Evaluating Machine Learning Methods

Bias of an estimator

- θ true value of parameter of interest (e.g. model accuracy)
- $\hat{\theta}$ estimator of parameter of interest (e.g. test set accuracy)

$$\operatorname{Bias}[\hat{\theta}] = \operatorname{E}[\hat{\theta}] - \theta$$

e.g. polling methodologies often have an inherent bias 🕆

POLLSTER	LIVE CALLER WITH CELLPHONES	INTERNET	NCPP/ AAPOR/ ROPER	POLLS ANALYZED	SIMPLE AVERAGE ERROR	RACES CALLED CORRECTLY	ADVANCED */-	PREDICTIVE */-	538 GRADE	BANNED BY 538	MEAN-REVERTED BIAS
SurveyUSA			•	763	4.6	90%	-1.0	-0.8	A		0+0.1
YouGov		•		707	6.7	93%	-0.3	+0.1	B		D+1.6
Rasmussen Reports/ Pulse Opinion Research				657	5.3	79%	+0.4	+0.7	6		R+2.0
Zogby Interactive/JZ Analytics		•		465	5.6	78%	+0.8	+1.2	0		R+0.8
Mason-Dixon Polling & Research, Inc.	•			415	5.2	86%	-0.4	-0.2	B		R+1.0
Public Policy Polling				383	4.9	82%	-0.5	-0.1	80		R+0.2
Research 2000				279	5.5	88%	+0.2	+0.6	0	×	D+1.4
American Research Group	•			260	7.6	75%	+0.8	+0.7	©		R+0.1
Quinniplac University	•		•	169	4.7	87%	-0.3	-0.4	4		R+0.7
Marist College				146	5.4	88%	-0.8	-0.8	A		R+0.7

Test sets			

Test sets

How can we get an unbiased estimate of the accuracy of a learned model?

- when learning a model, you should pretend that you don't have the test data yet (it is "in the mail")*
- if the test-set labels influence the learned model in any way, accuracy estimates will be biased

^{*} In some applications it is reasonable to assume that you have access to the feature vector (i.e. *x*) but not the *y* part of each test instance.

Learning curves

How does the accuracy of a learning method change as a function of the training-set size?

this can be assessed by plotting learning curves

Figure from Perlich et al. Journal of Machine Learning Research, 2003

Learning curves

given training/test set partition

- for each sample size s on learning curve
 - (optionally) repeat *n* times
 - randomly select s instances from training set
 - · learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a)
 - or (s, avg. accuracy and error bars)

Limitations of using a single training/test partition

• we may not have enough data to make sufficiently large training and test sets

- a <u>larger test set gives</u> us more reliable estimate of accuracy (i.e. a lower variance estimate)
- but... a <u>larger training set</u> will be more representative of how much data we actually have for learning process
- a single training set doesn't tell us how sensitive accuracy is to a particular training sample

Using multiple training/test partitions

- Two general approaches...
 - random resampling
 - cross validation

Cross validation	

Cross validation example

Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	S 2 S 3 S 4 S 5	S ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S 2	17 / 20
3	S1 S2 S4 S5	S 3	16 / 20
4	S1 S2 S3 S5	S ₄	13 / 20
5	S1 S2 S3 S4	S 5	16 / 20

accuracy = 73/100 = 73%

Cross validation

- 10-fold cross validation is common, but smaller values of *n* are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning method</u> as opposed to an <u>individual</u> <u>learned model</u>

class negative

Is accuracy perfect?

predicted

accuracy may not be useful measure in cases where

- · there is a large class skew
- Is 98% accuracy good when 97% of the instances are negative?
- there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
- Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- · we are most interested in a subset of high-confidence predictions

false positive rate □	FP actual neg	FP	

Plotting an ROC example	

ROC curve

Does a low false-positive rate indicate that most positive predictions (i.e. predictions with confidence > some threshold) are correct?

suppose our TPR is 0.9, and FPR is 0.01

fraction of instances that are positive	fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

precision (positive predictive value)

Precision / recall curve example						

How do we get one ROC/PR curve when we do CV?

Approach 1

- · make assumption that confidence values are comparable across folds
- · pool predictions from all test sets
- · plot the curve from the pooled predictions

Approach 2 (for ROC curves)

- · plot individual curves for all test sets
- · view each curve as a function
- · plot the average curve for this set of functions

Comments...

Both

- allow predictive performance to be assessed at various levels of confidence
- · assume binary classification tasks
- sometimes summarized by calculating area under the curve (AUC)

ROC curves

- insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- can identify optimal classification thresholds for tasks with differential misclassification costs

Precision/recall curves

- show the fraction of predictions that are false positives
- well suited for tasks with lots of negative instances