ENGS 91: Fall 2025

Laboratory 3

Due: at start of class, Wednesday, Oct. 8

15 pts (1) One of your classmates astutely asked whether a higher order polynomial approximation to a function is always better than a lower order polynomial. Answer this question by approximating the function

$$f(x) = \sin(6x)\cos(\sqrt{5}x) - x^2e^{-x/5}$$

over the interval $x \in [-2, 2]$ using interpolating polynomials of order $N \geq 5$. Use two different types of interpolating polynomials, one that passes through N+1 points that are **uniformly spaced** over the interval and one that uses the roots of the $(N+1)^{th}$ order Chebyshev polynomial, i.e., the **Chebyshev optimal points** over the same interval. Plot both the interpolating polynomials and their errors over the entire interval for values of $N \geq 5$. Use Neville's Method to compute each value of the interpolating polynomials. Finally, discuss the merits of each approximation in terms of your results. For example, is the use of Chebyshev *optimal* points better? What is the behavior of both types of interpolating polynomials as N increases? Answer your classmates question.

15 pts (2) It is possible to represent a function that is not, in general, single-valued by introducing a parameter (say s) that represents the distance along a curve. A two-dimensional shape can then be represented with two separate functions of this parameter, say x(s) and y(s). If one has a set of discrete points along the two-dimensional curve, it is possible to determine the interpolating polynomials, $x(s_i)$ and $y(s_i)$, that pass through this set of points. Use this so-called parametric interpolation technique on the table of data points provided.

Be sure to plot x(s), y(s) as well as your interpolated shape. Note that you need to experiment a bit to choose an appropriate value of Δs with which to sample your functions. Report the value of Δs you use as well as the maximum and minimum values of x(s) and y(s).

20 pts (3) Repeat problem (2) with a natural cubic spline. In addition to showing similar plots and reporting the corresponding values, also list all 4 coefficients for each of the cubics which comprise the interpolants for both x(s) and y(s). How does your letter compare with that produced in problem (2)? Explain any differences.