CS230-HW7Sol

1. Jonathan 5 pts

Base Case: Let n = 1. Then $1 + 3 = 4 < 5 = 5 * 1^2$.

Induction Step: Assume $k + 3 < 5k^2$ for some $k \ge 1$ (Induction Hypothesis/IH).

Prove $(k+1) + 3 < 5(k+1)^2$.

$$(k+1) + 3 = k+3+1$$

 $< 5k^2 + 1$ by IH
 $< 5k^2 + 10k + 5$ $10k + 5 > 1$
 $= 5(k^2 + 2k + 1)$
 $= 5(k+1)^2$

Because there are inequalities used, then $(k+1)+3 < 5(k+1)^2$. Since both the base case and induction step are true, then $k+3 < 5k^2$ for $k \ge 1$.

2. Modeste 5 pts

Basis: n = 1, 1 * 1! = 1 = 2 - 1 = 2! - 1

Induction Step: Assume for n = k the equality holds:

$$1 * 1! + 2 * 2! + ... + k * k! = (k+1)! - 1$$

Prove
$$1 * 1! + 2 * 2! + ... + k * k! + (k+1)(k+1)! = (k+2)! - 1$$

$$1 * 1! + 2 * 2! + ... + k * k! + (k+1)(k+1)! = (k+1)! - 1 + (k+1)(k+1)!$$
 by IH
= $(k+1)!(k+1+1) - 1$ factor out $(k+1)!$
= $(k+2)! - 1$ $x!(x+1) = (x+1)!$

3. **Ying 5 pts**

Base:
$$n = 1$$
, $\frac{1}{1*2} = \frac{1}{2}$

Induction Step: Assume for n = k the equality holds (IH): $\frac{1}{1*2} + \frac{1}{2*3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$

Prove for n = k + 1: $\frac{1}{1*2} + \frac{1}{2*3} + \ldots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+1+1)} = \frac{k+1}{k+1+1}$

$$\frac{1}{1*2} + \frac{1}{2*3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+1+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
 by IH
$$= \frac{k(k+2)+1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{(k+1)(k+2)}$$

Since the base case for n=1 and the induction step are both true, then the equality is true $\forall n \in \mathbb{Z}^+$

4. Ying 5 pts

Base: n = 0, $4^{2*0} - 1 = 1 - 1 = 0$. Since 0 is divisible by any number, then the statement is true.

Induction Step: Assume the statement is true for n = k: 15 divides $4^{2k} - 1$, or equivalently $4^{2k} - 1 = 15m = 4^{2k} = 15m + 1$ for some $m \in \mathbb{N}$.

Prove $4^{2(k+1)} - 1$ is a multiple of 15.

$$4^{2(k+1)} - 1 = 4^{2k+2} - 1$$

$$= 4^2 * 4^{2k} - 1$$

$$= 16(15m+1) - 1$$

$$= 16 * 15m + 16 - 1$$

$$= 16 * 15m + 15$$

$$= 15(16m+1)$$
factor 15 from both

Since $16m + 1 \in \mathbb{N}$, then $4^{2(k+1)} - 1$ is a multiple of 15. Therefore $\forall n \in \mathbb{N}$, 15 divides $4^{2n} - 1$.

5. Ling 9 pts

a) Base case: 18c = 7c + 7c + 4c

Induction step: assume postage of $k \diamondsuit$ can be formed using $4 \diamondsuit$ and $7 \diamondsuit$ for $k \ge 18$.

We prove that (k+1)¢ can be 4¢ and 7¢.

Case 1: Suppose at least one 7 φ stamp was used to form $k\varphi$ postage. Then, replace a 7 φ stamp with two 4 φ stamps to obtain $(k+1)\varphi$ postage: $k-7+4+4=k+1\varphi$.

Case 2: Suppose no 7 \diamondsuit stamp was used to form $k\diamondsuit$ postage. So only $4\diamondsuit$ stamps were used, implying k is a multiple of 4. Since $k \ge 18$, it follows that $k \ge 20$ (the smallest multiple of 4 greater than 18). So at least five $4\diamondsuit$ stamps were used. Replace five $4\diamondsuit$ stamps with three $7\diamondsuit$ stamps to get $(k+1)\diamondsuit$, since $k-5\times 4+3\times 7=k+1$.

b) Base case:

$$18\dot{\varphi} = 7\dot{\varphi} + 7\dot{\varphi} + 4\dot{\varphi}$$

$$19\dot{\varphi} = 7\dot{\varphi} + 4\dot{\varphi} + 4\dot{\varphi} + 4\dot{\varphi}$$

$$20\dot{\varphi} = 4\dot{\varphi} + 4\dot{\varphi} + 4\dot{\varphi} + 4\dot{\varphi} + 4\dot{\varphi}$$

$$21\dot{\varphi}s = 7\dot{\varphi} + 7\dot{\varphi} + 7\dot{\varphi}$$

Induction step: Let $k \ge 21$, we assume that for all l where $18 \le l \le k$, postage of $l \diamondsuit can be formed using <math>4 \diamondsuit can be formed using 4.$

We prove that (k+1)¢ postage can be formed.

Since $k \ge 21$, therefore $k - 3 \ge 18$, so (k - 3)¢ postage is possible (by IH).

Add a 4¢ stamp to (k-3)¢ postage to form (k+1)¢ postage, since (k-3)+4=k+1.

6. Jonathan 6 pts

Base Case: Let n = 1.

The left hand side of the equality becomes $\overline{\left(\bigcap_{i=1}^{1} A_i\right)} = \overline{A_1}$.

The right hand side of the equality becomes $\bigcup_{i=1}^{1} \overline{A_i} = \overline{A_1}$.

The equality for the base case holds.

Induction Step: Assume $\overline{\left(\bigcap_{i=1}^k A_i\right)} = \bigcup_{i=1}^k \overline{A_i}$ is true for $k \in \mathbb{Z}^+$ (Induction Hypothesis).

Prove
$$\overline{\left(\bigcap_{i=1}^{k+1} A_i\right)} = \bigcup_{i=1}^{k+1} \overline{A_i}$$

$$\overline{\binom{k+1}{i-1}A_i} = \overline{\binom{k}{i-1}A_i \cap A_{k+1}} \qquad \text{pull } k+1 \text{ term out of } \cap \\
= \overline{\binom{k}{i-1}A_i} \cup \overline{A_{k+1}} \qquad \text{DeMorgan's of two sets} \\
= \bigcup_{i=1}^k \overline{A_i} \cup \overline{A_{k+1}} \qquad \text{by IH} \\
= \bigcup_{i=1}^{k+1} \overline{A_i} \qquad \text{combine terms}$$