# **Social Network Analysis**The evolution of the field

Darja Maltseva<sup>1</sup>, Vladimir Batagelj<sup>1,2,3</sup>

<sup>1</sup>NRU HSE Moscow <sup>2</sup>IMFM Ljubljana <sup>3</sup>IAM UP Koper

October 10, 2018

### 1 Introduction

Social Network Analysis (SNA) has moved from a fragmented direction represented by the works of individual scientific groups unrelated to each other, to a discipline whose representatives by 1990 have formed an "invisible college" and achieved the status of what Kuhn had labeled a "normal science" (Freeman, 2004; Hummon and Carley, 1993). Starting from that time, the field has grown significantly, which can be seen by the number of scientific publications (Otte and Rousseau, 2002) in different scientific fields, including Natural Sciences, which lead to the so called "physicists' invasion" into SNA (Batagelj et al., 2014) and resulted with the development of Network Science discipline. This calls into a question whether the field remains unified and which scientific groups (by disciplines, thematic agenda, etc.) it is currently formed of. Thus, the aim of the current study is to trace the evolution of the field of Social Network Analysis using bibliographic approach.

The phenomenon of scientific collaboration and communication by means of bibliometric tools has been extensively studied and reviewed over the last decades. The studies were devoted to the descriptions of scientific fields in different scientific traditions, such as co-authorship trends in Sociology in the USA (Moody, 2004; Hunter and Leahy, 2008), the USA and France (Pontille, 2003), Slovenia (Mali et al. 2010), Russia (Sokolov et al., 2010); Scientometrics and Informetrics (Hou et al., 2008), Library and Information science in Argentina (Chinchilla-Rodríguez et al., 2012), Economics in Poland (Lopaciuk-Gonczaryk, 2016); citation trends in some disciplines represented by thematic journals (Carley et al., 1993) and thematic sets of literature (Hummon and Doreian, 1989; Batagelj et al., 2017).

Different patterns of collaboration and their change over time were studied based on the analysis of co-authorship networks from different subjects, such as Biology, Physics and Mathematics (Newman 2001; Newman 2004), Mathematics and Neuro-science (Barabasi et al., 2002), or even all research disciplines in one country (Kronegger et al., 2012; Ferligoj et al., 2015; Cugmas et al., 2016). Scientific networks on multinational level (Glänzel and Schubert, 2004) and international collaboration in science (Wagner and Leydesdorff, 2005) were studied.

The development of the field of our interest, Social Network Analysis, was reflected in several studies focused both on its historiographical description (Freeman, 2004), as well as structures of citation

(Hummon and Carley, 1993 Batagelj et al., 2014) and co-authorship (Leidesdorff et al., 2008; Otte, Rousseau, 2002). Attention was also given to citation structures of works written on some topics in SNA - centrality-productivity (Hummon et al., 1990; Batagelj et al., 2014, pp. 117-139), clustering and classification (Kejzar et al., 2010; Batagelj), blockmodeling (Batagelj).

Following Hummon and Carley (1993), we formulate the research purpose of the current study as to determine "whether the research in social networks hangs together, whether there are major divisional splits, either institutional or paradigmatic, and whether the members of the specialty attend to each other's work" (Hummon and Carley, 1993). We believe that the study of scientific community of Russian network researchers is not only important from epistemological point of view, but also can help to identify main active clusters and groups of knowledge exchange and have a possibility to facilitate the development of the field in the future.

# 2 Social network analysis: review of the previous studies

The issues of collaboration and citation in the field of Social Network analysis was studied by the means of historiographical and bibliometric studies. Using the first approach, patterning the links among the people who were involved in the development of the field — its social network — and pointing out the main events and in the field, Freeman (2004) presented "the history of social network analysis written from a social network perspective". As Freeman shows, the period started from 1940 till the late 1960's can be associated with the emergence of a large number of "schools", not aware of each other but potentially competing, which caused a fragmentation of the field in the 1970's. The special survey conducted by Freeman showed that there was no common agreement about the intellectual antecedents among the "founding fathers" of the discipline. It was only with some special efforts started in 1970's that caused the institutionalization of the field, among which Freeman points out "bridging" positions of some scholars travelling around different institutions, production of computer programs standardizing analysis of social network data, conferences and regular meetings that brought separate groups together (including those connected by early kind of internet), organization of INSNA association and creation of special journal "Social Networks", educational programs at the universities.

The early example of studying the SNA discipline by bibliometric tools is done by Hummon and Carley (1993). Analyzing citations within the first 12 volumes of journal "Social Network" and important articles that were cited by its authors and brief historical review, authors came to the conclusion that by the 1990's the members of SNA community have met the requirements for being an invisible college – a core active group of scientists "in the know" (INSNA members), having shared paradigm (understanding of the society as a network), defining important problems, promoting common methods of analysis, and establishing criteria of accomplishment and advance, working in core substantive areas in which ideas developed incrementally. They also had primary professional outlet (Social Networks Journal) and regular face-to-face interaction (through the conferences). Moreover, they also found that the main paths through the citation network were few in number, densely connected, extensive in the number of articles linked together, and continuous, that's why they made a conclusion that the SNA not only acceded the status of discipline, but also that the type of science engaged in within social networks field was what Kuhn had labeled "normal science".

The institutionalization of the SNA reflected in the intensification of the works within the field. Studying Social Network analysis in Information sciences based on data obtained from Sociological Abstracts base in period 1974-1999, Otte and Rousseau (2002), demonstrated that the yearly number of articles related to SNA was constantly growing, starting from 1980's. According to Freeman (2004),

these data shows that the study of social networks is rapidly becoming one of the major areas of social science research (Freeman, 2004).

The most important works and central players, influencing others, were studied by the means of co-authorship networks analysis (Leidesdorff et al., 2008; Otte, Rousseau, 2002) and analysis of citations structures (Hummon, Carley, 1993; Batagelj et al., 2014). (What was found) Some studies focused on some subfields of SNA, such as centrality (Batagelj et al., 2014, pp. 117-139), clustering and classification (Kejzar et al., 2010; Batagelj – new), blockmodeling (Batagelj) (What was found)

Even though the Initial involvement into the field of Social Network Analysis was interdisciplinary (Hummon, Carley, 1993) and the field did not develop only within Sociology (Otte, Rousseau, 2002), recently it passed through some major changes. In their study of citation analysis of the literature on Social Network Analysis Batagelj et al. (2014, pp. 160-172) demonstrated that at the beginning (1970's) this direction was developing in the fields of Social Sciences, but starting from 2000's key works on this topic moves to the sphere of Physics and Neurosciences. The same trend is seen in the analysis of literature on centrality - one of the metrics in SNA (Batagelj et al., 2014, pp. 117-139).

## 3 Data

### 3.1 Data collection and cleaning

The resource for the data collection is Web of Science (WoS), Clarivate Analytics's multidisciplinary databases of bibliographic information. The data set is composed of two parts. First part SN5 data collected in 2008 [Batagelj et al., 2014], contains all the records found by query "social network\*", as well as all articles from the Social Networks Journal, till 2007. Another part was collected in June 2018 using same search scheme. Additionally, in 2018, all the articles from the networks-related journals were included - such as Network Science, Computational Social Networks, Applied Network Science, Social Network Analysis and Mining, Online Social Networks and Media, Journal of Complex Networks, Journal of Social Structure, and Connections. Figure 1 shows an example of records that are extracted from WoS. We had to linit the search to the Web of Science Core Collection because for other data bases in WoS special CR fields, which contain citation information, can not be exported.

The nodes, which are described only in WoS CR fields as references, do not have a full description in the colleced data set, and are called *terminal* nodes. As such nodes can be higly cited and in this sense important, we additionally collected the full descriptions for those which had the largest values of citing by others (indegree value between 1506 and 150), using WoS. If a description of a node was not available in WoS we constructed a corresponding description without CR data, searching for the work in Google Scholar (and then using RIS biblographic format and converting it to WoS with special R program). We also included manual descriptions of important works without the CR field from data set BM.WoS on the topic of blockmodeling [Batagelj, Chapter 2?]. We should note that such additional influental papers, usually published earlier, could be overlooked by our research queries because it could happen that they do not use the now established terminology. Finally, our data set included 70,795 records with complete descripton (there were 15 duplicates).

### 3.2 Original networks construction

Using WoS2Pajek 1.5 (Batagelj, 2007), we transformed our data into a collection of networks: the citation network Cite on works (from the field CR), the authorship network WA on works  $\times$  authors (from the field AU), the journalship network WJ on works  $\times$  journals (from the field CR or J9), and the

```
AU JOHNSTON, RD
   BARTON, GW
AF JOHNSTON, RD
   BARTON, GW
TI STRUCTURAL EQUIVALENCE AND MODEL-REDUCTION
SO INTERNATIONAL JOURNAL OF CONTROL
LA English
DT Article
   JOHNSTON, RD (reprint author), UNIV SYDNEY, DEPT CHEM ENGN, SYDNEY, NSW 2006, AUSTRALIA.
   JOHNSTON RD, 1984, INT J CONTROL, V40, P257, DOI 10.1080/00207178408933271 JOHNSTON RD, 1984, UNPUB COMPUT CHEM EN
   MORARI M, 1980, AICHE J, V26, P232, DOI 10.1002/aic.690260206
Morari M., 1977, THESIS U MINNESOTA
Ζ9
U2 0
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0020-7179
J9 INT J CONTROL
JI Int. J. Control
PY 1985
VL 41
IS 6
BP 1477
EP 1491
DI 10.1080/0020718508961210
WC Automation & Control Systems
SC Automation & Control Systems
GA AQJ42
UT WOS: A1985AQJ4200007
```

Figure 1: WoS record

keywordship network WK on works  $\times$  keywords (from the field ID or DE or TI). An important property of all these networks is that they share the same node set as the first one – i.e. the set of works (papers, reports, books, etc.) - wich means that they are *linked* and can be easily multiplied with each other, creating other networks.

Works that appears in descriptions can be of two types: those which has full descriptions (called hits), and those, which wer eonly cited (listed in the CR fields, but not presented among the hits). These data was stored in a partition DC, where DC[w] = 1 if a work w has a WoS description, and DC[w] = 0 otherwise. Partition year contains the work's publication year from the fields PY or CR. Also the vector NP was obtained, where NP[w] = number of pages in each work w. WoS2Pajek also builds a CSV file titles with main data about works with DC = 1 (name, WoS line, author, title, journal, year), which can be used to list results.

The usual *ISI name* of a work (its description in the field CR) has the following structure: AU + ', ' + PY + ', ' + SO[:20] + ', V' + VL+ ', P' + BP (surname, first letters of name, year of publication, abbreviation of the journal, its volume and number of starting page), which results in such descriptions as LEFKOVITCH LP, 1985, THEOR APPL GENET, V70, P585 (all the elements are in upper case). As in WoS the same work can have different ISI names, the program WoS2Pajek supports also *short names* (similar to the names used in HISTCITE output), which has the following format: LastNm[:8] + '\_' + FirstNm[0] + '(' + PY+ ')' + VL + ':' + BP. For example, for the mentioned work the ISI name is LEFKOVIT\_L (1985) 70:585. From the last names with prefixes VAN, DE, ... the space is deleted, and unusual names start with characters \* or \$.

However, some problems associated with names recognition still can occur in the data base. It

Table 1: Reduced networks

|       | # nodes (sum) | # nodes 1 | # nodes 2 | # arcs    |
|-------|---------------|-----------|-----------|-----------|
| WKn   | 1,329,542     | 1,297,133 | 32,409    | 1,167,670 |
| WKr   | 103,201       | 70,792    | 32,409    | 1,167,666 |
| WJn   | 1,367,558     | 1,297,133 | 70,425    | 1,301,276 |
| WJr   | 80,011        | 70,792    | 9,219     | 74,933    |
| WAn   | 1693105       | 1,297,133 | 395,972   | 1,442,242 |
| WAr   | 163,804       | 70,792    | 93,012    | 215,901   |
| CiteN | 1,297,133     |           |           | 2,753,767 |
| CiteR | 70,792        |           |           | 398,199   |

can turn out, that the same works can be named by different names. For example, in our case, the names BOYD\_D(2007)13 and BOYD\_D(2008)13:210 were describing the same work of Danah Boyd, originally published in 2007, but in many cases referenced as being published in 2008.

Two possibilities to correct the data are: (1) to make corrections in the local copy of original data (WoS file); and (2) to make the equivalence partition of nodes and shrink the set of works accordingly in all obtained networks. We used the second option (Batagelj, Chapter 2). For the works with largest counts we prepared lists of possible equivalents and manually determined equivalence classes. With a program in R we produced a Pajek's partition EQ.clu file used for shrinking the set of works. Using the partition p = worksEQ, in Pajek we shrunk the Citation network cite, WA, WJ, and WK. The partitions year, DC and the vector NP were also shrunk.

After these iterations, we finally constructed the data set used in this paper. From 70,792 hits (works with full description, DC=1) we produced networks with sets of the following sizes: works —W— = 1,297,133, authors —A— = 395,972, journals —J— = 70,425, key words —K— = 32,409. We removed multiple linkes and loops from the networks and obtaind cleaned networks **CiteN**, **WAn**, **WJn**, and **WKn**. In the following section, we present some The statistical properties of the obtained networks are presented in the section 4.

### 3.3 Redused networks construction

As it was shown above, for the works which are cited only (DC=0) information is provided in a restricted way: we have only information about the first author, and we have no information on the keywords (as there is no titles in the descriptions). That is why, for further analysis we also constructed networks, which contain only works with complete description (DC $_{\dot{c}}$ 0). All the lines in the obtained networks were set to 1. The sizes of the obtained **reduced networks** are shown in the Table 1. In obtaind reduced networks **CiteR**, **WAr**, **WJr**, and **WKr** the amount of sets is the following:works —W— = 70,792, authors —A— = 93,012, journals —J— = 9,219, key words —K— = 32,409 (remained the same).

### 3.4 Boundary problem in Citation network

The original network **CiteN** had 1,297,133 nodes and 2,753,767 arcs. Considering the indegree distribution in this network we got the following counts for the lowest number of recieved citations: 0 (41,954), 1 (933,315), 2 (154,895), 3 (58,141), and 4 (29, 885), which alltogether combine 94% of citations. Thus, most of the works were terminal (DC=0) or were referenced only once (indegree = 1). Therefore, we

# Publications per year 1900 1920 1940 1960 1980 2000 2020

Figure 2: Citation network: Distribution of works by years

year

decided to remove all the 'cited only' nodes with indegree smaller then 3 (DC = 0 and indeg;3) - the boundary problem (Batagelj et al. 2014). We also removed all the nodes starting with string [ANON. Finally, we got a subnetwork **CiteB** with 222,086 nodes and 1,521,434 arcs.

### 3.5 Derieved networks

Using obtained networks - original CiteN, WAn, WJn, and WKn, reduced CiteR, WAr, WJr, and WKr, and bounded CiteB we constructed other networks for the further analysis. These networks can be of two types. First type are one-mode networks made by the multiplication of two two-mode networks: network of co-occurence of key words KK (out of WK net), networks of coauthorship Co, Cn, and Ct' (out of WA net), network of authors and keywods AK (out of WA and WK). Another type of networks are those which are produced by the multiplication of three networks: network of citations among authors (made out of Citation net and WA net) AACite, network of citations among journals JJCite, co-citation network ACoj'. The normalization was also used in production of these networks. The description on each derieved network construction is presented in the corresponding sections.

# 4 Statistics on original networks

### 4.1 Distributions on CiteN

In the Figure 2, the distribution of all works (hits + cited only) by year is shown. It is ineteresting to note that this distribution fits very well the log normal distribution (Batagelj et al. 2014, pp. 119–121):

$$c \cdot dlnorm(2019 - year, a, b), where$$

$$a = 2.543, b = 0.7206, c = 1.27810^6$$

In the Figure 3, the indegree distribution in citation network - cumulative and usual - logarithmic scale (?) is shown. This distribution fits well the the *power law*  $f = c \cdot n^{-\alpha}$ , where fitted  $\alpha = 2.3007$ ,



Figure 3: Citation network: Indegree distribution

c=749338, which means that the small number of works attracts a large number of citations, and the large number of works attracts only small number of citations. Works with the largest indegrees are the most cited papers.

Table 2 shows 60 the most *cited* works (indegree in **CiteN**). It can be seen that half of these works (28 works) are published earlier, before 2000. It is also seen that some of these works (15) are books. The top ranked work is the well-known book of Wasserman and Faust published in 1994, and the second ranked work is also a classical article of Granovetter on the "strenght of weak ties" concept. The other books of "social" networks scientists cited more then 500 times (number in parentheses) are: Burt RS, Structural Holes: The Social Structure of Competition, 1992 (2333); Putnam RD, Bowling alone: America's declining social capital, 2000 (1510); Scott J, Social Network Analysis: A Handbook, 2000 (1192); Everett MG, Ucinet for Windows: Software for social network analysis, 2002 (1171); Coleman J, Foundations of Social Theory, 1990 (1093); Borgatti SP, Ucinet for Windows: Software for Social Network Analysis, 2002 (999); Hanneman RA, Introduction to social network methods, 2005 (854); Lin N, Social capital. A theory of social structure and action, 2001 (800); Rogers EM, Diffusion of innovations, 2003 (628); Putnam RD, Making democracy work: Civic institutions in modern Italy, 1993 (613); Zachary WW, An information flow model for conflict and fission in small groups, 1977 (583); Burt, RS Brokerage and closure: An introduction to social capital, 2005 (565); Rogers EM, Diffusion of Innovation. 4th, 1995 (555); Fischer CS, To dwell among friends: Personal networks in town and city, 1982 (539). Other articles of "social" network scientists listed in the table (topics in parentheses) belong to McPherson (homophily), Freeman and Bonachich (centrality, betweenness), Burt (structural holes), Coleman, Portes, Adler (social capital), Granovetter, Uzzi (embeddedness), Milgram (small world), Borgatti.

Interestingly, the list also includes a lot of names of phisicists working with network approach: highly ranked articles of Watts DJ - Collective dynamics of 'small-world' networks, appeared in NATURE in 1998 (2906), as well as Barabasi AL- Emergence of scaling in random networks, appeared in SCIENCE in 1999 (2614). Other works are of Newman, Albert, Girvan, Fortunato, Blondel, Clauset on large and complex networks, community detection and clustering. A famous work of Erdos "On random graphs", published in 1959, is also in the list.

Table 2: Citation net: The most cited works - indegree

| i  | freq | id                      | i  | freq | id                       |
|----|------|-------------------------|----|------|--------------------------|
| 1  | 5348 | WASSERMA_S(1994):       | 31 | 734  | NEWMAN_M(2001)98:404     |
| 2  | 4471 | GRANOVET_M(1973)78:1360 | 32 | 719  | NEWMAN_M(2010):          |
| 3  | 2906 | WATTS_D(1998)393:440    | 33 | 701  | PORTES_A(1998)24:1       |
| 4  | 2614 | BARABASI_A(1999)286:509 | 34 | 687  | BLEI_D(2003)3:993        |
| 5  | 2561 | FREEMAN_L(1979)1:215    | 35 | 670  | BURT_R(2004)110:349      |
| 6  | 2447 | BOYD_D(2007)13:210      | 36 | 654  | HANSEN_M(1999)44:82      |
| 7  | 2429 | MCPHERSO_M(2001)27:415  | 37 | 639  | PALLA_G(2005)435:814     |
| 8  | 2330 | BURT_R(1992):           | 38 | 634  | CLAUSET_A(2004)70:066111 |
| 9  | 1886 | COLEMAN_J(1988)94:95    | 39 | 629  | BONACICH_P(1987)92:1170  |
| 10 | 1572 | NEWMAN_M(2003)45:167    | 40 | 628  | ERDOS_P(1959)6:290       |
| 11 | 1520 | GIRVAN_M(2002)99:7821   | 41 | 628  | UZZI_B(1997)42:35        |
| 12 | 1510 | PUTNAM_R(2000):         | 42 | 628  | ROGERS_E(2003):          |
| 13 | 1285 | ALBERT_R(2002)74:47     | 43 | 613  | PUTNAM_R(1993):          |
| 14 | 1240 | GRANOVET_M(1985)91:481  | 44 | 593  | BERKMAN_L(1979)109:186   |
| 15 | 1192 | SCOTT_J(2000):          | 45 | 583  | ZACHARY_W(1977)33:452    |
| 16 | 1171 | EVERETT_M(2002):        | 46 | 572  | BORGATTI_S(2009)323:892  |
| 17 | 1166 | NEWMAN_M(2004)69:026113 | 47 | 569  | NEWMAN_M(2001)64:025102  |
| 18 | 1093 | COLEMAN_J(1990):        | 48 | 565  | BURT_R(2005):            |
| 19 | 1058 | STEINFIE_C(2007)12:1143 | 49 | 561  | ADLER_P(2002)27:17       |
| 20 | 1034 | FORTUNAT_S(2010)486:75  | 50 | 559  | CHRISTAK_N(2008)358:2249 |
| 21 | 999  | BORGATTI_S(2002):       | 51 | 555  | ROGERS_E(1995):          |
| 22 | 945  | CHRISTAK_N(2007)357:370 | 52 | 554  | MILGRAM_S(1967)1:61      |
| 23 | 867  | FREEMAN_L(1977)40:35    | 53 | 553  | BARON_R(1986)51:1173     |
| 24 | 854  | HANNEMAN_R(2005):       | 54 | 550  | GRANOVET_M(1978)83:1420  |
| 25 | 800  | LIN_N(2001):            | 55 | 539  | FISCHER_C(1982):         |
| 26 | 757  | KAPLAN_A(2010)53:59     | 56 | 537  | BRIN_S(1998)30:107       |
| 27 | 756  | BLONDEL_V(2008):P10008  | 57 | 524  | MARSDEN_P(1990)16:435    |
| 28 | 742  | NAHAPIET_J(1998)23:242  | 58 | 523  | KEMP_D(2003):137         |
| 29 | 740  | FORNELL_C(1981)18:39    | 59 | 523  | KLEINBER_J(1999)46:604   |
| 30 | 740  | NEWMAN_M(2006)103:8577  | 60 | 517  | BOCCALET_S(2006)424:175  |

There are also some representatives of the other spheres - in such expecte topics as social network sites and social media (including highly rated artile of Boyd "Social network sites: Definition, history, and scholarship", published in 2007 and having 2447 citations); medicine (including famous works of Christakis NA on spread of obesity and smoking), and management.

Table 3 shows 20 the most *citing* works (works with the largest outdegree in **CiteN**). These works are books, books introductory chapters, and review articles. Most of these works belong to the field of social sciences and cover different topics, including education, human relationships, archeology, migration, internet studies, and social media. The topic of social network analysis is not presented separately in this type of works. However, it is presented in the works published in journals in physics and computer science from the list (Bocaletti on complex networks, Costa on complex networks, Castellano on social physics of social dynamics, Brandes on methodological foundations of network analysis), as well as works representing the field of animal social networks.

Table 3: Citation net: The most citing work – outdegree

| i  | freq | id                      | i  | freq | id                                 |
|----|------|-------------------------|----|------|------------------------------------|
| 1  | 1572 | CHAPMAN_C(2016):1       | 11 | 731  | TSATSOU_P(2014):1                  |
| 2  | 1406 | HRUSCHKA_D(2010)5:1     | 12 | 654  | GOODALE_E(2017):IX                 |
| 3  | 1293 | COWARD_F(2015):1        | 13 | 649  | PEPPER_G(2017)40:S0140525X1700190X |
| 4  | 1254 | FITZGERA_P(2008):1      | 14 | 632  | STROM_R(2012):1                    |
| 5  | 1207 | DAVIES_N(2015):V        | 15 | 613  | SCHACHNE_G(2015)23:49              |
| 6  | 1055 | MARSH_C(2009):1         | 16 | 597  | COSTA_L(2011)60:329                |
| 7  | 942  | YUS_F(2011)213:1        | 17 | 593  | BRANDES_U(2005)3418:1              |
| 8  | 929  | BOCCALET_S(2006)424:175 | 18 | 586  | ROBERTS_J(2014):1                  |
| 9  | 799  | REEVES_M(2017):1        | 19 | 557  | GUNTER_B(2016):1                   |
| 10 | 768  | GROSS_J(2007):1         | 20 | 547  | CASTELLA_C(2009)81:591             |

Table 4: WA net: Authors with the largest number of papers – indegree

| Rank | Value | Id         | Rank | Value | Id         |
|------|-------|------------|------|-------|------------|
| 1    | 1169  | WANG_Y     | 21   | 552   | KIM_H      |
| 2    | 883   | ZHANG_Y    | 22   | 550   | CHEN_J     |
| 3    | 868   | CHEN_Y     | 23   | 536   | LIU_X      |
| 4    | 847   | LI_Y       | 24   | 533   | WANG_L     |
| 5    | 838   | WANG_X     | 25   | 509   | LI_H       |
| 6    | 819   | ZHANG_J    | 26   | 490   | $KIM_{-}Y$ |
| 7    | 788   | WANG_J     | 27   | 485   | ZHANG_Z    |
| 8    | 786   | $LIU_{-}Y$ | 28   | 474   | WANG_Z     |
| 9    | 766   | LEE_J      | 29   | 471   | WANG_S     |
| 10   | 765   | LEE_S      | 30   | 471   | CHEN_X     |
| 11   | 749   | LI_J       | 31   | 471   | NEWMAN_M   |
| 12   | 708   | LI_X       | 32   | 462   | CHEN_L     |
| 13   | 696   | CHEN_C     | 33   | 461   | ZHANG_L    |
| 14   | 690   | KIM_J      | 34   | 450   | YANG_Y     |
| 15   | 620   | WANG_H     | 35   | 450   | ZHANG_H    |
| 16   | 611   | ZHANG_X    | 36   | 432   | WU_J       |
| 17   | 611   | LIU_J      | 37   | 431   | LEE_H      |
| 18   | 570   | CHEN_H     | 38   | 420   | LI_Z       |
| 19   | 557   | KIM_S      | 39   | 420   | $WANG_W$   |
| 20   | 554   | WANG_C     | 40   | 417   | LIL        |

### 4.2 Distributions on WAn

Table 4 shows authors with the largest number of papers, which is shown by the indegree distribution of the **WAn** network. It can be seen that almost all of these names, except Newman, belong to Chinese authors. However, this is the result of the well-known "three Zhang, four Li" effect: as the number of original surnames in China is relatively small, there is a high chance that different authors, having the same surname and first letter of the name, shrink together, creating "generalized" authors. Such problem could be overcame if we had a special ID for each scientists.

Looking at the outdegree of **WAn** network, we can get an information on the number of authors in works. This distribution is presented in the Table 5. It can be seen that the majority of works (95.5%) has only one author (however, the majority of this group are works that are cited only, which contain information only on the first author). Other 4% of all the works have from 2 to 5 authors. In some

Table 5: WA net: Number of authors in works – outdegree

| outdeg | Freq    | Freq%   | outdeg | Freq    | Freq%  |
|--------|---------|---------|--------|---------|--------|
| 1      | 1239496 | 95.5566 | 21     | 4       | 0.0003 |
| 2      | 18637   | 1.4368  | 22     | 3       | 0.0002 |
| 3      | 16661   | 1.2844  | 23     | 4       | 0.0003 |
| 4      | 10617   | 0.8185  | 24     | 2       | 0.0002 |
| 5      | 5759    | 0.4440  | 25     | 1       | 0.0001 |
| 6      | 2802    | 0.2160  | 26     | 2       | 0.0002 |
| 7      | 1322    | 0.1019  | 27     | 5       | 0.0004 |
| 8      | 686     | 0.0529  | 28     | 2       | 0.0002 |
| 9      | 384     | 0.0296  | 29     | 1       | 0.0001 |
| 10     | 247     | 0.0190  | 31     | 3       | 0.0002 |
| 11     | 155     | 0.0119  | 36     | 1       | 0.0001 |
| 12     | 90      | 0.0069  | 41     | 1       | 0.0001 |
| 13     | 70      | 0.0054  | 42     | 1       | 0.0001 |
| 14     | 54      | 0.0042  | 43     | 1       | 0.0001 |
| 15     | 32      | 0.0025  | 48     | 1       | 0.0001 |
| 16     | 12      | 0.0009  | 53     | 1       | 0.0001 |
| 17     | 14      | 0.0011  | 126    | 1       | 0.0001 |
| 18     | 9       | 0.0007  |        |         |        |
| 19     | 6       | 0.0005  |        |         |        |
| 20     | 2       | 0.0002  |        |         |        |
| SUM    |         |         |        | 1297133 | 100    |

works, hovever, the amount of authors is pretty high. On the (Table 6) we present the works which have more then 25 authors. The most "extreme" case is the work "Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking", published in NatureBiotechnology in 2016, which has 126 authors. Almost all the works from this list belong to the fields of Natural science - medical, health, epidemiological, and behavioral studies. For these fields, the inclusion of all the authors inplementing a research project to the paper is quite a frequent situation. However, the third rated article - "Discussion on the paper by Handcock, Raftery and Tantrum", - published in RoyalStatisticalSociety.Journal.SeriesA: StatisticsinSociety collect 48 "social" networks scientists.

Table 6: WA net: Works with the largest number of authors

| Value | First author | Title                                                    | Journal        | Year |
|-------|--------------|----------------------------------------------------------|----------------|------|
| 126   | Wang, MX     | Sharing and community curation of mass spectrometry      | NAT BIOTECH-   | 2016 |
|       |              | data with Global Natural Products Social Molecular Net-  | NOL            |      |
|       |              | working                                                  |                |      |
| 53    | Vashisht, R  | Crowd Sourcing a New Paradigm for Interactome Driven     | PLOS ONE       | 2012 |
|       |              | Drug Target Identification in Mycobacterium tuberculosis |                |      |
| 48    | Snijders,    | Discussion on the paper by Handcock, Raftery and         | J ROY STATIST  | 2007 |
|       | TAB          | Tantrum                                                  | SOC SER A STAT |      |
| 43    | Gustavsson,  | Cost of disorders of the brain in Europe 2010            | EUR NEUROPSY-  | 2011 |
|       | A            |                                                          | CHOPHARM       |      |
| 42    | DOLL, LS     | Homosexually and nonhomosexually identified men who      | J SEX RES      | 1992 |
|       |              | have sex with men - a behavioral-comparison              |                |      |

Table 6: WA net: Works with the largest number of authors

| Value | First author | Title                                                                                                        | Journal       | Year |
|-------|--------------|--------------------------------------------------------------------------------------------------------------|---------------|------|
| 41    | Magliano,    | Family psychoeducational interventions for schizophrenia                                                     | EPIDEMIOL     | 2006 |
|       | L            | in routine settings: impact on patients' clinical status and                                                 | PSICHIATR SOC |      |
|       |              | social functioning and on relatives' burden and resources                                                    |               |      |
| 36    | Auradkar,    | Data Infrastructure at LinkedIn                                                                              | PROC INT CONF | 2012 |
|       | A            |                                                                                                              | DATA          |      |
| 31    | Durkee, T    | Prevalence of pathological internet use among adolescents                                                    | ADDICTION     | 2012 |
|       |              | in Europe: demographic and social factors                                                                    |               |      |
| 31    | Kaur, K      | Fluoroquinolone-related neuropsychiatric and mitochon-                                                       | J COMMUNITY   | 2016 |
|       |              | drial toxicity: a collaborative investigation by scientists                                                  | SUPPORT       |      |
| 21    | TT           | and members of a social network                                                                              | DEDIATE EN    | 2014 |
| 31    |              | Adolescent Growth: Genes, hormones and the Peer Group.                                                       | PEDIATR EN-   | 2014 |
|       | M            | Proceedings of the 20th Aschauer Soiree, held at Gkicks-                                                     | DOCR REV P    |      |
| 29    | Corazza, O   | burg castle, Germany, 15th to 17th November 2013  Promoting innovation and excellence to face the rapid dif- | HUM PSY-      | 2013 |
| 29    | Corazza, O   | fusion of Novel Psychoactive Substances in the EU: the                                                       | CHOPHARM      | 2013 |
|       |              | outcomes of the ReDNet project                                                                               | CLIN          |      |
| 28    | Magliano,    | "I have got something positive out of this situation": psy-                                                  | J NEUROL      | 2014 |
| 20    | L            | chological benefits of caregiving in relatives of young peo-                                                 | VILLETTOL     | 2011 |
|       | _            | ple with muscular dystrophy                                                                                  |               |      |
| 28    | Console, L   | WantEat: interacting with social networks of smart objects                                                   | FRONT ARTIF   | 2012 |
|       |              | for sharing cultural heritage and supporting sustainability                                                  | INTEL AP      |      |
| 27    | Sikora, M    | Ancient genomes show social and reproductive behavior of                                                     | SCIENCE       | 2017 |
|       |              | early Upper Paleolithic foragers                                                                             |               |      |
| 27    | Magliano,    | Burden, professional support, and social network in fam-                                                     | MUSCLE NERVE  | 2015 |
|       | L            | ilies of children and young adults with muscular dystro-                                                     |               |      |
|       |              | phies                                                                                                        |               |      |
| 27    | Lopez-       | Self-reported dependence on mobile phones in young                                                           | J BEHAV AD-   | 2017 |
|       | Fernandez,   | adults: A European cross-cultural empirical survey                                                           | DICT          |      |
|       | 0            |                                                                                                              |               |      |
| 27    | Gine-        | The SITLESS project: exercise referral schemes enhanced                                                      | TRIALS        | 2017 |
|       | Garriga,     | by self-management strategies to battle sedentary be-                                                        |               |      |
|       | M            | haviour in older adults: study protocol for a randomised                                                     |               |      |
| 27    | Mahar DC     | controlled trial The AVPR1A Gene and Substance Use Disorders: Associ-                                        | DIOL DOVCHIAT | 2011 |
| 21    | Maher, BS    | ation, Replication, and Functional Evidence                                                                  | BIOL PSYCHIAT | 2011 |
| 26    | SEMPLE,      | Identification of psychobiological stressors among hiv-                                                      | WOMEN         | 1993 |
| 20    | SLIVII EL,   | positive women                                                                                               | HEALTH        | 1773 |
| 26    | Wang, X      | Reliability and validity of the international dementia al-                                                   | BMC PSYCHIA-  | 2017 |
| 20    | 774115, 74   | liance schedule for the assessment and staging of care in                                                    | TRY           | 2017 |
|       |              | China                                                                                                        |               |      |
| 25    | Banos, O     | An Innovative Platform for Person-Centric Health and                                                         | LECT N BIOIN- | 2015 |
|       | ĺ            | Wellness Support                                                                                             | FORMAT        |      |
|       | I .          | **                                                                                                           |               | ı    |

Table 7: WJ net: The most used journals – indegree

| Rank | Value | Id                   | Rank | Value | Id                      |
|------|-------|----------------------|------|-------|-------------------------|
| 1    | 7080  | LECT NOTES COMPUT SC | 31   | 1258  | RES POLICYAM J PSYCHIAT |
| 2    | 3859  | SOC SCI MED          | 32   | 1221  | J BUS RES               |
| 3    | 3408  | J PERS SOC PSYCHOL   | 33   | 1217  | MANAGE SCI              |
| 4    | 2719  | COMPUT HUM BEHAV     | 34   | 1185  | ACAD MANAGE REV         |
| 5    | 2631  | SCIENCE              | 35   | 1182  | J CONSULT CLIN PSYCH    |
| 6    | 2602  | AM J PUBLIC HEALTH   | 36   | 1151  | ORGAN SCI               |
| 7    | 2599  | P NATL ACAD SCI USA  | 37   | 1150  | ADDICTION               |
| 8    | 2208  | NATURE               | 38   | 1143  | STRATEGIC MANAGE J      |
| 9    | 2058  | AM SOCIOL REV        | 39   | 1087  | J GERONTOL B-PSYCHOL    |
| 10   | 1945  | PHYSICA A            | 40   | 1075  | PEDIATRICS              |
| 11   | 1815  | ANIM BEHAV           | 41   | 1055  | AM J EPIDEMIOL          |
| 12   | 1778  | JAMA-J AM MED ASSOC  | 42   | 1050  | COMPUT EDUC             |
| 13   | 1763  | LANCET               | 43   | 1022  | DEV PSYCHO              |
| 14   | 1759  | SCIENTOMETRICS       | 44   | 1022  | PSYCHOL BULL            |
| 15   | 1734  | AM J SOCIOL          | 45   | 1007  | J ADOLESCENT HEALTH     |
| 16   | 1703  | ACAD MANAGE J        | 46   | 997   | J MARKETING             |
| 17   | 1632  | LECT NOTES ARTIF INT | 47   | 996   | ARCH GEN PSYCHIAT       |
| 18   | 1573  | J APPL PSYCHOL       | 48   | 994   | AIDS BEHAV              |
| 19   | 1551  | SOC NETWORKS         | 49   | 972   | PERS INDIV DIFFER       |
| 20   | 1509  | AM ECON REV          | 50   | 949   | PERS SOC PSYCHOL B      |
| 21   | 1433  | J MARRIAGE FAM       | 51   | 947   | J BUS ETHICS            |
| 22   | 1400  | BRIT MED J           | 52   | 939   | J MARKETING RES         |
| 23   | 1399  | CHILD DEV            | 53   | 925   | INFORM SCIENCES         |
| 24   | 1373  | EXPERT SYST APPL     | 54   | 916   | HARVARD BUS REV         |
| 25   | 1365  | NEW ENGL J MED       | 55   | 915   | IEEE T KNOWL DATA EN    |
| 26   | 1363  | COMMUN ACM           | 56   | 901   | DRUG ALCOHOL DEPEN      |
| 27   | 1355  | RES POLICY           | 57   | 900   | WORLD DEV               |
| 28   | 1279  | GERONTOLOGIST        | 58   | 899   | AM J PREV MED           |
| 29   | 1275  | BRIT J PSYCHIAT      | 59   | 895   | ADDICT BEHAV            |
| 30   | 1271  | SOC FORCES           | 60   | 893   | J CONSUM RES            |

### 4.3 Distributions on W.Jn

Table 7 shows the most used journals, which have the maximum values of indegree distribution of the **WJn** network. In general, there are quite a lot of journals from the social sciences in the list, which are marked in boldface. The dominant journal is *LectureNotesinComputerScience*, which has more then 7,000 citations, followed by *Social Science & Medicine* and *Journal of Personality and Social Psychology* with more then 3,000 citations. Other journals that have more then 2,000 citations are multidisciplinary journals *Science, Proceedings of the National Academy of Sciences of the USA, Nature*, as well as such disciplinary journals as *Computers in Human Behavior, American Journal of Public Health, and American Sociological Review*. These journals are followed by other top-ranked journals in different disciplines having more than 1,500 citations, such as (descending number of citations) *Physica A, Animal Behaviour, Journal of the American Medical Association, Lancet, Scientometrics, American Journal of Sociology, Academy of Management Journal, Lecture Notes in Artificial Intelligence, Journal of Applied <i>Psychology, American Economic Review*. The top-ranked social science journal Social Networks is in 19-th place. The remaining journals cover many disciplines such as medicine, psychiatry, gerontology, epidemiology, psychology, management, marketing, computer and information science.

As an idea: we can make a distribution of WJ\_IndegreeN

### 4.4 Distributions on WKn

For some works, the keywords are presented in the description in the special fields DE (Author Keywords) and ID (Keywords Plus). However, for some articles this information is not provided, thats is why they are constructed by **WoS2Pajek** from the titles of works. All composite keywords were split into single words, and lemmatization was used to deal with the "word-equivalence problem".

The majority of works in **WKn** (95%) do not have any keywords - these are the works which do not have a complete description (DC=0). The amount of keywords for other 70,792 works varies from 1 to 84. Idea: loolk at moda, or average?

The most frequent keywords are presented in the Table 8. We have 'social' and 'network' as the highest rated words, followed (with a large margin) by 'analysis', which is trivial. Some frequently used words - model, community, graph, structure, relationship, tie (marked in boldface) - are connected to network analysis, while others - datum, base, information, research, theory, algorithm, approach, pattern, effect - to the scientific research in general. There are also words that belongs to some exact topics - online, networking, facebook, internet, site, web; health, behavior; support; communication; influence; innovation; trust - which are being studied in network analysis. We should note that keywords can have different meanings in different contexts; however, their identification in differnt subgroups (of authors or works) can bring us better understading of the topic structure of the field.

# 5 Topic structure of the field

We already presented the most common keywords in the Table 8. In this section we present the results of keywords co-occurence in different articles.

### 5.1 Network KKn production

To construct the one-mode network **KKn**, we applied the Newman normalization to the **reduced WKr net**: the weight of each arc [w, k] was divided by the sum of weights of all arcs having the same initial node as this arc (outdegree of a node) subtracting the initial node (article), equal to 1. Then the normalized network was transposed and multiplied with normalized network. In the obtained network, the loops were deleted and bidirected arcts were transformed to edges (with summation of the line weights). The obtained network KKn consists of 32,409 nodes and 2,799,530 edges.

```
KKn = t(n(WK)) * n(WK), where n(W,K)[w,k] = WK[w,k]/ (outdeg(w)-1)
```

### 5.2 Networks of key words co-occurence

However, exploratory analysis showed that in the obtained network, the most frequently words *social*, *network*, and *analysis* were connecting most of the other keywords, that's why we deleted these 3 nodes from the obtained network. Using Islands approach, we tried to obtain subnetwork with the size minimum 2 and maximum 75 nodes. We got a large number of islands - 342, - where the majority of islands (301) represent just pairs of keywords. The main island includes 75 nodes; there are also some islands of smaller sizes. All these islands are shown below.

Large part of Main island are the keywords on the topic of networking sites and social media (such as *networking*, *media*, *online*, *site*, *facebook*, *internet*, *technology*, *we 2.0*). Other central nodes are *information* associated with networking topic, words *diffusion* and *privacy*, as well as *base* and *datum* (which also have links to many other keywords, including *big*, and *mining*). Other two central keywords

Table 8: WK net: The most used keywords – indegree

| Rank | Value | Id            | Rank | Value | Id           |
|------|-------|---------------|------|-------|--------------|
| 1    | 51333 | social        | 31   | 3485  | structure    |
| 2    | 46191 | network       | 32   | 3479  | life         |
| 3    | 11751 | analysis      | 33   | 3444  | risk         |
| 4    | 10219 | model         | 34   | 3358  | research     |
| 5    | 8104  | community     | 35   | 3143  | learn        |
| 6    | 8090  | use           | 36   | 3116  | influence    |
| 7    | 7596  | base          | 37   | 3054  | student      |
| 8    | 7439  | information   | 38   | 3054  | impact       |
| 9    | 7061  | health        | 39   | 3049  | perspective  |
| 10   | 7023  | behavior      | 40   | 3042  | complex      |
| 11   | 6745  | online        | 41   | 3024  | theory       |
| 12   | 6087  | networking    | 42   | 2859  | organization |
| 13   | 5833  | media         | 43   | 2828  | relationship |
| 14   | 5404  | support       | 44   | 2802  | algorithm    |
| 15   | 5101  | communication | 45   | 2776  | education    |
| 16   | 5013  | study         | 46   | 2714  | group        |
| 17   | 4759  | datum         | 47   | 2704  | mobile       |
| 18   | 4376  | management    | 48   | 2698  | tie          |
| 19   | 4372  | internet      | 49   | 2695  | adult        |
| 20   | 4164  | knowledge     | 50   | 2633  | approach     |
| 21   | 4126  | user          | 51   | 2608  | care         |
| 22   | 4023  | facebook      | 52   | 2551  | adolescent   |
| 23   | 3984  | technology    | 53   | 2479  | role         |
| 24   | 3907  | site          | 54   | 2472  | state        |
| 25   | 3888  | web           | 55   | 2467  | innovation   |
| 26   | 3855  | self          | 56   | 2434  | pattern      |
| 27   | 3784  | graph         | 57   | 2385  | effect       |
| 28   | 3676  | performance   | 58   | 2339  | people       |
| 29   | 3534  | service       | 59   | 2333  | trust        |
| 30   | 3512  | dynamics      | 60   | 2332  | family       |

are *model* and *graph*, which are connected to each other and other nodes, such as *dynamics*, *complex*, *spread*, *influence* (for the first one) and *random*, *theory*, *centrality* - *betweenness*, *large* - *scale* - *free*, *cluster* (for the second). These central nodes are also connected to the words *community* and *algorithm*, which have links to *detection* and *structure*. Other topics appeared in this subnetwork are associated with *health* and *education*.

Other islands represented at the Figure XX identify some topics being studied in network analysis (*strength*, *weak*, *tie*; *corporate* - *interlock* - *directorate*; *triadic* - *closure*; *small* - *world*, or some broade topics under study (*organ* - *donor* - *donation*; *persecutory* - *delusion* - *paranoia*; *trade* - *international* - *migration*), as well as some stable phrases (*special*, *issue*, *introduction*).

### 6 Citation network

We restricted the original citation network **CiteN** to its 'boundary' - **CiteB** with 222,086 nodes and 1,521,434 arcs. A citation network is usually (almost) acyclic; however, it can include some small cyclic parts, which can be obtained as strong components of the network (with the minimum size 2). At first we searched for nontrivial strong components. To get an acyclic network we applied the *preprint transformation* to CiteB. The preprint transformation function replaces each work u from a strong component by pair of nodes - published work u and its preprint version u'. A published work could cite only preprints. Each strong component was replaced by a corresponding complete bipartite graph on pairs (Batagelj et al. 2014). The resulting network **CiteT** had 222,189 nodes and 1,521,658 arcs. The increase in the number of works is due to some of them appearing twice with one name starting with an = sign indicating the "preprint" version of a paper.

Then we computed the **SPC weights** on **CiteT** network arcs. The total flow is [xx]. We identified main paths (CPM main path and Key-route paths) in this network, and then used an *Link islands approach* () to find the most connected components of this network. For the same network, we also computed the **probabilistic flow**, and used the *Vertex islands approach* to get its components. The obtained results are presented in the following section.

### **6.1** Strong components

The citation network CiteB has 41 nontrivial strong components of different size, which are presented in the Figure 4). The reciprocal (cycle) links are marked with the bluse colour, while directed pink lines also show the connections of these nodes with others. In the majority of the cases, mutual referencing between the works is a characteristic of papers published in the same issue of the journal. For example, the first large cycle combined of 12 works published in a special issue named "Social Networks: new perspectives" in the journal 'Behavioral Ecology and Sociobiology (Volume 63, Issue 7, May 2009). Another example are the works BATAGELJ\_V (1992) 14:63 and BATAGELJ\_V (1992) 14:121, and FAUST\_K (1992) 14:5 and ANDERSON\_C (1992) 14:137 in the special Issue on Blockmodels in the journal 'Social networks' (Volume 14, Issues 1–2, March–June 1992).

Other cases are: TUMMINEL\_M (2011):P01019 and TUMMINEL\_M (2011) 6:0017994, WILSON\_A (2015) 69:1 and WILSON\_A (2015) 26:1577, PARSEGOV\_S (2015):3475 and PARSEGOV\_S (2017) 62:2270 (same author); VEENSTRA\_R (2013) 23:399 and DAHL\_V (2014) 24:399 (same journal); ALMAHMOU\_E (2015) 33: and MOK\_K (2017) 35:463, XIA\_W (2016) 3:46 and PROSKURN\_A (2016) 61:1524 (different authors and journals).



Figure 4: Strong components from SPC network

### 6.2 CPM main path and Key Routes

Figure 5 shows the CPM main path through the social network analysis literature (which is the same to the one obtained with Main path procedure), which includes 59 nodes. We devided this CPM main to three parts, according to the disciplinary of the works that are presented. The first group composed of the works published in 1944 – 1996, present the works of 'social' network scientists. These works appeared in such journals as 'Social networks', 'Administrative Science Quarterly', 'Annual Review of Sociology', 'American Sociological Review', 'Social Forces', 'Sociological Methods & Research', 'Journal of Mathematical Psychology', 'Psychological Review', 'The Journal of Psychology ', recalling the history of social network analysis formation. 6 of 20 works in this group belong to R. Burt.

However, since 1999 the initiative in this discipline goes to the physicists, whose works appears in such journals as 'Physical Review E', 'Journal of Statistical Physics', 'Reviews of Modern Physics', 'European Physical Journal B', 'Physics Reports', 'Nature', and 'SIAM Review'. 9 of 14 works in this part of network belong to M. Newman.

The third part of the main path, which contains works from 2008 to 2018, is devoted to completely another topic – animal social networks. The works apper at such journals as 'Animal Behaviour', 'American Journal of Primatology', 'Primates', 'Journal of Evolutionary Biology', 'Journal of Animal Ecology', 'Journal of Evolutionary Biology', 'Trends in Ecology & Evolution', and others. The most active author in this group is D. Farine, who has 6 out of 25 works.

While the "invasion of physics" into the social network analysis was already shown by other studies (), the appearance of the third group in the main path is quite surprising, because previously it was shown that the trend goes from physics to neuroscience ().

The procedure of key-route paths () produces a more nuanced image of most important paths in the social network analysis literature, as it implies some deviations from the structure of the network, identified with the CPM path method. Figure 6 shows the obtained Key-route paths, which contain 127 nodes. Basically, we can see the division into three previously mentioned groups.

The first period (1944–1999) includes 50 works of the 'Network science' discipline. It starts with two works of Heider on his theory of social perception and cognitive organization of 1944 and 1946, which form the basis for the work of Cartwright of 1956 on structural balance. Then, with some marin, two works of Holland on structural models follows, published in 1970-1971. Next comes a classical paper of Granovetter on strength of weak ties (1973), which is a basis for the works of Breiger on clustering relational data and White on blockmodels, followed by the one by Alba on the measure based on social proximity in networks, and Boorman on role structures in multiple networks, published in 1975-76. Then there are 6 works of Burt on the 'main' path on the topics of positions in multiple networks (stratification and prestige), structural equivalence and networks subgoups, published from 1977 to 1981, which also have connections to the works of Holland on social structure, Breiger, Lauman, and Wellman on communities structures, Breiger on social roles, and Faust on structural and general equivalences, published at about the same time period. Summing up, this group of works is dealing with network and community structures, positions, structural equivalence, and blockmodels.

These works are followed by the works on measurement and different network metrics - Romney and Bernard (1982) on recalled data for networks constructin, and Stephenson on centrality (1989). The last work is also connected to the works of Mizruchi on measures of influence, Bonacich on power and centrality measures, and Burt, Mariolis, Mizruchi on interlock networks. This is followed by the work of Freeman on the measure of centrality, which was published in 1991, and it is very strongly connected to the work of Valente on social network thresholds in the diffusion of innovations (1996). Another strong



Figure 5: Main path by fragments – sociology, physics, biology

connection of Valente goes to the previous work of Michaelson (1993) on the development of a scientific speciality as diffusion through social relations.

The work of Valente is the one bridging the first group of 'social' network scientists with the group of physicists, which includes 28 works from the 'Network science' discipline and form the **second period** (1999–2008). It is cited by Newman in the work on the small-world network model, appeared in 1999. This work is followed by others on the same topic (small-world networks), written by Moore, Newman, as well as by the work of Callaway on random graphs (2000). Then both directions meet at the work of Strogatz on complex networks, and then this topic continues, including clustering and preferential attachment in growing networks and spread of epidemic disease on networks (Newman, 2001, 2002). Sincel 2003 to 2006, the topic went to the direction of community structures identification in large networks.

We should note, however, that there is also a 'epidemiological turn' in the observed network, which starts from the works of Stephens and Freeman, followed by Milardo, Neaigus, and Rothenberg in the works on the deseases transmission (1992-98), and Potterat in the infections transmission (1999). These works are cited by Ferguson (desease transmission), and then the route comes back to the main path - the Newman's on the structure and function of complex networks (2003).

Since that time, the topics of the obtained Key-routes network changes significantly. The work of Newman on community stractures is strongly connected to the work of Lusseau (2009) on animal social networks, which starts the **third period** (2008–2018), which includes 49 works of the behavioural ecologists. This work is followed by many others, at the same topic - Krause, James (2009) with general works on animal social network analysis, and Ramos-Fernandez, Kasper, Voell, Lehmann, Brent, Sueur (2009-2011), working with social networks of Nonhuman Primates (monkeys, baboons). These works are followed by the one of Croft (2011), which represent a practical guide on hypothesis testing in animal social networks. This work is cited by the works presented the research on mixed-species groups (Farine), killer whales (Foster), sharks (Mourier), dolphins (Cantor), published in 2012, and birds (Silk), and starlings (Boogert), published in 2014. There are also some more works on and methodological issues of Hobson ('An analytical framework for quantifying and testing patterns of temporal dynamics in social networks'), Castels ('Social networks created with different techniques are not comparable'), and Pinter-Wollman ( 'The dynamics of animal social networks: analytical, conceptual, and theoretical advances'), published in 2013-2014. These works are followed by four works of Farine, published in 2015, on both methodological issues on constructing, conducting and interpreting animal social network analysis, and study of the wild birds territory acquisition. We should also note that there are some works connected to the 'main' path, which represents the social personality and phenotypic types (Wilson, Alpin, Farine), published in 2013-14.

The upper part of the network contains works published in the last years, 2016-18. It presents studies on desease transmission (Adelman, Sah, Silk, Dougherty), and the studies of animal paths tracking (Leu, Spiegel). Also it contains works on theoretical issues ( 'Current directions in animal social networks' by Croft, 'Social traits, social networks and evolutionary biology' by Fisher) and implementation of different models of network analysis to animal behaviour research: exponential random graph models and statistical network models (Silk), the potential of stochastic actor-oriented models (Fisher), dynamic vs. static social network analysis (Farine).

The full information on the papers (label of the work, first author, title, journal where it was published, year of publication) included into the Main path and Key-route paths is presented on the Table 10. They are also relevant for our analysis on the islands, presented in the following subsections. In this table, the second column (code) describes in which analysis the work appeared (1- Key-routes, 2- Main Path (CPM), 3- Island 5, 4 - Island 4, 5 - Node Island, 6 - Probilistic Flow Island).



Figure 6: Key Routes

### **6.3** Link Islands

Using Islands approach, we searched for SPC link islands (on line weights) with the number of nodes between 20 and 200, and found 5 islands of 138, 65, 13, 12, and 11 nodes. The obtained largest Islands 4 of 138 is presented on the Figure 7. It structure reminds the structure if the Key-route paths - there are 89 overlapping nodes in two networks. The majority of the works presented in this island (from bottom to the work of Valente, published in 1996) belong to the 'social' network scientists, whose works were alreday discussed upper. In comparison to the Key-routes, this network includes more evident group of works on blockmodeling - by Faust, Doreian, and Batagelj, published in 1992-1997. In the 'physicists' part (from Newman, 1999 to Newman, 2006 on the 'main' route) the topic of evolving networks is also presented (Bianconi, Yook, 2001, Jeong, 2003). The third, behavioural ecologists' part is pretty short and finishes by the works on animal social networks published in 2010.

However, this group is fully presented in another Island 5 containing 65 nodes and presented on the Figure 7. It has 39 overlapping nodes with the Key-routes. 'New' works presented in the island also belong to the topics on animal social networks described above. Howver, there are some more works devoted to the methodological issues of network analysis itself - reconstructing animal social networks from independent small-group observations Perreault, 2010), temporal dynamics and network analysis (Blonder, 2012), mining of animal social systems (Krause, 2013), animal social network inference and permutations for ecologists in R (Farine, 2013), estimating uncertainty and reliability of social network data using Bayesian inference (Farine, 2015). It is ineteresting, that this group form a separate subnetwork, even though it is connected to the upper part of Island 4 by topic. It may mean that the works included into this subnetwork are more connected to each other, while social animal network works in the Island 4 are more stongly connected to the works of phisicists.

Three other obtained islands are presented on the Figure 9. For the purpose of better visibility of the picture, the weights were maximized by 100. The left Island 2 consists of 12 work in the field of social networks in educations, imcluding issues of leadership, teachers and students communication and collaboration. Another very coherent group is presented in the same figure on the bottom left. These are 11 works in neuropsychiatrie written bu Ausrian authors. The left upper island presents 13 works of physicists with the strongest links between the work of Bocaletti published in 2014 on the structure and dynamics of multilayer networks and others on the topics of complex, multilayer, dynamic, and temporal networks, as well as spreading processes in these networks.

### 6.4 Probabilistic flow

We computed the Probabilistic flow on weighted network, and determined node islands (on vertex weights) with the number of nodes between 10 and 200 and got one island with the size of 200 of nodes.

Table 9 present the list of the most important works, which have the highest indegree values of Probabilistic flow network. For the purposes of visibility, the values were maximized by 1,000,000. 39 works from this list overlap with the table, obtained from the highest indegree values of network CiteN. First 30 works in the list, except BLEI\_D (2003) 3:993 on latent dirichlet allocation, ALBERT\_R (1999) 401:130 on world-wide web, and O `REILLY\_T (2005) on web 2.0 are met in the both lists. Other works appeared in this island, which are not in the list of the most cited works, are works of physicists (Strogatz, Watts, Albert), computer scientists (Brin), mathematics (Bollobas), scientometrics (Page, Redner), and social scientists (Katz, Mitchell, Glaser).



Figure 7: Island 4, from SPC network



Figure 8: Island 5, from SPC network

23



Figure 9: Islands 1-3, from SPC network

Table 9: Most important works from Probabilistic Flow network

| Rank | Value | Id                      | Rank | Value | Id                       |
|------|-------|-------------------------|------|-------|--------------------------|
| 1    | 4691  | WASSERMA_S(1994):       | 31   | 545   | BLONDEL_V(2008):P10008   |
| 2    | 2941  | WATTS_D(1998)393:440    | 32   | 527   | KATZ_L(1953)18:39        |
| 3    | 2676  | GRANOVET_M(1973)78:1360 | 33   | 526   | NEWMAN_M(2010):          |
| 4    | 2445  | BOYD_D(2007)13:210      | 34   | 520   | STROGATZ_S(2001)410:268  |
| 5    | 2241  | BARABASI_A(1999)286:509 | 35   | 517   | PALLA_G(2005)435:814     |
| 6    | 1926  | FREEMAN_L(1979)1:215    | 36   | 499   | CLAUSET_A(2004)70:066111 |
| 7    | 1396  | GIRVAN_M(2002)99:7821   | 37   | 497   | ERDOS_P(1960)5:17        |
| 8    | 1299  | NEWMAN_M(2003)45:167    | 38   | 488   | ROGERS_E(2003):          |
| 9    | 1227  | MCPHERSO_M(2001)27:415  | 39   | 485   | NEWMAN_M(2006)103:8577   |
| 10   | 1158  | ALBERT_R(2002)74:47     | 40   | 481   | COLEMAN_J(1990):         |
| 11   | 1105  | SCOTT_J(2000):          | 41   | 478   | BRIN_S(1998)30:107       |
| 12   | 1098  | BURT_R(1992):           | 42   | 477   | AMARAL_L(2000)97:11149   |
| 13   | 1045  | MILGRAM_S(1967)1:61     | 43   | 475   | ERDOS_P(1959)6:290       |
| 14   | 1013  | NEWMAN_M(2004)69:026113 | 44   | 465   | WATTS_D(1999):           |
| 15   | 928   | KAPLAN_A(2010)53:59     | 45   | 462   | LAVE_J(1991):            |
| 16   | 878   | FREEMAN_L(1977)40:35    | 46   | 460   | KLEINBER_J(1999)46:604   |
| 17   | 852   | PUTNAM_R(2000):         | 47   | 449   | SCOTT_J(1991):           |
| 18   | 847   | COLEMAN_J(1988)94:95    | 48   | 446   | BOLLOBAS_B(1985):        |
| 19   | 835   | BLEI_D(2003)3:993       | 49   | 442   | PAGE_L(1999):            |
| 20   | 742   | GRANOVET_M(1985)91:481  | 50   | 440   | NEWMAN_M(2001)64:025102  |
| 21   | 731   | CHRISTAK_N(2007)357:370 | 51   | 436   | NEWMAN_M(2004)69:066133  |
| 22   | 727   | EVERETT_M(2002):        | 52   | 431   | REDNER_S(1998)4:131      |
| 23   | 726   | NEWMAN_M(2001)98:404    | 53   | 429   | CHRISTAK_N(2008)358:2249 |
| 24   | 719   | ALBERT_R(1999)401:130   | 54   | 424   | ADOMAVIC_G(2005)17:734   |
| 25   | 701   | O'REILLY_T(2005):       | 55   | 424   | KEMP_D(2003):137         |
| 26   | 669   | BORGATTI_S(2002):       | 56   | 423   | DOMINGOS_P(2001):57      |
| 27   | 667   | FORTUNAT_S(2010)486:75  | 57   | 423   | MITCHELL_J(1969):        |
| 28   | 633   | HANNEMAN_R(2005):       | 58   | 415   | ALBERT_R(2000)406:378    |
| 29   | 569   | STEINFIE_C(2007)12:1143 | 59   | 415   | GLASER_B(1967):          |
| 30   | 549   | ZACHARY_W(1977)33:452   | 60   | 410   | ROGERS_E(1995):          |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author        | title                                            | journal       |
|------|-----------|---------------|--------------------------------------------------|---------------|
| 1934 | 6         | Moreno, JL    | Who Shall Survive: A New Approach to the         | ****          |
|      |           |               | Problem of Human Interrelations                  |               |
| 1941 | 6         | Davis, A      | Deep South: A Social Anthropological Study of    | ****          |
|      |           |               | Caste and Class                                  |               |
| 1944 | 1,2       | Heider, F     | Social perception and phenomenal causality       | PSYCHOL REV   |
| 1946 | 1,2       | Heider, F     | Attitudes and cognitive organization             | J PSYCHOL     |
| 1948 | 6         | Bavelas, A    | A mathematical model for group structure         | HUM ORGAN     |
| 1950 | 6         | Homans, GC    | The human group                                  | ****          |
| 1951 | 6         | Leavitt, HJ   | Some effects of certain communication patterns   | J ABNORM SOC  |
|      |           |               | on group performance                             | PSYCH         |
| 1953 | 6         | Katz, L       | A new status index derived from sociometric      | PSYCHOMETRIKA |
|      |           |               | analysis                                         |               |
| 1954 | 6         | Barnes, JA    | Class and committees in a norwegian island       | HUM RELAT     |
|      |           |               | parish                                           |               |
| 1955 | 6         | Katz, E       | Personal influence                               | ****          |
| 1956 | 1,2,4,5,6 | Cartwright, D | Structural balance - a generalization of heider  | PSYCHOL REV   |
|      |           |               | theory                                           |               |
| 1957 | 6         | Bott, E       | Family and social network: roles                 | ****          |
| 1958 | 6         | Heider, F     | The psychology of interpersonal relations        | ****          |
| 1959 | 6         | Goffman, E    | The presentation of self in everyday life        | ****          |
| 1959 | 6         | Erdos, P      | On random graphs I                               | ****          |
| 1960 | 6         | Erdos, P      | On the evolution of random graphs                | PUBL MAT INST |
|      |           |               |                                                  | HUNG ACAD SCI |
| 1962 | 6         | Rogers, EM    | Diffusion of innovations                         | ****          |
| 1965 | 6         | Price, DJD    | Networks of scientific papers                    | SCIENCE       |
| 1965 | 6         | Harary, F     | Structural models: an introduction to the theory | ****          |
|      |           |               | of directed graphs                               |               |
| 1965 | 6         | Hubbell, CH   | "An input-output approach to clique identifica-  | SOCIOMETRY    |
|      |           |               | tion                                             |               |
| 1966 | 6         | Sabidussi, G  | the centrality of a graph                        | ****          |
| 1966 | 6         | Coleman, JS   | Equality of educational opportunity              | ****          |
| 1967 | 6         | Glaser, BG    | The discovery of grounded theory: strategies for | ****          |
|      |           |               | qualitative theory                               |               |
| 1967 | 6         | Milgram, S    | The small world problem                          | PSYCHOL TO-   |
|      |           |               |                                                  | DAY           |
| 1967 | 6         | Milgram, S    | The small world problem                          | ****          |
| 1969 | 6         | Travers, J    | An experimental study of the small world prob-   | ****          |
|      |           |               | lem                                              |               |
| 1969 | 6         | Kauffman, S   | Metabolic stability and epigenesis in randomly   | THEORET BIOL  |
|      |           |               | constructed genetic nets                         |               |
| 1969 | 6         | Mitchell, JC  | Social networks in urban situations: analyses of | ****          |
|      |           |               | personal relationships in central african towns  |               |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author            | title                                                                         | journal           |
|------|-----------|-------------------|-------------------------------------------------------------------------------|-------------------|
| 1970 | 1,2,4,5   | Holland, PW       | Method for detecting structure in sociometric                                 | AMER J SOCIOL     |
|      | _         |                   | data                                                                          |                   |
| 1970 | 5         | White, HC         | Search parameters for small world problem                                     | SOC FORCES        |
| 1970 | 6         | Kernighan, BW     | An efficient heuristic procedure for partitioning                             | ****              |
| 1071 | 1.4.5     | TT 11 1 DXX       | graphs                                                                        | COMP CROUD        |
| 1971 | 1,4,5     | Holland, PW       | Transitivity in structural models of small groups                             | COMP GROUP        |
| 1071 | 6         | Lamain E          | Stantaged agricultures of individuals in social                               | STUD<br>****      |
| 1971 | 6         | Lorrain, F        | Structural equivalence of individuals in social networks                      | at the the starte |
| 1972 | 6         | Bonacich, P       | Factoring and weighting approaches to status                                  | J MATH SOCIOL     |
| 1712 | 0         | Donacien, i       | scores and clique identification                                              | J WATH SOCIOL     |
| 1973 | 1,2,4,5,6 | Granovet,MS       | Strength of weak ties                                                         | AMER J SOCIOL     |
| 1973 | 4         | White, HC         | Everyday life in stochastic networks                                          | SOCIOL INQ        |
| 1973 | 5         | Holland, PW       | Structural implications of measurement error in                               | J MATH SOCIOL     |
|      |           | ,                 | sociometry                                                                    |                   |
| 1973 | 6         | Laumann, EO       | Bonds of pluralism: the form and substance of                                 | ****              |
|      |           |                   | urban social networks                                                         |                   |
| 1974 | 4,5       | Breiger, RL       | Duality of persons and groups                                                 | SOC FORCES        |
| 1974 | 6         | Granovetter, M.S. | Getting a job: a study of contacts and careers                                | ****              |
| 1975 | 1,2,4,5   | Breiger, RL       | Algorithm for clustering relational data with ap-                             | J MATH PSY-       |
|      |           |                   | plications to social network analysis and compar-                             | CHOL              |
| 10== |           |                   | ison with multidimensional-scaling                                            |                   |
| 1975 | 6         | Fishbein, M       | Intention and behavior: an introduction to theory                             | ****              |
| 1076 | 12456     | White HC          | and research                                                                  | AMED I COCIOI     |
| 1976 | 1,2,4,5,6 | White, HC         | Social-structure from multiple networks 1 Block-models of roles and positions | AMER J SOCIOL     |
| 1976 | 1,2,4,5   | Alba, RD          | Intersection of social circles - new measure of so-                           | SOCIOL            |
| 1770 | 1,2,1,5   | THOU, TED         | cial proximity in networks                                                    | METHOD RES        |
| 1976 | 1,4,5     | Burt, RS          | Positions in networks                                                         | SOC FORCES        |
| 1976 | 1,4,5     | Boorman, SA       | Social-structure from multiple networks 2 Role                                | AMER J SOCIOL     |
|      |           |                   | structures                                                                    |                   |
| 1977 | 1,2,4,5   | Burt, RS          | Positions in multiple network systems 1 General                               | SOC FORCES        |
|      |           |                   | conception of stratification and prestige in a sys-                           |                   |
|      |           |                   | tem of actors cast as a social topology                                       |                   |
| 1977 | 1,2,4,5   | Burt, RS          | Positions in multiple network systems 2 Stratifi-                             | SOC FORCES        |
|      |           |                   | cation and prestige among elite decision-makers                               |                   |
| 1077 | 1.4.5     | II.11 1 DVV       | in community of altneustadt                                                   | 7.507             |
| 1977 | 1,4,5     | Holland, PW       | Social-structure as a network process                                         | Z SOZ             |
| 1977 | 4,5       | Laumann, EO       | Community-elite influence structures - extension of a network approach        | AMER J SOCIOL     |
| 1977 | 4,5       | White, HC         | Probabilities of homomorphic mappings from                                    | J MATH PSY-       |
| 1911 | 7,5       | Willia, 11C       | multiple graphs                                                               | CHOL              |
|      |           |                   |                                                                               |                   |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author         | title                                              | journal        |
|------|---------|----------------|----------------------------------------------------|----------------|
| 1977 | 6       | Freeman, LC    | Set of measures of centrality based on between-    | SOCIOMETRY     |
|      |         |                | ness                                               |                |
| 1977 | 6       | Zachary, WW    | An information flow model for conflict and fis-    | ****           |
|      |         |                | sion in small groups                               |                |
| 1978 | 1,2,4,5 | Burt, RS       | Cohesion versus structural equivalence as a basis  | SOCIOL         |
|      |         |                | for network subgroups                              | METHOD RES     |
| 1978 | 1,4,5   | Holland, PW    | Omnibus test for social-structure using triads     | SOCIOL         |
| 1070 | 1 4 5   |                |                                                    | METHOD RES     |
| 1978 | 1,4,5   | Laumann, EO    | Community structure as interorganizational link-   | ANNU REV SO-   |
| 1978 | 1 4 5   | Breiger, RL    | ages Joint role structure of 2 communities elites  | CIOL<br>SOCIOL |
| 1978 | 1,4,5   | breiger, KL    | Joint role structure of 2 communities entes        | METHOD RES     |
| 1978 | 4,5,6   | Pool, ID       | Contacts and influence                             | SOC NETWORKS   |
| 1978 | 4,5     | Killworth, PD  | Reversal small-world experiment                    | SOC NETWORKS   |
| 1978 | 4,5     | Burt, RS       | Stratification and prestige among elite experts    | SOC NETWORKS   |
| 1770 | 1,5     | Burt, 105      | in methodological and mathematical sociology       | SOCILLI WORKS  |
|      |         |                | circa 1975                                         |                |
| 1978 | 6       | Granovetter, M | Threshold models of collective behavior            | AM J SOCIOL    |
| 1979 | 1,2,4,5 | Burt, RS       | Relational equilibrium in a social topology        | J MATH SOCIOL  |
| 1979 | 1,4,5   | Wellman, B     | Community question - intimate networks of east     | AMER J SOCIOL  |
|      |         |                | yorkers                                            |                |
| 1979 | 4,5     | Breiger, RL    | Toward an operational theory of community elite    | QUAL QUANT     |
|      |         |                | structures                                         |                |
| 1979 | 4,5     | Burt, RS       | Structural theory of interlocking corporate direc- | SOC NETWORKS   |
|      | _       |                | torates                                            |                |
| 1979 | 6       | Freeman, LC    | Centrality in social networks conceptual clarifi-  | SOC NETWORKS   |
| 1070 |         | D 1 IF         | cation                                             | AMED I EDI     |
| 1979 | 6       | Berkman, LF    | Social networks, host-resistance, and mortality -  | AMER J EPI-    |
|      |         |                | 9-year follow-up-study of alameda county residents | DEMIOL         |
| 1979 | 6       | Garey, MR      | Computers and intractability: a guide to the the-  | ****           |
| 17/7 | 0       | Garcy, WIK     | ory of np-completeness                             |                |
| 1980 | 1,2,4,5 | Burt, RS       | Models of network structure                        | ANNU REV SO-   |
| 1,00 | 1,2,1,0 |                | The dots of heavy one switched                     | CIOL           |
| 1980 | 1,2,4,5 | Burt, RS       | Testing a structural theory of corporate coop-     | AMER SOCIOL    |
|      |         |                | tation - interorganizational directorate ties as a | REV            |
|      |         |                | strategy for avoiding market constraints on prof-  |                |
|      |         |                | its                                                |                |
| 1980 | 4,5     | Burt, RS       | Cooptive corporate actor networks - a reconsider-  | ADMIN SCI      |
|      |         |                | ation of interlocking directorates involving amer- | QUART          |
|      |         |                | ican manufacturing                                 |                |
| 1980 | 4,5     | Burt, RS       | Autonomy in a social topology                      | AMER J SOCIOL  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author         | title                                                                                          | journal        |
|------|---------|----------------|------------------------------------------------------------------------------------------------|----------------|
| 1981 | 1,4,5   | Mizruchi, MS   | Influence in corporate networks - an examination                                               | ADMIN SCI      |
|      |         |                | of 4 measures                                                                                  | QUART          |
| 1981 | 1,4,5   | Burt, RS       | A note on inferences regarding network sub-                                                    | SOC NETWORKS   |
|      |         |                | groups                                                                                         |                |
| 1981 | 6       | Holland, PW    | An exponential family of probability-                                                          | J AMER STATIST |
|      |         |                | distributions for directed-graphs                                                              | ASSN           |
| 1981 | 6       | Feld, SL       | The focused organization of social ties                                                        | AM J SOCIOL    |
| 1982 | 1,2,4,5 | Mcpherson, JM  | Hypernetwork sampling - duality and differenti-                                                | SOC NETWORKS   |
| 1002 | 1045    | M : 1: D       | ation among voluntary organizations                                                            | ADMIN COL      |
| 1982 | 1,2,4,5 | Mariolis, P    | Centrality in corporate interlock networks - reli-                                             | ADMIN SCI      |
| 1002 | 1 1 5   | Damand IID     | ability and stability                                                                          | QUART          |
| 1982 | 1,4,5   | Bernard, HR    | Informant accuracy in social-network data 5 An experimental attempt to predict actual communi- | SOC SCI RES    |
|      |         |                | cation from recall data                                                                        |                |
| 1982 | 1,4,5   | Romney, AK     | Predicting the structure of a communications net-                                              | SOC NETWORKS   |
| 1702 | 1,7,5   | Konniey, 74K   | work from recalled data                                                                        | SOC NET WORKS  |
| 1982 | 1,4,5   | Dow, MM        | Network auto-correlation - a simulation study of                                               | SOC NETWORKS   |
|      | , ,-    | ,              | a foundational problem in regression and survey-                                               |                |
|      |         |                | research                                                                                       |                |
| 1982 | 6       | Fischer, CS    | To dwell among friends: personal networks in                                                   | ****           |
|      |         |                | town and city                                                                                  |                |
| 1982 | 6       | Burt, RS       | Toward a structural theory of action: network                                                  | ****           |
|      |         |                | models of social structure, perception and action                                              |                |
| 1983 | 1,4,5   | Cook, KS       | The distribution of power in exchange networks                                                 | AM J SOCIOL    |
| 1003 |         |                | - theory and experimental results                                                              |                |
| 1983 | 6       | Granovetter, M | "The strength of weak ties: a network theory re-                                               | SOCIOL THEORY  |
| 1002 | 6       | Solton C       | visited                                                                                        | ****           |
| 1983 | 6       | Salton, G      | introduction to modern information retrieval                                                   |                |
| 1984 | 1,2,4,5 | Mizruchi, MS   | Interlock groups, cliques, or interest-groups - comment                                        | SOC NETWORKS   |
| 1984 | 4,5     | Burt, RS       | Network items and the general social survey                                                    | SOC NETWORKS   |
| 1984 | 4,5     | Marsden, PV    | Mathematical ideas in social structural-analysis                                               | J MATH SOCIOL  |
| 1984 | 6       | Lazarus, R     | Stress, appraisal, and coping                                                                  | ****           |
| 1984 | 6       | Axelrod, R     | The evolution of cooperation                                                                   | ****           |
| 1984 | 6       | Kuramoto, Y    | Chemical oscillations, waves, and turbulence                                                   | ****           |
| 1985 | 1,4,5   | Faust, K       | Does structure find structure - a critique of burt                                             | SOC NETWORKS   |
|      |         |                | use of distance as a measure of structural equiv-                                              |                |
|      |         |                | alence                                                                                         |                |
| 1985 | 1,4,5   | Tutzauer, F    | Toward a theory of disintegration in                                                           | SOC NETWORKS   |
|      | _       |                | communication-networks                                                                         |                |
| 1985 | 6       | Cohen, S       | Stress, social support, and the buffering hypoth-                                              | PSYCHOL BULL   |
|      |         |                | esis                                                                                           |                |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year         | code    | author                   | title                                                                              | journal                 |
|--------------|---------|--------------------------|------------------------------------------------------------------------------------|-------------------------|
| 1985         | 6       | Granovetter, M           | Economic-action and social-structure - the prob-                                   | AMER J SOCIOL           |
|              |         |                          | lem of embeddedness                                                                |                         |
| 1985         | 6       | Bollobas, B              | Random graphs                                                                      | ****                    |
| 1986         | 1,4,5   | Breiger, RL              | Cumulated social roles - the duality of persons                                    | SOC NETWORKS            |
|              |         |                          | and their algebras                                                                 |                         |
| 1986         | 4,5     | Burt, RS                 | A cautionary note                                                                  | SOC NETWORKS            |
| 1986         | 6       | Bourdieu P               | The forms of capital                                                               | ****                    |
| 1986         | 6       | Baron, RM                | The moderator mediator variable distinction                                        | J PERSONAL              |
|              |         |                          | in social psychological-research - conceptual,                                     | SOC PSYCHOL             |
|              |         |                          | strategic, and statistical considerations                                          |                         |
| 1986         | 6       | Bandura, A               | Social foundations of thought and action: a social                                 | ****                    |
|              |         |                          | cognitive theory                                                                   |                         |
| 1987         | 1,4,5,6 | Bonacich, P              | Power and centrality - a family of measures                                        | AMER J SOCIOL           |
| 1987         | 1,4,5   | Burt, RS                 | Social contagion and innovation - cohesion ver-                                    | AMER J SOCIOL           |
| 1000         | 1.4.5   | D . 17                   | sus structural equivalence                                                         | COCNETWORKS             |
| 1988         | 1,4,5   | Faust, K                 | Comparison of methods for positional analysis -                                    | SOC NETWORKS            |
| 1000         |         | 11 10                    | structural and general equivalences                                                | COLENGE                 |
| 1988         | 6       | House, JS<br>Coleman, JS | Social relationships and health                                                    | SCIENCE                 |
| 1988<br>1988 | 6       | Wellman, B               | Social capital in the creation of human capital                                    | AM JOUR SOC             |
| 1989         |         | Stephenson, K            | Social structures: a network approach Rethinking centrality - methods and examples | SOC NETWORKS            |
| 1989         | 1,2,4,5 | Kamada, T                | An algorithm for drawing general undirected                                        | INFORM PRO-             |
| 1707         | 0       | Kamada, 1                | graphs                                                                             | CESS LETT               |
| 1989         | 6       | Davis, FD                | Perceived usefulness, perceived ease of use, and                                   | MIS QUART               |
| 1707         |         | Buvis, i B               | user acceptance of information technology                                          | wis Quarti              |
| 1989         | 6       | Kochen, M                | The small world                                                                    | ****                    |
| 1990         | 1,4,5,6 | Marsden, PV              | Network data and measurement                                                       | ANNU REV SO-            |
| -,,,         |         |                          |                                                                                    | CIOL                    |
| 1990         | 4       | Burkhardt, ME            | Changing patterns or patterns of change - the ef-                                  | ADMIN SCI               |
|              |         | ,                        | fects of a change in technology on social network                                  | QUART                   |
|              |         |                          | structure and power                                                                |                         |
| 1990         | 4       | Rice, RE                 | Individual and network influences on the adop-                                     | SOC NETWORKS            |
|              |         |                          | tion and perceived outcomes of electronic mes-                                     |                         |
|              |         |                          | saging                                                                             |                         |
| 1990         | 6       | Coleman,J.               | Foundations of social theory                                                       | ****                    |
| 1990         | 6       | Guare, J                 | Six degrees of separation: a play                                                  | ****                    |
| 1990         | 6       | Deerwester, S            | Indexing by latent semantic analysis                                               | J AM SOC INF<br>SCI TEC |
| 1991         | 1,2,4,5 | Freeman, LC              | Centrality in valued graphs - a measure of be-                                     | SOC NETWORKS            |
|              |         |                          | tweenness based on network flow                                                    |                         |
| 1991         | 6       | Ajzen, I                 | The theory of planned behavior                                                     | ORGAN BEHAV             |
|              |         |                          |                                                                                    | HUM DEC                 |
| 1991         | 6       | Scott, J                 | Social network analysis: a handbook                                                | ****                    |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code  | author         | title                                                                                                               | journal                     |
|------|-------|----------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1991 | 6     | Lave, J        | Situated learning: legitimate peripheral partici-                                                                   | ****                        |
|      |       |                | pation                                                                                                              |                             |
| 1991 | 6     | Fruchterman,   | Graph drawing by force-directed placement                                                                           | SOFTWARE                    |
|      |       | TMJ            |                                                                                                                     | PRACT EXPER                 |
| 1992 | 1,4,5 | Milardo, RM    | Comparative methods for delineating social net-                                                                     | J SOC PERSON                |
|      |       |                | works                                                                                                               | RELAT                       |
| 1992 | 4,5   | Faust, K       | Blockmodels - interpretation and evaluation                                                                         | SOC NETWORKS                |
| 1992 | 4,5   | Faust, K       | Blockmodels - interpretation and evaluation                                                                         | SOC NETWORKS                |
| 1992 | 5     | Batagelj, V    | Direct and indirect methods for structural equivalence                                                              | SOC NETWORKS                |
| 1992 | 5     | Batagelj, V    | An optimizational approach to regular equiva-<br>lence                                                              | SOC NETWORKS                |
| 1992 | 5     | Batagelj, V    | Direct and indirect methods for structural equivalence                                                              | SOC NETWORKS                |
| 1992 | 5     | Batagelj, V    | An optimizational approach to regular equiva-<br>lence                                                              | SOC NETWORKS                |
| 1992 | 6     | Burt, RS       | Structural holes: the social structure of competition                                                               | ****                        |
| 1992 | 6     | Nowak, MA      | Evolutionary games and spatial chaos                                                                                | NATURE                      |
| 1993 | 1,4,5 | Michaelson, AG | The development of a scientific specialty as dif-<br>fusion through social-relations - the case of role<br>analysis | SOC NETWORKS                |
| 1993 | 6     | Putnam, RD     | Making democracy work: civic institutions in modern italy                                                           | ****                        |
| 1993 | 6     | Padgett, JF    | Robust action and the rise of the medici, 1400-1434                                                                 | AMER J SOCIOL               |
| 1993 | 6     | Manski, CF     | Identification of endogenous social effects - the reflection problem                                                | REV ECON STUD               |
| 1993 | 6     | Ahuja, RK      | Network flows: theory, algorithms, and applications                                                                 | ****                        |
| 1994 | 1,4,5 | Neaigus, A     | The relevance of drug injectors social and risk networks for understanding and preventing hivinfection              | SOC SCI MED                 |
| 1994 | 4,5   | Doreian, P     | Partitioning networks based on generalized concepts of equivalence                                                  | J MATH SOCIOL               |
| 1994 | 6     | Wasserman, S   | Social network analysis: methods and applications                                                                   | ****                        |
| 1995 | 1,4,5 | Rothenberg, RB | Choosing a centrality measure - epidemiologic correlates in the colorado-springs study of social networks           | SOC NETWORKS                |
| 1995 | 6     | Molloy, M      | A critical-point for random graphs with a given degree sequence                                                     | RANDOM<br>STRUCT AL-<br>GOR |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author            | title                                                                                                | journal                   |
|------|---------|-------------------|------------------------------------------------------------------------------------------------------|---------------------------|
| 1995 | 6       | Rogers, EM        | Diffusion of Innovation. 4th                                                                         | ****                      |
| 1995 | 6       | Granovetter, M.S. | Getting a Job: A Study of Contacts and Careers                                                       | ****                      |
| 1995 | 6       | Nonaka, I         | The knowledge creation company: how Japanese companies create the dynamics of innovation             | ****                      |
| 1995 | 6       | Putnam, RD        | Bowling Alone: America's Declining Social Capital. An Interview with Robert Putnam                   | J DEMOCR                  |
| 1996 | 1,2,4,5 | Valente, TW       | Social network thresholds in the diffusion of innovations                                            | SOC NETWORKS              |
| 1996 | 1,4,5   | Rothenberg, R     | The relevance of social network concepts to sex-<br>ually transmitted disease control                | SEX TRANSM<br>DIS         |
| 1996 | 4,5     | Doreian, P        | A partitioning approach to structural balance                                                        | SOC NETWORKS              |
| 1996 | 4       | Frank, KA         | Mapping interactions within and between cohesive subgroups                                           | SOC NETWORKS              |
| 1996 | 6       | Wasserman, S      | Logit models and logistic regressions for social networks .1. An introduction to Markov graphs and p | PSYCHOMETRIKA             |
| 1996 | 6       | Kretzschmar, M    | Measures of concurrency in networks and the spread of infectious disease                             | MATH BIOSCI               |
| 1997 | 4,5     | Friedman, SR      | Sociometric risk networks and risk for HIV infection                                                 | AMER J PUBLIC<br>HEALTH   |
| 1997 | 4,5     | Batagelj, V       | Notes on blockmodeling                                                                               | SOC NETWORKS              |
| 1997 | 6       | Uzzi, B           | Social structure and competition in interfirm networks: The paradox of embeddedness                  | ADMIN SCI<br>QUART        |
| 1998 | 1,4,5   | Rothenberg, RB    | Social network dynamics and HIV transmission                                                         | AIDS                      |
| 1998 | 1,4     | Rothenberg, RB    | Using social network and ethnographic tools to evaluate syphilis transmission                        | SEX TRANSM<br>DIS         |
| 1998 | 4,5     | Frank, KA         | Linking action to social structure within a system: Social capital within and between subgroups      | AMER J SOCIOL             |
| 1998 | 6       | Watts, DJ         | Collective dynamics of 'small-world' networks                                                        | NATURE                    |
| 1998 | 6       | Portes, A         | Social Capital: Its origins and applications in modern sociology                                     | ANNU REV SO-<br>CIOL      |
| 1998 | 6       | Nahapiet, J       | Social capital, intellectual capital, and the organizational advantage                               | ACAD MANAGE<br>REV        |
| 1998 | 6       | Redner, S         | How popular is your paper? An empirical study of the citation distribution                           | ****                      |
| 1998 | 6       | Wenger, E         | Communities of practice: Learning, meaning, and identity                                             | ****                      |
| 1998 | 6       | Page, L           | The pagerank citation ranking: Bringing order to the web.                                            | ****                      |
| 1998 | 6       | Brin, S           | The anatomy of a large-scale hypertextual Web search engine                                          | COMPUT NET-<br>WORKS ISDN |
| 1998 | 6       | Huberman, B       | Strong regularities in world wide web surfing.                                                       | Science                   |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author        | title                                                  | journal              |
|------|---------|---------------|--------------------------------------------------------|----------------------|
| 1999 | 1,2,4,5 | Newman, MEJ   | Scaling and percolation in the small-world net-        | PHYS REV E           |
|      |         |               | work model                                             |                      |
| 1999 | 1,4,5   | Potterat, JJ  | Chlamydia transmission: Concurrency, repro-            | AMER J EPI-          |
|      |         |               | duction number, and the epidemic trajectory            | DEMIOL               |
| 1999 | 1,4,5   | Potterat, JJ  | Network structural dynamics acid infectious dis-       | INT J STD AIDS       |
| 1000 | 4.5     | D . 11 17     | ease propagation                                       | I DOTE NOTE          |
| 1999 | 4,5     | Batagelj, V   | Partitioning approach to visualization of large graphs | LECT NOTE COMPUT SCI |
| 1999 | 6       | Barabasi, AL  | Emergence of scaling in random networks                | SCIENCE              |
| 1999 | 6       | Hansen, MT    | The search-transfer problem: The role of weak          | ADMIN SCI            |
|      |         |               | ties in sharing knowledge across organization subunits | QUART                |
| 1999 | 6       | Faloutsos, M  | On power-law relationships of the internet topol-      | ****                 |
| 1999 | 6       | Watts, DJ     | ogy<br>Small Worlds: The Dynamics of Networks Be-      | ****                 |
|      |         |               | tween Order and Randomness                             |                      |
| 1999 | 6       | Barabasi, AL  | Mean-field theory for scale-free random networks       | PHYSICA A            |
| 1999 | 6       | Albert, R     | Internet - Diameter of the World-Wide Web              | NATURE               |
| 1999 | 6       | Banavar, JR   | Size and form in efficient transportation net-         | Nature               |
|      |         |               | works. Nature,                                         |                      |
| 1999 | 6       | Kleinberg, JM | Authoritative sources in a hyperlinked environment     | J ACM                |
| 1999 | 6       | Haberman, B   | Internet: growth dynamics of the world-wide web        | Nature               |
| 1999 | 6       | Lawrence, S   | Accessibility of information on the Web.               | Nature               |
| 1999 | 6       | Barthélémy, M | Small-world networks: Evidence for a crossover         | PHYS REV LETT        |
|      |         |               | picture                                                |                      |
| 2000 | 1,2,4,5 | Newman, MEJ   | Models of the small world                              | J STATIST PHYS       |
| 2000 | 1,2,4,5 | Moore, C      | Exact solution of site and bond percolation on         | PHYS REV E           |
|      |         |               | small-world networks                                   |                      |
| 2000 | 1,4,5   | Callaway, DS  | Network robustness and fragility: Percolation on       | PHYS REV LETT        |
| 2000 | 1 4 5   | N. MEI        | random graphs                                          |                      |
| 2000 | 1,4,5   | Newman, MEJ   | Mean-field solution of the small-world network model   | PHYS REV LETT        |
| 2000 | 1,4,5   | Ferguson, NM  | More realistic models of sexually transmitted          | SEX TRANSM           |
|      |         |               | disease transmission dynamics - Sexual partner-        | DIS                  |
|      |         |               | ship networks, pair models, and moment closure         |                      |
| 2000 | 4,5     | Batagelj, V   | Some analyses of Erdos collaboration graph             | SOC NETWORKS         |
| 2000 | 6       | Putnam RD     | Bowling alone: America's declining social capital      | ****                 |
| 2000 | 6       | Jeong, H      | The large-scale organization of metabolic net-         | NATURE               |
| 2000 |         | , 11          | works                                                  |                      |
|      | I       | I             |                                                        | I                    |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author             | title                                              | journal        |
|------|-----------|--------------------|----------------------------------------------------|----------------|
| 2000 | 6         | Berkman, LF        | From social integration to health: Durkheim in     | SOC SCI MED    |
|      |           |                    | the new millennium                                 |                |
| 2000 | 6         | Albert, R          | Error and attack tolerance of complex networks     | NATURE         |
| 2000 | 6         | Amaral, LAN        | Classes of small-world networks                    | PROC NAT ACAD  |
|      |           |                    |                                                    | SCI USA        |
| 2000 | 6         | Broder, A          | Graph structure in the Web                         | COMPUT NETW    |
| 2000 | 6         | Scott, J           | Social Network Analysis: A Handbook                | ****           |
| 2000 | 6         | Shi, JB            | Normalized cuts and image segmentation             | IEEE T PATTERN |
|      |           |                    |                                                    | ANAL           |
| 2001 | 1,2,4,5,6 | Newman, MEJ        | Clustering and preferential attachment in grow-    | PHYS REV E     |
|      |           |                    | ing networks                                       |                |
| 2001 | 1,2,4,5,6 | Strogatz, SH       | Exploring complex networks                         | NATURE         |
| 2001 | 1,4,5     | Liljeros, F        | The web of human sexual contacts                   | NATURE         |
| 2001 | 4,5,6     | Newman, MEJ        | Scientific collaboration networks. II. Shortest    | PHYS REV E     |
|      |           |                    | paths, weighted networks, and centrality           |                |
| 2001 | 4,5       | Moody, J           | Race, school integration, and friendship segrega-  | AMER J SOCIOL  |
|      |           |                    | tion in America                                    |                |
| 2001 | 4,5       | Rothenberg, R      | The risk environment for HIV transmission: Re-     | J URBAN        |
|      |           |                    | sults from the Atlanta and Flagstaff network       | HEALTH         |
|      |           |                    | studies                                            |                |
| 2001 | 4         | Yook, SH           | Weighted evolving networks                         | PHYS REV LETT  |
| 2001 | 4         | Bianconi, G        | Competition and multiscaling in evolving net-      | EUROPHYS       |
|      |           |                    | works                                              | LETT           |
| 2001 | 6         | Mcpherson, M       | Birds of a feather: Homophily in social networks   | ANNU REV SO-   |
|      |           |                    |                                                    | CIOL           |
| 2001 | 6         | Newman, MEJ        | The structure of scientific collaboration networks | PROC NAT ACAD  |
|      |           |                    |                                                    | SCI USA        |
| 2001 | 6         | Lin, N             | Social capital. A theory of social structure and   | ****           |
|      |           |                    | action.                                            |                |
| 2001 | 6         | Brandes, U         | A faster algorithm for betweenness centrality      | J MATH SOCIOL  |
| 2001 | 6         | Domingos, P        | Mining the network value of customers              | ****           |
| 2001 | 6         | Goldenberg, J      | Talk of the network: A complex systems look at     | MARK LETT      |
|      |           |                    | the underlying process of word-of-mouth            |                |
| 2001 | 6         | Pastor-satorras, R | Epidemic spreading in scale-free networks          | PHYS REV LETT  |
| 2002 | 1,2,4,5,6 | Albert, R          | Statistical mechanics of complex networks          | REV MOD PHYS   |
| 2002 | 1,2,4,5,6 | Newman, MEJ        | Spread of epidemic disease on networks             | PHYS REV E     |
| 2002 | 4,5,6     | Girvan, M          | Community structure in social and biological       | PROC NAT ACAD  |
|      |           |                    | networks                                           | SCI USA        |
| 2002 | 4,5,6     | Newman, MEJ        | Assortative mixing in networks                     | PHYS REV LETT  |
| 2002 | 4,5       | Dorogovtsev, SN    | Evolution of networks                              | ADV PHYS       |
| 2002 | 4,5       | Newman, MEJ        | Random graph models of social networks             | PROC NAT ACAD  |
|      |           |                    |                                                    | SCI USA        |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author          | title                                                                      | journal            |
|------|-----------|-----------------|----------------------------------------------------------------------------|--------------------|
| 2002 | 4         | Ravasz, E       | Hierarchical organization of modularity in                                 | SCIENCE            |
| 2002 |           | N. AGI          | metabolic networks                                                         |                    |
| 2002 | 4         | Newman, MEJ     | The structure and function of networks                                     | COMPUT PHYS        |
| 2002 | 6         | Watts, DJ       | Identity and search in social naturalis                                    | COMMUN<br>SCIENCE  |
| 2002 | 6         | Barabasi, AL    | Identity and search in social networks Linked: The New Science Of Networks | *****              |
| 2002 | 6         | Barabasi, AL    | Evolution of the social network of scientific col-                         | PHYSICA A          |
| 2002 | 0         | Darabasi, AL    | laborations                                                                | THISICATA          |
| 2002 | 6         | Adler, PS       | Social capital: Prospects for a new concept                                | ACAD MANAGE<br>REV |
| 2002 | 6         | Otte, E         | Social network analysis: a powerful strategy, also                         | J INFORM SCI       |
|      |           |                 | for the information sciences                                               |                    |
| 2002 | 6         | Richardson, M   | Mining knowledge-sharing sites for viral market-                           | ****               |
|      |           |                 | ing                                                                        |                    |
| 2003 | 1,2,4,5,6 | Newman, MEJ     | The structure and function of complex networks                             | SIAM REV           |
| 2003 | 1,2,4,5,6 | Newman, MEJ     | Mixing patterns in networks                                                | PHYS REV E         |
| 2003 | 1,4,5     | Newman, MEJ     | Why social networks are different from other types of networks             | PHYS REV E         |
| 2003 | 1,4,5     | Gleiser, PM     | Community structure in jazz                                                | ADV COMPLEX        |
|      |           |                 |                                                                            | SYST               |
| 2003 | 4,5       | Meyers, LA      | Applying network theory to epidemics: Con-                                 | EMERG INFECT       |
|      |           |                 | trol measures for Mycoplasma pneumoniae out-                               | DIS                |
| 2002 | 4         | T II            | breaks                                                                     | ELIDODIIVO         |
| 2003 | 4         | Jeong, H        | Measuring preferential attachment in evolving networks                     | EUROPHYS<br>LETT   |
| 2003 | 5,6       | Guimera, R      | Self-similar community structure in a network of                           | PHYS REV E         |
| 2003 | 3,0       | Guillicia, K    | human interactions                                                         | IIIISKEVE          |
| 2003 | 6         | Rogers, EM      | Diffusion of innovations                                                   | ****               |
| 2003 | 6         | Borgatti, SP    | The network paradigm in organizational re-                                 | J MANAGE           |
|      |           | 8,              | search: A review and typology                                              |                    |
| 2003 | 6         | Dorogovtsev, SN | Evolution of Networks: From Biological Nets to                             | ****               |
|      |           |                 | the Internet and WWW                                                       |                    |
| 2003 | 6         | Watts, DJ       | Six Degrees: The Science of a Connected Age                                | ****               |
| 2003 | 6         | Blei, DM        | Latent Dirichlet allocation                                                | J MACH LEARN       |
|      |           |                 |                                                                            | RES                |
| 2003 | 6         | Adamic, LA      | Friends and neighbors on the Web                                           | SOC NETWORKS       |
| 2003 | 6         | Lusseau, D      | The bottlenose dolphin community of Doubtful                               | BEHAV ECOL         |
|      |           |                 | Sound features a large proportion of long-lasting                          | SOCIOBIOL          |
|      |           |                 | associations - Can geographic isolation explain                            |                    |
| 2003 | 6         | Venkatesh, V    | this unique trait? User acceptance of information technology: To-          | MIS QUART          |
| 2003 | 0         | venkatesh, v    | ward a unified view                                                        | MADO CIM           |
|      |           |                 | ward a diffiled view                                                       |                    |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author         | title                                                        | journal         |
|------|-----------|----------------|--------------------------------------------------------------|-----------------|
| 2003 | 6         | Kempe, D       | "Maximizing the spread of influence through a                | ACM SIGKDD      |
|      |           |                | social network                                               | CONF            |
| 2003 | 6         | Kempe, D       | Maximizing the spread of influence through a so-             | ACM SIGKDD      |
|      |           |                | cial network                                                 | CONF            |
| 2004 | 1,2,4,5,6 | Newman, MEJ    | Finding and evaluating community structure in                | PHYS REV E      |
|      |           |                | networks                                                     |                 |
| 2004 | 1,2,4,5,6 | Newman, MEJ    | Detecting community structure in networks                    | EUR PHYS J B    |
| 2004 | 1,2,4,5,6 | Clauset, A     | Finding community structure in very large networks           | PHYS REV E      |
| 2004 | 1,4,5,6   | Radicchi, F    | Defining and identifying communities in net-                 | P NATL ACAD     |
|      |           |                | works                                                        | SCI USA         |
| 2004 | 1,4,5,6   | Newman, MEJ    | Fast algorithm for detecting community structure in networks | PHYS REV E      |
| 2004 | 1,4,5     | Arenas, A      | Community analysis in social networks                        | EUR PHYS J B    |
| 2004 | 1,4,5     | Newman, MEJ    | Analysis of weighted networks                                | PHYS REV E      |
| 2004 | 6         | Cross, RL      | The hidden power of social networks: Under-                  | ****            |
| 200. |           | 01000, 102     | standing how work really gets done in organiza-              |                 |
|      |           |                | tions                                                        |                 |
| 2004 | 6         | Freeman, LC    | The development of social network analysis. A                | ****            |
|      |           | ,              | Study in the Sociology of Science                            |                 |
| 2004 | 6         | Eubank, S      | Modelling disease outbreaks in realistic urban               | NATURE          |
|      |           |                | social networks                                              |                 |
| 2004 | 6         | Burt, RS       | Structural holes and good ideas                              | AMER J SOCIOL   |
| 2005 | 1,4,5     | Danon, L       | Comparing community structure identification                 | J STAT MECH-    |
|      |           |                |                                                              | THEORY E        |
| 2005 | 4,5,6     | Guimera, R     | Functional cartography of complex metabolic                  | NATURE          |
|      |           |                | networks                                                     |                 |
| 2005 | 4,5,6     | Palla, G       | Uncovering the overlapping community structure               | NATURE          |
|      |           |                | of complex networks in nature and society                    |                 |
| 2005 | 4         | Croft, DP      | Assortative interactions and social networks in              | OECOLOGIA       |
|      |           |                | fish                                                         |                 |
| 2005 | 6         | Burt, RS       | Brokerage and closure: An introduction to social             | ****            |
| •••  |           |                | capital                                                      |                 |
| 2005 | 6         | Adomavicius, G | Toward the next generation of recommender sys-               | ****            |
|      |           |                | tems: A survey of the state-of-the-art and possi-            |                 |
| 2005 |           |                | ble extensions                                               | ماد ماد ماد ماد |
| 2005 | 6         | Carrington, P  | Models and Methods in Social Network Analysis                | *****           |
| 2005 | 6         | Borgatti, SP   | Centrality and network flow                                  | SOC NETWORKS    |
| 2005 | 6         | Gross, R       | Information revelation and privacy in online social networks | · ጥጥጥጥ          |
| 2006 | 1,2,4,5,6 | Boccaletti, S  | Complex networks: Structure and dynamics                     | PHYS REP-REV    |
|      |           |                |                                                              | SECT PHYS       |
|      |           |                |                                                              | LETT            |
|      |           |                |                                                              |                 |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code      | author          | title                                                                             | journal                     |
|------|-----------|-----------------|-----------------------------------------------------------------------------------|-----------------------------|
| 2006 | 1,2,4,5,6 | Newman, MEJ     | Finding community structure in networks using                                     | PHYS REV E                  |
|      |           |                 | the eigenvectors of matrices                                                      |                             |
| 2006 | 1,4,5,6   | Newman, MEJ     | Modularity and community structure in networks                                    | PROC NAT ACAD               |
|      |           |                 |                                                                                   | SCI USA                     |
| 2006 | 6         | Kossinets, G    | Empirical analysis of an evolving social network                                  | SCIENCE                     |
| 2006 | 6         | Newman, M       | The Structure and Dynamics of Networks                                            | ****                        |
| 2006 | 6         | Eagle, N        | Reality mining: sensing complex social systems                                    | PERS UBIQUIT COMPUT         |
| 2007 | 1,4,5     | Newman, MEJ     | Mixture models and exploratory analysis in networks                               | PROC NAT ACAD<br>SCI USA    |
| 2007 | 5         | Krause, J       | Social network theory in the behavioural sci-                                     | BEHAV ECOL                  |
| 2007 |           | 1110030,0       | ences: potential applications                                                     | SOCIOBIOL                   |
| 2007 | 6         | Onnela, JP      | Structure and tie strengths in mobile communi-                                    | PROC NAT ACAD               |
|      |           | ,               | cation networks                                                                   | SCI USA                     |
| 2007 | 6         | Palla, G        | Quantifying social group evolution                                                | NATURE                      |
| 2007 | 6         | Christakis, NA  | The spread of obesity in a large social network over 32 years                     | N ENGL J MED                |
| 2007 | 6         | Mazer, JP       | I'll see you on Facebook: The effects of                                          | ****                        |
|      |           | •               | computer-mediated teacher self-disclosure on                                      |                             |
|      |           |                 | student motivation, affective learning, and class-                                |                             |
|      |           |                 | room climate                                                                      |                             |
| 2007 | 6         | Liben-nowell, D | The link-prediction problem for social networks                                   | J AM SOC INF<br>SCI TECHNOL |
| 2007 | 6         | Robins, G       | An introduction to exponential random graph                                       | SOC NETWORKS                |
|      |           | ,               | (p*) models for social networks                                                   |                             |
| 2007 | 6         | Fortunato, S    | Resolution limit in community detection                                           | PROC NAT ACAD               |
|      |           |                 | ·                                                                                 | SCI USA                     |
| 2007 | 6         | Boyd, DM        | Social network sites: Definition, history, and                                    | J COMPUT-                   |
|      |           |                 | scholarship                                                                       | MEDIAT COMM                 |
| 2007 | 6         | Raghavan, UN    | Near linear time algorithm to detect community structures in large-scale networks | PHYS REV E                  |
| 2007 | 6         | Mislove, A      | Measurement and Analysis of Online Social Net-                                    | ****                        |
|      |           |                 | works                                                                             |                             |
| 2007 | 6         | Leskovec, J     | Cost-effective Outbreak Detection in Networks                                     | ****                        |
| 2007 | 6         | Josang, A       | A survey of trust and reputation systems for on-                                  | DECIS SUPPORT               |
|      |           |                 | line service provision                                                            | SYST                        |
| 2007 | 6         | Steinfield c    | , The benefits of Facebook "friends:" Social cap-                                 | J COMPUT-                   |
|      |           |                 | ital and college students' use of online social network sites.                    | MEDIAT COMM                 |
| 2007 | 6         | Dwyer, C        | Trust and privacy concern within social network-                                  | AMCIS 2007 pro-             |
|      |           | •               | ing sites: A comparison of Facebook and MyS-                                      | ceedings                    |
|      |           |                 | pace.                                                                             | -                           |
|      | ,         |                 |                                                                                   |                             |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author                    | title                                                                                                                                    | journal                  |  |  |
|------|---------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| 2007 | 6       | Lenhart, A                | Teens, Privacy & Online Social Networks: How<br>Teens Manage Their Online Identities and Per-<br>sonal Information in the Age of MySpace | ****                     |  |  |
| 2007 | 6       | Ellison, NB               | The benefits of Facebook "friends:" Social capital and college students' use of online social network sites                              | J COMPUT-<br>MEDIAT COMM |  |  |
| 2008 | 1,2,4,5 | Lusseau, D                | Incorporating uncertainty into the study of ani-<br>mal social networks  ANIM BEH                                                        |                          |  |  |
| 2008 | 1,4,5   | Wey, T                    | Social network analysis of animal behaviour: a promising tool for the study of sociality                                                 |                          |  |  |
| 2008 | 1,4,5   | Monni, S                  | Vertex clustering in random graphs via reversible jump Markov chain Monte Carlo                                                          | J COMPUT<br>GRAPH STAT   |  |  |
| 2008 | 6       | Blondel, VD               | Fast unfolding of communities in large networks                                                                                          | J STAT MECH-<br>THEORY E |  |  |
| 2008 | 6       | Smith, KP                 | Social networks and health                                                                                                               | ANNU REV SO-<br>CIOL     |  |  |
| 2008 | 6       | Gonzalez, MC              | Understanding individual human mobility patterns                                                                                         | NATURE                   |  |  |
| 2008 | 6       | Christakis, NA            | The collective dynamics of smoking in a large social network                                                                             | NEW ENGL J<br>MED        |  |  |
| 2008 | 6       | Fowler, JH                | Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study                 | BRIT MED J               |  |  |
| 2009 | 1,2,4,5 | Kasper, C                 | A social network analysis of primate groups                                                                                              | PRIMATES                 |  |  |
| 2009 | 1,2,4,5 | Ramos-<br>Fernandez,<br>G | Association networks in spider monkeys (Ateles geoffroyi)                                                                                | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,2,4,5 | Lusseau, D                | The emergence of unshared consensus decisions in bottlenose dolphins                                                                     | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4,5   | Croft, DP                 | Behavioural trait assortment in a social network: patterns and implications                                                              | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4,5   | James, R                  | Potential banana skins in animal social network analysis                                                                                 | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4,5   | Krause, J                 | Animal social networks: an introduction                                                                                                  | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4,5   | James, R                  | Potential banana skins in animal social network analysis                                                                                 | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4,5   | Krause, J                 | Animal social networks: an introduction                                                                                                  | BEHAV ECOL<br>SOCIOBIOL  |  |  |
| 2009 | 1,4     | Lehmann, J                | Network cohesion, group size and neocortex size in female-bonded Old World primates                                                      | P ROY SOC B-<br>BIOL SCI |  |  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year    | code    | author          | title                                                                                              | journal                 |  |
|---------|---------|-----------------|----------------------------------------------------------------------------------------------------|-------------------------|--|
| 2009    | 4,5     | Godfrey, SS     | Network structure and parasite transmission in                                                     | BEHAV ECOL              |  |
|         |         |                 | a group living lizard, the gidgee skink, Egernia stokesii                                          | SOCIOBIOL               |  |
| 2009    | 4,5     | Sih, A          | Social network theory: new insights and issues                                                     | BEHAV ECOL              |  |
|         |         |                 | for behavioral ecologists SOCIOBIOL                                                                |                         |  |
| 2009    | 4,5     | Naug, D         | Structure and resilience of the social network in                                                  | BEHAV ECOL              |  |
| • • • • |         |                 | an insect colony as a function of colony size SOCIOBIOL                                            |                         |  |
| 2009    | 4,5     | Madden, JR      | The social network structure of a wild meerkat                                                     | BEHAV ECOL              |  |
| 2000    | 1.5     | Hamai CD        | population: 2. Intragroup interactions                                                             | SOCIOBIOL               |  |
| 2009    | 4,5     | Henzi, SP       | Cyclicity in the structure of female baboon social networks                                        | BEHAV ECOL<br>SOCIOBIOL |  |
| 2009    | 4,5     | Sih, A          | Social network theory: new insights and issues                                                     | BEHAV ECOL              |  |
| 2009    | 4,3     | Sill, A         | for behavioral ecologists                                                                          | SOCIOBIOL               |  |
| 2009    | 5       | Mcdonald, DB    | Young-boy networks without kin clusters in a                                                       | BEHAV ECOL              |  |
| 2007    |         | ivicacinara, BB | lek-mating manakin                                                                                 | SOCIOBIOL               |  |
| 2009    | 6       | Pempek, TA      | College students' social networking experiences                                                    | J APPL DEV PSY-         |  |
|         |         |                 | on Facebook                                                                                        | CHOL                    |  |
| 2009    | 6       | Borgatti, SP    | Network Analysis in the Social Sciences                                                            | SCIENCE                 |  |
| 2009    | 6       | Chen, W         | Efficient Influence Maximization in Social Net-                                                    | ****                    |  |
|         |         |                 | works                                                                                              |                         |  |
| 2009    | 6       | Clauset, A      | Power-Law Distributions in Empirical Data                                                          | SIAM REV                |  |
| 2009    | 6       | Eagle, N        | Inferring friendship network structure by using                                                    | P NATL ACAD             |  |
| 2010    | 1245    | Vegilal D       | mobile phone data                                                                                  | SCI USA<br>BEHAV ECOL   |  |
| 2010    | 1,2,4,5 | Voelkl, B       | Simulation of information propagation in real-<br>life primate networks: longevity, fecundity, fi- | SOCIOBIOL               |  |
|         |         |                 | delity                                                                                             | SOCIODIOL               |  |
| 2010    | 1,4,5   | Franks, DW      | Sampling animal association networks with the                                                      | BEHAV ECOL              |  |
|         | , ,     | ,               | gambit of the group                                                                                | SOCIOBIOL               |  |
| 2010    | 4,5     | Drewe, JA       | Who infects whom? Social networks and tuber-                                                       | P ROY SOC B-            |  |
|         |         |                 | culosis transmission in wild meerkats                                                              | BIOL SCI                |  |
| 2010    | 3,5     | Lea, AJ         | Heritable victimization and the benefits of ago-                                                   | P NATL ACAD             |  |
| 2010    |         |                 | nistic relationships                                                                               | SCI USA                 |  |
| 2010    | 3,5     | Wey, TW         | Social cohesion in yellow-bellied marmots is es-                                                   | ANIM BEHAV              |  |
| 2010    | 3,5     | Schurch, R      | tablished through age and kin structuring The building-up of social relationships: be-             | PHILOS T R SOC          |  |
| 2010    | 3,3     | Schulch, K      | havioural types, social networks and cooperative                                                   | B                       |  |
|         |         |                 | breeding in a cichlid                                                                              | Б                       |  |
| 2010    | 3,5     | Perreault, C    | A note on reconstructing animal social networks                                                    | ANIM BEHAV              |  |
|         |         |                 | from independent small-group observations                                                          |                         |  |
| 2010    | 3,5     | Krause, J       | Personality in the context of social networks                                                      | PHILOS T R SOC          |  |
| 2010    |         |                 |                                                                                                    | B                       |  |
| 2010    | 6       | Fortunato, S    | Community detection in graphs                                                                      | PHYS REP                |  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author                                  | title                                                                       | journal                 |  |  |
|------|---------|-----------------------------------------|-----------------------------------------------------------------------------|-------------------------|--|--|
| 2010 | 6       | Kaplan, AM                              | Users of the world, unite! The challenges and BUS HORIZO                    |                         |  |  |
|      |         |                                         | opportunities of Social Media                                               |                         |  |  |
| 2010 | 6       | Centola, D                              | The Spread of Behavior in an Online Social Network Experiment  SCIENCE      |                         |  |  |
| 2010 | 6       | Roblyer, MD                             | Findings on Facebook in higher education: A INTERNET H                      |                         |  |  |
| 2010 | O       | Roblyel, MD                             | comparison of college faculty and student uses EDUC                         |                         |  |  |
|      |         |                                         | and perceptions of social networking sites                                  |                         |  |  |
| 2011 | 1,2,3,5 | Croft, DP                               | Hypothesis testing in animal social networks                                | TRENDS ECOL             |  |  |
| -    | , ,- ,- | ,                                       | 71                                                                          | EVOL                    |  |  |
| 2011 | 1,2,3,5 | Brent, LJN                              | Social Network Analysis in the Study of Nonhu-                              | AM J PRIMATOL           |  |  |
|      |         |                                         | man Primates: A Historical Perspective                                      |                         |  |  |
| 2011 | 1,2,3,5 | Sueur, C                                | How Can Social Network Analysis Improve the                                 | AM J PRIMATOL           |  |  |
| 2011 | 1 2 2 5 |                                         | Study of Primate Behavior?                                                  | ANAIDDINATION           |  |  |
| 2011 | 1,2,3,5 | Lehmann, J                              | Baboon (Papio anubis) Social Complexity-A<br>Network Approach               | AM J PRIMATOL           |  |  |
| 2011 | 1,2,3,5 | Sueur, C                                | How Can Social Network Analysis Improve the                                 | AM J PRIMATOL           |  |  |
| 2011 | 1,2,5,5 | Sucui, C                                | Study of Primate Behavior?                                                  | AWIJIKIWATOL            |  |  |
| 2011 | 1,3,5   | Voelkl, B                               | Network Measures for Dyadic Interactions: Sta-                              | ons: Sta- AM J PRIMATOL |  |  |
|      |         |                                         | bility and Reliability                                                      |                         |  |  |
| 2011 | 1       | Clark, FE                               | Space to Choose: Network Analysis of Social                                 |                         |  |  |
|      |         |                                         | Preferences in a Captive Chimpanzee Commu-                                  |                         |  |  |
| 2011 | 2.5     | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | nity, and Implications for Management                                       | DELLAL EGOL             |  |  |
| 2011 | 3,5     | Bode, NWF                               | Social networks and models for collective motion in animals                 | BEHAV ECOL<br>SOCIOBIOL |  |  |
| 2011 | 3,5     | Kanngiesser, P                          | Grooming Network Cohesion and the Role of In-                               | AM J PRIMATOL           |  |  |
| 2011 | 3,3     | Kumigiessei, i                          | dividuals in a Captive Chimpanzee Group                                     | MUSTAMMICE              |  |  |
| 2011 | 3,5     | Bode, NWF                               | The impact of social networks on animal collec-                             | ANIM BEHAV              |  |  |
|      |         |                                         | tive motion                                                                 |                         |  |  |
| 2011 | 6       | Kietzmann, JH                           | Social media? Get serious! Understanding the                                | =                       |  |  |
|      | _       |                                         | functional building blocks of social media                                  |                         |  |  |
| 2011 | 3       | Kelley, JL                              | Predation Risk Shapes Social Networks in                                    | *                       |  |  |
| 2012 | 1,2,3,5 | Farine, DR                              | Fission-Fusion Populations Social network analysis of mixed-species flocks: | ANIM BEHAV              |  |  |
| 2012 | 1,2,3,3 | Tarme, DK                               | exploring the structure and evolution of interspe-                          | ANIM DEHAV              |  |  |
|      |         |                                         | cific social behaviour                                                      |                         |  |  |
| 2012 | 1,3,5   | Mourier, J                              | Evidence of social communities in a spa-                                    | ANIM BEHAV              |  |  |
|      |         |                                         | tially structured network of a free-ranging shark                           |                         |  |  |
|      |         |                                         | species                                                                     |                         |  |  |
| 2012 | 1,3,5   | Cantor, M                               | Disentangling social networks from spatiotem-                               | _                       |  |  |
|      |         |                                         | poral dynamics: the temporal structure of a dol-                            |                         |  |  |
|      |         |                                         | phin society                                                                |                         |  |  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| 2013 1,3,5 Hobson, EA acterization of social personality types An analytical framework for quantifying and testing patterns of temporal dynamics in social                                                                                                                                                                                                                                                                   | ECOL          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| 2012 3,5 Blonder, B Temporal dynamics and network analysis  2013 1,2,3,5 Aplin, LM Individual personalities predict social behaviour in wild networks of great tits (Parus major)  2013 1,3,5 Wilson, ADM Network position: a key component in the characterization of social personality types  2013 1,3,5 Hobson, EA An analytical framework for quantifying and testing patterns of temporal dynamics in social           |               |  |
| 2012 3,5 Blonder, B Temporal dynamics and network analysis METHODS 1  2013 1,2,3,5 Aplin, LM Individual personalities predict social behaviour in wild networks of great tits (Parus major)  2013 1,3,5 Wilson, ADM Network position: a key component in the characterization of social personality types  2013 1,3,5 Hobson, EA An analytical framework for quantifying and testing patterns of temporal dynamics in social |               |  |
| 2013 1,2,3,5 Aplin, LM Individual personalities predict social behaviour in wild networks of great tits (Parus major)  Network position: a key component in the characterization of social personality types  An analytical framework for quantifying and testing patterns of temporal dynamics in social                                                                                                                    |               |  |
| 2013 1,2,3,5 Aplin, LM Individual personalities predict social behaviour in wild networks of great tits (Parus major)  Network position: a key component in the characterization of social personality types  An analytical framework for quantifying and testing patterns of temporal dynamics in social                                                                                                                    | ı             |  |
| in wild networks of great tits (Parus major)  Network position: a key component in the characterization of social personality types  An analytical framework for quantifying and testing patterns of temporal dynamics in social                                                                                                                                                                                             |               |  |
| 2013 1,3,5 Wilson, ADM Network position: a key component in the characterization of social personality types SOCIOBIOL ANIM BEHAV testing patterns of temporal dynamics in social                                                                                                                                                                                                                                            |               |  |
| 2013 1,3,5 Hobson, EA acterization of social personality types An analytical framework for quantifying and testing patterns of temporal dynamics in social                                                                                                                                                                                                                                                                   | ECOL          |  |
| 2013 1,3,5 Hobson, EA An analytical framework for quantifying and testing patterns of temporal dynamics in social ANIM BEHA                                                                                                                                                                                                                                                                                                  | ECOL          |  |
| testing patterns of temporal dynamics in social                                                                                                                                                                                                                                                                                                                                                                              |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | 11            |  |
| networks                                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |
| 2013 3,5 Farine, DR Animal social network inference and permuta- METHODS                                                                                                                                                                                                                                                                                                                                                     | ECOL          |  |
| tions for ecologists in R using asnipe EVOL                                                                                                                                                                                                                                                                                                                                                                                  |               |  |
| 2013 3,5 Krause, J Reality mining of animal social systems TRENDS                                                                                                                                                                                                                                                                                                                                                            | ECOL          |  |
| EVOL                                                                                                                                                                                                                                                                                                                                                                                                                         |               |  |
| 2013 3,5 Kurvers, RHJM Contrasting context dependence of familiarity ANIM BEHA                                                                                                                                                                                                                                                                                                                                               | ٩V            |  |
| and kinship in animal social networks                                                                                                                                                                                                                                                                                                                                                                                        |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | ECOL          |  |
| mixed-species flocks using social network SOCIOBIOL                                                                                                                                                                                                                                                                                                                                                                          | ,             |  |
| analysis  Olivina DR Manageria phagasteria according ariginal as ANIM REIJA                                                                                                                                                                                                                                                                                                                                                  | <b></b>       |  |
| 2014 1,2,3,5 Farine, DR Measuring phenotypic assortment in animal social networks: weighted associations are more                                                                                                                                                                                                                                                                                                            | ٩V            |  |
| robust than binary edges                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | IBIS          |  |
| namics in birds                                                                                                                                                                                                                                                                                                                                                                                                              |               |  |
| 2014 1,3,5 Pinter-Wollman, The dynamics of animal social networks: analyt- BEHAV ECC                                                                                                                                                                                                                                                                                                                                         | BEHAV ECOL    |  |
| N ical, conceptual, and theoretical advances                                                                                                                                                                                                                                                                                                                                                                                 |               |  |
| 2014 1,3,5 Castles, M Social networks created with different techniques ANIM BEHA                                                                                                                                                                                                                                                                                                                                            | ANIM BEHAV    |  |
| are not comparable                                                                                                                                                                                                                                                                                                                                                                                                           |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | BEHAV PROCESS |  |
| spread of novel foraging skills in starlings                                                                                                                                                                                                                                                                                                                                                                                 | DIOL LETTER C |  |
| 2014 3,5 Boogert, NJ Developmental stress predicts social network po-                                                                                                                                                                                                                                                                                                                                                        | ERS           |  |
| sition 2014 3,5 Godfrey, SS A contact-based social network of lizards is de- ANIM BEHA                                                                                                                                                                                                                                                                                                                                       | 117           |  |
| fined by low genetic relatedness among strongly                                                                                                                                                                                                                                                                                                                                                                              | 1.0           |  |
| connected individuals                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |
| 2014 3 Shizuka, D Across-year social stability shapes network ECOL LETT                                                                                                                                                                                                                                                                                                                                                      | ı             |  |
| structure in wintering migrant sparrows                                                                                                                                                                                                                                                                                                                                                                                      |               |  |
| 2015 1,2,3,5 Farine, DR Constructing, conducting and interpreting animal J ANIM ECC                                                                                                                                                                                                                                                                                                                                          | )L            |  |
| social network analysis                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |
| 2015 1,2,3,5 Farine, DR Selection for territory acquisition is modulated J EVOLU                                                                                                                                                                                                                                                                                                                                             | TION          |  |
| by social network structure in a wild songbird BIOL                                                                                                                                                                                                                                                                                                                                                                          |               |  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author      | title                                                                                                                                          | journal                  |  |  |
|------|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| 2015 | 1,2,3,5 | Farine, DR  | The role of social and ecological processes in structuring animal populations: a case study from automated tracking of wild birds              | ROY SOC OPEN<br>SCI      |  |  |
| 2015 | 1,2,3,5 | Farine, DR  | Proximity as a proxy for interactions: issues of scale in social network analysis                                                              | ANIM BEHAV               |  |  |
| 2015 | 1,3,5   | Adelman, JS | Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird                                    | P ROY SOC B-<br>BIOL SCI |  |  |
| 2015 | 3,5     | Silk, MJ    | The consequences of unidentifiable individuals for the analysis of an animal social network                                                    |                          |  |  |
| 2015 | 3,5     | Aplin, LM   | Consistent individual differences in the social phenotypes of wild great tits, Parus major                                                     | ANIM BEHAV               |  |  |
| 2015 | 3,5     | Farine, DR  | Estimating uncertainty and reliability of social network data using Bayesian inference                                                         | ROY SOC OPEN<br>SCI      |  |  |
| 2015 | 3,5     | Firth, JA   | Experimental manipulation of avian social struc-<br>ture reveals segregation is carried over across<br>contexts                                | P ROY SOC B-<br>BIOL SCI |  |  |
| 2015 | 3,5     | Farine, DR  | Interspecific social networks promote information transmission in wild songbirds                                                               | P ROY SOC B-<br>BIOL SCI |  |  |
| 2016 | 1,2,3,5 | Spiegel, O  | Socially interacting or indifferent neighbours?<br>Randomization of movement paths to tease apart<br>social preference and spatial constraints | METHODS ECOL<br>EVOL     |  |  |
| 2016 | 1,2,3,5 | Croft, DP   | Current directions in animal social networks                                                                                                   | CURR OPIN BE-<br>HAV SCI |  |  |
| 2016 | 1,2,3,5 | Leu, ST     | Environment modulates population social struc-<br>ture: experimental evidence from replicated so-<br>cial networks of wild lizards             | ANIM BEHAV               |  |  |
| 2016 | 3,5     | Firth, JA   | Social carry-over effects underpin trans-<br>seasonally linked structure in a wild bird<br>population                                          | ECOL LETT                |  |  |
| 2016 | 5       | Jacoby, DMP | Emerging Network-Based Tools in Movement Ecology                                                                                               | TRENDS ECOL<br>EVOL      |  |  |
| 2017 | 1,2,3,5 | Fisher, DN  | Analysing animal social network dynamics: the potential of stochastic actor-oriented models                                                    |                          |  |  |
| 2017 | 1,2,3,5 | Silk, MJ    | Understanding animal social structure: exponential random graph models in animal behaviour research                                            | ANIM BEHAV               |  |  |
| 2017 | 1,2,3,5 | Fisher, DN  | Social traits, social networks and evolutionary biology                                                                                        | J EVOLUTION<br>BIOL      |  |  |
| 2017 | 1,3,5   | Silk, MJ    | The application of statistical network models in disease research                                                                              | METHODS ECOL<br>EVOL     |  |  |
| 2017 | 3,5     | Farine, DR  | A guide to null models for animal social network analysis                                                                                      | METHODS ECOL<br>EVOL     |  |  |

Table 10: Cite net: Overlapping of components: (1- Key Routes, 2- Main Path (CPM), 3- Island5, 4 - Island 4, Node Island, 5 - Prob Flow Island)

| year | code    | author          | title                                                                                            | journal             |
|------|---------|-----------------|--------------------------------------------------------------------------------------------------|---------------------|
| 2017 | 5       | Formica, V      | Consistency of animal social networks after dis-                                                 | BEHAV ECOL          |
| 2017 | _       | Mannian I       | turbance                                                                                         | DOY COC ODEN        |
| 2017 | 5       | Mourier, J      | Does detection range matter for inferring so-<br>cial networks in a benthic shark using acoustic | ROY SOC OPEN<br>SCI |
|      |         |                 | telemetry?                                                                                       | SCI                 |
| 2017 | 3       | Spiegel, O      | What's your move? Movement as a link between                                                     | ECOL LETT           |
|      |         |                 | personality and spatial dynamics in animal pop-                                                  |                     |
|      |         |                 | ulations                                                                                         |                     |
| 2018 | 1,2,3,5 | Montiglio, PO   | Social structure modulates the evolutionary con-                                                 | ECOL EVOL           |
|      |         |                 | sequences of social plasticity: A social network                                                 |                     |
| 2018 | 1,3,5   | Dougherty, ER   | perspective on interacting phenotypes<br>Going through the motions: incorporating move-          | ECOL LETT           |
| 2016 | 1,5,5   | Dougherty, EK   | ment analyses into disease research                                                              | ECOLLETT            |
| 2018 | 1,3,5   | Silk, MJ        | Contact networks structured by sex underpin sex-                                                 | ECOL LETT           |
|      |         | ,               | specific epidemiology of infection                                                               |                     |
| 2018 | 1,3,5   | Farine, DR      | When to choose dynamic vs. static social net-                                                    | J ANIM ECOL         |
|      |         |                 | work analysis                                                                                    |                     |
| 2018 | 1,3,5   | Sah, P          | Disease implications of animal social network                                                    | J ANIM ECOL         |
| 2019 | 2.5     | Smingel O       | structure: A synthesis across social systems                                                     | ANUM DEHAM          |
| 2018 | 3,5     | Spiegel, O      | Where should we meet? Mapping social network interactions of sleepy lizards shows sex-           | ANIM BEHAV          |
|      |         |                 | dependent social network structure                                                               |                     |
| 2018 | 3,5     | Sih, A          | Integrating social networks, animal personalities,                                               | ANIM BEHAV          |
|      | ,       |                 | movement ecology and parasites: a framework                                                      |                     |
|      |         |                 | with examples from a lizard                                                                      |                     |
| 2018 | 3,5     | Spiegel, O      | Where should we meet? Mapping social net-                                                        | ANIM BEHAV          |
|      |         |                 | work interactions of sleepy lizards shows sex-                                                   |                     |
| 2018 | 3,5     | Sih, A          | dependent social network structure Integrating social networks, animal personalities,            | ANIM BEHAV          |
| 2016 | 3,3     | SIII, A         | movement ecology and parasites: a framework                                                      | ANIW DEFIAV         |
|      |         |                 | with examples from a lizard                                                                      |                     |
| 2018 | 5       | Blaszczyk, MB   | Consistency in social network position over                                                      | BEHAV ECOL          |
|      |         |                 | changing environments in a seasonally breeding                                                   | SOCIOBIOL           |
|      |         |                 | primate                                                                                          |                     |
| 2018 | 3       | Bani-Yaghoub, M | A methodology to quantify the long-term                                                          | ECOL MODEL          |
|      |         |                 | changes in social networks of competing species                                                  |                     |

## 7 Authors Collaboration

In the following part, we present the patterns of collaboration between authors working in the field of netwirks analysis. This results are based on the analysis of the reduced network **WAr**. In general, there are different ways to create one-mode networks of collaboration between authors (AA) out of two-mode

networks of works and authors (WA). These ways were presented and used in the previous works [works of Vlado]. Multiplying the original WAr network to transposed WAr network, and using different types of normalizations, we created three collaboration networks **Co**, **Cn**, and **Ct**. The results are presented below.

#### 7.1 Networks creation

The standard and the easiest way to obtain the collaboration network from the WA network was to make a **first collaboration network Co** [Batagelj, Cerinšek 2013] by the multiplication of a transposed WA network (to AW) and initial one:

```
Co = t(WA) * WA = AW * WA = AA
```

In derived network **Co**, the weight of the edges between the nodes is equal to total number of works author i and j wrote together. The degree of each author (node) is equal to the number of works he or she co-authored. The loops are equal to the total number of works that each author have (which is also equal to the indegree values of the WA network).

It was proved, however, that the proposed approach has some limitations, such as the overrating of the contribution of works with many authors. That's why the textbffractional approach (Batagelj, ...) was proposed which deals with the authors contribution in collaboration networks and propose different types of normalization.

Thus, in the **second collaboration network Cn** the contribution of authors to their own works and works written with co-authors is considered. The normalization which is used create network n(WA) where the weight of each arc is divided by the sum of weights of all arcs having the same initial node as this arc (outdegree of a node) (for example, if the work has 3 authors, each weight is equal to 1/3). The network is constructed by the transposition of the WA network (to AW) and multiplying it with the (normalized) n(WA) network.

```
Cn = t(WA) * n(WA) = AW * n(WA), where n(WA)[w,a] = WA[w,a] / outdeg(w)
```

In the derived network Cn, the weight of the edges between the nodes (authors) is equal to the contribution of author i to works, that he or she wrote together with author j (which can not be symmetric). The total contribution for a given work by all its authors is equal to the number of its authors. The total contribution for an author is equal to the number of works that he or she co-authored (indegree). The diagonal (loops) of the matrix is equal to the total contribution of author to his or her own works. Based on it, Batagelj and Cerinšek () proposed **self-sufficiency index** as the proportion of author's contribution to his/her works and the total number of works he/she co-authored, and the **collaborativness index**, which is complementary to it (is equal to 1 minus self-sufficiency).

Using another type of normalization - Newman normalization, who interpret the weight as a proportion of time spent for the collaboration with each co-author [Batagelj, slides], - the **fourth co-authorship network Ct** can be constructed, considering the total contribution of "strict collaboration" of authors i and j to works. In this case, for the initial WA network the weight of each arc is divided by the sum of weights of all arcs having the same initial node as this arc (outdegree of a node) subtracting the initial article (which is 1):

```
Ct' = t(n(WA)) * n'(WA), where n'(WA)[w,a] = WA[w,a] / (outdeg(w)-1)
```

#### 7.2 Collaboration between authors

As it was already shown in the section 4.1. (Table 4 the authors having the largest number of papers have (except Newman) Chinese names. In this sense, it is not productive to look at the 'most writing' authors. However, from the **Co** network we still get an important information about collaboration between groups of authors. The Figure (XX) shows the groups of authors, who have 20 and more works written together. As it can be seen, all of them are only pairs.

However, it is interesting to compare the values of the number of works that author has (in general, written by himself or herself or in collaboration) with the values of author's contribution to these works and index of collaborativeness with others. Because of the 'Chinese problem' mentioned above we had to exclude the names of the Chinese authors from the output presented on the Table 11. The names are ordered by authors' fractional total contribution to the field.

The first rated author in sence of largest productivity is social scientist R. Burt, followed by phisician M. Newman. They are followed by P. Doreian, H. Park, and R. Dunbar. Other authors with large total contribution values are B. Wellamn, T. Valente, S. Park, P. Bonachich, L. Leidersdorf, C. Latkin, H. Litwin, and P. Marsden. There are a lot of authors representing social science in the table. The authors with the highest index of collaborativeness are marked in boldface.

Using Link islands approach, we extracted all the islands with the size between 5 and 50 nodes from the network **Ct**. We got a large number of islands - 2,195 - with 14,227 nodes. Four largest island have, respectively, 35, 23, 21, and 19 nodes; other 70 islands have between 12 and 18 nodes. More then half of islands - 58% - are composed of 5 nodes.

The structures of the largest islands of size from 12 to 35 nodes is presented on the Figure (xx) (1,037 nodes). These subnetworks have different structures. Part of these structures are not very interesting: they are star-like networks, which represent one author collaborating with many others, or (almost) complete clusters (cliques), where all authors collaborate with (mostly) everyone else. However, some islands can be intesting to inspect - those large islands, which have more interesting structures.

Another way to get interesting cases to inspect is to find the islands which have the strongest ties between the nodes. For this, we removed all the lines lower then certain trashold from the **Ct' net** and got the network of 32 nodes. Then we used and Island approach and got simple line weight islands of size [2,50] out of the same metwork (number of islands = 14,222). Then we manually searched for the islands to which these 32 nodes belong, and extracted them. We also found the islands for T. Snijders (should we add someone else?). These islands are presented below. Some of the authors having the strongest ties with each other goes from the field of social sciences (Everett and Boragatti, Pattison and Robins), some - from physics (Barabasi, Albert, Posfai), some - from both of the fields (Christakis and Fowler).

To better know what these authors are working at, we made an analysis of key words in coauthorship islands, which is presented in the following section.

# 8 Key words in coauthorship islands

In this section we look at the key words for some of the islands inspected in the previous section.

#### 8.1 Network creation

To construct the network of authors and keywords **AK**, we used normalized **reduced** networkds **WAr** and **WKr**. The first network was transpose and then multiplied with the second in the following way:

```
nAWr \times nWKr = AK
```

Table 11: Collaborativeness

| #  | Author     | Total   | Total # | Collabora | #  | Author                | Total   | Total # | Collabora |
|----|------------|---------|---------|-----------|----|-----------------------|---------|---------|-----------|
|    |            | contri- | works   | tiveness  |    |                       | contri- | works   | tiveness  |
|    |            | bution  |         |           |    |                       | bution  |         |           |
| 1  | BURT_R     | 55,73   | 71      | 0,22      | 31 | PATTISON_P            | 18,94   | 58      | 0,67      |
| 2  | NEWMAN_M   | 50,02   | 81      | 0,38      | 32 | THELWALL <sub>M</sub> | 18,41   | 37      | 0,5       |
| 3  | DOREIAN_P  | 46,19   | 72      | 0,36      | 33 | KRACKHAR_D            | 18,24   | 38      | 0,52      |
| 4  | PARK_H     | 41,94   | 113     | 0,63      | 34 | FALOUTSO_C            | 17,86   | 60      | 0,7       |
| 5  | DUNBAR_R   | 40,02   | 91      | 0,56      | 35 | JACKSON_M             | 17,78   | 38      | 0,53      |
| 6  | WELLMAN_B  | 36,43   | 63      | 0,42      | 36 | GONZALEZ_M            | 17,76   | 52      | 0,66      |
| 7  | VALENTE_T  | 34,96   | 97      | 0,64      | 37 | MOODY_J               | 17,7    | 40      | 0,56      |
| 8  | PARK_S     | 34,59   | 109     | 0,68      | 38 | SCOTT_J               | 17,54   | 28      | 0,37      |
| 9  | BONACICH_P | 34      | 46      | 0,26      | 39 | MORRIS_M              | 17,22   | 43      | 0,6       |
| 10 | LEYDESDO_L | 33,28   | 51      | 0,35      | 40 | RODRIGUE_J            | 15,9    | 52      | 0,69      |
| 11 | LATKIN_C   | 32,99   | 130     | 0,75      | 41 | WASSERMA_S            | 15,64   | 35      | 0,55      |
| 12 | LITWIN_H   | 32,42   | 50      | 0,35      | 42 | KLEINBER_J            | 15,05   | 34      | 0,56      |
| 13 | MARSDEN_P  | 30,17   | 39      | 0,23      | 43 | BATAGELJ_V            | 14,64   | 33      | 0,56      |
| 14 | BORGATTI_S | 29,72   | 71      | 0,58      | 44 | WILLIAMS_A            | 14,5    | 31      | 0,53      |
| 15 | SNIJDERS_T | 29,63   | 67      | 0,56      | 45 | SINGH_A               | 14,5    | 36      | 0,60      |
| 16 | FRIEDKIN_N | 28,17   | 36      | 0,22      | 46 | BRANDES_U             | 14,39   | 35      | 0,59      |
| 17 | CARLEY_K   | 28,11   | 72      | 0,61      | 47 | BERKMAN_L             | 14,3    | 39      | 0,63      |
| 18 | BARABASI_A | 27,61   | 67      | 0,59      | 48 | MASUDA_N              | 14,26   | 28      | 0,49      |
| 19 | WHITE_H    | 27,28   | 42      | 0,35      | 49 | SMITH_A               | 14,2    | 40      | 0,65      |
| 20 | CHRISTAK_N | 22,89   | 74      | 0,69      | 50 | LAZEGA_E              | 14,17   | 26      | 0,46      |
| 21 | EVERETT_M  | 22,58   | 44      | 0,49      | 51 | CONTRACT_N            | 14,15   | 43      | 0,67      |
| 22 | KAZIENKO_P | 21,97   | 64      | 0,66      | 52 | GONZALEZ_A            | 14,13   | 35      | 0,60      |
| 23 | MARTINEZ_M | 21,9    | 53      | 0,59      | 53 | PENTLAND_A            | 14,12   | 41      | 0,66      |
| 24 | JOHNSON_J  | 21,19   | 54      | 0,61      | 54 | FARINE_D              | 14,04   | 34      | 0,59      |
| 25 | FOWLER_J   | 20,14   | 65      | 0,69      | 55 | SCHNEIDE_J            | 13,89   | 52      | 0,73      |
| 26 | SKVORETZ_J | 20,07   | 42      | 0,52      | 56 | WATTS_D               | 13,67   | 27      | 0,49      |
| 27 | FREEMAN_L  | 20,03   | 27      | 0,26      | 57 | FAUST_K               | 13,5    | 25      | 0,46      |
| 28 | BREIGER_R  | 19,73   | 31      | 0,36      | 58 | SMITH_M               | 13,29   | 39      | 0,66      |
| 29 | ROBINS_G   | 19,67   | 64      | 0,69      | 59 | RODRIGUE_M            | 13,21   | 46      | 0,71      |
| 30 | RAHMAN_M   | 19,18   | 59      | 0,67      | 60 | RICE_E                | 13,09   | 48      | 0,73      |

### 8.2 Key words in largest islands and islands with largest weights between the nodes

Using this two-mode network we can inspect all the keywords which are associated with each author. However, what is interesting is to look at the keywords for certain islands.

Again, we start with the largest islands 1-3, which have, respectively, 35, 23, and 21 nodes. These islands are associated with large number of keywords. However, we can extract some 'special' wirds in each group. In Island 1 these are the keywords *uganda*, *south,saharan*, *epidemiology,africa*, *rural*, *agricultural,development*, *tuberculosis*, *molecular*, *mycobacterium*, *transmission*, *genotype*, *hiv*, *drug*, in Island 2 - *support*, *risk*, *woman*, *abuse*, *health*, *environment*, *self*, *drug*, *hiv*, *echange*, *behavior*, *injection*, *transition*, *population*, *city*, *integration*, in Island 3 - *radiation*, *radioactivity*, *environment*, *measurement*, *cancer*, *clinical*, *medicine*, *family*, *community*.

Then we also looked at some certain islands with the largest values of weights between the nodes, which were identified before. For the group of authors with Barabasi in the center the keywords are network, model, time, social, scale, dynamics, community, web. The group of Fowler, Christakis, and Shakya have keywords group, population, association, mobilization, facebook, ownership, child, weight, national, and state. The island of Borgatti, Everett, and Halgin is associated with the keywords world, disease, model, structural, network, structure, role, social, exchange, graph. Other group of social network analysts Robins and Pattison have the words complex, difference, wireless, group, population, association, ground, chain, perceive, similarity. The group of Snijders have the keywords similarity, peer, model, network, family, orient, use, actor, social, behavior which of course represent their work in stochastic actor-oriented models.

The group with large weight of lines between Grabowska and Kosinski have the keywords *network*, *time*, *model*, *community*, *social*, *scale*, *dynamics*, *web*, *world*, *behavior*. The large group of Litwin in the center connected to Stoekel and Shiovitz have the keywords *social*, *older*, *network*, *health*, *support*, *life*, *people*, *adult*, *israel*, *family*. The island of Chinese authors wih strong ties between Wang and Ma have the keywords *network*, *social*, *ranking*, *community*, *link*, *world*, *framework*, *model*, *evolution*, *attack*.

# 9 Citation among authors

After analysing Cite network and WA network and looking at citations between works and collaborations between authors separately, we can also look at the derieved **CiteA network**, which shows citations among authors.

#### 9.1 Network creation

To get information about citations among authors we computed the **derived CiteA network** as a product of multiplication of the networks **WAr net** and **CiteR net**.In this network, the value of element CiteA[u;v] is equal to the number of citations from works coauthored by u to works coauthored by v.

```
CiteA=t(WAr) * CiteR * WAr
```

We also produced the normalized version of this network, **CiteAn**, where the value of element CiteAn[u;v] is equal to the number of fractional contribution of citations from works coauthored by u to works coauthored by v.

```
CiteA=t(WAr) * nCiteR * WAr
```

#### 9.2 Citations

After the exploratory analysis of the obtined networks, we had to exclude the top-cited work of Wasserman and Faus ([WASSERMA\_S (1994):] from the data set as a lot of nodes were connected to it.

Then we used Islands approach to get islands of the size [5, 200] from the **CiteA**. However, the combination of nodes with large number of citations (to Wasserman, Granovetter, Boyd, Newman) with the 'Chinese cloud', which was already identified above, blured the results. This why the normalized network **CiteAn** was used for identification of islands. We got 195 islands of size between 5 and 200.

The Main island of CiteAn network consits of 200 nodes. In this network, cutations separates between M. Granovetter and D. Boyd, each of them have their own 'cloud' of other authors. They are also connected through several authors citing both of them. However, most of these authors are againg from the 'Chinese group'.

Figure XX presents other 21 islands consists of minimum 10 nodes (in sum, 268 nodes). Most of these islands are star-like islands, meaning that the author in the center actively cites a set of other authors. There are also two more 'clique-like' islands, identifying groups of connected authors who cites each other. However, there are several more interesting structures 1, 2, 3), which shows several groups of authors connected to each other.

## 10 Co-citation among authors. Bibliographic Coupling

#### 10.1 Network creation

Jaccard - ?

# 11 Citation among journals

In this section, we present the results on the citations between journals featuring works in the area of network analysis.

#### 11.1 Network J.Jf creation

To get information about citations among journals we computed the **derived JJf network**, which takes into account citations from papers published in journal *i* to papers published in journal *j*, which appeared in the works included into the **WJr net**. We used a **CiteR net** to get information on citations between works. As journals of different sizes were included into the data set, using the *fractional approach* this network was normalized. Then the networks were multyplied in the following way. Thus, the weights in the obtained network take into account *fractional* contribution of citations from papers published in journal *j*.

```
JJf = t(WJr) * n(CiteR) * WJr
```

#### 11.2 Citations

Looking at the loops of this network, we got the list of journals with highest self-citation (Table 12). The highest value belongs to the *Social Networks* journal, which is one of the main journals in the field of social network analysis. Second highest ranked is the *Computers in Human Behavior* - a journal in the field of computer interactions and cyberpsychology. Other quite highly ranked journals are *Physica* 

Table 12: Journals with the highest self-citation

| #  | Value   | Journal              |
|----|---------|----------------------|
| 1  | 1083,68 | SOC NETWORKS         |
| 2  | 533,84  | COMPUT HUM BEHAV     |
| 3  | 212,1   | LECT NOTES COMPUT SC |
| 4  | 163,32  | PHYSICA A            |
| 5  | 135,71  | J COMPUT-MEDIAT COMM |
| 6  | 111,53  | SOC SCI MED          |
| 7  | 110,49  | AM J SOCIOL          |
| 8  | 84,33   | SCIENTOMETRICS       |
| 9  | 68,29   | CYBERPSYCH BEH SOC   |
| 10 | 55,33   | NEW MEDIA SOCI       |
| 11 | 54,94   | J MED INTERNET RES   |
| 12 | 54,48   | EXPERT SYST APPL     |
| 13 | 51,01   | ANIM BEHAV           |

A-Statistical Mechanics And Its Applications, Journal of Computer-Mediated Communication, Social Science & Medicine, and American Journal of Sociology. However, we note that the differences between values of first and last mentioned journals are quite significant.

We also generated Islands of size between 2 and 5, and got 115 islands, with the largest island containing 50 nodes. The islands 1-11 (with maximum 3 nodes) are presented on the Figure XX. In the main island, there are three groups of journals: two large groups of journals in Social Sciences and Computer Science, as well as one smaller group of journals in Physics. Citations among journals have clear acyclic (hierarchical) organization.

In the Social Sciences group, the most citing journal is *Social Networks*, which is strongly connected to the *Amercian Journal of Sociology*, as well as have connections with many other sociological journals (*Structural Analysis in Social Sciences, American Sociological Review, Social Forces, Journal of Mathematical Sociology, Social Network Analysis*, which are, in turn, also have connections to the American Journal of Sociology. This journal is also cited by a large number of other journals from differnt fields of social sciences: sociology, family studies, social work, psychology, behavioral science, communication, migration studies, business, management, organization studies, urban and rural studies.

In the Computer Science group of journals, the most citing position is taken by *Computers in Human Behavior* journal, which is largerly citing *Journal of Computer-Mediated Communication*, as well as to *CyberPsychology & Behavior, Cyberpsychology, Behavior, and Social Networking*, which are are also connected to it, and the *American Journal of Sociology. Journal of Computer-Mediated Communication* is also cited by other journals from computer science, education technology.

Both top cited journals have shared journals which cite both of them. The are *Information, Communication & Society, Communications in Computer and Information Science, Lecture Notes in Artificial Intelligence, New Media & Society.* The journal with the largest citations of both of these jornals is *Lecture Notes in Computer Science*, which is also citing other journals, such as *Social Networks, Structural Analysis in Social Science, and Nature.* 

The Physics group has is presented by the journals *Physica A-Statistical Mechanics And Its Applications, Physical Review E*, and also include some interdisciplinary journals *Plos One, Science*, and *Nature*. There are links from *Physica A* and *Plos One* to the *American Journal of Sociology*.

Table 13: Pairs of journals

| #  | Value       | Journals                                     | #  | Value | Journals                                   |
|----|-------------|----------------------------------------------|----|-------|--------------------------------------------|
| 1  | 17,38       | SEX TRANSM DIS – AIDS                        | 21 | 4     | IEEE INT SYMP INFO – IEEE T IN-            |
|    |             |                                              |    |       | FORM THEORY                                |
| 2  | 14,17       | PREV VET MED – TRANSBOUND                    | 22 | 4     | HEALTH RISK SOC – RISK ANAL                |
|    |             | EMERG DIS                                    |    |       |                                            |
| 3  | 10,47       | ACTA PSYCHIAT SCAND – BRIT J                 | 23 | 4     | QUAL RES SPORT EXERC – SPORT               |
|    |             | PSYCHIAT                                     |    |       | MANAG REV                                  |
| 4  | 10,27       | IEEE T PARALL DISTR – IEEE INFO-             | 24 | 4     | UROL ONCOL-SEMIN ORI – BJU INT             |
| _  |             | COM SER                                      |    |       |                                            |
| 5  | 8,1         | IEEE T VEH TECHNOL – IEEE T MO-              | 25 | 4     | PSYCHIAT DANUB – QJM-INT J MED             |
| _  |             | BILE COMPUT                                  |    |       |                                            |
| 6  | 6,77        | J CONSTR ENG M – J CONSTR ENG M              | 26 | 4     | COMMUNITY DENT ORAL – J AM                 |
| _  | <b>7</b> (0 | ASCE                                         | 27 |       | DENT ASSOC                                 |
| 7  | 5,68        | SOC COGN AFFECT NEUR – NEU-                  | 27 | 4     | Z ETHNOL – J SOC HIST                      |
| 0  | _           | ROIMAGE                                      | 20 | 4     | I AM GOO HYDEDTENG NAT                     |
| 8  | 5           | APHASIOLOGY – ADULT EDUC                     | 28 | 4     | J AM SOC HYPERTENS – NAT                   |
| 9  | 1.67        | QUART<br>J INTELL DISABIL RES – J APPL RES   | 29 | 4     | BIOTECHNOL<br>MATERN CHILD HLTH J – J NERV |
| 9  | 4,67        | INTELL DISABIL RES – J'APPL RES<br>INTELLECT | 29 | 4     | MENT DIS                                   |
| 10 | 4,67        | APPL ENERG – ENERG BUILDINGS                 | 30 | 4     | TRANSPL P – AM J TRANSPLANT                |
| 10 | 4,67        | J ISL COAST ARCHAEOL – ANTIQ-                | 31 | 4     | J AFFECT DISORDERS – DEATH STUD            |
| 11 | 4,07        | UITY                                         | 31 | 4     | JAMECI DISORDERS – DEATH STOD              |
| 12 | 4,67        | INFORM SOC-ESTUD – PERSPECT                  | 32 | 4     | J NEW APPROACHES EDU – ESTUD               |
| 12 | 1,07        | CIENC INF                                    | 32 |       | SOBRE MENSAL P                             |
| 13 | 4,5         | J ACAD LIBR – REF USER SERV Q                | 33 | 4     | J ADDICT NURS – CLIN PSYCHOL               |
|    | -,-         |                                              |    | -     | REV                                        |
| 14 | 4,18        | CIENC SAUDE COLETIVA – CAD                   | 34 | 4     | INT J CARDIOL – WIRES DATA MIN             |
|    | ,           | SAUDE PUBLICA                                |    |       | KNOWL                                      |
| 15 | 4           | ETHN DIS – HEART LUNG                        | 35 | 4     | MCN-AM J MATERN-CHIL – AM J                |
|    |             |                                              |    |       | NURS                                       |
| 16 | 4           | EPIDEMIOL PREV – HUM VACC IM-                | 36 | 4     | INT J PEDIATR-MASSHA – BEHAV               |
|    |             | MUNOTHER                                     |    |       | MED                                        |
| 17 | 4           | OPTIM LETT – ARTIF LIFE                      | 37 | 4     | HEALTH EXPECT – CAN J CARDIOL              |
| 18 | 4           | ACTAS UROL ESP – AESTHET SURG J              | 38 | 4     | ARCTIC ANTHROPOL – ARCTIC                  |
| 19 | 4           | J RETAIL CONSUM SERV – AUS-                  | 39 | 4     | REV BRAS ENFERM – REV LAT-AM               |
|    |             | TRALAS MARK J                                |    |       | ENFERM                                     |
| 20 | 4           | J MARITAL FAM THER – J CONSTR                | 40 | 3,36  | J CHILD PSYCHOL PSYC – J AUTISM            |
|    |             | PSYCHOL                                      |    |       | DEV DISORD                                 |

Other groups of journals citing each other are the ones on the topics of substance abuse and addiction; archeology, anthropology and antiquity, behavioral ecology and animal behavior; geriatric psychiatry; psychology and deviation; child psychology and psychiatry; medicine; family medicine, sexual and reproductive health; speech-language; computer graphics.

Other islands 12-115 contains only 2 nodes - they are pairs of journals. Journals with the largest weights of lines are presented on the Table 13. The links are directed: first written journal cites second one. These journals cover the wide range of disciplines, including health studies, epidemiology, medicine, surgery, veterinary disciplines, biotechnology, psychiatry, family studies, neuroscience, education, sport, archeology, ethnology, anthropology, history, engineering, mobile computing, information science.

## 12 Conclusions

Basic statistics of derived networks allow us to get the most important works, authors, journals, keywords.

Citation network analysis reveals its main structure - gropus of works which are connected with each other. Obtained components are interlinked.

Deeper analysis of other derived networks, including those which can be constructed out of different initial ones (e.g., WA and WK), will show other patterns of Social Network Analysis field development.

### References

Batagelj, V., Doreian P., V., Ferligoj, A., Kejžar N. Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution, 2014.

Freeman, L. (2004). The development of social network analysis. A Study in the Sociology of Science, 1.

Hummon, N. P., Carley, K. (1993). Social networks as normal science. Social networks, 15(1), 71-106.

Otte, E., Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of information Science, 28(6), 441-453.