Finite Automata 05

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Regular Language

- Question: Given a regular language, can it be expressed by a regular expression?
 - There are infinite number of regular languages
 - Luckily, all of them have one thing in common
 - Each of them has some finite-state machines that recognize it
- So, to try to answer the above question, we need to show a
 way to convert a finite-state machine into a regular expression
 that expresses the language of the machine

Generalized Nondeterministic Finite Automaton

- A Generalized Nondeterministic Finite Automaton (GNFA) N of a DFA M is
 - a special NFA where L(N) = L(M)
 - ullet N has exactly one accept state
 - ullet all transitions of N are regular expressions
 - To transition from one state to another, you need a string in the language expressed by the regular expression instead of a symbol
 - Example:

At q_2 , if you encounter a string in the language $0^* \cup 11^*0$, move to state q_5

$$0^* \cup 11^*0 = \{\varepsilon, 0, 00, \dots\} \cup \{10, 110, 1110, \dots\}$$

Converting a DFA to a GNFA

- lacktriangle Start with a DFA M
- ② Add a new start state s with an ε arrow to the original start state of M
- \odot Add a new accept state a
 - \bullet From every accept state of M, add an ε arrow to the new accept state
 - ullet Change all original accept states of M to non-accept states
- Turn transition labels to regular expressions (rule #1 of regular expression)
- Add necessary transition arrows
 - Change multiple arrows or multiple labels to a single arrow while label is the union of the previous labels

A DFA

ullet Add a new start state s

 $\bullet \ \varepsilon$ from s to the original start state

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Finite Automata 05

Add a new accept state a

 \bullet $\ensuremath{\varepsilon}$ from all accepts state to a

All original accept states to non-accept state

GNFA to Regular Expression

- Note that by converting a DFA and an equivalent GNFA, the language of the machine remain unchanged
- Next, we are going to remove original states of DFA one at a time until there are only two states left
 - When a state is removed, we have to make sure that the language of the machine is not changed
 - ullet The new start state s and the new accept state a
- Example:

• The transition from s to a is a regular expression that expresses the language of the original DFA

Reducing Number of States of GNFA

• Removing q_{rip}

- How to go from q_i to q_j ?
 - $q_i \rightarrow q_j$ using a string in R_4
 - $q_i \rightarrow q_{\mathsf{rip}} \rightarrow q_j$
 - $ullet q_i
 ightarrow q_{\sf rip}$ using a string in R_1
 - $q_{\mathsf{rip}} o q_{\mathsf{rip}}$ using a string in R_2 any number of times (R_2^*)
 - $q_{\rm rip} \to q_j$ using a string in R_3
- From q_i to q_j by any strings in $R_1R_2^*R_3 \cup R_4$

Reducing Number of States of GNFA

• Removing q_{rip}

- To remove q_{rip}
 - ① Search for all possible paths from a state q to $q_{\rm rip}$ and to a state r

$$q o q_{\mathsf{rip}} o r$$

- Turn all paths from previous step to regular expressions
- **3** Remove q_{rip} which results in $q \to r$
- **1** Insert paths $q \rightarrow r$ back with their regular expressions

 $\{w \mid w \text{ contains at least one } b\}$

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Finite Automata 05

DFA to GNFA

 $\{w \mid w \text{ contains at least one } b\}$

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Finite Automata 05

٦

• Get rid of state 2

 $\{w \mid w \text{ contains at least one } b\}$

Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

• Get rid of state 1

 $\{w \mid w \text{ contains at least one } b\}$

• DFA to GNFA

Get rid of state 1

- ullet Paths that go through state $1\ (q o 1 o r)$
 - $s \to 1 \to 2 \leadsto \varepsilon a = a$
 - $s \to 1 \to 3 \leadsto \varepsilon b = b$
 - $\bullet \ 2 \to 1 \to 2 \leadsto aa$
 - $2 \rightarrow 1 \rightarrow 3 \rightsquigarrow ab$
 - $3 \rightarrow 1 \rightarrow 2 \rightsquigarrow ba$
 - $3 \rightarrow 1 \rightarrow 3 \leadsto bb$

• Get rid of state 2

- Paths that go through state $2 (q \rightarrow 2 \rightarrow r)$
 - $s \to 2 \to a \leadsto a(aa \cup b)^* \varepsilon = a(aa \cup b)^*$
 - $s \to 2 \to 3 \leadsto a(aa \cup b)^*ab$
 - $3 \to 2 \to a \leadsto (ba \cup a)(aa \cup b)^* \varepsilon = (ba \cup a)(aa \cup b)^*$
 - $3 \rightarrow 2 \rightarrow 3 \rightsquigarrow (ba \cup a)(aa \cup b)^*ab$

• Get rid of state 3

- Paths that go through state $3 (q \rightarrow 3 \rightarrow r)$
 - $s \rightarrow 3 \rightarrow a$

$$(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \varepsilon)$$

Theorem 1.54

- Earlier, we show that every regular expression expresses a regular language
- We just show that every state diagram of a DFA can be converted into an equivalent regular expression

Theorem (1.54)

A language is regular if and only if some regular expression describes it.

- **Problem**: If you cannot express a language using a regular expression, it does not mean it is not regular
 - The language is so complicate that it needs a very long and complicate regular expression

Finite Automaton and Algorithm

- For every finite automaton, there is an equivalent algorithm
- For example, consider a machine where its language is the set of all strings over 0 and 1 that consist of an odd number of 1s.

- The above machine can be converted into a Java method that
 - Takes a string of 0s and 1s as an argument
 - Returns true (accept) of the input string consisting of an odd number of 1s. Otherwise, returns false (reject).

Finite Automata and Algorithm

```
public boolean isAccepted(String input)
{
    String state = "q0";
    int length = input.length();
    for(int i = 0; i < length; i++)
    {
        char c = input.charAt(i);
        if(state.equals("q0") && c == '0')
            state = "q0";
        else if(state.equals("q0") && c == '1')
            state = "q1";
        else if(state.equals("q1") && c == '0')
            state = "q1";
        else if(state.equals("q1") && c == '1')
            state = "q0";
    if(state.equals("q1"))
        return true;
    else
        return false;
}
```

Limitation of Finite Automaton

- Finite Automaton only captures a small subset of algorithms
 - Problems that associated with Regular languages
- Not all language can be recognized by a finite state machine
 - Such languages is called Nonregular Languages
- Example: $B = \{0^n 1^n \mid n \ge 0\}$
 - $B = \{\varepsilon, 01, 0011, 000111, \dots\}$
 - The machine need to be able to remember how many 0s and how many 1s it sees so far
 - We need an **infinite** number of states
- If you cannot express a language using regular expression, it does not mean it is not a regular language
 - Too complicate and requires a huge number of states
- We need a way to determine whether a language is not regular.