Solution 1

Given: We have a point $p(6,12,4) \in \mathbb{P}^2$. In \mathbb{R}^2 , this point transforms to $\left(\frac{6}{4},\frac{12}{4}\right)$, which simplifies to $\left(\frac{3}{2},3\right)$. Hence, the point $p(6,12,4) \in \mathbb{P}^2$ corresponds to the point $\left(\frac{3}{2},3\right)$ in the 2D plane.

Solution 2

Given: We're provided with a point $(4,1) \in \mathbb{R}^2$.

In \mathbb{P}^2 , this point can be represented as any point of the form:

$$(4\lambda, \lambda, \lambda)$$
, where $\lambda \in \mathbb{R}$
 $\lambda \neq 0$

Solution 3

Suppose $\tilde{p}_1(5,6)$ represents a point in \mathbb{R}^2 in the image I_1 . A possible representation of this point is $p_1(5,6,1)$ in \mathbb{P}^2 .

Given: We know the homography matrix H from image I_1 to I_2 .

Suppose p_2 is the corresponding point of p_1 in I_2 . Then,

$$p_2 = Hp_1$$

$$= \begin{pmatrix} 1 & 3 & 5 \\ 4 & 3 & 7 \\ 5 & -4 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 28 \\ 45 \\ 3 \end{pmatrix}$$

Hence, $p_2=(28,45,3)$ is the projective point in I_2 . Thus, $\tilde{p}_2\left(\frac{28}{3},15\right)$ is the point corresponding to $\tilde{p}_1(5,6)$ in I_2 .

Solution 4

Let \mathbf{x} denote the intersection.

$$\mathbf{x} = l_1 \times l_2$$
= $(3, 2, 1) \times (3, 2, 6)$
= $\begin{vmatrix} i & j & k \\ 3 & 2 & 1 \\ 3 & 2 & 6 \end{vmatrix} = (10, -15, 0)$

Therefore, the intersection of l_1 and l_2 is (10, -15, 0) in \mathbb{P}^2

Solution 5

Consider lines $l_1(3,2,1)$ and $l_2(3,2,6)$ in \mathbb{P}^2 . Since these lines are parallel (as the first two coordinates are equal), their intersection will be an ideal point.

Solution 6

Let \tilde{L} represent the transformation of $L_{\infty}=(0,0,1)$ with respect to H. The transformed line passes through the points Hx lying on L_{∞} , i.e., $x^TL_{\infty}=0$. Hence,

$$(Hx)^T \tilde{L} = 0$$
$$\Longrightarrow x^T H^T \tilde{L} = 0$$

From the above two equations,

$$L_{\infty} = H^T \tilde{L}$$

$$\Longrightarrow \tilde{L} = (H^T)^{-1} L_{\infty}$$

Since
$$H = \begin{pmatrix} 2 & 3 & -4 \\ -4 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
, its inverse, $H^{-1} = \frac{1}{84} \begin{pmatrix} 1 & -7 & 18 \\ 10 & 14 & 12 \\ -13 & 7 & 18 \end{pmatrix}$

Thus,

$$\tilde{L} = (H^T)^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{84} \begin{pmatrix} 1 & 10 & -13 \\ -7 & 14 & 7 \\ 18 & 12 & 18 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= \frac{1}{84} \begin{pmatrix} -13 \\ 7 \\ 18 \end{pmatrix}$$

Thus, the vanishing line in the transformed space is $\tilde{L}=\left(\frac{-13}{84},\frac{1}{12},\frac{3}{14}\right)$