

Data Representation

- There are two basic ways of representing information, which we term analog and digital.
- They are distinguished by the nature of the values that they allow information variables to assume.

Analog vs. Digital

Analog quantities

- can vary over a continuous range of values
- Examples: voltage, room thermostat

Digital quantities

- represented by symbols called digits.
- Example: digital watch

Analog and Digital Systems

Analog System

- contains devices that manipulate physical quantities that are represented in continuous range of values.
- Examples: audio amplifiers, automobile odometer

Digital System

- is a combination of devices designed to manipulate physical quantities that are represented in discrete values.
- Examples: digital computers, digital audio/video equipment

Examples – Digital Systems

Digital counters

Calculators

Digital computers

Example - Analog System

A basic public address system

Advantages of Digital Techniques

- Digital system design is easier
- Information storage is easy
- Greater precision and accuracy
- Programmability
- Less susceptible to noise
- Digital circuitry can be fabricated on IC chips.

Limitation of Digital Techniques

 There is one major drawback when using digital techniques:

The real world is mainly analog.

Limitation of Digital Techniques

 There is one major drawback when using digital techniques:

The real world is mainly analog.

 Hybrid systems – both digital and analog techniques employed within the same system.

Example – Hybrid System CD-player CD drive 10110011101 Digital-to-analog Linear amplifier converter Digital data Reproduction

of music audio

signal

Digital Number Systems

- Many number systems are in use in digital technology.
- The most common are the decimal, binary, octal, and hexadecimal systems.

Number Systems

Number system	Base	Coefficients
Decimal	10	0 – 9
Binary	2	0,1
Octal	8	0 – 7
Hexadecimal	16	0 - 9, $A - F$

Base conversion

- From any base-r to Decimal
- From Decimal to any base-r
- From Binary to either Octal or Hexadecimal
- From either Octal or Hexadecimal to Binary

Conversion: Base-r to Decimal

Procedure

• Step 1:

Multiply each coefficient with the corresponding power of r.

• Step 2:

Get the sum.

Conversion: Base-r to Decimal

Procedure

• Step 1:

Multiply each coefficient with the corresponding power of r.

• Step 2:

Get the sum.

1.
$$(1010.011)_2 = _____{10}$$

=1 x 2³ + 0 x 2² + 1 x
2¹ + 0 x 2⁰ + 0 x 2⁻¹ +
1 x 2⁻² + 1 x 2⁻³
= $(10.375)_{10}$

Procedure

• Step 1:

Multiply each coefficient with the corresponding power of r.

• Step 2:

Get the sum.

128	64	32	16	8	4	2	
1	0	1	1	0	1	1	0

1.
$$(10110110)_2 = (182)_{10}$$

2.
$$(100110)_2 = \underline{}_{10}$$

1.
$$(10110110)_2 = (182)_{10}$$

2.
$$(100110)_2 = \underline{}_{10}$$

32	16	8	4	2	1
1	0	O	1	-1	C

1.
$$(10110110)_2 = (182)_{10}$$

2.
$$(100110)_2 = (38)_{10}$$

32	16	8	4	2	1
1	0	0	-1	-1	0

Conversion: Decimal to Base-r

Procedure

Step 1:

Separate integer from fraction

• Step 2:

Convert integer to base-r

• Step 3:

Convert fraction to base-r

Integer to base-r

- Divide integer by r
- Accumulate remainders

Fraction to base-r

- Multiply fraction by r
- Accumulate integers

Examples

1.
$$(41.6875)_{10} =$$

_____2

Step 1:

Integer = 41

Fraction = 0.6875

Step 2:

$$41 / 2 = 20 \text{ rem}$$

20 / 2 = 10 rem

10 / 2 = 5 rem

5 / 2 = 2 rem

2 / 2 = 1 rem

1 / 2 = 0 rem

1

0

0

1

0

1

Step 3:

$$0.6875 \times 2 = 1.3750$$

$$0.3750 \times 2 = 0.7500$$

$$0.7500 \times 2 = 1.5000$$

$$0.5000 \times 2 = 1.0000$$

Thus:
$$(41.6875)_{10} = (101001.1011)_2$$

Examples

 $2.(153.513)_{10} =$

Step 2:

------ 8

Step 1:

Integer = 153

Fraction = 0.513

______ 8

Step 1: Integer = 153Fraction = 0.513 Step 2: $153 / 8 = 19 \text{ rem} \quad 1$

Examples

$$2.(153.513)_{10} =$$

______ 8

Step 1:

Integer = 153

Fraction = 0.513

Step 2:

$$153 / 8 = 19 \text{ rem} \quad 1$$

$$19 / 8 = 2 \text{ rem } 3$$

Examples 2. (153.513)₁₀ =

.

Step 1: Integer = 153Fraction = 0.513

Step 2:

153 / 8 = 19 rem 1 19 / 8 = 2 rem 3 2 / 8 = 0 rem 2

______ 8

Step 1: Integer = 153Fraction = 0.513

Step 3:

$$0.513 \times 8 = 4.104$$

$$0.104 \times 8 = 0.832$$

$$0.832 \times 8 = 6.656$$

$$0.656 \times 8 = 5.248$$

$$0.248 \times 8 = 1.984$$

$$0.984 \times 8 = 7.872$$

Thus: $(15\overline{3.513})_{10} = (231.406517)_8$

Examples

128 64 32 16 8 4 2

OTTU TO THOUSE OF THE TOTAL OF

