8. kapitola

Maticová algebra I – definícia matice, špeciálne matice, maticová algebra, hodnosť matice, inverzná matica

8.1 Definícia matice

V mnohých prípadoch dáta majú štruktúru dvojrozmernej tabuľky, ktorá má *m* riadkov a *n* stĺpcov. Jednoduchý príklad dát tohto druhu je tabuľka, ktorá pre päť študentov označených *A*, *B*, *C*, *D* a E obsahuje známky v bodoch (v rozsahu 0 až 100) z predmetov Matematika, Logika a Programovanie.

			predmet	
		Matematika	Logika	Programovanie
študent	Α	88	98	67
	В	75	91	73
	C	92	81	75
	D	98	100	98
	Е	55	61	82

Riadky tejto tabuľky sú priradené jednotlivým študentom, zatiaľ čo stĺpce sú priradené predmetom. Na priesečníku daného riadku (študent – predmet) je uvedený počet bodov, ktoré získal daný študent pre daný predmet. Ak z tejto tabuľky odstránime redundantný popis riadkov a stĺpcov dostávame matematickú štruktúru, ktorá sa nazýva *matica*

$$A = \begin{pmatrix} 88 & 98 & 67 \\ 75 & 91 & 73 \\ 92 & 81 & 75 \\ 98 & 100 & 98 \\ 55 & 61 & 82 \end{pmatrix}$$
 (8.1)

Definícia 8.1. Nech $I = \{1, 2, ..., m\}$ je množina riadkových indexov a $J = \{1, 2, ..., n\}$ je množina stĺpcových indexov, pričom m a n sú kladné celé čísla, $m, n \ge 1$. Maticou nazývame množinu obsahujúcu $m \cdot n$ čísel (celočíselných, racionálnych alebo reálnych), ktoré sú špecifikované riadkovým (i) a stĺpcovým (j) indexom

$$A = \left\{ A_{ii} \; ; i \in I, j \in J \right\} \tag{8.2a}$$

Typ matice je usporiadaná dvojica kladných prirodzených čísel, ktoré sú rovné mohutnostiam množín indexov I a J

$$t(A) = (m, n) \tag{8.2b}$$

Množinová štruktúra matice A môže byť jednoducho znázornená pomocou tabuľky, ktorá obsahuje m riadkov a n stĺpcov, pričom na priesečníku i-tého riadku a j-tého stĺpca je umiestnený element A_{ij} , pozri obr. 8.1. a formulu (8.1).

Obrázok 8.1. Znázornenie matice *A* pomocou tabuľky, ktorá obsahuje *m* riadkov a *n* stĺpcov.

Niekedy sa používa aj "skratkové" označenie pre maticu $A = (A_{ij})$, pričom sa implicitne predpokladá počet riadkov a stĺpcov tejto matice. Skutočnosť, že matica A má typ t(A) = (m,n) a jej elementy sú reálne čísla, sa niekedy zapisuje

$$A \subseteq \mathbb{R}^m \times \mathbb{R}^n \tag{8.3}$$

Príklad 8.1. Určite typ matice:

(a)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 0 \end{pmatrix}$$
, $t(A) = (2,2)$.

(b)
$$A = \begin{pmatrix} 2 & 4 & 1 \\ -1 & 0 & 2 \end{pmatrix}, t(A) = (2,3).$$

(c)
$$\mathbf{B} = (1 \ 0 \ -3 \ 2), t(\mathbf{B}) = (1,4).$$

(d)
$$X = \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$$
, $t(X) = (3,1)$.

Základná terminológia

- (1) Ak *m=n*, matica sa nazýva *štvorcová*, v opačnom prípade matica sa nazýva *obdĺžniková*.
- (2) Prvky matice A_{ii} sa nazývajú *diagonálne*, všetky diagonálne prvky tvoria *diagonálu* matice, pozri obr. 8.2.
- (3) Ak všetky prvky matice sú nuly, potom matica sa nazýva *nulová matica*.
- (4) Štvorcová matica, ktorá mimo diagonály má nulové prvky a na diagonále má aspoň jeden nenulový prvok sa nazýva *diagonálna matica*.
- (5) Špeciálny prípad diagonálnej matice je jednotková matica (budeme ju značiť E), kde všetky diagonálne elementy sú jednotky

$$A_{ij} = \begin{cases} 1 & (\text{pre } i = j) \\ 0 & (\text{pre } i \neq j) \end{cases}$$

A=

Obrázok 8.2. Znázornenie diagonálnych elementov v matici A, ktorá je typu t(A) = (m,n). Diagonála začína v elemente A_{11} a končí v elemente A_{mm} (ak $m \le n$), alebo v elemente A_{nn} (ak m > n). V prípade, že matica je štvorcová (m = n), potom diagonála začína v ľavom hornom rohu a končí v pravom dolnom rohu matice.

(6) Nech A je matica typu t(A) = (m,n), potom matica **transponovaná** k tejto matici, označená A^T , sa vytvorí z matice A tak, že vzájomne zameníme stĺpce za riadky a naopak, potom $t(A^T) = (n,m)$ (pozri obr. 8.3). Názorne hovoríme, že matica A^T vznikla z matice A jej preklopením o 180° okolo diagonály. Transponovaná matica je ilustrovaná príkladom

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 0 \end{pmatrix}$$

Obrázok 8.3. Schematické znázornenie vzniku transponovanej matice A^T pootočením pôvodnej matice A okolo diagonály.

(7) Štvorcová matica sa nazýva *symetrická* matica, ak platí $A^T = A$. Jednoduchý príklad symetrickej matice je

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & -1 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

(8) Matica A typu (m,n) sa nazýva *trojuholníková matica*, ak pod diagonálou má nulové prvky a na diagonále má nenulové prvky (pozri obr. 8.4)

$$a_{ij} = \begin{cases} 0 & \text{(pre } i > j, \text{ pod diagonálou sú nulové prvky)} \\ \neq 0 & \text{(pre } i = j, \text{ na diagonále sú nenulové prvky)} \\ \in R & \text{(pre } i < j, \text{ nad diagonálou sú l'ubovolné prvky)} \end{cases}$$

Ilustračný príklad trojuholníkovej matice je

$$\begin{pmatrix}
1 & 2 & 1 & 0 & 0 \\
0 & 2 & 1 & 5 & 1 \\
0 & 0 & 2 & 1 & 0
\end{pmatrix}$$

$$A=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Obrázok 8.4. Schematické znázornenie trojuholníkovej matice, ktorej elementy na diagonále sú nenulové a pod diagonálou má len nulové elementy.

(9) Ak A matica typu t(A) = (m,n) má počet riadkov (m) alebo počet stĺpcov (n) rovný 1, potom takáto špeciálna matica sa nazýva *riadkový vektor* (m = 1) resp. *stĺpcový vektor* (n = 1). Príklady riadkovej a stĺpcovej matice sú

$$\boldsymbol{B} = \begin{pmatrix} 0 & -1 & 2 \end{pmatrix}, \ \boldsymbol{A} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Aplikáciou operácie transpozície, stĺpcový vektor sa mení na riadkový vektor a naopak, pre predchádzajúce dve matice dostaneme

$$\boldsymbol{B}^T = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}, \quad \boldsymbol{A}^T = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix}$$

Pomocou riadkových alebo stĺpcových vektorov môžeme vyjadriť každú maticu ako "kompozíciu" týchto elementárnych matíc. Nech A je matica (8.1) typu t(A) = (5,3). Definujme päť riadkových vektorov

$$r_1 = (88 98 67)$$

 $r_2 = (75 91 73)$
 $r_3 = (92 81 75)$
 $r_4 = (98 100 98)$
 $r_5 = (55 61 82)$

a tri stĺpcové vektory

$$\mathbf{s}_{1} = \begin{pmatrix} 88 \\ 75 \\ 92 \\ 98 \\ 55 \end{pmatrix}, \mathbf{s}_{2} = \begin{pmatrix} 98 \\ 91 \\ 81 \\ 100 \\ 61 \end{pmatrix}, \mathbf{s}_{3} = \begin{pmatrix} 67 \\ 73 \\ 75 \\ 98 \\ 82 \end{pmatrix}$$

Pomocou týchto vektorov vyjadríme maticu A (8.1) dvoma alternatívnymi spôsobmi takto

$$\mathbf{A} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \\ \mathbf{r}_5 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 \end{pmatrix}.$$

8.1 Operácie nad maticami

Nad maticami je možné definovať rôzne binárne operácie, pomocou ktorých sa definuje tzv. algebra matíc, ktorá podstatne uľahčuje a zefektívňuje ich aplikácie v matematike.

Definícia 8.2.

(1) Nech matice $A = (A_{ij})$ a $B = (B_{ij})$ sú rovnakého typu, t(A) = t(B) = (m,n). Hovoríme, že tieto matice sa *rovnajú*, A = B, vtedy a len vtedy, ak

$$\forall (i \in I) \forall (j \in J) (A_{ij} = B_{ij})$$
(8.4)

(2) Nech matice $A = (A_{ij})$ a $B = (B_{ij})$ sú rovnakého typu, t(A) = t(B) = (m,n). Hovoríme, že matica B je α -násobkom matice A, $B = \alpha A$, vtedy a len vtedy, ak

$$\forall (i \in I) \forall (j \in J) (B_{ii} = \alpha A_{ii})$$
(8.5)

(3) Nech matice $\mathbf{A} = (A_{ij})$, $\mathbf{B} = (B_{ij})$ a $\mathbf{C} = (C_{ij})$ sú rovnakého typu, $t(\mathbf{A}) = t(\mathbf{B}) = t(\mathbf{C}) = (m,n)$. Hovoríme, že matica \mathbf{C} je súčtom matíc \mathbf{A} a \mathbf{B} , $\mathbf{C} = \mathbf{A} + \mathbf{B}$, vtedy a len vtedy, ak

$$\forall (i \in I) \forall (j \in J) (C_{ij} = A_{ij} + B_{ij})$$
(8.6)

(4) Matica $A = (A_{ij})$ je typu t(A) = (m,k), matica $B = (B_{ij})$ je typu t(B) = (k,n) a matica $C = (C_{ij})$ je typu t(C) = (m,n). Hovoríme, že matica C je **súčinom** matíc A a B, C = AB, vtedy a len vtedy, ak

$$\forall (i \in I) \forall (j \in J) \left(c_{ij} = \sum_{p=1}^{k} a_{ip} b_{pj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ik} b_{kj} \right)$$
(8.7)

Obrázok 8.5. Znázornenie súčinu matíc C = AB pomocu súčinu riadkového vektora matice A a stĺpcového vektora matice B.

Najzložitejšia binárna operácia je súčin dvoch matíc. Definícia (8.7) súčinu dvoch matíc \boldsymbol{A} a \boldsymbol{B} môže byť podstatne zjednodušená použitím riadkových vektorov matice \boldsymbol{A} a stĺpcových vektorov matice \boldsymbol{B} (pozri obr. 8.5). Nech \boldsymbol{r}_i je i-tý riadkový vektor matice \boldsymbol{A} a \boldsymbol{s}_i je j-tý stĺpcový vektor matice \boldsymbol{B} , potom element C_{ij} je zadaný takto

$$C_{ij} = \mathbf{r}_i \cdot \mathbf{s}_j = \begin{pmatrix} A_{i1} & A_{i2} & \dots & A_{ik} \end{pmatrix} \begin{pmatrix} B_{1j} \\ B_{2j} \\ \dots \\ B_{kj} \end{pmatrix} = \sum_{l=1}^k A_{il} B_{lj}$$

$$(8.8)$$

Príklad 8.2. Násobenie matíc

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix},$$

Definujem riadkové vektory matice A a stĺpcové vektory matice B

$$r_1 = (1 \ 2), r_2 = (-1 \ 3)$$

$$\mathbf{s}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, s_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Potom elementy matice C = AB sú určené takto

$$C_{11} = r_1 \cdot s_1 = \begin{pmatrix} 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} + \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} = 1$$

$$C_{12} = r_1 \cdot s_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} = 4$$

$$C_{21} = r_2 \cdot s_1 = \begin{pmatrix} -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} + \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} = 4$$

$$C_{22} = r_2 \cdot s_2 = \begin{pmatrix} -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} + \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} = 6$$

Potom súčin AB je určený

$$AB = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 4 & 6 \end{pmatrix}$$

Podobným spôsobom zostrojíme aj maticu **B**A

$$BA = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ -1 & 8 \end{pmatrix}$$

Vo všeobecnosti platí, že súčin matíc nie je komutatívna operácia (pozri príklad

$$AB \neq BA$$
 (8.9)

Základné vlastnosti súčtu a súčinu matíc možno zosumarizovať takto:

(1) Súčet matíc je komutatívny

8.2)

$$A+B=B+A \tag{8.10a}$$

(2) Súčet a súčin je asociatívny

$$A+(B+C)=(A+B)+C, A(BC)=(AB)C$$
 (8.10b)

(3) Súčin je distributívny vzhľadom k súčtu matíc

$$(A+B)C=AC+BC \tag{8.11a}$$

$$A(B+C)=AB+AC \tag{8.11b}$$

$$(\alpha + \beta)A = \alpha A + \beta A \tag{8.11c}$$

$$\alpha(A+B) = \alpha A + \alpha B \tag{8.11d}$$

(3) Asociatívnosť operácia násobenia vektora číslom vzhľadom k operácii súčin matíc

$$A(\alpha B) = \alpha(AB) \tag{8.12a}$$

$$\alpha(\beta A) = (\alpha \beta)A \tag{8.12b}$$

Algoritmus pre násobenie matíc

Nech matica $\mathbf{A} = (A_{ij})$ je typu $t(\mathbf{A}) = (m,k)$, matica $\mathbf{B} = (B_{ij})$ je typu $t(\mathbf{B}) = (k,n)$ a matica $\mathbf{C} = (C_{ij})$ je typu $t(\mathbf{C}) = (m,n)$. Podľa definície 8.2 elementy matice \mathbf{C} sú určené vzťahom (8.7), ktorý môže slúžiť aj ako algoritmický podklad pre implementáciu programu pre násobenie dvoch matíc (pozri algoritmus 8.1 napísaný v pseudokóde Pascalu).

```
Algoritmus 8.1.
procedure matrix_multiplication(A,B : matrices);
for i:=1 to m do
for j:=1 to n do
begin sum:=0;
    for l:=1 to k do sum:=sum+A[i,l]*B[l,j];
    c[i,j]:=sum;
end;
```

Vypočítať jeden element C_{ij} vyžaduje k súčinov a (k-1) súčtov. Pretože matica C má mn elementov, potom algoritmus vyžaduje kmn súčinov a (k-1)mn súčtov. Môžeme teda konštatovať, že zložitosť algoritmu rastie úmerne n^3 , pričom sa predpokladá, že dimenzie matíc sú si rovné, k = m = n. Je prekvapujúce, že už tak jednoduchý algoritmus akým je tento, môže byť akcelerovaný. Bol navrhnutý algoritmus, ktoré ho zložitosť rastie $n^{\sqrt{7}}$, pretože $\sqrt{7} < 3$, tento nový algoritmus je o trochu efektívnejší ako náš algoritmus 8.1.

Binárne matice

Matica $A \subseteq \{0,1\}^m \times \{0,1\}^n$, ktorá obsahuje len binárne elementy 0-1 sa nazýva binárna matica. Algebraické operácie nad takýmito maticami sú založené na logických spojkách konjunkcie a disjunkcie

$$a \wedge b = \begin{cases} 1 & (\text{ak } a = b = 1) \\ 0 & (\text{ináč}) \end{cases}$$
 (8.13a)

$$a \lor b = \begin{cases} 1 & \text{(ak } a = 1 \text{ alebo } b = 1) \\ 0 & \text{(ináč)} \end{cases}$$
 (8.13b)

Nad binárnými maticami definujeme tri binárne operácie:

(1) Nech $A = (A_{ij})$ a $B = (B_{ij})$ sú binárne matice rovnakého typu t(A) = t(B) = (m,n), potom matica $C = (C_{ij})$ sa nazýva *konjunkcia matíc* A a B, $C = A \wedge B$, jej maticové elementy sú

$$\forall (i \in I) \forall (j \in J) (C_{ij} = A_{ij} \land B_{ij})$$
(8.14)

(2) Nech $A = (A_{ij})$ a $B = (B_{ij})$ sú binárne matice rovnakého typu t(A) = t(B) = (m,n), potom matica $C = (C_{ij})$ sa nazýva *disjunkcia matíc* A a B, $C = A \vee B$, jej maticové elementy sú

$$\forall (i \in I) \forall (j \in J) (C_{ij} = A_{ij} \vee B_{ij})$$
(8.15)

(3) Nech binárna matica $A = (A_{ij})$ je typu t(A) = (m,k), binárna matica $B = (B_{ij})$ je typu t(B) = (k,n) a binárna matica $C = (C_{ij})$ je typu t(C) = (m,n). Hovoríme, že matica C je **súčinom** matíc $C = A \otimes B$, jej maticové elementy sú

$$\forall (i \in I) \forall (j \in J) (C_{ij} = (A_{i1} \land B_{1j}) \lor (A_{i2} \land B_{2j}) \lor \dots \lor (A_{ik} \land B_{kj}))$$
(8.16)

Pretože súčin binárnych matíc je asociatívna operácia, môžeme definovať r-tú mocninu štvorcovej binárnej matici $A = (A_{ij})$, kde r je kladné celé číslo r > 1

$$A^r = \underbrace{A \otimes A \otimes ... \otimes A}_{r-kr\acute{a}t}$$
 (8.17)
operácie nad binárnymi maticami. Binárna matica môže byť

Ako interpretovať operácie nad binárnymi maticami. Binárna matica môže byť chápaná ako maticová reprezentácia binárnej relácie $R \subseteq X \times X$, kde $X = \{x_1, x_2, ..., x_n\}$. Element $A_{ij} \neq 0$ implikuje, že usporiadaná dvojica $(x_i, x_j) \in R$ (pozri kapitolu 3.X). Jednoduchými úvahami je možné dokázať, že matica $A^2 = A \otimes A$ je reprezentáciou kompozície $R^2 = R \circ R$. Formulu (8.16) prepíšeme do tvaru

$$\forall (i \in I) \forall (j \in J) \Big(C_{ij} = \max_{l} \min \Big\{ A_{il}, B_{lj} \Big\} \Big)$$
(8.18)

kde sme použili formule $a \wedge b = min\{a,b\}$ a $a \vee b = max\{a,b\}$ (pozri kapitolu 11 v učebnom texte $Matematická\ logika\ [xx]$). Ak porovnáme (8.18) s definíciou kompozície dvoch binárnych relácií (3.8), dospejeme k záveru, že definícia súčinu binárnej matice (8.16) je formálne totožná s kompozíciou $R^2 = R \circ R$. Pomocou grafovej interpretácie relácie R a jej mocnín (pozri obr. 8.6), môžeme potom alternatívne interpretovať n-té mocniny matice A tak, že ak má jednotkový element v pozícii (i,j), potom existuje postupnosť n hrán z i-tého vrcholu grafu do j-tého vrcholu grafu.

Obrázok 8.6. Grafová reprezentácia relácie R (diagram A) a jej mocnín R^2 (diagram B), R^3 (diagram C), R^4 (diagram D) a R^5 (diagram E). Diagramy B – E obsahujú aj rekurentnú tvorbu relácií R^n z predchádzajúceho výsledku R^{n-1} .

Príklad 8.3. Nech A a B sú binárne matice

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Zostrojte súčin $A \otimes B$.

$$\mathbf{A} = \begin{pmatrix} (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\ (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \end{pmatrix} \\
\begin{pmatrix} 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \\ 0 \lor 0 & 0 \lor 1 & 0 \lor 1 \\ 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Príklad 8.4. Zostrojte všetky mocniny matice

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

V prvom kroku spočítame A^2

$$A^2 = A \otimes A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Postupne v ďalších krokoch spočítame vyššie mocniny matice7

$$A^{3} = A^{2} \otimes A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
$$A^{4} = A^{3} \otimes A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$A^{5} = A^{4} \otimes A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Poznamenajme, že tieto mocniny matice *A* môžeme jednoducho určiť pomocou grafovej interpretácie relácie R, pozri obr. 8.6. Potom vyššie mocniny matice *A* sú určené

$$\forall (n \ge 5) \left(A^n = A^5 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right)$$

8.2 Hodnost' matice

Hodnosť matice A, je celé kladné číslo označené r(A), ktoré patrí medzi dôležité charakteristiky matíc. Než pristúpime k definícii tejto veličiny, zavedieme ďalší dôležitý pojem lineárnej závislosti/nezávislosti stĺpcových (riadkových vektorov). Pre jednoduchosť budeme tieto úvahy uskutočňovať pre stĺpcové vektory, automaticky budú platiť aj pre riadkové vektory, a naopak.

Definícia 8.3. Nech a_1 , a_2 , ..., a_n je n stĺpcových vektorov z \mathbb{R}^p (t. j. vektory majú p riadkov, alebo p elementov). Hovoríme, že tieto vektory sú *lineárne závislé* vtedy a len vtedy, ak existujú také nenulové koeficienty (čísla) α_1 , α_2 ,..., α_n , aby ich lineárna kombinácia bola rovná nulovému vektoru θ

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_n \boldsymbol{a}_n = \boldsymbol{0} \tag{8.19}$$

Veta 8.1. Ak stĺpcové vektory a_1 , a_2 , ..., a_n sú lineárne závislé, potom aspoň jeden z nich môžeme vyjadriť ako lineárnu kombináciu ostatných vektorov, napr.

$$\mathbf{a}_{1} = \beta_{2}\mathbf{a}_{2} + \dots + \beta_{n}\mathbf{a}_{n} \tag{8.20}$$

Dôkaz tejto vety je veľmi jednoduchý. Na základe definície 8.3 z predpokladu lineárnej závislosti vektorov a_1 , a_2 , ..., a_n vyplýva, že aspoň jeden koeficient je nenulový. Predpokladajme, že $\alpha_1 \neq 0$, potom (8.19) môžeme upraviť do tvaru

$$\boldsymbol{a}_1 = -\frac{\alpha_2}{\alpha_1} \boldsymbol{a}_2 - \dots - \frac{\alpha_n}{\alpha_1} \boldsymbol{a}_n$$

Týmto sme dokázali, že z predpokladu $\alpha_1 \neq 0$ vyplýva (8.20), čím je dôkaz zavŕšený.

Negáciou definície 8.3 dostaneme dôležitú vetu, ktorá charakterizuje lineárne nezávislé vektory.

Veta 8.2. Stĺpcové vektory a_1 , a_2 , ..., a_n sú *lineárne nezávislé* vtedy a len vtedy, ak ich lineárna kombinácia poskytuje nulový vektor $\boldsymbol{\theta}$

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \dots + \alpha_n \boldsymbol{a}_n = \boldsymbol{0} \tag{8.21}$$

len pre nulové koeficienty, $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Príklad 8.5. Majme trojicu stĺpcových vektorov

$$\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{a}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Ľahko dokážeme, že tieto vektory sú lineárne nezávislé. Uvažujme podmienku (8.20) z vety 8.2.

$$\alpha_1 \boldsymbol{a}_1 + \alpha_2 \boldsymbol{a}_2 + \alpha_3 \boldsymbol{a}_3 = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \boldsymbol{\theta} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Porovnaním posledných vektorov dostaneme, že $\alpha_1 = \alpha_2 = \alpha_3 = 0$. To znamená, že táto lineárna kombinácia sa rovná nulovému stĺpcovému vektoru len pre nulové koeficienty, potom podľa vety 8.2 vektory sú lineárne nezávislé.

Definícia 8.4. Hovoríme, že matica A má stĺpcovú (riadkovú) hodnosť vtedy a len vtedy, ak

má maximálne *k* lineárne nezávislých stĺpcových (riadkových) vektorov.

$$h_{s(r)}(A) = k \tag{8.22}$$

Veta 8.3. Pre každú maticu A typu t(A) = (m,n) riadková a stĺpcová hodnosť sú rovnaké, pričom hodnosť je zdola ohraničená 1 a zhora ohraničená minimálnou hodnotou m a n

$$1 \le h_s(A) = h_r(A) = h(A) \le \min\{m, n\}$$
 (8.23)

Príklad 8.6. Majme maticu

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Riadkové vektory tejto matice majú tvar

$$\mathbf{r}_1 = (1 \ 1 \ 1), \mathbf{r}_2 = (0 \ 1 \ 1), \mathbf{r}_3 = (0 \ 0 \ 1)$$

Študujme lineárnu kombináciu

$$\alpha_1(1 \ 1 \ 1) + \alpha_2(0 \ 1 \ 1) + \alpha_3(0 \ 0 \ 1) = (0 \ 0 \ 0)$$

Koeficienty sú určené rovnicami

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
$$\alpha_2 + \alpha_3 = 0$$
$$\alpha_3 = 0$$

Postupným riešením tohto systému dostaneme riešenie $\alpha_1 = \alpha_2 = \alpha_3 = 0$. To znamená, že riadkové vektory sú lineárne nezávislé, maximálny počet lineaárne nezávislých vektorov je 3, t.j. riadková hodnosť matice je 3.

Stĺpcové vektory matice A sú

$$\mathbf{s}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{s}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{s}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Lineárna kombinácia rovná nulovému stĺpcovému vektoru

$$\beta_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \beta_3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Koeficienty sú určené rovnicami

$$\beta_1 + \beta_2 + \beta_3 = 0$$
$$\beta_2 + \beta_3 = 0$$
$$\beta_3 = 0$$

Riešením tohto systému dostaneme $\beta_1 = \beta_2 = \beta_3 = 0$. To znamená, že stĺpcové vektory sú lineárne nezávislé, čiže matica ma stĺpcovú hodnosť 3.

Týmto sme dokázali, že matica A má stĺpcovú a riadkovú hodnosť 3, čiže hodnosť matice je 3, h(A) = 3.

Definícia 8.5. Hovoríme, že matice A a B sú *ekvivalentné*, $A \sim B$, vtedy a len vtedy, ak majú rovnakú hodnosť, h(A) = h(B).

Nech $\mathcal A$ je množina všetkých možných matíc. Túto množinu môžeme rozdeliť na disjunktné podmnožiny

$$A = A_1 \cup A_2 \cup \cup A_i \cup ...$$

kde A_i je množina, ktorá obsahuje matice s hodnosťou i.

Veta 8.4. Nech matica B vznikne z matice A pomocou jednej z týchto 4 operácií:

- (1) vzájomnou zámenou poradia dvoch riadkov (stĺpcov),
- (2) vynásobením riadku (stĺpca) nenulovým číslom,
- (3) pripočítaním riadku (stĺpca) k inému riadku (stĺpcu),
- (4) vynechaním riadku (stĺpca), ktorý buď obsahuje len nulové prvky alebo je lineárnou kombináciou ostatných riadkov (stĺpcov).

Potom matice A a B sú ekvivalentné, h(A) = h(B).

Jednotlivé kroky z tejto vety budeme ilustrovať pomocou matice $A = (s_1, s_2, ..., s_n)$, kde s_i je i-tý stĺpcový vektor:

(1) Zámena poradia dvoch stĺpcov

$$A = (s_1, ..., s_i, ..., s_i, ..., s_n) \rightarrow B = (s_1, ..., s_i, ..., s_i, ..., s_n)$$

(2) Stĺpec je vynásobený číslom α≠0

$$A = (s_1, ..., s_i, ..., s_n) \rightarrow B = (s_1, ..., \alpha s_i, ..., s_n)$$

(3) Vynechaním stĺpca, ktorý je buď lineárnou kombináciou ostatných stĺpcov alebo je nulový

$$A = (s_1, ..., s_{i-1}, s_i, s_{i+1j}, ..., s_n) \rightarrow B = (s_1, ..., s_{i-1}, s_{i+1j}, ..., s_n)$$

(4) K stĺpcu pripočítame iný stĺpec

$$A = (s_1, ..., s_i, ..., s_i, ..., s_n) \rightarrow B = (s_1, ..., s_i, ..., s_i + s_i, ..., s_n)$$

Podobné znázornenie elementárnych operácií môže byť vykonané aj pre riadkové vektory matice A.

Dôkaz vety 8.4 vyplýva priamo zo skutočnosti, že 4 povolené operácie nad riadkami alebo stĺpcami matice nemenia jej hodnosť, t.j. zachovávajú počet lineárne nezávislých riadkových a aj stĺpcových vektorov.

Veta 8.5. Trojuholníková matica
$$A$$
 typu $t(A)=(m,n)$, pričom $m \le n$, má hodnosť $h(A)=m$ (8.24)

Pri dôkaze tejto vety pre jednoduchosť predpokladajme, že trojuholníková matica A má rovnaký počet riadkov a stĺpcov, m = n. Vyjadríme ju pomocou riadkových vektorov

$$\mathbf{A} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \dots \\ \mathbf{r}_m \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ 0 & A_{22} & \dots & A_{2m} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{mm} \end{pmatrix}$$

Pripomeňme, že jej diagonálne elementy $A_{ii} \neq 0$. Študujme lineárnu kombináciu jej riadkových vektorov

$$\alpha_1 \mathbf{r}_1 + \alpha_2 \mathbf{r}_2 + \dots + \alpha_m \mathbf{r}_m = \mathbf{0}$$

Koeficienty sú určené systémom rovníc

$$\alpha_1 A_{1m} = 0$$

$$\alpha_1 A_{12} + \alpha_2 A_{22} = 0$$
.....

$$\alpha_1 A_{1m} + \alpha_2 A_{2m} + \dots + \alpha_m A_{mm} = 0$$

Pretože, ako už bolo poznamenané, diagonálne elementy trojuholníkovej matice sú nenulové, $A_{ii} \neq 0$, systém môžeme postupne riešiť, dostaneme

$$\alpha_1 = \alpha_2 = \dots = \alpha_m = 0$$

Týmto sme dokázali, že riadky trojuholníkovej matice sú lineárne nezávislé, čiže platí h(A) = m.

Veta 8.5 v kombinácii s vetou 8.4 umožňuje implementáciu efektívneho algoritmu pre stanovenie hodnosti matice. Pre danú maticu *A* budeme pomocou vety 8.4 vykonávať také elementárne transformácie (ktoré nemenia jej hodnosť), aby výsledná matica bola trojuholníková, potom pomocou vety 8.5 hodnosť výslednej matice sa rovná počtu riadkov.

Príklad 8.7. Nech matica A má tvar

$$A = \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

1. krok. Vykonáme také elementárne transformácie, ktoré budú viesť k zániku nenulového prvku 2 v prvom stĺpci pod diagonálou. Tretí riadok vynásobíme číslom -1 a potom k tomuto riadku pripočítame prvý riadok

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ -2 & -1 & 0 & -2 & -1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & -2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

2. krok. Vykonáme vynulovanie elementov pod diagonálou v druhom stĺpci. Štvrtý riadok vynásobíme číslom -1 a potom k tretiemu a k štvrtému riadku pripočítame druhý riadok

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & -2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & -2 & 1 \\ 0 & -1 & 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

3. krok. V tomto poslednom kroku vynecháme štvrtý riadok, ktorý obsahuje len nulové prvky

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 1 \end{pmatrix}$$

Postupnými elementárnymi úpravami sme pretransformovali pôvodnú maticu A na trojuholníkovú maticu, ktorá obsahuje tri riadky, potom

$$h(A) = 3$$

8.3 Inverzná matica

Nech A je štvorcová matica typu t(A) = (n,n), problém existencie takej matice B, pre ktorú platí AB = BA = E, kde E je jednotková matica typu t(A) = (n,n), je zaručený nie pre ľubovolnú štvorcovú maticu, ale len pre určité špeciálne matice, ktoré nazývame regulárne matice.

Definícia 8.6. Štvorcová matica A, typu t(A) = (n,n), sa nazýva **regulárna** vtedy a len vtedy, keď je hodnosť h(A) = n.

Z definície regulárnej matice plynie, že tak stĺpcové ako aj riadkové vektory sú lineárne nezávislé. Môžeme teda parafrázovať definíciu regulárnej matice takto: štvorcová matica A je regulárna vtedy a len vtedy, ak jej riadkové (stĺpcové) vektory sú lineárne nezávislé. Tento pohľad na regulárnosť matice A nám bude nápomocný, keď budeme hľadať pomocou determinantov (pozri 9. kapitolu) jednoduché algebraické kritérium regulárnosti.

Definícia 8.7. Ak je štvorcová matica A regulárna, potom existuje *inverzná matica*, označená A^{-1} , ktorá spĺňa podmienku $AA^{-1} = A^{-1}A = E$.

Definícia inverznej matice v mnohom pripomína definíciu 3.14, kde sa požaduje, aby funkcia bola jedno-jednoznačná. Možno konštatovať, že analógiou k tejto podmienke v teórii matíc je podmienka regulárnosti.

Veta 8.6. Vzhľadom k regulárnej matici A existuje práve jedna inverzná matica A^{-1} .

Tento dôkaz jednoznačnosti inverznej matice vykonáme nepriamo. Budeme predpokladať, že vzhľadom k regulárnej matici A existujú dve inverzné matice označené B a C

$$AB = BA = E \tag{(4)}$$

$$AC = CA = E \tag{(*)}$$

Zo vzťahu (\spadesuit) vyberieme BA = E, ktorý vynásobíme zľava maticou C, dostaneme

$$BA = E \Rightarrow B \underbrace{AC}_{E} = \underbrace{EC}_{C} \Rightarrow \underbrace{BE}_{B} = C \Rightarrow B = C$$

Veta 8.7. Inverzná matica vyhovuje vzťahom

$$\left(A^{-1}\right)^{-1} = A \tag{8.25a}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$
 (8.25b)

Vzťah (8.25a) vyplýva priamo z definičnej podmienky $AA^{-1} = A^{-1}A = E$, ktorú môžeme interpretovať tak, že matica A je inverznou maticou k matici A^{-1} , t. j. musí platiť $\left(A^{-1}\right)^{-1} = A$.

Vzťah (8.25b) dokážeme tak, že počítame $(AB)^{-1}AB$ a taktiež aj $AB(AB)^{-1}$ pomocou pravej strany (8.25b), v obidvoch prípadoch dostaneme rovnosť

$$(AB)^{-1}AB = B^{-1}\underbrace{A^{-1}A}_{E}B = \underbrace{B^{-1}B}_{E} = E$$

$$AB(AB)^{-1} = A\underbrace{BB^{-1}}_{E}A^{-1} = \underbrace{AA^{-1}}_{E} = E$$

Týmto sme dokázali, že súčin $\mathbf{B}^{-1}\mathbf{A}^{-1}$ dáva výsledky aké by dávala matica $(\mathbf{A}\mathbf{B})^{-1}$. Pretože podľa vety 8.6 inverzná matica existuje jednoznačne, tak potom relácia (8.24b) určuje inverznú maticu jednoznačne.

Definícia 8.7 nám len zabezpečuje existenciu inverznej matice A^{-1} vzhľadom k regulárnej matici A, nešpecifikuje jej konštrukciu z matice A. Zostávajúcu časť tejto kapitole venujeme metóde konštrukcie inverznej matice, ktorá je veľmi podobná metóde stanovenia hodnosti matice.

Budeme študovať dvojicu matíc (A|E), nad maticami tejto dvojice budeme vykonávať postupnosť elementárnych operácií z vety 8.4 tak, že vybraná elementárna operácia je súčasne aplikovaná na obe matice, pričom sa snažíme používať také elementárne operácie, ktoré transformujú ľavú maticu A na jednotkovú maticu E. Pretože každá elementárna transformácia aplikovaná na nejakú maticu X je vyjadriteľná pomocou súčinu matíc E, formálne

$$X \xrightarrow{ele.transf.} X' = BX$$

Potom dvojicu (A|E) transformujeme postupnosťou n elementárnych transformácií $B_1, B_2, ..., B_n$, dostaneme

$$(A|E) \rightarrow (B_n...B_2B_1A|B_n...B_2B_1E)$$

Ako už bolo povedané, tieto elementárne transformácie sú vykonané s cieľom transformácie matice \boldsymbol{A} na jednotkovú maticu

$$\underbrace{\boldsymbol{B}_{n}...\boldsymbol{B}_{2}\boldsymbol{B}_{1}}_{\boldsymbol{A}^{-1}}\boldsymbol{A} = \boldsymbol{E} \Rightarrow \boldsymbol{A}^{-1} = \boldsymbol{B}_{n}...\boldsymbol{B}_{2}\boldsymbol{B}_{1}$$

Potom dostaneme

$$(A|E) \rightarrow \left(\underbrace{B_n...B_2B_1A}_{E}\right|\underbrace{B_n...B_2B_1E}_{A^{-1}}\right) \rightarrow (E|A^{-1})$$

Postupnosť elementárnych transformácií rozdelíme na dve etapy:

- 1. etapa nulovanie maticových elementov pod diagonálou (podobne ako v metóde stanovenia hodnosti matice),
- 2. etapa nulovanie maticových elementov nad diagonálou,
- 3. etapa násobenie riadkov číslami tak, aby na diagonále zostali len jednotkové elementy.

V prípade, že táto postupnosť nie je vykonateľná (napr. dostaneme nulový riadok), procedúru transformácie ukončíme, pretože matica nie je regulárna (teda ani invertibilná).

Príklad 8.8. Nájdite inverznú maticu k matici

$$A = \begin{pmatrix} 2 & 4 \\ 1 & 4 \end{pmatrix}$$

Zostrojíme dvojicu matíc

$$X_0 = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}$$

V prvej etape vykonáme takú elementárnu operáciu, ktorá nuluje element pod diagonálou, vykonáme elementárnu operáciu ep_1 , že druhý riadok vynásobíme -2 a k takto upravenému druhému riadku pripočítame prvý riadok

$$ep_1: \mathbf{r}_2 = -2\mathbf{r}_2 + \mathbf{r}_1$$

Dvojica X_0 sa pretransformuje na X_1

$$X_1 = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 0 & -4 & 1 & -2 \end{pmatrix}$$

V druhej etape budeme nulovať elementy nad diagonálou, vykonáme elementárnu operáciu ep_2 , že k prvému riadku pripočítame druhý riadok

$$ep_2: \mathbf{r}_1 = \mathbf{r}_1 + \mathbf{r}_2$$

Dvojica X_1 sa pretransformuje na X_2

$$X_2 = \begin{pmatrix} 2 & 0 & 2 & -2 \\ 0 & -4 & 1 & -2 \end{pmatrix}$$

V tretej etape prvý riadok vynásobíme 1/2 a druhý riadok vynásobíme −1/4, dostaneme finálnu dvojicu

$$X_{3} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1/4 & 1/2 \\ & & & A^{-1} \end{pmatrix}$$

Potom inverzná matica má tvar

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ -1/4 & 1/2 \end{pmatrix}$$

Ľahko sa presvedčíme, že táto matica je inverzná

$$AA^{-1} = \begin{pmatrix} 2 & 4 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1/4 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

$$A^{-1}A = \begin{pmatrix} 1 & -1 \\ -1/4 & 1/2 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Cvičenia

Cvičenie 8.1. Stanovte typ matice a jej názov

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$
,
(b) $\begin{pmatrix} -2 & 1 & 0 & 1 \\ 1 & 2 & -1 & 1 \end{pmatrix}$,
(c) $\begin{pmatrix} 1 & 2 & 1 & -1 \end{pmatrix}$

$$(d) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Cvičenie 8.2. Nájdite hodnoty a, b, c a d tak, aby platilo

$$\begin{pmatrix} 3a & -b \\ c & 2d+1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$$

Cvičenie 8.3. Rozhodnite o pravdivosti týchto tvrdení:

(a) $\{A; A \text{ je jednotková matica}\}\subset \{A; A \text{ je symetrická matica}\},$

(b) $\{A; A \text{ je symetrick\'a matica}\}\subset \{A; A \text{ je diagon\'a ln a matica}\},$

(c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \{A; A \text{ je jednotková matica}\},$

(d) $\{A; A \text{ je štvorcová matica}\}\subset \{A; A \text{ je diagoná ln a matica}\},$

(e) $\{A; A \text{ je jednotková matica}\}\subset \{A; A \text{ je diagoná ln a matica}\}$.

Cvičenie 8.4.

(a) Zostrojte matice $\mathbf{A} = (A_{ij})$, $\mathbf{B} = (B_{ij})$ a $\mathbf{C} = (C_{ij})$, typu (3,2), pre ktoré platí $A_{ii} = i - j$, $B_{ii} = i - 2j$, $C_{ii} = 4i + 3j$.

(b) Zostrojte maticu $A = (A_{ij})$ typu (4,4), ktorá je symetrická a má tieto vlastnosti: $A_{ii} = i^2$, $A_{13} = A_{24} = 0$, $A_{14} = 3$, $A_{12} = A_{23} = A_{11} + A_{22}$, $A_{34} = A_{23} - A_{14}$.

(c) Zostrojte maticu, ktorá je súčasne riadkovým a stĺpcovým vektorom.

(d) Nájdite x a y pre maticu

$$A = (A_{ij}) = \begin{pmatrix} x+y & 10 \\ 2x-y & 4 \end{pmatrix}$$

pre
$$A_{11} = A_{22}$$
 a $A_{12} = A_{21}/2$.

Cvičenie 8.5. Zostrojte transponované matice k maticiam

(a)
$$\begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}$$
, (b) $\begin{pmatrix} -1 & 1 & 2 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$, (d) $\begin{pmatrix} 4 & 1 \\ 0 & -1 \\ 0 & 1 \\ 2 & 2 \end{pmatrix}$.

Cvičenie 8.6. Pre matice

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 2 & 2 \end{pmatrix}$$

vypočítajte matice (ak existujú)

- (a) 2A,
- (b) A + B,
- (c) A+C,
- (d) AC,
- (e) CB,

(f) $\boldsymbol{C}^T \boldsymbol{B}$.

Cvičenie 8.7. Pre maticu $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}$ riešte rovnicu

$$2X + B = E$$

kde X je matica typu (2,2) a E je jednotková matica typu (2,2).

Cvičenie 8.9. Pre riadkové vektory \boldsymbol{u} a \boldsymbol{v} spočítajte $\boldsymbol{u}\boldsymbol{v}^T$ (ak existuje) pre

(a)
$$\mathbf{u} = \begin{pmatrix} 1 & 2 & 0 & -1 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 0 & -2 & 0 & 2 \end{pmatrix},$$

(b)
$$u = (1 \ 2 \ 1), v = (-1 \ 1 \ 2),$$

(c)
$$\mathbf{u}^T = (1 \ 0 \ -1), \ \mathbf{v} = (-1 \ 1 \ 2).$$

Cvičenie 8.10. Dokážte pre $u = (u_1 \ u_2 \ \dots \ u_n)$ platí $uu^T \ge 0$, pričom rovnosť platí len pre nulový vektor.

Cvičenie 8.11. Pre každú dvojicu matíc A a B určite ich typ a či súčin matíc existuje, ak existuje, tak ho vypočítajte.

(a)
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 2 \\ 5 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 0 \\ 1 & 2 \\ 3 & -1 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 0 \\ 1 & 2 \\ 3 & -1 \end{pmatrix}$.
(c) $A = \begin{pmatrix} 1 & 4 & 2 & -5 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 4 & 1 \\ 3 & -3 \\ -1 & -1 \end{pmatrix}$.

Cvičenie 8.12. Nech $A = \begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix}$ a $B = \begin{pmatrix} 4 & 1 \\ 2 & -1 \end{pmatrix}$, vypočítajte

- (a) A + 2B,
- (b) 3A 6B,
- (c) AB,
- (d) A^2 ,
- (e) BA,
- (f) B(AB),
- (g) (AB)A,
- (h) A(A-B),
- (i) $A^T B$,
- $(i) (AB)^T$

Cvičenie 8.13. Nech
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 a $\mathbf{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ sú diagonálne matice, vypočítajte

 \boldsymbol{AB} , \boldsymbol{BA} , \boldsymbol{A}^2 a \boldsymbol{B}^2 .

Cvičenie 8.14. Ukážte, že ak A štvorcová matica, potom $A+A^T$ je symetrická matica.

Cvičenie 8.15. Dokážte tieto vlastnosti transponovanej matice:

(a)
$$\left(\boldsymbol{A}^{T}\right)^{T} = \boldsymbol{A}$$

(b)
$$(A + B)^T = A^T + B^T$$
,

(c)
$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$
.

Cvičenie 8.16. Stanovte hodnosť matíc

(a)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
,

(b)
$$A = \begin{pmatrix} 2 & 0 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

(c) pre ktoré hodnoty p, má matica $A = \begin{pmatrix} 1 & 2 \\ p & -1 \end{pmatrix}$ hodnosť 1,

(d)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ 0 & 2 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
,

(e) pre ktoré hodnoty parametrov p a q má matica $A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 2 \\ p & 1 & 1 & 1 \\ q & 1 & -3 & 3 \end{pmatrix}$ hodnosť 2.

Cvičenie 8.17. Nájdite inverznú maticu (ak existuje) k matici:

(a)
$$A = \begin{pmatrix} 2 & 2 & -6 \\ -1 & 1 & 2 \\ -3 & 5 & 3 \end{pmatrix}$$
,

(b)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 4 & 1 & 5 \end{pmatrix}$$
,

(c)
$$A = \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} -4 & 8 \\ -1 & 3 \end{pmatrix}$$
,

(e)
$$A = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$$
,

$$(f) \ A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix},$$

(g)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

(g)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
,
(h) $A = \begin{pmatrix} 2 & 3 & -2 \\ 1 & 2 & -1 \\ -2 & 1 & 0 \end{pmatrix}$.

Cvičenie 8.18. Dokážte matematickou indukciou formulu $(A_1 A_2 ... A_n)^{-1} = A_n^{-1} ... A_2^{-1} A_1^{-1}$

Cvičenie 8.19. Nech A, B a C sú štvorcové matice rovnakého typu (n,n). Dokážte, že ak A je regulárna matica, potom zo vzťahu AB = AC vyplýva B = C.

Cvičenie 8.20. Ukážte, že ak A a B sú štvorcové rovnakého typu (n,n) a A je regulárna matica, potom $(A^{-1}BA)^2 = A^{-1}B^2A$.

Cvičenie 8.21. Ukážte, že ak A a B sú štvorcové rovnakého typu (n,n) a A je regulárna matica, potom $(A^{-1}BA)^n = A^{-1}B^nA$, každé kladné celé číslo n.

Cvičenie 8.22. Nech A je regulárna matica, ukážte, že $(A^n)^{-1} = (A^{-1})^n$

Cvičenie 8.23. Nech matice A a B majú blokovú štruktúru

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 2 & 1 & 3 \\ 1 & -3 & 0 & -2 & 3 \end{pmatrix} \mathbf{a} \quad \mathbf{B} = \begin{pmatrix} 1 & -1 & 4 \\ 0 & 3 & -1 \\ \hline 3 & -2 & 0 \\ -1 & 4 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

Potom ich formálne môžeme písať v tvare

$$A = (A_1 \quad A_2)$$
 a $B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$

Vypočítajte AB a ukážte

$$AB = (A_1B_1 + A_2B_3 \quad A_1B_2 + A_2B_4)$$

Ukážte taktiež

$$\boldsymbol{B}^T = \begin{pmatrix} \boldsymbol{B}_1^T & \boldsymbol{B}_3^T \\ \boldsymbol{B}_2^T & \boldsymbol{B}_4^T \end{pmatrix}$$

Cvičenie 8.24. Nech $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ a $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ sú binárne matice, zostrojte

- (a) $A \wedge B$,
- (b) $A \vee B$,
- (c) $A \otimes B$.

Cvičenie 8.25. Nech $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ a $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ sú binárne matice, zostrojte

- (a) $\mathbf{A} \wedge \mathbf{B}$,
- (b) $A \vee B$,
- (c) $A \otimes B$.

Cvičenie 8.26. Nech A je binárna matica, dokážte $A \wedge A = A$ a $A \vee A = A$.