Automatos Finitos

1

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

¹Este material utiliza conteúdo das aulas fornecidas pelo Prof. Vilar da Câmara Neto (disponível em http://prof.vilarneto.com). ²Permissão de uso fornecida pelos autores.

 $^{^3}$ As figuras utilizadas neste material são de domínio público, disponíveis na Internet sem informações de direitos autorais.

Autômatos Finitos Determinísticos

2

OBJETIVO

COMPREENDER E PROJETAR AFDS

- Os autômatos são formalismos particularmente adequados para o reconhecimento de linguagens
- Dentre os diversos tipos de autômatos existentes, neste curso abordaremos os mais conhecidos
 - Autômatos Finitos Determinísticos, ou AFDs
 - Autômatos Finitos Não Determinísticos, ou AFNs
 - Autômatos Finitos Não Determinísticos Estendidos, ou AFNEs
 - O Autômatos Finitos Não Determinísticos com Transições λ, ou AFNλs
 - Autômatos de Pilha Determinísticos, ou APDs;
 - Autômatos de Pilha Não Determinísticos, ou APNs;
 - Máquinas de Turing, ou MTs

- "Máquinas" virtuais com poder de processamento extremamente limitado
- Um AFD é composto por
 - Um conjunto finito e n\u00e3o vazio de estados
 - O Sempre se encontra em um (e somente um) estado a cada instante
 - Um dos estados é o estado inicial e estabelece o estado da máquina no início do seu funcionamento
- O AFD é alimentado com uma palavra de entrada, composta por uma sequência arbitrária de símbolos do alfabeto

- A passagem de um estado para outro é determinada por regras de transição
- A cada passo, o primeiro símbolo da palavra é consumido e a máquina adota o novo estado determinado pela regra de transição
- A máquina pára quando todos os símbolos da palavra de entrada são consumidos
- Alguns estados podem ser finais
 - Após consumir toda a palavra de entrada, se a máquina pára em um estado final, então diz-se que a máquina reconhece (ou aceita) a palavra de entrada

 Um estado é representado por uma circunferência contendo um rótulo (seu nome)

 O estado inicial é identificado por uma seta

 Cada estado final é identificado por borda dupla

 Um estado pode ser ao mesmo tempo inicial e final

 Uma transição é representada por uma seta

 Diz-se que esta transição consome o símbolo 0 e leva a máquina do estado A para o estado B

- Os estados são A e B
- O estado Inicial é A
- O estado final é B

Há quatro transições

- De A, consome 0 e vai para B
- 2. De A, consome 1 e vai para A
- 3. De B, consome 0 e vai para B
- 4. De B, consome 1 e vai para A

Após consumir	chega-se ao estado	e resta consumir
λ	А	001100
0	В	01100
0	В	1100
1	А	100
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	А	<u>0</u> 01100
0	В	01100
0	В	1100
1	А	100
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	А	001100
0	В	<u>0</u> 1100
0	В	1100
1	А	100
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	Α	001100
0	В	01100
0	В	<u>1</u> 100
1	А	100
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	Α	001100
0	В	01100
0	В	1100
1	Α	<u>1</u> 00
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	Α	001100
0	В	01100
0	В	1100
1	Α	100
1	Α	<u>0</u> 0
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	Α	001100
0	В	01100
0	В	1100
1	Α	100
1	Α	00
0	В	<u>0</u>
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ	Α	001100
0	В	01100
0	В	1100
1	Α	100
1	А	00
0	В	0
0	В	λ

Após consumir	chega-se ao estado	e resta consumir
λ		001100
0	В	01100
		1100
AFD pára no estado B, final. Portanto, a palavra é aceita!		
1	A	00
0	В	0
0	В	λ

- Observações sobre a máquina
 - Somente chega no estado B após consumir um símbolo 0
 - O Retorna incondicionalmente ao estado A quando consome um símbolo 1
- Qual linguagem é reconhecida por este AFD?

$$\{0,1\}^*\{0\}$$

- Este AFD intercala entre os estados P e I, independente do símbolo consumido
- A única maneira de chegar a um estado final (no caso, P) é consumir um número par de símbolos

$$L = (\{0,1\}^2)^*$$

• Uma forma mais compacta, consolidando transições

Em um AFD, é obrigatório que

- Todos os estados tenham regras de transição partindo deles para cada um dos símbolos do alfabeto
- Não haja mais de uma transição que parta do mesmo estado e que consuma o mesmo símbolo

Essas restrições garantem que

- Enquanto houver símbolos a serem consumidos, é sempre possível realizar um passo de execução
- O Um passo de execução sempre leva a máquina a um único estado

21

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Sim, pois há transições saindo de cada estado para cada símbolo, sem repetições

22

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Não, há duas transições saindo de A, consumindo o símbolo 0

23

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Sim, não há obrigação de que todos os estados estejam conectados entre si

24

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Não, falta a transição de saída de B consumindo o símbolo 0

25

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Sim, pois não há obrigação de ter estados finais

26

• Considerando $\Sigma = \{0,1\}$

 A máquina de estados ao lado é um AFD?

Por quê?

Não, pois não há estado inicial

27

 A configuração instantânea de uma máquina é o conjunto de informações que representa uma "fotografia" da execução dessa máquina em um determinado instante

- No caso de um AFD, a configuração instantânea engloba
 - O estado atual
 - A sequência de símbolos que falta consumir

- 28
- Voltando a exemplo inicial
 - o Palavra a consumir 001100

 Configuração instantânea inicial é

(A, 001100)

 Após consumir o primeiro símbolo da palavra (0)

(B, 01100)

- Voltando a exemplo inicial
 - O Palayra a consumir 001100

- Diz-se que
 - A configuração (A, 001100) leva
 à configuração (B, 01100)
- Este passo de execução é representado pelo símbolo
 ⊢, que significa "leva a"
 - \circ (A, 001100) \vdash (B,01100)

- 30
- Voltando a exemplo inicial
 - O Palavra a consumir 001100
- A sequência de execução é

- 31
- Voltando a exemplo inicial
 - O Palavra a consumir 001100
- Ou simplesmente

(A, 001100)
$$\stackrel{6}{\vdash}$$
 (B, λ)

que significa que (A, 001100) leva a (B, λ) em 6 passos

- 32
- Voltando a exemplo inicial
 - O Palavra a consumir 001100
- Em geral o número de passos não importa, podendo escrever

(A, 001100)
$$\stackrel{*}{\vdash}$$
 (B, λ)

que significa que (A, 001100) leva a (B, λ)

33

 Qual linguagem é reconhecida pelo AFD?

$$(A, p1q) \stackrel{*}{\vdash} (A, 1q)$$
 $\vdash (B, q)$
 $\stackrel{*}{\vdash} (B, \lambda)$

para
$$p \in \{0\}^*$$
 e $q \in \{0,1\}^*$

- Qual linguagem é reconhecida pelo AFD?
 - O O estado L serve como "lixeira"
 - Se o AFD entra neste estado, que não é final, fica "preso"

(A,
$$p1q$$
) $\stackrel{*}{\vdash}$ (A, $1q$) para $p \in \{0\}^*$

$$\stackrel{\vdash}{\vdash}$$
 (B, q)
$$\stackrel{*}{\vdash}$$
 (B, λ) para $q \in \{0\}^*$

- Qual linguagem é reconhecida pelo AFD?
 - O O estado L serve como "lixeira"
 - Se o AFD entra neste estado, que não é final, fica "preso"

- Qual linguagem é reconhecida pelo AFD?
 - O O estado L serve como "lixeira"
 - Se o AFD entra neste estado,
 que não é final, fica "preso"

(A,
$$p1q1r$$
) $\stackrel{*}{\vdash}$ (A, $1q1r$) para $p \in \{0\}^*$

$$\stackrel{*}{\vdash}$$
 (B, $q1r$) para $q \in \{0\}^*$

$$\stackrel{\vdash}{\vdash}$$
 (L, r)
$$\stackrel{*}{\vdash}$$
 (L, λ) para $r \in \{0,1\}^*$

Formalização

37

- Um AFD qualquer pode ser representado por uma quíntupla $M = (E, \Sigma, \delta, i, F)$, onde
 - *E* é um conjunto finito de um ou mais elementos denominados estados;
 - Σ é o alfabeto;
 - δ : $E \times \Sigma \rightarrow E$ é a função de transição, uma função total;
 - *i*, um estado de E, é o estado inicial;
 - *F*, um subconjunto de *E*, é o conjunto de estados finais.

Formalização - exemplo

38

 Este AFD é representado pela quíntupla M = (E,Σ,δ,i,F), onde

$$\circ$$
 $E = \{A,B,L\}$

$$\circ$$
 $\Sigma = \{0,1\}$

$$\circ$$
 $i = A$

$$\circ$$
 $F = \{B\}$

 \circ δ é definido por

$$\delta(A,0) = A$$
 $\delta(B,0) = B$ $\delta(L,0) = L$ $\delta(A,1) = B$ $\delta(B,1) = L$ $\delta(L,1) = L$

Exercícios

39

Escreva um AFD para cada linguagem abaixo

- 1. Palavras sobre {0,1} com um número par de 1s.
- Sequências de dígitos binários com um número par de 1s e que terminam em 0.
- 3. Sequências de dígitos binários com um número par de 1s ou que terminam em 0.
- 4. Números binários que contêm três 0s em sequência.
- 5. Números binários que não contêm três 0s em sequência.

Exercícios

40

Identifique a linguagem reconhecida por cada AFD abaixo:

Autômatos Finitos Não Determinísticos

41

OBJETIVO

COMPREENDER E PROJETAR AFNS

Introdução

42

AFD

- Transições são definidas para apenas um único estado
- Uma transição para cada símbolo do alfabeto
- Um Autômato Finito Não Determinístico (AFN) não impõe essas restrições
 - Várias transições podem ser definidas para o mesmo estado de origem e para o mesmo símbolo do alfabeto
 - Não é obrigatório definir transições para cada símbolo

Vantagens

- Maior facilidade na construção dos autômatos
- Autômatos mais "limpos"

Introdução

43

- O que muda em relação aos AFDs?
 - Em um dado momento, a máquina pode estar em vários estados ao mesmo tempo
 - Não se pode mais falar em "estado atual", mas conjunto de estados atuais

- E qual é o critério de "aceitação de uma palavra" por um AFN?
 - Ao consumir toda a palavra de entrada, se pelo menos um dos estados atingidos for final, então a palavra de entrada é aceita

- Números binários terminados em 1
 - A máquina sempre permanece no estado A
 - Se o símbolo 1 for consumido, então a máquina transita ao mesmo tempo para os estados A e B
 - Não é necessário criar transições saindo do estado B

45

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

46

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

47

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

48

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

49

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

50

Após consumir	chega-se aos estados	e resta consumir
λ	{A}	00101
0	{A}	0101
0	{A}	101
1	{A,B}	01
0	{A}	1
1	{A,B}	λ

Configuração instantânea

51

"Fotografia" da execução da máquina em um dado instante

- No caso de um AFD, a configuração instantânea engloba
 - O estado atual
 - A sequência de símbolos que falta consumir

- No caso de um AFN, a configuração instantânea engloba
 - O conjunto de estados atuais
 - A sequência de símbolos que falta consumir

- A configuração instantânea é representada por uma tupla (E, p), onde
 - *E* conjunto de estados atuais
 - p a palavra restante

53

 E quando não há transição definida para um símbolo?

Consumo da palavra 1010

$$(\{A\}, 1010) \vdash (\varnothing, 010)$$

$$\vdash (\varnothing, 10)$$

$$\vdash (\varnothing, 0)$$

$$\vdash (\varnothing, \lambda)$$

54

 E quando não há transição definida para um símbolo?

Consumo da palavra 1010

$$(\{A\}, 1010) \vdash (\varnothing, 010)$$

$$\vdash (\varnothing, 10)$$

$$\vdash (\varnothing, 0)$$

$$\vdash (\varnothing, \lambda)$$

55

 E quando não há transição definida para um símbolo?

Consumo da palavra 1010

$$(\{A\}, 1010) \vdash (\varnothing, 010)$$

$$\vdash (\varnothing, 10)$$

$$\vdash (\varnothing, 0)$$

$$\vdash (\varnothing, \lambda)$$

E quando não há transição

definida para um símbolo?

Consumo da palavra 1010

$$(\{A\}, 1010) \vdash (\varnothing, 010)$$

$$\vdash (\varnothing, 10)$$

$$\vdash (\varnothing, 0)$$

$$\vdash (\varnothing, \lambda)$$

 $(\varnothing, p) \stackrel{*}{\vdash} (\varnothing, \lambda)$ para qualquer palavra p

 Números binários que terminam em 01

 Palavras sobre {a,b} que contêm aba

 Palavras sobre {a,b} que terminam em aba

Formalização

- Um AFN pode ser representado por uma quíntupla $M=(E,\Sigma,\delta,I,F)$
 - *E* é um conjunto finito de um ou mais estados
 - Σ é o alfabeto
 - \circ δ : $E \times \Sigma \rightarrow \mathcal{P}(E)$ é a função de transição, uma função total, onde $\mathcal{P}(E)$ é o conjunto de todos os subconjuntos de E
 - *I*, um subconjunto de *E*, é o conjunto de estados iniciais
 - *F*, um subconjunto de *E*, é o conjunto de estados finais

Formalização - exemplo

59

 Este AFN é representado pela quíntupla M = (E,Σ,δ,i,F), onde

$$\circ$$
 $E = \{A,B\}$

$$\circ$$
 $\Sigma = \{0,1\}$

$$\circ$$
 $i = A$

$$\circ$$
 $F = \{B\}$

o δ é definido por

$$\delta(A,0) = \{A\}$$
 $\delta(B,0) = \emptyset$

$$\delta(A,1) = \{A,B\} \quad \delta(B,1) = \emptyset$$

Autômato Finito Não Determinístico Estendido

- Um AFN consome sempre exatamente um símbolo
 - \circ $\delta(estado, símbolo) = \{estados-destino\}$

- Um Autômato Finito Não Determinístico Estendido (AFNE), permite que cada transição consuma uma palavra não nula
 - \circ $\delta(estado, palavra) = \{estados-destino\}$
 - Sendo palavra pertencente a Σ⁺

AFNE

 Palavras sobre o alfabeto {a,b} que contêm a

Usando um AFN

sequência aba

Usando um AFNE

AFNE

62

 Palavras sobre o alfabeto {a,b} que contêm a sequência aba

Usando um AFN

Usando um AFNE

A transição do estado A para o estado D somente poderá ocorrer se todos os símbolos puderem ser consumidos imediatamente e na ordem especificada

Formalização

- Um AFNE é representado por uma quíntupla M = (Ε,Σ,δ,Ι,F)
 - *E* é um conjunto finito de um ou mais estados
 - Σ é o alfabeto
 - \circ δ : $E \times \Sigma^+ \to \mathcal{P}(E)$ é a função de transição, uma função total, onde $\mathcal{P}(E)$ é o conjunto de todos os subconjuntos de E
 - *I*, um subconjunto de *E*, é o conjunto de estados estados iniciais
 - *F*, um subconjunto de *E*, é o conjunto de estados finais

Autômato Finito Não Determinístico com Tansições λ

- Um AFN consome sempre exatamente um símbolo
 - \circ $\delta(estado, símbolo) = \{estados-destino\}$
- Um Autômato Finito Não Determinístico com Transições λ (AFNλ), permite transições que não consomem símbolo
 - \circ $\delta(estado, palavra) = \{estados-destino\}$
 - O Sendo *palavra* pertencente a Σ U $\{\lambda\}$

AFNλ

65

- As transições λ são muito úteis em várias situações
 - Uma das mais comuns é "fingir" que o autômato possui vários estados iniciais
 - União de linguagens

- Exemplo
 - Linguagem sobre {0,1} cujas
 palavras terminam em 01 ou 11

Palavras terminadas em 01

Palavras terminadas em 11

AFNλ

- 66
- As transições λ são muito úteis em várias situações
 - Uma das mais comuns é "fingir" que o autômato possui vários estados iniciais
 - União de linguagens
- Exemplo
 - Linguagem sobre {0,1} cujas
 palavras terminam em 01 ou 11

Palavras terminadas em 01 ou 11

AFNλ

67

- As transições λ são muito úteis em várias situações
 - O Uma das mais comuns é "fingir" que o autômato possui vários estados iniciais
 - União de linguagens
 - Concatenação de linguagens

Linguagem sobre {a,b} definida como:

$$L=\{a^nb^m \mid n>=0 \text{ e } m>=0\}$$

$$L=\{a^nb^m \mid n>=0 \text{ e } m>=0\}$$

Exercícios

Faça um AFN que reconheça

- 1. Palavras sobre o alfabeto $\{a,b\}$ que possuam a sequência baba
- 2. Palavras sobre o alfabeto $\{x,y,z\}$ que terminam em x ou yz
- Palavras sobre o alfabeto $\{x,y\}$ que começam com xyx ou que terminam com yxy
- 4. Palavras sobre o alfabeto $\{m,n\}$ que contêm um número par de m's ou que terminam em nnn
- 5. Palavras em $\{a, b\}^*$ de tamanho par