华东理工大学

概率论与数理统计

作业簿(第六册)

学	院	专	业	班 级
学	号	姓	名	任课教师

第十一次作业

- 一. 填空题:
- 1. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} ae^{-(x+y)}, & 0 < x, y < +\infty \\ 0 & , & 其他 \end{cases}$, 则 $a = \sum_{i=1}^{n} ae^{-(x+y)}$

$$\underline{1}$$
, $P(X \le 2, Y \le 1) = \underline{1 - e^{-1} - e^{-2} + e^{-3}}$

2. 若二维随机变量(X,Y)的联合分布列为

X	0	1
0	1	<u>1</u>
	6	4
1	1	1
	3	4

随 机 变 量 (X,Y) 的 联 合 分 布 函 数 则 为

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ or } y < 0 \\ 1/6, & 0 \le x < 1, 0 \le y < 1 \\ 5/12, & 0 \le x < 1, y \ge 1 \\ 1/2, & x \ge 1, 0 \le y < 1 \\ 1, & x \ge 1, y \ge 1 \end{cases}$$
3. 设随机变量 $X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$, $i = 1, 2$, 且满足 $P(X_1 X_2 = 0) = 1$,

则
$$P(X_1 = X_2) = 0$$
.

二. 选择题

(1)设(X,Y)服从二维均匀的分布,联合密度函数为

$$f(x,y) = \begin{cases} A, & 0 < x < 1, |y| < x \\ 0, & 其它 \end{cases}, 则常数 A = (A). B$$

- (A) $\frac{1}{2}$ (B) 1 (C) 2
- (D) 4.

(2) 设(X, Y) 的分布函数为F(x,y),则 $P\{X \ge a, Y > b\}$ =(C)

- A. F(a,b)
- B. 1 F(a,b)

C.
$$1+F(a-0,b)-F(+\infty,b)-F(a-0,+\infty)$$

D. $1+F(a,b)-F(+\infty,b)-F(a,+\infty)$

(3) 设 $F_1(x)$, $F_2(x)$ 为两个分布函数, 其相应的概率密度为 $f_1(x)$, $f_2(x)$ 是连续 函数,则可以作为某个连续随机变量的概率密度函数的是(D)

A. $f_1(x) f_2(x)$

B. $2f_1(x)F_2(x)$

C. $f_1(x)F_2(x)$

D. $f_1(x)F_2(x) + f_2(x)F_1(x)$

三. 计算题

1. 设二维随机向量(ξ , η)仅取(1,1),(2,3),(4,5)三个点,且取它们的概率相同,求 (ξ,η) 的联合分布列。

解:

ξη	1	3	5
1	$\frac{1}{3}$	0	0
2	0	$\frac{1}{3}$	0
4	0	0	$\frac{1}{3}$

2. 某箱装有100件产品,其中一、二、三等品分别为80,10,10件,现在从中

随机抽取一件,记
$$X_i = \begin{cases} 1 & \text{抽到}i$$
等品 $0 & \text{其他 } \end{cases}$, ($i = 1, 2, 3$)

试求随机变量 X_1 和 X_2 的联合概率分布。

解: 令 A_i = "抽到i等品", i = 1,2,3,则 A_i , A_i , A_i ,两两不相容.

$$P(A_1) = 0.8$$
, $P(A_2) = P(A_3) = 0.1$

$$P(X_1 = 0, X_2 = 0) = P(A_3) = 0.1$$

$$P(X_1 = 0, X_2 = 1) = P(A_2) = 0.1$$

$$P(X_1 = 1, X_2 = 0) = P(A_1) = 0.8$$

$$P(X_1 = 1, X_2 = 1) = P(\phi) = 0$$

3. 将一硬币抛掷 3 次,X 表示 3 次中出现正面的次数,Y 表示 3 次中出现正面 次数与反面次数之差的绝对值,求X 和Y的联合分布率。

解: 当连抛三次出现三次反面时,(X,Y)的取值为(0,3);

出现一次正面两次反面时,(X,Y)的取值为(1,1);

出现两次正面一次反面时,(X,Y)的取值为(2,1);

出现三次正面时,(X,Y)的取值为(3,3)。

并且
$$P{X = 0, Y = 3} = (\frac{1}{2})^3 = \frac{1}{8}; P{X = 1, Y = 1} = {3 \choose 1} (\frac{1}{2})^3 = \frac{3}{8};$$

$$P{X = 2, Y = 1} = {3 \choose 1} (\frac{1}{2})^3 = \frac{3}{8}; P{X = 3, Y = 3} = (\frac{1}{2})^3 = \frac{1}{8}$$

所以,(X,Y)的联合概率分布为:

Y	1	3
0	0	1/8
1	3/8	0
2	3/8	0

4. 设随机向量(X,Y)的联合概率密度函数为

$$p(x,y) = \begin{cases} A(6-x-y), & 0 < x < 2, 2 < y < 4 \\ 0, & \text{ 其他} \end{cases}$$

(1) 确定常数 A; (2) 求 $P{X < 1, Y < 3}, P{X + Y < 4}$

解: (1) 根据规范性有
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = 1$$
 : $A = \frac{1}{8}$
(2) $P\{X < 1, Y < 3\} = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) dx dy = \frac{3}{8}$
 $P(X + Y \le 4) = \frac{1}{8} \int_{0}^{2} \int_{2}^{4-x} (6 - x - y) dy dx = \frac{2}{3}$

5. 若随机变量 X, Y 的概率分布分别为

X	0	1	_	Y	-1	0	1
	1	2	-	P	1	1	1
P	$\frac{\overline{3}}{3}$	$\frac{\overline{3}}{3}$			_	$\frac{\overline{3}}{3}$	_

且满足 $P(X^2 = Y^2) = 1$ 。求二维随机变量(X, Y)的联合概率分布。

解: 由于
$$P(X^2 = Y^2) = 1$$
, 故 $P(X^2 \neq Y^2) = 0$ 。故有

$$P(X = 0, Y = 1) = P(X = 1, Y = 0) = P(X = 0, Y = -1) = 0$$

易得(X, Y)的联合概率分布如下:

Y	0	1
-1	0	$\frac{1}{3}$
0	$\frac{1}{3}$	0
1	0	$\frac{1}{3}$

第十二次作业

一. 填空题:

1. 如果随机向量 (ξ,η) 的联合分布列为

η ξ	0	1
0	0. 1	b
1	a	0. 4

并且
$$P(\xi=1|\eta=1)=\frac{2}{3}$$
 , 则 $a=\underline{0.3}$, $b=\underline{0.2}$.

2. (ξ, η) 的联合分布列为

η	0	1	2
ξ			
-1	$\frac{1}{15}$	t	$\frac{1}{5}$
1	S	$\frac{1}{5}$	$\frac{3}{10}$

若 ξ,η 相互独立,则 (s, t) = (0.1, $\frac{2}{15}$) 。

3. 设(X,Y)在以原点为中心,r为半径的圆域 R上服从均匀分布,求 X的边缘概

率密度为
$$p_x(x) = \begin{cases} \frac{2\sqrt{r^2 - x^2}}{\pi r^2}, & |x| \le r \\ 0, & |x| > r \end{cases}$$

二. 选择题

(1)设随机变量 X 服从正态分布 $N\left(\mu,4^{2}\right)$, 随机变量 Y 服从正态分布 $N\left(\mu,5^{2}\right)$,

记
$$p_1 = P\{X \le \mu - 4\}$$
 , $p_2 = P\{Y \ge \mu + 5\}$, 则 (A)

- (A) 对任何实数 μ , 都有 $p_1 = p_2$
- (B) 对任何实数 μ , 都有 $p_1 < p_2$
- (C) 仅对 μ 的个别值, 有 $p_1 = p_2$
- (D)对任何实数 μ ,都有 $p_1 > p_2$

(2) 设随机变量 X 的可能取值为 x_1, x_2 , Y 的可能取值为 y_1, y_2, y_3 , 若

$$P(X = x_1, Y = y_1) = P(X = x_1)P(Y = y_1)$$
,则随机变量 X 和 Y (C)

- A. 一定独立 B. 一定不独立 C. 不一定独立 D. 以上答案都不对

(3). 设随机变量 X , Y 相互独立,服从相同的两点分布 $\begin{bmatrix} -1 & 1 \\ 1/2 & 1/2 \end{bmatrix}$,则(A)

A.
$$P\{X = Y\} = \frac{1}{2}$$
 B. $P\{X = Y\} = \frac{1}{3}$ C. $P\{X = Y\} = 0$ D. $P\{X = Y\} = \frac{1}{4}$

三. 计算题

1. 设随机变量 ξ,η 的联合分布列为

ξ η	0	1	2
0	$\frac{1}{6}$	$\frac{2}{9}$	$\frac{1}{36}$
1	$\frac{1}{3}$	$\frac{1}{6}$	0
2	$\frac{1}{12}$	0	0

- (1) 求边缘分布列;
- (2) 在 η =1的条件下, ξ 的条件分布列;
- (3) 问 ξ 和 η 是否独立?

解: (1)

ξ	0	1	2
P	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$

η	0	1	2
P	$\frac{7}{12}$	$\frac{7}{18}$	$\frac{1}{36}$

(2)
$$P(\xi = 0 \mid \eta = 1) = \frac{P(\xi = 0, \eta = 1)}{P(\eta = 1)} = \frac{4}{7}$$

$$P(\xi = 1 \mid \eta = 1) = \frac{P(\xi = 1, \eta = 1)}{P(\eta = 1)} = \frac{3}{7}$$

$$P(\xi = 2 \mid \eta = 1) = \frac{P(\xi = 0, \eta = 1)}{P(\eta = 1)} = 0$$

(3) :
$$P(\xi = 0, \eta = 0) \neq P(\xi = 0)P(\eta = 0)$$

.: ξ和η不独立

2 . 设二维连续型随机变量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} Axy & (x,y) \in G \\ 0 & \text{其他} \end{cases}$$

其中 $G = \{(x, y) \mid 0 \le x \le 2, 0 < y \le x\}$,

- (1) 求系数 A;
- (2) X和Y的边缘密度函数;
- (3) $f_{x|y}(x|y)$;
- (4) **X**和 **Y**是否独立,为什么?

解: (1) 根据规范性
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$
 : $A = \frac{1}{2}$

(2)
$$f_X(x) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^x \frac{1}{2} xy dy = \frac{x^3}{4}, & 0 \le x \le 2 \\ 0, & \text{ 其他} \end{cases}$$

$$f_{Y}(y) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{2} \frac{1}{2} xy dx = y - \frac{y^{3}}{4}, & 0 \le y \le 2\\ 0, & \text{ #...} \end{cases}$$

(3)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = f_{X|Y}(x|y) = \begin{cases} \frac{2x}{4-y^2} & (x,y) \in G \\ 0 & 其他 \end{cases}$$

(4):G不是矩形区间, $\therefore X$ 和 Y 不独立

3. 设随机变量 (X, Y) 的联合密度为: $\phi(x,y) = \begin{cases} C & |x| < 1, |y| < 1 \\ 0 & 其它 \end{cases}$

试求: ①常数C; ② $P\{X+Y>\frac{1}{2}\}$ 及 $P\{X^2+Y^2\leq 1\}$; ③X和Y的边缘密度函数

解: ① :
$$\int_{-\infty}^{+\infty} \phi(x, y) dx dy = 1$$
, $\therefore 4C = 1$, 得常数 $C = \frac{1}{4}$;

②
$$P\{X+Y>\frac{1}{2}\}=\iint_{x+y>\frac{1}{2}}\phi(x,y)dxdy=\frac{9}{32};$$

$$P\{X^{2} + Y^{2} \le 1\} = \iint_{x^{2} + y^{2} \le 1} \phi(x, y) dx dy = \iint_{x^{2} + y^{2} \le 1} \frac{1}{4} dx dy = \frac{\pi}{4} \quad ;$$

③
$$X$$
 和 Y 的边缘密度函数分别为: $\varphi_X(x) = \begin{cases} \frac{1}{2}, & |x| < 1 \\ 0, & \text{其他} \end{cases}$

$$\varphi_{Y}(y) = \begin{cases} \frac{1}{2}, & |y| < 1\\ 0, & 其他 \end{cases}$$