Lecture 2

- * basic Bayes
- * two-level model for rates
- * two-level normal-normal model

Lecture 2 Outline

Today we will focus on the case where we have a outcome Y_{ij} measured for i = 1, ..., m clusters and n_i observations within i.

The analysis goals are to:

- Understand the relative size of the within and between-cluster variation in Y
- Estimate the cluster specific mean of Y

To accomplish these goals we will

- Review Bayes theorem within context of diagnostic testing
- Look at the simplest binary two-level model
- Introduce the two-level normal-normal model
- Review the calculations for random effects within an example: on testing in schools

Bayes Rule in Diagnostic Testing

Ask Marilyn®

BY MARILYN VOS SAVANT

A particularly interesting and important question today is that of testing for drugs. Suppose it is assumed that about 5% of the general population uses drugs. You employ a test that is 95% accurate, which we'll say means that if the individual is a user, the test will be positive 95% of the time, and if the individual is a nonuser, the test will be negative 95% of the time. A person is selected at random and is given the test. It's positive. What does such a result suggest? Would you conclude that the individual is a drug user? What is the probability that the person is a drug user?

True positives Test Outcome Disease Status Test + Disease + ← False negatives Test -Sample Test + Disease -Test -True negatives

"The workhorse of Epi": The 2 x 2 table

	Disease +	Disease -	Total
Test +	а	b	a + b
Test -	С	d	c + d
Total	a + c	b + d	a + b + c + d

"The workhorse of Epi": The 2 x 2 table

	Disease +	Disease -	Total
Test +	a	b	a + b
Test -	С	d	c + d
Total	a + c	b + d	a + b + c + d

$$Sens = P(+|D) = \frac{a}{a+c} \qquad Spec = P(-|\overline{D}) = \frac{d}{b+d}$$

"The workhorse of Epi": The 2 × 2 table

	Disease +	Disease -	Total
Test +	а	b	
Test -	С	d	$c + d$ $NPV = P(\overline{D} \mid -) = \frac{d}{c + d}$
Total	a + c	b + d	a + b + c + d

$$Sens = P(+|D) = \frac{a}{a+c} \qquad Spec = P(-|\overline{D}) = \frac{d}{b+d}$$

Diagnostic Testing
• Marilyn's Example $\begin{cases} Sens = 0.95 \\ Spec = 0.95 \end{cases}$

	Disease +	Disease -	Total	
Test +	48	47	95	PPV = 51%
Test -	2	903	905	NPV = 99%
Total	50	950	1000	
	P(D) = 0.05			

Diagnostic Testing
• Marilyn's Example $\begin{cases} Sens = 0.95 \\ Spec = 0.95 \end{cases}$

	Disease +	Disease -	Total	
Test +	190	40	230	PPV = (83%)
Test -	10	760	770	NPV = 99%
Total	200	800	1000	
Point: PPV depends on prior probability of disease in the population				

Diagnostic Testing Linked to Bayes Theorem

- •P(D): prior distribution, that is prevalence of disease in the population
- •P(+|D): likelihood function, that is the probability of observing a positive test given that the person has the disease (sensitivity) or doesn't (1-specificity)
- •P(D|+), P(D|-): posterior distribution of the unknown (latent) disease state given the test result

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+)}$$

$$P(+) = P(+ \mid D)P(D) + P(+ \mid \overline{D})P(\overline{D})$$

Bayes & MLMs...

Terminology

- Two stage normal normal model
- Variance component model
- Two-way random effects ANOVA
- Hierarchical model with a random intercept and no covariates

Are all the same thing!

Testing in Schools

- Goldstein and Spiegelhalter JRSS (1996)
- Outcome: Standardized Test Scores
- Sample: 1978 students from 38 schools
 - Hierarchy: students (level 1) clustered within schools (level 2)
- Goal: Estimate overall "quality" of the schools using the results of the standardized test scores
- Possible Analyses:
 - 1. Calculate each school's observed average score (approach A)
 - 2. Calculate an overall average for all schools (approach B)
 - 3. Borrow strength across schools to improve individual school estimates (Approach C)

$$y_{ij} = \theta_i + \varepsilon_{ij}$$

$$i = 1,..., I, j = 1,..., n_i$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

$$\theta_i \sim N(\theta, \tau^2)$$

i represents schools

j represents students

So that there are j =1,..., n_i students within school i

y_{ij} is the standardized test score for student j within school i

$$y_{ij} = \theta_i + \varepsilon_{ij}$$

$$i = 1, ..., I, j = 1, ..., n_i$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

$$\theta_i \sim N(\theta, \tau^2)$$

In Bayesian approach, we would specify prior distributions for θ and τ^2 .

$$y_{ij} = \theta_i + \varepsilon_{ij}$$
 $i = 1,...,I, j = 1,...,n_i$
 $\varepsilon_{ij} \sim N(0,\sigma^2)$

$$\theta_i \sim N(\theta, \tau^2)$$

In **EMPIRICAL** Bayesian approach, we estimate θ and τ^2 from the observed data and make no additional assumptions on these parameters

Shrinkage estimation

- Goal: estimate the school-specific average score θ_i
- Two simple approaches:

- A) No shrinkage
$$\bar{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$

-B) Total shrinkage $\hat{\theta} = \frac{\sum_{i=1}^{I} \frac{n_i}{\sigma^2} \bar{y}_i}{\sum_{i=1}^{I} \frac{n_i}{\sigma^2}}$

Maximum likelihood estimates of the cluster means

Inverse variance weighted average

NOTE: (a modified version of) this our estimate of θ in a random intercept model

ANOVA and the F test

- To decide which estimate to use, a traditional approach is to perform a classic F test for differences among means
- If the group-means appear significantly different from each other then use A
- If the variance between groups is not significantly greater than what could be explained by individual variability within groups, then use B

Shrinkage Estimation: Approach C

We are not forced to choose between A and B

 An alternative is to use a weighted combination between A and B

$$\begin{split} \hat{\theta}_i &= \lambda_i \bar{y}_i + (1 - \lambda_i) \hat{\theta} \\ \hat{\theta}_i &= \hat{\theta} + \lambda_i (\bar{y}_i - \hat{\theta}) \end{split}$$
 Empirical Bayes estimate
$$\lambda_i = \frac{\tau^2}{\tau^2 + \sigma_i^2}; \sigma_i^2 = \sigma^2 / n_i \end{split}$$

NOTE: assumed variance within groups is constant.

Shrinkage Estimation: Approach C

Empirical Bayes Estimates; THINKING 1st

- First way to think about it
- Take the "some" of the MLE + (1 "some") of the overall mean
- Result is to get a biased estimate of the cluster specific mean BUT less variable since we are "shrinking" the cluster means towards the overall mean

$$\hat{\theta}_{i} = \lambda_{i} \bar{y}_{i} + (1 - \lambda_{i}) \hat{\theta}$$

$$\lambda_{i} = \frac{\tau^{2}}{\tau^{2} + \sigma_{i}^{2}}; \sigma_{i}^{2} = \sigma^{2} / n_{i}$$

Shrinkage Estimation: Approach C

Empirical Bayes Estimates

- Second way to think about it
- Application of Bayes rule!
- Take the estimate of the overall population mean
- Add an update based on the separation of variation into between clusters and within clusters

$$\hat{\theta}_{i} = \hat{\theta} + \lambda_{i}(\bar{y}_{i} - \hat{\theta})$$

$$\lambda_{i} = \frac{\tau^{2}}{\tau^{2} + \sigma_{i}^{2}}; \sigma_{i}^{2} = \sigma^{2} / n_{i}$$

Shrinkage estimation

- Approach C reduces to approach A (no pooling) when the shrinkage factor is equal to 1, that is, when the variance between groups is very large
- Approach C reduces to approach B, (complete pooling) when the shrinkage factor is equal to 0, that is, when the variance between group is close to be zero

$$\hat{\theta}_{i} = \lambda_{i} \bar{y}_{i} + (1 - \lambda_{i}) \hat{\theta}$$

$$\hat{\theta}_{i} = \hat{\theta} + \lambda_{i} (\bar{y}_{i} - \hat{\theta})$$

$$\lambda_{i} = \frac{\tau^{2}}{\tau^{2} + \sigma_{i}^{2}}$$

$$\sigma_{i}^{2} = \sigma^{2} / n_{i}$$

Back to the school example:

- Why borrow across schools?
 - Median # of students per school: 48, Range: 1-198
- Suppose small school (N=3)
 - Scores: 90, 90,10, average = 63
 - Difficult to say, small $N \Rightarrow$ highly variable estimates
- For larger schools we have good estimates, for smaller schools we may be able to borrow information from other schools to obtain more accurate estimates

$$y_{ij} = \theta_i + \varepsilon_{ij}$$

$$y_{ij} = \theta + b_i + \varepsilon_{ij}$$

$$i = 1, ..., I, j = 1, ..., n_i$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

$$\theta_i \sim N(\theta, \tau^2), b_i \sim N(0, \tau^2)$$

Two-stage Normal-Normal Model

$$y_{ij} = \theta_i + \varepsilon_{ij}$$
$$y_{ij} = \theta + b_i + \varepsilon_{ij}$$

$$\hat{\theta}$$
 = inverse - variance weighted mean

$$\hat{\theta}_{i} = \lambda_{i} \bar{y}_{i} + (1 - \lambda_{i}) \hat{\theta}$$

$$\hat{\theta}_{i} = \hat{\theta} + \lambda_{i} (\bar{y}_{i} - \hat{\theta})$$

$$\hat{\theta}_{i} = \hat{\theta} + \hat{b}_{i}$$

Testing in Schools: MLE School Specific Mean

Mean Scores & C.I.s for Individual Schools

Testing in Schools: Shrinkage Plot

Using (a subset of) the data from Lab 0

Some Bayes Concepts

- Frequentist: Parameters are "the truth"
- Bayesian: Parameters have a distribution
- In Bayes,
 - we "Borrow Strength" from other clusters
 - we "Shrink Estimates" towards overall averages
 - we compromise between model & data
 - Incorporate prior/other information in estimates
 - Account for other sources of uncertainty that are not measured

Lecture 2 Summary

- Reviewed idea of updating information within Bayes theorem using classic 2x2 table
- Considered idea of "borrowing strength across similar problems" - risk estimation
- Walked slowly through the 2-level normal-normal model
 - The simplest case of multi-level model
 - Model allows for two sources of variation: within and between clusters
 - Overall mean is inverse-variance weighted average
 - Cluster specific estimates are weighted averages of observe cluster specific estimate and the overallmean
 - Weighting depends on the relative size of within and between cluster variance.

Improved Assessment by Borrowing Strength;
Estimating Local Coverage Rates (and penalty kick scoring) Using
Empirical Bayes Estimation
(aka Multi-level models)

Many Related Questions

One question: What is the rate of vaccine coverage for children <24 mo in Mali?

Many related questions: What are the rates of measles vaccine coverage for children <24 mo for the 65 districts of Mali?

One question: What is the rate of penalty kick scoring in the world cup?

Many related questions: What are the rates of penalty kick scoring for the 30 top players in the world cup?

3/25/20

DHS Observed Coverage Rates for 25 Imaginary Districts

3/25/20

Q1. Are the observed rates more or less variable across districts than the true rates? Why and by how much?

3/25/20

Hierarchical (or Multi (2)-level) Statistical Model

Level I: Observed rate (o) = true rate (t) for given district + deviation attributable to the sampling of only a subset of the population

Level II: True value for given district = average true value for the country + real deviation specific to the district

Understanding "Borrowing Strength" Idea You do it every day; it is how our minds work

Q2. Identify a prediction you have made recently in answering a question and explain what "data" you used. How did you "borrow strength" from related questions and their data?

Answer

- Question: Will my boss give me a >3% raise this year?
- Related questions: Will my boss give each of my co-workers >3% raises this year
- Data
 - My last 3 raises have been <1%
 - The 4 other people in my group have all gotten <3% in each of the last three years; the boss favors Francine who told me she got a 2.5% raise
- Prediction: Probably, I will not get a raise >3%!

Q3. What is the best way to estimate the true population rate for a particular district?

- Two extremes to consider
 - What if the true rates of coverage all are the same for all districts?
 - Best estimator of that common rate is:

- What if there is large heterogeneity among districts so that one teaches us little about the other
 - Best estimator of a districts true rate is:

Optimal Solution - Big Scientific Idea

- Compromise between the two extremes
 - Estimate:
 - 1. average rate (more precise; more biased); and
 - 2. district specific rate (less precise; less biased)
 - Estimate the degree of heterogeneity among districts in their true rates – (tricky)
 - Combine the average and district specific estimates, upweight the average when the heterogeneity is estimated to be small; upweight the district rate when heterogeneity is large

	goals	shots	р
Valdivia	0	1	0.00
Forlan	2	6	0.33
Hernandez	4	9	0.44
Cavani	11	17	0.65
Lukaku	3	5	0.60
Samara	0	3	0.00
Benzema	2	3	0.67
Ozil	1	6	0.17
Giroud	5	10	0.50
Dempsey	4	7	0.57
Odemwinge	2	4	0.50
Johannsson	2	8	0.25
Martinez	6	9	0.67
Hulk	12	23	0.52
Robben	7	10	0.70
Ruaz	3	5	0.60
van Persie	5	17	0.29
Messi	22	41	0.54
Rodriguez	4	7	0.57
Muller	8	14	0.57
Aguero	5	10	0.50
Hazard	13	19	0.68
Vidal	11	21	0.52
Neymar	5	6	0.83
Guardado	3	6	0.50
Borges	1	1	1.00
Salpingidis	0	1	0.00
Moses	3	3	1.00
Drmie	2	2	1.00
Shaquiri	0	1	0.00

Optimal Solution-Implemented for World Cup Futbol

- Estimate the average goal scoring and the player specific rates
- Estimate the degree of heterogeneity among players in their true rates
- Compromise between the average and playerspecific estimates, closer to the average when the player-to-player heterogeneity is estimated to be small.

Do the Empirical Bayes Calculation

Task Calculations and Results

- 1. Calculate total variance, V_T , of observed rates, p_i
- 0.0792
- 2. Calculate variance among true rates = V_T 0.0792 .0673 mean of person-specific sampling variances (se_i²)

- 3. Calculate $\alpha_i = V_T/(V_T + se_i^2)$ weight to give p_i
- 4. Calculate p.eb_i = $(1-\alpha_i)$ p.bar + α_i p_i

p.bar = 146 total goals out of 275 shots = 0.53

	shots	goals	з р	se	alpha	p.eb
Valdivia	1	0	0.00	0.499	0.045	0.51
Forlan	6	2	0.33	0.204	0.222	0.49
Hernandez	9	4	0.44	0.166	0.300	0.50
Cavani	17	11	0.65	0.121	0.447	0.58
Lukaku	5	3	0.60	0.223	0.192	0.54
Samara	3	0	0.00	0.288	0.125	0.46
Benzema	3	2	0.67	0.288	0.125	0.55
Ozil	6	1	0.17	0.204	0.222	0.45
Giroud	10	5	0.50	0.158	0.323	0.52
Dempsey	7	4	0.57	0.189	0.250	0.54
Odemwinge	4	2	0.50	0.250	0.160	0.53
Johannsson	8	2	0.25	0.176	0.276	0.45
Martinez	9	6	0.67	0.166	0.300	0.57
Hulk	23	12	0.52	0.104	0.523	0.53
Robben	10	7	0.70	0.158	0.323	0.59
Ruaz	5	3	0.60	0.223	0.192	0.54
van Persie	17	5	0.29	0.121	0.447	0.42
Messi	41	22	0.54	0.078	0.661	0.53
Rodriguez	7	4	0.57	0.189	0.250	0.54
Muller	14	8	0.57	0.133	0.400	0.55
Aguero	10	5	0.50	0.158	0.323	0.52
Hazard	19	13	0.68	0.114	0.475	0.60
Vidal	21	11	0.52	0.109	0.500	0.53
Neymar	6	5	0.83	0.204	0.222	0.60
Guardado	6	3	0.50	0.204	0.222	0.52
Borges	1	1	1.00	0.499	0.045	0.55
Salpingidis	1	0	0.00	0.499	0.045	0.51
Moses	3	3	1.00	0.288	0.125	0.59
Drmie	2	2	1.00	0.353	0.087	0.57
Shaquiri	1	0	0.00	0.499	0.045	0.51

Empirical Bayes Estimation

Prior vs Posterior for SD of logit(p[i])

Multi-level Model – hint of Bayes

- Level I. $[y_i | t_i, n_i]$: likelihood of the data given unknowns
 - Given true rate t_i for player i = 1,...,m, the observed number of scored penalty shots, y_i out of n_i attempts is $binomial(t_i, n_i)$
- Level II. $[t_i \mid n_i, m, v]$: prior distribution of unknowns
 - The true rates t_i are independent and identically distributed random variables with distribution Beta(m, v)
- Multi-level model calculates $[t_i, m, v \mid n_{i_j} y_i]$: posterior of the unknowns given the data using Bayes theorem