A Mixture of h-1 Heads is Better than h Heads

Hao Peng♠ Roy Schwartz♦♠ Dianqi Li♣ Noah A. Smith♦♠

♦ Allen Institute for Artificial Intelligence

- ◆Paul G. Allen School of Computer Science & Engineering, University of Washington
- ♣Department of Electrical & Computer Engineering, University of Washington

{hapeng, roysch, nasmith}@cs.washington.edu, dianqili@uw.edu

 $\widetilde{\mathbf{H}}_i = \operatorname{softmax}\left(\mathbf{X}\mathbf{Q}_i\mathbf{K}_i^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\right)\mathbf{X}\mathbf{V}_i,$

 $\mathbf{Z} \triangleq \text{MultiHead}(\mathbf{X}) = \left[\widetilde{\mathbf{H}}_1; \dots; \widetilde{\mathbf{H}}_h\right] \mathbf{W}$

```
(0): BertLayer(
 (attention): BertAttention(
   (self): BertSelfAttention(
      (query): Linear(in_features=1024, out_features=1024, bias=True)
     (key): Linear(in_features=1024, out_features=1024, bias=True)
     (value): Linear(in_features=1024, out_features=1024, bias=True)
      (dropout): Dropout(p=0.1, inplace=False)
   (output): BertSelfOutput(
     (dense): Linear(in_features=1024, out_features=1024, bias=True)
     (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
     (dropout): Dropout(p=0.1, inplace=False)
  (intermediate): BertIntermediate(
    (dense): Linear(in_features=1024, out_features=4096, bias=True)
  (output): BertOutput(
   (dense): Linear(in_features=4096, out_features=1024, bias=True)
   (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
```

tion into following sections. Let $\mathbf{H}_i = \widetilde{\mathbf{H}}_i \mathbf{W}_i$, where \mathbf{W}_i is a block submatrix of \mathbf{W} , i.e., $\mathbf{W} = [\mathbf{W}_1^\top; \mathbf{W}_2^\top, \dots; \mathbf{W}_h^\top]^\top$. Then

$$\mathbf{Z} = \left[\widetilde{\mathbf{H}}_1; \dots; \widetilde{\mathbf{H}}_h\right] \mathbf{W} = \sum_{i=1}^h \mathbf{H}_i.$$
 (4)

mixture-of-experts (MoE)

A mixture-of-experts perspective. Let us take a closer look at Eq. 4 and rewrite it:

$$\mathbf{Z} = \frac{1}{h-1} \sum_{i=1}^{h} (-1+h) \mathbf{H}_{i}$$

$$= \frac{1}{h-1} \left(-\sum_{i=1}^{h} \mathbf{H}_{i} + \sum_{i=1}^{h} \sum_{j=1}^{h} \mathbf{H}_{j} \right)$$

$$= \sum_{i=1}^{h} \frac{1}{h} \underbrace{\frac{h}{h-1} \left(-\mathbf{H}_{i} + \sum_{j=1}^{h} \mathbf{H}_{j} \right)}_{\text{expert } \mathbf{f}_{i} \left(\mathbf{X}; \boldsymbol{\theta}_{i} \right)}.$$
(5)

A mixture-of-experts perspective. Let us take a closer look at Eq. 4 and rewrite it:

$$\mathbf{Z} = \frac{1}{h-1} \sum_{i=1}^{h} (-1+h) \mathbf{H}_{i}$$

$$= \frac{1}{h-1} \left(-\sum_{i=1}^{h} \mathbf{H}_{i} + \sum_{i=1}^{h} \sum_{j=1}^{h} \mathbf{H}_{j} \right)$$

$$= \sum_{i=1}^{h} \underbrace{\frac{1}{h}}_{\text{gate } g_{i}} \underbrace{\frac{h}{h-1} \left(-\mathbf{H}_{i} + \sum_{j=1}^{h} \mathbf{H}_{j} \right)}_{\text{expert } \mathbf{f}_{i}} (\mathbf{X}; \boldsymbol{\theta}_{i})$$
(5)

Uniform => Gate (MLP+Softmax, condition on INPUT)

$$\sum_{i=1}^{h} g_i(\mathbf{X}; \boldsymbol{\phi}) \cdot \mathbf{f}_i(\mathbf{X}; \boldsymbol{\theta}_i).$$

替换了Transformer Encoder/Decoder所有self-attention 所有block有自己用于控制Gate的MLP,参数量大概上升3%~5% 如果直接training,gate会逐渐收敛到uniform => Training in an interleaving way Dropout?

Algorithm 1 A G step update for MAE, with step size η .

```
1: procedure MAEG(X)

2: \mathbf{Z} \leftarrow \sum_{i=1}^{h} g_i(\mathbf{X}; \boldsymbol{\phi}) \cdot \mathbf{f}_i(\mathbf{X}; \boldsymbol{\theta}_i)

3: Forwardprop with \mathbf{Z} and calculate \mathcal{L}.

4: Calculate \nabla_{\boldsymbol{\phi}} \mathcal{L} with backprop.

5: \boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\phi}} \mathcal{L}.

6: end procedure
```

Algorithm 3 Block coordinate descent (BCD) training for MAE, at epoch e. \mathcal{D} denotes the training data.⁸

```
1: procedure BCD(\mathcal{D} = \{\mathbf{X}_i\}_i, e)
2: for \mathbf{X}_i \in \mathcal{D} do
3: \triangleright Take G steps every 5 epochs.
4: if e \mod 5 = 0 then
5: MAEG(\mathbf{X}_i)
6: end if
7: \triangleright Always do F step updates.
8: MAEF(\mathbf{X}_i)
9: end for
10: end procedure
```

Algorithm 2 An F step update for MAE, with step size η .

```
1: procedure MAEF(\mathbf{X})
2: Draw i \sim \operatorname{Cat}(\mathbf{g}(\mathbf{X}; \boldsymbol{\phi}))
3: \mathbf{Z} \leftarrow \mathbf{f}_i(\mathbf{X}; \boldsymbol{\theta}_i)
4: Forwardprop with \mathbf{Z} and calculate \mathcal{L}.
5: Calculate \nabla_{\boldsymbol{\theta}_i} \mathcal{L} with backprop.
6: \boldsymbol{\theta}_i \leftarrow \boldsymbol{\theta}_i - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{\theta}_i} \mathcal{L}.
7: end procedure
```

Experiments: NMT & LM

● MAE-7: paper提出的方法,8个expert

• MAE-6: h-2的版本, 28个expert

● BASE: 最普通Seq2Seq

● NOBCD: 就是Joint, 没有block下降

● UNI-MAE-7: gate是uniform,没有特别用神经网络得到

• UNI-MAE-6

Data	Train	Dev.	Test	Vocab.
WMT14	4.5M	3K	3K	32K
IWSLT14	160K	7K	7K	9K/7K

Table 1: Some statistics for WMT14 and IWSLT14 datasets. We use separate source and target vocabularies in IWSLT14 experiments.

Model	BLEU	# Params.
Base Transformer	27.3	65M
Large Transformer	28.4	213M
BASE	27.6	61M
[‡] NOBCD	27.5	63M
†uni-Mae-7	27.7	61M
†uni-Mae-6	27.6	61M
${\dagger^{\ddagger}MAE-7}$	28.4	63M
$^{\dagger \ddagger}$ Mae-6	28.1	63M

Table 2: WMT14 EN-DE translation test performance on newstest2014. † randomly select an expert to update for each training instance, and ‡ learns a gating function to weight the experts. Transformer performance in the first two rows are due to Vaswani et al. (2017).

Experiments: NMT & LM

Model	Perplexity	# Params.	
*BASE (B&A, 2019)	18.70	247M	
BASE (B&A, 2019)	19.03	247M	
‡NOBCD	19.12	249M	
†uni-Mae-7	19.26	247M	
†‡ M AE-7	18.71	249M	

Table 4: Language modeling performance on WikiText-103 test set (lower is better). *Trains/evaluates with 3,072/2,048 context sizes and therefore not directly comparable to other models which use 512/480 sized ones. See Table 2 caption

为了证明这种ensemble看待问题的方式确实起作用

- 1. 计算gate的平均熵,发现MAE是最低的,说明它能够侧重选对应的某个expert来做。 (MAE-7 => 1.91, NOBCD => 2.02, UNI-MAE-7 => 2.08)
- 2. 看了8个expert每一个gate的平均值, 13/14/9/16/10/15/10/12%, 即不是全部 uniform, 也不是richer get richer
- 3. 如果每个layer都只使用gate最高的那个expert,而不是weighted sum

Model	BLEU	Diff.
UNI-MAE-7	26.6	-
One random expert	$25.8{\scriptstyle\pm0.2}$	$\downarrow 0.8_{\pm 0.2}$
NOBCD	26.7	-
Most specialized expert	26.0	↓ 0.7
MAE-7	27.1	-
Most specialized expert	26.8	↓ 0.3

Table 5: Performance decrease for different models on WMT14 development set when only one expert is used for each multi-head attention layer (5.1).