Recall: If $T \in \mathcal{L}(V,W)$, then $T' \in \mathcal{L}(W',V')$ is defined by $T'(4') = 4 \circ T,$

That is,

(x) (T'(4'))(v) = 4(T/v) \ \ veV.

Now suppose V and W are inner product spaces, (In this case we write 2:, it and Li, it for the inner products.)

The Riesz representation theorem implies that we can think of an rever product space as its own duel:

Ygev' JueV, glul= Lv, u> VeV.

If we think of well as being on element of W' linstead of representing an element of W', as is more correct), then (*) becomes

\(\sup_{V} \, T'(\omega) \sup_{V} = \left\(T(\omega), \omega \sup_{\omega} \)
\(\text{\sup_{V}} \text{\text{\text{\sup_{V}}} \omega \text{\ti}\text{\ti}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\ti

This inspires the following theorem/definition (which is slightly different from (x) in the complex case).

Theorem: Let V and W be finite-dimensional inner product spaces over F (Rarc), and let TE LlviW). Then there exists a unique T*ELlWiW, called the adjoint of T, satisfying

 $\angle T(v), \omega \rangle_{w} = \langle v, T^*(\omega) \rangle \forall v \in V \forall w \in W.$

Proof: Let WEW be fixed and define 9: V-> F by

plul = <Tlu), w> V & V.

Then GEV:

 $\varphi(\alpha u + \beta v) = \langle T(\alpha u + \beta v), w \rangle_{W}$ $= \langle \alpha T(u) + \beta T(v), w \rangle_{W} \quad (sixue T is linear)$ $= \alpha \langle T(u), w \rangle + \beta \langle T(v), w \rangle_{W} \quad (by properties of w)$ $= \alpha \varphi(u) + \beta \varphi(v).$

It follows from the Riesz representation Theorem that those exists a unique element of V, which we call T*/w), such that

Q(v) = <v, T*/w/> \VeV

This defines $T^*: W \to V$. It remains only to show that T^* is linear. By the Riesz representation theorem, there is only one vector $x (x=T^*/w)$ satisfying

We have

$$\langle T(v), w \rangle_{\omega} = \langle v, T^*(\omega) \rangle_{v} \forall v \in V,$$

 $\langle T(v), z \rangle_{\omega} = \langle v, T^*(z) \rangle_{v} \forall v \in V.$

Example: Consider the follow subspace of Cocoii) Cunder the L'inner product):

Defan D: S-s by D(f)=f'. What is D*?

Solution: Let fig be arbitrary elements of S. Than

$$\angle D(t), g = \int_{0}^{1} f'(x)g(x)dx = f(x)g(x)\Big|_{0}^{1} - \int_{0}^{1} f(x)g'(x)dx \quad \left(\begin{array}{c} \text{integration} \\ \text{by post} \end{array}\right)$$

$$= -\int_{0}^{1} f(x)g'(x)dx \quad \left(\begin{array}{c} \text{since } f(0) = f(1) = 0 \end{array}\right)$$

$$=\langle f,-g'\rangle.$$

Thus D* is defined by D*/g/=-g'.

Theorem: Let U,V,W be finite-dimensional inner product spaces over F (Ror C).

1. VS,TER(V,W), (S+T)*= S*+T*

2. $\forall \text{ Teal}(v, w), \lambda \in F$, $(\lambda T)^* = \overline{\lambda} T^* (if F=C) \text{ or } (\lambda T)^* = \lambda T^* (if F=R)$.

3. Y TE LLV, W), (T*)*=T

4. \forall Se & (v,w), Tellu,v), (sT) = T*S*

5. I*=I, where I:V-V is the identity operator.

Proof: These proofs all depend on the definition of the adjoint, to wit, if well and uel satisfies

then u= T*(w).

1. We have

2. Next,

$$\angle(\lambda T)(\nu), \omega \rangle_{\omega} = \langle \lambda T(\nu), \omega \rangle_{\omega} = \lambda \langle T(\nu), \omega \rangle_{\omega}$$

$$= \lambda \langle \nu, T^*(\omega) \rangle_{\omega}$$

$$= \langle \nu, \overline{\lambda} T^*(\omega) \rangle_{\omega}$$

$$= \langle \nu, (\overline{\lambda} T^*(\omega) \rangle_{\omega} \quad \forall \nu \in V$$

$$\Rightarrow (\lambda T)^* = \overline{\lambda} T^*.$$

3. We have

$$\langle T^* L \omega \rangle, v \rangle_{V} = \langle v, T^* L \omega \rangle_{V}$$

$$= \langle T | v |, \omega \rangle_{W}$$

$$= \langle w, T | v | \rangle_{W} \quad \forall v \in V \quad \forall w \in W$$

$$\Rightarrow |T^*|^* = T.$$

4. Suppose SELV,WI, TELLU,VI, The

LIST) LW,WI = CS(T/W),WIW

= CThul, S*(W)

= Lu, T*(s*(w)) Zu = Lu, (T*s*)(w) Zu Yuell Ywell

5. Finally,

 $\angle IlvI, uZ_v = \angle v, uZ_v = \angle v, I(u)Z_v \forall v \in V \forall u \in V$ $\Rightarrow I^* = I.$

Given TELLV, WI, the four subspaces

M(T), R(T), n(TY), R(T*)

are often called the <u>fundamental subspaces</u> defined by T. We already linear that

din (917) + din (R17) = din(V), drn (917) + din (R17) = din (W).

Theorem: Let V, W be finite-dimensional inner product spaces over F(Rarc) and let TEL(V,W). Then

 $\mathbb{R}(T)^{\perp} = \mathfrak{N}(T^*)$ and $\mathfrak{N}(T^*)^{\perp} = \mathbb{R}(T)$,

91(T) = R(T*) and R(T*) = 91(T).

Proof: We have

Thus R(T) = 91670). It follows that

Also, Since T* = T, we have

Theorem: Let V, W be finite-dimensional inner product spaces over F/Ror C) and let TE & (VIN). Then

Proof: Choose V,,-, vn & V such that [T/v,),--, T/va)} is a basis for RITI. It suffices to prove that {T*(T/v,1), ---, T*(T/v,1)}, a basis for Oc(T*). First,

$$\alpha, T^{\bullet}(T(\gamma)) + --- + \alpha_n T^{\bullet}(T(\gamma)) = 0$$

$$\Rightarrow T^*(\alpha_1 T(v_1) + \dots + \alpha_1 T(v_n)) = 0$$

But

and therefore

=>
$$\alpha_1 = -- = \alpha_n = 0$$
 (since $\{T(v_i), ---, T(v_n)\}$ is linearly independent).

Thus {T*(T(v,1), ..., T*(T(v,1))} is linearly independent.

We can prove directly that $\{T^*(T|V_i)\}, ---, T^*(T(V_n))\}$ Spur $R(T^*)$ (see below). But here's a simpler way to finish the proof:

We just showed that dim $|R(T^*)| \ge dim(R(T))$. This result applies to all linear maps, so it applies to T^* :

dim (Q 17**)) > dim (R17+))

=> din (Q(J)) > din (or (74)).

Thus dim(RT+1) = dim(RTI), as desired.

(Direct proof that {T*(Th)), --, T*(Th)) spans Oc(T*).)

Now suppose VER(T*), say v=T*(w) for WEW. We have $W = R(T) \bigoplus R(T)^{\perp} = R(T) + \Re(T^*)$

and hence there exist $y \in R(T)$, $z \in N(T^*)$ such that w = y + 2. Since $y \in R(T)$, there exist $\alpha_1, ..., \alpha_n \in F$ such that $y = \alpha_1 T(v_1) + ... + \alpha_n T(v_n)$.

But then

V= T*(w) = T*(a,T(v,)+--+a,T(v,)+2)

= a,T*(th,1)+--+a,T*(t(v,))+T*(2)

E Span (T*(th,1),--,T*(t(v,)).

Thus $\{T^*(T | v_i)\}_{,--,T^*(T | v_n)}\}$ spuns $\mathbb{R}(T^*)$, and we have shown that $\{T^*(T | v_i)\}_{,--,T^*(T | v_n)}\}$ is a basis.