$12n_{0146} \ (K12n_{0146})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 318706249249855u^{34} + 343308076594525u^{33} + \dots + 360494352478742b + 533442792596781, \\ &- 521798240647102u^{34} - 367409641787037u^{33} + \dots + 360494352478742a - 422040157543549, \\ u^{35} + u^{34} + \dots + 4u + 1 \rangle \\ I_2^u &= \langle u^5a + u^4a + 2u^5 + 2u^3a + 2u^4 + 2u^2a - u^3 + 4au - u^2 + 5b - a + 3u + 3, \\ &- 2u^5a + u^4a + u^4 + u^2a + u^3 + a^2 - 3au + u^2 + 2a + 1, \ u^6 + u^4 + 2u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 3.19 \times 10^{14} u^{34} + 3.43 \times 10^{14} u^{33} + \dots + 3.60 \times 10^{14} b + 5.33 \times 10^{14}, \ -5.22 \times 10^{14} u^{34} - 3.67 \times 10^{14} u^{33} + \dots + 3.60 \times 10^{14} a - 4.22 \times 10^{14}, \ u^{35} + u^{34} + \dots + 4u + 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.44745u^{34} + 1.01918u^{33} + \dots + 9.69915u + 1.17073 \\ -0.884081u^{34} - 0.952326u^{33} + \dots - 6.17817u - 1.47975 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.273502u^{34} + 0.0909247u^{33} + \dots + 3.78660u + 0.119242 \\ -1.34188u^{34} - 0.869552u^{33} + \dots - 6.36935u - 1.23406 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3.67262u^{34} + 2.12177u^{33} + \dots + 15.5688u + 1.41759 \\ 0.828682u^{34} - 0.457894u^{33} + \dots + 0.578662u - 0.0976132 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2.45523u^{34} - 2.34388u^{33} + \dots + 16.0439u - 5.00942 \\ -1.14001u^{34} + 0.184464u^{33} + \dots - 1.00983u + 0.111350 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.71137u^{34} - 0.579700u^{33} + \dots - 0.908428u + 1.59802 \\ -1.58640u^{34} - 0.248141u^{33} + \dots - 3.92323u - 0.309741 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{5} + u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.44922u^{34} - 0.334990u^{33} + \dots + 3.36424u + 0.0154970 \\ -1.05881u^{34} - 1.67916u^{33} + \dots - 7.41997u - 2.22848 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 49u^{34} + \dots - 74u - 1$
c_{2}, c_{4}	$u^{35} - 7u^{34} + \dots + 10u - 1$
<i>c</i> ₃	$u^{35} + u^{34} + \dots - 4u - 1$
c_5, c_8	$u^{35} + u^{34} + \dots - 20u - 25$
<i>C</i> ₆	$u^{35} + u^{34} + \dots - 6812u - 1859$
c_7, c_{11}	$u^{35} - u^{34} + \dots + 4u - 1$
<i>c</i> ₉	$u^{35} + u^{34} + \dots + 18028u - 13207$
c_{10}, c_{12}	$u^{35} + 15u^{34} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} - 119y^{34} + \dots - 5290y - 1$
c_2, c_4	$y^{35} + 49y^{34} + \dots - 74y - 1$
c_3	$y^{35} - 7y^{34} + \dots + 10y - 1$
c_5, c_8	$y^{35} + 51y^{34} + \dots + 1100y - 625$
<i>c</i> ₆	$y^{35} + 31y^{34} + \dots - 14003002y - 3455881$
c_7, c_{11}	$y^{35} + 15y^{34} + \dots - 4y - 1$
<i>c</i> ₉	$y^{35} + 87y^{34} + \dots + 3505280798y - 174424849$
c_{10}, c_{12}	$y^{35} + 15y^{34} + \dots + 52y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198898 + 0.912281I		
a = -0.21214 + 1.53304I	-1.69730 - 1.70582I	2.23067 + 4.51797I
b = -0.221795 + 0.558249I		
u = -0.198898 - 0.912281I		
a = -0.21214 - 1.53304I	-1.69730 + 1.70582I	2.23067 - 4.51797I
b = -0.221795 - 0.558249I		
u = 0.706440 + 0.807195I		
a = -0.819135 + 0.009162I	3.47975 + 0.18002I	12.74797 + 1.67339I
b = -1.02181 + 1.22008I		
u = 0.706440 - 0.807195I		
a = -0.819135 - 0.009162I	3.47975 - 0.18002I	12.74797 - 1.67339I
b = -1.02181 - 1.22008I		
u = 0.987560 + 0.453130I		
a = -0.479255 + 0.468522I	-11.79900 + 0.75958I	4.27228 - 1.73468I
b = -0.105454 - 0.947398I		
u = 0.987560 - 0.453130I		
a = -0.479255 - 0.468522I	-11.79900 - 0.75958I	4.27228 + 1.73468I
b = -0.105454 + 0.947398I		
u = -0.419414 + 1.027600I		
a = 0.988734 + 0.871634I	-3.34462 - 0.85949I	2.28344 + 2.34599I
b = -0.885142 + 0.876577I		
u = -0.419414 - 1.027600I		
a = 0.988734 - 0.871634I	-3.34462 + 0.85949I	2.28344 - 2.34599I
b = -0.885142 - 0.876577I		
u = -0.980550 + 0.531852I		
a = -0.521288 + 0.398754I	-11.27240 + 6.32601I	4.80195 - 2.51177I
b = -1.11162 - 1.73230I		
u = -0.980550 - 0.531852I		
a = -0.521288 - 0.398754I	-11.27240 - 6.32601I	4.80195 + 2.51177I
b = -1.11162 + 1.73230I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.736027 + 0.839562I		
a = 0.102548 - 0.713671I	1.37968 - 2.70140I	5.99641 + 3.98735I
b = 1.199180 + 0.185153I		
u = -0.736027 - 0.839562I		
a = 0.102548 + 0.713671I	1.37968 + 2.70140I	5.99641 - 3.98735I
b = 1.199180 - 0.185153I		
u = 0.315075 + 1.089710I		
a = 1.26686 - 0.81863I	-5.45958 + 0.17425I	-0.394097 - 0.771153I
b = 0.367656 - 0.856256I		
u = 0.315075 - 1.089710I		
a = 1.26686 + 0.81863I	-5.45958 - 0.17425I	-0.394097 + 0.771153I
b = 0.367656 + 0.856256I		
u = -0.497697 + 1.028650I		
a = -0.97579 - 1.97047I	-2.82734 - 5.45471I	3.55595 + 5.75230I
b = 0.04867 - 2.11164I		
u = -0.497697 - 1.028650I		
a = -0.97579 + 1.97047I	-2.82734 + 5.45471I	3.55595 - 5.75230I
b = 0.04867 + 2.11164I		
u = 0.709383 + 0.907946I		
a = 1.10452 - 1.42282I	3.18411 + 5.24743I	11.9368 - 7.8147I
b = -0.57945 - 1.52300I		
u = 0.709383 - 0.907946I		
a = 1.10452 + 1.42282I	3.18411 - 5.24743I	11.9368 + 7.8147I
b = -0.57945 + 1.52300I		
u = -0.699352 + 0.916434I		
a = -0.482223 - 0.911197I	1.15135 - 2.78726I	4.50130 + 1.74578I
b = 0.814763 - 0.513730I		
u = -0.699352 - 0.916434I		
a = -0.482223 + 0.911197I	1.15135 + 2.78726I	4.50130 - 1.74578I
b = 0.814763 + 0.513730I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.530985 + 1.088540I		
a = -0.22183 + 1.99595I	-4.02551 + 7.04503I	2.61668 - 6.73357I
b = 1.28242 + 1.15849I		
u = 0.530985 - 1.088540I		
a = -0.22183 - 1.99595I	-4.02551 - 7.04503I	2.61668 + 6.73357I
b = 1.28242 - 1.15849I		
u = -0.423966 + 0.601689I		
a = 1.84029 + 1.10036I	-1.39115 + 1.47351I	7.00418 - 0.38394I
b = 0.76833 + 1.48875I		
u = -0.423966 - 0.601689I		
a = 1.84029 - 1.10036I	-1.39115 - 1.47351I	7.00418 + 0.38394I
b = 0.76833 - 1.48875I		
u = 0.039193 + 1.312350I		
a = -0.63914 - 1.68853I	-18.4544 + 3.7875I	0.15008 - 2.18954I
b = -0.25205 - 1.80126I		
u = 0.039193 - 1.312350I		
a = -0.63914 + 1.68853I	-18.4544 - 3.7875I	0.15008 + 2.18954I
b = -0.25205 + 1.80126I		
u = 0.571745 + 0.303555I		
a = -0.423437 + 0.372340I	-1.87714 - 2.57774I	5.81524 + 3.28141I
b = 0.988498 - 0.658097I		
u = 0.571745 - 0.303555I		
a = -0.423437 - 0.372340I	-1.87714 + 2.57774I	5.81524 - 3.28141I
b = 0.988498 + 0.658097I		
u = -0.719484 + 1.148000I		
a = 0.88560 + 1.88560I	-13.1891 - 12.5329I	3.21529 + 6.50684I
b = -1.30329 + 2.06739I		
u = -0.719484 - 1.148000I		
a = 0.88560 - 1.88560I	-13.1891 + 12.5329I	3.21529 - 6.50684I
b = -1.30329 - 2.06739I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.679877 + 1.180490I		
a = -1.009050 + 0.279744I	-14.0684 + 5.3198I	2.14370 - 2.29588I
b = 0.353942 + 0.804369I		
u = 0.679877 - 1.180490I		
a = -1.009050 - 0.279744I	-14.0684 - 5.3198I	2.14370 + 2.29588I
b = 0.353942 - 0.804369I		
u = -0.191898 + 0.428395I		
a = -0.57700 + 2.20593I	-1.57284 - 2.29524I	6.98932 + 5.13879I
b = 0.393176 - 0.360559I		
u = -0.191898 - 0.428395I		
a = -0.57700 - 2.20593I	-1.57284 + 2.29524I	6.98932 - 5.13879I
b = 0.393176 + 0.360559I		
u = -0.345944		
a = -0.656543	0.719348	14.2660
b = -0.472048		

$$II. \\ I_2^u = \langle u^5a + 2u^5 + \dots - a + 3, \ -2u^5a + u^4a + \dots + 2a + 1, \ u^6 + u^4 + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{5}u^{5}a - \frac{2}{5}u^{5} + \dots + \frac{1}{5}a - \frac{3}{5} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{5}u^{5}a - \frac{2}{5}u^{5} + \dots + \frac{6}{5}a - \frac{3}{5} \\ -u^{4}a - u^{5} - u^{4} - u^{2}a - au - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{4}{5}u^{5}a + \frac{8}{5}u^{5} + \dots + \frac{1}{5}a - \frac{3}{5} \\ 2u^{5} + 2u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} - u \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{7}{5}u^{5}a + \frac{4}{5}u^{5} + \dots + \frac{2}{5}a + \frac{1}{5} \\ \frac{3}{5}u^{5}a + \frac{11}{5}u^{5} + \dots + \frac{2}{5}a - \frac{1}{5} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{5}u^{5}a - \frac{8}{5}u^{5} + \dots + \frac{4}{5}a + \frac{8}{5} \\ \frac{4}{5}u^{5}a - \frac{2}{5}u^{5} + \dots + \frac{1}{5}a + \frac{2}{5} \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -\frac{8}{5}u^5a + \frac{12}{5}u^4a - \frac{16}{5}u^5 - \frac{16}{5}u^3a - \frac{16}{5}u^4 + \frac{4}{5}u^2a - \frac{12}{5}u^3 - \frac{12}{5}au - \frac{12}{5}u^2 + \frac{8}{5}a - \frac{24}{5}u - \frac{4}{5}u^2 - \frac{4}{5}u^2 - \frac{12}{5}u^3 -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^2 - u + 1)^6$
c_2	$(u^2 + u + 1)^6$
c_3	$(u^4 - u^2 + 1)^3$
c_5, c_8	$(u^2+1)^6$
c_6	$u^{12} + 6u^{11} + \dots - 2u + 1$
c_7, c_{11}	$(u^6 + u^4 + 2u^2 + 1)^2$
<i>c</i> ₉	$u^{12} - 2u^{11} + \dots - 4u + 1$
c_{10}	$(u^3 - u^2 + 2u - 1)^4$
c_{12}	$(u^3 + u^2 + 2u + 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^2 + y + 1)^6$
<i>c</i> ₃	$(y^2 - y + 1)^6$
c_5, c_8	$(y+1)^{12}$
<i>C</i> ₆	$y^{12} + 12y^{11} + \dots + 6y + 1$
c_7,c_{11}	$(y^3 + y^2 + 2y + 1)^4$
c_9	$y^{12} - 12y^{11} + \dots - 6y + 1$
c_{10}, c_{12}	$(y^3 + 3y^2 + 2y - 1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.744862 + 0.877439I		
a = -1.093800 - 0.182501I	1.37919 - 4.85801I	5.50976 + 0.48465I
b = -1.33984 + 1.89050I		
u = 0.744862 + 0.877439I		
a = 1.71610 - 1.68492I	1.37919 - 0.79824I	5.50976 - 6.44355I
b = -0.96731 - 2.10558I		
u = 0.744862 - 0.877439I		
a = -1.093800 + 0.182501I	1.37919 + 4.85801I	5.50976 - 0.48465I
b = -1.33984 - 1.89050I		
u = 0.744862 - 0.877439I		
a = 1.71610 + 1.68492I	1.37919 + 0.79824I	5.50976 + 6.44355I
b = -0.96731 + 2.10558I		
u = -0.744862 + 0.877439I		
a = -0.548527 - 0.727778I	1.37919 + 0.79824I	5.50976 + 6.44355I
b = -0.032694 - 0.373532I		
u = -0.744862 + 0.877439I		
a = -0.318896 + 0.350078I	1.37919 + 4.85801I	5.50976 - 0.48465I
b = 0.339835 + 0.158452I		
u = -0.744862 - 0.877439I		
a = -0.548527 + 0.727778I	1.37919 - 0.79824I	5.50976 - 6.44355I
b = -0.032694 + 0.373532I		
u = -0.744862 - 0.877439I		
a = -0.318896 - 0.350078I	1.37919 - 4.85801I	5.50976 + 0.48465I
b = 0.339835 - 0.158452I		
u = 0.754878I		
a = -0.223696 - 0.142330I	-2.75839 + 2.02988I	-1.01951 - 3.46410I
b = -0.993496 - 0.581105I		
u = 0.754878I		
a = -1.53118 + 2.89721I	-2.75839 - 2.02988I	-1.01951 + 3.46410I
b = -0.006504 + 1.150950I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.754878I		
a = -0.223696 + 0.142330I	-2.75839 - 2.02988I	-1.01951 + 3.46410I
b = -0.993496 + 0.581105I		
u = -0.754878I		
a = -1.53118 - 2.89721I	-2.75839 + 2.02988I	-1.01951 - 3.46410I
b = -0.006504 - 1.150950I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^6)(u^{35} + 49u^{34} + \dots - 74u - 1)$
c_2	$((u^2+u+1)^6)(u^{35}-7u^{34}+\cdots+10u-1)$
c_3	$((u^4 - u^2 + 1)^3)(u^{35} + u^{34} + \dots - 4u - 1)$
<i>c</i> ₄	$((u^2 - u + 1)^6)(u^{35} - 7u^{34} + \dots + 10u - 1)$
c_5,c_8	$((u^2+1)^6)(u^{35}+u^{34}+\cdots-20u-25)$
<i>C</i> ₆	$(u^{12} + 6u^{11} + \dots - 2u + 1)(u^{35} + u^{34} + \dots - 6812u - 1859)$
c_{7}, c_{11}	$((u6 + u4 + 2u2 + 1)2)(u35 - u34 + \dots + 4u - 1)$
<i>C</i> 9	$(u^{12} - 2u^{11} + \dots - 4u + 1)(u^{35} + u^{34} + \dots + 18028u - 13207)$
c_{10}	$((u^3 - u^2 + 2u - 1)^4)(u^{35} + 15u^{34} + \dots - 4u - 1)$
c_{12}	$((u^3 + u^2 + 2u + 1)^4)(u^{35} + 15u^{34} + \dots - 4u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^6)(y^{35} - 119y^{34} + \dots - 5290y - 1)$
c_2, c_4	$((y^2+y+1)^6)(y^{35}+49y^{34}+\cdots-74y-1)$
<i>c</i> 3	$((y^2 - y + 1)^6)(y^{35} - 7y^{34} + \dots + 10y - 1)$
c_5, c_8	$((y+1)^{12})(y^{35} + 51y^{34} + \dots + 1100y - 625)$
c ₆	$(y^{12} + 12y^{11} + \dots + 6y + 1)$ $\cdot (y^{35} + 31y^{34} + \dots - 14003002y - 3455881)$
c_7, c_{11}	$((y^3 + y^2 + 2y + 1)^4)(y^{35} + 15y^{34} + \dots - 4y - 1)$
<i>c</i> ₉	$(y^{12} - 12y^{11} + \dots - 6y + 1)$ $\cdot (y^{35} + 87y^{34} + \dots + 3505280798y - 174424849)$
c_{10}, c_{12}	$((y^3 + 3y^2 + 2y - 1)^4)(y^{35} + 15y^{34} + \dots + 52y - 1)$