Symulacja Cyfrowa

mgr inż. Marcin Hoffmann

Zawartość Raportu Końcowego

- 1. Imię, nazwisko, nr zadania i nazwa metody symulacyjnej
- 2. Pełny tekst rozwiązywanego zadania
- Krótki opis modelu symulacyjnego:
 - Schemat modelu symulacyjnego (z zad. 1)
 - Opis klas wchodzących w skład systemu i ich atrybutów
- Opis przydzielonej metody symulacyjnej
 - Schemat blokowy pętli głównej
 - Lista zdarzeń czasowych/warunkowych lub zidentyfikowane procesy
 - Opis implementacji listy zdarzeń (M2,M3), lub agendy (M4): na jakiej strukturze danych jest zaimplementowana i jakie są złożoności obliczeniowe najważniejszych operacji, dodania/usunięcia elementu
- Parametry wywołania programu (lambda, nr symulacji, koniec fazy początkowej, itp.)
 - chodzi tutaj o parametry podawane przez użytkownika i ich opis, nie o wartości np. lambda
 intensywność zgłoszeń nowych użytkowników w sieci.

Zawartość Raportu Końcowego

Generatory

- Opis zastosowanych generatorów liczb losowych z histogramami
- Opis zastosowanej metody przeprowadzania symulacji komputerowych i estymacji parametrów (wyników), tj. metoda niezależnych replikacji (ang. Independent Replication Method), np. rozdział 7.3.2 z książki prof. Tyszera
- Wyjaśnienie, w jaki sposób została zapewniona niezależność sekwencji losowych w różnych symulacjach (jak wygenerowano ziarna, ile ziaren wygenerowano, gdzie są przechowywane, ile przewidziano symulacji)
- Krótki opis zastosowanej metody testowania i weryfikacji poprawności działania programu
- 7. Wyniki symulacji
 - Wyznaczenie długości fazy początkowej (wykres i opis)
 - Wyznaczenie wartości parametru lambda (wykres z przedziałami ufności i opis)
 - Tabelka z wynikami symulacji dla każdego przebiegu symulacyjnego (dla wszystkich wymaganych parametrów, zgodnie z treścią zadania)
 - Wyniki końcowe w postaci uśrednionych wyników po wszystkich przebiegach + przedziały ufności f. wykres wymagane wykresy (zgodnie z treścią zadania)
- 8. Wnioski

Wyznaczenie Fazy Początkowej

- Wyniki uśrednione po przynajmniej 10 symulacjach
- Wyniki dla conajmniej 5 wartości parametru lambda
- Warunkiem końca symulacji (I jendostka na osi x) liczba obsluzonych użytkowników
- Za pomocą symulacji ustal minimalną intensywność zgłoszeń, która zapewni obsługę n użytkowników w systemie przez cały okres eksperymentu (z pominięciem fazy początkowej).

Wyznaczenie Fazy Początkowej - Przyklad

Wyznaczenie parametru lambda

- Wykres z przedziałami ufności
- Przeprowadzone symulacje powinny pomijać fazę początkową wyznaczoną w poprzednim punkcie
- Wybieramy najniższą lambdę, która zapewni obsługę n użytkowników w systemie przez cały okres eksperymentu (z pominięciem fazy początkowej).

Obserwowane Parametry

Dla wyznaczonej fazy początkowej i wartości lambda wyznaczamy wartości wszystkich wymaganych parametrów i przedstawiamy je w postaci tabelki (podane parametry są przykładowe, należy zastąpić je parametrami zgodnymi z treścią zadania)

Nr symulacji	Średnia pakietowa stopa błędów	Maksymalna pakietowa stopa błędów	Średnia liczba retransmisji	Średnia czas oczekiwania	Średnie opóźnienie	Przepływnoś ć
1						
2						
10						
Średnia						
Przedział ufności	+/					

Przedziały Ufności

• Wartość średnia $\hat{\mu}$: (N – I. obserwacji w jednej symulacji, M – I. symulacji)

$$\hat{\mu}_{m} = \frac{1}{N} \sum_{n=1}^{N} X_{mn}$$
 $\hat{\mu} = \frac{1}{M} \sum_{m=1}^{M} \hat{\mu}_{m}$

Odchylenie standardowe z próby:

$$s(\hat{\mu}_m) = \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} (\hat{\mu}_m - \hat{\mu})^2} = \sqrt{\frac{1}{M-1} \left(\sum_{m=1}^{M} \hat{\mu}_m^2 - M \hat{\mu}^2 \right)}$$

Przedział ufności:

•
$$M < 30$$
 $\mu \in \left[\hat{\mu} - t_{M-1,\frac{\alpha}{2}} \frac{S}{\sqrt{M-1}}, \hat{\mu} + t_{M-1,\frac{\alpha}{2}} \frac{S}{\sqrt{M-1}}\right]$

•
$$M \ge 30$$
 $\mu \in \left[\hat{\mu} - u_{\frac{\alpha}{2}} \frac{s}{\sqrt{M}}, \hat{\mu} + u_{\frac{\alpha}{2}} \frac{s}{\sqrt{M}}\right]$

Rozkład studenta tv,a – przykład

- M = 10, v = 10-1 = 9
- Współczynnik ufności 95 %, α = 1 0,95 = 0,05

$$t_{M-1,\frac{\alpha}{2}} = t_{9,0.025} = 2,6850$$

Wartości krytyczne rozkładu t-Studenta

 $X \sim t_v$ - X zmienna losowa o rozkładzie t-Studenta z liczbą stopni swobody v, α - poziom istotności,

 $t_{v,\,\alpha}$ - wartość krytyczna - liczba taka, że $P(|X|>t_{v,\,\alpha})=\alpha$

						-					
ν \ a	0,400	0,300	0,200	0,100	0,050	0,0	25	0,025	0,010	0,005	0,001
1	1,3764	1,9626	3,0777	6,3137	12,7062	25,4	19	25,4519	63,6559	127,3211	636,5776
2	1,0607	1,3862	1,8856	2,9200	4,3027	6,2	54	6,2054	9,9250	14,0892	31,5998
3	0,9785	1,2498	1,6377	2,3534	3,1824	4,1	65	4,1765	5,8408	7,4532	12,9244
4	0,9410	1,1896	1,5332	2,1318	2,7765	3,4	54	3,4954	4,6041	5,5975	8,6101
5	0,9195	1,1558	1,4759	2,0150	2,5706	3,1	34	3,1634	4,0321	4,7733	6,8685
6	0,9057	1,1342	1,4398	1,9432	2,4469	2,9	87	2,9687	3,7074	4,3168	5,9587
7	0,8960	1,1192	1,4149	1,8946	2,3646	2,8	12	2,8412	3,4995	4,0294	5,4081
0	0,8889	1,1081	1,3968	1,8595	2,3060	2.7	15	2,7515	3,3554	3,8325	5,0414
9	0,0024	1,0007	1,2020	1,0221	2,2622	2,68	350	2,6850	3,2498	3,6896	4,7809
10	0,8791	1,0931	1,3722	1,8125	2,2281	2,0.	35 S	2,6338	3,1693	3,5814	4,5868
11	0,8755	1,0877	1,3634	1,7959	2,2010	2,59	931	2,5931	3,1058	3,4966	4,4369
	0.707	4 0000	1 2572	1 7000	0.1700	2.5		2 5 6 6 7 6	2.0040	2 4204	4 2 4 7 2

