

# Infrared spectrum of the CO2–HCI complex in solid argon at 12 K

Lester Andrews, Robert T. Arlinghaus, and Gary L. Johnson

Citation: The Journal of Chemical Physics 78, 6353 (1983); doi: 10.1063/1.444694

View online: http://dx.doi.org/10.1063/1.444694

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/78/11?ver=pdfcov

Published by the AIP Publishing

# Articles you may be interested in

A new potential energy surface and predicted infrared spectra of the  $Ar-CO\ 2$  van der Waals complex

J. Chem. Phys. **130**, 224311 (2009); 10.1063/1.3152990

Theoretical absorption spectrum of the Ar–CO van der Waals complex

J. Chem. Phys. 118, 9596 (2003); 10.1063/1.1570812

Near-infrared absorption spectrum of the Ar-HD complex: A theoretical study of predissociation effects

J. Chem. Phys. 115, 3155 (2001); 10.1063/1.1379754

Experimental analysis of 13 CO 2 infrared stimulated emissions in solid argon

Low Temp. Phys. 26, 719 (2000); 10.1063/1.1312399

Near-infrared absorption spectrum of the Ar-HD complex: Confrontation of theory with experiment

J. Chem. Phys. 109, 10823 (1998); 10.1063/1.477779



# Infrared spectrum of the CO<sub>2</sub>–HCl complex in solid argon at 12 K

Lester Andrews, Robert T. Arlinghaus, and Gary L. Johnson

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901 (Received 30 June 1982; accepted 31 August 1982)

Co-condensation of CO<sub>2</sub> and HCl in excess argon at 12 K produced the CO<sub>2</sub>-HCl hydrogen-bonded complex. Small shifts in the  $\nu_i$  and  $\nu'_3$  modes, the low  $\nu_i$  fundamental, and a very weak infrared Fermi doublet indicate a weakly bound complex. The more strongly bound CO<sub>2</sub>-HF and C <sup>18</sup>O<sub>2</sub>-HF complexes gave more intense infrared Fermi doublets. The infrared intensity ratio  $\nu_3/\nu_1$  is 200/1 for the CO<sub>2</sub>-HF complex demonstrating that the HF ligand induces finite electrical asymmetry in the CO<sub>2</sub> submolecule.

#### INTRODUCTION

The weakly bound CO<sub>2</sub>-HF and CO<sub>2</sub>-HCl molecular complexes have been examined recently in molecular beams to record radio frequency and microwave spectra. 1,2 These weakly bound complexes are linear, and induced dipole moments of 0.59 and 0.45 D, respectively, have been determined from the spectra. The CO2-HF complex has been prepared by condensing argon diluted samples of each reagent at 12 K, and the Fourier-transform infrared spectrum of the complex<sup>3</sup> exhibited a strong H-F submolecule stretching fundamental  $\nu_s$ , a sharp degenerate H-F librational mode  $\nu_i$ , and perturbed infrared active  $CO_2$  submolecule modes  $\nu_3^e$  and  $v_2^c$ , respectively, 10 cm<sup>-1</sup> above and 7 cm<sup>-1</sup> below CO<sub>2</sub> values. We report here a re-examination of the  $\nu_1$ and  $2\nu_2$  Fermi-resonance doublet region for the CO<sub>2</sub> submolecule in the CO2-HF complex as a function of HF concentration and a series of similar FTIR studies for the CO2-HCl complex aimed particularly at characterizing the  $\nu_i^e$  submolecule mode in the complexes.

## **EXPERIMENTAL**

The vacuum, cryogenic, and spectroscopic techniques have been described previously. <sup>3,4</sup> Hydrogen chloride (Matheson) was allowed to passivate a stainless steel vacuum system heated to 50 °C overnight. Deuterium chloride (Merck, Sharpe, and Dohme) was exchanged with the heated system repeatedly over a two week period, and fresh DCl was equilibrated with the vacuum

system at room temperature before use; 50%-70% deuterium enrichments were obtained in this manner. Carbon dioxide (Matheson) and 93.6% oxygen-18 enriched C  $^{18}O_2$  (Miles Laboratories) were used directly. Argon mixtures Ar/CO<sub>2</sub> = 200/1 and Ar/HCl = 200/1 and 100/1 were used in these experiments; each mixture was condensed at 2 mmol/h on a CsI window at 12 K for periods of 20-30 h. FTIR spectra were recorded before, once or twice during, and after sample preparation.

#### **RESULTS**

Four experiments were done with the natural isotopic carbon dioxide-hydrogen chloride system. The FTIR spectrum for a sample containing CO2 and HCl is shown in Fig. 1; the HCl monomer R(0) absorption<sup>5</sup> at 2888.0 cm<sup>-1</sup> was completely absorbing and a strong product band labeled  $\nu_s$  at 2853.5 cm<sup>-1</sup> with a pronounced shoulder at 2851.7 cm<sup>-1</sup> was also completely absorbing; HCl dimer<sup>6</sup> was observed at 2817.8 cm<sup>-1</sup>. The strong CO<sub>2</sub> fundamentals at 2344 and 663 cm<sup>-1</sup> were sufficiently broad to obscure any slightly shifted product absorptions; however, the naturally occurring 13CO2 doublet at 2279. 5, 2273. 9 cm<sup>-1</sup> exhibited a product band shoulder at 2281.5 cm<sup>-1</sup> (A = absorbance units  $\approx 0.12$ ). The Fermi-resonance doublet region revealed new weak product bands identified with arrows at 1383.2 (A = 0.012) and 1278.4 cm<sup>-1</sup> (A = 0.007) in Fig. 2(d); this spectral region is also contrasted in Fig. 2 for HCl and C18O2 blank experiments. A comparable amount



FIG. 1. Infrared spectra of samples prepared by condensing 59 mmol of  $Ar/CO_2 = 200/1$  and 51 mmol of Ar/HCl = 100/1 mixtures for 20 h at 12 K. The  $^{13}CO_2$  indicated is present in natural abundance.



FIG. 2. Infrared spectra in the  $\rm CO_2$  Fermi-doublet region for HCl and  $\rm CO_2$  samples deposited at 12 K: (a) 37 mmol of  $\rm Ar/C^{18}O_2=200/1$ , (b) 85 mmol of  $\rm Ar/HCl=200/1$ , (c) 59 mmol of  $\rm Ar/C^{18}O_2=200/1$  condensed with 48 mmol of  $\rm Ar/HCl=100/1$ , and (d) 59 mmol of  $\rm Ar/HCl=200/1$  condensed with 51 mmol of  $\rm Ar/HCl=100/1$ .

of the same Ar/HCl sample was condensed over the next day with a similar amount of argon as a sample blank; the completely absorbing R(0) HCl band at 2888.0 cm<sup>-1</sup> was accompanied by the weaker P(1) line at 2553.4 cm<sup>-1</sup>, without a pronounced shoulder, and the (HCl)<sub>2</sub> band<sup>8</sup> was observed at 2817.8 cm<sup>-1</sup>; the Fermi-doublet region contained weak bands at 1395, 1361, 1335, 1267, and 1216 cm<sup>-1</sup> from trace impurities in the HCl sample and/or vacuum manifold *without* any detectable adsorption at 1383 and 1278 cm<sup>-1</sup>, as shown in Fig. 2(b).

A similar experiment was performed with a C  $^{18}\mathrm{O}_2$  sample; the strong 2853.3 cm $^{-1}$  band was observed unchanged within experimental error, a product shoulder was observed at 2245.3 cm $^{-1}$  on the side of the  $^{13}\mathrm{C}^{18}\mathrm{O}_2$  doublet ( $\nu_3$ ) at 2243.3, 2237.8 cm $^{-1}$ . The Fermi-doublet region exhibited a very weak product band at 1227.8 cm $^{-1}$ 

(A=0.006), which is denoted with an arrow in Fig. 2(c); no signal was found above the noise level in the 1330 cm<sup>-1</sup> region. An identical Ar/C  $^{18}O_2$  sample was deposited without hydrogen chloride, and the spectrum revealed a very weak band at 1228.4 cm<sup>-1</sup> (A=0.002) labeled " $\nu_1$ " in Fig. 2(a), in addition to the infrared active precursor absorptions.

Another sample was prepared with  $CO_2$  and HCl for far-infrared examination; the spectrum revealed a single band at 173 cm<sup>-1</sup> (A = 0.07, FWHM =  $10 \text{ cm}^{-1}$ ), which is shown in Fig. 1.

Two experiments were done with enriched DCl samples and  $CO_2$ . The strong HCl absorption and reaction product were observed at 2888.0 and 2553.4 cm<sup>-1</sup> as before; the strong R(0) DCl absorption was observed at 2089.3 cm<sup>-1</sup> and the weaker P(1) line appeared at 2069.7 cm<sup>-1</sup>, and a new product absorption was observed at 2065.4 cm<sup>-1</sup> (A = 0.22). The product shoulder was again observed at 2281.5 cm<sup>-1</sup> (A = 0.11), and the weak bands in the Fermi-doublet region were also observed at 1383.1 and 1278.4 cm<sup>-1</sup> (A = 0.009 and 0.004, respectively). The far-infrared spectrum of a similar sample contained weak water lines; however, weak product absorptions were observed at 173 and 134 cm<sup>-1</sup>.

The previous CO2 and HF, DF experiments were reexamined in the Fermi-doublet region, which is illustrated in Fig. 3. Trace (a) shows the spectrum of 32 mmol of deposited  $Ar/CO_2 = 300/1$  sample containing very weak, sharp bands at 1383.7 (A = 0.0028) and 1279.5 cm<sup>-1</sup> (A = 0.0017), which are labeled " $\nu_1$ " and " $2\nu_2$ "; for comparison the sharp 2279.5 cm<sup>-1</sup> <sup>13</sup>CO<sub>2</sub> band was observed with A = 0.57. Trace (b) illustrates the spectrum of 28 mmol of an Ar/HF, DF = 300/1 sample, which shows trace impurity bands from fluorine in this reagent sample including sharp CF<sub>4</sub> bands at 1274.0 cm<sup>-1</sup> and OCF<sub>2</sub> at 1237.6 and 1232.3 cm<sup>-1</sup>. Trace (c) gives the spectrum of a sample prepared from codeposited  $Ar/CO_2 = 300/1$  and Ar/HF, DF = 300/1 samples containing a new product band at 1383.0 cm<sup>-1</sup> (A = 0.036) and new absorption at 1275 cm<sup>-1</sup> on the side of the sharp CF<sub>4</sub> band, which can be identified by close comparison of expanded scale spectra. The product absorptions are noted with arrows in the figure. This experiment exhibited  $v_3^c$  of  $^{13}CO_2$ -HF at 2289.2 cm<sup>-1</sup> (A = 0.070). Trace (d) illustrates the spectrum of the sample prepared from  $Ar/C^{18}O_2 = Ar/HF$ , DF = 300/1 mixtures, and arrows note new product bands at 1333.9 (A = 0.011) and  $1228.3 \text{ cm}^{-1}$  (A = 0.019). Another CO<sub>2</sub> and HF experiment yielded 656.0 ( $A \sim 0.4$ ), 1383.0 (A = 0.015), 2289.2 (A = 0.032), and 3870.9 cm<sup>-1</sup> (A = 0.45) product bands on sample condensation at 12 K. On sample warming 12-22-12 K, the 3871 cm<sup>-1</sup> band increased 20%, weak new bands appeared at 3664 and 3851  $\mathrm{cm}^{-1}$ , the 1383  $\mathrm{cm}^{-1}$ band doubled, and a shoulder at 1275 cm<sup>-1</sup> increased on the side of the sharp 1274 cm<sup>-1</sup> CF<sub>4</sub> band. On sample warming 12-35-12 K, the 2289 and 3871 cm<sup>-1</sup> bands were halved, a sharp new doublet appeared at 3842.6,  $3840.2 \text{ cm}^{-1}$ , the 1383.0 band doubled (to A = 0.05) and shifted to 1383.5 cm<sup>-1</sup>, the 1275 cm<sup>-1</sup> shoulder increased (to A = 0.02), and strong HF aggregate bands



FIG. 3. Infrared spectra in the  $CO_2$  Fermi-doublet region for HF, DF, and  $CO_2$  samples deposited at 12 K: (a) 32 mmol of Ar/CO<sub>2</sub> = 300/1, (b) 27 mmol of Ar/HF, DF = 300/1, (c) 40 mmol each of Ar/CO<sub>2</sub> = Ar/HF, DF = 300/1 samples, (d) 38 mmol each of Ar/C $^{18}O_2$  = Ar/HF, DF = 300/1 samples.

appeared in the  $3440-3410~\mathrm{cm}^{-1}$  and  $3250-3190~\mathrm{cm}^{-1}$  regions.

## **DISCUSSION**

The new product bands in  $CO_2$  and HCl cocondensation experiments will be considered for assignment to the  $CO_2$ -HCl complex. The strongest product band at 2853.5 cm<sup>-1</sup> coincides with the P(1) line of HCl in solid argon<sup>5</sup>; however, the observed 2853.5 cm<sup>-1</sup> band has a pronounced 2851.7 cm<sup>-1</sup> shoulder and is substantially stronger than the P(1) line of HCl in the HCl blank experiment and in HCl experiments with CO added as a reagent. Accordingly, the sharp 2853.5 cm<sup>-1</sup> band is assigned to the H-Cl stretching fundamental  $\nu_s$  in the  $CO_2$ -HCl complex. This assignment is in agreement with that of Barnes et al. who also observed side bands at 2836 and 2806 cm<sup>-1</sup> for  $CO_2$ -(HCl) $_x$  species. The

latter side bands were absent in the present experiments because of faster sample condensation (less diffusion and reaction) at the lower 12 K condensation temperature. In the DCl experiments, strong 2065. 4 cm<sup>-1</sup> product absorption does not coincide with the P(1) line of DCl in solid argon<sup>9</sup> at 2069. 7 cm<sup>-1</sup>, which provides an unambiguous DCl counterpart for the 2853. 5 cm<sup>-1</sup> product band. The HCl/DCl = 2853. 5/2065. 4 = 1.382 ratio is in excellent agreement with the HCl/DCl Q-branch matrix ratio 2865. 7/2076. 0 = 1.380 and the R(0)-branch matrix ratio 2888. 0/2089. 3 = 1.382.

The 173 cm<sup>-1</sup> product band is substantially lower than the 313 cm<sup>-1</sup>  $\nu_1$  mode for the CO<sub>2</sub>-HF complex and just below the 199 cm<sup>-1</sup> value predicted for the  $\nu_1$  mode of CO<sub>2</sub>-HCl from the  $\nu_1$  modes of a group of hydrogenbonded complexes listed in Table I. The weak band at 134 cm<sup>-1</sup> is probably the DCl counterpart; the observed HCl/DCl=1.291 ratio is reasonable for this motion. Observation of a single relatively sharp band for the degenerate librational mode indicates that the CO<sub>2</sub>-HCl complex is linear, in accord with gas phase studies<sup>2</sup> and similar observations of the CO<sub>2</sub>-HF complex in the gas phase<sup>1</sup> and in solid argon. <sup>3</sup>

The 2281,5 cm<sup>-1</sup> shoulder on the antisymmetric C-O stretching mode  $\nu_3$  of  $^{13}CO_2$  at 2279.5 cm<sup>-1</sup> is assigned to this mode  $\nu_3^c$  for the  $CO_2$ -HCl complex; this represents a smaller displacement  $\Delta \nu_3$  for  $CO_2$ -HCl than the 10 cm<sup>-1</sup>  $\Delta \nu_3$  value for the CO<sub>2</sub>-HF complex. The  $\nu_2^c$ mode was unobserved leading to the conclusion that it was not shifted outside of the  $\nu_2$  bandwidth. The weak 1383.2 and 1278.4 cm<sup>-1</sup> bands are assigned to the CO<sub>2</sub> submolecule Fermi-doublet modes  $v_1^c$  and  $2v_2^c$  in the CO2-HCl complex made very weakly dipole allowed in the asymmetric electric environment induced by the HCl ligand. The weak bands in this region from the HCl sample arise from trace impurities at least two orders of magnitude less abundant than the HCl reagent, which makes it highly unlikely that these trace impurities contribute to the product spectrum. The present matrix observations compare favorably with the 1388.3 and 1285.5 cm<sup>-1</sup> Fermi-doublet positions in the gas phase. 10 The following observations from Figs. 2 and 3 and Table II, which compare Fermi doublets for CO2, C18O2, and their HF and HCl complexes, confirm this assignment:

TABLE I. Comparison of H-X stretching  $(v_s)$  and H-X librational  $(v_I)$  modes in a group of hydrogen-bonded complexes in solid argon at 12 K.

|          | нь      |          | HC1     |         |              |
|----------|---------|----------|---------|---------|--------------|
| Base     | $\nu_s$ | $\nu_l$  | $\nu_s$ | $\nu_1$ | Reference    |
| CO2      | 3871    | 313      | 2853    | 173     | 3, this work |
| CO       | 3789    | 389      | 2815    | 247     | 7,7          |
| $C_2H_2$ | 3745    | 426, 382 | 2764    |         | a, a         |
| HCN      | 3626    | 586      | 2703    | 375     | b, b         |
| $H_2O$   | 3554    | 721,614  | 2664    | • • •   | c,7          |

<sup>&</sup>lt;sup>a</sup>L. Andrews, G. L. Johnson, and B. J. Kelsall, J. Phys. Chem. 86, 3374 (1982).

<sup>&</sup>lt;sup>b</sup>G. L. Johnson and L. Andrews (to be published).

<sup>&</sup>lt;sup>c</sup>G. L. Johnson and L. Andrews (to be published).

TABLE II. Vibrational observations in the Fermi-doublet region for several CO2 species.

| CO <sub>2</sub><br>gas | CO <sub>2</sub> in<br>solid<br>argon | CO <sub>2</sub> -HCl<br>complex | CO <sub>2</sub> -HF<br>complex | C 18O <sub>2</sub> gas <sup>b</sup> | C <sup>18</sup> O <sub>2</sub> in<br>solid<br>argon | C 18O2-HCl<br>complex | C <sup>18</sup> O <sub>2</sub> -HF<br>complex | ident.           |
|------------------------|--------------------------------------|---------------------------------|--------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------|-----------------------------------------------|------------------|
| 1388.3                 | 1383.7                               | 1383.2                          | 1383.0                         | 1229.9                              | 1228.4                                              | 1228.0                | 1228.2                                        | $\nu_1$          |
| 1336.9                 | 1331.6                               | 1330.8                          | 1329.2                         | 1288.5                              | •••                                                 | ***                   | 1281.0                                        | average          |
| [1334.6]               | [1326]                               | [1324] <sup>c</sup>             | [1312]                         | [1314]                              | [1306]                                              | [1304] <sup>c</sup>   | [1292]                                        | $[2\times\nu_2]$ |
| 1285.5                 | 1279.5                               | 1278                            | 1275.4                         | 1347.1                              | d                                                   | d                     | 1333.9                                        | $2\nu_2$         |

\*Reference 10.

Reference 12.

cEstimated values.

dToo weak to observe.

- (1) The CO<sub>2</sub> blank experiment [Fig. 2(a)] shows the weak Fermi doublet at 1383.7 and 1279.5 cm<sup>-1</sup> made very weakly infrared allowed by asymmetric matrix environment in some trapping sites. This infrared observation of the Fermi doublet of CO<sub>2</sub> in solid argon is in excellent agreement with the Raman Fermi doublet of CO<sub>2</sub> at 1382.0 and 1277.9 cm<sup>-1</sup> in solid krypton. <sup>11</sup> Based on the <sup>13</sup>CO<sub>2</sub>  $\nu_3$  band at 2279.5 cm<sup>-1</sup> in natural abundance, the relative infrared intensity  $\nu_3/\nu_1$  for CO<sub>2</sub> in solid argon is 20 000/1. Approximately half of the 1383.2 and 1278.4 cm<sup>-1</sup> band absorbance in the CO<sub>2</sub> and HCl experiments can be attributed to induced activity in the CO<sub>2</sub>-HCl complex and the other half to unreacted CO<sub>2</sub> in the matrix.
- (2) The HF/DF experiments with  $CO_2$  produced tenfold more intensity in the Fermi doublet for the  $CO_2$ -HF complex [Fig. 3(c)], although the 1275 cm<sup>-1</sup> band was was partially obscured by  $CF_4$  impurity which was absent in the HCl experiments.
- (3) The HF/DF reaction with C  $^{18}O_2$  produced an appropriately shifted Fermi doublet at 1228.2 and 1333.9 cm<sup>-1</sup>; which is in excellent agreement with gas-phase Raman 1229.9 and 1347.1 cm<sup>-1</sup> observations. <sup>12</sup> The lower yield HCl experiment gave the stronger component at 1228.0 cm<sup>-1</sup>. The  $\nu_1$  component of the Fermi doublet exhibits a substantially greater O-18 shift than the  $2\nu_2$  component and the more intense  $\nu_1$  component falls lower with C  $^{18}O_2$ , whereas the  $\nu_1$  component was higher with C  $^{16}O_2$ .
- (4) The data in Table II show that the  $\nu_1$  component is less affected by the matrix environment and the acid ligand complex environment than the  $2\nu_2$  component. In the CO<sub>2</sub>-HF complex,  $\nu_2^c$  shifts 7 cm<sup>-1</sup> below  $\nu_2$  whereas  $\nu_1^c$  is within 1 cm<sup>-1</sup> of  $\nu_1$ .

The relative intensities of the  $\nu_1^c$  and  $\nu_3^c$  modes for the complex are of interest for comparison to the induced moments for the gas phase complexes. In the CO<sub>2</sub>-HF complex, the  $\nu_1^c$  mode is 50% as intense as the  $\nu_3^c$  mode of the naturally occurring <sup>13</sup>CO<sub>2</sub>-HF complex, which gives an approximate  $\nu_3/\nu_1$  infrared intensity ratio of 200/1; this represents a 100-fold increase in the  $\nu_1$  infrared intensity in CO<sub>2</sub>-HF as compared to CO<sub>2</sub> in solid argon. Similarly, in the CO<sub>2</sub>-HCl complex, the  $\nu_1^c$  mode is approximately 5% as intense as the C-13  $\nu_3^c$  mode, and the  $\nu_3/\nu_1$  intensity ratio is approximately 2000/1, which is a ten-fold increase in the  $\nu_1$  infrared intensity for the complex.

Three other matrix observations suggest that the CO2-HCl complex is considerably weaker than the  $CO_2$ -HF complex. First, the  $\Delta \nu_3^e$  value for the latter is 10 cm<sup>-1</sup> and the former is only 2 cm<sup>-1</sup>; the HF ligand perturbs the  $\nu_3$  mode of  $CO_2$  considerably more than the HCl ligand. Second, the 173 cm<sup>-1</sup>  $\nu_i$  mode is below the 199 cm<sup>-1</sup> value predicted from simple ratios with the other linear complexes in Table I; this indicates a larger librational amplitude for the CO2-HCl complex than might be expected from the other related complexes. Third, the  $\Delta \nu$ , value for the HF complexes is 83 cm<sup>-1</sup>, whereas for the HCl complex,  $\Delta \nu_s$  is 13 cm<sup>-1</sup> based on Q-branch HF and HCl values. 5 These values may be compared to  $\Delta \nu_s$  values of 165 and 51 cm<sup>-1</sup> for the OC-HF and OC-HCl complexes, respectively. The ν, displacement for the CO<sub>2</sub>-HCl complex is less than expected, based on the CO complexes, which is characteristic of the much weaker hydrogen bond in the CO<sub>2</sub>-HCl complex.

Finally, some comment on the reactions that occur during matrix formation and sample warming operations is in order. The CO2-HF and CO2-HCl complexes are formed by diffusion and association of the reagents during sample condensation. In the HF experiments, sample warming to 20 and 22 K allows limited diffusion and further reaction of HF molecules. The growth of (HF), and CO<sub>2</sub>-HF absorptions attests this point. New absorptions at 3851 and 3664 cm<sup>-1</sup> are probably due to OCO-H-F-H-F higher complex species; this latter complex should exhibit essentially the same  $\nu_1^c$  mode as CO2-HF since the latter is practically unchanged from  $\nu_1$  of CO<sub>2</sub> explaining additional growth of the 1383 cm<sup>-1</sup> band. A subsequent thermal cycle to 35 K markedly increased HF aggregate absorptions, decreased the  $\nu_{\bullet}$  and  $\nu_{\bullet}^{c}$  modes of the simple CO<sub>2</sub>-HF complex, increased the 1383 cm<sup>-1</sup> band, and produced a sharp new 3842.6. 3840.2 cm<sup>-1</sup> doublet. This latter band and part of the absorption at 1383 cm<sup>-1</sup> are attributed to  $CO_2$ -(HF), complex species.

## **CONCLUSIONS**

The CO<sub>2</sub>-HCl hydrogen bonded complex was formed on co-condensation of the reagents with excess argon at 12 K. Small displacements in the  $\nu_s$  and  $\nu_s^g$  fundamentals and the low  $\nu_t$  mode indicate a weakly bound complex. The CO<sub>2</sub> Fermi doublet was very weak in the infrared spectrum of the complex. The stronger CO<sub>2</sub>-HF complex yielded a more intense infrared Fermi doublet,

which was appropriately shifted in the  $C^{18}O_2$ -HF complex. The relative infrared intensity  $\nu_3/\nu_1$  for CO<sub>2</sub> in solid argon is 20000/1 and the ratio is 2000/1 for the CO<sub>2</sub>-HF complex, showing that the HF ligand induces finite electrical asymmetry in the CO<sub>2</sub> submolecule.

#### **ACKNOWLEDGMENTS**

The authors gratefully acknowledge financial support from National Science Foundation grant CHE 79-10966 and helpful discussions with W. Klemperer.

A. Baiocchi, T. A. Dixon, C. H. Joyner, and W. Klemperer, J. Chem. Phys. 74, 6544 (1981).
R. S. Aultman, M. D. Marshall, and W. Klemperer, J. Chem. Phys. 77, 4344 (1982).
Andrews and G. L. Johnson, J. Chem. Phys. 76, 2875

- (1982).
- <sup>4</sup>B. J. Kelsall and L. Andrews, J. Phys. Chem. **85**, 1288 (1981).
- <sup>5</sup>A. J. Barnes, H. E. Hallam, and G. F. Scrimshaw, Trans. Faraday Soc. 65, 3159 (1969).
- <sup>6</sup>A. J. Barnes, H. E. Hallam, and G. F. Scrimshaw, Trans. Faraday Soc. 65, 3150 (1969).
- <sup>7</sup>L. Andrews, R. T. Arlinghaus, and G. L. Johnson, J. Chem. Phys. 78, 6347 (1983).
- <sup>8</sup>A. J. Barnes, H. E. Hallam, and G. F. Scrimshaw, Trans. Faraday Soc. 65, 3172 (1969).
- <sup>9</sup>J. B. Davies and H. E. Hallam, Trans. Faraday Soc. 67, 3176 (1971).
- <sup>10</sup>G. Herzberg, Infrared and Raman Spectra (Van Nostrand, Princeton, 1945).
- <sup>11</sup>A. Loewenschuss and A. Givan, Spectrosc. Lett. 10, 551 (1977).
- <sup>12</sup>H. W. Klockner, H. Finsterholzl, K. Srinivasan, and H. W. Schrotter, Appl. Spectrosc. 32, 401 (1978).