The University of Texas at Austin

Optimization

Homework 1

Instructors: Constantine Caramanis, Sujay Sanghavi

Submitting solutions: Please submit your solutions as a single pdf file. If you have code or figures, please include these in the pdf.

1 Convex Sets, Convex Functions, Preservation of Convexity

1. (a) **Answer:**

To show that the intersection of convex sets is convex, let $C = C_1 \cap C_2$ where C_1 and C_2 are convex sets. Let $\mathbf{x}, \mathbf{y} \in C$. This means $\mathbf{x}, \mathbf{y} \in C_1$ and $\mathbf{x}, \mathbf{y} \in C_2$.

For any $\lambda \in [0, 1]$, consider the point $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$.

Since C_1 is convex, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in C_1$.

Since C_2 is convex, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in C_2$.

Therefore, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in C_1 \cap C_2 = C$.

This proves that C is convex, and thus the intersection of convex sets is convex.

(b) **Answer:**

An example where the union of two convex sets is not convex:

Consider two disjoint circles in \mathbb{R}^2 . Each circle is a convex set, but their union is not convex because a line segment connecting a point in one circle to a point in the other circle would not be entirely contained within the union.

(c) Answer:

To show that the maximum of convex functions is convex, let f_1 and f_2 be convex functions, and $f_{\max}(x) = \max\{f_1(x), f_2(x)\}.$

For any \mathbf{x}, \mathbf{y} and $\lambda \in [0, 1]$:

 $f_{\text{max}}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \max\{f_1(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}), f_2(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})\}\$

 $\leq \max\{\lambda f_1(\mathbf{x}) + (1-\lambda)f_1(\mathbf{y}), \lambda f_2(\mathbf{x}) + (1-\lambda)f_2(\mathbf{y})\}\$

 $\leq \lambda \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\} + (1 - \lambda) \max\{f_1(\mathbf{y}), f_2(\mathbf{y})\}$

 $= \lambda f_{\max}(\mathbf{x}) + (1 - \lambda) f_{\max}(\mathbf{y})$

This proves that f_{max} satisfies the definition of convexity, and thus the maximum of convex functions is convex.

2 More Convex Sets, Convex Functions, Preservation of Convexity

(a) i. **Answer:**

An example where the minimum of two convex functions is not convex:

Consider $f_1(x) = x^2$ and $f_2(x) = (x-2)^2$. Both are convex functions. Let $f_{\min}(x) = \min\{f_1(x), f_2(x)\}$.

 $f_{\min}(x)$ is not convex because it forms a "V" shape with a non-convex kink at x=1, where the two parabolas intersect.

ii. Answer:

An example of two closed convex sets that are disjoint but cannot be strictly separated: Consider in \mathbb{R}^2 : $C_1 = \{(x, y) : y \ge e^x\}$ $C_2 = \{(x, y) : y \le 0\}$

These sets are closed, convex, and disjoint. However, they cannot be strictly separated because for any separating hyperplane (in this case, a line), there will always be points from both sets arbitrarily close to the hyperplane as $x \to -\infty$.

iii. Answer:

To show that any sub-level set of a convex function is convex:

Let f be a convex function and $L_c = \{x : f(x) \le c\}$ be a sub-level set. Take any $x_1, x_2 \in L_c$ and $\lambda \in [0,1]$.

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$
 (by convexity of f) $\le \lambda c + (1 - \lambda)c = c$
Therefore, $\lambda x_1 + (1 - \lambda)x_2 \in L_c$, proving L_c is convex.

Example of a non-convex function with convex sub-level sets:

Consider $f(x) = -x^2$. This function is concave (thus not convex), but all its sub-level sets are convex intervals. For any c, $L_c = \{x : -x^2 \le c\} = [-\sqrt{-c}, \sqrt{-c}]$, which is a convex set.

Half-Space Representation of Points Closer to v1 than v2 3

1. Two dimensions:

Answer:

For $v_1 = (-1,0)^T$ and $v_2 = (1,0)^T$, the set of points closer to v_1 than v_2 forms a half-space. This half-space is the left half of the plane, separated by the vertical line x = 0. The shaded region would be all points with $x \neq 0$.

2. Finding c and d for the two-dimensional case:

Answer:

For the given example, we need to find $c = (c_1, c_2)^T$ and d such that:

$$\{(x_1, x_2)^T : c_1 x_1 + c_2 x_2 \le d\}$$

represents the shaded region (x; 0).

We can choose: $c = (1,0)^T$ and d = 0

This gives us the inequality: $x_1 \leq 0$, which correctly describes the left half-plane.

3. Generalization to n dimensions:

Answer:

For general points $v_1, v_2 \in \mathbb{R}^n$, we can find $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ as follows:

$$c = v_2 - v_1 d = \frac{1}{2}(||v_2||^2 - ||v_1||^2)$$

To prove this, we start with the condition $||x-v_1||_2 \le ||x-v_2||_2$:

$$(x-v_1)^T(x-v_1) \le (x-v_2)^T(x-v_2)$$

Expanding and simplifying:

$$x^T x - 2v_1^T x + v_1^T v_1 \le x^T x - 2v_2^T x + v_2^T v_2$$

$$-2v_1^T x + v_1^T v_1 \le -2v_2^T x + v_2^T v_2$$

$$2(v_2 - v_1)^T x < v_2^T v_2 - v_1^T v_1$$

$$(v_2 - v_1)^T x \le \frac{1}{2} (v_2^T v_2 - v_1^T v_1)$$

This is equivalent to $c^T x \leq d$ with c and d as defined above.

Thus, we have shown that the set of points in \mathbb{R}^n that are closer to point v_1 than to point v_2 indeed form a half-space, represented by $\{x: c^T x \leq d\}$.