## Zusammenfassung Partielle DGLn

© Tim Baumann, http://timbaumann.info/uni-spicker

## 1. Einleitung

Def. Eine partielle Differentialgleichung (PDGL) hat die Form

$$E(x, u(x), Du(x), ..., D^k u(x)) = 0$$
 in  $\Omega \subset \mathbb{R}^n$  offen,  $(\star)$ 

wobei  $E: \Omega \times \mathbb{R} \times \mathbb{R}^n \times ... \times \mathbb{R}^{n^k} \to \mathbb{R}$  gegeben und  $u: \Omega \to \mathbb{R}$  gesucht ist. Die höchste Ableitungsordnung von u, die in E vorkommt, heißt **Ordnung** der PDGL.

**Def.** Eine PDGL von der Ordnung k heißt

• linear, falls sie folgende Form besitzt:

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u(x) - f(x) = 0$$

 semilinear, falls sie linear in der höchsten Ableitungsordnung ist, man sie also schreiben kann als

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + E_{k-1}(x, u(x), Du(x), ..., D^{k-1} u(x)) = 0.$$

• quasilinear, falls sie sich schreiben lässt als

$$\sum_{|\alpha|=k} a_{\alpha}(x, u(x), Du(x), ..., D^{k-1}u(x))D^{\alpha}u(x)$$
  
+  $E_{k-1}(x, u(x), Du(x), ..., D^{k-1}u(x)) = 0.$ 

• sonst voll nichtlinear.

Bemerkung. { lineare PDGLn }  $\subsetneq$  { semilineare PDGLn }  $\subsetneq$  { quasilineare PDGLn }  $\subsetneq$  { PDGLn }

**Def** (Typeinteilung für lineare PDGLn 2. Ordnung). Seien  $a_{ij}, b_i, c, f: \Omega \to \mathbb{R}$   $(i, j \in \{1, ..., n\})$  vorgegebene Fktn. auf  $\Omega \subset \mathbb{R}^n$  offen.

• Die lineare PDGL

$$\sum_{1 \leq i,j \leq n} a_{ij}(x) D_i D_j u(x) + \sum_{1 \leq j \leq n} b_j(x) D_j u(x) + c(x) u(x) + f(x) = 0$$

heißt elliptisch, falls die  $(n \times n)$ -Matrix  $(a_{ij})_{1 \leq i,j \leq n}$  für alle  $x \in \Omega$  positiv definit ist.

• Die lineare PDGL

$$D_1D_1u(x)-\sum\limits_{2\leq i,j\leq n}a_j(x)D_iD_ju(x)+\sum\limits_{1\leq i\leq n}b_i(x)D_iu(x)+c(x)u(x)+f(x)=0$$

heißt hyperbolisch, falls die  $(n-1) \times (n-1)$ -Matrix  $(a_{ij})_{2 \le i,j \le n}$  für alle  $x \in \Omega$  positiv definit ist.

• Die lineare PDGL

$$D_1 u(x) - \sum_{2 \le i, j \le n} a_{ij}(x) D_i D_j u(x) + \sum_{2 \le i \le n} b_i(x) D_i u(x) + c(x) u(x) + f(x) = 0$$

heißt parabolisch, falls die  $(n-1) \times (n-1)$ -Matrix  $(a_{ij})_{2 \leq i,j \leq n}$  für alle  $x \in \Omega$  positiv definit ist.

**Def.** Eine Funktion  $u:\Omega\to\mathbb{R}$  heißt klassische Lösung, falls  $u\in\mathcal{C}^k(\Omega)$  und die Differentialgleichung (\*) überall in  $\Omega$  erfüllt ist.

## 2. Laplace- und Poisson-Gleichung

**Notation.** Seien  $f: \mathbb{R}^n \to \mathbb{R}$  und  $F = (F_1, ..., F_n)^T : \mathbb{R}^n \to \mathbb{R}^n$ Funktionen. Dann heißt

- $\operatorname{div} F := \sum_{i=1}^{n} D_i F_i : \mathbb{R}^n \to \mathbb{R}$  Divergenz von F,
- grad  $f := \nabla f := (\partial_1 f, ..., \partial_n f)^T : \mathbb{R}^n \to \mathbb{R}^n$  Gradient von f,
- $\Delta \min \Delta f = \operatorname{div}(\operatorname{grad} f) = \sum_{i=1}^{n} D_i D_i f$  Laplace-Operator.

Def. Die Laplace- bzw. Poisson-Gleichung ist die Gleichung

$$\Delta u = 0$$
 bzw.  $\Delta u = f$  auf  $\Omega \subset \mathbb{R}^n$ .

Satz (Transformations satz). Sei  $T:\Omega\to T(\Omega)$  für  $\Omega\subset\mathbb{R}^n$  ein  $\mathcal{C}^1\text{-Diffeo, dann gilt für }f:T(\Omega)\to\overline{\mathbb{R}}$ 

$$f \in L^1(T(\Omega)) \iff (f \circ T) \circ |\det(DT)| \in L^1(\Omega)$$
 mit

$$\int_{T(\Omega)} f \, \mathrm{d}x = \int_{\Omega} (f \circ T) \cdot |\det(DT)| \, \mathrm{d}x$$

**Bsp** (Polarkoordinaten). Sei  $f \in L^1(B_r(K))$ . Dann ist f auf fast jeder Sphäre  $\partial B_{\rho}(K)$  für  $\rho \in [0, r]$  integrierbar und es gilt

$$\int_{B_r(x)} f(x) dx = \int_0^r \int_{\partial B_\rho(x_0)} f dS d\rho$$

Satz (Gauß). Sei  $\Omega \subset \mathbb{R}^n$  beschränkt, offen mit  $\mathcal{C}^1$ -Rand  $\partial\Omega$ . Ist  $F \in \mathcal{C}^0(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$  mit div  $F \in L^1(\Omega)$ , so gilt

$$\int_{\Omega} \operatorname{div} F \, \mathrm{d}x = \int_{\partial \Omega} (F \circ \nu) \, \mathrm{d}S,$$

wobei  $\nu$  der äußere Einheitsnormalenvektor ist.

**Korollar.** Sei  $\Omega \subset \mathbb{R}^n$  beschränkt, offen mit  $\mathcal{C}^1$ -Rand  $\partial\Omega$ . Sind  $f, g \in \mathcal{C}^1(\overline{\Omega})$ , dann gilt die partielle Integrationsregel

$$\int_{\Omega} D_i f g \, dx = - \int_{\Omega} f D_i g \, dx + \int_{\partial \Omega} f g \nu^i \, d\mathcal{H}^{n-1}$$

Sind  $f, g \in \mathcal{C}^2(\overline{\Omega})$ , dann gelten die Greenschen Formeln

$$\int_{\Omega} Df \cdot Dg \, dx = -\int_{\Omega} f \Delta g \, dx + \int_{\Omega} f D_{\nu} g \, d\mathcal{H}^{n-1}$$

$$\int_{\Omega} (f \Delta g - g \Delta f) \, dx = \int_{\partial\Omega} (f D_{\nu} g - g D_{\nu} f) \, d\mathcal{H}^{n-1}$$

**Proposition.** Sei  $\Omega \subset \mathbb{R}^n$  messbar mit  $|\Omega| < \infty$ ,  $I = ]a, b[ \subset \mathbb{R}$  und  $f : \Omega \times I \to \mathbb{R}$ . Angenommen,

- $f(x,-) \in \mathcal{C}^1(I)$  für fast alle  $x \in \Omega$ ,
- $f(-,t) \in L^1(\Omega) \frac{\partial f}{\partial t}(-,t) \in L^1(\Omega)$  für alle  $t \in I$  und
- für alle  $t \in I$  gibt es  $\epsilon > 0$  sodass  $|t \epsilon, t + \epsilon| \subset I$  und

$$\sup_{s \in ]t-\epsilon, t+\epsilon[} \left| \frac{\partial f}{\partial t}(-, s) \right| \in L^1(\Omega).$$

Dann ist die Abbildung

$$g: I \to \mathbb{R}, \qquad t \mapsto \int_{\Omega} f(x, t) \, \mathrm{d}x$$

wohldefiniert und stetig differenzierbar mit

$$\frac{\partial g}{\partial t}(t) = \int_{\Omega} \frac{\partial f}{\partial t}(x, t) dx.$$

Bemerkung. Die Voraussetzungen sind erfüllt, wenn  $\Omega$  offen und beschränkt ist,  $f(x,-) \in \mathcal{C}^1(I)$  für alle  $x \in \Omega$  und  $f, \frac{\partial f}{\partial t} \in \mathcal{C}(\overline{\Omega} \times I)$ .

**Notation.** Bezeichne mit  $\mathcal{L}^n$  das Lebesgue-Maß auf dem  $\mathbb{R}^n$ . Für messbare Teilmengen  $A \subset \mathbb{R}^n$  schreibe  $|A| := \mathcal{L}^n(A)$ .

**Bsp.** Zwischen dem Volumen von Kugeln und Sphären im  $\mathbb{R}^n$  bestehen folgende Zusammenhänge:

$$|B_r(0)| = r^n \cdot |B_1(0)|$$
 und  $|B_r(0)| = \frac{r}{n} \cdot \int_{\partial B_r(0)} 1 \,\mathrm{d}S$ 

Notation. 
$$\omega_n := \mathcal{L}^n(B_1(0)) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$$

**Notation.** Sei  $f: \Omega/M \to \mathbb{R}$  integrierbar für  $\Omega \subset \mathbb{R}^n$  messbar mit  $\mathcal{L}^k(\Omega) \in ]0, \infty[$  bzw.  $M \subset \mathbb{R}^n$  eine k-dimensionale

Untermannigfaltigkeit mit  $\int\limits_{M}1\,\mathrm{d}S\in \left]0,\infty\right[$ 

$$\int_{\Omega} f(x) dx := \frac{1}{|\Omega|} \int_{\Omega} f(x) dx \quad \text{bzw.} \quad \int_{M} f(x) dx := \frac{1}{|M|} \int_{M} f(x) dx$$

heißen Mittelwerte von f auf  $\Omega$  bzw. M.

**Def.** Sei  $\Omega \subset \mathbb{R}^n$  offen,  $u \in \mathcal{C}^2(\Omega)$ . Man nennt u

- harmonisch, falls  $\Delta u = 0$  in  $\Omega$  gilt.
- subharmonisch, falls  $\Delta u > 0$  in  $\Omega$  gilt.
- superharmonisch, falls  $\Delta u \leq 0$  in  $\Omega$  gilt.

Bspe. • Affine Funktionen sind harmonisch.

- Sei  $A \in \mathbb{R}^{n \times n}$ . Definiere  $u(x) := x \cdot Ax$ . Dann gilt  $\Delta u = \operatorname{spur} A$ , also  $\Delta u = 0 \iff \operatorname{spur} A = 0$ .
- Real- und Imaginärteil von holomorphen Fktn. sind harmonisch.

**Def.** Die Funktion  $\Phi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ , definiert durch

$$\Phi(x) := \begin{cases} -(2\pi)^{-1} \log|x|, & \text{wenn } n = 2\\ (n(n-2)\omega_n)^{-1}|x|^{2-n}, & \text{wenn } n \ge 3 \end{cases}$$

heißt Fundamentallösung der Laplacegleichung

Bemerkung. •  $\Phi$  ist radialsymmetrisch, d. h. für alle  $x_1, x_2 \in \mathbb{R}^n \setminus \{0\}$  mit  $||x_1|| = ||x_2||$  gilt  $\Phi(x_1) = \Phi(x_2)$ .

- $\Phi$ ,  $|D\Phi| \in L^1(B_R(0))$  für alle R > 0 aber  $|D^2\phi| \notin L^1(B_1(0))$ .
- Die Konstanten wurden so gewählt, dass gilt:

$$-\int D\Phi \cdot \nu \, \mathrm{d}\mathcal{H}^{n-1} = 1 \quad \text{für alle } r > 0.$$
 
$$\partial B_r(0)$$

**Lemma.** Sei  $\Omega \subset \mathbb{R}^n$  offen,  $B_R(x_0) \subset \Omega$ ,  $u \in \mathcal{C}^2(\Omega)$ . Für

• 
$$\lim_{r \to 0} \phi(r) = u(x_0)$$
 •  $\phi'(r) = \frac{r}{n} \int_{B_r(x_0)} \Delta u(x) dx$ 

**Korollar** (Mittelwertseigenschaft). Sei  $\Omega \subset \mathbb{R}^n$  offen,  $B_r(x_0) \in \Omega$  und  $u \in C^2(\Omega)$ . Dann gilt:

$$0 = \Delta u \implies u(x_0) = \int_{\partial B_r(x_0)} d\mathcal{H}^{n-1} \quad \text{und} \quad u(x_0) = \int_{B_r(x_0)} u \, d\mathcal{H}^{n-1}$$

In diesen Gleichungen darf man alle = durch  $\leq$  oder < ersetzen.

 $\mathbf{Satz.} \ \mathrm{Sei} \ \Omega \subset \mathbb{R}^n$ offen. Dann sind äquivalent:

- u ist harmonisch, d. h. es gilt  $\Delta u = 0$  in  $\Omega$ .
- $\bullet$  u erfüllt die sphärische Mittelwertseigenschaft, d. h. es gilt

• u erfüllt die Mittelwertseigenschaft auf Kugeln, d. h. es gilt

Bemerkung. Die Äquivalenz gilt auch unter den schwächeren Voraussetzungen  $u \in \mathcal{C}(\Omega)$  oder  $u \in L^1(\Omega)$ .

**Satz.** Sei  $\Omega \subset \mathbb{R}^n$  offen, beschränkt und  $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$  subharmonisch in  $\Omega$ . Dann gilt

- Das schwache Maximumsprinzip:  $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$
- Das starke Maximumsprinzip: Ist  $\Omega$  zusammenhängend und existiert  $x_0 \in \Omega$  mit  $u(x_0) = \max_{\overline{\Omega}} u$ , so ist u konstant.

**Korollar** (Eindeutigkeit). Sei  $\Omega \subset \mathbb{R}^n$  offen, beschränkt und  $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$ . Dann ist u = v, falls gilt:

$$\left\{ \begin{array}{ll} \Delta u = \Delta v & \text{in } \Omega \\ u = v & \text{auf } \partial \Omega \end{array} \right.$$

Satz (Harnack-Ungleichung). Sei  $\Omega \subset \mathbb{R}^n$  offen,  $V \subset\subset \Omega$  offen, zusammenhängend. Dann gibt es eine Konstante  $c=c(\Omega,V)$ , sodass

$$\sup_{V} u \leq c \cdot \inf_{V} u \qquad \text{für alle harmonischen Fktn. } u: \Omega \to \mathbb{R}_{\geq 0}.$$