Capítulo 1 Introducción

En este primer capítulo, se introducirá brevemente al lector en el mundo de la robótica y más concretamente en los robots aéreos, para establecer así el estado actual, su evolución y el impacto que ha tenido en este sector. Adicionalmente, se contextualizarán las técnicas de visión en robots relacionadas con este TFG.

1.1. Robótica actual

La robótica es la ciencia y la técnica que está involucrada en el diseño, la fabricación y la aplicación de robots. Un robot es una máquina que puede programarse para que interactúe con objetos y lograr un objetivo, como imitar el comportamiento humano o la sustitución de una persona en un entorno peligroso.

Para comprender mejor que es un robot, es necesario conocer que partes lo forman y los posibles comportamientos para los que ha sido diseñado.

Un sensor es un dispositivo eléctrico y/o mecánico que convierte magnitudes físicas (luz,electricidad,presión,etcétera) en valores medibles de dicha magnitud. Si utilizamos como analogía la anatomía humana, son equivalentes a los sentidos del cuerpo humano, como la vista o el oído. Generan la información, que una vez procesada, produce una acción, normalmente en los actuadores. Por ejemplo, con sensores de temperatura se puede medir el número de grados Celsius en una habitación.

Un actuador es un dispositivo capaz de transformar energía hidráulica, neumática o eléctrica en energía mecánica. Un ejemplo es un motor eléctrico que transforma electricidad en un movimiento rotacional para girar una rueda. Hay diferentes tipos según su naturaleza, y limitan las acciones que puede realizar un robot con el mundo que le rodea. Siguiendo con la analogía anterior, el actuador se correspondería a los músculos y articulaciones que componen un cuerpo humano.

Por último, un robot está formado por procesadores, que obtienen datos de los sensores y que se encargan de materializar acciones en los actuadores. El software se encarga procesar los datos de entrada y generar un comportamiento mediante la consecución de acciones. Volviendo a la analogía con el ser humano, sería nuestro cerebro y nervios.

Los robots puede ser o no autónomos. Por autonomía se entiende la habilidad para tomar decisiones por uno mismo y llevarlas a cabo. Esto en un robot, es la capacidad de percibir la situación y actuar apropiadamente. Mediante acciones enviadas a los actuadores, se puede desplegar el comportamiento que realiza un robot. Éste, es definido por las decisiones tomadas durante el procesamiento de los datos de los sensores.

En caso de carecer de autonomía, se puede interaccionar con el robot mediante la teleoperación y la telepresencia. La teleoperación es la manipulación y envío de órdenes para ser ejecutadas por un robot que se encuentra en un lugar diferente a la persona. En medicina, se utiliza para realizar operaciones a través de unos brazos que ejecutan los movimientos enviados desde un lugar lejano. La telepresencia es la obtención de datos de los sensores de forma remota. En el espacio exterior, se aplica a la hora de enviar órdenes a satélites o robots como el Curiosity en Marte.

El comportamiento ha de ser en tiempo real, incluyendo la toma de decisiones y el análisis de diferentes situaciones. Además, robusto para evitar posibles accidentes o resultados no esperados. Otra forma de generar un comportamiento es por medio de sistemas distribuidos. En estos, los diferentes robots colaboran juntos y se comunican sin intervención humana para la obtención de un objetivo en común.

Uno de los objetivos para el futuro de la robótica, es la multitarea. Hoy en día un robot está diseñado para un número limitado de posibles trabajos o tareas, a diferencia de los seres humanos, los cuales nos adaptamos sin necesidad de cambiar nuestra naturaleza física. Esto será posible con la evolución de inteligencias artificiales más capaces, actualmente muy limitadas.

(a) Curiosity en Marte

(b) Teleoperación médica

Figura 1.1. Ejemplos de robots

1.1.1. Historia

El origen etimológico del término robot, comúnmente utilizado hoy en día, tiene como origen la obra con título R.U.R, que es la abreviatura de Rossum's Universal Robots. El escritor de origen checoeslovaco, Karel Capek, inventó la palabra robota(labor,trabajo) y cuya raíz eslava rabu coincide con esclavo. La palabra robot fue difundida gracias a numerosos autores de ciencia ficción de éxito en Norteamérica, como por ejemplo Isaac Asimov.

Los predecesores de los robots son los autómatas. Son artefactos, creados por el hombre, capaces de realizar tareas diarias y comunes para los hombres, o bien, para facilitar las labores cotidianas. Aunque no todos tenían una utilidad, algunas de ellos servían para entretener a sus dueños.

Un ejemplo es el hombre de palo(1500) para el emperador Carlos V en España. Juanelo Turriano construyó este autómata con forma de monje. Andaba y movía la cabeza,ojos, boca y brazos. Conforme pasaron los siglos, la complejidad mecánica fue aumentando hasta llegar por ejemplo, al autómata de Maillardet(1800) en Londres. Con una memoria muy superior a cualquier máquina de la época, era capaz de dibujar cuatro dibujos y escribir tres poemas (dos en francés y uno en inglés) en un papel.

Figura 1.2. Autómata de Maillardet

Entre los años 1960 y 1980, la aparición de los primeros ordenadores revolucionan los autómatas, llegando por primera vez la robótica a las universidades. Un ejemplo es el Stanford Cart. Se utilizó para demostrar que no se podía controlar de forma fiable un vehículo no tripulado en la Luna. Utilizaba cuatro ruedas con motores eléctricos y una cámara. La siguiente evolución de este carrito fue con el logro del primer robot con ruedas y visión autónomo. Hasta que en 1980, utilizando dos cámaras, se comienza a reconstruir el espacio en 3D mediante la construcción de mapas.

Figura 1.3. Robot de Stanford Cart

Más adelante, con la aparición de nuevos sistemas operativos y ordenadores mucho más potentes, las aplicaciones de la robótica son cada vez más extensas y se populariza la interacción entre robots y humanos. La compañía Sony pone al mercado el primer Aibo, el perro robot. Un juguete pensado para interaccionar con niños y simular el

comportamiento de una mascota. Los humanoides también se popularizan como por ejemplo ASIMO del fabricante de coches japonés HONDA.

Figura 1.4. Robots en el siglo XX

1.1.2. Aplicaciones actuales

Hoy en día, las aplicaciones de los robots son muy diversas. Fuera y dentro de nuestro planeta, los robots permiten hacernos ver sitios en los que el hombre no puede llegar o en los que el hábitat es hostil Como el Global Explorer ROV, que se ha sumergido en diferentes océanos para obtener imágenes nunca antes vistas por el hombre.

Sector industrial

Es uno de los sectores que más compra robots y se encuentra en constante crecimiento. China pasó en 2013 a los E.E.U.U. en densidad de robots por trabajador y el numero de ventas de robots industriales en el mundo aumentó un 16% en 2016 por cuarto año consecutivo (Figura 1.5^1).

Dentro de las aplicaciones encontramos:

- Operaciones de manipulación: Usan pinzas, colaboran con otros robots y/u operarios y desplazan objetos. Este uso es uno de los más extendidos en empresas. Por
 ejemplo en el montaje de coches, ayudando a operarios a desplazar objetos pesados
 como las puertas.
- Soldadores. Se encargan de las tareas de soldadura de componentes. La compañía
 Asus ha creado un método de producción automático para sus tarjetas gráficas.
 En concreto, este proceso de soldadura mejora la calidad del producto y permite
 reducir el tamaño de sus tarjetas notablemente.²
- Montaje. Las cadenas de montaje se vuelven más rápidas y eficientes. En las plantas de procesadores Intel, el proceso de montaje es uno de los más avanzados del mundo y se utilizan salas en las que el aire no es respirable para personas y garantizan un área de partículas externas muy baja, muy importante para la pureza de los procesadores.

¹Datos obtenidos de International Federation of Robotics http://www.ifr.org/

² Introducing ASUS Auto-Extreme Technology: https://www.youtube.com/watch?v=4gRpuurPsuc

Figura 1.5. Ventas anuales estimadas de robots industriales por regiones

Aplicaciones comerciales

El acercamiento de los robots a la población ha supuesto que su uso se encuentre en constante crecimiento y el número de aplicaciones es muy variado, desde recreación pasando por la grabación profesional para cine. A continuación, se recogen algunas de las aplicaciones que tienen lugar en la actualidad:

- Limpieza doméstica: Incluye robots que limpian piscinas, hasta aspiradoras inteligentes. Este última caso es el de Roomba, de la compañía iRobot, que incorpora algoritmos de construcción de mapas, evasión de objetos o incluso detección de escaleras (para evitar posibles accidentes).
- Transporte de personas:El mayor representante de este tipo de productos es el Google Car (Figura 1.6). Este proyecto, en funcionamiento desde 2009, ofrece a personas con movilidad reducida o discapacitados, la utilización de automóviles, en concreto un coche. Está equipado con todo tipo de sensores que permiten la autolocalización, evitar accidentes y llegar al destino deseado. Dota de mayor autonomía a estas personas, mejorando su calidad de vida. Otras compañías como Uber han sufrido recientemente accidentes mortales que pueden retrasar esta aplicación en el futuro.
- Automatización en vehículos: En esta categoría se recogen sistemas de seguridad que controlan la distancia de seguridad respecto de otros vehículos, luces inteligentes e incluso sistema de aparcamiento asistido. Compañías como BMW, Tesla o Mercedes Benz apuestan cada día más por la utilización de estas tecnologías en la industria de automoción.

- Ocio y entretenimiento: La utilización de drones con la capacidad de volar, ha reducido considerablemente el coste de planos aéreos y simplificado el equipo necesario. Airdog (Figura 1.6) es un proyecto nacido de una campaña Kickstarter que permite el seguimiento de actividades deportivas o recreativas a gran velocidad, de forma totalmente autónoma, y la grabación de las mismas.
- Educación: La aplicación de robots como para el uso didáctico se contempla como un recurso innovador, que aumenta el interés de los niños y sirve de apoyo para los maestros (Figura 1.6).
- Militar y seguridad: Para evitar la pérdida de bajas humanas, aumentar la capacidad de motorización y mejorar su potencia de combate. Los ejércitos están
 invirtiendo cada vez más en robots capaces de sustituir a soldados en el frente y
 como armas de defensa de la nación.

(a) Google Car

(b) Secuencia de seguimiento de un Airdog

(c) Robot PEPPER en un aula como complemento educador

Figura 1.6. Aplicaciones en la actualidad

1.1.3. Software en robots

El software que se encuentra en los robots, es el encargado de dotar de un comportamiento inteligente a los mismos. Se pueden distinguir tres tipos software en un robot. Uno, es el sistema operativo que se ocupa del procesador. El segundo es el que se encarga, por ejemplo, de calcular el movimiento necesario de cada actuador basándose en algoritmos. Se caracteriza porque puede contener diferentes niveles de lenguaje. Desde unos de alto nivel, como el que utilizaría cualquier programa que ejecuta en un ordenador, hasta otros de bajo nivel, como el código máquina. El último grupo es la colección de programas y funciones desarrolladas para utilizar los periféricos del robot. Dicha colección, abstrae los dos grupos anteriormente explicados en beneficio de una programación más fácil.

1.2. Visión en robots

La visión, al igual que en los seres humanos, es una gran fuente de información de nuestro entorno. Las personas utilizamos el espectro visible de la luz, que se corresponde con lo que llamamos colores. Además, percibimos el mundo que nos rodea como un mundo en tres dimensiones debido a que tenemos dos ojos. Esto nos permite obtener propiedades del entorno y poder desplazarnos en él sin preocupaciones. Los robots utilizan sensores

de visión de todo tipo, capaces de ver en la oscuridad o distinguir diferentes temperaturas. Además, en los últimos años, los sensores de visión han disminuido en precio y su utilización se ha visto incrementada notablemente en el mundo de la robótica. A pesar de este incremento en su uso y de ser una fuente potencialmente rica en información, el flujo de datos puede llegar a ser muy grande y su procesado complicado.

El objetivo de la visión artificial es conseguir datos a través de las imágenes que recibe de una cámara. Para esto se aplican diferentes operaciones matemáticas con el fin de conseguir bordes, formas, colores, patrones en la imagen, etcétera.

1.2.1. Aplicaciones actuales

Actualmente, las aplicaciones de visión artificial son muy variadas, desde seguridad, como sistemas de detección de movimiento, pasando por el entretenimiento, como el sensor Kinect, hasta la accesibilidad para dotar de autonomía a personas que lo necesitan. Es muy común, hoy en día, que un robot incluya como parte de sus sensores una cámara.

- Navegación y construcción de mapas: Es una de las primeras aplicaciones a través de visión y permite a los robots la creación de mapas a través de la detección de bordes, formas o profundidad. Ésta información sirve también para poder navegar sobre sitios desconocidos o previamente han sido convertidos a un mapa.
- Autolocalización: Permite extraer información a un robot sobre la posición relativa respecto al resto del mundo que lo rodea, mediante el reconocimiento de patrones o balizas. Una técnica es el SLAM (Simultaneous Localization and Mapping), que permite la autolocalización al mismo tiempo que se realiza un mapa del entorno.

(a) Reconocimiento de objetos en imagen

(b) Reconstrucción de mapas con técnicas SLAM

Figura 1.7. Visión artificial en robots

1.3. Simulación

Una parte importante del diseño del comportamiento de un robot, es la simulación. Proporciona un entorno virtual en el que somete a diferentes escenarios y situaciones a

un modelo creado a partir del robot elegido. Permite probar algoritmos sin necesidad de utilizar uno real. Puede llegar a aportar información muy valiosa y familiarizarse con posibles situaciones. Además de prevenir accidentes como cualquier daño físico al objeto o herir a las personas cercanas. El problema que se presenta es que los resultados dependen de la precisión a la hora de caracterizar el modelo y mundo virtual. Una vez alcanzado el resultado deseado, se ha de adaptar nuestra aplicación robótica al mundo real.

Para una mayor precisión del comportamiento en el mundo real, los simuladores incluyen la adición de funciones de ruido en sensores y actuadores. Esto permite la creación de comportamientos mucho más robustos.

Un ejemplo es Gazebo³, un proyecto de software libre que incluye multitud de modelos y motores de física virtualizada. Ofrece una interfaz gráfica y control sobre los objetos y el mundo generado, además de la creación y modificación de actuadores y sensores personalizados. Por ejemplo, se pueden crear vehículos con diferentes sensores o casas con las que interactuar. En nuestro caso, se ha utilizado como herramienta de virtualización junto a la plataforma JdeRobot de la Universidad Rey Juan Carlos.

Figura 1.8. Personas simuladas en Gazebo

1.4. Robótica Aérea

Es una de las ramas de la robótica de mayor auge actualmente y sus aplicaciones son cada vez más extendidas. Pertenecen a este área los *Unmanned Aircraft Vehicle*(UAV), en español *Vehículo Aéreo No Tripulado*(VANT), o también conocidos como *drones*. Se trata de un vehículo capaz de volar, que puede o no recibir órdenes del exterior. Incluyen multitud de diferentes sensores para mantenerse en vuelo, aterrizar o despegar.

1.4.1. Historia

Históricamente, el origen de los UAV ha sido en aplicaciones militares, como en otras áreas de investigación. Una vez ha sido suficientemente desarrollado comienzan las aplicaciones civiles y su aplicación comercial e industrial. En 1883, Douglas Archibald instaló

³Página web oficial de Gazebo: http://gazebosim.org/

un anemómetro, un instrumento para medir la velocidad del viento, a su cometa para poder medir la velocidad del viento a una altura de más de 350 metros. En 1887 instaló dos cámaras, de las cuales tomó fotografías una vez en el aire. Se consideran las primeras imágenes tomadas por un UAV. Más tarde se usaría esta técnica en la guerra entre España y los Estados Unidos en 1898 para obtener datos estratégicos.

Durante la primera y la segunda guerra mundial se utilizaron drones para la obtención de mapas sin poner en peligro al piloto. Más tarde, en 1995 se utilizaron en Bosnia para tareas de vigilancia o análisis de daños. Especialmente importante para el reconocimiento nocturno. El modelo se llamaba *Predator* y era lanzado desde Hungría.

Figura 1.9. UAV Predator.

Aplicaciones actuales

Actualmente, gracias al avance de la estabilización electrónica, los UAV han alcanzado tamaños mucho más reducidos, como el $Hummingbird^4$ o colibrí en español, de DARPA. Además son mucho más ágiles y mecánicamente simples. Han aparecido numerosos usos comerciales y civiles, aunque no desaparece el interés militar. Compañías como Amazon, están trabajando en proyectos para conseguir crear un sistema de envío de compra a domicilio utilizando drones, en concreto cuadricópteros. En universidades como University of Pennsylvania están diseñando comportamientos basados en grupos masivos, creando formaciones en el aire y dotando capacidad de pensamiento en grupo a los drones. Otro de los usos es la exploración aérea, que incluye la inspección de embalses, líneas de alta tensión, campos agrícolas y la vigilancia. Este último caso es el de Alemania, que utiliza drones aéreos para evitar el ataque de grafiteros a vagones de tren⁵. Uno de los campeonatos más recientes de programación para UAV es el $Mohamed\ Bin\ Zayed\ International\ Robotics\ Challenge (MBZIRC)^6$. Con una recompensa de 5 millones de dólares, una de las pruebas consiste en localizar, seguir y aterrizar, coincidiendo con los objetivos principales de este Trabajo Fin de Grado.

Cuadricópteros

Existen diferentes tipos de drones en función del diseño y los componentes que los forman. Algunos son similares a los aviones, con alas y el mismo método de despegue y aterrizaje. Están pensados para largos períodos de tiempo y altas velocidades. Otros, buscan una excepcional maniobrabilidad y estabilidad aérea. En este caso utilizan rotores, al igual

⁴Más información en: http://www.avinc.com/nano

⁵Alemania pone a prueba drones contra los grafitis: http://www.bbc.com/mundo/noticias/2013/05/130528_tecnologia_drones_graffiti_alemania_aa

⁶Página Web oficial del campeonato: http://www.mbzirc.com/

(a) Amazon Prime

(b) Grupos masivos

Figura 1.10. Ejemplos de UAV civiles

que los helicópteros. A este grupo pertenecen los cuadricópteros. Se caracterizan por ser un helicóptero multi-rotor de cuatro brazos en forma de cruz. Los rotores, se encuentran en el extremo de cada brazo.

Cuando los motores giran, las hélices situadas en ellos generan un fuerza de empuje vertical, llamada sustentación. Ésta es perpendicular al movimiento de la hélice y depende de la velocidad a la que gira. La suma de cada fuerza en cada rotor produce una resultante. Los diferentes movimientos que puede describir el cuadricóptero se encuentran recogidos en la ilustración de la Figura1.11. El color rojo indica que una potencia mayor ha sido aplicada, mientras que el verde, representa una potencia menor. Para evitar un fenómeno que en los helicópteros produce vueltas sobre sí mismo, la disposición de los motores sigue una forma de cruz, en la que cada par opuesto gira en el mismo sentido. Uno en el sentido de las agujas del reloj y el otro anti-horario.

Para que sea posible el despegue (Figura1.11,e), esta resultante ha de ser superior al peso del UAV. Si es igual, se consigue un estado de altitud fija (también conocida en inglés como *hovering*). Para aterrizar sería necesario una resultante menor que el peso del objeto (Figura1.11,f).

Para conseguir el giro conocido como yaw (Figura1.11,g y h) o guiñada, es el giro del plano horizontal al drone. Para girar a la derecha se transmite más potencia al par de rotores que giran en sentido anti-horario. Si la potencia fuera superior en el otro par opuesto, giraría hacia la izquierda sobre sí mismo.

En el supuesto de que sólo uno de los motores aplicase más potencia que los demás, por ejemplo el delantero, el cuadricóptero se desplazaría hacia atrás, inclinando la parte trasera del vehículo hacia arriba. Esto se correspondería con el movimiento llamado pitch (Figura 1.11, a y b) o cabeceo.

Por último, si aumentamos la potencia en uno de los motores laterales, por ejemplo la derecha, el vehículo se inclinará y trasladará hacia la izquierda, provocando un movimiento conocido como roll (Figura 1.11, c y d) o alabeo.

Los cuadricópteros pueden tener numerosos sensores desde acelerómetros, giroscopios, magnetómetros, ultrasonidos, incluso cámaras con resoluciones de hasta 4K. Todo ello se utiliza en combinación, para conseguir una mayor estabilización durante el vuelo. Dentro de los actuadores encontramos los cuatro rotores pero también se pueden añadir pinzas para cargar objetos o, en caso de uso militar, armas y sus respectivos gatillos.

Algunos de los fabricantes de drones más relevantes actualmente son:

Comportamiento de los rotores

Figura 1.11. Relación entre la potencia de los rotores y el movimiento de un cuadricóptero

- Parrot: Con modelos como el Ar.Drone 1 y 2 que acercaron a un gran público el uso de los drones.
- 3DRobotics: Diseñado para la obtención de planos aéreos estables.
- Erle: Está soportado oficialmente por Ubuntu.
- Airdog: Ya mencionado previamente en el apartado??
- DJI: Una de las compañías que más drones vende anualmente, cargados de todo tipo de sensores, cámaras con las últimas tecnologías de estabilización y algoritmos inteligentes de navegación.

1.4.2. Robótica Aérea en la Universidad Rey Juan Carlos

El grupo de Robótica de la Universidad Rey Juan Carlos lleva años desarrollando proyectos relacionados con la navegación, visión, autolocalización y virtualización de entornos con robots. Gracias a la popularización y a la reducción en coste de los drones se comenzó en el año 2013 una nueva línea de investigación sobre los UAV. Los primeros proyectos han creado las bases sobre las que seguir investigando y han proporcionado la infraestructura necesaria. Éstos han sido integrados en la plataforma JdeRobot, en la cual participan profesores, alumnos y gente de la comunidad de software libre. Sirve como base para nuevos proyectos o la mejora de los actuales.

Entre estos proyectos se encuentra el Trabajo de Fin de Grado(TFG) Navegación visual en robots aéreos de Alberto Martín. Sus aportaciones a JdeRobot fueron la de un componente llamado ardrone server, que crea una interfaz capaz de comunicarse

con el AR.Drone de la compañía Parrot. En el mismo trabajo, incluye una herramienta, llamada uav_viewer cuya función es obtener la información de los sensores y controlar los actuadores de dicho UAV. Por último, se encuentra un componente de visión y navegación llamado $object_tracking$. Utiliza filtros de colores para el seguimiento de objetos a través de las imágenes recibidas por la cámara frontal y ventral del drone. El drone es capaz de un seguimiento autónomo de objetos, tanto en el suelo como en 3D.

- (a) ArDrone sin y con protección de interiores
- (b) Interfaz gráfica del componente uav viewer

Figura 1.12. Simulación en exteriores

Daniel Yagüe en su Proyecto Fin de Carrera Cuadricóptero AR. Drone en Gazebo y JdeRobot, desarrolló un modelo para la plataforma JdeRobot en el simulador Gazebo del mismo AR. drone que utilizó Alberto Martín, anteriormente mencionado. Esto permite tanto la simulación de los datos sensoriales como de la virtualización realista de un comportamiento cercano a dicho drone. Adicionalmente, programó diferentes aplicaciones de navegación autónomas como el seguimiento de balizas por posición, de carretera o de otro cuadricóptero. Para ello, crea unas interfaces incluidas en el entorno de JdeRobot que permiten el desarrollo de otras aplicaciones de navegación.

Figura 1.13. ArDrone simulado en Gazebo

Alberto López-Cerón, con *Autolocalización visual robusta basada en marcadores*, creó un algoritmo capaz de estimar la posición de la cámara a partir de la detección de

marcadores o balizas.

Manuel Zafra siguió desarrollando la idea de Alberto López-Cerón en Seguimiento de rutas 3D por un drone con autolocalización visual con balizas. Diseño un algoritmo de navegación en interiores basado en autolocalización mediante la visión artificial en simulador.

Jorge Vela se centró en el *Despegue*, navegación y aterrizaje visuales de un drone usando JdeRobot. Sentó las bases para el despegue y aterrizaje controlado utilizando visión artificial en un drone real.

Siguiendo con las bases aportadas por los proyectos previamente explicados, en este TFG se programará el comportamiento autónomo de despegue controlado y aterrizaje de un drone sobre una baliza visual y la navegación a partir de la autolocalización. Se utilizará un drone real, empleando la infraestructura existente en JdeRobot para estos cuadricópteros. Con ello se pretende unificar los avances anteriores, en un drone real y dejando la puerta abierta a nuevos comportamientos más complicados.

En el próximo capítulo, se explicarán los objetivos y la metodología propuesta para resolverlos. En el tercer capítulo se expondrán con profundidad la infraestructura y herramientas utilizadas. En el cuarto, se describirá el desarrollo de todos los componentes que forman este proyecto. En quinto lugar, se realizarán distintos experimentos para observar los datos obtenidos en diferentes escenarios y validar experimentalmente la solución programada. Para terminar, unas conclusiones aportarán un visión global del conjunto y los conocimientos extraídos.

Capítulo 2 OBJETIVOS

En este capítulo describiremos los objetivos planteados para el Trabajo de Fin de Grado, los requisitos exigidos y la metodología utilizada para el desarrollo.

2.1. Problema a abordar

El objetivo principal de este trabajo, es desarrollar una aplicación, que a través de técnicas de visión artificial, dote de un comportamiento autónomo a un dron real. El resultado consistirá en un despegue, una navegación a diferentes posiciones previamente desconocidas y por último, una búsqueda y aterrizaje. Se utilizará un co-procesador a bordo del drone real para realizar todo el procesamiento y generar un comportamiento totalmente autónomo.

Para llegar a él, ha sido fundamental dividir el proyecto en objetivos más pequeños, que sumados, dan forma a todo el conjunto.

- Reimplementación y desarrollo del módulo de autolocalización visual: Este módulo proporciona la posición relativa del dron basándose en la detección de balizas visuales y cálculos geométricos. A pesar de que existía un módulo previo debido al TFM de Alberto y al PFC de Manuel, se ha reimplementado el algoritmo por motivos de rendimiento y lenguaje de programación.
- Mejora y refactorización de los módulos de despegue y de aterrizaje: Estos módulos se encargan de las tareas de aterrizaje y despegue controlado. Existía una primera versión del TFG de Jorge Vela, de la cual se ha mejorado el rendimiento y refactorizado el código para su adaptación dentro de un autómata de estados finito.
- Diseño y desarrollo de una aplicación para la calibración de balizas bicolor arlequinadas: Esta aplicación es fundamental para acelerar el proceso de calibración y de operaciones morfológicas necesarias, a través de una interfaz de usuario sencilla. Genera un fichero de configuración fácilmente transferible que será utilizado por los módulos de despegue, búsqueda y aterrizaje.
- Reimplementación y desarrollo de módulos de búsqueda: Se han generado dos módulos de búsqueda. El primero ha sido reimplementado, ya que aunque

existía una primera versión de la búsqueda en espiral en el TFG de Jorge, el algoritmo no permitía la configuración e integración con un autómata de estados finito. El segundo tipo de búsqueda es de tipo rotacional y está basado en el módulo de autolocalización. El dron girará sobre sí mismo hasta que encuentre la baliza que tiene como objetivo.

- Desarrollo de la inteligencia del dron materializándola en un autómata de estados finito: La aplicación final debe estar dividida en diferentes estados. Esto permitirá que se puedan añadir o quitar funcionalidades de manera sencilla. Se podrá configurar a través de variables para así evitar la alteración del código.
- Configuración del co-procesador a bordo del dron: Será necesaria la preparación del entorno para poder correr la aplicación, un sistema de lanzamiento y detención de las pruebas experimentales y configurar la conectividad entre todos los componentes implicados (drone, co-procesador y ordenador).
- Validación experimental en el cuadricóptero real Se realizarán varias pruebas para demostrar el correcto funcionamiento de la solución desarrollada. Adicionalmente, se realizarán pruebas unitarias y se comparará la diferencia entre la utilización del co-procesador frente a un ordenador.

2.2. Requisitos

Se deberán satisfacer, adicionalmente, los siguientes requisitos:

- Los componentes y aplicaciones desarrollados han de estar integrados en la plataforma JdeRobot-5.6.4.
- El control de navegación del cuadricóptero ha de ser fluido y ágil, de modo que pueda mantenerse estable al menos 5 segundos en cada baliza, evitando en todo momento perder del campo de visión el objetivo.
- Los componentes y aplicaciones desarrollados han de ser computacionalmente eficientes y deben ser modulares.
- El sistema operativo debe estar basado en la distribución GNU/Linux Ubuntu 16.04.
- La aplicación debe poder ser fácilmente transferible y ejecutada tanto en el coprocesador como en un ordenador.
- Programado en Python 2.7.

2.3. Metodología

Para poder materializar los objetivos y requisitos, previamente mencionados, es necesario aplicar algún método que defina las distintas etapas y estados. En este Trabajo de Fin de Grado se aplica el método de dessarrollo en espiral. Este modelo, creado por Barry Boehm en 1986, se utiliza frecuentemente en la ingeniería de software. Se basa en una serie de iteraciones en bucle. En cada ciclo, se realiza un conjunto de cuatro actividades:

- 1. **Determinar los objetivos**: Poner limitaciones definidas en forma de objetivos o resquisitos. Dividir el proyecto en partes más pequeñas.
- 2. Análisis del riesgo: Estudiar los riesgos de cada uno de los objetivos que se abordan. Evaluar las alternativas posibles en caso de amenazas.
- 3. **Desarrolar y probar**: Verificación de la tarea actual. Al mismo tiempo, se realiza un análisis para encontrar nuevos factores de riesgo, como errores que se podrían arrastran a la próxima iteración.
- 4. Planificación: Establecer y definir las fases anteriores.

Figura 2.1. Representación del desarrollo en espiral.

Durante el desarrolo de este proyecto, se han establecido reuniones periódicas con el tutor. En ellas, revisábamos los objetivos anteriormente fijados y los resultados obtenidos. Si alguno de los objetivos generaba algún problema o no se llegaba al resultado deseado, se aplazaban o se profundizaba en la raíz del problema. A continuación, se determinaban los subobjetivos de nuestro próximo encuentro.

Como parte de la evaluación de los objetivos propuestos, ha sido fundamental la utilización del mediawiki¹ de la plataforma JdeRobot. En el están publicados, a modo de cuaderno de bitácora, los éxitos y progresos, haciendo uso además de contenido multimedia como imágenes o vídeos.

Para el seguimiento y almacenamiento del software desarrolado se ha empleado la herramienta de control de versiones GIT. Todo el código relacionado con este proyecto se encuentra alojado en el repositorio².

2.4. Planificación

Para conseguir los objetivos fijados anteriormente se ha seguido el siguiente plan de trabajo:

• Formación y familiarización con el entorno de JdeRobot: Incluye el preparación de las dependencias necesarias para la instalación del entorno. Estudio de

¹http://jderobot.org/Andresjhe-tfg

²https://github.com/RoboticsURJC-students/2014-tfg-Andres-Hernandez

las diferentes bibliotecas, interfaces y componentes. Aprendizaje y profundización de lenguajes de programación como Python y C++, así como la herramienta para las comunicaciones ICE y la biblioteca de visión OpenCV.

- Aprendizaje de la herramienta VisualStates: Necesaria para la generación de autómatas de estado finito. Se han generado varios ejemplos para conocer las diferentes secciones para la inserción de variables, funciones y nuevos estados.
- Configuración del co-procesador: Ha sido necesaria la investigación de posibles métodos de conexión (USB, ethernet, Wi-Fi), instalación del sistema operativo, entorno JdeRobot y bibliotecas adicionales necesarias como April Tags. Se ha realizado la instalación de un servidor SSH para realizar el lanzamiento de comandos en remoto.
- Familiarización con Gazebo: Se han estudiado los plugins ya existentes en JdeRobot y a su vez, la creación otros nuevos a través de la API de Gazebo. El aprendizaje de Blender ha sido necesario para generar el modelos virtuales específicos para este TFG.
- Aprendizaje e implementación del componente de despegue, búsqueda en espiral y aterrizaje: Necesario para conocer el funcionamiento del componente ya existente para las balizas de color y como obtener las diferentes coordenadas a partir de su detección. Se ha adaptado el código para ganar rendimiento y para poder ser implementado en una máquina de estados finito.
- Diseño de la herramienta de calibración: Necesario para acelerar el tiempo de calibración y el despliegue de la aplicación final en el co-procesador.
- Aprendizaje e implementación del componente de autolocalización y búsqueda rotacional: Necesario para conocer el funcionamiento de las balizas de tipo AprilTags y como obtener las diferentes coordenadas a partir de su detección.
- Validación experimental: Se validará el funcionamiento de las fases anteriores en un dron real ayudado por un co-procesador a través de pruebas unitarias como global. Se consiguió detectar problemas de rendimiento, caracterizarlo y conseguir así resolver, dónde ha sido posible, los diferentes problemas encontrados durante las pruebas.