19기 정규세션

ToBig's 18기 강의자 손유진

SVM

Support Vector Machine

오늘 학습할 내용은?

つ t nts

Unit 01 | SVM

Unit 02 | Soft Margin SVM

Unit 03 | Non-Linear SVM

Unit 04 | Summary & 실습

D t nts

Unit 01 | SVM Linear Unit 02 | Soft Margin SVM Unit 03 | Non-Linear SVM Unit 04 | Summary & 실습

Support Vector Machine

: 주로 바이너리 분류를 위해 사용하는 기법 (회귀에 사용하는 경우 : SVR)

: 딥러닝 이전에 높은 성능으로 주목받은 모델

SVM의 분류

선형여부	분류
선형	Linear svm
비선형	Non-linear svm

오분류허용여부	분류
X	Hard margin svm
Ο	soft margin svm

1.SVM?

SupportVector Machine관점에서, 데이터를 가장 잘 나누는 선은?

1.SVM?

②정답은2번!이유는?

SVM (support vector machine)

1.동그라미를 분류 하지 못함(X)

3.네모를 분류 하지 못함(X)

SVM (support vector machine)

1 Hyperplane

:여러데이터를나누는기준이되는경계(초평면)

2 Support Vector

:Hyperplane과 가장 가까운 데이터

(3) Margin

:결정경계와서포트벡터사이의거리x2

1.SVM- 정리1

SVM의 발상?

: 마진을 구하는 방법을 공식화하고 이 마진을 최대화하는 결정 초평면 (decision hyperplane)을 찾자!

이제수식으로살펴볼까요?

1-1.여러차원에서분류되는모습

3.수식으로살펴보자

모든plane은 w·x+b = 0 으로 표현할수 있다!

3-1. y = ±1 분류문제

편의상,y=±1 분류문제

:**(**+1) class라면+1이상,

• (-1) class라면-1이하의값을갖도록하자

3-2.우리의 결정규칙

수식으로나타내면?

$$y_i (w \cdot x_i + b) \ge 1$$

단,
$$y_i = \begin{cases} +1 \text{ for } = \text{ sample} \\ -1 \text{ for } \bullet \text{ sample} \end{cases}$$

3-3. margin

$$x^+ = x^- + \lambda w$$

$$w^T x^+ + b = 1$$
 x^+ 가 plus-plane 위의 점

$$w^{T}(x^{-} + \lambda w) + b = 1$$
 $(x^{+} = x^{-} + \lambda w)$

$$w^T x^- + b + \lambda w^T w = 1$$

$$-1 + \lambda w^T w = 1$$
 x^- 는 minus-plane 위의 점

$$\lambda = \frac{2}{w^T w}$$

The vector norm $||W||_p$ for p = 1,2,3,...

$$||W||_p = \left(\sum_i |w_i|^p\right)^{1/p} \qquad ||W||_2 = \left(\sum_i |w_i|^2\right)^{1/2} = \sqrt{w_1^2 + w_2^2 + \cdots w_n^2} = \sqrt{W^T W}$$

길의너비(margin)

$$Margin = distance(x^+, x^-)$$

$$= ||x^+ - x^-||_2$$

$$= ||(x^- + \lambda w) - x^-||_2$$

$$= ||\lambda w||_2$$

$$= \lambda \sqrt{w^T w}$$

$$= \frac{2}{w^T w} \cdot \sqrt{w^T w}$$

$$= \frac{2}{\sqrt{w^T w}} = \frac{2}{||w||_2}$$

지금까지의 수식을 정리하면,

- 1. 제약식(조건)
- : $y_i (w \cdot x_i + b) \ge 1$
- :모든데이터들은결정경계안에잘 들어가 있어야함
- 2. 목적식
- : 👱 가 최대가되게하고,동시에위의제약식을만족하는 W와 b를 찾자 -> margin이 최대

$$: \max(\frac{2}{||w||}) > \min(||w||) > \min(\frac{||w||^2}{2})$$
 (계산의편의를위한식 변형)

목적함수는 2차식이고, 제약식은 선형식이다 -> 2차계획법 -> convex optimization -> 전역최적해 존재

3-4.라그랑주승수법1

목적식f와 제약식 ϕ 의 그라디언트방향이같을때,f의 최적값

$$> \nabla_{x,y} f = \lambda \nabla_{x,y} \Phi$$

> Then,
$$\nabla_{x,y,\lambda} L(x,y,\lambda) = 0$$
을 푸는 문제가 된다!

3-4.라그랑주승수법2

우리의제약식과목적식은?

1.제약식: y_i (w·x_i +b)≥1

2.목적식: ||w||² 의최소화

> 문제는?제약식이 '부등식'(라그랑주 승수법은 등식)

3-5. KKT condition (Karush-Kuhn-Tucker 조건)

연립 부등식의 경우라그랑주 승수법을 사용하되, 최적 값이기 위한 필요충분조건인 KKT조건이 붙는다.

- 1. 라그랑주승수를제외한변수에대한편미분값은0이되어야한다.
- 2. 라그랑주승수는0보다크거나같아야한다.
- 3. 라그랑주승수와제약식중하나는무조건0이되어야한다(즉,둘의곱은항상0).
- > 조건을전개해서정리하자

(w,b,α)가 Lagrangian dual problem의 최적해가 되기 위한 조건

KKT (Karush-Kuhn-Tucker) conditions:

1 Stationarity

$$\frac{\partial \mathcal{L}(w,b,\alpha)}{\partial w} = 0 \implies w = \sum_{i=1}^{n} \alpha_i y_i x_i \qquad \frac{\partial \mathcal{L}(w,b,\alpha)}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0$$

- ② Primal feasibility $y_i(w^Tx_i + b) \ge 1, i = 1, 2, \dots, n$
- (3) Dual feasibility $\alpha_i \geq 0, i = 1, 2, \dots, n$
- (4) Complementary slackness $\alpha_i(y_i(w^Tx_i+b)-1)=0$

Original Problem

minimize $\frac{1}{2} ||w||_2^2$ subject to $y_i(w^T x_i + b) \ge 1, i = 1, 2, \dots, n$

Lagrangian multiplier를 이용하여 Lagrangian primal문제로 변환

Lagrangian Primal

$$\max_{\alpha} \min_{w,b} \mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|_2^2 - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1)$$
subject to $\alpha_i \ge 0, i = 1,2,\dots,n$

Convex, continuous이기 때문에 미분 = 0에서 최소값을 가짐

①
$$\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial w} = 0$$
 \longrightarrow $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

$$\begin{array}{ll}
\boxed{1} & \frac{1}{2} \|w\|_{2}^{2} = \frac{1}{2} w^{T} w \\
&= \frac{1}{2} w^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} \\
&= \frac{1}{2} \sum_{j=1}^{n} \alpha_{j} y_{j} (w^{T} x_{j}) \\
&= \frac{1}{2} \sum_{j=1}^{n} \alpha_{j} y_{j} \left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x_{j} \right) \\
&= \frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} \left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x_{j} \right) \\
&= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
&= -\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
&= -\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \sum_{i=1}^{n} \alpha_{i}
\end{array}$$

3-6.결론- 의미를중심으로!

위식을이용해서정리하면

 $\Sigma \alpha_i y_i = 0 \ \alpha_i \ge 0 \ \text{for all } \alpha_i \ \equiv 만족하고동시에$

 $L(\alpha_i) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j x_i^T x_j$ 를 최대화하는 α 를찾으면

하이퍼플레인의방향은 $\hat{\mathbf{w}} = \Sigma \alpha_i y_i x_i$ 이고

분류결과는 $sgn(\Sigma(\widehat{\alpha}_i y_i \mathbf{X}_i^\mathsf{T} \mathbf{X}_j + \mathbf{b})$ 이 되니까

 $: W > \Delta \Pi + \Delta \Pi$

 x_i 가 support vector인 경우에만 $\alpha_i^* \ge 0$ 이므로

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i = \sum_{i \in SV} \alpha_i^* y_i x_i$$

즉, support vector만 이용하여 optimal hyperplane (decision boundary) 을 구할 수 있다 (sparse representation!)

또한, 다음과 같이 임의의 support vector 하나를 이용하여 b^* 를 구할 수 있다.

$$w^{*T} + b^* = y_{sv}$$

$$w^{*T} + b^* = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x_{sv} + b^* = y_{sv}$$

$$b^* = y_{sv} - \sum_{i=1}^n \alpha_i^* y_i x_i^T x_{sv}$$

nts

Unit 01 | SVM

Unit 02 | Soft Margin SVM

Unit 03 | Non-Linear SVM

Unit 04 | Summary

현실적으로 모든 데이터가 깔끔한 경계로 나뉘지는 않는다! 이런 애들은 어떻게 해줘야 할까?

- 1. Soft Margin SVM
- > 우리가지금까지했던건 Hard Margin SMM :error를 허용하지않고분류
- > Soft Margin SMM :error(오분류)를 허용하되,패널티를 줘서전체error를 최소화!

- 2. Penalty
- > Penalty를 주는방법
- 1. 0-1 Loss
- 2. Hinge Loss

2-1.0-1 Loss

:error가 발생한 개수만큼 패널티 계산

:min ||w|| + C#error

2-2. Hinge Loss

:오분류정도에따라error의 크기를다르게하자

실제로는●인데이터가분류기의 각 영역에 있을 때

- ①error 없음(좋은분류) $> \xi j$ =0
- ②작은 error $> 0 \le \xi j \le 1$
- ③ 큰error (잘못된 분류) $> \xi j > 1$
- > slack variable(ξj) 사용

2-2. Hinge Loss

> 기존목적함수에error항을 추가

:argmin||w||+ C $\Sigma \xi j$

> 여기서c는하이퍼파라미터(추가자료참고)

c가 크다면 > error를 줄이는데에, c가 작다면 > W를 줄이는데에신경써주자!

nts

Unit 01 | SVM

Unit 02 | Soft Margin SVM

Unit 03 | Non-Linear SVM

Unit 04 | Summary

- 1.구분할수 있는 linear line이 없는데
- 2.Outlier를 무시하지 못 하는 경우에는?

- > linear svm 불가능
- > soft margin svm 불가능

1차원에서선형경계로분류불가능한data를 > 2차원으로매핑하면분류가능!

MAPPING

1. Kernel

: 저차원 데이터를 고차원 데이터로 매핑하는 작 업

: 관측치 x들을 높은 차원으로 매핑해서 분류하자!

:SVM을 original space가 아닌 고차원의 feature space에서 학습시키면 좋지 않을까?

Original space에서는 nonlinear하게 경계를 그어야 했지만, feature space에서는 linear하게 경계선 그을 수 있다!

1.Kernel

목적함수를 최적화하는 수식에 내적이 있다!

$$: \max L(\alpha_i) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i} \mathbf{x_j}$$

$$=> \max L(\alpha_i) = \sum \alpha_i - \frac{1}{2} \sum \sigma \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)$$

그런데 고차원으로 매핑하니 내적 부분의 차원이 증가한다

> 연산량이 너무 많지 않아?

2. Kernel Trick

> 고차원으로 매핑한 '데이터'말고 '내적값'을 알자! :고차원으로매핑하되,연산은간단하게할수 있게된다

$$:\max L(\alpha_i) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \Rightarrow \max L(\alpha_i) = \sum \alpha_i - \frac{1}{2} \sum \sigma \alpha_i \alpha_j y_i y_j \mathbf{\varphi}(\mathbf{x_i})^T \mathbf{\varphi}(\mathbf{x_j})$$

- > 매핑한함수/데이터는 필요없다.매핑한 내적값(최종결과)만 알면 된다!
- > 그 값을쉽게 알수 있는'Trick'

2.Kernel Trick

:고차원으로보낸뒤 벡터의 내적 연산=내적을한후 고차원으로보내는 연산

Ex)
$$X = (x_1, x_2)$$

$$Y = (y_1, y_2)$$

$$\emptyset(X) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\emptyset(Y) = (y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

$$\langle \emptyset(X), \emptyset(Y) \rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

Question: Can we compute $x_1^2y_1^2+x_2^2y_2^2+2x_1x_2y_1y_2$ without knowing the explicit functional form of $\emptyset(X)$ and $\emptyset(Y)$?

$$(X,Y)^{2} = \langle (x_{1},x_{2}), (y_{1},y_{2}) \rangle^{2}$$

$$= \langle x_{1}y_{1} + x_{2}y_{2} \rangle^{2}$$

$$= x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}x_{2}y_{1}y_{2}$$

$$= \langle \emptyset(X), \emptyset(Y) \rangle$$

2.Kernel Trick

> kernel을 쓰는이유? :고차원으로매핑도하고,연산도간단하게할수 있으니까!

> Kernel Trick을 만족하는조건도 있지만,복잡하니생략하고자주쓰는 kernel만 알자

3. 자주 쓰는 Kernel

: 가장 많이 사용하는 kernel은 가우시안 커널! (RBF kernel)

: 각 함수마다 파라미터가 조금씩 다름!

Linear kernel

$$K\langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle$$

Polynomial kernel

$$K\langle x_1, x_2 \rangle = (a\langle x_1, x_2 \rangle + b)^d$$

Sigmoid kernel (Hyperbolic tangent kernel)

$$K\langle x_1, x_2 \rangle = tanh(a\langle x_1, x_2 \rangle + b)$$

• Gaussian kernel (Radial basis function (RBF) kernel)

$$K\langle x_1, x_2 \rangle = \exp(\frac{-\|x_1 - x_2\|_2^2}{2\sigma^2})$$

$$e^{-\gamma(a-b)^2}$$

4. RBFkernel (= Gaussian Kernel)

:무한대의차원으로매핑하는커널(by 테일러급수)

Ex)
$$2\sigma^2=1$$
 => $K(x_1,x_2)=exp\left\{-(x_1-x_2)^2
ight\}$ $=exp(-x_1)exp(-x_2)exp(2x_1x_2)$ 여기서, 테일러급수에의해 $exp(2x_1x_2)=\sum_{k=0}^{\infty} rac{2^kx_1^kx_2^k}{k!}$ > 무한대차원의 Feature Space로 매핑!

4-1.RBF커널-GammaParameter Tuning

$$K(x_1,x_2) = exp\left\{-\frac{\|x_1-x_2\|_2^2}{2\sigma^2}\right\}, \quad \sigma \neq 0$$

$$e^{-\gamma(a-b)^2}$$

$$\Rightarrow \quad \gamma = \frac{1}{2\sigma^2}$$

 $\Rightarrow \gamma = \frac{1}{2\sigma^2} \Rightarrow 감마와분산(표준편차)은 반비례관계$

4-1.RBF커널- GammaParameter Tuning

Gamma감소=표준편차증가

4-1.RBF커널-GammaParameter Tuning

:감마가클수록

훨씬 인접한 것들만 같은 영역으로 본다

- =엄청인접하지않으면엄청먼곳으로인식한다
- =원래차원으로돌아왔을때경계가아주촘촘하다
- =Hyper plane이 훨씬더굴곡지다
- =Ovefitting의 가능성이높다

nts

Unit 01 | SVM

Unit 02 | Soft Margin SVM

Unit 03 | Non-Linear SVM

Unit 04 | Summary

1. Hard Margin과 Soft Margin

:Hard Margin :에러를 허용하지 않음 (현실적이지 못함)

:Soft Margin :에러를허용

:에러를허용하는방법은0-1 Loss와 Hinge Loss

:에러와마진둘중무엇을줄일것인지를결정하는hyper parameter는 C

2. Linear SVM과 Non-linear SVM

> Linear SVM

:선형으로분류

:Feature가 많아 kernel을 하게 되면 차원이 높아지고 연산량이 많아지니 Linear가 효과적.

> Non-Linear SVM

:Feature가 많지 않을 땐 그걸로 분류하기 쉽지 않기 때문에 차원을 올려줌

:이때 차원을올려주는방법에따라다양한parameter가 존재하지만

가장많이쓰이는건 Gaussian Kernel에서 Gamma

3.정리

- 1) SMM 알고리즘 중 일반적으로 널리 사용되는 건 RBF 커널SMM
- 2) 좋은 성능을 얻으려면 매개변수인 C와 gamma를 잘 조정해줘야 함
- 3) C는 데이터 샘플들이 다른 클래스에 놓이는 것을 허용하는 정도를, gamma는 결정경계의 곡률을 결정
- 4) 두 값 모두 커질수록 알고리즘의 복잡도는 증가
- 5) 일반적으로 grid search로 경험적으로 최적의 매개변수 값들을 찾아가는데, 당연하지만 내용을 어느정도 숙지하게 된다면 훨씬 더 빠르게 좋은 성능을 내는 매개변수 값 들을 찾아낼 수 있을 것!

Multi Class SVM

1. One VS one

클래스가 N개 있을 때 모든 Class에 대해 1:1로 binary분류를 하고 제일 많이 승리한 것에 대해 투표로 결정한다.

N개의 클래스에 대해 서로서로 Classifier를 가지고 있어야 하기 때문에 n(n-1)/2개의 Classifier가 필요하다.

참고 4. One vs One(OVO)

만약 머신 세 개 각각이 1번 머신은 A가, 2번 머신은 B가, 3번 머신은 C가 맞다고 했다면 어떻게 판별은?

One vs One 예시)

데이터 클래스가 A, B, C라하고, 우리는 (또) 총 3개의 머신을 만든다.

- 1. A인지 B인지를 구분해주는 머신
- 2 B인지 C인지를 구분해주는 머신
- 3. C인지A인지를 구분해주는 머신

새로운 데이터가 들어오고, 우리는 이 데이터를 1,2,3번 머신에 돌린 결과, 1번 머신은 A, 2번 머신은 C, 3번 머신은 A라고 했다. 그렇다면? 이 세 결과를 통해 새로 들어온 이 데이터가 A라고 판별!

One vs rest

클래스가 N개 있으면 모든 Class에 대해 1 : N-1로 binary 분류하여 이 클래스가 맞는지 아 닌지를 판단하고 투표로 결정하고, 이 때 N개의 Classifier가 필요하다.

Onevs Rest 예시)

데이터의클래스로A,B,C가있다고하자.우

리는총3개의머신을만든다.

- 1. A인지 아닌지 구분해주는 머신
- 2. B인지아닌지 구분해주는 머신
- 3. c인지아닌지구분해주는머신

새로운데이터가들어왔고,우리는이데이터를1,2,3번머신에돌렸다. 1번머신은A라고,2번머신은B가아니라고,3번머신은C가아니라고했다. 이 결과를통해새로들어온데이터가A라고판별할수있다.

▼ 서포트 벡터 머신

```
import pandas as pd
import numpy as np
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score

customer = pd.read_csv("data/customerChurn.csv")
```

[] customer.head()

	sex	age	Recency	Frequency	Monetary	Churn
0	М	11	4	41	1268981	No
1	М	10	18	15	843996	No
2	F	38	16	41	1755623	No
3	М	13	8	14	862172	No
4	F	20	22	42	748430	No

```
[ ] X = customer.drop(['Churn', 'sex'], axis=1)
y = customer['Churn']
```

▼ 변수 표준화

```
[ ] from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_s = pd.DataFrame(scaler.fit_transform(X))
```

	head(
--	-------

	0	1	2	3
0	-1.555877	-1.583993	1.631371	1.130492
1	-1.667845	-0.057211	-0.330064	0.374340
2	1.467244	-0.275322	1.631371	1.996346
3	-1.331942	-1.147769	-0.405504	0.406679
4	-0.548170	0.379013	1.706811	0.204305

```
[] X_s.columns = ['age', 'Recency', 'Frequency', 'Monetary']
```

0	X_s['sex']	=	customer['sex]
---	------------	---	-----------	------	---

X_s.head()

	age	Recency	Frequency	Monetary	sex
0	-1.555877	-1.583993	1.631371	1.130492	М
1	-1.667845	-0.057211	-0.330064	0.374340	М
2	1.467244	-0.275322	1.631371	1.996346	F
3	-1.331942	-1.147769	-0.405504	0.406679	М
4	-0.548170	0.379013	1.706811	0.204305	F

one hot encoding

	age	Recency	Frequency	Monetary	sex_F	sex_M
0	-1.555877	-1.583993	1.631371	1.130492	0	1
1	-1.667845	-0.057211	-0.330064	0.374340	0	1
2	1.467244	-0.275322	1.631371	1.996346	1	0
3	-1.331942	-1.147769	-0.405504	0.406679	0	1
4	-0.548170	0.379013	1.706811	0.204305	1	0

rbf_svm_clf = SVC(kernel="rbf", gamma=5, C=0.001)

▼ 서포트 벡터 머신 모형 학습

0.9842504

```
[] X_train, X_test, y_train, y_test = train_test_split(X_ohe, y)
     linear_svm = LinearSVC(C=1)
     linear_svm.fit(X_train,y_train)
    LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
               intercept_scaling=1, loss='squared_hinge', max_iter=1000,
               multi_class='ovr', penalty='12', random_state=None, tol=0.0001,
               verbose=0)
[] print("Predictions: {}".format(linear sym.predict(X test)))
     print("Accuracy: {}".format(linear_svm.score(X_test, y_test)))
     Predictions: ['No' 'Yes' 'No' ... 'Yes' 'Yes' 'Yes']
     Accuracy: 0.9456
[ ] from sklearn.model_selection import cross_val_score
     linear_svm = LinearSVC(C=1)
     scores = cross_val_score(linear_svm, X_ohe, y, scoring='roc_auc',cv=5)
     scores.mean()
```

grid_search.fit(X_ohe,y)

```
from sklearn.model_selection import GridSearchCV
                                                                           [] grid_search.best_params_
param_grid = [{'C': [11, 12, 13, 14, 15, 16, 17, 18, 19]}]
                                                                              {'C': 12}
linear_svm = LinearSVC(max_iter=10000)
                                                                               linear_svm = LinearSVC(C=grid_search.best_params_['C'], max_iter=10000)
grid_search = GridSearchCV(
                                                                               scores = cross_val_score(linear_svm, X_ohe, y, scoring='roc_auc',cv=5)
    linear_svm,
                                                                               scores.mean()
    param_grid,
    cv=5,
                                                                              0.9842511999999999
    scoring='roc_auc',
    return_train_score=True)
```

참고자료

참고 1. Grid Search의 활용

그림9. C와 gamma의 영향

하이퍼파라미터가두 개나 있어서 감이 안올 때는?

C:데이터가다른클래스에놓이는걸 허용하는정도 W:결정경계의곡률을결정(kernel모델의 파라미터)

- > Overfitting 위험: C가크고 Gamma가클때
- > underfitting 위험: < 가작고 Gamma 가작을때

참고자료

참고 2 사이킷런 SVM parameter

Kernel

Decision Boundary의 모양 결정 Kernel 선택가능 (Linear, Polynomial, Sigmoid, RBF등)

2 C

: Decision Boundary 일반화 VS training data의 정확한 분류 사이의 trade-off 조정

:C가크면 정확하게 구분하는 데에, 작으면 smooth한 결정경계를 만드는 데에 초점을 맞춤

:C있음:soft / C없음:hard margin svm

3. Gamma

:결정경계의 굴곡에 영향을 주는 데이터의 범위(reach)를 정의

참고자료(SVR)

참고자료(SVR)

- 회귀문제의 경우는 분류문제와 반대로 제한된 마진 오류 안에서 마진 안에 가능한 많은 데이터가 들가도록 학습함
- 마진의 넓이는 하이퍼 파라미터 ε (epsilon)으로 조절하며, 마진 오류는 ζ (zeta)임(scikit learn에서 는 각각 epsilon과 tol 로 지정함)

참고자료(SVR)

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
boston = pd.read_csv("data/boston.csv")
X = boston.iloc[:,1:-1]
v = boston["medv"]
X.head()
```

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat		np.sqrt(mean_squared_error(y_test,y_pred))
0 (0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	8	5.39020124561961
1 (0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	Г٦	
2 (0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	LJ	from sklearn.model_selection import cross_val_score scores = cross_val_score(svm_reg, X, y, scoring='neg_
3 (0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33		np.sqrt(-scores.mean())
4 (0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43		6.657625045369984
		12.0	7.07	·	0.02	0.012	00.0	5.5555			10.2	555.55	12.10		

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
from sklearn.sym import LinearSVB
svm_reg = LinearSVR(epsilon = 5, tol=0.1, C=1, max_iter=100000)
svm_reg.fit(X_train, y_train)
y_pred = svm_reg.predict(X_test)
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test,y_pred))
5.39020124561961
```

scores = cross_val_score(svm_reg, X, y, scoring='neg_mean_squared_error',cv=5)

과제 설명

Assignment 1. Multiclass SVM 구현

- 1. Multiclass SVM을 직접 구현하시는 것입니다. 기본적으로 사이킷런에 있는 SVM은 멀티클래스 SVM을 지원하지만 과제에서는 절대 쓰면 안됩니다! Iris 데이터는 총 세 개의 클래스가 있으므로 이 클래스를 one- hot인코딩한 뒤, 각각 binary SVM을 트레이닝하고 이 결과를 조합하여 multiclass SVM을 구현하시면 됩니다
- 2. 기본적으로 one vs one, one vs rest 방법이 있으며 둘 중 자유롭게 구현해주세요. 만약 투표결과가 동점으로 나온 경우(예를 들어, 각각의 SVM 결과가 A vs B 의 경우 A로 판별, B vs A 의 경우 B로 판별, C vs A 의 경우 C로 판별한 경우 투표를 통해 Class를 결정할 수 없음)
- 1) decision_function을 활용하시거나
- 2) 가장 개주가 많은 클래스를 사용하시거나
- 3) 랜덤으로 하나를 뽑거나 하는 방법 등을 이용해 동점자인 경우를 판별 해주시면 됩니다.
- 공식문서를 통해 사이킷런이 어떤 방법으로 구현했는지 참고하셔도 됩니다
- 과제코드에는 iris 데이터를 로드하고 스케일링 부분까지 구현되어 있습니다.
- 4. Iris의 클래스는 3개입니다. Iris 데이터셋 뿐만 아니라 다른 데이터셋에도 적용 가능한, 클래스의 수와 무관한 Multiclass SVM을 만들어주세요.

- -투빅스 13기 이유민님 강의자료 -투빅스 16기 김종우님 강의자료
- -투빅스 17기 유현우님 강의자료
- -고려대학교 김성범 교수님 강의자료

https://www.youtube.com/watch?v=qFg8cDnqYCl

- -Patrick Winston, MIT OCW6.034 Fall 2010, Lec.16 Learning: Support Vector Machines
- -앤드류응(Andrew Ng)교수님의Machine Learning강의

https://www.youtube.com/watch?v=Qc5lyLW_hns

https://sooho-kim.tistory.com/85 https://junklee.tistory.com/108

https://www.youtube.com/watch?v=qe3A9B76cRI&t=529s

감사합니다