Algorithm and Theory of Computation 2012 Aug.

1 Short Questions

[S₁] Let $P(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$, where $a_k > 0$. Prove $P(n) = \Theta(n^k)$.

 $[S_2]$ Ordering by asymptotic growth rate from slowest to fastest:

$$7^{n^{1.008}}, (100n+2)^2, n^3, lg^5n, e^n, log_5n, 8^{n^{1/007}}.$$

[S₃] Calculate $\sum_{i=1}^{n} i \times (i+1) \times (i+2) \times (i+3) \times (i+4) \times (i+5)$.

2 Long Questions

 $[L_1]$ From the following recurrence determine the growth rate of T(n):

$$\left\{ \begin{array}{ll} T(n) = & T(n-1) + T(n-2) \\ T(0) = 1 & T(1) = 1 \end{array} \right. .$$

[L_2] Using dynamic programming algorithm to calculate the matrix product $A_1 \times A_2 \times A_3 \times A_4 \times A_5$, where $A_1: 30 \times 35$, $A_2: 35 \times 15$, $A_3: 15 \times 5$, $A_4: 5 \times 10$ and $A_5: 10 \times 20$.

 $[L_3]$ Suppose we have an instance of TSP given by the cost matrix:

 $\begin{bmatrix} \infty & 3 & 5 & 8 & 1 & 2 \\ 3 & \infty & 6 & 4 & 5 & 9 \\ 5 & 6 & \infty & 2 & 4 & 1 \\ 8 & 4 & 2 & \infty & 7 & 5 \\ 1 & 5 & 4 & 7 & \infty & 6 \\ 2 & 9 & 1 & 5 & 6 & \infty \end{bmatrix}$

- a) Give the partial solution X = (5, -, -, -, -), calculate B(X) using the reducing technique on the matrix.
- b) For X as in a), use backtracking with branch-and-bound to find the best solution which is an extension of the given partial solution. Draw the portion of the state space tree you are investigating.

Algorithm and Theory of Computation 2012 Aug.

1 Short Questions

[S₁] Let $P(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$, where $a_k > 0$. Prove $P(n) = \Theta(n^k).$

 $[S_2]$ Ordering by asymptotic growth rate from slowest to fastest:

$$7^{n^{1.008}}, (100n+2)^2, n^3, lg^5n, e^n, log_5n, 8^{n^{1/007}}.$$

[S₃] Calculate $\sum_{i=1}^{n} i \times (i+1) \times (i+2) \times (i+3) \times (i+4) \times (i+5)$.

2 Long Questions

 $[L_1]$ From the following recurrence determine the growth rate of T(n):

$$\begin{cases} T(n) = T(n-1) + T(n-2) \\ T(0) = 1 & T(1) = 1 \end{cases}.$$

[L_2] Using dynamic programming algorithm to calculate the matrix product $A_1 \times A_2 \times A_3 \times A_4 \times A_5$, where $A_1:30\times35,\ A_2:35\times15,\ A_3:15\times5,\ A_4:5\times10$ and $A_5:10\times20$.

 $[L_3]$ Suppose we have an instance of TSP given by the cost matrix:

ſ	∞	3	5	8	1	2	٦
	3	∞	6	4	5	9	
	5	6	∞	2	4	1	
	8	4	2	∞	7	5	
	1	5	4	7	00	6	
L	2	9	1	5	6	∞	-

- a) Give the partial solution X=(5,-,-,-,-), calculate B(X) using the reducing technique on the matrix.
- b) For X as in a), use backtracking with branch-and-bound to find the best solution which is an extension of the given partial solution. Draw the portion of the state space tree you are investigating.