Turvallinen toimintapiste

Jäähdytys

Normaalisti transistorin häviöteho voidaan laskea kollektorivirran ja CE-jännitteen

Häviöteho lämmittää kollektoriliitosta ja poistuu puolijohteesta ympäristöön.

Lämmön siirtymistä voidaan mallintaa sähköisellä sijaiskytkennällä:

Ohmin lain mukaan:

$$\Delta T_{jA} = P_{tot} (R_{th jC} + R_{th CA})$$

josta saadaan:

$$P_{\text{max}} = \frac{T_{\text{Jmax}} - T_{\text{A}}}{R_{\text{th jC}} + R_{\text{th CA}}}$$

 $R_{th,jA} = 0.25 \text{ K/mW}$ $R_{th jC} = 0.15 \text{ K/m/V}$

Esimerkiksi BC 547:

 $P_{\text{max}} = 500 \text{ mW}$

Lancare Contident.

Transistorin absoluuttinen <u>tehonkesto</u>

Lisäjäähdytys

TO-92

TO-220 AB

Lämpöresistanssin arvo riippuu komponentin koteloinnista. Tyypillisiä arvoja ovat:

R th jA

250 K/W

 R_{th} jC

150 K/W

1,2 K/W

Jäähdytyselementtiä käytettäessä pitää huomioida myös lämpövastus transistorin kuoresta jäähdytyselementtiin. Tätä ylimenoayastusta voidaan pierentää käyttämällä hieman rii a.

Jäähdytys

Normaalisti transistorin häviöteho voidaan laskea kollektorivirran ja CE-jännitteen tulona:

Häviäteho lämmittää kollektoriliitosta ja poistuu puolijohteesta ympäristöön.

Lilmmön siirtymistä voidaan mallintaa sähköisellä sijaiskytkennällä:

Ohmin lain mukaan:

$$\Delta T_{jA} = P_{tot} (R_{th} jC + R_{th} CA)$$

 $P_{\text{max}} = \frac{T_{\text{Jmax}} \cdot T_{\text{A}}}{R_{\text{th}} \cdot C + R_{\text{th}} \cdot C}$

Esimerkiksi BC 547: $P_{max} = 500 \text{ mW}$ $R_{th jA} = 0,25 \text{ K/mW}$ $R_{th jC} = 0,15 \text{ K/mW}$

je june kon (lithanis h.)

nt o mounthin bore (or mounthing)

C = Cose (beauti

Lisäjäähdytys

TO-92

Lämpöresistanssin arvo riippuu komponentin koteloinnista. Tyypillisiä arvoja ovat:

RthjA

250 K/\V

R th jC

150 K/W

Jäähdytyselementtiä käytettäessä pitää huomioida myös lämpövastus transistorin kuoresta jäähdytyselementtiin. Titti yilmenoavastusta voidaan pienentiä käyttämällä hienian piirasvaa.

Harjoitus 2.

Transistoria 2N2219 käytetään 0.35W teholla ilman jäähdytyselementtiä. Ympäristön lämpötila on +60 °C. Laske kollektoriliitoksen lämpötila.

Harjoitus 3.

Transistorin 2N2219 käytetään varustettuna jäähdytystähdellä, jonka lämpöresistanssi on 30 °C/W. Ylimenolämpöresistanssi on 5 °C/W.

- a) Laske, mikä on transistorin P_{Cmax}-arvo, jos ympäristö on +50 °C lämpötilassa.
- b) Mikä on kollektoriliitoksen lämpötila, jos transistoria käytetään
 1 W teholla?
- c) Laske transistorin kuoren lämpötila b-kohdan tapauksessa.
- d) Vertaile eri jäähdytysprofiileja ja niiden fyysisten mittojen merkitystä jäähdytyskykyyn

KK 19

Höhe (mm): 5/10/15 R_m K/W (P * 2.5 W): 51/38/30 Material: Zinnbronze Oberliche: schwarz gelärbt Gewicht (g): 2/4/5 Gehäuse: TO 5

Bestell-Nr.: KK 19-5/KK 19-10/KK 19-

Bestell-Nr.: K 64-(Höhe)-(Lochbild)

K 64 Auslauftype

Höhe (mm): 23 Größe (mm): 64 x 64 Material: Al 2,5 Oberläche: schwarz eloxiert Gewicht (g): ca. 35/45 Lochbild: TO 3, TO 66, Kombl

KS 125.5

2N2219A

2N2219 ·

RATINGS

Limiting values in accordance with the Absolute Maximum Ssystem (IEC 134)

	Collector-base voltage (open emitter)		: ::	· · · ·	: 2N2219	2N2	2219A
	Collector-emitter voltage (open base)		VCBO	max.	60		75 V
	Emitter-base voltage (open collector)		VCEO	max.	30		40 V
	Collector current (d.c.)		VEBO	max.	5		6 V
	Total power dissipation		· Ic	max,	80	0	m/
	up to Tamb = 25 oc		P _{tot}	max.	. 0,	R	w.
•	up to T _{case} = 25 °C Storage temperature	9	· Ptot .	max,		3	W
	Junction temperature	•	T _{stg}		-65 to	+200	-oC
	THERMAL RESISTANCE		Ţ	max.	20	0 ,	. oC
	From junction to amblent in free air		р.,				
	From Junction to case		R _{th j∙a}	E	19)	K/M
			Rth J-c	E	50) .	K/M
	CHADACTEDICTION						

CHARACTERISTICS

T_j = 25 °C unless otherwise specified

v		2N2219	2N2219A
Ican	<	10	
	<		- nA
ICBO	<	_	— µА 10 пА
ICBO	<	-	10 HA
IEBO	<	10	· 10 nA
ICEX	< <		10 nA 20 nA
	I _{EBO}	CBO	CBO

· Analiashla....

Eräiden kotelotyyppien lämpöresistansseja

Kotelo	$ heta_{JA}$ [C/W]	θ _{JC} [°C/W]
3 pin SOT-23	300	180
5 pin SOT-23	190	
6 pin SOT-23	165	92
8 pin muovinen DIP	90	
8 pin keraaminen DIP	110	22
8 pin SOIC	160	60
8 pin metallikotelo	150	45
10 pin metallikotelo	150	25
12 pin metallikotelo	100	30
14 pin muovinen DIP	150	
14 pin keraaminen DIP	110	130
14 pin SOIC	120	
15 pin SIP	41	2
16 pin muovinen DIP	120	40
16 pin keraaminen DIP	95	22
16 pin SOIC	85	
18 pin keraaminen DIP	120	35
20 pin muovinen DIP	102	31
20 pin keraaminen DIP	70	10
20 pin SOIC	74	24