Mathematics-II (MATH F112) Linear Algebra

Jitender Kumar

Department of Mathematics Birla Institute of Technology and Science Pilani Pilani-333031

Section 3.4 Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors: Let A be $n \times n$ matrix.

Eigenvalues and Eigenvectors: Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if

Eigenvalues and Eigenvectors: Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if there is a **nonzero** n**-vector** X such that $AX = \lambda X$.

Eigenvalues and Eigenvectors: Let A be $n \times n$ matrix. A real number λ is an eigenvalue of A if there is a **nonzero** n**-vector** X such that $AX = \lambda X$. Such a vector X is called eigenvector corresponding to eigenvalue λ .

Example 1: For the matrix

$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}.$$

Example 1: For the matrix

$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}.$$

Note that
$$A \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}$$
 implies

Example 1: For the matrix

$$A = \begin{bmatrix} -4 & 8 & -12 \\ 6 & -6 & 12 \\ 6 & -8 & 14 \end{bmatrix}.$$

Note that $A\begin{bmatrix}4\\3\\0\end{bmatrix}=2\begin{bmatrix}4\\3\\0\end{bmatrix}$ implies $\lambda=2$ is an eigenvalue of A and X=[4,3,0] is the eigenvector corresponding to 2.

$$AX = \lambda X$$
,

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

Thus, if X is an eigenvector of A corresponding to an eigenvalue λ then, for $c \in \mathbb{R}$, cX is also an eigenvector corresponding to λ .

$$AX = \lambda X$$
,

then for $c \in \mathbb{R}$, we have

$$A(cX) = c(AX) = c(\lambda X) = \lambda(cX).$$

Thus, if X is an eigenvector of A corresponding to an eigenvalue λ then, for $c \in \mathbb{R}$, cX is also an eigenvector corresponding to λ . Hence, there are infinitely many eigenvectors corresponding to an eigenvalue.

Since $AX = \lambda X = \lambda I_n X$ implies

Since $AX = \lambda X = \lambda I_n X$ implies $(\lambda I_n - A)X = \mathbf{0}$.

Since $AX = \lambda X = \lambda I_n X$ implies $(\lambda I_n - A)X = \mathbf{0}$. Thus, eigenvector X corresponding to λ is a nontrivial solution of the homogeneous system whose coefficient matrix is $\lambda I_n - A$.

Since $AX = \lambda X = \lambda I_n X$ implies $(\lambda I_n - A)X = \mathbf{0}$. Thus, eigenvector X corresponding to λ is a nontrivial solution of the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = 0$.

Since $AX = \lambda X = \lambda I_n X$ implies $(\lambda I_n - A)X = \mathbf{0}$. Thus, eigenvector X corresponding to λ is a nontrivial solution of the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = 0$.

Theorem: Let A be $n \times n$ matrix and λ be a real number. Then λ is an eigenvalue of A if and only if $|\lambda I_n - A| = 0$.

Since $AX = \lambda X = \lambda I_n X$ implies $(\lambda I_n - A)X = \mathbf{0}$. Thus, eigenvector X corresponding to λ is a nontrivial solution of the homogeneous system whose coefficient matrix is $\lambda I_n - A$. Therefore, $|\lambda I_n - A| = 0$.

Theorem: Let A be $n \times n$ matrix and λ be a real number. Then λ is an eigenvalue of A if and only if $|\lambda I_n - A| = 0$. The eigenvectors are the nontrivial solutions of the homogeneous system

$$(\lambda I_n - A)X = \mathbf{0}.$$

The Characteristic Polynomial of a Matrix:

The Characteristic Polynomial of a Matrix: Let A be an $n \times n$ matrix, then the characteristic polynomial of A is the polynomial

$$p_A(x) = |xI_n - A|.$$

The Characteristic Polynomial of a Matrix: Let A be an $n \times n$ matrix, then the characteristic polynomial of A is the polynomial

$$p_A(x) = |xI_n - A|.$$

Since, $p_A(x)$ is a polynomial of degree n implies

The Characteristic Polynomial of a Matrix: Let A be an $n \times n$ matrix, then the characteristic polynomial of A is the polynomial

$$p_A(x) = |xI_n - A|.$$

Since, $p_A(x)$ is a polynomial of degree n implies it has at most n real roots.

The Characteristic Polynomial of a Matrix: Let A be an $n \times n$ matrix, then the characteristic polynomial of A is the polynomial

$$p_A(x) = |xI_n - A|.$$

Since, $p_A(x)$ is a polynomial of degree n implies it has at most n real roots.

The eigenvalues of an $n \times n$ matrix A are precisely the real roots of the characteristic polynomial $p_A(x)$.

Example 2: Find the characteristic polynomial and eigenvalues of

Example 2: Find the characteristic polynomial and eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$

Solution: The characteristic polynomial

8/25

Example 2: Find the characteristic polynomial and eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -5 \end{bmatrix}$$

Solution: The characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 2 & 3 \\ 0 & 0 & x + 5 \end{vmatrix}$$
$$= (x - 1)(x - 2)(x + 5)$$

Since, eigenvalues of A are the real roots of $p_A(x)$.

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A.

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$.

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

In Example 3 The algebraic multiplicity of each of the eigenvalues

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

In Example 3 The algebraic multiplicity of each of the eigenvalues ($\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -5$)

Algebraic Multiplicity of an Eigenvalue: Let A be an $n \times n$ matrix and λ be an eigenvalue for A. Suppose that $(x - \lambda)^k$ is the highest power of $(x - \lambda)$ that divides $p_A(x)$. Then k is called the algebraic multiplicity of λ .

In Example 3 The algebraic multiplicity of each of the eigenvalues ($\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -5$) is 1.

Example 3: Find all eigenvalues of the matrix *A* and their corresponding algebraic multiplicities, where

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Solution: The characteristic polynomial

Example 3: Find all eigenvalues of the matrix A and their corresponding algebraic multiplicities, where

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Solution: The characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix}$$

Example 3: Find all eigenvalues of the matrix A and their corresponding algebraic multiplicities, where

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Solution: The characteristic polynomial

$$p_A(x) = |xI_3 - A| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix}$$

$$= x(x-2)^2$$

Now, the eigenvalues of A are the real roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1=0$ and $\lambda_2=2$.

Now, the eigenvalues of A are the real roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1=0$ and $\lambda_2=2$. Hence, the algebraic multiplicity of λ_1 is **one**

Now, the eigenvalues of A are the real roots of $p_A(x)$, i.e., eigenvalues are $\lambda_1=0$ and $\lambda_2=2$. Hence, the algebraic multiplicity of λ_1 is **one** and of λ_2 is **two**.

$$E_{\lambda} = \{ X \mid AX = \lambda X \}$$

is called the eigenspace of λ ,

$$E_{\lambda} = \{ X \mid AX = \lambda X \}$$

is called the eigenspace of λ , i.e., E_{λ} is the set of all eigenvectors of A corresponding to the eigenvalue λ ,

$$E_{\lambda} = \{ X \mid AX = \lambda X \}$$

is called the eigenspace of λ , i.e., E_{λ} is the set of all eigenvectors of A corresponding to the eigenvalue λ , together with the zero vector $\mathbf{0}$.

$$E_{\lambda} = \{ X \mid AX = \lambda X \}$$

is called the eigenspace of λ , i.e., E_{λ} is the set of all eigenvectors of A corresponding to the eigenvalue λ , together with the zero vector $\mathbf{0}$.

Theorem: Let A be an $n \times n$ matrix and λ be an eigenvalue of A.

$$E_{\lambda} = \{ X \mid AX = \lambda X \}$$

is called the eigenspace of λ , i.e., E_{λ} is the set of all eigenvectors of A corresponding to the eigenvalue λ , together with the zero vector $\mathbf{0}$.

Theorem: Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace E_{λ} corresponding to λ is a subspace of \mathbb{R}^n .

Geometric Multiplicity (G.M.) of an Eigenvalue:

The geometric multiplicity of an eigenvalue λ is the dimension of its corresponding eigenspace E_{λ} i.e.

Geometric Multiplicity (G.M.) of an Eigenvalue:

The geometric multiplicity of an eigenvalue λ is the dimension of its corresponding eigenspace E_{λ} i.e.

G.M. of $\lambda = \dim E_{\lambda}$.

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad$$

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Solution: The characteristic polynomial of A is

$$p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2.$$

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 0 & -2 \\ 6 & 2 & -6 \\ 4 & 0 & -2 \end{bmatrix}$$

Solution: The characteristic polynomial of A is

$$p_A(x) = |xI_2 - A| = \begin{vmatrix} x - 1 & -3 \\ 0 & x - 1 \end{vmatrix} = (x - 1)^2.$$

Hence, eigenvalues are $\lambda = 1, 1$.

To compute eigenspace E_1 for $\lambda=1$, we need to solve the homogeneous system

$$[I_2 - A|0] = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[I_2 - A|0] = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

So the associated system is

$$[I_2 - A|0] = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

So the associated system is $x_2 = 0$. Since column 1 is not a pivot column, x_1 is an independent variable.

$$[I_2 - A|0] = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

So the associated system is $x_2 = 0$. Since column 1 is not a pivot column, x_1 is an independent variable. Let $x_1 = a \in \mathbb{R}$.

$$[I_2 - A|0] = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

So the associated system is $x_2 = 0$. Since column 1 is not a pivot column, x_1 is an independent variable.

Let
$$x_1 = a \in \mathbb{R}$$
. Then

$$E_1 = \{ [a, 0] \mid a \in \mathbb{R} \} = \{ a[1, 0] \mid a \in \mathbb{R} \}.$$

$$p_B(x) = |xI_3 - B| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2.$$

$$p_B(x) = |xI_3 - B| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2.$$

Hence, eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$.

$$p_B(x) = |xI_3 - B| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2.$$

Hence, eigenvalues are $\lambda_1=0$ and $\lambda_2=2$. To compute eigenspace E_0 for $\lambda=0$, we need to solve the homogeneous system

$$p_B(x) = |xI_3 - B| = \begin{vmatrix} x - 4 & 0 & 2 \\ -6 & x - 2 & 6 \\ -4 & 0 & x + 2 \end{vmatrix} = x(x - 2)^2.$$

Hence, eigenvalues are $\lambda_1=0$ and $\lambda_2=2$. To compute eigenspace E_0 for $\lambda=0$, we need to solve the homogeneous system

$$(\lambda I_3 - B)X = 0$$
 implies $-BX = 0$.

The augmented matrix is

$$[-B|0] = \begin{bmatrix} -4 & 0 & 2 & 0 \\ -6 & -2 & 6 & 0 \\ -4 & 0 & 2 & 0 \end{bmatrix}$$

which reduces to

The augmented matrix is

$$[-B|0] = \begin{bmatrix} -4 & 0 & 2 & 0 \\ -6 & -2 & 6 & 0 \\ -4 & 0 & 2 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{ccc|c}
1 & 0 & -1/2 & 0 \\
0 & 1 & -3/2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right].$$

The associated system is

The augmented matrix is

$$[-B|0] = \begin{bmatrix} -4 & 0 & 2 & 0 \\ -6 & -2 & 6 & 0 \\ -4 & 0 & 2 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{ccc|c}
1 & 0 & -1/2 & 0 \\
0 & 1 & -3/2 & 0 \\
0 & 0 & 0 & 0
\end{array} \right].$$

The associated system is

$$x_1 - \frac{1}{2}x_3 = 0$$
 and $x_2 - \frac{3}{2}x_3 = 0$

Since column 3 is not a pivot column, x_3 is an independent variable.

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c$ so that $x_1 = c, x_2 = 3c$.

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c$ so that $x_1 = c, x_2 = 3c$. Then

$$E_0 = \{ [c, 3c, 2c] \mid c \in \mathbb{R} \} = \{ c[1, 3, 2] \mid c \in \mathbb{R} \}.$$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c$ so that $x_1 = c$, $x_2 = 3c$. Then

$$E_0 = \{ [c, 3c, 2c] \mid c \in \mathbb{R} \} = \{ c[1, 3, 2] \mid c \in \mathbb{R} \}.$$

Note that

$$E_0 = \text{span}\{[1, 3, 2]\} = \text{span}(B),$$

where $B = \{[1, 3, 2]\}.$

Since column 3 is not a pivot column, x_3 is an independent variable. Let $x_3 = 2c$ so that $x_1 = c, x_2 = 3c$. Then

$$E_0 = \{ [c, 3c, 2c] \mid c \in \mathbb{R} \} = \{ c[1, 3, 2] \mid c \in \mathbb{R} \}.$$

Note that

$$E_0 = \text{span}\{[1, 3, 2]\} = \text{span}(B),$$

where $B = \{[1, 3, 2]\}$. Since, B is LI, it is a basis for E_0 .

Note that

G.M. of
$$0 = \dim E_0 = 1$$
.

To compute eigenspace E_2 for $\lambda=2$, we need to solve the homogeneous system

To compute eigenspace E_2 for $\lambda=2$, we need to solve the homogeneous system $(\lambda I_3-B)X=0$, i.e., $(2I_3-B)X=0$.

To compute eigenspace E_2 for $\lambda=2$, we need to solve the homogeneous system $(\lambda I_3-B)X=0$, i.e., $(2I_3-B)X=0$. The augmented matrix is

$$[2I_3 - B|0] = \begin{bmatrix} -2 & 0 & 2 & 0 \\ -6 & 0 & 6 & 0 \\ -4 & 0 & 4 & 0 \end{bmatrix}$$

which reduces to

To compute eigenspace E_2 for $\lambda=2$, we need to solve the homogeneous system $(\lambda I_3-B)X=0$, i.e., $(2I_3-B)X=0$. The augmented matrix is

$$[2I_3 - B|0] = \begin{bmatrix} -2 & 0 & 2 & 0 \\ -6 & 0 & 6 & 0 \\ -4 & 0 & 4 & 0 \end{bmatrix}$$

which reduces to

$$\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right].$$

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables.

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables. Let $x_2 = b$ and $x_3 = c$ so that $x_1 = c$.

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables. Let $x_2=b$ and $x_3=c$ so that $x_1=c$.

Then

$$E_2 = \{ [c, b, c] | b, c \in \mathbb{R} \} = \{ b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R} \}.$$

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables. Let $x_2=b$ and $x_3=c$ so that $x_1=c$.

Then

$$E_2 = \{ [c, b, c] | b, c \in \mathbb{R} \} = \{ b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R} \}.$$

Now $E_2 = \text{span}(B)$, where $B = \{[0, 1, 0], [1, 0, 1]\}$.

Since columns 2 and 3 are not pivot columns, x_2 and x_3 are independent variables. Let $x_2=b$ and $x_3=c$ so that $x_1=c$.

Then

$$E_2 = \{ [c, b, c] | b, c \in \mathbb{R} \} = \{ b[0, 1, 0] + c[1, 0, 1] | b, c \in \mathbb{R} \}.$$

Now $E_2 = \text{span}(B)$, where $B = \{[0, 1, 0], [1, 0, 1]\}$. Since, B is LI ((verify it)), it is a basis for E_2 .

Note that

G.M. of
$$2 = \dim E_2 = 2$$
.

Theorem: Let A be a square matrix with eigenvalue λ and corresponding eigenvector X.

• If λ is an eigenvalue of a matrix A, then for any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.

Theorem: Let A be a square matrix with eigenvalue λ and corresponding eigenvector X.

- If λ is an eigenvalue of a matrix A, then for any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.
- If A is nonsingular, then $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector X.

Theorem: Let A be a square matrix with eigenvalue λ and corresponding eigenvector X.

- If λ is an eigenvalue of a matrix A, then for any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.
- If A is nonsingular, then $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector X.
- If A is nonsingular, then for any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector X.

eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ corresponding

to eigenvalues $\lambda_1 = -1, \lambda_2 = 2$.

eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ corresponding

to eigenvalues
$$\lambda_1 = -1, \lambda_2 = 2$$
. Let $X = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$.

eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ corresponding

to eigenvalues $\lambda_1=-1, \lambda_2=2$. Let $X=\begin{bmatrix} 5\\1 \end{bmatrix}$. Find $A^{10}X$ without computing the matrix A.

eigenvectors
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ corresponding

to eigenvalues
$$\lambda_1=-1, \lambda_2=2$$
. Let $X=\begin{bmatrix} 5\\1 \end{bmatrix}$. Find $A^{10}X$ without computing the matrix A .

Solution:

$$A^{10}X = \begin{bmatrix} 2051 \\ 4093 \end{bmatrix}_{2 \times 1}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

- Find all the eigenvalues of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

- Find all the eigenvalues of A and compute their algebraic multiplicity.
- Find eigenspaces corresponding to each of the eigenvalues of A and compute their geometric multiplicity.

Thank You

