#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)



ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

## Лабораторная работа №3

по дисциплине: Теория автоматов и формальных языков тема: «Регулярные языки и конечные распознаватели»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

#### Лабораторная работа №3

### Регулярные языки и конечные распознаватели Вариант 8

**Цель работы:** изучить основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.

| 1. | Язык $L_1$ в алфавите $\{0,1\}$ , представляющий собой множество цепочек, в которых на предпослежнем месте стоит единица, задан грамматикой: $S \to A10$ $A \to A011$ |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $A \rightarrow 0A$                                                                                                                                                    |
|    | $A \rightarrow 1A$                                                                                                                                                    |
|    | $A \rightarrow \epsilon$                                                                                                                                              |
|    | Построить детерминированный конечный распознаватель языка $L_1$ .                                                                                                     |
|    | Преобразуем заданную грамматику к автоматной правосторонней. Сейчас она яв ляется КС-грамматикой.                                                                     |
|    | Приведём грамматику и устраним левую рекурсию.                                                                                                                        |
|    | Лишних символов в грамматике нет.                                                                                                                                     |
|    | В грамматике есть є-правило. Исключим его.                                                                                                                            |
|    | $S \rightarrow A10$                                                                                                                                                   |
|    | $S \rightarrow 10$                                                                                                                                                    |
|    | $A \rightarrow A011$                                                                                                                                                  |

 $A \rightarrow 011$   $A \rightarrow 0A$   $A \rightarrow 0$   $A \rightarrow 1A$   $A \rightarrow 1$ 

 $S \rightarrow A10$   $S \rightarrow 10$   $A \rightarrow 011B$   $A \rightarrow 0AB$   $A \rightarrow 0B$   $A \rightarrow 1AB$   $A \rightarrow 1B$   $A \rightarrow 011$   $A \rightarrow 0A$   $A \rightarrow 0$   $A \rightarrow 1A$   $A \rightarrow 1$   $B \rightarrow 011B$ 

 $B \rightarrow \epsilon$ 

Цепных правил в грамматике нет.

В грамматике есть левая рекурсия. Исключим её.

В грамматике есть ε-правило. Исключим его.

```
S \rightarrow A10
S \rightarrow 10
A \rightarrow 011
A \rightarrow 011B
A \rightarrow 0A
A \rightarrow 0AB
A \rightarrow 0
A \rightarrow 0B
```

 $A \rightarrow 1A$ 

 $A \rightarrow 1AB$ 

 $A \rightarrow 1$ 

 $A \rightarrow 1B$ 

 $A \rightarrow 011$ 

 $A \rightarrow 0A$ 

 $A \rightarrow 0$ 

 $A \rightarrow 1A$ 

 $A \rightarrow 1$ 

 $B \rightarrow 011B$ 

 $B \rightarrow 011$ 

Исключим правила-дубликаты:

 $S \rightarrow A10$ 

 $S \rightarrow 10$ 

 $A \rightarrow 011$ 

 $A \rightarrow 011B$ 

 $A \rightarrow 0A$ 

 $A \rightarrow 0AB$ 

 $A \rightarrow 0$ 

 $A \rightarrow 0B$ 

 $A \rightarrow 1A$ 

 $A \rightarrow 1AB$ 

 $A \rightarrow 1$ 

 $A \rightarrow 1B$ 

 $B \rightarrow 011B$ 

 $B \rightarrow 011$ 

Грамматика приведена, а также в ней нет левой рекурсии. Преобразуем грамматику к такому виду, что каждое правило будет начинаться с терминала:

 $S \rightarrow 01110$ 

 $S \rightarrow 011B10$ 

 $S \rightarrow 0A10$ 

 $S \rightarrow 0AB10$ 

 $S \rightarrow 010$ 

 $S \rightarrow 0B10$ 

 $S \rightarrow 1A10$ 

 $S \rightarrow 1AB10$ 

 $S \rightarrow 110$ 

 $S \rightarrow 1B10$ 

 $S \rightarrow 10$ 

 $A \rightarrow 011$ 

 $A \rightarrow 011B$ 

 $A \rightarrow 0A$ 

 $A \rightarrow 0AB$ 

 $A \rightarrow 0$ 

 $A \rightarrow 0B$ 

 $A \rightarrow 1A$ 

 $A \rightarrow 1AB$ 

 $A \rightarrow 1$ 

 $A \rightarrow 1B$ 

 $B \rightarrow 011B$ 

 $B \rightarrow 011$ 

Преобразуем КС-грамматику к правосторонней:



Преобразовать грамматику к правосторонней невозможно, так как в ходе преобразований получили правило (подчёркнутое с !!! в вычислениях)  $N_4 \to ABN_1$ . С правилом  $N_3 \to AN_1$  они имеют общий префикс, а значит мы получим рекурсию, и следовательно правостороннюю грамматику с конечным числом правил получить нельзя. Задание невыполнимо.

2. Язык  $L_2$  в алфавите  $\{0,1\}$ , представляющий собой множество цепочек, в которых на последнем месте стоит единица, задан регулярным выражением: (0+1)\*1

Построить детерминированный конечный распознаватель языка  $L_2$ . Для начала построим конечный недетерминированный распознаватель языка:

Получение недетерминированного конечного распознавателя:



Преобразуем данный конечный распознаватель языка в детерминированный:

**Вывод:** в ходе лабораторной работы изучили основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.