

Our estimate for P(y=0|x; heta) is 0.4.

Our estimate for P(y=1|x; heta) is 0.6.

Our estimate for P(y=1|x; heta) is 0.4.

Our estimate for P(y=0|x; heta) is 0.6.

1 point 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

x_1	<i>x</i> ₂	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

well we can fit the training data.

- Adding polynomial features (e.g., instead using $h_\theta(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) could increase how}$
- At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

1 point 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}.$ Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

 $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m \left(heta^T x - y^{(i)}
ight) x_j^{(i)}$ (simultaneously update for all j).

$$\theta := \theta - \alpha \frac{1}{m} \sum_{i=1}^m \left(\theta^T x - y^{(i)} \right) x^{(i)}.$$

$$heta:= heta-lpharac{1}{m}\sum_{i=1}^m\left(rac{1}{1+e^{- heta T_x(i)}}-y^{(i)}
ight)x^{(i)}.$$

$$\boxed{\hspace{0.5cm}} \theta := \theta - \alpha \tfrac{1}{m} \sum_{i=1}^m \big(h_\theta(x^{(i)}) - y^{(i)}\big) x^{(i)}.$$

1 point 4. Which of the following statements are true? Check all that apply.

The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.

Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.

point

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=-1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

☑ I, Marin Sarbulescu, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code