BayesReef: Bayesian inference for estimation and uncertainty quantification of parameters in geological reef evolution model

Rohitash Chandra and Jodie Pall

- 1. Geocoastal Research Group, School of Geosciences
- 2. Centre for Translational Data Science

Environmental controls on reef growth

Geological perspective on reef growth

Data Fusion and Bayesian inference in BayesReef

Bayes ReefUsing Monte Carlo Markov Chain ($MCMC_{PL}$)

Synthetic reef-core experiments (Part 1)

- Tested for ability of py-Reef-core to predict synthetic core.
- 4 'free parameters'
 - Community Matrix –Super and Subdiagonals
 - Malthusian parameter
- Ran chains 10,000 samples
 long (~ 1 day)
- Use Multinomial Likelihood in MCMC

Synthetic core 0 Shallow assemblage Moderate-Depth [m] deep assemblage Deep assemblage

Synthetic reef-core experiments (Part 2)

- Tested for ability to predict (converge on) synthetic core.
- 15 vs 27 'free parameters'
 - Exposure thresholds of assemblages
 - Assemblage interactions
- Ran chains 50,000 samples long (~ 5 days)
- Use Gaussian Likelihood in MCMC

Results regarding accuracy

- Both cores fit synthetic data well.
- Constrained experiment converged marginally better model prediction.

	Constrained experiment	Unconstrained experiment
No. of free parameters	15	27
RMSE	0.066	0.076
Shallow assemblage Moderate-deep assemblage Deep assemblage Carbonate sediment Match		
Mismatch		Page 15

Unconstrained experiment

Results regarding uncertainty

- Uncertainty focused at assemblage transitions.
- Comparable level of uncertainty.

$\varepsilon_{obs} = 0.0004$ Frequency $\epsilon_{_{\rm u}} = 0.079$ 0.061 0.079 0.098

Unconstrained experiment

Results regarding parameter estimation

- Observed parameter not within credible interval of point-estimate values.
- Multi-modal distributions

Model predictions approximate the data well, but not the parameters.

Preliminary experimental results for real world reef-core similations

- Real-world reef development is far more complex than synthetic case.
- Objectives:
 - Using Bayes Reef on noisy data, predict exposure threshold of assemblages to:
 - Hydrodynamic energy
 - Sediment input

- Salas-Saavedra et al. (in press)
- Marshall and Davies (1982)

- Three reef cores selected from exposed and sheltered margins of One Tree and Heron Island Reefs.
- Both cores exhibit similar
 coralgal assemblages
 (Dechnik, 2016; Dechnik, unpublished)
- Experiment: Run MCMC chain of 50,000 samples using BayesReef to calibrate model to core data.

Accomodation space evolution through time

Palaeo-environmental analysis

- Shallow, exposed
 assemblages are relatively
 insensitive to sediment input
 and flow velocity.
- Deeper assemblages have tighter environmental niches

Multi-modal distributions

Conclusions and future work

- The MCMC sampler in BayesReef is accurate, robust and efficient with fewer free parameters, but less so when calibrating models to noisy data.
- 2. Current work focuses on BayesReef for high performance computing and parallel tempering for sampling multi-modal distributions
- 3. Future work will feature BayesReef for 3D Reef-Core and for the Great Barrier Reef Model (T. Salles, 2018)

Questions welcome

- Acknowledgements
 Jodie Pall, Tristan Salles, Sally Cripps, and Jody Webster
- Technical Report:

Jodie Pall, **Rohitash Chandra**, Danial Azam, Tristan Salles, Jody M. Webster, Sally Cripps: BayesReef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics, https://arxiv.org/abs/1808.02763

Github:

https://github.com/pyReef-model/BayesReef https://github.com/pyReef-model/pt-BayesReef/settings/collaboration

