Contents

Pre	eface	to First Edition	ΊI
Pre	eface	to Second Edition	ΧI
Pre	eface	to Third EditionX	III
Pre	eface	to Fourth Edition X	V
1.	Inti	roduction	1
	1.1	Overview of Digital Signal Processing (DSP)	1
	1.2	FPGA Technology	3
		1.2.1 Classification by Granularity	3
		1.2.2 Classification by Technology	6
		1.2.3 Benchmark for FPLs	7
	1.3	DSP Technology Requirements	12
		1.3.1 FPGA and Programmable Signal Processors	14
	1.4	Design Implementation	15
		1.4.1 FPGA Structure	20
		1.4.2 The Altera EP4CE115F29C7	23
		1.4.3 Case Study: Frequency Synthesizer	32
		1.4.4 Design with Intellectual Property Cores	40
	Exe	rcises	47
2.	Cor	nputer Arithmetic	57
	2.1	Introduction	57
	2.2	Number Representation	58
		2.2.1 Fixed-Point Numbers	58
		2.2.2 Unconventional Fixed-Point Numbers	61
		2.2.3 Floating-Point Numbers	75
	2.3	Binary Adders	79
		2.3.1 Pipelined Adders	81
		2.3.2 Modulo Adders	85
	2.4	Binary Multipliers	86
			89

XVIII Contents

	2.5	Binary	Dividers	93
		2.5.1	Linear Convergence Division Algorithms	95
		2.5.2	Fast Divider Design	100
		2.5.3	Array Divider	105
	2.6	Fixed-	Point Arithmetic Implementation	106
	2.7	Floati	ng-Point Arithmetic Implementation	109
		2.7.1	Fixed-Point to Floating-Point Format Conversion	110
		2.7.2	Floating-Point to Fixed-Point Format Conversion	111
		2.7.3	Floating-Point Multiplication	112
		2.7.4	Floating-Point Addition	113
		2.7.5	Floating-Point Division	115
		2.7.6	Floating-Point Reciprocal	116
		2.7.7	Floating-Point Operation Synthesis	118
		2.7.8	Floating-Point Synthesis Results	122
	2.8	Multip	oly-Accumulator (MAC) and Sum of Product (SOP)	124
		2.8.1	Distributed Arithmetic Fundamentals	125
		2.8.2	Signed DA Systems	
		2.8.3	Modified DA Solutions	130
	2.9	Comp	utation of Special Functions Using CORDIC	131
		2.9.1	CORDIC Architectures	
	2.10	Comp	utation of Special Functions using MAC Calls	141
			Chebyshev Approximations	
		2.10.2	Trigonometric Function Approximation	143
			Exponential and Logarithmic Function Approximation	
		2.10.4	Square Root Function Approximation	159
			Magnitude Approximation	
	Exer	cises .		168
3.			pulse Response (FIR) Digital Filters	
	3.1	_	l Filters	
	3.2		Theory	
		3.2.1	FIR Filter with Transposed Structure	
		3.2.2	Symmetry in FIR Filters	
		3.2.3	Linear-phase FIR Filters	
	3.3		ning FIR Filters	
		3.3.1	Direct Window Design Method	
		3.3.2	Equiripple Design Method	
	3.4		ant Coefficient FIR Design	
		3.4.1	Direct FIR Design	
		3.4.2	FIR Filter with Transposed Structure	
		3.4.3	FIR Filters Using Distributed Arithmetic	
		3.4.4	IP Core FIR Filter Design	
		3.4.5	Comparison of DA- and RAG-Based FIR Filters	
	Exer	cises .		219

4.	Infi		mpulse Response (IIR) Digital Filters	
	4.1	IIR T	Theory	228
	4.2	IIR C	oefficient Computation	231
		4.2.1	Summary of Important IIR Design Attributes	233
	4.3	IIR F	ilter Implementation	234
		4.3.1	Finite Wordlength Effects	238
		4.3.2	Optimization of the Filter Gain Factor	239
	4.4	Fast I	IR Filter	240
		4.4.1	Time-domain Interleaving	241
		4.4.2	Clustered and Scattered Look-Ahead Pipelining	243
		4.4.3	IIR Decimator Design	
		4.4.4	Parallel Processing	246
		4.4.5	IIR Design Using RNS	250
	4.5	Narro	w Band IIR Filter	
		4.5.1	Narrow Band Design Example	251
		4.5.2	Cascade Second Order Systems Narrow Band Filter	
			Design	259
		4.5.3	Parallel Second Order Systems Narrow Band Filter	
			Design	263
		4.5.4	Lattice Design of Narrow Band IIR Filter	
		4.5.5	Wave Digital Filter Design of Narrow Band IIR Filter.	
	4.6	All-Pa	ass Filter Design of Narrow Band IIR Filter	
		4.6.1	All-Pass Wave Digital Filter Design of Narrow Band	
			IIR Filter	289
		4.6.2	All-Pass Lattice Design of Narrow Band IIR Filter	
		4.6.3	All-Pass Direct Form Design of Narrow Band Filter	
		4.6.4	All-Pass Cascade BiQuad of Narrow Band Filter	
		4.6.5	All-Pass Parallel BiQuad of Narrow Band Filter	
	Exe			
5.			Signal Processing	
	5.1		nation and Interpolation	
		5.1.1	Noble Identities	
		5.1.2	Sampling Rate Conversion by Rational Factor	
	5.2		hase Decomposition	
			Recursive IIR Decimator	
			Fast-running FIR Filter	
	5.3	Hoger	nauer CIC Filters	317
		5.3.1	Single-Stage CIC Case Study	317
		5.3.2	Multistage CIC Filter Theory	
		5.3.3	Amplitude and Aliasing Distortion	
		5.3.4	Hogenauer Pruning Theory	
		5.3.5	CIC RNS Design	
		5.3.6	CIC Compensation Filter Design	
	5.4	Multis	stage Decimator	337

		5.4.1	Multistage Decimator Design Using Goodman–Carey Half-Band Filters	220
	5.5	Frogu	ency-Sampling Filters as Bandpass Decimators	
	5.6		n of Arbitrary Sampling Rate Converters	
	5.0	5.6.1	·	
		5.6.2	Polynomial Fractional Delay Design	
		5.6.2	B-Spline-Based Fractional Rate Changer	
		5.6.4	MOMS Fractional Rate Changer	
	5.7		Banks	
	0.1	5.7.1		
		5.7.2		
	5.8		lets	
	0.0	5.8.1	The Discrete Wavelet Transformation	
		5.8.2		
	Exe			
	Lite	101505		
6.	Fou	ırier T	ransforms	. 417
	6.1	The I	Discrete Fourier Transform Algorithms	. 418
		6.1.1	Fourier Transform Approximations Using the DFT	. 418
		6.1.2	Properties of the DFT	. 420
		6.1.3	The Goertzel Algorithm	. 423
		6.1.4	The Bluestein Chirp-z Transform	. 424
		6.1.5	The Rader Algorithm	. 427
		6.1.6	The Winograd DFT Algorithm	. 434
	6.2	The F	Fast Fourier Transform (FFT) Algorithms	. 436
		6.2.1	The Cooley–Tukey FFT Algorithm	. 437
		6.2.2	The Good–Thomas FFT Algorithm	. 449
		6.2.3	The Winograd FFT Algorithm	. 451
		6.2.4	Comparison of DFT and FFT Algorithms	. 455
		6.2.5	IP Core FFT Design	. 456
	6.3	Fourie	er-Related Transforms	. 461
		6.3.1	Computing the DCT Using the DFT	. 462
		6.3.2	Fast Direct DCT Implementation	
	Exe	rcises		. 465
7.			ication Systems	
	7.1		Control and Cryptography	
		7.1.1	8	
		7.1.2	Block Codes	
		7.1.3	Convolutional Codes	
	_ ~	7.1.4	Cryptography Algorithms for FPGAs	
	7.2		lation and Demodulation	
		7.2.1	Basic Modulation Concepts	
		7.2.2	Incoherent Demodulation	
		7.2.3	Coherent Demodulation	. 521

	Exer	cises .		529
8.	Ada	ntive	Systems	533
	8.1		eation of Adaptive Systems	
	0.1	8.1.1	Interference Cancellation	
		8.1.2	Prediction	
		8.1.3	Inverse Modeling	
		8.1.4	System Identification	
	8.2	-	um Estimation Techniques	
	0.2	8.2.1	The Optimum Wiener Estimation	
	8.3		Vidrow-Hoff Least Mean Square Algorithm	
	0.0	8.3.1	Learning Curves	
		8.3.2	Normalized LMS (NLMS)	
	8.4		Form Domain LMS Algorithms	
	0.1	8.4.1	Fast-Convolution Techniques	
		8.4.2	Using Orthogonal Transforms	
	8.5		mentation of the LMS Algorithm	
	0.0	8.5.1	Quantization Effects	
		8.5.2	FPGA Design of the LMS Algorithm	
		8.5.3	Pipelined LMS Filters	
		8.5.4	Transposed Form LMS Filter	
		8.5.5	Design of DLMS Algorithms	
		8.5.6	LMS Designs using SIGNUM Function	
	8.6	Recurs	sive Least Square Algorithms	
		8.6.1	RLS with Finite Memory	
		8.6.2	Fast RLS Kalman Implementation	
		8.6.3	The Fast a Posteriori Kalman RLS Algorithm	
	8.7	Compa	arison of LMS and RLS Parameters	
	8.8	Princip	ple Component Analysis (PCA)	589
		8.8.1	Principle Component Analysis Computation	
		8.8.2	Implementation of Sanger's GHA PCA	
	8.9	Indepe	endent Component Analysis (ICA)	601
		8.9.1	Whitening and Orthogonalization	603
		8.9.2	Independent Component Analysis Algorithm	604
		8.9.3	Implementation of the EASI ICA Algorithm	
		8.9.4	Alternative BSS Algorithms	
	8.10	Coding	g of Speech and Audio Signals	
			A- and μ -Law Coding	
			Linear and Adaptive PCM Coding	
			Coding by Modeling: The LPC-10e Method	
			MPEG Audio Coding Methods	
	Exer	cises	<u> </u>	

XXII Contents

9.	Mic	croprocessor Design	631
	9.1	History of Microprocessors	631
		9.1.1 Brief History of General-Purpose Microprocessors	632
		9.1.2 Brief History of RISC Microprocessors	634
		9.1.3 Brief History of PDSPs	635
	9.2	Instruction Set Design	638
		9.2.1 Addressing Modes	
		9.2.2 Data Flow: Zero-, One-, Two- or Three-Address Design	
		9.2.3 Register File and Memory Architecture	
		9.2.4 Operation Support	
		9.2.5 Next Operation Location	659
	9.3	Software Tools	
		9.3.1 Lexical Analysis	661
		9.3.2 Parser Development	
	9.4	FPGA Microprocessor Cores	
		9.4.1 Hardcore Microprocessors	
		9.4.2 Softcore Microprocessors	689
	9.5	Case Studies	
		9.5.1 T-RISC Stack Microprocessors	
		9.5.2 LISA Wavelet Processor Design	
		9.5.3 Nios Custom Instruction Design	
	Exe	rcises	
10.	Ima	age and Video Processing	739
		Overview on Image and Video Processing	
		10.1.1 Image Format	
		10.1.2 Basic Image Processing Operation	
	10.2	Case Study 1: Edge Detection in HDL	
		10.2.1 2D HDL Filter Design	
		10.2.2 Imaging System Design	
		10.2.3 Putting the VGA Edge Detection System Together	
	10.3	Case Study 2: Median Filter Using an Image Processing Li-	
		brary	769
		10.3.1 The Median Filter	
		10.3.2 Median Filter in HDL	
		10.3.3 Nios Median Filtering Image Processing System	
		10.3.4 Median Filter in SW	
	10.4	Motion Detection	
	10.1	10.4.1 Motion Detection	
		10.4.2 ME Co-processor Design	
		10.4.3 Video Compression Standards	
	Exe	rcises	
$\mathbf{A}\mathbf{p}$	pend	lix A. Verilog Code of Design Examples	795

Appendix B. Design Examples Synthesis Results	879
Appendix C. VHDL and Verilog Coding Keywords	883
Appendix D. CD-ROM Content	885
Appendix E. Glossary	895
References	903
Index	923

http://www.springer.com/978-3-642-45308-3

Digital Signal Processing with Field Programmable Gate Arrays

Meyer-Baese, U.

2014, XXIII, 930 p. 459 illus., 11 illus. in color. With

CD-ROM., Hardcover

ISBN: 978-3-642-45308-3