MS&E 125: Intro to Applied Statistics Feature Engineering

Professor Udell

Management Science and Engineering
Stanford

March 22, 2023

Announcements

Outline

Linear models

To fit a linear model (= linear in parameters β)

- ightharpoonup pick a transformation $\phi: \mathcal{X} \to \mathbf{R}^p$
- predict y using a linear function of $\phi(x)$

$$h(x) = \phi(x)^{T} \beta = \sum_{i=1}^{p} \beta_{i}(\phi(x))_{i}$$

• we want $h(x_i) \approx y_i$ for every i = 1, ..., n

Feature engineering

How to pick $\phi: \mathcal{X} \to \mathbf{R}^d$?

- **>** so response y will depend linearly on $\phi(x)$
- \triangleright so p is not too big

Feature engineering

How to pick $\phi: \mathcal{X} \to \mathbf{R}^d$?

- \blacktriangleright so response y will depend linearly on $\phi(x)$
- ▶ so *d* is not too big

if you think this looks like a hack: you're right

Feature engineering

examples:

- adding offset
- standardizing features
- polynomial fits
- products of features
- autoregressive models
- transforming Booleans
- transforming ordinals
- transforming nominals
- transforming images
- transforming text
- handling missing values
- concatenating data
- all of the above

https://xkcd.com/2048/

Outline

Adding offset

$$\triangleright \mathcal{X} = \mathbb{R}^{d-1}$$

- ▶ let $\phi(x) = (x, 1)$
- $ightharpoonup now h(x) = w^T \phi(x) = w^T_{1:d-1} x + w_d$

Fitting a polynomial

$$\mathcal{X} = \mathbf{R}$$

► let

$$\phi(x) = (1, x, x^2, x^3, \dots, x^{d-1})$$

be the vector of all monomials in x of degree < d

$$\blacktriangleright$$
 now $h(x) = w^T \phi(x) = w_1 + w_2 x + w_3 x^2 + \cdots + w_d x^{d-1}$

Demo: crime

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

Model evaluation

how should we measure how good a model is?

- ► (root) mean squared error (RMSE)
- mean absolute error (MAE)
- \triangleright coefficient of determination (R^2)

Mean square error

mean square error is minimized by the least squares estimator

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

equal to the sum of the residuals squared

Root mean square error

root mean square error is the square root of the mean square error

$$\hat{\sigma}^2 = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

(the residual standard error is similar, but normalizes by the residual degrees of freedom n-p-1 instead of n)

Mean absolute error

mean absolute error is the mean of the absolute value of the residuals

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

often makes more sense than RMSE when we care about quality of the predictions

(e.g., if we will pay a linear penalty for being wrong)

Coefficient of determination

coefficient of determination $R^{@} \in [0,1]$ is the fraction of the variance in the data that is explained by the model

$$R^2 = 1 - rac{\sum_i = 1^n (y_i - \hat{y}_i)^2}{\sum_i = 1^n (y_i - \bar{y})^2} = 1 - rac{\mathsf{MSE}}{\mathsf{Var}(y)} = 1 - rac{\mathsf{SSR}}{\mathsf{SST}}$$

lingo:

- ► SSR is the sum of squares of the residuals
- SST is the total sum of squares

for a model with an intercept, R^2 is the square correlation between the predicted and true values of y

$$R^2 = [\rho(y, \hat{y})]^2$$

IMHE and the cubic fit

https://www.washingtonpost.com/politics/2020/05/05/white-houses-self-serving-approach-estimating-deadliness-

Fitting a multivariate polynomial

- $\mathcal{X} = \mathbb{R}^2$
- ▶ pick a maximum degree k
- ► let

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3, \dots, x_2^k)$$

be the vector of all monomials in x_1 and x_2 of degree $\leq k$

▶ now $h(x) = w^T \phi(x)$ can fit any polynomial of degree $\leq k$ in \mathcal{X}

Fitting a multivariate polynomial

- $\mathcal{X} = \mathbb{R}^2$
- pick a maximum degree k
- ► let

$$\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3, \dots, x_2^k)$$

be the vector of all monomials in x_1 and x_2 of degree $\leq k$

▶ now $h(x) = w^T \phi(x)$ can fit any polynomial of degree $\leq k$ in \mathcal{X}

and similarly for $\mathcal{X} = \mathbf{R}^d \dots$

Outline

Notation: boolean indicator function

define

$$\mathbb{1}(\mathsf{statement}) = \begin{cases} 1 & \mathsf{statement} \text{ is true} \\ 0 & \mathsf{statement} \text{ is false} \end{cases}$$

examples:

- ightharpoonup 1(1<0)=0
- ightharpoonup 1(17 = 17) = 1

Boolean variables

- $ightharpoonup \mathcal{X} = \{\mathsf{true}, \mathsf{false}\}$
- $\blacktriangleright \text{ let } \phi(x) = \mathbb{1}(x)$

Boolean expressions

- $\mathcal{X} = \{\text{true}, \text{false}\}^2 = \{(\text{true}, \text{true}), (\text{true}, \text{false}), (\text{false}, \text{true}), (\text{false}, \text{false})\}.$
- let $\phi(x) = [1(x_1), 1(x_2), 1(x_1 \text{ and } x_2), 1(x_1 \text{ or } x_2)]$
- equivalent: polynomials in $[\mathbb{1}(x_1), \mathbb{1}(x_2)]$ span the same space
- encodes logical expressions!

Nominal values: one-hot encoding

- ▶ nominal data: *e.g.*, $\mathcal{X} = \{\text{apple}, \text{orange}, \text{banana}\}$
- ► let

$$\phi(x) = [\mathbb{1}(x = \mathsf{apple}), \mathbb{1}(x = \mathsf{orange}), \mathbb{1}(x = \mathsf{banana})]$$

called one-hot encoding: only one element is non-zero

Nominal values: one-hot encoding

- ightharpoonup nominal data: e.g., $\mathcal{X} = \{\text{apple, orange, banana}\}$
- ► let

$$\phi(x) = [\mathbb{1}(x = \mathsf{apple}), \mathbb{1}(x = \mathsf{orange}), \mathbb{1}(x = \mathsf{banana})]$$

called one-hot encoding: only one element is non-zero

extension: sets

Demo: crime

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/crime.ipynb

- **problem:** too many nominal categories
- **solution:**

- **problem:** too many nominal categories
- solution:
 - ightharpoonup cluster the categories by some known ontology (eg, "squamous cell carcinoma" ightharpoonup "cancer")

- **problem:** too many nominal categories
- **solution:**
 - cluster the categories by some known ontology (eg, "squamous cell carcinoma" \rightarrow "cancer")
 - ► lump the least common categories into a single category: "Other"

- **problem:** too many nominal categories
- **solution**:
 - ► cluster the categories by some known ontology (eg, "squamous cell carcinoma" → "cancer")
 - lump the least common categories into a single category: "Other"
 - feature hashing

- **problem:** too many nominal categories
- **solution:**
 - cluster the categories by some known ontology (eg, "squamous cell carcinoma" \rightarrow "cancer")
 - lump the least common categories into a single category: "Other"
 - feature hashing
 - be creative!

Nominal values: look up features!

why not use other information known about each item?

- $\triangleright \mathcal{X} = \{\text{apple}, \text{orange}, \text{banana}\}$
 - price, calories, weight, . . .
- $\triangleright \mathcal{X} = \mathsf{zip} \; \mathsf{code}$
 - average income, temperature in July, walk score, % residential, . . .
- **>** ...

database lingo: join tables on nominal value

- ▶ ordinal data: e.g.,
 X = {Stage I, Stage II, Stage III, Stage IV}
- ▶ let

$$\phi(x) = \begin{cases} 1, & x = \text{Stage I} \\ 2, & x = \text{Stage II} \\ 3, & x = \text{Stage III} \\ 4, & x = \text{Stage IV} \end{cases}$$

default encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A.
$$b = 6$$
, $w = -2$

B.
$$b = 2$$
, $w = 0$

C.
$$b = 6$$
, $w = 2$

D.
$$b = 0$$
, $w = -2$

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Q: How long does the model predict a persion with Stage IV cancer will survive?

Ordinal values: real encoding

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- ightharpoonup use real encoding ϕ to transform ordinal data
- fit linear model with offset to predict y as $w\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years: b = 6, w = -2.

Q: How long does the model predict a persion with Stage IV cancer will survive?

- A. 6 years
- B. 2 years
- C. 0 years
- D. -2 years

- ▶ ordinal data: e.g.,
 X = {Stage I, Stage II, Stage III, Stage IV}
- ► let

$$\phi(x) = [1(x \ge \text{Stage II}), 1(x \ge \text{Stage III}), 1(x \ge \text{Stage IV})]$$

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \mathsf{Stage} \; \mathsf{II}), 1(x \ge \mathsf{Stage} \; \mathsf{III}), 1(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

▶ fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \mathsf{Stage} \; \mathsf{II}), 1(x \ge \mathsf{Stage} \; \mathsf{III}), 1(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $ightharpoonup \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [\mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{II}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{III}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\triangleright \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [\mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{II}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{III}), \mathbb{1}(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

Q: How long does the model predict a persion with Stage IV cancer will survive?

- $ightharpoonup \mathcal{X} = \{ Stage II, Stage III, Stage IV \}$
- $\triangleright \mathcal{Y} = \mathbf{R}$, number of years lived after diagnosis
- **b** define transformation $\phi: \mathcal{X} \to \mathbf{R}$ as

$$\phi(x) = [1(x \ge \mathsf{Stage} \; \mathsf{II}), 1(x \ge \mathsf{Stage} \; \mathsf{III}), 1(x \ge \mathsf{Stage} \; \mathsf{IV})]$$

• fit linear model with offset to predict y as $w^{\top}\phi(x) + b$

Suppose model predicts a person diagnosed with Stage II cancer will survive 2 more years, and a person diagnosed with Stage I cancer will survive 4 more years.

 \mathbf{Q} : What is w? b?

A: b = 4, $w_1 = -2$, w_2 and w_3 not determined

Q: How long does the model predict a persion with Stage IV cancer will survive?

A: can't say without more information

Outline

handling missing values:

remove rows/columns with missing entries

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value
- impute with mean, median, or mode

- remove rows/columns with missing entries
- ▶ (for time series) back-fill with most recent observed value
- impute with mean, median, or mode
- ► fancier imputation methods (covered later in this class): matrix completion, copula models, deep learning, . . .

- remove rows/columns with missing entries
- (for time series) back-fill with most recent observed value
- impute with mean, median, or mode
- fancier imputation methods (covered later in this class): matrix completion, copula models, deep learning, . . .
- add new feature: Boolean indicator 1(data is missing)
 - can detect if missingness is informative
 - can complement imputation method
 - can use different indicators for different kinds of missingness (refused, missing, illegible response, . . .)

Poll

In an ambulance dataset (data taken by instruments on board an ambulance), we want to predict if the patient died. The variable "heart rate" is sometimes missing. Is missingness

- A. informative?
- B. uninformative?

Poll

In a weather dataset, the batteries in the instruments occasionally run out before the experimenter can replace them, leaving missing data for eg temperature, humidity, or barometric pressure. Is missingness

- A. informative?
- B. uninformative?

Talk to your neighbor

Can you think of a dataset in which missing values would be

- ▶ informative?
- uninformative?

Outline

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

- ▶ y is positive and heavy-tailed? try $y \leftarrow \log(y)$
- residuals $r = y x_i^T \beta$ are skewed (not normal)
 - check with quantile-quantile plot

Nonlinear transformations

sometimes data is easy to predict with a simple but **non**linear relation, e.g.

$$\log(y) = x^T \beta$$

can transform x or (even more important) y

hints that your data might benefit from a nonlinear transform:

- ▶ y is positive and heavy-tailed? try $y \leftarrow \log(y)$
- residuals $r = y x_i^T \beta$ are skewed (not normal)
 - check with quantile-quantile plot

useful nonlinear transforms:

▶ log, exp, quantile, . . .

more systematic ways to handle nonlinearities: copula models, deep learning

Log transform

 \mathbf{Q} : what happens if x increases by 1 in the model

$$\log(y) = \beta_0 + \beta_1 x,$$

Log transform

Q: what happens if x increases by 1 in the model

$$\log(y) = \beta_0 + \beta_1 x,$$

A: $\log(y)$ increases by β_1 , so y increases by $\exp(()\beta_1)$

$$\log(y) = \beta_0 + \beta_1 x \implies y = \exp(()\beta_0 + \beta_1 x)$$

$$\log(y') = \beta_0 + \beta_1 (x+1) \implies y' = \exp(()\beta_0 + \beta_1 (x+1)) = \exp(()\beta_0 + \beta_1$$

A convenient approximation

- ▶ for small x, $\exp(()x) \approx 1 + x$,
- *e.g.*, $\exp(() 0.01) \approx 1.01$
- ▶ if x increases by 1%, then y increases by factor of $\exp(()\beta_1/100)$
- ▶ so if x increases by 1%, then y increases by factor of $\approx \beta_1/100 = \beta_1\%$

Log transformations of covariates

if we instead log transform x, \hat{y} increases by $\beta_1/100$ for each 1% increase in x.

• e.g., if $\beta_1 = 3$, \hat{y} increases by 3/100=0.03 units for every 1% increase in x.

if we instead log transform both x and y, \hat{y} increases by $\beta_1\%$ for each 1% increase in x.

• e.g., if $\beta_1 = 3$, \hat{y} increases by 3% for every 1% increase in x.

log transformation results in **multiplicative** increases (rather than **additive**)

Outline

Location

can be given as

- ► latitude, longitude
- ▶ zip code
- neighborhood, county, state, country

can be transformed between these!

Location

can be given as

- ► latitude, longitude
- zip code
- neighborhood, county, state, country

can be transformed between these!

which makes sense for your problem?

- does nearness matter?
- are there sharp boundaries?
- are other properties of the location (eg, mean house price or crime rate) more important?

Outline

Text

```
\mathcal{X}= sentences, documents, tweets, . . .
```

- **bag of words** model (one-hot encoding):
 - ightharpoonup pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \dots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence

Text

```
\mathcal{X}= sentences, documents, tweets, . . .
```

- **bag of words** model (one-hot encoding):
 - ightharpoonup pick set of words $\{w_1, \ldots, w_d\}$
 - $\phi(x) = [\mathbb{1}(x \text{ contains } w_1), \dots, \mathbb{1}(x \text{ contains } w_d)]$
 - ignores order of words in sentence
- pre-trained neural networks:
 - sentiment analysis: https://medium.com/@b.terryjack/ nlp-pre-trained-sentiment-analysis-1eb52a9d742c
 - Universal Sentence Encoder (USE) embedding: https:

```
//colab.research.google.com/github/tensorflow/
hub/blob/master/examples/colab/semantic_
similarity_with_tf_hub_universal_encoder.ipynb
```

▶ lots of others: https://modelzoo.co/

Neural networks: whirlwind primer

$$NN(x) = \sigma(W_1\sigma(W_2\ldots\sigma(W_\ell x))))$$

- \triangleright σ is a nonlinearity applied elementwise to a vector, e.g.
 - $ightharpoonup \text{ReLU: } \sigma(x) = \max(x,0)$
 - ightharpoonup sigmoid: $\sigma(x) = \log(1 + \exp(x))$
- each W is a matrix
- trained on very large datasets, e.g., Wikipedia, YouTube

Deep Neural Network

Why not use deep learning?

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

towards a solution: https://arxiv.org/abs/1907.10597

Review

- \blacktriangleright linear models are linear in the **parameters** β
- \blacktriangleright can fit many different models by picking feature mapping $\phi: \mathcal{X} \to \mathbf{R}^d$