

K-Nearest Neighbors (KNN) From Scratch

1. Project Overview

This project presents a full **from-scratch implementation of the K-Nearest Neighbors (KNN)** classification algorithm using Python. It demonstrates the core steps of KNN, including distance calculation, neighbor selection, and majority voting—without using machine learning libraries like scikit-learn for the algorithm itself.

2. Dataset Description

The dataset used in this project is the **Cancer Data** from Kaggle.

- Target column: diagnosis (Benign B or Malignant M)
- Input features: Radius, texture, perimeter, area, smoothness, and other tumor characteristics.

3. Data Preprocessing

a. Label Encoding

The diagnosis column is encoded to binary values:

- M → 1 (Malignant)
- B → 0 (Benign)

b. Feature Standardization

To ensure fair distance calculations in KNN, the features are standardized using the **Z-score normalization**:

```
standard_data = (data - mean) / std_dev
```

c. Splitting the Data

The dataset is split into training and testing subsets using train_test_split (70% training, 30% testing).

4. Euclidean Distance Function

Implemented as:

```
def euclidean_distance(x1, x2):
```

```
return np.sqrt(np.sum((x1 - x2)**2))
```

This measures the straight-line distance between two points in multi-dimensional space.

5. KNN Class - Custom Implementation

This project implements the **K-Nearest Neighbors (KNN)** algorithm from scratch using Python and NumPy, without relying on machine learning libraries like scikit-learn.

The logic is encapsulated in a custom KNN class that performs distance calculation, neighbor selection, and majority voting to make predictions.

Class Definition: KNN

```
class KNN:
   def __init__(self, k):
     self.k = k
```

• The constructor initializes the value of k, which represents the number of nearest neighbors used to make the prediction.

Training Method: fit()

```
def fit(self, X, y):
    self.X_train = np.array(X, dtype=np.float64)
    self.y_train = np.array(y)
```

- This method stores the training data and corresponding labels.
- KNN is a **lazy learner**, so no actual training occurs. It just memorizes the training data to use later during prediction.

Prediction Method: predict()

```
def predict(self, X_test):
    predictions = []
    X_test = np.array(X_test, dtype=np.float64)
    for x in X_test:
        # Step 1: Calculate distances
        distances = np.sqrt(np.sum((self.X_train - x)**2, axis=1))
        # Step 2: Find indices of the k closest neighbors
        nearest_neighbors_indices = np.argsort(distances)[:self.k]
        # Step 3: Retrieve the corresponding labels
        nearest_neighbors_labels = self.y_train[nearest_neighbors_indices]
```

Step 4: Perform majority voting

```
prediction = np.argmax(np.bincount(nearest_neighbors_labels))
predictions.append(prediction)
return np.array(predictions)
```

Step-by-Step Explanation:

1. Distance Calculation:

Computes the Euclidean distance from a test point to all training points using vectorized operations:

distances = np.sqrt(np.sum((self.X_train - x)**2, axis=1))

2. Neighbor Selection:

Sorts all distances and picks the indices of the k closest points:

nearest_neighbors_indices = np.argsort(distances)[:self.k]

3. Label Retrieval:

Fetches the labels (0 for benign, 1 for malignant) of the nearest neighbors:

nearest_neighbors_labels = self.y_train[nearest_neighbors_indices]

4. Majority Voting:

Counts the labels and picks the most frequent one using:

prediction = np.argmax(np.bincount(nearest_neighbors_labels))

5. Final Prediction:

The predicted label is stored in a list and returned as a NumPy array.

6. Model Evaluation

After prediction, accuracy is calculated as:

```
acc = np.sum(y_test == predictions) / len(y_test)
```

You also printed actual vs. predicted values for inspection.

6. Visualization - Error Rate vs. K Values

The plot illustrates how the error rate of the KNN classifier varies with different values of k, ranging from 1 to 49. The y-axis represents the error rate (i.e., the proportion of incorrect predictions), and the x-axis shows the corresponding k value. Initially, the error rate decreases sharply, reaching its minimum around k = 9, where the model performs best. After this point, the error rate starts to rise gradually, indicating that higher values of k may lead to underfitting. This visualization helps identify the optimal k value that minimizes error and balances model performance.

7. Results

The KNN classifier achieved strong performance on the test set. From the confusion matrix, we observe that the model correctly predicted **100 out of 100** instances for class 0 and **65 out of 71** instances for class 1. This results in an overall **accuracy of 96%**. In terms of individual class performance, class 0 achieved a **precision of 0.94**, **recall of 1.00**, and **F1-score of 0.97**, while class 1 achieved **perfect precision of 1.00**, **recall of 0.92**, and **F1-score of 0.96**. The **macro and weighted averages** for F1-score are both **0.96**, indicating balanced performance across classes. These metrics confirm that the model not only maintains high accuracy but also performs well in handling both majority and minority classes.

8. Conclusion

This project clearly illustrates:

- The mechanics of implementing the KNN algorithm from scratch
- The role of distance metrics and the impact of choosing different values of k
- How error rate analysis helps in tuning hyperparameters effectively

It's a strong foundational example for understanding non-parametric models in machine learning.