Exhibit A: U.S. Patent No. 10,188,940

(12) United States Patent Burgess et al.

(54) GAMES CONTROLLER

(71) Applicant: **Ironburg Inventions Ltd.**, Wincanton

(GB)

(72) Inventors: **Simon Burgess**, Cossington (GB);

Duncan Ironmonger, Atlanta, GA (US)

(73) Assignee: Ironburg Inventions Ltd., Wincanton

(GB)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/040,000

(22) PCT Filed: Nov. 27, 2014

(86) PCT No.: PCT/EP2014/075861

§ 371 (c)(1),

(2) Date: May 27, 2016

(87) PCT Pub. No.: WO2015/078994

PCT Pub. Date: Jun. 4, 2015

(65) Prior Publication Data

US 2017/0157509 A1 Jun. 8, 2017

Related U.S. Application Data

- (60) Provisional application No. 61/910,260, filed on Nov. 29, 2013.
- (51) Int. Cl. *A63F 13/22* (2014.01) *A63F 13/24* (2014.01)

(10) Patent No.: US 10,188,940 B2

(45) **Date of Patent:** Ja

Jan. 29, 2019

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

4,032,728 A 6/1977 Oelsch 5,430,262 A 7/1995 Matsui et al. 5,451,053 A 9/1995 Garrido (Continued)

FOREIGN PATENT DOCUMENTS

EP 1852162 11/2007 EP 2 479 636 7/2012 (Continued)

OTHER PUBLICATIONS

European Patent Office, Communication pursuant to Article 94(3) EPC, Application. No. 14 802 929.1 (dated Jul. 21, 2017).

(Continued)

Primary Examiner — Omkar Deodhar (74) Attorney, Agent, or Firm — Walters & Wasylyna LLC

(57) ABSTRACT

A game controller for controlling electronic games comprising a controller chassis and an actuator system including: an actuator body pivotally mounted to the controller chassis; a strike plate coupled to the actuator body; a trigger adjustment system having an arm; and an actuator adjustment control screw received in a screw thread disposed within said arm. A portion of the actuator adjustment control screw may engage with a portion of the strike plate and said portion of the actuator adjustment control screw creates an end stop to limit movement of the actuator body.

17 Claims, 12 Drawing Sheets

US 10,188,940 B2 Page 2

U.S. PATENT DOCUMENTS 2016/0034682 Al 12/2016 Burgess et al. 2017/0001108 Al 1/2017 Burgess et al. 2017/0001108 Al 1/2017 Burgess et al. 2017/0001108 Al 1/2017 Burgess et al. 2017/0015465 Al 3/2017 Burgess et al. 2017/015494 Al 6/2017 Burgess et al. 2017/015494 Al 6/2017 Burgess et al. 2017/015494 Al 6/2017 Burgess et al. 2017/0157509 Al 6/2017 Burgess et al. 2018/015771 Bur	(56)	References Cited	2016/0193529 A1 7/2016 Burgess et al.
S,773,769 A 6/1998 Raymond 2017/0087456 A1 3/2017 Burgess et al.	U.S. PATENT DOCUMENTS		2017/0001107 A1 1/2017 Burgess et al.
1/19	5,841,372 A	11/1998 Matsumoto	2017/0087456 A1 3/2017 Burgess et al. 2017/0151494 A1 6/2017 Ironmonger et al.
6,512,1015 B1 6/2001 Caprai	5,989,123 A	11/1999 Tosaki et al.	Ç
6,752,719 B2 6/2004 Himnot et al. 6,760,013 B2 7/2004 Willner et al. 7,510,477 B2 3/2009 Argentar JP H1020951 1/1998 7,758,424 B2 7/2010 Riggs et al. WO WO 03/046822 6/2003 7,859,514 B1 12/2010 Park WO WO 03/046822 6/2003 8,641,525 B2 1/2014 Burgess et al. WO WO 20014/187923 11/2014 8,777,620 B1 7/2014 Baxter WO WO2014/187923 11/2014 9,089,770 B2 7/2015 Burgess et al. WO WO2015/10553 7/2015 9,804,691 B1 10/2017 2001/003713 A1 6/2001 Willner et al. 2001/003713 A1 6/2001 Willner et al. 2001/0025778 A1 10/2001 Ono OTHER PUBLICATIONS 2002/00122237 A1 5/2002 Magill 2002/0128064 A1 9/2002 Sobota International Search Report, PCT/EP2014/075851 (dated 2015). 2003/006711 A1 4/2003 Swan et al. International Search Report, PCT/EP2014/05861 (dated 2015). 2004/0259059 A1 12/2004 Aoki International Search Report, PCT/EP2014/05861 (dated 2015). 2005/0255918 A1 11/2005 Riggs et al. 2005/0255918 A1 11/2005 Riggs et al. 2006/0025217 A1 2/2006 Hussaini et al. 2006/0025217 A1 2/2006 Hussaini et al. 2008/0261695 A1 10/2008 Coe 2011. 2006/0025238 A1 3/2010 Graison Wirthous Order of the International Search Report, PCT/EP2014/05867 (dated 2015). 2009/0088250 A1 4/2009 Carlson Wirthous Order of the International Search Report, PCT/EP2014/05867 (dated 2015). 2009/0088250 A1 4/2009 Carlson Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2010/030485 A1 1/2010 Riggs et al. 2010/0088585 A1 4/2019 Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2011/028649 A1 10/2011 Jaouen Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2011/028649 A1 10/2011 Jaouen Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2012/088858 A1 4/2012 Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2012/088585 A1 4/2012 Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015). 2012/088585 A1 4/2012 Wirthous Order of the International Search Report, PCT/EP2015/058096 (dated 2015	6,251,015 B1	6/2001 Caprai	
7,510,477 B2 3/2009 Argentar 7,758,424 B2 7/2010 Riggs et al. WO WO 2008/131249 10/2008 8,641,525 B2 2/2014 Burgess et al. WO WO 2008/131249 11/2014 8,777,620 B1 7/2015 Burgess et al. WO WO2014/187923 11/2014 9,089,770 B2 7/2015 Burgess et al. WO WO2015/004261 1/2015 9,804,691 B1 10/2017 Strahle et al. WO WO2015/10553 7/2015 2001/0003713 A1 6/2001 Ono OTHER PUBLICATIONS 2002/0052237 A1 5/2002 Sobota International Search Report, PCT/EP2014/075851 (dated 2015). 2003/0057211 A1 4/2003 Swan et al. International Search Report, PCT/EP2014/075861 (dated 2015). 2005/0033297 A1 4/2005 Duncan International Search Report, PCT/EP2014/05806 (dated 2015). 2005/0033297 A1 1/2005 Riggs et al. Written Opinion of the International Search Report, PCT/EP2015/058096 (dated 2015). 2005/025915 A1 11/2005 Riggs et al. Written Opinion of the International Search Report, PCT/EP2015/058096 (dated 2015). 2006/0025217 A1 2/2004 Hussaini et al. EP2015/058096 (dated 2015). 2006/0025217 A1 2/2006 Chen et al. EP2015/058096 (dated 2015). 2006/0025217 A1 3/2005 Chen et al. EP2015/058096 (dated 2015). 2006/0025317 A1 3/2006 Chen et al. EP2015/058096 (dated 2015). 2006/0032517 A1 3/2005 Chen et al. EP2015/058096 (dated 2015). 2006/0032517 A1 3/2006 Hussaini et al. EP2015/058096 (dated 2015). 2009/0088250 A1 10/2008 Coe 2011). 2009/0088250 A1 10/2008 Coe 2011). 2009/0088250 A1 10/2009 Guinchard xbox-scene.com, (2008). 2010/0037383 A1 3/2010 Enright "Thrustmaster USB game controller," forum on xbox-scene.com, (2008). 2010/0304865 A1 12/2010 Picunko Coles, Olin, "Thrustmaster Run-N-Drive PC/PS3 Wireless Gamepad" Enright Huston Us. Appl. No. 14/805,597 (dated 2015). 2012/042418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/042418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/042555 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322555 A1 12/2012 Burgess et al. EP2016-00949 (2016). 2013/043/610 A1 6/2013 Grant et al. Office Action, U.S. Appl. No. 14	6,752,719 B2	6/2004 Himoto et al.	GB 2 244 546 12/1991
8,641,525 B2 2/2014 Bargess et al. 8,777,620 B1 7/2014 Bargess et al. 9,089,770 B2 7/2015 Burgess et al. 9,804,691 B1 10/2017 Strahle et al. 2001/0025778 A1 10/2001 Wilner et al. 2001/0025778 A1 5/2002 Magill 2002/0128064 A1 9/2002 Sobota International Search Report, PCT/EP2014/075851 (dated 2015). 2003/0067111 A1 4/2003 Swan et al. 2004/0259059 A1 12/2004 Aoki International Search Report, PCT/EP2014/075861 (dated 2015). 2005/025918 A1 11/2005 Riggs et al. 2005/0255918 A1 11/2005 Riggs et al. 2006/0025217 A1 2/2006 Chen et al. 2006/016204 A1 6/2006 Chen et al. 2008/0261695 A1 10/2008 Coe 2011). 2009/0088250 A1 4/2009 Garlson "Report PCT/EP2014/075800 (dated 2015). 2009/0258705 A1 10/2009 Garlson "Rapid Fire Mod for Wireless Xbox 360 Controller," forum on 2009/0258705 A1 10/2010 Navid htm (2002). 2010/03283 A1 3/2010 Enright "Thrustmaster USB game controller roundup," dansdata.com/tmsticks. htm (2002). 2011/0281649 A1 10/2011 Jaouen Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/042418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0322555 A1 12/2012 Burgess et al. 2012/0322555 A1 12/2012 Burgess et al. 2013/0147610 A1 6/2013 Grant et al. 2013/0150155 A1	7,758,424 B2	3/2009 Argentar 7/2010 Riggs et al.	JP H1020951 1/1998 WO WO 03/046822 6/2003
9,089,770 B2 7,2015 Burgess et al. 9,804,691 B1 10/2017 Strahle et al. 2001/0003713 A1 6/2001 Willner et al. 3001/0025778 A1 10/2001 Ono OTHER PUBLICATIONS OTHER PUB	8,641,525 B2	2/2014 Burgess et al.	WO WO2014/187923 11/2014
2001/0025778 A1 10/2001 One	9,089,770 B2	7/2015 Burgess et al.	
2002/0128064 A1 9/2002 Sobota International Search Report, PCT/EP2014/075851 (dated 2015). 2003/0067111 A1 4/2003 Swan et al. International Search Report, PCT/EP2014/075861 (dated 2015). 2004/0259059 A1 2/2004 Aoki International Search Report, PCT/EP2014/075861 (dated 2014). 2005/0255915 A1 11/2005 Riggs et al. International Search Report, PCT/EP2015/058096 (dated 2015). 2005/0255918 A1 11/2005 Riggs et al. Written Opinion of the International Searching Authority, PCT/ 2005/0255918 A1 11/2005 Riggs et al. EP2015/058096 (dated 2015). 2006/0025217 A1 2/2006 Hussaini et al. Burns, "Review: Scuf Xbox 360 Controller," Xboxer360.com (2010). 2006/0025217 A1 2/2006 Chen et al. Combined Search and Examination Report, GB1011078.1 (dated 2008/0261695 A1 10/2008 Coe 2011). (arlson Coe 2011). (arlson Coe 2011). (arlson Coe 2010/0073283 A1 2/2010 Guinchard Sanchinary Coe	2001/0025778 A1	10/2001 Ono	OTHER PUBLICATIONS
2004/0259059 Al 12/2004 Aoki International Search Report, PCT/EP2014/060587 (dated 2014). 2005/0085297 Al 4/2005 Duncan International Search Report, PCT/EP2015/058096 (dated 2015). 2005/0255918 Al 11/2005 Riggs et al. EP2015/058096 (dated 2015). 2006/0025217 Al 2/2006 Hussaini et al. EP2015/058096 (dated 2015). 2006/0116204 Al 6/2006 Chen et al. EP2015/058096 (dated 2015). 2006/0116204 Al 6/2006 Chen et al. EP2015/058096 (dated 2015). 2008/0261695 Al 10/2008 Coe 2011). 2009/0258705 Al 4/2009 Carlson Guinchard Sarch Report, PCT/EP2015/058096 (dated 2015). 2010/0273283 Al 3/2010 Enright Sarch Report, PCT/EP2015/058096 (dated 2015). 2010/0267454 Al 10/2010 Navid Sarch Report, PCT/EP2015/058096 (dated 2015). 2010/0267454 Al 10/2010 Navid Sarch Report, PCT/EP2015/058096 (dated 2015). 2010/0267454 Al 10/2010 Navid Sarch Report, PCT/EP2015/058096 (dated 2015). 2011/0281649 Al 11/2011 Jaouen Sarch Report, PCT/EP2015/058096 (dated 2015). 2012/0142418 Al 6/2012 Muramatsu Sarch Report, PCT/EP2015/058096 (dated 2015). 2012/012929244 Al 11/2011 Jaouen Sarch Report, PCT/EP2015/058096 (dated 2015). 2012/0322555 Al 12/2012 Burgess et al. 2012/0322555 Al 12/2012 Burgess et al. 2012/0322555 Al 12/2012 Burgess et al. 2013/0147610 Al 6/2013 Barney et al. 2013/0150155 Al 6/2013 Barney et al. 2012/0162053 2015/01555 Al 6/2013 Barney et al. 2016/01555 Al 2013/0150155 Al 6/2013 Barney et al. 2016/01555 Al 2016/0155 Al 2016/015	2002/0128064 A1	9/2002 Sobota	
EP2015/058096 (dated 2015).	2004/0259059 A1	12/2004 Aoki	International Search Report, PCT/EP2014/060587 (dated 2014). International Search Report, PCT/EP2015/058096 (dated 2015).
2006/0116204 A1 6/2006 Chen et al. Combined Search and Examination Report, GB1011078.1 (dated 2018). 2008/0261695 A1 10/2008 Coe 2011). 2009/0888250 A1 4/2009 Carlson "Rapid Fire Mod for Wireless Xbox 360 Controller," forum on xbox-scene.com, (2008). 2010/0073283 A1 3/2010 Enright "Thrustmaster USB game controller roundup," dansdata.com/tmsticks. 2010/0304865 A1 10/2010 Navid htm (2002). 2011/0281649 A1 11/2011 Jaouen BenchmarkReviews.com (2009). 2011/0388582 A1 4/2012 Wu et al. Office Action, U.S. Appl. No. 14/832,211 (dated 2015). 2012/0142418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0329244 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case Under 37 C.F.R. § 42.100, filed b	2005/0255918 A1	11/2005 Riggs et al.	EP2015/058096 (dated 2015).
2009/0088250 A1 4/2009 Carlson "Rapid Fire Mod for Wireless Xbox 360 Controller," forum on xbox-scene.com, (2008). 2010/0073283 A1 3/2010 Enright "Thrustmaster USB game controller roundup," dansdata.com/tmsticks. 2010/0304865 A1 12/2010 Navid htm (2002). 2011/0256930 A1 10/2011 Jaouen BenchmarkReviews.com (2009). 2011/0281649 A1 11/2011 Jaouen BenchmarkReviews.com (2009). 2012/0188582 A1 4/2012 Wu et al. Office Action, U.S. Appl. No. 14/832,211 (dated 2015). 2012/0142418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0322553 A1 12/2012 Burgess et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 9,089,770, 2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case 2013/0147610 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2006/0116204 A1	6/2006 Chen et al.	Combined Search and Examination Report, GB1011078.1 (dated
2010/0267454 A1 10/2010 Navid htm (2002). 2010/0304865 A1 12/2010 Picunko Coles, Olin, "Thrustmaster Run-N-Drive PC/PS3 Wireless Gamepad" 2011/0256930 A1 10/2011 Jaouen BenchmarkReviews.com (2009). 2011/0281649 A1 11/2011 Jaouen Office Action, U.S. Appl. No. 14/832,211 (dated 2015). 2012/0142418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/736,771 (dated 2015). 2012/0142419 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0299244 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322553 A1 12/2012 Burgess et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 9,089,770, 2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case 2013/0147610 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2009/0088250 A1	4/2009 Carlson	"Rapid Fire Mod for Wireless Xbox 360 Controller," forum on
2011/0256930 A1 10/2011 Jaouen BenchmarkReviews.com (2009). 2011/0281649 A1 2012/0088582 A1 4/2012 Wu et al. 2012/0142418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/832,211 (dated 2015). 2012/0142419 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0299244 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322553 A1 12/2012 Burgess et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322555 A1 12/2012 Burgess et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 9,089,770, 2012/0322555 A1 6/2013 Grant et al. IPR2016-00949 (2016). 2013/0150155 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2010/0267454 A1	10/2010 Navid	
2012/0088582 A1 4/2012 Wu et al. Offfice Action, U.S. Appl. No. 14/36,771 (dated 2015). 2012/0142418 A1 6/2012 Muramatsu Office Action, U.S. Appl. No. 14/36,771 (dated 2015). 2012/0329244 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,597 (dated 2015). 2012/0322553 A1 12/2012 Burgess et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 9,089,770, 2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case 2013/0147610 A1 6/2013 Grant et al. IPR2016-00949 (2016). 2013/0150155 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2011/0256930 A1	10/2011 Jaouen	BenchmarkReviews.com (2009).
2012/0299244 A1 11/2012 Rice et al. Office Action, U.S. Appl. No. 14/805,641 (dated 2015). 2012/0322553 A1 12/2012 Burgess et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 9,089,770, 2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case 2013/0147610 A1 6/2013 Grant et al. IPR2016-00949 (2016). 2013/0150155 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2012/0088582 A1	4/2012 Wu et al.	Office Action, U.S. Appl. No. 14/736,771 (dated 2015).
2012/0322555 A1 12/2012 Burgess Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case 2013/0147610 A1 6/2013 Grant et al. IPR2016-00949 (2016). 2013/0150155 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2012/0299244 A1	11/2012 Rice et al.	Office Action, U.S. Appl. No. 14/805,641 (dated 2015).
2013/0150155 A1 6/2013 Barney et al. Corrected Petition for Inter Partes Review of U.S. Pat. No. 8,641,525,	2012/0322555 A1	12/2012 Burgess	Under 37 C.F.R. § 42.100, filed by Valve Corporation, Case
ZULS/ULSD //ULALL X/ZULS Barney et al. Linder 5/ U.E.K. 8 4/ IUU Tiled by Valve Cornoration Case.			
2014/0274397 A1 9/2014 Sebastian IPR2016-00948 (2016). 2015/0234479 A1 8/2015 Schantz et al. Xbox 360 Wireless Controller Tour, published on May 13, 2005 at	2014/0274397 A1	9/2014 Sebastian	IPR2016-00948 (2016).
2015/0238855 A1 8/2015 Uy et al. http://www.ign.com/articles/2005/05/13/xbox-360-wireless-controller-tour.	2015/0238855 A1	8/2015 Uy et al.	http://www.ign.com/articles/2005/05/13/xbox-360-wireless-controller-

Jan. 29, 2019

Sheet 1 of 12

U.S. Patent Jan. 29, 2019

Sheet 2 of 12

Jan. 29, 2019

Sheet 3 of 12

Jan. 29, 2019

Sheet 4 of 12

Jan. 29, 2019

Sheet 5 of 12

FIGURE 5

Jan. 29, 2019

Sheet 6 of 12

Jan. 29, 2019

Sheet 7 of 12

Jan. 29, 2019

Sheet 8 of 12

FIGURE 8

Jan. 29, 2019

Sheet 9 of 12

FIGURE 9A

FIGURE 9B

Jan. 29, 2019

Sheet 10 of 12

FIGURE 10

Jan. 29, 2019

Sheet 11 of 12

FIGURE 11

Jan. 29, 2019

Sheet 12 of 12

1 GAMES CONTROLLER

This application is a U.S. national phase application of Intl. App. No. PCT/EP2014/075861 filed on Nov. 27,2014, which claims priority from U.S. Ser. No. 61/910,260 filed on Nov. 29, 2013. The entire contents of Intl. App. No. PCT/EP2014/075861 and U.S. Ser. No. 61/910,260 are incorporated herein by reference.

TECHNICAL FIELD

The invention relates to controllers for controlling the play of computerised games. More particularly, but not exclusively, the invention relates to an actuator system of a game controller for a gaming console.

BACKGROUND

There are many different types of gaming consoles currently available for operating a video game. For example, Microsoft®, Sony® and Nintendo® manufacture the Xbox®, Playstation® and Wii® gaming consoles respectively. The gaming consoles typically include a game controller so that a user can control the operation of the video 25 game.

Some known game controllers include a form of actuator system for the operation of control of the functions of the video games. Actuators, buttons or other depressible or manually operable devices are typically used for controlling discrete actions such as the firing of a weapon or an attack command. It is known to provide a button or actuator which is intended to be operable by the index finger of a user; such buttons are commonly known as triggers.

At times, dependent upon the video game being played, it 35 can be necessary to depress the trigger a distance before the trigger initiation point is reached and the command actually acknowledged. This renders part of the depressing action futile. Likewise, after the command has been operated, it is often possible to carry out further depression of the trigger 40 past the trigger initiation point. This further depression is unnecessary and may also be disadvantageous.

Furthermore, in other situations in some video games, the strength of a command is increased or decreased in dependence upon how frequently the trigger is depressed. As such, 45 depressing the trigger the whole distance is unnecessary and excessive for the command or operation required.

It is desirable to have a controller, particularly for gaming applications, that is more responsive or has less scope for allowing unnecessary over-movement by the user of the 50 controller. Due to the rapidly expanding gaming market and development of involved games invoking considerable player input, it is desirable for players to be able to customise their controllers in order to gain increased control in a variety of gaming circumstances.

The present invention seeks to improve upon or at least mitigate some of the problems associated with controllers of the prior art by providing a game controller which includes an adjustable trigger system that has a mechanism to allow the end user to control or recalibrate the maximum and/or 60 minimum trigger positions.

SUMMARY

There are a variety of different commands available for 65 the trigger functions of a game controller and the adjustable trigger system of the present invention now provides the

2

option to customise the trigger settings in order to suit the individual game at the time of operation.

In some embodiments the trigger system includes adjustments to the depressible range of the trigger so that effectively the trigger is already, to some degree, "depressed", before any contact is actually made with the trigger by the operator (player).

In some embodiments the trigger system includes adjustments to the extent that the trigger is depressible such that no further motion can be effected by the operator. This removes any unnecessary distance travelled by the trigger.

The present invention provides a method of controlling both of the above features simultaneously regarding the amount of depression inflicted on the trigger without contact, and the range of available motion to give the optimum performance in any gaming circumstances.

According to an aspect of the invention there is provided an apparatus for supplying user inputs to a computer program, such as a game program, for controlling the game program, the apparatus comprising an outer case, at least one depressible trigger mechanism and having a mechanism for manual adjustment of the range motion of the trigger mechanism, the mechanism being disposed within an internal volume defined by an outer case of the apparatus.

According to another aspect of the invention there is provided an apparatus for supplying user inputs to a computer program, such as a game program, for controlling the game program, the apparatus comprising at least one depressible trigger mechanism and having a first mechanism for adjustment of the stop position of the trigger mechanism.

Optionally, the apparatus comprises a second mechanism for manual adjustment of the stop position of the trigger mechanism.

According to a further aspect of the invention there is provided a game controller for controlling electronic games, including a housing, at least one depressible trigger at least in part exposed relative to the housing, said at least one depressible trigger being in operational association with electrical circuitry contained within the housing which electrical circuitry is controlled by depression of the or each depressible trigger for manipulating electrical outputs of the circuitry for controlling electronic games and having a mechanism for manual adjustment of the depressible range of the trigger mechanism.

According to yet another aspect of the invention there is provided a game controller for controlling electronic games comprising:

- a controller chassis and an actuator system including:
 - an actuator body pivotally mounted to the controller chassis;
 - a strike plate coupled to the actuator body;
 - a trigger adjustment system having an arm;
 - an actuator adjustment control screw received in a screw thread disposed within said arm;
- wherein a portion of the actuator adjustment control screw engages with a portion of the strike plate and said portion of the actuator adjustment control screw creates an end stop to limit the actuator movement.

Optionally, a portion of said arm forms a second end stop to limit the actuator movement.

Optionally, the game controller comprises an outer case defining a void and wherein the trigger adjustment system is mounted within the void.

In some embodiments, the game controller comprises a removable cover panel for accessing and adjusting the trigger adjustment system.

3

In some embodiments, the game controller comprises an aperture in the outer case for receiving an adjustment tool for adjusting the trigger adjustment system.

Optionally, the actuator system is a trigger button.

According to a still further aspect of the invention there is 5 provided an actuator adjustment system for adjusting the range of travel of an actuator in a game controller comprising:

- a base plate for mounting the actuator adjustment system to a controller body;
- a riser coupled to the base plate;
- an arm extending from the riser;

wherein the arm comprises a screw thread for receiving an actuator adjustment control screw for adjusting the range of travel of the actuator and a strike plate for arresting motion of the actuator.

According to a still yet another aspect of the invention there is provided a method of adjusting the range of movement of a button on a game controller for controlling 20 electronic games comprising:

providing a game controller including:

- a controller chassis;
- a trigger body pivotally mounted to the controller chassis;
- a strike plate coupled to the actuator body;
- a trigger adjustment system having an arm;
- an actuator adjustment control screw received in a screw thread disposed within said arm; wherein a portion of the trigger adjustment control screw on a engages with a portion of the strike plate and said portion of the actuator adjustment control screw creates an end stop to limit the actuator movement;

rotating said trigger adjustment control screw to adjust the position of the end stop.

Optionally, the game controller includes a removable cover panel, and the method comprises:

removing the removable cover panel to gain access to the trigger adjustment control screw.

Within the scope of this application it is envisaged and 40 intended that the various aspects, embodiments, examples, features and alternatives set out in the preceding paragraphs, in the claims and/or in the following description and drawings may be taken independently or in any combination thereof. For example, features described in connection with 45 one embodiment are applicable to all embodiments unless there is incompatibility of features.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be described with reference to the accompanying drawings, in which:

- FIG. 1 is a plan view of a controller for a games console;
- FIG. 2 is a front view of the controller of FIG. 1;
- FIG. 3 is a side view of a controller of FIG. 1;
- FIG. 4 is an exploded side view of the controller of FIG. 1 showing a removable cover portion;
- FIG. **5** is a perspective view from below of a portion of the controller of FIG. **1** in which the removable cover 60 portion has been removed to expose the trigger mechanism;
- FIG. **6** is a cross sectional view of the trigger mechanism of FIG. **5**;
- FIG. 7 is a cross sectional view of the trigger mechanism of FIG. 5 showing the range of motion of the trigger 65 mechanism in an exemplary implementation of the use of the range of motion;

4

FIG. 8 is a perspective view from below of a portion of the controller of FIG. 1 in which the removable cover portion has been removed to expose a trigger adjustment mechanism according to an embodiment of the invention;

FIG. **9**A is an exploded perspective view of the mechanism for adjusting trigger travel motion;

FIG. **9**B is a perspective view of the mechanism for adjusting trigger travel motion;

FIG. 10 is a cross sectional view of the trigger mechanism of FIG. 5 including the mechanism for adjusting trigger travel motion wherein the trigger body is illustrated in a first position;

FIG. 11 is a cross sectional view of the trigger mechanism of FIG. 5 including the mechanism for adjusting trigger travel motion wherein the trigger body is illustrated in a second position; and

FIG. 12 is a bottom view of a portion of the controller of FIG. 5 including the removable cover portion.

DETAILED DESCRIPTION

Detailed descriptions of specific embodiments of the games controller and its trigger mechanisms are disclosed herein. It will be understood that the disclosed embodiments are merely examples of the way in which certain aspects of the invention can be implemented and do not represent an exhaustive list of all of the ways the invention may be embodied. Indeed, it will be understood that the games controller and its trigger mechanisms described herein may be embodied in various and alternative forms. The Figures are not necessarily to scale and some features may be exaggerated or minimised to show details of particular components. Well-known components, materials or methods are not necessarily described in great detail in order to avoid obscuring the present disclosure. Any specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the invention.

Referring to FIG. 1 there is shown a controller 1 according to an embodiment of the invention. The controller 1 comprises a mechanism for adjusting trigger travel motion; both the start position and end position of the trigger movement are adjusted by the mechanism.

The controller 1 comprises controls that are mounted on the front and top of the controller 1. The controller 1 comprises a left analogue thumb stick 2 and a right analogue thumb stick 3. The left analogue thumb stick 2 and the right analogue thumb stick 3 normally control movement actions and are intended to be operated by the user's left and right thumbs respectively. The controller 1 comprises four buttons 4, located on a front-right portion of the controller 1, which normally control additional actions and are intended to be operated by the user's right thumb. The controller 1 comprises a direction pad 5 located on the lower portion of the front-left of the controller 1. The direction pad 5 is intended to be operated by the user's left thumb, typically either as an alternative to the left thumb stick 2 or to provide additional actions. The controller 1 also comprises a left trigger 6, a right trigger 7, a left bumper 8 and a right bumper 9 located on the front edge of the controller 1. The left and right triggers 6, 7 are typically operated by a user's index or fore fingers. The left and right bumpers 8, 9 may also be operated by a user's index or fore fingers.

5

FIG. 2 illustrates a front view of the controller of FIG. 1. It can be seen that the left trigger 6 is mounted below the left bumper 8 and the right trigger 7 is mounted below the right bumper 9.

Referring now to FIGS. **3**, **4** and **5** the controller **1** 5 comprises a removable cover portion **10** which is detachably coupled to a base chassis member **14**. The base chassis member **14** is coupled to a top panel **12**.

The base chassis member 14 and the top panel 12 define a void V in which a printed circuit board (not shown) is 10 located. The printed circuit board comprises control electronics (not shown) to which the controls 2, 3, 4, 5, 6, 7, 8, 9 of the controller 1 are coupled. An inner chassis member (not shown) is provided in the void; the printed circuit board is fixed to the inner chassis member.

The base chassis member 14 comprises a cutaway or recess 16 (see FIG. 4) disposed at a front edge thereof. The recess 16 is adjacent to, or facing at least in part, a rear edge 17 of the left trigger 6. A fixing device 13, in the form of a screw, is disposed in the recess 16 and secures the base 20 chassis member 14 to the top panel 12. Preferably, the printed circuit board and the inner chassis member are disposed between the base chassis member 14 and the top panel 12 and are secured in position by the fixing device 13. The fixing device 13 passes through an aperture or cutaway 25 provided in the recess 16, through apertures in each of the printed circuit board and the inner chassis member, and into a concealed bore defined within the top panel 12 (that is to say, the bore does not pass through the top panel 12).

A limb 18 extends from the rear of the left trigger 6 into 30 the void V between the base chassis member 14 and the top panel 12. The limb 18 comprises a magnet 30 (see FIG. 6) attached thereto. The controller 1 determines or senses the position of the magnet 30 relative to a sensor (not shown) provided on the printed circuit board (or in the void) to 35 determine the position or orientation, or to sense movement of, the left trigger body 6.

A front edge 15 of the base chassis member 14 defines an end stop limiting the movement of the left trigger 6. The front edge 15 of the base chassis member 14 may comprise 40 a cushion member 60 to soften the impact of the left trigger body 6 at the end stop. The left trigger 6 is pivotally or rotationally mounted to the inner chassis member or, in alternative embodiments, to the top panel 12. The left trigger 6 is resiliently biased to return to a start position.

FIG. 7 illustrates a typical use of the range of motion of the trigger mechanism in a gaming application such as a combat style game. The trigger body $\bf 6$ has a start position S. The trigger body $\bf 6$ must be moved through a first zone D_Z , a dead zone in which no commands are initiated. Once the trigger body $\bf 6$ reaches the position C_T a command action is initiated. The trigger body $\bf 6$ then moves through an active region A_R in which the command actions are carried out. Once the trigger body reaches the position C_T , no further commands are initiated. The trigger body $\bf 6$ then enters an 55 over-travel zone O_T in which no commands are initiated until the trigger body $\bf 6$ reaches the end stop E at which point the movement of the trigger body $\bf 6$ is arrested by the front edge $\bf 15$ of the base chassis member $\bf 14$.

Referring now to FIGS. **8** to **11** there is shown a trigger 60 adjustment system **20** that has a mechanism to allow the end user to control or recalibrate the range of motion of the trigger body of the left trigger **6**. It will be appreciated that the trigger body of the right trigger **7** can be controlled or recalibrated by employing a system substantially similar to 65 that described in relation to the left trigger mechanism **6**, albeit a mirror image thereof.

6

The trigger adjustment system 20 comprises a base plate 44 in which a bore or aperture 46 is defined. The aperture 46 is configured to receive a fixing device 13 in the form of a screw or bolt. The trigger adjustment system 20 comprises a side wall or riser 48. The riser 48 and the base plate 44 are configured to be received in the recess 16 defined in the base chassis member 14. The trigger adjustment system 20 comprises an arm 50 which extends from the riser 48; preferably the arm 50 extends from an upper end of the riser 48.

The arm 50 is arranged such that it extends between the rear edge 17 of the left trigger body 6 and the front edge 15 of the base chassis member 14.

The arm 50 comprises an aperture 52 which defines a bore. Optionally, the bore comprises an internal screw thread for receiving a control screw 24, also referred to as a trigger adjustment control screw. In some embodiments, control screw 24 takes the form of a grub screw, in the other embodiments the control screw 24 comprises a head preventing the entire control screw 24 from passing through the arm 50.

As shown in FIG. 10, the control screw 24 adjusts the start position of the trigger body 6 as indicated by direction narrow D1. The control screw 24 can be rotated to adjust the extent to which the control screw 24 passes through the arm 50. The lower end of the control screw 24 is brought into contact with the upper surface of the limb 18. As the control screw 24 is tightened into the aperture 52 the left trigger 6 is pivoted about the pivot point 34 and is prevented from returning to the start position shown in FIG. 6.

The arm 50 comprises a front edge 15A which provides an end stop for the range of motion of the left trigger 6. FIG. 10 illustrates the trigger body 6 in a first position; the first position is an initial start position in which the trigger body 6 is in an undepressed state. The left trigger 6 is resiliently biased by a bias mechanism such as a spring to return to the first position. The front edge 15A is disposed closer to the rear edge 17 of the left trigger 6 than the front edge 15 of the base chassis member 14. In this way the range of motion of the trigger body 6 is reduced or shortened. In this way the trigger adjustment system 20 adjusts the extent to which the left trigger 6 can be depressed by a user. Hence, the degree of rotation of the left trigger 6 about the pivot point 34 is restricted or reduced.

FIG. 11 illustrates the trigger body 6 in a second position; the second position is a terminal position in which the trigger body 6 is in a depressed state. The motion, indicated by direction arrow D2, of the trigger body 6 has been arrested or ceased by the front edge 15A of the arm 50. Optionally, the arm 50 comprises a cushion member 56 for softening the impact between the trigger body 6 and the trigger adjustment system 20.

In this embodiment the thread for receiving the control screw 24 is cut into the arm 50 of the trigger adjustment system 20. In other embodiments it would be possible to use a threaded insert in the arm 50.

Preferably, the position of the left trigger 6 would be adjusted by use of a specified tool that would be provided to turn the control screws 24.

One advantage of the present invention is that it allows adjustments to be made to the trigger response; such adjustment could be customised to suit the nature of the video game that is in use at the time of operation and/or the skill of the operator. For example, in combat style games involving a shooting function it is often the case that the trigger needs to be depressed by a certain amount before any command is prompted. The control screw 24 can be adjusted so that the command is prompted within a desired amount of

depression of the trigger body 6. This adjustment can be made by using the required tool (for example an Allen key, or hex or star driver, cross head or flat head screwdriver, spanner or wrench) to turn the control screw 24 thereby driving it into or out of the arm 50 by virtue of the threaded 5 insert or screw thread located therewithin.

After reaching or passing the command initiation point C₁ no further commands are initiated by further movement of the trigger body 6. The width of the arm 50 controls the degree of trigger body depression beyond the command initiation point C_I. The arm 50 restricts the amount of travel available to the trigger body 6. The arm 50 impedes the movement of the trigger body 6, since the rear edge 17 of the trigger body 6 strikes the front edge 15A of the arm 50 or cushion member 56 when present.

Such an adjustment to the range of motion of the trigger body 6 would directly relate to the majority of combat style games or other varieties of firing operations in video games.

The present invention could find application in a variety of other video game genres but for the simplicity of this 20 disclosure reference is made to combat style games.

A further advantage of the present invention is that it minimises the amount of motion an operator's finger must travel, therefore minimising the recovery time after a trigger initiation command has been made, allowing the operator to 25 commence the command prompt again and again more rapidly, or to operate different commands quicker. As the movement that is required to operate commands by depressing the trigger body is reduced, the risks of any related repetitive strain injury acquired due to the repeated move- 30 ment of the finger when operating the trigger function may be greatly reduced.

In one embodiment, as illustrated in FIG. 12, the cover portion 10 comprises an access device in the form of an aperture 22 or through hole which passes through the cover 35 portion. The aperture 22 is configured such that it aligns with the control screw 24. In this way the operator can insert a tool through the aperture 22 and engage the control screw 24 to adjust the range of movement of the trigger body without ments the cover portion 10 clips onto the base chassis member 14 by mechanical clips integrally formed therewith, the clips having a barb at one end to engage with a receiver. The cover portion 10 may be detached to adjust the control screw 24 or to remove trigger adjustment system 20 to 45 restore the full range of motion of the trigger body 6.

It will be recognized that as used herein, directional references such as "top", "bottom", "front", "back", "end", "side", "inner", "outer", "upper" and "lower" do not necessarily limit the respective features to such orientation, but 50 may merely serve to distinguish these features from one another.

While particular embodiments of the invention have been shown and described, numerous variations and alternative embodiments will occur to those skilled in the art without 55 departing from the scope of the present invention.

The invention claimed is:

- 1. An apparatus for supplying user inputs to a computer program for controlling the computer program, the apparatus comprising an outer case, at least one depressible trigger 60 mechanism, and a mechanism for manual adjustment of a range of motion of the at least one trigger mechanism, the mechanism being disposed within an internal volume defined by the outer case of the apparatus.
- 2. An apparatus for supplying user inputs to a computer 65 program for controlling the computer program, the apparatus comprising an outer case, at least one depressible trigger

mechanism, and a first mechanism for adjusting a first end stop position of a range of motion of the at least one depressible trigger mechanism, the first mechanism being disposed within an internal volume defined by the outer case of the apparatus.

- 3. The apparatus of claim 2 further comprising a second mechanism which provides for manual adjustment of a second end stop position of the range of motion of the at least one depressible trigger mechanism, the second mechanism being disposed within the internal volume defined by the outer case of the apparatus.
- 4. A game controller for controlling electronic games, including a housing, at least one depressible trigger at least in part exposed relative to the housing, said at least one depressible trigger being in operational association with electrical circuitry contained within the housing, which electrical circuitry is controlled by depression of the at least one depressible trigger for manipulating electrical outputs of the electrical circuitry for controlling electronic games and the game controller having a mechanism which provides for manual adjustment of a depressible range of the at least one depressible trigger mechanism.
- 5. An apparatus for supplying user inputs to a computer program for controlling the computer program, the apparatus comprising an outer case, at least one depressible trigger mechanism, and a trigger adjustment system that allows for manual adjustment of a range of motion of the at least one trigger mechanism, the trigger adjustment system being disposed within an internal volume defined by the outer case of the apparatus.
- **6**. An apparatus for supplying user inputs to a computer program for controlling the computer program, the apparatus comprising an outer case, at least one depressible trigger mechanism, and a stop adjustably positioned to engage the at least one depressible trigger mechanism, the stop being disposed within an internal volume of the outer case.
- 7. The apparatus of claim 6 wherein a position of the stop is manually adjustable.
- 8. A game controller for controlling electronic games, the need to remove the cover portion 10. In other embodi- 40 including a housing, at least one depressible trigger at least in part exposed relative to the housing, said at least one depressible trigger being in operational association with electrical circuitry contained within the housing, which electrical circuitry is controlled by depression of the at least one depressible trigger for manipulating electrical outputs of the electrical circuitry for controlling electronic games and the game controller having a trigger adjustment system that allows for manual adjustment of a depressible range of the at least one depressible trigger mechanism.
 - **9**. The apparatus of claim **1** wherein the computer program is a game program.
 - 10. The apparatus of claim 1 wherein the outer case comprises a removable cover panel to enable access to the mechanism and to enable removal of the mechanism.
 - 11. The apparatus of claim 2 wherein the computer program is a game program.
 - 12. The apparatus of claim 2 wherein the outer case comprises a removable cover panel to enable access to the first mechanism and to enable removal of the first mechanism.
 - 13. The apparatus of claim 3 wherein the outer case comprises an aperture configured to receive an adjustment tool to enable adjustment of the second mechanism.
 - 14. The apparatus of claim 3 wherein the outer case comprises a removable cover panel to enable access to the second mechanism and to enable removal of the second

10

9

- 15. The apparatus of claim 5 wherein the computer program is a game program.
- **16**. The apparatus of claim **6** wherein the computer program is a game program.
- 17. The apparatus of claim 6 wherein a position of the stop 5 defines a range of motion of the at least one depressible trigger mechanism.

* * * * *