Ficha: complexidade computacional

1) Para as máquinas de turing, MT1, MT2, MT3 do link

https://drive.google.com/file/d/1PIvZ0zz0svztWLSzHVB5Kc4jflcT2Wtu/view?usp=sharing

preencha o quadro que se segue

https://docs.google.com/spreadsheets/d/1pNDANIIhqXYsAYFhWt2W-X6PzslSMDfEmZe1yx FGiX8/edit?usp=sharing

				Tabela d	e Computação pa	ra a ordem MT1	. MT2. MT3				
							,				
w =1	T(w)	S(w)	w =2	T(w)	S(w)	w =3	T(w)	S(w)	w =4	T(w)	S(w)
0			00			000			0000		
1			01			001			0001		
T(1) =		•	10			010			0010		
S(1) =	complexidade p	elo pior caso	11			011			0011		
média-T(1) =			T(2) =		•	100			0100		
média-S(1) =	complexidade p	elo caso médio	S(2) =	complexidade	pelo pior caso	101			0101		
			média-T(2) =			110			0110		
			média-S(2) =	complexidade	pelo caso médio	111			0111		
						T(3) =			1000		
						S(3) =	complexidade pelo pior caso		1001		
						média-T(3) =			1010		
						média-S(3) =	complexidade pelo caso médio		1011		
									1100		
									1101		
									1110		
									1111		
									T(4) =		
									S(4) =	complexidad	le pelo pior caso
									média-T(4) =		
									média-S(4) =	complexidad	le pelo caso médi

2) Tendo em atenção o comportamento computational de cada uma das máquinas de Turing: MT4, MT5, ..., MT8;

 $\label{local_solution} $$ $ \frac{d^2 C^2 U^2 + C^2 U^2 +$

		MT4				MT5				MT6				MT7				MT8			
		T(n)	média-T(n)	S(n)	média-S(n)	T(n)	média-T(n)	S(n)	média-S(n)	T(n)	média-T(n)	S(n)	média-S(n)	T(n)	média-T(n)	S(n)	média-S(n)	T(n)	média-T(n)	S(n)	média-S(n
	w =1	2	1	2	1	3	2	1	1	5	5	3	2	3	3	3	1	2	1	8	
	w =2	3	2	4	2	6	4	2	2	5	5	9	4	4	3	9	2	4	2	11	
	w =3	4	. 3	8	4	9	6	3	3	5	5	27	8	3	3	27	6	12	6	14	
	w =4	5	4	16	8	12	8	4	4	5	5	81	16	4	3	81	24	48	24	17	
	w =5	6	5	32	16	15	10	5	5	5	5	243	32	3	3	243	120	240	120	20	
	w =6	7	6	64	32	18	12	6	6	5	5	729	64	4	3	729	720	1440	720	23	1
	w =7	8	7	128	64	21	14	7	7	5	5	2187	128	3	3	2187	5040	10080	5040	26	
	w =n	n+1	n	2^n	2^(n-1)	3n	2n	n	n	5	5	3^n		3, se n par; 4, se n ímpar	3	3^n	n!	2*(n!)	n!	3n+5	3n
	w =n+1	n+2	n+1	2^(n+1)	2^n	3(n+1)	2(n+1)	n+1	n+1	5	5	3^(n+1)		3, se n par; 4, se n ímpar	3	3^(n+1)	(n+1)!	2*((n+1)!)	(n+1)!	3(n+1)+5	3(n+1)
	linguagem reconhecida	L1				L2				L3	•		•	L4				L5			
constante	O(1)														I						
linear	O(n)																				
polinomial	O(n)																				
polinomial	O(n^2)																				
polinomial	O(n^3)																				
factorial	O(n!)																				
exponencial	O(2^n)																				
exponencial	O(3^n)																				
													e computa	cional							

preencha o quadro da complexidade computacional que se segue, o big O:

- i) para o pior caso, no tempo T(n) e no espaço S(n),
- ii) para o caso médio, no tempo médio-T(n) e no espaço médio-S(n)
- 3) No link, https://wiki.python.org/moin/TimeComplexity, pode ser visto o tempo computacional da implementação de alguns algoritmos em Python, pelo pior caso e pelo caso médio. Preencha o quadro.

		big O, no tempo	
Sr.No.	Methods with Description	complexidade pelo pior caso	complexidade pelo caso médio
1	list.append(obj) Appends object obj to list.		
2	list.clear() Clears the contents of list.		
3	list.copy() Returns a copy of the list object.		
4	list.extend(seq) Appends the contents of seq to list		
5	list.index(obj) Returns the lowest index in list that obj appears		
6	list.insert(index, obj) Inserts object obj into list at offset index		
7	list.pop(obj=list[-1]) Removes and returns last object or obj from list		
8	list.remove(obj) Removes object obj from list		
9	list.sort([func]) Sorts objects of list, use compare func if given		

4) Quando uma máquina de turing, ML, reconhece a linguagem L. Isto significa que a máquina avalia um problema de decisão para cada palavra, w: w pertence a L ou w não pertence a L

Sejam L'1, L'2, L'3, L'4 linguagem de um alfabeto binário se:

- i) foi possível desenhar uma máquina de turing, MT1 tal que MT1 reconhece L'1, em que T(n)=n.
- ii) foi possível desenhar uma máquina de turing, MT2, tal que MT2 reconhece L'2, e $T(n)=2^n$. Provou-se que não existe nenhuma MT determinística que reconheça L'2 e tal que $T(n)<2^n$. Foi provado que o problema do Graph Coloring é redutível ao problema L'2.
- iii) foi possível desenhar uma máquina de turing não determinística, MT3, tal que MT3 reconhece L'3, em que T(n)=n^3. Tentou-se encontrar uma máquina de turing determinística que reconhece-se L'3, mas não se conseguiu desenhar (o que não significa que não seja possível).
- iv) foi possível desenhar uma máquina de turing não determinística, MT4, tal que MT4 reconhece L'4, em que T(n)=n^5. foi também possível desenhar uma máquina de turing não determinística, MT5, tal que MT5 reconheceu L'4, em que T(n)=n^5.
- v) foi possível desenhar uma máquina de turing não determinística, MT6, tal que MT6 reconhece L'5, e em que T(n)=2n. Foi provado que o problema Knapsack é redutível a L'5.

	No tempo									
	Classe P	Classe NP	Classe NP-completo	Classe NP-Hard						
L'1										
L'2										
L'3										
L'4										
L'5										