

# **Classification and Prediction**

----Bayesian Classification----

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

1

#### **Classification and Prediction**



- Basic Concepts
- Issues Regarding Classification and Prediction
- Decision Tree
- Bayesian Classification
- Neural Networks
- Support Vector Machine
- K-Nearest Neighbor
- Associative classification
- Classification Accuracy



## **Bayesian Theorem: Basics**



- Let X be a data sample whose class label is unknown
- Let H be a hypothesis that X belongs to class C
- For classification problems, determine P(H|X): the probability that the hypothesis holds given the observed data sample X
- P(H): prior probability of hypothesis H (i.e. the initial probability before we observe any data, reflects the background knowledge)
- P(X): probability that sample data is observed
- P(X|H): probability of observing the sample X, given that the hypothesis holds

3



#### **Bayesian Theorem**



 Given training data X, posteriori probability of a hypothesis H, P(H|X) follows the Bayes theorem

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

- Informally, this can be written as posteriori = likelihood x prior / evidence
- MAP (maximum posteriori) hypothesis

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h).$$

 Practical difficulty: require initial knowledge of many probabilities, significant computational cost

## **Naïve Bayes Classifier**



A simplified assumption: attributes are conditionally independent:

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

- $P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$  The product of occurrence of 2 elements  $y_1$  and  $y_2$ , given the current class is C, is the product of the probabilities of each element taken separately, given the same class  $P([y_1,y_2], C) = P(y_1, C) * P(y_2, C)$
- No dependence relation between attributes
- Greatly reduces the computation cost, only count the class distribution.
- Once the probability P(X|C<sub>i</sub>) is known, assign X to the class with maximum P(X|C<sub>i</sub>) \*  $P(C_i)$



## **Training dataset**



- Class: C1: buys\_computer= 'yes'; C2: buys\_computer= 'no'
- Data sample:
  - ★ X =(age<=30, Income=medium, Student=yes, Credit\_rating= Fair)</p>

|      |        |         |               | 1             |
|------|--------|---------|---------------|---------------|
| age  | income | student | credit_rating | buys_computer |
| <=30 | high   | no      | fair          | no            |
| <=30 | high   | no      | excellent     | no            |
| 3040 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| <=30 | medium | no      | fair          | no            |
| <=30 | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| <=30 | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

#### Naïve Bayesian Classifier: An Example



#### Compute P(X|Ci) for each class

Therefore, X belongs to class "buys\_computer=yes"



## **Naïve Bayesian Classifier: Comments**



#### Advantages

- Easy to implement
  - ◆ Good results obtained in most of the cases

#### Disadvantages

- Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies exist among variables E.g., hospitals: patients: Profile: age, family history etc
  - Symptoms: fever, cough etc., Disease: lung cancer, diabetes etc
- Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
  - Bayesian Belief Networks



## **Bayesian Belief Networks**



- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
  - Represents dependency among the variables
  - Gives a specification of joint probability distribution



□Nodes: random variables

□Links: dependency

 $\square X,Y$  are the parents of Z, and Y is the

parent of P

□No dependency between Z and P

□Has no loops or cycles

9



# **Bayesian Belief Network: An Example**





(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

| LC  | 0.8 | 0.5 | 0.7 | 0.1 |
|-----|-----|-----|-----|-----|
| ~LC | 0.2 | 0.5 | 0.3 | 0.9 |

The conditional probability table for the variable LungCancer: Shows the conditional probability for each possible combination of its parents

$$P(z_1,...,z_n) = \prod_{i=1}^{n} P(z_i | Parents(Z_i))$$



## **Learning Bayesian Networks**



- Several cases
  - Given both the network structure and all variables observable: learn only the CPTs
  - Network structure known, some hidden variables: method of gradient descent, analogous to neural network learning
  - Network structure unknown, all variables observable: search through the model space to reconstruct graph topology
  - Unknown structure, all hidden variables: no good algorithms known for this purpose
- D. Heckerman, Bayesian networks for data mining http://research.microsoft.com/adapt/MSBNx/



