

SF1624 Algebra och geometri Tentamen måndag, 19 oktober 2020

Skrivtid: 08:00-11:00 Tillåtna hjälpmedel: inga.

Examinator: Danijela Damjanović

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från **uppgift 1** adderas dina **bonuspoäng**. Poängsumman på **uppgift 1** kan dock som högst bli 6 poäng.

Uppgifterna 3 och 4 utgör del B och uppgifterna 5 och 6 del C, som främst är till för de högre betygen. Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	Е	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

Instruktioner

- För poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa.
- Det innebär att lösningarna ska vara prydligt skrivna med en handstil som är lätt att läsa.
- Det innebär också att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Alla steg i alla beräkningar ska finnas redovisade och vara lätta att följa.
- Lösningar och svar utan korrekta, utförliga och tydliga motiveringar ger inga poäng.

Var god vänd!

DEL A

1. Låt A vara en inverterbar (3×3) -matris och låt $B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 0 \\ 0 & 1 & 5 \end{bmatrix}$.

(a) Bestäm den reducerade trappstegformen till
$$A$$
. (2 p)

(b) Beräkna
$$\det(AB^3A^{-1}B^{-1})$$
. (4 p)

2. Linjerna L_1 och L_2 i \mathbb{R}^3 ges av

$$L_1: \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad \text{reella tal} \quad t,$$

$$L_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \text{ reella tal } s.$$

(a) Bestäm skärningen av
$$L_1$$
 och L_2 . (2 p)

(b) Bestäm vinkeln mellan L_1 och L_2 . (2 p)

(c) Ett plan går genom origo och är ortogonalt mot linjen L_1 . Bestäm skalär ekvation för detta plan.

3. Låt S i \mathbb{R}^5 vara det linjära höljet

$$S = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2\\2 \end{bmatrix} \right\}$$

och låt vidare

$$\vec{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

- (a) Bestäm dimensionen av det ortogonala komplementet S^{\perp} . (2 p)
- (b) Avgör om \vec{x} är med i S^{\perp} . (2 p)
- (c) Avgör om \vec{x} är med i S. (2 p)
- **4.** Låt $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$.
 - (a) Visa att matrisen A inte är diagonaliserbar. (3 p)
 - (b) Låt $\vec{v} = \begin{bmatrix} -1 \\ -2 \\ 4 \end{bmatrix}$. Beräkna (och förenkla) $A^{83}\vec{v}$. (Tips: skriv \vec{v} som linjär kombination av egenvektorer till A).

(3 p)

DEL C

- **5.** Låt A vara en symmetrisk (2×2) -matris. Utan att använda Spektralsatsen, visa
 - (a) att det karakteristiska polynomet till A enbart har reella nollställen. (3 p)
 - (b) att det finns en bas för \mathbb{R}^2 bestående av egenvektorer till A. (3 p)
- **6.** Låt $P: V \to V$ vara en linjär avbildning sådan att $P \circ P = P$. En sådan avbildning kallas en projektion.
 - (a) Visa att för varje vektor \vec{v} i V så ligger $\vec{v} P(\vec{v})$ i nollrummet $\ker(P)$. (2 p)
 - (b) Visa att varje vektor \vec{v} i V kan skrivas som $\vec{v} = \vec{u} + \vec{w}$, där \vec{u} ligger i $\ker(P)$ och \vec{w} ligger i bildrummet $\operatorname{Im}(P)$.
 - (c) Visa att uppdelningen i b) är unik, det vill säga visa att om $\vec{v} = \vec{u_1} + \vec{w_1} = \vec{u_2} + \vec{w_2}$ där $\vec{u_1}, \ \vec{u_2}$ ligger i $\ker(P)$ och $\vec{w_1}, \ \vec{w_2}$ ligger i $\operatorname{Im}(P)$, så är $\vec{u_1} = \vec{u_2}$ och $\vec{w_1} = \vec{w_2}$. (2 p)