TP2 Équilibre d'une chaîne articulée

LIAO Puwei

December 18, 2020

1 Questions théoriques

1.1 Question 1

Par définition, on a $F\left(z_{k}\right)=\left(egin{array}{c} \nabla f\left(z_{k}\right)+c'\left(z_{k}\right)^{T}\lambda\\ c\left(z_{k}\right) \end{array}
ight)$

D'après la CN1 d'optimalité on a F (z^*) = 0. Donc, dès lors que zk cv z^* , on a que F(zk)cv 0. On a alors equivalence suivante :

$$||F(z_k)||_{\infty} \to 0$$

$$\Leftrightarrow \max(||\nabla_x l(x_k, \lambda_k)||_{\infty}, ||c(x_k)||_{\infty}) \to 0$$

$$\Leftrightarrow \begin{cases} ||\nabla_x l(x_k, \lambda_k)||_{\infty} \to 0 \\ ||c(x_k)||_{\infty} \to 0 \end{cases} \to 0$$

on a alors donc:

$$\begin{cases} \nabla_{x} l\left(x_{k}, \lambda_{k}\right) \to 0 \\ c\left(x_{k}\right) \to 0 \end{cases}$$

Satisfaisant asymptotiquement la CN1 sur zk, alors de plus en plus proche de z^* . On peut donc évaluer la vitesse de convergence de zk vers z^* en examinant à quelle vitesse norme de F(zk) tend vers 0. L'intérêt de norme de F(zk) par rapport à norme de zk - z est que l'on a pas besoin de connaître la limite z^* pour évaluer la convergence.

1.2 **Question 2**

Trouvez un moyen d'estimer λ_1 à partir de x1 , de telle sorte que si x1 est un point stationnaire de problème, le solveur trouve le bon λ_1 et n'itérera pas.

Soit x1 le point de départ. On a
$$F\left(x_{1}\right)=\left(\begin{array}{c}\nabla f\left(x_{1}\right)+c'\left(x_{1}\right)^{T}\lambda_{1}\\c\left(x_{1}\right)\end{array}\right)$$

2 Vérifications des chaque cas tests

2.1 Cas-test 2a

Dans ce cas la méthode converge bien, et on obtient que cette la méthode converge vers le point

$$x* = 0.13170, 0.30198, 0.50170, 0.70078, -0.68750, -1.15761, -1.38147, -1.40059$$

$$\lambda * = 0.92613, 0.71624, 0.61070, 0.61264, 0.40762$$

dans cette situation, le nombre d'itérations requis est 7 et l'information qu'on a obtenu d'après notre algorithme est 0

D'après notre calcule, le type de cette solution est un minimum, car ici on utilise $l(x,\lambda)=e(x)+\lambda^Tc(x)$

```
\begin{split} &l(x^*,\lambda) = -1.9611 \\ &l(x^*,\lambda^*) = -1.9611 \\ &l(x,\lambda^*) = -1.7969 \\ &\text{puis } l(x^*,\lambda) - l(x^*,\lambda^*) = 1.3323e - 14 > 0 \\ &\text{c'est-\`a-dire } l(x^*,\lambda^*) \leq l(x^*,\lambda) \leq l(x,\lambda^*). \end{split}
```

2.2 Cas-test 2b

Dans ce cas la méthode converge bien, et on obtient que cette la méthode converge vers le point

$$x* = 0.561132, 0.798116, 0.878543, 0.920348, 0.418486, -0.021785, -0.310803, -0.506385$$

$$\lambda* = -0.20534, -0.48621, -1.43267, -2.75622, -1.44661$$

dans cette situation, le nombre d'itérations requis est 10 et l'information qu'on a obtenu d'après notre algorithme est 0

D'après notre calcule, le type de cette solution est un minimum, car ici on utilise $l(x,\lambda)=e(x)+\lambda^Tc(x)$

$$\begin{split} &l(x^*,\lambda) = -1.9611 \\ &l(x^*,\lambda^*) = -1.9611 \\ &l(x,\lambda^*) = -1.7969 \\ &\text{puis } l(x^*,\lambda) - l(x^*,\lambda^*) = 1.3323e - 14 > 0 \\ &\text{c'est-\`a-dire } l(x^*,\lambda^*) \leq l(x^*,\lambda) \leq l(x,\lambda^*). \end{split}$$

2.3 Cas-test 2c

Dans ce cas la méthode converge bien, et on obtient que cette la méthode converge vers le point

$$x* = 0.27197, 0.54751, 0.32921, 0.50181, -0.64500, -1.06223, -0.85645, -0.95750$$

$$\lambda* = 1.28659, 1.26994, -1.60293, 2.02735, 0.70237$$

dans cette situation, le nombre d'itérations requis est 40 et l'information qu'on a obtenu d'a près notre algorithme est 0

De la même façon, le type de cette solution est un point-selle, car ici:

```
\begin{split} &l(x^*,\lambda) = -1.6111 \\ &l(x^*,\lambda^*) = -1.6111 \\ &l(x,\lambda^*) = 0.69234 \\ &\text{puis } l(x^*,\lambda) - l(x^*,\lambda^*) = -0.000000027475 < 0 \\ &\text{Donc } l(x^*,\lambda) \leq l(x^*,\lambda^*) \leq l(x,\lambda^*). \end{split}
```

2.4 Cas-test 2d

Dans ce cas la méthode ne converge pas, et on obtient le point final atteint est (x', λ') avec une itétation maximum de 100, dans ce cas on obtient :

$$x' = 0.754128, 1.881192, 3.304453, -0.317328, -0.449489, -0.785415, -1.341732, 0.076008$$

$$\lambda' = 20.8491, 22.4604, 15.0097, -4.3935, 6.2594$$

dans cette situation, le nombre d'itérations requis est 100 , car il atteint la nombre d'itération maximum, et l'information qu'on a obtenu d'après notre algorithme est 2

Par conséquent, il nous admet pas de déterminer le type de solution.

3 Evaluation de la vitesse de convergence avec la norme indiqué pour cas test 2a

Dans le cas test 2a,on a la vitesse de convergence pour tout les 7 itération sont suivantes:

$$||F(z_1)||_{\infty} = 0.55000$$

$$||F(z_2)||_{\infty} = 0.30020$$

$$||F(z_3)||_{\infty} = 0.072823$$

$$||F(z_4)||_{\infty} = 0.017632$$

$$||F(z_5)||_{\infty} = 0.00033904$$

$$||F(z_6)||_{\infty} = 0.00000048691$$

$$||F(z_7)||_{\infty} = 3.2019e - 13$$