12. Zadania

Zadanie 12.1.

Obliczyć całkowitą energię elektronu znajdującego się na trzeciej orbicie w atomie krzemu. Liczba atomowa krzemu Z = 14. Pozostałe stałe fizyczne: ładunek elementarny e = 1,602· 10^{-19} C, masa elektronu $m_e = 1,78·<math>10^{-31}$ kg, stała Plancka $h = 6,625·<math>10^{-34}$ J·s, przenikalność elektryczna próżni $\epsilon_0 = 8,854·<math>10^{-12}$ F/m.

Odp. 662,544·10⁻¹⁸ J (około 414 eV)

Zadanie 12.2.

Przyjmując, że liczba atomów krzemu w 1 m³ jest rzędu $4,99\cdot10^{28}$, szerokość pasma zabronionego $W_g = 1,12$ eV, koncentracja elektronów w paśmie przewodnictwa w temperaturze $T_1 = 300$ K jest równa $n_{i1} = 1,5\cdot10^{16}$ oszacować koncentracja swobodnych elektronów w 1 m³ w temperaturze 250 K i 350 K. Stała Boltzmanna k = $1.38\cdot10^{-23}$ J/K.

Odp. Około 0,9997n_{i1} (dla 250 K) oraz 1,00039n_{i1} (dla 350 K).

Zadanie 12.3.

Jaka konduktywność ma próbka z czystego krzemu i domieszkowana atomami akceptorowymi, jeżeli koncentracja domieszki $N_a=10^{24}~m^{-3}$. Temperatura otoczenia 300 K, $\mu_n=1350\cdot10^{-4}~m^2/Vs$, $\mu_p=450\cdot10^{-4}~m^2/Vs$

Odp.

Zadanie 12.4.

Płytka krzemu jest domieszkowana atomami donorowymi. Koncentracja domieszki $N_d = 2 \cdot 10^{22} \text{ m}^{-3}$. Oszacować koncentrację dziur i elektronów swobodnych w temperaturze pokojowej 27^{0} C, jeżeli koncentracja nośników samoistnych w tej temperaturze jest równa $n_i = 1,5 \cdot 10^{16} \text{ m}^{-3}$.

Odp.
$$N_n \approx N_d = 2.10^{22} \text{ m}^{-3}$$
, $P_n = 1,25.10^{10} \text{ m}^{-3}$

Zadanie 12.5.

Narysować wykres zależności potencjału termokinetycznego U_T od temperatury w zakresie \pm 40 0 C. Ładunek elementarny e = 1,602·10⁻¹⁹ C, stała Boltzmanna k = 1,38·10⁻²³ J/K.

t	°C	-40	-30	-20	-10	0	10	20	30	40
U _T	mV	20,07	20,93	21,80	22,66	23,52	24,38	25,24	26,10	26,96

Zadanie 12.6.

Wiedząc, że w temperaturze 300 K ruchliwość elektronów jest równa μ_n = 1350·10⁻⁴ m²/Vs obliczyć dla tej temperatury stałą dyfuzji. Ładunek elementarny e = 1,602·10⁻¹⁹ C, stała Boltzmanna k = 1,38·10⁻²³ J/K. Odp. D_n = 3,488·10⁻³ m²/s

Zadanie 12.7.

Obliczyć drogę dyfuzji elektronu i dziury w krzemie w temperaturze 300 K, jeżeli średni czas życia nośników jest równy 200 ns. W temperaturze 300 K μ_n = 1350·10⁻⁴ m²/Vs, μ_p = 450·10⁻⁴ m²/Vs.

Odp. Dla elektronu $L_n = 26,4 \mu m$, dla dziur $L_p = 15,3 \mu m$

Zadanie 12.8.

Jaką częstotliwość i długość fali powinno mieć padające na płytkę krzemową światło, aby wystąpiło zjawisko fotojonizacji?

Odp.
$$f = 270 \cdot 10^{15} \text{ Hz}, \lambda = 1 \text{ nm}$$

Zadanie 12.9.

Próbkę krzemu domieszkowanego atomami boru ($N_a = 10^{-15} \text{ m}^{-3}$) domieszkowano dodatkowo atomami fosforu ($N_d = 10^{23} \text{ m}^{-3}$).

Obliczyć koncentrację swobodnych elektronów i dziur przed i po domieszkowaniu fosforem. Odp.

Zadanie 12.10.

Jaka grubość ma warstwa inwersyjna, jeżeli płytka krzemowa pracuje w temperaturze 300 K i jest domieszkowana atomami aluminium ($N_a = 3 \cdot 10^{22}$). Względna przenikalność elektryczna krzemu $\epsilon = 11,7$ oraz ładunek elementarny e = $1,602 \cdot 10^{-19}$ C, przenikalność elektryczna próżni $\epsilon_0 = 8,854 \cdot 10^{-12}$ F/m, stała Boltzmanna k = $1,38 \cdot 10^{-23}$ J/K.

Odp. 33 nm