

Input: \mathbf{W}^{h} , $\boldsymbol{\theta}^{\mathrm{BN}}$, $\mathbf{U}_{\mathbf{W}}$, $\mathbf{U}_{\boldsymbol{\theta}}$, (\mathbf{x}, \mathbf{y}) , m, η . Output: \mathbf{W}^{h} , $\boldsymbol{\theta}^{\mathrm{BN}}$, $\mathbf{U}_{\mathbf{W}}$, $\mathbf{U}_{\boldsymbol{\theta}}$.

1: $\mathbf{W}^{\mathbf{b}} \leftarrow \operatorname{Sign}(\mathbf{W}^{\mathbf{h}}) \triangleright \operatorname{Computing binary weights}$

2: $\hat{\mathbf{y}}$, cache \leftarrow Forward($\mathbf{x}, \mathbf{W}^{\mathbf{b}}, \boldsymbol{\theta}^{\mathrm{BN}}$) \triangleright Perform inference

3: $C \leftarrow \text{Cost}(\hat{\mathbf{y}}, \mathbf{y}) \triangleright \text{Compute mean loss over the batch}$

4: $(\partial_{\mathbf{W}}C, \partial_{\theta}C) \leftarrow \text{Backward}(C, \hat{\mathbf{y}}, \mathbf{W}^{\mathbf{b}}, \boldsymbol{\theta}^{\text{BN}}, \text{cache})$ $\triangleright \text{Cost gradients}$

5: $(\mathbf{U}_{\mathbf{W}}, \mathbf{U}_{\theta}) \in \mathrm{Adam}(\partial_{\mathbf{W}}C, \partial_{\theta}C, \mathbf{U}_{\mathbf{W}}, \mathbf{U}_{\theta})$

6: for Wh in Wh do

7: **if** $U_W \cdot W^b > 0$ **then** \triangleright If U_W prescribes to decrease| W^b | 8: $W^h \leftarrow W^h - \eta U_W \cdot f_{\text{meta}}(m, W^h)$ \triangleright Metaplastic update

9: else

10: $W^{h} \leftarrow W^{h} - \eta U_{W}$

11: end if

12: end for

13: $\theta^{\text{BN}} \in \theta^{\text{BN}} - \eta \mathbf{U}_{\theta}$

14: return Wh, θ^{BN} , U_w , U_θ