(2)己知电离能: $I_2(Ti) = 1310 \text{kJ} \cdot \text{mol}^{-1}$, $I_2(K) = 3051 \text{kJ} \cdot \text{mol}^{-1}$, $I_2(Ti) \subseteq I_2(K)$, 其原因为_____

24.(1)3【这个空错误率很高,为啥】 (2)K*失去的是全充满的3p⁶电子,所需能量较高,T*失去的是 4s¹电子,相对较易失去【有好多点可以讲,再比如半径 K*比 Ti*小或 4s 能量比 3p 高】

:C=0:

(5)等电子原理又有所发展。例如,由短周期元素组成的微粒,只要其原子数相同,各原子最外层电子数之和相同,也可互称为等电子体,它们也具有相似的结构特征。在短周期元素组成的物质中,与NO;互为等电子体的分子有______。(举一个例子)

 H N O Na
 6. W. X. Y. Z 为原子序数依次增大的短周期主族元素, Y 的原子序数等于 W 与 X 的原子序数之和, Na Z 的最外层电子数为 K 层的一半, W 与 X 可形成原子个数比为 2:1 的 18e⁻分子。下列说法正确的是 N₂H₄ ())

 A. 简单离子半径: Z>X>Y
 B. W 与 Y 能形成含有非极性键的化合物 C. X 和 Y 的最简单氢化物的沸点: X>Y

 D. 由 W. X. Y 三种元素所组成化合物的水溶液均显酸性
 S²- HS- Cl HS- C

O Si S H C 7. X、Y、Z、W、Q都是短周期元素,其中 X 原子的最外层电子数是内层电子数的 3 倍; X 与 Z 同 族,Y与Z同周期,Q原子的电子总数等于其电子层数的3倍,W与X、Y既不同族也不同周期 且W不为稀有气体元素; X、Y、Z三种元素的族序数之和为 16。下列说法正确的是 ()

A. Q 与 W 能形成 10 电子、14 电子、18 电子分子 CH4 CH三CH C₂H₆

B. Y 的最高价氧化物对应水化物的化学式只能表示为 H_4YO_4 H_2SiO_3

C. Y、Z、Q 分别与 X 化合, 只能形成 AB_2 型化合物 CO

D.~X、Z、W 中的两种或三种元素形成的钠盐溶液可能显酸性、碱性、中性

NaHSO₄ Na₂SO₃ Na₂SO₄

Li B O F C O 10. M、W、X、Y、Z 是同周期主族元素,X原子的最外层电子数是 W 原子次外层电子数的 3 倍。 它们形成的化合物可用作新型电池的电极材料,结构如图所示,化合物中除 \mathbf{M}^* 外,其他原子均满 足8电子稳定结构。下列说法正确的是

A. M 的单质通常保存在煤油中

B. 上述五种元素中 Y 的原子半径最小

C. Z 的氢化物的沸点一定低于 X 氢化物的沸点

D. W 的最高价氧化物对应的水化物是一元弱酸

Ca₃Al₂(SiO₄)₂(OH)₄

19. 被称为"不倒翁"的凉水石,其外观与翡翠极为相似。某种凉水石的化学式为 $T_3Z_2(RY_4)_2(YX)_4$,X、 Y、Z、R、T 均为前四周期元素且原子序数依次增大。X 原子的电子只有一种自旋取向,基态 T 原子的核外电子恰好填满 10 个原子轨道。R 元素的单质可作为制造太阳能电池帆板的半导体材 料,Y的p轨道上的电子数为R的p轨道上电子数的一半。下列说法正确的是

A. 原子半径: R>X>Y B. 同一周期,第一电离能比 Z 小的元素有 1 种 Na

C. Y 形成的单质只能为非极性分子 D. 简单氢化物的沸点: Y>T

 O_3

H₂O<CaH₂

键	键能/kJ·mol·l	键	键能/kJ·mol·l
Н-Н	436	N≡N	946
F-F	157	N-O	176
Cl-Cl	242.7	N=O	607
Br-Br	193.7	0-0	142
I-I	152.7	0=0	497.3
C-C	347.7	С-Н	413.4
C=C	615	O-H	462.8
C≡C	812	N-H	390.8
C-0	351	H-F	568
C=0	745	H-Cl	431.8
N-N	193	H-Br	366
N=N	418	H-I	298.7

拓展: 共轭大π键

1、苯分子中的p-p大π键 Ⅱ 2

通常采用 II b 为大π键的符号, 其中a表示平行p轨道的数目, b表示在平行p轨道里的电子数。

(Ⅰ路易斯结构式; Ⅱ结构简式; Ⅲ分子中有6个平行p轨道; Ⅳ大 π 键的结构式)

形成大π键的条件:

①原子处于同一平面上

②相邻原子有相互平行的p轨道(sp²杂化,一般单双键交替)

③p轨道上的电子总数小于p轨道数的2倍

拓展: 共轭大π键

2、丁二烯中的p-p大π键 Ⅱ 4

 CH_2 =CH-CH= CH_2 中,碳原子采取 sp^2 杂化,这些杂化轨道相互重叠,形成分 CII2⁻⁻CII-CII-CII2⁻H,疾原丁米耿sp²杂化,这些杂化轨道相互重叠,形成分子的σ骨架,使所有原子处于同一个平面。每个碳原子还有一个未参与杂化的p轨道,垂直于分子平面,每个p轨道里有一个电子,丁二烯分子里存在一个"4轨道4电子"的p-p大π键。

拓展: 共轭大π键

3、CO₂中的大π键 **2套**Π ⁴ ₃

根据VSEPR模型,CO₃是直线形的,中心原子碳原子上没有孤电子对。根据杂化轨道理论,CO₃的碳原子取sp杂化轨道。当某原子取sp杂化轨道时,它的两个未参加杂化的p轨道在空间的取向是跟sp杂化轨道的轴呈正交关系的,即相互垂直,因而CO₂有两套相互平行的p轨道,每套3个p轨道,每套是3轨道4电子。CO₂里有两套3原子4电子符号的p-p大n键。

拓展: 共轭大π键

4、O₃中的大π键 **Π**⁴₃

(I 和 II 为路易斯结构式; II 标出了总电子数; IV表明3个平行p轨道; V 大 π 键的结构式)

 O_3 的VSEPR模型是平面三角形(包括氧原子上的孤电子对)。 积据杂化轨道理论, O_3 的中心氧原子有3个σ轨道(2个σ键和1个占据σ轨道的孤电子对), 取 sp^2 杂化,中心氧原子还有一个垂直于分子平面的p轨道,端位的每个氧原子只可能有一个垂直于分子平面的p轨道,对上于一个垂直于分子平面的p轨道,对上于一个电子对上据的轨道在分子平面上,因此,3个平行p轨道中的电子数为 $18-2\times3-2\times4-4$,臭氧分子里有一个3轨道4电子大 π 键。

拓展: 共轭大π键

5、CO₃²-中的大π键 Π 4

(Ⅰ路易斯结构式;Ⅱ分子中4个平行p轨道;Ⅲ标出了除大 π 键外的12个电子)

根据VSEPR模型,是平面三角形,分子中的3个C—O σ 键呈平面三角形;按杂化轨道理论,中心碳原子有3个 σ 轨道,取sp²杂化,碳原子上还有一个垂直于分子平面的p轨道;端位的3个氧原子也各有1个垂直于分子平面的p轨道。

	Π_3^4	2套 II 3	Π_{4}^{6}
典型代表物	SO ₂ , O ₃ , NO ₂	CO ₂ , N ₃ -, SCN-, NO ₂ ⁺	CO ₃ ² -, NO ₃ , SO ₃

有机物		HC=CHH		
	Π_{6}^{6}	Π_4^4	Π_{5}^{6}	Π_{5}^{6}

单双键交替的结构中,也不一定存在大**∏键**

(2022山东)已知吡啶($[\]$)中含有与苯类似的 \prod_6^6 大 π 键,则吡啶中N原子的 价层孤电子对占据 _D__(填标号)。

【2023山东卷】16. (2) CIO₂中心原子为CI, Cl₂O中心原子为O, 二者均为V 形结构,但 ClO_2 中存在大 π 键(II_3 5)。 ClO_2 中Cl原子的轨道杂化方式 Sp^2 。

 ClO_2 为V形结构,存在大 π 键,则Cl原子的轨道杂化方式为 sp^2

1	2	3	4	5	6	7	8	9	10	
A	A	С	A	С	С	С	A	A	С	
11	12	13	14	15	16	17	18	19	20	
BC	A	D	D	D	A	В	В	D	D	
21. (1)	6C(或 14	C) (2) F>N:	>O>C	(3) F-	-НО- 、	0—н1	-【这里	医干讲	
的是两种	中不同分子	键的氢银	1							
(4) ABFG	(该分子)	9 N2H4]	(5	3d64s2	d				
22. (1) > (2) > (3) < (4) > (5) >										
23. (1)AD(2)Π ₃ ⁴										
24.EFH	DEIJE	【氮气中	有氦氦三	键,包含	一个σ键	两个π侧	1 A	【其他多	原子分	
子中, 着	尼杂化物	道的】	饱和	方向	C原子	半径较小	, c. o.	原子能充分	}接近,	
p—p 轨道"肩并肩"重叠程度较大,能形成较稳定的π键;而 Si 原子半径较大,Si、O 原子							O原子			
间距离较大,p—p 轨道"肩并肩"重叠程度较小【这句话是关键】,不能形成稳定的x键								πŧ键		
25.(1) 第	四周期第	VIB 族	1	↑ ↑ ↑	1 1 1	s				
 (2)23	(3) II	四面体	sp ³	8 [3	了两个 C	H键】				
(4) 乙硫酶	淳不能形.	戈分子间 9	《键,而为	k和乙醇均	的能,且才	比乙醇的	的氢键多			

1. 下列说法正确的是

A. 原子轨道与电子云都是用来形象描述电子运动状态的 B. 电子的运动状态可从能层、能级、轨道3个方面进行描述**自旋**四个方面

C. 气体单质中,一定有 σ 键,可能有 π 键 D. 1个乙烯分子中含有 4 个 σ 键,1 个 π 键

2. 下列有关共价键的成因说法错误的是

A. 若成键后两原子的原子核距离更近些, 体系的能量会更低

B. 成键原子的原子轨道在空间最大程度重叠

C. 共用电子在形成共价键的原子的核间区域出现的概率大

D. 形成化学键, 体系的能量降低

4. 下列关于σ键和π键的说法中, 错误的是

Α. 所有的σ键的强度都比π键大

B. σ键是原子轨道"头碰头"式重叠,π键是原子轨道"肩并肩"式重叠

C. s—sσ键与 s—pσ键的电子云形状的对称性的特征相同 **轴对称**

D. σ键可以绕键轴旋转,π键一定不能绕键轴旋转

≜能量/(kJ・mol-1)

图 2-1-5 氢分子形

成过程中体系能量的

变化

23. 己知: 多原子分子中, 若原子都在同一平面上且这些原子有相互平行的 p 轨道, 则 p 电子可在多个原子间运动,形成"离域 π 键"(或大 π 键)。大 π 键可用 Π_m^n 表示,其中m、n分别 代表参与形成大 π 键的原子个数和电子数,如苯分子中大 π 键表示为 Π_6^6 。

(1)下列微粒中存在"离域∏键"的是__

A. CH_2 =CH—CH= CH_2 B. CCl_4 C. H_2O D. SO₂

大π键判断:

- 不確判的:
 ①判断杂化类型【形成大π键的原子杂化方式得是sp或sp²,这样才有没有杂化的
 p轨道用于形成大π键:端位原子不用考虑杂化】
 ②判断是否存在相互平行的p轨道【相邻原子间需存在相互平行的p轨道才能形成大π键且原子得在同一平面内】
 ③判断用于形成大π键的p轨道中电子数目【根据σ键数判断】,写出大π键【π"™】

(2)C、Si 为同一主族的元素, CO₂和 SiO₂的化学式相似, 但结构和性质有很大不同。CO₂ 中 C 与 O 原子间形成σ键和π键, SiO2中 Si 与 O 原子间不能形成上述π键。从原子半径大小 的角度分析,为何 C、O 原子间能形成 π 键,而 Si、O 原子间不能形成上述 π 键?

C原子半径较小,C、O原子能充分接近,p—p轨道"肩并肩"重叠程度较大,能形成较稳定的π键;而Si原子半径较大,Si、O原子间距离较大,p—p轨道"肩并肩" **重叠程度较小【这句话是关键**】,不能形成稳定的π键

(2)NaN₃中阴离子 N_3^- 与 CO₂ 互为等电子体,均为直线型结构, N_3^- 中的 2 个大 π 键可表示为

等电子体的判断: ①原子数目相同; ②最外层电子总数相同(离子还需算上得 或失的电子数)

等电子体关系的物质结构相似

(3)用氢键表示式写出 W 的气态氢化物水溶液中不同种分子间存在的氢键 F—H...O-、O—H...F-

分子中,σ键的个数为

2025.04.01

键参数— 键能、键长与键角

1、键能 概念: 气态分子中1 mol化学键解离成气态原子所吸收的能量【平均值】。 通常是298.15 K、101 KPa条件下的标准值 单位: kJ·mol-1

应用: (1) <mark>判断共价键的稳定性</mark>: 原子间形成共价键时,原子轨道重叠程度越大,体 系能量降低越多,释放能量越多,形成共价键的键能越大,共价键越牢固。

- (2) 判断分子的稳定性:一般来说,结构相似的分子,共价键的键能越大, 分子越稳定。 例如分子的稳定性: HF>HCI>HBr>HI。
- (3) 利用键能计算反应热: △H=反应物的键能总和-生成物的键能总和。

测定方法:键能可通过实验测定,更多的却是推算获得的。

同种类型的共价键,键能大小为:单键<双键<三键

σ键键能一般大于π键,但有例外

8. 下列说法不正确的是

A. 稀有气体一般难于发生化学反应,是因为分子中键能较大 B. 已知石墨转化为金刚石要吸热,则等量的石墨与金刚石相比总键能大

- C. HF、HCl、HBr、HI 的热稳定性依次减弱,与共价键的键能大小有关
- D. 一般来说, 共价键的键能越大, 键长越短

<mark>19</mark> .	某学习小组	1探究原	子半径对[司种元素	形成化学	全键键能的]影响。	下表是某些	些化学键的	勺键能:

化学键	C-C	N-N	0-0	P-P	Cl-Cl	C = C	N = N	O = O	P = P
键能/kJ·mol ⁻¹	346	193	142	201	242	616	418	495	345

下列说法不正确的是

- A. 碳碳叁键键能小于1038kJ·mol⁻¹
- B. N、O 同种元素之间形成的 σ 键和 π 键的键能大小, σ 键小于 π 键
- C. P 与 P 形成的 σ 键的键能大于 π 键的键能,故白磷以 P_4 形式存在而不以 P_2 形式存在
- D. 若 $Cl_2(g)$ 相对能量为 0,则Cl(g)的相对能量为 $-121kJ \cdot mol^{-1}$

键参数——键能、键长与键角

2、键长 概念:构成化学键的两个原子的核间距叫做该化学键的键长。由于分子中的原 子始终处于不断振动之中,键长只是振动着的原子处于平衡位置时的核间距。

应用: (1) 判断共价键的稳定性: 键长是衡量共价键稳定性的另一个重要参数。键 长越短,往往键能越大,表明共价键越稳定。

(2) 判断分子的空间构型:键长是影响分子空间结构的因素之一

定性判断键长的方法

(1) 根据原子半径进行判断。

在其他条件相同时,成键原子的半径越小,键长越短。

(2) 根据共用电子对数判断。

相同的两原子形成共价键时,单键键长>双键键长>三键键长

F-F不符合"键长越短,键能越大"的规律,为什么?

某些共价键的键能和键长

键	健能 (kJ·mol·1)	健长 pm
F-F	157	141
Cl-Cl	242.7	198
Br-Br	193.7	228

类似的H2O2、N2H4 中的键能较低。

F原子半径很小,因此F-F的键长短,而由于键长短,两个F原子形成共 价键时,原子核之间的距离小,排斥力大,因此键能小。

键参数——键能、键长与键角

概念:在多原子分子中,两个相邻共价键之间的夹角称为键角。

意义:键角可反映分子的<mark>空间结构</mark>,是描述分子空间结构的重要参数,分子 的许多性质都与键角有关。

常见分子的键角及分子空间结构:

分子	键角	空间结构					
CO ₂	(O=C=O) 180°	直线形					
H ₂ O	(H-O) 105°	V形(或称角形)					
NH ₃	(N-H) 107°	三角锥形					
P ₄	(P-P) 60°	正四面体形					
CH ₄	(C-H) 109°28′	正四面体形					

测定方法:

键长和键角的数值可通过晶 体的X射线衍射实验获得

衡量共价键的稳定性 键参数 决定分子的性质 描述分子的空间结构。 的重要参数

相同类型的共价化合物分子,成键原子半径越小, 键长越短,键能越大,分子越稳定

考点一: 键能对分子稳定性的影响

【2023.01】 Si(NH₂)₄受热分解生成Si₃N₄和NH₃,其受热不稳定的原因是<u>▲</u>。
Si周围的NH₂基团体积较大,受热时斥力较强【Si(NH₂)₄中Si-N键能相对较小】;
产物中气态分子数显著增多(熵增)

聚四氟乙烯的化学稳定性高于聚乙烯,从化学键的角度解释原因

C-F 键的键能大于聚乙烯中 C-H 的键能, 键能越大, 化学性质越稳定

键	键长/pm [®]	键	键长/pm
С -F	141	С—Н	109
键	键能 (kJ·mol ⁻¹)	键	键能 (kJ·mol ⁻¹)
C— F	485.3	С—Н	413.4

思考:键能与键长、极性、电负性的关系?

②相同原子形成的键,键能与键的极性有关,而键的极性又与吸电子基或推电子基有关

X——M——N (M、N相同, X不同), 如O-H的极性

③相同原子形成的键,键能与成键原子孤电子对的排斥有关

H ₃ C-CH ₃	H ₂ N – NH ₂	НО-ОН
346	247	207

A-A 键的键能依次降低的原因是____。

C、N、O 中心原子上孤电子对数目越多,排斥作用越大,形成的化学键越不稳定,键能就越小。 (2分)

考点二: 键长的比较

- 1、成键原子半径,原子半径越小,键长越短
- 2、共价键类型:原子轨道的重叠,重叠程度越大,键长越短。
- 3、杂化轨道中s成分越多,键长越短

【2023山东卷】16. (2) CIO₂中心原子为CI, CI₂O中心原子为O, 二者均为V形结构,但CIO₂中存在大术键(II₃*)。比较 CIO₂与 CI₂O中 CI-O键的键长并说明原因解析:CIO₂分子中既存在σ键,又存在大规键,原子轨道重叠的程度较大,因此其中CI—O键的键长较小,而CI₂O只存在普通的σ键。

(2) 乙二酸 ($H_2C_2O_4$) 具有优良的还原性,易被氧化成 CO_2 。测得乙二酸中的 C-C 的键长比普通 C-C 的键长要长,说明理由_______。

(2) 两个碳原子与两个电负性很高的 O 原子成键,导致 C 原子上电荷密度下降,所以共价单键键长要长,结合力要弱。

考点三: 键角的大小比较

2、考虑孤电子对对成键电子对的排斥作用: NH₃(107°) H₂O(105°) 【其次考虑中心原子上的孤电子对的有无和多少】

3、考虑不同成體类型电子对之间的排斥作用: HCHO (∠HCO>∠HCH) 【再次考虑中心原子上多重键】 COCI, (∠CICO>∠CICCI)

4、考虑电负性对键角的影响: H₂O>H₂S>H₂Se NH₃>PH₃>AsH₃

【最后考虑中心原子或配 配位原子相同,中心原子电负性大,成键电子对偏向于中心原子, 位原子的电负性】 电子对之间的斥力大,键角大

PI₃>PBr₃>PCl₃>PF₃

中心原子相同,配位原子电负性小,成键电子对偏向于中心原子,

电子对之间的斥力大,键角大

影响共价化合物分子中键角大小的因素

1、分子中心原子的杂化方式对键角有决定影响 键角

分子空间结构 反映 (App. 3 对页后理论)

描述

^{反映} (价电子对互斥理论) 中心原子采用不同杂化方式时,其杂化轨道在空间处于不同的取向并尽可能远离。

比较共价化合物分子的键角,首先就应当想到利用中心原子的杂化方式来判断。例:比较 CCl_4 , BF_3 , CS_2 中键角的大小。 CCl_4 < BF_3 , CS_2

影响共价化合物分子中键角大小的因素

2、中心原子孤电子对数目对键角的影响。

判断两个分子中键角大小时,如果中心原子<mark>杂化方式一致</mark>,则<mark>考虑孤电子对数目的影响</mark>。

杂化方式 sp³ sp³ s 孤电子对数 0 1 H H

AYz中的z个价层电子对之间的斥力的大小有如下顺序:

l-l >> l-b > b-b (l为孤电子对对; b为键合电子对)

中心原子杂化方式相同,中心原子的孤电子对数越多,键角会变得越小。

影响共价化合物分子中键角大小的因素

3、单键与多重键对键角的影响不同。

当成键电子对中存在多重键时,由于多重键成键电子数目较多,导致多重键对单键成键电子对的排斥力要大一些,从而多重建与单键之间的角度大一些,单键与单键之间的键角小一些。成键电子对斥力大小可以定性表示如下:

t-t>t-d>d-d>d-s>s-s(t-三键, d-双键, s-单键)

例1:如图为甲醛分子结构式,试比较α与β的大小

在HCHO分子中,C原子为sp²杂化。虽然等性sp²杂化的键角是120°。但由于C原子与O原子间以双键C=O结合,该双键对C-H键的斥力要更大些。所以 α > β .

例2:比较SO2Cl2中各键角的大小。

SO₂Cl₂的VSEPR模型为正四面体,因S=O是双键,S-Cl是单键,

∠O-S-O >109° 28′> ∠O-S-Cl > ∠Cl-S-Cl

影响共价化合物分子中键角大小的因素

4、配原子电负性对键角的影响。

当中心原子种类相同(同一种原子)、杂化类型也相同,而配原子种类不同时,由于配原子的电负性不同,会使键角有区别。

因为当相邻的两个成键电子对更靠近中心原子时、相互间的斥力会增大。反之, 当相邻的两个成键电子对远离近中心原子时、相互间的斥力会变小。

当两成键电子对的排斥距离差不多相当(都为d时)时,成键电子对距中心原子核距离近(图1)会造成键角变大。而成键电子对距中心原子核距离远(图2)会造成键角变小。

影响共价化合物分子中键角大小的因素

例1:比较NH3和NF3键角的大小。

中心原子都是N原子、且都为sp³杂化,但因为F原子的电负性大于H原子, 使成键电子离N原子更远(相当于图2),两个N-F键间的斥力减小、可以 靠的更近,所以其键角更小。

分子

键角

 NH3
 NF3
 NHF2

 107°
 102.4°
 102.9°

 电负性大的配位原子数越多,成键电子对之间的排斥力越小,夹角会越小,夹角会越小,夹角会越小,

例3: 实测SO₂F₂中∠F-S-F=98°,而SO₂Cl₂∠Cl-S-Cl=102°,为什么?

影响共价化合物分子中键角大小的因素

5、中心原子电负性对键角的影响。

当中心原子种类不同(同主族),但杂化类型相同、且配原子种类相同时,中心原子的电负性大,成键电子对更靠近中心原子,成键电子对间的斥力要变大,键角要变大。反之,中心原子电负性小的分子,成键电子对要远离中心原子,成键电子对间的斥力要变小,键角要变小。

例1: 比较H2O和H2S中键角的大小。

例2:比较NH3和PH3中键角的大小。

分子	中心原子 杂化方式	空间结构	健角
H ₂ O	sp³	$\bigcup_{O}^{H} \bigcup_{H}$	104.5°
H ₂ S	sp³	$O^{S} O_{H}$	92.1°

N与P原子都采取了sp³杂化,都有1个孤电子对。但N原子的电负性大,成键电子对靠近中心原子,斥力较大,键角应该比PH₃中的键角大