Семинар 1

Поверхностные интегралы 1 рода (повторение)

Поверхностный интеграл 1-го рода:

 $\iint_{\Omega} f(x,y,z) dS$, где Φ — поверхность, dS — элемент площади поверхности (площадь бес-

конечно малого участка поверхности).

Для вычисления поверхностных интегралов их сводят к двойным интегралам.

Поверхность Ф может быть задана различными способами:

1) явно: z = z(x, y), где $(x, y) \in G$. Поверхность Φ однозначно проецируется на область G в плоскости Oxy.

Тогда

 $dS = \sqrt{z_x^2 + z_y^2 + 1} \, dx dy$ — площадь участка поверхности, соответствующего бесконечно малым приращениям координат dx, dy.

Значит,

$$\iint_{\Phi} f(x,y,z) dS = \iint_{G} f(x,y,z(x,y)) \sqrt{z_x^2 + z_y^2 + 1} dx dy.$$

Поверхностный интеграл сведён к двойному интегралу по области G.

2) параметрически: $\begin{cases} x = x(u,v), \\ y = y(u,v), \text{ где } (u,v) \in g \text{ , причём отображение } g \to \Phi \text{ взаимно одно-} \\ z = z(u,v), \end{cases}$

значно. В векторном виде: $\vec{r} = \{x, y, z\} = \{x(u, v), y(u, v), z(u, v)\} = \vec{r}(u, v)$ — радиусвектор точки на поверхности Φ .

Тогда

 $dS = |[\vec{r}_u, \vec{r}_v]| \, du \, dv = \sqrt{|\vec{r}_u|^2 \cdot |\vec{r}_v|^2 - (\vec{r}_u, \vec{r}_v)^2} \, du \, dv$ — площадь участка поверхности, соответствующего бесконечно малым приращениям параметров du, dv. Значит,

$$\iint_{\Phi} f(x,y,z) dS = \iint_{R} f(x(u,v),y(u,v),z(u,v)) \sqrt{|\vec{r}_{u}|^{2} \cdot |\vec{r}_{v}|^{2} - (\vec{r}_{u},\vec{r}_{v})^{2}} du dv.$$

Поверхностный интеграл сведён к двойному интегралу по области g.

Пример 1. Вычислить $I = \iint (xy + yz + zx) dS$, где Φ — часть ко-

нической поверхности $z = \sqrt{x^2 + y^2}$, вырезанная цилиндром $x^2 + y^2 = a^2$.

I способ. Поверхность Ф задана явно уравнением $z = \sqrt{x^2 + y^2}$ и однозначно проецируется на круг $G: x^2 + y^2 \le a^2$. Тогда $z_x = \frac{x}{\sqrt{x^2 + y^2}}, \qquad z_y = \frac{y}{\sqrt{x^2 + y^2}},$

$$z_x = \frac{x}{\sqrt{x^2 + y^2}}, \qquad z_y = \frac{y}{\sqrt{x^2 + y^2}},$$

$$dS = \sqrt{z_x^2 + z_y^2 + 1} \, dx \, dy = \sqrt{\frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} + 1} \, dx \, dy = \sqrt{2} \, dx \, dy,$$

$$I = \iint_{x^2 + y^2 \le a^2} \left(xy + y\sqrt{x^2 + y^2} + x\sqrt{x^2 + y^2} \right) \sqrt{2} \, dx \, dy.$$

Для вычисления этого двойного интеграла можно перейти к полярным координатам:

 $x = r \cos \varphi$, $y = r \sin \varphi$, $0 \le r \le a$, $0 \le \varphi < 2\pi$, тогда

$$I = \sqrt{2} \int_{0}^{a} r^{3} dr \int_{0}^{2\pi} (\cos \varphi \sin \varphi + \sin \varphi + \cos \varphi) d\varphi = 0.$$

II способ. Перейдём к цилиндрическим координатам:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \\ z = z. \end{cases}$$

Уравнение конуса $z = \sqrt{x^2 + y^2}$ в цилиндрических координатах принимает вид z = r.

Значит, в качестве параметров можно взять r, φ . Параметрические уравнения поверхности Ф:

$$\begin{cases} x = x(r, \varphi) = r \cos \varphi, \\ y = y(r, \varphi) = r \sin \varphi, \\ z = z(r, \varphi) = r. \end{cases}$$

Какова область изменения параметров r, φ ? Уравнение цилиндра $x^2 + y^2 = a^2$ в цилиндрических координатах принимает вид r = a, поэтому на поверхности Φ выполняется $0 \le r \le a, \ 0 \le \varphi < 2\pi$, т. е. область g изменения параметров $r, \ \varphi$ представляет собой прямоугольник.

Записав параметрические уравнения поверхности Ф в векторном виде:

$$\vec{r} = \{x, y, z\} = \{r\cos\varphi, r\sin\varphi, r\},$$
 получим

$$\vec{r}_r = \{\cos\varphi, \sin\varphi, 1\}, \qquad \vec{r}_\varphi = \{-r\sin\varphi, r\cos\varphi, 0\},$$

$$|\vec{r}_r|^2 = \cos^2 \varphi + \sin^2 \varphi + 1 = 2, \qquad |\vec{r}_{\varphi}|^2 = r^2 \sin^2 \varphi + r^2 \cos^2 \varphi = r^2, \qquad (\vec{r}_r, \vec{r}_{\varphi}) = 0,$$

$$dS = \sqrt{|\vec{r}_r|^2 \cdot |\vec{r}_{\varphi}|^2 - (\vec{r}_r, \vec{r}_{\varphi})^2} dr d\varphi = \sqrt{2r^2} dr d\varphi = \sqrt{2}r dr d\varphi.$$

Тогда

$$\begin{split} I &= \iint\limits_{g} (r^2 \cos \varphi \sin \varphi + r^2 \sin \varphi + r^2 \cos \varphi) \sqrt{2} r \, dr \, d\varphi = \\ &= \sqrt{2} \int\limits_{0}^{a} r^3 \, dr \int\limits_{0}^{2\pi} \left(\frac{\sin 2\varphi}{2} + \sin \varphi + \cos \varphi \right) d\varphi = 0. \\ Omsem: I &= 0. \end{split}$$

Поверхностные интегралы 2-го рода (повторение)

Рассмотрим двустороннюю поверхность Φ , на которой выбрана одна из двух сторон и задано непрерывное поле единичных нормалей $\vec{n} = \{\cos\alpha, \cos\beta, \cos\gamma\}$, где α , β , γ — углы между нормалью \vec{n} и осями Ox, Oy, Oz. Тогда общий поверхностный интеграл 2-го рода:

$$\iint_{\Phi} P(x, y, z) dy dz + Q(x, y, z) dx dz + R(x, y, z) dx dy = \iint_{\Phi} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS =$$

$$= \iint_{\Phi} (\vec{A}, \vec{n}) dS$$

— *поток* вектора $\vec{A} = \{P,Q,R\}$ через поверхность Φ в направлении нормали \vec{n} . Таким образом, если выбрано определённое поле единичных нормалей \vec{n} , т. е. выбрана определённая сторона поверхности, то поверхностный интеграл 2-го рода сводится к поверхностному интегралу 1-го рода вида $\iint_{\Phi} f \, dS$, где $f = (\vec{A}, \vec{n})$. Значит, вычислять его можно как по-

верхностный интеграл 1-го рода.

Также поверхностный интеграл 2-го рода можно свести непосредственно к двойным интегралам следующим образом. Для примера, рассмотрим слагаемое $\iint_{\Phi} R\cos\gamma \,dS$. Из рисунка

видно, что

 $dS\cos\gamma= egin{cases} dx\,dy, & \text{если}\,\gamma-\text{острый,} \ -dx\,dy, & \text{если}\,\gamma-\text{тупой.} \end{cases}$ $(\gamma-\text{уто угол между нормалью}\,\vec{n}\,$ и положительным направлением оси Oz.) Если поверхность Φ однозначно проецируется на ласть G в плоскости Oxy, т. е. имеет уравнение z=z(x,y), то $\vec{N}=\left\{z_x,z_y,-1\right\}$ — нижняя нормаль (составляет тупой угол с осью Oz), и $\iint_{\Phi}R(x,y,z)\cos\gamma\,dS=-\iint_{G}R(x,y,z(x,y))dx\,dy$ — интеграл по нижней стороне поверхности Φ . Для верхней стороны поверхности: нормаль $\vec{N}=\left\{-z_x,-z_y,1\right\}$ составляет острый угол с осью Oz, и $\iint_{\Phi}R(x,y,z)\cos\gamma\,dS=\iint_{G}R(x,y,z(x,y))dx\,dy$ — интеграл по верхней стороне поверхности Φ .

Таким образом, формула перехода от интеграла по поверхности Ф к двойному интегралу по плоской области G, на которую однозначно проецируется Φ , имеет вид:

$$\iint\limits_{\Phi} R(x,y,z) \ dx \ dy = \begin{cases} \iint\limits_{G} R(x,y,z(x,y)) \ dx \ dy \ \text{по верхней стороне } \Phi, \\ -\iint\limits_{G} R\big(x,y,z(x,y)\big) \ dx \ dy \ \text{по нижней стороне } \Phi. \end{cases}$$

Аналогично для остальных слагаемых в поверхностном интеграле 2-го рода. Если поверхность проецируется на координатные плоскости неоднозначно, то её нужно разбить на части, проецирующиеся однозначно.

Пример 2 (MAB3 гл. XIV № 16 \vec{n} $I = \iint_{\Phi} x dy dz + y dx dz + z dx dy$ по внешней $x^2 + y^2 + z^2 = a^2$. Запишем и 16a). Вычислить стороне сферы

Запишем интеграл в виде: $I = \iint_{\Omega} (\vec{A}, \vec{n}) dS$, где $\vec{A} = \{x, y, z\}$, \vec{n} — единичная внешняя нор-

Заметим, что $\vec{A} = \vec{r}$ — радиус-вектор, который направлен так же, как и внешняя нормаль, поэтому $(\vec{A}, \vec{n}) = |\vec{A}| \cdot |\vec{n}| \cdot \cos 0 = |\vec{A}| = \sqrt{x^2 + y^2 + z^2} = a$ на сфере Φ , и

$$I = \iint_{\Phi} a \, dS = a \iint_{\Phi} dS = a \cdot 4\pi a^2 = 4\pi a^3.$$

Ответ: $I = 4\pi a^3$

Пример 3 (MAB3 гл. XIV № 17г). Вычислить поток вектора $A = \{yz, xz, xy\}$ через внешнюю сторону границы области

$$T: x^2 + y^2 \le a^2, \ 0 \le z \le h.$$

Требуется вычислить

$$\Pi = \iint_{\Phi} (\vec{A}, \vec{n}) dS = \iint_{\Phi_{\delta o \kappa}} (\vec{A}, \vec{n}) dS + \iint_{\Phi_{u u s}} (\vec{A}, \vec{n}) dS + \iint_{\Phi_{s e p \kappa}} (\vec{A}, \vec{n}) dS.$$

1)
$$\Phi_{\delta o \kappa}$$
: $x^2 + y^2 = a^2$, $\vec{N} = \{x, y, 0\}$, $|\vec{N}| = \sqrt{x^2 + y^2} = a$,

$$\vec{n} = \frac{\vec{N}}{|\vec{N}|} = \left\{ \frac{x}{a}, \frac{y}{a}, 0 \right\},\,$$

$$\Pi_{\delta o \kappa} = \iint_{\Phi_{\delta o \kappa}} \left(\frac{xyz}{a} + \frac{xyz}{a} \right) dS = \frac{2}{a} \iint_{\Phi_{\delta o \kappa}} xyz \, dS.$$

Перейдём к цилиндрическим координатам:

$$\int_{v}^{x} = r \cos \varphi,$$

$$y = r \sin \varphi$$
 ,

$$z=z$$

где r = a; φ , z — параметры, они изменяются в прямоугольнике $g: 0 \le \varphi \le 2\pi$, $0 \le z \le h$.

Элемент площади dS боковой поверхности цилиндра можно получить по общей формуле $dS = \sqrt{|\vec{r}_z|^2 \cdot |\vec{r}_{\varphi}|^2 - (\vec{r}_z, \vec{r}_{\varphi})^2} \, dz \, d\varphi$, где $\vec{r}(\varphi, z) = \{a\cos\varphi, a\sin\varphi, z\}$ (сделайте это!), или из геометрических соображений. Участок поверхности, соответствующий приращениям параметров $d\varphi$, dz, в первом приближении представляет собой прямоугольник со сторонами $ad\varphi$ и dz, поэтому $dS = ad\varphi dz$. Таким образом,

$$\Pi_{\delta o \kappa} = \frac{2}{a} \iint_{\mathbb{R}} a^2 \cos \varphi \sin \varphi z \cdot a \, d\varphi \, dz = a^2 \int_{0}^{h} z \, dz \int_{0}^{2\pi} \sin 2\varphi \, d\varphi = a^2 \int_{0}^{h} z \, dz \left(\frac{-\cos 2\varphi}{2} \right) \Big|_{0}^{2\pi} = 0.$$

2)
$$\Phi_{\text{верх}}$$
: $\vec{n} = \{0,0,1\}$, $\Pi_{\text{верх}} = \iint_{\Phi_{\text{верх}}} xy \, dS = \iint_{x^2 + y^2 \le a^2} xy \, dx \, dy$, т. к. $dS \cos \gamma = dx \, dy$ и $\gamma = 0$.

Перейдём к полярным координатам:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $0 \le r \le a$, $0 \le \varphi < 2\pi$, $\frac{D(x, y)}{D(r, \varphi)} = r$,

тогда

$$\Pi_{\text{Bepx}} = \int_{0}^{a} r^3 dr \int_{0}^{2\pi} \cos \varphi \sin \varphi d\varphi = \frac{1}{2} \int_{0}^{a} r^3 dr \int_{0}^{2\pi} \sin 2\varphi d\varphi = 0.$$

3) Аналогично $\Pi_{\mu\nu} = 0$.

$$\Pi = 0 + 0 + 0 = 0$$
.

Ответ: $\Pi = 0$.

Пример 4 (МАВЗ гл. XIV № 17ж). Вычислить поток вектора $\vec{A} = \{y, z, x\}$ через внешнюю сторону пирамиды, ограниченной плоскостями x + y + z = a (a > 0), x = 0, y = 0, z = 0.

1) задняя сторона x = 0: $\vec{n} = \{-1, 0, 0\}, (\vec{A}, \vec{n}) = -y$,

$$\Pi_{1} = \iint_{\Phi_{1}} (\vec{A}, \vec{n}) dS = \iint_{\Phi_{1}} -y \, dS = \iint_{G_{1}} -y \, dy \, dz = -\int_{0}^{a} dz \int_{0}^{a-z} y \, dy =$$

$$= -\int_{0}^{a} dz \left(\frac{y^{2}}{2} \right) \Big|_{0}^{a-z} = -\frac{1}{2} \int_{0}^{a} (a-z)^{2} \, dz = \frac{1}{2} \left(\frac{(a-z)^{3}}{3} \right) \Big|_{0}^{a} = -\frac{a^{3}}{6}.$$

2) левая сторона y = 0: $\vec{n} = \{0, -1, 0\}$, $(\vec{A}, \vec{n}) = -z$,

$$\Pi_2 = \iint_{\Phi_2} (\vec{A}, \vec{n}) dS = \iint_{\Phi_2} -z \, dS = \iint_{G_2} -z \, dx \, dz = -\frac{a^3}{6}.$$

3) нижняя сторона z = 0: $\Pi_3 = -\frac{a^3}{6}$.

4) передняя сторона (наклонная): x + y + z = a, $\vec{N} = \{1,1,1\}$, $\vec{n} = \left\{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\}$,

$$(\vec{A}, \vec{n}) = \frac{x + y + z}{\sqrt{3}} = \frac{a}{\sqrt{3}}.$$

$$\Pi_4 = \iint_{\Phi_4} (\vec{A}, \vec{n}) dS = \frac{a}{\sqrt{3}} \iint_{\Phi_4} dS.$$

$$dS\cos\gamma = dxdy$$
, где $\cos\gamma = \frac{1}{\sqrt{3}}$.

$$\Pi_4 = \frac{a}{\sqrt{3}} \iint_{G_4} \sqrt{3} \, dx \, dy = a \iint_{G_4} dx \, dy = a \cdot \frac{a^2}{2} = \frac{a^3}{2}.$$

$$\Pi = \Pi_1 + \Pi_2 + \Pi_3 + \Pi_4 = -\frac{a^3}{6} - \frac{a^3}{6} - \frac{a^3}{6} + \frac{a^3}{2} = 0.$$

Ответ: $\Pi = 0$.

Д**3 1.** МАВЗ гл. XIV № 3(д), 4(б), 8(в), 11, 16(г), 17(з).

Читать теорию и отвечать на контрольные вопросы: MAB3 гл. XIV § 5.