Deciphering the function and evolution of the centromeric repeats in Primates

Sarah Kaddah

Tuteur: Loic Ponger
Département: Régulation, Développement, Diversité Moléculaire
Unité: Structure et Instabilité des génomes
CNRS UMR 7196 / INSERM U1154 / MNHN

19/02/18

About the centromere

- Chromatin structure
- Cell division
- Conserved proteins
- Not conserved DNA
 - Satellite DNA
 - Function?

Albert et al., 2002

Satellite DNA in Primates

- α -satellite
- 170 pb
- > 70% similarity
- Several families
- ullet Binding sites : CENP-B, pJlpha
- Specific spatial organisation

α -satellites DNA

Studies in human:

Phylogenetic analysis of pericentromeric monomers

- Age-gradient hypothesis
- Identification of 5 families

Shepelev et al., 2009

α -satellites DNA

Studies on Gorillas:

Catacchio et al., 2015

- Medium throughput-sequencing
- Identification of 3 families
- Complex HOR organization
- Binding sites for CENP-B and $pJ\alpha$

Studies on Cercopithecini:

Cacheux et al., 2016

- High throughput-sequencing
- Identification of 6 families
- ullet Binding sites for pJlpha

Cacheux, Thèse

1- Choose species for analysis

Species	# of α -sat.	Sequencing
Cercopithecus pogonias	112 902	Ion torrent
Cercopithecus solatus	105 529	Ion torrent
Chlorocebus sabaeus	29 842	Illumina
Macaca fascicularis	39 893	LS454
Macaca fascicularis	195 642	Assembly

- 1- Choose species for analysis
- 2 Identify families for each species

A-Method of classification

- Binary classification
- Objective and reproducible method
- Process big amount of short sequences

Jornod,2017

- 1- Choose species for analysis
- 2 Identify families for each species

B-Preliminary results

- 1- Choose species for analysis
- 2 Identify families for each species

B-Results

	C. sabaeus	M. fascicularis
#Families	100	132
#Families > 100 sequences	36	32
% Sequences	95,3%	96,6%

- 1- Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species
 - binding sites
 - percentage of similarity

- 1- Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species

A-Binding site

- 1- Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species

B-Similarity

- 1- Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species
- 4 -1. Spatial organization analysis

- 1- Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species
- 4 -1. Interspecific comparison
- 4 -2. Interspecific comparison

