Zadanie 3 (15 punktów)

Dana jest tablica x[N] liczb całkowitych. Została ona skonstruowana w następujący sposób:

$$x[i] = a_0 \wedge a_1 \wedge \ldots \wedge a_{i-1} \wedge a_{i+1} \wedge \ldots \wedge a_{N-1}$$

gdzie $a_0, a_1, \ldots, a_{N-1}$ jest sekwencją N liczb całkowitych z przedziału $[0, 2^{30}-1]$ a \wedge oznacza operację **xor** na odpowiadających sobie bitach liczb a_i . Niektóre z wartości x[i] mogą być utajnione i wtedy x[i] przyjmuje wartość -1. Innymi słowy x[i] jest wynikiem bitowej operacji **xor** na wszystkich liczbach a_k z wyjątkiem k=i, lub jest równe -1 jeżeli ta wartość jest nieznana.

Proszę napisać program, który znajduje sumę liczb a_i , $i=0,\ldots,N-1$ spełniających powyższe założenia. Jeżeli istnieje przynajmniej jedna taka sekwencja liczb a_i , program zwraca najmniejszą osiągalną wartość sumy. W przeciwnym przypadku program zwraca -1.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba całkowita N zawierająca liczbę elementów tablicy x. W kolejnych N wierszach znajdują się elementy tej tablicy.

Ograniczenia

- 2 < N < 40,
- $-1 \le x[i] \le 2^{30} 1$, $i = 0, \dots, N 1$.

Wyjście

W pierwszym i jedynym wierszu standardowego wyjścia program powinien wypisać jedną liczbę całkowitą będącą rozwiązaniem.

Przykłady

1. Dla danych wejściowych:

3

1

-1

3

poprawną odpowiedzią jest:

3

Problem posiada wiele rozwiązań, jednak najmniejszą sumę uzyskujemy dla sekwencji $\{2, 1, 0\}$. Liczby te spełniają warunki zadania, ponieważ $x[0] = 1 \land 0 = 1, \ x[2] = 2 \land 1 = 3$. Wartość x[1] może być dowolna, ponieważ nie została podana.

9	Dl_{α}	danzah	wejściowy	roh.
<i>Z</i> .	Dia	uanycn	welsciow	y CII.

poprawną odpowiedzią jest:

-1

Nie istnieje sekwencja liczb spełniających założenia.