A Scalable Dynamic Bayesian Mixture Model for Fine-grained Promotion Mix Analysis of Digital Coupons

Gourab Mukherjee

University of Southern California

2022 IISA Annual Conference

Bengaluru

28th December 2022

Joint work with: Rashmi Ranjan Bhuyan (USC), Wreetabrata Kar (Purdue)

Digital Marketing

- Digital promotions have revolutionized the way companies target customers with marketing offers.
- In 2021, an average firm was expected to allocate 45% of their total marketing budget to online media.
- Worldwide spending on digital advertising is projected to be 566 billion U.S. dollars in 2022.

Digital Coupons

- Digital coupons offer discounts and rebates in electronic form through the use of coupon codes, vouchers, and other discounting methods.
- They are extensively used by marketers to attract and retain customers by promoting the desire to save money while making purchases.
- Digital coupons provide several benefits over traditional coupons.
 - Customers can easily store & search and so, they have much higher redemption rates than traditional coupons
 - Marketing managers benefit from very low designing and dissemination costs.
- Using digital coupons managers can very cheaply
 - assimilate different types of promotions (marketing interventions) in a single coupon
 - customize these coupons for different promotional needs.

Digital Couponing: Promotion Mix Challenges

Digital coupons are easier to make and managers can put in a lot of choices simultaneously

- It is extremely important for marketers to accurately understand how mixing these marketing components at different levels impact customers' responses to coupons.
- The roles of different promotion components in influencing consumer psychology have been separately studied in the existing literature.
- However, simultaneous estimation of the effects of these components in coupon marketing is challenging.
- Here, we provide a disciplined statistical methodology for conducting promo mix analysis by efficient estimating and attributing the impact of different marketing components used in coupon marketing.

Statistical Challenges in Promotion Mix analysis of Digital Coupons

Wide heterogeneity in the engagement levels and buying propensity among the customer base.

- It is important to group customers based on similarity of these attributes and then compare the effect of the promotions within segments.
- We use <u>Bayesian Mixture model</u>: GLMM model based clustering framework for grouping customers' based on their long-term behaviors.

Promotions received by customers in the recent past greatly affects their responses to the current promotion

- We use a stock variable that dynamically measures the carryover effects of coupons that a customer was exposed to in the recent past.
- We develop a 2-stage Dynamic Mixture Model (2DMM) and their coefficients are estimated by a block Markov Chain Monte Carlo (MCMC) algorithm on the combined two-stage likelihood.

Data

Long Term Association Data with the Firm: Summary of association over two years

Used in Stage I to segment customers

Current Marketing Campaign:
45 days window and detailed responses to
promotions

Used in Stage II to estimate promotion efficiency on different customer segments

- Around 80k active customers
- Each customer's demography data:
 - Gender
 - Income
 - Age

Data: Stage I

 Long term association with the firm with historical data

- Recency: corresponds to days since last
 - Open
 - Click
 - Purchase
- Monetary: total purchase amount
- Frequency: number of purchases

Data: Stage II

77986 customers	Promotion	Open	Click	Purchase
	P1	Yes	Yes	No
	P2	No	-	-
	•			•
	P25	Yes	Yes	Yes

- Marketing window of 45 days
- Each customer receives around 25 promotional emails
- Each customer has a corresponding table

Each coupon has one or combination of marketing components (bag of features).

Examples of promotions:

Use promo code AB123. 50% off Swim + Free Ship & Returns!

Use promo code CD456. Mystery Savings - up to 30% off!

Use promo code EF789. Extra \$10 off, your instant refund!

Table corresponding to the example

Promotion	Percentage	Shipping	Returns	Mystery	Dollar
P1	1	1	1	0	0
P2	1	0	0	1	0
P3	0	0	0	0	1

Model

- Two problems at hand:
 - Create homogenous groups of customers (based on previous data)
 - Targeted coupons for each customer group using marketing components.

- 2- stage Dynamic Mixture Model (2DMM)
 - Stage 1: Customer Segmentation
 - Stage 2: Marketing components effects with dynamic short-term engagement

Stage 1: Segmenting Customers

- Very high heterogeneity among the consumer base
- Estimating of coupon effects assuming invariance across customers will be misleading.
- Model based clustering with long-term association and demographic data

- Model as joint GLM's
- Two sets of demographic variables:
 - w_i global effects
 - $\widetilde{w_i}$ cluster specific heterogenous effects

Stage 1: Segmenting Customers

- Model as joint GLM's
- Two sets of demographic variables:
 - w_i global effects
 - $\widetilde{w_i}$ cluster specific heterogenous effects
- h(.), clustering function
 - i.e h(32) = 5, means the 32^{nd} customer is in 5^{th} cluster

$$R_i^o = w_i^T \delta^o + \widetilde{w_i^T} \tau_{h(i)}^o + \epsilon_i^o$$

$$R_{i}^{c} = w_{i}^{T} \delta^{c} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{c} + \epsilon_{i}^{c}$$

$$R_{i}^{p} = w_{i}^{T} \delta^{p} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{p} + \epsilon_{i}^{p}$$

$$\log \mathbf{M}_{i} = \mathbf{w}_{i}^{\mathrm{T}} \delta^{M} + \widetilde{\mathbf{w}_{i}^{T}} \tau_{h(i)}^{M} + \epsilon_{i}^{M}$$

$$\mu(F_i) = \mathbf{w}_i^{\mathrm{T}} \delta^F + \widetilde{\mathbf{w}_i^T} \tau_{h(i)}^F$$

- Each recency variable (open/click/purchase) modelled linearly
- Monetary variable has a log-normal distribution
- Frequency variable is Poisson with mean as given

Stage 1: Segmenting Customers

Main Goal: Estimate the clustering function

$$R_{i}^{o} = w_{i}^{T} \delta^{o} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{o} + \epsilon_{i}^{o}$$

$$R_{i}^{c} = w_{i}^{T} \delta^{c} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{c} + \epsilon_{i}^{c}$$

$$R_{i}^{p} = w_{i}^{T} \delta^{p} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{p} + \epsilon_{i}^{p}$$

$$\log M_{i} = w_{i}^{T} \delta^{M} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{M} + \epsilon_{i}^{M}$$

$$\mu(F_{i}) = w_{i}^{T} \delta^{F} + \widetilde{w_{i}^{T}} \tau_{h(i)}^{F}$$

• We use a Bayesian approach, assume prior on the coefficients (gaussian priors)

2 step MCMC:

- 1. Fix h(.) update the other parameters (δ^o , δ^c , δ^p , ...) with Metropolis-Hastings
- 2. For each customer 'i' update h(i) to the cluster with max log-likelihood

Stage 2: Marketing Component effects

- Promotion effect for each segment of customer, sum of
 - marketing components effect and
 - residual effect (sparse)

$$\mu_{k,h} = \sum_{1}^{J} \theta_{k,j} \nu_{j,h} + \gamma_{k,h}$$

 With the marketing components effect, managers can create new optimal coupons for each segment

Example of promotions:

Use promo code AB123. 50% off Swim + Free Ship & Returns! Use promo code CD456. Mystery Savings - up to 30% off! Use promo code EF789. Extra \$10 off, your instant refund!

Promotion	Percentage	Shipping	Returns	Mystery	Dollar
P1	1	1	1	0	0
P2	1	0	0	1	0
P3	0	0	0	0	1

Stage 2: Short Term Dynamic Engagement

• The promotional coupons are sequential, introduce a dynamic engagement level ' η_{it} '

$$\eta_{i,t} = \mathbf{1}\{Y_{i,t-1} = 1\} + \delta\eta_{i,t-1}$$

• The stock variable level considers the recent engagement as well as the past engagement.

Eg. Engagement level (η_{it}) increasing

Stage 2: Logistic Model for Promotion Efficacy

$$\operatorname{logit}(\boldsymbol{P}(Y_{it}=1)) = x_{ik}^T \boldsymbol{\alpha} + \widetilde{x_{ik}^T} \boldsymbol{\beta_h} + \eta_{it} + \sum_{1}^{J} \theta_{k,j} v_{j,h} + \gamma_{k,h} + a_h$$

$$\alpha_{i,\beta_h} \text{ captures the customer invariant, varying}$$

$$\mu_{k,h} = \sum_{1}^{J} \theta_{k,j} v_{j,h} + \gamma_{k,h}$$

Promotion k

- Customer i
- Cluster h
- Time t

$$\eta_{i,t} = \mathbf{1}\{Y_{i,t} = 1\} + \delta\eta_{i,t-1}$$

a_h random effectcapturing covarianceacross clusters

*With cluster indices h fixed

Block MCMC:

- 1. Update all parameters except ' δ ', use slightly modified Polya-Gamma augmentation for logistic regression
- 2. Update ' δ ' by perturbing, update η_{it} correspondingly, compute likelihood and accept/reject (MH)

across segments covariates

Path algorithm for combining the two stages

- We develop a path algorithm that provides path of estimates of the parameters in 2DMM as the number of clusters (m) varies over 1,...,M for some large M.
- Our proposed path algorithm merges clusters in stage I of 2DMM in a bottom up fashion based on minimizing the squared error loss. We provide fast asymptotically efficient updates of the parameter estimates in stage II of 2DMM as clusters are merged.
- Our proposed novel path algorithm for 2DMM provides integrative analysis of the promotion mix effects at different desired heterogeneity levels.

Results

- Held out promotional period data of 19496 customers
- Ran three models
 - 2DMM (with 5 clusters)
 - Naive logistic model: $logit(P(Y_{it} = 1)) = x_{ik}^T \theta + \gamma_k$
 - Dynamic logistic model: $logit(\mathbf{P}(Y_{it}=1)) = x_{ik}^T \theta + \eta_{i,t} + \gamma_k$
- 2DMM provided a better AUC (0.71) compared to naive logistic model (0.59) and dynamic logistic regression's AUC (0.62). 20.3% improvement ☺

• **Summary:** Combined with the dynamic stock model, segmenting customers based on past behavior can significantly improve coupon effect estimation.

Thank You

Reference: Mukhopadhay S, Kar W, Mukherjee G. *Estimating Promotion Effectiveness in Email Marketing: A high-dimensional Bayesian Joint Model for Nested Imbalanced Data*, Annals of Applied Statistics, 2022.