

TRNSYS Type 709

Ground Model

Dani Carbonell

Dani.Carbonell@spf.ch

September 13, 2019

Abstract

This TRNSYS Type simulates the ground in 2D with internal boundary conditions such as a buried ice storage.

Contents

1	List of parameters	3
2	List of inputs	5
3	List of outputs	6

1. List of parameters

The total number of parameters are

$$n_{Par} = 55 + n_{mat} \cdot 4 + n_X \cdot n_Y + 2(n_X + n_Y) = 55 + n_{mat} \cdot 4 + n_X \cdot n_Y + 2n_{XY}$$
 (1)

If the material is internal boundary condition, then use -1 -1 -1 for $\lambda,\ c_p$ and ρ

Nr.	Description	Name	Units
1	Number of fluid Cv	n_{cv}	
2	Number of ground zones in X	n_X	
3	Number of ground zones in Y	n_Y	
4+i	Number of Cv for $Zone i$ in X di-	xCv_i	
•	rection		
<u>:</u>	for i=1 i < m = i=i + 1	:	:
•	$ \text{ for i=1 i} \leq n_X \text{ i=i+1} $		•
$5 + n_X + j$	Number of Cv for Zone j in Y di-	$\left \begin{array}{c} yCv_i \end{array} \right $	
	rection	$g \circ \circ_t$	
<u>:</u>			
:	for j=1 j $\leq n_Y$ j=j+1	:	:
$5 + n_{XY}$	Number of materials	n_{mat}	
$6 + n_{XY}$	Mesh concentration factor	α_{mesh}	
~ + ''•A I	Definition of materials	~mesn	
$6 + n_{XY} + 4(n-1)$	code of the material	n	
$7 + n_{XY} + 4(n-1)$	Heat conductivity of material n	$\begin{vmatrix} \lambda_n \end{vmatrix}$	[W/mK]
$8 + n_{XY} + 4(n-1)$	Heat capacity of material n	$\begin{vmatrix} cp_n \end{vmatrix}$	[J/kgK]
$9 + n_{XY} + 4(n-1)$	Density of material n	$\left egin{array}{c} ho_n \end{array} ight $	$[kg/m^3]$
	Definition of zones	L. 10	["]["]
:		:	•
:	$ \text{ for n=1 n} \leq n_{mat} \text{ n=n+1} $:	:
:	for ij=1 ij $\leq n_X n_Y$ ij=ij+1	i :	i i
D ('	(1		
	nition of boundary conditions (boco) Left boco		
$10 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$			
	0=temperature		
	1=flux Newman		
11 1 4	2= U		
$11 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Right boco		
$12 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Top boco		
$13 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Bottom boco		
14 + 4	Initialization of ground data	11	
$14 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Initial time model	$model_g$	[0C]
$15 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Initial ground temperature	T_g^0	$[^{o}C]$
$16 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	TRNSYS unit for initial tempera-		
17 . 4	ture file		[0.07]
$17 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ambient average T	$T_{amb,avg}$	$[{}^{o}C]$
$18 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ambient amplitude T	$T_{abm,amp}$	$[^{o}C]$
$19 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Month with maximum T_{amb}		
$20 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Start simulation day		
$21 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Albedo (ground reflectance)		
$22 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ground emissivity	[TTT / T-	
$23 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ground averaged conductivity	[W/mK]	
$24 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ground averaged specific capacity	[J/kgK]	
$25 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Ground averaged density	$ [kg/m^3] $	

Nr.	Description	Name	Units
$26+4n_{mat}+n_X\cdot n_Y+n_{XY}$	Print data (1 : yes , 0 : no)		
$27 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	TRNSYS unit for saving ground		
	temperature 2D file		
$28 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	Time 1 where 2D T are saved	$t_{save,t}$	[h]
:	for t=1 t \leq 12 t=t+1	:	:
$40+4n_{mat}+n_X\cdot n_Y+n_{XY}$	× position of sensor i,j	$x_{ts}(i,j)$	[m]
$41 + 4n_{mat} + n_X \cdot n_Y + n_{XY}$	y position of sensor i,j	$y_{ts}(i,j)$	[m]
:	for $s=1$ t ≤ 10 $s=s+1$:	:

2. List of inputs

Nr.	Description	Name	Units
1	Left temperature BoCo	$T_{l,Boco}$	$[^{o}C]$
2	Left Heat Flux BoCo	$Q_{l,Boco}$	$[W/m^2]$
3	Left Heat transfer BoCo	$UA_{l,Boco}$	$[W/m^2K]$
4	Right temperature BoCo	$T_{r,Boco}$	$[^{o}C]$
5	Right Heat Flux BoCo	$Q_{r,Boco}$	$[W/m^2]$
6	Right Heat transfer BoCo	$UA_{r,Boco}$	W/m^2K
7	Top temperature BoCo	$T_{t,Boco}$	$[^{o}C]$
8	Top Heat Flux BoCo	$Q_{t,Boco}$	$[W/m^2]$
9	Top Heat transfer BoCo	$UA_{t,Boco}$	$[W/m^2K]$
10	Bottom temperature BoCo	$T_{b,Boco}$	$[^{o}C]$
11	Bottom Heat Flux BoCo		$[W/m^2]$
12	Bottom Heat transfer BoCo	$UA_{b,Boco}$, $[W/m^2K]$
13	Bottom Ground to fluid internal BoCo	$Q_{g-f,Boo}$	$_{o}[W/m^{2}K]$
13+i	Right side ground to fluid internal BoCo		$[W/m^2K]$
	(from bottom to top)		
:	for i=1 t $\leq nCv$ i=i+1	:	:
14 + nCv	Top ground to fluid internal BoCo	$Q_{g-f,top}$	$[W/m^2K]$

3. List of outputs

Nr.	Description	Name	Units
1	Error in steady state	$error_{SS}$	[W]
2	Error in solver	$error_{solv}$	er[W]
3	Number of solver iterations	$nIte_{solve}$	r
4	Heat flux through the East side	Q_E	
5	Heat flux through the West side	Q_W	
6	Heat flux through the North side	Q_N	
7	Heat flux through the South side	Q_S	
8	Heat generated in the ground	Q_V	
9	Heat accumulated in the ground	Q_{acum}	
10	Heat imbalance in the ground	Q_{imb}	
11	Bottom Ground to fluid internal BoCo tem-	$T_{g-f,Boco}$	$_{o}$ $[^{o}C]$
	perature		
11+i	Right side ground to fluid internal BoCo tem-	$T_{g-f,i}$	$[^{o}C]$
	perature		
:	for i=1 t $\leq nCv$ i=i+1	:	:
12 + nCv	Top ground to fluid internal BoCo tempera-	$T_{g-f,top}$	$[^{o}C]$
,	ture		
12+nCv+s	Sensor s temperature	$T_{sensor,s}$	$[^{o}C]$
1:	·	:	:
:	for $s=1$ s ≤ 10 s=s+1		