

Dark Machines – Unsupervised LHC data

ATLAS Group Meeting - 08/06/21

Julien Donini - LPC/Université Clermont Auvergne

Dark Machine

Dark Machines: https://darkmachines.org/

- Collective of physicists and data scientists
- Several projects: astrophysics, collider physics, ML ...

Unsupervised searches at LHC

- Set of simulated MC data for unsupervised BSM searches
- Original description of the challenge [2002.12220]
- Dark Machine anomaly score **challenge** [2105.14027]

Generated samples

- 13 TeV pp collisions: MG5_aMCNLO + Pythia + Delphes (ATLAS)
- SM data + several BSM scenarios
- About 10/fb of data, available in csv files (yes...)

Available MC samples

SM processes								
Physics process	Process ID	σ (pb)	$N_{\text{tot}} (N_{10 \text{ fb}^{-1}})$					
$pp \rightarrow jj(+2j)$	njets	$19718_{H_T>600 \text{GeV}}$	415331302 (197179140)					
$pp \rightarrow l^{\pm}\nu_l(+2j)$	w_{jets}	$10537_{H_T>100\text{GeV}}$	135692164 (105366237)					
$pp \rightarrow \gamma j (+2j)$	gam_jets	$7927_{H_T>100\text{GeV}}$	123709226 (79268824)					
$pp \rightarrow l^+l^-(+2j)$	z_{jets}	$3753_{H_T>100 \text{GeV}}$	60076409 (37529592)					
$pp \rightarrow t\bar{t}(+2j)$	ttbar	541	13590811 (5412187)					
$pp \rightarrow t + \mathrm{jets}(+2j)$	single_top	130	7223883 (1297142)					
$pp \rightarrow \bar{t} + \text{jets}(+2j)$	single_topbar	112	7179922 (1116396)					
$pp \rightarrow W^+W^-(+2j)$	ww	82.1	17740278 (821354)					
$pp \rightarrow W^{\pm}t(+2j)$	wtop	57.8	5252172 (577541)					
$pp \rightarrow W^{\pm}\bar{t}(+2j)$	wtopbar	57.8	4723206 (577541)					
$pp \rightarrow \gamma \gamma (+2j)$	2gam	47.1	17464818 (470656)					
$pp \rightarrow W^{\pm}\gamma(+2j)$	Wgam	45.1	18633683 (450672)					
$pp \rightarrow ZW^{\pm}(+2j)$	zw	31.6	13847321 (315781)					
$pp \rightarrow Z\gamma(+2j)$	Zgam	29.9	15909980 (299439)					
$pp \rightarrow ZZ(+2j)$	zz	9.91	7118820 (99092)					
$pp \rightarrow h(+2j)$	single_higgs	1.94	2596158 (19383)					
$pp \rightarrow t\bar{t}\gamma(+2j)$	ttbarGam	1.55	95217 (15471)					
$pp \rightarrow t\bar{t}Z$	ttbarZ	0.59	300000 (5874)					
$pp \rightarrow t\bar{t}h(+1j)$	ttbarHiggs	0.46	200476 (4568)					
$pp \rightarrow \gamma t(+2j)$	atop	0.39	2776166 (3947)					
$pp \rightarrow t\bar{t}W^{\pm}$	ttbarW	0.35	279365 (3495)					
$pp \rightarrow \gamma \bar{t}(+2j)$	atopbar	0.27	4770857 (2707)					
$pp \rightarrow Zt(+2j)$	ztop	0.26	3213475 (2554)					
$pp \rightarrow Z\bar{t}(+2j)$	ztopbar	0.15	2741276 (1524)					
$pp o t \bar{t} t \bar{t}$	4top	0.0097	399999 (96)					
$pp \to t\bar{t}W^+W^-$	ttbarWW	0.0085	150000 (85)					

BSM process				
Z' + monojet				
Z' + W/Z				
Z' + single top				
Z' in lepton-violating $U(1)_{L_{\mu}-L_{\tau}}$				
R-SUSY stop-stop				
R-SUSY squark-squark				
SUSY gluino-gluino				
SUSY stop-stop				
SUSY squark-squark				
SUSY chargino-neutralino				
SUSY chargino-chargino				

Tested algorithms

Abbreviation	Algorithm	Section	Hyperparameters	# Submitted
SimpleAE	Autoencoders	4.1	Tab. 6	1
VAEs	Variational Autoencoders	4.2	Tab. 7	140
${\bf DeepSetVAE}$	Deep Set Variational Autoencoders	4.3	Tab. 8	4
ConvVAE (NoF)	Convolutional Variational Autoencoders	4.4	Tab. 9	1
Planar	ConvVAE+Planar Flows	4.5.1	Tab. 10	1
SNF	ConvVAE+Sylvester Normalizing Flows	4.5.2	Tab. 11	3
IAF	ConvVAE+Inverse Autoregressive Flows	4.5.3	Tab. 12	1
ConvF	ConvVAE+Convolutional Normalizing Flows	4.5.4	Tab. 13	1
CNN	Convolutional (β) VAE	4.6		2
KDE	Kernel Density Estimation	4.7	Tab. 14	36
Flow	Spline autoregressive flow	4.8	Tab. 15	2
Deep SVDD	Deep SVDD	4.9	Tab. 16 & 17	80
Combined (Deep SVDD & Flow)	Spline autoregressive flow with Deep SVDD	4.10		8
DAGMM	Deep Autoencoding Gaussian Mixture Model	4.11	Tab. 19	384
ALAD	Adversarial Anomaly Detection	4.12	Tab. 21	96
Latent	Anomaly Detection in the Latent Space	4.13	Tab. 22	288

See for details: https://arxiv.org/abs/2105.14027

Samples and data format

Datasets: 3 different sets

- Individual SM and BSM files: original dataset (a bit outdated)
- Pre-processed w/ 4 types of selections: Hackathon dataset
- Secret dataset

Format: csv files for all datasets containing for each event a line

```
event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1, phi1; obj2, E2, pt2, eta2, phi2; ...
```

Particle **types**: (b)-jets, electron, muons, gamma

Example: this is a ttbar+ γ event with 1 b-jets, 2-jets, 1 gamma

```
57;ttbarGam;1;66814.7;0.820827;j,807565,119079,2.6017,3.02583;b,204221,49828.9,2.0879, -0.469806; j,120426,45285.9,1.6327,-1.18;g,52303.8,22421.9,1.4907,-0.156513;
```

Variable event size and structure (i.e line length) for each events

Parsing files

Parsing can be ~easily performed using regular expressions

See this very nice tutorial: https://docs.python.org/3/howto/regex.html

```
# use https://regexper.com to visualise these if required
rx dict = {
   #'jets': re.compile(r'j,(?P<jets>.*,.*,.*,.*;)\n')
    'header': re.compile(r'(?P<id>\d+);(?P<name>.*?);(?P<weight>.*?);(?P<MET>.*?);(?P<METphi>.*?);'),
    'jets': re.compile('j,(.*?),(.*?),(.*?),(.*?);'),
    'b-jets': re.compile('b,(.*?),(.*?),(.*?),(.*?);'),
    'elec': re.compile('e.,(.*?),(.*?),(.*?),(.*?);'),
    'muons': re.compile('m.,(.*?),(.*?),(.*?),(.*?);'),
    'gamma': re.compile('g.(.*?),(.*?),(.*?),(.*?);')
#rx dict
def get header(name,line):
    key = rx dict.get(name)
    if kev:
        header = rx dict[name].match(line)
        header new = [int(header.group('id')),header.group('name'),float(header.group('weight')),float(header.group
        return header new
    else:
        print("Warning: '%s' name not found in dictionary" % name )
    return None
def get particles(name, line):
    key = rx dict.get(name)
    npart = 0
   if key:
        particles = rx dict[name].findall(line)
        if particles:
            part = np.array(particles).astype(np.float)
            npart = part.shape[0]
            return part, npart
    else:
        print("Warning: '%s' name not found in dictionary" % name )
    return None, npart
```

This is how I did it – there are probably smarter ways

Signature selection

Select **any** signatures in data: [jets, b-jets, elec, muons, gamma]

- Dump 4-vectors for all selected particles
- High level variables with python equivalent of TLorentzvector class https://github.com/scikit-hep/scikit-hep/blob/master/skhep/math/vectors.py

Example of multijet selection for background and two signal models

Example of approach

Simple Autoencoder, trained on background events

- Data corresponding to channel 1 of Hackathon dataset
- **Preselection**: high H_{τ} , MET and jet multiplicity (≥ 4 jets)

5-jet channel

Significance improvement

Signal **significance improvement** $\frac{\epsilon_S}{\sqrt{\epsilon_B}}$ vs background efficiency

Here for 3 different signals and $\epsilon_B =$ 0.1%, 1%, 10%, 50%

5-8 jets channels and combined channels

Conclusions

Dark Machine LHC is a rich and complete dataset for unsupervised learning

• First **explorations** with several ML approaches described in 2105.14027

Started to look at this datasets (parsing, signature selections, simple AE...)

Still some stones left **unturned**:

- No data-driven approach
- No real multi-channel combination
- Simplistic significance calculation
- •
- Good playground for Louis and loan's methods ;-)

BSM processes

BSM process	Channel 1	Channel 2a	Channel 2b	Channel 3
$Z' + ext{monojet}$	×	×		×
Z' + W/Z				×
$Z' + { m single\ top}$	×			×
Z' in lepton-violating $U(1)_{L_{\mu}-L_{\tau}}$		×	×	
R∕-SUSY stop-stop	×		×	×
R-SUSY squark-squark	×			×
SUSY gluino-gluino	×	×	×	×
SUSY stop-stop	×			×
SUSY squark-squark	×			×
SUSY chargino-neutralino		×	×	
SUSY chargino-chargino			×	

• Channel 1:

$$H_T \ge 600 \text{ GeV}, \quad E_T^{\text{miss}} \ge 200 \text{ GeV}, \quad E_T^{\text{miss}}/H_T \ge 0.2,$$
 (2.2)

with at least four (b)-jets with $p_T > 50$ GeV, and one (b)-jet with $p_T > 200$ GeV.

• Channel 2a:

$$E_T^{\text{miss}} \ge 50 \text{ GeV},$$
 (2.3)

and at least 3 muons/electrons with $p_T > 15$ GeV.

• Channel 2b:

$$E_T^{\text{miss}} \ge 50 \text{ GeV}, \quad H_T \ge 50 \text{ GeV},$$

and at least 2 muons/electrons with $p_T > 15$ GeV.

• Channel 3:

$$H_T \ge 600 \text{ GeV}, \quad E_T^{\text{miss}} > 100 \text{ GeV}.$$