Wydział:	Dzień:Poniedziałek 14-17		Zespół:
Fizyki	Data: 20.03.2017		8
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 20: Badanie właściwości magnetycznych ciał stałych

1 Cel badań

Zapoznanie się z właściwościami magnetycznymi ciał stałych oraz wyznaczenie temperatury Curie dla rdzenia ferromagnetycznego w transformatorze. ...

2 Wstęp teoretyczny

Magnetyzm jest to zjawisko i właściwości fizyczne materii związane z oddziaływaniem ciał poprzez pole magnetyczne. Jego źródłem mogą być naładowane ciała, np.: magnes, pojedyncze cząsteczki lub przewodniki z prądem. Ze względu na sposób oddziaływania danego ciała na zewnętrzne pole magnetyczne można podzielić je na: ferromagnetyki, paramagnetyki, diamagnetyki, anty-ferromagnetyki oraz ferrimagnetyki. Jednostką opisującą stopień w jakim dane ciało wykazuje zdolności magnetyczne jest magnetyzacja lub namagnesowanie - \vec{M} . Wyraża się ona wzorem:

$$\vec{M} = \frac{1}{V} \sum_{i=1}^{n} \vec{\mu_i} \tag{1}$$

gdzie V – objętość, $\vec{\mu_i}$ - elementarny moment magnetyczny.

Zarówno ferromagnetyki i paramagnetyki posiadają niezerowy moment magnetyczny, ale tylko ferromagnetyki charakteryzują się istnieniem wewnętrznego pola magnetycznego porządkującego spiny, co objawia się niezerowym namagnesowaniem jego próbek. Podczas gdy spiny paramagnetyków na skutek wyższych temperatur pozostają nieuporządkowane a ich kierunki są całkowicie przypadkowe. W celu uporządkowania układu momentów magnetycznych paramagnetyka można przyłożyć wystarczająco silne zewnętrzne pole magnetyczne albo obniżyć temperaturę danej próbki. Skutkuje to przejściem ciała do fazy ferromagnetycznej. Temperaturą krytyczną przejścia z jednej fazy do drugiej jest tzw. temperatura Curie. W odpowiednio wysokiej temperaturze zarówno uporządkowanie układu jak i namagnesowanie ferromagnetycznej próbki ulegają zanikaniu i następuje przejście do fazy paramagnetycznej zwanym przejściem fazowym drugiego rodzaju.

Jak wspomniano wyżej, jednym ze sposobów na uporządkowanie układu spinów w paramagnetyku jest przyłożenie zewnętrznego pola magnetycznego. Wielkością charakteryzującą jego reakcję na takie pole jest podatność magnetyczna i wyraża się ona wzorem:

$$\chi = \frac{M}{H} \tag{2}$$

,gdzie H - natężenie pola magnetycznego

zaś z prawa Curie-Weissa wiemy że:

$$\chi = \frac{C}{T - T_c} \tag{3}$$

gdzie C - stała Curie-Weissa, T - temperatura próbki, T_c - temperatura Curie.

Opisana powyżej podatność jest proporcjonalna do napięcia wtórnego na transformatorze, które będzie mierzone w tym doświadczeniu. W celu wyznaczenia T_c przekształcamy wzór (3) i otrzymujemy:

$$\frac{1}{\chi} = \frac{1}{C}T - \frac{T_c}{C} \tag{4}$$

Przedstawiona zależność odwrotności podatności od temperatury jest zależnością liniową.

3 Opis układu i metody pomiarowej

Doświadczenie polegało na wyznaczeniu, za pomocą serii pomiarów napięcia na uzwojeniu wtórnym transformatora w zależności od temperatury, temperatury Curie dla ferromagnetycznego rdzenia tego transformatora. Po włączeniu komputera i specjalnego programu należało rozgrzać grzałkę najpier w do 20% jej mocy i odnotować kilka pomiarów napięcia dla danej temperatury. Następnie ustawiono moc grzałki na 70%, odnotowano kilka pomiarów dla n owej temperatury, a następnie pozostawiono układ na ok 1,5 godziny w celu osiągnięcia przez grzałkę oczekiwanej temperatury. Po upływie czasu dokonywa no pomiarów co minutę, za każdym razem podwyższając moc grzałki o 1% i powtarzając czynność aż moc wyniesie 100%. Na koniec obniżono moc grzałki w c elu wychłodzenia układu i po

odczekaniu chwili wyłączono komputer oraz odłączono układ od prądu.

Na przedstawiony powyżej układ użyty w doświadczeniu składa się: źródło prądu zmiennego, uzwojenie pierwotne transformatora n_p , uzwojenie wtórne transformatora n_w , ferromagnetyczny rdzeń, termometr elektroniczny podłączony do próbki, woltomierz cyfrowy oraz grzałka. Całość układu podłączona jest do komputera ze specjalnym oprogramowaniem, dzięki któremu można zmieniać moc grzałki oraz który archiwizuje otrzymane wyniki i nanosi je na wykres zależności napięcia od temperatury. ...

4 Wyniki pomiarów

	T(°C)	delta T(°C)	U[mV]	delta U[mV]
0	20.0	5.100	452.0	11.780
1	95.0	5.475	452.0	11.780
2	117.0	5.585	449.0	11.735
3	122.0	5.610	447.0	11.705
4	128.0	5.640	442.0	11.630
5	133.0	5.665	436.0	11.540
6	137.0	5.685	435.0	11.525
7	141.0	5.705	429.0	11.435
8	144.0	5.720	422.0	11.330
9	147.0	5.735	416.0	11.240
10	150.0	5.750	407.0	11.105
11	153.0	5.765	396.0	10.940
12	156.0	5.780	383.0	10.745
13	159.0	5.795	361.0	10.415
14	162.0	5.810	334.0	10.010
15	165.0	5.825	301.0	9.515
16	168.0	5.840	262.0	8.930
17	170.0	5.850	221.0	8.315
18	173.0	5.865	183.0	7.745
19	176.0	5.880	146.0	7.190
20	179.0	5.895	111.0	6.665
21	183.0	5.915	78.0	6.170
22	186.0	5.930	57.0	5.855
23	189.0	5.945	42.0	5.630
24	192.0	5.960	34.0	5.510
25	195.0	5.975	29.0	5.435
26	198.0	5.990	25.0	5.375
27	201.0	6.005	22.0	5.330
28	203.0	6.015	21.0	5.315
29	206.0	6.030	20.0	5.300
30	208.0	6.040	19.0	5.285
31	211.0	6.055	18.0	5.270

5 Analiza pomiarów

Rysunek 1: Wykres zależności U(T) z prostą dla maksymalnego napięcia i prostą dopasowaną do obszaru przejściowego

Na wykresie 1 wartości napięcia utrzymują mniej-więcej
(w zakresie błędów pomiarowych) stały poziom dla temperatur poniżej 128°C (452
mV - wynikający z maksymalnego namagnesowania rdzenia)
i temperatur powyżej 201°C (18mV). Prosta dopasowana do pozostałych pomiarów leży najpierw poniżej, a następnie powyżej punktów pomiarowych i przechodzi przez nie w temperaturze
 $T=170^{\circ}C,$ którąz w związku z tym możemy uznać za temperature Curie.

Rysunek 2: Wykres zależności $\frac{1}{U}(T)$ dla fazy paramagnetyka po odjęciu napięcia indukowanego

Zgodnie z prawem Curie-Weissa wykres 2 powinien być linią prostą, jednak nią, ponad wszelką wątpliwość, nie jest.

6 Analiza niepewności

Niepewności pomiarów temperatury została wyliczona jako iloczyn danego pomiaru i klasy urządzenia pomiarowego(0.005) + 5°C Niepewności napięcia wyliczono tożsamą metodą dla klasy 0.01 i dodając 1mV. Jakoże metody użyte w analizie wyników nie były ściśle analityczne nie było możliwości wyliczenia niepewności temperatury Curie jednak biorąc pod uwagę metodę analizy i niepewności pomiarów temperatury była by ona relatywnie wysoka (kilkanaście lub więcej stopni).

7 Wnioski

Biorąc pod uwagę niepewność temperatury Curie, metoda, której użyto w tym doświadczeniu jest niedokładna i nie nadaje się do jej wyznaczenia. Zależności wyliczone na podstawie wzoru (4) i przedstawione na wykresie 2 wykazują, że uzyskane pomiary w badaniu nie zgadzają się ze wstępnymi zalożeniami teoretycznymi.