## Using Random Fourier Features with Random Forests

Albert Ribes

UPC — FIB

April 9, 2018

### Context





## Context

#### Random Forest



# Context

#### Random Fourier Features



# Scope

### One mapping per forest

First generate one mapping and then use original Random Forest algorithm with the new data

#### One mapping per tree

Generate one mapping for each of the trees, and build and train them with the original tree-building algorithm

#### One mapping per node

Generate a mapping in each split step during the tree building

# Scope

### One mapping per forest

First generate one mapping and then use original Random Forest algorithm with the new data

#### One mapping per tree

Generate one mapping for each of the trees, and build and train them with the original tree-building algorithm

#### One mapping per node

Generate a mapping in each split step during the tree building

# **Planning**

## Theoretical Approach

- Study Random Forest Algorithm
- Study Random Fourier Features Mapping
- Study the way to mix them

### Algorithm Implementation

- Code for the mapping
- Modifications to the Random Forest Algorithm

## Testing

Time and accuracy tests

# Planning Workflow



# Budget

#### Roles

- Expert in Machine Learning
- Programmer
- Tester
- Labour cost: 240 hours of work  $\cdot \frac{30 \ \in}{1 \ \text{hour}} = 7200 \ \in$
- Indirect Costs: Transport (150 €)
- Depreciation: Laptop (25.6 €)

#### Total cost

7375.6 €

# Sustainability

