Einführung in die Grundlagen der Numerik (WS 22/23)

Manuel Hinz

13. Oktober 2022

Inhaltsverzeichnis

1	Orthogonalität	3
	1.1 Grundlegende Definitionen	3
	1.2 Bestapproximationseigenschaft	4
	1.3 Orthonormalbasen	5
2	Das lineare Ausgleichsproblem	7
	2.1 Problemstellung und Normalengleichung	7
	2.2 Methode der Orthogonalisierung	q

Vorwort

Diese Mitschrift von der Vorlesung Einführung in die Grundlagen der Numerik (Dölz,WS 2022/2023) wird von mir neben der Vorlesung geschrieben und ist dementsprechend Fehleranfällig. Fehler gerne an mh@mssh.dev!

Kapitel 1

Orthogonalität

1.1 Grundlegende Definitionen

Definition 1.1. Sei X ein \mathbb{R} Vektorraum und $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ eine Abbildung. $\langle \cdot, \cdot \rangle$ heißt **Skalarprodukt** oder inneres Produkt, falls

$$\forall f \in X \setminus 0 : \langle f, f \rangle > 0 \tag{Positiviät}$$

$$\forall f, g \in X : \langle f, g \rangle = \langle g, f \rangle$$
 (Symmetrie)

$$\forall \alpha, \beta \in \mathbb{R}, f, g, h \in X : \langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$
 (Linearität im ersten Argument)

Bemerkung 1.2. Symmetrie und Linearität im ersten Argument implizieren, dass $\langle \cdot, \cdot \rangle$ eine bilineare Abbildung ist.

Definition 1.3. Sei X ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Wir bezeichnen die zugehörige **Norm** (in Abhänigkeit von einem Vektor $f \in X$) mit

$$||f|| = \sqrt{\langle f, f \rangle}.$$

Lemma 1.4. Sei X ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann gil die Cauchy-Schwarz-Ungleichung:

$$\forall f, g \in X : \langle f, g \rangle \le ||f|| \cdot ||g|| \tag{C.S.}$$

mit Gleichheit genau dann, wenn f und g linear abhängig sind.

Beweis. O.B.d.A. $f, g \neq 0$, da sonst offensichtlich Gleichheit gilt. Sei $\alpha \neq 0$, dann gilt mit $f, g \in X$ und $\alpha \in \mathbb{R}$:

$$0 \le \|f - \alpha g\|^2 = \langle f - \alpha g, f - \alpha g \rangle = \|f\|^2 - 2\alpha \langle f, g \rangle + \alpha^2 \|g\|^2$$

Wählen wir jetzt $\alpha = \frac{\langle f, g \rangle}{\|g\|^2}$ folgt:

$$0 \le ||f||^2 - \frac{2\langle f, g \rangle^2}{||g||^2} + \frac{\langle f, g \rangle^2}{||g||^2}$$
$$\implies \langle f, g \rangle^2 \le ||f||^2 \cdot ||g||^2.$$

Eingefügte Bemerkung. Rechnung zur Begründung von $\langle f - \alpha g, f - \alpha g \rangle = ||f||^2 - 2||\alpha \langle f, g \rangle + \alpha^2 ||g||^2$:

$$\langle f - \alpha g, f - \alpha g \rangle$$

$$= \langle f, f - \alpha g \rangle - \alpha \langle g, f - \alpha g \rangle$$

$$= \langle f, f \rangle - \alpha \langle f, g \rangle - \alpha \langle g, f \rangle + \alpha^2 \langle g, g \rangle$$

$$= ||f||^2 - 2||\alpha \langle f, g \rangle + \alpha^2||g||^2$$

Beispiel 1.5. 1. $X = \mathbb{R}^n$ und $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ (Euklidisches Skalarprodukt)

2. $X = \mathbb{R}^n$, $\langle x, y \rangle = x^{\perp}Ay$, wobei A positiv definit und symmetrisch ist

3. $I = [a, b], w : I \to \mathbb{R}$ beschränkt und strikt positiv:

$$X = \left\{ f: I \to \mathbb{R}: \int_a^b f(x)^2 w(t) dt < \infty \right\} = L^2(I, w)$$

mit

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)w(t)dt$$

Eingefügte Bemerkung. Die Definition von $L^2(I, w)$ ist hier nicht ganz richtig, man müsste natürlich noch Äquivalenzklassen, bzgl. Gleichheit bis auf Nullmengen, bilden. Dies wird hier, da Analysis 3 / Wtheo. nicht nicht vorrausgesetzt wird, ignoriert.

Definition 1.6. Sei X ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$. $f, g \in X$ heißen **orthogonal**, falls $\langle f, g \rangle = 0$.

Bemerkung 1.7. Im \mathbb{R}^n mit dem euklidischen Skalarprodukt stimmt Definition 1.6, wegen

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta), \theta = \angle(x, y),$$

mit unserem bisherigen Verständnis überein.

1.2 Bestapproximationseigenschaft

Definition 1.8. Sei V ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und U ein Unterraum.

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0, \forall u \in U \}$$

 $hei\beta t \ das \ orthogonale \ Komplement \ von \ U.$

Satz 1.9. Unter den Annahmen von Definition 1.8 und der zusätzlichen Annahme, dass U endlich dimensional ist, gilt folgendes für $v \in V$:

$$\|v-u\|=\min_{w\in U}\|v-w\|$$

genau dann, wenn $v - u \in U^{\perp}$.

Beispiel 1.10. $V = \mathbb{R}^2$, $U = span\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ mit euklidischem Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann ist $U^{\perp} = span\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$.

Abbildung 1.1: U und U^{\perp}

Beweis von Satz 1.9. Sei $v \in V$ und seien $u, w \in U$. Dann gilt:

$$||v - w||^2 = \langle v - w, v - w \rangle = \langle (v - u) + (u - w), (v - u) + (u - w) \rangle$$
$$= ||v - u||^2 + 2\langle v - u, \underbrace{u - w}_{\in U} \rangle + ||u - w||^2 \ge ||v - u||^2$$

mit Gleichheit genau dann, wenn w - u = 0 (da dann der ||u - w|| Term verschwindet).

Bemerkung 1.11. Der Satz sagt, dass es zu jedem $v \in V$ ein eindeutiges, bestmögliches $u \in U$ gibt.

Definition 1.12. Die Lösung aus Satz 1.9 heißt **orthogonale Projektion** von v auf U. Die Abbildung

$$P: V \rightarrow U, v \mapsto P(v)$$
 mit $||v - Pv|| = \min_{w \in U} ||v - w||$

ist linear und wird orthogonale Projektion genannt.

Eingefügte Bemerkung (Beweis der Linearität). Für $v_1, v_2 \in V$ und $\alpha \in \mathbb{R}$ gilt:

$$v_1 - Pv_1 \in U^{\perp}$$
$$v_2 - Pv_2 \in U^{\perp}$$

Daher

$$\alpha(v_1 - Pv_1) + (v_2 - Pv_2) = (\alpha v_1 + v_2) - (\alpha Pv_1 + Pv_2) \in U^{\perp}.$$

Aber dann muss $\alpha Pv_1 + Pv_2$ schon, wegen der Eindeutigkeit, $P(\alpha v_1 + v_2)$ sein.

Bemerkung 1.13. Satz 1.9 gilt auch, wenn U durch $W = w_0 + U$ ersetzt wird. Die orthogonale Projektion ist analog definiert.

Frage: Die Orthogonale Projektion hat offenbar gute Eigenschaften. Aber: wie berechnen wir sie? Wie wählen wir \overline{U} ?

- Berechnung ist leicht
- U wählen schwierig

1.3 Orthonormalbasen

Definition 1.14. Sei X ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und $X_n \subset X$ ein endlich dimensionaler Teilraum mit Basis $\{\varphi_1, \ldots, \varphi_n\}$. Die Basis heißt **Orthogonalbasis**, falls

$$\forall i \neq j : \langle \varphi_i, \varphi_i \rangle = 0$$

gilt und Orthonormalbasis (ONB), falls zusätzlich $\|\varphi_i\| = 1$ gilt. Das impliziert:

$$\langle \varphi_i, \varphi_j \rangle = \delta_{i,j}.$$

Beispiel 1.15. 1. \mathbb{R}^n mit euklidischem Skalarprodukt und kanonischer Basis

2. $X = L^2(I, 1)$ mit entsprechendem Skalarprodukt und X_n der Raum der trigonometrischen Polynome bis Grad n. Dann ist folgendes eine ONB:

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin(x)}{\sqrt{\pi}}, \frac{\cos(x)}{\sqrt{\pi}}, \dots, \frac{\sin(nx)}{\sqrt{\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}\right\}$$

Eingefügte Bemerkung. Trigonometrische Polynome sind Funktionen der Form

$$f(t) = \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx).$$

Die größte Faktor vor dem x ist der Grad eine trigonometrischen Polynoms.

Satz 1.16. Sei $\{\varphi_1, \ldots, \varphi_n\}$ eine ONB von $X_n \subset X$. Dann gilt

1.
$$f = \sum_{i=1}^{n} \langle \varphi_i, f \rangle \varphi_i$$

2.
$$||f||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2$$

3. Die orthogonale Projektion f_n von $f \in X \setminus X_n$ ist gegeben durch

$$f_n = \sum_{i=1}^n \langle \varphi_i, f \rangle \varphi_i$$

4. im Fall von 3.:

$$||f_n||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2 \le ||f||$$

Beweis. 1.:

$$f \in X_n \implies \exists \alpha_i \in \mathbb{R} : f = \sum_{i=1}^n \alpha_i \varphi_i$$
$$\implies \langle \varphi_i, f \rangle = \langle \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{j=1}^n \alpha_j \langle \varphi_i, \varphi_j \rangle = \alpha_i$$

2.:

$$||f||^2 = \langle f, f \rangle$$

$$= \langle \sum_{i=1}^n \alpha_i \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \delta_{i,j} = \sum_{i=1}^n \alpha_i^2$$

3.:

$$f \in X \setminus X_n$$
:

$$\|f - \underbrace{\tilde{f}_n}_{\in X_n}\| = \langle f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i, f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i \rangle$$

$$= \|f\|^2 - 2 \sum_{i=1}^n \tilde{\alpha}_i \underbrace{\langle \varphi_i, f \rangle}_{=:\alpha_i} + \sum_{i,j=1}^n \alpha_i \alpha_j \langle \varphi_i, \varphi_j \rangle$$

$$= \|f\|^2 - \sum_{i=1}^n \tilde{\alpha}_i \alpha_i + \sum_{i=1}^n \tilde{\alpha}_i^2 \xrightarrow{\text{Quadratische Ergänzung}}_{=:\alpha_i} \|f\|^2 - \sum_{i=1}^n \alpha_i^2 + \sum_{i=1}^n \underbrace{(\alpha_i - \tilde{\alpha}_i)^2}_{>0}$$

$$(1.1)$$

Dies wird minimiert, wenn $\tilde{\alpha}_i = \alpha_i$ ist.

4.:

 $f \in X_n$ wurde in 2. gezeigt. Sonst:

$$f \notin x_n \implies \min \alpha_i = \tilde{\alpha}_i \text{ in } (1.1):$$

$$0 \le ||f - f_n||^2 = ||f||^2 - \sum_{i=1}^n \underbrace{\alpha_i^2}_{\langle \varphi_i, f \rangle^2}$$

Es folgt die Behauptung.

Vorteile von Orthogonalität:

- Bestapproximation
- Einfache Basisdarstellung

Ende von Vorlesung 01 am 11.10.2022

Kapitel 2

Das lineare Ausgleichsproblem

2.1 Problemstellung und Normalengleichung

Gegeben seien Punkte $(t_i, b_i) \in \mathbb{R}^2$ mit i = 1, ..., m. Wir nehmen an, dass es eine Gestzmäßigkeit im Sinne eines parameterabhängigen Modelles

$$b_i = b(t_i) = b(t_i; \underbrace{x_1, \dots, x_n}_{\text{Parameter}}),$$

wobei die Parameter x_1, \ldots, x_n unbekannt seien, gibt. In der Praxis sind die Messungen zusätzlich mit Fehlern behaftet und das Modell gilt nur approximativ. Zusätzlich gibt es oft mehr Messungen als Parameter, d.h. m > n. Frage: Gegeben die Messungen, können wir zugehörige Parameter bestimmen?

Annahme: b ist linear in den Parametern, d.h. es gibt Funktionen

$$a_i: \mathbb{R} \to \mathbb{R}$$

s.d.

$$b(t; x_1, \dots, x_n) = a_1(t)x_1 + \dots + a_n(t)x_n.$$

Idee: Formuliere ein lineares Gleichungssystem:

$$b_i \approx b(t_i; x_1, \dots, x_n) = a_1(t_i)x_1 + \dots + a_n(t_i)x_n, i = 1, \dots, m$$

kurz $Ax \approx b$ mit $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$.

Problem: Durch Modell- und Messfehler gilt das Gleichungssystem nur ungefähr, und wir mehr Gleichungen als Unbekannte ("das Gleichungssystem ist überbestimmt"). Wir können unser Gleichungssystem also im Allgemeinen nicht lösen.

Abbildung 2.1: Datenpunkte und approximierte Gerade

Beispiel 2.1.

<u>Idee:</u> Finde Parameter, sodass das Modell "bestmöglich" mit den Messpunkten übereinstimmt, d.h. finde $(x_1, \ldots, x_n)^t = x \in \mathbb{R}^n$ s.d.:

$$||Ax - b|| = \min_{y \in \mathbb{R}} ||Ay - b|| \tag{2.1}$$

Definition 2.2. Die Gleichung (2.1) heißt **lineares Ausgleichsproblem**. Der Term Ax - b heißt **Residuum**.

Bemerke:
$$V = \mathbb{R}^m, U = \text{Bild}(A) \subset V, \dim(\text{Bild}(A)) \underbrace{\leq n \leq m}_{\text{Grundannahme}}$$

Statte V mit euklidischem Skalar
produkt aus.

 $\stackrel{Satz1.9}{\Longrightarrow}$ Es gibt genau ein $Ax \in Bild(A)$ so, dass

$$||Ax - b|| = \min_{w \in U} ||w - b||$$

gilt.

Aber: Wie berechnen wir x?

Satz 2.3. Sei $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ge n$, $x \in \mathbb{R}^n$ ist genau dann eine Lösung von (2.1) bezüglich der euklidischen Norm, falls

$$A^t A x = A^t b. (2.2)$$

Insbesondere ist das lineare Ausgleichproblem genau dann lösbar, falls rang(A) = n.

Beweis.

$$||Ax - b|| = \min_{y \in \mathbb{R}^n} ||Ay - b||$$

$$\stackrel{\text{Satz (1.9)}}{\iff} Ax - b \in U^{\perp} = \text{Bild}(A)^{\perp}$$

$$\iff \forall y \in \mathbb{R}^n : \langle Ax - b, Ay \rangle = 0$$

$$\iff \forall y \in \mathbb{R}^n : \langle A^t Ax - A^t b, y \rangle = 0$$

$$\iff A^t Ax = A^t b$$

Die letzte Gleichung ist genau dann invertierbar, wenn A^tA vollen Rang hat, also wenn A vollen Rang (n) hat. \square

Bemerkung 2.4. Im beweis verwenden wir, dass Ax - b orthogonal zu U = Bild(A),

Abbildung 2.2: Hyperebene und Projektion

d.h. eine Normale zur Hyperebene Bild(A) im R^m , ist. Deshalb heißt (2.2) auch Normalengleichung.

Bemerkung 2.5. Für m = n und rang(A) = n ist die Lösung des linearen Ausgleichproblems exakt (im mathematischen Sinne).

Satz 2.6. Für $A \in \mathbb{R}^{m \times n}$ ist $A^t A$ symmetrisch und positiv semidefinit. Falls $m \ge n$ ist $A^t A$ genau dann positiv definit, wenn rang(A) = n.

Beweis. • Symmetrisch: klar

• positiv semidefinit:

$$\forall x \in \mathbb{R}^n : x^t(A^t A)x = (Ax^t)(Ax) = ||Ax||_2^2 \ge 0$$

• positiv definit: $\operatorname{rang}(A) = n \implies Ax = 0 \iff x = 0 \implies \|Ax\|_2 = 0 \iff x = 0 \implies \text{Behauptung}.$

Einfachste Möglichkeit zur Lösung von (2.2): Berechne A^tA , A^tb , löse LGS mittels Cholesky. Kosten sind ungefähr:

$$\frac{n^2m}{2} + m \cdot n + \frac{n^3}{6} + \frac{n^2}{2} + \frac{n^2}{2} \approx \frac{mn^2}{2}$$
 für $m \gg n$.

Eingefügte Bemerkung. Anmerkung vom Donzent: A^tA eig. immer schlecht zu berechnen.

Aber: Dieser Vorgang ist schlechter konditioniert als das lineare Ausgleichsproblem:

Eingeschobene Definition / Wiederholung

$$\operatorname{cond}(A) = ||A|| ||A^{-1}||$$
$$||A|| = \max_{||x||=1} ||Ax||$$

Falls $A \in \mathbb{R}^{n \times n}$ spd (symmetrisch, positiv definit) gilt $\operatorname{cond}_2((A^t A)) = \operatorname{cond}_2(A)^2$. Für $A \in \mathbb{R}^{m \times n}$ gelten ähnliche Überlegungen, siehe Deuflhard & Hohmann.

Beispiel 2.7. Sei
$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$
 mit $\epsilon > \underbrace{eps}_{Maschienengenauigkeit}$, $\epsilon^2 < eps$.

$$\implies A^t A = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{bmatrix} \stackrel{im\ Computer}{=} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

 $\implies A^t A$ ist im Computer singulär, obwohl A vollen Rang hat!

Idee / Wunsch: Gebe einen Algorithmus an, der das lineare Ausgleichsproblem löst und nur auf A arbeitet.

2.2 Methode der Orthogonalisierung

Definition 2.8. Eine Matrix $Q \in \mathbb{R}^{n \times n}$ heißt **orthogonal**, wenn $Q^tQ = I$, d.h. falls die Spalten von Q eine ONB bzgl. des euklidischen Skalarprodukts bilden. Schreibe $Q \in O(n)$.

Notation: $\langle \cdot, \cdot \rangle_2, \| \cdot \|_2$ für das euklidische Skalarprodukt / die euklidische Norm.

Lemma 2.9. Für alle $Q \in O(n)$ gilt

- 1. $||Qx||_2 = ||x||_2$ (Invarianz der Norm bzgl. orthogonaler Projektionen)
- 2. $cond_2(Q) = 1$

Beweis. 1.:
$$||Qx||_2^2 = \langle Qx, Qx \rangle_2 = \langle Q^tQx, x \rangle_2 = \langle x, x \rangle_2 = ||x||_2^2$$

2.: $||Q||_2 = \max_{||x||_2 = 1} ||Qx|| = 1$ und auch $||Q^-1||_2 = 1 \implies$ Behauptung.

Satz 2.10. $A \in \mathbb{R}^{m \times n}, m \geq n, rang(A) = n$. Dann hat A eine QR-Zerlegung:

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$$

wobei $Q \in O(m), R \in \mathbb{R}^{n \times n}$ eine obere Dreiecksmatrix ist.

 $Beweis. \ {\it Schreibe} \ {\it das} \ {\it Gram-Schmidt-Orthogonalisierungsverfahren} \ {\it in} \ {\it Matrix form:}$

$$Q = \underbrace{\begin{bmatrix} A_n & \dots & A_2 & A_1 \end{bmatrix}}_{A_n & \dots & A_2 & A_1} \underbrace{\begin{bmatrix} 1 & \dots & \dots & \frac{-\langle A_n, A_1 \rangle_2}{\|A_1\|_2^2} \\ & \ddots & \dots & & \vdots \\ & & 1 & \frac{-\langle A_3, A_2 \rangle_2}{\|A_2\|_2^2} & \frac{-\langle A_3, A_1 \rangle_2}{\|A_1\|_2^2} \\ & & & 1 & \frac{-\langle A_2, A_1 \rangle_2}{\|A_1\|_2^2} \end{bmatrix}}_{R'} \underbrace{\begin{bmatrix} \frac{1}{\|B_1\|_2} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\|B_n\|_2} \end{bmatrix}}_{R''}$$

- $\implies Q \in R^{m \times n}, R'R''$ ist obere Dreiecksmatrix mit nicht-null Diagonaleinträgen
- \implies invertierbar: $R = (R'R'')^{-1}$
- $\implies QR = A$, wenn wir Q zu einer ONB von R^m erweitern.

Ende von Vorlesung 02 am 13.10.2022