光电效应实验报告

18级物理二班 魏弘量

学号: 320180934321

1.实验目的

1.通过光电管I-U特性曲线的测定, 熟悉光电效应的规律

2.了解光的量子性,测定金属的红线频率

3.验证爱因斯坦光电效应方程, 计算普朗克常量

2.实验原理

原理推导如下:

3.实验步骤

1.准备工作:

实验装置图:

- 1.将光源打开,预热
- 2.进行暗电流调零:关闭光源,通过调零按钮将此时的暗电流读数调节至0,按下确认键。
- 3.通过螺旋测微仪调节光的波长。记录不同波长下的U-I曲线数据。
- 4.每个波长下, I=0对应的是截止电压。记录不同波长下的截止电压。

三条U-I曲线的记录

波长=450 nm

I/10^-13A	U/V
0	-1.578
0.7	-1.568
1.6	-1.558
2.3	-1.548
3.0	-1.538
4.2	-1,528
4.9	-1.518
5.7	-1.508
6.7	-1.498
7.6	-1.488
8.8	-1.478
9.7	-1.468
10.6	-1.458
11.6	-1,448
13.0	-1.438

波长=500 nm

I/10^-13A	U/V
0.0	-1.036
9.8	-0.936
44.8	-0.836
109	-0.736
187	-0.636
249.9	-0.536

波长=550 nm

I/10^-13A	U/V
0.0	-0.806
0.2	-0.796
13.9	-0.696
68.2	-0.596
170	-0.496
250	-0.396

不同波长下的截止电压

波长/nm	U/V
450	-1.614
475	-1.466
500	-1.316
525	-1.142
550	-1.012
575	-0.890
600	-0.774

4.数据处理

(1)用作图软件分别作出3种准单色光(450,500,550nm)的U-I伏安特性曲线。(由于时间紧张,此处只测量了三条U-I曲线)

(2)由U0-v直线的截距求出金属的红限频率v0和阴极逸出电压φ0,由直线斜率计算普朗克常量的值。

500nm波长的光对应的U-I曲线

(

频率与截止电压的关系:

可以发现其基本成线性关系,说明本次实验基本操作正确。 进行线性拟合,可以得知直线斜率的数值大约为5.12324*10^-15。

Out[83]=
$$-1.78112 + 5.12324 \times 10^{-15} x$$

若以eV·s(电子伏特·秒)为能量单位则为

 $h=6.62607015\times10^{-34}/1.602176634\times10^{-19}\,\text{eV}\cdot\text{s}=4.1356676969\times10^{-15}\,\text{eV}\cdot$

英四千宗林界裡面景片不然實"時間。中亞和不計實"行政官

对比公认值,偏差大约为:

实验误差达到20%,误差较高。

读数时示数一直在变化,我们取得是一段时间内的平均值,这里就引入读数波动的误差。考虑到本次实验中被测物理量的量级非常小,读数记录稍有偏差也会造成较大误差。且本次实验得到的频率-截止电压呈现线性关系。因此我认为本次实验操作基本正确。