10 Lineare Gleichungssysteme

Definition 10.1. Ein Lineares Gleichungssystem ist ein System von m Gleichungen mit n Unbestimmten x_1, x_2, \ldots, x_n der Form

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1$$

 $a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2$
 $\vdots \qquad \vdots$

Mit Koeffizienten a_{ij} und rechter Seite $b_i \in \mathbb{R}$. Gesucht ist die Menge aller Vektoren $x \in \mathbb{R}^n$, die alle Gleichungen erfüllen. Diese Menge heißt Lösungsmenge des Linearen Gleichungssystems.

Die Koeffizienten eines Linearen Gleichungssystems können zu einer Matrix

$$A = (a_{ij})_{1 \le i \le m, 1 \le j \le n} \in \mathbb{R}^{m \times n}$$

und die rechte Seite zu dem Vektor

$$b = (b_i)_{1 \le i \le m} \in \mathbb{R}^m$$

zusammengefasst werden. Damit lässt sich das Lineare Gleichungssystem in der Matrixform $A \cdot x = b$ schreiben:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Definition 10.2. Der Rang rank(a) einer Matrix $A \in \mathbb{R}^{m \times n}$ ist die Dimension des von den Spaltenvektoren a_1, \ldots, a_n aufgespanten linearen Untterraumes.

$$rank(A) := dim (lin(a_{\cdot 1}, \dots, a_{\cdot n})).$$

Beispiel. (1)

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \lim(a_{.1}, a_{.2}, a_{.3}) = \lim(a_{.1})$$

also rank(A) = 1.

(2)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \Longrightarrow \lim(a_{.1}, a_{.2}, a_{.3}) = \lim(a_{.1})$$

also rank(A) = 2.

Bemerkung. Der Spaltenrang ist gleich dem Zeilenrang.

10.1 Elementare Umformungen und gestaffelte Form

(a) Zeilenvertauschung: vertausche zwei Zeilen k und ℓ

$$k \Leftrightarrow \ell$$

(b) Spaltenvertauschung: vertausche zwei Spalten i und j

$$x_i \Leftrightarrow x_i$$

(c) Skalierung: multipliziere Gleichung k mit beliebiger Zahl $\lambda \neq 0$

$$k \leftarrow \lambda \cdot k$$

(d) Addition: addiere Vielfaches λ von Gleichung ℓ zu Gleichung $k \neq \ell$

$$k \leftarrow k + \lambda \cdot \ell$$

Wichtig: elementare Umformungen ändern nicht die Lösungsmenge des Linearen Gleichungssystems.

Beispiel.

$$1 \cdot x + 1 \cdot y + 1 \cdot z = 1$$

$$4 \cdot x + 4 \cdot y + 3 \cdot z = 5$$

$$2 \cdot x + 1 \cdot y + 1 \cdot z = 2$$

Als Matrix:

mit elementaren Umformungen werden die ersten Koeffizienten in II und III zu 0 gemacht. Damit wird die Variable x aus II und III eliminiert.

$$\begin{array}{c|ccccc}
I & 1 & 1 & 1 & 1 \\
IV & 0 & 0 & -1 & 1 \\
V & 0 & -1 & -1 & 0
\end{array}$$

$$\begin{array}{c|cccc}
I & C & 1 & 1 & 1 & 1 \\
V & 0 & -1 & -1 & 0 \\
IV & 0 & 0 & -1 & 1
\end{array}$$

Das Lineare Gleichungssystem kann nun gelöst werden und es ergibt sich als Lösung ein Vektor:

$$\left(\begin{array}{c}1\\1\\-1\end{array}\right)$$

Definition 10.3. Eine Matrix $A \in \mathbb{R}^{m \times n}$ besitzt gestaffelte Form, falls

$$A = \begin{pmatrix} \circ & * & * & \dots & * & * & \dots & * \\ 0 & \circ & * & \ddots & * & * & \dots & * \\ 0 & 0 & \circ & * & \ddots & * & \dots & * \\ 0 & 0 & 0 & \circ & * & \ddots & * & * \\ \vdots & & & & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

wobei alle mit \circ markierten Einträge $\neq 0$ sind und alle mit * markierten Einträge beliebig sind. Dann ist rank(A) gleich der Anzahl der Zeilen mit \circ .

Bringe also Lineares Gleichungssystem mittels elementarer Umformungen in gestaffelte Form:

\tilde{x}	\tilde{x}_2			\tilde{x}_r	\tilde{x}_{r+1}	 \tilde{x}_n	b
0	*	*			*	 *	*
0	0	*		*	*	 *	*
0			٠		÷	 :	:
:	:	٠.		*	*	 *	*
:	÷		٠.,	0	*	 *	*
0	0			0	0	 0	×
:	:			:	:	:	:
0	0			0	0	 0	

- Alle mit \circ markierten Einträge sind $\neq 0$.
- Alle mit * oder × markierten Einträge sind beliebig.
- $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n$ ist die Umordnung der Variablen x_1, x_2, \dots, x_n durch Spaltenvertauschung.

Ein Lineares Gleichungssystem in gestaffelter Form besitzt

- Keine Lösungen, wenn mindestens ein mit \times markierter Eintrag $\neq 0$ ist.
- Lösungne, wenn alle mit × markierten Einträge 0 sind (oder keine Nullzeilen existieren). Die Lösungsmenge kann dann wie folgt beschrieben werden:
 - (i) Die Werte für $\tilde{x}_{r+1}, \dots, \tilde{x}_n$ können beliebig vorgegeben werden,

$$\tilde{x}_{r+1} = t_1, \dots, \tilde{x}_n = t_{n-r}, t_1, \dots, t_{n-r} \in \mathbb{R}$$

(ii) Danach können die restlichen Werte von $\tilde{x}_r, \tilde{x}_{r-1}, \tilde{x}_1$ durch Auflösen des Linearen Gleichungssystems von oben nach unten bestimmt werden.

10.2 Gauß-Jordan-Eliminationsverfahren

- 1. Bestimme ein Element $a_{ij} \neq 0$. Bringe es durch Zeilen- und Spaltenvertauschung an die erste Position der ersten Zeile.
- 2. Eliminiere in der ersten Spalte die Einträge $a_{21}, a_{31}, \ldots, a_{m1}$ durch Subtraktion des $\frac{a_{i1}}{a_{11}}$ -fachen der ersten Zeile von der *i*-ten Zeile:

$$i \leftarrow i - \frac{a_{i1}}{a_{11}} \cdot \mathbf{I}$$

Nach Abschluss des zweiten Schrittes hat das Schema zum Linearen Gleichungssystem die Form

\tilde{x}_1	\tilde{x}_2	 \tilde{x}_n	b
0	*	 *	*
0	*	 *	*
:	:	:	:
0	*	 *	*

Analysiere die Komplexität des Gauß-Jordan-Algorithmus im Einheitskostenmodell, d. h. jede elementare Rechenoperation zählt unabhängig von der Größe der beteiligten Zahlen als ein Schritt.

m Durchläufe der äußeren Schleife (für jede Zeile $i=1,\ldots,m$)

- $\mathcal{O}(mn)$ Schritte, um Pivotelement $\neq 0$ zu finden.
- $\mathcal{O}(n)$ Schritte für Zeilenvertauschung.
- $\mathcal{O}(m)$ Durchläufe der inneren Schleife (für Zeilen $j = i + 1, \dots, m$).
 - $\mathcal{O}(n)$ Schritte für Subtraktion.

Gesamtaufwand: $\mathcal{O}(m^2n)$ Schritte.