3011979 Intro to Deep Learning for Medical Imaging

L3: Unsupervised learning – PCA and MDS

Feb 5th, 2021

Sira Sriswasdi, Ph.D.

Research Affairs, Faculty of Medicine Chulalongkorn University

Today's objectives

- Introduction to unsupervised learning
- Principal component analysis
- Multidimensionality scaling

Unsupervised learning

Qian, B. et al. "Orchestrating the Development Lifecycle of Machine Learning-Based IoT Applications: A Taxonomy and Survey"

Pattern recognition through data density

Unsupervised learning

https://github.com/benedekrozemberczki/awesome-community-detection

Pattern recognition through data connectivity

Unsupervised learning

Pattern recognition through similarity

Patterns are defined by distances

Patterns are defined by distances

Thick edges = small distances = high similarities

Choices of distance measurement

www.tutorialexample.com

www.quora.com

- Euclidean distance = $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$
- Manhattan distance = $|x_1 x_2| + |y_1 y_2|$
- Pearson and Spearman correlation coefficients
- Cosine similarity = $\frac{\overline{u_1} \cdot \overline{u_2}}{|u_1||u_2|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$
- What would be an appropriate distance measurement between the clinical profiles of two patients?

Features can have different scales and units

	age	sex	tumor_size	surg	tace	embo	cmt	total_dose	no_fx	dose_fx
study_id										
2	53	0	3.7	0	0	0	0	30.0	10	3.0
3	54	1	2.0	0	1	0	0	30.0	10	3.0
4	53	1	7.4	0	0	0	0	45.0	25	1.8
5	41	1	5.8	1	1	0	0	30.0	10	3.0
6	54	1	14.4	0	1	0	0	30.0	10	3.0

- $d_{\text{Euclidean}}(p_1, p_4) = \sqrt{(53 41)^2 + (0 1)^2 + \dots + (3 3)^2}$
- What is the unit of distance?
- What would correlation between these data look like?

Data standardization

	age	sex	tumor_size	surg	tace	embo	cmt	total_dose	no_fx	dose_fx
study_id										
2	53	0	3.7	0	0	0	0	30.0	10	3.0
3	54	1	2.0	0	1	0	0	30.0	10	3.0
4	53	1	7.4	0	0	0	0	45.0	25	1.8
5	41	1	5.8	1	1	0	0	30.0	10	3.0
6	54	1	14.4	0	1	0	0	30.0	10	3.0

	age	sex	tumor_size	surg	tace	embo	cmt	total_dose	no_fx	dose_fx
study_id										
2	-0.712257	-2.186163	-0.816166	-0.362132	-1.336953	-0.148093	-0.25287	-0.733512	-0.259310	-0.416553
3	-0.626058	0.455451	-1.170211	-0.362132	0.744746	-0.148093	-0.25287	-0.733512	-0.259310	-0.416553
4	-0.712257	0.455451	-0.045598	-0.362132	-1.336953	-0.148093	-0.25287	0.835401	2.025241	-0.977328
5	-1.746647	0.455451	-0.378817	2.749521	0.744746	-0.148093	-0.25287	-0.733512	-0.259310	-0.416553
6	-0.626058	0.455451	1.412233	-0.362132	0.744746	-0.148093	-0.25287	-0.733512	-0.259310	-0.416553

•
$$x_{\text{standardized}} = \frac{x - \text{mean}}{\text{s.d.}}$$
 s. d. = $\sqrt{\frac{\sum (x_i - \text{mean})^2}{N}}$

- What's the mean of a standardized feature?
- What's the standard deviation of a standardized feature?

Some derivations

$$z = \frac{x - \mu}{\sigma} \qquad \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \qquad \mu = \frac{\sum x_i}{N}$$

• Mean of z's =
$$\frac{\sum z_i}{N} = \frac{\sum \frac{x_i - \mu}{\sigma}}{N} = \frac{\sum (x_i - \mu)}{N\sigma} = \frac{(\sum x_i) - N\mu}{N\sigma} = 0$$

• S.D. of z's =
$$\sqrt{\frac{\sum z_i^2}{N}} = \sqrt{\frac{\sum (\frac{x_i - \mu}{\sigma})^2}{N}} = \sqrt{\frac{\sum (x_i - \mu)^2}{N\sigma^2}} = \frac{1}{\sigma} \sqrt{\frac{\sum (x_i - \mu)^2}{N}} = 1$$

What is the unit of z's?

Dimensionality reduction

- Highly correlated / redundant features should be collapsed
- The major pattern (two groups of patients) can be sufficiently represented with just a few features
- Visualization on 2D or 3D for human eyes

Principal component analysis (PCA)

Source: the paleontological association

- Fit an n-dimensional ellipsoid to the data cloud
 - Axes of the ellipsoid are the principal components (dimensions)
 - Axes are orthogonal
 - Larger axis = more variance of data along that axis

Variance of data along an axis

- Original data belong to an n-dimensional space
- A principal component is a direction in n-dimensional space and can be characterized by (w₁, ..., w_n)
- Data points can be projected onto this 1D axis and the variance of the projection can be calculated

Projection of point onto a line

- $X' = (\alpha w_1, \alpha w_2, ..., \alpha w_n), \alpha$ is a real number
- $\overline{XX'} = (\alpha w_1 x_1, \alpha w_2 x_2, \dots, \alpha w_n x_n)$
- The vector XX' is orthogonal to the principal component
 - Angle between XX' and (w₁, w₂, ..., w_n) is 90 degree
 - Dot product between XX' and $(w_1, w_2, ..., w_n) = 0$
 - $(\alpha w_1 x_1)w_1 + (\alpha w_2 x_2)w_2 + \dots + (\alpha w_n x_n)w_n = 0$
 - $\alpha \sum w_i^2 \sum w_i x_i = 0$
 - $\alpha = \sum w_i x_i / \sum w_i^2 \leftarrow \text{Let's consider } \sum w_i^2 = 1$, so $\alpha = \sum w_i x_i = w \cdot X$
- $X' = (w \cdot X)w$

Finding the "best" principal component

- $X' = w \cdot X$, $Y' = w \cdot Y$, and $Z' = w \cdot Z$
- Mean of X', Y', Z' = $w \cdot \left(\frac{x_1 + y_1 + z_1}{3}, \dots, \frac{x_n + y_n + z_n}{3}\right) = w \cdot \mu = 0$
- Variance of X', Y', $Z' = \frac{(w \cdot X)^2 + (w \cdot Y)^2 + (w \cdot Z)^2}{3}$
- The best principal component is the w that maximize the variance $\frac{(w \cdot X)^2 + (w \cdot Y)^2 + (w \cdot Z)^2}{3}$ subject to $\sum w_i^2 = 1$

Finding the next best principal components

- The second-best principal component is the w that maximize the variance $\frac{(w \cdot X)^2 + (w \cdot Y)^2 + (w \cdot Z)^2}{3}$ subject to $\sum w_i^2 = 1$ and is orthogonal to the best principal component
- And so on...
- In practice, finding the principal components is equivalent to finding the eigenvectors and eigenvalues of the data matrix

PCA on raw data

	age	sex	tumor_size	surg	tace	embo	cmt	total_dose	no_fx	dose_fx
study_id										
2	53	0	3.7	0	0	0	0	30.0	10	3.0
3	54	1	2.0	0	1	0	0	30.0	10	3.0
4	53	1	7.4	0	0	0	0	45.0	25	1.8
5	41	1	5.8	1	1	0	0	30.0	10	3.0
6	54	1	14.4	0	1	0	0	30.0	10	3.0

- What would likely be the first principal component?
 - Hint: The first principal component is the direction that maximize the variance of the data points
 - Hint: Variance scales linearly with magnitude of data value

Key behaviors of PCA

- The projection $X' = (w \cdot X)w$ is a linear combination of the original n features
 - We can look at w to interpret feature-level contribution
 - w = (-10, 1, 0.2, 3) means that the first feature is quite important here
- PCA = rotation of the original axes
 - PCA preserve Euclidean distances between data points
 - PCA does not work well when Euclidean distance is inappropriate
- Highly correlated features tend to be grouped together in the same principal component
- PCA is a good initial step for more-complex algorithm
- PCA is generally deterministic

PCA in Python

sklearn.decomposition.PCA

class sklearn.decomposition. $PCA(\underline{n_components=None}, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)$

[source]

Returned values that you can use

Attributes:

components_: ndarray of shape (n_components, n_features)

Principal axes in feature space, representing the directions of maximum variance in the data. The components are sorted by explained_variance_.

explained_variance_: ndarray of shape (n_components,)

The amount of variance explained by each of the selected components.

Equal to n_components largest eigenvalues of the covariance matrix of X.

New in version 0.18.

explained_variance_ratio_: ndarray of shape (n_components,)

Percentage of variance explained by each of the selected components.

If n_components is not set then all components are stored and the sum of the ratios is equal to 1.0.

Explained variance ratio

- Components that capture high variances are typically useful but not always
- Explained variance trend suggests the true dimension of data

Principal component's weights

PCA-transformed data

Multidimensional scaling (MDS)

- MDS projects data points onto new dimensions while trying to preserve the similarity between two distance matrices
 - For example: Maximize Pearson or Spearman correlation

Principal Coordinate Analysis (PCoA)

- Also called Classical MDS
- Users provide distance matrix $d(X_i, X_i)$
- Let Y_i be a projection of X_i onto a new k-dimensional space
 - This induces Euclidean distances $d_{\text{Euclidean}}(Y_i, Y_i)$
- Pearson correlation between $d(X_i, X_j)$ and $d_{\text{Euclidean}}(Y_i, Y_j)$ can be calculated as a function of Y_i 's
 - Solve for Y_i's that maximize this
- In practice, finding Y_i 's is related to finding the eigenvectors and eigenvalues of some matrix (related to $d(X_i, X_i)$)

Non-classical MDS

Maximize Spearman correlation

- Non-metric MDS
- Generalized MDS

MDS in Python

sklearn.manifold.MDS

class $sklearn.manifold.MDS(n_components=2, *, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=None, random_state=None, dissimilarity='euclidean')$ [source]

Parameters:

n_components : int, default=2

Number of dimensions in which to immerse the dissimilarities.

metric : bool, default=True

If True, perform metric MDS; otherwise, perform nonmetric MDS.

dissimilarity : {'euclidean', 'precomputed'}, default='euclidean'

Dissimilarity measure to use:

'euclidean':

Pairwise Euclidean distances between points in the dataset.

'precomputed':

Pre-computed dissimilarities are passed directly to fit and fit_transform.

Default (metric = True) is Principal Coordinate Analysis

Any question?