В работе исследуются деревья вывода высоты t, порождаемые согласованной стохастической КС-грамматикой, при $t \to \infty$.

Стохастической КС-грамматикой [3] называется четвёрка $G = \langle V_N, V_T, R, s \rangle$, где V_N и V_T — конечные алфавиты нетерминальных и терминальных символов (терминалов и нетерминалов), $s \in V_N$ — аксиома, $R = \bigcup_{i=1}^n R_i$, где $n = |V_N|$ и R_i — конечное множество правил вывода r_{ij} вида:

$$r_{ij}: A_i \xrightarrow{p_{ij}} \beta_{ij} (j=1,2,\ldots,n_i),$$

где $A_i \in V_N$, $\beta_{ij} \in (V_N \cup V_T)^*$, и p_{ij} — вероятность применения правила r_{ij} , причём $0 < p_{ij} \le 1$ и $sum_{i=1}^n p_{ij} = 1$.

Применение правила r_{ij} грамматики к слову $\alpha \in (V_N \cup V_T)^*$ состоит в замене какого-либо вхождения нетерминала A_i в α на слово β_{ij} . Язык L_G , порождаемый грамматикой G, содержит все слова из алфавита V_T , которые можно получить из аксиомы s последовательным применением правил вывода.

Каждому слову α из L_G соответствует последовательность $\omega(\alpha)=(r_1,r_2,\ldots,r_k)$ правил вывода, с помощью последовательного применения которых α можно получить из аксиомы s. Такая последовательность правил называется выводом слова α . Выводу слова соответствует дерево вывода [1] d, вероятность p(d) которого определяется как произведение вероятностей правил, образующих вывод: $p(d)=\prod_{i=1}^k p(r_i)$. Одному и тому же слову $\alpha\in L_G$ может соответствовать более одного дерева вывода. Вероятность слова $\alpha\in L_G$ определяется как сумма вероятностей всех порождающих его деревьев.

Грамматика называется согласованной, если сумма вероятностей всех конечных деревьев вывода равна 1. Согласованная стохастическая грамматика G задаёт распределение вероятностей на множестве слов порождаемого ею языка L_G . В работе рассматриваются согласованные грамматики.

По стохастической КС-грамматике строится матрица A первых моментов. Её элемент a^i_j определяется как $\sum_{k=1}^{n_i} p_{ik} s^j_{ik}$, где величина s^j_{ik} равна числу нетерминальных символов A_j в правой части правила вывода r_{ik} . Перронов корень [2] матрицы A обозначим через r. Известно, что для согласованной грамматики $r \leq 1$.

Будем обозначать $A_i \to A_j$, если в грамматике имеется правило вывода вида $A_i \xrightarrow{p_{ij}} \alpha_1 A_j \alpha_2$, где $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* . Будем обозначать $A_i \leftrightarrow_* A_j$, если одновременно $A_i \to_* A_j$ и $A_j \to_* A_i$. Множество V_N нетерминалов разбивается на классы эквивалентности K_1, K_2, \ldots, K_m по отношению \leftrightarrow_* . Будем обозначать $K_i \prec K_j$, если существуют $A_{k_i} \in K_i$ и $A_{k_j} \in K_j$, такие что $A_{k_i} \to A_{k_j}$. Рефлексивное замыкание \prec обозначим \prec_* .

Случай r < 1 (докритический случай) рассматривался Л.П. Жильцовой в [4] и других работах. А.Е. Борисов обобщил [5] полученные результаты на случай $r \le 1$ для разложимой грамматики, содержащей два класса нетерминалов.

Пусть классы нетерминалов пронумерованы таким образом, что $i \leq j$ для любых $K_i \prec_* K_j$. Матрица A первых моментов грамматики в этом

случае имеет вид:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1,m} \\ 0 & A_{22} & \cdots & A_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{m,m} \end{pmatrix}.$$

Для каждого класса K_i матрица A_{ij} неразложима. Обозначим через r_i перронов корень матрицы A_{ii} . Очевидно, $r=\max_i\{r_i\}$. Обозначим $J=\{i:r_i=r\}$.

Для пары классов K_i и K_j рассмотрим всевозможные цепочки $K_{i_1} \prec K_{i_2} \prec \ldots \prec K_{i_k}$, где $i_1 = i$ и $i_k = j$. Обозначим через s_{ij} максимальное число классов с номерами из J в такой цепочке. Будем также обозначать $s_i = \max_j \{s_{ij}\}$.

Теорема 1 Пусть матрица A первых моментов стохастической KC-грамматики G имеет перронов корень, не превосходящий 1. Тогда математическое ожидание числа применений правила r_{ij} в случайном дереве вывода высоты t при $t \to \infty$ имеет следующий вид:

$$M_{ij}(t) \sim d_i \cdot p_{ij} \cdot t^{\left(\frac{1}{2}\right)^{s_1 - s_{1l} - 1}},$$

где p_{ij} — вероятность правила r_{ij} , d_i — некоторая константа, u $A_i \in K_l$.

Теорема 2

$$M_i(t) \sim d_i \cdot t^{\left(\frac{1}{2}\right)^{s_1 - s_{1l} - 1}}$$

Обозначим через $q_i(t)$ число нетерминалов A_i в случайном дереве вывода высоты t, порождённом грамматикой.

Теорема 3 Для любой пары нетерминалов $A_i \in K_h$, $A_j \in K_l$, такой что $s_{1h} = s_{1l}$, при $t \to \infty$ выполняется условие:

$$D\left(\frac{q_i(t)}{q_j(t)} - \frac{d_i}{d_j}\right) \to 0,$$

еде $q_i(t),\ q_j(t)$ — число нетерминалов A_i и A_j в случайном дереве вывода высоты $t,\ d_i$ и d_j — некоторые константы.

Таким образом, соотношение числа нетерминалов в деревьях вывода высоты t становится всё ближе к фиксированному значению при $t \to \infty$.

Список литературы

[1] Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции — М.: МИР, 1978

- [2] Гантмахер Ф.Р. Теория матриц. М.: ФИЗМАТЛИТ, 2010
- [3] К. Фу. Структурные методы в распознавании образов. М.: МИР, 1977
- [4] Жильцова Л.П. Закономерности применения правил грамматики в выводах слов стохастического контекстно-свободного языка // Математические вопросы кибернетики. Вып. 9. М.: Наука, 2000. С. 101-126
- [5] Борисов А.Е. Закономерности в словах стохастических контекстносвободных языков, порождённых грамматиками с двумя классами нетерминальных символов. Вопросы экономного кодирования.