Resolving common Oracle Wait Events using the Wait Interface

Wait Event	Possible Causes	Actions	Remarks
db file sequential reads	Use of an unselective index	Check indexes on the table to ensure	
ub me sequential reads	Fragmented Indexes	that the right index is being used Check the column order of the index	The Oracle process wants a block that is currently not in the SGA, a for the database block to be read into the SGA from disk.
	High I/O on a particular disk or mount point	with the WHERE clause of the Top SQL statements	Significant db file sequential read wait time is most likely an applicati
	Bad application design	Rebuild indexes with a high clustering factor	If the DBA INDEXES.CLUSTERING FACTOR of the index approaches the
	Index reads performance can be affected by slow I/O subsystem and/or poor database files layout, which result in a higher average	Use partitioning to reduce the amount	blocks in the table, then most of the rows in the table are ordered. Ti
	wait time	of blocks being visited	However, if the clustering factor approaches the number of rows in t means the rows in the table are randomly ordered and thus it require complete the operation. You can improve the index's clustering factor
		Make sure optimizer statistics are up to date	the table so that rows are ordered according to the index key and rel index thereafter.
		Relocate 'hot' datafiles Consider the usage of multiple buffer	The OPTIMIZER_INDEX_COST_ADJ and OPTIMIZER_INDEX_CA initialization parameters can influence the optimizer to favour the nex
		pools and cache frequently used indexes/tables in the KEEP pool	operation and choose an index access path over a full table scan. Tuning I/O related waits Note# 223117.1
		Inspect the execution plans of the SQL statements that access data through indexes	db file sequential read Reference Note# 34559.1
		Is it appropriate for the SQL statements to access data through index lookups?	
		Is the application an online transaction processing (OLTP) or decision support system (DSS)?	
		Would full table scans be more efficient?	
		Do the statements use the right driving table?	
		The optimization goal is to minimize both the number of logical and physical I/Os.	
db file scattered reads	The Oracle session has requested and is waiting for multiple contiguous database blocks (up to DB FILE MULTIBLOCK READ COUNT) to be	Optimize multi-block I/O by setting the parameter DB_FILE_MULTIBLOCK_READ_COUNT Partition pruning to reduce number of	If an application that has been running fine for a while suddenly clock on the db file scattered read event and there hasn't been a code cha want to check to see if one or more indexes has been dropped or be unusable.
	Unicks (up to De_Pite_MOLTIBLOCK_READ_COUNT) to be read into the SQA from disk. Full Table scans	blocks visited Consider the usage of multiple buffer	db file scattered read Reference Note# 34558.1
	Fast Full Index Scans	pools and cache frequently used indexes/tables in the KEEP pool Optimize the SQL statement that	
		initiated most of the waits. The goal is to minimize the number of physical and logical reads.	
		Should the statement access the data by a full table scan or index FFS?	
		Would an index range or unique scan be more efficient? Does the query use the right driving	
		table? Are the SQL predicates appropriate	
		for hash or merge join? If full scans are appropriate, can parallel query improve the response	
		time? The objective is to reduce the	
		demands for both the logical and physical I/Os, and this is best achieved through SQL and application tuning.	
		Make sure all statistics are	
		representative of the actual data. Check the LAST_ANALYZED date	
log file parallel write	LGWR waits while writing contents of the redo log buffer cache to the online log files on disk	Reduce the amount of redo being generated	Reference Note# 34583.1
	VO wait on sub system holding the online	Do not leave tablespaces in hot backup mode for longer than	
	redo log files	necessary Do not use RAID 5 for redo log files	
		Use faster disks for redo log files	
		Ensure that the disks holding the archived redo log files and the online	
		redo log files are separate so as to avoid contention	
		Consider using NOLOGGING or UNRECOVERABLE options in SQL statements	
log file sync	Oracle foreground processes are waiting for a COMMIT or ROLLBACK to complete	Tune LGWR to get good throughput to disk eg: Do not put redo logs on	Reference Note# <u>34592.1</u>
		RAID5 Reduce overall number of commits by	High Waits on log file sync Note# <u>125269.1</u> Tuning the Redolog Buffer Cache and Resolving Redo Latch Conter
		batching transactions so that there are fewer distinct COMMIT operations	Note# <u>147471.1</u>
buffer busy waits	Buffer busy waits are common in an I/O- bound Oracle system. The two main cases where this can occur	The main way to reduce buffer busy waits is to reduce the total I/O on the system	A process that waits on the <i>buffer busy waits</i> event publishes the reathe P3 parameter of the wait event.
	are: Another session is reading the block into the buffer	Depending on the block type, the actions will differ	The Oracle Metalink note # 34405.1 provides a table of reference - c 220 are the most common.
	Another session holds the buffer in an incompatible mode to our request	Data Blocks	Resolving intense and random buffer busy wait performance problen $\underline{\textbf{155971.1}}$
	These waits indicate read/read, read/write, or write/write contention.	Eliminate HOT blocks from the application.	
	The Oracle session is waiting to pin a buffer.	Check for repeatedly scanned / unselective indexes.	
	A buffer must be pinned before it can be read or modified. Only one process can pin a buffer at any one time.	Try rebuilding the object with a higher	
	This wait can be intensified by a large block size as more rows can be contained within	PCTFREE so that you reduce the number of rows per block.	
	the block	Check for 'right- hand-indexes' (indexes that get inserted into at the same point by many processes).	
	This wait happens when a session wants to access a database block in the buffer cache but it cannot as the buffer is "busy	Increase INITRANS and MAXTRANS	
	It is also often due to several processes	and reduce PCTUSED This will make the table less dense .	
	repeatedly reading the same blocks (eg: if lots of people scan the same index or data block)	Reduce the number of rows per block	
		Segment Header Increase of number of FREELISTS	
		and FREELIST GROUPS	

		Undo Header Increase the number of Rollback Segments	
free buffer waits	This means we are waiting for a free buffer but there are none available in the cache because there are too many dirty buffers in the cache. Either the buffer cache is too small or the DBWR is slow in writing modified buffers to disk. DBWR is unable to keep up to the write requests Checkpoints happening too fast – maybe due to high database activity and under-sized online red to log files Large sorts and full table scans are filling the cache with modified blocks faster than the DBWR is all bit owrite to disk. If the number of dirty buffers that need to be written to disk is larger than the number that DBWR can write per batch, then these waits can be observed	Reduce checkpoint frequency - increase the size of the online redo log files Examine the size of the buffer cache - consider increasing the size of the buffer cache in the SGA Set disk_asynch_io = true set If not using asynchronous I/O increase the number of db writer processes or dbwr slaves Ensure hot spots do not exist by spreading datafiles over disks and disk controllers Pre-sorting or reorganizing data can help	Understanding and Tuning Buffer Cache and DBWR Note# 62172.1 How to Identify a Hot Block within the database Buffer Cache. Note# 163424.1
enqueue waits	This wait event indicates a wait for a lock that is held by another session (or sessions) in an incompatible mode to the requested mode. TX Transaction Lock Generally due to table or application set up issues This indicates contention for row-level lock. This wait occurs when a transaction tres to update or delete rows that are currently locked by another transaction. This usually is an application issue. TM DML enqueue lock Generally due to application issues, particularly if foreign key constraints have not been indexed. ST lock Database actions that modify the UET\$ (used exem) and FET\$ (free extent) tables require the ST lock, which includes actions such as drop, truncate, and coalesce. Contention for the ST lock indicates there are multiple sessions actively performing dynamic disk space allocation or deallocation in dictionary managed tablespaces	Reduce waits and wait times The action to take depends on the lock type which is causing the most problems Whenever you see an engueue wait event for the 71 cengeuer, the first step is to find out who the blocker is and if there are multiple waiters for the same resource Waits for TM enqueue in Mode 3 are primarily due to unindexed foreign key columns. Create indexes on foreign keys < 10g Following are some of the things you can do to minimize ST lock contention in your database: Use locally managed tablespaces Use locally managed tablespaces Recreate all temporary tablespaces using the CREATE TEMPORARY TABLESPACE TEMPFILE command.	Maximum number of enqueue resources that can be concurrently in controlled by the ENQUEUE_RESOURCES parameter. Reference Notes! 34566.1 Tracing sessions waiting on an enqueue Note! 102925.1 Details of V\$LOCK view and lock modes Note: 29787.1
Cache buffer chain latch	This tatch is acquired when searching for data blocks and each chain is protected by a child latch when it needs to be scanned latch when the needs to be scanned latch contention. This happens when multiple sessions repeatedly access one or more blocks that are protected by the same child accebuffers chains tatch. SQL statements with high BILIFER, ECET (logical reads) per EXECUTIONS are the main culprits Multiple concurrent sessions are executing the same inefficient SQL that is going after the same data set	Reducing contention for the cache buffer chains latch will usually require reducing logical I/O rates by furing and minimizing the I/O requirements of the SQL involved. High I/O rates could be a sign of a hot block (meaning a block highly accessed). Exporting the table, increasing the PCFTFREE significantly, and importing the data. This minimizes the number of rows per block, spreading them over many blocks. Of course, his is at the expense of stonage and full labile scans operations will be allower. Minimizing the number of records per block in the table. For indexes, you can rebuild them with higher PCTFREE values, bearing in mind that this may increase the height of the index. Consider reducing the block size. Starring in Oracle® Database, Oracle supports multiple block size is I/OK, you may move the table or creates the higher or creates the index in a bibliock size is I/OK, you may move the table or creates the higher and the properties of the current block size is I/OK, you may move the table or creates the higher higher index in the current block size is I/OK, you may move the table or creates the higher hi	The default number of hash latches is usually 1024 The number of hash latches can be adjusted by the parameter _DB_BLOCKS_HASH_LATCHES What are latches and what causes latch contention
Cache buffer LRU chain latch	Processes need to get this latch when they need to move buffers based on the LRU block replacement policy in the buffer cache. The cache buffer to chan't latch is acquired in order to introduce a new block into the buffer cache and when writing buffer back to disk, specifically when trying to containing all the dirty blocks in the buffer cache. Competition for the cache buffers for chain containing all the dirty blocks in the buffer cache. Competition for the cache buffers for chain latch is symptomatic of intense buffer cache activity caused by inefficient SQL statements. Statements that repeatedly scan large unselective indexes or perform full table scans are the prime culprits. Heavy contention for this latch is generally due to heavy buffer cache activity which can be caused, for example, by: Repeatedly scanning large unselective indexes	Contention in this latch can be avoided implementing multiple buffer pools for forestanding in the proofs for forestanding in the parameter DB, BLOCK LPU LATCHES (The default value is generally sufficient for most systems). Its possible to reduce contention for the cache buffer for chan latch by increasing the state of the content of the cache buffer which may be thought and the value of the cache buffer for the cache buffer for chan latch blocks are introduced into the buffer cache	

	1		
Direct Path Reads	These waits are associated with direct read operations which read data directly into the sessions PGA bypassing the SGA. The "direct path read" and "direct path write" wait events are related to operations that are performed in PGA like sorting, group by operation, hash join in DSS type systems, or during heavy batch periods, waits on "direct path read" are quite normal However, for an OLTP system these waits are significant. These wait events can occur during sorting operations which is not surprising as direct path reads and writes usually occur in connection with temporary tegments. SQL statements with functions that require sorts, such as ORDER BY, GROUP BY, UNION, DISTRICT, and ROLLUP, write sort runs to the temporary tablespace when the input size is larger than the work area in the PGA.	Ensure the OS asynchronous IO is configured correctly. Check for IO heavy sessions / SQL and see if the amount of IO can be reduced. Ensure no disks are IO bound. Set your PGA_AGGREGATE_TARGET to appropriate value (if the parameter WORNAREA_SIZE_POLICY = AUTO) or set*_rane_asy are manually (ifse oru; rane_size and then you have to set WORKAREA_SIZE_POLICY = MANUAL Whenever possible use UNION ALL instead of UNION, and where applicable use HASH JOIN instead of SORT MERGE and NESTED LOOPS instead of HASH JOIN. Make sure the optimizer selects the right driving table. Check to see if the composite index's columns can be rearranged to match the ORDER BY clause to avoid sort entirely. Also, consider automating the SQL work areas using PGA_AGGREGATE_TARGET IO Oracle® Database. Query V\$SESSTAT> to identify sessions with high "physical reads direct"	Default size of HASH_AREA_SIZE is twice that of SORT_AREA_SI Larger HASH_AREA_SIZE will influence optimizer to go for hash join nested toops Hidden parameter DB_FILE_DIRECT_IO_COUNT can impact the di performance. It sets the maximum I/O buffer size of direct read and violentitors. Default is 1M in 91 How to identify resource intensive SQL statements?
Direct Path Writes	These are waits that are associated with direct write operations that write data from users' PGAs to data flies or temporary tablespaces Direct load operations (eg: Create Table as Select (CTAS) may use this) Parallel DML operations Sort IO (when a sort does not fit in memory	If the file indicates a temporary tablespace check for unexpected disk sort operations. Ensure Ensur	
Latch Free Waits	This wait indicates that the process is waiting for a latch that is currently busy (field by another process). When you see a latch fee wait event in the VSSESSION_WAIT leve, it means the process failed to obtain the latch in the willing-to-wait mode after spinning_SPIN_COUNT times and went to sleep. When processes complete heavily for latches, they will also consume more CPU resources because of spinning. The result is a higher response time.	If the TIME spent waiting for latches is significant then it is best to determine which latches are suffering from contention.	A latch is a kind of low level lock. Latches apply only to memory structures in the SGA. They do not apply to database objects. An Oracle SGA has many latches, and they exist to protect various memory structures from potential corruption by concurrent access. The time spent on latch waits is an effect, not a cause; the cause is that you are doing to many block gets, and block gets require cache buffer orban latching. What are Latches and what causes Latch conferionion Database Lock and Latch Information Knowledge Browser Product Page.
Library cache latch	The library cache latches protect the cached SQL statements and objects definitions held in the library cache within the shared pool. The library cache latch must be acquired in order to add a new statement to the library cache Application is making heavy use of literal SQL-use of bind variables will reduce this latch considerably	Latch is to ensure that the application is reusing as much as possible SQL statement representation. Use bind variables whenever possible in the application You can reduce the <i>library cache</i> latch hold time by properly setting the SESSION_CACHED_CURSORS parameter Consider increasing shared pool	Larger shared pools tend to have long free lists and processes that need to allocate space in them must spend extra time scanning the long free lists while holding the shared pool latch if your database is not yet on Oracledio Database, an oversized shared pool can increase the contention for the shared pool latch.
Shared pool latch	The shared pool latch is used to protect critical operations when allocating and freeing memory in the shared pool Contentions for the shared pool and Birary cache latches are manify due to intentee hard parsing. A hard parse applies to new cursors and cursors that are aged out and must be re-executed. The cost of parsing a new SQL statement is experience both in terms of CPU requirements and the number of times the illowy cache and shared pool fairches may need to be acquired and released.	Ways to reduce the shared pool latch are, avoid hard parses when possible, parse once, execute many. Eliminating literal SQL is also useful to avoid the shared pool latch. The size of the shared_pool and use of MTS (shared server option) also greatly influences the shared pool latch. The workaround is to set the installation parameter installation parameter installation parameter installation parameter in the parameter of the	<u>cNote \$2143.1</u> > explains how to identify and correct problems with the shared pool, and shared pool latch.
Row cache objects latch	This latch comes into play when user processes are attempting to access the cached data dictionary values.	It is not common to have contention in this latch and the only way to reduce contention for this latch is by increasing the size of the shared pool (SHARED_POOL_SIZE). Use Locally Managed tablespaces for your application objects especially indexes Review and amend your database logical design , a good example is to merge or decrease the number of indexes on tables with beavy inserts	Configuring the library cache to an acceptable size usually ensures that the data dictionary cache is also properly sized. So turning Library Cache will turne Row Cache indirectly