E-Portfolio TN14

Compétences et réalisations

Objectifs

Etablir un bilan des réalisations individuelles

A l'issue du semestre, conserver un ensemble de réalisations en CAO susceptible d'être réutilisé

1ère partie

Présenter un argumentaire permettant de justifier de la validation des compétences visées

2ème partie

Présenter une réalisation complète (Esquisses \rightarrow Pièces \rightarrow Assemblage), votre *chef d'oeuvre*

Partie 1

Présenter un argumentaire permettant de justifier de la validation des compétences visées

Niveau 1 <i>« Je sais »</i>	Niveau 2 <i>« Je sais »</i>	Niveau 3 <i>« Je sais »</i>	Niveau 4 <i>« Je sais »</i>
Créer des esquisses correctement contraintes	Utiliser les fonctions adaptées aux procédés de fabrication (perçage, dépouille, arrondi)	Utiliser les contraintes d'assemblage (alignement, coller, décaler, etc.) pour placer des pièces dans un assemblage	Evaluer la qualité d'un modèle et sa capacité à accepter une modification
Utiliser les fonctions de création de géométrie (extrusion, révolution, balayage, lissage)	Réutiliser une pièce pour modéliser une pièce semblable	Modéliser un sous-ensemble en prenant en compte les procédés d'assemblage et créer les sous-ensembles associés ->Autre exemple : bielle fonderie	Aborder les notions de standards à travers l'usage de tables de familles de composants
Utiliser les opérations de transformation (arrondi, chanfrein, coque, répétition)	Désactiver / activer les éléments de détails pour fournir un modèle allégé	Utiliser des paramètres utilisateurs permettant de modifier la géométrie des pièces d'un assemblage	Identifier le domaine de validité du modèle géométrique obtenu
Organiser une démarche de modélisation pour obtenir la géométrie souhaitée	Modéliser un assemblage composé de plusieurs pièces	Fixer des hypothèses réalistes de modifications d'une esquisse, d'une pièce ou d'un assemblage	Être en mesure de présenter une stratégie de modélisation, d'en défendre les avantages et d'en évaluer les limites.

Créer des esquisses correctement contraintes

Réalisation:

- 10 esquisses réalisées via CREO
- 3 esquisses inspirées de pièces mécaniques
- 4 esquisses insipirées de logo
- 3 esquisses inspirées de formes célèbres

- Réfléchir au positionnement de l'esquisse dans le plan
- Utiliser des traits de construction
- Assurer la stabilité du modèle grâce aux contraintes
- Utiliser le cadenas pour fixer les certaines dimensions
- Utiliser l'inspecteur d'esquisse pour vérifier les points de jonctions, les profils fermés, les chevauchements.
- Utiliser la symètrie, vis à vis d'un axe ou d'un plan.
- Lien vers les réalisations

Utiliser les fonctions de création de géométrie (extrusion, révolution, balayage, lissage)

- Réalisation :
- 7 pièces réalisées via CREO
- 4 inspirées de pièces mécaniques
- 3 inspirées de formes célèbres

- Utiliser la fonction extrusion pour générer des volumes par rapport à un plan.
- Utiliser la fonction révolution pour générer des formes symétriques par rapport à un axe
- Utiliser le balayage pour créer des formes suivant une trajectoire
- Utiliser la fonction lissage pour créer des transitions fluides entre des sections de formes différentes
- Lien vers les réalisations

Utiliser les opérations de transformation (arrondi, chanfrein, coque, répétition)

Réalisation:

- 7 pièces réalisées via CREO
- 4 pièces mécaniques
- 3 pièces de forme commune

- Utiliser la fonction arrondi pour éviter les points de concentration de contrainte et améliorer la sécurité
- Utiliser la fonction chanfrein pour faciliter l'assemblage et réduire l'usure des composants adjacents
- Utiliser la fonction coque pour alléger la pièce, tout en maintenant une épaisseur uniforme, et optimiser le rapport poids/résistance
- Utiliser la fonction répétition pour dupliquer les géométries et ainsi garantir la symétrie et gagner du temps dans la modélisation
- Lien vers les réalisations

Organiser une démarche de modélisation pour obtenir la géométrie souhaitée

Réalisation:

Vase sequentiel

- Partie 1:
- Réfléchir sur le motif souhaité
- Réaliser l'esquisse du modèle
- Réaliser le motif (esquisse, projection, lissage)
- <u>Partie 2:</u>
- Extrusion du volume
- Décalage des surfaces supérieures et inférieures
- Solidification pour imprégnier le motif sur la surface
- Répétition à 360°
- <u>Partie 3:</u>
- Finitons du modèle (arrondis, décalage, coque)
- Lien vers la réalisation

Utiliser les fonctions adaptées aux procédés de fabrication (perçage, dépouille, arrondi)

Réalisation:

- 3 pieces réalisées en CAO
- Dont 1 pièce fabriquable avec moule en sable de fonderie

Bilan:

- Créer des trous spécifiques avec des paramètres adaptés au procédé de fabrication (comme le diamètre, la profondeur, et le type de perçage).
- Appliquez les tolérances requises selon le type de perçage (normes ISO)
- Ajouter un angle de dépouille sur les faces afin de faciliter le démoulage ou l'usinage de pièces moulées ou usinées
- Créer des arrondis sur les bords de la pièce pour des raisons de sécurité, de fonctionnalité, ou de tolérances mécaniques et des exigences de fabrication.
- Lien vers les réalisations

Perçages normés

Arrondis

Dépouille bielle fonderie

Réutiliser une pièce pour modéliser une pièce semblable

Réalisation:

- 10 esquisses réalisées via CREO
- 3 esquisses inspirées de pièces mécaniques
- 4 esquisses inspirées de logo
- 3 esquisses inspirées de formes célèbres

- Réutiliser un modèle déjà existant pour modéliser une nouvelle pièce de forme similaire
- Enregistrer une copie afin de travailler sur la même base sans avoir d'influence sur l'ancienne
- Modifier les motifs selon les besoins du client sur une base commune et gardant un paramètrage commun (fleurs)
- Permettre de s'adapter à des contraintes extérieures non prévues lors de la première modélisation (trajectoire tuyau)
- Lien vers les réalisations

Désactiver / activer les éléments de détails pour fournir un modèle allégé

Réalisation:

• Représentations simplifiées de l'assemblage et export en fichier .STEP

Bilan:

- Mettre en place des représentations en excluant des pièces
- Permettre une compréhension du mécanisme par points importants
- Faciliter le travail dans l'assemblage pour l'utilisateur mais aussi au niveau des ressources demandées, et des performances.
- Possibilités d'export d'une représentation simplifiée en .STEP ou .IGES pour partager un modèle visuellement correct et qui nécessite moins de ressources
- Lien vers la réalisation

Créer des représentations simplifiées

Représentation maîtresse

Assemblage sans les vis

Pièces en mouvement uniquement

Modéliser un assemblage composé de plusieurs pièces

Réalisation:

• 1 assemblage mécanique d'une poulie

Bilan:

- Modéliser chaque pièce en prenant en compte les contraintes d'assemblage
- Concevoir les pièces avec des paramètres modifiables (diamètre courroie, longueur axe)
- Créer un ensemble fonctionnel et flexible en prenant en compte les contraintes du mécanisme (ajustements, positionnement, fixations)
- Permettre une meilleure compréhension du fonctionnement de l'ensemble

Lien vers la réalisation

Utiliser les contraintes d'assemblage (alignement, coller, décaler, etc.) pour placer des pièces dans un assemblage

Réalisation:

• 2 assemblages avec contraintes statiques

- Précision de positionnement des pièces vis à vis des autres composants
- Permet au modèle d'être flexible tout en ayant des contraintes simples et méthodiques (alignement arbre trou, contact surface-surface)
- L'évolution du modèle est plus rapide, changer la position d'une pièce en ajustant les contraintes plutôt que la géométrie
- Optimiser les relations entre les pieces par des références communes afin de garantir un repositionnement après modification
- Lien vers les réalisations

Exemple de coïncidence : Cylindre-Cylindre

Exemple de distance : Placement goupille

Bloc de logement roulement

Exemple de parallélisme : Orientation face-face

Articulation Knuckle joint

Modéliser un sous-ensemble en prenant en compte les procédés d'assemblage et créer les sous-ensembles associés

Réalisation:

• Assemblage complet d'un presse étoupe avec les sous-asemblages des différentes fonctions

Bilan:

- Identifier les composants nécessaires
- Appliquer les contraintes d'assemblages pour assurer une bonne connexion avec les éléments
- Créer des sous-assemblages permettant d'identifier les fonctions des pièces dans le mécanisme et faciliter l'assemblage final
- Lien vers la réalisation

Assemblage presse étoupe

Vue d'ensemble du modèle

2 sous-assemblages liés aux fonctions des pièces dans le mécanisme Objectif de l'assemblage : Permettre le passage de câbles dans des cloisons en évitant les fuites

Vue section A

Sous ensemble fixation

Sous ensemble étanchéité

Modéliser un sous-ensemble en prenant en compte les procédés d'assemblage et créer les sous-ensembles associés

Réalisation:

• Assemblage complet d'un modèle de pièce à réaliser en fonderie (pièce, plaques modèles, moules, coulée...)

- Réaliser les sous ensembles liés au procédé de fabrication afin d'optimiser le travail dans l'assemblage (fusion, coupe)
- Permettre une meilleure compréhension du procédé de fabrication
- Possibilité de réutiliser les pieces en modifiant le modèle de base de la bielle avec les ajustements nécessaires

Pièce de fonderie à réaliser

Ajout des noyaux

Plaques modèles pour empreinte dans le sable

Moules obtenus après empreinte et mise en place coulée

- BIELLE-OBTENTION-MOULE-SABLE.ASM
 - ASM_RIGHT
 - ☐ ASM_TOP
 - ☐ ASM_FRONT
 - ASM DEF CSYS
- ▶ SOUS-ENSEMBLE-PIECE-NOYAUX.ASM
- SOUS-ENSEMBLE-PLAQUE-MODELE.ASM
- ▶ **■** ATTAQUE-COULÉE.PRT
- ▶ SOUS-ENSEMBLE-MOULE-SABLE.ASM
- ▶ GRAPPE-SORTIE-FONDERIE.PRT

Utiliser des paramètres utilisateurs permettant de modifier la géométrie des pièces d'un assemblage

Réalisation:

- 1 ensemble mécanique
- 1 ensemble artistique
- Bilan:
- Utiliser les relations paramètriques pour modifier la géométrie d'une pièce, en utilisant des équations.
- Utiliser les relations pour faciliter la modification par l'utilisateur.
- Utiliser les paramètres pour forcer la consistence géométrique et éviter les mauvaises manipulations

Lien vers les réalisations

Paramétrage du nombre de fleurs et des pétales

Changements des paramètres et influence sur le modèle

reference_dia = module*no_of_teeth

circular_pitch = pi*module
pas circulaire
addendum = module
addendum
dedendum = 1.25*module
tip_dia = reference_dia+2*addendum
root_dia = reference_dia-2*dedendum
base_dia = reference_dia*cos(pressure_angle)
root_fillet = 0.38*module
semitopping = 0.1*module
teeth_thickness = circular_pitch/2
p13=NO_OF_TEETH
clearance = dedendum - addendum

/*\
/*dedendum
/*diamètre pointe
/*diamètre à la racine
/*diamètre de base
/*rayon du congé
/*chanfrein des dents
/*\épaisseur des dents

/*reference diamètre

PRESSURE ANGLE Nombre ré 20,000000 MODULE Nombre ré 3,000000 NO OF TEETH Entier REFERENCE DIA Nombre ré: 60.000000 CIRCULAR PITCH Nombre ré 9.424778 ADDENDUM DEDENDUM TIP_DIA Nombre ré 66.000000 ROOT_DIA Nombre ré 52.500000 BASE DIA Nombre ré 56,381557 ROOT_FILLET Nombre ré 1,140000 SEMITOPPING Nombre ré 0,300000 TEETH_THICKNESS Nombre ré 4.712389 CLEARANCE Nombre ré: 0.750000

Paramétrage complet du pignon et relations

Changements des paramètres (module, dents)

Fixer des hypothèses réalistes de modifications d'une esquisse, d'une pièce ou d'un assemblage

Réalisation:

- Etude d'une pièce support en forme de L
- Bilan:
- Comprendre la structure de base du modèle
- Contraindre le modèle afin d'obtenir les changements souhaités sans modifier la forme de base
- Mettre en place des hypothèses de modification limites du modèle (flexibilité maximale du modèle)
- Utiliser les relations pour contraindre la structure et permettre à l'utilisateur d'effectuer les modifications tout en gardant une structure saine

Lien vers la réalisation

Evaluer la qualité d'un modèle et sa capacité à accepter une modification

Réalisation:

- Evaluation d'une équerre en L
- Bilan:
- Vérifier que le modèle utilise correctement les contraintes, permettant de modifier des paramètres sans erreurs (robustesse)
- Permettre des modifications du modèle sans nécessiter de réajustement manuel des autres paramètres. (qualité de la structure)
- En modifiant les paramètres, aucun conflit n'apparait dans l'arbre de construction, ce qui démontre un modèle flexible qui accepte les modifications
- Lien vers la réalisation

Changement des paramètres pour vérifier la validité du modèle

Bornes supérieures (la pièce prend les valeurs les plus élevées : L = 250 mm Angle = 95° Epaisseur = 6 mm)

 ANGLE_L
 Nombre ré∉
 25.000000

 LONGUEUR
 Nombre ré∉
 100.000000

Nombre ré: 1.000000

EPAISSEUR

Bornes inférieures (la pièce prend les valeurs les plus basses : L = 120 mm Angle = 85° Epaisseur = 3 mm)

Aborder les notions de standards à travers l'usage de tables de familles de composants

Réalisation:

- Une table de famille d'une vis normé ISO
- Bilan:
- Définir des hypothèses de modification d'une vis hexagonale M permettant d'adapter les dimensions principales en garantissant la robustesse et la conformité aux normes
- Créer des paramètres liés aux cotes à modifier dans la table de famille
- Mettre en place une table de famille pour une flexibilité optimale dans le choix des tailles de la pièce,
- Permet de créer facilement de nouvelles variantes sans compromettre la géométrie
- Lien vers la réalisation

D_TETE	Nombre ré	8.000000
L_TETE	Nombre ré	3.500000
D_TIGE	Nombre ré	5.000000
L_TIGE	Nombre ré	20.000000

d3=L_TIGE d10=D_TIGE d0=L_TETE d6=D_TETE d9=0.75*L_TIGE d8=D_TIGE

Mise en place des paramètres et relations à modifier dans la table des familles

Modèle de base vis M5x20

Nom du fichier d'in	Nom commun	DESCRIPTION	D_TETE	L_TETE	D_TIGE	L_TIGE
VIS_M5X20	vis_m5x20.prt		8.0	3.5	5.0	20.0
VIS_M4X16	VIS_M4X16	*	7.0	2.8	4.0	16.0
VIS_M4X20	VIS_M4X20	*	7.0	2.8	4.0	20.0
VIS_M5X25	VIS_M5x25	*	8.0	3.5	5.0	25.0
VIS_M6X30	VIS_M6X30	*	10.0	4.0	6.0	30.0
VIS_M6X40	VIS_M6X40	*	10.0	4.0	6.0	40.0
VIS_M8X40	VIS_M8X40	*	13.0	5.3	8.0	40.0
VIS_M8X50	VIS_M8X50	*	13.0	5.3	8.0	50.0
VIS_M10X50	VIS_M10X50	*	16.0	6.4	10.0	50.0
VIS_M10X60	VIS_M10X60	*	16.0	6.4	10.0	60.0
VIS_M12X70	VIS_M12X70	*	18.0	7.5	12.0	70.0
VIS_M12X80	VIS_M12X80	*	18.0	7.5	12.0	80.0

Le générique

VIS_M4X16
VIS_M4X20
VIS_M5X25
VIS_M6X30
VIS_M6X40
VIS_M8X40
VIS_M8X50
VIS_M10X50
VIS_M10X50
VIS_M10X50
VIS_M12X70
VIS_M12X80

Choix du composant lors de l'ouverture

Mise en place d'une table de famille de vis de M4 à M12

D_TETE	Nombre ré	13.000000
L_TETE	Nombre ré	5.300000
D_TIGE	Nombre ré	8.000000
L_TIGE	Nombre ré	40.000000

Ouverture vis M8x40 avec les caractéristiques de la table de famille

D_TETE		Nombre ré	18.000000
	L_TETE	Nombre ré	7.500000
	D_TIGE	Nombre ré	12.000000
	L_TIGE	Nombre ré	80.000000

Ouverture vis M12x80 avec les caractéristiques de la table de famille

Identifier le domaine de validité du modèle géométrique obtenu

Réalisation:

• Un engrenage à dents hélicoïdales simple denture

Bilan:

- Comprendre le modèle, pour quel type d'applications il a été conçu
- Donner les conditions de fonctionnement du modèle dans son environnement
- Trouver les limites d'utilisation et expliquer les raisons
- Proposer des modifications pour une plus large utilisation

Lien vers la réalisation

Avantage: fonctionnement silencieux

Inconvénient : poussé axiale

Non adapté aux situations suivantes

Application à haute vitesse : la poussée axiale augmente fortement les efforts appliqués sur les paliers qui sont obligés de compenser. Cela entraine des risques de surchauffe et une usure prématurée

Mécanisme à transmission légère : conçus pour minimiser les efforts sur les roulements et les supports, ce type d'engrenage provoque des déformations et des désalignements de composants (appareils électroménagers, instruments médicaux)

Machines de précision : la poussé axiale peut altérer la précision sur celles-ci car elle engendre des petites déviations

Condition de fonctionnement:

Cet engrenage est paramétré par un module de 3. Cela détermine implicitement la taille des dents pour une application standard. Il est possible de modifier ce paramètre pour l'adapter à un autre système mais il faut vérifier que le module est équivalent pour le reste du système afin de garantir un bon engrènement

Domaine d'utilisation:

Cet engrenage a été dimensionné pour des vitesses et des charges modérées. Il convient à des applications industrielles qui ne nécessite pas de forte puissance. Si l'on souhaite l'adapter, il faut revoir la géométrie comme le profil de la denture ou encore l'angle d'hélice. De plus, il faudra modifier le matériau avec par exemple un acier trempé plus résistant que l'acier classique utilisé.

Obligation de travail dans un environnement standard car non étudié contre la corrosion ou les hautes températures

Modification possible pour d'autres applications

Nécessité d'avoir des roulements axiaux robustes capable de supporter la charge, ou utiliser des dentures doubles (chevrons)

Être en mesure de présenter une stratégie de modélisation, d'en défendre les avantages et d'en évaluer les limites.

Réalisation:

• Joint connecteur de tuyaux en arrivée perpendiculaire

Bilan:

- Être capable de présenter une stratégie de modélisation d'une pièce
- Paramétrer ce qui a la possibilité d'être modifié
- Présenter les avantages de la stratégie utilisée ainsi que les limites possibles
- Evaluer la qualité globale du modèle et sa capacité à accepter les modifications pour créer un modèle standardisé pour des situations similaires
- Lien vers la réalisation

1 . Création de 4 segments en croix égaux

2. Création de 4 plans normaux aux droites

3. Création des sections

4 . Lisser les frontières entre les sections

5. Utiliser la fonction style pour créer les surfaces inférieures et supérieures

6 . Extruder les esquisses des 4 faces

7. Fusionner les surfaces ensembles

8 . Sélectionner la fusion et épaissir de 10 mm vers l'intérieur

D_PIPE1 Nombre re: 60.00000 D_PIPE2 Nombre re: 60.00000 D_PIPE3 Nombre re: 60.00000 D_PIPE4 Nombre re: 60.000000

9 . Paramétrage des 4 diamètres d'esquisses pour modification simplifiée

Avantage de cette stratégie de modélisation :

- Simplicité et modularité: Chaque bras est modélisé séparément par une esquisse et peut être modifié indépendamment, ce qui rend le design modulaire.
- Adaptabilité: Le paramétrage permet une modification rapide sans refaire toute la conception
- Robustesse: les raccords arrondis aux intersections augmentent la robustesse du design en évitant les points de tensions trop importants

Evaluation des limites de cette stratégie de modélisation :

- **Domaine de validité** : ce modèle est adapté aux configurations standards, avec les arrivées perpendiculaires. Il nécessite des ajustements pour des configurations différentes (asymétriques, non perpendiculaires)
- Limites de modification: il n'est pas possible de modifier les angles ou encore longueurs inégales entre les 4 bras qui pourraient demander des modifications majeures. Il faudrait prévoir un modèle plus flexible où chaque bras peut être orienté individuellement
- **Poids et encombrement**: si les dimensions des tuyaux deviennent élevées, le connecteur peut devenir lourd et encombrant, ce qui doit être pris en compte pour des applications où le poids doit être faible

Construction du corps de la vanne

Révolution de la forme globale

Débit de matière enlevé pour creuser l'intérieur

La courbe permet d'avoir une surface courbée avec la fonction lissage de frontière. On obtient la surface complète avec une symétrie puis fusion

Principe similaire afin d'obtenir l'autre coté en surface

Extrusion des trous avec répétition pour chaque entrée

Modèle du corps de l'assemblage obtenu

Les autres pièces de l'assemblage

Siège de vanne : permet d'assurer l'étanchéité en position de vanne fermée. Pièce d'usure en acier inoxydable (frottements)

Couvercle: pièce de maintien (fixation). Les trous sont placés de façon régulière pour éviter les déformations dues à la pression. Il permet aussi d'accéder à l'intérieur de la vanne pour de la maintenance

Garniture d'étanchéité: permet d'assurer l'étanchéité autour de la tige lorsqu'elle se déplace pour ouvrir et fermer la vanne. Pièce d'usure en matière souple mais résistante

Bague de serrage : Exerce une pression sur la garniture, pour empêcher sa fuite. Maintenue par des boulons et des vis de serrage pour un ajustement facile

Goujon à collerette : pièce filetée à double collerette permettant un maintien sécurisé entre les pièces avec une surface d'appui stable, pour mieux répartir la pression lors du serrage

Pont: structure support permettant de stabiliser et maintenir les pièces mobiles. Son but est de répartir les efforts exercés par le fluide ou le serrage des autres composants, tout en maintenant un bon alignement

Les autres pièces de l'assemblage

Tige de manœuvre : pièce qui permet de transformer la rotation du volant en mouvement linéaire, tout en déplaçant le clapet pour ouvrir et fermer la vanne

Clapet: composant majeur de la vanne, responsable du contrôle direct du flux entrant-sortant. Lorsque la vanne est fermée, il s'appuie sur le siège de vanne pour créer une étanchéité complète et empêcher le fluide de circuler

Collerette: joue un rôle de maintien et de guidage pour la tige de manœuvre. Elle assure l'alignement tout en permettant un mouvement rotatif nécessaire au fonctionnement de la vanne

Goupille: pièce mécanique qui joue un rôle de verrouillage entre la tige de manœuvre et la collerette. Elle est faiblement conique pour aider le centrage

Volant de manœuvre : Pièce utilisée pour actionner manuellement la vanne grâce à un mouvement de rotation. Il permet de contrôler l'ouverture et la fermeture de manière précise à la main. Sa forme circulaire offre une bonne prise en main

Ecrous (M12-M20-M24): ensemble de pièces de fixation en combinaison avec les goujons notamment. Ils suivent les normes ISO pour les filetages

Utilisation des compétences de niveau 3 et 4 dans un assemblage conçu de toutes pièces

Réalisation:

• Optimisation de l'assemblage et discussion sur les hypothèses de modification émises

Bilan:

- Identifier le fonctionnement de chaque composant afin de créer des sous-assemblages
- Appliquer les contraintes d'assemblages pour assurer une bonne connexion avec les éléments
- Créer des sous-assemblages permettant d'identifier les fonctions des pièces dans le mécanisme et faciliter le montage et la compréhension.

Organisation précise de l'assemblage en prenant en compte les fonctions des pièces et leur rôle pour créer des sousassemblages

Moteur 1 Moteur 2

Mécanisme-manœuvre

Fonction étanchéité

Exemple: Ajout manomètre de pression pour savoir le point où l'étanchéité est complète (fin de course)

Hypothèses de modification réalistes concernant le mécanisme de manœuvre :

- Modification du volant de manœuvre : concevoir un volant ergonomique, en rajoutant par exemple un revêtement en caoutchouc pour un meilleur confort d'utilisation.
- Ajout d'un système de positionnement : installer un indicateur de position permettrait de signaler si la vanne est ouverte ou fermée, améliorant la visibilité et la sécurité en étant sûr des mouvements.

Hypothèses de modification réalistes concernant l'étanchéité : remplacer le matériau de la garniture d'étanchéité, en prenant en compte les contraintes de résistance à la chaleur et à la corrosion afin d'améliorer la durabilité et l'efficacité de l'étanchéité.

Explication des compétences vis-à-vis du modèle

Réalisation:

• Explications sur la modularité et le domaine de validité

Bilan:

- Identifier les composants intervenants dans le mouvement
- Créer une analyse afin d'identifier les capacités du modèle et en déduire les applications
- Assurer une bonne connexion avec les éléments en mouvement et permettre un assemblage cinématique
- Expliquer les problèmes de géométrie rencontrés
- Lien vers l'assemblage

Assemblage avec mouvement identifié

Vue d'ensemble du modèle

Applications possibles du modèle

- Système de chauffage où l'eau est utilisée à haute pression et température pour chauffer des locaux.
- Système de refroidissement où l'eau chaude passe dans le système pour être évacuée
- Usine de traitement d'eau où les températures élevées permettent de désinfecter

Problème d'une géométrie complexe

La méthode de conception ne permet pas la modularité du modèle, et étant la pièce maitresse, les autres pièces devront également être modifiées. Cependant, il est robuste et complétement contraint, permettant la simulation du mouvement avec des degrés de liberté prédéfinis. (cf.video)

Domaine de validité obtenu : test de pression à une température de 80 degrés intérieur et une pression de 24 bars. Le système est solide (acier inoxydable) grâce à son épaisseur de 15 mm, et ne se déforme pas sous la contrainte. On obtient donc un certain nombre d'applications possibles.

Explication des compétences vis-à-vis du modèle

Réalisation:

• Explications et justifications sur les avantages et incovénients du modèle.

Bilan:

- Avoir une démarche de modélisation claire
- Evaluer la capacité d'évolution du modèle
- Prendre en compte les facteurs importants pour jauger son travail
- Trouver les points faibles de son mécanisme pour en tirer des pistes d'améliorations pour de futurs travaux
- Lien vers l'assemblage

Avantages de la stratégie mise en place

Robustesse et fiabilité: l'objectif principal de cet assemblage était de créer un modèle robuste, permettant de résister à des conditions fortes en pression. L'absence de modularité permet une réduction du nombre de joints, ce qui minimise les points défaillant de l'assemblage. L'analyse a permis de vérifier l'objectif sur des simulations d'environnement réel

Intégration et cohérence: tout l'assemblage a été créer à partir du corps de la vanne. Cela m'a permis de concevoir un système adapté, qui fonctionne de manière fluide et efficace suivant les besoins recherchés. Cela rendra également la fabrication et l'assemblage plus simple qu'avec un système modulaire

Limites de la stratégie

Coûts de fabrication: Avoir un modèle non modulaire peut poser des problèmes si les données de départs ne sont pas précises. On risque le surcoût si des modifications doivent être apportées après la fabrication des pièces

Flexibilité limitée: le modèle sera plus difficile à modifier si l'on souhaite l'utiliser dans d'autres configurations. Les mises à jour nécessiteront des modifications en profondeur des autres pièces liées au corps de vanne

Réparation du modèle : le modèle n'est pas très adapté en cas de défaillance majeur, qui peuvent nécessiter un remplacement complet. Il est donc important d'effectuer des tests afin d'avoir la garantie des fonctions souhaitées

