Predicting Congestive Heart Failure

Brandon Ryu, Douglas Hilton, Stephen Kita

Why Healthcare Analytics

- Common interest in helping patients
- Career Opportunities
 - \$11.5 Billion market in 2019
 - \$40.8 Billion market projected in 2025
 - Compound Annual Growth Rate: 23.55%
 - Growing opportunities for data scientists
- Meaningful Use
 - Increase in volume
 - Increase in interoperability

Why Congestive Heart Failure?

Prevalence

- 6.2 Million adults in US
 - 10% of patient population
- 13.4% of deaths in 2018 mentioned heart failure
- \$30.7 Billion to treat CHF in 2012

Survival Rate

- ~50% 5 year survival rate
- 5 year survival rates per stage (2007 study, 2000 subjects)
 - Stage A: 97%
 - Stage B: 95.7%
 - Stage C: 74.6%
 - Stage D: 20%

Difficulty

- Hard to clearly diagnose with few labs
 - Acute Kidney Failure: diagnosed with few labs
- Gold Standard: Electrocardiogram (EKG)

Data Source

MIMIC IV v0.4	Tables	Rows
- Medical Information M Intensive Care (MIMIC)	Used 6 01 34 total tables	260,000 total patients200,000 adult patients
 Beth Israel Deaconess Medical Center (Bostor Intensive Care Unit (ICL Emergency Departmen 	J) and - Diagnoses (adm_id, diag_id) - Labevents (adm_id, lab_id) - Chartevents (adm_id, event id)	530,000 hospitaladmissions460,000 adult admissions
patients from 2008~20 - Ethics course requirem	 Dictionaries (lab_id, event_id, diag_ 	id) - 500,000,000 events

Data Processing

Aggregate

- First hospital admission with CHF diagnosis for patients with CHF
- Random hospital admission for patients without CHF
- Loss due to age
- Loss due to lack of labs

Full Data vs Current, Future Samples

- Positive Diagnosis
 - 10.7% vs 11.4%, 11.9%
- Patients
 - 257.4k vs 11.5k, 8k

Feature Engineering

- Labs Events
 - > 120m records
 - 1625 different tests
 - Lots of missingness
- Grab most relevant labs
 - 20 most common
 - 5 known to be related
- Aggregate
 - Min
 - Mean
 - Max
 - Abnormal %
 - Above Max
 - Below Min
- 150 Total Lab Event Features

	itemid	label	fluid	category	loinc_code
115	50868	Anion Gap	Blood	Chemistry	1863-0
212	50882	Bicarbonate	Blood	Chemistry	1963-8
222	51464	Bilirubin	Urine	Hematology	5770-3
282	50893	Calcium, Total	Blood	Chemistry	2000-8
442	50902	Chloride	Blood	Chemistry	2075-0
511	50911	Creatine Kinase, MB Isoenzyme	Blood	Chemistry	6773-6
512	50912	Creatinine	Blood	Chemistry	2160-0
634	50920	Estimated GFR (MDRD equation)	Blood	Chemistry	NaN
723	50931	Glucose	Blood	Chemistry	6777-7
761	51221	Hematocrit	Blood	Hematology	4544-3
771	51222	Hemoglobin	Blood	Hematology	718-7
1008	50960	Magnesium	Blood	Chemistry	2601-3
1013	51248	MCH	Blood	Hematology	785-6
1014	51249	MCHC	Blood	Hematology	786-4
1016	51250	MCV	Blood	Hematology	787-2
1189	50970	Phosphate	Blood	Chemistry	2777-1
1211	51265	Platelet Count	Blood	Hematology	777-3
1233	50971	Potassium	Blood	Chemistry	2823-3
1279	51274	PT	Blood	Hematology	5902-2
1307	51277	RDW	Blood	Hematology	788-0
1312	51279	Red Blood Cells	Blood	Hematology	789-8
1373	50983	Sodium	Blood	Chemistry	2951-2
1494	51003	Troponin T	Blood	Chemistry	6598-7
1506	51006	Urea Nitrogen	Blood	Chemistry	3094-0
1598	51301	White Blood Cells	Blood	Hematology	804-5

Feature Engineering

Additional Features

- Comorbidities
- Time in Emergency Department
- Age
- Gender
- Ethnicity
- Insurance
- Lots of data cleaning
 - Text parsing
 - Bad data entry
 - Differing mapping systems
- Standardize the data
- Check for multicollinearity
 - 173 total features
 - Variance Inflation Factor checks
 - Reduce features to 110-120 depending on the sample

Imputation Methods/Missing Data

- Data is Missing At Random
 - The reason the lab data is missing is because doctors don't need it
 - They either assume it's normal or they can infer based on other lab results
- Normal value imputation
 - Generate 50 normally distributed values around the middle of the normal range
 - Gives a very small chance of an abnormal value
- KNN imputation
 - sqrt(N) Nearest Neighbors
 - More likely to return abnormal values

Feature Selection

- Principal Component Analysis
 - Reduced feature set from 110 to 35
 - Harder to interpret
 - No better than other models

- Recursive Feature Elimination
 - Reduced feature set from 110 to 36, 60, 101
 - Made model less complex, for the most part

Final Samples for Models

Current Predictions

- 11.5k Patients (1.3k Positive Diagnosis)
- Logistic: 36 Features
- Random Forest: 101 Features
- XGBoost: 60 Features

Gender Based Models

- Male
 - 8.6k Patients (1.4k Positive Diagnosis)
 - Logistic: 63 Features
- Female
 - 8.7k Patients (1.2k Positive Diagnosis)
 - Logistic: 77 Features

Future Predictions

- 8k Patients (0.9k Positive Diagnosis)
- All Models: 78 Features

Modeling Objective

- Predict Chronic Heart Failure:
 - Current visit (present)
 - 2. Within 1 yr (future)
 - Differences b/t Male/Female
- Interpretable Models:
 - Logistic Regression
 - Random Forest
- Accurate Models:
 - Gradient Boosting
- Tuning:
 - Area Under Curve (AUC)
 - Adjust threshold for 95% Recall

Modeling Results

	Present Model (11.5K patients, 11.4% with disease)		Future Model (8K patients, 11.9% with disease)			
Score	Logistic (36 features)	Random Forest (101 features)	XG Boost (60 features)	Logistic (78 features)	Random Forest (78 features)	XG Boost (78 features)
Recall	95%	95%	95%	95%	95%	95%
ROC/AUC	68%	70%	71%	65%	71%	66%
Accuracy	49%	52%	55%	44%	55%	46%
Precision	22%	23%	24%	21%	25%	21%
F1 Score	36%	37%	38%	34%	39%	35%

Feature Importance Comparison

	Present			Future		
Top Features	Logistic	Random Forest	XGBoost	Logistic	Random Forest	XGBoost
#1	Atherosclerosis	Insurance Medicare	Below Min Bicarbonate	Arrhythmia	Atherosclerosis	Atherosclerosis
#2	Age	Above Max Urea Nitrogen	Abnormal % Chloride	Ethnicity (Other)	Diabetes	Age
#3	Max Bicarbonate	Age	Abnormal % Calcium	Atherosclerosis	Age	Mean Urea Nitrogen
#4	Min Urea Nitrogen	Abnormal % Urea Nitrogen	Below Min Phosphate	Above Max Red Blood DW	Hypertension	Above max Urea Nitrogen
#5	Min Red Blood DW	Abnormal % Troponin T	Below Min Creatine Kinase	Age	Above Max Urea Nitrogen	Hypertension

Demographic Comparisons (Present)

Logistic Regression

Score	Female (77 features)	Male (63 features)
Recall	95%	95%
ROC/AUC	72%	71%
Accuracy	55%	54%
Precision	22%	26%
F1 Score	36%	41%

Top Features	Female	Male
#1	Age	Atherosclerosis
#2	Diabetes	Age
#3	Hypertension	Max Bicarbonate
#4	Max Anion Gap	Max Anion Gap
#5	Max Bicarbonate	Ethnicity Asian (-)

Conclusion

Challenges

Dataset was:

- Sparse
- Messy
- Complicated

Model Outcomes

Predicting present

- Similar to doctors
 - max/min labs

Gender

- Female: diabetes
- Male: atherosclerosis

Predicting Future

- Similar accuracy
- More comorbidities

Applications

- Decision support tool for doctors
 - Additional tests
- Early warning tool for patients
 - Lifestyle changes

Future Work

- Compare Ethnicities
- Ensemble different models
 - Sklearn voting classifier
- Incorporate different tables
 - Prescriptions
 - Chartevents
- Predict expire from CHF (severity)