CS 229br: Advanced Topics in the theory of machine learning

Boaz Barak

Ankur Moitra MIT 18.408

Yamini Bansal Official TF

Dimitris KalimerisUnofficial TF

Gal Kaplun
Unofficial TF

Preetum Nakkiran Unofficial TF

Join slack team and sign in on your devices!

What is learning?

What is deep learning?

God's view:

$$f = \operatorname{argmax}_f \mathbb{E}[\ \ \ \ \ \ \ \ \ \ \]$$

$$f = \operatorname{argmax}_f \mathbb{E}[\ \ \ \ \ \ \ \ \ \ \ \ \ \]$$

$$w \sim W | \operatorname{data}$$

This seminar

- Taste of research results, questions, experiments, and more
- Goal: Get to state of art research:
 - Background and language
 - Reading and reproducing papers
 - Trying out extensions
- Very experimental and "rough around the edges"
- A lot of learning on your own and from each other
- Hope: Very interactive in lectures and on slack

CS 229br: Survey of very recent research directions, emphasis on experiments

MIT 18.408: Deeper coverage of foundations, emphasis on theory

Student expectations

Not set in stone but will include:

- Pre-reading before lectures
- Scribe notes / blog posts (adding proofs and details)

slack

- Some theoretical problem sets.
- Might have you grade each other's work
- Projects self chosen and directed.

Grading: We'll figure out some grade – hope that's not your loss function ©

Rest of today's lecture:

Blitz through classical learning theory

- Special cases, mostly one dimension
- "Proofs by picture"

PATTERNS, PREDICTIONS, AND ACTIONS

A story about machine learning

Moritz Hardt and Benjamin Recht

Part I: Convexity & Optimization

Convexity

- 1. Line between (x, f(x)) and (y, f(y)) above f.
- 2. Tangent line at x (slope f'(x)) below f.
- 3. f''(x) > 0 for all x

CLAIM: f''(x) < 0 implies tangent line at x above f

Proof: $f(x + \delta) = f(x) + \delta f'(x) + \delta^2 f''(x) + O(\delta^3)$ implies f below line

Convexity

- 1. Line between (x, f(x)) and (y, f(y)) above f.
- 2. Tangent line at x (slope f'(x)) below f.
- 3. f''(x) > 0 for all x

CLAIM: If f above (x, f(x)) - (y, f(y)) then exists z with tangent line at z above f

Proof by picture:

Gradient Descent

$$x_{t+1} = x_t - \eta f'(x_t)$$

Dimension d:

 $\chi_t \chi_{t+1}$

$$f'(x) \to \nabla f(x) \in \mathbb{R}^d$$

 $f''(x) \to H_f(x) = \nabla_2 f(x) \in \mathbb{R}^{d \times d}$ (psd)
 $\eta \sim 1/\lambda_d$ drop by $\sim \frac{\lambda_1}{\lambda_d} ||\nabla||^2$

$$f(x_t + \delta) \approx f(x_t) + \delta f'(x_t) + \frac{\delta^2}{2} f''(x_t)$$

$$f(x_{t+1}) \approx f(x_t) - \eta f'(x_t)^2 + \frac{\eta^2 f'(x_t)^2}{2} f''(x_t) = f(x_t) - \eta f'(x_t)^2 (1 - \frac{\eta f''(x_t)}{2})$$

- If $\eta < 2/f''(x_t)$ then make progress
- If $\eta \sim 2/f''(x_t)$ then drop by $\sim \eta f'(x_t)^2$

Stochastic Gradient Descenting: $x_{t+1} = x_t - \eta \hat{f}'(x_t)$ $x_{t+1} = x_t - \eta \hat{f}'(x_t)$ $f(x) = \frac{1}{n} \sum_{i=1}^{n} L_i(x)$ $\hat{f}'(x_t) = L_i'(x) \text{ for } i \sim [n]$

$$x_{t+1} = x_t - \eta \widehat{f}'(x_t)$$

$$\mathbb{E}[\widehat{f}'(x)] = f'(x_t), V[\widehat{f}'(x)] = \sigma^2$$
 Mean Variance σ^2 Independent

Assume
$$\widehat{f}'(x) = f'(x) + N$$

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} L_i(x)$$
$$\widehat{f'}(x_t) = L_i'(x) \text{ for } i \sim [n]$$

 $x_t x_{t+1}$

$$f(x_t + \delta) \approx f(x_t) + \delta f'(x_t) + \frac{\delta^2}{2} f''(x_t)$$

$$f(x_{t+1}) \approx f(x_t) - \eta f'(x_t)^2 \left(1 - \frac{\eta f''(x_t)}{2}\right) + \eta^2 \sigma^2 f''(x_t)$$

- If $\eta < 2/f''(x_t)$ and (*) $\eta \sigma^2 \ll f'(x_t)^2/f''(x)$ then make progress
- If $\eta \sim 2/f''(x_t)$ and (*) then drop by $\sim \eta f'(x_t)^2$

Part II: Generalization

Supervised learning

Distribution (X,Y) over $\mathcal{X} \times \{\pm 1\}$

Distribution
$$(X,Y)$$
 over $\mathcal{X} \times \{\pm 1\}$

$$S = (x_i, y_i)_{i=1..n}$$

Learning Algorithm

Empirical Risk Minimization (ERM):

 $A(S) = \arg\min_{f \in \mathcal{T}} \hat{\mathcal{L}}_S(f)$

$$\mathcal{L}(f) = \Pr[f(X) \neq Y]$$

Population 0-1 loss

$$\hat{\mathcal{L}}_{\mathcal{S}}(f) = \frac{1}{n} \sum_{i=1}^{n} 1_{f(x_i) \neq y_i}$$

Empirical 0-1 loss

Generalization gap: $\mathcal{L}(f) - \hat{\mathcal{L}}_{S}(f)$ for f = A(S)

Bias Variance Tradeoff

 $S = (x_i, y_i)_{i=1..n}$

Learning Algorithm

Empirical Risk Minimization (ERM):

$$A(S) = \arg\min_{f \in \mathcal{F}} \hat{\mathcal{L}}_S(f)$$

Population 0-1 loss
$$\mathcal{L}(f) = \Pr[f(X) \neq Y]$$
 bias importance are $\hat{\mathcal{L}}_S(f) = \frac{1}{n} \sum_{i=1}^n 1_{f(x_i) \neq y_i}$

Assume $\mathcal{F}_K = \{f_1, \dots, f_K\}$, $\hat{\mathcal{L}}(f_i) = \mathcal{L}(f_i) + N(0, 1/n)$

K (log scale)

$$\sim \sqrt{\frac{\log K}{n}}$$

Can prove:

$$\mathsf{GAP} \le O\left(\sqrt{\frac{\log |\mathcal{F}|}{n}}\right)$$

 $\sim (\log K)^{-\alpha}$??

Bias

$$S = (x)$$

Population

Assume

Loss

pirical Risk Minimization (ERM):

$$A(S) = \arg\min_{f \in \mathcal{F}} \hat{\mathcal{L}}_S(f)$$

mp variance ss
$$\hat{\mathcal{L}}_S(f) = \sum_{i=1}^n 1_{f(x_i) \neq y_i}$$

 $\lfloor /n \rangle$

 $\sim (\log K)^{-\alpha}$??

$$\sim \sqrt{\frac{\log K}{n}}$$
?

Can prove:

$$\mathsf{GAP} \le O\left(\sqrt{\frac{\log |\mathcal{F}|}{n}}\right)$$

Generalization bounds

 $\log |\mathcal{F}|$ can be replaced with dimensionality / capacity of \mathcal{F}

Can prove: $GAP \le O\left(\sqrt{\frac{\log |\mathcal{F}|}{n}}\right)$

VC dimension:

 $\max d$ s.t. \mathcal{F} can fit every labels $y \in \{\pm 1\}^d$ on every samples x_1, \dots, x_d

Rademacher complexity:

 $\max d$ s.t. \mathcal{F} can fit random labels $y \sim \{\pm 1\}^d$ on random $x_1, \dots, x_d \sim X$

PAC Bayes:

d = I(A(S); S) where S is training set.

Margin bounds:

 $\max d$ s.t. linear classifier satisfies $\langle w_i, x_i \rangle y_i > ||w_i|| \cdot ||x_i|| / \sqrt{d}$ for correct predictions

General form: If $C(f) \ll n$ then $\hat{\mathcal{L}}(f) - \mathcal{L}(f) \approx 0$

Intuition: Can't "overfit" – if you do well on n samples, must do well on population

Challenge: Many modern deep nets and natural C, $C(f) \gg n$

Hope: Find better C?

Understanding deep learning requires rethinking generalization

Chiyuan Zhang*

Massachusetts Institute of Technology chiyuan@mit.edu Samy Bengio

Google Brain bengio@google.com Moritz Hardt

Google Brain mrtz@google.com

Benjamin Recht[†]

University of California, Berkeley brecht@berkeley.edu Oriol Vinyals

Google DeepMind vinyals@google.com

ICLR 2017

General form: If $C(f) \ll n$ then $\hat{\mathcal{L}}(f) - \mathcal{L}(f) \approx 0$

Intuition: Can't "overfit" – if you do well on n samples, must do well on population

Challenge: Many modern deep nets and natural C, $C(f) \gg n$

Hope: Find better C?

Performance on CIFAR-10

Classifier	Train	Test
Wide ResNet ¹	100%	92%
ResNet 18 ²	100%	87%
Myrtle ³	100%	86%

Performance on noisy CIFAR-10:*

Train	Test
100%	10%
100%	10%
100%	10%

¹ Zagoruyko-Komodakis'16 ² He-Zhang-Ren-Sun'15 ³ Page '19

"Double descent"

Belkin, Hsu, Ma, Mandal, PNAS 2019.

Nakkiran-Kaplun-Bansal-Yang-B-Sutskever, ICLR 2020

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

degree $d = C(\mathcal{F})$

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

Data: $(x_i, f^*(x_i) + N)$ where f^* degree d^* polynomial

Algorithm: SGD to minimize $\sum (f(x_i) - y_i)^2$ where $f \in \mathcal{F}_d$ = degree d polys

Part III: Approximation and Representation

After Fourier Transform

Fourier Transform

$$\int_0^1 |f - g| < \epsilon$$

Every continuous $f: [0,1] \to \mathbb{R}$ can be arbitrarily approximated by g of form

$$g(x) = \sum \alpha_j e^{-2\pi i \beta_j x}$$

i.e., $f \approx \text{linear in } \varphi_1(x), ..., \varphi_N(x) \text{ where } \varphi_j(x) = e^{-2\pi i \beta_j x}$ $\varphi \colon \mathbb{R} \to \mathbb{R}^N \text{ embedding}$

For some natural data, representation φ is "nice" (e.g. sparse, linearly separable,...)

Tasks become simpler after transformation $x \to \varphi(x)$

Xavier Bourret Sicotte, https://xavierbourretsicotte.github.io/Kernel_feature_map.html

Every continuous $f: [0,1] \to \mathbb{R}$ can be arbitrarily approximated by g of form $g(x) = \sum \alpha_i \operatorname{ReLU}(\beta_i x + \gamma_i)$

Proof by picture:

 $g_a(x) = ReLU(x/\delta - a)$

$$g_{a+\delta}(x) = ReLU(x/\delta - a - \delta)$$

$$a \quad a + \delta$$

$$h_a = g_a - g_{a+\delta}$$

$$I_{a,b} = h_a - h_b$$

Every continuous $f: [0,1] \to \mathbb{R}$ can be arbitrarily approximated by g of form $g(x) = \sum \alpha_i \operatorname{ReLU}(\beta_i x + \gamma_i)$

Proof by picture:

$$I_{a,b} = h_a - h_b$$

Higher dimension

 $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

$$J_{(1,0)}(x,y) = I(x)$$

Higher dimension

 $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

$$J_{(1,0)}(x,y) = I(x)$$

Higher dimension

 $r(x) = \max(\langle \alpha, x \rangle + \beta, 0)$, d + 1 parameters

How many ReLU's

Every $f: [0,1]^d \to \mathbb{R}$ can be approximated as sum of $r_{\alpha,\beta}(x) = \max(\langle \alpha, x \rangle + \beta)$

Can discretize \mathbb{R}^{d+1} to $O(1)^d$ points – need at most $O(1)^d = 2^{O(d)}$ ReLUs

(For formal proofs, see Cybenko '89, Hornik '91, Barron '93; MIT 18.408)

THM: For some f's, $2^{c \cdot d}$ ReLU's are necessary

Random $f: [0,1]^d \to \mathbb{R}$

Choose $f(x) \in \{0,1\}$ independently at random for $x \in \{1/4,3/4\}^d$

Extend linearly

LEMMA: For every fixed $g:[0,1]^d \to \mathbb{R}$, $\Pr[\int |f-g| < 0.1] \le 2^{-\epsilon \cdot 2^d}$

THM: For some f's, $2^{c \cdot d}$ ReLU's are necessary

Random $f: [0,1]^d \to \mathbb{R}$

Choose $f(x) \in \{0,1\}$ independently at random for $x \in \{1/4,3/4\}^d$

Extend linearly

LEMMA: For every fixed $g:[0,1]^d \to \mathbb{R}$, $\Pr[\int |f-g| < 0.1] \le 2^{-\epsilon \cdot 2^d}$

LEMMA \Rightarrow THEORM: Need $2^{\epsilon \cdot 2^d}$ distinct g's \Rightarrow need $\approx 2^d$ distinct ReLUs

PROOF OF LEMMA:

For $x \in \{1/4, 3/4\}^d$ let $Z_x = 1$ iff $\int |g(y) - f(y)| dy > 0.2$ over $y \in [-1/4, +1/4]^d + x$

Each Z_x is independent with expectation at least 1/2

$$\Rightarrow \Pr[\frac{1}{2^d} \sum Z_x < 1/4] \le 2^{-0.1 \cdot 2^d} \qquad \qquad \frac{1}{2^d} \sum Z_x \ge 1/4 \Rightarrow \int |g - f| \ge 1/20$$

Bottom line

```
For every* function f: \mathbb{R}^d \to \mathbb{R} many choices of \varphi: \mathbb{R}^d \to \mathbb{R}^N s.t.
                                                      f \approx Linear_f \circ \varphi
```

Want to find φ that is useful for many interesting functions f

useful:

- N is not too big
- Efficiently compute $\varphi(x)$ or $\langle \varphi(x), \varphi(y) \rangle$
- $\langle \varphi(x), \varphi(y) \rangle$ large $\Leftrightarrow x$ and y are "semantically similar"
- For interesting f's, coefficients of $Linear_f$ are structured.

Or f's such that $\psi \circ f$ interesting for some non-linear $\psi : \mathbb{R} \to \mathbb{R}$

Part IV: Kernels

Neural Net Kernel **Definitely Kernel Definitely NN**

p trainedend-to-endfor task athand

φ pretrained with same data

φ pretrained on different data

φ pretrained on synthetic data

φ handcrafted based on neural architectures

 φ handcrafted before 1990s

Kernel methods (intuitively)

Distance measure K(x, x')

```
Input: (x_1, y_1), ..., (x_n, y_n) s.t. f^*(x_i) \approx y_i
```

To approx $f^*(x)$ output y_i for x_i closest to x

or output $\sum \alpha_i y_i$ with α_i depending on $K(x, x_i)$

Hilbert Space

Linear space: v + u, $c \cdot v$

Dot product: $\langle u, v + c \cdot w \rangle = \langle u, v \rangle + c \langle u, w \rangle$, $\langle u, v \rangle = \langle v, u \rangle$, $\langle v, v \rangle \geq 0$

Can solve linear equations of form $\{\langle v_i, x \rangle = b_i \}$ knowing only $\langle v_i, v_j \rangle$

Also do least-square minimization $\min_{x} \sum (\langle v_i, x \rangle - b_i)^2$ knowing only $\langle v_i, v_j \rangle$

DEF: Sym matrix $K \in \mathbb{R}^{n \times n}$ is p.s.d. if $v^T K v \ge 0$ for all $v \in \mathbb{R}^n$ Equivalently $\lambda_1(K), \dots, \lambda_n(K) \ge 0$

CLAIM: K is p.s.d. iff* $u^T K v$ is inner product

PROOF (\Rightarrow): $u^T K v = \psi(u) \cdot \psi(v)$ where $\psi(u_1, ..., u_n) = (\sqrt{\lambda_1} u_1, ..., \sqrt{\lambda_n} u_n)$, expressed in eigenbasis

Kernel Methods

Goal: Solve linear equations, least-square minimization, etc. under φ

Observation: Enough to compute $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$

Let $\hat{x} = \varphi(x)$, given $\{\hat{x}_i, y_i\}_{i=1..n}$ want to find $\hat{w} \in \mathbb{R}^n$ s.t. $\langle \hat{x}_i, \hat{w} \rangle \approx y_i \ \forall i$

can compute $\widehat{w} = \sum \alpha_i \ \widehat{x}_i$ using $K(x_i, x_j)$

To compute prediction on new x using \hat{w} , can compute $\hat{x} = \sum \beta_i \hat{x}_i$ using $K(x, x_i)$