

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	xxxxxx
Project Title	xxxxxx
Maximum Marks	6 Marks

Preprocessing Template

The images will be preprocessed by resizing and batch normalizing. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

Description
The Greenclassify project utilizes a dataset of vegetable images sourced primarily from a Kaggle dataset. The original dataset contains approximately 21,000 images of 15 different vegetable types, divided into training, validation, and testing sets (approximately 70%, 15%, and 15% respectively). Images are in JPG format but were initially of varying sizes. The goal of preprocessing is to create a standardized, high-quality dataset suitable for training a deep learning model. (See Data Quality Report for details on initial data quality issues and resolutions).
Resize images to a specified target size.
Apply batch normalization to the input of each layer in the neural network.

Data Preprocessing Code Screenshots train_ds = tf.keras.utils.image_dataset_from_directory(train_path, label_mode='categorical', image_size=(256, 256), Loading Data batch_size=batch_size, shuffle=True, seed=123 def resize_images(dataset): return dataset.map(lambda x, y: (tf.image.resize(x, (150,150)), y))Resizing ${\it \# Resize \ images \ in \ train_ds, \ validation_ds, \ and \ test_ds}$ train_ds = resize_images(train_ds) validation_ds = resize_images(validation_ds) test_ds = resize_images(test_ds) # First Conv Block model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=input_shape)) **Batch Normalization** model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.3))