МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Гомельский государственный технический университет имени П.О.Сухого»

Заочный факультет

Кафедра «Маркетинг и отраслевая экономика»

Курсовая работа

по дисциплине: «Организация производства и управление предприятием» на тему: «Организация и планирование работы энергохозяйства предприятия»

Исполнитель: студент гр. 3ЭН-41с

Сытько А.Г.

Руководитель: ст. преподаватель

Ридецкая И.Н.

Дата проверки:	
Дата допуска к защите: _	
Дата защиты:	
Оценка работы:	
Подписи членов комисс	ии
по защите курсовой рабо	оты:

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ИСХОДНЫЕ ДАННЫЕ	5
1 ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ ПРЕДПРИЯТИЯ В ТЕПЛОВОЙ	
ЭНЕРГИИ	6
1.1 Расход тепла на отопление и вентиляцию	6
1.2 Расход тепла на горячее водоснабжение	9
1.3 Расход тепла на технологические нужды	
1.4 Расчет годового объема потребления и выработки тепла	12
1.5 Расчетные тепловые нагрузки	13
2 ОПРЕДЕЛЕНИЕ НОРМ РАСХОДА ТЕПЛОВОЙ ЭНЕРГИИ НА ОБОГРЕ ЗДАНИЙ И ГВС	В 15
3 ВЫБОР ТИПА И КОЛИЧЕСТВА УСТАНАВЛИВАЕМЫХ КОТЕЛЬНЫХ АГРЕГАТОВ И РАСЧЕТ ТЕХНОЛОГИЧЕСКИХ ПОКАЗАТЕЛИ КОТЕЛЬНОЙ	
3.1 Выбор типа и количества устанавливаемых котельных агрегатов	17
3.2 Установленная мощность котельной	17
3.3 Годовое число часов использования установленной мощности	
3.4 Годовой расход топлива котельной	19
3.5 Установленная мощность токоприемников котельной	
3.6 Годовой расход электроэнергии котельной	
3.7 Годовой расход воды котельной	
4 ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ ПРЕДПРИЯТИЯ В ЭЛЕКТРОЭНЕРГИ СЖАТОМ ВОЗДУХЕ И ТЕХНОЛОГИЧЕСКОМ ТОПЛИВЕ	ΙИ,
4.1 Потребность предприятия в электроэнергии	24
4.2 Потребность предприятия в топливе технологическом	
4.3 Потребность предприятия в сжатом воздухе	
5 ОПРЕДЕЛЕНИЕ ВОЗМОЖНЫХ РЕЗЕРВОВ ЭКОНОМИИ ТОПЛИВА	
6 ЭНЕРГЕТИЧЕСКИЕ БАЛАНСЫ ПРЕДПРИЯТИЯ	
7 РАСЧЕТ СЕБЕСТОИМОСТИ ОТПУЩЕННОЙ ТЕПЛОТЫ	
7.1 Стоимость топлива	
7.2 Стоимость воды	
7.3 Стоимость электроэнергии	
7.4 Годовой фонд заработной платы персонала котельной	
7.5 Отчисления на социальные нужды	
· · · · ·	

7.6 Капитальные затраты на сооружение котельной	39
7.7 Амортизационные отчисления	40
7.8 Затраты на ремонтно-эксплуатационное обслуживание	40
7.9 прочие расходы	41
7.10 Структура себестоимости отпущенной теплоты	41
8 ОПРЕДЕЛЕНИЕ ЭНЕРГЕТИЧЕСКИХ ЗАТРАТ ПРЕДПРИЯТИЯ	43
9 ОЦЕНКА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ МЕРОПРИЯТИЙ ЭКОНОМИИ ТОПЛИВА	
9.1 Капитальные вложения в мероприятия по экономии топлива	
9.2 Финансовые результаты внедрения мероприятий по экономии топл	ива 46
9.3 Показатели экономической эффективности	48
10 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЕКТА	55
ЗАКЛЮЧЕНИЕ	59
ЛИТЕРАТУРА	60

ВВЕДЕНИЕ

При промышленного проектировании И эксплуатации систем энергоснабжения возникает ряд проблем, для решения которых необходимо проведение технико-экономических и плановых расчетов. К таким вопросам относятся: определение плановой потребности предприятия в энергетических ресурсах, объема и плана ремонтных работ, численность персонала, себестоимость энергетической продукции, eë топливной также составляющей, уровня энергозатрат, целесообразности проведения организационно-технических мероприятий и ряд других.

Актуальность данных расчетов в том, что они проводятся на всех без исключения предприятиях энергетики и являются неотъемлемой частью политики государства.

В данном курсовом проекте будут рассмотрены вопросы определения потребности предприятия в различных видах топлива, энергии и энергоносителей; даются рекомендации по расчету основных технико-экономических показателей производственной котельной; проводится оценка возможных резервов экономии топлива и экономической целесообразности их использования; предложены различные формы энергобалансов; даётся методика расчета себестоимости теплоты, отпускаемой из котельной и энергозатрат предприятия.

Целью выполнения расчета курсовой работы является приобретение опыта техники расчета по основным вопросам экономики, организации планирования и управления энергетического норматива. Данные расчеты показывают всю энергетическую структуру предприятия и позволяют оценить эффективность использования топливных и энергетических ресурсов предприятия, что является главным вопросом в стремлении экономии топливных и энергетических ресурсов не только предприятия, но и государства.

Задачи работы:

- определить потребность предприятия в тепловой энергии;
- определение норм расхода тепловой энергии на обогрев зданий и ГВС;
- выбор и обоснование типа и количества устанавливаемых котлоагрегатов, расчет технологических показателей котельной;
- определить потребность предприятия в электроэнергии, сжатом воздухе и технологическом топливе;
- определить возможные резервы экономии топлива и оценить эффективность от внедрения мероприятий;
 - составить энергетические балансы предприятия;
 - рассчитать себестоимость отпущенной теплоты.

ИСХОДНЫЕ ДАННЫЕ

Исходные данные по данной курсовой работе представим в таблице 1.

Таблица 1

Исходные данные

Регион Брест Производственная программа, шт./год П 9000 Численность промышленно-производственного персонала, всего, чел Чппп 1250 – в том числе рабочих, чел Чрыб 1025 Расход пара давлением: 13 ата, т/ч D³ 2 В ата, т/ч D8 2 Режим работы Трехсменный Поправочный коэффициент к объему помещения k₂ 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ В₁ 81 Потери топлива в процессах,%: — нагрев β₂ 23 — термообработка β₁₀₀ 24 — нормализация и отпуск β₁₀₀ 25 Месячная тарифная ставка 1 разряда,руб./мес. Т¹ 310 Удельные капиталовложения в ОТМ: к₁ 590 — использование ВЭР технологических установок, руб/Ту.т. к₂ 220 — снижение СН котельной, руб/Гкал к₂ 220 Коэффициент пересчета стоимости котельной к₁с 1,4 Норма дисконтирования, р 11 Перечень цехов и их х	Наименование	Обозначение	Значение		
Численность промышленно-производственного персонала, всего, чел u_{mag} 1250 - в том числе рабочих, чел u_{pa6} 1025 Расход пара давлением: 13 ата, u_{pa6} u_{pa6} 1025 Режим работы u_{pa6} u_{pa6} u_{pa6} Поправочный коэффициент к объему помещения u_{pa6} u_{pa6} u_{pa6} Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс. u_{pa6} u	Регион		Брест		
персонала, всего,чел — в том числе рабочих,чел Расход пара давлением:13 ата,т/ч 8 ата,т/ч В ата,т/ч Режим работы Поправочный коэффициент к объему помещения Поправочный коэффициент к объему помещения Поправочный коэффициент к объему помещения К₂ 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ Потери топлива в процессах,%: — нагрев — термообработка — нормализация и отпуск Месячная тарифная ставка 1 разряда,руб./мес. Т¹ 310 Удельные капиталовложения в ОТМ: — использование ВЭР технологических установок, руб/ту.т. — снижение СН котельной, руб/Гкал Коэффициент пересчета стоимости котельной Кара 220 Коэффициент пересчета стоимости котельной Наименования Перечень цехов и их характеристики Наименование Кузнечно-прессовый Литейный 36 Механический 54 Термический 54 Термический 54 Термический 21 Компрессорная 38 Заводоуправление	Производственная программа, шт./год	П	9000		
персонала, всего, чел — в том числе рабочих, чел U _{раб} 1025 Расход пара давлением:13 ата, т/ч D¹³ 2 8 ата, т/ч D¹³ 2 Режим работы Трехсменный Поправочный коэффициент к объему помещения k₂ 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ И с в 81 Потери топлива в процессах,%: — нагрев β₂ 23 — нагрев β₂ 23 — термообработка β₁.о. 24 — нормализация и отпуск β₁.о. 25 Месячная тарифная ставка 1 разряда,руб./мес. Т¹с, 310 Удельные капиталовложения в ОТМ: — снижение СН котельной, руб/Гкал k₁ 590 ууб/ту.т. — снижение СН котельной, руб/Гкал k₂ 220 Коэффициент пересчета стоимости котельной k₁, вр. 1,4 Норма дисконтирования, р 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, Уид Кузнечно-прессовый 36 Механический 54 Т	Численность промышленно-производственного	τι	1250		
Расход пара давлением:13 ата,т/ч D ¹³ D ⁸ 2 D ¹³ D ¹³ D ¹³ D ¹³ 2 D ¹³ D ¹³ D ¹³ D ¹³ D ¹³ D ¹³ 2 D ¹³ D	персонала, всего, чел		1230		
Расход пара давлением:13 ата,т/ч D ¹³ D ⁸ 2 D ¹³ D ¹³ D ¹³ D ¹³ 2 D ¹³ D ¹³ D ¹³ D ¹³ D ¹³ D ¹³ 2 D ¹³ D	– в том числе рабочих, чел	${ m q}_{ m pa6}$	1025		
Режим работы Трехсменный Поправочный коэффициент к объему помещения k_v 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ H_{ce} 81 Потери топлива в процессах,%: — — — нагрев β_{v} 23 — термообработка $\beta_{r.o.}$ 24 — нормализация и отпуск $\beta_{n.o.}$ 25 Месячная тарифная ставка 1 разряда,руб./мес. T^1_{cr} 310 Удельные капиталовложения в ОТМ: — использование ВЭР технологических установок, руб/ту.т. k_1 590 — синжение СН котельной, руб/Гкал k_2 220 Коэффициент пересчета стоимости котельной k_{nep} 1,4 Норма дисконтирования, p 11 Перечень цехов и их характеристики $\frac{1}{2}$ Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 24 Реммеханический 21 Компрессорная 8 Заводоуправление </td <td>Расход пара давлением:13 ата,т/ч</td> <td>D_{13}</td> <td>2</td>	Расход пара давлением:13 ата,т/ч	D_{13}	2		
Поправочный коэффициент к объему помещения k_{ν} 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ 81 Потери топлива в процессах,%: - нагрев β_{ν} 23 - термообработка $\beta_{\tau.o.}$ 24 - нормализация и отпуск $\beta_{n.o.}$ 25 Месячная тарифная ставка 1 разряда,руб./мес. T^1_{cr} 310 Удельные капиталовложения в ОТМ: - использование ВЭР технологических установок, руб/гу.т. k_1 590 - синжение СН котельной, руб/Гкал k_2 220 Коэффициент пересчета стоимости котельной k_{nep} 1,4 Норма дисконтирования, p 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, $V_{HД}$ Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	8 ата,т/ч	D_8	2		
Поправочный коэффициент к объему помещения k_v 1,15 Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ H_{cs} 81 Потери топлива в процессах,%: — нагрев β_v 23 — термообработка $\beta_{r.o.}$ 24 — нормализация и отпуск $\beta_{r.o.}$ 25 Месячная тарифная ставка 1 разряда,руб./мес. T^1_{cr} 310 Удельные капиталовложения в ОТМ: — использование ВЭР технологических установок, руб/ту.т. k_1 590 — сикжение СН котельной, руб/Г кал k_2 220 Коэффициент пересчета стоимости котельной k_{nep} 1,4 Норма дисконтирования, p 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, $V_{HД}$ Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление	Режим работы		Трехсмен-		
Норма расхода электроэнергии на производство сжатого воздуха, кВт-ч/тыс.м³ H_{ce} 81 Потери топлива в процессах,%: — нагрев β_y 23 — термообработка $\beta_{T.o.}$ 24 — нормализация и отпуск $\beta_{H.o.}$ 25 Месячная тарифная ставка 1 разряда,руб./мес. T^1_{cr} 310 Удельные капиталовложения в ОТМ: — использование ВЭР технологических установок, руб/гу.т. k_1 590 — синжение СН котельной, руб/Гкал k_2 220 Коэффициент пересчета стоимости котельной k_{nep} 1,4 Норма дисконтирования, p 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, $V_{uд}$ Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12			ный		
воздуха, кВт·ч/тыс.м³ Яголей 81 Потери топлива в процессах,%: βy 23 - термообработка βr.o. 24 - нормализация и отпуск βr.o. 25 Месячная тарифная ставка 1 разряда,руб./мес. T¹ 310 Удельные капиталовложения в ОТМ: голользование ВЭР технологических установок, руб/ту.т. к₁ 590 к₂ - снижение СН котельной, руб/Гкал к₂ 220 Коэффициент пересчета стоимости котельной k₁ 14 Норма дисконтирования, р 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, Vид Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Поправочный коэффициент к объему помещения	k_{v}	1,15		
Воздуха, квт-ч/тыс.м Потери топлива в процессах,%:	Норма расхода электроэнергии на производство сжатого	Н	01		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	воздуха, кВт·ч/тыс.м ³	11 _{C6}	81		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Потери топлива в процессах,%:				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	– нагрев	$\beta_{ m y}$	23		
Месячная тарифная ставка 1 разряда,руб./мес. T¹ _{ст} 310 Удельные капиталовложения в ОТМ: – использование ВЭР технологических установок, руб/ту.т. – снижение СН котельной, руб/Гкал k1 590 k2 220 Коэффициент пересчета стоимости котельной k _{пер} 1,4 Норма дисконтирования, Перечень цехов и их характеристики Объем помещений, тыс.м³, Vид Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	– термообработка		24		
Месячная тарифная ставка 1 разряда,руб./мес. T^1_{cr} 310 Удельные капиталовложения в ОТМ: – использование ВЭР технологических установок, руб/Ту.т. k_1 590 – снижение СН котельной, руб/Гкал k_2 220 Коэффициент пересчета стоимости котельной k_{nep} 1,4 Норма дисконтирования, p 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, $V_{ид}$ Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	нормализация и отпуск	$eta_{ ext{h.o.}}$	25		
Удельные капиталовложения в ОТМ: использование ВЭР технологических установок, руб/ту.т. k1 590 – снижение СН котельной, руб/Гкал k2 220 Коэффициент пересчета стоимости котельной k _{пер} 1,4 Норма дисконтирования, р 11 Перечень цехов и их характеристики Объем помещений, тыс.м³, Vид Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Месячная тарифная ставка 1 разряда, руб./мес.	T^1	310		
руб/ту.т. — снижение СН котельной, руб/Гкал Коэффициент пересчета стоимости котельной	Удельные капиталовложения в ОТМ:				
руо/ту.т. — снижение СН котельной, руб/Гкал Коэффициент пересчета стоимости котельной Норма дисконтирования, Перечень цехов и их характеристики Наименование Кузнечно-прессовый Литейный Механический Термический Сборочный Объем помещений, тыс.м³, Vид 45 Литейный 36 Механический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 38 Заводоуправление	– использование ВЭР технологических установок,	1	500		
— снижение СН котельной, руб/1 кал 2 Коэффициент пересчета стоимости котельной k _{пер} 1,4 Норма дисконтирования, р 11 Перечень цехов и их характеристики Наименование Объем помещений, тыс.м³, Vид Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12					
Норма дисконтирования,р11Перечень цехов и их характеристикиНаименованиеОбъем помещений, тыс.м³, VидКузнечно-прессовый45Литейный36Механический54Термический21Сборочный30Инструментальный24Реммеханический21Компрессорная8Заводоуправление12	– снижение СН котельной, руб/Гкал	K 2	220		
Перечень цехов и их характеристики Наименование Объем помещений, тыс.м³, V _{иД} Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Коэффициент пересчета стоимости котельной	k_{nep}	1,4		
НаименованиеОбъем помещений, тыс.м³, VидКузнечно-прессовый45Литейный36Механический54Термический21Сборочный30Инструментальный24Реммеханический21Компрессорная8Заводоуправление12	Норма дисконтирования,	p	11		
Наименование Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Перечень цехов и их характеристи	ки			
Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Havatanavaa	Объем поме	ещений,		
Кузнечно-прессовый 45 Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	паименование	тыс.м ³ ,	$V_{\rm ИД}$		
Литейный 36 Механический 54 Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Кузнечно-прессовый				
Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	•	36			
Термический 21 Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	Механический	54			
Сборочный 30 Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12					
Инструментальный 24 Реммеханический 21 Компрессорная 8 Заводоуправление 12	*				
Реммеханический 21 Компрессорная 8 Заводоуправление 12	1				
Компрессорная 8 Заводоуправление 12					
Заводоуправление 12					
	Столовая	\			

1 ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ ПРЕДПРИЯТИЯ В ТЕПЛОВОЙ ЭНЕРГИИ

1.1 Расход тепла на отопление и вентиляцию

Годовой расход тепла на отопление и вентиляцию, Гкал/год:

$$Q_{o_{i}} = q_{o_{i}} \cdot V_{i} \cdot (t_{BH_{i}} - t_{H,CP}) \cdot n_{o} \cdot 24 \cdot 10^{-3}$$
(1.1)

$$Q_{g_{i}} = q_{g_{i}} \cdot V_{i} \cdot (t_{gH_{i}} - t_{h.cp}) \cdot n_{g} \cdot T_{g_{i}} \cdot 10^{-3}, \tag{1.2}$$

где q_{oi} – удельная отопительная характеристика здания, $\kappa \kappa a n / M^3 \cdot u \cdot {}^{\circ}C$, [1, с.43, Табл.П1.3];

 V_i – объем помещения, $V_i = V_{U\!\!/\!\!1} \cdot k_v$, тыс. M^3 , $V_{U\!\!/\!\!1}$ – [Таблица 1];

 k_{v} – поправочный коэффициент к объему помещений,[Таблица 1];

 $t_{вні}$ – внутренняя температура в помещении, °C, [Таблица 1.1];

 $t_{\text{н.сp}}$ – наружная средняя температура за отопительный период, $t_{\text{н.сp}}$ °C, [1, стр.44, Табл.П1.4], $t_{\text{н.cp}}$ = 0,6°C;

 n_o — продолжительность отопительного периода, сут., [1, стр.44, Табл.П1.4], n_o =181 дн;

 n_e — продолжительность работы системы вентиляции за отопительный период, сут./год (зависит от режима работы цехов), n_e =127 дн;

 q_{si} — удельная вентиляционная характеристика здания, ккал/ м³·ч·°С, [1,стр.43,Табл.П1.3];

 T_{ei} — число часов использования вентиляционной нагрузки в сутки, ч/сут. Для основных цехов T_{ei} =24 ч/сут., для вспомогательных — 8 ч/сут.

Для кузнечно-прессового цеха:

$$V = 45 \cdot 1,15 = 51,75 \text{тыс.м}^3$$

$$Q_o = 0,246 \cdot 51,75 \cdot (14-0,6) \cdot 181 \cdot 24 \cdot 10^{-3} = 741,04 \, \Gamma \text{кал/год.}$$

$$Q_o = 0,493 \cdot 51,75 \cdot (14-0,6) \cdot 127 \cdot 24 \cdot 10^{-3} = 1042,02 \, \Gamma \text{кал/год.}$$

Часовой расход тепла на отопление и вентиляцию, Гкал/ч:

$$Q_{po_{i}} = q_{o_{i}} \cdot V_{i} \cdot (t_{gH_{i}} - t_{H.O}) \cdot 10^{-3}; \tag{1.3}$$

$$Q_{pB_{i}} = q_{pB_{i}} \cdot V_{i} \cdot (t_{BH_{i}} - t_{H.B}) \cdot 10^{-3},$$
 (1.4)

где $t_{\text{н.o}}$ — наружная температура для расчета отопления, °C, [1, с.44, Табл.П1.4], $t_{\text{н.o}}$ = -21°C;

 $t_{{\scriptscriptstyle H.B}}$ — наружная температура для расчета вентиляции, °C, [1, с.44, Табл.П1.4], $t_{{\scriptscriptstyle H.B}}$ = -6,5°C.

Для кузнечно-прессового цеха:

$$Q_{po} = 0,246 \cdot 51,75 \cdot (14 - (-21)) \cdot 10^{-3} = 0,45 \, \Gamma \kappa a \pi / u.$$

$$Q_{po} = 0,493 \cdot 81 \cdot (14 - (-6,5)) \cdot 10^{-3} = 0,52 \, \Gamma \kappa a \pi / u.$$

Результаты расчетов остальных цехов представлены в таблице 1.1.

Таблица 1.1 Расход тепла на отопление и вентиляцию

№ п.п	Наименование цеха	Объем помещения	характе	овые ристики ний, и³·ч·°С)	Температура внутри помещений, ${\cal C}$		работы иляции	Расход тепла, Гкал/год		Расчетная нагрузка, <i>Гкал/ч</i>	
		V,тыс.м ³	q_o	q_{s}	$t_{\scriptscriptstyle{ extit{BH}}}$	ч/сут.	сут./год	Q_o	Q_{e}	Q_{po}	Q_{ps}
		v,mote.su	90	$q_{\it 6}$	вн	$t_{\scriptscriptstyle B}$	$n_{\scriptscriptstyle B}$	20	26		∠ pe
1	Кузнечно- прессовый	51,75	0,246	0,493	14	24	127	741,04	1042,02	0,45	0,52
2	Литейный	41,4	0,261	0,871	14	24	127	628,98	1472,78	0,38	0,74
3	Механический	62,1	0,395	0,143	16	24	127	1640,96	416,83	0,91	0,20
4	Термический	24,15	0,265	0,529	14	24	127	372,53	521,79	0,22	0,26
5	Сборочный	34,5	0,419	0,189	16	24	127	967,04	306,07	0,53	0,15
6	Инструментальный	27,6	0,428	0,206	16	8	127	790,25	88,96	0,44	0,13
7	Ремонтно- механический	24,15	0,432	0,215	16	8	127	697,93	81,24	0,39	0,12
8	Компрессорная	9,2	0,408	0	16	0	0	251,11	0,00	0,14	0,00
9	Заводоуправление	13,8	0,281	0,106	18	8	127	293,11	25,86	0,15	0,04
10	Столовая	8,05	0,312	0,114	18	8	127	189,84	16,22	0,10	0,02
Итого:		296,7			$t_{cp}=15,82$			6572,78	3971,77	3,70	2,17

1.2 Расход тепла на горячее водоснабжение

Расход тепловой энергии на нужды горячего водоснабжения, Гкал /пер.:

$$Q_{\Gamma.BC} = G_{\Gamma.BC} \cdot c \cdot (t_z - t_x) \cdot 10^{-3}, \tag{1.5}$$

где G_{rec} – расход воды на горячее водоснабжение, т;

c – теплоемкость воды, c = 1, ккал/(кг · °С);

 t_{c} – температура горячей воды, °С (t_{c} =55 °С);

 $t_{\rm x}$ –температура холодной воды, °C (летом–15 °C, зимой – 5 °C), $t_{\rm x}$ =5 °C в I и IV кварталах, $t_{\rm x}$ =15 °C – во II и III кварталах.

Расход горячей воды для хозяйственно-бытовых нужд предприятия в общем случае складывается из расходов на умывальники, душевые сетки, приготовление пищи и уборку помещений:

$$G_{\Gamma,BC} = G_{vM} + G_{r} + G_{cr} \tag{1.6}$$

Все расчеты по расходу горячей воды и тепловой энергии на ГВС проводятся в квартальном разрезе на предстоящий календарный год.

Расход горячей воды на умывальники:

$$G_{y_{M}} = \sum (\mathbf{Y}_{i} \cdot \mathbf{g}_{y_{i}} \cdot \mathbf{N}_{i_{p.n.}}) \cdot 10^{-3}, \ \text{T/nep.}$$
 (1.7)

где g_{y_i} — нормативный расход горячей воды на одного человека соответствующей группы персонала;

 $_i$ – численность соответствующей группы персонала, чел (рабочих
– 1250 чел.; служащих – 225 чел.);

 $N_{ip.n.}$ — количество рабочих дней по балансу рабочего времени расчетного периода (квартала) с учетом трехсменного режима работы предприятия и категорий работающих на 2022 год (квартал I — 62 дня; II — 63 дня; III — 66 дней; IV — 64 дня).

Нормативный расход горячей воды на одного рабочего и служащего в день составляет – 11 и 5 л, соответственно.

Расход горячей воды на душевые сетки:

$$G_{\pi} = g_{\pi} \cdot n_{\pi} \cdot t_{\pi} \cdot N_{p.m.} \cdot 10^{-3}, \text{ T/nep.}$$

$$(1.8)$$

где $g_{_{\pi}}$ — нормативный расход горячей воды на одну душевую сетку в час наибольшего потребления, $g_{_{\pi}}$ = 230 л/ч;

 ${\rm n_{_{\rm J}}}-$ количество душевых сеток, шт. Принимать из расчета 1 шт. на 10 чел., ${\rm n_{_{\rm J}}}{=}250$ шт.;

N_{р.п.} – продолжительность рабочего периода;

 $t_{_{\rm I}}$ – продолжительность работы душевых сеток, $t_{_{\rm I}}=0.75$ ч.

Расход воды на приготовление пищи в столовой:

$$G_{cr} = g_{y.\delta.} \cdot n_{y.\delta.} \cdot N_{p.\pi.} \cdot 10^{-3}, \text{ T/nep}$$
 (1.9)

где ${\rm g_{v.6.}}-$ норма расхода воды на условное блюдо, л/у. б., ${\rm g_{v.6.}}=4$;

 $n_{y.б.}$ – количество условных блюд:

$$n_{y.\vec{0}.} = 3 \cdot \Psi_{\Pi.\Pi.\Pi.} \cdot \beta_{CT}, \text{ IIIT.}$$
 (1.10)

где Ч_{п.п.п.} – численность персонала предприятия, чел.;

 $\beta_{\rm cr}$ — доля персонала, пользующаяся услугами столовой, $\beta_{\rm cr}$ = 75%;

 $N_{\rm p.n.}$ — продолжительность рабочего периода (квартал I — 62 дня; II — 63 дня; III — 66 дней; IV — 64 дня).

Для I квартала:

Расход горячей воды на умывальники:

$$G_{_{VM}} = (11 \cdot 1025 + 5 \cdot 225) \cdot 62 \cdot 10^{-3} = 769$$
 т/квартал.

Расход горячей воды на душевые сетки:

$$G_{_{\pi}} = 230 \cdot 225 \cdot 0,75 \cdot 3 \cdot 62 \cdot 10^{-3} = 3288,71$$
 т/квартал.

Расход воды на приготовление пищи в столовой:

$$n_{_{y.6.}}=3\cdot 1250\cdot 0,75=2812,5\,\text{ шт.}$$

$$G_{_{c\tau}}=4\cdot 2812,5\cdot 62\cdot 10^{-3}=697,5\,\text{ т/квартал.}$$

Расход горячей воды для хозяйственно-бытовых нужд предприятия:

$$G_{\Gamma,BC} = 769 + 3288,71 + 697,5 = 4755,01$$
 т/квартал.

Расход тепловой энергии на нужды горячего водоснабжения:

$$Q_{\Gamma,BC} = 4755,01 \cdot 1 \cdot (55-5) \cdot 10^{-3} = 237,75 \ \Gamma$$
кал/квартал.

Таблица 1.2

Расход воды и тепловой энергии на ГВС

			Расход воді	ы на ГВС, т		Расход
Период		Умываль-	_	_		тепловой
времени		ники	Душевые	Столовая	Итого	энергии.
		пики				Гкал/пер.
	I	769	3288,71	697,5	4755,01	237,75
Кварталы	II	781,2	3341,76	708,75	4831,71	193,27
Кварталы	III	818,4	3500,89	742,5	5061,79	202,47
	IV	793,6	3394,8	720	4908,4	245,42
Итого за год		3162	13526,16	2868,75	19556,91	878,91

1.3 Расход тепла на технологические нужды

Расход тепла на технологические нужды:

$$Q_{T} = ((D^{13}(h_{II}^{13} - h_{IIB}) - D^{13} \cdot \frac{\beta}{100} \cdot h_{K}) + (D^{8}(h_{II}^{8} - h_{IIB}) - D^{8} \cdot \frac{\beta}{100} \cdot h_{K})) \cdot T_{T} \cdot k_{H} \cdot 10^{-3},$$
(1.11)

где D^{13} , D^8 — расход пара на технологические нужды из отборов 13 и 8 ата, m/4;

 h_n^{13} , h_n^{8} — энтальпия пара, отпускаемого потребителям на технологические нужды из отборов 13 и 8 ата соответственно, h_n^{13} =2900 кДж/кг, h_n^{8} = 2800 кДж/кг, [1,стр.7];

 h_{ne} – энтальпия питательной воды, h_{ne} = 437 кДж/кг, [1, стр.7];

 β — возврат конденсата технологическими потребителями, β =60%, [1, ctp.7];

 h_{κ} — энтальпия конденсата, возвращаемого технологическими потребителями, h_{κ} =336 к \mathcal{J} ж $/\kappa$ г, [1, стр.7];

 T_m — годовое число часов использования потребителями технологической нагрузки, с учетом режима работы предприятия, $u/zo\partial$; т.к. режим работы предприятия непрерывный, принимаем $T_m = 6120 \ u/zo\partial$, [1, стр.5];

 k_{H} – коэффициент неравномерности суточного графика по пару, k_{H} = 1 [1, ctp.5].

$$\begin{aligned} Q_{\mathrm{T}} &= ((2\cdot(2900-437)-2\cdot\frac{60}{100}\cdot336) + (2\cdot(2800-437)-2\cdot\frac{60}{100}\cdot336))\cdot6120\cdot1\cdot10^{-3} = \\ &= 54135,07 \;\; \Gamma\text{Дж}\,/\,\text{год} = 12929,32 \;\; \Gamma\text{кал}/\text{год}. \end{aligned}$$

1.4 Расчет годового объема потребления и выработки тепла

Годовой расход тепла по всем видам потребителей, Гкал /год:

$$Q_{\text{потр}} = (Q_{\text{o}} + Q_{\text{в}} + Q_{\text{г.вс}} + Q_{\text{г}})$$
 (1.12)
$$Q_{nomp} = 6572,78 + 3971,77 + 878,91 + 12929,32 = 24352,78 \ \Gamma \text{кал/год}$$

Количество тепла, отпущенного из котельной, Гкал /год:

$$Q_{\text{OTII}} = Q_{\text{HOTD}} / (1 - \kappa_{\text{HOT.T.c.}}), \qquad (1.13)$$

где $\kappa_{nom.m.c.}$ — коэффициент, учитывающий процент потерь тепла в тепловых сетях, принимаем: $k_{nom}=2\%, [1, \text{стр.}8]$

$$Q_{omn} = 24352,78/(1-0,02) = 24849,78 \ \Gamma \kappa an/zoo.$$

Потери тепла в тепловых сетях, Гкал /год:

$$Q_{\text{пот.т.с.}} = Q_{\text{отп}} - Q_{\text{потр}} \tag{1.14}$$

$$Q_{\text{пот.т.с.}} = 24849, 78 - 24352, 78 = 497 \ \Gamma \text{кал/год.}$$

Количество тепла, выработанного котельной, Гкал /год:

$$Q_{\text{GBUD}} = Q_{\text{omn}}/(1 - \kappa_{\text{c.n..}}), \qquad (1.15)$$

$$Q_{\text{GBUD}} = 24849,78/(1 - 0.03) = 25618,33 \ \Gamma \kappa \alpha \pi / 200.$$

где $\kappa_{c.н.}$ – коэффициент, учитывающий расход тепла на собственные нужды и потери в котельной принимаем 2...3%: $\kappa_{c.н.} = 3\%$, [1, стр.8]

Расход тепла на собственные нужды и потери в котельной, Гкал /год:

$$Q_{\text{с.н.}} = Q_{\text{выр}} - Q_{\text{отп}}$$
 (1.16)
$$Q_{\text{с.н.}} = 25618,33 - 24849,78 = 768,55 \ \Gamma \kappa an / год.$$

Потребление и выработка тепла на предприятии

	Теплопотребление и выработка, Гкал/год											
Q_{\circ}	$Q_{ ext{o}}$ $Q_{ ext{B}}$ $Q_{ ext{T.BC}}$ $\sum Q_{ ext{T.B}}$ $Q_{ ext{T}}$ $Q_{ ext{notp}}$ $Q_{ ext{notp}}$ $Q_{ ext{nott.c.}}$ $Q_{ ext{ott}}$ $Q_{ ext{c.h.}}$ $Q_{ ext{blip}}$											
6572,78	3971,77	878,91	11423,46	12929,32	24352,78	497	24849,78	768,55	25618,33			

1.5 Расчетные тепловые нагрузки

Расчетные тепловые нагрузки котельной, Гкал /ч:

- на отопление и вентиляцию Таблица 1.1;
 - на ГВС:

$$Q_{\rm p.r.bc} = Q_{\rm r.bc} / T_{\rm r.bc},$$
 (1.17)

где $T_{c.sc}$ — число часов использования максимальной нагрузки ГВС, ч/год. $T_{r.sc}$ =3000 ч/год, [1, стр.8]

$$Q_{p.2.8C} = 878,91/3000 = 0,29$$
 Гкал/ч.

- на технологию - ИД

$$Q_{p.T} = \mathcal{I}^{13} + \frac{\mathcal{I}^{8} \cdot (h_{n}^{8} - h_{n.s})}{(h_{n}^{13} - h_{n.s})}, T/4$$
 (1.18)

$$Q_{p,T} = \mathcal{J}^{13} \cdot (h_n^{13} - h_{n,s}) + \mathcal{J}^8 \cdot (h_n^8 - h_{n,s}), \Gamma Дж/ч$$
 (1.19)

$$Q_{p.n} = \frac{Q_{p.m}}{(1 - k_{max}) \cdot (1 - k_{max})}.$$
 (1.20)

$$\begin{split} Q_{\rm p.t} &= 2 + \frac{2 \cdot (2800 - 437)}{(2900 - 437)} = 3,92 \text{ T/y}; \ Q_{\rm p.t} = \frac{3,92}{(1 - 0,02) \cdot (1 - 0,03)} = 4,12 \text{ T/y}; \\ Q_{\rm p.t} &= 2 \cdot (2900 - 437) + 2 \cdot (2800 - 437) = 9,65 \ \Gamma \text{Дж/y}; \\ Q_{\rm p.t} &= \frac{9,65}{(1 - 0,02) \cdot (1 - 0,03)} = 10,15 \ \Gamma \text{Дж/y}. \end{split}$$

Расчетная тепловая нагрузка предприятия с учетом собственных нужд котельной и потерь в котельной и сетях:

- по горячей воде:

$$Q_{p,rB} = \frac{Q_{p,o} + Q_{p,s} + Q_{p,r,BC}}{(1 - k_{nom,mc}) \cdot (1 - k_{cH})},$$
(1.21)

$$Q_{\text{p.гв}} = \frac{3,7+2,17+0,29}{(1-0,02)\cdot(1-0,03)} = 6,49\,\Gamma$$
кал/ч.

Рассчитываем нагрузки с учетом потерь, производим пересчет в $\Gamma \not\square x / v$ и MBm. Расчетные тепловые нагрузки сводим в таблицу 1.4.

Таблица 1.4 Расчетные тепловые нагрузки

D	Обозна-	E,	диницы изме	рения	
Вид нагрузки	чение	ГДж/ч	Гкал/ч	МВт	т/ч
Отопление	Q _{p.o}	15,5	3,7	4,3	-
Вентиляция	$Q_{p.B}$	9,1	2,17	2,53	-
ГВС	Q _{р.гвс}	1,23	0,29	0,34	-
Итого в горячей					
воде с учетом	Q _{р.гв}	27,17	6,49	7,55	_
потерь и	p.i B	, ,	- 4 -	, ,	
собственных нужд					
Итого в паре с	_				
учетом потерь и	Q _{р.п}	10,15	0,98	1,15	4,12
собственных нужд					
Всего	Q _{р.пр}	37,32	7,47	8,69	4,12

В данном пункте рассчитаны годовые и часовые расходы тепла на отопление и вентиляцию. Из таблицы 1.1 видно, что суммарный годовой расход тепла на отопление составил 6572,78 Гкал/год, а суммарный годовой расход тепла на вентиляцию — 3971,77 Гкал/год. Также рассчитали расход тепла на горячее водоснабжение и технологические нужды, которые составили 878,91 Гкал/год и 12929,32 Гкал/год, соответственно. Был рассчитан общий расход тепла, который составил 24352,78 Гкал/год. Из этого видно, что наибольшая доля нагрузки приходится на технологические нужды (53,1 %), а наименьшая доля — на ГВС (73,6%). С учетом потерь в тепловых сетях и котельной, а также с учетом расхода тепла на собственные нужды, количество тепла, выработанного котельной составил 25618,33 Гкал/год.

2 ОПРЕДЕЛЕНИЕ НОРМ РАСХОДА ТЕПЛОВОЙ ЭНЕРГИИ НА ОБОГРЕВ ЗДАНИЙ И ГВС

Норма расхода тепловой энергии на отопление:

$$H_{ot} = \frac{\left(Q_o + Q_B\right) \cdot 10^3}{V \cdot n_o \cdot \left(t_{BH}^{cp.B3B} - t_{H.cp}\right)}, \frac{M \kappa a \pi}{T \omega c. M^3 \cdot cyt \cdot c}$$
(2.1)

где V – суммарный объем цехов, тыс.м³;

 $t_{\text{вн}}^{\text{ср.взв}}$ — средневзвешенная внутренняя температура в цехах, °C:

$$t_{_{\mathit{BH}}}^{_{\mathit{CP.636}}} = \frac{\sum \left(t_{_{\mathit{6H}_{i}}} \cdot V_{_{i}}\right)}{\sum V_{_{i}}}, \ ^{\circ}C$$
 (2.2)

$$t_{_{\mathrm{GH}}}^{_{_{\mathrm{CP},636}}} = \frac{14 \cdot (51,75+41,4+24,15) + 16 \cdot \left(62,1+34,5+27,6+24,15+9,2\right) + 18 \cdot \left(13,8+8,05\right)}{296,7} = 15,36 \, ^{\circ}C.$$

$$H_{_{\mathrm{OT}}} = \frac{(6572,78+3971,77) \cdot 10^{^{3}}}{296,7 \cdot 181 \cdot \left(15,36-0,6\right)} = 13,31 \, \frac{\mathrm{Mkaji}}{\mathrm{Thic.m}^{^{3}} \cdot \mathrm{cyt} \cdot ^{\circ}C}.$$

Норма расхода тепловой энергии на ГВС (рассчитывается поквартально):

$$H_{r.вc}^{i} = \frac{Q_{r.вc}^{i} \cdot 10^{3}}{Y_{\Pi.\Pi.\Pi}}, \frac{M \kappa a \pi}{4 e \pi}$$
 (2.3)

Для I квартала:

$$H_{\text{\tiny \Gamma.BC}}^{I} = \frac{237,75 \cdot 10^{3}}{1250} = 190,2 \frac{M \kappa a \pi}{4 e \pi}.$$

Норма расходы тепловой энергии на ГВС по остальным кварталам и годовая норма рассчитываются аналогично.

Результаты расчетов представлены в таблице 2.1

Таблица 2.1 Нормы расхода тепловой энергии

Вид	Единица	Нормы расхода тепловой энергии							
нормы	измерения	Боловод		по квар	талам				
пормы измерения	померения	годовая	I	II	III	IV			
Обогрев зданий	Мкал/(тыс.м 3 сут $^{\circ}$ С)	13,31	13,31	13,31	-	13,31			
ГВС	Мкал/чел	703,13	190,2	154,61	161,98	196,34			

В этом разделе рассчитали нормы расхода тепловой энергии на обогрев зданий и ГВС. Норма расхода тепловой энергии на обогрев остается неизменной в течение всего года, за исключением III квартала, так как в этот период отсутствует отопление и составляет 13,31 Мкал/(тыс. м³·сут·°С). Это легко объясняется, если взглянуть на расчетную формулу: входящие в нее величины никак не зависят от квартала. А вот норма расхода тепловой энергии на горячее водоснабжение изменяется поквартально (так как, входящий в формулу расход тепловой энергии напрямую зависит от числа дней в квартале) и составила: 190,2 Мкал/чел в первом квартале, 154,61 Мкал/чел – во втором, 161,98 Мкал/чел – в третьем и 196,34 Мкал/чел – в четвертом.

3 ВЫБОР ТИПА И КОЛИЧЕСТВА УСТАНАВЛИВАЕМЫХ КОТЕЛЬНЫХ АГРЕГАТОВ И РАСЧЕТ ТЕХНОЛОГИЧЕСКИХ ПОКАЗАТЕЛИ КОТЕЛЬНОЙ

3.1 Выбор типа и количества устанавливаемых котельных агрегатов

Состав основного оборудования (водогрейные и паровые котлы) и его установленная мощность выбираются исходя из расчетных тепловых нагрузок в паре и горячей воде и предлагаемой схемы теплоснабжения. По расчетным нагрузкам [табл.1.4] выбираем котлоагрегаты: на технологическую нагрузку (4,12 т/ч) выбираем 2 котла ДКВР -2,5-13, на горячее водоснабжение (0,34 МВт) выбираем котел Ква-0,4, который будет работать только летом, а также устанавливаем 2 котла КВ-ГМ-4-150, которые будут обеспечивать нагрузку на отопление, вентиляцию и ГВС в отопительный период (7,55 МВт).

3.2 Установленная мощность котельной

Установленная мощность котельной, Гкал/ч:

$$Q_{ycm} = Q_{y.6.\kappa.} + Q_{y.n.\kappa.} + Q_{y.m.\kappa.}$$
 (3.1)

где $Q_{y,s,\kappa}, Q_{y,n,\kappa}, Q_{y,m,\kappa}$ — установленная мощность водогрейных, паровых и малых котлов, соответственно.

$$Q_{y.6.\kappa} = Q_{hom}^{6.\kappa} \cdot n \tag{3.2}$$

$$Q_{y.n.\kappa.} = (D_{hom}^{n.\kappa.} \cdot (h_n - h_{n.s.}) + D_{np} \cdot (h_{\kappa.s.} - h_{n.s.})) \cdot n \cdot 10^{-3}, \quad \Gamma Дж/ч$$
 (3.3)

где $Q_{\scriptscriptstyle nom}^{\scriptscriptstyle 6.K.}$ — номинальная мощность водогрейных котлов;

 $D_{\text{ном}}^{n.\kappa.}$ — номинальная паропроизводительность котлов;

п -число установленных котлов;

 ${
m h}_{{\scriptscriptstyle {
m K}}{\scriptscriptstyle {
m B}}}$ –энтальпия котловой воды, $h_{{\scriptscriptstyle {
m K}}}$ =830 кДж/кг;

 D_{np} — непрерывная продувка котла.

$$D_{np} = 0.01 \cdot p_{np} \cdot D_{hom}^{n.\kappa.}, \qquad (3.4)$$

где p_{np} — процент продувки котла, p_{np} = 3% [1, стр.11]

$$Q_{v,g,\kappa} = 2 \cdot 4 = 8\Gamma$$
кал/ч = 9,3 МВт;

$$Q_{_{V.M.K}} = 0,4 \text{ MBt} = 0,34 \Gamma$$
кал/ч ;

$$D_{np} = 0.01 \cdot 3 \cdot 5 = 0.15$$
 T/4;

$$Q_{y.n.к.} = \left(5 \cdot (2900 - 437) + 0.15 \cdot (830 - 437)\right) \cdot 10^{-3} = 12.37 \quad \Gamma Дж/ч = 2.95 \Gamma кал/ч = 3.43 \, \text{MBT};$$

$$Q_{vcm} = 8 + 0.34 + 2.95 = 11.3 \quad \Gamma кал/ч = 13.14 \quad \text{MBT}.$$

Коэффициенты загрузки котельного оборудования:

$$k_{_{3,n,\kappa.}} = \frac{D_{_{p,n}}}{D_{_{y,n,\kappa.}}}; \tag{3.5}$$

$$k_{_{3.6.K.}} = \frac{Q_{_{p.c.6}}}{Q_{_{y.6.K}}};$$
 (3.6)

$$k_{_{3.M.K.}} = \frac{Q_{_{p.z.6c}}}{Q_{_{y.M.K}}};$$
 (3.7)

$$k_{_{3,n,\kappa.}} = \frac{4,12}{5} = 0,825 \text{ o.e.}$$

$$k_{_{3.6.K.}} = \frac{6,49}{8} = 0,811$$
 o.e.

$$k_{_{3.M.K.}} = \frac{0.29}{0.34} = 0.852$$
o.e.

Данные по выбранному оборудованию котельной представлены в таблице 3.2

Таблице 3.2 Технические показатели агрегатов котельной

Тип КА	Количество	Номи	нальная мо	щность	Установл мощно		кпд	$k_{3a\Gamma p}$
		т/ч	Гкал/ч	Мвт	Гкал/ч	МВт	%	o.e.
ДКВР – 2,5 -13	2	2,5	-	-	2,95	3,43	90	0,825
КВ-ГМ – 4-150	2	-	4	4,65	8	9,3	93,9	0,811
Ква – 0,4	1	-	0,34	0,4	0,34	0,4	92	0,852
Всего по котельной	5	-	-	-	11,3	13,14	-	-

Коэффициент загрузки по паровой и водогрейной части в отопительный период:

$$k_{3.3\text{LLMA}} = \frac{8,69}{13,14} = 0,661\text{ o.e.}$$

3.3 Годовое число часов использования установленной мощности

Годовое число часов использования установленной мощности:

$$h_y = \frac{Q_{\text{выр}}}{Q_{\text{уст}}}, \quad \text{ч/год}$$
 (3.8)
$$h_y = \frac{25618,33}{11,3} = 2267,7 \quad \text{ч/год}.$$

3.4 Годовой расход топлива котельной

Годовой расход топлива котельной:

- условного, т у.т./год:

$$B_{y.t.} = Q_{Bblp} \cdot b_{Bblp}^{cp} \cdot 10^{-3}; \tag{3.9}$$

- натурального, тыс. $M^3/год$:

$$B_{H.T.} = B_{y.T.} \cdot \left(\frac{Q_{y.T.}}{Q_H^p}\right),$$
 (3.10)

где $b_{\text{выр}}^{\text{ср}}, b_{\text{отп}}^{\text{ср}}$ — средневзвешенный удельный расход условного топлива на выработку и отпуск единицы тепла, соответственно, $\kappa z.y.m/\Gamma \kappa a.r$;

 $Q_{y.m.}, Q_{H}^{p}$ — низшая теплотворная способность условного и натурального топлива, соответственно.

Удельные расходы топлива на выработку и отпуск тепла при однотипных котлах определяются по выражениям:

$$b_{\text{выр}}^{\text{i}} = \frac{142,86}{\eta_{\text{k}}^{\text{i}}}, \text{ кг у.т./Гкал}$$

$$b_{\text{выр}}^{\text{пк}} = \frac{142,86}{0,9} = 158,73 \text{ кг у.т./Гкал};$$

$$b_{\text{выр}}^{\text{вк}} = \frac{142,86}{0,939} = 152,14 \text{ кг у.т./Гкал};$$

$$b_{\text{выр}}^{\text{мк}} = \frac{142,86}{0,92} = 155,28 \text{ кг у.т./Гкал}.$$

Средневзвешенные удельные расходы условного топлива на выработку и отпуск единицы тепла:

$$b_{\text{выр}}^{\text{ср}} = \frac{b_{\text{выр}}^{\text{пк}} \cdot Q_{\text{выр}}^{\text{пк}} + b_{\text{выр}}^{\text{вк}} \cdot Q_{\text{выр}}^{\text{вк}} + b_{\text{выр}}^{\text{мк}} \cdot Q_{\text{выр}}^{\text{мк}}}{Q_{\text{выр}}^{\text{пк}} + Q_{\text{выр}}^{\text{вк}} + Q_{\text{выр}}^{\text{мк}}}, \quad \text{кг у.т./гкал} \quad (3.12)$$

$$Q_{\text{выр}}^{n\kappa} = \frac{Q_{m}}{(1 - k_{nom}) \cdot (1 - k_{cH})} = \frac{12929, 32}{(1 - 0, 02) \cdot (1 - 0, 03)} = 13601, 22 \, \Gamma \text{кал/год};$$

$$Q_{\text{выр}}^{\text{мк}} = \frac{Q_{\text{гвс}}}{(1 - k_{nom}) \cdot (1 - k_{cH})} = \frac{395, 74}{(1 - 0, 02) \cdot (1 - 0, 03)} = 416, 31 \, \Gamma \text{кал/год};$$

$$Q_{\text{выр}}^{\text{вк}} = Q_{\text{выр}} - Q_{\text{выр}}^{\text{пк}} - Q_{\text{выр}}^{\text{мк}} = 25618, 33 - 13601, 22 - 416, 31 = 11600, 8 \, \Gamma \text{кал/год};$$

$$b_{\text{выр}}^{\text{ср}} = \frac{158, 73 \cdot 13601, 22 + 152, 14 \cdot 11600, 8 + 155, 28 \cdot 416, 31}{31462, 75} = 155, 69 \, \text{кгу.т./Гкал}$$

$$b_{\text{отп}}^{\text{ср}} = \frac{b_{\text{выр}}^{\text{cp}}}{1 - k_{\text{red}}} = \frac{155, 69}{1 - 0.03} = 160, 51 \, \text{кг у.т./Гкал}. \quad (3.13)$$

$$\mathbf{B}_{\scriptscriptstyle \mathrm{y.t.}} = 25618,33\cdot 15,69\cdot 10^{-3} = 3988,56$$
т у.т. / год;
$$\mathbf{B}_{\scriptscriptstyle \mathrm{H.T.}} = 3988,56\cdot \left(\frac{7000}{8050}\right) = 3468,32\,\mathrm{тыс.m}^3$$
 / год.

3.5 Установленная мощность токоприемников котельной

Установленная мощность токоприемников котельной определяется как сумма мощностей установленного силового электрооборудования по паровой и водогрейной части с учетом электроосвещения, кВт:

$$P_{vcm} = P_{vcm}^{n\kappa} + P_{vcm}^{6\kappa} + P_{vcm}^{M\kappa}, \quad \kappa Bm$$
 (3.14)

где $P_{ycm}^{n\kappa}$, $P_{ycm}^{6\kappa}$, $P_{ycm}^{\kappa\kappa}$ — установленная мощность токоприемников паровой и водогрейной части котельной, соответственно.

$$P_{vcm}^{n\kappa} = p^n \cdot Q_{vcm}^{n\kappa}, \quad \kappa Bm \tag{3.15}$$

$$P_{ycm}^{g\kappa} = p^{g} \cdot Q_{ycm}^{g\kappa}, \quad \kappa Bm \tag{3.16}$$

$$P_{vcm}^{MK} = p^{6} \cdot Q_{vcm}^{MK}, \quad \kappa Bm \tag{3.17}$$

где p^n , p^e — удельный расход электрической мощности паровой и водогрейной части котельной, соответственно, кВт/МВт,[1, стр.45, табл. П.1.7]

$$P_{ycm}^{n\kappa} = 33 \cdot 3,43 = 113,34 \text{ kBT};$$

 $P_{ycm}^{\kappa} = 33 \cdot 9,7 = 320,23 \text{ kBT};$

$$P_{ycm} = 113,34 + 320,23 = 433,58$$
 кВт.

3.6 Годовой расход электроэнергии котельной

Годовой расход электроэнергии котельной:

$$W_{\kappa om} = (P_{ycm}^{n\kappa} \cdot k_u \cdot T_T + P_{ycm}^{g\kappa} \cdot k_u \cdot T_o) \cdot k_{_{9}}, \quad \kappa \text{Вт} \cdot \text{ч/год}$$
 (3.18)

где $P_{ycm}^{n\kappa}, P_{ycm}^{g\kappa}$ — установленная мощность токоприемников паровой и водогрейной части котельной, соответственно;

 k_{u} — коэффициент использования установленной электрической мощности, принимается в зависимости от значения Q_{ycm} ,

 $k_{\text{MBK}} = 0.6$;

 $k_{\text{ипк}}=0,55$ [1,crp.14];

 κ_{2} – коэффициент использования оборудования во времени, κ_{3} =

0,5[1,ctp.14];

 T_{T} , T_{o} , — число часов работы в году паровых и водогрейных котлов, соответственно,

$$T_{\scriptscriptstyle T} = 6120 \quad \text{ч/год}; T_{\scriptscriptstyle o} = 181 \cdot 24 = 4344 \quad \text{ч/год};$$

$$W_{\scriptscriptstyle \kappa om} = (113, 34 \cdot 0, 55 \cdot 6120 + 320, 23 \cdot 0, 6 \cdot 4344) \cdot 0, 5 = 608082, 76 \quad \text{кBt} \cdot \text{ч/год}.$$

Удельный расход электроэнергии на 1 Гкал тепла, отпущенную котельной:

$$\omega_{kom} = W_{kom} / Q_{omn} \tag{3.19}$$

$$\omega_{\text{кот}} = 608082,76/24849,78 = 24,47 \,\text{кВт} \cdot \text{ч}/\Gamma$$
кал.

3.7 Годовой расход воды котельной

Годовой расход воды котельной:

$$G_{R} = G_{T} + G_{\Gamma R} + G_{\tilde{0}}, \text{ тыс.м}^{3}$$
 (3.20)

где G_m – расход воды на технологические нужды котельной, *тыс.м*³;

 G_{26} — расход воды на горячее водоснабжение при закрытой системе теплоснабжения (с централизованным приготовлением ГВ), *тыс.м*³;

 $Z_{\kappa om},~T_{\kappa om}$ — число дней и часов работы котельной в году: $Z_{\kappa om}$ = 350 $\mathit{cym}.$; $T_{\kappa om} = Z_{\kappa om} \cdot 24 = 350 \cdot 24 = 8400 \mathit{u}.$

Значения средних удельных расходов воды (g) в расчетах принимаем:

- подпитка тепловой сети в отопительный период: $g_1^3 = 15 M^3/4$, в летний период: $g_1^3 = 0.5$; $g_1^3 = 7.5 M^3/4$;
- восполнение потерь пара и конденсата: $g_2 = 10 m^3 / q$;
- собственные нужды: $g_{ch} = 27 M^3 / cym$;
- подпитка оборотной системы водоснабжения $g_3 = 19 \, \text{м}^3/\text{суm}$.

Расчет годового расхода воды котельной осуществляется по нормативному методу в табличной форме, согласно составу расходов по формулам табл. 3.3.

Таблица 3.3 Годовой расход воды котельной

Вид потребления воды	Нормы расхода воды		Условное	Расчетная формула	Подстановка	Расход воды,
	$M^3/4$	M^3/cym	обозначение			тыс. м ³
Технологические нужды:						
- подпитка тепловой сети (зима)	15		$G_{no\partial n}$	$[a^3.T + a^3.(T - T)].10^{-3}$	$[15 \cdot 4512 + 7, 5 \cdot (8400 - 4344)] \cdot 10^{-3}$	95,58
- подпитка тепловой сети (лето)	7,5		$O_{no\partial n}$	$\begin{bmatrix} g_1 & I_o & g_1 & (I_{\kappa om} & I_o) \end{bmatrix} = 10$	[13·4312+7,3·(8400-4344)]·10	93,38
- восполнение потерь пара и конденсата	10		G_{nom}	$g_2 \cdot T_{\kappa om} \cdot 10^{-3}$	10.8400.10 ⁻³	84
- собственные нужды водоподготовки	-	27	$G_{c\scriptscriptstyle{\mathcal{H}}}$	$g_{\scriptscriptstyle CH} \cdot Z_{\scriptscriptstyle KOM} \cdot 10^{-3}$	$27 \cdot 350 \cdot 10^{-3}$	9,45
- подпитка оборотной системы водоснабжения	-	19	G_{noc}	$g_3 \cdot Z_{\kappa om} \cdot 10^{-3}$	19.350.10 ⁻³	6,65
Итого на основные технологические нужды			G_{om}	$G_{no\partial n} + G_{nom} + G_{cH} + G_{noc}$	95,58+84+9,45+6,65	195,68
Прочие расходы			G_{np}	$0,03 \cdot G_{om}$	0,03.195,68	5,87
Итого на технологические нужды			G_m	$G_{om}+G_{np}$	195,68+5,87	201,55
ГВС			$G_{arepsilon.ec}$	Пункт 1.2	19,56	19,56
Итого:			$G_{\scriptscriptstyle{ heta}}$	$G_m + G_{c.ec}$	201,55+19,56	221,11

В данном разделе согласно рассчитанной тепловой нагрузке в разделе 1 выбрали котельные агрегаты, устанавливаемые в котельной. С учетом незначительной доли нагрузки ГВС предусмотрели установку котла малой мощности (Ква-0,4). Рассчитали установленную мощность котельной, которая составила 11,3 Гкал/ч. Рассчитали коэффициенты загрузки котельного оборудования: для паровых котлов он составил 0,825, а для водогрейных – 0,852 (для летнего периода) и 0,811 (для зимнего периода). Годовое число часов использования установленной мощности составило 2267,7 ч/год. Определили средневзвешенные удельные расходы топлива на выработку и отпуск тепла, которые составили 155,69 кг.у.т./Гкал и 160,51 кг у.т./Гкал, соответственно. Был также рассчитан удельный расход электроэнергии на 1 Гкал тепла, отпущенную котельной, он составил 24,47 кВт·ч/Гкал и не должен превышать предельное значение. Для котельной установленной мощностью до 26 Γ кал/ч – 33 – 28 кВт·ч/ Γ кал. Из этого следует, что расход электроэнергии на котельной является допустимым. Годовой расход воды в котельной составил 221,11 тыс. M^3 /год.

ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ ПРЕДПРИЯТИЯ ЭЛЕКТРОЭНЕРГИИ, СЖАТОМ ВОЗДУХЕ И ТЕХНОЛОГИЧЕСКОМ ТОПЛИВЕ

4.1 Потребность предприятия в электроэнергии

Потребность предприятия в электроэнергии (W_{nn}) складывается из расходов ее по отдельным производственным подразделениям (W_{nn}), которые определяются на основе объема производства продукции (Π) , удельных расходов (w_i) и косвенных норм (α_i) по направлениям использования по выражениям:

$$W_{np} = \frac{\sum_{n=1}^{\infty} W_{nn} + W_{oce.n}}{1 - \alpha_{nom n}}, \kappa Bm$$
(4.1)

$$W_{np} = \frac{\sum_{i=1}^{n} W_{nn} + W_{ocs.n}}{1 - \alpha_{nom.n}}, \kappa Bm$$

$$W_{nn_{i}} = \frac{w_{i} \cdot \Pi + W_{ocs.}}{1 - \alpha_{nom_{i}}}, \kappa Bm$$

$$(4.1)$$

где $W_{ocs,n}$, $W_{ocs,i}$ – расходы электроэнергии на наружное освещение предприятия и на освещение подразделений предприятия, соответственно, $\kappa Bm\cdot u$, определяются в долях ($\alpha_{ocs,n}$, $\alpha_{ocs,i}$) от суммарного расхода электроэнергии на основные и вспомогательные нужды подразделений и предприятия в целом, соответственно; $\alpha_{nom,n}$, $\alpha_{nom,i}$ доля электроэнергии в общем электропотреблении подразделений и предприятия соответственно, о.е.

В расчетах принимаем: $\alpha_{oce,n} = 0.004; \alpha_{oce,i} = 0.03; \alpha_{nom,n} = 0.04 \alpha_{nom,i} = 0.03$

В годовое потребление на технологические нужды входит потребление энергии в электропечах, термических печах и сушильных установках; на энергетические нужды – в компрессорной и котельной; на вентиляционные нужды – в вентиляционном оборудовании.

Расчет производим в форме таблицы 4.1

Таблица 4.1 Годовое потребление предприятием электроэнергии

		Удельный расход электроэнергии по направлениям использования, $\kappa Bm \cdot u/e\partial.npo\partial$					Годовое потребление электроэнергии, <i>тыс. кВтч</i>							
№ п/п	Цеха (подразделения)	станочно- прессовое оборудование	электро- печи	термические печи	сушильные установки	вентиляц-е оборудование	производство энергоноси- телей	технологич-е нужды	силовые нужды	вентиляция	энергетич. нужды	освещение	потери	ИТОГО
1	Кузнечно-прессовый	30,7	13,7	180,7	4,7	25,7		1791,9	276,30	231,30		68,99	73,25	2441,74
2	Литейный	25,7		110,7	5,7	22,7		1047,6	231,30	204,30		44,50	47,25	1574,94
3	Механический	250,7			4,7	10,7		42,30	2256,30	96,30		71,85	76,29	2543,04
4	Термический	5,7	9,7	50,7	9,7	22,7		630,90	51,30	204,30		26,60	28,24	941,34
5	Сборочный	20,7				5,7			186,30	51,30		7,13	7,57	252,30
6	Инструментальный	30,7	25,7			6,7		231,30	276,30	60,30		17,04	18,09	603,03
7	РМЦ	36,7			2,7	2,7		24,30	330,30	24,30		11,37	12,07	402,34
8	Компрессорная						81				364,50	10,94	11,61	387,05
9	Котельная						24,47				608,08	18,24	19,37	645,70
10	Заводоуправление					3,2				28,8		0,86	0,92	30,58
11	Столовая	9,7	30,7		2,2	9,7		296,1	87,30	87,30		14,12	14,99	499,82
Ито	ого по подразделениям	410,6	79,8	342,7	29,7	109,8		4064,4	3695,4	988,2	972,58	291,62	309,66	10321,86
-	общ.производ.: наружное освещение потери в зав. сетях	-										40,05	431,75	471,79
	сего по предприятию							4064,4	3695,4	988,2	972,58	331,67	741,4	10793,65

Годовое потребление электроэнергии на освещение, тыс. кВт-ч:

$$W_{OCB_{ij}} = (W_{T.H._{ij}} + W_{C.H._{ij}} + W_{B._{ij}}) \cdot a_{OCB_{ij}}.$$
 (4.3)

Годовое потребление электроэнергии, тыс. кВт-ч:

$$W_{\Gamma O \mathcal{I}_{i}} = \frac{W_{O C B_{i}} + W_{T.H._{i}} + W_{C.H._{i}} + W_{B._{i}}}{\left(1 - a_{\Pi O T_{i}}\right)}.$$
 (4.4)

Годовые потери, *тыс.* $\kappa Bm \cdot$

$$W_{\Pi O T_{i}} = W_{\Gamma O \mathcal{I}_{i}} \cdot a_{\Pi O T_{i}} \tag{4.5}$$

Для кузнечно-прессового цеха:

$$\begin{split} W_{\text{ОСВ}_{\text{к.-п.}}} &= (1791, 9 + 276, 3 + 231, 3) \cdot 0, 03 = 68, 99 \text{ тыс. кВт} \cdot \text{ч.} \\ W_{\text{ГОД}_{\text{к.-п.}}} &= \frac{1791, 9 + 276, 3 + 231, 3 + 68, 99}{\left(1 - 0, 03\right)} = 2441, 74 \text{ тыс. кВт} \cdot \text{ч.} \\ W_{\text{ПОТ}_{\text{к.-п.}}} &= 2441, 74 \cdot 0, 03 = 73, 25 \text{ тыс. кВт} \cdot \text{ч.} \end{split}$$

Годовое потребление электроэнергии на наружное освещение, *тыс.* $\kappa Bm \cdot u$:

$$W_{\text{H.OCB}} = a_{\text{осв.п}} \cdot (W_{\text{ГОД}_{\text{пр}}} - W_{\text{ПОТ}_{\text{пр}}})$$

$$W_{\text{H.OCB}} = 0,004 \cdot (10321,86 - 309,66) = 40,05 \text{ тыс. кВт · ч.}$$

Годовые потери электроэнергии в заводских сетях, тыс. кВт-ч:

$$W_{\text{пот.3c}} = \frac{W_{\text{н.осв}} + W_{\text{год}}}{\left(1 - a_{\text{пот.п}}\right)} \cdot a_{\text{пот.п}}$$

$$W_{\text{пот.3c}} = \frac{40,05 + 10321,86}{\left(1 - 0,04\right)} \cdot 0,04 = 431,75 \text{ тыс. кВт. ч.}$$

4.2 Потребность предприятия в топливе технологическом

На предприятии в качестве технологического топлива используется газ для обработки заготовок — поковок и отливок. Удельный вес поковок — 0,65 т/шт, отливок — 0,7 т/шт.

Годовой расход топлива на технологические нужды:

$$B_{T} = \sum_{i=1}^{2} \sum_{j=1}^{3} \left(b_{i,j} \cdot m_{i} \cdot \Pi \right), \quad T \text{ у.т./год}$$
 (4.8)

где Π – годовой объем производства, тыс. шт, Π = 9000;

i – вид заготовок, подлежащих обработке;

j – вид обработки;

 $b_{i,i}$ – удельный расход топлива, my.m./m;

m— вес заготовки, m/um.

При нагреве в газовых печах:

- вес заготовок (поковок) на рабочую программу:

$$m_1 \cdot \Pi = 0,65 \cdot 9000 = 5850$$
 т/год.;

- годовой расход топлива:

$$B_1 = 0,27 \cdot 5850 = 1579,5$$
 т у.т./год.

в том числе потери:

$$B_1^{\Pi OT} = 1579, 5 \cdot 23/100 = 363, 29$$
 т у.т./год.

полезное использование:

$$B_1^{\Pi O \Pi} = B_1 - B_1^{\Pi O T} = 1579, 5 - 363, 29 = 1216, 22$$
 т у.т./год.

Расчет представим в форме таблицы 4.2.

Таблица 4.2 Потребность предприятия в топливе технологическом

Вид обработки	Удельный расход топлива, т у.т./т		Вес заготовки на годовую программу, т		Годовой	В том числе			
	Поковки	Отливки	1 1	Отливки	расход топлива, т у.т./год	Потери		Полезное использо- вание	
						%	т у.т./год	т у.т./год	
Нагрев в газовых печах	0,27	0	5850	0	1579,5	23	363,29	1216,22	
Термообработка	0,17	0,19	5850	6300	2191,5	24	525,96	1665,54	
Нормализация и отпуск	0	0,051	0	6300	321,3	25	80,33	240,98	
ИТОГО	0,44	0,241	-	-	4092,3	1	969,57	3122,73	

4.3 Потребность предприятия в сжатом воздухе

Потребность предприятия в сжатом воздухе:

$$V_{c.B} = H_{cB} \cdot \Pi \cdot 10^{-3}$$
, тыс. $M^3 / \text{год}$ (4.9)

где H_{cs} — норма расхода сжатого воздуха на единицу продукции, M^3/um . Принимаем $H_{cs} = 500 M^3/um$. [1, стр.20]

$$V_{c.B} = 500 \cdot 9000 \cdot 10^{-3} = 4500$$
 тыс. $M^3/$ год.

В данном разделе определили потребность предприятия в электроэнергии (10793,65 тыс.кВт·ч/год), технологическом топливе (4092,3 ту.т./год) и сжатом воздухе (4500 тыс.м 3 /год).

5 ОПРЕДЕЛЕНИЕ ВОЗМОЖНЫХ РЕЗЕРВОВ ЭКОНОМИИ ТОПЛИВА

Для предприятия, имеющего в своей структуре котельную и использующего топливо для технологических целей, возможны следующие резервы экономии топлива:

1. Использование вторичных энергоресурсов (ВЭР) при реализации технологических процессов обработки металла.

Принимаем, что реализация этого направления обеспечит экономию технологического топлива (ΔB_{Tex}) по видам процессов (α_j) согласно табл. 5.1 по выражению:

Экономия топлива технологического:

$$\Delta B_{\text{тех}} = \sum_{j=1}^{3} (\alpha_j / 100 \cdot B_{\text{пот } j}, \text{ т y.т./год}$$
 (5.1)

где α_i – процент возможного использования ВЭР, таблица 5.1;

Впоті – потери топлива по процессам, таблица 4.2.

При нагреве металла:

$$\Delta B_{\text{Tex}}^1 = 0, 3 \cdot 363, 29 = 108, 99$$
 т у.т. / год.

Результаты расчета сводим в таблицу 5.1

Таблица 5.1 Экономия топлива технологического

Рид процессо	Потери топлива,	Экономия топлива			
Вид процесса	т у.т./год	%	т у.т./год		
Нагрев металла	363,29	30	108,99		
Термообработка	525,96	20	105,19		
Нормализация и отпуск	80,33	10	8,03		
Итого	969,57		222,21		

Тогда годовой расход топлива технологического:

$$B_{\text{Tex}} = 4092, 3 - 222, 21 = 3870, 09$$
 т у.т./год = 3365, 30 тыс. м³/год.

2. Снижение расходов теплоты на собственные нужды и потерь тепла в котельной от реализации организационно-технических мероприятий как по отдельным котлоагрегатам, так и общекотельного оборудования согласно [1, табл. П.1.9]:

- 1. по отдельным котлоагрегатам: перевод котлов на автоматическое регулирование процессов горения и питания водой, выполнение режимных рекомендаций по горению: $\alpha_{ch,\kappa} = 0.04$;
- 2. по общекотельному оборудованию: отказ от работы паровых питательных насосов: $\alpha_{ch.kom}$ = 0,03.

Экономия топлива энергетического:

$$\Delta B_{_{\mathrm{3H}}} = b_{_{\mathrm{Выр}}}^{\mathrm{cp}} \cdot \Delta Q_{_{\mathrm{CH}}} \cdot 10^{-3}, \ \mathrm{T} \ \mathrm{y.t./rod}$$
 (5.2)

ГДе $b_{6bp}^{cp} = 155,69 \ \kappa zy.m/\Gamma \kappa aл.$

 $\Delta Q_{ch_\kappa om}$ — снижение расходов теплоты на собственные нужды котельной в результате реализации ОТМ, $\Gamma \kappa an/rod$:

$$\Delta Q_{CH KOM} = \Delta Q_{OTM KA} + \Delta Q_{OTM KOM}, \tag{5.3}$$

где ΔQ_{OTM_KA} ; ΔQ_{OTM_KOM} — снижение расхода теплоты на собственные нужды в результате выполнения ОТМ по отдельным котлоагрегатам и по общекотельному оборудованию, соответственно, $\Gamma \kappa an/zo\partial$:

$$\Delta Q_{\text{ОТМ_KA}} = Q_{\text{CH_K}} \cdot \alpha_{\text{CH_K}}, \ \Gamma \text{кал/год}$$

$$\Delta Q_{\text{ОТМ_кот}} = Q_{\text{CH}} \cdot \alpha_{\text{CH_KOT}}, \ \Gamma \text{кал/год}$$
(5.4)

где Q_{cH} — расход теплоты на собственные нужды котельной, $Q_{cH} = 768,55$ Гкал/год

 ${\sf Q}_{{}_{\sf {\it ch}}{}_{\sf -}{\sf K}}$ – расход теплоты на собственные нужды котлоагрегата:

$$Q_{\text{выр_пк}} = 13601, 22 \quad \Gamma \text{кал/год.}$$

$$Q_{\text{отп_пк}} = Q_{\text{выр_пк}} \cdot (1 - k_{\text{с.н.}}) = 13601, 22 \cdot (1 - 0,03) = 13193, 19 \quad \Gamma \text{кал/год.}$$

$$Q_{\text{сн_пк}} = Q_{\text{выр_пк}} - Q_{\text{отп_пк}} = 13601, 22 - 13193, 19 = 408,04 \quad \Gamma \text{кал/год.}$$

$$\Delta Q_{\text{отм_ка}} = 408,04 \cdot 0,04 = 16,32 \quad \Gamma \text{кал/год.}$$

$$\Delta Q_{\text{отм_коm}} = 768,55 \cdot 0,03 = 23,06 \quad \Gamma \text{кал/год.}$$

$$\Delta B_{\text{ЭН_кот}} = 158,73 \cdot 16,32 \cdot 10^{-3} = 2,59 \quad \text{т у.т./год.}$$

$$\Delta B_{\text{ЭН_кот}} = 155,69 \cdot 23,06 \cdot 10^{-3} = 3,59 \quad \text{т у.т./год.}$$

Полученные результаты расчетов представлены в таблице 5.2.

Таблица 5.2 Расчет снижения расхода тепловой энергии и топлива на собственные нужды котельной

Мероприятия по	Относи-	Расход тепла	Экономия	Экономия	
Мероприятия по экономии ТЭР	тельная	на СН	тепла	топлива	
Экономии 1 Э1	экономия, %	$Q_{c. extit{ iny H}}$, Гкал/год	ΔQ , Гкал/год	$\Delta B_{\text{кот}}$, т ут/год.	
1. по ПК	4	408,04	16,32	2,59	
2. по котельной	3	768,55	23,06	3,59	
Итого			39,38	7,01	

В данном разделе мы определили возможные резервы экономии топлива в результате снижения расходов теплоты на собственные нужды котельной от реализации организационно-технических мероприятий (7,01 т.у.т./год), экономию технологического топлива (222,21 т.у.т./год), суммарная экономия топлива (228,39 т у.т./год).

6 ЭНЕРГЕТИЧЕСКИЕ БАЛАНСЫ ПРЕДПРИЯТИЯ

Переводные коэффициенты определяются следующим образом:

— ТОПЛИВО:
$$\frac{Q_{_{_{\!\!\mathit{H}}}}^{^{p}}}{Q_{_{\!\!\mathit{ym}}}} = \frac{8050 \ \kappa\kappa\alpha\pi/\,\mathit{M}^{^{3}}}{7000 \ \kappa\kappa\alpha\pi/\,\kappa\varepsilon\,\mathit{v.m.}} = 1{,}15 \ \frac{\kappa\varepsilon\,\mathit{y.m.}}{\mathit{M}^{^{3}}} = 1{,}15 \ \frac{\mathit{m}\,\mathit{y.m.}}{\mathit{mыc.M}^{^{3}}};$$

— тепловая энергия:
$$b_{\text{выр}}^{cp} = 155,69 \frac{\kappa c \ y.m}{\Gamma \kappa a \pi} = 0,15569 \frac{m \ y.m.}{\Gamma \kappa a \pi};$$

— электроэнергия:
$$0,123 \frac{m y.m.}{mыc. \kappa Bm \cdot y}$$
;

— сжатый воздух:
$$0,123 \frac{m \ y.m.}{mыc.\kappa Bm \cdot u} \cdot 0,081 \frac{mыc.\kappa Bm \cdot u}{mыc.м^3} = 0,01 \frac{m \ y.m.}{mыc.м^3}$$
 (норма

расхода электрической энергии $81 \frac{\kappa Bm \cdot u}{mыc. m^3}$ [ИД]).

По результатам предыдущих расчетов составляются плановые энергетические балансы: тепловой баланс (таблица 6.1), баланс электрической энергии (таблица 6.2), синтезированный топливный баланс (таблица 6.3) и сводный топливно-энергетический баланс (таблица 6.4).

Таблица 6.1 Баланс тепла

Charles Edward	При	ход	Расход		
Статьи баланса	Гкал	%	Гкал	%	
1. Получено со стороны	-	-	-	-	
2. Собственные генерирующие установки, в т.ч.	25618,33	100,00	-	-	
- 2xДКBP-2,5/13	13601,22	53,09	-	-	
- 2xKB-ΓM-4-150	11600,80	45,28			
- KBa-0,4	416,31	1,63	-	-	
Итого по разделам 1-2:	25618,33	100,00			
3. Производственные нужды	-	-	12929,32	50,47	
4. Вспомогательные и хозяйственные нужды, всего:	-	-	11423,46	44,59	
- отопление	-	-	6572,78	25,66	
- вентиляция	-	-	3971,77	15,50	
- ΓBC	_	-	878,91	3,43	
5. Отпуск на сторону	-	-	-	-	
6. Собственные нужды котельной	-	-	768,55	3,00	
7. Потери энергии в тепловых сетях	-	-	497,00	1,94	
Итого по разделам 3-7:	-		25618,33	100,00	
Баланс:	25618,33	100,00	25618,33	100,00	

		Приход,	Расход, тыс. кВт ч						Итого	
	Статьи баланса		техно- логич. нужды	энерге- тич. нужды	силовые нужды	венти- ляция	освеще-	потери	тыс. кВт∙ч	%
1. По	1. Получено со стороны								10793,65	100,0
2. Γε	енерирующие установки									
	- компрессорная		1	364,50	-	1	10,94	11,61	387,05	3,59
	- котельная		-	608,08	-	-	18,24	19,37	645,70	5,98
	итого по разделу 2:		1	972,58	-	1	29,18	30,98	1032,74	9,57
3. Пј	роизводство									
	- кузнечно-прессовый		1791,90	-	276,30	231,30	68,99	73,25	2441,74	22,62
осн-е цеха	- литейный		1047,60	-	231,30	204,30	44,50	47,25	1574,94	14,59
-e 1	- механический		42,30	-	2256,30	96,30	71,85	76,29	2543,04	23,56
СН	- термический		630,90	-	51,30	204,30	26,60	28,24	941,34	8,72
	- сборочный		-	-	186,30	51,30	7,13	7,57	252,30	2,34
всп.	- инструментальный		231,30	-	276,30	60,30	17,04	18,09	603,03	5,59
BC	- ремонтно-механический		24,30	-	330,30	24,30	11,37	12,07	402,34	3,73
	итого по разделу 3:		3768,30	-	3608,10	872,10	247,46	8758,72	8758,72	81,15
4. He	епроизводственные потребители									
	- заводоуправление		-	-	-	28,80	0,86	0,92	30,58	0,28
	- столовая		296,1	1	87,30	87,30	14,12	14,99	499,82	4,63
	- наружное освещение		-	-	-	-	40,05	-	40,05	0,37
	итого по разделу 4:		296,1	-	87,30	116,10	55,03	15,91	570,45	5,29
5. Отпуск на сторону			-	-	-	-	-	-	-	-
6. Потери в заводских сетях								431,75	431,75	4,00
Бала	Баланс:		4064,40	972,58	3695,40	988,20	331,67	741,40	10793,65	100,0
	Структура:	100,0	37,66	9,01	34,24	9,16	3,07	6,87	100,0	100,0

Обороты топлива Структура после до до после Элементы баланса OTM**OTM OTM OTM** тыс.м3 тыс.м3 % % т у.т. т у.т. Приход: Поступило газа со 7026,84 8080,86 100,0 100,0 6828,24 7852,47 стороны Расход: 1. Полезно 6012,40 6914,26 6012,40 6914,26 85,56 88,05 использовано на: Технологические 2715,42 3122,73 2715,42 3122,73 38,64 39,77 нужды, всего, в том числе: - нагрев в газовых печах 15.05 15.49 1057,58 1216.22 1057,58 1216,22 термообработка 1448,30 1665,54 1665,54 21,21 1448,30 20,61 - нормализация и отпуск 209,54 240,98 209,54 240,98 2,98 3,07 1.2. Производство энергоносителей, всего, в 3296,98 3791,53 3296,98 3791,53 46,92 48.28 том числе: - производство пара 1750,43 2012,99 1750,43 2012,99 24,91 25,64 - горячей воды всего, в 1546,56 1778,54 1546,56 1778,54 22,01 22,65 том числе: 12,66 13,03 – отопление 889,85 1023,33 889,85 1023,33 7,65 7,87 вентиляция 537,72 618,37 537,72 618,37 ΓΒC 118,99 136,84 118,99 136,84 1,69 1,74 2. **Потери,** всего, в том 1014,44 1166,61 815,84 938,21 14,44 11,95 числе 2.1. В технологических процессах всего, в том 843,10 969,57 649,88 747,36 12,00 9,52 числе: – нагрев в газовых печах 315,90 221,13 254,30 4,50 3,24 363,29 - термообработка 457,36 525,96 365,89 420,77 6,51 5,36 - нормализация и отпуск 69,85 80,33 62,86 72,29 0,99 0,92

После всех мероприятий по экономии топливных ресурсов потребность предприятия в топливе составила 6828,24 тыс.м³, что на 198,6 тыс.м³ меньше чем до ОТМ.

119,66

77,38

8080,86

98.68

67,29

6828,24

113,48

77,38

7852,47

104,05

67,29

7026,84

2.2. Собственные

2.3. Потери в сетях

Итого расход

нужды котельной

1.45

0,99

100,0

1,48

0,96

100,0

Таблица 6.4 Сводный топливно-энергетический баланс

№ п/п	Вид энергоресурса	Единица измерения	Приход		Переводн	ой коэффициент	Расход		
			со	собств-ое произв-во	значение	единица измерения	Вид ЭР и направление использования	m y.m.	%
					Топливо, всего	7852,474	85,54		
1 Топливо	Топливо	тыс.м ³	6828,24	-	1,15	т у.т./тыс.м³	топливо	3870,090	42,16
							технологическое	3670,090	
2	Тепловая энергия	Гкал	- 25618,33 0,15545 ту.т./Гкал		ту.т./Гкал	топливо	3982,384	43,38	
	тепловил эпертил	1 Kost	_	23010,33	0,13343	my.m./1 Kast	энергетическое	; 3702,304	75,50
3	Электроэнергия	тыс.кВт∙ч	10793,65	-	0,123	т у.т./тыс.кВт∙ч	электроэнергия	1327,619	14,46
4	Сжатый воздух	тый воздух <i>тыс.м</i> ³ -		- 4500	0,010455	т у.т./тыс.м ³	в т.ч. на произв-во	47,0475	0,51
	Сжитын воздух	more.w	_	4300	0,010433	ni y.m./moic.m	сжатого воздуха	71,0713	0,31
	Итого:							9180,09	100,00

Значение переводного коэффициента после OTM: $b_{\text{выр}}^{\text{cp}}{}^* = \frac{B_{\text{т.эн}}^{\text{OTM}}}{Q_{\text{выр}}^{\text{OTM}}} = \frac{3982,384}{25618,33} = 0,15545\,\text{т.y.т.}/\,\Gamma$ кал = 155,45 кг у.т./ Γ кал.

7 РАСЧЕТ СЕБЕСТОИМОСТИ ОТПУЩЕННОЙ ТЕПЛОТЫ

Определение себестоимости тепловой энергии включает в себя расчет годовых эксплуатационных расходов котельной по выражению:

$$U_{\kappa om} = U_{mon} + U_{goo} + U_{go} + U_{go} + U_{go} + U_{go} + U_{go} + U_{go} + U_{np}$$
, тыс.руб/год (7.1)

где U_{mon} — стоимость топлива, *тыс.руб/год*;

 $M_{60\partial}$ – стоимость воды, *тыс.руб/год*;

 M_{20} – стоимость электроэнергии, *тыс.руб/год*;

 $U_{3\Pi}$ – годовой фонд заработной платы персонала котельной, *тыс.руб/год*;

 $M_{cou.h}$ – отчисления на социальные нужды, *тыс.руб/год*;

 M_{am} – амортизационные отчисления, mыс.pyб/год;

 $M_{P \ni O}$ – затраты на ремонтно-эксплуатационное обслуживание, *тыс.руб/год*;

 M_{np} – общекотельные и прочие расходы, *тыс.руб/год*.

7.1 Стоимость топлива

Стоимость топлива:

$$U_{mon} = B_{\kappa om} \cdot \mathcal{U}_{mon} \cdot 10^{-3}$$
, тыс.руб/год (7.2)

где $B_{\kappa om}$ — годовой расход топлива котельной с учетом мероприятий по экономии топлива в натуральном выражении, тыс.м³/год [Табл.6.4];

 U_{mon} — цена за тыс.м³ топлива, руб/тыс.м³[2].

 $U_{mon}^{\delta a3} = 674,15$ руб/тыс.м³; $k_{\delta a3} = 2,5481$ руб/\$.

$$B_{\kappa om} = B_{\mu m} - \Delta B_{\kappa om} \cdot \frac{7000}{8050}, \text{ тыс.м}^3/\text{год},$$

где $B_{\text{нm}}$ – годовой расход топлива котельной без учета мероприятий по экономии топлива в натуральном выражении, тыс.м³/год [п.3.4, стр. 20];

 $\Delta B_{\kappa om}$ — экономия топлива в результате снижения расходов теплоты на собственные нужды котельной от реализации ОТМ, тут/год [табл. 5.2, стр. 31].

$$B_{\kappa om} = 3468, 32 - 6, 18 \cdot \frac{7000}{8050} = 3462, 94$$
 тыс.м³/год.

На 10.02.2022 года курс доллара составил: $k_{mex} = 2,5600$ руб/\$.

$$\begin{split} & \coprod_{\scriptscriptstyle TO\Pi} = \coprod_{\scriptscriptstyle TO\Pi}^{\scriptscriptstyle \bar{6}a3} \cdot \frac{Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}}{\left(Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}\right)_{\scriptscriptstyle \bar{6}a3}} \cdot \frac{k_{\scriptscriptstyle TEK}}{k_{\scriptscriptstyle \bar{6}a3}} = 674,15 \cdot \frac{8050}{7900} \cdot \frac{2,5600}{2,5481} = 690,16 \;\; \text{руб/тыс.м}^3 \;. \\ & M_{\scriptscriptstyle TO\Pi} = 3462,94 \cdot 690,16 \cdot 10^{-3} = 2389,98 \;\; \text{тыс.руб/год.} \end{split}$$

7.2 Стоимость воды

Стоимость воды:

$$M_{soo} = G_{\kappa om} \cdot \mathcal{U}_{soo}$$
, тыс.руб/год (7.3)

где $G_{\kappa om}$ – годовой расход воды котельной, тыс.м³/год [Табл.3.3];

 U_{eoo} – цена за 1 м³ воды, руб/м³: $U_{вод} = 0.9267$ руб/м³ [3];

$$M_{\text{вол}} = 221,11 \cdot 0,9267 = 204,90$$
 тыс.руб/год.

7.3 Стоимость электроэнергии

Стоимость электроэнергии определяется по двухставочному тарифу:

$$U_{\rm BR} = W_{c.H_{\rm KOM}} \cdot \left(\frac{a \cdot 12}{T_{\rm max}} + b\right) \cdot 10^{-3}, \text{ тыс.руб/год}$$
 (7.4)

где $W_{ch_\kappa om}$ — годовое потребление электрической энергии электроприемниками котельной, κBm ν [раздел 3.6];

 $T_{\rm max}$ — число часов использования предприятием максимальной нагрузки, v, для непрерывного режима принимаем $T_{\rm max} = 6000$ ч;

a — основная ставка тарифа — стоимость 1 кВт максимальной мощности, $py6/\kappa Bm$ мес: $a_6 = 27,55299$ ру $6/\kappa Br \cdot mec$

$$a = a_{\delta} \cdot \left(0,31+0,69 \cdot \frac{K_{\text{\tiny TEK}}}{K_{\delta a_3}}\right) = 27,55299 \cdot \left(0,31+0,69 \cdot \frac{2,5600}{2,5481}\right) = 27,64178 \text{ py6/kBt·mec.} \eqno(7.5)$$

b — дополнительная ставка тарифа — стоимость 1 кВт·ч электроэнергии, $py6/\kappa Bm\cdot u$: $b_6 = 0,23301$ $py6/\kappa Br\cdot u$

$$b = b_6 \cdot \left(0.31 + 0.69 \cdot \frac{K_{\text{TEK}}}{K_{633}}\right) = 0.23301 \cdot \left(0.31 + 0.69 \cdot \frac{2.5600}{2.5481}\right) = 0.23376 \text{ py6/kBt·ч.}$$
 (7.6)

где $K_{me\kappa}$ — курс доллара на 10.02.2022г.: по данным Нац. Банка $K_{\text{тек}}=2,5600\,$ руб/\$ K_{δ} — базовый курс доллара: $K_{\delta}=2,5481\,$ руб/\$..

$$\mathbf{H}_{\text{эл}} = 608082, 76 \cdot \left(\frac{27,64178 \cdot 12}{6000} + 0,23376\right) \cdot 10^{-3} = 175,76 \text{ тыс.руб/год.}$$

7.4 Годовой фонд заработной платы персонала котельной

Годовой фонд заработной платы обслуживающего персонала котельной:

$$\mathbf{M}_{3\Pi} = \mathbf{Y}_{\text{кот}} \cdot \mathbf{T}_{\text{ст}}^{1} \cdot \mathbf{k}_{\text{тар}}^{\text{cp}} \cdot \mathbf{k}_{\text{твр}} \cdot 12 \cdot \mathbf{k}_{\text{твр,доп}}, \text{тыс.руб/год}$$
 (7.7)

где $4_{\text{кот}}$ – численность обслуживающего персонала котельной. Численность обслуживающего персонала котельной может быть определена на основе штатного расписания (таблица 7.1).

 $T_{cm}^{1} = 310$ руб — тарифная ставка первого разряда [таблица 1];

 $k_{\text{тар}}^{\text{cp}}$ – средневзвешенный тарифный коэффициент, равен 1,8;

 $k_{\mbox{\tiny твр}}-$ коэффициент повышения тарифных ставок по технологическим видам работ, равен 1,2[5];

 $k_{\text{пр.доп}}$ – коэффициент, учитывающий премиальные начисления и доплаты за стаж, принимаем его равным 1,6;

 $k_{np,\partial on}$ — коэффициент, учитывающий премиальные начисления и доплаты: премиальные начисления — 15%; доплаты: ночные — 15% (за работу в период 22.00-6.00); за профмастерство — 10%; за стаж работы — 10%; надбавка за сложность и напряженность работы — 10% (ИТР).

Персонал котельной

No	Наименование	Количество,	Розран	Тарифный
110	паименование	чел	Разряд	коэффициент
	Руководи	ители:		
1	Начальник котельной	1	15	3,48
2	Старший мастер	1	13	3,04
3	Мастер	1	11	2,65
	Рабочи			
		3	6	1,9
3	Оператор	2	5	1,73
		2	4	1,57
4	Аппаратчик XBO	1	4	1,35
4		1	3	1,57
5	Слесарь по ремонту газового	1	5	1,73
	оборудования	1	4	1,57
6	Слесарь по ремонту котельного	1	6	1,9
0	оборудования	1	4	1,57
7	Слесарь КИПиА	1	6	1,9
/	Слесарь КиниА	1	5	1,73
8	Слесарь-сантехник	1	4	1,57
9	Электромонтер	1	5	1,73
<i>J</i>	электромонтер	2	4	1,57
10	Электрогазосварщик котельного	1	4	1,57
10	хозяйства	1		·
10	Уборщица	1	2	1,16
	Итого	24		1,83

Таблица 7.1

$$M_{3II} = 24 \cdot 310 \cdot 1,83 \cdot 1,2 \cdot 12 \cdot 1,6 = 309,4$$
 тыс.руб/год.

Тогда средняя заработная плата работников котельной:

$$3\Pi_{\text{cp_кот}} = \frac{H_{3\Pi}}{H_{\text{кот}} \cdot 12} = \frac{309, 4 \cdot 1000}{24 \cdot 12} = 1090, 22 \, \text{руб/(чел · мес)}.$$

7.5 Отчисления на социальные нужды

Отчисления на социальные нужды определяются в соответствии с нормативами отчислений и платежей по действующему законодательству пропорционально фонду оплаты труда (34% — отчисления на социальное страхование, 0.6% — отчисления на обязательное страхование от несчастных случаев):

7.6 Капитальные затраты на сооружение котельной

Капитальные затраты на сооружение котельной наиболее точно определяются по сметно-финансовому расчету, но в связи с его сложностью в курсовой работе используем метод удельных капитальных вложений:

$$K_{\text{кот}} = (K_1 \cdot Q_{\text{ном1}} + K_n \cdot Q_{\text{номn}}(n-1))k_{\text{пер}}, \text{ тыс.руб}$$
 (7.9)

где K_I , K_n — удельные капиталовложения для ввода первого и последующих котлоагрегатов, соответственно, тыс.руб/МВт(табл. П.1.11);

Q_{ном1}, Q_{номп} – номинальная мощность первого и последующих агрегатов, МВт;

n — количество однотипных котлов;

 k_{nep} — коэффициент пересчета стоимости котельной, k_{nep} =1,4 (задается в исходных данных).

$$K_{\text{кот}} = K_{\text{об}} \cdot k_{\text{попр}} + K_{3д}, \text{ тыс.руб}$$
 (7.10)

где $K_{o\delta}$ – стоимость основного оборудования, тыс.руб;

 ${\rm k}_{\rm nonp}$ — коэффициент, учитывающий стоимость вспомогательного оборудования; ${\rm k}_{\rm nonp}$ = 1,5;

K_{₃₁} – стоимость зданий и сооружений (30% от всей стоимости);

К_{монтаж} – стоимость монтажных работ (18% от всей стоимости).

$$K_{\text{кот}}^{\text{квгм}} = (55 \cdot 4, 65 + 27 \cdot 4, 65 \cdot (2 - 1)) \cdot 1, 4 = 534, 05 \text{ тыс.руб.}$$

$$K_{\text{кот}}^{\text{дквр}} = (75 \cdot \frac{2,5}{1.376} + 36 \cdot \frac{2,5}{1.376} \cdot (2 - 1)) \cdot 1, 4 = 282, 34 \text{ тыс.руб.}$$

Стоимость котельного агрегата Ква-0,4: 347000 росс.руб. Курс российского рубля по отношению к белорусскому по данным Национального банка Республики Беларусь на 10.02.2022 г. – 0,034265 бел.руб./росс.руб.

$$\begin{split} K_{_{06}} &= 347000 \cdot 0,034265/1000 = 11,89, \ \text{тыс.руб} \\ K_{_{\text{КОТ}}}^{\text{Ква}} &= 11,89 \cdot 1,5 \cdot (1+0,18/0,52) \cdot (1+0,3/0,7) = 34,30 \,\text{тыс.руб.} \\ K_{_{\text{КОТ}}} &= 534,05+282,34+34,30 = 850,69 \ \text{тыс.руб.} \end{split}$$

7.7 Амортизационные отчисления

Амортизационные отчисления определяются в соответствии с нормами амортизации, по формуле:

$$M_{_{aM}}=H_{_{aM.cp}}\cdot K_{_{\kappa om}},$$
 тыс. руб./год
$$H_{_{aM.cp}}=\alpha_{_{cmp}}\cdot H_{_{aM1}}+\alpha_{_{of}}\cdot H_{_{aM2}} \tag{7.11}$$

где $H_{aмl}$, $H_{aм2}$ – нормы амортизации [1, стр.29];

1 – по зданиям и сооружениям – 3,5%; 2 – по оборудованию – 8%;

К кот - капитальные затраты на сооружение котельной;

 α_{cmp} , $\alpha_{o\delta}$ — доля стоимости общестроительных работ и зданий и оборудования с монтажом в общей стоимости котельной, $\alpha_{cmp} = 0.3$, $\alpha_{o\delta} = 0.7$ [1,стр.47, Табл.П1.12];

$$H_{amcp} = 0.035 \cdot 0.3 + 0.7 \cdot 0.08 = 0.0665$$

$$M_{am} = 0,0665 \cdot 850,69 = 56,57$$
 тыс. руб./год.

7.8 Затраты на ремонтно-эксплуатационное обслуживание

Затраты на ремонтно-эксплуатационное обслуживание:

$$U_{P3O} = H_{P3O} \cdot K_{\kappa om}$$
, тыс. руб./год (7.12)

где $H_{P\supset O}$ — средняя норма отчислений на ремонтно-эксплуатационное обслуживание оборудования котельной, $H_{P\supset O}$ = 5%[1, стр.30].

$$M_{POO} = 0.05 \cdot 850,69 = 42,53$$
 тыс.руб/год.

7.9 Прочие расходы

Общекотельные и прочие расходы:

$$M_{\rm np} = H_{\rm np} \cdot M_{\rm yff}$$
, тыс.руб/год (7.13)

где H_{np} – норма прочих (накладных) расходов, %. Принимаем H_{np} = 30% [1, стр.30];

 $M_{y.n}$ – условно постоянные расходы, тыс. р./год.

$$\mathbf{H}_{\text{уп}} = \mathbf{H}_{\text{вод}} + \mathbf{H}_{\text{3\Pi}} + \mathbf{H}_{\text{AM}} + \mathbf{H}_{\text{Соц.H}} + \mathbf{H}_{\text{РЭО}} + \mathbf{H}_{\text{ЭЛ}} = 204,90 + 309,4 + +107,05 + 56,57 + 42,53 + 175,76 = 896,22$$
 тыс. руб. / год.

$$H_{mp} = 0,3.896,22 = 268,87$$
 тыс. руб./год.

Тогда годовые эксплуатационные расходы котельной:

$$H_{\text{кот}} = 2389,98 + 204,90 + 175,76 + 56,57 + 42,53 +$$

 $+309,40 + 107,05 + 268,87 = 3555,08$ тыс.руб/год.

7.10 Структура себестоимости отпущенной теплоты

Структура себестоимости теплоты, отпущенной из котельной, приведена в таблице 7.2.

Себестоимость единицы отпущенной теплоты определяется по выражению, тыс.р./Гкал:

$$S_{o.T.\Pi} = \frac{H_{KOT}}{Q_{o.T.\Pi}},$$
 (7.14)

где ${\rm M}_{\rm кот}$ –годовые эксплуатационные расходы котельной, тыс.р./год

$$S_{\text{отп}} = \frac{3555,08}{24849.78} = 0,14306$$
 тыс. pyб./Гкал = 143,06 pyб./Гкал.

Топливная составляющая себестоимости тепла:

$$S_{\text{топ}} = \frac{2876,12}{24849,78} \cdot 1000 = 96,18 \text{ руб.}/\Gamma$$
кал.

Таблица 7.2 Структура себестоимости отпущенной теплоты

№	Наименование элементов и	Условное	Значение,	Структура
п.п	статей затрат	обозначение	тыс.руб.	%
	Материальные затраты, всего, в	V_{M3}	2770.65	77.02
	том числе:	$r_{ m M3}$	2770,65	77,93
1	- стоимость топлива	$H_{\text{\tiny T}}$	2389,98	67,23
	- стоимость воды	Ив	204,90	5,76
	- стоимость электроэнергии	пеИ	175,76	4,94
	Содержание и экплуатация ЭО и	Исэ	99,11	2,79
2	сетей, всего, в том числе:	Исэ	99,11	2,19
2	- амортизация	Иам	56,57	1,59
	- PЭO	ИРЭО	42,53	1,20
3	Оплата труда	И _{3П}	309,40	8,70
4	Отчисления на соц. нужды	Исоц.н	107,05	3,01
5	Прочие	Ипр	268,87	7,56
	Итого:	Икот	3555,08	100,00

В данном разделе рассчитали годовые эксплуатационные котельной, которые составили 3555,08 тыс.руб. Они включают в себя: стоимость топлива, воды, электроэнергии, годовой фонд заработной платы, отчисления на социальные нужды, амортизационные отчисления, затраты на сооружение котельной, на ремонтно-эксплуатационное обслуживание и прочие расходы. Наибольший вес в структуре затрат приходится на стоимость топлива (67,23 %), а наименьший – на ремонтно-эксплуатационные затраты (1,2 %). Рассчитали себестоимость отпущенной единицы теплоты, которая составила 143,06 руб./Гкал, топливная составляющая – 96,18 руб./Гкал.

8 ОПРЕДЕЛЕНИЕ ЭНЕРГЕТИЧЕСКИХ ЗАТРАТ ПРЕДПРИЯТИЯ

Энергетическими затратами предприятия называются затраты, связанные с получением (покупкой или производством) энергоресурсов и их использованием в процессе производства.

Таким образом, энергетические затраты предприятия:

$$3_{3} = (H_{3p} + H_{am} + H_{p.3.0} + H_{3.n} + H_{np}) \cdot 10^{-3}$$
, млн.руб/год (8.1)

Стоимость энергоресурсов (H_{2p}) определяется исходя из их годового расхода (раздел 6) и действующих цен и тарифов:

$$M_{\rm 3D} = M_{\rm TOII} + M_{\rm 3D,3H} + M_{\rm BOII}$$
, тыс.руб/год (8.2)

$$\begin{split} \mathbf{H}_{_{\text{топл}}} &= 6828, 238 \cdot 690, 16 \cdot 10^{-3} = 4712, 58 \text{ тыс.руб/год.} \\ \mathbf{H}_{_{_{\text{Эл.ЭН}}}} &= 10793, 65 \cdot 0, 28904 = 3119, 80 \text{ тыс.руб/год.} \\ \mathbf{H}_{_{\text{вод}}} &= 204, 9 \text{ тыс.руб/год.} [\pi.7.2] \\ \mathbf{H}_{_{\text{эр}}} &= 4712, 58 + 3119, 80 + 204, 9 = 8037, 27 \text{ тыс.руб/год.} \end{split}$$

Стоимость основных производственных фондов энергохозяйства определяется упрощенно по выражению:

$$K_{_{\mathfrak{I}\mathfrak{I}\mathfrak{I}}} = k_{_{\mathcal{I}\mathfrak{I}\mathfrak{I}}} \cdot B_{_{\Sigma}}, \text{ тыс.руб/год}$$
 (8.3)

где $k_{y\partial}$ – величина удельных капитальных вложений, тыс.руб/ту.т., принимаем

$$k_{yд} = \frac{K_{\text{кот}}}{B_{\text{ан}}} = \frac{850,69}{3988,56} = 0,2133$$
 тыс.руб/т у.т.

 B_{\varSigma} — годовой расход всех видов ТЭР, тут/год [Табл.6.4]

$$K_{9x} = 0,2133 \cdot 9180,093 = 1957,95$$
 тыс.руб/год.

Ежегодные амортизационные отчисления определяются исходя из стоимости основных производственных фондов энергохозяйства (K_{9x}) и средневзвешенной нормы амортизации (7%):

$$M_{\text{am}} = 0.07 \cdot K_{\text{ax}}, \text{ тыс.руб/год}$$
(8.4)

$$M_{am} = 0.07 \cdot 1957,95 = 137,06$$
 тыс.руб/год.

Годовая зарплата работников энергохозяйства:

$$M_{3II} = \Phi_{3II} \cdot Y_{3x}$$
, тыс.руб/год (8.5)

где $\Phi_{3\Pi}$ – годовой фонд оплаты труда с отчислениями на социальные нужды одного работника, руб/чел·год:

$$\Phi_{_{3\Pi}} = \frac{M_{_{3.n.}} + M_{_{cou,n}}}{H_{_{rom}}} = \frac{309,4 + 107,05}{24} = 17,35$$
 тыс.руб/(чел. · год).

 V_{9x} — численность работников энергохозяйства предприятия, чел, принимается в размере 10...12 %от общей численности работников предприятия [1, стр.32]:

$$\mathbf{H}_{_{9\mathbf{X}}}=0,1\cdot\mathbf{H}_{_{\Pi\Pi\Pi\Pi}},\;\;$$
чел
$$\mathbf{H}_{_{9\mathbf{X}}}=0,1\cdot1250=125\;\;$$
чел.
$$\mathbf{H}_{_{3\Pi}}=17,35\cdot125=2169,02\;\;$$
тыс.руб/год.

Величина годовых затрат на ремонтно-эксплуатационное обслуживание энергооборудования и сетей определяется в размере 5% от стоимости основных производственных фондов энергохозяйства [1, стр.32]

Прочие (накладные) расходы определяются аналогично пункту 7.9:

$$\begin{split} & \mathcal{U}_{\Pi P} = \mathcal{H}_{np} \cdot \mathcal{U}_{yn}, \text{ тыс.руб/год} \end{split} \tag{8.8} \\ & \mathcal{U}_{\text{уп}} = \mathcal{U}_{\text{ам}} + \mathcal{U}_{\text{р.э.о}} + \mathcal{U}_{\text{зп}} = 137,06 + 97,9 + 2169,02 = \\ & = 2403,98 \text{ тыс.руб/год.} \\ & \mathcal{U}_{\Pi P} = 0,2 \cdot 2403,98 = 480,8 \text{ тыс.руб/год.} \\ & \mathcal{3}_{\text{9}} = 2169,02 + 137,06 + 480,8 + 97,9 + \\ & \quad + 8037,28 = 10922,05 \text{ тыс.руб/год.} \end{split}$$

Структура энергетических затрат предприятия представлена в таблице 8.1.

Таблице 8.1 Структура энергетических затрат предприятия

Наименование статей затрат	Условное обозначение	Значение, тыс. руб.	Структура, %
1. Стоимость энергоресурсов	Иэр	8037,27	73,59
2. Амортизация энергооборудования и сетей	Иам	137,06	1,25
3. Ремонтно-эксплуатационное обслуживание	И _{рэо}	97,9	0,9
4. Оплата труда работников энергохозяйства с начислениями	Изп	2169,02	19,86
5. Прочие	N_{np}	480,8	4,4
Итого:	3,	10922,05	100,00

В данном разделе определили годовые энергетические затраты предприятия, которые составили 10922,05 тыс.руб./год, из них 73,59 % — стоимость энергоресурсов.

9 ОЦЕНКА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ МЕРОПРИЯТИЙ ПО ЭКОНОМИИ ТОПЛИВА

9.1 Капитальные вложения в мероприятия по экономии топлива

Капитальные вложения в ОТМ по экономии топлива:

а) технологического: за счет использования более экономичных печей для нагрева металла (OTM 1):

$$K_{\text{Tex}} = k_1 \cdot \Delta B_{\text{Tex}}, \text{ тыс.руб / год}$$
 (9.1)

где k_I — удельные капитальные вложения в оборудование по использованию топлива технологического, тыс.руб/тут;

Из ИД: k_1 =590 руб./т у.т.;

 ΔB_{mex} — экономия топлива технологического, т у.т./год [Табл.5.1]:

$$K_{\text{Tex}} = 590 \cdot 222,21/1000 = 131,10$$
 тыс.руб / год.

б) энергетического:

- за счет перевода котлов на автоматическое регулирование процессов горения и питания водой, выполнение режимных рекомендаций по горению (OTM 2.1):

$$K_{\text{э1}} = k_2 \cdot \Delta Q_{\text{отм} \kappa}$$
, тыс.руб/год (9.2)

- за счет отказа от работы паровых питательных насосов (ОТМ 2.2):

$$K_{92} = k_2 \cdot \Delta Q_{OTM \text{ кот}}, \text{ тыс.руб / год}$$
 (9.3)

где k_2 — удельные капитальные вложения в энергетические установки, тыс.руб/Гкал; из ИД: k_2 = 220 руб/Гкал;

 ΔQ_{OTM_κ} , $\Delta Q_{OTM_\kappa om}$ — экономия тепла за счет внедрения ОТМ 2.1 и ОТМ 2.2, соответственно, Гкал/год.

$$K_{\mathfrak{I}} = 220 \cdot 16,32 / 1000 = 3,59$$
 тыс.руб / год.

$$K_{92} = 220 \cdot 23,06/1000 = 5,07$$
 тыс.руб/год.

9.2 Финансовые результаты внедрения мероприятий по экономии топлива

Финансовые результаты первого года от внедрения ОТМ можно оценить по выражению:

$$P_{OTM} = \Delta H_{OTM} = \Delta H_{T} + \Delta H_{AM} - \Delta H_{DOO}$$
, тыс.руб/год (9.4)

где ΔM_m – экономия на текущих затратах на топливо, тыс.руб/год:

$$\Delta M_m = \Delta B \cdot \mathcal{U}_{mon}$$
, тыс.руб/год (9.5)

 ΔM_{a_M} — дополнительные амортизационные отчисления, за счет внедрения нового оборудования; тыс.руб/год:

$$\Delta U_{aM} = H_{aM} \cdot K$$
, тыс.руб/год (9.6)

где $H_{a_{M}}$ – норма амортизации, %:

$$H_{am} = 1/T_{cn} \cdot 100\%$$
,

где T_{cn} – нормативный срок службы оборудования, лет.

ОТМ 1 (использование более экономичных газовых печей): машины и оборудование \rightarrow машины и оборудование черной металлургии \rightarrow Печи термические роликовые (кроме отпуска рельсов), колпаковые, протяжные, башенные, секционные и прочие термические и нагревательные печи во всех отраслях промышленности (шифр 43016) [7]: T_{cr} =10лет.

ОТМ 2.1 (перевод котлов на автоматическое регулирование процессов горения и питания водой, выполнение режимных рекомендаций по горению): машины и оборудование \rightarrow Приборы и устройства измерительные и регулирующие \rightarrow Контрольно-измерительное и испытательное, сортировочное оборудование установки (шифр 47022)[7]: T_{cn} =12лет;

 ΔM_{pso} – дополнительные издержки на ремонт установленного оборудования, тыс.руб/год:

$$\Delta H_{pso} = H_{p} \cdot K$$
, тыс.руб/год (9.7)

где H_p – норма отчислений на ремонт оборудования, %, принимаем 5 %.

Финансовые результаты первого года от внедрения ОТМ 1:

$$\Delta M_{_{\rm T}} = 193,23\cdot690,16\cdot10^{-3} = 133,36 \ \ {\rm тыс.руб/год.}$$

$$H_{_{\rm aM}} = 1/10\cdot100\% = 10\%.$$

$$\Delta M_{_{\rm aM}} = 0,1\cdot131,1=13,11 \ \ {\rm тыc.py6/год.}$$

$$\Delta M_{_{\rm p.9.o}} = 0,05\cdot131,1=6,56 \ \ {\rm тыc.py6/год.}$$

$$P_{_{\rm OTM}} = \Delta M_{_{\rm OTM}} = 133,36+13,11-6,56=139,91 \ \ {\rm тыc.py6/год.}$$

Таблица 9.1 Финансовые результаты внедрения ОТМ.

Показатели	Условное	Единица	Зна	ачение
Показатели	обозначение	измерения	OTM 1	OTM 2.1
Капитальные вложения	K _{OTM}	тыс. руб.	131,10	3,59
Годовая экономия	ΔB	тыс. м ³ /год	193,23	2,25
топлива	$\Delta M_{_{ m T}}$	тыс. руб./год	133,36	1,55
Срок службы	$T_{\rm cn}$	лет	10	12
Норма амортизации	Нам	%	10	8,33
Норма на ремонт	H_{p}	%	5	5
Издержки амортизации	$\Delta M_{ m am}$	тыс. руб./год	13,11	0,30
Издержки на ремонт	$\Delta M_{ m pso}$	тыс. руб./год	6,56	0,18
Финансовый результат	$P_{\scriptscriptstyle ext{OTM}}$	тыс. руб./год	139,91	1,67

9.3 Показатели экономической эффективности

Расчет показателей экономической эффективности проводим для ОТМ 1 и ОТМ 2.1. Норму дисконтирования принимаем в соответствии с исходными данными p=11%.

1. Срок окупаемости (статический) Ток.стат:

$$T_{o\kappa.cmam} = \frac{K_{OTM}}{P_{OTM}},$$
 лет (9.8) $T_{o\kappa.ctat}^{otml} = \frac{131,1}{139,91} = 0,94$ лет.

2. *Чистый дисконтированный доход ЧДД* (экономический эффект от внедрения ОТМ за весь срок расчетного периода Т):

ЧДД =
$$\sum_{t=0}^{T} (\mathbf{P}_t - \mathbf{K}_t) \cdot d_t$$
, тыс. руб. (9.9)

где P_t – финансовый результат ОТМ в году, t;

 $K_{\rm t}$ – капиталовложения в году t;

 $(P_t - K_t)$ – поток наличности в году, t;

 d_t – коэффициент дисконтирования текущего года:

$$d_{t} = \frac{1}{(1+p)^{t}} \tag{9.10}$$

где p — норма дисконтирования, о. е.

Расчет представим в форме таблиц 9.2 и 9.3.

Таблица 9.2 Определение чистого дисконтированного дохода (при норме дисконтирования – p= 11%) в случае использования более экономичных печей для нагрева металла

Годы,	Капиталь-	Финансовый	Денежный	Коэффииентд	Дисконтиро-	Чистый дискон-
	ные	результат,	поток	исконти-	ванная	тированный
T	вложения,	тыс.руб. Р _t ,.	P _t - K _t	рования,d _t	стоимость,	доход, тыс. руб.
	тыс.руб.,				тыс.руб.	
	К				ДC _t .	ЧДД _t ,
0	131,10	0	-131,1	1,00	-131,10	-131,10
1		139,91	139,91	0,90	126,05	-5,06
2		139,91	139,91	0,81	113,56	108,50
3		139,91	139,91	0,73	102,30	210,80
4		139,91	139,91	0,66	92,16	302,97
5		139,91	139,91	0,59	83,03	386,00
6		139,91	139,91	0,53	74,80	460,80
7		139,91	139,91	0,48	67,39	528,19
8		139,91	139,91	0,43	60,71	588,90
9		139,91	139,91	0,39	54,70	643,60
10		139,91	139,91	0,35	49,27	692,87

3. Срок окупаемости (динамический) $T_{\text{ок.дин}}$:

$$T_{OK.\partial UH} = t - \frac{Y / I / I_t}{Y / I_{t+1} - Y / I / I_t}, \quad nem$$
 (9.11)

$$T_{\text{ок.дин}}^{\text{отм1}} = 1 - \frac{-5,06}{108,5 - (-5,06)} = 1,04$$
 лет.

Определение чистого дисконтированного дохода (при норме дисконтирования — p=11%) в случае перевода котлов на автоматическое регулирование процессов горения и питания водой, выполнение режимных рекомендаций по горению

Годы,	Капиталь- ные вложения, тыс.руб., К	Финансовый результат, тыс.руб. Р _t ,.	Денежный поток Р _t - K _t	Коэффи- циентдиско нти- рования,d _t	Дисконтированная стоимость, тыс.руб. $\protect\ensuremath{ZC_t}$.	Чистый дискон- тированный доход, тыс. руб. ЧДД _t ,
0	3,59	0	-3,59	1,00	-3,59	-3,59
1		1,67	1,67	0,90	1,51	-2,08
2		1,67	1,67	0,81	1,36	-0,72
3		1,67	1,67	0,73	1,22	0,50
4		1,67	1,67	0,66	1,10	1,60
5		1,67	1,67	0,59	0,99	2,60
6		1,67	1,67	0,53	0,90	3,49
7		1,67	1,67	0,48	0,81	4,30
8		1,67	1,67	0,43	0,73	5,03
9		1,67	1,67	0,39	0,65	5,68
10		1,67	1,67	0,35	0,59	6,27
11		1,67	1,67	0,32	0,53	6,80
12		1,67	1,67	0,29	0,48	7,28

4. внутренняя норма доходности $p_{\it вн}$:

$$p_{_{BH}} = p_1 - \frac{Y \coprod C_1 \cdot (p_2 - p_1)}{Y \coprod C_2 - Y \coprod C_1}, \%$$
 (9.12)

где p_1 и p_2 – две пограничные нормы дисконтирования, которым соответствуют значения ЧДС (ЧДС₁ и ЧДС₂, соответственно), противоположные по знаку: p_1 =11%; p_2 =107% (для ОТМ 1) и p_1 =11%; p_2 =50% (для ОТМ 2.1).

$$p_{\text{BH}}^{\text{OTM1}} = 11 - \frac{692,87 \cdot (107 - 11)}{-0,44 - 692,87} = 106,94 \%.$$

$$p_{\text{BH}}^{\text{OTM}2.1} = 11 - \frac{7,28 \cdot (50 - 10)}{-0,27 - 7,28} = 48,62 \%.$$

Результаты расчета ЧДД при p_1 и p_2 представлены в таблицах 9.4 и 9.5 (для OTM1 и OTM2.1).

Таблица 9.4 Определение чистого дисконтированного дохода (при норме дисконтирования – p=107%) в случае использования более экономичных печей для нагрева металла

Годы,	Капиталь- ные вложения, тыс.руб., К	Финансовый результат, тыс.руб. Р _t ,.	Денежный поток Р _t - К _t	Коэффи- циентдиско нти- рования,d _t	Дисконтированная стоимость, тыс.руб. ДС _t .	Чистый дискон- тированный доход, тыс. руб. ЧДД _t ,
0	131,1	0,00	-131,10	1	-131,10	-131,10
1		139,91	139,91	0,4831	67,59	-63,51
2		139,91	139,91	0,2334	32,65	-30,86
3		139,91	139,91	0,1127	15,77	-15,09
4		139,91	139,91	0,0545	7,62	-7,47
5		139,91	139,91	0,0263	3,68	-3,79
6		139,91	139,91	0,0127	1,78	-2,01
7		139,91	139,91	0,0061	0,86	-1,15
8		139,91	139,91	0,0030	0,42	-0,73
9		139,91	139,91	0,0014	0,20	-0,53
10		139,91	139,91	0,0007	0,10	-0,44

Таблица 9.5 Определение чистого дисконтированного дохода (при норме дисконтирования – p= 50%) в случае перевода котлов на автоматическое регулирование процессов горения и питания водой, выполнение режимных рекомендаций по горению

Годы,	Капиталь- ные вложения, тыс.руб.,К	Финансовый результат, тыс.руб. Р _t ,.	Денежный поток P _t - K _t	Коэффициент дисконти- рования,d _t	Дисконтированная стоимость, тыс.руб. $\ensuremath{ДC_t}.$	Чистый дискон- тированный доход, тыс. руб. ЧДД _t ,
0	3,59	0,00	-3,59	1,000	-3,59	-3,59
1		1,67	1,67	0,667	1,12	-2,47
2		1,67	1,67	0,444	0,74	-1,73
3		1,67	1,67	0,296	0,50	-1,23
4		1,67	1,67	0,198	0,33	-0,90
5		1,67	1,67	0,132	0,22	-0,68
6		1,67	1,67	0,088	0,15	-0,54
7		1,67	1,67	0,059	0,10	-0,44
8		1,67	1,67	0,039	0,07	-0,37
9		1,67	1,67	0,026	0,04	-0,33
10		1,67	1,67	0,017	0,03	-0,30
11		1,67	1,67	0,012	0,02	-0,28
12		1,67	1,67	0,008	0,01	-0,27

Также определим внутреннюю норму доходности графическим методом. Графики представлены на рисунке 1 для ОТМ 1 и на рисунке 2 для ОТМ 2.1.

Рисунок 1 – Определение внутренней нормы доходности для ОТМ 1

Рисунок 2 – Определение внутренней нормы доходности для ОТМ 2.1

Определим динамический срок окупаемости графическим методом. Графики представлены на рисунке 3 для ОТМ 1 и на рисунке 4 для ОТМ 2.1.

Рисунок 3 – Определение динамического срока окупаемости для ОТМ 1

Рисунок 4 – Определение динамического срока окупаемости для ОТМ 2.1

5. индекс доходности (рентабельность капитала) R_{κ} :

ИД =
$$\frac{\sum P_{t} \cdot d_{t}}{\sum K_{t} \cdot d_{t}} = \frac{P_{l} \cdot d_{c}}{K_{OTM}}$$
 (9.13)

где P_I – финансовый результат первого года (или среднегодовой), тыс.руб;

 d_c — совокупный коэффициент дисконтирования, позволяющий определить сумму дисконтированных потоков (доходов и расходов) за весь срок реализации проекта по величине потока одного года:

$$d_{c} = \frac{(1+p)^{T_{CJI}} - 1}{(1+p)^{T_{CJI}} \cdot p}$$
 (9.14)

$$\mathbf{d}_{c}^{\text{OTM1}} = \frac{\left(1+0,11\right)^{10}-1}{\left(1+0,11\right)^{10}\cdot0,11} = 5,889.$$

$$ИД^{\text{отм1}} = \frac{139,91 \cdot 5,889}{131,1} = 6,28.$$

6. среднегодовой экономический эффект $4 \pi J_{200}$:

$$\Psi \bot \bot \bot = \Psi \bot C \cdot a, \text{ млн.руб/год}$$
 (9.15)

где a — переводной коэффициент совокупных затрат и результатов в однородные годовые в течение всего срока реализации проекта:

$$a = \frac{p \cdot (1+p)^{T_{CII}}}{(1+p)^{T_{CII}} - 1}$$

$$a^{OTMI} = \frac{0.11 \cdot (1+0.11)^{10}}{(1+0.11)^{10} - 1} = 0.170.$$
(9.16)

ЧДД
$$_{\text{гол}}^{\text{отм1}} = 692,87 \cdot 0,170 = 117,65$$
 тыс.руб/год.

Показатели экономической эффективности сводим в таблицу 9.8.

Таблица 9.8 Показатели экономической эффективности

Наименование	Обозна- чение	Единица измерения	OTM 1	OTM 2.1
1. Чистый дисконтированный доход	ЧДС	тыс.руб	692,87	7,28
2. Срок окупаемости статический	$T_{o\kappa.cmam}$	лет	0,94	2,14
3. Срок окупаемости динамический	$T_{o\kappa.\partial u ext{ iny }}$	лет	1,04	2,55
4. Индекс доходности	ИД	-	6,28	3,03
5. Внутренняя норма доходности	$p_{\scriptscriptstyle extit{BH}}$	%	106,94	48,62
6. Среднегодовой экономический эффект	ЧДД _{год}	тыс.руб/год	117,65	1,12

В данном разделе оценили экономическую эффективность мероприятий по экономии топлива. Организационно-техническое мероприятие оправдано, если выполняются следующие условия: $T_{o\kappa.cmam} \le 5$ лет; $T_{o\kappa.\partial uH} \le 8$ лет; 4ДC > 0; 4ДC

10 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЕКТА

Дополнительно рассчитываем следующие показатели:

1. Энерговооруженность труда:

$$\Theta_{\rm BT} = \frac{{\rm B}_{\Sigma}}{{\rm U}_{\rm min}}, \ {\rm T} \ {\rm y.r./чел}$$
 (10.1)

где B_{Σ} – годовой расход топлива и всех видов энергии в пересчете на условное топливо с учетом ОТМ, т у.т./год [Табл.6.4]:

$$\Theta_{BT} = \frac{9180,09}{1250} = 7,34$$
 т у.т./чел.

2. Электровооруженность труда:

$$\Theta_{\text{л.вт}} = \frac{W}{\mathbf{q}_{\text{ппп}}}, \text{ тыс.кВт} \cdot \mathbf{q}/\text{чел}$$
 (10.2)

где W – суммарное годовое потребление электроэнергии, кBт·ч/год [Табл.4.1]:

$$\Theta_{\text{л.вт}} = \frac{10793,65}{1250} = 8,63 \text{ тыс.кВт} \cdot \text{ч/чел}.$$

3. Энергоемкость продукции:

$$\Im_{\Pi} = \frac{B_{\Sigma}}{\Pi}, \text{ T y.t./mt}$$

$$\Im_{\Pi} = \frac{9180,09}{9000} = 1,02 \text{ T y.t./mt}.$$
(10.3)

4. Электроемкость продукции:

$$\mathfrak{I}_{\text{л.п}} = \frac{W}{\Pi}, \text{ тыс.кВт} \cdot \text{ч/шт}$$
 (10.4)
$$\mathfrak{I}_{\text{л.п}} = \frac{10793,65}{9000} = 1,1993 \text{ тыс.кВт} \cdot \text{ч/шт} = 1199,3 \text{ кВт} \cdot \text{ч/шт}.$$

5. Теплоемкость продукции:

$$T_{\pi} = \frac{Q}{\Pi}, \Gamma \kappa a \pi / \text{шт}$$
 (10.5)

где Q— суммарное годовое потребление тепловой энергии предприятием, Гкал [Табл.6.4]:

$$T_{_{\Pi}} = \frac{24352,78}{9000} = 2,706 \ \Gamma$$
кал/шт = 2706 Мкал / шт.

Технико-экономические показатели приведены в таблице 10.1.

Таблица 10.1 Основные технико-экономические показатели котельной

Наименование	Обозна- чение	Единица измерения	Значение
Показател	и котельной		
Водиатиля произволитани пости		MBm	8,69
Расчетная производительность	Q_p	Гкал/ч	7,47
Установленная мощность	0	MBm	13,14
установленная мощность	Q_{ycm}	Гкал/ч	11,30
Голород рукработка топла	0	Гкал/год	25618,33
Годовая выработка тепла	$Q_{ m выp}$	ГДж/год	107263,94
Голорой отнуже тапла	0	Гкал/год	24849,78
Годовой отпуск тепла	Qomn	ГДж/год	104046,02
Годовое число часов использования установленной мощности	h_y	час/год	2267,67
Годовой расход условного топлива до ОТМ после ОТМ	B_{ym}	т у.т./год	3988,56 3982,38
Годовой расход натурального топлива до ОТМ после ОТМ	$B_{\scriptscriptstyle Hm}$	тыс.м³/год	3468,32 3462,94
Установленная мощность токоприемников	P_{ycm}	кВт	433,58
Годовой расход электроэнергии котельной	$W_{\kappa om}$	тыс.кВт∙ч/год	608,08
Численность обслуживающего персонала	$Y_{\kappa om}$	чел	24
Капитальные вложения	$K_{\kappa om}$	тыс.руб.	850,69
Годовые эксплуатационные расходы	$H_{\kappa om}$	млн.руб/год	3,254
Удельные показ	атели котель	ной	
на единицу установленной мощности:			
- капитальные затраты;	$K_{y\partial}$	тыс.руб/МВт	64,75
- численность персонала.	$n_{\kappa om}$	чел/МВт	1,8
на единицу отпущенного тепла:			
Удельный расход условного топлива до ОТМ после ОТМ	b _{отп}	кгу.т./Гкал	160,51 160,26

Окончание табл. 10.1

Наименование	Обозна- чение	Единица измерения	Значения
Удельный расход электроэнергии	<i>ω</i> кот	кВт · ч/Гкал	24,47
Себестоимость тепла	S_{omn}	руб/Гкал	143,06
в т.ч. топливная составляющая	S_{mon}	17	96,18
Показатели работы энер	ргохозяйст	ва предприятия	
Годовой расход топлива до ОТМ после ОТМ	В	т у.т./год	8080,86 7852,47
Годовая экономия топлива	ΔB	т у.т./год %	228,39 2,91
Годовое потребление электроэнергии	W	тыс. кВт·ч/год	10793,65
Годовое потребление тепла	Q	Гкал/год	24352,78
Годовое суммарное потребление ТЭР	$B_{ ext{ iny T3p}}$	т у.т./год	9180,09
Годовая потребность в сжатом воздухе	$V_{_{\mathrm{CB}}}$	тыс.м ³ /год	4500
Общая численность персонала энергохозяйства	Y _{9x}	чел.	125
Энергозатраты на производство продукции	3,	тыс. руб./год	10922,1
Удельные энергозатраты на производство продукции	3,	тыс. руб./шт.	1,214
Энерговооруженность труда	$\Theta_{\mathtt{BT}}$	т у.т./чел	7,34
Электровооруженность труда	Эпвт	тыс.кВт·ч/чел	8,63
Энергоемкость продукции	Эп	т у.т./шт.	1,02
Электроемкость продукции	Элп	кВт∙ч/шт.	1199,3
Теплоемкость продукции	T_{π}	Мкал/шт.	2705,9

В данном разделе рассчитаны основные технико-экономические показатели проекта и представлены в табличной форме.

ЗАКЛЮЧЕНИЕ

В ходе выполнения расчета курсовой работы был приобретен опыт техники расчета по основным вопросам экономики, организации планирования и управления энергетического норматива, были использованы средства вычислительной техники при решении технико-экономических вопросов. Данные расчеты показывают всю энергетическую структуру предприятия и позволяют оценить эффективность использования топливных и энергетических ресурсов предприятия, что является главным вопросом в стремлении экономии топливных и энергетических ресурсов не только предприятия, но и государства.

В курсовой работе были рассчитаны следующие показатели:

потребность предприятия в топливе, тепле, электроэнергии и сжатом воздухе;

$$B = 9180,09$$
 т у.т./год;
 $Q = 24352,78$ Гкал/год;
 $W = 10793,65$ тыс.кВт×ч/год;
 $V_{CB} = 4500$ тыс.м³/год.

– результаты внедрения организационно-технических мероприятий. По результатам расчетов можно судить о целесообразности и экономической эффективности этих мероприятий. Так благодаря мероприятию, направленному на снижение топлива в технологических установках, удалось снизить расход на следующую величину:

$$\Delta B_{mex} = 222,21$$
 ту.т./год.

А благодаря мероприятиям, направленным на снижение топлива в энергетических установках, удалось снизить расход на следующую величину:

$$\Delta B_{\mathcal{H}} = 6.18$$
 ту.т./год.

- себестоимость единицы отпускаемой теплоты, а так же топливную составляющую:

$$S_{omn}$$
 = 143,06 руб/Гкал; S_{mon} = 96,18 руб/Гкал.

- Удельные энергозатраты на производство продукции:

$$\bar{s}_{3} = 1,214$$
 тыс.руб/шт.

– подведены итоги в виде технико-экономических показателей проекта в виде таблицы. В данной таблице приведены как все основные технико-экономические показатели, так и дополнительные показатели.

Актуальность данных расчетов в том, что они проводятся на всех без исключения предприятиях энергетики и являются неотъемлемой частью политики государства.

ЛИТЕРАТУРА

- 1. Организация производства и управление предприятием : учеб.-метод. пособие по одноим. дисциплине для студентов специальностей 1-43 01 05 «Промышленная теплоэнергетика» и 1-43 01 07 «Техническая эксплуатация энергооборудования организаций» днев. и заоч.форм обучения / Г. А. Прокопчик, О. А. Полозова. Гомель : ГГТУ им. П. О. Сухого, 2014. 50 с.
- 2. О ценах на природный газ. Постановление Министерства антимонопольного регулирования и торговли Республики Беларусь от 20.01.2022 г. № 9. [Электронный ресурс] Национальный правовой Интернет-портал Республики Беларусь. Режим доступа: http:// pravo.by.
- 3. Решение Брестского облисполкома № 130 от 10.03.2021. «О регулировании тарифов на коммунальные услуги» [Электронный ресурс] «УП Брестводоканал». Режим доступа: http://www.bvod.by.
- 4. Декларация об уровне тарифов на электрическую энергию, отпускаемую республиканскими унитарными предприятиями электроэнергетики ГПО "Белэнерго" для юридических лиц и индивидуальных предпринимателей (зарегистрирована Министерством антимонопольного регулирования и торговли Республики Беларусь, приказом от 28.01.2022 №18. [Электронный ресурс] РУП «Брестэнерго» филиал «Энергосбыт» Режим доступа: http://www.brestenergo.by.
- 5. Инструкция о порядке определения тарифных ставок и должностных окладов работников коммерческих организаций и индивидуальных предпринимателей. Утверждено Постановлением Министерства труда и социальной защиты Республики Беларусь от 02.03.2015 № 16. [Электронный ресурс] Национальный правовой Интернет-портал Республики Беларусь. Режим доступа: http:// pravo. by.
- 6. Указ Президента Республики Беларусь от 1 марта 2010 г. № 110 «О внесении изменений и дополнений в некоторые указы Президента Республики Беларусь по вопросам обязательного страхования от несчастных случаев на производстве и профессиональных заболеваний». [Электронный ресурс] . Режим доступа: http:// bgs.by.
- 7. Постановление Министерства экономики Республики Беларусь от 30.09.2011 №161. «Об установлении нормативных сроков службы основных средств и признании утратившими силу некоторых постановлений Министерства экономики Республики Беларусь». (Текст с изменениями и дополнениями на декабрь 2013 года) [Электронный ресурс].— Законодательство Беларуси.— Режим доступа:http//www.pravo.newsby.org