0.1 Алгебра высказываний. Тавтологии

У нас есть высказывания p, q, r, \ldots и они могут принимать значения Ложь (Л) или Истина (И). Указываются по-русски, однако для упрощения разметки буду использовать F, T (False, True).

Функции также аналогичны тем, что описаны в математической логике:

$$G: \{F, T\}^n \to \{F, T\}$$

 $f: \{0, 1\}^n \to \{0, 1\}$

Определение 1. Тавтология - это то, что говорит само за себя

0.2 Исчисление высказываний

Мы строим ее на основе Теории L.

Определение 2. Теория $L = (V_L, \mathcal{F}_L, \mathcal{A}_L, \mathcal{P}_L)$. Причем $V_L = Var \cup \{\neg, \rightarrow\} \cup Aux, \quad \mathcal{F}_L : 1)$ Каждая переменная есть формула, 2) Если Φ - формула, то $(\neg \Phi)$ - формула, 3) если Φ и Ψ - формулы, то $(\Phi \to \Psi)$ - формула, 4) Никаких других формул нет.

 Наше "подсахаривание" формул: 1) $\Phi \vee \Psi = \neg \Phi \to \Psi,$ 2) $\Phi \& \Psi = \neg (\Phi \to \neg \Psi)$

Схем аксиом всего три:

$$(1) \qquad A \to (B \to A)$$

$$A_L : (2) \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$(3) \qquad (\neg B \to \neg A) \to ((\neg B \to A) \to B)$$

И наши правила вывода:

$$\mathcal{P}_L: rac{A,A o B}{B} \mod s \ ponens \ (MP)$$

Пример Тавтологии.

$$\vdash (A \to A)$$

Доказательство.

- 1. $A \to ((A \to A) \to A) \to ((A \to (A \to A)) \to (A \to A))$ схема (2) при $B := A \to A, \quad C := A$
- 2. $A \to ((A \to A) \to A)$ схема (1) при $B := A \to A$
- 3. $(A \to (A \to A)) \to (A \to A)$ Modus ponens к шагам (1) и (2)
- 4. $A \rightarrow (A \rightarrow A)$ схема (1) при B := A
- 5. $A \rightarrow A$ modus ponens шагов (3) и (4)

0.3 Теорема дедукции

Теорема 0.1. (Эрбрам). Пусть дано некоторое множество формул, A - произвольная формула, тогда если из Γ , A выводится формула B (Γ , $A \vdash B$), то $\Gamma \vdash (A \to B)$.

$$\frac{\Gamma,A \vdash B}{\Gamma \vdash (A \to B)}$$

Пример применения.