Київський національний університет імені Тараса Шевченка Факультет інформаційних технологій

Кафедра програмних систем і технологій

3BIT

з лабораторної роботи № 5

Тема: "Аналіз вимог за допомогою технології IDEFX"

Дисципліна «Аналіз вимог до програмного забезпечення»

Підготував:

студент гр. ІПЗ-21(1)

Зганяйко Володимир Віталійович

Дата: 15.02.2023

Перевірила:

Марцафей А.С.

Мета роботи: дослідити процес аналізу вимог за допомогою технологій IDEFX та набути практичних навичок в застосуванні інструментальних засобів Microsoft Visio та BPWin при побудові функціональної моделі.

Тема проектування: автоматизована система продажу авіаквитків.

Хід роботи:

Завдання 1. Обрати варіант використання системи, що аналізується, і провести аналіз бізнес-процесів, використовуючи технологію IDEFO.

Інструмент IDEFO дозволяє проводити аналіз бізнес-процесів та ідентифікувати функціональні зв'язки між ними. Автоматизовану систему продажу авіаквитків можна умовно розбити на три функціональні блоки:

- 1. Планування продажів
 - Аналіз попиту на квитки
 - Визначення цін на квитки
 - Планування наявності місць на різних рейсах
- 2. Обробка замовлень
 - Прийняття замовлень від клієнтів
 - Обробка замовлень
 - Відправлення підтверджень клієнтам
- 3. Управління фінансами
 - Обробка платежів від клієнтів
 - Розрахунок винагород для партнерів
 - Формування фінансових звітів

Завдання 2. Побудувати контекстну діаграму та дочірню діаграму 1-го рівня в нотації IDEFO, здійснити їх текстовий опис.

Контекстна діаграма

Вербальний опис: На цій діаграмі показано взаємодію системи зі своїм оточенням. Система отримує запити на придбання квитків від клієнтів та відповідає на них, надсилаючи підтвердження та інформацію про квитки. Вона також взаємодіє з банком, щоб опрацювати платежі від клієнтів та з авіакомпаніями, щоб виконувати рейси та забезпечувати наявність місць на їхніх літаках. У свою чергу, система також надсилає інформацію про продажі та фінансові звіти до компанії-власника. Діаграма допомагає зрозуміти контекст системи та відносини з її оточенням.

Дочірня діаграма

Вербальний опис: Дочірня діаграма, або діаграма декомпозиції показеє, з яких етапів складається процес, зображений на батьківській діаграма:

- Перегляд інформації про рейси
- Перегляд інформації про квитки
- Перегляд інформації про вільні місця
- Перегляд інформації про оплату
- Перегляд інформації про квиток
- Вибір способу оплати
- Вибір способу отримання квитка

Завдання 3. Обрати один із функціональних блоків діаграми IDEF0 та побудувати діаграму декомпозиції цього блоку в нотації IDEF3, навести її текстовий опис.

Вербальний опис: Діаграма показує порядок дій виконання процесу отримання інформації про купівлю квитка. Робота програми спроектована таким чином, щоб користувач отримував ту інформацію, яка його цікавить для остаточного визначення з квитком:

- Перегляд інформації про рейси
- Перегляд інформації про квитки
- Перегляд інформації про вільні місця
- Перегляд інформації про оплату
- Перегляд інформації про квиток
- Вибір способу оплати
- Вибір способу отримання квитка

Контрольні запитання

1. Опишіть особливості аналізу вимог за допомогою технології IDEF0.

- Моделювання функцій дозволяє описати функції, що виконуються в процесі, та взаємодію між ними.
- Керованість дає можливість створення діаграми, які можна редагувати та модифікувати в залежності від зміни вимог та умов.
- Системний підхід дозволяє зосередитися на фукнціях та взяємозв'язках між ними, а не на конкретних елементах системи.
- Легкість розуміння дозволяє використовувати графічні символи та стрілки для представлення функцій, що спрощує сприйняття інформації.
- Спільне розуміння дозволяє створювати моделі, які можуть бути зрозумілі різним групам людей, що сприяє спільному розумінню потреб користувачів.
- Розвиток вимог дозволяє описати поточний стан процесу та вимоги до його розвитку, що допомагає покращувати процеси та забезпечувати потреби користувачів у майбутньому.
- Деталізація дає можливість деталізувати функції на різних рівнях.
- Можливість оцінки ефективності дозволяє оцінити ефективність процесів та знайти шляхи для їх покращення.
- Документація дозволяє створювати діаграми та моделі.
- Інтеграція можна використовувати як самостійний метод аналізу, так і в поєднанні.

2. Які основні елементи нотації IDEFO?

- Функції
- Вхідні та віхідні потоки
- Механізми управління
- Контекстні блоки
- Логічні зв'язки
- Ресурси
- Групування
- Тощо

3. Аналіз вимог за допомогою технології IDEF3.

- Контекстна діаграма графічне зображення взаємодії між різними сутностями в бізнес-процесі.
- Діаграма вимог графічне зображення вимог до бізнес-процесу, яке дозволяє описати вимоги з точки зору їх інтерпретації та впливу на бізнес-процес.

- Діаграма сутностей графічне зображення сутностей, які беруть участь у бізнес-процесі та їх взаємозв'язки.
- Діаграма процесів графічне зображення процесів, які здійснюються сутностями в бізнес-процесі.
- Діаграма прецедентів графічне зображення взаємодії користувача та системи.

4. Які особливості графічної нотації технології IDEF3?

- Використання багаторівневої структури графічне представлення вимог до системи відбувається на різних рівнях деталізації.
- Використання графічних символів використовуються різні символи, що відображають різні типи елементів системи, а також зв'язок між ними.
- Використання стрілок стрілки показують напрямок потоку даних, повідомлень або контролю між різними елементами системи.
- Використання ієрархічної структури вимоги до системи відображаються в ієрархічній структурі, що дозволяє бачити їх взаємозв'язки та залежності на різних рівнях деталізації.
- Використання таблиць та схем даних дозволяє використовувати таблиці та схеми даних для детальнішого відображення вимог до системи та їх атрибутів.

5. Яка різниця між технологіями IDEF0 та IDEF3?

Технологія IDEFO призначена для моделювання функцій та процесів в системах. Вона використовує графічну нотацію, що дозволяє візуалізувати структуру та взаємозв'язки між функціями та процесами с система. Основний акцент у IDEFO зроблений на моделювання структури функцій та процесів, які виконуються в системі, та на їх взаємодію.

3 іншого боку, технологія IDEF3 призначена для аналізу та проектування процесів в системах. Вона також використовує графічну нотацію, проте більш акцентована на аналізі та відображенні вимог до системи, та на їх взаємозв'язки.

6. Які переваги та недоліки застосування технологій IDEF0 та IDEF3?

Переваги застосування IDEF0:

- Дозволяє визначати структуру та взаємозв'язки між функціями та процесами в системі.
- Дозволяє виконувати аналіз ефективності процесів та функцій в системі.
- Допомагає виявляти проблемні місця та можливість для оптимізації процесів.

• Дозволяє проводити ітераційну розробку системи, що дає змогу збільшувати точність та повноту моделі системи з кожною ітерацією.

Недоліки застосування IDEF0:

- Складно візуалізувати процеси, що мають велику кількість взаємозв'язків та деталей.
- Моделі IDEFO можуть бути складними для розуміння користувачами, що не мають досвіду в роботі з ними.
- Підготовка моделі IDEFO може бути часо- та працезатратною.

Переваги застосування IDEF3:

- Дозволяє візуалізувати вимоги до системи та взаємозв'язки між ними.
- Дозволяє визначити роль та обов'язки кожного елементу системи.
- Дозволяє проводити аналіз та оцінку вимог до системи та знаходити можливість для оптимізації процесів.
- Моделі IDEF3 можуть бути легше для розуміння користувачами, що не мають досвіду у роботі з ними.

Недоліки застосування IDEF3:

- Не дозволяє детально візуалізувати функції та процеси в системі.
- Моделі IDEF3 можуть бути менш точними, оскільки в цій технологої не зазначаються конкретні дії, які потрібно виконувати для задоволення вимог.
- Не дозволяє проводити ітераційну розробку системи, що може затруднити виявлення та виправлення помилок в розробці системи.

Висновок

У ході виконання даної лабораторної роботи було досліджено процес аналізу вимог за допомогою технологій IDEFX та набуто практичних навичок в застосуванні інструментальних засобів Microsoft Visio та BPWin при побудові функціональної моделі. Було побудовано контекстну діаграму та дочірню діаграму 1-го рівня в нотації IDEF0, було здійснено їх текстовий опис. Було обрано один із блоків діаграми IDEF0 та побудовано діаграму декомпозиції цього блоку в нотації IDEF3, наведено її текстовий опис. Були дані відповіді на контрольні питання.