Devoir maison 2 - Calcul de l'intégrale de Gauss

L'objectif de ce problème est le calcul de $I = \int_0^{+\infty} \mathrm{e}^{-x^2} \mathrm{d}x$.

- 1. Montrer que I converge.
- **2.** Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$.
 - **a.** Calculer a_0 et a_1 .
 - **b.** Montrer que $\forall n \in \mathbb{N}, 0 < a_{n+1} < a_n$.
 - **c.** Pour $n \in \mathbb{N}$, établir une relation de récurrence entre a_n et a_{n+2} .
 - **d.** Montrer que pour tout $n \in \mathbb{N}^*$, $na_n a_{n-1} = \frac{\pi}{2}$.
 - e. Soit $n \in \mathbb{N}^*$. A l'aide de l'encadrement $a_{n+1} < a_n < a_{n-1}$, déterminer $\lim_{n \to +\infty} \frac{a_n}{a_{n-1}}$.
 - **f.** A l'aide des résultats précédents, montrer que $a_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$.
- **3.** Montrer que $\forall x \in]-1; +\infty[, \ln(1+x) \leq x.$
- **4.** Pour $n \in \mathbb{N}^*$, on définit $b_n = \int_0^{\sqrt{n}} \left(1 \frac{x^2}{n}\right)^n dx$ et $c_n = \int_0^{+\infty} \left(1 + \frac{x^2}{n}\right)^{-n} dx$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}^*$, c_n converge.
 - **b.** Montrer que pour tout $n \in \mathbb{N}^*$, $b_n \le \int_0^{\sqrt{n}} e^{-x^2} dx \le c_n$.
 - **c.** A l'aide de changements de variable, exprimer b_n et c_n à l'aide de a_{2n+1} et a_{2n-2} .
- 5. Déduire de ce qui précède la valeur de I.