

## FUNDAMENTOS DE OPTIMIZACIÓN II

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 15) 30.AGOSTO.2022

# Conjuntos de Nivel

### Definición

Sea  $f : \mathbb{R}^n \to \mathbb{R}$  una función y  $c \in \mathbb{R}$ . El **conjunto de nivel** c de la función f es el conjunto de puntos  $S_c = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c \}.$ 

Típicamente,  $S_c$  o es vacío, o  $S_c$  induce una hiperficie de codimensión 1 (esto es de dimensión n-1 dentro de  $\mathbb{R}^n$ ), aunque en ocasiones,  $S_c$  se degenera en un objeto de menor dimensión.

#### Por ejemplo

- Si  $f: \mathbb{R}^2 \to \mathbb{R}$ , entonces  $S_c$  es una curva.
- Si  $f:\mathbb{R}^3 \to \mathbb{R}$ , entonces  $S_c$  es una superficie 2-dimensional.
- En general, Si  $f:\mathbb{R}^n o \mathbb{R}$ , entonces  $S_c$  es una hiperficie (n-1)-dimensional.

**Ejemplo:**  $f: \mathbb{R}^2 \to \mathbb{R}$  dada por  $f(x,y) = \frac{1}{2}(x^2 + y^2)$ . El conjunto de nivel  $S_1 = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 1\}$  corresponde al círculo  $x^2 + y^2 = 2$ . Una parametrización de  $S_c$  se obtiene al hacer  $\gamma(t) = (2\cos t, 2\sin t)$ ,  $t \in \mathbb{R}$ .

# Conjuntos de Nivel



# Conjuntos de Nivel

#### **Teorema**

Sea  $f: \mathbb{R}^n \to \mathbb{R}$  diferenciable. Entonces, el vector gradiente  $\nabla_{\mathbf{x}} f(\mathbf{p})$  es ortogonal al vector tangente a cualquier curva suave que pasa por  $\mathbf{p}$ , contenida en el conjunto de nivel  $S_c$  de f, donde  $c = f(\mathbf{p})$ .

o.2cm

<u>Prueba</u>: Sea  $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{R}^n$  una parametrización diferenciable de la curva suave, tal que  $\gamma(\mathbf{0})=\mathbf{p}$ , y sea  $\gamma'(\mathbf{0})=\mathbf{v}$  el vector tangen a esta curva en  $\mathbf{p}$ . Consideramos la función  $h:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$ , dada por  $h=f\circ\gamma$ .

Como  $\gamma(t)$  está contenida dentro del conjunto de nivel  $S_c$ , entonces  $f(\gamma(t)) = c$ , para todo  $t \in (a,b)$ . Luego,  $h = f \circ \gamma$  es constante.

Aplicando la regla de la cadena a la función  $h(t) = (f \circ \gamma)(t)$ , resulta

$$O = \frac{dh}{dt}(O) = Dh(O) = D(f \circ \gamma)(O) = Df(\gamma(O)) \cdot \gamma'(O) = \nabla_{\mathbf{x}} f(\mathbf{p}) \cdot \mathbf{v},$$

de modo que  $abla_{\mathbf{x}} f(\mathbf{p}) \perp \mathbf{v}$ , como se quería demostrar.  $\Box$ 



### Gradiente

Recordemos que la derivada direccional de  $f: \mathbb{R}^n \to \mathbb{R}$ , en el punto  $\mathbf{p} \in \mathbb{R}^n$ , en la dirección del vector unitario  $\mathbf{u} \in \mathbb{R}^n$  es

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

## **Propiedad**

Suponga que  $f: \mathbb{R}^n \to \mathbb{R}$  es de clase  $C^1$  en un disco abierto que contiene al punto  $\mathbf{p}$ . Entonces, para cualquier vector unitario  $\mathbf{u} \in \mathbb{R}^n$ ,  $D_{\mathbf{u}} f(\mathbf{p})$  existe y

$$D_{\mathbf{u}}f(\mathbf{p}) = Df(\mathbf{p}) \cdot \mathbf{u} = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}.$$

De la desigualdad de Cauchy-Schwarz, tenemos

$$||D_{\mathbf{u}}f(\mathbf{p})|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u}|| \leq ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| = ||\nabla_{\mathbf{x}}f(\mathbf{p})||.$$

Si  $\nabla_{\mathbf{x}} f(\mathbf{p}) \neq \mathbf{o}$ , tomando  $\mathbf{u} = \frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$ , obtenemos

$$D_{\mathbf{u}}f(\mathbf{p}) = ||\nabla_{\mathbf{x}}f(\mathbf{p})||, \qquad D_{-\mathbf{u}}f(\mathbf{p}) = -||\nabla_{\mathbf{x}}f(\mathbf{p})||.$$

### Gradiente

#### **Teorema**

Supongamos que  $f: \mathbb{R}^n \to \mathbb{R}$  es de clase  $C^1$  en una bola abierta que contiene al punto  $\mathbf{p}$ . Entonces,  $D_{\mathbf{u}} f(\mathbf{p})$  alcanza un valor máximo de  $||\nabla_{\mathbf{x}} f(\mathbf{p})||$  cuando  $\mathbf{u}$  es la dirección de  $\nabla_{\mathbf{x}} f(\mathbf{p})$  y alcanza un valor mínimo  $-||\nabla_{\mathbf{x}} f(\mathbf{p})||$  cuando  $\mathbf{u}$  es la dirección de  $-\nabla_{\mathbf{x}} f(\mathbf{p})$ .

Prueba: Como

$$D_{\mathbf{u}}f(\mathbf{p}) = \nabla_{\mathbf{x}}f(\mathbf{p})^{\mathsf{T}}\mathbf{u} = ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cdot ||\mathbf{u}|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u})$$
$$= ||\nabla_{\mathbf{x}}f(\mathbf{p})|| \cos \angle(\nabla_{\mathbf{x}}f(\mathbf{p}),\mathbf{u}).$$

El máximo y el mínimo de  $D_{\bf u}f({\bf p})$  se alcanzan, respectivamente, cuando  $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=1$  y  $\cos\angle(\nabla_{\bf x}f({\bf p}),{\bf u})=-1$ .

Pero esto ocurre precisamente cuando  $\mathbf{u} = \frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$  y cuando  $\mathbf{u} = -\frac{\nabla_{\mathbf{x}} f(\mathbf{p})}{||\nabla_{\mathbf{x}} f(\mathbf{p})||}$ , respectivamente.

En particular, en tales casos,  $D_{\bf u}f({\bf p})=||\nabla_{\bf x}f({\bf p})||$  y  $D_{\bf u}f({\bf p})=-||\nabla_{\bf x}f({\bf p})||$ , resp.  $\Box$ 

### Gradiente

#### Propiedades del gradiente:

- El gradiente,  $\nabla_{\mathbf{x}} f(\mathbf{p})$ , de una función diferenciable, en el punto  $\mathbf{p}$ , es ortogonal al conjunto de nivel de la función f en ese punto.
- El vector de gradiente apunta en la dirección de máxima tasa de aumento de la función y el negativo del gradiente apunta en la dirección de la tasa máximo descenso de la función.
- La longitud del vector de gradiente nos dice la tasa de aumento en la dirección de aumento máximo y su negativo nos dice la tasa de disminución en la dirección de la disminución máxima.
- Similarmente, la magnitud de la derivada direccional  $|\nabla_{\mathbf{x}} f(\mathbf{p})^T \mathbf{u}|$  indica la tasa de aumento/reducción de f en la dirección de  $\mathbf{u}$ .

# Big O y Little o

### Definición

Decimos que  $f(\mathbf{x}) = O(g(\mathbf{x}))$ , f es **O-grande** respecto de g, cuando  $\mathbf{x} \to \mathbf{a}$ , si existe una constante C tal que

$$|f(\mathbf{x})| \leq C|g(\mathbf{x})|, \qquad \textit{para todo } \mathbf{x} \in \mathbb{D}_{\delta}(\mathbf{a}).$$

Decimos que  $f(\mathbf{x}) = O(g(\mathbf{x}))$  cuando  $\mathbf{x} \to \infty$  si existen constantes positivas r y C tales que  $|f(\mathbf{x})| \le C|g(\mathbf{x})|$ , para todo  $\mathbf{x}$  con  $||\mathbf{x}|| \ge r$ .

Equivalentemente,  $f(\mathbf{x}) = O(g(\mathbf{x}))$  cuando  $\mathbf{x} \to \mathbf{a}$  si  $\lim_{\mathbf{x} \to \mathbf{a}} \left| \frac{f(\mathbf{x})}{g(\mathbf{x})} \right| = C$ , para alguna constante  $C \neq 0$ .

### Definición

Decimos que  $f(\mathbf{x}) = o(g(\mathbf{x}))$ , f es **o-pequeña** respecto de g, cuando  $\mathbf{x} \to \mathbf{a}$ , si

$$\lim_{\mathbf{x}\to\mathbf{a}}\left|\frac{f(\mathbf{x})}{g(\mathbf{x})}\right|=0.$$

# Big O y Little o

**Ejemplo**:  $f(x) = 5x^3 - 2x + 1$  es  $O(x^3)$ , cuando  $x \to \infty$ .

Basta ver que 
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^3} \right| = 5$$
.

Esto muestra que  $f(x) = O(x^3)$ .

**Ejemplo**: 
$$f(x) = 5x^3 - 2x + 1$$
 es  $o(x^4)$ , cuando  $x \to \infty$ .

Basta ver que 
$$\lim_{x\to\infty} \left| \frac{5x^3 - 2x + 1}{x^4} \right| = 0$$
.

Esto muestra que  $f(x) = o(x^4)$ .

**Ejemplo**: 
$$f(x) = x - \sin x$$
 es  $o(x)$ , cuando  $x \to o$ .

Basta ver que 
$$\lim_{x \to 0} \left| \frac{x - \sin x}{x} \right| = \lim_{x \to 0} \left| \frac{x - \left(x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots\right)}{x} \right| = 0.$$

# Big O y Little o

### **Ejemplos de Big** *O*:

- x = O(x), cuando  $x \to \infty$ ,
- $x = O(x^2)$ , cuando  $x \to \infty$ ,
- $ax^n = O(x^m)$ , para  $m \ge n$ , cuando  $x \to \infty$ ,
- $ax^n \neq O(x^m)$ , para m < n, cuando  $x \to \infty$ ,

#### **Ejemplos de little** o:

- $x^2 = o(x)$ , cuando  $x \to o$ ,
- $x \neq o(x^2)$ , cuando  $x \rightarrow o$ ,
- $x \sin x = o(x)$ , cuando  $x \to o$ ,
- $x \sin x = o(x^2)$ , cuando  $x \to o$ ,

**Obs!** Importante!, la notaciones O y o dependen del punto donde se toma el límite. Ejemplo:  $x^2 = o(x^3)$  cuando  $x \to \infty$ , pero  $x^2 \ne o(x^3)$  cuando  $x \to o$ .

#### Propiedades:

- f(x) = O(f(x)).
- Si f(x) = O(g(x)), entonces cf(x) = O(g(x)), para toda  $c \in \mathbb{R}$ ,  $c \neq o$ .
- Si  $f_1(x)$ ,  $f_2(x)$  son O(g(x)), entonces  $f_1(x) + f_2(x) = O(g(x))$ .
- Si f(x) = o(g(x)), entonces f(x) = O(g(x)).
- Si f(x) = O(g(x)), entonces O(f(x)) + O(g(x)) = O(g(x)).
- Si f(x) = O(g(x)), entonces o(f(x)) + o(g(x)) = o(g(x)).
- Si  $f_1(x) = O(g(x))$ , pero  $f_2(x) = o(g(x))$ , entonces  $f_1(x) + f_2(x) = O(g(x))$ .
- Si f(x) = O(g(x)) y g(x) = o(h(x)), entonces f(x) = o(h(x)).
- Para  $c \in \mathbb{R}$ ,  $c \neq o$ , cO(g(x)) = O(g(x)) y co(g(x)) = o(g(x)).
- O(f(x)) O(g(x)) = O(f(x)g(x)).
- o(f(x)) O(g(x)) = o(f(x)g(x)).
- o(f(x)) o(g(x)) = o(f(x)g(x)).

### Teorema (Fórmula de Taylor en $\mathbb{R}$ )

Suponga que  $f: \mathbb{R} \to \mathbb{R}$  es de clase  $C^{m+1}$  sobre  $\mathbb{R}$ , y sea  $x_0 \in \mathbb{R}$ . Denotemos,  $h = x - x_0$ . Entonces

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + R_{m+1},$$

donde

$$R_{m+1} = \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(x_0 + th), \quad para \ algún \ t \in (0,1).$$

Usando la notación Big O, observe que  $R_{m+1}=O(h^{m+1})$ , si  $h \to 0$ . Así, la Fórmula de Taylor resulta

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + O(h^{m+1}).$$

Usando la notación o pequeña, observe que  $R_{m+1}=o(h^m)$ , si h o 0. Así, la fórmula es

$$f(x) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \ldots + \frac{h^m}{m!}f^{(m)}(x_0) + o(h^m).$$

### Teorema (Fórmula de Taylor en $\mathbb{R}^n$ )

Suponga que  $f: \mathbb{R}^n \to \mathbb{R}$  es de clase  $C^{m+1}$  sobre  $\mathbb{R}^n$ , y sea  $\mathbf{x}_0 \in \mathbb{R}$ . Denotemos,  $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$ . Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{x}_{o}) h_{j} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}_{o}) h_{i} h_{j} + \ldots + \frac{1}{m!} \sum_{|I|=m} \frac{\partial^{m} f}{\partial \mathbf{x}_{I}}(\mathbf{x}_{o}) \mathbf{h}_{I} + R_{m+1},$$

donde

$$R_{m+1} = \frac{1}{(m+1)!} \sum_{|I|=m+1} \frac{\partial^{m+1} f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \text{ para algún } t \in (0,1).$$

Aquí, 
$$\mathbf{h}=(h_1,\ldots,h_n)$$
,  $y$  si  $I=(i_1,\ldots,i_n)\in\mathbb{N}^n$  es tal que  $|I|=\sum_j i_j=m$ , entonces denotamos  $\mathbf{x}_I=(x_1^{i_1},\ldots,x_n^{i_n})$ ,  $\mathbf{h}_I=(h_1^{i_1},\ldots,h_n^{i_n})$  y  $\frac{\partial^m f}{\partial \mathbf{x}_I}=\frac{\partial^m f}{\partial x_1^{i_1}\cdots\partial x_n^{i_n}}$ .

Al igual que en el caso unidimensional, podemos escribir  $R_{m+1} = O(||\mathbf{h}||^{m+1})$  y  $R_{m+1} = o(||\mathbf{h}||^m)$ , cuando  $\mathbf{h} \to \mathbf{o}$ .

Dos casos particulares:

## Teorema (Aproximación de Taylor de primer orden)

Suponga que  $f: \mathbb{R}^n \to \mathbb{R}$  es de clase  $C^2$  sobre  $\mathbb{R}^n$ , y sea  $\mathbf{x}_0 \in \mathbb{R}$ ,  $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$ . Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o}) \cdot \mathbf{h} + R_{2} = f(\mathbf{x}_{o}) + Df(\mathbf{x}_{o}) \cdot \mathbf{h} + O(||\mathbf{h}||^{2}),$$

donde

$$R_2 = rac{1}{2} \sum_{|I|=2} rac{\partial^2 f}{\partial \mathbf{x}_I} (\mathbf{x}_O + t\mathbf{h}) \, \mathbf{h}_I, \; para \; algún \; t \in (0,1).$$

## Teorema (Aproximación de Taylor de segundo orden)

Suponga que  $f:\mathbb{R}^n \to \mathbb{R}$  es de clase C³ sobre  $\mathbb{R}^n$ , y sea  $\mathbf{x}_0 \in \mathbb{R}$ ,  $\mathbf{h} = \mathbf{x} - \mathbf{x}_0$ . Entonces

$$f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T D^2 f(\mathbf{x}_0) \mathbf{h} + R_3,$$

donde

$$R_3=rac{1}{3!}\sum_{|I|=2}rac{\partial^3 f}{\partial \mathbf{x}_I}(\mathbf{x}_O+t\mathbf{h})\,\mathbf{h}_I,\;\; para\; algún\; t\in (0,1).$$

En resumen, Si  $f:\mathbb{R}^n o \mathbb{R}$  es de clase  $C^2$ , podemos escribir

$$\begin{array}{lll} f(\mathbf{x}) & = & f(\mathbf{x}_{\rm O}) + Df(\mathbf{x}_{\rm O} + t\mathbf{h}), & t \in ({\rm O}, {\rm 1}). \\ f(\mathbf{x}) & = & f(\mathbf{x}_{\rm O}) + Df(\mathbf{x}_{\rm O}) \cdot \mathbf{h} + \frac{1}{2} \, \mathbf{h}^{\rm T} D^2 f(\mathbf{x}_{\rm O} + t\mathbf{h}) \, \mathbf{h}, & t \in ({\rm O}, {\rm 1}). \end{array}$$