Today's Task / \

Task 1: Subnetting on GNS 3 **Task 2:** IPsec site to site VPN

Task 1: Subnetting on GNS 3

• Subnetting in computer networks is the process of dividing a large network (such as a class A, B, or C network) into smaller, more manageable sub-networks, called subnets.

Problem Statement:

What we need?

Step-2: Assigning the given IP to PC1 and PC2.

PC1> sh ip

PC1 Console

NAME : PC1[1] IP/MASK : 0.0.0.0/0 GATEWAY : 0.0.0.0 DNS MAC : 00:50:79:66:68:00 LPORT : 10020 RHOST: PORT : 127.0.0.1:10021 MTU: : 1500 PC1> ip 192.168.0.2 Checking for duplicate address... PC1 : 192.168.0.2 255.255.255.0

PC2 Console

PC2> sh ip : PC2[1] IP/MASK : 0.0.0.0/0 : 0.0.0.0 GATEWAY : 00:50:79:66:68:01 PORT : 10006 RHOST:PORT : 127.0.0.1:10007 MTU: : 1500 PC2> ip 192.168.0.3 Checking for duplicate address... PC1 : 192.168.0.3 255.255.255.0

Step-3: e0= Ethernet 0 e1= Ethernet 1

Network 2 (Staffs)

Step-4: Assigning the given IP to PC3 and PC4.

PC3 Console

PC3> sh ip : PC3[1] IP/MASK : 0.0.0.0/0 GATEWAY : 0.0.0.0 DNS : 00:50:79:66:68:02 PORT : 10012 : 127.0.0.1:10013 RHOST:PORT MTU: : 1500 PC3> ip 192.168.1.2 Checking for duplicate address... PC1 : 192.168.1.2 255.255.255.0

PC4 Console

: PC4[1] NAME IP/MASK : 0.0.0.0/0 : 0.0.0.0 GATEWAY DNS MAC : 00:50:79:66:68:03 LPORT : 10014 : 127.0.0.1:10015 RHOST: PORT MTU: : 1500 PC4> ip 192.168.1.3 Checking for duplicate address... : 192.168.1.3 255.255.255.0

PC4> sh ip

Step-6: *R1 Console*

```
enable
sh run
conf t
int f0/0
ip address 192.168.0.1 255.255.255.0
no sh
exit
int f0/1
ip address 192.168.1.1 255.255.255.0
no sh
exit
do wr
exit
exit
write mem
```

```
R1#enable
R1#sh run
Building configuration...
Current configuration : 1465 bytes
version 12.4
service timestamps debug datetime <u>msec</u>
service timestamps log datetime msec
no service password-encryption
 nostname R1
 oot-start-marker
 oot-end-marker
no aaa new-model
 emory-size iomem 5
no ip icmp rate-limit unreachable
ip cef
no ip domain lookup
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#int f0/0
R1(config-if)#ip address 192.168.0.1 255.255.255.0
R1(config-if)#no sh
R1(config-if)#exit
*Mar 1 00:03:54.747: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:03:55.747: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to
R1(config-if)#exit
R1(config)#do wr
Building configuration...
R1(config)#exit
*Mar 1 00.01.30 263. %SVS-5-CONFTG T. Configured from console by console
R1#write mem
Building configuration...
```

```
Step-7:
```

```
*PC1 Console*
ip 192.168.0.2 255.255.255.0 192.168.0.1

*PC2 Console*
ip 192.168.0.3 255.255.255.0 192.168.0.1

*PC3 Console*
ip 192.168.1.2 255.255.255.0 192.168.1.1

*PC4 Console*
ip 192.168.1.3 255.255.255.0 192.168.1.1
```

```
PC1> ip 192.168.0.2 /24 192.168.0.1
Checking for duplicate address...
PC1 : 192.168.0.2 255.255.255.0 gateway 192.168.0.1
PC2> ip 192.168.0.3 /24 192.168.0.1
Checking for duplicate address...
```

```
PC3> ip 192.168.1.2 /24 192.168.1.1
Checking for duplicate address...
PC1 : 192.168.1.2 255.255.255.0 gateway 192.168.1.1
```

PC1: 192.168.0.3 255.255.255.0 gateway 192.168.0.1

```
PC4> ip 192.168.1.3 /24 192.168.1.1
Checking for duplicate address...
PC1 : 192.168.1.3 255.255.255.0 gateway 192.168.1.1
```

ALL SET

Additional

Dynamic Host Configuration Protocol (DHCP): It provides an Internet Protocol (IP) host with its IP address.

```
*R1 Console*
enable
sh run
q
conf t
ip dhcp pool students
network 192.168.0.0 255.255.255.0
default-router 192.168.0.1
dns-server 8.8.8.8
exit
ip dhcp pool staff
network 192.168.1.0 255.255.255.0
default-router 192,168,1,1
dns-server 8.8.8.8
exit
do wr
exit
write mem
```

```
R1#enable
R1#sh run
Building configuration...
Current configuration : 1478 bytes
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname R1
boot-start-marker
boot-end-marker
no aaa new-model
memory-size iomem 5
no ip icmp rate-limit unreachable
ip cef
no ip domain lookup
R1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#ip dhcp pool students
R1(dhcp-config)#network 192.168.0.0 255.255.255.0
R1(dhcp-config)#default-router 192.168.0.1
R1(dhcp-config)#dns-server 8.8.8.8
R1(dhcp-config)#exit
R1(config)#ip dhcp pool staff
R1(dhcp-config)#network 192.168.1.0 255.255.255.0
R1(dhcp-config)#default-router 192.168.1.1
R1(dhcp-config)#dns-server 8.8.8.8
R1(dhcp-config)#exit
R1(config)#do wr
Building configuration...
[OK]
R1(config)#exit
*Mar 1 00:36:57.475: %SYS-5-CONFIG_I: Configured from console by console
R1#write mem
Building configuration...
[OK]
```

Task 2: IPSec Site to Site VPN

• Site to Site IPSec VPN Tunnels are used to allow the secure transmission of data, voice and video between two sites (e.g. offices or branches). The VPN tunnel is created over the Internet public network and encrypted using a number of advanced encryption algorithms to provide confidentiality of the data transmitted between the two sites.

Problem Statement:

What we need?

3x

C3725

Step-1: Configuration of PCs

- PC1 and PC2

PC1> ip 10.0.11.2 255.255.255.0 10.0.11.1 Checking for duplicate address... PC1 : 10.0.11.2 255.255.255.0 gateway 10.0.11.1

PC2> ip 10.0.22.2 255.255.255.0 10.0.22.1 Checking for duplicate address... PC1 : 10.0.22.2 255.255.255.0 gateway 10.0.22.1

Step-2: Configuration of Router HQ

Configuring EIGRP (Enhanced Interior Gateway Routing Protocol):

- •The command router eigrp 1 starts the EIGRP process with the Autonomous System (AS) number 1.
- •The command network 0.0.0.0 is used to include all directly connected networks in the EIGRP process.

```
ter configuration commands, one per line. End with CNTL/Z.
 (config-if)#ip address 10.0.11.1 255.255.255.0
    1 00:07:55.079: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
    1 00:07:56.079: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state
 (config-if)#exit
 (config)#int f0/1
 config-if)#ip address 10.0.12.1 255.255.255.0
(config-if)#no shut
(config-if)#
   1 00:08:56.835: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
   1 00:08:57.835: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state
Q(config-if)#exit
(config)#router eigrp 1
 (config-router)#network 0.0.0.0
 (config-router)#exit
(config)#exit
Mar 1 00:09:50.495: %SYS-5-CONFIG_I: Configured from console by console
ilding configuration...
uilding configuration...
```

Step-3: Configuration of Router Internet.

```
ter configuration commands, one per line. End with CNTL/Z.
nternet(config-if)#ip address 10.0.12.2 255.255.255.0
nternet(config-if)#no shut
nternet(config-if)#
Mar 1 00:11:32.899: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
Mar 1 00:11:33.899: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state
Internet(config-if)#exit
Internet(config)#int f0/1
nternet(config-if)#ip address 10.0.23.2 255.255.255.0
Internet(config-if)#no shut
Internet(config-if)#exi
*Mar 1 00:12:06.867: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
Mar 1 00:12:07.867: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state
Internet(config-if)#exit
Internet(config)#router eigrp 1
nternet(config-router)#network 0.0.0.0
Internet(config-router)#
Mar 1 00:12:31.847: %DUAL-5-NBRCHANGE: IP-EIGRP(0) 1: Neighbor 10.0.12.1 (FastEthernet0/0) is up:
new adjacency
Mar 1 00:12:37.843: %SYS-5-CONFIG I: Configured from console by console
uilding configuration...
```


Step-4: Configuration of Router Branch

Configuring EIGRP (Enhanced Interior Gateway Routing Protocol):

- •The command router eigrp 1 starts the EIGRP process with the Autonomous System (AS) number 1.
- •The command network 0.0.0.0 is used to include all directly connected networks in the EIGRP process.

```
nter configuration commands, one per line. End with CNTL/Z.
ranch(config)#int f0/1
ranch(config-if)#ip address 10.0.23.1 255.255.255.0
Branch(config-if)#no shut
Branch(config-if)#
Mar 1 00:12:55.099: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
Mar 1 00:12:56.099: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state
to up
Branch(config-if)#exit
ranch(config)#int f0/0
Branch(config-if)#ip address 10.0.22.1 255.255.255.0
ranch(config-if)#no shut
ranch(config-if)#
Mar 1 00:13:25.455: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
Mar 1 00:13:26.455: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state
Branch(config-if)#exit
Branch(config)#router eigrp 1
Branch(config-router)#network 0.0.0.0
ranch(config-router)#
Mar 1 00:13:48.495: %DUAL-5-NBRCHANGE: IP-EIGRP(0) 1: Neighbor 10.0.23.2 (FastEthernet0/1) is up:
new adjacency
Branch(config)#exit
Branch#wr
Building configuration...
Mar 1 00:13:58.915: %SYS-5-CONFIG_I: Configured from console by console[OK]
```

Step-5: Check configuration working or not.

So we will try to ping PC1 with PC2

```
PC1> ping 10.0.22.2

10.0.22.2 icmp_seq=1 timeout

84 bytes from 10.0.22.2 icmp_seq=2 ttl=61 time=91.869 ms

84 bytes from 10.0.22.2 icmp_seq=3 ttl=61 time=94.326 ms

84 bytes from 10.0.22.2 icmp_seq=4 ttl=61 time=96.520 ms

84 bytes from 10.0.22.2 icmp_seq=5 ttl=61 time=78.437 ms
```

Step-6: Configuration of IPSec VPN Tunnel

HQ Router

If you want to understand each of the command, then go to next page where we explained with the analogy of "Setting up a secure gate system."

```
Q#conf t
nter configuration commands, one per line. End with CNTL/Z.
Q(config)#crypto isakmp policy 1
Q(config-isakmp)#encryption aes 128
Q(config-isakmp)#authentication pre-share
Q(config-isakmp)#group 2
Q(config-isakmp)#hash sha
Q(config-isakmp)#crypto isakmp key 6 referux123 address 0.0.0.0
Q(config)#crypto ipsec transform-set OUR-SET esp-aes 128 esp-sha-hmac
O(cfg-crypto-trans)#exit
Q(config)#ip access-list extended 100
Q(config-ext-nacl)#permit ip 10.0.11.0 0.0.0.255 10.0.22.0 0.0.0.255
Q(config-ext-nacl)#exit
Q(config)#crypto map OUR-MAP 1 ipsec-isakmp
NOTE: This new crypto map will remain disabled until a peer
       and a valid access list have been configured.
Q(config-crypto-map)#match address 100
O(config-crypto-map)#set peer 10.0.23.1
Q(config-crypto-map)#set transform-set OUR-SET
Q(config-crypto-map)#exit
Q(config)#int f0/1
Q(config-if)#crypto map OUR-MAP
Q(config-if)#
Mar 1 00:28:04.023: %CRYPTO-6-ISAKMP ON OFF: ISAKMP is ON
Q(config-if)#end
Mar 1 00:28:12.007: %SYS-5-CONFIG I: Configured from console by console
duilding configuration...
```


Consider setting up a Secure Gate System

conf t (Enter Configuration Mode)

Analogy: You are entering the control room to configure the security system.

crypto isakmp policy 1 (Create ISAKMP Policy)

Analogy: You are setting up a rule for the way people will enter the building, like deciding that people can only use an ID card to enter.

encryption aes 128 (Set Encryption)

Analogy: You install a lock on the gate that uses a complex, 128-bit combination.

authentication pre-share (Use Pre-Shared Key for Authentication)

Analogy: The gate will require people to know a shared password to enter.

group 2 (Use Diffie-Hellman Group 2)

Analogy: This defines the complexity of the key exchange mechanism, like deciding how strong and long the key for the gate's lock will be.

hash sha (Use SHA for Integrity)

Analogy: When someone uses the gate, they must leave a fingerprint to verify that nothing has been tampered with.

crypto is akmp key 6 referux 123 address 0.0.0.0 (Set Pre-shared Key for ISAKMP)

Analogy: You create a master key (referux123) that anyone trying to enter must know, and it will work for everyone (since 0.0.0.0 represents all possible users).

crypto ipsec transform-set OUR-SET esp-aes 128 esp-sha-hmac (Create IPSec Transform Set)

Analogy: You are configuring how people must communicate through the gate – they must speak a secret code (AES encryption) and use a special handshake (SHA HMAC).

ip access-list extended 100 (Create Access Control List)

Analogy: You are creating a list of approved people (addresses) who can pass through the gate.

permit ip 10.0.11.0 0.0.0.255 10.0.22.0 0.0.0.255 (Permit Traffic Between Networks)

Analogy: You allow people from the 10.0.11.x group to enter and communicate with the 10.0.22.x group.

crypto map OUR-MAP 1 ipsec-isakmp (Create Crypto Map)

Analogy: You are setting up a special path (crypto map) that uses the secure gate (IPSec) to allow people to pass through.

match address 100 (Match ACL 100 to Crypto Map)

Analogy: You tell the system to only let people on the approved guest list (Access Control List 100) use the secure path.

set peer 10.0.23.1 (Set Peer Address for VPN)

Analogy: You tell the security system who to expect as the guest at the gate (peer 10.0.23.1).

set transform-set OUR-SET (Set Transform Set for Crypto Map)

Analogy: You specify the secret code (OUR-SET) that must be used to communicate through the gate.

int f0/1 (Enter Interface FastEthernet 0/1 Configuration Mode)

Analogy: You choose which gate (interface) will be used for the secure communication.

crypto map OUR-MAP (Apply Crypto Map to Interface)

Analogy: You attach the security rules (OUR-MAP) to this specific gate, so anyone passing through must follow those rules.

end (Exit Configuration Mode)

Analogy: You leave the control room after setting up the entire security system.

wr (Save the Configuration)

Analogy: You press "Save" to ensure all your gate settings are permanent and won't be lost.

Step-7: Configuration of IPSec VPN Tunnel

Branch Router

```
Branch#conf t
ranch(config)#
Mar 1 00:57:52.287: %CRYPTO-6-IKMP_MODE_FAILURE: Processing of Quick mode fail
ed with peer at 10.0.12.1
ranch(config)#crypto isakmp enable
ranch(config)#crypto isakmp policy 1
ranch(config-isakmp)#encryption aes 128
ranch(config-isakmp)#authentication pre-share
ranch(config-isakmp)#group 2
ranch(config-isakmp)#hash sha
Branch(config-isakmp)#exit
ranch(config)#ip access-list extended 100
3ranch(config-ext-nacl)#permit ip 10.0.22.0 0.0.0.255 10.0.11.0 0.0.0.255
Branch(config-ext-nacl)#exit
Branch(config)#crypto map OUR-MAP 1 ipsec-isakmp
Branch(config-crypto-map)#match address 100
Branch(config-crypto-map)#set peer 10.0.12.1
Branch(config-crypto-map)#set transform-set OUR-SET
Branch(config-crypto-map)#exit
Branch(config)#int f0/1
ranch(config-if)#crypto map OUR-MAP
ranch(config-if)#end
ranch#
Mar 1 01:01:00.299: %SYS-5-CONFIG I: Configured from console by console
Building configuration...
```


OUTPUT

Last Step: Traffic Analysis from Internet to Branch Routers

 Right click on wire(from Intenet to Branch) and start wireshark.

o. Time	Source	Destination	Protocol	Length Info
653 1247.660716	10.0.23.2	224.0.0.10	EIGRP	74 Hello
654 1251.109687	c4:02:06:3c:00:01	c4:02:06:3c:00:01	L00P	60 Reply
655 1253.791773	10.0.23.2	224.0.0.10	EIGRP	74 Hello
656 1253.807851	10.0.23.1	224.0.0.10	EIGRP	74 Hello
657 1257.391387	c4:03:29:e4:00:01	c4:03:29:e4:00:01	LOOP	60 Reply
658 1258.166243	c4:02:06:3c:00:01	CDP/VTP/DTP/PAgP/UDLD	CDP	354 Device ID: Branch Port ID: FastEtherne
659 1259.937344	10.0.23.2	224.0.0.10	EIGRP	74 Hello
660 1260.515240	10.0.23.1	224.0.0.10	EIGRP	74 Hello
661 1264.904818	c4:02:06:3c:00:01	c4:02:06:3c:00:01	L00P	60 Reply
662 1266.266658	10.0.23.2	224.0.0.10	EIGRP	74 Hello
663 1267.079420	10.0.23.1	224.0.0.10	EIGRP	74 Hello
664 1271.189002	c4:03:29:e4:00:01	c4:03:29:e4:00:01	L00P	60 Reply
665 1272.618066	10.0.23.2	224.0.0.10	EIGRP	74 Hello
666 1273.199809	10.0.23.1	224.0.0.10	EIGRP	74 Hello
667 1278.526319	c4:02:06:3c:00:01	c4:02:06:3c:00:01	L00P	60 Reply
668 1278.599310	10.0.23.2	224.0.0.10	EIGRP	74 Hello
669 1279.476834	10.0.23.1	224.0.0.10	EIGRP	74 Hello
670 1284.785661	10.0.23.2	224.0.0.10	EIGRP	74 Hello
671 1284.802093	c4:03:29:e4:00:01	c4:03:29:e4:00:01	L00P	60 Reply
672 1286.086244	10.0.23.1	224.0.0.10	EIGRP	74 Hello

Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface -, id 0
 Ethernet II, Src: c4:03:29:e4:00:01 (c4:03:29:e4:00:01), Dst: c4:03:29:e4:00:01 (c4:03:29:e4:00:01)
 Configuration Test Protocol (loopback)

If you understood it and It's working Clap your