Also, specific user environment and usage history can make it difficult to reproduce the problem. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. Programmable devices have existed for centuries. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Ideally, the programming language best suited for the task at hand will be selected. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Normally the first step in debugging is to attempt to reproduce the problem. Different programming languages support different styles of programming (called programming paradigms). Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code.