T7 - Bobinas de Helmholtz. Lei de Faraday e Momento Torsor Aplicado a Espiras Móveis Omersas num Campo Magnético Uniforme

André Cruz - a92833; Beatriz Demétrio - a92839; Carlos Ferreira - a92846 13 de abril de 2021

1 Verificação da Lei de Faraday

Nesta parte, com recurso ao simulador FEMM foi criado um problema magnetóstatico onde se representou um modelo para as bobines de helmholtz. Para isso, definiu-se uma secção de todo o conjunto em si (sendo que se trata de um problema <u>axisimétrico</u>, havendo por isso uma simetria em relação a um eixo, no caso o eixo das bobines).

Usou-se dois blocos de $2\,cm$ para definir as espiras, às quais foram atribuídas o material $18\,awg$, os circuitos série coil1 e coil2 (com $1\,A$ de corrente cada) e um total de 154 espiras por espira da bobine. Foi também criada a espira $target\ coil$ através de um bloco de lado $0, 2\,cm$, feita de alumínio, com apenas 1 espira e cerca de $0\,A$ de corrente.

Sendo que não é possível analisar o sistema no programa até ao ∞ , definiuse o domínio através de uma condição fronteira aberta, de raio $R=50\,cm$ e $7\,layers$ (o que afeta a precisão dos resultados).

O sistema encontra-se, assim, definido, o qual se encontra representado (em conjunto com a respetiva malha) pela figura 1:

Figure 1: Simulação do modelo para as bobines de helmoltz e respetiva malha

Antes da visualização dos resultados, definiu-se o problema como axisimétrico, unidades cm e frequência $f=1000\,Hz$.

Foram obtidos valores para 3 raios da target coil, onde serão visualizados os valores do campo entre as bobines (CM) e a força eletromotriz $\underline{\varepsilon}$ (fem) induzida na target coil.

Relativamente ao primeiro valor, sabe-se que este pode ser dado pela expressão (1):

$$\left| \overrightarrow{B}_{ext} \right| = 6,93 \times 10^{-4} i \tag{1}$$

Já o segundo valor obtém-se pela expressão (2):

$$\varepsilon = \frac{d\phi}{dt} = 6,93 \times 10^{-4} i \, w \, sen(wt) \, A \tag{2}$$

onde A corresponde à área da bobina (no caso da $target\ coil)$ e $w=2\pi f$ a frequência angular.

Através do simulador, estes valores serão obtidos para posterior comparação...

• Raio da target coil = 3 cm

Figure 2: Variação do fluxo do Campo Magnético e Gráfico do campo entre as bobinas em função da distância para $R_{target\,coil}=3\,cm$

Mais uma vez, o valor obtido no simulador do CM corresponde ao previsto pela equação 1.

Figure 3: Obtenção da fem (parte imaginária de Voltage~Drop) para $R_{target\,coil}=3\,cm$

Os valores da $f\!em$ serão comparados com os obtidos no fim da apresentação de todos os resultados.

• Raio da target coil = 2 cm

Figure 4: Variação do fluxo do Campo Magnético e Gráfico do campo entre as bobinas em função da distância para $R_{target\ coil}=2\ cm$

Repare que a variação do valor do CM não se torna relevante, permitindo comprovar que o valor obtido no simulador corresponde ao previsto pela equação 1.

Figure 5: Obtenção da fem (parte imaginária de Voltage~Drop) para $R_{target\,coil}=2\,cm$

• Raio da target coil = 1 cm

Figure 6: Variação do fluxo do Campo Magnético e Gráfico do campo entre as bobinas em função da distância para $R_{target\,coil}=1\,cm$

Apesar de este ser o caso em que a variação dos valores do CM ser maior, esta ainda se torna irrelevante tendo em conta a zona do valor onde varia, permitindo comprovar que o valor obtido no simulador corresponde ao previsto pela equação 1.

Figure 7: Obtenção da fem (parte imaginária de $Voltage\ Drop)$ para $R_{target\ coil}=1\ cm$

Comparação dos valores da força eletromotriz induzida na target coil

Recolhendo todos os valores da fem obtidos no simulador e calculando os valores teóricos através da equação (2), pode-se assim proceder à sua comparação.

$R_{target\ coil}\ (cm)$	$\varepsilon_{te\acute{o}rico}\left(V\right)$	$\varepsilon_{experimental}\left(V\right)$
3	$1,231 \times 10^{-2}$	$1,229 \times 10^{-2}$
2	$5,472 \times 10^{-3}$	$5,461 \times 10^{-3}$
1	$1,368 \times 10^{-3}$	$1,362 \times 10^{-3}$

Table 1: Valores teóricos e obtidos experimentalmente da fem para diferentes raios da $target\ coil$

Tal como previsto, comprova-se que a força eletromotriz apresenta valores cada vez menores à medida que a target coil se afasta das bobines de Helmholtz, além de que os valores calculados pela equação (2) correspondem aos obtidos experimentalmente, pelo que podemos considerar assim a veracidadade da equação (2).

2 Momento torsor de uma espira rectangular

Nesta segunda parte, com o auxilio do simulador FEMM foi criado um problema magnetostático onde se representou um modelo de uma espira retangular. Com o auxilio do simulador obtivemos os seguintes resultados:

Figure 8: Simulação do modelo de uma espira retangular

Parte A

Nesta parte, utilizou-se inicialmente $\theta=90^{\rm o}$, que corresponde ao plano da espira paralelo ao campo $\overrightarrow{B_{ext}}$, e a corrente nas espiras i'=3,00A. Com isto, variando o campo magnético multiplicando a coercividade pela intensidade de corrente desejada na bobine de Helmholtz, determinou-se a força numa das espiras e determinou-se o momento binário produzido na mesma espira:

• inicialmente temos que : $\theta=90^{\mbox{\scriptsize o}};\,i'=3,00A;\,N=7;\,A=0,28m^2$

• utilizando o simulador obteu-se o seguinte:

i(A)	$F(\mu N)$	$\tau \ (Nm)$
1	$(124, 2; 2, 012) \Longrightarrow 124, 22$	$-3,73 \times 10^{-6}$
3	$(373, 7; 2, 012) \Longrightarrow 373, 71$	$-11,21 \times 10^{-6}$
5	$(623, 2; 2, 012) \Longrightarrow 623, 20$	$-18,69 \times 10^{-6}$
7	$(872, 6; 2, 012) \Longrightarrow 872, 60$	$-26,18 \times 10^{-6}$
9	$(1122; 2, 012) \Longrightarrow 1122, 00$	$-33,66 \times 10^{-6}$

Table 2: Tabela correspondente à parte A

Concluimos que com o aumento da corrente nas espiras de fora, verificamos que existe também um aumento da força em cada umas das espiras e também do momento binário.

Parte B

Com intuito de verificar a dependência do momento torsor aplicado à(s) espira(s) no seno do ângulo entre \overrightarrow{m} e \overrightarrow{B}_{ext} , fixou-se o valor da corrente i=2A nas bobines de Helmoltz e o valor i'=3A da espira, variando o ângulo da espira, permitindo assim a obtenção da força na espira e o momento do binário.

• inicialmente : i = 2A ; i' = 3A

• utilizando o simulador obteu-se o seguinte:

θ ($^{\Omega}$)	$F(\mu N)$	$\tau (Nm)$
0	$(-0,503;-247,5) \Longrightarrow 247,50$	$0,015 \times 10^{-6}$
30	$(124, 2; -214, 0) \Longrightarrow 247, 43$	$-3,727 \times 10^{-6}$
45	$(175, 9; -174, 4) \Longrightarrow 247, 70$	$-5,277 \times 10^{-6}$
60	$(215, 5; -122, 7) \Longrightarrow 247, 98$	$-6,466 \times 10^{-6}$
90	$(248, 9; 2.012) \Longrightarrow 248, 91$	$-7,469 \times 10^{-6}$

Table 3: Tabela correspondente à parte B

Com esta tabela verificou-se que mesmo variando o ângulo, nos deparamos com uma homogeneidade com os valores da força, ao contrário do valor de τ , que vai diminuindo com o aumento do ângulo.

Parte C

Para finalizar, verificou-se a dependência de $|\vec{\tau}|$ com o momento do binário magnético das espiras, \vec{m} , fazendo-se variar o nº de voltas da espiras e a dimensão desta.

• inicialmente : $\theta = 90^{\circ}$; i' = 1A; i = 1A

 $\bullet\,$ utilizando o simulador obteu-se o seguinte:

N	Diâmetro (m)	$F(\mu N)$	$\tau (Nm)$
3	0,30	$(41, 52; 0, 235) \Longrightarrow 41, 52$	$-1,246 \times 10^{-6}$
2	0,30	$(41, 52; 0, 226) \Longrightarrow 41, 52$	$-1,246 \times 10^{-6}$
1	0,30	$(41, 58; 0, 200) \Longrightarrow 41, 58$	$-1,247 \times 10^{-6}$
1	0, 12	$(41, 60; 0, 210) \Longrightarrow 41, 60$	$-1,248 \times 10^{-6}$
1	0,09	$(41, 59; 0, 212) \Longrightarrow 41, 59$	$-1,248 \times 10^{-6}$

Table 4: Tabela correspondente à parte C

Com esta tabela verificou-se que mesmo variando o número de espiras e o diâmetro, nos deparamos com uma homogeneidade com os valores da força assim como o valor de τ .