BOOSTIN 6

COMBINE WEAR LEARNERS THAT WERE TRAINED SEQUEN-TIALLY AND PREDICTS BASED ON THE WETGHTS OF GACH MODEL (WEIGHT CALCULATED BASED ON MODEL PERFORMANCE).

GRADIENT BOOSTING

dy (0) = Y - MEAN (Y)

for K=1: (# OF TREES / # OF 175/14/10WS):

LOMPINER (K) = TRAIN-REGRESSOR (X, dY(K-1))

dy(k) = dy(k-1) - K(k) * PREDICT (LEARNER (K), X)

"TRAIN OVER THE RESIDUAL"

BAGGIN 6

* CONCRATE N DIFFERENT BOOTS TRAP TRAINING SAMPLE WITH REPLACEMENT

* TRAIN ALGORITHM ON FACH BOOTS TRAPPEN GAMPLE

* COMBINE THOM ALL USING MAJORITY VOTE / MEAN

RELATIVE VARIABLE IMPORTANCE

THE MEASURE IS MADE BASED ON # TIMES A VARIABLE 15 SELECTED FOR SPLITTING AND WETGHTED BY THE IMPROvoment to the moder As A RESULT of EACH SPLIT, THOM AVERAGED OVER ALL TREES.

POSITIVE CLASS = 0 CONFUSION MATRIX SONSIPIVITY = TP = RECALL OBSERVED TPIFN SPECIFICITY = TN TP TN+FP P Replet PRECISION = TP TN N FN TP+ FP " Lyppe Manic MOAN" = 2. PRICISION * RECALL = FI SCORE PRECISION + RECORL PROCISION + ACCURACY = CURVE ROC AUC (AREA UNDER THE CURVE) Conny 3 7 HRUSHOLD FOR ROC PROBABILITY FOR = FP EN EVENT GINI COEFFICIENT (INEQUALITY COEFFICIENT) + ROC WRE HIGHER A => BETTER MODEL COINI = A HIGHER INEQUALITY JPR A+B ROOL - WORLD EXAMPLE: "perfect DISTRI-1. (4come FPR or manoy BUTION OVER POPULATION" 50 -> ./. POP. 80

INFORMATION GAIN USING FOR ALL GOATURES TESTS

ENTROPY:

$$IG = -\sum_{i=1}^{3} P_i \cdot log P_i$$

Pi = PROBORTION of class: ON NODE

161 IG, I6, = I6, + I62

FOR FORTURE A THE INFORMATION GAIN WILL BE THE SUM OF IG. + IG

REGRESSION TREES

AT EACH ITERATION FOR EACH FEATURE XXX FIND OPTIMAL S:

MIN [MSE (y 12k <s) + MSE (y 1xx >s)]

THE CONSIDERATION CUT OFF)

* FOR BOTH METHODS: VARIABLE IMPORTANCE GENERALLY BE COMPUTED BASED ON CORRESPONDING REDUCTION OF PRE-DICTIVE ACCURACY WHON THE PREDICTOR OF INTEREST IS PROMOVED OR SOME MEASURE OF DECREASE OF NODE IMPURITY.

LINEAR REGRESSION

LINOAR APPROACH TO MODELLING RELATIONSHIP BETWEEN SCALAR RESPONSE TO EXPLANATORY VARIABLES 1 Y = Bo + B, X, + -.. + Bn - Xn

"ORDINARY LOAST SQUARES"

LOGISTIC RECORESSION

hob-odds of probability of AN EVENT IS A LINDAM COMBINATION OF EXPLANATORY VARIABLES TP(Y=1) = 1 1+e-x

"MAXIMUM LIKELIHOOD ESTIMATION"

VARIABLE IMPORTANCE FOR RECORDSION CAN BE SET
BASED ON THE COEFFICIENTS ONLY. IF THE REATURES ARE
NORMALITED (CONTINUOUS) OR THEY ARE DISCRETE.

NAIVE BAYES CHASSIFICATION

BASED ON BAYES THEOREM WITH CONDITIONAL PROBABILITY OF EVENT TO PROBABILITY OF EVENT OTHER FEATURE X_{j} ($i \neq j$) GIVEN CATE GO.

BY $C_{k} = \frac{1}{|P|} \frac{|P|}{|P|} \frac{|P|}$

EXAMPLE: SPAND IP(C) = 0.9

TP (x, | C) = 0.3 0.001 VIAGRA

PRINCE

UDARITY

[P(x3 | c) = 0.0001 0.1

 $P(x_1|c) = 0.2 \ 0.1$ $P(x_1|c) = 0.2 \ 0.1$ $P(x_1=T | C) . P(x_2=F | C) . P(x_3=F | C) . P(c)$

RANDOM FOREST

SELECTING BAGGING SAMPLES FOR EACH TREE CHOOSE

RANDOM FORTURES (VD).

* REDUCES VARCIANCE BUT RANGE (AS ALL TREE MODELS) IS

LIMITED.

NEURAL NETWORKS (ARTIFICIAL NEURAL NETWORKS)

INPUT $w_1 \Rightarrow 0$ $w_3 + b_3$ $\sigma(z) := SIGMOID, TANH, RELU, <math>w_2 \Rightarrow 0$ $w_4 \Rightarrow 0$ $w_4 \Rightarrow 0$

SIGNOID :=
$$\sigma(z) = \frac{1}{1+e^{-\frac{1}{2}}}$$
; $\sigma(z) \in (0,1)$

$$TANH := \sigma(z) = \frac{e^{z} - e^{z}}{e^{z} + e^{-z}} = tANH(z) ; \sigma(z) \in (-1, 1)$$

RELU :=
$$\sigma(z) = \max(0, z)$$
; $\sigma(z) \in [0, \infty)$.

$$\frac{\text{RELU} := \sigma(\vec{z}) = MAX}{\text{Soft MAX}} = \sigma(\vec{z}) = \frac{e^{2i}}{\sum_{j=1}^{2} e^{2j}}, i = 1, ..., J; \sigma(\vec{z}) \in (0, 1)$$

K-NN (K-NEAREST NEIGHBORS)

REGRESSION OR CLASSIFICATION OF K NEAREST NEIGHBORS BASED ON DISTANCE FUNCTIONS:

K-MEANS

- O. PLACE CENTROIDS AT RANDOM WOCATIONS (K CENTROIDS) 1. FIND NEAREST CONTROLS TO GACH OBSCRUATION

 2. ASSIGN OBSCRUATION TO CLOSER CLUSTER

 - 3. CALCULATE NION CONTROIS
 - REPEAT UNTILL DIFF. FROM PROVIOUS CONTROID IS MINIMUM (DIFFERENCE FRON DISTANCES)
- > K-MEANS ONLY USES EUCLIDEAN DISTANCE

HIERARCHICAL CLUSTERING

DISTANCES TO BE USED:

EUCLIDEAN, MANHATTAN, MINKOWSKI, MAHALANOBIS:= (a-b) 5-1(a-b)

\$ 5 IS THE COVARIANCE MATRIX

- -> SINGHE LIMIUS: D(CI, CZ) = MIN D(XI, XZ) DISTANCE BETWEEN CLOSEST ELLONONTS IN CLUSTERS 00-
- -> COMPLETE LINKS: D(C1, C2) = MAX D(x1, X2) DISTANCE BETWEEN FARTHEST ELEMENTS IN CLUSTOPS OF
- -> AVORAGE LINKS: D(c1, c2)= 1 1 [1] [] [D(x1, x1) 0= AVERAGE OF ALL PAIRWISE DISTANCES
- DISTANLE BETWEEN CONTROLLE (ICI ZI) (ICI ZZ) DISTANCE BUTWEEN CONTROLDS (MEANS) OF TWO CLUSTERS

BIAS - VARIANCE DE COMPOSITION

· BIAS IS THE ERROR FROM GURONEOUS ASSUMPTIONS IN

· VARIANCE IS THE ERROR FROM SENSITIVITY TO SMALL THE MODEL

FWTUATIONS IN THE TRAINING SET.

CROSS- VALIDATION

PREVIONTS ONCE FITTING BECAUSE MODEL THAT FITS RANDOM NOISE ON TRAINING DATA WON'T PERFORM GOOD ON VALIDA-TION DATASET.

K-FOLD: SEPARATES DATA ON R FOLDS, TRAINING WILL BE K-1 FOLDS AND VALIDATION WILL BE 1

LOCCY: LETNE-ONE-OUT CROSS-VALIDATION IS THE SAME AS

SMOTE (SYNTHETIC MINORITY QUER-SAMPLING TECHNIQUE)

-> CREATES NOW "SYNTHETIC" OBSORVATIONS · IDENTIFY FORTURE VECTOR AND NEAREST NETGH.

- . TAKE THE DIFF. BETWEEN TWO
- · MULTIPLY DIFF. BY REANDOM BETWOON O AND I
- · I DONTIFY NEW POINT ON LINE EXCEMENT BY ADDING RANDOM NUMBER TO GERTURE VECTOR
- · PROPERT @

P-VALUE IS THE PROBABILITY FOR A GIVEN MODEL THAT HYPHOPHESIS IS TRUE, THE STATISTICAL WHON THE NULL SUMMARY WOULD BE GREATER OR EQUAL TO THE STATIS-TICAL SUMMARY FOR THE OBSTRUED RESULTS.

39 ALIGE BOY | NAT | 2000 ST 190 AligE 2012 WAS 1 1 1 1 1 1 1 1

LANGE OF ARROWS OF THE PROPERTY .

THE TOP PROBLEM WITH A TOP OF THE PROPERTY OF

(Supplied ST) well 19 Mass - Special Conference of the Conferenc

P- VALUE

P-VALUE IS THE PROBABILITY FOR A GIVEN MONEL THAT, WHON THE NULL HYPHOTESIS IS TRUE, THE STATISTICAL SUMMARY WOULD BE GREATER OR EQUAL TO THE STATISTICAL SUMMARY FOR THE OBSCRUED

REGULARIZATION: REDUCE VARIANCE AT THE COST OF (1 BIAS => UNDERFITTING) (1 UMR => OVERFITTING)

LINEAR REGRESSION MODER Y= XB+E, ENN(0,02) ORDINARY HOAST SOUMES (OLS) =) ESTINATE B SUCH A WAY THAT SUM OF SQUARES OF RESIDUALS IS AS SMALL AS POSSIBLE

MIN LOLS $(\hat{\beta}) = MIN \sum_{i=1}^{n} (y_i - x_i^T \hat{\beta})^2 = MIN ||y - x_i^T ||^2$

IN ORDER TO OBTAIN $\beta_{obs} = (x^T x)^{-1} (x^T y)$

· RIDGE REGRESSION (LZ PENALTY)

OLS LOSS FUNCTION IS AUGMENTED IN A WAY WE PENALITE THE SIZE OF PARLAMETER ESTIMATES.

* ALSO CALLOS AS LZ PONMITY

· LASSO REGRESSION (L1 PEWALTY)

SIMILAR TO RIDGE REGRESSION BUT LOSS FUNCTION IS:

$$L_{LASSO}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - \chi_i^{\gamma} \hat{\beta})^2 + \lambda \sum_{j=1}^{n} |\hat{\beta}_j|$$

* ALSO CALLED LI PENALTY

· E LASTIC NET

A COMBINATION OF BOTH RIDGE REGRESSION AND LASSO REGRESSION, LOSS KUNCTION IS:

$$\begin{bmatrix}
\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda
\end{bmatrix} = \sum_{i=1}^{n} (y_i - \chi_i^* \hat{\beta})^2 + \lambda \left(\frac{1-\lambda}{2} + \frac{\lambda}{2} + \frac{\lambda}$$

WHERE & IS THE MIXING PARAMETER BETWEEN RIDGE (X=0) AND WASSO (X=1).

GRID - SCARCH

GRID-SCARCH IS USED TO FIND THE OPTIMAL HYPERPARA-METERS OF A MODEL WHICH RESULTS IN THE MOST 'ACCURATE' IT AM BE CHOOSE THE ROMOWING PARAMETORS: productions.

- PENMATY: LI, LZ, ELASTIC NET
- METRIC: ACCURACY, RECALL, PRECISION, FI-SCORÉ

* DISCUSSIONS ABOUT RANDOM - SEARCH IS BETTER (AND FASTER) THAN GIRID - SCARCH. SAME CONCEPT BUT INSTEAD OF SETTING SOME VALUES/IMPUTS PROBABILITY OF BO'S LOG ODDS)

PROBABILITY OF BO'S OF PRAIN TODAY

ODDS RATIO IS 80'S. OF CHANCE OF RAIN DIVIDED BY

20'S OF CHANCE OF NOT RAIN => 80'S. / 20'S. = $\boxed{4}$ LOG ODDS IS THE LOGARITHM OF ODDS => $\boxed{LN(4)}$ * ODDS RATIO = $\boxed{P(A)} = \boxed{TP(A)}$... LOG ODDS = $\boxed{Ln(4)}$ AND LOG ODDS = $\boxed{Ln(4)} = \boxed{P(A)} = \boxed{P(A$