Devoir de synthèse n°3 de Sciences physiques

K.Raouf

2^{eme} science

(2 heures)

Chimie(8 points)	В	С
On donne : les masses molaires : M(H)=1g.mol ⁻¹ , M (C)=12g.mol ⁻¹ L'acide nitrique HNO3 , la potasse KOH et le chlorure		
d'hydrogène HCl sont 3 électrolytes forts.		
Le produit :[H_3O^+].[OH^-]= 10^{-14} à $25^{\circ}C$,On prend : $10^{0,7}$ =5 et $10^{0,3}$ =2		
Exercice 1:		
Un hydrocarbure aliphatique saturé A, de chaine carbonée ramifiée,		
possède 16,66% de sa masse en élément hydrogène.		
1) Expliquer chaque mot souligné : « hydrocarbure aliphatique saturé »		
Quelle est la formule générale d'un hydrocarbure aliphatique saturé?	1	A ₁
2)Montrer que la masse molaire moléculaire de cet hydrocarbure A est	0,75	В
M=72g.mol ⁻¹ .		
3) Donner le nom et la formule semi-développée de cet hydrocarbure A qui	0,5	A2
possède 2 ramifications.		
4)La masse molaire d'un autre hydrocarbure aliphatique insaturé B à		
chaine carbonée linéaire est M=68g.mol ⁻¹ .		
a)Montrer que B n'est pas un alcène ,quelles sont les formules	0,75	c
semi-développées possibles de cet hydrocarbure B.	-,	
b)Donner le nom et la formule semi-développée d'un hydrocarbure C à chaine carbonée ramifiée et isomère de l'hydrocarbure B.	0,5	A2
Exercice 2:		
On se dispose à 25°C des solutions aqueuses suivantes :		
(S₁) est une solution aqueuse d'acide nitrique HNO₃ de concentration		
molaire $C_1=5.10^{-3}$ mol. L^{-1} et de volume V_1 .		
(S2) est une solution aqueuse de potasse KOH de concentration molaire		
$C_2=10^{-3}$ mol. L ⁻¹ et de volume V_2 .		
1)Définir : « pH d'une solution aqueuse ».	0,5	Aı
2)Déterminer le pH de la solution (S1). Comment varie ce pH si on ajoute	0,75	
l'eau à cette solution (S1)?	0,75	A ₂
3)Déterminer les molarités de tous les ions présents dans la solution (S ₂).Justifier la réponse. <u>Page 1/5</u>	0,75	A ₂

4)On peut doser une solution(S_3) de chlorure d'hydrogène HCI de concentration molaire C_3 et de volume V_3 =20cm³ par l'une, seulement, des		
solutions disponibles (S_1) ou (S_2) .Le volume versé à l'équivalence acido-		
basique de la solution dosante est 12mL.		
a)Quelle est la solution (parmi (S_1) et (S_2)) qui permet de réaliser ce	0,5	A ₁
dosage ? Justifier.	0.25	
b)Définir : « équivalence acido-basique».	0,25	A ₁
c)Déterminer la concentration molaire C_3 de la solution (S_3) .		A ₂
5)On mélange maintenant un V_A = 20mL de la solution (S_1) avec un volume		
V_B de la solution (S_2) , le mélange obtenu est une solution (S) de pH=.3,7.		
a)Ecrire l'équation de la réaction.		
b)Ya t'-il un réactif en excès ? lequel ?Justifier.	0,25	A ₁
c) Montrer que Vo=80mL	0,5	C

PHYSIQUE : (12 points)

On prend : Il g II=10N.kg⁻¹ : intensité de la pesanteur.

Indice de réfraction relatif du verre par rapport à l'air : n=1,5 .

Exercice 1:

Un solide (S) supposé ponctuel de masse m se déplace suivant un plan incliné AB qui fait un angle a avec la verticale, ce mouvement AB dure une seconde, puis décrit un trajet BC horizontal, en arrivant au point C, ce solide décrit une trajectoire circulaire CDEF de rayon

R=OC=OD=OE=OF=50cm, les points A et F sont situés dans le même plan horizontal, l'angle $(OC, ^OD)$ est noté β comme le montre la figure 1:

Ce solide est soumis à une force de frottement f qui s'oppose au sens du mouvement .Sa valeur est supposée constante dans l'exercice.

On donne les distances : AB=2m ; BC=6m et les valeurs absolues des travaux du poids de (5) du point A au point B : I $W(P)_A$ $_B$ I=5J puis du point C au point D : I $W(P)_C$ $_D$ I=1,25J et de la force de frottement du point B au point C : I $W(f)_B$ $_C$ I = 6J .

Page 2/5

1)Le poids du solide (S) est -il une force motrice ou résistante :		
a)dans le trajet A B? Justifier.	0,5	
b)pour le trajet C D? Justifier.	0,5	A_1
2)Montrer que la masse du solide (5) est :m=500g.	1	A ₁
3)Représenter sur la figure 1(page5) de l'annexe (à rendre) la force de		С
frottement en un point situé entre B et C pour un déplacement B C	0,25	
4)Précier la relation entre l'angle a, le rayon R et la distance AB. Déduire	0,75	A ₂
la valeur de l'angle a.		В
5)Déterminer la puissance mécanique correspondant à la force de	1	
frottement si le solide (S) se déplace de A B.		A2
6) Déterminer le travail du poids du solide qui se déplace du point C au	1	A2
point E en décrivant un quart de cercle.		7.12
7) Déterminer par calcul l'angle B .	1	A2

Exercice 2:

Un miroir plan (M) disposé verticalement est éclairé par une source 5 supposée ponctuelle (voir figure 2).

On donne l'angle $(SI_1^{\circ}, SI_2) = 49^{\circ}$, le rayon SI_1 est perpendiculaire au miroir (M).

Page 3/5

	т	
1)Définir : « Miroir ».	0,25	
2) Enoncer la première loi de Descartes relative à la réflexion.	0,25	A ₁
3)a)Représenter sur la figure 2 (page 5)de l'annexe (à rendre) les rayons	0,5	A ₁
réfléchis correspondants aux rayons incidents SI1 et SI2.		В
En déduire l'image S' de S à travers le miroir.		
b)Comparer l'objet S et son image S' à travers le miroir plan (M).	0,5	A 1
c)Déterminer l'angle d'incidence i correspondant au rayon SI2.Représenter	0,5	^ 1
cet angle i et l'angle de réflexion r correspondant sur la figure 2 de		В
l'annexe (à rendre).		
4)Le rayon réfléchi I2I3 obtenu par réflexion du rayon incident SI2 se		
dirige vers la face verticale AB d'un prisme en verre droit au point B et		
subit une réfraction ,on obtient le rayon réfracté I ₃ I ₄ . Le point I ₃		
appartient à la face AB et I4 est le point de la face AC du prisme.		
L'angle (CB , CA)=50°.		
a)Définir « réfraction de la lumière ».	0,5	
b)Enoncer la deuxième loi de Descartes relative à la réfraction	1	A ₁
Faire un schéma dans lequel on précise dans le cas général : le rayon	•	
incident SI, le rayon réfracté IR, la normale NN', la surface de		A ₁
séparation, l'angle d'incidence i ₁ , l'angle de réfraction i ₂ , le plan d'incidence		
et le plan de réfraction.		
c)Déterminer l'angle d'incidence i, que fait le rayon I, avec la normale au	0,5	
point I ₃ . Représenter cet angle i ₁ sur la figure 2.	0,5	
d)Déduire l'angle de réfraction i ₂ que fait le rayon réfracté I ₃ I ₄ avec la		В
	0,5	
normale au point I ₃ .		Aı
5)Déterminer l'angle limite de réfraction pour le passage de la lumière de	0,5	
l'air le verre.	0,5	A2
6)a)Montrer que l'angle que fait le rayon I₃I₄ avec la normale au point	0,5	712
d'incidence I4 est 70°.		В
b)Représenter sur la figure 2 de l'annexe le rayon I4I5 suivi par la lumière	0,5	
suite à la rencontre du rayon I3I4 avec la face AC du prisme. Justifier ce		A2
chemin suivi par la lumière.		
Page 4/5		
	1	I

Lycée Gremda Annexe à rendre 29/05/2023

Mr: Jallouli . R Devoir de sciences physiques n°3: 2Sc: 1 et 2

Exercice 1: figure 1

Exercice 2 : figure 2

Correction du devoir de synthèse n°3 de sciences physiques

Chimie(8 points)

On donne: les masses molaires: M(H)=1g.mol⁻¹, M (C)=12g.mol⁻¹
L'acide nitrique HNO₃, la potasse KOH et le chlorure
d'hydrogène HCl sont 3 électrolytes forts.
Le produit: [H₃O⁺].[OH⁻]= 10⁻¹⁴ à 25°C, On prend: 10^{0,7}=5 et 10^{0,3}=2

Exercice 1:

Un hydrocarbure aliphatique saturé A , de chaine carbonée ramifiée, possède 16,66% de sa masse en élément hydrogène .

1)Expliquer chaque mot souligné : « hydrocarbure aliphatique saturé » Quelle est la formule générale d'un hydrocarbure aliphatique saturé? Un hydrocarbure est un corps composé, formé seulement de carbone et d'hydrogène(sa formule est C_xH_y).

Aliphatique : la chaine (carbonée) d'atomes de carbones est ouverte.

Saturé : toutes les liaisons C-C sont simples.

Formule génrale : C_nH_{2n+2}

2)Montrer que la masse molaire moléculaire de cet hydrocarbure A est M=72g.mol⁻¹.

 $\%(H)=16,66=100.m(H)/m_{totale}$

Dans une mole de C_nH_{2n+2} % (H)=16,66= 100.(2n+2) /14n+2 =100/6

Donc: (2n+2) /14n+2 = 1/6 et 14n+2=6.(2n+2)

14n+2=12n+12 et 2n=12-2=10; n=5

 $M=14n+2=14.5+2=72 \text{ donc} : M=72g.\text{mol}^{-1}$.

Rq :CH₄ : % (H)=4.100/16=25%

 C_2H_6 : %(H)=6.100/30=20%

 C_3H_8 : %(H)=8.100/44=18,81%

 C_4H_{10} : %(H)=10.100/58=17,24%

 C_5H_{12} : %(H)=12.100/72=16,66%

3) Donner le nom et la formule semi-développée de cet hydrocarbure A qui possède 2 ramifications.

Hydrocarbure $A: C_5H_{12}$.il ya 2 ramifications donc la chaine principale contient (au max) 3 atomes de carbone :2,2-diméthylpropane

4)La masse molaire d'un autre hydrocarbure aliphatique insaturé B à chaine carbonée linéaire est M=68g.mol⁻¹.

a)Montrer que B n'est pas un alcène , quelles sont les formules semi-développées possibles de cet hydrocarbure B.

Si B était un alcène sa formule générale est C_nH_{2n} , sa masse molaire est M=n.M(C)+2n.M(H)=12n+2n=14n=68 donc n=68/14=4,85 impossible car n doit être un entier

B est un hydrocarbure aliphatique insaturé et ce n'est pas un alcène donc c'est un alcyne C_nH_{2n-2} de masse molaire M=14n-2=68 14n=70 donc n=70/14=5 donc $B=C_5H_8$, la chaine carbonée est linéaire, donc

HCEC-CH2-CH2-CH3 ou H3C-CEC-CH2-CH3

b)Donner le nom et la formule semi-développée d'un hydrocarbure C à chaine carbonée ramifiée et isomère de l'hydrocarbure B.

C est l'isomère de B donc ils ont la même formule brute C_5H_8 chaine carbonée ramifiée , la seule possibilité est alors :

HCEC-CH-CH₃ 3-méthylbut-1-yne I CH₃

Exercice 2:

On se dispose à 25°C des solutions aqueuses suivantes :

- (S_1) est une solution aqueuse d'acide nitrique HNO₃ de concentration molaire C_1 =5.10⁻³mol.L⁻¹ et de volume V_1 .
- (S_2) est une solution aqueuse de potasse KOH de concentration molaire $C_2=10^{-3}$ mol.L⁻¹ et de volume V_2 .
- 1)Définir : « pH d'une solution aqueuse ».

Le pH est un nombre positif sans unité lié à la molarité des ions hydronium H_3O^+ dans une solution aqueuse. Il permet de caractériser l'acidité ou la basicité d'une solution aqueuse ; il est défini par la relation : $[H_3O^+] = 10^{-pH}$

- 2)Déterminer le pH de la solution (S_1) . Comment varie ce pH si on ajoute l'eau à cette solution (S_1) ?
- (S_1) est une solution aqueuse d'acide nitrique HNO_3 :électrolyte fort donc son ionisation est pratiquement totale :

$$HNO_3 + H_2O$$
 $H_3O^+ + NO_3^ C_1$

Donc $[H_3O^*]=C_1=5.10^{-3} \text{mol.L}^{-1}=10^{0.7}.10^{-3}=10^{-2.3}=10^{-pH}$ donc :pH=2,3 Si on ajoute l'eau à cette solution le pH s'approche de celui de l'eau :pH=7, autrement la dilution fait diminuer la molarité de la solution égale à la molarité $[H_3O^*]$, donc le pH augmente mais reste toujours inférieur à 7 puisque la solution reste acide .

- 3)Déterminer les molarités de tous les ions présents dans la solution (S₂). Justifier la réponse.
- (S_2) est une solution aqueuse de potasse KOH de concentration molaire $C_2=10^{-3} \text{mol.L}^{-1}$ KOH est un électrolyte fort ,sa dissociation ionique est presque totale .

KOH
$$C_2 \qquad \qquad C_2 \qquad C_2$$

Les ions présents dans la solution : $[K^{+}] = [OH^{-}] = C_2 = 10^{-3} \text{mol.L}^{-1}$. $[H_3O^{+}] = 10^{-14}/[OH^{-}] = 10^{-14}/10^{-3} = 10^{-11} \text{mol.L}^{-1}$. (pH=11)

- 4)On peut doser une solution(S_3) de chlorure d'hydrogène HCl de concentration molaire C_3 et de volume V_3 =20cm³ par l'une, seulement, des solutions disponibles (S_1) ou (S_2).Le volume versé à l'équivalence acido-basique de la solution dosante est 12mL.
- a)Quelle est la solution (parmi (S₁) et (S₂)) qui permet de réaliser ce dosage ? Justifier.
- (S_3) est une solution de HCl : acide fort , puisque (S1) est acide on ne peut la doser que par une solution basique (S_2) : solution de potasse.

b)Définir : « équivalence acido-basique».

L'équivalence acido-basique correspond à un mélange des réactifs en proportions stæchiométriques , dans le cas d'une réaction acido-basique , on doit avoir $n(H_3O^+) = n(OH^-)$

c)Déterminer la concentration molaire C_3 de la solution (S_3) .

A l'équivalence : n(acide)=n(base)versé

$$C_3V_3=C_2V_{b\acute{e}q}$$

donc $C_3=C_2V_{b\acute{e}q}/V_3=10^{-3}.12/20=0,6.10^{-3}\text{mol.L}^{-1}.$
 $C_3=6.10^{-4}\text{mol.L}^{-1}.$

5)On mélange maintenant un V_A = 20mL de la solution (S_1) avec un volume V_B de la solution (S_2), le mélange obtenu est une solution (S_3) de pH=.3,7.

a)Ecrire l'équation de la réaction.

C'est une réaction entre une solution d'acide fort HNO_3 (H_3O^+,NO_3^-) et une solution de base forte KOH (K^+,OH^-) , l'équation simplifiée est : $H_3O^+ + OH^ 2H_2O$

b)Ya t'-il un réactif en excès ? lequel ?Justifier.

On ne connait pas ici Vb donc on ne peut pas calculer directement $n(base)=C_BV_B$. Or pH(m'elange)=3,7: m'elange acide ,si les réactifs étaient mélangés en proportions stœchiométriques le pH=7. Donc l'acide est en excès puisque le pH<7.

```
c) Montrer que V_B=80mL.

H_3O^+ + OH^- 2H_2O

t=0 n_A=C_1V_A n_B=C_2V_B

t_f C_1V_A-C_2V_B( en excès) \approx 0 (réactif limitant)

[H_3O^+]_{fin}=10^{-pH}=n(H_3O^+)_{res}/(V_A+V_B)=10^{-3.7}=10^{0.3}.10^{-4}=2.10^{-4}mol.L^{-1}.

(C_1V_A-C_2V_B)/(V_A+V_B)=(5.10^{-3}.20.10^{-3}-10^{-3}V_B)/(20.10^{-3}+V_B)=2.10^{-4}

(0,1.10^{-3}-10^{-3}V_B)=2.10^{-4}.(20.10^{-3}+V_B)

10^{-3}(0,1-V_B)=2.10^{-4}.(20.10^{-3}+V_B)

0,1-V_B=0,2.(20.10^{-8}+V_B)=4.10^{-3}+0,2V_B.

0,1-V_B=4.10^{-3}+0,2V_B donc 0,1-4.10^{-3}=0,2V_B+V_B

0,096=1,2V_B et V_B=0,096/1,2=0,08L=0,08L=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,096=0,09600,096=0,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,09600,096
```

PHYSIQUE : (12 points)

On prend : Il g II=10N.kg⁻¹ : intensité de la pesanteur.

Indice de réfraction relatif du verre par rapport à l'air : n=1,5 .

Exercice 1:

Un solide (S) supposé ponctuel de masse m se déplace suivant un plan incliné AB qui fait un angle a avec la verticale, ce mouvement AB dure une seconde, puis décrit un trajet BC horizontal, en arrivant au point C, ce solide décrit une trajectoire circulaire CDEF de rayon R=OC=OD=OE=OF=50cm, les points A et F sont situés dans le même plan horizontal, l'angle (OC, ^OD) est noté β comme le montre la figure 1:

Ce solide est soumis à une force de frottement f qui s'oppose au sens du mouvement . Sa valeur est supposée constante dans l'exercice. On donne les distances : AB=2m ; BC=6m et les valeurs absolues des travaux du poids de (S) du point A au point B: I $W(P)_A$ $_B$ I=5J puis du point C au point C: I $W(P)_C$ $_D$ I=1,25J et de la force de frottement du point C: I $W(f)_B$ $_C$ I = 6J.

1)Le poids du solide (5) est -il une force motrice ou résistante : a)dans le trajet A B ? Justifier.

Le trajet AB est une descente donc le travail du poids est moteur (de signe positif)Le poids est une force motrice dans ce cas.

b)pour le trajet C D? Justifier.

Le trajet CD est une montée donc le travail du poids est résistant (de signe négatif)Le poids est une force résistante dans ce cas :elle s'oppose à la montée.

2)Montrer que la masse du solide (5) est :m=500g. $IW(P)_A$ B |=5J= ||P|| .h=m||g||.h =m||g||.2R car h=CF=2R m= $IW(P)_A$ B |/||g||.2R =5/(10.2.0,5)=0,5kg et m=500g

3)Représenter sur la figure 1(page5) de l'annexe (à rendre) la force de frottement en un point situé entre B et C pour un déplacement B C

La force de frottement a toujours la même direction que le mouvement mais de sens opposé à ce mouvement.

4)Précier la relation entre l'angle a, le rayon R et la distance AB. Déduire la valeur de l'angle a. $\cos a = h/CF = 2R/AB = 2.0,5/2 = 0,5$ donc $a = \cos^{-1} 0,5 = 60^{\circ} = a$.

5)Déterminer la puissance mécanique correspondant à la force de frottement si le solide (5) se déplace de A

$$|W(f)_B| = 6J = |I|f|I.BC.cos(f ^,BC)|=|If|I.BC$$

IIfII=IW(f)I/BC=6/6=1N

$$P(f)_A = W(f)/\Delta t = -IIfIIAB/\Delta t = -2/1 = -2Watts$$
.

6)Déterminer le travail du poids du solide qui se déplace du point C au point E en décrivant un guart de cercle.

$$W(P)_c$$
 = -IIPII.R=-0,5.10.0.5=-2,5J

7)Déterminer par calcul l'angle β .

Exercice 2:

Un miroir plan (M) disposé verticalement est éclairé par une source S supposée ponctuelle (voir figure 2).

On donne l'angle (SI1 ^, SI2) =49°, le rayon SI1 est perpendiculaire au miroir (M).

1)Définir : « Miroir ».

Un miroir est une surface polie réfléchissante.

2) Enoncer la première loi de Descartes relative à la réflexion.

Le rayon incident, le rayon réfléchi et la normale sont coplanaires.

3)a)Représenter sur la figure 2 (page 5) de l'annexe (à rendre) les rayons réfléchis correspondants aux rayons incidents SI₁ et SI₂.

En déduire l'image 5' de 5 à travers le miroir.

b)Comparer l'objet S et son image S' à travers le miroir plan (M).

l'objet S et son image S' sont symétriques par rapport au miroir et de nature différent : S est réel (intersection des rayons încidents) mais son image S' est virtuelle (intersection du prolongement des rayons réfléchis)

c)Déterminer l'angle d'incidence i correspondant au rayon SI₂.Représenter cet angle i et l'angle de réflexion r correspondant sur la figure 2 de l'annexe (à rendre).

i=(SI₁^,SI₂) =49° angles alternes internes i=r=30° d'après la 2 éme loi de réflexion

4)Le rayon réfléchi I_2I_3 obtenu par réflexion du rayon incident SI_2 se dirige vers la face verticale AB d'un prisme en verre droit au point B et subit une réfraction ,on obtient le rayon réfracté I_3I_4 . Le point I_3 appartient à la face AB et I_4 est le point de la face AC du prisme.

L'angle (CB ,CA)=50°

a)Définir « réfraction de la lumière »

C'est le changement brusque de direction de la lumière lorsqu'elle traverse la surface de séparation de 2 milieux transparents b)Enoncer la deuxième loi de Descartes relative à la réfraction Faire un schéma dans lequel on précise dans le cas général : le rayon incident SI, le rayon réfracté IR, la normale NN', la surface de séparation , l'angle d'incidence i₁, l'angle de réfraction i₂, le plan d'incidence et le plan de réfraction.

Le rapport des sinus de l'angle d'incidence i₁ et de l'angle de réfraction i₂ est constant :sini₁/sini₂=n :sini₁=n.sini₂ avec n est l'indice de réfraction relatif du second milieu par rapport le premier milieu.

c)Déterminer l'angle d'incidence i_1 que fait le rayon I_2I_3 avec la normale au point I_3 . Représenter cet angle i_1 sur la figure 2 . $i_1=i=r=49^\circ$ (angles alternes internes)

d)Déduire l'angle de réfraction i_2 que fait le rayon réfracté $\mathbf{I}_3\mathbf{I}_4$ avec la normale au point \mathbf{I}_3 .

sini1/sini2=nverre=1,5

donc sini2=sini1/1,5=sin49/1,5=0,75/1,5=0,5

i2=sin-10,5=30°

5)Déterminer l'angle limite de réfraction pour le passage de la lumière de l'air le verre.

Sinλ=1/n=1/1,5=0,667

Donc $\lambda = \sin^{-1}(1/1,5) = 41,8^{\circ}$.

6)a)Montrer que l'angle que fait le rayon I_3I_4 avec la normale au point d'incidence I_4 est 70° .

Triangle I_3I_4A :Les angles dans ce triangle :40° ; 120° et 20° Donc l'angle d'incidence est 70°

b)Représenter sur la figure 2 de l'annexe le rayon I_4I_5 suivi par la lumière suite à la rencontre du rayon I_3I_4 avec la face AC du prisme. Justifier ce chemin suivi par la lumière.

Angle d'incidence= 70° > λ donc : pas de réfraction, il ya phénomène de réflexion totale.

Lycée Gremda 29/05/2023

Annexe à rendre Devoir de sciences physiques n°3 :

M' : Jallouli . R 2Sc : 1 et 2

Exercice 1: figure 1

Exercice 2 : figure 2

