$12a_{0736} (K12a_{0736})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{69} - 11u^{67} + \dots + 2u^2 + 1 \rangle$$

 $I_2^u = \langle u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 70 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{69} - 11u^{67} + \dots + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{10} + u^{8} - 2u^{6} + u^{4} - u^{2} + 1 \\ -u^{12} + 2u^{10} - 4u^{8} + 4u^{6} - 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{22} - 3u^{20} + \dots + 2u^{2} + 1 \\ u^{24} - 4u^{22} + \dots - 12u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{34} + 5u^{32} + \dots + u^{2} + 1 \\ -u^{36} + 6u^{34} + \dots - 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{19} + 4u^{17} - 10u^{15} + 18u^{13} - 23u^{11} + 24u^{9} - 18u^{7} + 10u^{5} - 3u^{3} \\ u^{19} - 3u^{17} + 8u^{15} - 13u^{13} + 17u^{11} - 17u^{9} + 12u^{7} - 6u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{62} + 11u^{60} + \dots + 2u^{2} + 1 \\ u^{62} - 10u^{60} + \dots + 8u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{67} 40u^{65} + \cdots 12u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{69} + 22u^{68} + \dots - 4u + 1$
c_2, c_7	$u^{69} - 11u^{67} + \dots + 2u^2 + 1$
c_3	$u^{69} - 2u^{68} + \dots - 466u + 61$
c_4, c_5, c_{11}	$u^{69} - 2u^{68} + \dots + 2u^2 + 1$
c_6, c_{10}, c_{12}	$u^{69} + 3u^{68} + \dots + 96u + 15$
<i>C</i> 9	$u^{69} + 8u^{68} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{69} + 50y^{68} + \dots + 12y - 1$
c_2, c_7	$y^{69} - 22y^{68} + \dots - 4y - 1$
c_3	$y^{69} - 10y^{68} + \dots + 70756y - 3721$
c_4, c_5, c_{11}	$y^{69} - 54y^{68} + \dots - 4y - 1$
c_6, c_{10}, c_{12}	$y^{69} + 69y^{68} + \dots - 2124y - 225$
<i>c</i> ₉	$y^{69} + 2y^{68} + \dots - 308y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.991972 + 0.143862I	1.34578 + 4.89493I	-0.86940 - 7.00797I
u = -0.991972 - 0.143862I	1.34578 - 4.89493I	-0.86940 + 7.00797I
u = 0.991475 + 0.091911I	-3.34547 - 2.48635I	-7.92585 + 6.49145I
u = 0.991475 - 0.091911I	-3.34547 + 2.48635I	-7.92585 - 6.49145I
u = -0.658926 + 0.796334I	-0.433628 - 0.203581I	0
u = -0.658926 - 0.796334I	-0.433628 + 0.203581I	0
u = 0.736871 + 0.614606I	2.92904 + 0.21710I	1.212247 - 0.558100I
u = 0.736871 - 0.614606I	2.92904 - 0.21710I	1.212247 + 0.558100I
u = 0.664003 + 0.805623I	-4.00701 + 4.76117I	0
u = 0.664003 - 0.805623I	-4.00701 - 4.76117I	0
u = -0.708316 + 0.768193I	2.43578 - 2.14828I	0. + 4.59076I
u = -0.708316 - 0.768193I	2.43578 + 2.14828I	0 4.59076I
u = 0.745411 + 0.741861I	3.11017 - 0.75564I	0
u = 0.745411 - 0.741861I	3.11017 + 0.75564I	0
u = -0.669215 + 0.811820I	0.28757 - 9.26473I	0
u = -0.669215 - 0.811820I	0.28757 + 9.26473I	0
u = -0.935368	-1.88030	-3.00500
u = 0.715362 + 0.794901I	7.54934 + 4.39001I	0
u = 0.715362 - 0.794901I	7.54934 - 4.39001I	0
u = 1.068480 + 0.101467I	-6.62522 + 0.10424I	0
u = 1.068480 - 0.101467I	-6.62522 - 0.10424I	0
u = -1.069720 + 0.112307I	-10.30900 + 4.49993I	-9.11338 + 0.I
u = -1.069720 - 0.112307I	-10.30900 - 4.49993I	-9.11338 + 0.I
u = 1.069200 + 0.121692I	-6.09738 - 9.05674I	0
u = 1.069200 - 0.121692I	-6.09738 + 9.05674I	0
u = -0.768907 + 0.776307I	8.45985 + 1.96096I	0
u = -0.768907 - 0.776307I	8.45985 - 1.96096I	0
u = -0.892627 + 0.630156I	-0.52815 + 2.44731I	0
u = -0.892627 - 0.630156I	-0.52815 - 2.44731I	0
u = -0.972878 + 0.520213I	-3.78853 - 2.83456I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.972878 - 0.520213I	-3.78853 + 2.83456I	0
u = 0.977801 + 0.533864I	-7.85518 - 1.72176I	0
u = 0.977801 - 0.533864I	-7.85518 + 1.72176I	0
u = -0.981067 + 0.547830I	-4.01496 + 6.30286I	0
u = -0.981067 - 0.547830I	-4.01496 - 6.30286I	0
u = 0.841536 + 0.762661I	3.17898 - 6.92216I	0
u = 0.841536 - 0.762661I	3.17898 + 6.92216I	0
u = -0.858320 + 0.746163I	-0.89607 + 2.81825I	0
u = -0.858320 - 0.746163I	-0.89607 - 2.81825I	0
u = 0.887210 + 0.744059I	3.03339 + 1.23094I	0
u = 0.887210 - 0.744059I	3.03339 - 1.23094I	0
u = 0.960144 + 0.658096I	2.22365 - 5.28707I	0
u = 0.960144 - 0.658096I	2.22365 + 5.28707I	0
u = 0.964185 + 0.699578I	2.44076 - 4.74437I	0
u = 0.964185 - 0.699578I	2.44076 + 4.74437I	0
u = -0.955842 + 0.728092I	7.88682 + 3.72650I	0
u = -0.955842 - 0.728092I	7.88682 - 3.72650I	0
u = -0.989530 + 0.707234I	1.58470 + 7.74715I	0
u = -0.989530 - 0.707234I	1.58470 - 7.74715I	0
u = 0.993720 + 0.722492I	6.70266 - 10.11200I	0
u = 0.993720 - 0.722492I	6.70266 + 10.11200I	0
u = -1.019650 + 0.704891I	-1.51932 + 5.86547I	0
u = -1.019650 - 0.704891I	-1.51932 - 5.86547I	0
u = 1.021010 + 0.710171I	-5.08551 - 10.46680I	0
u = 1.021010 - 0.710171I	-5.08551 + 10.46680I	0
u = -1.021170 + 0.714495I	-0.7784 + 15.0026I	0
u = -1.021170 - 0.714495I	-0.7784 - 15.0026I	0
u = 0.709030 + 0.232698I	2.70697 + 0.12234I	1.57891 + 1.07217I
u = 0.709030 - 0.232698I	2.70697 - 0.12234I	1.57891 - 1.07217I
u = -0.295637 + 0.611584I	-2.29380 - 2.06576I	0.948201 + 0.462919I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.295637 - 0.611584I	-2.29380 + 2.06576I	0.948201 - 0.462919I
u = 0.267368 + 0.620746I	-6.03688 - 2.42235I	-2.36442 + 2.92314I
u = 0.267368 - 0.620746I	-6.03688 + 2.42235I	-2.36442 - 2.92314I
u = -0.243750 + 0.627445I	-1.88595 + 6.88787I	1.87116 - 5.76329I
u = -0.243750 - 0.627445I	-1.88595 - 6.88787I	1.87116 + 5.76329I
u = 0.097783 + 0.542313I	4.72615 - 2.75194I	7.92617 + 4.59750I
u = 0.097783 - 0.542313I	4.72615 + 2.75194I	7.92617 - 4.59750I
u = -0.145390 + 0.409475I	0.081720 + 0.949994I	1.58080 - 7.18327I
u = -0.145390 - 0.409475I	0.081720 - 0.949994I	1.58080 + 7.18327I

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_{11}	u+1
c_6, c_{10}, c_{12}	u
<i>c</i> 9	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9, c_{11}	y-1	
c_6, c_{10}, c_{12}	y	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$(u+1)(u^{69}+22u^{68}+\cdots-4u+1)$
c_2, c_7	$(u+1)(u^{69}-11u^{67}+\cdots+2u^2+1)$
<i>c</i> ₃	$(u+1)(u^{69}-2u^{68}+\cdots-466u+61)$
c_4, c_5, c_{11}	$(u+1)(u^{69} - 2u^{68} + \dots + 2u^2 + 1)$
c_6, c_{10}, c_{12}	$u(u^{69} + 3u^{68} + \dots + 96u + 15)$
<i>C</i> 9	$(u-1)(u^{69} + 8u^{68} + \dots - 2u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{8}	$(y-1)(y^{69}+50y^{68}+\cdots+12y-1)$
c_2, c_7	$(y-1)(y^{69}-22y^{68}+\cdots-4y-1)$
<i>c</i> ₃	$(y-1)(y^{69}-10y^{68}+\cdots+70756y-3721)$
c_4, c_5, c_{11}	$(y-1)(y^{69}-54y^{68}+\cdots-4y-1)$
c_6, c_{10}, c_{12}	$y(y^{69} + 69y^{68} + \dots - 2124y - 225)$
<i>c</i> ₉	$(y-1)(y^{69}+2y^{68}+\cdots-308y-1)$