

Projet Radiographies Pulmonaires

Chris Hozé et Mickaël Melkowski

Mentor: Souhail Hadji

Contexte du projet

La COVID19

La COVID-19 est une pandémie mondiale qui a émergé en 2019 et affecte principalement les poumons.

Initialement, les outils principaux de diagnostic était la RT-PCR et la radiographie pulmonaire.

Difficulté de diagnostic

Les radiographies sont aisées à réaliser mais difficiles à expertiser.

Des universités d'Asie et de Moyen-Orient ont mis en commun leur données de radiographies pour développer un outil de diagnostic automatisé.

Objectif de l'étude

Développer un modèle permettant de classifier les radiographies pulmonaires en fonction de l'affection ou non du patient.

Faciliter le diagnostic.

Plan de la présentation

Exploration des données

Présentation des données

- Nombre total
- Répartition par groupe
- Images moyennes

Statistiques exploratoires

- Valeurs des pixels
- Analyses en composantes principales (ACP)

Modèle de classification

Définition du modèle

- Modèle de base
- Paramétrage

Modèle final

- Description
- Performances

Généralisation du modèle de prédiction

Les données CXNET

Génération de masques

- Segmentation
- Prédiction de la positivité au COVID
 - Classification

Exploration des données

Les données

On dispose d'un jeu de données constitué de 21 165 images réparties en 4 catégories :

- COVID
- Opacité Pulmonaire
- Pneumonie Virale
- Normal

Chaque image est fournie avec son masque précalculé.

Le masque permet d'isoler l'information liée aux poumons

Les images sont au format 256 x 256 x 1

Nombre d'images par catégories et source

Le nombre d'images par source est très variable. Les données COVID et Viral Pneumonia sont minoritaires. Les sources de données sont multiples en particulier pour la catégorie COVID.

Nombre d'images par Source

15k 10k 10k 10k Senza Covid-Chestrey 10k Normal Viral_Pneumonia

Source

Analyse des images après masquage

La valeur moyenne des pixels est plus élevée pour les catégories COVID et Viral Pneumonia.

Les données COVID semblent plus extrêmes.

Distribution de la valeur moyenne des pixels par image et par Label

Selon les sources et les catégories, la valeur moyenne à un pixel donné varie fortement.

Ces variations pourraient s'expliquer par des différences de prise de vue des radiographies.

Valeurs des pixels pour Toutes les catégories

Images moyennes par catégorie et par source

Peu de différences sont visibles à l'oeil sur les poumons eux même.

Pour la **pneumonie virale**, **le poumon gauche est moins visible** ce qui risque de biaiser la modélisation.

Analyse en composantes principales

Avec 20 composantes, on extrait 50% de la variance initiale du jeu de données.

Évolution de la variance expliquée par les composantes principales

On ne peut pas distinguer de différences entre catégories sur les composantes de l'ACP.

Analyse en composantes principales

On remarque que les composantes mettent peu en évidence des différences fines de coloration. Elles semblent principalement refléter des différences de prise de vue et de luminosité.

Les modèles de classification classiques ne seront donc pas performants sur ce jeu de données. Il faudra se tourner vers des modèles de deep-learning et de computer vision.

Classification des images

Choix du modèle de base

Précision et Nombre de paramètres sur le jeu de données ImageNet

Tang et Le, 2019, https://arxiv.org/abs/1905.11946

Précision et Nombre de paramètres sur notre jeu de données (images non masquées)

On choisit de tester les modèles EfficientNetB0, EfficientNetB4 et ResNet50.

Paramétrage du modèle

Stratégies testées

Le jeu de données divisé en trois :

- 80% en training,
- 10% en test
- 10% en validation

On retient le modèle qui obtient la meilleure précision sur le jeu de données de test.

Data Augmentation

Augmenter la diversité du jeu de données en appliquant des transformations sur les images à chaque itération

Modèle testé	EfficientNetB0	EfficientNetB4	ResNet50	
Trainable layers	s 15 % 50%		100 %	
Optimizer	SGD	Adam	Adamax	
Learning-rate	0.01	0.001	0.0001	
Decay	None	CosDecay	ExpDecay	
Nb_epochs	Nb_epochs 10		40	

Retournement horizontal	Horizontal_flip = True
Ajustement de luminosité	Brightness_range : [0.8, 1.2]
Rotation	rotation_range = 0.1
Décalage vertical	height_shift_range = 0.1
Décalage horizontal	width_shift_range = 0.1

Modèle final: EfficientNetB4 avec fine-tuning

Détails de l'architecture Efficient Net B4

Performances du modèle

Evolution de la précision et de la fonction de perte sur les jeux de données d'apprentissage et de validation

Matrice de confusion sur le jeu de données de test

Le modèle permet d'atteindre une précision moyenne de 0.92 sur l'ensemble des catégories Sur la catégorie COVID, la précision est de 0.93 et le recall de 0.90.

Performances du modèle

Rapport de classification

	Precision	Recall	F1-Score	Support
COVID	0.93	0.9000	0.91	362
Lung_Opacity	0.93	0.8400	0.88	602
Normal	0.9	0.9700	0.94	1019
Viral_Pneumonia	0.98	0.9400	0.96	134
accuracy		0.9200		2117
macro avg	0.94	0.9100	0.92	2117
weighted avg	0.92	0.9200	0.92	2117

Application sur le jeu de données de test :

Prédiction et visualisation des zones du poumon atteintes

Généralisation du modèle

Généralisation du modèle

Nous cherchons à savoir quelle serait l'efficacité du modèle sur des données externes.

- Utilisation du dataset COVID-NET :
 - + de 80 000 images de radiographies pulmonaires non masquées
 - Regroupées en deux catégories "Positif" et "Negatif" pour le COVID.
 - Sélection de 638 images non redondantes avec les données initiales
- Développement d' un modèle de segmentation pour la génération de masques
 - A partir des images et masques de notre jeu de données initial
 - Architecture Unet couramment utilisé en imagerie médicale

Modèle Unet pour la génération de masques

Applications des modèles sur CXNET

Segmentation pour la génération de masque

Une précision de 99,1% sur le dataset de validation Une bonne efficacité, sauf cas particulier.

Classification

	COVID	Lung_Opacity	Normal	Viral_Pneumonia
Negatif	62,7 %	19,7 %	17,6 %	0,0 %
Positif	83,1 %	11,3 %	5,3 %	0,3 %

Il semble plus difficile de généraliser notre modèle de classification. Une plus forte proportion de cas positif sont classés comme COVID. Il faudrait s'assurer que les patients négatifs au COVID sont bien exempt d'affection.

Les résultats de la généralisation sur le jeu de données COVID-NET sont mitigés.

Pour conclure, il faudrait disposer de données plus formatées et classées comme dans le dataset initial.

Conclusion

165 images réparties en Une précision moyenne de 92% **Application Streamlit** pour COVID, Normal, Pneumonie, Opacité COVID : précision de 0.93, recall de 0.90 la prédiction, le masquage Pas de classification évidente Conforme à l'état de l'art et la visualisation. Découverte Classification Prédiction Généralisation **Application** Modèle de deep-learning **Génération de masques** avec un EfficientNetB4 avec modèle de segmentation Unet. paramétrage fin et Application aux données COVID-NET augmentation de données (80 000 images, Positif / Négatif)

Retours d'expériences

Contraintes organisationnelles

Manque d'organisation et de synchronisation au démarrage du projet.

Choix de travailler en parallèle plutôt qu'en répartition des tâches sur le déploiement de modèles.

Contraintes techniques

Limitations en ressources informatiques liées aux tailles de nos GPU

Incompatibilités Windows vs WSL et versions de Tensorflow

Prise en main de Pytorch

Déploiement du Streamlit

Perspectives

Améliorer la précision en utilisant d'autres modèles en particulier Transformers

Prédire la sévérité du COVID à partir d'un jeu de données disposant d'annotations plus complexes.

Détecter plus finement les zones du poumon atteintes.

Place à la démo!

Scripts, notebooks et modèles :

github.com/mmelkowski/radio_pulmo/

Application Streamlit:

radio-pulmo.streamlit.app/

Application de classification de Radiographie Pulmonaire

Cette application permet la prédiction de l'état d'un patient à partir d'une radiographie pulmonaire pour les affections suivantes : Covid, pneumonie virale ou opacité pulmonaire.

La prédiction s'effectue sur des images brutes ou après isolation du poumon par masquage. Trois fonctionnalités sont disponibles :

- La prédiction des affections
- La génération de masque pour isoler les poumons
- La visualisation des zones les plus informatives pour la prédiction

Le fichier à importer doit être une image au format "png", "jpg".

Il est possible de prédire un ensemble de fichiers avec un dossier au format "zip".

Fichier ou dossier à prédire:

Image chargée après redimensionnement

L'image est classée comme: COVID

Application de classification de Radiographie Pulmonaire

Cette application permet la prédiction de l'état d'un patient à partir d'une radiographie pulmonaire pour les affections suivantes : Covid, pneumonie virale ou opacité pulmonaire.

La prédiction s'effectue sur des images brutes ou après isolation du poumon par masquage. Trois fonctionnalités sont disponibles :

- La prédiction des affections
- · La génération de masque pour isoler les poumons
- · La visualisation des zones les plus informatives pour la prédiction

Le fichier à importer doit être une image au format "png", "jpg". Il est possible de prédire un ensemble de fichiers avec un dossier au format "zip".

Fichier ou dossier à prédire:

Sinon choisir un fichier d'exemple

raw_Normal-36.png

Image chargée après redimensionnement

Voulez vous prédire, masquer ou visualiser (Grad-CAM) l'image? Prédire L'image est-elle masquée ? (Les poumons sont isolés, on ne voit ni l'arrière-plan ni les autres organes) Non Démarrer la prédiction ✓ Prédiction en cours... Masquage à faire... Chargement du model de masquage... Calcul du Masque... Masquage... Chargement du model de prediction... Prédiction... Interpretation...

Prédiction effectuée

L'image est classée comme: Normal

Application de classification de Radiographie Pulmonaire

Cette application permet la prédiction de l'état d'un patient à partir d'une radiographie pulmonaire pour les affections suivantes : Covid, pneumonie virale ou opacité pulmonaire.

La prédiction s'effectue sur des images brutes ou après isolation du poumon par masquage. Trois fonctionnalités sont disponibles :

- · La prédiction des affections
- La génération de masque pour isoler les poumons
- · La visualisation des zones les plus informatives pour la prédiction

Le fichier à importer doit être une image au format "png", "jpg".

Il est possible de prédire un ensemble de fichiers avec un dossier au format "zip".

Fichier ou dossier à prédire:

Sinon choisir un fichier d'exemple

raw_Viral Pneumonia-9.png

Image chargée après redimensionnement

Masquage effectué

Image masquée

Application de classification de Radiographie Pulmonaire

Cette application permet la prédiction de l'état d'un patient à partir d'une radiographie pulmonaire pour les affections suivantes : Covid, pneumonie virale ou opacité pulmonaire.

La prédiction s'effectue sur des images brutes ou après isolation du poumon par masquage. Trois fonctionnalités sont disponibles :

- · La prédiction des affections
- · La génération de masque pour isoler les poumons
- La visualisation des zones les plus informatives pour la prédiction

Le fichier à importer doit être une image au format "png", "jpg".

Il est possible de prédire un ensemble de fichiers avec un dossier au format "zip".

Fichier ou dossier à prédire:

Prédictions effectuées

Le tableau montre pour chaque fichier son résultat le plus probable et ensuite la probabilité par catégorie.

	filename	Prediction_results	pred
0	0a2c130c-c536-4651-836d-95d07e9a89cf.png	COVID	
1	0ab261f9-4eb5-42ab-a9a5-e918904d6356.png	Lung_Opacity	
2	0bc7f47a-ecea-4b66-811e-096004721a63.png	COVID	
3	0ed30a38-fd74-498f-aeaa-6febf7eb66be.png	COVID	
4	A034518-12-31-1900-NA-CHEST_AP_PORT-01141-2.000000-AP-84624-1-1.jpg	COVID	
5	A042028-01-18-1901-NA-CHEST_AP_VIEWONLY-74543-1.000000-AP-99716-1-1.jpg	COVID	
6	A055532-01-02-1901-NA-CHEST_AP_PORT-69637-1.000000-AP-93369-1-1.jpg	Lung_Opacity	
7	A099771-12-29-1900-NA-CHEST_AP_PORT-76117-1.000000-AP-94973-1-1.jpg	Lung_Opacity	

Download results as csv 🍃

Application de classification de **Radiographie Pulmonaire**

Cette application permet la prédiction de l'état d'un patient à partir d'une radiographie pulmonaire pour les affections suivantes : Covid, pneumonie virale ou opacité pulmonaire.

La prédiction s'effectue sur des images brutes ou après isolation du poumon par masquage. Trois fonctionnalités sont disponibles :

- La prédiction des affections
- La génération de masque pour isoler les poumons
- La visualisation des zones les plus informatives pour la prédiction

Le fichier à importer doit être une image au format "png", "jpg". Il est possible de prédire un ensemble de fichiers avec un dossier au format "zip".

Fichier ou dossier à prédire:

Démarrer le masquage

Masquage effectué

Download masked images as zip 🌑

Dossier initial

651-836d-95d07

e9a89cf

4721a63

2.000000-AP-84... 4543-1.000000-... 1.000000-AP-93... 1.000000-AP-94...

Dossier contenant la prédiction des masques

36-4651-836d-95d

b5-42ab-a9a5-e91

04d6356

ea-4b66-811e-096

004721a63.png

ST AP PORT-0114

-02-1901-NA-CHE -29-1900-NA-CHE ST AP PORT-6963

Dossier contenant les images masquées

74-498f-aeaa-6feb

f7eb66be.png

masked Oah261f9-4eh5 -42ab-a9a5-e918904d6

masked Obc7f47a-ecea masked Oed30a38-fd74 -4h66-811e-096004721 -498f-aeaa-6fehf7eh66

masked A034518-12-3 1-1900-NA-CHEST AP PORT-01141-2.000000-AP-84624-1-1.jpg

ST AP VIEWONLY

masked A042028-01-1 8-1901-NA-CHEST AP VIEWONLY-74543-1.00 0000-AP-99716-1-1.jpg

masked A055532-01-0 2-1901-NA-CHEST AP 9-1900-NA-CHEST AP PORT-69637-1.000000-PORT-76117-1.000000 AP-93369-1-1.jpg