Example Tables

Calvin Whealton

February 4, 2016

List of Tables

1	A table where only the table values are written, not the caption,	
	label, and horizontal lines at the beginning and end of the table.	2
2	OLS table all from R	2
3	OLS table all from R, no Constant	3
4	A nonlinear least squares regression table with the center com-	
	ponents written from R	3
5	NLS table all from R	3
6	A Quantile regression table from R for a linear model	4
7	Quantile regression table all from R	4

This is an example file showing how regression tables from R can be imported into LATeXusing the code available on https://github.com/calvinwhealton/R_tables_to_LaTeX.

1 Ordinary Least Squares

Table 1: A table where only the table values are written, not the caption, label, and horizontal lines at the beginning and end of the table.

SSE	87.9		DoF	97
SSR	2222.92		R2	0.962
SST	2310.82		Adj.R2	0.9608
RSE	0.952			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
(Intercept)	4.467e + 00	2.763e-01	1.616e + 01	2.834e-29
x1	5.594 e-01	5.762 e-02	9.708e + 00	5.733e-16
x2	2.046e+00	4.889e-02	4.184e + 01	7.003e-64

Table 2: A table that is entirely written from R including captions (long and short) and label.

SSE	87.9		DoF	97
SSR	2222.92		R2	0.962
SST	2310.82		Adj.R2	0.9608
RSE	0.952			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
b0	4.467e + 00	2.763e-01	1.616e + 01	2.834e-29
bx1	5.594 e-01	5.762 e-02	9.708e + 00	5.733e-16
bx2	2.046e+00	4.889e-02	4.184e+01	7.003e-64

2 Nonlinear Least Squares

3 Quantile Regression

Table 3: A table that is entirely written from R including captions (long and short) and label. There is no constant in this model.

SSE	324.67		DoF	98
SSR	3708.83		R2	0.8595
SST	2310.82		Adj.R2	0.8566
RSE	1.82			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
cx1	1.018e+00	9.588e-02	1.062e+01	5.537e-18
cx2	2.496e+00	7.688e-02	3.246e + 01	3.078e-54

Table 4: A nonlinear least squares regression table with the center components written from R.

SSE	94.26		DoF	97
SSR	122.68		$R2_star$	0.5654
SST	216.91			
RSE	0.986			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
c0	5.089e+00	2.983e-01	1.706e+01	5.837e-31
c1	1.071e-01	2.579e-02	4.153e+00	7.06e-05
c2	1.851e + 00	1.989e-01	9.304e+00	4.28e-15

Table 5: Nonlinear regression table written from R. Model is $y = \mu + \exp(\alpha x_1) + \beta \ln(x_2)$. The caption includes mathematical notation.

SSE	94.26		DoF	97
SSR	122.68		$R2_star$	0.5654
SST	216.91			
RSE	0.986			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
$\overline{\mu}$	5.089e+00	2.983e-01	1.706e + 01	5.837e-31
α	1.071e-01	2.579e-02	4.153e + 00	7.06e-05
β	1.851e + 00	1.989e-01	9.304e+00	4.28e-15

Table 6: A Quantile regression table from R for a linear model. AE is for the absolute error and the number represents the percentile.

AE 0.10	0.175		DoF	100
AE 0.25	0.425		MAE	0.827
AE 0.50	0.813		pseudoR2	0.9833
AE 0.75	1.221		Reps.	5000
AE 0.90	1.521			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
(Intercept)	5.113e+00	5.871e-01	8.709e+00	3.067e-18
x1	0e + 00	0e + 00	0e + 00	0e + 00
x2	0e + 00	0e + 00	0e + 00	0e + 00

Table 7: A quantile regression table from R.

AE 0.10	0.175		DoF	97
AE 0.25	0.425		MAE	0.827
AE 0.50	0.813		pseudoR2	0.9833
AE 0.75	1.221		Reps.	5000
AE 0.90	1.521			
Variable	Est. Coeff.	Std. Error	t Stat.	$\Pr(> t)$
b0	5.113e+00	5.871e-01	8.709e+00	3.067e-18
bx1	4.958e-01	6.786 e- 03	7.307e + 01	0e + 00
bx2	2.002e+00	6.164 e-03	3.247e + 02	0e+00