Lecture 05

Central Dogma of Molecular Biology

CODON WHEEL

Amino Acid Structure

Hydrogen

Peptide Bond Formation

Peptide

Peptide = chain of amino acids

polypeptide chain

Essential Amino Acids

Figure 3-5 Biological Science, 2/e

© 2005 Pearson Prentice Hall, Inc.

Peptide

Peptide = chain of amino acids

polypeptide chain

Protein Backbone

Ramachandran Plot

Proline structure

Glycine structure

$$O$$
C $-C$ - N H

Ramachandran Plot for Proline

Ramachandran Plot for Glycine

How to implement Ramachandran Plot?

Food for your thought

Come up with an efficient data structure to implement for frequent use of Ramachandran Plot.

Peptide

Proteins

20 amino acids: [A-Z] but not [BJOUXZ]

~300 aa/protein (bacteria), ~200 aa/domain

~200 k known sequences

Proteins

Preference of AA in helix

Table 2.1 Amino acid sequences of three α helices

```
1. - Leu - Ser - Phe - Ala - Ala - Ala - Met - Asn - Gly - Leu - Ala -
2. - Ile - Asn - Glu - Gly - Phe - Asp - Leu - Leu - Arg - Ser - Gly -
3. - Lus - Glu - Asp - Ala - Lus - Gly - Lus - Ser - Glu - Glu - Glu -
```


Formation of helix

Formation of sheet

Topology in Structure

Systems

Deterministic System

 In a deterministic system no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state.

Dynamical System

 A dynamical system is a concept in mathematics where a fixed rule describes the time dependence of a point in a geometrical space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe etc.

Biological Parameter Space

- N-Dimensional
 - Temperature
 - Pressure
 - pH
 - Ionic Concentration
 - Solvent
 - Mode of interactions
 - Entropy
 - **—**

Value of N varies from problem to problem.

Bonds, Angles and Dihedral Angles

N 11.751 37.846 29.016

CA 12.501 39.048 28.539

C 13.740 38.628 27.754

N 14.235 39.531 26.906

CA 15.552 39.410 26.282

C 16.616 38.913 27.263

N 16.789 39.630 28.369

CA 17.791 39.281 29.375

C 17.598 37.844 29.863

N 16.368 37.519 30.261

CA 16.004 36.186 30.742

C 16.371 35.097 29.741

Homework

Write down a pseudo-code to parse the coordinate file and output the torsional angles.

References

 http://kinemage.biochem.duke.edu/teaching/ anatax/

Introduction to Protein Structure

Authors: Carl Branden, John Tooze