Customer Segmentation Unsupervised Learning Final

Name: Alyson Riley

Date: Spring 1-2024

Project Overview

Customer segmentation analysis is an important tool for businesses to align their strategy and improve their targets for current and future customers

Problem Statement

Performing customer segmentation is the first step in the process of creating marketing personas. Targetable user stories from personas allows businesses to tailor the strategy to drive sales.

Primary focus: Mining transactional data and obtaining a segmentation model through:

- Exploratory Data Analysis
- Data Cleaning & Feature Engineering
- Clustering

Related Work

Customer segmentation analysis is a common application of unsupervised learning – lots of examples in the literature

Many methods I will be using are well documented online with many examples spanning applications:

- PCA
- K-means clustering
- Agglomerative clustering
- DBSCAN

For this data:

- Univariate analysis
- Bivariate analysis

Ref: Singh, S. (2021) Customer-Personality Analysis + Segmentation. Available at:

https://www.kaggle.com/code/sonalisingh1411/customer-personality-an alysis-segmentation (Accessed: 18 September 2023).

Data Processing

Check data types

Deal with null values

1	Year_Birth	2240	non-null	int64
2	Education	2240	non-null	object
3	Marital_Status	2240	non-null	object
4	Income	2216	non-null	float6
5	Kidhome	2240	non-null	int64
6	Teenhome	2240	non-null	int64
7	Dt_Customer	2240	non-null	object
8	Recency	2240	non-null	int64
9	MntWines	2240	non-null	int64
10	MntFruits	2240	non-null	int64
11	MntMeatProducts	2240	non-null	int64
12	MntFishProducts	2240	non-null	int64
13	MntSweetProducts	2240	non-null	int64
14	MntGoldProds	2240	non-null	int64
15	NumDealsPurchases	2240	non-null	int64
16	NumWebPurchases	2240	non-null	int64
17	NumCatalogPurchases	2240	non-null	int64
18	NumStorePurchases	2240	non-null	int64
19	NumWebVisitsMonth	2240	non-null	int64
20	AcceptedCmp3	2240	non-null	int64
21	AcceptedCmp4	2240	non-null	int64
22	AcceptedCmp5	2240	non-null	int64
23	AcceptedCmp1	2240	non-null	int64
24	AcceptedCmp2	2240	non-null	int64
25	Complain	2240	non-null	int64
26	<pre>Z_CostContact</pre>	2240	non-null	int64
27	Z_Revenue	2240	non-null	int64
28	Response	2240	non-null	int64
typ	es: float64(1), int64	(25),	object(3)	
iemo	ry usage: 507.6+ KB			

Data Processing

Pair plot of select variables

There are some outliers in income & age

Remove the outliers:

```
# drop outliers by setting a cap on Age and Income

df = df[(df['Age'] < 100)]

df = df[(df['Income'] < 250000)]

print("Total number of data points after dropping outliers:", len(df))

✓ 0.0s</pre>
```

Total number of data points after dropping outliers: 2236

Data Processing

Feature engineering

Combine several variables into ones that will be easier to model or more informative

```
# create a variable for age
df['Age'] = 2024-df['Year Birth']
# create 'Single' and 'Not Single' from Marital Status
df['Relationship']=df['Marital Status'].replace({'Married':'not single', 'Together':'not single', 'Single':'single', 'Divorced':'single', 'YOLO':'single', 'Absurd':'single'
# create 'Children' indicating total children living in the household
df['Children']=df['Kidhome']+df['Teenhome']
# create 'Family Size' for total members in the householde
df['Family Size'] = df['Relationship'].replace({'single': 1, 'not single':2})+ df['Children']
# create 'Parent' pertaining parenthood
df['Parent'] = np.where(df.Children> 0, 1, 0)
# create 'Spending' indicating total spent on different categories
df['Spending'] = df['MntWines'] + df['MntFruits'] + df['MntMeatProducts'] + df['MntFishProducts'] + df['MntSweetProducts'] + df['MntGoldProds']
# create 'Num Purchases' indicating total purchases across locations
df['Num Purchases'] = df['NumWebPurchases'] + df['NumCatalogPurchases'] + df['NumStorePurchases'] + df['NumDealsPurchases']
# create 'AcceptedCmp' totaling the number of accepted promotionals
df['AcceptedCmp1'] + df['AcceptedCmp2'] + df['AcceptedCmp3'] + df['AcceptedCmp4'] + df['AcceptedCmp5'] + df['Response']
# change the names of the levels of education
df['Education']=df['Education'].replace({'Basic':'Undergraduate', 'Oraduation':'Graduate', 'Master':'Postgraduate', 'PhD':'Postgraduate'})
```

Data Processing

Correlation matrix

Amount spent & income

Amount spent & wines

Amount spent & meats

Wines & meat might be more expensive than other categories

Income	1	-0.51	0.034	0.69	0.5	0.68	0.52	0.52	0.38	-0.11	0.45	0.69	0.63	-0.65	-0.015	0.22	0.39	0.33	0.1	0.16	0.2	-0.34	-0.28	-0.4	0.79	0.67	0.34
Kidhome	-0.51	1	-0.035		-0.37	-0.44	-0.39	-0.37	-0.35	0.22	-0.36			0.45	0.015	-0.16	-0.2	-0.17	-0.082	-0.08	-0.23	0.69	0.58	0.52		-0.48	-0.19
Teenhome	0.034	-0.035	1	0.005	-0.18	-0.26	-0.2	-0.16	-0.02	0.39	0.16	-0.11	0.05	0.13	-0.043	0.039	-0.19	-0.14	-0.016	-0.15	0.36		0.6	0.59	-0.14	0.13	-0.16
MntWines	0.69		0.005	1	0.39	0.56	0.4	0.39	0.39	0.011	0.54			-0.32	0.062	0.37	0.47	0.35	0.21	0.25	0.16	-0.35	-0.3	-0.34	0.89	0.71	0.49
MntFruits	0.5	-0.37	-0.18	0.39	1	0.54	0.59	0.57	0.39	-0.13	0.3	0.49	0.46	-0.42	0.015	0.01	0.21	0.2 -	0.0097	0.13	0.014	-0.39	-0.34	-0.41	0.61	0.46	0.17
MntMeatProducts	0.68	-0.44	-0.26	0.56	0.54	1	0.57	0.52	0.35	-0.12	0.29		0.48		0.018	0.1	0.37	0.31	0.043	0.24	0.031		-0.43		0.84	0.55	0.33
MntFishProducts	0.52	-0.39	-0.2	0.4	0.59	0.57	1	0.58	0.42	-0.14	0.29	0.53	0.46	-0.45	0.0003	0.017	0.2	0.26	0.0026	0.11	0.042	-0.43	-0.36	-0.45		0.47	0.18
MntSweetProducts	0.52	-0.37	-0.16	0.39	0.57	0.52	0.58	1	0.37	-0.12	0.35	0.49	0.45	-0.42	0.0014	0.029	0.26	0.24	0.0099	0.12	0.019	-0.38	-0.33	-0.4	0.6	0.47	0.2
MntGoldProds	0.38	-0.35	-0.02	0.39	0.39	0.35	0.42	0.37	1	0.05	0.42	0.44	0.38	-0.25	0.12	0.023	0.18	0.17	0.05	0.14	0.057	-0.26	-0.24	-0.24	0.52	0.49	0.2
NumDealsPurchases	-0.11	0.22	0.39	0.011	-0.13	-0.12	-0.14	-0.12	0.05	1	0.23	0.008	50.068	0.35	-0.023	0.015	-0.18	-0.12	-0.038	0.002	0.068	0.44	0.38	0.39	-0.065	0.36	0.094
NumWebPurchases	0.45	-0.36	0.16	0.54	0.3	0.29	0.29	0.35	0.42	0.23	1	0.38	0.5	0.056	0.042	0.16	0.14	0.15	0.034	0.15	0.15	-0.15	-0.12	-0.07	0.52	0.78	0.21
NumCatalogPurchases	0.69		-0.11		0.49	0.72	0.53	0.49	0.44	0.0085	5 0.38	1	0.52		0.1	0.14	0.32	0.31	0.1	0.22	0.13	-0.44	-0.37	-0.45	0.78	0.74	0.35
NumStorePurchases	0.63		0.05		0.46	0.48	0.46	0.45	0.38	0.068	0.5	0.52	1	-0.43	-0.068	0.18	0.22	0.18	0.085	0.039	0.14	-0.32	-0.26	-0.29		0.82	0.17
NumWebVisitsMonth	-0.65	0.45	0.13	-0.32	-0.42	-0.54	-0.45	-0.42	-0.25	0.35	-0.056	-0.52	-0.43	1	0.061	-0.032	-0.28	-0.19-	0.0073	0.0044	1-0.12	0.42	0.35	0.48	-0.5	-0.31	-0.13
AcceptedCmp3	-0.015	0.015	-0.043	0.062	0.015	0.018	0.0003	0.0014	0.12	-0.023	0.042	0.1	-0.068	0.061	1	-0.08	0.081	0.095	0.072	0.25	-0.061	-0.021	-0.027	-0.006	0.053	0.02	0.43
AcceptedCmp4	0.22	-0.16	0.039	0.37	0.01	0.1	0.017	0.029	0.023	0.015	0.16	0.14	0.18	-0.032	-0.08	1	0.31	0.25	0.29	0.18	0.064	-0.088	-0.076	-0.081	0.25	0.19	0.54
AcceptedCmp5	0.39	-0.2	-0.19	0.47	0.21	0.37	0.2	0.26	0.18	-0.18	0.14	0.32	0.22	-0.28	0.081	0.31	1	0.4	0.22	0.33	-0.015	-0.28	-0.23	-0.35	0.47	0.22	0.68
AcceptedCmp1	0.33	-0.17	-0.14	0.35	0.2	0.31	0.26	0.24	0.17	-0.12	0.15	0.31	0.18	-0.19	0.095	0.25	0.4	1	0.18	0.29	0.0081	-0.23	-0.18	-0.28	0.38	0.22	0.64
AcceptedCmp2			2-0.016																1	0.17	0.0076	-0.07	-0.059	-0.081	0.14	0.077	0.42
Response	0.16	-0.08	-0.15	0.25	0.13	0.24	0.11	0.12	0.14	0.002	0.15	0.22	0.039-	0.0044	4 0.25	0.18	0.33	0.29	0.17	1	-0.019	-0.17	-0.22	-0.21	0.27	0.15	0.72
Age	0.2		0.36																				80.0		0.11	0.18	
Children	-0.34			-0.35	0.00														-0.07								-0.25
Family_Size			0.6																-0.059			0.85			-0.42	-0.2	
Parent		0.52		-0.34															-0.081				0.69	1	-0.52	-0.22	
Spending	0.79		- 1000	0.89	0.61						0.52								0.14				S. 12	-0.52		0.75	0.46
Num_Purchases	0.67		0.13				0.47					(Source)			200000				0.077						0.75	1	0.26
AcceptedCmp	0.34	-0.19	-0.16	0.49	0.17	0.33	0.18	0.2	0.2	-0.094	0.21	0.35	0.17	-0.13	0.43	0.54	0.68	0.64	0.42	0.72	0.0075	5-0.25	-0.24	-0.3	0.46	0.26	1

Data Processing

Principal Component Analysis

- Make all data numeric
- Scale data
- Create a subset of the data removing the promotional and deal data
- Perform PCA

PCA reduces the dimensionality of the dataset by projecting it onto a lower-dimensional subspace. This subspace is defined by the principal components, which are orthogonal to each other and capture the maximum variance in the data

Data Processing

Elbow test to determine the best number of clusters to use

4 clusters determined to be best

Results

Agglomerative Clustering

4 clusters used – determined by elbow test

Evenly distributed

Clusters appear to have high intra-cluster similarity and low inter-cluster similarity

Results

K-Means Clustering

Clusters look evenly distributed

Clusters appear to have high intra-cluster similarity and low inter-cluster similarity

Results

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Not an even distribution of clusters

Will not proceed with investigating these clusters

Similarity Metrics

Follow up performed on K-Means Clustering results

Explore distribution of accepted promotions across clusters

Evaluation

KDE Plots

Plotted several variables vs spending to find relationships and patterns

Some patterns quite clear, others distributed across clusters

Evaluation

Cluster 0

- Is a parent
- Between 2-5 members in the household
- Married and unmarried some single parents
- Most have a teenager in the home
- Skew older

Cluster 1

- Not a parent
- 1 or 2 people in the household
- · Married and unmarried
- Higher income
- Span all ages

Cluster 2

- Majority are parents
- 1-3 members in the household
- Skew younger
- Most have younger children (not teens)

Cluster 3

- Is a parent
- Between 2-5 members in the household
- Majority have a teenager
- Lower income group