The resulting graphs are as follows: (The results are only for one run)

1. **Epsilon Greedy** on instance-5.txt and instance-25.txt

Epsilon Greedy on instance-5.txt

Epsilon Greedy on instance-25.txt

We can see the resulting plot for the Epsilon Greedy algorithm above. Given more number of horizons, we can establish that the regret becomes an approximate constant.

2. UCB on instance-5.txt and instance-25.txt

UCB on instance-5.txt

UCB on instance-25.txt

We can see the resulting plot for the UCB algorithm above. Given more number of horizons, we can establish that the regret becomes an approximate constant.

3. **KL-UCB** on instance-5.txt and instance-25.txt

KL-UCB on instance-5.txt

KL-UCB on instance-25.txt

This graph is the most unpredictable till now. For instance-25.txt, the graph behaves as predicted but the value of regret decreases in case of instance-5.txt

4. Thompson Sampling on instance-5.txt and instance-25.txt

Thompson Sampling on instance-5.txt

Thompson Sampling on instance-25.txt

In case of instance-5.txt the regret increases in the beginning and goes on to decrease as we increase the horizons. Similarly, for instance-25.txt, the regret takes a little drop before increasing for good.

References Used:

To simulate the Beta distribution, code from the following link was used:

 $\frac{https://stackoverflow.com/questions/15165202/random-number-generator-with-beta-distributi}{on}$

Ideas for KL-UCB algorithm:

https://perso.limsi.fr/cappe/Research/Talks/11-gatsby.pdf