

# KANTON SARAJEVO MINISTARSTVO ZA ODGOJ I OBRAZOVANJE KANTONA SARAJEVO

# Kantonalno takmičenje iz informatike za srednje škole

05. April 2023. GODINE

| Rezultati         | 3  |
|-------------------|----|
| Poredak takmičara | 3  |
| Poredak škole     | 8  |
| Postavke zadataka | 9  |
| 1. Fabrika        | 9  |
| 2. Raketne čizme  | 12 |
| 3. Biljke         | 14 |
| 4. Profesor Srmen | 17 |
| 5. Zapetljanost   | 20 |
| Rješenja zadataka | 22 |
| 1. Fabrika        | 22 |
| 2. Raketne čizme  | 23 |
| 3. Biljke         | 25 |
| 4. Profesor Srmen | 27 |
| 5. Zapetljanost   | 29 |

# Rezultati

# Poredak takmičara

| Mjesto | Ime i<br>prezime     | Škola                                              | Fabrika | Raketne<br>čizme | Biljke | Profesor<br>Srmen | Zapetljanost | Ukupno |
|--------|----------------------|----------------------------------------------------|---------|------------------|--------|-------------------|--------------|--------|
| 1      | Benjamin<br>Mujkić   | JU Druga gimnazija                                 | 100     | 100              | 100    | 100               | 100          | 500    |
| 2      | Faruk<br>Ibrahimović | JU Druga gimnazija                                 | 100     | 100              | 100    | 46                | 100          | 446    |
| 3      | Admir<br>Zatega      | JU Druga gimnazija                                 | 100     | 100              | 100    | 100               | 35           | 435    |
| 4      | Farah<br>Demirović   | PU Richmond Park<br>International Secondary School | 100     | 100              | 100    | 21                | 6            | 327    |
| 5      | Faruk Hodžić         | JU Prva gimnazija Sarajevo                         | 100     | 100              | 42     | 21                | 17           | 280    |
| 6      | Bakir<br>Činjarević  | Prva bošnjačka gimnazija                           | 100     | 90               | 79     | 0                 | 6            | 275    |
| 7      | Faruk<br>Demirović   | PU Richmond Park<br>International Secondary School | 100     | 100              | 43     | 8                 | 0            | 251    |

| 8  | Emina<br>Hasanbegovi<br>ć   | JU Druga gimnazija                                 | 100 | 100 | 24 | 0  | 17 | 241 |
|----|-----------------------------|----------------------------------------------------|-----|-----|----|----|----|-----|
| 9  | Faris Čišija                | JU Treća gimnazija                                 | 100 | 100 | 0  | 21 | 17 | 238 |
| 10 | Emira<br>Ibrahimović        | JU Druga gimnazija                                 | 100 | 100 | 11 | 8  | 6  | 225 |
| 11 | Muhamed<br>Avdić            | JU Četvrta gimnazija Ilidža                        | 100 | 100 | 0  | 0  | 17 | 217 |
| 12 | Nadir<br>Hrustanbego<br>vić | JU Treća gimnazija                                 | 100 | 100 | 0  | 0  | 17 | 217 |
| 13 | Appa Bugis<br>Mubarak       | Srednja elektrotehnička škola<br>Sarajevo          | 100 | 100 | 0  | 0  | 0  | 200 |
| 14 | Amer<br>Bećarević           | JU Četvrta gimnazija Ilidža                        | 100 | 80  | 0  | 0  | 17 | 197 |
| 15 | Nidal Vatreš                | PU Richmond Park<br>International Secondary School | 100 | 80  | 0  | 0  | 17 | 197 |
| 16 | Adna Mujić                  | JU Prva gimnazija Sarajevo                         | 100 | 90  | 0  | 0  | 0  | 190 |
| 17 | Zijad Mehić                 | Perzijsko-bosanski koledž sa<br>internatom         | 100 | 90  | 0  | 0  | 0  | 190 |



| 18 | Kemal<br>Bećarević   | JU Druga gimnazija                         | 100 | 30 | 0 | 21 | 17 | 168 |
|----|----------------------|--------------------------------------------|-----|----|---|----|----|-----|
| 19 | Muhamed<br>Bećirović | Prva bošnjačka gimnazija                   | 100 | 20 | 0 | 0  | 17 | 137 |
| 20 | Faris Hrustić        | JU Treća gimnazija                         | 78  | 40 | 0 | 0  | 17 | 135 |
| 21 | Inas<br>Kasumović    | JAVNA USTANOVA<br>GIMNAZIJA OBALA Sarajevo | 100 | 0  | 0 | 0  | 0  | 100 |
| 22 | Arif Begić           | JU Druga gimnazija                         | 100 | 0  | 0 | 0  | 0  | 100 |
| 23 | Ahmed<br>Zaimović    | Prva bošnjačka gimnazija                   | 100 | 0  | 0 | 0  | 0  | 100 |
| 24 | Bakir Poljčić        | JU Četvrta gimnazija Ilidža                | 100 | 0  | 0 | 0  | 0  | 100 |
| 25 | Ahmed<br>Alijagić    | Perzijsko-bosanski koledž sa<br>internatom | 78  | 0  | 0 | 8  | 0  | 86  |
| 26 | FARIS SAČIĆ          | JAVNA USTANOVA<br>GIMNAZIJA OBALA Sarajevo | 12  | 0  | 5 | 0  | 17 | 34  |
| 27 | Danin Sadžak         | JU Prva gimnazija Sarajevo                 | 34  | 0  | 0 | 0  | 0  | 34  |
| 28 | Anel Kadrić          | JU SC "Nedžad Ibrišimović"<br>Ilijaš       | 22  | 0  | 0 | 0  | 0  | 22  |



| 29 | Kenan<br>Izetbegović | JAVNA USTANOVA<br>GIMNAZIJA OBALA Sarajevo | 22 | 0  | 0 | 0 | 0  | 22 |
|----|----------------------|--------------------------------------------|----|----|---|---|----|----|
| 30 | Hanan<br>Bahtanović  | Perzijsko-bosanski koledž sa<br>internatom | 22 | 0  | 0 | 0 | 0  | 22 |
| 31 | ELDIN<br>GUŠO        | JAVNA USTANOVA<br>GIMNAZIJA OBALA Sarajevo | 0  | 0  | 5 | 0 | 17 | 22 |
| 32 | Haris<br>Imamović    | JU Peta gimnazija                          | 12 | 0  | 0 | 0 | 0  | 12 |
| 33 | Din Asotić           | JU Peta gimnazija                          | 0  | 10 | 0 | 0 | 0  | 10 |
| 34 | Adem Ajdin           | JU SC "Nedžad Ibrišimović"<br>Ilijaš       | 0  | 0  | 0 | 0 | 0  | 0  |
| 35 | Adel Bajrić          | JU Gimnazija Dobrinja                      | 0  | 0  | 0 | 0 | 0  | 0  |
| 36 | Filip Balaba         | JU Gimnazija Dobrinja                      | 0  | 0  | 0 | 0 | 0  | 0  |
| 37 | Mak Džebo            | Richmond Park College                      | 0  | 0  | 0 | 0 | 0  | 0  |
| 38 | Anela<br>Delalović   | Richmond Park College                      | 0  | 0  | 0 | 0 | 0  | 0  |
| 39 | Amin<br>Osmanović    | JU Peta gimnazija                          | 0  | 0  | 0 | 0 | 0  | 0  |



| 40 | Mustafa<br>Trako    | JU Četvrta gimnazija Ilidža                | 0 | 0 | 0 | 0 | 0 | 0 |
|----|---------------------|--------------------------------------------|---|---|---|---|---|---|
| 41 | Merjem<br>Matoruga  | JU SC "Nedžad Ibrišimović"<br>Ilijaš       | 0 | 0 | 0 | 0 | 0 | 0 |
| 42 | Edis<br>Bulbulušić  | JU SC "Nedžad Ibrišimović"<br>Ilijaš       | 0 | 0 | 0 | 0 | 0 | 0 |
| 43 | HARUN<br>RIĐEVIĆ    | JAVNA USTANOVA<br>GIMNAZIJA OBALA Sarajevo | 0 | 0 | 0 | 0 | 0 | 0 |
| 44 | Mustafa<br>Gradišić | Perzijsko-bosanski koledž sa<br>internatom | 0 | 0 | 0 | 0 | 0 | 0 |
| 45 | Eldar Šatara        | Srednja elektrotehnička škola<br>Sarajevo  | 0 | 0 | 0 | 0 | 0 | 0 |



# Poredak škole

| Redno mjesto | Naziv škole                                     | Ukupno bodova |
|--------------|-------------------------------------------------|---------------|
| 1            | JU Druga gimnazija                              | 1381          |
| 2            | PU Richmond Park International Secondary School | 775           |
| 3            | JU Treća gimnazija                              | 590           |
| 4            | JU Četvrta gimnazija Ilidža                     | 514           |
| 5            | Prva bošnjačka gimnazija                        | 512           |
| 6            | JU Prva gimnazija Sarajevo                      | 504           |
| 7            | Perzijsko-bosanski koledž sa internatom         | 298           |
| 8            | Srednja elektrotehnička škola Sarajevo          | 200           |
| 9            | JAVNA USTANOVA GIMNAZIJA OBALA Sarajevo         | 156           |
| 10           | JU Peta gimnazija                               | 22            |
| 11           | JU SC "Nedžad Ibrišimović" Ilijaš               | 22            |
| 12           | JU Gimnazija Dobrinja                           | 0             |

# Postavke zadataka

#### 1. Fabrika

Fabrika ima na raspolaganju *N* mašina koje moraju u narednih *M* dana izvršiti svaki dan po jedan zadatak. Svaka mašina ima tačno jedan zadatak za svaki dan. Znamo koliko za svaki zadatak treba minuta da ga izvrši mašina koja je za njega zadužena. Mašine mogu raditi istovremeno i jedna drugoj ne smetaju.

Naprimjer, ako imamo tri mašine, kojima treba 15, 4 i 10 minuta da izvrše svoje zadatke prvog dana, tada će nam ukupno trebati 15 minuta da se izvrše zadaci za taj dan, jer najsporija mašina mora raditi 15 minuta (druge mašine mogu svoj posao odraditi i ranije, međutim ne mogu raditi zadatak prve mašine, tako da će nam opet trebati 15 minuta). Na vama je da za svaki od M dana odredite koliko će vremena trebati da se izvrše svi dnevni zadaci.

#### Ulazni podaci

U prvom redu se unose prirodni brojevi N i M opisani u tekstu zadatka.

Zatim se unosi N redova po M prirodnih brojeva, ne većih od 1440, odvojenih razmakom. i-ti red predstavlja trajanje zadataka prve mašine - prvi broj u redu je trajanje zadatka (u minutama) te mašine za prvi dan, drugi broj za drugi dan i tako do kraja.

#### Ograničenja

 $1 \le N$ ,  $M \le 100$ , svi ostali brojevi u ulazu su prirodni brojevi ne veći od 1440.

Podzadatak 1 (12 bodova)

N = 1

Podzadatak 2 (22 boda)

M = 1

Podzadatak 3 (31 bodova)

M = N = 3



Podzadatak 4 (35 bodova)

Bez dodatnih ograničenja.

#### Izlazni podaci

Program treba ispisati *M* brojeva. i-ti broj predstavlja broj minuta potrebnih da se završe svi zadaci i-ti dan, odnosno vrijeme potrebno da sve mašine odrade svoj zadatak. Mašine rade neovisno jedna od druge, ali svaka može raditi isključivo svoj zadatak.

| Ulaz                          | Očekivani izlaz | Objašnjenje                                                                                                                                                                                                                                                                              |
|-------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 5 8 3 4 4 4                 | 8 3 4 4 4       | Kako na raspolaganju imamo samo jednu mašinu tako će svaki dan posao se završiti čim ona završi svoj zadatak. To je prvi dan nakon 8 minuta, drugi dan nakon 3 minute, a treći, četvrti i peti dan nakon 4 minute. Ovaj primjer odgovara podzadatku 1.                                   |
| 4 1<br>70<br>120<br>30<br>130 | 130             | Na prvi i jedini dan četvrtoj mašini treba najviše vremena da odradi zadatak, tako da će se posao završiti nakon 130 minuta. Ovaj primjer odgovara podzadataku 2.                                                                                                                        |
| 3 3<br>10 6 4<br>9 7 2        | 10 7 4          | Prvi dan dvije mašine zahtjevaju po 10 minuta, a treća 9 minuta, tako da će se svi zadaci završiti nakon 10 minuta. Drugi dan svi zadaci će se završiti za 7 minuta, pošto najsporijoj mašini (mašini 2) je potrebno 7 minuta da završi svoj zadatak. Treći dan prvoj mašini je potrebno |

| 10 1 3                                          |         | najviše vremena, a to je 4 minute. Ovaj primjer odgovara podzadatku 3.                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 4<br>1 2 3 4<br>5 6 7 8<br>4 4 4 4<br>3 9 2 8 | 5 9 7 8 | Prvi dan trajanje zadataka mašina je 1, 5, 4 i 3 minute redom. 5 minuta je potrebno da se završe svi zadaci.  Drugi dan trajanje poslova je 2, 6, 4 i 9 minuta redom. 9 minuta je potebno da se završe svi zadaci.  Treći dan trajanje poslova je 3, 7, 4 i 2 minuta redom. 7 minuta je potebno da se završe svi zadaci.  Četvrti dan trajanje poslova je 4, 8, 4 i 8 minuta redom. 8 minuta je potebno da se završe svi zadaci. |

#### 2. Raketne čizme

Pero će putovati stepeničastom stazom na kojoj zna ukupnu visinu svake stepenice od tla. Kako će nekada morati preći sa jedne stepenice na mnogo višu ponio je raketne čizme. Problem je što su još uvijek prototip i samo rade jednom prije nego što se pokvare.

Peri nije problem silaziti niz stepenice, ma koliko god velika razlika u visini bila. Ako iskoristi raketne čizme, Pero može preći na iduću stepenicu, ma koliko god ona viša bila od trenutne.

Vaš zadatak je da odredite koji je najveći uspon koji Pero mora napraviti sa jedne stepenice na iduću bez raketnih čizama, ako njih može iskoristiti samo jednom.

Ulazni podaci

Prva linija ulaza sadrži broj N, broj stepenica ispred Pere. Druga linija ulaza sadrži N brojeva  $h_{,}$ , visine stepenica ispred Pere.

Ograničenja (program se neće testirati van ovih opsega)

 $1 \le N \le 1000000$ 

 $-10000 \le h_i \le 10000$ 

**Napomena**: zbog potencijalno velikog broja upisanih brojeva predlažemo da, ukoliko koristite cin/cout za upis i ispis, na početak main funkcije dodate liniju "ios\_base::sync\_with\_stdio(false);" kako biste ubrzali proces upisa i ispisa podataka.

Podzadatak 1 (20 bodova)

 $N \leq 3$ 

Podzadatak 2 (20 bodova)

N < 1000 i postoje tačno dva para stepenica kod kojih je prva stepenica manja od naredne.



Podzadatak 3 (50 bodova)

N < 100000

Podzadatak 4 (10 bodova)

Bez dodatnih ograničenja

#### Izlazni podaci

Izlaz treba da se sastoji od jednog broja, najvećeg uspona koji će Pero morati napraviti bez raketnih čizama. Ukoliko Pero neće morati praviti uspon, ispisati 0.

| Ulaz                | Očekivani izlaz | Objašnjenje                                                                                                                                                                                                                                                                               |
|---------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 3 8 3 8 3         | 5               | Pero će dva puta morati skakati sa niže na višu stepenicu.<br>Raketne čizme može iskoristiti samo jednom, u ovom<br>slučaju je svejedno za koji skok, obzirom da su oba skoka<br>sa visinskom razlikom 5.                                                                                 |
| 6<br>3 7 6 15 10 12 | 4               | Ukoliko Pero u prvom skoku iskoristi raketne čizme, kasnije će morati skočiti sa stepenice visine 6 na stepenicu visine 15, što predstavlja uspon od 9. Bolje je Peri da sačuva raketne čizme za taj skok, u tom slučaju najveća visinska razlika će biti 4, što je i optimalno rješenje. |

# 3. Biljke

U dugom, uskom stakleniku se nalazi *M* biljaka. Kroz tmurne i hladne zimske dane potrebno je da upalite sijalice koje će ih osvijetliti kako bi one mogle rasti. Potrebno je ovo uraditi sa minimalnom potrošnjom električne energije.

Na raspolaganju vam se nalazi N sijalica. Potrebno je da svaku biljku osvjetljava minimalno jedna sijalica. Svaka sijalica i osvjetljava sve biljke na pozicijama od  $A_i$ do  $B_i$  (uključujući i  $A_i$  i  $B_i$ ), a troši  $C_i$  vati električne energije.

Potrebno je odredite minimalni ukupan trošak električne energije potreban da osvijetlite svaku biljku.

#### Ulazni podaci

U prvoj liniji upisa se nalaze dva broja, *M* i *N*. *M* je broj biljaka u stakleniku, a *N* je broj sijalica.

Idući red upisa se sastoji od M brojeva  $P_i$  koji predstavljaju pozicije biljaka. Idućih N redova sadrži po tri broja,  $A_i$ ,  $B_i$  i  $C_i$  koji odgovaraju granicama osvjetljenog područja, te trošku energije koji odgovara sijalici broj i.

#### Ograničenja

$$1 \le M \le 100, 1 \le N \le 20, 0 \le A_i \le B_i \le 10^9, 1 \le C_i \le 10^9, 0 \le P_i \le 10^9$$

Podzadatak 1 (5 bodova)

M = 1

Podzadatak 2 (6 bodova)

N = 1

Podzadatak 3 (12 bodova)

N = 2



Podzadatak 4 (24 bodova)

N = 3

Podzadatak 5 (13 bodova)

Sve sijalice na raspolaganju osvjetljavaju sve biljke.

Podzadatak 6 (19 bodova)

Sve biljke su na poziciji 0 ili 1.

Podzadatak 7 (21 bod)

Bez dodatnih ograničenja

#### Izlazni podaci

Ukoliko nije moguće sve biljke osvjetliti potrebno je samo ispisati -1 i time završiti rad programa.

U suprotnom, ukoliko to jeste moguće potrebno je ispisati minimalni utrošak električne energije potreban da se sve biljke osvijetle.

| Ulaz  | Očekivani izlaz | Objašnjenje                                                                                                            |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------|
| 3 5   | 7               | Paljenjem druge i četvrte sijalice (utrošci 3 i 4 W, redom) osvijetlit ćemo sve tri biljke (na lokacijama 0, 4 i 6) sa |
| 0 4 6 |                 | utroškom energije od 7 W.                                                                                              |
| 0 7 8 |                 |                                                                                                                        |
| 0 4 3 |                 |                                                                                                                        |
| 4 4 2 |                 |                                                                                                                        |
| 4 6 4 |                 |                                                                                                                        |
| 4 6 6 |                 |                                                                                                                        |

| 4 5 5 10 20 100 3 7 8 10 10 1 11 90 20 4 150 60 95 105 10 | 39 | lako bi sijalica broj 4 sama osvjetlila sve biljke (sa utroškom od 60 W) ekonomičnije rješenje je upaliti sve ostale sijalice. Na ovaj način utrošak energije je 39 W, a sve biljke su osvjetljene. |
|-----------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 3<br>5 10<br>0 7 10<br>5 6 2<br>6 8 5                   | -1 | Drugu biljku (na poziciji 10) je nemoguće osvijetliti. Ovaj primjer odgovara podzadatku 4.                                                                                                          |
| 3 4<br>1 0 0<br>0 0 5<br>2 6 1<br>0 3 11<br>1 2 6         | 11 | Minimalni utrošak se ostvaruje paljenjem prve i posljednje sijalice, no također se ostvaruje i paljenjem samo treće sijalice. Ovaj primjer odgovara podzadatku 6.                                   |

#### 4. Profesor Srmen

Bliži se treće i posljednje kolo SPSP-a (Sarajevskog prvenstva u sportskom penjanju). Profesor Srmen (PS) organizuje ovu trokolnu sportsku priredbu (SP) kako bi privukao svjetsku pažnju na potencijal sarajevske prirode (PSP na PSP). Super!

Poznavajući takmičare Srmen je zaključio da svaki takmičar koji je od nekog drugog imao strogo više bodova u oba dosadašnja kola sigurno neće imati strogo manje bodova od tog istog takmičara u trećem kolu. Na primjer, ako je prvi takmičar imao po 200 bodova u prva dva kola, a drugi takmičar po 100 bodova u ta ista dva kola onda drugi takmičar sigurno neće imati više bodova od prvog u trećem kolu.

Vaš zadatak je odrediti minimalno i maksimalno mjesto koje može postići svaki od takmičara pod pretpostavkom da je zaključak profesora Srmena ispravan. Mjesto se određuje na osnovu sume bodova sva tri kola. Dva takmičara sa istim brojem bodova dijele mjesto, a takmičar ostvaruje mjesto M ako i samo ako postoji tačno M-1 takmičara sa više bodova od njega.

U svakom kolu je moguće ostvariti maksimalno 600 bodova, a minimalno 0.

#### Ulazni podaci

U prvom redu se unosi prirodan broj N, broj takmičara.

Zatim se unosi N redova koji sadrže po 2 broja od 0 do 600, a to su brojevi bodova takmičara na prvom i drugom već održanom kolu.

#### Ograničenja

 $1 \le N \le 500\,000$ , svi ostali brojevi u ulazu su nenegativni cijeli brojevi koji nisu veći od 600.

Napomena: zbog potencijalno velikog broja upisanih brojeva predlažemo da, ukoliko koristite cin/cout za upis i ispis, na početak main funkcije dodate liniju "ios base::sync with stdio(false);" kako biste ubrzali proces upisa i ispisa podataka.

Podzadatak 1 (8 bodova)

N = 2



Podzadatak 2 (13 bodova)

N = 3

Podzadatak 3 (25 bodova)

Svi takmičari su u prva dva kola ostvarili tačno 0 ili tačno 600 bodova u bilo kojem od kola.

Podzadatak 4 (54 boda)

Bez dodatnih ograničenja

#### Izlazni podaci

Za svakog od N takmičara je u poseban red potrebno ispisati po 2 broja, najviše i najniže mjesto koje može postići na cjelokupnom takmičenju.

| Ulaz                           | Očekivani izlaz   | Objašnjenje                                                                                                                                                                                                                                                                                        |
|--------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>250 300<br>250 250        | 1 2 1 2           | Kako nijedan takmičar nije imao strogo više bodova od nekog drugog u oba kola tako nema ograničenja na broj bodova u trećem kolu (osim da mora biti od 0 do 600). Ovisno od broja bodova na trećem kolu oba takmičara mogu na kraju osvojiti 1. ili 2. mjesto. Ovaj primjer odgovara podzadatku 1. |
| 3<br>50 100<br>70 300<br>600 0 | 2 3<br>1 2<br>1 3 | Prvi takmičar sigurno ne može biti prvi jer će uvijek imati manje bodova od drugog takmičara. Slično, drugi takmičar sigurno ne može biti posljednji pošto je uvijek bolji od prvog takmičara. Treći takmičar nema nikaku garanciju za svoje konačno mjesto. Ovaj primjer odgovara podzadatku 2.   |

| 4<br>0 0<br>0 600<br>600 0<br>600 600 | 2 4<br>1 3<br>1 3<br>1 1 | Ukoliko u trećem kolu prvi takmičar ima 600 bodova, a drugi i treći takmičar imaju po 0 bodova onda oni dijele 2. mjesto. Ukoliko četvrti takmičar ima 0 bodova u trećem kolu, a drugi ili treći takmičar imaju 600 onda oni mogu dijeliti 1. mjesto. Ovaj primjer odgovara podzadatku 3. |
|---------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                     | 1 3                      | Prvi i drugi takmičar će biti na strogo višim pozicijama od trećeg i petog takmičara.                                                                                                                                                                                                     |
| 250 180                               | 1 3                      |                                                                                                                                                                                                                                                                                           |
| 250 132                               | 3 5                      |                                                                                                                                                                                                                                                                                           |
| 220 123                               | 1 5                      |                                                                                                                                                                                                                                                                                           |
| 132 194                               | 3 5                      |                                                                                                                                                                                                                                                                                           |
| 220 105                               |                          |                                                                                                                                                                                                                                                                                           |

# 5. Zapetljanost

Berina voli brojeve koji su vrlo zapetljani. Ako krenemo od prirodnog broja *N* većeg od 1 i zamijenimo ga najmanjim prirodnim brojem kojim on nije djeljiv, te ponavljamo ovaj postupak eventualno ćemo doći do broja 2. Broj različitih brojeva koji dobijemo ovim postupkom je njegova zapetljanost. Jedini ovakav broj čija je zapetljanost 1 je upravo 2.

Berina je već napisala program koji računa zapetljanost broja, no od vas traži da riješite teži problem. Berinu zanima zbir zapetljanosti svih brojeva od *A* do *B* (uključujući i *A* i *B*).

#### Ulazni podaci

U prvom i jedinom redu ulaza se nalaze brojevi A i B, granice opsega za koji se treba izračunati zbir zapetljanosti.

#### Ograničenja

$$2 \le A \le B \le 10^{17}$$
.

Podzadatak 1 (6 bodova)

$$A = B < 20$$
.

Podzadatak 2 (11 bodova)

$$B \leq 10^5.$$

Podzadatak 3 (18 bodova)

$$A \le 10^9$$
,  $B = A + 10^9$ .

Podzadatak 4 (65 bodova)

Bez dodatnih ograničenja.

#### Izlazni podaci

Potrebno je ispisati jedan broj, zbir zapetljanosti svih brojeva u opsegu iz ulaza.

| Ulaz    | Očekivani izlaz | Objašnjenje                                                                                        |
|---------|-----------------|----------------------------------------------------------------------------------------------------|
| 6 6     | 4               | Idući broj nakon 6 je 4, pa 3, pa 2. Ovo daje dužinu niza (pa samim tim i zapetljanost) jednaku 4. |
| 2 5     | 8               | Zapetljanosti brojeva 2, 3, 4 i 5 su 1, 2, 3 i 2, redom.                                           |
| 10 100  | 235             |                                                                                                    |
| 505 550 | 119             |                                                                                                    |

# Rješenja zadataka

Sva rješenja, tekstovi zadataka kao i testni slučajevi su (ili će biti) dostupni na linku: <a href="https://github.com/hhadzem/ks inf takm">https://github.com/hhadzem/ks inf takm</a>.

### 1. Fabrika

```
#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, m;
    cin >> n >> m;
    vector <vector <int> > mat(n, vector <int>(m));
    vector <int> ispis(m, 0);
      for(int i = 0; i < n; i++)
             for(int j = 0; j < n; j++) {
                    cin >> mat[i][j];
                    if(i == 0)
                          ispis[i] = mat[i][j];
                    ispis[j] = max(ispis[j], mat[i][j]);
             }
      for(int i = 0; i < m; i++)</pre>
             cout << ispis[i] << " ";</pre>
    return 0;
```

# 2. Raketne čizme

```
#include<iostream>
#include<vector>
#include<algorithm>
#include<limits.h>
using namespace std;
void solve_o_nlogn(vector<int> &arr, int &n) {
      vector<int> diff;
      for(int i = 1; i < n; i++)
             if(arr[i] > arr[i-1])
                    diff.push_back(arr[i] - arr[i-1]);
      sort(diff.begin(), diff.end());
      cout << (diff.size() < 2 ? 0 : diff[diff.size() - 2]) << endl;</pre>
}
void solve_o_n(vector<int> &arr, int &n) {
      vector<int> diff;
      int max_first = INT_MIN, max_second = INT_MIN;
      for(int i = 1; i < n; i++)</pre>
             if(arr[i] > arr[i-1]) {
                    int diff = arr[i] - arr[i-1];
                    if(diff >= max_first) {
                           max second = max first;
                           max_first = diff;
                    } else if(diff > max_second) {
                           max_second = diff;
      cout << (max_second == INT_MIN ? 0 : max_second) << endl;</pre>
}
int main() {
      cin.tie(NULL);
      ios base::sync with stdio(false);
      int n; cin >> n;
      vector<int> arr(n), diff;
      for(int i = 0; i < n; i++)
             cin >> arr[i];
```

```
//solve_o_n(arr, n);
solve_o_nlogn(arr, n);
return 0;
}
```



# 3. Biljke

```
#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
using namespace std;
int main() {
    int m, n;
    cin >> m >> n;
    vector <int> vb(m), a(n), b(n), c(n);
      for(int i = 0; i < m; i++) cin >> vb[i];
      for(int i = 0; i < n; i++) cin >> a[i] >> b[i] >> c[i];
    long long min_cijena = -1, tc;
    int bitmask = 0, bmc, obm;
    vector <bool> osvjetljena(m);
    bool ok;
    while(bitmask < (1<<n)) {</pre>
        for(int i=0;i<m;i++) osvjetljena[i] = 0;</pre>
        bmc = bitmask;
        tc = 0;
        for(int i=0;i<n;i++) {</pre>
            if(bmc%2) {
                 for(int j=0; j < m; j++)
                     if(vb[j] >= a[i] && vb[j] <= b[i]) osvjetljena[j] = true;</pre>
                tc += c[i];
            bmc /= 2;
        }
        ok = true;
        for(int i = 0; i < m; i++)
                    ok &= osvjetljena[i];
```

# 4. Profesor Srmen

```
#include <cstdio>
using namespace std;
const int NN = 500000;
const int MM = 600;
int a[NN], b[NN];
int k[MM + 1][MM + 1];
int s[MM + 1][MM + 1];
int suma(int p, int q, int P, int Q) {
   if (P < 0 || Q < 0)
       return 0;
   int ret = s[P][Q];
   if (p > 0)
       ret -= s[p - 1][Q];
   if (q > 0)
        ret -= s[P][q - 1];
   if (p > 0 && q > 0)
        ret += s[p - 1][q - 1];
   return ret;
}
int main() {
   int n;
   scanf("%d", &n);
   for (int i = 0; i < n; ++i) {
        scanf("%d%d", a+i, b+i);
       ++k[a[i]][b[i]];
   for (int i = 0; i \leftarrow MM; ++i)
        for (int j = 0; j <= MM; ++j) {
            s[i][j] = k[i][j];
            if (i > 0)
                s[i][j] += s[i - 1][j];
            if (j > 0)
               s[i][j] += s[i][j - 1];
            if (i > 0 && j > 0)
                s[i][j] -= s[i - 1][j - 1];
        }
```



# 5. Zapetljanost

```
HONI 2012/13, 1. kolo, zadatak SNAGA
      Autor: Adrian Satja Kurdija
#include <iostream>
#include <vector>
using namespace std;
int main()
      long long A, B, rjesenje = 0;
      cin >> A >> B;
      long long NZV = 1;
      int snaga[100];
      snaga[2] = 1;
      for (int K = 2; K < 100; K++)
      {
             for (int i = 2; i < K; i++) {
                    if (K % i != 0) {
                          snaga[K] = snaga[i] + 1;
                          break;
                    }
             }
             long long novi_NZV = NZV;
             vector<int> prosti_djelitelji_K;
             for (int p = 2, k = K; k > 1; p++) {
                    if (k % p == 0) {
                          prosti_djelitelji_K.push_back(p);
                          while (k \% p == 0) {
                                 k /= p;
                          }
                    }
             }
             if ((int)prosti_djelitelji_K.size() == 1) {
                    novi_NZV *= prosti_djelitelji_K[0];
             }
```

```
rjesenje += (snaga[K] + 1) * (B/NZV - (A-1)/NZV);

if (novi_NZV > B || novi_NZV < 0) break;
    rjesenje -= (snaga[K] + 1) * (B/novi_NZV - (A-1)/novi_NZV);

    NZV = novi_NZV;
}
cout << rjesenje << endl;
}</pre>
```

