Métodos Numéricos Teoremas, propiedades y más

Cristian

21 de abril de 2019

${\rm \acute{I}ndice}$

1.	Disclaimer	5
2.	Practica 1	7
	2.1. Definiciones, propiedades, etc	7
	Definición 1	7
	Definición 2	7
	Definición 3	7
	Definición 4	7
	Definición 5	7
	Propiedad 1	7
	Propiedad 2	7
	Propiedad 3	7
	Propiedad 4	8
	Definición 6	8
	Definición 7	8
	Propiedad 5	8
	Definición 8	8
	Propiedad 6	9
	Propiedad 7	9
	Definición 9	9
	Definición 10	.0
		0
		0
3.	Practica 2	1
•		1
		1
4.	Practica 3	3
	4.1. Definiciones, propiedades, etc	.3
	Definición 12	.3
		.3
	-	.3
	-	.3
	1	3
	-	3
	-	4

1. Disclaimer

Este documento fue hecho como resumen de teoremas, propiedades, etc. para la materia *Metodos Númericos* de la carrera *Ciencias de la Computación* de la *Facultad de Ciencias Exactas y Naturales*. De ninguna manera pretende remplazar las clases ni asegura estar completo/correcto. A su vez, las propiedades y sus demostraciones están basadas en mis apuntes de las clases al menos que se indique lo contrario. Esto quiere decir que puede no coincidir con demostraciones de otras fuentes o de otras cursadas.

En caso de encontrar algún posible error se recomienda verificarlo con un docente de la materia y en caso de efectivamente serlo, subirlo como issue indicando como se confirmó que lo era (por ejemplo, docente que lo confirmo o libro).

2. Practica 1

2.1. Definiciones, propiedades, etc.

Definición 1

 $v_0, \ldots, v_k \in \mathbb{R}^n$ son linialmente independientes si

$$\sum_{i=0}^{k} \alpha_i v_i = 0 \Rightarrow \alpha_i = 0 \quad \forall i = 0 \dots k$$

Definición 2

Una matriz es inversible \Leftrightarrow su determinante es distinto de cero.

Definición 3

Traza de A es $\sum_{i}^{n}a_{ii}$

Definición 4

 $A \in \mathbb{R}^{m \times n}$ se dice triangular superior (t.s.) si $a_{ij} = 0 \quad \forall i > j$

Definición 5

 $A \in \mathbb{R}^{m \times n}$ se dice triangular inferior (t.i.) si $a_{ij} = 0 \quad \forall i < j$

Propiedad 1

Producto de t.s. da t.s.

Propiedad 2

Producto de t.i. da t.i.

Propiedad 3

$$(AB)^t = B^t A^t$$

Propiedad 4

Determinante

- A inversible $\Leftrightarrow det(A) \neq 0$
- det(AB) = det(A)det(B)
- \bullet Sea A triangular, $det(A) = \prod_{i=1}^n a_{ii}$
- $det(A) = det(A^t)$
- $det(\alpha A) = \alpha^n det(A)$
- $det(A^{-1}) = \frac{1}{\det(A)}$

Definición 6

Nucleo de $A \in \mathbb{R}^{m \times n}$

$$Nu(A) = \{x \in \mathbb{R}^n / Ax = 0 \in \mathbb{R}^m \}$$

Definición 7

Imagen de $A \in \mathbb{R}^{m \times n}$

$$Im(A) = \{ y \in \mathbb{R}^m / \exists x \in \mathbb{R}^n : Ax = y \}$$

Propiedad 5

Teorema de la dimensión $A \in \mathbb{R}^{m \times n}$

$$dim(Nu(A)) + dim(Im(A)) = n$$

Definición 8

■ Rango fila de A es cantidad de filas l.i.

■ Rango columna de A es cantidad de columnas l.i.

Propiedad 6

Sea $A \in \mathbb{R}^{n \times n}$, son equivalentes

- \blacksquare A inversible.
- $\nexists x \in \mathbb{R}^n, x \neq 0$, tal que Ax = 0
- lacktriangle Las columnas de A son l.i.
- \blacksquare Las filas de A son l.i.

Propiedad 7

Sean $A, B \in \mathbb{R}^{n \times n}$ inversibles

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^t)^{-1} = (A^{-1})^t$
- Si A t.i. $\Rightarrow A^{-1}$ es t.i.

Definición 9

Norma vectorial

 $\|.\|:\mathbb{R}^n\to\mathbb{R},\,x,y\in\mathbb{R}^n,\alpha\in\mathbb{R}$ define una norma vectorial si

- $\|x\| \ge 0 \text{ y } \|x\| = 0 \Leftrightarrow x = \vec{0}$
- $\|x + y\| \le \|x\| + \|y\|$

¹ej 21 práctica 1 ²ej 23 práctica 1

Definición 10

$$||x||_p = \sqrt[p]{\sum |x_i|^p}$$

Definición 11

$$||x||_{\infty} = \max_{1 \le i \le n}(|x_i|)$$

2.2. Ejercicios

- 3. Practica 2
- 3.1. Definiciones, propiedades, etc.
- 3.2. Ejercicios

4. Practica 3

4.1. Definiciones, propiedades, etc.

Definición 12

 $A \in \mathbb{R}^{n \times n}$ se dice simetrica definida positiva (s.d.p.) si

A es simétrica.

$$x^t A x > 0 \ \forall x \neq \vec{0} \ \text{con} \ x \in \mathbb{R}^n$$

Propiedad 8

 $A \operatorname{sdp} \Rightarrow A \operatorname{es} \operatorname{inversible}$.

Dem

Supongamos A no inversible. $\exists x^* \neq \vec{0}/Ax^* = \vec{0} \Rightarrow x^{*t}Ax^* = 0$ Abs!

Propiedad 9

Sea A simétrica. DP \Leftrightarrow las submatrices principales son no singulares. ³

Propiedad 10

Sea $A \operatorname{sdp} \Rightarrow A = LU$

Propiedad 11

Sea $A \operatorname{sdp} \Leftrightarrow A = LL^t$ (factorización de Cholesky) donde L es triangular inferior con no necesariamente 1s en la diagonal. ⁴

Propiedad 12

Sea A sdp. $\forall x, y \in \mathbb{R}^n$

 $^{^3 \}Rightarrow$ de teórica. \Leftarrow ejercicio 9 de práctica 3

 $^{^4 \}Rightarrow$ de teórica. \Leftarrow de ejercicio 8 de práctica 3 que dice

Si $A = LL^t$ es una factorización de A con L una matriz triangular inferior con elementos de la diagonal positivos, A es sdp.

- \blacksquare Si xe yson l.i. $|x^tAy|<\sqrt{x^tAx}\sqrt{y^tAy}$
- Si x e y son l.d. $|x^tAy| = \sqrt{x^tAx}\sqrt{y^tAy}$

5

4.2. Ejercicios

⁵Ejercicio 4 de práctica 3