FUNDAMENTOS DE CÁLCULO

TERCERA PRÁCTICA CALIFICADA - SOLUCIONES PROPUESTAS SEMESTRE ACADÉMICO 2022-1

Turno 1: 3 - 5 p.m.

- 1. El número N de personas contagiadas por una pandemia en un cierto país se puede modelar por $N(t) = 243 \left(\frac{4}{3}\right)^t$, donde $t \ge 0$ es el número de días transcurridos desde el día inicial.
 - a) ¿Cuál era el número de personas contagiadas en el día inicial? (1.0 p)

Solución:

N(0) = 243 personas contagiadas.

b) ¿Cuántos días transcurrieron desde el día inicial hasta tener 1024 personas contagiadas? (2.0 p)

Solución:

Deemos resolver
$$N(t) = 243 \left(\frac{4}{3}\right)^t = 1024 \iff \left(\frac{4}{3}\right)^t = \frac{1024}{243} = \iff t = \log_{4/3} \left(\frac{1024}{243}\right) = 5 \text{ días.}$$

2. Sea la función *f* definida por

$$f(x) = e^{-|x+2|}$$

a) Grafique la función f, indicando las ecuaciones de sus asíntotas (en caso existan). (2.5 p)

Solución:

$$f(x) = e^{-|x+2|} \begin{cases} e^{x+2}, & x < -2, \\ e^{-(x+2)}, & x \ge -2. \end{cases}$$

$$A : Y = 0$$

b) Indique los intervalos donde f es creciente y los intervalos donde f es decreciente. (1.0 p)

Solución:

f es creciente en $]-\infty,-2]$ y f es decreciente en $[-2,+\infty[$.

c) Halle los valores de x que cumplan la inecuación: $f(x) < \frac{1}{\rho}$. (1.5 p)

Solución:

$$e^{-|x+2|} < \frac{1}{e} \iff -|x+2| < -1 \iff |x+2| > 1 \iff x < -3 \lor x > -1.$$

3. Sea

$$f(x) = \begin{cases} \log_2(1 + e^x), & x \le 0, \\ \frac{x+2}{x+1}, & x > 0. \end{cases}$$

a) Encuentre el rango de f.

(2.0 p)

Solución:

Para el primer tramo cuando $x \le 0$, $u = 1 + e^x$ toma todos los valores en]1, 2], luego $y = \log_2(u)$ toma todos los valores en]0, 1]. Luego $Ran(f_1) =]0, 1]$.

toma todos los valores en]0,1]. Luego $Ran(f_1)=]0,1]$. Para el segundo tramo puede graficarse $y=\frac{x+2}{x+1}=1+\frac{1}{x+1}, x>0$. Este tramo es decreciente con asíntota y=1 y rango $Ran(f_2)=]1,2[$.

Finalmente $Ran(f) = Ran(f_1) \cup Ran(f_2) =]0, 2[$.

b) Justifique que la función f es inyectiva.

(1.5 p)

Solución:

El primer tramo es creciente por ser composición de funciones crecientes en el dominio dado, luego f_1 es inyectiva.

El segundo tramo es decreciente, luego f_2 es inyectiva.

Además se cumple que $Ran(f_1) \cap Ran(f_2) =]0,1] \cap]1,2[=\emptyset.$

Luego, f es inyectiva.

c) Halle la función inversa f^{-1} , indicando su dominio.

(1.5 p)

Solución:

$$f^{-1}(x) = \begin{cases} \ln(2^x - 1), & 0 < x \le 1\\ -1 + \frac{1}{x - 1}, & 1 < x < 2. \end{cases}$$

 $Dom(f^{-1}) = Ran(f) =]0, 2[.$

4. Esboce la gráfica de la región limitada por las curvas

$$\mathscr{C}: x = 1 + \sqrt{-7 - y^2 + 8y}; \quad \mathscr{L}: y = x$$

indicando las coordenadas de los puntos de intersección de \mathscr{C} con \mathscr{L} . (3.0 p)

Solución:

 \mathscr{C} es una semicircunferencia \mathscr{C} : $(x-1)^2 + (y-4)^2 = 9$, $x \ge 1$.

 \mathscr{L} es la recta que pasa por el origen.

Para hallar los puntos de intersección se resuelve el sistema

$$\left\{ \begin{array}{l} x=1+\sqrt{-7-y^2+8y} \\ y=x. \end{array} \right.$$

Resolviendo $(x-1)^2 = -7 - x^2 + 8x$, $x \ge 1 \iff x^2 - 5x + 4 = 0$, $x \ge 1$.

De donde x = 1 ó x = 4, luego como y = x los puntos son A(1,1), B(4,4).

La región pedida es

- 5. Justifique la veracidad o falsedad de las siguientes afirmaciones.
 - a) El dominio (implícito) de la función $f(x) = x^2 + |x| \log_5(-1 + e^{x+4})$ es $[-3, +\infty[$. (2.0 p)

Solución:

Falso.

$$Dom(f) = \left\{ x \in \mathbb{R} \, \wedge \, -1 + e^{x+4} > 0 \right\} = \left\{ x \in \mathbb{R} \, \wedge \, x + 4 > 0 \right\} =] - 4, + \infty[.$$

b) Si $f: \mathbb{R} \to \mathbb{R}$ es una función impar y f es creciente en $]0, +\infty[$ entonces f es creciente. (1.0 p)

Solución:

Falso.

Contraejemplo:
$$f(x) = \begin{cases} x+1, & x < 0 \\ 0, & x = 0 \\ x-1, & x > 0. \end{cases}$$

Solución:		
Falso.		
	(f+g)(x) = x+1. Cumple que f y f +	g son crecientes
g no es creciente.	, 8,00, 0 10 10 10 10 10 10 10 10 10 10 10 10 1	8
	San Migu	el, 9 de junio de 2
	J	, ,