Answers to Chapter 2

§ 2.1

- **2(a)** $\langle (0,1), (0,1) \rangle = 0$. **(b)** As in (a). **(c)** $\langle (1,1), (1,1) \rangle = 0$. **(d)** $\langle (1,1) \rangle = 0$.
- (e) As in (d). (f) $\langle 1, t \rangle = 0$. (g) For f(t) = 0 in [0, 1/2] and f(t) = t in (1/2, 1], $\langle f, f \rangle = 0$.
- **3.** With $y = \sum_{i=1}^{n} \alpha_i x_i$, $\langle y, y \rangle = 0$. **4.** $\langle x, y \rangle = \alpha + i\beta \Rightarrow \text{Re}\langle ix, y \rangle = -\beta$.
- **5.** (a)-(c) easy. (d) $||x + \alpha y||^2 = ||x \alpha y||^2$ iff $\text{Re}(\overline{\alpha}\langle x, y \rangle) = 0$. Take $\alpha = \overline{\langle x, y \rangle}$.
- (e) $||x + y||^2 = (||x|| + ||y||)^2$ iff $\text{Re}\langle x, y \rangle = ||x|| ||y||$ (Using $\text{Re}\langle x, y \rangle \le |\langle x, y \rangle| \le ||x|| ||y||$) iff $|\langle x, y \rangle| = ||x|| ||y||$ (Cauchy-Schwartz) iff one is a scalar multiple of the other.

§ 2.2

- **1.** $W = \text{span}\{(3, -1, 3, 0), (0, -1, 3, 3)\}$. **2.** $\langle x, y \rangle = \langle y, x \rangle \Rightarrow \langle x + y, x y \rangle = ||x||^2 ||y||^2$. **5.** Yes.
- **6.** If $B = \{v_1, \dots, v_n\}$ is an orthonormal set and for each x, $||x||^2 = \sum_{j=1}^n |\langle x, v_j \rangle|^2$, then B is an orthonormal basis. For, let $y = \sum_{j=1}^n \langle x, v_j \rangle v_j$. Then $||x||^2 = ||y||^2$.
- **8(a)** $x \in V^{\perp} \Rightarrow \langle x, v \rangle = 0$ for all $v \in V$. In particular, $\langle x, x \rangle = 0$. For the second equality, $\langle v, 0 \rangle = 0$ for all $v \in V$. (b) If $x \in S$, then $\langle x, y \rangle = 0$ for all $y \in S^{\perp}$.
- **9(a)** $W \subseteq V$, $W^{\perp} \subseteq V$; so $W + W^{\perp} \subseteq V$. Let $v \in V$. Let $\{v_1, \dots, v_n\}$ be an orthonormal basis of V. Write $x = \sum_{i=1}^{n} \langle x, v_j \rangle v_j$; y = v x. Then $\langle y, v_j \rangle = 0$. Hence $y \in W^{\perp}$. (b) Let $x \in W \cap W^{\perp}$. Then $\langle x, x \rangle = 0$.
- (c) $W \subseteq W^{\perp \perp}$. Let $x \in W^{\perp \perp}$. Using (a), x = w + y, for some $w \in W$ and $y \in W^{\perp}$. Then $\langle w, y \rangle = 0 \Rightarrow 0 = \langle x, y \rangle = \langle y, y \rangle$. Then $x = w \in W$.
- **10.** Let $x(t) := \sum_{j=1}^{n} a_j \sin(jt) = 0$. Compute $\int_0^{2\pi} x(t) \sin(mt) dt$ for m = 1, 2, ..., n.

§ 2.3

- **1(a)** (1,2,0), (6/5,-3/5,0), (0,0,1). **(b)** (1,1,1), (2/3,-4/3,2/3), (1,0,-1).
- (c) (0,1,1), (0,1,-1), (-1,0,0). **2(a)** $(1/\sqrt{14})(1,-2,3)$. (b) $(1/\sqrt{74})(7,-4,3)$. (c) $(1/2\sqrt{5})(0,2,4)$.
- **3(a)** span $\{(-1,1,0,1), (0,0,1,0)\}$. **(b)** span $\{(-6,1,5,2), (0,1,-1,1)\}$. **(c)** span $\{(1,0,0,0), (0,0,1,1)\}$.
- **4.** (1/2)(i, 1-i, -1). **5(a)** 1, t-1/2, $t^2-t+1/6$. **(b)** 1, t, $t^2-1/3$. **(c)** 1, t+1/2, $t^2-5t-11/6$.
- **6(a)** $\{-(b+c+d)+2bt+3ct^2+4dt^3: a,b,c,d \in \mathbb{R}\}$. **(b)** 1, t-1/2, $t^2-t+1/6$, $t^3-3t^2/2+3t/5-1/20$.

§ 2.4

- **1.** (5/3,4/3,1/3). **2.** (-1/3,2/3,-1/3). **3.** v since $v \in U$.
- **4.** $-19/20 3t/5 + 3t^2/2$. **5.** $e^t 9(e /e) + 3t/e 15(e 13/e)t^2/8$.