Books

- [1] Adams, M.D., Sensor Modelling: Design and Data Processing for Autonomous Navigation. World Scientific Series in Robotics and Intelligent Systems. Singapore, World Scientific Publishing, 1999.
- [2] Arkin, R.C., Behavioral Robotics. Cambridge MA, MIT Press, 1998.
- [3] Bar-Shalom, Y., Li, X.-R., Estimation and Tracking: Principles, Techniques, and Software. Norwood, MA, Artech House, 1993.
- [4] Benosman, R., Kang, S. B., *Panoramic Vision: Sensors, Theory, and Applications*, New York, Springer-Verlag, 2001.
- [5] Borenstein, J., Everett, H.R., Feng, L., *Navigating Mobile Robots: Systems and Techniques*. Natick, MA, A.K. Peters, Ltd., 1996.
- [6] Borenstein, J., Everett, H.R., Feng, L., Where Am I? Sensors and Methods for Mobile Robot Positioning. Technical report, Ann Arbor, University of Michigan, 1996. Available at http://www-personal.engin.umich.edu/~johannb/position.htm.
- [7] Bradski, G., Kaehler, A., *Learning OpenCV: Computer Vision with the OpenCV Library*, Sebastopol, CA, O'Reilly Media, Inc., 1st edition, 2008.
- [8] Breipohl, A.M., Probabilistic Systems Analysis: An Introduction to Probabilistic Models, Decisions, and Applications of Random Processes. New York, John Wiley & Sons, 1970.
- [9] Bundy, A. (editor), Artificial Intelligence Techniques: A Comprehensive Catalogue. New York, Springer-Verlag, 1997.
- [10] Canudas de Wit, C., Siciliano, B., and Bastin G. (editors), *Theory of Robot Control*. New York, Spinger, 1996.
- [11] Carroll, R.J., Ruppert, D., *Transformation and Weighting in Regression*. New York, Chapman and Hall, 1988.
- [12] Cox, I.J., Wilfong, G.T. (editors), *Autonomous Robot Vehicles*. New York, Springer-Verlag, 1990.
- [13] Craig, J.J., *Introduction to Robotics: Mechanics and Control.* 2nd edition. Boston, Addison-Wesley, 1989.
- [14] De Silva, C.W., *Control Sensors and Actuators*. Upper Saddle River, NJ, Prentice-Hall, 1989.
- [15] Daniillidis, K., Klette, R., *Imaging Beyond the Pinhole Camera*. New York, Springer, 2006.

[16] Dietrich, C.F., *Uncertainty, Calibration and Probability*. Bristol, UK, Adam Hilger, 1991.

- [17] Draper, N.R., Smith, H., *Applied Regression Analysis*. 3rd edition. New York, John Wiley & Sons, 1988.
- [18] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. New York, Wiley, 2001.
- [19] Duda, R. O., Hart, P.E. *Pattern Classification and Scene Analysis*. New York, John Wiley & Sons, 1973.
- [20] Everett, H.R., Sensors for Mobile Robots: Theory and Applications. New York, Natick, MA, A.K. Peters, Ltd., 1995.
- [21] Faugeras, O., *Three-Dimensional Computer Vision: A Geometric Viewpoint*. Cambridge, MA, MIT Press, 1993.
- [22] Faugeras, O., Luong, Q.T., *The Geometry of Multiple Images*. Cambridge, MA, MIT Press, 2001.
- [23] Floreano, D., Zufferey, J.C., Srinivasan, M.V., Ellington, C., *Flying Insects and Robots*, Springer, 2009.
- [24] Forsyth, D. A., Ponce, J., Computer Vision: A Modern Approach. Upper Saddle River, NJ, Prentice Hall, 2003.
- [25] Genesereth, M.R., Nilsson, N.J., Logical Foundations of Artificial Intelligence. Palo Alto, CA, Morgan Kaufmann, 1987.
- [26] Gonzalez, R., Woods, R., *Digital Image Processing*. 3rd edition. New York, Pearson Prentice Hall, 2008.
- [27] Hammond, J. H., *The Camera Obscura: A Chronicle*. Bristol, UK, Adam Hilger, 1981.
- [28] Haralick, R.M., Shapiro, L.G., *Computer and Robot Vision*, *1*+2. Boston, Addison-Wesley, 1993.
- [29] Hartley, R.I., Zisserman, A. *Multiple View Geometry*. Cambridge, UK, Cambridge University Press, 2004.
- [30] Jones, J., Flynn, A., Mobile Robots, Inspiration to Implementation. Natick, MA, A.K. Peters, Ltd., 1993.
- [31] Kortenkamp, D., Bonasso, R.P., Murphy, R.R. (editors), Artificial Intelligence and Mobile Robots; Case Studies of Successful Robot Systems. Cambridge, MA, AAAI Press / MIT Press, 1998.
- [32] Latombe, J.C., Robot Motion Planning. Norwood, MA, Kluwer Academic, 1991.
- [33] LaValle, S.M. *Planning Algorithms*, Cambridge, UK, Cambridge University Press, 2006.
- [34] Lee, D., *The Map-Building and Exploration Strategies of a Simple Sonar-Equipped Mobile Robot.* Cambridge, UK, Cambridge University Press, 1996.
- [35] Leonard, J.E., Durrant-Whyte, H.F., *Directed Sonar Sensing for Mobile Robot Navigation*. Norwood, MA, Kluwer Academic, 1992.
- [36] Ma, Y., S. Soatto, S., Kosecka, J., Sastry, S., An Invitation to 3-D Vision: From Images to Geometric Models. New York, Springer-Verlag, 2003.
- [37] Manyika, J., Durrant-Whyte, H.F., *Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach*. Palo Alto, CA, Ellis Horwood, 1994.
- [38] Mason, M., *Mechanics of Robotics Manipulation*. Cambridge, MA, MIT Press, 2001.

- [39] Murphy, R.R., Introduction to AI Robotics. Cambridge, MA, MIT Press, 2000.
- [40] Nourbakhsh, I., Interleaving Planning and Execution for Autonomous Robots. Norwood, MA, Kluwer Academic, 1997.
- [41] Papoulis, A. *Probability, Random Variables, and Stochastic Processes*, 4th edition. New York, McGraw-Hill, 2001.
- [42] Raibert, M.H., Legged Robots That Balance. Cambridge, MA, MIT Press, 1986.
- [43] Ritter, G.X., Wilson, J.N., *Handbook of Computer Vision Algorithms in Image Algebra*. Boca Raton, FL, CRC Press, 1996.
- [44] Russell, S., Norvig, P., *Artificial Intelligence: A Modern Approach*. 3rd edition. New York, Prentice Hall International, 2010.
- [45] Schraft, R.D., Schmierer, G., Service Roboter. Natick, MA, A.K. Peters, Ltd, 2000.
- [46] Sciavicco, L., Siciliano, B., Modeling and Control of Robot Manipulators. New York, McGraw-Hill, 1996.
- [47] Siciliano, B., Khatib, O., Springer Handbook of Robotics, Springer, 2008.
- [48] Slama, C.C., *Manual of Photogrammetry*. 4th edition. Falls Church VA, American Society of Photogrammetry, 1980.
- [49] Szeliski, R., Computer Vision: Algorithms and Applications, New York, Springer, 2010.
- [50] Tennekes, H., The Simple Science of Flight: From Insects to Jumbo Jets. Cambridge, MA, MIT Press, 1996.
- [51] Thrun, S., Burgard, W., Fox, D., Probabilistic Robotics. Cambridge, MA, MIT Press, 2005.
- [52] Todd, D.J, Walking Machines: An Introduction to Legged Robots. London, Kogan Page Ltd, 1985.
- [53] Trucco, E., Verri, A., *Introductory Techniques for 3-D Computer Vision*. New York, Prentice Hall, 1998.
- [54] Zufferey, J.C., Bio-inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers, EPFL Press, 2008.

Papers

- [55] Aho, A.V., "Algorithms for finding patterns in strings," in J. van Leeuwen (editor), Handbook of Theoretical Computer Science, Cambridge, MA, MIT Press, 1990, Volume A, chapter 5, 255–300.
- [56] Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A., "Fast and incremental method for loop-closure detection using bags of visual words," *IEEE Transactions on Robotics*, 24(5): 1027–1037, October, 2008.
- [57] Arras, K.O., Castellanos, J.A., Siegwart, R., "Feature multi-hypothesis localization and tracking for mobile robots using geometric constraints," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'2002)*, Washington, DC, May, 2002.
- [58] Arras, K.O., Persson, J., Tomatis, N., Siegwart, R., "Real-time obstacle avoidance for polygonal robots with a reduced dynamic window," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002)*, Washington, DC, May, 2002.

[59] Arras, K.O., Siegwart, R.Y., "Feature extraction and scene interpretation for map navigation and map building," in *Proceedings of SPIE, Mobile Robotics XII*, 1997.

- [60] Arras, K.O., Tomatis, N., "Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision," in *Proceedings of* the Third European Workshop on Advanced Mobile Robots (Eurobot 99), Zurich, September, 1999.
- [61] Astolfi, A., "Exponential stabilization of a mobile robot," in Proceedings of 3rd European Control Conference, Rome, September, 1995.
- [62] Bailey, T., Durrant-Whyte, H., "Simultaneous localization and mapping: Part II," *IEEE Robotics and Automation Magazine*, 108–117, 2006.
- [63] Bailey, T., "Mobile robot localisation and mapping in extensive outdoor environments," Ph.D. thesis, University of Sydney, 2002.
- [64] Baker, S., Nayar, S., "A theory of single-viewpoint catadioptric image formation," *International Journal of Computer Vision* 35, no. 2: 175–196, 1999.
- [65] Barnard, K., Cardei V., Funt, B., "A comparison of computational color constancy algorithms," *IEEE Transactions on Image Processing* 11: 972–984, 2002.
- [66] Barreto, J. P., Araujo, H., "Issues on the geometry of central catadioptric image formation. International Conference on Computer Vision and Pattern Recognition (CVPR), 2001.
- [67] Barreto, J. P., Araujo, H., "Fitting conics to paracatadioptric projection of lines," *Computer Vision and Image Understanding* 101(3): 151–165. March, 2006.
- [68] Barreto, J. P., Araujo, H., "Geometric properties of central catadioptric line images and their application in calibration," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(8): 1237–1333, August 2005.
- [69] Barron, J.L., Fleet, D.J., Beauchemin, S.S., "Performance of optical flow techniques," *International Journal of Computer Vision*, 12: 43–77, 1994.
- [70] Batavia, P., Nourbakhsh, I., "Path planning for the cye robot," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'00), Takamatsu, Japan, November 2000.
- [71] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., "Speeded-up robust features (SURF)," *International Journal on Computer Vision and Image Understanding* 110, no. 3: 346–359, 2008.
- [72] Besl, P., McKay, N., "A method for registration of 3-D shapes," *IEEE Transactions on Pattern Analysis and Machine Intelligence* (PAMI) 14, no. 2: 239–256, February 1992.
- [73] Bicchi, A., Marigo, A., Piccoli, B., "On the reachability of quantized control systems," *IEEE Transactions on Automatic Control*., 4, no. 47: 546–563, 2002.
- [74] Biederman, I., "Recognition-by-components: A theory of human image understanding," *Psychological Review*, 2, no. 94: 115–147, 1987.
- [75] Blackwell, D., "Conditional expectation and unbiased sequential estimation," Annals of Mathematical Statistics 18: 105–110, 1947.
- [76] Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R., "Vision based MAV navigation in unknown and unstructured environments," *IEEE International Conference on Robotics and Automation* (ICRA 2010), Anchorage, Alaska, May 2010.
- [77] Borenstein, J., Koren, Y., "The vector field histogram fast obstacle avoidance for mobile robots." *IEEE Journal of Robotics and Automation* 7: 278–288, 1991.

[78] Borges, G. A., Aldon, M.-J., "Line Extraction in 2D Range Images for Mobile Robotics," *Journal of Intelligent and Robotic Systems* 40: 267–297, 2004.

- [79] Bosse, M., Newman, P., Leonard, J., Teller, S., "Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework," *International Journal of Robotics Research* 23, no. 12: 1113–1139, 2004.
- [80] Bosse, M., Rikoski, R., Leonard, J., Teller, S., "Vanishing points and 3d lines from omnidirectional video," *International Conference on Image Processing*, 2002.
- [81] Brock, O., Khatib, O., "High-speed navigation using the global dynamic window approach," in Proceeding of the IEEE International Conference on Robotics and Automation, Detroit, May 1999.
- [82] Brooks, R., "A robust layered control system for a mobile robot," *IEEE Transactions of Robotics and Automation*, RA-2:14–23, March 1986.
- [83] Brown, H.B., Zeglin, G.Z., "The bow leg hopping robot", in *Proceedings of the IEEE International Conference on Robotics and Automation*, Leuwen, Belgium, May 1998.
- [84] Bruce, J., Balch, T., and Veloso, M., "Fast and inexpensive color image segmentation for interactive robots," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'00), Takamatsu, Japan, 2000.
- [85] Burgard, W., Cremers, A., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S., "Experiences with an interactive museum tour-guide robot," *Artificial Intelligence* 114: 1–53, 2000.
- [86] Burgard, W., Derr, A., Fox, D., Cremers, A., "Integrating Global Position Estimation and Position Tracking for Mobile Robots: The Dynamic Markov Localization Approach," in Proceedings of the 1998 IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS'98), Victoria, Canada, October 1998.
- [87] Burgard, W., Fox, D., Henning, D., "Fast grid-based position tracking for mobile robots," in Proceedings of the 21th German Conference on Artificial Intelligence (K197), Freiburg, Germany, Springer-Verlag, 1997.
- [88] Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S., "sonar mapping of large-scale mobile robot environments using EM," in Proceedings of the International Conference on Machine Learning, Bled, Slovenia, 1999.
- [89] Cabani, C., Mac Lean, W. J., "Implementation of an affine-covariant feature detector in field-programmable gate arrays," in *Proceedings of the International Conference on Computer Vision Systems*, 2007.
- [90] Campion, G., Bastin, G., D'Andréa-Novel, B., "Structural properties and classification of kinematic and dynamic models of wheeled mobile robots." *IEEE Transactions on Robotics and Automation* 12, no. 1: 47–62, 1996.
- [91] Canny, J. F., "A computational approach to edge detection," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 679–698, 1986.
- [92] Canudas de Wit, C., Sordalen, O.J., "Exponential stabilization of mobile robots with nonholonomic constraints." *IEEE Transactions on Robotics and Automation* 37: 1791–1797, 1993.
- [93] Caprari, G., Estier, T., Siegwart, R., "Fascination of down scaling–alice the sugar cube robot." *Journal of Micro-Mechatronics* 1: 177–189, 2002.
- [94] Caprile, B., Torre, V., "Using vanishing points for camera calibration." *International Journal of Computer Vision*. 4: 127–140, 1990.

[95] Castellanos, J.A., Tardos, J.D., Schmidt, G., "Building a global map of the environment of a mobile robot: The importance of correlations," in *Proceedings of the* 1997 *IEEE Conference on Robotics and Automation*, Albuquerque, NM, April 1997.

- [96] Castellanos, J.A., Tardos, J.D., "Laser-based segmentation and localization for a mobile robot," in *Robotics and Manufacturing: Recent Trends in Research and Applications*, volume 6. ASME Press, 1996.
- [97] Censi, A., Carpin, S., "HSM3D: Feature-less global 6DOF scan-matching in the hough/radon domain," *IEEE International Conference on Robotics and Automation* (ICRA), 2009.
- [98] Chen, C.T., Quinn, R.D., "A crash avoidance system based upon the cockroach escape response circuit," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Albuquerque, NM, April 1997.
- [99] Chenavier, F., Crowley, J.L., "Position estimation for a mobile robot using vision and odometry," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Nice, France, May 1992.
- [100] Cheeseman, P., Smith, P. "On the representation and estimation of spatial uncertainty," *International Journal of Robotics* 5: 56–68, 1986.
- [101] Chomat, O., Colin deVerdiere, V., Hall, D., Crowley, J., "Local scale selection for gaussian based description techniques," in *Proceedings of the European Conference* on Computer Vision, Dublin, Ireland, 117–133, 2000.
- [102] Chong, K.S., Kleeman, L., "Accurate odometry and error modelling for a mobile robot," in Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, April 1997.
- [103] Choset, H., Walker, S., Eiamsa-Ard, K., Burdick, J., "Sensor exploration: Incremental construction of the hierarchical generalized voronoi graph." *The International Journal of Robotics Research* 19: 126–148, 2000.
- [104] Collins, A. Ruina, R. Tedrake, M. Wisse, "Efficient bipedal robots based on passive-dynamic walkers," *Science* 307, no. 5712: 1082 1085, 2005.
- [105] Csorba, M. "Simultaneous localisation and map building," Ph.D. thesis, University of Oxford, Oxford, 1997.
- [106] Cox, I.J., Leonard, J.J., "Modeling a dynamic environment using a bayesian multiple hypothesis approach," *Artificial Intelligence* 66: 311–44, 1994.
- [107] Corke, P.I., Strelow, D., Singh, S., "Omnidirectional visual odometry for a planetary rover," *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2004.
- [108] Cummins, M., Newman, P., "FAB-MAP: Probabilistic localization and mapping in the space of appearance," *The International Journal of Robotics Research* 27(6): 647–665, 2008.
- [109] Cummins, M., Newman, P., "Highly scalable appearance-only SLAM FAB-MAP 2.0," *In Robotics Science and Systems (RSS)*, Seattle, USA, June 2009.
- [110] Davison, A.J., "Real-time simultaneous localisation and mapping with a single camera," *International Conference on Computer Vision*, 2003.
- [111] Davison, A.J. "Active search for real-time vision," In International Conference on Computer Vision, 2005.

[112] Davison, A. J., Reid, I., Molton, N., Stasse, O., "MonoSLAM: Real-time single camera SLAM," *IEEE Transactions on Pattern Analysis and Machine Intelligence* 29, no. 6, June, 2007.

- [113] Dellaert, F. "Square root SAM," Proceedings of the Robotics Science and Systems Conference, 2005.
- [114] Dijkstra, E.W. "A note on two problems in connexion with graphs," *Numerische Mathematik* 1: 269–271, 1959.
- [115] Dowlingn, K., Guzikowski, R., Ladd, J., Pangels, H., Singh, S., Whittaker, W.L., "NAVLAB: An autonomous navigation testbed," *Technical report CMU-RI-TR-87-24, Robotics Institute*, Pittsburgh, Carnegie Mellon University, November 1987.
- [116] Duckett, T., Marsland, S., Shapiro, J. "Learning globally consistent maps by relaxation," *IEEE International Conference on Robotics and Automation*, 2000.
- [117] Duckett, T., Marsland, S., Shapiro, J. "Fast, on-line learning of globally consistent maps," *Autonomous Robots* 12, no. 3: 287–300, 2002.
- [118] Dudek, G., Jenkin, M., "Inertial sensors, GPS, and odometry," *Springer Handbook of Robotics*, Springer, 2008.
- [119] Dugan, B., "Vagabond: A demonstration of autonomous, robust outdoor navigation," in Video Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, May 1993.
- [120] Durrant-Whyte, H., Bailey, T., "Simultaneous localization and mapping: Part I," *IEEE Robotics and Automation Magazine*, 99–108, 2006.
- [121] Einsele, T., "Real-time self-localization in unknown indoor environments using a panorama laser range finder," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*, 697–702, 1997.
- [122] Elfes, A., "Sonar real world mapping and navigation," in [12].
- [123] Ens, J., Lawrence, P., "An investigation of methods for determining depth from focus." *IEEE Transactions on Pattern Analysis and Machine Intelligence* 15: 97– 108, 1993.
- [124] Espenschied, K.S., Quinn, R.D., "Biologically-inspired hexapod robot design and simulation," in AIAA Conference on Intelligent Robots in Field, Factory, Service and Space, Houston, Texas, March, 1994.
- [125] Falcone, E., Gockley, R., Porter, E., Nourbakhsh, I., "The personal rover project: the comprehensive design of a domestic personal robot," *Robotics and Autonomous Systems, Special Issue on Socially Interactive Robots* 42: 245–258, 2003.
- [126] Feder, H.J.S., Slotine, J-J.E., "Real-time path planning using harmonic potentials in dynamic environments," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Albuquerque, NM, April 1997.
- [127] Ferguson, D., Howard, T., Likhachev, M., "Motion planning in urban environments: Part II," *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems* (IROS), 2008.
- [128] Fischler, M. A., Bolles, R. C. "RANSAC random sampling concensus: A paradigm for model fitting with applications to Image analysis and automated cartography,". *Communications of ACM* 26: 381–395, 1981.
- [129] Fox, D., "KLD-sampling: Adaptive particle filters and mobile robot localization," *Advances in Neural Information Processing Systems 14*. MIT Press, 2001.

[130] Fox, D., Burgard, W., Thrun, S., "The dynamic window approach to collision avoidance," *IEEE Robotics and Automation Magazine* 4: 23–33, 1997.

- [131] Fraundorfer, F., Engels, C., Nister, D., "Topological mapping, localization and navigation using image collections," *IEEE/RSJ Conference on Intelligent Robots and Systems* 1, 2007.
- [132] Freedman, B., Shpunt, A., Machline, M., Arieli, Y., "Depth mapping using projected patterns," US Patent no. US20100118123A1, May 13, 2010. http://www.freepatentsonline.com/20100118123.pdf
- [133] Fusiello, A., Trucco, E., Verri, A., "A compact algorithm for rectification of stereo pairs," *Machine Vision and Applications*, 12(1): 16–22, 2000.
- [134] Gächter, S., Harati, A., Siegwart, R., "Incremental object part detection toward object classification in a sequence of noisy range images," *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008)*, Pasadena, USA, May 2008.
- [135] Gander, W., Golub, G.H., Strebel, R., "Least-squares fitting of circles and ellipses," *BIT Numerical Mathematics* 34, no. 4: 558–578, December 1994.
- [136] Genesereth, M.R. "Deliberate agents," *Technical Report Logic-87-2*. Stanford, CA, Stanford University, Logic Group, 1987.
- [137] Geyer, C., Daniilidis, K., "A unifying theory for central panoramic systems and practical applications," *European Conference on Computer Vision* (ECCV), 2000.
- [138] Goedeme, T., Nuttin, M., Tuytelaars, T., Van Gool, L., "Markerless computer vision based localization using automatically generated topological maps," *European Navigation Conference* GNSS, Rotterdam, 2004.
- [139] Golfarelli, M., Maio, D., Rizzi, S. "Elastic correction of dead-reckoning errors in map building," *IEEE/RSJ International Conference on Intelligent Robots and Sys*tems, 1998.
- [140] Golub, G., Kahan, W., "Calculating the singular values and pseudo-inverse of a matrix." *Journal SIAM Numerical Analysis* 2: 205–223, 1965.
- [141] Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W., "A tree parameterization for efficiently computing maximum likelihood maps using gradient descent," *Robotics Science and Systems* (RSS), 2007.
- [142] Grzonka, S., Grisetti, G., Burgard, W. "Towards a navigation system for autonomous indoor flying," *IEEE International Conference on Robotics and Automation*, 2009.
- [143] Gutmann, J.S., Burgard, W., Fox, D., Konolige, K., "An experimental comparison of localization methods," in *Proceedings of the 1998 IEEE/RSJ International. Con*ference of Intelligent Robots and Systems (IROS'98), Victoria, Canada, October 1998.
- [144] Guttman, J.S., Konolige, K., "Incremental mapping of large cyclic environments," in *Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA)*, Monterey, November 1999.
- [145] Hähnel, D., Fox, D., Burgard, W., Thrun, S. "A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements," *Proceedings of the Conference on Intelligent Robots and Systems*, 2003.

[146] Harris, C., Stephens, M., "A combined corner and edge detector," *Proceedings of the 4th Alvey Vision Conference*, 1988.

- [147] Hart, P. E., Nilsson, N. J., Raphael, B. "A formal basis for the heuristic determination of minimum cost paths," *IEEE Transactions on Systems Science and Cybernet*ics 4, no. 2: 100–107, 1968.
- [148] Hashimoto, S., "Humanoid robots in Waseda University—Hadaly-2 and WABIAN," in IARP First International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japan, October 1998.
- [149] Heale, A., Kleeman, L.: "A real time DSP sonar echo processor," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'00)*, Takamatsu, Japan, 2000.
- [150] Heymann, S., Maller, K., Smolic, A., Froehlich, B., Wiegand, T., "SIFT implementation and optimization for general-purpose GPU," in Proceedings of the International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2007.
- [151] Horn, B.K.P., Schunck, B.G., "Determining optical flow," *Artificial Intelligence*, 17: 185–203, 1981.
- [152] Horswill, I., "Visual collision avoidance by segmentation," in *Proceedings of IEEE International Conference on Robotics and Automation*, 902–909, 1995, IEEE Press, Munich, November 1994.
- [153] Hoyt, D.F., Taylor, C.R, "Gait and the energetics of locomotion in horses," *Nature* 292: 239–240, 1981.
- [154] Jacobs, R. and Canny, J., "Planning smooth paths for mobile robots," in *Proceeding*. of the IEEE Conference on Robotics and Automation, IEEE Press, 2–7, 1989.
- [155] Jeffreys, H. and Jeffreys, B. S. "Methods of mathematical physics," *Cambridge, Cambridge University Press*, 305-306, 1988.
- [156] Jennings, J., Kirkwood-Watts, C., Tanis, C., "Distributed map-making and navigation in dynamic environments," in *Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98)*, Victoria, Canada, October 1998.
- [157] Jensfelt, P., Austin, D., Wijk, O., Andersson, M., "Feature based condensation for mobile robot localization," in *Proceedings of the IEEE International Conference on Robotics and Automation*, San Francisco, May 24–28, 2000.
- [158] Jensfelt, P., Christensen, H., "Laser based position acquisition and tracking in an indoor environment," in *Proceedings of the IEEE International Symposium on Robotics and Automation* 1, 1998.
- [159] Jogan, M., Leonardis, A. "Robust localization using panoramic viewbased recognition," in *Proceedings of ICPR00* 4: 136–139, 2000.
- [160] Jung, I., Lacroix, S., "Simultaneous localization and mapping with stereovision," in Proceedings of the 11th International Symposium Robotics Research, Siena, Italy, 2005.
- [161] Kamon, I., Rivlin, E., Rimon, E., "A new range-sensor based globally convergent navigation algorithm for mobile robots," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Minneapolis, April 1996.

[162] Kelly, A., "Pose determination and tracking in image mosaic based vehicle position estimation," in *Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'00)*, Takamatsu, Japan, 2000.

- [163] Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, *International Journal of Robotics Research* 5, no. 1, 1986.
- [164] Khatib, M., Chatila, R., "An extended potential field approach for mobile robot sensor motions," in *Proceedings of the Intelligent Autonomous Systems IAS-4*, IOS Press, Karlsruhe, Germany, March 1995, 490–496.
- [165] Khatib, M., Jaouni, H., Chatila, R., Laumod, J.P., "Dynamic path modification for car-like nonholonomic mobile robots," in *Proceedings of IEEE International Con*ference on Robotics and Automation, Albuquerque, NM, April 1997.
- [166] Khatib, O., Quinlan, S., "Elastic bands: connecting, path planning and control," in Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, GA, May 1993.
- [167] Klein, G., Murray, D., "Parallel Tracking and Mapping for Small AR Workspaces," Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR'07), Nara, Japan, 2007.
- [168] Ko, N.Y., Simmons, R., "The lane-curvature method for local obstacle avoidance," in *Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98)*, Victoria, Canada, October 1998.
- [169] Koenig, S., Simmons, R., "Xavier: A robot navigation architecture based on partially observable markov decision process models," in [31].
- [170] Koenig, S., Likhachev, M., "Fast replanning for navigation in unknown terrain," *IEEE Transactions on Robotics* 21(3): 354–363, 2005.
- [171] Konolige, K.,. "A gradient method for realtime robot control," in *Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems*, Takamatsu, Japan, 2000.
- [172] Konolige, K., "Small vision systems: Hardware and implementation," in Proceedings of Eighth International Symposium on Robotics Research, Hayama, Japan, October 1997.
- [173] Konolige, K., "Large-scale map-making," AAAI National Conference on Artificial Intelligence, 2004.
- [174] Konolige, K., Agrawal, M., Solà, J., "Large scale visual odometry for rough terrain," International Symposium on Research in Robotics (ISRR), November, 2007.
- [175] Koperski, K., Adhikary, J., Han, J., "Spatial data mining: Progress and challenges survey paper," in *Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery*, Montreal, June 1996.
- [176] Koren, Y., Borenstein, J., "High-speed obstacle avoidance for mobile robotics," in Proceedings of the IEEE Symposium on Intelligent Control 382–384, Arlington, VA, August 1988.
- [177] Koren, Y., Borenstein, J., "Real-time obstacle avoidance for fast mobile robots in cluttered environments," in *Proceedings of the IEEE International Conference on Robotics and Automation*, Los Alamitos, CA, May 1990.
- [178] Kruppa, E., "Zur ermittlung eines objektes aus zwei perspektiven mit innerer orientierung," Sitzungsberichte Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abteilung II a, volume 122: 1939-1948, 1913.

[179] Kuipers, B., Byun, Y.T., "A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations," *Journal of Robotics and Autonomous Systems*, 8: 47–63, 1991.

- [180] Kuo, A., "Choosing your steps carfully," Robotics & Automation Magazine, 2007.
- [181] Lacroix, S., Mallet, A., Chatila, R., Gallo, L., "Rover self localization in planetary-like environments," in Proc. Int. Symp. Artic. Intell., Robot., Autom. Space (i-SAIRAS), Noordwijk, The Netherlands, 1999.
- [182] Lamon, P., Nourbakhsh, I., Jensen, B., Siegwar, t R., "Deriving and matching image fingerprint sequences for mobile robot localization," in *Proceedings of the 2001 IEEE International Conference on Robotics and Automation*, Seoul, Korea, May 2001.
- [183] Latombe, J.C., Barraquand, J., "Robot motion planning: A distributed presentation approach." *International Journal of Robotics Research*, 10: 628–649, 1991.
- [184] Lauria, M., Estier, T., Siegwart, R.: "An innovative space rover with extended climbing abilities," in *Video Proceedings of the 2000 IEEE International Conference on Robotics and Automation*, San Francisco, May 2000.
- [185] LaValle, S. M., "Rapidly-exploring random trees: A new tool for path planning," *Technical Report, Computer Science Dept.*, Iowa State University, October 1998.
- [186] Lavalle, S. M.: "Rapidly-exploring random trees: Progress and prospects," In *Algorithmic and Computational Robotics: New Directions*, pp. 293-308, 2000.
- [187] Lazanas, A., Latombe, J.C., "Landmark robot navigation," in *Proceedings of the Tenth National Conference on AI*. San Jose, CA, July 1992.
- [188] Lazanas, A. Latombe, J.C., "Motion planning with uncertainty: A landmark approach." *Artificial Intelligence*, 76: 285–317, 1995.
- [189] Lee, S.-O., Cho, Y.-J., Hwang-Bo, M., You, B.-J., Oh, S.-R.: "A stabile target-tracking control for unicycle mobile robots," in *Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems*, Takamatsu, Japan, 2000.
- [190] Leonard, J.J., Rikoski, R.J., Newman, P.M., Bosse, M., "Mapping partially observable features from multiple uncertain vantage points," *International Journal of Robotics Research* 21, no. 10: 943–975, 2002.
- [191] Likhachev, M., Gordon, G., Thrun, S. "ARA*: Anytime A* with provable bounds on sub-optimality," *Advances in Neural Information Processing Systems* (NIPS), 2003.
- [192] Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S., "Anytime dynamic A*: An anytime, replanning algorithm," *Proceedings of the International Conference on Automated Planning and Scheduling* (ICAPS), 2005.
- [193] Lindeberg, T., "Feature detection with automatic scale selection," *International Journal of Computer Vision* 30, no. 2: 79-116, 1998.
- [194] Longuet-Higgins, H.C., "A computer algorithm for reconstructing a scene from two projections," *Nature* 293: 133–135, September, 1981.
- [195] Louste, C. and Liegois, A., Path planning for non-holonomic vehicles: a potential viscous fluid method, Robotica 20: 291–298, 2002.
- [196] Lowe, David G., "Object recognition from local scale-invariant features," *Proceedings of the International Conference on Computer Vision*, 1999.
- [197] Lowe, D. G., "Distinctive image features from scale-invariant keypoints," *International Journal of Computer Vision* 60 (2): 91-110, 2004.

[198] Lumelsky, V., Skewis, T., "Incorporating range sensing in the robot navigation function," *IEEE Transactions on Systems, Man, and Cybernetics* 20: 1058–1068, 1990.

- [199] Lumelsky, V., Stepanov, A., "Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape," in [12].
- [200] Lu, F., Milios, E. "Globally consistent range scan alignment for environment mapping," *Autonomous Robots* 4: 333–349,1997.
- [201] Maes, P., "The dynamics of action selection," in *Proceedings of the Eleventh International Joint Conference on Artificial Intelligence*, Detroit, 1989.
- [202] Maes, P., "Situated Agents Can Have Goals," *Robotics and Autonomous Systems*, 6: 49–70. 1990.
- [203] Maimone, M., Cheng, Y., Matthies, L., "Two years of visual odometry on the mars exploration rovers," *Journal on Field Robotics* 24, no. 3: 169–186, 2007.
- [204] Makadia, A., Patterson, A., Daniilidis, K., "Fully automatic registration of 3D point clouds," *IEEE Conference on Computer Vision and Pattern Recognition*, New York, June 2006.
- [205] Martinelli, A., Siegwart, R., "Estimating the odometry error of a mobile robot during navigation," in *Proceedings of the European Conference on Mobile Robots (ECMR 2003)*, Warsaw, September 4–6, 2003.
- [206] Masoud, S.A., Masoud, A.A., "Motion planning in the presence of directional and regional avoidance constraints unsing nonlinear, anisotropic, harmonic potential fields: a physical metaphor," *IEEE Transactions on Systems, Man and Cybernetics* 32, no. 6: 705–723, 2002.
- [207] Masoud, S.A., Masoud, A.A., "Kinodynamic motion planning: a novel type of non-linear, passive damping forces and advantages," *IEEE Robotics Automation Magazine* 17, no. 1: 85–99, 2010.
- [208] Matsumoto, Y., Inaba, M., Inoue, H., "Visual navigation using viewsequenced route representation," *IEEE International Conference on Robotics and Automation*, 1996.
- [209] Maybeck, P.S., "The Kalman filter: An introduction to concepts," in [12].
- [210] Matas, J., Chum, O., Urban, M., Pajdla, T., "Robust wide-baseline stereo from maximally stable extremal regions," in *Proceedings of the British Machine Vision Conference*, 384–393, 2002.
- [211] McGeer, T., "Passive dynamic walking," *International Journal of Robotics Research* 9, no. 2: 62–82, 1990.
- [212] Mei, C., Rives, P., "Single view point omnidirectional camera calibration from planar grids," *IEEE International Conference on Robotics and Automation* (ICRA), 2007.
- [213] Menegatti, E., Maedab, T., Ishiguro, H., "Image-based memory for robot navigation using properties of omnidirectional images," *Robotics and Autonomous System* 47, no. 4: 251–267, July, 2004.
- [214] Meng, M., Kak, A.C.. "Mobile robot navigation using neural networks and nonmetrical environmental models," *IEEE Control Systems Magazine*, 13(5): 30–39, October 1993.
- [215] Metropolis, N., Ulam, S. "The Monte Carlo method," *Journal of the American Stat- tistical Association* 44, no. 247: 335–341, 1949.

[216] Mikolajczyk, K., C. Schmid, "Indexing based on scale-invariant interest points," in Proceedings of the International Conference on Computer Vision, 525–531, Vancouver, Canada, 2001.

- [217] Mikolajczyk, K., Schmid, C., "Scale and affine invariant interest point detectors," International Journal of Computer Vision 1, no. 60: 63–86, 2004.
- [218] Mikolajcyk, K. and Schmid, C., "An affine invariant interest point detector," in Proceedings of the 7th European Conference on Computer Vision, Denmark, 2002.
- [219] Mikolajczyk, K., "Scale and Affine Invariant Interest Point Detectors," PhD thesis, INRIA Grenoble, 2002.
- [220] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L. "A comparison of affine region detectors," *International Journal of Computer Vision*, 65(1-2): 43–72, 2005.
- [221] Minetti, A.E., Ardigò, L.P., Reinach, E., Saibene, F., "The relationship between mechanical work and energy expenditure of locomotion in horses," *Journal of Experimental Biology* 202, no. 17, 1999.
- [222] Minguez, J., Montano, L., "Nearness diagram navigation (ND): A new real time collision avoidance approach," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*, Takamatsu, Japan, October 2000.
- [223] Minguez, J., Montano, L., "Robot navigation in very complex, dense, and cluttered indoor / outdoor environments," in *Proceeding of International Federation of Auto*matic Control (IFAC2002), Barcelona, April 2002.
- [224] Minguez, J., Montano, L., Khatib, O., "Reactive collision avoidance for navigation with dynamic constraints," in *Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2002.
- [225] Minguez, J., Montano, L., Simeon, T., Alami, R., "Global nearness diagram navigation (GND)," in *Proceedings of the 2001 IEEE International Conference on Robotics and Automation*, 2001.
- [226] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D. and Martinoli, A. "The e-puck, a robot designed for education in engineering," *The 9th Conference on Autonomous Robot Systems and Competitions*, 2009.
- [227] Montiel, J.M.M., Civera, J., Davison, A.J., "Unified inverse depth parametrization for monocular SLAM," Proc. of the Robotics Science and Systems Conference, 2006.
- [228] Moutarlier, P., Chatila, R., "An experimental system for incremental environment modeling by an autonomous mobile robot," *1st International Symposium on Experimental Robotics*, 1989.
- [229] Moutarlier, P., Chatila, R. "Stochastic multisensory data fusion for mobile robot location and environment modeling," 5th Int. Symposium on Robotics Research, 1989.
- [230] Montano, L., Asensio, J.R., "Real-time robot navigation in unstructured environments using a 3D laser range finder," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems*, IROS 97, September 1997.
- [231] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. "FastSLAM: A factored solution to the simultaneous localization and mapping problem," *Proceedings of the AAAI National Conference on Artificial Intelligence*, 2002.

[232] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. "Fast-SLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges," *International Joint Conference on Artificial Intelligence*, 2003.

- [233] Moravec, H. and Elfes, A.E., "High Resolution Maps from Wide Angle Sonar," in *Proceedings of the 1985 IEEE International Conference on Robotics and Automation*, March 1985.
- [234] Moravec, H. P., "Towards automatic visual obstacle avoidance," *Proceedings of the 5th International Joint Conference on Artificial Intelligence*, 1977.
- [235] Moravec, H. P., "Visual mapping by a robot rover," *International Joint Conference on Artificial Intelligence*, 1979.
- [236] Moravec, H., "Obstacle avoidance and navigation in the real world by a seeing robot rover," *PhD thesis*, Stanford University, 1980.
- [237] Moutarlier, P., Chatila, R., "Stochastic multisensory data fusion for mobile robot location and environment modelling," in *Proceedings of the 5th International Symposium of Robotics Research*, Tokyo, 1989.
- [238] Murillo, A.C., Kosecka, J., "Experiments in Place Recognition using Gist Panoramas," Proceedings of the International Workshop on Omnidirectional Vision (OMNIVIS'09), 2009.
- [239] Murphy, K., Russell, S. "Rao-Blackwellized particle filtering for dynamic Bayesian networks," *In Sequential Monte Carlo Methods in Practice*, ed. by A. Doucet, N. de Freitas, N. Gordon, 499–516, Springer, 2001.
- [240] Nayar, S.K., "Catadioptric omnidirectional camera." *IEEE CVPR*, 482–488, 1997.
- [241] Nayar, S., Watanabe, M., and Noguchi, M., "Real-time focus range sensor." In Fifth International Conference on Computer Vision, 995–1001, Cambridge, Massachusetts, 1995.
- [242] Nilsson, N.J., "Shakey the robot." SRI, International, Technical Note, Menlo Park, CA, 1984, No. 325.
- [243] Nistér, D. Stewénius, H., "Scalable recognition with a vocabulary tree," *IEEE International Conference on Computer Vision and Pattern Recognition*, 2006.
- [244] Nistér, D., Naroditsky, O., Bergen, J., "Visual odometry for ground vehicle applications," *Journal of Field Robotics* 23, no. 1: 3–20, 2006.
- [245] Nistér, D., Naroditsky, O., Bergen, J., "Visual odometry," *IEEE International Conference on Computer Vision and Pattern Recognition*, 2004.
- [246] Nistér, D., "An efficient solution to the five-point relative pose problem," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6): 756-770. June 2004.
- [247] Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R. "A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics," *IEEE/RSJ Intenational Conference on Intelligent Robots and Systems*, IROS, 2005.
- [248] Noth, André, "Design of solar powered airplanes for continuous flight," *Ph.D. thesis, Autonomous Systems Lab, ETH Zurich*, Switzerland, December 2008.
- [249] Nourbakhsh, I.R., "Dervish: An office-navigation robot," in [31].
- [250] Nourbakhsh, I.R., Andre. D., Tomasi, C., Genesereth, M.R., "Mobile robot obstacle avoidance via depth from focus," *Robotics and Autonomous Systems*, 22: 151–158, 1997.

[251] Nourbakhsh, I.R., Bobenage, J., Grange, S., Lutz, R., Meyer, R, Soto, A., "An affective mobile educator with a full-time job," *Artificial Intelligence*, 114: 95–124, 1999.

- [252] Nourbakhsh, I.R., Powers, R., Birchfield, S., "DERVISH, an office-navigation robot." *AI Magazine*, 16: 39–51, summer 1995.
- [253] Oliva, A., Torralba, A., "Modeling the shape of the scene: A holistic representation of the spatial envelope," International Journal of Computer Vision, 42(3):145–175, 2001.
- [254] Oliva, A., Torralba, A., "Building the gist of a scene: The role of global image features in recognition," in *Visual Perception, Progress in Brain Research*, 155:23–36, Elsevier, 2006.
- [255] Omer, A.M.M., Ghorbani, R., Hun-ok Lim, Takanishi, A., "Semi-passive dynamic walking for biped walking robot using controllable joint stiffness based on dynamic simulation," *IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, Singapore, 2009.
- [256] Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M., Williams, B., "An autonomous spacecraft agent prototype," *Autonomous Robots* 5: 1–27, 1998.
- [257] Pavlidis, T., Horowitz, S. L. "Segmentation of plane curves," *IEEE Transactions on Computers* C-23(8): 860–870, 1974.
- [258] Pentland, A.P., "A new sense for depth of field," *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 9: 523–531, 1987.
- [259] Philippsen, R., Siegwart, R., "Smooth and efficient obstacle avoidance for a tour guide robot," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2003)*, Taipei, Taiwan, 2003.
- [260] Pivtoraiko, M., Knepper, R., A., Kelly, A. "Differentially constrained mobile robot motion planning in state lattices," *Journal of Field Robotics* 26, no. 1: 308–333, 2009.
- [261] Pfister, S. T., Roumeliotis, S. I., Burdick, J. W. "Weighted line fitting algorithms for mobile robot map building and efficient data representation," in *Proceedings of the IEEE International Conference on Robotics and Automation*, 2003.
- [262] Pratt, J., Pratt, G., "Intuitive control of a planar bipedal walking robot," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '98)*, Leuven, Belgium, May 1998.
- [263] Rao, C.R. "Information and accuracy obtainable in estimation of statistical parameters," *Bulletin of the Calcutta Mathematical Society* 37: 81–91, 1945.
- [264] Raibert, M. H., Brown, H. B., Jr., Chepponis, M., "Experiments in balance with a 3D one-legged hopping machine," *International Journal of Robotics Research*, 3: 75–92, 1984.
- [265] Remy, C., Buffinton, K., Siegwart, R., "Stability analysis of passive dynamic walking of quadrupeds," *International Journal of Robotics Research*, 2009.
- [266] Ringrose, R., "Self-stabilizing running," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '97)*, Albuquerque, NM, April 1997.
- [267] Rosten, E., Drummond, T., "Fusing points and lines for high performance tracking," in *Proceedings of the International Conference on Computer Vision*, 1508–1511, 2005.

[268] Rosten, E., Drummond, T., "Machine learning for high-speed corner detection," in *Proceedings of the European Conference on Computer Vision*, 430-443, 2006.

- [269] Rowe, A., Rosenberg, C., Nourbakhsh, I., "A simple low cost color vision system," in *Proceedings of Tech Sketches for CVPR 2001*, Kuaii, Hawaii, December 2001.
- [270] Rubner, Y., Tomasi, C., Guibas, L., "The earth mover's distance as a metric for image retrieval," *STAN-CS-TN-98-86, Stanford University*, 1998.
- [271] Rufli, M., Ferguson, D., Siegwart, R., "Smooth path planning in constrained environments," *Proceedings of the IEEE International Conference on Robotics and Automation* (ICRA), 2009.
- [272] Rufli, M., Siegwart, R., "On the application of the D* search algorithm to time based planning on lattice graphs," *Proceedings of the European Conference on Mobile Robots* (ECMR), 2009.
- [273] Scaramuzza, D., "Omnidirectional vision: from calibration to robot motion estimation,", *PhD thesis n. 17635, ETH Zurich*, February 2008.
- [274] Scaramuzza, D., Martinelli, A., Siegwart, R., "A flexible technique for accurate omnidirectional camera calibration and structure from motion," *IEEE International Conference on Computer Vision Systems (ICVS 2006)*, New York, January 2006.
- [275] Scaramuzza, D., Martinelli, A. Siegwart, R., "A toolbox for easily calibrating omnidirectional cameras," *IEEE/RSJ International Conference on Intelligent Robots and Systems* (IROS 2006), Beijing, China, October 2006.
- [276] Scaramuzza, D., Fraundorfer, F., Pollefeys, M., "Closing the loop in appearance-guided omnidirectional visual odometry by using vocabulary trees," *Robotics and Autonomous System Journal (Elsevier)*, 2010.
- [277] Scaramuzza, D., Fraundorfer, F., Pollefeys, M., and Siegwart, R., "Absolute scale in structure from motion from a single vehicle mounted camera by exploiting nonholonomic constraints," *IEEE International Conference on Computer Vision* (ICCV 2009), Kyoto, October, 2009.
- [278] Scaramuzza, D., Fraundorfer, F., and Siegwart, R., Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC, *IEEE International Conference on Robotics and Automation* (ICRA 2009), Kobe, Japan, May 2009.
- [279] Scaramuzza, D., Siegwart, R., "Appearance guided monocular omnidirectional visual odometry for outdoor ground vehicles," *IEEE Transactions on Robotics* 24, no. 5, October 2008.
- [280] Schlegel, C., "Fast local obstacle under kinematic and dynamic constraints," in *Proceedings of the IEEE International Conference on Intelligent Robot and Systems (IROS 98)*, Victoria, Canada 1998.
- [281] Schultz, A., Adams, W., "Continuous localization using evidence grids," in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '98), May 1998.
- [282] Schweitzer, G., Werder, M., "ROBOTRAC a mobile manipulator platform for rough terrain," in *Proceedings of the International Symposium on Advanced Robot Technology (ISART)*, Tokyo, Japan, March, 1991.
- [283] Shi, J., Malik, J., "Normalized cuts and image segmentation," *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)* 82: 888–905, 2000.
- [284] Shi, J., Tomasi, C., "Good features to track," *IEEE Conference on Computer Vision and Pattern Recognition*, 1994.

[285] Schmid, C., Mohr, R., Bauckhage, C., "Evaluation of interest point detectors," *International Journal of Computer Vision* 37, no. 2: 151–172, 2000.

- [286] Se, S., Barfoot, T., Jasiobedzki, P., "Visual motion estimation and terrain modeling for planetary rovers," *Proceedings of the International Symposium on Artificial Intelligence for Robotics and Automation in Space*, 2005.
- [287] Siadat, A., Kaske, A., Klausmann, S., Dufaut, M., Husson, R. "An optimized segmentation method for a 2D laser-scanner applied to mobile robot navigation," Proceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for Control Applications, 1997.
- [288] Siegwart R., Arras, K., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., Tomatis, N., "Robox at Expo.02: A large scale installation of personal robots," *Journal of Robotics and Autonomous Systems* 42: 203–222, 2003.
- [289] Siegwart, R., Lamon, P., Estier, T., Lauria, M, Piguet, R., "Innovative design for wheeled locomotion in rough terrain," *Journal of Robotics and Autonomous Systems* 40: 151–162, 2002.
- [290] Simhon, S., Dudek, G., "A global topological map formed by local metric maps," Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98), Victoria, Canada, October 1998.
- [291] Simmons, R., "The curvature velocity method for local obstacle avoidance," Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, April 1996.
- [292] Sinha, S. N., Frahm, J. M., Pollefeys, M., Genc, Y., "GPU video feature tracking and matching," in EDGE, Workshop on Edge Computing Using New Commodity Architectures, 2006.
- [293] Sivic, J. and Zisserman, A., "Video Google: A text retrieval approach to object matching in videos," *Proceedings of the International Conference on Computer Vision*, 2003.
- [294] Smith, R., Self, M., Cheeseman, P., "Estimating uncertain spatial relationships in robotics," *Autonomous Robot Vehicles*, I. J. Cox and G. T. Wilfong (editors), Springer-Verlag, 167–193, 1990.
- [295] Smith, R.C., Cheeseman, P., "On the representation and estimation of spatial uncertainty, *International Journal of Robotics Research* 5, no. 4: 56–68, 1986.
- [296] Smith, S. M., Brady, J. M., "SUSAN A new approach to low level image processing," *International Journal of Computer Vision* 23, no. 34: 45–78, 1997.
- [297] Snavely, N., Seitz, S.M., Szeliski, R., "Photo Tourism: Exploring photo collections in 3D," *ACM Transactions on Graphics*, 25(3), August 2006.
- [298] Snavely, N., Seitz, S.M., Szeliski, R., "Modeling the World from Internet Photo Collections," *International Journal of Computer Vision*, 2007
- [299] Soatto, S., Brockett, R., "Optimal structure from motion: Local ambiguities and global estimates,", *International Conference on Computer Vision and Pattern Rec*ognition, 1998.
- [300] Sordalen, O.J., Canudas de Wi,t C., "Exponential control law for a mobile robot: extension to path following," *IEEE Transactions on Robotics and Automation*, 9: 837–842, 1993.

[301] Sorg, H.W., "From serson to draper – two centuries of gyroscopic development," *Navigation* 23: 313–324, 1976.

- [302] Steinmetz, B.M., Arbter, K., Brunner, B., Landzettel, K., "Autonomous vision navigation of the nanokhod rover," *Proceedings of i-SAIRAS 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space*, 2001.
- [303] Stentz, A., "The focussed D* algorithm for real-time replanning," in *Proceedings of IJCAI-95*, August 1995.
- [304] Stentz, A., "Optimal and efficient path planning for partially-known environments," *Proceedings of the International Conference on Robotics and Automation*, 1994.
- [305] Stevens, B.S., Clavel, R., Rey, L., "The DELTA parallel structured robot, yet more performant through direct drive," *Proceedings of the 23rd International Symposium on Industrial Robots*, 1992.
- [306] Takeda, H., Facchinetti, C., Latombe, J.C., "Planning the motions of a mobile robot in a sensory uncertainty field," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16: 1002–1017, 1994.
- [307] Tardif, J., Pavlidis, Y., Daniilidis, K., "Monocular visual odometry in urban environments using an omnidirectional camera," *IEEE/RSJ International Confrence on Intelligent Robots and Systems*, 2008.
- [308] Taylor, R., Probert, P., "Range finding and feature extraction by segmentation of images for mobile robot navigation," *Proceedings of the IEEE International Con*ference on Robotics and Automation, ICRA, 1996.
- [309] Thrun, S., Burgard, W., Fox, D., "A probabilistic approach to concurrent mapping and localization for mobile robots." *Autonomous Robots* 31: 1–25. 1998.
- [310] Thrun, S., et al., "Minerva: A second generation museum tour-guide robot," *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'99)*, Detroit, May 1999.
- [311] Thrun, S., Fox, D., Burgard, W., Dellaert, F., "Robust Monte Carlo localization for mobile robots," *Artificial Intelligence*, 128: 99–141, 2001.
- [312] Thrun, S. "A probabilistic online mapping algorithm for teams of mobile robots," *International Journal of Robotics Research* 20, no. 5: 335–363, 2001.
- [313] Thrun, S. "Simultaneous localization and mapping," *Springer Tracts in Advanced Robotics* 38, no. 5: 13–41, 2008.
- [314] Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W., Kuipers, B., "Integrating topological and metric maps for mobile robot navigation: A statistical approach," *Proceedings of the National Conference on Artificial Intelligence (AAAI)*, 1998.
- [315] Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hähnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C., Whittaker, W. "Autonomous exploration and mapping of abandoned mines," *IEEE Robotics and Automation Magazine* 11, no. 4: 79–91, 2004.
- [316] Tomasi, C., Shi, J., "Image deformations are better than optical flow," *Mathematical and Computer Modelling* 24: 165–175, 1996.
- [317] Tomatis, N., Nourbakhsh, I., Siegwart, R., "Hybrid simultaneous localization and map building: A natural integration of topological and metric," *Robotics and Autonomous Systems* 44, 3–14, 2003.
- [318] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A., "Bundle adjustment a modern synthesis," *International Conference on Computer Vision*, 1999.

[319] Tsai, R. "A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses," *IEEE Journal of Robotics and Automation* 3, no. 4: 323–344, August 1987.

- [320] Tuytelaars, T., Mikolajczyk, K., "Local invariant feature detectors: a survey," *Source, Foundations and Trends in Computer Graphics and Vision* 3, no. 3, 2007.
- [321] Tzafestas, C.S., Tzafestas, S.G., "Recent algorithms for fuzzy and neurofuzzy path planning and navigation of autonomous mobile robots," *Systems-Science* 25: 25–39, 1999.
- [322] Ulrich, I., Borenstein, J., "VFH*: Local obstacle avoidance with look-ahead verification," *Proceedings of the IEEE International Conference on Robotics and Automation*, San Francisco, May 2000.
- [323] Ulrich, I., Borenstein, J., "VFH+: Reliable obstacle avoidance for fast mobile robots," *Proceedings of the International Conference on Robotics and Automation (ICRA'98)*, Leuven, Belgium, May 1998.
- [324] Ulrich, I., Nourbakhsh, I., "Appearance obstacle detection with monocular color vision," *the Proceedings of the AAAI National Conference on Artificial Intelligence*. Austin, TX. August 2000.
- [325] Ulrich, I., Nourbakhsh, I., "Appearance-based place recognition for topological localization," *Proceedings of the IEEE International Conference on Robotics and Automation*, San Francisco, 1023–1029, April 2000.
- [326] Vanualailai, J., Nakagiri, S., Ha, J-H., "Collision avoidance in a two-point system via Liapunov's second method," *Mathematics and Simulation* 39: 125–141, 1995.
- [327] Van Winnendael, M., Visenti G., Bertrand, R., Rieder, R., "Nanokhod microrover heading towards Mars," Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESA SP-440), Noordwijk, Netherlands, 1999.
- [328] Vandorpe, J., Brussel, H. V., Xu, H. "Exact dynamic map building for a mobile robot using geometrical primitives produced by a 2D range finder," *Proceedings of* the IEEE International Conference on Robotics and Automation, ICRA, 901–908, 1996.
- [329] Weiss, G., Wetzler, C., Puttkamer, E., "Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans," *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)*, Munich, September 1994.
- [330] Weingarten, J., Gruener, G. and Siegwart, R., "A state-of-the-art 3D sensor for robot navigation," *Proceedings of IROS*, Sendai, September 2004.
- [331] Weingarten, J. and Siegwart, R., "3D SLAM using planar segments," Proceedings of IROS, Beijing, October 2006.
- [332] Wullschleger, F.H., Arra, s K.O., Vestli, S.J., "A flexible exploration framework for map building," *Proceedings of the Third European Workshop on Advanced Mobile Robots (Eurobot 99)*, Zurich, September 1999.
- [333] Yagi, Y., Kawato, S., "Panorama scene analysis with conic projection," *Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Workshop on Towards a New Frontier of Applications*, 1990.
- [334] Yamauchi, B., Schultz, A., Adams, W., "Mobile robot exploration and map-building with continuous localization," *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'98)*, Leuven, Belgium, May 1998.

[335] Ying, X., Hu, Z., "Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model?," *European Conference on Computer Vision* (ECCV), Lecture Notes in Computer Science, Springer Verlag, May 2004.

- [336] Zhang, L., Ghosh, B. K., "Line segment based map building and localization using 2D laser rangefinder," *Proceedings of the IEEE International Conference on Robotics and Automation*, 2000.
- [337] Zhang, Z., "A flexible new technique for camera calibration," *Microsoft Research Technical Report 98-71*, December 1998 see also http://research.microsoft.com/~zhang.

Referenced Webpages

- [338] Fisher, R.B. (editor), "CVonline: On-line Compendium of Computer Vision," Available at www.dai.ed.ac.uk/CVonline.
- [339] The Intel Image Processing Library/Integrated Performance Primitives (Intel IPP): http://software.intel.com/en-us/intel-ipp.
- [340] Source code release site: www.cs.cmu.edu/~jbruce/cmvision.
- [341] Newton Labs website: www.newtonlabs.com.
- [342] For probotics: http://www.personalrobots.com.
- [343] OpenCV, the Open Source Computer Vision library: http://opencv.willowga-rage.com/wiki.
- [344] Passive walking: www-personal.umich.edu/~artkuo/Passive_Walk/passive_walking.html.
- [345] Passive walking, the Cornell Ranger: http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/ranger2008.php.
- [346] Computer Vision industry: http://www.cs.ubc.ca/spider/lowe/vision.html.
- [347] Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/calib doc.
- [348] List of camera calibration softwares: http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/links.html.
- [349] Omnidirectional camera calibration toolbox from Christopher Mei http://www.robots.ox.ac.uk/~cmei/Toolbox.html.
- [350] Omnidirectional camera calibration toolbox from Joao Barreto http://www.isr.uc.pt/~jpbar/CatPack/pag1.htm.
- [351] Omnidirectional camera calibration toolbox from Davide Scaramuzza: google "ocamcalib" or go to http://robotics.ethz.ch/~scaramuzza/ Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm.
- [352] Open source software for SLAM and loop-closing: http://openslam.org.
- [353] Open source software for multi-view structure from motion: http://photo-tour.cs.washington.edu/bundler
- [354] Microsoft Photosynth: http://photosynth.net
- [355] Photo Tourism: http://phototour.cs.washington.edu/
- [356] Voodoo Camera Tracker: A tool for the integration of virtual and real scenes http://www.digilab.uni-hannover.de/docs/manual.html

[357] Augmented-reality toolkit (ARToolkit): http://www.hitl.washington.edu/artoolkit [358] Parallel Tracking and Mapping (PTAM): http://www.robots.ox.ac.uk/~gk/PTAM