

- 1 Work in progress: Harden RISC-V core
 - Threat model
 - Bibliography
 - Solution
- 2 Countermeasure Description
- 3 Countermeasure Validation
- 4 Conclusion

PEPR Arsene:

Tâche 1.1 : RISC-V 32-bits sécurisé contre les FI

Security properties

- → Integrity of Control Flow and Control Signals
- → Confidentiality of Instructions

Work in progress: Harden RISC-V core Threat model

Work in progress: Harden RISC-V core Bibliography

Existing state-of-the-art countermeasures:

SOFIA / SPONGE / MAFIA / CONFIDAENT / HAPEI

Fault injection on RISC-V architecture:

Johan Laurent et al. / Simon Tollec et al. / Anthony Zgheib et al.

Work in progress: Harden RISC-V core Solution

- Chained Encryption of Instructions (before programming memory)
- 2 On-the-fly Decryption

- Chained Encryption of Instructions (before programming memory)
- 2 On-the-fly Decryption

- Chained Encryption of Instructions (before programming memory)
- 2 On-the-fly Decryption

Solution Need for patches

Decryption when branches merge

Solution Need for patches

Decryption when branches merge

Countermeasure Description

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
 - RISC-V core: cv32e40p
 - Authenticated Encryption: ASCON
 - Patch policy
 - Solution Flow (without Control Signals)
- 3 Countermeasure Validation
- 4 Conclusion

Countermeasure Description

RISC-V core: cv32e40p

OpenHW group:

- cv32e40p 4 stages core rv32imc
- core-v-verif RTL simulation
- core-v-mcu microcontroller FPGA

ASCON: cipher suite, which provides Authenticated Encryption with Associated Data

ASCON: cipher suite, which provides Authenticated Encryption with Associated Data

- Winner of CAESAR Authenticated Encryption Lightweight Cryptography (2019)
- Winner of NIST Lightweight Cryptography (2023) \Rightarrow standardize the ASCON family
- Lightweight (better Throughput per Area than AES [1])
- Highly tested
- Large security margins

ASCON: Authenticated Encryption provided from Tag (T)

ASCON: Use-case of restricted set of valid data

ASCON: Authenticated Encryption provided from restricted set of valid instructions

ASCON: Authenticated Encryption provided from restricted set of valid instructions

ASCON Decryption scheme

Countermeasure Description Patch policy

- Patches stored in external memory
- Patches addressed by Program Counter
- ... and applied according to Control Signals
 - → No need for custom instructions

 \Rightarrow zero clock cycle overhead

Countermeasure Description

Solution Flow (without Control Signals)

Soft:

- Encrypt instructions sequentially
- 2 Build CFG
- Generate patches

Hard:

- Patch memory
- 2 ASCON decryption

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
- 3 Countermeasure Validation
 - Behavioral Simulation
 - FPGA
 - Security
- 4 Conclusion

Countermeasure Validation Behavioral Simulation

- core-v-verif
- Verilator
- Embench
 - ✓ valid execution for 15/23 programs

Indirect jump destinations are considered known

- → Goals: Validation & Looking for maximal frequency and utilization
- \bigstar core-v-mcu (F=10MHz) \rightarrow Homemade core-v-fpga
- Vivado flow: Nexys Video (Artix 7)

- → Goals: Validation & Looking for maximal frequency and utilization
- \bigstar core-v-mcu (F=10MHz) \rightarrow Homemade core-v-fpga
- Vivado flow: Nexys Video (Artix 7)

	core-v-fpga		core-v-fpga enc
$\overline{ ext{Freq}_{ extit{max}}}$	$67.45~\mathrm{MHz}$	\Rightarrow	47.25 MHz
$\mathbf{Period}_{\textit{min}}$	$14.8 \mathrm{ns}$	\Rightarrow	21.2 ns
\mathbf{Cycles}	N	\Rightarrow	N
\mathbf{LUT}	4065	\Rightarrow	7534
\mathbf{FF}	2065	\Rightarrow	3377
\mathbf{BRAM}	32	\Rightarrow	68

- → Goals: Validation & Looking for maximal frequency and utilization
- **≭** core-v-mcu (F=10MHz) → Homemade core-v-fpga
- Vivado flow: Nexys Video (Artix 7)

	core-v-fpga		core-v-fpga enc	Enhancements:
$\overline{ ext{Freq}_{ extit{max}}}$	67.45 MHz	\Rightarrow	47.25 MHz ★	Split critical paths
\mathbf{Period}_{min}	14.8 ns	\Rightarrow	21.2 ns	Split Critical patris
\mathbf{Cycles}	N	\Rightarrow	N	Roll permutations:
\mathbf{LUT}	4065	\Rightarrow	7534	$clk_{ascon} = M \times clk_{core}$
\mathbf{FF}	2065	\Rightarrow	3377	officere in A officere
\mathbf{BRAM}	32	\Rightarrow	68	

- → Goals: Validation & Looking for maximal frequency and utilization
- **≭** core-v-mcu (F=10MHz) → Homemade core-v-fpga
- Vivado flow: Nexys Video (Artix 7)

	core-v-fpga		core-v-fpga enc	Enhancements:
$\overline{ ext{Freq}_{ extit{max}}}$	$67.45~\mathrm{MHz}$	\Rightarrow	47.25 MHz ←	Split critical paths
$\mathbf{Period}_{\textit{min}}$	$14.8 \mathrm{ns}$	\Rightarrow	21.2 ns	Spile division public
\mathbf{Cycles}	N	\Rightarrow	N	Roll permutations:
\mathbf{LUT}	4065	\Rightarrow	7534 ←	$clk_{ascon} = M \times clk_{core}$
\mathbf{FF}	2065	\Rightarrow	3377	CINascon II // CINCOre
\mathbf{BRAM}	32	\Rightarrow	68	

- → Goals: Validation & Looking for maximal frequency and utilization
- **≭** core-v-mcu (F=10MHz) → Homemade core-v-fpga
- Vivado flow: Nexys Video (Artix 7)

	core-v-fpga		core-v-fpga enc	Enhancements:
$\overline{ ext{Freq}_{ extit{max}}}$	$67.45~\mathrm{MHz}$	\Rightarrow	47.25 MHz ←	Split critical paths
$\mathbf{Period}_{\textit{min}}$	$14.8 \mathrm{ns}$	\Rightarrow	21.2 ns	
\mathbf{Cycles}	N	\Rightarrow	N	Roll permutations:
\mathbf{LUT}	4065	\Rightarrow	7534 ←	$clk_{ascon} = M \times clk_{core}$
\mathbf{FF}	2065	\Rightarrow	3377	Office II / Office
\mathbf{BRAM}	32	\Rightarrow	68	Reduce patch size or
				change patch policy

Security
Experiments: VerifyPin

Execution: Plain

Fault: memory (164: blt \rightarrow bge)

Authenticated: ✓

Detection:

Security
Experiments: VerifyPin

Execution: Encrypted

Fault: memory (164: blt \rightarrow bge)

Authenticated: Detection: V

```
≥164: 00c7c663
                          blt x15.x12.170
                                              //comparison end
▲ 168 • 00100513
                          addi x10.x0.1
                                                 v10 = a1

√ 16c: 00008067

                          jalr x0.0(x1)
                                                 v11 = a2
■ 170: 00f506b3
                          add x13.x10.x15
                                                 v12 = eize
  174: 00f58733
                          add x14.x11.x15
                                                 v13 = a1+i
                                                 v14 = a2+i
  178: 0006c683
                          1bu x13.0(x13)
                                                 x15 = i
  17c: 00074703
                          1bu x14.0(x14)
 -180: 00e69663
                          bne x13.x14.18c
                                              //compare 4bits
→ 184: 00178793
                          addi x15.x15.1
 -188: fddff06f
                          jal x0,164
■ 18c+ 00000513
                          addi x10.x0.0
190: 00008067
                          jalr x0.0(x1)
```


Conclusion

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
- 3 Countermeasure Validation
- 4 Conclusion

Conclusion

Done:

- ✓ Soft: Instruction encryption and patch generation
- ✓ Hard: Instruction decryption (47.25 MHz)
- ✓ Validation: Behavioral, FPGA
- ✓ Attack simulation: a few scenarios to illustrate the concept

Conclusion

Done:

- ✓ Soft: Instruction encryption and patch generation
- ✓ Hard: Instruction decryption (47.25 MHz)
- ✓ Validation: Behavioral, FPGA
- ✓ Attack simulation: a few scenarios to illustrate the concept

In progress:

- → Rolled permutations: LUT utilization \
- Control Signals association (only static): Signal integrity
- Reduce patch size: BRAM utilization \
- Other patch policy: BRAM utilization \(\sqrt{} \)

Extra slides

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
- 3 Countermeasure Validation
- 4 Conclusion

Extra slides

Linear Code Extraction: Hardware Demonstration

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
- 3 Countermeasure Validation
- 4 Conclusion

Linear Code Extraction: Hardware Demonstration

Théophile Gousselot | SAS | HW DEMO HOST 2023

FPGA-Based demonstration

- Purpose: Interactive demonstration on a booth
- Real-time LCE (Emulated microprobing)
- Quickly assess and observe core behavior
- Nexys Video, Artix 7
- core-v-mcu microcontroller

RISC-V Environment

- 1 Work in progress: Harden RISC-V core
- 2 Countermeasure Description
- 3 Countermeasure Validation
- 4 Conclusion

RISC-V Environment Théophile Gousselot | SAS

RISC-V core: cv32e40p (OpenHW Group)

RISC-V Compilation: gcc + binary parsing

[Python scripts]

[Makefile and scripts]

- ✓ Parse, edit binary and build CFG
- ASCON encryption

RISC-V verification: core-v-verif (OpenHW Group) + improvements for security validation

- ✓ Behavioral simulation with verilator (Embench programs)
- ✓ Analyze of program execution traces (PC, instr in fetch, etc.)
- ✓ Force signals values for specific cycles
- **X** UVM Verification methodology not setup but available

RISC-V Environment Théophile Gousselot | SAS

FPGA flow: core-v-mcu (OpenHW Group)

Microcontroller used to run the HOST LCE demo

FPGA flow: core-v-fpga (Made by ourselves)

[Makefile, TCL scripts]

- ✓ Homemade small microcontroller (cv32e40p, instr/data memory, interface (=wrapper))
 - → 10 times smaller than core-v-mcu
 - → core frequency 6 times higher than core-v-mcu
- ✓ non-project-mode flow for behavioral simulation
 - → Can run every Embench program (generate VCD, generate Trace of PC/instr)
- ✓ project-mode flow for synthesis, implementation, bitstream generation
 - → Automated project creation by TCL scripts (including Clock Wizard, Integrated Logic Analyzer for debug purpose)
 - → TCL script to find a design maximal frequency

