BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET

Dr. Iváncsyné Csepesz Erzsébet

ELEKTRONIKA

Műveleti erősítők

BUDAPEST, 2002.

6. MŰVELETI ERŐSÍTŐK

A műveleti erősítők integrált áramköri technikával készült szimmetrikus bemenetű és aszimmetrikus kimenetű egyenfeszültség-erősítők. A közel ideális paraméterek biztosítása érdekében a műveleti erősítő több áramköri egységből áll. A 6.1. ábrán a műveleti erősítő tömbvázlata látható.

6.1. ábra. Az általános felépítésű műveleti erősítő tömbvázlata.

Az integrált műveleti erősítő két földfüggetlen bemenettel és a földhöz képest egy kimenettel rendelkezik (6.2. ábra). A (–) jelű az invertáló, a (+) jelű a neminvertáló bemenete a műveleti erősítőnek. Az integrált műveleti erősítő általában két tápforrással működtethető.

A műveleti erősítő jelképi jelölése és a tápfeszültség kialakítása látható a 6.2. ábrán. A jelképi jelölésen gyakran nincsenek feltüntetve a tápforrások kivezetései, amelyek természetesen minden esetben szükségesek.

6.2. ábra. A műveleti erősítő a) jelképi jelölése és b) tápfeszültség kialakítása.

A műveleti erősítő vezérelhető

- szimmetrikus bemeneti jellel,
- közös bemeneti jellel,
- aszimmetrikus vezérlőjellel.

A műveleti erősítő legfontosabb áramköri jellemzőit a gyártó cégek katalógusokban ismertetik.

A legfontosabb paraméterek:

 A_{u0} : nyílthurkú feszültségerősítés (Open loop voltage gain): szimmetrikus bemeneti jellel, üresjárásban, visszacsatolás nélkül, kisfrekvencián mért érték.

 E_k : közösjel-elnyomási tényező (Common mode rejection ratio, *CMRR*).

R_{bes}: bemeneti szimmetrikus ellenállás (Input impedance).

 R_{ki} : kimeneti ellenállás.

 f_0 : az a frekvencia érték, ahol a feszültségerősítés a kisfrekvencián mért értékhez képest 3 dB-lel csökken.

 f_I : az egységnyi erősítéshez tartozó frekvencia.

 I_b : nyugalmi bemeneti áram (Input bias current): az integrált műveleti erősítő bemeneti differenciálerősítőjének munkaponti bázisárama.

 I_{b0} : bemeneti ofszet áram (Input offset current): az a bemeneti szimmetrikus áram, amely az $U_{ki} = 0$ nyugalmi kimeneti feszültség beállításához szükséges.

 U_{b0} : bemeneti ofszet feszültség (Input offset voltage): az a bemeneti szimmetrikus feszültség, amely az $U_{ki} = 0$ nyugalmi kimeneti feszültség beállításához szükséges.

 $i_{d\theta}\left[\frac{nA}{C^{\circ}}\right]$: bemeneti hőmérsékleti áram-drift (Input offset current drift): a bemeneti ofszet áram hőmérsékleti tényezője.

 $u_{d\theta}\left[\frac{\mu V}{C^{\circ}}\right]$: bemeneti hőmérsékleti feszültség-drift (Input offset voltage drift): a bemeneti ofszet feszültség hőmérsékleti tényezője.

 $\pm U_t$: tápfeszültség tartomány.

 U_{bemax} : a megengedhető maximális bemeneti feszültség, általában a tápfeszültség értékével megegyezik.

 U_{kimax} : a maximális kimeneti feszültség, általában 1-2 V-tal kisebb, mint a tápfeszültségek.

 I_{kimax} : maximális kimeneti áram. A korszerű típusok rövidzárvédelemmel vannak ellátva.

 P_0 : nyugalmi teljesítményfelvétel. P_{dmax} : maximális disszipált teljesítmény.

S: a kimeneti feszültség maximális változási sebessége (Slew rate), definíciója:

$$S = \frac{du_{ki}}{dt}\bigg|_{\max}.$$

- végtelen nagy bemeneti ellenállással,
- végtelen nagy nyílthurkú erősítéssel,
- végtelen nagy közös feszültségelnyomási tényezővel,
- nulla kimeneti ellenállással,
- nulla ofszet értékekkel,
- nulla drift értékekkel,
- tápfeszültséggel megegyező maximális kimeneti feszültséggel,
- frekvenciafüggetlen átvitellel közelíthető.

A valóságos műveleti erősítő

- nagy nyílthurkú erősítéssel $(A_{u0} = 10^3 ... 10^7)$,
- nagy bemeneti ellenállással ($R_{bes} = 10 \text{ k}\Omega \dots 5 \text{ M}\Omega$, $R_{bek} > 100R_{bes}$),
- közel nulla kimeneti ellenállással ($R_{ki} = 10 \ \Omega....200 \ \Omega$),
- nagy közös feszültségelnyomási tényezővel $(E_{ku} > 10^3)$,
- ofszet értékekkel ($I_{b\theta}$ =1 nA....1 μ A, $U_{b\theta}$ = 1....5 mV),
- drift értékekkel $(i_{d0} = (0,1....10) \frac{nA}{C^{\circ}}, u_{d0} = (0,5....5) \frac{\mu V}{C^{\circ}}),$
- a tápfeszültségnél 1-2 V-tal kisebb maximális kimeneti feszültséggel,
- frekvenciafüggő átvitellel ($f_0 = 1 \text{ Hz....} 100 \text{ MHz}$) rendelkezik.

A 6.3 a) ábrán az ideális, a 6.3 b) ábrán a nemideális műveleti erősítő transzfer karakterisztikája látható.

6.3. ábra. Az a) ideális és b) valóságos műveleti erősítő transzfer karakterisztikája.

6.1. MŰVELETI ERŐSÍTŐK ALKALMAZÁSAI

6.1.1. Neminvertáló erősítő kapcsolás

A műveleti erősítő neminvertáló bemenetét aszimmetrikus jel vezérli, az invertáló bemenetre a kimeneti feszültséggel arányos visszacsatolt feszültség kapcsolódik.

6.4. ábra. Neminvertáló műveleti erősítő.

A szemléltetés érdekében az erősítő kapcsolási rajza átalakítható a 6.4.b ábra szerint, amelyen könnyen felismerhető a 2. fejezetben ismertetett soros feszültség visszacsatolás. Az A erősítőnek a műveleti erősítő, a B visszacsatoló tagnak az R_1 és az R_2 ellenállásokból kialakított feszültségosztó hálózat feleltethető meg.

Az A erősítő feszültségerősítése megegyezik a műveleti erősítő $A_{u\theta}$ nyílthurkú feszültségerősítésével.

A B visszacsatoló tag feszültségerősítése:

$$B_u = \frac{u_v}{u_{ki}}. (6.1)$$

Az u_v visszacsatolt feszültség:

$$u_{v} = u_{ki} \frac{R_{1}}{R_{1} + R_{2}}. (6.2)$$

A 6.2 összefüggést a 6.1 egyenletbe visszahelyettesítve a B_u erősítés

$$B_{u} = \frac{u_{ki} \frac{R_{1}}{R_{1} + R_{2}}}{u_{ki}} = \frac{R_{1}}{R_{1} + R_{2}}$$
(6.3)

összefüggéssel adható meg.

A visszacsatolt rendszer A'_u eredő feszültségerősítése:

$$A_u' = \frac{A_u}{1 + A_u B_u} = \frac{A_{u0}}{1 + A_{u0} B_u},$$
(6.4)

amely átalakítható az

$$A'_{u} = \frac{A_{u0}}{1 + A_{u0}B_{u}} = \frac{\frac{A_{u0}}{A_{u0}}}{\frac{1}{A_{u0}} + B_{u}} = \frac{1}{\frac{1}{A_{u0}} + B_{u}}$$
(6.5)

alakra. Ideális műveleti erősítőt feltételezve, a feszültségerősítése végtelen nagynak tekinthető: $A_{u0} \rightarrow \infty$, ezért a visszacsatolt rendszer eredő erősítése az

$$A'_{u} = \frac{1}{\frac{1}{\infty} + B_{u}} \approx \frac{1}{B_{u}} = \frac{R_{1} + R_{2}}{R_{1}} = 1 + \frac{R_{2}}{R_{1}}$$
(6.6)

összefüggéssel adható meg. Megállapítható, hogy a visszacsatolt rendszer eredő erősítését a visszacsatoló hálózat áramköri paraméterei határozzák meg, és független a műveleti erősítő paramétereitől.

A visszacsatolt rendszer eredő bemeneti ellenállása:

$$R'_{hes} = R_{hes} (1 + A_{u0} B_{u}) = R_{hes} (1 + H). \tag{6.7}$$

A visszacsatolt rendszer eredő kimeneti ellenállása:

$$R'_{ki} = \frac{R_{ki}}{1 + H_{ii}}, \qquad H_{ii} \cong H. \tag{6.8}$$

Az erősítő kapcsolás feszültségerősítését a visszacsatolásokra vonatkozó összefüggéseken kívül un. "műveleti erősítős" szemlélettel is meg lehet határozni. A műveleti erősítő erősítése:

$$A_{u0} = \frac{u_{ki}}{u_{bes}}. (6.9)$$

Mivel az ideális erősítő erősítése végtelen nagynak feltételezhető, ebből adódik, hogy a szimmetrikus bemeneti feszültség $u_{bes} = 0$.

Ha $u_{bes} = 0$, akkor a két bemenet földhöz képesti feszültsége megegyezik: $u_p = u_n$. A pozitív bemenet feszültsége: $u_p = u_{be}$, a negatív bemenet feszültsége: $u_n = u_v$, tehát $u_{be} = u_v$.

Az u_v visszacsatolt feszültség:

$$u_{v} = u_{be} = u_{ki} \frac{R_{1}}{R_{1} + R_{2}}.$$
 (6.10)

A visszacsatolt rendszer eredő feszültségerősítése az

$$\mathbf{A}'_{\mathbf{u}} = \frac{u_{ki}}{u_{he}} = \frac{R_1 + R_2}{R_1} = \mathbf{1} + \frac{\mathbf{R}_2}{\mathbf{R}_I}$$
 (6.11)

összefüggéssel határozható meg.

6.1.2. Műveleti erősítők munkapont beállítása

A műveleti erősítők munkapont beállításának feladata

- a nyugalmi bemeneti áram biztosítása,
- a bemeneti ofszet kiegyenlítése,
- a drift minimalizálása,
- a közös feszültség beállítása.

A műveleti erősítővel megvalósított kapcsolásokban minden esetben biztosítani kell a nyugalmi áram kialakulását. A munkaponti viszonyok vizsgálata a 6.5. ábra alapján elvégezhető.

6.5. ábra. A műveleti erősítő munkaponti viszonyainak vizsgálata.

A neminvertáló erősítő kapcsolás invertáló és neminvertáló bemenetén $u_{be} = 0$ bemeneti feszültség esetén egyaránt I_b egyenáram folyik. A műveleti erősítő minden egyéb szempontból ideálisnak tekinthető, ezért az erősítő végtelen nagy feszültség-erősítése miatt az u_{ki} kimeneti feszültség bármely értékéhez $u_{bes} = 0$ érték tartozik, tehát $u_n = u_p = 0$. Emiatt az R_I ellenálláson folyó I_I áram nulla, tehát az invertáló bemenet I_b nyugalmi egyenárama szükségszerűen megegyezik az R_2 ellenálláson folyó I_2 árammal, amely a kimeneten

$$u_{ki} = I_b R_2 \tag{6.12}$$

feszültséget hoz létre. Ez a hibafeszültség megszüntethető a neminvertáló bemenetre kapcsolt

$$R_3 = R_1 \times R_2 \tag{6.13}$$

értékű ellenállás alkalmazásával (6.6. ábra).

6.6. ábra. A műveleti erősítő munkapont beállítása.

Ebben az esetben a neminvertáló bemenet u_p feszültsége:

$$u_p = -I_b R_3. (6.14)$$

Mivel $u_p = u_n$, így az R_I ellenálláson folyó áram

$$I_{1} = -\frac{u_{n}}{R_{1}} = \frac{I_{b}R_{3}}{R_{1}} = I_{b} \frac{R_{2}}{R_{1} + R_{2}}.$$
 (6.15)

A visszacsatoló ellenálláson folyó áram a csomóponti törvény alapján:

$$I_2 = I_b - I_1. (6.16)$$

A kimeneti feszültség:

$$u_{ki} = u_n + I_2 R_2 = -I_b \frac{R_1 R_2}{R_1 + R_2} + \left(I_b - I_b \frac{R_2}{R_1 + R_2}\right) R_2.$$
 (6.17)

A matematikai átalakítások elvégzése után látható, hogy a kimeneti feszültség értéke

$$\boldsymbol{u}_{ki} = \boldsymbol{0} \,, \tag{6.18}$$

tehát az R₃ ellenállás alkalmazásával a hibafeszültség megszüntethető.

6.1.3. Feszültségkövető erősítő

A feszültségkövető erősítő a neminvertáló erősítőből származtatható $R_I = \infty$ helyettesítéssel.

6.7. ábra. Feszültségkövető erősítő.

Mivel az u_v visszacsatolt feszültség megegyezik az u_{ki} kimeneti feszültséggel, ezért a visszacsatoló tag feszültségerősítése $B_u = 1$.

A feszültségkövető erősítő feszültségerősítése:

$$A_u' = \frac{1}{B_u} = 1, (6.19)$$

a kimeneti feszültség megegyezik a bemeneti feszültséggel. A feszültségkövető erősítő feladata az impedancia illesztés.

6.1.4. Invertáló erősítő kapcsolás

A műveleti erősítő invertáló bemenetét az u_{be} aszimmetrikus bemeneti feszültség vezérli, az erősítő kapcsolás paramétereit a negatív visszacsatolás határozza meg. Az invertáló erősítő kapcsolási rajza a 6.6. ábrán látható.

6.8. ábra. Invertáló erősítő kapcsolás műveleti erősítővel.

Mivel az ideális erősítő erősítése végtelen nagynak feltételezhető, ebből adódik, hogy a szimmetrikus bemeneti feszültség $u_{bes} = 0$, a két bemenet földhöz képesti feszültsége megegyezik: $u_p = u_n$. Mivel $u_p = 0$, ezért $u_n = 0$, az R_3 ellenálláson nem folyik áram, a kapcsolásnak ez a pontja *virtuális földpont*on van.

Az ideális erősítő bemeneti ellenállása végtelen nagy, így a műveleti erősítőbe nem folyik be áram: $i_p = i_n = 0$, ezért az i_{be} bemeneti áram a visszacsatoló ellenállás áramával megegyezik: $i_{be} = -i_2$.

A bemeneti áram:

$$i_{be} = \frac{u_{be}}{R_1}. (6.20)$$

A visszacsatoló ellenálláson folyó áram:

$$i_2 = \frac{u_{ki}}{R_2} \,. \tag{6.21}$$

Mivel $i_{be} = -i_2$, ezért

$$\frac{u_{be}}{R_1} = -\frac{u_{ki}}{R_2} \,. \tag{6.22}$$

Ebből az összefüggésből a kapcsolás eredő feszültségerősítése:

$$A_{u}' = \frac{u_{ki}}{u_{be}} = -\frac{R_{2}}{R_{I}}.$$
 (6.23)

A negatív előjel utal arra, hogy a kimeneti feszültség ellentétes előjelű a bemeneti feszültséghez képest.

Az invertáló erősítő bemeneti ellenállása:

$$R_{be} = \frac{u_{be}}{i_{be}} = R_1, (6.24)$$

a kimeneti ellenállása pedig

$$R_{ki} = 0 \tag{6.25}$$

értékű.

6.1.5. Összegző erősítő

Az összegző erősítő kapcsolási rajza látható a 6.9. ábrán. A kapcsolás az u_{be1} , u_{be2} u_{be3} bemeneti feszültségekre vonatkozóan invertáló erősítő alapkapcsolásként viselkedik. A kimeneti feszültséget a szuperpozíció elve alapján lehet meghatározni.

6.9. ábra. Összegző erősítő kapcsolás.

A műveleti erősítő *i*_{be} bemeneti árama a részáramok összege:

$$i_{be} = i_1 + i_2 + i_3. (6.26)$$

A műveleti erősítő invertáló bemenete virtuális földponton van, ezért a bemeneti áramok az

$$i_1 = \frac{u_{be1}}{R_1}, \qquad i_2 = \frac{u_{be2}}{R_2}, \qquad i_3 = \frac{u_{be3}}{R_3}$$
 (6.27)

összefüggések szerint határozhatók meg.

A visszacsatoló ellenálláson folyó áram:

$$i_{v} = \frac{u_{ki}}{R_{v}}. \tag{6.28}$$

Mivel $i_{be} = -i_v$, ezért

$$\frac{u_{be1}}{R_1} + \frac{u_{be2}}{R_2} + \frac{u_{be3}}{R_3} = -\frac{u_{ki}}{R_v}.$$
 (6.29)

Ha az ellenállások értéke megegyezik:

$$R_1 = R_2 = R_3 = R_y = R,$$
 (6.30)

akkor a kimeneti feszültség

$$u_{ki} = -(u_{be1} + u_{be2} + u_{be3}) (6.31)$$

a bemeneti feszültségek invertált összege.

6.1.6. Különbségképző erősítő

A különbségképző erősítő (differenciaerősítő) erősítését nagystabilitású passzív elemek határozzák meg. A különbségképzés hibájának csökkentése érdekében a bemenetekre csatlakozó azonos jelű ellenállásoknak azonos értékűnek kell lennie.

6.10. ábra. Különbségképző kapcsolás.

A kimeneti feszültség a szuperpozíció elve alapján meghatározható.

a) Legyen $u_{be2} = 0$. Ekkor a kapcsolás egy invertáló erősítő kapcsolás, amelynek a feszültségerősítése:

$$A_u = -\frac{R_2}{R_1} \,. \tag{6.32}$$

A kimeneti feszültség ebben az esetben:

$$u_{ki1} = -\frac{R_2}{R_1} u_{be1}. ag{6.33}$$

b) Legyen $u_{bel} = 0$. Ebben az esetben a kapcsolás egy neminvertáló erősítő kapcsolás, amelynek a feszültségerősítése:

$$A_u = 1 + \frac{R_2}{R_1} \,. \tag{6.34}$$

Az u_{ki2} kimeneti feszültség az u_p feszültséggel arányos:

$$u_{ki2} = \left(1 + \frac{R_2}{R_1}\right) u_p \,. \tag{6.35}$$

A műveleti erősítő u_p feszültsége az u_{be2} bemeneti feszültségnek az R_2 ellenálláson leosztott része:

$$u_p = u_{be2} \frac{R_2}{R_1 + R_2}, (6.36)$$

így az u_{ki2} kimeneti feszültség:

$$u_{ki2} = \left(1 + \frac{R_2}{R_1}\right) u_{be2} \frac{R_2}{R_1 + R_2} = u_{be2} \frac{R_2}{R_1}.$$
 (6.37)

Ha az u_{be1} és az u_{be2} bemeneti feszültség egyidejűleg vezérli az erősítőt, akkor az u_{ki} kimeneti feszültség a két kimeneti rész-feszültség összege, szuperpozíciója:

$$\boldsymbol{u}_{ki} = u_{ki1} + u_{ki2} = -u_{be1} \frac{R_2}{R_1} + u_{be2} \frac{R_2}{R_1} = (\boldsymbol{u}_{be2} - \boldsymbol{u}_{be1}) \frac{\boldsymbol{R}_2}{\boldsymbol{R}_I}.$$
 (6.38)

A kimeneti feszültség csak a bemeneti feszültségek különbségével, a szimmetrikus bemeneti feszültséggel arányos, a közös jel nem hoz létre kimeneti jelet. Ha a bemenetre csatlakozó két R_I illetve R_2 jelű ellenállás nem pontosan egyenlő, akkor a kimeneten megjelenik a közös jel erősítése is.

6.11. ábra. Különbségképző kapcsolás különböző értékű ellenállások esetén.

A kimeneti feszültség különböző értékű ellenállások esetén (6.11. ábra) a lineáris szuperpozíció alapján, ideális műveleti erősítőt feltételezve az

$$u_{ki} = u_{ki1} + u_{ki2} = -u_{bel} \frac{R_2}{R_1} + u_{be2} \frac{R_4}{R_3 + R_4} \left(1 + \frac{R_2}{R_1} \right)$$
 (6.39)

összefüggéssel határozható meg.

6.2. MŰVELETI ERŐSÍTŐVEL MEGVALÓSÍTOTT VÁLTAKOZÓFESZÜLTSÉG ERŐSÍTŐK

A műveleti erősítők alapvetően egyenfeszültség erősítők, de az egyenfeszültségű összetevő leválasztásával alkalmassá tehetők csak váltakozófeszültség erősítésére is, a típustól függő korlátozott frekvenciatartományban. A jelforrás és az erősítő bemenete, illetve az erősítő kimenete és a terhelés közé iktatott csatoló kondenzátorok kapacitását úgy kell megválasztani, hogy a működési frekvenciatartományban impedanciájuk közel nulla legyen.

Váltakozófeszültség erősítésekor az ofszet és a drift hatásának csökkentésére a visszacsatoló hálózatot úgy kell kialakítani, hogy az egyenfeszültségre vonatkozó erősítése kicsi legyen. A megfelelő működéshez a műveleti erősítő bemenetei számára a munkaponti egyenáramot mindig biztosítani kell.

6.2.1. Invertáló AC erősítő

Invertáló váltakozófeszültségű erősítő kapcsolás két kialakítása látható a 6.12. ábrán. A bemeneten a C_1 csatolókondenzátor az egyenfeszültséget leválasztja, így itt nem folyhat egyenáram. Az erősítő invertáló bemenete a munkaponti áramot az R_2 ellenálláson keresztül, a neminvertáló bemenete pedig a tápforrásból kapja.

6.12. ábra. Invertáló AC erősítő kapcsolások.

Mivel a C_I kapacitás egyenáramú szempontból szakadás, ezért a kimeneti egyenfeszültség leosztás nélkül csatolódik vissza, tehát az egyenfeszültségre (DC) vonatkozó erősítés egységnyi. A kimeneten a bemeneti ofszet feszültséggel egyező

egyenfeszültség jelenik meg. A hibafeszültség csökkentésére a neminvertáló bemenetre $R_3 = R_2$ értékű ellenállást kell kapcsolni.

A kapcsolás váltakozófeszültségű erősítése az

$$A_u = -\frac{R_2}{R_1} \tag{6.40}$$

összefüggéssel határozható meg.

6.2.2. Neminvertáló AC erősítő

A neminvertáló váltakozófeszültség erősítő kapcsolás látható a 6.13 a) ábrán.

6.13. ábra. Neminvertáló AC kapcsolások.

Az R_3 ellenállás biztosítja a neminvertáló bemenet munkaponti nyugalmi bemeneti áramát, de csökkenti a bemeneti impedanciát. Az invertáló bemenet nyugalmi áramát az R_2 ellenálláson keresztül kapja. A C_2 kapacitás egyenfeszültség szempontból szakadás, ezért a kimeneti egyenfeszültség leosztás nélkül csatolódik vissza, így a kapcsolás egyenfeszültség erősítése $A_{uDC} = 1$. Kis erősítés esetén a C_2 kondenzátor elhagyható (6.13 b) ábra), mert az egyenáramú negatív visszacsatolás így is megfelelő értékű lehet.

A kapcsolás váltakozófeszültségű erősítése az

$$A_u = 1 + \frac{R_2}{R_1} \tag{6.41}$$

összefüggés szerint határozható meg.

6.3. MŰVELETI ERŐSÍTŐK FREKVENCIAFÜGGÉSE

A valóságos műveleti erősítő jellemzői, köztük a feszültségerősítés a működési frekvencia változásával nem állandó. A feszültségerősítés a frekvenciától függő, valós változójú komplex függvény, amely például Bode-diagrammal ábrázolható. A katalógusok megadják a visszacsatolatlan műveleti erősítő Bode-diagramját, amely gyakran a 6.14. ábrán látható egyidőállandós függvény, amelynek jellegzetes pontjai az $f_0 = \frac{\omega_0}{2\pi}$ törésponti frekvencia, az egységnyi erősítéshez tartozó $f_1 = \frac{\omega_1}{2\pi}$ frekvencia, valamint a műveleti erősítő A_{u0} erősítése.

6.14. ábra. A műveleti erősítő Bode-diagramja.

Az egyenfeszültség (DC) erősítő kapcsolások feszültségerősítését a visszacsatoló elemek határozzák meg, amelyek általában frekvenciafüggetlen alkatrészek, ezért a visszacsatolt erősítő erősítése

$$\mathbf{A}_{\mathbf{u}}'(\omega) = \frac{A_{u0}(\omega)}{1 + A_{u0}(\omega)B} \approx \frac{1}{B}, \quad \text{ha } A_{u0}(\omega)B > 1,$$
 (6.42)

ahol a visszacsatoló hálózat erősítése

$$B = \frac{R_1}{R_2} \,, \tag{6.43}$$

amely nem függ a frekvenciától, ezért az eredő erősítés is frekvenciafüggetlen. Nagy frekvencián azonban A_{u0} (ω) csökken, ekkor az eredő erősítés az

$$A'_{u}(\omega) = \frac{A_{u0}(\omega)}{1 + A_{u0}(\omega)B} \approx A_{u0}(\omega), \quad \text{mert } A_{u0}(\omega)B < 1,$$
 (6.44)

tehát a műveleti erősítő frekvenciamenete érvényesül, az $f_f = \frac{\omega_f}{2\pi}$ felső törésponti frekvenciánál nagyobb frekvenciatartományban az erősítés csökken. (6.15 b) ábra).

6.15. ábra. Az invertáló DC erősítő a) kapcsolása és b) Bode-diagramja.

A felső törésponti frekvencia a műveleti erősítő A_{u0} erősítése, f_0 törésponti frekvenciája, valamint a visszacsatoló hálózat adatainak ismeretében a Bode-diagram alapján meghatározható:

$$\frac{\left(A_{u0} - A_u'\right)}{\left(f_f - f_0\right)} \frac{\left[dB\right]}{\left[dek\right]} = \frac{20}{1} \frac{\left[dB\right]}{\left[dek\right]}.$$
(6.45)

A Bode-diagram logaritmikus léptékeit figyelembevéve a 6.45 összefüggés átalakítható a

$$\frac{\left(20\lg A_{u0} - 20\lg A_{u}'\right)}{20} = \frac{\left(\lg f_{f} - \lg f_{0}\right)}{1} \tag{6.46}$$

alakra. Az egyenlet rendezése után:

$$\frac{A_{u0}}{A_u'} = \frac{f_f}{f_0} \,. \tag{6.47}$$

Ebből az összefüggésből meghatározható a felső törésponti frekvencia:

$$f_f = f_0 \frac{A_{u0}}{A'_u} = f_0 (1 + A_{u0} B) = f_0 (1 + H), \tag{6.48}$$

amely a műveleti erősítő törésponti frekvenciájának a hurokerősítés mértékű változása.

6.3.1. Invertáló AC erősítő alapkapcsolás frekvenciafüggése

Ideális, frekvenciafüggetlen műveleti erősítőt feltételezve az AC erősítő kapcsolás frekvenciafüggését a csatolókondenzátorok okozzák.

6.16. ábra. A bemeneten csatolt invertáló AC erősítő kapcsolás.

A 6.16. ábrán látható kapcsolás feszültségerősítése az

$$A'_{u}(\omega) = -\frac{Z_{2}}{Z_{1}} = -\frac{R_{2}}{R_{1} + \frac{1}{j\omega C_{1}}} = -\frac{j\omega R_{2}C_{1}}{1 + j\omega R_{1}C_{1}} = -\frac{j\omega T_{2}}{1 + j\omega T_{a}}$$
(6.49)

összefüggéssel adható meg, ahol a törésponti körfrekvenciák:

$$\omega_a = \frac{1}{R_1 C_1} = \frac{1}{T_a}, \text{ és } \omega_2 = \frac{1}{R_2 C_1} = \frac{1}{T_2}.$$
 (6.50)

A feszültségerősítés az $\omega > \omega_a$ tartományban

$$A_u' = -\frac{R_2}{R_1} \tag{6.51}$$

összefüggéssel határozható meg.

A feszültségerősítés Bode-diagramja a 6.17. ábrán látható. Megállapítható, hogy kapcsolás f_a alsó törésponti frekvenciáját a bemeneti C_I csatolókondenzátor és az R_I ellenállás értéke befolyásolja, és az

$$f_a = \frac{\omega_a}{2\pi} = \frac{1}{2\pi R_1 C_1} \tag{6.52}$$

összefüggéssel adható meg.

6.17. ábra. Ideális műveleti erősítővel megvalósított, a bemeneten csatolt invertáló AC erősítő Bode-diagramja

A valóságos műveleti erősítő frekvenciamenete ebben az esetben is érvényesül, az $f_f = \frac{\omega_f}{2\pi} \ \text{felső törésponti frekvenciánál nagyobb frekvencián az erősítés csökken. A felső törésponti frekvencia az$

$$f_f = f_0 \frac{A_{u0}}{A'_u} = f_0 (1 + A_{u0}B) = f_0 (1 + H).$$
 (6.53)

összefüggéssel határozható meg. A kapcsolás Bode-diagramja 6.18 a) ábrán, a fázismenete 6.18 b) ábrán látható.

 $6.18.~\acute{a}bra$. Valóságos műveleti erősítővel megvalósított, a bemeneten csatolt invertáló AC erősítő Bode-diagramja

A 6.16. ábrán látható kapcsolás frekvenciamenetét a terhelő ellenállás nem befolyásolja, a 6.19. ábrán a kimeneti C_2 csatolókondenzátor miatt azonban megváltozik a kapcsolás frekvenciamenete.

6.19. ábra. A bemeneten és a kimeneten is csatolt invertáló AC erősítő kapcsolás.

Ideális műveleti erősítőt feltételezve, a rajzon a szaggatott vonallal határolt rész frekvenciamenete megegyezik a 6.16. ábrán látható kapcsoláséval, ennek feszültségerősítését jelölje A_{u1} :

$$A_{u1}(\omega) = -\frac{Z_2}{Z_1} = -\frac{R_2}{R_1 + \frac{1}{j\omega C_1}} = -\frac{j\omega R_2 C_1}{1 + j\omega R_1 C_1} = -\frac{j\omega T_2}{1 + j\omega T_a}.$$
 (6.54)

A C_2 és R_t elemekből álló rész átviteli jellemzője:

$$A_{u2}(\omega) = \frac{R_t}{R_t + \frac{1}{j\omega C_2}} = \frac{j\omega R_t C_2}{1 + j\omega R_t C_2} = \frac{j\omega T_3}{1 + j\omega T_3}, \quad \text{ahol} \quad |A_{u2}| \le 1,$$
(6.55)

ennek törésponti körfrekvenciája:

$$\omega_3 = \frac{1}{R_1 C_2} = \frac{1}{T_3}.$$
 (6.56)

A kapcsolás eredő feszültségerősítése:

$$A'_{u}(\omega) = A_{u1}(\omega) \cdot A_{u2}(\omega) = -\frac{j\omega T_{2}}{(1 + j\omega T_{a})} \cdot \frac{j\omega T_{3}}{(1 + j\omega T_{3})}.$$

$$(6.57)$$

A 6.20. ábrán az eredő feszültségerősítés Bode-diagramja látható $\omega_2 < \omega_3 < \omega_a$ esetre, ideális műveleti erősítőt feltételezve.

6.20. ábra. Ideális műveleti erősítővel megvalósított, a bemeneten és a kimeneten is csatolt invertáló AC erősítő kapcsolás Bode-diagramja.

A valóságos műveleti erősítő nagy frekvenciákon ebben az esetben is megváltoztatja a kapcsolás frekvenciamenetét, a felső határfrekvenciánál nagyobb frekvenciákon az erősítés csökken. A Bode-diagram a *6.21 ábrán* látható.

6.21. ábra. Valóságos műveleti erősítővel megvalósított, a bemeneten és a kimeneten is csatolt invertáló AC erősítő kapcsolás Bode-diagramja.

6.3.2. Neminvertáló AC erősítő alapkapcsolás frekvenciafüggése

A neminvertáló AC erősítő kapcsolás frekvenciamenete hasonló az invertáló kapcsolás frekvenciamenetéhez.

6.22. ábra. A bemeneten csatolt neminvertáló AC erősítő alapkapcsolás.

A 6.22. ábrán szaggatott vonallal határolt rész erősítése:

$$A_{u2} = 1 + \frac{R_2}{R_1}, (6.58)$$

ideális műveleti erősítőt feltételezve frekvenciafüggetlen. A bemeneten a C_1 kondenzátor és R_3 ellenállásból álló hálózat átviteli jellemzője:

$$A_{u1} = \frac{j\omega R_3 C_1}{1 + j\omega R_2 C_1}, \text{ ahol } |A_{u1}| \le 1.$$
 (6.59)

A kapcsolás eredő erősítése:

$$A'_{u} = A_{u1} \cdot A_{u2} = \frac{j\omega R_{3}C_{1}}{(1+j\omega R_{3}C_{1})} \cdot \left(1 + \frac{R_{2}}{R_{1}}\right). \tag{6.60}$$

Az alsó törésponti frekvencia az

$$f_a = \frac{1}{2\pi R_3 C_1} \tag{6.61}$$

összefüggéssel határozható meg, az $\omega > 2\pi f_a$ körfrekvencián a kapcsolás erősítése

$$A'_{u} = A_{u1} \cdot A_{u2} = 1 + \frac{R_{2}}{R_{1}}. \tag{6.62}$$

A valóságos műveleti erősítő frekvenciamenete ebben az esetben is korlátozza a működési frekvenciát, a felső határfrekvencia itt is az

$$f_f = f_0 \frac{A_{u0}}{A'_u} = f_0 (1 + A_{u0} B) = f_0 (1 + H). \tag{6.63}$$

alapján lehet meg határozni, de ebben a kapcsolásban a visszacsatoló tag erősítése a

$$B = \frac{R_1}{R_1 + R_2} \tag{6.64}$$

összefüggés szerint adható meg.

6.4. INTEGRÁLÓ ÉS DIFFERENCIÁLÓ KAPCSOLÁSOK

6.4.1. Integráló kapcsolás

Az invertáló műveleti erősítő visszacsatoló ellenállását kondenzátorral helyettesítve invertáló integráló kapcsolás alakítható ki. A kondenzátor negatív visszacsatolást létesít minden jelváltozásra, a visszacsatoló hurok úgy állítja be a kimeneti feszültséget, hogy (amíg lehetséges) az N ponton a virtuális nulla fennmaradjon.

6.23. ábra. Integráló kapcsolás.

A műveleti erősítő végtelen nagy erősítése miatt a bemeneti szimmetrikus feszültség nulla, ezért az N pont virtuális nulla pont. A bemeneten

$$i = \frac{u_{be}}{R_1} \tag{6.65}$$

áram folyik. A kondenzátor feszültsége a kimeneti feszültséggel egyezik meg:

$$u_{ki} = -u_C = -\frac{1}{C} \int_0^t i dt + U_{C0} , \qquad (6.66)$$

ahol U_{C0} a kondenzátor kezdeti feszültsége. A 6.65 egyenletet behelyettesítve

$$u_{ki} = -\frac{1}{RC} \int_{0}^{t} u_{be} dt + U_{C0} , \qquad (6.67)$$

a kimeneti feszültség a bemeneti feszültség integráljával arányos.

Ideális elemeket feltételezve (ideális, végtelen nagy erősítésű, ofszet nélküli műveleti erősítő, veszteségmentes kondenzátor), szinuszos bemeneti jel esetén a kimeneti feszültség meghatározható az invertáló műveleti erősítő átviteli jellemzője alapján is:

$$A_u = -\frac{Z_2}{Z_1} = -\frac{u_{ki}}{u_{be}}. (6.68)$$

A kimeneti feszültség:

$$u_{ki} = -u_{be} \frac{Z_{2}}{Z_{1}} = -u_{be} \frac{\frac{1}{j\omega C}}{R} = -u_{be} \frac{1}{j\omega RC} = -u_{be} \frac{1}{j\omega T_{i}}.$$
 (6.69)

A $T_i = RC$ szorzat az integrálási időállandó. A kapcsolás Bode-diagramja a 6.24. ábrán látható.

6.24. ábra. Az integráló kapcsolás Bode-diagramja.

Az integráló kapcsolás visszacsatolásában a kondenzátor egyenáram szempontjából szakadás, ezért a műveleti erősítő egyenfeszültségre nincs visszacsatolva, nyitott hurokkal működik. Ha a bemeneti feszültség $u_{be} = 0$, a valóságos műveleti erősítő bemeneti ofszet feszültsége miatt a kimeneti feszültség addig növekszik, míg a kivezérelhetőség határát (gyakorlatilag a pozitív, vagy a negatív tápfeszültséget) el nem éri. A hibát okozó hatás csökkentése miatt a kapcsolás módosított változatait használják a gyakorlatban.

6.4.3. Differenciáló kapcsolás

Az invertáló erősítő alapkapcsolás R_I ellenállásának kondenzátorral való helyettesítésével alakítható ki a differenciáló kapcsolás (6.25. ábra).

6.25. ábra. Differenciáló kapcsolás.

A kapcsolás N virtuális nulla pontját figyelembevéve, a kondenzátor feszültsége a bemeneti feszültséggel egyezik meg: $u_C = u_{be}$, az árama pedig az

$$i_C = C \frac{du_C}{dt} = C \frac{du_{be}}{dt} \,. \tag{6.70}$$

összefüggéssel határozható meg. Az R ellenállás feszültsége az u_{ki} kimeneti feszültségel egyezik meg, az árama pedig a kondenzátor áramával, mert ez az áram az ideális műveleti erősítő végtelen nagy bemeneti ellenállása miatt csak a visszacsatoláson folyhat:

$$u_{ki} = -u_R = -i_C R. (6.71)$$

A 6.70 egyenletet behelyettesítve, a kimeneti feszültség

$$u_{ki} = -RC\frac{du_{be}}{dt},\tag{6.72}$$

a bemeneti feszültség deriváltjával arányos.

Ideális műveleti erősítő feltételezésével a kapcsolás átviteli függvénye:

$$A_{u} = \frac{u_{ki}}{u_{be}} = -\frac{Z_{2}}{Z_{1}} = -\frac{R}{\frac{1}{j\omega C}} = -j\omega RC = -j\omega T_{d},$$
(6.73)

ahol $T_d = RC$ a differenciálási időállandó. A kapcsolás Bode-diagramja a 6.26 ábrán látható.

6.26. ábra. A differenciáló kapcsolás Bode-diagramja.

Ez a frekvenciakarakterisztika valóságos műveleti erősítővel nem valósítható meg, az erősítés nem növekedhet minden határon túl, a műveleti erősítő frekvenciamenete mindenképpen korlátoz. Ennek következtében a visszacsatolt rendszer a stabilitás határára kerül, gerjedékeny. A kapcsolás hátránya az is, hogy a bemeneti impedancia a frekvencia növekedésével csökken. E hátrányok miatt az ideális differenciáló kapcsolást a gyakorlatban nem használják, helyette e hátrányokat csökkentő módosított kapcsolásokat alkalmaznak.

6.5. Áramgenerátorok

A legegyszerűbb áramgenerátor invertáló erősítő kapcsolásból valósítható meg. Az invertáló bemeneten egy ismert, pontos R_I ellenálláson adott U_{be} referencia-feszültséget beállítva, az így kialakuló állandó $I_{be} = I_t$ áram folyik át a terhelésen.

6.27. ábra. Egyszerű áramgenerátor.

A bemeneti áram:

$$I_{be} = \frac{U_{be}}{R_1} = I_t. {(6.74)}$$

A kapcsolás csak olyan esetekben alkalmazható, amikor a terhelés földfüggetlen. A bemeneti feszültséggel beállított, az R_I ellenállástól függő áram a terhelésen folyik keresztül, függetlenül annak értékétől. Ennek megfelelően a terhelőellenállás minimális értéke

$$R_{t\min} = 0, (6.75)$$

rövidrezárható. A terhelés feszültsége:

$$U_t = I_t R_t, (6.76)$$

összefüggéssel határozható meg, de nem lehet nagyobb, mint a kapcsolás maximális kimeneti feszültsége.

A terhelés maximális értékét a műveleti erősítő I_{kimax} maximálisan megengedett kimeneti árama és a kimeneti feszültség határozza meg:

$$R_{t \max} = \frac{U_{ki}}{I_{ki \max}}. (6.77)$$

Áramgenerátor neminvertáló erősítő kapcsolással is megvalósítható. A terhelőellenállás ebben az esetben is a visszacsatoló ellenállás, és csak földfüggetlen lehet.

6.28. ábra. Neminvertáló erősítő kapcsolásból kialakított áramgenerátor.

Ideális műveleti erősítőt feltételezve a két bemenet között nincs feszültség, tehát

$$u_n = u_p$$
.

Mivel a neminvertáló bemenetre az U_{be} bemeneti feszültség kerül, ezért

$$u_p = U_{be}$$
, és $u_n = U_{be}$.

Az R_1 ellenálláson folyó áramot az u_n feszültség és az R_1 ellenállás határozza meg:

$$I_1 = \frac{U_{be}}{R_1} \,. \tag{6.78}$$

Az ideális műveleti erősítő végtelen nagy bemeneti ellenállása miatt ez az áram a visszacsatoláson, tehát a terhelő ellenálláson folyik: $I_l = I_t$.

Földelt terhelés esetén alkalmazható a 6.29. ábrán látható áramgenerátor kapcsolás.

6.29. ábra. Földelt terhelés esetén alkalmazható áramgenerátor.

A négy pontosan egyforma értékű ellenállással, negatív és pozitív visszacsatolással kialakított áramgenerátor terhelő áramát a bemeneti feszültségek különbsége és az *R* ellenállás értéke határozza meg.

Az invertáló bemenet feszültsége:

$$u_n = U_{be1} - I_1 R. (6.79)$$

A neminvertáló bemenet feszültsége:

$$u_p = U_{be2} - I_2 R. (6.80)$$

Ideális műveleti erősítőt feltételezve: $u_n = u_p$. Behelyettesítve a 6.79 és 6.80 egyenleteket:

$$U_{bel} - I_1 R = U_{be2} - I_2 R, (6.81)$$

$$U_{be1} - U_{be2} = (I_1 - I_2)R. (6.82)$$

A neminvertáló bemeneten a műveleti erősítőbe nem folyhat be áram a végtelen nagy bemeneti ellenállás miatt, így a terhelő áram:

$$I_t = I_1 - I_2. (6.83)$$

Ezt az összefüggést a 6.80 egyenletbe behelyettesítve, a terhelő áram az

$$I_{t} = \frac{U_{be1} - U_{be2}}{R} \tag{6.84}$$

összefüggéssel adható meg.

A bipoláris tranzisztoros áramgenerátor árama pontosítható műveleti erősítő alkalmazásával (6.30. ábra).

6.30. ábra. Tranzisztoros áramgenerátor követő erősítővel.

A követő erősítő U_{be} bemeneti feszültsége megegyezik az R_E emitterellenállás U_E feszültségével. A tranzisztor emitterárama

$$I_E = \frac{U_{be}}{R_E} \tag{6.85}$$

összefüggéssel adható meg, ez az áram folyik a terhelő ellenálláson is, függetlenül annak értékétől: $I_E \cong I_t$. Ennek megfelelően a terhelőellenállás minimális értéke:

$$R_{t\min} = 0. \tag{6.86}$$

A kapcsolás addig képes áramgenerátorként működni, míg a tranzisztor a normál aktív tartományban üzemel, tehát amíg a tranzisztor kollektor feszültsége nem csökken a bázisfeszültség értéke alá: $U_B = U_C$. Ebből a feltételből meghatározható a terhelőellenállás maximális értéke,

$$R_{t \max} = \frac{U_t - U_B}{I_t},\tag{6.87}$$

amelynél a kapcsolás még áramgenerátorként működik.

6.6. KOMPARÁTOROK

A műveleti erősítővel megvalósított komparátor áramkör a bemeneteire adott két analóg jel értékét hasonlítja össze és kétféle kimeneti jelet szolgáltat attól függően, hogy melyik bemeneti jel nagyobb. A két bemeneti jel közül az egyik rendszerint állandó értékű, ez az U_{ref} referencia feszültség, a másik bemenetre kapcsolódik a változó u_{be} bemeneti feszültség. A komparátor akkor változtatja meg a kimenetét, amikor a bemeneti feszültség értéke megegyezik a referenciafeszültséggel. Mivel a

bemeneti jel analóg, a kimeneti jel pedig digitális, ezért a komparátor analóg-digitális átalakítónak is tekinthető.

Komparátornak alkalmazható a normál műveleti erősítő, vagy a komparátor típusú erősítő, amelyre a gyorsabb működés és a logikai szintű kimenet a jellemző. A komparátorok működése a műveleti erősítő túlvezérlésén, tehát a nemlineáris működésén alapszik. Megfelelően kis értékű bemeneti jel esetén a komparátor egyszerű erősítőként működik.

6.6.1. Neminvertáló komparátor

Az ideális műveleti erősítővel megvalósított neminvertáló komparátor kapcsolása és transzfer karakterisztikája látható a 6.31. ábrán.

6.31. ábra. Neminvertáló komparátor a) kapcsolási rajza, b) transzfer karakterisztikája.

Ha a komparátor neminvertáló bemenetének u_{be} feszültsége nagyobb, mint az U_{ref} referenciafeszültség, akkor az u_{ki} kimeneti feszültség a pozitív tápfeszültséggel, ha kisebb, akkor a kimenet a negatív tápfeszültség értékével egyezik meg. A 6.32. ábrán a neminvertáló komparátor bemeneti és kimeneti feszültség-időfüggvénye látható szinuszos bemeneti jel és pozitív értékű referenciafeszültség esetén.

6.32. ábra. A neminvertáló komparátor bemeneti és kimeneti feszültség-időfüggvénye.

A valóságos műveleti erősítő véges erősítéssel, nullától eltérő értékű ofszet feszültséggel rendelkezik, és túlvezérlés esetén a $\pm U_t$ tápfeszültség értéknél mindig kisebb a kimeneti feszültség minimális és maximális értéke. A 6.33 a) ábrán a valóságos műveleti erősítővel megvalósított neminvertáló komparátor kapcsolása, a 6.33 b) ábrán a transzfer karakterisztikája látható.

6.33. ábra. Valóságos műveleti erősítővel kialakított neminvertáló komparátor a) kapcsolása és b) transzfer karakterisztikája.

A valóságos műveleti erősítővel megvalósított komparátor transzfer karakterisztikája véges meredekségű, az erősítő A_{u0} erősítésének megfelelően:

$$A_{u0} = \frac{\Delta U_{ki}}{\Delta U_{be}},\tag{6.88}$$

a billenési szint értékét pedig a műveleti erősítő ofszet feszültsége módosítja.

6.6.2. Invertáló komparátor

Az ideális műveleti erősítővel megvalósított invertáló komparátor kapcsolása és transzfer karakterisztikája látható a 6.34. ábrán.

6.34. ábra. Invertáló komparátor a) kapcsolása és b) transzfer karakterisztikája.

Az invertáló komparátor (–) invertáló bemenetére kell kapcsolni az u_{be} bemeneti feszültséget, a (+) neminvertáló bemenetére pedig az U_{ref} referenciafeszültséget. Ha a bemeneti feszültség nagyobb, mint a referenciafeszültség, akkor az u_{ki} kimeneti feszültség a negatív tápfeszültséggel, ha kisebb, akkor a kimenet a pozitív tápfeszültség értékével egyezik meg.

6.35. ábra. Az invertáló komparátor bemeneti és kimeneti feszültség-időfüggvénye.

A 6.35. ábrán az invertáló komparátor bemeneti és kimeneti feszültség-időfüggvénye látható szinuszos bemeneti jel és pozitív értékű referenciafeszültség esetén.

6.6.3. Hiszterézises komparátor

Ha a bemeneti jelre zavarjel szuperponálódik, akkor a komparálási szintet a bemeneti jel mindkét irányban többször átlépi, ezért a komparátor kimeneti jele bizonytalanná válik (6.36. ábra). A bemeneti zavarjel hatása csökkenthető, ha a komparátor oda- és visszabillenési szintje különböző értékű, amely a komparátor kis mértékű pozitív visszacsatolásával valósítható meg.

6.36. ábra. A komparátor bemeneti és kimeneti feszültség-időfüggvénye zajos bemeneti feszültség esetén.

6.6.3.1. Invertáló hiszterézises komparátor

Az invertáló hiszterézises komparátor kapcsolása látható a 6.37. ábrán. A komparátor kimenete akkor billen át, amikor az invertáló bemenetre kapcsolt bemeneti feszültség pillanatértéke megegyezik a neminvertáló bemenet feszültségével. A neminvertáló bemenet feszültségét két tényező befolyásolja: egyrészt az U_{ref} referenciafeszültség, másrészt az u_{ki} kimeneti feszültség visszacsatolt értéke. Mivel a kimenet két értéket vehet fel, így a visszacsatolás miatt két (alsó és felső) komparálási szint jön létre. A komparátor akkor billen át, amikor a bemeneti feszültség először meghaladja a felső komparálási szintet, és csak akkor billen vissza, ha a bemeneti jel az alsó billenési szint értéke alá csökken. Ha a zajfeszültség csúcstól-csúcsig mért értéke kisebb, mint a felső és az alsó billenési szint különbsége, akkor elkerülhető a komparátor hibás működése.

6.37. ábra. Invertáló hiszterézises komparátor.

A felső billenési szint meghatározása

Ha a bemeneti feszültség u_{be} negatív irányból pozitív irányba változik, a kimeneti feszültség

$$U_H (= +U_{kimax})$$

értékű. A komparátor kimenete akkor változik meg, ha az *invertáló* és a *nem-invertáló* bemenetek feszültsége megegyezik:

$$u_n = u_p$$
.

Az *invertáló* bemenet feszültsége: $u_n = u_{be}$.

A bemeneti feszültség értéke, amikor a komparátor átbillen:

$$u_{be} = U_f$$

a felső billenési szint.

A neminvertáló bemenet u_p feszültségét két feszültség befolyásolja: egyrészt az u_{ki} kimeneti feszültség, másrészt az U_{ref} referenciafeszültség.

A *neminvertáló* bemenet u_p feszültsége a szuperpozíció alkalmazásával:

$$u_p = U_{ref} \frac{R_2}{R_1 + R_2} + u_{ki} \frac{R_1}{R_1 + R_2}$$
 (6.89)

Behelyettesítések után ($u_p = U_f$, és $u_{ki} = U_H$) a felső billenési szint az:

$$U_f = U_{ref} \frac{R_2}{R_1 + R_2} + U_H \frac{R_1}{R_1 + R_2}$$
 (6.90)

összefüggés szerint határozható meg.

Az U_a alsó billenési szint meghatározása

Ha a bemeneti feszültség u_{be} pozitív irányból negatív irányba változik, a kimeneti feszültség

$$U_L (= -U_{kimax})$$

értékű. A komparátor kimenete akkor változik meg, ha az *invertáló* és a *neminvertáló* bemenetek feszültsége megegyezik:

$$u_n = u_p$$
.

Az *invertáló* bemenet feszültsége: $u_n = u_{be}$.

A bemeneti feszültség értéke, amikor a komparátor átbillen:

$$u_{be} = U_a$$
,

az alsó billenési szint.

A neminvertáló bemenet u_p feszültsége a szuperpozíció alkalmazásával:

$$u_p = U_{ref} \frac{R_2}{R_1 + R_2} + u_{ki} \frac{R_1}{R_1 + R_2}. {(6.91)}$$

Behelyettesítések után ($u_p = U_a$, és $u_{ki} = U_L$) az alsó billenési szint az

$$U_a = U_{ref} \frac{R_2}{R_1 + R_2} + U_L \frac{R_1}{R_1 + R_2}$$
 (6.92)

összefüggéssel határozható meg.

A két billenési szint különbsége a hiszterézistávolság:

$$U_h = U_f - U_a = (U_H - U_L) \frac{R_1}{R_1 + R_2}.$$
 (6.93)

Az invertáló hiszterézises komparátor transzfer karakterisztikája és időfüggvényei a 6.38. ábrán láthatók.

6.38. ábra. Az invertáló hiszterézises komparátor a) transzfer karakterisztikája és b) időfüggvényei.

A komparátor kimenete akkor alacsony szintű, ha a bemeneti feszültség pillanatértéke értéke nagyobb a felső billenési szint értékénél, és akkor billen át a magas szintre, ha a bemeneti feszültség az alsó billenési szint értéke alá csökken.

6.6.3.2. Neminvertáló hiszterézises komparátor

Az invertáló hiszterézises komparátor bemenetén a bemeneti és a referenciafeszültséget megcserélve neminvertáló hiszterézises komparátor alakítható ki. A neminvertáló hiszterézises komparátor kapcsolása a 6.39. ábrán látható.

6.39. ábra. Neminvertáló hiszterézises komparátor.

A felső billenési szint meghatározása

Ha a bemeneti feszültség u_{be} negatív irányból pozitív irányba változik, a kimeneti feszültség

$$U_L (= -U_{kimax}).$$

A komparátor kimenete akkor változik meg, ha az *invertáló* és a *neminvertáló* bemenetek feszültsége megegyezik:

$$u_n = u_p$$
.

Az invertáló bemenet feszültsége: $u_n = U_{ref} (= u_p)$.

A bemeneti feszültség értéke, amikor a komparátor átbillen:

$$u_{be} = U_f$$

a felső billenési szint.

A *neminvertáló* bemenet feszültségét a bemeneti feszültség és a kimeneti feszültség együttesen határozza meg.

A *neminvertáló* bemenet u_p feszültsége a szuperpozíció alkalmazásával:

$$u_p = u_{be} \frac{R_2}{R_1 + R_2} + u_{ki} \frac{R_1}{R_1 + R_2}$$
(6.94)

Behelyettesítések után ($u_p = U_{ref}$, $u_{be} = U_f$ és $u_{ki} = U_L$):

$$U_{ref} = U_f \frac{R_2}{R_1 + R_2} + U_L \frac{R_1}{R_1 + R_2}.$$
 (6.95)

Ebből az egyenletből meghatározható a felső billenési szint értéke:

$$U_{f} = \frac{U_{ref} - U_{L} \frac{R_{1}}{R_{1} + R_{2}}}{\frac{R_{2}}{R_{1} + R_{2}}} = U_{ref} \left(1 + \frac{R_{1}}{R_{2}}\right) - U_{L} \frac{R_{1}}{R_{2}}.$$
 (6.96)

Az U_a alsó billenési szint meghatározása

Ha a bemeneti feszültség u_{be} pozitív irányból negatív irányba változik, a kimeneti feszültség

$$U_H (= +U_{kimax})$$

értékű. A bemeneti feszültség értéke, amikor a komparátor átbillen:

$$u_{be} = U_a$$
,

az alsó billenési szint.

A *neminvertáló* bemenet u_p feszültsége a szuperpozíció alkalmazásával:

$$u_p = u_{be} \frac{R_2}{R_1 + R_2} + u_{ki} \frac{R_1}{R_1 + R_2}$$
(6.97)

Behelyettesítések után ($u_p = U_{ref}$, $u_{be} = U_a$ és $u_{ki} = U_H$):

$$U_{ref} = U_a \frac{R_2}{R_1 + R_2} + U_H \frac{R_1}{R_1 + R_2}.$$
 (6.98)

Ebből az egyenletből meghatározható az alsó billenési szint értéke:

$$U_{a} = \frac{U_{ref} - U_{H} \frac{R_{1}}{R_{1} + R_{2}}}{\frac{R_{2}}{R_{1} + R_{2}}} = U_{ref} \left(1 + \frac{R_{1}}{R_{2}}\right) - U_{H} \frac{R_{1}}{R_{2}}.$$
(6.99)

A hiszterézis távolság:

$$U_h = U_f - U_a = (U_H - U_L) \frac{R_1}{R_2}, \tag{6.100}$$

a felső és az alsó billenési szint különbsége.

6.40. ábra. A neminvertáló hiszterézises komparátor a) transzfer karakterisztikája és b) időfüggvényei.

A kapcsolás transzfer karakterisztikája a 6.40 a) ábrán, és időfüggvényei 6.40 b) ábrán láthatók háromszög jelformájú bemeneti feszültség és pozitív referenciafeszültség esetén.

6.6.4. Ablakkomparátor

Az ablakkomparátor két komparátorból felépített kapcsolás, amellyel eldönthető, hogy a bemenetére kapcsolt u_{be} feszültség az előírt határok között van-e, vagy azon kívül. A műveleti erősítők kimenetét diódákkal, vagy logikai kapukkal kell összekapcsolni. Az ablakkomparátor kapcsolása a 6.41 a) ábrán látható, a kimeneten diódás ÉS kapuval.

6.41. ábra. A kimenetén logikai ÉS kapuval megvalósított ablakkomparátor a) kapcsolása, b) transzfer karakterisztikája.

Az ablakkomparátor kimenete akkor U_H (magas) szintű, ha mindkét műveleti erősítő kimenete U_H értékű, tehát az u_{be} bemeneti feszültség az U_I és U_2 feszültségértékek között van, minden más esetben U_L (alacsony) értékű. A kapcsolás jellemző idő függvényei láthatók a 6.42. ábrán.

6.42. ábra. Az ablakkomparátor időfüggvényei.

A 6.43 a) ábrán látható ablakkomparátor kimenete logikai VAGY kapu. Ebben az esetben akármelyik műveleti erősítő kimenete U_H , (magas) szintű, akkor a közös kimenet is U_H (magas) szintű. A közös kimenet csak akkor U_L (alacsony) szintű, ha mindkét kimenet U_L (alacsony) szintű, tehát a bemeneti jel értéke U_I és U_2 között van.

6.43. ábra. A kimenetén logikai VAGY kapuval megvalósított ablakkomparátor a) kapcsolása, és b) transzfer karakterisztikája.

A 6.43 b) ábrán a kimenetén logikai VAGY kapuval megvalósított ablakkomparátor transzfer karakterisztikája látható.

6.7. HULLÁMFORMAGENERÁTOROK

A hullámformagenerátorok különböző hullámformájú (négyszög, impulzus, fűrész, háromszög, stb.) kimeneti jelek előállítására alkalmasak. Áramköri kialakításuk alapja gyakran a *6.44. ábrán* látható kapcsolás.

6.44. ábra. Hullámforma generátor.

Műveleti erősítővel megvalósított integrátor és hiszterézises komparátor alkalmazásával háromszög és négyszög hullámformájú jelek állíthatók elő. Az integrátor

 u_{kil} kimeneti jele vezérli a hiszterézises komparátor bemenetét, amelynek u_{ki2} kimeneti jele egyben az integráló kapcsolás bemeneti jele is.

A bekapcsolás pillanatában a komparátor u_{ki2} kimenete a két lehetséges érték (U_H, U_L) egyike, például U_H . Ezt a feszültséget az integráló kapcsolás $\tau = RC$ időállandóval integrálja mindaddig, amíg u_{ki1} értéke meg nem egyezik a komparátor kimenetéről visszacsatolt feszültség negatív értékével, a példa szerint:

$$U_{ki1\,\text{max}} = -U_H \frac{R_1}{R_2}. \tag{6.101}$$

Ekkor a komparátor kimenete megváltozik, átbillen az U_L értékre. Az integráló kapcsolás bemenetére ez a megváltozott feszültség (U_L) kerül, ezt integrálja a kapcsolás mindaddig, amíg az u_{kil} feszültség el nem éri az

$$U_{ki1\,\text{min}} = -U_L \frac{R_1}{R_2} \tag{6.102}$$

értéket. Ekkor a komparátor kimenete ismét átbillen, így a folyamat periodikusan ismétlődik. A kapcsolás időfüggvényei a 6.45. ábrán láthatók.

Az u_{ki2} kimeneti feszültség amplitúdóját a műveleti erősítő maximális kimeneti feszültsége határozza meg (U_H és U_L). Az u_{ki1} háromszögjel amplitúdói (U_{ki1max} és U_{ki1min}) a 6.101 és a 6.102 összefüggések alapján határozhatók meg.

6.45. ábra. Hullámforma alapgenerátor időfüggvényei.

A hullámforma generátor periódusideje az integrátor kimeneti jelének időfüggvényéből határozható meg.

Az integrátor u_{kil} kimeneti feszültségének időfüggvénye:

$$u_{ki1}(t) = -\frac{1}{RC} \int_{0}^{t} u_{ki2}(t) dt.$$
 (6.103)

Az u_{ki2} kimeneti feszültség értéke a $0 - \frac{T}{4}$ időtartományban állandó U_H értékű. Behelyettesítve a 6.103 összefüggésbe:

$$u_{kil}\left(\frac{T}{4}\right) = -\frac{1}{RC} \int_{0}^{\frac{T}{4}} U_{H}(t) dt.$$
 (6.104)

Az integrálás után:

$$u_{ki1} \left(\frac{T}{4}\right) = -\frac{1}{RC} U_H \frac{T}{4} \,. \tag{6.105}$$

A $t = \frac{T}{4}$ időpillanatban az u_{kil} feszültség pillanatértéke megegyezik a komparátor kimenetéről visszacsatolt feszültség negatív értékével, a 6.101 összefüggés szerint:

$$u_{kil}\left(\frac{T}{4}\right) = -\frac{R_1}{R_2}U_H \tag{6.106}$$

Behelyettesítve a 6.105 összefüggésbe:

$$-\frac{R_1}{R_2}U_H = -\frac{1}{RC}U_H \frac{T}{4}.$$
 (6.107)

Ebből az összefüggésből a periódusidő:

$$T = 4RC\frac{R_1}{R_2}. (6.108)$$

A működési frekvencia:

$$f = \frac{1}{T} = \frac{1}{4RC} \frac{R_2}{R_1}. (6.109)$$

Mivel az integráló kapcsolás kondenzátorának töltő és kisütő ellenállása egyaránt az R ellenállás, ezért a periódus két egyforma félperiódusra bontható. A 6.46. ábrán látható kapcsolásban a kondenzátor töltése és kisütése különböző értékű ellenálláson keresztül történik, így a különböző integrálási időállandók miatt az u_{ki2} kimeneti feszültség kitöltése az R_a és R_b ellenállások értékének függvényében változtatható.

6.46. ábra. Változtatható kitöltésű hullámforma generátor.

A kapcsolás működési frekvenciája az

$$f = \frac{1}{T} = \frac{1}{T_1 + T_2} = \frac{1}{2(R_a + R_b)C} \frac{R_2}{R_1}$$
 (6.110)

összefüggéssel határozható meg.

6.47. ábra. A változtatható kitöltésű hullámforma generátor időfüggvényei.

A változtatható kitöltésű hullámforma generátor időfüggvényei a 6.47. ábrán láthatók.

6.7.1. Astabil multivibrátor

Négyszög hullámformájú kimeneti feszültség állítható elő a 6.48 a) ábrán látható műveleti erősítővel megvalósított astabil multivibrátor kapcsolással.

6.48. ábra. Astabil multivibrátor a) kapcsolása és b) időfüggvényei.

A kapcsolás egy invertáló hiszterézises komparátor $U_{ref} = 0$ referenciafeszültséggel. A bemeneti feszültség a kondenzátor u_c feszültsége, amely a negatív visszacsatolás miatt a kimeneti feszültség polaritásának megfelelően (U_H vagy U_L) $\tau = RC$ időállandóval exponenciális függvény szerint változik. A hiszterézises komparátor felső billenési szintje az

$$U_f = U_H \frac{R_1}{R_1 + R_2}, (6.111)$$

az alsó billenési szintje pedig az

$$U_a = U_L \frac{R_1}{R_1 + R_2} \,. \tag{6.112}$$

összefüggéssel határozható meg, ahol U_H a komparátor kimeneti feszültségének pozitív, U_L pedig a negatív maximális értéke. A komparátor akkor billen át, amikor a kondenzátor feszültsége megegyezik az alsó, vagy a felső billenési szinttel: $u_C = U_a$, vagy $u_C = U_f$.

Az astabil multivibrátor időfüggvényei a 6.48 b) ábrán láthatók.

Az astabil multivibrátor $T = T_1 + T_2$ periódusideje a kondenzátor feszültségváltozásának vizsgálatával határozható meg.

A kondenzátor feszültség-időfüggvénye:

$$u_C(t) = -(U_a + U_H)e^{-\frac{t}{\tau}} + U_H.$$
 (6.113)

Mivel a kondenzátor töltése és kisütése azonos időállandójú ($\tau = RC$), valamint feltételezve, hogy a billenési szintek abszolút értéke megegyezik, ezért állandósult állapotban a kimeneti feszültség a $t = T_1 = \frac{T}{2}$ időpillanatban változik meg.

A feszültség időfüggvény pillanatértéke a $t = \frac{T}{2}$ időpillanatban:

$$u_{C}\left(\frac{T}{2}\right) = -\left(U_{a} + U_{H}\right)e^{-\frac{T}{2RC}} + U_{H}.$$
(6.114)

Állandósult állapotban a $t = \frac{T}{2}$ időpillanatban a kondenzátor feszültségének pillanatértéke az

$$u_C\left(\frac{T}{2}\right) = U_f \tag{6.115}$$

felső billenési szinttel egyezik meg, ezért a 6.114 összefüggés

$$U_f = -(U_a + U_H)e^{-\frac{T}{2RC}} + U_H. ag{6.116}$$

alakban írható fel, majd az U_f és az U_a billenési szintekre vonatkozó 6.111 és 6.112 összefüggéseket behelyettesítve:

$$U_{H} \frac{R_{1}}{R_{1} + R_{2}} = -\left(U_{L} \frac{R_{1}}{R_{1} + R_{2}} + U_{H}\right) e^{-\frac{T}{2RC}} + U_{H}.$$
 (6.117)

Feltételezve, hogy az alsó és a felső billenési szintben szereplő U_L és U_H értékek megegyeznek:

$$|U_H| = |U_f| = |U_{ki}|, (6.118)$$

ezt a 6.117 összefüggésbe behelyettesítve

$$U_{ki} \frac{R_1}{R_1 + R_2} = -\left(U_{ki} \frac{R_1}{R_1 + R_2} + U_{ki}\right) e^{-\frac{T}{2RC}} + U_{ki},$$
 (6.119)

a kapcsolás periódusideje a

$$T = 2RC \ln \frac{2R_1 + R_2}{R_2} \tag{6.120}$$

összefüggéssel határozható meg.

A kimeneti feszültség $a = \frac{T_1}{T}$ kitöltési tényezője változik, ha a negatív vissza-

csatolást alkotó ellenállás és kondenzátor $\tau = RC$ időállandója a két periódusrészben $(T_1$ és T_2) nem azonos, a kondenzátor töltése az R_a , míg a kisütése az R_b ellenálláson keresztül történik $(6.53\ a)\ ábra)$. A periódusidő két összetevője

$$T_1 = R_a C \ln \frac{2R_1 + R_2}{R_2}$$
 és $T_2 = R_b C \ln \frac{2R_1 + R_2}{R_2}$, (6.121)

itt is feltételezve, hogy az U_L és U_H értékek megegyeznek.

A kapcsolás periódusideje állandósult állapotban:

$$T = T_1 + T_2 = (R_a + R_b)C \ln \frac{2R_1 + R_2}{R_2}.$$
 (6.122)

A kapcsolás időfüggvényei a 6.49 b) ábrán láthatók.

6.49. ábra. Változtatható kitöltésű astabil multivibrátor a) kapcsolása és b) időfüggvényei.