$_{\rm QCM}^{\rm Algo}$

1. Un arbre binaire vide est un arbre de taille?	
(a) -1	
(b) 0	
(c) 1	
 Si LC(B) défini la longueur de cheminement de B (un arbre binaire), alors PM(B) l profondeur moyenne de B est égale à? 	a
(a) LC(B)/f avec f le nombre de feuilles de B	
(b) LC(B)/n avec n le nombre de noeuds de B	
(c) LC(B)/n avec n le nombre de noeuds internes de B	
(d) LC(B).n avec n le nombre de noeuds internes de B	
3. Un arbre dont les noeuds contiennent des valeurs est?	
(a) valué	
(a) projected	
(c) valorisé	
(d) évalué	
4. Dans un arbre binaire, un noeud possédant 2 fils est appelé?	
(a) une racine	
(b) noeud interne	
(c) noeud externe	
(d) point double	
5. Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que de liens droits est?	:S
(a) le chemin droit	
(b) le bord droit	
(c) la branche droite	
(d) le métalien droit	
6. Dans un arbre binaire, un noeud ne possédant qu'un fils gauche est appelé? (a) une racine	
(b) noeud interne	
(c) noeud externe à droite	
(d) point simple à gauche	
7. La hauteur d'un arbre binaire réduit à un noeud racine est?	
(a) -1	
(b) 0	
(c) 1	-

- 8. Un arbre binaire parfait est un arbre binaire dont?
- (a) tous les niveaux sont remplis(b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite
 - (c) tous les niveaux sont remplis sauf le dernier rempli de droite à gauche
 - (d) tous les niveaux sont remplis sauf le dernier rempli aléatoirement
 - 9. Un peigne gauche est un arbre binaire?
 - (a) parfait
 - (b) complet
- (c) localement complet
 - (d) filiforme
- 10. L'arbre défini par $B = \{1,2,3,4,5,6,7,8,9,10,11,13\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
- (d) quelconque

lundi 29 janvier

Question 11

Dans $\mathbb{R}[X]$, on considère les deux polynômes : $P(X) = 2X^2 - X + 7$ et Q(X) = X - 1. On a

 $\mathcal{O}_{\mathbf{A}}$. Le degré de P(X) - Q(X) est égal à 2.

- b. Le degré de P(X) 2XQ(X) est égal à 2
- c. Le degré de $P(X) \times Q(X)$ est égal à 2.

(1)d. Le degré de $P(X) \times Q(X)$ est égal à 3.

e. Aucune des autres réponses

Question 12

Dans $\mathbb{R}[X]$, on considère le polynôme P vérifiant $P(X) = (X+2)(X^5+X^2+1)+X^2+1$. On a

 \mathcal{O}_{a} . Le quotient de la division euclidienne de P par $X^5 + X^2 + 1$ est X + 2

- $\mathbb Z$ b. Le quotient de la division euclidienne de $\mathbb P$ par $\mathbb X+2$ est $\mathbb X^5+\mathbb X^2+1$
 - c. Le reste de la division euclidienne de P par X+2 est X^2+1
 - d. Aucune des autres réponses

Question 13

Soient $(A, B) \in (\mathbb{R}[X])^2$ avec B non nul. Les polynômes Q et R dans $\mathbb{R}[X]$ sont respectivement le quotient et le reste de la division euclidienne de A par B si et seulement si :

a.
$$A = BQ + R$$

b.
$$A = BQ + R$$
 avec $0 \le R \le |B|$

 \mathcal{O}_{C} . A = BQ + R avec le degré de R strictement plus petit que le degré de B.

d. Aucune des autres réponses

Question 14

Soit $P \in \mathbb{R}[X]$ admettant -3 et 2 comme racines.

Parmi les polynômes suivants, le(s)quel(s) peu(ven)t être ce polynôme?

a.
$$P(X) = 5(X-3)(X+2)$$

(7)b.
$$P(X) = 4(X+3)(X-2)$$

c.
$$P(X) = 3(X-2)(X-4)$$

d. Aucun des polynômes proposés ne peut être égal à P.

Question 15

Soit $P(X) = (X - 1)^2(X^6 + 15X + 10) \in \mathbb{R}[X]$. On a

- P(1) = 0
- () b. P'(1) = 0
 - c. P''(1) = 0
 - d. Aucune des autres réponses

Question 16

Soit $P(X) = (-1 - X)^2 (X + 2)^4$. On a

- a. 1 est une racine d'ordre de multiplicité exactement 2 de P.
- (*X* + 2)(-1 *X*) divise *P*
 - d. Aucune des autres réponses

Question 17

Cochez la(les) réponse(s) correcte(s) :

- a. L'équation différentielle $(E): y'+2ty^2=3t$ est une équation linéaire du premier ordre.
- . L'équation différentielle (E): y' + 2ty = 3t est une équation linéaire du premier ordre.
 - c. L'équation différentielle (E): y'+2ty=3t est une équation linéaire homogène du premier ordre.
 - d. Aucune des autres réponses

Question 18

Soit (E) : y'-2y=0. L'ensemble des solutions de (E) sur $\mathbb R$ est constitué des fonctions de la forme

- a. $t \mapsto ke^{-2t}$ avec $k \in \mathbb{R}$.
- b. $t \longmapsto ke^{\frac{1}{2}t}$ avec $k \in \mathbb{R}$.
- $(c) \quad t \longmapsto ke^{2t} \text{ avec } k \in \mathbb{R}.$
 - d. $t \longmapsto ke^{-\frac{1}{2}t}$ avec $k \in \mathbb{R}$.
 - e. Aucune des autres réponses

Question 19

Soit (E): y'-2y=2 sur \mathbb{R} . On a

- a. $y_p: t \longmapsto 0$ est une solution particulière de (E).
- b. $y_p: t \longmapsto 1$ est une solution particulière de (E).
- $(p, y_p : t \longmapsto -1$ est une solution particulière de (E).
 - d. $y_p:t\longmapsto t$ est une solution particulière de (E).
 - e. Aucune des autres réponses

Question 20

De quelle(s) équation(s) différentielle(s) la fonction $y:t\longmapsto t+1$ est-elle solution?

- a. (E): y' + y = 1
- (E): y' + y = t + 2
 - c. (E) : $y' + y = t^2$
 - d. Aucune des autres réponses

1

QCM EPITA (S1) NTS-Cybersécurité (Sociétal) 29/01/2024

21 - Quels critères définissent la cybersécurité

- (A) Disponibilité, Confidentialité, Intégrité, Traçabilité
 - B) Disponibilité, Capacité, Intégrité, Traçabilité
 - C) Disponibilité, Confidentialité, Informativité, Traçabilité

22 - Quelle part du PIB européen représente la cybercriminalité ?

- A) 0,1%
- (B) 1%
 - C) 10%

23 - La 5G représente un nouvel enjeu

- A) Purement numérique
- B) De confort
- (C) Une révolution technologique et sociale

24 - La démographie croissante a un impact sur les enjeux de sécurité

- A) Parfois
- B) Jamais
- C) Depuis toujours

25 - Combien dénombre-t-on de secteurs d'activité d'importance vitale ?

- (A) 12 (répartis en 4 dominantes)
 - B) 12 (répartis en 6 dominantes)
 - C) 16 (répartis en 4 dominantes)

26 - La cyber guerre

- A) Relève des récits de science-fiction
- (//B) A déjà commencé
 - C) Sera la seule forme de guerre dans 30 ans

27 - Le cyber terrorisme

- A) N'est apparu qu'une seule fois
- B) Concerne le prosélytisme sous toutes ses formes
- C) Va au-delà du prosélytisme et peut prendre des formes complexes

28 – Les règles d'Asimov

- A) Concernent uniquement la robotique
- (B) S'appliquent à tout système d'Intelligence Artificielle
 - C) Diffusées en 1942, sont désuètes

QCM EPITA (S1) NTS-Cybersécurité (Sociétal) 29/01/2024

29 - A l'avenir

- A) Il y aura moins de crises et plus de technologie
- (/B) Les crises seront plus fréquentes
 - C) Les crises seront moins impactantes

30 - La cybersécurité propose des métiers d'avenir

A) En France uniquement

B) Pour lesquels la flexibilité et la curiosité sont des atouts

C) Qui ne demandent aucun investissement en sortie de formation