# Functional Programming and Scheme

CMPSC 461
Programming Language Concepts
Penn State University
Fall 2016

### Church Encoding

#### Natural numbers

n-fold composition

Church numerals:  $\underline{n} \triangleq \lambda f z . f^n z$ 

Note: n is the encoding of number n

## Church Encoding

#### Natural numbers

$$\underline{n} \triangleq \lambda f z. f^n z$$

Encoding of "+ 1"?

Goal: SUCC  $\underline{n} = \lambda f z \cdot f^{n+1} z$ 

Definition SUCC  $\triangleq \lambda n f z$ . (f(n f z))

## Church Encoding

#### Natural numbers

$$\underline{n} \triangleq \lambda f z. f^n z$$

Encoding of "+"?

Goal: PLUS  $\underline{n_1} \underline{n_2} = \lambda f z . f^{n_1 + n_2} z$ 

Definition PLUS  $\triangleq \lambda n_1 n_2$ .  $(n_1 \, \text{SUCC} \, n_2)$ 

Encoding of "x"? (Check solution in Note 2)

# Church Encoding: Example

#### Natural numbers

$$\underline{n} \triangleq \lambda f z. f^n z$$

Definition PLUS  $\triangleq \lambda n_1 n_2 \cdot (n_1 \text{ SUCC } n_2)$ 

Check that PLUS  $\underline{1} \ \underline{2} = \underline{3}$  (Note 2)

#### Named Functions

Use definition SUCC  $\triangleq \lambda n f z$ . (f(n f z)) in term (SUCC (SUCC  $\underline{1}$ ))?

Syntax: let (name def) body (or, let name = def in body) E.g., let SUCC  $(\lambda n f z. (f (n f z)))$  (SUCC (SUCC  $\underline{1}$  ))

**let** (name def) body is just a shorthand for (λname. body) def

### Pure vs. Applied λ-Calculus

Pure λ-Calculus: the calculus discussed so far

#### Applied λ-Calculus:

- Built-in values and data structures
   (e.g., 1, 2, 3, true, false, (1 2 3))
- Built-in functions
   (e.g., +, \*, /, and, or)
- Named functions
- Recursion

All features can be encoded in the pure λ-Calculus!

### Functional Languages

