Machine Learning Project

Master in Data Science and Advanced Analytics

NOVA Information Management School

Universidade Nova de Lisboa

WCB Decision - Machine Learning Project Exploratory Data Analysis

Group 08

Afonso Gamito, 20240752

João Rodrigues, 20241037

Rute D'Alva Teixeira, 20240667

Samuel Mendes, 20240751

Tomás Oliveira, 20211576

Abstract

The New York Workers' Compensation Board (WCB) is the entity responsible for assembling and deciding on claims whenever there is a workplace injury.

Given our target variable's multi-class distribution, we trained a model to predict if a worker's injury claim would be of type 1, 2, 3, 4, 5, 6, 7 or 8 – with 1 being non compensable, the least severe and 8 Death, the most severe.

WCB'S dataset was submitted to a scrutinized cleaning, treating all missing values, all detected inconsistencies and all outliers considered errors.

Categorical data was encoded with frequency/count encoder, and target variable was label encoded, removing the string part of each unique category. All numerical data was scaled with a normalization method including binary variables, treated as numerical in our approach.

Our Feature Selection process combines filter, wrapper and embedded methods, with a final approach including Variance Statistical Test (26 selected features), Kendall's Correlation between input variables and against target (31 and 12 features selected, respectively), ANOVA (15 features selected), LASSO (28 features selected), Random Forest Classifier (17 features selected) and Decision Trees (18 features selected).

To elect our final predictor, we tested our validation dataset with a total of 10 distinct models, assessing the best performance considering F1-Score's macro average comparison metric, referenced as f1 from here on, and also attending to the test dataset's performance considering kaggle's competition score, referenced as kg from here on. From this assessment, the results yielded for each model are:

LightGBM (f1 0.4599, kg 0.41025) our best performed model, followed by XGBoost (f1 0.4556, kg 0.39258), next, Random Forest (f1 0.4095, kg 0.32603), Decision Trees (f1 0.3484, kg0.24308), Neural Network (f10.3208, kg 0.24528) with parameters suggested by professor Ricardo in lab classes, Logistic Regression (f1 0.2750, kg 0.19487) and Naive Bayes (f1 0.2069, kg 0.16755). All models are tested with aimple intuitive parameter settings.

For an optimized implementation, we introduced a Grid Search (GS) approach, yielding the following results: GS Random Forest (f1 0.4325, kg 0.34096) model used for our interface simulation, GS LightGBM (f1 0.4524, kg 0. 41025), GS XGBoost (f1 0.4592, kg 0.40752).

On a final note, our models performed under expected, even though we followed a solid and thorough data preprocessing, a methodical and transparent feature selection workflow and a consistent deployment of the assessed models.

Contents

List of Tables		. 4
List of Figures		. 5
_		
II. Data Exploration and Preprocessing		. 6
Incoherencies, Unusual and Missing Values		. 6
Data Preprocessing: Data Exploration and C	utliers	. 7
Data Preprocessing: Feature Engineering, D	ata Encoding and Scaling	. 8
III. Multiclass Classification		. 9
Hybrid-sampling and Feature Selection		9
Model Assessment		13
IV. Open-Ended Section		14
V. Conclusion		14
Bibliography		16
Annexes		17
Section A: Variables' Metadata		17
Section B: Data Exploration		19
Section C: Variables for Feature Selection		25
Section D: Feature Selection		29
Section E: Metrics Calculation for each mod	el	33

List of Tables

Table 1: List of Variables' Metadata

Table 2: Changing Data Types

Table 3: Unusual and Missing Values

Table 4: Incoherencies Treatment

Table 5: Initial Variables for Feature Selection

Table 6: Newly Created Variables for Feature Selection

Table 7: Feature Selection

Table 8: Model Explanation

Table 9: Metrics Calculation for each model (validation set results sorted by f1 score)

Table 10: Metrics Calculation for each model with optimizations (validation set results sorted by f1

score)

List of Figures

Figure 1: IME-4 Count Box plot

Figure 2: Age at Injury Box plot

Figure 3: Age at Injury Pie chart

Figure 4: Numeric Variables' Box Plots

Figure 5: Feature Selection Method

I. Introduction

This project is based on a dataset gathered by The New York Workers' Compensation Board (WCB), an entity responsible for assembling and deciding on claims whenever there is a workplace injury.

We were asked to develop a machine learning model that accurately predicts the claim injury type, to assist in decision-making for incoming claims. This report documents our workflow, from data preprocessing to a final prediction.

The Data Exploration and Pre-Processing section introduces the dataset, highlighting incoherencies, missing values and outliers' treatment, described over the following two pages. Next, we explain the process of Feature Engineering decisions (first two paragraphs) and the rationale that led to decision-making of Encoding (six paragraphs) and Scaling (subsequent section).

In Section III, we present our implementation of resampling techniques (first three paragraphs) and explore in depth our Feature Selection procedure, justifying each method's application, considering their underlying assumptions and overall data structure. Finally, we discuss Model Assessment and our ultimate predictive model.

Additionally, our open-ended section refers to a user-friendly interface developed to predict a claim injury type, based on each user-specified input. This tool can be integrated into WCB's official webpage as a simulation for workers filing claims, or as a resource to streamline WCB's internal operations.

II. Data Exploration and Preprocessing

Incoherencies, Unusual and Missing Values

The project's dataset consists of detailed information regarding the claims data received by WCB administers, from the start of 2020 till the end of 2022.

This multivariate dataset includes very important features such as as Claim Dates (e.g., *Accident Date*), Worker Demographics (e.g., *Gender*), Claim and Case Information (e.g., *Claim Identifier*), Location and Region (e.g., *Medical Fee Region*), Incident and Injury Details (e.g., *COVID-19 Indicator*), Industry Classification (e.g., *Industry Code*), Injury Descriptions and Codes (e.g., *WCIO Cause of Injury Code*) and Claim Outcomes (e.g., *Claim Injury Type*),. Accident Date, Assembly Date, Age at Injury, Gender and some others. Check section A (Table 1) in the annexes for more details regarding the initial variables. However, our dataset has important modifications: first, it consists of training and test sets with 593471 entries and 33 variables (including the target) and 387975 entries and 30 variables (which make sense because here we don't have the 3 target variables: Claim Injury Type, Agreement Reached and WCB Decision), respectively.

At the beginning of our analysis, we uploaded our dataset to the notebook to perform the subsequent data preprocessing on the training and test sets simultaneously. Therefore, we randomly split our training set in a stratified way, which retained 70% of the data while the rest became our validation set (30%). Such stratification enabled the project dataset class distribution to be maintained during the split.

Before applying any preprocessing to the variables, it is imperative to begin by exploring the characteristics of our data, as this allows us to deeply understand the topic and how each variable should be treated, what inconsistencies to address, how missing values and outliers should be

managed, among many other factors.

It is worth emphasizing that all these concerns have been detailed with explanations of how we solved them in section B. We began by making a superficial exploration to gain insights about the datatypes, missing values, and possible incoherencies in our data to advance to a visual analysis of our variables to identify patterns, distributions, and frequencies. Furthermore, we checked for duplicate values in our data set, finding none likely due to them being removed doing missing values treatment.

We immediately noticed some variables were with wrong data types, so we changed a few (section B, table 2), something we knew we had to solve before starting modeling.

Then, we noticed some missing values (section B, table 3) when we were analyzing the number of observations in each variable, a concern that should also be addressed before the modeling phase. Given this, we decided to drop two variables (*C-3 Date* and *First Hearing Date*). Although, at this step, we know that *Claim Indentifier* would make perfect sense as index variable because it has all its observations as unique values, we decided not to include it as index because it would present a problem when we would be applying our model.

Regarding incoherences, we discovered several discrepancies in the dataset during the data exploration phase that, if ignored, may have seriously compromised the validity of our research. Date variables, for example, included erroneous values such Birth Year = 0 and incidents that happened after the assembly date. Furthermore, some people had an Average Weekly Wage of \$0, which is unlikely for employed people, while others were listed as being under the legal working age. We produced a thorough table outlining each of these discrepancies and the strategies used to address or resolve each problem in order to guarantee data quality and accuracy. To avoid distorted data and erroneous conclusions in the subsequent study, it was imperative to address these differences.

Data Preprocessing: Data Exploration and Outliers

We proceeded with data exploration in the training set by counting the initial variables' values frequency and plotting histograms and boxplots. These techniques allowed us to capture and understand the dataset's inherent characteristics, including high distributed values and outliers.

We treated outliers for this variables: IME-4 Count (based on our research were we couldn't determine the exact number of IME-4 forms that can be attached to a claim, so we consider 72, this dataset maximum number, to be an unrealistic value that may negatively affect our model, for that reason, we decided to adjust these values by establishing a limit of 8, grounded in reasonable logic and in the visualization in Figure 1, where 8 seems to be the last value not considered an outlier and since in this case we only observe outliers in the upper limit, we think the best approach is to replace all values higher than 8 with the median, which is 2); Age ate Injury (we saw that ages between 0-15 represent 1% of the data and are highly unlikely for employment or work-related injuries and ages 75 and more represent 0,5% and, while plausible for injuries, are unlikely for employment, so for that reason, we excluded the extreme 1% on each end to define reasonable minimum and maximum values); Birth Year (we replace 0 values with the subtraction between 'Accident Date' year and 'Age at Injury); Average Weekly Wage (after reviewing the handout description, we note that this dataset

includes claims from volunteer workers in specified areas, therefore, in some cases, an Average Weekly Wage of 0 is an acceptable value, so combining this insight with domain knowledge, we conclude that the industries where the specified volunteer work occurs are identified by Codes 56, 92, and 62, with that said, we assume that the Average Weekly Wage values for these industries are accurate and valid, even if 0 and we treat all the others by imputing the previously calculated Average Weekly Wage by Industry Code). To understand better our analyses, check the figures 1-4 in section D.

Data Preprocessing: Feature Engineering, Data Encoding and Scaling

In order to do feature engineering, we eliminated variables that had too many missing values, as well as were not reliable or were irrelevant. Depending on the nature of the variable, various aspects were also changed, such as dividing variables which represent a date into components like month and year or transforming them into binary indicators. We also created several new variables, as we believed there was additional valuable information to be extracted from the existing ones, which could be very useful in further analysis. The table 6 (present in the section B) provides a thorough description of the new variables and detailed transformations of the provided ones (either if it's a new created variable or a transformed/modified variable from the existing ones).

Then, we decided to drop some variables: WCB Decision and Agreement Reached because these features give us information that are unknown at the start of a claim, according to our Handout Descriptive and for that reason, it is useless to train our model with information that we shouldn't have available for future predictions; Industry Code Description, WCIO Cause of Injury Description, WCIO Nature of Injury Description and WCIO Part Of Body Description because we already have the corresponding code for each of this features, which makes keeping both unnecessary, we let us choosing to drop Description and keep Code, for the fact that it is easier to work with numbers; Number of Dependents because the variable is unreliable (is uniformly distributed, all values have identical frequencies and, in some cases, the number of dependents doesn't align with the workers' age logically).

Our dataset is composed, in great part, by categorical features. This aspect alone adds a lot of complexity to the work in our hands, since the handling of categorical data requires a very sensitive approach. We consider the encoding process one of the factors that most contributed to the performance of our model, since most machine-learning algorithms require the conversion of textual data into numeric format, to improve responsiveness. With that being said, we considered the general interpretability assumptions our model does to orient our decision-making in encoding.

We carefully studied and considered the use of Dummy variables/One Hot encoding, Label/Ordinal Encoding, Target Encoding/Weighted mean target Encoding and Count Encoding.

In parallel with understanding how our model interprets our categorical data, to evaluate the best encoding technique, we must understand its characteristics:

- **Ordinality**, our categorical data doesn't have an inherent order. For that reason, categorical data represented as a number still needs to be properly encoded, since most models interpret there is ordinality in numbers. This factor alone excludes label/ordinal encoding as a viable option;

 Unique values count, a high count of unique categories immediately excludes the use of One-Hot Encoding for such features, since it would be converting every unique category (minus one) into a new feature. This decision avoids introducing multicollinearity and high computational costs, due to a larger dataset;

Finite and/or fixed number of categories seen on training data, it's important to assess if unique categories have a limited and predetermined number, to ensure that in future predictions the model is properly trained to handle all possible values of categorical data. We verified that majority of our data has a fixed number, seen on training data. Dummy variables would make sense in these cases otherwise, we wouldn't be training our model with enough information to make this encoding meaningful.

These factors, although significant, must be assessed in combination for a complete evaluation.

After this analysis, we favoured the use of Count Encoding for all categorical data, since it works in data with both high and low unique value counts; it introduces ordinal meaning to the number representation — higher numbers mean more frequent values; has a simple and intuitive coding application and is a technique that can be applied in all categorical features at once. Upon this decision, we validated its assumptions: after this encoding, categorical data becomes numerical and must be treated as such; and unseen data on future datasets will be represented as 0.

Data scaling is applied to numerical data, to ensure that the features with different distributions and scales are transformed into a comparable range. This is an important preparation before feature selection, enabling the use of thresholds to select features. On the other hand, it is performed after encoding, to include the numerically encoded data- this happens for conformity of the process, although we recognize that encoded data cannot be meaningfully scaled. Finally, it is a necessary step to improve model performance and convergence.

For our dataset, we considered the scaling methods of normalization, standardization and Robust scaler's Interquartile Range method.

After analyzing each method's assumptions, we chose to apply the normalization method, since it doesn't assume our data is normally distributed, and being that outlier's treatment has been ensured before, in the pre-processing stage.

Regarding the scaler's range, we started with the default one. After scaling, we validated the results in each feature, focusing on how close each maximum value is to 1. From this analysis, we found that most of our features besides binary ones ae represented very close to 1, with up to 7 decimal places precision. After reflecting on these findings, we considered that our data could benefit from a wider scale range, for a more expressive distribution of between each distinct value.

However, after testing ranges from 0 to 5, 10, 100 and 1000, keeping all other factors fixed, there was no improvement in the model's F1 macro average score, in fact, the score was penalized by 0.01 equally in all cases. For this reason, we kept the scaler's default range of 0 to 1.

III. Multiclass Classification

Hybrid-sampling and Feature Selection

To address the problem of class imbalanced that we are facing, we must adopt an over-sampling and under-sampling technique before proceeding to feature selection, that is, an hybrid-sampling. In one hand, we will use an over-sampling technique which improves minority class detection and enable us to keep all observations while addressing imbalance, on the other hand, we will use an under-sampling technique which provide us faster training, reduce noise and focuses on core information. Thus, we chose the Synthetic Minority Over-sampling Technique (SMOTE) to apply the over-sampling technique for reasons described above.

The implementation of this techniques combined balances dataset efficiently, combined strengths of both methods and mitigates overfitting risk, given us a much more balanced dataset, converting our data from: (2: 203754, 4: 103955, 3: 48234, 5: 33796, 1: 8734, 6: 2948, 8: 329, 7: 68) to (2: 100000, 4: 50000, 3: 48234, 5: 33796, 1: 20000, 6: 20000, 7: 10000 e 8: 10000), reducing our overall number of data in approximately 27%. This implementation is performed after encoding and before scaling, since this implementation requires all data to be numerical. For this reason, binary variables are treated as numerical.

For feature selection, we will deep-dive into the decision process that led to each feature selection method included, and how such implementation took place. To begin, we should first distinguish the methods used into four groups: Filter Methods, Embedded Methods, Wrapper Methods and Standalone methods.

Regarding the Filter Methods, our initial approach involves using statistical tests on our data to rank features by relevancy, according to each test's criteria. To ensure the appropriateness of these tests for our dataset, we refer to a diagram from Machine Learning's class materials, which provides the theoretical foundation for this process (check figure 5, section C).

As we can see, through that figure, it is crucial to understand our dataset characteristics, in this case, the nature of our input and output variables, in order to assess which methods better align with this fact. From observing the diagram, we can also point to an important tradeoff: if our output variable is categorical, it introduces Chi-Squared and Mutual Information methods for categorical data, and if it is numerical, it introduces Pearson and Spearman's Correlation indices for numerical data. This insight is particularly valuable for our dataset, because our output variable can be interpreted as either numerical or categorical. This fact is due to our target variable's ordinality: categories show an ascending level of severity in injury. The original representation of the target's categories is a mix of strings and numbers. However, with the appropriate encoding, they can easily be converted into numerical, without compromising the model's interpretability. To properly justify the decision made about the target, we must first introduce a new factor into the discussion: the underlying assumptions of each Filter method.

Now, we will test each filter method based on its underlying assumptions. For that, we have a deeper understanding of which statistical test can be performed based on categorical or numerical data, but its application still depends heavily on each test's assumptions and whether our data complies or not.

We will explore this in detail:

Variance: This filter method tests how much our data points deviate from the mean, with no known assumptions that could discard this method. There were no univariate features, so now features were discarded in place, and because our data was properly scaled, we applied a threshold

to discard low variance features. We selected 26 features from Variance's Statistical test.

Pearson's Correlation: This correlation is immediately excluded from our range of options, because it assumes that our data is normally distributed, which is not the case.

Spearman and Kendall's Tau Correlation: Neither of these methods require Gaussian-like data distribution, making them a viable option. However, they do require that the data is either continuous or ordinal.

For that reason, we must validate that all our numerical features — including numerically encoded — comply with this assumption. It isn't the case for binary variables, so to perform this analysis, we must use a subset of data. Ultimately, Spearman's correlation could have been used, but it gave the same information as Kendall's correlation. For that reason, we chose to keep only Kendall's to limit **our final selection, aiming for a maximum of 17 features**.

This correlation can be assessed:

- Between input variables, to identify pairs who are highly correlated, since high correlation indicates redundancy, meaning that both features provide similar information to the model. In such cases, one of the correlated features can be discarded. This helps to reduce multicollinearity and improve the model's interpretability and efficiency. We selected 31 features from Kendall's correlation.
- Between input and the output variable, to identify which features have stronger predictive power. Low correlation may indicate that a feature is potentially unimportant for our model- in such cases, the feature can be discarded. This helps to improve the model's interpretability and efficiency, by reducing the noise. However, we don't want to remove solely based on this correlation, since we could be overlooking nonlinear relationships. We selected 12 features from 'Target Kendall's' correlation.

ANOVA: This method is used, since it is applicable for both categorical and numerical input variables, and because the target variable's nature also complies with this method. This method doesn't assume data is normally distributed, making it a sound method for feature selection on this dataset.

The optimal number of k was adjusted through trial and error, based on how many features we wanted to include in our model. **ANOVA selected 15 features.**

Chi Square: This method tests independence of categorical data against the target variable, with no known assumptions discarding this approach. The code for this method is obtained from lab 3 materials about Feature Selection. Although in our initial approach this method was tested, in our final approach we excluded this method from our Feature Selection process.

Mutual Information: More complex approach on dependence between variables, commonly explored in Pearson's correlation. It tells us on average, how much knowing one variable reduces the uncertainty (entropy) of another variable. This method handles better discrete variables, and it is possible to test mutual information between input variables and between input variables and target. During our research, no further assumptions on this method were found. Although in our initial approach this method was tested, in our final approach we excluded this method from our Feature Selection process.

Our initial approach was to outline the workflow during Feature Selection, we decided to

interpret both the target variable and our binary features as categorical, favoring the tradeoff of Chi-Squared and Mutual Information over Pearson and Spearman methods. This decision was very intuitive, since Pearson's assumptions rule out this method, and Spearman would not be applicable on binary features, since they are not ordinal or continuous. Following this approach, we would be able to apply Chi-Squared and Mutual Information on our categorical data — binary outcome features, and numerical data would be exclusively continuous or ordinal, making all other filter methods viable.

However, after deploying our model and facing its performance score, our final approach was to identify the need to introduce resampling techniques, thus reviewing our entire Feature Selection process. For that reason, as explained before, binary features are treated as numerical - there is no categorical data. This decision removes Chi Squared and Mutual Information from our process.

Thresholds: Our decision for the threshold used was a textbook approach, considering 0.01 for Lasso and Variance. However, to test variance, we considered this threshold to not be penalizing enough, which led to us raising it to 0.05. For Kendall's redundancy tests, a textbook approach of 0.8 was applied and for relevancy tests, 0.15.

Regarding the Wrapped Methods, we will discuss methods that involve training a model and selecting features based on how the model performs – these methods consider the interaction between features and the chosen algorithm. The wrapper methods we selected are applicable on both numerical and categorical data. For that reason, in this section we use the joined dataset, X train processed.

RFE: We apply a Recursive Feature Elimination, that will recursively fit a model and eliminate, one by one, the least important features based on their performance score, until it reaches the optimal number defined, or until the model stops improving. A drawback of this method is that it could introduce overfitting.

RFE - Logistic Regression: For this method, we start by using Logistic Regression as a base model estimator, since it performs well for multi-classification tasks. To assess the optimal number of features, our *n_features_to_select* parameter, we run a code tested in class materials, from a range of 1 to 18. We started with 10 and raised the limit to 18 from trial and error, after noticing our optimal number was always the maximum. From the output of this code, we set an optimal number of **16 variables**.

RFE initial and final approach - Initially, we selected 16 features from RFE's method on each predictor, Logistic Regression and SVM classifier. However, after deployment of model we analysed the classification report with and without this method and observed the following:

- Excluding RFE's methods from selection: We accurately predict values of all classes, with an F1 macro average score of 0.46.
- Including RFE's methods from selection: We don't make prediction on class 7, a minority class, and the F1 macro average score lowers to 0.41.

RFE - Support Vector Machines: Still in RFE, we use as a different base estimator Support Vector

Machines, since it also performs well for multi-classification tasks. However, because this vector-based model considers all records of each datapoint and all its restraints, it is highly costly in computation. This limited our analysis, and an optimal number of features wasn't assessed. For that reason, we reference the same number as LR's optimal.

Regarding the Embedded Methods, this set of methods performs feature selection as part of the training process of the model and learns which features best contribute to the accuracy of the model while it is being created.

Lasso Regression: Lasso, or L1 Regularization, applies to a regression model and is a suitable feature selection method for our dataset, as it helps in both regularization and feature selection. Since our input variables are numerical, Lasso can perform effectively, allowing for automatic feature selection while improving model performance, by reducing overfitting. We selected 28 features from Lasso's cost function.

Random Forest Classifier: Method chosen, since we will also deploy this model, and it measures the level of impurity (gini and entropy criteria) that each feature is responsible for reducing to the model. We selected 17 features from Random Forest Classifier.

Regarding the Standalone Methods, we include Decision Trees, which is a supervised learning algorithm, just like Random Forest, selects features by measuring the level of impurity that each one reduced in the model. We selected 18 features from Decision Trees.

Lastly, in total, we tested 7 different methods in our entire dataset, with a final selection of 16 features. We integrated all feature selection methods tested for each feature into a voting system, short-listing our final selection with only the features that were selected on majority of methods. This majority is calculated by ruling that the proportion of 'keep' must be higher than the proportion of 'discard', by at least 2 methods. For example, IME-4 Count is selected by 4 methods and discarded by 3, so it won't be included in our final selection. To visualize our voting system in detail, please check table 7, section D.

Model Assessment

To determine which model performed the best for our assignment, we implemented and assessed several of them. Random Forest, Logistic Regression, Neural Networks, Naive Bayes, DT, LightGBM, and XGBoost are among the models that have been put to the test (each explained in Table 8). Additionally, we used a Voting Classifier that integrated XGBoost, Random Forest, and Logistic Regression in effort to enhance model performance. The Voting Classifier achieved a strong score, demonstrating that combining these models provided a notable performance boost.

For evaluation purposes, we prioritized metrics such as F1 Score, Recall, and Precision, as accuracy would not provide a meaningful evaluation for this particular problem, given the class imbalances. These metrics offered a better view of model performance, especially in identifying how well each model handles different classes.

As we can observe in Table 10 (Section D), Random Forest, XGBoost, and LightGBM were the models that performed the best out of all the ones we evaluated. In order to improve these three algorithms' performance even further, we focused on optimizing them. We used a combination of Grid Search and Cross Validation to accomplish this, and for this procedure, we intentionally employed 10% of the dataset, ensuring the class distribution was maintained. This approach helped us extract the optimal hyperparameters efficiently while maintaining computational feasibility.

For the final model training, we applied the ideal parameters to the complete dataset and chose the best configuration. The focus on Random Forest, XGBoost, and LightGBM, along with the optimization process, significantly improved their scores in terms of precision, recall, and F1 score, confirming them as the top-performing models for this task.

IV. Open-Ended Section

The first part of our application focuses on a prediction model that allows users to input data about a workplace injury and receive a prediction based on those inputs. This model is particularly useful for organizations such as the Workers' Compensation Board (WCB) to predict the most common injury cases across the general population, providing valuable insights into prevalent trends and risk factors. Additionally, companies and industries can analyze injury cases within their specific context to make informed decisions that reduce the number of injuries, minimize the severity of incidents and implement proactive safety measures. Acting as a decision-support tool, the predictive model helps stakeholders identify potential risks and take preventive actions to improve workplace safety.

The second part of our project is an interactive map that visualizes regional data related to workplace injuries. Divided into four regions, the map displays key information, including demographic details about the affected individuals and insights into the industries most frequently involved in injuries. This geographic perspective can influence decision-making at various levels, such as empowering local authorities like municipal councils and mayors to implement targeted measures and policies for the most affected areas. By presenting data visually, the map enhances understanding, helps identify regions requiring immediate attention and supports better resource allocation to improve workplace safety. Is important ro refer that the model use to create this interface was the Random forest because, even though is wasn't our best model in terms of performance, it was the the best performer model from the model that we learn in class. For that reason we decided to apply Random Forest instead of XGBoost.

V. Conclusion

In order to provide an automated and trustworthy decision-support tool, the goal of this project was to create a model that would forecast the New York Workers' Compensation Board's (WCB) ruling on workplace injury claims. We used an extensive procedure that included data preprocessing, feature engineering, and a careful evaluation of multiple categorization methods.

We tackled important issues during data preprocessing, including imputing missing data without

distorting the dataset's integrity and respecting Data Leakage, fixing incoherent items, where he had to give a special effort in order to ensure that every incoherence was founded and properly dealt with, and reducing class imbalance using hybrid sampling strategies to guarantee that minority classes were adequately represented, which was fundamental to the better performance of the model. Choosing the most pertinent variables for feature selection was difficult, and we had to balance techniques which were not easy to set and define the corresponding thresholds to make sure the finished model caught significant correlations without adding redundancy or overfitting. Important choices were also impacted by computational limitations, such as restricting the amount of cross-validation used during model testing and giving priority to randomized over grid search for hyperparameter tweaking.

Feature selection was another critical step, requiring the application of multiple methods, including ANOVA and Kendall's correlation, to ensure the most valuable variables were retained and variables such as Industry Group were discarded due to the low correlation with the target. This process involved fine-tuning thresholds and making decisions that balanced model complexity with interpretability.

Further in the model implementation, a few algorithms were tested, whereas XGBoost, LightGBM and Random Forest had the best F1 Score, Recall and Precision – metrics chosen to evaluate the model. The other algorithms applied did not perform as well as we thought, potentially due to suboptimal hyperparameter selection or intrinsic characteristics of the dataset, leading us to focus our efforts on refining and optimizing the best-performing models. After applying a Grid Search, the results dind't increase, so, for that reason, our best model was the LightGBM without Grid Search.

Our open-ended section showed how our model may be used in real-world scenarios, like forecasting injury trends and displaying regional data on an interactive map, an innovative way to compare data visually, providing insightful information about trends in workplace injuries and exposing regional differences. In addition to improving local decision-making, the next step could be implementing the model to the entire country, to be able to find the disparities among the different regions.

In summary, our project effectively produced reliable and understandable models that struck a balance between practical applicability and predictive performance. We made sure that every choice, from feature selection to model deployment, was well-founded and repeated by following open procedures and strict evaluation standards.

Bibliography

Domain Knowledge and context research:

1. https://www.cordovanolaw.com/practice-areas/workers-compensation/workers-compensation-process/

- 2. https://www.nycbar.org/get-legal-help/article/workers-comp/workers-compensation-process%E2%80%AF/
- 3. https://www.wcb.ny.gov/content/main/TheBoard/glossary.jsp

Medical Fee Region and Zip Code relation:

https://www.qrconcepts.com/MediaWiki/images/e/e8/2018 Official New York State Workers' Compensation Medical Fee Schedule.pdf

Industry Code for Average Weekly Wage outlier treatment: https://www.naics.com/six-digit-naics/?v=2017&code=92

Forms details:

https://www.wcb.ny.gov/content/main/forms/Forms INSURER.jsp

Understanding feature selection methods:

Correlation:

https://medium.com/@aastha.code/interpreting-correlation-matrix-in-data-science-1318c5ac5c09

Mutual Information

https://medium.com/swlh/a-deep-conceptual-guide-to-mutual-information-a5021031fad0

Understanding encoding techniques:

https://medium.com/aiskunks/categorical-data-encoding-techniques-d6296697a40f

Annexes

Section A: Variables' Metadata

Table 1: List of Variables' Metadata

Information	Variable	Description	Туре
Claim	Accident Date	Injury date of the claim	Object
Dates			
	Assembly Date	The date the claim was first assembled	Object
	C-2 Date	Date of receipt of the Employer's Report of Work-Related Injury/Illness or equivalent (formerly Form C-2)	Object
	C-3 Date Date Form C-3 (Employee Claim Form) was received		Object
	First Hearing Date	Date the first hearing was held on a claim at a WCB hearing location. A blank date means the claim has not yet had a hearing held	Object
Worker Demographics	Age at Injury	Age of injured worker when the injury occurred	Float64
	Birth Year	The reported year of birth of the injured worker	Float64
	Gender	The reported gender of the injured worker	Object
	Zip Code	The reported ZIP code of the injured worker's home address	Object
	Number of Dependents	Number of dependents Float6	
Claim and Case Information	Alternative Dispute Resolution	Adjudication processes external to the Board Obje	
	Attorney/Repr esentative	Is the claim being represented by an Attorney?	Object
	Claim Identifier	Unique identifier for each claim, assigned by WCB	Int64
	Carrier Name	Name of primary insurance provider responsible for providing workers' compensation coverage to the injured worker's employer	Object
	Carrier Type	Type of primary insurance provider responsible for providing workers' compensation coverage	Object
	Average	The wage used to calculate workers'	Float64

	Weekly Wage	compensation, disability, or an Paid Leave wage replacement benefits	
Location and Region	County of Injury	Name of the New York County where the injury occurred	Object
	District Name	Name of the WCB district office that oversees claims for that region or area of the state	Object
	Medical Fee Region	Approximate region where the injured worker would receive medical service	Object
Incident and	COVID-19	Indication that the claim may be associated	Object
Injury Details	Indicator	with COVID-19	
	IME-4 Count	Number of IME-4 forms received per claim. The IME-4 form is the "Independent Examiner's Report of Independent Medical Examination" form	Float64
Industry Classification	Industry Code	NAICS code and descriptions are available at: https://www.naics.com/search-naics-codes-by-industry/	Float64
	Industry Code Description	2-digit NAICS industry code description used to classify businesses according to their economic activity	Object
Injury	OIICS Nature	The OIICS nature of injury codes & descriptions	Float64
Descriptions and Codes	of Injury Description	are available at https://www.bls.gov/iif/oiics_manual_2007.pd	
		f	
	WCIO Cause of Injury Code	f The WCIO cause of injury codes & descriptions are at https://www.wcio.org/Active%20PNC/WCIO_C ause_Table.pdf	Float64
	J	The WCIO cause of injury codes & descriptions are at https://www.wcio.org/Active%20PNC/WCIO_C	Float64 Object
	Injury Code WCIO Cause of Injury	The WCIO cause of injury codes & descriptions are at https://www.wcio.org/Active%20PNC/WCIO_C ause_Table.pdf	
	Injury Code WCIO Cause of Injury Description WCIO Nature	The WCIO cause of injury codes & descriptions are at https://www.wcio.org/Active%20PNC/WCIO_C ause_Table.pdf See description of field above The WCIO nature of injury are available at https://www.wcio.org/Active%20PNC/WCIO_	Object
	Injury Code WCIO Cause of Injury Description WCIO Nature of Injury Code WCIO Nature of Injury	The WCIO cause of injury codes & descriptions are at https://www.wcio.org/Active%20PNC/WCIO_C ause_Table.pdf See description of field above The WCIO nature of injury are available at https://www.wcio.org/Active%20PNC/WCIO_Nature_Table.pdf	Object Float64

	Body Description		
Claim Outcomes	Agreement Reached	Binary variable: Yes if there is an agreement without the involvement of the WCB -> unknown at the start of a claim	Float64
	WCB Decision	Multiclass variable: Decision of the WCB relative to the claim: "Accident" means that claim refers to workplace accident, "Occupational Disease" means illness from the workplace> requires WCB deliberation so it is unknown at start of claim	Object
	Claim Injury Type	Main target variable: Deliberation of the WCB relative to benefits awarded to the claim. Numbering indicates severity	Object

Source: Authors.

Section B: Data Exploration

Table 2: Changing Data Types

Change Data Types	Variables
Float to integer	Age at Injury, Birth Year, IME-4 Count and Number of Dependents
Float to object	OIICS Nature of Injury Description, Agreement Reached, Claim Identifier, Industry Code, WCIO Cause of Injury Code, WCIO Nature of Injury Code and WCIO Part Of Body Code
Object to dates	C-2 Date, C-3 Date, First Hearing Date, Accident Date, and Assembly Dates

Source: Authors.

Table 3: Unusual and Missing Values

Variable	Problem	Solution
Accident Date	3,9% missing values	Dropping rows with all missing values. Imputing median date difference between Assembly and Accident Date.
C-2 Date	5,8% missing values	Fill missing values with the correspondent Assembly Date
C-3 Date	68,5% missing values	Dropping the variable
First Hearing Date Age at Injury	74,6% missing values 3,3% missing values	Dropping the variable Dropping rows with all missing values
Birth Year	5,1% missing values	Fill missing values with the difference between Accident Date and Age at Injury
Gender	3,3% unusual ("U") / missing values	Transforming the "U" into missing values. Dropping rows with all missing values. Imputing missing values with mode
Zip Code	8,2% missing values	Imputing missing values with the mode of Zip Code per Medical Fee Region
Number of Dependents	3,3% missing values	Dropping rows with all missing values
Alternative Dispute Resolution	3,3% missing values	Dropping rows with all missing values. Imputing missing values with mode
Attorney/Representative	3,3% missing values	Dropping rows with all missing values
Carrier Name	3,3% missing values	Dropping rows with all missing values
Carrier Type	3,3% unusual ("U") / missing values	Transforming the "U" into missing values. Dropping rows with all missing values. Imputing missing values with mode
Average Weekly Wage	5% missing values	Fill missing values with

		conditional median grouped by Industry Code, excluding zeros
County of Injury	3,3% unusual ("U") / missing values	Transforming the "U" into missing values. Dropping rows with all missing values.
District Name	3,3% missing values	Dropping all missing values
Medical Fee Region	3,3% unusual ("U") / missing values	Transforming the "U" into missing values. Dropping rows with all missing values
COVID-19 Indicator	3,3% missing values	Dropping rows with all missing values
IME-4 Count	76,9% missing values	Doesn't consist in a problem because not all claims must have this form, so 0 is a possible value
Industry Code	5% missing values	Imputing missing values with mode
Industry Code Description	5% missing values	Imputing missing values with mode
OIICS Nature of Injury Description	100% missing values	Dropping the variable
WCIO Cause of Injury Code	6% missing values	Imputing missing values with conditional mode grouped by Industry Code
WCIO Cause of Injury Description	6% missing values	Imputing missing values with conditional mode grouped by Industry Code
WCIO Nature of Injury Code	6% missing values	Imputing missing values with mode
WCIO Nature of Injury Description	6% missing values	Imputing missing values with mode
WCIO Part Of Body Code	6,2% missing values	Imputing missing values with conditional mode grouped by Industry Code
WCIO Part Of Body Description	6% missing values	Imputing missing values with conditional mode grouped by Industry Code
Agreement Reached	3,3% missing values	Dropping rows with all missing values
WCB Decision	3,3% missing values	Dropping rows with all missing values

Claim Injury Type	3,3% missing values	Dropping	rows	with	all
		missing va	lues		

Source: Authors.

Table 4: Incoherencies Treatment

Variable	Problem	Solution
WCIO Part Of Body Code	One negative value of '-9'	Transforming negative value in positive since there was no corresponding code with the number "9".
WCIO Part Of Body Description	Difference number of unique values comparing the corresponding Code variable	Assumption that the code appearing first is the correct one, we replace the duplicated descriptions for the first occurrence of its corresponding code
Industry Code Description	Difference number of unique values comparing the corresponding Code variable	Assumption that the code appearing first is the correct one, we replace the duplicated code for the first occurrence of its corresponding descriptions
WCIO Cause of Injury Description	Difference number of unique values comparing the corresponding Code variable	Assumption that the code appearing first is the correct one, we replace the duplicated code for the first occurrence of its corresponding descriptions
Accident Date	Some accident dates occur after the assembly date or the C-2 date (cannot occur because to be properly documented was to have the prerequisites for the accident)	Switching values, in order to Accident Date occurs before its assembly

Birth Year	Rows with values "0"	Replacing the value based on the difference between the Accident Date and Age at Injury
Zip Code	Presence of letters in this variable could indicate data entry errors	Transforming these rows into missing values
Average Weekly Wage	Zero as values could misleading to understand if it's either a volunteers salary or a missing or incorrect data	Zero values of industries that cannot have volunteers were treated as missing values and replaced by the median per industry
Number of Dependents	Unreliable data (distribution shows unusual similar frequencies, such as individuals under 20 having multiple dependents)	Dropping the variable, since a lot of variables did not make sense

Source: Authors.

Figure 1: IME-4 Count Box plot

IME-4 Count Source: Authors.

Figure 2: Age at Injury Box plot

Age at Injury

Source: Authors.

Figure 3: Age at Injury Pie chart

Source: Authors

Figure 4: Numeric Variables' Box Plots

Source: Authors

Section C: Variables for Feature Selection

Figure 5: Feature Selection Method

How to Choose a Feature Selection Method Input . Variable Numerical Categorical Output Output Variable Variable Categorical Categorical Numerical Numerical Mutual **ANOVA** Chi-Squared Pearson's Spearman's Kendall's Information

Source: Diagram from slide 7 of lecture 3, about Statistical Tests

Table 5: Initial Variables for Feature Selection

Variable	Context	Decision
Accident Date	Date variable	Extract the month and year
		to new different variables
Assembly Date	Date variable	Extract the month and year
		to new different variables
C-2 Date	Date variable	Extract the month and year
		to new different variables
C-3 Date	Date variable	Drop because of the extreme
		percentage of missing values
First Hearing Date	Date variable	Drop because of the extreme
		percentage of missing values
Age at Injury	Numerical variable	Kept as is
Birth Year	Numerical variable	Kept as is
Gender	Categorical with three	Transformed into a new
	different values	binary variable
Zip Code	Categorical Variable	Kept but transformed into a
		numerical variable
Number of Dependents	Unreliable variable because	Dropped
	of is high	
Alternative Dispute	Categorical with two	Transformed into a new
Resolution	different values	binary variable
Attorney/Representative	Categorical with two	Transformed into a new
	different values	binary variable
Claim Identifier	Categorical variable	Kept as is
Carrier Name	Categorical variable	Kept as is
Carrier Type	Categorical variable	Kept as is
Average Weekly Wage	Numerical variable	Kept as is
County of Injury	Categorical variable	Kept as is
District Name	Categorical variable	Kept as is
Medical Fee Region	Categorical Variable	Kept but transformed into a
COLUD 40 1 1' 1		numerical variable
COVID-19 Indicator	Categorical with two	Transformed into a new
INAT A Count	different values	binary variable
IME-4 Count	Numerical variable	Kept as is
Industry Code	Categorical variable	Kept as is
Industry Code Description	Categorical variable	Kept as is
OIICS Nature of Injury	Variable composed of 100%	Dropped
Description	of missing values	

WCIO Cause of Injury Code	Categorical variable	Kept as is
WCIO Cause of Injury	Categorical variable	Kept as is
Description		
WCIO Nature of Injury Code	Categorical variable	Kept as is
WCIO Nature of Injury	Categorical variable	Kept as is
Description		
WCIO Part Of Body Code	Categorical variable	Kept as is
WCIO Part Of Body	Categorical variable	Kept as is
Description		
Agreement Reached	Categorical with two	Transformed into a new
	different values	binary variable
WCB Decision	Categorical variable with no variance	Dropped

Source: Authors.

Table 6: Newly Created Variables for Feature Selection

Variable	Engineering Action	Description
	Created	<u> </u>
Days from Accident to C-2	Created	Represents the number of days that it
		took to receive the employer report
		since the accident happened
Days from Accident to	Created	Represents the number of days that it
Assembly		took to first assemble the claim since
		the accident happened
Log_Average_Weekly_Wage	Created	Represents the logarithmic function of
- 3 3 7 3-		Average Weekly Wage in order to
		minimize the effect of extreme values
Assa Cara	Constant	
Age_Group	Created	The Age at Injury were split into age
		groups, to try to find patterns
Claim Antiguity	Created	Represents the order of accidents
		antiguity, where the first one to
		happen is represented with 1 and the
		most recent one with n
C-2 under Deadline	Created	Check if C-2 was completed under
		deadline, which is 10 days
Forms Delivered Count	Created	Counts how many forms were
TOTHIS DETIVETED COURT	Created	•
		delivered, including C-2, C-3 and IME
Valid Full Claim	Created	Check if every forms was completed

		and if every forms respected its deadline
cause_of_injury_groups	Created	Categorize similar cause of injuries into broader categories, making it easier to analyze and identify patterns
body_part_groups	Created	Categorize close parts of the body into broader categories, making it easier to analyze and identify patterns
Nature of Injury Group	Created	Categorize similar nature of injuries into broader categories, making it easier to analyze and identify patterns
industry_groups	Created	Categorize similar industry into broader categories, making it easier to analyze and identify patterns
Accident Year	Transformed	Represents the year of the accident, which we believe will be very useful in our analysis
Accident Month	Transformed	Similar to Accident Year, represents the month of the accident. Here we expect to find some differences related to the time of e year
Assembly Year	Transformed	Represents the year of the assembly, which is probably the same as Accident Year
Assembly Month	Transformed	Represents the month of the assembly, useful to calculate the distance from the accident to the assembly
C-2 Date Year	Transformed	Represents the year of C-2
C-2 Date Month	Transformed	Represents the month of C-2
Alternative Dispute Resolution	Transformed	This variable had two possible values – yes and no; was transformed into a binary
Attorney/Representative	Transformed	This variable had two possible values — yes and no; was transformed into a binary
COVID-19 Indicator	Transformed	This variable had two possible values – yes and no; was transformed into a binary
WCB Decision	Transformed	Despite this variable having just one

		value, we transformed it into a binary
Gender	Transformed	This variable had three possible values
		– M (male), F (female) and X (non-
		binary); as the most common value is
		male, we transformed Gender in a
		binary where 1 represents Male and 0
		represents Not Male
Medical Fee Region	Transformed	This variable was encoded, because
		the initial part of each value used to be
		a roman numeral, so we transformed
		it into the correspondent number

Source: Authors.

Section D: Feature Selection

Table 7: Feature Selection

Feature	Variance	Kendall	Target Kendall	ANOVA	LASSO	DT	Random Forest	Result
Age at	Keep	Keep	Keep	Кеер	Discard	Кеер	Keep	Selected
Injury								
Alternativ	Discard	Keep	Discard	Discard	Discard	Discard	Discard	Not
e Dispute								Selected
Resolution								
Attorney/	Keep	Keep	Keep	Keep	Keep	Keep	Keep	Selected
Represent								
ative								
Average	Discard	Keep	Keep	Discard	Discard	Keep	Keep	Not
Weekly								Selected
Wage								
Birth Year	Discard	Discard	Keep	Keep	Keep	Keep	Keep	Selected
COVID-19	Discard	Keep	Discard	Discard	Keep	Discard	Discard	Not
Indicator								Selected
Gender	Keep	Keep	Discard	Discard	Keep	Discard	Discard	Not
								Selected
IME-4	Discard	Keep	Keep	Keep	Discard	Discard	Keep	Not
Count								Selected

Hearing Date C-3 Keep Keep Keep Keep Discard Discard Discard Delivery Days from Accident Keep Discard Discard Discard Discard Neep Not Selected
Delivery Days from Discard Keep Discard Discard Discard Keep Keep Not
Days from Discard Keep Discard Discard Keep Keep Not
Accident
to C-2
Days from Discard Discard Discard Keep Keep Not
Accident Selected
to and the second s
Assembly Service Control of the Cont
Log_Aver Discard Discard Keep Keep Keep Keep Keep Selected
age_Wee
kly_Wage
Claim Keep Discard Discard Keep Keep Keep Not
Antiguity Selected
C-2 under Keep Keep Discard Keep Keep Discard Discard Not
Deadline Selected
Forms Discard Discard Keep Keep Keep Keep Selected
Delivered
Count
Valid Full Keep Keep Keep Keep Discard Discard Selected
Claim
Accident Discard Discard Discard Discard Discard Discard Discard Not
Year Selected
Accident Keep Keep Discard Discard Keep Discard Discard Not
Month Selected
Assembly Keep Keep Keep Keep Discard Discard Selected
Year Singular Binarda
Assembly Keep Discard Discard Discard Keep Discard Discard Not
Month Selected Caller Discord Discor
C-2 Year Discard Keep Discard Discard Discard Discard Discard Not
C-2 Keep Keep Discard Discard Keep Discard Discard Not
C-2 Keep Keep Discard Discard Keep Discard Discard Not Month Selected
CarrierKeepKeepDiscardDiscardKeepKeepKeepKeepName
NUME
Carrier Keep Keep Discard Discard Discard Discard Not
Type Selected

County of Injury	Keep	Keep	Discard	Discard	Keep	Keep	Keep	Selected
District Name	Keep	Keep	Discard	Discard	Keep	Discard	Discard	Not Selected
Industry Code	Keep	Keep	Discard	Discard	Keep	Keep	Keep	
Medical Fee Region	Keep	Keep	Discard	Discard	Discard	Discard	Discard	Not Selected
WCIO Cause of Injury Code	Кеер	Keep	Discard	Discard	Кеер	Keep	Keep	Selected
WCIO Nature of Injury Code	Кеер	Keep	Discard	Keep	Keep	Keep	Keep	Selected
WCIO Part Of Body Code	Keep	Keep	Discard	Keep	Keep	Keep	Keep	Selected
Zip Code	Discard	Keep	Discard	Discard	Keep	Keep	Keep	Not Selected
Age_Grou p	Keep	Keep	Discard	Discard	Discard	Discard	Discard	Not Selected
Injury Group	Кеер	Keep	Discard	Discard	Keep	Discard	Discard	Not Selected
Body Part Group	Keep	Keep	Discard	Keep	Keep	Keep	Keep	Selected
Nature of Injury Group	Keep	Keep	Discard	Keep	Discard	Discard	Discard	Not Selected
Industry Group	Кеер	Keep	Discard	Discard	Keep	Keep	Discard	Not Selected

Source: Authors.

Table 8: Models Explanation

Models	Explanation			
Random Forest	To enhance classification performance, this ensemble learning			
	technique combines several decision trees. With the help of feature			
	selection and random sampling, it reduces overfitting and produces			
	reliable predictions when working with big datasets			
Logistic Regression	A straightforward and understandable linear model that works well			
	for binary classification applications. It struggled with the dataset's			
	class imbalance and lacked the complexity required to get top			
	results, despite its adequate performance			
Neural Networks	To represent non-linear correlations in data, this model makes use			
	of interconnected layers of nodes. Despite its adaptability, it			
	underperformed in our investigation because of insufficient fine-			
	tuning and required a large amount of processing resources			
Naive Bayes	A probabilistic model that assumes feature independence and is			
	based on Bayes' theorem. Although computationally efficient, it			
	fared worse than more sophisticated approaches and had trouble			
	with feature correlations			
LightGBM	A gradient-boosting system made to be quick and effective,			
	particularly when working with big datasets. LightGBM produced			
	outstanding outcomes, showcasing its ability to manage intricate			
	patterns and unbalanced data			
XGBoost	Another potent gradient-boosting technique that is renowned for			
	its precision and effectiveness. With its outstanding performance,			
	XGBoost demonstrated its capacity to manage imbalanced classes			
	and a variety of feature interactions			
Decision Tree	In order to generate predictions, the Decision Tree model divides			
	data into subsets according to feature values, creating a structure			
	resembling a tree. It offers insights on feature relevance and			
	performs well with non-linear data. It is interpretable and intuitive,			
	although it is prone to overfitting, which can be lessened by			
	methods like tree depth limitation or pruning.			

Source: Authors.

Section E: Metrics Calculation for each model

Table 9: Metrics Calculation for each model (validation set results sorted by f1 score)

Model	Precision	Recall	F1 Score	Kaggle Score
LightGBM	0,4770	0,4627	0,4599	0,4103
XGBoost	0,4479	0,4835	0,4556	0,3926
Random Forest	0,3804	0,5205	0,4095	0,3260
Decision Tree	0,3349	0,3986	0,3484	0,2431
Neural Networks	0,3197	0,5034	0,3208	0,2453
Logistic	0,2877	0,5224	0,2750	0,1949
Regression				
Nayve Bayes	0,2617	0,3976	0,2069	0,1676

Source: Authors.

Table 10: Metrics Calculation for each model with optimizations (validation set results sorted by f1 score)

Model	Precision	Recall	F1 Score	Kaggle Score
Grid Search	0,4577	0,4766	0,4592	0,4075
XGBoost				
Grid Search	0,4521	0,4727	0,4524	0,4103
LightGBM				
Grid Search	0,4133	0,4823	0,4325	0,341
Random Forest				

Source: Authors.

NOTE: Where is our Git Hub repository: https://github.com/joaopr03/ml