

Signals and Systems UE18EC204

UNIT 2

Why Linear Time-Invariant (LTI) Systems?

- ▶ In engineering, linear-time invariant (LTI) systems play a very important role.
- ▶ Very powerful mathematical tools have been developed for analyzing LTI systems.
- ▶ LTI systems are much easier to analyze than systems that are not LTI.
- ▶ In practice, systems that are not LTI can be well approximated using LTI models.
- ➤ So, even when dealing with systems that are not LTI, LTI systems still play an important role.

Discrete-time signals

A discrete-time signal is a set of numbers

$$x = [2 \ 0 - 1 \ 3]$$

Rajini M. Dept of ECE

Resolution of a DT Signal into pulses

$$x = [2 \ 0 \ -1 \ 3]$$

Impulses at $n = 0, 1, 2,$ and 3 with amplitudes $x[0] = 2, x[1] = 0, x[2] = -1, x[3] = 3$

This can be written as,

$$x[n] = 2\delta[n] - \delta[n-2] + 3\delta[n-3]$$

$$x[n] = x[0]\delta[n] + x[1]\delta[n-1] +$$

 $x[2]\delta[n-2] + x[3]\delta[n-3]$

$$x[n] = \sum_{k=0}^{K-1} x[k] \delta[n-k]$$
 K is the length of x

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$
 For infinite pulses

- This corresponds to the representation of an arbitrary sequence as a linear combination of shifted unit impulses $\delta[n-k]$, where the weights are x[n] in the linear combination.
- The above equation is called Sifting property of the discrete-time unit impulse.
- As an example, when x[n] = u[n], the unit step, then we have

$$x[n] = \sum_{k=0}^{\infty} \delta[n-k] = u[n]$$

Example 1: Resolve the following discrete-time signals into impulses

$$x[n] = 2403$$
 \uparrow
 $r[n] = 2403$

Impulses occur at n = -1, 0, 1, 2 with amplitudes x[-1] = 2, x[0] = 4, x[1] = 0, x[2] = 3

$$x[n] = \sum_{k=-1}^{2} x[m] \delta[n-k]$$

$$= x[-1] \delta[n-(-1)] + x[0] \delta[n-0] + x[1] \delta[n-1] + x[2] \delta[n-2]$$

$$x[n] = 2\delta[n+1) + 4\delta[n] + 3\delta[n-2]$$

Follow the same procedure for r[n]

• Output y[n] for input x[n]

$$y[n] = T\{x[n]\}$$

Any signal can be decomposed into sum of discrete impulses

$$y[n] = T\left\{\sum_{m=-\infty}^{\infty} x[m] \delta[n-m]\right\}$$

 Apply linearity properties of homogeneity then additivity

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] T\{\mathcal{S}[n-m]\}$$

Apply shift-invariance

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

· Apply change of variables

$$y[n] = \sum_{m=-\infty}^{\infty} h[m] x[n-m]$$

Convolution Sum

Convolution Sum

The (DT) convolution of the sequences x[n] and h[n], denoted x[n] * h[n], is defined as the ni M. Dept of ECE sequence

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- ▶ The convolution x[n] * h[n] evaluated at the point n is simply a weighted sum of elements of x[n], where the weighting is given by h[n] time reversed and shifted by n.
- Herein, the asterisk symbol (i.e., "*") will always be used to denote convolution, not multiplication.
- Convolution is used extensively in systems theory and in particular, convolution has a special significance in the context of LTI systems.

Step 1	List the index 'k' covering a sufficient range
Step 2	List the input x[k]
Step 3	Obtain the reversed sequence $h[-k]$, and align the rightmost element of $h[n-k]$ to the leftmost element of $x[k]$
Step 4	Cross-multiply and sum the nonzero overlap terms to produce y[n]
Step 5	Slide h[n-k] to the right by one position
Step 6	Repeat step 4; stop if all the output values are zero or if required.

		x[k]	[3 1 2]	h[k] =	= [3 2 1] ↑				
k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				K OJINI
h[-k]:	1	2	3						Depr
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

 $y[0] = 3 \times 3 = 9$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:						2	3		
h[5-k]:						1	2	3	

$$y[0] = 3 \times 3 = 9$$

$$y[1] = 3 \times 2 + 3 \times 1 = 9$$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

$$y[0] = 3 \times 3 = 9$$

$$y[1] = 3 \times 2 + 3 \times 1 = 9$$

$$y[2] = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				7
h[-k]:	1	2	3						ļ
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

$$y[0] = 3 \times 3 = 9$$

$$y[3] = 1 \times 1 + 2 \times 2 = 5$$

$$y[1] = 3 \times 2 + 3 \times 1 = 9$$

$$y[2] = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

$$y[0] = 3 \times 3 = 9$$

$$y[3] = 1 \times 1 + 2 \times 2 = 5$$

$$y[1] = 3 \times 2 + 3 \times 1 = 9$$

$$y[4] = 2 \times 1 = 2$$

$$y[2] = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$$

-2 0 2 3 k: -1 3 2 x[k]: 1 2 3 h[-k]: h[1-k]: h[2-k]: h[3-k]: h[4-k]: 2 h[5-k]: 1 2 3

$$y[0] = 3 \times 3 = 9$$

$$y[2] = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$$

$$y[3] = 1 \times 1 + 2 \times 2 = 5$$

$$y[4] = 2 \times 1 = 2$$

$$y[5] = 0$$
 (no overlap)

$$y[n] = \{9 \ 9 \ 11 \ 5 \ 2 \ 0\}$$

Representation of Signals Using Impulses

 \blacktriangleright For any function x,

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] = x * \delta[n]$$

- Thus, any function x can be written in terms of an expression involving δ.
- ▶ Moreover, δ is the convolutional identity. That is, for any function x,

$$x * \delta = x$$

Convolution Integral

Convolution Integral

The Continuous-time convolution of the functions x and h, denoted x * h, is defined as the Rajini M. Dept of ECE function

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

- The convolution result x * h evaluated at the point t is simply a weighted average of the function x, where the weighting is given by h time reversed and shifted by t.
- ▶ Herein, the asterisk symbol (i.e., "*") will always be used to denote convolution, not multiplication.
- Convolution is used extensively in systems theory and in particular, convolution has a special significance in the context of LTI systems.

Convolution Integral Computation

► To compute the convolution

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

we proceed as follows:

- ▶ Plot $x(\tau)$ and $h(t \tau)$ as a function of τ .
- Initially, consider an arbitrarily large negative value for t. This will result in $h(t \tau)$ being shifted very far to the left on the time axis.
- \blacktriangleright Write the mathematical expression for x * h(t).
- Increase t gradually until the expression for x * h(t) changes form. Record the interval over which the expression for x * h(t) was valid.
- Repeat steps 3 and 4 until t is an arbitrarily large positive value. This corresponds to $h(t \tau)$ being shifted very far to the right on the time axis.
- The results for the various intervals can be combined in order to obtain an expression for x * h(t) for all t.

Representation of Signals Using Impulses

 \blacktriangleright For any function x,

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau = x * \delta(t)$$

- Thus, any function x can be written in terms of an expression involving δ.
- \blacktriangleright Moreover, δ is the convolutional identity. That is, for any function x,

$$x * \delta = x$$

Properties of Convolution

Properties of Convolution

 \blacktriangleright The convolution operation is commutative. That is, for any two functions x and h,

$$x * h = h * x$$
.

 \blacktriangleright The convolution operation is associative. That is, for any signals x, h1, and h2,

$$(x * h1) * h2 = x * (h1 * h2).$$

The convolution operation is distributive with respect to addition. That is, for any signals x, h1, and h2,

$$x * (h1 + h2) = x * h1 + x * h2.$$

Properties of Convolution

- Shift: If $x_1(t) * x_2(t) = c(t)$, then $x_1(t) * x_2(t T) = x_1(t T) * x_2(t) = c(t T)$ and $x_1(t T_1) * x_2(t T_2) = c(t T_1 T_2)$ (applies to convolution sum)
- ► Convolution with impulse, $x(t) * \delta(t) = x(t)$ and $x(n) * \delta(n) = x(n)$
- ► Convolution with shifted impulse, $x(t) * \delta(t-T) = x(t-T)$
- ▶ Differentiation: If x(t) * h(t) = y(t) then $\frac{dx(t)}{dt} * h(t) = x(t) * \frac{dh(t)}{dt} = \frac{dy(t)}{dt}$
- Time-scaling: If x(t) * h(t) = y(t) then $x(at) * h(at) = \frac{1}{|a|}y(at)$
 - ▶ The Convolution of an odd and an even function is an odd function
 - ▶ The Convolution of two odd functions is an even function
 - ▶ The Convolution of two even functions is an even function

Impulse Response

- The response *h* of a system *H* to the input **δ** is called the impulse response of the system (i.e., $h_{\xi} = H\{\delta\}$).
- For any LTI system with input x, output y, and impulse response h, the following relationship holds: y = x * h.
- ▶ In other words, a LTI system simply computes a convolution.
- ► Furthermore, a LTI system is completely characterized by its impulse response.
- ▶ That is, if the impulse response of a LTI system is known, we can determine the response of the system to any input.
- ▶ Since the impulse response of a LTI system is an extremely useful quantity, we often want to determine this quantity in a practical setting.
- ▶ Unfortunately, in practice, the impulse response of a system cannot be determined directly from the definition of the impulse response.

The impulse response h and step response s of a system are related as

$$h(t) = \frac{ds(t)}{dt}$$

$$h[n] = s[n] - s[n-1].$$

- Therefore, the impulse response of a system can be determined from its step response by differentiation and (first-order) differencing for continuous time and discrete-time systems respectively.
- The step response provides a practical means for determining the impulse response of a system.

- ▶ Often, it is convenient to represent a LTI system in block diagram form.
- Since such systems are completely characterized by their impulse response, we often label a system with its impulse response.
- ► That is, we represent a system with input x, output y, and impulse response h, as shown below.

Rajini M. Dept 🌣

Interconnection of LTI Systems

The series interconnection of the LTI systems with impulse responses h_1 and h_2 is the LTI system with impulse response $h = h_1 * h_2$ That is, we have the equivalences shown below.

Interconnection of LTI Systems

The parallel interconnection of the LTI systems with impulse responses h_1 and h_2 is a LTI system with the impulse response $h = h_1 + h_2$. That is, we have the equivalence shown below.

Properties of LTI Systems

Memory

 \blacktriangleright A LTI system with impulse response h is memoryless if and only if

$$h(t) = 0$$
 for all $t \neq 0$
 $h[n] = 0$ for all $n \neq 0$

 \blacktriangleright That is, a LTI system is memoryless if and only if its impulse response h is of the form

$$h(t) = K\mathbf{\delta}(t),$$

$$h[n] = K\mathbf{\delta}[n],$$

- ▶ where K is a constant.
- \triangleright Consequently, every memoryless LTI system with input x and output y is characterized by an equation of the form

$$y = x * (K\delta) = Kx$$

- ▶ (i.e., the system is an ideal amplifier).
- ► For a LTI system, the memoryless constraint is extremely restrictive (as every memoryless LTI system is an ideal amplifier).

Causality

▶ A LTI system with impulse response h is causal if and only if

$$h(t) = 0$$
 for all $t < 0$

$$h[n] = 0$$
 for all $n < 0$

(i.e., h is a causal signal).

 \blacktriangleright It is due to the above relationship that we call a signal x, satisfying

$$x(t) = 0$$
 for all $t < 0$

$$x[n] = 0$$
 for all $n < 0$

a causal signal.

- ▶ The inverse of a LTI system, if such a system exists, is a LTI system.
- Let h and h_{inv} denote the impulse responses of a LTI system and its (LTI) inverse, respectively. Then,

$$h * h_{inv} = \delta$$

Consequently, a LTI system with impulse response h is invertible if and only if there exists a function h_{inv} such that

$$h * h_{inv} = \mathbf{\delta}$$

► Except in simple cases, the above condition is often quite difficult to test.

Rajini M. D

BIBO Stability

 \blacktriangleright A LTI system with impulse response h(t) is BIBO stable if and only if

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

(i.e., h(t) is absolutely integrable).

 \blacktriangleright A LTI system with impulse response h[n] is BIBO stable if and only if

$$\sum_{-\infty}^{\infty} |h[n]| < \infty$$

(i.e., h[n] is absolutely summable)

Convolution Sum Computation

► To compute the convolution

$$x * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

we proceed as follows:

- ightharpoonup Plot x[k] and h[n-k] as a function of k.
- Initially, consider an arbitrarily large negative value for n. This will result in h[n-k] being shifted very far to the left on the time axis.
- Write the mathematical expression for x * h[n].
- Increase n gradually until the expression for x * h[n] changes form. Record the interval over which the expression for x * h[n] was valid.
- Repeat steps 3 and 4 until t is an arbitrarily large positive value. This corresponds to h[n-k] being shifted very far to the right on the time axis.
- The results for the various intervals can be combined in order to obtain an expression for x * h[n] for all n.