# Project 4 West Nile Virus Prediction

24 Sep 2022 Wei Hao Connie Ethan Yonghe Anand

### Agenda

| Contents                                     | Presenter      |
|----------------------------------------------|----------------|
| Problem Statement & Background               | Anand          |
| Data Cleaning                                | Ethan          |
| EDA                                          | Ethan          |
| Feature Engineering                          | Weihao         |
| Modelling                                    | Weihao/ Yonghe |
| Model Evaluation                             | Yonghe         |
| Cost Benefit Analysis                        | Anand          |
| Spray Analysis                               | Connie         |
| Conclusion, Considerations & Recommendations | Connie         |

### **Problem Statement**

In order to efficiently combat the West Nile Virus in Chicago we aim:

- To build a model and make predictions that the city of Chicago can use about when and where when it decides to spray pesticides
- To conduct a cost-benefit analysis that include annual cost projections for various levels of pesticide coverage (cost) and the effect of these various levels of pesticide coverage (benefit)

### **Background - About Chicago**

- City in the State of Illinois
- Third latest city in the US
- Home to 2.7 million residents
- Land size about 600 km<sup>2</sup> (Singapore is about 728 km<sup>2</sup>)
- Extensive parklands, including 30km<sup>2</sup> of city parks attract estimated 86 million visitors annually
- Very passionate sports town





### **Background - West Nile Virus**

#### What is the West Nile Virus?

- Causes the West Nile Fever infection
- 80% of infections have no symptoms
- 20% of people develop a fever, headache, vomiting, or a rash

#### Transmission of Virus

- West Nile Virus is found in birds
- Birds transmit the virus to mosquitoes who then infect humans and animals



### Background - WNV in Chicago

- Chicago has one of the highest death rates of West Nile Virus in the US
- Symptoms include: Headache and bodyache, joint pain, vomiting, diarrhea, etc
- 1 in 150 develop serious symptoms: Encephalitis, Meningitis
- 1 in 10 cases result in death
- No vaccine is available



### **Background - Life cycle of Culex species**

- Eggs to larva within 48 hours
- Larvae live in water, develop into pupae in 5 days
- Pupae also live in water, develop into flying mosquito in 2-3 days
- In total, about <u>7-10</u> days for an egg to develop into an adult mosquito
- Information is crucial for determining the frequency on when to spray to prevent the spread of the West Nile Virus



### **Data Description**

#### **Years available for each Dataset**

| Dataset | 2007     | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | Rows    | Columns |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|---------|---------|
| Train   | <b>✓</b> |          | <b>✓</b> |          | <b>~</b> |          | •        |          | 10,506  | 12      |
| Test    |          | <b>✓</b> |          | <b>✓</b> |          | <b>~</b> |          | <b>~</b> | 116,293 | 11      |
| Weather | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>~</b> | <b>~</b> | <b>~</b> | <b>✓</b> | 13,710  | 22      |
| Spray   |          |          |          |          | ~        |          | ~        |          | 2,944   | 4       |

### **Data Cleaning - Train**

#### **Observations**

No null values in all columns



#### **Data Cleaning**

Change "Date" data-type to datetime

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10506 entries, 0 to 10505
Data columns (total 12 columns):
     Column
                            Non-Null Count Dtype
                            10506 non-null object
     Date
    Address
                            10506 non-null object
                            10506 non-null object
     Species
     Block.
                            10506 non-null int64
     Street
                            10506 non-null object
                            10506 non-null object
    Trap
    AddressNumberAndStreet 10506 non-null object
                            10506 non-null float64
     Latitude
     Longitude
                            10506 non-null
                                            float64
     AddressAccuracy
                            10506 non-null
                                            int64
    NumMosquitos
                            10506 non-null int64
    WnvPresent
                            10506 non-null int64
dtypes: float64(2), int64(4), object(6)
memory usage: 985.1+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10506 entries, 0 to 10505
Data columns (total 12 columns):
    Column
                            Non-Null Count Dtype
    Date
                            10506 non-null datetime64[ns]
    Address
                            10506 non-null object
    Species
                            10506 non-null object
    Block
                            10506 non-null int64
                            10506 non-null object
    Street
                            10506 non-null object
     Trap
    AddressNumberAndStreet 10506 non-null object
    Latitude
                            10506 non-null float64
    Longitude
                            10506 non-null float64
    AddressAccuracy
                            10506 non-null int64
    NumMosquitos
                             10506 non-null int64
 11 WnvPresent
                            10506 non-null int64
dtypes: datetime64[ns](1), float64(2), int64(4), object(5)
memory usage: 985.1+ KB
```

### **Data Cleaning - Test**

#### **Observations**

No null values in all columns

dtypes: float64(2), int64(3), object(6)

memory usage: 9.8+ MB



#### <class 'pandas.core.frame.DataFrame'> RangeIndex: 116293 entries, 0 to 116292 Data columns (total 11 columns): Column Non-Null Count Dtype Td 116293 non-null int64 116293 non-null object Date Address 116293 non-null object 116293 non-null Species object Block. 116293 non-null int64 Street 116293 non-null object Trap 116293 non-null object AddressNumberAndStreet 116293 non-null object Latitude 116293 non-null float64 Longitude 116293 non-null float64 AddressAccuracy 116293 non-null int64

#### **Data Cleaning**

Change "Date" data-type to datetime

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 116293 entries, 0 to 116292
Data columns (total 11 columns):
    Column
                            Non-Null Count
                                             Dtype
    Id
                            116293 non-null int64
                            116293 non-null datetime64[ns]
    Date
    Address
                            116293 non-null object
    Species
                            116293 non-null object
    Block.
                            116293 non-null int64
    Street
                            116293 non-null object
    Trap
                            116293 non-null object
    AddressNumberAndStreet 116293 non-null object
    Latitude
                            116293 non-null float64
     Longitude
                            116293 non-null float64
    AddressAccuracy
                            116293 non-null int64
dtypes: datetime64[ns](1), float64(2), int64(3), object(5)
memory usage: 9.8+ MB
```

### Data Cleaning - Spray data

#### **Observations**

- 584 null values in "Time" column
- 541 duplicated rows
- All null and duplicate values happen on one single date <u>2011-09-07</u>

#### **Data Cleaning**

- Drop nulls
- Drop duplicates
- Change "Date" data-type to datetime

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 13710 entries, 0 to 14834
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--------
0 Date 13710 non-null datetime64[ns]
1 Time 13710 non-null object
2 Latitude 13710 non-null float64
3 Longitude 13710 non-null float64
dtypes: datetime64[ns](1), float64(2), object(1)
memory usage: 535.5+ KB
```



### **Data Cleaning - Weather data**

#### **Observations**

- No null values in all columns
- Some non-numeric values in some columns (e.g. "M" in Tavg, "T" in PrecipTotal)
- "-" in Sunset and Sunrise only for Station 2

#### **Data Cleaning**

- Change "Date" data-type to datetime
- When reasonably possible, change non-numeric to numeric data
- Update Sunset and Sunrise times for Station 2 data

|      | Station | Date 1         | Tmax | Tmin  | Tavg | Depart | DewPoint 1 | WetBulb | Heat ( | ool ! | Sunrise Sunse | t CodeSun | n Dep  | th Water | 1 SnowF | all Prec | ipTotal |                |         |      |      |       |        |          |         |      |      |         |        |          |
|------|---------|----------------|------|-------|------|--------|------------|---------|--------|-------|---------------|-----------|--------|----------|---------|----------|---------|----------------|---------|------|------|-------|--------|----------|---------|------|------|---------|--------|----------|
|      | 2       | 2007-<br>05-04 | 78   | 51    | М    | М      | 42         | 50      | М      | М     |               | 8         |        | М        | и       | м        | 0.00    |                | Station | Tmax | Tmin | Tavg  | Depart | DewPoint | WetBulb | Heat | Cool | Sunrise | Sunset | CodeSum  |
| 505  | 2       | 2008-<br>07-08 | 86   | 46    | М    | M      | 68         | 71      | М      | M     |               | - TSR/    | A      | M I      | И       | М        | 0.28    | Date           |         |      |      |       |        |          |         |      |      |         |        |          |
| 675  | 2       | 2008-<br>10-01 | 62   | 46    | М    | М      | 41         | 47      | М      | М     |               |           |        | м і      | и       | м        | 0.00    | 2007-          | 2       | 84   | 52   | 68.00 | М      | 51       | 57      | 0    | 3    | 448     | 1849   |          |
| 1637 | 2       | 2011-<br>07-22 | 100  | 71    | М    | М      | 70         | 74      | М      | М     |               | TS TSR/   | A<br>R | M I      | и       | М        | 0.14    | 05-01          |         |      |      |       |        |          |         |      |      |         |        | 20022002 |
| 2067 | 2       | 2012-<br>08-22 | 84   | 72    | М    | М      | 51         | 61      | М      | М     |               |           |        | M I      | и       | М        | 0.0     | 07-<br>2       | 2       | 60   | 43   | 52.00 | M      | 42       | 47      | 13   | 0    | 447     | 1850   | BR HZ    |
| 2211 | 2       | 2013-<br>05-02 | 71   | 42    | М    | М      | 39         | 45      | М      | М     |               |           |        | м і      | и       | м        | 0.00    | 2007-          | 2       | 67   | 48   | 58.00 | М      | 40       | 50      | 7    | 0    | 446     | 1851   | HZ       |
| 2501 | 2       | 2013-<br>09-24 | 91   | 52    | М    | М      | 48         | 54      | М      | М     |               |           |        | м і      | и       | М        | 0.00    | 05-03          | Ť.      |      | -    | 30.00 | San    | 10       |         | 0.0  | ŭ    | 17.7    | 100    | 1,-      |
| 2511 | 2       | 2013-<br>09-29 | 84   | 53    | М    | M      | 48         | 54      | М      | М     |               | - RABF    | R      | м і      | И       | М        | 0.22    | 2007-<br>05-04 | 2       | 78   | 51   | 64.50 | М      | 42       | 50      | M    | M    | 444     | 1852   |          |
| 2525 | 2       | 2013-<br>10-06 | 76   | 48    | М    | М      | 44         | 50      | М      | М     |               | - RADZBF  | R      | м        | и       | м        | 0.06    | 2007-          | 2       | 66   | 54   | 60.00 | М      | 39       | 50      | 5    | 0    | 443     | 1853   |          |
| 2579 | 2       | 2014-<br>05-02 | 80   | 47    | М    | М      | 43         | 47      | М      | М     |               | - R/      | A .    | М        | И       | М        | 0.04    | 05-05          | 2       | 00   | 54   | 00.00 | IVI    | 39       | .50     | 3    | U    | 443     | 1000   |          |
|      |         | 2014           |      | 10/15 |      |        |            |         |        |       |               |           |        |          |         |          |         |                |         |      |      |       |        |          |         |      |      |         |        |          |

### **EDA - Trap Locations**

- 136 trap locations are scattered across Chicago, represented by black dots
- Size of black dots represents the number of mosquitoes caught
- Weather stations are represented by yellow dots
- Station 1: Chicago O'Hare International Airport
- Station 2: Chicago Midway International Airport



### **EDA - Mosquito Species**

- There are 7 unique species in the **Train** dataset
- Only 3 species are found to spread the West Nile Virus
  - Culex Pipiens/Restuans
  - Culex Restuans
  - Culex Pipiens
- The species that do not spread the virus have low counts in the Train set, <u>but</u> <u>high counts in the Test set</u>





### **EDA - Seasonality Effects**

- WNV cases tend to see a sharp peak in August before dropping
- The number of mosquitoes caught show a similar trend where there is a sharp peak before dropping
- There is likely a time lag between mosquitoes caught and WNV cases
- WNV cases coincides with the summer months of early June to end August



### **EDA - Spray Data**

- Pink dots represent locations where WNV cases are present ("hotspots")
- Black and pink dots tend to coincide
- Orange areas show where spraying takes place - Not all hotspots or locations with mosquitoes are being sprayed
- It is difficult to visualise the relationship now - we will focus on the spray effects at particular times later



### **EDA - Weather Data**

#### Correlation table with numeric data

- Max, Min, Average Temperature
- Dewpoint
- Sunset and sunrise
- Precipitation
- Wind Speed (mph)
- Wind Direction
- Day length

#### Features with higher correlation:

Temperature and Dewpoint



### **EDA - Selected Weather Data**

#### **Interesting observations:**

- Mean precipitation: Oct 2009 looks like an outlier as there is only one data point in that month
- Dewpoint: Follows a similar seasonal trend to temperature as they are highly correlated
- Day length: Calculated as part of Feature Engineering. Days get shorter after the summer months.











All other species which do not carry the West Nile Virus will be regrouped to 'OTHERS'

- Trap locations are grouped together into 30 clusters using K Means clustering
- These values are then dummified
- Clustering was derived on Train data and subsequently used to predict clustering on Test



- Traps are assigned to the nearest weather stations based on proximity
- Weather recorded on the same day is different for both stations
- Blue dots: Closer to Station 1
- Orange dots: Closer to Station 2
- Weather data are then assigned to each trap location



Weather features are further transformed with:

- Shifting feature forward for period of 6 days
- 2. Looking back 12 days and taking the mean
- 3. Looking back 14 days and taking the max

Example is shown on the right for Transformation 1 & 2.



After Feature Engineering, dataset would have a total of 86 features, consisting of:

- Time features (Date, year, month, week etc)
- Location features (Address, Block, Street, Longitude, Latitude etc)
- Mosquito Species (3 dummy variables)
- 30 trap clusters
- 9 weather features
- 27 (9x3) transformed weather features

```
Index(['Date', 'Address', 'Block', 'Street', 'Trap', 'AddressNumberAndStreet',
       'Latitude', 'Longitude', 'AddressAccuracy', 'NumMosquitos',
       'WnvPresent', 'geometry', 'year', 'month', 'week', 'day', 'year_month',
       'Station', 'Species CULEX PIPIENS/RESTUANS', 'Species CULEX RESTUANS',
        'Species_OTHERS', 'trap_cluster_1', 'trap_cluster_2', 'trap_cluster_3',
       'trap cluster 4', 'trap cluster 5', 'trap cluster 6', 'trap cluster 7',
       'trap cluster 8', 'trap cluster 9', 'trap cluster 10',
       'trap cluster 11', 'trap cluster 12', 'trap cluster 13',
       'trap cluster 14', 'trap cluster 15', 'trap cluster 16',
       'trap cluster 17', 'trap cluster 18', 'trap cluster 19',
       'trap cluster 20', 'trap cluster 21', 'trap cluster 22',
       'trap cluster 23', 'trap cluster 24', 'trap cluster 25',
       'trap cluster 26', 'trap cluster 27', 'trap cluster 28',
       'trap cluster 29', 'Tmax', 'Tmin', 'Tavg', 'DewPoint', 'Sunrise',
       'Sunset', 'Day length', 'PrecipTotal', 'ResultSpeed', 'Tmax-6',
       'Tmin-6', 'Tavg-6', 'DewPoint-6', 'Sunrise-6', 'Sunset-6',
       'Day_length-6', 'PrecipTotal-6', 'ResultSpeed-6', 'Tmax-avg-12',
       'Tmin-avg-12', 'Tavg-avg-12', 'DewPoint-avg-12', 'Sunrise-avg-12',
       'Sunset-avg-12', 'Day length-avg-12', 'PrecipTotal-avg-12',
       'ResultSpeed-avg-12', 'Tmax-max-14', 'Tmin-max-14', 'Tavg-max-14',
       'DewPoint-max-14', 'Sunrise-max-14', 'Sunset-max-14',
        'Day length-max-14', 'PrecipTotal-max-14', 'ResultSpeed-max-14'],
      dtype='object')
```

### **Modelling**

- Handle Imbalance Data
- Evaluation Metrics
- Model Evaluation

### **Modelling - Handle Imbalance Data**

#### **Train Data**

| WNV Present | Percentage |  |  |  |  |
|-------------|------------|--|--|--|--|
| 0           | 95%        |  |  |  |  |
| 1           | 5%         |  |  |  |  |



#### **Processed Train Data to feed into models**

| WNV Present | Percentage |  |  |  |  |
|-------------|------------|--|--|--|--|
| 0           | 67%        |  |  |  |  |
| 1           | 33%        |  |  |  |  |

| WNV Present | Percentage |  |  |  |  |
|-------------|------------|--|--|--|--|
| 0           | 95%        |  |  |  |  |
| 1           | 5%         |  |  |  |  |



| WNV Present | Percentage |
|-------------|------------|
| 0           | 67%        |
| 1           | 33%        |

### **Modelling - Evaluation Metrics**

#### Precision-Recall AUC Score:

- Also known as the Average Precision Score, it is a way to summarize the Precision-Recall curve into a single value
- Used when data is heavily imbalance and when you care more about the positive class

```
GridSearchCV(pipe, # what object are we optimizing?

param_grid = pipe_params, # what parameters values are we searching?

cv=3, # 3-fold cross-validation.

n_jobs=-1,

scoring='average_precision' #'average_precision' = precision_recall_auc_score
)
```

#### F1 Score

- Harmonic mean of the precision and recall
- Used when you care more about the positive class

### Models

| 1 | DummyClassifier always predicting 'WnvPresent' to be 1 |
|---|--------------------------------------------------------|
| 2 | OverSampling + UnderSampling + GradientBoost           |
| 3 | OverSampling + UnderSampling + RandomForest            |
| 4 | OverSampling + UnderSampling + LightGBM                |
| 5 | Smote + GradientBoost                                  |
| 6 | Smote + RandomForest                                   |
| 7 | Smote + LightGBM                                       |

For sake of time, we will only be covering Models 1, 2 & 7 in this presentation.

### **Model 1: Baseline Model**

#### DummyClassifier always predicting 'WnvPresent' to be 1

precision\_recall\_auc\_score on training set: 0.052
precision\_recall\_auc\_score on testing set: 0.052
perc\_diff: 0.3 %

f1\_score on training set: 0.100
f1\_score on testing set: 0.099
perc\_diff: 0.3 %

| Train Data     |            |  |  |  |  |  |  |  |  |
|----------------|------------|--|--|--|--|--|--|--|--|
| WNV<br>Present | Percentage |  |  |  |  |  |  |  |  |
| 0              | 95%        |  |  |  |  |  |  |  |  |
| 1              | 5%         |  |  |  |  |  |  |  |  |



### Model 2:

#### OverSampling + UnderSampling + GradientBoostingClassifier

```
precision_recall_auc_score on training set: 0.281
precision_recall_auc_score on testing set: 0.255
perc_diff: 9.3 % (from 0.05 to 0.25)
```

```
f1_score on training set: 0.342
f1_score on testing set: 0.277
perc_diff: 19.0 % (from 0.09 to 0.27)
```



### Model 7:

#### SMOTE + LGBMClassifier

```
precision_recall_auc_score on training set: 0.328
precision_recall_auc_score on testing set: 0.307
perc_diff: 6.7 % (from 0.25 to 0.30)
```

```
f1_score on training set: 0.313
f1_score on testing set: 0.316
perc_diff: 1.0 % (from 0.27 to 0.31)
```



### **Model Evaluation**

#### **Precision-Recall Curve**



#### **ROC** curve



### **Model Evaluation**

| Models                    | PR_AUC_Train | PR_Auc_Test | Generalization | F1_train | F1_test | Generalization |
|---------------------------|--------------|-------------|----------------|----------|---------|----------------|
| Baseline Model            | 0.05         | 0.05        | 0.27           | 0.10     | 0.10    | 0.25           |
| O/S + U/S + GradientBoost | 0.28         | 0.25        | 9.33           | 0.34     | 0.28    | 18.95          |
| O/S + U/S + RandomForest  | 0.21         | 0.20        | 4.59           | 0.17     | 0.16    | 5.62           |
| O/S + U/S + LightGBM      | 0.28         | 0.26        | 4.67           | 0.32     | 0.29    | 9.15           |
| Smote + GradientBoost     | 0.30         | 0.26        | 11.83          | 0.24     | 0.27    | 10.82          |
| Smote + RandomForest      | 0.24         | 0.22        | 6.71           | 0.24     | 0.24    | 0.77           |
| Smote + LightGBM          | 0.33         | 0.31        | 6.67           | 0.31     | 0.32    | 0.96           |

Production Model chosen for best score and generalization

### Feature Importance (Top 20)



### **Cost-Benefit Analysis**

| Inaccuracy Costs                                                                                                                                                                                 |                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Impact of False Positive indication of West Nile Virus                                                                                                                                           | Impact of False Negative indication of West Nile Virus                                                                                                                                                            |  |  |  |  |  |  |  |  |
| <ol> <li>Unnecessary Spraying</li> <li>Loss of Productivity of Civil Servants</li> <li>Causes disruption to daily life in affected communities</li> <li>Increased burden on taxpayers</li> </ol> | <ol> <li>Increased proliferation of West Nile<br/>Virus disease</li> <li>Increased strain on health care<br/>resources due to rise in cases</li> <li>Public Health reputational and<br/>political risk</li> </ol> |  |  |  |  |  |  |  |  |

### **Cost-Benefit Analysis**

|                                          | Economic and Social Costs               | without Spraying               |                          |  |  |
|------------------------------------------|-----------------------------------------|--------------------------------|--------------------------|--|--|
| Medical ar                               | nd Productivity Costs (includ           | ed)                            | Total Costs Before Model |  |  |
| In-Patient cost                          | \$33000/person                          | 39 outpatients                 | \$1,287,000              |  |  |
| Out-Patient cost                         | \$6300/person                           | 45 out patients                | \$283,500                |  |  |
| No. of deaths per year (mean of 8 years) | 5 deaths/year                           | 65,000/person per year         | \$3,250,000              |  |  |
|                                          | Cost of Spra                            | ying                           |                          |  |  |
| Cost of pesticide spray per acre         | 100000000000000000000000000000000000000 | 1000/acre                      |                          |  |  |
| Total Acres being sprayed                | 1.5 flui                                | 1.5 fluid ounces per acre      |                          |  |  |
| Chicago Area                             |                                         | 607km2                         |                          |  |  |
| Amount of pesticide sprayed              | 44.4 ml per 0.004                       | 05 km2 = 6,667 litres in total |                          |  |  |
| Cost of Labour to Spray                  | 60 men con                              | tracted at \$1,000/year        | \$60,000                 |  |  |
| Cost of Sprayer Trucks                   | \$200/day for                           | 20 trucks 4 times a year       | \$16,000                 |  |  |
| No. of Trucks needed                     | 93                                      | 20 trucks                      |                          |  |  |
| Cost of specimenticide                   | \$55/:                                  | ]                              |                          |  |  |
| Cost of spray pesticide                  | 11 11 11 11                             | \$773,372                      |                          |  |  |
|                                          |                                         |                                | \$5,669,872              |  |  |

- The costs of spraying are a fraction of the Medical and Productivity costs (not to mention the lives lost), which makes the effort well worth the financial investment
- Benefit could save up to \$4.8M in Medical and Productivity cost with less than \$1M investment
- Usage of our model would assist in a more target usage of pesticide spray which could also further reduce costs
- Money saved for the taxpayer could engender more fiscal confidence in public health system

### **Negative Externalities due to West Nile Virus**

- Work absenteeism
- Public health impact and cost
- Government and Public Health Officials reputational loss
- Impact to families (financial burden, caregiver costs for most vulnerable, etc.)
- Decreased tourism
- Increased death risk amongst population might incur public outrage

Recommend to:

**SPRAY** 

### **Spray Data Analysis**

There are a total of 9 spray dates in dataset, 1 in 2011 and 8 in 2013.

Spraying is done indiscriminately, regardless of whether there is a WNV hotspot or not.





### **Spray Data Analysis - 7 Sep 2011**

To test the effectiveness of the spray, we look at number of mosquitoes two weeks before and after spray (based on life cycle of a mosquito).

#### **1** WNV Hotspot





### **Spray Data Analysis - 25 Jul 2013**







### **Spray Data Analysis - 15 Aug 2013**







### **Spray Data Analysis - 5 Sep 2013**







### **Spray Data Analysis - Findings**

#### 1. Spraying done in an ad-hoc manner

- Data from 2011 and 2013 seems to suggest that it was done without prior research
- For e.g. in 16 Aug and 22 Aug 2013, spraying was not done on WNV hotspot areas or areas where trap locations are found

#### 2. Spray not effective with time

- Number of mosquitoes did not drop within spraying area.
- Effectiveness of spraying seemed to reduce later on in the months, perhaps due to mosquitoes developing resistance to pesticides over time

#### 3. Spraying not effective in curbing virus

- WNV hotspots still remain 2 weeks after spraying
- Assuming adulticide sprays are applied, which only kills adult mosquitoes, it is not truly
  effective in reducing virus as mosquito larvae is still alive

### Conclusions, Considerations and Recommendations

## WNV is more prevalent under certain conditions:

- Longer daylight hours
- Higher average temperatures
- Humid weather

# Spraying efforts should be focused during June to early July

- Current spraying efforts are ineffective
- Suggest to spray in early June to July, considering the gestation period of mosquitoes resulting in peak WNV cases in August

#### **Health issues related to spray chemicals**

 Pregnant women and children have a greater risk of getting sick from pesticides

# Consider different methods / alternatives to spraying

- Consider larviciding catch basins, which involves dropping tablets in storm drains along the public roads which will slowly dissolve over a five-month period to prevent mosquito larvae from hatching
- Eliminating standing water by ensuring that swimming pools and construction sites are regularly maintained

# **Q & A**