Stærðfræðimynstur í tölvunarfræði

Vika 2

Sannanir, röksemdafærslur og röksemdafærslureglur

- Gildar röksemdafærslur
- Reglur fyrir yrðingareikning
- Reglur fyrir magnara
- Hvernig við notum reglurnar

Sókrates dæmið aftur

- Tvær forsendur
 - "Allir menn eru dauðlegir"
 - "Sókrates er maður"
- Afleiðingin
 - "Sókrates er dauðlegur"
- Hvernig drögum við þessa ályktun?

Röksemdafærslan

Forsendurnar tvær fyrir ofan strikið, afleiðingin fyrir neðan:

```
\forall x (Maður(x) \rightarrow Dauðlegur(s))
Maður(Sókrates)
\therefore Dauðlegur(Sókrates)
```

- ▶ Við munum sjá að þetta er gild röksemdafærsla
- ► Einnig má skrifa $\forall x (Maður(x) \rightarrow Dauðlegur(s)), Maður(Sókrates) \vdash Dauðlegur(Sókrates)$

Gildar röksemdafærslur

- Reglur fyrir yrðingareikning
- Viðbótarreglur fyrir umsagnareikning

Röksemdafærsluskref í yrðingareikningi

- Röksemdafærsluskrefið er runa yrðinga
- Allar nema síðasta yrðingin eru kallaðar forsendur
- Síðasta yrðingin er niðurstaðan
- Ef forsendurnar eru p_1, p_2, \dots, p_n og niðurstaðan q er fengin með gildri röksemdafærslureglu þá er $p_1 \wedge p_2 \wedge \dots \wedge p_n \to q$ sísanna
- Röksemdafærslureglurnar eru einfaldar reglur sem nota má til að smíða flóknar röksemdafærslur

Regla: Modus Ponens

$$\frac{p}{p}$$

$$\therefore q$$

$$\left(p \land (p \to q)\right) \to q$$

$$p \to q, p \vdash q$$

Dæmi:

Látum p tákna "það snjóar" Látum q tákna "ég mun læra mynstur" "Ef það snjóar mun ég læra mynstur" "Það snjóar"

"Ég mun því læra mynstur"

Regla: Modus Tollens

$$p \to q$$

$$\frac{\neg q}{\therefore \neg p}$$

$$(\neg q \land (p \to q)) \to \neg p$$

$$p \rightarrow q, \neg q \vdash \neg p$$

Dæmi:

Látum p tákna "það snjóar" Látum q tákna "ég mun læra mynstur" "Ef það snjóar mun ég læra mynstur" "Ég mun ekki læra mynstur"

"Það snjóar því ekki"

Regla: Skilyrt afleiðing (hypothetical syllogism)

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
\therefore p \to r
\end{array}$$

$$(p \to q) \land (q \to r)$$

 $\to (p \to r)$

$$p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$$

Dæmi:

Látum p tákna "það snjóar" Látum q tákna "ég mun læra mynstur" Látum r tákna "ég fæ tíu"

"Ef það snjóar mun ég læra mynstur" "Ef ég læri mynstur fæ ég tíu"

"Þarmeð fæ ég tíu ef það snjóar"

Regla: Eð-uð afleiðing (disjunctive syllogism)

$$\frac{p \lor q}{\neg p}$$

$$\therefore q$$

$$\left(\neg p \land (p \lor q)\right) \rightarrow q$$

$$p \lor q, \neg p \vdash q$$

Dæmi:

Látum p tákna "ég mun læra mynstur" Látum q tákna "Ég mun læra íslensku" "Ég mun læra mynstur eða íslensku" "Ég mun ekki læra íslensku"

"Ég mun því læra mynstur"

Regla: Viðbót (Addition)

$$\frac{p}{\therefore p \vee q}$$

$$p \to p \vee q$$

$$p \vdash p \lor q$$

Dæmi:

Látum p tákna "Ég mun læra mynstur" Látum q tákna "Ég mun læra íslensku" "Ég mun læra mynstur"

"Ég mun því læra mynstur eða íslensku"

Regla: Einföldun (Simplification)

$$\frac{p \wedge q}{\therefore q}$$

$$p \land q \rightarrow q$$

$$p \land q \vdash q$$

Dæmi:

Látum p tákna "Ég mun læra mynstur" Látum q tákna "Ég mun læra íslensku" "Ég mun læra íslensku og mynstur"

"Ég mun því læra mynstur"

Regla: Og-un (conjunction)

$$\frac{p}{q}$$

$$\therefore p \land q$$

$$p \land q \rightarrow p \land q$$

$$p, q \vdash p \land q$$

Dæmi:

Látum p tákna "Ég mun læra mynstur" Látum q tákna "Ég mun læra íslensku" "Ég mun læra íslensku" "Ég mun læra mynstur"

"Ég mun því læra íslensku og mynstur"

Regla: Rökstytting (resolution)

$$(\neg p \lor r) \land (p \lor q)$$

$$\rightarrow q \lor r$$

$$\neg p \lor r, p \lor q \vdash q \land r$$

Dæmi:

Látum p tákna "Ég mun læra mynstur" Látum q tákna "Ég mun læra íslensku" Látum r tákna "Ég mun læra ensku"

"Ég mun ekki læra mynstur eða læra ensku"

"Ég mun læra mynstur eða íslensku"

"Ég mun því læra íslensku eða ensku"

Notkun reglnanna til að byggja gildar sannanir

- Gild sönnun er runa fullyrðinga. Sérhver fullyrðing er annaðhvort forsenda eða afleiðing fyrri fullyrðinga með gildri röksemdafærslureglu. Síðasta fullyrðingin er niðurstaðan.
- Gild sönnun lítur svona út:

 S_1 S_2 .
.
. S_n

Dæmi

- Forsenda: $p \land (p \rightarrow q)$
- Viljum sanna: q
- Sönnun:
 - 1. $p \land (p \rightarrow q)$
 - 2. x
 - $p \rightarrow q$
 - **4**. *q*

Forsenda

Einföldun (simplification) á (1)

Einföldun (simplification) á (1)

Modus Ponens á (2) og (3)

Meðhöndlun magnara

- l umsagnareikningi getum við notað allar reglurnar úr yrðingareikningi
- Reglur fyrir magnaðar fullyrðingar bætast við

Regla: Tilvistarsmíð úr almögnun

$$\frac{\forall x : P(x)}{\therefore P(c)}$$

- Gildið c má vera hvaða gildi sem er í óðalinu. Þar eð öll gildi í óðalinu uppfylla umsögnina P mun c gera það líka.
- Athugið að forsenda er að óðalið sé ekki tómt því annars verður ekki hægt að velja neitt c.

Regla: Alvist úr frjálsri umsögn

$$\frac{P(c)}{\therefore \forall x \colon P(x)}$$

Gildið c verður að vera frjálst gildi úr óðalinu sem ekki er háð neinum takmörkunum. Þessi regla er viðkvæm í notkun, þið þurfið að skilja vel hvað "frjálst gildi" þýðir.

Regla: Tilvistarsmíð úr tilvistarmögnun

$$\frac{\exists x : P(x)}{\therefore P(c)}$$

▶ Gildið c er eitt gildanna í óðalinu sem uppfylla umsögnina, sem við veljum og gefum nafn til að geta vísað í það. Þar eð til er gildi í óðalinu sem uppfyllir umsögnina P er þetta mögulegt, en ekki fyrir hvaða gildi sem er.

Regla: Tilvistaralhæfing

$$\frac{P(c)}{\therefore \exists x \colon P(x)}$$

▶ Gildið c er gildi í óðalinu sem vitað er að uppfyllir umsögnina. Fyrst svo er getum við dregið þá ályktun að til sé gildi í óðalinu sem uppfyllir umsögnina.

Aftur til Sókratesar

 $\forall x: (Ma\eth ur(x) \rightarrow Dau\eth legur(x))$ $\underline{Ma\eth ur(S\acute{o}krates)}$ $\therefore Dau\eth legur(S\acute{o}krates)$

Lausn

- 1. $\forall x : (Ma \eth ur(x) \rightarrow Dau \eth legur(x))$
- 2. $Maður(Sókrates) \rightarrow Dauðlegur(Sókrates)$
- 3. Maður(Sókrates)
- 4. Dauðlegur(Sókrates)

Forsenda

Tilvistarsmíð úr almögnun frá (1)

Forsenda

Modus Ponens frá (2) og (3)

Grunnmynstur: Mengi, föll, runur, summur og fylki

- Mengi, mengjaaðgerðir, mengjajöfnur
- Föll, aðgerðir á föll, reiknanleiki
- Runur og summur, gerðir runa, summujöfnur
- Stærðir mengja, teljanleiki
- Fylki og fylkjareikningur

Mengi

- Skilgreining mengjahugtaksins
- Lýsingar mengja
 - Upptalning (roster method)
 - ► Ritháttur mengjasmíðar (set-builder notation, set comprehension)
- Nokkur mikilvæg mengi
- Tóma mengið og almengið (universal set)
- Undirmengi (subset) og jöfn mengi
- Fjöldatala (cardinality) mengja
- Eindir (tuples)
- Krossmarfeldi (cartesian product)

Mengi

- Mengi er óraðað safn hluta, gilda
 - Nemendurnir í þessi námskeiði
 - Stólarnir í þessum sal
- ► Gildin í menginu eru kölluð *stök* (elements) mengisins, mengið *inniheldur* (contains) sín stök
- ightharpoonup Rithátturinn $a \in A$ þýðir að a er stak í menginu A.
- ▶ Ef a er ekki stak í A skrifum við $a \notin A$.

Lýsingar mengja: Upptalningarritháttur

- \triangleright $S = \{a, b, c, d\}$
- Röð staka skiptir ekki máli
 - \triangleright $S = \{a, b, c, d\} = \{b, c, a, d\}$
- Endurtekningar skipta ekki máli (forðist samt óþarfa endurtekningar)
 - \triangleright $S = \{a, b, c, d\} = \{a, b, d, c, a, d\}$
- Þegar mynstrið er skýrt má nota þrípunkt (elipses) til að sýna sleppt sé að telja sum stök upp
 - $S = \{1, 2, ..., 10\}$

Upptalning

- Mengi sérhljóða í íslenska stafrófinu
 - $V = \{a, e, i, o, u, y\}$
- Mengi jákvæðra oddatalna minni en 10
 - $O = \{1,3,5,7,9\}$
- Mengi jákvæðra heiltalna minni en 100
 - $S = \{1, 2, 4, ..., 99\}$
- ► Mengi heiltalna minni en 0
 - $S = \{..., -3, -2, -1\}$

Nokkur mikilvæg mengi

- ightharpoonup
 vert = náttúrlegar tölur = {0,1,2,3, ...}
- $ightharpoonup \mathbb{Z} = \text{heilt\"olur} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $ightharpoonup \mathbb{Z}^+ = jákvæðar heiltölur = {1,2,3, ...}$
- $ightharpoonup \mathbb{R}$ = rauntölur (stundum \Re)
- $ightharpoonup \mathbb{R}^+$ = jákvæðar rauntölur
- ▶ C = tvinntölur
- ▶ ℚ = ræðar tölur

Mengjasmíð - ritháttur (set-builder, set comprehension)

- Tiltökum þá eiginleika sem öll stök þurfa að uppfylla
 - \triangleright $S = \{x \mid x \text{ er } j \text{á} k v \text{æ} \text{ð } h \text{eiltala } m \text{inni } \text{en } 100\}$
 - \triangleright 0 = {x | x er jákvæð oddatala minni en 10}
 - \triangleright $0 = \{x \in \mathbb{Z}^+ \mid x \text{ er oddatala og } x < 10\}$
 - \triangleright 0 = {x | x \in \mathbb{Z}^+, x er oddatala, x < 10}
- Nota má umsögn

 - \triangleright $S = \{x \mid Primtala(x)\}$
- Jákvæðar ræðar tölur

Bilarithættir

- $[a,b] = \{x \mid a \le x \le b\}$
- \blacktriangleright $[a,b) = [a,b[= \{x \mid a \le x < b\}]$
- \triangleright $(a,b] = |a,b| = {x | a < x \le b}$
- $(a,b) =]a,b[= \{x \mid a < x < b\}]$

Lokað bil [a, b]Opið bil (a, b),]a, b[

Almengi og tómamengið, tóma mengið

- ightharpoonup Almengið U inniheldur allt sem er til umræðu.
 - Stundum sjálfgefið, út frá samhengi
 - ► Stundum sérstaklega tekið fram
- Tómamengið er mengið sem inniheldur ekkert stak. Táknað Ø eða jafnvel { }
- Venn rit:

 $A \cup B$ is shaded.

FIGURE 1 Venn Diagram of the Union of A and B.

 $A \cap B$ is shaded.

FIGURE 2 Venn Diagram of the Intersection of A and B.

A - B is shaded.

FIGURE 3 Venn Diagram for the Difference of A and B.

 \overline{A} is shaded.

FIGURE 4 Venn Diagram for the Complement of the Set A.

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

FIGURE 5 The Union and Intersection of A, B, and C.

Mótsögn Russells

- Mótsögn Russells: Látum S vera mengi þeirra mengja sem ekki eru stök í sjálfu sér
- Er S stak í sjálfu sér?
 - ► Ef svo er þá er ekki svo
 - ► Ef svo er ekki þá er svo
- Skyld mótsögn: Jón er rakari sem rakar alla þá sem ekki raka sig sjálfa, og rakar engan annan. Rakar Jón sjálfan sig?
- ► Fleiri:
 - Setningin að neðan er sönn
 - Setningin að ofan er ósönn
- Hvað er sameiginlegt öllum þessum?
 - Hringvísanir

Mikilvægt að skilja

- Mengi geta innihaldið mengi
 - $\{\{1,2,3\}, a, \{b,c\}\}$
 - \blacktriangleright {N, Z, Z⁺, \mathbb{R} }
- ► Tómamengið er ekki sama og mengið sem inniheldur tómamengið
 - $\blacktriangleright \ \{\} = \emptyset \neq \{\emptyset\}$
- Hvað sem er gildir fyrir öll stök tómamengisins
 - $\forall x \in \emptyset$: P(x) fyrir hvaða P sem er
 - $\forall x \in \emptyset : x \neq x$
 - $\forall x \in \emptyset: 1 = 2$

Jöfn mengi

- Skilgreining: Tvö mengi eru jöfn þá og því aðeins að þau hafi sömu stök.
- ▶ Þar með, ef A og B eru mengi þá eru A og B jöfn þá og því aðeins að

$$\forall x : (x \in A \leftrightarrow x \in B)$$
$$(\forall x \in A : x \in B) \land (\forall x \in B : x \in A)$$

- ightharpoonup Við skrifum <math>A = B ef A og B eru jöfn mengi.

Hlutmengi

- Skilgreining: Mengi A er hlutmengi mengis B þá og því aðeins að sérhvert stak í A er einnig stak í B.
 - ▶ Rithátturinn $A \subseteq B$ er notaður til að tákna að A sé hlutmengi B.
 - ► $A \subseteq B$ gildir þá og því aðeins að $\forall x : (x \in A \rightarrow x \in B)$ sé satt.
 - ▶ Vegna þess að $a \in \emptyset$ er ávallt ósatt, gildir $\emptyset \subseteq S$ fyrir öll mengi S
 - ▶ Vegna þess að $a \in S \rightarrow a \in S$, gildir $S \subseteq S$ fyrir öll mengi S

Hvernig ákvörðum við hvort eitt mengi er hlutmengi annars?

- Sýnum að A er hlutmengi B með því að sanna að ef $x \in A$ þá er $x \in B$
- Sýnum að A er ekki hlutmengi B með því að finna eitthvert stak $x \in A$ þannig að $x \notin B$. Slíkt x er **mótdæmi** fyrir staðhæfinguna að $A \subseteq B$
 - Dæmi
 - Mengi allra tölvunarfræðinema við Háskóla Íslands er hlutmengi mengis allra nema við Háskóla Íslands
 - ▶ Mengið $\{x \in \mathbb{Z} \mid x^2 < 100\}$ er ekki hlutmengi \mathbb{Z}^+

Meira um jöfn mengi

ightharpoonup Munið að tvö mengi A og B eru jöfn, A=B, þþaa

$$\forall x (x \in A \leftrightarrow x \in B)$$

ightharpoonup Samkvæmt rökfræðinni fáum við að A=B þþaa

$$\forall x \colon [(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

$$\forall x : (x \in A \rightarrow x \in B) \land \forall x : (x \in B \rightarrow x \in A)$$

Sem er jafngilt

$$A \subseteq B \text{ og } B \subseteq A$$

Eiginleg hlutmengi (proper subset)

- Skilgreining: Ef $A \subseteq B$, en $A \neq B$, þá segjum við að A sé eiginlegt hlutmengi B og skrifum $A \subset B$
- ► $A \subset B$ er satt þþaa $\forall x : (x \in A \to x \in B) \land \exists x : (x \in B \land x \notin A)$
- Venn mynd

Fjöldatölur mengja

- ▶ Ef mengi S inniheldur nákvæmlega n stök þar sem n er ekki-neikvæð heiltala þá segjum við að S sé endanlegt mengi. Annars er S óendanlegt
- Skilgreining: Földatala endanlegs mengis S, táknað |S| er fjöldi (mismunandi) staka í menginu.
- Dæmi
 - $|\emptyset| = 0$
 - Ef S er stafirnir í íslenska stafrófinu þá er |S| = 36
 - $|\{1,2,3\}| = 3$
 - $|\{\emptyset\}| = 1$
 - Mengi heiltalnanna er óendanlegt

Veldismengi

- Skilgreining: Ef S er mengi þá er mengi allra hlutmengja S kallað **veldismengi** S, táknað $\mathbb{P}(S)$
- Dæmi
 - ► Ef $A = \{a, b\}$ þá er $\mathbb{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- Ef mengi S hefur n stök þá hefur veldismengið $\mathbb{P}(S)$ fjöldatöluna 2^n
 - Rætt betur í kafla 5 og 6

Eindir

- ► Eindin (eða n-eindin) $(a_1, a_2, ..., a_n)$ er runa (ordered collection) n gilda sem hefur a_1 sem fyrsta gildi, a_2 sem annað gildi, og svo framvegis til a_n sem er síðasta gildið
- Tvær eindir eru jafnar þþaa samsvarandi gildi í þeim eru jöfn
- 2-eindir eru kallaðar pör (ordered pairs)
- > 3-eindir eru kallaðar þrenndir (triple)
- ightharpoonup Pörin (a,b) og (c,d) eru jöfn þþaa a=c og b=d

Krossmargfeldi

Skilgreining: Ef A og B eru mengi þá er **krossmargfeldi** þeirra, $A \times B$ mengi para þar sem fyrra gildið er úr A og seinna úr B $A \times B = \{(a,b) | a \in A, b \in B\}$

- ▶ Dæmi
 - $A = \{a, b\}, B = \{1, 2, 3\}, A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Skilgreining: Hlutmengi $R \subseteq A \times B$ í krossmargfeldi A og B kallast **vensl** frá A til B (meira um vensl í kafla 9)

Krossmargfeldi

- Skilgreining: Krossmargfeldi mengjanna $A_1, A_2, ..., A_n$, táknað $A_1 \times A_2 \times \cdots \times A_n$ er mengi þeirra einda $(a_1, a_2, ..., a_n)$ þar sem $a_i \in A_i$ fyrir i = 1, ..., n $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ fyrir } i = 1, ..., n\}$
- Dæmi
 - ► Hvað er $A \times B \times C$ þar sem $A = \{0,1\}, B = \{1,2\}$ og $C = \{0,1,2\}$?
 - ► Svar: $A \times B \times C =$ {(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}

Mengjaaðgerðir

- Sammengi (union)
- Sniðmengi (intersection)
- Fyllimengi (complement)
- Mismunur (difference)
- ► Meira um fjöldatölur
- ► Jöfnur um mengi
- Sönnun mengjajafna
- ► Stakatöflur mengja

Boolsk algebra

- Yrðingareikningur og mengjafræði eru hvort tveggja dæmi um algebrukerfi sem kölluð eru boolskar algebrur. Meira í kafla 12
- Aðgerðir mengjafræðinnar hafa beina hliðstæðu í aðgerðum yrðingareiknings
- Forsenda er að til sé **almengi** U. Öll önnur mengi verða að vera **undirmengi almengisins**.

Sammengi (union)

- Skilgreining: A og B séu mengi. Sammengi A og B, táknað $A \cup B$, er mengið $A \cup B = \{x | x \in A \lor x \in B\}$
- Dæmi: Hvað er {1,2,3} ∪ {3,4,5} ?
 - > Svar: {1,2,3,4,5}

Sniðmengi (intersection)

- Skilgreining: A og B séu mengi. Sniðmengi A og B, táknað $A \cap B$, er mengið $A \cap B = \{x | x \in A \land x \in B\}$
- Ef sniðmengið er tómt þá eru mengin sögð vera sundurlæg
- ▶ Dæmi: Hvað er $\{1,2,3\} \cap \{3,4,5\}$?
 - ► Svar: {3}
- Dæmi: Hvað er {1,2,3} ∩ {4,5,6} ?
 - ► Svar: Ø

Fyllimengi (complement)

Skilgreining: Ef A er mengi og U er almengið þá er fyllimengi A, táknað \bar{A} , mengið $\bar{A} = \{x | x \in U, x \notin A\}$

Mengjamismunur (difference)

Skilgreining: A og B séu mengi. Mengjamismunur A og B, táknað A - B (stundum táknað $A \setminus B$), er mengið

$$A - B = \{x | x \in A \land x \notin B\}$$

Fjöldatala sammengis

- Setning: Ef A og B eru endanleg mengi þá er $|A \cup B| = |A| + |B| |A \cap B|$
- ightharpoonup Ástæða: $A \cup B$ má skrifa sem sammengi sundurlægra mengja

$$A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$$

► Tökum síðan eftir að

$$A = (A - B) \cup (A \cap B)$$

$$B = (B - A) \cup (A \cap B)$$

Framhaldið er vonandi augljóst

Mengjajöfnur

Hlutleysur (identity)

$$A \cup \emptyset = A$$
$$A \cap U = A$$

Drottnun (domination)

$$A \cup U = U$$
$$A \cap \emptyset = \emptyset$$

Samsemd (idempotence)

$$A \cup A = A$$
$$A \cap A = A$$

Fyllimengi fyllimengis (complementation)

$$\overline{(\bar{A})} = A$$

Mengjajöfnur

Víxlregla (commutative)

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

► Tengiregla (associative)

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Dreifiregla (distributive)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup C) \cap (A \cup C)$

Mengjajöfnur

▶ De Morgan

$$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \overline{A} \cap \overline{B}$$

► Gleypiregla (absorbtion)

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Fylliregla (complementation)

$$A \cup \bar{A} = U$$
$$A \cap \bar{A} = \emptyset$$

Sönnun mengjajafna

- Ýmsar aðferðir
- 1. Sanna að hvort mengi (vinsti og hægri hlið jöfnu) er hlutmengi hins mengisins
- 2. Nota mengjasmíðarithátt og yrðingareikning
- 3. Nota stakatöflur mengja: Staðfesta að stök í sömu mengjasamsetningu eru annaðhvort alltaf stök í eða ekki stök í sömu hlið jöfnunnar. Notið 1 til að tákna tilvist í menginu, 0 til að tákna ekki tilvist

Sönnum seinni De Morgan reglu

- ▶ Dæmi: Viljum sanna að $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- Lausn: Sönnum þetta með því að sýna að
 - 1. $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$
 - $\underline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

Sönnum fyrst $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$

1.
$$x \in \overline{A \cap B}$$

2.
$$x \notin A \cap B$$

3.
$$\neg((x \in A) \land (x \in B))$$

4.
$$\neg(x \in A) \lor \neg(x \in B)$$

5.
$$x \notin A \lor x \notin B$$

6.
$$x \in \bar{A} \lor x \in \bar{B}$$

7.
$$x \in \bar{A} \cup \bar{B}$$

Samkvæmt forsendu

Skilgreining fyllimengis

Skilgreining sniðmengis

De Morgan fyrir yrðingar

Skilgreining neitunar

Skilgreining fyllimengis

Skilgreining sammengis

Sönnum síðan $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

1.
$$x \in \bar{A} \cup \bar{B}$$

2.
$$x \in \bar{A} \lor x \in \bar{B}$$

3.
$$x \notin A \lor x \notin B$$

4.
$$\neg(x \in A) \lor \neg(x \in B)$$

5.
$$\neg((x \in A) \land (x \in B))$$

6.
$$\neg(x \in A \cap B)$$

7.
$$x \in \overline{A \cap B}$$

Samkvæmt forsendu

Skilgreining sammengis

Skilgreining fyllimengis

Skilgreining ∉

De Morgans fyrir yrðingar

Skilgreining sniðmengis

Skilgreining fyllimengis

Sönnun með mengjasmíðarithætti

$$\overline{A \cap B} = \{x | x \notin A \cap B\}
= \{x | \neg (x \in A \cap B)\}
= \{x | \neg (x \in A \land x \in B)\}
= \{x | \neg (x \in A) \lor \neg (x \in B)\}
= \{x | x \notin A \lor x \notin B\}
= \{x | x \in \overline{A} \lor x \in \overline{B}\}
= \{x | x \in \overline{A} \cup \overline{B}\}
= \overline{A} \cup \overline{B}$$

Skilgreining fyllimengis

Skilgreining ∉

Skilgreining sniðmengis

De Morgan fyrir yrðingar

Skilgreining ∉

Skilgreining fyllimengis

Skilgreining sammengis

Vegna merkingar ritháttar

Stakatafla

Sýnum að $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Lausn:

A	В	С	$B \cap C$	$A \cup (B \cap C)$	$A \cup B$	<i>A</i> ∪ <i>C</i>	$(A \cup B) \cap (A \cup C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Almennari útgáfur mengjaaðgerða

Skilgreining: Látum A_1, A_2, \dots, A_n vera endanlega upptalningu á mengjum. Skilgreinum

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

Skilgreinum

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

Þetta er vel skilgreint því sammengi og sniðmengi eru tengnar aðgerðir

Föll

- Skilgreining falls
 - Formengi (domain), bakmengi (codomain), myndmengi (image)
- Eintækt (injective, one-to-one)
- Átækt (surjective, onto)
- ► Gagntækt (bijective, one-to-one and onto)
- Samsetning falla
- ► Gröf falla
- ► Hlutskilgreind föll (partial function)

Dæmi um fall

Önnur framsetning

	Einkunn							
Nemandi	fall	5	6	7	8	9	10	
Nonni Jóns							Х	
Siggi Sig						X		
Gunna Gunn						X		
Magga Magg							х	

Enn önnur framsetning

	Nemandi						
Einkunn	Nonni Jóns	Siggi Sig	Gunna Gunn	Magga Magg			
10	X			X			
9		х	X				
8							

Skilgreining falls

Ef A og B eru ekki-tóm mengi þá er fall f frá A til B, skrifað $f:A \rightarrow B$, hlutmengi í $A \times B$ þannig að gildir:

Fyrir sérhvert $x \in A$ er til eitt og aðeins eitt $y \in B$ þannig að $(x, y) \in f$. Í stað þess að skrifa $(x, y) \in f$ skrifum við oftast f(x) = y. Við segjum að y sé fallsgildi x.

Föll

Gefið fall $f: A \rightarrow B$

- Við segjum að f varpi A í B eða f er fall (eð vörpun) frá A til B
- ► A kallast formengi f
- ▶ B kallast bakmengi f
- $\blacktriangleright \mathsf{Ef} f(a) = b,$
 - þá kallast b ímynd (eða fallsgildi, image) a samkvæmt f
 - ▶ b kallast formynd (preimage) b
- Varpmengi f er mengi ímynda staka í A samkvæmt f. Við táknum varðmengið með F(A)
- ► Tvö föll eru jöfn þegar þau hafa sama formengi, sama bakmengi og varpa sérhverju staki formengisins í sama stak bakmengisins