[1]. จงคำนวณหาค่าเฉลี่ยประสิทธิผลของ V_out(t) ตามรูปที่ 1

รูปที่ 1

- [2]. จงคำนวณหาค่าประสิทธิผลของ v(t)=5+10cos20t+20sin40t+40cos80t
- [3]. ถ้ากำหนดให้กำลังเฉลี่ยเท่ากับ 300 วัตต์ และกำลังเสมือนเท่ากับ 400 VAR จงหากำลังปรากฏในหน่วย VA
- [4]. ถ้าต้องการปรับค่าขององค์ประกอบกำลังแบบนำจาก 0.60 ไปเป็น 0.85 (แบบตาม) จะต้องต่อค่าของตัวเหนี่ยวนำเท่าไหร่ ที่ขนานกับภาระไฟฟ้า
- [5]. จากวงจรในรูปที่ 2 กำหนดให้ $Vs(t)=100cos1000t\ [v]$ จงคำนวณหาค่ากำลังเสมือนในหน่วย VAR ที่ถูกส่ง หรือดูตกลืนในแต่ละอุปกรณ์

[1]. จงคำนวณหาค่าเฉลียประสิทธิผลของ $V_{out}(t)$ ตามรูปที่ 1 V_{p} $V_{out}(t)$ $V_{p,sincot}$

T × T

Sola MA Voutave = 15 vct) dt

Voutave ? I (V(ut)) (wt)

 $\frac{1}{1} = \frac{1}{10} \left(\frac{1}{10} + \frac{1}{10} \right) \left(\frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) \left(\frac{1}{10} + \frac{1}{10} +$

". Vont ave a Vr (1+1) s EVP

[2]. จงคำนวณหาค่าประสิทธิผลของ v(t) = 5 + 10cos20t + 20sin40t + 40cos80t

Solo Vave = I Sul(t) H

= 15 (s + 10 cos 20 t = 90 SIN 20 t + 40 cos 80 t) dt

5 | [5+ + 10/sin 20t - 93 (0340t + 46 sin 80t]

T [202 A02 2 90]

Vave s = \frac{1}{7} \Big(5 + \frac{1}{2} \sin 20 \frac{1}{2} - \frac{1}{2} \cos 40 \frac{1}{2} \sin 20 \frac{1}{2} - \frac{1}{1} \Big(5(0) + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \beta 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega \omega 0 + \frac{1}{2} \sin 0 - \frac{1}{2} \omega 0 + \frac{1}{2} \sin 0 - \frac{1}{2}

s 107 + Sin 20t-00540t+sin80t - 1 2T 2t

Vale s 10T + sin 20t - cos40t + sin 80t - 1

	400	3 Vins Iims	45 A —	<u> </u>		
	100	5 Vims Irms	sin⊖ -	<u> </u>		
tan e	3	ž sin	0 , 3/5		5/3	
Pappe	er e	Vrns Irms s	100 SIN 0	400	4	
	2	100(s)	3000 3			
Pappe	૦(666 . GM	VA			