\mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 27 puntos \mathcal{M} arzo de 2 008

\mathcal{I} Examen \mathcal{P} arcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

1. Sean $x \in \mathbb{R}$ y las matrices reales A, B y C, definidas como: (3 pts)

$$A = \begin{pmatrix} x & -3 & 0 \\ 2 & 5 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 5 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} -11 & -1 \\ 29 & 8 \end{pmatrix}$$

Encuentre el valor x, de manera que se satisfaga la igualdad $AB^t = C$

- 2. Si A y B son matrices invertibles y det(A) = 5, calcule $det(B^{-1}AB)$ (3 pts)
- 3. Si la matriz A está definida como $A=\begin{pmatrix}1&0&1\\0&1&1\\1&0&1\end{pmatrix}$, demuestre que $\forall n\in\mathbb{N}$ se cumple el siguiente resultado:

$$A^{n} = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 2^{n-1} - 1 & 1 & 2^{n-1} \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}$$

4. Determine, en caso de existir, A^{-1} si se tiene que $A = \begin{pmatrix} 1 & 0 & -2 \\ 5 & 4 & -1 \\ -4 & -3 & 1 \end{pmatrix}$ (4 pts)

- 5. Sea A una matriz de tamaño $n \times n$. Si B es la matriz que se obtiene a partir de A luego de multiplicar la j-ésima fila de A por un número real λ . Utilice la definición que permite hallar el determinante de una matriz y demuestre que $det(B) = \lambda \cdot det(A)$ (4 pts)
- 6. Se dice que una matriz A es simétrica si $A^t = A$ y que es antisimétrica si $A^t = -A$

(a) Verifique que la matriz
$$B = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -4 \\ 3 & 4 & 0 \end{pmatrix}$$
 es antisimétrica. (1 pto)

- (b) Demuestre que si A es antisimétrica, entonces A^2 es simétrica. (3 pts)
- 7. Utilizando el método de Gauss-Jordan, determine el conjunto solución y una solución particular del siguiente sistema de ecuaciones lineales: (5 pts)

$$\begin{cases}
-2x + 2y - 3z - w = -1 \\
x - y + 2z + 3w = 10 \\
z + 7w = 1
\end{cases}$$