EPTAZIA 2.

Ονομ/νυμο: ΑΛΒΙΟΝΑ ΜΑΝΤΣΟ

Ap. Mntp.: 3200098

1. Έχουμε 39 διαφορετικούς αριθμούς.
• Οι δυνατοί ουνδυασμοί όταν δεν επαναλαμβάνεται κανένας αριθμός (μορφή χης) είναι
P(39,3)=39! - 39! - 36! 37 · 38 · 39 - 54834
(39-3)! 36! 36!
Επιπλέον, • Στις θέσεις 1 και 3 μπορεί ταυτόχρονα να εμφανιστεί ένας από τους 39 αριθμούς,
δηλ έχουμε 39 δυνατές περιπτώσεις. Για κάθε έναν από αυτούς τους συνδυα-
σμούς, έχουμε 39-1=38* δυνατές περιπτώσεις χια την κατάληψη της δεύτερης
θέσης (τους 39 αριθμούς αφαιρείται εκείνος που σε κάθε περίπτωση κατα-
<u> </u>
<u>Για την μορφή χηχ, λοιπόν, έχουμε 38.39= 1482 δυνατές περιπτώσεις</u>
Συνολικά οι δυνατοί συνδυασμοί είναι 54834+1432 = 56.316
2
‡ θεσεις
• Υπάρχουν 6 πιθανές περιπτώσεις για τις θέσεις της συμβολοσειράς ba:
<u>Θέσεις 1-2, 2-3, 3-4, 4-5, 5-6, 6-∓</u>
1 - 1 - 1
κου τις θέσεις της συμβολοσειράς ης ενώ χια καθεμιά από τις
ba (4 περιπτώσεις ακόμη) υπάρχουν 3 πιθανές περιπτώσεις χια τις θέσεις της
9f.
Συνεπώς χια τις θέσεις των συμβολοσειρών ba, gf έχουμε 2.4 + 4.3 = 8+12=20
διαφορετικές περιπτώσεις.
• Αφού οι συμβολοσειρές ba, gf έχουν τοποθετηθεί (κοταλαμβάνουν 4 εκτων τ
θέσεων) μένουν 7-4=3 θέσεις στις onoies τοποθετούνται με μετάθεση τα 3
στοιχεία c, d, e. P(3,3) = 3! = 6 διαφορετικές περιπτωσεις
c, d, e
Συνολικά οι δυνατές περιπτώσεις είναι 20 · 6 = 120
ουμθολοσειρές δα, 9β
00 / Jr

(ii) 'Ολες οι Ο-1 λέξεις μιε ίσο οριθμό μηδενικών και μονάδων (ii) 'Ολες οι Ο-1 λέξεις μήκους 18 είνοι Ρ* (2,12) = 2 ¹² = 4096 Από αυτές, εκείνες που <u>Sεν</u> περιέχουν τουλάχιστον 3 μονάδες είναι: • ἀσες περιέχουν Ο μονάδες και 12 μηδενικά και είναι U(12,0) = 12! - 1 λέξη 12!0! • ἀσες περιέχουν 1 μονάδα και 11 μηδενικά και είναι W(11,1) = 12! - 12 λέξεις 14!·1! • ἀσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι Μ(10,2) = 12! - 10:·11·12 = 66 λέξεις Το!·2! 1σ!·2! Συνολικά, οι 'λέξεις που <u>δεν</u> περιέχουν τουλάχιστον 3 μονάδες είναι 1+12+66= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+42+66= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+42+66= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'Αρα οι 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-40+60= ₹ 'λέξεις που περ		er er er er er er
(ii) 'Ολες οι 0-1 λέξεις μήκους 18 είνοι 2" (2,19) = 2 ¹⁸ = 4096 Από συτές, εκείνες που <u>Sεν</u> περιέχουν τουλάχιστον 3 μονάδες είναι: • άσες περιέχουν Ο μονάδες και 18 μηδενικά και είναι U(12,0) = 12! = 1 λέξη 12!0! • όσες περιέχουν 1 μονάδα και 11 μηδενικά και είναι U(11,1) = 12! = 18 λέξεις 14!·1! • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι M(10,8) = 12! = 10·11·18 = 66 λέξεις 10!·2! τσ! : 2 Συνολικά, οι λέξεις που <u>δεν</u> περιέχουν τουλάχιστον 3 μονάδες είναι 1+12+66= 1 λάξεις που <u>περιέχουν</u> τουλάχιστον 3 μονάδες είναι 4096 - 70 = 4017 Α ₁ ⊆ Α ₂ ⇒ Α ₁ ΠΑ ₂ : Α ₁ ⊕ Α ₂ ⊆ Α ₃ ⇒ Α ₁ ΓΑ ₃ ⇒ Α ₁ ΠΑ ₃ = Α ₄ ⊕ Α ₄ ⊆ Α ₂ ⇒ Α ₂ ΠΑ ₃ = Α ₂ ⊕ Α ₅ ⊆ Α ₂ ⇒ Α ₂ ΠΑ ₃ = Α ₂ ⊕ Α ₆ ⊆ Α ₂ ⊆ Α ₃ ⇒ Α ₁ Ε Σ Αί - Σ Αί ΠΑ j + Σ Αί ΠΑ j ΠΑ k = 1 (είε j ε κ ε β ε β ε β ε β ε β ε β ε β ε β ε β	3. (ί) θα έχουμε 6 μηδενικά και 6 μονάδες σε κάθε 0-1 πέξη	
Από αυτές εκείνει που δεν περιέχουν τουλάχιστον 3 μονάδες είναι: • όσες περιέχουν Ο μονάδες και 12 μηδενικά και είναι • όσες περιέχουν 1 μονάδα και 11 μηδενικό και είναι • όσες περιέχουν 1 μονάδα και 11 μηδενικό και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικό και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • Μ(10,2) = 12! - 10 · 11 · 12 - 16 Λίξεις Τού 2! 12! 22! - 26 Λίξεις Συνολικά, οι Λέξεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είν	M(6,6)=12! οι 0-1 λέζεις με ίσο αριθμό μηδενικών και μονάδων 6!·6!	
Από αυτές εκείνει που δεν περιέχουν τουλάχιστον 3 μονάδες είναι: • όσες περιέχουν Ο μονάδες και 12 μηδενικά και είναι • όσες περιέχουν 1 μονάδα και 11 μηδενικό και είναι • όσες περιέχουν 1 μονάδα και 11 μηδενικό και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικό και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι • Μ(10,2) = 12! - 10 · 11 · 12 - 16 Λίξεις Τού 2! 12! 22! - 26 Λίξεις Συνολικά, οι Λέξεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4+12+66= Αρα οι Λέξεις που περιέχουν τουλάχιστον 3 μονάδες είν	(ii) ODES OF 0-1 JETEIS HINKOUS 12 EIVOF P* (2,12) = 212 = 4096	
U(12,0) = 12! - 1 λέξη 12:0! • όσες περιέχουν 1 μονάδα και 11 μηδενικά και είναι M(11,1) = 12! - 12 λέξεις 14:1! • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι M(10,3) = 12! - 10 11.18 - 66 λέξεις Λοί.2! 10!2! 10!. 2 Συνολικά, οι λέξεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 1142+66= Αρα οι λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4096 - ∓0 = 401∓ Αρα οι λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4096 - ∓0 = 401∓ Αι ⊆ Α₂ ⇒ Αι ΠΑ₂ = Αι Θ Αι ⊆ Α₂ ⇒ Αι ΠΑ₂ = Αι Θ Αι ⊆ Α₂ ⇒ Αι ΠΑ₂ = Αι Θ Αι ε Α₂ ⊆ Α₃ ⇒ Αι Ε Α₃ ⇒ Αι ΠΑ₃ = Αι Θ Αι ε Α₂ ⊆ Α₃ ⇒ Αι Ε Αι Θ Αι ε Α₂ ⊆ Α₃ ⇒ Γε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε	<u> </u>	
12:0! • όσες περιέχουν 1 μονάδα και 14 μηδενικά και είναι Μ(11,1)= 12! = 12 λέζεις 14:1! • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι Μ(10,2)= 12! - 10:11.12 = 66 λέζεις Το!:2! το!:2 Συνολικά, οι λέζεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 1:12:66= Ε΄ Αρα οι λέζεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4:096 - Ε' 0 = 4:01 Ε΄ Αι ε Α2 ⇒ Α1 ΩΑ2 = Α1 Φ΄ Α2 ε Α3 ⇒ Α2 ΩΑ3 = Α2 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 ΩΑ3 = Α1 ΩΑ3 Ε Α1 ΩΑ3 ΩΑ3 Ε Α1 ΩΑ4 ΩΑ3 Ε Α1 ΩΑ4 ΩΑ3 Ε Ω1 ΩΑ ΩΑ	• όσες περιέχουν Ο μονάδες και 12 μηδενικά και είναι	
12:0! • όσες περιέχουν 1 μονάδα και 14 μηδενικά και είναι Μ(11,1)= 12! = 12 λέζεις 14:1! • όσες περιέχουν 2 μονάδες και 10 μηδενικά και είναι Μ(10,2)= 12! - 10:11.12 = 66 λέζεις Το!:2! το!:2 Συνολικά, οι λέζεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 1:12:66= Ε΄ Αρα οι λέζεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4:096 - Ε' 0 = 4:01 Ε΄ Αι ε Α2 ⇒ Α1 ΩΑ2 = Α1 Φ΄ Α2 ε Α3 ⇒ Α2 ΩΑ3 = Α2 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 Φ΄ Α1 ε Α2 ε Α3 ⇒ Α1 ε Α3 ⇒ Α1 ΩΑ3 = Α1 ΩΑ3 = Α1 ΩΑ3 Ε Α1 ΩΑ3 ΩΑ3 Ε Α1 ΩΑ4 ΩΑ3 Ε Α1 ΩΑ4 ΩΑ3 Ε Ω1 ΩΑ ΩΑ	$M(12,0) = 12! - 1 \lambda i i$	
141·1! • όσες περιέχουν & μονάδες και 10 μηδεγικά και είναι Μ(10, 2) = 12! = 10. · 11·12 = 66 λέξεις Λο!·2! το!· 2 Συναλικά, οι ^Ο λέξεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι 1+12+66= Αρα οι ^Ο λέξεις που περιέχουν τουλάχιστον 3 μονάδες είναι 4-096 - ∓0 = 401 Ε • Αι ⊆ Αι ⇒ Αι ΠΑι = Αι Θ Αι ⊆ Αι ⇒ Αι ΠΑι = Αι Θ Αι ⊆ Αι ⇒ Αι ΓΕΑι ⇒ Αι ΠΑι = Αι Θ Αι ⊆ Αι ⇒ Αι ΓΕΑι = Σ Αί ΠΑι = Αι Θ Αι συναλικά εξεισμού και αποκλεισμού έχουμε: [Αι UΑι UΑι - Σ Αί ΠΑι + Σ Αί ΠΑι ΠΑι ΠΑι = 1είει εξεισμού εξεισμ		
141·1! • όσες περιέχουν ② μονάδες και 10 μπδεγικά και είναι Μ(10, 2) = 12! - 1011.12 = 66 λέξεις Συναλικά, οι θλέξεις που δεν περιέχουν τουλάχισταν ③ μονάδες είναι 1+12+65= Άρα οι λέξεις που περιέχουχ τουλάχισταν ③ μονάδες είναι 4-096 - ∓0 = 4-01∓ . Αι ⊆ Αι ⇒ Αι ΠΑι = Αι Φ Αι ⊆ Αι ⇒ Αι ΠΑι = Αι Φ Αι ⊆ Αι ⇒ Αι Ελι ⇒ Αι ΠΑι = Αι Φ Αι ⊆ Αι ⇒ Αι Ελι ⇒ Αι ΠΑι = Αι Φ Αι σ Αι σ Αι εκλεισμού και αποκλεισμού έχουμε: [Αι UΑι UΑι - Σ Αί ΠΑί + Σ Αί ΠΑί ΠΑί ΠΑί = 1 είκι είκι είκι είκι είκι είκι είκι είκι	• όσες περιέχουν 1 μονάδα και 11 μηδενικά και είναι	
Φόσες περιέχουν 2 μονόδες και 10 μηδενικά και είναι $M(10,2) = \frac{12!}{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} = \frac{10 \times 11 \cdot 12}{10! \cdot 2!} = 66 \text{ λέξεις}$ $\overline{10! \cdot 2!} $	M(11,1) = 12! = 12 AEZEIS	
$M(10,3) = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10!2!}{10!2!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!2!} = \frac{12!2!2!2!}{10!2!2!} = \frac{12!2!2!2!}{10!2!2!} = \frac{12!2!2!2!2!}{10!2!2!2!2!} = \frac{12!2!2!2!2!2!2!}{10!2!2!2!2!2!2!2!} = 12!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!$	141-1!	d
$M(10,3) = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10.11.18}{10!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!} = \frac{10!2!}{10!2!2!} = 66 \text{ λέξεις}$ $\overline{D}_{10} = \frac{12!}{10!2!2!} = \frac{12!2!2!2!}{10!2!2!} = \frac{12!2!2!2!}{10!2!2!} = \frac{12!2!2!2!2!}{10!2!2!2!2!} = \frac{12!2!2!2!2!2!2!}{10!2!2!2!2!2!2!2!} = 12!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!2!$	ο όσες περιέχουν 2 μονάδες και 10 μηδεγικά και είναι ·	
Συνολικά, οι βέξεις που δεν περιέχουν τουλάχιστον 3 μονάδες είναι $4+13+66=\frac{1}{4}$ Άρα οι λέξεις που περιέχοιχ τουλάχιστον 3 μονάδες είναι $4096-79=4017$. $A_1 \subseteq A_2 \Rightarrow A_1 \cap A_2 = A_1 \oplus A_2 = A_2 \oplus A_1 \cap A_3 = A_1 \oplus A_1 \cap A_2 \cap A_3 = A_2 \oplus A_1 \cap A_2 \cap A_3 = A_1 \cap A_3 = A_2 \oplus A_1 \cap A_2 \cap A_3 = A_1 \cap A_3 \cap A_1 \cap A_2 \cap A_3 = A_1 \cap A_2 \cap A_3 \cap A_3 \cap A_1 \cap A_2 \cap A_3 \cap A_3 \cap A_2 \cap A_3 \cap A$		
Αρα οι λέξεις που <u>περιέχου</u> χ τουλάχιστον 3 μονάδες είναι $4096 - 70 = 4017$. $A_1 \subseteq A_2 \Rightarrow A_1 \cap A_2 = A_1$. $A_2 \subseteq A_3 \Rightarrow A_2 \cap A_3 = A_2$. $A_1 \subseteq A_2 \subseteq A_3 \Rightarrow A_1 \subseteq A_3 \Rightarrow A_1 \cap A_3 = A_1$. Από την αρχή εχκλεισμού και αποκλεισμού έχουμε: $ A_1 \cup A_2 \cup A_3 = \sum_{1 \le i < 3} A_i - \sum_{1 \le i < j \le 3} A_i \cap A_j + \sum_{1 \le i < j \le k \le 3} A_1 \cap A_2 - A_1 \cap A_3 + A_1 \cap A_2 \cap A_3 + A_1 \cap A_3 \cap A_3 + A_1 \cap A_3 \cap A_3 + A_2 \cap A_3 \cap A_3 + A_3 \cap A_3 \cap A_3 \cap A_3 + A_4 \cap A_3 \cap A_3 \cap A_3 \cap A_3 \cap A_3 + A_4 \cap A_3 \cap A$	10!2! 10!.2	
$A_{2} \subseteq A_{3} \Rightarrow A_{2} \cap A_{3} = A_{2} \otimes A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \otimes A_{3} \otimes A_{4} \cap A_{3} = A_{4} \otimes A_{4} \otimes A_{5} \otimes A_{5$	Άρα οι λέξεις που <u>περιέχουν</u> τουλάχιστον 3 μονάδες είναι 4096-79=4017	
$A_{2} \subseteq A_{3} \Rightarrow A_{2} \cap A_{3} = A_{2} \otimes A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1} \otimes A_{2} \otimes A_{3} \otimes A_{4} \cap A_{3} = A_{4} \otimes A_{4} \otimes A_{5} \otimes A_{5$	$A_1 \subseteq A_2 \Rightarrow A_1 \cap A_2 = A_1 \oplus$	
$A_{1} \subseteq A_{2} \subseteq A_{3} \Rightarrow A_{1} \subseteq A_{3} \Rightarrow A_{1} \cap A_{3} = A_{1}^{\textcircled{3}}$ Aπο την αρχή εχκηεισμού και αποκηεισμού έχουμε: $\begin{vmatrix} A_{1} \cup A_{2} \cup A_{3} \end{vmatrix} = \sum_{1 \le i \le 3} A_{i} - \sum_{1 \le i < j \le 3} A_{1} \cap A_{j} + \sum_{1 \le i < j \le 3} A_{1} \cap A_{j} - A_{2} \cap A_{3} + A_{1} \cap A_{2} \cap A_{3} = A_{1} \cap A_{2} \cap A_{3} + A_{1} \cap A_{2} \cap A_{3} = A_{1} \cap A_{2} \cap A_{3} + A_{2} \cap A_{3} + A_{1} \cap A_{2} \cap A_{3} = A_{1} \cap A_{2} \cap A_{3} \cap A_{3} = A_{1} \cap A_{2} \cap A_{3} \cap A_{3} = A_{1} \cap A_{2} \cap A_{3} = A_{1}$		
Από την αρχή εχκλεισμού και αποκλεισμού έχουμε: $ A_1 \cup A_2 \cup A_3 = \sum_{1 \le i \le 3} A_i - \sum_{1 \le i < j \le 3} A_i \cap A_j + \sum_{1 \le i < j \le 3} A_i \cap A_j + \sum_{1 \le i < j \le 3} A_i \cap A_j + A_1 \cap A_2 = A_1 \cap A_3 - A_2 \cap A_3 + A_1 \cap A_2 \cap A_3 = A_1 \cap A_2 \cap A_3 + A_1 \cap A_2 \cap A_3 = A_1 \cap A_3 \cap A_3 \cap A_3 = A_1 \cap A_3 \cap A_3 \cap A_3 \cap A_3 \cap A_3 = A_1 \cap A_3 $		
$ A_{1}\cup A_{2}\cup A_{3} = \sum_{1 \le i \le 3} A_{i} - \sum_{1 \le i \le j \le 3} A_{i}\cap A_{j} + \sum_{1 \le i \le j \le 3} A_{i}\cap A_{j}\cap A_{k} = \frac{1}{1 \le i \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{2}\cup A_{3}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{2}\cup A_{3}\cup A_{3$		
$ A_{1}\cup A_{2}\cup A_{3} = \sum_{1 \le i \le 3} A_{i} - \sum_{1 \le i \le j \le 3} A_{i}\cap A_{j} + \sum_{1 \le i \le j \le 3} A_{i}\cap A_{j}\cap A_{k} = \frac{1}{1 \le i \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{1}\cup A_{2}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{2}\cup A_{3}\cup A_{3} + \frac{1}{1 \le i \le j \le 3} A_{2}\cup A_{3}\cup A_{3$	Από την οιρχή εχελεισμού και αποκλεισμού έχουμε:	
$= A_1 + A_2 + A_3 - A_1 \cap A_2 - A_1 \cap A_3 - A_2 \cap A_3 + A_1 \cap A_2 \cap A_3 = \frac{@.@.@}{}$ $ A_1 + A_2 + A_3 - A_1 - A_1 - A_2 + (A_1 \cap A_2) \cap A_3 = A_3 - A_1 + A_1 \cap A_3 = \frac{@}{}$	· ·	
$= A_1 + A_2 + A_3 - A_1 \cap A_2 - A_1 \cap A_3 - A_2 \cap A_3 + A_1 \cap A_2 \cap A_3 = 0$ $ A_1 + A_2 + A_3 - A_1 - A_2 + (A_1 \cap A_2) \cap A_3 = A_3 - A_1 + A_1 \cap A_3 = 0$	15153 16163 1516/3	
MI+ M2 + M3 - M1 - M1 - M2 + (A1 A2) NA3 = A3 - A1 + A1 NA3 =		
A3 - A1 + A1 = A3 = 10.000		
1231-121-121-121	141-141+141=141=10 000	
	1/31-1/11 1/31 10.000	

5. Στο συγκεκριμένο πρόβλημα δεν έχει έννοια η διάταζη των κρουασάν (είναι συλλοχές)
Συνεπώς θα ερχαστούμε με συνδυασμούς.
Επειδή σε κάθε συλλοχή θα πρέπει να υπάρχουν τουλάχιστον δύο κρουασάν
από κάθε κατηχορία, τα 2.5 = 10 κρουασάν θα είναι ίδια σε κάθε συλλοχή
(* 5 διαφορετικές κατηχορίες κρουασάν αναφέρονται)
Αυτό, λοιπόν, που θα διαφοροποιεί τις συλλοχές /συνδυασμούς μεταξύ τους
είναι η κατανομή των 5-κατηχοριών κρουασάν στα 10 εναπομείναντα κενά
κάθε συλλοχής/συνδυασμού. Εχουμε C*(5,10) = (5+10-1)! - 14! - 1001
δυνατούς συνδυασμούς (συλλοχές) κρουασάν, 10! (5-1)! 10! 4!
6. Επειδή κάθε ερώτηση βαθμολοχείται με 15 βαθμούς τουλάχιστον, σε κάθε δυνατή
κατανομή των βαθμών, οι 150 εκ των 200 βαθμών θα είναι ισόποσα κατανεμειμένοι
στις 10 ερωτήσεις (10·15=150). Μένουν λοιπόν 200-150=50 βαθμοί και το
ερώτημα που τίθεται είναι με πόσους τρόπους να κατάνεμηθούν οι 50 βαθμοί στις
10 ερωτήσεις.
Έστω χι οι βαθμοί επιπλέον των 15 που λαμβάνει η ερώτηση ί για 1 <ίξ10
Πρέπει χ ₁ + χ ₂ + + χ ₁₀ = 50, χίχο οι τρόποι κοτανομής των 50 βαθμων
δίνονται από το πλήθος των μη αργητικών λύσεων της προηχούμενης εξίσωσης
Έστω πως έχουμε 50 * και 10-1=9 ώστε ο τρόπος τοποθέτήσης των
διαχωριστικών (1) μεταξύ των αστερίσκων $(*)$ να δίνει τα x_1, x_2, \dots, x_{10}
ws * E fris * * * * * * * * * * * * * * * * * * *
×17,0 ×27,0 ×107,0
50
Οι τρόποι με τους οποίους μπορούμε να διαλέξουμε τις θέσεις των διαχωριστικών (1)
ano èva σύνολο με $50 + 9 = 59$ θέσεις είναι $C(59,9) = 59! = 59!$ $(*) (!) 9!(59-9)! 9!-50!$
Αυτό είναι και το πλήθος των λύσεων της εξίσωσης @ άρα τόσοι είναι και
οι τρόποι που αναζητούσαμε εξαρχής.

F. (i) Στη λέξη ΔΙΑΚΡΙΤΑ εμφανίζονται 6 διαφι τα Α, Δ, Ι, Κ, Ρ, Τ όπου τα Α,Ι εμφανίζ	ονται 2 φορές το καθένα
και τα υπόλοιπα από μια φορά το καθένα.)
Aρα υπάρχουν Μ(2, 1, 2, 1, 1, 1) = 8!	- 10.080 Tpónol
2!.1!.2!	-1!-1!-1!
να αναδιατάξουμε τα 8 χράμματα της λέξης Δ	MAKPITA
(ii)	
8 0 60 615	60 <u>1</u>
• Η συμβολοσειρά ΑΑ μπορεί να τοποθετηθεί στ	ις 8 θέσεις με 7 διαφορετικούς
τρόπους: θέσεις 1-2, 2-3, 3-4, 4-5, 5-6, 6	
• Στη συνέχεια μένουν 8-2=6 θέσεις και 5 δ	
οποίων: •Το Ι εμφανίζεται 2 φορές	<u> </u>
• Τα υπόλοιπα εμφαντονται από 1 φο	ρά το καθένο
Άρα έχουμε M(1,2,1,1,1) = 6! <u>6</u> 1!-2!·1!·1!·1! 2	! = 360 δυνατούς τρόπους !
να τοποθετηθούν τα υπόλοιπα (εκτός του Α)	Σ ράμμ <i>οιτα</i>
Συνολικά έχουμε 7 - 360 = 2520 αναδιατάξει	ς όπου τα Α εμφανίζονται
χία το χια τα το ένα δίης ΑΑ χράμματα	λα στο άλλο.
•Συνολικά, τα υποσύνολα του Α με 10 στοιχεία	είναι C(26 10)= 26! -
= <u>26!</u> - 5311735 10! 16!	10!(26-10)!
• Για τα υποσύνολα του Α με 10 στοιχεία που πε	Epiexow to fa,b,c,d? xvwpJour
ότι: όλα περιέχουν τα 4 χράμματα α, b, c, d κα	
προς τα υπόλοιπα 6 χράμματα που επιλέχον	1 1
ναντα χράμματα (αφού τα a,b,c,d έχουν ήδη	
Άρα έχουμε c (22,6) = <u>22!</u> <u>22!</u> <u>22!</u> <u>22!</u> 6!(22-16)! 6!16!	,
με 10 στοιχεία που <u>περιέχουν</u> το {a,b,c,d}	ws unoouvord tous
υνεπώς τα υποσύνολα του Α που δεν περιέχου	
0001/000 TOUS FIVAL 5.311.735-74.613= 5.937.1	