Alexander S. Kulikov

Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences and University of California, San Diego

Outline

Pascal's Triangle

Symmetries

Row Sums

Binomial Theorem

Combinations

Question

There are *n* students. What is the number of ways of forming a team of *k* students out of them?

Combinations

Question

There are n students. What is the number of ways of forming a team of k students out of them?

Answer

$$\binom{n}{k}$$

• Fix one of the students, call her Alice

- Fix one of the students, call her Alice
- There are two types of teams:

- Fix one of the students, call her Alice
- There are two types of teams:
 - 1. Teams with Alice: $\binom{n-1}{k-1}$

- Fix one of the students, call her Alice
- There are two types of teams:
 - 1. Teams with Alice: $\binom{n-1}{k-1}$
 - 2. Teams without Alice: $\binom{n-1}{\nu}$

- Fix one of the students, call her Alice
- There are two types of teams:
 - 1. Teams with Alice: $\binom{n-1}{k-1}$
 - 2. Teams without Alice: $\binom{n-1}{k}$
- · Hence,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

n = 0

$$n = 0$$

 $n = 1$

$$n = 0$$

 $n = 1$
 $n = 2$

Code

```
C = dict() # C([n,k]) is equal to n choose k

for n in range(8):
    C[n, 0] = 1
    C[n, n] = 1

    for k in range(1, n):
        C[n, k] = C[n - 1, k - 1] + C[n - 1, k]

print(C[7, 4])
```

Code

```
C = dict() # C([n,k]) is equal to n choose k

for n in range(8):
    C[n, 0] = 1
    C[n, n] = 1

    for k in range(1, n):
        C[n, k] = C[n - 1, k - 1] + C[n - 1, k]

print(C[7, 4])
```

Outline

Pascal's Triangle

Symmetries

Row Sums

Binomial Theorem

Pascal's Triangle is Symmetric

Pascal's Triangle is Symmetric

Pascal's Triangle is Symmetric

Theorem

$$\binom{n}{k} = \binom{n}{n-k}$$

Theorem

 $\binom{n}{k} = \binom{n}{n-k}$

 $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$

Combinatorial Proof

• $\binom{n}{k}$ is the number of ways of selecting a team of size k out of n students

Combinatorial Proof

- $\binom{n}{k}$ is the number of ways of selecting a team of size k out of n students
- $\binom{n}{n-k}$ is the number of ways of selecting a team of size n-k out of n students

Combinatorial Proof

- $\binom{n}{k}$ is the number of ways of selecting a team of size k out of n students
- $\binom{n}{n-k}$ is the number of ways of selecting a team of size n-k out of n students
- this is just the number of ways of partitioning n students into two teams of size k and n – k

Outline

Pascal's Triangle

Symmetries

Row Sums

Binomial Theorem

Row Sums

Row Sums

Row Sums

					1						= 1
				1	+	1					= 2
			1	+	2	+	1				= 4
		1	+	3	+	3	+	1			=8
	1	+	4	+	6	+	4	+	1		= 16
1	+	5	+	10	+	10	+	5	+	1	= 32

Theorem

The sum of all the numbers in the n-th row of

Pascal's triangle is equal to
$$2^n$$
:

 $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n-1} + \binom{n}{n} = 2^n$

Proof by Induction

• The base case (0-th row) holds

Proof by Induction

- The base case (0-th row) holds
- We'll show that the sum of each row is twice the sum of the previous row:

(1+1)(3+3)(3+3)(1+1)

- $\binom{n}{k}$ is the number of k-subsets of a set of size n
- the sum of $\binom{n}{k}$ for all k (from 0 to n) is the number of all subsets of an n element set
- this is 2ⁿ by the product rule: each of the n elements is either included or not

Alternating Row Sums

Alternating Row Sums

Alternating Row Sums

Theorem

For
$$n > 0$$
, $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

Theorem

For
$$n > 0$$
, $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

 For odd n, follows immediately from the symmetry property

Theorem

For
$$n > 0$$
, $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

- For odd n, follows immediately from the symmetry property
- In general, can be shown by using the sum pattern of the triangle (each internal element is equal to the sum of the two elements above it)

· Need to show that

$$\binom{n}{1} + \binom{n}{3} + \cdots = \binom{n}{0} + \binom{n}{2} + \cdots$$

Need to show that

$$\binom{n}{1} + \binom{n}{3} + \cdots = \binom{n}{0} + \binom{n}{2} + \cdots$$

 Combinatorial meaning: the number of odd size subsets is the same as the number of even size subsets

Need to show that

$$\binom{n}{1} + \binom{n}{3} + \cdots = \binom{n}{0} + \binom{n}{2} + \cdots$$

- Combinatorial meaning: the number of odd size subsets is the same as the number of even size subsets
- To prove this, we'll construct a one-to-one correspondence between odd size subsets and even size subsets

One-to-one Correspondence

• Fix any element x (can do this since n > 0)

One-to-one Correspondence

- Fix any element x (can do this since n > 0)
- Partition all subsets into pairs (A, B) where A = B + x (more formally, $A = B \cup \{x\}$)

One-to-one Correspondence

- Fix any element x (can do this since n > 0)
- Partition all subsets into pairs (A, B) where A = B + x (more formally, $A = B \cup \{x\}$)
- One of A, B has odd size, the other one has even size

Example

 $S = \{a, b, c, d\}$

Even size subsets	Odd size subsets
Ø	{a}
{a, b}	{b}
{a, c}	{c}
{a, d}	{d}
{b, c}	{a, b, c}
{b, d}	{a, b, d}

 $\{a, c, d\}$

{b, c, d}

{c, d}

{a, b, c, d}

Outline

Pascal's Triangle

Symmetries

Row Sums

Binomial Theorem

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \cdots + \binom{n}{k}a^{n-k}b^k + \cdots + \binom{n}{n}b^n$$

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \cdots + \binom{n}{k}a^{n-k}b^k + \cdots + \binom{n}{n}b^n$$

Equivalently,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \cdots + \binom{n}{k}a^{n-k}b^k + \cdots + \binom{n}{n}b^n$$

Equivalently,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Can be shown by expanding the expression

$$(a+b)(a+b)\cdots(a+b)$$

Proof by Induction

$$(a+b)^{4}$$

$$= (a+b)^{3}(a+b)$$

$$= (a^{3} + 3a^{2}b + 3ab^{2} + b^{3})(a+b)$$

$$= a^{4} + 3a^{3}b + 3a^{2}b^{2} + ab^{3} + a^{3}b + 3a^{2}b^{2} + 3ab^{3} + b^{4}$$

$$= a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

Example

$$(2a - b)^{4}$$

$$= ((2a) + (-b))^{4}$$

$$= (2a)^{4} + 4(2a)^{3}(-b) + 6(2a)^{2}(-b)^{2} + 4(2a)(-b)^{3} + (-b)^{4}$$

$$= 16a^{4} - 32a^{3}b + 24a^{2}b^{2} - 8ab^{3} + b^{4}$$

Consequences

• Set a = b = 1. The number of subsets is 2^n :

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Consequences

• Set a = b = 1. The number of subsets is 2^n :

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

• Set a = 1, b = -1. The number of odd size subsets is the same as the number of even size subsets:

$$0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$$

$$3^{n} = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^{2} + \cdots + \binom{n}{n}2^{n}$$

• Set a = 1, b = 2:

$$3^n = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^2 + \cdots + \binom{n}{n}2^n$$

Combinatorial proof:

$$3^{n} = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^{2} + \cdots + \binom{n}{n}2^{n}$$

- Combinatorial proof:
 - 3ⁿ is the number of words of length n over the alphabet {x, y, z}

$$3^n = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^2 + \cdots + \binom{n}{n}2^n$$

- Combinatorial proof:
 - 3ⁿ is the number of words of length n over the alphabet {x, y, z}
 - \$\begin{pmatrix} n \\ 0 \end{pmatrix}\$ is the number of words consisting of the letter x only

$$3^{n} = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^{2} + \cdots + \binom{n}{n}2^{n}$$

- Combinatorial proof:
 - 3ⁿ is the number of words of length n over the alphabet {x, y, z}
 - \$\begin{pmatrix} n \\ 0 \end{pmatrix}\$ is the number of words consisting of the letter x only
 - $\binom{n}{1}$ 2 is the number of words with exactly n-1 letters x

$$3^n = \binom{n}{0} + \binom{n}{1}2 + \binom{n}{2}2^2 + \cdots + \binom{n}{n}2^n$$

- Combinatorial proof:
 - 3ⁿ is the number of words of length n over the alphabet {x, y, z}
 - \$\binom{n}{0}\$ is the number of words consisting of the letter x only
 - $\binom{n}{1}$ 2 is the number of words with exactly n-1 letters x
 - $\binom{n}{2}2^2$ is the number of words with exactly n-2 letters x