

# IIT Madras ONLINE DEGREE

#### Real numbers

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 1

# Beyond rationals

- Rational numbers are dense
  - Between any two rationals we can find another one
- Is every point on the number line a rational number?



- Square root of m,  $\sqrt{m}$ , is r such that  $r \cdot r = m$
- Perfect squares  $1, 4, 9, 16, 25, \dots, 256, \dots$
- Square roots  $1, 2, 3, 4, 5, \dots, 16, \dots$
- What about integers that are not perfect squares?



# Beyond rationals . . .

- $\sqrt{2}$  cannot be written as  $\frac{p}{q}$
- Yet we can draw a line of length  $\sqrt{2}$ 
  - Diagonal of a square whose sides have length 1
- $\sqrt{2}$  is irrational
- Real numbers:  $\mathbb{R}$  all rational and irrational numbers
- Like rationals, real numbers are dense
  - If r < r', then  $\frac{(r+r')}{2}$  lies between r and r'



### Beyond reals

- Some well known irrational numbers
  - $\pi = 3.1415927...$
  - e = 2.7182818...
- Can we stop with real numbers?
  - What about  $\sqrt{-1}$
  - For any real number r,  $r^2$  must be positive law of signs for multiplication
- $\sqrt{-1}$  is a complex number
- Fortunately we don't need to worry about them!

# Summary

- Real numbers extend rational numbers
- Typical irrational numbers square roots of integers that are not perfect squares
- Real numbers are dense, like rationals
- Every natural number is an integer
- Every integer is a rational number
- Every rational number is a real number
- Complex numbers extend real numbers, but we won't discuss them