1 第六次作业 1

1 第六次作业

问题 1. 设X为非空集合, d_1, d_2 是其上两个度量,求证: d_1 诱导的度量拓扑比 d_2 诱导的度量 拓扑细 $\iff \forall x \in X, r > 0$,存在s > 0使得 $B_{d_1}(x,s) \subseteq B_{d_2}(x,r)$.

证明. 由引理3.2.7和度量拓扑的定义, d_1 诱导的度量拓扑比 d_2 诱导的度量拓扑细当且仅当: 任 给 $y \in B_{d_2}(x,r)$, 存在度量球 $B_{d_1}(z,s)$ 满足: $y \in B_{d_1}(z,s) \subseteq B_{d_2}(x,r)$.

 \iff : 若 $y \in B_{d_2}(x,r)$, 取 $t = r - d_2(x,y)$, 则 $B_{d_2}(y,t) \subseteq B_{d_2}(x,r)$. 由条件存在s > 0使 得 $B_{d_1}(y,s) \subseteq B_{d_2}(y,t)$, 从而 $y \in B_{d_1}(y,s) \subseteq B_{d_2}(x,r)$.

 \Longrightarrow : $x \in B_{d_2}(x,r)$, 由条件知存在度量球 $B_{d_1}(z,s)$ 满足: $x \in B_{d_1}(z,s) \subseteq B_{d_2}(x,r)$. 取 $s = r - d_1(x,z)$, 则 $B_{d_1}(x,s) \subseteq B_{d_2}(x,r)$.

问题 2. 设(X,d)为度量空间,A是X的非空子集,记d在 $A \times A$ 上的限制为dA. 求证:dA诱导的拓扑等于A上的相对拓扑。

证明. 首先对于A中的度量球 $B_{d_A}(a,r)$, 其中 $a\in A,r>0$, 则 $B_d(a,r)\cap A=B_{d_A}(a,r)$, 从 而 d_A 诱导的拓扑比A上的相对拓扑粗。反过来,任取子拓扑的基元素 $B_d(x,r)\cap A$, 需证 $B_d(x,r)\cap A$ 是 d_A 诱导的度量拓扑中的开集。这可由下式看出:

$$B_d(x,r) \bigcap A = \bigcup_{a \in B_d(x,r) \cap A} B_{d_A}(a,r_a),$$

其中 $r_a = r - d(x, a)$.

问题 3. 设 $X = X_1 \bigcup X_2$, \mathcal{T}_1 , \mathcal{T}_2 分别是 X_1 , X_2 上的拓扑,问何时存在X上的拓扑 \mathcal{T} 满足 $\mathcal{T}_{X_i} = \mathcal{T}_i$, i = 1, 2?

解. 充要条件是 $\mathcal{T}_1|_{X_1 \cap X_2} = \mathcal{T}_2|_{X_1 \cap X_2}$. 首先如果存在X上的拓扑 \mathcal{T} 满足 $\mathcal{T}_{X_i} = \mathcal{T}_i, i = 1, 2,$ 则 $\mathcal{T}_1|_{X_1 \cap X_2} = \mathcal{T}|_{X_1 \cap X_2}, \mathcal{T}_2|_{X_1 \cap X_2}|_{X_1 \cap X_2}$. 反过来,令 $\mathcal{T} = \{U \subseteq X|U \cap X_1 \in \mathcal{T}_1, U \cap X_2 \in \mathcal{T}_2\}$,则 \mathcal{T} 是拓扑: 易知 \emptyset , $X \in \mathcal{T}$; 若 $U_\alpha \in \mathcal{T}$,则由 $\bigcup_{\alpha \in J} U_\alpha \cap X_i = \bigcup_{\alpha \in J} (U_\alpha \cap X_i)$,可知 $\bigcup_{\alpha \in J} U_\alpha \in \mathcal{T}$; 若 $U, V \in \mathcal{T}$,则由 $(U \cap V) \cap X_i = (U \cap X_i) \cap (V \cap X_i)$ 知 $U \cap Y \in \mathcal{T}$.这里还没有用到条件 $\mathcal{T}_1|_{X_1 \cap X_2} = \mathcal{T}_2|_{X_1 \cap X_2}$.

下面证明 $\mathcal{T}|_{X_1} = \mathcal{T}_1$,同理可证 $\mathcal{T}|_{X_2} = \mathcal{T}_2$.任取 $U \in \mathcal{T}$,由定义 $U \cap X_1 \in \mathcal{T}_1$.反过来, 任取 $W \in \mathcal{T}_1$,需证存在 $U \in \mathcal{T}$ 满足 $U \cap X_1 = W$. $W \cap X_2 \in \mathcal{T}_1|_{X_1 \cap X_2}$,从而存在 $V \in \mathcal{T}_2$ 使得 $W \cap X_2 = V \cap X_1$.令 $U = W \cup V$,则 $U \cap X_1 = W$, $U \cap X_2 = V$,从而 $U \in \mathcal{T}$.

问题 4. 拓扑空间之间的映射 f 如果把开集映成开集 (对任意开集 U , f(U) 是开集) ,则称 f 为 开映射。 X_1, X_2 是两个拓扑空间,在 $X_1 \times X_2$ 上赋予乘积拓扑。 定义 $\pi_i: X_1 \times X_2 \to X_i (i=1,2)$ 为 $\pi_i(x_1,x_2)=x_i$,称为向第i个分量的投射。证明 $\pi_i: X_1 \times X_2 \to X_i (i=1,2)$ 是开映射。

证明. 首先f为开映射,当且仅当对于基元素V, f(V)为开集,这是因为任意开集U可写成 $\bigcup_{\alpha \in J} V_{\alpha}$ 的形式,其中 V_{α} 是基元素,而且 $f(\bigcup_{\alpha \in J} V_{\alpha}) = \bigcup_{\alpha \in J} f(V_{\alpha})$. 积拓扑的基元素为 $U_1 \times U_2$,其中 U_1, U_2 分别为 X_1, X_2 中开集。而 $\pi_i(U_1 \times U_2) = U_i(i=1,2)$,从而 π_i 为开映射。