The Gaussian distribution

Linear models for regression

Reference

Inference

Joaquín Rapela

Gatsby Computational Neuroscience Unit University College London

July 14, 2023

Contents

The Gaussian distribution

Linear models for regression

Reference:

The Gaussian distribution

2 Linear models for regression

Main reference

The Gaussian distribution

Linear models for regression

Reference

I will mainly follow chapters two *Probability distributions* and three *Linear models for regression* from Bishop (2016).

Contents

The Gaussian distribution

Linear models for regression

References

- 1 The Gaussian distribution
- 2 Linear models for regression

References

One-dimensional

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi)^{\frac{1}{2}}(\sigma^2)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right\}$$

D-dimensional

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}\boldsymbol{\Sigma}^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

The Gaussian is the maximum entropy distribution (Cover and Thomas, 1991)

The Gaussian distribution

Linear models for regression

Reference:

Definition 1 (Differential entropy)

The differential entropy h(X) of a continuous random variable X with a density f(x) is defined as

$$h(X) = -\int_{S} f(X) \log f(x) \ dx$$

where S is the support set of the random variable.

Theorem 1 (The Gaussian is the maximum entropy distribution)

Let the random vector $X \in \mathbb{R}^n$ have zero mean and covariance K. Then $h(X) \leq \frac{1}{2} \log(2\pi e)^n |K|$, with equality if $X \sim \mathcal{N}(0, K)$.

The central limit theorem (Papoulis and Pillai, 2002)

The Gaussian distribution

Linear models for regression

Reference

Theorem 2 (The central limit theorem)

Given n independent and identically distributed random vectors \mathbf{X}_i , with mean vector $\boldsymbol{\mu} = E\{\mathbf{X}_i\}$ and covariance matrix $\boldsymbol{\Sigma}$. Then

$$\sqrt{n}(\mathbf{\bar{X}}_n - \boldsymbol{\mu}) o \mathcal{N}(0, \Sigma)$$

with convergence in distribution.

Very useful properties of the Gaussian distribution (Bishop, 2016)

The Gaussian distribution

Linear models for regression

References

Theorem 3 (Marginals and conditionals of Gaussians are Gaussians)

Given
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{bmatrix}$$
 such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x} \middle| \begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix} \right)$$
$$= \mathcal{N}\left(\mathbf{x} \middle| \begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{bmatrix}^{-1} \right)$$

Then

$$p(\mathbf{x}_{a}|\mathbf{x}_{b}) = \mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a} - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}), \boldsymbol{\Lambda}_{aa}^{-1}\right)$$
(1)
$$= \mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a} + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}), \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}\right)$$
(2)

$$p(\mathbf{x}_b) = \mathcal{N}\left(\mathbf{x}_b \mid \boldsymbol{\mu}_b, \boldsymbol{\Sigma}_{bb}\right) \tag{3}$$

Very useful properties of the Gaussian distribution (Bishop, 2016)

The Gaussian distribution

r models gression

References

Given the linear Gaussian model

$$egin{aligned}
ho(\mathbf{x}) &= \mathcal{N}(\mathbf{x}|oldsymbol{\mu}, \Lambda^{-1}) \
ho(\mathbf{y}|\mathbf{x}) &= \mathcal{N}(\mathbf{y}|Aoldsymbol{\mu} + \mathbf{b}, L^{-1}) \end{aligned}$$

Then

$$\begin{split} & p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|A\boldsymbol{\mu} + \mathbf{b}, L^{-1} + A\boldsymbol{\Lambda}^{-1}\boldsymbol{\Sigma}^{\mathsf{T}}) \\ & p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}\{A^{\mathsf{T}}L(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Sigma}\boldsymbol{\mu}\}, \boldsymbol{\Sigma}) \end{split}$$

where

$$\Sigma = (\Lambda + A^{\mathsf{T}} L A)^{-1}$$

Very useful properties of the Gaussian distribution (Bishop, 2016)

The Gaussian distribution

Linear models for regression

Reference

The conditional, $p(\mathbf{x}|\mathbf{y})$, of the linear Gaussian model is the fundamental result used in the derivation of

- Bayesian linear regression (Bishop, 2016),
- Gaussian process regression (Williams and Rasmussen, 2006),
- 3 Gaussian process factor analysis (Yu et al., 2009),
- Iinear dynamical systems (Durbin and Koopman, 2012).

The Gaussian distribution

Linear models for regression

Reference

Claim 1 (Quadratic form of Gaussian log pdf)

 $p(\mathbf{x})$ is a Gaussian pdf with mean μ and precision matrix Λ if and only if $\int p(\mathbf{x})d\mathbf{x}=1$ and

$$\log p(\mathbf{x}) = -\frac{1}{2} (\mathbf{x}^{\mathsf{T}} \Lambda \mathbf{x} - 2\mathbf{x}^{\mathsf{T}} \Lambda \boldsymbol{\mu}) + K \tag{4}$$

where K is a constant that does not depend on \mathbf{x} .

with $K = -\frac{1}{2} \mu^{\mathsf{T}} \Lambda \mu - \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}})$.

The Gaussian distribution

Linear models for regression

References

Proof of Claim 1.

$$\rightarrow$$
)

$$\begin{split} \rho(\mathbf{x}) &= \frac{1}{(2\pi)^{D/2} \Lambda^{-\frac{1}{2}}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \Lambda (\mathbf{x} - \boldsymbol{\mu})\right\} \\ \log \rho(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \Lambda (\mathbf{x} - \boldsymbol{\mu}) - \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &= -\frac{1}{2} (\mathbf{x}^\mathsf{T} \Lambda \mathbf{x} - 2\mathbf{x}^\mathsf{T} \Lambda \boldsymbol{\mu}) - \frac{1}{2} \boldsymbol{\mu}^\mathsf{T} \Lambda \boldsymbol{\mu} - \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &= -\frac{1}{2} (\mathbf{x}^\mathsf{T} \Lambda \mathbf{x} - 2\mathbf{x}^\mathsf{T} \Lambda \boldsymbol{\mu}) + K \end{split}$$

The Gaussian distribution

Linear models for regression

Reference

Proof of Claim 1.

 \leftarrow)

$$\begin{split} \log \rho(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x}^{\mathsf{T}} \Lambda \mathbf{x} - 2 \mathbf{x}^{\mathsf{T}} \Lambda \boldsymbol{\mu}) + K \\ \log \rho(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x}^{\mathsf{T}} \Lambda \mathbf{x} - 2 \mathbf{x}^{\mathsf{T}} \Lambda \boldsymbol{\mu}) - \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \Lambda \boldsymbol{\mu} - \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &+ K + \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \Lambda \boldsymbol{\mu} + \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Lambda (\mathbf{x} - \boldsymbol{\mu}) - \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &+ K + \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \Lambda \boldsymbol{\mu} + \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ &= \log N(\mathbf{x} | \boldsymbol{\mu}, \Lambda) + K + \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \Lambda \boldsymbol{\mu} + \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \\ \rho(\mathbf{x}) &= N(\mathbf{x} | \boldsymbol{\mu}, \Lambda) \exp \left(K + \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \Lambda \boldsymbol{\mu} + \log((2\pi)^{D/2} \Lambda^{-\frac{1}{2}}) \right) \end{split}$$

(5)

The Gaussian distribution

Linear models for regression

References

Proof of Claim 1.

$$\leftarrow$$
) cont

$$\begin{split} 1 &= \int \rho(\mathbf{x}) d\mathbf{x} \\ &= \int N(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}) \exp\left(K + \frac{1}{2}\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\Lambda}\boldsymbol{\mu} + \log((2\pi)^{D/2}\boldsymbol{\Lambda}^{-\frac{1}{2}})\right) d\mathbf{x} \\ &= \exp\left(K + \frac{1}{2}\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\Lambda}\boldsymbol{\mu} + \log((2\pi)^{D/2}\boldsymbol{\Lambda}^{-\frac{1}{2}})\right) \int N(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}) d\mathbf{x} \\ &= \exp\left(K + \frac{1}{2}\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\Lambda}\boldsymbol{\mu} + \log((2\pi)^{D/2}\boldsymbol{\Lambda}^{-\frac{1}{2}})\right) \end{split}$$

From Eq. 5 then $p(x) = N(x|\mu, \Lambda)$.

The Gaussian distribution

Linear models for regression

Reference

Proof of Theorem 3, Eq. 1.

$$p(\mathbf{x}_{a}|\mathbf{x}_{b}) = \frac{p(\mathbf{x}_{a}, \mathbf{x}_{b})}{p(\mathbf{x}_{b})} = \frac{p(\mathbf{x})}{p(\mathbf{x}_{b})}$$
$$\log p(\mathbf{x}_{a}|\mathbf{x}_{b}) = \log p(\mathbf{x}) - \log p(\mathbf{x}_{b}) = \log p(\mathbf{x}) + K$$

Therefore, the terms of $\log p(\mathbf{x}_a|\mathbf{x}_b)$ that depend on \mathbf{x}_a are those of $\log p(\mathbf{x})$. Steps for the proof:

- 1 isolate the terms of $\log p(x)$ that depend on x_a ,
- 2 notice that these term has the quadratic form of Claim 1, therefore $p(\mathbf{x}_a|\mathbf{x}_b)$ is Gaussian,
- \odot identify μ and Λ in this quadratic form.

The Gaussian distribution

Linear models for regression

Reference

$$\begin{split} \rho(\mathbf{x}) &= \frac{1}{(2\pi)^{D/2} |\Lambda|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \Lambda (\mathbf{x} - \boldsymbol{\mu})\right) \\ \log \rho(\mathbf{x}) &= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \Lambda (\mathbf{x} - \boldsymbol{\mu}) + K_1 \\ &= -\frac{1}{2} [(\mathbf{x}_a - \boldsymbol{\mu}_a)^\mathsf{T}, (\mathbf{x}_b - \boldsymbol{\mu}_b)^\mathsf{T}] \left[\begin{array}{cc} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{array} \right] \left[\begin{array}{cc} \mathbf{x}_a - \boldsymbol{\mu}_a \\ \mathbf{x}_b - \boldsymbol{\mu}_b \end{array} \right] + K_1 \\ &= -\frac{1}{2} \left\{ (\mathbf{x}_a - \boldsymbol{\mu}_a)^\mathsf{T} \Lambda_{aa} (\mathbf{x}_a - \boldsymbol{\mu}_a) + 2 (\mathbf{x}_a - \boldsymbol{\mu}_a)^\mathsf{T} \Lambda_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b) \\ &+ (\mathbf{x}_b - \boldsymbol{\mu}_b)^\mathsf{T} \Lambda_{bb} (\mathbf{x}_b - \boldsymbol{\mu}_b) \right\} + K_1 \\ &= -\frac{1}{2} \left\{ \mathbf{x}_a^\mathsf{T} \Lambda_{aa} \mathbf{x}_a - 2 \mathbf{x}_a^\mathsf{T} (\Lambda_{aa} \boldsymbol{\mu}_a - \Lambda_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b)) \right\} + K_2 \\ &= -\frac{1}{2} \left\{ \mathbf{x}_a^\mathsf{T} \Lambda_{aa} \mathbf{x}_a - 2 \mathbf{x}_a^\mathsf{T} \Lambda_{ab} (\boldsymbol{\mu}_a - \Lambda_{ab}^{-1} \Lambda_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b)) \right\} + K_2 \end{split}$$

Comparing the last equation with Eq. 4 we see that $\Lambda = \Lambda_{aa}$,

$$\mu = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \mu_b) \text{ and conclude that}$$

$$p(\mathbf{x}_a | \mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a | \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \mu_b), \Lambda_{aa})$$

The Gaussian distribution

Linear models for regression

References

Claim 2 (Inverse of a partitioned matrix)

$$\begin{pmatrix} A & B^{-1} \\ C & D \end{pmatrix} = \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix}$$
 (6)

where

$$M = (A - BD^{-1}C)^{-1}$$

Proof.

Exercise. Hint: verify that the multiplication of the inverse of the matrix in the right hand side of Eq. 6 with the matrix in the left hand side of the same equation is the identity matrix.

The Gaussian distribution

Linear models for regression

References

Proof of Theorem 3, Eq. 2.

Using the definition

$$\left(\begin{array}{cc} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{array}\right)^{-1} = \left(\begin{array}{cc} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{array}\right)$$

and using Eq. 6, we obtain

$$\begin{split} & \Lambda_{aa} = (\Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba})^{-1} \\ & \Lambda_{ab} = -(\Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba})^{-1} \Sigma_{ab} \Sigma_{bb}^{-1} \end{split}$$

Replacing the above equations in Eq. 1 we obtain Eq. 2.

Contents

The Gaussian distribution

Linear models for regression

Reference:

- The Gaussian distribution
 - 2 Linear models for regression

Linear regression example

The Gaussian distribution

Linear models for regression

Reference

Keshavarzi et al., 2021

Linear regression example

The Gaussiar distribution

Linear models for regression

Reference

Keshavarzi et al., 2021

Linear regression example

The Gaussiar distribution

Linear models for regression

Reference

Keshavarzi et al., 2021

Is there a linear relation between the speed of rotation and the firing rate of visual cells?

Linear regression model

The Gaussian distribution

Linear models for regression

References

simple linear regression model

$$y(x_i, \mathbf{w}) = w_0 + w_1 x_i = \begin{bmatrix} 1, x_i \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} \phi_0(x_i), \phi_1(x_i) \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$
$$= \phi(x_i)^\mathsf{T} \mathbf{w}$$

polynomial regression model

$$y(x_{i}, \mathbf{w}) = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2} + w_{3}x_{i}^{3} = \begin{bmatrix} 1, x_{i}, x_{i}^{2}, x_{i}^{3} \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \\ w_{3} \end{bmatrix}$$
$$= \begin{bmatrix} [\phi_{0}(x_{i}), \phi_{1}(x_{i}), \phi_{2}(x_{i}), \phi_{3}(x_{i})] \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \\ w_{3} \end{bmatrix} = \phi(x_{i})^{\mathsf{T}}\mathbf{w}$$

basis functions regression model

$$y(x_i, \mathbf{w}) = \phi(x_i)^\mathsf{T} \mathbf{w} = \sum_{i=1}^M w_i \phi_i(x_i)$$

Linear regression model

The Gaussian distribution

Linear models for regression

Reference

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \begin{bmatrix} y(x_1, \mathbf{w}) \\ y(x_2, \mathbf{w}) \\ \vdots \\ y(x_N, \mathbf{w}) \end{bmatrix} = \begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_M(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \dots & \phi_M(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_N) & \phi_2(x_N) & \dots & \phi_M(x_N) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{bmatrix}$$
$$= \mathbf{\Phi} \mathbf{w}$$

where $\mathbf{y}(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^N, \mathbf{\Phi} \in \mathbb{R}^{N \times M}, \mathbf{w} \in \mathbb{R}^M$.

Basis functions for regression

The Gaussian distribution

Linear models for regression

Reference

Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the centre, and sigmoidal of the form (3.5) on the right.

Bishop (2016)

polynomial
$$\phi_i(x) = x^i$$

Gaussian $\phi_i(x) = \exp(-\frac{(x-\mu_i)^2}{2\sigma^2})$
sigmoidal $\phi_i(x) = \frac{1}{1+\exp(-\frac{x-\mu_i}{\sigma^2})}$

Least-squares estimation of model parameters (Trefethen and Bau III, 1997)

The Gaussian distribution

Linear models for regression

Reference

Definition 2 (Least-squares problem)

Given $\Phi \in \mathbb{R}^{N \times M}$, $N \ge M$, $\mathbf{y} \in \mathbb{R}^N$, find $\mathbf{w} \in \mathbb{R}^M$ such that $||\mathbf{y} - \Phi \mathbf{w}||_2$ is minimized.

Theorem 5 (Least-squares solution)

Let $\Phi \in \mathbb{R}^{N \times M} (N \geq M)$ and $\mathbf{y} \in \mathbb{R}^N$ be given. A vector $\mathbf{w} \in \mathbb{R}^M$ minimizes $||\mathbf{r}||_2 = ||\mathbf{y} - \Phi \mathbf{w}||_2$, thereby solving the least-squares problem, if and only if $\mathbf{r} \perp \text{range}(\Phi)$, that is, $\Phi^\intercal \mathbf{r} = 0$, or equivalently, $\Phi^\intercal \Phi \mathbf{w} = \Phi^\intercal \mathbf{y}$, or again equivalently, $P\mathbf{y} = \Phi \mathbf{w}$.

References

The Gaussiar distribution

Linear models for regression

References

 $Bishop,\ C.\ M.\ (2016).\ \textit{Pattern recognition and machine learning}.\ Springer-Verlag\ New\ York.$

Cover, T. M. and Thomas, J. A. (1991). Elements of information theory. John Wiley & Sons.

Durbin, J. and Koopman, S. J. (2012). Time series analysis by state space methods, volume 38. OUP Oxford.

Papoulis, A. and Pillai, S. U. (2002). *Probability, random variables and stochastic processes.* Mc Graw Hill, fourth edition.

Trefethen, L. n. and Bau III, D. (1997). Numerical linear algebra.

Williams, C. K. and Rasmussen, C. E. (2006). *Gaussian processes for machine learning*, volume 2. MIT press Cambridge, MA.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. *Journal of neurophysiology*, 102(1):614–635.