In the Claims:

7

1

2

3

4

5

6

7

1

1

1	1. [previously presented] A method of mobile device control comprising:
2	moving a surrogate under wireless control by a user;
3	during the moving, detecting unsuitable degradation of wireless
4	communications of the wireless control; and
5	in response to the detecting and while the surrogate is still receiving the
3	wireless communications, autonomously moving the surrogate to provide suitable

1 2. [original] The method as claimed in claim 1 additionally comprising: 2 autonomously moving the surrogate along a previously determined route.

wireless communications of the wireless control.

3. [previously presented] The method as claimed in claim 1 wherein: autonomously moving the surrogate to provide suitable wireless communications of the wireless control occurs after passage of a period of time following the detecting of the degradation; and

the method further comprises after the detecting of the unsuitable degradation, the surrogate loitering near a location where the unsuitable degradation was detected during the passage of the period of time.

- 4. [cancelled].
- 5. [previously presented] The method as claimed in claim 1 wherein: 2 moving the surrogate under wireless control includes logging forward motion 3 using at least one of dead reckoning, odometry, directional measurement, 4 differential wheel rotation, or a combination thereof.

1	6. [previously presented] The method as claimed in claim 1 wherein:
2	autonomously moving the surrogate uses logged information of forward
3	movement using at least one of dead reckoning, odometry, directional
4	measurement, differential wheel rotation, or a combination thereof; and
5	autonomously moving the surrogate uses waypoints back along a forward
6	movement path for backtracking movement.
1	7. [previously presented] A method of mobile telepresencing comprising:
2	moving a surrogate under real-time wireless control by a user;
3	autonomously moving the surrogate to an area with adequate wireless
4	coverage to regain wireless control when the wireless control is lost for a period of
5	time; and
6	while the surrogate is autonomously moving, activating a human perceptible
7	indicator which is perceptible to humans in the presence of the surrogate.
1	8. [cancelled].
1	9. [original] The method as claimed in claim 7 wherein:
2	losing wireless control includes degradation of the control to a threshold
3	level;
4	autonomously moving the surrogate to regain wireless control occurs after a
5	period of time.
1	10 fourmently amonded. The method as alsimed in alsim 7 wherein
1	10. [currently amended] The method as claimed in claim 7 wherein:
2	autonomously moving the surrogate includes:
3	backtracking while measuring distance and avoiding collisions by the
4	surrogate;
5	stopping the surrogate for an obstacle; and
6	automatically without user intervention resuming backtracking after removal
7	of the obstacle.
1	11. [cancelled].
1	i i. [dandonoa].

1 12. [previously presented] The method as claimed in claim 7 wherein:

autonomously moving the surrogate to backtrack uses logged information of forward movement using at least one of dead reckoning, odometry, directional measurement, differential wheel rotation, or a combination thereof;

autonomously moving the surrogate to backtrack uses a slower speed than forward speed; and

autonomously moving the surrogate uses waypoints back along a forward movement path for backtracking movement considering the slower speed of backtracking.

- 13. [currently amended] A mobile device control system comprising:
- a surrogate movable under wireless control by a user; and

a computer/transceiver system on the surrogate for detecting loss of the wireless control, configuring the surrogate to loiter for a non-zero amount of time following the loss of the wireless control near a location at which the loss of the wireless control was detected, monitoring for return of the wireless control during the non-zero amount of time, and moving the surrogate to regain wireless control independently of the wireless control after passage of the <u>a</u> non-zero amount of time following the loss of the wireless control.

14. [cancelled].

2

3

4

5

6

7

8

9

1

2

3

4

5 6

7

8

9

1

1

1

1 15. [previously presented] The system as claimed in claim 13 wherein:

the computer/transceiver system for autonomously moving the surrogate to regain wireless control occurs after the surrogate remains stationary for the nonzero amount of time.

- 16. [original] The system as claimed in claim 13 wherein:
- the computer/transceiver system for autonomously moving the surrogate includes measuring distance and avoiding collisions by the surrogate.
 - 17. [cancelled].

1	18. [previously presented] The system as claimed in claim 13 wherein:
2	the computer/transceiver system uses logged information of forward
3	movement using at least one of dead reckoning, odometry, directiona
1	measurement, differential wheel rotation, or a combination thereof; and
5	the computer/transceiver system calculates waypoints back along a forward
3	movement path for backtracking movement.
1	19. [currently amended] A mobile telepresencing system comprising:
2	a surrogate movable under wireless control by a user; and
3	a computer/transceiver system for determining when the wireless control is
1	lost and responsive to the determining, autonomously moving the surrogate to ar
5	area not currently receiving adequate coverage of the wireless control, but in which
3	the surrogate previously experienced adequate coverage of the wireless control, to
7	regain adequate coverage of the wireless control, and loitering in the area for the
3	wireless control to return.
1	20. [original] The system as claimed in claim 19 additionally comprising:
2	the computer/transceiver system for autonomously moving the surrogate
3	along at least one of a previously determined route, a distance, a destination, a
1	direction, or a combination thereof.
1	21. [original] The system as claimed in claim 19 wherein:
2	the computer/transceiver system for determining degradation of the
3	wireless control to a threshold level;
1	the computer/transceiver system for autonomously moving the
5	surrogate to regain wireless control occurs after a period of time.
1	22. [currently amended] The system as claimed in claim 19 wherein:
2	the computer/transceiver system for autonomously moving the surrogate
3	includes:
1	backtracking means for measuring distance and avoiding collisions by
5	the surrogate during backtracking;
3	stopping means for stopping the surrogate for an obstacle; and

7 means for automatically without user intervention resuming 8 backtracking after removal of the obstacle.

1 23. [cancelled].

2

3

4

5

6

7

8

9

1

2

1 24. [previously presented] The system as claimed in claim 19 wherein:

the computer/transceiver system uses logged information of forward movement using at least one of dead reckoning, odometry, directional measurement, differential wheel rotation, or a combination thereof for backtracking;

the computer/transceiver system provides a slower speed than forward speed for backtracking by the surrogate; and

the computer/transceiver system uses waypoints back along a forward movement path for backtracking movement considering the slower speed of backtracking.

- 1 25. [previously presented] The method as claimed in claim 1 wherein:
- the detecting comprises comparing a performance parameter associated with the wireless communications with a threshold.
- 1 26. [previously presented] The method as claimed in claim 25 wherein:
- the detecting comprises determining that a current non-zero data rate at which the surrogate is successfully transmitting data via the wireless communications is less than a desired data rate.
 - 27. [previously presented] The method as claimed in claim 26 further comprising:
- prior to the detecting, wirelessly transmitting a video signal at or above the desired rate from the surrogate to the user.

- 1 28. [previously presented] The method as claimed in claim 10 further 2 comprising:
- 3 prior to the resuming of the backtracking, sensing removal of the obstacle; 4 and
- 5 wherein the resuming is responsive to the sensing.

1

2

3

1

1

2

3

4

5

- 29. [previously presented] The method as claimed in claim 25 wherein the detecting comprises determining that a current transmission delay associated with packets received by the surrogate is greater than an acceptable transmission delay.
- 1 30. [previously presented] The system of claim 13 wherein 2 computer/transceiver system is configured to configure the surrogate to remain 3 stationary near the location for the non-zero amount of time following the loss of 4 the wireless control.
- 31. [previously presented] The method of claim 7 wherein the surrogate 2 comprises the human perceptible indicator.
 - 32. The system of claim 13 wherein the computer/transceiver system is configured to detect loss of the wireless control, configure the surrogate to loiter for the non-zero amount of time following the loss of the wireless control near a location at which the loss of the wireless control was detected, and monitor for return of the wireless control during the non-zero amount of time.
- 1 33. [new] The system of claim 19 wherein the computer/transceiver 2 system is configured to loiter in the area for the wireless control to return.
- 34. 1 [new] The method of claim 10 wherein the resuming backtracking 2 comprises automatically without user intervention resuming backtracking.

1 35. [new] The system of claim 22 wherein the means for resuming 2 backtracking after removal of the obstacle comprises means for automatically 3 without user intervention resuming backtracking after removal of the obstacle.

PDNO. 200315363-1 S/N: 10/789669 Amendment D