

Evaluating species distribution models and making predictions

Damaris Zurell

https://damariszurell.github.io

SDM – model building steps

- What is the potential distribution of the species?
- How certain is this prediction?

- How does the species-environment relationship look like?
- How well is my model supported by data?
- How well does my model predict to independent data?

SDM – model building steps

➤ How does the species-environment relationship look like?

SDM – visualise response

Response surfaces

Purpose: visualise model predictions along two

environmental gradients

SDM – visualise response

Partial response plots

Purpose: abstract model behaviour to 2D

 Approach: plot response curve for each predictor separately while keeping the other predictors at their

mean

SDM – model building steps

- How well is my model supported by data?
- How well does my model predict to independent data?

SDM – model assessment

The Bias-Variance trade-off:

- Bias is caused by simplifying model assumptions
- Variance is caused by fluctuations in the data

SDM – model assessment

Ideally, predictive performance should be validated on independent test data.

SDM – model assessment

Ideally, predictive performance should be validated on independent test data (= external validation).

Typical approaches when independent test data missing:

- Internal validation: only on training data
- Split-sample, e.g. 70% training 30% test
- k-fold cross-validation: (k-1)/k proportion training 1/k proportion test, repeat k times
- k-fold block cross-validation:
 - Spatial blocks, or
 - Environmental blocks

Goodness-of-fit: typically derived from the log-likelihood

Example: explained deviance D²

Log-likelihood:

$$L(\beta) = \ln[l(\beta)] = \sum_{i=1}^{n} (y_i \times \ln[\pi(x_i)] + (1 - y_i) \times \ln[1 - \pi(x_i)])$$

Deviance:

$$D = -2 \times L$$

Explained deviance:

$$D^2 = 1 - \frac{D(model)}{D(Null. model)}$$

Discrimination: in how far can model distinguish between presences and absences?

- Threshold-dependent measures:
 - Sensitivity (true positive rate)
 - Specificity (true negative rate)
 - TSS (true skill statistic)
 - Kappa
- Threshold-independent measures:
 - AUC (area under the receiver operating characteristic curve)

Threshold-dependent measures:

Derived from confusion matrix

Predictions

2		1	0
5	1	а	b
) - -	0	С	d

Predictions

2		1	0
	1	а	b
<u>ש</u>	0	C	d

Threshold-dependent measures:

Derived from confusion matrix

- Actual distribution
- SDM prediction
- True negative
- X True positive
- False positive
- False negative

Threshold-dependent measures:

Derived from confusion matrix

1	
_	
0	

Predictions

	1	0
1	а	b
0	С	d

Measure	Formula	Fair prediction?
Overall accuracy	$\frac{a+d}{n}$	
Sensitivity	$\frac{a}{a+c}$	Sens > 0.75
Specificity	$\frac{d}{b+d}$	Spec > 0.75
Kappa statistic	$\frac{\left(\frac{a+d}{n}\right) - \frac{(a+b)(a+c) + (c+d)(d+b)}{n^2}}{1 - \frac{(a+b)(a+c) + (c+d)(d+b)}{n^2}}$	Kappa > 0.4
TSS	sensitivity + specificity - 1	TSS > 0.5

Threshold-dependent measures:

Need to select a threshold!

Continuous SDM prediction => Presence/Absence prediction

Threshold-dependent measures:

Need to select a threshold!

Table 2. Threshold-determining approaches studied in this paper.

		Table 2. Threshold determining approaches studied in this paper.			
		Code	Approach	Definition	Reference
		Subjective 1 Fixed	approach I threshold approach	Taking a fixed value, usually 0.5, as the threshold	Manel et al. (1999), Bailey et al. (2002)
	→	Šingle ir	approaches ndex-based approaches: na maximization approach	Kappa statistic is maximized	Huntley et al. (1995), Guisan et al. (1998)
		3 OPS	maximization approach	Overall prediction success (OPS) is maximized	Guisan et al. (1998)
	>		ouilding data-only-based approach: alence approach	Taking the prevalence of model-building data as the threshold	Cramer (2003)
			d probability/suitability-based approac age probability/suitability approach	hes: Taking the average predicted probability/ suitability of the model-building data as the threshold	Cramer (2003)
		6 Mid-	point probability/suitability approach	Mid-point between the average probabilities of or suitabilities for the species' presence for occupied and unoccupied sites	Fielding and Haworth (1995)
TSS		Sensitivi	ity and specificity-combined approache tivity-specificity sum maximization	es: The sum of sensitivity and specificity is	Cantor et al. (1999),
100		appro	oach	maximized	Manel et al. (2001)
		8 Sensi	tivity-specificity equality approach	The absolute value of the difference between sensitivity and specificity is minimized	Cantor et al. (1999)
		9 ROC	plot-based approach	The threshold corresponds to the point on ROC curve (sensitivity against 1-specificity) which has the shortest distance to the top-left corner (0,1) in ROC plot	Cantor et al. (1999)
			n and recall-combined approaches: sion-recall break-even point approach	The absolute value of the difference	Shapire et al. (1998)
		11 P-R ₁	plot-based approach	between precision and recall is minimized The threshold corresponds to the point on P-R (Precision-Recall) curve which has the shortest distance to the top right correct	
		12 F ma	ximization approach	shortest distance to the top-right corner (1,1) in P-R plot The index F is maximized. In this study, $\alpha = 0.5$ is used in F, i.e. there is no preference to	Shapire et al. (1998)
				precision and recall	Liu et al. (2005

Threshold-independent measures:

AUC (area under the receiver operating characteristic curve)

Fair prediction?

AUC > 0.7

SDM – model building steps

Joiversitä,

- What is the potential distribution of the species?
- How certain is this prediction?

Species distribution models

SDM predictions

Spatiotemporal predictions:

predict(m1, newdata= bio_fut_df, type="response")

Predicted occurrence probabilities

SDM predictions

Spatiotemporal predictions:

- Interpolation: within sampled environmental space
- Extrapolation: beyond sampled environmental space

Thank you for your interest

Contact:

Damaris Zurell

Ecology & Macroecology

University of Potsdam

https://damariszurell.github.io

Email: damaris.zurell@uni-potsdam.de

