

Tina Linux WiFi RF 测试 使用指南

版本号: 1.5

发布日期: 2022.02.10

版本历史

版本号	日期	制/修订人	内容描述
1.1	2020.06.06	AW1381	1. 建立初始版本。
1.2	2021.04.06	AW1381	1. 增加 R528 平台说明。2. 增加
			xradio 单 ko 形式的测试说明。
1.3	2021.05.28	AW1381	1. 将原文部分表格图换成 markdown
			格式的表格。
1.4	2022.01.20	AW1381	1. 添加 R818B/MR813B 平台。
1.5	2022.02.10	AW1381	1. 添加 V853 平台。

目 录

1	概述		1
	1.1	编写目的	1
	1.2	适用范围	1
	1.3	相关人员	1
2	WiF	Fi 测试	2
	2.1	WiFi 传导测试	2
	2.2	测试指标	3
	2.3		3
3	XRA	ADIO 系列模组	5
	3.1	RF 测试环境搭建	5
		3.1.1 驱动配置	5
		3.1.2 Tina 配置	5
	3.2	ETF CLI 使用说明	6
			6
			7
			8
	3.3	WiFi 指令合集	9
			9
		3.3.2 传导 RX 测试 1	1
4	RTI	L 系列模组 1	2
	4.1	RF 测试环境搭建 1	2
		4.1.1 驱动配置	2
		4.1.2 Tina 配置 1	2
	4.2	rtwpriv 测试命令	2
		4.2.1 传导 TX 测试	2
		4.2.2 传导 RX 测试 1	3
5	SRI	RC 认证	4
	5.1	SRRC 认证介绍	4
	5.2	认证项目及指标	4
	53	注章事项 1	6

1 概述

1.1 编写目的

介绍 Allwinner 平台上 Wi-Fi 芯片的 RF 测试。

1.2 适用范围

主要适用于以下平台:

- Allwinner 软件平台 Tina v3.0 版本及以上。
- Allwinner 硬件平台 R 系列 (R6, R11, R16, R18, R30, R40, R328, R331, R329, R818, R818B, R528...)。
- Allwinner 硬件平台 MR 系列(MR133, MR813, MR813B...)。
- Allwinner 硬件平台 H 系列 (H133...)
- Allwinner 硬件平台 V 系列 (V853...)

1.3 相关人员

本文档主要适用于以下人群:

- Tina 平台的广大客户
- 对 TINA Wi-Fi 感兴趣的同事

2 WiFi 测试

2.1 WiFi 传导测试

Wi-Fi 的传导测试是通过射频电缆线,以有线的方式连接到测试仪器,用来测试不带天线,射频芯片出来的 RF 性能。

传导测试又分为信令模式和非信令模式。信令模式可以理解为小机和综合测试仪进行信息交互,小机既能发射信号,又能接收信号,具有回环机制;非信令模式下,小机只能作为发射机或者接收机,信息传递是单向的;两种模式下测试结果是差不多的。注:小机:指带有 Wi-Fi 芯片的开发板。测试仪器:种类多样如下面列举的:传导测试的仪器设备有 IQ2015。N9020A(频谱仪)和 CMW270(综合测试仪)。其中 CMW270 既可以用于信令模式,也可以非信令模式,常用于信令模式;IQ2015 和 N9020A 只能用于信令模式,另外 N9020A 只能测传导 TX,不能测 RX,IQ2015 则都可以测。

2.2 测试指标

WiFi测试指标

		123 PA 11 A1				
	导模式, IQ2015&Agilent N9020A					
硬件版本:		软件版本:				
NO.						
模式: 802.11b([DSSS) 速率:11Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	16±2dBm	14.7	15.2	14.8	Pass
2	EVM Peak	≤-9dB (35%)	2.69%	2.68%	2.70%	Pass
3	Mask	- '	1	1	1	pass
4	Center Frenquency Error	≤±25ppm	-2.62	-2.42	-2.64	Pass
5	Chip clock error	≤±25ppm	-2.7	-2.68	-2.54	Pass
6	LO Leakage	<-15dB	-44	-45	-44	Pass
-	Duranishi ita/DED (00/)	(1M)≤-90dBm	-94	-94	-93	Pass
7	Rx sensitivity(PER<8%)	(11M)≤-85dBm	-87	-87	-86	Pass
8	Maximum Input Level -10dBm	<8%	1	1	1	Pass
Comments:	· ·				•	
	DFDM) 速率: 54Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	15±2dBm	14	14	14	pass
2	EVM Peak	≤-25dB	-31	-30.45	-29.3	pass
3	Mask	-	1	1	1	pass
4	Center Frenquency Error	≤±20ppm	-1.78	-1.7	-1.69	Pass
5	Chip clock error	≤±20ppm	-4.4	-5.9	-8.2	Pass
6	LO Leakage	≤-15dB	-39	-42	-39.5	Pass
_	D (DED . 400())	(6M)≤-88dBm	-89	-89	-88	Pass
7	Rx sensitivity(PER<10%)	(54M)≤-70dBm	-71	-71	-70	Pass
8	Maximum Input Level -20dBm	<10%		1	1	Pass
Comments:	·		7 , 1			
模式: 802.11n-l	HT20(SISO)速率: 65Mbps	Spec	CH1	CH7	CH13	Test Result
1	Tx Power	14±2dBm	13.3	13	13.21	pass
2	EVM Peak	<-28dB	-31.2	-31	-29.5	pass
3	Mask		1	1	1	pass
4	Center Frenquency Error	≤±20ppm	-1.5	-5	-1.65	Pass
5	Chip clock error	≤±20ppm	-3.8	-4.5	-4.82	Pass
6	LO Leakage	<-20dB	-35	-37	-40	Pass
7	Rx sensitivity(PER<10%)	(MCS0)≤-87dBm	-89	-89	-88	Pass
		(MCS7)≤-69dBm	-70	-70	-69	Pass
8	Maximum Input Level -20dBm	<10%	1		1	Pass
Comments:	ITANCICOV TET - 425M	6	CUA	CUZ	CUAN	To at Do as !!
	HT40(SISO) 速率: 135Mbps	Spec 1412dBrs	CH1	CH7	CH13	Test Result
1 2	Tx Power EVM Peak	14±2dBm ≤-28dB	13.4 -30.2	12.8 -30.6	13.1 -29.8	pass
3	Mask Mask	%-Z0UD	-30.2	-30.0	-25.0	pass pass
3 4	Center Frenquency Error	≤±20ppm	-1.74	-1.88	-1.85	Pass Pass
q 5	Chip clock error	≤±20ppm ≤±20ppm	-5.5	-4.4	-5.3	Pass
6	LO Leakage	≤±20ppm ≤-20dB	-38	-32	-3.3	Pass
в	LO Leakage					
7	Rx sensitivity(PER<10%)	(MCS0)≤-84dBm	-87	-87	-86	Pass
•		(MCS7)≤-66dBm	-68	-68	-67	Pass
8	Maximum Input Level -20dBm	<10%	1	1	1	Pass
		· ·				

图 2-1: RF 测试指标

2.3 ETF 工具介绍

为了方便测试 RF 性能,Xradio 提供 ETF CLI(一种 Linux 测试命令客户端工具)。 ETF 工具的大致功能如下:

 类别	测试支持	描述	备注
基本配置	频段选择(2.4G)	测试的频段可配置	目前只支持 2.4G
	信道选择	测试信道可配置(1~14)	
	MAC 地址配置	修改发送帧的 MAC 地址	可配置 A1, A2, A3
TX	连续发送	连续发送模式下不断发送帧,直到进行停止操作	
	帧数发送	发送一定数目的帧后停止发送	
	帧长度配置	发送的帧长度可以调整	大于 MAC 头部(14 字节),
	速率选择	速率可选择 11b, 11g, 11n HT20	11b 22Mbps 33Mbps 除外
	功率调整	发送功率可以按等级调整,单位不是 dbm	每个速率有对应默认功率,一
	单载波发送	可发送单载波,幅度可调整	CLI 支持频偏可调整
RX	连续接收	停止接收后显示接收帧总数,错误帧数目	
	模式配置	可以配置 11b only, 11g/n 或者 11b/g/n	APK 暂不支持 11b only 和 1

XRADIO 系列模组

3.1 RF 测试环境搭建

3.1.1 驱动配置

为了支持 RF test 工具的使用,必须先配置 Xradio 系列的驱动(XR819/XR829),并选择以下配置。

make kernel menuconfig

注:

- 1. 确认在系统的 wlan 固件目录 (/lib/firmware) 中存在boot_xr-xxx.bin, sdd_xr-xxx.bin, etf_xr-xxx.bin等文件。
- 2. 在系统启动后,在测试之前请确认xradio_wlan(三个 ko 的形式) 模块已被加载。

3.1.2 Tina 配置

按如下方法配置 ETF 工具。

make menuconfig

注意:

由于 wlan 与 RF 测试共用一个驱动,并且下载固件不一样,因此两者互斥。即测试模式和常规模式不能共存。所以启动 etf 工具前,请务必保证进入测试模式。即若是 xradio 模组以三个 ko(xradio_wlan,xradio_mac,xradio_core)方式加载的,ETF 测试前需要rmmod xradio_wlan. 若是

以 xr829/xr819 单个 ko 加载的, ETF 测试时通过带参数的形式加载进入测试模式insmod /lib/modules/xxx/xr829.ko etf_enable=1

3.2 ETF CLI 使用说明

ETF 命令行工具可以进行手动测试,也可以被其他程序调用进行自动化测试。

3.2.1 测试命令介绍

ETF 工具命令基本格式,可以通过etf help获取 ETF 工具详细的帮助信息。

etf cmd [param0] [param1] [param2] [param3]

RF 测试模式启动,设备处于运行状态,其他测试命令只能在该命令完成以后才能进行。

etf connect

RF 测试模式关闭,关闭后设备处于掉电状态。

etf disconnect

PHY 使能,在进行 PHY 和 RF 相关操作之前必须先使能 PHY。

etf enable_phy

MAC 地址获取和配置,其中-d为目的地址(A1),-s为源地址(A2),-t为 BSSID(A3)。

```
etf get_mac
```

etf set_mac -d XX:XX:XX:XX:XX -s XX:XX:XX:XX:XX -t XX:XX:XX:XX:XX

频段模式和信道配置。其中mode可为 DSSS_2GHZ,OFDM_2GHZ,2GHZ。num为信道参数,范围 $1\sim14$ 。

etf channel [mode] [num]

速率配置。

etf rate -m[x] -r[y]

其中 x 和 y 意义分别为如下表:

模式 X	定义	对应速率 y
0	11b short preamble	1, 2, 5.5, 11
1	11b long preamble	1, 2, 5.5, 11
2	11g	6, 9, 12, 18, 24, 36, 48, 54
4	11n Greenfield	6.5, 13, 19.5, 26, 39, 52, 58.5, 65
5	11n Mixed	

功率配置。其中num的范围为 2~120,每个速率有对应的默认功率和最大功率,速率配置后自动使用默认功率进行发送;当功率调整超过最大功率时,会配置为最大功率。

```
etf power_level [num]
```

3.2.2 传导 TX 测试

Tx 测试基本格式如下。其中 continous 为 1 表示连续发送,为 0 表示帧数发送,默认为 1; 当 continous 为 0 时,num表示要发送的帧数; length表示发送帧的长度。

```
etf tx -c [continous] -n [num] -l [length]
etf tx_stop
```

单载波发送基本格式如下。其中amplitude表示单载波幅度,默认为 Odbm; freq为频偏,默认为 5MHz; mode表示载波模式,默认为 Single Tone Quad。

```
etf tone -a [amplitude] -f [freq] -m [mode]
etf tone_stop
```

示例 1: 在 1 信道,使用 11n Mixed 模式 MCS7 LongGI 速率,帧长为 4095 进行连续发送。

```
etf connect
etf enable_phy
etf channel 2GHZ 1
etf rate -m 5 -r 65
etf tx -c 1 -l 4095
etf tx_stop
etf disconnect
```

示例 2: 在 11 信道,使用 11g 模式 54Mbps 速率,功率等级为 50 进行发送 1000 帧。提示: 固定帧数发送不需要 tx_stop 。

```
etf connect
etf enable_phy
etf channel 2GHZ 11
etf rate -m 2 -r 54
etf power_level 50
etf tx -c 0 -n 1000
etf disconnect
```

示例 3: 在 1 信道,进行单载波连续发送的示例。单载波发送必须先进行连续发送。

```
etf connect
etf enable_phy
etf channel 2GHZ 1
etf tx -c 1
etf tone
etf tone_stop
etf tx_stop
etf disconnect
```


3.2.3 传导 RX 测试

Rx 测试基本格式如下。Rx 测试无参数,停止后会返回统计数据。

etf rx etf rx_stop

Rx 停止后返回数据如下:

Rx mode is: OFDM PREAMBLE YES! Smoothing: Sounding PPDU: NO! A-MPDU: NO! Short GI: 800ns CFO: -6.256104 SNR: 11.671869 RSSI: -49.000000 EVM: 2.713441 RCPI: -52.500000 1107 Total: 405 AbortError: 232 CRCError: Sending CMD OK!

具体返回值意义说明:

名称	描述	备注
Total	所有检测到帧的总数	
AbortError	无法解调帧的总数	错误帧总数
CRCError	CRC 发生错误的帧	错误帧总数
Rx mode	最后一帧的调制模式	
A-MPDU	是否为聚合帧	
RSSI	接收信号强度,单位 dbm	

示例 1: 在 1 信道,进行连续接收的示例。

etf connect
etf enable_phy


```
etf channel 2GHZ 1
etf rx
etf rx_stop
etf disconnect
```

示例 2: 在 11 信道, 11b only 模式, 进行连续接收的示例。

```
etf connect
etf enable_phy
etf channel DSSS_2GHZ 11
etf rx
etf rx_stop
etf disconnect
                             LWINER
```

3.3 WiFi 指令合集

3.3.1 传导 TX 测试

在 11b 模式带宽 11M 信道 1 场景下测试

```
rmmod xradio_wlan //上电后卸载一次即可
etf connect
etf enable_phy
etf channel 2GHZ 1
etf rate -m 1 -r 11
etf tx
         //可以不设置侦长等信息,直接tx
etf tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11g 模式带宽 54M 信道 1 场景下测试

```
rmmod xradio_wlan //上电后卸载一次即可
etf connect
etf enable_phy
etf channel 2GHZ 1
etf rate -m 2 -r 54
```



```
etf tx //可以不设置侦长等信息,直接tx etf tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11n 模式带宽 HT20 速率 MCS7 信道 1 场景下测试

```
rmmod xradio_wlan //上电后卸载一次即可
etf connect
etf enable_phy
etf channel 2GHZ 1
etf rate -m 5 -r 65
etf tx //可以不设置侦长等信息,直接tx
etf tx_stop //每次切换成其他模式需要先stop再输指令
```

在 11n 模式带宽 HT40 速率 MCS7 信道 1 场景下测试(XR819 没有 40M 模式,XR829 才有)

```
rmmod xradio_wlan //上电后卸载一次即可etf connectet etf enable_phy etf bandwidth 40M //设置40M带宽 etf subchannel LOWER //设置信道组合方式,向上模式;也可以设置成LOWER向下模式 etf channel 2GHZ 1 //注意LOWER模式IQ仪器需要选择n+2信道,如软件设置信道1,仪器选择信道3 //注意UPPER模式IQ仪器需要选择n-2信道,如软件设置信道3,仪器选择信道1 etf rate -m 5 -r 65 etf tx -w 40M -u LOWER etf tx_stop //每次切换成其他模式需要先stop再输指令
```

备注:

subchannel可为LOWER或UPPER。此处的LOWER和UPPER含义为设置信道为组成 40M 带宽的低/高频信道,如下图所示。故5LOWER 和9UPPER均表示 40M 的中心频率在 7 信道(2442MHz)。40M 中心频率的计算方法如下:所设信道的中心频率 +10M(对于LOWER的情况)或所设信道的中心频率-10M

(对于UPPER的情况)。

文档密级: 秘密

3.3.2 传导 RX 测试

在 11b 或 11g 或 11n 模式带宽 HT20 场景下测试

```
rmmod xradio_wlan //上电后卸载一次即可
etf connect
etf enable_phy
etf channel 2GHZ 1
//仪器发信号前先进入rx模式
etf rx
//仪器发完之后按输入rx_stop指令,查看结果
etf rx_stop
```

在 11n 模式带宽 HT40 速率 MCS7 场景下测试

版权所有 © 珠海全志科技股份有限公司。保留一切权利

RTL 系列模组

4.1 RF 测试环境搭建

4.1.1 驱动配置

为了支持 RF test 工具的使用,必须配置 RTL 系列的驱动。

make kernel_menuconfig

```
Device Drivers > Network device support > Wireless LAN
                              LWINTER
              <M>
                   Realtek 8189F SDIO WiFi
              <M>
                   Realtek 8723D SDIO or SPI WiFi
```

4.1.2 Tina 配置

按如下方法配置 ETF 工具。

make menuconfig

```
Utilities > rf test tool >
              <*> realtek-rftest.....realtek rf test tools
             rtk_hciattach >
            <*> rtk_hciattach.................Realtek BT HCI UART initialization tools
```

4.2 rtwpriv 测试命令

4.2.1 传导 TX 测试

```
ifconfig wlan0 up
    # Enable Device for MP operation
rtwpriv wlan0 mp start
   # enter MP mode
rtwpriv wlan0 mp channel 7
   \# set channel to 1 . 2, 3, 4~13 etc.now is channel 7
rtwpriv wlan0 mp_bandwidth 40M=0,shortGI=0
    # set 20M mode and long GI; set 40M is 40M=1.
rtwpriv wlan0 mp_ant_tx a
    # Select antenna A for operation
       if device have 2x2 antennam select antenna "a" or "b" and "ab" for operation.
```



```
rtwpriv wlan0 mp_txpower patha=44
    # set path A and path B Tx power level , the Range is 0~63.
rtwpriv wlan0 mp_rate 135
    # set OFDM data rate to 54Mbps,ex: CCK 1M = 2, CCK 5.5M = 11 ;
    OFDM 6M=12、54M = 108 ;
    N Rate: MCS0 = 128, MCS1 = 129 MCS 2=130....MCS15 = 143 etc.
rtwpriv wlan0 mp_ctx count=%100,pkt
    # start continuous Packet Tx

rtwpriv wlan0 mp_ctx stop
    #stop continuous Tx
rtwpriv wlan0 mp_stop
    # exit MP mode
ifconfig wlan0 down
    # close WLAN interface
```

4.2.2 传导 RX 测试

```
ifconfig wlan0 up
                                                      MER
     # Enable Device for MP operation
rtwpriv wlan0 mp start
     # Enter MP mode
rtwpriv wlan0 mp_channel 13
      # Set channel to 1 . 2, 3, 4\sim13 etc.
rtwpriv wlan0 mp_bandwidth 40M=0,shortGI=0
     # Set 20M mode and long GI or set to 40M is 40M=1.
rtwpriv wlan0 mp_ant_rx a
    # Select antenna A for operation
        if device have 2x2 antennam select antenna "a" or "b" and "ab" for operation.
rtwpriv wlan0 mp_arx start
    # start air Rx teseting.
rtwpriv wlan0 mp_arx phy
    # get the statistics.
rtwpriv wlan0 mp_reset_stats
    #Stop air Rx test and show the Statistics / Reset Counter.
         rtwpriv wlan0 mp_arx stop or rtwpriv wlan0 mp_reset_stats
rtwpriv wlan0 mp_stop
    # exit MP mode
ifconfig wlan0 down
    # close WLAN interface
```

版权所有 © 珠海全志科技股份有限公司。保留一切权利

5 SRRC 认证

5.1 SRRC 认证介绍

SRRC 是国家无线电管理委员会强制认证要求,所有在中国境内销售及使用的无线电组件产品,必须取得无线电型号的核准认证。

5.2 认证项目及指标

局域网 11b 部分:

技术参数	公布信息
调制方式	DBPSK/DQPSK/CCK
数据速率	1 Mbps/2 Mbps/5.5 Mbps/11 Mbps
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益 < 10 dBi 时: ≤ 100 mW 或 ≤ 20 dBm;
	天线增益 ≥ 10 dBi 时: ≤ 500 mW 或 ≤ 27 dBm。
最大功率谱密度	直接序列扩频或其它工作方式:
	天线增益 < 10 dBi 时: ≤ 10 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时:≤ 17 dBm/MHz (EIRP)。
	跳频工作方式:
	天线增益 < 10 dBi 时: ≤ 20 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时:≤ 27 dBm/MHz (EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4 GHz; f _H \leq 2.4835GHz)
占用带宽	_
载频容限	$\leq 20 \times 10^{-6}$
杂散发射	\leq -36 dBm/100 kHz (30-1000 MHz);
	\leq -33 dBm/100 kHz (2.4-2.4835 GHz);
	\leq -40 dBm/1 MHz (3.4-3.53 GHz);
	\leq -40 dBm/1 MHz (5.725-5.85 GHz);
	≤ -30 dBm/1 MHz (其他 1-12.75GHz)

局域网 11g 部分:

技术参数	公布信息
调制方式	BPSK/QPSK/16QAM/64QAM
数据速率	6 Mbps/9 Mbps/12 Mbps/18 Mbps/24 Mbps/36 Mbps/48 Mbps/54 Mbps
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益 < 10 dBi 时: ≤ 100 mW 或 ≤ 20 dBm;
	天线增益 ≥ 10 dBi 时: ≤ 500 mW 或 ≤ 27 dBm。
最大功率谱密度	直接序列扩频或其它工作方式:
	天线增益 < 10 dBi 时: ≤ 10 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时: ≤ 17 dBm/MHz (EIRP)。
	跳频工作方式:
	天线增益 < 10 dBi 时: ≤ 20 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时: ≤ 27 dBm/MHz (EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4 GHz; f _H \leq 2.4835GHz)
占用带宽	_
载频容限	$\leq 20 \times 10^{-6}$
杂散发射	≤ -36 dBm/100 kHz (30-1000 MHz);
	≤ -33 dBm/100 kHz (2.4-2.4835 GHz);
	≤ -40 dBm/1 MHz (3.4-3.53 GHz);
	\leq -40 dBm/1 MHz (5.725-5.85 GHz);
	≤ -30 dBm/1 MHz (其他 1-12.75GHz)

局域网 11n 20MHz 部分:

技术参数	公布信息
调制方式	BPSK/QPSK/16QAM/64QAM
数据速率	MCS0-MCS7
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益 < 10 dBi 时: ≤ 100 mW 或 ≤ 20 dBm;
	天线增益 ≥ 10 dBi 时: ≤ 500 mW 或 ≤ 27 dBm。
最大功率谱密度	直接序列扩频或其它工作方式:
	天线增益 < 10 dBi 时: ≤ 10 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时: ≤ 17 dBm/MHz (EIRP)。
	跳频工作方式:
	天线增益 < 10 dBi 时: ≤ 20 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时: ≤ 27 dBm/MHz (EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4 GHz; f _H \leq 2.4835GHz)
占用带宽	_
载频容限	$\leq 20 \times 10^{-6}$
杂散发射	\leq -36 dBm/100 kHz (30-1000 MHz);
	\leq -33 dBm/100 kHz (2.4-2.4835 GHz);

版权所有 © 珠海全志科技股份有限公司。保留一切权利

技术参数	公布信息
	≤ -40 dBm/1 MHz (3.4-3.53 GHz);
	\leq -40 dBm/1 MHz (5.725-5.85 GHz);
	≤ -30 dBm/1 MHz (其他 1-12.75GHz)

局域网 11n 40MHz 部分:

技术参数	公布信息
调制方式	BPSK/QPSK/16QAM/64QAM
数据速率	MCS0-MCS7
信道间隔	5MHz
天线增益	2 dBi
等效全向辐射功率	天线增益 < 10 dBi 时: ≤ 100 mW 或 ≤ 20 dBm;
	天线增益 ≥ 10 dBi 时: ≤ 500 mW 或 ≤ 27 dBm。
最大功率谱密度	直接序列扩频或其它工作方式:
	天线增益 < 10 dBi 时: ≤ 10 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时:≤ 17 dBm/MHz (EIRP)。
	跳频工作方式:
	天线增益 < 10 dBi 时: ≤ 20 dBm/MHz (EIRP);
	天线增益 ≥ 10 dBi 时: ≤ 27 dBm/MHz (EIRP)。
频率范围	\leq -80 dBm/Hz (f _L \geq 2.4 GHz; f _H \leq 2.4835GHz)
占用带宽	
载频容限	$\leq 20 \times 10^{-6}$
杂散发射	≤ -36 dBm/100 kHz (30-1000 MHz);
	≤ -33 dBm/100 kHz (2.4-2.4835 GHz);
	≤ -40 dBm/1 MHz (3.4-3.53 GHz);
	\leq -40 dBm/1 MHz (5.725-5.85 GHz);
	≤ -30 dBm/1 MHz (其他 1-12.75GHz)

5.3 注意事项

SRRC 认证中最容易出现问题的测试项目是杂散发射,所以这个测试项必须要摸底。杂散发射可以通过频谱仪来测量,重点关注二次谐波是否会超出-30dBm; 一般情况下做了 π 型网络匹配杂散发射都能达标。杂散发射会测试每个模式下的最低速和最高速,正常只要保证最低速能过就可以,因为最低速发射功率是最高的;软件适当降低发射功率,可以优化杂散指标,但是不建议这么做,除非万不得已,尽量通过硬件 π 型网络去解决杂散问题。

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。