Experiment – 1

Aim: Introduction to Arduino and Tinkercad Platform.

Theory

1. Introduction to Arduino

Arduino is an Italian open-source hardware and software company, project, and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Its hardware products are licensed under a CC BY-SA license, while the software is licensed under the GNU Lesser General Public License (LGPL) or the GNU General Public License (GPL), permitting the manufacture of Arduino boards and software distribution by anyone. Arduino boards are available commercially from the official website or through authorized distributors.

2. Types of Board

Type	Board Name	Year	Price (INR) (Approx.)
Basic	Arduino Uno	2010	₹1,500 - ₹2,500
Compact	Arduino Nano	2008	₹500 - ₹1,500
Mini	Arduino Micro	2012	₹2,000 - ₹3,000
Advanced	Arduino Mega 2560	2009	₹2,500 - ₹4,000
Wi-Fi Enabled	Arduino Uno Wi-Fi Rev 2	2018	₹3,000 - ₹4,500
IoT	Arduino MKR1000	2016	₹2,500 - ₹4,000
Low Power	Arduino Pro Mini	2005	₹300 - ₹800
Wearable	Arduino Lilypad	2007	₹1,500 - ₹2,500
Industrial	Arduino Portenta H7	2020	₹9,000 - ₹12,000
ESP-based	Arduino Nano 33 IoT	2019	₹2,500 - ₹3,500

3. Components Of Arduino Uno

Component	Description		
Microcontroller	ATmega328P - 8-bit AVR microcontroller		
Operating Voltage	5V		
Input Voltage (Recommended)	7-12V		
Input Voltage (Limits)	6-20V		
Digital I/O Pins	14 (6 PWM)		
Analog Input Pins	6		
PWM Pins	6 (3, 5, 6, 9, 10, 11)		
Flash Memory	32 KB (0.5 KB used by bootloader)		
SRAM	2 KB		
EEPROM	1 KB		
Clock Speed	16 MHz		
USB Interface	ATmega16U2 (for USB-to-Serial communication)		
Communication	UART, I2C, SPI		
DC Current per I/O Pin	40 mA		
DC Current for 3.3V Pin	50 mA		
Voltage Regulator	5V and 3.3V (from onboard regulator)		

Power Connector	Barrel Jack and Vin Pin
LED Indicators	Power (ON), TX/RX, and Pin 13 LED
Reset Button	Yes
Board Dimensions	68.6 mm × 53.4 mm

4. Pin diagram of Arduino Uno

5. Introduction to Tinkercad

Tinkercad is a free-of-charge, online 3D modeling program that runs in a web browser. Since it became available in 2011 it has become a popular platform for creating models for 3D printing as well as an entry-level introduction to constructive solid geometry in schools.

It is widely used by beginners, students, and hobbyists to create and simulate electronic circuits, including Arduino projects, without needing physical components. The platform provides an easy-to-use, drag-and-drop interface, making it accessible even for those with no prior experience in CAD (Computer-Aided Design). Tinkercad also supports block-based coding and text-based programming, allowing users to write and test Arduino code directly. Since it runs entirely in a web browser, no additional software installation is required, making it convenient for learning and prototyping.

6. Getting Started with Arduino on Tinkercad

Step 1: Sign Up & Log In

• Visit Tinkercad and create a free account or log in if you already have one.

Step 2: Access Circuits

- On the Tinkercad dashboard, click on "Circuits" from the left sidebar.
- Click "Create New Circuit" to start a new project.

Step 3: Add Arduino Board

• In the components panel, search for "Arduino Uno" and drag it onto the workspace.

Step 4: Add Components

• Search for additional components like LEDs, resistors, buttons, sensors, or motors, and place them in the circuit.

Step 5: Connect Components

- Use wires to connect the components properly.
- Ensure the correct power (5V, GND) and signal connections are made.

Step 6: Write & Upload Code

- Click on the "Code" button at the top.
- Choose "Blocks + Text" mode for visual programming or "Text" for writing Arduino code in C++.
- Write or modify the existing Arduino sketch (code).

Step 7: Simulate the Circuit

- Click the "Start Simulation" button to test your circuit.
- Observe how components behave and check for errors.

Step 8: Debug & Improve

- If the circuit isn't working as expected, check connections, code, and component values.
- Modify the setup or code as needed.

Step 9: Save & Share

- Click on "Save" to store your project.
- You can also share the project with others using a link.

Conclusion

Both Tinkercad and Arduino are powerful tools that help beginners and professionals explore electronics and programming. Arduino provides a hands-on experience with microcontrollers, making it ideal for building real-world projects like robotics, home automation, and IoT applications. On the other hand, Tinkercad offers a virtual simulation platform, allowing users to design, test, and debug circuits without needing physical hardware.