Advanced Fluids: Wind Tunnel Project

ENME 5910

11/24/2020

Alexander J Snyder

Process:

Solved for Mass flow rate using Static Pressure and Temperature at a given at altitude.

$$m = \rho v a$$

• Solved for total pressure and total temperature in test section

$$T_o = T * \left(1 + \frac{\gamma - 1}{2} * Mach^2\right)$$

 $P_o = P * \left(1 + \frac{\gamma - 1}{2} * Mach^2\right)^{\frac{\gamma}{\gamma - 1}}$

• Solved for the diameter of the nozzle

$$d = \sqrt{\frac{4 * m * \sqrt{T_o}}{\pi * P_o * \sqrt{\frac{\gamma}{R} * (\frac{2}{\gamma + 1})^{\frac{\gamma + 1}{\gamma - 1}}}}}$$

• Solved for Pressure ratio across shock

$$\frac{P_{o3}}{P_{o1}} = (\frac{\left((\gamma+1)*Mach^2\right)}{\left((\gamma-1)*Mach^2+2\right)})^{\frac{\gamma}{\gamma-1}}*(\frac{(\gamma+1)}{(2*\gamma*Mach^2-(\gamma-1))})^{\frac{1}{\gamma-1}}$$

Solve for 10 percent loss of total pressure across test section

$$P_{02} = .9 * P_{01}$$

Solved for area diffuser at start up

$$A_{du,su} = (\frac{P_{o1}}{P_{03}})_{shock} * Area_{nozzle}$$

Solved for diameter diffuser at start up

$$d_{du,su} = \sqrt{\frac{4}{\pi} * A_{du,su}}$$

Found available diameter that meets .3 ft travel requirements

$$\left(\frac{d}{.0914m}\right)_{round} * .0914$$

Solved for area at diffuser at steady state

$$A_{du,ss} = (\frac{P_{o1}}{P_{02}})_{loss} * Area_{nozzle}$$

• Found available diameter that meets .3 ft travel requirements

$$(\frac{d}{.0914m})_{round} * .0914$$

• Found the area ratio at diffuser throat between available and ideal

$$\frac{A_{diffuser_ideal}}{A_{diffuser_avail}}$$

• Solved for Mach number at Area_{ratio}

$$(Area_{ratio})^2 = \left(\frac{1}{Mach^2}\right) * \left(\left(\frac{2}{\nu+1}\right) * \left(1 + \frac{\gamma-1}{2} * Mach^2\right)\right)^{\frac{\gamma+1}{\gamma-1}}$$

Solve for the Mach number after shock in the throat

$$Mach\ after\ throat_2^2 = \frac{1 + \frac{\gamma - 1}{2} * Mach_1^2}{\gamma * Mach_1^2 - \frac{\gamma - 1}{2}}$$

• Solved for total pressure across shock in throat

$$\frac{P_{oas}}{P_{obs}} = \left(\frac{\left((\gamma+1)*Mach^2\right)}{\left((\gamma-1)*Mach^2+2\right)}\right)^{\frac{\gamma}{\gamma-1}} * \left(\frac{(\gamma+1)}{(2*\gamma*Mach^2-(\gamma-1))}\right)^{\frac{1}{\gamma-1}}$$

Found total pressure after shock

$$\frac{P_{oas}}{P_{obs}} = (\frac{\left((\gamma+1)*Mach^2\right)}{\left((\gamma-1)*Mach^2+2\right)})^{\frac{\gamma}{\gamma-1}}*(\frac{(\gamma+1)}{(2*\gamma*Mach^2-(\gamma-1))})^{\frac{1}{\gamma-1}}*P_{02}$$

Found change in total pressure

$$\Delta P_o = P_{o2} - P_{as}$$

• Using area ratio between the available throat area and given exit area solved for Mach number at exit of the diffuser

$$(Area_{ratio,du,exit})^2 = \left(\frac{1}{Mach^2}\right) * \left(\left(\frac{2}{\gamma+1}\right) * \left(1 + \frac{\gamma-1}{2} * Mach^2\right)\right)^{\frac{\gamma+1}{\gamma-1}}$$

• Found Mach number at the exit of the diffuser to determine temperature at exit of the diffuser

$$T_{du,ss,exit} = \left(\frac{T_0}{1 + \frac{\gamma - 1}{2} * Mach^2}\right)$$

Solved for the velocity at the exit of the diffuser

$$V = Mach_{du,exit,ss} * \sqrt{\gamma * R * T_{du,ss,exit}}$$

• Using area ratio determined Mach number entering at opening before nozzle

$$(Area_{ratio,n,enter})^2 = \left(\frac{1}{Mach^2}\right) * \left(\left(\frac{2}{v+1}\right) * \left(1 + \frac{\gamma - 1}{2} * Mach^2\right)\right)^{\frac{\gamma + 1}{\gamma - 1}}$$

• Solved for temperature at nozzle entrance

$$T_{N,ss,enter} = \left(\frac{T_0}{1 + \frac{\gamma - 1}{2} * Mach^2}\right)$$

• Solved for work of compressor

$$W = m * \left(\frac{\gamma R}{(\gamma - 1)} * \frac{\left(\frac{T_{N,ss,enter} + T_{du,ss,exit}}{2}\right)}{1000}\right)$$

• Solved for total cost to run wind tunnel

$$Cost = W * \frac{cost}{Kwh} * H$$

Givens:
Mach number = 2.4
Gamma = 1.4
Gas Constant =287.05 M^2/S^2*K
Diameter= 1.8288 M
Static Temperature = 228.8 K
Static Pressure= 30150.17 Pa

Questions	S.I units	English units
The cost to run an isothermal	\$64,888	\$64,888
compressor?		
The loss in total pressure in the	7117.1 Pa	1.0322 PSI
diffuser at steady state?		
The Mach number and velocity	.1435 Mach number	.1435 Mach number
at the exit of the diffuser at	63.7142 meter/second	209.0360 feet/second
steady state?	001/11/2 meter/3000ma	203.0000 1004, 5000110
The diameter of the nozzle	1.1797 meter	3.87 feet
throat?		
The mass flow rate through the	877.5675 kg/s	1935.0 lbm/s
system?		
The minimum diameter of the	1.7374 meters	5.7 feet
diffuser throat at start up		
The area of the diffuser throat	1.2870 meter^2	13.8544 feet^2
during steady state?		

Solution:

Source Code

```
clear, clc
%global values
qlobal qamma;
global Ae;
global a star ratio diffuser
global A nozzle;
global A Diffuser ss avail
%qivens
Mach testsection=input("please enter a mach number in test
section");
Temp testsection=input("please enter a static tempature in
kelvin that corolates height at atmospheric conditions");
Pressure testsection=input("please enter a static pressure
in pa that corolates height at atmospheric conditions");
gas constant=input("enter gas constant value in
m^2/s^2*K'');
qamma=input("enter desired specific heat ratio");
D=input("please enter a value for the Diameter of the test
section in meters");
price=.15;
h=1;
% known Areas
Aenter=((pi/4)*(1.8288)^2);
Ae=2*((pi/4)*(1.8288)^2);
disp("")
disp("")
%solving for total pressure ratio in test section
Total pressure ratio testsection=(((gamma+1)*Mach testsecti
on^2)/((gamma-1)*Mach testsection^2+2))^((gamma-1)*Mach testsection^2+2))
1)) * (((gamma+1) / (2*gamma*Mach testsection^2-(gamma-
1))))^((1)/(gamma-1));
disp("this is the ratio of total pressures")
disp(Total pressure ratio testsection)
disp("");
disp("")
```

```
%solving for total tempature value throughout wind tunnel
in kelvin
To=Temp testsection* (1+(((gamma-1)/2)*Mach testsection^2));
disp ("this is the total temp in the test section in
kelvin")
disp(To)
disp("")
disp("")
%solving for total pressure valvue in test section in pa
Pol=Pressure testsection*(1+((gamma-
1)/2) *Mach testsection^2)) ^ ((gamma/(gamma-1)));
disp("this is the total pressure in the test section")
disp(Po1)
disp("")
disp("")
%solving for the mass flow rate in kq/s
m dot=((Pressure testsection)/(gas constant*Temp testsectio
n)) *Mach testsection*sqrt(gamma*gas constant*Temp testsecti
on) * (pi/4) * (D)^2;
disp("this is the mass flow rate in kg/s")
disp(m dot)
disp("")
disp("")
%solving for the mass flow rate in lbm/s the value of 2.205
is a standard conversion factor between kg/s and lbm/s
m dot english=m dot*2.205;
disp("this is the mass flow rate in lbm/s")
disp(m dot english)
disp("")
disp("")
%solving initially for the A nozzle in meters and then
converting to feet
%and inches
A nozzle=(m dot*sqrt(To))/(Po1*sqrt((gamma/gas constant)*((
2/(gamma+1))^((gamma+1)/(gamma-1))));
A nozzle english in=A nozzle*3.281*3.281*144;
A nozzle english ft=A nozzle*3.281*3.281;
```

%Solving for Diamter of nozzle in meters

```
D nozzle=sqrt(A nozzle*(4/pi));
disp("this is the nozzle diameter in meters")
disp(D nozzle)
disp("")
disp("")
%Solving for Diamter of nozzle in ft
D nozzle english=D nozzle*3.281;
disp("this is the diameter of the nozzle in feet")
disp(D nozzle english)
disp("")
disp("")
%change in pressure caused by oblique shocks in test
section
Po2 ss=.90*Po1;
disp("at Steady state the 10% decrease in total pressure is
equal to")
disp(Po2 ss)
disp("")
disp("")
%solving for Po after shock at steady state
disp("this is total pressure ratio across shock in throat
at steady state")
Po after shock=Po2 ss*Total pressure ratio testsection;
disp(Po after shock)
%solving for area of diffuser at start up conditions in m^2
A Diffuser su=(Po1/Po after shock) *A nozzle;
disp("this is the diffuser area in meters for startup")
disp(A Diffuser su)
disp("")
disp("")
%solving for diameter of diffuser at start up conditions in
meters
disp("this is the diffuser diamter in meters for startup")
D Diffuser su=sqrt(A Diffuser su*(4/pi));
disp(D Diffuser su)
disp("")
disp("")
```

```
%solving for diamter of diffuser at start up conditions in
ft
disp("this is the diffuser diamter in feet for startup")
D Diffuser english su=D Diffuser su*3.281;
disp(D Diffuser english su)
disp("")
disp("")
%solving for availiable diameter with travel in feet
disp("this is the diameter in feet with .3ft travel in ft")
D Diffuser english su avail=ceil(D Diffuser english su/.3)*
.3;
disp(D Diffuser english su avail)
disp("")
disp("")
%solving for availiable diameter with travel in meter
disp("this is the diameter in meters with .3ft travel in
meters")
D Diffuser su avail=ceil(D Diffuser su/.09144)*.09144;
disp(D Diffuser su avail)
disp("")
disp("")
%solving for the availiable area in ft^2
disp ("this is the area availiable to meet travel .3
requierments in feet")
A Diffuser su english avail=(pi/4)*(D Diffuser english su a
vail) ^2;
disp(A Diffuser su english avail)
disp("")
disp("")
%solving for the available area in m^2
disp("this is the area availiable to meet travel .3
requierments in meters")
A Diffuser su avail=A Diffuser su english avail/(3.281*3.28
1);
disp(A Diffuser su avail)
disp("")
disp("")
%solving for area of Diffuser at steady state in m^2
A Diffuser ss=(A nozzle)*(Po1/Po2 ss);
```

```
disp("this is the area of the diffuser in m^2")
disp(A Diffuser ss);
disp("")
disp("")
%solving for area of Diffuser at steady state in in^2
disp("this is the area of the diffuser in in^2")
A Diffuser english ss in=A Diffuser ss*3.281*3.281*144;
disp(A Diffuser english ss in)
disp("")
disp("")
%solving for area of Diffuser at steady state in ft^2
disp("this is the area of the diffuser in ft^2")
A Diffuser english ss=A Diffuser ss*3.281*3.281;
disp(A Diffuser english ss)
disp("")
disp("")
%solving for diffuser diameter at steady state in meters
D Diffuser ss=sqrt(A Diffuser ss*(4/pi));
disp("The Diameter Diffuser in meters at steady state is")
disp(D Diffuser ss)
disp("")
disp("")
%solving for diffuser diameter at steady state in feet
D Diffuser english ss=D Diffuser ss*3.281;
disp("The Diffuser Diameter at steady state in ft")
disp(D Diffuser english ss)
disp("")
disp("")
%solving for diffuser diameter at steady state in inches
D Diffuser english ss inches=D Diffuser english ss*12;
disp ("the Diffuser Diameter at steady state in inches")
disp(D Diffuser english ss inches)
disp("")
disp("")
%solving for diameter with availiable travel in feet
disp("value of diameter that can be reached with .3ft of
travel in feet")
```

```
D Diffuser english ss avail=ceil(D Diffuser english ss/.3)*
.3;
disp(D Diffuser english ss avail)
disp("")
disp("")
%solving for the diameter availiable with .3 ft travel in
meter
D Diffuser ss avail= (D Diffuser english ss avail) /3.281;
disp("Availiable travel in diffuser in meters")
disp(D Diffuser ss avail)
disp("")
disp("")
%solving for the diameter availiable with .3 ft travel in
inches
D Diffuser english ss avail inches=(D Diffuser english ss a
vail) * (12);
disp("Availiable diamter travel in diffuser in inches")
disp(D Diffuser english ss avail inches)
disp("")
disp("")
%solving for the area available with .3ft travel in feet
disp("Availiable area travel in diffuser in feet")
A Diffuser english ss avail=(pi/4)*(D Diffuser english ss a
vail)^2 ;
disp(A Diffuser english ss avail)
disp("")
disp("")
%solving for the area avilable with .3ft travel in meters
disp("Availiable area travel in diffuser in meters")
A Diffuser ss avail=A Diffuser english ss avail/(3.281*3.28
1);
disp(A Diffuser ss avail)
disp("")
disp("")
%solving area ratio between ideal and availiable
disp ("this is the area ratio between optimal and what is
availiable with given travel")
```

```
a star ratio diffuser=A Diffuser english ss avail/A Diffuse
r english ss;
disp(a star ratio diffuser)
disp("")
disp("")
%solving for mach number at throat
k=input("select value slightly larger then
A star ratio diffuser in command window to get supersonic
case in diffuser throat between A* theoretical and A*
Possiable");
Mach in diffuser throat ss=fzero(@l,k);
disp ("This is the Mach number exiting the throat of the
diffuser the Diffuser")
disp(Mach in diffuser throat ss)
disp("")
disp("")
%solving for mach number after the shock occurs
Mach after shock diffuser=sqrt((1+((gamma-
1)/(2)) *Mach in diffuser throat ss^2)/(gamma*Mach in diffus
er throat ss^2-((gamma-1)/(2)));
disp("this is the mach number after the shock in the
diffuser")
disp(Mach after shock diffuser)
disp("")
disp("")
%solving for the change in total pressure ratio across
Total pressure ratio diffuser exit=(((gamma+1)*Mach in diff
user throat ss^2)/((gamma-
1) *Mach in diffuser throat ss^2+2)) ^ ((gamma) / (gamma-
1)) * (((gamma+1) / (2*gamma*Mach in diffuser throat ss^2-
(gamma-1))))^((1)/(gamma-1));
Po Diffuser exit=Total pressure ratio diffuser exit*Po2 ss;
Delta Po=Po2 ss-Po Diffuser exit;
disp("this is the change in total pressure across the
diffuser at steady state in pa")
disp(Delta Po)
disp("")
disp("")
%converting pascals to psi
```

```
disp ("this is the change in total pressure across the
diffuser at steady state in psi")
Delta Po english=Delta Po*0.0001450377;
disp(Delta Po english)
disp("")
disp("")
%solving for Exit Mach number
disp ("this is the mach number exiting the diffuser at
steady state")
Mach leaving Diffuser=fzero(@b,k);
disp(Mach leaving Diffuser)
%solving for the Tempature after the shock in the throat of
the diffuser
disp ("this is the Tempature of the fluid leaving the
Diffuser in kelvin")
T Diffuser exit=To/((1+(((gamma-
1)/2) *Mach leaving Diffuser^2)));
disp(T Diffuser exit)
disp("")
disp("")
%solving for the velocity in m/s after the shock in the
throat of the
%diffuser
disp("This is the velocity in diffuser in meters per
second" )
Velocity Diffuser=Mach leaving Diffuser*sqrt(gas constant*g
amma*T Diffuser exit);
disp(Velocity Diffuser)
disp("")
disp("")
%solving for the velocity in ft/s after the shock in the
throat of the
%difusser
%3.28084 is a conversion factor between meters and feet
Velocity Diffuser english=Velocity Diffuser*(3.28084);
disp("this is the velocity of diffuser in ft/s")
disp(Velocity Diffuser english)
disp("")
disp("")
```

```
%solving for the mach number entering the wind tunnel
x=input("if subsonic case press .1 if supersonic case 5");
Mach enterance=fzero(@e,x);
disp("this is Mach number at enterance to nozzle")
disp(Mach enterance)
disp("")
disp("")
%solving for the tempature entering the wind tunnel
disp ("This is the Tempature of the fluid entering the
nozzle in kelvin")
T nozzle i=To/(1+(((gamma-1)/(2))*Mach enterance^2));
disp(T nozzle i)
disp("")
disp("")
%solving for the work done with tempature average
W=((m dot*(((gamma*gas constant)/(gamma-
1)) * ((T Diffuser exit+T nozzle i)/2))))/1000;
disp("this is the work being in kw")
disp(W);
disp("")
disp("")
%solving total cost
cost=W*h*price;
disp ("this is the cost to run the wind tunnel for one
hour")
disp(cost)
disp("")
disp("")
function y=1(Mach in Diffuser throat ss)
qlobal qamma
global a star ratio diffuser
y=(1/Mach in Diffuser throat ss^2)*(((2/(gamma+1)))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+((gamma+1))))*(1+(((gamma+1))))*(1+(((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1))))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+((gamma+1)))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(gamma+1))*(1+(g
1)/(2))*Mach in Diffuser throat ss^2)))^((gamma+1)/(gamma-
1))-(a star ratio diffuser)^2;
end
function y=b(Mach leaving Diffuser)
global gamma
global Ae
```

```
global A_Diffuser_ss_avail
y=(1/Mach_leaving_Diffuser^2)*(((2/(gamma+1)))*(1+(((gamma-1)/(2)))*Mach_leaving_Diffuser^2)))^((gamma+1)/(gamma-1))-
(Ae/A_Diffuser_ss_avail)^2;
end

function y=e(Mach_enterance)
global gamma
global Ae
global A_nozzle
y=(1/Mach_enterance^2)*(((2/(gamma+1)))*(1+(((gamma-1)/(2)))*Mach_enterance^2)))^((gamma+1)/(gamma-1))-
(Ae/A_nozzle)^2;
end
```

givens: March# = 2.4 Test section = 30150.17 pa Test = 228.8 K rest= 1.8288m

2 = 287.05 M2 8=1.4 5.K cost = . 15 kwh hour 1

Solving total pressare

Unknowns: mass flow rate kyls and lbm/s Area/Diameter nozzle Mz, ft2, ft, m (Area/ Diameter Diffuser) m= f+2, f+, m (Area/ Diameter Diffuser) sn m=, f+2, f+, m (Pressure loss in Diffusio) s, PSI, Kpa (Mach # and velocity) sat Diffuser Exit Required work for compressor. cost to run wind tunnel 1 hr. In test section

P= (1+ (x1). Machtosi) = Po = P(1+x-1. muchtest2) x-1 Po = 30150.17 Pa (1+(=) 2.17) = Po = 440796.0557 Pa Solving total Temp in test Section

T = (1+(x). Mach Fest) = To = T. (1+ 8-1. much Test) To= 228.8 K·(1+ 学·2.12) = To= 492.3776 K

Solving for mass flow rate kols $\dot{m} = g \, \forall a = \frac{p}{RT} \cdot m_{a} Ch_{Test} \cdot \sqrt{g} \cdot R. \, T_{Test} \cdot \frac{\pi}{4} \left(\frac{d_{Test}}{d_{Test}} \right)^{2}$ $\dot{m} = \frac{30150.17 \, \text{kg}}{287.05 \, \text{m}^{2} \cdot 228.8 \, \text{k} \cdot \text{m} \cdot \text{s}^{2}} \cdot 2.4 \cdot \sqrt{1.4 \cdot 287.05 \, \text{m}^{2}} \, 228.8 \, \text{k} \cdot \frac{\pi}{4} \, (1.1216)$ $\dot{m} = \frac{877.56 \, \text{kg/s}}{52 \, \text{kg/s}}$

Converting to 16m/s

877.56 kg 2.205 lbm = 1935.0198 lbm

Finding Aren of nozzle in me

M= PO·AN·VX (元) YH/Yri = AN = MVTO PO·VX 子科 $A_{N} = 877.56 \cdot \sqrt{492.37 \, \text{K}} = 1.093 \, \text{m}^{2}$ $440796.0557 \, p_{a} \cdot \sqrt{\frac{1.4}{287.55}} \left(\frac{2}{2.4} \right)^{\frac{2.4}{1.4}} = 1.093 \, \text{m}^{2}$

Poz= 214226.8831 pa

Sizing diffuser at short up

 $\left(\frac{A_{0+}}{A_{n+}}\right)_{sn} = \frac{P_{0+}}{P_{0-}} = \left(\frac{A_{0+}}{A_{0+}}\right)_{sn} = \frac{P_{0+}}{P_{0+}} = \frac{P_{0$

(ADT) = 2.2489 m2 Sizing diameter for diffuser at startup

Dou, su = 1 (2.2489 m2) = 1.329 m

Converting from meters to feet diameter

1.28016m-3.281 ft = 4.2 ft

Sizing diffuser with travel restriction in ft at 85

Advisor = 1 (4.2 ft) = 13.85 ft

Alex Snyder Ma. - 41 Sizing diffuser with travel restrictions in m2 at so Apriss = = (1.28016) = 1.287 M2 Firting tato petures ideal and availiable $\left|\frac{1.287}{1.2144}\right| = 1.0597$ Finding Much # at area ratio (A) = 1 (1+ 8-1 mThank) 7 41 (1+ 8-1 mThank) 7 41 1.05972= 1 2 (] = MThront) 2.4 (] Using computer MThroad = 1.28 Finding Pressare ratio at shock in threat PRThriad = (18+1) · Mach Thread 2 1 -1 (8+1) (2.8. Mach front - 8-1) PRThont = 12.4. (1.28)2 14 (1.28)2+2 1.4 (2.1.4-1.282-(.4)) Finding change in pressure ocross shock in Diffuser throat $\frac{R_{03}'}{R_{02}} = .9826 = R_{03}' = 396,716.4501 (.9826) = 389846.1716$ Poz-Pos'=(100) slock = 396,716.4501-389846-1776= 6870.27 Fd Finding Much # at diffuser end $\left(\frac{A}{A^*}\right)^2 = \frac{1}{\text{Mach}_{p_E}} \left[\frac{2}{8+1} \left(1 + \frac{8-1}{2} \text{ Much}_{D_E}^2\right)\right] \frac{8+1}{8-1}$ [4.081] = 1 using compater

Solving for velocity at diffuser end m/s

$$\frac{T_0}{T_{DE}} = \left(1 + \left(\frac{8-1}{2}\right) \text{ Mach}_{DE}^2\right) = T_{De} = \frac{T_0}{1 + \frac{8-1}{2} \text{ mach}_{DE}} = T_{DG} = \frac{492.3776}{1 + \frac{9}{2}.(.1435)}$$

TDE = 478.6406 K

V=62.936 M/s

converting m/s to ft/s

Solving for mach # at nozzle Enterance

$$\left(\frac{A}{A^{*}}\right) = \frac{1}{\text{Mach}_{Ne}} \left[\frac{2}{1+1} \left(1+\frac{1}{2} \text{ mach}_{Ne}^{2}\right)^{\frac{1}{1-1}}\right]$$

$$(\frac{1}{A^{*}})^{2} = \frac{1}{Machine} \left[\frac{2}{2.4} \left(1 + \frac{1}{2} +$$

using computer

Much NE = . 1203

Solving for temp at Nozzle Enterance

Solving for temporal
$$\frac{1}{1} = \frac{1}{1} = \frac{1$$

Solving for work at compressor

$$\dot{W} = \dot{m} (n_2 - n_1) = \dot{m} c \rho (\bar{1}_2 - \bar{1}_1) = \dot{m} c \rho (\underline{T_2 + T_1}) = \dot{m} \frac{8R}{8-1} (\underline{T_2 + T_1})$$

W=422947.0353 Km) Solving for cost 1000