

STP16NF06L STP16NF06LFP

N-CHANNEL 60V - 0.07 Ω - 16A TO-220/TO-220FP STripFET™ II POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP16NF06L	60 V	<0.09 Ω	16 A
STP60NF06LFP	60 V	<0.09 Ω	11 A

- TYPICAL $R_{DS}(on) = 0.07\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- LOW GATE CHARGE AT 100 °C
- LOW THRESHOLD DRIVE

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" stripbased process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment therefore a remarkable manufacturing steps reproducibility.

APPLICATIONS

- MOTOR CONTROL, AUDIO AMPLIFIERS
- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- DC-DC & DC-AC CONVERTERS
- AUTOMOTIVE ENVIRONMENT

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	alue	Unit		
		STP16NF06L	STP16NF06LFP			
V _{DS}	Drain-source Voltage (V _{GS} = 0)	(60			
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)		60	V		
V _{GS}	Gate- source Voltage	±	16	V		
I _D	Drain Current (continuous) at T _C = 25°C	16	11(*)	Α		
I _D	Drain Current (continuous) at T _C = 100°C	11 7.5(*)		А		
I _{DM} (●)	Drain Current (pulsed)	64	44(*)	А		
P _{tot}	Total Dissipation at T _C = 25°C	45	25	W		
	Derating Factor	0.3	0.17	W/°C		
dv/dt (1)	Peak Diode Recovery voltage slope	:	23	V/ns		
E _{AS} (2)	Single Pulse Avalanche Energy	1	27	mJ		
V _{ISO}	Insulation Withstand Voltage (DC)	2500		V		
T _{stg}	Storage Temperature	-55 to 175		°C		
Tj	Operating Junction Temperature	-55	10 175			

^(•) Pulse width limited by safe operating area.

March 2004 1/9

^(*) Current Limited by package's thermal resistance

⁽¹⁾ $I_{SD} \le 16A$, $di/dt \le 210A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. (2) Starting $T_j = 25$ °C, $I_D = 8A$, $V_{DD} = 30V$

STP16NF06L/FP

THERMAL DATA

			TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case	Max	3.33	6	°C/W
Rthj-amb T _I	Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose	Max	62 30	_	°C/W °C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1		2.5	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 5 V$ $V_{GS} = 10 V$	$I_D = 8 A$ $I_D = 8 A$		0.08 0.07	0.10 0.09	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 8 \text{ A}$		17		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1$ MHz, $V_{GS} = 0$		345 72 29		pF pF pF

2/9

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
^t d(on) t _r	Turn-on Delay Time Rise Time	$\begin{aligned} &V_{DD} = 30 \text{ V} & I_{D} = 8 \text{ A} \\ &R_{G} = 4.7 \Omega & V_{GS} = 4.5 \text{ V} \\ &\text{(Resistive Load, Figure 3)} \end{aligned}$		10 37		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 48 \text{ V I}_{D} = 16 \text{ A V}_{GS} = 5 \text{V}$		7.3 2.1 3.1	10	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time Fall Time	$V_{DD} = 30 \text{ V}$ $R_G = 4.7\Omega$, (Resistive Load	$I_D = 8 A$ $V_{GS} = 4.5 V$, Figure 3)		20 12.5		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current Source-drain Current (pulsed)					16 64	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 16 A V	GS = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 16 \text{ A}$ d $V_{DD} = 16 \text{ V}$ (see test circuit, F	i/dt = 100A/µs T _j = 150°C Figure 5)		50 67.5 2.7		ns nC A

^(*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

Safe Operating Area for TO-220

Safe Operating Area for TO-220FP

477

Thermal Impedance

Output Characteristics

Transconductance

Thermal Impedance for TO-220FP

Transfer Characteristics

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Capacitance Variations

Normalized on Resistance vs Temperature

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

6/9

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com

