PREDICTING HOUSE PRICE USING MACHINE LEARNING PHASE 2 DOCUMENT SUBMISSION

PROJECT MEMBERS:

- 1) S.KALAIMAGAL
- 2) J.PRISCA GLADYA
- 3) K.SARANYA
- 4) R.SANDHIYA

CONTENT FOR PHASE 2:

Consider exploring advanced regression techniques like gradient boosting or xgboost for improved prediction accuracy.

Predicting house prices using machine learning is a common and valuable application in the field of data science and real estate. To build a house price prediction model, have to follow these general steps:

1. DATA COLLECTION:

❖ Gather a dataset containing information about houses and their corresponding sale prices. Common sources include real estate websites, government housing data, or APIs.

2. DATA PREPROCESSING:

- Clean the dataset by handling missing values, outliers, and formatting issues.
- Encode categorical variables (like "neighborhood," "house type," etc.) into numerical values using techniques like one-hot encoding or label encoding.
- Split the dataset into a training set and a test set for model evaluation.

3. **FEATURE ENGINEERING**:

- ❖ Identify relevant features (attributes) that might influence house prices. You can use domain knowledge or feature importance techniques.
- Create new features if necessary, like calculating the age of the house from the construction year or combining features for better predictive power.

4. ADVANCED REGRESSION TECHNIQUES:

- * Ridge Regression: Introduce L2 regularization to mitigate multicollinearity and overfitting.
- **❖ Lasso Regression**: Employ L1 regularization to perform feature selection and simplify the model.
- **Elastic Net Regression**: Combine both L1 and L2 regularization to benefit from their respective advantages.
- *Random Forest Regression: Implement an ensemble technique to handle nonlinearity and capture complex relationships in the data.
- ❖ Gradient Boosting Regressors (e.g., XGBoost, LightGBM): Utilize gradient boosting algorithms for improved accuracy.

5. MODEL TRAINING:

- ❖ Train the chosen model on the training dataset using the selected features.
- ❖ Evaluate the model's performance using appropriate metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE).

6. MODEL EVALUATION:

- ❖ Assess the model's performance on the test dataset to check for overfitting or underfitting.
- Plot the predicted prices against the actual prices to visualize the model's accuracy.

7. HYPERPARAMETER TUNING:

❖ Fine-tune the model by adjusting hyperparameters (e.g., learning rate, tree depth, regularization strength) using techniques like grid search or random search.

8. MODEL DEPLOYMENT:

Once satisfied with the model's performance, deploy it in a production environment where it can be used to make predictions on new, unseen data.

9. MONITORING AND MAINTENANCE:

Continuously monitor the model's performance in the real world and retrain it periodically with updated data to maintain its accuracy.

10. INTERPRETABILITY:

❖ Depending on the model chosen, consider methods for interpreting and explaining predictions to users, especially if the model is used in a real estate business context.

DATA SOURCE:

A good data source for house price prediction using machine learning should be Accurate, Complete, Covering the geographic area of interest, Accessible.

Dataset Link: (https://www.kaggle.com/datasets/vedavyasv/usa-housing)

Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
79545.45857	5.682861322	7.009188143	4.09	23086.8005	1059033.56	208
79248.64245	6.002899808	6.730821019	3.09	40173.07217	1505890.91	188
61287.06718	5.86588984	8.51272743	5.13	36882.1594	1058987.99	9127
63345.24005	7.188236095	5.586728665	3.26	34310.24283	1260616.81	USS
59982.19723	5.040554523	7.839387785	4.23	26354.10947	630943.489	USNS
80175.75416	4.988407758	6.104512439	4.04	26748.42842	1068138.07	06039
64698.46343	6.025335907	8.147759585	3.41	60828.24909	1502055.82	4759
78394.33928	6.989779748	6.620477995	2.42	36516.35897	1573936.56	972 Joyce
59927.66081	5.36212557	6.393120981	2.3	29387.396	798869.533	USS
81885.92718	4.42367179	8.167688003	6.1	40149.96575	1545154.81	Unit 9446
80527.47208	8.093512681	5.0427468	4.1	47224.35984	1707045.72	6368
50593.6955	4.496512793	7.467627404	4.49	34343.99189	663732.397	911
39033.80924	7.671755373	7.250029317	3.1	39220.36147	1042814.1	209
73163.66344	6.919534825	5.993187901	2.27	32326.12314	1291331.52	829
69391.38018	5.344776177	8.406417715	4.37	35521.29403	1402818.21	PSC 5330,
73091.86675	5.443156467	8.517512711	4.01	23929.52405	1306674.66	2278
79706.96306	5.067889591	8.219771123	3.12	39717.81358	1556786.6	064
61929.07702	4.788550242	5.097009554	4.3	24595.9015	528485.247	5498
63508.1943	5.94716514	7.187773835	5.12	35719.65305	1019425.94	Unit 7424
62085.2764	5.739410844	7.091808104	5.49	44922.1067	1030591.43	19696
86294.99909	6.62745694	8.011897853	4.07	47560.77534	2146925.34	030 Larry
60835.08998	5.551221592	6.517175038	2.1	45574.74166	929247.6	USNS
64490.65027	4.21032287	5.478087731	4.31	40358.96011	718887.232	95198
60697.35154	6.170484091	7.150536572	6.34	28140.96709	743999.819	9003 Jay
59748.85549	5.339339881	7.748681606	4.23	27809.98654	895737.133	24282

PROGRAM: HOUSE PRICE PREDICTION

Importing Dependencies

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error

```
from sklearn.linear model import LinearRegression
from sklearn.linear model import Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
import xgboost as xg
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
/opt/conda/lib/python3.10/site-packages/scipy/_init_.py:146:
UserWarning: A NumPy
version >=1.16.5 and <1.23.0 is required for this version of SciPy
(detected version
1.23.5
warnings.warn(f"A NumPy version >={np minversion} and
<{np_maxversion}"
Loading Dataset
dataset = pd.read_csv('E:/USA_Housing.csv')
Model 1 - Linear Regression
In [1]:
model_Ir=LinearRegression()
In [2]:
model lr.fit(X train scal, Y train)
```

```
Out[2]:
           LinearRegression
        LinearRegression()
Predicting Prices
In [3]:
Prediction1 = model_lr.predict(X_test_scal)
Evaluation of Predicted Data
In [4]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction1, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')
Out[4]:
Text(0.5, 1.0, 'Actual vs Predicted')
```


In [5]:
sns.histplot((Y_test-Prediction1), bins=50)
Out[5]:

<Axes: xlabel='Price', ylabel='Count'>


```
In [6]:
print(r2_score(Y_test, Prediction1))
print(mean absolute error(Y test, Prediction1))
print(mean_squared_error(Y_test, Prediction1))
Out[6]:
0.9182928179392918
82295.49779231755
10469084772.975954
Model 2 - Support Vector Regressor
In [7]:
model_svr = SVR()
In [8]:
model_svr.fit(X_train_scal, Y_train)
Out[8]:
          SVR()
Predicting Prices
In [9]:
Prediction2 = model_svr.predict(X_test_scal)
Evaluation of Predicted Data
In [10]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
```

plt.plot(np.arange(len(Y_test)), Prediction2, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')
Out[10]:

Text(0.5, 1.0, 'Actual vs Predicted')

In [11]:
sns.histplot((Y_test-Prediction2), bins=50)
Out[12]:

<Axes: xlabel='Price', ylabel='Count'>


```
In [12]:

print(r2_score(Y_test, Prediction2))

print(mean_absolute_error(Y_test, Prediction2))

print(mean_squared_error(Y_test, Prediction2))

-0.0006222175925689744

286137.81086908665

128209033251.4034

Model 3 - Lasso Regression

In [13]:

model_lar = Lasso(alpha=1)

In [14]:

model_lar.fit(X_train_scal,Y_train)

Out[14]:
```

Lasso
Lasso(alpha=1)

```
Predicting Prices
In [15]:
Prediction3 = model_lar.predict(X_test_scal)
Evaluation of Predicted Data
In [16]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction3, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')
Out[16]:
```

Text(0.5, 1.0, 'Actual vs Predicted')

In [17]:

sns.histplot((Y_test-Prediction3), bins=50)

Out[17]:

<Axes: xlabel='Price', ylabel='Count'>

In [18]:

print(r2_score(Y_test, Prediction2))

print(mean_absolute_error(Y_test, Prediction2))

print(mean_squared_error(Y_test, Prediction2))

-0.0006222175925689744

286137.81086908665

128209033251.4034

Model 4 - Random Forest Regressor

In [19]:

model_rf = RandomForestRegressor(n_estimators=50)

In [20]:

model_rf.fit(X_train_scal, Y_train)

Out[20]: RandomForestRegressor RandomForestRegressor(n_estimators=50) **Predicting Prices** In [21]: Prediction4 = model_rf.predict(X_test_scal) **Evaluation of Predicted Data** In [22]: plt.figure(figsize=(12,6)) plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend') plt.plot(np.arange(len(Y_test)), Prediction4, label='Predicted Trend') plt.xlabel('Data') plt.ylabel('Trend') plt.legend() plt.title('Actual vs Predicted') Out[22]: Text(0.5, 1.0, 'Actual vs Predicted')

In [23]:

sns.histplot((Y_test-Prediction4), bins=50)

Out[23]:

<Axes: xlabel='Price', ylabel='Count'>

In [24]:

print(r2_score(Y_test, Prediction2))

print(mean_absolute_error(Y_test, Prediction2))

print(mean_squared_error(Y_test, Prediction2))

Out [24]:

-0.0006222175925689744

286137.81086908665

128209033251.4034

Model 5 - XGboost Regressor

In [25]:

model_xg = xg.XGBRegressor()

```
In [26]:
model_xg.fit(X_train_scal, Y_train)
Out[26]:
XGBRegressor
XGBRegressor(base score=None, booster=None, callbacks=None,
colsample bylevel=None, colsample bynode=None,
colsample bytree=None, early_stopping_rounds=None,
enable categorical=False, eval metric=None, feature types=None,
gamma=None, gpu_id=None, grow_policy=None,
importance type=None,
interaction_constraints=None, learning_rate=None, max_bin=None,
max cat threshold=None, max cat to onehot=None,
max delta step=None, max depth=None, max leaves=None,
min child weight=None, missing=nan, monotone constraints=None,
n_estimators=100, n_jobs=None, num_parallel_tree=None,
predictor=None, random state=None, ...)
Predicting Prices
In [27]:
Prediction5 = model xg.predict(X test scal)
Evaluation of Predicted Data
In [28]:
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y test)), Y test, label='Actual Trend')
```

plt.plot(np.arange(len(Y_test)), Prediction5, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')

Out[28]:

Text(0.5, 1.0, 'Actual vs Predicted')

In [29]:

sns.histplot((Y_test-Prediction4), bins=50)

Out[29]:

<Axes: xlabel='Price', ylabel='Count'>

In [30]:
print(r2_score(Y_test, Prediction2))
print(mean_absolute_error(Y_test, Prediction2))
print(mean_squared_error(Y_test, Prediction2))

Out [30]:

-0.0006222175925689744

286137.81086908665

128209033251.40

PHASE 2 CONCLUSION:

In the Phase 2 conclusion, we will summarize the key findings and insights from the advanced regression techniques. We will reiterate the impact of these techniques on improving the accuracy and robustness of house price predictions.