Compito di MDAL 2 Febbraio 2017

Cognome e nome:

..... Corso e Aula:

Numero di matricola:

usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere <u>IMPORTANTE:</u> Non si possono consultare libri e appunti. Non si possono a matita. Motivare in modo chiaro le risposte.

Esercizio 1. Siano $v_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$

a. Si trovi un vettore $v \in \mathbb{R}^3$ ortogonale a v_1 e v_2 .

b. Si trovi una base ortogonale (q_1, q_2) di $V = \text{span}\{v_1, v_2\}$.

c. Si completi q_1,q_2 a una base ortogonale di \mathbb{R}^3

$$Ω_{\bullet}$$
 $η_{-}\begin{bmatrix} x \\ y \end{bmatrix}$ deur soddingfore $\begin{bmatrix} 1 & 2 - 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} = 0$
 $[2 & -2] = [2 & -2] = [2 & -2] = [2 & -2] = [2 & -8x_3] = 0$
 $[2 & -2] = [2 & -2] = [2 & -2] = [2 & -8x_3] = 0$

$$[2 & -8] = [2 & -8] = [2 & -2$$

$$q_{2} = \sqrt{3} - \sqrt{4} + \sqrt{2} = \left[\frac{2}{3} - \frac{1}{3} - \frac{1}{3} \right] \left[\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right] = \frac{2}{3} - \frac{2}{3} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = \frac{1}{$$

abbisons diespo solo subjende Mornalittore Un qualunque multiple d. Gr 175 bene 79,92, V] sono ortogonali. Sono anche Cinearmente indipendenti (ortogonale =0 lin indipendente), puindi C. Il vettore V & ortogonale o U, V2, a andre a q= Uz-3U, Partouto; vettori Meessons). 11

son une base di P3.

Esercizio 2.

Rispondere alle seguenti domande motivando la risposta.

- Si trovi una matrice 2×2 a coefficienti reali che non è diagonalizzabile su R ma è diagonalizzabile su C.
- b. Si trovi una matrice 2×2 a coefficienti reali tale che $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ sia un suo autovettore di autovalore $\lambda_1 = 5$.
- Esiste una matrice 3×3 a coefficienti reali con un autovalore λ_1 = 5 di molteplicità geometrica 2 e un autovalore $\lambda_2=4$ anch'esso di molteplicità geometrica 2?

diagnoliteabile in R perché von la titte gli autovalori realis.

beni quelluque matrice B tale che B[1]=[5]. motina if ai polinomia conofonistic B[1]=[5]. t diagonalitabile in olet (A-xI)= x2+1 rodici complesse X12= II. benn quellungue due solutions a. Bash Hovere Jue abbia d

abeR. Per exempio, per quelche

3, goings non a possibile e Ma (4) > Mg(4)=2 Lolle moltoplicité alpebricle gli autovolori è por alle dimensione, creè C) No, perché ma (5) 2 mg (5)=2 WW & MO