In this topic, we'll learn Sequential Circuits

- Flip Flops
- State diagrams
- Counters

Introduction

- Sequential logic: Systems with combinational circuits and memory elements are described.
- Feedback path.
- Memory elements
 - Stores binary information
 - Binary information defines the state of the sequential circuit.
- External i/ps plus state of the memory elements determine the o/ps and the next state of the memory element.
- Sequential circuit is specified by a time sequence of i/ps, o/ps and internal states.

Synchronous vs Asynchronous Sequential Circuits (based on timing)

Synchronous

- Behavior can be defined from the knowledge of its signals at discrete instants of time.
- Synchronization by master-clock generator.
 - Produces periodic train of clock pulses.
 - Distributed throughout the system.
 - Memory systems are affected only with arrival of the synchronization pulse (AND gates)

Asynchronous

- Behavior depends upon
 - the order in which its i/p signals change
 - Can be affected at any instant of time.
- Memory devices used are timedelay devices.
- Unreliable due to variation in delays of the i/ps.

Clocked Sequential circuits

- Synchronous Sequential circuits that use clock pulses in the i/ps of the memory elements: Clocked Sequential circuits.
- Most frequent.
- Do not have instability problems.
- Timing is broken into independent discrete steps.
- Sequential circuits we discuss are clocked sequential circuits.
- Memory elements used are called flip-flops.
 - Binary cells capable of storing one bit of information.
 - 2 o/ps: normal and complement values.
 - Various types of flip-flops: based on the entry of binary information.

Flip-Flops

- Maintain a binary state indefinitely (as long as power is delivered to the circuit)
- States are switched when directed by i/p signals.
- Different types of FF
 - Number of i/ps
 - Manner in which i/ps affect the binary state.

Basic Flip-Flop circuit

- Constructed from 2 NAND or NOR gates.
 - more complicated types can be built from 1
 these basic FFs.
- Cross-coupled connection from the o/p of one gate to the i/p of the other gate: Feedback
 - Asynchronous sequential circuits
- 2 o/ps: Q and Q', 2 i/ps: set and reset
- Binary state of FF is the value of the normal o/p Q.

R(reset)

NOR Flip-Flop circuit

- Set: S=1, R=0
- Reset: S=0, R=1
- Memory: S=R=0
- Undefined: S=R=1

.5	5	R	Q	Q'	_
	l	0		0	-
()	0	1	0	(after S = 1, R = 0)
()	1	0	l	
()	0	0	ì	(after $S = 0, R = 1$)
	1	1	0	0	(after $S = 1, R = 0$) (after $S = 0, R = 1$)

NAND Flip-Flop circuit

- Set: S=0, R=1
- Reset: S=1, R=0;
- Undefined: S=R=0
- Memory: S = R = 1

	R	L		
1	0	0	1	(after $S = 1, R = 0$) (after $S = 0, R = 1$)
1	i	0	l	(after $S = 1, R < 0$)
0	1	1	0	
l	1	1	0	(after $S = 0, R = 1$)
0	0	1	1	

- Graphic Symbol
 - triangle is a symbol for a dynamic indicator
 - Indicates: FF responds to an i/p clock transition from 0 to 1.
 - State of the FF is determined by Q.

Characteristic table

- Characteristic equation
 - specifies the value of the next
 state as a function of the present
 state and the inputs.
 - an algebraic expression for the binary information of the characteristic table.

- Characteristic equation
 - specifies the value of the next state as a function of the present state and the inputs.
 - an algebraic expression for the binary information of the characteristic table.
 - two indeterminate states are marked by X's.
 - -SR = 0: both S and R cannot equal 1 simultaneously

- Modification of the clocked RS flip-flop
 - RS flip-flop with an inverter in the R input.
 - Also called *gated D-latch*.
 - -CP input is often given the variable designation G (for gate).

- Modification of the clocked RS flip-flop
 - RS flip-flop with an inverter in the R input.
 - Also called *gated D-latch*.
 - -CP input is often given the variable designation G (for gate).
- Graphic Symbol

- Modification of the clocked RS flip-flop
 - RS flip-flop with an inverter in the R input.
 - Also called *gated D-latch*.
 - -CP input is often given the variable designation G (for gate).
- Characteristic table

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	-1

- Modification of the clocked RS flip-flop
 - RS flip-flop with an inverter in the R input.
 - Also called *gated D-latch*.
 - -CP input is often given the variable designation G (for gate).
- Characteristic Equation

- Refinement of the RS flip-flop
 - indeterminate state of the RS type is defined in JK.

- Refinement of the RS flip-flop
 - indeterminate state of the RS type is defined in JK.
- Characteristic Table

Q	J	K	Q(t+1)
0	0	0	Ö
0 0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Refinement of the RS flip-flop
 - indeterminate state of the RS type is defined in JK.
- Characteristic equation

- Refinement of the RS flip-flop
 - indeterminate state of the *RS* type is defined in JK.
- If CP=1 and J=K=1
 - Repeated and continuous transitions of o/ps.
 - To avoid this
 - CP must be shorter than the propagation delay through the FF.

T Flip-Flop

- Single i/p version of JK FF.
 - Both J and K are tied together.
 - T stands for "toggle", when T=1 and CP=1.

• Obtain the Characteristic Table and Characteristic equation.

Q 0 0	T	Q(t+1)
0	0	0
0	0 1 0	1
1	0	1
1	l	0

Different conventions used Latch vs Flip-Flop

- Latch is level-triggered.
- Flip-Flop is edge-triggered.

Triggering of Flip-Flops

- Switch in the state of a FF by momentary change in the i/p signal
 - Momentary change: Trigger
- For Latches (Asynchronous FF) triggering is by change of signal level.
 - Level should return to its initial value (0 in NOR and 1 in NAND) before second trigger.
- Flip-Flops (Clocked FF) are triggered by pulses.
 - Pulse start from an initial value of 0, goes briefly to 1, and returns to its initial value of 0.
 - Time interval from the application of pulse until the o/p transition is critical.

Feedback path and instability

- Instability
 - If o/ps of FFs are changing while the o/ps of the combinational circuits (i/ps to FFs) are being sampled by the clock pulse.
- Can be prevented
 - If o/ps of FFs do not start changing until pulse i/p returns to 0.
 - Signal propagation delay of a FF from the i/p to o/p should be greater than the pulse duration. (Difficult to control)
 - Include a physical unit for the delay or
 - Make FF sensitive to pulse transition.

Definition of Clock pulse transition

- Positive pulse: 1 during the occurrence of pulse. 0 otherwise.
- 0 to 1: Positive edge
- 1 to 0 negative edge

Multiple-transition problem

- Clocked flip-flops introduced
 - Triggered during the positive edge of the pulse.
 - State transition starts immediately after pulse becomes 1.
 - New state of the FF may appear at the o/p while the pulse is still 1.
 - FF will start responding to these new values.
 - A new o/p may occur.
 - Hence, o/p of 1 FF cannot be applied to the i/p of another FF when both are triggered by the same clock pulse.
- Can be eliminated if FF respond to edge transition only.

Capacitive coupling

- RC circuit is inserted in the clock i/p of the FF.
 - Generates a spike in response to momentary change in i/p.
 - Positive spike: At positive Edge; Negative spike: At negative
 Edge
- Edge triggering: By designing the FF to respond to one spike and neglect the other.

Master-Slave Flip-Flop

- Constructed from two separate FFs.
 - One master and other acts as slave.
- When CP=0
 - Slave is enabled.
 - -Q=Y
 - Master is disabled.
- When CP=1
 - Master is enabled.
 - Information at S and R i/ps is transmitted to Y.
 - Slave is disabled.

- When CP returns to 0
 - Slave goes to the same state as the master.

•

Timing relationships in a master-slave flip-flop

- Initially FF is cleared
 - -Y=Q=0.
- S input can be changed at the same time that the pulse goes through its negative edge transition.
- Once the *CP* reaches 0, the master is disabled.
 - possible to use the same clock pulse to switch
 - output of the flip-flop
 - input information.
- State changes at the negative edge transition of the clock pulse.

Clocked master-slave *JK* flip-flop

- Gates 1 to 4: Master FF.
 - 5 to 8: Slave FF

Cascading of many Master-Slave FFs

- When pulse is 1 all the masters (internal to the FF) are enabled
 - O/p of the FFs are not affected.
- After the clock returns to 0.
 - Slaves are enabled.
 - O/ps of some of the FFs are changed.
 - None of the masters are affected by these changes.

Edge-Triggered Flip-Flop

- Output transitions occur at a specific level of the clock pulse
 - When the pulse input level exceeds this threshold level, i/ps are locked out.
 - Could be positive or negative edge triggered.

Design of Counters

- Counters: Sequential circuits which undergo **prescribed** sequence of states upon application of i/p pulse.
- I/p pulse: Called **count pulse**.
 - clock or from an external source.
 - Prescribed time or random.
- Sequence: binary (simplest and straightforward) or any other
- Used in all equipment with digital logic.
 - Number of occurrences.
 - Timing sequences to control operations.

Binary Counters

- Simplest and straight forward.
- n-bit counter: n FFs and count from 0 to 2ⁿ-1.

- FF count **repeats**. Goes to 000 after 111.
- i/p and o/p values not shown.
 - Clocked sequential circuits: State transitions during clock pulses. **Not shown** explicitly.
- Only i/p: Count pulse.
- O/ps: Specified by the **present states** of FFs.
- Next state
 - Depends only on the present state.
 - Transitions during clock pulses.
 - Completely specified by the count sequence.

Excitation Table for 3-bit counter

Table 6-12 Excitation table for a 3-bit binary counter

	Count seque	ence	Flip-flop input		
A_2	A_1	A_0	TA_2	TA_1	TA_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	0	0	I
1	0	1	0	1	I
1	1	0	0	0	1
1	1	1	1	1	1

- Next number represents the next state.
 - Count sequence:
 Provides all information to design the circuit.
- Follows the same procedure.
- Excitation obtained directly from the count sequence.
- Binary counters most effectively constructed by T FFs.
- Last row compared with the first count 000, its next state.

Review

- Flip-Flops
- Triggering of Flip-Flops
- Analysis of clocked sequential circuits
- State reduction and Assignment
- Flip-Flop Excitation Tables
- Conversion of one FF to another
- Design Procedure
- Design of counters
- Shift registers