Classification of Network Technologies

- ➤ Based upon *geographical area size*
- Local Area Network (LAN)
 - Optimized for a moderate size geographic area
 - generally owned, used, and operated by a single organization.
- Metropolitan Area Network (MAN)
 - Optimized for a larger geographical area than a LAN, ranging from several blocks of buildings to entire cities
 - Might be <u>owned and operated by</u> a <u>single</u> organization, but usually will be <u>used by many</u> individuals and organizations
- Wide Area Network (WAN)
 - Operate <u>over</u> geography of telecommunication <u>carriers</u> such as intra-/inter- area/city/country, more than tens km scope

► LAN and WAN are widely deployed

De com closec

Switching Technology - I

(inside network core)

- Data/signal forwarding over networks:
 - Message switching (MS)
 - Circuit switching (CS)
 - Packet switching (PS)
- Message switching
 - Message (block data) is stored in a switching node and then forwarded later one hop at a time
 - Message received in its entirety, inspected for error, and then forwarded
 - Need "LARGE" storage space to store data in each node

Ex. Telegraph, military applications

Local-Area Networks (LAN) and Devices

LAN characteristics:

- Operate within a limited geographic area
- ~ intra-/inter-building, a few km scope
- Connect physically adjacent devices on the media
- ~ including Hubs, Bridges, workgroup concentrators, Switches, Routers, etc.
- · Allow multiaccess to high bandwidth media
- ~ media/bandwidth is shared by many devices
- Provide full-time connectivity to local services
- ~ LAN rarely shutdown or restrict access to connected devices
- Control the network privacy under local administration
 - ~ privately control the LAN by renting/purchasing the media/connections
- Channels are relatively error-free (BER < 1 in 109)

Overview

Bit Error Rate

Message Switching Concept

• Transfer a 7.5 Mbit message in a Message-Switched Network needs 5 sec, assuming immediately processing

Overview

Switching Technology - II

Circuit switching

- dedicated commu path(circuit) between an O-D pair
- data are transmitted along the path with pre-negotiated rate
- path (i.e., the link capacity/bandwidth) is occupied for the entire lifetime of communication
- Three phases of the CS:
 - 1) ciircuit/connection establishment (call setup)
 - 2) data transfer
 - 3) circuit disconnect (release the granted capacity)
- only propagation delay while transmission

Ex. Telephone network: dial .→ talk → hang up

(Example)

Overview

Multiplexing \iff **Multiple Access**

Multiple Access (MAC techniques)

- a set of <u>rules</u> to control the *access* to a shared communication channel
- conflicting access to the channel may be happened
- mostly for broadcasting channels
- Ex: Contention, Round-Robin (take turn), Reservation

Multiplexing

- given the instantaneous knowledge of all users' requirement
- sharing the communication channel without contention
- implemented at a local site, remote mat take the reverse action
- Ex: TDM, FDM, WDM systems

(a reminder)

Circuit Switching Concept

* Example - Public (circuit-)Switched Telephone Network

CS Example - FDM

- ◆ FDM (Frequency Division Multiplexing)
 - Each signal is modulated onto (being shifted) a different carrier frequency (called <u>subcarrier</u>)
 - Each signal is exclusively possess its dedicated frequency band all the time
 - Ex: FM/AM broadcasting, Cable TV Spectrum allocation

• STDM (Time Division Multiplexing, or just TDM) • Multiple digital signals can be carried on a single transmission path by interleaving portions of each data in time • Take turn to use the entire bandwidth • Ex: voice communication in PSTN • Illustration 1 — TDM channel 2 — MUX TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 7 — TDM channel 8 — TDM channel 9 — TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 3 — TDM channel 4 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 7 — TDM channel 9 — TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 7 — TDM channel 9 — TDM channel 1 — TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 2 — TDM channel 3 — TDM channel 4 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 9 — TDM channel 1 — TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 2 — TDM channel 3 — TDM channel 4 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 9 — TDM channel 1 — TDM channel 1 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 2 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 2 — TDM channel 2 — TDM channel 1 — TDM channel 2 — TDM channel 3 — TDM channel 4 — TDM channel 5 — TDM channel 6 — TDM channel 6 — TDM channel 7 — TDM channel 9 — TDM channel 1 — TDM cha

Pulse Code Modulation - Brief Review analog • Encoding example (4-bit PCM) Sampling voice Binary Equivalent 0000 Quantization 0010 digital **Encoding** 0011 waveform 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Sampled according to Sampling/Nyquist Theorem.

Switching Technology - III

Packet switching

- data are sent in a sequence of "chunk" (called packet)
- each packet contains src addr, dest addr, and sequence #
 and is passed through the network from node to node
 along some paths
- packets are received, "may/may not" be stored briefly, and then forwarded to the next node
 - (save entire packet and forward it to later on → <u>store-and-forward</u>; process the first few part of a packet and then forward it to transparently → <u>cut through</u>)
- no dedicated path allocated for an O-D pair

- (A) Datagram (DG)
- (B) Virtual circuit (VC)

Overview

Statistical TDM or Statistical Multiplexing

- Statistical TDM, Asynchronous TDM or Intelligent TDM
- Used to resolve the bandwidth waste (empty time slots) in STDM (The "gap" ~ not all transmitting all of the time)
- Scenario: n ports (I/O) with k time slots available, k < n

• Operation:

- Scan input buffers, collect data until a frame is filled or a scanning cycle is finished, send frame out.
- Statistical MUX (STDM) varies the <u>bandwidth allocation</u> based on the traffic presented at any given time instant.
- The bandwidth (or time slot) is <u>assigned to some one else</u> if the current input device has no data to send at that time instant.
- STDM <u>buffers</u> incoming <u>data</u> until outgoing bandwidth can be allocated.

Packet Switching - Datagram Transmitted in-order (a) Taking different route (c) Might be out-of-order Overview

Switching Technology - IV

Packet switching (cont'd)

(A) DGPS

- Packet are routed independently (called datagram) of one another
- packets can be received in a different order (out-of-sequence delivery)

(B) VCPS

- ~ tries to combine the advantages of CS and DGPS
- all pkts (from one pkt stream) are sent along the <u>same path</u> (virtual circuit)
- guarantees in-sequence delivery
- similar to CS, needs:
 - (1)VC setup, (2)packets transfer, (3)VC disconnection.

Incoming

Incoming VC

12

63

97

Outgoing

Interface

2

3

Outgoing VC

18

17

87

• SWs need to maintain connection state info for ongoing connections

Overviev

Packet switching versus circuit switching (cont'd)

- Great for bursty data
 - resource sharing efficiently
 - no call setup
- Excessive congestion: packet delay and loss (coming next)
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps still an unsolved problem (QoS issues)
- Viewpoints of Pros and Cons (try the following)
 - processing overhead? Setup? Store need?
 - more control over the traffic? Dynamic use of bandwidth/data rate?
 - maintaining system/node status? quality of services?

- etc.

101

Timing Comparisons of Switching Techniques

Viewpoints:

Dedicated communication path? The way of data transmission?
Message being stored? Call setup? Delay (propagation and transmission)?
Network overloading response? Overhead bits?

Overvieu

Delay in packet-switched networks

- Packets experience delay on end-to-end path
- Four sources of delay at each hop
- 1. Nodal processing delay
 - check bit errors
 - determine output link
- 2. Queueing delay
 - time waiting at output link for transmission
 - depends on congestion level of routers

3. Transmission delay:

- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

(Delay in packet-switched networks)

4. Propagation delay:

- d = length of physical link
- s = propagation speed in medium ($\sim 2 \times 10^8$ m/sec)
- propagation delay = d/s

• Total nodal delay:

$$d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop}$$

Overview

- 10

Queueing delay (revisited)

- R = link bandwidth (bps)
- L = packet length (bits)
- a = average packet arrival rate (packet/sec)

Traffic Intensity = L*a/R

(dimensionless)

- La/R ≈ 0: average queueing delay small
- La/R \rightarrow 1: delays become large (queue length grows)
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

■ Golden rule \rightarrow Do not design your network with T.I. > 1 or \rightarrow 1.

Overviev

(reference)

<u>Internet History - I</u>

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet demonstrated publicly
 - NCP (Network Control Protocol) first hosthost protocol
 - first e-mail program
 - ARPAnet has 15 nodes

What is the "Internet"? * roughly hierarchical · Network of networks (inter-connected set of networks) I SP • To interconnect different regional ISP computers used by various NBP B organizations via the same TCP/IP protocol → it treats all NAP networks (e.g., LAN, WAN, NBP A etc.) equally (i.e., a flat network) regional ISP local A(B,S)P ~ Access (Backbone, I SP Service) Providers • New computers added to the Internet > ONE per second • Internet ~ Doubling in size every nine to twelve months

Internet History - II

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1973: Metcalfe's PhD thesis proposes Ethernet
- 1974: Cerf and Kahn architecture for interconnecting networks
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- Best-effort service model
- stateless routers
- decentralized control
- → define today's Internet architecture

v Overview

(reference)

(reference)

Internet History - III

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: SMTP e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: FTP protocol defined
- 1988: TCP congestion control

- Responsible for solving short-term engineering needs of the Internet.

It has over 40 Working Groups.

Overview

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of

⇒ APNIC (TWNIC, etc.), EURNIC, etc.

FYI ~ For Your Information (RFC # > 1500)

RFC ~ Request For Comments

networks

Internet History - IV

1990-2000's: commercialization, the Web, new apps.

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- Early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's - 2000's:

• more killer apps: instant messaging, peer-to-peer file sharing (e.g., Naptser)

(reference)

- network security to forefront
- est. 50 million host, 100 million+ users
- · backbone links running at Gbps

Overview

Internet Organizations IAB 1983 IAB ~ Internet Activities Board **IETF IRTF** IESG: Internet Engineering Steering Group Area research groups working groups IRTF - Internet Research Task Force - Responsible for research and development of the Internet protocol suite • IANA ~ Internet Assigned Number Authority • NIC ~ Network Information Center TWNIC **IETF** - Internet **Engineering** Task Force

How to get RFC?

1. By *FTP*: Connect via FTP to ds.internic.net with Acc#: anonymous & Password: guest, then "get rfc/rfc1577.txt local filename"

2. By *E-mail*: Mail to "mailserv@ds.internic.net" with a message of

"send rfc1577.txt"

Mail to "rfc-info@ISI.EDU with Subject "getting rfcs" and

Content "help: ways_to_get_rfcs"

3. Web sites: http://www.rfc-editor.org (many others)

4. Archie Search:

Some Important RFCs

Protocol	Full Name	RFC#	Protocol	Full Name	RFC#	Protocol	Full Name	RFC#
TCP*	Transport Control Protocol	793 1323	воотр	Bootstrap Protocol	951 1048 1084	SNMP*	Simple Network Management Protocol	1067 1448
UDP*	User Datagram Protocol	768	URL	Uniform Resource Location	1738	SMTP	Simple Mail Transfer Protocol	821 822
IP*	Internet Protocol	791	DHCP*	Dynamic Host Configuration Protocol	1531 1541 2131	MIME	Multipurpose Internet Mail Extensions	2045 2046 2047 2048
ICMP*	Internet Control Message Protocol	792	Telnet*	Telnet (Remote login)	764 854	РОР3	Post Office Protocol V.3	1939
ARP*	Address Resolution Protocol	826	FTP*	File Transfer Protocol	959	IMAP	Internet Mail Access Protocol	2060
RARP	Reverse Address Resolution Protocol	903	DNS*	Domain Name System	1034 1035	NNTP	Network News Transport Protocol	977
НТТР	Hypertext Transfer Protocol	2068	Cookies	HTTP State Management Protocol	2109	CIDR	Classless InterDomain Routing	1519
ISSP	Internet Standard Subnetting Procedure	950	PPP	Point to Point Protocol	1661	NAT	IP Network Address Translator	1631

Overview

114