Dipartimento di Informatica, Sistemistica e Comunicazione

Progettazione e Implementazione di un Sistema di Adaptive Cruise Control basato su Logica **Fuzzy**

Progetto Sistemi Complessi e Incerti

Autore: Simone Lesinigo 899540

Indice

In	trodi	ızione	1							
1 Stato dell'Arte										
2	Mod	dello Proposto	3							
	2.1	Definizione delle Variabili Linguistiche	3							
		2.1.1 Weather Condition	3							
		2.1.2 Time Headway	3							
	2.2	Definizione delle Membership Functions	5							
		2.2.1 Input	5							
		2.2.2 Output	5							
	2.3	Creazione delle Regole	5							
3 Implementazione										
4 Risultati e Analisi										
5 Conclusioni										
Δ	Reg	ole Fuzzy	10							

Elenco delle figure

Elenco delle tabelle

A.1	Regole del Sistema	a Fuzzv																							-	11
41.1	Techolic del piblicilia	u i uzz.y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	

Introduzione

1 Stato dell'Arte

2 Modello Proposto

Il presente capitolo descrive la progettazione del sistema fuzzy impiegato per l'Adaptive Cruise Control.

Si considera un veicolo di categoria M1 (auto destinata al trasporto di persone, con al massimo otto posti a sedere oltre al conducente) dalle prestazioni medie in termini di accelerazione e decelerazione.

L'ambiente di riferimento è quello autostradale, in cui i veicoli si muovono in traiettorie rettilinee.

L'auto che segue verrà indicata come ego, mentre quella che precede come leader.

Per le velocità di esercizio si è scelto un intervallo compreso tra 70 km/h e 150 km/h: il valore minimo riflette le condizioni tipiche di marcia autostrada-le, il valore massimo coincide con il limite consentito sulle autostrade italiane (generalmente 130 km/h, elevabile a 150 km/h in circostanze particolari [1]).

2.1 Definizione delle Variabili Linguistiche

Nel modello sono state introdotte quattro variabili linguistiche: tre in *input* e una in *output*.

Di seguito sono presentate le 3 variabili di input.

2.1.1 Weather Condition

La variabile weather_condition rappresenta lo stato meteorologico:

- Termini linguistici: good, bad.
- Universo: [0, 1], dove 0 corrisponde a bad e 1 a good.

2.1.2 Time Headway

La variabile time_headway quantifica il tempo necessario affinché il veicolo ego percorra la distanza che lo separa dal veicolo leader. È definita come:

$$time_headway [s] = \frac{space_gap [m]}{ego_velocity [m/s]}$$

dove space_gap è la distanza tra i due veicoli ed ego_velocity è la velocità dell'ego.

Annotazione Si osservi che la formula impiega l'assunzione semplificativa secondo cui il veicolo leader sia in grado di arrestarsi istantaneamente. Tale ipotesi, evidentemente irrealistica, trascura lo spazio di frenata necessario al leader, che contribuirebbe ad aumentare il valore effettivo del time_headway. Questa approssimazione è tuttavia considerata accettabile nell'ottica di una modellazione semplificata e al fine di ridurre la complessità computazionale senza compromettere in modo significativo la coerenza del modello.

- Termini linguistici: dangerous, short, adequate, long, very_long.
- Universo: [0,15] secondi. Il valore minimo corrisponde al limite fisico teorico, sebbene sia considerato praticamente irraggiungibile. Il valore massimo è stato determinato sulla base della portata tipica di un front radar sensor prodotto da BOSCH [3], pari a 300 m, e di una velocità minima del veicolo ego pari a 70 km/h. Pertanto, il massimo time_headway è calcolato come:

$$\max(\text{time_headway}) = \frac{300\,\text{m}}{\frac{70\,\text{km/h}}{3.6}} = \frac{300\,\text{m}}{19.\overline{4}\,\text{m/s}} \approx 15.4\,\text{s}$$

Motivazioni della Scelta della Variabile

Si è preferito utilizzare la variabile time headway piuttosto che introdurre un insieme separato di variabili come distanza, velocità ego e velocità leader, sia per contenere la complessità del sistema riducendo il numero di regole da definire, sia perché le Membership Functions nei sistemi fuzzy non sono progettate per adattarsi dinamicamente in base a uno o più parametri.

Ad esempio, risulterebbe problematico definire in modo univoco cosa significhi una distanza $\tt dangerous$: quale intervallo tra $0\,\mathrm{m}$ e $300\,\mathrm{m}$ dovrebbe essere considerato tale? La pericolosità della distanza è infatti fortemente dipendente dalla velocità del veicolo.

Consideriamo la relazione:

$$d_{\text{sicurezza}} [\mathbf{m}] = d_{\text{reazione}} [\mathbf{m}] + d_{\text{frenata}} [\mathbf{m}]$$

dove $d_{\text{sicurezza}}$ rappresenta la distanza di sicurezza, d_{reazione} è lo spazio percorso durante il tempo di reazione (ovvero il tempo necessario affinché il conducente inizi la frenata), e d_{frenata} è lo spazio di arresto effettivo.

Si ha:

$$d_{\text{reazione}} = v \cdot t$$

dove v è la velocità del veicolo in m/s e t è il tempo di reazione in secondi.

Lo spazio di frenata è invece espresso da:

$$d_{\rm frenata} = \frac{v^2}{2 \, a \, \mu}$$

dove a è la decelerazione massima e μ è il coefficiente di attrito con il manto stradale (in condizioni ottimali pari a 0.8) [2].

Se due veicoli sono separati da 20 m, tale distanza risulta adeguata se la velocità dell'ego è pari a 30 km/h. In tal caso, assumendo un tempo di reazione di 1 s, un coefficiente di attrito $\mu=0.8$ e una brusca decelerazione pari a 1 g (ossia $a=-9.81\,\mathrm{m/s^2}$), si ottiene:

$$d_{\text{sicurezza}} = v \cdot t + \frac{v^2}{2 \, a \, \mu}$$

dove la velocità deve essere convertita in metri al secondo:

$$v = \frac{30}{3.6} \approx 8.33 \,\text{m/s}.$$

Pertanto:

$$d_{\rm sicurezza} = 8.33 \times 1 + \frac{(8.33)^2}{2 \times 9.81 \times 0.8} \approx 8.33 + \frac{69.4}{15.7} \approx 8.33 + 4.42 \approx 12.75 \, \text{m}.$$

Viceversa, alla velocità di $130\,\mathrm{km/h}$, la medesima distanza di $20\,\mathrm{m}$ risulterebbe del tutto insufficiente. Ricalcolando infatti la distanza di sicurezza nelle stesse condizioni si ottiene:

$$d_{\rm sicurezza} \approx 119.1 \, {\rm m}$$

La variabile time headway consente di modellare direttamente il tempo che separa i due veicoli indipendentemente dalla loro velocità assoluta o dalla distanza in metri. Di fatto, agisce come una forma di *normalizzazione* del concetto di distanza, rendendolo più interpretabile e stabile all'interno del sistema fuzzy.

2.2 Definizione delle Membership Functions

- 2.2.1 Input
- 2.2.2 Output
- 2.3 Creazione delle Regole

3 Implementazione

4 Risultati e Analisi

5 Conclusioni

Bibliografia

- [1] "Limite autostrada: regole, neopatentati, pioggia, nebbia, 150 km/h." Ultimo accesso: 12 luglio 2025, AutoScout24. indirizzo: https://www.autoscout24.it/informare/consigli/norme-della-strada/limite-in-autostrada/.
- [2] G. Carichino. "Lo spazio di frenata: tabella, calcolo online e condizioni. "indirizzo: https://www.youmath.it/domande-a-risposte/view/6684-spazio-di-frenatura.html.
- [3] "Adaptive Cruise Control for Passenger Cars." Ultimo accesso: 6 luglio 2025, BOSCH. indirizzo: https://www.bosch-mobility.com/en/solutions/assistance-systems/adaptive-cruise-control/.

A Regole Fuzzy

$Weather_Condition$	Time_Headway	Relative_Velocity	Acceleration
bad	dangerous	approaching_fast	strong_deceleration
bad	dangerous	approaching	medium_deceleration
bad	dangerous	steady	medium_deceleration
bad	dangerous	moving_away	light_deceleration
bad	dangerous	moving_away_fast	light_deceleration
bad	short	approaching_fast	strong_deceleration
bad	short	approaching	medium_deceleration
bad	short	steady	light_deceleration
bad	short	moving_away	zero_acceleration
bad	short	moving_away_fast	light_acceleration
bad	adequate	approaching_fast	strong_deceleration
bad	adequate	approaching	medium_deceleration
bad	adequate	steady	zero_acceleration
bad	adequate	moving_away	light_acceleration
bad	adequate	moving_away_fast	medium_acceleration
bad	long	approaching_fast	medium_deceleration
bad	long	approaching	light_deceleration
bad	long	steady	zero_acceleration
bad	long	moving_away	light_acceleration
bad	long	moving_away_fast	medium_acceleration
bad	very_long	approaching_fast	medium_deceleration
bad	very_long	approaching	light_deceleration
bad	very_long	steady	light_acceleration
bad	very_long	moving_away	medium_acceleration
bad	very_long	moving_away_fast	strong_acceleration
good	dangerous	approaching_fast	medium_deceleration
good	dangerous	approaching	light_deceleration
good	dangerous	steady	light_deceleration
good	dangerous	moving_away	zero_acceleration
good	dangerous	moving_away_fast	light_acceleration
good	short	approaching_fast	$medium_deceleration$
good	short	approaching	light_deceleration
good	short	steady	zero_acceleration
good	short	moving_away	light_acceleration
good	short	moving_away_fast	$medium_acceleration$
good	adequate	approaching_fast	$medium_deceleration$
good	adequate	approaching	$light_deceleration$
good	adequate	steady	zero_acceleration
good	adequate	moving_away	light_acceleration
good	adequate	moving_away_fast	medium_acceleration
good	long	approaching_fast	$light_deceleration$
good	long	approaching	$light_deceleration$
good	long	steady	light_acceleration
good	long	moving_away	medium_acceleration
good	long	$moving_away_fast$	$strong_acceleration$
good	very_long	approaching_fast	light_deceleration
good	very_long	approaching	$zero_acceleration$
good	very_long	steady	light_acceleration
good	very_long	moving_away	medium_acceleration
good	very_long	moving_away_fast	$strong_acceleration$

Tabella A.1: Regole del Sistema Fuzzy