Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms

An Bian, Kfir Y. Levy, Andreas Krause and Joachim M. Buhmann

DR-submodularity captures a subclass of non-convex/non-concave functions that enables exact minimization and approximate maximization in poly. time.

Investigate geometric properties that underlie such objectives, e.g., a strong relation between stationary points & global optimum is proved.

Devise two guaranteed algorithms: i) A "two-phase" algorithm with 1/4 approximation guarantee. ii) A non-monotone Frank-Wolfe variant with 1/e approximation guarantee

Extend to a much broader class of submodular functions on "conic" lattices.

DR-submodular (Diminishing Returns) **Maximization & Its Applications**

 $f \colon \mathcal{X} \to \mathbb{R}$ is continuous DR-submodular. \mathcal{X} is a hypercube. Wlog, let $\mathcal{X} = [\mathbf{0}, \overline{\mathbf{u}}]$. $\mathcal{P} \subseteq \mathcal{X}$ is convex and down-closed: $x \in \mathcal{P} \& 0 \le y \le x \text{ implies } y \in \mathcal{P}.$

DR-submodular (DR property) [Bian et al '17]: $\forall a \leq b \in \mathcal{X}, \forall i, \forall k \in \mathbb{R}_+$, it holds,

$$f(k\boldsymbol{e}_i + \boldsymbol{a}) - f(\boldsymbol{a}) \ge f(k\boldsymbol{e}_i + \boldsymbol{b}) - f(\boldsymbol{b}).$$

- If f differentiable, $\nabla f()$ is an antitone mapping $(\forall a \leq b)$, it holds $\nabla f(a) \geq \nabla f(b)$
- If f twice differentiable, $\nabla_{ij}^2 f(x) \leq 0$, $\forall x$

Applications

- Softmax extension for determinantal point processes (DPPs) [Gillenwater et al '12]
- Mean-field inference for log-submodular models [Djolonga et al '14]
- DR-submodular quadratic programming
- (Generalized submodularity over conic lattices) e.g., logistic regression with a non-convex separable regularizer [Antoniadis et al '11]
- **Etc...** (more see paper)

Softmax (red) & multilinear (blue) extensions, & concave cross-sections Fig. from [Gillenwater et al '12]

Underlying Properties of DR-submodular Maximization

Concavity Along Non-negative Directions:

Quadratic Lower Bound. With a L-Lipschitz gradient, for all x and $v \in \pm \mathbb{R}^n_+$, it holds, $f(\mathbf{x} + \mathbf{v}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{v} \rangle - \frac{L}{2} ||\mathbf{v}||^2$

Strongly DR-submodular & Quadratic Upper Bound. f is μ -strongly DR-submodular if for all x and $v \in \pm \mathbb{R}^n_+$, it holds,

$$f(x + v) \le f(x) + \langle \nabla f(x), v \rangle - \frac{\mu}{2} ||v||^2$$

Approximately Stationary Points & Global Optimum:

Lemma. For any x, y, $\langle y - x, \nabla f(x) \rangle \ge f(x \vee y) + f(x \wedge y) - 2f(x) + \frac{\mu}{2} ||x - y||^2$

If $\nabla f(x) = 0$, then $2f(x) \ge f(x \lor y) + f(x \land y) + \frac{\mu}{2} ||x - y||^2 \rightarrow \text{ implicit relation between } x \& y$. (finding an exact stationary point is difficult (2))

Non-stationarity Measure [Lacoste-Julien '16]. For any $Q \subseteq \mathcal{X}$, the non-stationarity of $x \in Q$ is, $g_{\mathcal{Q}}(\mathbf{x}) \coloneqq \max_{\mathbf{v} \in \mathcal{Q}} \langle \mathbf{v} - \mathbf{x}, \nabla f(\mathbf{x}) \rangle$

(Local-Global Relation). Let $x \in \mathcal{P}$ with non-stationarity $g_{\mathcal{P}}(x)$. Define $Q := \mathcal{P} \cap \{y \mid y \leq \overline{u} - x\}$. Let $z \in Q$ with non-stationarity $g_Q(z)$. Then, $\max\{f(\mathbf{x}), f(\mathbf{z})\} \ge \frac{1}{4} [f(\mathbf{x}^*) - g_{\mathcal{P}}(\mathbf{x}) - g_{\mathcal{Q}}(\mathbf{z})] + \frac{\mu}{8} (\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{z} - \mathbf{z}^*\|^2),$ where $z^* \coloneqq x \vee x^* - x$.

Proof using the essential **DR** property on carefully constructed auxiliary points

- Good empirical performance for the Two-Phase algorithm: if x is away from x^* , $||x - x^*||^2$ will augment the bound; if x is close to x^* , by the smoothness of f, should be near optimal.

Two Guaranteed Algorithms

NON-MONOTONE FRANK-WOLFE VARIANT

Input: step size $\gamma \in (0,1]$

 $x^{(0)} \leftarrow 0, k \leftarrow 0, t^{(0)} \leftarrow 0$ // t: cumulative step size

While $t^{(k)} < 1$ do:

 $v^{(k)} \leftarrow \operatorname{argmax}_{v \in \mathcal{P}, v \leq \overline{u} - x^{(k)}} \langle v, \nabla f(x^{(k)}) \rangle$ // shrunken LMO

 $\gamma_k \leftarrow \min\{\gamma, 1 - t^{(k)}\}$

 $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \gamma_k \mathbf{v}^{(k)}, \ t^{(k+1)} \leftarrow t^{(k)} + \gamma_k, \ k + +$

key difference from the monotone Frank-Wolfe variant [Bian et al '17]

Output: $x^{(K)}$

Guarantee of Non-Monotone Frank-Wolfe Variant.

$$f(\mathbf{x}^{(K)}) \ge e^{-1} f(\mathbf{x}^*) - O(\frac{1}{K^2}) f(\mathbf{x}^*) - \frac{D^2 L}{2K}$$

D: diameter of \mathcal{P} *L*: smooth gradient Based on Local-Global Relation, can use any solver for finding an approximately stationary point as the subroutine, e.g., the Nonconvex Frank-Wolfe solver in [Lascote-Julien '16]

TWO-PHASE ALGORITHM

Input: stopping tolerances ϵ_1 , ϵ_2 , #iterations K_1 , K_2

 $x \leftarrow \text{Non-convex Frank-Wolfe}(f, \mathcal{P}, K_1, \epsilon_1)$ // Phase I on $\mathcal P$

 $Q \leftarrow \mathcal{P} \cap \{y \mid y \leq \overline{u} - x\}$

 $z \leftarrow \text{Non-convex Frank-Wolfe}(f, Q, K_2, \epsilon_2)$ // Phase II on Q

Output: $argmax{f(x), f(z)}$

Guarantee of Two-Phase Algorithm.

$$\max\{f(x), f(z)\} \ge \frac{\mu}{8} (\|x - x^*\|^2 + \|z - z^*\|^2) + \frac{1}{4} \left[f(x^*) - \min\left\{\frac{C_1}{\sqrt{K_1 + 1}}, \epsilon_1\right\} - \min\left\{\frac{C_2}{\sqrt{K_2 + 1}}, \epsilon_2\right\} \right],$$

where $z^* := x \vee x^* - x$

Experimental Results (more see paper)

Baselines:

- QUADPROGIP: global solver for non-convex quadratic programming (possibly in exponential time)
- Projected Gradient Ascent (PROJGRAD) with diminishing step sizes (1/k+1)

DR-submodular Quadratic Programming.

Synthetic problem instances $f(x) = \frac{1}{2}x^THx + h^Tx + c$, $\mathcal{P} = \{x \in \mathbb{R}^n_+ \mid Ax \leq b, x \leq b\}$ \overline{u} , $\mathbf{A} \in \mathbb{R}_{++}^{m \times n}$, $\mathbf{b} \in \mathbb{R}_{+}^{m}$ } has m linear constraints.

Randomly generated in two manners:

1) Uniform distribution (see Figs below); 2) Exponential distribution

Feldman, Naor, and Schwartz. A unified continuous greedy algorithm for submodular maximization. FOCS 2011

Gillenwater, Kulesza, and Taskar. Near-optimal map inference for determinantal point processes. NIPS 2012.

Bach. Submodular functions: from discrete to continous domains. arXiv:1511.00394, 2015.

Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv:1607.00345, 2016.

Bian, Mirzasoleiman, Buhmann, and Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. AISTATS 2017.

Maximizing Softmax Extensions for MAP inference of DPPs.

 $f(\mathbf{x}) = \log \det(\operatorname{diag}(\mathbf{x}) (\mathbf{L} - \mathbf{I}) + \mathbf{I}), \mathbf{x} \in [0,1]^n$

L: kernel/similarity matrix. \mathcal{P} is a matching polytope for matched summarization.

Synthetic problem instances:

- Softmax objectives: generate \mathbf{L} with n random eigenvalues
- Generate polytope constraints similarly as that for quadratic programming

Real-world results on matched summarization:

Select a set of document pairs out of a corpus of documents, such that the two documents within a pair are similar, and the overall set of pairs is as diverse as possible. Setting similar to [Gillenwater et al '12], experimented on the 2012 US Republican detates data.

