5.1: Logistic Regression

Dr. Bean - Stat 5100

1 Why Logistic Regression?

Recall the example from 5.1.1 where we try to predict the odds of having a disease using:

- Age (in years)
- Sector (1 if living in high risk city sector, 0 otherwise)

Based on the output in Figure 1 what is the *probability* that a 40 year old living in the high risk city sector has the disease?

$$\hat{L} = -2.335 + 0.0293 * 40 + 1.6734 * 1 = 0.5104$$

$$\hat{\pi} = \frac{1}{1 + e^{-0.5104}} = 0.6249$$

There is a 62.49% chance.

Using the same information provided in Figure 1, provide an interpretation of the coefficient associated with Age?

Holding city sector constant, a one year increase in age multiplies the odds of having the disease by $e^{0.0293} = 1.0297$

Holding city sector constant, the odds of having the disease are $100(e^{0.0293} - 1) = 2.97\%$ greater for each year increase in Age.

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-2.3350	0.5111	20.8713	<.0001
Age	1	0.0293	0.0132	4.9455	0.0262
Sector	1	1.6734	0.4873	11.7906	0.0006

Figure 1: Sample logistic regression output.

Can you think of an example where we might want to make the probability threshold for predicting a "1" be less than 0.5?

Any example where the consequence of a false positive (predicting one when the answer is in fact zero) is much less costly than a false negative (predicting 0 when the answer is in fact 1).

Example, predicting someone has COVID-19 given demographic variables. It may be useful to make threshold for a 1 prediction less than 50% because it is less costly to quarantine someone who is not actually infected than it is to not quarantine someone who is infected.

Using non-technical terms, how might you describe an outlier in logistic regression?

Observing a positive (or negative) result when the chance of observing a positive (or negative) result is extremely low.