Dinamikus programozás párhuzamosítási lehetőségekkel

A. Grama, A. Gupta, G. Karypis és V. Kumar: "Introduction to Parallel Computing", Addison Wesley, 2003 könyv, valamint

Michael Goodrich (Univ. California) anyaga alapján

Vázlat

- A dinamikus programozás (DP) áttekintése
- Soros, egyszerű-argumentumú (Monadic) DP
- Nem soros, egyszerű-argumentumú DP
- Soros, összetett-argumentumú (Polyadic) DP
- Nem soros, összetett-argumentumú DP

A dinamikus programozás áttekintése

- A dinamikus programozás (DP) széles körben használt optimalizációs problémák megoldására: ütemezés, string-szerkesztés, csomagolási probléma, stb.
- A problémákat részproblémákra bontjuk és ezek megoldásait kombináljuk, hogy a nagyobb probléma megoldását megtaláljuk.
- Az "oszd meg és uralkodj" típusú megoldási módszerrel szemben, itt a részproblémák között kapcsolatok, átfedések állhatnak fent (overlapping subproblems).
- Az elnevezés matematikai optimailzálásra utal.

A dinamikus programozás áttekintése

- A problémamegoldás menete:
- 1. Részproblémákra osztás.
- 2. A részproblémák optimális megoldása rekurzívan.
- 3. Az optimális megoldások felhasználása az eredeti feladat optimális megoldásának megtalálásához.
- A dinamikus programozás (DP) során a részmegoldások eredményeit gyakran táblázatokban tároljuk, hogy azokat – szemben a rekurzív megközelítésekkel – ne kelljen újra és újra kiszámolni (memoization).

Dinamikus programozás: példa

- Tekintsük a hurokmentes irányított gráfokban két csúcs (csomópont) között a legrövidebb út problémáját.
- Az i és j csomópontokat összekötő él költsége c(i, j).
- A gráf n csomópontot tartalmaz: 0,1,..., n-1, és az i csomópontból a j csomópontba akkor vezethet él, ha i < j. A 0 csomópont a forrás és az n-1 csomópont a cél.</p>
- Jelölje f(x) a legrövidebb utat a 0 csomóponttól x-ig.

$$f(x) = \left\{ egin{array}{ll} 0 & x = 0 \ \min_{0 \le j < x} \{f(j) + c(j, x)\} & 1 \le x \le n - 1 \end{array}
ight.$$

Dinamikus programozás: példa

Irányított gráf, melyben a legrövidebb utat számolhatjuk a 0 és 4 csomópontok között.

$$f(4) = \min\{f(3) + c(3,4), f(2) + c(2,4)\}.$$

Dinamikus programozás

- A DP formátumú probléma megoldását tipikusan a lehetséges megoldások minimumaként vagy maximumaként fejezzük ki.
- Ha r az x₁, x₂,..., x_l részproblémák kompozíciójából meghatározott megoldás költségét jelenti, akkor r a következő alakban írható

$$r = g(f(x_1), f(x_2), \ldots, f(x_l)).$$

Itt g az un. kompozíciós függvény.

Ha minden probléma optimális megoldása a részfeladatok optimális megoldásának optimális kompozíciójaként kerül meghatározásra és a minimum (vagy maximum) érték kiválasztásra kerül, akkor DP formátumú megoldásról beszélünk. (Metamódszer, nem konkrét algoritmus.)

Dinamikus programozás: példa

Az $f(x_8)$ megoldás meghatározásának kompozíciója és számítása részfeladatok megoldásából.

Dinamikus programozás

- A rekurzív DP egyenletet funkcionális egyenletnek, vagy optimalizációs egyenletnek is nevezzük.
- A legrövidebb út problémánál a kompozíciós függvény f(j) + c(j, x). Ez egyszerű rekurzív tagként tartalmazza (f(j)). Az ilyen DP megfogalmazású feladatot monadic típusúnak (egyszerű-argumentumúnak) nevezzük.
- Ha a rekurzív kompozíciós függvény több tagú, akkor a DP feladat megszövegezése polyadic (összetettargumentumú) típusú.

Dinamikus programozás

- A részproblémák közötti kapcsolatokat gráf segítségével fejezhetjük ki.
- Ha a gráf szintekre bontható és a probléma megoldása egy bizonyos szinten csak az előző szinten megjelenő problémamegoldástól függ, ekkor a megfogalmazást sorosnak nevezzük, egyébként pedig nem sorosnak.
- A két kritérium alapján a DP feladat megfogalmazásokat osztályozhatjuk: serial-monadic, serial-polyadic, nonserial-monadic, non-serial-polyadic, vagy egyéb.
- Az osztályozás azért fontos, mert meghatározza konkurenciát és a függőségeket, amely a párhuzamos megoldásokhoz vezethet.

Soros, egyszerű-argumentumú DP

- Az egész osztályra vonatkozó általános megfogalmazást, mintát nehéz megadni.
- Két reprezentatív feladat kerül bemutatásra:
 - □ A legrövidebb út probléma többszintű gráfban (*shortest-path* problem for a multistage graph),
 - □ 0/1 típusú hátizsák probléma (0/1 knapsack problem).
- Célunk a feladatok párhuzamos megfogalmazása és ezek alapján az osztályon belüli közös elvek lefektetése.

- A legrövidebb út problémának speciális osztálya, amikor a gráf súlyozott és többszintű. Jelen esetben a szintek száma r + 1.
- Minden szinten n csomópont van és minden csomópont az i. szintről össze van kötve az i + 1 szint minden egyes csomópontjával.
- A 0. szint és az r. csak egy csomópontot tartalmaz, ezeket forrás (S) és cél (R) csomópontoknak nevezzük.
- Célunk legrövidebb utat találni S-től R-ig.

Soros, egyszerű-argumentumú (monadic) DP megfogalmazása a legrövidebb út problémának olyan gráfban, ahol a csomópontokat szintekbe szervezhetjük.

- A gráf / szintjének i. csomópontja: v_i' és a v_i' csomópontot $v_j'^{+1}$ csomóponttal összekötött él súlya $c_{i,j}^I$
- Bármely v_i csomópont és az cél csomópont R költsége: C_i.
- Ha n csomópont van egy szinten (l), akkor a költségek (legrövidebb utak R-ig) egy vektorban foglalhatók össze $[C_0^{\ l}, \ C_1^{\ l,...,} \ C_{n-1}^{\ l}]^T$. Ez a vektor C^l . Megjegyzés: $C^0 = [C_0^0]$.
- Az / szint i eleme a céltól C_i = min {(c_{i,j} + C_j + 1) | j az | + 1 szint egy csomópontjának indexe}

- Mivel a v_j^{r-1} csomópontokat csak egy-egy él köti össze a cél, R csomóponttal az r szinten, a C_j^{r-1} költsége: c_j^{r-2}.
- Ezért:

$$C^{r-1} = [c_{0,R}^{r-1}, c_{1,R}^{r-1}, \dots, c_{n-1,R}^{r-1}].$$

A feladat soros és egyszerű-argumentumú (monadic) típusú.

Az / színt valamely csomópontjától a célcsomópont, R elérésének költsége, ahol (0 < / < r - 1):</p>

$$\begin{split} C_0^l &= \min\{(c_{0,0}^l + C_0^{l+1}), (c_{0,1}^l + C_1^{l+1}), \dots, (c_{0,n-1}^l + C_{n-1}^{l+1})\}, \\ C_1^l &= \min\{(c_{1,0}^l + C_0^{l+1}), (c_{1,1}^l + C_1^{l+1}), \dots, (c_{1,n-1}^l + C_{n-1}^{l+1})\}, \\ & \vdots \\ C_{n-1}^l &= \min\{(c_{n-1,0}^l + C_0^{l+1}), (c_{n-1,1}^l + C_1^{l+1}), \dots, (c_{n-1,n-1}^l + C_{n-1}^{l+1})\}. \end{split}$$

- A probléma megoldását egy módosított mátrix-vektor szorzat formájában fejezhetjük ki
- Helyettesítsük az összeadás operációt minimalizálással és a szorzás műveletet összeadással, az előző egyenletek a következő alakúak lesznek:

$$\mathcal{C}^l = M_{l,l+1} \times \mathcal{C}^{l+1},$$

ahol C^l és C^{l+1} $n \times 1$ méretű vektorok a cél csomópont elérésének költségeit reprezentálják az l és l + 1 színt minden egyes csomópontjától mérve.

Az M_{I,I+1} mátrix n x n méretű, és minden (i, j) eleme az l szint i csomópontjának az l + 1 szint j csomópontjával történő összekötés költségét tartalmazza:

$$M_{l,l+1} = \left[egin{array}{cccc} c_{0,0}^l & c_{0,1}^l & \dots & c_{0,n-1}^l \ c_{1,0}^l & c_{1,1}^l & \dots & c_{1,n-1}^l \ c_{n-1,0}^l & c_{n-1,1}^l & \dots & c_{n-1,n-1}^l \ \end{array}
ight].$$

■ A legrövidebb út problémát r mátrix-vektor szorzatok sorozataként definiáltuk: C^{r-1} , C^{r-k-1} (k = 1, 2, ..., r-2), C^0 .

Párhuzamos legrövidebb út probléma

- Az algoritmus úgy párhuzamosítható, mint bármelyik mátrix-vektor szorzást megvalósító algoritmus.
- n processzor elem számolhat minden C¹ vektort.
- Sok gyakorlati esetben az M mátrix elemei ritkák lehetnek. Ilyenkor ritkamátrixokhoz kapcsolódó módszert alkalmazzunk.

0/1 hátizsák probléma

0/1 knapsack problem

- "A thief is robbing the King's treasury, but he can only carry a load weighing at most W…"
- Adott: S halmaz n elemmel és egy súlyhatár c, minden i elemnek
 - p_i pozitív egész értéke van (*profit*)
 - □ w_i és pozitív egész súlya
- Cél: úgy válasszuk ki az elemeket, hogy az összérték maximális legyen, de az összsúly kisebb legyen, mint c.
 - \Box Tjelölje azokat az elemeket, amit kiválasztunk, $T \subseteq S$
 - \square **Cél**: összérték maximalizálása $\sum_{i \in T} p_i$
 - □ **Feltétel**: a súlyhatáron belül kell maradni $\sum_{i \in T} w_i \le C$

0/1 hátizsák probléma: példa

- Adott: n elemű S halmaz, minden elem
 - □ p_i pozitív értékű és w_i pozitív súlyú
- Cél: válasszunk ki elemeket, hogy az összérték maximális legyen, de az összsúly ne haladja meg c-t.
- Összesen 2ⁿ eset lehet!

0/1 hátizsák probléma, első próbálkozás

- S_i : A halmaz elemeinek azonosítója 1-től i-ig (i < n).
- Definiálja F[i] = a legjobb kiválasztást S_i -ből.
- Legyen pl. $S = \{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ érték-súly párok, c = 20

A legjobb S_4 , ha csak négyet veszünk ki: Összsúly: 14, érték: 20

A legjobb S_5 : az 5. benne van, de a 4. nem

Rossz hír: S₄ nem része az S₅ optimális megoldásnak

0/1 hátizsák probléma, más megközelítés

- S_i: Az elemek halmaza 1-től i-ig, i < n.
- Definiálja $F[i, x] = az S_i$ halmazból a legjobb kiválasztást, ahol a súly <u>legföljebb</u> x további paraméter
- Ez optimális részprobléma megoldáshoz vezet.
- Az S_i legjobb kiválasztás legföljebb x súllyal, két esetet jelenthet:
 - Ha $w_i > x$, akkor az i. elemet nem lehet hozzávenni, mert súlya nagyobb, mint az aktuális határ
 - Egyébként: ha a legjobb S_{i-1} részhalmaz súlya x w_i és ehhez vagy jön i, vagy nem eredményez nagyobb értéket

$$F[i,x] = \begin{cases} F[i-1,x] & \text{if } w_i > x \\ \max\{F[i-1,x], F[i-1,x-w_i] + p_i\} & \text{else} \end{cases}$$

0/1 hátizsák algoritmus

■ *F*[*i*, *x*] rekurzív formula:

$$F[i,x] = \begin{cases} F[i-1,x] & \text{if } w_i > x \\ \max\{F[i-1,x], F[i-1,x-w_i] + p_i\} & \text{else} \end{cases}$$

- F[i, x] = az 1-től i-ig tartó elemekből a legjobb kiválasztás, ahol az összsúly legfeljebb <math>x
- Alapeset: i = 0, nem került elem kiválasztásra. Összérték 0.
- A feladat megoldása: a legnagyobb érték az n. sorban, utolsó (c) oszlopban
- Futási idő: O(nc).
 Nem 2ⁿ ideig tart.

0/1 hátizsák algoritmus

```
Algorithm 0-1Knapsack(S, c):
    Input: S halmaz elemei p_i értékkel, w_i súllyal; valamint a max. súly c
    Output: a legjobb részhalmaz értéke (F[n, c]), hogy teljesül: összsúly \leq c
    for x \leftarrow 0 to c do
       F[0,x] \leftarrow 0
    for i \leftarrow 0 to n do
           F[i, 0] \leftarrow 0
    for i \leftarrow 0 to n do
       for x \leftarrow 0 to c do
        if w_i \le x
             F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)
        else
             F[i, x] \leftarrow F[i-1, x]
```

Mivel F[i, x] csak F[i - 1,*] értékeitől függ, elég lehet vektorokat használni

0/1 hátizsák példa

- n = 4 az adatok száma
- c = 5 kapacitás (maximális összsúly)

```
Elemek: i súly (w<sub>i</sub>), profit (p<sub>i</sub>)
1 2 3
2 3 4
3 4 5
6
```


i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$x \leftarrow 0$$
 to c do
$$F[0, x] \leftarrow 0$$

i\x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i \leftarrow 0$$
 to n do
$$F[i, 0] \leftarrow 0$$

W_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i\x	0	1	2	3	4	5
0	0	0 1	0	0	0	0
1	0	0				
2	0					
3	0					
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 1$$

 $p_i = 3$
 $w_i = 2$
 $x = 1$
 $x - w_i = -1$

W_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i\x	0	1	2	3	4	5
0	0 —	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}}[\textbf{\textit{i}-1},\textbf{\textit{x}-w_i}] + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 1$$

$$p_i = 3$$

$$W_i = 2$$

$$x = 2$$

$$x - W_i = 0$$

		_
	w_i ; p_i	
1:	(2; 3)	
2:	(3; 4)	
3:	(4; 5)	
4:	(5; 6)	

i\x	0	1	2	3	4	5
0	0	0 —	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}[i-1,x-w_i]} + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 1$$

$$p_i = 3$$

$$W_i = 2$$

$$x = 3$$

$$x - W_i = 1$$

W_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i\x	0	1	2	3	4	5
0	0	0	0 —	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 1$$

 $p_i = 3$
 $w_i = 2$
 $x = 4$
 $x - w_i = 2$

W_i , p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i\x	0	1	2	3	4	5
0	0	0	0	0 —	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}[i-1,x-w_i]} + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 1$$

$$p_i = 3$$

$$W_i = 2$$

$$x = 5$$

$$x - W_i = 3$$

w_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 2$$

$$p_i = 4$$

$$W_i = 3$$

$$x = 1$$

$$x - W_i = -2$$

w· n	
W_i, p_i	
1: (2; 3)	
2: (3; 4)	
3: (4; 5)	
4: (5; 6)	

i\x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3			
3	0					
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 2$$

 $p_i = 4$
 $w_i = 3$
 $x = 2$
 $x - w_i = -1$

w_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0 —	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}}[i-1,x-w_i] + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 2$$

$$p_i = 4$$

$$w_i = 3$$

$$x = 3$$

$$x - w_i = 0$$

W_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i\x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0 —	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}[i-1,x-w_i]} + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 2$$

$$p_i = 4$$

$$w_i = 3$$

$$x = 4$$

$$x - w_i = 1$$

	w_i ; p_i	
1:	(2; 3)	
2:	(3; 4)	
3:	(4; 5)	
4:	(5; 6)	

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 —	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 2$$

$$p_i = 4$$

$$W_i = 3$$

$$x = 5$$

$$x - W_i = 2$$

W_i ; p_i	
1: (2; 3)	
2: (3; 4)	
3: (4; 5)	
4: (5; 6)	

i\x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4		
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 3$$

 $p_i = 5$
 $w_i = 4$
 $x = 1..3$
 $x - w_i = -3..-1$

W_i; p_i 1: (2; 3) 2: (3; 4) 3: (4; 5) 4: (5; 6)

i\x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 —	0	3	4	4	7
3	0	0	3	4	5 →	
4	0					

$$\begin{aligned} &\text{if } w_i <= x \\ &F[i,x] \leftarrow \max(F[i-1,x], \textbf{\textit{F}[i-1,x-w_i]} + \textbf{\textit{p}}_i) \\ &\text{else} \\ &F[i,x] \leftarrow F[i-1,x] \end{aligned}$$

$$i = 3$$

$$p_i = 5$$

$$W_i = 4$$

$$x = 4$$

$$x - W_i = 0$$

W_i ; p_i
1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0					

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 3$$

 $p_i = 5$
 $w_i = 4$
 $x = 5$
 $x - w_i = 1$

W_i; p_i 1: (2; 3) 2: (3; 4) 3: (4; 5) 4: (5; 6)

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0 1	3	4	5 _I	7
4	0	0	3	4	5	

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 4$$

 $p_i = 6$
 $w_i = 5$
 $x = 1..4$
 $x - w_i = -4..-1$

W_i; *p_i*1: (2; 3)
2: (3; 4)
3: (4; 5)
4: (5; 6)

i∖x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

if
$$w_i \le x$$

$$F[i, x] \leftarrow \max(F[i-1, x], F[i-1, x-w_i] + p_i)$$
else
$$F[i, x] \leftarrow F[i-1, x]$$

$$i = 4$$

$$p_i = 6$$

$$w_i = 5$$

$$x = 5$$

$$x - w_i = 0$$

- Az algoritmus a maximális összsúlyt vette figyelembe úgy, hogy a zsákba tehető F[n, c] érték a lehető legnagyobb legyen.
- Az elemek kiolvasásához egy visszafele haladó algoritmus szükséges, amely a táblázatot használja:

```
i \leftarrow n, x \leftarrow c
while (i, x > 0)
if F[i, x] \Leftrightarrow F[i - 1, x]
Jelöljük meg az i. elemet, hogy a zsákban van i = i - 1, x = x - w_i
else
i = i - 1
```


0/1 hátizsák probléma (könyv szerint)

- Adott a c kapacitású hátizsák és n objektumból álló halmaz 1,2,...,n. Minden objektumot w_i súly és p_i profit jellemez.
- Legyen $v = [v_1, v_2, ..., v_n]$ egy megoldás vektor, amelyben $v_i = 0$ ha az i. objektum nincs a hátizsákban $v_i = 1$ ha a hátizsákban van.
- A cél az objektumok olyan részhalmazát megtalálni, amit a hátizsákba helyezhetünk, azaz

$$\sum_{i=1}^{n} w_i v_i \le c$$

(az összsúly nem nagyobb, mint a kapacitás) és

$$\sum_{i=1}^{n} p_i v_i$$

a profit maximalizált.

Legyen a maximális profit F[i, x] az x kapacitású hátizsákhoz kapcsolódóan ha a következő objektumrészhalmazt használjuk {1,2,...,i}. A DP megfogalmazása:

$$F[i,x] = \left\{ egin{array}{ll} 0 & x \geq 0, i = 0 \ -\infty & x < 0, i = 0 \ \max\{F[i-1,x], (F[i-1,x-w_i]+p_i)\} & 1 \leq i \leq n \end{array}
ight.$$

- Konstruáljuk meg az n x c méretű F táblázatot soronként haladva.
- Egy elem kitöltése két elem ismeretét igényli az előző sorból: egy ugyanabból az oszlopból és egy olyan oszloptávolságnyira, mint amilyen súllyal az objektum a sorhoz tartozik.
- Minden elem kiszámolása konstans idejű; a soros futási komplexitás Θ(nc).
- A megfogalmazás soros, egyszerű-argumentumú.

A 0/1 hátizsák probléma F táblájának számítása. Az F[i,j] meghatározásához szükséges kommunikáció processzorelemekkel, amelyek tartalmazzák F[i-1,j] és $F[i-1,j-w_i]$ elemeket.

- Ha c processzorelemet használunk (CREW PRAM ideális, közös memóriás modellen), párhuzamos algoritmust készíthetünk az oszlopok processzorokhoz particionálásával és O(n) futási idővel.
- Ha osztott memóriás modellen minden processzorelem lokálisan tárolja az objektumok súlyait és profitjait a j. iteráció során, F[j, r] számításához a P_{r-1} processzoron lokálisan rendelkezésre áll F[j-1, r], de F[j-1, r-w_j]-t másik processzorelemtől kell megkapni. n iteráció ekkor O(n log c) ideig tart

Nem soros, egyszerű-argumentumú DP megfogalmazás: Longest-Common-Subsequence (LCS)

- Adott egy $A = \langle a_1, a_2, ..., a_n \rangle$ sorozat; az A részsorozatát kapjuk, ha valahány elemet törlünk belőle.
- Cél: Adott két részsorozat: $A = \langle a_1, a_2, ..., a_n \rangle$ és $B = \langle b_1, b_2, ..., b_m \rangle$, keressük meg a leghosszabb sorozatot, ami részsorozata egyaránt A-nak és B-nek.
- Példa: ha A = <c,a,d,b,r,z> és B = <a,s,b,z>, a leghosszabb közös részsorozata A-nak és B-nek <a,b,z>.

- Jelölje F[i, j] az A első i elemének és B első j elemének leghosszabb közös részsorozat hosszát. Az LCS célja, hogy megtaláljuk F[n, m] értékét (és a sorozat elemeit).
- Ekkor igaz, hogy:

$$F[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } j = 0 \\ F[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max{\{F[i,j-1], F[i-1,j]\}} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{array} \right.$$

- Az algoritmus kiszámolja a két-dimenziós F táblát soroszlop sorrendben.
- Az átlós csomópontok mindegyike két részproblémához kapcsolódik, az előző szinthez és az azt megelőző szinthez. Ezért ez a DP megfogalmazás nem soros, egyszerű-argumentumú típusú.

(a) Az LCS táblázat számítási elemei. A számítás a jelzett átlós irányban halad. (b) A táblázat elemeinek leképzése a processzor elemekre.

Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested reader, the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: Proline, and W: Tryptophan.

, 11y	рторпа	Н	E	A	G	A	W	G	Н	E	E
	0	0	0	0	0	0	0	0	0	0	0
P	o	0	0	0	0	0	0	0	0	0	0
A	o	0	0	1	1	1	1	1	1	1	1
w	o	0	0	1	1	1	2	2	2	2	2
Н	o	1	1	1	1	1	2	2	3	3	3
E	o	1	2	2	2	2	2	2	3	4	4
A	o	1	2	3	3	3	3	3	3	4	4
E	0	1	2	3	3	3	3	3	3	4	5

Az LCS: A W H E E.

Parallel LCS

- A táblázat elemeinek kiszámolása átlós irányban történik a bal felső saroktól a a jobb alsó irányban.
- Ha *n* processzort használunk (CREW PRAM), minden elem kiszámolása átlósan konstans ideig tart.
- A két n hosszú szekvenciával az algoritmus 2n-1 átlós lépést tesz összesen.

Parallel LCS

- Az algoritmus processzorok lineáris tömbjére is adaptálható: a P_i processzor elem az F tábla (i+1). oszlopának meghatározásáért felelős.
- Az F[i,j] kiszámolásához a P_{j-1} processzorelemnek szüksége van F[i-1,j-1] vagy F[i,j-1] értékre a tőle balra lévő processzor elemtől, amely kommunikációt jelent.
- A számítás konstans idejű (t_c) minden elemre.
- A teljes parallel idő:

$$T_P = (2n-1)(t_s + t_w + t_c).$$

A hatékonyság felső korlátja 0.5!

Soros, összetett-argumentumú DP: Floyd legrövidebb út algoritmusa, minden párra

- Adott egy súlyozott gráf G(V,E), Floyd algoritmusa a csúcspárok közötti d_{j,j} költségeket határozza meg, hogy a legrövidebb utat célozza meg.
- Legyen d_i, a minimum költségű út az i csomóponttól a j csomópontig, és csak a következő csúcsokat használja V₀, V₁, ..., V_{k-1}.

Nem soros összetett-argumentumú DP megfogalmazás: Optimális mátrix zárójelezési probléma

- Amikor mátrixok sorozatát kell összeszorozni, akkor a szorzás sorrendje alapvetően meghatározza a műveletek (szorzások) számát.
- Legyen C[i,j] (egy résznél N[i,j] a jelölés!) az A_i,...A_j mátrixok optimális szorzásának költsége.
- A láncszorzást két kisebb lánc szorzására lehet bontani, $A_i, A_{i+1}, ..., A_k$ és $A_{k+1}, ..., A_i$.
- Az $A_i, A_{i+1}, ..., A_k$ eredménye $d_i \times d_{k+1}$ méretű mátrix, az $A_{k+1}, ..., A_j$ lánc eredménye $d_{k+1} \times d_{j+1}$ méretű mátrix.
- A két mátrix összeszorzásának költsége (a szorzások száma) $d_i d_{k+1} d_{j+1}$.

Mátrixok láncszorzása

- Emlékeztető: Mátrix-szorzás
 - \Box C = AB
 - \square A mérete $d \times e$, B mérete $e \times f$

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] \times B[k, j]$$

□ O(def) idő

Mátrixok láncszorzása

- □ Számítandó $A = A_0A_1...A_{n-1}$
- \square A_i mérete d_i × d_{i+1}
- □ Feladat: hogyan zárójelezzük?

- □ B: 3 × 100
- □ C: 100 × 7
- □ D: 7 × 5
- \square (BC)D $3\times100\times7 + 3\times7\times5 = 2305$ szorzás
- \square B(CD) $3\times100\times5 + 100\times7\times5 = 5000$ szorzás

Felsorolásos megközelítés

- □ Próbáljuk minden lehetséges módon zárójelezni
 A=A₀A₁...A_{n-1}
- □ Számoljuk ki minden esetre a szorzások számát
- □ A legjobbat vegyük

■ Futási idő:

- A zárójelezések száma = az n csomópontú bináris fák számával azonos
 - Exponenciálisan nő
- □ Gyakorlatban nem megvalósítható

Egy mohó algoritmus

Ötlet: a legkevesebb műveletet használó szorzatokat válasszuk ki elsőként.

- □ A: 101 × 11
- □ B: 11 × 9
- □ C: 9 × 100
- □ D: 100 × 99
- □ Ötlet szerint: A((BC)D) 109989+9900+108900=228789 szorzás
- □ A legjobb (AB)(CD) 9999+89991+89100=189090 szorzás

Másik mohó algoritmus

Ötlet: a legtöbb műveletet használó szorzatokat válasszuk ki elsőként.

Példa:

□ A: 10 × 5

□ B: 5 × 10

□ C: 10 × 5

□ D: 5 × 10

 \square Ötlet szerint (AB)(CD) 500+1000+500 = 2000 szorzás

□ Legjobb A((BC)D) 500+250+250 = 1000 szorzás

Egy rekurzív megközelítés

- Definiáljunk részproblémákat:
 - □ Keressük meg az A_iA_{i+1}...A_i legjobb zárójelezését.
 - □ Legyen N_{i,j} = a műveletek száma ennél a részfeladatnál.
 - \square Az egész feladatra optimális megoldás $N_{0,n-1}$.
- A részfeladat optimalizálás: Az optimális megoldás optimális részproblémákként lehet definiálni
 - Kell, hogy legyen néhány legvégül futó szorzás (a kifejezésfa gyökere) az optimális megoldásnál.
 - □ Mondjuk a végső szorzás az i indexnél van: $(A_0...A_i)(A_{i+1}...A_{n-1})$.
 - □ Ekkor az optimális megoldás $N_{0,n-1}$ két optimális részfeladat megoldása: $N_{0,i}$ és $N_{i+1,n-1}$, valamint az utolsó szorzás költsége.
 - Ha a globális optimumnak nem ezek az optimális részproblémái, akkor tudunk definiálni még jobb "optimális" megoldást.

Karakterisztikus egyenlet

- A globális optimális megoldást optimális részproblémákként kell definiálni, attól függően, hogy hol van az utolsó szorzás.
- Tételezzük fel az összes lehetséges helyet a végső szorzatra:
 - \square Az A_i mérete d_i × d_{i+1}.
 - □ Így a karakterisztikus egyenlet N_{i,j}-re a következő:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

 Ezek a részfeladatok nem függetlenek, hanem átfedésben vannak egymással.

Dinamikus programozási algoritmus

- Mivel a
 részfeladatok
 átfedik egymást,
 nem használunk
 rekurziót.
- Helyette "bottomup" módon építkezünk.
- N_{i,i}-k meghatározása egyszerű, ezzel kezdünk.
- Ezután 2, 3,... részfeladat.
- Futási idő: O(n³)

Algorithm *matrixChain(S)*:

Input: a szorzandó mátrixok S sorozata

Output: az S optimális zárójelezésének a száma

for $i \leftarrow 1$ to n-1 do

$$N_{i,i} \leftarrow \mathbf{0}$$

for $b \leftarrow 1$ to n-1 do

for $i \leftarrow 0$ to n-b-1 do

$$j \leftarrow i + b$$

$$N_{i,j} \leftarrow +\infty$$

for $k \leftarrow i$ to j-1 do

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

Dinamikus programozás

- A bottom-up konstrukció átlósan tölti ki az N tömböt.
- N_{i,j} értékeket kap az előző i. sor és j. oszlop elemeiből.
- A tábla elemeinek kitöltése O(n) idejű.
- Teljes futási idő: O(n³)
- A zárójelezést úgy kaphatjuk meg, ha eltároljuk "k"-t N minden elemére.

Algorithm *matrixChain(S)*:

Input: a szorzandó mátrixok S sorozata

Output: az S optimális zárójelezésének száma

for $i \leftarrow \theta$ to n-1 do

$$N_{i,i} \leftarrow \mathbf{0}$$

for $b \leftarrow 1$ to n-1 do //b a műveletek száma

for $i \leftarrow 0$ to n-b-1 do

$$j \leftarrow i + b$$

$$N_{i,i} \leftarrow + infinity$$

for $k \leftarrow i$ to j-1 do

$$\mathbf{sum} = N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}$$

if (sum $< N_{i,i}$) then

$$N_{i,j} \leftarrow \mathbf{sum}$$

$$O_{i,j} \leftarrow k$$

return $N_{\theta,n-1}$

■ Példa: ABCD

□ A: 10 × 5

□ B: 5 × 10

□ C: 10 × 5

□ D: 5 × 10

N	0	1	2	3
0	0	500 ₀	500 ₀	1000 2
	Α	AB	A(BC)	(A(BC))D
1		0	250 ₀	500 ₁
		В	ВС	(BC)D
2			0	500 ₀
			С	CD
3				0
				D

A műveletek visszanyerése

Példa: ABCD

□ A: 10 × 5

□ B: 5 × 10

□ C: 10 × 5

□ D: 5 × 10

N	0	1	_ 2	3
0	0	500 ₀	500 ₀	1000 2
	Α	AB	A(BC)	(A(BC))D
1		0	250 ₀	500
		В	ВС	(BC)D
2			0	500 ₀
			С	CD
3				0
				D

```
// return expression for multiplying
// matrix chain A<sub>i</sub> through A<sub>j</sub>

exp(i,j)

if (i=j) then // base case, 1 matrix

return 'A<sub>i</sub>'

else

k = O[i,j] // see red values on left

S1 = exp(i,k) // 2 recursive calls

S2 = exp(k+1,j)

return '(' S1 S2 ')'
```


Optimal Matrix-Parenthesization Problem

We have:

$$C[i,j] = \begin{cases} \min_{i \le k < j} \{C[i,k] + C[k+1,j] + r_{i-1}r_kr_j\} & 1 \le i < j \le n \\ 0 & j = i, 0 < i \le n \end{cases}$$

Optimális mátrix láncszorzás

Nem soros, összetett-argumentumú DP megfogalmazás mátrixok láncszorzásának optimális meghatározására. A négyzetek a mátrixok láncszorzatának optimális költségét jelentik. A körök lehetséges zárójelezést. C[i,j] jelölés azonos a korábbi $N_{i,j}$ -vel

Optimális mátrix láncszorzás

Átlós számítási sorrend

http://docs.linux.cz/programming/algorithms/Algorithms-Morris/mat_chain.html

Párhuzamosítási lehetőség

- Tételezzünk fel egy gyűrűs logikai processzor topológiát. Az / lépésben minden processzor elem egyetlen elemet számol ki, amely az /. átlóhoz tartozik.
- A C tábla kiszámítása során, minden processzor elküldi broadcasting módon az általa kiszámolt elemeket az összes többi processzornak.
- A következő érték lokálisan számítható.

Az általános dinamikus programozási technika

- Általában olyan feladatoknál alkalmazzuk, amelyek első ránézésre rengeteg időt vesznek igénybe. Részei:
 - Egyszerű részproblémák: a részproblémákat néhány változó függvényeként kell definiálni.
 - Részprobléma optimalitás: a globális optimum a részproblémák optimumaként definiálható.
 - Átfedő, kapcsolódó részproblémák: a részfeladatok nem függetlenek, hanem átfedőek (ezért bottom-up konstrukcióban kell dolgozni).

Parallel dinamikus programozási algoritmusok

- A számítási menetet gráfként reprezentálva, háromféle párhuzamosítási lehetőséget azonosíthatunk: csomópontokon belüli párhuzamosság; egy szinten a csomópontok közötti párhuzamosítás; és futószalagosított csomópontok (pipelining) eltérő szintű csomópontok között. AZ első kettő soros megfogalmazású, a harmadik nem soros DP.
- Az adatok helyzete (hová rendeljük) a teljesítmény szempontjából kritikus.