LEMANS SCHOOL OF AI | SESSION 4.03

SESSION D'INITITATION AUX

GENERATIVE ADVERSARIAL NETWORKS

JEUDI 15 OCTOBRE 2020 | 18H30 | LE MANS INNOVATION

NVIDIA <a> @nvidia · 7 oct.

NVIDIA Maxine will be making an appearance on @BBCClick with @thisisFoxx this weekend! Can't wait that long? Get a sneak peek of how this new #AI platform transforms video conferencing in the #GTC20 keynote: nvda.ws/3jEH5Zn

Sender Receiver Keyframe Keyframe Output NVIDIA Al Video Compression Webcam Neural Network Keypoint Extraction Keypoints

Sommaire

- 1/ intro (5 min)
- 2/ exemples d'application (15 min)
- 3/ comment ça marche (25 min)
- 4/ un programme exemple (15 min)
- 5/ quelques considérations (15min)

intro

La technologie GAN est introduite en 2014

par lan Goodfellow (OpenAl Institute -> Google -> Apple (directeur ML))

Yann LeCun

de quoi s'agit-il?

• GAN = type de modèle de DL

 la particularité : compétition entre deux <u>réseaux de</u> <u>neurones</u> :

un générateur contre un discriminateur.

Feedback transmis au Générateur : Tu n'as pas su tromper le Discriminateur sur tel design

quelques exemples d'application

StyleGAN: génération d'images

https://thispersondoesnotexist.com/

CycleGAN: transfert d'images/vidéos

GauGAN - NVIDIA

3D GAN

http://3dgan.csail.mit.edu

Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)

Figure 2: Shapes synthesized by 3D-GAN

Entreprise utilisant les GANs

Nouvelle génération de Photoshop

Augmentation de données

Filtres sur les images

vidéo

retirer le bruit d'une image

https://colourise.sg/

Pour votre santé, évitez de manger trop gras, trop sucré, trop salé, www.mangerbouger.fr SCREENCAST @ MATIC

Pour votre santé, mangez au moins cinq fruits et légumes par jour. www.mangerbouger.fr

comment ça marche

Réseaux à convolution (discriminateur)

Entrainement du discriminateur

Réseaux à déconvolution (générateur)

Entrainement du générateur

Objectif pour:

- le Générateur : Ŷd = [1, 0]
- le Discriminateur : Ŷd =[0, 1]

Upsampling techniques (le plus proche voisin)

Upsampling techniques (déconvolution)

10 *1	10 *1 +2 0*1	20*1
10 *2 +15 *1	10 *2+ 15 *1 +20*2+7*1	20* <mark>2+7*1</mark>
15*2	15 *2+ 7 *2	7*2

pas = 1

Binary cross-entropy cost function

• le Discriminateur : $J(\theta)$ plus proche de 0 possible

um programme exemple

mon premier GAN

- avec Keras, tensorflow
- dataset de chiffres manuscrits de MNIST
- objectif: générer une image synthétique d'un chiffre

le générateur

entrée:

100-dimensional noise

sortie:

vector of the size 784

(28x28 the original size

of the images)

```
class Generator(keras.Model):
   def __init (self, random noise size = 100):
        super().__init__(name='generator')
       #layers
        self.input layer = keras.layers.Dense(units = random noise size)
        self.dense_1 = keras.layers.Dense(units = 128)
        self.leaky 1 = keras.layers.LeakyReLU(alpha = 0.01)
        self.dense_2 = keras.layers.Dense(units = 128)
        self.leaky 2 = keras.layers.LeakyReLU(alpha = 0.01)
        self.dense_3 = keras.layers.Dense(units = 256)
        self.leaky 3 = keras.layers.LeakyReLU(alpha = 0.01)
        self.output layer = keras.layers.Dense(units=784, activation = "tanh")
   def call(self, input_tensor):
       ## Definition of Forward Pass
       x = self.input_layer(input_tensor)
       x = self.dense 1(x)
       x = self.leaky 1(x)
       x = self.dense 2(x)
       x = self.leaky 2(x)
       x = self.dense 3(x)
       x = self.leaky 3(x)
        return self.output_layer(x)
   def generate_noise(self,batch_size, random_noise_size):
        return np.random.uniform(-1,1, size = (batch size, random noise size))
```

fonction de coût pour le générateur

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits = True)

```
def generator_objective(dx_of_gx):
    # Labels are true here because generator thinks he produces real images.
    return cross_entropy(tf.ones_like(dx_of_gx), dx_of_gx)
```

Génération sans entraînement

```
generator = Generator()
fake_image = generator(np.random.uniform(-1,1, size =(1,100)))
fake_image = tf.reshape(fake_image, shape = (28,28))
plt.imshow(fake_image, cmap = "gray")
```


le discrimi -nateur

```
entrée:
784-dimensional
vector(28*28 = 784)
sortie:
1 neurone
```

a fake or a real image

```
class Discriminator(keras Model):
   def __init__(self):
        super().__init__(name = "discriminator")
       #Layers
        self.input_layer = keras.layers.Dense(units = 784)
        self.dense_1 = keras.layers.Dense(units = 128)
        self.leaky 1 = keras.layers.LeakyReLU(alpha = 0.01)
        self.dense 2 = keras.layers.Dense(units = 128)
        self.leaky_2 = keras.layers.LeakyReLU(alpha = 0.01)
        self.dense_3 = keras.layers.Dense(units = 128)
        self.leaky_3 = keras.layers.LeakyReLU(alpha = 0.01)
       # This neuron tells us if the input is fake or real
        self.logits = keras.layers.Dense(units = 1)
   def call(self, input tensor):
         ## Definition of Forward Pass
       x = self.input_layer(input_tensor)
       x = self.dense 1(x)
       x = self.leaky 1(x)
       x = self.leaky_2(x)
       x = self.leaky_3(x)
       x = self.leaky 3(x)
       x = self.logits(x)
        return x
```

fonction de coût pour le discriminateur

```
def discriminator objective(d x, q z, smoothing factor = 0.9):
    d_x = real output
    g_z = fake output
    # If we feed the discriminator with real images,
    # we assume they all are the right pictures --> Because of that label == 1
    real loss = cross entropy(tf.ones like(d x) * smoothing factor, d x)
    # Each noise we feed in are fakes image --> Because of that labels are 0
    fake_loss = cross_entropy(tf.zeros_like(q_z), q_z)
    total loss = real loss + fake loss
    return total_loss
```

remarque: smoothing_factor is to avoid overfitting

Entrainement

```
BATCH_SIZE = 256
BUFFER_SIZE = 60000
EPOCHES = 300
```

```
@tf.function()
def training step(generator: Discriminator, discriminator: Discriminator, images:np.ndarray , k:int =1, batch_size = 32):
    for _ in range(k):
         with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
            noise = generator.generate_noise(batch_size, 100)
           g z = generator(noise)
           d x true = discriminator(images) # Trainable?
            d_x_fake = discriminator(q_z) # dx_of_gx
            discriminator_loss = discriminator_objective(d_x_true, d_x_fake)
           # Adjusting Gradient of Discriminator
            gradients of discriminator = disc tape.gradient(discriminator loss, discriminator.trainable variables)
            discriminator optimizer apply gradients (zip(gradients of discriminator, discriminator trainable variables)) # Takes a list of gradient and variables pairs
            generator_loss = generator_objective(d_x_fake)
            # Adjusting Gradient of Generator
            gradients of generator = gen_tape.gradient(generator loss, generator trainable variables)
            generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
```

résultat

```
fake_image = generator(np.random.uniform(-1,1, size = (1, 100))) plt.imshow(tf.reshape(fake_image, shape = (28,28)), cmap="gray")
```

<matplotlib.image.AxesImage at 0x7f65e0f7db70>

quelques considérations...

Conditional GANs

Unconditional GANs

Conditional GANs

Conditional vs Unconditional GANs

Conditional	Unconditional
 Génère la classe qu'on souhaite Les données d'entraînement doivent être annotées 	 Génère une classe aléatoirement Les données d'entraînement ne doivent pas être libellées

Controllable GANs

Controllable GANs

Z-space and controllable generation

Controllable vs Conditional GANs

Controllable	Conditional
 Génère des images avec la caractéristique qu'on souhaite 	 Génère la classe qu'on souhaite
 Les données d'entraînement ne doivent pas être annotées 	 Les données d'entraînement doivent être annotées
 On manipule le vecteur ε en entrée 	 On concatène le vecteur ε avec une vecteur de classe

et pour la session 2

sur la base d'un exemple, on rentrera dans le détail de l'implémentation d'un modèle :

les problèmes rencontrés et leurs solutions

- les limites
 - les illilles