Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 21/01/2017	M. en C. Nancy Aguas García	Creación del programa para incorporarse como asignatura básica de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
	a) Administración del desarrollo de proyectos de
 a) Ingeniería de software 	software
-Todos	-Modelos de madurez
	-Métricas de calidad

Nombre de la asignatura	Departamento o Licenciatura
Métodos de desarrollo de software	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
4 - 4	ID0412	8	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	32	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los principales métodos de desarrollo de software para su uso en la implementación de sistemas.

Objetivo procedimental

Emplear un método de desarrollo de software para la implementación de sistemas.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad en la resolución de ejercicios y la solución de problemas para el desarrollo de las habilidades requeridas.

Unidades y temas

Unidad I. MÉTODOS INDUSTRIALES

Revisar los principales métodos y herramientas utilizados en la industria de software para su conocimiento y aplicación en el desarrollo de software.

- 1) Desarrollo incremental
- 2) Elaboración y ejecución de prototipos
- 3) Herramientas para programación y pruebas
- 4) Entornos CASE

Unidad II. METODOS PESADOS

Emplear los elementos de una metodología fuertemente documentada para el desarrollo de software.

- 1) Proceso unificado
- 2) Otros métodos fuertemente documentados
- 3) Herramientas

Unidad III. MÉTODOS AGILES

Emplear los elementos de una metodología ágil para el desarrollo de software.

1) Principios de agilidad	
2) Programación extrema	
3) SCRUM	
4) Otros métodos ágiles	
5) Herramientas	
Unidad IV. INGENIERIA DE SOFWARE AVANZADA	
Ilustrar las principales tendencias en ingeniería para el conocimiento y aplicación en el desarrollo de software.	
1) Basada en componentes	
2) De software distribuido	
3) Arquitectura orientada a servicios	
4) Software embebido	
5) Orientada a aspectos	

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados. Coordinar la discusión de casos prácticos

Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas.

Docente

Estudiante

Realizar tareas asignadas
Participar en el trabajo individual y en equipo
Resolver casos prácticos
Discutir temas en el aula
Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

http://www.iconixsw.com/

http://agilemanifesto.org/iso/es/manifesto.html

http://www.extremeprogramming.org/

https://www.scrum.org/

http://www.crystalmethodologies.org/

http://www.agiledata.org/

http://www.agilemodeling.com/

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Jacobson, I. (2000). El proceso unificado de desarrollo de software (1ª edición) México: Pearson.

Kniberg, H. (2015) Scrum and XP from the Trenches (2ª Edición) EUA: C4Media.

Pressman, R.S. (2010). Ingeniería del Software un enfoque práctico. (7ª Edición). México: Mc Graw Hill.

Sommerville, I. (2011). Ingeniería de Software. (9ª Edición). México: Pearson.

Stellman, A. (2013) Learning Agile: undestanding Scrum, XP, Lean and Kanban (1ª Edición) EUA: O¿Reilly Media.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Braude, E. (2016) Software Engineering: Modern Approaches (2ª Edición). EUA: Waveland Press.

Penn, A. (2016) Business Software Development: Principles and Practice (1a Edición) EUA: Amazon Digital Services LLC.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería en Sistemas Computacionales con Maestría en ingeniería de software.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en desarrollo de software en la industria.