Seminar exercises

- 1. (a) If $(A n B) = \emptyset$, then show that $P(A) \le P(B')$
 - (b) Let A and B be two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{3}{5}$. Show that $P(AuB) \ge \frac{3}{5}$ and $\frac{1}{10} \le P(AnB) \le \frac{3}{5}$
 - (c) Given two events A and B. If the odds against A are 2 to 1 and those in favour of (AuB) are 3 to I. Show that $\frac{5}{12} \le P(B) \le \frac{3}{4}$
 - (d) If A and 8 are two independent events show that p(AuB) = 1 P(A')P(B')
- 2. Let A_1 , A_2 and A_3 , be three independent events for which $P(A_1) = p$, $P(A_2) = q$ and $P(A_3) = r$. Find the probability that (i) at least one of the events occurs, (ii) exactly two of the events occur, and (iii) at most three of the events occur.
- 3. A language class has only three students A, B, C and they independently attend the class. The probabilities of attendance of A, Band C on any given day are 1/2,213 and 3/4 respectively. Find the probability that the *total number of attendances* in two consecutive *days is exactly three*.
- 4. Suppose the events $A_1, A_2, \ldots A_n$ are independent and that $P(A_i) = \frac{1}{i+1}, i = 1, 2, \ldots, n$. Show that the probability that none of the n events occur is $\frac{1}{n+1}$.
- 5. The chances that doctor A will diagnose a disease X correct! y is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor A. who had disease X died. What is the chance that his disease was diagnosed correctly? (*Hint: use conditional probabilities*)
- 6. In a bolt factory machines, A, B and C manufacture respectively 25%.35% and 40% of the total. Of their output 5,4, 2 percent are defective bolts. A bolt is drawn at random/rom the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C? (*Hint: use Bayes' theorem*)