Лабораторная работа 1.2.2 Экспериментальная проверка закона вращательного движения на крестообразном маятнике

1 Аннотация

1.1 Цель работы

Экспериментально проверить уравнение (1), получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

1.2 Используемые приборы

В работе используется крестообразный «маятник» (рис. 2), перегрузки разной массы, установка с датчикам и компьютер, с помощью которого происходит управление.

1.3 Ожидаемые результаты

Убедимся в справедливости соотношения (1), на основе экспериментальных данных получим зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил. Проанализируем влияние на результаты сил трения в оси.

2 Теоретические сведения

Закон вращательного движения:

$$\hat{I}\ddot{\varphi} = \vec{M}$$
, где $\ddot{\varphi} \equiv \dot{\omega} \equiv \vec{\beta}$, $\vec{M} = \sum_{i} \overset{\rightarrow}{M_{i}}$ (1)

На маятник действуют два момента сил: силы натяжения нити $M_T: M_T = rT$, где r - радиус шкива и момент силы трения $M_{\rm TP}$ СилуT выразим из уравнения движения платформы:

$$(m_{\text{\tiny II}} + m_{\text{\tiny F}})\beta r = (m_{\text{\tiny II}} + m_{\text{\tiny F}})q - T \implies M_T = (m_{\text{\tiny II}} + m_{\text{\tiny F}})r(q - \beta r),$$

где m_{π} – масса платформы, m_{Γ} – масса грузика. Пусть $m_H=(m_{\pi}+m_{\Gamma})$ Откуда согласно основному уравнению вращательного движения :

$$(I + m_H r^2)\beta = m_H gr - M_{\rm TP}$$

Рассмотрим момент силы трения. Его зависимость от скорости не ясна, однако может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение), так и составляющую, пропорциональную угловой скорости вращения (вязкое трение). Учитывая, что сила

Рис. 1: Крестообразный маятник Обербека

реакции уравновешенного маятника равна $N=m_{\scriptscriptstyle \rm M}g+T\approx (m_{\scriptscriptstyle \rm M}+m_{\scriptscriptstyle \rm H})g\approx m_{\scriptscriptstyle \rm M}g$, где $m_{\scriptscriptstyle \rm M}$ – масса маятника. Тогда:

$$M_{\rm TP} \simeq \left(1 + \frac{m_H}{m_M}\right) M_0 + \eta \omega \approx M_0 + \eta \omega$$

где M_0 - момент сил трения для покоящегося маятника при нулевой массе подвеса, m_M - масса маятника

Для расчета момента инерции системы, предположим, что грузы m_i имеют форму полых цилиндров, внутренний и внешний радиус которых известен, образующая h

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2)$$
 (2)

где I_0 - момент инерции системы без грузов, R_i - расстояние от центров масс грузов до оси вращения

$$I_i = \frac{1}{12}m_i h^2 + \frac{1}{4}m_i (a_1^2 + a_2^2)$$

– момент инерции груза относительно оси, проходящей через его центр масс.

Используемые приближения:

$$m_{\scriptscriptstyle \mathrm{M}} \gg m_{\scriptscriptstyle \mathrm{H}}$$
 $m_{\scriptscriptstyle \mathrm{H}} r^2 \ll I \implies M_{\scriptscriptstyle \mathrm{H}} pprox m_{\scriptscriptstyle \mathrm{H}} gr \implies T pprox m_{\scriptscriptstyle \mathrm{H}} g$

3 Методика измерений

В работе предлагается провести следующие измерения

- 1. Исследовать вращательное движение маятника под действием различных перегрузков при постоянном моменте инерции системы I (положения R_i грузов фиксированы). Результатом будет зависимость начального углового ускорения β_0 от массы нагрузки $m_{\rm H}$, откуда может быть определён момент инерции системы и минимальный момент силы трения.
- 2. Затем предлагается изучить вращательное движение маятника при различных значениях момента инерции системы (фиксирована масса $m_{\rm H}$. Момент инерции можно варьировать, изменяя расстояния R_i центров масс грузов от оси вращения. Измеренные значения I сравниваются с расчетными.

Балансировка маятника Для проверки зависимостей необходимо, чтобы маятник был уравновешен – то есть его центр масс оси вращения. Несбалансированность приводит к следующим эффектам: во-первых, появляется зависимость момента силы тяжести от угла поворота маятника; во-вторых, возникают дополнительные пульсации силы реакции N из-за центростремительного ускорения центра масс) и, следовательно, момента силы трения в подшипниках $M_{\rm Tp}$. Оба фактора могут привести к существенному отклонению от линейной зависимости измеряемой функции $\beta(\omega)$.

4 Используемое оборудование

В работе используется крестообразный маятник, состоит из четырех тонкий стержней, перпендикулярных друг другу, укрепленных на втулке. Втулка и два шкива насажены на общую ось, вся система благодаря подшипникам может вращаться вокруг горизонтальной оси. Установка позволяет автоматически фиксировать моменты прохождения концов стержня через датчик.

Погрешности:

Погрешность измерений определяются по компьютеру. Погрешность штангенциркуля 0.5 мм.

5 Результаты измерений и обработка данных

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,337	0,0056	-0,009	0,0053
0,3779	0,0052	-0,0014	0,0048
0,3533	0,0064	-0,01057	0,0061
0,3561	0,0057	-0,0070	0,0054

Таблица 1: $\beta_0(\omega)$ при m=42.5 г

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,8008	0,0056	-0,01442	0,0035
0,7984	0,0024	-0,0141	0,0015
0,777	0,0027	-0,01359	0,0017
0,7921	0,0036	-0,0140	0,0022

Таблица 2: $\beta_0(\omega)$ при m=79.0 г

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
1,162	0,0051	-0,01976	0,0026
1,144	0,0023	-0,02033	0,0027
1,133	0,0025	-0,01943	0,0023
1,1463	0,0033	-0,0198	0,0025

Таблица 3: $\beta_0(\omega)$ при m=106.1 г

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
1,561	0,0035	-0,009	0,0015
1,524	0,0029	-0,0014	0,0015
1,572	0,003	-0,01057	0,0021
1,5523	0,0031	-0,0070	0,0017

Таблица 4: $\beta_0(\omega)$ при m=143.2 г

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
1,996	0,0028	-0,01998	0,0011
2,034	0,0025	-0,02001	0,0014
1,988	0,0029	-0,01989	0,0016
2,0060	0,0027	-0,0200	0,0014

Таблица 5: $\beta_0(\omega)$ при m=179 г

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,9753	0,0031	-0,01281	0,0017
0,9602	0,0059	-0,01191	0,0033
0,9698	0,0035	-0,01235	0,0026
0,9684	0,0042	-0,0124	0,0025

Таблица 6: $\beta_0(\omega)$ при m=143.2г и $R=10,\!4$ см

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,8033	0,0036	-0,01149	0,0036
0,8145	0,0024	-0,01163	0,0032
0,8067	0,0033	-0,01139	0,0029
0,8082	0,0031	-0,0115	0,0032

Таблица 7: $\beta_0(\omega)$ при m=143.2г и R=15.9 см

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,6451	0,0028	-0,0105	0,0018
0,6634	0,0024	-0,0097	0,0021
0,6311	0,0031	-0,0111	0,0023
0,6465	0,0028	-0,0104	0,0021

Таблица 8: $\beta_0(\omega)$ при m=143.2г и R=17.1 см

β_0, c^{-2}	$\Delta \beta, c^{-2}$	k, c^{-1}	$\Delta k, c^{-1}$
0,8683	0,0059	-0,02252	0,0035
0,9214	0,0067	-0,02882	0,0043
0,89485	0,0063	-0,02567	0,0039

Таблица 9: $\beta_0(\omega)$ пустой установки

При проведении эксперимента пустая платформа приходила в движение, когда дополнительная масса равнялась $m=6.7~{\mbox{\sc r}}$

$$M_0 = (m_{\text{платформы}} + m)gr = 2.01 \pm_0 .01 \text{ мH} \cdot \text{м}^2$$

Построим график β_0 ($M_{\text{трения}}$):

Зависимость углового ускорения от момента силы натяжения

По графику определим коэффициент наклона $k \approx 69.59 \text{ рад/(H} \cdot \text{м} \cdot \text{c}^2), b = 0.1499 \text{ рад/c}^2$. Тогда

$$\begin{split} I &= \frac{1}{k} \approx 14{,}37 \text{ } \Gamma \cdot \text{m}^2 \\ M_0 &= -b \cdot I \approx 2{,}15 \text{ } \text{mH} \cdot \text{m}^2 \\ \varepsilon_I &\approx 0{,}023\% \\ I &= 14{,}37 \pm 0{,}32\Gamma \cdot \text{m}^2 \\ \varepsilon_{M_0} &= \varepsilon_I + \varepsilon_{\beta_0} \implies \Delta M_0 = 0{,}06 \text{ } \text{mH} \cdot \text{m}^2 \implies M_0 = 2{,}15 \pm 0{,}06 \text{ } \text{mH} \cdot \text{m}^2 \end{split}$$

Построим график $I(R^2)$:

Получили значение из графика b=17,1 г·м². По формуле (2) вычислим слагаемое $\sum_{i=1}^4 (I_i+m_iR_i^2)$. Поскольку $\forall i,j\in \{1,2,3,4\}$ $R_i\approx R_j$, поэтому $\sum_{i=1}^4 (I_i+m_iR_i^2)\approx 4I_1$.

$$\frac{1}{12}m_1h^2 + \frac{1}{4}m_1(a_1^2 + a_2^2) \approx 7.5 \cdot 10^{-5} \ll b \implies I_0 \approx b = 17.1 \text{ } \Gamma \cdot \text{M}^2$$
$$\varepsilon_{I_0} = \Delta I \approx 0.021 \text{ } \Gamma \cdot \text{M}^2 \implies I_0 = 17.1 \pm 0.021 \text{ } \Gamma \cdot \text{M}^2$$

По формуле $I_0 = \frac{m_{\pi}gr - M_0}{\beta_0}$:

$$I_0 = 17,71 \pm 0,35 \ \Gamma \cdot \text{м}^2$$

6 Обсуждение результатов

В эксперименте были получены неточные результаты (так, значения I_0 и M_0 не совпадают по двум различным способам их измерения). Мы пришли к неверным результатам, поскольку наш маятник не был хорошо сбалансирован. Из-за этого у системы появился дополнительный момент сил, о котором мы можем понять по тому, что значения для I_0 и M_0 , которые получены без использования углового ускорения, которое меняется из-за разбалансировки, больше, чем те, которые использовали зависимость с угловым ускорением. В качестве решения такого вида разбалансировки предлагается ввести эффективный момент инерции пустой установки $I^* = I_0 + I$. Тогда, не меняя расположение грузов, мы сможем учесть нескомпенсированный момент сил и получить результаты соответствующие ожидаемым по точности. В качестве альтернативы предлагается использовать опыт и способности других студентов, которые смогли хорошо сбалансировать маятник и не разбалансировать его в процессе работы.

Стоит отметить, что разбалансировка, которая была у нашего маятника, была незначительна на тех, границах диапазона моментов сил, на котором проводились эксперименты, и, кроме того имела постоянный характер воздействия, поэтому на полученных графиках мы можем построить прямую в пределах рассчитанных погрешностей и подтвердить характер зависимостей, которые хотели доказать.

7 Вывод

- 1. Мы попытались ввести маятник в безразличное положение равновесие, однако, в силу неаккуратности, не смогли зафиксировать маятник в сбалансированном состоянии. Мы выбрали положение, которое на наш взгляд было наиболее близко к положению безразличного равновесия, которое мы намеревались достигнуть, и записали значения R_i
- 2. Оценили момент силы трения в подшипниках. Для этого мы выбирали грузы различных масс и нашли такой, начиная с которого платформа начинает опускаться. Таким образом нашли M_0 первым способом.

- 3. Познакомились с расчетно-измерительной системой Kinematic, научились делать измерения и получать выходные данные с помощью неё
- 4. Измерили для одного и того же положения грузов угловое ускорение для грузов различных масс в диапазоне от 20г до 200г, построили график $\beta(M_{\text{трения}})$, и получили M_0 вторым способом и момент инерции установки I. M_0 измеренные разными способами не совпадают в пределах погрешностей, однако отличаются лишь на 6.5%.
- 5. Измерили угловые ускорения для одного и того же груза, но разных положений грузов на маятнике. Используя результаты предыдущего пункта посчитали моменты инерции и построили график $I(R^2)$. По нему определили момент инерции пустой установки I_0 первым способом.
- 6. Измерили угловое ускорение ускорение пустой установки вторым способом. Данные значения также не совпали в пределах погрешностей, но отличаются незначительно -3,4%.
- 7. Поразмышляли о том, почему мы получили такие результаты.