{:,j})$$

SPARSE LINEAR MODELS (SLIM)

SLIM does not restrict the regression coefficients to only the neighborhood of the target item

$$\widehat{R}_{u,i} = \sum_{j \in I_u} W_{i,j}^{item} * R_{u,j} \qquad \widehat{R}_{u,i} = \sum_{j=1}^n W_{i,j}^{item} * R_{u,j} \qquad \widehat{R} = RW^{item}$$

- The target item itself is excluded on the right-hand side to prevent overfitting
 - This can be achieved by $W_{t,t}^{item}=0$, for $t=1,\ldots,n$

Elastic-net regularizer
$$\min_{W} \frac{1}{2} \|R - RW^{item}\|_{F}^{2} + \frac{\beta}{2} \|W^{item}\|^{2} + \lambda |W^{item}|$$
 subject to
$$W^{item} \geq 0$$

$$diag(W^{item}) = 0$$

$$|W| = \sum_{i=1}^{n} \sum_{j=1}^{n} |W_{i,j}|$$

$$||W||^2 = \sum_{i=1}^n \sum_{j=1}^n w_{ij}^2$$

RECALL: SHRINKAGE METHODS (IN LINEAR REGRESSION)

- Shrinkage methods constrain or regularize the coefficient estimates, or equivalently shrink the coefficient estimates to zero
- It turns out that shrinking estimated coefficients towards zero can significantly reduce their variance
- Two best-known techniques are ridge regression and lasso

Overview

Linear regression

• Ridge regression

Lasso

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{argmin} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{2}$$

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{argmin} (\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{2} + \lambda \|\boldsymbol{\beta}\|^{2}), \text{ where } \|\boldsymbol{\beta}\|^{2} = \sum_{j=1}^{p} \beta_{j}^{2}$$

$$\mathbf{L1 norm}$$

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{argmin} (\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{2} + \lambda \|\boldsymbol{\beta}\|), \text{ where } |\boldsymbol{\beta}| = \sum_{j=1}^{p} |\beta_{j}|$$

RECALL: RIDGE vs. LASSO

- The Lasso and ridge regression coefficient estimates solve the following problems
- For each value of λ , there exists a value for s such that
 - Ridge regression

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s$$

Lasso

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

THE LASSO PICTURE: COMPARING CONSTRAINT FUNCTIONS

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

OUTLINE

- Neighborhood-based Collaborative Filtering
- A Regression Modeling View of Neighborhood Methods
- Evaluating Recommender System

EVALUATING RECOMMENDER SYSTEM

- Recall, there are broadly two tasks in recommender system
- We need different metrics for different tasks

1) Rating prediction → Regression

- Input: set of ratings for user/item pairs
- Output: map from user/item pair to predicted rating
- Metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE)

2) Item ranking (top-k recommendation) → Ranking

- Input: set of user/item pairs such as shopping data, and an integer k
- Output: a list of k items for each user which are most likely to be bought by him/her
- Metrics: Precision, Recall, ROC/AUC, F1, AP, RR, NDCG

	GLADITOR	GODFTHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U,	1			5		2
U ₂		5			4	
U ₃	5	3		1		
U ₄			3			4
U ₅				3	5	
U ₆	5		4			?

(a) Ordered ratings

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U ₁	1			1		1
U ₂		1			1	
U ₃	1	1		1		
U ₄			1			1
U ₅				1	1	
U ₆	1		1			?

(b) Unary ratings

EVALUATION OF RATING PREDICTION

- Datasets with items rated by users
 - MovieLens datasets 100K-10M ratings
 - Netflix 100M ratings
- Metrics measure error rate
 - Mean Absolute Error (MAE): Computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

• Root Mean Square Error (RMSE): Similar to MAE, but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

EVALUATION OF ITEM RANKING

		Reality		
		Actually Good	Actually Bad	
Prediction	Rated Good	True Positive (tp)	False Positive (fp)	
Predi	Rated Bad	False Negative (fn)	True Negative (tn)	

Confusion matrix

Precision

- A measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved
- E.g. the proportion of recommended movies that are actually good

$$Precision = \frac{tp}{tp + fp} = \frac{|good\ movies\ recommended|}{|all\ recommendations|}$$

Recall

- A measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
- E.g. the proportion of all good movies recommended

$$Recall = \frac{tp}{tp + fn} = \frac{|good\ movies\ recommended|}{|all\ good\ movies|}$$

Example

Assuming that 3 items are recommended:

- 2 out of 3 recommended items are actually bought: Precision@3=2/3
- 2 out of 4 bought items are recommended: Recall@3=2/4
- Ex) Precision@5 = 3/5, Recall@5 = 3/4

TRADEOFF BETWEEN PRECISION AND RECALL

 Typically when a recommender system is tuned to increase precision, recall decreases as a result (or vice versa)

- The **F**₁ **Metric** attempts to combine Precision and Recall into a single value for comparison purposes.
 - May be used to gain a more balanced view of performance

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

ROC & AUC

Num. recommendation	1	2	3	4	5	6	7	8	9	10
Num. whites	1	1	1	2	2	3	4	5	5	6
Num. blacks	0	1	2	2	3	3	3	3	4	4

- Divide the first and second row by total number of white and blacks respectively, and plot the values
- This curve is called ROC curve
- The area under this curve is called AUC
- Higher AUC is better (max =1)

RANK POSITION MATTERS

For a user:

- Rank metrics extend recall and precision to take the positions of correct items in a ranked list into account
 - Relevant items are more useful when they appear earlier in the recommendation list
 - Particularly important in recommender systems as lower ranked items may be overlooked by users
 - Average precision (AP), Reciprocal rank (RR), Normalized discounted cumulative gain (NDCG)

AVERAGE PRECISION

• Average Precision (AP) is a ranked precision metric that places emphasis on highly ranked correct predictions (hits)

Example

Rank	Hit?
1	
2	V
3	V
4	√
5	

Rank	Hit?
1	√
2	
3	
4	√
5	√

$$mAP = \frac{1}{|U|} \sum_{i=1}^{|U|} AP(u)$$

$$AP(u) = \frac{1}{|S|} \sum_{k=1}^{n} prec@k \cdot rel(k)$$

$$AP = \frac{1}{3} \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} \right) = \frac{23}{36} \approx 0.639$$
 $AP = \frac{1}{3} \left(\frac{1}{1} + \frac{2}{4} + \frac{3}{5} \right) = \frac{21}{30} = 0.7$

$$AP = \frac{1}{3} \left(\frac{1}{1} + \frac{2}{4} + \frac{3}{5} \right) = \frac{21}{30} = 0.7$$

RECIPROCAL RANK

• Reciprocal Rank (RR) is the sum of the inverse of the rank of the relevant items (hit) in a given list.

Example

Rank	Hit?
1	
2	X
3	X
4	X
5	

$$RR = \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

Rank	Hit?
1	X
2	
3	
4	X
5	Χ

$$RR = 1 + \frac{1}{4} + \frac{1}{5}$$

$$MRR = \frac{1}{|U|} \sum_{u=1}^{|U|} RR(u)$$

$$RR(u) = \sum_{i=1}^{k} \frac{relevance_i}{rank_i}$$

NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG)

Discounted cumulative gain (DCG)

• Logarithmic reduction factor

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$

- pos denotes the position up to which relevance is accumulated
- rel_i returns the relevance of recommendation at position i

Idealized discounted cumulative gain (IDCG)

Assumption that items are ordered by decreasing relevance

$$IDCG_{pos} = rel_1 + \sum_{i=2}^{|h|-1} \frac{rel_i}{\log_2 i}$$

- Normalized discounted cumulative gain (nDCG)
 - Normalized to the interval [0..1]

1	
2	X
3	X
4	X
5	

Rank | Hit?

$$DCG_5 = \frac{1}{\log_2 2} + \frac{1}{\log_2 3} + \frac{1}{\log_2 4} = 2.13$$

$$IDCG_5 = 1 + \frac{1}{\log_2 2} + \frac{1}{\log_2 3} = 2.63$$

$$nDCG_{pos} = \frac{DCG_{pos}}{IDCG_{pos}}$$
 $nDCG_5 = \frac{DCG_5}{IDCG_5} \approx 0.81$

CONCLUSION

- Neighborhood-based Collaborative Filtering
 - User-based CF / Item-based CF
 - Measuring similarity
 - Pros and cons of neighborhood-based CF
 - Sparsity / Cold-start problem
- A Regression Modeling View of Neighborhood Methods
 - Sparse Linear Model (SLIM)
- Evaluating Recommender System
 - Rating prediction and item ranking

Coming up next: Model-based CF