Prediction of Alternative Fuel Vehicle Adoption 2017 NHTS Case

Sami SHOKER Ben ILBOUDO Senou AHOUNOU

Aix Marseille School Of Economics

July 29, 2022

- Introduction
- 2 Data
- 3 Methodology
- 4 Results
- **6** Conclusion

- 1 Introduction
- 2 Data

Introduction
•o

- 3 Methodology
- 4 Results
- 6 Conclusion

00

• Explore the Influencing Factor on AFV adoption.

0

- Explore the Influencing Factor on AFV adoption.
- Predict the individual's. behavior to adopt an AFV (Binary Classification).

0

- Explore the Influencing Factor on AFV adoption.
- Predict the individual's. behavior to adopt an AFV (Binary Classification).
- Compare between parametric and non parametric ML models predictive performance.

- Introduction
- 2 Data
- Methodology

Variables

• Data Source : National Household Travel Survey.

Variables

- Data Source : National Household Travel Survey.
- Number of Observations: 20160.

- Data Source: National Household Travel Survey.
- Number of Observations: 20160.
- Target Variable : Fuel Type (AFV).

- Data Source : National Household Travel Survey.
- Number of Observations: 20160.
- Target Variable : Fuel Type (AFV).
- Features : Household and Individual Characteristics (10 numerical 22 categorical).

Variables

- Data Source : National Household Travel Survey.
- Number of Observations: 20160.
- Target Variable : Fuel Type (AFV).
- Features: Household and Individual Characteristics (10 numerical 22 categorical).

Data 00•0

Chi-Square Test

Variance Inflation Factor

	Feature	VIF
0	Household in-	19.60
	come	
15	Count of	8.01
	household	
	vehicles	
2	Count of	13.78
	household	
	members	
22	Count of adult	22.23
	household	
	members	
4	population	10.41
	density	
	,	

- 1 Introduction
- 2 Data
- 3 Methodology
- 4 Results
- 6 Conclusion

troduction Data **Methodology** Results Conclusion
o ooo o•o• ooo ooo

Machine Learning Models

Comparison Between Parametric non-Parametric ML models

Machine Learning Models

Parametric Models

- Logistic Regression.
- I R with FAMD.
- Ridge Regression.
- Lasso Regression.
- Logistic GAM (Semi-Parametric).

Non-Parametric Models

- Naive Bayes.
- K Nearest Neighbors.
- Neural Network.
- Support Vector Machine.
- Random Forest.

- Predict the models using the original DATA.
- Create Artificial Observations (SMOTE NC) on training set only.
- Predict the models after SMOTE NC.
- Add polynomial features to linear models to test their impact on performance.
- Compare between model's performance.

- Introduction

- 4 Results

Before SMOTE NC

Classifiers	Accuracy	Recal	F1	Precision	AUC
Logistic regression	0.96	0.00	0.00	0.00	0.50
Lasso regression	0.96	0.00	0.00	0.00	0.50
Ridge regression	0.96	0.00	0.00	0.00	0.50
Naive Bayes	0.95	0.00	0.00	0.00	0.50
KNN	0.92	0.07	0.06	0.06	0.51
Neural Network	0.05	1.00	0.08	0.04	0.51
SVM	0.96	0.00	0.00	0.00	0.50
Random Forest	0.96	0.00	0.00	0.00	0.50

Aix Marseille School Of Economics

After SMOTE NC

Classifiers	Accuracy	Recal	F1	Precision	AUC
Logistic	0.73	0.47	0.13	0.07	0.60
Polynomial Logistic	0.96	0.00	0.00	0.00	0.50
Logistic with FAMD	0.53	0.67	0.11	0.06	0.60
Lasso	0.72	0.45	0.12	0.07	0.59
Polynomial Lasso	0.78	0.36	0.12	0.07	0.58
Ridge	0.72	0.45	0.12	0.07	0.59
Polynomial Ridge	0.79	0.37	0.13	0.08	0.59
Logistic GAM	0.67	0.54	0.12	0.07	0.61
Naive Bayes	0.52	0.68	0.11	0.06	0.60
KNN	0.74	0.29	0.09	0.05	0.52
Neural Network	0.06	0.97	0.08	0.04	0.49
SVM	0.29	0.71	0.08	0.04	0.49
Random Forest	0.90	0.12	0.09	4	0.53

Sami SHOKER, Ben ILBOUDO, Senou AHOUNOU

Logistic GAM Plots

- 1 Introduction
- 2 Data
- 3 Methodology
- 4 Results
- **5** Conclusion

 All models suggest no discrimination before SMOTE NC (AUC 0.5).

- All models suggest no discrimination before SMOTE NC (AUC 0.5).
- Models Performance Increased after SMOTE NC.

- All models suggest no discrimination before SMOTE NC (AUC 0.5).
- Models Performance Increased after SMOTE NC.
- Linear models outperformed non-parametric models.

- All models suggest no discrimination before SMOTE NC (AUC 0.5).
- Models Performance Increased after SMOTE NC.
- Linear models outperformed non-parametric models.
- Polynomial features didn't help increasing model's performance.

- All models suggest no discrimination before SMOTE NC (AUC 0.5).
- Models Performance Increased after SMOTE NC.
- Linear models outperformed non-parametric models.
- Polynomial features didn't help increasing model's performance.
- No strong non-linear relationship between target variable and features.

Aix Marseille School Of Economics

- Overall model's performance is low (even after SMOTE NC).
- Household individual's characteristics aren't sufficient to predict the consumer's behavior to adopt an AFV.

- Overall model's performance is low (even after SMOTE NC).
- Household individual's characteristics aren't sufficient to predict the consumer's behavior to adopt an AFV.
- Features about AFV industry can also impact the individual's behavior such as battery range, price etc (Literature Review).

- Overall model's performance is low (even after SMOTE NC).
- Household individual's characteristics aren't sufficient to predict the consumer's behavior to adopt an AFV.
- Features about AFV industry can also impact the individual's behavior such as battery range, price etc (Literature Review).
- Suggestion for future work to take into account features from all different aspects mentioned above.

