Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 23

Виконав студент <u>ІП-13 Недельчев Євген Олександрович</u> (шифр, прізвище, ім'я, по батькові)

Перевірила Вечерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 23

23. Написати рекурсивну функцію для обчислення суми цифр та кількості цифр натурального числа А.

Постановка задачі

Задане натуральне число А. Розробити рекурсивний алгоритм для обчислення суми цифр та кількості цифр числа А.

Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Натуральне число А	Цілий	A	Вхідні дані
Кількість цифр у числі А	Цілий	amount	Результат
Сума цифр числа А	Цілий	sum	Результат

Таким чином математичне формулювання задачі зводиться до реалізації двох рекурсивних функцій. Результатом роботи першої є обчислення кількості цифр у числі А. Результат роботи другої – обчислення суми цифр числа А.

Перша рекурсивна функція приймає один параметр: amountofdigits(int A), де A — число, кількість цифр у якому обчислює функція. Якщо число A при діленні націло на 10 не дорівнює 0, то функція повертає значення 1 + amountofdigits(A / 10). В противному випадку функція повертає 1. Умова виходу з рекурсії: A / 10 == 0.

Друга рекурсивна функція приймає один параметр: sumofdigits(int A), де A — число, сума цифр у якому обчислює функція. Якщо число A при діленні націло на 10 не дорівнює 0, то функція повертає значення A % 10 + sumofdigits(A / 10). В противному випадку функція повертає A % 10. Умова виходу з рекурсії: A / 10 == 0.

```
Розв'язання
```

кінець

```
Крок 1. Визначимо основні дії.
```

Крок 2. Деталізуємо дію знаходження кількості цифр у числі.

Крок 3. Деталізуємо дію знаходження суми цифр у числі.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

```
Псевдокод
Крок 1.
функція amountofdigits(A)
     реалізація рекурсії
все функція
функція sumofdigits(A)
     реалізація рекурсії
все функція
початок
     введення змінної А
     виклик функції amountofdigits(A)
     виклик функції sumofdigits(A)
     виведення результатів
кінець
Крок 2.
функція amountofdigits(A)
     якщо А / 10 != 0
         return 1 + amountofdigits(A / 10)
     інакше
         return 1
все функція
функція sumofdigits(A)
     реалізація рекурсії
все функція
початок
     введення змінної А
     amount := amountofdigits(A)
     виклик функції sumofdigits(A)
     виведення amount, sum
```

Крок 3.

```
функція amountofdigits(A)
     якщо A / 10 != 0
          return 1 + amountofdigits(A / 10)
     інакше
          return 1
все функція
функція sumofdigits(A)
     якщо А / 10 != 0
          return A % 10 + \text{sumofdigits}(A / 10)
     інакше
          return A % 10
все функція
початок
     введення змінної А
     amount := amountofdigits(A)
     sum := sumofdigits(A)
     виведення amount, sum
кінець
```

Блок-схема

Код програми

```
₫ ASD
                                     (Глобальная область)
             #include <iostream>
           □int amountofdigits(int A) {
                  if (A / 10 != 0) return 1 + amountofdigits(A / 10);
                  else return 1;
            □int sumofdigits(int A) {
                  if (A / 10 != 0) return A % 10 + sumofdigits(A / 10);
                  else return A % 10;
           □int main() {
                  std::cout << "Enter your nubmer: ";</pre>
                  int A; std::cin >> A;
                  int amount = amountofdigits(A);
                  int sum = sumofdigits(A);
                  std::cout << "The amount of digits in the number A is: " << amount << std::endl;</pre>
                  std::cout << "The sum of digits in the number A is " << sum << std::endl;</pre>
161 % ▼ 🕜 Проблемы не найдены.
                                                                                     ► Стр: 20 Симв: 2 Табуляция CRLF
```

Тестування алгоритму

Блок	Дія
1	Введення: А = 3456
2	amount = amountofdigits(A)
3	A / 10 != 0 == true
	return 1+amountofdigits(A / 10) // до кроку 2
4	A / 10 != 0 == true
	return 1+amountofdigits(A / 10) // до кроку 3
5	A / 10 != 0 == true
	return 1+amountofdigits(A / 10) // до кроку 4
6	A / 10 != 0 == false
	return 1 // до кроку 5
7	sum = sumofdigits(A)
8	A / 10 != 0 == true
	return A % 10 + sumofdigits(A / 10) //до кр 7
9	A / 10 != 0 == true
	return A % 10 + sumofdigits(A / 10) //до кр 8
10	A / 10 != 0 == true
	return A % 10 + sumofdigits(A / 10) //до кр 9
11	A / 10 != 0 == false
	return A % 10 // до кроку 10
12	Виведення: amount = 4, sum = 18

```
M Консоль отладки Microsoft Visual Studio
Enter your nubmer: 3456
The amount of digits in the number A is: 4
The sum of digits in the number A is: 18
```

Висновки

Під час виконання роботи я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій підпрограм.