- **52.** Verificar la regla de la cadena para la función $f(x,y)=x^2/(2+\cos y)$ y la trayectoria $x=e^t,$ $y=e^{-t}$.
- **53.** Suponer que u(x,t) satisface la ecuación diferencial $u_t + uu_x = 0$ y que x, como función x = f(t) de t, satisface dx/dt = u(x,t). Demostrar que u(f(t),t) es constante en t.
- **54.** El desplazamiento en el instante t y la posición horizontal sobre una recta x de una cuerda de violín está dada por u = sen(x-6t) + sen(x+6t). Calcular la velocidad de la cuerda en x = 1 cuando $t = \frac{1}{3}$.
- **55.** La ley de los gases perfectos PV = nRT relaciona una constante R, el número n de moles del gas, el volumen V, la temperatura Kelvin T y la presión P.
 - (a) Demostrar que cada una de las variables n, P, T, V es función de las restantes variables y determinar explícitamente las ecuaciones que las definen.
 - (b) Calcular $\partial V/\partial T, \partial T/\partial P, \partial P/\partial V$ y demostrar que su producto es igual a -1.
- **56.** La $temperatura\ potencial\ \theta$ se define en función de la temperatura T y de la presión p mediante

$$\theta = T \left(\frac{1000}{p}\right)^{0,286}.$$

La temperatura y la presión se pueden considerar como funciones de la posición (x, y, z) en la atmósfera y también del tiempo t.

- (a) Determinar fórmulas para $\partial \theta / \partial x, \partial \theta / \partial y,$ $\partial \theta / \partial z, \partial \theta / \partial t$ en función de las derivadas parciales de T y p.
- (b) La condición $\partial\theta/\partial z < 0$ se considera como una atmósfera inestable, ya que lleva a grandes desplazamientos verticales de paquetes de aire a partir de un solo ímpetu hacia arriba o hacia abajo. Los meteorólogos utilizan la fórmula

$$\frac{\partial \theta}{\partial z} = \frac{\theta}{T} \left(\frac{\partial T}{\partial z} + \frac{g}{C_p} \right),\,$$

donde g=32,2 y C_p es una constante positiva. ¿Cómo varía la temperatura en la dirección ascendente en una atmósfera inestable?

- **57.** El volumen específico V, la presión P y la temperatura T de un gas de van der Waals están relacionados por $P = RT/(V-\beta) \alpha/V^2$, donde α, β y R son constantes.
 - (a) Explicar por qué dos cualesquiera de V, P y T pueden considerarse variables independientes que determinan la tercera variable.
 - (b) Hallar $\partial T/\partial P, \partial P/\partial V, \partial V/\partial T$. Identificar qué variables son constantes e interpretar físicamente cada derivada parcial.
 - (c) Verificar que $(\partial T/\partial P)(\partial P/\partial V)(\partial V/\partial T) = -1$ (no +1!).
- **58.** La altura h del volcán hawaiiano Mauna Loa se describe (de forma aproximada) mediante la función $h(x,y)=2.59-0.00024y^2-0.00065x^2$, donde h es la altura por encima del nivel del mar en millas y x e y miden las distancias en millas este-oeste y norte-sur desde la cima de la montaña. En (x,y)=(-2,-4):
 - (a) ¿A qué velocidad crece la altitud en la dirección (1,1) (es decir, en la dirección nordeste)? Exprese la respuesta en millas de altitud por milla de distancia horizontal recorrida
 - (b) ¿En qué dirección se encuentra el camino de máxima pendiente positiva?
- **59.** (a) ¿En qué dirección es la derivada direccional de $f(x,y) = (x^2 y^2)/(x^2 + y^2)$ en (1, 1) igual a cero?
 - (b) ¿Y en un punto arbitrario (x_0, y_0) del primer cuadrante?
 - (c) Describir las curvas de nivel de f. En particular, estudiarlas en función del resultado del apartado (b).
- **60.** (a) Demostrar que la curva $x^2 y^2 = c$, para cualquier valor de c, satisface la ecuación diferencial dy/dx = x/y.
 - (b) Dibujar algunas de las curvas $x^2 y^2 = c$, por ejemplo para $c = \pm 1$. En varios puntos (x,y) a lo largo de estas curvas, dibujar un segmento corto de pendiente x/y; comprobar que estos segmentos parecen ser tangentes a la curva. ¿Qué sucede cuando y = 0? ¿Qué sucede cuando c = 0?
- **61.** Supóngase que f es una función diferenciable de una variable y que la función u=g(x,y) se define como