Sampling People, Records, & Networks

Jim Lepkowski, PhD
Professor & Research Professor Emeritus
Institute for Social Research, University of Michigan
Research Professor,
Joint Program in Survey Methodology, University of Maryland

Unit 3

- I Simple complex
- 2 deff & roh
- 3 2-stage sampling
- 4 Designing 2stage samples
- 5 Unequal sized clusters
- 6 Subsampling

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
 - Lecture 1: Simple complex sampling choosing entire clusters
 - Lecture 2: Design effects & intraclass correlation
 - Lecture 3: Two-stage sampling
 - Lecture 4: Designing for two-stage samples
 - Lecture 5: Dealing with the real world unequal sized clusters
 - Lecture 6: Subsampling
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Unit 3

- I Simple complex
- 2 deff & roh
- 3 2-stage sampling
- 4 Designing 2stage samples
- 5 Unequal sized clusters
- 6 Subsampling

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
 - Lecture 1: Simple complex sampling choosing entire clusters
 - Lecture 2: Design effects & intraclass correlation
 - Lecture 3: Two-stage sampling
 - Lecture 4: Designing for two-stage samples
 - Lecture 5: Dealing with the real world unequal sized clusters
 - Lecture 6: Subsampling
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- The problem
- Sampling schemes
- PPS
- Systematic PPS
- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
 - Lecture I: Simple complex sampling choosing entire clusters
 - Lecture 2: Design effects & intraclass correlation
 - Lecture 3: Two-stage sampling
 - Lecture 4: Designing for two-stage samples
 - Lecture 5: Dealing with the real world unequal sized clusters
 - Lecture 6: Subsampling
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Naturally occurring clusters tend to be unequal in size
- Fixed sampling rates and unequal sized clusters result in variation in sample size

- The problem
- Sampling schemes
- PPS
- Systematic PPS

Hospital		Hospital	
1 - D	420	7	60
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	180	$\frac{1}{8}$ B_a	60
3	120	9	720
4	600	10	1860
5	240	11	1140
6	360	12	240

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- An epsem sample of n = 100 employees is desired from the N = 6,000
 - Select a = 2 hospitals
 - f = 100/6000 = 1/60
- First select SRS a = 2 (a rate of 1/6)
 - And then choose employees at the rate I/I0 within the selected hospitals

$$f = (1/6) \cdot (1/10) = 1/60$$

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Suppose hospitals 2 and 6 are chosen
 - Subsampling at the rate of I/I0 yields sample size n = (180+360)/10 = 18+36=54
 - If hospitals 2 and 10 were chosen, though, n = (180+1860)/10 = 18+186 = 204
- Subsample size varies
- Sample administration becomes difficult

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Variation in the overall sample size is undesirable
- Since n is a random variable, $\overline{y} = \left(\frac{1}{n}\right)\sum_{i=1}^{n} y_i$ no longer applies
- We need to use a ratio estimator

$$r = \frac{\sum_{\alpha=1}^{a} y_{\alpha}}{\sum_{\alpha=1}^{a} x_{\alpha}} = \frac{y}{x}$$

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Controlled sample size $\alpha \bar{p}$ rovides administrative convenience in fieldwork
- Also provides greater statistical efficiency of estimators
- Several methods
 - Select exactly b elements per cluster
 - Probability proportionate to size (PPS)

Survey Data Collection & Analytic Specialization

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Suppose a = 2 and b = 50 employees per selected hospital are chosen
 - Sample size is n = 100, and does not vary by which hospitals are chosen
- This design will on average across all possible samples over-represent employees in small hospitals
 - The probability of selection of small hospital employees is higher

- The problem
- Sampling schemes
- PPS
- Systematic PPS

• For example, for hospital 2,

$$f = (1/6)(50/180) = 1/21.6$$

• While for hospital 10,

$$f = (1/6)(50/1860) = 1/223.2$$

- This variation in rates can be remedied through weighting
 - Return to weighting in a later section

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- · Require a method that is
 - Epsem
 - Achieves equal sized subsamples in clusters
- Again, consider a = 2 and b = 50
- In order to achieve *epsem*, the following must be the "selection equation":

$$f = \frac{1}{60} = P\{\alpha\} \cdot \frac{50}{B_{\alpha}}$$

- The problem
- Sampling schemes
- PPS
- Systematic PPS

• For example, if hospital 4 is chosen, then $f = \frac{1}{60} = P\{\alpha\} \cdot \frac{50}{600} = P\{\alpha\} \cdot \frac{1}{12}$

• In order to make this epsem, we need

$$\frac{1}{60} = P\{\alpha\} \cdot \frac{50}{B_{\alpha}}$$

$$P\{\alpha\} = \frac{1}{60} \cdot \frac{B_{\alpha}}{50} = \frac{B_{\alpha}}{3000}$$

- The problem
- Sampling schemes
- PPS
- Systematic PPS

Re-expressing,

$$P\{\alpha\} = \frac{2 \cdot B_{\alpha}}{6000} = \frac{2 \cdot B_{\alpha}}{\sum_{\alpha} B_{\alpha}}$$

• In general, this becomes, across two stages,

$$f = P\{\alpha \text{ and } \beta\} = \frac{a \cdot B_{\alpha}}{\sum_{\alpha} B_{\alpha}} \cdot \frac{b}{B_{\alpha}} = \frac{a \cdot b}{\sum_{\alpha} B_{\alpha}} = \frac{n}{N}$$

- The problem
- Sampling schemes
- PPS
- Systematic PPS

Hospital	B_{lpha}	$\operatorname{Cum} olimits. B_{lpha}$	
1	420	420	
2	180	600	
3	120	720	
4	600	1320	
5	240	1560	
6	360	1920	
7	60	1980	
8	60	2040	
9	720	2760	
10	1860	4620	
11	1140	5760	
12	240	6000	

Survey Data Collection & Analytic Specialization

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Select RN's from 1 to 6000, say ...
 - RN = 702
 - RN = 1744
- Find the first hospital with cumulative sum greater than or equal to the first RN
- Find the next hospital with sum greater than the second RN
- These choose hospitals 3 and 7:

- The problem
- Sampling schemes
- PPS
- Systematic PPS

Hospital	B_{α}	Cum.	B_{α}
1	420	420	
2	180	600	
3	120	720	702
4	600	1320	
5	240	1560	
6	360	1920	1744
7	60	1980	
8	60	2040	
9	720	2760	
10	1860	4620	
11	1140	5760	
12	240	6000	

Survey Data Collection & Analytic Specialization

- The problem
- Sampling schemes
- PPS
- Systematic PPS

- Alternatively, select one RN from 1 to the interval 6000/2 = 3000
 - Say RN = 702
- Find the selected hospital, as above
- Add the interval to the RN to obtain 702 + 3000 = 3702
- Find the second hospital with this selection number, as above
- The RN 702 yields hospitals 3 and 10

Unit 3

- I Simple complex
- 2 deff & roh
- 3 2-stage sampling
- 4 Designing 2-stage samples
- 5 Unequal sized clusters
- 6 Subsampling

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
 - Lecture I: Simple complex sampling choosing entire clusters
 - Lecture 2: Design effects & intraclass correlation
 - Lecture 3: Two-stage sampling
 - Lecture 4: Designing for two-stage samples
 - Lecture 5: Dealing with the real world unequal sized clusters
 - Lecture 6: Subsampling
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

