```
0 ((cury map) +) ((cury map) g1) == ((cury map) (0 + g))
    Must Prove:
    ((o (luny nap)f) ((corry nap) g)) xs)==(1(corry map) (of g) xs)
        (((cury map) +) (cury hop) (0 xs))
    For base case where xs = ()
        (map f (map y E))
LHS:
                 Sab Statute ?
               (: f (null? ())
                          ( 9 (sor'()) (map g(cdr(1)))
                    null? - Enpty lang
                       (uns (9(con'()))(-non 9 (cdr'()))))
RNS: (nap(0 49) 1)
           Esubstitutes
if [null? ()
               (uns ((ofg) (car()) (nap (ofg) (d, () 11)
                Ethall empty land
```

()
(cons ((o (y) (can (w)) (map (o sy) (dr (v))))
-if #+ lon
LHS and RHS both equal 'll
Ous on First posti state
Inductive step prove for any xs, where xs = (cons y ys)
LHS (map f(map g xs)
{ substitute3
map f (if hull? xs)
()
(cons (g (conxs)) (map g (cdr xs)))
{ Sub 45=(6015) Y 5) }
hopt lif H+
(c)
(1005 (y (Con(consy YD) (mop (g (Cor (consy XS)))
map + cons (g (confrons x xs)) (nap g(confrons x ys)))
map + lens (gleans + 1st - p gleanter + y s
tons (9 y) (map g (cdr(lons y ys)))
= \(\{\langle \text{dr, (ans long)}\)
map + cons (ax(map a x s)
(if (null? (ions(g v) (nup g ys)))
(1)
(cans (f (con (cons (g y) (min g ys)))
(map f (Idr(cons (9x) (map 9xs)))
= Enull was land
(if # f
(int (t (ion (ions (g y) (map 2 y ())))
(-1 / 1 / (ant / 4 V) (harp) + Y ())

(cons (9 (con(cos(s, y) (mop g ys))) (cons (9 (con(cos(s, y) (mop g ys)))) (cons (4 (con)) (cons (6 (con)) (cons (6 (con)) (cons (6 (con)) (mop g ys))) (cons (6 (con)) (mop g ys)) (cons (6 (con)) (mop g ys)) (mop g g ys)) (cons (6 (con)) (mop g g ys)) (cons (6 (con)) (mop g g ys)) (mop g g ys)) (cons (6 (con)) (mop g g g g g g g g g g g g g g g g g g g		
(rep f ((dr/(ens(94)(arggys)))) = \(\{ (44)\} \\		= i4 # f lan
(rep f ((dr/(ens(94)(arggys)))) = \(\{ (44)\} \\		(cons (9 (cons(gy) (map gys)))
[cons (6 (9x)) (nep 9x)) = { con-(on) { los } (cons (6 (9x)) (nep 9x))) = induction hyperbox; (cons (f (9x)) (nep face) (solor x))) = induction hyperbox; (if (not) (los facor xs)) (nep face) (solor x))) = indi-cons los (if #f (cons (los facor xs)) (nep face) (solor x)) = indi-cons los (if #f (cons (los facor xs)) (nep face) (solor x) = fact to face (sons xys)) (nop los face) (solotor xys) = facor cons los face (sons (los face) (sons yys)) (sons (object face) (solotor xys)) = face cons los face (sons (los face) (sons face) (solotor xys)) = face cons los face (sons (los face) (sons face) (solotor xys)) = face cons los face (sons (los face) (sons face) (sons xys)) = face cons los face (sons (los face) (sons face) (sons xys)) = face cons los face (sons (los face) (sons face) (sons xys)) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys)) (nep (object) xys) = face cons los face (sons (los face) (sons xys) (nep (object) xys) = face cons los face (sons (los face) (sons xys) (nep (object) xys) = face cons los face (sons (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face cons los face (los face) (sons xys) (nep (object) xys) = face		(nop f (ida/cons(gy)(nygys))))
(mp f ((de((ous(ax) (trap a ys))))) = { the (ons (a (ay)) (nep a ys)))} = { the (ons (a (ay)) (nep a ys))} = { the (ons (f (ay)) (nep a fa))} (tens (f (ay)) (nep a fa) ys) = { tens (f (ay)) (nep a fa) ys) (if (nall x 1) (ions ((a fa) (ton x 1)) (nep a fa) (the x 2))) = hull-cons lan (if #f (i) (tens ((a fa) (ton (tens x x y)))) (nep (a fa)) (the famous x ys)) - { if #f (tens ((a fa) (ton (tens x y ys))) (nep (a fa)) (the famous x ys))} - { tens ((a fa) (ton (tens y ys)) (tons a fa fa) (the famous x y y)) (nep (a fa) y y) = { tens (f (a fa) y) (nep (a fa) y y) - apply (a passe (tens (f (ay)) (nep (a fa) y y) - apply (a passe (tens (f (ay)) (nep (a fa) y y)		= {con-(uns /on3
[map & (lde(lons(ax) (trap g ys)))] = { the (ons (a (ax)) (nep g ye))} = induction hyperbus; (cons (t (ax)) (neplaty) ys) = { cons (t (ax)) (neplaty) ys} = { cons (total (ax xs)) (neplaty) (the xs))} = null-cons lam (if #f () (cons (lo (g) (con (cons x xs))) (nep (atg) (ldd (mx xs))) = for (long (lo (ax)) (con (cons x xs))) (nep (atg) (ldd (mx xs))) = for (long (lo (ax)) (con (cons x xs))) (nep (atg) (ldd (mx xs))) = for (long (lo (ax)) (con (cons x xs))) (nep (atg) (ldd (mx xs))) = for (long (lo (ax)) (con (cons x xs))) (nep (atg) (ldd (cons x xs))) = for (long (lo (ax)) (long (ax) (long (ax))) = for (long (lo (ax)) (long (atg) (xs)) = app (x (ax)) (nep (atg) (xs)) = app (x (ax)) (nep (atg) (xs))		(cons (f (gy))
(1 ons (6 (444)) (asp g 41)) = induction by perturing (cons (6 (444)) (asplated) ys) = (cons (6 (444)) (asplated) ys) = (cons (6 (444)) (asplated) (ide x1)) (cons (6 (444)) (asplated) (ide x1)) = indi-cons law (if #f (ins (6 (4)) (con (cons x x5))) (asplated) (ide x1)) = 4 cons (6 (4) x5) (asplated x5) (ide (6 x5)) = 4 cons (6 (4) x5) (asplated x5) (ide (6 x5)) = 4 cons (6 (4) x5) (asplated x5) (ide (6 x5) x5)) = 4 cons (6 (4) x5) (asplated x5) (x5) = 4 cons (6 (4) x5) (asplated x5) (x5) = 4 cons (4 (4) x5) (asplated x5) (x5) = 4 cons (4 (4) x5) (asplated x5) (x5) = 4 cons (4 (4) x5) (asplated x5) (x5) = 4 cons (4 (4) x5) (asplated x5) (x5) = 4 cons (4 (4) x5) (asplated x5) (x5)		(no + ((dr((ox((ax) (map q ys)))))
(1 ons (6 (44)) (nep g 42)) = induction hypother; (cons (f (44)) (nep (a 64)) ys) = (cons (f (44)) (nep (a 64)) ys) = (cons (state) (if (nn) (cons lan (if #f () (cons (lo 6) (con (cons x ys))) (nep (a 64) (cod (cons ys)) - (y # f f f f f f f f f f f f f f f f f f		= Eldr-cong low?
= induction hypethis; (cons (f (44)) (mople (43) ys) = (cons (f (44)) (mople (43) ys) = (cons (fo (4) xs)) (maple (49) (color xs))) = (cons (fo (4) (cons xs)) (maple (49) (color xs))) = (cons (fo (4) (cons xs))) (maple (43) (color xs)) = (cons (f (4) xs)) (cons (cons xs))) (cons (cons xs)) = (cons (f (4) xs)) (maple (5) xs)		
### (rup (0 (3) &5) = {(ulstidit)} (it (mill x 1) (ions (lo (q (um x s)) (rup (0 (9) (lod x (1)))) = mult-cons law (it #f (i) (cons (lo (q) (un (con(x x y)))) (rup (0 (0)) (c) ((lon x (1))) = q, f # f how (cons (lo (q) (con (con(x y x (1)))) (rup (0 (0)) (c) ((lon x (1)))) = q, f f f how (cons (lo (q) (con (con(x y (1)))) (cons (of y) (cons (of y) (con (con(x y (1)))))) = q, f f f f f f f f f f f f f f f f f f		
FHS: (rap (0 fg) xs) = {substitut? (it (ralle x 1) (ons (lofg(com xs1)(rep(0 fg) (lobor xf))) = rall-cons lan (it #f (j) [cons (lofg)(con (cons x ys))) (rep (0 fg) (lofglowyg) = 7, ff ff long (cons (lofg) (san (cons yys))) (cons (ofg) (lofglowyg) = {con cons land (cons (tofg) y) (rop (ofg) (con (cons y ys))) = {con cons land (cons (tofg) y) (rapp (ofg) (xs)) = apply compage (cons (f (4 y)) (rapp (ofg) ys)) = apply compage (cons (f (4 y)) (rapp (ofg) ys))		(cons(f(gy))(mopo(a69)ys)
= (cut stituti) (it (m))(xx) (cons (lotg(cun xs))(rep(otg) (idm xs))) = multicons lain (it #f (cons (lotg)(cun (cons x xs)))(rep (otg) (idd(con xg)) - 5, 4 # 6 for 3 (cons (lotg) (can (cons x xs)))(rep (otg) (idd(con xg)) - 5, 6 for cons lains (cons (lotg) y) (rep (otg) (idn (cons x xs))) = 6 for cons lains (cons (to (g) x) (rep (otg) xs)) = apply compass (cons (4 (9x)) (rep(otg) xs)) - apply compass (cons (4 (9x)) (rep(otg) xs)		<u> </u>
= {(itstituti} (it (m))(x 1) (ions (lota(con xs)) (replates) (con xs))) = null-cons lam (it #f (i) (cons (lota)(con (cons x xs))) (replates) (codion xy) - 5 if # 6 long (cons (lota) (con (cons x xs))) (replates xxs)) - (cons (lota) (con (cons xxs))) (replates xxs)) - (cons (lota) x) (replates) (cons xxs)) = (cons (cons (a) x) (replates) (xs) - (cons (tota) x) (replates) (xs)		F173. (map (0 fg) xs)
(it (mill x s) (cons (lota (con x s)) (neplota) (con x s)) = mill-cons lam (it #f (cons (lota) (con (cons x y s))) (neplota) (coddion x y s)) = 5,4 + 6 tong (cons (lota) (con (cons y y s))) (consteta) (cons (lota) (cons (cons y y s))) = 5 tor cons law; (cons (to 4 g) y) (noplota) (codr (cons y y s))) = 6 con cons law; (cons (to 4 g) y) (noplota) ys) - apply compage (cons (4 (g y y)) (neplota) ys)		100 100 100 100 100 100 100 100 100 100
(1) (cons (lotg(con xss)(replateg) (color xss))) = hull-cons law (if #f (ins (lotg)(con (sens x xs))) (rep (ota) (cold (sens xys))) - 5; # # f tong (sens (lotg) (san(sens xys))) (reps (ota) (cons xys)) - 6; **cons law; (cons (totg) Y) (rep (ota) (cold (cons xys))) = (cons (totg) Y) (rep (ota) (cold (sens xys))) - (cons (totg) Y) (reps (ota) (sens xys))		
= hull-(ens lam (it #f (i) [cons [(o (g)[con (cons x ys))](n-go (o to))(cd(cons xys)) - 2, # # f ton3 (cons [(o (g) (con(cons yys)))(cons(-bg))(cdn(cons yys))) - (cons ((o (g) y) (nop (o (g) (cdn(cons y ys))) - (cons ((o (g) y) (nop (o (g) ys))) - (cons (((o (g) y) (nop (o (g) ys))) - apply compose [cons (((o (g) y) (nop (o (g) ys))) - apply compose [cons (((o (g) y) (nop (o (g) ys))) - apply compose [cons (((o (g) y) (nop (o (g) ys))) - apply compose [cons ((((o (g) x) (nop (o (g) ys)))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x)))))) - (((o (g) x) (nop (o (g) x) (nop (o (g) x))))))))))))))))))))))))))))))))))		
= hull-cons law (if #f (i) [cons ((o fg)[con (cons x ys)))(n-go (o fg)(cod font xys)) = 5, if # f low (cons ((o f g) (con (cons yys)))(cons(o fg) fide fions yys)) = 6 con cons law; (cons ((o f g) y) (nop (o fg) (con (cons y ys))) = 6 con cons law; (cons ((to (g) y) (nop (o fg) ys)) = apply compose (cons (f (gy)) (nop (o fg) ys)) - apply compose (cons (f (gy)) (nop (o fg) ys))		(cons (lotg(con xs)) (replate) (colo xc))
(if #f (cons (lo kg)(con (cons x ys)))(n op (oto)(cod (cons yg)) - 5, 4 # 4 for 3 (cons (lo kg) (con (cons x ys))) (cons (oto) (cod (cons yys))) - 5 con cons laws (cons (to kg) y) (nop (o kg) (cod (cons y ys))) = (cons (to kg) y) (nop (o kg) ys)) - apply compose (cons (x (gy)) (nop (o kg) ys)) - apply compose (cons (x (gy)) (nop (o kg) ys))		
(1) (cons ((o kg)(con (cons x ys)))(n-op (o to))(cdd(on) ygs) - 5; + + + tong (cons ((o kg) (can(cons yys))) (cons(o kg) (cdn(cons yys))) - 6; con cons (and) (cons(to kg) y) (nop (o kg) (cdn(cons y ys))) = (cons ((to kg) y) (napp(o kg) ys)) - app(y compose (cons (x (gy)) (napp(o kg) ys)) - app(y compose (cons (x (gy)) (napp(o kg) ys))		
(cons (lot g) (sar (sons yys))) (constates yys)) = { tor - cons laws} (tons (tot g) y) (nop to tg) (tdr (tons y ys))) = { tor - tons laws} (tons (to (g) y) (map(o (g) ys)) - apply compase (tons (\$ (9 y)) (map(o \$ 2) ys)) - (tons (\$ (9 y)) (map(o \$ 2) ys))		
(cons (lot g) (sar (sons yys))) (constates yys)) = { tor -tons laws} (tons (tot g) y) (nop to tg) (tdr (tons y ys))) = { tor -tons laws} (tons (to (g) y) (naplo (g) ys)) = apply compase (tons (\$ (9 y)) (naplo \$ (2) ys)) - apply compase (tons (\$ (9 y)) (naplo \$ (2) ys))	<u> </u>	(cons (lo Eg)/con (cons x ys)))(nop (of a) (coldinary)
(cons (lot g) (sar(tons yys))) (cons(oty) (idr/tons yys)) = { tor - cons law? (cons(tot g) y) (rop (oty) (idr/tons y ys))) = { tor - (ons law? (tons ((to (y) x) (map(o (s) ys))) - apply compose (cons (f (g y)) (map(o f 2) ys)) LHS = RHS + hus by induction the		-5.64618
$= \frac{10r - cons \ laws}{(cons(t \circ f \circ g) + f) \cdot (cons f \circ f \circ g) \cdot (cons f \circ g)}$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f) \cdot (cons f \circ g) \cdot (cons f \circ g)}$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons(t \circ f \circ g)}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons(t \circ f \circ g)}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons(t \circ f \circ g)}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons(t \circ f \circ g)}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= \frac{10r - cons(t \circ f \circ g)}{(cons(t \circ f \circ g) + f)} \cdot (cons(t \circ f \circ g) + f)$ $= 10r - cons(t$		1/1 town
$= \frac{10r - tons \ laws}{(tons(tofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (s) Ys)}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (s) Ys)}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons \ laws}{(tons (tlofg) Y) (nop fofg) (tdr(tons Y Y)))}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tdr(tons Y Y)))}{(tons (tlofg) Y) (tons (tons Y) Y)}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tdr(tons Y Y))}{(tons (tons (tons Y) Y) (tons (tons Y) Y)}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tons (tons Y) Y)}{(tons (tons (tons Y) Y) (tons (tons Y) Y)}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons (tons Y) Y) (nop fofg) (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y) (tons (tons Y) Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y) Y)}$ $= \frac{10r - tons (tons Y)}{(tons (tons Y)}$		(1 1 (1 4 a) (c - 1
(cons(tot g) y) (nop (o tg) (tdr (cons y x s))) = {con-(ons laws (cons (tlo (g) y) (nap(o (g) xs)) - apply compose (cons (£ (9 x)) (nap(o tg) xs)) LHS = RHS + hus by induction the		(sout (and Add) (out (out) (lough de de)
= { con-(ons low) (nap(o (s) ys)) (cons (t(o (g) y)) (nap(o (s) ys)) (cons (\$ (9 y)) (cons (
(cons (((o (y) x) (map(o (s) ys))) = app(y compase (cons (& (9 y)) (map(o fo) ys)) (Als = RHS + hus by induction the		
LHS=RHS thus by induction the		
LHS=RHS thus by induction the		(cons ((10 (4) 4) (mp(0 (5) ys))
LHS=RHS thus by induction the		= apply lompeter
		[(6ns (\$ 69 x)) (mg) (0 +3) (2)
Statement is proven		
		Statement is proven