MOCNINOVÉ FUNKCIE

Mocninové funkcie s prirodzeným exponentom

Funkcia v tvare $y=x^n$, kde $n\in N$, sa nazýva mocninová funkcia s prirodzeným exponentom.

Definičným oborom je celá množina reálnych čísel R.

- **1.** Ak n je **nepárne**, tak
- a) oborom hodnôt je celá množina reálnych čísel R,
- b) je rastúca,
- c) je nepárna,
- d) nie je ohraničená ani zhora ani zdola,
- e) nemá v žiadnom bode definičného oboru ani maximum ani minimum.

- a) oborom hodnôt je množina $(0,+\infty)$,
- b) je klesajúca na $(-\infty,0)$ a rastúca na $(0,+\infty)$,
- c) je párna,
- d) je zdola ohraničená, zhora nie je ohraničená,
- e) v bode 0 má minimum, maximum nemá.
- ✓ Napr. Načrtnite graf funkcie: a) $y = 0.5x^5$, b) $y = 0.5x^4$.

Mocninové funkcie s celočíselným exponentom

Funkcia v tvare $y = x^m$, kde $m \in Z^-$, sa nazýva *mocninová funkcia s celým záporným exponentom* a možno ju zapísať v tvare $y = x^{-n} = \frac{1}{x^n}$, kde $n \in N$.

Definičným oborom je množina $R - \{0\}$.

Vlastnosti mocninovej funkcie s celým záporným exponentom

- **1.** Ak n je **nepárne**, tak
- a) oborom hodnôt je $R \{0\}$,
- b) je klesajúca na $(-\infty,0)$ a $(0,+\infty)$,
- c) je nepárna,
- d) nie je ohraničená ani zhora ani zdola,
- e) nemá v žiadnom bode definičného oboru ani maximum ani minimum.

- a) oborom hodnôt je množina $(0,+\infty)$,
- b) je rastúca na $(-\infty,0)$ a klesajúca na $(0,+\infty)$,
- c) je párna,
- d) je zdola ohraničená, zhora nie je ohraničená,
- e) nemá v žiadnom bode definičného oboru ani maximum ani minimum.

