WiSe 2022/23 Stand: 23. Oktober 2022

1. freiwillige Hausaufgabe - Logik

Abgabe: bis 10:30 am 11.11.2022 im ISIS-Kurs [WiSe 2022/23] Logik

Sie dürfen die freiwilligen Hausaufgaben gerne in Gruppen abgeben. Falls sie dies tun, sorgen sie bitte dafür, dass nur ein Gruppenmitglied die Hausaufgabe auf ISIS hochlädt.

Hausaufgabe 1

Ermitteln Sie für die folgenden Formeln jeweils, ohne Verwendung von Wahrheitstafeln, ob diese

- erfüllbar, aber nicht allgemeingültig,
- allgemeingültig, oder
- unerfüllbar sind.

(i)
$$\varphi_i := (Y \to X) \to (X \to Y)$$

(ii)
$$\varphi_{ii} := (A \leftrightarrow B) \land (A \lor \neg A \to A \land \neg B)$$

(iii)
$$\varphi_{iii} := (\neg Z \land \neg X) \to (X \lor (X \leftrightarrow \neg Z))$$

Hausaufgabe 2

Betrachten Sie den folgenden, als Zeichnung gegebenen, ungerichteten Graphen G.

$$a$$
 b c

Schreiben Sie die folgenden Formeln aus.

(i)
$$\psi_i := \bigvee_{\{x,y\} \in E(G)} X_{x,y}$$

(ii)
$$\psi_{ii} := \bigwedge_{u \in V(G)} \bigvee_{v \in V(G) \setminus \{u\}} Y_v \wedge Z$$

(iii)
$$\psi_{ii} := \bigwedge_{u \in V(G)} \bigvee_{v \in V(G) \setminus \{u\}} (Y_v \wedge Z)$$

Hausaufgabe 3

Ein Graph G hat ein perfektes Matching, wenn eine Teilmenge M der Kanten von G existiert sodass jeder Knoten aus G von einer Kante in M abdeckt wird und kein Knoten in zwei Kanten von M enthalten ist.

Prof. Kreutzer hat Max die Aufgabe gegeben, eine aussagenlogische Formel φ_G zu erstellen, welche genau dann erfüllbar ist, wenn G ein perfektes Matching besitzt. Max präsentiert Prof. Kreutzer am nächsten Tag folgende Lösungen:

• $\varphi^1_G \coloneqq X_G$, wobei X_G genau dann zu 1 auswertet, wenn G ein perfektes Matching besitzt.

$$\varphi_G^2 := \bigwedge_{v \in V(G)} \left(\bigwedge_{\substack{e \in E(G) \\ v \in e}} X_e \right) \land \bigwedge_{\substack{e, f \in E(G) \\ e \cap f \neq \emptyset}} (X_e \lor X_f),$$

wobei X_e zu 1 auswerten soll, falls e im perfekten Matching M ist.

$$\varphi_G^3 := \bigwedge_{u \in V(G)} \Big(\bigvee_{\substack{v \in V(G) \\ v \neq u}} \Big(X_{uv} \land \bigwedge_{\substack{w \in V(G) \\ u \neq w \neq v}} \neg X_{uw} \Big) \Big),$$

wobei wir erwarten, dass X_{uv} in einer erfüllenden Belegung mit 1 belegt wird, wenn $\{u, v\}$ im perfekten Matching M liegt.

- (i) Sie sind Tutor*in in Logik und müssen Max' Formeln bewerten. Geben Sie für jedes φ_G^i , mit $i \in \{1, 2, 3\}$, jeweils an, ob die Lösung richtig ist. Falls eine der Formeln falsch ist, versuchen Sie Max zu erklären warum die angegebene Formel falsch ist. Bitte sein Sie nett zu Max.
- (ii) Falls Sie der Meinung sind, dass alle Formeln von Max falsch sind, oder glauben, dass Sie eine elegantere Formel aufstellen können, geben Sie eine eigene Formel φ_G an und erklären Sie wie sich die Variablen in Ihrer Formel verhalten.

Anmerkung: Max hat keine syntaktischen Fehler gemacht. Jede der Formelkonstruktionen die Max erstellt hat gibt also gültige aussagenlogische Formeln aus. Insbesondere sind alle Verwendungsarten der Operatoren \bigvee und \bigwedge in den Formeln von Max auch Ihnen im Laufe der Vorlesung erlaubt.