Clustering for Mall Customer data

The Mall customers data set (https://www.kaggle.com/datasets/kandij/mall-customers) contains some basic data about your customers like Customer ID, age, gender, annual income and spending score. In this project, we try to cluster the customers based on the basic data.

• Summary Statistics

	Age	Annual_Income	Spending_Score
X	Min. :18.00	Min. : 15.00	Min.: 1.00
X.1	1st Qu.:28.75	1st Qu.: 41.50	1st Qu.:34.75
X.2	Median $:36.00$	Median: 61.50	Median:50.00
X.3	Mean:38.85	Mean: 60.56	Mean $:50.20$
X.4	3rd Qu.:49.00	3rd Qu.: 78.00	3rd Qu.:73.00
X.5	Max. $:70.00$	Max. $:137.00$	Max. :99.00

Table 1: Summary Statistics

• Matrix scatterplot and Correlation matrix

Figure 1: Matrix scatterplot

Figure 2: Box Plots

	Age	Annual_Income	Spending_Score
Age	1.00	-0.01	-0.33
$Annual_Income$	-0.01	1.00	0.01
Spending_Score	-0.33	0.01	1.00

Table 2: Correlation matrix

- As the correlation between most of the variables are very low, therefore, rather than going with the correlation-based distance, we can use metric-based distance for clustering.
- Also I would suggest standardizing the variables as they are in different scales and some have very high ranges.
- There is not much variation of the variables when the Gender is condisered.

Hierarchical Clustering with Complete linkage

Cluster Dendrogram

Figure 3: Hierarchical Clustering with Complete linkage

	1	2	3
1	69	57	74

Table 3: Number of observations within each cluster (Hierarchical Clustering)

	Age	Annual_Income	Spending_Score	clust
Cluster 1	27.275	42.783	56.377	1.000
Cluster 2	55.333	47.316	41.088	2.000
Cluster 3	36.946	87.338	51.459	3.000

Table 4: Cluster means of the variables (Hierarchical Clustering)

Table 5: Number of observations within each cluster (Hierarchical Clustering)

	Age	Annual_Income	Spending_Score	clust
Cluster 1	27.275	42.783	56.377	1.000
Cluster 2	55.333	47.316	41.088	2.000
Cluster 3	32.692	86.538	82.128	3.000
Cluster 4	41.686	88.229	17.286	4.000

Table 6: Cluster means of the variables (Hierarchical Clustering)

Figure 5: Matrix scatter plots

K-means clustering with $\mathbf{k}=3$

	1	2	3
1	91	41	68

Table 7: Number of observations within each cluster (k=3)

	Age	Annual_Income	Spending_Score
Cluster 1	51.275	61.802	34.209
Cluster 2	32.854	87.341	79.976
Cluster 3	25.838	42.750	53.647

Table 8: Cluster means of the variables for k-means clustering (k=3) $\,$

Figure 6: Matrix scatter plots

• Age is a good variable to cluster the data into 3 clusters.

K-means clustering with k = 4

	1	2	3	4
1	65	38	57	40

Table 9: Number of observations within each cluster (k=4)

	Age	Annual_Income	Spending_Score
Cluster 1	53.985	47.708	39.969
Cluster 2	39.368	86.500	19.579
Cluster 3	25.439	40.000	60.298
Cluster 4	32.875	86.100	81.525

Table 10: Cluster means of the variables for k-means clustering (k=4)

K-means clustering with $\mathbf{k}=5$

	1	2	3	4	5
1	20	39	54	47	40

Table 11: Number of observations within each cluster (k=4)

	Age	Annual_Income	Spending_Score
Cluster 1	46.250	26.750	18.350
Cluster 2	39.872	86.103	19.359
Cluster 3	25.185	41.093	62.241
Cluster 4	55.638	54.383	48.851
Cluster 5	32.875	86.100	81.525

Table 12: Cluster means of the variables for k-means clustering (k=5)

K-means clustering with $\mathbf{k}=6$

	1	2	3	4	5	6
1	24	45	39	33	21	38

Table 13: Number of observations within each cluster (k=4)

	Age	Annual_Income	Spending_Score
Cluster 1	25.250	25.833	76.917
Cluster 2	56.333	54.267	49.067
Cluster 3	32.692	86.538	82.128
Cluster 4	41.939	88.939	16.970
Cluster 5	45.524	26.286	19.381
Cluster 6	26.684	57.579	47.789

Table 14: Cluster means of the variables for k-means clustering (k=6)

Figure 10: Plot of number of clusters vs total within cluster sum of squares $\frac{1}{2}$