Comparing functional Embedded Domain-Specific Languages for hardware description

João Paulo Pizani Flor

Department of Information and Computing Sciences, Utrecht University

February 13th, 2014

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed EDS

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Table of Contents Introduction Hardware design Domain-Specific Languages Hardware EDSLs Analyzed EDSLs Choice criteria Chosen EDSLs Evaluation criteria Modeled Circuits Choice ALU Memory bank CPU Analysis of the EDSLs Lava ForSyDe Coquet

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed EDS

Choice criteria
Chosen EDSLs
Evaluation criteria

Modeled Circuits

Choice ALU Memory bank

Analysis of the EDSLs

ForSyDe Coquet

Conclusions

Universiteit Utrecht

Section 1

Introduction

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed ED

Choice criteria Chosen EDSLs

Martin Charles

Modeled Circuits

Choice ALU Memory bank

Analysis of the

Lava ForSyDe Coquet

Hardware design

Introduction

Hardware design

Domain-Specific Languages Hardware EDSL

Analyzed ED

Chosen EDSLs
Evaluation criteria

Modeled Circuit

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe Coquet

Domain-Specific Languages

A computer language (turing-complete or *not*) targeting a specific application domain.

Example DSLs:

- SQL (database queries)
- CSS (document formatting)
- MATLAB (Matrix programming)
- VHDL (Hardware description)

Hardware design Domain-Specific Languages

Hardware EDS

Choice criteria Chosen EDSLs

Modeled Circuit

Choice ALU Memory bank

Analysis of the

ForSyDe Coquet

Domain-Specific Languages

A computer language (turing-complete or *not*) targeting a specific application domain.

Example DSLs:

- SQL (database queries)
- CSS (document formatting)
- MATLAB (Matrix programming)
- VHDL (Hardware description)

A DSL can also be *embedded* in a general-purpose language.

Example EDSLs:

- ▶ Boost.Proto (C++ / parser combinators)
- Diagrams (Haskell / programmatic drawing)
- Parsec (Haskell / parser combinators)

Hardware design
Domain-Specific
Languages
Hardware EDSLs

Analimed EDCI

Choice criteria Chosen EDSLs

Modeled Circuit

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Example of an EDSL: Parsec

A simple parser for a "Game of Life"-like input format:

```
dead, alive :: Parser Bool
dead = fmap (const False) (char '.')
alive = fmap (const True) (char '*')
line :: Parser ΓBooll
line = many1 (dead <|> alive)
board :: Parser [[Bool]]
board = line 'endBy1' newline
parseBoardFromFile :: FilePath -> IO [[Bool]]
parseBoardFromFile filename = do
    result <- parseFromFile board filename
    return $ either (error . show) id result
```

Introduction
Hardware design
Domain-Specific
Languages

Analyzed EDS

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Conclusions

Universiteit Utrecht

Hardware EDSLs

An EDSL used for hardware design-related tasks. Can encompass:

- ► Modelling / description
- Simulation (validation)
- Formal verification
- Synthesis to other (lower-level) languages

Introduction

Hardware design Domain-Specific Languages

Hardware EDSLs

Analyzed EDS

Choice criteria Chosen EDSLs

Evaluation criteria

Modeled Circuits

Choice ALU Memory bank

Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Example of a hardware EDSL

Some Lava code...

Introduction

Hardware design Domain-Specific Languages

Hardware EDSLs

Analyzed ED

Choice criteria
Chosen EDSLs
Evaluation criteria

Modeled Circuits

Choice ALU Memory bank CPU

Analysis of the

Lava ForSyDe Coquet

Section 2

Analyzed EDSLs

Introduction

Domain-Specific Languages Hardware FDSIs

Analyzed EDSLs

Choice criteria Chosen EDSLs

Modeled Circuits

Choice ALU Memory bank

CPU
Analysis of the

Lava ForSyDe

Coquet

Choice criteria

Introduction

Hardware design Domain-Specific Languages Hardware EDSI

Analyzed EF

Choice criteria

Evaluation criteri

Modeled Circuit

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe Coquet

Chosen EDSLs

The language we chose to evaluate, with the respective host language, were:

- ► Lava (Haskell chalmers-lava dialect)
- ForSyDe (Haskell)
- Coquet (Coq)

Chosen EDSLs

ALU.

Coquet

Evaluation criteria

- Simulation
- Verification
- Genericity
- Depth of embedding
- Tool integration
- Extensibility

Evaluation criteria

ALU

Coquet

Section 3

Modeled Circuits

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed ED

Chosen EDSLs

Modeled Circuits

Choice ALU Memory bank

Analysis of the

Lava ForSyDe

Choice criteria

- ▶ Not too simple, not too complex
- ► Familiar to any hardware designer
 - No signal processing, etc.
- Well-defined, pre-specification
 - · Results to verify the models against

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed EDS

Choice criteria
Chosen EDSLs
Evaluation criteria

Modeled Circuit

Choice

ALU Memory bank

Analysis of the

ForSyDe Coquet

Chosen circuits

We cherry-picked circuits from the book "Elements of Computing Systems", as they satisfied all of our demands.

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed EDS

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

Choice

ALU Memory bank CPU

Analysis of the EDSLs

ForSyD Coquet

onclusions

Figure: "Elements of Computing Systems" - Nisan, Schocken, available at http://www.nand2tetris.org.

Universiteit Utrecht

Chosen circuits

Circuit 1 A 2-input, 16-bit-wide, simple ALU

Circuit 2 A 64-word long, 16-bit wide memory block

Circuit 3 An extremely reduced instruction set CPU, the Hack CPU.

Let's take a quick look at each of these circuit's specification...

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed ED

Choice criteria Chosen EDSLs

Modeled Circuit

Modeled Circuit

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Circuit 1: ALU

Some of the circuit's key characteristics:

- ▶ 2 operand inputs and 1 operand output, each 16-bit wide
- ▶ 1 output flag
- Can execute 18 different functions, among which:
 - · Addition, subtraction
 - Bitwise AND / OR
 - Constant outputs
 - · Addition of constants to an operand
 - Sign inversion

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed ED:

Choice criteria Chosen EDSLs

Modeled Circuit

Choice ALU

Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Circuit 1: block diagram

Figure: Input/Output ports of circuit 1, the ALU.

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed ED

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

Choice ALU Memory bank

Analysis of the

Lava ForSyDe Coquet

Circuit 1: Specification

The behaviour of the ALU is specified by the values of the *control bits* and flags:

```
zx and zy Zeroes the x and y inputs, respectively nx and ny bitwise negation in the x and y inputs f \  \, \text{Selects the function to be applied:} \\ f=1 \ \text{for addition}, \ f=0 \ \text{for bitwise AND} \\ \text{no bitwise negation} \ \text{on the output ALU output} \\ \text{zr and ng } \text{The output } \textit{flag } \text{zr}=1 \ \textit{iff} \ \text{the ALU output is zero.} \\ \text{ng}=1 \ \textit{iff} \ \text{the output is negative.}
```

Operations such as bitwise OR, subtraction, etc. can be done by setting the control bits appropriately.

Introduction
Hardware design
Domain-Specific
Languages

inalyzed EDS

Choice criteria
Chosen EDSLs
Evaluation criteria

Modeled Circuits

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Circuit 2: RAM64

Some of the circuit's key characteristics:

- Sequential circuit, with clock input
- ▶ 64 memory words stored, each 16-bit wide
- ▶ Address port has width log₂ 64 = 16 bit

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed EDS

Choice criteria
Chosen EDSLs
Evaluation criteria

Modeled Circuits

iviodeled Circuit

ALU Memory bank

CPU

Analysis of the EDSLs

ForSyDe Coquet

Circuit 2: block diagram

Figure: Input/Output ports of *circuit 2*, the RAM64 block.

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed ED

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

ALU Memory bank CPU

Analysis of the

Lava ForSyDe

CPU block diagram

Figure: Input/Output ports of *circuit 3*, the *Hack* CPU.

Introduction

Hardware design Domain-Specific Languages Hardware EDSLs

Analyzed EDS Chaica critoria

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuits

Choice ALU Memory bank CPU

Analysis of the EDSLs

ForSyDe Coquet

Section 4

Analysis of the EDSLs

Introduction

Domain-Specific Languages Hardware EDSLs

Analyzed ED

Choice criteria Chosen EDSLs

Modeled Circuits

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe Coquet

Lava

Introduction

Domain-Specific Languages Hardware EDSI

Analyzed ED

Choice criteria Chosen EDSLs

Modeled Circuit

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe Coquet

ForSyDe

Introduction

Domain-Specific Languages Hardware EDSL:

Analyzed ED

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuit

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe Coquet

Coquet

Introduction

Hardware design Domain-Specific Languages Hardware EDSL

Analyzed ED

Choice criteria Chosen EDSLs Evaluation criteria

Modeled Circuit

Choice ALU Memory bank

Analysis of the EDSLs

Lava ForSyDe

Coquet

Section 5

Conclusions

Introduction

Domain-Specific Languages Hardware FDSIs

Analyzed ED

Choice criteria Chosen EDSLs

Modeled Circuits

Choice ALU Memory bank

Analysis of the

Lava ForSyDe

Thank you!

Questions?

