Problem Set 11

Ryan Coyne

December 2, 2023

- 1. Suppose that A is a set with exactly 4 elements. What is the maximum number of elements that a relation, \mathcal{R} , on A can contain so that $\mathcal{R} \cap \mathcal{R}^{-1} = \emptyset$? The maximum number of elements of \mathcal{R} is 6.
 - PROOF: Let $(a, b) \in \mathcal{R}$. Now, by definition, $(b, a) \in \mathcal{R}^{-1}$. Since $\mathcal{R} \cap \mathcal{R}^{-1} = \emptyset$, it follows that $(b, a) \notin \mathcal{R}$. Thus, $(a, b) \neq (b, a)$ and $a \neq b$. With 4 elements of A, there are four elements of \mathcal{R} for which a = b. Since $|A \times A| = 2^{|A|} = 2^4 = 16$, there are 12 elements, (a, b), of $A \times A$ such that $a \neq b$. Now, for each element $(a, b) \in A \times A$, there exists $(b, a) \in A \times A$. Thus there are six pairs of elements $\{(a, b), (b, a)\} \subset A \times A$. If both elements in any of those pairs are in \mathcal{R} , then they are also both in \mathcal{R}^{-1} . So, at most one element from each pair may be in \mathcal{R} . Therefore there can be at most 6 elements in \mathcal{R} .
- $2. \quad (a)$
- 3. Determine the maximum number of elements in a relation \mathcal{R} on $A = \{a, b, c\}$ such that \mathcal{R} has none of the properties reflexive, symmetric and transitive. Note that $A \times A = \{(a,a),(b,b),(c,c),(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)\}$ Suppose that $R = \{(a,a),(b,b),(a,b),(a,c)\}$. Now, none of the other elements of $A \times A$ can be included in \mathcal{R} . The inclusion element (c,c) would result in the relation being reflexive. Including (b,a), or (c,a), would result in the
- 4. $\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,4), (4,1), (4,5), (5,4), (1,5), (5,1), (2,6), (6,2)\}$
- 5. Let $H = \{2^m | m \in \mathbb{Z}\}$. Define \mathcal{R} to be the relation defined on \mathbb{Q}^+ by $a\mathcal{R}b$ if $a/b \in H$.
 - (a) Prove that \mathcal{R} is an equivalence relation on \mathbb{Q}^+ . To show that the relation is reflexive, consider $a \in \mathbb{Q}^+$. Now, $a/a = 1 = 2^0 \in H$. To show that the relation is symmetric consider $a, b \in \mathbb{Q}^+$. Suppose, $a/b \in H$. Now, $a/b = 2^m$ for some $m \in \mathbb{Z}$. Since, $b/a = (a/b)^{-1} = 2^{-m} \in H$. Thus, if $(a,b) \in \mathcal{R}$ then $(b,a) \in \mathcal{R}$ for all $a,b \in \mathbb{Q}^+$. To show that the relation is transitive, suppose that $a/b \in H$ and $b/c \in H$ for some $a,b,c \in \mathbb{Q}^+$. Now, $a/b = 2^k$ and $b/c = 2^l$ for some $k,l \in \mathbb{Q}^+$. Since, (a/b)(b/c) = a/c, it follows that $a/c = 2^k \cdot 2^l = 2^{k+l} \in H$. Therefore \mathcal{R} is an equivalence relation.
 - (b) Describe the elements in the equivalence class [3]. $[3] = \{3 \cdot 2^n | n \in \mathbb{Z}\}.$

- 6. Recall that relations on a set A are, by definition, subsets of $A \times A$.
 - (a) PROVE: The intersection of two equivalence relations on a non-empty set A is also an equivalence relation on A. Let \mathcal{R}_1 and \mathcal{R}_2 be equivalence relatios on a set, A. Now, by the reflexivity property of equivalence relations, for all $a \in A$, $(a,a) \in \mathcal{R}_1$ and $(a,a) \in \mathcal{R}_2$. Thus, $(a,a) \in \mathcal{R}_1 \cap \mathcal{R}_2$, so the intersection of two equivalence relations defined on A is reflexive. Now, for all $a, b \in A$, if
- 7. Define a relation \mathcal{R} on \mathbb{Z} by $x\mathcal{R}y$ exactly when $x^3 \equiv y^3 \pmod{4}$, and assume \mathcal{R} is an equivalence relation. Determine the equivalence classes of \mathcal{R} . PROOF: