Đề toán đề nghị

Trần Quang Hùng

Bài 1. Cho tam giác ABC, $\widehat{A} \neq 90^{\circ}$. D là điểm cố định trên cạnh BC. P là điểm nằm trong tam giác ABC. Gọi B_1 , C_1 lần lượt là hình chiếu của P lên AC, AB. DB_1 , DC_1 lần lượt cắt AB, AC tại C_2 , B_2 . Giao điểm khác A của đường tròn ngoại tiếp các tam giác AB_1C_1 và AB_2C_2 là Q. Chứng minh rằng PQ luôn đi qua điểm cố định khi P di chuyển.

Chứng minh. Qua D dựng các đường thẳng song song với AB, AC cắt AC, AB tại E, F. Qua E, F lần lượt kẻ các đường thẳng vuông góc với AC, AB, chúng cắt nhau tại I cố định, ta sẽ chứng minh rằng PQ đi qua I cố định, thật vậy.

Bằng tính chất tỷ số kép, ta thấy

$$\frac{\overline{FC_1}}{\overline{FC_2}} = (C_1C_2F) = (C_1C_2FE) = (C_2C_1EF) = (B_1B_2E) = \frac{\overline{EB_1}}{\overline{EB_2}}$$
 (1)

Mặt khác từ tính chất góc nội tiếp ta dễ thấy các tam giác $\triangle QB_1B_2 \sim \triangle QC_1C_2$ (2). Từ (1) và (2) ta dễ suy ra $\triangle QB_1E \sim \triangle QC_1F$ suy ra tam giác $\triangle QB_1C_1 \sim \triangle QEF$.

Từ đây với chú ý rằng $Q \in (AB_1C_1)$ suy ra $\angle EQF = \angle B_1QC_1 = \angle B_1AC_1 = \angle EAF$ suy ra $Q \in (AEF) \equiv (AI)$ vậy $AQ \perp QI$ (3).

Cũng từ $Q \in (AB_1C_1) \equiv (AP)$ suy ra $AQ \perp PQ$ (4).

Từ (3),(4) ta dễ suy ra P,Q,I th
ằng hàng hay PQ đi qua I cố định, ta có điều phải chứng minh.
 $\hfill\Box$