Visualizing Multilevel Models

Andy Grogan-Kaylor

31 May 2023 13:00:49

Introduction

An evolving set of notes on visualizing results from multilevel models.

When this document is presented in *slide show format*, some slides may be long, and you may need to *scroll down* to see the full slide. In slide show format use the left and right arrow keys to navigate through the slides. b will make the text bigger. s will make the text smaller.

The examples below use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

Organizing Questions

Try to think about some of the advantages and disadvantages of different approaches to visualizing multilevel models. In multilevel models, we don't want to just *control for* variation, but to start to *explore* the variation. Put concretely:

- Some approaches use dots. Some approaches use lines. Some approaches use dots and lines.
- Some approaches use the raw unadjusted data. Other approaches use adjusted or model predicted data.
- Some approaches attempt to show the Level 2 specific regression lines; some approaches only show an average regression line.
- What approaches might work well with *large numbers* of Level 2 units? What approaches might work well with *smaller numbers* of Level 2 units?

What approach(es) do you prefer?

Setup

I am not terrifically fond of Stata's default s2color graph scheme. Therefore I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

. set scheme michigan

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack

Get Data

- . use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multilevel-dat
- > a/simulated_multilevel_data.dta", clear

Scatterplots (twoway scatter y x)

- . twoway scatter outcome warmth
- . graph export myscatter.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatter.png saved as PNG format

Figure 1: Scatterplot

Simple Linear Fit (twoway lfit y x)

- . twoway lfit outcome warmth
- . graph export mylinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylinear.png saved as PNG format

Linear Fit With Confidence Interval (twoway lfitci y x)

- . twoway lfitci outcome warmth
- . graph export mylfitci.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylfitci.png saved as PNG format

Combine Scatterplot and Linear Fit (twoway (scatter y x) (lfit y x))

- . twoway (scatter outcome warmth) (lfit outcome warmth)
- . graph export myscatterlinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatterlinear.png saved as PNG format

Figure 2: Linear Fit

Figure 3: Linear Fit With Confidence Interval

Figure 4: Scatterplot and Linear Fit

Spaghetti Plots (spagplot y x, id(group))

```
. spagplot outcome warmth, id(country)
```

. graph export myspaghetti.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti.png saved as PNG format

Small Multiples (twoway y x, by(group))

Small Multiples, showing a separate graph for each group in the data, are an increasingly popular data visualization technique. Below, I build a small multiples graph using the by option in Stata.

I use the aspect option to adjust the aspect ratio of the graph for better visual presentation. I also use the mcolor(%30) option to create some transparency in the dots of the scatterplot, which helps the presentation of these small multiples. The mcolor(%30) option could be useful in the other graphs in this tutorial as well.

```
. twoway (scatter outcome warmth, mcolor(%30)) (lfit outcome warmth), by(country) aspect(1)
. graph export mysmallmultiples.png, width(1500) replace
file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mysmallmultiples.png saved as PNG
```

Taking A Random Sample

format

At times, we may have too many Level 2 units to effectively display them on a spaghetti plot, or using small multiples. If this is the case, we may need to randomly sample Level 2 units. This can be difficult to accomplish as our standard sample command operates on each row, or on Level 1 units.

We can accomplish random sampling at Level 2, with a little bit of code.

```
. set seed 3846 // random seed for reproducibility
```

. gen randomid = runiform() // generate a random id variable

Figure 5: Spaghetti Plot

Figure 6: Small Multiples

```
. * by country (i.e. by Level 2 unit) replace the randomid
. * with the first randomid for that country (Level 2 unit)
. * so that every person in that country has the same random id
. bysort country: replace randomid = randomid[1]
```

summarize randomid // descriptive statistics for random id

(2,970 real changes made)

3,000

•	Summarize re	indomid // desci	ipuive bear	IBUICE IOI I	andom 1d	
	Variable	Obs	Mean	Std. dev.	Min	Max

.6174022

- . twoway (scatter outcome warmth, mcolor(%30)) /// scatterplot
- > (lfit outcome warmth) /// linear fit

randomid

- > if randomid < .5, /// only use a subset of randomid's
- > by(country) aspect(1) // by country
- . graph export mysmallmultiples2.png, width(1500) replace
- file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mysmallmultiples2.png saved as PNG format

.2374704

.0733026

.9657055

Figure 7: Small Multiples With A Random Sample Of Countries

Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs—unless we take steps to correct this—reflect unadjusted, or bivariate associations. We may sometimes wish to develop a graphs that reflect the adjusted or predicted estimates from our models.

In multilevel models, *prediction* is a complex question. The procedures below outline graphs that incorporate predictions using the variables, but do not include predictions that incorporate the random effects. (This will be added!)

Using Predicted Values (predict)

Estimate The Model

. mixed outcome warmth physical_punishment i.group $\mid\mid$ country: $\mid\mid$ estimate MLM

Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: Log likelihood = -9668.0859 Iteration 1: Log likelihood = -9668.0859

Computing standard errors ...

Mixed-effects ML regression Number of obs = 3,000 Group variable: country Number of groups = 30

Obs per group:

Prob > chi2

 $\min = 100$ avg = 100.0 max = 100Wald chi2(3) = 401.00

= 0.0000

Log likelihood = -9668.0859

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
warmth physical_punishment 2.group _cons	.961837	.0581809	16.53	0.000	.8478046	1.075869
	8457672	.0798128	-10.60	0.000	-1.002197	6893369
	1.084409	.2200548	4.93	0.000	.6531099	1.515709
	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values

. predict outcome_hat, fitted // predict yhat (`fitted` uses fixed AND random effects)

Graph With twoway Syntax

- . twoway (scatter outcome_hat warmth) (lfit outcome_hat warmth)
- . graph export mypredictedvalues.png, width(1500) replace
- file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues.png saved as PNG format
- . twoway (lfit outcome_hat warmth)
- . graph export mypredictedvalues2.png, width(1500) replace
- file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues2.png saved as PNG format

Spaghetti Plot With Predicted Values

- . spagplot outcome_hat warmth, id(country)
- . graph export myspaghetti2.png, width(1500) replace
- file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti2.png saved as PNG format

margins and marginsplot

Estimate The Model

. mixed outcome warmth physical_punishment i.group || country: // estimate MLM Performing EM optimization ...
Performing gradient-based optimization:

Figure 8: Predicted Values From predict

Figure 9: Predicted Values From predict With Only Linear Fit

Figure 10: Spaghetti Plot With Predicted Values

Iteration 1: Log likelihood = -9668.0859

Computing standard errors ...

Mixed-effects ML regression

Group variable: country

Number of obs = 3,000

Number of groups = 30

Obs per group:

Prob > chi2

min = 100 avg = 100.0 max = 100 Wald chi2(3) = 401.00

= 0.0000

Log likelihood = -9668.0859

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
warmth	.961837	.0581809	16.53	0.000	.8478046	1.075869
physical_punishment	8457672	.0798128	-10.60		-1.002197	6893369
2.group	1.084409	.2200548	4.93	0.000	.6531099	1.515709
_cons	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values At Specified Values With margins

. margins group, at(warmth = (1 2 3 4 5 6 7)) // predictive *margins*

Predictive margins Number of obs = 3,000

Expression: Linear prediction, fixed portion, predict()

1._at: warmth = 1

2._at: warmth = 2 3._at: warmth = 3

4._at: warmth = 4

5._at: warmth = 5 6._at: warmth = 6

 $7._{at: warmth = 7}$

	Margin	l z	P> z	[95% conf.	interval]	
_at#group						
1 1	50.4999	.3983539	126.77	0.000	49.71914	51.28066
1 2	51.58431	.3994365	129.14	0.000	50.80143	52.36719
2 1	51.46174	.3809288	135.10	0.000	50.71513	52.20834
2 2	52.54615	.38173	137.65	0.000	51.79797	53.29432
3 1	52.42357	.371884	140.97	0.000	51.6947	53.15245
3 2	53.50798	.3723656	143.70	0.000	52.77816	54.23781
4 1	53.38541	.3718315	143.57	0.000	52.65664	54.11419
4 2	54.46982	.3719738	146.43	0.000	53.74077	55.19888
5 1	54.34725	.3807751	142.73	0.000	53.60094	55.09355
5 2	55.43166	.3805823	145.65	0.000	54.68573	56.17759
6 1	55.30909	.398109	138.93	0.000	54.52881	56.08937
6 2	56.3935	.397607	141.83	0.000	55.6142	57.17279
7 1	56.27092	.4228024	133.09	0.000	55.44225	57.0996
7 2	57.35533	.4220306	135.90	0.000	56.52817	58.1825

Graph With marginsplot

. marginsplot // plot of predicted values
Variables that uniquely identify margins: warmth group

. graph export mymarginsplot.png, width(1500) replace

Figure 11: Predicted Values From margins and marginsplot

Scatterplot With Linear Fit and Marginal Density Plots (twoway ...)

As another possibility, we may wish to show more of the variation, by showing the variation in the *independent* variable and the *dependent* variable along with a *scatterplot* and *linear fit*. This is a complex graph and requires a little bit of manual programming in Stata.

You could also investigate the user written program binscatterhist (ssc install binscatterhist) which produces a similar looking graph, and automates much of this work.

Manually Generate The Densities To Plot Them Below (kdensity ...)

We generate the density for warmth at only a few points (n(8)) since this variable has relatively few categories.

- . kdensity warmth, generate(warmth_x warmth_d) n(8) // manually generate outcome densities
- . kdensity outcome, generate(outcome_y outcome_d) // manually generate outcome densities

Rescale The Densities So They Plot Well

You may have to experiment with the scaling and moving factors.

- . replace warmth_d = 100 * warmth_d // rescale the density so it plots well (8 real changes made)
- . replace outcome_d = $5 * outcome_d .5 // rescale AND MOVE the density so it plots well (50 real changes made)$
- . label variable outcome_y "density: beneficial outcome" // relabel y variable

Make The Graph (twoway ...)

You may have to experiment with whether scatterplots or line plots work best for displaying the x and y densities.

```
. twoway (scatter outcome warmth, mcolor(%10)) /// scatterplot w some transparency
> (lfit outcome warmth) /// linear fit
> (line warmth_d warmth_x) /// line plot of x density
> (line outcome_y outcome_d), /// line plot of y density (note flipped order)
> title("Outcome by Warmth") /// title
> ytitle("beneficial outcome") /// manual ytitle
> xtitle("parental warmth") /// manual xtitle
> legend(position(6) rows(2)) /// legend at bottom; 2 rows
> xlabel(0 1 2 3 4 5 6 7) /// manual x labels
> name(mynewscatter, replace)

. graph export mynewscatter.png, width(1500) replace
file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mynewscatter.png saved as PNG
format
```


Figure 12: Scatterplot and Linear Fit With Marginal Density Plots

Spaghetti Plot With Linear Fit and Marginal Density Plots Curvilinear and Linear Fits

Random Effects