Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения бо́льшего количества задач дополнительные баллы также будут учтены.

На зачете разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 1

- **1.** Пусть $H = L^2[-1,1]$ и $f(t) = e^t$. Найдите проекцию f на подпространство многочленов степени не выше 1.
- **2.** Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Определим нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ на \mathbb{K}^n формулами $\|x\|_1 = \sum_i |x_i|$ и $\|x\|_2 = (\sum_i |x_i|^2)^{1/2}$. Пусть $T : (\mathbb{K}^n, \|\cdot\|_1) \to (\mathbb{K}^n, \|\cdot\|_2)$ линейный оператор с матрицей (a_{ij}) относительно стандартного базиса в \mathbb{K}^n . Выразите $\|T\|$ как функцию элементов a_{ij} .
- **3.** Постройте изометрический изоморфизм между ℓ^1 и некоторым факторпространством пространства $L^1[0,1]$.
- **4.** Пространство $\mathrm{Lip}_1[a,b]$ состоит из всех функций $f\colon [a,b]\to\mathbb{C}$, удовлетворяющих условию

$$p_1(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty$$

(условие Липшица с показателем 1). Это пространство снабжается нормой $||f|| = ||f||_{\infty} + p_1(f)$ (где $||\cdot||_{\infty}$ — sup-норма). Сепарабельно ли Lip₁[a,b]?

5. Пространство $L^1_{loc}(\mathbb{R})$ состоит из всех локально интегрируемых функций на \mathbb{R} (т.е. измеримых функций, интегрируемых на каждом интервале). Для каждой $f \in L^1_{loc}(\mathbb{R})$ и каждого интервала $I \subset \mathbb{R}$ обозначим через f_I среднее значение f по I, т.е.

$$f_I = rac{1}{|I|} \int_I f(t) \, dt$$
 (где $|I|$ — длина I).

 Π оложим 1

$$BMO(\mathbb{R}) = \left\{ f \in L^1_{loc}(\mathbb{R}) : ||f||_{BMO} = \sup_{I} \frac{1}{|I|} \int_{I} |f - f_I| \, dt < \infty \right\} / \mathbb{K}1.$$

Здесь sup берется по множеству всех интервалов, а факторизация по подпространству констант производится для того, чтобы полунорма $\|\cdot\|_{BMO}$ являлась нормой. Докажите, что $BMO(\mathbb{R})$ — банахово пространство.

6. Пусть H — гильбертово пространство и $H_1 \supset H_2 \supset H_3 \supset \cdots$ — убывающая последовательность его замкнутых векторных подпространств. Положим $H_\infty = \bigcap_n H_n$. Для $x \in H$ обозначим через x_n проекцию x на H_n , а через x_∞ — проекцию x на H_∞ . Докажите, что $x_n \to x_\infty$ при $n \to \infty$.

 $^{^{1}}$ Обозначение BMO- от английского "bounded mean oscillation".

Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения большего количества задач дополнительные баллы также будут учтены.

На зачете разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 2

- **1.** Пусть $H = L^2[-1,1]$ и $f(t) = \frac{1}{2-t}$. Найдите проекцию f на подпространство многочленов степени не выше 1.
- **2.** Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Определим нормы $\|\cdot\|_{\infty}$ и $\|\cdot\|_{2}$ на \mathbb{K}^{n} формулами $\|x\|_{\infty} = \sup_{i} |x_{i}|$ и $\|x\|_{2} = (\sum_{i} |x_{i}|^{2})^{1/2}$. Пусть $T \colon (\mathbb{K}^{n}, \|\cdot\|_{2}) \to (\mathbb{K}^{n}, \|\cdot\|_{\infty})$ линейный оператор с матрицей (a_{ij}) относительно стандартного базиса в \mathbb{K}^{n} . Выразите $\|T\|$ как функцию элементов a_{ij} .
- **3.** Постройте изометрический изоморфизм между c_0 и некоторым факторпространством пространства C[0,1].
- **4.** Пространство $BV_0[a,b]$ состоит из всех функций $f:[a,b]\to\mathbb{C}$, которые непрерывны справа в каждой точке интервала (a,b) и удовлетворяют условиям f(a)=0 и

$$\operatorname{var}_{[a,b]}(f) = \sup \left\{ \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| : a = t_0 < t_1 < \dots < t_n = b \right\} < \infty.$$

Это пространство снабжается нормой $||f|| = \text{var}_{[a,b]}(f)$. Сепарабельно ли $BV_0[a,b]$?

- **5.** Обозначим через H^2 пространство всех голоморфных функций в единичном круге $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, удовлетворяющих условию $\sum_{n=0}^{\infty} |c_n(f)|^2 < \infty$, где $c_n(f) n$ -й тейлоровский коэффициент f в нуле.
- 1) Докажите, что H^2 гильбертово пространство относительно скалярного произведения $\langle f,g\rangle = \sum_n c_n(f)\overline{c_n(g)}$.
- 2) Зафиксируем $a \in \mathbb{D}$. Докажите, что линейный функционал $\varepsilon_a \colon H^2 \to \mathbb{C}, \ \varepsilon_a(f) = f(a),$ ограничен.
- 3) Из п. 2 и теоремы Рисса следует, что существует единственная функция $g_a \in H^2$, такая, что $\langle f, g_a \rangle = f(a)$ для всех $f \in H^2$. Найдите явную формулу для $g_a(z)$.
- **6.** Пусть X нормированное пространство и $X_0 \subset X$ замкнутое векторное подпространство. Предположим, что X_0 и X/X_0 полны. Докажите, что и X полно.

 $^{{}^{1}}$ Обозначение BV_{0} — от английского "bounded variation".