```
In [5]: ▶ import numpy as np
           import matplotlib.pyplot as plt
           import pandas as pd
           import seaborn as sns
In [45]:
         | !pip install lucifer-ml mlfoundry servicefoundry gradio pydantic==1.10.1
           Collecting lucifer-ml
             Downloading lucifer_ml-0.0.79-py3-none-any.whl (43 kB)
                                                     0.0/43.5 kB ? eta -:--:--
                ----- 43.5/43.5 kB 2.2 MB/s eta
           0:00:00
           Collecting mlfoundry
             Downloading mlfoundry-0.9.8-py3-none-any.whl (130 kB)
                                                     0.0/130.9 kB ? eta -:--:-
                ----- 130.9/130.9 kB 7.5 MB/s eta
           0:00:00
           Collecting servicefoundry
             Downloading servicefoundry-0.9.20-py3-none-any.whl (127 kB)
                                                     0.0/127.2 kB ? eta -:--:-
                   ------ 127.2/127.2 kB 7.3 MB/s eta
           0:00:00
           Collecting gradio
             Downloading gradio-3.45.1-py3-none-any.whl (20.2 MB)
In [ ]:
In [6]:
         df = pd.read_csv('temperature.csv')
In [ ]:
           pd.set_option('display.max_row',25)
In [7]:
         H
           pd.set_option('display.max_column',25)
In [ ]:
```

In [8]: 🕨	df	df.head()									
Out[8]:		station	Date	Present_Tmax	Present_Tmin	LDAPS_RHmin	LDAPS_RHmax	LDAPS_Tmax			
	0	1.0	30- 06- 2013	28.7	21.4	58.255688	91.116364	28.			
	1	2.0	30- 06- 2013	31.9	21.6	52.263397	90.604721	29.			
	2	3.0	30- 06- 2013	31.6	23.3	48.690479	83.973587	30.			
	3	4.0	30- 06- 2013	32.0	23.4	58.239788	96.483688	29.			
	4	5.0	30- 06- 2013	31.4	21.9	56.174095	90.155128	29			
	4							•			
In []: 🕨											
In [9]: ▶	df	<pre>df.dtypes.value_counts()</pre>									
Out[9]:	ob	float64 24 object 1 dtype: int64									
In []: 🕨											


```
LDAPS_CC3
                     0.967492
LDAPS_PPT4
                     0.967492
LDAPS PPT2
                     0.967492
LDAPS_PPT1
                     0.967492
LDAPS_CC4
                     0.967492
LDAPS_CC2
                     0.967492
LDAPS_CC1
                     0.967492
LDAPS_LH
                     0.967492
LDAPS WS
                     0.967492
LDAPS_Tmin_lapse
                     0.967492
LDAPS_Tmax_lapse
                     0.967492
LDAPS_RHmax
                     0.967492
LDAPS_RHmin
                     0.967492
LDAPS_PPT3
                     0.967492
Present Tmin
                     0.902993
Present_Tmax
                     0.902993
Next_Tmax
                     0.348297
Next_Tmin
                     0.348297
Date
                     0.025800
station
                     0.025800
lat
                     0.000000
lon
                     0.000000
DEM
                     0.000000
Slope
                     0.000000
Solar radiation
                     0.000000
dtype: float64
```

```
In [ ]: )
```

```
In [11]:  plt.figure(figsize=(18, 6), dpi=80)
  plt.plot(df["Next_Tmax"],label="Next_Tmax")
  plt.plot(df["Next_Tmin"],label="Next_Tmin")
  plt.legend()
  plt.show()
```


In []: ▶

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

30.274886731391586 3.128010057855773 22.93222006472492 2.487612771331068

In []: ▶

In []: ▶

In [14]: ▶ sns.heatmap(df.corr())

C:\Users\lenovo\AppData\Local\Temp\ipykernel_2888\58359773.py:1: FutureWa
rning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns
or specify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr())

Out[14]: <Axes: >

_		F 0	- 7
()	ПŤ	レン	6 I

	count	mean	std	min	25%	
station	7750.000000	13.000000	7.211568	1.000000	7.000000	13.0
Present_Tmax	7682.000000	29.768211	2.969999	20.000000	27.800000	29.9
Present_Tmin	7682.000000	23.225059	2.413961	11.300000	21.700000	23.4
LDAPS_RHmin	7677.000000	56.759372	14.668111	19.794666	45.963543	55.0
LDAPS_RHmax	7677.000000	88.374804	7.192004	58.936283	84.222862	89.7
LDAPS_Tmax_lapse	7677.000000	29.613447	2.947191	17.624954	27.673499	29.7
LDAPS_Tmin_lapse	7677.000000	23.512589	2.345347	14.272646	22.089739	23.7
LDAPS_WS	7677.000000	7.097875	2.183836	2.882580	5.678705	6.5
LDAPS_LH	7677.000000	62.505019	33.730589	-13.603212	37.266753	56.8
LDAPS_CC1	7677.000000	0.368774	0.262458	0.000000	0.146654	0.3
LDAPS_CC2	7677.000000	0.356080	0.258061	0.000000	0.140615	0.3
LDAPS_CC3	7677.000000	0.318404	0.250362	0.000000	0.101388	0.2
LDAPS_CC4	7677.000000	0.299191	0.254348	0.000000	0.081532	0.2
LDAPS_PPT1	7677.000000	0.591995	1.945768	0.000000	0.000000	0.0
LDAPS_PPT2	7677.000000	0.485003	1.762807	0.000000	0.000000	0.0
LDAPS_PPT3	7677.000000	0.278200	1.161809	0.000000	0.000000	0.0
LDAPS_PPT4	7677.000000	0.269407	1.206214	0.000000	0.000000	0.0
lat	7752.000000	37.544722	0.050352	37.456200	37.510200	37.5
lon	7752.000000	126.991397	0.079435	126.826000	126.937000	126.9
DEM	7752.000000	61.867972	54.279780	12.370000	28.700000	45.7
Slope	7752.000000	1.257048	1.370444	0.098475	0.271300	0.6
Solar radiation	7752.000000	5341.502803	429.158867	4329.520508	4999.018555	5436.3
Next_Tmax	7725.000000	30.274887	3.128010	17.400000	28.200000	30.5
Next_Tmin	7725.000000	22.932220	2.487613	11.300000	21.300000	23.1

```
In [29]: ▶ import plotly.express as px
```

import plotly.graph_objects as go
import plotly.figure_factory as ff

```
In [59]:

▶ | features.head(), labels_max.head(), labels_min.head()

   Out[59]: (
                 station
                          Present Tmax Present Tmin LDAPS RHmin
                                                                    LDAPS RHmax \
              0
                     1.0
                                  28.7
                                                 21.4
                                                         58.255688
                                                                      91.116364
              1
                     2.0
                                  31.9
                                                 21.6
                                                         52.263397
                                                                      90.604721
              2
                     3.0
                                  31.6
                                                 23.3
                                                         48.690479
                                                                      83.973587
                                                 23.4
              3
                     4.0
                                  32.0
                                                         58.239788
                                                                      96.483688
              4
                     5.0
                                  31.4
                                                 21.9
                                                         56.174095
                                                                      90.155128
                 LDAPS_Tmax_lapse LDAPS_Tmin_lapse LDAPS_WS
                                                                  LDAPS_LH LDAPS_CC1
             \
              0
                        28.074101
                                          23.006936
                                                      6.818887
                                                                 69.451805
                                                                             0.233947
              1
                        29.850689
                                          24.035009
                                                     5.691890
                                                                 51.937448
                                                                             0.225508
              2
                        30.091292
                                          24.565633
                                                     6.138224
                                                                 20.573050
                                                                             0.209344
              3
                        29.704629
                                          23.326177
                                                     5.650050
                                                                 65.727144
                                                                             0.216372
              4
                        29.113934
                                          23.486480
                                                     5.735004
                                                                107.965535
                                                                             0.151407
                 LDAPS_CC2 LDAPS_CC3
                                       LDAPS_CC4 LDAPS_PPT1 LDAPS_PPT2 LDAPS_PPT3
             \
              0
                  0.203896
                             0.161697
                                        0.130928
                                                          0.0
                                                                      0.0
                                                                                  0.0
              1
                             0.159444
                                                          0.0
                                                                      0.0
                                                                                  0.0
                  0.251771
                                        0.127727
              2
                  0.257469
                             0.204091
                                        0.142125
                                                          0.0
                                                                      0.0
                                                                                  0.0
              3
                  0.226002
                             0.161157
                                        0.134249
                                                          0.0
                                                                      0.0
                                                                                  0.0
                  0.249995
                             0.178892
                                        0.170021
                                                          0.0
                                                                      0.0
                                                                                  0.0
                 LDAPS PPT4
                                 lat
                                          lon
                                                     \mathsf{DEM}
                                                          Slope
                                                                  Solar radiation
              0
                             37.6046
                                      126.991
                                                          2.7850
                                                                      5992.895996
                        0.0
                                               212.3350
              1
                        0.0
                             37.6046
                                      127.032
                                                44.7624
                                                          0.5141
                                                                      5869.312500
                        0.0
              2
                             37.5776
                                      127.058
                                                33.3068
                                                          0.2661
                                                                      5863.555664
              3
                        0.0
                             37.6450
                                      127.022
                                                45.7160
                                                          2.5348
                                                                      5856.964844
              4
                        0.0
                             37.5507
                                      127.135
                                                                      5859.552246 ,
                                                35.0380 0.5055
              0
                   29.1
              1
                   30.5
              2
                   31.1
              3
                   31.7
              4
              Name: Next_Tmax, dtype: float64,
              0
                   21.2
              1
                   22.5
              2
                   23.9
              3
                   24.3
              4
                   22.5
              Name: Next_Tmin, dtype: float64)
In [60]:
          ((7752, 22), (7752,), (7752,))
In [ ]:
In [15]:
             df = pd.read_csv('temperature.csv')
             Save = df.copy()
```

```
In [16]:

    def feature_engineering(df):

                df = df.drop(["Date"],axis=1)
                print(df.dtypes.value_counts())
                return(df)
In [17]: ▶ def imputation(df):
                df = df.dropna(axis=0)
                return df
            def encodage(df):
In [18]:
                return df

    def preprocessing(df):
In [19]:
                df = imputation(df)
                df = encodage(df)
                df = feature_engineering(df)
                X = df.drop(['Next_Tmax','Next_Tmin'],axis=1)
                y_max = df["Next_Tmax"]
                y_min = df["Next_Tmin"]
                print(X.shape)
                print(y_max.shape)
                return X,y_max,y_min
In [63]:
         trainset, testset = train_test_split(df, test_size=0.2, random_state=0)

X_train, y_min_train, y_max_train = preprocessing(trainset)

In [21]:
            X_test, y_min_test, y_max_test = preprocessing(testset)
            float64
            dtype: int64
            (6068, 22)
            (6068,)
            float64
                       24
            dtype: int64
            (1520, 22)
            (1520,)
         from sklearn.pipeline import make pipeline
In [64]:
            from sklearn.preprocessing import StandardScaler
            from sklearn.linear_model import SGDRegressor
            from sklearn.model_selection import cross_validate
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [70]: N cv_results_min = cross_validate(reg_min, X_train, y_min_train, cv=5, scorir
cv_results_max = cross_validate(reg_max, X_train, y_max_train, cv=5, scorir
```

```
Pour le Next_Tmin :
Test RMSE : 1.4716543842508778
Test r2 : 0.7752968207264456
Train RMSE : 1.4668193967011594
Train r2 : 0.7770290336876492
*-----*
Pour le Next_Tmax :
Test RMSE : 1.0111581476617029
Test r2 : 0.83325726155167
Train RMSE : 1.0061652510980292
Train r2 : 0.8353727766481154
```

```
In [72]: Next_Tmin_predict = reg_min.predict(X_test)
Next_Tmax_predict = reg_max.predict(X_test)

In [73]: Plt.figure(figsize=(18,6))
    plt.plot(y_min_test.to_numpy(),label="Next_Tmin")
    plt.plot(Next_Tmin_predict,label="Next_Tmin_predict")
    plt.legend()
    plt.show()

plt.figure(figsize=(18,6))
    plt.plot(y_max_test.to_numpy(),label="Next_Tmax")
    plt.plot(Next_Tmax_predict,label="Next_Tmax_predict")
    plt.legend()
    plt.show()
```



```
In [74]:
            from sklearn.ensemble import RandomForestRegressor
            from sklearn.model selection import GridSearchCV
            param_grid = {
                'bootstrap': [True],
                'max_depth': [70, 130],
                'max_features': [3, 6],
                'min_samples_leaf': [2, 3],
                'min_samples_split': [4, 8],
                'n_estimators': [1000, 500]
            # Create a based model
            rf = RandomForestRegressor()
            grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,
                                     cv = 3, n_{jobs} = -1, verbose = 2)
        In [75]:
                predictions = model.predict(test_features)
                errors = abs(predictions - test labels)
                mape = 100 * np.mean(errors / test_labels)
                accuracy = 100 - mape
                print('Model Performance')
                print('Average Error: {:0.4f} degrees.'.format(np.mean(errors)))
                print('Accuracy = {:0.2f}%.'.format(accuracy))
                return accuracy
In [76]:
         print(grid_search.best_params_)
            best_grid = grid_search.best_estimator_
            grid_accuracy = evaluate(best_grid, X_test, y_max_test)
            Fitting 3 folds for each of 32 candidates, totalling 96 fits
            {'bootstrap': True, 'max_depth': 70, 'max_features': 6, 'min_samples_lea
            f': 2, 'min_samples_split': 4, 'n_estimators': 500}
            Model Performance
            Average Error: 0.5544 degrees.
            Accuracy = 97.51\%.
In [77]: ▶ base_model = RandomForestRegressor(n_estimators = 10, random_state = 42)
            base_model.fit(X_train, y_max_train)
            base_accuracy = evaluate(base_model, X_test, y_max_test)
            print('Improvement of {:0.2f}%.'.format( 100 * (grid_accuracy - base_accura
            Model Performance
            Average Error: 0.6310 degrees.
            Accuracy = 97.16\%.
            Improvement of 0.36%.
```

```
In [78]:
             grid_search.fit(X_train, y_min_train)
             print(grid_search.best_params_)
             best_grid = grid_search.best_estimator_
             grid_accuracy = evaluate(best_grid, X_test, y_min_test)
             Fitting 3 folds for each of 32 candidates, totalling 96 fits
             {'bootstrap': True, 'max_depth': 70, 'max_features': 6, 'min_samples_lea
             f': 2, 'min_samples_split': 4, 'n_estimators': 500}
             Model Performance
             Average Error: 0.6881 degrees.
             Accuracy = 97.69\%.
In [79]:
          base_model = RandomForestRegressor(n_estimators = 10, random_state = 42)
             base_model.fit(X_train, y_min_train)
             base_accuracy = evaluate(base_model, X_test, y_min_test)
             print('Improvement of {:0.2f}%.'.format( 100 * (grid_accuracy - base_accurate)
             Model Performance
             Average Error: 0.7870 degrees.
             Accuracy = 97.36\%.
             Improvement of 0.34%.
```

```
In [80]:
             Next_Tmax_TreeRegressor = RandomForestRegressor(random_state = 42,
                                                              bootstrap=True, max depth=1
                                                              min_samples_leaf=2, min_sar
             Next_Tmin_TreeRegressor = RandomForestRegressor(random_state = 42,
                                                              bootstrap=True, max_depth=7
                                                              min_samples_leaf=2, min_sar
             print("---Next_Tmax---")
             Next Tmax_TreeRegressor.fit(X_train,y_max_train)
             Next_Tmax_Accuracy = evaluate(Next_Tmax_TreeRegressor, X_test, y_max_test)
             base_max_model = RandomForestRegressor(n_estimators = 10, random_state = 41
             base max model.fit(X train, y max train)
             base_max_accuracy = evaluate(base_max_model, X_test, y_max_test)
             print('Improvement of {:0.2f}%.'.format( 100 * (Next_Tmax_Accuracy - base_r
             print("----")
             print("---Next Tmin---")
             Next_Tmin_TreeRegressor.fit(X_train,y_min_train)
             Next_Tmin_Accuracy = evaluate(Next_Tmin_TreeRegressor, X_test, y_min_test)
             base_min_model = RandomForestRegressor(n_estimators = 10, random_state = 41
             base_min_model.fit(X_train, y_min_train)
             base_min_accuracy = evaluate(base_min_model, X_test, y_min_test)
             print('Improvement of {:0.2f}%.'.format( 100 * (Next_Tmin_Accuracy - base_r
             print("----")
             ---Next_Tmax---
             Model Performance
             Average Error: 0.5598 degrees.
             Accuracy = 97.48\%.
             Model Performance
             Average Error: 0.6310 degrees.
             Accuracy = 97.16\%.
             Improvement of 0.33%.
             ---Next Tmin---
             Model Performance
             Average Error: 0.6888 degrees.
             Accuracy = 97.69\%.
             Model Performance
             Average Error: 0.7870 degrees.
             Accuracy = 97.36\%.
             Improvement of 0.33%.
             _ _ _ _ _ _ _ _ _
 In [ ]:
```

In []:	H
In []:	K
In []:	H
In []:	H
In []:	N
In []:	
In []:	H
In []:	N