

A travel agency wants an automated system to predict travel costs. The agency has the following data available with it.

		(x) Table I	I (4)	Regression
	S. No.	Distance	Travelling Cost	No resident
		(in Km)	(in Rupees)	
72' 71 ² 71 ³	1	1	2.75	
n^2	2	2	3.5	
n^3	3	3	4.25	
24	4	4	5	
as	5	5	5.75	

Page 1 of 3

Formulate the above problem as a linear model $h(x) = w_0 + w_1 x$ to predict the travelling cost for a given distance. The parameter w_0 is 2 (optimal). Apply gradient descent algorithm to find optimal parameter w_1 . The learning rate for the first epoch is 0.073, and for the second epoch and later, the learning rate is 0.091. Let the initial value of w_1 is 0.5.

$$\Sigma = -13.75'$$
 $\Sigma (lo(x^{(i)}) - y^{(i)}) \gamma^{(i)}$

22 touth prepart same process with 01=0-9

dencar Repression with Health features

(g: House Prize Prediction features (rx)

Age Price (y)

Age Price (y)

Age Price (y)

Age 2.5

20 2.5

21 20 2.5

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \\ x_1 & x_2 & x_3 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^2 & \dots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \dots & x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^M & x_n^M & x_n^M & \dots & x_n^M \end{bmatrix}$$

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^2 & \dots & x_n^M \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^M & x_n^M & x_n^M & \dots & x_n^M \end{bmatrix}$$

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^2 & \dots & x_n^M \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^M & x_n^M & x_n^M & \dots & x_n^M \end{bmatrix}$$

$$X = \begin{bmatrix} x_1^1 & x_2^1 & x_3^2 & \dots & x_n^M \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^M & x_n^M & x_n^M & \dots & x_n^M \end{bmatrix}$$

Hypothisis

$$x_1 x_2 x_2 \dots x_n$$

$$y = h_0(\alpha) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$
 $h \in C$

weight assign

feature

$$\Theta = \begin{cases} \Theta & 0 \\ \Theta & 0$$

$$\Theta^{T} = \begin{bmatrix} \Theta_0 & \Theta_1 & \Theta_2 & \cdots & \Theta_n \end{bmatrix}$$
 $M : \begin{bmatrix} \gamma \omega \\ \gamma M \\ \alpha_2 \\ \vdots \\ \alpha_N \end{bmatrix}$

$$\frac{\partial J(\Theta)}{\partial \Theta_{j}} = \frac{\partial}{\partial \Theta_{j}} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right)} \right)} \right)} \right)} \right)} \right)$$

$$= \int_{0}^{\infty} \frac{\partial}{\partial x} \left(\frac{\partial \partial x_{0} + \partial x_{1} + \dots \partial y_{N}}{\partial x_{N}} + \dots \partial y_{N} + \dots \partial y_{N} \right)^{2}$$