STA6235: spring 2023 Exam 3 (SAS)

Name:	Raymond	Fleming
	~	

Article II. University of West Florida (UWF) Honor Code The University of West Florida's Student Code of Academic Conduct is guided by the following Honor Code: As Argonauts, we act with integrity. We do not lie, cheat, steal or tolerate those who do.

Signed:

Instructions

- Stay calm. Do not panic.
- 2. Submit your report to canvas. It is OK to also email me your report to ramin@uwf.edu.
- 3. It is allowed to use the text and your own notes. You also may use the recorded lectures and notes that I saved at canvas.
- It is allowed to Google for SAS commands. All links used must be listed.

Use alpha=0.05 in all parts unless it is stated to use a specific alpha value.

- 5. It is NOT allowed to share information with another person in this exam.
- 6. A single file is used for your "report". There will be clear and extensive instructions given to you on the exam sheet.
- 7. For each problem below, give the SAS program ("editor") without showing all data, and list the relevant SAS results. The organization of your report is very important. I expect to see for each part (in each problem) that you show: the problem; SAS program; SAS results; discussion of the results. Do not separate these parts. Clarity is very important in the report write-up. Do not have appendices that I must go through. Do not have multiple files.
- 8. Submit the completed exam as ONE file (pdf is preferred; or WORD) to canvas. I will have a folder ready for it then. Submit the report by 11:59 PM CST on Monday (April 24).

data;

input id group \$ distance length rel dist tailbeat;

rel_dist2= sqrt(rel_dist)/length;

tailbeat2=sqrt(tailbeat)/length;

rel_dist3= (rel_dist**.0625)/length;

tailbeat3=(tailbeat**.0625)/length;

datalines;

- 1 A 3.3 2.4 1.4 0.44
- 2 A 3.9 2.3 1.69 0.45
- 3 A 3 2.1 1.43 0.46
- 4 A 3.9 2.5 1.54 0.46
- 5 A 4.1 1.9 2.11 0.47
- 6 A 3.6 1.9 1.86 0.48
- 7 A 2.7 1.4 1.89 0.49
- 8 A 3.7 2.1 1.72 0.49
- 9 A 2.9 2 1.42 0.49
- 10 A 2.5 1.8 1.39 0.5
- 11 A 1.8 2.3 0.78 0.5
- 12 A 3.2 2.2 1.45 0.5
- 13 A 2.5 2.5 1.01 0.51
- 14 A 4.8 2.4 1.98 0.52
- 15 A 3.6 2.2 1.65 0.53
- 16 A 2.7 2 1.38 0.53
- 17 A 3.3 1.9 1.76 0.53
- 18 A 4 2.1 1.89 0.54
- 19 A 1.7 2 0.84 0.54
- 20 A 3.4 2.5 1.38 0.54
- 21 A 3.4 2.2 1.55 0.54
- 22 A 2.7 1.9 1.39 0.54
- 23 A 4.4 2.6 1.72 0.55
- 24 A 3.7 2 1.88 0.55
- 25 A 1.2 1.8 0.68 0.56
- 26 A 4.7 2.2 2.14 0.56
- 27 A 2.6 2 1.33 0.56
- 28 A 4.4 2.2 1.98 0.56
- 29 A 4.5 2.2 1.99 0.56
- 30 A 4.7 1.8 2.54 0.56 31 A 3.7 1.9 1.95 0.57
- 32 A 2.4 2.2 1.11 0.57 33 A 3.6 2.6 1.36 0.57
- 34 A 4.8 2.1 2.32 0.57
- 35 A 4.1 2.3 1.84 0.58
- 36 A 3.3 2 1.61 0.58
- 37 A 2.4 2.2 1.07 0.58
- 38 A 2.7 1.8 1.51 0.58
- 39 A 3.2 2.1 1.57 0.58
- 40 A 2.2 2.1 1.05 0.58
- 41 A 3.3 1.8 1.8 0.58
- 42 A 3.7 2.5 1.46 0.59

- 43 A 1.7 1.9 0.86 0.59
- 44 A 4.7 1.3 3.64 0.59
- 45 A 2.3 1.8 1.28 0.59
- 46 A 4.3 2.2 1.95 0.59
- 47 A 4.1 1.8 2.24 0.59
- 48 A 2.9 1.8 1.57 0.59
- 49 A 1.4 2.1 0.69 0.59
- 50 A 2.3 2.3 1.01 0.59
- 51 A 2.5 1.6 1.56 0.59
- 52 A 1.7 2 0.82 0.59
- 53 A 4 2.3 1.73 0.6
- 54 A 4.4 1.6 2.78 0.6
- 55 A 4.3 2.1 2.06 0.6
- 56 A 4 2.1 1.91 0.61
- 57 A 4 1.8 2.22 0.61
- 58 A 5 2 2.54 0.61
- 59 A 4.9 1.9 2.57 0.61
- 60 A 3.6 2.1 1.7 0.61
- 61 A 4.3 1.2 3.42 0.61
- 62 A 4.2 2.1 2 0.61
- 63 A 3.5 2 1.76 0.64
- 64 A 1.8 2 0.94 0.64
- 65 A 3 1.9 1.57 0.64
- 66 A 4.3 1.7 2.45 0.64
- 67 A 2.4 2 1.18 0.64
- 68 A 2.2 2 1.1 0.65
- 69 A 3.3 2 1.65 0.65
- 70 A 2.7 1.8 1.46 0.65
- 71 A 3 1.9 1.56 0.65
- 72 A 3.5 1.7 2.01 0.65
- 73 A 3.7 2.2 1.66 0.65
- 74 A 3.5 1.9 1.82 0.65
- 75 A 3.8 1.7 2.23 0.67
- 76 A 4.4 1.9 2.27 0.67
- 77 A 3.7 1.9 1.93 0.67
- 78 A 1.3 1.9 0.71 0.68
- 79 A 3.9 2 1.94 0.68
- 80 A 2.5 2 1.24 0.68
- 81 A 4.8 1.9 2.52 0.68
- 82 A 3.1 1.9 1.61 0.68
- 83 A 2.7 1.9 1.39 0.68
- 84 A 4 1.7 2.3 0.7
- 85 A 3.8 2.1 1.82 0.7
- 86 A 2.4 1.7 1.4 0.71
- 87 A 3 1.6 1.83 0.71
- 88 A 4.3 2.1 2.09 0.71
- 89 A 3.1 2.4 1.29 0.73
- 90 A 2.4 2.1 1.12 0.73
- 91 A 2.5 2 1.28 0.75

- 92 A 3.2 1.4 2.2 0.75
- 93 A 3.5 1.9 1.9 0.75
- 94 A 4.5 2 2.24 0.75
- 95 A 4.8 2.6 1.89 0.75
- 96 A 3.6 1.6 2.3 0.75
- 97 A 2.7 2.2 1.23 0.75
- 98 A 2.7 2.3 1.18 0.77
- 99 A 3.3 2.2 1.5 0.79
- 100 A 1.9 2.4 0.81 0.79
- 101 A 2.3 2.4 0.95 0.79
- 102 A 2.6 1.9 1.39 0.83
- 103 A 4.8 2.1 2.28 0.83
- 104 A 3 1.7 1.8 0.86
- 105 A 4.5 2 2.28 0.86
- 106 A 4 2.4 1.68 0.86
- 107 A 2.1 2.3 0.89 0.86
- 108 A 2 1.9 1.05 0.88
- 109 A 4.5 1.8 2.44 0.91
- 110 A 4 2.4 1.65 0.91
- 111 A 2.4 2.5 0.94 0.94
- 112 A 2.5 2.3 1.09 0.94
- 113 A 4.3 2.7 1.63 1
- 114 A 2.6 2.4 1.11 1
- 115 A 3 2 1.5 1.2
- 116 B 2.3 2.4 0.95 0.45
- 117 B 4 2.6 1.55 0.45
- 118 B 4.3 2.5 1.68 0.46
- 119 B 4.3 2.2 1.97 0.46
- 120 B 3.6 2 1.76 0.47
- 121 B 4.4 2.1 2.12 0.48
- 122 B 3.5 1.9 1.84 0.51
- 123 B 5 2 2.54 0.51
- 124 B 4.7 1.8 2.54 0.52
- 125 B 4.6 2.3 2.01 0.52
- 126 B 3.7 1.8 2.09 0.52
- 127 B 4.5 1.7 2.58 0.54
- 128 B 4.5 2.1 2.15 0.54 129 B 2.8 2.2 1.29 0.55
- 130 B 2.9 2.1 1.39 0.55
- 131 B 2.4 1.9 1.24 0.56
- 132 B 3.5 2.3 1.55 0.56
- 133 B 3.9 1.8 2.2 0.56
- 134 B 2.3 2.3 1 0.56
- 135 B 1.4 1.9 0.76 0.56
- 136 B 4.3 1.8 2.38 0.56
- 137 B 2.6 2 1.28 0.56
- 138 B 4.1 2.3 1.76 0.57
- 139 B 4.5 1.9 2.34 0.57
- 140 B 1.9 2.1 0.91 0.57

```
141 B 2.6 2 1.34 0.57
142 B 4.1 2.1 1.94 0.57
143 B 1.5 2.3 0.68 0.58
144 B 2.5 1.7 1.42 0.58
145 B 2.5 2.4 1.08 0.58
146 B 3 2 1.52 0.59
147 B 2.4 2 1.19 0.59
148 B 2.1 2.1 0.97 0.59
149 B 2.1 1.8 1.21 0.59
150 B 2.7 2 1.35 0.59
;
```

/* part A */

proc reg; model distance=tailbeat /cli p; where group eq 'A';run; /* staring group */
proc reg; model distance=tailbeat /cli p; where group eq 'B';run; /* interrupted eye contact group */

The REG Procedure Model: FullEyeContact Dependent Variable: distance Number of Observations Read 115 Number of Observations Used 115

	Α	nalysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.22585	0.22585	0.26	0.6089
Error	113	96.94597	0.85793		
Corrected Total	114	97.17183			

Root MSE	0.92624	R-Square	0.0023
Dependent Mean	3.32435	Adj R-Sq	-0.0065
Coeff Var	27.86244		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.54141	0.43178	8.20	<.0001
tailbeat	1	-0.33502	0.65295	-0.51	0.6089

The REG Procedure Model: FullEyeContact Dependent Variable: distance

		Outp	ut Statisti	cs		
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% CL	Predict	Residual
1	3.3	3.3940	0.1609	1.5315	5.2565	-0.0940
2	3.9	3.3907	0.1554	1.5299	5.2514	0.5093
3	3.0	3.3873	0.1500	1.5283	5.2463	-0.3873
4	3.9	3.3873	0.1500	1.5283	5.2463	0.5127
5	4.1	3.3840	0.1448	1.5266	5.2413	0.7160
6	3.6	3.3806	0.1396	1.5248	5.2364	0.2194
7	2.7	3.3773	0.1345	1.5229	5.2316	-0.6773
8	3.7	3.3773	0.1345	1.5229	5.2316	0.3227
9	2.9	3.3773	0.1345	1.5229	5.2316	-0.4773
10	2.5	3.3739	0.1296	1.5210	5.2268	-0.8739
11	1.8	3.3739	0.1296	1.5210	5.2268	-1.5739
12	3.2	3.3739	0.1296	1.5210	5.2268	-0.1739
13	2.5	3.3706	0.1248	1.5189	5.2222	-0.8706
14	4.8	3.3672	0.1201	1.5168	5.2176	1.4328
15	3.6	3.3639	0.1157	1.5145	5.2132	0.2361
16	2.7	3.3639	0.1157	1.5145	5.2132	-0.6639
17	3.3	3.3639	0.1157	1.5145	5.2132	-0.0639
18	4.0	3.3605	0.1115	1.5122	5.2088	0.6395
19	1.7	3.3605	0.1115	1.5122	5.2088	-1.6605
20	3.4	3.3605	0.1115	1.5122	5.2088	0.0395
21	3.4	3.3605	0.1115	1.5122	5.2088	0.0395
22	2.7	3.3605	0.1115	1.5122	5.2088	-0.6605
23	4.4	3.3572	0.1075	1.5098	5.2045	1.0428
24	3.7	3.3572	0.1075	1.5098	5.2045	0.3428
25	1.2	3.3538	0.1037	1.5073	5.2003	-2.1538
26	4.7	3.3538	0.1037	1.5073	5.2003	1.3462
27	2.6	3.3538	0.1037	1.5073	5.2003	-0.7538
28	4.4	3.3538	0.1037	1.5073	5.2003	1.0462
29	4.5	3.3538	0.1037	1.5073	5.2003	1.1462

Sum of Residuals	0
Sum of Squared Residuals	96.94597
Predicted Residual SS (PRESS)	100.09438

For the full, uninterrupted eye contact group, the coefficient of determination (R^2) was found to be 0.002, with the adjusted version found to be -0.0065. The intercept estimate for this model is 3.54 with a standard error of .432. This indicates that at zero tailbeat, the model would predict a distance of 3.54, with a 95% likelihood that the distance somewhere between 2.69 and 4.39 assuming this is a normal distribution. The t-test shows that the intercept is significant at p = less than 0.0001. This indicates that there is sufficient evidence to suggest that the intercept is not zero.

The slope of the model was found to be -0.33502 with a standard error of 0.65295, indicating that there is a 95% likelihood that the true slope is between -1.615 and .945. In the case that the slope is truly negative, this would indicate that tailbeat frequency decreases as distance increases. However, in this case a 95% confidence interval includes zero, therefore there is not sufficient evidence to indicate that tailbeat frequency decreases with distance. The t-test shows that the slope is not significant at p=.6089, which is greater than the cutoff of 0.05 for alpha=0.05. This indicates that there is not sufficient evidence to suggest that the slope is not zero.

The overall model was not found to be significant at alpha=0.05 with a p-value of 0.6089. The root mean square error was found to be 0.92624 which is a mean square error of 0.8579. PRESS was found to be 100.09438. Given that the coefficient of determination is near zero, and that this model is not significant would indicate that this model is a poor fit for the data.

There is either a better model which could be found, or it is possible that distance from diver and tailbeat are in no way correlated. PRESS is not high enough to be of great concern, but given the other fit indicators it can likely be much lower with a better model (assuming there is a better model in this case).

The REG Procedure Model: InterruptedEyeContact Dependent Variable: distance

Number of Observations Read 35 Number of Observations Used 35

	Α	nalysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	8.12265	8.12265	9.63	0.0039
Error	33	27.83735	0.84356		
Corrected Total	34	35.96000			

Root MSE	0.91845	R-Square	0.2259
Dependent Mean	3.30000	Adj R-Sq	0.2024
Coeff Var	27.83191		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	9.36206	1.95973	4.78	<.0001
tailbeat	1	-11.17283	3.60057	-3.10	0.0039

The REG Procedure Model: InterruptedEyeContact Dependent Variable: distance

		Outp	ut Statisti	cs		
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% CL	Predict	Residual
1	2.3	4.3343	0.3677	2.3215	6.3471	-2.0343
2	4.0	4.3343	0.3677	2.3215	6.3471	-0.3343
3	4.3	4.2226	0.3354	2.2333	6.2119	0.0774
4	4.3	4.2226	0.3354	2.2333	6.2119	0.0774
5	3.6	4.1108	0.3039	2.1426	6.0791	-0.5108
6	4.4	3.9991	0.2736	2.0493	5.9489	0.4009
7	3.5	3.6639	0.1946	1.7538	5.5740	-0.1639
8	5.0	3.6639	0.1946	1.7538	5.5740	1.3361
9	4.7	3.5522	0.1752	1.6499	5.4545	1.1478
10	4.6	3.5522	0.1752	1.6499	5.4545	1.0478
11	3.7	3.5522	0.1752	1.6499	5.4545	0.1478
12	4.5	3.3287	0.1555	1.4335	5.2239	1.1713
13	4.5	3.3287	0.1555	1.4335	5.2239	1.1713
14	2.8	3.2170	0.1575	1.3211	5.1129	-0.4170
15	2.9	3.2170	0.1575	1.3211	5.1129	-0.3170
16	2.4	3.1053	0.1675	1.2059	5.0047	-0.7053
17	3.5	3.1053	0.1675	1.2059	5.0047	0.3947
18	3.9	3.1053	0.1675	1.2059	5.0047	0.7947
19	2.3	3.1053	0.1675	1.2059	5.0047	-0.8053
20	1.4	3.1053	0.1675	1.2059	5.0047	-1.7053
21	4.3	3.1053	0.1675	1.2059	5.0047	1.1947
22	2.6	3.1053	0.1675	1.2059	5.0047	-0.5053
23	4.1	2.9935	0.1840	1.0878	4.8993	1.1065
24	4.5	2.9935	0.1840	1.0878	4.8993	1.5065
25	1.9	2.9935	0.1840	1.0878	4.8993	-1.0935
26	2.6	2.9935	0.1840	1.0878	4.8993	-0.3935
27	4.1	2.9935	0.1840	1.0878	4.8993	1.1065
28	1.5	2.8818	0.2056	0.9670	4.7967	-1.3818
29	2.5	2.8818	0.2056	0.9670	4.7967	-0.3818

Sum of Residuals	0
Sum of Squared Residuals	27.83735
Predicted Residual SS (PRESS)	31.62756

For the interrupted eye contact group, the coefficient of determination (R^2) was found to be 0.2259, with the adjusted version found to be 0.2024 The intercept estimate for this model is 9.362 with a standard error of 1.95973. This indicates that at zero tailbeat, the model would predict a distance of 9.362, with a 95% likelihood that the distance somewhere between 5.521 and 13.203 assuming this is a normal distribution. The t-test on the intercept was found to be significant at p = less than 0.0001. This indicates that there is sufficient evidence to suggest that the intercept is not zero.

The slope of the model was found to be -11.17283 with a standard error of 3.600, indicating that there is a 95% likelihood that the true slope is between -18.229 and -4.117. This would indicate that there is a high likelihood that tailbeat frequency decreases with distance, but the overall range of how much it decreases is quite large. The t-test on the slope was found to be significant at p=0.0039. This indicates that there is sufficient evidence to suggest that the slope is not zero.

The overall model was found to be significant at alpha=0.05 with a p-value of 0.0039. The root mean square error was found to be 0.91845 which is a mean square error of 0.84355. PRESS was found to be 31.628. This model is a much better fit than the model found for the uninterrupted eye contact group. However, given the lower R^2 value, it is likely that a transform will allow for a better model. The quantile-quantile plot appears to indicate this as well.

/* part B data unchanged from part A*/

proc reg; FullEyeContactTransform1: model rel_dist2=tailbeat2 /cli p; where group eq 'A';run; proc reg; InterruptedEyeContactTransform1: model rel_dist2=tailbeat2 /cli p; where group eq 'B';run;

			del: Fu		onta	edure ctTransf e: rel_di				
	Number of Observations Read							5		
		Nun	ber of	Observ	atio	ns Used	1 11	5		
			An	alysis o	of Va	riance				
				Sum o		Mean Square		/alue	P	r > F
Mod	del		1	2.05389		2.05389	1	118.06		0001
Erro	or		113	1.96579		0.01740				
Cor	rected T	otal	114	4.0196	88					
	Root	MSE		0.13	190	R-Sqi	uare	0.5	110	
	Deper	ndent	Mean	0.64	453	Adj R	-Sq	0.50	066	
	Coeff Var			20.46	380					
			Pa	rameter	Est	imates				
Variable DF			rameter stimate		ndard Error	t Value		Pr>	· t	
In	tercept	1	-0.	12708	0	.07207	-1	-1.76		806
ta	tailbeat2 1 1.9		92457	0	.17712	10	.87	<.00	01	

0

1.96579

2.10364

Sum of Residuals

Sum of Squared Residuals

Predicted Residual SS (PRESS)

For the full, uninterrupted eye contact group when transformed with rel_dist2=sqrt(rel_dist)/length and tailbeat2=sqrt(tailbeat)/length, the coefficient of determination (R²) was found to be 0.5110, with the adjusted version found to be .5066. The intercept estimate for this model is -.12708 with a standard error of .07207. This indicates that at zero tailbeat, the model would predict a distance of -.12708, with a 95% likelihood that the distance somewhere between -.268 and .0142 assuming this is a normal distribution. The intercept was not found to be significant at alpha = 0.05 with a p-value of 0.0806. This indicates that there is not sufficient evidence to suggest that the intercept is not zero.

The slope of the model was found to be 1.92457 with a standard error of 0.17712, indicating that there is a 95% likelihood that the true slope is between 1.577 and 2.272. This indicates that as tailbeat frequency increases, the distance also increases. The t-test of the slope was found to be significant with a p-value of less than 0.0001 indicating that there is evidence to suggest that the slope is not zero.

The overall model was found to be significant at alpha=0.05 with a p-value of less than 0.0001. The root mean square error was found to be 0.13190 which is a mean square error of 0.0174. PRESS was found to be 2.10364.

This is a much better fitting model than that found in part a. However, the transform can likely be adjusted to provide a better fit.

The REG Procedure Model: InterruptedEyeContactTransform1 Dependent Variable: rel_dist2

Number of Observations Read	35
Number of Observations Used	35

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	0.25394	0.25394	17.65	0.0002		
Error	33	0.47470	0.01438				
Corrected Total	34	0.72864					

Root MSE	0.11994	R-Square	0.3485
Dependent Mean	0.61703	Adj R-Sq	0.3288
Coeff Var	19.43773		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-0.06633	0.16390	-0.40	0.6883		
tailbeat2	1	1.89563	0.45117	4.20	0.0002		

Sum of Residuals	0
Sum of Squared Residuals	0.47470
Predicted Residual SS (PRESS)	0.53108

For the interrupted eye contact group when transformed with rel_dist2=sqrt(rel_dist)/length and tailbeat2=sqrt(tailbeat)/length, the coefficient of determination (R²) was found to be 0.3485, with the adjusted version found to be 0.3288 The intercept estimate for this model is -0.06633 with a standard error of 0.16390. This indicates that at zero tailbeat, the model would predict a distance of -0.06633, with a 95% likelihood that the distance somewhere between -.388 and 0.255 assuming this is a normal distribution. The t-test on the intercept indicates that there is not sufficient evidence to suggest that the true intercept is not zero. The p-value was 0.6883 which is greater than the 0.05 cutoff for alpha=0.05.

The slope of the model was found to be 1.89563 with a standard error of 0.45117, indicating that there is a 95% likelihood that the true slope is between 1.011 and 2.780. This indicates that tailbeat frequency likely increases with distance. The t-test on the slope indicates that there is sufficient evidence to suggest that the true slope is not zero. The p-value is 0.0002 which is less than the 0.05 cutoff for alpha=0.05.

The overall model was found to be significant at alpha=0.05 with a p-value of 0.0002. The root mean square error was found to be 0.11994 which is a mean square error of 0.01439. PRESS was found to be 0.53108. This model is a much better fit than the model found for the interrupted eye group without the data transform.

/* part c data unchanged from part A*/

proc reg; FullEyeContactTransform2: model rel_dist3=tailbeat3 /cli p; where group eq 'A';run; proc reg; InterruptedEyeContactTransform2: model rel_dist3=tailbeat3 /cli p; where group eq 'B';run;

		D	epende	ent Var	iable	e: rel_di	st3			
		Num	ber of (Observ	atio	ns Read	1 1	115		
		Num	ber of (Observ	atio	ns Used	1 1	115		
				lysis o	_					
Source				um of uares		Mea Squa		F Va	lue	Pr > F
Model			1 0.	80544		0.8054	14	5570	.61	<.0001
Error		11	13 0.	01634	0.0	0001445	59			
Correct	ed Tot	al 1	14 0.	0.82178						
	Root	MSE		0.012	202	R-Squ	are	0.9	801	
	Depe	ndent	Mean	0.516	513	Adj R	Sq	0.9	799	
	Coeff	f Var		2.329	975					
			Para	meter	Esti	mates				
Vari	iable	DF	Paran Esti	neter mate	Sta	ndard Error	t V	/alue	Pr	> t
Inte	rcept	1	-0.0	3700	0.	00750		4.94	<.0	0001
tailt	eat3	1	1.1	3595	0.	01522	7	4.64	<.0	0001

Sum of Squared Residuals

Predicted Residual SS (PRESS)

0.01634

0.01713

A transformation was developed by first transforming rel_dist increasing the value of the demoninator of the exponent until there was little change in the model, then the same process was repeated to transform tailbeat. This gave a better result than independently transforming either variable.

For the full, uninterrupted eye contact group when transformed with rel_dist3= $(rel_dist**.0625)/length$; and tailbeat3=(tailbeat**.0625)/length;, the coefficient of determination (R²) was found to be 0.9801, with the adjusted version found to be 0.9799. The intercept estimate for this model is -0.03700 with a standard error of .00750. This indicates that at zero tailbeat, the model would predict a distance of -0.03700, with a 95% likelihood that the distance somewhere between -0.052 and -0.022 assuming this is a normal distribution. The intercept was found to be significant at alpha = 0.05 with a p-value of less than 0.0001. This indicates that there is sufficient evidence to suggest that the intercept is not zero.

The slope of the model was found to be 1.13595 with a standard error of 0.01522, indicating that there is a 95% likelihood that the true slope is between 1.106 and 1.166. This indicates that as tailbeat frequency increases, the distance also increases. The t-test of the slope was found to be significant with a p-value of less than 0.0001 indicating that there is evidence to suggest that the slope is not zero.

The overall model was found to be significant at alpha=0.05 with a p-value of less than 0.0001. The root mean square error was found to be 0.01202 which is a mean square error of 0.0001. PRESS was found to be .01713.

This is a much better fit model than found in parts a or b. However, it is possible that a transform somewhere between this one $(1/2^4)$ and the square root version in Part B may be better for prediction. While this is a single regressor, it is possible that this transformation has generated an overfit of this dataset, which would make it a possibly poor predictor for other datasets, even if it models this dataset well.

The REG Procedure Model: InterruptedEyeContactTransform2 Dependent Variable: rel_dist3

Number of Observations Read	35
Number of Observations Used	35

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	0.11500	0.11500	771.80	<.0001		
Error	33	0.00492	0.00014901				
Corrected Total	34	0.11992					

Root MSE	0.01221	R-Square	0.9590
Dependent Mean	0.50266	Adj R-Sq	0.9578
Coeff Var	2.42846		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-0.02527	0.01911	-1.32	0.1953		
tailbeat3	1	1.12149	0.04037	27.78	<.0001		

Sum of Residuals	0
Sum of Squared Residuals	0.00492
Predicted Residual SS (PRESS)	0.00554

For the interrupted eye contact group when transformed with rel_dist3= (rel_dist**.0625)/length; and tailbeat3=(tailbeat**.0625)/length;, the coefficient of determination (R²) was found to be 0.9590 with the adjusted version found to be 0.9578. The intercept estimate for this model is -.02527 with a standard error of .01911. This indicates that at zero tailbeat, the model would predict a distance of -0.0257, with a 95% likelihood that the distance somewhere between -.0627 and 0.012 assuming this is a normal distribution. The intercept was found to be not significant at alpha = 0.05 with a p-value of 0.1953. This indicates that there is not sufficient evidence to suggest that the intercept is not zero.

The slope of the model was found to be 1.12149 with a standard error of 0.04037, indicating that there is a 95% likelihood that the true slope is between 1.042 and 1.201. This indicates that as tailbeat frequency increases, the distance also increases. The t-test of the slope was found to be significant with a p-value of less than 0.0001 indicating that there is evidence to suggest that the slope is not zero.

The overall model was found to be significant at alpha=0.05 with a p-value of less than 0.0001. The root mean square error was found to be 0.01221 which is a mean square error of 0.0001. PRESS was found to be .00554.

This is a much better fit model than found in parts a or b. However, it is possible that a transform somewhere between this one $(1/2^4)$ and the square root version in Part B may be better for prediction. While this is a single regressor, it is possible that this transformation has generated an overfit of this dataset, which would make it a possibly poor predictor for other datasets, even if it models this dataset well.

```
data:
input obs y x1-x10;
 y=pounds of steam used monthly
 x1=pounds of fatty acid in storage per month
 x2=pounds of crude glycerine made
 x3= average wind velocity (miles/hour)
 x4= calendar days per month
 x5= operating days per month
 x6= days below 32F
 x7= average atmospheric temperature
 x8= (average wind velocity)**2
 x9=number of startups;
 x10=(average wind velocity)**3
*/
datalines;
1 10.98 5.20 0.61 7.4 31 20 22 35.3 54.8 4 33.428
2 11.13 5.12 0.64 8.0 29 20 25 29.7 64.0 5 40.960
3 12.51 6.19 0.78 7.4 31 23 17 30.8 54.8 4 42.744
4 8.40 3.89 0.49 7.5 30 20 22 58.8 56.3 4 27.587
5 9.27 6.28 0.84 5.5 31 21 0 61.4 30.3 5 25.452
6 8.73 5.76 0.74 8.9 30 22 0 71.3 79.2 4 58.608
7 6.36 3.45 0.42 4.1 31 11 0 74.4 16.8 2 7.056
8 8.50 6.57 0.87 4.1 31 23 0 76.7 16.8 5 14.616
9 7.82 5.69 0.75 4.1 30 21 0 70.7 16.8 4 12.600
```

10 9.14 6.14 0.76 4.5 31 20 0 57.5 20.3 5 15.428 11 8.24 4.84 0.65 10.3 30 20 11 46.4 106.1 4 68.965 12 12.19 4.88 0.62 6.9 31 21 12 28.9 47.6 4 29.512 13 11.88 6.03 0.79 6.6 31 21 25 28.1 43.6 5 34.444 14 9.57 4.55 0.60 7.3 28 19 18 39.1 53.3 5 31.980 15 10.94 5.71 0.70 8.1 31 23 5 46.8 65.6 4 45.920 16 9.58 5.67 0.74 8.4 30 20 7 48.5 70.6 4 52.244 17 10.09 6.72 0.85 6.1 31 22 0 59.3 37.2 6 31.620 18 8.11 4.95 0.67 4.9 30 22 0 70.0 24.0 4 16.080 19 6.83 4.62 0.45 4.6 31 11 0 70.0 21.2 3 9.540 20 8.88 6.60 0.95 3.7 31 23 0 74.5 13.7 4 13.015 21 7.68 5.01 0.64 4.7 30 20 0 72.1 22.1 4 14.144 22 8.47 5.68 0.75 5.3 31 21 1 58.1 28.1 6 21.075 23 8.86 5.28 0.70 6.2 30 20 14 44.6 38.4 4 26.880

/* part 1 */

proc reg; model y=x1-x10/influence; output out=cooksDData cookd=cookd; run; /* obs 11 has very

high x3,x8,x10 */

proc print data=cooksDData;

Sum of Residuals	0
Sum of Squared Residuals	3.72046
Predicted Residual SS (PRESS)	21.23980

Obs	obs	у	x1	x2	х3	х4	х5	х6	х7	x8	х9	x10	cookd
1	1	10.98	5.20	0.61	7.4	31	20	22	35.3	54.8	4	33.428	0.00959
2	2	11.13	5.12	0.64	8.0	29	20	25	29.7	64.0	5	40.960	0.08143
3	3	12.51	6.19	0.78	7.4	31	23	17	30.8	54.8	4	42.744	0.00182
4	4	8.40	3.89	0.49	7.5	30	20	22	58.8	56.3	4	27.587	0.00532
5	5	9.27	6.28	0.84	5.5	31	21	0	61.4	30.3	5	25.452	0.00037
6	6	8.73	5.76	0.74	8.9	30	22	0	71.3	79.2	4	58.608	0.11246
7	7	6.36	3.45	0.42	4.1	31	11	0	74.4	16.8	2	7.056	0.76319
8	8	8.50	6.57	0.87	4.1	31	23	0	76.7	16.8	5	14.616	0.00672
9	9	7.82	5.69	0.75	4.1	30	21	0	70.7	16.8	4	12.600	0.01825
10	10	9.14	6.14	0.76	4.5	31	20	0	57.5	20.3	5	15.428	0.00364
11	11	8.24	4.84	0.65	10.3	30	20	11	46.4	106.1	4	68.965	1.73420
12	12	12.19	4.88	0.62	6.9	31	21	12	28.9	47.6	4	29.512	0.33530
13	13	11.88	6.03	0.79	6.6	31	21	25	28.1	43.6	5	34.444	0.00535
14	14	9.57	4.55	0.60	7.3	28	19	18	39.1	53.3	5	31.980	0.12534
15	15	10.94	5.71	0.70	8.1	31	23	5	46.8	65.6	4	45.920	0.00010
16	16	9.58	5.67	0.74	8.4	30	20	7	48.5	70.6	4	52.244	0.00941
17	17	10.09	6.72	0.85	6.1	31	22	0	59.3	37.2	6	31.620	0.03714
18	18	8.11	4.95	0.67	4.9	30	22	0	70.0	24.0	4	16.080	0.00291
19	19	6.83	4.62	0.45	4.6	31	11	0	70.0	21.2	3	9.540	0.07405
20	20	8.88	6.60	0.95	3.7	31	23	0	74.5	13.7	4	13.015	0.37552
21	21	7.68	5.01	0.64	4.7	30	20	0	72.1	22.1	4	14.144	0.00101
22	22	8.47	5.68	0.75	5.3	31	21	1	58.1	28.1	6	21.075	0.12557
23	23	8.86	5.28	0.70	6.2	30	20	14	44.6	38.4	4	26.880	0.17790

 h_{ii} cutoff: > 2p/n = 2*11/23 = 0.95652

 $|DFFITS_i| \text{ cutoff:} > 2 \text{ sqrt}(p/n) = 2*\text{sqrt}(11/23) = 1.38313$

 $|DFBETAS_{j(i)}|$ cutoff: > 2/sqrt(n) = 2/sqrt(23) = 0.41703

COVRAT < 1-3p/n = 1-3*11/23 = -0.434783 COVRAT > 1+3p/n =1=3*11/23 = 2.434783

Note: from the textbook on page 219, the lower bound is only appropriate if n > 3p, in this case 23 < 33 so the lower bound will not be used.

	The REG Procedure Model: MODEL1 Dependent Variable: y															
							Outpu	ut Statistic	s							
Hat Diag Cov DFBETAS																
Obs	Residual	RStudent	Н	Ratio	DFFITS	Intercept	x1	x2	х3	x4	х5	x6	х7	x8	x 9	x10
1	-0.2123	-0.4494	0.3278	3.1716	-0.3139	0.1173	-0.1302	0.0462	-0.0284	-0.0862	-0.0186	-0.0780	-0.0269	-0.0654	0.0658	0.0894
2	0.5421	1.2583	0.3723	0.9451	0.9691	0.5277	0.2952	-0.2799	-0.3106	-0.4814	0.0308	0.2981	-0.0765	0.2035	0.2171	0.1242
3	0.0715	0.1609	0.4150	4.3377	0.1355	0.0190	0.0339	-0.0548	-0.0302	0.0010	0.0562	0.0375	-0.0173	-0.0340	-0.0379	0.0591
4	-0.0326	-0.1210	0.7856	11.9698	-0.2317	0.1204	0.0281	-0.0360	-0.0732	-0.0716	-0.0048	-0.0750	-0.1319	0.0076	-0.0104	0.0647
5	-0.0394	-0.0840	0.3478	3.9648	-0.0613	0.0296	0.0217	-0.0445	-0.0433	-0.0115	0.0409	0.0228	-0.0023	0.0181	0.0074	0.0268
6	0.3657	0.9876	0.5587	2.3178	1.1111	-0.0244	0.1121	-0.1975	0.1499	-0.1224	0.1192	0.1792	0.6024	-0.4527	-0.0889	0.3263
7	0.4730	1.8504	0.7466	0.5215	3.1766	-0.0843	-1.5458	0.3661	-0.3353	0.9523	-0.5247	0.3723	0.1787	-0.7427	0.1036	1.0122
8	0.1722	0.3663	0.3384	3.4448	0.2619	-0.0199	0.0821	-0.0672	-0.0907	0.0228	0.0646	0.1056	0.1038	0.0839	0.0539	0.0135
9	-0.3137	-0.6599	0.3052	2.4455	-0.4374	-0.2951	-0.1517	0.1756	0.2115	0.2393	-0.1964	-0.0220	0.0611	-0.1215	0.0729	-0.0822
10	-0.1432	-0.2950	0.2980	3.4014	-0.1922	-0.0460	-0.0850	0.0610	0.0754	0.0176	-0.0202	0.0567	0.0897	-0.1040	-0.0483	0.0233
11	-0.3792	-2.0066	0.8558	0.5840	-4.8875	-0.3513	0.6994	-0.1961	2.2556	-0.7925	0.1003	0.2747	0.8648	-2.9868	-1.1646	0.0667
12	0.6005	1.8011	0.5744	0.3565	2.0924	-0.3132	-0.4934	0.5116	0.3961	0.4372	0.1850	-1.3600	-1.5309	0.3005	-0.4524	-0.7323
13	0.0680	0.1869	0.6078	6.4128	0.2327	-0.0239	-0.0505	-0.0268	-0.0648	0.0784	0.0026	0.1588	0.0460	-0.0681	0.0759	0.1266
14	0.3246	0.9303	0.6117	2.9151	1.1676	0.6278	-0.0498	0.2479	0.2285	-0.8155	-0.3136	-0.2849	-0.2790	0.0055	-0.0002	-0.2611
15	0.0199	0.0427	0.3608	4.0666	0.0321	-0.0051	0.0097	-0.0070	0.0048	0.0028	0.0123	-0.0141	-0.0083	0.0006	-0.0105	-0.0050
16	-0.2113	-0.4466	0.3262	3.1718	-0.3108	-0.0187	0.0445	-0.1259	-0.1421	0.0796	0.1535	0.0815	0.0091	0.1140	0.1229	0.0265
17	0.3630	0.8131	0.3752	2.1933	0.6301	-0.2015	0.0549	0.0033	0.1747	0.1011	-0.1453	-0.0593	0.1376	-0.1783	0.2699	-0.0019
18	-0.1023	-0.2226	0.3727	3.9514	-0.1716	-0.0470	0.0412	0.0474	0.0298	0.0222	-0.1138	0.0094	-0.0004	0.0469	-0.0091	-0.0655
19	-0.1588	-0.5322	0.7300	7.2927	-0.8751	-0.0453	-0.4928	0.1720	-0.0702	0.1182	0.2981	0.0682	-0.0317	-0.1436	0.1373	0.2024
20	0.4085	1.3861	0.6984	1.4695	2.1090	-0.3067	-0.2752	1.2296	0.3442	-0.0159	-0.7101	-0.1402	-0.0382	0.7002	-0.9843	-1.0077
21	-0.0885	-0.1759	0.2487	3.3610	-0.1012	-0.0458	-0.0120	0.0538	0.0324	0.0315	-0.0638	-0.0072	-0.0106	0.0146	-0.0117	-0.0418
22	-0.4315	-1.1357	0.5231	1.6128	-1.1894	0.3186	0.5471	-0.0157	0.1602	-0.5607	-0.0659	0.1081	0.0462	0.1056	-0.9713	-0.2655
23	-1.2961	-3.8875	0.2198	0.0002	-2.0636	-0.1540	0.5701	-1.0410	-1.0996	0.5796	0.7632	0.1683	0.2173	0.8979	1.0778	0.3743

There are no hat diagonals (h_{ii}) greater than the suggested cutoff of greater than 2p/n (0.95652). The highest is for observation 11 at 0.8558. |DFFITS| has a calculated cutoff of greater than 1.38313, notable observations for DFFITS are 7, 11, 12, 20, 23 all at above 1.38313. COVRAT has a calculated cutoff of greater than 2.434783, notable observations for COVRAT are 1, 3, 4, 5, 8, 9, 10, 13, 14, 15, 16, 18, 19, 21. However, due to the small sample size COVRAT is less useful than it otherwise would be. R-student indicates a questionable observation at 11 with -2.0066, but the cutoff being 2 this is extremely close and not concerning. However, observation 23 is 3.8875 which would be an extreme outlier. Cook's D indicates only observation 11 is large compared to the other values at 1.734. Observation 7 is slightly high at 0.763.

proc rsquare adjrsq mse cp; model y=x1-x10;run;

Of the observations, 11 is the most likely candidate for removal. With observation 11,MSE is 0.310, CP is 11.00, R^2 is 0.938 and PRESS is 21.240. Without observation 11, MSE is 0.24759, CP is 11.00, R^2 is 0.9536, and PRESS is 11.468.

On looking at observation 11, it appears to be the wind speed making the observation appear to have leverage and influence. However, since X3 is average wind velocity, X8 is X3², and X10 is X3³, intuitively these would hold more leverage since there are 3 variables reporting the same metric in different formats. Its almost certain that these 3 will be found to be multicolinear and therefore will not be in the final model together, so without a non-statistical reason to do so, observation 11 will not be removed from the dataset. Furthermore, no other observations need removal from this dataset.

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 23 Number of Observations Used 23

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	10	56.18481	5.61848	18.12	<.0001					
Error	12	3.72046	0.31004							
Corrected Total	22	59.90526								

Root MSE	0.55681	R-Square	0.9379
Dependent Mean	9.31130	Adj R-Sq	0.8861
Coeff Var	5.97994		

		Para	meter Estin	nates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	-0.85758	7.34348	-0.12	0.9090	0
x1	1	0.88875	0.58383	1.52	0.1538	17.39576
x2	1	-2.85220	5.46655	-0.52	0.6113	36.58293
х3	1	1.06891	0.93474	1.14	0.2751	203.54313
х4	1	0.19613	0.20487	0.96	0.3573	1.84823
х5	1	0.18529	0.09514	1.95	0.0752	6.28608
x6	1	0.00047413	0.03168	0.01	0.9883	6.38823
х7	1	-0.07462	0.01678	-4.45	0.0008	5.56417
х8	1	-0.07922	0.05789	-1.37	0.1963	137.62823
х9	1	-0.35651	0.23593	-1.51	0.1566	3.02878
x10	1	-0.00409	0.09196	-0.04	0.9652	162.05539

	Collinearity Diagnostics														
		Condition		Proportion of Variation											
Number	Eigenvalue	Index	Intercept	x1	x2	х3	x4	x5	х6	х7	x8	х9	x10		
1	9.87094	1.00000	0.00000251	0.00001303	0.00000888	0.00000362	0.00000347	0.00003601	0.00046060	0.00012930	0.00001496	0.00012424	0.00001271		
2	0.76548	3.59099	0.00000480	0.00004887	0.00003691	0.00000789	0.00000791	0.00005099	0.06593	0.00305	0.00020799	0.00020600	0.00012325		
3	0.26348	6.12080	0.00001454	0.00005375	0.00003547	0.00004822	0.00002110	0.00011078	0.11697	0.00013122	0.00157	0.00128	0.00159		
4	0.06504	12.31944	0.00020282	0.00165	0.00200	0.00015877	0.00023617	0.00240	0.02291	0.08492	0.00082565	0.02753	0.00090748		
5	0.01633	24.58326	0.00001216	0.00523	0.00778	0.00054303	0.00001719	0.00857	0.04639	0.00119	0.00171	0.51647	0.00275		
6	0.01017	31.14699	0.00429	0.00513	0.00162	0.00191	0.00901	0.02806	0.23059	0.44279	0.00129	0.02995	0.00102		
7	0.00624	39.77217	0.00014758	0.02176	0.00446	0.00175	0.00006961	0.37457	0.18896	0.14027	0.00340	0.02945	0.01782		
8	0.00097906	100.40965	0.01146	0.30010	0.33726	0.03308	0.00370	0.12630	0.08019	0.21064	0.27684	0.00374	0.07969		
9	0.00091939	103.61682	0.01406	0.46727	0.01205	0.00589	0.00149	0.00206	0.02629	0.01657	0.61399	0.03626	0.39081		
10	0.00028320	186.69571	0.01485	0.00444	0.31011	0.60619	0.35944	0.31315	0.22004	0.00947	0.04452	0.35500	0.37816		
11	0.00013749	267.94387	0.95494	0.19431	0.32464	0.35042	0.62601	0.14469	0.00127	0.09082	0.05562	0.00000228	0.12712		

The VIF output indicates possible multicolinearity between X3, X8, and X10, and X2. Of these, X2 is 35.58 which is much closer to the cutoff of 20 than X3 at 203.54, X8 at 137.628, and X10 at 162.055. Its possible that dropping one of the other 3 will bring X2 into normal range.

The condition index indicates possible multicolinearity on rows 8,9,10, and 11.

For row 8, this would be between X1 = .30 and X2 = .337. However, this is a low proportion of variation and does not likely indicate colinearity.

For row 9, X1=.467 and X8=.614 may be colinear. X8 is a high proportion of variation. X10 is 0.391. While X1 and X10 are below 0.5, at least one is likely colinear with X8.

For row 10, X3=.60619, X4=0.35944, X5=0.31315, X9=0.35500, X10=0.37816. This would indicate that X4, X5, X9, and/or X10 is likely colinear with X3. X5 has a lower proportion of variation so is less likely than the other 3 candidates.

For row 11, intercept=0.95494, x4=0.62601 are colinear.

Combining the results of the VIF and colinearity diagnostics output, X3, X8, X10, and possibly X2 should not be in a model together. X4 appears to be colinear with the intercept and could create a model with a better fit, but worse prediction power. Ideally, leaving X4 out will likely lead to a better model.

proc reg; model y=x1 x2 x3 x4 x5 x6 x7 x9 / collin vif;run;

					M	REG Pro odel: MO endent Va	DE	L1				
			Nur	nber	of (Observat	ion	s Read	2	3		
			Nur	nber	of (Observat	ion	s Used	2	3		
				Α	na	lysis of V	ari	ance				
	Sourc	ource			5	Sum of Squares	5	Mean Square	F	Value	Pr > F	
	Model			8	5	5.44997	6	.93125		21.78	<.0001	
	Error			14		4.45529	0	.31823				
	Corre	cted T	otal	22	5	9.90526						
			nden	t Mea	n	0.56412 9.31130		R-Squa Adj R-S		0.925		
		Coeff	Var			6.05847						
				P	ага	meter Es	tin	nates				
Vari	able	DF		amete stima		Standar Erre		t Value	е	Pr > t	Varian Inflati	
Inte	rcept	1	3	3.0321	4	6.6118	32	0.4	6	0.6536		(
x1		1	1	1.1477	6	0.5600)7	2.0	5	0.0597	15.596	27
x2		1	-5	.8995	6	3.8802	26	-1.5	2	0.1507	17.957	29
х3		1	-0	0.0985	i1	0.0975	4	-1.0	1	0.3297	2.159	33
х4		1	().1889	9	0.2066	67	0.9	1	0.3760	1.832	43
х5		1	().2287	8	0.0765	9	2.9	9	0.0098	3.968	79
х6		1	(0.0038	32	0.0267	71	0.1	4	0.8883	4.425	31
х7		1	-(0.0826	8	0.0156	55	-5.2	8	0.0001	4.715	23
x9		1	-(.2595	0	0.2030	0	-1.2	8	0.2219	2.184	57

	Collinearity Diagnostics												
		Condition		Proportion of Variation									
Number	Eigenvalue	Index	Intercept	x1	x2	x 3	x4	х5	x 6	х7	х9		
1	8.19987	1.00000	0.00000467	0.00002141	0.00002667	0.00047832	0.00000515	0.00008344	0.00090068	0.00023022	0.00025334		
2	0.66027	3.52405	0.00000141	0.00002552	0.00003775	0.00119	0.00000225	0.00001558	0.16328	0.00338	0.00003886		
3	0.06113	11.58228	0.00024376	0.00217	0.00479	0.06713	0.00021868	0.00410	0.01209	0.08930	0.05185		
4	0.04851	13.00114	0.00005953	0.00000771	0.00002395	0.48644	0.00008055	0.00065073	0.28375	0.06345	0.00029490		
5	0.01542	23.05872	0.00001046	0.00717	0.01826	0.00773	0.00003573	0.02405	0.01273	0.00788	0.78148		
6	0.00907	30.07395	0.00628	0.01141	0.00210	0.03500	0.01090	0.15353	0.14323	0.36349	0.00538		
7	0.00465	41.98534	0.00498	0.04431	0.04395	0.26076	0.00572	0.58313	0.26267	0.27811	0.00262		
8	0.00091888	94.46544	0.02141	0.74762	0.84574	0.00603	0.00032575	0.23138	0.05461	0.10051	0.00809		
9	0.00016500	222.92449	0.96701	0.18726	0.08507	0.13524	0.98270	0.00307	0.06674	0.09366	0.15000		

Removing X8 and X10 then rerunning the colinearity diagnostics brought the VIF below 20 for all regressors. Making this adjustment also made the colinearity between the intercept and X4 much clearer, the proportion of variation is now 0.96701 for the intercept and 0.98270 for X4 on row 9. This would indicate that X4 should not be used in the selected models, outside of the full model.

/* part 3 */
proc rsquare adjrsq mse cp;
model y=x1-x10;run;

The RSQUARE Procedure Model: MODEL1 Dependent Variable: y R-Square Selection Method										
		Number o	f Observati	ons Read	23					
		Number o	f Observati	ons Used	23					
Number in		Adjusted	0/->		Mariables in Maria					
Model	R-Square	R-Square	C(p)	MSE	Variables in Model					
1	0.7044	0.6903	38.1127	0.84319	x7					
1	0.3765	0.3468	101.4665	1.77853	x6					
1	0.2834	0.2492	119.4679	2.04430	x5					
1	0.2090	0.1713	133.8388	2.25647	х3					
1	0.2084	0.1707	133.9454	2.25804	x10					
1	0.1448	0.1041	146.2341	2.43947	x8					
1	0.1415	0.1006	146.8799	2.44900	x1					
1	0.1397	0.0987	147.2307	2.45418	х9					
1	0.1020	0.0593	154.5072	2.56161	x2					
1	0.0086	0386	172.5513	2.82801	х4					
2	0.8642	0.8506	9.2386	0.40675	x1 x7					
2	0.8468	0.8315	12.5990	0.45884	x5 x7					
2	0.8447	0.8292	13.0006	0.46507	x2 x7					
2	0.7615	0.7376	29.0856	0.71441	x4 x7					
2	0.7399	0.7139	33.2482	0.77894	x7 x9					
2	0.7281	0.7009	35.5459	0.81456	x6 x7					
2	0.7127	0.6840	38.5059	0.86045	x7 x8					
2	0.7100	0.6810	39.0380	0.86869	x3 x7					
2	0.7047	0.6752	40.0553	0.88447	x7 x10					
2	0.6846	0.6530	43.9469	0.94479	x1 x6					
2	0.6130	0.5743	57.7778	1.15920	x2 x6					
2	0.6092	0.5701	58.5055	1.17048	x5 x6					

Candidate Models:

Number in Model	R-Square	Adjusted R-Square	C(p)	MSE	Variables in Model
10	0.9379	0.8861	11.00	0.3100	x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
7	0.9238	0.8883	7.72	0.3042	x1 x2 x5 x6 x7 x8 x9
6	0.9222	0.8931	6.03	0.2912	x1 x2 x5 x7 x9 x10
5	0.9115	0.8854	6.11	0.3120	x1 x2 x5 x7 x9
4	0.8976	0.8749	6.78	0.3407	x1 x2 x5 x7

R-Square(Coefficient of Determination) – Proportion of variation explained by the model. 0.9379 would indicate that 93.79% of variation is explained by the model. This is helpful in determining how well the model can predict observations.

Adjusted R-Square – Similar definition to R-square but in this case, the value is adjusted for the number of regressors in the model (P). This is useful in comparing models with different numbers of regressors, since R-square increases with a larger model. This can lead to a larger model being selected when a smaller model is actually a better fit and so for comparisons, adjusted r-square is the better metric to use.

C(p)(Mallow's Cp) – Measure of bias of a model. If Cp=p (Mallow's Cp = number of predictors) then there model is unbiased. Selecting a model with a very large or very small C(p) would mean selecting a heavily biased model, and so staying near Cp=p is ideal when selecting candidate models.

MSE – Mean Square Error - This is the expected squared error between the model and the true model, which is the sum of the model's variance and the model's bias squared. Generally, the lower the MSE the better the fit of the model. This value is also related to C(p) in that C(p) is a measure of bias, and MSE increases with bias as a squared term.

PRESS – Predicted error sum of squares – this is the sum of squared press residuals, which are prediction errors weighted by 1 - the hat matrix diagonals. If h_{ii} is large, then PRESS residuals will be large, leading to a larger PRESS statistic. Larger PRESS statistics indicate that the model does not fit the data and should not be used to make predictions. This is a useful model selection tool, and generally due to the 1- h_{ii} diagonal, if the PRESS statistic goes high, it goes very high and is easier to identify poor fits than it would be using a linear term.

 R^2_{pred} – Predicted Rsquare, indicates predictive power of the model. This is very similar to normal R^2 but with the sum of squares error term replaced with predicted error sum of squares, leading to a version of R^2 useful in determining if a model will be good for prediction, rather than just model fit.

proc reg; model y=x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 / cli p;run;

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 23 Number of Observations Used 23

	Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F							
Model	10	56.18481	5.61848	18.12	<.0001							
Error	12	3.72046	0.31004									
Corrected Total	22	59.90526										

Root MSE	0.55681	R-Square	0.9379
Dependent Mean	9.31130	Adj R-Sq	0.8861
Coeff Var	5.97994		

	Parameter Estimates											
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t							
Intercept	1	-0.85758	7.34348	-0.12	0.9090							
x1	1	0.88875	0.58383	1.52	0.1538							
x2	1	-2.85220	5.46655	-0.52	0.6113							
х3	1	1.06891	0.93474	1.14	0.2751							
x4	1	0.19613	0.20487	0.96	0.3573							
х5	1	0.18529	0.09514	1.95	0.0752							
x6	1	0.00047413	0.03168	0.01	0.9883							
х7	1	-0.07462	0.01678	-4.45	0.0008							
x8	1	-0.07922	0.05789	-1.37	0.1963							
х9	1	-0.35651	0.23593	-1.51	0.1566							
x10	1	-0.00409	0.09196	-0.04	0.9652							

Sum of Residuals	0
Sum of Squared Residuals	3.72046
Predicted Residual SS (PRESS)	21.23980

proc reg; model y=x1 x2 x5 x6 x7 x8 x9 / cli p;run;

				M	REG Fodel: Nendent	IOD							
	Number of Observations Read 23												
	Number of Observations Used 23												
					lysis of	E V/o	rianaa						
			A	па	-								
Sourc	e		DF	5	Sum o Square	-	Mean Square	F	Value		Pr > F		
Model	ı		7	5	5.3426	5	7.90609		25.99	<	.0001		
Error			15	-	4.5626	1	0.30417						
Corre	cted T	otal	22	5	9.9052	6							
	Root	MSE		0.55152 R-Squa		are 0.923		38					
	Depe	nden	t Mea	n	n 9.31130 Adj R-S		Sq 0.888		83				
	Coef	f Var		5.92312									
			P	ara	meter	Esti	imates						
Varia	able	DF			meter imate	St	andard Error	t V	alue	Pr	> t		
Inter	cept	1		8.5	1278	1	.75164		4.86	0.0	0002		
x1		1		1.3	34901	0	.48898		2.76	0.0	0146		
x2		1		6.6	67357	3	3.59948	-	1.85	0.0	0835		
х5		1		0.2	23185	0	.07351		3.15	0.0	0066		
х6		1	-0.0	009	99063	0	.02569	-	0.04	0.9	9698		
х7		1		0.0	08540	0	.01477	-	5.78	<.(0001		
				-0.00990		0.00634			1.56	0	1393		
x8		1		0.0	00990		0.00634		1.50	U.	1383		

Sum of Residuals	0
Sum of Squared Residuals	4.56261
Predicted Residual SS (PRESS)	13.04195

proc reg; model y=x1 x2 x5 x7 x9 x10 / cli p;run;

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 23 Number of Observations Used 23

Analysis of Variance												
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F							
Model	6	55.24599	9.20766	31.62	<.0001							
Error	16	4.65928	0.29120									
Corrected Total	22	59.90526										

Root MSE	0.53963	R-Square	0.9222
Dependent Mean	9.31130	Adj R-Sq	0.8931
Coeff Var	5.79547		

Parameter Estimates												
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t							
Intercept	1	8.16307	1.23774	6.60	<.0001							
x1	1	1.39218	0.46023	3.02	0.0080							
x2	1	-6.35161	3.49541	-1.82	0.0880							
х5	1	0.22333	0.06994	3.19	0.0057							
х7	1	-0.08457	0.00886	-9.54	<.0001							
x9	1	-0.34854	0.18223	-1.91	0.0739							
x10	1	-0.01312	0.00882	-1.49	0.1562							

Sum of Residuals	0
Sum of Squared Residuals	4.65928
Predicted Residual SS (PRESS)	11.81643

proc reg; model y=x1 x2 x5 x7 x9 / cli p;run;

				Me	odel: I	MOD	edure EL1 iable: y				
		Nui	mber	of (Obser	vatio	ns Rea	d 2	23		
		Nu	mber	of (Obser	vatio	ns Use	d 2	23		
			-	۱nal	lysis c	of Va	riance				
					Sum o	f	Mear	n			
Source	•		DF	S	quare	8	Squar	e F	Valu	ıe	Pr > I
Model			5	54	.6012	3 1	10.9202	5	35.0	00	<.000
Error			17	5	.3040	3	0.3120	0			
Correc	ted To	tal	22	59	.9052	6					
-	Root Deper	nder		an	9.31° 5.998	130	R-Squ Adj R			854	
			F	ara	meter	Esti	imates				
Vari	able	DF			neter mate	Sta	ndard Error	t Va	alue	Pr	> t
Inte	rcept	1		7.7	9390	1.	.25517	6	5.21	<.	0001
x1		1		1.3	5930	0.	47584	2	2.86	0.	0109
x2		1		5.9	5057	3.	60730	-1	1.65	0.	1174
х5		- 1		0.19	9156	0.	.06893	2	2.78	0.	0129
х7		1	١.	0.0	7854	0.	.00816	-9	9.63	<.	0001
x9		- 1	Τ.	0.30	0292	0.	18593	-1	1.63	0.	1217

Sum of Residuals	0
Sum of Squared Residuals	5.30403
Predicted Residual SS (PRESS)	10.91862

		Nur	nber	of (Obser	vatio	ons Rea	d 2	3		
		Nur	nber	of (Obser	vatio	ons Use	d 2	3		
			A	Anal	lysis c	of Va	riance				
Sourc	e		DF		Sum o quare		Mear Square	-	Valu	е	Pr>
Model	I		4	53	.7730	9	13.44327	7	39.4	6	<.000
Error			18	6	.1321	7	0.34068	3			
Corre	cted To	tal	22	59	.9052	6					
	Root	MSE	,		0.583	367	R-Squ	are	re 0.8976		1
	Deper	nden	t Mea	an	9.31	130	Adj R	Sq	0.87	749	
	Coeff	Var			6.26	845					
			F	ага	meter	Est	imates				
Var	iable	DF	1		neter nate	Sta	andard Error	t Va	lue	Pr	> t
Inte	ercept	1		7.4	8915	1	.29694	5	5.77	<.(0001
x1		1		1.2	3527	0	.49082	2.52		0.0)215
x2		1		6.0	6859	3	.76866	-1	1.61	0.1	1247
		1		0.1	7112	0	.07083	2	2.42	0.0	0265
х5		1 -0.07			7544	0	.00829	-6	9.10	<.(0001
x5 x7											
	Sum	of F	Resid	dual	ls					0	
					ls Resid	dua	ls	6.	1321	-	

 $R^2_{pred} = 1$ - PRESS/SS_T

Model	R-Square	R^2_{adj}	C(p)	R ² _{pred}	MSE	PRESS
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10	0.9379	0.8861	11.00	0.6454	0.3100	21.2398
x1 x2 x5 x6 x7 x8 x9	0.9238	0.8883	7.72	0.7823	0.3042	13.0420
x1 x2 x5 x7 x9 x10	0.9222	0.8931	6.03	0.8027	0.2912	11.8164
x1 x2 x5 x7 x9	0.9115	0.8854	6.11	0.8177	0.3120	10.9186
x1 x2 x5 x7	0.8976	0.8749	6.78	0.7947	0.3407	12.2996

Given the regression diagnostics, the best two models are y=x1 x2 x5 x7 x9 x10 and y=x1 x2 x5 x7 x9. These are very close, however y=x1 x2 x5 x7 x9 is the chosen model. Both R^2_{adj} and R^2_{pred} are close enough between the models that they're not likely truly different. Mallow's CP is slightly better on the larger model, and PRESS is slightly better on the smaller model. MSE is slightly better on the larger model. These are too close to choose using the diagnostics variables, but in the case that two models are very similar and one has fewer predictors, the smaller model is the best choice. In this case, that will be y=x1 x2 x5 x7 x9.

proc reg; model y=x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 / selection=stepwise;run;

Summary of Stepwise Selection									
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F	
1	х7		1	0.7044	0.7044	38.1127	50.05	<.0001	
2	x1		2	0.1598	0.8642	9.2386	23.53	<.0001	
3	x5		3	0.0187	0.8829	7.6280	3.03	0.0978	
4	x4		4	0.0225	0.9054	5.2756	4.29	0.0531	
5		x1	3	0.0083	0.8972	4.8703	1.57	0.2262	

Stepwise provided the model y=x1 x4 x5 x7

Method	Model	R-Square	R ² _{adj}	C(p)	R ² _{pred}	MSE	PRESS
Stepwise	x1 x4 x5 x7	0.9054	0.8844	5.27	0.8636	0.3148	8.1699
Selected	x1 x2 x5 x7 x9	0.9115	0.8854	6.11	0.8177	0.3120	10.9186

The generated stepwise model and the selected model are very similar. The differences are that the Mallow's Cp statistic indicates a slight bias on the stepwise model. PRESS is also lower on the stepwise model, which increases R^2_{pred} however, it is also known that X4 is colinear with the intercept which will also increase $R^2_{generally}$, and because R^2_{adj} is nearly identical between these models, the selected model is still the better choice and does not have a colinearity issue.

ytran=log(y)^{1/3} x1tran=x1^{1/3}; x2tran=x2^{1/3}; x4tran=x4^{1/3}; x5tran=x5^{1/3}; x7tran=x7^{1/3}; x9tran=x9^{1/3};

Using these transforms gives the following version of the model:

Method	Model	R-Square	R ² _{adj}	C(p)	R ² _{pred}	MSE	PRESS
Stepwise	x1 x4 x5 x7	0.9313	0.9160	5.99	0.8997	0.0001	0.0026
Selected	x1 x2 x5 x7 x9	0.9387	0.9207	5.94	0.8542	0.0001	0.0038

For comparison, the transformed version was also run using the model generated by the stepwise selection method. The results are similar, but the c(p) statistic and R^2_{pred} are much closer after the transform. For the same reasons stated above, the selected model is the better choice in this case.