

ECM5605(5075) S'20 Algorithms

Lecture 04

Dynamic Programming (1):

Longest Common Sequence

Review Problems

What is Order Statistics?

- How to design an efficient Algorithm?
- Worst-case complexity? Average-case complexity?
- How to analyze the average-case of RAND-SELECT?
- What's the key idea to guarantee O(n)? Hint: BFPRT-Select
- Why groups of 5? Can we use 3?
- Back to Quick Sort
 - How to prove the average-case complexity?
 - Can guarantee O(nlgn) if using BFPRT-Select?

From Divide-and-Conquer ...

- Essence: solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - -Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 - -What's the potential problem??
 - ⇒ Inefficient to solve repeated subproblems
- Therefore, if many independent subproblems are overlapping
 - ⇒ only need to each subproblem just once.
 - **⇒** Dynamic programming

Birth of Dynamic Programming

- Richard Bellman, 1952
 - -multistage stochastic decision processes
- "Dynamic Programming" so named because
 - –Originally associated with movements (trading) between time and space, thus "dynamic"
 - -"programming" refers to the process of formulating the constraints of a problem
 ⇒ by analogy to "linear programming" and other forms of optimization
- Can be also used in deterministic problems
 ⇒ (recursive) optimization problems

Dynamic Programming (DP)

- Typically apply to optimization problems:
 - Find a (not "the") solution with the optimal (maximum / minimum) value
- 4 steps in developing a DP algorithm
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the formula of an optimal solution.
 - 3. Compute the value of an optimal solution either bottom-up in a table (or top-down with caching)
 - 4. Construct an optimal solution from computed information (this step can be omitted if only the value is required)

ECM5605(S20)

When to Use DP

- Characteristics of DP problems:
 - 1. problem can be divided into stages (subproblems)
 - 2. each stage has one/more states (substructures)
 - 3. you make a decision at each stage
 - 4. the decision you make affects the state for the next stage
 - 5. there is a recursive relationship between the value of the decision at the stage and the previously found optima (principle of optimality)
- Hopeless configurations: for an n-element set
 - # of permutations: n!
 - # of subsets: 2^n

Longest Common Subsequence

Problem Formulation:

Given 2 sequences, $\mathbf{X} = \langle x_1, ..., x_m \rangle$ and $\mathbf{Y} = \langle y_1, ..., y_n \rangle$, find a common subsequence whose length is maximum.

 Example: Subsequence need not be consecutive, but must be in order.

X: springtime ncaa tournament basketballY: printing north carolina krzyzewski

LCS: printi ncarna ke

Naïve Algorithm and Analysis

- Brute-force LCS algorithm:
 For every subsequence of X, check whether it's a subsequence of Y
- Analysis:
 - -Each subsequence takes O(n) time to check: scan Y for first letter, for second, and so on.
 - -2^m subsequences of X to check.
 - -Worst-case runtime: $O(n2^m)$ exponential time
- Read code for the naïve version and watch the number of comparisons

Towards a Better Algorithm

- Simplification:
 - Look at the *length* of a longest-common subsequence
 - Denote the length for a sequence of S
 by |S|
 - 2. Extend the algorithm to find the LCS itself
- Strategy: consider prefixes of X and Y
 - Define c[i,j] = |LCS(X[1..i],Y[1..j])|
 - Then c[m,n] = /LCS(X,Y) /

Step 1: Optimal Substructure of LCS

Theorem

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.
```

- 1 If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2 If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 1: if $x_m = y_n$)

- Any sequence Z' that does not end in $x_m = y_n$ can be made longer by adding $x_m = y_n$ to the end. Therefore,
- 1) longest common subsequence (LCS) Z must end in $x_m = y_n$.
- 2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} , and
- 3) there is no *longer* CS of X_{m-1} and Y_{n-1} , or Z_{k-1} would not be an LCS.

Step 1: Optimal Substructure of LCS (cont'd)

Theorem

```
Let Z = \langle z_1, \ldots, z_k \rangle be any LCS of X and Y.
```

- 1 If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2 If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 2: $x_m \neq y_n$, and $z_k \neq x_m$)

Since Z does not end in x_m ,

- 1) Z is a common subsequence of X_{m-1} and Y, and
- 2) there is no *longer* CS of X_{m-1} and Y, or Z would not be an LCS

Step 2: Recursive Formula for Solution

Theorem

Let $Z = \langle z_1, \ldots, z_k \rangle$ be any LCS of X and Y.

- 1 If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y
- or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1}

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

LCS Example (I)

$$X = ABCB; m = |X| = 4;$$

Y = BDCAB; n = |Y| = 5;

⇒ Allocate 5x6 Matrix C

LCS Example (1)

LCS Example (2)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (3)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (4)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (5)

	j	0	1	2	3	4	5
i		Yj	В	D	С	Α	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	В	0					

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (6)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB BDCAB

LCS Example (7)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (8)

	j	0	1	2	3	4	5
i		Yj	В	D	С	Α	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 ,	1
2	В	0	1	1	1	1	2
3	C	0					
4	В	0					

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (10)

	j	0	1	2	3	4	5
i		Yj	В	D	C	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	$ \mathbf{c} $	0	1 -	1			
4	В	0					

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (11)

	j	0	1	2	3	4	5
i		Yj	В	D	(c)	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1,	1	1	2
3	C	0	1	1	2		
4	В	0					

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

ABCB BDCAB

LCS Example (12)

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (13)

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	\mathbf{A}	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	B	0	1				

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

ABCB BDCAB

LCS Example (14)

	j	0	1	2	3	4	5
i	_	Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	B	0	1 -	1 -	• <mark>*2</mark> -	2	

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (15)

	j	0	1	2	3	4	5
i i		Yj	В	D	C	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	В	0	1	1	2	2	3

if
$$(x_i == y_j)$$
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Algorithm Runtime

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the runtime to compute C?

 $O(m \times n)$

since each c[i,j] is calculated in constant time, and there are $m \times n$ elements in the array

ECM5605(S20)

Step 4: Construct a LCS

- So far, we have just found the length of LCS, but not a LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on either c[i-1,j] and c[i,j-1] or c[i-1, j-1]

For each *c[i,j]* we can say how it was acquired:

For example, here
$$c[i,j] = c[i-1,j-1] + 1 = 2+1=3$$

Step 4: Construct a LCS (cont'd)

Remember that

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i-1,j], c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i]
 (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Example of Constructing a LCS

	j	0	1	2	3	4	5
i		уј	В	D	C	Α	В
0	Хİ	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	- 1 _K		1	2
3	С	0	1	1	2	- 2	2
4	В	0	1	1	2	2	3

ECM5605(S20)

Example of Constructing a LCS (cont'd)

LCS (reversed order): B C B

LCS (straight order):

B C B

(this string turned out to be a palindrome)

ECM5605(S20) L04-33

Analysis DP on LCS Problem

- Space complexity: $O(m \times n)$
- Time complexity:
 - -Computing the table: time = $O(m \times n)$
 - -Constructing an LCS: time = O(m+n)

Optimizing Space in LCS

Recap memory usage

- –Do we really need a mxn table to store the LCS values? Any improvement?
- –Implement your space-optimized version

Summary

- What are common/different points between Divide-and-Conquer and DP?
- 2 Hallmarks of dynamic programming:
 - Optimal substructure: an optimal solution to a problem (instance) contains optimal solutions to subproblems
 - Overlapping subproblems: a recursive solution contains a "small" number of distinct subproblems repeated many times
- What is longest common sequence problem?
 - How to use DP to solve this problem
 - Space complexity? Time complexity??

Ex: Longest Increasing Subsequence

- The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order.
- For example, length of LIS for {10, 22, 9, 33, 21, 50, 41, 60, 80 } is 6
 - $-LIS = \{10, 22, 33, 50, 60, 80\}$

DP for LIS

- Let arr be the input array and L(i) be the length of the LIS ending at index i
 - ⇒ arr[i] is the last element of the LIS
- Then, *L(i)* can be recursively written as:

$$L(i) = \begin{cases} 1 + \max(L(j)), & \text{if } 0 < j < i \text{ and } arr[j] < arr[i] \\ 1, & \text{if no such } j \text{ exists} \end{cases}$$

- Complexity is ???
- Refer to LIS_v1.cpp and develop your DP solution in C/C++