Smooth tensor estimation

Miaoyan Wang, May 18, 2020

1 Model

Key: Cartesian product of piecewise constant function representations. (has full generality...)

Let $\mathcal{Y} = \llbracket y_{i_1,\dots,i_K} \rrbracket \in \{0,1\}^{d_1 \times \dots \times d_K}$ be an order-K, (d_1,\dots,d_K) -dimensional binary tensor. Let $\boldsymbol{\xi}^{(k)} = (\xi_1^{(k)},\dots,\xi_d^{(k)}) \in [0,1]^d$ be random vectors following (unknown) distributions $\mathbb{P}^{(k)}$ for all $k \in [K]$, and $\boldsymbol{\xi}^{(k)}$ and $\boldsymbol{\xi}^{(k')}$ are mutually independent for $k \neq k' \in [K]$. Assume that, conditional on $\{\boldsymbol{\xi}^{(k)}\}$, the entries of \mathcal{Y} are independent sub-Gaussian distributed:

$$\mathbb{E}(y_{i_1,...,i_K}|\boldsymbol{\xi}) = f(\xi_{1,i_1},...,\xi_{K,i_K}), \text{ for all } (i_1,...,i_K) \in [d] \times \cdots \times [d],$$

where $f: [0,1]^K \mapsto [0,1]$ is an unknown multivariate function belonging to a function class $f \in \mathcal{F}_{\alpha}(L)$. Specifically, the function class is defined as

$$\mathcal{F}_{\alpha}(L) = \{ f : \text{Im}(f) \in [0, 1] \text{ and } ||f||_{\mathcal{H}_{\alpha}} \le L \},$$

where $\alpha \in (0, 1]$ is the smoothness parameter and L > 0 is the Hölder norm bound for the functions in the class.

Recall that the function Hölder norm $||f||_{\mathcal{H}_{\alpha}}$ is defined as

$$||f||_{\mathcal{H}_{\alpha}} \stackrel{\text{def}}{=} \max_{|\omega| \leq \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \in \mathcal{D}} |\nabla_{\omega} f(\boldsymbol{x})| + \max_{|\omega| = \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \neq \boldsymbol{x'} \in \mathcal{D}} \frac{\nabla_{\omega} |f(\boldsymbol{x}) - \nabla_{\omega} f(\boldsymbol{x'})|}{||\boldsymbol{x} - \boldsymbol{x'}||_{1}^{\alpha - \lfloor \alpha \rfloor}},$$

where we have used the short-hand notion

$$abla_{\omega} f(\boldsymbol{x}) = rac{\partial^{i_1 + \dots + i_K}}{\partial x_1^{i_1} \dots \partial x_K^{i_K}} f(x_1, \dots, x_k),$$

for multi-indices $\omega = (i_1, \dots, i_K)$ with $|\omega| = i_1 + \dots + i_K$, and $\boldsymbol{x} = (x_1, \dots, x_K)$ in the function domain.

2 Estimation

Define the objective function

$$F(\mathcal{C}, \{\mathbf{M}_k\}) = \|\mathcal{Y} - \mathcal{C} \times_1 \mathbf{M}_1 \times \cdots \times_K \mathbf{M}_K\|_F^2.$$

Denote $\Theta = \mathcal{C} \times_1 M_1 \times \cdots \times_K M_K$ and $\mathbf{r} = (r_1, \dots, r_K)$. Then the feasible domain is

$$\mathcal{P}(r) = \left\{ \Theta \in \mathbb{R}^{d_1 \times \dots \times d_K} \colon \Theta = \mathcal{C} \times_1 \mathbf{M}_1 \times \dots \times_K \mathbf{M}_K, \text{ where } \mathcal{C} \in \mathbb{R}^{r_1 \times \dots \times r_K} \text{ and } \right.$$

$$\mathbf{M}_k \in \{0,1\}^{d_k \times r_k} \text{ are membership matrices for all } k \in [K] \right\}.$$

We propose constrained least-square estimator

$$\hat{\Theta}(\boldsymbol{r}, M) = \mathop{\arg\min}_{\boldsymbol{\Theta} \in \mathcal{P}(\boldsymbol{r}), \|\boldsymbol{\Theta}\|_{\infty} \leq M} F(\boldsymbol{\Theta} \big| \mathcal{Y}).$$

The function estimator $\hat{f}: (0,1]^K \mapsto [0,1]$ is defined as follows:

$$\hat{f}(x_1,\ldots,x_K) \stackrel{\text{def}}{=} \hat{\Theta}(\lceil d_1 x_1 \rceil,\ldots,\lceil d_K x_K \rceil), \text{ for all } (x_1,\ldots,x_K) \in (0,1]^K.$$

We propose an adaptive smooth (?) estimation,

$$\begin{split} \hat{\Theta} &= \mathop{\arg\min}_{\Theta \in \mathcal{P}(\boldsymbol{r}*)} F(\Theta), \quad \text{with} \quad \boldsymbol{r}^* = (r_1^*, \dots, r_K^*), \\ \text{and} \quad r_k^* &= \lceil d_k^{1/(\alpha \wedge 1 + 1)} \rceil \text{ for all } k \in [K]. \end{split}$$

Theorem 2.1. Consider a function class $\mathcal{F}_{\alpha}(R)$ with $\alpha > 0$ and M > 0. We have

$$\sup_{f \in \mathcal{F}_{\alpha}(R)} \sup_{\boldsymbol{\xi}^{(k)} \sim \mathbb{P}^{(k)}, k \in [K]} \frac{1}{d^{K}} \mathbb{E} \left(\| \hat{\Theta} - f(\xi_{i_{1}}^{(1)}, \dots, \xi_{i_{K}}^{(K)}) \|_{F}^{2} \right) \leq C \left(d^{-K\alpha/(\alpha+1)} + \frac{\log d}{d^{K-1}} \right),$$

where the constant C > 0 depends only on L, and the expectation is taken jointly over \mathcal{Y} , $\{\boldsymbol{\xi}^{(k)}\}$ for all $k \in [K]$.

Phase transition at $\alpha = 1$ only for $K \geq 3$??

2.1 Non-parametric tensor model

Special cases: low-rank model, additive-multiplicative model (in the literature of non-parametric...)

Let $\mathcal{Y} = \llbracket Y_{\omega} \rrbracket$ be a binary tensor, where $\omega = (i_1, \ldots, i_K)$ is a K-tuple index. We propose the following conditionally-independent tensor model:

$$Y_{\omega}|\boldsymbol{\xi}_{\omega} \sim \text{Bernoulli}(\theta_{\omega}),$$

 $\theta_{\omega} = f(\xi_{i_1}^{(1)}, \dots, \xi_{i_K}^{(K)}), \text{ for all } \omega = (i_1, \dots, i_K) \in [d_1] \times \dots \times [d_K],$

where $f: [0,1]^K \mapsto [0,1]$ is a multivariate function of interest. We use $\boldsymbol{\xi}_{\omega} \equiv (\xi_{i_1}^{(1)}, \dots, \xi_{i_K}^{(K)})$ to denote the latent design variables at position $\omega = (i_1, \dots, i_K)$. Furthermore, we assume that the collection

of latent variables at the k-th coordinate, $(\xi_1^{(k)}, \dots, \xi_{d_K}^{(k)})$, follow a d_k -dimensional distribution $\mathbb{P}^{(k)}$, and the distributions $\mathbb{P}^{(k)}$ and $\mathbb{P}^{(k')}$ are mutually independent for $k \neq k' \in [K]$.

$$\boldsymbol{\xi} \colon [d_1] \times \dots \times [d_K] \mapsto [0, 1]^K$$

$$\omega \equiv (i_1, \dots, i_K) \mapsto \boldsymbol{\xi}_\omega \equiv (\xi_{i_1}^{(1)}, \dots, \xi_{i_K}^{(K)}) \sim \mathbb{P}^{(1)} \times \dots \times \mathbb{P}^{(K)}.$$

$$f \colon [0,1]^K \mapsto [0,1]$$
$$\boldsymbol{\xi} \mapsto f(\boldsymbol{\xi}).$$

Lemma 1 (Connection between tensor block model and non-parametric tensor model). Let $f \in \mathcal{F}_{\alpha}(L)$ be a target function and $\boldsymbol{\xi} \sim \mathbb{P}_{\boldsymbol{\xi}}$ be realized latent variables. Let $f(\boldsymbol{\xi}_{\omega}) \in \mathbb{R}$ denote the tensor entry indexed by $\omega \in [d_1] \times \cdots \times [d_K]$, and let $f(\boldsymbol{\xi}) = [\![f(\boldsymbol{\xi}_{\omega})]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ denote the non-parametric tensor parameter. Then for each $\boldsymbol{r} \in [d_1] \times \cdots \times [d_K]$, there exists a parameter $\Theta = [\![\theta_{\omega}]\!] \in \mathcal{P}(\boldsymbol{r})$ such that

$$Loss(f(\boldsymbol{\xi}), \Theta) \le L^2 \left(\sum_k \frac{1}{r_k}\right)^{\alpha \wedge 1}.$$

Remark 1. The (deterministic) bound holds uniformly over \mathbb{P}_{ξ} and $\mathcal{F}_{\alpha}(L)$.

Proof. The proof is constructive. We partition the interval [0,1] into r_k equal-sized intervals at each of the K modes. Denote the grid of intervals $\mathcal{I}_{s_1,\ldots,s_K} = \left(\frac{s_1-1}{r_1},\frac{s_1}{r_1}\right] \times \cdots \times \left(\frac{s_K-1}{r_K},\frac{s_K}{r_K}\right]$ for all $(s_1,\ldots,s_K) \in [r_1] \times \cdots \times [r_K]$. We use the notation $\boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}$ if and only if $\boldsymbol{\xi}_{\omega'}$ and $\boldsymbol{\xi}_{\omega}$ belong to the same grid.

The parameter $\Theta = \llbracket \theta_{\omega} \rrbracket$ is constructed as follows. For each $\omega \in [d_1] \times \cdots \times [d_K]$, we set θ_{ω} to be the average of $f(\boldsymbol{\xi}_{\omega'})$ over the index set for which $\boldsymbol{\xi}_{\omega'}$ in the same grid as $\boldsymbol{\xi}_{\omega}$. Specifically, define

$$heta_{\omega} = rac{1}{c_{\omega}} \sum_{\omega'} f(oldsymbol{\xi}_{\omega'}) \mathbb{1} \{ oldsymbol{\xi}_{\omega'} \sim oldsymbol{\xi}_{\omega} \},$$

where $c_{\omega} = \sum_{\omega'} \mathbb{1}\{\boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}\}$ is the number of tensor entries in the index set $\{\omega' : \boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}\}$. The construction implies that $\Theta = [\![\boldsymbol{\theta}_{\omega}]\!]$ takes constant value in the index set $\{\omega : \boldsymbol{\xi}_{\omega} \in \mathcal{I}_{s_1,\dots,s_K}\}$ for any given $(s_1,\dots,s_K) \in [r_1] \times \dots \times [r_K]$. Therefore, Θ is a block tensor with at most r blocks on each of the K modes; that is, $\Theta \in \mathcal{P}(r)$.

We will show that the defined Θ is close to $f(\xi_{\omega})$ in the square distance. Specifically,

$$|f(\boldsymbol{\xi}_{\omega}) - heta_{\omega}| = \left| f(\boldsymbol{\xi}_{\omega}) - rac{1}{c_{\omega}} \sum_{\omega'} f(\boldsymbol{\xi}_{\omega'}) \mathbb{1} \{ \boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega} \} \right|$$

$$\leq \frac{1}{c_{\omega}} \sum_{\{\omega' : \boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}\}} |f(\boldsymbol{\xi}_{\omega}) - f(\boldsymbol{\xi}_{\omega'})|
\leq \frac{1}{c_{\omega}} \sum_{\{\omega' : \boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}\}} L \|\boldsymbol{\xi}_{\omega} - \boldsymbol{\xi}_{\omega'}\|^{\alpha \wedge 1}
\leq \frac{1}{c_{\omega}} \sum_{\{\omega' : \boldsymbol{\xi}_{\omega'} \sim \boldsymbol{\xi}_{\omega}\}} L \left(\frac{K}{r}\right)^{\alpha \wedge 1}
\leq LKr^{-(\alpha \wedge 1)},$$

where the third line comes form the Hölder condition for f, the fourth line comes from the fact that $\|\boldsymbol{\xi}_{\omega} - \boldsymbol{\xi}_{\omega'}\| \leq \frac{K}{r}$ for $\boldsymbol{\xi}_{\omega} \sim \boldsymbol{\xi}_{\omega'}$. Summing over all $\omega \in [d_1] \times \cdots \times [d_K]$ gives the conclusion

$$\frac{1}{\prod_k d_k} \sum_{\omega} \left(f(\boldsymbol{\xi}_{\omega}) - \theta_{\omega} \right)^2 \le L^2 K^2 r^{-2(\alpha \wedge 1)}.$$

Theorem 2.2 (MSE for tensor block model). Let $\mathcal{Y} \in \{0,1\}^{d_1 \times \cdots \times d_K}$ be a binary tensor generated from tensor block model, i.e.

$$\mathcal{Y}|\Theta \sim Bernoulli(\Theta), \quad where \ \Theta \in \mathcal{P}(r).$$

Then for constant C' > 0, there exists a constant C > 0 such that

$$\frac{1}{\prod_k d_k} \|\Theta - \hat{\Theta}\|_F^2 \le C \left(\prod_k \frac{r_k}{d_k} + \frac{\sum_k d_k \log r_k}{\prod_k d_k} \right),$$

with probability at least $1 - \exp(-C' \sum_k d_k \log r_k)$, uniformly over $\Theta \in \mathcal{P}(r)$.

Suppose $r \asymp d^{\delta}$ for some $\delta \in [0, 1]$.

$$\mathrm{MSE}(\Theta, \hat{\Theta}) \approx \begin{cases} d^{-K}, & \delta = 0 \text{ and } r = 1, \\ d^{-(K-1)}, & \delta = 0 \text{ and } r \geq 2, \\ d^{-(K-1)} \log d, & \delta \in \left(0, \frac{1}{K}\right], \\ d^{-K(1-\delta)}, & \delta \in \left(\frac{1}{K}, 1\right]. \end{cases}$$

Theorem 2.3. Assume $r_k = O(r)$ and $d_k = O(d)$. Then

$$MSE(f(\boldsymbol{\xi}), \hat{\Theta}) \le r^K + d\log r + L^2 K^2 r^{-2(\alpha \wedge 1)}.$$

Proof. Taking $r = d^{\delta}$ where $\delta = \frac{K}{2(\alpha \wedge 1) + K}$ gives

$$\mathrm{MSE}(f(\xi), \hat{\Theta}) \leq \begin{cases} d^{-2\alpha/(2\alpha+1)} + o(1), & K = 1 \\ d^{-2\alpha/(\alpha+1)} + \frac{\log d}{d}, & K = 2 \\ d^{-2\alpha K/(2\alpha+K)} + d^{-2K/(K+2)}, & K \geq 3, \end{cases}$$

Only non-parametric rate appear for $K \geq 3$.

Remark 2. The distribution of \mathbb{P}_{ξ} is required to cover [0,1]. – in order to prove the lower bound... We restrict to i.i.d. uniform distribution over [0,1]. (Erdos Roni)

Theorem 2.4. There exists a constant C > 0 only depending on L, α , such that

$$\inf_{\hat{\Theta}} \sup_{f \in \mathcal{F}_{\alpha}(L)} \sup_{\mathbb{F}_{\xi} \in \mathcal{P}} \mathbb{E}\{MSE(\hat{\Theta}, f(\xi))\} \begin{cases} d^{-2\alpha K/(2\alpha + K)}, & 0 < \alpha < 1, \\ d^{-1} \log d, & \alpha \geq 1 \text{ and } K = 2, \\ d^{-2K/(K+2)}, & \alpha \geq 1 \text{ and } K \geq 3. \end{cases}$$

3 Assumptions on function families

We consider two families of functions.

Definition 1 ($\mathcal{F}(R)$, piecewise constant functions with at most r marginal pieces). A function $f \colon [0,1]^K \mapsto [0,1]$ is called a multivariate R-step function, if there exists a set of mappings $\{\phi_k \colon [0,1] \mapsto [R]\}_{k \in [K]}$ and an order-K tensor $\mathcal{C} \in \mathbb{R}^{R \times \cdots \times R}$ such that

$$f(x_1, \dots, x_K) = \mathcal{C}(\phi_1(x_1), \dots, \phi_K(x_K)), \text{ for all } (x_1, \dots, x_K) \in [0, 1]^K.$$

Denote $\mathbf{x} = (x_1, \dots, x_K)^T$ and $\phi(\mathbf{x}) = (\phi_1(x_1), \dots, \phi_K(x_K))^T$. Then f can be equivalently written as

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{r} \in [R]^K} \mathcal{C}(\boldsymbol{r}) \mathbb{1} \left\{ \phi(\boldsymbol{x}) = \boldsymbol{r} \right\}, \text{ for all } \boldsymbol{x} \in [0, 1]^K.$$

Remark 3. The number of constant pieces need not to be equal along each of the K modes. We use R to denote the upper bound for the number of constant pieces over the K modes.

Definition 2 ($\mathcal{F}(\alpha, L)$, Hölder smooth functions). Let $\alpha \in (0, 1]$ and L > 0. A function $f : [0, 1]^K \mapsto [0, 1]$ is called an α -Hölder smooth function if

$$|f(\boldsymbol{x}) - f(\boldsymbol{x}')| \le L \|\boldsymbol{x} - \boldsymbol{x}'\|_1^{\alpha}, \quad \text{for all } \boldsymbol{x}, \boldsymbol{x}' \in [0, 1]^K.$$

The constant $\alpha \in (0,1]$ is called the Hölder smoothness parameter and L>0 is the Hölder constant.

Definition 3 (Measure-preserving bijection). Let $\tau \colon \mathcal{X} \mapsto \mathcal{X}$ be a bijection and U be a random variable taking values in \mathcal{X} . Then, τ is called a measure-preserving bijection with respect to U if for all $A \subset \mathcal{X}$.

$$\mathbb{P}(U \in A) = \mathbb{P}(\tau(U) \in A).$$

In particular, $\tau(U)$ and U are identically distributed.

Equivalent class??

$$\{f': f'(\xi') \sim f(\xi) \text{ whenever } \xi' \sim \xi\}$$

Definition 4 (Weakly isomorphism). Two functions $f, f' : [0, 1]^K \mapsto [0, 1]$ are called weakly isomorphic if there exists a set of measure-preserving bijections $\{\tau_k : [0, 1] \mapsto [0, 1]\}_{k \in [K]}$ such that

$$f(\xi_{1,1},\ldots,\xi_{K,i_K}) \stackrel{a.s.}{=} f'(\tau_1(\xi_{1,i_1}),\ldots,\tau_K(\xi_{K,i_K})), \text{ for all } (i_1,\ldots,i_K) \in [d_1] \times \cdots \times [d_K],$$

where $\{\xi_{k,i_k}\}$ are i.i.d. U[0,1] for all $i_k \in [d_k]$ and all $k \in [K]$. We write $f \sim f'$ to denote weakly isomorphism. The weakly isomorphism relationship defines a quotient space in $\mathcal{F}(R)$ or $\mathcal{F}(\alpha, L)$.

Definition 5 (Index permutation). Two tensors $\Theta, \Theta' \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ are called equivalent if there exist a set of index permutations $\{\sigma_k : [d_k] \mapsto [d_k]\}_{k \in [K]}$, such that

$$\Theta(i_1,\ldots,i_K) = \Theta'(\sigma_1(i_1),\ldots,\sigma_K(i_K)), \quad \text{for all } (i_1,\ldots,i_K) \in [d_1] \times \cdots \times [d_K].$$

Two forms of loss are considered.

Definition 6 (Integrated loss). Let $f: [0,1]^K \mapsto [0,1]$ be the function of interest. We define the integrated loss

$$\operatorname{Loss}(f, \hat{f}) \stackrel{\text{def}}{=} \inf_{f_{\text{iso}} \sim f} \int_{\boldsymbol{x} \in [0, 1]^K} \left| f'(\boldsymbol{x}) - f_{\text{iso}}(\boldsymbol{x}) \right|^2 d\boldsymbol{x},$$

where $f_{\text{iso}} \sim f$ denotes all (?need to be in the specified function space?) functions that are isomorphic with f.

Definition 7 (Discrete loss). Let $\Theta, \hat{\Theta} \in \mathbb{R}^{d_1 \times \dots \times d_K}$ be two tensors. We define the discrete loss as

$$\operatorname{Loss}(\Theta, \hat{\Theta}) \stackrel{\text{def}}{=} \frac{1}{\prod_k d_K} \|\Theta - \hat{\Theta}\|_F^2.$$

Remark 4. We use the notion $Loss(\cdot, \cdot)$ to denote either the discrete loss (for tensors) or the integrated loss (for functions). The meaning should be clear given the contexts.

Definition 8 (Operations between f and Θ). Let $f: [0,1]^K \mapsto [0,1]$ be a K-variate function. Then the f-induced probability tensor Θ is defined as

$$\Theta(i_1,\ldots,i_K) = f(\xi_{1,i_1},\ldots,\xi_{K,i_K}), \quad \text{for all } (i_1,\ldots,i_K) \in [d_1] \times \cdots \times [d_K],$$

where $\{\xi_{k,i_k}\}$ are i.i.d. Uniform[0,1] for all $i_k \in [d_k]$ and all $k \in [K]$.

Conversely, let $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ be an order-K tensor. Then the Θ -induced function is defined as

$$f(x_1, \dots, x_K) = \Theta(\lceil d_1 x_1 \rceil, \dots, \lceil d_K x_K \rceil)$$

$$= \sum_{(i_1, \dots, i_K)} \Theta(i_1, \dots, i_K) \mathbb{1}\{(i_k - 1) < x_k d_k \le i_k, \text{ for all } k \in [K]\},$$

for all $(x_1, ..., x_K) \in [0, 1]^K$.

Remark 5. The two operations are not inverse. $f \Rightarrow \Theta(f, \boldsymbol{\xi}) \Rightarrow f' \stackrel{\text{def}}{=} f(\Theta(f, \boldsymbol{\xi}))$, but $f \neq f'$ (not even isomorphic). Similarly, $\Theta \Rightarrow f(\Theta, \boldsymbol{\xi}) \Rightarrow \Theta' \stackrel{\text{ref}}{=} \Theta(f(\Theta, \boldsymbol{\xi}))$, but $\Theta' \neq \Theta$. The inverse relationship holds only if $\xi_{i_k,k} = \frac{i_k}{d_k}$ for all $i_k \in [d_k]$ and all $k \in [K]$.

Proposition 1 (Connection between f and Θ). The following properties hold:

- 1. [From functions to tensors] Let Θ denote the induced tensor from f. Then, $f \in \mathcal{F}(R) \Rightarrow \Theta \in \mathcal{P}(R,1)$. Furthermore, $\Theta' \sim \Theta \Rightarrow$ there exists f' such that Θ' is the induced tensor from f'.
- 2. [From tensors to functions] Let f denote the induced function from Θ . Then $\Theta \in \mathcal{P}(R,1) \Rightarrow f \in \mathcal{F}(R)$.
- 3. [From tensor pairs to function pairs] Let f, f' denote the induced functions from Θ and Θ' , respectively. Then, $f \sim f' \Leftrightarrow \Theta \sim \Theta'$. Furthermore,

$$Loss(f, f') \leq Loss(\Theta, \Theta').$$

Problem 1 (Non-parametric estimation with unobserved designs). Let $f: [0,1]^K \mapsto [-1,1]$ be a target function of interest. For each $k \in [K]$, we draw a random i.i.d. sample of d points $\{x_i^{(k)}\}_{i\in[d]}$ uniformly from [0,1]. Write $\omega=(i_1,\ldots,i_K)\in[d]^K$, $\boldsymbol{x}_{\omega}=(x_{i_1}^{(1)},\ldots,x_{i_K}^{(K)})^T\in\mathbb{R}^K$, and $f_{\omega}=f(\boldsymbol{x}_{\omega})\in\mathbb{R}$. The goal is to estimation f given the set $\{(\omega,f_{\omega})\}$ but without knowing $\{\boldsymbol{x}_{\omega}\}$!

We estimate f by using the null design; that is, we partition $[0,1]^K$ into d^K equal-sized grids. Specifically, we assume $\check{x}_i^{(k)} = \frac{i}{d}$ for all $i \in [d]$ and $k \in [K]$, and write $\check{x}_{\omega} = (\check{x}_{i_1}^{(1)}, \dots, \check{x}_{i_K}^{(K)})^T \in \mathbb{R}^K$. Then the estimation is based on $\{(\check{x}_{\omega}, f_{\omega})\}$.

Q1: existing results for known $\{x_{\omega}\}$? Q2: quantify the difference between $\{x_{\omega}\}$ vs. $\{\check{x}_{\omega}\}$.

The following results give the estimation error when f belongs to $\mathcal{F}(R,1)$ or $\mathcal{F}(\alpha,L)$.

Proposition 2 (Agnostic error). Consider the chain $f \Rightarrow \Theta(f, \xi) \Rightarrow \hat{f} \stackrel{\text{def}}{=} f(\Theta(f, \xi))$.

• If $f \in \mathcal{F}(R,1)$, then

$$\mathbb{E}\left[\operatorname{Loss}(f, \ \hat{f})\right] \le \frac{CKR}{\sqrt{d}},$$

where the expectation is over $\boldsymbol{\xi} \sim \mathbb{P}_{\boldsymbol{\xi}}$.

• If $f \in \mathcal{F}(\alpha, L)$, then

$$\mathbb{E}\left[\operatorname{Loss}(f, \ \hat{f})\right] \le \frac{CK^2L^2}{d^{\alpha}},$$

where the expectation is over $\boldsymbol{\xi} \sim \mathbb{P}_{\boldsymbol{\xi}}$.

Remark 6. Does it matter how to define \hat{f} ? say kernel, or smooth version?

Proof. Note that

$$\Theta(i_1, \dots, i_K) = f(\xi_{i_1}^{(1)}, \dots, \xi_{i_K}^{(K)}), \text{ for all } (i_1, \dots, i_K) \in [d]^K.$$

For each $k \in [K]$, we sort $\{\xi_i^{(k)}\}_{i \in [d]}$ in an increasing order and write $0 \le \xi_{(1)}^{(k)} \le \cdots \le \xi_{(d)}^{(k)} \le 1$. Define

$$\Theta^*(i_1, \dots, i_K) = f(\xi_{(i_1)}^{(1)}, \dots, \xi_{(i_K)}^{(K)}), \quad \text{for all } (i_1, \dots, i_K) \in [d]^K.$$

Since $\Theta^* \sim \Theta$, they induce weakly isomorphic functions. Now consider the function induced by Θ^* .

$$\hat{f}(\boldsymbol{x}) = \sum_{(i_1, \dots, i_K)} \Theta^*(i_1, \dots, i_K) \mathbb{1} \left\{ x_k \in \left(\frac{i_k - 1}{d}, \frac{i_k}{d} \right] \right\}$$

$$= \sum_{(i_1, \dots, i_K)} f(\xi_{(i_1)}^{(1)}, \dots, \xi_{(i_K)}^{(K)}) \mathbb{1} \left\{ x_k \in \left(\frac{i_k - 1}{d}, \frac{i_k}{d} \right], \text{ for all } k \in [K] \right\}.$$

We aim to evaluate the integral over the grid $I_i = (\frac{i-1}{d}, \frac{i}{d}]$ for $i \in [d]$.

$$\operatorname{Loss}(f, \ \hat{f}) = \sum_{(i_1, \dots, i_K)} \left[\int_{\boldsymbol{x} \in I_{i_1} \times \dots \times I_{i_K}} |f(\boldsymbol{x}) - \hat{f}(\boldsymbol{x})|^2 d\boldsymbol{x} \right]$$
(1)

We now evaluate the integral over the region $I_{\omega} = I_{i_1} \times \cdots \times I_{i_K}$. Define $\check{\boldsymbol{x}} = (\frac{i_1-1}{d}, \frac{i_1}{d}] \times \cdots (\frac{i_K-1}{d}, \frac{i_K-1}{d}] \in I_{\omega}$. For any $\boldsymbol{x} \in I_{\omega}$, we have

$$|f(x) - \hat{f}(x)| \le |f(x) - f(\check{x})| + \left|\hat{f}(x) - f(\check{x})\right|.$$

Note that both $\check{\boldsymbol{x}}, \boldsymbol{x} \in I_{\omega}$

$$|f(\boldsymbol{x}) - f(\check{\boldsymbol{x}})| \le L|\boldsymbol{x} - \check{\boldsymbol{x}}|^{\alpha} \le LKd^{-\alpha}.$$
(2)

Furthermore,

$$|\hat{f}(\boldsymbol{x}) - f(\check{\boldsymbol{x}})| \le |f(\xi_{(i_1)}^{(1)}, \dots, \xi_{(i_K)}^{(K)}) - f(\frac{i_1}{d}, \dots, \frac{i_K}{d})|$$

$$\le L \max_{k} \left| \xi_{(i_k)}^{(k)} - \frac{i_k}{d} \right|^{\alpha}.$$
(3)

Plugging (2) and (3) to (1), we obtain

$$\begin{split} \int_{\boldsymbol{x} \in [0,1]^K} |f(\boldsymbol{x}) - \hat{f}(\boldsymbol{x})|^2 d\boldsymbol{x} &\leq L^2 K^2 \left\{ d^{-\alpha} + \max_{k, i_k} \left| \xi_{(i_k)}^{(k)} - \frac{i_k}{d} \right|^{\alpha} \right\}^2 \\ &\leq L^2 K^2 \left\{ d^{-2\alpha} + \max_{k, i_k} \left| \xi_{(i_k)}^{(k)} - \frac{i_k}{d} \right|^{2\alpha} + 2d^{-\alpha} \max_{k} \left| \xi_{(i_k)}^{(k)} - \frac{i_k}{d} \right|^{\alpha} \right\}. \end{split}$$

By Jensen's inequality, $f(x) = x^{\alpha}$ is concave for $\alpha \in [0,1)$, so hence $\mathbb{E}[f(x)] \leq f(\mathbb{E}(x))$:

$$\mathbb{E}\left|\xi_{(i_k)}^{(k)} - \frac{i_k}{d}\right|^{2\alpha} \le \left[\operatorname{Var}\left(\xi_{(i_k)}^{(k)}\right)\right]^{\alpha} \le Cd^{-\alpha}.$$

The last line comes from the fact that the order statistics of the uniform distribution belongs to Beta distribution, $\xi_{(i)} \sim \text{Beta}(i, d+1-i)$ for all $i \in [d]$. Then $\text{Var}(\xi_{(i)})$ By $\mathbb{E}(X) \leq \sqrt{\mathbb{E}(X^2)}$, we have

$$\mathbb{E}\left|\xi_{(i_k)}^{(k)} - \frac{i_k}{d}\right|^{\alpha} \le Cd^{-\alpha/2}.$$

Therefore,

$$\operatorname{Loss}(f, \hat{f}) \le L^2 K^2 \left(d^{-2\alpha} + C d^{-\alpha} + 2C d^{-3\alpha/2} \right) \le C L^2 K^2 d^{-\alpha}.$$

Proof. By definition, $f \in \mathcal{F}(R,1)$ implies there exist a set of mappings $\phi_k : [0,1] \mapsto [R]$ such that

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{r} \in [R]^K} \mathcal{C}(\boldsymbol{r}) \mathbb{1} \left\{ \phi_k(x_k) = r_k, \text{ for all } k \in [K] \right\}, \text{ for all } \boldsymbol{x} \in [0, 1]^K.$$

Without loss of generality, assume $\phi_k^{-1}(r) = (\lambda_{r-1}^{(k)}, \lambda_r^{(k)}]$, where $0 = \lambda_1^{(k)} \leq \cdots \lambda_2^{(k)} \leq \cdots \leq \lambda_{R-1}^{(k)} \leq \cdots \leq \lambda_R^{(k)} \leq \cdots \leq \lambda$

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{r} \in [R]^K} \mathcal{C}(\boldsymbol{r}) \mathbb{1} \left\{ x_k \in (\lambda_{r_k-1}^{(k)}, \ \lambda_{r_k}^k], \text{ for all } k \in [K] \right\}, \text{ for all } \boldsymbol{x} \in [0, 1]^K.$$
 (4)

Now consider $f \Rightarrow \Theta$. By definition, for all $(i_1, \ldots, i_K) \in [d_1] \times \cdots \times [d_K]$,

$$\Theta(i_1,\ldots,i_K) = \sum_{\boldsymbol{r} \in [R]^K} \mathcal{C}(\boldsymbol{r}) \mathbb{1}\left\{\xi_{i_k}^{(k)} \in (\lambda_{r_k-1}^{(k)},\ \lambda_{r_k}^{(k)}], \text{ for all } k \in [K]\right\},$$

where $\{\xi_{i_k}^{(k)}\}$ are i.i.d. Unif[0,1] for all $i_k \in [d]$ and $k \in [K]$.

From $\Theta \Rightarrow \hat{f}$, we have

$$\begin{split} \hat{f}(\boldsymbol{x}) &= \sum_{(i_1,\dots,i_K)} \Theta(i_1,\dots,i_K) \mathbbm{1} \left\{ x_k \in \left(\frac{i_k-1}{d},\ \frac{i_k}{d}\right], \text{ for all } k \in [K] \right\} \\ &= \sum_{\boldsymbol{r} \in [R]^K} \mathcal{C}(\boldsymbol{r}) \sum_{(i_1,\dots,i_K)} \mathbbm{1} \left\{ \xi_{i_k}^{(k)} \in \left(\lambda_{r_k-1}^{(k)},\ \lambda_{r_k}^{(k)}\right] \text{ and } x_k \in \left(\frac{i_k-1}{d},\ \frac{i_k}{d}\right], \text{ for all } k \in [K] \right\} \\ &= \sum_{\boldsymbol{r}} \mathcal{C}(\boldsymbol{r}) \prod_{k \in [K]} \left(\sum_{i_k \in [d]} \mathbbm{1} \left\{ \xi_{i_k}^{(k)} \in \left(\lambda_{r_k-1}^{(k)},\ \lambda_{r_k}^{(k)}\right] \text{ and } x_k \in \left(\frac{i_k-1}{d},\ \frac{i_k}{d}\right] \right\} \right) \end{split}$$

For each $k \in [K]$, define the empirical cumulative proportion of categories among the set $\{\xi_1^{(k)}, \dots, \xi_d^{(k)}\}$

$$\hat{\lambda}_r^{(k)} = \frac{1}{d} \sum_{i \in [d]} \mathbb{1} \left\{ \xi_i^{(k)} \leq \lambda_r^{(k)} \right\}, \text{ for all } r \in [R].$$

The function \hat{f} can be equivalently written as follows:

$$\hat{f}(\boldsymbol{x}) = \sum_{\boldsymbol{r}} \mathcal{C}(\boldsymbol{r}) \prod_{k \in [K]} \mathbb{1} \left\{ x_k \in (\hat{\lambda}_{r_k-1}^{(k)}, \ \hat{\lambda}_{r_k}^{(k)}] \right\}
= \sum_{\boldsymbol{r}} \mathcal{C}(\boldsymbol{r}) \mathbb{1} \{ x_k \in (\hat{\lambda}_{r_k-1}^{(k)}, \ \hat{\lambda}_{r_k}^{(k)}] \text{ for all } k \in [K] \}.$$
(5)

Applying Lemma 3 to (4) and (5), we conclude

$$\mathbb{E}[\log(f, f')] \le \frac{8KR}{\sqrt{d}}.$$

We partition the set $[0,1]^K$ in two ways:

1. Partition based on f.

$$[0,1]^K = \bigcup \{\phi^{-1}(r) \colon r \in [R]^K\}, \text{ where } \phi^{-1}(r) \stackrel{\text{def}}{=} \{x \in [0,1]^K \colon \phi(x) = r\}.$$

2. Partition based on \hat{f} .

$$[0,1]^K = \bigcup \{h^{-1}(r) : r \in [R]^K\}, \text{ where } h^{-1}(r) \stackrel{\text{def}}{=} \{x \in [0,1]^K : h(x,r) = 1\}.$$

We define a one-to-one mapping between $\phi^{-1}(\mathbf{r})$ and $h^{-1}(\mathbf{r})$. The mapping is measure-preserving in the sense that $|p_{\mathbf{r}}|$ (??)

We will evaluate the difference between $\phi^{-1}(\mathbf{r})$ and $h^{-1}(\mathbf{r})$. The $p_{\mathbf{r}} := |\phi^{-1}(\mathbf{r})| \in [0,1]$ denote the Lebesgue measure of the set $\phi^{-1}(\mathbf{r})$. Note that $h^{-1}(\mathbf{r})$ is a random set where the randomness

comes from $\boldsymbol{\xi}_{\omega}$. In particular,

$$\begin{split} \hat{p}_{\boldsymbol{r}} &\stackrel{\text{def}}{=} |h^{-1}(\boldsymbol{r})| = |\{\boldsymbol{x} \colon \sum_{\omega} \mathbb{1}\{\phi(\boldsymbol{\xi}_{\omega}) = \boldsymbol{r}\} \mathbb{1}\{\boldsymbol{x} \in I_{\omega}\}\}| \\ &= \frac{1}{d^{K}} \sum_{\omega} \mathbb{1}\{\phi(\boldsymbol{\xi}_{\omega}) = \boldsymbol{r}\} \\ &= \frac{1}{d^{K}} \sum_{(i_{1}, \dots, i_{K})} \left(\prod_{k} \mathbb{1}\{\phi_{k}(\xi_{k, i_{k}}) = r_{k}\} \right) \\ &= \frac{1}{d^{K}} \prod_{k} \left(\sum_{i_{k} \in [d]} \mathbb{1}\{\phi_{k}(\xi_{k, i_{k}}) = r_{k}\} \right) \\ &= \frac{1}{d^{K}} \prod_{k} \operatorname{Bin}(d, \lambda_{k}(r_{k})) \end{split}$$

where the event $\mathbb{1}\{\phi_k(\xi_{k,i_k})=r_k\}$ are i.i.d. Bernoulli random variables with success probability $\lambda_k(r_k)=|x_k\in[0,1]:\phi_k(x_k)=r_k|\in[0,1]$ for all $i_k\in[d]$ and $k\in[K]$. Therefore,

$$\hat{p}_{r} \sim \frac{1}{d^{K}} \prod_{k} \text{Bin}(d, \lambda_{k}(r_{k}))$$
 and $p_{r} = \prod_{k} \lambda_{k}(r_{k}).$

which implies

$$\mathbb{E}\left(|\hat{p}_{r} - p_{r}|^{2}\right) \leq \frac{Kp_{r}}{d}.$$

Now, we evaluate the loss:

$$\int_{\boldsymbol{x} \in [0,1]^K} |f(\boldsymbol{x}) - f'(\tau(\boldsymbol{x}))|^2 d\boldsymbol{x} \le \sum_{\boldsymbol{r} \in [R]^K} \int_{\boldsymbol{x} \in \phi^{-1}(\boldsymbol{r})} |f(\boldsymbol{x}) - f'(\tau(\boldsymbol{x}))|^2 d\boldsymbol{x}$$

Proof.

$$\operatorname{Loss}(f, f') = \inf_{f'_{\mathrm{iso} \sim f'} \sim f} \int_{\boldsymbol{x} \in [0,1]^K} |f'_{\mathrm{iso}}(\boldsymbol{x}) - f(\boldsymbol{x})|^2 d\boldsymbol{x} \\
\leq \inf_{\tau: \text{ measure-preserving map}} \int_{\boldsymbol{x} \in [0,1]^K} |f'(\tau(\boldsymbol{x})) - f(\boldsymbol{x})|^2 d\boldsymbol{x}.$$

By assumption, f is piecewise constant over the gird, $\mathcal{G} = \bigcup_i I_i$, where the intervals $I_i \subset [0,1]^K$ are disjoint for all $i \in [R^K]$. Note that

$$\int_{x \in I_i} |f(x) - f'(x)|^2 dx = 4 \int_{x \in I_i} \mathbb{1} \{f(x) \neq f'(x)\} dx = 4\mu \{x \in I_i : f(x) \neq f'(x)\},$$

where $\mu\{\cdot\}$ denotes the Lebesgue measure. We aim to find two isomorphisms to upper bound the Lebesgue measure. Specifically, let c = f(x) denote the constant in the interval I_i . We want to

find the region for which $\{x \in I_i : f'(\tau(x)) \neq c\}$ where τ is a measure-preserving map. Recall the definition $f \Rightarrow \Theta(f, \xi) \Rightarrow f'$.

First, we consider $f \Rightarrow \Theta(f, \xi)$. The random tensor $\Theta = \Theta(f, \xi)$ is expressed as

$$\Theta(i_1, \dots, i_K) = f(\xi_{1,i_1}, \dots, \xi_{K,i_K}), \text{ for all } [i_1, \dots, i_K] \in [d_1] \times \dots \times [d_K].$$

For each fixed $k \in [K]$, we sort the elements in $\{\xi_{k,i_k} : i_k \in [d_k]\}$ from smallest to largest. With a little abuse of notation, we denote $\xi_{k,1} \leq \cdots \leq \xi_{k,d_k}$ for all $k \in [K]$. The sorted tensor Θ^* is expressed as

$$\Theta^*(i_1,\ldots,i_K) = \Theta(\sigma_1(i_1),\ldots,\sigma_K(i_K)), \text{ for all } [i_1,\ldots,i_K] \in [d_1] \times \cdots \times [d_K],$$

where $\sigma_k : [d_k] \mapsto [d_k]$ denotes the permutation that sorts $\{\xi_{k,i_k}\}_{i_k \in [d_k]}$ in increasing order. Note that $\Theta^* \sim \Theta$. By property (i), there exists $f^* \sim f$ such that Θ^* is induced by f^* . Therefore, it suffices to evaluate the loss between functions f^* and f'. Furthermore, by property (ii), without loss of generality, we define f' the function induced by Θ^* . We aim to investigate the value f'(x) for $x \in I$.

Then, we consider $\Theta^* \Rightarrow f'$. By definition, for all $(x_1, \dots, x_K) \in [0, 1]^K$,

$$f'(\boldsymbol{x}) = \sum_{(i_1, \dots, i_K)} \Theta^*(i_1, \dots, i_K) \mathbb{1} \left\{ \boldsymbol{x} \in \left(\frac{i_1 - 1}{d_1}, \frac{i_1}{d_1} \right] \times \dots \times \left(\frac{i_K - 1}{d_K}, \frac{K}{d_K} \right] \right\},$$

$$= \sum_{(i_1, \dots, i_K)} f(\xi_{1, i_1}, \dots, \xi_{K, i_K}) \mathbb{1} \left\{ \boldsymbol{x} \in \left(\frac{i_1 - 1}{d_1}, \frac{i_1}{d_1} \right] \times \dots \times \left(\frac{i_K - 1}{d_K}, \frac{K}{d_K} \right] \right\}$$

$$= \sum_{\boldsymbol{x}} C(\boldsymbol{r}) \mathbb{1} \left\{ \phi(\boldsymbol{x}) = \boldsymbol{r} \right\}$$

Recall that $\Theta \in \mathcal{P}(R, 1)$ Suppose $\xi_1 < \cdots < \xi_d$. $\xi_k \in R$, $\xi_{k+1} \in R$,... then d_1x_1

The only places that f and f' differ are

$$|I - \hat{I}|$$
, where $d_{\text{total}}\hat{I} \sim \text{Bernoulli}(d_{\text{total}}, I)$.

Therefore

$$\mathbb{E}(|I - \hat{I}|) \le \sqrt{\frac{I}{d_{\text{total}}}}.$$

Summing over I_i over $i \in [R^K]$ and note that $\sum_i I_i = 1$, we have

$$\left|\left\{\boldsymbol{x}: f(\boldsymbol{x}) \neq f'(\boldsymbol{x})\right\}\right|_{\lambda} \leq \sum_{i \in [R^K]} \mathbb{E}(|I_i - \hat{I}_i|) \leq \sum_{i \in [R^K]} \frac{\sqrt{I_i}}{\sqrt{d^K}} \leq \left(\frac{R}{d}\right)^{K/2}.$$

4 Main results

Theorem 4.1 (loss in $\mathcal{F}(R)$ family). Let $f \in \mathcal{F}(R)$ and $\mathcal{Y} \sim \mathbb{P}(f, \boldsymbol{\xi})$ generated from the tensor nonparametric model. Let \hat{f} be the least-square estimator with pre-specified block size R. Then,

$$\mathbb{E}\left[Loss(f, \hat{f})\right] \le C\left(\frac{R^K}{d^K} + \frac{K\log R}{d^{K-1}}\right) + \frac{8KR}{\sqrt{d}},$$

where the expectation is taken jointly over \mathcal{Y} and $\boldsymbol{\xi}$ (??) (uniformly over $f \in \mathcal{F}(R)$??). In particular, let $\Theta = f(\boldsymbol{\xi})$ and $\hat{\Theta} = \hat{f}(\boldsymbol{\xi})$. Then,

$$\mathbb{E}\left[Loss(\Theta, \hat{\Theta})\right] \le C\left(\frac{R^K}{d^K} + \frac{\log R}{d^{K-1}}\right),\tag{6}$$

where again the expectation is taken jointly over \mathcal{Y} and $\boldsymbol{\xi}$ (? or conditionally).

Proof. We first proof (6). Recall that $\hat{\Theta} = \arg\min_{\Theta \in \mathcal{F}(R,M)} F(\Theta)$ and $\omega_{\Theta \in \mathcal{F}(R,M)} \nabla^2 F(\Theta) = \frac{1}{2}$. By Taylor expansion of $F(\Theta)$ around $\hat{\Theta}$, we have

$$\begin{split} \|\hat{\Theta} - \Theta^{\text{true}}\|_{F} &\leq 2 \left\langle \Theta^{\text{true}} - \mathcal{Y}, \ \frac{\hat{\Theta} - \Theta^{\text{true}}}{\|\hat{\Theta} - \Theta^{\text{true}}\|_{F}} \right\rangle \\ &\leq 2 \max_{\Theta \in \mathcal{P}(2R,1)} \langle \mathcal{E}, \ \Theta \rangle. \end{split}$$

By union bound, for any t > 0

$$\mathbb{P}\left(\max_{\Theta^{\text{true}}\in\mathcal{P}(R,M)}\|\hat{\Theta} - \Theta^{\text{true}}\|_{F} \geq t\right) \leq \sup_{\boldsymbol{\xi}} \mathbb{P}\left(\max_{\Theta\in\mathcal{P}(2R,1)}\langle\mathcal{E}, \Theta\rangle \geq \frac{t}{2}|\boldsymbol{\xi}\right) \\
\leq \sup_{\boldsymbol{\xi}} C|\mathcal{P}(2R,1)|\exp\left(-\frac{t^{2}}{4\sigma^{2}}\right) \\
\leq C\exp(-\frac{t^{2}}{\sigma^{2}} + Kd\log R + R^{K}).$$

We take $t = \sigma \sqrt{Kd \log R + R^K}$ and obtain that,

$$\max_{\Theta^{\text{true}} \in \mathcal{P}(R,M)} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 \le \sigma^2(Kd\log R + R^K),$$

with probability at least $1 - \exp(-Kd \log R - R^K)$, (or equivalently, uniformly over $f \in \mathcal{F}(R, M)$ and $\boldsymbol{\xi} \in \mathbb{P}_{\boldsymbol{\xi}}$). Therefore,

$$\mathbb{E}(\operatorname{Loss}(\hat{\Theta}, \Theta^{\operatorname{true}})) \leq \sigma \left(\frac{r^K}{d^K} + \frac{K \log r}{d^{K-1}} \right),$$

where the expectation with respect to \mathcal{Y} (and $\boldsymbol{\xi}$).

Lemma 2.

$$Loss(f, \hat{f}) \le Loss(\Theta, \hat{\Theta}) + \frac{2KR}{\sqrt{d}}.$$

Proof. Define $f \Rightarrow \Theta(f, \xi) \Rightarrow \check{f}$ (a random function measure-able w.r.t. ξ).

$$\begin{split} \mathbb{E}\left[\mathrm{Loss}(f,\hat{f})\right] &\leq \mathbb{E}\left[\mathrm{Loss}(\tilde{f},\hat{f})\right] + \mathbb{E}\left[\mathrm{Loss}(\tilde{f},f)\right] \\ &\leq \mathbb{E}\left[\mathrm{Loss}(\Theta,\hat{\Theta})\right] + \mathbb{E}\left[\mathrm{Loss}(\tilde{f},f)\right] \\ &\leq \sigma^2\left(\frac{K\log R}{d^{K-1}} + \frac{R}{d^K}\right) + \frac{2KR}{\sqrt{d}}, \end{split}$$

where the expectation is over \mathcal{E} and $\boldsymbol{\xi}$ jointly.

Remark 7. Dense region: agonistic error dominates. Sparse region: estimation error dominates... intuition?

Problem 2 (Non-parametric estimation with unobserved designs). Let $f: [0,1]^K \mapsto [-1,1]$ be a target function of interest. For each $k \in [K]$, we draw a random i.i.d. sample of d points $\{x_i^{(k)}\}_{i \in [d]}$ uniformly from [0,1]. Write $\omega = (i_1, \ldots, i_K) \in [d]^K$ and $\boldsymbol{x}_{\omega} = (x_{i_1}^{(1)}, \ldots, x_{i_K}^{(K)})^T \in \mathbb{R}^K$. The goal is to estimation f given the set $\{(\omega, f(\boldsymbol{x}_{\omega}))\}$ but without knowing $\{\boldsymbol{x}_{\omega}\}$!

The following lemma gives the estimation error for stepwise constant functions $f \in \mathcal{F}(R,1)$.

Lemma 3 (Step function approximation with unobserved designs). Let $f: [0,1]^K \mapsto [-1,1]$ be an R-step function:

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{r} \in [R]^K} c_{\boldsymbol{r}} \mathbb{1} \left\{ \boldsymbol{x} \in \underbrace{(\lambda_{r_1-1}^{(1)}, \ \lambda_{r_1}^{(1)}] \times \dots \times (\lambda_{r_K-1}^{(K)}, \ \lambda_{r_K}^{(K)}]}_{=:I_{\boldsymbol{x}}} \right\}, \quad \textit{for all } \boldsymbol{x} \in [0, 1]^K,$$

where $\mathbf{r} = (r_1, \dots, r_K) \in [R]^K$ denotes multi-index, $\{c_r \in [-1, 1]\}$ are a set of real numbers, and $0 = \lambda_1^{(k)} \le \lambda_2^{(k)} \le \dots \le \lambda_{R-1}^{(k)} \le \lambda_R^{(k)} = 1$ are a sequence of cutoff points over [0, 1], for $k \in [K]$. Let $p_r^{(k)} = \lambda_r^{(k)} - \lambda_{r-1}^{(k)}$ denote the length of the r-th interval at the mode k, where $r \in [R]$ and $k \in [K]$.

For each $k \in [K]$, draw a random i.i.d. sample of d points $\{N_i^{(k)}\}_{i \in [d]}$ from a categorical distribution with parameter $(p_1^{(k)}, \ldots, p_R^{(k)})$. Let

$$\hat{\lambda}_r^{(k)} = \frac{1}{d} \sum_i \mathbb{1}\{N_i^{(k)} \le r\}, \quad \textit{for all } r \in [R]$$

denote the empirical cumulative proportions based on the d trials. Consider the estimator \hat{f} :

$$\hat{f}(\boldsymbol{x}) = \sum_{\boldsymbol{r} \in [R]^K} c_{\boldsymbol{r}} \mathbb{1} \left\{ \boldsymbol{x} \in \underbrace{(\hat{\lambda}_{r_1-1}^{(1)}, \ \hat{\lambda}_{r_1}^{(1)}] \times \dots \times (\hat{\lambda}_{r_K-1}^{(K)}, \ \hat{\lambda}_{r_K}^{(K)}]}_{=:\hat{I}_{\boldsymbol{r}}} \right\}, \quad \textit{for all } \boldsymbol{x} \in [0, 1]^K.$$

Then

$$\mathbb{E}\left(\int_{\boldsymbol{x}\in[0,1]^K}|f(\boldsymbol{x})-\hat{f}(\boldsymbol{x})|^2dx\right)\leq \frac{8KR}{\sqrt{N}},$$

where the expectation is taken with respect to $\{N_i^{(k)}\}$.

Proof. Note that

$$\mathbb{E}\left(\int_{\boldsymbol{x}\in[0,1]^K}|f(\boldsymbol{x})-\hat{f}(\boldsymbol{x})|^2dx\right)\leq 4\mathbb{E}\int_{\boldsymbol{x}\in[0,1]^K}\mathbb{1}\{f(\boldsymbol{x})\neq\hat{f}(\boldsymbol{x})\}d\boldsymbol{x}.$$

Therefore, it suffices to evaluate the Lebesgue measure of $\{x: f(x) \neq \hat{f}(x)\}$. Note that f and f' are the same over $I_r \cap \hat{I}_r$ for all r. This implies

$$\{\boldsymbol{x} \colon f(\boldsymbol{x}) \neq f'(\boldsymbol{x})\} \subset \cup_{\boldsymbol{r}} \{I_{\boldsymbol{r}} \Delta \hat{I}_{\boldsymbol{r}}\}$$

$$\subset \cup_{k} \cup_{r} \left\{\boldsymbol{x} \colon x_{k} \in (\lambda_{r-1}^{(k)}, \ \lambda_{r}^{(k)}] \Delta (\hat{\lambda}_{r-1}^{(k)}, \ \hat{\lambda}_{r}^{(k)}]\right\},$$

where the operation Δ denotes the symmetric difference between two sets, and the second line comes from the property for Cartesian product of intervals. Then,

$$\begin{aligned}
|\{\boldsymbol{x}: f(\boldsymbol{x}) \neq f'(\boldsymbol{x})\}| &\leq \sum_{k \in [K]} \sum_{r \in [R]} \left| (\lambda_{r-1}^{(k)}, \ \lambda_r^{(k)}] \Delta(\hat{\lambda}_{r-1}^{(k)}, \ \hat{\lambda}_r^{(k)}] \right| \\
&\leq 2 \sum_{k \in [K]} \sum_{r \in [R]} |\lambda_r^{(k)} - \hat{\lambda}_r^{(k)}|
\end{aligned} (7)$$

Note that by definition, $d\hat{\lambda}_r^{(k)} = \sum_i \mathbb{1}\left\{N_i^{(k)} \leq r\right\}$ follows from Binomial distribution with parameters $(d, \lambda_r^{(k)})$. Therefore,

$$\mathbb{E}|\lambda_r^{(k)} - \hat{\lambda}_r^{(k)}|^2 = \frac{\lambda_r^{(k)}(1 - \lambda_r^{(k)})}{d} \le \frac{1}{d}.$$
 (8)

Plugging (8) into (7), we obtain

$$\begin{split} \left| \left\{ \boldsymbol{x} \colon f(\boldsymbol{x}) \neq \hat{f}(\boldsymbol{x}) \right\} \right|^2 &\leq 4KR \sum_{k \in [K]} \sum_{r \in [R]} |\lambda_r^{(k)} - \hat{\lambda}_r^{(k)}|^2 \\ &\leq \frac{4K^2R^2}{d} \end{split}$$

Henceforth,

$$\mathbb{E}\left|\left\{\boldsymbol{x}\colon f(\boldsymbol{x})\neq \hat{f}(\boldsymbol{x})\right\}\right|\leq \frac{2KR}{\sqrt{d}}.$$

5 Minimax lower bound

Theorem 5.1 (Minimax). For stochastic tensor model, there exists a constant C > 0 such that

$$\inf_{\hat{\Theta}} \sup_{\Theta \in \mathcal{P}(R)} \mathbb{P} \left\{ \| \hat{\Theta} - \Theta \|_F > C \frac{\sigma^2}{p} \left(\frac{R^K + Kd \log R}{d^K} \right) \right\} > 0.2.$$

Proof. Nonparametric rate. We construct fixed $\mathbf{M}^{(k)} \in [0,1]^{d \times R}$ for all $k \in [K]$ as follows. For each $k \in [K]$, $\mathbf{M} : [d] \mapsto [R]$ partition the set [d] into R equal-sized clusters, and we denote the mapping rule $\mathbf{M}(i) = \lceil \frac{iR}{d} \rceil$ for $i \in [d]$. For any binary tensor $\mathcal{C} \in \{0,1\}^{r_1 \times \cdots \times r_K}$, we define the core tensor

$$\check{\mathcal{C}} = c\sqrt{\frac{\sigma^2 r^k}{pd^k}}\mathcal{C}.$$

We identify the tensor in $\{0,1\}^{r_1 \times \cdots \times r_K}$ by vectors in $\{0,1\}^{r^K}$. By Lemma .., there exists some set Ω such that $|\Omega| \ge \exp\left(\frac{r^K}{4}\right)$ and $H(\mathcal{C},\mathcal{C}') \ge \frac{r^K}{4}$ for any $\mathcal{C} \ne \mathcal{C}' \in \Omega$. We consider the subspace in the original tensor induced by \mathbb{S}

Definition 9 (Clustering function). Let $M: [d] \mapsto [R]$ denotes a clustering function, where we use $M(i) \in [R]$ denote the cluster label to which the i was assigned. We use $M^{-1}(r) = \{d: M(d) = r\} \subset [d]$ to denote the set of indices that was assigned to cluster r. For notational convenience, we use $M \in [R]^d$ or $M \in \{0,1\}^{d \times R}$ exchangeable to denote the collection of all clustering functions that map [d] to [R].

Lemma 4. There exists a subset $\Omega \in [R]^d$, such that $|\Omega| \ge \exp(d \log R/2)$ and

$$H(\omega, \omega') \stackrel{def}{=} \left| \left\{ d \colon \omega(d) \neq \omega'(d) \right\} \right| \ge \frac{d}{4}, \quad \text{for all } \omega \neq \omega' \in \Omega.$$

Proof. Define

$$\Omega = \left\{ \omega \in [R]^d \colon |\omega^{-1}(i)| = \frac{d}{R} \text{ for } i \in [R] \right\},\,$$

that is, Ω is the collection of clustering functions that generates the equal-sized clusters. Given any $\omega \in \Omega$, define its ε -neighborhood by

$$B(\omega, \varepsilon) = \{ \omega' \in \Omega \colon H(\omega, \omega') \le \varepsilon \}.$$

The packing number of Ω

$$\mathcal{M}(\varepsilon, \Omega, H) \ge \frac{|\Omega|}{\max_{\omega \in \Omega} |B(\omega, \varepsilon)|}.$$

Taking $\varepsilon = \frac{d}{4}$ gives

$$|B(\omega,\varepsilon)| \le {d \choose d/4} R^{d/4} \le (4e)^{d/4} R^{d/4} \le \exp\left(\frac{1}{4}d\log R\right),$$

where we have used the inequality $\binom{d}{k} \leq (\frac{ed}{k})^k$ for all $k \leq d$. By stirling's formula

$$|\Omega| = \frac{d!}{\left[(d/R)! \right]^R} \approx \frac{\sqrt{d} \left(\frac{d}{e} \right)^d}{\sqrt{\frac{d}{R}} \left(\frac{d}{Re} \right)^d} \approx \sqrt{R} \left(R \right)^d \ge \exp \left(d \log R + o(d \log R) \right) \ge \exp \left(\frac{1}{2} d \log R \right).$$

Therefore,

$$\mathcal{M}\left(\frac{d}{4}, \Omega, H\right) \ge \exp\left(\frac{1}{2}d\log R\right).$$

In Wang et al, the MSE for the tensor block model has the following asymptotical rate,

$$\mathrm{MSE}(\hat{\Theta},\Theta) \stackrel{\mathrm{def}}{=} \frac{1}{d^K} \|\Theta - \hat{\Theta}\|_F^2 \asymp \frac{R^K}{d^K} + \frac{K \log R}{d^{K-1}}, \quad \text{as } d \to \infty \text{ while fixing } R.$$

We investigate the asymptotic behavior as $R \simeq d^{\delta}$, for some $\delta \in [0,1]$.

$$\mathrm{MSE}(\hat{\Theta}, \Theta) = \begin{cases} d^{-K}, & R = 1, \\ d^{-(K-1)}, & \delta = 0 \text{ (i.e. constant } R = \mathcal{O}(1)), \\ d^{-(K-1)} \log d, & \delta \in (0, \frac{1}{K}], \\ d^{-K(1-\delta)}, & \delta \in (\frac{1}{K}, 1]. \end{cases}$$

In particular, in the matrix case when K=2, the asymptotic rate is $\mathcal{O}(d^{-1}\log d)$ whenever $R \simeq \mathcal{O}(\sqrt{d})$. This is faster than regular low-rank matrix decomposition but slower than Gao's paper.