#### $2\,r_{2}\,\partial_{\theta}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}\,-\,4\,r_{2}\,\partial_{\theta}\mathcal{R}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}\,+\,4\,t_{2}\,\mathcal{R}_{i\,\theta\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+\,2\,t_{2}\,\partial_{\alpha}f_{i\,\theta}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{2}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{4}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,-\,t_{5}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}$ $\frac{t}{2} \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha i} + t \underbrace{\frac{1}{2}} \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - t \underbrace{\frac{1}{2}} \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha i} - 4 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha \theta i} \left( \mathcal{A}^{\alpha i \theta} + \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) - 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) + 2 \underbrace{\frac{1}{2}} \mathcal{A}_{\alpha i \theta} \left( \mathcal{A}^{\alpha$ $12\,r_{\!\!\phantom{1}4}^{\phantom{1}}\,\partial_{\theta}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\lambda\phantom{0}}^{\phantom{0}\lambda\phantom{0}}\,\partial_{\kappa}^{\kappa}\mathcal{A}_{\phantom{0}\alpha\phantom{0}}^{\phantom{0}\alpha\phantom{0}}-12\,r_{\!\phantom{0}4}^{\phantom{0}}\,\partial_{\alpha}\mathcal{A}_{\phantom{0}\kappa\phantom{0}}^{\phantom{0}\alpha\phantom{0}\theta\phantom{0}}\,\partial_{\lambda}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\theta\phantom{0}}^{\phantom{0}\lambda\phantom{0}}+24\,r_{\!\phantom{0}4}^{\phantom{0}}\,\partial_{\kappa}^{\kappa}\mathcal{A}_{\phantom{0}\alpha\phantom{0}}^{\phantom{0}\alpha\phantom{0}}\,\partial_{\lambda}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\theta\phantom{0}}^{\phantom{0}\lambda\phantom{0}}-24\,r_{\!\phantom{0}4}^{\phantom{0}\alpha\phantom{0}}\,\partial_{\beta}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\theta\phantom{0}}^{\phantom{0}\lambda\phantom{0}}-24\,r_{\!\phantom{0}4}^{\phantom{0}\alpha\phantom{0}}\,\partial_{\beta}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\theta\phantom{0}}^{\phantom{0}\lambda\phantom{0}}-24\,r_{\!\phantom{0}4}^{\phantom{0}\alpha\phantom{0}}\,\partial_{\beta}\mathcal{A}_{\phantom{0}\kappa\phantom{0}\theta\phantom{0}}^{\phantom{0}\lambda\phantom{0}})][t\,,\,x\,,\,y\,,\,z]\,dz\,dy\,dx\,dt$ **Wave operator**

## 

**PSALTer results panel** 

|                                             | \ 3                  | 4/   |        |     |                                                                    |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         |                                                                        |   |                                                                 |  |
|---------------------------------------------|----------------------|------|--------|-----|--------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|---|-----------------------------------------------------------------|--|
| <sup>0⁺</sup> <sub>•</sub> f <sup>∥</sup> † | 0                    |      | 0      | 0   | 0                                                                  |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         |                                                                        |   |                                                                 |  |
| <sup>0</sup> ⁺ f <sup>⊥</sup> †             | 0                    |      | 0      | 0   | 0                                                                  |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         |                                                                        |   |                                                                 |  |
| <sup>0⁻</sup> Æ <sup>∥</sup> †              | 0                    |      | 0      | 0   | $k^2 r \cdot + t \cdot 2$                                          | $\left. \stackrel{1^{+}}{\cdot} _{}\mathcal{A} \right _{ lpha eta}$ | ${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{^{\perp}}{}_{\alpha\beta}$ | ${\stackrel{1^+}{\scriptstyle{\bullet}}}f^{\parallel}_{\alpha\beta}$ | ${}^{1^{\text{-}}}_{}\mathcal{A}^{\parallel}{}_{\alpha}$ | ${}^{1^{-}}_{\bullet}\mathcal{H}^{\perp}{}_{\alpha}$ | $\frac{1}{\cdot}f^{\parallel}_{\alpha}$ | $\int_{\bullet}^{1} f^{\perp}_{\alpha}$                 |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     |                                                                    | $k^2 \left(2r_{3} - r_{4}\right) + \frac{2t_{2}}{3}$                | $\frac{\sqrt{2} \ t_{\frac{1}{2}}}{3}$                                                          | $\frac{1}{3} i \sqrt{2} kt.$                                         | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     | $\stackrel{1^{+}}{\cdot}\mathcal{H}^{\perp} \dagger^{\alpha\beta}$ | 3                                                                   |                                                                                                 | $\frac{i kt}{3}$                                                     | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     |                                                                    | $-\frac{1}{3} i \sqrt{2} kt.$                                       | $-\frac{1}{3} ikt.$                                                                             | $\frac{k^2t}{3}$                                                     | Θ                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     | ${}^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}$ $\dagger^{lpha}$     | 0                                                                   | Θ                                                                                               | 0                                                                    | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     | $^{1}$ $\mathcal{A}^{\perp}$ $^{\alpha}$                           | Θ                                                                   | 0                                                                                               | 0                                                                    | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     | $f^{-1}f^{\parallel}$                                              | 0                                                                   | 0                                                                                               | 0                                                                    | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   |                                                                 |  |
|                                             |                      |      |        |     | $\frac{1}{\cdot}f^{\perp}\uparrow^{\alpha}$                        | 0                                                                   | Θ                                                                                               | 0                                                                    | 0                                                        | 0                                                    | 0                                       | 0                                                       |                                                                        |   | ${}^{2^{-}}_{\bullet}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$ |  |
|                                             |                      |      |        |     |                                                                    |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         | $k^2 \left(-2 r_{\bullet} + r_{\bullet} \atop 3 + r_{\bullet} \right)$ | 0 | 0                                                               |  |
|                                             |                      |      |        |     |                                                                    |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         | $2^{+}f^{\parallel} \uparrow^{\alpha\beta}$             | 0                                                                      | 0 | 0                                                               |  |
|                                             |                      |      |        |     |                                                                    |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         | $\mathcal{A}^{\mathbb{Z}^{-}}\mathcal{A}^{\parallel}$ † | 0                                                                      | 0 | 0                                                               |  |
| Sat                                         | Saturated propagator |      |        |     |                                                                    |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         |                                                                        |   |                                                                 |  |
|                                             | °÷ σ ∥               | Θ+ τ | .∥ Θ⁺τ | т 6 | o-<br>• σ∥                                                         |                                                                     |                                                                                                 |                                                                      |                                                          |                                                      |                                         |                                                         |                                                                        |   |                                                                 |  |

# 

| <sup>0</sup> *τ <sup>⊥</sup> †  | 0 | Θ | 0 | 0                                                         |                                                                    |                                                                                                       |                                                                                                                        |                                                    |                                   |                              |                                                        |                                              |                                                  |                                                |
|---------------------------------|---|---|---|-----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------------------------------|
| <sup>⊙-</sup> σ <sup>  </sup> † | 0 | 0 | 0 | $\frac{1}{k^2 r_{\bullet} + t_{\bullet} \atop 2}$         | ${\stackrel{1^{+}}{\cdot}}\sigma^{\parallel}{}_{\alpha\beta}$      | $^{1^{+}}_{ullet}\sigma^{\!\scriptscriptstyle\perp}_{lphaeta}$                                        | $\left\  1^{+}_{\bullet} 1^{\parallel}_{\alpha \beta} \right\ _{\alpha \beta}$                                         | $\int_{\bullet}^{1^{-}} \sigma^{\parallel} \alpha$ | $a \cdot \sigma^{\perp}_{\alpha}$ | $\frac{1}{\tau} \ _{\alpha}$ | $^{1^{-}}\tau^{\perp}{}_{\alpha}$                      |                                              |                                                  |                                                |
| -                               |   |   |   | $^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$           | ( 3 4)                                                             | $-\frac{\sqrt{2}}{k^2 (1+k^2) (2r_3-r_4)}$                                                            | $-\frac{i\sqrt{2}}{k(1+k^2)\left(2rr.\atop 3-4\right)}$                                                                | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $^{1^{+}}_{\bullet}\sigma^{\perp}$ $^{+}$                 | $-\frac{\sqrt{2}}{k^2 (1+k^2) (2 r_3 - r_4)}$                      | $\frac{k^2 \left(6 r_3 - 3 r_4\right) + 2 t_2}{(k + k^3)^2 \left(2 r_3 - r_4\right) t_2}$             | $\frac{i\left(k^{2}\left(6r_{3}-3r_{4}\right)+2t_{2}\right)}{k\left(1+k^{2}\right)^{2}\left(2r_{3}-r_{4}\right)t_{2}}$ | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $1^{+}_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$ | $\frac{i \sqrt{2}}{k(1+k^2)\left(2r_{\cdot 3}-r_{\cdot 4}\right)}$ | $-\frac{i\left(k^2\left(6r_3-3r_4\right)+2t_2\right)}{k\left(1+k^2\right)^2\left(2r_3-r_4\right)t_2}$ | $\frac{\frac{1}{r_{3} - \frac{4}{2}} + \frac{3 k^{2}}{t_{2}}}{(1 + k^{2})^{2}}$                                        | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $^{1^{-}}\sigma^{\parallel}$ † $^{\alpha}$                | 0                                                                  | 0                                                                                                     | 0                                                                                                                      | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $\frac{1}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$          | 0                                                                  | 0                                                                                                     | 0                                                                                                                      | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $1^{-}_{\bullet}\tau^{\parallel}\uparrow^{\alpha}$        | 0                                                                  | 0                                                                                                     | 0                                                                                                                      | 0                                                  | 0                                 | 0                            | 0                                                      |                                              |                                                  |                                                |
|                                 |   |   |   | $1^{-}\tau^{\perp}\uparrow^{\alpha}$                      | 0                                                                  | 0                                                                                                     | 0                                                                                                                      | 0                                                  | 0                                 | 0                            | 0                                                      | $^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$ | $2^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$ | $^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$ |
|                                 |   |   |   | •                                                         |                                                                    |                                                                                                       |                                                                                                                        |                                                    |                                   |                              | $^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$        | $\frac{1}{k^2 \left(-2 r_3 + r_4\right)}$    | Θ                                                | 0                                              |
|                                 |   |   |   |                                                           |                                                                    |                                                                                                       |                                                                                                                        |                                                    |                                   |                              | $^{2^{+}}\tau^{\parallel}\uparrow^{\alpha\beta}$       | 0                                            | Θ                                                | Θ                                              |
|                                 |   |   |   |                                                           |                                                                    |                                                                                                       |                                                                                                                        |                                                    |                                   |                              | $^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$ | 0                                            | 0                                                | 0                                              |
|                                 |   |   |   |                                                           |                                                                    |                                                                                                       |                                                                                                                        |                                                    |                                   |                              |                                                        |                                              |                                                  |                                                |

**Source constraints** 

| Spin-parity form                                                                              | Covariant form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Multiplicities |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| $\theta^+$ $\tau^{\perp} == 0$                                                                | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |  |  |  |
| Θ⁺τ∥ == Θ                                                                                     | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |  |  |  |
| 1- <sub>1</sub> - <sub>1</sub> - <sub>1</sub> == 0                                            | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              |  |  |  |
| 1- <sub>t</sub>    <sup>α</sup> == 0                                                          | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              |  |  |  |
| 1- <sub>σ</sub> <sup>α</sup> == 0                                                             | $\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3              |  |  |  |
| 1 <sub>•</sub> σ  α == 0                                                                      | $\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{==}\partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3              |  |  |  |
| $i k \cdot 1^+ \sigma^{\perp} \alpha^{\beta} + \cdot 1^+ \tau^{\parallel} \alpha^{\beta} = 0$ | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3              |  |  |  |
|                                                                                               | $\partial_{\chi}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}_{\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\sigma}\partial_{\chi}\partial^{\beta}_{\sigma}^{\chi\alpha\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |
| $2^{-}\sigma^{\parallel}^{\alpha\beta\chi} = 0$                                               | $ 3  \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta  \epsilon} + 3  \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \   \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi  \delta} + 4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi  \alpha  \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta  \alpha \chi} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \delta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta  \alpha  \lambda} + 2  \partial_{\epsilon} \partial^{\kappa} \partial^{\kappa$ | 5              |  |  |  |
|                                                                                               | $4  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 3  \eta^{\beta \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{ \delta} + 3  \eta^{\alpha \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3  \eta^{\beta \chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{ \delta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |
|                                                                                               | $ 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |
|                                                                                               | $2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \beta}_{\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |
| 2 <sup>+</sup> τ   <sup>αβ</sup> == 0                                                         | $4  \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} _{\tau}  (\Delta + \mathcal{K})^{\chi  \delta} + 2  \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} _{\tau}  (\Delta + \mathcal{K})^{\chi} _{\chi} + 3  \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} _{\tau}  (\Delta + \mathcal{K})^{\alpha  \beta} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              |  |  |  |
|                                                                                               | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |
|                                                                                               | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left( \Delta + \mathcal{K} \right)^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left( \Delta + \mathcal{K} \right)^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left( \Delta + \mathcal{K} \right)^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau \left( \Delta + \mathcal{K} \right)^{\chi} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |
| Total expected gauge generators: 27                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |

### **Massive spectrum**



|   |                   | -                                      |  |  |  |  |  |  |  |
|---|-------------------|----------------------------------------|--|--|--|--|--|--|--|
|   | Square mass:      | $-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$ |  |  |  |  |  |  |  |
|   | Spin:             | 0                                      |  |  |  |  |  |  |  |
|   | Parity:           | Odd                                    |  |  |  |  |  |  |  |
| r | Massless spectrum |                                        |  |  |  |  |  |  |  |

#### (No particles)

### **Unitarity conditions**

r. < 0 & t. > 0