UNISINOS CODE@NIGHT – MARATONA DE PROGRAMAÇÃO – 2023/2

PROBLEMA F

Triângulos

Nome do arquivo fonte: Triangulo.{py|java|c|cpp}

São dados *N* pontos em uma circunferência. Você deve escrever um programa que determine quantos triângulos equiláteros distintos podem ser construídos usando esses pontos como vértices. A figura abaixo ilustra um exemplo; (a) mostra um conjunto de pontos, determinados pelos comprimentos dos arcos de circunferência que têm pontos adjacentes como extremos, e (b) mostra os dois triângulos que podem ser construídos com esses pontos.

ENTRADA

A primeira linha da entrada contém um número inteiro N, o número de pontos dados. A segunda linha contém N inteiros X_i , representando os comprimentos dos arcos entre dois pontos consecutivos na circunferência: para $1 \le i \le (N-1)$, X_i representa o comprimento do arco entre os pontos $i \in i+1$; X_N representa o comprimento do arco entre os pontos $N \in I$.

RESTRIÇÕES

- $3 \le N \le 10^5$
- $1 \le X_i \le 10^3$, para $1 \le i \le N$

SAÍDA

Seu programa deve produzir uma única linha, contendo um único inteiro, o número de triângulos equiláteros distintos que podem ser construídos utilizando os pontos dados como vértices.

EXEMPLO DE ENTRADA	EXEMPLO DE SAÍDA
8 4 2 4 2 2 6 2 2	2

EXEMPLO DE ENTRADA	EXEMPLO DE SAÍDA
6 3 4 2 1 5 3	1