الاشتقاق و تطبيقاته

1 ع ریاضیات	القدرات المنتظرة				
الدرس 1 الدورة الثانية	tender of the state of the stat				
12 ساعة	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\dagger x_0$				
1 ع تجريبية	«NATURE LANGE LAN				
الدرس 3 الدورة الثانية 10 ساعات	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
10	1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	1] [] 				
	₹₩Ţ ĸŊŒĴ IJĠĦŒ₽₽₽₹₹⟨ĠĦ₽₩₩₩₽₽₽₽⟩₹%″				
	+ KANTON - CATHER TO BEN !				
	→ (1) →				

<mark>1- الاشتقاق في نقطة</mark> أ/نشاط

t=0 في اللحظة $v_0=0$ بينت تجربة الفيزياء هند السقوط الحر لجسم بدن سرعة بدئية أي تكون حركته متغيرة بانتظام و محددة بالدالة الزمنية $f(t) = 5t^2$ حيث t هي المدة بالثانية و المسافة بالمتر d = f(t)

10t+5h و $t+h\succ 0$ و $t+h\succ 0$ هي t+tt = 0.5s نضع -2

أ/ أملئ الحدول التالي

					<u> </u>		
0,01	0,001	0,0001	-0,0001	-0,001	-0,01	h	
						t + h	
						السرعة	
						السرعة t المتوسطة بين $t+h$	
						t+h و	

0 باستعمال الجدول تضنن نهاية السرعة المتوسطة عندما يؤول
$$h$$
 الى $\lim_{h\to 0} \frac{f(0,5+h)-f(0,5)}{h}$ ثم قارنها مع نتيجة ب

t = 0.5s العدد $\lim_{h \to 0} \frac{f(0.5 + h) - f(0.5)}{h}$ يسمى السرعة اللحظية للجسم عند

 $t_0=0.5$ و يسمى أيضا العدد المشتق للدالة f عي النقطة

$$\lim_{h\to 0} \frac{f(0,5+h)-f(0,5)}{h} = f'(0,5)$$
 نكتب في هذه الحالة

 $\underline{f u}$ - f u

 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = l$ نقول إن الدالة f قابلة للاشتقاق في x_0 اذا وجد عدد حقيقي الحالة وجد عدد الماتقاق في نقول إن الدالة الماتقاق في الماتقات الماتقاق في الماتقات الم

 $f'(x_0)$ ب عنده العدد المشتق لـ f في x_0 ونرمز له العدد المشتق العدد ا

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$
 نکتب

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$
 نکتب
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 علاحظة:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f(x) = x^2 + 2x$ مثال: نعتبر

بين أن f قابلة للاشتقاق في 1 و حدد العدد المشتق في 1

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = \lim_{x \to 1} x + 3 = 4$$

f'(1) = 4 و الله للاشتقاق في 1 و 4

ج) <u>الدالة التألفية المماسة لدالة</u> x_0 قابلة للاشتقاق في f

$$\lim_{x\to x_0} \varepsilon(x) = 0 \text{ , } \varepsilon(x) = \frac{f(x)-f(x_0)}{x-x_0} - f'(x_0) \text{ ids } f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \Leftrightarrow f(x) = f'(x_0)(x - x_0) + f(x_0) + (x - x_0)\varepsilon(x) \qquad / \lim_{x \to x_0} \varepsilon(x) = 0$$

 $f(x) \simeq f'(x_0)(x-x_0) + f(x_0)$ أي أنه بحوار x_0 لدينا

 x_0 الدالة f الدالة f في النقطة $x o f'(x_0)(x-x_0)+f(x_0)$ الدالة التألفية المماسة لدالة

 x_0 دالة عددية معرفة في مجال مفتوح مركزه f

 x_0 إذا كانت الدالة f قابلة للاشتقاق في x_0 فان الدالة التألفية المماسة لدالة f في النقطة

$$g: x \to f'(x_0)(x-x_0)+f(x_0)$$
 هي الدالة

 $f(x) = \sqrt{x}$ نعتبر نعتبر

لنقطة 1 أحدد الدالة التألفية المماسة لدالة f في النقطة 1 التألفية الماسة لدالة f

$$\sqrt{1,001}$$
 و $\sqrt{0,99}$ و 2) استنتج قيمة مقربة لكل من

الجواب

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$
 \(\text{Lequility}\) \(\text{/1}

 $g: x \to \frac{1}{2}(x-1)+1$ ومنه الدالة التألفية المماسـة لدالة f في النقطة 1 هي الدالة

$$g: x \to \frac{1}{2}x + \frac{1}{2}$$
 أي

2 – الاشتقاق على اليمين - الاشتقاق على اليسار

 $\alpha \succ 0$ حيث $[x_0; x_0 + \alpha]$ حيث مجال من شکل الله معرفة على مجال من

نقول إن f قابلة للاشتقاق على اليمين في x_0 إذا كانت للدالة $\frac{f(x)-f(x_0)}{x-x_0}$ نهاية t على

. $f_d(x_0)$ و نرمز لها بـ x_0

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
العدد l يسمى العدد المشتق ل d على اليمين في d على اليمين أي على العمين أي على الع

lphaلتكن f دالة معرفة على مجال من شكل $[x_0-lpha;x_0]$ حيث *

نقول إن f قابلة للاشتقاق على اليسار في x إذا كانت للدالة f نهاية f على نهاية f. $f_{arrho}^{'}(x_{0})$ ب نرمز لها ب x_{0} نرمز لها

 $f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ العدد f على اليسار في x_0 على اليسار في العدد المشتق ل

ملاحظة

$$f'_g(x_0) = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h}$$
 o $f'_d(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$

تكون f^- قابلة للاشتقاق في x_0 إذا وفقط إذا كانت f^- قابلة للاشتقاق على اليمين وعلى اليسار في x_0 والعدد المشتق على اليمين يساوي العدد المشتق على اليسار.

$$0$$
تمرین نعتبر $f(x)=x^2+|x|$ أدرس قابلیة اشتقاق

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x^{2} + x}{x} = \lim_{x \to 0^{+}} x + 1 = 1$$

 $f_d(0) = 1$ اذن f قابلة للاشتقاق على يمين 0 و

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} - x}{x} = \lim_{x \to 0^{-}} x - 1 = -1$$

 $f_{\sigma}'(0) = -1$ اذن f قابلة للاشتقاق على يسار

0لدينا $f_d^{'}\left(0\right)
eq f_d^{'}\left(0\right)$ ومنه وابلة للاشتقاق في

$m{4}$ - التأويل الهندسي – معادلة المماس لمنحنى دالة $m{\dot{l}}$ المماس لمنحنى دالة $m{\dot{l}}$ المماس لتكن f قابلة للاشتقاق في x_0 و C_f منحناها

 C_f نقطتین من $M\left(x;f(x)\right)$ و $M_0\left(x_0;f(x_0)\right)$

$$\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}$$
 المعامل الموجه للمستقيم $\left(MM_{0}\right)$ هو

و بالتالي المستقيم (MM_0) يدور حول M_0 إلى أن ينطبق مع المستقيم (T) ذا المعامل الموجه $f'(x_0)$

 C_f المستقيم (T) مماس للمنحنى

$$y = f'(x_0)(x - x_0) + f(x_0)$$
 معادلة (T) هي

لتكن f دالة معرفة على مجال مفتوح مركزه $x_{\scriptscriptstyle 0}$ و منحناها

 $x_{\scriptscriptstyle 0}$ قابلية اشتقاق f في $x_{\scriptscriptstyle 0}$ تؤول هندسيا بوجود مماس لـ وينا عند النقطة ذات الأفصول

$$y = f'(x_0)(x - x_0) + f(x_0)$$
معادلته

 $f(x) = x^3$ تمرین: نعتبر

الأفصول 2 و حدد معادلة المماس للمنحنى عند النقطة ذات الأفصول 2 و حدد معادلة المماس للمنحنى عند النقطة ذات الأفصول الجواب

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^3 - 2^3}{x - 2} = \lim_{x \to 2} x^2 + 2x + 4 = 12$$

$$f'(2) = 12$$
 اذن f قابلة للاشتقاق في 2 و

$$y=12ig(x-2ig)+8$$
 ومنه معادلة المماس هي $y=f'(2)ig(x-2ig)+fig(2ig)$ أي $y=12x-16$

$$\begin{cases} (T): y = f_g'(x_0)(x - x_0) + f(x_0) \\ x \le x_0 \end{cases}$$

$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) \\ x \ge x_0 \end{cases}$$

$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) & x \ge x_0 \\ (T'): y = f_g'(x_0)(x - x_0) + f(x_0) & x \le x_0 \end{cases}$$

يقبل f يقبل (x_0 يا قابلة للاشتقاق على اليمين في x_0 يقبل) يقبل $(f_g^{'}(x_0)$ نصف مماس عند النقطة $f_d^{'}(x_0)$ نصف مماس عند النقطة خات الافصول

 $g(x) = \sqrt{x}$ و $f(x) = |x^2 - 1|$ تمرین نعتبر

أدرس قابلیة اشتقاق f علی یمین ویسار 1 و أول النتائج هندسیا أدرس قابلیة اشتقاق g علی یمین 0 و أول النتیجة هندسیا

الجواب

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{|x^{2} - 1|}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1^{+}} x + 1 = 2 *$$

 f_d '(1) = 2 ومنه f قابلة اشتقاق على يمين

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\left| x^2 - 1 \right|}{x - 1} = \lim_{x \to 1^{-}} \frac{1 - x^2}{x - 1} = \lim_{x \to 1^{-}} -x - 1 = -2$$

 f_{g} '(1) = -2 ومنه f قابلة اشتقاق على يسار1 و

1 نلاحظ f_d ' $(1)
eq f_g$ اذن اذن f_d اذن

$$y=2(x-1)$$
 یقبل نصف مماس علی یمین 1 معادلته C_f

$$y=-2\left(x-1
ight)$$
 يقبل نصف مماس على يسار 1 معادلته $\left(C_{f}
ight)$

$$\lim_{x \to 0^{+}} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\sqrt{x}}{x} = \lim_{x \to 0^{+}} \frac{1}{\sqrt{x}} = +\infty *$$

ومنه f غير قابلة للاشتقاق على يمين0 و $\left(C_{g}
ight)$ يقبل نصف مماس عمودي على يمين f

<u>5- الد الـــة المشتقة</u>

- تعاریف

<u>تعرىف1</u>

نقول إن f قابلة للاشتقاق على المجال المفتوح I إذا كانت f قابلة للاشتقاق في كل نقطة من I .

تعریف2

نقول إن a;b قابلة للاشتقاق على المجال a;b إذا كانت b قابلة للاشتقاق على a;b و على يسار a . b و على يسار a

[a;b[و على]a;b[و على الاشتقاق على المثل نعرف الاشتقاق على المثل نعرف الاشتقاق على المثل

تعریف3

لتكن قابلة للاشتقاق على المجال I

f'(x) الدالة التي تربط كل عنصر x من f بالعدد f'(x) تسمى الدالة المشتقة نرمز لها

$f(x) = x^2$ مثال: نعتبر

ندرس قابلیة اشتقاق f و نحدد الدالة المشتقة

 $x_0 \in \mathbb{R}$ ليكن

$$f'(x_0) = 2x_0$$
 و منه قابلة لاشتقاق في $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} x + x_0 = 2x_0$

 $\forall x \in \mathbb{R}$ f'(x) = 2x و \mathbb{R} و f'(x) = 3

ملاحظة:

يكون للمنحنى الممثل لدالة f قابلة للاشتقاق على مجال مفتوح I مماس عند كل نقطة من هذا المنحنى

ب- المشتقة الثانية – المشتقات المتتالية

 ${
m I}$ لتكن f قابلة للاشتقاق مجال

إذا الدالة f' قابلة للاشتقاق المجال I فان دالتها المشتقة تسمى الدالة المشتقة الثانية و نرمز لها بالرمز f''

إذا كانت "f قابلة للاشتقاق المجال I فان دالتها المشتقة تسمى الدالة المشتقة الثالثة أو المشتقة من الرتبة f و نرمز لها بالرمز $f^{(3)}$ أو $f^{(3)}$

و هكذاو

 $f^{(n)}$ نرمز للدالة المشتقة من الرتبة $n\in\mathbb{N}^*$ حيث $n\in\mathbb{N}^*$ بالرمز

$f(x) = x^2$ مثال: نعتبر

$$\forall x \in \mathbb{R}$$
 $f'(x) = 2$ فان $\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = 2$ وحيث $\forall x \in \mathbb{R}$ $f'(x) = 2x$ فان $\forall x \in \mathbb{R}$

<u>6- عمليات على الدوال المشتقة</u>

 $n\in \mathbb{N}^*-ig\{1ig\}$ و g دالتين قابلتين للاشـتقاق على مجال g و f دالتين قابلتين للاشـتقاق على مجال g

I دوال قابلة للاشتقاق على المجال f^n و $f \times g$ و $f \times g$

I المجال I فان $\frac{f}{g}$ و اذا كانت g لا تنعدم على المجال افان أو اذا كانت المجال المجال المجال المجال المجال

$$\forall x \in I \quad (f+g)'(x) = f'(x) + g'(x)$$

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$(\lambda f)' = \lambda f'(x)$$

بحيث
$$g$$
 لا تنعدم $\forall x \in I$ $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$ $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g^2(x)}$

علی I

 $n\in\mathbb{N}^*-ig\{1ig\}$ التكن f دالة قابلة للاشتقاق على مجال I و f

(نبین ذلك بالترجع)
$$\forall x \in I$$
 $\left(f^{n}\right)'(x) = n\left(f(x)\right)^{n-1} \times f'(x)$

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$
 نبرهن

$$(f \times g)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} f(x+h) \frac{g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h} g(x)$$

$$= \lim_{h \to 0} f(x+h) - g(x) + \frac{f(x+h) - f(x)}{h} g(x)$$

$$\lim_{h \to 0} f(x+h) = f(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$
 و حيث

$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$
فان

<u>7- الدوال المشتقة لبعض الدوال الاعتبادية </u>

 $\forall x \in \mathbb{R}$ f(x) = k * الدالة الثابتة:

$$\forall x \in \mathbb{R}$$
 $f'(x) = 0$ و \mathbb{R} و $f(x) = 0$ قابلة للاشتقاق على $f(x) = 0$ إذن $f(x) = 0$ قابلة للاشتقاق على $f(x) = 0$

 $f: x \to x$ الدالة

$$\forall x \in \mathbb{R}$$
 $f'(x) = 1$ و \mathbb{R} و المنتقاق على $\int \sin \frac{f(x) - f(x_0)}{x - x_0} = 1$

 $f: x \to ax + b$ | *

$$\forall x \in \mathbb{R}$$
 $f'(x) = a$ و \mathbb{R} و أياة للاشتقاق على $\int \sin \frac{f(x) - f(x_0)}{x - x_0} = a$

 $n \in \mathbb{N}^*$ $f: x \to x^n$ الدالة

$$\forall x \in \mathbb{R}$$
 $f'(x) = nx^{n-1}(x)' = nx^{n-1}$ و ابلة للاشتقاق على f

 $f: x \to \frac{1}{x}$ الدالة *

$$\mathbb{R}^*$$
 إذن f قابلة للاشتقاق على $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{-1}{x \times x_0} = -\frac{1}{x_0^2}$

$$\forall x \in \mathbb{R}^*$$
 $f'(x) = -\frac{1}{x^2}$ g

 $x_0 \in \mathbb{R}_+^*$ لتكن $f: x \to \sqrt{x}$ *

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}} = -\frac{1}{2\sqrt{x_0}}$$

 $\forall x \in \mathbb{R}_+^*$ و $f'(x) = \frac{1}{2\sqrt{x}}$ و \mathbb{R}_+^* و أيان f

0غير قابلة للاشتقاق في f

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f'(x_0)}{h} = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$$
$$= \lim_{h \to 0} \left(2\cos(x_0 + h)\right) \times 2 \times \frac{\sin\frac{h}{2}}{h} = \cos x_0$$

$$\forall x \in \mathbb{R}$$
 $\sin'(x) = \cos x$ قابلة للاشتقاق على \mathbb{R} و $x \to \sin x$

 $f: x \to \cos x$ الدالة

$$\forall x \in \mathbb{R}$$
 $\cos'(x) = -\sin x$ قابلة للاشتقاق على \mathbb{R} و $x \to \cos x$

 $f: x \to \tan x$ الدالة

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan x = \frac{\sin x}{\cos x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = \frac{\left(\sin x\right)' \left(\cos x\right) - \left(\sin x\right) \left(\cos x\right)'}{\left(\cos x\right)^2} = \frac{\cos^2 x + \sin^2 x}{\left(\cos x\right)^2} = \frac{1}{\cos^2 x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = 1 + \tan^2 x$$

$$| \mathbf{x} \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = 1 + \tan^2 x$$

$$\mathbb{R}-\left\{rac{\pi}{2}+k\pi/k\in\mathbb{Z}
ight\}$$
 قابلة للاشتقاق في كل نقطة من $x o an x$ و $x o an x$ و $x o an x$

 \mathbb{R} الدالة الحدودية قابلة للاشتقاق في \mathbb{R}

* الدالة الجدرية قابلة للاشتقاق في كل نقطة من حيز تعريفها

$$f(x) = \frac{2x^3 - 3x}{x^2 + x - 2}$$
نعتبر $D_f = \mathbb{R} - \{1; -2\}$

 $\mathbb{R}-\{1;-2\}$ الدالة الجدرية ومنه f قابلة للاشتقاق في كل نقطة من f

$$\forall x \in \mathbb{R} - \{1; -2\} \qquad f'(x) = \frac{\left(3x^2 - 3\right)\left(x^2 + x - 2\right) - \left(2x + 1\right)\left(2x^3 - 3x\right)}{\left(x^2 + x - 2\right)^2} = \dots$$

 \sqrt{f} مشتقة f(ax+b) مشتقة -8

 $x \to ax + b$ ليكن المجال J صورة المجال I بالدالة التألفية

$$\forall x \in I \quad g'(x) = af'(ax + b)$$

$$f(x) = \sin\left(5x - \frac{\pi}{3}\right)$$
 مثال: نعتبر

$$\forall x \in \mathbb{R}$$
 $f'(x) = 5\cos\left(5x - \frac{\pi}{3}\right)$ و \mathbb{R} قابلة للاشتقاق على f

 ${
m I}$ لتكن f دالة موجبة قطعا و قابلة للاشتقاق على مجال

$$\forall x \in I \ \left(\sqrt{f}\right)'(x) = \frac{f'(x)}{2\sqrt{f(x)}}$$
 و الدالة \sqrt{f} قابلة للاشتقاق على ا

$$f(x) = \sqrt{-x^2 + x}$$
 مثال: نعتبر $D_f = [0;1]$

$$]0;1[$$
 دالة موجبة قطعا و قابلة للاشتقاق على مجال $x \to -x^2 + x$

$$\forall x \in]0;1[$$
 $f'(x) = \frac{-2x+1}{2\sqrt{-x^2+x}}$ و $[0;1]$ و $[0;1]$ و $[0;1]$

جدول مشتقات بعض الدوال

$D_{f'}$	$f^{'}(x)$	f(x)
\mathbb{R}	0	а
\mathbb{R}	1	x
\mathbb{R}^*	$-\frac{1}{x^2}$	$\frac{1}{x}$
$\mathbb R$	nx^{n-1}	$n \in \mathbb{N}^* - \{1\} x^n$
\mathbb{R}^*	nx^{n-1}	$n \in \mathbb{Z}^{*-}$ x^n
\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}}$	\sqrt{x}
$\mathbb R$	$-\sin x$	$\cos x$
\mathbb{R}	$\cos x$	sin x
$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$	$1 + \tan^2 x$	tan x
$\mathbb R$	$-a\sin(ax+b)$	$\cos(ax+b)$
\mathbb{R}	$a\cos(ax+b)$	$\sin(ax+b)$

تمارين f و حدد الدالة المشتقة في الحالات التالية: -1

$$f(x) = \frac{x^2 + 3}{x^2 - x} * f(x) = \frac{3x - 1}{2x - 2} * f(x) = \frac{5}{x^2} * f(x) = 5x^4 + 3x^2 + 4 *$$

$$f(x) = \frac{\sin x}{\cos x - \sin x} * f(x) = (\cos x)^5 * f(x) = (x^2 + x)^5 *$$

$$f(x) = x^2 + x|x| *$$

$$\begin{cases} f(x) = x^2 + x & x \le 0 \\ f(x) = x^3 - x^2 & x > 0 \end{cases}$$

$$f(x) = \frac{x^2 - 3x + 6}{x - 1} \text{ and } x = -2$$

- y=-3x أ- بين أن منحنى f يقبل مماسين موازيين للمستقيم الذي معادلته
 - ب- أكتب معادلتي هذين المماسين. **9- تطبيقات الدالة المشتقة**
 - a- قابلية الاشتقاق و المطراف

 $x_0 \in I$ لتكن f دالة معرفة على مجال مفتوح f و x_0 نعتبر f قابلة للاشتقاق في x_0 و تقبل مطرافا في f

 x_0 لنفترض أن f تقبل قيمة قصوى نسبية عند

 $\forall x \in J \quad f(x) \le f(x_0)$ ومنه یوجد مجال مفتوح J مرکزه x_0 ضمن مغتوح

 $f'(x_0) = f_d'(x_0) = f_g'(x_0)$ وابلة للاشتقاق في x_0 ومنه $f'(x_0) = f_d'(x_0)$

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 أي

$$\forall x \leq x_0$$
 $\forall x \leq x_0$ $\frac{f(x) - f(x_0)}{x - x_0} \geq 0$ و حيث $\forall x \geq x_0$ $\frac{f(x) - f(x_0)}{x - x_0} \leq 0$ فان $\forall x \in J$ $f(x) \leq f(x_0)$

 $f'(x_0) = 0$ ومنه $f'(x_0) \le 0$; $f'(x_0) \ge 0$ أي أن $f_d'(x_0) \le 0$; $f_g'(x_0) \ge 0$ ومنه $f_g'(x_0) \ge 0$; $f_g'(x_0) \ge 0$ ومنه $f_g'(x_0) \ge 0$; $f_g'(x_0) \ge 0$) ومنه ومنه ومنه ومنه دنيا نسبية عند $f_g'(x_0) \ge 0$ نتبع نفس الخطوات للحصول على نفس النتائج)

مبرهنة

 $x_0 \in I$ و I على مجال فتوح ا

 $f'(x_0)\!=\!0$ اذا كانت f قابلة للاشتقاق في النقطة x_0 و تقبل مطرافا في النقطة و النقطة الاشتقاق في النقطة

ملاحظة:

المبرهنة لا تقبل المبرهنة العكسية

$$x_0 = 0 \qquad ; \qquad f(x) = x^3$$
 مثال

f'(0) = 0و مايلة للاشتقاق في $x_0 = 0$ و f

0 و مع ذلك f لا تقبل مطرافا عند

<u>b- الاشتقاق ورتابة دالة</u>

مبرهنه

 ${
m I}$ لـتكن f قابـلة للاشـتـــقاق على مجال ${
m I}$

I موجبة على I إذا وفقط اذا كانت الدالة المشتقة f موجبة على I تكون f تزايدية

 $(\forall x \in I \ f'(x) > 0$ اُي f'(x) > 0 موجبة قطعا على f'(x) > 0

I اذا وفقط إذا كانت الدالة المشتقة f' سالبة على I اذا وفقط إذا كانت الدالة المشتقة

 $(\forall x \in I \ f'(x) \prec 0$ اُي $f'(x) \prec 0$ سالبة قطعا على $f'(x) \prec 0$ أي $f'(x) \prec 0$

 $\forall x \in I$ f'(x) = 0 ثابتة على f إذا كانت الدالة المشتقة f' منعدمة على f

<u>مثال</u>

$$f(x) = x^3 - 6x + 1$$
 نعتبر

أدرس تغيرات f و أعط جدول تغيرا ت f (في جدول التغيرات يجب تحديد النهايات) حدد مطاريف f ان وجدت

الجواب

$$D_f=\mathbb{R}$$
 مجموعة تعريف *

$$\forall x \in \mathbb{R}$$
 $f'(x) = (x^3)' - (6x)' + (1)' = 3x^2 - 6 = 3(x^2 - 2)$ ومنه $f(x) = x^3 - 6x + 1$ * $x^2 - 2$ هي إشارة $f'(x) = (x^3)' - (6x)' + (1)' = 3x^2 - 6 = 3(x^2 - 2)$ هي إشارة $f'(x) = (x^3)' - (6x)' + (1)' = 3x^2 - 6 = 3(x^2 - 2)$

х	$-\infty$		$-\sqrt{2}$		$\sqrt{2}$	+∞
$x^{2} - 2$		+	0	-	0	+

 $\left[-\sqrt{2};\sqrt{2}
ight]$ و سالبة على كل $\left[-\sqrt{2};+\infty
ight[$ و سالبة على f' موجبة على كل $\left[-\sqrt{2};\sqrt{2}
ight]$ و $\left[-\sqrt{2};\sqrt{2}
ight]$ و تناقصية على كل $\left[-\sqrt{2};\sqrt{2}
ight]$ و $\left[\sqrt{2};+\infty
ight[$ و تناقصية على f جدول التغيرات

x	-∞	$-\sqrt{2}$		$\sqrt{2}$		+∞
f'(x)	+	0	-	0	+	
f		$10\sqrt{2}+1$		$-4\sqrt{2} +$	1	▼ +∞

 $\sqrt{2}$ من خلا جدول التغيرات نستنتج أن f تقبل قيمة قصوى عند $-\sqrt{2}$ و دنيا عند x_0 من خلا جحظة لتكن f قابلة للاشتقاق في x_0

مفتوح مطرافا في x_0 إذا و فقط إذا كانت f تنعدم في x_0 و تتغير إشارتها في مجال مفتوح x_0 على x_0 على على مجال

$y''+\omega^2y=0$ المعادلة التفاضلية -10

تؤدي دراسة بعض الظواهر الفيزيائية و البيولوجية و الاقتصادية و غيرها إلى معادلات يكون فيها المجهول دالة وتحتوي على مشتقة أو مشتقات هذه الدالة.

هذا النوع من المعادلات يسمى المعادلات التفاضلية

تعريف

لیکن $\, arphi \,$ عدد ا حقیقیا غیر منعدم

المعادلة تفاضلية. y "+ $\omega^2 y$ = 0 المعادلة تفاضلية.

کل دالة f قابلة للاشتقاق مرتین علی \mathbb{R} و تحقق \mathbb{R} و تحقق $f(x)+\omega^2 f(x)=0$ تسمی حلا $y''+\omega^2 y=0$ للمعادلة y

أمثلة $y'' + \frac{3}{2}y = 0$ و $y'' + \sqrt{2}y = 0$ و y'' + 4y = 0 أمثلة

خاصية

لیکن ω عدد ا حقیقیا غیر منعدم

 $x \to \alpha \cos \omega x + \beta \sin \omega x$ الحل العام للمعادلة y " $+\omega^2 y = 0$ هو مجموعة الدوال y المعرفة كما يلي $(\alpha;\beta) \in \mathbb{R}^2$ حيث

ملاحظة

حل المعادلة $y'' + \omega^2 y = 0$ يرجع إلى تحديد الحل العام لهذه المعادلة

مثال

y"+ 4y = 0 حل المعادلة

لدينا 4 $\omega^2=0$ ومنه $\omega=0$ يمكن أخذ $\omega=-2$ هذا لن يغير مجموعة الحلول

 $(\alpha; \beta) \in \mathbb{R}^2$ حيث $y: x \to \alpha \cos 2x + \beta \sin 2x$ الحل العام لهذه المعادلة هو مجموعة الدوال

معادلة تفاضلية خاصة

y''=0 حل المعادلة

 $y: x \to ax + b$ فان y' فان y'' = 0 فان العام لهذه العام لهذه العام لهذه العام لهذه $y: x \to ax + b$ فان y'' = 0 فان العام لهذه العام لهذ

