Sprint Planning and Delivery Optimization Model (SCRUM Domain)

Generated by Assistant

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

- $\mathcal{P} = \text{Projects}$ (Entity: Project)
- $\mathcal{T} = \text{Teams} (\text{Entity: Team})$
- W = Workers (Entity: Worker)
- $\mathcal{F} = \text{Features}$ (Entity: Feature)
- S = Skills (Entity: Skill)
- $\mathcal{R} = \text{Roles} (\text{Entity: Role})$
- PO = Product Owners (Entity: ProductOwner)
- SM = Scrum Masters (Entity: ScrumMaster)
- PB = Product Backlogs (Entity: ProductBacklog)
- SP = Sprints (Entity: Sprint)
- SPP = Sprint Plannings (Entity: SprintPlanning)
- $\mathcal{DS} = \text{Daily Scrums}$ (Entity: DailyScrum)
- SR = Sprint Reviews (Entity: SprintReview)
- SRE = Sprint Retrospectives (Entity: SprintRetrospective)
- SBL = Sprint Backlogs (Entity: SprintBacklog)
- SG = Sprint Goals (Entity: SprintGoal)
- $\mathcal{E} = \text{Epics}$ (Entity: Epic)
- US = User Stories (Entity: UserStory)
- TSK = Tasks (Entity: Task)
- $\mathcal{DEV} = \text{Development Snapshots}$ (Entity: DevelopmentSnapshot)
- $\mathcal{BL} = \text{Blockers}$ (Entity: Blocker)
- SH = Stakeholders (Entity: Stakeholder)
- VEL = Velocities (Entity: Velocity)
- \mathcal{REP} = Release Plans (Entity: ReleasePlan)
- $\mathcal{RM} = \text{Roadmaps}$ (Entity: Roadmap)
- SCB = Scrum Boards (Entity: ScrumBoard)
- \mathcal{FED} = Feature Documentations (Entity: FeatureDocumentation)

Relationship-induced index maps (from Relationships.csv).

- $U(s) \subseteq \mathcal{US}$: user stories contained in epic $s \in \mathcal{E}$ (R9).
- $K(u) \subseteq TSK$: tasks belonging to user story $u \in US$ (R10).
- $B(u) \subseteq \mathcal{SBL}$: sprint backlogs that include user story u (R11).
- $S(sp) \in \mathcal{SBL}$: the sprint backlog of sprint sp (R12).
- $G(sp) \in \mathcal{SG}$: the goal pursued by sprint sp (R13).
- $L(scb) \subseteq TSK$: tasks on scrum board scb (R14).
- $D(sp) \in \mathcal{DEV}$: snapshot generated by sprint sp (R22).
- $H(\text{rep}) \subseteq \mathcal{F}$: features planned in release plan rep (R20).

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}.$
- $po \in \mathcal{PO}, sm \in \mathcal{SM}, pb \in \mathcal{PB}, sp \in \mathcal{SP}.$
- spp $\in SPP$, $ds \in DS$, $sr \in SR$, $sre \in SRE$.
- $\mathrm{sbl} \in \mathcal{SBL}, g \in \mathcal{SG}, e \in \mathcal{E}, u \in \mathcal{US}, k \in \mathcal{TSK}.$
- $d \in \mathcal{DEV}, b \in \mathcal{BL}, sh \in \mathcal{SH}, v \in \mathcal{VEL}, rep \in \mathcal{REP}, rm \in \mathcal{RM}, scb \in \mathcal{SCB}, fed \in \mathcal{FED}.$

Data parameters from Entities.csv (attributes).

- $\operatorname{sp}(u) \in \mathbb{Z}_{>0}$: story points of user story u (UserStory.story_points).
- $\operatorname{stat}^{US}(u) \in \{0,1\}$: eligibility/status mask for user story u (UserStory.status).
- eff(k) $\in \mathbb{Z}_{\geq 0}$: effort of task k (Task.effort); type(k) is its type.
- $\operatorname{stat}^{TSK}(k) \in \{0,1\}$: task status mask (1 = allowed).
- $sev(b) \in \mathbb{Z}_{>0}$: blocker severity (Blocker.severity); $act(b) \in \{0,1\}$ active mask.
- $\operatorname{prio}(f) \in \mathbb{Z}_{>0}$: feature priority (Feature.priority).
- $rel(sh) \in \mathbb{Z}_{\geq 0}$: stakeholder relevance to feature (Stakeholder.relevance_to_feature).
- $\inf(sh) \in \mathbb{Z}_{>0}$: stakeholder influence (Stakeholder.influence_level).
- $ach(g) \in [0,1]$: sprint goal achievement status (SprintGoal.achievement_status).
- $\overline{SP} \in \mathbb{Z}_{>0}$: reference average story points (Velocity.avg._story_points).
- $nb(pb) \in \mathbb{Z}_{>0}$: number of entries in product backlog (ProductBacklog.number_of_entries).
- bud $(p) \in \mathbb{R}_{\geq 0}$: project budget (Project.budget).
- $tst(d) \in [0,1]$: snapshot test status (DevelopmentSnapshot.test_status).
- avail $(w) \in \mathbb{R}_{>0}$: worker availability fraction (Worker.availability).

3 3. Goals

We aggregate the multiple goals from Goals.csv via a weighted-sum objective. Let w_i denote each goal's weight. For goals of type max, we minimize the negative of their measure.

Decision variables (used by goals/constraints). See Section 5 for domains; here we recall symbols:

$$x_u \in \{0,1\} \ \forall u \in \mathcal{US}; \quad x_k \in \{0,1\} \ \forall k \in \mathcal{TSK}; \quad z_f \in \{0,1\} \ \forall f \in \mathcal{F}; \quad y_{w,k} \in \{0,1\} \ \forall w \in \mathcal{W}, k \in \mathcal{TSK};$$
$$s^{SP}, s^{CAP}, e^{BUF} \in \mathbb{Z}_{\geq 0}; \quad b_b \in \{0,1\} \ \forall b \in \mathcal{BL}; \quad v^{TGT}, a^{COV}, r^{RISK} \in [0,1]; \quad p^{TH} \in \mathbb{Z}_{\geq 0}.$$

Objective

where $\text{TotEff(sbl)} := \sum_{k \in L(scb): scb \leftrightarrow \text{sbl}} \text{eff}(k) x_k$ is the total effort represented for a sprint backlog via its scrum board (R14,R12). Weights (w_i) come from Goals.csv.

Goal items (IDs, Names, representations).

- G0 (minimize_total_story_points): $\min \sum_{u} \operatorname{sp}(u) x_u$
- G1 (minimize_total_task_effort): min $\sum_k \operatorname{eff}(k) x_k$
- G2 (maximize_sprint_goal_achievement): $\max \sum_{g} \operatorname{ach}(g) \equiv \min \sum_{g} \operatorname{ach}(g)$
- G3 (maximize_average_velocity): $\max \overline{SP} \equiv \min -\overline{SP}$
- G4 (minimize_open_blocker_severity): $\min \sum_b \text{sev}(b) \operatorname{act}(b) (1 b_b)$
- G5 (minimize_product_backlog_size): $\min \sum_{pb} \operatorname{nb}(pb)$
- G6 (maximize_stakeholder_relevance): $\max \sum_{sh} \operatorname{rel}(sh) \equiv \min \sum_{sh} \operatorname{rel}(sh)$
- G7 (minimize_project_budget): $\min \sum_{p} \text{bud}(p)$
- G8 (maximize_test_status): $\max \sum_{d} tst(d) \equiv \min \sum_{d} tst(d)$
- G9 (maximize_team_availability): $\max \sum_{w} \operatorname{avail}(w) \equiv \min \sum_{w} \operatorname{avail}(w)$
- G10 (minimize_sprint_backlog_total_effort): $\min \sum_{sbl} TotEff(sbl)$
- G11 (maximize_feature_priority_delivery): $\max \sum_f \operatorname{prio}(f) z_f \equiv \min \sum_f \operatorname{prio}(f) z_f$

4 4. Conditions

Let M be a sufficiently large constant (Big-M) when needed. The following constraints implement Conditions.csv and respect Relationships.csv.

Feasibility, selection, and linkage

- Link tasks to user stories (R10): $\forall u \in \mathcal{US}, \ \forall k \in K(u): \ x_k \leq x_u.$
- Sprint capacity (definition):

$$s^{SP} = \sum_{u \in \mathcal{US}} \operatorname{sp}(u) x_u, \qquad \sum_{k \in \mathcal{TSK}} \operatorname{eff}(k) x_k \le s^{CAP} + e^{BUF}.$$

- Task assignment feasibility: $\forall k \in TSK : \sum_{w \in W} y_{w,k} = x_k$.
- Worker availability limit: $\forall w \in \mathcal{W} : \sum_{k \in \mathcal{TSK}} \text{eff}(k) \ y_{w,k} \leq \text{AvailEff}(w)$, where AvailEff(w) is derived from Worker.availability.
- Release-feature link (R20): $\forall f \in \mathcal{F} : z_f \leq 1\{f \in H(\text{rep})\}.$

Condition items (IDs, Names, representations)

- C0 (user_stories_must_be_ready): $\forall u: x_u \leq \text{stat}^{US}(u)$ (must-match readiness mask).
- C1 (tasks_cannot_be_blocked): $\forall k: x_k \leq \operatorname{stat}^{TSK}(k)$ (cannot select blocked tasks).
- C2 (only_available_workers): $\forall w : \sum_k \text{eff}(k) y_{w,k} \leq \text{AvailEff}(w)$.
- C3 (sprint_goal_may_match): prefer higher ach(g) via objective (soft preference; no hard constraint).
- C4 (blockers_must_be_low_severity): $\forall b: \sec(b) > \tau^{BL} \Rightarrow b_b = 0$; equivalently $b_b \leq \mathbf{1}\{\sec(b) \leq \tau^{BL}\}.$
- C5 (features_may_match_high_priority): soft preference by objective; optionally enforce $z_f = 0$ if $\text{prio}(f) < p^{TH}$.
- C6 (product_backlog_status_must_match): $\forall pb$: stat^{PB}(pb) = 1 required; infeasible otherwise (data pre-filter).
- C7 (sprint_status_must_match): $\forall sp : stat^{SP}(sp) = 1$ required; else no planning on that sprint.
- C8 (dev_snapshot_must_match_test_status): $\forall d : tst(d) \ge a^{COV}$.
- C9 (stakeholder_may_match_high_influence): soft preference by objective using infl(sh).
- C10 (sprint_backlog_status_must_match): \forall sbl : stat^{SBL}(sbl) = 1 precondition to commit tasks.
- C11 (task_type_cannot_match_excluded): $\forall k: 1\{\text{type}(k) \in \mathcal{X}^{EXCL}\} = 1 \Rightarrow x_k = 0.$

Additional structure from relationships

- Blockers on tasks (R16): If task k is blocked by any $b \in \mathcal{BL}$ not resolved in sprint, then $x_k \leq b_b$ for each linked blocker; equivalently $x_k \leq \min_{b \in \mathcal{B}(k)} b_b$.
- Sprint backlog linkage (R11,R12): User stories planned for sprint backlog sbl satisfy $x_u \le 1\{u \in \text{sbl}\}\$ and sbl = S(sp) for the active sprint.

5 5. DecisionVariables

- DV0 (x_us_selected): $x_u \in \{0,1\}$ for $u \in \mathcal{US}$ select user story in sprint.
- DV1 (x_task_selected): $x_k \in \{0,1\}$ for $k \in \mathcal{TSK}$ select task in sprint backlog.
- DV2 (z_feature_in_release): $z_f \in \{0,1\}$ for $f \in \mathcal{F}$ include feature in release plan.
- DV3 (y_worker_task_assignment): $y_{w,k} \in \{0,1\}$ assign worker w to task k.
- DV4 (s_story_points_committed): $s^{SP} \in \mathbb{Z}_{\geq 0}$ total committed story points (min 0, max by data).
- DV5 (s_sprint_capacity): $s^{CAP} \in \mathbb{Z}_{\geq 0}$ estimated capacity in story points (bounded by team velocity).
- DV6 (e_effort_buffer): $e^{BUF} \in \mathbb{Z}_{\geq 0}$ buffer for unplanned work.
- DV7 (b_blocker_resolved): $b_b \in \{0,1\}$ for $b \in \mathcal{BL}$ resolve blocker in sprint.
- DV8 (v_target_velocity): $v^{TGT} \in \mathbb{R}_{\geq 0}$ planning target velocity.
- DV9 (a_test_coverage_target): $a^{COV} \in [0,1]$ minimum acceptable test/snapshot status.
- DV10 (p_priority_threshold): $p^{TH} \in \mathbb{Z}_{\geq 0}$ cutoff priority for features/stories.
- DV11 (r_risk_tolerance): $r^{RISK} \in [0, 1]$ allowable normalized risk level.

Model type. With the above binary/integer/continuous variables and linear expressions, the model is a Mixed-Integer Linear Program (MILP). Weighted multi-objective handling is via scalarization in Section 3.