Contrôle d'algèbre linéaire N°2

Durée : 1 heure 45 minutes Barème sur 25 points

NOM:	_	
	Groupe	
PRENOM:	_	

1. On considère l'équation matricielle en $X \in \mathbb{M}_2(\mathbb{R})$

$$AX = B$$
,

où A et B sont des matrices dépendant d'un paramètre $k \in \mathbb{R}$:

$$A = \begin{pmatrix} 1 & -2k \\ 2(1-k) & 8 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & -k \\ 3k-2 & 4 \end{pmatrix}.$$

Résoudre cette équation en fonction du paramètre k.

6 pts

2. Soient $A, B \in \mathbb{M}_n(\mathbb{R})$, avec A non diagonale et $\det B \neq 0$, et $k \in \mathbb{R}$ vérifiant l'équation

$$(A+kI_n)^2B=2B.$$

- a) Calculer $\det(A + kI_n)$.
- b) Discuter l'existence de A^{-1} selon la valeur de k .

5 pts

3. Soient \vec{a} , \vec{b} et \vec{c} les trois vecteurs de \mathbb{R}^3 donnés ci-dessous, dépendant d'un paramètre réel m,

$$\vec{a} = \begin{pmatrix} m \\ m \\ 2 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 1 \\ m^2 \\ m+1 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} m+1 \\ 2m \\ m+3 \end{pmatrix}$.

a) Pour quelles valeurs de m les vecteurs $\vec{a}, \vec{b}, \vec{c}$ sont-ils linéairement dépendants? Soient

$$W = \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix}_{\text{sev}} \quad \text{et} \quad \vec{v} = \begin{pmatrix} -3\\1\\3 \end{pmatrix}.$$

b) Dans chaque cas où dim $W \leq 2$, donner une base et la dimension de W. Déterminer également si $\vec{v} \in W$. Si c'est le cas, donner les composantes de \vec{v} relativement à la base choisie de W.

 $6.5 \mathrm{~pts}$

4. Soient $n \in \mathbb{N}^*$, r un polynôme de $P_n[x]$ et V le sous-ensemble de $P_n[x]$ défini par

$$V = \{ p \in P_n[x] \mid (r \cdot p)'(1) = 0 \}.$$

Rappel : $(r \cdot p)'(1)$ est la dérivée du polynôme $r(x) \cdot p(x)$ évaluée en $x_0 = 1$.

a) Montrer que V est un sous-espace vectoriel de $P_n[x]$.

Pour la suite, on fixe n = 3 et r(x) = x - 2 dans la définition de V.

b) Pour quelle valeur de $c \in \mathbb{R}$ le polynôme $s = x^3 + c$ appartient-il à V?

Soit encore $W = [t_1, t_2, t_3, t_4]_{\text{sev}}$ le sous-espace vectoriel de $P_3[x]$ défini par

$$t_1 = 2x^3 - 3x^2 + 4x$$

$$t_2 = x^3 + 5x^2 - 2x - 3$$

$$t_3 = 3x^3 + x + 3$$

$$t_4 = 2x^2 + x - 6$$

- c) Donner une base et la dimension de W.
- d) Donner une base et la dimension de $V \cap W$.

7.5 pts

Quelques éléments de réponses

1. •
$$k \notin \{-1, 2\}$$
 : $X = A^{-1}B = \begin{pmatrix} \frac{-(3k+4)}{2(k+1)} & 0\\ \frac{1}{4(k+1)} & \frac{1}{2} \end{pmatrix}$

• k = -1 : pas de solution

$$\bullet \ k=2 \quad : \quad X = \left(\begin{array}{cc} 4z-2 & 4w-2 \\ z & w \end{array} \right)$$

2. a) det
$$(A + kI_n) = \sqrt{2^n}$$

- b) $A(A + 2kI_n) = (2 k^2)I_n$
 - si $k^2 \neq 2$: A est inversible.
 - $\bullet\,$ si $k^2=2:A$ n'est pas inversible (car si det $A\neq 0\,,$ alors A serait diagonale)
- **3.** a) $m \in \{-2, 0, 1\}$

b) •
$$m = -2$$
 : $\mathcal{B} = (\vec{a}, \vec{b})$, $\dim W = 2$, $\vec{v} = \begin{pmatrix} \frac{13}{6} \\ \frac{4}{3} \end{pmatrix}$

• m = 0 : $\mathcal{B} = (\vec{a}, \vec{b})$, $\dim W = 2$, $\vec{v} \notin W$

 $\bullet \ m=1 \quad : \quad \mathcal{B}=(\vec{a})\,, \ \dim W=1\,, \ \vec{v}\notin W$

- **4.** b) c = 2
 - c) $t_2 = -t_1 + t_3 + t_4$ et on montre que t_1 , t_3 et t_4 sont linéairement indépendants. Donc $\mathcal{B} = (t_1, t_3, t_4)$, dim W = 3.

d)
$$\mathcal{B} = (t_3 - 3t_1, t_4 - 8t_1)$$
, dim $V \cap W = 2$.