INTEGRAL COHOMOLOGY OF $K_2(A)$

SIMON KAPFER AND GRÉGOIRE MENET

ABSTRACT. What we know already

1. Preliminaries

Definition 1.1. Let n be a natural number. A partition of n is a decreasing sequence $\lambda = (\lambda_1, \ldots, \lambda_k)$, $\lambda_1 \geq \ldots \geq \lambda_k > 0$ of natural numbers such that $\sum_i \lambda_i = n$. Sometimes it is convenient to write $\lambda = (\ldots, 2^{m_2}, 1^{m_1})$ with multiplicities in the exponent. We define the weight $\|\lambda\| := \sum_i m_i i = n$ and the length $|\lambda| := \sum_i m_i = k$. We also define $z_{\lambda} := \prod_i i^{m_i} m_i!$.

Definition 1.2. Let $\Lambda_n := \mathbb{Q}[x_1, \dots, x_n]^{S_n}$ be the graded ring of symmetric polynomials. There are canonical projections: $\Lambda_{n+1} \to \Lambda_n$ which send x_{n+1} to zero. The graded projective limit $\Lambda := \lim_{\leftarrow} \Lambda_n$ is called the ring of symmetric functions. Let m_{λ} and p_{λ} denote the monomial and the power sum symmetric functions. They are defined as follows: For a monomial $x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \dots x_{i_k}^{\lambda_k}$ of total degree n, the (ordered) sequence of exponents $(\lambda_1, \dots, \lambda_k)$ defines a partition λ of n, which is called the shape of the monomial. Then we define m_{λ} being the sum of all monomials of shape λ . For the power sums, first define $p_n := x_1^n + x_2^n + \dots$ Then $p_{\lambda} := p_{\lambda_1} p_{\lambda_2} \dots p_{\lambda_k}$. The families $(m_{\lambda})_{\lambda}$ and $(p_{\lambda})_{\lambda}$ form two \mathbb{Q} -bases of Λ , so they are linearly related by $p_{\lambda} = \sum_{\mu} \psi_{\lambda\mu} m_{\mu}$. It turns out that the base change matrix $(\psi_{\lambda\mu})$ has integral entries, but its inverse $(\psi_{\lambda\mu}^{-1})$ has not.

2. Cohomology of Hilbert schemes of points on a torus surface

Let A be a complex projective torus of dimension 2. Its first cohomology $H^1(A,\mathbb{Z})$ is freely generated by four elements a_1,a_2,a_3,a_4 , corresponding to the four different circles on the torus. The cohomology ring is isomorphic to the exterior algebra:

$$H^*(A, \mathbb{Z}) = \Lambda^* H^1(A, \mathbb{Z}).$$

We abbreviate for the products $a_i \cdot a_j =: a_{ij}$ and $a_i \cdot a_j \cdot a_k =: a_{ijk}$. We write $a_1 \cdot a_2 \cdot a_3 \cdot a_4 =: x$ for the class corresponding to a point on A. We choose the a_i such that $\int_A x = 1$. We set $a_{\overline{i}}$ for the dual class of a_i , *i.e.* $a_i \cdot a_{\overline{i}} = x$. The bilinear form, given by $(a_{ij}, a_{kl}) \mapsto \int_A a_{ij} a_{kl}$ gives $H^2(A, \mathbb{Z})$ the structure of a unimodular lattice, isomorphic to $U^{\oplus 3}$, three copies of the hyperbolic lattice.

Let $A^{[n]}$ the Hilbert scheme of n points on the torus, *i.e.* the moduli space of finite subschemes of A of length n. Their rational cohomology can be described in

Date: October 24, 2015.

terms of Nakajima's operators. First consider the direct sum

$$\mathbb{H} := \bigoplus_{n=0}^{\infty} H^*(A^{[n]}, \mathbb{Q})$$

This space is bigraded by cohomological degree and the weight, which is given by the number of points n. The unit element in $H^0(A^{[0]},\mathbb{Q}) \cong \mathbb{Q}$ is denoted by $|0\rangle$, called the vacuum.

There are linear operators $\mathfrak{p}_m(\alpha)$, for each $m \in \mathbb{Z}$, $\alpha \in H^*(A,\mathbb{Q})$, acting on \mathbb{H} which have the following properties: They depend linearly on α , and if $\alpha \in$ $H^k(A,\mathbb{Q})$ is homogeneous, the operator $\mathfrak{p}_{-m}(\alpha)$ is bihomogeneous of degree k+12(|m|-1) and weight m:

$$\mathfrak{p}_{-m}(\alpha): H^l(A^{[n]}) \to H^{l+k+2(|m|-1)}(A^{[n+m]})$$

They satisfy the following commutation relations for $\alpha \in H^k(A, \mathbb{Q}), \ \beta \in H^{k'}(A, \mathbb{Q})$:

$$\mathfrak{p}_{m}(\alpha)\mathfrak{p}_{m'}(\beta) - (-1)^{k \cdot k'}\mathfrak{p}_{m'}(\beta)\mathfrak{p}_{m}(\alpha) = -m\,\delta_{m,-m'}\int_{A}\alpha \cdot \beta.$$

Every element in $\mathbb H$ can be decomposed uniquely as a linear combination of products of operators $\mathfrak{p}_m(\alpha)$, m < 0, acting on the vacuum. We abbreviate for a partition $\lambda = (\lambda_1, \ldots, \lambda_k)$:

$$\mathfrak{q}_{\lambda}(\alpha) := \prod_{i=1}^{k} \mathfrak{p}_{-\lambda_{i}}(\alpha)$$

(2)
$$\mathfrak{q}_{*\lambda}(\alpha) := \left(\prod_{i=1}^k \mathfrak{p}_{-\lambda_i}\right) \left(\Delta_{(k)}(\alpha)\right)$$

For the study of integral cohomology, first note that if $\alpha \in H^*(A, \mathbb{Z})$ is an integral class, then $\mathfrak{p}_{-m}(\alpha)$ maps integral classes to integral classes. Moreover, there is the following theorem:

Theorem 2.1. [11] The following operators map integral classes in \mathbb{H} to integral classes:

- $\begin{array}{l} \bullet \ \frac{1}{z_{\lambda}}\mathfrak{q}_{\lambda}(1) \\ \bullet \ \mathfrak{m}_{\lambda}(\alpha) \ for \ \alpha \in H^{2}(A,\mathbb{Z}) \end{array}$

Here, \mathfrak{m}_{λ} is defined as $\mathfrak{m}_{\lambda}(\alpha) := \sum_{\mu} \psi_{\lambda\mu}^{-1} \mathfrak{q}_{-\mu}(\alpha)$ (see Definition 1.2)

To obtain the multiplicative structure of H, given by the cup-products, there is a description in [6] and [7] in terms of multiplication operators $\mathfrak{G}_k(a)$, $a \in H^*(A)$ [7, Def. 5.1], related to chern characters. There is the following commutation relation:

$$[\mathfrak{G}_k(a),\mathfrak{q}_1(b)] = \frac{1}{k!}\operatorname{ad}(\mathfrak{d})^k(\mathfrak{q}_1(ab)),$$

where the operator \mathfrak{d} means multiplication with the first Chern class of the tautological sheaf. We set $a^{(k)} := \mathfrak{G}_k(a)(1)$.

Next we focus on the structure of $H^2(A^{[n]}, \mathbb{Z})$ for $n \geq 2$. It has rank 13, and there is a basis consisting of:

- $\begin{array}{l} \bullet \ \ \frac{1}{(n-1)!} \mathfrak{p}_{-1}(1)^{n-1} \mathfrak{p}_{-1}(a_{ij}) |0\rangle, \ 1 \leq i < j \leq 4, \\ \bullet \ \ \frac{1}{(n-2)!} \mathfrak{p}_{-1}(1)^{n-2} \mathfrak{p}_{-1}(a_i) \mathfrak{p}_{-1}(a_j) |0\rangle, \ 1 \leq i < j \leq 4, \\ \bullet \ \ \frac{1}{2(n-2)!} \mathfrak{p}_{-1}(1)^{n-2} \mathfrak{p}_{-2}(1) |0\rangle. \ \ \text{We denote this class by } \delta. \end{array}$

It is clear that these classes form a basis of $H^2(A^{[n]}, \mathbb{Q})$. By [11, Thm. 4.6,Lemma 5.2], they also form a basis for $H^2(A^{[n]}, \mathbb{Z})$. TODO: refine this argument

The first 6 classes give an injection $j: H^2(A, \mathbb{Z}) \to H^2(A^{[n]}, \mathbb{Z})$.

3. Generalized Kummer varieties

Definition 3.1. Let A be a complex projective torus of dimension 2 and $A^{[n]}$, $n \geq 1$, the corresponding Hilbert scheme of points. Denote $\Sigma : A^{[n]} \to A$ the summation morphism, a smooth submersion that factorizes via the Hilbert–Chow morphism : $A^{[n]} \to \operatorname{Sym}^n(A) \to A$. Then the generalized Kummer $K^{n-1}A$ is defined as the fiber over 0:

(3)
$$K^{n-1}A \xrightarrow{\theta} A^{[n]} \downarrow_{\Sigma}$$

$$\{0\} \longrightarrow A$$

Our first objective is to collect some information about this pullback diagram. We recall Theorem 2 of [12].

Theorem 3.2. The cohomology of $K_2(A)$ is torsion free.

Or main reference is [1] where it is shown, that K^{n-1} is an irreducible holomorphically symplectic manifold. So $H^2(K_{n-1}(A),\mathbb{Z})$ admits an integer-valued nondegenerated quadratic form (called Beauville–Bogomolov form) q which gives $H^2(K_{n-1}(A),\mathbb{Z})$ the structure of a lattice isomorphic to $U^{\oplus 3} \oplus \langle -2n \rangle$, for $n \geq 3$. We have the following formula for $\alpha \in H^2(K_{n-1}(A),\mathbb{Z})$:

(4)
$$\int_{K_{n-1}(A)} \alpha^{2n-2} = n \frac{(2n-2)!}{2^{n-1}(n-1)!} q(a)^{n-1}$$

The morphism θ induces a homomorphism of graded rings

(5)
$$\theta^*: H^*(A^{[n]}, \mathbb{Z}) \longrightarrow H^*(K_{n-1}(A), \mathbb{Z}).$$

Proposition 3.3. Let $n \geq 3$.

- (1) θ^* maps $H^1(A^{[n]}, \mathbb{Z})$ to zero.
- (2) θ^* is surjective on $H^2(A^{[n]}, \mathbb{Z})$ with kernel $\Lambda^2 H^1(A^{[n]}, \mathbb{Z})$.

Proof. The first statement is clear since $H^1(K_{n-1}(A))$ is always zero [1, Thm. 3]. Furthermore, by [1, Sect. 7], $\theta^*: H^2(A^{[n]}, \mathbb{C}) \to H^2(K_{n-1}(A), \mathbb{C})$ is surjective. The second Betti numbers of $A^{[n]}$ and $K_{n-1}(A)$ are 13 and 7, respectively. It is clear that $\Lambda^2 H^1(A^{[n]}, \mathbb{Z})$ is contained in the kernel, and since the dimension of the kernel has to be 6, it must be all.

It remains to show that θ^* is surjective for integral coefficients, too. We do it only for n = 3. We use a formula in [4, p. 8], namely:

(6)
$$\int_{A^{[3]}} j(a)^6 = \frac{5}{3} \int_A a^2 \int_{K_2(A)} \theta^* j(a)^4$$

for all $a \in H^2(A)$. One computes $\int_{A^{[3]}} j(a)^6 = 15 \left(\int_A a^2 \right)^3$. Comparing this with (4), we see that the sublattice given by the image of $\theta^* \circ j$ is unimodular. Secondly, we must show that $q(\theta^*\delta) = -6$. TODO: show this! Remark: $\theta^*\delta$ seems to be indivisible (because of (4)), but every product with $\theta^*\delta$ is divisible by 3. Indeed, the value of (4) for $\alpha = \theta^*\delta$ is 324.

Proposition 3.4. We have $a_i^{(0)} = \frac{1}{2}\mathfrak{q}_1(1)^2\mathfrak{q}_1(a_i)|0\rangle$. The class of $K_2(A)$ in $H^4(A^{[3]},\mathbb{Q})$ is given by

$$a_1^{(0)} \cdot a_2^{(0)} \cdot a_3^{(0)} \cdot a_4^{(0)}$$
.

Conjecture: This is true for all n, not only n = 3.

Proof. We know that for all i and all $\beta \in H^7(A^{[3]})$, we have $\int_{K_2(A)} \theta^*(\alpha_i \cdot \beta) = \int_{A^{[3]}} \alpha_i \cdot \beta \cdot [K_2(A)] = 0$ and for a basis (γ_i) of $H^2(A^{[3]})$,

$$\int_{A^{[3]}} \gamma_i \cdot \gamma_j \cdot \gamma_k \cdot \gamma_l \cdot [K_2(A)] = 3 \left(\langle \gamma_i, \gamma_j \rangle \langle \gamma_k, \gamma_l \rangle + \langle \gamma_i, \gamma_k \rangle \langle \gamma_j, \gamma_l \rangle + \langle \gamma_i, \gamma_l \rangle \langle \gamma_j, \gamma_k \rangle \right)$$

These equations admit a unique solution.

Remark 3.5. This allows us to better understand the morphism θ^* . Since the Poincaré pairing is nondegenerated, $[K_{n-1}(A)] \cdot \alpha = 0$ implies $\theta^* \alpha = 0$.

Now we focus on classes of cohomological degree 4.

Proposition 3.6. The classes $\theta^*(\mathfrak{p}_{-2}(a_{ij})\mathfrak{p}_{-1}(1)|0\rangle)$ and $\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_{ij})|0\rangle)$ are linearly dependent.

Proof. We can compute the product of these two classes with $[K_2(A)]$ in $H^*(A^{[3]})$. The two results are linearly dependent. Is there a direct geometric proof?

Proposition 3.7. $\theta^*(\mathfrak{p}_{-3}(x)|0\rangle)=0$

Corollary 3.8. $\theta^*(\mathfrak{p}_{-2}(a_{ij})\mathfrak{p}_{-1}(1)|0\rangle) = \frac{1}{4}\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_{ij})|0\rangle)$

Proof. Let a_{ij} and a_{kl} be complementary, *i.e.* $a_{ij}a_{kl}=1$. We have $a_{kl}^{(1)}=-\frac{1}{2}\mathfrak{p}_{-2}(a_{kl})\mathfrak{p}_{-1}(1)|0\rangle$. Then:

$$\theta^* \left(a_{ij}^{(1)} \cdot a_{kl}^{(1)} \right) = \theta^* \left(\mathfrak{p}_{-3}(1) |0\rangle + \frac{1}{2} \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(1) |0\rangle \right)$$

But on the other hand, $\delta \cdot j(a) = \frac{1}{2}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_{ij})|0\rangle + \mathfrak{p}_{-2}(a_{ij})\mathfrak{p}_{-1}(1)|0\rangle$, and

$$\theta^*\left(a^{(1)}_{kl}\cdot\delta\cdot j(a)\right)=\theta^*\left(-3\mathfrak{p}_{-3}(1)|0\rangle-3\mathfrak{p}_{-1}(x)^2\mathfrak{p}_{-1}(1)|0\rangle\right).$$

Corollary 3.9. $\theta^*(\delta \cdot j(a_{ij})) = \theta^*(\frac{3}{4}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_{ij})|0\rangle)$ is divisible by 3.

Proposition 3.10. The classes $\theta^* \left(j(a_{ij})^2 - \frac{1}{3} j(a_{ij}) \cdot \delta \right)$ are divisible by 2.

Proof. By [11], the classes $\frac{1}{2}\mathfrak{p}_{-1}(a_{ij})^2\mathfrak{p}_{-1}(1)|0\rangle - \frac{1}{2}\mathfrak{p}_{-2}(a_{ij})\mathfrak{p}_{-1}(1)|0\rangle$ are integral in $H^4(A^{[n]})$. But $j(a_{ij})^2 = \mathfrak{p}_{-1}(a_{ij})^2\mathfrak{p}_{-1}(1)|0\rangle$ and $\theta^*\left(\frac{1}{3}j(a_{ij})\cdot\delta\right) = \theta^*\left(\mathfrak{p}_{-2}(a_{ij})\mathfrak{p}_{-1}(1)|0\rangle\right)$.

Proposition 3.11. The class θ^* $(\delta^2 + j(a_{12}) \cdot j(a_{34}) - j(a_{13}) \cdot j(a_{24}) + j(a_{14}) \cdot j(a_{23}))$ is divisible by 3.

Proof. It is equal to
$$\theta^* \left(\mathfrak{p}_{-3}(1) | 0 \rangle - \frac{3}{2} \mathfrak{p}_{-1}(x) \mathfrak{p}_{-1}(1)^2 | 0 \rangle \right)$$
.

Proposition 3.12. We have:

$$H^4(K_2(A), \mathbb{Q}) = \operatorname{Sym}^2 H^2(K_2(A), \mathbb{Q}) \oplus^{\perp} \Pi' \otimes \mathbb{Q}.$$

Proof. In Section 4 of [5], we can find the following formula:

(7)
$$Z_{\tau} \cdot D_1 \cdot D_2 = 2 \cdot q(D_1, D_2),$$

for all D_1 , D_2 in $H^2(K_2(A), \mathbb{Z})$, $\tau \in A[3]$ and q the Beauville-Bogomolov form. It follows that $\Pi' \subset \operatorname{Sym}^2 H^2(K_2(A), \mathbb{Z})^{\perp}$. Since the cup-product is non-degenerated and by Proposition 4.3 of [5], we have:

$$\operatorname{rk}\left(\operatorname{Sym}^{2} H^{2}(K_{2}(A), \mathbb{Z}) \oplus \Pi'\right) = \operatorname{rk} \operatorname{Sym}^{2} H^{2}(K_{2}(A), \mathbb{Z}) + \operatorname{rk} \Pi'$$

$$= 28 + 80$$

$$= \operatorname{rk} H^{4}(K_{2}(A), \mathbb{Z}).$$

It follows that

$$H^4(K_2(A), \mathbb{Q}) = \operatorname{Sym}^2 H^2(K_2(A), \mathbb{Q}) \oplus^{\perp} \Pi' \otimes \mathbb{Q}.$$

Next we look at the Chern classes of the tangent sheaves. Since the morphism Σ from the defining pullback diagram (3) is a submersion, the normal bundle of $K_{n-1}(A)$ in $A^{[n]}$ is trivial. Hence $c(K_2(A)) = \theta^* c(A^{[3]})$. Looking in [2, Sect. 8], we find a general formula for Chern classes of Hilbert schemes of points on surfaces. So we deduce

$$c_{2}(A^{[3]}) = \left(\frac{3}{2}\mathfrak{q}_{*(1,1)}(1)\mathfrak{q}_{1}(1) - \frac{1}{3}\mathfrak{q}_{3}\right)|0\rangle$$

$$= 10(1_{(4)}^{[\bullet]}) - 2(1_{(2)}^{[\bullet]})^{2}$$

$$c_{4}(A^{[3]}) = \frac{4}{3}\mathfrak{q}_{*(1,1,1)}(1)|0\rangle = 4(1_{(4)}^{[\bullet]})^{2}.$$

Proposition 3.13. We have:

$$c_2(K_2(A)) = \theta^* \left(4j(a_{12}) \cdot j(a_{34}) - 4j(a_{13}) \cdot j(a_{24}) + 4j(a_{14}) \cdot j(a_{23}) - \frac{1}{3}\delta^2 \right).$$

In particular $c_2(K_2(A)) \in \operatorname{Sym}^2 H^2(K_2(A), \mathbb{Z})$.

Proof. We can write:

$$c_2(K_2(A)) = a + b,$$

with $a \in \operatorname{Sym}^2 H^2(K_2(A), \mathbb{Q})$ and $b \in \Pi'$. First, we prove that b = 0. We have $c_2(K_2(A)) \in \Pi'^{\perp}$ and also $a \in \Pi'^{\perp}$, it follows that $b \in \Pi'^{\perp}$. Since the cup-product is non-degenerated, it follows that b is of torsion. Then by Theorem 3.2, b = 0.

By (7) and Proposition 5.1 of [5], we can see that for all D_1 and D_2 in $H^2(K_2(A), \mathbb{Z})$, we have:

$$c_2(K_2(A)) \cdot D_1 \cdot D_2 = 54 \cdot q(D_1, D_2),$$

where q is the Beauville-Bogomolov form. Then we can calculate that:

$$c_2(K_2(A)) = \theta^* \left(4j(a_{12}) \cdot j(a_{34}) - 4j(a_{13}) \cdot j(a_{24}) + 4j(a_{14}) \cdot j(a_{23}) - \frac{1}{3}\delta^2 \right).$$

Corollary 3.14. The class $\theta^* \delta^2$ is divisible by 3.

Proposition 3.15. The element

$$\theta^* (j(a_{12}) \cdot j(a_{34}) - j(a_{13}) \cdot j(a_{24}) + j(a_{14}) \cdot j(a_{23}))$$

is divisible by 6. More precisely, it is equal to $6Y_p$ (see [5]).

Proof. Again by Section 4 of [5], we have:

$$W = \frac{3}{8}(c_2(K_2(A)) + 3\theta^*(\delta)^2).$$

It follows:

(8)
$$W = \frac{3}{8}\theta^* \left(4j(a_{12}) \cdot j(a_{34}) - 4j(a_{13}) \cdot j(a_{24}) + 4j(a_{14}) \cdot j(a_{23}) + \frac{8}{3}\delta^2 \right).$$

It follows that

$$\theta^*(j(a_{12}) \cdot j(a_{34}) - j(a_{13}) \cdot j(a_{24}) + j(a_{14}) \cdot j(a_{23})).$$

is divisible by 2. For the divisibility by 3 combine Proposition 3.11 with Corollary

Remark 3.16. We also have the following formulas:

$$(9) W = \theta^* \left(\mathfrak{p}_{-3}(1) | 0 \right)$$

(10)
$$Y_p = -\frac{1}{9} \theta^* \left(\mathfrak{p}_{-1}(1) L_{-2}(1) | 0 \right)$$

Let us now look at cohomology classes of odd degree. Since $H^1(K_2(A)) =$ $H^7(K_2(A)) = 0$, we only need to consider the degrees 3 and 5.

Proposition 3.17. The map $\theta^*: H^*(A^{[3]}, \mathbb{Q}) \to H^*(K_2(A), \mathbb{Q})$ is surjective in degrees 3 and 5. If we set

(11)
$$B_3 := \{a_{\overline{i}}^{(0)}, \ 1 \le i \le 4\} \cup \{a_i^{(1)}, \ 1 \le i \le 4\}$$

(12)
$$B_5 := \{a_{\overline{i}}^{(1)}, \ 1 \le i \le 4\} \cup \{a_i^{(2)}, \ 1 \le i \le 4\},$$

then the images of B_3 and B_5 give bases of $H^3(K_2(A),\mathbb{Q})$ and $H^5(K_2(A),\mathbb{Q})$ that are orthogonal under the intersection pairing. We have

(13)
$$\int \theta^* \left(a_{\overline{i}}^{(0)} \cdot a_i^{(2)} \right) = \pm \frac{3}{2}$$

(14)
$$\int \theta^* \left(a_i^{(1)} \cdot a_{\bar{i}}^{(1)} \right) = \pm \frac{1}{2}.$$

Moreover, $a_{\overline{i}}^{(0)} \cdot [K_2(A)]$ and $\frac{2}{3}a_i^{(2)} \cdot [K_2(A)]$ are integral classes. This implies (by Poincaré duality) that $\theta^* a_{\overline{i}}^{(0)}$ and $\frac{2}{3}\theta^* a_i^{(2)}$ are integral.

Question: Which of $\theta^* a_i^{(1)}$ and $\theta^* a_{\overline{i}}^{(1)}$ is not integral?

References

- 1. A. Beauville, Varits khleriennes dont la premire classe de Chern est nulle, J. Differential geometry, 18 (1983) 755-782
- 2. S. Boissière and M. Nieper-Wißkirchen, Generating series in the cohomology of Hilbert schemes of points on surfaces, LMS J. of Computation and Mathematics 10 (2007), 254-
- 3. S. Boissière, M. Nieper-Wißkirchen, and A. Sarti, Smith theory and Irreducible Holomorphic Symplectic Manifolds, Journal of Topology 6 (2013), no. 2, 361390.
- 4. M. Britze, On the cohomology of generalized Kummer varieties, (2003)
- 5. B. Hassett and Y. Tschinkel, Hodge theory and Lagrangian planes on generalized Kummer fourfolds, Moscow Math. Journal, 13, no. 1, 33-56, (2013)
- 6. M. Lehn and C. Sorger, The cup product of Hilbert schemes for K3 surfaces, Invent. Math. **152** (2003), no. 2, 305–329.
- 7. W. Li, Z. Qin and W. Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces (2002)

- 8. E. Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622–646.
- 9. E. Markman, Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface, Internat. J. Math. 21 (2010), no. 2, 169–223.
- H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388.
- Z. Qin and W. Wang, Integral operators and integral cohomology classes of Hilbert schemes, Math. Ann. 331 (2005), no. 3, 669–692.
- 12. E. Spanier, The homology of Kummer manifolds, Proc. Amer. Math. Soc. 7, (1956), 155-160.

SIMON KAPFER, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS, UMR CNRS 6086, UNIVERSITÉ DE POITIERS, TÉLÉPORT 2, BOULEVARD MARIE ET PIERRE CURIE, F-86962 FUTUROSCOPE CHASSENEUIL

 $E\text{-}mail\ address: \verb|simon.kapfer@math.univ-poitiers.fr|$