1-2: Camera

Pinhole projection model

- Projection equations
 - Derived using similar triangles $(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$

Dimensionality reduction: from 3D to 2D

- preserved straight lines, incidence
- not preserved angles, lengths

Fronto-parallel planes:

- all points on the plane are at fixed depth z
- Patterns scaled be f/z, angles and ratios of lengths are preserved

Vanishing points

All parallel lines converge to a vanishing point (except directions parallel to the image plane)

Homogeneous coordinate

- invariant to scaling

Perspective projection matrix

Projection matrix:
$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Shrinking the aperture

- Aperture smaller clearer image
- Aperture too small: less lights go though, diffraction effects

Depth of Field (DOF)

A specific distance at which objects are "in focus"

Aperture and Depth of field (DOF)

- Large aperture: small DOF

- Small aperture: large DOF (increase exposure)

Field of View (FOV)

FOV depends on focal length and size of the camera retina

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

- Larger focal length: smaller FOV

Demosaicing

Demosaicing: produce full RGB image from mosaic sensor output Bilinear interpolation: Simply average your 4 neighbors.

Neighborhood changes for different channels:

Question 1 (a):

a) This question is about camera model.

[7 marks]

i) Given the optical centre, O, at the origin, and the focal length f, and the image plane parallel to xy-plane, 1) draw the pinhole projection model, including the 3D point $P = (x_1, y_1, z_1)$ and its projected 2D image point $P' = (x'_1, y'_1)$. Also, 2) represent the coordinate $P' = (x'_1, y'_1)$. in terms of x_1, y_1 , and z_1 .

(5 marks)

ii) Describe how depth of field is affected if aperture size becomes smaller.

(2 marks)

when aperture size becomes smaller, DOF becomes larger

Thru Lens formula:

1-3 Spatial Filtering

Filtering

$$O(i,j) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) I(i+s,j+t)$$

When filter kernel is symmetric, filtering = convolution

2D Image Filtering

Boundary

- 1. Mirror padding
- 2. Zero padding dark boundary effect
- 3. Adjusting filter kernel

Uniform Mean Filter:

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \text{ larger size } --\text{ more blurred}$$

Gaussian Filter:

Advantage

- consider **spatial distance** within neighborhoods
- Separable

High-pass filter: sober filter (first-order), laplacian filter (second-order)

Unsharp masking: make an image look sharper by boosting high-frequency components

Non-linear filter: min, max, median

Image Noise

Types (4):

- Salt and pepper noise
- Gaussian noise
- Speckle noise
- Periodic noise

Salt and Pepper Noise

Image is randomly scattered as white (salt) or black (pepper) pixels

Gaussian Noise

AWGN (Additive White Gaussian Noise)

- Additive noise: noise can be added to the image
- White noise: randomly fluctuate and normally distributed

Speckle Noise — multiplicative noise

- -I = I(x, y) + I(x, y)N(x, y)
- -N(x,y) is zero mean uniform distributed function with σ

Periodic Noise

- spatially dependent noise

Noise Removal

Salt and Pepper Noise removal

- low-pass filtering: not effective
- Median filtering (perform better: exclude the extreme values)
- Outlier rejection

Outlier rejection method

- 1. Choose a threshold value D
- 2. For a given pixel, compare its value p with the mean m of the values of its **eight** neighborhoods
- 3. If |p-m| > D, classify the pixel as noisy
- 4. If the pixel is noisy, replace its value with m

Gaussian Noise Removal

Simple Average Filtering

- small window: **not effective** in noise removal
- large window: effective in noise removal, but output is over-smoothed

Bilateral Filtering

- depends on spatial and range difference
- average neighbors with similar intensities
- no edge term

 $O(i,j) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)I(i+s,j+t)$ $w(s,t) = \frac{1}{W(i,j)} \exp\left(-\frac{s^2}{2\sigma_s^2} - \frac{t^2}{2\sigma_t^2}\right) \exp\left(-\frac{(I(i,j) - I(i+s,j+t))^2}{2\sigma_r^2}\right)$ $W(i,j) = \sum_{m=-a}^{a} \sum_{n=-b}^{b} \exp\left(-\frac{m^2}{2\sigma_s^2} - \frac{n^2}{2\sigma_t^2}\right) \exp\left(-\frac{(I(i,j) - I(i+m,j+n))^2}{2\sigma_r^2}\right)$ Example 1 $W(i,j) = \sum_{m=-a}^{a} \sum_{n=-b}^{b} \exp\left(-\frac{m^2}{2\sigma_s^2} - \frac{n^2}{2\sigma_t^2}\right) \exp\left(-\frac{(I(i,j) - I(i+m,j+n))^2}{2\sigma_r^2}\right)$

Non-local Means Filtering (NL-means)

- average neighbors with similar neighborhoods
- measure the distance between patches

- Define a small, simple fixed size neighborhood;
- Define vector V_p: a list of neighboring pixel values.
- Similar' pixels p, q → SMALL distance || V_p V_q ||2
- 'Dissimilar' pixels $p, r \rightarrow LARGE$ distance $||V_p V_r||_2$

Gaussian Noise Removal (3 methods)

- Gaussian Filter: low noise, low detail
- Bilateral Filter: better noise removal, 'stair-steps'
- NL_Means: sharp, low noise, few artifacts

Periodic Noise Removal: Frequency Domain Filtering

- 1. Analyze the Fourier spectrum F of the image
- 2. Identify the locations of the peaks in F
- 3. Construct a notch reject filter H in Fourier domain, centering at peaks
- 4. Use H to filter F to get the result

Question 1 (b):

b) This question is about image filtering.

[8 marks]

i) Given a 3×3 image, compute the output value of a centre pixel in grey by applying two different filters: 1) Uniform mean filtering with the 3×3 filter kernel, 2) Median filtering with the 3×3 filter kernel. (Show your calculations)

(2 marks)

0	2	0
6	200	3
6	6	2

ii) Explain why the average mean filter is good at removing zero-mean additive white gaussian noise (AWGN) N that has the following probability density function of a Gaussian random variable z.

$$P(z = N) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{z^2}{2\sigma^2}\right)$$
 (2 marks)

iii) Explain the bilateral filtering including 1) its mathematical definition and 2) the advantages over Gaussian filtering in image denoising.

(4 marks)

(1) 10 centiform wear felter: \$\frac{1}{9}(0+2+0+6+200+3+6+6+2)
= \(\frac{1}{225} \) = 25 Merce, the output is \(\frac{1}{25} \)
© modition fictering: 002 d 3 666 200
neoclèae
House, the oweput is 3
(2) The moder of AWAN is 0, Therefore, when voice the accorage wealth if there
the notes values are decreiged when is o. Here, diereige neven fitte
is good at foresteer Auron.
(3) Belatered fectorary $P = 1$
(Wp=Z Goz (p-e) Gor (IIp-IEI)
Some it considers to average reaghbors with similar virtlesities, it avoid
the issue of edge tem.
KOKUYO

1-5 Feature Detection

Effects of Noise in Edge Detection (Gaussian filter)

Edge Detection: Sobel Filter | Laplacian Filter | LoG

Canny Edge Detector

- 1. Apply low-pass and high-pass filter, compute edge
 - 1. Gaussian Sobel
 - 2. 1D derivative of Gaussian filter
 - 3. Difference of Gaussian (DoG)
- 2. Non-maximum suppression (survive pixels with large edge magnitude)
 - find neighbor pixels in edge direction, compare these two neighbor pixels
- 3. Double thresholding
 - If > T_h , an edge. If < T_l , not an edge
 - $-T_L \leq M \leq T_H$, if neighboring is an edge, then is an edge

Harris Corner Detection

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

Corner Response Function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

Harris Corner Detection:

- 1. Compute M matrix, get corniness scores
- 2. Gave larger corner response (R > threshold)
- 3. Take the points of local maxima, perform non-maximum suppression

Advantage & Disadvantage of Harris Corner Detector

Advantage (3):

- 1. Partially invariant to affine intensity change
- 2. Invariant to translation
- 3. Invariant to rotation

Disadvantage:

1. Scaling

Blob detection: find maxima and minima of blob filter in response in space and scale

Scale-normalized LoG / DoG

- for certain scale, extremum occurs

SIFT (Scale Invariant Feature Transform)

1. Scale space extrema detection

Detect the candidates of interest points, which are the extrema points in the scale-space domains

2. Key Point Localization

Sub-pixel localization and removal of extrema points with low contrast

3. Orientation Assignment

- 1. Take 16 · 16 square window
- 2. Compute edge orientation for each 2 · 2 block
- 3. Throw out weak edges (threshold)
- 4. Create histogram by accumulating the gaussian weighted edge magnitude

4. Descriptor Construction

- 1. Normalize the window as 16 · 16 window
- 2. For each 4 · 4 block, compute gradient histogram over 8 directions
- 3. Concatenate 8–D vectors of $4 \cdot 4$ arrays and normalize the magnitude 128–D vector to 0, 1 (16 * 8 = 128)
- 4. Threshold gradient magnitudes to avoid excessive influence of high gradients

SIFT properties

- can handle changes in viewpoint
- Can handle changes in illumination
- Fast and efficient

SURF

Use Integral Image

Integral images: accumulated sum of gray scale pixel values of images

SURF properties

- SURF is faster than SIFT
- SURF is inferior to SIFT for luminance and viewpoint changes
- SURF sensitive to noise

Feature Matching

Nearest neighbor matching

 one feature matches to another if those features are nearest neighbors and their distance is below some threshold

(两个条件: nearest neighbors, distance below threshold)

$$\{f_i|i=1,...,N\}$$
 for I_1 and $\{g_i|j=1,...,M\}$ for I_2

$$k = \min_{j} dist(f_i, g_j) & \underline{dist(f_i, g_k)} < T \to \underline{NN(f_i)} = \underline{g_k}$$

- Problems:
 - Threshold T is difficult to find
 - Features may have lots of close matches

Solution 1:

Cross-checking technique

$$k = \min_{j} dist(f_i, g_j) \rightarrow NN(f_i) = g_k$$

$$l = \min_{i} dist(f_i, g_k) \rightarrow NN(g_k) = f_l$$

If i = l, the matching is assumed to be reliable. Otherwise, the matching is unreliable.

Solution 2:

- refine matched point using threshold ratio of nearest to 2rd nearest descriptor

$$\begin{aligned} k_1 &= \min_{j} dist(f_i, g_j) \\ k_2 &= \operatorname{second}_{j} \min dist(f_i, g_j) \end{aligned} \qquad \frac{dist(f_i, g_{k_1})}{dist(f_i, g_{k_2})} < T_r \to NN(f_i) = \underbrace{g_{k_1}}_{}$$

Question 1 (c):

c) This question is about feature detection and matching.

[10 marks]

i) By using Harris corner detector with 3×3 window of equal weighting, the empirical constant k = 0.05, and differentiation kernel below (d/dx) and d/dy, 1) find the Harris matrix, and 2) the corner response for the centre of the following image I_1 , and 3) determine whether the point is flat, edge, or corner.

(3 marks)

$$d/dx = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad d/dy = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}, \quad I_1 = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 & 5 \\ 0 & 0 & 1 & 6 & 6 \\ 6 & 6 & 6 & 6 & 6 \end{bmatrix}$$

- ii) Describe how key point descriptor construction works in Scale Invariant Feature Transform.

 (4 marks)
- iii) We have two sets of features $\{f_i | i = 1, ..., N\}$, from a reference image I_1 , and $\{g_j | j = 1, ..., M\}$, from a target image I_2 . Given a reference feature, f_1 , describe how nearest neighbour matching works on f_1 .

(3 marks)

120 Hanes mutter M = [55 This Trily]	Usbanu pay-noima of the fire
	N 03
Ix = -5 -4 7 Iy = 0 0 0 7	
	3 - 1 3 V Sale - 1
5 XX = X+16+1+36+12 = (-3	
Try = 6+25=31	
THEY = 1+ X = 26 prod : Congress conditions	of other appares and a
m= [36 31] = m	
(Φ R = λ/λ ~ k(λ(+λ))²	Thin Lone Generala:
以及=(03×26-3)=1717g g g	No.
N+12=103 +26=129	THE WALL
R=1717-0.05x1292=884.95 > > > Tuzs à la c	orver
3 K as relatively say and (2>0 > this is a	<i>3011</i> - 4 -
15 14 4 1 10 1 1	
2) tay point descriptor needly licens 4 sceps.	
1. concelled the wardow of 16×15 wheleve	
2. For earleh 414 black, compute greeditent list	
	ogram over 8 chirection
3. concatenase 8-D rector of 4x4 arays and	normalize the
3. concertance 8-D rector of 4x4 arrays and	normalize the
3. concertance 8-D rector of 4x4 arrays and	normalize the
3. Cheatenase 8-D rector of 4x4 arays and 128-D rector to the rays co. () 4. Threshold gradient magnitudes to award ex	normalize the
3. Chreatenase 8-D rector of 4x4 arays and 128-D rector to the range co. () 4. Threshold gradient magnitudes to award ex evaple gradient.	normalize the
3. Cheatanas 8-D vector of 4x4 arays and 128-D vector to the range (0,1) 4. Threshold gradient magnitudes to award ex every gradient. (3) 90 must if gle is the matterize feature for	normalize the cessics influence of
3. Cheatenase 8-D vector of 4x4 arays and 128-D vector to the range (0,1) 4. Threshold gradient magnitudes to award ex eigh gradient. (3) grant if gk is the matteries fewere for them grants be the nearest neighborhood of	nomotive the cessie affectus of
3. Concertance 8-D rector of 4x4 arays and 1x8-D rector to the range co. () 4. Threshold gradiant magnitudes to award ex eigh gradiant. (3) 9x must if gk is the material feature for then gx must be the material narphyorhood of	normalize the ceesce is fluence of fluence of acceptance acceptanc
3. Chreatenate 8-D rector of 4x4 arays and 1x8-D rector to the range (0,1) 4. Threshold gradient magnitudes to award ex eigh gradient. (3) 9x must if 9k is the mattering fewere for them 9x must be the nearest neighborhood of	normalize the ceesce is fluence of fluence of acceptance acceptanc
3. Concertances 8-D vector of 4x4 arays and 1x8-D vector to the range (0,1) 4. Threshold gradient magnitudes to award ex expl gradient. (3) go must if go is the mattering feature for then go must be the nearest neighborhood of their distance should be less then the re- k = Man dist (A, g;) & dist (f1, gk) < T	normalize the ceesce is fluence of fluence of acceptance acceptanc
3. Chreatenate 8-D rector of 4x4 arays and 128-D rector to the range co. 1) 4. Threshold gradient magnitudes to award ex eigh gradient. (3) go much if gh is the material feature for them go must be the market neighborhood of	normalize the cossics in fluence of