Angles

Definition 1 (Angle). Let \mathcal{P} be an ordered geometry and x, o, and y distinct points.

• The set

$$\angle xoy = \overrightarrow{ox} \cup \overrightarrow{oy}$$

is called the angle with vertex o and sides \overrightarrow{ox} and \overrightarrow{oy} .

• Suppose further that x, o, and y are not collinear. In this case, since \mathcal{P} is an ordered geometry, the lines \overrightarrow{ox} and \overrightarrow{oy} divide \mathcal{P} into half-planes. Let H_1 be the y half-plane of \overrightarrow{ox} , and let K_1 be the x half-plane of \overrightarrow{oy} . We define the interior of ∠xoy to be the set

$$\operatorname{int} \angle xoy = H_1 \cap K_1.$$

If x, y, and o are collinear, then the interior of $\angle xoy$ is not defined.

Definition 2 (Linear Pair, Vertial Pair). Suppose x, y, z, w, and o are distinct points in an ordered geometry.

- $\angle xoy$ and $\angle yoz$ are called an adjacent pair if $y \in \text{int} \angle xoz$.
- $\angle xoy$ and $\angle yoz$ are called a linear pair if [xoz].
- $\angle xoy$ and $\angle zow$ are called a vertical pair if [xoz] and [yow].