$\begin{array}{c} \text{Matching } \mu\text{-Logic:} \\ \text{Foundation of A Unifying Programming} \\ \text{Language Framework} \end{array}$

Xiaohong Chen
PhD Final Exam
University of Illinois Urbana-Champaign
Department of Computer Science

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K
- Concluding Remarks

Programming Language Design & Implementation: State-of-the-Art

 $L \times T$ systems to develop and maintain

A Unifying Programming Language Framework

L + T systems to develop and maintain

K Semantic Framework https://kframework.org/

K has wide applications

Research Challenge: Proving the Correctness of K

- K has a large code base
 - >500k LOC in 4 programming languages
 - complex data structures, algorithms, and optimizations
- K is constantly evolving

Releases 1,049

K Framework Release v5.6.77 Latest 4 hours ago

- It's not practical to thoroughly verify the entire K.
- Main Idea: Translation Validation

Main Idea: Translation Validation

K

Matching μ -Logic: Foundation of K

A PL definition

Ethereum VM

A logical theory Γ^{EVM}

Any PL task

program execution

Interpreter

A logical theorem proved by a proof system

- $\Gamma^{\text{EVM}} \vdash t_{\text{init}} \Rightarrow_{\text{exec}} t_{\text{final}}$
- $\Gamma^{\text{EVM}} \vdash \varphi_{\text{pre}} \rightsquigarrow \varphi_{\text{post}}$

formal verification

Program Verifier

Correctness of the task

Generating the proof and checking it using a 200-LOC proof checker

correctness of any task done by any tool of any PL in K

correctness of

1 task (proof checking)

done by

1 program (proof checker)

Why Matching μ -Logic?

We tried many logics/calculi/foundations

First-order logic; Second/higher-order logic; Least fixpoint logic; Modal logics; Temporal logics (LTL, CTL, CTL*, ...), λ -calculus; Type systems (parametric, dependent, inductive, ...); μ -calculus; Hoare logics; Separation logics; Dynamic logics; Rewriting logic; Reachability logic; Equational logic; Small-/big-step SOS; Evaluation contexts; Abstract machines (CC, CK, CEK, SECD, ...); Chemical abstract machine; Axiomatic; Continuations; Denotational; Initial Algebras; ...

... but each of the above had limitations

- Some only handle certain aspects of K (e.g., operational semantics)
- Some are "design patterns" (e.g., Hoare logics)
- Some are domain-specific (e.g., separation logic)
- Some require complex encodings/translations

• Matching μ -logic: Expressive and Small

- PLs defined as theories; PL tools specified by theorems
- Logics defined as theories; logical proof rules proved as theorems
- A 14-rule proof system and a 200-LOC proof checker: small trust base

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K
- Concluding Remarks

Matching μ -Logic Syntax

Matching μ -logic formulas, called *patterns*:

$$\varphi ::= x \mid \sigma(\varphi_1, ..., \varphi_n) \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \exists x. \varphi \mid X \mid \mu X. \varphi$$

$$\text{structures} \qquad \text{logical constraints} \qquad \text{first-order quantification} \qquad \text{(in this talk)}$$

- *X* a *set variable*, ranging over sets
- $\mu X. \varphi$ the *least fixpoint* of φ , where X occurs positively in φ
- $\nu X. \varphi \equiv \neg \mu X. \neg \varphi [\neg X/X]$ the greatest fixpoint of φ

Matching μ -Logic Semantics

A matching μ -logic *model* has:

- a carrier set M
- a function $\sigma_M: M \times \cdots \times M \to \mathcal{P}(M)$ for each symbol σ

Given a model M and a variable valuation ρ :

$$oldsymbol{arphi}$$
 pattern matching $|oldsymbol{arphi}|_{M,
ho}\subseteq M$

- $|x|_{M,\rho} = {\rho(x)}$
- $|\sigma(\varphi_1, ..., \varphi_n)|_{M,\rho} = \bigcup \{\sigma_M(a_1, ..., a_n) \mid a_i \in |\varphi_i|_{M,\rho} \}$
- $|\varphi_1 \wedge \varphi_2|_{M,\rho} = |\varphi_1|_{M,\rho} \cap |\varphi_2|_{M,\rho}$
- $|\neg \varphi|_{M,\rho} = M \setminus |\varphi|_{M,\rho}$
- $|\exists x. \varphi|_{M,\rho} = \bigcup \{ |\varphi|_{M,\rho \lceil a/x \rceil} \mid a \in M \}$
- $|X|_{M,\rho} = \rho(X)$
- $|\mu X. \varphi|_{M,\rho} = \mathbf{lfp} \left(A \mapsto |\varphi|_{M,\rho[A/X]} \right)$

Examples of Fixpoint Patterns

- inductive datatypes [JLAMP'21]
 - type nat = Zero | Succ of nat
 - $\top_{\mathbf{nat}} = \mu N. \mathbf{0} \vee \mathbf{Succ}(N)$
 - type list = Nil | Cons of nat * list
 - $\top_{\mathbf{list}} = \mu L. \, \mathbf{Nil} \vee \mathbf{Cons}(\top_{\mathbf{nat}}, L)$
- program execution [LICS'19, CAV'21]

•
$$t_1 \Rightarrow_{\text{exec}} t_2 \equiv t_1 \rightarrow \underbrace{\text{eventually } t_2}_{\mu S. \ t_2 \ \lor \ (\text{next } S)}$$

formal verification [LICS'19, OOPSLA'23]

•
$$\varphi_{\mathrm{pre}} \leadsto \varphi_{\mathrm{post}} \equiv \varphi_{\mathrm{pre}} \rightarrow \underbrace{\mathbf{weak-eventually}}_{vS.\,\varphi_{\mathrm{post}}} \lor (\mathbf{next}\,S)$$
 (if φ_{pre} holds when P starts, then φ_{post} holds when P terminates)

Various forms/instances of fixpoints are definable by patterns.

Matching μ -Logic (MmL) Expressive Power

[Chap 5 of Thesis, also in LICS'19, OOPSLA'20, ICFP'20, CAV'21, JLAMP'21, JLAMP'22, OOPSLA'23]

Matching μ -Logic (MmL) Expressive Power

Matching μ -Logic (MmL) Expressive Power

Matching μ -Logic Proof System

(only 14 proof rules)

$$\begin{array}{lll} & (\operatorname{Propositional 1}) & \varphi \to (\psi \to \varphi) \\ (\operatorname{Propositional 2}) & (\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta)) \\ (\operatorname{Propositional 3}) & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \varphi \\ & ((\varphi \to \psi) \to \bot) \to \psi \\ & ((\varphi \to \bot) \to \bot) \to \varphi \\ & ((\varphi \to \bot) \to \bot) \to \psi \\ &$$

Deriving Mathematical Induction in Matching μ -Logic

Mathematical Induction: To show a property *P* holds for all naturals, prove:

(basis). The number 0 satisfies P

(**step**). If n satisfies P then n + 1 also satisfies P.

Step 1. Note that $T_{nat} = \mu N.0 \vee succ(N)$ captures all natural numbers.

Step 2. Set the proof goal
$$\vdash (\mu N. \ 0 \lor \mathbf{succ}(N)) \rightarrow \psi_P$$

Step 3. Apply (Knaster Tarski) and get

$$\vdash (0 \lor \mathbf{succ}(\psi_P)) \rightarrow \psi_P$$

i.e., Sub-Goal-1
$$0 o \psi_P$$
 (basis Sub-Goal-2 $\mathbf{succ}(\psi_P) o \psi_P$ (step)

(Knaster Tarski)
$$\varphi[\psi/X] \to \psi$$

$$\mu X. \varphi \to \psi$$

Various forms/instances of fixpoints reasoning are supported by (Knaster Tarski)

Matching μ -Logic Proof Object

(Propositional 1)	$\varphi \to (\psi \to \varphi)$
(Propositional 2)	$(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$
(Propositional 3)	$((\varphi \to \bot) \to \bot) \to \varphi$
(Modus Ponens)	$\frac{\varphi \varphi \to \psi}{\psi}$
$(\exists -Quantifier)$	$\varphi[y/x] o \exists x. \varphi$
$(\exists \text{-} Generalization)$	$\frac{\varphi \to \psi}{(\exists x.\varphi) \to \psi} x \notin FV(\psi)$
(Propagation _V)	$C[\varphi \lor \psi] \to C[\varphi] \lor C[\psi]$
(Propagation _∃)	$C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ with } x \notin FV(C)$
(Framing)	$\frac{\varphi \to \psi}{C[\varphi] \to C[\psi]}$
(Substitution)	$\frac{\varphi}{\varphi[\psi/X]}$
(Prefixpoint)	$\varphi[(\mu X.\varphi)/X] \to \mu X.\varphi$
(Knaster-Tarski)	$\frac{\varphi[\psi/X] \to \psi}{(\mu X.\varphi) \to \psi}$
(Existence)	$\exists x. x$
(Singleton)	$\neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$

a proof object;very easy & fast to check;embarrassingly parallelable

Matching μ -Logic Proof Checker

- We use Metamath [Megill & Wheeler] http://metamath.org
 - to encode proof objects &
 - check them automatically
 - embarrassingly parallelable
- Very small trust base
 - Matching μ -logic: 200 LOC
 - Metamath itself:
 - 350 LOC in Python
 - 400 LOC in Haskell
 - 550 LOC in C#
 - •

```
$c \imp ( ) #Pattern |- $.
      $v ph1 ph2 ph3 $.
      phl-is-pattern $f #Pattern phl $.
      ph2-is-pattern $f #Pattern ph2 $.
      ph3-is-pattern $f #Pattern ph3 $.
      imp-is-pattern
        $a #Pattern ( \imp ph1 ph2 ) $.
10
      axiom-1
11
       $a |- ( \imp ph1 ( \imp ph2 ph1 ) ) $.
12
13
      axiom-2
14
        $a |- ( \imp ( \imp ph1 ( \imp ph2 ph3 ) )
              ( \imp ( \imp ph1 ph2 )
15
16
                     ( \imp ph1 ph3 ) ) $.
17
18
     ${
19
        rule-mp.θ $e |- ( \imp ph1 ph2 ) $.
20
        rule-mp.1 $e |- ph1 $.
21
        rule-mp $a |- ph2 $.
22
```

Matching μ-logic syntax & proof rules; Defined in 200 LOC

```
imp-refl $p |- ( \imp phl phl )
24
25
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
       imp-is-pattern phl-is-pattern
27
        phl-is-pattern imp-is-pattern
28
        ph1-is-pattern ph1-is-pattern
30
        phl-is-pattern imp-is-pattern
31
        phl-is-pattern imp-is-pattern
32
        imp-is-pattern phl-is-pattern
33
        phl-is-pattern phl-is-pattern
34
        imp-is-pattern imp-is-pattern
35
        phl-is-pattern phl-is-pattern
        imp-is-pattern imp-is-pattern
37
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
39
        phl-is-pattern axiom-2
        phl-is-pattern phl-is-pattern
41
        phl-is-pattern imp-is-pattern
42
        axiom-1 rule-mp ph1-is-pattern
43
        phl-is-pattern axiom-1 rule-mp
44
```

Proof objects (automatically checked)

Checking proof objects is fast and trustworthy.

Automatic Theorem Prover for Matching μ -Logic

- Separation logic: Proved 265/280 benchmark tests in SL-COMP'19
 - (latest WIP even reached 280/280!)

Overview

- Introduction to a Unifying Programming Language Framework
 - Motivating Example: The K Semantic Framework
 - Research Challenge: Proving the Correctness of K
- Main Contribution: Matching μ -Logic
 - Basic Definitions
 - Expressive Power
 - Proof System and Proof Checker
 - Automatic Theorem Prover
- Using Matching μ -Logic to Prove the Correctness of K (in the translation validation style)
 - Translating PL Definitions in K to Matching μ -Logic Theories
 - Generating Proof Objects for K's Program Verifier
- Concluding Remarks

Translating K to Matching μ -Logic

Proving the Correctness of K's Program Verifier

Generating proof objects and

checking them automatically

Slide 23 of 30

Program Verification is Actually Proof Search

A program verifier is a specialized, optimized, proof searcher.

Proof Generation for Program Verification

The K program verifier checks that P satisfies the pre/post-conditions $\varphi_{\rm pre}$ and $\varphi_{\rm post}$ in L

proof generation

fill in the "gaps" in the verification ("proof search")

$$\Gamma^L \vdash \varphi_{\text{pre}} \leadsto \varphi_{\text{post}}$$

a proof object

```
#1. \psi_1
#2. \psi_2
...
#100. \psi_{100}
...
#247. \psi_2 \to \varphi
#247. \varphi // by (Modus Ponens)
// on #2 and #246
...
...
#99999. \varphi_{\text{pre}} \rightsquigarrow \varphi_{\text{post}}
```

Proof Generation for Program Verification

Proof Generation: Complicated ...

... but none of the above needs to be trusted.

Evaluation

proof generation Time (seconds)

checking

We tested on 3 PL paradigms:

- imperative
- register-based
- functional

Reduced K trust base (~120k lines of Haskell)

Found issues in K (missing axioms etc.)

Future work

Apply it to more PLs

						r mire (s	,	Onus
Task	Spec. LOC	Steps	Hint Size	Proof Size	K Verifier	Gen.		Check
sum.imp	40	42	0.58 MB	37/1.6 MB	4.2	105		1.8
sum.reg	46	108	$2.24\mathrm{MB}$	111/3.6 MB	9.1	259		5.4
sum.pcf	18	22	$0.29\mathrm{MB}$	38/1.5 MB	2.9	119		2.4
exp.imp	27	31	$0.5\mathrm{MB}$	37/1.5 MB	3.7	108		2.0
exp.reg	27	43	0.96 MB	70/2.3 MB	4.7	177		3.1
exp.pcf	20	29	$0.5\mathrm{MB}$	65/2.3 MB	3.8	199		3.1
collatz.imp	25	55	$1.14\mathrm{MB}$	49/1.7 MB	4.8	138		2.6
collatz.reg	37	100	$3.66\mathrm{MB}$	$209/4.7\mathrm{MB}$	9.3	414		5.5
collatz.pcf	26	39	1.51 MB	$110/2.2\mathrm{MB}$	5.3	247		5.2
product.imp	44	42	$0.62\mathrm{MB}$	44/1.8 MB	3.9	124		2.4
product.reg	24	42	0.81 MB	65/2.3 MB	4.3	164		4.0
product.pcf	21	48	$0.82\mathrm{MB}$	80/2.8 MB	5.3	234		4.9
gcd.imp	51	93	1.9 MB	74/2.3 MB	22.9	237		2.7
gcd.reg	27	73	1.92 MB	124/3.3 MB	18.6	306		3.6
gcd.pcf	22	38	1.35 MB	$150/3.2\mathrm{MB}$	12.8	367		5.2
ln/count-by-1	44	25	$0.24\mathrm{MB}$	28/1.3 MB	2.7	81		1.6
ln/count-by-2	44	25	$0.26\mathrm{MB}$	28/1.3 MB	9.0	88		1.4
ln/gauss-sum	51	39	$0.53\mathrm{MB}$	38/1.6 MB	4.6	107		2.0
ln/half	62	65	1.3 MB	63/2.2 MB	13.1	173		3.0
ln/nested-1	92	84	1.88 MB	$104/3.4\mathrm{MB}$	7.5	231		5.9

Conclusion: Matching μ -Logic as A Unifying Foundation for Programming

Thank you

Xiaohong Chen https://xchen.page xc3@illinois.edu

Department of Computer Science

Completeness of Matching Logic (without X or μ)

Figure 3.1: Known Relation among \vDash , \vDash^{loc} , $\vdash_{\mathcal{H}}$, and $\vdash^{loc}_{\mathcal{H}}$

Definition 3.3. Let Γ be a theory and φ be a pattern. The local provability relation $\Gamma \vdash^{loc}_{\mathcal{H}} \varphi$ holds iff there exists a finite subset $\Delta \subseteq \Gamma$ such that $\emptyset \vdash_{\mathcal{H}} \bigwedge \Delta \to \varphi$, where $\bigwedge \Delta$ is the conjunction of all patterns in Δ . We let $\bigwedge \emptyset$ be \top . The local validity relation $\Gamma \vDash^{loc} \varphi$ holds iff for any model M, any valuation ρ , and any element $a \in M$, $a \in |\psi|_{M,\rho}$ for all $\psi \in \Gamma$ implies $a \in |\varphi|_{M,\rho}$.

Reasoning Fixpoints within Contexts

- Proof Goal: $ll(x, y) * list(y) \rightarrow list(x)$ consists of
 - A fixpoint ll(x, y)
 - A context $C[\Box] \equiv \Box * list(y)$
- We (WRAP) the context and move it to the RHS:

•
$$ll(x,y) \to \exists h: Heap. \left(h \land \left(h * list(y) \to list(x)\right)\right)$$

The set of all heaps h such that h*list(y)->list(x).

- We call the above RHS a contextual implication, abbreviated:
 - $ll(x,y) \rightarrow (C \multimap list(x))$
- Now, LHS is a fixpoint and we can apply (LFP) in the usual way.

Automatic Proof Strategies

(ELIM-
$$\exists$$
) $\frac{\varphi \to \psi}{(\exists x.\,\varphi) \to \psi}$ if $x \notin FV(\psi)$ (WRAP) $\frac{p(x) \to (C \multimap \psi)}{C[p(\tilde{x})] \to \psi}$ (SMT) $\frac{True}{\varphi \to \psi}$ if $\models_{SMT} \varphi \to \psi$ (INTRO- \forall) $\frac{p(\tilde{x}) \to \forall \tilde{y}. (C \multimap \psi)}{p(\tilde{x}) \to (C \multimap \psi)}$ where $\tilde{y} = FV(\psi) \setminus \tilde{x}$ (PM) $\frac{\varphi \to \psi\theta}{\varphi \to \exists \tilde{y}. \psi}$ where $\theta \in pm(\varphi, \psi, \tilde{y})$ matches φ with ψ (LFP) $\frac{\cdots \varphi_i [\forall \tilde{y}. (C \multimap \psi)/p] \to \forall \tilde{y}. (C \multimap \psi)}{p(\tilde{x}) \to \forall \tilde{y}. (C \multimap \psi)}$ (MATCH-CTX) $\frac{C_{rest}[\varphi'\theta] \to \psi}{C_o[\forall \tilde{y}. (C' \multimap \varphi')] \to \psi}$ where (C_{rest}, θ) $= cm(C_o, C', \tilde{y})$ (ELIM- \forall) $\frac{\varphi \to (C \multimap \psi)}{\varphi \to \forall y. (C \multimap \psi)}$ if $y \notin FV(\varphi)$ (FRAME) $\frac{\varphi \to \psi}{C[\varphi] \to C[\psi]}$ (UNWRAP) $\frac{C[\varphi] \to \psi}{\varphi \to (C \multimap \psi)}$ (b) Breakdown of Rule (KT) in Fig. 2a (KT) $\frac{C_o(\varphi)}{\varphi \to \psi}$

(a) Proof Rules for ML Fixpoint Reasoning

Fig. 2. Automatic Proof Framework for ML Fixpoint Reasoning (where $p(\tilde{x}) =_{\mathsf{lfp}} \bigvee_i \varphi_i$)

Reduction to MSO

$$MSO(\varphi) = \forall r . MSO_2(\varphi, r)$$

$$MSO_2(x, r) = x = r$$

$$MSO_2(\sigma(\varphi_1, \dots, \varphi_n), r) = \exists r_1 \dots \exists r_n . MSO_2(\varphi_i, r_i) \land \pi_{\sigma}(r_1, \dots, r_n, r)$$

$$MSO_2(\neg \varphi, r) = \neg MSO_2(\varphi, r)$$

$$MSO_2(\varphi_1 \land \varphi_2, r) = MSO_2(\varphi_1, r) \land MSO_2(\varphi_2, r)$$

$$MSO_2(\exists x . \varphi, r) = \exists x . MSO_2(\varphi, r)$$

$$MSO_2(X, r) = X(r)$$

$$MSO_2(\mu X . \varphi, r) = \forall X . (\forall r' . MSO_2(\varphi, r') \rightarrow X(r')) \rightarrow X(r)$$

Our Vision

My PhD Work

Safety/Mission-Critical Computer Programs

autopilot airplanes

banking systems

smart contracts

Al systems

Example: executing smart contracts

Solidity smart contract

```
5 tokens
function transfer(from, to, amount) {
                                                         tag 8
                                                                   PUSH 40
                                                                            geth
  uint256 fromBalance = balances[from];
                                                                   SWAP1
                                                solc
                                                                   SHA3
  require(fromBalance >= amount);
                                                          CALLER
                                                                   DUP1
  _balances[from] = fromBalance - amount;
                                                                   SLOAD
  _balances[to] += amount;
                                                          PUSH 0
                                                                   CALLVALUE
                                                          SWAP1
  emit Transfer(from, to, amount);
                                                                   ADD
                                                          DUP2
                                                                                       Alic
                                                                                                        Bob
                                                                   SWAP1
                                                          MSTORE
                                                                                                     20 tokens
                                                                   SSTORE
                                                                                      10 tokens
         "_transfer" function in a
                                                          EVM opcodes
```

Alice and Bob had 10 tokens and 20 tokens resp.

Now they have 5 tokens and 25 tokens resp. ?? ---- solc & geth

Need to trust solc (300k LOC) & geth (500k LOC).

Example: verifying smart contracts

$$\Psi_{\text{ERC20}} \equiv \begin{array}{c} \forall A. \forall B. \forall T. A \geq T \rightarrow \\ -\text{transfer(Alice, Bob, } T) \Rightarrow \\ balance_{Alice} \mapsto A \Rightarrow (A - T) \\ balance_{Bob} \mapsto B \Rightarrow (B + T) \end{array}$$

kframework

formal specification of _transfer

For any values A, B, T, if $A \ge T$ and Alice and Bob have A and B tokens resp. then they will have (A - T) and (B + T) tokens resp. $\ref{eq:special}$ ---- kframework

Need to trust kframework (500k LOC).

Claims to Trust

100% Correctness; How?

sources of compromised correctness

- complex programming languages (unspecified behavior, implementation-defined behavior, compiler optimization, ...)
 - need a unifying specification framework
- cloud computing; outsourced computation; BYOD (Bring Your Own Device) scenarios; untrusted devices (mobiles, tablets; ...)
 - need machine-checkable certificates for all computation results
- various "correctness" (functional, safety, liveness, security, termination,
 - need a formal language with powerful expressiveness
- specialized program reasoning tools ("Prove Property X for Programs in L")

We need a unifying foundation for programming.

Vision

My PhD Work

My PhD Work

In This Talk

matching logic axioms

[LICS'19, ICFP'20, ICTAC'22, JFP*] w/ Runtime Verification Inc.

- PLs/ programming paradigms
- software/hardware systems
- · cyber-physical systems
- neural networks

. . .

matching logic proof certificates

[CAV'21, OOPSLA'23]

- computation
- program reasoning
- Every claim needs a proof!

Matching Logic

http://matching-logic.org [LICS'19]

A Unifying Foundation for Programming

Assured Trust.
Like Never Before!

matching logic theorems

[LICS AND FER'S DV & LAMP'S 21, JLAMP'22, ICTAC'22, JFP*, TCS*]

- functional properties
- safety ~
- liveness ~
- security ~
- hyper(multi-trace) ~

•

matching logic prover

[OOPSLA'20, FROM'22, CAV*, PLDI*]

- powerful & minimal
- tool support

Why Matching Logic?

I studied existing logics, calculi, foundations, and semantics styles.

- first-order logic; second/higher-order logic; least fixpoint logic; modal logics; temporal logics (LTL, CTL, CTL*, ...), λ -calculus; type systems (parametric, dependent, inductive, ...); μ -calculus; Hoare logics; separation logics; dynamic logics; rewriting logic; reachability logic; equational logic; ...
- operational semantics (small-step, big-step, ...); evaluation contexts; abstract machines (CC, CK, CEK, SECD, ...); chemical abstract machines; axiomatic; algebraic (initial, final, ...); continuations; denotational; ...

But each of the above had limitations.

- Some only handle certain aspects of computation (e.g., execution only).
- Some are "design patterns" (e.g., Hoare logics); re-design new logics for new PLs.
- modularity, notation
- Matching logic: keep advantages and avoid limitations

What is Matching Logic?

A logic with first-order variables and quantifiers, polyadic modalities and function symbols, fixpoint operations, and top-level second-order universal quantifiers. [LICS'19]

matching logic formulas called **patterns:**

Matching Logic Syntax

(minimal; only 7 constructs)

Matching Logic Fixpoints

- inductive datatypes [JLAMP'21,
 - type list = NiTCS* Cons of element * list
 - μL . Nil $\vee \exists x$. Cons(x, L)
- program execution [CAV'21]
 - finite execution trace from $t_{
 m init}$ to $t_{
 m final}$
 - $t_{\text{init}} \rightarrow \text{eventually } t_{\text{final}}$ $\mu S. t_{\text{final}} \lor (\text{next } S)$
- formal verification [OOPSLA'23]
 - if $\varphi_{\rm pre}$ holds then $\varphi_{\rm post}$ holds on termination
 - $\varphi_{\text{pre}} \rightarrow \text{weak-eventually } \varphi_{\text{post}}$

"partial correctness" νS . $\varphi_{\mathrm{post}} \vee (\mathbf{next} S)$

 algebraic specification (datatypes + equations)

(Bergstra & Tucker 1982)

Any computable domain has a finite algebraic specification

Any computable domain has a finite **matching logic** axiomatization.

Further, we can design automatic proof strategies to reason about all these [odispoints.LDI*]

Matching Logic Expressive Power

[LICS'19, OOPSLA'20, ICFP'20, JLAMP'21, JLAMP'22, JFP*, TCS*]

Important logics for program reasoning are all definable in matching logic.

- first-order logic
 - equality, membership, partial functions, definedness
- λ calculus
- dependent types (Coq & Agda)
- higher-order logic
- modal logic & temporal logics (LTL, CTL, CTL*)
- Hoare logics
- dynamic logics
- rewriting logic
- reachability logic
- separation logic
- μ -calculus
- inductive/co-inductive datatypes
- ...

Proof assistants such as Coq & Agda become **methodologies** in matching logic.

[ICFP'20, extended ver. invited to JFP]

Matching Logic Proof System

Matching Logic Proof System

machine-checkable proof certificate

Matching Logic Proof Checker

- We use metamath
 - http://metamath.org [Megill & Wheeler] \$
 - encode matching logic proofs
 - · mechanize proof checking

Small trust base to check proofs!

```
\Gamma \vdash \phi
axioms theorem
```

```
$c \imp ( ) #Pattern |- $.
      $v ph1 ph2 ph3 $.
      phl-is-pattern $f #Pattern phl $.
      ph2-is-pattern $f #Pattern ph2 $.
      ph3-is-pattern $f #Pattern ph3 $.
      imp-is-pattern
        $a #Pattern ( \imp ph1 ph2 ) $.
      axiom-1
11
       $a |- ( \imp ph1 ( \imp ph2 ph1 ) ) $.
13
       $a |- ( \imp ( \imp ph1 ( \imp ph2 ph3 ) )
              ( \imp ( \imp ph1 ph2 )
15
                     ( \imp ph1 ph3 ) ) $.
16
18
19
        rule-mp.θ $e |- ( \imp ph1 ph2 ) $.
       rule-mp.1 $e |- ph1 $.
        rule-mp $a |- ph2 $.
22
```

axioms theorem definitions of syntax & proof rules

Reducing correctness to proof checking (240 LOC in total)

```
imp-refl $p |- ( \imp phl phl )
24
        phl-is-pattern phl-is-pattern
25
        phl-is-pattern imp-is-pattern
27
        imp-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
        phl-is-pattern imp-is-pattern
        imp-is-pattern phl-is-pattern
        phl-is-pattern phl-is-pattern
        imp-is-pattern imp-is-pattern
        phl-is-pattern phl-is-pattern
        imp-is-pattern imp-is-pattern
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
        phl-is-pattern axiom-2
40
        phl-is-pattern phl-is-pattern
        phl-is-pattern imp-is-pattern
        axiom-1 rule-mp phl-is-pattern
        phl-is-pattern axiom-1 rule-mp
44
     $.
```

theorems and proofs (machine checked)

Formal Verification: Two Approaches

A traditional, language-specific verifier for language L takes

• a program P in L and its formal spec φ_P

and checks whether P satisfies φ_P

A language-agnostic formal verifier takes

- a program P in L and its formal spec φ_P
- the <u>formal specification of L</u> *1 abstraction level and checks whether P satisfies ϕ_P

- + more principled
- + highly re-usable

Example: K Framework (https://kframework.org)

Viewpoint:

A formal verifier is a specialized, optimized, <u>proof searcher</u>.

Proof-Certifying Language-Agnostic FormalVerification

A language-agnostic formal verifier checks that P satisfies φ_P in language L

proof generation

filling the "gaps" in the verification "proof search"

$$\Gamma^L \vdash \mathbf{satisfy}(P, \varphi_P)$$

```
#1. \psi_1
#2. \psi_2
...
#10000. \psi_{10000}
...

#24600. \psi_2 \rightarrow \varphi
#24601. \varphi // by (Modus Ponens)

// on #2 and #24600
...
#99999. satisfy(P, \varphi_P)
```

a proof certificate

Proof-Certifying Language-Agnostic Formal Verification

Proof Generation Procedures (technical details)

final proof goal

encoding of formal verification claims

$$\bigwedge_{(\psi_1 \Rightarrow \psi_2) \in A} \Box \left(\forall FV(\psi_1, \psi_2) . \psi_1 \Rightarrow_{reach}^+ \psi_2 \right)$$

$$\wedge \bigwedge_{(\psi_1 \Rightarrow \psi_2) \in C} \circ \Box \left(\forall FV(\psi_1, \psi_2) . \psi_1 \Rightarrow_{reach}^+ \psi_2 \right) \rightarrow \left(\varphi \Rightarrow_{reach}^{\triangle} \psi \right)$$

sub-goals for symbolic execution (dynamic) 2

sub-goals for subsumptions/implications (static) **3**

$$\Box(\forall FV(\varphi, \psi). \varphi \Rightarrow_{reach} \psi)$$
$$\rightarrow \varphi' \Rightarrow_{reach} \varphi''$$

sub-goals for circularity/coinduction (loops; recursion; etc.)

But, none of the above need to be trusted.

Evaluation

Proof Size **Proof Generatio**

Proof Checking

We tested on 3 PL paradigms:

- imperative
- register-based
- functional

Main Takeaways:

- large Proof Size
- fast Proof Checking (seconds)
- OK Proof Generation (minutes)

Found issues in K

(missing axioms/assumptions etc.)

					Ţ	ime (seconds)		
Task	Spec. LOC	Steps	Hint Size	Proof Sizε	\mathbb{K} Verifier	Gen.	П	Check
sum.imp	40	42	0.58 MB	37/1.6 MB	4.2	105		1.8
sum.reg	46	108	$2.24\mathrm{MB}$	111/3.6 MB	9.1	259		5.4
sum.pcf	18	22	$0.29\mathrm{MB}$	38/1.5 MB	2.9	119		2.4
exp.imp	27	31	$0.5\mathrm{MB}$	37/1.5 MB	3.7	108		2.0
exp.reg	27	43	0.96 MB	70/2.3 MB	4.7	177		3.1
exp.pcf	20	29	$0.5\mathrm{MB}$	65/2.3 MB	3.8	199		3.1
collatz.imp	25	55	$1.14\mathrm{MB}$	49/1.7 MB	4.8	138		2.6
collatz.reg	37	100	$3.66\mathrm{MB}$	209/4.7 MB	9.3	414		5.5
collatz.pcf	26	39	1.51 MB	110/2.2 MB	5.3	247		5.2
<pre>product.imp</pre>	44	42	$0.62\mathrm{MB}$	44/1.8 MB	3.9	124		2.4
product.reg	24	42	$0.81\mathrm{MB}$	65/2.3 MB	4.3	164		4.0
product.pcf	21	48	$0.82\mathrm{MB}$	80/2.8 MB	5.3	234		4.9
gcd.imp	51	93	1.9 MB	74/2.3 MB	22.9	237		2.7
gcd.reg	27	73	$1.92\mathrm{MB}$	124/3.3 MB	18.6	306		3.6
gcd.pcf	22	38	1.35 MB	150/3.2 MB	12.8	367		5.2
ln/count-by-1	44	25	$0.24\mathrm{MB}$	28/1.3 MB	2.7	81		1.6
ln/count-by-2	44	25	$0.26\mathrm{MB}$	28/1.3 MB	9.0	88		1.4
ln/gauss-sum	51	39	$0.53\mathrm{MB}$	38/1.6 MB	4.6	107		2.0
ln/half	62	65	1.3 MB	63/2.2 MB	13.1	173		3.0
ln/nested-1	92	84	1.88 MB	104/3.4 MB	7.5	231		5.9

Future Direction: Proof-Certifying Smart Contracts

proof-certifying smart contracts

- + more trustworthiness and transparency (specs + proof checker)
- + better scalability (off-chain computation + proofs; in a proof-carrying code style)
- + proof certificates can be stored off-chain or "STARK"-ed (discussed next).

Future Direction: STARK Proof-Certifying Smart Contracts

ProofChecker(Γ_{μ}^{EVM} , Ψ_{ERC20} , π_{ML}) = true

a fixed program

language spec

execution & verification

matching logic proof certificate (all "proof generation" techniques are here)

Future Direction: STARK Proof-Certifying Smart Contracts

STARK proof-certifying smart contracts

- + much smaller proof certificates; stored on-chain
- + producing STARK certificates on-the-fly; never pay the cost
- + great compatibility (dealing with one fixed checker; works for all PLs/platforms)
- + **Computation = Proof**; built-in checker ensures valid computations and correctness claims on the blockchain

Conclusion

Matching Logic Impact

Graduate College Dissertation Completion Fellowship

"Matching Logic: Unifying Foundation of Programming"

Ethereum Foundation Funding

"Trustworthy Formal Verification for Ethereum Smart Contracts via Machine-Checkable Proof Certificates"

Future Direction: Generating SNARK-Proofs

SNARK = Succinct Non-Interactive ARgument of Knowledge*

Future Direction: SNARK-Proof Generation

Knowledge Soundness:

 $\Pr(\exists w. C(x, w) = \text{true} \mid \mathbf{accept}) > 1 - \epsilon$

"there exists a formal proof of theorem x"

Matching Logic Proof Checker + SNARK

proof-carrying code

PLs = logical axioms (PL semantics)

C

Java

JavaScript

Python

Rust

Vision

Matching Logic

A unifying foundation for programming

claims = formulas

program execution

sum(100) = 5050

formal verification

 \forall n.n \geq 0 \rightarrow sum(n) = n(n+1)/2

• •

$\Gamma^{\text{Lang}} \vdash \varphi_{\text{Claim}}$

machine-checkable correctness certificates for all PLs and all PL tools

Similar Pain Point in Mathematics

- many mathematical domains/fields
 - algebras, geometry, calculus, ...
- many claims
 - theorems, lemmas, propositions, ...
- mathematical proofs
 - written by humans, checked by humans
 - error-prone
- Idea: formalizing mathematics & mechanizing proofs
 - a unifying foundation for mathematics (e.g., set theory)
 - proofs on paper ⇒ mechanized, formal proofs ⇒ proof checker (small)
 - examples: metamath, unimath

Can We Do the Same for Programming?

Matching Logic 101: Semantics (slide 2/3)

A matching logic *model* has

- a carrier set M
- an interpretation $\sigma_M: M \times \cdots \times M \to \mathcal{P}(M)$ for each symbol σ

$$m{arphi}$$
 $m{arphi}$ $m{$

Similar Pain Point in Mathematics

- many mathematical domains/fields
 - algebras, geometry, calculus, ...
- many claims
 - theorems, lemmas, propositions, ...
- mathematical proofs
 - written by humans, checked by humans
 - error-prone
- Idea: formalizing mathematics & mechanizing proofs
 - a unifying foundation for mathematics (e.g., set theory)
 - proofs on paper ⇒ mechanized, formal proofs ⇒ proof checker (small)
 - examples: metamath, unimath

Can We Do the Same for Programming?

Matching Logic

http://matching-logic.org

- We studied various logics, calculi, foundations, and semantics styles.
 - First-order logic; Second/higher-order logic; Least fixpoint logic; Modal logics; Temporal logics (LTL, CTL, CTL*, ...), λ -calculus; Type systems (parametric, dependent, inductive, ...); μ -calculus; Hoare logics; Separation logics; Dynamic logics; Rewriting logic; Reachability logic; Equational logic; ...
 - Small-/big-step SOS; Evaluation contexts; Abstract machines (CC, CK, CEK, SECD, ...); Chemical abstract machine; Axiomatic; Continuations; Denotational; Initial; ...
- But each of the above had limitations.
 - Some only handle certain aspects of computation (e.g., execution only).
 - Some are "design patterns"; re-design a new logic for a new PL/domain.
 - simplicity, modularity, notation
- Matching logic: keep advantages and avoid limitations

What is Matching Logic?

(http://matching-logic.org)

[..., TechRep'09, AMAST'10, UV'10, ICALP'12, OOPSLA'12, LMCS'17, LICS'19]

- one logic to specify and reason about any property of any program in any programming language
- one proof checker to automatically check proofs
- correctness of PL tools ⇒ proof checking
- absolute correctness guarantee: <u>No Compromise</u>!
- embedded in the **K Hamework** (https://khamework.org
- proof-certifying interpreter [CAV'21] and formal verifier [OOPSLA'23]

PhD Research

Matching Logic [LICS'19]

- syntax → rules for writing formulas
- semantics → models; giving meaning to formulas
- proof system → proof rules; proving formulas/theorems

Expressive Power

[LICS'19, OOPSLA'20, ICFP'20, JLAMP'21, JLAMP'22, JFP*]

- defining various program properties
- defining various PL semantics methods

Principles of Formal Reasoning

- automated theorem proving [OOPSLA'20, PLDI*]
- interactive theorem proving [FROM'22]
- completeness [LICS'19 → truth ⇒ proofs?
- decidability ¹ [LICS*] → decision procedures

Proof-Certifying PL Tools

- proof-certifying program execution [CAV'21]
- proof-certifying formal verification
 [OOPSLA'23]

In this Talk

Matching Logic [LICS'19]

- syntax
- semantics
- proof system

Principles of Formal Reasoning

- automated theorem proving [OOPSLA'20, PLDI*]
- interactive theorem proving [FROM'22]
- completeness [LICS'19
- decidability ¹ [LICS*]

Expressive Power (Summary)

[LICS'19, OOPSLA'20, ICFP'20, JLAMP'21, JLAMP'22]

- defining existing logics & calculi
- supporting existing formal PL semantics

Proof-Certifying PL Tools

- proof-certifying program execution[CAV'21]
- proof-certifying formal verification
 [OOPSLA'23]

Matching Logic Proof Checker

- We use metamath
 - http://metamath.org
 - encode matching logic proofs
 - mechanize proof checking (very fast; million steps per sec)
- small trust base to check proofs!

Matching Logic

http://matching-logic.org
A Unifying Foundation for
Programming

Reducing the correctness of **any computation** & **program reasoning** to **proof checking**.

What is Matching Logic?

A logic with first-order variables and quantifiers, polyadic modalities and function symbols, fixpoint operations, and top-level second-order universal quantifiers. [LICS'19]

+ very simple

- the matching logic proof checker has only 240 lines (Coq has 8000 lines)
- + very expressive [LICS'19, OOPSLA'20, ICFP'20, JLAMP'21, JLAMP'22, CAV'21, OOPSLA'23]
 - Program Properties: functional, safety, liveness, security, hyper, ...
 - PL Semantics Methods: operational, Hoare logics, denotational, continuations, initial algebras, evaluation contexts, rewriting, abstract machines, ...
- + practical [with Runtime Verification Inc.]
 - embedded in the K framework (https://kframework.org)
 - proof-certifying interpreter [CAV'21] and formal verifier [OOPSLA'23]

Future Direction 2: Matching Logic Proof Checker + SNARK

Currently, proof certificates are huge (1 MB per exec. step)

```
#1. \psi_1 #2. \psi_2 ... #10000. \psi_{10000} ... #24600. \psi_2 \to \varphi #24601. \varphi // by (Modus Ponens) // on #2 and #34600 ... #99999. satisfy(P, \varphi_P) theorem
```

Future Direction 2: More Succinct Proof Certificates

Use succinct (zero-knowledge/ZK) cryptographic proofs

(several MB; with π)

cryptographic certificates

(256 bits; without π)

K Framework and Matching Logic

https://kframework.org/ http://matching-logic.org/

Matching logic formulas, called patterns:

$$\varphi ::= x \mid \sigma(\varphi_1, \dots, \varphi_n) \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \exists x. \varphi$$
 structures logical constraints first-order quantification

But, matching logic has a serious limitation.

Matching Logic Lacks Support for Fixpoints

Fixpoints are ubiquitous in computer science.

- inductive datatypes
- induction principles
- recursive functions and loops in PLs
- formal verification

•

Matching logic itself is insufficient.

- Outsource to other tools (e.g., Coq).
- Extend it for specific purposes (e.g., formal verification).

Automatic Theorem Prover for Matching μ -Logic: Architecture

- Separation logic: Proved 265/280 benchmark tests in SL-COMP'19
- LTL: Proved all the axioms in the complete LTL proof system
- LTP & RL: Proved the correctness of the SUM program

Where do Proof Objects Come From?

Q1: Is there always a proof object for a true statement?

• Completeness of matching μ -logic (briefly)

Q2: Can we find proof objects automatically?

• Automatic theorem prover for matching μ -logic (briefly)

Q3: Can we generate proof objects from K?

Proving the correctness of K in the translation validation style.

Where do Proof Objects Come From?

Q1: Is there always a proof object for a true statement?

• Completeness of matching μ -logic (briefly)

Q2: Can we find proof objects automatically?

• Automatic theorem prover for matching μ -logic (briefly)

Q3: Can we generate proof objects from K?

Proving the correctness of K in the translation validation style.

Where do Proof Objects Come From?

Q1: Is there always a proof object for a true statement?

• Completeness of matching μ -logic (briefly)

Q2: Can we find proof objects automatically?

• Automatic theorem prover for matching μ -logic (briefly)

Q3: Can we generate proof objects from K?

Proving the correctness of K in the translation validation style.

Translating K to Matching μ -Logic

K	Matching μ -Logic
A PL definition Ethereum VM	A logical theory $\Gamma^{ ext{EVM}}$
 Any PL task program execution Interpreter formal verification Program Verifier 	A theorem proved by the 15-rule proof system • $\Gamma^{\text{EVM}} \vdash t_{\text{init}} \Rightarrow_{\text{exec}} t_{\text{final}}$ • $\Gamma^{\text{EVM}} \vdash \varphi_{\text{pre}} \rightsquigarrow \varphi_{\text{post}}$
Correctness of the task	Generating the proof and checking it using the 200-LOC <i>proof checker</i>

- **Task 1**: Generating the logical theory (e.g., Γ^{EVM})
- **Task 2**: Generating the proof for a given PL task (e.g., verifying a program)