Veriopt Theories

$March\ 23,\ 2023$

Contents

1	Can	onicalization Optimizations	1
	1.1	AbsNode Phase	3
	1.2	AddNode Phase	8
	1.3	AndNode Phase	11
	1.4	BinaryNode Phase	16
	1.5	ConditionalNode Phase	16
	1.6	MulNode Phase	20
	1.7	Experimental AndNode Phase	30
	1.8	NotNode Phase	41
	1.9	OrNode Phase	42
	1.10	ShiftNode Phase	46
	1.11	SignedDivNode Phase	47
	1.12	SignedRemNode Phase	48
	1.13	SubNode Phase	48
	1.14	XorNode Phase	53
	1.15	NegateNode Phase	55
	1.16	AddNode	58
		NegateNode	59
1	Ca	anonicalization Optimizations	
$ \begin{array}{c} \textbf{theory} \ \textit{Common} \\ \textbf{imports} \\ \textit{OptimizationDSL.Canonicalization} \\ \textit{Semantics.IRTreeEvalThms} \end{array} $			
be	gin		
lemma size-pos[size-simps]: 0 < size y apply (induction y; auto?) by (smt (z3) add-2-eq-Suc' add-is-0 not-gr0 size.elims size.simps(12) size.simps(13) size.simps(14) size.simps(15) zero-neq-numeral zero-neq-one)			

```
lemma size-non-add[size-simps]: size (BinaryExpr op a b) = size a + size b + 2
\longleftrightarrow \neg (is\text{-}ConstantExpr\ b)
 by (induction b; induction op; auto simp: is-ConstantExpr-def)
lemma \ size-non-const[size-simps]:
  \neg is\text{-}ConstantExpr y \Longrightarrow 1 < size y
 using size-pos apply (induction y; auto)
 by (metis Suc-lessI add-is-1 is-ConstantExpr-def le-less linorder-not-le n-not-Suc-n
numeral-2-eq-2 pos2 size.simps(2) size-non-add)
lemma \ size-binary-const[size-simps]:
  size\ (BinaryExpr\ op\ a\ b) = size\ a + 2 \longleftrightarrow (is-ConstantExpr\ b)
 by (induction b; auto simp: is-ConstantExpr-def size-pos)
lemma size-flip-binary[size-simps]:
   \neg (is\text{-}ConstantExpr\ y) \longrightarrow size\ (BinaryExpr\ op\ (ConstantExpr\ x)\ y) > size
(BinaryExpr\ op\ y\ (ConstantExpr\ x))
 by (metis add-Suc not-less-eq order-less-asym plus-1-eq-Suc size.simps(11) size.simps(2)
size-non-add)
lemma size-binary-lhs-a[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ a
 by (metis add-lessD1 less-add-same-cancel1 pos2 size-binary-const size-non-add)
lemma size-binary-lhs-b[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ b
 by (metis IRExpr.disc(42) One-nat-def add.left-commute add.right-neutral is-ConstantExpr-def
less-add-Suc2 numeral-2-eq-2 plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
size-non-const trans-less-add1)
lemma size-binary-lhs-c[size-simps]:
 size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ c
 \textbf{by} \ (\textit{metis IRExpr.disc} (42) \ \textit{add.left-commute add.right-neutral is-ConstantExpr-def}
less-Suc-eq\ numeral-2-eq-2\ plus-1-eq-Suc\ size.simps (11)\ size-non-add\ size-non-const
trans-less-add2)
lemma size-binary-rhs-a[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ a
 by (smt (verit, best) less-Suc-eq less-add-Suc2 less-add-same-cancel1 linorder-neqE-nat
not-add-less1 order-less-trans pos2 size.simps(4) size-binary-const size-non-add)
lemma size-binary-rhs-b[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ b
 \mathbf{by}\ (\textit{metis add.left-commute add.right-neutral is-ConstantExpr-def lessI\ numeral-2-eq-2})
plus-1-eq-Suc\ size.simps(11)\ size.simps(4)\ size-non-add\ trans-less-add2)
lemma size-binary-rhs-c[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ c
```

```
by simp
lemma \ size-binary-lhs[size-simps]:
  size (BinaryExpr op x y) > size x
  by (metis One-nat-def Suc-eq-plus1 add-Suc-right less-add-Suc1 numeral-2-eq-2
size-binary-const size-non-add)
lemma size-binary-rhs[size-simps]:
  size (BinaryExpr op x y) > size y
 by (metis\ IRExpr.disc(42)\ add\text{-}strict\text{-}increasing\ is\text{-}ConstantExpr\text{-}def\ linorder\text{-}not\text{-}le
not-add-less1 size.simps(11) size-non-add size-non-const size-pos)
\mathbf{lemmas} \ arith[\mathit{size-simps}] = \mathit{Suc-leI} \ add\text{-}\mathit{strict-increasing} \ order\text{-}\mathit{less-trans} \ trans\text{-}\mathit{less-add2}
definition well-formed-equal :: Value \Rightarrow Value \Rightarrow bool
  (infix \approx 50) where
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
lemma well-formed-equal-defn [simp]:
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
 unfolding well-formed-equal-def by simp
end
        AbsNode Phase
1.1
theory AbsPhase
 imports
    Common
begin
phase AbsNode
 terminating size
begin
lemma abs-pos:
 fixes v :: ('a :: len word)
 assumes 0 \le s v
 shows (if v < s \ 0 \ then - v \ else \ v) = v
 by (simp add: assms signed.leD)
lemma abs-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 assumes -(2 \hat{\ } (Nat.size \ v - 1)) < s \ v
```

shows (if $v < s \ \theta$ then -v else v) = $-v \land \theta < s -v$

```
by (smt\ (verit,\ ccfv\text{-}SIG)\ assms(1)\ assms(2)\ signed-take-bit-int-greater-eq-minus-exp
    signed-take-bit-int-greater-eq-self-iff\ sint-0\ sint-word-ariths (4)\ word-sless-alt)
lemma abs-max-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 \mathbf{assumes} - (2 \ \widehat{} \ (\mathit{Nat.size} \ v - 1)) = v
 shows -v = v
 using assms
 by (metis One-nat-def add.inverse-neutral double-eq-zero-iff mult-minus-right size-word.rep-eq)
lemma final-abs:
 fixes v :: ('a :: len word)
 assumes take-bit (Nat.size v) v = v
 \mathbf{assumes} - (2 \ \widehat{} \ (Nat.size \ v - 1)) \neq v
 shows 0 \le s (if v < s \ 0 then -v else v)
proof (cases v < s \theta)
 case True
  then show ?thesis
 proof (cases\ v = -(2 \cap (Nat.size\ v - 1)))
   case True
   then show ?thesis using abs-max-neg
     using assms by presburger
 \mathbf{next}
   case False
   then have -(2 \cap (Nat.size\ v-1)) < s\ v
     unfolding word-sless-def using signed-take-bit-int-greater-self-iff
       by (smt (verit, best) One-nat-def diff-less double-eq-zero-iff len-gt-0 lessI
less-irrefl
        mult-minus-right neg-equal-0-iff-equal signed.rep-eq signed-of-int
        signed-take-bit-int-greater-eq-self-iff\ signed-word-eqI\ sint-0\ sint-range-size
       sint-sbintrunc' sint-word-ariths(4) size-word.rep-eq unsigned-0 word-2p-lem
        word-sless.rep-eq word-sless-def)
   then show ?thesis
     using abs-neg abs-pos signed.nless-le by auto
 qed
next
 case False
  then show ?thesis using abs-pos by auto
qed
lemma wf-abs: is-IntVal x \Longrightarrow intval-abs x \ne UndefVal
 using intval-abs.simps unfolding new-int.simps
 using is-IntVal-def by force
```

```
fun bin-abs :: 'a :: len word <math>\Rightarrow 'a :: len word where
  bin-abs\ v = (if\ (v < s\ 0)\ then\ (-\ v)\ else\ v)
lemma val-abs-zero:
  intval-abs (new-int b \theta) = new-int b \theta
 by simp
lemma less-eq-zero:
 assumes val-to-bool (val[(IntVal\ b\ 0) < (IntVal\ b\ v)])
 shows int-signed-value b \ v > 0
 using assms unfolding intval-less-than.simps(1) apply simp
 by (metis\ bool-to-val.elims\ val-to-bool.simps(1))
lemma val-abs-pos:
 assumes val-to-bool(val[(new-int b \ \theta) < (new-int b \ v)])
 shows intval-abs (new-int b v) = (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-abs-neg:
  assumes val-to-bool(val[(new\text{-}int\ b\ v) < (new\text{-}int\ b\ 0)])
 shows intval-abs (new-int b v) = intval-negate (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-bool-unwrap:
  val-to-bool (bool-to-val v) = v
 by (metis\ bool-to-val.elims\ one-neq-zero\ val-to-bool.simps(1))
lemma take-bit-unwrap:
  b = 64 \implies take-bit\ b\ (v1::64\ word) = v1
 by (metis size64 size-word.rep-eq take-bit-length-eq)
lemma bit-less-eq-def:
 fixes v1 v2 :: 64 word
 assumes b \leq 64
 shows sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v1))
   < sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v2)) \longleftrightarrow
    signed-take-bit \ (63::nat) \ (Word.rep \ v1) < signed-take-bit \ (63::nat) \ (Word.rep
v2)
 using assms sorry
lemma less-eq-def:
 shows val-to-bool(val[(new\text{-}int\ b\ v1) < (new\text{-}int\ b\ v2)]) \longleftrightarrow v1 < s\ v2
 unfolding new-int.simps intval-less-than.simps bool-to-val-bin.simps bool-to-val.simps
```

```
int\mbox{-}signed\mbox{-}value.simps
 apply (simp add: val-bool-unwrap) apply auto[1]
  unfolding word-sless-def apply auto[1]
 unfolding signed-def apply auto[1] apply auto[2]
  using bit-less-eq-def apply (metis bot-nat-0.extremum take-bit-0)
 by (metis bit-less-eq-def bot-nat-0.extremum take-bit-0)
lemma val-abs-always-pos:
 assumes intval-abs (new-int b v) = (new-int b v')
 shows 0 \le s v'
 using assms
proof (cases v = \theta)
 case True
 then have v' = \theta
   using val-abs-zero assms
    \mathbf{by} \ (\mathit{smt} \ (\mathit{verit}, \ \mathit{ccfv-threshold}) \ \mathit{Suc-diff-1} \ \mathit{bit-less-eq-def} \ \mathit{bot-nat-0.extremum}
diff-is-0-eq
       len-gt-0 len-of-numeral-defs(2) order-le-less signed-eq-0-iff take-bit-0
       take-bit-signed-take-bit take-bit-unwrap)
  then show ?thesis by simp
next
  case neq\theta: False
  then show ?thesis
  proof (cases\ val\ to\ bool(val[(new\ int\ b\ 0)<(new\ int\ b\ v)]))
   \mathbf{case} \ \mathit{True}
   then show ?thesis using less-eq-def
     using assms val-abs-pos
     by (smt (verit, ccfv-SIG) One-nat-def Suc-leI bit.compl-one bit-less-eq-def
      cancel-comm-monoid-add-class. diff-cancel diff-zero len-gt-0 len-of-numeral-defs(2)
      mask-0\ mask-1\ one-le-numeral\ one-neq-zero\ signed-word-eqI\ take-bit-dist-subL
       take-bit-minus-one-eq-mask\ take-bit-not-eq-mask-diff\ take-bit-signed-take-bit
         zero-le-numeral)
 next
   {\bf case}\ \mathit{False}
   then have val-to-bool(val[(new-int b \ v) < (new-int b \ 0)])
     using neq0 less-eq-def
     by (metis\ signed.neqE)
    then show ?thesis using val-abs-neg less-eq-def unfolding new-int.simps
intval-negate.simps
     by (metis signed.nless-le take-bit-0)
 qed
qed
```

```
lemma intval-abs-elims:
 assumes intval-abs x \neq UndefVal
 shows \exists t \ v \ . \ x = IntVal \ t \ v \land intval-abs \ x = new-int \ t \ (if int-signed-value \ t \ v <
0 then - v else v
 using assms
 by (meson intval-abs.elims)
lemma wf-abs-new-int:
 assumes intval-abs (IntVal\ t\ v) \neq UndefVal
 shows intval-abs (IntVal\ t\ v) = new-int\ t\ v\ \lor\ intval-abs\ (IntVal\ t\ v) = new-int
t(-v)
 using assms
 using intval-abs.simps(1) by presburger
lemma mono-undef-abs:
 assumes intval-abs (intval-abs x) \neq UndefVal
 shows intval-abs x \neq UndefVal
 using assms
 by force
lemma val-abs-idem:
 assumes intval-abs(intval-abs(x)) \neq UndefVal
 shows intval-abs(intval-abs(x)) = intval-abs(x)
 using assms
proof -
 obtain b v where in-def: intval-abs x = new-int b v
   using assms intval-abs-elims mono-undef-abs by blast
 then show ?thesis
 proof (cases\ val\ to\ bool(val[(new\ int\ b\ v)<(new\ int\ b\ 0)]))
   case True
   then have nested: (intval-abs\ (intval-abs\ x)) = new-int\ b\ (-v)
     using \ val-abs-neg \ intval-negate.simps \ in-def
     by simp
   then have x = new-int b(-v)
     using in-def True unfolding new-int.simps
   by (smt\ (verit,\ best)\ intval-abs.simps(1)\ less-eq-def\ less-eq-zero\ less-numeral-extra(1)
      mask-1 mask-eq-take-bit-minus-one neg-one elims neg-one-signed new-int.simps
            one-le-numeral \ one-neq-zero \ signed.neqE \ signed.not-less \ take-bit-of-0
val-abs-always-pos)
   then show ?thesis using val-abs-always-pos
     using True in-def less-eq-def signed.leD
     using signed.nless-le by blast
 next
   case False
   then show ?thesis
     using in-def by force
```

```
qed
qed
lemma val-abs-negate:
 assumes intval-abs (intval-negate x) \neq UndefVal
 shows intval-abs (intval-negate x) = intval-abs x
 using assms apply (cases x; auto)
  apply (metis less-eq-def new-int.simps signed.dual-order.strict-iff-not signed.less-linear
        take-bit-0)
 by (smt (verit, ccfv-threshold) add.inverse-neutral intval-abs.simps(1) less-eq-def
less-eq-zero
   less-numeral-extra(1)\ mask-1\ mask-eq-take-bit-minus-one\ neg-one.elims\ neg-one-signed
   new\text{-}int.simps\ one\text{-}le\text{-}numeral\ one\text{-}neq\text{-}zero\ signed.order.order\text{-}iff\text{-}strict\ take\text{-}bit\text{-}of\text{-}O
     val-abs-always-pos)
Optimisations
optimization AbsIdempotence: abs(abs(x)) \longmapsto abs(x)
  apply auto[1]
 by (metis UnaryExpr unary-eval.simps(1) val-abs-idem)
optimization AbsNegate: (abs(-x)) \longmapsto abs(x)
   apply auto[1] using val-abs-negate
 by (metis\ unary-eval.simps(1)\ unfold-unary)
end
end
       AddNode Phase
1.2
theory AddPhase
 imports
   Common
begin
phase AddNode
 terminating size
begin
\mathbf{lemma}\ \mathit{binadd\text{-}commute} :
 assumes bin-eval\ BinAdd\ x\ y \neq UndefVal
 shows bin-eval BinAdd x y = bin-eval BinAdd y x
 using assms intval-add-sym by simp
```

```
optimization AddShiftConstantRight: ((const v) + y) \longmapsto y + (const v) when
\neg (is\text{-}ConstantExpr\ y)
 using size-non-const
 apply (metis add-2-eq-Suc' less-Suc-eq plus-1-eq-Suc size.simps(11) size-non-add)
 unfolding le-expr-def
 apply (rule impI)
 subgoal premises 1
   apply (rule \ all I \ imp I) +
   subgoal premises 2 for m p va
     apply (rule BinaryExprE[OF 2])
     subgoal premises 3 for x ya
      apply (rule BinaryExpr)
      using 3 apply simp
      using 3 apply simp
      using 3 binadd-commute apply auto
      done
    done
   done
 done
optimization AddShiftConstantRight2: ((const\ v) + y) \longmapsto y + (const\ v) when
\neg (is\text{-}ConstantExpr\ y)
 unfolding le-expr-def
  apply (auto simp: intval-add-sym)
 using size-non-const
 by (metis add-2-eq-Suc' lessI plus-1-eq-Suc size.simps(11) size-non-add)
lemma is-neutral-0 [simp]:
 assumes 1: intval-add (IntVal\ b\ x)\ (IntVal\ b\ 0) \neq UndefVal
 shows intval-add (IntVal b x) (IntVal b 0) = (new-int b x)
 using 1 by auto
optimization AddNeutral: (e + (const (IntVal 32 0))) \mapsto e
 unfolding le-expr-def apply auto
 using is-neutral-0 eval-unused-bits-zero
 by (smt (verit) add-cancel-left-right intval-add.elims val-to-bool.simps(1))
ML-val \langle @\{term \langle x = y \rangle \} \rangle
\mathbf{lemma}\ \mathit{NeutralLeftSubVal} :
 assumes e1 = new-int b ival
```

```
shows val[(e1 - e2) + e2] \approx e1
 apply simp using assms by (cases e1; cases e2; auto)
optimization RedundantSubAdd: ((e_1 - e_2) + e_2) \longmapsto e_1
 apply auto using eval-unused-bits-zero NeutralLeftSubVal
 unfolding well-formed-equal-defn
 by (smt (verit) evalDet intval-sub.elims new-int.elims)
lemma allE2: (\forall x \ y. \ P \ x \ y) \Longrightarrow (P \ a \ b \Longrightarrow R) \Longrightarrow R
 by simp
\mathbf{lemma}\ \mathit{just-goal2}\colon
 assumes 1: (\forall a \ b. \ (intval\text{-}add \ (intval\text{-}sub \ a \ b) \ b \neq UndefVal \ \land \ a \neq UndefVal)
   intval-add (intval-sub a b) b=a))
 shows (BinaryExpr BinAdd (BinaryExpr BinSub e_1 e_2) e_2) \geq e_1
 unfolding le-expr-def unfold-binary bin-eval.simps
 by (metis 1 evalDet evaltree-not-undef)
optimization RedundantSubAdd2: e_2 + (e_1 - e_2) \longmapsto e_1
 apply (metis add.commute add-less-cancel-right less-add-Suc2 plus-1-eq-Suc size-binary-const
size-non-add trans-less-add2)
  by (smt (verit, del-insts) BinaryExpr BinaryExprE RedundantSubAdd(1) bi-
nadd-commute le-expr-def rewrite-preservation.simps(1))
{f lemma}\ Add To Sub Helper Low Level:
 shows intval-add (intval-negate e) y = intval-sub y \in (is ?x = ?y)
 by (induction y; induction e; auto)
print-phases
```

lemma val-redundant-add-sub: assumes a = new-int bb ivalassumes $val[b + a] \neq UndefVal$ shows val[(b + a) - b] = a

```
using assms apply (cases a; cases b; auto)
 by presburger
\mathbf{lemma}\ val\text{-}add\text{-}right\text{-}negate\text{-}to\text{-}sub:
 assumes val[x + e] \neq UndefVal
 shows val[x + (-e)] = val[x - e]
 using assms by (cases x; cases e; auto)
\mathbf{lemma}\ \textit{exp-add-left-negate-to-sub:}
 exp[-e + y] \ge exp[y - e]
 apply (cases e; cases y; auto)
 using AddToSubHelperLowLevel by auto+
Optimisations
optimization RedundantAddSub: (b + a) - b \mapsto a
  apply auto
 by (smt (verit) evalDet intval-add.elims new-int.elims val-redundant-add-sub
     eval-unused-bits-zero)
optimization AddRightNegateToSub: x + -e \longmapsto x - e
 apply (metis Nat.add-0-right add-2-eq-Suc' add-less-mono1 add-mono-thms-linordered-field(2)
        less-SucI not-less-less-Suc-eq size-binary-const size-non-add size-pos)
  using AddToSubHelperLowLevel intval-add-sym by auto
optimization AddLeftNegateToSub: -e + y \longmapsto y - e
 apply (smt (verit, best) One-nat-def add.commute add-Suc-right is-ConstantExpr-def
less-add-Suc2
       numeral-2-eq-2 plus-1-eq-Suc size.simps(1) size.simps(11) size-binary-const
size-non-add)
 using exp-add-left-negate-to-sub by blast
end
end
       AndNode Phase
1.3
theory AndPhase
```

 $\begin{array}{c} \mathbf{imports} \\ \textit{Common} \end{array}$

begin

Proofs. Stamp Eval Thms

```
context stamp-mask
begin
lemma And Right Fall through: (((and (not (\downarrow x)) (\uparrow y)) = \theta)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     by (metis BinaryExprE bin-eval.simps(\mathcal{L}) evalDet p(2) xv yv)
   then have v = yv
   by (smt (verit) eval-unused-bits-zero intval-and.elims new-int.elims new-int-bin.elims
        unfold-binary xv yv p(1) not-down-up-mask-and-zero-implies-zero)
   then show ?thesis using yv by simp
 \mathbf{qed}
 done
lemma AndLeftFallthrough: (((and (not (\downarrow y)) (\uparrow x)) = 0)) \longrightarrow exp[x \& y] \ge
exp[x]
 apply simp apply (rule impI; (rule allI)+)
 apply (rule \ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     by (metis BinaryExprE\ bin-eval.simps(4)\ evalDet\ p(2)\ xv\ yv)
   then have v = xv
   by (smt (verit) and commute eval-unused-bits-zero intval-and elims new-int.simps
      new-int-bin.simps\ p(2)\ unfold-binary\ xv\ yv\ p(1)\ not-down-up-mask-and-zero-implies-zero)
   then show ?thesis using xv by simp
 qed
 done
end
\mathbf{phase}\ \mathit{AndNode}
 terminating size
begin
```

```
{f lemma}\ bin-and-nots:
 (^{\sim}x \& ^{\sim}y) = (^{\sim}(x \mid y))
 by simp
\mathbf{lemma}\ \mathit{bin-and-neutral} :
 (x \& ^{\sim}False) = x
  by simp
{f lemma}\ val	ext{-} and	ext{-} equal:
  assumes x = new\text{-}int b v
            val[x \& x] \neq UndefVal
  shows val[x \& x] = x
  using assms by (cases x; auto)
\mathbf{lemma}\ val\text{-}and\text{-}nots:
  val[^{\sim}x \& ^{\sim}y] = val[^{\sim}(x \mid y)]
  apply (cases x; cases y; auto) by (simp add: take-bit-not-take-bit)
{f lemma}\ val\mbox{-} and\mbox{-} neutral:
  assumes x = new\text{-}int \ b \ v
  \begin{array}{ll} \mathbf{and} & val[x \ \& \ ^{\sim}(new\text{-}int \ b' \ \theta)] \neq \ UndefVal \\ \mathbf{shows} & val[x \ \& \ ^{\sim}(new\text{-}int \ b' \ \theta)] = x \end{array}
   using assms apply (cases x; auto) apply (simp add: take-bit-eq-mask)
  by presburger
lemma val-and-zero:
  assumes x = new\text{-}int \ b \ v
  shows val[x \& (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  using assms by (cases x; auto)
lemma exp-and-equal:
  \exp[x\ \&\ x] \,\geq\, \exp[x]
  apply auto
 by (smt (verit) evalDet intval-and elims new-int elims val-and-equal eval-unused-bits-zero)
lemma exp-and-nots:
  exp[^{\sim}x \& ^{\sim}y] \ge exp[^{\sim}(x \mid y)]
  apply (cases x; cases y; auto) using val-and-nots
  \mathbf{by}\ fastforce +
lemma exp-sign-extend:
  assumes e = (1 \ll In) - 1
```

```
BinaryExpr\ BinAnd\ (UnaryExpr\ (UnarySignExtend\ In\ Out)\ x)
                        (ConstantExpr\ (new\mbox{-}int\ b\ e))
                      \geq (UnaryExpr (UnaryZeroExtend In Out) x)
 apply auto
 subgoal premises p for m p va
   proof -
     obtain va where va: [m,p] \vdash x \mapsto va
       using p(2) by auto
     then have va \neq UndefVal
      by (simp add: evaltree-not-undef)
     then have 1: intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b
(e)) \neq UndefVal
      using evalDet p(1) p(2) va by blast
     then have 2: intval-sign-extend In Out va \neq UndefVal
      by auto
     then have 21:(0::nat) < b
      using eval-bits-1-64 p(4) by blast
     then have 3: b \sqsubseteq (64::nat)
      using eval-bits-1-64 p(4) by blast
     then have 4: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat) (take-bit\ b\ e)
    by (simp add: 21 int-power-div-base signed-take-bit-int-greater-eq-minus-exp-word)
    then have 5: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) < (2::int)
^ b div (2::int)
    by (simp add: 21 3 Suc-le-lessD int-power-div-base signed-take-bit-int-less-exp-word)
     then have 6: [m,p] \vdash UnaryExpr (UnaryZeroExtend In Out)
             x \mapsto intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b e))
      apply (cases va; simp)
      apply (simp\ add: \langle (va::Value) \neq UndefVal \rangle) defer
       subgoal premises p for x3
        proof -
          have va = ObjRef x3
           using p(1) by auto
           then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) \cap b \ div \ (2::int)
           by (simp add: 5)
          then show ?thesis
           using 2 intval-sign-extend.simps(3) p(1) by blast
        qed
       subgoal premises p for x4
        proof -
          have sg1: va = ObjStr x4
           using 2 p(1) by auto
           then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
          then show ?thesis
           using 1 sq1 by auto
```

```
qed
```

```
subgoal premises p for x21 x22
          proof -
            have sgg1: va = IntVal \ x21 \ x22
             by (simp\ add:\ p(1))
           then have sgg2: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e))
< (2::int) \hat{} b div (2::int)
             by (simp add: 5)
            then show ?thesis
             sorry
            qed
          done
     then show ?thesis
      by (metis evalDet p(2) va)
   qed
 done
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ word-bw-comms(1))
Optimisations
optimization And Equal: x \& x \longmapsto x
 using exp-and-equal by blast
optimization And Shift Constant Right: ((const\ x)\ \&\ y) \longmapsto y\ \&\ (const\ x)
                                   when \neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary by auto
optimization And Nots: (^{\sim}x) \& (^{\sim}y) \longmapsto ^{\sim}(x \mid y)
  {\bf apply} \ (\textit{metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const.}
size-non-add)
 using exp-and-nots by auto
optimization AndSignExtend: BinaryExpr BinAnd (UnaryExpr (UnarySignExtend
In Out)(x)
                                        (const\ (new\text{-}int\ b\ e))
                          \longmapsto (UnaryExpr\ (UnaryZeroExtend\ In\ Out)\ (x))
                             when (e = (1 << In) - 1)
  using exp-sign-extend by simp
```

```
optimization And Neutral: (x \& {}^{\sim}(const (Int Val \ b \ 0))) \longmapsto x
  when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  apply auto
 by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-and.elims intval-word.simps
     new\text{-}int.simps\ new\text{-}int\text{-}bin.simps\ take\text{-}bit\text{-}eq\text{-}mask)
optimization And Right Fall Through: (x \& y) \longmapsto y
                         when (((and (not (IRExpr-down x)) (IRExpr-up y)) = 0))
 by (simp add: IRExpr-down-def IRExpr-up-def)
optimization AndLeftFallThrough: (x \& y) \longmapsto x
                         when (((and (not (IRExpr-down y)) (IRExpr-up x)) = 0))
  by (simp add: IRExpr-down-def IRExpr-up-def)
end
end
1.4
       BinaryNode Phase
theory BinaryNode
 imports
   Common
begin
{f phase} BinaryNode
 terminating size
begin
optimization BinaryFoldConstant: BinaryExpr op (const v1) (const v2) \longmapsto Con-
stantExpr (bin-eval op v1 v2)
 \mathbf{unfolding}\ \mathit{le-expr-def}
 apply (rule \ all I \ imp I) +
 subgoal premises bin for m p v
   print-facts
   apply (rule BinaryExprE[OF bin])
   subgoal premises prems for x y
     print-facts
   proof -
     have x: x = v1 using prems by auto
     have y: y = v2 using prems by auto
     have xy: v = bin\text{-}eval op x y using prems x y by <math>simp
     have int: \exists b vv \cdot v = new-int b vv using bin-eval-new-int prems by fast
```

```
show ?thesis
       unfolding prems \ x \ y \ xy
       apply (rule ConstantExpr)
       using prems x y xy int sorry
     qed
   done
 done
print-facts
\mathbf{end}
end
        ConditionalNode Phase
1.5
{\bf theory}\ {\it Conditional Phase}
 imports
    Common
    Proofs. Stamp Eval Thms
begin
{f phase} ConditionalNode
 terminating size
begin
lemma negates: \exists v \ b. \ e = IntVal \ b \ v \land b > 0 \implies val-to-bool \ (val[e]) \longleftrightarrow
\neg(val\text{-}to\text{-}bool\ (val[!e]))
 unfolding intval-logic-negation.simps
 by (metis (mono-tags, lifting) intval-logic-negation.simps(1) logic-negate-def new-int.simps
of-bool-eq(2) one-neq-zero take-bit-of-0 take-bit-of-1 val-to-bool.simps(1))
lemma negation-condition-intval:
 assumes e = IntVal \ b \ ie
 assumes \theta < b
 shows val[(!e) ? x : y] = val[e ? y : x]
 using assms by (cases e; auto simp: negates logic-negate-def)
{f lemma} negation\text{-}preserve\text{-}eval:
 assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v'. ([m, p] \vdash exp[e] \mapsto v') \land v = val[!v']
 using assms by auto
lemma negation-preserve-eval-intval:
 assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v' \ b \ vv. \ ([m, p] \vdash exp[e] \mapsto v') \land v' = IntVal \ b \ vv \land b > 0
 using assms
 by (metis eval-bits-1-64 intval-logic-negation.elims negation-preserve-eval unfold-unary)
```

```
optimization NegateConditionFlipBranches: ((!e) ? x : y) \mapsto (e ? y : x)
 {\bf apply} \ simp \ {\bf using} \ negation-condition-intval \ negation-preserve-eval-intval
 by (smt (verit, best) ConditionalExpr ConditionalExprE Value.distinct(1) evalDet
negates negation-preserve-eval)
optimization DefaultTrueBranch: (true ? x : y) \mapsto x.
optimization DefaultFalseBranch: (false ? x : y) \longmapsto y.
optimization Conditional Equal Branches: (e ? x : x) \mapsto x.
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
 using stamp-under-defn by fastforce
optimization condition-bounds-y: ((u < v) ? x : y) \longmapsto y
   when (stamp-under\ (stamp-expr\ v)\ (stamp-expr\ u) \land wf-stamp\ u \land wf-stamp\ v)
 using stamp-under-defn-inverse by fastforce
lemma val-optimise-integer-test:
 assumes \exists v. x = IntVal \ 32 \ v
 shows val[((x \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0) : (IntVal 32 0)]
1)] =
       val[x \& IntVal 32 1]
 using assms apply auto
 apply (metis (full-types) bool-to-val.simps(2) val-to-bool.simps(1))
 by (metis (mono-tags, lifting) and-one-eq bool-to-val.simps(1) even-iff-mod-2-eq-zero
odd-iff-mod-2-eq-one val-to-bool.simps(1))
optimization ConditionalEliminateKnownLess: ((x < y) ? x : y) \mapsto x
                            when (stamp-under\ (stamp-expr\ x)\ (stamp-expr\ y)
                                \land wf-stamp x \land wf-stamp y)
   using stamp-under-defn by fastforce
optimization Conditional Equal Is RHS: ((x eq y) ? x : y) \mapsto y
 apply auto
 by (smt\ (verit)\ Value.inject(1)\ bool-to-val.simps(2)\ bool-to-val-bin.simps\ evalDet
     intval-equals. elims\ val-to-bool. elims(1))
optimization normalizeX: ((x eq const (IntVal 32 0)) ?
                           (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                          when (IRExpr-up \ x = 1) \land stamp-expr \ x = IntegerStamp
b 0 1
```

```
apply auto
 subgoal premises p for m p v xa
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
       using p by blast
    have 3: [m,p] \vdash if val-to-bool (intval-equals xa (IntVal (32::nat) (0::64 word)))
               then ConstantExpr (IntVal (32::nat) (0::64 word))
                else ConstantExpr (IntVal (32::nat) (1::64 word)) \mapsto v
       using evalDet p(3) p(5) xa
        using p(4) p(6) by blast
      then have 4: xa = IntVal \ 32 \ 0 \mid xa = IntVal \ 32 \ 1
      then have \theta: v = xa
       sorry
     then show ?thesis
       using xa by auto
   \mathbf{qed}
 done
optimization normalizeX2: ((x eq (const (IntVal 32 1))) ?
                             (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto x
                                    when (x = ConstantExpr (IntVal 32 0) | (x =
ConstantExpr (IntVal 32 1))) .
optimization flipX: ((x \ eq \ (const \ (IntVal \ 32 \ 0))) \ ?
                        (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr(IntVal 32 0) | (x = ConstantExpr)
(Int Val \ 32 \ 1))).
optimization flip X2: ((x \ eq \ (const \ (Int Val \ 32 \ 1))) \ ?
                        (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
lemma stamp-of-default:
 assumes stamp-expr \ x = default-stamp
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv. \ v = IntVal \ 32 \ vv)
 using assms
 by (metis default-stamp valid-value-elims(3) wf-stamp-def)
optimization OptimiseIntegerTest:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
     (const\ (Int Val\ 32\ 0)): (const\ (Int Val\ 32\ 1))) \longmapsto
```

```
x \& (const (IntVal 32 1))
              when (stamp-expr \ x = default-stamp \land wf-stamp \ x)
   apply simp apply (rule impI; (rule allI)+; rule impI)
    subgoal premises eval for m p v
proof -
    obtain xv where xv: [m, p] \vdash x \mapsto xv
        using eval by fast
    then have x32: \exists v. xv = IntVal 32 v
        using stamp-of-default eval by auto
   obtain lhs where lhs: [m, p] \vdash exp[(((x \& (const (Int Val 32 1))) eq (const (Int Val 32 1)))]
32 0))) ?
            (const\ (Int Val\ 32\ 0)): (const\ (Int Val\ 32\ 1)))] \mapsto lhs
        using eval(2) by auto
   then have lhsV: lhs = val[((xv & (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32
0): (Int Val \ 32 \ 1)]
        using xv evaltree. Binary Expr evaltree. Constant Expr evaltree. Conditional Expr
     by (smt (verit) ConditionalExprE ConstantExprE bin-eval.simps(11) bin-eval.simps(4)
evalDet intval-conditional.simps unfold-binary)
    obtain rhs where rhs: [m, p] \vdash exp[x \& (const (Int Val 32 1))] \mapsto rhs
        using eval(2) by blast
    then have rhsV: rhs = val[xv \& IntVal 32 1]
        by (metis BinaryExprE ConstantExprE bin-eval.simps(4) evalDet xv)
    have lhs = rhs using val-optimise-integer-test x32
        using lhsV rhsV by presburger
    then show ?thesis
        by (metis eval(2) evalDet lhs rhs)
qed
    done
optimization opt-optimise-integer-test-2:
          (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
                                      (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                                  when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = Consta
32 1))).
```

end

end

1.6 MulNode Phase

```
theory MulPhase
 imports
    Common
    Proofs. Stamp Eval Thms
begin
fun mul-size :: IRExpr \Rightarrow nat where
 mul-size (UnaryExpr\ op\ e) = (mul-size e) + 2
 mul\text{-}size\ (BinaryExpr\ BinMul\ x\ y) = ((mul\text{-}size\ x) + (mul\text{-}size\ y) + 2) * 2
 mul\text{-}size\ (BinaryExpr\ op\ x\ y) = (mul\text{-}size\ x) + (mul\text{-}size\ y) + 2
 mul\text{-}size \ (ConditionalExpr \ cond \ t \ f) = (mul\text{-}size \ cond) + (mul\text{-}size \ t) + (mul\text{-}size \ t)
f) + 2 |
  mul-size (ConstantExpr\ c) = 1
  mul-size (ParameterExpr\ ind\ s) = 2
 mul-size (LeafExpr\ nid\ s) = 2
  mul-size (Constant Var c) = 2 |
 mul-size (VariableExpr x s) = 2
phase MulNode
 terminating mul-size
begin
{f lemma}\ bin-eliminate-redundant-negative:
 uminus\ (x:: 'a::len\ word) * uminus\ (y:: 'a::len\ word) = x * y
 by simp
{\bf lemma}\ bin\text{-}multiply\text{-}identity\text{:}
(x :: 'a :: len word) * 1 = x
 by simp
{\bf lemma}\ bin-multiply-eliminate:
(x :: 'a :: len word) * \theta = \theta
 by simp
lemma bin-multiply-negative:
(x :: 'a :: len \ word) * uminus 1 = uminus x
 by simp
\mathbf{lemma}\ \mathit{bin-multiply-power-2}\colon
(x:: 'a::len \ word) * (2^j) = x << j
 by simp
lemma take-bit64[simp]:
 fixes w :: int64
 shows take-bit 64 w = w
proof -
```

```
have Nat.size w = 64
   by (simp add: size64)
 then show ?thesis
  by (metis\ lt2p-lem\ mask-eq-iff\ take-bit-eq-mask\ verit-comp-simplify1(2)\ wsst-TYs(3))
\mathbf{qed}
lemma mergeTakeBit:
 fixes a :: nat
 fixes b c :: 64 word
 shows take-bit a (take-bit a (b) * take-bit a (c) =
        take-bit \ a \ (b * c)
by (smt (verit, ccfv-SIG) take-bit-mult take-bit-of-int unsigned-take-bit-eq word-mult-def)
\mathbf{lemma}\ \mathit{val-eliminate-redundant-negative} :
 assumes val[-x * -y] \neq UndefVal
 \mathbf{shows} \ val[-x * -y] = val[x * y]
 using assms apply (cases x; cases y; auto)
 using mergeTakeBit by auto
\mathbf{lemma}\ \mathit{val-multiply-neutral}\colon
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ 1)] = val[x]
 using assms by force
{\bf lemma}\ val\text{-}multiply\text{-}zero:
 assumes x = new\text{-}int b v
 shows val[x * (IntVal \ b \ \theta)] = IntVal \ b \ \theta
 using assms by simp
lemma val-multiply-negative:
 assumes x = new-int b v
 shows val[x * intval-negate (IntVal b 1)] = intval-negate x
 by (smt\ (verit)\ Value.disc(1)\ Value.inject(1)\ add.inverse-neutral\ intval-negate.simps(1)
      is-IntVal-def mask-0 mask-eq-take-bit-minus-one new-int.elims of-bool-eq(2)
take-bit-dist-neg
    take-bit-of-1\ val-eliminate-redundant-negative\ val-multiply-neutral\ val-multiply-zero
     verit-minus-simplify(4) zero-neq-one assms)
\mathbf{lemma}\ \mathit{val-MulPower2}\colon
 fixes i :: 64 word
 assumes y = IntVal\ 64\ (2 \cap unat(i))
 and \theta < i
```

```
i < 64
 and
 and
          val[x * y] \neq UndefVal
 shows val[x * y] = val[x << IntVal 64 i]
  using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
   proof -
     have 63: (63 :: int64) = mask 6
      by eval
     then have (2::int) \cap 6 = 64
      by eval
     then have uint \ i < (2::int) \ \widehat{\phantom{a}} 6
      by (metis linorder-not-less lt2p-lem of-int-numeral p(4) size64 word-2p-lem
word-of-int-2p
          wsst-TYs(3)
     then have and i \pmod{6} = i
      using mask-eq-iff by blast
     then show x2 \ll unat i = x2 \ll unat (and i (63::64 word))
      unfolding 63
      by force
   qed
   by presburger
lemma val-MulPower2Add1:
  fixes i :: 64 word
 \mathbf{assumes}\ y = \mathit{IntVal}\ 64\ ((2\ \widehat{\ }\mathit{unat}(i))\ +\ 1)
 and
          0 < i
 and
          i < 64
          val-to-bool(val[IntVal\ 64\ 0< x])
 and
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x \ll IntVal 64 i) + x]
  using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
  proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2::int) \hat{\phantom{a}} 6 = 64
     by eval
   then have and i \pmod{6} = i
     using mask\text{-}eq\text{-}iff by (simp\ add:\ less\text{-}mask\text{-}eq\ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{\ }unat\ i))\ +\ x2
     by (simp add: distrib-left)
   then show x2*((2::64 word) ^unat i + (1::64 word)) = x2 << unat (and i)
(63::64 \ word)) + x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   using val-to-bool.simps(2) by presburger
```

```
\mathbf{lemma}\ val\text{-} MulPower2Sub1:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) - 1)
 and
          0 < i
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0\ < x])
 and
          val-to-bool(val[IntVal\ 64\ 0< y])
 and
 shows val[x * y] = val[(x << IntVal 64 i) - x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2::int) \cap 6 = 64
     \mathbf{by} \ eval
   then have and i \pmod{6} = i
     using mask-eq-iff by (simp \ add: \ less-mask-eq \ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) - x2
     by (simp add: right-diff-distrib')
   then show x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = x2 << unat \ (and \ i
(63::64 \ word)) - x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   qed
   using val-to-bool.simps(2) by presburger
{f lemma}\ val	ext{-} distribute	ext{-} multiplication:
 assumes x = new\text{-}int \ 64 \ xx \land q = new\text{-}int \ 64 \ qq \land a = new\text{-}int \ 64 \ aa
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 apply (cases x; cases q; cases a; auto) using distrib-left assms by auto
\mathbf{lemma}\ val\text{-}MulPower2AddPower2:
 fixes i j :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j)))
          0 < i
 and
 and
          0 < j
          i < 64
 and
 and
          j < 64
 and
          x = new-int 64 xx
 shows val[x * y] = val[(x << IntVal 64 i) + (x << IntVal 64 j)]
 using assms
 proof -
   have 63: (63::int64) = mask 6
     \mathbf{bv} eval
   then have (2::int) \hat{\phantom{a}} 6 = 64
```

```
\mathbf{by} \ eval
   then have n: Int Val 64 ((2 \cap unat(i)) + (2 \cap unat(j))) =
         val[(IntVal\ 64\ (2\ \widehat{\ }unat(i)))+(IntVal\ 64\ (2\ \widehat{\ }unat(j)))]
     using assms by (cases i; cases j; auto)
  then have 1: val[x * ((IntVal 64 (2 \cap unat(i))) + (IntVal 64 (2 \cap unat(j))))]
         val[(x * IntVal 64 (2 \cap unat(i))) + (x * IntVal 64 (2 \cap unat(j)))]
    using assms val-distribute-multiplication val-MulPower2 by simp
  then have 2: val[(x * IntVal 64 (2 \cap unat(i)))] = val[x << IntVal 64 i]
  by (smt\ (verit)\ Value.distinct(1)\ intval-mul.simps(1)\ new-int.simps\ new-int-bin.simps
assms
        val-MulPower2)
  then show ?thesis
     by (smt (verit, del-insts) 1 Value.distinct(1) assms(1) assms(3) assms(5)
assms(6)
        intval-mul.simps(1) n new-int.simps new-int-bin.elims val-MulPower2)
  qed
thm-oracles val-MulPower2AddPower2
lemma exp-multiply-zero-64:
exp[x * (const (IntVal 64 0))] \ge ConstantExpr (IntVal 64 0)
 using val-multiply-zero apply auto
 by (smt\ (verit)\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds
intval	ext{-}mul.elims
     mult-zero-right new-int.simps new-int-bin.simps nle-le numeral-eq-Suc take-bit-of-0
     unfold\text{-}const\ valid\text{-}stamp.simps(1)\ valid\text{-}value.simps(1)\ zero\text{-}less\text{-}Suc\ wf\text{-}value\text{-}def)
\mathbf{lemma}\ exp\text{-}multiply\text{-}neutral\text{:}
exp[x * (const (IntVal \ b \ 1))] \ge x
 using val-multiply-neutral apply auto
 by (smt (verit) Value.inject(1) eval-unused-bits-zero intval-mul.elims mult.right-neutral
     new-int.elims new-int-bin.elims)
thm-oracles exp-multiply-neutral
lemma exp-MulPower2:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 (2 ^unat(i)))
          \theta < i
 and
          i < 64
 and
          exp[x > (const\ IntVal\ b\ 0)]
 and
 and
          exp[y > (const\ IntVal\ b\ \theta)]
 shows exp[x * y] \ge exp[x << ConstantExpr (IntVal 64 i)]
```

```
using assms apply simp
    by (metis ConstantExprE equiv-exprs-def unfold-binary)
lemma exp-MulPower2Add1:
    fixes i :: 64 word
    assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + 1))
                       \theta < i
   and
   and
                       i < 64
    and
                       exp[x > (const\ IntVal\ b\ \theta)]
                       exp[y > (const\ IntVal\ b\ \theta)]
    and
shows exp[x * y] \ge exp[(x << ConstantExpr(IntVal 64 i)) + x]
     using assms apply simp
    by (metis (no-types, lifting) ConstantExprE equiv-exprs-def unfold-binary)
\mathbf{lemma}\ exp\text{-}MulPower2Sub1:
    fixes i :: 64 word
    assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) - 1))
                       0 < i
   and
    and
                       i < 64
                       exp[x > (const\ IntVal\ b\ 0)]
    and
                       exp[y > (const\ IntVal\ b\ \theta)]
    and
shows exp[x * y] \ge exp[(x << ConstantExpr(IntVal 64 i)) - x]
      using assms apply simp
    by (metis (no-types, lifting) ConstantExprE equiv-exprs-def unfold-binary)
\mathbf{lemma}\ exp\text{-}MulPower2AddPower2:
    fixes i j :: 64 word
    assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + (2 ^unat(j))))
                       0 < i
   and
   and
                       0 < j
                      i < 64
    and
    and
                      j < 64
    and
                       exp[x > (const\ Int Val\ b\ \theta)]
                       exp[y > (const\ IntVal\ b\ \theta)]
    and
shows exp[x * y] \ge exp[(x << ConstantExpr (IntVal 64 i)) + (x 
Expr\ (IntVal\ 64\ j))]
     using assms apply simp
    by (metis (no-types, lifting) ConstantExprE equiv-exprs-def unfold-binary)
lemma greaterConstant:
    fixes a \ b :: 64 \ word
    assumes a > b
                       y = ConstantExpr (IntVal 64 a)
   and
                       x = ConstantExpr (IntVal 64 b)
    and
    shows exp[y > x]
    apply auto
```

```
sorry
{\bf lemma}\ exp\text{-} distribute\text{-} multiplication:
 shows exp[(x * q) + (x * a)] \ge exp[x * (q + a)]
 sorry
Optimisations
optimization EliminateRedundantNegative: -x * -y \longmapsto x * y
 using mul-size.simps apply auto
 by (metis\ BinaryExpr\ val-eliminate-redundant-negative\ bin-eval.simps(2))
optimization MulNeutral: x * ConstantExpr (IntVal \ b \ 1) \longmapsto x
 using exp-multiply-neutral by blast
optimization MulEliminator: x * ConstantExpr (IntVal b 0) <math>\longmapsto const (IntVal b 0)
\theta)
  apply auto
 by (smt\ (verit)\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds
intval	ext{-}mul.elims
     mult-zero-right new-int.simps new-int-bin.simps take-bit-of-0 unfold-const
     valid-stamp.simps(1) valid-value.simps(1) val-multiply-zero)
optimization MulNegate: x * -(const (IntVal \ b \ 1)) \longmapsto -x
 apply auto
 by (smt\ (verit)\ Value.distinct(1)\ Value.sel(1)\ add.inverse-inverse\ intval-mul.elims
    intval-negate.simps(1) mask-eq-take-bit-minus-one new-int.simps new-int-bin.simps
     take-bit-dist-neg\ unary-eval.simps(2)\ unfold-unary\ val-multiply-negative
     val-eliminate-redundant-negative val-multiply-negative wf-value-def)
fun isNonZero :: Stamp \Rightarrow bool where
  isNonZero (IntegerStamp \ b \ lo \ hi) = (lo > 0)
  isNonZero - = False
lemma isNonZero-defn:
  assumes isNonZero (stamp-expr x)
 assumes wf-stamp x
 \mathbf{shows}\ ([m,\,p] \vdash x \mapsto v) \longrightarrow (\exists\,vv\ b.\ (v = \mathit{IntVal}\ b\ vv \land \mathit{val-to-bool}\ \mathit{val}[(\mathit{IntVal}\ b\ v) \land \mathit{val-to-bool}\ \mathit{val}])
(0) < v(0)
 apply (rule impI) subgoal premises eval
proof
 obtain b lo hi where xstamp: stamp-expr x = IntegerStamp b lo hi
   by (meson\ isNonZero.elims(2)\ assms)
  then obtain vv where vdef: v = IntVal\ b\ vv
   by (metis assms(2) eval valid-int wf-stamp-def)
 have lo > 0
   using assms(1) xstamp by force
  then have signed-above: int-signed-value b vv > 0
```

```
using assms unfolding wf-stamp-def
   using eval vdef xstamp by fastforce
 have take-bit b vv = vv
   using eval eval-unused-bits-zero vdef by auto
 then have vv > 0
   by (metis bit-take-bit-iff int-signed-value.simps not-less-zero signed-eq-0-iff
       signed-take-bit-eq-if-positive \ take-bit-0 \ take-bit-of-0 \ verit-comp-simplify 1 \ (1)
word-qt-0
      signed-above)
 then show ?thesis
   using vdef signed-above
   by simp
qed
 done
optimization MulPower2: x * y \mapsto x \ll const (IntVal 64 i)
                         when (i > 0 \land
                              64 > i \land
                              y = exp[const (IntVal 64 (2 \cap unat(i)))])
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
 obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval(2) by blast
 then obtain xvv where xvv: xv = IntVal 64 xvv
   by (smt (verit) ConstantExprE bin-eval.simps(2) evalDet intval-bits.simps int-
val-mul.elims
        new\mbox{-}int\mbox{-}bin.simps\ unfold\mbox{-}binary\ eval)
 obtain yv where yv: [m, p] \vdash y \mapsto yv
   using eval(1) eval(2) by blast
 then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
   by (metis\ bin-eval.simps(2)\ eval(1)\ eval(2)\ evalDet\ unfold-binary\ xv)
 have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
  by (smt (verit, ccfv-SIG) ConstantExpr constantAsStamp.simps(1) eval-bits-1-64
take-bit64
       validStampIntConst wf-value-def valid-value.simps(1) xv xvv)
 then have rhs: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
i)
   using xv xvv using evaltree.BinaryExpr
  by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps)
 have val[xv * yv] = val[xv << (IntVal 64 i)]
   by (metis ConstantExprE eval(1) evaltree-not-undef lhs yv val-MulPower2)
 then show ?thesis
   by (metis eval(1) eval(2) evalDet lhs rhs)
qed
 done
```

```
optimization MulPower2Add1: x * y \mapsto (x << const (IntVal 64 i)) + x
                          when (i > 0 \land
                                64 > i \land
                               y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1)))
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
  subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     by (smt (verit) p ConstantExprE bin-eval.simps(2) evalDet intval-bits.simps
intval	ext{-}mul.elims
         new\text{-}int\text{-}bin.simps\ unfold\text{-}binary)
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0)
     using greaterConstant p wf-value-def by fastforce
   then have 1: \theta < i \wedge
                i < 64 \land
                y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + 1))
     using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis bin-eval.simps(2) evalDet p(1) p(2) xv yv unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
   \mathbf{by}\ (\mathit{metis}\ \mathit{wf-value-def}\ \mathit{verit-comp-simplify1} \ (\mathit{2})\ \mathit{zero-less-numeral}\ \mathit{ConstantExpr}
      constantAsStamp.simps(1) take-bit64 validStampIntConst valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
64\ i)
   by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps
xv \ xvv
         evaltree.BinaryExpr)
   then have rhs: [m, p] \vdash exp[(x \ll const (Int Val 64 i)) + x] \mapsto val[(xv \ll const (Int Val 64 i)) + x]
(IntVal\ 64\ i)) + xv
         by (metis (no-types, lifting) intval-add.simps(1) rhs2 bin-eval.simps(1)
Value.simps(5)
         evaltree.BinaryExpr intval-left-shift.simps(1) new-int.simps xv xvv)
    then have simple: val[xv * (IntVal 64 (2 \cap unat(i)))] = val[xv << (IntVal 64)]
i)
      using val-MulPower2 sorry
    then have val[xv * yv] = val[(xv << (IntVal 64 i)) + xv]
    then show ?thesis
      by (metis 1 evalDet lhs p(2) rhs)
 qed
  done
```

```
optimization MulPower2Sub1: x * y \longmapsto (x << const (IntVal 64 i)) - x
                         when (i > 0 \land
                              64 > i \land
                              y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) - 1))
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     by (smt (verit) p ConstantExprE bin-eval.simps(2) evalDet intval-bits.simps
intval	ext{-}mul.elims
        new\text{-}int\text{-}bin.simps\ unfold\text{-}binary)
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0)
   by (smt (verit, del-insts) eq-iff-diff-eq-0 mask-0 mask-eq-exp-minus-1 power-inject-exp
        uint-2p unat-eq-zero word-gt-0 zero-neq-one greaterConstant p)
   then have 1: \theta < i \wedge
               i < 64 \ \land
               y = ConstantExpr (IntVal 64 ((2 ^unat(i)) - 1))
     using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis bin-eval.simps(2) evalDet p(1) p(2) xv yv unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
   by (metis wf-value-def verit-comp-simplify1(2) zero-less-numeral ConstantExpr
      constantAsStamp.simps(1) \ take-bit64 \ validStampIntConst \ valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
64\ i)
   by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps
xv \ xvv
        evaltree.BinaryExpr)
   then have rhs: [m, p] \vdash exp[(x << const (IntVal 64 i)) - x] \mapsto val[(xv <<
(IntVal\ 64\ i)) - xv
   by (smt\ (verit,\ ccfv-threshold)\ bin-eval.simps(3)\ new-int-bin.simps\ intval-sub.simps(1)
      rhs2 bin-eval.simps(1) Value.simps(5) evaltree.BinaryExpr intval-left-shift.simps(1)
        new-int.simps xv xvv )
   then have val[xv * yv] = val[(xv \ll (Int Val 64 i)) - xv]
      using 1 exp-MulPower2Sub1 ygezero sorry
    then show ?thesis
     by (metis evalDet lhs p(1) p(2) rhs)
 ged
done
```

end

end

1.7 Experimental AndNode Phase

```
theory NewAnd
 imports
   Common
   Graph.JavaLong
begin
{f lemma}\ bin-distribute-and-over-or:
  bin[z \& (x | y)] = bin[(z \& x) | (z \& y)]
 by (smt (verit, best) bit-and-iff bit-eqI bit-or-iff)
lemma intval-distribute-and-over-or:
  val[z \& (x | y)] = val[(z \& x) | (z \& y)]
 apply (cases x; cases y; cases z; auto)
 \mathbf{using}\ bin\mbox{-}distribute\mbox{-}and\mbox{-}over\mbox{-}or\ \mathbf{by}\ blast+
lemma exp-distribute-and-over-or:
  exp[z \& (x | y)] \ge exp[(z \& x) | (z \& y)]
 apply simp using intval-distribute-and-over-or
 using BinaryExpr\ bin-eval.simps(4,5)
 using intval-or.simps(1) unfolding new-int-bin.simps new-int.simps apply auto
 by (metis\ bin-eval.simps(4)\ bin-eval.simps(5)\ intval-or.simps(2)\ intval-or.simps(5))
{f lemma}\ intval	ext{-} and	ext{-} commute:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: and.commute)
lemma intval-or-commute:
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
lemma intval-xor-commute:
  val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: xor.commute)
lemma exp-and-commute:
  exp[x \& z] \ge exp[z \& x]
 apply simp using intval-and-commute by auto
lemma exp-or-commute:
  exp[x \mid y] \ge exp[y \mid x]
 apply simp using intval-or-commute by auto
```

```
lemma exp-xor-commute:
  exp[x \oplus y] \ge exp[y \oplus x]
  apply simp using intval-xor-commute by auto
\mathbf{lemma}\ bin\text{-}eliminate-y:
  assumes bin[y \& z] = 0
  shows bin[(x \mid y) \& z] = bin[x \& z]
  using assms
  by (simp add: and.commute bin-distribute-and-over-or)
lemma intval-eliminate-y:
  assumes val[y \& z] = IntVal \ b \ \theta
 shows val[(x \mid y) \& z] = val[x \& z]
  using assms bin-eliminate-y by (cases x; cases y; cases z; auto)
{\bf lemma}\ intval\text{-} and \text{-} associative:
  val[(x \& y) \& z] = val[x \& (y \& z)]
  apply (cases x; cases y; cases z; auto)
 by (simp\ add:\ and.assoc)+
lemma intval-or-associative:
  val[(x \mid y) \mid z] = val[x \mid (y \mid z)]
  apply (cases x; cases y; cases z; auto)
  by (simp \ add: \ or. assoc) +
lemma intval-xor-associative:
  val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
  apply (cases x; cases y; cases z; auto)
 by (simp\ add:\ xor.assoc)+
\mathbf{lemma}\ \textit{exp-and-associative} :
  exp[(x \& y) \& z] \ge exp[x \& (y \& z)]
  apply simp using intval-and-associative by fastforce
lemma exp-or-associative:
  exp[(x \mid y) \mid z] \ge exp[x \mid (y \mid z)]
 apply simp using intval-or-associative by fastforce
\mathbf{lemma}\ exp\text{-}xor\text{-}associative:
  exp[(x \oplus y) \oplus z] \ge exp[x \oplus (y \oplus z)]
  apply simp using intval-xor-associative by fastforce
{f lemma}\ intval	ext{-} and	ext{-} absorb	ext{-} or:
  assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
  assumes val[x \& (x \mid y)] \neq UndefVal
 \mathbf{shows}\ val[x\ \&\ (x\ |\ y)] = val[x]
```

```
using assms apply (cases x; cases y; auto)
 by (metis (mono-tags, lifting) intval-and.simps(5))
{f lemma}\ intval	ext{-}or	ext{-}absorb	ext{-}and:
 assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \mid (x \& y)] \neq UndefVal
 shows val[x \mid (x \& y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-or.simps(5))
\mathbf{lemma}\ exp\text{-}and\text{-}absorb\text{-}or:
  exp[x \& (x \mid y)] \ge exp[x]
 apply auto using intval-and-absorb-or eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
lemma exp-or-absorb-and:
  exp[x \mid (x \& y)] \ge exp[x]
 apply auto using intval-or-absorb-and eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
lemma
 assumes y = \theta
 \mathbf{shows}\ x + y = or\ x\ y
 using assms
 \mathbf{by} \ simp
lemma no-overlap-or:
 assumes and x y = 0
 shows x + y = or x y
 using assms
 by (metis bit-and-iff bit-xor-iff disjunctive-add xor-self-eq)
context stamp-mask
begin
{\bf lemma}\ intval-up-and-zero-implies-zero:
 assumes and (\uparrow x) (\uparrow y) = 0
 \mathbf{assumes}\ [m,\ p] \ \vdash \ x \mapsto xv
 assumes [m, p] \vdash y \mapsto yv
 assumes val[xv \& yv] \neq UndefVal
```

```
shows \exists b \cdot val[xv \& yv] = new\text{-}int b \theta
 using assms apply (cases xv; cases yv; auto)
 using up-mask-and-zero-implies-zero
 apply (smt (verit, best) take-bit-and take-bit-of-0)
 by presburger
lemma exp-eliminate-y:
 and (\uparrow y) (\uparrow z) = 0 \longrightarrow BinaryExpr\ BinAnd\ (BinaryExpr\ BinOr\ x\ y)\ z \ge Bina-
ryExpr\ BinAnd\ x\ z
 apply simp apply (rule impI; rule allI; rule allI; rule allI)
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using e by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using e by auto
   obtain zv where zv: [m,p] \vdash z \mapsto zv
     using e by auto
   have lhs: v = val[(xv \mid yv) \& zv]
     using xv yv zv
       by (smt\ (verit,\ best)\ BinaryExprE\ bin-eval.simps(4)\ bin-eval.simps(5)\ e
evalDet)
   then have v = val[(xv \& zv) \mid (yv \& zv)]
     by (simp add: intval-and-commute intval-distribute-and-over-or)
   also have \exists b. \ val[yv \& zv] = new\text{-}int \ b \ 0
     using intval-up-and-zero-implies-zero
     by (metis calculation e intval-or.simps(5) p unfold-binary yv zv)
   ultimately have rhs: v = val[xv \& zv]
     using intval-eliminate-y lhs by force
   from lhs rhs show ?thesis
     by (metis BinaryExpr BinaryExprE bin-eval.simps(4) e xv zv)
 qed
 done
 done
lemma leadingZeroBounds:
 fixes x :: 'a :: len word
 assumes n = numberOfLeadingZeros x
 shows 0 \le n \land n \le Nat.size x
 using assms unfolding numberOfLeadingZeros-def
 by (simp add: MaxOrNeg-def highestOneBit-def nat-le-iff)
lemma above-nth-not-set:
 fixes x :: int64
 assumes n = 64 - numberOfLeadingZeros x
 shows j > n \longrightarrow \neg(bit \ x \ j)
 using assms unfolding numberOfLeadingZeros-def
 by (smt (verit, ccfv-SIG) highestOneBit-def int-nat-eq int-ops(6) less-imp-of-nat-less
max-set-bit size64 zerosAboveHighestOne)
```

```
no-notation LogicNegationNotation (!-)
lemma zero-horner:
 horner-sum of-bool 2 (map (\lambda x. False) xs) = 0
 apply (induction xs) apply simp
 by force
lemma zero-map:
 assumes j \leq n
 \mathbf{assumes} \ \forall \ i. \ j \leq i \longrightarrow \neg (f \ i)
 shows map f [0..< n] = map f [0..< j] @ map (\lambda x. False) [j..< n]
 apply (insert assms)
 by (smt (verit, del-insts) add-diff-inverse-nat atLeastLessThan-iff bot-nat-0.extremum
leD map-append map-eq-conv set-upt upt-add-eq-append)
lemma map-join-horner:
 assumes map\ f\ [\theta...< n] = map\ f\ [\theta...< j]\ @\ map\ (\lambda x.\ False)\ [j...< n]
 shows horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 (map f [0..< j])
proof -
 have horner-sum of-bool (2::'a::len \ word) \ (map \ f \ [0..< n]) = horner-sum \ of-bool
2 \pmod{f[0...< j]} + 2 \cap length[0...< j] * horner-sum of-bool 2 \pmod{f[j...< n]}
   using horner-sum-append
    by (smt (verit) assms diff-le-self diff-zero le-add-same-cancel2 length-append
length-map length-upt map-append upt-add-eq-append)
  also have ... = horner-sum of-bool 2 (map f [0..< j]) + 2 \widehat{} length [0..< j] *
horner-sum of-bool 2 (map (\lambda x. False) [j..<n])
   using assms
   by (metis calculation horner-sum-append length-map)
 also have ... = horner-sum of-bool 2 (map f [0..<j])
   using zero-horner
   using mult-not-zero by auto
 finally show ?thesis by simp
qed
lemma split-horner:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows horner-sum of-bool (2::'a::len \ word) \ (map \ f \ [0..< n]) = horner-sum of-bool
2 (map f [0..< j])
 apply (rule map-join-horner)
 apply (rule zero-map)
 using assms by auto
lemma transfer-map:
  assumes \forall i. i < n \longrightarrow f i = f' i
 shows (map f [0..< n]) = (map f' [0..< n])
 using assms by simp
```

```
lemma transfer-horner:
    assumes \forall i. i < n \longrightarrow f i = f' i
   shows horner-sum of-bool (2::'a::len \ word) \ (map \ f \ [0..< n]) = horner-sum of-bool
2 (map f' [0..< n])
     using assms using transfer-map
    \mathbf{by}\ (smt\ (verit,\ best))
lemma L1:
    assumes n = 64 - numberOfLeadingZeros (\uparrow z)
    assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
    shows and v zv = and (v mod <math>2^n) zv
proof -
    have nle: n \leq 64
        using assms
        using diff-le-self by blast
    also have and v zv = horner-sum of-bool 2 (map (bit (and v zv)) [0..<64])
        using horner-sum-bit-eq-take-bit size64
        by (metis size-word.rep-eq take-bit-length-eq)
    also have ... = horner-sum of-bool 2 (map (\lambda i. bit (and v zv) i) [0..<64])
        by blast
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [\theta ... < 64])
         using bit-and-iff by metis
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [\theta..<n])
    proof -
        have \forall i. i \geq n \longrightarrow \neg(bit\ zv\ i)
             using above-nth-not-set \ assms(1)
             using assms(2) not-may-implies-false
         by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
        then have \forall i. i \geq n \longrightarrow \neg((bit \ v \ i) \land (bit \ zv \ i))
             by auto
        then show ?thesis using nle split-horner
             by (metis (no-types, lifting))
     also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..< n])
    proof -
        have \forall i. i < n \longrightarrow bit (v \bmod 2 \hat{n}) i = bit v i
             by (metis bit-take-bit-iff take-bit-eq-mod)
        then have \forall i. i < n \longrightarrow ((bit \ v \ i) \land (bit \ zv \ i)) = ((bit \ (v \ mod \ 2 \widehat{\ n}) \ i) \land (bit \ v) \land (bit
zv(i)
            by force
        then show ?thesis
             by (rule transfer-horner)
     also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..<64])
```

```
proof -
   have \forall i. i \geq n \longrightarrow \neg(bit \ zv \ i)
     using above-nth-not-set \ assms(1)
     using assms(2) not-may-implies-false
    by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne linorder-not-le nat-int-comparison(2) not-numeral-le-zero size64 zero-less-Suc
zerosAboveHighestOne)
   then show ?thesis
     by (metis (no-types, lifting) assms(1) diff-le-self split-horner)
 qed
 also have ... = horner-sum of-bool 2 (map (bit (and (v mod 2^n) zv)) [0..<64])
   by (meson bit-and-iff)
 also have \dots = and (v \mod 2\widehat{\ } n) zv
   using horner-sum-bit-eq-take-bit size64
   by (metis size-word.rep-eq take-bit-length-eq)
 finally show ?thesis
     using \langle and (v::64 \ word) (zv::64 \ word) = horner-sum \ of-bool (2::64 \ word)
(map\ (bit\ (and\ v\ zv))\ [0::nat..<64::nat]) \land (horner-sum\ of-bool\ (2::64\ word)\ (map\ v))
(\lambda i::nat. bit ((v::64 word) mod (2::64 word) ^ (n::nat)) i \land bit (zv::64 word)
[0::nat..<64::nat] = horner-sum of-bool (2::64 word) (map (bit (and (v mod
(2::64 \text{ word}) \cap (n) \text{ zv})) [0::nat..<64::nat]) \land (horner-sum \text{ of-bool} (2::64 \text{ word}) \text{ (map}))
(\lambda i::nat. bit ((v::64 word) mod (2::64 word) ^ (n::nat)) i \land bit (zv::64 word) i)
[0::nat..< n]) = horner-sum\ of\ bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit\ (v\ mod\ (2::64\ word)))
word) \cap n \mid i \wedge bit \ zv \ i \mid [0::nat..<64::nat] \rangle \land horner-sum \ of-bool \ (2::64 \ word)
(map\ (\lambda i::nat.\ bit\ (v::64\ word)\ i\ \land\ bit\ (zv::64\ word)\ i)\ [0::nat..<64::nat]) =
horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<n::nat])>
\langle horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v::64 word) i \wedge bit (zv::64
word) i) [0::nat.. < n::nat] = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit
(v \mod (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat..< n]) \land (horner-sum of-bool (2::64 \mod ))
word) \ (map \ (bit \ (and \ ((v::64 \ word) \ mod \ (2::64 \ word) \ ^(n::nat)) \ (zv::64 \ word)))
[0::nat..<64::nat] = and (v \mod (2::64 \mod ) \cap n) zv> (horner-sum of-bool (2::64 \mod ) \cap n)
word) (map (bit (and (v::64 word) (zv::64 word))) [0::nat..<64::nat]) = horner-sum
of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<64::nat]) by pres-
burger
qed
lemma up-mask-upper-bound:
  assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
 shows xv \leq (\uparrow x)
 using assms
 by (metis (no-types, lifting) and idem and right-neutral bit.conj-cancel-left bit.conj-disj-distribs(1)
bit.double-compl\ ucast-id\ up-spec\ word-and-le1\ word-not-dist(2))
lemma L2:
 assumes numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \geq 64
 assumes n = 64 - numberOfLeadingZeros (\uparrow z)
 assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
 assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
 shows yv \mod 2 \hat{\ } n = 0
```

```
proof -
 have yv \mod 2 \hat{\ } n = horner-sum \ of\ bool \ 2 \ (map \ (bit \ yv) \ [0...< n])
   by (simp add: horner-sum-bit-eq-take-bit take-bit-eq-mod)
 also have ... \leq horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n])
   using up-mask-upper-bound assms(4)
  \textbf{by} \ (\textit{metis} \ (\textit{no-types}, \textit{opaque-lifting}) \ \textit{and.right-neutral} \ \textit{bit.conj-cancel-right} \ \textit{bit.conj-disj-distribs} (1)
bit.double-compl horner-sum-bit-eq-take-bit take-bit-and ucast-id up-spec word-and-le1
word-not-dist(2))
 also have horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n]) = horner-sum of-bool 2
(map (\lambda x. False) [0..< n])
 proof -
   have \forall i < n. \neg (bit (\uparrow y) i)
     using assms(1,2) zerosBelowLowestOne
     by (metis add.commute add-diff-inverse-nat add-lessD1 leD le-diff-conv num-
berOfTrailingZeros-def)
   then show ?thesis
     by (metis (full-types) transfer-map)
 also have horner-sum of-bool 2 (map (\lambda x. False) [0..<n]) = 0
   using zero-horner
   by blast
 finally show ?thesis
   by auto
qed
thm-oracles L1 L2
lemma unfold-binary-width-add:
 shows ([m,p] \vdash BinaryExpr\ BinAdd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y)) \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1]
   apply (smt (verit) intval-add.elims intval-bits.simps)
   by blast
\mathbf{next}
 assume R: ?R
 then obtain x y where [m,p] \vdash xe \mapsto IntVal\ b\ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b \ val = bin-eval \ BinAdd \ (IntVal \ b \ x) \ (IntVal \ b \ y)
       and new-int b val \neq UndefVal
   by auto
  then show ?L
   using R by blast
```

```
qed
```

```
\mathbf{lemma}\ unfold\text{-}binary\text{-}width\text{-}and:
 shows ([m,p] \vdash BinaryExpr\ BinAnd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAnd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1] using intval-and.elims intval-bits.simps
   apply (smt (verit) new-int.simps new-int-bin.simps take-bit-and)
   by blast
next
 assume R: ?R
 then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b val = bin-eval BinAnd (IntVal b x) (IntVal b y)
       and new-int b val \neq UndefVal
   by auto
  then show ?L
    using R by blast
qed
\mathbf{lemma}\ mod\text{-}dist\text{-}over\text{-}add\text{-}right:
 fixes a b c :: int64
 fixes n :: nat
 assumes 1: 0 < n
 assumes 2: n < 64
 shows (a + b \mod 2\widehat{\ n}) \mod 2\widehat{\ n} = (a + b) \mod 2\widehat{\ n}
 using mod-dist-over-add
 by (simp add: 1 2 add.commute)
lemma number Of Leading Zeros-range:
  0 \leq numberOfLeadingZeros \ n \wedge numberOfLeadingZeros \ n \leq Nat.size \ n
 unfolding numberOfLeadingZeros-def highestOneBit-def using max-set-bit
 by (simp add: highestOneBit-def leadingZeroBounds numberOfLeadingZeros-def)
\mathbf{lemma}\ improved\text{-}opt\text{:}
 assumes numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \geq 64
 shows exp[(x + y) \& z] \ge exp[x \& z]
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
 obtain n where n: n = 64 - numberOfLeadingZeros (\uparrow z)
   bv simp
 obtain b val where val: [m, p] \vdash exp[(x + y) \& z] \mapsto IntVal \ b \ val
```

```
by (metis BinaryExprE bin-eval-new-int eval new-int.simps)
  then obtain xv yv where addv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ (xv + yv)
   apply (subst (asm) unfold-binary-width-and) by (metis add.right-neutral)
  then obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
   apply (subst (asm) unfold-binary-width-add) by blast
  from addv obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
   apply (subst (asm) unfold-binary-width-add) by blast
  from val obtain zv where zv: [m, p] \vdash z \mapsto IntVal \ b \ zv
   apply (subst (asm) unfold-binary-width-and) by blast
  have addv: [m, p] \vdash exp[x + y] \mapsto new\text{-}int \ b \ (xv + yv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using yv apply simp
   by simp+
  have lhs: [m, p] \vdash exp[(x + y) \& z] \mapsto new\text{-int } b \text{ (and } (xv + yv) zv)
   apply (rule evaltree.BinaryExpr)
   using addv apply simp
   using zv apply simp
   using addv apply auto[1]
   by simp
  have rhs: [m, p] \vdash exp[x \& z] \mapsto new\text{-}int \ b \ (and \ xv \ zv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using zv apply simp
    apply force
   by simp
  then show ?thesis
  proof (cases numberOfLeadingZeros (\uparrow z) > 0)
   case True
   have n-bounds: 0 \le n \land n < 64
     using diff-le-self n numberOfLeadingZeros-range
     by (simp add: True)
   have and (xv + yv) zv = and ((xv + yv) mod 2^n) zv
     using L1 \ n \ zv by blast
   also have ... = and ((xv + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
     using mod-dist-over-add-right n-bounds
     by (metis take-bit-0 take-bit-eq-mod zero-less-iff-neq-zero)
   also have ... = and (((xv \mod 2\widehat{n}) + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
      by (metis bits-mod-by-1 mod-dist-over-add n-bounds order-le-imp-less-or-eq
power-0
   also have ... = and ((xv \mod 2\widehat{\ n}) \mod 2\widehat{\ n}) zv
     using L2 \ n \ zv \ yv
     using assms by auto
   also have ... = and (xv \mod 2^n) zv
     \mathbf{using}\ mod\text{-}mod\text{-}trivial
   by (smt\ (verit,\ best)\ and.idem\ take-bit-eq-mask\ take-bit-eq-mod\ word-bw-assocs(1))
   also have \dots = and xv zv
     using L1 \ n \ zv by metis
   finally show ?thesis
```

```
using eval lhs rhs
     by (metis evalDet)
 next
   {\bf case}\ \mathit{False}
   then have numberOfLeadingZeros (\uparrow z) = 0
    by simp
   then have numberOfTrailingZeros\ (\uparrow y) \geq 64
     using assms(1)
     by fastforce
   then have yv = 0
     using yv
      by (metis (no-types, lifting) L1 L2 add-diff-cancel-left' and.comm-neutral
and.idem bit.compl-zero bit.conj-cancel-right bit.conj-disj-distribs(1) bit.double-compl
less-imp-diff-less\ linorder-not-le\ word-not-dist(2))
   then show ?thesis
     by (metis add.right-neutral eval evalDet lhs rhs)
 \mathbf{qed}
qed
done
thm-oracles improved-opt
end
phase NewAnd
 terminating size
begin
optimization redundant-lhs-y-or: ((x \mid y) \& z) \longmapsto x \& z
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y by blast
optimization redundant-lhs-x-or: ((x \mid y) \& z) \longmapsto y \& z
                          when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson exp-or-commute mono-binary order-reft order-trans)
optimization redundant-rhs-y-or: (z \& (x \mid y)) \longmapsto z \& x
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson exp-and-commute order.trans)
```

```
optimization redundant-rhs-x-or: (z \& (x \mid y)) \longmapsto z \& y
                                 when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
  apply (simp add: IRExpr-up-def)
  using simple-mask.exp-eliminate-y
  by (meson dual-order.trans exp-and-commute exp-or-commute mono-binary or-
der-refl)
end
end
        NotNode Phase
1.8
theory NotPhase
  imports
    Common
begin
phase NotNode
  terminating size
begin
lemma bin-not-cancel:
 bin[\neg(\neg(e))] = bin[e]
 by auto
\mathbf{lemma}\ \mathit{val}\text{-}\mathit{not}\text{-}\mathit{cancel}\text{:}
  assumes val[^{\sim}(new\text{-}int\ b\ v)] \neq UndefVal
shows val[^{\sim}(^{\sim}(new\text{-}int\ b\ v))] = (new\text{-}int\ b\ v)
  \mathbf{by}\ (simp\ add\colon take\text{-}bit\text{-}not\text{-}take\text{-}bit)
lemma exp-not-cancel:
   exp[^{\sim}(^{\sim}a)] \ge exp[a]
   using val-not-cancel apply auto
 \textbf{by} \ (\textit{metis eval-unused-bits-zero intval-logic-negation.} \ \textit{cases new-int.simps intval-not.simps} (1)
      intval-not.simps(2) \ intval-not.simps(3) \ intval-not.simps(4))
Optimisations
optimization NotCancel: exp[^{\sim}(^{\sim}a)] \longmapsto a
  by (metis exp-not-cancel)
```

end

end

1.9 OrNode Phase

```
theory OrPhase
imports
Common
begin

context stamp-mask
begin
```

Taking advantage of the truth table of or operations.

If row 2 never applies, that is, can BeZero x & can BeOne y = 0, then (x|y) = x.

Likewise, if row 3 never applies, can BeZero y & can BeOne x = 0, then (x|y) = y.

```
lemma Or Left Fall through:
  assumes (and (not (\downarrow x)) (\uparrow y)) = 0
 shows exp[x \mid y] \ge exp[x]
  using assms
  \mathbf{apply}\ simp\ \mathbf{apply}\ ((rule\ allI)+;\ rule\ impI)
  subgoal premises eval for m p v
  proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
      by (metis BinaryExprE bin-eval-new-int new-int.simps eval(2))
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
      apply (subst (asm) unfold-binary-width)
      by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
      by force+
   have vdef: v = intval\text{-}or (IntVal b xv) (IntVal b yv)
      \mathbf{by}\ (\mathit{metis}\ \mathit{bin-eval}.\mathit{simps}(5)\ \mathit{eval}(2)\ \mathit{eval}\mathit{Det}\ \mathit{unfold-binary}\ \mathit{xv}\ \mathit{yv})
   have \forall i. (bit xv i) | (bit yv i) = (bit xv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ xv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
    by (smt (verit, ccfv-threshold) and idem assms bit.conj-disj-distrib eval-unused-bits-zero
```

 $intval-or.simps(1)\ new-int.simps\ new-int-bin.simps\ not-down-up-mask-and-zero-implies-zero$

```
word-ao-absorbs(3) xv yv)
   then show ?thesis
     using xv vdef by presburger
 qed
 done
lemma Or Right Fall through:
 assumes (and (not (\downarrow y)) (\uparrow x)) = 0
 shows exp[x \mid y] \ge exp[y]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     by (metis BinaryExprE bin-eval-new-int new-int.simps eval(2))
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval\text{-}or (IntVal b xv) (IntVal b yv)
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary\ xv\ yv)
   have \forall i. (bit xv i) \mid (bit yv i) = (bit yv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ yv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
      by (metis (no-types, lifting) assms eval-unused-bits-zero intval-or.simps(1)
new	ext{-}int.elims
           new-int-bin.elims\ stamp-mask.not-down-up-mask-and-zero-implies-zero
stamp-mask-axioms
        word-ao-absorbs(8) xv yv)
   then show ?thesis
     using vdef yv by presburger
 qed
 done
end
phase OrNode
 terminating size
begin
{f lemma}\ bin-or-equal:
 bin[x \mid x] = bin[x]
 by simp
```

```
lemma bin-shift-const-right-helper:
x \mid y = y \mid x
 by simp
lemma bin-or-not-operands:
(^{\sim}x \mid ^{\sim}y) = (^{\sim}(x \& y))
 by simp
{f lemma}\ val	ext{-}or	ext{-}equal:
 assumes x = new\text{-}int \ b \ v
        (val[x \mid x] \neq UndefVal)
 shows val[x \mid x] = val[x]
  apply (cases x; auto) using bin-or-equal assms
 by auto+
{f lemma}\ val\mbox{-}elim\mbox{-}redundant\mbox{-}false:
 assumes x = new\text{-}int \ b \ v
         val[x \mid false] \neq UndefVal
 shows val[x \mid false] = val[x]
  using assms apply (cases x; auto) by presburger
lemma val-shift-const-right-helper:
  val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ or.commute)+
lemma val-or-not-operands:
val[^{\sim}x \mid ^{\sim}y] = val[^{\sim}(x \& y)]
 apply (cases x; cases y; auto)
 by (simp add: take-bit-not-take-bit)
lemma exp-or-equal:
  exp[x \mid x] \ge exp[x]
  using val-or-equal apply auto[1]
   by (smt (verit, ccfv-SIG) evalDet eval-unused-bits-zero intval-negate.elims int-
      intval-or.simps(6) intval-or.simps(7) new-int.simps val-or-equal)
\mathbf{lemma}\ exp\text{-}elim\text{-}redundant\text{-}false:
exp[x \mid false] \ge exp[x]
  using val-elim-redundant-false apply auto[1]
  by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-or.elims new-int.simps
      new-int-bin.simps\ val-elim-redundant-false)
Optimisations
optimization OrEqual: x \mid x \longmapsto x
```

```
by (meson exp-or-equal)
optimization OrShiftConstantRight: ((const\ x)\ |\ y) \longmapsto y\ |\ (const\ x)\ when\ \neg (is-ConstantExpr
 using size-flip-binary apply force
 apply auto[1]
 by (simp add: BinaryExpr unfold-const val-shift-const-right-helper)
optimization EliminateRedundantFalse: x \mid false \longmapsto x
 by (meson exp-elim-redundant-false)
optimization OrNotOperands: (^{\sim}x \mid ^{\sim}y) \longmapsto ^{\sim}(x \& y)
  apply (metis add-2-eq-Suc' less-SucI not-add-less1 not-less-eq size-binary-const
size-non-add)
  apply auto[1]
 by (metis\ BinaryExpr\ UnaryExpr\ bin-eval.simps(4)\ intval-not.simps(2)\ unary-eval.simps(3)
     val-or-not-operands)
optimization OrLeftFallthrough:
 x \mid y \longmapsto x \text{ when } ((\text{and } (\text{not } (\text{IRExpr-down } x)) (\text{IRExpr-up } y)) = 0)
 using simple-mask.OrLeftFallthrough by blast
optimization OrRightFallthrough:
  x \mid y \longmapsto y \text{ when } ((\text{and } (\text{not } (\text{IRExpr-down } y)) \mid (\text{IRExpr-up } x)) = 0)
 using simple-mask.OrRightFallthrough by blast
end
end
         ShiftNode Phase
1.10
theory ShiftPhase
 imports
    Common
begin
phase ShiftNode
  terminating size
begin
fun intval-log2 :: Value \Rightarrow Value where
  intval-log2 (IntVal b v) = IntVal b (word-of-int (SOME e. v=2^e))
  intval-log2 - = UndefVal
fun in-bounds :: Value \Rightarrow int \Rightarrow int \Rightarrow bool where
  in-bounds (IntVal b v) l h = (l < sint v \land sint v < h)
```

```
in-bounds - l h = False
lemma
 assumes in-bounds (intval-log2 val-c) 0 32
 shows intval-left-shift x (intval-log2 val-c) = intval-mul x val-c
  apply (cases val-c; auto) using intval-left-shift.simps(1) intval-mul.simps(1)
intval-log2.simps(1)
 sorry
lemma e-intval:
  n = intval - log 2 \ val - c \wedge in - bounds \ n \ 0 \ 32 \longrightarrow
   intval-left-shift x (intval-log2 val-c) =
   intval-mul \ x \ val-c
proof (rule impI)
 assume n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32
 show intval-left-shift x (intval-log2 val-c) =
   intval-mul \ x \ val-c
   proof (cases \exists v . val-c = IntVal 32 v)
     case True
     obtain vc where val-c = IntVal 32 vc
       using True by blast
     then have n = IntVal \ 32 \ (word-of-int \ (SOME \ e. \ vc=2^e))
       using \langle n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
   next
     case False
     then have \exists v . val-c = IntVal 64 v
       sorry
     then obtain vc where val-c = IntVal 64 vc
     then have n = IntVal \ 64 \ (word-of-int \ (SOME \ e. \ vc=2^e))
       using \langle n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
qed
qed
optimization e:
 x * (const \ c) \longmapsto x << (const \ n) \ when \ (n = intval-log2 \ c \land in-bounds \ n \ 0 \ 32)
 using e-intval
 using BinaryExprE ConstantExprE bin-eval.simps(2,7) sorry
end
end
```

${\bf 1.11}\quad {\bf Signed Div Node\ Phase}$

```
{\bf theory} \ {\it SignedDivPhase}
 imports
   Common
begin
{\bf phase} \ {\it SignedDivNode}
 terminating size
begin
lemma val-division-by-one-is-self-32:
  assumes x = new\text{-}int 32 v
 shows intval-div x (IntVal 32 1) = x
  using assms apply (cases x; auto)
  by (simp add: take-bit-signed-take-bit)
\quad \text{end} \quad
\mathbf{end}
1.12
         SignedRemNode Phase
{\bf theory} \ {\it SignedRemPhase}
 imports
    Common
begin
{\bf phase}\ Signed Rem Node
  terminating size
begin
lemma val-remainder-one:
 assumes intval\text{-}mod\ x\ (IntVal\ 32\ 1) \neq UndefVal
 shows intval\text{-}mod\ x\ (IntVal\ 32\ 1) = IntVal\ 32\ 0
 using assms apply (cases x; auto) sorry
value word-of-int (sint (x2::32 word) smod 1)
end
end
```

1.13 SubNode Phase

```
theory SubPhase
 imports
   Common
   Proofs. Stamp Eval Thms
begin
phase SubNode
 terminating size
begin
\mathbf{lemma}\ \mathit{bin-sub-after-right-add}\colon
 shows ((x::('a::len) \ word) + (y::('a::len) \ word)) - y = x
 by simp
\mathbf{lemma}\ \mathit{sub-self-is-zero}:
 shows (x::('a::len) word) - x = 0
 by simp
lemma bin-sub-then-left-add:
 shows (x::('a::len) \ word) - (x + (y::('a::len) \ word)) = -y
 by simp
lemma bin-sub-then-left-sub:
 shows (x::('a::len) \ word) - (x - (y::('a::len) \ word)) = y
 by simp
\mathbf{lemma}\ \mathit{bin-subtract-zero}\colon
 shows (x :: 'a::len \ word) - (0 :: 'a::len \ word) = x
 by simp
{\bf lemma}\ bin-sub-negative-value:
(x :: ('a::len) \ word) - (-(y :: ('a::len) \ word)) = x + y
 by simp
{f lemma}\ bin-sub-self-is-zero:
(x :: ('a::len) \ word) - x = 0
 by simp
\mathbf{lemma}\ \textit{bin-sub-negative-const}:
(x :: 'a::len \ word) - (-(y :: 'a::len \ word)) = x + y
 by simp
lemma val-sub-after-right-add-2:
 assumes x = new\text{-}int \ b \ v
 assumes val[(x + y) - y] \neq UndefVal
 shows val[(x + y) - y] = val[x]
```

```
using bin-sub-after-right-add
  using assms apply (cases x; cases y; auto)
 by (metis (full-types) intval-sub.simps(2))
lemma val-sub-after-left-sub:
 assumes val[(x - y) - x] \neq UndefVal
shows val[(x - y) - x] = val[-y]
 using assms apply (cases x; cases y; auto)
  using intval-sub.elims by fastforce
lemma val-sub-then-left-sub:
  assumes y = new-int b v
 assumes val[x - (x - y)] \neq UndefVal
 shows val[x - (x - y)] = val[y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags)\ intval-sub.simps(5))
lemma val-subtract-zero:
 assumes x = new-int b v
 assumes intval-sub x (IntVal\ b\ \theta) \neq UndefVal
 shows intval-sub x (IntVal b 0) = val[x]
 using assms by (induction x; simp)
{f lemma}\ val	ext{-}zero	ext{-}subtract	ext{-}value:
  assumes x = new-int b v
 assumes intval-sub (IntVal\ b\ 0)\ x \neq UndefVal
 shows intval-sub (IntVal b 0) x = val[-x]
 using assms by (induction x; simp)
lemma val-sub-then-left-add:
 assumes val[x - (x + y)] \neq UndefVal
 shows \quad val[x - (x + y)] = val[-y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-sub.simps(5))
lemma val-sub-negative-value:
 assumes val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
\mathbf{lemma}\ \mathit{val-sub-self-is-zero}:
  assumes x = new\text{-}int \ b \ v \land val[x - x] \neq UndefVal
 shows val[x - x] = new\text{-}int \ b \ \theta
 using assms by (cases x; auto)
lemma val-sub-negative-const:
  assumes y = new\text{-}int \ b \ v \land val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
```

```
\mathbf{lemma}\ exp\text{-}sub\text{-}after\text{-}right\text{-}add:
 shows exp[(x + y) - y] \ge exp[x]
  apply auto
 by (smt (verit) evalDet eval-unused-bits-zero intval-add.elims new-int.simps
     val-sub-after-right-add-2)
lemma exp-sub-after-right-add2:
 shows exp[(x + y) - x] \ge exp[y]
 using exp-sub-after-right-add apply auto
 by (smt\ (z3)\ Value.inject(1)\ diff-eq-eq\ evalDet\ eval-unused-bits-zero\ intval-add.elims
   intval-sub.elims new-int.simps new-int-bin.simps take-bit-dist-subL bin-eval.simps(1)
     bin-eval.simps(3) intval-add-sym unfold-binary)
lemma exp-sub-negative-value:
exp[x - (-y)] \ge exp[x + y]
 apply simp
 by (smt (verit) bin-eval.simps(1) bin-eval.simps(3) evaltree-not-undef unary-eval.simps(2)
     unfold-binary unfold-unary val-sub-negative-value)
lemma exp-sub-then-left-sub:
 exp[x - (x - y)] \ge exp[y]
 using val-sub-then-left-sub apply auto
 subgoal premises p for m p xa xaa ya
   proof-
     obtain xa where xa: [m, p] \vdash x \mapsto xa
      using p(2) by blast
     obtain ya where ya: [m, p] \vdash y \mapsto ya
      using p(5) by auto
     obtain xaa where xaa: [m, p] \vdash x \mapsto xaa
      using p(2) by blast
     have 1: val[xa - (xaa - ya)] \neq UndefVal
      by (metis evalDet p(2) p(3) p(4) p(5) xa xaa ya)
     then have val[xaa - ya] \neq UndefVal
      by auto
     then have [m, p] \vdash y \mapsto val[xa - (xaa - ya)]
      by (metis 1 Value.exhaust evalDet eval-unused-bits-zero evaltree-not-undef
       intval-sub.simps(6) intval-sub.simps(7) new-int.simps p(5) val-sub-then-left-sub
xa \ xaa
          ya
     then show ?thesis
      by (metis evalDet p(2) p(4) p(5) xa xaa ya)
   qed
 done
```

```
thm-oracles exp-sub-then-left-sub
Optimisations
\mathbf{optimization}\ \mathit{SubAfterAddRight} \colon ((x+y)-y) \longmapsto \ x
    using exp-sub-after-right-add by blast
optimization SubAfterAddLeft: ((x + y) - x) \mapsto y
    using exp-sub-after-right-add2 by blast
optimization SubAfterSubLeft: ((x - y) - x) \longmapsto -y
    apply (metis Suc-lessI add-2-eq-Suc' add-less-cancel-right less-trans-Suc not-add-less1
                   size-binary-const size-binary-lhs size-binary-rhs size-non-add)
     apply auto
    by (metis evalDet unary-eval.simps(2) unfold-unary val-sub-after-left-sub)
optimization SubThenAddLeft: (x - (x + y)) \longmapsto -y
     apply auto
    by (metis\ evalDet\ unary-eval.simps(2)\ unfold-unary\ val-sub-then-left-add)
optimization SubThenAddRight: (y - (x + y)) \longmapsto -x
     apply auto
  by (metis evalDet intval-add-sym unary-eval.simps(2) unfold-unary val-sub-then-left-add)
optimization SubThenSubLeft: (x - (x - y)) \mapsto y
    using size-simps apply simp
    using exp-sub-then-left-sub by blast
optimization SubtractZero: (x - (const\ IntVal\ b\ \theta)) \longmapsto x
   apply auto
  \mathbf{by} \; (smt \; (verit) \; add.right-neutral \; diff-add-cancel \; eval-unused-bits-zero \; intval-sub. \; elims \; is the substitute of the su
           intval-word.simps new-int.simps new-int-bin.simps)
thm-oracles SubtractZero
optimization SubNegativeValue: (x - (-y)) \mapsto x + y
    apply (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const
size-non-add)
   using exp-sub-negative-value by simp
thm-oracles SubNegativeValue
lemma negate-idempotent:
    assumes x = IntVal\ b\ v \land take-bit\ b\ v = v
   shows x = val[-(-x)]
```

```
using assms
 using is-IntVal-def by force
optimization ZeroSubtractValue: ((const\ IntVal\ b\ 0) - x) \longmapsto (-x)
                              when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo
hi \wedge \neg (is\text{-}ConstantExpr x))
  defer
 apply auto unfolding wf-stamp-def
 apply (smt (verit) diff-0 intval-negate.simps(1) intval-sub.elims intval-word.simps
         new\text{-}int\text{-}bin.simps\ unary\text{-}eval.simps(2)\ unfold\text{-}unary)
 using add-2-eq-Suc' size-simps(2) size-flip-binary by presburger
optimization SubSelfIsZero: (x - x) \longmapsto const \ IntVal \ b \ 0 \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  apply \ simp-all
  apply auto
 using IRExpr.disc(42) One-nat-def size-non-const apply presburger
 by (smt (verit, best) wf-value-def ConstantExpr evalDet eval-bits-1-64 eval-unused-bits-zero
   new-int.simps take-bit-of-0 val-sub-self-is-zero validDefIntConst valid-int wf-stamp-def)
end
end
         XorNode Phase
1.14
{\bf theory}\ {\it XorPhase}
 imports
   Common
   Proofs. Stamp Eval Thms
begin
phase XorNode
 terminating size
begin
lemma bin-xor-self-is-false:
bin[x \oplus x] = 0
 \mathbf{by} \ simp
```

```
lemma bin-xor-commute:
  bin[x \oplus y] = bin[y \oplus x]
    by (simp add: xor.commute)
\mathbf{lemma}\ \mathit{bin-eliminate-redundant-false}:
  bin[x \oplus \theta] = bin[x]
    by simp
{f lemma}\ val	ext{-}xor	ext{-}self	ext{-}is	ext{-}false:
    assumes val[x \oplus x] \neq UndefVal
    shows val-to-bool (val[x \oplus x]) = False
    using assms by (cases x; auto)
lemma val-xor-self-is-false-2:
    assumes (val[x \oplus x]) \neq UndefVal
    and
                         x = IntVal 32 v
    shows val[x \oplus x] = bool\text{-}to\text{-}val \ False
    using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-3}\colon
    assumes val[x \oplus x] \neq UndefVal \land x = IntVal 64 v
    shows val[x \oplus x] = IntVal 64 0
    using assms by (cases x; auto)
lemma val-xor-commute:
      val[x \oplus y] = val[y \oplus x]
      apply (cases x; cases y; auto)
    by (simp add: xor.commute)+
lemma val-eliminate-redundant-false:
    assumes x = new-int b v
    assumes val[x \oplus (bool\text{-}to\text{-}val\ False)] \neq UndefVal
    shows val[x \oplus (bool\text{-}to\text{-}val\ False)] = x
    using assms apply (cases x; auto)
    by meson
lemma exp-xor-self-is-false:
  assumes wf-stamp x \wedge stamp-expr x = default-stamp
  shows exp[x \oplus x] \ge exp[false]
    using assms apply auto unfolding wf-stamp-def
    by (smt\ (z3)\ validDefIntConst\ IntVal0\ Value.inject(1)\ bool-to-val.simps(2)
            constant As Stamp. simps(1) \ eval Det \ int-signed-value-bounds \ new-int. simps \ un-int. 
fold-const
         val-xor-self-is-false-2\ valid-int\ valid-stamp.simps(1)\ valid-value.simps(1)\ wf-value-def)
```

lemma exp-eliminate-redundant-false:

```
shows exp[x \oplus false] \ge exp[x]
  using val-eliminate-redundant-false apply auto
 subgoal premises p for m p xa
   proof -
     obtain xa where xa: [m, p] \vdash x \mapsto xa
       using p(2) by blast
     then have val[xa \oplus (IntVal \ 32 \ 0)] \neq UndefVal
       using evalDet p(2) p(3) by blast
     then have [m, p] \vdash x \mapsto val[xa \oplus (IntVal\ 32\ 0)]
       apply (cases xa; auto) using eval-unused-bits-zero xa by auto
     then show ?thesis
       using evalDet p(2) xa by blast
   qed
 done
Optimisations
\mathbf{optimization}\ \mathit{XorSelfIsFalse} \colon (x \oplus x) \longmapsto \mathit{false}\ \mathit{when}
                    (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = default\text{-}stamp)
 using size-non-const apply force
 using exp-xor-self-is-false by auto
optimization XorShiftConstantRight: ((const\ x)\ \oplus\ y) \longmapsto y \oplus (const\ x) when
\neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary apply force
 unfolding le-expr-def using val-xor-commute
optimization EliminateRedundantFalse: (x \oplus false) \longmapsto x
   using exp-eliminate-redundant-false by blast
end
end
1.15
         NegateNode Phase
{\bf theory}\ {\it NegatePhase}
 imports
    Common
begin
{\bf phase}\ {\it NegateNode}
 terminating size
begin
```

```
lemma bin-negative-cancel:
 -1 * (-1 * ((x::('a::len) word))) = x
 by auto
lemma val-negative-cancel:
 assumes intval-negate (new-int b v) \neq UndefVal
 shows val[-(-(new-int\ b\ v))] = val[new-int\ b\ v]
 using assms by simp
\mathbf{lemma}\ val	ext{-}distribute	ext{-}sub:
 assumes \ x \neq \ UndefVal \ \land \ y \neq \ UndefVal
 \mathbf{shows} \quad val[-(x-y)] = val[y-x]
 using assms by (cases x; cases y; auto)
lemma exp-distribute-sub:
 shows exp[-(x-y)] \ge exp[y-x]
 using val-distribute-sub apply auto
 using evaltree-not-undef by auto
thm-oracles exp-distribute-sub
lemma exp-negative-cancel:
 shows exp[-(-x)] \ge exp[x]
 using val-negative-cancel apply auto
 by (metis (no-types, opaque-lifting) eval-unused-bits-zero intval-negate.elims
     intval-negate.simps(1) minus-equation-iff new-int.simps take-bit-dist-neg)
lemma exp-negative-shift:
 assumes stamp-expr x = IntegerStamp b' lo hi
 and
          unat y = (b' - 1)
 shows exp[-(x >> (const (new-int b y)))] \ge exp[x >>> (const (new-int b y))]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
     using p(2) by auto
    then have 1: intval-negate (intval-right-shift xa (IntVal b (take-bit b y))) \neq
UndefVal
     using evalDet p(1) p(2) by blast
   then have 2: intval-right-shift xa (IntVal b (take-bit b y)) <math>\neq UndefVal
    by auto
    then have 3: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat)) (take-bit\ b\ y))
     by (smt (verit, del-insts) One-nat-def diff-le-self qr0I half-nonnegative-int-iff
linorder-not-le\ lower-bounds-equiv\ power-increasing-iff\ signed-0\ signed-take-bit-int-greater-eq-minus-exp-word
signed-take-bit-of-0 sint-greater-eq take-bit-0)
```

```
then have 4: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b y)) < (2::int)
^ b div (2::int)
   by (metis Suc-le-lessD Suc-pred eval-bits-1-64 int-power-div-base p(4) signed-take-bit-int-less-exp-word
size64 unfold-const wsst-TYs(3) zero-less-numeral)
   then have 5: (0::nat) < b
     using eval-bits-1-64 p(4) by blast
   then have 6: b \sqsubseteq (64::nat)
     using eval-bits-1-64 p(4) by blast
   then have 7: [m,p] \vdash BinaryExpr\ BinURightShift\ x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ y))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b y)))
     apply (cases y; auto)
     subgoal premises p for n
      proof -
        have sq1: y = word-of-nat n
         by (simp \ add: \ p(1))
        then have sg2: n < (18446744073709551616::nat)
         by (simp\ add:\ p(2))
        then have sg3: b \sqsubseteq (64::nat)
          by (simp add: 6)
        then have sg4: [m,p] \vdash BinaryExpr BinURightShift x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ (word-of-nat\ n)))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b (word-of-nat
n))))
          sorry
        then show ?thesis
          by simp
      qed
    done
   then show ?thesis
     by (metis evalDet p(2) xa)
 qed
 done
Optimisations
optimization NegateCancel: -(-(x)) \mapsto x
 using exp-negative-cancel by blast
optimization DistributeSubtraction: -(x - y) \longmapsto (y - x)
 apply (smt (z3) add.left-commute add-2-eq-Suc' add-diff-cancel-left' is-ConstantExpr-def
      less-Suc-eq-0-disj plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
        zero-less-diff)
 using exp-distribute-sub by simp
```

```
optimization NegativeShift: -(x >> (const\ (new\text{-}int\ b\ y))) \longmapsto x >>> (const\ (new\text{-}int\ b\ y))
(new\text{-}int \ b \ y))
                                when (stamp-expr \ x = IntegerStamp \ b' \ lo \ hi \land unat \ y)
= (b' - 1)
 using exp-negative-shift by simp
end
end
theory TacticSolving
 imports Common
begin
\mathbf{fun} \ \mathit{size} :: \mathit{IRExpr} \Rightarrow \mathit{nat} \ \mathbf{where}
  size (UnaryExpr op e) = (size e) * 2
  size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2) |
  size (BinaryExpr op x y) = (size x) + (size y) \mid
  size (ConditionalExpr cond t f) = (size cond) + (size t) + (size f) + 2
  size (ConstantExpr c) = 1
  size (ParameterExpr ind s) = 2
  size (LeafExpr \ nid \ s) = 2
  size (Constant Var c) = 2
  size (VariableExpr x s) = 2
lemma size-pos[simp]: 0 < size y
 apply (induction y; auto?)
 subgoal premises prems for op a b
   using prems by (induction op; auto)
 done
phase TacticSolving
 terminating size
begin
1.16
         AddNode
lemma value-approx-implies-refinement:
 assumes lhs \approx rhs
 assumes \forall m \ p \ v. \ ([m, \ p] \vdash elhs \mapsto v) \longrightarrow v = lhs
 assumes \forall m \ p \ v. \ ([m, \ p] \vdash erhs \mapsto v) \longrightarrow v = rhs
 assumes \forall m \ p \ v1 \ v2. \ ([m, p] \vdash elhs \mapsto v1) \longrightarrow ([m, p] \vdash erhs \mapsto v2)
 shows elhs \ge erhs
 using assms unfolding le-expr-def well-formed-equal-def
 using evalDet evaltree-not-undef
 by metis
method explore-cases for x y :: Value =
  (cases x; cases y; auto)
```

```
method explore-cases-bin for x :: IRExpr =
  (cases x; auto)
method obtain-approx-eq for lhs rhs x y :: Value =
  (rule meta-mp[where P=lhs \approx rhs], defer-tac, explore-cases x y)
method obtain-eval for exp::IRExpr and val::Value =
  (rule meta-mp[where P = \bigwedge m \ p \ v. ([m, p] \vdash exp \mapsto v) \Longrightarrow v = val], defer-tac)
method solve for lhs rhs x y :: Value =
  (match \ \mathbf{conclusion} \ \mathbf{in} \ size \ - < size \ - \Rightarrow \langle simp \rangle)?
  (match \ \mathbf{conclusion} \ \mathbf{in} \ (elhs::IRExpr) \ge (erhs::IRExpr) \ \mathbf{for} \ elhs \ erhs \Rightarrow \langle
   (obtain-approx-eq lhs rhs x y)?\rangle)
print-methods
thm BinaryExprE
optimization opt-add-left-negate-to-sub:
  -x + y \longmapsto y - x
  apply (solve val[-x1 + y1] \ val[y1 - x1] \ x1 \ y1)
 apply simp apply auto using evaltree-not-undef sorry
          NegateNode
1.17
\mathbf{lemma}\ val	ext{-} distribute	ext{-} sub:
 val[-(x-y)] \approx val[y-x]
 by (cases x; cases y; auto)
optimization distribute-sub: -(x-y) \longmapsto (y-x)
  apply simp
  using val-distribute-sub apply simp
 using unfold-binary unfold-unary by auto
{f lemma}\ val	ext{-}xor	ext{-}self	ext{-}is	ext{-}false:
  assumes x = IntVal \ 32 \ v
 shows val[x \oplus x] \approx val[false]
 apply simp using assms by (cases x; auto)
definition wf-stamp :: IRExpr \Rightarrow bool where
  wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value v \ (stamp-expr e))
\mathbf{lemma}\ \textit{exp-xor-self-is-false} :
  assumes stamp-expr \ x = IntegerStamp \ 32 \ l \ h
 assumes wf-stamp x
 shows exp[x \oplus x] >= exp[false]
```

```
unfolding le-expr-def using assms unfolding wf-stamp-def
  {f using} \ val	ext{-}xor	ext{-}self	ext{-}is	ext{-}false \ evaltree	ext{-}not	ext{-}undef
 by (smt\ (z3)\ wf\text{-}value\text{-}def\ bin\text{-}eval.simps}(6)\ bin\text{-}eval\text{-}new\text{-}int\ constant} AsStamp.simps}(1)
evalDet
        int-signed-value-bounds new-int.simps new-int-take-bits unfold-binary un-
fold-const valid-int
     valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn)
lemma val-or-commute[simp]:
   val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
  by (simp \ add: \ or. commute) +
lemma val-xor-commute[simp]:
   val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
  by (simp\ add:\ word-bw-comms(3))
lemma exp-or-commutative:
  exp[x \mid y] \ge exp[y \mid x]
 by auto
lemma exp-xor-commutative:
  exp[x \oplus y] \ge exp[y \oplus x]
  \mathbf{by} auto
lemma OrInverseVal:
  assumes n = IntVal \ 32 \ v
 shows val[n \mid {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto) using take-bit-or
 by (metis bit.disj-cancel-right mask-eq-take-bit-minus-one)
optimization OrInverse: exp[n \mid {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                       when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using OrInverseVal unfolding wf-stamp-def
 by (smt (z3) wf-value-def constant AsStamp. simps (1) eval Det int-signed-value-bounds
    mask-eq\text{-}take\text{-}bit\text{-}minus\text{-}one\ new\text{-}int\text{-}elims\ new\text{-}int\text{-}take\text{-}bits\ unfold\text{-}const\ valid\text{-}int}
     valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn)
optimization OrInverse2: exp[{}^{\sim}n \mid n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                       when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
   using OrInverse exp-or-commutative by auto
```

```
lemma XorInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \oplus {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto)
 by (metis (no-types, opaque-lifting) bit.compl-zero bit.xor-compl-right bit.xor-self
     mask-eq-take-bit-minus-one take-bit-xor)
optimization XorInverse: exp[n \oplus {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using XorInverseVal
 \mathbf{by} \; (smt \; (verit) \; wf\text{-}value\text{-}def \; constant \\ AsStamp.simps (1) \; evalDet \; int\text{-}signed\text{-}value\text{-}bounds
       intval-xor.elims mask-eq-take-bit-minus-one new-int.elims new-int-take-bits
unfold\text{-}const
   valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn wf-stamp-def)
optimization XorInverse2: exp[(^{\sim}n) \oplus n] \longmapsto (const\ (new-int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using XorInverse exp-xor-commutative by auto
end
end
theory ProofStatus
 imports
   AbsPhase
   AddPhase
   AndPhase
   Conditional Phase
   MulPhase
   NegatePhase
   NewAnd
   NotPhase
   OrPhase
   ShiftPhase
   SignedDivPhase
   SignedRemPhase
   SubPhase
   Tactic Solving
   XorPhase
begin
declare [[show-types=false]]
print-phases
print-phases!
```

${\bf print\text{-}methods}$

 ${\bf print\text{-}theorems}$

 $\begin{array}{l} \textbf{thm} \ \ opt\text{-}add\text{-}left\text{-}negate\text{-}to\text{-}sub\\ \textbf{thm-}\textbf{oracles} \ \ AbsNegate \end{array}$

 $\textbf{export-phases} \ \langle \textit{Full} \rangle$

 \mathbf{end}