Анализ потоков данных (Часть 1)

Mining Data Streams (Part 1)

http://mmds.org

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Потоки данных

- Во многих ситуациях анализа данных весь набор данных заранее неизвестен
- Управление потоками становится важным, когда the input rate контролируется извне:
 - Запросы Google
 - Обновление статусов в Twitter или Facebook
- Можно считать, что поток данных бесконечен и нестационарен (распределение изменяется с течением времени)

Модель потока данных

- Входные элементы поступают с высокой интенсивностью по одному или более входному порту (т.е., потоки)
 - Будем называть элементы потока кортежами (tuples)
- Система не может хранить целый поток так, чтобы к нему был доступ
- Q: Как выполнять вычисления о потоке используя только ограниченные объем (вторичной) памяти?

SGD - поточный алгоритм

- Стохастический градиентный спуск (SGD) пример поточного алгоритма
- В машинном обучении: Online Learning
 - Позволяет моделировать задачи с непрерывным потоком данных
 - Нужен алгоритм для обучения из потока и медленной адаптации к изменениям в данных
- Идея: Медленные обновления модели

- SGD (SVM, Perceptron) производят малые обновления
- Сначала: Обучить классификатор на обучающих данных.
- Затем: По каждому элементу потока немного обновляем модель (используя малую интенсивность обучения)

Задачи для потоков

- Типы запросов по потоку:
 - Выборка данных из потока
 - * Построение случайной выборки
 - Запросы по скользящим окнам
 - * Количество элементов типа x среди последних k элементов потока

Задачи для потоков

- Типы запросов по потоку:
 - Фильтрация потока данных
 - * Выбор элементов со свойством х из потока
 - Подсчет различных элементов
 - * Количество различных элементов среди последних k элементов потока
 - Оценка моментов
 - * Оценка среднего/стандартного отклонения последних k элементов потока

– Нахождение частых элементов

Приложения (1)

- Анализ потоков запросов
 - Google хочет знать, какие запросы более частые сегодня по сравнению со вчера
- Анализ потоков кликов
 - Yahoo хочет знать, какие из ее страниц получают необучный набор хитов за последний час
- Анализ новостных лент социальных сетей

— Например, поиск trending-тем в Twitter, Facebook

Приложения (2)

- Сенсорные сети
 - Множество сенсоров (датчиков), посылающих данные центральному контроллеру
- Записи телефонных звонков
 - Data feeds into customer bills as well as settlements between telephone companies
- ІР-пакеты в маршрутизаторе

- Сбор информации для оптимальной маршрутизации
- Определение DDoS-атак

Выборка из потока данных:

Выборка фиксированной пропорции

Выборка растет вместе с ростом потока

- Будем сохранять выборку
- Две различные задачи:
 - (1) Произвести выборку фиксированной пропорции элементов в потоке (например, 1 из 10)
 - (2) Хранить случайную выборку фиксированного объема из потенциально бесконечного потока
 - * В любой «момент времени» k требуется иметь случайную выборку из s элементов
 - * Какое свойство выборки следует сохранять?

 \cdot Для всех шагов времени k каждый из k встреченных элементов имеет одну и ту же вероятность попадания в выборку

Выборка фиксированной пропорции

- Задача 1: Выборка фиксированной пропорции
- Сценарий: Поток запросов поисковой машины
 - Поток кортежей: (пользователь, запрос, время)
 - Ответить на вопрос типа: Как часто пользователь отправлял один и тот же запрос в течение одного дня
 - Имеется место для хранения 1/10-й потока запросов

- Наивное решение:
 - Сгенерировать случайное целое число в диапазоне [0..9] для каждого запроса
 - Сохранить запрос, если это число равно 0, в противном случае – не сохранять

Что не так с наивным подходом

- Простой вопрос: Какую долю запросов среднего пользователя поисковой машины составляют дублирующиеся запросы?
 - Пусть каждый пользователь отправляет x запросов единожды и d запросов дважды (всего x+2d запросов)
 - * Правильный ответ: d/(x+d)
 - Предложенное решение: Сохраняем 10% запросов

- st В выборке будет содержаться x/10 недублирующихся запросов и 2d/10 дублирующихся не менее одного раза
- st Но только d/100 пар дублирующихся

$$d/100 = 1/10 \cdot 1/10 \cdot d$$

* Из d «дублирующихся» 18d/100 встречаются ровно один раз

$$18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$$

Таким образом, ответ, основанный на выборке,
 – это

$$\frac{\frac{d}{100}}{\frac{x}{100} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

Решение: Формировать выборку из пользователей

Решение:

Выберем 1/10-ю пользователей и включим все их запросы в выборку

Используем хеш-функцию, хеширующую идентификатор пользователя равномерно по 10 урнам

Обобщенное решение

- Поток кортежей с ключами:
 - Ключ некоторое подмножество каждой компоненты кортежа; например, кортеж – (пользователь, поисковый запрос, время); ключ – пользователь
 - Выбор ключа зависит от решаемой задачи
- ullet Для получения выборки, составляющей a/b долю потока:
 - Хешировать ключ каждого кортежа равномерно в b урн

— Включить кортеж в выборку, если его хэш- значение не превосходит \boldsymbol{a}

Выборка из потока данных:

Формирование выборки фиксированного объема

Объем выборки не изменяется с ростом потока

Сохранение фиксированного объема выборки

- Задача 2: Выборка фиксированного объема
- ullet Пусть требуется сохранять случайную выборку S размера в точности s
 - Т.е., ограничение на объем оперативной памяти
- Почему? Длина потока неизвестна наперед
- ullet Пусть в момент времени n было просмотрено n элементов

— Каждый элемент содержится в выборке S с одинаковой вероятностью s/n

Решение: выборка фиксированного объема

- Алгоритм (Reservoir Sampling)
 - Все первые s элементов потока записать в S
 - Пусть пройдено n-1 элементов и теперь пришел n-й элемент (n>s)
 - * С вероятностью s/n сохранить n-й элемент в выборку, иначе не сохранять
 - * Если n-й элемент выбран для сохранения в выборку, то он заменяет один из s элементов в выборке S, равномерно выбранный случайным образом

- Утверждение: Этот алгоритм сохранятет выборку S с требуемым свойством:
 - После n элементов выборка содержит каждый пройденный элемент с вероятностью s/n

Доказательство: по индукции

- Докажем это утверждение по индукции:
 - Пусть после просмотра n элементов выборка содержит каждый пройденный элемент с вероятностью s/n
 - Требуется показать, что после прохождения элемента n+1 выборка сохранит это свойсто
 - st Выборка содержит каждый пройденный элемент с вероятностью s/(n+1)
- Основание индукции:

- После того, как пройдено n=s, элементов выборка S обладает требуемым свойством
 - st Каждый из n=s элементов содержится в выборке с вероятностью s/s=1

Доказательство: по индукции

Предположение индукции: После n элементов выборка S содержит каждый пройденный элемент с вероятностью s/n

Теперь поступает элемент n+1

Шаг индукции: Для элементов, которые уже включены в S, вероятность их сохранения в S:

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$

Таким образом, в момент времени n, кортежи в S были там с вероятностью s/n В момент времени $n \to n+1$ кортеж был в S с вероятностью n/(n+1) Вероятность того, что кортеж будет включен в S в момент времени n+1

$$= \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$$

Запросы по (длинному) скользящему окну (sliding window)

Скользящие окна

- ullet Полезная модель обрабоки потоков вопросы касаются окна длины N N элементов, поступивших последними.
- ullet Интересный слуай: N настолько велико, что данные не могут храниться в памяти или даже на диске
 - Или у нас так много потоков, что окна для всех хранить невозможно
- Пример Amazon:

- Для каждого продукта X сохраняем поток из нулей и единиц, показывающий, был ли продукт продан в момент n-й транзакции
- Требуется отвечать на запрос, сколько раз продукт X был продан среди последних k продаж

Скользящие окна: 1 поток

Скользящие окна по одному потоку: N=6

```
qwertyuioplasdfghljklzxcvbnm
qwertyuiopalsdfghjlklzxcvbnm
qwertyuiopasldfghjkllzxcvbnm
qwertyuiopasdlfghjkllzxcvbnm
```

<-- Прошлое

Будущее -->

Подсчет битов (1)

- Задача:
 - Дан поток нулей и единиц
 - Быть готовым ответить на запросы типа: Сколько единиц содержится в последних k битах? где k < N
- Очевидное решение:
 - Хранить последние N бит
 - При поступлении нового бита удалять N+1-й бит

Подсчет битов (2)

- Невозможно получить точный ответ, не храня целое окно
- Проблема: Что, если у нас нет возможности хранить N бит?
 - Например, обрабатывается 1 миллиард потоков и N=1 миллиарду
- Но нас удовлетворит и приближенный ответ

Попытка: простое решение

ullet Q: Сколько единиц содержится в последних N битах?

• Простое решение, которое на самом деле не решение: гипотеза равномерности

- Организуем 2 счетчика
 - S: число единиц с начала потока
 - Z: число нулей с начала потока

 \bullet Сколько единиц содержится в последних N битах? $N \cdot \frac{S}{S+Z}$

- Но что, если поток неравномерный?
 - Что, если распределение изменяется с течением времени?

Метод DGIM

- Метод DGIM не предполагает равномерности
- \bullet Хранится $O(\log^2 N)$ бит на поток
- Метод дает приближенный ответ с погрешностью не более, чем 50%
 - Погрешность может быть уменьшена до любой доли > 0, если использовать более сложный алгоритм с пропорционально большим количеством бит

Идея: экспоненциальные окна

- Решение, которое не работает (как надо):
 - Подытоживать экспоненциально увеличивающиеся регионы потока, если смотреть назад
 - Удалять малые регионы, если они начинаются в той же точке, что и больший регион

Окно длины 16 содержит 6 единиц.

Можем восстановить счетчик последних N бит, за исключением того, что мы не знаем, какое количество последних 6 бит содержится в N

Что хорошо

- \bullet Хранится только $O(\log^2 N)$ бит
 - $-O(\log N)$ счетчиков по $\log_2 N$ бит на каждый
- Простое обновление при поступлении новых битов
- Погрешность в подсчете не превосходит число единиц в «неизвестной» области

Что не так

- Если единицы распределены относительно равномерно, то погрешность из-за неизвестного региона остается малой не более 50%
- Но может случиться, что все единицы находятся в неизвестной области в конце
- В таком случае погрешность неограничена!

Поправка: метод DGIM

- Идея: Вместо подытоживания блоков фиксированной длины подытоживать блоки с определенным числом единиц:
 - Пусть размеры блоков (число единиц) увеличиваются экспоненциально
- Когда количество единиц в окне невелико, размер блоков остается малым, поэтому погрешности малы

DGIM: Временные отметки (Timestamps)

- Каждый бит в потоке имеет временную отметку, начиная с 1,2,...
- Записываем временные отметки по модулю N (размер окна), поэтому можем представить любую нужную временную отметку с помощью $O(\log_2 N)$ бит

DGIM: Урны

- Урна в методе DGIM это запись, состоящая из:
 - (A) Временной отметки ее конца $[O(\log N)$ бит]
 - (В) Числа единиц между ее началом и концом $[O(\log \log N) \text{ бит}]$
- Ограничение на урны: Число единиц должно быть степенью числа 2
 - Это объясняет $O(\log \log N)$ в (В) выше

Представление потока в виде урн

- Либо одна, либо две урны с одинаковым количеством единиц, являющимся степенью числа 2
- Урны не накладываются в смысле временных отметок
- Урны отсортированы по размеру
 - Более ранние урны не меньше, чем более поздние

ullet Урны исчезают, когда их конечное время >N временных единиц в прошлое

Обновление урн (1)

- При поступлении нового бита удалить последнюю (самую давнюю) урну, если ее конечное время на N временных единиц раньше, чем настоящий момент
- 2 случая: текущий бит равен 0 или 1
- Если текущий бит равен 0: не производить никаких других изменений

Обновление урн (2)

- Если текущий бит равен 1:
 - (1) Создать новую урну размера 1, в которой содержится только этот бит;
 Конечная временная отметка = текущее время
 - (2) Если теперь имеется три урны размера 1,
 скомпоновать две самых давних урны в одну урну размера 2
 - (3) Если теперь имеется три урны размера 2, скомпоновать две самых давних урны в урну размера 4

— (4) И так далее...

Как формировать запрос?

- ullet Для оценки числа единиц в последних N битах:
 - 1. Суммировать размеры всех урн, кроме последней
 - 2. Добавить половину размера последней урны
- Замечание: Нам неизвестно, сколько единиц из последней урны содержится в нашем окне

Граница погрешности: доказательство

- Почему погрешность составляет 50%? Давайте докажем!
- ullet Пусть размер последней урны равен 2^r
- Тогда, положив 2^{r-1} (т.е., половина) ее единиц все еще содержится в окне, получаем, что погрешность не превосходит 2^{r-1}
- Так как имеется по меньшей мере по одной урне каждого размера, меньшего 2^r , истинная сумма составляет не менее

$$1 + 2 + 4 + \dots + 2^{r-1} = 2^r - 1$$

• Таким образом, погрешность не превосходит 50%

Дальнейшее уменьшение погрешности

- ullet Вместо хранения 1 или 2 урн каждого размера, допускаем r-1 или r урн (r>2)
 - За исключением урны наибольшего размера, таковых у нас может быть любое количество между 1 и r
- ullet Погрешность не превосходит O(1/r)
- ullet Правильным подбором r можно балансировать между количеством хранимых бит и погрешностью

Обобщения

- Можно ли использовать тот же прием для ответа на запросы: Сколько единиц содержится в последних k, где k < N?
 - А: Найти самую раннюю урну B, которая пересекается с k. Число единиц равно сумме размеров более поздних урн $+\frac{1}{2}$ размера B
- Можно ли обработать случай, когда поток состоит не из битов, а из целых чисел и требуется получить сумму последних k элементов?

Обобщения

- Поток положительных целых чисел
- ullet Требуется вычислить сумму последних k элементов
 - Amazon: средняя цена последних k продаж
- Решение
 - (1) Если известно, что во всех не более m бит
 - * Рассматриваем m бит каждого целого числа как отдельный поток

- * С помощью DGIM подсчитываем количество единиц в каждом целом числе
- * Сумма равна $=\sum_{i=0}^{m-1}c_i2^i$ c_i оценка количества для i-го бита
- (2) Храним частичные суммы в урнах
 - st Сумма элементов в урне размера b не превосходит 2^b

Идея: Сумма в каждой урне не превосходит 2^b (кроме случая, когда в урне только одно целое число)

Резюме

- Выборка фиксированной пропорции из потока
 - Объем выборки растет вместе с ростом потока
- Выборка фиксированного объема
 - Reservoir sampling
 - Подсчет количества единиц в последних N элементах
 - * Экспоненциально уменьшающиеся окна

* Обобщения:

- · Число единиц в любых последних $k\ (k < N)$ элементах
- \cdot Суммы целых чисел в последних N элементах