Contents

1	$Hel_{\mathbf{I}}$	pers 1	
	1.1	Stress Tester	
	1.2	Random	_
2	Dat	a Structure 1	
	2.1	Iterative Segment Tree	
	2.2	Lazy Segment Tree)
	2.3	Sparse Table	
	2.4	Implicit Treap	
	2.5	Dynamic Segment Tree	
	$\frac{2.6}{2.6}$	Persistent Segment Tree	
	$\frac{2.0}{2.7}$	2D Fenwick Tree	
	2.8	Disjoint Set Union	
	2.9	J	
	$\frac{2.9}{2.10}$		
	-		
		Minimum Stack/Deque 6	
	2.13	Dynamic Bitset	,
3	Gra	ph 7	,
	3.1	Graph	7
	3.2	Tree	7
	3.3	Strongly Connected Components	7
	3.4	Bridges and Articulations 8	3
	3.5	Two SAT	3
	3.6	MCMF)
	3.7	Maximum Flow (Dinic) 10)
	3.8	Maximum Matching (Hopcroft Karp) 10)
	3.9	General Matching (Blossom)	L
4	N / L - 4	.l. 10	
4	Mat		
	4.1	Modular Int	
	4.2	Modular Square Root	
	4.3	Discrete Log	
	4.4	Primite Root	
	4.5	Euler's Totient Funnction	
	4.6	Chinese Remainder Theorem	
	4.7	Extended Euclidean	
	4.8	Linear Diophantine	
	4.9	Matrix	
		Miller Rabin Primality Test 15	
	4.11		
		OR Convolution	
	4.13	XOR Convolution)
5	Stri	ng 17	,
	5.1	Rolling Hash	
	5.2	Z-Function	
	5.3	Prefix Function	
	5.4	Manacher's Algorithm	
	5.5	Aho-Corasick	
	5.5	1110 001001011	

1 Helpers

1.1 Stress Tester

Overview

Simple .bat file for stress testing.

⟨♦⟩ Implementation

```
@echo off
   g++ -std=c++20 -o solution test.cpp
   g++ -std=c++20 -o brute brute.cpp
   g++ -std=c++20 -o gen gen.cpp
4
   for /l %%x in (1, 1, 1000) do (
       gen > input.in
       solution < input.in > output.out
       brute < input.in > output2.out
9
       fc output.out output2.out > nul
10
11
       if ERRORLEVEL 1 (
12
13
           echo INPUT
           type input.in
14
           echo.
15
           echo SOLUTION OUTOUT
16
           type output.out
17
           echo.
18
           echo CORRECT OUTPUT
19
20
           type output2.out
            echo.
^{21}
22
23 )
24 echo all tests passed
```

1.2 Random

Overview

Self explanatory.

Implementation

1 Usage

• uid(a,b) returns random integer between [a,b]

2 Data Structure

2.1 Iterative Segment Tree

■ Overview

For-loop implementation of segment tree, faster than recursive. Note: Operation that depends on ordering is not supported (For example: Minimum prefix sum)

① Time complexity: $\mathcal{O}(n)$ for constructor, $\mathcal{O}(\log n)$ for query

```
template<typename T>
   struct SegmentTreeFast{
        vector<T> a;
       T defv;
       int n;
        SegmentTreeFast(int n, T defv) : n(n), defv(defv){
            a = vector < T > (2 * n, defv);
9
10
       T cmb(T a, T b){ //change if needed
11
12
            return a + b;
14
       void build(){ //array is at i + n index
15
            for (int i = n - 1; i > 0; --i)
16
17
                a[i] = cmb(a[i << 1], a[i << 1 | 1]);
18
19
        void update(int i, T v){
20
            for (a[i += n] = v; i > 1; i >>= 1)
21
                a[i >> 1] = cmb(a[i], a[i ^ 1]);
22
23
       T get(int 1, int r){
25
26
            T res = defv:
27
            for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1){
28
                if (1&1) res = cmb(res, a[1++]);
29
                if (r\&1) res = cmb(res, a[--r]);
30
31
32
33
            return res;
34
       }
35 };
```

2.2 Lazy Segment Tree

Overview

Segment tree that supports ranged update.

§ Time complexity: $\mathcal{O}(n)$ for constructor, $\mathcal{O}(\log n)$ for query

⟨⟩ Implementation

```
template<typename T>
   class SegmentTreeLazy{
   public:
       vector<T> st, lazy;
       T defv;
       int n;
       SegmentTreeLazy(int n, T defv) : n(n), defv(defv){
            st = vectorT>(n * 4, defv);
            lazy = vector<T>(n * 4, defv);
10
11
       void update(int 1, int r, T v){
13
            _update(0, n - 1, 0, 1, r, v);
14
16
       T get(int 1, int r){
17
            return _get(0, n - 1, 1, r, 0);
18
19
20
   private:
21
       T cmb(T 1, T r){
22
            return 1 + r;
23
24
```

```
25
26
        void push(int i, int l, int r){
            int mid = (1 + r) / 2;
27
            lazy[i * 2 + 1] += lazy[i];
28
            lazy[i * 2 + 2] += lazy[i];
29
30
            st[i * 2 + 1] += (mid - 1 + 1) * lazy[i];
31
            st[i * 2 + 2] += (r - mid) * lazy[i];
32
33
            lazy[i] = 0;
34
35
36
        void _update(int 1, int r, int crr, int q1, int qr,
37
        \hookrightarrow T v){
            if (qr < 1 || ql > r)
38
39
40
            if (1 >= ql && r <= qr){</pre>
41
                st[crr] += (r - 1 + 1) * v;
42
                 lazy[crr] += v;
43
                return:
44
            }
45
46
            push(crr, 1, r);
47
48
            int mid = (1 + r) / 2;
            _update(1, mid, crr * 2 + 1, ql, qr, v);
49
            _update(mid + 1, r, crr * 2 + 2, ql, qr, v);
51
            st[crr] = cmb(st[crr * 2 + 1], st[crr * 2 + 2]);
52
        }
54
        T _get(int 1, int r, int q1, int qr, int crr){
55
            if (qr < 1 || ql > r)
56
57
                return defv;
            if (1 >= q1 && r <= qr)
58
                return st[crr];
59
60
61
            push(crr, 1, r);
            int mid = (1 + r) / 2;
62
63
            return cmb(_get(1, mid, ql, qr, crr * 2 + 1),

→ _get(mid + 1, r, ql, qr, crr * 2 + 2));
        }
64
   };
65
```

2.3 Sparse Table

■ Overview

Uses binary lifting for efficient queries, offline only.

① Time complexity: $\mathcal{O}(n \log n)$ for constructor, $\mathcal{O}(1)$ for query

```
template <typename T, class Combine = function<T(const T</pre>
    \hookrightarrow &, const T &)>>
   struct SparseTable{
        vector<vector<T>> f;
        vector<int> lg;
        Combine cmb;
5
6
        int n;
        SparseTable(vector<T> &init, const Combine &cmb) :
8
        \rightarrow n(init.size()), cmb(cmb){
            lg = vector < int > (n + 1, 0);
            for (int i = 2; i <= n; i++)
10
                 lg[i] = lg[i / 2] + 1;
11
12
             for (int i = 0; i < n; i++){</pre>
                 f.push_back(vector<int>(lg[n] + 1, -1));
13
                 f[i][0] = init[i];
14
```

```
15
               for (int j = 1; (1 << j) <= n; j++){
16
                    for (int i = 0; (i + (1 << j) - 1) < n; i++)
f[i][j] = cmb(f[i][j - 1], f[i + (1 <<
17
18
                         \hookrightarrow (j - 1))][j - 1]);
19
         }
20
21
         T get(int 1, int r){
22
              int k = lg[r - 1 + 1];
23
              return cmb(f[1][k], f[r - (1 << k) + 1][k]);
24
25
26
   };
```

3 Usage

• Init minimum range query and uses integer type

```
SparseTable<int> rmq(a, [](int a, int b){
return min(a, b);
});
```

2.4 Implicit Treap

■ Overview

Implicit treap implementation with range add update and range sum query. push() and upd() functions should be changed accordingly like lazy segment tree.

§ Time complexity: $O(\log n)$ on average for all operations, large constant!!

```
typedef node* pnode;
    struct ImplicitTreap{
   public:
        pnode root;
        ImplicitTreap(){
            root = new node(-1, 0);
6
        void insert(int i, ll val){
9
            pnode t1, t2;
            split(root, i + 1, 0, t1, t2);
10
            merge(t1, t1, new node(val));
11
            merge(root, t1, t2);
12
13
14
        void erase(int i){
            _erase(root, i + 1, 0);
15
16
        11 query(int 1, int r){
17
            pnode t1, t2, t3;
            split(root, r + 2, 0, t2, t3);
19
            split(t2, 1 + 1, 0, t1, t2);
20
21
            11 \text{ res} = t2 -> sum;
            merge(root, t1, t2)
23
            merge(root, root, t3);
24
25
26
            return res;
        }
27
        void update(int 1, int r, 11 val){
28
            pnode t1, t2, t3;
29
            split(root, r + 2, 0, t2, t3);
30
            split(t2, 1 + 1, 0, t1, t2);
31
```

```
32
            t2->add += val;
33
            merge(root, t1, t2);
34
            merge(root, root, t3);
35
        }
36
        void split(pnode t, int key, int add, pnode &1,
37
            pnode &r){
             if (!t){
38
                 1 = r = nullptr;
39
                 return;
40
            }
41
42
            push(t);
             int impl_key = add + _cnt(t->1);
43
            if (key <= impl_key)</pre>
44
                 split(t->1, key, add, 1, t->1), r = t;
45
46
47
                 split(t->r, key, add + \_cnt(t->l) + 1, t->r,
                 \hookrightarrow r), 1 = t;
48
            upd(t);
49
50
51
        void merge(pnode &t, pnode 1, pnode r){
52
            push(1); push(r);
             if (!l || !r)
53
54
                 t = 1? 1 : r;
             else if (l->prior > r->prior)
55
56
                merge(r->1, 1, r->1), t = r;
57
58
                 merge(1->r, 1->r, r), t = 1;
             upd(t);
        }
60
   private:
61
        void _erase(pnode &t, int key, int add){
63
            push(t);
             int impl_key = add + _cnt(t->1);
64
65
             if (impl_key == key){
                 pnode it = t;
66
67
                 merge(t, t->1, t->r);
68
                 delete it;
69
            }
             else if (key < impl_key)</pre>
70
                 _erase(t->1, key, add);
71
72
73
                 _{erase(t->r, key, add + _cnt(t->l) + 1)};
            upd(t);
74
        }
75
        void push(pnode t){
76
77
            if (!t) return;
            t->sum += t->add * (11)_cnt(t);
78
            t->val += t->add;
79
80
             if (t->1) t->1->add += t->add;
            if (t->r) t->r->add += t->add;
81
82
83
            t->add = 0:
        }
84
        int _cnt(pnode t){
85
86
             if (!t) return 0;
            return t->cnt;
87
88
        11 _sum(pnode t){
89
90
            if (!t) return 0;
            push(t);
91
            return t->sum;
92
93
        }
        void upd(pnode t){
94
             if (!t) return;
95
            t->sum = t->val + _sum(t->l) + _sum(t->r);
96
            t \rightarrow cnt = _cnt(t \rightarrow 1) + _cnt(t \rightarrow r) + 1;
97
98
   };
99
```

2.5 Dynamic Segment Tree

Overview

Range queries and updates on larger range $(1 \le l \le r \le 10^9)$

O Time complexity: $\mathcal{O}(\log M)$ for every operations, where M is max range

Implementation

```
struct Node{
       ll sum, tl, tr;
       Node *1 = nullptr, *r = nullptr;
       Node (11 _t1, 11 _tr){
            t1 = _t1;
            tr = _tr;
            sum = 0;
9
10
       void extend(){
11
            if (tl == tr) return;
12
            ll mid = (tl + tr) / 2;
13
14
                1 = new Node(t1, mid);
16
            if (!r)
17
                r = new Node(mid + 1, tr);
19
  };
20
21
   class funkysegtree{
       void _upd(Node *node, ll x, ll val){
23
           node->sum += val:
24
            if (node->tl > x || node->tr < x)</pre>
25
26
            if (node->tl == node->tr)
27
28
                return;
29
            11 mid = (node->tl + node->tr) / 2;
30
31
            node->extend():
32
            if (x \le mid)
33
                _upd(node->1, x, val);
34
35
                _upd(node->r, x, val);
37
38
39
       ll _get(Node *node, ll ql, ll qr){
40
            if (qr < node->tl || ql > node->tr)
41
                return 0:
42
            else if (ql <= node->tl && qr >= node->tr)
                return node->sum;
44
45
            11 mid = (node->tl + node->tr) / 2;
            node->extend();
47
48
            if (ql > mid)
49
                return _get(node->r, ql, qr);
            else if (qr <= mid)</pre>
51
                return _get(node->1, q1, qr);
52
                return _get(node->1, q1, mid) +
54

    _get(node->r, mid + 1, qr);

       }
55
56
57
58
       Node *root = nullptr;
59
60
       funkysegtree(ll __size){
61
```

```
root = new Node(0, __size);
62
            _size = __size;
63
64
65
       void upd(ll x, ll val){
66
            _upd(root, x, val);
67
68
69
70
       11 get(11 1, 11 r){
71
           return _get(root, 1, r);
72
73 };
```

2.6 Persistent Segment Tree

■ Overview

Preserving history for every segment tree updates.

• Time complexity: $\mathcal{O}(\log N)$ for every operations

⟨/> Implementation

```
struct Vertex {
        Vertex *1, *r;
        int sum;
        Vertex(int val) : l(nullptr), r(nullptr), sum(val) {}
        Vertex(Vertex *1, Vertex *r) : 1(1), r(r), sum(0) {
            if (1) sum += 1->sum;
            if (r) sum += r->sum;
   };
10
11
   Vertex* build(ll a[], int tl, int tr) {
       if (tl == tr)
13
            return new Vertex(a[t1]);
14
15
        int tm = (tl + tr) / 2;
        return new Vertex(build(a, t1, tm), build(a, tm+1,
16
        \hookrightarrow tr));
17 }
18
   int get_sum(Vertex* v, int tl, int tr, int l, int r) {
19
        if (1 > r)
20
21
            return 0;
        if (1 == t1 && tr == r)
            return v->sum;
23
        int tm = (tl + tr) / 2;
24
        return get_sum(v->1, t1, tm, 1, min(r, tm))
25
             + get_sum(v->r, tm+1, tr, max(1, tm+1), r);
26
27 }
28
   Vertex* update(Vertex* v, int tl, int tr, int pos, int
29
    \hookrightarrow new val) {
30
        if (tl == tr)
            return new Vertex(new_val);
31
        int tm = (tl + tr) / 2;
32
        if (pos <= tm)</pre>
33
            return new Vertex(update(v->1, t1, tm, pos,
34
            \hookrightarrow new_val), v->r);
35
            return new Vertex(v->1, update(v->r, tm+1, tr,
36

→ pos, new_val));
37 }
```

1 Usage

• Init and update segment tree with n nodes, each function returns a pointer, save if needed for later.

• Query the segment tree at a specific moment.

```
1 11 res = get_sum(roots[x], 0, n - 1, 1, r);
```

2.7 2D Fenwick Tree

Overview

Query and update on a 2D array.

• Time complexity: $\mathcal{O}(\log^2 n)$ for every operations

⟨▶ Implementation

```
ll bit[1001][1001];
 1
   ll n, m;
    void update(ll x, ll y, ll val){
            for (; y <= n; y += (y & (-y))){
    for (ll i = x; i <= m; i += (i & (-i)))</pre>
 5
                               bit[y][i] += val;
 8
   }
9
10
   11 query(11 x, 11 y){
            ll res = 0;
12
             for (11 i = y; i; i -= (i & (-i)))
13
                     for (11 j = x; j; j -= (j & (-j)))
14
                              res += bit[i][j];
15
16
            return res;
17 }
18
   ll query(ll x1, ll y1, ll x2, ll y2){
19
20
            ll res = query(x2, y2) - query(x1 - 1, y2) -
             \rightarrow query(x2, y1 - 1) + query(x1 - 1, y1 - 1);
             return res;
21
   }
22
```

8 Usage

- query(x, y) returns sum of value from (1,1) to (x,y).
- query(x1, y1, x2, y2) returns sum of value from (x1, y1) to (x2, y2).

2.8 Disjoint Set Union

Overview

Union disjoint set lol.

• Time complexity: $\mathcal{O}(\alpha(\mathbf{n}))$

⟨▶ Implementation

```
struct DissjointSet{
1
        vector<int> p;
2
        int cnt = 0;
3
4
        DissjointSet(){}
6
        DissiointSet(int n){
            cnt = n;
            p = vector < int > (n, -1);
        }
10
        int find(int n){
11
             return p[n] < 0 ? n : p[n] = find(p[n]);</pre>
12
13
14
        void merge(int u, int v){
15
            if ((u = find(u)) == (v = find(v)))
17
                 return:
18
             cnt--;
19
20
             if (p[v] < p[u])</pre>
                 swap(u, v);
21
22
            p[u] += p[v];
23
            p[v] = u;
24
        }
25
   };
26
```

2.9 Line Container

Overview

Add lines of the form y = kx + m, and query maximum value at point x.

• Time complexity: $\mathcal{O}(\log n)$

⟨**/>>** Implementation

```
struct Line {
1
              mutable ll k, m, p;
2
              bool operator<(const Line& o) const { return k <</pre>
3
              \hookrightarrow o.k; }
              bool operator<(ll x) const { return p < x; }</pre>
4
   };
5
6
    struct LineContainer : multiset<Line, less<>> {
    // (for doubles, use inf = 1/.0, div(a,b) = a/b)
7
              11 div(11 a, 11 b) { // floored division
              return a / b - ((a ^ b) < 0 && a % b); }
bool isect(iterator x, iterator y) {</pre>
10
11
12
                        if (y == end()) return x->p = inf, 0;
                        if (x->k == y->k) x->p = x->m > y->m ?
13

    inf : -inf;

                        else x\rightarrow p = div(y\rightarrow m - x\rightarrow m, x\rightarrow k -
14
                         \rightarrow y->k);
                        return x->p >= y->p;
15
              }
16
         //add line y = kx + m
17
              void add(ll k, ll m) {
18
                        auto z = insert(\{k, m, 0\}), y = z++, x =
19
                        while (isect(y, z)) z = erase(z);
20
                        if (x != begin() && isect(--x, y))
21
                        \rightarrow isect(x, y = erase(y));
                        while ((y = x) != begin() \&\& (--x)->p >=
```

```
23
                              isect(x, erase(y));
            }
24
            11 query(11 x) {
25
                     assert(!empty());
26
27
                     auto 1 = *lower_bound(x);
                     return l.k * x + l.m;
28
            }
29
30
  };
```

2.10 Lichao Tree

■ Overview

Add lines of the form y = ax + b, and query maximum value at point x, segment tree implementation.

• Time complexity: $\mathcal{O}(\log n)$

Implementation

```
struct LichaoTree{
2
        struct Line{
            11 a. b:
            Line() : a(0), b(-inf) {}
            Line(ll a, ll b): a(a), b(b) {}
            ll get(ll x){
6
                return a * x + b;
            }
        };
   public:
10
        vector<Line> st:
11
12
        LichaoTree(int n) : n(n){
13
            st.resize(4 * n):
14
        void add_line(Line line, int indx = 1, int l = 0,
16
        \hookrightarrow int r = -1){
            if (r == -1) r = n;
17
            int m = (1 + r) / 2;
18
            bool left = line.get(1) > st[indx].get(1);
19
            bool mid = line.get(m) > st[indx].get(m);
20
22
23
                swap(line, st[indx]);
            if (r - 1 == 1) return;
24
            else if (left != mid)
                add_line(line, 2 * indx, 1, m);
26
27
            else
                add_line(line, 2 * indx + 1, m, r);
29
        ll query(ll x, int indx = 1, int l = 0, int r = -1){
30
31
            if (r == -1) r = n;
            if (r - l == 1) return st[indx].get(x);
            int mid = (1 + r) / 2;
33
34
            if (x < mid)
                return max(st[indx].get(x), query(x, 2 *
35

    indx, 1, mid));
            else
36
37
                return max(st[indx].get(x), query(x, 2 *
                 \hookrightarrow indx + 1, mid, r));
38
   };
39
```

2.11 Ordered Set

Overview

A set that supports finding k-th maximum value, or getting the order of an element.

• Time complexity: $O(\log n)$, large constant

⟨♦⟩ Implementation

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;
template<class T> using ordset = tree<T, null_type,
 less<T>, rb_tree_tag,
 tree_order_statistics_node_update>;
```

8 Usage

 Uses just like a normal set, but with some added functions.

```
ordset<int> s;
s.insert(1);
s.insert(2);
s.insert(4);
s.find_by_order(0) //Returns 1
s.order_of_key(4) //Returns 2
```

2.12 Minimum Stack/Deque

■ Overview

Maintains minimum value in a stack/deque.

• Time complexity: $\mathcal{O}(\alpha(n))$, large constant

⟨►⟩ Implementation

```
struct minstack {
1
            stack<pair<int, int>> st;
2
            int getmin() {return st.top().second;}
            bool empty() {return st.empty();}
            int size() {return st.size();}
5
6
            void push(int x) {
                     int mn = x;
                     if (!empty()) mn = min(mn, getmin());
9
                    st.push({x, mn});
10
            void pop() {st.pop();}
11
            int top() {return st.top().first;}
12
13
            void swap(minstack &x) {st.swap(x.st);}
14 };
15
   struct mindeque {
16
17
            minstack 1, r, t;
            void rebalance() {
18
                    bool f = false;
19
                     if (r.empty()) {f = true; l.swap(r);}
20
21
                     int sz = r.size() / 2;
                     while (sz--) {t.push(r.top()); r.pop();}
                     while (!r.empty()) {1.push(r.top());
23
                     \hookrightarrow r.pop();}
                     while (!t.empty()) {r.push(t.top());
24
                     \hookrightarrow t.pop();}
                     if (f) 1.swap(r);
25
26
            int getmin() {
27
```

```
if (l.empty()) return r.getmin();
28
                    if (r.empty()) return l.getmin();
29
                    return min(l.getmin(), r.getmin());
30
31
32
            bool empty() {return l.empty() && r.empty();}
            int size() {return l.size() + r.size();}
            void push_front(int x) {1.push(x);}
34
            void push_back(int x) {r.push(x);}
35
            void pop_front() {if (1.empty()) rebalance();
            → 1.pop();}
            void pop_back() {if (r.empty()) rebalance();
37
             → r.pop();}
            int front() {if (l.empty()) rebalance(); return
            → 1.top();}
            int back() {if (r.empty()) rebalance(); return
            \hookrightarrow r.top();}
            void swap(mindeque &x) {1.swap(x.1);
40
            \rightarrow r.swap(x.r);}
41 };
```

```
edg[u].push_back(v);
9
10
        }
11
        void bi_add(int u, int v){
            edg[u].push_back(v);
12
13
            edg[v].push_back(u);
14
        void clear(){
15
            for (int u = 0; u < n; u++)</pre>
16
17
                 edg[u].clear();
18
        void remove_dup(){
19
20
            for (int u = 0; u < n; u++){</pre>
                 sort(edg[u].begin(), edg[u].end());
21
                 edg[u].erase(unique(edg[u].begin(),
22
                     edg[u].end()), edg[u].end());
            }
23
24
   };
25
```

2.13 Dynamic Bitset

■ Overview

Bitset with varied length support. NOTE: This requires relatively new version of GCC, and it might be BUGGED using the shift operator.

• Time complexity: $\mathcal{O}(n / 32)$

Implementation

```
#include <tr2/dynamic_bitset>
using namespace tr2;
```

1 Usage

• Init a dynamic bitset with length n.

```
dynamic_bitset<> bs;
bs.resize(n);
```

3 Graph

3.1 Graph

Overview

Helper class, some implementations below will use this.

⟨/> Implementation

```
struct Graph{
vector<vector<int>> edg;
int n;

Graph(int n) : n(n){
   edg = vector<vector<int>>(n, vector<int>());
}

void add(int u, int v){
```

3.2 Tree

Overview

Helper class, some implementations below will use this.

⟨⟩ Implementation

```
struct Tree{
2
        vector<vector<int>> edg;
        vector<int> par, depth;
        int n, root;
        Tree(int n, int root) : n(n), root(root){
            edg = vector<vector<int>>(n, vector<int>());
8
9
        void add(int u, int v){
10
            edg[u].push_back(v);
            edg[v].push_back(u);
11
12
        void clear(){
13
            for (int u = 0; u < n; u++)</pre>
14
                edg[u].clear();
15
16
17
        void remove_dup(){
            for (int u = 0; u < n; u++){
18
                sort(edg[u].begin(), edg[u].end());
19
20
                edg[u].erase(unique(edg[u].begin(),
                 \rightarrow edg[u].end()), edg[u].end());
            }
21
        }
22
        void get_info(){
23
            par = depth = vector<int>(n, 0);
24
            par[root] = -1;
25
            dfs(root, -1);
27
        void dfs(int u, int pre){
28
29
            for (int v : edg[u]){
                 if (v == pre) continue;
30
                par[v] = u; depth[v] = depth[u] + 1;
31
                dfs(v, u);
32
33
34
35
   };
```

3.3 Strongly Connected Components

Overview

Find strongly connected components, compress the graph if needed

• Time complexity: O(N)

⟨/> Implementation

```
struct StronglyConnected{
       Graph &G;
       vector<vector<int>> components;
3
       vector<int> low, num, new_num;
       vector<bool> deleted;
       stack<int> st;
       int indx, scc, n;
       StronglyConnected(Graph &G) : G(G), n(G.n){
            low = num = new_num = vector<int>(n, 0);
10
            indx = scc = 0:
11
12
            deleted = vector<bool>(n, 0);
13
            for (int i = 0; i < n; i++){</pre>
14
                if (!num[i])
15
                     dfs(i);
16
17
       }
18
        void dfs(int u){
20
            low[u] = num[u] = ++indx;
21
            st.push(u);
22
23
            for (int v : G.edg[u]){
24
                if (deleted[v]) continue;
25
                if (!num[v]){
                     dfs(v);
                     low[u] = min(low[u], low[v]);
28
                }
29
                     low[u] = min(low[u], num[v]);
31
            }
32
            if (low[u] == num[u]){
34
                int crr = -1;
35
36
                vector<int> cmp;
                while (crr != u){
38
                    crr = st.top();
39
40
                     cmp.push_back(crr);
                     st.pop();
41
42
                     new_num[crr] = scc;
43
                     deleted[crr] = 1;
45
46
47
                components.push_back(cmp);
                scc++;
48
            }
49
       }
50
        void compress(){
52
            Graph _G(scc);
53
54
            for (int u = 0; u < n; u++){
                for (int v : G.edg[u]){
55
                    int _u = new_num[u], _v = new_num[v];
56
                     if (_u != _v)
57
                         _G.add(_u, _v);
                }
59
60
            G = _G;
61
62
63 };
```

3.4 Bridges and Articulations

Overview

Find bridges and articulations!!

• Time complexity: $\mathcal{O}(N)$

⟨▶ Implementation

```
struct BridgeArt{
        Graph &G;
        vector<int> low, num, arts;
3
        vector<bool> isart;
4
        vector<pair<int, int>> bridges;
        int indx, n;
        {\tt BridgeArt(Graph \&G) : G(G), n(G.n)\{}
             indx = 0;
             low = num = vector<int>(n, 0);
10
            isart = vector<bool>(n, 0);
11
12
13
            for (int i = 0; i < n; i++){</pre>
                 if (!num[i])
14
15
                     dfs(i, i);
16
            for (int i = 0; i < n; i++){</pre>
17
                 if (isart[i])
18
19
                     arts.push_back(i);
            }
20
        }
21
22
        void dfs(int u, int pre){
            low[u] = num[u] = ++indx;
^{24}
            int cnt = 0;
25
26
            for (int v : G.edg[u]){
27
                 if (v == pre) continue;
28
                 if (!num[v]){
29
                     dfs(v, u);
30
                     low[u] = min(low[u], low[v]);
31
32
                     cnt++:
                     if (u == pre){
33
                          if (cnt > 1)
34
                              isart[u] = 1;
35
                     }
36
37
                     else{
                          if (num[u] <= low[v])</pre>
38
                              isart[u] = 1;
39
40
                     if (num[v] == low[v])
41
                          bridges.push_back({u, v});
42
43
                 }
44
                 else
                     low[u] = min(low[u], num[v]);
45
            }
46
47
        }
48 };
```

3.5 Two SAT

Overview

Solve a system of boolean formula, where every clause has exactly two literals.

• Time complexity: O(N+M), M can be a slowing factor

Implementation

```
struct TwoSAT{
 1
        vector<vector<int>> edg1, edg2;
 2
        vector<int> scc, res;
        vector<bool> b;
        stack<int> topo;
        int n:
        TwoSAT(int n) : n(n){
             edg1 = edg2 = vector<vector<int>>(2 * n);
 9
             scc = res = vector < int > (2 * n, 0);
10
             b = vector < bool > (2 * n, 0);
11
12
13
        void dfs1(ll u){
14
             b[u] = 1;
15
             for (ll v : edg1[u]){
16
17
                 if (!b[v])
                      dfs1(v);
18
19
20
             topo.push(u);
22
23
24
        void dfs2(ll u, ll root){
25
             scc[u] = root;
             for (ll v : edg2[u]){
26
                 if (scc[v] == -1)
27
                      dfs2(v, root);
29
        }
30
31
32
        bool solve(){
            for (int i = 0; i < 2 * n; i++){
33
                 scc[i] = -1;
34
                 if (!b[i])
                      dfs1(i);
36
             }
37
             int j = 0;
             while (siz(topo)){
40
41
                 11 u = topo.top();
                 topo.pop();
43
                 if (scc[u] == -1)
44
                      dfs2(u, j++);
45
47
             for (int i = 0; i < n; i++){</pre>
48
                 if (scc[i * 2] == scc[i * 2 + 1])
49
                      return 0;
50
                 res[i] = scc[i * 2] > scc[i * 2 + 1];
51
             7
52
             return 1;
54
        }
55
        void add(int x, bool a, int y, bool b){
  int X = x * 2 + (a & 1), Y = y * 2 + (b & 1);
57
58
             int _X = x * 2 + 1 - (a & 1), _Y = y * 2 + 1 -
59
             \hookrightarrow (b & 1);
60
61
             edg1[_X].push_back(Y);
             edg1[_Y].push_back(X);
62
             edg2[Y].push_back(_X);
63
             edg2[X].push_back(_Y);
64
65
        }
66 };
```

0 Usage

- The add(x, a, y, b) function add the clause (x OR y), where a, b signify whether x or y is negated or not.
- The solve() function returns 1 if there exist a valid assignment, and 0 otherwise. The valid assignment will then be stored in res.

3.6 MCMF

Overview

Find a maximum flow with minimum cost, SPFA implementation.

• Time complexity: $\mathcal{O}(N^3)$ with a bullshit factor

\(\sim\) Implementation

```
struct edge{
        ll cost, capacity;
3
        edge* rv;
 4
        edge(int v, ll cost, ll capacity) : v(v),

    cost(cost), capacity(capacity){}
   };
6
    struct MCMF{
        vector<vector<edge*>> edg;
9
10
        vector<pair<int, edge*>> par;
        vector<ll> dis;
12
        MCMF(int n){
13
             edg = vector<vector<edge*>>(n);
14
15
        void add_edge(int u, int v, ll capacity, ll cost){
16
17
             edge* e = new edge(v, cost, capacity);
18
             edge* re = new edge(u, -cost, 0);
19
20
             e->rv = re;
21
             re->rv = e;
             edg[u].push_back(e);
23
24
             edg[v].push_back(re);
        }
25
        void spfa(int start){
26
             int n = edg.size();
27
28
             auto inq = vec(n, 0);
29
             dis = vec(n, inf);
             par = vector<pair<int, edge*>>(n, {-1, nullptr});
30
31
32
             queue<int> q;
             q.push(start);
33
             dis[start] = 0;
34
35
             while (q.size()){
                 int u = q.front(); q.pop();
inq[u] = 0;
37
38
39
40
                 for (auto e : edg[u]){
                      if (e->capacity > 0 && dis[e->v] >
41
                      \hookrightarrow \  \, \texttt{dis[u] + e-} \\ \texttt{cost)} \{
                          dis[e->v] = dis[u] + e->cost;
42
                          par[e\rightarrow v] = \{u, e\};
43
44
                          if (!inq[e->v]){
45
                               inq[e->v] = 1;
46
                               q.push(e->v);
47
48
                          }
                      }
49
50
```

```
}
51
52
        }
        pl get(int start, int end, ll max_flow = inf){
53
            11 flow = 0, cost = 0;
54
            while (flow < max_flow){</pre>
55
                spfa(start);
                if (dis[end] == inf) break;
57
58
                11 f = max_flow - flow;
59
                int u = end;
60
61
62
                while (u != start){
                     f = min(f, par[u].y->capacity);
                     u = par[u].x;
64
65
                flow += f;
67
                cost += f * dis[end];
68
69
70
                u = end;
                while (u != start){
71
                     par[u].y->capacity -= f;
72
73
                     par[u].y->rv->capacity += f;
                     u = par[u].x;
74
75
76
            if (flow == max_flow || max_flow == inf)
                return {flow, cost};
78
            else
79
80
                return {-1, -1};
81
  };
82
```

3.7 Maximum Flow (Dinic)

■ Overview

Maximum flow using Dinic's algorithm.

 ${\bf O}$ Time complexity: $\mathcal{O}(V^2E)$ for general graphs, but in practice $\approx \mathcal{O}(E^{1.5})$

Implementation

```
template<int V, class T=long long>
   class max_flow {
            static const T INF = numeric_limits<T>::max();
            struct edge {
                    int t, rev;
                    T cap, f;
            };
   public:
10
            vector<edge> adj[V];
11
            11 dist[V];
            int ptr[V];
13
14
            bool bfs(int s, int t) {
                    memset(dist, -1, sizeof dist);
16
                     dist[s] = 0;
17
                     queue<int> q({ s });
18
                     while (!q.empty() && dist[t] == -1) {
                             int n = q.front();
20
                             q.pop();
21
                             for (auto& e : adj[n]) {
22
                                     if (dist[e.t] == -1 &&
                                      → e.cap != e.f) {
24
                                              dist[e.t] =
                                               \hookrightarrow dist[n] + 1;
                                              q.push(e.t);
25
```

```
26
27
28
                      return dist[t] != -1;
29
             }
30
31
             T augment(int n, T amt, int t) {
32
                       if (n == t) return amt:
33
34
                      for (; ptr[n] < adj[n].size(); ptr[n]++)</pre>
                                edge& e = adj[n][ptr[n]];
35
36
                                if (dist[e.t] == dist[n] + 1 &&
                                \hookrightarrow e.cap != e.f) {
                                         T flow = augment(e.t,
37
                                         \hookrightarrow min(amt, e.cap -
                                             e.f), t);
                                         if (flow != 0) {
38
39
                                                  e.f += flow;
                                                  adj[e.t][e.rev].
40
                                                  \hookrightarrow f -= flow;
                                                  return flow;
41
                                         }
42
                               }
43
44
                      return 0;
45
46
             }
47
             void add(int u, int v, T cap=1, T rcap=0) {
48
                      adj[u].push_back({ v, (int)
49
                       \hookrightarrow adj[v].size(), cap, 0 });
                      adj[v].push_back({ u, (int)
50
                       \hookrightarrow adj[u].size() - 1, rcap, 0 });
52
             T calc(int s, int t) {
53
                      T flow = 0:
54
                      while (bfs(s, t)) {
                               memset(ptr, 0, sizeof ptr);
56
                                while (T df = augment(s, INF, t))
57
                                         flow += df;
59
                      return flow;
60
             }
61
             void clear() {
63
                      for (int n = 0; n < V; n++)</pre>
64
65
                               adj[n].clear();
66
   };
67
```

3.8 Maximum Matching (Hopcroft Karp)

Overview

Find maximum matching on bipartite graph.

• Time complexity: $\mathcal{O}(m\sqrt{n})$ worst case

```
struct HopcroftKarp{
    vector<vector<int>> edg;
    vector<int> U, V;

    vector<int> pu, pv;

    vector<int> dist;

//NOTE: This graph is 1-indexed!!!

HopcroftKarp(int n, int m){
    edg = vector<vector<int>>(n + 1);
    for (int i = 0; i < n; i++)
    U.push_back(i + 1);</pre>
```

```
for (int i = 0; i < m; i++)
12
                V.push_back(i + 1);
13
14
            pu = vector < int > (n + 1, 0);
15
16
            pv = vector < int > (m + 1, 0);
            dist = vector<int>(n + 1, inf);
18
19
20
        void add_edge(int u, int v){
            edg[u].push_back(v);
21
22
23
        bool bfs(){
            queue<int> q;
25
            for (int u : U){
26
27
                if (!pu[u]){
                     q.push(u);
28
                     dist[u] = 0;
29
                }
30
31
32
                     dist[u] = inf;
33
            }
34
35
            dist[0] = inf;
36
            while (q.size() > 0){
37
                int u = q.front();
                q.pop();
39
40
41
                if (dist[u] < dist[0]){</pre>
                     for (int v : edg[u]){
42
                         if (dist[pv[v]] == inf){
43
44
                              q.push(pv[v]);
                              dist[pv[v]] = dist[u] + 1;
46
                     }
47
                }
49
50
            if (dist[0] == inf)
51
                return 0;
            return 1;
53
54
        bool dfs(ll u){
56
            if (u == 0) return 1;
57
58
            for (int v : edg[u]){
                 if (dist[pv[v]] == (dist[u] + 1)){
59
                     if (dfs(pv[v])){
60
                         pu[u] = v;
61
62
                         pv[v] = u;
                         return 1;
63
                     }
64
                }
65
            }
67
            dist[u] = 0;
68
69
            return 0;
70
71
        int solve(){
72
            int res = 0;
73
            while (bfs()){
74
                for (int u : U){
75
76
                     if (!pu[u])
                         if (dfs(u))
                              res++;
78
79
80
            }
81
            return res:
82
83
        }
  };
```

3.9 General Matching (Blossom)

Overview

Find maximum matching on general graph.

• Time complexity: $\mathcal{O}(n^3)$ worst case

```
struct Matching {
1
        int n:
2
        vector<vector<int>> g;
        vector<int> mt;
        vector<int> is_ev, gr_buf;
5
6
        vector<pi> nx;
        int st;
        int group(int x) {
8
            if(gr_buf[x] == -1 || is_ev[gr_buf[x]] != st)
9
            \hookrightarrow return gr_buf[x];
10
            return gr_buf[x] = group(gr_buf[x]);
11
        void match(int p, int b) {
12
            int d = mt[p];
13
            mt[p] = b;
14
            if(d == -1 || mt[d] != p) return;
15
16
            if(nx[p].second == -1) {
                mt[d] = nx[p].first;
17
                match(nx[p].first, d);
18
            } else {
19
20
                match(nx[p].first, nx[p].second);
                match(nx[p].second, nx[p].first);
21
            }
22
23
        bool arg() {
^{24}
            is_ev[st] = st;
25
            gr_buf[st] = -1;
26
            nx[st] = pi(-1, -1);
27
            queue<int> q;
28
            q.push(st);
29
30
            while(q.size()) {
31
                int a = q.front();
                 q.pop();
32
                 for(auto b : g[a]) {
33
                     if(b == st) continue;
34
                     if(mt[b] == -1) {
35
                         mt[b] = a:
36
37
                         match(a, b);
38
                         return true;
39
                     if(is_ev[b] == st) {
40
                         int x = group(a), y = group(b);
41
                         if(x == y) continue;
int z = -1;
42
43
44
                         while(x != -1 || y != -1) {
                              if(y != -1) swap(x, y);
45
                              if(nx[x] == pi(a, b)) {
46
47
                                  z = x;
                                  break;
48
49
                             nx[x] = pi(a, b);
50
51
                              x = group(nx[mt[x]].first);
                         for(int v : {group(a), group(b)}) {
53
                             while(v != z) {
54
55
                                  q.push(v);
                                  is_ev[v] = st;
56
                                  gr_buf[v] = z;
57
58
                                  v = group(nx[mt[v]].first);
59
                         }
60
                     } else if(is_ev[mt[b]] != st) {
61
                         is_ev[mt[b]] = st;
62
                         nx[b] = pi(-1, -1);
63
                         nx[mt[b]] = pi(a, -1);
64
```

```
gr_buf[mt[b]] = b;
65
                          q.push(mt[b]);
66
67
                }
68
            }
69
             return false;
70
71
        Matching(const vector<vector<int>> &_g) :
72
         \rightarrow n(int(_g.size())), g(_g), mt(n, -1), is_ev(n,
            -1), gr_buf(n), nx(n) {
            for(st = 0; st < n; st++)</pre>
73
                 if(mt[st] == -1) arg();
75
        vector<pi> max match() {
76
             vector<pi> res;
77
             for (int i = 0; i < n; i++){
78
                 if(i < mt[i])</pre>
79
                     res.push_back({i, mt[i]});
80
            }
             return res;
82
83
  };
84
```

4 Math

4.1 Modular Int

■ Overview

Helper class, some implementations below will use this.

//> Implementation

```
template<ll mod = 1000000007>
   struct modu{
       ll val;
       modu(ll x){
           val = x;
            val %= mod;
           if (val < 0) val += mod;</pre>
       modu(){ val = 0; }
10
       operator 11() const { return val; }
11
       modu operator+(modu const& other){ return val +
12
        modu operator-(modu const& other){ return val -
13

    other.val; }

       modu operator*(modu const& other){ return val *

    other.val; }

       modu operator/(modu const& other){ return *this *
15
          other.inv(); }
       modu operator+=(modu const& other) { *this = *this +
16
        → other; return *this; }
       modu operator-=(modu const& other) { *this = *this -

    other; return *this; }

       modu operator*=(modu const& other) { *this = *this *
18
         → other; return *this; }
       modu operator/=(modu const& other) { *this = *this /
19
       → other; return *this; }
       modu operator++(int) {modu tmp = *this; *this += 1;

    return tmp;
}
       modu operator++() {*this += 1; return *this;}
21
       modu operator--(int) {modu tmp = *this; *this -= 1;
22

    return tmp;}

       modu operator--() {*this -= 1; return *this;}
23
       modu operator-() {return modu(-val);}
24
       friend ostream& operator<<(ostream& os, modu const&</pre>
        \hookrightarrow m) { return os << m.val; }
```

```
friend istream& operator>>(istream& is, modu & m) {
26

    return is >> m.val; }

27
        modu pow(11 x) const{
28
29
            if (x == 0)
30
                return 1;
            if (x \% 2 == 0){
31
                modu tmp = pow(x / 2);
32
                return tmp * tmp;
33
34
            else
35
36
                return pow(x - 1) * *this;
        }
37
38
        modu inv() const{ return pow(mod - 2); }
39
40 };
```

4.2 Modular Square Root

Overview

Operations on field

$$\langle u, v \rangle = u + v\sqrt{k} \mod p$$

⟨►⟩ Implementation

```
11 MOD = 999999893;
1
2
   11 \text{ sq} = 2;
   class EX {
4
      int re, im;
      static int trim(int a) {
       if (a >= MOD) a -= MOD;
       if (a < 0) a += MOD;</pre>
9
       return a;
10
     static int inv(const int a) {
11
12
       int ans = 1;
13
        for (int cur = a, p = MOD - 2; p; p >>= 1, cur = 111
        if (p&1) ans = 111 * ans * cur % MOD;
14
       }
15
       return ans;
16
     };
17
18
   public:
     EX(int re = 0, int im = 0) : re(re), im(im) {}
19
     EX& operator=(EX oth) { return re = oth.re, im =
20

    oth.im. *this: }

      int norm() const {
21
       return trim((111 * re * re - 111 * sq * im % MOD *
22
        \hookrightarrow im) % MOD);
     7
23
     EX conj() const {
24
       return EX(re, trim(MOD - im));
25
26
     EX operator*(EX oth) const {
27
       return EX((111 * re * oth.re + 111 * sq * im % MOD *
28

→ oth.im) % MOD,

                  (111 * re * oth.im + 111 * im * oth.re) %
29
                  \hookrightarrow MOD);
30
     EX operator/(int n) const {
31
       return EX(111 * re * inv(n) % MOD, 111 * im * inv(n)
32
        \hookrightarrow % MOD);
33
      EX operator/(EX oth) const { return *this * oth.conj()
      → / oth.norm(); }
```

```
EX operator+(EX oth) const { return EX(trim(re +
35

    oth.re), trim(im + oth.im)); }

     EX operator-(EX oth) const {
36
       return EX(trim(re - oth.re), trim(im - oth.im));
37
38
39
     EX pow(long long n) const {
       EX ans(1);
40
       for (EX a = *this; n; n >>= 1, a = a * a) {
41
         if (n\&1) ans = a * ans;
43
44
       return ans:
45
     bool operator==(EX oth) const { return re == oth.re
46

    and im == oth.im; }

47
     bool operator!=(EX oth) const { return not (*this ==
     int real() const& { return re; }
48
     int imag() const& { return im; }
49
```

4.3 Discrete Log

■ Overview

Given a, b, m, find any x that satisfy

$$a^x = b \mod m$$

• Time complexity: $\mathcal{O}(N \log \log N)$

Implementation

```
// Returns minimum x for which a \hat{x} \% m = b \% m.
    int solve(int a, int b, int m) {
        a %= m, b %= m;
3
        int k = 1, add = 0, g;
        while ((g = gcd(a, m)) > 1) {
            if (b == k)
                return add;
            if (b % g)
9
                 return -1;
            b /= g, m /= g, ++add;
k = (k * 111 * a / g) % m;
10
11
12
        int n = sqrt(m) + 1;
14
        int an = 1;
15
        for (int i = 0; i < n; ++i)</pre>
16
            an = (an * 111 * a) % m;
17
18
19
        unordered_map<int, int> vals;
20
        for (int q = 0, cur = b; q \le n; ++q) {
            vals[cur] = q;
21
             cur = (cur * 111 * a) % m;
22
23
24
        for (int p = 1, cur = k; p <= n; ++p) {</pre>
25
            cur = (cur * 111 * an) % m;
26
             if (vals.count(cur)) {
                 int ans = n * p - vals[cur] + add;
28
                 return ans:
29
30
            }
31
        return -1:
32
33 }
```

4.4 Primite Root

■ Overview

Given a, n, find g so that for any a such that gcd(a, n) = 1, there exists k such that

$$g^k = a \mod n$$

• Time complexity: $\mathcal{O}(Ans \cdot \log \phi(n) \cdot \log n)$

⟨/> Implementation

```
int powmod (int a, int b, int p) {
1
        int res = 1;
2
        while (b)
            if (b & 1)
                res = int (res * 111 * a % p), --b;
            else
                a = int (a * 111 * a % p), b >>= 1;
        return res;
8
9
   }
10
   int generator (int p) {
11
        vector<int> fact;
12
13
        int phi = p-1, n = phi;
        for (int i=2; i*i<=n; ++i)</pre>
14
            if (n % i == 0) {
15
                fact.push_back (i);
16
                while (n \% i == 0)
17
18
                    n /= i;
            }
19
20
        if (n > 1)
            fact.push_back (n);
21
22
        for (int res=2; res<=p; ++res) {</pre>
23
24
            bool ok = true;
            for (size_t i=0; i<fact.size() && ok; ++i)</pre>
25
                ok &= powmod (res, phi / fact[i], p) != 1;
26
27
            if (ok) return res;
28
        }
        return -1;
29
   }
30
```

4.5 Euler's Totient Funnction

■ Overview

Find $\phi(i)$ for i from 1 to N.

• Time complexity: $\mathcal{O}(N \log \log N)$

```
int phi[def];
void phi(int n) {
    phi[0] = 0;
    phi[1] = 1;
    for (int i = 2; i <= n; i++)
        phi[i] = i - 1;

for (int i = 2; i <= n; i++)
    for (int j = 2 * i; j <= n; j += i)
        phi[j] -= phi[i];
}</pre>
```

4.6 Chinese Remainder Theorem

■ Overview

Given a system of congruences

```
a = a_1 \mod M_1, a = a_2 \mod M_2, \dots
```

where M_i might not be pairwise coprime, find any a that satisfy it.

• Time complexity: $\mathcal{O}(N \log \max(M_i))$

⟨**/>>** Implementation

```
typedef __int128_t i128;
   i128 exeuclid(i128 a, i128 b, i128& x, i128& y){
       if (b == 0) {
            x = 1;
           y = 0;
            return a;
       i128 x1, y1;
       i128 d = exeuclid(b, a % b, x1, y1);
       x = y1;
10
       y = x1 - y1 * (a / b);
11
        return d;
^{12}
13 }
14
15
   struct CBT{
        i128 A = 0, M = 0;
16
        void add(i128 a, i128 m){
17
            a = ((a \% m) + m) \% m;
18
19
            i128 _M = M;
            if (M == 0){
20
                A = a, M = m;
21
22
                return;
            }
            if (A == -1) return;
24
            i128 p, q;
25
            i128 g = exeuclid(M, m, p, q);
26
            if ((a - A) % g != 0){
                A = -1, M = -1;
28
29
                return:
            i128 \text{ mul} = (a - A) / g;
31
            M = m * M / g;
32
            A = (((_M * p * mul + A) % M) + M) % M;
33
34
  };
35
```

Q Usage

- The add(x, y) function add the condition $a = x \mod y$.
- If $a \neq -1$, the solution a will satisfy $a = A \mod M$.

4.7 Extended Euclidean

■ Overview

Given a, b, find any x, y that satisfy

$$ax + by = gcd(a, b)$$

Note that the function pass x,y by reference and returns $\gcd(a,b).$

• Time complexity: $\mathcal{O}(\log n)$

⟨⟩ Implementation

```
int extended_euclid(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    int x1, y1;
    int d = extended_euclid(b, a % b, x1, y1);
    x = y1;
    y = x1 - y1 * (a / b);
    return d;
}
```

4.8 Linear Diophantine

Overview

Given a, b, c, find any x, y that satisfy

$$ax + by = c$$

• Time complexity: $\mathcal{O}(\log n)$)

⟨⟩ Implementation

```
bool find_any_solution(int a, int b, int c, int &x0, int
   g = extended_euclid(abs(a), abs(b), x0, y0);
       if (c % g) {
          return false;
5
6
       x0 *= c / g;
       y0 *= c / g;
       if (a < 0) x0 = -x0;
9
10
       if (b < 0) y0 = -y0;
11
       return true;
12 }
```

4.9 Matrix

Overview

Matrix helper class.

```
template <typename T>
   struct Matrix{
       vector<vector<T>> m;
3
       Matrix (vector<vector<T>> &m) : T(m){}
       Matrix (int r, int c) {
6
           m = vector<vector<T>>(r, vector<T>(c));
       int row() const {return m.size();}
       int col() const {return m[0].size();}
10
11
12
       static Matrix identity(int n){
           Matrix res = Matrix(n, n);
13
           for (int i = 0; i < n; i++)</pre>
14
```

```
res[i][i] = 1;
15
             return res;
16
17
18
        auto & operator [] (int i) { return m[i]; }
19
        const auto & operator[] (int i) const { return m[i];
20
21
        Matrix operator * (const Matrix &b){
             Matrix a = *this;
23
             assert(a.col() == b.row());
24
             Matrix c(a.row(), b.col());
26
             for (int i = 0; i < a.row(); i++)
    for (int j = 0; j < b.col(); j++)</pre>
27
28
                     for (int k = 0; k < a.col(); k++)</pre>
                          c[i][j] += a[i][k] * b[k][j];
30
31
             return c:
32
        }
33
        Matrix pow(ll x){
34
             assert(row() == col());
35
             Matrix crr = *this, res = identity(row());
             while (x > 0){
37
38
                 if (x % 2 == 1)
                     res = res * crr;
39
                 crr = crr * crr;
40
                 x /= 2;
41
            }
42
             return res;
44
45 };
```

4.10 Miller Rabin Primality Test

Overview

Deterministic implementation of Miller Rabin.

• Time complexity: Should be fast

Implementation

```
ll binpower(ll base, ll e, ll mod) {
       ll result = 1;
        base %= mod;
3
       while (e) {
            if (e & 1)
               result = (__int128_t)result * base % mod;
            base = (__int128_t)base * base % mod;
            e >>= 1;
9
10
       return result;
11 }
12
   bool check_composite(ll n, ll a, ll d, int s) {
13
       11 x = binpower(a, d, n);
14
        if (x == 1 || x == n - 1)
15
           return false;
16
        for (int r = 1; r < s; r++) {</pre>
17
           x = (_int128_t)x * x % n;
18
19
            if (x == n - 1)
                return false;
20
21
22
       return true:
23
24
   bool MillerRabin(ll n) { // returns true if n is prime,
25
      else returns false.
       if (n < 2)
26
27
           return false;
```

```
28
29
       int r = 0;
       11 d = n - 1;
30
       while ((d & 1) == 0) {
31
32
           d >>= 1;
           r++;
33
34
35
       for (int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
36
        if (n == a)
37
38
               return true;
           if (check_composite(n, a, d, r))
39
               return false:
40
       }
41
43
```

4.11 Fast Fourier Transform

Overview

multiplymod(A, B, M) returns C where

$$C[u] = \sum_{i=1}^{|A|} \sum_{j=1}^{|B|} A_i \cdot B_j \mod M \ (i+j=u)$$

• Time complexity: $\mathcal{O}(n \log n)$)

⟨/> Implementation

```
using cpx = complex<double>;
1
    const double PI = acos(-1);
   vector<cpx> roots = \{\{0, 0\}, \{1, 0\}\};
    void ensure_capacity(int min_capacity) {
        for (int len = roots.size(); len < min_capacity; len</pre>

→ *= 2) {
            for (int i = len >> 1; i < len; i++) {</pre>
                 roots.emplace_back(roots[i]);
                 double angle = 2 * PI * (2 * i + 1 - len) /
9
                 \hookrightarrow (len * 2):
                 roots.emplace_back(cos(angle), sin(angle));
10
            }
11
        }
12
   }
13
14
   void fft(vector<cpx> &z. bool inverse) {
15
16
        int n = z.size();
        assert((n & (n - 1)) == 0);
17
        ensure_capacity(n);
18
        for (unsigned i = 1, j = 0; i < n; i++) {</pre>
19
             int bit = n >> 1;
20
            for (; j >= bit; bit >>= 1)
21
            j -= bit;
j += bit;
22
23
             if (i < j)
25
                 swap(z[i], z[j]);
        }
26
27
        for (int len = 1; len < n; len <<= 1) {</pre>
             for (int i = 0; i < n; i += len * 2) {</pre>
28
                 for (int j = 0; j < len; j++) {</pre>
29
                     cpx root = inverse ? conj(roots[j +
30

    len]) : roots[j + len];

                     cpx u = z[i + j];
31
                     cpx v = z[i + j + len] * root;
32
                     z[i + j] = u + v;
33
                     z[i + j + len] = u - v;
34
35
```

```
36
       }
37
        if (inverse)
38
            for (int i = 0; i < n; i++)</pre>
39
40
                z[i] /= n;
   }
41
   vector<int> multiply_mod(const vector<int> &a, const
42
       vector<int> &b, int m) {
        int need = a.size() + b.size() - 1;
43
        int n = 1;
44
        while (n < need)
45
46
           n <<= 1;
        vector<cpx> A(n);
47
        for (size_t i = 0; i < a.size(); i++) {</pre>
48
            int x = (a[i] % m + m) % m;
49
            A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
51
       fft(A. false):
52
53
        vector<cpx> B(n);
54
       for (size_t i = 0; i < b.size(); i++) {</pre>
55
            int x = (b[i] % m + m) % m;
56
57
            B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
58
59
       fft(B, false):
60
        vector<cpx> fa(n);
61
        vector<cpx> fb(n);
62
       for (int i = 0, j = 0; i < n; i++, j = n - i) {
63
            cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
            cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
65
            cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
66
            cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
            fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
68
            fb[i] = a1 * b2 + a2 * b1;
69
70
72
       fft(fa, true);
       fft(fb, true);
73
74
        vector<int> res(need);
        for (int i = 0; i < need; i++) {</pre>
75
            long long aa = (long long)(fa[i].real() + 0.5);
76
            long long bb = (long long)(fb[i].real() + 0.5);
77
            long long cc = (long long)(fa[i].imag() + 0.5);
            res[i] = (aa % m + (bb % m << 15) + (cc % m <<
79

→ 30)) % m;

       }
80
81
       return res;
  }
82
```

4.12 OR Convolution

■ Overview

convolute or(A, B) returns C where

$$C[u] = \sum_{i=1}^{|A|} \sum_{j=1}^{|B|} A_i \cdot B_j \mod M \ (i|j=u)$$

• Time complexity: $\mathcal{O}(2^N \cdot N)$

\'\> Implementation

```
b[j] += b[j - (1 << i)];
6
8
        for (int i = n - 1; i >= 0; i--){
9
            for (int j = (1 << n) - 1; j >= 0; j--){
10
               if ((j >> i) & 1)
11
                    a[j] = a[j - (1 << i)];
12
            }
13
14
15
        auto c = vector<int>(n, 0);
        for (int i = n - 1; i < (1 << n); i++)</pre>
16
            c[i] = a[i] * b[i];
17
        for (int i = n - 1; i >= 0; i--){
18
            for (int j = (1 << n) - 1; j >= 0; j--){
19
                if ((j >> i) & 1)
20
                    c[j] = c[j - (1 << i)];
21
22
        }
23
24 }
```

4.13 XOR Convolution

■ Overview

idk lol.

```
void xorconv(vector<int> &a,int modul){ // chuyen tu dang
    \hookrightarrow binh thuong sang dang dac biet, xong cu lay a[i] =
        b[i] * c[i]
        int n = a.size();
2
        for(int m = n/2; m; m/=2){
3
             for(int i = 0 ; i < n; i+= 2 * m){</pre>
                 for(int j = 0; j < m; ++ j){
                      int x = a[i + j];
                      int y = a[i + j + m];
                      a[i + j] = (x + y) \text{modul};
                      a[i + j + m] = (x-y+modul) \% modul;
9
                 }
10
             }
11
12
   }
13
    void xorconv2(vector<int> &a,int modul){ // chuyen tu
14

→ dang dac biet ve dang binh thuong ⇒ dap an sau khi

15
        int n = a.size();
        for(int m = 1; m<n; m*=2){</pre>
16
             for(int i = 0; i < n; i+= 2 * m){
    for(int j = 0; j <m;++ j){
17
18
                      int x = a[i + j];
                      int y = a[i + j + m];
20
                      a[i + j] = (x + y) \text{modul};
21
                      a[i + j + m] = (x-y+modul) \% modul;
22
23
            }
24
        }
25
26
        for(int i = 0;i<n;++i){</pre>
             a[i] = 1LL * (ll)a[i] * binpow(n,modul - 2,

    modul) %modul;

        }
28
29 }
```

5 String

5.1 Rolling Hash

■ Overview

Rolling hash implementation, use multiple mod if necessary.

• Time complexity: $\mathcal{O}(N)$

⟨**/>>** Implementation

```
struct hashu{
           11 n;
2
           vector<dd> p, h;
           hashu(string s){
5
                   n = s.size();
                    p = vector < dd > (n + 1);
                   h = vector < dd > (n + 1);
10
                    p[0] = \{1, 1\};
                    for (int i = 1; i <= n; i++)
                           p[i] = p[i - 1] * base;
12
                   for (int i = 1; i <= n; i++)
13
                           h[i] = (h[i - 1] * base) + (s[i
                            }
15
16
           dd get(11 1, 11 r){
17
                   return h[r + 1] - (h[1] * p[r - 1 + 1]);
18
19
  };
```

5.2 Z-Function

■ Overview

Return an array where the i-th element corresponds to the longest sub-string starting from i that matches the prefix of s.

• Time complexity: $\mathcal{O}(N)$

⟨⟩ Implementation

```
vector<int> z_func(string s){
2
            int n = s.size();
            vector<int> v(n);
             int 1 = 0, r = 0;
             for (int i = 1; i < n; i++){
                     if (i < r)
                              v[i] = min(r - i, v[i - 1]);
                     while ((v[i] + i) < n && s[v[i]] ==</pre>
                     \hookrightarrow s[v[i] + i])
                              v[i]++;
10
                     if ((v[i] + i) > r)
11
                              1 = i, r = v[i] + i;
12
            }
13
15
             return v;
16 }
```

5.3 Prefix Function

■ Overview

Return an array where the i-th element corresponds to the longest sub-string ending at i that matches the prefix of s.

• Time complexity: $\mathcal{O}(N)$

⋄ Implementation

```
vector<int> pref_func(string s){
        int n = siz(s);
2
        vector<int> v(n);
4
        for (int i = 1; i < n; i++){</pre>
5
            11 j = v[i - 1];
6
            while (j > 0 \&\& s[j] != s[i])
                j = v[j - 1];
            if (s[j] == s[i])
9
10
                j++;
            v[i] = j;
11
        }
12
13
14
        return v;
15
```

5.4 Manacher's Algorithm

■ Overview

Return an array where the i-th element corresponds to the longest palindrome that has i as the center, note that the algorithm only works for odd length palindrome, even can also be easily handled by inserting a dummy character in every even indicies.

• Time complexity: $\mathcal{O}(N)$

⟨⟩ Implementation

```
vector<int> manacher(string s) {
1
       int n = s.size();
2
       s = "$" + s + "^"
       vector<int> p(n + 2);
       int 1 = 1, r = 1;
5
       for(int i = 1; i <= n; i++) {</pre>
6
           p[i] = max(0, min(r - i, p[l + (r - i)]));
7
            while(s[i - p[i]] == s[i + p[i]]) \{
                p[i]++;
9
10
11
           if(i + p[i] > r) {
12
                1 = i - p[i], r = i + p[i];
13
14
       }
       return vector<int>(begin(p) + 1, end(p) - 1);
15
  }
16
```

5.5 Aho-Corasick

■ Overview

Construct an automaton of Trie nodes, where dp[i][c] is the next state of i when adding character c. If no state exists, we repeatedly go through the next longest available suffix j of i, and try to get dp[j][c].

• Time complexity: $\mathcal{O}(M*K)$, where M is the number of nodes in the Trie, and K is the alphabet size

⟨/> Implementation

```
struct node{
2
        int p[26];
        int link;
        node(){
            for (int i = 0; i < 26; i++)</pre>
                p[i] = -1;
8
   };
10
   struct Trie{
11
12
        int indx = 1;
13
        int dp[def][26];
        vector<node> p;
14
15
16
        Trie(){
            p.push_back(node());
17
18
19
        int add(string s){
            11 crr = 0;
21
            for (int i = 0; i < s.size(); i++){</pre>
22
                int c = s[i] - 'a';
                 if (p[crr].p[c] == -1){
24
                     p[crr].p[c] = indx++;
25
26
                     p.push_back(node());
27
28
                 crr = p[crr].p[c];
29
            }
30
31
            return crr;
32
        }
33
        void buildsuffix(){
35
            int n = p.size();
36
37
            queue<int> q;
38
            q.push(0);
39
40
            p[0].link = 0;
            for (int i = 0; i < n; i++) for (int j = 0; j <
42

→ 26; j++)

                     dp[i][j] = 0;
43
44
            while (q.size()){
45
                int u = q.front();
46
                q.pop();
48
                for (int i = 0; i < 26; i++){</pre>
49
                     int v = p[u].p[i];
50
                     if (v != -1){
51
                         dp[u][i] = v;
52
                         p[v].link = (u == 0)? 0 :
53

    dp[p[u].link][i];

                         q.push(v);
54
                     }
55
57
                         dp[u][i] = dp[p[u].link][i];
58
                }
59
            }
60
61
```

62 };