Performance Analysis

CS121 Parallel Computing Spring 2017

Parallel performance

- Ideally, a program runs k times faster on k processors than on one.
 - Almost never achieved in practice. Why?
- Goal Given a parallel program, understand its performance under increasing levels of parallelism.
 - □ Identify performance bottlenecks.
 - Compare different algorithms for a problem.
- Try to abstract away machine details.
 - ☐ Find performance properties that hold regardless of architecture.
 - □ Use asymptotic analysis.

Speedup

- For a given problem X and parallel algorithm A solving X, let
 - \Box T_s = minimum time to solve X on one processor, i.e. the time for the best sequential algorithm.
 - \Box T₁ = time algorithm A takes using one processor.
 - $T_1 \ge T_s$.
 - \Box T_p = time algorithm A takes using p processors.
- Absolute speedup $S_p^* = T_s / T_p$.
 - □ Compare A with the best sequential algorithm.
- Relative speedup, aka scalability $S_p = T_1 / T_p$.
 - □ Compare A with itself on different machine sizes.
 - □ Focus on scalability, since hard to know what best sequential algorithm is.
- Work $W_p = p T_p =$ "total cycles burned" by p processors.
 - \Box p $T_p \ge T_s$, because parallel system has to do at least as much total work as the best sequential algorithm.
- Efficiency $E_p = S_p / p = speedup per processor.$
 - □ Typically \leq 1 due to overhead.
 - □ But can be > 1 in practice in special circumstances.

M

Overheads

- Linear scalability $S_p = p$.
- Hard to achieve due to overheads.
 - Communication and synchronization time between processors.
 - Processors can idle due to poor partitioning or load imbalance.
 - Sometimes cheaper for a processor to redo a computation than get the result from another processor. But this increases overall computation.
- Sometimes the best sequential algorithm is not parallelizable.
 - □ Must choose more work intensive (higher W_p) but more parallelizable algorithm.
 - □ Ex Dijkstra's shortest path algorithm does less work than Bellman-Ford, but BF is more parallelizable.

Execution profile

M

DAG model

- Nodes represent computations / tasks.
 - □ Can be weighted to represent different task sizes.
- Directed edges represent dependencies between tasks.
 - □ (u,v) indicates task u must finish before task v completes.
 - Can be weighted to indicate communication, startup cost etc. for task.
 - Assume default weight is 0.
- Graph can't contain cycles, i.e. computation must eventually finish.
- Critical path is length of longest directed path in graph.

DAG model

- Given a dag G, let
 - \Box C = sum of node and edge weights in G.
 - \square D = length of critical path in G.
 - \Box T_p = time taken by p processors to execute G.
 - \Box T_{∞} = minimum time to execute G using arbitrary number of processors.
- Assume p processors, each doing one unit of work per time step.
- Work law $p T_p \ge C$.
 - □ I.e. $T_p \ge C$ / p. Places lower bound on parallel running time.
 - Holds because processors must do all the work in G.
- Span law $T_{\infty} \ge D$.
 - Due to dependency, tasks along critical path must be done sequentially, regardless of number of processors.

b/A

Amdahl's Law

- Another upper bound maximum speedup achievable of a program.
- Let T₁ be time to run a program using one processor.
 - Assume f fraction of it the program is inherently sequential, i.e. cannot be parallelized.
 - \Box f T₁ amount of work is sequential.
 - \Box (1-f) T_1 amount of work is parallelizable.
- On parallel computer with p processors
 - □ Sequential part still takes f T₁ time.
 - □ Parallel part takes (1-f) T₁ / p time.
 - \square Total time $T_p = f T_1 + (1-f) T_1 / p$.

be.

Amdahl's Law

$$S(p) = \frac{T_1}{T_P} = \frac{T_1}{fT_1 + \frac{(1-f)T_1}{p}} = \frac{1}{f + \frac{1-f}{p}}$$

- As p increases, second term in denominator gets smaller, but first term always stays the same.
- So S(p) < 1/f always.
 - Speedup never exceeds one divided by the fraction of sequential work.

Amdahl's Law

Source: Wikipedia

- Even with a small proportion of sequential work, parallelism is very limited.
- Suggests it's pointless to build large computers with thousands of cores, since they can't improve performance much.
- But, in real world large scale parallelism is very useful. Why?

Gustafson's Law

- Gustafson's law tries to explain why real parallel systems often get good speedup.
- Amdahl's Law assumes a fixed problem size, and looks at runtime as we increase parallelism.
- But when parallelism increases, we often try to solve a larger (scaled) problem.
 - Ex Given few processors, we try to solve a coarse weather model.
 Given more processors, we try to solve a finer model.
- Gustafson's Law assumes size of scaled problem is chosen so the parallel running time stays the same as the running time of the original problem.
- Gustafson's Law also assumes the sequential work in the scaled and unscaled problems are the same.
 - Ex For weather prediction, sequential work may be initialization, which is roughly same in coarse and fine model.
 - This assumption may or may not be valid in practice.
- The parallel work increases in the scaled problem.
 - Ex Parallel work (the actual weather simulation) increases in finer model.

Gustafson's Law

- Given p processors
 - □ Sequential work is still f T₁.
 - \square Parallel work chosen to be p(1-f) T₁.
 - \Box $T_p = f T_1 + p(1-f) T_1 / p = f T_1 + (1-f) T_1 = T_s$.
 - Parallel running time on larger problem equals sequential running time for original small problem, as per assumption.
- Size of scaled problem is $f T_1 + p(1-f) T_1$.
- So a sequential processor takes $T'_1 = f T_1 + p(1-f) T_1$ time to solve scaled problem.
- Scaled speedup ratio

$$S_p = \frac{T_1'}{T_p} = \frac{fT_1 + p(1-f)T_1}{T_1} = f + p(1-f) = p - (p-1)f$$

M

Comparison and limitations

- Gustafson's Law predicts much better speedup than Amdahl's Law.
- Ex For f = 0.05, p = 50.
 - \square Amdahl's Law gives speedup = 1 / (0.05+.95/50) = 14.5
 - \square Gustafson's Law gives speedup = 50-49*0.05 = 47.6
- Amdahl's Law also called strong scaling, i.e. performance improvement for fixed problem size and increasing processors.
- Gustafson's Law also called weak scaling, i.e. performance improvement for fixed problem size per processor.
- Which assumption is more appropriate for given problem determines which law applicable.
- Important shortcoming of Amdahl's and Gustafson's Laws is they ignore overhead as parallelism increases.

Karp-Flatt metric

- Capture parallelism overhead using empirical observations.
- Given a program, let T_q and T_r be the sequential and parallelizable part, resp.

$$\Box T_1 = T_a + T_r.$$

- **Experimentally determined serial fraction e** = T_q / T_1 .
 - A priori we don't know e. But we can determine it through other measurable quantities.

$$T_p = T_q + \frac{T_r}{p} = T_1 e + \frac{T_1(1-e)}{p}$$

$$T_p = e + \frac{(1-e)}{p} = \frac{1}{S_p}$$

•
$$e = (\frac{1}{S_p} - \frac{1}{p})/(1 - \frac{1}{p})$$

 S_p can be determined experimentally by running the program. Then we can use S_p to determine the serial fraction e.

Karp-Flatt metric

$$e = (\frac{1}{S_p} - \frac{1}{p})/(1 - \frac{1}{p})$$

Suppose observed speedups for a program are

p	2	3	4	5	6	7	8
S_p	1.87	2.61	3.23	3.73	4.14	4.46	4.71
е	0.07	0.75	80.0	0.085	0.09	0.095	0.1

Source: https://www3.nd.edu/~zxu2/ACMS40212-S15.html

Since e increases with p, this says overhead is increasing with parallelism.

р	2	3	4	5	6	7	8
S_p	1.82	2.50	3.08	3.57	4.00	4.38	4.71
е	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Since e is constant with p, overhead does not increase.

100

Asymptotic complexity

- Compare trends in the sizes of two functions.
- Given functions f(n) and g(n), there are 5 comparison operators.
 - □ Analogous to the 5 comparison operators for numbers.

Notation	Analogy	Formal definition
f(n) = O(g(n))	$f \le g$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$
$f(n) = \Omega(g(n))$	$f \ge g$	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 $
$f(n) = \Theta(g(n))$	f = g	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \ 0 < c < \infty$
f(n) = o(g(n))	f < g	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 $
$f(n) = \omega(g(n))$	f > g	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty $

Examples

Source: Introduction to Algorithms, Cormen et al

Example	Proof		
n = O(2n)	$\lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2} < \infty$		
$10n^2 = O(n^2)$	$\lim_{n\to\infty} \frac{10n^2}{n^2} = 10 < \infty$		
$n = O(n^2)$	$\lim_{n\to\infty} \frac{n}{n^2} = 0 < \infty$		
$n^2 = O(2^n)$	$\lim_{n\to\infty} \frac{n^2}{2^n} = 0 < \infty$		
$n \neq O(\sqrt{n})$	$\lim_{n\to\infty} \frac{n}{\sqrt{n}} = \lim_{n\to\infty} \sqrt{n} = \infty$		

Example	Proof
$n = \Omega(2n)$	$\lim_{n\to\infty} \frac{n}{2n} = \frac{1}{2} > 0$
$\boxed{10n^2 = \Omega(n^2)}$	$\lim_{n \to \infty} \frac{10n^2}{n^2} = 10 > 0$
$n^2 = \Omega(n)$	$\lim_{n\to\infty} \frac{n^2}{n} = \infty > 0$
$n = \Omega(\log n)$	$\lim_{n\to\infty} \frac{n}{\log n} = \infty > 0$
$n^2 \neq \Omega(2^n)$	$\lim_{n\to\infty} \frac{n^2}{2^n} = 0$

Ŋ.

Isoefficiency

- Another way to measure scalability, by looking at the amount of useful work vs overhead as we scale the problem and system.
- Given a problem of size n and p processors, let
 - \square W(n,p) = useful work done by processors.
 - $\square \gamma(n,p)$ = overhead from parallelism.
 - \square Both W and γ increase in n and p.

■ Efficiency
$$E = \frac{W(n,p)}{W(n,p)+\gamma(n,p)} = \frac{1}{1+\frac{\gamma(n,p)}{W(n,p)}}$$
.

- Goal is to maintain the same (iso)efficiency as the number of processors increases.
 - Whether this is possible depends on the relative rate of increase of W vs γ .

10

Work vs overhead

- As p increases but n stays constant, γ typically increases faster than W.
 - More processors have to do more communication, synchronization, etc.
 - Efficiency decreases for constant problem size and increasing number of processors.
- **As** n increases but p stays constant, W typically increases faster than γ .
 - There's more work per processor, so they can spend more time computing instead of communicating.
 - Efficiency increases for constant number of processors and increasing problem size.
- Thus, can use increase in problem size to balance increase in processor count to maintain efficiency, i.e. achieve isoefficiency.

Examples

- $\blacksquare \quad \mathsf{Ex} \ W(n,p) = n \ \log n, \ \gamma(n,p) = n \log p$
 - $\Box E = \frac{1}{1 + \frac{n \log p}{n \log n}} = \frac{1}{1 + \frac{\log p}{\log n}}$
 - □ So if log $n = \Omega(\log p)$, i.e. $n = \Omega(p)$, can maintain isoefficiency.
- $\blacksquare \times W(n,p) = n, \gamma(n,p) = p^{3/2} + p^{3/4}n^{3/4}$
 - ☐ Find isoefficiency problem size for each term separately.
 - \square For first term, need $n = \Omega(p^{3/2})$.
 - \square For second term, need $n=\Omega(p^{3/4}n^{3/4})$, so $n^{1/4}=p^{3/4}$, so $n=\Omega(p^3)$.
 - \square Thus, $n = \Omega(p^3)$ maintains isoefficiency.
- - $\Box E = \frac{1}{1 + \log p}$, i.e. E decreases in p, regardless of n.
 - □ So not possible to maintain isoefficiency.