Instruction: Attempt all the questions

1. Write the appropriate queries to create the following table and answer the question below:

Create table_name as Employee

Eid	Name	Address
1	Ram	Ktm
2	Hari	Biratnagar
3	Shyam	Chitwan
4	Sita	Ktm
5	Sandesh	Pokhara
6	Saraswati	Pokhara

```
🗐 Server: 127.0.0.1 » 🗻 Database: workshop » 📠 Table: employee
                                     Search
                                                 i Insert
Browse
            M Structure
                           SQL
                                                             Export
                                                                        Import
                                                                                     Privileges
Run SQL query/queries on table workshop.employee: (a)
     1 INSERT INTO employee (eid, person_name, address) VALUES (1, 'Ram', 'KTM');
     2 INSERT INTO employee (eid, person_name, address) VALUES (2, 'Hari', 'Biratnagar');
     3 INSERT INTO employee (eid, person_name, address) VALUES (3, 'Shyam', 'Chitwan');
     4 INSERT INTO employee (eid, person_name, address) VALUES (4, 'Sita', 'KTM');
     5 INSERT INTO employee (eid, person_name, address) VALUES (5, 'Sandesh', 'Pokhara');
     6 INSERT INTO employee (eid, person name, address) VALUES (6, 'Saraswati', 'Pokhara');
```

a) Display all records except Eid.Select name, address from Employee;

4 Sita

b) Display all Name of the employee in alphabetical order.

Select * from Employee order by name;

KTM

c) Write a query to display the name who lives in ktm and id>2. select * from Employee where address = "Kathmandu" AND id >2;

d) Write a query to display the name who lives either in ktm OR Pokhara.

select * from Employee where address = "Kathmandu" or address = "Pokhara";

e) Write a query to display the name whose Eid is between 2 and 5. Select * from Employee where Eid > 2 and Eid <5;

f) List the Name of Employee whose name start with letter 'S'. Select name from Employee where name like('s%');

g) List the Name of Employee whose name containing letter 'e'. Select name from Employee where name like('%e%');

h) Add a new column Esalary in the table Employee after Address field.

1 Ram NULL KTM Biratnagar NULL 2 Hari 3 Shyam Chitwan NULL 4 Sita KTM NULL 5 Sandesh Pokhara NULL 6 Saraswati Pokhara NULL

i) After that, delete Esalary field.

Alter table Employee drop Esalary;

j) Delete all the records of Eid 6.

Delete form Employee where Eid=6;

Workshop: week 11

2. Write a SQL statement to create a table "**countries**" including columns country_id, country_name and region_id and make sure that the column country_id will be unique and store an auto incremented value.

create table countries(country_id int, country_name varchar(20), region_id int, primary key(country_id));

3. Write a SQL statement to create a table named **Jobs** including columns job_id, job_title, min_salary and max_salary, and make sure that, the default value for job_title is blank and min_salary is 8000 and max_salary is NULL will be entered automatically at the time of insertion if no value assigned for the specified columns.

create table jobs(job_id int, job_title varchar(20) default ' ',min_salary float default 8000, max_salary float default NULL);

4. On the basis of following table answer the question below:

Emp_id	Name	Dep_id	Job_title	Salary

1	Ajit Kumar	18	Engineer	25000.00
2	Ujjwal	5	Programmer	32000.00
3	Ram Prashad	5	Supervisor	23000.00
4	Jyotirma	18	Receptionist	20000.00
5	Kanchan	5	Programmer	21000.00
6	Daya	3	Manager	35000.00
7	Samip	18	Supervisor	24000.00

```
Server: 127.0.0.1 » 📵 Database: workshop » 📠 Table: employee2
Browse
            M Structure
                           SQL
                                     Search
                                                 Insert 

Export Import 

Privileges
Run SQL query/queries on table workshop.employee2: @
     1 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (1, 'Ajit Kumar', 18,
        'Engineer', 25000.000);
     2 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (2, 'Ujjwal', 5,
       'Programmer', 32000.00);
     3 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (3, 'Ram Prashad', 5,
       'Supervisor', 23000.00);
     4 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (4, 'Jyotirma', 18,
       'Receptionist', 20000.00);
     5 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (5, 'Kanchan', 5,
       'Programmer', 21000.00);
     6 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (6, 'Daya', 3,
       'Manager', 35000.00);
     7 insert into employee2 (Emp_id, Emp_name, Dep_id, Job_title, Salary) values (7, 'Samip', 18,
        'Supervisor', 24000.00);
```

Emp_id	Emp_name	Dep_id	Job_title	Salary
1	Ajit Kumar	18	Engineer	25000
2	Ujjwal	5	Programmer	32000
3	Ram Prashad	5	Supervisor	23000
4	Jyotirma	18	Receptionist	20000
5	Kanchan	5	Programmer	21000
6	Daya	3	Manager	35000
7	Samip	18	Supervisor	24000

a) Write SQL statement for Emp_id using not null auto_increment.

ALTER TABLE `employee2` CHANGE `Emp_id` `Emp_id` INT(1) NOT NULL AUTO INCREMENT;

Workshop: week 11

b) Display all the records from field Dep_id 18.

Select * from table_name where dep_id =18;

c) Display Emp_id, Name and Salary of all employee's in ascending order of Salary.

Select * from Employee order by salary;

d) Display all the records where Emp_id is less than or equal to 4.Select * from Employee where id =4 or id <4;

e) Display minimum, maximum, average, total sum salary from above table respectively.

select max(salary) from emp; select min(salary) from emp; select avg(salary) from emp; select sum(salary) from emp;

f) Change the column name Name as Emp_Fname.

Alter table Employee rename column name to emp_name;

Workshop: week 11

g) Count inserted row using SQL statement.

Select count(salary) from emp;

h) Update Emp_id 5 salary to 28000.00.

Update emp

Set salary=28000

Where id = 1;

Workshop: week 11

i) Increse all the employee's salary by five thousand named as New_salary and display all the records from table.

Alter table Employee rename column salary to new_salary; Update Employee

Set new_salary = New_salary + 5000

Where emp_id<10;

