Frühjahr 16 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Begründen Sie, dass das uneigentliche Riemann-Integral

$$I := \int_{-\infty}^{\infty} \frac{2}{x^6 + 3} \, \mathrm{d}x$$

existiert, und berechnen Sie I mithilfe des Residuensatzes.

Lösungsvorschlag:

Der Integrand ist stetig, strikt positiv (der Nenner ebenso) und damit Riemann-integrierbar auf dem kompakten Einheitsintervall [-1,1]. Auf $]-\infty,1[\,\cup\,]1,\infty[$ lässt sich der Integrand nach oben gegen $\frac{2}{x^2+1}$ abschätzen, was eine konvergente Majorante liefert (eine Stammfunktion ist der Arkustangens) und damit die Existenz diesen Integrals impliziert.

Zur Berechnung nutzen wir $I = \lim_{R \to \infty} \int_{-R}^{R} \frac{2}{x^6 + 3} dx = \lim_{R \to \infty} \int_{\gamma_1} \frac{2}{z^6 + 3} dz$ mit dem Weg $\gamma_1 : [-R, R] \to \mathbb{C}, \ t \mapsto t.$

Mit $\gamma_2:[0,\pi]\to\mathbb{C},\ t\mapsto Re^{it}$ und $\gamma_1+\gamma_2=:\gamma$ können wir das Wegintegral längs γ_1 als Differenz der Integrale längs γ_2 und γ berechnen. Letzterer Weg ist geschlossen, stückweise glatt und berührt für R>2 keine Singularitäten der holomorphen Funktion $f:\mathbb{C}\backslash S\to\mathbb{C},\ z\mapsto\frac{2}{z^6+3}$, wobei S die sechs-elementige Menge der Nullstellen des Nenners ist. Von den Singularitäten (Pole erster Ordnung, da einfache Nullstellen des Nenners bei nicht verschwindendem Zähler) werden genau drei von γ umlaufen, und jede davon genau einmal in positiver Richtung. Weil $\mathbb C$ offen und konvex ist, können wir den Residuensatz benutzen.

Für das Integral längs γ_2 erhalten wir

$$0 \le \left| \int_{\mathbb{R}^n} f(z) dz \right| \le \pi R \frac{2}{R^6 - 3} \to 0, \quad \text{für } R \to \infty,$$

im Grenzwert verschwindet der Beitrag des Integrals also.

Es ist $S=\{\sqrt[6]{3}e^{i\frac{(2k+1)\pi}{6}}\}$: $k=0,1,2,3,4,5\}$ die Menge der Singularitäten von f, von diesen werden genau die Singularitäten mit k=0,1,2 von γ umschlossen; wir berechnen deren Residuen.

Weil nur Pole erster Ordnung vorliegen, gilt für das Residuum jeder Singularität von f die Formel $\operatorname{Res}_f(z_0) = \frac{2}{6z_0^5} = \frac{1}{3}x_0^{-5}$. Nach dem Residuensatz ist nun $\int_{\gamma} f(z) \mathrm{d}z =$

$$-\frac{2\pi i}{3^{\frac{11}{6}}}\left(e^{i\frac{5\pi}{6}} + e^{i\frac{3\pi}{6}} + e^{i\frac{\pi}{6}}\right) = -\frac{2\pi i}{3^{\frac{11}{6}}}2i = \frac{4\pi}{3^{\frac{11}{6}}}.$$

Es gilt nun
$$I = \lim_{R \to \infty} \int_{\gamma} f(z) dz - \int_{\gamma_2} f(z) dz = \frac{4\pi}{3^{\frac{11}{6}}}.$$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$