Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$m = m_1 + m_2$
	$E_A = E_{c_A} + E_{p_A} = E_{p_A}$
	$E_{p_A} = m \cdot g \cdot h$
	Rezultat final: $E_A = 2000J$
b.	
	$E_B = E_A - \left L_{F_t} \right $
	$egin{aligned} E_{\mathcal{B}} &= E_{\mathcal{A}} - \left L_{F_f} ight \ \left L_{F_f} ight &= F_f \cdot \ell \end{aligned}$
	$\ell = \frac{h}{\sin \alpha} = \ AB\ $
	$F_f = \mu \cdot m \cdot g \cdot \cos \alpha$
	Rezultat final: $E_B = 1000J$
C.	
	$\frac{m \cdot v_B^2}{2} = m \cdot g \cdot h - \mu \cdot m \cdot g \cdot \ell \cdot \cos \alpha$
	$v_B = \sqrt{2 \cdot g(h - \mu \cdot \ell \cdot \cos \alpha)} = \sqrt{2 \cdot g \cdot h(1 - \mu \cdot ctg\alpha)}$
	Rezultat final: $v_B = 5\sqrt{2}m/s \cong 7,07m/s$
d.	
	$-L_{f_{orizontal ilde{a}}} = E_{B}$
	$\mu \cdot m \cdot g \cdot d = \frac{m \cdot v_B^2}{2} \Rightarrow d = \frac{v_B^2}{2 \cdot \mu \cdot g}$
	$d = \left(\frac{h}{\mu} - \ell \cdot \cos \alpha\right) = h \left(\frac{1}{\mu} - ctg\alpha\right)$
	Rezultat final: $d = 5\sqrt{3}m$