Homework 1

CSCI 567: Machine Learning

Seyed Mohammad Asghari Pari

Linear Regression

Solution to Question 1.1:

From linear algebra,

Fact 1: A $m \times m$ matrix S is invertible iff rank(S) = m.

Fact 2: $rank(X^{\intercal}X) = rank(X)$.

Fact 3: For a $m \times n$ matrix S, we have $rank(S) \leq \min\{m, n\}$.

We know that our design matrix X is $N \times (D+1)$ (it has N rows, D+1 columns) and hence, $X^\intercal X$ is a $(D+1) \times (D+1)$ matrix. Now, from Fact 1, $X^\intercal X$ is invertible iff $rank(X^\intercal X) = D+1$. Combining this result with Fact 2, we conclude that $X^\intercal X$ is invertible iff rank(X) = D+1. Since the dimensionality of \boldsymbol{w} is D+1, we can say that $X^\intercal X$ is invertible iff rank(X) = dimensionality of \boldsymbol{w} .

Hence, if $X^{\intercal}X$ is NOT invertible, it means $rank(X) \neq$ dimensionality of \boldsymbol{w} . Further from Fact 3, $rank(X) \leq$ dimensionality of \boldsymbol{w} . Consequently, if $X^{\intercal}X$ is NOT invertible, it means rank(X) < dimensionality of \boldsymbol{w} .

In a nutshell, if $X^{T}X$ is NOT invertible, it means rank(X) < dimensionality of w.

Solution to Question 1.2:

In the lecture, we found that

$$RSS(\boldsymbol{w}, b) = \sum_{n=1}^{N} [y_n - (b + \sum_{d=1}^{D} w_d x_{nd})]^2.$$
 (1)

Now, by taking the derivative of (1) w.r.t. b, we get

$$\frac{\partial RSS(\boldsymbol{w}, b)}{\partial b} = -2\sum_{n=1}^{N} [y_n - (b + \sum_{d=1}^{D} w_d x_{nd})]. \tag{2}$$

If we set the gradient in (2) to 0 for $b = b^*$, we get

$$2\sum_{n=1}^{N} [y_n - (b^* + \sum_{d=1}^{D} w_d x_{nd})] = 0$$
(3)

which can be written as,

$$\sum_{n=1}^{N} y_n - \sum_{n=1}^{N} b^* - \sum_{n=1}^{N} \sum_{d=1}^{D} w_d x_{nd} = 0.$$
 (4)

Note that according to condition of question, we have

$$\frac{1}{N} \sum_{n=1}^{N} x_{nd} = 0, \quad \forall d = 1, \dots, D$$
 (5)

$$\implies \sum_{n=1}^{N} x_{nd} = 0, \quad \forall d = 1, \dots, D.$$
 (6)

Further, note that we can change the order of summation in (4) to get

$$\sum_{n=1}^{N} y_n - \sum_{n=1}^{N} b^* - \sum_{d=1}^{D} \sum_{n=1}^{N} w_d x_{nd} = 0,$$
(7)

$$\implies \sum_{n=1}^{N} y_n - \sum_{n=1}^{N} b^* - \sum_{d=1}^{D} w_d \sum_{n=1}^{N} x_{nd} = 0$$
 (8)

$$\implies \sum_{n=1}^{N} y_n - \sum_{n=1}^{N} b^* - \sum_{d=1}^{D} w_d \times 0 = 0$$
 (9)

$$\implies \sum_{n=1}^{N} y_n - \sum_{n=1}^{N} b^* = 0 \tag{10}$$

$$\implies b^* = \frac{1}{N} \sum_{n=1}^{N} y_n, \tag{11}$$

where (8) is correct because w_d does not depend on n and can be taken out from the summation over n. Furthermore, (9) is correct according to (6).

Logistic Regression

Solution to Question 2.1:

If we don't have access to the feature x of the data, we let the probability that a test sample is labeled as 1 be $p(y=1) = \sigma(b)$. Considering this, the cross entropy error function can be rewritten as,

$$\mathcal{E}(b) = -\sum_{n=1}^{N} \left[y_n \log[p(y_n = 1)] + (1 - y_n) \log[p(y_n = 0)] \right]$$
 (12)

$$= -\sum_{n=1}^{N} \left[y_n \log[\sigma(b)] + (1 - y_n) \log[1 - \sigma(b)] \right]. \tag{13}$$

Now, in order to minimize $\mathcal{E}(b)$, we take its derivative w.r.t. b and set it to zero for $b=b^*$ to get,

$$\frac{\partial \mathcal{E}(b)}{\partial b} = 0 \tag{14}$$

$$\implies -\sum_{n=1}^{N} \left[y_n \frac{\sigma'(b^*)}{\sigma(b^*)} + (1 - y_n) \frac{-\sigma'(b^*)}{1 - \sigma(b^*)} \right] = 0.$$
 (15)

Note that $\sigma(b) = \frac{1}{1 + e^{-b}}$ and hence,

$$\sigma'(b) = \frac{e^{-b}}{(1+e^{-b})^2} = (1 - \frac{1}{1+e^{-b}}) \frac{1}{1+e^{-b}} = [1 - \sigma(b)]\sigma(b).$$
 (16)

Considering (16), (15) can be further simplified as,

$$\sum_{n=1}^{N} \left[y_n [1 - \sigma(b^*)] - (1 - y_n) \sigma(b^*) \right] = 0$$
 (17)

$$\implies \sum_{n=1}^{N} \left[y_n - y_n \sigma(b^*) - \sigma(b^*) + y_n \sigma(b^*) \right] = 0, \tag{18}$$

$$\implies \sum_{n=1}^{N} \left[y_n - \sigma(b^*) \right] = 0 \tag{19}$$

$$\implies \sigma(b^*) = \frac{1}{N} \sum_{n=1}^{N} y_n, \tag{20}$$

$$\implies b^* = \sigma^{-1} \left(\frac{1}{N} \sum_{n=1}^N y_n \right). \tag{21}$$

If we want to find the explicit form of b^* , we can substitute $\sigma(b^*) = \frac{1}{1 + e^{-b^*}}$ in (20) and solve for b^* to get,

$$\frac{1}{1 + e^{-b^*}} = \frac{1}{N} \sum_{n=1}^{N} y_n, \tag{22}$$

$$\implies e^{-b^*} = \frac{N - \sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} y_n} = \frac{\sum_{n=1}^{N} (1 - y_n)}{\sum_{n=1}^{N} y_n}$$
 (23)

$$\implies b^* = -\log\left(\frac{\sum_{n=1}^{N} (1 - y_n)}{\sum_{n=1}^{N} y_n}\right) = \log\left[\sum_{n=1}^{N} y_n\right] - \log\left[\sum_{n=1}^{N} (1 - y_n)\right]. \tag{24}$$

Therefore, we get $p(y=1) = \sigma(b^*) = \frac{1}{N} \sum_{n=1}^{N} y_n$.