

Digital Systems 18B11EC213

Module 1: Boolean Function Minimization Techniques and Combinational Circuits-13

Dr. Saurabh Chaturvedi

Multiplexer

- A multiplexer is a device which has
 - (i) a number of *input* lines
 - (ii) a number of *selection* lines
 - (iii) one *output* line
- It steers one of 2^n inputs to a single output line, using n selection lines. Also known as a *data selector*.

Multiplexer

■ Truth table for a 4-to-1 (4:1) multiplexer:

I_0	$\mathbf{I_1}$	I_2	I_3	S_1	S_0	Y
d_0	d_1	d_2	d_3	0	0	d_0
d_0	d_1	d_2	d_3	0	1	d_1
d_0	d_1	d_2	d_3	1	0	d_2
d_0	d_1	d_2	d_3	1	1	d_3

S_1	S_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

$$Y = I_0.(S_1'.S_0') + I_1.(S_1'.S_0) + I_2.(S_1.S_0') + I_3.(S_1.S_0)$$

Multiplexer

$$Y = I_0.(S_1'.S_0') + I_1.(S_1'.S_0) + I_2.(S_1.S_0') + I_3.(S_1.S_0)$$

Circuit diagram of a 4:1 mux:

- Larger multiplexers can be constructed from smaller ones.
- For example, as shown below, an 8:1 multiplexer can be constructed using two 4:1 multiplexers and one 2:1 multiplexer:

Truth table of 8:1 mux:

S_2	S_1	S_0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

Note the placement of selection lines.

 Another implementation of an 8:1 multiplexer using smaller multiplexers – Using four 2:1 muxs and one 4:1 mux:

■ A 16:1 multiplexer can be constructed using five 4:1 multiplexers, as shown in the figure:

Multiplexers: Implementing Functions

- A Boolean function can be implemented using multiplexers.
- A 2^n -to-1 multiplexer can implement a Boolean function of n input variables as follows:
 - ❖ (i) Express in sum-of-minterms form.

Example:
$$F(A,B,C) = A'B'C + A'BC + AB'C + ABC'$$

= $\Sigma m(1,3,5,6)$

- \diamond (ii) Connect *n* variables to the *n* selection lines.
- ❖ (iii) Put a '1' on a data line if it is a minterm of the function, '0' otherwise.

Multiplexers: Implementing Functions

Implementation of $F(A,B,C) = \Sigma m(1,3,5,6)$ using an 8:1 multiplexer.

This method works because:

Output =
$$m_0.I_0 + m_1.I_1 + m_2.I_2 + m_3.I_3 + m_4.I_4 + m_5.I_5 + m_6.I_6 + m_7.I_7$$

Supplying '1' to I_1,I_3,I_5,I_6 , and '0' to the rest:

Output =
$$m_1 + m_3 + m_5 + m_6$$

Using Smaller Multiplexers

- Earlier, we saw how a 2^n -to-1 multiplexer can be used to implement any Boolean function of n (input) variables.
- However, we can use a <u>single</u> smaller $2^{(n-1)}$ -to-1 multiplexer to implement any Boolean function of n (input) variables.
- In particular, the earlier function

$$F(A,B,C) = \sum m(1,3,5,6)$$

can be implemented using a 4-to-1 multiplexer (rather than an 8-to-1 multiplexer).

Using Smaller Multiplexers

Example:

$$F(A,B,C) = \Sigma m(0,1,3,6) = A'B'C' + A'B'C + A'BC + ABC'$$

■ Two of the variables (A and B) are applied as the selection inputs of the 4:1 multiplexer, while the data inputs of the multiplexer contain 1, C, 0 and C'.

Demultiplexer

- Given an input line and a set of selection lines, a demultiplexer directs data from input to a selected output line.
- An example of a 1-to-4 (1:4) demultiplexer:

S_1	So	\mathbf{Y}_{0}	\mathbf{Y}_1	Y_2	Y ₃
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Demultiplexer

A demultiplexer is actually identical to a decoder with an enable signal, as illustrated below:

References

- M. M. Mano, *Digital Logic and Computer Design*, 5th ed., Pearson Prentice Hall, 2013.
- R. P. Jain, *Modern Digital Electronics*, 4th ed., Tata McGraw-Hill Education, 2009.