Improving ICU Alarm Systems with Machine Learning: A Case Study

Some facts

Each day, a large number of individuals rely on ICU for their survival.

Alarms on ICU devices are sensitive and triggered easily.

False alarms require 2 minutes of a physician's time while relevant alarms need 5 minutes to be addressed.

For each patient, 100 alarms are produced. Only 29 of them are relevant.

Three relevant alarms would still be missing among them.

Objectives

Capture all relevant alarms, as missing even a few of them can potentially result in fatal consequences.

Reduce the number of false alarms so that the physician's time is not wasted.

How to use ML for this specific case?

Alarm detection with the default system

Accuracy rate: 0.648

Alarm detection with the trained model

When prioritizing the minimization of false alarms:

When prioritizing the detection of all correct alarms:

Accuracy rate: 0.932

Accuracy rate: 0.727

The trade-off between incorrectly identified false alarms and undetected true alarms

Comparison of 1000 alarms

<u>Default model:</u> 34.5% of alarms are FP (1 hour 15 minutes)

Initial ML model:17.1% of alarms are FP (35 minutes)

Optimized ML model: 15% of alarms are FP (30 minutes)

Optimized results

<u>Initial ML model:</u>27.3% of alarms are FP (55 minutes)

Optimized model: 22.7% of alarms are FP (45 minutes)