弹簧振子实验

Deschain

2021年8月18日

一、实验目的

- 1. 观测简谐振动的特点
- 2. 掌握质量、时间、长度等基本量的测量方法
- 3. 联系并掌握最小二乘法直线拟合

二、实验原理

质量为 m 的物体悬挂在劲度系数为 k、上端固定的轻质弹簧下端。在弹簧弹性形变范围内给定一个偏离,使物体沿竖直方向上下振动,即形成弹簧振子。定义振子运动位移沿竖直方向为 x 轴,向下为正,且振子受合力为零的平衡处 x=0,同时振子所受合力 F、运动速度 v 均沿竖直方向,向下为正。可以证明振子会做简谐振动:

 $x = A\cos(\omega t + \varphi_0)$

振动固有角频率 ω 由系统本身的性质决定:

$$\omega = \sqrt{\frac{k}{m}}$$

弹簧振动周期 T 的公式为:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

考虑到弹簧质量 m_0 的影响后,弹簧振子振动周期公式修正为:

$$T = 2\pi \sqrt{\frac{m + cm_0}{k}}$$

其中 c 为与弹簧形状、质量分布等因素有关的系数。

上式可变形为:

$$T^2 = \frac{4\pi^2}{k}m + \frac{4\pi^2 c m_0}{k}$$

实验中使用一根弹簧,通过测量振子取不同砝码质量 m 时的振动周期 T,拟合 T-m 直线,即可由斜率得出弹簧劲度系数 k,由截距和斜率得出弹簧等效质量系数 c。

上式还可变形为:

$$lnT = ln(2\pi\sqrt{m + cm_0}) - \frac{lnk}{2}$$

通过保持振子质量 m 不变,选取不同 k 的弹簧,测量振动周期,拟合 lnT - lnk 直线,验证其斜率为-0.5(假定各弹簧质量差别不大, m_0 取不同弹簧质量的平均值)。

三、实验仪器及使用说明

支架,弹簧,钩码,砝码,秒表,电子天平,数显高度尺。

- 1. 秒表: 最小分度值为 0.01s。
- 2. 电子天平: 使用前先调平、去皮归零。使用时勿撞击秤盘,以免损坏仪器。

3. 数显高度尺。

四、实验任务、步骤及注意事项

注: 本实验中的周期测量指测 50 个周期,测三次,取平均。

- 1. 测量 6 个弹簧的质量及钩码、各个砝码的质量
- 2. 拉伸法测量 6 组弹簧的劲度系数
- 3. 测量某一弹簧的振动周期, 计算 k 和 c。
- (1) 掌握停表测量振动周期技巧。
- (2) 探究振动幅度与周期的关系。

保持振子质量不变,改变振子的最大初始振幅 A,(分别取 20mm,25mm,30mm),测量弹簧振动周期,观测周期是否改变。同时观测 50 个周期中振幅的变化。根据观测结果确定合适的初始最大振幅。

(3) 测量不同振子质量下的振动周期 T, 计算 k 和 c。

保持弹簧振子的最大初始振幅不变,依次添加 7 个砝码,记录振子总质量,并测量其振动周期。利用测量得到的数据拟合 T^2-m 直线,并利用拟合的斜率和截距计算 k, c, 并与任务 2 中得出的该弹簧的劲度系数 k 作比较。

4. 固定振子质量,改变弹簧劲度系数测周期,验证 T-k 的关系

通过实验验证 lnT - lnk 直线关系的斜率与-0.5 是否相符。 m_0 取各个弹簧质量的平均值,砝码振子的质量 m 应尽量大。保持弹簧振子的质量不变,测量 6 个弹簧的简谐振动周期。

五、实验数据处理

1. 质量测量

编号	1(最细)	2(红)	3 (責	ŧ)	4 (橙)		5 (藍)		6 (最粗)	
弹簧质量/g	30.2360	32.883	6 34.90)88	39.0	922	40.	8601	44	1.1443
编号	1	2	3	4		5		6		7
砝码质量/g	9.9726	9.8741	9.9636	9.9	9413	9.9'	717	9.86	51	9.7645

钩码质量为 41.9243g

2. 劲度系数的测量

弹簧编号 伸长量/mm	1	2	3	4	5	6	受力/N
y_1	7.70	8.18	11.05	13.54	16.20	20.71	0.09773
y_2	14.91	17.44	23.13	29.98	35.50	42.69	0.1945
y_3	21.87	27.16	37.10	43.81	52.50	64.27	0.2921
y_4	29.16	35.59	47.20	59.38	69.15	87.15	0.3896
y_5	35.51	43.78	60.30	73.29	88.03	111.27	0.4873
y_6	42.36	53.26	73.72	89.35	106.02	131.24	0.5840

 y_1 是在挂有钩码的基础上,添加 1 号砝码测得的伸长量; y_2 是挂有钩码、1 号砝码、2 号砝码测得的伸长量; 以此类推。

拟合直线(自下至上依次为弹簧1至6):

$$y_1 = 71.14F + 1.002, k_1 = 71.14mm/N, R_2 = 0.9996$$

 $y_2 = 91.82F - 0.396, k_2 = 91.82mm/N, R_2 = 0.9992$
 $y_3 = 127.7F - 1.431, k_3 = 127.7mm/N, R_2 = 0.9987$
 $y_4 = 153.9F - 0.9175, k_4 = 153.9mm/N, R_2 = 0.9994$
 $y_5 = 182.9F - 1.126, k_5 = 182.9mm/N, R_2 = 0.9994$
 $y_6 = 229.3F - 1.941, k_6 = 229.3mm/N, R_2 = 0.9996$

3. 测量某一弹簧的振动周期, 计算弹簧劲度系数 k, 弹簧等效质量系数 c

(1) 探究振动幅度与周期的关系

注:这里记录的是单个周期的时间,50个周期的原始数据见原始数据表格。

选择 6 号弹簧, 振子为钩码和 1 号砝码。

	第一次测量	第二次测量	第三次测量	平均值
振幅 20mm	0.7724	0.7750	0.7730	0.7735
振幅 25mm	0.7726	0.7744	0.7750	0.7740
振幅 30mm	0.7750	0.7742	0.7744	0.7745

在误差允许的范围内,可以认为振幅与周期无关。

(2) 选用 6 号弹簧, 振幅 30mm

周期	Ar VANILE	ᄷᄼᄼᄼᄼ	然一以	亚拉佐 m	m2
振子质量/g	第一次测量	第二次测量	第三次测量	平均值 T	T^2
54.1169	0.7742	0.7750	0.7744	0.7745	0.5999
64.1040	0.8268	0.8368	0.8286	0.8274	0.6846
74.0676	0.8800	0.8776	0.8780	0.8779	0.7707
84.0089	0.9268	0.9350	0.9274	0.9264	0.8582
93.9806	0.9730	0.9744	0.9724	0.9733	0.9473
103.8457	1.0186	1.0198	1.0176	1.0187	1.0378
113.6102	1.0582	1.0593	1.0600	1.0592	1.1219
地人出华 / 始光片日1	TR 44 H 12 日	`			

拟合曲线: (m 的单位是 kg, T 的单位是 s)

$$T^{2} = 8.813m + 0.1201, R^{2} = 0.9999$$

$$T^{2} = \frac{4\pi^{2}}{k}m + \frac{4\pi_{2}cm_{0}}{k} = k_{1}m + b$$

$$k = \frac{4\pi^{2}}{k_{1}} = 4.480N/m$$

$$c = \frac{b}{k_{1}m_{0}} = 0.3087$$

4. 固定振子质量, 改变弹簧劲度系数测周期, 验证 T-k 的关系

注: 振子为钩码和 7 个砝码, 振幅 30mm

1T: 1K 1 / 3 / 3 / 3 / 4 PA P 3 / 1K / E OOIIIII									
弹簧编	振动周期弹簧编号			一次测量	第二次测量		第三次测量		平均值
1			0.5862		0.5888		0.5870		0.5873
2			0.6744		0.6736		0.6738		0.6739
3			0.7780		0.7782		0.7774		0.7779
4			0.8690		0.8700		0.8694		0.8695
5			0.9450		0.9450		0.9448		0.9449
6			1.0568		1.0580		1.0578		1.0575
ln(k)	2.6431	2.387	9	2.0581	1.8715	1.69	988	1.4727	
ln(T)	-0.5322	-0.394	47	-0.2512	-0.1398	-0.0)567	0.0559	

拟合直线的斜率为-0.5005,截距 0.7922, $R^2=0.9989$ 。在误差允许的范围内,可以认为本实验验证了 $lnT=ln(2\pi\sqrt{m+cm_0})-\frac{lnk}{2}$ 。

c 的计算:

$$\begin{split} m &= \sum m_{fama} + m_{gouma} = 113.6102g = 0.1136kg \\ m_0 &= \frac{1}{6} \sum m_i = 37.0208g = 0.0370kg \\ b &= ln(2\pi\sqrt{m + cm_0}) \\ c &= \frac{(\frac{e^b}{2\pi})^2 - m}{m_0} = 0.2677 \end{split}$$

六、思考题

1. 理论推导均质柱状弹簧等效质量系数 c, 并比较实验值与理论值。

设弹簧质量为 m,原长为 L,形变均匀,且末端速度为 v,则总动能为 $E_{k_0} = \int_0^L 0.5 \frac{m}{L} (\frac{v}{L}x)^2 dx = \frac{1}{6} m_0 v^2$,而重物动能为 $E_{k_1} = \frac{1}{2} M v^2$,故 $c = \frac{1}{3}$ 。

理论值与实验值差距较大,说明实验时测量的精度不足,误差太大。

2. 实验 3 中为何选取较粗的弹簧?

较粗的弹簧劲度系数较小,周期较大,在振幅相同的情况下,移动速度较慢,便于测量。

- 3. 计数起停的最佳时机是什么?如何操作可以减少弹簧的左右摆动?
- (1)人眼判断的是位置,秒表记录的是时间。在相同的位置误差下,速度越快,时间误差越小。所以计数起停的最佳时机是振子运动速度最快时,也就是弹簧振子越过平衡位置时。
- (2) 用双手将弹簧下压一定距离,双手同时松开,这样左右摆动最小。
- 4. 测量不同振子质量下的周期时,振幅选为多少较为合适?为什么?

对于本次实验使用的弹簧, 振幅 30mm 最为合适, 因为在 30mm 下测量结果最为稳定。

5. 拉伸法求得劲度系数 k 的不确定度如何计算?

$$k = \frac{1}{b}$$

$$\Delta_k = \frac{1}{b^2} \Delta_b$$

$$\Delta_b = t_p(n-2)S_b = t_p(n-2)\sqrt{\frac{r^{-2} - 1}{n-2}}$$

$$\Delta_a = t_p(n-2)S_a = t_p(n-2)S_b\sqrt{\frac{\sum x_i^2}{n}}$$

$$k = \frac{4\pi^2}{b}$$

$$\Delta_k = \frac{4\pi^2}{b^2} \Delta_b$$

$$c = \frac{1}{M} \frac{a}{b}$$

$$\Delta_c = \frac{1}{M} \sqrt{\frac{1}{b^2} \Delta_a 2 + \frac{a^2}{b^4} \Delta_b^2}$$

七、实验小结

本次实验中,我对"原始数据"有了更为准确的认识。测量周期时,我记录的是单个周期的时间,也就是对原始数据直接除以50再记录。在老师的指导下,我意识到这么做是错误的,原始数据是不应该经过运算处理的。幸好本次实验中测量的是50个周期,可以将原始数据无损还原。认识到这一点,对我今后的实验很有意义,防止未来实验中的数据遭到不可逆的损坏。

八、原始数据表格

见附件。