Math 6030, Graduate Algebra, Spring 2025, Homework 8

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1.	Let R be the ring of differentiable (C^{∞}) functions on the unit interval and let I be the ideal of functions vanishing at 0. Show that $\bigcap I^n \neq 0$.
2.	Let $S \subset R$ be a multiplicative subset in a commutative ring R . Show that for a proper ideal $I \triangleleft R$, we have $I = IR_S \cap R$ if and only if I is S -saturated.
3.	Suppose I is an ideal in a commutative Noetherian ring R and P is a minimal prime over I . If P is maximal in R show that R/I is Artinian.
4.	Let $R = \mathbb{C}[x, y]$, and $S = \{y^n \mid n \in \mathbb{N}\}$. Find an example of an ideal $I \triangleleft R$ such that I is not primary, but the S -saturation I^S of I is primary.
5.	Suppose R is a PID. Give a characterization of the primary ideals of R .
6.	(Nakayama variant via Krull intersection). Suppose that R is a Noetherian domain and $I, J \triangleleft R$ are proper ideals such that $IJ = J$. Show that we must have $J = 0$.