

مبانی رمزنگاری و امنیت شبکه

الگوریتمهای یکپارچگی داده توابع چکیدهساز، کدهای احراز اصالت پیام و امضای دیجیتال

Cryptographic Data Integrity Algorithms
Hash Functions, Message Authentication Codes and Digital Signature

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۸–۹۹

توابع چکیدهساز Hash Functions

- تابع یکطرفه به طول ثابت
- طول ورودی: متغیر (نامحدود)
 - طول خروجی: ثابت
- اگر به مجموعه بزرگی از ورودیها اعمال شود، خروجی توزیع تقریبا یکنواخت داشته و تصادفی به نظر برسد
- اصل لانه كبوترى (تصادم- collision)

$$x \neq y$$
, $H(x) = H(y)$

توابع چکیدهساز Cryptographic hash function

- محاسبه مستقیم ساده است
- محاسبه معكوس سخت است (يكطرفه)

- خاصیت یک طرفه (one-way property)
- یافتن پیام M متناظر با مقدار چکیده h=H(M) از نظر محاسباتی غیر ممکن باشد \odot
 - خاصیت بدون برخورد (collision-free property)
 - یافتن دو پیام با مقدار چکیده یکسان، از نظر محاسباتی غیر ممکن باشد

کاربردهای تابع چکیدهساز (Message Authentication) احراز اصالت پیام

- یکپارچگی پیام (بدون تغییر، درج، حذف یا تکرار)
- مقدار تابع چکیدهساز: چکیده پیام (message digest)

• ترکیب با رمز متقارن

- کلید مخفی: پیام از جانب A و یکپارچه است
 - محرمانگی

کاربردهای تابع چکیدهساز (Message Authentication) احراز اصالت پیام

• تنها مقدار تابع چکیدهساز رمز شود (محرمانگی مورد نظر نیست)

- کد احراز اصالت پیام (message authentication code (MAC)) کد احراز اصالت
 - تابع MAC با ورودی کلید مخفی و قالب داده، چکیدهای را به عنوان کد میسازد \bigcirc
 - همراه پیام ذخیره و یا ارسال میشود
- میشود مقایسه می شود احراز اصالت پیام، تابع MAC به پیام اعمال و با مقدار ذخیره شده مقایسه می شود
 - بدون آگاهی از کلید مخفی، تغییر دلخواه MAC ممکن نیست
 - با توجه به استفاده از کلید مخفی، فرستنده نیز احراز اصالت میشود
 - در عمل، الگوریتمهای تولید MAC از رمزنگاری (E) کارآتر هستند \bigcirc

کاربردهای تابع چکیدهساز (Message Authentication) احراز اصالت ییام

• بدون استفاده از رمزگذاری: تسهیم راز (secret sharing)

- چون راز ارسال نمیشود، دشمن قادر به تغییر پیام نیست
 - محرمانگی

کاربردهای تابع چکیدهساز احراز اصالت پیام (Message Authentication)

- اجتناب از رمزگذاری
- در بسیاری از کاربردها احراز اصالت پیام بدون محرمانگی ارجحیت دارد
 - سرعت پایین رمزگذاری
 - سیستمهایی که همواره دنبالهای از پیام برای ارسال دارند
 - هزینه بالای تجهیزات رمزگذاری
 - الگوریتمهای رمزنگاری برای دادههایی با طول زیاد بهینه هستند
 - برای طول کم، زمان زیادی صرف فرآیندهای مقداردهی اولیه میشود
 - هزینه بدست آوردن امتیاز انحصاری الگوریتمهای رمزنگاری

کاربردهای تابع چکیدهساز امضای دیجیتال (Digital Signatures)

- با استفاده از کلید خصوصی فرستنده (رمزنگاری کلید همگانی یا نامتقارن)
 - کاربرد آن فراتر از تنها احراز اصالت پیام است

(b)

کاربردهای دیگر تابع چکیدهساز

- فایل گذرواژه یکطرفه (one-way password file)
 - 🔾 چکیده گذرواژه ذخیره می گردد
- پس از وارد شدن گذرواژه، چکیده آن محاسبه و با مقدار ذخیره شده مقایسه میشود
 - رخنه گر (hacker) دسترسی به گذرواژه ندارد
 - در بیشتر سیستم عاملها به کار میرود
- تشخیص نفوذ (intrusion detection) و تشخیص ویروس (virus detection)
 - میشود و به صورت امن ذخیره میشود H(F) محاسبه و به صورت امن دخیره می
 - میشود این، تغییرات آشکار میشود H(F) در هر زمان، تغییرات آشکار می
 - نمی تواند فایل را تغییر دهد (intruder) نموذگر (o
- تولید اعداد شبه تصادفی (PRNG)) و Transcription (PRNG) و تولید اعداد شبه تصادفی
 - (hash-based PRF) تولید کلید در رمزنگاری متقارن (

توابع چکیدهساز ساده

- ناامن (insecure)
 - چکیده *n* بیتی
- ورودی به m قالب n بیتی تقسیم می شود ullet

$$C_i = b_{i1} \oplus b_{i2} \oplus \ldots \oplus b_{im}$$

- سادەترىن: XOR بىتى قالبھا
- $2^{-n} = 1$ داده تصادفی: احتمال عدم تغییر چکیده با تغییر داده
 - در متن ساختار یافته اردر n کم می شود ullet
 - بهبود:
- مرحله به مرحله XOR شده و در مقدار چکیده قرار می گیرد \bigcirc
- پیش از XOR کردن قالب جدید، مقدار چکیده ۱ بیت شیفت داده می شود \circ

توابع چکیدهساز

- h = H(x) است اگر $oldsymbol{h}$ است $oldsymbol{X}$
- و کارد پیشتصویر وجود دارد H و برای هر مقدار h پیشتصویر وجود دارد:

• برخورد (collision) برخورد (
$$x \neq y$$
 , $H(x) = H(y)$

- \bigcirc کاربرد در یکپارچگی داده \longrightarrow برخورد نامطلوب است
- \circ حتما برخورد وجود دارد \to یافتن آن باید از نظر محاسباتی غیرممکن باشد
 - طول ورودی b=a، طول چکیده n=n، به طور متوسط b=0

الزامات پیادهسازی عملی

- طول ورودی متغیر
- را می توان به آرگومانی با هر اندازه دلخواه اعمال کرد (بعد دامنه بینهایت است) ${
 m H} \circ$
 - طول خروجی ثابت
 - است) n یک خروجی با اندازه ثابت دارد (بعد برد، عدد ثابت $H \circ$
 - کارآیی: محاسبه H(x) برای X دلخواه به سادگی انجام می شود

- مقاوم در برابر پیش تصویر: خاصیت یک طرفه
- **Preimage resistance (one-way property)** o
- برای هر y داده شده، بدست آوردن x به طوری که y=H(x) باشد، از نظر محاسباتی غیرممکن است

- مقاوم در برابر برخورد ضعیف (مقاوم در برابر پیش تصویر دوم)
- Second-preimage resistance (weak collision resistance) o
- باشد، از نظر H(y)=H(x) باشد، از نظر $y\neq x$ به طوری که $y\neq x$ باشد، از نظر محاسباتی غیرممکن است

- مقاوم در برابر برخورد قوی (مقاوم در برابر برخورد)
- **Collision resistance (strong collision resistance)** o
- بدست آوردن x و y، به طوری که H(y)=H(x) باشد، از نظر محاسباتی غیرممکن است \circ

- شبه تصادفی بودن
- خروجی در تستهای آماری صدق کند
 - الزامي نيست ولي معمول است

مقاوم در برابر پیشتصویر (preimage resistant) خاصیت یک طرفه

- تولید کد (چکیده) برای یک پیام ساده است ولی بدست آوردن پیام با داشتن کد از نظر محاسباتی غیرممکن است
 - احراز اصالت با بکارگیری راز

• دشمن راز را بازیابی می کند!

مقاوم در برابر برخورد ضعیف (مقاوم در برابر پیشتصویر دوم)

• پیداکردن پیام دیگری با چکیده برابر با چکیده پیام اصلی از نظر محاسباتی غیرممکن است

مقاوم در برابر برخورد قوی (مقاوم در برابر برخورد)

حمله:

- آلیس مبلغ کمی به باب قرض دارد و قرار است پیام حاوی اعلام این قرض را امضا کند
- باب دو پیام که دارای چکیده یکسان هستند را مییابد که یکی حاوی مبلغ کم قرض و دیگری حاوی مبلغ زیاد قرض است
 - پیام اصلی (که حاوی مبلغ کم قرض است) را برای آلیس میفرستد. آلیس آن را امضا میکند و پس میفرستد
 - باب چکیده امضا شده را در کنار پیام دوم قرار میدهد و ادعای اصالت آن را می کند!!

الزامات توابع چکیدهساز در کاربردهای مختلف

	Preimage Resistant	Second Preimage Resistant	Collision Resistant
Hash + digital signature	yes	yes	yes*
Intrusion detection and virus detection		yes	
Hash + symmetric encryption			
One-way password file	yes		
MAC	yes	yes	yes*

^{*} Resistance required if attacker is able to mount a chosen message attack

حملات جستجوي فراگير

- به تعداد بیت مقدار چکیده (اندازه خروجی) بستگی دارد
 - حملات پیش تصویر و پیش تصویر دوم
- در حمله پیشتصویر، دشمن به دنبال پیام y است، به طوریکه چکیده آن (H(y)) مقدار مشخص h باشد
 - حمله جستجوی فراگیر: انتخاب $oldsymbol{y}$ تصادفی و تکرار تا یافتن برخورد ullet
 - برای مقدار چکیده m بیتی \bullet
 - دشمن باید به طور متوسط 2^{m-1} تعداد $oldsymbol{y}$ را بیازماید تا به مقدار چکیده دلخواه برسد \circ

حملات جستجوي فراگير

 $\mathbf{H}(x)$ سوال: تابع \mathbf{H} با \mathbf{H} خروجی ممکن را در نظر بگیرید (\mathbf{m} بیتی). مقدار مشخص $\mathbf{H}(x)$ داده شده است. اگر \mathbf{H} به \mathbf{K} مقدار تصادفی اعمال شود، \mathbf{K} چقدر باید باشد تا احتمال این داده خداقل یک $\mathbf{H}(y)=\mathbf{H}(x)$ بیدا شود که $\mathbf{H}(y)=\mathbf{H}(x)$ است، بزرگتر از $\mathbf{H}(x)$ باشد؟

$$k = 2^{m-1}$$

پارادوکس روز تولد

- حداقل مقدار k چقدر باید باشد، تا در یک گروه k نفری احتمال این که حداقل دو نفر در یک روز متولد شده باشند، بیشتر از k. باشد؟ k = 23
 - تابع H با 2^m خروجی ممکن را در نظر بگیرید (m بیتی).
- را به k مقدار ورودی تصادفی اعمال کرده و نتیجه را در مجموعه K ذخیره می کنیم H
 - دوباره، ${f H}$ را به ${m k}$ مقدار ورودی تصادفی اعمال کرده و نتیجه را در مجموعه ${f Y}$
- چقدر باید باشد تا احتمال این که حداقل یک تطابق در دو مجموعه رخ دهد، بزرگ تر kاز ۵.۰ باشد؟ $k = \sqrt{2^m} = 2^{m/2}$

H(x) = H(y) for some $x \in X, y \in Y$

متغیر تصادفی با توزیع یکنواخت بین 0 و N: پس از انتخاب \sqrt{N} تعداد از آن با Nاحتمال بیشتر از ۵.۰، یک مقدار تکراری انتخاب میشود

حملات جستجوی فراگیر حمله مقاوم در برابر برخورد

• مهاجم به دنبال یافتن پیامهای X و Y ای است که چکیده یکسان داشته باشند: H(x) = H(y)

استفاده از پارادوکس روز تولد در حمله مقاوم در برابر برخورد (امضای دیجیتال)

- منبع ${f A}$ قصد امضای پیام قانونی ${f X}$ با کلید خصوصی خود را دارد
- (x') مهاجم، $2^{m/2}$ پیام دگرگون شده از X را که اساساً هم معنا هستند تولید می کند
 - مهاجم پیام تقلبی دلخواه خود ($oldsymbol{y}$) را که نیاز به امضای $oldsymbol{A}$ دارد، تولید می کند
- مهاجم، پیامهای دگرگون شده از $oldsymbol{y}$ را که اساساً هم معنا هستند تولید می کند $oldsymbol{(y')}$
- $H(x') \stackrel{?}{=} H(y')$ مقدار چکیده آن را تولید و با مقادیر چکیده های قبلی مقایسه می کند O
- مهاجم، پیام قانونی را برای امضا به $\bf A$ میفرستد و امضای دریافتی را به پیام تقلبی الصاق می کند

Dear Anthony, { This letter is } to introduce { you to } { Mr. } Alfred { P. } Barton, the { new newly appointed } { chief senior } jewellery buyer for { our } Northern { European } { area division }. He { will take } over { the } responsibility for { all the whole of } our interests in { watches and jewellery } in the { area region }. Please { afford } him { every all the } help he { may need } to { seek out } the most { modern } lines for the { top high } end of the market. He is { empowered authorized } to receive on our behalf { samples specimens } of the { latest } { watch and jewellery } products, { up } to a { limit } maximum } of ten thousand dollars. He will { carry } a signed copy of this { letter } as proof of identity. An order with his signature, which is $\left\{\begin{array}{l} appended \\ attached \end{array}\right\}$ { authorizes } you to charge the cost to this company at the { above head office } address. We $\left\{\begin{array}{c} \text{fully} \\ --\end{array}\right\}$ expect that our $\left\{\begin{array}{c} \text{level} \\ \text{volume} \end{array}\right\}$ of orders will increase in the $\left\{ \begin{array}{c} \text{following} \\ \text{next} \end{array} \right\}$ year and $\left\{ \begin{array}{c} \text{trust} \\ \text{hope} \end{array} \right\}$ that the new appointment will $\left\{ \begin{array}{c} \text{be} \\ \text{prove} \end{array} \right\}$ { advantageous } to both our companies.

Figure 11.6 A Letter in 237 Variation [DAVI89]

امنیت توابع چکیدهساز

Preimage resistant	2 ^m
Second preimage resistant	2 ^m
Collision resistant	$2^{m/2}$

- MD5: ۱۲۸ بیت
- ۱۹۹۴ ۱۰ میلیون دلار ۲۴ روز
 - ۱۶۰ بیت
 - ۰ بیش از ۴۰۰۰ سال
- فناوری امروزه: ۱۶۰ بیت مشکوک است!

ساختار کلی توابع چکیدهساز

- مرکل (۱۹۷۹): تابع چکیدهساز مکرر
- O مبنای اکثر توابع چکیدهساز مانند SHA
- پیام به L قالب b بیتی تقسیم میشود ullet
 - \mathbf{f} اعمال مکرر تابع فشردهساز
- اگر f در برابر برخورد مقاوم باشد، تابع چکیدهساز مکرر نیز مقاوم است

IV = Initial value

 CV_i = Chaining variable

 $Y_i = i$ th input block

f = Compression algorithm

L = Number of input blocks

n = Length of hash code

b =Length of input block

الگوریتم چکیدهساز امن Secure Hash Algorithm (SHA)

- پرکاربردترین توابع چکیدهساز
- از ۲۰۰۵: تنها الگوریتمی که در برابر حملات رمزشکنی شکسته نشدهاند
 - استاندارد NIST در ۱۹۹۳ (FIPS 180)
 - SHA-0 o
 - (1990) SHA-1
 - ۱۶۰ ۰
 - O استاندارد امضای دیجیتال ELGAMAL) DSS
 - ۰ در ۲۰۰۵ پایان مقبولیت استفاده از آن تا ۲۰۱۰ اعلام شد
- حملهای پیدا شد که تعداد عمل برای یافتن برخورد را از 2^{80} به 2^{69} کاهش داد \circ

الگوریتم چکیدهساز امن Secure Hash Algorithm (SHA)

- $(\Upsilon \cdot \cdot \Upsilon)$ SHA-2 •
- ۰ ۲۵۶، ۲۸۴ و ۵۱۲ بیت
- O مبنای ساختاری یکسان با SHA-1
 - (۲۰۰۸) بیت ۲۲۴ ۰

Algorithm	Message Size	Block Size	Word Size	Message Digest Size
SHA-1	< 2 ⁶⁴	512	32	160
SHA-224	< 2 ⁶⁴	512	32	224
SHA-256	< 2 ⁶⁴	512	32	256
SHA-384	< 2128	1024	64	384
SHA-512	< 2128	1024	64	512
SHA-512/224	< 2128	1024	64	224
SHA-512/256	< 2128	1024	64	256

SHA-512

$$\sigma_0^{512}(x) = \text{ROTR}^1(x) \oplus \text{ROTR}^8(x) \oplus \text{SHR}^7(x)$$

 $\sigma_1^{512}(x) = \text{ROTR}^{19}(x) \oplus \text{ROTR}^{61}(x) \oplus \text{SHR}^6(x)$

 $ROTR^{n}(x) = circular right shift (rotation) of the 64-bit argument x by n bits$

 $SHR^{n}(x) = left shift of the 64-bit argument x by n bits with padding by zeros on the right$

+ = addition modulo 2^{64}

SHA-3

- **SHA-2** •
- مبنای ساختاری یکسان با استانداردهای قبلی
- مسابقهای جهت انتخاب استاندارد جدید (۲۰۰۷)
- امکان جایگزینی SHA-2 با SHA-3 در کاربردهای فعلی باشد
 - ۰ ۲۲۴، ۲۵۶، ۳۸۴ و ۵۱۲ بیت را بتواند تولید کند
 - موجود در SHA-2 را حفظ کند ullet
- ۰ بر روی قالبهای کوتاه (مثل ۵۱۲ یا ۱۰۲۴ بیت) عمل کرده و منتظر تمام پیام نباشد
 - امنیت هزینه پیادهسازی
 - در ۲ اکتبر ۲۰۱۲ برنده مسابقه SHA-3 اعلام شد
 - با تیم طراحانی از بلژیک و ایتالیا **Keccak** O
 - ۰ استاندارد در ۲۰۱۵

حملات امنیتی

- افشا (Disclosure)
 - تحلیل ترافیک
- رخپوشی (masquerade): وارد کردن پیام در شبکه توسط منبع غیرقانونی
 - تولید پیام غیرقانونی و ادعای اصالت آن
 - اعلام دریافت یا عدم دریافت غیرقانونی (توسط شخصی به جز گیرنده اصلی)
 - تغییر محتوا (درج، حذف، جابجایی و یا تغییر)
 - تغییر دنباله (درج، حذف و یا تغییر ترتیب)
 - تغییر زمانی (تاخیر یا تکرار)
 - انکار منبع (Source repudiation)
 - انکار مقصد (Destination repudiation)

حملات امنيتي

- افشا (Disclosure)
 - تحلیل ترافیک

محرمانگی

• رخپوشی (masquerade): وارد کردن پیام در شبکه توسط منبع غیرقانونه.

- تولید پیام غیرقانونی و ادعای اصالت آن
- اعلام دریافت یا عدم دریافت غیرقانونی (توسط شخصی به جز گیرنده اصلی)
 - تغییر محتوا (درج، حذف، جابجایی و یا تغییر)
 - تغییر دنباله (درج، حذف و یا تغییر ترتیب)
 - تغییر زمانی (تاخیر یا تکرار)
 - انکار منبع (Source repudiation)
 - انكار مقصد (Destination repudiation)

احراز اصالت پیام

امضای دیجیتال

امضای دیجیتال+پروتکل

توابع احراز اصالت پیام

- ساز و کار احراز اصالت پیام یا امضای دیجیتال: ۲ مرحله
- 1. تابعی که مقداری به نام احراز اصالت گر (authenticator) را تولید می کند
- 2. پروتکل احراز اصالت که گیرنده با استفاده احراز اصالت گر، پیام را احراز اصالت کند
 - توابع چکیدهساز (Hash function)
 - احراز اصالت گر = خروجی (طول ثابت) تابع چکیدهساز با ورودی پیام
 - رمزنگاری پیام (Message encryption)
 - احراز اصالت گر = متن رمز شده کل پیام
- کد احراز اصالت پیام (Message authentication code (MAC)) کد احراز اصالت پیام
 - O احراز اصالت گر = خروجی (طول ثابت) یک تابع با ورودی پیام و **کلید مخفی**

رمزنگاری پیام (Message encryption) رمز متقارن

- کلید مخفی: محرمانگی
- میداند که پیام توسط A تولید شده است و تغییر نیافته است B
 - 0 احراز اصالت؟

$$M \stackrel{E}{\to} X \to Y = D(K, X)$$

- آیا Y متن اصلی قانونی است؟ روش خودکار $oldsymbol{V}$
- هر دنبالهای از بیتها \hookrightarrow غیر قابل تشخیص $Y \leftarrow M$ میتواند هر دنبالهای از بیتها باشد: $M \circ$
 - در حالت کلی تشخیص متن اصلی قانونی به صورت خودکار ساده نیست
 - راه حل: متن اصلی دارای ساختار باشد

(Message encryption) رمزنگاری پیام رمز متقارن

- اضافه کردن کد تشخیص خطا یا جمع آزما (checksum) به هر پیام:
- کنترل خطای درونی: دشمن نمی تواند متن رمزشدهای تولید کند که پس از رمزگشایی با کد
 تشخیص خطا متناظر باشد

(a) Internal error control

(Message encryption) رمزنگاری پیام رمز متقارن

- اضافه کردن کد تشخیص خطا یا جمع آزما (checksum) به هر پیام:
- کنترل خطای درونی: دشمن نمی تواند متن رمزشدهای تولید کند که پس از رمزگشایی با کد
 تشخیص خطا متناظر باشد

(a) Internal error control E(K, M) E(K, M) F(E(K, M)) F(E(K, M))

3

رمزنگاری پیام (Message encryption) رمز متقارن

- هر ساختار دیگر در پیام (مانند پروتکلهای ارتباطی در لایههای مختلف شبکه)
 - پروتکل TCP/IP
 - کلید مخفی بین هر دو کاربر
 - سرایند (header) شامل ساختار لازم و حتی جمع آزما است

• شماره دنباله

○ تاخیر، حذف و تغییر ترتیب

رمزنگاری پیام (Message encryption) رمز نامتقارن (کلید همگانی)

كد احراز اصالت پيام

Message authentication code (MAC)

- کد احراز اصالت پیام یا جمع آزمای رمزنگاشتی (cryptographic checksum)
 - طول خروجی: ثابت

MAC = C(K, M)

- (K) تابعی از پیام (M) و کلید مخفی ullet
- پیام همراه با مقدار MAC ارسال میشود
- گیرنده با استفاده از کلید مخفی، MAC را محاسبه و با مقدار دریافتی مقایسه می کند
 - سازد \leftarrow پیام تغییر نیافته است MAC مهاجم بدون کلید مخفی نمی تواند
- M بسازد o احراز اصالت فرستنده M بسازد مخفی را میداند و میتواند M
 - اگر پیام حاوی شماره دنباله باشد (مثل TPC) \rightarrow ترتیب تغییر نیافته است

کد احراز اصالت پیام Message authentication code (MAC)

- تابع MAC: برخلاف رمزنگاری نیازی به وارون پذیری نیست
 - وارونپذیر نیست
 - نگاشت چند به یک است
 - بیتی: n کد ممکن n MAC \circ
 - پیام l بیتی: 2^l پیام ممکن \circ
 - کلید k بیتی: 2^k کلید ممکن \circ
- هر MAC به طور متوسط توسط 2^{l-n} پیام متفاوت تولید می شود و 2^k نگاشت متفاوت از فضای پیام به فضای MAC وجود دارد

کد احراز اصالت پیام و محرمانگی

- دو کلید جداگانه
- معمولا بهتر است که MAC متصل به پیام باشد

(b) Message authentication and confidentiality; authentication tied to plaintext

(c) Message authentication and confidentiality; authentication tied to ciphertext

موارد کاربردی کد احراز اصالت پیام

- چرا همواره از رمزنگاری متقارن (با توجه به کاربرد گسترده آن) برای احراز اصالت استفاده نکنیم؟
- 1. در کانال پخش با پیام مشترک به همه گیرندهها، یک گیرنده مسئول بررسی اصالت پیام میشود و پیام بدون رمز (برای همه گیرندهها) ارسال می گردد
- 2. برای کاهش بار کاری، در برخی کاربردها اصالت برخی پیامها به طور تصادفی بررسی میشود
 - 3. احراز اصالت برنامه قابل اجرا (بدون نیاز به رمزگشایی)
 - 4. در برخی کاربردها نیاز به محرمانگی نداریم، مانند SNMPv3 (پیامهای مدیریتی)
 - 5. جداسازی لایهها: مثلا احراز اصالت در لایه کاربرد و محرمانگی در لایههای پایین تر
- 6. در برخی کاربردها میخواهیم اصالت پیام همراه با پیام ذخیره شده و در مواقع لازم احراز شود
 - توجه: کد احراز اصالت پیام، امضای دیجیتال نیست. چون فرستنده و گیرنده هر دو کلید را میدانند

الزامات كد احراز اصالت پيام مقدمه

- (K) و کلید مخفی (M) و کلید مخفی از پیام (M) و کلید مخفی $T = \mathrm{MAC}(K,M)$
- حمله جستجوی فراگیر به رمزنگاری جهت ایجاد محرمانگی K_i حمله جستجوی فراگیر به رمزنگاری جهت ایجاد محرمانگی $P_i = \mathrm{D}(K_i,C)$
- (T_1,M_1) بدون محرمانگی: مهاجم متن اصلی و MAC آن را میبیند (k>n) و (k>n)

$$T_i = \text{MAC}(K_i, M_1) \rightarrow T_i = T_1$$

- 2^n = تعداد کلیدها 2^k = تعداد برچسبهای متفاوت 2^k
- کلید برچسب دلخواه را تولید میکنند \leftarrow تکرار حمله $2^{k-n} \circ$

الزامات كد احراز اصالت پيام مقدمه

Round 1

Given: $M_1, T_1 = \text{MAC}(K, M_1)$ Compute $T_i = \text{MAC}(K_i, M_1)$ for all 2^k keys Number of matches $\approx 2^{(k-n)}$

Round 2

Given: M_2 , $T_2 = \text{MAC}(K, M_2)$ Compute $T_i = \text{MAC}(K_i, M_2)$ for the $2^{(k-n)}$ keys resulting from Round 1 Number of matches $\approx 2^{(k-2\times n)}$

 $k = \alpha \times n$ دور لازم است α

• حمله جستجوی فراگیر به کلید احراز اصالت (کمی) پیچیده تر از حمله به کلید رمز گشایی با همان طول است

الزامات كد احراز اصالت پيام مقدمه

$$M = (X_1 || X_2 || \ldots || X_m)$$

$$\Delta(M) = X_1 \oplus X_2 \oplus \cdots \oplus X_m$$
$$MAC(K, M) = E(K, \Delta(M))$$

- الگوریتم MAC زیر را در نظر بگیرید:
 - X_i قالبهای ۴۴ بیتی \circ
 - ECB در سبک DES: الگوریتم
 - ۰ کلید ۵۶ بیتی
 - ۰ برچسب ۶۴ بیتی
 - مهاجم: {M || MAC(K, M)}
 - حمله جستجوی فراگیر: ۲۵۶ رمزگذاری
- با مقادیر X_m با مقادیر Y_1 تا X_{m-1} با مقادیر X_{m-1} با مقادیر X_m با حاگذاری X_m با
- $Y_m = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{m-1} \oplus \Delta(M)$

- اصالت دارد! $Y_1 \parallel Y_2 \parallel \cdots \parallel Y_m$ پیام $Q_1 \parallel Y_2 \parallel \cdots \parallel Y_m$
- هر پیام غیرقانونی به طول $64(m ext{-}1)$ بیت را میتوان درج کرد \circ

الزامات كد احراز اصالت پيام

- فرض: مهاجم MAC را میداند ولی کلید را نمیداند
- از نظر محاسباتی غیر M' برای مهاجم با داشتن M(K,M) و M از نظر محاسباتی غیر M' بیامM' ممکن باشد:
- M'و M' و M يكنواخت باشد: براى پيامهاى تصادفى MAC(K,M) يكنواخت باشد: براى پيامهاى MAC(K,M) و MAC(K,M') $= 2^{-n}$
 - مقابله با حمله جستجوی فراگیر بر اساس متن اصلی منتخب
 - توزیع یکنواخت: $2^{(n-1)}$ آزمون برای پیدا کردن پیام متناظر با برچسب داده شده \circ
 - (M'=f(M) و M' رابطه مشخصی داشته باشند (یعنی M'=1
- $\Pr\left[\mathrm{MAC}(K,M) \ = \ \mathrm{MAC}(K,M')
 ight] \ = \ 2^{-n}$ الگوريتم نسبت به برخى بيتها ضعيف نباشد \circ
 - مهاجم با تغییر بیتهای مشخصی نتواند به پیامی جدید با برچسب قبلی برسد

حمله جستجوي فراگير

- حمله به فضای کلید
 - 2^k حداقل از مرتبه \circ
- حمله به مقدار MAC (برچسب)
- یافتن مقدار برچسب بدون دانستن کلید
- هدف: یافتن برچسب معتبر برای یک پیام و یا یافتن پیامی که متناظر با برچسب باشد
 (یافتن برخورد)
 - 2^n از مرتبه $^{\circ}$ با توجه به خواص $^{\circ}$
 - در تابع چکیدهساز (بدون کلید) قابل پیادهسازی برونخط (offline)
- (online) در MAC: نیاز به زوج متن اصلی برچسب منتخب به صورت برخط (MAC

$$\min(2^k, 2^n)$$
 $\min(k, n) \ge N = 128 \text{bits}$

کد احراز اصالت پیام (MAC)

- MAC بر اساس رمز قالبی: روش سنتی معمول
 - MAC بر اساس توابع چکیدهساز (HMAC)
 - اخیرا مورد توجه زیادی قرار گرفته است
- $^{\circ}$ سرعت زیاد الگوریتمهای توابع چکیدهساز (مثل $^{\circ}$ (مثل $^{\circ}$ و $^{\circ}$ نسبت به رمزهای قالبی (مثل $^{\circ}$ DES) و استفاده گسترده از آنها
 - یار برد MAC به عنوان MAC به کار برد O
 - $\mathsf{HMAC} \leftarrow \mathsf{MAC}$ ترکیب کلید و
 - O الزام پیادهسازی در امنیت O
 - SSL استفاده در پروتکلهای دیگر اینترنت مثل \circ
 - FIPS 198 \leftarrow NIST استاندارد

HMAC

- استفاده از توابع چکیدهساز موجود (بدون تغییر) به عنوان هسته اصلی الگوریتم
- جایگزینی ساده تابع چکیدهساز در صورت نیاز برای استفاده از تابع چکیدهساز بهتر
 - حفظ کارآیی تابع چکیدهساز
 - استفاده ساده از کلید
 - تحلیل ساده امنیتی HMAC بر اساس امنیت تابع چکیدهساز

HMAC

Secret Key Known Only to Sender and Receiver

src: networkworld

ساختار الگوريتم HMAC

- H = embedded hash function (e.g., MD5, SHA-1, RIPEMD-160)
- *IV* = initial value input to hash function
- *M* = message input to HMAC
- $Y_i = i$ th block of M
- K⁺ = K padded with zeros on the left so that the result is b bits in length
- ipad = 00110110 (36 in hexadecimal) repeated b/8 times
- opad = 01011100 (5C in hexadecimal) repeated b/8 times

 $HMAC(K, M) = H[(K^+ \oplus opad) \parallel H[(K^+ \oplus ipad) \parallel M]]$

امنیت HMAC

- معادل امنیت تابع چکیدهساز استفاده شده
 - حمله روز تولد به تابع چکیدهساز
- H(M) = H(M') یافتن دو پیام $oldsymbol{M}$ و $oldsymbol{M}'$ که: $oldsymbol{O}$
 - $2^{n/2}$ برای چکیده به طول n بیت از مرتبه \circ
 - ۰ ۱۲۸ MD5 بیتی؟
 - MD5 براى HMAC مناسب است
- با توجه به استفاده از کلید، یافتن برخورد به طور برونخط ممکن نیست و نیاز به 2^{64} قالب 2^{72} بیت) تولید شده توسط یک کلید دارد
 - در یک ارتباط با سرعت 1-Gbps، ۱۵۰۰۰۰ سال طول می کشد!
 - SHA به جای MD5 اگر سرعت بالا: استفاده از

MAC بر اساس رمز قالبي

- CBC در سبک DES: بر اساس DEA (Data Authentication Algorithm)
 - o خروجی = (DAC) = خروجی
 - مدتها پر کاربردترین الگوریتم MAC بوده
 - O استاندارد NIST و X9.17 (X9.17)

MAC بر اساس رمز قالبي

- بهبود الگوریتم به دلیل مشکلات امنیتی DAA
 - o استفاده از AES و 3-DES
- **Cipher-based Message Authentication Code (CMAC)** o

رمزگذاری توام با احراز اصالت Authenticated encryption (AE)

- محرمانگی و احراز اصالت توام (اخیرا)
- Hashing followed by encryption $(H \rightarrow E)$
 - Wired Equivalent Privacy (WEP) protocol in WiFi
- Authentication followed by encryption (A \rightarrow E)
 - SSL/TLS protocols
- Encryption followed by authentication $(E \rightarrow A)$
 - IPSec protocol
- Independently encrypt and authenticate (E + A)
 - SSH protocol
- Counter with cipher block chaining-message authentication code (CCM)
 - IEEE 802.11 WiFi NIST SP 800-38C
 - Encrypt-and-MAC (AES+CMAC)
- Galois/Counter Mode (GCM)

امضای دیجیتال Digital Signature

- احراز اصالت پیام از تغییر پیام توسط شخص سوم جلوگیری می کند
 - چه اختلافهایی ممکن است رخ دهد؟
 - جعل توسط گیرنده
- گیرنده پیام دلخواه خود و کد احراز اصالت آن (با استفاده از کلید مخفی) را تولید کرده و ادعا
 کند که فرستنده آن را ارسال کرده است
 - مثال: در ارسالهای مالی، گیرنده مبلغ را افزایش دهد
 - انكار توسط فرستنده
 - با توجه به امكان جعل توسط گيرنده، فرستنده پيام ارسالي را انكاركند
 - مثال: دستور خرید سهام در بورس توسط پست الکترونیکی ارسال شود. پس از کاهش ارزش سهام، فرستنده ارسال آن را انکار کند
 - راه حل: امضای دیجیتال (بر اساس رمزنگاری کلید همگانی)
 - در شرایطی که اعتماد کامل بین فرستنده و گیرنده وجود ندارد

(Digital Signature) امضای دیجیتال

If the hashes are equal, the signature is valid.

- فرستنده پیام را امضا می کند
- ورودی الگوریتم امضا: پیام و کلید خصوصی فرستنده
- هر گیرندهای میتواند امضا را تایید کند
- ورودی الگوریتم تایید: پیام، امضا و کلید همگانی فرستنده

src: wikipedia

ویژگیهای امضای دیجیتال

- 1. تایید شخص امضا کننده، تاریخ و زمان امضا
 - 2. احراز اصالت محتوای پیام در زمان امضا
- 3. امكان تاييد توسط شخص سوم در موارد بروز اختلاف
 - امضای دیجیتال در برگیرنده احراز اصالت است

ویژگیهای امضای دیجیتال

Carol

- وارسی پذیری همگانی
- MAC بدون داشتن کلیدوارسی پذیر نیست

- انتقال پذیر
- 0 وارسى توسط شخص سوم

ویژگیهای امضای دیجیتال

• انکارناپذیری

حملات امضاي ديجيتال

حملات مختلف بر اساس اطلاعات مهاجم

- حمله کلید-مبنا (Key-only attack): کلید همگانی امضاکننده
- حمله پیام معلوم (Known message attack): برخی پیامها و امضاهای متناظر
 - حمله پیام منتخب (Chosen message attack): پیامهای منتخب و امضاهای متناظر

اهداف مهاجم

- شكست كامل (Total break): بدست آوردن كليد خصوصى امضاكننده
- جعل فراگیر (Universal forgery): پیداکردن الگوریتمی برای تولید امضای معادل برای پیام دلخواه
 - جعل انتخابی (Selective forgery)
 - جعل وجودی (Existential forgery): تولید امضای معادل برای حداقل یک پیام

الزامات امضاي ديجيتال

- امضا باید دنبالهای از بیتهای باشد که به پیام امضا شده بستگی دارد
 - برای تولید امضا باید از اطلاعات منحصر به امضا کننده استفاده شود
 - ۰ رمزنگاری کلید همگانی
 - تولید امضا ساده باشد
 - تشخیص و تایید امضا ساده باشد
 - جعل امضا از نظر محاسباتی غیر ممکن باشد
 - تولید پیام جدید برای امضای موجود
 - تولید امضای تقلبی برای پیام دلخواه
 - ذخیره امضا در حافظه، جهت بررسیهای آتی امکانپذیر باشد

امضای دیجیتال مستقیم Direct Digital Signature

- تنها فرستنده و گیرنده دخیل هستند
 - ۰ گیرنده، کلید همگانی فرستنده را میداند
- محرمانگی: رمزگذاری پیام و امضا با استفاده از یک کلید مخفی
 - امضای دیجیتال متن اصلی (نه رمز شده)
- امنیت این سیستم، وابسته به امنیت کلید خصوصی فرستنده است
 - فرستنده در صورت تمایل به انکار، میتواند ادعای سرقت آن را نماید
- یک راه حل: استفاده از مهر زمانی (timestamp) و درخواست اعلام بیدرنگ سرقت کلید
 - ممکن است، دشمن مهر زمانهای قبل از سرقت را روی پیام بزند!
 - راه حل: استفاده از گواهی امضا و مرجع مجازشناس امضا
 - مبحث مدیریت کلید

امضای دیجیتال Elgamal تولید

lpha عدد اول q و ریشه اولی

• تولید کلیدها در کاربر **A**

- 1. Generate a random integer X_A , such that $1 < X_A < q 1$.
- 2. Compute $Y_A = \alpha^{X_A} \mod q$.
- 3. A's private key is X_A ; A's pubic key is $\{q, \alpha, Y_A\}$.
 - $0 \le m \le q-1$ m=H(M) چکیده
- 1. Choose a random integer K such that $1 \le K \le q 1$ and gcd(K, q 1) = 1. That is, K is relatively prime to q 1.
- 2. Compute $S_1 = \alpha^K \mod q$. Note that this is the same as the computation of C_1 for Elgamal encryption.
- 3. Compute $K^{-1} \mod (q-1)$. That is, compute the inverse of K modulo q-1.
- 4. Compute $S_2 = K^{-1}(m X_A S_1) \mod (q 1)$.
- The signature consists of the pair (S₁, S₂).

امضای دیجیتال Elgamal تاسد

- 1. Compute $V_1 = \alpha^m \mod q$.
- 2. Compute $V_2 = (Y_A)^{S_1}(S_1)^{S_2} \mod q$.

B هر کاربر•

$$V_1 = V_2$$
 تایید امضا:

$$\alpha^{m} \mod q = (Y_{A})^{S_{1}}(S_{1})^{S_{2}} \mod q$$
 $\alpha^{m} \mod q = \alpha^{X_{A}S_{1}}\alpha^{KS_{2}} \mod q$
 $\alpha^{m-X_{A}S_{1}} \mod q = \alpha^{KS_{2}} \mod q$
 $m - X_{A}S_{1} \equiv KS_{2} \mod (q-1)$
 $m - X_{A}S_{1} \equiv KK^{-1} (m - X_{A}S_{1}) \mod (q-1)$

استانداردهای امضای دیجیتال

- Digital Signature Standard (DSS)
 - O استاندارد FIPS 186) NIST استاندارد
- O الگوريتم توليد امضا: Digital Signature Algorithm (DSA)
 - × بر پایه الگوریتمهای ElGamal 1985 و Schnorr 1991 ×
 - FIPS $186-4 \leftarrow 7 \cdot 17$, $7 \cdot \cdot \cdot 9$, 1999, $1991 \circ$
- o در نسخه نهایی، بکارگیری RSA یا رمز elliptic curve نیز ممکن است
 - استاندارد امضای دیجیتال بر اساس **RSA**
 - ISO 9776 o
 - ANSI X9.31 o
 - CCITT X.509 o

استانداردهای امضای دیجیتال

DSS

- تابع چکیدهساز
- تابع امضا: وروديها
- (تولید شده در هر بار امضا) k (تولید شده در هر بار امضا) چکیده پیام، کلید خصوصی فرستنده، مقدار تصادفی
 - $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$
 - $(r \, g \, S)$ امضا: دو امضا و $(r \, g \, S)$
 - برخلاف RSA، در رمزنگاری و توزیع کلید کاربرد ندارد

الگوريتم توليد امضا

Digital Signature Algorithm (DSA)

Global Public-Key Components

- p prime number where 2^{L-1} L</sup> for 512 ≤ L ≤ 1024 and L a multiple of 64; i.e., bit length L between 512 and 1024 bits in increments of 64 bits
- q prime divisor of (p-1), where $2^{N-1} < q < 2^N$ i.e., bit length of N bits
- g = h(p-1)/q is an exponent mod p, where h is any integer with 1 < h < (p-1)such that $h^{(p-1)/q} \mod p > 1$

User's Private Key

x random or pseudorandom integer with 0 < x < q

User's Public Key

 $y = g^x \mod p$

- بر اساس سختی محاسبه لگاریتم گسسته
 - بر پایه الگوریتمهای ElGamal 1985 و Schnorr 1991
- ۳ پارامتر کلی: کلید همگانی سراسری
- کلید خصوصی و همگانی امضا کننده (رابطه یکطرفه)

User's Per-Message Secret Number

k random or pseudorandom integer with 0 < k < q

الگوريتم توليد امضا

Digital Signature Algorithm (DSA)

Signing

 $r = (g^k \mod p) \mod q$ $s = [k^{-1} (H(M) + xr)] \mod q$ Signature = (r, s)

Verifying

 $w = (s')^{-1} \mod q$ $u_1 = [H(M')w] \mod q$ $u_2 = (r')w \mod q$ $v = [(g^{u1}y^{u2}) \mod p] \mod q$ TEST: v = r'

M = message to be signed H(M) = hash of M using SHA-1 M', r', s' = received versions of M, r, s

- دو امضا (*r* و ۲
- Γ تایید بر روی Γ صورت می گیرد که تنها تابعی از مقدار تصادفی و کلید همگانی سراسری است (مستقل از پیام)
- S تابعی از کلید خصوصی فرستنده است و گیرنده را قادر می سازد که بدون دانستن مقدار تصادفی، S را تایید کند

از لحاظ محاسباتی کارآ است و قسمتهای پیچیده آن مستقل از پیام هستند