Pilot Data Cleaner

Daniel K Baissa, Melani Cammett, and Aytug Sasmaz

December 12, 2020

Loading in data

I will start by creating a function to automatically set up the data.

All of this is a work in progress

```
# Creating a function to load datasets
data_cleaner <- function(d){</pre>
 df <- read_csv(d) %>% #reading in the data
  slice(c(-1, -2)) #qualtrics adds 2 rows of unnecessary headers. This removes them.
# Cleaning up the conjoint data.
# Note, this is not very efficient memory wise
# and may need to be tuned up for larger datasets
names <- colnames(df)</pre>
new_names <- paste0(1:243, "_conjoint_friend1")</pre>
new_names2 <- paste0(1:243, "_conjoint_friend2")</pre>
df2 <- df %>%
  setnames(old = names[246:488], new = new_names) %>%
  setnames(old = names[489:731], new = new_names2)
test2 <- df2 %>%
    pivot_longer(
          cols = ends with("friend1"),
          names_to = "Conjoint_first_permutation",
          values_to = "Conjoint_first_permutation_answer") %>%
  filter(!is.na(Conjoint_first_permutation_answer)) %>%
    pivot_longer(
          cols = ends with(" friend2"),
          names_to = "Conjoint_second_permutation",
          values_to = "Conjoint_second_permutation_answer") %>%
    filter(!is.na(Conjoint_second_permutation_answer)) %>%
   pivot_longer(
          cols = starts_with("ptt"),
          names_to = "Petition_Experiment_Treatment",
          values_to = "Petition_Experiment_Treatment_Answer") %>%
  filter(!is.na(Petition_Experiment_Treatment_Answer))
```

```
}
```

Now that the function is created, we can use it to make our data. There will be a warning, but it is totally ok for now.

Demographic distribution

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0000 0.0000 0.3544 1.0000 2.0000

ggplot(df, aes(x = gender))+
   geom_histogram(bins = 3, fill="white", color="black")+
   labs(title="Gender Distribution",x="", y = "Count")+
   theme_classic()
```


Religious demographics

```
summary(as.double(df$att_identity))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 2.000 2.911 5.000 7.000

ggplot(df, aes(x = as.double(att_identity)))+
   geom_histogram(bins = 7, fill="white", color="black")+
   labs(title="att_identity",x="", y = "Count")+
   theme_classic()
```


Income distribution

Below are some statements related to your household income. Which of these statements comes closest to describing your household income?

```
summary(as.double(df$dem_income1))
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
     0.000
             1.000
                     1.000
                             1.228
##
                                     2.000
                                             3.000
ggplot(df, aes(x = as.double(dem_income1)))+
  geom_histogram(bins = 4, fill="white", color="black")+
  labs(title="Which of these statements comes closest to describing your household income?",x="", y = "
  theme_classic()
```


To the best of your knowledge, what is your household's total net income in Lebanese Liras (L.L.) in a typical month?

```
summary(as.double(df$dem_income2))
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
                                                       NA's
##
    0.000
             0.000
                     1.000
                             2.064
                                     3.000
                                              8.000
                                                          1
ggplot(df, aes(x = as.double(dem_income2)))+
  geom_histogram(bins = 9, fill="white", color="black")+
  labs(title="what is your household's total net income in Lebanese Liras (L.L.) in a typical month?",x
  theme_classic()
```

Warning: Removed 1 rows containing non-finite values (stat_bin).

what is your household's total net income in Lebanese Liras (L.L.) in a typical

What is the highest level of education that you completed?

```
summary(as.double(df$dem_edu))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.000 4.000 6.000 6.367 9.000 10.000

ggplot(df, aes(x = as.double(dem_edu)))+
   geom_histogram(bins = 10, fill="white", color="black")+
   labs(title="What is the highest level of education that you completed?",x="", y = "Count")+
   theme_classic()
```


What is your father's education level?

```
summary(as.double(df$dem_fatheredu))

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 1.000 2.000 3.000 3.581 5.000 9.000 5

ggplot(df, aes(x = as.double(dem_fatheredu)))+
   geom_histogram(bins = 10, fill="white", color="black")+
   labs(title="What is your father's education level? ",x="", y = "Count")+
   theme_classic()
```

Warning: Removed 5 rows containing non-finite values (stat_bin).

What is your father's education level?


```
summary(as.double(df$dem_motheredu))

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 1.000 2.500 3.000 3.933 5.000 9.000 4

ggplot(df, aes(x = as.double(dem_motheredu)))+
   geom_histogram(bins = 10, fill="white", color="black")+
   labs(title="What is your mother's education level?",x="", y = "Count")+
   theme_classic()
```

Warning: Removed 4 rows containing non-finite values (stat_bin).

Mother's are better educated than fathers in this sample

Petition Signing distribution

How many people actually signed the petition? Lets find out.

Lets do some basic stats on the petition experiment. Here is a simple logistic regression to see if the control group is different from any of the treatments.

```
# colnames(df)
# unique(df$Petition_Experiment_Treatment)
df2 <- df %>%
  filter(Petition_Experiment_Treatment == "ptt_treat_control_fo" | Petition_Experiment_Treatment == "pt
df2$pt_econ_treatment <- 0</pre>
df2$pt_econ_treatment[which(df2$Petition_Experiment_Treatment == "ptt_treat_eco_foll")] <- 1
df2$signed <- 0
df2\$signed[which(df2\$Q144 > 0)] <- 1
test <- glm(signed ~ pt_econ_treatment, data = df2, family = binomial())</pre>
summary(test)
##
## Call:
  glm(formula = signed ~ pt_econ_treatment, family = binomial(),
##
       data = df2)
##
## Deviance Residuals:
##
                    1Q
                          Median
                                                  Max
                                              0.63352
## -1.84648
              0.00008
                         0.00008
                                   0.63352
##
```

```
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        19.57
                                 3584.67
                                            0.005
                       -18.06
                                  3584.67 -0.005
                                                     0.996
## pt_econ_treatment
  (Dispersion parameter for binomial family taken to be 1)
##
##
##
       Null deviance: 13.003 on 19
                                     degrees of freedom
## Residual deviance: 10.431 on 18 degrees of freedom
## AIC: 14.431
##
## Number of Fisher Scoring iterations: 18
## combined table
(ctable <- cbind(ctable, "p value" = p))</pre>
##
                                                            Value Std. Error
## Petition_Experiment_Treatmentptt_treat_bft_foll
                                                      -0.1667512 0.7582067
## Petition_Experiment_Treatmentptt_treat_control_fo 2.0974644
                                                                  0.9855129
## Petition_Experiment_Treatmentptt_treat_cor_foll
                                                      -0.1171191 0.7088077
## Petition_Experiment_Treatmentptt_treat_eco_foll
                                                       0.9024628 0.8248948
## Petition_Experiment_Treatmentptt_treat_sec_foll
                                                      -0.6321240 0.7543644
## 0|1
                                                      -0.7742921 0.5908313
                                                       0.7744112 0.5908326
## 1|2
##
                                                         t value
                                                                    p value
## Petition_Experiment_Treatmentptt_treat_bft_foll
                                                      -0.2199285 0.82592686
## Petition_Experiment_Treatmentptt_treat_control_fo 2.1282973 0.03331245
## Petition_Experiment_Treatmentptt_treat_cor_foll
                                                      -0.1652339 0.86875986
## Petition_Experiment_Treatmentptt_treat_eco_foll
                                                       1.0940338 0.27394015
## Petition_Experiment_Treatmentptt_treat_sec_foll
                                                      -0.8379557 0.40205559
## 0|1
                                                      -1.3105130 0.19002234
## 1|2
                                                       1.3107116 0.18995522
The Covid Treatment was the treatment left out for comparison by the model. Lets take a look at that.
signif((ctable <- cbind(ctable, "p value" = p)),3)</pre>
                                                       Value Std. Error t value
## Petition_Experiment_Treatmentptt_treat_control_fo
                                                       2.040
                                                                   1.010
                                                                            2.03
## 0|1
                                                      -0.713
                                                                   0.639
                                                                           -1.12
## 1|2
                                                       0.714
                                                                  0.639
                                                                            1.12
                                                      p value
## Petition_Experiment_Treatmentptt_treat_control_fo
                                                        0.042
## 0|1
                                                        0.264
## 1|2
                                                        0.264
```

Something appears to be going on here, but the N is so small that it could still be chance