

ГЕНЕРАТИВНЫЕ МОДЕЛИ

ЛЕКТОР: РОМАН ИСАЧЕНКО

СЕМИНАРИСТ: ВЛАДИМИР КОНДРАТЕНКО

ДОМАШКИ: ГРИГОРИЙ КСЕНОФОНТОВ







## О ПРЕПОДАВАТЕЛЕ И КУРСЕ



# **РОМАН ИСАЧЕНКО** лектор

- Кандидат физико-математических наук, преподаватель МФТИ
- Занимаюсь компьютерным зрением в Yandex



## ВЛАДИМИР КОНДРАТЕНКО

семинарист



🔁 Team Lead в SberDevices

### КОРОТКО О КУРСЕ

Курс посвящен современным методам построения генеративных порождающих моделей.

Рассматриваются следующие классы генеративных моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- модели нормализационных потоков,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми продвинутыми методами глубокого обучения.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.



## ГЕНЕРАТИВНЫЕ МОДЕЛИ





https://imagen.research.google/







## УСТРОЙСТВО КУРСА

#### СТРУКТУРА КУРСА



14 лекций



14 семинаров



6 домашних заданий



экзамен

## КАК ФОРМИРУЕТСЯ ОЦЕНКА?

91911

6 дз по 13 баллов: **78 БАЛЛОВ** 

+



устный экзамен: 26 БАЛЛОВ



максимум за курс: **104 БАЛЛА** Финальная оценка выставляется по формуле:

floor(relu(#баллов/8 - 2))

| ТЕМЫ | ЛЕКЦИЙ |
|------|--------|
|      |        |

| Nº | Тема лекции                                                                                                                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Logistics. Generative models overview and motivation. Problem statement. Divergence minimization framework. Autoregressive models (PixelCNN).                                 |
| 2  | Normalizing Flow (NF) intuition and definition. Forward and reverse KL divergence for NF. Linear NF. Gaussian autoregressive NF.                                              |
| 3  | Coupling layer (RealNVP). Continuous-in-time NF and neural ODE. Kolmogorov-Fokker-Planck equation for NF log-likelihood. FFJORD and Hutchinson's trace estimator.             |
| 4  | Adjoint method for continuous-in-time NF. Latent Variable Models (LVM). Variational lower bound (ELBO).                                                                       |
| 5  | Variational EM-algorithm. Amortized inference, ELBO gradients, reparametrization trick. Variational Autoencoder (VAE). NF as VAE model.                                       |
| 6  | Discrete VAE latent representations. Vector quantization, straight-through gradient estimation (VQ-VAE). Gumbel-softmax trick (DALL-E). ELBO surgery and optimal VAE prior.   |
| 7  | NF-based VAE prior. Likelihood-free learning. GAN optimality theorem.                                                                                                         |
| 8  | Wasserstein distance. Wasserstein GAN (WGAN). WGAN with gradient penalty (WGAN-GP). f-divergence minimization.                                                                |
| 9  | GAN evaluation. FID, MMD, Precision-Recall, truncation trick. Langevin dynamic. Score matching.                                                                               |
| 10 | Denoising score matching. Noise Conditioned Score Network (NCSN). Gaussian diffusion process: forward + reverse.                                                              |
| 11 | Gaussian diffusion model as VAE, derivation of ELBO. Reparametrization of gaussian diffusion model.                                                                           |
| 12 | Denoising diffusion probabilistic model (DDPM): overview. Denoising diffusion as score-based generative model. Model guidance: classifier guidance, classifier-free guidance. |
| 13 | SDE basics. Kolmogorov-Fokker-Planck equation. Probability flow ODF. Reverse SDE. Variance Preserving and Variance Exploding SDEs.                                            |
| 14 | Flow matching.                                                                                                                                                                |



#### ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей + Статистика
- Машинное обучение + Основы глубокого обучения
- Python + pytorch

### помним, что..

- Курс математически нагружен.
- Курс постоянно развивается.
- Любой фидбек, особенно негативный, приветствуется!

#### ССЫЛКИ

repo: <a href="https://github.com/r-isachenko/2024-DGM-MIPT-YSDA-course">https://github.com/r-isachenko/2024-DGM-MIPT-YSDA-course</a>

## По любым вопросам – пишите:

### РОМАН ИСАЧЕНКО



# до встречи на курсе!