Instituto Superior de Engenharia de Lisboa

Licenciatura/Mestrado em Engenharia Informática e de Computadores

Segurança Informática

Teste final, primeira época, Semestre de Inverno, 09/10

Duração: 2 horas e 30 minutos

- 1. (3) No contexto dos esquemas criptográficos
 - 1.1. O conceito de *modo de operação* aparece tipicamente associado aos esquemas de cifra simétricos mas não aos assimétricos. Porquê?
 - 1.2. Na JCA (*Java Cryptography Architecture*), existe uma sobrecarga do método Signature.initSign que recebe um SecureRandom. Contudo, porque é que não existe nenhuma sobrecarga do método Signature.initVerify que receba também um SecureRandom.
- 2. (4) Considere os certificados definidos pela norma X.509 e a Java Certification Path API.
 - 2.1. Descreva, de forma resumida, o processo de validação dum certificado?
 - 2.2. Qual a informação que tem de ser parametrizada na construção de cadeias de certificados?
 - 2.3. Ambas as *engine classes* KeyStore e CertStore podem armazenar certificados. Quais os aspectos a considerar para a utilização de uma ou de outra classe?
- 3. (4) Considere o protocolo Secure Socket Layer (SSL).
 - 3.1. Quais seriam as consequências para a segurança do protocolo se a mensagem ClientHello não contivesse um *nounce*?
 - 3.2. Qual o propósito da lista de trust anchors enviada pelo servidor para o cliente?
 - 3.3. De que forma é realizada a autenticação do servidor?
- 4. (4) Considere a família de modelos de controlo de acesso RBAC (Role Based Access Control)
 - 4.1. Descreva o que é e qual a motivação para o conceito de role hierarchy?
 - 4.2. Quais as vantagens do modelo $RBAC_2$, em relação ao modelo $RBAC_0$, na implementação do princípio de separation of duty?
 - 4.3. A plataforma .NET possui suporte parcial para o modelo $RBAC_0$. Neste contexto, de que forma é implementada a relação $Permission \ Assignment$?
- 5. (1) Considere a plataforma .NET e o modelo de segurança CAS (*Code Access Security*). O objectivo da assinatura digital dos *assemblies* é a associação destes a nomes não forjáveis. Uma alternativa seria o nome do *assembly* conter o valor de *hash* do seu conteúdo, em vez da chave pública de verificação da assinatura. Quais as desvantagens desta alternativa?
- 6. (2) Considere o seguinte conjunto de certificados SDSI.
 - a) K_{IPL} aluno \longrightarrow K_{IPL} departamento aluno
 - b) K_{IPL} departamento \longrightarrow K_{IPL} escola departamento
 - c) $K_{IPL} \ escola \longrightarrow K_{ISEL}$
 - d) $K_{IPL} \ escola \longrightarrow K_{ISCAL}$
 - e) K_{ISCAL} aluno \longrightarrow K_{123}
 - f) K_{ISEL} departamento \longrightarrow K_{DEETC}
 - g) K_{ISEL} aluno \longrightarrow K_{456}
 - h) K_{DEETC} aluno $\longrightarrow K_{789}$

Quais as chaves que pertencem ao nome K_{IPL} aluno? Para cada chave, apresente a prova desta pertença.

7. (2) Caracterize o tipo de erro de programação que possibilita os ataques do tipo *SQL injection*? De que forma a implementação do princípio de *least privilege* minimiza as consequências dum ataque deste tipo?

16 de Janeiro de 2010