II. SUITES ET APPLICATIONS CONTINUES

Suites

- 1) Démontrer que la distance $d_u: (f,g) \mapsto \min(\|f-g\|_{\infty},1)$ où $\|f-g\|_{\infty}:=\sup_{x\in\mathbb{R}}|f(x)-g(x)|$, sur l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} , est telle qu'une suite de fonctions de \mathbb{R} dans \mathbb{R} converge vers f au sens de d_u si et seulement si elle converge uniformément vers f.
- 2) a) Soit $(u_n)_{n\geq 0}$ une suite de points d'un espace métrique E. Démontrer que les valeurs d'adhérence de $(u_n)_{n\geq 0}$ sont les limites de ses suites extraites convergentes.
 - b) Soit $(u_n)_{n\geq 0}$ une suite de réels telle que $\lim_{n\to +\infty} (u_{n+1}-u_n)=0$. Montrer que l'ensemble des valeurs d'adhérence de cette suite est un intervalle.
- 3) Soit f une application d'une partie A d'un espace métrique E dans un espace métrique F.
 - a) Soient $a \in \overline{A}$ et $l \in F$. Montrer que $\lim_{x \to a, x \in A} f(x) = l$ si et seulement si pour toute suite $(x_n)_{n \ge 0}$ d'éléments de A qui converge dans E vers a, la suite $(f(x_n))_{n \ge 0}$ converge vers l.
 - b) On suppose f définie sur E. Montrer que f est continue si et seulement si pour toute suite $(x_n)_{n\geq 0}$ convergente d'éléments de E, la suite $(f(x_n))_{n\geq 0}$ converge dans F.
- 4) Soient f et g deux applications d'un espace métrique E dans un espace métrique F. On suppose que f et g sont continues et coïncident sur une partie dense D de E. Montrer qu'elles sont égales.
- 5) Pour tous $m \in \mathbb{N} \setminus \{0\}$, $x_1, ..., x_m \in \mathbb{R}$, $f \in \mathbb{R}^{\mathbb{R}}$ et $r_1, ..., r_m \in]0, +\infty[$, on note : $B_{x_1,...,x_m}(f,(r_1,...,r_m)) = \{g \in \mathbb{R}^{\mathbb{R}} \mid |g(x_1) f(x_1)| < r_1 \text{ et } ... \text{ et } |g(x_m) f(x_m)| < r_m\}.$ On admet que l'ensemble des réunions de familles de parties de $\mathbb{R}^{\mathbb{R}}$ qui sont de la forme $B_{x_1,...,x_m}(f,(r_1,...,r_m))$ est une topologie sur $\mathbb{R}^{\mathbb{R}}$ (« topologie produit »).
 - a) Montrer qu'une suite $(f_n)_{n\geq 0}$ converge vers f pour cette topologie si et seulement si elle converge simplement vers f.
 - b) On note A l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} nulles en dehors d'un ensemble fini. Montrer que la fonction 1 est dans \overline{A} sans être limite d'une suite $(f_n)_{n\geq 0}$ d'éléments de A.

Continuité

6) Montrer directement la continuité (pour les topologies usuelles) des applications suivantes :

$$f_1 \colon \mathbb{R}^2 \to \mathbb{R} \,; \qquad f_2 \colon \mathbb{R}^2 \to \mathbb{R} \,; \qquad f_3 \colon \mathbb{R}^2 \to \mathbb{R} \,; \qquad f_4 \colon \mathbb{R} \times \mathbb{R} \setminus \{0\} \to \mathbb{R} \,.$$

$$(x,y) \mapsto x \qquad (x,y) \mapsto x + y \qquad (x,y) \mapsto xy \qquad (x,y) \mapsto \frac{x}{y}$$

- 7) a) Montrer que $GL(n,\mathbb{R})$ est un ouvert dense de $\mathfrak{M}(n,\mathbb{R})$.
 - b) On considère l'application $f \colon GL_n(\mathbb{R}) \to \mathfrak{M}(n,\mathbb{R})$. $A \mapsto A^{-1}$ Pour quels $M \in \mathfrak{M}(n,\mathbb{R})$ l'application f a-t-elle une limite quand $A \to M$ avec $A \in GL_n(\mathbb{R})$?
- 8) Soit (E,d) un espace métrique. On munit $E \times E$ de la distance produit δ_{∞} .
 - a) Démontrer que $d: E \times E \to \mathbb{R}^+$ est continue.
 - b) Soit $A \subseteq E$ non-vide. Pour tout $x \in E$, on pose : $d(x,A) = \inf_{a \in A} d(x,a)$. Démontrer que l'application $x \mapsto d(x,A)$ est continue de E dans \mathbb{R}^+ .
 - c) Vérifier que : $\overline{A} = \{x \in E \mid d(x, A) = 0\}$.
 - d) Soit $x \in E$. A-t-on : $d(x, \overline{A}) = d(x, A)$?

- 9) a) Démontrer que $f \colon \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ est continue. $(x,y) \mapsto \frac{x^2y}{x^4+y^2}$
 - b) Soit $\theta \in \mathbb{R}$. Démontrer que la restriction de f à la demi-droite $D_{\theta} = \{(r\cos\theta, r\sin\theta) ; r > 0\}$ admet pour limite 0 lorsque $(x, y) \to 0$ avec $(x, y) \in D_{\theta}$.
 - c) L'application f a-t-elle un prolongement par continuité $f: \mathbb{R}^2 \to \mathbb{R}$?
- 10) On note $\mathscr{C} = \{(x,y) \in \mathbb{C}^2 \mid x^3 = y^2\}$, où \mathbb{C}^2 est identifié à \mathbb{R}^4 .
 - a) Démontrer que l'application $g \colon \mathscr{C} \setminus \{(1,1)\} \longrightarrow$ est continue. $(x,y) \longmapsto \begin{cases} \operatorname{ou} \frac{y+1}{x-1} & \text{si } x \neq 1 \\ \operatorname{ou} \frac{-\frac{3}{x-1}}{-\frac{3}{2}} & \text{si } x = 1 \text{ (auquel cas } y = -1) \end{cases}$ Indication: remarquer que $g(x,y) = \frac{x^2+x+1}{y-1}$ quand $y \neq 1$.

- b) Existe-t-il une application continue $\widetilde{g}: \mathscr{C} \to \mathbb{C}$ dont la restriction à $\mathscr{C} \setminus \{(1,1)\}$ est g?
- 11) L'application $h: \mathbb{R}^2 \longrightarrow$ est-elle continue? $(x,y) \;\longmapsto\; \left\{ \begin{smallmatrix} \mathbf{u} & x^2 & & \mathrm{si} & |x| \leq |y| \\ \mathbf{u} & y^2 & & \mathrm{si} & |x| > |y| \end{smallmatrix} \right.$

Homéomorphisme

- 12) a) On munit \mathbb{R}^n de sa distance euclidienne usuelle. Montrer que l'application $u \colon \mathbb{R}^n \to \mathbb{R}^n$ se restreint en un homéomorphisme $v \colon \mathbb{R}^n \to B(0,1)$. $x \mapsto \frac{x}{1+\|x\|}$
 - b) Exhiber une distance sur $\mathbb{R} \cup \{-\infty, +\infty\}$ qui induit la topologie de \mathbb{R} et donne comme voisinages de $-\infty$ (resp. $+\infty$) les parties contenant $[-\infty, \alpha[$ (resp. $]\alpha, +\infty]$) pour un $\alpha \in \mathbb{R}$.
- 13) On considère le cercle unité $S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}.$ a) L'application $f\colon [0,2\pi[\,\to\,\,S^1\,\,$ est-elle un homéom
 - est-elle un homéomorphisme? $t \mapsto (\cos t, \sin t)$
 - b) Même question pour l'application $g: [0, 2\pi[\to S^1 \setminus \{(1,0)\}. t \to (\cos t, \sin t)]$
- 14) Soit $n \in \mathbb{N}$. On note S^n la sphère unité euclidienne de \mathbb{R}^{n+1} , N = (0, ..., 0, 1) et S = (0, ..., 0, -1)ses deux pôles. À chaque $A \in \mathbb{R}^{n+1}$ on associe l'inversion I_A de pôle A et rapport 2 définie par : $I_A \colon \: \mathbb{R}^{n+1} \backslash \{A\} \: \longrightarrow \: \mathbb{R}^{n+1} \backslash \{A\} \: \text{ où } M' \text{ est déterminé par l'égalité } \: \overrightarrow{AM'} = 2 \: \frac{\overrightarrow{AM}}{\left\|\overrightarrow{AM}\right\|^2}.$
 - a) Démontrer que I_N se restreint en une bijection $p_N: S^n \setminus \{N\} \to \mathbb{R}^n \times \{0\}$. Donner une construction géométrique de l'image M' d'un point M de $\mathbb{R}^{n+1}\setminus\{N\}$ par p_N . Indication : vérifier que $I_A \circ I_A = \mathrm{id}_{\mathbb{R}^{n+1}\setminus\{A\}}$ et utiliser la caractérisation de S^n reliée à [N,S].
 - b) Démontrer que p_N est un homéomorphisme (appelé projection stéréographique de pôle N).

Continuité uniforme

cf. la vidéo http://www.dimensions-math.org/Dim_CH1.htm

- 15) L'application $f: x \mapsto \sin(\frac{1}{x})$ de]0,1] dans \mathbb{R} est-elle uniformément continue?
- 16) a) Soit $f: \mathbb{R} \to \mathbb{R}$ une application uniformément continue. Montrer qu'il existe $u \ge 0$ et $v \ge 0$ tels que : $\forall x \in \mathbb{R} |f(x)| \le u|x| + v$.
 - b) Soit a > 0. L'application $f_a : x \in \mathbb{R} \mapsto |x|^a \in \mathbb{R}$ est-elle uniformément continue?

Distances équivalentes

- 17) On considère sur \mathbb{R}^2 les distances « euclidienne » d_2 et « SNCF » $d_S.$
 - a) L'application $id_{\mathbb{R}^2}$ est-elle continue de (\mathbb{R}^2, d_S) dans (\mathbb{R}^2, d_2) ? de (\mathbb{R}^2, d_2) dans (\mathbb{R}^2, d_S) ?
 - b) Soit $a \in \mathbb{R}^2$. Déduire du a) que l'application $x \mapsto d_2(a, x)$ est continue de (\mathbb{R}^2, d_S) dans \mathbb{R} .
- 18) Soit (E,d) un espace métrique. On pose : $\widetilde{d}(x,y) = \min(d(x,y),1)$ pour $x,y \in E$.
 - a) Montrer que les distances d et d sont topologiquement équivalentes.
 - b) Sont-elles toujours Lipschitz-équivalentes?