

Benchmarking road network growth models

J. Raimbault^{1,2,3,*}

*j.raimbault@ucl.ac.uk

¹Center for Advanced Spatial Analysis, University College London ²UPS CNRS 3611 Complex Systems Institute Paris ³UMR CNRS 8504 Géographie-cités

ECTQG 2021

Special Session: Exploration and validation of spatial simulation models

November 4th 2021

Modeling road network growth

Road networks functionally shaping territories [Dupuy, 1987]

 \rightarrow path-dependence and implications for sustainable territorial systems on multiple time scales

Multiple driving processes [Barthelemy et al., 2013]

 \rightarrow which models to understand such growth?

Examples of transportation network growth models:

- Transportation governance [Raimbault and Le Néchet, 2021]
- Investments in public transport [Cats et al., 2020]
- Multi-modal networks [Cats and Birch, 2021]
- Bicycle networks design [Szell et al., 2021]
- Network morphogenesis [Tirico et al., 2018]
- Geometrical processes [Courtat et al., 2011]

Research objective

- \to Models proposed in the literature are validated/explored in their own context, often not compared beyond null models
- → Need for model benchmarks to build integrated theories

Research objective:

Compare road network growth models with diverse types of processes, integrated into a common multi-modeling framework, with a focus on feasible space using a diversity search algorithm

Road network generation multi-model

At each time step, with a fixed population density:

- Add new nodes preferentially to population and connect them
- Variable heuristic for new links, among: nothing, random, gravity-based deterministic breakdown [Raimbault, 2019a], gravity-based random breakdown ([Schmitt, 2014]), cost-benefits ([Louf et al., 2013]), biological network generation ([Tero et al., 2010])

Deterministic breakdown link addition

Model explored in [Raimbault, 2019a]

Gravity potential given by

$$V_{ij}(d) = \left[\left(1 - k_h \right) + k_h \cdot \left(\frac{P_i P_j}{P^2} \right)^{\gamma} \right] \cdot \exp \left(-\frac{d}{r_g \left(1 + d/d_0 \right)} \right)$$

- **2** $k \cdot N_L$ links are selected with lowest $V_{ij}\left(d_N\right)/V_{ij}\left(d_{ij}\right)$ (strong demand compared to offer), among which the N_L links with this highest rate (lest costly links) are realised
- 3 Network is planarised

Biological network link addition

Model introduced by [Tero et al., 2010]: exploration and reinforcement by a slime mould searching for ressources

Application to the design of optimal bus routes in [Raimbault, 2018a]

Biological network link addition

Adding new links with biological heuristic:

- Create network of potential new links, with existing network and randomly sampled diagonal lattice
- 2 Iterate for k increasing ($k \in \{1, 2, 4\}$ in practice):
 - Using population distribution, iterate $k \cdot n_b$ times the slime mould model to compute new link capacities
 - Delete links with capacity under θ_d
 - Keep the largest connected component
- 3 Planarize and simplify final network

Intermediate stage for biological network generation

Model parameters

Heuristic	Param.	Name	Process	Domain	Default
Base	I _m	added links	growth	0;100	10
	d_G	gravity distance	potential	0;5000	500
	d_0	gravity shape	potential	0;10	2
	k _h	gravity weight	potential	0;1	0.5
	γ _G	gravity hierarchy	potential	0.1;4	1.5
Random	γ_R	random selection	hierarchy	0.1;4	1.5
	θ_R	random threshold	breakdown	1;5	2
Cost-	λ	compromise	compromise	0; 0.1	0.05
benefits					
Biological	n _b	iterations	convergence	40; 100	50
	θ_b	biological th.	threshold	0.1;1.0	0.5

Model setup

Synthetic setup: rank-sized monocentric cities, simple connection with bord nodes to avoid bord effects

Real setup: Population density raster at 500m resolution (European

Union, from Eurostat)

Initial network: skeleton connecting centres

Stopping conditions: fixed network size or maximal steps

Network Indicators

Network Topology measured by:

- Average betweenness and closeness centralities
- Efficiency (network pace relative to euclidian distance)
- Mean path length, diameter

Example of generated networks

In order: connection; random; deterministic breakdown; random breakdown; cost-driven; biological.

Pattern Space Exploration algorithm

Source: [Chérel et al., 2015]

OpenMOLE integration

- \rightarrow Models implemented in NetLogo (scala implementation in progress [Raimbault et al., 2020])
- ightarrow Integrated into OpenMOLE model exploration open source software [Reuillon et al., 2013]

Enables seamlessly (i) model embedding; (ii) access to HPC resources; (iii) exploration and optimization algorithms (including PSE)

https://openmole.org/

 \rightarrow PSE run separately for each model for 5000 generations

Indicators feasible space

Hypervolume intersections

Directed relative overlaps between estimated hypervolumes of point clouds

Discussion

- \to Complementarity of models to generate diverse networks: models not only with different purposes but also "output contexts"
- \rightarrow Comparison with real networks / calibration (work in progress on GHS FUAs, see [Raimbault, 2019b] for OSM 50km windows)
- \rightarrow Extension with other models [Molinero and Hernando, 2020] [Tirico et al., 2018] (work in progress)
- \rightarrow Diversity search algorithms and dimensionality reduction (work in progress)
- \rightarrow Application: link between calibrated parameters and sustainability indicators? [Raimbault, 2018b]

Conclusion

- \rightarrow Complementarity of models and processes for road network growth (similar result for population density morphogenesis [Raimbault, 2020]
- \rightarrow Which models to integrate? Open science/platforms for model sharing and benchmarking; typology/classification of processes, models, disciplines?

Use and contribute to OpenMOLE

https://openmole.org

Open repository

https://github.com/JusteRaimbault/NetworkGrowth

References I

- Barthelemy, M., Bordin, P., Berestycki, H., and Gribaudi, M. (2013). Self-organization versus top-down planning in the evolution of a city. *Scientific reports*, 3(1):1–8.
- Cats, O. and Birch, N. (2021).

 Multi-modal network evolution in polycentric regions.

 Journal of Transport Geography, 96:103159.
- Cats, O., Vermeulen, A., Warnier, M., and van Lint, H. (2020). Modelling growth principles of metropolitan public transport networks.

Journal of Transport Geography, 82:102567.

References II

Chérel, G., Cottineau, C., and Reuillon, R. (2015).

Beyond corroboration: Strengthening model validation by looking for unexpected patterns.

PloS one, 10(9):e0138212.

- Courtat, T., Gloaguen, C., and Douady, S. (2011).

 Mathematics and morphogenesis of cities: A geometrical approach.

 Physical Review E, 83(3):036106.
 - Dupuy, G. (1987). Vers une théorie territoriale des réseaux: une application au transport urbain.

In Annales de géographie, pages 658-679. JSTOR.

References III

- Louf, R., Jensen, P., and Barthelemy, M. (2013). Emergence of hierarchy in cost-driven growth of spatial networks. *Proceedings of the National Academy of Sciences*, 110(22):8824–8829.
 - Molinero, C. and Hernando, A. (2020). A model for the generation of road networks. *arXiv preprint arXiv:2001.08180*.
 - Raimbault, J. (2018a).

 Des systèmes naturels aux systèmes urbains: génération de réseaux de transport optimaux par modèle slime-mould.

 In *BioMim Expo 2018*.

References IV

Raimbault, J. (2018b).

A multi-dimensional percolation approach to characterize sustainable mega-city regions.

In *MARAMI 2018*.

Raimbault, J. (2019a).

Second-order control of complex systems with correlated synthetic data.

Complex Adaptive Systems Modeling, 7(1):1–19.

Raimbault, J. (2019b).

An urban morphogenesis model capturing interactions between networks and territories.

In The mathematics of urban morphology, pages 383-409. Springer.

References V

- Raimbault, J. (2020).

 A comparison of simple models for urban morphogenesis. arXiv preprint arXiv:2008.13277.
- Raimbault, J. and Le Néchet, F. (2021).
 Introducing endogenous transport provision in a luti model to explore polycentric governance systems.

 Journal of Transport Geography, 94:103115.
- Raimbault, J., Perret, J., and Reuillon, R. (2020). A scala library for spatial sensitivity analysis. arXiv preprint arXiv:2007.10667.

References VI

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013).

Openmole, a workflow engine specifically tailored for the distributed exploration of simulation models.

Future Generation Computer Systems, 29(8):1981-1990.

Schmitt, C. (2014).

Modélisation de la dynamique des systèmes de peuplement: de SimpopLocal à SimpopNet.

PhD thesis, Université Panthéon-Sorbonne-Paris I.

Szell, M., Mimar, S., Perlman, T., Ghoshal, G., and Sinatra, R. (2021).

Growing urban bicycle networks.

References VII

- Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi, R., and Nakagaki, T. (2010).
 Rules for biologically inspired adaptive network design.

 Science, 327(5964):439–442.
 - Tirico, M., Balev, S., Dutot, A., and Olivier, D. (2018). Morphogenesis of complex networks: A reaction diffusion framework for spatial graphs.

In International Conference on Complex Networks and their Applications, pages 769–781. Springer.