

Tutorial

Using Computational Tools and Programs for Bioinformatics

Presented by: Eric Arezza

Learning Goals

Computer Literacy and Setup

- 1) Fundamentals
 - Navigate in the terminal with command-line operations
 - Simple exploration of data
 - Connect to remote computers and transfer files
- 2) Programming essentials
 - Basics of Shell, Python, and R
 - IDEs and managing environments
 - Jupyter notebooks
- 3) GitHub

Computer Literacy and Setup

- Everyone has different levels of computer literacy depending on their jobs, hobbies, experiences, etc...
- This tutorial is <u>meant</u> to provide an introduction to:
 - Be familiar with computers from a programmer's perspective
 - Become comfortable with seeing/using different tools
 - Understand how you can use lab scripts for bioinformatics
- This tutorial is <u>NOT meant</u> to:
 - Make you a computer expert or programmer
 - Be daunting, confusing, or boring

- Navigate in the terminal with command-line operations
 - Open terminal with Ctrl+Alt+T (or find with search toolbar)

```
eric@thinkpad: ~
eric@thinkpad:~$
    computer
                prompt $
          current
user
          directory ~
```


Command	Useful Options	Description
pwd		Print current directory
Is	-l -a -h	List files
cd		Change directory
mkdir		Make directory
rm	-r	Remove
mv		Move
ср	-r	Сору
cat		Concatenate contents of file
head/tail	-n	Show head or tail contents of file
WC		Count file contents
nano		File editor

^{***}Different commands for Windows***

- Simple exploration of data
 - Get file sizes
 - Count lines in file
 - Search for pattern in file (more advanced, "|" pipe and grep <pattern>)
 - Output to new file with ">"
- Tips:
 - Use tab-completion
 - Use up/down arrow for previously executed commands
 - Use "../" to move back up file tree or "~" for home directory
 - Use "*" wildcard character for multiple matches

Connect to remote computers using ssh:
 ssh <username>@<remoteserver.ca>

- Transfer files using scp (alternative is rsync):
 - To remote computer
 scp_myFile.txt_user@remote.ca:~/files/
 - From remote computer
 scp -r user@remote.ca:~/files/ ./

Programming Essentials

Shell

Python

- Open-source, free to use
- All used to perform functions instructed by the programmer
 - Many functions are pre-written and packaged for download + installation
 - Same functions may be written in either or all languages
- Differences in syntax
- Executes code sequentially
- Great for automation

Programming (Coding) Languages

Shell - on Unix (Linux, macOS)

- What we have been using thus far interactively in the terminal, can be much more elaborate and saved to file
- Script file extension .sh
- Script starts with #!/bin/bash
- Execute by

sh myScript.sh ./myScript.sh (if in same directory)

PowerShell – on Windows

- Has similar utility, but different commands
- Windows file paths delimited by "\" instead of "/"

Programming (Coding) Languages

Python

- Script file extension .py
- Script starts with #!/bin/python
- Execute by python myScript.py

<u>R</u>

- Script file extension .R
- Script starts with #!/bin/R
- Execute by

Rscript myScript.R

Programming IDEs

- "Integrated Development Environment"
- Complete graphical user interfaces with development tools
 - Debugging/troubleshooting
 - Profilers for performance/efficiency
 - Viewing plots
 - Etc...
- IDEs shown here:
 - Spyder (for Python)
 - Rstudio (for R)

Programming IDEs

Spyder

Programming IDEs

RStudio

Managing Environments

- Typically, do not want all installed packages/libraries in the same environment
 - Conflicts between packages, functions, methods
 - Conflicts between versions
 - Etc...
- More often required with Python, not as much with R
- Two commonly used package managers, install:
 - Virtualenv
 - · CONDA

Managing Environments

Virtualenv Usage

- Createvenv -m myENV
- Activate source myENV/bin/activate
- Install packages pip install <package-name>
- View packages
 pip list
- Deactivate deactivate

Conda Usage

- Create conda create -n myENV
- Activate conda activate myENV
- Install packages
 conda install <package-name>
- View packages conda list
- Deactivate
 conda deactivate

Managing Environments

 Only the functions/programs installed in the current environment will be usable while in that environment

```
eric@thinkpad: ~ Q = - □ ×

(base) eric@thinkpad: ~$ conda activate scENV

(scENV) eric@thinkpad: ~$ conda deactivate

(base) eric@thinkpad: ~$

(base) eric@thinkpad: ~$

(base) eric@thinkpad: ~$

Environment
```


Jupyter Notebooks

 Jupyter provides a web browser interface to the file system and programming languages from which it's run

Jupyter Notebooks

- Notebooks enable you to interact with code, view plots, and can contain any type of (HTML) web page content
- File extension .ipynb

Jupyter Notebooks **Programming** Notebook file Language Toolbars jupyter scRNAseq_Notebook (autosaved) Logout Widaets Python 3 (ipykernel) O Not Trusted 222 Single-Cell Analysis & Exploration Notebook In []: data.obs 1: data.var If cells and genes need to be swapped, uncomment and run the following cell to transpose the count matrix: Coding Markdown (HTML) Cells Cells 19

Programming Final Statement

- Problems will almost always arise
- Things might not work how you expect
- Can always improve how things are done

- Google is your best friend
- Stack Overflow/Exchange will likely have a solution for every problem
- Be patient and try to use the right search terms

GitHub

- Hosts code, programs, files, etc...for software developers
- Allows people to share their projects
- Uses Git (a version control system)
 - Enables tracking of software development

- Bioinformatics Examples:
 - https://github.com/macs3-project/MACS
 - https://github.com/mikelove/DESeq2
 - https://github.com/Dilworth-Laboratory

Questions?

Contact: earezza@ohri.ca