Introducción al Machine Learning para políticas públicas en Python Parte 1

Reinel Tabares Soto Harold Brayan Arteaga Arteaga

Contenido del módulo 3

- Análisis exploratorio de datos EDA.
- K-Nearest Neighbors (modelo base para sección práctica).
- Métricas de medición de rendimiento.
- Transformación de características.
- Balance de clases.
- Reducción de dimensionalidad.

Algunas recomendaciones para realizar un EDA

- Verificar la cantidad de clases
- Verificar datos faltantes y outliers
- Verificar el tipo de datos que componen el dataset
- Analizar histogramas de las features
- Analizar correlaciones entre las features con mapas de calor
- Analizar los gráficos entre features con pairplot
- Analizar los gráficos como boxplot, catplot (ejemplo: bar y violin), entre los labels y features seleccionadas

WTraining

Conjuntos de entrenamiento y prueba

- Conocidos en inglés como conjuntos (sets) de train y test
- No podemos entrenar y probar el modelo con el mismo conjunto de datos
- Se suele separar un conjunto aleatorio de datos para probar (evaluar) los resultados del modelo
- El resto de los datos son usados para entrenar
- Una separación común es 30% para el conjunto de prueba y 70% para el conjunto de entrenamiento

Análisis exploratorio de datos - EDA.

Descripción dataset:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnosti C)

Descargar dataset:

https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/wis c_bc_data.csv

Carpeta con la Data requerida por los Notebooks link

A programar

₋ink

- Librerias
- Lectura del dataset
- Eliminar columnas innecesarias del dataset
- Análisis exploratorio de datos (Exploratory data analysis EDA)
- División en datos de entrenamiento y testing
- K-Nearest Neighbors
- Métricas
- Métricas bonitas
- KNN con preprocesamiento de las features
- Balance de clases
- Reducción de dimensionalidad

ingredient	sweetness	crunchiness	food type
apple	10	9	fruit
bacon	1	4	protein
banana	10	1	fruit
carrot	7	10	vegetable
celery	3	10	vegetable
cheese	1	1	protein

how sweet the food tastes

ÜTraining

Clasificando comidas

how sweet the food tastes

Distancias

K-Nearest Neighbors (modelo base para sección práctica).

Distancia Euclidiana

$$dist(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \ldots + (x_n-y_n)^2}$$

Distancia Manhattan

$$dist(x,y) = |x_1 - y_1| + |x_2 - y_2| + \ldots + |x_n - y_n|$$

Euclidean distance =
$$\sqrt{(5-1)^2 + (4-1)^2} = 5$$

$$Manhattan distance = |5-1| + |4-1| = 7$$

K-Nearest Neighbors (modelo base para sección práctica).

• Tomate (sweetness = 6, crunchiness = 4)

ingredient	sweetness	crunchiness	food type	distance to the tomato
grape	8	5	fruit	$sqrt((6-8)^2 + (4-5)^2) = 2.2$
green bean	3	7	vegetable	$sqrt((6-3)^2 + (4-7)^2) = 4.2$
nuts	3	6	protein	$sqrt((6-3)^2 + (4-6)^2) = 3.6$
orange	7	3	fruit	$sqrt((6-7)^2 + (4-3)^2) = 1.4$

- Ventajas
 - Simple y efectivo
 - No se asume nada sobre los datos
 - No hay "entrenamiento"
- Desventajas
 - Sensible al valor del K
 - Etapa de clasificación lenta
 - Requiere mucha memoria

Machine Learning

Plomo en Chicago

- Dados:
 - Información sobre una construcción
 - barrio
 - año de construcción
- Queremos saber:
 - o ¿Tiene pintura con plomo esta casa?

Historial de inspecciones (datos de entrenamiento)

Fecha inspección	Año de construcción	Ubicación	¿Tiene plomo?
2017-06-15	1947	Englewood	Sí
2013-11-23	2012	Chinatown	No
2016-03-24	1956	Downtown	No
2012-01-01	1974	Chinatown	Sí

"Si año de construcción < 2000, entonces tiene plomo"

Fecha inspección	Año de construcción	Ubicación	¿Tiene plomo?
2017-06-15	1947	Englewood	Sí
2013-11-23	2012	Chinatown	No
2016-03-24	1956	Downtown	No
2012-01-01	1974	Chinatown	Sí

"Si año de construcción < 2000, entonces tiene plomo"

Fecha inspección	Año de construcción	Ubicación	¿Tiene plomo?
2017-06-15	1947	Englewood	Sí
2013-11-23	2012	Chinatown	No
2016-03-24	1956	Downtown	No
2012-01-01	1974	Chinatown	Sí
	•••		

"Si año de construcción < 2000 y está en Chinatown o en Englewood, entonces tiene plomo"

Fecha inspección	Año de construcción	Ubicación	¿Tiene plomo?
2017-06-15	1947	Englewood	Sí
2013-11-23	2012	Chinatown	No
2016-03-24	1956	Downtown	No
2012-01-01	1974	Chinatown	Sí

Árbol de decisión

Predicción

Año de construcción	Ubicación	¿Tiene plomo?
1947	Chinatown	?
2005	Downtown	?
1960	Englewood	?
1999	Chinatown	?

Predicción

Año de construcción	Ubicación	¿Tiene plomo?
1947	Chinatown	Si
2005	Downtown	No
1960	Englewood	Si
1999	Chinatown	Si

Predicción

Año de construcción	Ubicación	¿Tiene plomo? (predicción)	¿Tiene plomo? (real)
1947	Chinatown	Si	Si
2005	Downtown	No	No
1960	Englewood	Si	Si
1999	Chinatown	Si	No

Predicción	Tiene plomo	No tiene plomo
Realidad		
Tiene plomo	Verdadero Positivo (VP o TP)	Falso Negativo (FN)
No tiene plomo	Falso Positivo (FP)	Verdadero Negativo (VN o TN)

Año de construcción	Ubicación	¿Tiene plomo? (predicción)	¿Tiene plomo? (real)
1947	Chinatown	Si	Si
2005	Downtown	No	No
1960	Englewood	Si	Si
1999	Chinatown	Si	No

Predicción	Tiene plomo	No tiene plomo
Realidad		
Tiene plomo	2	0
No tiene plomo	1	1

Métricas de medición de rendimiento.

$$Precision = \frac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$\text{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$$

Predicción Realidad	Tiene plomo	No tiene plomo
Tiene plomo	Verdadero Positivo (VP o TP)	Falso Negativo (FN)
No tiene plomo	Falso Positivo (FP)	Verdadero Negativo (VN o TN)

Accuracy: Es cuantas casas con plomo y sin plomo predijo correctamente del total

Precision: Es cuantas casas que yo dije que tenían plomo que realmente tienen plomo con respecto las que yo dije que tenían plomo

Recall (True Positive Rate): Es cuantas casas con plomo acerté de todas las casas con plomo que había.

Métricas de medición de rendimiento.

Predicción	Tiene plomo	No tiene plomo
Realidad		
Tiene plomo	2	0
No tiene plomo	1	1

Precision = 2/3 = 66.6%Recall = 2/2 = 100%Accuracy = 3/4 = 75%

Métricas de medición de rendimiento.

Predicción Realidad	Tiene plomo	No tiene plomo
Tiene plomo	500 (TP)	1000 (FN)
No tiene plomo	500 (FP)	10000 (TN)

$$ext{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$\text{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$$

Predicción Realidad	Tiene Covid	No tiene Covid
Tiene Covid	2000 (TP)	10 (FN)
No tiene Covid	500 (FP)	2000 (TN)

Precision = 500/1000 = 50% Recall = 500/1500 = 33.3%Accuracy = 10500/12000 = 87.5%

Precision = 2000/2500 = 80% Recall = 2000/2010 = 99.5%Accuracy = 4000/4510 = 88.7%

Métricas de medición de rendimiento.

Accuracy: Es cuantas casas con plomo y sin plomo predijo correctamente del total

Precision: Es cuantas casas que yo dije que tenían plomo que realmente tienen plomo con respecto las que yo dije que tenían plomo

Recall: Es cuantas casas con plomo acerté de todas las casas con plomo que había.

$$ext{Precision} = rac{tp}{tp + fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$\text{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$$

Desbalance vs sobreentrenamiento

¿Tiene plomo? (predicción)	¿Tiene plomo? (real)
NO	NO
SI	NO
NO	NO
NO	NO
NO	SI

Predicción Realidad	Tiene plomo	No tiene plomo
Tiene plomo	0 (TP)	1 (FN)
No tiene plomo	1 (FP)	8 (TN)

Precision =
$$0/1 = 0\%$$

Recall = $0/1 = 0\%$
Accuracy = $8/10 = 80\%$

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Recall} = rac{tp}{tp+fn} \hspace{1.5cm} ext{Accuracy} = rac{tp+tn}{tp+tn+fp+t}$$

ÜTraining

Precision y Recall

F-measure

- También conocido como F-score
- Media armónica de precision y recall
- Precision y recall son igual de importantes

$$F-measure = 2rac{Precision*Recall}{Precision+Recall}$$

Multiclase

Multiclase

True	Predicted Class		
Class	1	2	3
1	8	2	0
2	1	9	0
3	1	2	7

True Class	Predicted Class	
True Class	1 – Yes	2 & 3 – No
1 – Yes	TP - 8	FN -2
2 & 3 – No	FP - 2	TN - 18

True Class	Predicted Class	
True Class	2 – Yes	1 & 3 – No
2 – Yes	TP - 9	FN - 1
1 & 3 – No	FP - 4	TN - 16

True Class	Predicted Class		
True Class	3 – Yes	1 & 2 – No	
3 – Yes	TP - 7	FN - 3	
1 & 2 - No	FP - 0	TN- 20	

Curvas ROC: Sensibilidad, especificidad

Métricas de medición de rendimiento.

Predicción Realidad	Tiene plomo	No tiene plomo
Tiene plomo	Verdadero Positivo (TP)	Falso Negativo (FN)
No tiene plomo	Falso Positivo (FP)	Verdadero Negativo (TN)

Sensibilidad Aumenta, Especificidad Disminuye

Sensibilidad Disminuye, Especificidad Aumenta

$$especificidad = \frac{TN}{TN + FP}$$

Sensibilidad: mide qué tan buena es una prueba o modelo para detectar correctamente los casos positivos. Es la proporción de casos positivos que la prueba o modelo identifica correctamente como positivos.

Especificidad: mide qué tan buena es una prueba o modelo para detectar correctamente los casos negativos. Es la proporción de casos negativos que la prueba o modelo identifica correctamente como negativos.

https://www.youtube.com/watch?v=AcbbkCL0dlo

Curvas ROC: TPR: True Positive Rate y FPR: False Positive Rate

Métricas de medición de rendimiento.

Predicción Realidad	Tiene plomo	No tiene plomo
Tiene plomo	Verdadero Positivo (TP)	Falso Negativo (FN)
No tiene plomo	Falso Positivo (FP)	Verdadero Negativo (TN)

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

TPR o **Recall** o **Sensibilidad**: (tasa de verdaderos positivos) mide qué tan bueno es un modelo para detectar correctamente los casos positivos. En otras palabras, es la proporción de casos positivos que el modelo clasifica correctamente como positivos.

FPR o 1 - Especificidad: (tasa de falsos positivos) mide qué tan propenso es el modelo a clasificar incorrectamente los casos negativos como positivos. En otras palabras, es la proporción de casos negativos que el modelo clasifica erróneamente como positivos.

Curvas ROC: Algunos ejemplos

$$FPR = \frac{FP}{FP + TN}$$

$$FPR = \frac{FP}{FP + TN}$$

Curvas ROC: Algunos ejemplos

Evaluación

- Generar un modelo con todos los datos disponibles y luego evaluarlos sobre los mismos, puede resultar en modelos sobre ajustados. Es decir, esos modelos no generalizan bien para datos nuevos.
- Para mitigar este riesgo, se genera un modelo en datos de entrenamiento y luego evaluamos en datos de prueba (que no hayan sido vistos durante el proceso de entrenamiento).

Evaluación

Métricas de medición de rendimiento.

• Holdout simple: particionar en datos de entrenamiento y prueba.

Evaluación

Métricas de medición de rendimiento.

Holdout con validación: particionar en datos de entrenamiento, validación y prueba

WTraining

Evaluación

- Holdout con repetición (K-fold cross-validation).
 - Elegimos algún K y generamos K particiones (folds) de los datos.
 - o Entrenamos y calculamos alguna métrica con cada fold.
 - Iteramos con todas las particiones promediamos.
- Es problemático si el entrenamiento es lento.
- Evaluación estándar para modelos de Machine Learning.

Transformación de características.

Normalización de datos

Transformación de características.

Normalización: ajustar los valores medidos en diferentes escalas respecto a una escala común

Normalización min-max

$$z_i = rac{x_i - min(x)}{max(x) - min(x)}$$

Normalización z-score

$$z_i = rac{x_i - \overline{x}}{\sigma}$$

Carpeta con la Data requerida por los Notebooks link

A programar

Transformación de características.

- Librerias
- Lectura del dataset
- Eliminar columnas innecesarias del dataset
- Análisis exploratorio de datos (Exploratory data analysis EDA)
- División en datos de entrenamiento y testing
- **K-Nearest Neighbors**
- Métricas
- Métricas bonitas
- KNN con preprocesamiento de las features
- Balance de clases
- Reducción de dimensionalidad

Balance de clases.

Balance de clases.

Se deben explorar los datos, si estos se encuentran desbalanceados, se puede realizar el balance de clases.

Balance de clases.

A la clase mayor

- Random
- SMOTE
 - ❖ BorderlineSMOTE
 - ❖ KMeansSMOTE
 - SVMSMOTE
 - ❖ SMOTEN
- ADASYN

Técnicas para balancear clases

Balance de clases.

A la clase menor

- Random
- ClusterCentroids
- NearMiss

Reducción de dimensionalidad.

Análisis de Componentes Principales (PCA)

Reducción de dimensionalidad.

- Técnica utilizada para describir un conjunto de datos en términos de **nuevas** variables («componentes») no correlacionadas. Los componentes se ordenan por la cantidad de varianza original que describen, por lo que la técnica es útil para reducir la dimensionalidad de un conjunto de datos.
- Técnicamente, el PCA busca la proyección según la cual los datos queden mejor representados en términos de mínimos cuadrados. Esta convierte un conjunto de observaciones de variables posiblemente correlacionadas en un conjunto de valores de variables sin correlación lineal llamadas componentes principales.
- Se puede seleccionar las primeras componentes para representar los datos.

Carpeta con la Data requerida por los Notebooks link

A programar

Transformación de características.

- Librerias
- Lectura del dataset
- Eliminar columnas innecesarias del dataset
- Análisis exploratorio de datos (Exploratory data analysis EDA)
- División en datos de entrenamiento y testing
- K-Nearest Neighbors
- Métricas
- Métricas bonitas
- KNN con preprocesamiento de las features
- Balance de clases
- Reducción de dimensionalidad

