Свободные колебания в электрическом контуре

Марк Гончаров

23 сентября 2020 г.

1 Цель работы

Исследование свободных колебаний в электрическом колебательном контуре

2 В работе используются

Генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, катушка индуктивности, электронный осциллограф, универсальный измерительный мост

3 Теоретическая справка к лабораторной работе

Рис. 1: Последовательный колебательный контур

Т.к. сумма падений напряжений на элементх цепи в отсутствие ЭДС 0, то

$$RI + U_C + L\frac{dI}{dt} = 0.$$

Из определения силы тока: $I=\frac{dq}{dt}=C\frac{dU_C}{dt}$, подставим всё в исходное ур-е. Имеем

$$CL\frac{d^2U_C}{dt^2} + CR\frac{dU_C}{dt} + U_C = 0.$$

Введя обозначения

$$\gamma = \frac{R}{2L}, w_0^2 = \frac{1}{LC}, T_0 = \frac{2\pi}{w_0}.$$

где γ - коэффициент затухания и w_0 - собственная круговая частота, T_0 - период собственных колебаний. Имеем диф-ное уравнение

$$\ddot{U_C} + 2\gamma \dot{U_C} + w_0^2 U_C = 0.$$

4 Экспериментальная установка

Рис. 2: Экспериментальная установка

Генератор импульсов используется для переодического возбуждения колебаний. Сигнал поступает через электрическое реле, которое содержит диодный тиристор и ограничительный резистор

5 Выполнение эксперимента

Задача наша исследовать зависимость периода свободных колебаний контура от ёмкости, лог.декремента затухания от сопротивления, а также определить критическое сопротивление и добротность контура

- 1. Соберем установку, установим начальные ее параметры: длительность импульсов $\tau \approx 5*10^{-6}c$ и частоту повторения импульсов $\nu=100$ на генераторе. Также поставим $R=0, C=0.02 \mu F$.
- 2. Изменяем ёмкость от 0.02 до 0.82мк Φ и находим для каждого C период колебания контура по формуле

$$T = \frac{T_0 x}{n x_0}$$

, где $T_0=0.01c$ - период повторения импульсов, n - кол-во периодов в измеренном промежутке, $\frac{x}{x_0}$ - отношение расстоянием между измеряемыми периодами и расстоянием между между импульсами, поступающими от генератора. Имеем результаты на рис.3

3. Вычисляем декремент затухания нашего контура. Примем $L\approx 200mG$ (как окажется, очень неплохая оценка для моей установки), рассчитаем ёмкость C, при которой собственная частота кол-ного контура $5 \text{к} \Gamma$ ц. Т.к. $\nu = \frac{1}{2\pi \sqrt{LC}}$, то

$$C = \frac{1}{4\pi^2 L \nu^2} = 5nF.$$

С, мкФ	N	x/x_0	T, c
0,02	23	1	0,00043
0,12	4	0,44	0,0011
0,22	6	0,83	0,00139
0,32	5	0,83	0,00166
0,42	4	0,73	0,00183
0,52	4	0,83	0,00208
0,62	3	0,67	0,00233
0,72	3	0,73	0,00243
0,82	3	0,79	0,00263

Рис. 3: Для расчета зависимости Т(С)

Критическое сопротивление контура (то есть режим, при котором $\gamma \approx \omega$) рассчитывается для RLC-контура, как $R_{cr}=2\sqrt{\frac{L}{C}}=12.65kOhm$

4. Изменяя сопротивление будем считать логарифмический декремент затухания из определения:

$$\Theta = \frac{1}{N} ln \frac{U_k}{U_{k+N}},$$

где U_k - амплитуда напряжения к-го колебания, k+N - номер следующего рассматриваемого колебания.

R, Ohm	N	x_0 / x_n	Theta
900	4	10	0,576
1200	3	8,33	0,707
1500	2	6,14	0,907
1800	2	9	1,099
2100	2	15	1,354
2400	1	4,17	1,428
2700	1	5,25	1,658

Рис. 4: Для расчета зависимости $\Theta(R)$ на U(t) графике

- 5. Проделаем аналогичную работу только уже на фазовой плоскости и анализировать будем уже не амплитуды колебаний, а радиусы определённого направления (на разных краях рабочего диапазона)
- 6. Отдельно теперь исследуем катушку индуктивности. На разных частотах измеряем омическое сопротивление катушки R_L и ее индуктивность L

R, Ohm	N	x_0/x_n	Theta
900	3	5	0,536
1200	2	4,57	0,76
1500	2	6,4	0,928
1800	2	8	1,04
2100	1	3,38	1,218
2400	1	3,75	1,322
2700	1	4,75	1,558

Рис. 5: Для расчета зависимости $\Theta(R)$ на фазовой плоскости

R_L, OM	L, мГн	Частота, кГц
11,16	203,4	0,05
18,79	198,9	1
41,9	199,6	5

Рис. 6: Измерения параметров катушки при изменении частоты

6 Обработка результатов

1. Мы для каждого C рассчитали период T экспериментально, теперь сравним его с теоретическим, принимая индективность катушки за $L\approx 0.2\Gamma$ н (неплохая оценка для моей катушки - рис. 6), период $T=2\pi\sqrt{LC}$. Имеем данные:

Т,с - теор	Т,с - эксп
0,0004	0,00043
0,00097	0,0011
0,00132	0,00139
0,00159	0,00166
0,00182	0,00183
0,00203	0,00208
0,00221	0,00233
0,00239	0,00243
0,00254	0,00263

Рис. 7: Данные для графика сравнения теоретических и экспериментальных результатов

Построим анализирующий график теоретических и экспериментальных рассчётов

- 2. Для рассчёта критического сопротивления по графику $\Theta(R)$ необходимо построить этот график в координатах $\frac{1}{\Theta^2}=f(\frac{1}{R^2})$
- 3. Тогда R_{cr} можно вычислить через наклон прямой к оси абсцисс, как

$$R_{cr} = 2\pi \sqrt{\frac{\Delta Y}{\Delta X}}$$

Рис. 8: Зависимость Тэксп от Ттеор

R^(-2) * 10^6	Theta^-2
1,235	3,018
0,695	2,003
0,444	1,214
0,309	0,829
0,227	0,545
0,174	0,49
0,137	0,364

Рис. 9: Данные для графика

Рис. 10: $\frac{1}{\Theta^2} = f(\frac{1}{R^2})$

4. Мы можем применять МНК, т.к.:

- (а) Измерения независимы, погрешности случайны.
- (b) Все погрешности по у (т.е. Θ) приблизително одинаковы
- (c) $\delta_R \approx 1/1500, \delta_\Theta \approx \frac{1}{N}*2*\delta_x \approx 0.02$, т.е. выполняется условие $\delta_R \ll \delta_\Theta$

- 5. Имеем уравнение прямой у = 2.48x + 0.069, погрешности этих иземерений $\sigma_k \approx 0.12$, $\sigma_b \approx 0.07$, поэтому уранвение прямой $y = 2.5 \pm 0.1x + 0.07 \pm 0.07$. Нас в данном случае интересует лишь значение k
- 6. Имеем $R_{cr}\approx 9.93kOhm$, рассчитанная теоретически: 12,65kOhm, но мы даже на практике, изменяя сопротивление, убедились, что критическое сопротивление цепи и есть 9-10 kOhm, что связано с сопротивлением проводов, неидеальными контактами, приборами, поэтому наш рассчёт через МНК имеет неплохой результат.
- 7. Теперь поработаем с добротностью контура Q, вычисляя её теоретически через параметры нашей системы (R, L, C) по формуле

$$Q \approx \frac{w_0}{2\gamma} = \frac{\pi}{\gamma T_0} = \frac{1}{\gamma} * \frac{w_0}{2} = \frac{2L}{R} * \frac{1}{2} \sqrt{\frac{1}{LC}} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

8. С другой стороны, мы практическим путём измерили логарифмический декремент затухания, через который легко выражается добротность $Q=\frac{\pi}{\Theta}$. Теперь мы можем свести все вычисленные данные в одну таблицу для анализа результатов всех экспериментов

L катушки	R_кр, кОм		
Гн	Teop	Подбор	Граф
0,2	12,7	9-10	9,93

R		Q	
кОм	Teop	f(θ)	Спираль
2,7	2,34	1,9	2
0,9	7	5,5	5,8

7 Анализ полученных результатов

Для начала рассмотрим погрешности теоретически вычисленных R и Q. Также оценим погрешность вычисления добротности практическим путём через логарифмический декремент затухания

[RKP = 2/2 => GRKP = /1(RKPGL)2 + (RKPGE)2.
T.K. 52=0 (Spam Kar onopuyo), C= 48222, Sc= 25)
9 50 = 0,01 => SREP ≈ 1 5c ≈ 60 = 0,01 => GREP ≈ 0,1 Qui.
(XOTU KOMETUD WOKKD Spato So 4 MENGULE)
Q= K / C . 3 gers SR << Sc , no stany Tak Kak soo pacsit
un est zuero kare et bentini xapantep, couras EL=0 uneum
Sa = 2 Sc => Ga ≈ 0,02 gus neploro 4 0,07 gus Graparo
vz mepennia

Рис. 11: Оцена теор. погрешностей

$0 = \frac{1}{N} \ln \frac{X_n}{X_{n+N}} $, npuzeu $S_x \approx \frac{0.01}{2}$,
230 0,01 - obcas. norpeninoch - nas. gener	سع
ocymerpapa, a 2-cpequee zuarenne.	
<n>=2.</n>	
Go = \ \ \left(\frac{\lambda_{n+N}}{\times_{n+N}} \frac{\dagger}{\dagger} \cdot \frac{\lambda_{n+N}}{\times_{n+N}} \cdot \frac{\dagger}{\times_{n+N}} \cdot	8
$\delta_{\Theta} \approx \sqrt{2\left(\frac{\kappa_{n}}{\kappa_{n}}\right)^{2}} = \sqrt{2}\delta_{\kappa_{n}} \approx 0,007$	>
Setto 80 = 80 1, 21× 0 = 1/1.	

Рис. 12: Оцена теор. погрешностей

Как мы видим, чисто теоретический рассчёт всегда сильно отличается от практических, как при измерении R_{cr} , так и добростности Q. Однако это не плохо, ведь главное, у нас сходятся приблительный анализ подбром и графический анализ нахождения R,

что, конечно, больше соответствует действительности, т.к. теоретический рассчёт никак не учитывает сопротивление проводов, качества соединений проводов, также возраст установки, неидеальный рассчёт индуктивности L (взяли 0,2Гн вначале наугад), поэтому теоретическому рассчёту будем меньше доверять. Более того, при рассчёте добротности, мы опять видим аналогичную картину - практические рассчёты друг с другом сочетаются, тогда как теоретические сильно преувеличивают добротность утсановки, показывая ее "более идеальной".

8 Вывод

Мы научились различными способами анализировать свободные и вынужденные колебания, вычислять добротность, критическое сопротивление и теоретическим, и практическим способами, более того, выявили неидеальность установки, однако рассчитали все равно с неплохой погрешностью характеризующие установку параметры.