Химия 8 класс Справочник

Содержание

1	OCI	новные классы неорганических соединении					
2	Оксиды						
	2.1	Классификация оксидов					
	2.2	Получение оксидов					
	2.3	Химические свойства оксидов					
3	Основания						
	3.1	Классификация оснований					
	3.2	Получение оснований					
	3.3	Химические свойства оснований					
4	Кислоты						
	4.1	Классификация кислот					
	4.2	Номенкулатура кислот					
	4.3	Получение кислот					
	4.4	Химические свойства кислот					
5	Соли						
	5.1	Классификация солей					
	5.2	Номенкулатура солей					
	5.3	Получение солей					
	5.4	Химические свойства солей					

1 Основные классы неорганических соединений

- Простые
 - Металлы
 - Неметаллы
- Сложные
 - Оксиды $\boxed{\mathrm{E}O}$
 - Основания Me(OH)
 - Кислоты H(KO)
 - Соли Ме(КО)

2 Оксиды

2.1 Классификация оксидов

- ullet Безразличные CO NO
- Солеобразующие
 - Основные $\overline{\mathrm{Me}O(\mathrm{I,\,II})}$
 - Амфотерные $MeO(III) \mid BeO, ZnO$
 - Кислотные $\boxed{\mathrm{HeMe}\mid\mathrm{Me}O(\mathrm{V}-\mathrm{VII})}$

2.2 Получение оксидов

- 1. Окисление
 - (a) Простых $S + 0_2 \rightarrow SO_2 \uparrow$
 - (b) Сложных $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2 \uparrow$
- 2. Разложение сложных веществ
 - (а) Некоторых солей
 - (b) Некоторых кислот
 - (c) Всех нерастворимых оснований $\boxed{\mathbb{E}(OH) \xrightarrow{t} \mathbb{E}O + H_2O}$

2.3 Химические свойства оксидов

2.3.1 Основные

1. Вода (если Me — активный)

основный оксид
$$+$$
 вода \to основание $CaO + H_2O \to Ca(OH)_2$

2. Кислоты

основный оксид
$$+$$
 кислота \to соль $+$ вода $CuO + H_2SO_4 \to CuSO_4 + H_2O$

3. Кислотные оксиды

основный оксид
$$+$$
 кислотный оксид \to соль

$$CaO + Al_2O_3 \xrightarrow{t} Ca(AlO_2)_2$$

2.3.2 Кислотные

1. Вода

кислотный оксид
$$+$$
 вода \to кислота $SO_3 + H_2O \to H_2SO_4$

2. Щелочь

кислотный оксид
$$+$$
 щелочь \rightarrow соль $+$ вода

$$SiO_2 + H_2O \nrightarrow$$

$$P_2O_5 + H_2O \frac{\rightarrow HPO_3}{\rightarrow H_3PO_4}$$

$$SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$$

3. Основные оксиды

кислотный оксид
$$+$$
 основный оксид \to соль $CO_2 + CaO \to CaCO_3$

3.1 Классификация оснований

- Щелочи (растворимые в воде)
- Нерастворимые (в воде)

3.2 Получение оснований

3.2.1 Щелочи

1. Вода с активными Ме
$$2Na+2H_2O\rightarrow 2NaOH+H_2\uparrow \\ Ca+2H_2O\rightarrow Ca(OH)_2+H_2\uparrow$$

2. Вода с оксидами активных Ме
$$Li_2O + H_2O \rightarrow 2LiOH$$
 $CaO + H_2O \rightarrow Ca(OH)_2$

3. Электролиз раствора хлорида натрия или калия
$$2NaCl + 2H_2O \stackrel{\text{эл.ток}}{\to} 2NaOH + H_2 \uparrow + Cl_2 \uparrow 2KCl + 2H_2O \stackrel{\text{эл.ток}}{\to} 2KOH + H_2 \uparrow + Cl_2 \uparrow$$

4.
$$\boxed{ {
m coль} + {
m щелочь}
ightarrow {
m coль} + {
m щелочь} }$$
 $K_2SO_4 + Ba(OH)_2 = BaSO_4 \downarrow + KOH$

3.2.2 Нерастворимые

1. Раствор соли и раствор щелочи
$$CuCl_2 + 2KOH \rightarrow Cu(OH)_2 \downarrow + 2KCl$$
 $FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$

3.3 Химические свойства оснований

3.3.1 Щелочи

1. Изменение окраски индикаторов растворами щелочей

	Нейтральная	Кислая	Щелочная
Лакмус	фиол.	крас.	син.
Фенолфталеин	_	_	малин.
Метилоранж	оранж.	роз.	желт.

2. Кислоты (Нейтрализация)
$$NaOH + HCl \rightarrow NaCl + H_2O \\ Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$$

3. Кислотные оксиды
$$Ca(OH)_2 + CO_2 \to CaCO_3 \downarrow + H_2O$$
 $2KOH + CO_2 \to K_2CO_3 + H_2O$

4. Растворимые в воде соли $AlCl + 3KOH \rightarrow Al(OH)_3 + 3KCl$

3.3.2 Нерастворимые

1. Термическое разложение

основание
$$\stackrel{t}{ o}$$
 основный оксид $+$ вода $2Al(OH)_3 \stackrel{t}{ o} Al_2O_3 + 3H_2O$

2. Кислоты (Нейтрализация)
$$Cu(OH)_2 + 2HNO_3 \to Cu(NO_3)_2 + 2H_2O$$

4 Кислоты

4.1 Классификация кислот

4.1.1 По содержанию кислорода

- Бескислородные H_2S , HCl, HI
- Кислородосодержащие $HClO_4$, CH_3COOH , H_2SO_4

4.1.2 По числу атомов водорода

- ullet Одноосновные HCl
- Многоосновные H_2S, H_3PO_4

4.2 Номенкулатура кислот

4.2.1 Бескислородные

```
название элемента + "водородная"
```

HF — фтороводородная

HCl — хлоро**водородная**

 H_2S — сероводородная

4.2.2 Кислородосодержащие

название элемента + суффикс + кислота

Выбор суффикса зависит от степени окисления элемента. Суффиксы в порядке уменьшения степени окисления:

- 1. **-ная**, **-вая** (максимальная, соответствует номеру группы в таблице Менделеева)
- 2. -оватая
- 3. -истая
- 4. -оватистая

 $HCl^{+7}O_4$ — хлор**ная** кислота

 $HCl^{+5}O_3$ — хлор**новатая** кислота

 $HCl^{+3}O_2$ — хлор**истая** кислота

 $HCl^{+1}O$ — хлорн**оватистая** кислота

4.3 Получение кислот

1. Бескислородные
$$H_2 + Cl \to 2HCl$$
 $H_2 + S \to H_2S$

2. Кислородные

$$H_2O + SO_3 \rightarrow H_2SO_4$$

 $H_2O + CO_2 \rightarrow H_2CO_3$

3. Универсальный (реагирует, если данная кислота левее, чем кислота соли в PAK)

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2CO_3$$

4.4 Химические свойства кислот

- 1. Реакции с индикаторами (см. тему основания)
- 2. С активными и средне активными Ме, образующими растворимые соли.

$$\boxed{HNO_3}$$
 — исключение. $Ba+HCl
ightarrow BaCl_2+H_2 \uparrow Ba+H_2SO_4
ightarrow {
m T.K.}\ BaSO_4$ — нераст. $Au+HNO_3
ightarrow {
m T.K.}\ Au$ — неакт. Ме.

- 3. С основными и амфотерными оксидами $BaO + 2HNO3 \rightarrow Ba(NO_3)_2 + H_2O$
- 4. С основаниями $2Fe(OH)_3 + 3H_2SO_4 \rightarrow H_2O + 6Fe_2(SO_4)_3$
- 5. С солями (см. универсальный способ получения кислот) $K_2S + H_2SO_4 = K_2SO_4 + H_2S$

5.1 Классификация солей

- Средние (нормальные) Na_3PO_4, K_2SO_4
- Кислые $KHSO_4, NaH_2PO_4$
- Основные Mg(OH)Cl
- Комплексные $K_3[Fe(CN)_6]$

5.2 Номенкулатура солей

Название кислотного остатка + название металла

 $\epsilon u\partial po$ - если есть H

 $\partial u u \partial p o$ - если есть H_2

 $ho u d po \kappa co$ - если есть OH

Названия солей некоторых кислот								
	Кислота	Кислотный остаток						
Формула	Название	Формула	Название					
H_2SO_4	Серная	SO_4^{2-}	Сульфат					
H_2SO_3	Сернистая	SO_3^{2-}	Сульфит					
HNO_3	Азотная	NO_3^-	Нитрат					
HNO_2	Азотистая	NO_2^-	Нитрит					
H_3PO_4	Фосфорная	PO_4^{3-}	Фосфат					
H_2CO_3	Угольная	CO_3^{2-}	Карбонат					
H_2SiO_3	Кремниевая	SiO_3^{2-}	Силикат					
HF	Фтороводородная (плавиковая)	F^-	Фторид					
HCl	Хлороводородная (соляная)	Cl^-	Хлорид					
HBr	Бромоводородная	Br^-	Бромид					
HI	Йодоводородная	I^-	Йодид					
H_2S	Сероводородная	S^{2-}	Сульфид					

5.3 Получение солей

- 1. Кислота + акт. и полуакт. Ме $2H_3PO_4 + 6Na \to 2Na_3PO_4 + 3H_2 \uparrow$
- 2. Кислота + осн. оксид $3H_2SO_4 + Fe_2O_3 \xrightarrow{t} Fe_2(SO_4)_3 + 3H_2O$
- 3. Кислота + основание $3HNO_3 + Cr(OH)_3 \to Cr(NO_3)_3 + 3H_2O$
- 4. Кис. оксид + щелочь $N_2O_5 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_2O$
- 5. Кис. оксид + осн. оксид $SiO_2 + CaO \xrightarrow{t} CaSiO_3$
- 6. Соль + кислота $Ca_3(PO_4)_2 + 3H_2SO_4 \xrightarrow{t} 3CaSO_4 + 2H_3PO_4$
- 7. Соль + щелочь $Fe_2(SO_4)_3 + 6NaOH = 2Fe(OH)_3 \downarrow +3Na_2SO_4$
- 8. Соль + Me $CuSO_4 + Fe \rightarrow FeSO_4 + Cu \downarrow$
- 9. Соль + нелетуч. кис. оксид $CaCO_3 + SiO_2 \to CaSiO_3CO_2 \uparrow$
- 10. Соль + соль $Al_2(SO_4)_3 + 3BaCl_2 \rightarrow 3BaSO_4 \downarrow +2AlCl_3$
- 11. Ме + неМе $2Fe + 3Cl_2 \xrightarrow{\text{горение}} 2FeCl_3$

5.4 Химические свойства солей

- 1. Разложение некоторых солей при нагревании $CaCO_3 \rightarrow CaO + CO_2 \uparrow$
- 2. С кислотами (кислота сильнее соли) $2NaCl + H_2SO_4 \to Na_2SO_4 + HCl \uparrow$
- 3. С щелочами (если соль растворима) $Ba(OH)_2 + MgSO_4 \to BaSO_4 \downarrow + Mg(OH)_2$
- 4. С солями (если обе соли растворимы, а хотя бы один продукт нет) $NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$
- 5. С не акт. Ме, левее Ме соли $Fe + CuSO_4 \rightarrow FeSO_4 + Cu \downarrow$