

BEST AVAILABLE COPY

REC'D 12 DEC 2003

WIPO

PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 102 42 539.6

Anmeldetag: 13. September 2002

Anmelder/Inhaber: Windmöller & Hölscher KG, Lengerich, Westf/DE

Bezeichnung: Vorrichtung zur Bildung eines Leimprofils für Kreuzbodensäcke

IPC: B 65 C, B 65 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 9. Juli 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Faust

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Windmöller & Hölscher KG
Münsterstraße 50
49525 Lengerich/Westfalen
Unser Zeichen: 8385 DE

5

Vorrichtung zur Bildung eines Leimprofils für Kreuzbodensäcke

10

Die Erfindung betrifft eine Vorrichtung zur Bildung eines Leimprofils zur Beleimung der Bodenzettel und oder gefalteten Böden von Schlauchabschnitten, welche zur Bildung von Kreuzbodensäcken verwendet werden.

15

In anderen Bereichen der Technik ist eine Vorrichtung zur Bildung eines Leimprofils zur Beleimung von Sackbestandteilen druckschriftlich bekannt. Die Sackbestandteile werden anschließend zur Bildung von Säcken verwendet. Die DE 199 35 117 schlägt eine solche Vorrichtung zur Bildung der Leimprofile von Säcken vor. Sie umfasst folgende Merkmale:

- Eine Mehrzahl von Leimventilen, welche einzeln zu öffnen und zu schließen sind, wobei durch ein selektives Öffnen der Ventile das Leimprofil definierbar ist,
- 25 - Eine Leimleitung, welche mit den Ventilen in Verbindung steht,
- Leimaustrittsöffnungen, welche den Ventilen zugeordnet sind.

Bei der in der DE 199 35 117 gezeigten Vorrichtung gelangt der Leim zunächst über eine Leimleitung zu Ventilen und wird durch deren Leimaustrittsöffnungen auf eine Walze extrudiert. Die Walze überträgt den Leim anschließend auf die Sackbestandteile. Jedoch weder die DE 199 35 117 noch eine andere Veröffentlichung schlägt vor, Kreuzbodenventilsäcke mit Hilfe einer solchen Vorrichtung zu bilden. Um diesen Umstand zu verstehen, ist die Kenntnis der

Herstellverfahren unterschiedlicher Sackarten wichtig. In diesem Zusammenhang sind die Unterschiede zwischen Pinch-, Klotz- und Kreuzbödenschäcken hervorzuheben. Die Bildung von Kreuzbödenschäcken wird beispielsweise in der DE 090 145 48 U1 und der DE 3020043 A1 dargestellt.

- 5 Bei der Beleimung der Bodenzettel und der gefalteten Böden müssen besonders große Mengen an schwer zu fördern dem Leim über eine große Formatbreite verteilt werden.

Darüber hinaus erfolgt der Auftrag der Leimprofile in der Regel intermittierend, das heißt bestimmte Bereiche in vereinzelter Form geförderter

- 10 Sackbestandteile werden beleimt. Damit erfolgt kein Leimauftrag in den Zwischenräumen.

Bei Kreuzbödenschäcken gilt es, entweder die gefalteten Böden oder die ihnen zugeordneten Bodenzettel oder beide vorgenannte, zu beleimende Elemente mit einer Leimschicht zu versehen und anschließend zusammenzuführen.

- 15 Die Beleimung der jeweils zu beleimenden Bestandteile des Sackes erfolgt nach dem Stand der Technik, indem ein auf einer rotierenden Walze befestigtes Formateil – oft auch Klischee genannt – bei einer Umdrehung der Walze mit Leimwalzen oder sonstigen Leimspeicher- oder Übertragungsteilen in Kontakt gebracht und dabei mit Leim beaufschlagt wird. Im weiteren Verlauf 20 der Walzendrehung überträgt die Formplatte den in ihr gespeicherten Leim auf das jeweils zu beleimende Sackbestandteil.

- Zu diesem Zweck ist das Formateil mit charakteristischen Erhöhungen versehen, die auf ein bestimmtes Sackformat abgestimmt sind. Wenn Säcke mit anderen Abmessungen auf der Bodenlegevorrichtung gefertigt werden 25 sollen, werden die Formateile ausgetauscht.

Die dargestellte Art des Leimauftrags hat sich bei den Bodenlegevorrichtungen für Papiersäcke bewährt, da sich auf diese Weise große Mengen des schwer zu handhabenden Stärkeleimes sauber auftragen lassen.

- Zu den Nachteilen dieser Vorrichtungen gehört jedoch die Notwendigkeit, 30 Formateile bei jedem Formatwechsel auszutauschen. Um die Formateile Überflüssig zu machen, können Leimformate von Ventilarrays – also Anordnungen von Leimventilen an einer Beleimungsstation - extrudiert werden.

Hierbei müssen jedoch die Schwierigkeiten, welche die Leimbereitstellung für die Ventile mit sich bringt, überwunden werden.

Diese Aufgabe wird durch eine Vorrichtung gelöst, die folgende Merkmale
5 umfasst:

- zumindest ein erstes Leimreservoir oder zumindest eine Leimeinführöffnung aus dem oder der Leim zugeführt wird,
- Leimleitungen, welche Leim zu den Beleimungsstellen transportieren,
- 10 - eine Mehrzahl von Leimventilen, welche einzeln zu öffnen und zu schließen sind, wobei durch ein selektives Öffnen und Schließen der Ventile das Leimprofil definierbar ist,
- Leimaustrittsöffnungen, welche den Ventilen zugeordnet sind,
- zumindest ein zweites, mit Überdruck beaufschlagtes Leimreservoir, welches mit zumindest zwei Ventilen in Verbindung steht,
- 15 - ein Druckreservoir, durch welches das zweite Leimreservoir mit Druck beaufschlagbar ist.

Bei einer erfindungsgemäßen Vorrichtung ist es möglich, Leim aus einer Leimmischvorrichtung oder einem Leimbehälter den Beleimungsstellen zuzuführen. An den Beleimungsstellen bildet eine Mehrzahl von Ventilen das Leimprofil, welches entweder direkt nach Verlassen der Leimaustrittsöffnungen auf die zu beleimenden Sackbestandteile extrudiert oder zunächst auf ein Übertragungselement wie eine Walze bei der DE 199 35 117 und dann erst auf 25 die Sackbestandteile übertragen wird.

Die Einstellung unterschiedlicher Leimprofile erfolgt durch selektives Öffnen der Ventile. Die Leimversorgung zumindest zweier Ventile erfolgt über ein gemeinsames Leimreservoir, in dem Leim gespeichert und/oder durch das Leim geleitet werden kann. Neben der Einsparung teurer Leimleitungskomponenten führt diese Maßnahme dazu, dass die Ventile mit gleichem oder ähnlichem Druck beaufschlagt werden, was die Extrusion gleicher oder ähnlicher Leimspuren nach sich zieht.

Dieses Leimreservoir steht in Korrespondenz mit einem Druckreservoir, welches Druckschwankungen im zweiten Leimreservoir – gegebenenfalls in Sekundenbruchteilen – ausgleichen oder zumindest abfedern kann.

Zur Realisierung eines solchen Druckreservoirs gibt es verschiedene Möglichkeiten. So verfügt eine vorteilhafte Ausführungsform der Erfindung über ein Druckreservoir, welches ein unter Druck stehendes kompressibles Medium umfasst.

Eine weitere Möglichkeit besteht in der Bereitstellung zumindest eines dritten Leimreservoirs, in dem Leim unter einem höheren Druck steht als in dem zweiten Leimreservoir.

Weitere Ausführungsbeispiele der Erfindung gehen aus der gegenständlichen Beschreibung und den Ansprüchen hervor.

15 Die einzelnen Figuren zeigen:

- Fig. 1 Eine Leimauftragsvorrichtung für Sackbodenzettel nach dem Stand der Technik
- Fig. 2 Eine Leimauftragsvorrichtung für Kreuzböden nach dem Stand der Technik
- Fig. 3 Ansicht einer erfindungsgemäßen Vorrichtung
- Fig. 4 Ansicht einer erfindungsgemäßen Vorrichtung, welche kompliziertere Klebeformate erzeugt.
- Fig. 5 a) Einen Zettel 2 mit einem U-förmigen Klebstoffformat
- Fig. 5 b) Einen Zettel 2 mit einem Klebstoffformat in Form eines rechteckigen Rahmens
- Fig. 6 den schematischen Aufbau einer erfindungsgemäßen Vorrichtung
- Fig. 7 den schematischen Aufbau einer anderen erfindungsgemäßen Vorrichtung

In den folgenden Figuren werden sowohl erfindungsgemäße Leimauftragsvorrichtungen für Kreuzbodensäcke als auch Vorrichtungen des Standes der Technik gezeigt. Die erfindungsgemäßen Vorrichtungen, die gezeigt werden, beleimen lediglich Bodenblätter 2. Sie könnten jedoch ebenso gut Kreuzböden 1 beleimen.

Figur 1 zeigt eine Leimauftragsvorrichtung, wie sie nach dem Stand der Technik in der Regel zur Beleimung von Bodenzetteln 2 eingesetzt wird. Bei dieser Vorrichtung wird Leim von einem Leimzylinder 11 auf das Formatteil oder Klischee 12 übertragen, welches von einem Klischeezylinder 13 getragen und um die Achse des Klischeezylinders 13 in der durch den Pfeil 16 skizzierten Richtung bewegt wird. Bei dieser Rotationsbewegung überträgt das Klischee oder Formatteil 12 Leim auf die Bodenzettel 2, welche während des Leimübertrags von dem Zangenzylinder 14 getragen werden. Die Bodenzettel 2 werden zuvor von einer nicht dargestellten Transporteinrichtung entlang der gestrichelten Linie 18 in Richtung des Pfeils x in den Spalt zwischen den Zylindern 13 und 14 gefördert. Die Rotation des Zangenzylinders 14 in der durch den Pfeil 15 skizzierten Richtung fördert die beleimten Zettel weiter zu den Sackböden 1, welche durch eine ebenfalls nicht dargestellte Transporteinrichtung in Richtung des Pfeils w transportiert werden. Die Säcke 19 werden durch die Sackböden 1 abgeschlossen.

Zwischen dem Zangenzylinder 14 und der Transporteinrichtung der Säcke wird ein Druck aufgebaut, der Zettel 2 und Sackböden miteinander verpresst und damit dauerhaft verbindet.

Figur 2 zeigt eine weitere Leimauftragseinrichtung 20 nach dem Stand der Technik, welche in der Regel zum Beleimen der Sackböden 1 eingesetzt wird. Zu diesem Zweck wird ein Klischee oder Formatteil 12, welches am Umfang des Klischeezylinders 13 angebracht ist, durch die Rotation des Klischeezylinders 13 um seine Achse 25 in Richtung des Pfeils 16 mit den Leimübertragungszylindern 28 in Verbindung gebracht und damit mit Leim beaufschlagt. Zu diesem Zweck besitzt das Formatteil 12 hier nicht dargestellte Vertiefungen, welche beim Kontakt mit den Leimübertragungswalzen 28 mit Leim gefüllt werden.

- Die Leimübertragungswalzen 28 begrenzen ihrerseits die Öffnung eines Leimreservoirs 21 und transportieren auf ihrem Umfang während ihrer Rotation Leim vom Leimreservoir 21 zum Klischee 12.
- 5 Das Klischee- oder Formatteil 12 gelangt im weiteren Verlauf der Rotationsbewegung des Zylinders 13 in den Walzenspalt 24 zwischen den Zylindern 29 und 13. Dort überträgt das Klischee 12 Leim auf einen Sackboden 1. Der Sack ist zuvor von einer nicht dargestellten Fördervorrichtung entlang der gestrichelten Linie 26 in den Walzenspalt transportiert worden.
- 10 Bei einem Wechsel der Sackformate werden die Formatteile 12 der in den Figuren 1 und 2 gezeigten Beleimungsstationen 10 und 20 gegen auf das neue Sackformat abgestimmte Formatteile ausgetauscht.
- 15 Figur 3 zeigt eine Skizze einer Zettelbeleimungsstation 30 eines erfindungsgemäßen Kreuzbodenlegers, welcher bereits vereinzelte Zettel 2, welche in Richtung des Pfeils x gefördert werden, mit Leimspuren 3 versieht. Zu diesem Zweck ist die Beleimungsstation 30 mit einem Auftragskopf 31 ausgestattet. Dieser Auftragskopf wird mit Hilfe des Schlauchs 33 mit Leim versorgt. Der Leim wird im Inneren des Auftragskopfes 31 durch geeignete 20 Leimleitungen auf die Ventile 32 verteilt, welche in zwei Reihen, welche quer zur Förderrichtung x der Zettel 2 verlaufen, auf dem Auftragskopf 31 angebracht sind. Diese Ventile 32 sind zumindest in der Lage, den Leimfluss freizugeben oder zu unterbinden. Sie sind durch externe — vorzugsweise elektrische Signale ansteuerbar und sie 32 halten dem Leimdruck stand.
- 25 Auf der in Figur 3 nicht dargestellten Unterseite des Auftragskopfs 31 befinden sich die Leimaustrittsöffnungen 71, durch welche der Leim den Auftragskopf 31 verlässt und die Leimspuren 3 bildet. Der Pfeil x zeigt in Transportrichtung der Zettel 2, während der Pfeil y in die dazu quer verlaufende horizontale Richtung weist.
- 30 Figur 4 zeigt eine Beleimungsstation 30, welche äußerlich genauso wie die Beleimungsstation aus Figur 3 aufgebaut ist. Die unterschiedlichen Leimspuren 44 bis 47 zeigen, dass die verschiedensten Klebstoffformate mit einer solchen

- Vorrichtung realisierbar sind, ohne dass Formatteile zum Einsatz kommen müssen. Hierbei ist eine Variation der Klischeebreite, also der Ausdehnung der Klebefläche in y-Richtung, durch ein Aus- beziehungsweise Zuschalten von Ventilen 32 während der Herstellung von Säcken dieses Klebstoffformats realisierbar. Die auf diese Weise abgeschalteten Ventile sind damit während der gesamten Dauer der Beleimung von Zetteln 2 oder Sackböden eines Formates nicht aktiv. Auf diese Weise entstehen vorzugsweise rechteckige Klebstoffformate – wie sie in Figur 3 dargestellt sind – welche sich aus durchgehenden in der Regel gleichlangen Leimspuren 3, 47 bilden.
- Doch bereits zu diesem Zweck müssen die Ventile, die bei der Herstellung eines Klebstoffformats aktiv sind, nach der Herstellung einer durchgehenden Leimspur 47 geschlossen und bei der Ankunft des nächsten noch unbeleimten Zettels 48 an den Leimaustrittsöffnungen wieder geöffnet werden. Bereits diese Arbeitssequenz führt bei branchenüblichen Beleimungsgeschwindigkeiten zu erheblichen Anforderungen an die Schaltzeit der Ventile 32. Sollen weitere Variationen an der Form des Klebstoffformats oder der Klebstoffmenge vorgenommen werden, so müssen die Ventile 32 noch schneller geöffnet oder geschlossen werden können als bei der Herstellung durchgehender Leimspuren 47.

20

So ist eine wesentliche Variation der aufgetragenen Klebstoffmenge insbesondere durch das Aufbringen mehrfach unterbrochener Leimspuren 44 möglich. Die weitere Variation der Form des Klebstoffformats – zu der deutliche Abweichungen von der Rechteckform gehören – erfordert das Aufbringen kurzer 45 und unterbrochener Leimspuren 46. Oft ist es beispielsweise erforderlich, dass die Klebstoffformate 4 die Form eines u 4a) oder eines rechteckigen Rahmens 4b) haben, wie das in den Figuren 5 a) und b) gezeigt wird. Zu diesem Zweck ist eine unterschiedliche Ansteuerung der Ventile während der Beleimung eines zu beleimenden Sackbestandteils 1, 2 notwendig.

Es ist vorteilhaft, wenn auch die in der Bodenlegevorrichtung vorgesehenen Ventile 32 eine Schaltzeit besitzen, beziehungsweise in einer Zeit geschaltet werden, welche kleiner ist als 5 ms. Dann lassen sich ein Großteil der in der Branche benötigten Variationen von Klebstoffformaten, die durch die Änderung 5 einzelner Leimspurlängen in x-Richtung vornehmbar sind, in der oben dargestellten Weise bei gängigen Beleimungsgeschwindigkeiten realisieren.

Die unterschiedlichen Leimspuren 45 bis 48 lassen erahnen, wie flexibel eine solche erfindungsgemäße Vorrichtung Formate generieren kann, wenn die 10 Ventile noch schneller geschaltet werden.

Die in den Figuren 3 und 4 dargestellten Ausführungsformen der Erfindung sind zu der tatsächlich dargestellten Beleimung bereits vereinzelter Zettel genauso geeignet, wie zur Beleimung von Papierbahnen, welche später vereinzelt werden können. Auch bei Sackböden kann die Beleimung analog 15 vorgenommen werden.

Das zweite Druckreservoir 102 umfasst bei den in Figur 3 und 4 und dargestellten Ausführungsbeispiel die in Figur 3 und 4 nicht dargestellten Leimzuleitungen im Inneren des Auftragsskopfes 31 sowie den Schlauch 33. Es 20 endet an dem Druckregler 105. Es ist vorteilhaft, wenn dieser Druckregler, oder ein anderes Ventil, was das zweite Leimreservoir mit einem Druckreservoir verbindet, ebenfalls eine Öffnungs- und eine Schließzeit besitzt, welche weniger als 5ms beträgt. Wenn der Druckregler als passives Element ausgelegt ist, muss er innerhalb von 5 ms reagieren können.

25

Wie bereits erwähnt zeigen die Figuren 5a) und b) ein u-förmiges 4a) und ein rechteckiges Leimformat 4b) auf zwei Zetteln 2. Das u-förmige Leimformat setzt sich aus durchgehenden 3 und kurzen Leimspuren 45 zusammen. Das 30 Leimformat in Form eines rechteckigen Rahmens 4b) setzt sich aus durchgehenden 3 und unterbrochenen Leimspuren 46 zusammen. Der unterschiedliche Verlauf der Leimspuren kommt durch eine selektive

Ansteuerung der Leimventile 32 während des Beleimens eines zu beleimenden Sackbestandteils 1, 2 zustande.

Alle gezeigten und durch die Unteransprüche beschriebenen Ausführungsbeispiele der Erfindung eignen sich sowohl für eine direkte als 5 auch für eine indirekte Beleimung von Sackbestandteilen 1, 2, bei der der Leim zunächst auf eine Walze oder eine andere Form übertragen wird, bevor es auf die Sackbestandteile gelangt.

Figur 6 zeigt eine schematische Darstellung einer komplexen erfindungsgemäßen Vorrichtung 100. Das erste Leimreservoir 101 umfasst den 10 Leimeinführtrichter 111a, über den der Vorrichtung Leim zugeführt wird, die Leimzuleitung 111b, den Leimtank 111c, sowie die Teile der Leimleitungen 110, die der Pumpe 106 in Förderrichtung des Leimes vorgelagert sind.

Die Pumpe 106 drückt den Leim in das dritte Leimreservoir 103, welches den 15 der Pumpe 106 folgenden Teil der Leimzuleitung 110, den Leimtank 113 und den Teil der Leimzuleitung 110 zwischen dem Leimtank 113 und dem Druckregler 105 umfasst. Das dritte Leimreservoir 103 steht unter einem höheren Druck als das zweite 102. Damit dient es dem zweiten Leimreservoir 102 eben auch als Druckreservoir.

Der Druckregler 105 gibt Leim von dem dritten an das zweite Leimreservoir 20 weiter. Hierbei kann er den Druck auf den in dem zweiten Leimreservoir 102 herrschenden Druck mindern. Ähnlich wie die beiden anderen Leimreservoire umfasst auch das zweite Leimreservoir 102 alle Teile von Leimleitungen 110, 114, 115, 116, 117 118, welche den jeweiligen Absperrventilen vorgelagert sind und damit unter gleichem Druck stehen wie der Leimtank 112.

25 Im Betrieb der erfindungsgemäßen Vorrichtung 100 durchströmt der Leim den Leimtank 112, welcher – bei der vorliegenden Ausführungsform der Erfindung durchaus ein sehr geringes Volumen haben kann – und gelangt zu den Ventilen 32. Diese werden je nach zu bildendem Leimformat geöffnet oder geschlossen und geben den Leim an die oberen Leimkanäle 72 weiter. Ein Teil dieser oberen Leimkanäle 72 verzweigt sich dann wieder in dem Auftragskopf 31 zu den unteren Leimkanälen 73, welche in den Leimaustrittsöffnungen 71 mündet. Bei der Beleimung verlässt der Leim den Auftragskopf 31 über diese

Leimaustrittsöffnungen und wird entweder direkt oder indirekt auf die Sackbestandteile 1, 2 übertragen.

Das Zweite Leimreservoir 102 lässt sich jedoch auch auf andere Weise

entleeren. So kann über die Leimableitung 116 und das Ablassventil 122 Leim

5 in den Leimablassbehälter 131 abgelassen werden. Auf diese Weise kann ein

schneller Leimaustausch und/oder eine schnelle Druckentlastung

vorgenommen werden. Über die Reinigungsmediumzuleitung 118 sind

insbesondere zu Reinigungszwecken Reinigungsmedien wie Wasser oder

Pressluft zuleitbar. Insbesondere bei der Verwendung von flüssigen

10 Reinigungsmedien empfiehlt sich die Verwendung von Auffangbehältern 130

für diese Reinigungsmedien. Die Reinigungsmediumableitung 119 und das

Ablassventil 121 können direkt am zweiten Leimreservoir angebracht sein.

Eine regelrechte Leimzirkulation zwischen dem ersten 101 und zweiten

Leimreservoir 102 kann durch eine Leimableitung 114 ermöglicht werden.

15 Hierbei kann der Leim vorteilhafterweise einen Druckminderer/Ventil 123

durchlaufen.

Zu erwähnen sind noch die Druckmessgeräte 132, 133 welche eine Messung

des Drucks direkt an dem zweiten und dritten Leimreservoir erlauben. Diese

Druckmessgeräte können zur Überwachung der korrekten Beleimung

notwendig sein. Erlauben gegebenenfalls sogar eine echte Steuerung der

20 Leimauftragsmenge und anderer Prozessparameter.

Eine andere Ausführungsform der Erfindung 200 ist in Figur 7 dargestellt. Auch

diese Ausführungsform der Erfindung besitzt die drei Leimreservoirs 101, 102,

25 103, wobei das dritte Leimreservoir 103 gleichzeitig als Druckreservoir für das

zweite Leimreservoir dient. Im Unterschied zur in Figur 6 gezeigten

Ausführungsform zerfallen das zweite und dritte Leimreservoir 102, 103 jedoch

in Unterreservoire 102 a-d und 103 a,b. Die Unterreservoire 102 a-d sind

darüber hinaus mit Gaspolstern ausgestattet, die nicht dargestellt sind, sich

30 aber innerhalb der Leimtanks 112 a-d befinden. Diese Gaspolster dienen den

zweiten Leimreservoiren 102 a-d als zusätzliche Druckreservoire. Ein anderer

Unterschied zu dem Ausführungsbeispiel 100 besteht in den Leimleitungen 117

welche – ähnlich wie bereits in Bezug auf die Figuren 3 und 4 beschrieben – innerhalb des Auftragskopfs 31 verlaufen. In einem solchen Ausführungsbeispiel kann ein Großteil oder gar das ganze Volumen des zweiten Leimreservoirs 102 von solchen Leimleitungen 117 und/oder 5 Leimschläuchen 33 bereitgestellt werden.

Des Weiteren ist es vorteilhaft, wenn der Leim über ein ununterbrochenes Leimzuleitungssystem 101, 102, 103, 105, 106, 110 von einer Leimküche, in der vorzugsweise Stärkeleim aus seinen Bestandteilen zusammengemischt und durch Rühren oder Umrütteln aufbereitet wird, dem zweiten Leimreservoir 10 10 zugeleitet wird. In diesem Fall bildet die zentrale Leimküche eines Sackherstellbetriebes von ihrer Funktion her einen Teil des ersten Leimreservoirs 101. Es ist jedoch auch möglich, dezentrale Leimaufbereitungsstationen vorzusehen, welche beispielsweise jeweils einer erfindungsgemäßen Vorrichtung zugeordnet sind.

Bezugszeichenliste

x	Förderrichtung der Zettel
y	Raumrichtung quer zur Förderrichtung der Zettel (horizontal)
z	Raumrichtung quer zur Förderrichtung der Zettel (vertikal)
w	Förderrichtung der Sackböden 1
1	Sackboden
2	Zettel
3	Leimspur
4	rechteckiges Klebstoffformat
4a)	U-förmiges Klebstoffformat
4b)	Klebstoffformat in Form eines rechteckigen Rahmens
10	bekannte Beleimungsstation, vorzugsweise für Zettel
11	Leimzylinder
12	Klischee beziehungsweise Formattell
13	Klischeezylinder
14	Zangenzylinder
15	Pfeil in Drehrichtung des Zangenzylinders 14
16	Pfeil in Drehrichtung des Klischeezylinders 13
17	Pfeil in Drehrichtung des Leimzylinders 17
18	gestrichelte Linie
19	Sack
21	Leimreservoir
24	Walzenspalt
25	Achsen der Zylinder
26	gestrichelte Linie, die den Transportweg der Säcke skizziert
27	Drehrichtung der Zylinder

28	Leimübertragungszylinder
29	Gegendruckzylinder
30	erfindungsgemäße Beleimungsstation
31	Auftragskopf bzw. -platte
32	Ventile
32n	Ventil der n-ten Ventilreihe
33	Leimzuleitung/Schlauch
44	in regelmäßigen Abständen unterbrochene Leimspur
45	kurze Leimspur
46	unterbrochene Leimspur
47	durchgehende Leimspur
48	unbeleimter Zettel
71	Leimaustrittsöffnung
72	oberer Leimkanal
73	unterer Leimkanal
100	erste erfindungsgemäße Vorrichtung
101	1. Leimreservoir
102	2. Leimreservoir
102 a-d	2 Unterreservoir
103	3. Leimreservoir
103a-d	3. Unterreservoir
105	Druckregler
106	Pumpe
110	Leimzuleitungen

111a	Leimeinführtrichter
111b	Leimzuleitung
111c	1. Leimtank
112	2. Leimtank
112a-d	Leimtanks der Unterreservoir 102 a-d
113	3. Leimtank
114	Leimableitung
115	Zuleitungsventil für Reinigungsmedien
116	Leimableitung/Druckentlastung
117	Leimzuleitungen im Kopf
118	Zuleitung für Reinigungsmedien
119	Ableitung für Reinigungsmedien
121	Ablassventil/Reinigungsmedien
122	Ablassventil Leim u. Druckentlastung
123	Druckminderer/Ventil an der Leimableitung 114
124	Rückschlagventil Reinigungsmedien
130	Ablassbehälter der Reinigungsmedien
131	Leimablassbehälter
132	Druckmessgerät an 2. Reservoir
133	Druckmessgerät an 3. Reservoir
200	zweite erfindungsgemäße Vorrichtung

Windmöller & Hölscher KG
Münsterstraße 50
49525 Lengerich/Westfalen

5

Unser Zeichen: 8385 DE

Vorrichtung zur Bildung eines Leimprofils für Kreuzbodensäcke

10

Patentansprüche

1. Vorrichtung (30, 100, 200) zur Bildung eines Leimprofils zur Beleimung der Bodenzettel (2) und/oder gefalteten Böden (1) von Schlauchabschnitten, welche (1,2) zur Bildung von Kreuzbodensäcken (19) verwendet werden,
wobei die Vorrichtung (30, 100, 200) folgende Merkmale umfasst:
 - zumindest ein erstes Leimreservoir (101) oder zumindest eine Leimeinführöffnung (111a,b), aus dem oder der Leim zugeführt wird,
 - Leimleitungen (110), welche Leim zu den Beleimungsstellen transportieren,
 - eine Mehrzahl von Leimventilen (32), welche einzeln zu öffnen und zu schließen sind, wobei durch ein selektives Öffnen der Ventile (32) das Leimprofil (4) definierbar ist,
 - Leimaustrittsöffnungen (71), welche den Ventilen (32) zugeordnet sind,
 - zumindest ein zweites Leimreservoir (102), welches mit zumindest zwei Ventilen (32) in Verbindung steht,
 - ein Druckreservoir (103), durch welches das zweite Leimreservoir (102) mit Druck beaufschlagbar ist.

2. Vorrichtung nach Anspruch 2
dadurch gekennzeichnet, dass
das Druckreservoir (103), ein unter Druck stehendes kompressibles Medium - wie vorzugswise ein Gas wie insbesondere Luft - umfasst.
3. Vorrichtung nach Anspruch 1 oder 2
dadurch gekennzeichnet, dass
 - das Druckreservoir (103) zumindest ein drittes Leimreservoir (103) umfasst, in welchem der Leim einem höheren Druck ausgesetzt ist als in dem zweiten Reservoir (102).
4. Vorrichtung nach Anspruch 3
dadurch gekennzeichnet, dass
zumindest ein drittes Leimreservoir (103) in der Förderrichtung des Leimes zwischen dem ersten (101) und dem zweiten (102) Leimreservoir angeordnet ist.
5. Vorrichtung nach Anspruch 4
dadurch gekennzeichnet, dass
das zumindest eine zweite Leimreservoir und das zumindest eine dritte Leimreservoir über ein Druckregelungsmittel (105) miteinander verbunden sind.
6. Vorrichtung nach Anspruch 5
gekennzeichnet durch
ein Druckregelungsmittel (105), welches ein Ventil umfasst, mit welchem die Verbindung zwischen dem zweiten und dem dritten Leimreservoir zu öffnen und zu schließen ist, wobei die Öffnungs- und die Schließzeit des Ventils jeweils weniger als 5ms beträgt.
7. Vorrichtung nach Anspruch 4, 5 oder 6

- 27
- dadurch gekennzeichnet, dass**
zwischen dem ersten (101) und dem dritten Leimreservoir (103)
zumindest eine Pumpe (106) vorgesehen ist, welche den Leim in
das dritte Leimreservoir (103) drückt.
8. Vorrichtung nach einem der Ansprüche 4 bis 7
dadurch gekennzeichnet, dass
auch das dritte Leimreservoir (103) mit einem Druckreservoir in
Verbindung steht.
9. Vorrichtung nach einem der Ansprüche 3 bis 8,
dadurch gekennzeichnet, dass
das zumindest eine dritte Leimreservoir mehrere
hintereinandergeschaltete Leimdruckniveaus umfasst.
10. Vorrichtung nach einem der vorstehenden Ansprüche
gekennzeichnet durch
 - zumindest ein Druckentlastungsventil (122),
 - welches in direktem Kontakt mit dem zweiten Leimreservoir
(102) steht und mit welchem der Druck in dem zumindest einen
zweiten Leimreservoir (102) minderbar ist.
11. Vorrichtung nach Anspruch 10
dadurch gekennzeichnet, dass
mit dem zumindest einen Druckentlastungsventil (122) das
zumindest eine zweite Leimreservoir gegen Atmosphärendruck
entlastbar ist.
12. Vorrichtung nach einem der vorstehenden Ansprüche
dadurch gekennzeichnet, dass
neben dem Leimzuleitungssystem (101, 102, 103, 105, 106, 110),
welches Leim in Richtung auf die Ventile (32) leitet, auch ein

Leimableitungssystem (114) vorgesehen ist, welches die Ableitung des Leimes von den Ventilen (32) gestattet, ohne dass der Leim die Ventile (32) durchströmt.

13. Vorrichtung nach Anspruch 12
dadurch gekennzeichnet, dass
durch das Zusammenwirken des Leimzuleitungs- (101, 102, 103, 105, 106, 110) und des Leimableitungssystems (114) eine Leimzirkulation und/oder ein Leimaustausch in der Vorrichtung (100, 200) vornehmbar ist.
14. Vorrichtung nach einem der Ansprüche 3 bis 13
dadurch gekennzeichnet, dass
an zumindest einer der folgenden Stellen ein Druckmessgerät (132, 133) vorgesehen ist:
 - am zweiten Leimreservoir (102),
 - am dritten Leimreservoir (103).
15. Vorrichtung nach einem der Ansprüche 2 bis 9
dadurch gekennzeichnet, dass
das zumindest eine zweite Leimreservoir über eine zusätzliche Zu- und/oder Ableitung (119) verfügt, durch die ein Reinigungsmedium wie Wasser oder Pressluft leitbar ist.
16. Vorrichtung nach Anspruch 8 oder 10
dadurch gekennzeichnet, dass
Leim- (131) und/oder Wassergefäße (130) vorgesehen sind, in denen ausgetauschter Leim oder gebrauchtes Wasser, welches aus dem Leimversorgungssystem ausgeschieden wird, auffangbar ist.
17. Vorrichtung nach einem der vorstehenden Ansprüche
dadurch gekennzeichnet, dass

das zumindest eine erste Leimreservoir (101) oder die zumindest eine Leimeinführöffnung (111a,b), aus dem oder der Leim zugeführt wird, ein Leimrührwerk umfassen, in das Bestandteile von Stärkeleim - wie Stärke und Wasser - gegeben und zu Stärkeleim verrührt werden.

18. Verfahren zur Bildung eines Leimprofils zur Beleimung der Bodenzettel (2) und/oder gefalteten Böden (1) von Schlauchabschnitten, welche (1,2) zur Bildung von Kreuzbodensäcken (19) verwendet werden, welches folgende Verfahrensmerkmale umfasst:
 - Leim wird über zumindest ein erstes Leimreservoir (101) oder zumindest eine Leimeinführöffnung (111a,b), einem Leimtransportsystem (101, 102, 103, 110, 111) zugeführt,
 - in dem (101, 102, 103, 110, 111) Leim durch Leimleitungen (110) zu den Beleimungsstellen transportiert wird,
 - Ventile (32), welche den Leim über ihnen zugeordnete Leimaustrittsöffnungen (71) auf die Sackbestandteile (1,2) extrudieren, werden einzeln angesteuert,
 - wobei die Ansteuerung selektiv erfolgt, so dass ein Leimprofil (4) definiert wird,
 - wobei der Leim beim Durchlaufen des Leimtransportsystems ein zunächst ein drittes (103) und dann ein zweites Leimreservoir (102) durchläuft, wobei das zweite Leimreservoir (102) mit zumindest zwei Ventilen (32) in Verbindung steht
 - wobei der Druck in dem dritten Leimreservoir (103) höher ist als im zweiten (102).
19. Verfahren nach Anspruch 18
dadurch gekennzeichnet dass
 das zumindest eine Ventil (105), welches das zweite (102) mit dem dritten Leimreservoir verbindet, mit der selben Frequenz geöffnet

und geschlossen wird, mit der die Sackbestandteile die Beleimungsstation (30, 100, 200) passieren.

xx 7

Zusammenfassung

Es wird eine Vorrichtung (30, 100, 200) zur Bildung eines Leimprofils zur Beleimung der Bodenzettel (2) und/oder gefalteten Böden (1) von Schlauchabschnitten gezeigt, welche (1,2) zur Bildung von Kreuzbodensäcken (19) verwendet werden.

- Die Vorrichtung (30, 100, 200) umfasst folgende Merkmale:
- zumindest ein erstes Leimreservoir (101) oder zumindest eine Leimeführöffnung (111a,b), aus dem oder der Leim zugeführt wird,
 - Leimleitungen (110), welche Leim zu den Beleimungsstellen transportieren,
 - eine Mehrzahl von Leimventilen (32), welche einzeln zu öffnen und zu schließen sind, wobei durch ein selektives Öffnen der Ventile (32) das Leimprofil (4) definierbar ist,
 - Leimaustrittsöffnungen (71), welche den Ventilen (32) zugeordnet sind,
 - zumindest ein zweites Leimreservoir (102), welches mit zumindest zwei Ventilen (32) in Verbindung steht,
 - ein Druckreservoir (103), durch welches das zweite Leimreservoir (102) mit Druck beaufschlagbar ist.

Es werden auch Verfahren zur Bildung eines Leimprofils (4) dargestellt.

20

(Figur 6)

1/9

8385

Fig. 1

2/9

8385

Fig. 2

3/9

8385

Fig. 3

8385

4/9

Fig. 4

5/9

8385

Fig. 5a)

Fig. 5b)

Fig. 5c)

6/9

8385

Fig. 6

7/9

8385

Fig. 7a)

Fig. 7b)

Fig. 7c)

8/9

8385

Fig. 8a)

Fig. 8b)

Fig. 8c)

9/9

8385

Fig. 9a)

Fig. 9b)

GESAMT SEITEN 33

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.