CSCB63 – Design and Analysis of Data Structures

Akshay Arun Bapat¹

¹based on notes by Anya Tafliovich, Anna Bretscher and Albert Lai

Disjoint sets

Operations:

- make-set(x): create a set that contains x
- find-set(x): return the set that contains x
- union(S_1 , S_2): merge sets S_1 and S_2 , or
- union(x₁, x₂): merge set that contains x₁ and set that contains x₂

Where have we seen this? Kruskal's algorithm

Linked lists implementation

- each set is a linked list
- x.set is a pointer to x's owning linked list
- find-set(x) is: follow pointer, $\Theta(1)$ time
- union(S_1 , S_2) is merging two linked lists
- choose to always move the smaller list into the larger one

What is the **amortised** complexity of union?

Linked lists implementation: complexity

What is the **amortised** complexity of union?

Consider a sequence of k operations make-set, find-set, and union, with n operations make-set.

- the longest a list can be is: n elements
- ullet operations make-set and find-set are: $\mathcal{O}(1)$ for a total of $\mathcal{O}(k)$
- operation union is:
 - in the best case: smaller list has one node: 1 update
 - in the worst case: smaller list has (almost) as many nodes as larger list
 - in the worst case: the size of list roughly doubles as a result
- then how many such updates can we do?
 - each x.set field is updated at most: log n times
 - there are *n* .set fields
 - total number of updates at most: n log n

Linked lists implementation: complexity

What is the **amortised** complexity of union?

Consider a sequence of k operations make-set, find-set, and union, with n operations make-set.

Total time at most:

$$k + n \log n \le k + k \log n \in \mathcal{O}(k \log n)$$

Amortised time: $O(\log n)$

Forest implementation

- each set is a tree
- pointers from children to parents
- root points to itself
- each node stores rank
 - an upper bound on the height of the tree rooted at that node

Forest implementation: make-set

make-set creates a single-node tree

```
make-set(x):
0. root := new node(value=x, rank=0)
1. root.parent := root
2. return root
```


union makes root of shorter tree a child of root of taller tree

```
union(node1, node2):
   link(find-set(node1), find-set(node2))

link(root1, root2):
0.   if root1.rank > root2.rank:
1.    root2.parent := root1
2.   else:
3.    root1.parent := root2
4.    if root1.rank = root2.rank:
5.    root2.rank++
```

• union makes root of shorter tree a child of root of taller tree

ç

• union makes root of shorter tree a child of root of taller tree

g

• union makes root of shorter tree a child of root of taller tree

union makes root of shorter tree a child of root of taller tree

Called union by rank

find-set follows links to root

find-set(node):

- 0. if node.parent != node:
- 1. return find-set(node.parent)
- 2. return node

find-set follows links to root

find-set(node):

- 0. if node.parent != node:
- 1. return find-set(node.parent)
- 2. return node

find-set follows links to root

- 0. if node.parent != node:
- return find-set(node.parent)
- 2. return node

find-set follows links to root

find-set(node):

- 0. if node.parent != node:
- return find-set(node.parent)
- 2. return node

find-set follows links to root

find-set(node):

- 0. if node.parent != node:
- 1. return find-set(node.parent)
- 2. return node

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

- better: path compression
- find-set updates parent link directly to root
- ranks are not updated

- 0. if node.parent != node:
- 1. node.parent := find-set(node.parent)
- 2. return node.parent

Forest implementation: complexity

- The best disjoint set implementation is forests using union-by-rank and path compression.
- What is the worst-case sequence complexity?
- Can show worst-case time for a sequence of k operations with n make-sets, is $\mathcal{O}(k\alpha(n)) \in \mathcal{O}(k\log^* n)$
- Here log* n is the number of times that you need to apply log to n until the answer is < 1
 - for example, if n = 40, then $1 < \log \log 40 < 2$ but $0 < \log \log \log 40 < 1$, so $\log^* 40 = 3$
- The function α grows very, very slowly, virtually a constant.
- Amortised time of disjoint set operations is $\mathcal{O}(\alpha(n))$.
- Full proof outside the scope of this course.
- Note this means the best implementation of Kruskal's algorithm has complexity $\mathcal{O}(|E|\log|E|+|E|\alpha(|V|))$ time.