Neural Networks and Backpropagation

Deep Learning 26 September 2024 Profs. Luigi Cinque, Fabio Galasso and Marco Raoul Marini

Backpropagation and Gradient Descent

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z) = (x+y)z$$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want:

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \, \frac{\partial q}{\partial y}$$
Upstream Local gradient gradient

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \, \frac{\partial q}{\partial y}$$
Upstream Local gradient gradient

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backprop Implementation: "Flat" code

Forward pass: Compute output

```
def f(w0, x0, w1, x1, w2):
 50 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)
```

```
w0 2.00
    -0.20
                       -2.00
                       0.20
x0 - 1.00
    0.40
                                         4.00
                                         0.20
w1 - 3.00
    -0.40
                      6.00
                                                            1.00
                                                                           0.73
                       0.20
x1 - 2.00
    -0.60
                                                   s3
w2 - 3.00
    0.20
```

Backward pass: Compute grads

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```


Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x, y):
                                            Need to cache
    ctx.save_for_backward(x, y)
                                            some values for
                                            use in backward
    z = x * y
    return z
 @staticmethod
                                              Upstream
 def backward(ctx, grad_z):
                                              gradient
   x, y = ctx.saved_tensors
   grad_x = y * grad_z # dz/dx * dL/dz
                                             Multiply upstream
    grad_y = x * grad_z # dz/dy * dL/dz
                                             and local gradients
    return grad_x, grad_y
```


So far: backprop with scalars

What about vector-valued functions?

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Backprop with Matrices (or Tensors)

Loss L still a scalar!

dL/dx always has the $[D_x \times M_x]$ "local same shape as x! gradients" $[D_x \times M_x]$ ∂z $[D_7 \times M_7]$ ∂x "Downstream Matrix-vector ∂z gradients" multiply ∂y $[D_v \times M_v]$ $\partial z \partial \Gamma$ **Jacobian** matrices "Upstream gradient" $[D_v \times M_v]$ For each element of z, how For each element of y, how much much does it influence L? does it influence each element of z?

Backprop with Matrices (or Tensors)

Loss L still a scalar!

dL/dx always has the same shape as x!

"Upstream gradient"

For each element of z, how much does it influence L?

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

2 1 3 2]

3 2 1 - 2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

$$[321-1]$$

$$[321-2]$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

$$[-3 \ 4 \ 2]$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: How much

affect $|y_{n,m}|$?

does $x_{n,d}$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

$$[-3 \ 4 \ 2]$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

Q: How much does
$$x_{n,d}$$
 affect $y_{n,m}$?

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

$$[321-1]$$

$[N \times D] [N \times M] [M \times D]$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the

whole row
$$y_{n,\cdot}$$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m}$$

Q: How much does $x_{n,d}$ affect $y_{n,m}$?

 $\mathbf{A}:w_{d,m}$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

By similar logic:

$[N \times D] [N \times M] [M \times D]$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

[D×M] [D×N] [N×M]

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

These formulas are easy to remember: they are the only way to make shapes match up!

Neural Networks and Deep Learning

Neural networks: deeper networks

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

or 3-layer Neural Network:

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$f=Wx$$

(Now) 2-layer Neural Network:
$$f = W_2 \max(0, W_1 x)$$

The function $\max(0, z)$ is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network: $f = W_2 \max(0, W_1 x)$

The function $\max(0,z)$ is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x,x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)

h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
    from numpy.random import randn
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D_{in}), randn(N, D_{out})
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
      v pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
15
      grad_w2 = h.T.dot(grad_y_pred)
      grad_h = grad_y_pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * qrad w1
19
20
      w2 -= 1e-4 * grad w2
```


Gradient and Training

- Only two things need to be implemented to define new layer:
 - forward pass
 - error back propagation
- Watch out for overfitting

Gradient and Training

- Only two things need to be implemented to define new layer:
 - forward pass
 - error back propagation
- Watch out for overfitting

Gradient and Training

- Only two things need to be implemented to define new layer:
 - forward pass
 - error back propagation
- Watch out for overfitting

Summary of Main Ideas in Deep Learning

- Learning of feature extraction (across many layers)
- Efficient and trainable systems by differentiable building blocks
- Composition of deep architectures via non-linear modules
- "End-to-End" training: no differentiation between feature extraction and classification

Thank you

