MATH 2111 Matrix Algebra and Applications

Homework-10: Due 12/05/2022 at 11:59pm HKT

1. (1 point) Find the projection of
$$\vec{v} = \begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}$$
 onto the

line ℓ of \mathbb{R}^3 given by the parametric equation $\ell = t\vec{u}$, where $\vec{u} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$

$$\operatorname{proj}_{\ell}(\vec{v}) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

Correct Answers:

 $\begin{bmatrix}
-1.10169 \\
-1.10169 \\
-0.661017
\end{bmatrix}$

2. (2 points) Perform the Gram-Schmidt process on the following sequence of vectors.

$$x = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}, y = \begin{bmatrix} -2 \\ -4 \\ -5 \end{bmatrix}, z = \begin{bmatrix} -9 \\ 0 \\ 0 \end{bmatrix}.$$

[Note: You need to normalize your vectors.]

Correct Answers:

- 0.66666666666667
- 0.333333333333333
- 0.66666666666667
- 0.66666666666667
- -0.66666666666667
- -0.3333333333333333
- -0.3333333333333333
- -0.66666666666667
- 0.66666666666667

3. (2 points) Find the projection of
$$\vec{v} = \begin{bmatrix} -10 \\ 12 \\ 14 \end{bmatrix}$$
 onto the subspace W of \mathbb{R}^3 spanned by $\begin{bmatrix} -5 \\ 6 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}$.

$$\operatorname{proj}_W(\vec{v}) = \begin{bmatrix} & & & & \\ & & & & \end{bmatrix}$$

Correct Answers:

$$\begin{bmatrix}
-10.254 \\
9.20635 \\
-1.49206
\end{bmatrix}$$

4. (2 points) Let

$$\vec{v}_1 = \begin{bmatrix} 0.5 \\ -0.5 \\ 0.5 \\ -0.5 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -0.5 \\ 0.5 \\ 0.5 \\ -0.5 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 0.5 \\ 0.5 \\ -0.5 \\ -0.5 \end{bmatrix}.$$

Find a vector \vec{v}_4 in \mathbb{R}^4 such that the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , and \vec{v}_4 are orthonormal

Correct Answers:

0.5 0.5 0.5 0.5

5. (3 points) Let

$$\vec{x} = \begin{bmatrix} 4 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \ \vec{y} = \begin{bmatrix} 1 \\ -0.5 \\ -4.5 \\ 1 \end{bmatrix}, \ \vec{z} = \begin{bmatrix} -6.5 \\ -17.5 \\ 0.5 \\ 4.5 \end{bmatrix}.$$

Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^4 spanned by \vec{x} , \vec{y} , and \vec{z} .

$$\left\{ \left[\begin{array}{c} --- \\ --- \end{array}\right], \left[\begin{array}{c} --- \\ --- \end{array}\right], \left[\begin{array}{c} --- \\ --- \end{array}\right] \right\}.$$

Correct Answers:

6. (2 points) Let
$$y = \begin{bmatrix} -4 \\ 6 \\ 0 \\ 2 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 6 \\ 4 \\ 2 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -6 \\ -4 \\ -1 \\ -54 \end{bmatrix}$.

Compute the distance d from y to the subspace of \mathbb{R}^4 spanned by u_1 and u_2 .

$$d = \underline{\hspace{1cm}}$$
Correct Answers:

• 7.2111877714221

7. (2 points) Given $\vec{v} = \begin{bmatrix} 5 \\ 4 \\ 5 \\ -9 \end{bmatrix}$, find the closest point to \vec{v}

in the subspace W spanned by $\begin{bmatrix} -3 \\ 4 \\ 4 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ 4 \\ 4 \\ 44 \end{bmatrix}$.

Correct Answers.

$$\begin{bmatrix}
-1.37673 \\
2.09101 \\
2.09101 \\
-9.14171
\end{bmatrix}$$

8. (2 points) All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If an $n \times p$ matrix U has orthonormal columns, then $UU^Tx = x$ for all x in \mathbb{R}^n .
- B. In the Orthogonal Decomposition Theorem, each term $\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + ... + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ is itself an orthogonal projection of y onto a subspace of W.
- C. The best approximation to y by elements of a subspace W is given by the vector $y \text{proj}_W(y)$.
- D. If $y = z_1 + z_2$, where z_1 is in a subspace W and z_2 is in W^{\perp} , then z_1 must be the orthogonal projection of y onto W

• E. If W is a subspace of \mathbb{R}^n and if v is in both W and W^{\perp} , then v must be the zero vector.

Correct Answers:

- BDE
- **9.** (3 points) Let W be the subspace of \mathbb{R}^3 spanned by the vectors

$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 6 \\ -10 \\ 2 \end{bmatrix}.$$

Find the matrix A of the orthogonal projection onto W.

$$A = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

 $\begin{bmatrix} 0.833333 & -0.166667 & -0.333333 \\ -0.166667 & 0.833333 & -0.333333 \\ -0.333333 & -0.333333 & 0.333333 \end{bmatrix}$

10. (2 points) Find the least-squares solution \vec{x}^* of the system

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 3 & 4 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ -5 \\ -5 \end{bmatrix}.$$

$$* = \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix}$$

Correct Answers:

 $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$

11. (3 points) Fit a quadratic function of the form $f(t) = c_0 + c_1 t + c_2 t^2$ to the data points (0, -6), (1, 0), (2, -12), (3, -2), using least squares.

- t^2-(4+3*t)
- **12.** (3 points) Fit a trigonometric function of the form $f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t)$ to the data points (0, 13.5), $(\frac{\pi}{2}, 5.5)$, $(\pi, -0.5)$, $(\frac{3\pi}{2}, 13.5)$, using least squares.

• $8-4*\sin(t)+7*\cos(t)$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America