

Parker Hannifin Corporation

QX-008-427

FCC 15.207:2015 FCC 15.247:2015

Report # PQCD0003

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: October 07, 2015
Parker Hannifin Corporation
Model: QX-008-427

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2015	ANSI C63.10:2013
FCC 15.247:2015	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
6.10.4	Band Edge Compliance	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9	Output Power	Yes	Pass	
11.10	Power Spectral Density	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. PQCD0003 3/57

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. PQCD0003 4/57

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. PQCD0003 5/57

FACILITIES

California			
Labs OC01-13			
41 Tesla			
Irvine, CA 92618			
(949) 861-8918			

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136

New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 9801
(425)984-6600

Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 9801 (425)984-6600		
	NVLAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
		Industry	Canada				
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
	BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		

Report No. PQCD0003 6/57

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Parker Hannifin Corporation
Address:	8145 Lewis Road
City, State, Zip:	Minneapolis, 55427
Test Requested By:	Shawn Ellis
Model:	QX-008-427
First Date of Test:	September 09, 2015
Last Date of Test:	October 07, 2015
Receipt Date of Samples:	September 09, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
Draggura concer with a Dividenth I C module	

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

Report No. PQCD0003 7/57

CONFIGURATIONS

Configuration PQCD0003-1

Software/Firmware Running during test			
Description	Version		
Test Firmware	QX-008-465 Rev B p4		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Radio Board Assembly	Parker Hannifin Corporation	QX-008-427	2715-025
Radio Board Assembly	Parker Hannifin Corporation	QX-008-427	2715-032
Radio Board Assembly	Parker Hannifin Corporation	QX-008-427	2715-074

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
3 V Lithium Battery	Panasonic	CR123A	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Coaxial Cable	Yes	7 cm	No	Pressure Sensor - Antenna Port	Direct Connect Testing SMA Cable

Configuration PQCD0003-2

Software/Firmware Running during test	
Description	Version
Test Firmware	QX-008-465 Rev B p4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Radio Board Assembly	Parker Hannifin Corporation	QX-008-427	2715-073

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
3.2 dBi Dipole	Sinbon	QX-008-55	None			
3 V Lithium Battery	Panasonic	CR123A	None			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Coaxial Cable	Yes	7 cm	No	Pressure Sensor - Antenna Port	Direct Connect Testing SMA Cable		

Report No. PQCD0003 8/57

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	9/9/2015	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
2	9/16/2015	Duty Cycle	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Powerline	Tested as	No EMI suppression	EUT remained at
3	10/7/2015	Conducted	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
4	10/7/2015	Compliance	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
5	10/7/2015	Bandwidth	delivered to	devices were added or	Northwest EMC
-		Dandwidth	Test Station.	modified during this test.	following the test.
		Output	Tested as	No EMI suppression	EUT remained at
6	10/7/2015	Power	delivered to	devices were added or	Northwest EMC
		1 OWCI	Test Station.	modified during this test.	following the test.
		Power	Tested as	No EMI suppression	EUT remained at
7	10/7/2015	Spectral	delivered to	devices were added or	Northwest EMC
		Density	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
8	10/7/2015	Conducted	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.

Report No. PQCD0003 9/57

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	5/21/2015	5/21/2016
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/23/2015	3/23/2016
Attenuator	Fairview Microwave	SA01B-20	AQP	NCR	NCR
Filter - High Pass	TTE	H97-100K-50-720B	HGN	NCR	NCR
LISN	Solar Electronics	9117-5-TS-50-N	LIZ	9/30/2014	9/30/2016
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	1/27/2015	1/27/2016
Power Supply - DC	Agilent	U8002A	TPZ	NCR	NCR
Cable - Conducted Cable Assembly	Northwest EMC	None	MNC	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

PQCD0003-2

MODES INVESTIGATED

Continuous transmit. High Channel, 2480 MHz. Continuous transmit. Low Channel, 2402 MHz.

Continuous transmit. Mid Channel, 2440 MHz.

EUT set to continuous receive.

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 1 Line: Positive Lead Ad	dd. Ext. Attenuation (dB): 0
---------------------------------	------------------------------

COMMENTS

None

EUT OPERATING MODES

Continuous transmit. High Channel, 2480 MHz.

DEVIATIONS FROM TEST STANDARD

None

MHz

RESULTS - Run #1

Peak Data - vs - Quasi Peak Limit

	. oan Da	VO 0	(aaci i cai	·	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.284	6.4	20.5	26.9	56.0	-29.1
4.940	6.3	20.5	26.8	56.0	-29.2
4.981	6.0	20.5	26.5	56.0	-29.5
29.858	8.0	22.5	30.5	60.0	-29.5
4.664	6.0	20.5	26.5	56.0	-29.5
2.728	5.9	20.3	26.2	56.0	-29.8
29.672	7.7	22.5	30.2	60.0	-29.8
29.642	7.7	22.5	30.2	60.0	-29.8
29.993	7.6	22.5	30.1	60.0	-29.9
4.511	5.6	20.5	26.1	56.0	-29.9
29.407	7.6	22.5	30.1	60.0	-29.9
4.739	5.5	20.5	26.0	56.0	-30.0
29.202	7.5	22.4	29.9	60.0	-30.1
26.892	7.7	22.2	29.9	60.0	-30.1
3.937	5.5	20.4	25.9	56.0	-30.1
29.601	7.4	22.5	29.9	60.0	-30.1
4.146	5.4	20.5	25.9	56.0	-30.1
3.750	5.4	20.4	25.8	56.0	-30.2
4.023	5.3	20.5	25.8	56.0	-30.2
4.347	5.2	20.5	25.7	56.0	-30.3
4.228	5.2	20.5	25.7	56.0	-30.3
3.470	5.3	20.3	25.6	56.0	-30.4
28.862	7.2	22.4	29.6	60.0	-30.4
4.597	5.1	20.5	25.6	56.0	-30.4
4.101	5.1	20.5	25.6	56.0	-30.4
27.679	7.2	22.3	29.5	60.0	-30.5

Peak Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
4.284	6.4	20.5	26.9	46.0	-19.1	
4.940	6.3	20.5	26.8	46.0	-19.2	
4.981	6.0	20.5	26.5	46.0	-19.5	
29.858	8.0	22.5	30.5	50.0	-19.5	
4.664	6.0	20.5	26.5	46.0	-19.5	
2.728	5.9	20.3	26.2	46.0	-19.8	
29.672	7.7	22.5	30.2	50.0	-19.8	
29.642	7.7	22.5	30.2	50.0	-19.8	
29.993	7.6	22.5	30.1	50.0	-19.9	
4.511	5.6	20.5	26.1	46.0	-19.9	
29.407	7.6	22.5	30.1	50.0	-19.9	
4.739	5.5	20.5	26.0	46.0	-20.0	
29.202	7.5	22.4	29.9	50.0	-20.1	
26.892	7.7	22.2	29.9	50.0	-20.1	
3.937	5.5	20.4	25.9	46.0	-20.1	
29.601	7.4	22.5	29.9	50.0	-20.1	
4.146	5.4	20.5	25.9	46.0	-20.1	
3.750	5.4	20.4	25.8	46.0	-20.2	
4.023	5.3	20.5	25.8	46.0	-20.2	
4.347	5.2	20.5	25.7	46.0	-20.3	
4.228	5.2	20.5	25.7	46.0	-20.3	
3.470	5.3	20.3	25.6	46.0	-20.4	
28.862	7.2	22.4	29.6	50.0	-20.4	
4.597	5.1	20.5	25.6	46.0	-20.4	
4.101	5.1	20.5	25.6	46.0	-20.4	
27.679	7.2	22.3	29.5	50.0	-20.5	

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 2 Line:	Negative Lead	Add. Ext. Attenuation (dB):	0
----------------	---------------	-----------------------------	---

COMMENTS

None

EUT OPERATING MODES

Continuous transmit. High Channel, 2480 MHz.

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #2

Peak Data - vs - Quasi Peak Limit

3.937 6.3 20.4 26.7 56.0 -29.3 28.705 8.2 22.4 30.6 60.0 -29.4 4.952 6.1 20.5 26.6 56.0 -29.4 4.862 5.8 20.5 26.3 56.0 -29.7 4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 <	Peak Data - vs - Quasi Peak Limit					
3.937 6.3 20.4 26.7 56.0 -29.3 28.705 8.2 22.4 30.6 60.0 -29.4 4.952 6.1 20.5 26.6 56.0 -29.4 4.862 5.8 20.5 26.3 56.0 -29.7 4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 <					Limit	
28.705 8.2 22.4 30.6 60.0 -29.4 4.952 6.1 20.5 26.6 56.0 -29.4 4.862 5.8 20.5 26.3 56.0 -29.7 4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6	29.433	8.9	22.5	31.4	60.0	-28.6
4.952 6.1 20.5 26.6 56.0 -29.4 4.862 5.8 20.5 26.3 56.0 -29.7 4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6	3.937	6.3	20.4	26.7	56.0	-29.3
4.862 5.8 20.5 26.3 56.0 -29.7 4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.3 29.832 7.2	28.705	8.2	22.4	30.6	60.0	-29.4
4.746 5.8 20.5 26.3 56.0 -29.7 4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3	4.952	6.1	20.5	26.6	56.0	-29.4
4.019 5.8 20.5 26.3 56.0 -29.7 3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.142 5.3	4.862	5.8	20.5	26.3	56.0	-29.7
3.388 5.9 20.3 26.2 56.0 -29.8 4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3	4.746	5.8	20.5	26.3	56.0	-29.7
4.489 5.7 20.5 26.2 56.0 -29.8 29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 <td>4.019</td> <td>5.8</td> <td>20.5</td> <td>26.3</td> <td>56.0</td> <td>-29.7</td>	4.019	5.8	20.5	26.3	56.0	-29.7
29.273 7.7 22.5 30.2 60.0 -29.8 23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2	3.388	5.9	20.3	26.2	56.0	-29.8
23.826 8.2 21.9 30.1 60.0 -29.9 25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1	4.489	5.7	20.5	26.2	56.0	-29.8
25.463 8.0 22.1 30.1 60.0 -29.9 4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 29.911 5.2	29.273	7.7	22.5	30.2	60.0	-29.8
4.243 5.5 20.5 26.0 56.0 -30.0 29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 29.911 5.2 20.3 25.5 56.0 -30.5	23.826	8.2	21.9	30.1	60.0	-29.9
29.037 7.5 22.4 29.9 60.0 -30.1 26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 29.911 5.2 20.3 25.5 56.0 -30.5	25.463	8.0	22.1	30.1	60.0	-29.9
26.542 7.6 22.2 29.8 60.0 -30.2 4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	4.243	5.5	20.5	26.0	56.0	-30.0
4.060 5.3 20.5 25.8 56.0 -30.2 3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	29.037	7.5	22.4	29.9	60.0	-30.1
3.862 5.3 20.4 25.7 56.0 -30.3 29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	26.542	7.6	22.2	29.8	60.0	-30.2
29.832 7.2 22.5 29.7 60.0 -30.3 28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	4.060	5.3	20.5	25.8	56.0	-30.2
28.030 7.3 22.4 29.7 60.0 -30.3 3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	3.862	5.3	20.4	25.7	56.0	-30.3
3.620 5.3 20.4 25.7 56.0 -30.3 3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	29.832	7.2	22.5	29.7	60.0	-30.3
3.142 5.3 20.3 25.6 56.0 -30.4 28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	28.030	7.3	22.4	29.7	60.0	-30.3
28.452 7.2 22.4 29.6 60.0 -30.4 29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	3.620	5.3	20.4	25.7	56.0	-30.3
29.866 7.1 22.5 29.6 60.0 -30.4 28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	3.142	5.3	20.3	25.6	56.0	-30.4
28.064 7.2 22.4 29.6 60.0 -30.4 2.911 5.2 20.3 25.5 56.0 -30.5	28.452	7.2	22.4	29.6	60.0	-30.4
2.911 5.2 20.3 25.5 56.0 -30.5	29.866	7.1	22.5	29.6	60.0	-30.4
	28.064	7.2	22.4	29.6	60.0	-30.4
3.817 5.1 20.4 25.5 56.0 -30.5	2.911	5.2	20.3	25.5	56.0	-30.5
	3.817	5.1	20.4	25.5	56.0	-30.5

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
29.433	8.9	22.5	31.4	50.0	-18.6
3.937	6.3	20.4	26.7	46.0	-19.3
28.705	8.2	22.4	30.6	50.0	-19.4
4.952	6.1	20.5	26.6	46.0	-19.4
4.862	5.8	20.5	26.3	46.0	-19.7
4.746	5.8	20.5	26.3	46.0	-19.7
4.019	5.8	20.5	26.3	46.0	-19.7
3.388	5.9	20.3	26.2	46.0	-19.8
4.489	5.7	20.5	26.2	46.0	-19.8
29.273	7.7	22.5	30.2	50.0	-19.8
23.826	8.2	21.9	30.1	50.0	-19.9
25.463	8.0	22.1	30.1	50.0	-19.9
4.243	5.5	20.5	26.0	46.0	-20.0
29.037	7.5	22.4	29.9	50.0	-20.1
26.542	7.6	22.2	29.8	50.0	-20.2
4.060	5.3	20.5	25.8	46.0	-20.2
3.862	5.3	20.4	25.7	46.0	-20.3
29.832	7.2	22.5	29.7	50.0	-20.3
28.030	7.3	22.4	29.7	50.0	-20.3
3.620	5.3	20.4	25.7	46.0	-20.3
3.142	5.3	20.3	25.6	46.0	-20.4
28.452	7.2	22.4	29.6	50.0	-20.4
29.866	7.1	22.5	29.6	50.0	-20.4
28.064	7.2	22.4	29.6	50.0	-20.4
2.911	5.2	20.3	25.5	46.0	-20.5
3.817	5.1	20.4	25.5	46.0	-20.5

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 3 Line: Negative Lead	Add. Ext. Attenuation (dB):	0
------------------------------	-----------------------------	---

COMMENTS

None

EUT OPERATING MODES

Continuous transmit. Low Channel, 2402 MHz.

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #3

Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Fred (MHz
4.787	6.7	20.5	27.2	56.0	-28.8	4.787
29.713	8.6	22.5	31.1	60.0	-28.9	29.713
4.008	6.6	20.5	27.1	56.0	-28.9	4.008
28.657	8.4	22.4	30.8	60.0	-29.2	28.657
4.213	5.9	20.5	26.4	56.0	-29.6	4.213
22.147	8.6	21.8	30.4	60.0	-29.6	22.147
4.687	5.8	20.5	26.3	56.0	-29.7	4.687
22.128	8.5	21.8	30.3	60.0	-29.7	22.128
3.414	5.7	20.3	26.0	56.0	-30.0	3.414
21.371	8.3	21.7	30.0	60.0	-30.0	21.371
27.762	7.6	22.3	29.9	60.0	-30.1	27.762
26.792	7.7	22.2	29.9	60.0	-30.1	26.792
21.710	8.2	21.7	29.9	60.0	-30.1	21.710
4.989	5.4	20.5	25.9	56.0	-30.1	4.989
3.694	5.5	20.4	25.9	56.0	-30.1	3.694
27.150	7.6	22.3	29.9	60.0	-30.1	27.150
26.903	7.6	22.2	29.8	60.0	-30.2	26.903
3.168	5.5	20.3	25.8	56.0	-30.2	3.168
29.914	7.2	22.5	29.7	60.0	-30.3	29.914
4.090	5.2	20.5	25.7	56.0	-30.3	4.090
28.269	7.2	22.4	29.6	60.0	-30.4	28.269
29.597	7.1	22.5	29.6	60.0	-30.4	29.597
24.501	7.6	22.0	29.6	60.0	-30.4	24.501
28.791	7.1	22.4	29.5	60.0	-30.5	28.791
4.847	5.0	20.5	25.5	56.0	-30.5	4.847
4.605	5.0	20.5	25.5	56.0	-30.5	4.605

Peak Data - vs - Average Limit					
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
4.787	6.7	20.5	27.2	46.0	-18.8
29.713	8.6	22.5	31.1	50.0	-18.9
4.008	6.6	20.5	27.1	46.0	-18.9
28.657	8.4	22.4	30.8	50.0	-19.2
4.213	5.9	20.5	26.4	46.0	-19.6
22.147	8.6	21.8	30.4	50.0	-19.6
4.687	5.8	20.5	26.3	46.0	-19.7
22.128	8.5	21.8	30.3	50.0	-19.7
3.414	5.7	20.3	26.0	46.0	-20.0
21.371	8.3	21.7	30.0	50.0	-20.0
27.762	7.6	22.3	29.9	50.0	-20.1
26.792	7.7	22.2	29.9	50.0	-20.1
21.710	8.2	21.7	29.9	50.0	-20.1
4.989	5.4	20.5	25.9	46.0	-20.1
3.694	5.5	20.4	25.9	46.0	-20.1
27.150	7.6	22.3	29.9	50.0	-20.1
26.903	7.6	22.2	29.8	50.0	-20.2
3.168	5.5	20.3	25.8	46.0	-20.2
29.914	7.2	22.5	29.7	50.0	-20.3
4.090	5.2	20.5	25.7	46.0	-20.3
28.269	7.2	22.4	29.6	50.0	-20.4
29.597	7.1	22.5	29.6	50.0	-20.4
24.501	7.6	22.0	29.6	50.0	-20.4
28.791	7.1	22.4	29.5	50.0	-20.5
4.847	5.0	20.5	25.5	46.0	-20.5
4.605	5.0	20.5	25.5	46.0	-20.5

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 4 Line:	Positive Lead	Add. Ext. Attenuation (dB):	0
----------------	---------------	-----------------------------	---

COMMENTS

None

EUT OPERATING MODES

Continuous transmit. Low Channel, 2402 MHz.

DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Quasi Peak Limit

MHz

Peak Data - vs - Average Limit

RESULTS - Run #4

Peak Data - vs - Quasi Peak Limit

		11a - V3 - C		Spec.	
Freq	Amp.	Factor	Adjusted	Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
28.474	9.1	22.4	31.5	60.0	-28.5
4.549	6.5	20.5	27.0	56.0	-29.0
4.881	6.3	20.5	26.8	56.0	-29.2
4.534	6.2	20.5	26.7	56.0	-29.3
4.698	5.9	20.5	26.4	56.0	-29.6
29.799	7.9	22.5	30.4	60.0	-29.6
4.963	5.7	20.5	26.2	56.0	-29.8
22.303	8.4	21.8	30.2	60.0	-29.8
29.862	7.6	22.5	30.1	60.0	-29.9
28.265	7.7	22.4	30.1	60.0	-29.9
29.571	7.6	22.5	30.1	60.0	-29.9
26.217	7.9	22.2	30.1	60.0	-29.9
29.899	7.5	22.5	30.0	60.0	-30.0
26.105	7.8	22.2	30.0	60.0	-30.0
3.814	5.5	20.4	25.9	56.0	-30.1
4.933	5.4	20.5	25.9	56.0	-30.1
23.602	8.0	21.9	29.9	60.0	-30.1
29.993	7.2	22.5	29.7	60.0	-30.3
29.519	7.2	22.5	29.7	60.0	-30.3
26.064	7.5	22.1	29.6	60.0	-30.4
28.392	7.2	22.4	29.6	60.0	-30.4
4.295	5.1	20.5	25.6	56.0	-30.4
25.363	7.5	22.1	29.6	60.0	-30.4
3.940	5.1	20.4	25.5	56.0	-30.5
4.347	5.0	20.5	25.5	56.0	-30.5
4.056	5.0	20.5	25.5	56.0	-30.5

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
28.474	9.1	22.4	31.5	50.0	-18.5
4.549	6.5	20.5	27.0	46.0	-19.0
4.881	6.3	20.5	26.8	46.0	-19.2
4.534	6.2	20.5	26.7	46.0	-19.3
4.698	5.9	20.5	26.4	46.0	-19.6
29.799	7.9	22.5	30.4	50.0	-19.6
4.963	5.7	20.5	26.2	46.0	-19.8
22.303	8.4	21.8	30.2	50.0	-19.8
29.862	7.6	22.5	30.1	50.0	-19.9
28.265	7.7	22.4	30.1	50.0	-19.9
29.571	7.6	22.5	30.1	50.0	-19.9
26.217	7.9	22.2	30.1	50.0	-19.9
29.899	7.5	22.5	30.0	50.0	-20.0
26.105	7.8	22.2	30.0	50.0	-20.0
3.814	5.5	20.4	25.9	46.0	-20.1
4.933	5.4	20.5	25.9	46.0	-20.1
23.602	8.0	21.9	29.9	50.0	-20.1
29.993	7.2	22.5	29.7	50.0	-20.3
29.519	7.2	22.5	29.7	50.0	-20.3
26.064	7.5	22.1	29.6	50.0	-20.4
28.392	7.2	22.4	29.6	50.0	-20.4
4.295	5.1	20.5	25.6	46.0	-20.4
25.363	7.5	22.1	29.6	50.0	-20.4
3.940	5.1	20.4	25.5	46.0	-20.5
4.347	5.0	20.5	25.5	46.0	-20.5
4.056	5.0	20.5	25.5	46.0	-20.5

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #:	5	Line:	Positive Lead	Add. Ext. Attenuation (dB):	0

COMMENTS

0

0

None

EUT OPERATING MODES

Continuous transmit. Mid Channel, 2440 MHz.

DEVIATIONS FROM TEST STANDARD

None

10

MHz

100

Peak Data - vs - Quasi Peak Limit

RESULTS - Run #5

Peak Data - vs - Quasi Peak Limit

	. oak ba	<u> 10 0</u>	taaci i cai	·	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.907	6.7	20.5	27.2	56.0	-28.8
28.911	8.4	22.4	30.8	60.0	-29.2
29.437	8.3	22.5	30.8	60.0	-29.2
27.638	8.2	22.3	30.5	60.0	-29.5
4.590	6.0	20.5	26.5	56.0	-29.5
4.638	5.8	20.5	26.3	56.0	-29.7
3.944	5.8	20.4	26.2	56.0	-29.8
26.795	7.9	22.2	30.1	60.0	-29.9
4.761	5.6	20.5	26.1	56.0	-29.9
29.590	7.6	22.5	30.1	60.0	-29.9
29.373	7.6	22.5	30.1	60.0	-29.9
4.813	5.5	20.5	26.0	56.0	-30.0
29.627	7.5	22.5	30.0	60.0	-30.0
20.188	8.4	21.6	30.0	60.0	-30.0
29.108	7.5	22.4	29.9	60.0	-30.1
4.440	5.4	20.5	25.9	56.0	-30.1
29.907	7.3	22.5	29.8	60.0	-30.2
28.571	7.3	22.4	29.7	60.0	-30.3
29.713	7.2	22.5	29.7	60.0	-30.3
4.276	5.2	20.5	25.7	56.0	-30.3
28.094	7.3	22.4	29.7	60.0	-30.3
26.224	7.5	22.2	29.7	60.0	-30.3
28.858	7.2	22.4	29.6	60.0	-30.4
4.534	5.1	20.5	25.6	56.0	-30.4
29.310	7.0	22.5	29.5	60.0	-30.5
29.250	7.0	22.4	29.4	60.0	-30.6

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.907	6.7	20.5	27.2	46.0	-18.8
28.911	8.4	22.4	30.8	50.0	-19.2
29.437	8.3	22.5	30.8	50.0	-19.2
27.638	8.2	22.3	30.5	50.0	-19.5
4.590	6.0	20.5	26.5	46.0	-19.5
4.638	5.8	20.5	26.3	46.0	-19.7
3.944	5.8	20.4	26.2	46.0	-19.8
26.795	7.9	22.2	30.1	50.0	-19.9
4.761	5.6	20.5	26.1	46.0	-19.9
29.590	7.6	22.5	30.1	50.0	-19.9
29.373	7.6	22.5	30.1	50.0	-19.9
4.813	5.5	20.5	26.0	46.0	-20.0
29.627	7.5	22.5	30.0	50.0	-20.0
20.188	8.4	21.6	30.0	50.0	-20.0
29.108	7.5	22.4	29.9	50.0	-20.1
4.440	5.4	20.5	25.9	46.0	-20.1
29.907	7.3	22.5	29.8	50.0	-20.2
28.571	7.3	22.4	29.7	50.0	-20.3
29.713	7.2	22.5	29.7	50.0	-20.3
4.276	5.2	20.5	25.7	46.0	-20.3
28.094	7.3	22.4	29.7	50.0	-20.3
26.224	7.5	22.2	29.7	50.0	-20.3
28.858	7.2	22.4	29.6	50.0	-20.4
4.534	5.1	20.5	25.6	46.0	-20.4
29.310	7.0	22.5	29.5	50.0	-20.5
29.250	7.0	22.4	29.4	50.0	-20.6

CONCLUSION

Pass

3/~

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 6 Line: Negative Lead Ad	dd. Ext. Attenuation (dB): 0
---------------------------------	------------------------------

COMMENTS

None

EUT OPERATING MODES

Continuous transmit. Mid Channel, 2440 MHz.

DEVIATIONS FROM TEST STANDARD

None

Report No. PQCD0003 21/57

RESULTS - Run #6

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
3.556	6.9	20.4	27.3	56.0	-28.7	
27.661	8.9	22.3	31.2	60.0	-28.8	
28.657	8.3	22.4	30.7	60.0	-29.3	
4.952	6.1	20.5	26.6	56.0	-29.4	
28.843	7.9	22.4	30.3	60.0	-29.7	
3.646	5.8	20.4	26.2	56.0	-29.8	
29.705	7.6	22.5	30.1	60.0	-29.9	
25.366	8.0	22.1	30.1	60.0	-29.9	
4.966	5.5	20.5	26.0	56.0	-30.0	
29.881	7.5	22.5	30.0	60.0	-30.0	
4.489	5.4	20.5	25.9	56.0	-30.1	
29.425	7.4	22.5	29.9	60.0	-30.1	
27.097	7.5	22.3	29.8	60.0	-30.2	
4.593	5.2	20.5	25.7	56.0	-30.3	
29.328	7.2	22.5	29.7	60.0	-30.3	
27.004	7.4	22.3	29.7	60.0	-30.3	
23.012	7.8	21.8	29.6	60.0	-30.4	
29.108	7.2	22.4	29.6	60.0	-30.4	
29.075	7.2	22.4	29.6	60.0	-30.4	
28.967	7.1	22.4	29.5	60.0	-30.5	
29.866	7.0	22.5	29.5	60.0	-30.5	
28.366	7.1	22.4	29.5	60.0	-30.5	
4.731	4.9	20.5	25.4	56.0	-30.6	
24.699	7.4	22.0	29.4	60.0	-30.6	
4.381	4.9	20.5	25.4	56.0	-30.6	
29.590	6.9	22.5	29.4	60.0	-30.6	

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
3.556	6.9	20.4	27.3	46.0	-18.7
27.661	8.9	22.3	31.2	50.0	-18.8
28.657	8.3	22.4	30.7	50.0	-19.3
4.952	6.1	20.5	26.6	46.0	-19.4
28.843	7.9	22.4	30.3	50.0	-19.7
3.646	5.8	20.4	26.2	46.0	-19.8
29.705	7.6	22.5	30.1	50.0	-19.9
25.366	8.0	22.1	30.1	50.0	-19.9
4.966	5.5	20.5	26.0	46.0	-20.0
29.881	7.5	22.5	30.0	50.0	-20.0
4.489	5.4	20.5	25.9	46.0	-20.1
29.425	7.4	22.5	29.9	50.0	-20.1
27.097	7.5	22.3	29.8	50.0	-20.2
4.593	5.2	20.5	25.7	46.0	-20.3
29.328	7.2	22.5	29.7	50.0	-20.3
27.004	7.4	22.3	29.7	50.0	-20.3
23.012	7.8	21.8	29.6	50.0	-20.4
29.108	7.2	22.4	29.6	50.0	-20.4
29.075	7.2	22.4	29.6	50.0	-20.4
28.967	7.1	22.4	29.5	50.0	-20.5
29.866	7.0	22.5	29.5	50.0	-20.5
28.366	7.1	22.4	29.5	50.0	-20.5
4.731	4.9	20.5	25.4	46.0	-20.6
24.699	7.4	22.0	29.4	50.0	-20.6
4.381	4.9	20.5	25.4	46.0	-20.6
29.590	6.9	22.5	29.4	50.0	-20.6

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 7 Line: Negative Lead	Add. Ext. Attenuation (dB): 0
------------------------------	-------------------------------

COMMENTS

None

EUT OPERATING MODES

EUT set to continuous receive.

DEVIATIONS FROM TEST STANDARD

None

Report No. PQCD0003 23/57

RESULTS - Run #7

Peak Data - vs - Quasi Peak Limit

_			A 11	Spec.	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Limit (dBuV)	Margin (dB)
27.556	8.7	22.3	31.0	60.0	-29.0
25.068	8.9	22.0	30.9	60.0	-29.1
28.829	8.5	22.4	30.9	60.0	-29.1
25.896	8.4	22.1	30.5	60.0	-29.5
3.799	5.9	20.4	26.3	56.0	-29.7
28.441	7.9	22.4	30.3	60.0	-29.7
29.534	7.8	22.5	30.3	60.0	-29.7
25.124	8.2	22.0	30.2	60.0	-29.8
28.735	7.8	22.4	30.2	60.0	-29.8
29.702	7.7	22.5	30.2	60.0	-29.8
29.097	7.7	22.4	30.1	60.0	-29.9
29.899	7.6	22.5	30.1	60.0	-29.9
4.478	5.6	20.5	26.1	56.0	-29.9
23.296	8.1	21.9	30.0	60.0	-30.0
4.716	5.4	20.5	25.9	56.0	-30.1
4.332	5.4	20.5	25.9	56.0	-30.1
4.884	5.3	20.5	25.8	56.0	-30.2
27.314	7.5	22.3	29.8	60.0	-30.2
24.568	7.8	22.0	29.8	60.0	-30.2
3.608	5.4	20.4	25.8	56.0	-30.2
29.261	7.3	22.4	29.7	60.0	-30.3
27.948	7.3	22.4	29.7	60.0	-30.3
24.146	7.7	21.9	29.6	60.0	-30.4
25.960	7.5	22.1	29.6	60.0	-30.4
28.944	7.2	22.4	29.6	60.0	-30.4
25.210	7.5	22.0	29.5	60.0	-30.5

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
27.556	8.7	22.3	31.0	50.0	-19.0
25.068	8.9	22.0	30.9	50.0	-19.1
28.829	8.5	22.4	30.9	50.0	-19.1
25.896	8.4	22.1	30.5	50.0	-19.5
3.799	5.9	20.4	26.3	46.0	-19.7
28.441	7.9	22.4	30.3	50.0	-19.7
29.534	7.8	22.5	30.3	50.0	-19.7
25.124	8.2	22.0	30.2	50.0	-19.8
28.735	7.8	22.4	30.2	50.0	-19.8
29.702	7.7	22.5	30.2	50.0	-19.8
29.097	7.7	22.4	30.1	50.0	-19.9
29.899	7.6	22.5	30.1	50.0	-19.9
4.478	5.6	20.5	26.1	46.0	-19.9
23.296	8.1	21.9	30.0	50.0	-20.0
4.716	5.4	20.5	25.9	46.0	-20.1
4.332	5.4	20.5	25.9	46.0	-20.1
4.884	5.3	20.5	25.8	46.0	-20.2
27.314	7.5	22.3	29.8	50.0	-20.2
24.568	7.8	22.0	29.8	50.0	-20.2
3.608	5.4	20.4	25.8	46.0	-20.2
29.261	7.3	22.4	29.7	50.0	-20.3
27.948	7.3	22.4	29.7	50.0	-20.3
24.146	7.7	21.9	29.6	50.0	-20.4
25.960	7.5	22.1	29.6	50.0	-20.4
28.944	7.2	22.4	29.6	50.0	-20.4
25.210	7.5	22.0	29.5	50.0	-20.5

CONCLUSION

Pass

Tested By

EUT:	QX-008-427	Work Order:	PQCD0003
Serial Number:	2715-000	Date:	10/07/2015
Customer:	Parker Hannifin Corporation	Temperature:	21.9°C
Attendees:	Shawn Ellis, Tim Skwiot	Relative Humidity:	33.5%
Customer Project:	None	Bar. Pressure:	989.9 mb
Tested By:	Jared Ison	Job Site:	MN03
Power:	Battery, 3 VDC	Configuration:	PQCD0003-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2015	ANSI C63.10:2013

TEST PARAMETERS

Run #: 8 Line: Positive Lead Ad	Add. Ext. Attenuation (dB): 0
---------------------------------	-------------------------------

COMMENTS

None

EUT OPERATING MODES

EUT set to continuous receive.

0

0

DEVIATIONS FROM TEST STANDARD

None

10

MHz

100

0

Peak Data - vs - Quasi Peak Limit

10

MHz

100

Peak Data - vs - Average Limit

Report No. PQCD0003 25/57

RESULTS - Run #8

Peak Data - vs - Quasi Peak Limit

	i can ba	ia vo c	tuasi i cai	·	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.526	6.4	20.5	26.9	56.0	-29.1
29.575	8.3	22.5	30.8	60.0	-29.2
29.142	8.3	22.4	30.7	60.0	-29.3
29.892	8.1	22.5	30.6	60.0	-29.4
23.035	8.3	21.8	30.1	60.0	-29.9
4.425	5.6	20.5	26.1	56.0	-29.9
29.500	7.6	22.5	30.1	60.0	-29.9
22.893	8.2	21.8	30.0	60.0	-30.0
4.455	5.5	20.5	26.0	56.0	-30.0
4.351	5.5	20.5	26.0	56.0	-30.0
29.556	7.5	22.5	30.0	60.0	-30.0
29.302	7.5	22.5	30.0	60.0	-30.0
4.627	5.4	20.5	25.9	56.0	-30.1
22.012	8.1	21.8	29.9	60.0	-30.1
29.317	7.4	22.5	29.9	60.0	-30.1
28.467	7.4	22.4	29.8	60.0	-30.2
3.157	5.4	20.3	25.7	56.0	-30.3
28.717	7.3	22.4	29.7	60.0	-30.3
24.840	7.7	22.0	29.7	60.0	-30.3
28.821	7.2	22.4	29.6	60.0	-30.4
29.425	7.1	22.5	29.6	60.0	-30.4
28.579	7.1	22.4	29.5	60.0	-30.5
29.993	7.0	22.5	29.5	60.0	-30.5
4.168	5.0	20.5	25.5	56.0	-30.5
27.165	7.2	22.3	29.5	60.0	-30.5
4.075	5.0	20.5	25.5	56.0	-30.5

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
4.526	6.4	20.5	26.9	46.0	-19.1
29.575	8.3	22.5	30.8	50.0	-19.2
29.142	8.3	22.4	30.7	50.0	-19.3
29.892	8.1	22.5	30.6	50.0	-19.4
23.035	8.3	21.8	30.1	50.0	-19.9
4.425	5.6	20.5	26.1	46.0	-19.9
29.500	7.6	22.5	30.1	50.0	-19.9
22.893	8.2	21.8	30.0	50.0	-20.0
4.455	5.5	20.5	26.0	46.0	-20.0
4.351	5.5	20.5	26.0	46.0	-20.0
29.556	7.5	22.5	30.0	50.0	-20.0
29.302	7.5	22.5	30.0	50.0	-20.0
4.627	5.4	20.5	25.9	46.0	-20.1
22.012	8.1	21.8	29.9	50.0	-20.1
29.317	7.4	22.5	29.9	50.0	-20.1
28.467	7.4	22.4	29.8	50.0	-20.2
3.157	5.4	20.3	25.7	46.0	-20.3
28.717	7.3	22.4	29.7	50.0	-20.3
24.840	7.7	22.0	29.7	50.0	-20.3
28.821	7.2	22.4	29.6	50.0	-20.4
29.425	7.1	22.5	29.6	50.0	-20.4
28.579	7.1	22.4	29.5	50.0	-20.5
29.993	7.0	22.5	29.5	50.0	-20.5
4.168	5.0	20.5	25.5	46.0	-20.5
27.165	7.2	22.3	29.5	50.0	-20.5
4.075	5.0	20.5	25.5	46.0	-20.5

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Bluetooth Low Energy: Low Channel, 2402 MHz Bluetooth Low Energy: Middle Channel, 2440 MHz Bluetooth Low Energy: High Channel, 2480 MHz

POWER SETTINGS INVESTIGATED

Battery, 3 VDC

CONFIGURATIONS INVESTIGATED

PQCD0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

					ILOI LOUI MILITI
Interval	Last Cal.	ID	Model	Manufacturer	Description
12 mo	10/3/2014	APU	JSD4-18002600-26-8P	Miteq	Amplifier - Pre-Amplifier
			18-26GHz Standard Gain		
12 mo	10/3/2014	MNP	Horn Cable	Northwest EMC	Cable
0 mo	NCR	AHG	3160-09	ETS Lindgren	Antenna - Standard Gain
12 mo	3/2/2015	AVW	AMF-6F-12001800-30-10P	Miteq	Amplifier - Pre-Amplifier
0 mo	NCR	AIQ	3160-08	ETS Lindgren	Antenna - Standard Gain
12 mo	5/5/2015	MNJ	Standard Gain Horn Cables	ESM Cable Corp.	Cable
12 mo	3/2/2015	AVV	AMF-6F-08001200-30-10P	Miteq	Amplifier - Pre-Amplifier
0 mo	NCR	AXP	3160-07	ETS Lindgren	Antenna - Standard Gain
12 mo	3/2/2015	AVX	AMF-3D-00100800-32-13P	Miteq	Amplifier - Pre-Amplifier
			Double Ridge Guide Horn		
12 mo	5/5/2015	MNI	Cables	ESM Cable Corp.	Cable
24 mo	6/3/2014	AJA	3115	ETS Lindgren	Antenna - Double Ridge
12 mo	3/2/2015	PAD	AM-1616-1000	Miteq	Amplifier - Pre-Amplifier
12 mo	3/30/2015	MNH	Bilog Cables	ESM Cable Corp.	Cable
24 mo	12/17/2013	AYD	CBL 6141B	Teseq	Antenna - Biconilog
12 mo	1/27/2015	AFI	N9010A	Agilent	Analyzer - Spectrum Analyzer
	3/2/2015 5/5/2015 6/3/2014 3/2/2015 3/30/2015 12/17/2013	MNI AJA PAD MNH AYD	AMF-3D-00100800-32-13P Double Ridge Guide Horn Cables 3115 AM-1616-1000 Bilog Cables CBL 6141B	Miteq ESM Cable Corp. ETS Lindgren Miteq ESM Cable Corp. Teseq	Amplifier - Pre-Amplifier Cable Antenna - Double Ridge Amplifier - Pre-Amplifier Cable Antenna - Biconilog

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. PQCD0003 27/57

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Duty cycle correction factor:

EUT was configured to the worst case duty cycle under normal operating conditions for the measurement of "Duty Cycle Correction Factor".

Per ANSI C63.10-2013 the DCCF was determined using equation: (dB) = 20 Log (.433/100ms).

SPURIOUS RADIATED EMISSIONS

Morte Orden	DOCD0004	Doto	00/00/45									
Work Order:		Date:	09/09/15									
Project:	None	Temperature:	22.9 °C									
Job Site:	MN05	Humidity:	52.5% RH									
Serial Number:	See Configuration	Barometric Pres.:	985.9 mbar	Tested by: Jared Ison								
EUT:	QX-008-427	1X-008-427										
Configuration:	1											
Customer:	Parker Hannifin Corpo	arker Hannifin Corporation										
Attendees:	im Skwiot, Shawn Ellis											
EUT Power:	Battery, 3 VDC											
Operating Mode:	Bluetooth Low Energy	Bluetooth Low Energy, Continuous Transmit.										
Deviations:	None											
Comments:	Reference data comments for EUT channel and orientation. Due to antenna symmetry, only two orthogonal axis were investigated. Output power set to +8 dBm. Using Antenna with gain of 3.2 dBi. Due to the fixed low duty cycle of the advertising channels and hopping nature of the data channels a duty cycle correction factor was applied to the average data. The worst case DCCF from both modes was applied to the data.											
Test Specifications			Test Meth	od								

ANSI C63.10:2013

FCC 15.247:2015

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2484.837	42.4	-1.9	1.0	51.1	0.0	20.0	Horz	PK	0.0	60.5	74.0	-13.5	High Ch. 2480 MHz, EUT Horz
2484.440	42.2	-1.9	1.0	87.1	0.0	20.0	Vert	PK	0.0	60.3	74.0	-13.7	High Ch. 2480 MHz, EUT Horz
2390.313	42.0	-2.2	1.0	57.0	0.0	20.0	Vert	PK	0.0	59.8	74.0	-14.2	Low Ch. 2402 MHz, EUT Vert
2390.733	41.6	-2.2	1.0	346.0	0.0	20.0	Horz	PK	0.0	59.4	74.0	-14.6	Low Ch. 2402 MHz, EUT Horz
2483.800	30.9	-1.9	1.0	51.1	-47.3	20.0	Horz	AV	0.0	1.7	54.0	-52.3	High Ch. 2480 MHz, EUT Horz
2484.260	30.8	-1.9	1.0	87.1	-47.3	20.0	Vert	AV	0.0	1.6	54.0	-52.4	High Ch. 2480 MHz, EUT Horz
2390.983	30.6	-2.2	1.0	346.0	-47.3	20.0	Horz	AV	0.0	1.1	54.0	-52.9	Low Ch. 2402 MHz, EUT Horz
2390.337	30.5	-2.2	1.0	57.0	-47.3	20.0	Vert	AV	0.0	1.0	54.0	-53.0	Low Ch. 2402 MHz, EUT Vert

Report No. PQCD0003 29/57

SPURIOUS RADIATED EMISSIONS

Work Order:	PQCD0001	Date:	09/09/15								
Project:	None	Temperature:	22.9 °C								
Job Site:	MN05	Humidity:	52.5% RH								
Serial Number:	See Configuration	Barometric Pres.:	985.9 mbar	Tested by: Jared Ison							
EUT:	QX-008-427										
Configuration:	1										
Customer:	Parker Hannifin Corporation										
Attendees:	Fim Skwiot, Shawn Ellis										
EUT Power:	Battery, 3 VDC										
Operating Mode:	Bluetooth Low Energy	Bluetooth Low Energy, Continuous Transmit.									
Deviations:	None										
Comments:	Reference data comments for EUT channel and orientation. Due to antenna symmetry, only two orthogonal axis were investigated. Output power set to +8 dBm. Using Antenna with gain of 3.2 dBi. Due to the fixed low duty cycle of the advertising channels and hopping nature of the data channels a duty cycle correction factor was applied to the average data. The worst case DCCF from both modes was applied to the data.										
Test Specifications			Test Meth	od							

Test Specifications FCC 15.247:2015

ANSI C63.10:2013

Freq	Amplitude	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor	External Attenuation	Polarity/ Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)	,,,		(dB)	(dBuV/m)	(dBuV/m)	(dB)	
()													Comments
4960.490	55.9	6.8	1.0	31.0	0.0	0.0	Horz	PK	0.0	62.7	74.0	-11.3	High Ch. 2480 MHz, EUT Horz
4960.350	55.6	6.8	1.0	26.1	0.0	0.0	Horz	PK	0.0	62.4	74.0	-11.6	High Ch. 2480 MHz, EUT Hor
4960.540	53.9	6.8	1.0	249.0	0.0	0.0	Vert	PK	0.0	60.7	74.0	-13.3	High Ch. 2480 MHz, EUT Vert
2485.293	42.5	-1.9	1.0	47.1	0.0	20.0	Horz	PK	0.0	60.6	74.0	-13.4	High Ch. 2480 MHz, EUT Vert
7319.085	46.3	14.2	1.2	210.1	0.0	0.0	Horz	PK	0.0	60.5	74.0	-13.5	Mid Ch. 2440 MHz, EUT Horz
2485.057	42.2	-1.9	2.5	200.0	0.0	20.0	Vert	PK	0.0	60.3	74.0	-13.7	High Ch. 2480 MHz, EUT Vert
4960.440	53.3	6.8	1.0	194.0	0.0	0.0	Vert	PK	0.0	60.1	74.0	-13.9	High Ch. 2480 MHz, EUT Vert
7320.625	45.5	14.2	1.0	12.1	0.0	0.0	Vert	PK	0.0	59.7	74.0	-14.3	Mid Ch. 2440 MHz, EUT Vert
7440.585	44.4	14.6	2.3	38.0	0.0	0.0	Vert	PK	0.0	59.0	74.0	-15.0	High Ch. 2480 MHz, EUT Vert
4880.330	52.3	6.5	1.0	7.0	0.0	0.0	Horz	PK	0.0	58.8	74.0	-15.2	Mid Ch. 2440 MHz, EUT Horz
7439.175	44.1	14.6	2.3	12.1	0.0	0.0	Horz	PK	0.0	58.7	74.0	-15.3	High Ch. 2480 MHz, EUT Hor
4880.430	52.1	6.5	1.0	257.0	0.0	0.0	Vert	PK	0.0	58.6	74.0	-15.4	Mid Ch. 2440 MHz, EUT Vert
4959.465	51.6	6.8	1.0	315.0	0.0	0.0	Vert	PK	0.0	58.4	74.0	-15.6	High Ch. 2480 MHz, EUT Horz
4803.700	50.2	6.4	1.0	346.0	0.0	0.0	Horz	PK	0.0	56.6	74.0	-17.4	Low Ch. 2402 MHz, EUT Horz
4803.490	49.8	6.4	1.0	88.1	0.0	0.0	Vert	PK	0.0	56.2	74.0	-17.8	Low Ch. 2402 MHz, EUT Vert
4959.635	48.7	6.8	3.9	29.1	0.0	0.0	Horz	PK	0.0	55.5	74.0	-18.5	High Ch. 2480 MHz, EUT Vert
4960.255	47.7	6.8	1.0	26.1	0.0	0.0	Horz	PK	0.0	54.5	74.0	-19.5	High Ch. 2480 MHz, EUT Horz
19841.610	41.1	12.0	1.8	78.0	0.0	0.0	Vert	PK	0.0	53.1	74.0	-20.9	High Ch. 2480 MHz, EUT Vert
12008.580	56.9	-3.8	1.7	80.1	0.0	0.0	Horz	PK	0.0	53.1	74.0	-20.9	Low Ch. 2402 MHz, EUT Horz
19521.520	41.2	11.7	1.6	292.0	0.0	0.0	Horz	PK	0.0	52.9	74.0	-21.1	Mid Ch. 2440 MHz, EUT Horz
19838.100	40.7	12.0	1.6	292.0	0.0	0.0	Horz	PK	0.0	52.7	74.0	-21.3	High Ch. 2480 MHz, EUT Horz
4959.490	45.6	6.8	1.0	311.9	0.0	0.0	Vert	PK	0.0	52.4	74.0	-21.6	High Ch. 2480 MHz, EUT Vert
19214.290	41.1	11.3	1.8	218.0	0.0	0.0	Vert	PK	0.0	52.4	74.0	-21.6	Low Ch. 2402 MHz, EUT Vert
19521.320	40.2	11.7	1.8	252.0	0.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	Mid Ch. 2440 MHz, EUT Vert

Report No. PQCD0003 30/57

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
19216.900	40.6	11.3	1.7	114.0	0.0	0.0	Horz	PK	0.0	51.9	74.0	-22.1	Low Ch. 2402 MHz, EUT Horz
12201.140	54.3	-3.1	1.3	264.9	0.0	0.0	Horz	PK	0.0	51.2	74.0	-22.8	Mid Ch. 2440 MHz, EUT Horz
12398.760	51.6	-2.7	1.8	328.0	0.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	High Ch. 2480 MHz, EUT Hor
12008.620	51.9	-3.8	1.0	264.9	0.0	0.0	Vert	PK	0.0	48.1	74.0	-25.9	Low Ch. 2402 MHz, EUT Vert
12201.080	50.1	-3.1	1.0	94.1	0.0	0.0	Vert	PK	0.0	47.0	74.0	-27.0	Mid Ch. 2440 MHz, EUT Vert
12398.860	48.9	-2.7	1.7	289.0	0.0	0.0	Vert	PK	0.0	46.2	74.0	-27.8	High Ch. 2480 MHz. EUT Vert
4959.925	53.0	6.8	1.0	31.0	-47.3	0.0	Horz	AV	0.0	12.5	54.0	-41.5	High Ch. 2480 MHz, EUT Horz
4959.960	52.3	6.8	1.0	26.1	-47.3	0.0	Horz	AV	0.0	11.8	54.0	-42.2	High Ch. 2480 MHz, EUT Hor
4959.965	50.7	6.8	1.0	249.0	-47.3	0.0	Vert	AV	0.0	10.2	54.0	-43.8	High Ch. 2480 MHz, EUT Vert
4959.935	49.9	6.8	1.0	194.0	-47.3	0.0	Vert	AV	0.0	9.4	54.0	-44.6	High Ch. 2480 MHz, EUT Vert
4879.890	48.5	6.5	1.0	7.0	-47.3	0.0	Horz	AV	0.0	7.7	54.0	-46.3	Mid Ch. 2440 MHz, EUT Horz
4879.950	48.2	6.5	1.0	257.0	-47.3	0.0	Vert	AV	0.0	7.4	54.0	-46.6	Mid Ch. 2440 MHz, EUT Vert
4959.920	47.6	6.8	1.0	315.0	-47.3	0.0	Vert	AV	0.0	7.1	54.0	-46.9	High Ch. 2480 MHz, EUT Horz
7319.390	39.3	14.2	1.2	210.1	-47.3	0.0	Horz	AV	0.0	6.2	54.0	-47.8	Mid Ch. 2440 MHz, EUT Horz
7319.385	38.8	14.2	1.0	12.1	-47.3	0.0	Vert	AV	0.0	5.7	54.0	-48.3	Mid Ch. 2440 MHz, EUT Vert
4803.900	46.1	6.4	1.0	346.0	-47.3	0.0	Horz	AV	0.0	5.2	54.0	-48.8	Low Ch. 2402 MHz, EUT Horz
4803.895	45.1	6.4	1.0	88.1	-47.3	0.0	Vert	AV	0.0	4.2	54.0	-49.8	Low Ch. 2402 MHz, EUT Vert
7440.375	36.7	14.6	2.3	38.0	-47.3	0.0	Vert	AV	0.0	4.0	54.0	-50.0	High Ch. 2480 MHz, EUT Vert
7440.295	36.2	14.6	2.3	12.1	-47.3	0.0	Horz	AV	0.0	3.5	54.0	-50.5	High Ch. 2480 MHz, EUT Hor
4959.955	43.6	6.8	3.9	29.1	-47.3	0.0	Horz	AV	0.0	3.1	54.0	-50.9	High Ch. 2480 MHz, EUT Vert
4960.010	42.6	6.8	1.0	26.1	-47.3	0.0	Horz	AV	0.0	2.1	54.0	-51.9	High Ch. 2480 MHz, EUT Horz
2483.687	31.0	-1.9	2.5	200.0	-47.3	20.0	Vert	AV	0.0	1.8	54.0	-52.2	High Ch. 2480 MHz, EUT Vert
2484.630	30.7	-1.9	1.0	47.1	-47.3	20.0	Horz	AV	0.0	1.5	54.0	-52.5	High Ch. 2480 MHz, EUT Vert
12010.950	51.1	-3.8	1.7	80.1	-47.3	0.0	Horz	AV	0.0	0.0	54.0	-54.0	Low Ch. 2402 MHz, EUT Horz
4960.030	39.0	6.8	1.0	311.9	-47.3	0.0	Vert	AV	0.0	-1.5	54.0	-55.5	High Ch. 2480 MHz, EUT Vert
12198.790	48.3	-3.1	1.3	264.9	-47.3	0.0	Horz	AV	0.0	-2.1	54.0	-56.1	Mid Ch. 2440 MHz, EUT Horz
19841.900	31.2	12.0	1.8	78.0	-47.3	0.0	Vert	AV	0.0	-4.1	54.0	-58.1	High Ch. 2480 MHz, EUT Vert
19521.570	31.3	11.7	1.6	292.0	-47.3	0.0	Horz	AV	0.0	-4.3	54.0	-58.3	Mid Ch. 2440 MHz, EUT Horz
19838.150	30.5	12.0	1.6	292.0	-47.3	0.0	Horz	AV	0.0	-4.8	54.0	-58.8	High Ch. 2480 MHz, EUT Horz
12399.000	44.8	-2.7	1.8	328.0	-47.3	0.0	Horz	AV	0.0	-5.2	54.0	-59.2	High Ch. 2480 MHz, EUT Hor
19521.520	30.2	11.7	1.8	252.0	-47.3	0.0	Vert	AV	0.0	-5.4	54.0	-59.4	Mid Ch. 2440 MHz, EUT Vert
19214.500	30.6	11.3	1.7	114.0	-47.3	0.0	Horz	AV	0.0	-5.4	54.0	-59.4	Low Ch. 2402 MHz, EUT Horz
19214.250	30.6	11.3	1.8	218.0	-47.3	0.0	Vert	AV	0.0	-5.4	54.0	-59.4	Low Ch. 2402 MHz, EUT Vert
12008.740	45.2	-3.8	1.0	264.9	-47.3	0.0	Vert	AV	0.0	-5.9	54.0	-59.9	Low Ch. 2402 MHz, EUT Vert
12200.890	42.6	-3.1	1.0	94.1	-47.3	0.0	Vert	AV	0.0	-7.8	54.0	-61.8	Mid Ch. 2440 MHz, EUT Vert
12398.930	41.3	-2.7	1.7	289.0	-47.3	0.0	Vert	AV	0.0	-8.7	54.0	-62.7	High Ch. 2480 MHz, EUT Vert

Report No. PQCD0003 31/57

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	36
Attenuator	S.M. Electronics	SA26B-20	RFW	3/10/2015	12
Block - DC	Fairview Microwave	SD3379	AMI	9/18/2015	12
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/18/2015	12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

	QX-008-427			Work Order:							
Serial Number:	See Configuration			Date:	10/07/15						
	Parker Hannifin Corporation			Temperature:							
	Shawn Ellis, Tim Skwiot			Humidity:							
Project:				Barometric Pres.:							
	Jared Ison	Power:	Test Method	Job Site: MN08							
TEST SPECIFICATI	IONS										
FCC 15.247:2015			ANSI C63.10:2013								
COMMENTS	COMMENTS										
, and the second	EUT set to single channel continuous transmit using test firmware. EUT output power set to 8 dBm.										
	M TEST STANDARD										
None											
Configuration #	1	≤ 2	2								
	Signature										
				Value (dBc)	Limit ≤ (dBc)	Result					
Bluetooth Low Energ				(dBc)	≤ (dBc)						
Bluetooth Low Energ						Result Pass Pass					

Report No. PQCD0003 33/57

BAND EDGE COMPLIANCE

Bluetooth Low Energy, High Channel, 2480 MHz								
				Value	Limit			
				(dBc)	≤ (dBc)	Result		
_				-61.46	-20	Pass		

Report No. PQCD0003 34/57

DUTY CYCLE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/2/2015	12
		Double Ridge Guide Horn			
Cable	ESM Cable Corp.	Cables	MNI	5/5/2015	12
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/3/2014	24
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12

TEST DESCRIPTION

EUT was configured to the worst case duty cycle under normal operating conditions for the measurement of "Duty Cycle Correction Factor".

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. The duty cycle was measured radiated in the RF chamber.

DUTY CYCLE

EUT	: QX-008-427				Work Order:	PQCD0001	
Serial Number	: See Configuration				Date:	09/16/15	,
Customer	: Parker Hannifin Corpora	tion			Temperature:	23°C	,
Attendees	: Tim Skwiot, Shawn Ellis				Humidity:		
	: None				Barometric Pres.:		
	: Jared Ison		Power:	Battery, 3 VDC	Job Site:	MN05	
TEST SPECIFICAT	TIONS			Test Method			
FCC 15.247:2015				ANSI C63.10:2013			
COMMENTS							
Output power set	to +8 dBm. Using Antenna	with gain of 3.2 dBi. EUT was set to n	normal operating co	onditions.			
	M TEST STANDARD						
None							
Configuration #	1	Signature —	3	2			
					Value	Limit	Result
Bluetooth Low Eng-							
	Mid. Ch. 2426 MHz						
	100 ms Perio				See Graph	N/A	N/A
	500 ms Perio	od			See Graph	N/A	N/A
	Pulse Width				433.3 us	N/A	N/A

Report No. PQCD0003 36/57

DUTY CYCLE

Report No. PQCD0003 37/57

DUTY CYCLE

Report No. PQCD0003 38/57

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	36
Block - DC	Fairview Microwave	SD3379	AMI	9/18/2015	12
Attenuator	S.M. Electronics	SA26B-20	RFW	3/10/2015	12
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/18/2015	12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.9% (approximate 26 dB) emission bandwidth (EBW) was also measured at the same time.

The EUT was set to the channels and modes listed in the datasheet. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer.

Report No. PQCD0003

	QX-008-427				Work Order:	PQCD0003			
Serial Number:	See Configuration					10/07/15			
	Parker Hannifin Corporat	ion			Temperature:	23°C			
Attendees:	Shawn Ellis, Tim Skwiot				Humidity:	36%			
Project:	None				Barometric Pres.:	993.8			
	Jared Ison		Power:	Battery, 3 VDC	Job Site: MN08				
TEST SPECIFICATI	ONS			Test Method					
FCC 15.247:2015				ANSI C63.10:2013					
COMMENTS									
	TEST STANDARD	nit using test firmware. EUT output po	wer set to 6 dbm.						
None	I ILOI SIANDAND								
Configuration #	1	Signature	ŞŞS						
		-				Limit			
					Value	(≥)	Result		
Bluetooth Low Energ	jy			_	_				
	Low Channel, 2402 MHz				710.797 kHz	500 kHz	Pass		
	Mid Channel, 2440 MHz				704.08 kHz	500 kHz	Pass		
	High Channel, 2480 MHz				709.317 kHz	500 kHz	Pass		

Report No. PQCD0003 40/57

	Bluetooth Low	Energy, Mid Chai	nnel, 2440 MHz		
				Limit	
			Value	(≥)	Result
			704.08 kHz	500 kHz	Pass

Report No. PQCD0003 41/57

Report No. PQCD0003 42/57

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	36
Attenuator	S.M. Electronics	SA26B-20	RFW	3/10/2015	12
Block - DC	Fairview Microwave	SD3379	AMI	9/18/2015	12
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/18/2015	12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in ANSI C63.10:2013 Section 11.10.2 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio..

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

Report No. PQCD0003 43/57

EUT: QX-008-427 Work Order: PQC Serial Number: See Configuration Date: 10/0	CDUUUS		
	107145		
Customer: Parker Hannifin Corporation Temperature: 23°C			
Attendees: Shawn Ellis, Tim Skwiot Humidity: 36%			
Project: None Barometric Pres.: 993.			
Tested by: Jared Ison Power: Battery, 3 VDC Job Site: MN0	108		
TEST SPECIFICATIONS Test Method			
FCC 15.247:2015 ANSI C63.10:2013			
COMMENTS			
EUT set to single channel continuous transmit using test firmware. EUT output power set to 8 dBm. DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 1 Signature			
	Limit		
Value	(<)	Result	
Bluetooth Low Energy			
Low Channel, 2402 MHz 4.471 mW	1 W	Pass	
Mid Channel, 2440 MHz 3.971 mW	1 W	Pass	
High Channel, 2480 MHz 3.964 mW	1 W	Pass	

Report No. PQCD0003 44/57

	Bluetooth Low	Energy, Mid Chai	nnel, 2440 MHz		
				Limit	
			Value	(<)	Result
			3.971 mW	1 W	Pass

Report No. PQCD0003 45/57

Report No. PQCD0003 46/57

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	36
Attenuator	S.M. Electronics	SA26B-20	RFW	3/10/2015	12
Block - DC	Fairview Microwave	SD3379	AMI	9/18/2015	12
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/18/2015	12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

A direct connection was made between the RF output of the EUT and a spectrum analyzer. External attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Per the procedure outlined in ANSI C63.10:2013 Section 11.10.2, the peak power spectral density was measured.

Report No. PQCD0003

EUT: QX-008-427	Work Order:	PQCD0003	
Serial Number: See Configuration	Date:	10/07/15	
Customer: Parker Hannifin Corporation	Temperature:	23°C	
Attendees: Shawn Ellis, Tim Skwiot	Humidity:		
Project: None	Barometric Pres.:		
Tested by: Jared Ison Power: Battery, 3 VDC	Job Site:	MN08	
TEST SPECIFICATIONS Test Method			
FCC 15.247:2015 ANSI C63.10:2013			
COMMENTS			
EUT set to single channel continuous transmit using test firmware. EUT output power set to 8 dBm.			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 1 Signature			
	Value dBm/3kHz	Limit < dBm/3kHz	Results
Bluetooth Low Energy			
Low Channel, 2402 MHz	-9.907	8	Pass
Mid Channel, 2440 MHz	-10.401	8	Pass
High Channel, 2480 MHz	-10.401	8	Pass

Report No. PQCD0003 48/57

	Bluetooth Low	Energy, Mid Chai	nnel, 2440 MHz		
			Value	Limit	
			dBm/3kHz	< dBm/3kHz	Results
			-10.401	8	Pass

Report No. PQCD0003 49/57

		Bluetooth Low I	Energy, High Cha	nnel, 2480 MHz			
				Value	Limit		
				dBm/3kHz	< dBm/3kHz	Results	
İ				-10.401	8	Pass	

Report No. PQCD0003 50/57

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mos)
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	36
Attenuator	S.M. Electronics	SA26B-20	RFW	3/10/2015	12
Block - DC	Fairview Microwave	SD3379	AMI	9/18/2015	12
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Report No. PQCD0003 51/57

EUT:	: QX-008-427				Work Or	ler: PQCD0003	
Serial Number:	: See Configuration				D	ate: 10/07/15	
Customer:	Parker Hannifin Corporat	ion			Temperat	ire: 23°C	
Attendees:	Shawn Ellis, Tim Skwiot				Humid	ity: 36%	
Project:	: None				Barometric Pr	es.: 993.8	,
	: Jared Ison		Power:	Battery, 3 VDC	Job S	ite: MN08	
TEST SPECIFICAT	TONS			Test Method			
FCC 15.247:2015				ANSI C63.10:2013			
COMMENTS							
EUT set to single of	channel continuous transm	nit using test firmware. EUT output po	wer set to 8 dBm.				
DEVIATIONS FROM	M TEST STANDARD						
None							,
Configuration #	1	Signature	3	>			
				Frequency	Max Value	Limit	
				Range	(dBc)	≤ (dBc)	Result
Bluetooth Low Energ							
	Low Channel, 2402 MHz			Fundamental	N/A	N/A	N/A
	Low Channel, 2402 MHz			30 MHz - 12.5 GHz	-48.99	-20	Pass
	Low Channel, 2402 MHz			12.5 GHz - 25 GHz	-56.92	-20	Pass
	Mid Channel, 2440 MHz			Fundamental	N/A	N/A	N/A
	Mid Channel, 2440 MHz			30 MHz - 12.5 GHz	-46.53	-20	Pass
	Mid Channel, 2440 MHz			12.5 GHz - 25 GHz	-52.12	-20	Pass
	High Channel, 2480 MHz			Fundamental	N/A	N/A	N/A

Report No. PQCD0003 52/57

Bluetooth Low Energy, Low Channel, 2402 MHz				
Frequency	Max Value	Limit		
Range	(dBc)	≤ (dBc)	Result	
30 MHz - 12.5 GHz	-48.99	-20	Pass	

Report No. PQCD0003 53/57

Bluetooth Low Energy	, Low Channel, 2402 MHz		
Frequency	Max Value	Limit	
Range	(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz	-56.92	-20	Pass

Bluetooth Low	Energy, Mid Cha	nnel, 2440 MHz		
Frequency		Max Value	Limit	
 Range		(dBc)	≤ (dBc)	Result
Fundamental		N/A	N/A	N/A

Report No. PQCD0003 54/57

Bluetooth Low	Energy, Mid Char	nnel, 2440 MHz		
Frequency		Max Value	Limit	
Range		(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz		-52.12	-20	Pass

Report No. PQCD0003 55/57

Bluetooth Low Energy, High Channel, 2480 MHz				
Frequency		Max Value	Limit	
Range		(dBc)	≤ (dBc)	Result
30 MHz - 12.5 GHz		-46.21	-20	Pass

Report No. PQCD0003 56/57

Bluetooth Low	Energy, High Cha	nnel, 2480 MHz		
Frequency		Max Value	Limit	
Range		(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz		-49.1	-20	Pass

Report No. PQCD0003 57/57