

Developments in Incoherent vs. Coherent Resonances

ICFA Mini-Workshop SpaceCharge19 November 4-6, 2019

> Ingo Hofmann GSI Darmstadt / TU Darmstadt

Overview

Intro: Classification of transverse resonances with space charge
 90 degree stopband as a "test-bed"
 Higher order coherent resonance effects – role of Landau damping?
 Comparison with SIS18 experiment
 Conclusions

Acknowledgment: O. Boine-Frankenheim, G. Franchetti, A. Oeftiger

Collective – coherent – incoherent

in beams with space charge

Any beam in an external potential with space charge behaves collectively!

Collective effect

- may be on amplitudes of particles (re-arrangement) such that self-field counteracts external field – in synchotrons "weak"
 - example: "Debye shielding", or "profile flattening"
 - influencing incoherent resonances
- may be on phases of particles: coherent effects (modes)
 - coherent resonances
 - instabilities
 - shifted frequencies compared with single particles

FSM* "good enough"

FSM* fails

FSM*: Frozen Space Charge Model

Coherent modes

- ✓ Coherent impedance driven instabilities
 - rigid dipolar motion

- ✓ Quadrupolar deformations
- √ Higher (3rd or 4th) order coherent modes
 - driven by resonant effects
 - not by impedances!
 - do they exist?

Overview: 3 resonance situations

resonant excitation

- driven by magnets and/or self-fields
- single particle "incoherent" resonances
- also "coherent resonances"?
- 2nd order example in rings:
 - gradient error resonance coherent.

parametric resonance

- driven by self-field only
- instability with exponential growth
- example in linacs: envelope instability – not measured - avoided

Simulation in linear FODO lattice: short ellipsoidal 3d bunch showing the two types of resonance in the 90 degree stopband

I.Hofmann, O. Boine-Frankenheim, PRAB 2017

Scan over full regime of resonant response

- use 900 band as "test bed" for higher order and externally driven -

- Need an **integrated** picture over all regimes
 - where incoherent, where coherent? transitions etc.
 - compare with experimental procedures in SIS18 CERN
- This talk: Elongated 3d Gaussian bunch on 90° stopband
 - periodic linear focusing (straight FODO + RF lattice)
 - $T_{\text{synch}} \approx 3xT_{\text{beta}}$
 - fully self-consistent Poisson solver (TRACEWIN)
 - use a (mechanical) aperture at 7σ to "model" halo loss regimes

SIS 18 bunched beam - theory Franchetti et al., PRAB 2010

Early (300 cells) response on rms emittance 6d G

on 90° stopband - T_{syn}=3xT_{betatron}

Longer term loss case (6d G - T_{syn} =3x $T_{betatron}$)

mechanical aperture at 7σ (4.5 mm)

Tail incoherent resonance regime

by periodic crossing of 90° resonance during synchrotron motion

G. Franchetti and I. H., NIM A 261 (2006), G. Franchetti et al. PRAB (2010)

(6d G –
$$T_{syn} \sim 3xT_{betatron}$$
)

It can be assumed that it

- is an entirely incoherent resonance
- scattering by multiple kicks
- "frozen-in" sp.ch. initially ok
- requires self-consistent treatment if high deviations from initial

Resonant particles: maximum synchr. amplitudes

→ multiple kicks (G. Franchetti et al., PRSTAB 2010)

Loss curve with assumed mechanical aperture at 7_o

Higher order stopbands? – (6d Gaussian – $T_{svn} \sim 3xT_{betatron}$)

Test with slow **tune ramp**:

 k_{0xy} : 142 \rightarrow 135 k_{xy} : 136 \rightarrow 132

Incoherent:

 $8 kxy = 3.360^{\circ}$

$$8 Q_{xy} = \mathbf{m} \cdot N$$

Coherent – "theoretical":

$$4k_{xy} + \Delta k_{coh,4} = 3.360^{\circ}/2$$

$$|4Q_{xy} + \Delta Q_{coh,4} = mN/2|$$

Incoherent resonance driven by 3rd harmonic of basic FODO cell

compare with CERN PS: $8 Q_{xy} = 50$

theoretically expected (by theory ignoring LD) half-integer parametric resonance

Detailed scan of this 8^{th} order stopband (6d G – T_{svn} ~ $3xT_{betatron}$)

$$8 kxy = 3.360^{\circ}$$

$$\rightarrow k_{xy}$$
= 135⁰

incoherent rms tune on resonance!

- ✓ No indication of coherent parametric resonance!
 - should show during first 300 cells (exponential growth!)
- √ rms emittance growth entirely incoherent

assumed again 7 σ mechanical aperture

"theoretically":

$$4 k_{xy} + \Delta k_{coh,4} = 3.360^{\circ}/2$$

Coherent resonant frequencies and Landau damping

0.17

0.15

0.16

0.18

0.19

0.16

0.15

0.14

$$\omega = k(\nu_x + C_k \Delta \nu_x)$$

- only second order mode outside spectrum
 - found unstable in 90 deg stopband
- 3rd and 4th within spectrum of G and WB
 - consistent with absence in bunch simulations
 - in 2d found for WB!

Confirmed 3rd and 4th order parametric resonances

in WB (!) coasting beam

source: I.H., Springer, 2017

< 1% emittance growth</p>

Recent suggestion by Hiroshima-group (2019):

Employ only coherent resonance conditions in resonance diagrams (Kojima, Okamoto et al. / S-POD experiment)

n'/2: for even n' parametric instability would nearly double # of lines

FIG. 4. Tune diagram obtained from 2D WARP simulations with a fixed beam intensity and fixed rms emittances at injection. The

SIS18 high intensity measurements:

→ no indication of coherent resonance shifts

bunched beam 1 sec storage $\Delta v_{x/y} = -0.04/-0.045$

- ✓ No indication of coherent shifts
- dominated by long-term emittance growth and loss
- ✓ if any: measurement peaks should be more to the left

$$3(\nu_x + \Delta \nu_x) = 13$$

- ✓ quantitative loss with "frozen" sp.ch. underestimates long-term loss
 - could be due to lack of self-consistency

G. Franchetti et al., PR-STAB 13 (2010)

 ν_{0x}

Simulation

with "frozen"
space charge
(no coherent effects!)

coherent frequency (from theory)

Conclusions

- ✓ Distinguish incoherent coherent parametric
 - latter would increase # of resonance lines no evidence > 2nd order (except for WB – coasting beam)
- √ 90 degree "test-bed" describing 3 regimes:
 - core + coherent (half-integer) + tail
- √ 135 degree stopband free of 4th order coherent half-integer!!
 - rms emittance growth only from 8th order
- ✓ Coherent part Landau damped for Gaussian and higher order
- ✓ No evidence of "coherent" in SIS18 experiments (+ CERN)
- ✓ Future work should carefully consider LD and possibly loss of LD

