第三章 布尔代数与型空间

总结一下第一章中布尔代数与逻辑的几个主要结果。

- 1. 任给一个一致的理论 T, 存在一个由 T 确定的布尔代数 $\mathcal{B}(T)$, 它的元素是等价关系 ~ 下的等价类,对任意公式 α , β , α ~ β 当且仅当 $T \vdash \alpha \leftrightarrow \beta$ 。这个 $\mathcal{B}(T)$ 称为 Lindenbaum 代数。
- 2. 在 Lindenbaum 代数 $\mathcal{B}(T)$ 中,每个滤 F 都是 T 的一致扩张。因此每个滤都是一个一致的理论。而每个超滤则是一个完全理论。
- 3. 如果 T 是完全的,则 $\mathcal{B}(T)$ 是特殊的布尔代数 $\{0,1\}$,其中 $0 = \{\alpha \mid T \vdash \neg \alpha\}$, $1 = \{\alpha \mid T \vdash \alpha\}$ 。
- 4. 从另一个角度看, $\mathcal{B}(T)$ 上的每个超滤 U 都对应着 T 的一个模型 \mathfrak{A}_U ,对任意公式 α , $\mathfrak{A}_u \models \alpha$ 当且仅当 $[\alpha] \in U$ 。所以超滤存在定理蕴涵着完全性定理。
- 5. 在 Stone 表示定理的证明中,借助 Stone 映射,我们为每一个 $a \in B$ 指定一个超滤的集合 $\{U \mid U \in a\}$ 。这实际上是为 $Ult(\mathcal{B})$ 定义了一个拓扑结构,(参见习题1.4.6 和1.4.7)。 $Ult(\mathcal{B})$ 连同其上的拓扑称为 Stone 空间。

3.1 Stone 空间

Stone 空间是一个非常典型的结构,与逻辑有很多密切的联系。我们接下来讨论一些有关这个空间的性质,并给出模型论中的更为深刻的一个例子。

定义 3.1.1. 对任意集合 X, $\mathcal{T} \subseteq \mathcal{P}(X)$ 称为 X 上的一个拓扑,如果以下条件成立:

- 1. $X, \emptyset \in \mathcal{T}$;
- 2. 如果 $u, v \in \mathcal{T}$, 则 $u \cap v \in \mathcal{T}$;
- 3. 对任意 $A \subseteq \mathcal{T}$, $\bigcup A \in \mathcal{T}$ 。

(X,T) 称为拓扑空间,T 中的 X 的子集称为开集,开集的补集称为闭集。

例 3.1.2. 令 \mathbb{R} 为全体实数的集合,对任意实数 $r \in \mathbb{R}$,开区间

$$N = \{ x \subseteq \mathbb{R} \mid |x - r| < \epsilon \}$$

称为r的邻域,其中 ϵ 为任意实数,称为N的半径。 \mathbb{R} 的子集U如果满足:对任意 $r \in U$,都存在r的邻域N使得 $N \subseteq U$,就称U为开集。令T为所有开集的族,则 \mathbb{R} 在T下是一个拓扑空间。

证明. 首先, $\emptyset \in \mathcal{T}$,并且 $\mathbb{R} \in \mathcal{T}$ 。其次,如果 U,V 是开集, $r \in U \cap V$,则根据定义,存在 B_1,B_2 分别是包含 r 的开区间,且 $I_1 \subseteq U,I_2 \subseteq V$ 。显然 $N_1 \cap N_2$ 仍是一个开区间包含 r 的开区间,并且是 $U \cap V$ 的子集。最后,如果 $\{U_i\}$ 是任意开集的族, $r \in U = \bigcup U_i$,则存在 i, $r \in U_i$,所以存在邻域 N,使得 $r \in B \subseteq U$ 。

以下简单的事实使我们可以定义一个拓扑的基。

练习 3.1.3. 在实数 ℝ中,以下命题等价:

- (1) U 是开集,即对任意实数 $r \in U$,存在 r 的邻域 N , $N \subseteq U$ 。
- (2) U 可以表示为 \mathbb{R} 中开区间的并。

定义 3.1.4. 令 (X, \mathcal{T}) 为拓扑空间, $S \subseteq \mathcal{T}$ 称为这个空间的一个拓扑基,如果 \mathcal{T} 中的元素都可以表示为 S 中元素的并。S 中的元素称为基本开集。

例 3.1.5. 以上例子中,实数上的拓扑 \mathcal{T} 以所有开区间为拓扑基。事实上,所有以有理数为端点的开区间也是它的拓扑基,并且是一个可数的拓扑基。

练习 3.1.6. 任给布尔代数 \mathcal{B} , 令 $X = \text{Ult}(\mathcal{B})$ 。对任意 $a \in \mathcal{B}$, 定义

$$N_a = \{ U \in \text{Ult}(\mathcal{B}) \mid a \in U \},$$

则 $\{N_a \mid a \in B\}$ 构成 X 的一个拓扑基。即如果 \mathcal{T} 中的元素都可以表示为形如 N_a 的集合的并,则 \mathcal{T} 是 X 上的拓扑。

练习 3.1.7. 令 X 为拓扑空间, $S \subseteq \mathcal{T}$ 为拓扑基,则

- (1) 对任意 $x \in X$, 存在 $N \in S$, $x \in N$;
- (2) 对任意 $N_1, N_2 \in S$,任意 $x \in N_1 \cap N_2$,存在 $N_3 \subseteq N_1 \cap N_2$, $x \in N_3$ 。 反之,对任意集合 X,如果 X 的子集族 $S \subseteq \mathcal{P}(X)$ 满足(1)和(2),则 S 构成 X 的一个拓扑基。

习题1.4.6告诉我们, N_a 既是开集也是闭集,在一个拓扑空间中,我们称这样的集合为开闭集。显然,对任意的拓扑空间X, \emptyset ,X 是开闭集。

定义 3.1.8. 一个拓扑空间 X 称为零维的,如果它有一个开闭集构成的拓扑基。零维空间也称为"完全不连通空间"。显然, $Ult(\mathcal{B})$ 是一个零维空间。

定义 3.1.9. 令 X 为拓扑空间,如果 $C \subseteq T$ 是开集的族,并且 $\bigcup C = X$,就 称 $C \in X$ 的开覆盖。如果 X 的每个开覆盖 C 都有一个有穷的子覆盖,即 $C_0 \subseteq_f C$,并且 $\bigcup C_0 = X$,则称 X 为紧致空间。

由习题1.4.7知道, $Ult(\mathcal{B})$ 是一个紧致空间。

练习 3.1.10. 令 (X, \mathcal{T}) 为拓扑空间,称 X 的子集族 Z 有有有穷交性质,如果对任意有穷的 $\{Y_1, \dots, Y_n\} \subseteq Z, Y_1 \cap \dots \cap Y_n \neq \emptyset$ 。

对任意拓扑空间 X,以下命题等价:

(1) *X* 是紧致空间;

(2) 如果 Z 是闭集的族且有有穷交性质,则 $\bigcup Z \neq \emptyset$ 。

定义 3.1.11. 令 X 为拓扑空间,如果对任意 $x,y \in X$,总存在开集 M,N, $x \in M, y \in N$,使得 $M \cap N = \emptyset$,就称 X 为 Hausdorff 空间。

由习题1.4.6(2) 可知 $Ult(\mathcal{B})$ 是一个 Hausdorff 空间: 如果超滤 U 属于一个开闭集 N,则 $M=X\setminus N$ 也是一个开闭集, $V\in M$ 并且 $M\cap N=\emptyset$ 。

定理 3.1.12. 对任意布尔代数 \mathcal{B} ,Ult(\mathcal{B}) 在以 $S = N_a \mid a \in B$ 为拓扑基的拓扑下,是一个零维的紧致 Hausdorff 空间。这样的空间通常称为 Stone 空间。

也有文献称为布尔空间,见 Halmos。

例 3.1.13. 给定一阶语言 \mathcal{L} ,令 X 是所有完全理论的族。对任意语句 $\sigma \in \mathcal{L}$,令 $\langle \sigma \rangle = \{ T \in X \mid T \models \sigma \}$,则 $S = \{ \langle \sigma \rangle \mid \sigma \in \mathcal{L} \}$ 构成 X 的一个拓扑基: 这是因为 $\langle \sigma \rangle \cap \langle \tau \rangle = \langle \sigma \wedge \tau \rangle$,由练习3.1.7可得。

同时,这个完全理论的空间是一个零维空间: ⟨σ⟩ 与 ⟨¬⟩ 互为补集,并且都是基本开集,所以完全理论的空间有一个开闭集构成的基。

X 也是 Haudorff 空间: 令 T_1, T_2 为两个完全理论,且 $T_1 \neq T_2$,则必有 $\sigma \in \mathcal{L}$, $T_1 \models \sigma$ 而 $T_2 \models \neg \sigma$ 。这样, $T_1 \in \langle \sigma \rangle, T_2 \in \langle \neg \sigma \rangle$ 。

在完全理论的空间中,开集是形如〈 σ 〉的基本开集的并,对偶地,闭集是这样的基本开集的交。令 Σ 为一致的语句集, $F = \bigcap \{\langle \sigma \rangle \mid \sigma \in \Sigma \}$,则 F 不空,并且是闭集。对任意 $T \in F$, $\Sigma \subseteq T$ 。任取语句 τ , $\Sigma \models \tau$ 当且仅当对所有 $T \in F$, $T \models \tau$ 。所以 F 确定了一个以 Σ 为公理集的理论。除非 F 是一个单点集 $\{T\}$,否则 F 确定的理论是一个不完全的理论。