Fine-grained sentiment analysis

Problem Statement:

Given a set of labeled aspect specific sentiment expressions across variety of review sentences, find new sentiment expression spans on unseen sentences of the same aspect.

Task 1: Given a head aspect (HA), detect whether a sentence containing the HA mentions an issue.

Task 2: Given a HA and a sentence mentioning an issue, extract the **issue phrase boundary**.

Dataset

Domain and Head aspect.

earphone	gps	keyboard	mouse	mp3_player	router
cord	direction	keys	battery	button	connection
jack	screen	pad	button	interface	firmware
wire	software	range	pointer	jack	signal
	voice	spacebar	wheel	screen	wireless

Task I: Ideas tried and results

- 1. Processed text to fetch Issue and Non Issue Labels.
- 2. Removed stop words to improve accuracy.
- 3. Removed <i> and POS tags at the end of sentence.

Task I: Ideas tried and results

Example:

Domain: Earphone. Head aspect: wire.

I do however have some pain points: First, the "stethoscope" effect is actually quite bad unless you run the headset under your shirt and/or tighten the <i> wire under your chin <i> . [do, have, is, run, tighten] [bad]

Make no mistake about it, the J3's are beautiful, solid aluminum construction, awsome clear coat wire that does not tangle. [are, does, tangle] [beautiful, solid, awsome, clear]

Sentence	Label
I do however have som <i> wire under your chin <i> . [do, have, is, run, tighten] [bad]</i></i>	Issue
Make no mistake about	No Issue

Task I: Ideas tried and results

- 4. Implemented Features with Naïve Bayes Model
 - High frequency POS Tags
 Accuracy: 70%+
 - Python 3.5.2 Shell

```
File Edit Shell Debug Options Window Help

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 25 2016, 22:01:18) [MSC v.1900 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

RESTART: C:\Users\nafis\AppData\Local\Programs\Python\Python35-32\Project.py

Original Naive Bayes Algo accuracy percent using POS: 70.33

>>>
```

Task I: Ideas for future

- 1. Use some classification models from below and use a voter system
 - Multinomial NB
 - Bernoulli NB
 - Logistic Regression
 - Stochastic Gradient Decent Classifier.
- 2. Understanding the impact and setting user defined parameters in above models for optimum results. Example: Multinomial Parameters

Parameters: alpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).

fit_prior : boolean, optional (default=True)

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.

class_prior : array-like, size (n_classes,), optional (default=None)

Prior probabilities of the classes. If specified the priors are not adjusted according to the data.

Task I: Ideas for future

3. Voter System:

Makes use of classification given by above mentioned classifiers to give confidence of final classification made.

Pending Implementation

- 1. 5 Fold cross validation
- 2. Other Features to be added(Phrase Chunk, Prefix, Suffix, Sentiment Polarity)

Pivot Features: We consider five feature families which take on a set of values:

POS Tags (T): DT, IN, JJ, MD, NN, RB, VB, etc.

Phrase Chunk Tags (C): ADJP, ADVP, NP, PP, VP, etc.

Prefixes (P): anti, in, mis, non, pre, sub, un, etc.

Suffixes (S): able, est, ful, ic, ing, ive, ness, ous, etc.

Word Sentiment Polarity (W): POS, NEG, NEU

Task II: Phrase Extraction-Understanding

- Unsupervised Heuristic Baseline (UHB)
 - Identify words between head aspect and a negative sentiment OR head aspect, a positive sentiment and a negator.
- Hidden Markov Model
 - Let x = (x1, ... xn) denote the sequence of words in a sentence.
 - Let each observation xi has a label yi \in Y where $Y = \{B,I,O\}$.
 - The extraction task is to find the best label sequence y[^] that describes an issue.
 - Here we find f(yi-1,yi,x) for each word in sentences

Issues Encountered & Doubts

1. Feature Identification

Category	Feature Template	Example of feature appearing in a sentence
1 st order features	W_{i+j}	$W_{i-1} = NEG$; previous term of head aspect is of NEG polarity, have this terrible <i>voice</i> on the
$X_{i+j}; -4 \leq j \leq 4$ $X \in \{T, C, P, S, W\}$	S_{i+j}	$S_{i-2} = ing;$ suffix of 2^{nd} previous term of head aspect is "ing",kept dropping the $signal$
2 nd order features	$T_{i+j}, T_{i+j'}$	$T_{i-2} = JJ, T_{i-1} = VBZ, \dots$ frequently drops connection
$X_{i+j}, Y_{i+j}; -4 \le j \le 4$ $X, Y \in \{T, C, P, S, W\}$	T_{i+j}, C_{i+j^\prime}	$T_{i+2} = RB, C_{i+3} = ADJP; \dots screen $ is too
$X, T \in \{1, 0, 1, 0, W\}$		
3^{rd} order features $X_{i+j}, Y_{i+j}, Z_{i+j};$	$T_{i+j}, S_{i+j^\prime}, T_{i+j^{\prime\prime}}$	$T_{i+2} = JJ, S_{i+4} = un, T_{i+4} = JJ;$ screen is blank and unresponsive
$-4 \le j \le 4$ X, Y, Z $\in \{T, C, P, S, W\}$		•••

Table 2: Pivot Feature Templates. The subscript i denotes the position of the issue subject (HA) which is italicized and the subscript j denotes the position relative to i.

Job responsibilities

Mohit	Nafisa
Understanding the impact and setting user defined parameters in above models for optimum results	5 Fold cross validation
Voter System	Other Features to be added(Phrase Chunk, Prefix, Suffix, Sentiment Polarity)
Hidden Markov Model	Unsupervised Heuristic Baseline (UHB)