Recap

- Description of defects in crystalline materials
 - Higher dimensional defects Various Interfaces
 - One-dimensional defects Dislocations
 - Point defects
- Vacancies in a metallic crystal
 - Entropy of configuration leads to eqm. conc.
 - Temperature dependence of this conc.

Defects in Ionic/Covalent

Additional Reading Section 5.5 and 5.6

Physical Chemistry of Ionic Materials

Ions and Electrons in Solids

JOACHIM MAIER

WILEY

Materials

Metallic vs Ionic crystals

Metallic vs Ionic crystals

Defects in Ionic Crystals

Local Electroneutrality demands that:

Nil

⇒ Positive Defect + Negative Defect

$$\left(\frac{n_{d+}}{n_{+}}\right) \times \left(\frac{n_{d-}}{n_{-}}\right) = exp - \frac{\Delta G_{m}^{*}}{RT}$$

Composed of bonding and vibrational properties of the defect pair

Many other possibilities for defects exist

Types of Defects in Ionic Crystals

Stoichiometric

Non-stoichiometric

Specific to ionic materials

Electronic

Extrinsic doping——— Common to all materials

Stoichiometric defects

- Internal defect reactions
- Cation to anion ratio maintained in the crystal
 - Remove an ion from its' site and place it at a different site, but within the crystal lattice
 - Frenkel
 - Anion Frenkel
 - Remove/add cations and anions in pairs from their sites/ surfaces and place them in surface/interstitial positions
 - Schottky
 - Anti-Schottky

Frenkel Defect Pair Formation

$$\begin{bmatrix} \begin{bmatrix} Ag^{+} & Cl^{-} \end{bmatrix} & Ag^{+} & Cl^{-} \\ [Cl^{-} & Ag^{+} \end{bmatrix} & Cl^{-} & Ag^{+} \\ Ag^{+} & Cl^{-} \end{bmatrix} \Rightarrow \begin{bmatrix} \begin{bmatrix} Cl^{-} & Ag^{+} & Cl^{-} \\ [Cl^{-} & Ag^{+} \end{bmatrix} & Cl^{-} & Ag^{+} \\ Ag^{+} & Cl^{-} \end{bmatrix} & Ag^{+} & Cl^{-} \end{bmatrix} Ag^{+} & Cl^{-} \end{bmatrix}$$

$$Cl^{-} & Ag^{+} \end{bmatrix} \begin{bmatrix} Cl^{-} & Ag^{+} \end{bmatrix} \begin{bmatrix} Cl^{-} & Ag^{+} \end{bmatrix} \begin{bmatrix} Cl^{-} & Ag^{+} \end{bmatrix}$$

Considering only the sections that have changed

$$\begin{bmatrix} \mathsf{A}\mathsf{g}^+ & \mathsf{Cl}^- \\ \mathsf{Cl}^- & \mathsf{A}\mathsf{g}^+ \end{bmatrix}^0 + \begin{bmatrix} \mathsf{A}\mathsf{g}^+ & \mathsf{Cl}^- \\ \mathsf{Cl}^- & \mathsf{A}\mathsf{g}^+ \end{bmatrix}^0 = \begin{bmatrix} \mathsf{Cl}^- \\ \mathsf{Cl}^- & \mathsf{A}\mathsf{g}^+ \end{bmatrix}^- + \begin{bmatrix} \mathsf{A}\mathsf{g}^+ & \mathsf{Cl}^- \\ \mathsf{A}\mathsf{g}^+ \\ \mathsf{Cl}^- & \mathsf{A}\mathsf{g}^+ \end{bmatrix}^+.$$

$$-4 \, \mathsf{A}\mathsf{g}\mathsf{C}\mathsf{I}$$

$$Nil \leftrightarrow \mathsf{A}\mathsf{g}^\bullet + \left| \mathsf{A}\mathsf{g} \right|'$$

Notation for defects - Kröger-Vink

General Format : M_s^c

- M corresponds to the structural element
 - Atoms
 - Vacancies
 - electrons/holes
- S Lattice site that the structural element occupies
 - Regular site
 - Interstice
- C Charge of the defect relative to site that it occupies

Kröger-Vink notation - AgCl

 $V'_{Ag} \Rightarrow \text{Vacancy on a silver site}$

 $V_{Cl}^{\bullet} \Rightarrow \text{Vacancy on a chlorine site}$

 $Ag_i^{\bullet} \Rightarrow \text{Silver Interstitial}$

 $Cl'_i \Rightarrow \text{Chlorine interstitial}$

The Frenkel defect reaction becomes: $Ag_{Ag}^{x} + V_{i}^{x} \rightleftharpoons Ag_{i}^{\bullet} + V_{Ag}^{\prime}$

Mass Action Law - Frenkel defect

where
$$K_F = exp(-\frac{\Delta_F G^0}{RT})$$

$$[Ag_{i}^{\bullet}] \left[V_{Ag}^{'} \right] = \alpha N^{2} \times K_{F}$$

 $N \rightarrow \text{No. of atomic sites/cc}$ $\alpha \rightarrow \text{Interstitial/atomic}$

electroneutrality:
$$[Ag_i^{\bullet}] = [V'_{Ag}] = \sqrt{K_F(T)} \times N\sqrt{\alpha}$$

where
$$K_F = exp(-\frac{\Delta_F G^0}{RT})$$
 10³T⁻¹/K⁻¹

$$\implies \left[Ag_i^{\bullet}\right] = \left[V_{Ag}^{\prime}\right] = N\sqrt{\alpha \times K_F} = \exp\left(\frac{\Delta S_F^0}{2R}\right) \exp\left(-\frac{\Delta H_F^0}{2RT}\right)$$

where
$$K_F = exp(-\frac{\Delta_F G^0}{RT})$$
 10³T⁻¹/K⁻¹

$$\implies \left[Ag_i^{\bullet}\right] = \left[V_{Ag}^{'}\right] = N\sqrt{\alpha \times K_F} = \exp\left(\frac{\Delta S_F^0}{2R}\right) \exp\left(-\frac{\Delta H_F^0}{2RT}\right)$$

$$\Delta S_F^0 \approx 9.4R$$

where
$$K_F = exp(-\frac{\Delta_F G^0}{RT})$$
 10³T⁻¹/K⁻¹

$$\implies \left[Ag_i^{\bullet}\right] = \left[V_{Ag}^{'}\right] = N\sqrt{\alpha \times K_F} = \exp\left(\frac{\Delta S_F^0}{2R}\right) \exp\left(-\frac{\Delta H_F^0}{2RT}\right)$$

$$\Delta S_F^0 \approx 9.4R$$

where
$$K_F = exp(-\frac{\Delta_F G^0}{RT})$$
 10³T⁻¹/K⁻¹

$$\implies \left[Ag_i^{\bullet}\right] = \left[V_{Ag}^{\prime}\right] = N\sqrt{\alpha \times K_F} = \exp\left(\frac{\Delta S_F^0}{2R}\right) \exp\left(-\frac{\Delta H_F^0}{2RT}\right)$$

$$\Delta S_F^0 \approx 9.4R$$

Schottky defect - NaCl

$$\begin{bmatrix} & N\mathbf{a}^{+} & \mathbf{Cl}^{-} \\ & & \\ & \mathbf{Cl}^{-} & \mathbf{Na}^{+} \end{bmatrix} + \begin{bmatrix} & N\mathbf{a}^{+} & \mathbf{Cl}^{-} \\ & & \\ & \mathbf{Cl}^{-} & \mathbf{Na}^{+} \end{bmatrix} = \begin{bmatrix} & \mathbf{Cl}^{-} \\ & & \\ & \mathbf{Cl}^{-} & \mathbf{Na}^{+} \end{bmatrix}^{-} + \begin{bmatrix} & N\mathbf{a}^{+} & \mathbf{Cl}^{-} \\ & & & \\ & & \mathbf{Na}^{+} \end{bmatrix}^{+} + \mathbf{NaCl}$$

Building Element Notation:

$$Nil \leftrightarrow |Na|' + |Cl|' = NaCl$$

Kroger-Vink Notation:

$$Na_{Na}^{\times} + Cl_{Cl}^{\times} + V_{Na,S} + V_{Cl,S} \rightleftharpoons V_{Na}^{'} + V_{Cl}^{\bullet} + Na_{Na,S} + Cl_{Cl,S}$$

Mass Action Law - Schottky defect

Schottky reaction:

$$Na_{Na}^{\times} + Cl_{Cl}^{\times} + V_{Na,surf} + V_{Cl,surf} \rightleftharpoons V_{Na}^{'} + V_{Cl}^{\bullet} + Na_{Na,surf} + Cl_{Cl,surf}$$

electroneutrality:
$$[V_{Cl}^{\bullet}] = [V_{Na}'] = \sqrt{K_s(T)} \times N$$

$$\implies \left[V_{Cl}^{\bullet}\right] = \left[V_{Na}^{'}\right] = N\sqrt{K_S} = \exp\left(\frac{\Delta S_S^0}{2R}\right) \exp\left(-\frac{\Delta H_S^0}{2RT}\right)$$

$$\implies \left[V_{Cl}^{\bullet}\right] = \left[V_{Na}^{'}\right] = N\sqrt{K_S} = \exp\left(\frac{\Delta S_S^0}{2R}\right) \exp\left(-\frac{\Delta H_S^0}{2RT}\right)$$

$$\Delta S_S^0 \approx 9.8R$$

$$\implies \left[V_{Cl}^{\bullet}\right] = \left[V_{Na}^{'}\right] = N\sqrt{K_S} = \exp\left(\frac{\Delta S_S^0}{2R}\right) \exp\left(-\frac{\Delta H_S^0}{2RT}\right)$$

$$\Delta S_S^0 \approx 9.8R$$

$$\implies \left[V_{Cl}^{\bullet}\right] = \left[V_{Na}^{'}\right] = N\sqrt{K_S} = \exp\left(\frac{\Delta S_S^0}{2R}\right) \exp\left(-\frac{\Delta H_S^0}{2RT}\right)$$

$$\Delta S_S^0 \approx 9.8R$$

$$\implies \left[V_{Cl}^{\bullet}\right] = \left[V_{Na}^{'}\right] = N\sqrt{K_S} = \exp\left(\frac{\Delta S_S^0}{2R}\right) \exp\left(-\frac{\Delta H_S^0}{2RT}\right)$$

$$\Delta S_S^0 \approx 9.8R$$

Other stoichiometric internal reactions

Anti-Schottky

$$PbO + 2V_i^{\mathsf{x}} \rightleftharpoons Pb_i^{\bullet \bullet} + O_i''$$

Anion Frenkel

$$F_F^{\mathbf{x}} + V_i^{\mathbf{x}} \rightleftharpoons V_F^{\bullet} + F_i'$$

Electronic defects

Band-to-band:
$$e_{\text{VB}}^{\times} + h_{CB}^{\times} \rightleftharpoons h_{\text{VB}}^{\bullet} + e_{\text{CB}}^{'}$$

electroneutrality:
$$[e'] = [h^{\bullet}] = \sqrt{K_B(T)} \times N_c N_v$$

Internal Defect Reactions - MX

Defect creation processes occurring due to non-zero T without involvement of neighboring phases

Example Materials	Defect Rxn	Kroger-Vink Notation
AgCI	Frenkel (F)	$Ag_{Ag}^{\mathbf{x}} + V_{i}^{\mathbf{x}} \rightleftharpoons Ag_{i}^{\bullet} + V_{Ag}'$
NaCl	Schottky (S)	$Na_{Na}^{\mathbf{x}} + Cl_{Cl}^{\mathbf{x}} \rightleftharpoons V_{Cl}^{\bullet} + V_{Na}' + NaCl$
CsF	Anion- Frenkel (F)	$F_F^{\mathbf{x}} + V_i^{\mathbf{x}} \rightleftharpoons V_F^{\bullet} + F_i'$
PbO	Anti- Schottky (S̄)	$PbO + 2V_i^{\mathbf{x}} \rightleftharpoons Pb_i^{\bullet \bullet} + O_i''$
All	Band-Band (B)	$Nil ightleftharpoons h^ullet + e'$

Internal Defect Reactions - MX

Defect creation processes occurring due to non-zero T without involvement of neighboring phases

Example Materials	Defect Rxn	Kroger-Vink Notation	
AgCI	Frenkel (F)	$Ag_{Ag}^{\mathbf{x}} + V_{i}^{\mathbf{x}} \rightleftharpoons Ag_{i}^{\bullet} + V_{Ag}'$	
NaCl	Schottky (S)	$Na_{Na}^{\mathbf{x}} + Cl_{Cl}^{\mathbf{x}} \rightleftharpoons V_{Cl}^{\bullet} + V_{Na}' + NaCl$	
CsF	Anion- Frenkel (F)	$F_F^{\mathbf{x}} + V_i^{\mathbf{x}} \rightleftharpoons V_F^{\bullet} + F_i'$	Acid-ba
PbO	Anti- Schottky (\bar{S})	$PbO + 2V_i^{\mathbf{x}} \rightleftharpoons Pb_i^{\bullet \bullet} + O_i''$	
All	Band-Band (B)	$Nil ightleftharpoons h^ullet + e'$	Redox

Doping

Alloying

Example - Isovalent Substitutional

 Al_2O_3

 Cr_2O_3

Example - Isovalent Substitutional

 Al_2O_3

Cr₂O₃

Example - Isovalent Substitutional

Example - Isovalent Substitutional

Example - Isovalent Substitutional

Atoms with different valence than the site

Electro-neutrality

Atoms with different valence than the site

Electro-neutrality

lonic Compensation

Atoms with different valence than the site

Electro-neutrality

lonic Compensation Electronic Compensation

Class Test 3

(10 marks)

AgCl crystallizes in the cF lattice with a lattice parameter of 0.5622 nm. Cl forms the ccp framework with Ag in the octahedral interstices.

Defect	Formation enthalpy (k J. mol ⁻¹)	Formation entropy (kJ.mol ⁻¹)
Schottky	400	9.8R
Frenkel	140	9.4R

Determine the volume of AgCl at room temperature (T = 300 K) when you will find a single chlorine vacancy in the material.

Defect Reactions - Rules

Site relation:

- The number of M sites in a compound M_aX_b must always be in correct proportion to the number of X sites
- Total number of each type of site may change

Site creation:

Must not affect the site relation described in rule above

Mass balance:

Mass balance must be maintained as in any chemical reaction

Note: subscript in the defect symbol indicates the site under consideration and is of no significance for the mass balance

Electroneutrality:

- The crystal must remain electrically neutral
- Only neutral atoms or molecules are exchanged with other phases outside the crystal under consideration; within the crystal neutral particles can yield two or more oppositely charged defects

Surface sites:

Atom M displaced from the bulk to surface increases the number of M sites

Atoms with different valence than the site

Electro-neutrality

Atoms with different valence than the site

Electro-neutrality

lonic Compensation

Atoms with different valence than the site

Electro-neutrality

lonic Compensation Electronic Compensation

Anion Vacancies Solid Oxide Fuel Cell electrolyte

Anion Vacancies Solid Oxide Fuel Cell electrolyte

Cation Interstitials Solid electrolytes for Na-ion Batteries

Cation Interstitials Solid electrolytes for Na-ion Batteries

Sodium(Na) Super-Ionic (SI) Conductor (Con)

Cation Interstitials

Solid electrolytes for Na-ion Batteries

Sodium(Na) Super-Ionic (SI) Conductor (Con)

Cation Interstitials

Solid electrolytes for Na-ion Batteries

Sodium(Na) Super-Ionic (SI) Conductor (Con)

Cation Interstitials

Solid electrolytes for Na-ion Batteries

Sodium(Na) Super-Ionic (SI) Conductor (Con)

Dopant Material: $Na_4Zr_2 (SiO_4)_3$

Electronic compensation Li ion battery electrodes

Lithium Cobalt Oxide

Lithium-deficient Cobalt Oxide

Electronic compensation Solar Photovoltaic Absorber

 $Si \longrightarrow Ne 3s2 3p2$

 $Si \longrightarrow Ne 3s2 3p2$

 $P \longrightarrow Ne 3s2 3p3$

 $AI \rightarrow Ne 3s2 3pI$

Read other examples in Section 2.3.3. of A.R. West

Defect Clusters

- Interstitial Pt atom at octahedral site in fcc Pt
- Displaced towards top face Pt atom
- Displaces top face Pt atom
- Two Pt atoms on distorted interstitial site cluster

- Interstitial Fe atom at octahedral site in bcc Fe
- Displaced towards vertex Fe atom
- Displaces vertex Fe atom
- Two Fe atoms on distorted interstitial site - cluster

Defect Complexes in Oxides – UO₂

Electronic properties of materials

Concept of atomic and molecular orbitals, AO and MO

 MO to bands in crystalline solids - Tight binding, Free electron, and nearly free electron models

Metals, semiconductors, insulators

Electrical behaviour of metals and semiconductors

Section 3.3, 3.4, 8.1, 8.2, 8.4 in A.R. West

Class Test 4

(10 marks)

Consider ZrO_2 doped with 5 mol% CaO. The oxygen vacancy concentration has the following dependencies on the p_{O_2} :

Low (N):
$$\propto p_{O_2}^{-\frac{1}{6}}$$

Intermediate (I):
$$\propto p_{O_2}^0$$
, $>>>\sqrt{K_S}$

High (**P**):
$$\propto p_{O_2}^{-\frac{1}{2}}$$

Write down the appropriate Brouwer approximations that give such dependencies, and determine the prefactors that make the proportionalities above into equalities.