Equivalence of smoothness spaces by means of frames of discrete shearlets on the cone and curvelets

Francisco Blanco-Silva blanco@math.sc.edu

Department of Mathematics University of South Carolina

November 3, 2011

Outline

Motivation

Art Authentication

Background

Frames

Curvelets

Shearlets on the cone

Approximation Spaces

Decomposition Spaces

Function Spaces via Frame Decompositions

Equivalence of Decomposition Spaces

Sketch of the Proof

Future Work

From Decomposition Spaces to Approximation Spaces

Art Authentication

Goals

The goal of research in Art Authentication is to generate a mathematical and computational characterization of a painter's technique (including brushwork, composition and color choice)

- ► Dating
- ► Attribution
- ▶ Distinguishing feature extraction

Art Authentication

The Van Gogh Project—Johnson, Daubechies, Wang, Postma

Which one is a fake?

Crab on its back

Still life: Potatoes in a yellow dish

Willows at sunset

Art Authentication

The Van Gogh Project—Johnson, Daubechies, Wang, Postma

Historical approach to visible light examination of Van Gogh's brushstrokes

- ▶ brushstroke width and shape
- ► impact of paint consistency and substrate texture
- ▶ artist-characteristic brushstroke

Raking light detail to accentuate brushwork texture in The Garden of Saint Paul's Hospital

 $1,024 \times 1,024 = 1,048,576$ pixels

 $1,024 \times 1,024 = 1,048,576$ pixels

1 wavelet coefficient

 $1,024 \times 1,024 = 1,048,576$ pixels

1 + 4 = 5 wavelet coefficients

 $1,024 \times 1,024 = 1,048,576$ pixels

1+4+16=21 wavelet coefficients

 $1,024 \times 1,024 = 1,048,576$ pixels

1+4+16+64=85 wavelet coefficients

 $1,024 \times 1,024 = 1,048,576$ pixels

1 + 4 + 16 + 64 + 256 = 341 wavelet coefficients

 $1,024 \times 1,024 = 1,048,576$ pixels

1 + 4 + 16 + 64 + 256 + 1024 = 1365 wavelet coefficients

 $1,024 \times 1,024 = 1,048,576$ pixels

1+4+16+64+256+1024+4096=5461 wavelet coefficients

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space ${\mathcal H}$ if

$$A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space ${\mathcal H}$ if

$$A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Trivial description of \mathcal{H} by means of frame coefficients:

$$f \in \mathcal{H}$$
 if and only if $\sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 < \infty$

Frames

A sequence $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is a frame for a Hilbert space ${\mathcal H}$ if

$$|A||f||^2 \le \sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 \le B||f||^2$$

If A = B, the frame is tight.

Trivial description of \mathcal{H} by means of frame coefficients:

$$f \in \mathcal{H}$$
 if and only if $\sum_{\lambda \in \Lambda} |\langle f, \phi_{\lambda} \rangle|^2 < \infty$

Frames are not bases (in general) but still,

$$f = \sum_{\lambda \in \Lambda} \langle f, \phi_{\lambda} \rangle \, \phi_{\lambda}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle \, \phi_{n\boldsymbol{z}\boldsymbol{k}} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}\boldsymbol{k}} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\begin{split} f &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \phi_{n\boldsymbol{z}k} \rangle \, \phi_{n\boldsymbol{z}k} \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} \langle f, \Phi_{\boldsymbol{z}} \rangle \, \Phi_{\boldsymbol{z}} \\ \|f\|_{L_2(\mathbb{R}^2)}^2 &= \sum_{n=0}^{\infty} \sum_{k} \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \phi_{n\boldsymbol{z}k} \rangle|^2 \\ &+ \sum_{\boldsymbol{z} \in \mathbb{Z}^2} |\langle f, \Phi_{\boldsymbol{z}} \rangle|^2 \end{split}$$

$$\mathrm{width}_n/\mathrm{length}_n \asymp 2^n.$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{nzk})^{\hat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{nzk} \cdot \xi)}$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{nzk})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{nzk} \cdot \xi)}$$

▶ $W_n(\xi)$ amplitude window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{nzk})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{nzk} \cdot \xi)}$$

- $W_n(\xi)$ amplitude window.
- ▶ $V_{n,k}(\xi/|\xi|)$ angular window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{C}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $1 \le k \le 2^{\lceil n/2 \rceil + 2}$ (direction).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi|) V_{n,k}(\xi/|\xi|) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- $W_n(\xi)$ amplitude window.
- $V_{n,k}(\xi/|\xi|)$ angular window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{nzk})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i (\beta_{nzk} \cdot \xi)}$$

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) \, V_{n,k}(\xi_2/\xi_1) \, e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

• $W_n(|\xi_1|)$ "first coordinate" window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- $W_n(|\xi_1|)$ "first coordinate" window.
- $ightharpoonup V_{n,k}(\xi_2/\xi_1)$ slope window.

 $\phi_{nzk} \colon \mathbb{R}^2 \to \mathbb{R}$ with parameters $n \in \mathbb{Z}$ (shape AND scaling), $z \in \mathbb{Z}^2$ (location), and $-2^n \le k < 2^n$ (direction/shear).

$$(\phi_{n\mathbf{z}k})^{\widehat{}}(\xi) = W_n(|\xi_1|) V_{n,k}(\xi_2/\xi_1) e^{2\pi i (\beta_{n\mathbf{z}k} \cdot \xi)}$$

- $W_n(|\xi_1|)$ "first coordinate" window.
- ▶ $V_{n,k}(\xi_2/\xi_1)$ slope window.

Different frames?

- ► Same spatial localization, scaling, directional sensitivity, sparsity.
- ► Different frequency localization, generation at different levels.

How to prove equivalence of these two frames?

 \blacktriangleright Same description of Smoothness Spaces

How to prove equivalence of these two frames?

- ► Same description of Smoothness Spaces
- ► Same Approximation Spaces

$$\begin{split} X_N &= \left\{ \sum_{\ell \in \Lambda_N} c_\ell \, \phi_\ell : \# \Lambda_N = N \right\} \\ \mathcal{A}_q^s \big(\mathcal{H}, \{X_N^{\mathfrak{curv}}\}_{N \in \mathbb{N}} \} \big) &= \mathcal{A}_q^s \big(\mathcal{H}, \{X_N^{\mathfrak{shear}}\}_{N \in \mathbb{N}} \} \big) \end{split}$$

Approximation Spaces

$$\mathcal{A}_{q}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \left(\sum_{n=1}^{\infty} \frac{1}{n} \left(n^{s} E(f, X_{n})_{\mathcal{H}} \right)^{q} \right)^{1/q} < \infty \right\},$$

$$\mathcal{A}_{\infty}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \sup_{n \in \mathbb{N}} n^{s} E(f, X_{n})_{\mathcal{H}} < \infty \right\}.$$

Approximation Spaces

$$\mathcal{A}_{q}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \left(\sum_{n=1}^{\infty} \frac{1}{n} \left(n^{s} E(f, X_{n})_{\mathcal{H}} \right)^{q} \right)^{1/q} < \infty \right\},$$

$$\mathcal{A}_{\infty}^{s}(\mathcal{H}, \{X_{n}\}_{n \in \mathbb{N}}) = \left\{ f \in \mathcal{H} : \sup_{n \in \mathbb{N}} n^{s} E(f, X_{n})_{\mathcal{H}} < \infty \right\}.$$

Decomposition Spaces (Feichtinger, Gröbner) '80s

▶ ${Q_{\lambda}}_{{\lambda} \in {\Lambda}}$ a covering of \mathbb{R}^2 satisfying:

$$\exists N>0, \forall \lambda_0, \sharp \{\lambda: Q_\lambda \cap Q_{\lambda_0} \neq \emptyset\} \leq N.$$

- $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ a partition of unity satisfying:
 - supp $\psi_{\lambda} \subset Q_{\lambda}$
 - $\sup_{\lambda \in \Lambda} |Q_{\lambda}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{\lambda}\|_{L_{p}(\mathbb{R}^{2})} < \infty \text{ for } 0 < p < 1.$
- ▶ A moderate weight $\omega = \{\omega_{\lambda} = \omega(x_{\lambda})\}_{\lambda \in \Lambda}$:
 - $\omega \colon \mathbb{R}^2 \to \mathbb{R}^+$ satisfying $\omega(x) \le C\omega(y), x, y \in Q_\lambda$.
 - $x_{\lambda} \in Q_{\lambda}.$

Decomposition Spaces (Feichtinger, Gröbner) '80s

• $\{Q_{\lambda}\}_{{\lambda}\in\Lambda}$ a covering of \mathbb{R}^2 satisfying:

$$\exists N > 0, \forall \lambda_0, \sharp \{\lambda : Q_\lambda \cap Q_{\lambda_0} \neq \emptyset\} \le N.$$

- $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ a partition of unity satisfying:
 - supp $\psi_{\lambda} \subset Q_{\lambda}$
 - $\sup_{\lambda \in \Lambda} |Q_{\lambda}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{\lambda}\|_{L_{p}(\mathbb{R}^{2})} < \infty \text{ for } 0 < p < 1.$
- ▶ A moderate weight $\omega = \{\omega_{\lambda} = \omega(x_{\lambda})\}_{\lambda \in \Lambda}$:
 - $\omega \colon \mathbb{R}^2 \to \mathbb{R}^+$ satisfying $\omega(x) \le C\omega(y), x, y \in Q_\lambda$.
 - $x_{\lambda} \in Q_{\lambda}.$

$$\left(\mathfrak{D}\left(\{Q_{\lambda}\}_{\Lambda},\{\psi_{\lambda}\}_{\Lambda}\right)_{L_{p}(\mathbb{R}^{2})}^{\ell_{q}(\Lambda,\boldsymbol{\omega})} = \left\{f \in L_{p}(\mathbb{R}^{2}) : \{\|\mathcal{F}^{-1}(\psi_{\lambda}\widehat{f})\|_{L_{p}(\mathbb{R}^{2})}\}_{\lambda \in \Lambda} \in \ell_{q}(\Lambda,\boldsymbol{\omega})\right\}\right)$$

Besov Spaces (Frazier, Jawerth, Weiss) '91'

$$f \in B_q^s(L_p(\mathbb{R}^2))$$
 iff $\sum_{n \in \mathbb{Z}} \left(\int_{\mathbb{R}^2} (1 + 2^{sn})^p |\mathcal{D}_n f(x)|^p dx \right)^{q/p} < \infty$

- Atoms $(\mathcal{D}_n f) \hat{f}(\xi) = \psi_n(\xi) \hat{f}(\xi)$, where $\sup \psi_n = \{2^{n-1} \le |\xi| \le 2^{n+1}\},$ $\sum_{n \in \mathbb{Z}} \psi_n(\xi) = 1.$
- Weights $\omega_n = 1 + 2^{sn}$

Besov Spaces (Frazier, Jawerth, Weiss) '91'

- \wedge $\Lambda = \mathbb{Z}$.
- Covering: $Q_n = \{2^{n-1} < |\xi| < 2^{n+1}\}.$
- ▶ Partition of Unity: ψ_n radially symmetric, $\sum_{n \in \mathbb{Z}} \psi_n(\xi) = 1$ for all $\xi \in \mathbb{R}^2 \setminus \{0\}$.
- ▶ Moderate weight: $\omega_n = 1 + 2^{ns}$.

$$B_q^s(L_p(\mathbb{R}^2)) = \mathfrak{D}(\{Q_n\}, \{\psi_n\}) \frac{\ell_q(\Lambda, \omega)}{L_p(\mathbb{R}^2)}$$

Curvelet Decomposition Spaces

- Covering: $Q_{nk} = \operatorname{supp} \phi_{n\mathbf{0}k}$.
- ▶ Partition of Unity: $\psi_{nk} = |\phi_{n\mathbf{0}k}|^2$.
- ▶ Moderate weight: $\omega_{nk} = 2^{ns}$.

$$\mathfrak{D}\big(\{Q_{nk}\},\{\psi_{nk}\}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\boldsymbol{\omega})}$$

Theorem (B-S '09)

Define $\psi_{nk} = |\phi_{n\mathbf{0}k}|^2$, $Q_{nk} = \operatorname{supp} \psi_{nk}$, $\Lambda = \{(n,k)\}$. Then, for the same moderate weight $\boldsymbol{\omega}$,

$$\mathfrak{D}\big(\{Q_{nk}^{\mathrm{curv}}\}_{\Lambda},\{\psi_{nk}^{\mathrm{curv}}\}_{\Lambda}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\boldsymbol{\omega})} = \mathfrak{D}\big(\{Q_{nk}^{\mathrm{shear}}\}_{\Lambda},\{\psi_{nk}^{\mathrm{shear}}\}_{\Lambda}\big)_{L_p(\mathbb{R}^2)}^{\ell_q(\Lambda,\boldsymbol{\omega})}$$

with equivalent norms.

Sketch of the proof

▶ The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

```
 \mathfrak{Q}^{\mathrm{curv}} \text{ is subordinate to } \left\{ [Q]_7^{\mathrm{shear}} : Q \in \mathfrak{Q}^{\mathrm{shear}} \right\}   \mathfrak{Q}^{\mathrm{shear}} \text{ is subordinate to } \left\{ [Q]_2^{\mathrm{curv}} : Q \in \mathfrak{Q}^{\mathrm{curv}} \right\}
```


Sketch of the proof

▶ The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

$$\mathfrak{Q}^{\mathrm{curv}} \text{ is subordinate to } \left\{ [Q]_7^{\mathrm{shear}} : Q \in \mathfrak{Q}^{\mathrm{shear}} \right\}$$

$$\mathfrak{Q}^{\mathrm{shear}} \text{ is subordinate to } \left\{ [Q]_2^{\mathrm{curv}} : Q \in \mathfrak{Q}^{\mathrm{curv}} \right\}$$

▶ The families $\{\psi_{nk}^{\rm curv}\}$ and $\{\psi_{nk}^{\rm shear}\}$ are partitions of unity satisfying

$$\sup_{(n,k)\in\Lambda} |Q_{nk}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{nk}\|_p < \infty \text{ for all } 0 < p \le 1$$

Sketch of the proof

► The coverings $\mathfrak{Q}^{\text{curv}} = \{Q_{nk}^{\text{curv}}\}$ and $\mathfrak{Q}^{\text{shear}} = \{Q_{nk}^{\text{shear}}\}$ are "equivalent":

$$\mathfrak{Q}^{\mathrm{curv}} \text{ is subordinate to } \left\{ [Q]_7^{\mathrm{shear}} : Q \in \mathfrak{Q}^{\mathrm{shear}} \right\}$$

$$\mathfrak{Q}^{\mathrm{shear}} \text{ is subordinate to } \left\{ [Q]_2^{\mathrm{curv}} : Q \in \mathfrak{Q}^{\mathrm{curv}} \right\}$$

► The families $\{\psi_{nk}^{\rm curv}\}$ and $\{\psi_{nk}^{\rm shear}\}$ are partitions of unity satisfying

$$\sup_{(n,k)\in\Lambda} |Q_{nk}|^{1/p-1} \|\mathcal{F}^{-1}\psi_{nk}\|_p < \infty \text{ for all } 0 < p \le 1$$

▶ Under these conditions, a Theorem by Feichtinger and Groebner (1985) states that the corresponding decomposition spaces must be equal, with equivalent norms.

Next steps?

► Embedding Theorems

For
$$0 , $0 < s, q < \infty$ and $s' = \frac{\max(1, 1/p) - \min(1, 1/q)}{2}$,$$

$$B_q^{s+1/(2q)}\big(L_p(\mathbb{R}^2)\big) \hookrightarrow \mathfrak{D}_q^s\big(L_p(\mathbb{R}^2)\big) \hookrightarrow B_q^{s-s'}\big(L_p(\mathbb{R}^2)\big)$$

Next steps?

► Embedding Theorems

For
$$0 , $0 < s, q < \infty$ and $s' = \frac{\max(1, 1/p) - \min(1, 1/q)}{2}$,
$$B_q^{s+1/(2q)} \left(L_p(\mathbb{R}^2) \right) \hookrightarrow \mathfrak{D}_q^s \left(L_p(\mathbb{R}^2) \right) \hookrightarrow B_q^{s-s'} \left(L_p(\mathbb{R}^2) \right)$$$$

► Equivalence of Approximation Spaces

