See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/255956793

Biotransformation of dihydroisosteviol and the effects of transformed products on steroidogenic gene expressions

ARTICLE in PHYTOCHEMISTRY · AUGUST 2013

Impact Factor: 2.55 \cdot DOI: 10.1016/j.phytochem.2013.07.015 \cdot Source: PubMed

READS

17

7 AUTHORS, INCLUDING:

Tsurng-Juhn Huang

China Medical University (ROC)

24 PUBLICATIONS 118 CITATIONS

SEE PROFILE

Shwu-Jiuan Lin

Taipei Medical University

33 PUBLICATIONS 398 CITATIONS

SEE PROFILE

ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Biotransformation of dihydroisosteviol and the effects of transformed products on steroidogenic gene expressions

Shwu-Fen Chang ^b, Li-Ming Yang ^{a,c}, Tsurng-Juhn Huang ^d, Chin-Yang Chen ^a, Shiow-Yunn Sheu ^a, Pan-Chun Liu ^a, Shwu-Jiuan Lin ^{a,*}

- ^a Department of Pharmaceutical Sciences, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- ^b Division of Cell and Molecular Biology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- CDivision of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
- d Research Center for Biodiversity and Graduate Institute of Ecology and Evolutionary Biology, China Medical University, Taichung 404, Taiwan

ARTICLE INFO

Article history: Received 19 December 2012 Received in revised form 16 March 2013 Available online 12 August 2013

Keywords: Biotransformation Dihydroisosteviol Steroidogenic genes

ABSTRACT

The biotransformation of dihydroisosteviol with *Absidia pseudocylindrospora* ATCC 24169, *Streptomyces griseus* ATCC 10137, *Mucor recurvatus* MR36, and *Aspergillus niger* BCRC 31130 yielded 15 metabolites, eight of which were previously unknown. Structures of metabolites were established by 2D NMR techniques and HRMS data, two of which were further corroborated by chemical means, and another via single-crystal X-ray diffraction analysis. Subsequently, two steroidogenic cell lines (Y-1 mouse adrenal tumor and MA-10 mouse Leydig tumor cells) were used in a reverse transcription-PCR analysis to assess the effects of all compounds on steroidogenic gene expressions using forskolin as a positive control. The tested gene expressions included steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side-chain cleavage (P450scc) enzyme. Gene expression profiles showed that ten of the tested compounds effectively suppressed P450_{SCC} mRNA expression in both Y-1 and MA-10 cells. Several induced SF-1 gene expression and two enhanced StAR gene expression in Y-1 cells. By contrast, in MA-10 cells, one compound effectively suppressed StAR mRNA expression, whereas for others effectively suppressed SF-1 gene expression. The results suggest that analogs of dihydroisosteviol can be potential modulators to alter steroidogenic gene expressions and subsequent enzyme activities.

1. Introduction

Biotransformation involves enzymatic reactions that can often show characteristic regio- and stereoselectivities. Such reactions provide an alternative method for producing novel and useful products that cannot be obtained, or can be obtained only with great difficulty, using conventional chemical approaches (Arantes and Hanson, 2007; Gładkowski et al., 2007; Venisetty and Ciddi, 2003). Enzyme-assisted biotransformation reactions are caused by enzymes inside microorganisms, and frequently include hydroxylation, oxidation, reduction, methylation, acetylation, glycosylation, and isomerization reactions (Liu and Yu, 2010). Dihydroisosteviol (2), a diterpenoid with an ent-beyerane backbone, can be prepared by reducing isosteviol (1) with NaBH₄ (Ali et al., 1992). De Oliveira et al. (1999) reported that introducing an OH group to nonhydroxylated diterpenoids might enhance their existing biological properties or lead to new biological capabilities, because the hydroxylation pattern of active compounds might influence, for example, the receptor binding.

The microbial transformation of **2** was previously studied, including evaluation of the transformed products against hypertension and cytotoxicity in HepG2 cells (Lin et al., 2007; Yang et al., 2004). In addition, Dorfman and Nes (1960) reported that inunction of 2 to chicks' combs inhibited the action of injected testosterone. However, 2 did not inhibit testosterone action on the seminal vesicles, prostate, and levator ani muscle of castrated rats. Testosterone is primarily synthesized in testicular Leydig cells in a steroidogenic process that involves cholesterol; the testosterone is then released into circulation (Miller, 1988). Steroidogenesis in Leydig cells is stimulated by luteinizing hormone (LH) binding to its cognate receptor and activating adenylyl cyclase and thereafter the G-protein-mediating signaling pathway. The increased intracellular cAMP triggers phosphorylation cascade of protein kinase A (PKA). In turn, this activates expression of steroidogenic genes, such as genes that encode the steroidogenic acute regulatory protein (StAR) and cytochrome P450-mediated cholesterol side-chain cleavage (P450_{SCC}) (Richards, 2001). The StAR protein is a crucial regulator of steroidogenesis, which mediates transport of cholesterol from the outer to the inner mitochondrial membrane (Stocco and Clark, 1996). In males, the rate-limiting enzyme, cytochrome P450_{SCC}, oxidizes and converts cholesterol to pregnenolone, which

^{*} Corresponding author. Tel.: +886 2 27361661x6133; fax: +886 2 27390671. E-mail address: shwu-lin@tmu.edu.tw (S.-J. Lin).

then is transported to the smooth endoplasmic reticulum for the synthesis of testosterone for reproduction (Habert et al., 2001).

Steroidogenic factor-1 (SF-1), an orphan nuclear hormone receptor, is highly expressed in testes and ovaries, and in several other tissues or organs including skin, pituitary, spleen, brain, and adrenal glands (Lin and Achermann, 2008). The main function of SF-1 is to mediate the expression of several gene-encoding enzymes required either for testosterone biosynthesis (in testicular Leydig cells) or for androgen synthesis (in the adrenals). This transcriptional factor is known to be regulated by interacting with numerous other nuclear proteins (Ye et al., 2009). Thus, SF-1 is required for the transcription of steroidogenic genes and cholesterol transport protein, as well as for development and functioning of the entire endocrine system (Hoivik et al., 2010). Accordingly, SF-1 modulators can be exploited to suppress both androgen and gonadal testosterone synthesis in the treatment of prostate cancer and adrenocortical tumors (Doghman et al., 2009). In general, natural products always play a vital role in drug discovery and are useful as template molecules for producing new drugs (Lee, 2010; Venisetty and Ciddi, 2003). Due to some diterpenoids possessing some level of similarity to steroids (Hanson, 1992), the effect of tetracyclic diterpenoids on the androgen response element was previously examined (Chang et al., 2008; Chou et al., 2008). Compound 2 reportedly displays anti-androgenic activity (Dorfman and Nes, 1960). Thus, these findings led to the hypothesis that analogs of 2 must function on potential modulators for steroidogenic gene expressions, and the biotransformation of 2 was thus investigated. Subsequently, the effect of 2 and its analogs on expression of steroidogenic genes, including gene-encoding StAR, P450scc, and SF-1, was analyzed by a reverse transcription-PCR analysis. A bioassay system was developed on the Y-1 mouse adrenal tumor and the MA-10 mouse Leydig tumor cell lines. Forskolin, a potent stimulator of adenylate cyclase, was used as a positive control (Seamon et al., 1981) to increase the intracellular cAMP. This report discusses the isolation, structure elucidation, and bioactivity results for these biotransformed compounds. Additionally, 4 derivatives prepared by chemical means are also reported herein.

2. Results and discussion

Four microorganisms have been shown to consistently convert **2** into several metabolites, based on previous screening results

(Yang et al., 2004). These microorganisms are Absidia pseudocylind-rospora, Streptomyces griseus, Mucor recurvatus, and Aspergillus niger. Incubation of **2** with Abs. pseudocylindrospora gave compounds **3–6**, whereas *S. griseus* afforded compounds **3** and **7–9**. Incubation of **2** with *M. recurvatus* resulted in formation of **10–14**, and incubation of **2** with Asp. niger afforded compounds **15–17**. Characterization of these compounds using NMR spectroscopic and HRMS data established that **5**, **7**, **9–12**, and **17** had been previously described (Chang et al., 2006; De Oliveira and Strapasson, 1996; De Oliveira et al., 2008; Hsu et al., 2002; Yang et al., 2004), whereas **3**, **4**, **6**, **8**, and **13–16** had not yet been reported.

The ¹H, ¹³C NMR, DEPT, and the HSQC spectra of compounds **3**, **4**, and **6**, in contrast with those of **2**, showed the disappearance of the CH₃-17 group at δ_H 1.06 (δ_C 25.7) and the presence of a new -CH₂OH group. The -CH₂OH group resonated as a pair of doublets at δ_H 3.87 (d, J = 10.5 Hz) and 3.97 (d, J = 10.5 Hz) (δ_C 69.1) in **3**; at δ_H 3.94 (d, J = 10.5 Hz) and 4.00 (d, J = 10.5 Hz) (δ_C 68.9) in **4**; and at δ_H 3.89 (d, I = 10.5 Hz) and 3.95 (d, I = 10.5 Hz) (δ_C 69.1) in **6**. These findings suggested that the methyl group had been oxidized during incubation. Thus, 3, 4, and 6 possessed the basic backbone of ent- 16β ,17-dihydroxy-beyeran-19-oic acid (**9**) (De Oliveira et al., 2008). Compound **3** exhibited a quasi-molecular ion peak at m/z351.2169 [M-H] in the HRTOFMS analysis. This implied that the molecular formula of 3 was C₂₀H₃₂O₅. The ¹H NMR, DEPT and HSQC spectra, compared to those of **9**, showed the disappearance of one CH₂ resonance and the presence of one new CH resonance at δ_C 77.1 (δ_H 3.98). In the HMBC spectrum, the new resonance at δ_H 3.98 showed connectivities with C-6 (δ_C 31.3), C-8 (δ_C 48.1), C-9 (δ_C 51.9), and C-14 (δ_C 47.7), confirming the additional OH group at C-7. The orientation of 7-OH was assigned as β -oriented because of the presence of cross-peaks of H-7 with H-6 $(\delta \ 2.51-2.56)$, H-14 $\alpha \ (\delta \ 1.95-2.08)$, and H-15 $(\delta \ 2.30-2.41)$ in the NOESY spectrum. The C-7 hydrogen resonated as a broad singlet at δ 3.98, indicating that the proton was α -oriented (De Oliveira and Strapasson, 1996). On the basis of these findings, 3 was established as *ent*- 7α , 16β , 17-trihydroxy-beyeran-19-oic acid.

Compound **4** displayed a quasi-molecular ion peak at m/z 333.2065 [M–H]⁻ in the HRTOFMS analysis, corresponding to the molecular formula $C_{20}H_{30}O_4$. The 1H , ^{13}C NMR, and HSQC spectra were similar to those of **9**, apart from a new CH resonance at δ_C 17.5 (δ_H 5.69) and one quaternary carbon at δ 156.4. Examination of the HSQC and HMBC spectra of **4** indicated that the new resonance at δ_H 5.69 had connectivities with each of C-8, 10, 12, and 13 (δ_C 43.0, 40.8, 31.9, and 48.6, respectively). The spectra also showed connectivities between CH₃-20 (δ_H 1.49)/H-14 (δ_H 1.87)/H-12 and H-15 (δ_H 2.48–2.51)/H-12 (δ_H 2.91) with δ_C 156.4. These data implied that a double bond was located between C-9 and C-11. Moreover, single-crystal X-ray crystallographic analysis confirmed that **4** was ent-16 β ,17-dihydroxy-beyer-9(11)-en-19-oic acid (Fig. 1).

Compound 6 displayed a quasi-molecular ion peak at m/z351.2173 [M-H] in the HRESIMS data, corresponding to the molecular formula of C₂₀H₃₂O₅. The DEPT and ¹³C NMR spectroscopic data showed one new carbon resonance at δ 78.5, compared with **9**. The lack of a carbinol-methine resonance in the ¹H NMR spectrum and the disappearance of one tertiary carbon in the DEPT spectrum suggested that the OH group might have been introduced at C-5 or C-9. In the ¹³C NMR spectrum, C-11 had shifted from δ_C 21.0 to 27.1, and CH₃-20 had shifted from δ_C 13.9 to 17.9, compared with **2**. These findings suggested that an OH group might reside at C-9. In the HMBC spectrum, the new resonance at δ_C 78.5 showed connectivities with H-7 and H-14 (δ_H 1.44–1.48), H-11 (δ_H 1.85), H-12 and H-15 (δ_H 2.08–2.20), H-7 and H-12 (δ_H 2.22–2.29), H-14 and H-15 (δ_H 2.61–2.65), and H-11 (δ_H 2.73), confirming the presence of an OH group at C-9. Based on these findings, 6 was established as *ent*- 9α , 16β , 17-trihydroxy-beyeran-19-oic acid.

Fig. 1. ORTEP drawing of the X-ray structure of 4.

Compound 8 exhibited a quasimolecular ion peak at m/z335.2227 [M-H]⁻ in the HRESIMS analysis, corresponding to the molecular formula C₂₀H₃₂O₄. The ¹³C NMR spectrum of **8** exhibited resonances for 20 carbons, whereas the DEPT spectrum showed the disappearance of one CH₂ resonance and the presence of one new CH resonance at δ 71.6. These findings suggested that **8** might be a monohydroxylated product of 2. Detailed analysis of the DEPT, HSQC, and HMBC spectra of 8 and comparison with 2 established that the new CH resonance at δ_H 4.53 had connectivities with the signals at δ_C 23.4 (CH₃-17), 50.1 (C-14), 52.2 (C-9), and 47.9 (C-13). Thus, the OH group was located at C-12. Additionally, evidence for the equatorial position of H-12 included not only the NOE correlations to H-11 and CH₃-17, but also the multiplicity of the H-12 resonance in the ¹H NMR spectrum showing a singlet resonance (De Oliveira et al., 1999). Accordingly, the 12β -OH was established. On the basis of the above evidence, 8 was characterized as ent- 12α , 16β -dihydroxy-beyeran-19-oic acid.

The molecular formula of 13 was determined to be C₂₀H₃₀O₅ from its HRESI mass spectrum analysis (m/z 349.2028 [M-H]⁻) and ¹H and ¹³C NMR spectroscopic data. Examination of the ¹³C NMR spectrum of 13, including DEPT, sorted 20 resonances into one carboxylic carbonyl, one carbonyl group, four CH, seven CH₂, three CH₃, and four quaternary carbons. Compared with **2**, the lack of H-16 β and C-16 signals in the ^{1}H and ^{13}C NMR spectra (which were replaced by a carbonyl group at δ_C 221.5) suggested that 13 possessed the same basic backbone as isosteviol (1). In the HSQC spectrum, the observation of resonances at δ_H 4.26 (δ_C 67.8) and δ_H 4.63 (δ_C 75.1) indicated that **13** possessed two more oxygen atoms than **1**. In the HMBC spectrum, the signals for H-12 (δ_H 1.93 and 2.22–2.26)/H-9 (δ_H 1.74) exhibited cross-peaks with δ_C 67.8, suggesting an OH group at C-11. In addition, HMBC correlations of δ_H 4.63 with C-7 (δ_C 35.4), and of H-9 (δ_H 1.74)/H-14 (δ_H 1.57–1.60)/H-7 (δ_H 1.29) with δ_C 75.1, enabled the replacement of the second OH group at C-15. The orientations of both OH groups at C-11 and C-15 were assigned to be β , based on a NOESY experiment. NOESY correlations for H-11 were observed for CH₃-20 and H-12. The C-15 hydrogen showed cross-peaks with CH₃-20, H-6, and H-11 α . Thus, **13** was characterized as ent- 11α , 15α -dihydroxy-16-oxobeyeran-19-oic acid.

Compound **14** obtained the molecular formula $C_{20}H_{32}O_4$, as deduced from HRESIMS and NMR spectroscopic data. The ¹³C NMR spectra of **14** displayed resonances for 20 carbons, whereas the DEPT spectrum showed the disappearance of one CH₂ resonance and the presence of one new CH resonance at δ_C 82.0. These find-

ings suggested that **14** might be a monohydroxylated product of **2**. Detailed analysis of the HSQC and HMBC spectra of **14**, and comparisons with **2**, indicated that δ_H 3.74 showed connectivities with each of C-5, 3, 2, and CH₃-20 (δ_C 57.0, 37.4, 31.4, and 10.3, respectively). Thus, the OH group was located at C-1. The α -orientation of 1-OH was established from the NOE correlations of H-1 with H-5 (δ 1.20) and H-9 (δ 1.55). The multiplicity of the H-1 resonance in the ¹H NMR spectrum exhibiting a doublet of doublets (J = 11.0, 4.5 Hz) confirmed that 1-OH was α -oriented (De Oliveira et al., 1999). Based on these observations, **14** was identified as ent-1 β ,16 β -dihydroxy-beyeran-19-oic acid.

Compounds 15 and 16, respectively, displayed quasi-molecular ion peaks at m/z 421.2237 [M-H]⁻ and at 421.2248 [M-H]⁻ (calcd for C₂₃H₃₃O₇, 421.2226) in the HRESIMS data. This finding implied a molecular formula of C₂₃H₃₄O₇. Their ¹³C NMR spectra consisted of 23 resolved signals, in agreement with the molecular formula. The multiplicity of the individual resonances determined by DEPT experiments indicated four CH, eight CH₂, three CH₃, one -OCH₃, and seven quaternary carbons, including one carboxylic carbonyl (δ_C 180.3 and 181.0, respectively) and a pair of carbonyls (δ_C 158.7/160.2 and 159.0/159.6, respectively). Comparison of the overall NMR spectroscopic data with 2 established that compounds **15** and **16**, respectively, exhibited significant variations in the ¹H and ¹³C NMR chemical shifts for H-7/C-7 and H-16/C-16. The DEPT and HSQC spectra of 15 and 16 showed the disappearance of one CH₂ resonance and the presence of new resonances at δ_H 5.29 (δ_C 84.4) and δ_H 3.87 (δ_C 76.3), respectively, compared with **2**. Analysis of the HSQC and HMBC spectra of 15 and 16 established that the new resonance at δ_H 5.29 in **15** had connectivities with δ_C 49.3 (C-5) and 52.0 (C-9), whereas the new resonance at δ_H 3.87 in **16** showed connectivities with δ_C 48.1 (C-8) and 50.7 (C-9). Inferred from these observations was that the substituent in both compounds was at C-7. In addition, in 15, two new carbonyls and one new methoxy group resonated at δ_C 158.7/160.2 and δ_C 53.8/ δ_H 3.86 (3H, s), respectively. Meanwhile, the new signal at δ_H 3.86 ($-OCH_3$) showed an HMBC correlation with δ_C 160.2. Similarly, in 16, two new carbonyls and one new methoxy group resonated at δ_C 159.0/159.6 and δ_C 53.7/ δ_H 3.78 (3H, s), respectively. Meanwhile, the new signal at δ_H 3.78 (-OCH₃) showed an HMBC correlation with δ_C 159.6. These findings suggested the existence of a methyloxalyl moiety in both compounds. The ¹H and ¹³C NMR spectra of **17** (ent- 7α , 16β -dihydroxy-beyeran-19-oic acid) was next compared with compound 16 where it was noted that the resonances of H-7/C-7 in **16** were similar to **17** (δ_H 3.87 vs 3.92/ δ_C 76.3 vs 76.6), suggesting an OH group at C-7. However, the resonances of H-7/C-7 in **15** showed a downfield shift from δ_H 3.92 to 5.29/ δ_C 76.6 to 84.4, implying that a methyloxalyl moiety might be linked to 7-OH. By contrast, the resonances of H-16 β /C-16 in **16** were respectively downfield shifted from δ_H 4.10 to 5.09/ δ_C 79.8 to 85.0, implying a methyloxalyl moiety with an ether linkage at 16α -OH. The orientation of the substituent group at C-7 followed from the multiplicity of the H-7 resonating as a singlet signal, indicating that H-7 was α-oriented in both compounds (De Oliveira et al., 1999). However, H-7 α in **15** and H-16 β in **16** did not show correlations with, respectively, δ_C 158.7 and 159.0 in the HMBC spectra. To clarify this structural ambiguity through chemical means, compound 17 was reacted with methyloxalyl chloride to afford two monomethyloxalyl derivatives (15S and 16S) and one dimethyloxalyl derivative (19). All ¹³C NMR and DEPT spectral chemical shifts for transformed products and synthetic compounds (**15S** and **16S**) were congruent. Both the ¹H NMR and the HRESIMS data $(m/z 445.2216 [M+Na]^{+}$ and 421.2233 $[M-H]^{-}$), as well as the TLC R_C-values were comparable for each of **15** and **16**. In the HMBC spectrum of **15S**, the resonance at δ_H 5.29 (H-7 α) showed connectivities with δ_C 42.8 (C-15), 46.1 (C-8), 49.3 (C-5), 52.0 (C-9), and 158.7, whereas δ_H 3.86 (3H, s) showed connectivity with δ_C 160.2. In the HMBC spectrum of **16S**, the resonance at δ_H 5.09 (H-16 β) showed connectivities with δ_C 25.6 (C-17), 35.2 (C-12), 40.0 (C-15), 42.5 (C-13), 48.2 (C-8), and 159.0, whereas δ_H 3.78 (3H, s) showed connectivity with δ_C 159.6. Accordingly, the methyloxalyl moiety was attached at 7 β -OH in **15** and at 16 α -OH in **16**. Based on these findings, **15** and **16** were established as ent-16 β -hydro-xy-7 α -O-methyloxalyl-beyeran-19-oic acid and ent-7 α -hydroxy-16 β -O-methyloxalyl-beyeran-19-oic acid, respectively.

Compound **18** was an unreported compound obtained from reacting **2** with methyloxalyl chloride. The interpretation of its HRESIMS data coupled with the DEPT and 13 C NMR data yielded a molecular formula of $C_{23}H_{34}O_6$ (m/z 429.2258 [M+Na]⁺). The

resonances of H-16 β /C-16 were respectively downfield shifted from δ_H 4.09 to 5.03/ δ_C 79.8 to 85.1, compared with **2**. In the HMBC spectrum, the signal at δ_H 5.03 showed connectivities with δ_C 25.4 (C-17), 35.1 (C-12), 41.1 (C-15), 42.5 (C-13), 43.1 (C-8), and 158.9, whereas δ_H 3.76 (3H, s) showed connectivity with δ_C 159.2. Thus, **18** was characterized as ent-16 β -O-methyloxalyl-beyeran-19-oic acid, which was prepared for biological testing in this study.

Compound **19** was a reaction product and displayed a quasimolecular ion peak at m/z 531.2194 [M+Na]* in the HRESIMS data, corresponding to the molecular formula $C_{26}H_{36}O_{10}$. The ^{13}C NMR spectrum showed signals for 26 carbons, which were differentiated by DEPT as follows: one carboxylic carbonyl, four carbonyl, four

Fig. 2. Effects of compounds 1–19 on expression of steroidogenic genes in the Y-1 mouse adrenal tumor cell line.

Fig. 3. Effects of compounds 1-19 on expression of steroidogenic genes in the MA-10 mouse Leydig tumor cell line.

CH, eight CH₂, three CH₃, two -OCH₃, and four quaternary carbons. Analysis of HSQC and HMBC spectra and by comparison with **17** established that δ_H 5.25 showed connectivities with δ_C 27.5 (C-6), 39.4 (C-15), 46.2 (C-8), 49.0 (C-5), 51.4 (C-9), and 158.5, whereas δ_H 3.77 (3H, s) showed a correlation with δ_C 159.3. Accordingly, the methyloxalyl moiety was attached to 7 β -OH. By contrast, δ_H 5.05 showed connectivities with δ_C 25.2 (C-17), 34.6 (C-12), 39.4 (C-15), 42.4 (C-13), 46.2 (C-8), and 158.8, whereas δ_H 3.85 (3H, s) showed connectivity with δ_C 159.9. Thus, a second methyloxalyl moiety was attached to 16 α -OH. On the basis of the spectroscopic data, **19** was characterized as ent-7 α ,16 β -di-O-methyloxalyl-bey-eran-19-oic acid.

Subsequently, compounds **1–19** were examined for their effects on the expression of steroidogenic genes, including StAR, P450scc, and SF-1. The reverse transcription-PCR analysis was conducted in both Y-1 mouse adrenal tumor and MA-10 mouse Leydig tumor cell lines. Gene expression profiles showed that **3**, **6**, **7**, **9–13**, **15**, and **16** effectively suppressed expression of P450_{SCC} mRNA in both Y-1 and MA-10 cells (Figs. 2 and 3). In Y-1 cells, compounds **1–3**, **9**, **13**, and **16** induced SF-1 gene expression, whereas **3** and **5** enhanced StAR gene expression (Fig. 2). By contrast, in MA-10 cells, compound **19** effectively suppressed the StAR gene expression, whereas **2**, **3**, **6**, **12**, and **14** effectively suppressed the expression of SF-1 gene (Fig. 3).

3. Conclusions

Fifteen compounds were obtained from the biotransformation of **2**. Among them, **3**, **4**, **6**, **8**, and **13–16** had not been reported prior to this study. The formation of 4 might be due to the introduction of an OH group into 2 at the C-9 position, followed by loss of water to form a 9,11-double bond. The specific hydroxylation of 2 at C-17 was observed during incubation with either Abs. pseudocylindrospora or M. recurvatus in this study. The main reaction detected in *M. recurvatus* was oxidation of 16α -OH into 16-oxo and subsequent stereospecific hydroxylation at B, C, and D rings. The formation of metabolites 15 and 16 were probably artificial fermentation products. A previous study reported that Asp. niger produced oxalic acid through the Krebs cycle by forming oxalate through splitting oxalacetate (Cleland and Johnson, 1956). Thus, the formation of methyloxalyl derivatives in Asp. niger likely entails initial stereoselective hydroxylation at the 7β position (17), followed by introduction of the oxalyl group at 7β -OH and 16α -OH, respectively, to produce the intermediates of 7β -O-oxaly and 16α -O-oxalyl derivatives. The two intermediates then performed specific methylation at oxalyl moiety to obtain 15 and 16.

A study on the chick's comb by Dorfman and Nes (1960) showed that inunction with 2 inhibited the action of injected testosterone; however, 2 did not affect testosterone action in the seminal vesicles, prostate, and levator ani muscle of the castrated rat. The results herein showed that 2 did not display any significant effect on steroidogenic gene expression, apart from inducing SF-1 in Y-1 adrenal tumor cells and suppressing SF-1 in MA-10 Leydig tumor cells. Further investigation is required to clarify the underlying molecular mechanism of the anti-androgenic effect of 2. In addition, introducing OH groups at the 7β -, 7β , 15β -, 11β , 15β -, 12β , 15β -, and 12β , 17-positions of isosteviol (1) could suppress P450_{SCC} mRNA expression in both Y-1 and MA-10 cells. Compounds 15 and 16, which possessed a methyloxalyl moiety with an ether linkage at 7β -OH and 16α -OH of **17**, respectively, appeared to be able to reduce the level of P450_{SCC} mRNA in both Y-1 and MA-10 cells. By contrast, in Y-1 cells, 16 displayed a significant induction of SF-1 mRNA, whereas 15 did not (Fig. 2). In MA-10 cells, 17 and 18 with β -OH and α -methyloxalyl groups substituted at C-7 and C-16 of 2, respectively, did not influence P450_{SCC} mRNA

expression. Similarly, 19 possessing methyloxalyl group with an ether linkage at both 7β -OH and 16α -OH of **17** did not show an effect on P450_{SCC} mRNA expression, but it did effectively suppress StAR mRNA expression (Fig. 3). Thus, these observations suggest that the methyloxalyl moiety substitution at the 7β -OH or 16α -OH of 17 may be essential for reducing the level of the P450_{SCC} mRNA in MA-10 cells. Additionally, compounds 12 and 14, which possessed OH groups at the 7β , 15β - and 1α -positions of **1** and **2**, respectively, suppressed SF-1, StAR, and P450_{SCC} mRNA expressions in MA-10 cells, suggesting a potential for the application of them to treat hormone-dependent cancers. The results presented here suggest that analogs of 2 may be potential modulators to alter steroidogenic gene expressions and subsequent enzyme activities. Thus, they may be able to assist in controlling synthesis and metabolism of steroid hormones. Further mechanistic studies are required for a better understanding of their actions and the differences of their effects on steroidogenic gene expression.

4. Experimental

4.1. General

Optical rotations were measured using a JASCO DIP-1020 digital polarimeter. Spectra for $^1\mathrm{H}$ (500 MHz), $^{13}\mathrm{C}$ (125 MHz), and 2D NMR were acquired using on a Bruker Avance 500 spectrometer using the corresponding solvent as the internal standard. Mass spectra were recorded on a VG platform electrospray mass spectrometer, a Shimadzu LCMS-IT-TOF mass spectrometer, and a Bruker maXis impact QTOF mass spectrometer. Column chromatography (CC) was performed using Kieselgel silica (70–230 and 230–400 mesh; Merck, Darmstadt, Germany), MCI-gel CHP 20P (75–150 $\mu\mathrm{m}$; Mitsubishi Chemical, Tokyo, Japan), and Cosmosil $75\mathrm{C}_{18}$ -OPN (Nacalai Tesque, Kyoto, Japan). Single-crystal X-ray diffraction was measured using a Siemens SMART CCD XRD.

4.2. Substrate 2

Dihydroisosteviol (2) was prepared as described previously (Ali et al., 1992).

4.3. Microorganisms and preparation of medium

Abs. pseudocylindrospora, S. griseus, M. recurvatus, and Asp. niger were obtained from the Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, and Bioresources Collection and Research Center, Hsinchu, Taiwan. They were maintained on Sabouraud-maltose agar slants or those recommended by the ATCC and BCRC, and stored in a refrigerator at 4 °C. The incubation medium consisted of dextrose (20 g), yeast (5 g), NaCl (5 g), K₂HPO₄ (5 g), soybean flour (5 g), and distilled H₂O (1 L). The pH of the medium was adjusted to 7.0 with 6 N HCl before sterilization by autoclaving at 121 °C for 15 min.

4.4. Preparative-scale transformations of **2** by Abs. pseudocylindrospora ATCC 24169, S. griseus ATCC 10137, M. recurvatus MR36, and Asp. niger BCRC 31130

Abs. pseudocylindrospora, S. griseus, M. recurvatus, and Asp. niger were cultivated by a previously described two-stage fermentation protocol (Hsu et al., 2002). Culture controls and substrate control were both run. Using 24-h-old stage II cultures, a solution of 2 (1.00 g dissolved in 10 ml DMF) was evenly distributed among one hundred 125 ml stainless-steel-capped flasks containing stage II cultures. Substrate-containing cultures were incubated for 144 h and then extracted as previously described (Hsu et al., 2002). Four

crude residues of brown oils weighing 4.45 g, 5.87 g, 4.41 g, and 5.85 g, respectively, were obtained after bioconversions with Abs. pseudocylindrospora, S. griseus, M. recurvatus, and Asp. niger. The crude residue from Abs. pseudocylindrospora (4.45 g) was subjected to silica gel CC. Ten fractions (1-10) were obtained by elution with various mixtures of CH₂Cl₂-CH₃OH (500 ml each of 20:1, 18:1, 15:1, 10:1, and 5:1, respectively). Fraction 2 (1.02 g) was subjected to further silica gel CC eluted with CH2Cl2-CH3OH (20:1) and 2 (614 mg) was recovered. Fraction 4 (290 mg) was applied to a silica gel column (CH₂Cl₂-CH₃OH with increasing polarity) to yield subfractions 4.1 and 4.2. With further chromatography of fraction 4.2 (60 mg) over MCI-gel CHP 20P, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, compounds 4 (29 mg) and 5 (6 mg) were obtained. Fraction 8 (220 mg) further purified over silica gel (CH₂Cl₂-CH₃OH with increasing polarity) to yield three subfractions: 8.1-8.3. With further chromatography of fraction 8.2 (47 mg) over Cosmosil 75 C₁₈-OPN, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, 6 (27 mg) was obtained. Fraction 9 (91 mg) was subjected to silica gel CC (CH₂Cl₂-CH₃OH with increasing polarity) to yield three subfractions: 9.1-9.3. With further purification of fraction 9.2 (38 mg) over MCI-gel CHP20P, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, 3 (25 mg) was obtained.

The crude residue (5.87 g) obtained from the liquid culture of S. griseus was subjected to silica gel CC eluted with a CH2Cl2-CH3OH gradient system (500 ml each of 20:1, 18:1, 15:1, 10:1, and 5:1, respectively) to yield 12 fractions (1-12). Fraction 6 (1.12 g) was applied to a silica gel column, eluted with CH2Cl2-CH3OH (20:1) to recover 2 (847 mg). Fraction 7 (86 mg) was subjected to silica gel CC, eluted with CH₂Cl₂-(CH₃)₂CO (4:1), and yielded subfractions 7.1 and 7.2. Fraction 7.1 (20 mg) was further applied to CC over MCI-gel CHP 20P, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, to afford 7 (12 mg). Fraction 9 (194 mg) was applied to a silica gel column, eluted with CH₂Cl₂-(CH₃)₂CO (4:1) to yield four subfractions: 9.1–9.4. With further chromatography of fractions 9.2 (21 mg) and 9.3 (27 mg) over Cosmosil 75 C₁₈-OPN, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃-OH, 8 (6 mg) and 9 (15 mg) were obtained. Fraction 12 (81 mg) was applied to a silica gel column, eluted with CH₂Cl₂-(CH₃)₂CO (4:1) to afford subfractions 12.1 and 12.2. Fraction 12.2 (10 mg) was purified over MCI-gel CHP 20P, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, to yield 3 (3 mg).

The crude residue from M. recurvatus (4.41 g) was subjected to silica gel CC. In total, eight fractions (1–8) were obtained by elution with various mixtures of CH₂Cl₂-CH₃OH (600 ml each of 20:1, 18:1, 15:1, 10:1, and 5:1, respectively). Further chromatography of fraction 2 (956 mg) over silica gel eluted with CH₂Cl₂-CH₃OH (20:1) afforded 2 (423 mg). Fraction 4 (216 mg) was then subjected to silica gel CC, eluted with CH₂Cl₂-CH₃OH (15:1) to afford three subfractions: 4.1-4.3. Fraction 4.2 (61 mg) was applied to a Cosmosil C₁₈-OPN column, eluted with CH₃OH-H₂O (1:4) and increasing amounts of CH₃OH, to yield 10 (32 mg). Fraction 5 (196 mg) was subjected to silica gel CC (CH₂Cl₂-CH₃OH with increasing polarity) to give three subfractions: 5.1-5.3. Fraction 5.1 (31 mg) was applied to CC over MCI-gel CHP 20P, eluted with CH₃OH-H₂O (3:7) and increasing amounts of CH₃OH to yield 11 (17 mg). Fractions 5.2 (81 mg) and 5.3 (15 mg) were applied to Cosmosil C₁₈-OPN column, eluted with CH₃OH-H₂O (2:3) and increasing amounts of CH₃-OH, to yield 12 (69 mg) and 13 (5 mg), respectively. Fraction 7 (146 mg) was further purified over silica gel, eluted with CH₂Cl₂-CH₃OH (15:1) with increasing amounts of CH₃OH, to yield subfractions 7.1 and 7.2. Fraction 7.1 (25 mg) was subjected to CC over MCI-gel CHP 20P eluted with CH_3OH-H_2O (7:3) to yield **14** (13 mg).

The crude residue from *Asp. niger* (5.85 g) was subjected to silica gel CC. In total, eight fractions (1-8) were obtained by elution with various mixtures of $CH_2Cl_2-CH_3OH$ (500 ml each of 20:1, 18:1,

15:1, 10:1, and 5:1, respectively). Further chromatography of fraction 3 (1.02 g) over silica gel, eluted with CH₂Cl₂-CH₃OH (20:1) yielded four subfractions: 3.1–3.4. Fraction 3.2 was recrystallized with CH₃OH and **2** (892 mg) was recovered. Further chromatography of fraction 5 (137 mg) over silica gel, eluted with CH₂Cl₂-CH₃OH (15:1) yielded three subfractions: 5.1–5.3. Fractions 5.1 (26 mg) and 5.3 (18 mg) were applied to Cosmosil 75C_{1.8}-OPN columns eluted with CH₃OH-H₂O (13:7), which yielded **15** (5 mg) and **16** (3 mg), respectively. Fraction 6 (175 mg) was further purified by silica gel CC, eluted with CH₂Cl₂-CH₃OH (15:1) with increasing amounts of CH₃OH, to yield subfractions 6.1 and 6.2. Fraction 6.2 (27 mg) was subjected to CC over MCI-gel CHP 20P eluted with CH₃OH-H₂O (7:3), to yield **17** (20 mg).

4.4.1. Compound **3**

White powder; $[\alpha]_D^{25}$ - 18.8 (*c* 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRTOFMS m/z 351.2169 $[M-H]^-$ (calcd for $C_{20}H_{31}O_5$, 351.2171).

4.4.2. Compound **4**

White powder; $[\alpha]_D^{25}$ -69.4 (*c* 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRTOFMS *m/z* 333.2065 [M–H] ⁻ (calcd for C₂₀H₂₉O₄, 333.2066).

4.4.3. X-ray crystallographic data for 4

Crystals of **4** were grown by slow evaporation from a mixture of pyridine–CH₃OH-H₂O. A well-shaped crystal of **4** with dimensions of 0.20 \times 0.15 \times 0.10 mm³ was selected for X-ray analysis. The data obtained for the crystal were as follows: C₂₀H₃₀O₄, *M* 334.44, orthorhombic, *P*2₁2₁2₁, *a* 7.3140 (4) Å, *b* 10.8789 (7) Å, *c* 22.9393 (14) Å, *V* 1825.24 (19) Å³; *Z* 4, D_{calcd} 1.217 g cm⁻³, F(000) 728, λ (Mo K α) 0.71073 Å, T 295(2) K, 6351 reflections collected. Final GooF 0.554, final *R* indices R_1 0.0421, wR_2 0.0947, 218 parameters, μ 0.083 mm⁻¹, R indices based on 4412 reflections with $I > 2\sigma(I)$ absorption corrections applied. Complete crystallographic data of **4** were deposited in the Cambridge Crystallographic Data Centre (CCDC 898187). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: data_request@ccdc.cam.ac.uk).

4.4.4. Compound 6

White powder; $[\alpha]_D^{25}$ –35.6 (c 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z 351.2173 [M–H]⁻ (calcd for C₂₀H₃₁O₅, 351.2171).

4.4.5. Compound 8

White powder; $[\alpha]_D^{25}$ –77.8 (c 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z 335.2227 [M–H]⁻ (calcd for C₂₀H₃₁O₄, 335.2222).

4.4.6. Compound 13

White powder; $[\alpha]_D^{25}$ –65.4 (*c* 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z 349.2028 [M–H] ⁻ (calcd for C₂₀H₂₉O₅, 349.2015).

4.4.7. Compound **14**

White powder; $[\alpha]_D^{25}$ –45.6 (c 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 1 and 2; HRESIMS m/z 335.2229 [M–H]⁻ (calcd for C₂₀H₃₁O₄, 335.2222).

4.4.8. Compound 15

White powder; $[\alpha]_D^{25} - 11.4$ (*c* 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; HRESIMS m/z 421.2237 [M–H]⁻ (calcd for C₂₃H₃₃O₇, 421.2226).

Table 1 ¹H NMR spectroscopic data $(\delta_H)^a$ of compounds **3, 4, 6, 8, 13**, and **14** in pyridine- d_5 (J in Hz).

Position	3	4	6	8	13	14
1	1.86-1.90 ^b (m)	2.09-2.18 ^b (m)	2.33-2.41 ^b (m)	1.84-1.94 ^b (m)	3.33 (d, 13.5)	β 3.74 (dd, 11.0, 4.5)
	1.16 (td, 13.0, 3.5)	1.44 (m)	$1.61-1.66^{b}$ (m)	1.03 (td, 13.5, 3.5)	$1.47-1.50^{b}$ (m)	
2	2.30-2.41 ^b (m)	$2.30-2.38^{b}$ (m)	$2.33-2.41^{b}$ (m)	2.25 (m)	2.38 (m)	2.66 (m)
	1.52 (br d, 13.5)	$1.58-1.64^{b}$ (m)	$1.61-1.66^{b}$ (m)	1.45 (m)	$1.57-1.60^{b}$ (m)	1.99 (dd, 13.0, 4.0)
3	$2.51-2.56^{b}(m)$	$2.48-2.51^{b}$ (m)	2.47 (d, 12.0)	$2.47-2.54^{b}$ (m)	$2.51-2.56^{b}$ (m)	$2.45-2.52^{b}$ (m)
	1.22 (td, 13.0, 4.0)	1.09 (td, 13.5, 4.0)	1.22 (m)	1.10 (dd, 13.0, 3.5)	1.23 (m)	1.33 (dd, 13.5, 4.0)
5	$2.30-2.41^{b}$ (m)	1.35 (dd, 12.0, 1.5)	$2.33-2.41^{b}$ (m)	1.21 (d, 11.5)	$1.47-1.50^{b}$ (m)	1.20 (br d, 11.0)
6	2.51-2.56 ^b (m)	2.30-2.38 ^b (m)	2.33-2.41 ^b (m)	2.18 (m)	2.51-2.56 ^b (m)	$2.24-2.32^{b}$ (m)
	• •	2.09-2.18 ^b (m)	2.08-2.20 ^b (m)	$2.05-2.13^{b}$ (m)	2.22-2.26 ^b (m)	2.12 (dd, 13.5, 1.5)
7	α 3.98 (br s)	1.78-1.80 ^b (m)	2.22-2.29 ^b (m)	1.68 (d, 13.0)	2.85 (d, 13.0)	1.67 (dt, 13.0, 3.0)
	. ,	1.58-1.64 ^b (m)	$1.44-1.48^{b}$ (m)	1.56 (td, 13.0, 3.5)	1.29 (m)	1.41-1.49 ^b (m)
9	$1.95-2.08^{b}$ (m)	. ,	. ,	1.76 (dd, 13.5, 4.0)	1.74 (d, 10.5)	1.55 (dd, 12.5, 4.5)
11	2.30-2.41 ^b (m)	5.69 (t, 3.5)	2.73 (td, 13.5, 6.0)	$2.47-2.54^{b}$ (m)	α 4.26 (m)	3.18 (m)
	$1.86-1.90^{b}$ (m)		1.85 (dd, 14.0, 5.0)	2.05-2.13 ^b (m)	. ,	$2.45-2.52^{b}$ (m)
12	2.30-2.41 ^b (m)	2.91 (dd, 17.5, 3.5)	$2.22-2.29^{b}$ (m)	α 4.53 (s)	$2.22-2.26^{b}$ (m)	2.24-2.32 ^b (m)
	1.64 (td, 12.0, 5.5)	2.48-2.51 ^b (m)	$2.08-2.20^{b}$ (m)	. ,	1.93 (m)	1.41-1.49 ^b (m)
14	1.95-2.08 ^b (m)	1.87 (d, 11.0)	$2.61-2.65^{b}$ (m)	$2.05-2.13^{b}$ (m)	2.12 (dd, 11.5, 2.5)	1.41-1.49 ^b (m)
	. ,	$1.78-1.80^{b}$ (m)	1.44-1.48 ^b (m)	1.16 (d, 11.0)	$1.57-1.60^{b}$ (m)	1.27 (dd, 11.5, 2.5)
15	$2.30-2.41^{b}$ (m)	2.48-2.51 ^b (m)	$2.61-2.65^{b}$ (m)	2.34 (m)	α 4.63 (s)	2.38 (m)
	$1.95-2.08^{b}$ (m)	$2.09-2.18^{b}$ (m)	$2.08-2.20^{b}$ (m)	$1.84-1.94^{b}$ (m)	(,,	1.91 (dd, 11.0, 13.5)
16	4.74 (dd, 10.5, 4.5)	4.85 (dd, 10.0, 2.5)	4.73 (dd, 10.5, 3.0)	4.33 (dd, 11.0, 4.0)		4.16 (dd, 11.0, 4.5)
17	3.97 (d, 10.5)	4.00 (d, 10.5)	3.95 (d, 10.5)	1.49 (s)	1.17 (s)	1.11 (s)
	3.87 (d, 10.5)	3.94 (d, 10.5)	3.89 (d, 10.5)	` '	` '	` '
18-CH ₃	1.47 (s)	1.40 (s)	1.41 (s)	1.39 (s)	1.46 (s)	1.41 (s)
20-CH ₃	1.32 (s)	1.49 (s)	1.57 (s)	1.25 (s)	1.47 (s)	1.50 (s)

^a Assignments based on DEPT, HSQC, and HMBC.

Table 2 13 C NMR spectroscopic data $(\delta_C)^a$ of compounds **2–4**, **6**, **8**, **13–16**, **18**, and **19** in pyridine- d_5 .

No.	2	3	4	6	8	13	14	15	16	18	19
1	40.5	41.0	39.4	33.1	40.8	43.2	82.0	40.4	40.7	40.6	40.1
2	19.8	20.3	20.7	20.4	20.2	20.7	31.4	20.0	20.2	20.0	19.8
3	38.8	39.4	39.0	39.2	39.3	39.3	37.4	38.9	39.2	39.1	38.7
4	44.0	44.2	44.8	44.6	44.5	44.9	43.9	43.8	44.0	44.3	43.6
5	57.4	48.2	55.4	49.3	57.9	58.5	57.0	49.3	47.9	57.4	49.0
6	22.7	31.3	23.0	23.4	23.2	22.9	23.2	27.7	31.0	22.8	27.5
7	42.5	77.1	41.2	38.4	42.7	35.4	43.7	84.4	76.3	42.1	83.4
8	42.6	48.1	43.0	48.1	43.7	45.3	44.2	46.1	48.1	43.1	46.2
9	56.5	51.9	156.4	78.5	52.2	63.0	57.8	52.0	50.7	56.1	51.4
10	38.7	39.3	40.8	44.7	38.8	41.4	45.4	38.8	39.0	38.9	38.7
11	21.0	20.9	117.5	27.1	30.4	67.8	25.0	20.9	20.8	21.0	20.5
12	34.8	30.8	31.9	27.5	71.6	50.3	35.8	34.6	35.2	35.1	34.6
13	42.6	48.4	48.6	48.3	47.9	48.7	43.1	42.8	42.5	42.5	42.4
14	55.9	47.7	48.3	44.6	50.1	51.8	56.7	51.1	51.9	55.1	50.2
15	44.0	43.2	53.0	46.2	44.0	75.1	44.9	42.9	40.0	41.1	39.4
16	79.8	75.9	76.6	75.4	80.8	221.5	80.4	79.3	85.0	85.1	83.9
17	25.7	69.1	68.9	69.1	23.4	20.5	26.1	25.9	25.6	25.4	25.2
18	29.6	30.0	29.9	30.3	30.0	30.6	29.9	29.7	29.8	29.9	29.6
19	180.3	181.3	180.7	181.2	180.8	181.1	180.6	180.3	181.0	180.5	180.3
20	13.9	14.4	24.4	17.9	14.4	15.2	10.3	14.1	14.0	14.0	13.7
21								158.7	159.0	158.9	158.5
22								160.2	159.6	159.2	159.3
23-OCH ₃								53.8	53.7	53.6	53.7
24											158.8
25											159.9
26-0 <i>C</i> H₃											53.8

^a Assignments based on DEPT, HSQC, and HMBC.

4.4.9. Compound 16

White powder; $[\alpha]_D^{25}$ –17.2 (c 0.5, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; HRESIMS m/z 421.2248 [M–H]⁻ (calcd for C₂₃H₃₃O₇, 421.2226).

4.5. Preparation of 15S, 16S, and 19

Compounds **15S** and **16S** were prepared according to previously described procedures (Pettit et al., 2007) Briefly, methyl oxalyl chloride

(40 μ l, 0.321 mmole) and a catalytic amount of 4-(dimethylaminopyridine) (DMAP) was added to a solution of **17** (100 mg, 0.298 mmole) in pyridine (1 ml). The reaction mixture was stirred at room temperature for 1 h. Ice water was then added and the solvent was evaporated *in vacuo* to afford a residue (167 mg). The residue was purified by CC over silica gel eluted with CH₂Cl₂-CH₃OH (20:1) and increasing CH₃OH, to yield **15S** (20 mg), **16S** (5 mg), and **19** (57 mg).

Compound **18** was prepared as described above. The yield for the formation of **18** was 60%.

^b Overlapping signals.

Table 3 ¹H NMR spectroscopic data $(\delta_H)^a$ of compounds **15**, **16**, **18**, and **19** in pyridine- d_5 (J in Hz).

Position	15	16	18	19
1	1.75 (d, 13.0)	1.78 (br d, 12.5)	1.69-1.79 ^b (m)	1.68 (br d, 12.0)
	1.00 (m)	1.08 (m)	0.91 (td, 13.0, 4.0)	0.93 (m)
2	$2.11-2.25^{b}$ (m)	2.21-2.32 ^b (m)	2.23 (m)	2.17 (m)
	1.46 (m)	1.50 (br d, 13.0)	$1.48-1.56^{b}$ (m)	$1.41-1.46^{b}$ (m)
3	2.48 (m)	2.50 (d, 12.5)	2.46 (d, 13.0)	$2.40-2.44^{b}$ (m)
	1.09 (td, 13.5, 4.0)	1.18 (td, 13.5, 4.0)	$1.04-1.12^{b}$ (m)	1.05 (m)
5	$1.90-2.02^{b}$ (m)	$2.21-2.32^{b}$ (m)	$1.04-1.12^{b}$ (m)	1.85 (br d, 12.8)
6	2.60 (m)	2.41 (m)	2.00-2.08 ^b (m)	2.55 (br d, 15.2)
	2.52 (m)			$2.40-2.44^{b}$ (m)
7	α 5.29 (br s)	α 3.87 (br s)	1.48-1.56 ^b (m)	α 5.25 (s)
			1.39 (m)	
9	$1.67-1.70^{b}$ (m)	$1.81-1.89^{b}$ (m)	$1.04-1.12^{b}$ (m)	$1.60-1.65^{b}$ (m)
11	2.11-2.25 ^b (m)	1.69 (m)	$1.69-1.79^{b}$ (m)	1.78 (m)
	1.67-1.70 ^b (m)	$1.81-1.89^{b}$ (m)	1.61 (m)	$1.60-1.65^{b}$ (m)
12	2.11-2.25 ^b (m)	1.98-2.06 ^b (m)	$2.00-2.08^{b}$ (m)	1.98 (br d, 12.8)
	1.24 (m)	1.33 (m)	1.25-1.33 ^b (m)	1.24 (m)
14	1.58 (dd, 12.0, 2.5)	1.81-1.89 ^b (m)	1.25-1.33 ^b (m)	1.55 (br d, 12.0)
	1.40 (m)	1.64 (m)	$1.04-1.12^{b}$ (m)	$1.41-1.46^{b}$ (m)
15	$2.11-2.25^{b}$ (m)	2.09 (dt, 14.0, 3.0)	$2.00-2.08^{b}$ (m)	2.08 (2H, m)
	1.90-2.02 ^b (m)	$1.98-2.06^{b}$ (m)	1.92 (dd, 14.5, 10.5)	• • •
16	4.10 (dd, 10.5, 4.0)	5.09 (br s)	5.03 (dd, 10.5, 4.0)	5.05 (dd, 9.5, 5.0)
17	1.04 (s)	1.02 (s)	0.98 (s)	0.94 (s)
18-CH ₃	1.34 (s)	1.43 (s)	1.37 (s)	1.30 (s)
20-CH ₃	1.18 (s)	1.10 (s)	1.00 (s)	0.99 (s)
OCH ₃	3.86 (s)	3.78 (s)	3.76 (s)	3.77 (s)
=	• •	• •	• •	3.85 (s)

^a Assignments based on DEPT, HSQC, and HMBC.

Table 4 Primers used for PCR.

Primer	Sequences	Product size
GAPDH	(F) 5'-GGG CCA AAA GGG TCA TCA TC-3' (R) 5'-ATG ACC TTG CCC ACA GCC TT-3'	316 bp (R)
SF-1	(F) 5'-TCT CTA ACC GCA CCA TCA AG-3' (R) 5'-TCG ACA ATG GAG ATA AAG GTC-3'	216 bp
StAR	(F) 5'-ATG TTC CTC GCT ACG TTC AA-3' (R) 5'-TGA CAT TTG GGT TTC ACT CT-3'	451 bp
SCC	(F) 5'-CGC TCA GTG CTG GTC AAA G-3' (R) 5'-GGT TGA GCA TGG GGA CAC T-3'	714 bp

4.5.1. Compound **15S**

White powder; HRESIMS m/z 445.2216 [M+Na]⁺ (calcd for $C_{23}H_{34}O_7Na$, 445.2202).

4.5.2. Compound 16S

White powder; HRESIMS m/z 421.2223 [M–H] $^-$ (calcd for $C_{23}H_{33}O_7$, 421.2226).

4.5.3. Compound **18**

White powder; $[\alpha]_D^{26}$ –47.5 (c 0.9, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; HRESIMS m/z 429.2258 [M+Na]⁺ (calcd for C₂₃H₃₄O₆Na, 429.2253).

4.5.4. Compound **19**

White powder; $[\alpha]_D^{26}$ +10.1 (c 1.0, CH₃OH). For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; HRESIMS m/z 531.2194 [M+Na]⁺ (calcd for C₂₆H₃₆O₁₀Na, 531.2206).

4.6. Detection of steroidogenic gene expressions

Cells were maintained at $37\,^{\circ}\text{C}$ in a humidified environment containing 95% air and 5% CO_2 for all the experiments. The Y-1

mouse adrenal tumor and MA-10 mouse Leydig tumor cell lines were maintained in Dulbecco's modified Eagle's medium-Ham's F12 (1:1) medium supplemented with 10% fetal bovine serum, 100 units/ml of penicillin, and 100 mg/ml of streptomycin. The day before treatment, cells were plated at a density of 2×10^4 cells in 35-mm tissue culture dishes. The effect of each compound was then tested on the transcription of steroidogenic gene expressions. Forskolin (a cAMP agonist) was added to a final 10 μ M concentration of cells as a control. Test compounds were added to culture medium at 10 μ M concentration, and each mixture was incubated for 24 h. The effects of the tested compounds on steroidogenesis were analyzed in both adrenal and testicular Leydig cells. First, total RNA was extracted from treated cells using TRIZOL® reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) according to the manufacturer's instructions. Total RNA (2.5 μ g) was reverse-transcribed with SuperScriptTM II reverse transcriptase (Invitrogen Life Technologies, Carlsbad, CA, USA) primed with oligo-dT (10 μ M), as described previously (Chou et al., 2011). The amount of cDNA was quantified by PCR, with each reaction performed for a $50-\mu l$ volume. The sequences of the primers are listed in Table 4. The PCR protocol used an initial denaturing step at 94 °C for 5 min, followed by 40 cycles at 94 $^{\circ}$ C for 30 s; 55 $^{\circ}$ C for 30 s; and 72 $^{\circ}$ C for 30 s. Samples were analyzed on a 1.5% agarose gel.

Acknowledgments

The authors thank the National Science Council of Taiwan for a grant (NSC98-2320-B-038-011-MY3) to support this work. We also thank Ms. S.-L. Huang for the NMR data acquisition, Ms. S.-Y. Sun for MS measurement, and Mr. Y.-H. Liu for conducting X-ray crystallography at the Instrumentation Center of National Taiwan University, Taipei, Taiwan. We thank Dr. J.P.N. Rosazza of the Division of Medicinal and Natural Products Chemistry at the College of Pharmacy, University of Iowa, Iowa City, IA, for kindly providing the bacterial strains used in this study.

b Overlapping signals.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.phytochem.2013. 07.015.

References

- Ali, H.S., Hanson, J.R., de Oliveira, B.H., 1992. The biotransformation of some entbeyeran-19-oic acids by Gibberella fujikuroi. Phytochemistry 31, 507–510.
- Arantes, S.F., Hanson, J.R., 2007. The biotransformation of sesquiterpenoids by *Mucor plumbeus*. Curr. Org. Chem. 11, 657–663.
- Chang, S.F., Yang, L.M., Hsu, F.L., Hsu, J.Y., Liaw, J.H., Lin, S.J., 2006. Transformation of steviol-16α,17-epoxide by Streptomyces griseus and Cunninghamella bainieri. J. Nat. Prod. 69, 1450–1455.
- Chang, S.F., Yang, L.M., Lo, C.H., Liaw, J.H., Wang, L.H., Lin, S.J., 2008. Microbial transformation of isosteviol and bioactivities against the glucocorticoid/androgen response elements. J. Nat. Prod. 71, 87–92.
- Chou, B.H., Yang, L.M., Chang, S.F., Hsu, F.L., Lo, J.H., Liaw, J.H., Liu, P.C., Lin, S.J., 2008. Microbial transformation of isosteviol lactone and evaluation of the transformed products on androgen response element. J. Nat. Prod. 71, 602–607.
- Chou, B.H., Yang, L.M., Chang, S.F., Hsu, F.L., Wang, L.H., Lin, W.K., Liu, P.C., Lin, S.J., 2011. Transformation of isosteviol lactam by fungi and the suppressive effects of its transformed products on LPS-induced iNOS expression in macrophages. J. Nat. Prod. 74, 1379–1385.
- Cleland, W.W., Johnson, M.J., 1956. Studies on the formation of oxalic acid by Aspergillus niger. J. Biol. Chem. 220, 595–606.
- De Oliveira, B.H., Strapasson, R.A., 1996. Biotransformation of isosteviol by *Fusarium verticilloides*. Phytochemistry 43, 393–395.
- De Oliveira, B.H., dos Santos, M.C., Leal, P.C., 1999. Biotransformation of the diterpenoid, isosteviol, by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus. Phytochemistry 51, 737–741.
- De Oliveira, B.H., Stiirmer, J.C., de Souza Filho, J.D., Ayub, R.A., 2008. Plant growth regulation activity of steviol and derivatives. Phytochemistry 69, 1528–1533.
- Doghman, M., Cazareth, J., Doufuet, D., Madoux, F., Hodder, P., Lalli, E., 2009. Inhibition of adrenocortical carcinoma cell proliferation by steroidogenic factor-1 inverse agonists. J. Clin. Endocrinol. Metab. 94, 2178–2183.
- Dorfman, R.I., Nes, W.R., 1960. Anti-androgenic activity of dihydroisosteviol. Endocrinology 67, 282–285.
- Gładkowski, W., Grabarczyk, M., Wińska, K., Ratuś, B., Białońska, A., Ciunik, Z., Wawrzeńczyk, C., 2007. Lactone 26 [1]: selective microbial epoxidation of

- unsaturated bicyclic γ -lactones with the alkylsubstituted cyclohexane system. J. Mol. Catal. B Enzy. 49, 79–87.
- Habert, R., Lejeune, H., Saez, J.M., 2001. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol. Cell. Endocrinol. 179, 47–74.
- Hanson, J.R., 1992. The microbiological transformation of diterpenoids. Nat. Prod. Rep. 9, 139–151.
- Hoivik, E.A., Lewis, A.E., Aumo, L., Bakke, M., 2010. Molecular aspects of steroidogenic factor 1 (SF-1). Mol. Cell. Endocrinol. 315, 27–39.
- Hsu, F.L., Hou, C.C., Yang, L.M., Cheng, J.T., Chi, T.C., Liu, P.C., Lin, S.J., 2002. Microbial transformations of isosteviol. J. Nat. Prod. 65, 273–277.
- Lee, K.H., 2010. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod. 73, 500–516.
- Lin, C.L., Lin, S.J., Huang, W.J., Ku, Y.L., Tsai, T.H., Hsu, F.L., 2007. Novel *ent*-beyeran-19-oic acids from biotransformations of isosteviol metabolites by *Mortierella isabellina*. Planta Med. 73, 1581–1587.
- Lin, L., Achermann, J.C., 2008. Steroidpogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev. 2, 200–209.
- Liu, J.H., Yu, B.Y., 2010. Biotransformation of bioactive natural products for pharmaceutical lead compounds. Curr. Org. Chem. 14, 1400–1406.
- Miller, W.L., 1988. Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318.
- Pettit, G.R., Melody, N., Herald, D.L., Knight, J.C., Chapuis, J.C., 2007. Antineoplastic agents. 550. Synthesis of 10b(S)-epipancratistatin from (+)-narciclasine. J. Nat. Prod. 70, 417–422.
- Richards, J.S., 2001. New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol. Endocrinol. 15, 209–218.
- Seamon, K.B., Padgett, W., Daly, J.W., 1981. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78, 3363–3367.
- Stocco, D.M., Clark, B.J., 1996. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244.
- Venisetty, R.K., Ciddi, V., 2003. Application of microbial biotransformation for the new drug discovery using natural drugs as substrates. Curr. Pharm. Biotechnol. 4, 153–167.
- Yang, L.M., Hsu, F.L., Cheng, J.T., Chang, C.H., Liu, P.C., Lin, S.J., 2004. Hydroxylation and glucosidation of *ent*-16β-hydroxybeyeran-19-oic acid by *Bacillus megaterium* and *Aspergillus niger*. Planta Med. 70, 359–363.
- Ye, P., Nakamura, Y., Lalli, E., Rainey, W.E., 2009. Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells. Endocrinology 150, 1303–1309.