EE 150L Signals and Systems Lab

Lab2 System Analysis in Time Domain

Student Id: 2021533025

Name: 王柯皓

1. About system response

- a) Describe the characteristics of zero-input responses and zero-state response briefly. What is the difference between the initial conditions of the two responses?
- b) Consider a linear system whose zero-input response $y_{zi}(t) = (4e^{-t} 3e^{-2t})u(t)$ and the system full response $y(t) = (3e^{-t} 2e^{-2t} + te^{-t})u(t)$, what is the zero-state response of the system?
- a) For zero-input responses there's no input to the system, and only the initial state of the system acts on the system. For zero-state responses, the initial state is zero, and only the input acts on the system.

b) since
$$y(t) = y_{zi}(t) + y_{zs}(t)$$

We have known $y_{zi}(t)$ and $y(t)$

then $y_{zs}(t) = y(t) - y_{zi}(t)$

$$= (3e^{-t} - 2e^{-2t} + te^{-t}) u(t) - (4e^{-t} - 3e^{-2t}) u(t)$$

$$= (e^{-2t} - e^{-t} + te^{-t}) u(t)$$

So the zero-state response of the system

is $y_{zs}(t) = (e^{-2t} - e^{-t} + te^{-t}) u(t)$

- 2. Convolve the following two signals and record the result as y(n).
 - a) Please describe the convolution process in detail (both formulas and schematic are accepted).
 - b) What is the relationship between the length of y(n) and the length of x(n) and h(n)?

a) Substitution: t becomes $\tau \rightarrow f1$ (τ), $f2(\tau)$;

Inversion translation: from f2 (τ) inversion \rightarrow f2 ($-\tau$) right shift t \rightarrow f2 (t- τ);

Product: $f1(\tau)$ $f2(t-\tau)$;

Integration : τ is the integral from $-\infty$ to ∞ of the product term

b) The length of y[n] = the length of x[n] + the length of h[n] - 1