OTA Design Using g_m/i_d Method in Open-Source GF180MCU Process

Zonghao (Chris) Li Integrated Systems Laboratory University of Toronto

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

Creating LUT

NMOS Testbench

PMOS Testbench

- In GF180MCU, $V_{DD} = 3.3 V$
- In both testbenches:
 - Set $V_D = \frac{V_{DD}}{2} = 1.65 \ V$, $W_{nfet} = 4 \ \mu m$ (which does not matter here, can be any other reasonable value)
 - Sweep V_G from 0 to 3.3 V (step size up to you)
 - Sweep L_{nfet} from $0.28~\mu m$ to $0.4~\mu m$ (step size up to you)

Creating LUT

- Generating three key plots:
 - $-i_d/W$ vs g_m/i_d (current density, tells you the efficiency of how much current you pay for the transconductance; used for sizing purpose)
 - $-g_m/g_{ds}$ vs g_m/i_d (for gain requirement)
 - $-f_t * g_m/i_D$ vs g_m/i_d (for best GBW requirement, usually it tells the optimal g_m/i_D range)

Creating LUT - NMOS

- Increasing L will increase the gain
- Increasing L will decrease f_t
- Increasing L will decrease current density

Creating LUT - PMOS

- With same g_m/i_d , PMOS has higher intrinsic gain than NMOS
- With same g_m/i_d , PMOS is slower than NMOS
- With same g_m/i_d , PMOS has lower current density

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

Simplified Design Algorithm Using g_m/i_d Method

Choice of large and small g_m/i_d

- Why you want large g_m/i_d for gain stage, but small g_m/i_d for biasing/source?
- Transistor current noise: $\overline{I_{n,M_1}^2} = 4kT\gamma g_{m,M_1} \approx \frac{8}{3}kTg_{m,M_1}$
 - The larger g_m , transistor itself is noisier. When it is used as a current source, we want the noise smaller, therefore smaller $\frac{g_m}{i_d}$.
- When this noise is input-referred:

$$-\ \overline{V_{n,out}^2} = \overline{I_{n,M_1}^2} r_{o,M_1}^2 \approx \tfrac{8}{3} k T g_m r_{o,M_1}^2$$

$$-\overline{V_{n,in}^{2}} = \frac{\overline{V_{n,out}^{2}}}{g_{m,M_{1}}^{2}r_{o,M_{1}}^{2}} \approx \frac{8}{3} \frac{kT}{g_{m,M_{1}}}$$

– Therefore, when it is used as a gain stage, by increasing g_m , the input-referred noise is decreasing.

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

• Specifications:

$$-GBW = 20 MHz$$

$$-C_L = 10 pF$$

- Start with M_1 (and M_2)
 - From C_L and GBW: $g_{m,M_1} = 2\pi f_t (1 + 0.2) C_L \approx 1.5 \, mS$
 - The factor 0.2 is to capture some parasitic capacitance
 - Since we don't have a specific power consumption spec here, we pick $g_m/i_d=15$ for M_1 since it is a gain stage.
 - Calculate i_d : $i_d = \frac{g_{m,M_1}}{g_m/i_d} = \frac{1.5 \text{ mS}}{15} = 100 \mu A$
 - From i_d/W vs. g_m/i_d plot (LUT) of PMOS, we determine (there could be some other different candidates) $W_{M_1}=80~\mu m$, $L_{M_1}=280~nm$
 - If you have any DC gain requirement, you can increase L_{M_1} by looking at g_m/g_{ds} vs. g_m/i_d plot, which will give you a new W_{M_1} .

- Second, we design M_3 (and M_4)
 - Since we don't have a specific power consumption spec here, we pick $g_m/i_d=10$ for M_3 since it is active load (source), so it should be smaller.
 - Since we know $i_{d,M_3}=i_{d,M_1}=100~\mu A$ already from the calculation of M_1 , from i_d/W vs. g_m/i_d plot (LUT) of NMOS, we determine (there could be some other different candidates) $W_{M_3}=84.25~\mu m$, $L_{M_1}=1.52~\mu m$
 - ullet The active load and current source shall have larger output impedance, therefore L is intentionally picked larger value.

- Third, we design current mirror M_5 (and M_6)
 - For simplicity here, we assume M_5 and M_6 have the same dimension (can be scaled down later for reducing power consumption).
 - Since we don't have a specific power consumption spec here, we pick $g_m/i_d=4$ for M_5 since it is active load (source), so it should be smaller.
 - The g_m/i_d is even smaller than M_3 's since here, $i_{d,M_5}=2i_{d,M_3}$, smaller g_m/i_d can give larger L values, which is desirable for current mirror design.
 - Since we don't have a specific power consumption spec here, we pick $g_m/i_d=4$ for M_5 since it is active load (source), so it should be smaller.
 - Since we know $i_{d,M_5}=2i_{d,M_1}=200~\mu A$ already from the calculation of M_1 , from i_d/W vs. g_m/i_d plot (LUT) of PMOS, we determine (there could be some other different candidates) $W_{M_5}=76~\mu m$, $L_{M_5}=1.1~\mu m$

• Now, we start designing constant- g_m block

- Ideally, $g_{m,M_7}=rac{1}{R_{bias}}$ if $W_{M_8}=4W_{M_7}$
- If we let M_1 and M_7 have the same size, and if we can somehow let M_1 and M_7 have the same g_m , then their i_d will also be the same.

• Design R_{bias} :

- Letting
$$g_{M_1} = g_{M_7}$$
: $g_{M_1} = \frac{g_m}{i_d} \times i_{d,M_1} = 1.5 \ mS = g_{M_7}$

$$-R_{bias} = \frac{1}{g_{M_7}} = 667 \,\Omega$$

- Design M_7 (and M_8):
 - Simply copying M_1 to M_7 : $W_{M_1} = W_{M_7} = 80 \ \mu m$; $L_{M_1} = L_{M_7} = 280 \ nm$
 - Rather than making $W_{M_8}=4W_{M_7}$, we can let $W_{M_8}=W_{M_7}$ and use multiplier: $M_{M_8}=4M_{M_7}$

- Design M_9 (M_{10} and M_{11}):
 - Simply copying M_3 to M_9 , M_{10} and M_{11}
 - If necessary, you can increase L of M_9, M_{10} and M_{11} to increase the output resistance of current mirror
 - Ensure you are always operating them in saturation region!

• Small fine tune is needed on R_{bias} (from 667 Ω to 900 Ω) to achieve more accurate results

Results

params	gm/id method	SPICE simulation
	++	
Id_M1 (uA)	100.53	102.69
Id_M3 (uA)	100.53	102.69
Id_M5 (uA)	201.06	205.38
gm/id_M1 (1/V)	15.00	12.86
gm/id_M3 (1/V)	10.00	10.66
gm/id_M5 (1/V)	4.00	4.23
gain (dB)	34.62	35.69
GBW (MHz)	20.00	19.95

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

- Specifications:
 - GBW = 20 MHz
 - $C_L = 10 pF$
- Could be more challenging due to the voltage headroom and more biasing points.

- First, start from the folded-cascode OTA design
- Like the design of diff-pair OTA, g_m/i_d method is applied here, so the detailed calculations are omitted here (see previous example).
 - $-g_{m,M_1} = 2\pi f_t (1+0.2)C_L = 1.5 \, mS$
 - For M_1-M_2 , pick $\frac{g_m}{i_d}=15$, $i_{d,M_1}=\frac{g_{m,M_1}}{\frac{g_m}{i_d}}=100~\mu A$: $W_{M1}=80~\mu m$, $L_{M_1}=280~nm$. Again, if you have gain requirement, you can consider increase L_{M_1} .
 - For M_7 M_{10} , pick $\frac{g_m}{i_d}$ = 4, by assuming $i_{d,M_7} = i_{d,M_1} = 100~\mu A$: $W_{M1} = 86~\mu m$, $L_{M_1} = 2.35~\mu m$.
 - For M_3 M_4 , pick $\frac{g_m}{i_d}$ = 8, noted that $i_{d,M_3} = i_{d,M_1} + i_{d,M_7} = 200 \ \mu A$: $W_{M_3} = 90 \ \mu m$, $L_{M_3} = 1.52 \ \mu m$.
 - For M_5 M_6 , pick $\frac{g_m}{i_d} = 8$, noted that $i_{d,M_5} = i_{d,M_7} = 100 \ \mu A$: $W_{M_5} = 90 \ \mu m$, $L_{M_3} = 3.17 \ \mu m$.
 - For M_{11} , pick $\frac{g_m}{i_d} = 4$, noted that $i_{d,M_{11}} = 2i_{d,M_1} = 200 \ \mu A$: $W_{M_5} = 88.4 \ \mu m$, $L_{M_3} = 693 \ nm$.

- We next start with designing high-swing current mirror.
 - PMOS high-swing current mirror: $M_{17}-M_{21}$
 - NMOS high-swing current mirror: $M_{12} M_{16}$

- Similar concept is applied here: passing the same current will ensure the same transconductance, so the biasing point (g_m/i_d) will be the same.
- For PMOS high swing current mirror $(M_{17}-M_{21})$, $M_{17}-M_{20}$ have the same size as M_7 , M_{21} has its length $L_{M_{21}}=4L_{M_7}$ (or 5 times).
 - $-I_{bias} = i_{d,M_7} = 100 \,\mu A$
- For NMOS high swing current mirror $(M_{12}-M_{16})$, $M_{12}-M_{15}$ have the same size as M_5 , M_{16} has its length $L_{M_{16}}=4L_{M_5}$ (or 5 times).
- For $M_{22}-M_{25}$, their size can be the same as M_7 .
- For $M_{26}-M_{29}$, their size can be the same as M_5 .
- For M_{29} , $W_{M_{29}} = W_{M_{11}}$, $L_{M_{29}} = 2L_{M_{11}}$.
 - As the current flows through M_{11} is twice of the current through M_3 here.

- $V_{b1} = 1.465 V$, $V_{b2} = 1.17 V$, $V_{b3} = 0.876 V$
- If you want to replace I_{bias} , you can use constant- g_m method introduced previously (or a BGR).
- Similarly, you can scale down the dimensions of current mirror to reduce their power consumption.

Results

*** SPICE simulations	finished! ***	
params	gm/id method	SPICE simulation
	+	
Id_M1 (uA)	100.53	109.12
Id_M3 (uA)	201.06	198.36
Id_M5 (uA)	100.53	89.24
Id_M7 (uA)	100.53	89.25
Id_M11 (uA)	201.06	218.23
gm/id_M1 (1/V)	15.00	12.71
gm/id_M3 (1/V)	8.00	8.05
gm/id_M5 (1/V)	8.00	8.44
gm/id_M7 (1/V)	4.00	4.54
gm/id_M11 (1/V)	4.00	5.91
gain (dB)	108.61	80.24
GBW (MHz)	20.00	19.95

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

• Specifications:

$$-GBW = 20 MHz$$

$$-C_L = 10 pF$$

A few equations are needed here to guide the design here:

$$-f_t = \frac{g_m}{2\pi C_c}$$

- $-C_c \ge 0.22 C_L$ to guarantee at least around 60° PM
- $-R_c \approx \frac{1}{1.7f_tC_c}$ to give you around extra 30° PM
- For removing input-offset voltage: $\frac{\left(\frac{W}{L}\right)_{M_6}}{\left(\frac{W}{L}\right)_{M_4}} = 2\frac{\left(\frac{W}{L}\right)_{M_7}}{\left(\frac{W}{L}\right)_{M_5}}$
- In case if you have SR requirement: $SR = \frac{I_{M_5}}{C_c}$

- Start with $M_1 M_2$:
 - For extra margin, we take $C_c = 0.3C_L = 3~pF$. This also gives $R_c = 9.8~k\Omega$.
 - For extra margin, $g_{m,M_1} = 2\pi f_t (1 + 0.5)C_c = 0.565 \, mS$
 - Pick its $\frac{g_m}{i_d}=15$, a relatively large value: $i_{d,M_1}=\frac{g_{m,M_1}}{\frac{g_m}{i_d}}=37.7~\mu A$
 - Pick $W_{M_1}=30~\mu m$, $L_{M_1}=280~nm$. For two stage OTA, input stage does not need high gain, which is what the second stage is for.

- Second, design active load M_3-M_4
 - Very similar to the design of active load in the diff-pair OTA example, detailed analysis is omitted here.

- Pick
$$\frac{g_m}{i_d}$$
 = 10, W_{M_3} = 31.6 μm , L_{M_3} = 1.52 μm

- Third, design current source M_5
 - Very similar to the design of current source in the diff-pair OTA example, detailed analysis is omitted here. Just remember $i_{d,M_5}=2i_{d,M_1}$.

- Pick
$$\frac{g_m}{i_d}$$
 = 4, W_{M_5} = 28.4 μm , L_{M_5} = 1.1 μm

- We now design the second stage. We first start with designing the current source M_7 , as it makes the later current mirror design simpler.
 - We do not have an explicit power budget here, so we assume $i_{d,M_7}=\frac{1}{2}i_{d,M_5}=37.7~\mu A$.
 - We do not apply normal g_m/i_d method here, since we do not want to violate the input-offset voltage rule. Therefore, we simply do the following sizing for M_7 : $W_{M_7}=W_{M_5}=28.4~\mu m$, $L_{M_7}=2L_{M_5}=2.2~\mu m$.
 - We can reversely check its g_m/i_d now (from $\frac{i_d}{W} vs. \frac{g_m}{i_d}$ plot), which is 6.1, and this is a relatively small number.

• We then design the gain transistor M_6 of the second stage:

- Through input-offset sizing relationship: $\left(\frac{W}{L}\right)_{M_6} = 2\frac{\left(\frac{W}{L}\right)_{M_7}}{\left(\frac{W}{L}\right)_{M_5}} \times \left(\frac{W}{L}\right)_{M_4} = 20.79$
- We pick $L_{M_6}=1.1~\mu m$ for some high gain, which leads to $W_{M_6}=23~\mu m$.
- We can reversely check its g_m/i_d now (from $\frac{i_d}{W} vs.\frac{g_m}{i_d}$ plot), which is 11, and this is a relatively large number.
- Current mirror transistor M_8 can be the same as M_7 for now.
 - $-I_{bias} = 37.7 \,\mu A$

- If you want to replace I_{bias} , you can use constant- g_m method introduced previously (or a BGR).
- Similarly, you can scale down the dimensions of current mirror to reduce their power consumption.

Results

*** SPICE simulations finished! ***			
params	gm/id method	SPICE simulation	
		+	
Id_M1 (uA)	37.69911184307752	39.95	
Id_M3 (uA)	37.69911184307752	39.95	
Id_M5 (uA)	75.39822368615503	79.90	
Id_M6 (uA)	37.69911184307752	37.96	
Id_M7 (uA)	37.69911184307752	37.96	
gm/id_M1 (1/V)	15	12.70	
gm/id_M3 (1/V)	10	10.51	
gm/id_M5 (1/V)	4	4.15	
gm/id_M6 (1/V)	10.996805517419196	10.88	
gm/id_M7 (1/V)	6.094891296677578	4.12	
gain (dB)	83.29207884089496	80.99	
GBW (MHz)	20.0	19.95	
PM (degree)		77.38	

Table of Content

- Creating LUT for g_m/i_d
- g_m/i_d design flow
- Design Example in GF180MCU
 - Diff-pair OTA with constant- g_m biasing
 - Folded-cascode OTA with high-swing current mirror biasing
 - Two-stage OTA with Miller lead compensation
- Conclusion

Conclusion

- A brief introduction of g_m/i_d method is presented.
- Three common OTA circuits are designed using g_m/i_d method in open-source GF180MCU CMOS process.
- Simulation results are very close to the first-order calculations using g_m/i_d method.

References

- Analog Integrated Circuit Design, 2nd Edition
- Eric Yeh's YouTube video on g_m/i_d method: https://www.youtube.com/@ericyeh3787
- Dr. Hesham Omran's YouTube video on g_m/i_d method: https://www.youtube.com/watch?v=dzz4z3ijVts