

ВВЕДЕНИЕ В КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Лекция № 5

Локальные характеристики изображений

План лекции

1. Локальные признаки изображений

2. Детекторы контрольных точек

Моравица

Харриса

Ши-Томаси

Trajkovic

FASt

01

Локальные признаки изображений

Предпосылки к решению задачи поиска

Изменение масштаба

Изменение освещения

Изменение точки съемки

Перекрытие

Предпосылки к решению задачи поиска

Доклад Александра Крайнова о поиске картинок в Яндексе

Чего мы хотим от особых точек?

- Уникальность
 - Точка должны быть различима от других примеров
- Инвариантность
 - Точка должна встречаться при разных геометрических или оптических преобразованиях объекта на изображении
- Повторяемость
 - Точка должна повторятся на разных изображениях, если она относится к одному объекту
- Количество
 - Точек должно быть достаточное количество регионов, чтобы покрыть объект
- Быстрота вычислений
 - Вычисление особых точек должно быть сравнительно быстрой операцией

Подход к сравнению изображений

Алгоритм сравнения изображений:

- 1. Поиск особых точек
- 2. Выделение окрестностей особых точек
- 3. Построение вектора признаков для каждой окрестности
- 4. Сопоставление векторов признаков двух изображений

Локализацией особых точек

Что должны быть обеспечено:

- Повторное обнаружение
- Точная локализация
- Интересное содержание

Введем эмпирическое предположение:

Особая точка — это угловая точка

Детектор особых точек

Критерии построения детектора:

- Мы должны легко распознать точку, глядя в маленькое окно (местность).
- Смещение окна в любом направлении должно давать большое изменение интенсивности (хорошая локализация)
- 1. Смещение окна в окрестности угловой точки в любом направлении приводит к существенному изменению набора интенсивностей окна (алгоритм Моравица)
- 2. В окрестности угловой точки два доминирующих направления градиента (алгоритм Харриса)

"монотонная" область: нет изменений ни в каком направлении

"край": нет изменений по одному из направлений – вдоль края

"угол": существенные изменения по всем направлениям

Структурная схема детектора особых точек

02

Детекторы контрольных точек

Детектор Моравица

Для каждого направления смещения вычисляется изменение интенсивности:

$$S(x, y, u, v) = \sum_{a=x-n, b=y-n}^{a=x+n, b=y+n} (I(a,b) - I(a+u, b+v))^{2}$$

Строится карта силы угла в каждой точке:

$$C(x,y) = \min_{u,v} \{S(x,y,u,v)\}$$

Отсекаются неугловые точки по порогу (значение силы угла меньше порога) Отсекаются точки, не являющиеся локальным максимумом (non-maximal suppression)

Недостатки детектора Моравица

- 1. Не является инвариантным к повороту из-за дискретности рассматриваемого множества направлений смещений
- 2. Выдает высокий отклик вдоль при наличии даже небольшого шума
- 3. Неточен в оценке локального изменения интенсивности из-за использования квадратной бинарной маски окна

Рассмотрим распределение значений производных на 3 областях изображения:

- 1. «Фон»
- 2. «Край»
- 3. «Угол»

- Для каждого окна смотрим на собственные числа ковариационной матрицы для значений градиента пикселей
- Собственные вектора этой матрицы показывают «основные направления»
- Величина собственных чисел указывает на «степень выраженности» соответствующего направления

Изменение интенсивности в окрестности точки (x,y) при сдвиге [u,v]:

Функция окна
$$w(x,y) = 1$$
 в окне, 0 снаружи Гауссиан

Для небольших сдвигов [u, v] можем аппроксимировать (ряд Тейлора):

$$I(u+x,v+y) \approx I(x,y) + I_x(x,y)u + I_y(x,y)v$$

Это приводит к приближению:

$$E(u,v) \approx \sum_{x,y} w(x,y) (I_x(x,y)u + I_y(x,y)v)^2$$

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u\\v \end{bmatrix}$$

где M - матрица 2×2 , состоящая из частных производных от интенсивности:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k -эмпирическая константа, k = 0.04 - 0.06)

- R зависит только от значений собственных чисел λ_1 , λ_2
- *R* принимает большие значения в угловых точках
- *R* принимает отрицательные значения, большие по модулю на контуре
- |R| мало в плоском регионе

Детектор Харриса: пример

Детектор Харриса: вычисляем R

Детектор Харриса: применяем правило R>T

Детектор Харриса: подавление не максимумов (NMS)

Детектор Харриса: результат применения

Свойства детектора:

- Инверсность к повороту
- Инвариантность к сдвигу занесений пикселей

• Не инвариантность к изменению масштаба

Рассмотрим фрагменты двух изображений разного размера

Для двух изображений найдутся соответствующие преобразования размеров, при которых фрагменты будут равны

Какой размер области рассматривать, чтобы найти особую точку?

Решение:

- Определим такую функцию, которая будет принимать значение на фрагменте изображения инвариантное к масштабу
- Для в каждой точки изображения рассмотрим значение такой функции от размера окрестности, рассматриваемого около точки и найдем ее локальный максимум

Лапласиан:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

Разность Гауссиан (приближение Лапласиана):

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

где

$$G(x,y,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Оба ядра инварианты к изменению масштаба и повороту

$$I(x) * \frac{d^2G_{\sigma}(x)}{dx^2}$$

$$\sigma^2 \frac{d^2 G_{\sigma}}{dx^2}(x)$$

$$\sigma \nabla^2 G = \frac{\partial G}{\partial \sigma} \approx \frac{G(x, y, k\sigma) - G(x, y, \sigma)}{k\sigma - \sigma}$$

$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma^2 \nabla^2 G.$$

Одномерный случай для свертки сигнала с лапласианом:

Пирамида Лапласа

Пирамида Гаусса

Интерпретация вариации сигмы

Интерпретация вариации сигмы

Пирамида Гаусса

Harris-Laplacian:

- Применяем детектор Харриса
- Поиск локальных максимумов от Лапласиана в пространстве scale

Scale-invariant feature transform (SIFT):

• Поиск локальных максимумов от DoG в пространстве scale

Локализация точек

$$D\left(x,y,\sigma
ight) =L\left(x,y,k_{i}\sigma
ight) -L\left(x,y,k_{j}\sigma
ight) ,$$

$$D(\mathbf{z}_0 + \mathbf{z}) \approx D(\mathbf{z}_0) + \left(\frac{\partial D}{\partial \mathbf{z}}\Big|_{\mathbf{z}_0}\right)^T \mathbf{z} + \frac{1}{2} \mathbf{z}^T \left(\frac{\partial^2 D}{\partial \mathbf{z}^2}\Big|_{\mathbf{z}_0}\right) \mathbf{z}$$

$$\hat{\mathbf{z}} = -\left(\frac{\partial^2 D}{\partial \mathbf{z}^2}\Big|_{\mathbf{z}_0}\right) \left(\frac{\partial D}{\partial \mathbf{z}}\Big|_{\mathbf{z}_0}\right) \qquad \begin{bmatrix} \text{Let } \mathbf{r} = \alpha/\beta. \\ \text{So } \alpha = \mathbf{r}\beta \end{bmatrix} \qquad \frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} = \frac{(\alpha+\beta)^2}{\alpha\beta} = \frac{(r\beta+\beta)^2}{r\beta^2} = \frac{(r+1)^2}{r}, \qquad \text{min when the 2 eigenvalues are equal.}$$

$$D(\hat{x}, \hat{y}, \hat{\sigma}) = D(\mathbf{z}_0 + \hat{\mathbf{z}}) \approx D(\mathbf{z}_0) + \frac{1}{2} \left(\frac{\partial D}{\partial \mathbf{z}} \Big|_{\mathbf{z}_0} \right)^T \hat{\mathbf{z}}$$

Reject flats:

$$|D(\hat{\mathbf{x}})| < 0.03$$

Reject edges:

$$\mathbf{H} = \left[egin{array}{cc} D_{xx} & D_{xy} \ D_{xy} & D_{yy} \end{array}
ight]$$
 Let α be the eigenvalue with larger magnitude and β the smaller.

$$Tr(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$

$$Det(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$

Let
$$r = \alpha/\beta$$
.
So $\alpha = r\beta$

r < 10

$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},$$

are equal.

Детектор Trajkovic

$$R_N = \min_{P,P' \in S_N} ((I_P - I_N)^2 + (I_{p'} - I_N)^2),$$

где *N* – центральная точка;

P и P' — две противоположные по диаметру точки вокруг точки N;

 S_N — дискретизированная окружность на изображении радиусом 3, 5, 7 пикселей.

Значение будет большим, когда нет направления, в котором центральный пиксель похож на два близлежащих пикселя по диаметру

Детектор FAST

- 1. Точка является угловой, если для текущей рассматриваемой точки P существуют N смежных пикселей на окружности, интенсивности которых больше I_p+t или интенсивности всех меньше I_p-t , где I_p-t интенсивность точки P, t-t пороговая величина.
- 2. Интенсивность в вертикальных и горизонтальных точках на окружности под номерами 1, 5, 9 и 13 с интенсивностью в точке P (для того, чтобы как можно быстрее отсечь ложные кандидаты). Если для 3 из этих точек выполнится условие $I_{Pi} > I_P + t$ или $I_{Pi} < I_P + t$, i = 1,..., 4, то проводится полный тест для всех 16 точек

$$cost = (k_R + R^{-2})(k_N + N^{-2})(k_S + S^{-2})$$

R — мера повторяемости;

N – количество обнаруженных особых точек;

S – количество узлов в дереве решений.

Место для ваших вопросов