目录

第一部分 创作中

第一章 创作中

空间旋转矩阵[3]

第二章 修改审阅中

极坐标中单位矢量的偏导 $^{[5]}$ 散度 散度定理 $^{[6]}$ 开普勒第一定律的证明 $^{[10]}$ 矢量场 $^{[13]}$ 万有引力引力势能 $^{[14]}$ 力场 势能 $^{[16]}$ 本书编写规范 $^{[21]}$

第一部分 创作中

第一章

创作中

第一章 创作中 3

空间旋转矩阵

预备知识 平面旋转矩阵[??]

类比平面旋转矩阵^[??],空间旋转矩阵是三维坐标的旋转变换,所以应该是 3×3 的方阵. 不同的是平面旋转变换只有一个自由度 θ ,而空间旋转变换除了转过的角度还需要考虑转轴的方向. 如果直接从转轴和转动角度来定义该矩阵,矩阵比较复杂 (见绕轴旋转矩阵^[??]).

若已经知道空间直角坐标系中三个单位正交矢量

$$\hat{\mathbf{x}} = (1, 0, 0)^{\mathsf{T}} \quad \hat{\mathbf{y}} = (0, 1, 0)^{\mathsf{T}} \quad \hat{\mathbf{z}} = (0, 0, 1)^{\mathsf{T}}$$
 (1)

经过三维旋转矩阵变换以后变为

$$(a_{11}, a_{21}, a_{31})^{\mathsf{T}} \quad (a_{12}, a_{22}, a_{32})^{\mathsf{T}} \quad (a_{13}, a_{23}, a_{33})^{\mathsf{T}}$$
 (2)

类比平面旋转矩阵[??]

$$\mathbf{R}_{3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \tag{3}$$

第二章 修改审阅中

极坐标中单位矢量的偏导

预备知识 极坐标系[??], 矢量的偏导[??]

与直角坐标系不同的是,极坐标系中的 $\hat{\mathbf{r}}$ 与 $\hat{\boldsymbol{\theta}}$ 都是坐标的函数,即 $\hat{\mathbf{r}}$ = $\hat{\mathbf{r}}(r,\theta)$, $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(r,\theta)$,它们对坐标的偏导如下

$$\begin{cases} \frac{\partial \hat{\mathbf{r}}}{\partial r} = 0 \\ \frac{\partial \hat{\mathbf{r}}}{\partial \theta} = \hat{\boldsymbol{\theta}} \end{cases} \begin{cases} \frac{\partial \hat{\boldsymbol{\theta}}}{\partial r} = 0 \\ \frac{\partial \hat{\boldsymbol{\theta}}}{\partial \theta} = -\hat{\mathbf{r}} \end{cases}$$
(1)

这是容易理解的,若一个单位矢量绕着它的起点逆时针转动,那么它的终点的速度的方向必然是它本身逆时针旋转 90 度的方向,而大小等于矢量模长乘以角速度.

证明

如果令极轴方向的单位矢量为 $\hat{\mathbf{x}}$,令其逆时针旋转 $\pi/2$ 的矢量为 $\hat{\mathbf{v}}$,则

$$\hat{\mathbf{r}} = \cos\theta \,\hat{\mathbf{x}} + \sin\theta \,\hat{\mathbf{y}} \tag{2}$$

$$\hat{\boldsymbol{\theta}} = \cos(\theta + \pi/2)\,\hat{\mathbf{x}} + \sin(\theta + \pi/2)\,\hat{\mathbf{y}} = -\sin\theta\,\hat{\mathbf{x}} + \cos\theta\,\hat{\mathbf{y}} \tag{3}$$

所以

$$\begin{cases}
\frac{\partial \hat{\mathbf{r}}}{\partial r} = 0 \\
\frac{\partial \hat{\mathbf{r}}}{\partial \theta} = -\sin\theta \,\hat{\mathbf{x}} + \cos\theta \,\hat{\mathbf{y}} = \hat{\boldsymbol{\theta}}
\end{cases}
\begin{cases}
\frac{\partial \hat{\boldsymbol{\theta}}}{\partial r} = 0 \\
\frac{\partial \hat{\boldsymbol{\theta}}}{\partial \theta} = -\cos\theta \,\hat{\mathbf{x}} - \sin\theta \,\hat{\mathbf{y}} = -\hat{\mathbf{r}}
\end{cases} (4)$$

事实上,由于 $\hat{\mathbf{r}}$ 与 $\hat{\boldsymbol{\theta}}$ 都只是 θ 的函数,也可以把偏导符号改成导数符号

$$\begin{cases} \frac{\mathrm{d}\hat{\boldsymbol{\theta}}}{\mathrm{d}\theta} = -\hat{\mathbf{r}} \\ \frac{\mathrm{d}\hat{\mathbf{r}}}{\mathrm{d}\theta} = \hat{\boldsymbol{\theta}} \end{cases}$$
 (5)

散度 散度定理

预备知识 全微分^[??],矢量场^[13],重积分^[??],面积分(曲面),流密度,

我们在矢量场中取一个闭合曲面 S,其内部空间记为 V.以向外为正方向,矢量场 $\mathbf{F}(\mathbf{r})$ 在闭合曲面的通量 Φ 可以用以下面积分表示,积分范围默认为 S

$$\Phi = \oint \mathbf{F} \cdot d\mathbf{a} \tag{1}$$

现在我们把该曲面以其内部一点 \mathbf{r} 为中心按比例不断缩小,若通量与体积V的比值存在极限,就把该极限叫做该点的**散度(divergence)**,用 $\nabla \cdot$ 算符¹记为(下文将介绍)

$$\nabla \cdot \mathbf{F}(\mathbf{r}) \equiv \lim_{V \to 0} \frac{\Phi}{V} \tag{2}$$

若场的分布连续且光滑,则该极限处处存在且与曲面的形状无关²,我们就得到了矢量场的散度场(注意是标量场).

例1 匀速水流

假设密度不变的水以匀速流动,质量的流密度场 **j**(**r**) 为恒定场.对于任何一个闭合曲面,流入的流量(负值)和流出的流量(正值)相等,总通量为零.所以该场的散度处处为零.

例 2 变速水流

在例1中,流密度场随 x 坐标线性增加, $\mathbf{j} = (j_0 + \alpha x)\hat{\mathbf{x}}(\alpha 为常数)$, 那么取一个边长为 h 的立方体表面作为闭合曲面,从左侧的流量为 $\Phi_L = -(j_0 + \alpha x_0)h^2$, 右侧的流量为 $\Phi_R = [j_0 + \alpha(x_0 + h)]h^2$, 其余四个面与 \mathbf{j} 平行,没有流量.闭合曲面的总流量为 $\Phi = \alpha h^3 = \alpha V$.根据定义,水流的散度处处为 α .分析可发现该水流中单位体积单位时间必然会凭空产生质量为 α 的水(虽然实际中不可能).所以散度也叫**源密度(source density)**.

 $^{^{1}}$ 符号 ∇ 的名字为 nabla,作为算符时读作 del,一些教材也会在上方加矢量箭头,原因见下文.

²本书不作证明

直角坐标系中的散度

若在直角坐标系中给出矢量场

$$\mathbf{F}(x,y,z) = F_x(x,y,z)\hat{\mathbf{x}} + F_y(x,y,z)\hat{\mathbf{y}} + F_z(x,y,z)\hat{\mathbf{z}}$$
(3)

令闭合曲面为立方体 [x,y,z]-[x+h,y+h,z+h] 的表面. 先来考虑 x 方向两个正方形的通量 Φ_x ,在点 $\mathbf{r}(x,y,z)$ 附近对 $F_x(\mathbf{r})$ 使用全微分近似 $[^{??}]$ 得(为简便书写,以下的函数值和偏导都默认在 \mathbf{r} 处取值)

$$F_x(x+x',y+y',z+z') \approx F_x + \frac{\partial F_x}{\partial x}x' + \frac{\partial F_x}{\partial y}y' + \frac{\partial F_x}{\partial z}z'$$
 (4)

由于只有x方向的场分量对 Φ_x 有贡献,

$$\Phi_{x} \approx \int_{0}^{h} \int_{0}^{h} dy' dz' \times \left[\left(F_{x} + \frac{\partial F_{x}}{\partial x} h + \frac{\partial F_{x}}{\partial y} y' + \frac{\partial F_{x}}{\partial z} z' \right) - \left(F_{x} + \frac{\partial F_{x}}{\partial x} 0 + \frac{\partial F_{x}}{\partial y} y' + \frac{\partial F_{x}}{\partial z} z' \right) \right] \\
= \frac{\partial F_{x}}{\partial x} h \int_{0}^{h} \int_{0}^{h} dy' dz' = \frac{\partial F_{x}}{\partial x} h^{3} = \frac{\partial F_{x}}{\partial x} V$$
(5)

同理可以得到另外四个正方形的通量. 六个正方形的总通量为

$$\Phi \approx \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}\right) V \tag{6}$$

根据定义式 2, 可得直角坐标中的散度公式

$$\nabla \cdot \mathbf{F} = \lim_{V \to 0} \frac{\Phi}{V} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
 (7)

从形式上,我们可以引入一个 ▼ 算符,在直角坐标系中的形式为

$$\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$$
 (8)

那么 $\nabla \cdot \mathbf{F}(\mathbf{r})$ 从形式上可以看做矢量算符 ∇ 与某点场矢量 $\mathbf{F}(\mathbf{r})$ 的"点乘". 根据式 7,显然散度是一个**线性算符**,即多个矢量场的线性组合的散度等于它们分别求散度再线性组合

$$\nabla \cdot [C_1 \mathbf{F}_1(\mathbf{r}) + C_2 \mathbf{F}_2(\mathbf{r}) + \dots] = C_1 \nabla \cdot \mathbf{F}_1(\mathbf{r}) + C_2 \nabla \cdot \mathbf{F}_2(\mathbf{r}) + \dots$$
(9)

例 3 质点引力场的散度

令质点 m 在坐标原点,则它的引力场(式 2[14])为

$$\mathbf{g}(\mathbf{r}) = -\frac{Gm}{r^3}\mathbf{r} \tag{10}$$

我们在直角坐标系中计算该场的散度. 直角坐标系中,有 $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ 和 $r = \sqrt{x^2 + y^2 + z^2}$,代入上式再求散度,得

$$\nabla \cdot \mathbf{g} = \frac{Gm}{(x^2 + y^2 + z^2)^{5/2}} [(2x^2 - y^2 - z^2) + (2y^2 - z^2 - x^2) + (2z^2 - x^2 - y^2)]$$

$$= 0$$
(11)

可见引力场的散度为 0. 然而需要注意的是,在坐标原点处式 10 的各个方向的偏导都不存在,所以不能用该公式计算散度.以上的结论只适用于原点之外的点.

散度定理

我们来考虑一个有限大的闭合曲面并计算通量 Φ . 我们先把曲面内的空间划分成许多体积足够小的微元,第i个的体积微元为 V_i ,通量为 $\Phi_i \approx \nabla \cdot \mathbf{F}(\mathbf{r}_i)V_i$. 现在来证明所有小曲面的通量之和等于大曲面的通量. 图 1 中所有微元的曲面

图 1: 证明所有小曲面的通量之和等于大曲面的通量

可划分为两部分,一是相邻两个小曲面的边界(红色),二是小曲面与大曲面重合的部分(黑色).前者产生的通量之和为零,因为这些边界都是由正方向相反的两块小曲面重合而成,他们产生的通量等大反向,互相抵消.后者产生的通量等于大曲面的通量,这是因为每块黑色边界都是由正方向相同的小曲面

和大曲面重合而成,产生的通量等大同向. 所以总通量等于

$$\Phi = \sum_{i} \Phi_{i} \approx \sum_{i} \nabla \cdot \mathbf{F}(\mathbf{r}_{i}) V_{i}$$
(12)

令微元趋近无穷小,上面的求和变为定积分(积分范围默认为 ν)

$$\Phi = \int \mathbf{\nabla \cdot F(r)} \, dV \tag{13}$$

所以**散度定理**就是,矢量场在任意闭合曲面的通量等于矢量场的散度在曲面所围空间的体积分.

开普勒第一定律的证明

预备知识 圆锥曲线的极坐标方程^[??],极坐标加速度^[??],牛顿第二定律^[??],

二阶常系数非齐次微分方程的通解[??]

数学模型

由于太阳质量远大于其他行星,近似认为太阳不动。由于太阳和行星相对于行星轨道来说大小可以忽略,把他们当做质点(另见球体的平方反比力)。以太阳为原点建立平面极坐标系,行星在该平面上运动,且仅受万有引力一个外力.现证明行星的运动轨迹是椭圆,且焦点在原点.

结论

行星轨道是以中心天体为焦点的任意圆锥曲线³. 极坐标中,圆锥曲线的方程[[?][?]] 为

$$r = \frac{p}{1 - e \cdot \cos \theta} \tag{1}$$

令太阳(中心天体)在坐标原点,则行星沿该轨道运行.

证明

极坐标中径向和角向加速度公式分别为

$$a_r = \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} - r \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 \tag{2}$$

$$a_{\theta} = \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \frac{\mathrm{d}\theta}{\mathrm{d}t} \right) \tag{3}$$

根据牛顿第二定律和万有引力定律,由于行星只受到沿径向的万有引力,则有

$$ma_r = -G\frac{Mm}{r^2} \tag{4}$$

³所以行星轨道不一定是椭圆,也可以是抛物线或者双曲线,但是抛物线或双曲线轨道是从无穷远来 到无穷远去的轨道,不会绕太阳旋转, 所以开普勒定律作为行星运动的经验公式,只描述了椭圆.

$$ma_{\theta} = 0 \tag{5}$$

在式 4 和式 5 中同除 m,代入式 2 和式 3 得

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} - r \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = -\frac{GM}{r^2} \tag{6}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \frac{\mathrm{d}\theta}{\mathrm{d}t} \right) = 0 \tag{7}$$

现在用式 6,式 7 消去 t. 式 7 括号内部不随时间变化,令其等于常数 h

$$r^2 \frac{\mathrm{d}\theta}{\mathrm{d}t} = h \tag{8}$$

其中 h 为任意常数. 我们想得到 r 关于 θ 的微分方程,就要把所有的时间导数消去. 首先可以把 r 看做复合函数 $r(\theta(t))$ 用链式法则把式 6 的第一项用 $d\theta/dt$ 表示

$$\frac{d^{2}r}{dt^{2}} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{dr}{d\theta} \frac{d\theta}{dt} \right) = \frac{d}{d\theta} \left(\frac{dr}{d\theta} \right) \left(\frac{d\theta}{dt} \right)^{2} + \frac{dr}{d\theta} \frac{d^{2}\theta}{dt^{2}}$$

$$= \frac{d^{2}r}{d\theta^{2}} \left(\frac{d\theta}{dt} \right)^{2} + \frac{dr}{d\theta} \frac{d}{d\theta} \left(\frac{d\theta}{dt} \right) \frac{d\theta}{dt}$$
(9)

然后把式 8 两边同除 r^2 并代入式 6 消去所有时间导数,得到 r 关于 θ 的微分方程

$$\frac{\mathrm{d}^2 r}{\mathrm{d}\theta^2} \left(\frac{h}{r^2}\right)^2 + \frac{\mathrm{d}r}{\mathrm{d}\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{h}{r^2}\right) \frac{h}{r^2} - r \left(\frac{h}{r^2}\right)^2 = -\frac{GM}{r^2}$$
(10)

化简得

$$\frac{h^2}{r^4} \left[\frac{\mathrm{d}^2 r}{\mathrm{d}\theta^2} + r^2 \frac{\mathrm{d}r}{\mathrm{d}\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{1}{r^2} \right) - r \right] = -\frac{GM}{r^2} \tag{11}$$

这就是r关于 θ 的微分方程

将式1代入,可验证式1是该方程的解. 当然,在事先不知道轨道方程的情况下,也可以直接解该方程. 令

$$u \equiv \frac{1}{r} \tag{12}$$

代入式 11, 得到 u 关于 θ 的微分方程

$$h^2 \left(\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u \right) = GM \tag{13}$$

这就是比耐公式,是一个二阶常系数非齐次微分方程,通解[??]为

$$u = \frac{1}{p} \left[1 - e \cos(\theta + \varphi) \right] \tag{14}$$

其中

$$p = \frac{h^2}{GM} \tag{15}$$

 e, φ, h 为任意常数. 写成关于 r 的函数, 得到圆锥曲线

$$r = \frac{p}{1 - e\cos\theta} \tag{16}$$

证毕.

拓展阅读 比耐公式[??]

矢量场

预备知识 球坐标系的定义[??], 矢量的求导法则[??]

对空间中指定范围的每一点 P 赋予一个矢量 \mathbf{v} ,就在该空间中形成了一个 **矢量场**. 例如,电荷附近的任意一点都存在一个电场矢量,这就构成了一个矢量场. 管道中任意一点的水流都存在一个速度矢量,他们也构成一个矢量场.

矢量场在不同的参考系中有不同的表示方法. 在空间直角坐标系中,矢量场可以用矢量的三个分量关于 x,y,z 三个坐标的函数表示. 点 P(x,y,z) 处的矢量分量为

$$\begin{cases} v_x(x, y, z) = \mathbf{v} \cdot \hat{\mathbf{x}} \\ v_y(x, y, z) = \mathbf{v} \cdot \hat{\mathbf{y}} \\ v_z(x, y, z) = \mathbf{v} \cdot \hat{\mathbf{z}} \end{cases}$$
(1)

也可以作为单位正交基[??] 的线性组合写成一个整体

$$\mathbf{v} = (\mathbf{v} \cdot \hat{\mathbf{x}}) \,\hat{\mathbf{x}} + (\mathbf{v} \cdot \hat{\mathbf{y}}) \,\hat{\mathbf{y}} + (\mathbf{v} \cdot \hat{\mathbf{z}}) \,\hat{\mathbf{z}}$$

$$= v_x(x, y, z) \,\hat{\mathbf{x}} + v_y(x, y, z) \,\hat{\mathbf{y}} + v_z(x, y, z) \,\hat{\mathbf{z}}$$
(2)

在球坐标系^[??] 中,也可以把每个点的矢量根据该点处的三个单位矢量 $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\theta}}$ 分解为三个分量. 基底的线性组合为

$$\mathbf{v} = v_r(r, \theta, \phi) \,\hat{\mathbf{r}} + v_\theta(r, \theta, \phi) \,\hat{\boldsymbol{\theta}} + v_\phi(r, \theta, \phi) \,\hat{\boldsymbol{\phi}}$$
(3)

需要特别注意, $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ 也是关于 (r, θ, ϕ) 的函数,所以对 \mathbf{v} 求导(或偏导)时必须根据矢量的求导法则[??] 进行.

应用举例 力场[16]

拓展阅读 梯度[??], 散度[6], 旋度

万有引力 引力势能

预备知识 牛顿运动定律[??]

万有引力和引力场

若两个质点质量分别为 m_1 和 m_2 ,位置矢量分别为 \mathbf{r}_1 和 \mathbf{r}_2 ,则 1 对 2 的 **万有引力(gravitational force)**为

$$\mathbf{F}_{12} = -\frac{Gm_1m_2}{r_{12}^2}\hat{\mathbf{r}}_{12} = -\frac{Gm_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^3}(\mathbf{r}_2 - \mathbf{r}_1)$$
(1)

其中 $r_{12} = |\mathbf{r}_2 - \mathbf{r}_1|$ 是两点间的距离, $\hat{\mathbf{r}}_{12} = (\mathbf{r}_2 - \mathbf{r}_1)/|\mathbf{r}_2 - \mathbf{r}_1|$ 是从 1 指向 2 的单位矢量. 由该式,2 对 1 的万有引力为 $\mathbf{F}_{21} = -\mathbf{F}_{12}$,符合牛顿第三定律.

我们类比高中所学电场的概念,把以上 m_1 对 m_2 的作用力看做是 m_1 在空间中产生的引力场对 m_2 的作用力. 定义 m_1 产生的引力场为

$$\mathbf{g}(\mathbf{r}) = -\frac{Gm_1}{|\mathbf{r} - \mathbf{r}_1|^3} (\mathbf{r} - \mathbf{r}_1) \tag{2}$$

若 m_1 是某天体的质量,这里的 \mathbf{g} 就是它的重力加速度. 可见重力加速度会随位置的不同而变化.

万有引力势能

预备知识 力场 势能[16], 球坐标系中的梯度算符

在寻找万有引力的势能以前,我们先来证明所有具有 $\mathbf{F}(\mathbf{r}) = F(r)\hat{\mathbf{r}}$ 形式的力场都是保守场^[16]. 质点延一段轨迹 \mathcal{L} 从 \mathbf{r}_1 移动到 \mathbf{r}_2 时,力场对质点做功^[??] 可以用线积分^[??] 表示(以 r 作为参数)

$$W = \int_{c} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{r_1}^{r_2} F(r) \, dr$$
 (3)

其中第二步是因为

$$\mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = F(r)\hat{\mathbf{r}} \cdot d\mathbf{r} = F(r)\hat{\mathbf{r}} \cdot (dr \,\hat{\mathbf{r}} + r \,d\theta \,\hat{\boldsymbol{\theta}}) = F(r) \cdot dr \tag{4}$$

显然线积分的结果至于初末位置(与原点的距离)有关,而与路径 \mathcal{L} 的选择无关, $\mathbf{F}(\mathbf{r})$ 是保守力场.

现在我们来寻找引力对应的势能. 假设质量为 M 的质点固定在坐标原点,考察质量为 m 的质点位置矢量为 \mathbf{r} . 由于场对物体做功等于初势能减末势能 \mathbf{r} 0 令质点沿着引力场从 \mathbf{r} 1 延任意曲线移动到 \mathbf{r} 2,我们有

$$V(\mathbf{r}_1) - V(\mathbf{r}_2) = \int_{r_1}^{r_2} F(r) \, \mathrm{d}r = -GMm \int_{r_1}^{r_2} \frac{1}{r^2} \, \mathrm{d}r = -GMm \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 (5)

可见任意位置的势能函数可以取

$$V(\mathbf{r}) = V(r) = -\frac{GMm}{r} \tag{6}$$

根据势能的定义也可以给 $V(\mathbf{r})$ 加上任意常数,但习惯上我们令无穷远处势能为 $\mathbf{0}$,而上式恰好满足这点. 拓展到任意具有 $\mathbf{F}(\mathbf{r}) = F(r)\hat{\mathbf{r}}$ 形式的力场,其势能可以用不定积分得到

$$V = -\int F(r) \, \mathrm{d}r \tag{7}$$

这与一维的情况相同,

我们也可以反过来通过引力势能求出引力场. 使用球坐标的梯度算符得

$$\mathbf{F} = \mathbf{\nabla}V = GMm \left(\hat{\mathbf{r}} \frac{\partial}{\partial r} + \hat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \right) \frac{1}{r} = -\frac{GMm}{r^2} \hat{\mathbf{r}}$$
(8)

也可以使用直角坐标的梯度

$$\mathbf{F} = \mathbf{\nabla}V = GMm\left(\hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z}\right)\frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
(9)

以 x 分量为例

$$\frac{\partial}{\partial x}(x^2+y^2+z^2)^{-1/2} = -x(x^2+y^2+z^2)^{-3/2} = -\frac{x}{r^3}$$
 (10)

另外两个分量类似可得 $-y/r^3$ 和 $-z/r^3$, 代入式 9 得

$$\mathbf{F} = \mathbf{\nabla}V = -\frac{GMm}{r^3} \left(x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}} \right) = -\frac{GMm}{r^2} \frac{\mathbf{r}}{r} = -\frac{GMm}{r^2} \hat{\mathbf{r}}$$
(11)

力场 势能

预备知识 位置矢量[??], 矢量场[13], 功[??], 牛顿一莱布尼兹公式[??]

力场

高中物理中我们已经学过一些场的概念,即质点受场的力取决于质点在场中的位置。例如地球表面局部的引力场可以近似看做一个恒力场(称为为重力场),即在一定区域内,质点总受向下的,大小恒为 mg 的重力(矢量式 $\mathbf{F} = m\mathbf{g}$)。又例如水平面上一根原长忽略不计的弹簧,一端固定在原点,另一端连接质点,那么质点受力总指向原点,大小等于劲度系数和位矢模长的之积 kr. 如果用矢量的方法表示,就是 $\mathbf{F} = -k\mathbf{r}$.

总结到一般情况,**力场**可以用场对质点施加的力(矢量)关于质点位置 (即位矢[[?]]) 的矢量函数表示,所以力场是一种矢量场.

例1 引力场

球坐标原点处质量为 M 的质点在周围造成的引力场为

$$\mathbf{F}(\mathbf{r}) = -G\frac{M}{r^2}\,\hat{\mathbf{r}}\tag{1}$$

若位矢用 \mathbf{r} 来表示 ($\mathbf{r} = r\hat{\mathbf{r}}$), 则

$$\mathbf{F}(\mathbf{r}) = -G\frac{M}{r^3}\mathbf{r} \tag{2}$$

现在变换到直角坐标系中, 有

$$\begin{cases} \mathbf{r} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}} \\ r = \sqrt{x^2 + y^2 + z^2} \end{cases}$$
 (3)

代入上式,展开得

$$\mathbf{F}(\mathbf{r}) = -\frac{GMx}{(x^2 + y^2 + z^2)^{3/2}} \,\hat{\mathbf{x}} - \frac{GMy}{(x^2 + y^2 + z^2)^{3/2}} \,\hat{\mathbf{y}} - \frac{GMz}{(x^2 + y^2 + z^2)^{3/2}} \,\hat{\mathbf{z}}$$
(4)

显然球坐标系中的引力场表达式比直角坐标系中的要简洁得多.由此可见,对不同的矢量场选择适当的坐标系往往可以简化问题.

若质点从场的一点移动到另一点的过程中,力场对质点做的功^[??] 只与初末位置有关,而与质点移动的路径无关,那么这个力场就是一个**保守场**. 这时我们可以给该质点定义一个**势能函数**,势能函数是一个关于位矢的标量函数,一般记为 $V(\mathbf{r})$,具有能量量纲. 当质点从一点以任意路径移动到另一点时,场对质点做的功等于质点初位置的势能减末位置的势能,即

$$\int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = V(\mathbf{r}_1) - V(\mathbf{r}_2)$$
 (5)

一维势能函数

现在先假设质点只能沿一条直线运动,且力也始终与直线平行.显然质点从一点到另一点的路径只可能有一条,所以对于任何一维力场都是保守场.若给直线定义一个正方向,单位矢量为 x,任何一维力场可以记为

$$\mathbf{F}(x) = F(x)\hat{\mathbf{x}} \tag{6}$$

质点的位置矢量可记为 $\mathbf{r} = x\hat{\mathbf{x}}$. 由于 $\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = 1$,质点从 x = a 移动到 x = b 过程中场做的功为

$$\int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{a}^{b} F(x) dx$$
 (7)

根据势能的定义,对任意的 a 和 b,上式应该等于 V(a) - V(b).根据牛顿莱布尼兹公式^[??],势能函数恰好就是 F(x) 的负原函数乘以,所以 F(x) 是 V(x) 负导函数.

$$V = -\int F(x) dx \qquad F(x) = -\frac{dV(x)}{dx}$$
 (8)

需要注意的是,由于原函数有无穷多个(由不定积分中任意常数的取值决定),所以势能函数也存在无穷多个,且都相差一个常数.为了确定势能函数,我们需要指定场中某一点的势能值,如果令某点势能为零,那么这点就叫做零势点.

例 2 弹簧的势能

一个原长可忽略的轻弹簧劲度系数为k,一端固定在原点,另一端连接质点.质点只能沿 $\hat{\mathbf{x}}$ 方向运动,规定质点在原点时势能为0,求弹簧的势能关于质点位置坐标x的函数.

由题意,式6中F(x) = -kx,不定积分并取负值得到含有待定常数的势能函数

$$V(x) = -\int (-kx) \, \mathrm{d}x = \frac{1}{2}kx^2 - C \tag{9}$$

为了确定待定常数, 代入V(0) = 0, 解得C = 0. 所以所求势能为

$$V(x) = \frac{1}{2}kx^2\tag{10}$$

多维势能函数

预备知识 梯度定理[??]

假设力场 $\mathbf{F}(\mathbf{r})$ 是平面或三维空间中的保守场,对应势能为 $V(\mathbf{r})$,初始点为 \mathbf{r}_i ,终点为 \mathbf{r}_f . 对 $-V(\mathbf{r})$ 使用梯度定理[??] 得

$$\int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{\nabla}[-V(\mathbf{r})] \cdot d\mathbf{l} = V(\mathbf{r}_i) - V(\mathbf{r}_f)$$
(11)

我们把该式与式5比较,不难发现力场是势能函数的负梯度

$$\mathbf{F}(\mathbf{r}) = -\nabla V(\mathbf{r}) \tag{12}$$

由梯度的定义,力场的各个分量分别为对应方向的负偏导数

$$F_x(\mathbf{r}) = -\frac{\partial V(\mathbf{r})}{\partial x} \quad F_y(\mathbf{r}) = -\frac{\partial V(\mathbf{r})}{\partial y} \quad \dots$$
 (13)

即在保守场的某点中,力的方向是势能下降最快的方向,大小是该方向的负方向导数.

例 3 二维简谐振子

若已知二维的势能函数为 $V(x,y) = \frac{1}{2}k_1(x+y)^2 + \frac{1}{2}k_2(x-y)^2$, 求力场. 若已知场函数求势能函数, 又该如何求?

把势能函数代入式 13 中, 求偏导, 得场为

$$\mathbf{F}(\mathbf{r}) = -\frac{\partial V}{\partial x}\hat{\mathbf{x}} - \frac{\partial V}{\partial y}\hat{\mathbf{y}}$$

$$= -[(k_1 + k_2)x + (k_1 - k_2)y]\hat{\mathbf{x}} - [(k_1 - k_2)x + (k_1 + k_2)y]\hat{\mathbf{y}}$$
(14)

现在我们根据"梯度定理[??]"中的?? 从场逆推势能。首先对力场的 x 分量和 y 分量分别关于 x 和 y 做不定积分得到任意两个原函数并记为 G_x 和 G_y 得

$$G_x(x,y) = -\frac{1}{2}(k_1 + k_2)x^2 - (k_1 - k_2)xy$$
 (15)

$$G_y(x,y) = -(k_1 - k_2)xy - \frac{1}{2}(k_1 + k_2)y^2$$
(16)

代入得(注意这里的场是势能函数的的负梯度而不是梯度,另外注意下式中的常数项都并入C中)

$$V(x,y) = -G_y(x,y) + G_y(x,y_0) - G_x(x,y_0) + C$$

$$= \frac{1}{2}(k_1 + k_2)x^2 + (k_1 - k_2)xy + \frac{1}{2}(k_1 + k_2)y^2 + C$$

$$= \frac{1}{2}k_1(x+y)^2 + \frac{1}{2}k_2(x-y)^2 + C$$
(17)

若规定零势点 V(0,0)=0,代入上式得 C=0.

两质点间的势能

如果两质点 A 和 B 的位矢分别为 \mathbf{r}_A 和 \mathbf{r}_B ,相对位移为 $\mathbf{R} = \mathbf{r}_B - \mathbf{r}_A$,两 质点距离为 $R = |\mathbf{R}|$. 且 A 对 B 的作用力为 $\mathbf{F} = F(R)\hat{\mathbf{R}}$,B 对 A 的反作用力为 $-\mathbf{F}$. 现在考虑一个过程中力对两质点做的总功.

在一段微小时间 dt 内,两质点分别移动了 dr_A ,和 dr_B ,则相互作用力对二者做功为

$$dW = \mathbf{F} \cdot d\mathbf{r}_B + (-\mathbf{F}) \cdot d\mathbf{r}_A = \mathbf{F} \cdot d\mathbf{R} = F(R)\hat{\mathbf{R}} \cdot d\mathbf{R} = F(R)dR$$
(18)

(最后一步的证明见"位置矢量[??]"中的??) 定积分得

$$W = \int_{R_1}^{R_2} F(R) \, \mathrm{d}R \tag{19}$$

现在我们借用一维势能的定义式 8 来定义势能函数为 F(R) 的负原函数,则力在一段时间内对两质点做的总功就等于末势能减初势能

$$W = V(R_2) - V(R_1) (20)$$

含时势能

以上的讨论中,我们默认力场的分布不随时间变化,所得势能显然也不随时间变化.但在一些情况下,我们也可以定义随时间变化的势能.

例如例 1 中如果中心天体随时间变化,那么力场 把这种假想的位移叫做虚位移 这个偏导可以理解为

本书编写规范

预备知识 本书编写规范[21]

软件使用规范

本书使用 TeXLive2016 软件中的 XeLaTeX 进行编译. 如果 Windows 中编译卡在 eu1lmr.fd 上的时间较长,说明 font config 有问题,在 Windows 的控制行运行 "fc-cache -fv",重启 TeXLive,多试几次即可. TeXWork 编辑器中 Ctrl+T编译, Ctrl+单击跳转到对应的 pdf 或代码,在 pdf 中 Alt+左箭头返回上一个位置. 代码中\beq+Tab 生成公式环境,\sub+Tab 生成 subsection. Ctrl+F 进行查找,Ctrl+G 查找下一个. 菜单中的 Edit>Preference 设置默认字体为 Microsoft YaHei UI(11pt),默认编译器为 XeLaTeX,编码选择 UTF-8.

搜索文件夹内所有文档的内容用 FileSeek 软件,搜索空格用"\空格",搜索"\$"用"\\$",以此类推.对比两个文档或文件夹用 WinMerge 软件.

画图用 Adobe Illustrator 和 Autodesk Graphics,用 MathType 在图中添加公式,希腊字母粗体正体矢量用从 Symbol 字体中插入,更简单的方法是,先输入希腊字母,选中,然后在 Style 里面选 Vector-Matrix.

文件版本管理

使用 GitHub Desktop,用 PhysWiki repository 管理所有文件,每次 commit 需要做的事情如下

- 用 FileSeek 替换所有文档中的空心句号.
- 确保所有文档可以顺利编译.
- 清除编译产生的中间文件,包括 content 文件夹中的非 tex 文件.
- 把 ManicTime 记录的写作时间记录到"计时.txt".
- 检查变化的内容.

每次 commit 的标题必须是下列之一

- 常规更新:包括完善词条,新词条等.
- 词条统计: 统计文件夹,对照表,和书中的词条,查看不一致或缺失.
- 模板更新: 模板有更新.

词条统计的方法: 首先把 contents 文件夹中的所有文件名按顺序排列,复制到表格中,然后把词条对照表中的所有标签在表格中找到对应项,做标记,并把对照表中的词条名粘贴到表格中. 最后到 PhysWiki.tex 中逐个把标签在表格中找到对应项,做标记,对照词条名,并对照词条文件中第一行的词条名.

词条编写规范

词条标签必须限制在 6 个字符内,必须在 PhysWiki.tex,词条标签对照表和词条文件名中一致. 词条的中文名必须在 PhysWiki.tex,词条标签对照表和词条文件的第一行注释中一致. 如果不是超纲词条,在主文件中用 \entry 命令,否则用 \Entry 命令. 非超纲词条放在 contents 文件夹,超纲词条放在 contents 文件夹. 引用词条用 \upref 命令,"预备知识"用 \pentry 命令,"应用实例"用 \eentry 命令,拓展阅读用 \rentry 命令.总文件 PhysWiki.tex 编译较慢,可以先使用 debug.tex 编译,然后再把 \entry 或 \Entry 指令复制到 PhysWiki.tex 中. 注意 PhysWiki.tex 中 \entry 命令的后面可以用 \newpage 命令强制换页,但为了排版紧凑不推荐这么做.

黑色的小标题

正文必须使用中文的括号,逗号,引号,冒号,分号,问号,感叹号,以及全角实心的句号. 所有的标点符号前面不能有空格,后面要有空格. 行内公式用单个美元符号,且两边要有空格,例如 $a^2+b^2=c^2$,后面有标点符号的除外. 方便的办法是先全部使用中文标点,最后再把所有空心句号替换成全角实心句号.

公式的 label 必须要按照"词条标签_eq编号"的格式,只有需要引用的公式才加标签,编号尽量与显示的编号一致,但原则上不重复即可.图表的标

签分别把 eq 改成 fig 和 tab 即可,例题用 ex. 但凡是有 \caption 命令的,\label 需要紧接其后.

$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i} \quad (n 为整数)$$
 (1)

引用公式和图表都统一使用 \autoref 命令,注意前面不加空格后面要加空格,例如式 1. 如果要引用其他词条中的公式,可以引用"其他词条^[21]"的式 1 也可以用"式 1^[21]",为了方便在纸质书上使用,词条页码是不能忽略的.

公式规范

公式中的空格从小到大如 abc d e,微分符号如 dx,自然对数底如 e,双重极限如

$$\lim_{\substack{\Delta x_i \to 0 \\ \Delta y_i \to 0}} \sum_{i,j} f(x_i, y_i) \Delta x_i \Delta y_j \tag{2}$$

导数和偏导尽量用 Physics 宏包里面的

$$\frac{\mathrm{d}}{\mathrm{d}x} \quad \frac{\mathrm{d}f}{\mathrm{d}x} \quad \frac{\mathrm{d}^2f}{\mathrm{d}x^2} \quad \mathrm{d}^2f/\mathrm{d}x^2 \quad \frac{\partial}{\partial x} \quad \frac{\partial f}{\partial x} \quad \frac{\partial^2f}{\partial x^2} \quad \partial^2f/\partial x^2 \tag{3}$$

复数如 u+iv,复共轭如 a^* ,行内公式如 a/b,不允许行内用立体分式. 公式中的绝对值如 |a|,矢量如 \mathbf{a} ,单位矢量如 $\hat{\mathbf{a}}$,矢量点乘如 $\mathbf{A} \cdot \mathbf{B}$ (不可省略),矢量叉乘如 $\mathbf{A} \times \mathbf{B}$. 量子力学算符如 \hat{a} ,狄拉克符号如 $\langle a|,|b\rangle,\langle a|b\rangle$. 梯度散度 旋度拉普拉斯如 ∇V , $\nabla \cdot \mathbf{A}$, $\nabla \times \mathbf{A}$, $\nabla^2 V$,但最好用 ∇V , $\nabla \cdot \mathbf{A}$, $\nabla \times \mathbf{A}$, $\nabla^2 V$. 单独一个粗体的 ∇ 用 ∇ . 行列式,矩阵 \mathbf{A} , 转置 \mathbf{A}^{T} ,厄米共轭 \mathbf{A}^{T} 如

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{\mathsf{T}} \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{\dagger} \tag{4}$$

行内的列矢量用行矢量的转置表示,如 $(1,2,3)^T$.

行间公式换行及对齐用 aligned 环境,或用自定义的 \ali 命令

$$(a-b)^{2} = a^{2} + b^{2} - 2ab$$

$$= a^{2} + b^{2} + 2ab - 4ab$$

$$= (a+b)^{2} - 4ab$$
(5)

$$d + e + f = g$$

$$a + b = c$$
(6)

左大括号用自定义的\leftgroup 命令, 里面相当于 aligned 环境

$$\begin{cases} d+e+f=g\\ a+b=c \end{cases} \tag{7}$$

可变化尺寸的斜分数线如下

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} / X + \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} / Y + \frac{\mathrm{d}^2 Z}{\mathrm{d}z^2} / Z = \frac{1}{c^2} \frac{\mathrm{d}^2 T}{\mathrm{d}t^2} / T \tag{8}$$

希腊字母如下

$$\alpha(a), \beta(b), \chi(c), \delta(d), \epsilon/\varepsilon(e), \phi(f), \gamma(g), \eta(h), \iota(i), \varphi(j), \kappa(k), \lambda(l), \mu(m), \\ \nu(n), o(o), \pi(p), \theta(q), \rho(r), \sigma(s), \tau(t), \upsilon(u), \varpi(v), \omega(w), \xi(x), \psi(y), \zeta(z)$$

$$(9)$$

以下是 script 字母,只有大写有效. 所谓大写 ϵ 其实是花体的 E.

$$\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}$$

$$\tag{10}$$

另外,电介质常数一律用 ϵ 而不是 ϵ .

写单位,用\si,如 $a = 100 \text{ m/s}^2$.

图表

现在来引用一张图片,图片必须以 eps 以及 pdf 两种格式放在 figures 文件夹中,代码中使用 pdf 图片.图片宽度一律用 cm 为单位.在图 1 中, label 只

图 1: 例图

能放在 caption 的后面,否则编号会出错.由于图片是浮动的,避免使用"上图","下图"等词.

再来看一个表格,如表 1. 注意标签要放在 caption 后面,使用 tb 命名. 下面我们举一个例子并引用

表 1: 极限 e 数值验证

x	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
$(1+x)^{1/x}$	2.59374	2.70481	2.71692	2.71815	2.71827	2.71828

例1 名称

在例子中, 我们的字体可以自定义, 包括公式的字号会保持与内容一致.

$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i} (n \, \beta \, \underline{x} \, \underline{x}) \tag{11}$$

引用例子同样使用 \autoref, 如例 1.

以下给出一段 Matlab 代码,代码必须有".m"和".tex"两个版本,放在codes 文件夹中.

Matlab 代码

显示 Command Window 中的代码

>> 1.2/3.4 + (5.6+7.8)*9 -1

ans = 119.9529

 $\gg 1/\exp(1)$

ans = 0.3679

>> exp(-1i*pi)+1

ans = 0

显示 m 文件中的代码

代码必须以.tex 文件格式放在 code 文件夹中的中,并用 \input 命令导入正文..tex 代码文件的命名与图片命名相同.禁止在正文中直接写代码.

1%验证二项式定理(非整数幂)

u = -3.5;

x = 0.6; % |x| < 1 使级数收敛

4 N = 100; % 求和项数

应用举例 本书格式规范[21]

拓展阅读 本书格式规范[21]