Descriptive statistics

```
library(magrittr)
library(ggplot2)
library(gridExtra)
library(ggcorrplot)

source("../R/visualizations.R")
source("../R/feature_definitions.R")

training_set <- read.csv("../preprocessed_training_data.csv", row.names = 1, as.is = TRUE)
outcome <- read.csv("../training_outcomes.csv", row.names = 1)[,1]

stopifnot(row.names(training_set) == row.names(outcome))</pre>
```

Correlations

Plot correlation matrices of missingness indicators against missingness indicators, observed values against observed values, and missingness indicators against observed values.

```
positive_data <- training_set[outcome == "positive", ]
negative_data <- training_set[outcome == "negative", ]

# Missingness indicator correlations
plot_missingness_correlations(training_set, numeric_features, "Missingness indicator correlations")</pre>
```

Warning in cor(miss_data[, features]): the standard deviation is zero

plot_missingness_correlations(positive_data, numeric_features, "Missingness indicator correlations (pos
Warning in cor(miss_data[, features]): the standard deviation is zero

plot_missingness_correlations(negative_data, numeric_features, "Missingness indicator correlations (neg
Warning in cor(miss_data[, features]): the standard deviation is zero

Observed value correlations

plot_observed_correlations(training_set, numeric_features, "Correlations of observed values")

- ## Warning in cor(data[, features], use = "pairwise.complete.obs"): the
- ## standard deviation is zero

plot_observed_correlations(positive_data, numeric_features, "Correlations of observed values (positive-

^{##} Warning in cor(data[, features], use = "pairwise.complete.obs"): the

^{##} standard deviation is zero

plot_observed_correlations(negative_data, numeric_features, "Correlations of observed values (negative-

- ## Warning in cor(data[, features], use = "pairwise.complete.obs"): the
- ## standard deviation is zero

Missingness vs. observed correlations
plot_missingness_vs_observed_correlations(training_set, numeric_features, "Missingness correlations vs.
Warning in cor(data, miss_data, use = "pairwise.complete.obs"): the

standard deviation is zero

plot_missingness_vs_observed_correlations(positive_data, numeric_features, "Missingness correlations vs

^{##} Warning in cor(data, miss_data, use = "pairwise.complete.obs"): the

^{##} standard deviation is zero

plot_missingness_vs_observed_correlations(negative_data, numeric_features, "Missingness correlations vs

^{##} Warning in cor(data, miss_data, use = "pairwise.complete.obs"): the

^{##} standard deviation is zero

Feature value distributions

Next, plot distributions of each feature. Are they normal or linear?

0.75

40 -

20 -

0 -

0.00

0.25

0.50

EncodeH3K4me2.sum

motifDist

EncodeH3K4me3.sum

EncodeH3K4me1.sum

EncodeH3K9ac.sum

EncodeH3K9me3.sum

EncodeH3K36me3.sum

EncodeH3K27ac.sum

EncodeH3K79me2.sum

EncodeH3K27me3.sum

EncodeH4K20me1.sum

RemapOverlapTF

EncodeDNase.sum

RemapOverlapCL

EncodetotalRNA.sum

They are not, and thus it might be worth considering data transformations. In the case of random forest, however, monotone transformations should have no effect.

Categorical level occurrence counts

Print (one-dimensional) contingency tables, i.e. occurrence counts of each level of categorical variables.

```
for (cat_feat in categorical_features) {
  table(training_set[, cat_feat, drop = FALSE], dnn = cat_feat, useNA = "always") %>% as.data.frame %>%
}
```

```
##
     LRT_pred Freq
## 1
             D
                382
## 2
             N
                162
## 3
             U
                  4
## 4
         <NA> 2044
##
     Dst2SplType Freq
        ACCEPTOR 115
## 1
## 2
           DONOR
                   139
## 3
             <NA> 2338
##
        Consequence.x Freq
## 1
           3PRIME_UTR
## 2
           5PRIME_UTR
                          17
## 3
           DOWNSTREAM
                        458
              INTRONIC
                        794
  5
       NON_SYNONYMOUS
                        580
##
## 6 NONCODING_CHANGE
                          13
## 7
          SPLICE_SITE
                          73
## 8
              UPSTREAM
                        635
```

9 <NA> 0

Heatmap of feature missingness against consequence

It is likely that missing values are more or less common in some variables depending on the predicted consequence. This can be visualized by a heatmap:

Non-synonymous variants have much less missingness in certain variables and more in others (as expected).

Compute number of observed missingness patterns

```
missingness_patterns <- training_set[, c(numeric_features, categorical_features)] %>% is.na
unique_missingness_patterns <- missingness_patterns %>% unique
num_missingness_patterns <- unique_missingness_patterns %>% nrow
print(paste(num_missingness_patterns, "out of", 2^length(c(numeric_features, categorical_features)), "p
```

[1] "118 out of 72057594037927936 possible missingness patterns."

```
missingness_pattern_factor <- apply(missingness_patterns, MARGIN = 1, function(x) pasteO(as.integer(x),
rows_per_missingness_pattern <- table(missingness_pattern_factor)</pre>
rows_per_missingness_pattern <- rows_per_missingness_pattern %>% as.data.frame
rows_per_missingness_pattern[order(rows_per_missingness_pattern$Freq, decreasing = TRUE),]
##
        missingness_pattern_factor Freq
##
 85
 ##
##
 151
7
##
 86
##
81
 65
3
 ##
              54
74
 ##
              44
87
 32
##
##
 28
8
##
32
 24
##
12
 21
 ##
19
              21
 ##
4
              19
##
75
 19
##
88
 19
##
71
 18
 ##
              16
##
62
 14
 ##
33
              12
 ##
68
              12
##
96
 12
 ##
17
              11
 ##
              11
 ##
               9
##
 9
##
9
 8
 8
##
              7
##
46
 7
##
77
 25
               6
##
##
 6
 6
##
##
 6
63
##
76
 6
##
26
 5
 ##
56
               5
##
72
 5
##
89
 5
 4
##
13
 4
##
 4
##
57
##
 4
##
 4
4
##
 ##
5
               3
 3
##
11
```

3

3

28 ## 38

```
3
##
41
3
##
51
##
         3
         3
##
93
##
99
 3
3
##
2
##
1
##
2
2
##
20
2
2
##
23
##
35
2
         2
##
42
         2
##
43
2
##
44
2
##
58
##
61
2
2
##
64
 2
##
2
##
105
##
2
##
2
2
##
##
10
         1
##
14
         1
##
15
1
##
16
1
21
##
         1
##
22
         1
##
24
         1
##
27
1
##
29
1
##
30
1
##
31
1
##
34
         1
36
1
##
##
37
         1
##
40
1
##
47
         1
##
49
         1
54
##
         1
 ##
55
         1
##
59
         1
##
60
         1
##
65
         1
##
67
1
##
70
         1
##
73
1
##
78
         1
##
79
1
##
80
111111111111111111110000000011100011100110001000100011100
         1
##
83
         1
##
84
1
##
91
1
## 94
1
```

```
## 97
1
1
1
1
1
1
1
1
1
1
1
1
1
1
```