Development of a Symbolic Regression-Based Model for Leading Edge of Film Cooled Gas Turbine Blade

Project Workflow

3D CAD Geometry

- The validation is based on the study "Overall Effectiveness for a Film-Cooled Turbine Blade Leading Edge With Varying Hole Pitch."
- The geometry was designed to enable periodic analysis, since the paper does not specify the number of holes.

 $K = 1.04 \pm 0.06 \text{ W/m.K}$ (Polycast 287)

Meshing

Boundary Conditions

- Mainstream velocity was maintained at a nominal value of 15 m/s.
- Tu levels measured at 5%, with a turbulence length scale of 2.3 cm at the location of the model
- Typical T_{∞} values were near 300 K. The coolant was simulated using N_2 gas at 200 K in order to maintain a constant DR of 1.5 for all test conditions.
- The cold gas then passed through a plenum which served to evenly distribute the gas along the span of the model.
- turbulence effects were modeled with the Realizable $k-\epsilon$ and Menter SST $k-\omega$ approaches
- (Blowing ratio) M = 2

Results

Parametric Study

Meshing For Parametric Geometry

View From Front

View From inside of the Geometry

Design variable	Symbol	Unit	Lower bound	Upper bound
Cooling Hole Diameter	D	mm	2	6
Pitch	Р	mm	22	50
Impingement Hole Diameter	ID	mm	3	12
Side Hole Angle	Ø	0	15	70

Cooling Hole Diameter

D	Р	ID	Ø	Surface Temperature
5.1	24.168	3.18	25	296.8727
3	22	2	15	296.9487
3	22	2	45	297.4766
3	22	2	70	296.9168
3	22	4	15	297.0906
3	22	4	45	296.7818
3	22	4	70	295.8082
3	22	6	45	295.5831
3	22	6	70	297.9099
3	36	2	15	297.7951
3	36	2	45	297.2733
3	36	2	70	297.1273
3	36	4	15	297.8079
3	36	4	45	297.5459
3	36	4	70	298.6457
3	36	6	15	299.3115
3	36	6	45	295.982
3	36	6	70	272.3987
3	50	2	15	297.137
3	50	2	45	297.8616
3	50	2	70	297.2641
3	50	4	15	297.3921
3	50	4	45	297.4096
3	50	4	70	297.4233
3	50	6	15	293.9666
3	50	6	45	297.1769
3	50	6	70	297.5532
7	22	2	15	297.477
7	22	2	45	297.3758
7	22	2	70	297.6703
7	22	4	15	296.5115

Training Samples

- The dataset consisting of these samples was utilized to train the symbolic regression-based model.
- These are only the first 31 samples. In total, there are 79 samples.
- The model was built in Python using the PySR library.

$$T_S = \left| 0.80867 \times \tan \left(\frac{e^D}{ID \times \left(\left(\frac{A}{P} \right)^{5.9273} + P \right)} \right) \right|$$

Testing Samples

D	Р	ID	Ø	Surface Temperature
7.5	36	4	42.5	297.8294
3	36	4	42.5	297.925
12	36	4	42.5	298.1937
7.5	22	4	42.5	297.7734
7.5	50	4	42.5	297.7365
7.5	36	2	42.5	295.3878
7.5	36	6	42.5	297.8272
4.331073	26.14112	2.591588	23.13434	296.2405
10.66893	26.14112	2.591588	23.13434	297.2165
4.331073	45.85888	2.591588	23.13434	297.1129
10.66893	45.85888	2.591588	23.13434	296.6797
4.331073	26.14112	5.408412	23.13434	297.0956
10.66893	26.14112	5.408412	23.13434	296.6072
4.331073	45.85888	5.408412	23.13434	297.6294
10.66893	45.85888	5.408412	23.13434	297.7846
4.331073	26.14112	2.591588	61.86566	297.2544
10.66893	26.14112	2.591588	61.86566	296.2538
4.331073	45.85888	2.591588	61.86566	297.4633
4.331073	26.14112	5.408412	61.86566	296.7302
10.66893	26.14112	5.408412	61.86566	297.8053
4.331073	45.85888	5.408412	61.86566	298.0026
10.66893	45.85888	5.408412	61.86566	298.0803

 Testing samples were used to compare the CFD results with the model predictions obtained from the training samples.

• The graph did not turn out as expected. I aimed for a result similar to the example below, but it did not work as intended. Although I would like to continue working on this project, I currently do not have enough time. I plan to complete it after my internship.

What I have read

- [1] İ. Tunçil and M. T. Çakır, Analysis and Optimization of Film Cooling Parameters for Turbine Blades Using CFD.
- [2] Jianran Ren and Zhongran Chi, Multi-Dimensional Platform for Cooling Design of Air-Cooled Turbine Blades.
- [3] Y. Wang and J. Cui, Two-Dimensional Film-Cooling Effectiveness Prediction Based on Deconvolution Neural Network.
- [4] C. Wang, J. Zhang, and J. Zhou, Optimization of a Fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm.
- [5] Overall Effectiveness for a Film-Cooled Turbine Blade Leading Edge With Varying Hole Pitch.