Learning Objectives

- <u>Understand</u> and <u>generate</u> frequency tables of raw data
- <u>Describe</u> rationale for frequency tables, grouped distributions
- <u>Balance</u> between needed *simplicity* in data presentations vs. *accuracy* in data presentations
- <u>Compare/Contrast</u> different methods of visualizing data (including their implied meanings)

Raw Score Distribution (pp 48)

95	57	76	93	86	80	89
76	76	63	74	94	96	77
65	79	60	56	72	82	70
67	79	71	77	52	76	68
72	88	84	70	83	93	76
82	96	87	69	89	77	81

table 3.1 Scores from statistics exam (N = 70)

Frequency Distribution

table 3.2 Scores from Table 3.1 organized into a frequency distribution

Score	f	Score	f	Score	f	Score	f
99	1	85	0	71	1	57	1
98	0	84	1	70	2	56	2
97	0	83	1	69	1	55	0
96	2	82	5	68	1	54	1
95	1	81	2	67	2	53	0
94	1	80	1	66	1	52	1
93	3	79	3	65	2	51	0
92	1	78	2	64	0	50	0
91	0	77	4	63	2	49	0
90	1	76	6	62	1	48	0
89	2	75	1	61	0	47	0
88	1	74	2	60	1	46	1
87	2	73	1	59	0		
86	2	72	3	58	1		

Grouped Frequency Distributions

table 3.3 Scores from Table 3.1 grouped into class intervals of different widths

Class Interval (width = 2)	f	Class Interval (width = 19)	f
98–99	1	95–113	4
96–97	2	76–94	38
94–95	2	57-75	23
92-93	4	38-56	5
90-91	1		$N = \overline{70}$
88-89	3		
86–87	4		
84-85	1		
82-83	6		
80-81	3		
78–79	5		
76–77	10		
74–75	3		
72–73	4		

Grouped Frequency Distributions

- Communication tool that help simplify our data, but...
 - Too few "groups" can oversimplify
 - Too many groups are difficult to process

- How do we choose the right level of simplicity?
 - Ultimate goal: Let humans understand...
 - Choose intrinsically meaningful intervals when possible
 - 5-10
 - Square root of N

table 3.7 Relative frequency, cumulative frequency, and cumulative percentage distributions for the grouped scores in Table 3.4

Class Interval	f	Relative f	Cumulative f	Cumulative %
95–99	4	0.06	70	100
90–94	6	0.09	66	94.29
85–89	7	0.10	60	85.71
80-84	10	0.14	53	75.71
75–79	16	0.23	43	61.43
70–74	9	0.13	27	38.57
65–69	7	0.10	18	25.71
60-64	4	0.06	11	15.71
55–59	4	0.06	7	10.00
50-54	2	0.03	3	4.29
45-49	1	0.01	1	1.43
	70	1.00		

Translations

• "f" = frequency

- "Relative" just means 'frequency divided by N'
 - Proportion of all observations in one group

 "Cumulative" means frequency of observations at or below this groups upper real limit

Class Interval	f
95_99	4
90-94	6
85–89	7
80-84	10
75–79	16
70–74	9
65–69	7
60-64	4
55-59	4
50-54	2
45-49	1
	70

- 1. What was the most frequent observation?
- 2. What is the *relative*frequency of scores
 between 70 and 79?
- 3. What is the *cumulative frequency* for the group 65-69?

Figures or Tables?

- Either can work, but try both & see what human readers intuit most easily!!
- Types of Figures:
 - Bar graph
 - Histogram
 - Frequency polygon
 - Smoothed frequency distribution

Bar Graph (pp 63)

figure 3.3 Bar graph: Students enrolled in various undergraduate majors in a college of arts and sciences.

• Note: What is implied by disconnected bars?

Histogram (pp 64)

figure 3.4 Histogram: Statistics exam scores of Table 3.4.

Note: 'Squiggle' on the left side indicates that the x-axis has been stretched

Frequency Polygon (pp 65)

figure 3.5 Frequency polygon: Statistics exam scores of Table 3.4.

Note: What is tacitly implied by this plot?

Me? I'm a *smooth* dude...

 Note: Smoothing increases simplicity, but can reduce precision if overdone

Distribution shapes

- The shape of distributions often reveals important information
 - Many statistics require certain shapes
 - Ideal distribution: Bell curve w/symmetry & unimodal

Skew

Or, statisticians are weird, so "just think the opposite"

Mathematics Review

Order of operations:

- 1. Parentheses
- 2. Exponents
- 3. Division
- 4. Multiplication
- 5. Summation
- 6. Addition
- 7. Subtraction

Examples:

$$x^2$$
, x^2 , or \sqrt{x}

$$x/2$$
 or $\frac{x}{2}$

$$x*2$$
 or $x \times 2$

$$\sum x$$

$$x + 2$$

$$x - 2$$

Summation

Summation is very common operation in statistics

"Find the sum of scores for variable X, from i = 1 to i = N"

$$\sum_{i=1}^{N} X_i$$

$$X_1 + X_2 + X_3 + X_4 + \dots X_N$$

Summation

Summation is very common operation in statistics

"Find the sum of scores for variable X, from i = 1 to i = N"

$$X_1 + X_2 + X_3 + X_4 + \dots X_N$$

...the Greek letter "sigma" makes me feel...

1 ('at ease') – 10 ('very anxious')

$$N = 66$$

Sample of 5 participants for math review

Example...the letter "sigma" makes me feel...

$$X_1 = 9$$

$$X_1 = 9$$

 $X_2 = 5$

What is: $\sum_{i=1}^{N} X_i$

Participant ID	DV
1	9
2	5
3	10
4	5
5	10

How about: $\sum_{i=1}^{3} X_i$

Fortunately, we'll mostly use ΣX_i

Sum of Squares

Only 1 change:

$$\sum X_i^2$$

Remember order of operations!!

Participant ID	DV (x)	x ²
1	9	81
2	5	25
3	10	100
4	5	25
5	10	100

Answer: 81 + 25 + 100 + 25 + 100 = 331

Now, calculate $(\Sigma X_i)^2$

Answer: $(9 + 5 + 10 + 5 + 10)^2 = 39^2 = 1521$