# Cálculo Numérico

# Interpolação Polinomial

Interpolação Polinomial via Forma de Lagrange

#### **Alessandro Alves Santana**

Universidade Federal de Uberlândia Faculdade de Matemática

## Fundamentos

#### Definição 1: Polinômio Interpolador via Forma de Lagrange

A forma de Lagrange para o polinômio que interpola uma função f(x) em n+1 pontos distintos  $x_0, x_1, x_2, \ldots, x_n$  é dado por

$$p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + \dots + L_n(x)f(x_n)$$
(1)

sendo

$$L_k(x) = \frac{\prod_{\substack{i=0\\i\neq k}}^{n}(x-x_i)}{\prod_{\substack{i=0\\i\neq k}}^{n}(x_k-x_i)}.$$
(2)

As funções  $L_k(x)$ ,  $k=0,1,2,\ldots,n$ , fornecem pesos nas avaliações de  $p_n(x)$  para valores de x.

### Fundamentos

#### Definição 1: Polinômio Interpolador via Forma de Lagrange

A forma de Lagrange para o polinômio que interpola uma função f(x) em n+1 pontos distintos  $x_0, x_1, x_2, \ldots, x_n$  é dado por

$$p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + \dots + L_n(x)f(x_n)$$
(1)

sendo

$$L_k(x) = \frac{\prod_{\substack{i=0\\i\neq k}}^n (x - x_i)}{\prod_{\substack{i=0\\i\neq k}}^n (x_k - x_i)}.$$
 (2)

As funções  $L_k(x)$ , k = 0, 1, 2, ..., n, fornecem pesos nas avaliações de  $p_n(x)$  para valores de x.

#### **Observação 1: Sobre as Funções Peso** $L_k(x)$

Abrindo os polinômios  $L_k(x)$ , temos que

$$L_k(x) = \frac{(x - x_0)(x - x_1)(x - x_2)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)(x_k - x_2)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}.$$
(3)

Pode se notar que

$$L_k(x_i) = \begin{cases} 0 \text{ se } i \neq k \\ 1 \text{ se } i = k \end{cases} \tag{4}$$

Dessa forma, temos garantia que  $p_n(x_i) = f(x_i)$  em cada um dos pontos de interpolação.

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X            | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|--------------|------|------|------|------|------|
| <i>f</i> (x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

 $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa.

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

| X    | 0.5  | 0.9  | 1.7  |
|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 |

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

| X    | 0.5  | 0.9  | 1.7  |
|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 |

Calculando os polinômios  $L_k(x)$ :

**Alessandro Alves Santana** 

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

| X                     | 0.5  | 0.9  | 1.7  |
|-----------------------|------|------|------|
| <i>f</i> ( <i>x</i> ) | 0.52 | 0.12 | 0.37 |

$$\begin{cases} L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \xrightarrow{x=1.6} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{array}{c|ccccc} x & 0.5 & 0.9 & 1.7 \\ \hline f(x) & 0.52 & 0.12 & 0.37 \\ \end{array}$$

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{array}{c|ccccc} x & 0.5 & 0.9 & 1.7 \\ \hline f(x) & 0.52 & 0.12 & 0.37 \\ \end{array}$$

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{array}{c|ccccc} x & 0.5 & 0.9 & 1.7 \\ \hline f(x) & 0.52 & 0.12 & 0.37 \\ \end{array}$$

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \Rightarrow L_1(1.6) = 0.34375 \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{array}{c|ccccc} x & 0.5 & 0.9 & 1.7 \\ \hline f(x) & 0.52 & 0.12 & 0.37 \\ \end{array}$$

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \Rightarrow L_1(1.6) = 0.34375 \\ L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \Rightarrow L_1(1.6) = 0.34375 \\ L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \xrightarrow{x = 1.6} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \Rightarrow L_1(1.6) = 0.34375 \\ L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \xrightarrow{x = 1.6} L_2(1.6) = \frac{(1.6 - 0.5)(1.6 - 0.9)}{(1.7 - 0.5)(1.7 - 0.9)} \end{cases}$$

Considere a tabela abaixo e obtenha uma aproximação para o valor de f(1.6) usando um polinômio de grau 2 utilizando interpolação polinomial via Forma de Lagrange.

| X    | 0.5  | 0.9  | 1.7  | 2.5  | 3.0  |
|------|------|------|------|------|------|
| f(x) | 0.52 | 0.12 | 0.37 | 0.30 | 0.29 |

Resolução: Para obter uma aproximação por um polinômio de grau 2, deve se considerar 3 pontos consecutivos da tabela acima de tal forma que:

- $\triangleright$  O valor de x, o qual se quer estimar f(x), deve estar entre os três pontos consecutivos.
- ► A distância entre os extremos desses 3 pontos consecutivos seja a menor possível para minimizar o erro na estimativa. Analisando a tabela dada, devemos considerar os seguintes pontos com seus respectivos valores:

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \xrightarrow{x = 1.6} L_0(1.6) = \frac{(1.6 - 0.9)(1.6 - 1.7)}{(0.5 - 0.9)(0.5 - 1.7)} \Rightarrow L_0(1.6) = -0.14583 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \xrightarrow{x = 1.6} L_1(1.6) = \frac{(1.6 - 0.5)(1.6 - 1.7)}{(0.9 - 0.5)(0.9 - 1.7)} \Rightarrow L_1(1.6) = 0.34375 \\ L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \xrightarrow{x = 1.6} L_2(1.6) = \frac{(1.6 - 0.5)(1.6 - 0.9)}{(1.7 - 0.5)(1.7 - 0.9)} \Rightarrow L_2(1.6) = 0.80208 \end{cases}$$



Avaliando agora o polinômio,

$$p_2(1.6) = L_0(1.6)f(0.5) + L_1(1.6)f(0.9) + L_2(1.6)f(1.7)$$
  
 $p_2(1.6) = (-0.14583)(0.52) + (0.34375)(0.12) + (0.80208)(0.37)$   
 $p_2(1.6) = 0.26219$ 

Portanto, temos que  $f(1.6) \approx p_2(1.6) = 0.26219$ .

Avaliando agora o polinômio,

$$p_2(1.6) = L_0(1.6)f(0.5) + L_1(1.6)f(0.9) + L_2(1.6)f(1.7)$$
  
 $p_2(1.6) = (-0.14583)(0.52) + (0.34375)(0.12) + (0.80208)(0.37)$   
 $p_2(1.6) = 0.26219$ 

Portanto, temos que  $f(1.6) \approx p_2(1.6) = 0.26219$ .

#### **Exemplo 2**

Obtenha o polinômio de grau 2 que interpola a função  $f(x) = \sqrt{x+1}$  nos pontos  $x_0 = 0$ ,  $x_1 = 0.6$  e  $x_2 = 0.9$  via Forma de Lagrange e obtenha uma aproximação para f(0.4) e f(0.7) utilizando esse polinômio. Faça o gráfico do polinômio obtido, dos pontos dados  $(x_i, f(x_i))$ ,  $i = 0, \ldots, 2$  e da função f(x). Trabalhe com 5 casas decimais.

Avaliando agora o polinômio,

$$p_2(1.6) = L_0(1.6)f(0.5) + L_1(1.6)f(0.9) + L_2(1.6)f(1.7)$$
  
 $p_2(1.6) = (-0.14583)(0.52) + (0.34375)(0.12) + (0.80208)(0.37)$   
 $p_2(1.6) = 0.26219$ 

Portanto, temos que  $f(1.6) \approx p_2(1.6) = 0.26219$ .

#### **Exemplo 2**

Obtenha o polinômio de grau 2 que interpola a função  $f(x) = \sqrt{x+1}$  nos pontos  $x_0 = 0$ ,  $x_1 = 0.6$  e  $x_2 = 0.9$  via Forma de Lagrange e obtenha uma aproximação para f(0.4) e f(0.7) utilizando esse polinômio. Faça o gráfico do polinômio obtido, dos pontos dados  $(x_i, f(x_i))$ ,  $i = 0, \ldots, 2$  e da função f(x). Trabalhe com 5 casas decimais.

Resolução: Montando a tabela de valores, segue que

| X    | 0.0     | 0.6     | 0.9     |
|------|---------|---------|---------|
| f(x) | 1.00000 | 1.26491 | 1.37840 |

Como são três pontos, o grau máximo do polinômio interpolador é 2. Para obter esse polinômio, via Forma de Lagrange, temos que

$$p_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$
  

$$p_2(x) = L_0(x) + 1.26491L_1(x) + 1.37840L_2(x)$$
(5)

Calculando,  $L_0(x)$ ,  $L_1(x)$  e  $L_2(x)$ , segue que

$$\begin{cases} L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = 1.85185x^2 - 2.77778x + 1 \\ L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = -5.55556x^2 + 5x \end{cases}$$
(6)  
$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = 3.70370x^2 - 2.22222x$$

Substituindo (6) em (5),

$$p_2(x) = -0.07023x^2 + 0.48366x + 1. (7)$$

Para x = 0.4, temos que  $f(0.4) \approx p_2(0.4)$ , o que implica em  $f(0.4) \approx 1.18223$  e  $f(0.7) \approx p_2(0.7)$  leva a  $f(0.7) \approx 1.30415$ .



**Figura 1:** Gráficos de  $f(x) = \sqrt{x+1}$ ,  $p_2(x) = -0.07023x^2 + 0.48366x + 1$  com os pontos de interpolação.