

19 BUNDESREPUBLIK **DEUTSCHLAND**

PATENT- UND **MARKENAMT**

® Offenlegungsschrift _® DE 198 13 835 A 1

(7) Aktenzeichen:

198 13 835.0

(2) Anmeldetag:

20. 3.98

(3) Offenlegungstag:

23. 9.99

(5) Int. Cl. 6: C 07 K 14/435

> C 12 N 15/11 C 07 H 21/04 C 12 N 15/63 C 12 N 1/21

C 12 N 1/19 C 12 N 5/10 C 07 K 16/18

A 61 K 38/17

// (C12N 1/21,C12R 1:19)G01N 33/68

(7) Anmelder:

metaGen Gesellschaft für Genomforschung mbH, 14195 Berlin, DE

(74) Vertreter:

Klose, W., Dipl.-Chem.Dr.rer.nat., Pat.-Ass., 13505 Berlin

(72) Erfinder:

Specht, Thomas, Dipl.-Bio.-Chem. Dr., 12209 Berlin, DE; Hinzmann, Bernd, Dipl.-Chem. Dr., 13127 Berlin, DE; Schmitt, Armin, Dipl.-Phys. Dr., 14197 Berlin, DE; Pilarsky, Christian, Dipl.-Biol. Dr., 01474 Schönfeld-Weißig, DE; Dahl, Edgar, Dipl.-Biol. Dr., 14480 Potsdam, DE; Rosenthal, André, Prof. Dipl.-Chem. Dr., 10115 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Menschliche Nukleinsäuresequenzen aus Brustnormalgewebe
- Es werden menschliche Nukleinsäureseguenzen -mRNA, cDNA, genomische Sequenzen- aus Brustgewebe, die für Genprodukte oder Teile davon kodieren, und deren Verwendung geschrieben. Es werden weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.

Beschreibung

Die Erfindung betrifft menschliche Nukleinsäuresequenzen aus Brustgewebe, die für Genprodukte oder Teile davon kodieren, deren funktionale Gene, die mindestens ein biologisch aktives Polypeptid kodieren und deren Verwendung. Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

Eine der Haupttodesursachen bei Frauen ist der Brustkrebs, für dessen Bekämpfung neue Therapien notwendig sind. Bisher verwendete Therapien, wie z. B. Chemotherapie, Hormontherapie oder chirugische Entfernung des Tumorgewebes, führen häufig nicht zu einer vollständigen Heilung.

Das Phänomen Krebs geht häufig ein her mit der Über- oder Unterexpression gewisser Gene in den entarteten Zellen, wobei noch unklar ist, ob diese veränderten Expressionsraten Ursache oder Folge der malignen Transformation sind. Die Identifikation solcher Gene wäre ein wesentlicher Schritt für die Entwicklung neuer Therapien gegen Krebs. Der spontanen Entstehung von Krebs geht häufig eine Vielzahl von Mutationen voraus. Diese können verschiedenste Auswirkungen auf das Expressionsmuster in dem betroffenen Gewebe haben, wie z. B. Unter- oder Überexpression, aber auch Expression verkürzter Gene. Mehrere solcher Veränderungen durch solche Mutationskaskaden können schließlich zu bösartigen Entartungen führen. Die Komplexität solcher Zusammenhänge erschwert die experimentelle Herangehensweise sehr.

Für die Suche nach Kandidatengenen, d. h. Genen, die im Vergleich zum Tumorgewebe im normalen Gewebe stärker exprimiert werden, wird eine Datenbank verwendet, die aus sogenannten ESTs besteht. ESTs (Expressed Sequence Tags) sind Sequenzen von cDNAs, d. h. revers transkribierten mRNAs, den Molekülen also, die die Expression von Genen widerspiegeln. Die EST-Sequenzen werden für normale und entartete Gewebe ermittelt. Solche Datenbanken werden von verschiedenen Betreibern z. T. kommerziell angeboten. Die ESTs der LifeSeq-Datenbank, die hier verwendet wird, sind in der Regel zwischen 150 und 350 Nukleotide lang. Sie repräsentieren ein für ein bestimmtes Gen unverkennbares Muster, obwohl dieses Gen normalerweise sehr viel länger ist (> 2000 Nukleotide). Durch Vergleich der Expressionsmuster von normalen und Tumorgewebe können ESTs identifiziert werden, die für die Tumorentstehung und -prolifertion wichtig sind. Es besteht jedoch folgendes Problem: Da durch unterschiedliche Konstruktionen der cDNA-Bibliotheken die gefundenen EST-Sequenzen zu unterschiedlichen Regionen eines unbekannten Gens gehören können, ergäbe sich in einem solchen Fall ein völlig falsches Verhältnis des Vorkommens dieser ESTs in dem jeweiligen Gewebe. Dieses würde rest bemerkt werden, wenn das vollständige Gen bekannt ist und somit die ESTs dem gleichen Gen zugeordnet werden können.

Es wurde nun gefunden, daß diese Fehlermöglichkeit verringert werden kann, wenn zuvor sämtliche ESTs aus dem jeweiligen Gewebstyp assembliert werden, bevor die Expressionsmuster miteinander verglichen werden. Es wurden also überlappende ESTs ein und desselben Gens zu längeren Sequenzen zusammengefaßt (s. Fig. 1, Fig. 2a und Fig. 3). Durch diese Verlängerung und damit Abdeckung eines wesentlich größeren Genbereichs in jeder der jeweiligen Banken sollte der oben beschriebene Fehler weitgehenst vermieden werden. Da es hierzu keine bestehenden Softwareprodukte gab, wurden Programme für das Assemblieren von genomischen Abschnitten verwendet, die abgewandelt eingesetzt und durch eigene Programme ergänzt wurden. Ein Flowchart der Assemblierungsprozedur ist in Fig. 2b1-2b4 dargestellt.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No 1 bis Seq. ID No. 76 gefunden werden, die als Kandidatengene beim Brusttumor eine Rolle spielen.

Von besonderem Interesse sind die Nukleinsäure-Sequenzen Seq. ID Nos. 1–5, 10–12, 14, 15, 19–21, 23–25, 28, 30, 31, 34, 37, 43, 45, 48, 50–52, 58–65, 68, 69 und 71–76.

Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

- a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der Nukleinsäure-Sequenzen Seq ID Nos. 1–5, 10–12, 14, 15, 19–21, 23–25, 28, 30, 31, 34, 37, 43, 45, 48, 50–52, 58–65, 68, 69 und 71–76.
- b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder

45

c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

Die Erfindung betrifft weiterhin eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID Nos 1–5, 10–12, 14, 15, 19–21, 23–25, 28, 30, 31, 34, 37, 43, 45, 48, 50–52, 58–65, 68, 69 und 71–76 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweisen.

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 76, die im Brustnormalgewebe erhöht exprimiert sind bzw. in Brustumorgewebe vermindert exprimiert sind.

Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID Nos 1–5, 10–12, 14, 15, 19–21, 23–25, 28, 30, 31, 34, 37, 43, 45, 48, 50–52, 58–65, 68, 69 und 71–76 hybridisieren.

Die erfindungsgemäßen Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 4500 bp, vorzugsweise eine Länge von mindestens 150 bis 4000 bp, insbesondere eine Länge von 450 bis 3500 bp auf.

Mit den erfindungsgemäßen Teilsequenzen Seq. ID Nos. 1-5, 10-12 14, 15, 19-21, 23-25, 28, 30, 31, 34, 37, 43, 45, 48, 50-52, 58-65, 68, 69 und 71-76 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäßen Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäßen Sequenzen können in sense oder antisense Orientierung eingefügt sein

5 In der Literatur sind ist eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die verwendet werden können.

Unter Expressionskassetten bzw. Vektoren sind zu verstehen: 1. bakterielle, wie z. B., phagescript, pBs, \$\phi\$X174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540,

pRIT5 (Pharmacia), 2. eukaryontische, wie z. B. pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Unter Kontroll- oder regulatorischer Sequenz sind geeignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda P_R, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und Maus Metallothionein-I.

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die erfindungsgemäßen Nukleinsäure-Fragmente können zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhältlichen Gen-Fragmente.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Fragmenten enthaltene genetischen Information befindet, die exprimiert wird.

Die die Nukleinsäure-Fragmente enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung.

Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie E. coli oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Hefen.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren. Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, gemäß den Sequenzprotokollen Seq. ID Nos 77–88, 90, 91, 93–95, 97–113, 115–127, 132–160.

Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den erfindungsgemäßen Polypeptid-Teilsequenzen der Seq. ID Nos. 77–88, 90, 91, 93–95, 97–113,115–127, 132–160 aufweisen.

Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder Fragment davon gerichtete sind, welche von den erfindungsgemäßen Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID 76 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

Die erfindungsgemäßen Polypeptide der Sequenzen Seq. ID Nos. 77–88, 90, 91, 93–95, 97–113, 115–127, 132–160 können auch als Tool zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden, was ebenfalls Gegenstand der vorliegenden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 76 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.

Die Erfindung betrifft auch die Verwendung der gefundenen Polypeptid-Teilsequenzen Seq. ID No. 77 bis Seq. ID No. 160 als Arzneimittel in der Gentherapie zur Behandlung des Brustkrebses, bzw. zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptid-Teilsequenz Seq. ID No. 77 bis Seq. ID No. 160 enthalten.

Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch genomische oder mRNA-Sequenzen sein. Die Erfindung betrifft auch genomische Gene, ihre Exon- und Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 76, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten Promotoren und/oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden (s. Fig. 5).

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 76, zur Verwendung als Vehikel zum Gentransfer.

Es wurde ferner gefunden, daß bestimmte Nukleinsäure-Sequenzen auch im Fettstoffwechsel eine Rolle spielen. Die Erfindung betrifft deshalb auch die Verwendung der Nukleinsäure-Sequenzen Seq. ID Nos.: 3, 37, 45, zur Behandlung von krankhaften Veränderungen des Fettstoffwechsels.

Bedeutungen von Fachbegriffen und Abkürzungen

60

Nukleinsäuren = Unter Nukleinsäuren sind in der vorliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und genomische Gene (Chromosomen).

ORF = Open Reading Frame, eine definierte Abfolge von Aminosäuren, die von der cDNA-Sequenz abgeleitet werden 65

Contig = Eine Menge von DNA-Sequenzen, die aufgrund sehr großer Ähnlichkeiten zu einer Sequenz zusammengefaßt werden können (Consensus).

Singleton = Ein Contig, der nur eine Sequenz enthält.

Erklärung zu den Alignmentparametern

minimal initial match = minimaler anfänglicher Identitätsbereich maximum pads per read = maximale Anzahl von Insertionen maximum percent mismatch = maximale Abweichung in %

Erklärung der Abbildungen

10

15

Fig. 1 zeigt die systematische Gen-Suche in der Incyte LifeSeq Datenbank.

Fig. 2a zeigt das Prinzip der EST-Assemblierung

Fig. 2b1-2b4 zeigt das gesamte Prinzip der EST-Assemblierung

Fig. 3 zeigt die in silico Subtraktion der Genexpression in verschiedenen Geweben

Fig. 4a zeigt die Bestimmung der gewebsspezifischen Expression über elektronischen Northern.

Fig. 4b zeigt den elektronischen Northern

Fig. 5 zeigt die Isolierung von genomischen BAC- und PAC-Klonen.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erfindung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

20

25

60

Beispiel 1

Suche nach Tumor-bezogenen Kandidatengenen

Zuerst wurden sämtliche ESTs des entsprechenden Gewebes aus der LifeSeq-Datenbank (vom Oktober 1997) extrahiert. Diese wurden dann mittels des Programms GAP4 des Staden-Pakets mit den Parametern 0% mismatch, 8 pads per read und einem minimalen match von 20 assembliert. Die nicht in die GAP4-Datenbank aufgenommenen Sequenzen (Fails) wurden erst bei 1% mismatch und dann nochmals bei 2% mismatch mit der Datenbank assembliert. Aus den Contigs der Datenbank, die aus mehr als einer Sequenz bestanden, wurden Consensussequenzen errechnet. Die Singletons der Datenbank, die nur aus einer Sequenz bestanden, wurden mit den nicht in die GAP4-Datenbank aufgenommenen Sequenzen bei 2% mismatch erneut assembliert. Wiederum wurden für die Contigs die Consensussequenzen ermittelt, Alle übrigen ESTs wurden bei 4% mismatch erneut assembliert. Die Consensussequenzen wurden abermals extrahiert und mit den vorherigen Consensussequenzen sowie den Singletons und den nicht in die Datenbank aufgenommenen Sequenzen abschließend bei 4% mismatch assembliert, Die Consensussequenzen wurden gebildet und mit den Singletons und 35 Fails als Ausgangsbasis für die Gewebsvergleiche verwendet. Durch diese Prozedur konnte sichergestellt werden, daß unter den verwendeten Parametern sämtliche Sequenzen von einander unabhängige Genbereiche darstellten.

Fig. 2b1-2b4 veranschaulicht die Verlängerung der Brustgewebe ESTs.

Die so assemblierten Sequenzen der jeweiligen Gewebe wurden anschließend mittels des gleichen Programms miteinander verglichen (Fig. 3). Hierzu wurden erst alle Sequenzen des ersten Gewebes in die Datenbank eingegeben. (Daher war es wichtig, daß diese voneinander unabhängig waren).

Dann wurden alle Sequenzen des zweiten Gewebes mit allen des ersten verglichen. Das Ergebnis waren Sequenzen, die für das erste bzw. das zweite Gewebe spezifisch waren, sowie welche, die in beiden vorkamen. Bei Letzteren wurde das Verhältnis der Häufigkeit des Vorkommens in den jeweiligen Geweben ausgewertet. Sämtliche, die Auswertung der assemblierten Sequenzen betreffenden Programme, wurden selbst entwickelt.

Alle Sequenzen, die mehr als viermal in jeweils einem der verglichenen Gewebe vorkamen, sowie alle, die mindestens fünfmal so häufig in einem der beiden Gewebe vorkamen wurden weiter untersucht. Diese Sequenzen wurden einem elektronischen Northern (s. Beispiel 2.1) unterzogen, wodurch die Verteilung in sämtlichen Tumor- und Normal-Geweben untersucht wurde (s. Fig. 4a und Fig. 4b). Die relevanten Kandidaten wurden dann mit Hilfe sämtlicher Incyte ESTs und allen ESTs öffentlicher Datenbanken verlängert (s. Beispiel 3). Anschließend wurden die Sequenzen und ihre Übersetzung in mögliche Proteine mit allen Nukleotid- und Proteindatenbanken verglichen, sowie auf mögliche, für Proteine kodierende Regionen untersucht.

Beispiel 2

Algorithmus zur Identifikation und Verlängerung von partiellen cDNA-Sequenzen mit verändertem Expressionsmuster

Im folgenden soll ein Algorithmus zur Auffindung über- oder unterexprimierter Gene erläutert werden. Die einzelnen Schritte sind der besseren Übersicht halber auch in einem Flußdiagramm zusammengefaßt (s. Fig. 4b).

2.1 Elektronischer Northern-Blot

Zu einer partiellen DNA-Sequenz S, z. B. einem einzelnen EST oder einem Contig von ESTs, werden mittels eines Standardprogramms zur Homolgiesuche, z. B. BLAST (Altschul, S. F., Gish W., Miller, W., Myers, E. W. und Lipman, D. J. (1990) J. Mol. Biol, 215, 403-410), BLAST2 (Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. und Lipman, D. J. (1997) Nucleic Acids Research 25, 3389-3402) oder FASTA (Pearson, W. R. und Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444-2448), die homologen Sequenzen in verschiedenen nach Geweben geordneten (privaten oder öffentlichen) EST-Bibliotheken bestimmt. Die dadurch ermittelten (relativen oder absoluten) Gewebespezifischen Vorkommenshäufigkeiten dieser Partial-Sequenz S werden als elektronischer Northern-Blot be-

zeichnet.

2.1.1

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 39 gefunden, die 21x stärker im 5 normalen Brustgewebe als im Tumorgewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft humanes alpha-B-Crystallin.

Das Ergebnis ist wie folgt:

	Elektronischer	Northern für SEQ	. ID. NO: 39	10
	NORMAL ·	TUMOR	Verhaeltnisse	
		%Haeufigkeit		
Blase	0.0139	0.0102	1.3639 0.7332	
	0.0919	0.0044	21.09950.0474	15
Eierstock		0.0104	0.8765 1.1409	13
Endokrines Gewebe		0.0027	5.3582 0.1866	
Gastrointestinal		0.0048	4.4784 0.2233	
	0.1941	0.1358	1.4296 0.6995	
Haematopoetisch		0.0000	undef 0.0000	20
	0.0995	0.0000	undef 0.0000	20
Hepatisch	0.0050	0.0000	undef 0.0000	
	0.2405	0.0000	undef 0.0000	
Hoden	0.0061	0.0000	undef 0.0000	
Lunge	0.0324	0.0142	2.2824 0.4381	25
Magen-Speiseroehre	0.0097	0.0230	0.4200 2.3811	ಏ
Muskel-Skelett		0.0180	8.0893 0.1236	
Niere	0.0327	0.1643	0.1990 5.0254	
Pankreas	0.0038	0.0055	0.6857 1.4584	
	0.0539	0.0000	undef 0.0000	30
Prostata		0.0149	1.5980 0.6258	30
Uterus	0.0363	0.0356	1.0212 0.9793	
Brust-Hyperplasie	0.0291			
Duenndarm				
Prostata-Hyperplasie	0.0119			35
Samenblase	0.0178			33
Sinnesorgane	0.0000			
Weisse_Blutkoerperchen	0.0000	•		
	FOETUS		• •	40
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal				
Gehirn				
Haematopoetisch	0.0079			45
Herz-Blutgefaesse	0.1063			
	0.0074			
Niere	0.0062			
Prostata				
Sinnesorgane	0.0419			50
			* **OMUNICEN	
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEREN	
	%Haeufigkeit		•	
	0.2925		•	55
Eierstock-Uterus				
Endokrines_Gewebe Foetal				
Gastrointestinal				
Haematopoetisch	0.0244			
Haut-Muskel	0.0000			60
	0.0234		•	
	0.0082	•		
Nerven				
Prostata				
Sinnesorgane				65

2.1.2

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 41 gefunden, die 15x stärker im

normalen Brustgewebe als im Tumorgewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft humanes extrazelluläres Protein S1-5.

Das Ergebnis ist wie folgt:

Elektronischer Northern für SEQ. ID. NO: 41

10		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
	Blase	0.0186	0.0026	7.2739 0.1375
	Brust	0.0666	0.0044	15.28950.0654
	Eierstock	0.0000	0.0026	0.0000 undef
15	Endokrines_Gewebe	0.0347	0.0436	0.7954 1.2573
10	Gastrointestinal	0.0078	0.0095	0.8143 1.2281
	Gehirn	0.0288	0.0077	3.7599 0.2660
	Haematopoetisch	0.0028	0.0000	undef 0.0000
	Haut	0.0497	0.0000	undef 0.0000
20	Hepatisch	0.0000	0.0000	undef undef
20	Herz	0.0498	0.0000	undef 0.0000
	Hoden	0.0000	0.0000	undef undef
	Lunge	0.0125	0.0095	1.3168 0.7594
	Magen-Speiseroehre	0.0000	0.0000	undef undef
25	Muskel-Skelett	0.0086	0.0420	0.2039 4.9036
۵	Niere	0.0178	0.0000	undef 0.0000
	Pankreas	0.0038	0.0000	undef 0.0000
	Penis	0.0000		undef undef
	Prostata	0.0000	0.0000	undef undef
30	Uterus	0.0000	0.0000	undef undef
30	Brust-Hyperplasie	0.0799		
	Duenndarm	0.0000		
	Prostata-Hyperplasie	0.0000		
	Samenblase			
35	Sinnesorgane	0.0000		
33	Weisse_Blutkoerperchen	0.0070		
		FOETUS	•	
40		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
	Haematopoetisch			
45	Herz-Blutgefaesse			•
	_	0.0074		
		0.0000		
	Prostata			
	Sinnesorgane	0.0000		
50				• •
		NORMIERTE/SUBT	TRAHTERTE BIRT	TOTHEREN
		%Haeufigkeit		,1011111111
	Brust	•		
	Eierstock-Uterus			•
55	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
60	Hoden			•
	Lunge			
	Nerven			
	Prostata			
	Sinnesorgane		•	

2.1.3

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 42 gefunden, die 12x stärker im normalen Brustgewebe als im Tumorgewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft sezerniertes "frizzled-related protein".

Das Ergebnis ist wie folgt:

5

Elektronischer Northern für SEQ. ID. NO: 42

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0511 0.0533 0.0030 0.0128 0.0039	TUMOR %Haeufigkeit 0.0026 0.0044 0.0078 0.0027 0.0000	Verhaeltnisse N/T T/N 20.00330.0500 12.23160.0818 0.3895 2.5671 4.6885 0.2133 undef 0.0000	10
Haematopoetisch Haut Hepatisch Herz	0.0348	0.0099 0.0000 0.0000 0.0065 0.0000 0.0117	0.6021 1.6609 undef 0.0000 undef 0.0000 2.2954 0.4356 undef 0.0000 0.5224 1.9144	20
Lunge Magen-Speiseroehre Muskel-Skelett	0.0025 0.0097 0.0120 0.0535	0.0000 0.0000 0.0240	undef 0.0000 undef 0.0000 0.4996 2.0015 undef 0.0000 undef undef	25
Penis Prostata Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie	0.0231 0.1126 0.0156	0.0000 0.0085 0.0000	undef 0.0000 0.5593 1.7879 undef 0.0000	30
Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0178 0.0000			35
Entwicklung Gastrointenstinal Gehirn Haematopoetisch	0.0031 0.0000			40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0573 0.0037 0.0000 0.0249			45
Brust		TRAHIERTE BIBI	liotheken	50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0117 0.0000 0.0000			55
Haut-Muskel Hoden Lunge Nerven Prostata Sinnesorgane	0.0000 0.0000 0.0161 0.0000			60
In analoger Verfahrensweise wi		e Northerns gefun	den:	65

Elektronischer Northern für SEQ. ID. NO: 1

		NORMAL	TUMOR	Verhaeltnisse
		_	%Haeufigkeit	
5		0.0139	0.0179	0.7793 1.2831
	_	0.0160	0.0022	7.3390 0.1363
	Eierstock		0.0052	0.5843 1.7114
	Endokrines_Gewebe		0.0109	0.3349 2.9861
	Gastrointestinal		0.0238	0.1629 6.1405
10		0.0102	0.0088	1.1612 0.8612
	Haematopoetisch		0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0065	0.0000 undef
		0.0011	0.0137	0.0771 12.974
15		0.0122	0.0117	1.0447 0.9572
1.5	-	0.0037	0.0071	0.5267 1.8986
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0120	0.8565 1.1675
		0.0030	0.0000	undef 0.0000
20	Pankreas		0.0110	0.0000 undef
20		0.0000	0.0000	undef undef
	Prostata		0.0128	0.3729 2.6818
		0.0066	0.0000	undef 0.0000
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0061		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung	-		
	Gastrointenstinal			
35	Gehirn			
33	Haematopoetisch			
	Herz-Blutgefaesse			
	•	0.0000		
	-	0.0371		•
40	Prostata	_		
70	Sinnesorgane			
	•			
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			~
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	_	0.0000		
55	Nerven			
	Prostata			
	Sinnesorgane	0.0000		

60

Elektronischer Northern für SEQ. ID. NO: 2

	0.0000 0.0080 0.0000 0.0036	TUMOR %Haeufigkeit 0.0026 0.0000 0.0052 0.0000 0.0143	Verhaeltnisse N/T T/N 0.0000 undef undef 0.0000 0.0000 undef undef 0.0000 0.0000 undef	5
Gehirn Haematopoetisch Haut Hepatisch	0.0093 0.0014 0.0099	0.0044 0.0000 0.0000 0.0065 0.0000	2.1288 0.4698 undef 0.0000 undef 0.0000 0.0000 undef undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0017 0.0030	0.0117 0.0024 0.0000 0.0000 0.0068	0.0000 undef 1.5801 0.6329 undef 0.0000 undef 0.0000 0.4342 2.3033	15
Prostata Uterus Brust-Hyperplasie	0.0060 0.0071 0.0050 0.0036	0.0000 0.0000 0.0064 0.0000	undef 0.0000 undef 0.0000 1.1186 0.8939 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000			25
Entwicklung				30
_	0.0000 0.0079 0.0000 0.0037			35
Niere Prostata Sinnesorgane	0.0140			40
Eierstock-Uterus Endokrines_Gewebe	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0122 0.0000 0.0065 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0050 0.0000			55

65

Elektronischer Northern für SEQ. ID. NO: 3

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5	Blase	0.0046	0.0000	undef 0.0000
3	Brust	0.1066	0.0065	16.308 0.0613
	Eierstock	0.0030	0.0000	undef 0.0000
	Endokrines Gewebe		0.0000	undef undef
	Gastrointestinal		0.0000	undef undef
_		0.0034	0.0000	undef 0.0000
10	Haematopoetisch		0.0000	undef 0.0000
		0.0448	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
		0.0095	0.0000	undef 0.0000
		0.0000	0.0000	undef undef
15		0.0000	0.0000	undef undef
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0059	0.0000	undef 0.0000
	Pankreas		0.0000	undef 0.0000
20	=	0.0000	0.0000	undef undef
	Prostata		0.0021	0.0000 undef
	Uterus		0.0000	undef undef
	Brust-Hyperplasie		0.0000	midel midel
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	weisse_bidtkoelperchen	0.0000		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	•		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
	-	0.0000		
40	Prostata			
	Sinnesorgane			
	3			
		NORMIERTE/SUB	TRAHIERTE BIB	Liotheken
45		%Haeufigkeit		
		0.0136		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
55	Nerven			
	Prostata			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 4

	0.0000 0.0133 0.0000	TUMOR %Haeufigkeit 0.0000 0.0000 0.0000 0.0054	N/T undef undef undef	0.0000	5
Gastroint—stinal Gehirn Haematopoetisch Haut Hepatisch	0.0078 0.0034 0.0000 0.0099 0.0000	0.0048 0.0022 0.0000 0.0000 0.0000	1.6285 1.5482 undef undef undef	0.6141 0.6459 undef 0.0000 undef	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000	0.0000 0.0000 0.0024 0.0000 0.0060	undef undef 1.0534 undef 0.0000	0.0000 0.9493 undef undef	15
Pankreas Penis Prostata	0.0060	0.0000 0.0000 0.0000 0.0021 0.0214	undef undef undef 1.1186 0.1547	undef 0.0000 0.8939	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0059 0.0089				25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0000				35
-					40
Eierstock-Uterus		TRAHIERTE BIB	LIOTHEK	EN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0017 0.0000 0.0000 0.0000				50
Hoden Lunge Nerven Prostata Sinnesorgane	0.0020 0.0064				55

65

Elektronischer Northern für SEQ. ID. NO: 5

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	n/T T/n
5	Blase	0:0790	0.0435	1.8185 0.5499
-	Brust	0.0187	0.0022	8.5621 0.1168
	Eierstock	0.0122	0.0000	undef 0.0000
	Endokrines_Gewebe	0.0000	0.0027	0.0000 undef
	Gastrointestinal	0.0329	0.0000	undef 0.0000
10	Gehirn	0.0085	0.0033	2.5804 0.3875
10	Haematopoetisch	0.0000	0.0000	undef undef
	Haut	0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
		0.0212	0.0000	undef 0.0000
	Hoden	0.0122	0.0117	1.0447 0.9572
15	Lunge	0.0025	0.0071	0.3511 2.8478
	Magen-Speiseroehre	0.1159	0.0383	3.0238 0.3307
	Muskel-Skelett		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Pankreas		0.0000	undef 0.0000
20		0.0898	0.0000	undef 0.0000
	Prostata		0.0192	1.3672 0.7314
		0.0099	0.0427	0.2321 4.3088
	Brust-Hyperplasie		0.022.	0.1321 4.3000
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	• •		
	Weisse Blutkoerperchen			
	werase_procyoerberchen	0.0000		
30				
-		FOETUS		
	Entwicklung	%Haeufigkeit		
	Gastrointenstinal			
35	Gastionitenstinai			
33	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
	_	0.0000		
40	Prostata			
40				
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHTERTE RIRI	TOTHEREN
45		%Haeufigkeit	***************************************	
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
	Nerven			
55	Prostata			
	Sinnesorgane			
	Stimesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 10

	0.0000 0.0107	TUMOR %Haeufigkeit 0.0000 0.0000 0.0000	N/T undef	0.0000	5
Haematopoetisch	0.0039 0.0025 0.0000 0.0099	0.0027 0.0000 0.0000 0.0000 0.0000 0.0065	undef undef	0.0000 0.0000 undef 0.0000	10
Hoden		0.0000 0.0000 0.0000 0.0000 0.0000		undef	15
Niere Pankreas Penis Prostata	0.0059 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef	0.0000 undef undef undef	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0000 0.0000 0.0000	0.000	under		25
Weisse_Blutkoerperchen	0.0009				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch	0.0000 0.0000 0.0000				35
	0.0000 0.0000 0.0000				40
	NORMIERTE/SUB %Haeufigkeit 0.0476	TRAHIERTE BIB	LIOTHEK	EN	45
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0245 0.0012 0.0000 0.0057				50
Lunge Nerven Prostata	0.0000 0.0000 0.0080 0.0000				55
Sinnesorgane	0.0000				

Elektronischer Northern für SEQ. ID. NO: 11

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	n/T T/n
5	Blase	0.0000	0.0000	undef undef
,	Brust	0.0067	0.0000	undef 0.0000
	Eierstock	0.0030	0.0000	undef 0.0000
	Endokrines Gewebe	0.0073	0.0054	1.3396 0.7465
	Gastrointestinal		0.0048	0.0000 undef
		0.0144	0.0110	1.3160 0.7599
10	Haematopoetisch		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch		0.0065	0.0000 undef
		0.0042	0.0000	undef 0.0000
15		0.0000	0.0117	0.0000 undef
		0.0025	0.0095	0.2634 3.7971
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0060	0.5710 1.7513
	Niere	0.0030	0.0000	undef 0.0000
	Pankreas	0.0019	0.0000	undef 0.0000
20	Penis	0.0060	0.0000	undef 0.0000
	Prostata	0.0048	0.0149	0.3196 3.1288
	Uterus	0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie	0.0000		
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen			
	"crose_brackocrperonen	0.0020		
30				
		FOETUS		
	Patri akira	%Haeufigkeit		
	Entwicklung			
35	Gastrointenstinal			
33	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
		0.0124		
40	Prostata			
	Sinnesorgane	0.0000		
		NODMIEDED / com	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOMINITAL
		NORMIERTE/SUB	TRANIERTE BIBI	LIOTHEKEN
45	D	%Haeufigkeit		
		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden		•	
	Lunge			
55	Nerven	0.0080		
<i>)</i>	Prostata			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 12

Brust Eierstock		0.0000 0.0022 0.0104	N/T undef 4.2811 0.0000	0.2336 undef	5
Haematopoetisch	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef undef	undef undef undef undef	10
Hoden		0.0000 0.0000 0.0024 0.0000 0.0000	undef undef 1.5801 undef undef	undef 0.6329 undef	15
Pankreas Penis Prostata	0.0000	0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef	undef undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0000 0.0000				25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0039 0.0000				35
-					40
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0000 0.0023	TRAHIERTE BIB	LIOTHEK	EN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0035 0.0000 0.0000 0.0032				50
Lunge Nerven Prostata	0.0000 0.0000 0.0030				55
Sinnesorgane					

65

Elektronischer Northern für SEQ. ID. NO: 13

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0093	0.0000	undef 0.0000
,	Brust	0.0080	0.0022	3.6695 0.2725
	Eierstock		0.0000	undef 0.0000
	Endokrines_Gewebe		0.0054	2.3442 0.4266
	Gastrointestinal		0.0048	$0.0000 \mathrm{undef}$
10	-	0.0042	0.0022	1.9353 0.5167
10	Haematopoetisch		0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
		0.0032	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
		0.0012	0.0024	0.5267 1.8986
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett	0.0030	0.0060 0.0137	0.8565 1.1675 0.2171 4.6066
	Pankreas		0.0055	0.2171 4.0066 0.0000 undef
20		0.0030	0.0000	undef 0.0000
	Prostata		0.0000	undef 0.0000
	Uterus		0.0356	0.2321 4.3088
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0044		
30		FOETUS		
		%Haeufigkeit		•
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch	0.0079		
	Herz-Blutgefaesse			
		0.0074		
		0.0185		
40	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
43	Brust	0.0000		
	Eierstock-Uterus	0.0046		
	Endokrines_Gewebe	0.0000		
	Foetal	0.0128		
50	Gastrointestinal	0.0000	•	
	Haematopoetisch			
	Haut-Muskel			
		0.0000		
	_	0.0082		
55	Nerven			
	Prostata			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 14

Brust Eierstock Endokrines_Gewebe	0.0046 0.0120 0.0000 0.0036	TUMOR %Haeufigkeit 0.0051 0.0000 0.0026 0.0027	0.9092 1.0998 undef 0.0000 0.0000 undef 1.3396 0.7465	5
Haematopoetisch Haut Hepatisch	0.0017 0.0014 0.0000	0.0000 0.0022 0.0000 0.0000 0.0000	undef 0.0000 0.7741 1.2918 undef 0.0000 undef undef undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0183 0.0012 0.0000	0.0000 0.0024 0.0000 0.0000	undef 0.0000 0.5267 1.8986 undef undef undef 0.0000 undef 0.0000	. 15
Pankreas	0.0000 0.0000 0.0095 0.0017	0.0110 0.0000 0.0043 0.0071	0.0000 undef undef undef 2.2373 0.4470 0.2321 4.3088	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0062 0.0030 0.0089 0.0000			25
Entwicklung				30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0079			35
Niere Prostata Sinnesorgane				40
Eierstock-Uterus Endokrines_Gewebe	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
	0.0000 0.0285 0.0291 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0060 0.0064			55

65

Elektronischer Northern für SEQ. ID. NO: 15

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0093	0.0000	undef 0.0000
,	Brust	0.0187	0.0022	8.5621 0.1168
	Eierstock	0.0000	0.0000	undef undef
	Endokrines Gewebe		0.0000	undef undef
	Gastrointestinal		0.0000	undef undef
	-	0.0076	0.0011	6.9669 0.1435
10	Haematopoetisch		0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
	-	0.0053	0.0137	0.3854 2.5949
		0.0000		
15			0.0000	undef undef
		0.0025	0.0071	0.3511 2.8478
	Magen-Speiseroehre		0.0077	0.0000 undef
	Muskel-Skelett		0.0000	undef undef
		0.0059	0.0000	undef 0.0000
20	Pankreas		0.0000	undef undef
20		0.0090	0.0000	undef 0.0000
	Prostata		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie	0.0030		
	Samenblase	0.0000		
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0000		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0000		
	Gastrointenstinal	0.0000 .		
35	Gehirn	0.0125		
	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
	Lunge	0.0074		
	Niere	0.0185		
40	Prostata	0.0000		
	Sinnesorgane	0.0140		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
		0.0068		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge	0.0082		
55	Nerven	0.0040		
33	Prostata			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 16

	0.0093 0.0160 0.0091	TUMOR %Haeufigkeit 0.0051 0.0000 0.0000	1.8185 0.5499 undef 0.0000 undef 0.0000	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0000 0.0017 0.0014 0.0050 0.0000	0.0000 0.0000 0.0011 0.0000 0.0000	undef 0.0000 undef undef 1.5482 0.6459 undef 0.0000 undef undef	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0034	0.0000 0.0000 0.0000 0.0000 0.0060	undef 0.0000 undef undef undef 0.0000 undef undef 0.5710 1.7513	15
Pankreas Penis Prostata	0.0090 0.0024	0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef 0.0000 undef 0.0000 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0000 0.0000			25
Weisse_Blutkoerperchen				30
Entwicklung Gastrointenstinal - Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0063 0.0000			35
Lunge	0.0074 0.0000 0.0000		•	40
	NORMIERTE/SUB %Haeufigkeit 0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0064 0.0000 0.0000			50
Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0000 0.0010 0.0064			55
Sinnesorgane	0.0000			

65

Elektronischer Northern für SEQ. ID. NO: 18

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0232 0.0306 0.0030 0.0000 0.0252 0.0017	TUMOR %Haeufigkeit 0.0026 0.0044 0.0000 0.0027 0.0000 0.0011 0.0000 0.0000	Verhaeltnisse N/T T/N 9.0924 0.1100 7.0332 0.1422 undef 0.0000 undef undef 0.0000 1.5482 0.6459 undef 0.0000 undef 0.0000
15	Hepatisch Herz Hoden	0.0000 0.0148 0.0061 0.0037 0.0000	0.0065 0.0000 0.0000 0.0024 0.0000	0.0000 undef undef 0.0000 undef 0.0000 1.5801 0.6329 undef undef undef 0.0000
20	Niere Pankreas Penis Prostata Uterus	0.0000 0.0057 0.0120 0.0095 0.0132	0.0000 0.0000 0.0267 0.0000 0.0000	undef undef undef 0.0000 0.4492 2.2260 undef 0.0000 undef 0.0000
25	Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0062 0.0030 0.0000 0.0118		
30		0.0000		
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
35	Gastrointenstinal			
33	Gehirn Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
	_	0.0062		
40	Prostata			
	Sinnesorgane	0.0000		
45		NORMIERTE/SUB's Haeufigkeit	rkahierte bibi	LIOTHEKEN
45	Brust	0.0204		
	Endokrines Gewebe	0.0000		
	Foetal	0.0047		
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden Lunge			
	Nerven			
55	Prostata			
	Sinnesorgane			

65

Elektronischer Northern für SEQ. ID. NO: 19

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0093 0.0120 0.0000 0.0000 0.0000 0.0017	TUMOR %Haeufigkeit 0.0000 0.0000 0.0054 0.0000 0.0011 0.0000 0.0000	N/T undef undef undef 0.0000 undef 1.5482	undef undef 0.6459 0.0000	5
Hoden	0.0074 0.0000 0.0025 0.0000	0.0000 0.0275 0.0000 0.0000 0.0000 0.0000	undef 0.2698 undef undef undef undef	3.7070 undef 0.0000 undef	15
Pankreas Penis Prostata Uterus	0.0030 0.0048 0.0033		undef undef undef undef undef	undef 0.0000 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000 0.0000				25
Entwicklung	FOETUS %Haeufigkeit				30
_	0.0000 0.0000 0.0041 0.0037				35
Niere Prostata Sinnesorgane	0.0000	TDAUTEDWE DIDI	TOMUDIC	- TAN	40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	IRANIERIE BIBI	LIOTHER	en .	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0065 0.0000 0.0000				50
Nerven Prostata Sinnesorgane	0.0064				55

65

Elektronischer Northern für SEQ. ID. NO: 20

		NORMAL	TUMOR	Vorbac	ltnisse
			%Haeufigkeit		T/N
	Place	0.0000	0.0000		undef '
5		0.0067	0.0000	undef	
	Eierstock		0.0000	undef	
	Endokrines Gewebe		0.0000	undef	
	-				undef
	Gastrointestinal	0.0000	0.0000		
10			0.0000	undef	
	Haematopoetisch		0.0000	undef	
		0.0000	0.0000	undef	under
	Hepatisch		0.0000		
		0.0011	0.0000		0.0000
15		0.0000	0.0000		undef
		0.0000	0.0000	undef	
	Magen-Speiseroehre		0.0000	undef	
	Muskel-Skelett		0.0000	undef	
		0.0000	0.0000	undef	
20	Pankreas		0.0000	undef	
20		0.0000	0.0000	undef	
	Prostata		0.0000	undef	
	Uterus		0.0000	undef	undef
	Brust-Hyperplasie				
25	Duenndarm				
25	Prostata-Hyperplasie				
	Samenblase				
	Sinnesorgane				
	Weisse_Blutkoerperchen	0.0000			
20					
30					
		FOETUS			
		%Haeufigkeit			
	Entwicklung				
25	Gastrointenstinal				
35	Gehirn				
	Haematopoetisch				
	Herz-Blutgefaesse				
	_	0.0000			
		0.0000			
40	Prostata				
	Sinnesorgane	0.0000			
		NORMIERTE/SUB	ים אורים אים אורים	TOTHER	FN
45		%Haeufigkeit	INMIENIE DID	DIOIREM	EN
45	Bruch	0.0340			
		0.0000			
	Endokrines Gewebe				
	Foetal				
	Gastrointestinal				
50	Haematopoetisch				
	Haut-Muskel				
	Hoden				
	Lunge				
	Nerven				
55	Prostata				
	Sinnesorgane				
	Dimesoryane	0.0000			

65

Elektronischer Northern für SEQ. ID. NO: 21

Brust Eierstock	0.0000 0.0227 0.0000	TUMOR %Haeufigkeit 0.0000 0.0044 0.0000	N/T undef 5.1984 undef	0.1924 undef	5
Haematopoetisch	0.0019 0.0017 0.0042 0.0149	0.0000 0.0095 0.0000 0.0000 0.0000	undef 0.2036 undef undef undef undef	4.9124 0.0000 0.0000 0.0000 undef	10
Hoden		0.0000 0.0000 0.0000 0.0153 0.0060	undef undef undef 0.0000 0.2855	undef 0.0000 undef	15
Pankreas	0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef	undef undef undef	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0036 0.0000 0.0000 0.0000	0.0000	under	midet	25
Sinnesorgane Weisse_Blutkoerperchen	0.0000				30
Entwicklung Gastrointenstinal	0.0000				35
	0.0000				33
Prostata Sinnesorgane	0.0000				40
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0544 0.0000	TRAHIERTE BIB	LIOTHEK	EN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0041 0.0000				50
	0.0000 0.0000 0.0030				55
Sinnesorgane					

Elektronischer Northern für SEO. ID. NO: 22

```
Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                                                       0.0000 undef
                      Blase 0.0000
                                         0.0026
 5
                      Brust 0.0133
                                          0.0000
                                                       undef 0.0000
                                          0.0000
                                                       undef undef
                  Eierstock 0.0000
                                                       undef 0.0000
undef 0.0000
         Endokrines_Gewebe 0.0018
                                          0.0000
          Gastrointestinal 0.0058
                                          0.0000
                                                       0.0000 undef
                     Gehirn 0.0000
                                          0.0033
10
           Haematopoetisch 0.0014
                                          0.0000
                                                       undef 0.0000
                                                       undef 0.0000
                       Haut 0.0050
                                          0.0000
                 Hepatisch 0.0000
                                          0.0000
                                                       undef undef
                       Herz 0.0000
                                          0.0000
                                                       undef undef
                                                       undef undef
                      Hoden 0.0000
                                          0.0000
15
                                                       undef 0.0000
                      Lunge 0.0050
                                          0.0000
        Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef undef
                                          0.0060
            Muskel-Skelett 0.0034
                                                       0.5710 1.7513
                     Niere 0.0030
                                         0.0000
                                                       undef 0.0000
                                                       undef undef
                   Pankreas 0.0000
                                         0.0000
20
                     Penis 0.0000
                                                       undef undef
                                         0.0000
                  Prostata 0.0024
                                         0.0064
                                                       0.3729 2.6818
                    Uterus 0.0017
                                         0.0000
                                                       undef 0.0000
         Brust-Hyperplasie 0.0109
                 Duenndarm 0.0000
25
      Prostata-Hyperplasie 0.0059
                Samenblase 0.0000
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0000
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
35
                    Gehirn 0.0000
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0000
                     Niere 0.0000
40
                  Prostata 0.0000
              Sinnesorgane 0.0000
                           NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0068
         Endokrines Gewebe 0.0000
                    Foetal 0.0023
          Gastrointestinal 0.0122
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0000
55
                  Prostata 0.0000
              Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 23

	0.0046 0.0133 0.0000	TUMOR %Haeufigkeit 0.0026 0.0022 0.0000 0.0027	Verhaeltnisse N/T T/N 1.8185 0.5499 6.1158 0.1635 undef undef 1.3396 0.7465	5
Gastrointestinal Gehirn Haematopoetisch	0.0097 0.0008 0.0014 0.0050	0.0000 0.0033 0.0000 0.0000 0.0000	undef 0.0000 0.2580 3.8754 undef 0.0000 undef 0.0000 undef undef	10
Herz Hoden Lunge Magen-Speiseroehre	0.0011 0.0000 0.0037 0.0000	0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef undef undef 0.0000 undef undef	15
Pankreas	0.0149 0.0038 0.0030		1.1420 0.8756 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0000 0.0000	0.0071	0.4642 2.1544	25
Sinnesorgane Weisse_Blutkoerperchen				30
Entwicklung				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000			35
_				. 40
,	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	Liotheken	45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0136 0.0046 0.0490			
Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0000 0.0000			50
Hoden Lunge Nerven Prostata Sinnesorgane	0.0020 0.0192			55
			•	

Elektronischer Northern für SEQ. ID. NO: 24

		MODULET	minton	
		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0139	0.0153	0.9092 1.0998
		0.0173	0.0022	7.9505 0.1258
	Eierstock		0.0026	0.0000 undef
	Endokrines_Gewebe	0.0018	0.0027	0.6698 1.4930
	Gastrointestinal		0.0000	undef 0.0000
10	Gehirn	0.0085	0.0142	0.5955 1.6794
10	Haematopoetisch	0.0042	0.0000	undef 0.0000
	Haut	0.0298	0.0000	undef 0.0000
	· Hepatisch	0.0050	0.0000	undef 0.0000
	-	0.0106	0.0000	undef 0.0000
	Hoden	0.0061	0.0000	undef 0.0000
15		0.0037	0.0071	0.5267 1.8986
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0178		
			0.0068	2.6050 0.3839
20	Pankreas		0.0055	0.3428 2.9168
		0.0000	0.0533	0.0000 undef
	Prostata		0.0021	2.2373 0.4470
		0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie			
25	: Duenndarm			
25	Prostata-Hyperplasie	0.0000		
	Samenblase	0.0089		
	Sinnesorgane	0.0118		
	Weisse Blutkoerperchen	0.0244		
	_			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	_		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0074		
		0.0062		
40	Prostata			
70	Sinnesorgane			
	Simesorgane	0.0273		
		NORMIERTE/SUBT	TRAHIERTE BIBI	LIOTHEKEN
45		%Haeufigkeit		
••	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
55	Nerven			
	Prostata			
	Sinnesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 25

	0.0651 0.0400 0.0213	TUMOR %Haeufigkeit 0.0204 0.0065 0.0026 0.0163	Verhaeltnisse N/T T/N 3.1823 0.3142 6.1158 0.1635 8.1803 0.1222 0.6698 1.4930	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0271 0.0119 0.0196 0.0199	0.0000 0.0066 0.0000 0.0000 0.0065 0.0000	undef 0.0000 1.8062 0.5536 undef 0.0000 undef 0.0000 0.7651 1.3069 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0174 0.0193 0.0206	0.0000 0.0047 0.0077 0.0120	undef 0.0000 3.6870 0.2712 2.5198 0.3968 1.7130 0.5838	15
Pankreas Penis Prostata	0.0599	0.0068 0.0000 0.0000 0.0362 0.0000	1.3025 0.7678 undef 0.0000 undef 0.0000 0.5922 1.6886 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0254 0.0343 0.0297 0.0356		macr 0.0000	25
Weisse_Blutkoerperchen	0.0000 FOETUS	·		30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0092 0.0000 0.0197			35
Lunge	0.0185 0.0309 0.0000			40
Brust Eierstock-Uterus	NORMIERTE/SUBSTANDED TO SUBSTANDED TO S	FRAHIERTE BIB	LIOTHEKEN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0105 0.0000 0.0000			50
Hoden Lunge Nerven Prostata Sinnesorgane	0.0000 0.0040 0.0385			55

65

Elektronischer Northern für SEQ. ID. NO: 26

		NORMAL	TUMOR		Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T	T/N
5	Blase	0.0000	0.0000	undef	undef
		0.0187	0.0022	8.5621	0.1168
	Eierstock		0.0000	undef	undef
	Endokrines_Gewebe		0.0000	undef	undef
10	Gastrointestinal		0.0000	undef	undef
		0.0000	0.0000	undef	undef
	Haematopoetisch		0.0000	undef	undef
	наит Нераtisch	0.0050	0.0000	undef	0.0000
		0.0000	0.0065 0.0000	0.0000 undef	undef undef
15		0.0000	0.0000	under	under undef
		0.0000	0.0000	under	under
	Magen-Speiseroehre		0.0000	0.0000	undef
	Muskel-Skelett		0.0000	undef	undef
		0.0000	0.0000	undef	undef
20	Pankreas		0.0110	0.0000	undef
	Penis	0.0000	0.0000	undef	undef
	Prostata	0.0000	0.0000	undef	undef
	Uterus	0.0000	0.0000	undef	undef
	Brust-Hyperplasie	0.0036			
25	Duenndarm				
	Prostata-Hyperplasie	0.0000			
	Samenblase				
	Sinnesorgane				
	Weisse_Blutkoerperchen	0.0000			
30					
		FOETUS			
		%Haeufigkeit			
35	Entwicklung	0 0000 '			
33	Gastrointenstinal				
	Gehirn				
	Haematopoetisch				
	Herz-Blutgefaesse				
40	Lunge	0.0000			•
	Niere	0.0000			
	Prostata				
	Sinnesorgane	0.0000			
45		NORMIERTE/SUB	PRAHIERTE BIB	тотнек	FN
		%Haeufigkeit		DICIDEN	-11
		-			
		0.0000			
50	Eierstock-Uterus				
	Endokrines_Gewebe				
	Foetal				
	Gastrointestinal				
	Haematopoetisch Haut-Muskel				
55	Hoden				
	Lunge				
	Nerven				
	Prostata				
	Sinnesorgane				
60					

Elektronischer Northern für SEQ. ID. NO: 27

NORMA:	L	TUMOR	Verhaeltnisse	9	
		%Haeufigkeit		T/N	
					5
	0.0139	0.0128	1.0911	0.9165	
Eierstock	0.0160	0.0022	7.3390	0.1363	
		0.0182	0.1669	5.9900	
Endokrines_Gewebe Gastrointestinal		0.0082	0.6698 undef	1.4930	
	0.0136	0.0164	0.2064	0.0000	10
Haematopoetisch		0.0000	undef	4.8443	
	0.0050	0.0000	under	0.0000	
Hepatisch		0.0000	under	0.0000	
_	0.0170	0.0000	0.6166	undef 1.6218	
	0.0000	0.0275	0.0000	undef	15
	0.0174	0.0071	2.4580	0.4068	
Magen-Speiseroehre		0.0153	0.6300	1.5874	
Muskel-Skelett		0.0180		0.9552	
	0.0297	0.0137		0.4607	
Pankreas		0.0000	undef	0.0000	20
		0.0000		0.0000	
Prostata		0.0043		1.7879	
	0.0017	0.0285		17.2351	
Brust-Hyperplasie		0.0203	0.0300	17.2331	
Duenndarm					25
Prostata-Hyperplasie					
Samenblase					
Sinnesorgane					
Weisse_Blutkoerperchen					
wc135c_bluckOelpeltmen	0.0000				30
	FOETUS				
	%Haeufigkeit				
Entwicklung	0.0000				35
Gastrointenstinal	0.0339				
Gehirn	0.0000				
Haematopoetisch					
Herz-Blutgefaesse	0.0041				
Lunge	0.0111				40
· Niere	0.0124				
Prostata					
Sinnesorgane	0.0419				
					45
	NORMIERTE/SUB	PRAHIERTE BIB	LIOTHEKEN		
	%Haeufigkeit				
Donat	0.0000				
Eierstock-Uterus Endokrines Gewebe					50
Foetal					
Gastrointestinal					
Haematopoetisch					
Haut-Muskel					
Hoden					55
Lunge					
Nerven					
Prostata					
Sinnesorgane					
Dimiesorgane	0.0000				60
					-

Elektronischer Northern für SEQ. ID. NO: 28

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5	Blase	0.0093	0.0102	0.9092 1.0998
3		0.0267	0.0087	3.0579 0.3270
	Eierstock	0.0091	0.0156	0.5843 1.7114
	Endokrines_Gewebe	0.0128	0.0082	1.5628 0.6399
	Gastrointestinal	0.0174	0.0095	1.8321 0.5458
10	Gehirn	0.0127	0.0153	0.8294 1.2057
10	Haematopoetisch	0.0042	0.0000	undef 0.0000
		0.0149	0.0000	undef 0.0000
	Hepatisch		0.0194	0.7651 1.3069
		0.0085	0.0137	0.6166 1.6218
15		0.0000	0.0117	0.0000 undef
10		0.0212	0.0189	1.1193 0.8934
	Magen-Speiseroehre		0.0000	undef 0.0000
	Muskel-Skelett		0.0120	1.9985 0.5004
		0.0119	0.0000	undef 0.0000
20	Pankreas	0.0114	0.0166	0.6857 1.4584
	Prostata		0.0267	0.3369 2.9680
			0.0298 0.0000	0.6392 1.5644
	Brust-Hyperplasie		0.0000	undef 0.0000
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	_ *			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
25	Gastrointenstinal			
35	Gehirn	•		
	Haematopoetisch			
	Herz-Blutgefaesse	0.0074		
		0.0074		
40	Prostata			
70	Sinnesorgane			
		NORMIERTE/SUB	FRAHIERTE BIBI	LIOTHEKEN
45	D	%Haeufigkeit		
	Eierstock-Uterus	0.0068		
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch	·		
	Haut-Muskel			
	Hoden			
	Lunge			
55	Nerven	0.0211		
55	Prostata			
	Sinnesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 29

Brust Eierstock	0.0000 0.0466 0.0304	TUMOR %Haeufigkeit 0.0179 0.0131 0.0130	0.0000 undef 3.5675 0.2803 2.3372 0.4279	5	5
Haematopoetisch	0.0136 0.0424 0.0070 0.0348	0.0300 0.0238 0.0263 0.0000 0.0000	0.7916 1.2633 0.5700 1.7544 1.6127 0.6201 undef 0.0000 undef 0.0000 3.0606 0.3267	10)
Hoden	0.0336 0.0483	0.0687 0.0000 0.0236 0.0307 0.0240	0.3854 2.5949 undef 0.0000 1.4221 0.7032 1.5749 0.6350 0.6424 1.5567	15	5
Pankreas	0.0133 0.0359 0.0095	0.0274 0.0166 0.0000 0.0170 0.0000	0.4342 2.3033 0.8000 1.2501 undef 0.0000 0.5593 1.7879 undef 0.0000	20)
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0187 0.0149 0.0089			25	i
Weisse_Blutkoerperchen				30)
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0154 0.0277 0.0188 0.0236			35	į
Lunge	0.0407 0.0309 0.0249			40)
	NORMIERTE/SUBSHAEUfigkeit 0.0136	TRAHIERTE BIB	LIOTHEKEN	. 45	5
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0245 0.0280 0.0122 0.0171			50)
Haut-Muskel Hoden Lunge Nerven Prostata Sinnesorgane	0.0156 0.0246 0.0221 0.0192			55	,

65

Elektronischer Northern für SEQ. ID. NO: 30

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	
5		0.0093	0.0026	3.6370 0.2750
-		0.0040	0.0000	undef 0.0000
	Eierstock		0.0000	undef undef
	Endokrines_Gewebe		0.0082	0.4465 2.2395
	Gastrointestinal		0.0000	undef 0.0000
10		0.0000	0.0120	0.0000 undef
	Haematopoetisch		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch	0.0053	0.0000	undef undef
		0.0000	0.0000	undef 0.0000 undef undef
15		0.0037	0.0000	under under undef 0.0000
	Magen-Speiseroehre		0.0077	2.5198 0.3968
	Muskel-Skelett		0.0000	undef undef
		0.0000	0.0000	under under
	Pankreas		0.0055	0.3428 2.9168
20		0.0030	0.0000	undef 0.0000
	Prostata		0.0085	0.5593 1.7879
		0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie	0.0073	•	
	Duenndarm	0.0062		
25	Prostata-Hyperplasie	0.0000		
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0009		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn		•	•
	Haematopoetisch			
	Herz-Blutgefaesse			
	_	0.0037		
	Niere	0.0000		
40	Prostata	0.0000		
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	יפדמ פיימפדומקי	T.TOTHEKEN
45		%Haeufigkeit	IIGHILDKID DID	HOTTEMEN
43	Brust	0.0136		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal	0.0122		
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
55	Nerven			
	Prostata			
	Sinnesorgane	U.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 31

Brust Eierstock		0.0026 0.0087 0.0156	N/T 3.6370 3.3637 0.5843	0.2973 1.7114	5
Haematopoetisch Haut Hepatisch	0.0155 0.0008 0.0000 0.0249 0.0050	0.0054 0.0190 0.0077 0.0000 0.0000	1.6745 0.8143 0.1106 undef undef 0.2550	1.2281 9.0427 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0188	0.0550 0.0000 0.0071 0.0000 0.0060	undef 1.0534 undef 3.1406	0.9493 undef 0.3184	15
Pankreas Penis Prostata	0.0095 0.0120 0.0119	0.0276 0.0000 0.0128	undef 0.3428 undef 0.9322 undef	2.9168 0.0000 1.0727	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0145 0.0093 0.0059	0.0000	under		25
Sinnesorgane Weisse_Blutkoerperchen	0.0470 0.0009				30
Entwicklung Gastrointenstinal					
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0079	-			35
-	0.0062 0.0249				40
	NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN %Haeufigkeit Brust 0.0068			EN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0105 0.0000				50
Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0000 0.0020				55
Sinnesorgane				•	

65

Elektronischer Northern für SEQ. ID. NO: 32

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
	Blase	0.0139	0.0077	1.8185 0.5499
5	Brust	0.0227	0.0044	5.1984 0.1924
	Eierstock	0.0030	0.0156	0.1948 5.1343
	Endokrines Gewebe	0.0109	0.0054	2.0093 0.4977
	Gastrointestinal	0.0136	0.0143	0.9500 1.0527
		0.0059	0.0033	1.8062 0.5536
10	Haematopoetisch	0.0028	0.0000	undef 0.0000
	Haut	0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef 0.0000
	Herz	0.0064	0.0137	0.4624 2.1624
	Hoden	0.0366	0.0000	undef 0.0000
15		0.0050	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0000	0.0307	0.0000 undef
	Muskel-Skelett	0.0120	0.0000	undef 0.0000
	Niere	0.0030	0.0000	undef 0.0000
••	Pankreas	0.0038	0.0055	0.6857 1.4584
20	Penis	0.0210	0.0000	undef 0.0000
	Prostata	0.0024	0.0106	0.2237 4.4697
			0.0000	undef 0.0000
	Brust-Hyperplasie			
05	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0035		
30				
.50		FOETUS		
	Entwicklung	%Haeufigkeit		
	Gastrointenstinal			
35	Gehirn			
-	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0037		
		0.0000		
40	Prostata		,	
	Sinnesorgane			
		NORMIERTE/SUB	rahierte bib	LIOTHEKEN
45		%Haeufigkeit		
		0.0272		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.000		
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
55	Nerven			
	Prostata Sinnesorgane			
	Simesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 33

	NORMAL %Haeufigkeit 0.0093 0.0200	TUMOR %Haeufigkeit 0.0128 0.0044	Verhaeltnisse N/T T/N 0.7274 1.3748 4.5868 0.2180	5
Eierstock		0.0078	1.1686 0.8557	
Endokrines_Gewebe		0.0191	0.0957 10.4512	
Gastrointestinal		0.0000	undef 0.0000	
	0.0110	0.0197	0.5591 1.7887	10
Haematopoetisch	0.0099	0.0000	undef 0.0000	
Hepatisch		0.0000	undef 0.0000 undef undef	
-	0.0021	0.0137	0.1541 6.4872	
	0.0061	0.0117	0.5224 1.9144	
	0.0075	0.0118	0.6321 1.5821	15
Magen-Speiseroehre		0.0000	undef 0.0000	
Muskel-Skelett		0.0240	0.0714 14.0102	
Niere	0.0149	0.0000	undef 0.0000	
Pankreas	0.0019	0.0055	0.3428 2.9168	
	0.0060	0.0000	undef 0.0000	20
Prostata	0.0238	0.0192	1.2429 0.8046	
Uterus	0.0116	0.0000	undef 0.0000	
Brust-Hyperplasie	0.0036			
Duenndarm	0.0125			25
Prostata-Hyperplasie	0.0059			25
Samenblase	0.0178			
Sinnesorgane	0.0118			
Weisse_Blutkoerperchen	0.0061			
				30
	FOETUS			30
	%Haeufigkeit			
Entwicklung	-			
Gastrointenstinal		•		
Gehirn				35
Haematopoetisch				
Herz-Blutgefaesse				
_	0.0074			
	0.0062			
Prostata				40
Sinnesorgane				
•				
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	
				45
D = b	%Haeufigkeit			43
	0.0136			***
Eierstock-Uterus	0.0136 0.0068			•
Eierstock-Uterus Endokrines Gewebe	0.0136 0.0068 0.0000			
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0136 0.0068 0.0000 0.0192			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0136 0.0068 0.0000 0.0192 0.0000			50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097 0.0234			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097 0.0234 0.0000			50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097 0.0234 0.0000 0.0131			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097 0.0234 0.0000 0.0131			50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	0.0136 0.0068 0.0000 0.0192 0.0000 0.0114 0.0097 0.0234 0.0000 0.0131			50

65

Elektronischer Northern für SEQ. ID. NO: 34

		NORMAL	TUMOR	Verhaeltniss	-
	_•	%Haeufigkeit			T/N
5		0.0000	0.0026	0.0000	undef
		0.0147	0.0022	6.7274	0.1486
	Eierstock		0.0052	1.7529	0.5705
	Endokrines_Gewebe		0.0027	0.0000	undef
	Gastrointestinal		0.0048	0.0000	undef
10		0.0008	0.0000	undef	0.0000
	Haematopoetisch		0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Hepatisch		0.0000	undef	undef
		0.0011	0.0000	undef	0.0000
15		0.0000	0.0000	undef	undef
		0.0000	0.0000	undef	undef
	Magen-Speiseroehre		0.0000	undef	undef
	Muskel-Skelett		0.0000	undef	undef
		0.0000	0.0000	undef	undef
20	Pankreas		0.0000	undef	0.0000
		0.0030	0.0000	undef	0.0000
	Prostata			undef	undef
		0.0033	0.0000	undef	0.0000
	Brust-Hyperplasie				
25	Duenndarm				
۵	Prostata-Hyperplasie				
	Samenblase				
	Sinnesorgane				
	Weisse_Blutkoerperchen	0.0000			
30					
		FOETUS			
		%Haeufigkeit			
	Entwicklung				
	Gastrointenstinal				
35	Gehirn				
	Haematopoetisch				
	Herz-Blutgefaesse				
	_	0.0000			
	-	0.0062			
40	Prostata	0.0000			
	Sinnesorgane	0.0279			
		NORMIERTE/SUBT	rahierte bibi	LIOTHEKEN	
45		%Haeufigkeit			
	Brust				
	Eierstock-Uterus				
	Endokrines_Gewebe				
	Foetal				
50	Gastrointestinal				
	Haematopoetisch				
	Haut-Muskel				
	Hoden				
	Lunge				
55	Nerven				
	Prostata				
	Sinnesorgane	0.0000			

60

65

Elektronischer Northern für SEQ. ID. NO: 35

			-		
	NORMAL	TUMOR	Verhaeltni		
	%Haeufigkeit			T/N	
	0.0000	0.0000	undef	undef	5
	0.0227	0.0022	10.3969	0.0962	
Eierstock		0.0000	undef	0.0000	
Endokrines_Gewebe		0.0000	undef	undef	
Gastrointestinal	0.0000	0.0000	undef	undef	
Gehirn	0.0000	0.0000	undef	undef	10
Haematopoetisch	0.0000	0.0000	undef	undef	10
Haut	0.0050	0.0000	undef	0.0000	
Hepatisch	0.0000	0.0000	undef	undef	
Herz	0.0000	0.0000	undef	undef	
Hoden	0.0000	0.0000	undef	undef	15
Lunge	0.0000	0.0000	undef	undef	15
Magen-Speiseroehre	0.0000	0.0000	undef	undef	
Muskel-Skelett	0.0000	0.0000	undef	undef	
Niere	0.0000	0.0000	undef	undef	
Pankreas	0.0000	0.0000	undef	undef	
Penis	0.0000	0.0000	undef	undef	20
Prostata	0.0000	0.0000	undef	undef	
Uterus	0.0000	0.0000	undef	undef	
Brust-Hyperplasie	0.0000				
Duenndarm					
Prostata-Hyperplasie	0.0000				25
Samenblase					
Sinnesorgane	0.0000				
Weisse_Blutkoerperchen					
					30
	FOETUS				
	%Haeufigkeit				
Entwicklung	_				
Gastrointenstinal					
Gehirn	0.0000				35
Haematopoetisch	0.0000				•
Herz-Blutgefaesse	0.0000				
Lunge	0.0000				
Niere	0.0000				
Prostata	0.0000				40
Sinnesorgane	0.0000				
_					
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN		
	%Haeufigkeit				45
Brust	0.0136				
Eierstock-Uterus	0.0000				
Endokrines_Gewebe	0.0000				
Foetal					
Gastrointestinal	0.0000				50
Haematopoetisch					30
Haut-Muskel					
Hoden					
Lunge					
Nerven					55
Prostata					33
Sinnesorgane	0.0000				

65

Elektronischer Northern für SEQ. ID. NO: 36

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
_	Blase	0.0325	0.0077	4.2431 0.2357
5		0.0386	0.0065	5.9119 0.1691
	Eierstock		0.0000	undef 0.0000
	Endokrines Gewebe		0.0027	1.3396 0.7465
	Gastrointestinal		0.0048	1.2214 0.8187
		0.0110	0.0033	3.3545 0.2981
10	Haematopoetisch		0.0000	undef 0.0000
		0.0149	0.0000	undef 0.0000
	Hepatisch	0.0099	0.0065	1.5303 0.6535
	Herz	0.0085	0.0000	undef 0.0000
	Hoden	0.0122	0.0000	undef 0.0000
15	Lunge	0:0112	0.0000	undef 0.0000
	Magen-Speiseroehre		0.0230	0.8399 1.1905
	Muskel-Skelett		0.0000	undef 0.0000
	Niere	0.0000	0.0068	0.0000 undef
	Pankreas	0.0019	0.0110	0.1714 5.8337
20		0.0120	0.0000	undef 0.0000
	Prostata	0.0071	0.0021	3.3559 0.2980
	Uterus	0.0165	0.0071	2.3208 0.4309
	Brust-Hyperplasie	0.0036		
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.0059		
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal	0.0062		
35	Gehirn			
	Haematopoetisch	0.0079		
	Herz-Blutgefaesse			
		0.0000		
		0.0000		
40	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	PDAUTEDME DYN	COMPRESSION
		%Haeufigkeit	INMITERIE BIBI	LIOINEREN
45	Dwist	0.0544		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
	Nerven			
55	Prostata			
	Sinnesorgane			

65

Elektronischer Northern für SEQ. ID. NO: 37

NORMAL	TUMOR	Verhaeltniss	e	
%Haeufigkeit	%Haeufigkeit	N/T	T/N	
	0.0077		1.6497	5
0.1053	0.0131	8.0525		,
0.0000	0.0000	undef		
0.0000				
				10
				15
			•	20
	0.0000	undef	0.0000	
•	•			
				25
				دع
0.0000			•	
				20
DOE WAG				30
FOETUS				30
%Haeufigkeit				30
%Haeufigkeit 0.0000				30
%Haeufigkeit 0.0000 0.0062		· .		
%Haeufigkeit 0.0000 0.0062 0.0000		· .		30
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000		· .		
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000		· .		
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000				
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000				35
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000				
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000		· .		35
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				35
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TDAUTEDMIN DANS			35
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUBS	FRAHIERTE BIBI	LIOTHEKEN		35
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632	FRAHIERTE BIBI	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000	FRAHIERTE BIB	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490	FRAHIERTE BIBI	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0000	TRAHIERTE BIBI	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.1632 0.0000 0.0490 0.0490 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0490 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0490 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIB	LIOTHEKEN		35 40 45
%Haeufigkeit 0.0000 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0490 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEKEN		35 40 45
		*Haeufigkeit *Haeufigkeit 0.0046 0.0077 0.1053 0.0131 0.0000 0.0000 0.0008 0.0048 0.0059 0.0000 0.0084 0.0000 0.00348 0.0000 0.0099 0.0000 0.0010 0.0000 0.0012 0.0000 0.0012 0.0000 0.0223 0.0240 0.0000 0.0000 0.0120 0.0000 0.0019 0.0000 0.0019 0.0000 0.00120 0.0000 0.00120 0.0000 0.00120 0.0000 0.0013 0.0000 0.0014 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	*Haeufigkeit *Haeufigkeit N/T 0.0046 0.0077 0.6062 0.1053 0.0131 8.0525 0.0000 0.0000 0.0000 0.0000 0.0def 0.0058 0.0048 1.2214 0.0059 0.0000 0.0000 0.0def 0.0084 0.0000 0.0def 0.0348 0.0000 0.0def 0.0099 0.0000 0.0def 0.00201 0.0000 0.0def 0.0012 0.0000 0.0000 0.0def 0.0223 0.0240 0.9279 0.0000 0.0000 0.0000 0.0def 0.0120 0.0000 0.0000 0.0def 0.0120 0.0000 0.0000 0.0def 0.0120 0.0000 0.0000 0.0def 0.0120 0.0000 0.0000 0.0def 0.0019 0.0000 0.0def 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	*Haeufigkeit *Haeufigkeit N/T T/N 0.0046 0.0077 0.6062 1.6497 0.1053 0.0131 8.0525 0.1242 0.0000 0.0000 undef undef 0.0000 0.0000 undef undef 0.0058 0.0048 1.2214 0.8187 0.0059 0.0000 undef 0.0000 0.0084 0.0000 undef 0.0000 0.0348 0.0000 undef 0.0000 0.0099 0.0000 undef 0.0000 0.0099 0.0000 undef 0.0000 0.0011 0.0000 undef 0.0000 0.0012 0.0000 undef 0.0000 0.0012 0.0000 undef undef 0.0223 0.0240 0.9279 1.0777 0.0000 0.0000 undef 0.0000 0.0120 0.0000 undef 0.0000 0.0024 0.0043 0.5593 1.7879 0.0083 0.0000 0.0178 0.0000

Elektronischer Northern für SEQ. ID. NO: 38

```
NORMAL
                                           TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                      Blase 0.0000
                                                        0.0000 undef
                                           0.0026
5
                      Brust 0.0227
                                           0.0044
                                                        5.1984 0.1924
                                          0.0052
                  Eierstock 0.0000
                                                        0.0000 undef
                                                        undef undef
         Endokrines_Gewebe 0.0000
                                          0.0000
          Gastrointestinal 0.0039
                                                        0.8143 1.2281
                                          0.0048
                     Gehirn 0.0000
                                          0.0099
                                                       0.0000 undef
10
            Haematopoetisch 0.0000
                                          0.0000
                                                        undef undef
                       Haut 0.0099
                                          0.0000
                                                        undef 0.0000
                  Hepatisch 0.0000
                                                       undef undef
undef 0.0000
                                          0.0000
                       Herz 0.0085
                                          0.0000
                                                       undef undef
                      Hoden 0.0000
                                          0.0000
15
                      Lunge 0.0037
                                          0.0047
                                                       0.7901 1.2657
        Magen-Speiseroehre 0.0097
                                          0.0000
                                                       undef 0.0000
            Muskel-Skelett 0.0154
                                          0.0060
                                                       2.5696 0.3892
                      Niere 0.0000
                                          0.0068
                                                       0.0000 undef
                   Pankreas 0.0000
                                                       undef undef undef 0.0000
                                          0.0000
20
                      Penis 0.0060
                                          0.0000
                   Prostata 0.0191
                                          0.0043
                                                       4.4745 0.2235
                    Uterus 0.0017
                                          0.0427
                                                       0.0387 25.8527
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0125
25
      Prostata-Hyperplasie 0.0089
                Samenblase 0.000C
              Sinnesorgane 0.0119
    Weisse Blutkoerperchen 0.0000
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0031
                    Gehirn 0.0063
35
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0185
                     Niere 0.000C
                  Prostata 0.0000
40
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0069
         Eierstock-Uterus 0.0068
         Endokrines_Gewebe 0.0000
                    Foetal 0.0012
         Gastrointestinal 0.0000
50
          Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0082
                    Nerven 0.0020
55
                  Prostata 0.0129
              Sinnesorgane 0.0000
```

65

Elektronischer Northern für SEQ. ID. NO: 40

	0.0325 0.0267 0.0030	TUMOR %Haeufigkeit 0.0051 0.0065 0.0026 0.0000	Verhaeltnisse N/T T/N 6.3647 0.1571 4.0772 0.2453 1.1686 0.8557 undef 0.0000		5
Haematopoetisch	0.0068 0.0028 0.0149	0.0095 0.0307 0.0378 0.0000 0.0129	0.4071 2.4562 0.2212 4.5213 0.0739 13.5274 undef 0.0000		10
Herz Hoden Lunge Magen-Speiseroehre	0.1303 0.0183 0.0174 0.0097	0.3299 0.0351 0.0118 0.0460	1.5303 0.6535 0.3950 2.5316 0.5224 1.9144 1.4748 0.6781 0.2100 4.7622		15
Pankreas Penis Prostata	0.0119 0.0057 0.0180 0.0143	0.0300 0.0479 0.0055 0.0267 0.0021	0.6281 1.5921 0.2481 4.0308 1.0285 0.9723 0.6739 1.4840 6.7118 0.1490		20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0327 0.0093 0.0208 0.0000	0.0000	undef 0.0000	:	25
Sinnesorgane Weisse_Blutkoerperchen				:	30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0000			:	35
Lunge	0.0074 0.0000 0.0000				40
Eierstock-Uterus		TRAHIERTE BIBI	LIOTHEKEN		45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0122 0.0244 0.0000 0.0032				50
	0.0000			:	55

60

Elektronischer Northern für SEQ. ID. NO: 43

		NODWAY	TIMOD	W
		NORMAL	TUMOR	Verhaeltnisse
	71	_	%Haeufigkeit 0.0051	
5		0.0000 0.0253	*	0.0000 undef
			0.0044	5.8100 0.1721
	Eierstock		0.0338	0.4495 2.2249
	Endokrines_Gewebe		0.0054	2.0093 0.4977
	Gastrointestinal		0.0000	undef 0.0000
10		0.0136	0.0044	3.0964 0.3230
	Haematopoetisch		0.0000	undef 0.0000
		0.0099	0.0000	undef 0.0000
	Hepatisch		0.0065	0.0000 undef
		0.0021	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
		0.0062	0.0024	2.6336 0.3797
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0030	0.0068	0.4342 2.3033
	Pankreas		0.0110	0.1714 5.8337
20		0.0090	0.0000	undef 0.0000
	Prostata		0.0064	1.4915 0.6705
		0.0083	0.0000	undef 0.0000
	Brust-Hyperplasie			
	Duenndarm			•
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0096		
30		FOETUS		
		%Haeufigkeit		
	Entwicklung	_		
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0111		
		0.0124		
	Prostata			
40	Sinnesorgane			
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus	0.0023		
	Endokrines_Gewebe	0.0000		
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	_	0.0000		
	Nerven			
55	Prostata			
	Sinnesorgane	0.0000		

60

Elektronischer Northern für SEQ. ID. NO: 44

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0000 0.0173 0.0000 0.0018 0.0019 0.0017	TUMOR %Haeufigkeit 0.0128 0.0044 0.0026 0.0027 0.0143 0.0066 0.0000	Verhaeltniss N/T T/N 0.0000 undef 3.9753 0.251 0.0000 undef 0.6698 1.4930 0.1357 7.368 0.2580 3.875 undef 0.0000	6 0 5	5
Haut Hepatisch Herz Hoden Lunge Magen-Speiseroehre	0.0099 0.0099 0.0032 0.0061 0.0062 0.0000	0.0000 0.0065 0.0000 0.0117 0.0118 0.0000	undef 0.000 1.5303 0.653 undef 0.000 0.5224 1.914 0.5267 1.8986 undef undef	5 5 1 5	15
Pankreas Penis Prostata Uterus	0.0119 0.0038 0.0030 0.0024 0.0017	0.0240 0.0068 0.0000 0.0000 0.0085 0.0000	0.0714 14.010 1.7366 0.5758 undef 0.0000 undef 0.0000 0.2797 3.5758 undef 0.0000	3))	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0093 0.0030 0.0000 0.0000			2	25
- Entwicklung	FOETUS %Haeufigkeit 0.0000			3	30
	0.0000 0.0000 0.0000 0.0000			3	35
Niere Prostata Sinnesorgane	0.0000			4	40
Eierstock-Uterus Endokrines_Gewebe	0.0000	TRAHIERTE BIB	Liotheken	4	45
	0.0000 0.0000			5	50
Lunge Nerven Prostata Sinnesorgane	0.0070 0.0064			5	55

Elektronischer Northern für SEQ. ID. NO: 45

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0000	undef undef
,		0.0200	0.0022	9.1737 0.1090
	Eierstock		0.0026	0.0000 undef
	Endokrines Gewebe		0.0000	undef undef
	Gastrointestinal		0.0048	1.2214 0.8187
	•			undef undef
10		0.0000	0.0000	
	Haematopoetisch		0.0000	undef 0.0000
		0.0249	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
	Herz	0.0064	0.0000	undef 0.0000
15	Hoden	0.0000	0.0000	undef undef
נו	Lunge	0.0000	0.0000	undef undef
	Magen-Speiseroehre	0.0000	0.0000	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Pankreas		0.0055	0.6857 1.4584
20		0.0000	0.0000	undef undef
				undef undef
	Prostata		0.0000	
	Uterus		0.0000	undef undef
	Brust-Hyperplasie			
25	Duenndarm			
2.5	Prostata-Hyperplasie			
	Samenblase	0.0000		
	Sinnesorgane	0.0000		
	Weisse Blutkoerperchen	0.0009		
	-			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	_		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
	_	0.0000		
		0.0000		
40	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHIERTE BIB	TTOTHEKEN
45		%Haeufigkeit		
		0.0000		
	Eierstock-Uterus	0.0000		
	Endokrines_Gewebe	0.0000		
	Foetal			
50	Gastrointestinal	0.0000		
~	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
55	Prostata			
	Sinnesorgane			
	Sinnesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 46

Brust Eierstock	0.0046 0.0120 0.0030	TUMOR %Haeufigkeit 0.0281 0.0022 0.0104	Verhaeltnisse N/T T/N 0.1653 6.0490 5.5042 0.1817 0.2922 3.4228 0.5954 1.6797		5
Haematopoetisch Haut Hepatisch	0.0116 0.0432 0.0070 0.0050 0.0000	0.0245 0.0000 0.0142 0.0000 0.0847 0.0129	undef 0.0000 3.0369 0.3293 undef 0.0000 0.0587 17.0262 0.0000 undef	1	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett		0.0137 0.0117 0.0165 0.0000 0.0180 0.0068	1.1561 0.8650 0.5224 1.9144 0.2257 4.4300 undef 0.0000 0.3807 2.6269 2.6050 0.3839	1	15
Pankreas Penis Prostata Uterus	0.0057 0.0090 0.0119 0.0066	0.0055 0.0000 0.0064 0.0214	1.0285 0.9723 undef 0.0000 1.8644 0.5364 0.3094 3.2316	2	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0156 0.0059 0.0000 0.0000			2	25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			3	10
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0062 0.0250 0.0039 0.0164			3	15
				4	0
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0136 0.0320	TRAHIERTE BIB	LIOTHEKEN	4	5
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0058 0.0000 0.0000		·	Si	0
Hoden	0.0000 0.0164 0.0261 0.0000			5:	5
-2					

65

Elektronischer Northern für SEQ. ID. NO: 47

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0000	0.0051	0.0000 undef
		0.0133	0.0000	undef 0.0000
	Eierstock		0.0000	undef undef
	Endokrines Gewebe	0.0000	0.0000	undef undef
	Gastrointestinal	0.0019	0.0000	undef 0.0000
10	Gehirn	0.0017	0.0000	undef 0.0000
10	Haematopoetisch	0.0000	0.0000	undef undef
		0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
		0.0011	0.0000	undef 0.0000
		0.0000	0.0000	undef undef
15	Lunge	0.0062	0.0000	undef 0.0000
	Magen-Speiseroehre		0.0000	undef 0.0000
	Muskel-Skelett		0.0000	undef undef
	Niere	0.0000	0.0000	undef undef
	Pankreas		0.0000	undef undef
20		0.0120	0.0000	undef 0.0000
	Prostata		0.0021	1.1186 0.8939
	Uterus		0.0000	undef undef
	Brust-Hyperplasie		***************************************	
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	werose_brackoerperonen	0.000		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	-		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
	_	0.0124		
40	Prostata			
	Sinnesorgane			
	oam.cocagumo			
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
	Brust	0.0068		
	Eierstock-Uterus	0.0023		
	Endokrines Gewebe	0.0000		
	Foetal			
50	Gastrointestinal			
50	Haematopoetisch	0.0000		
	Haut-Muskel			
	Hoden	0.0000		
		0.0000		
55	Nerven			
55	Prostata			
	Sinnesorgane			
	-		•	

65

Elektronischer Northern für SEQ. ID. NO: 48

Brust Eierstock Endokrines Gewebe	0.0186 0.0133 0.0030 0.0036	TUMOR %Haeufigkeit 0.0077 0.0000 0.0000 0.0027	2.4246 0.4124 undef 0.0000 undef 0.0000 1.3396 0.7465	5
Haematopoetisch Haut Hepatisch	0.0017 0.0000 0.0149 0.0149	0.0000 0.0033 0.0000 0.0000	undef 0.0000 0.5161 1.9377 undef undef undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0394	0.0000 0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef undef undef 0.0000 undef 0.0000 undef 0.0000	15
Pankreas	0.0150	0.0000 0.0000 0.0000 0.0106	undef 0.0000 undef 0.0000 undef 0.0000 0.2237 4.4697	20
Uterus Brust-Hyperplasie Duenndarm	0.0116 0.0036	0.0142	0.8123 1.2311	
Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0118			25
Weisse_Blutkoerperchen	FOETUS			30
Entwicklung Gastrointenstinal	0.0031			35
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000	·		33
	0.0000 0.0000			40
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe	0.0408 0.0274 0.0000			
Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0000			50
	0.0234 0.0000			55
Prostata Sinnesorgane				33

65

Elektronischer Northern für SEQ. ID. NO: 49

		NORMAL	TUMOR	Verhaeltnisse
			%Eaeufigkeit	
5	Blase	0.0186	0.0077	2.4246 0.4124
,		0.0293	0.0087	3.3637 0.2973
	Eierstock	0.0091	0.0234	0.3895 2.5671
	Endokrines Gewebe	0.0091	0.0327	0.2791 3.5833
	Gastrointestinal		0.0143	0.8143 1.2281
10	Gehirn	0.0110	0.0110	1.0063 0.9937
10	Haematopoetisch	0.0112	0.0000	undef 0.0000
	Haut	0.0199	0.0000	undef 0.0000
	Hepatisch	0.0149	0.9065	2.2954 0.4356
		0.0392	0.0000	undef 0.0000
15		0.0122	0.0117	1.0447 0.9572
13		0.0224	0.0071	3.1603 0.3164
	Magen-Speiseroehre		0.0230	0.4200 2.3811
	Muskel-Skelett		0.0300	0.6281 1.5921
		0.0119	0.0137	0.8683 1.1517
20	Pankreas		0.0000	undef 0.0000
		0.0150	0.0267	0.5615 1.7808
	Prostata		0.0128	1.8644 0.5364
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie	0.0182		
25	Duenndarm			
	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane Weisse_Blutkoerperchen			
	weisse_blackoelperchen	0.0232		
30			•	
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
0.5	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse	0.0245		
		0.0074		
40		0.0000		
40	Prostata			
	Sinnesorgane	0.0279		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
	Foetal			
50	Gastrointestinal			
	Haematopoetisch Haut-Muskel			
		0.0234		
		0.0254		
	Nerven			
55	Prostata			
	Sinnesorgane			
	•			

65

Elektronischer Northern für SEQ. ID. NO: 50

Brust Eierstock		0.0051 0.0000 0.0000	N/T 0.0000 undef undef	0.0000 0.0000	5
Haematopoetisch	0.0000 0.0008 0.0028 0.0000	0.0109 0.0000 0.0033 0.0000 0.0000	0.0000 undef 0.2580 undef undef undef	undef 3.8754 0.0000 undef	10
Hoden		0.0000 0.0000 0.0000 0.0000 0.0120	undef undef undef undef 0.1428	undef 0.0000 0.0000	15
Niere Pankreas	0.0000 0.0019 0.0060 0.0024	0.0000 0.0055 0.0000 0.0043	undef 0.3428 undef 0.5593 undef	2.9168 0.0000 1.7879	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0000 0.0059 0.0000				25
Weisse_Blutkoerperchen	0.0000 FOETUS				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0062 0.0063 0.0079				35
Lunge	0.0074 0.0124 0.0000				40
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0204	TRAHIERTE BIB	LIOTHEK	EN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0227 0.0000 0.0000				50
Hoden Lunge Nerven Prostata	0.0000 0.0000 0.0030 0.0128				55
Sinnesorgane	0.0000				

Elektronischer Northern für SEQ. ID. NO: 51

		NORMAL	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
_	Rlage	0.0093	0.0077	1.2123 0.8249
5		0.0133	0.0000	undef 0.0000
	Eierstock		0.0078	0.0000 undef
	Endokrines Gewebe		0.0000	undef 0.0000
	Gastrointestinal		0.0095	1.0178 0.9825
10	Gehirn	0.0025	0.0099	0.2580 3.8754
	Haematopoetisch	0.0084	0.0378	0.2218 4.5091
		0.0099	0.0847	0.1175 8.5131
	Hepatisch		0.0065	1.5303 0.6535
		0.0011	0.0000	undef 0.0000
15		0.0061	0.0000	undef 0.0000
		0.0100	0.0095	1.0534 0.9493
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0060	5.7101 0.1751
	Niere Pankreas	0.0000	0.0137	0.0000 undef 0.0000 undef
20		0.0000	0.0110 0.0000	undef undef
	Prostata		0.0043	1.6779 0.5960
	Uterus		0.0043	0.4642 2.1544
	Brust-Hyperplasie		0.0071	0.4032 2.1544
	Duenndarm	0.0062		
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0118		
	Weisse_Blutkoerperchen	0.0209		
30				
50		DODELLO		
		FOETUS		
	Entwicklung	%Haeufigkeit		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
	Niere	0.0062		
40	Prostata			
	Sinnesorgane	0.0000		
	•			
		NORMIERTE/SUB	יים אורים אדם	T.TOTHEKEN
45	•	%Haeufigkeit	INMIBRIE DID.	T-CTHERMAN
43	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
50	Gastrointestinal	0.0366		
	Haematopoetisch	0.0000		
	Haut-Muskel			
		0.0000		
		0.0000		
55	Nerven			
	Prostata Sinnesorgane			
	Simesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 52

	NORMAL	TUMOR	Verhaeltnisse	
		%Haeufigkeit		
	0.0046	0.0026	1.8185 0.5499	5
	0.0133	0.0022	6.1158 0.1635	
Eierstock		0.0000	undef undef	
Endokrines_Gewebe	0.0036	0.0027	1.3396 0.7465	
Gastrointestinal		0.0000	undef 0.0000	
Gehirn	0.0008	0.0033	0.2580 3.8754	10
Haematopoetisch	0.0014	0.0000	undef 0.0000	
	0.0050	0.0000	undef 0.0000	
Hepatisch		0.0000	undef undef	
	0.0011	0.0000	undef 0.0000	
	0.0000	0.0000	undef undef	15
	0.0037	0.0000	undef 0.0000	15
Magen-Speiseroehre	0.0000	0.0000	undef undef	
Muskel-Skelett	0.0069	0.0060	1.1420 0.8756	
Niere	0.0149	0.0000	undef 0.0000	
Pankreas	0.0038	0.0000	undef 0.0000	20
Penis	0.0030	0.0000	undef 0.0000	20
Prostata	0.0024	0.0000	undef 0.0000	
Uterus	0.0033	0.0071	0.4642 2.1544	
Brust-Hyperplasie	0.0036			
Duenndarm	0.0000			
Prostata-Hyperplasie	0.0000			25
Samenblase				
Sinnesorgane	0.0118			
Weisse_Blutkoerperchen				
-				
	PORMITO			30
	FOETUS			
. Entwicklung	%Haeufigkeit			
Gastrointenstinal				
Gastrointenstinai Gehirn				35
Haematopoetisch				35
Herz-Blutgefaesse				
-	0.0041			
_	0.0062			
Prostata		•		40
Sinnesorgane				40
Simesorgane	0.0000			•
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	
	%Haeufigkeit			45
	0.0136			
Eierstock-Uterus	0.0046			
Endokrines_Gewebe				
Foetal				
Gastrointestinal				50
Haematopoetisch				
Haut-Muskel				
	0.0000		•	
	0.0000			
Nerven				55
Prostata				
Sinnesorgane	0.0000			

Elektronischer Northern für SEQ. ID. NO: 53

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5	Blase	0.0000	0.0051	0.0000 undef
,	Brust	0.0213	0.0044	4.8926 0.2044
	Eierstock	0.0091	0.0182	0.5008 1.9967
	Endokrines_Gewebe	0.0091	0.0191	0.4784 2.0902
	Gastrointestinal		0.0190	0.1018 9.8248
10	Gehirn	0.0034	0.0066	0.5161 1.9377
IU	Haematopoetisch	0.0028	0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch	0.0000	0.0065	0.0000 undef
	Herz	0.0106	0.0000	undef 0.0000
16	Hoden	0.0183	0.0000	undef 0.0000
15	Lunge	0.0075	0.0095	0.7901 1.2657
	Magen-Speiseroehre	0.0000	0.0000	undef undef
	Muskel-Skelett	0.0034	0.0000	undef 0.0000
	Niere	0.0059	0.0137	0.4342 2.3033
	Pankreas	0.0000	0.0000	undef undef
20	Penis	0.0150	0.1066	0.1404 7.1232
	Prostata	0.0119	0.0064	1.8644 0.5364
	Uterus	0.0182	0.0071	2.5529 0.3917
	Brust-Hyperplasie	0.0254		
	Duenndarm			
25	Prostata-Hyperplasie	0.0059		
	Samenblase	0.0089		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0000		
30				
50		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0370		
		0.0000		
40	Prostata			
-	Sinnesorgane			
	-			
		NORMIERTE/SUB	TOXUTEDOE DYO	TORUEVEN
		%Haeufigkeit	IVWUITEKIE DID.	PIOLUEVEN
45	Proce	0.0136		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0164		
	Nerven			
55	Prostata			
	Sinnesorgane		•	
	•			

60

65

Elektronischer Northern für SEQ. ID. NO: 54

Blase	NORMAL %Haeufigkeit 0.0093	TUMOR %Haeufigkeit 0.0077	Verhaeltnisse N/T T/N 1.2123 0.8249	5
Brust	0.0200	0.0044	4.5868 0.2180	_
Eierstock	0.0152	0.0104	1.4608 0.6846	
Endokrines Gewebe	0.0091	0.0054	1.6745 0.5972	
Gastrointestinal	0.0039	0.0048	0.8143 1.2281	
Gehirn	0.0110	0.0033	3.3545 0.2981	10
Haematopoetisch	0.0056	0.0000	undef 0.0000	10
	0.0149	0.0000	undef 0.0000	
Hepatisch	0.0198	0.0000	undef 0.0000	
Herz	0.0064	0.0000	undef 0.0000	
	0.0122	0.0000	undef 0.0000	15
Lunge	0.0062	0.0071	0.8779 1.1391	15
Magen-Speiseroehre	0.0097	0.0000	undef 0.0000	
Muskel-Skelett	0.0051	0.0240	0.2141 4.6701	
Niere	0.0178	0.0000	undef 0.0000	
Pankreas	0.0019	0.0110	0.1714 5.8337	20
Penis	0.0060	0.0000	undef 0.0000	20
Prostata	0.0119	0.0043	2.7966 0.3576	
Uterus	0.0050	0.0214	0.2321 4.3088	
Brust-Hyperplasie				
Duenndarm				
Prostata-Hyperplasie	0.0208			25
Samenblase				
Sinnesorgane	0.0000			
Weisse Blutkoerperchen				
				30
	FOETUS			
	%Haeufigkeit			
Entwicklung	%Haeufigkeit 0.0000			
Gastrointenstinal	%Haeufigkeit 0.0000 0.0123			
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0123 0.0250			35
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558	TRAHIERTE BIB	LIOTHEKEN	
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558	TRAHIERTE BIB	LIOTHEKEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558	TRAHIERTE BIB	LIOTHEKEN	
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136	TRAHIERTE BIB	LIOTHEKEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046	TRAHIERTE BIB	LIOTHEKEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000	TRAHIERTE BIB	LIOTHEKEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023	TRAHIERTE BIB	LIOTHEKEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000	TRAHIERTE BIB	LIOTHEKEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000	TRAHIERTE BIB	LIOTHEKEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0000 0.0130	TRAHIERTE BIB	LIOTHEKEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0023 0.0000 0.0130 0.0000	TRAHIERTE BIB	LIOTHEKEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0023 0.0000 0.0130 0.0000 0.0130 0.0000	TRAHIERTE BIB	LIOTHEKEN	40 45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0023 0.0000 0.0130 0.0000 0.0130 0.0000	TRAHIERTE BIB	LIOTHEKEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0023 0.0000 0.0130 0.0000 0.0130 0.0000 0.0082 0.0040	TRAHIERTE BIB	LIOTHEKEN	40 45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0123 0.0250 0.0275 0.0082 0.0037 0.0185 0.0000 0.0558 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0046 0.0000 0.0023 0.0000 0.0023 0.0000 0.0130 0.0000 0.0130 0.0000 0.0082 0.0040	TRAHIERTE BIB	LIOTHEKEN	40 45 50

65

Elektronischer Northern für SEQ. ID. NO: 55

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5	Blase	0.0325	0.0102	3.1823 0.3142
3		0.0573	0.0109	5.2596 0.1901
	Eierstock		0.0078	4.2849 0.2334
	Endokrines Gewebe		0.0218	1.5907 0.6286
	Gastrointestinal		0.0238	1.9542 0.5117
10	Gehirn	0.0263	0.0361	0.7272 1.3752
10	Haematopoetisch	0.0098	0.0000	undef 0.0000
	Haut	0.0497	0.0000	undef 0.0000
	Hepatisch	0.1139	0.0647	1.7598 0.5682
	Herz	0.0424	0.0550	0.7707 1.2974
15	Hoden	0.0122	0.0117	1.0447 0.9572
15		0.0473	0.0236	2.0015 0.4996
	Magen-Speiseroehre	0.0290	0.0383	0.7560 1.3228
	Muskel-Skelett		0.0060	3.4261 0.2919
	Niere	0.0654	0.0274	2.3879 0.4188
20	Pankreas		0.0276	0.4800 2.0835
20		0.0509	0.0000	undef 0.0000
	Prostata		0.0149	1.5980 0.6258
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie			
25	Duenndarm			
۵	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0113		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch	0.0118		
	Herz-Blutgefaesse			
	Lunge	0.0074		
	Niere	0.0124		
40	Prostata			
	Sinnesorgane	0.0000		
		170D/77DDMD /00D	#22 HTG2#F 2TD	TAMURIANI
			TRAHIERTE BIB	LIOTHEVEN
45	Dwnat	%Haeufigkeit 0.0068		
	Eierstock-Uterus			
	Endokrines Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0156		
		0.0164		
	Nerven			
55	Prostata	0.0064		
	Sinnesorgane	0.0542		
	-			

60

65

Elektronischer Northern für SEQ. ID. NO: 56

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0046 0.0227 0.0000 0.0018 0.0058 0.0059	TUMOR %Haeufigkeit 0.0000 0.0044 0.0000 0.0000 0.0048 0.0011 0.0000 0.0000	N/T undef 5.1984 undef undef 1.2214 5.4187 undef	Itnisse T/N 0.0000 0.1924 undef 0.0000 0.8187 0.1845 0.0000	5
Hepatisch Herz Hoden	0.0446 0.0095 0.0000 0.0075 0.0097	0.0000 0.0000 0.0000 0.0071 0.0307 0.0000	undef undef undef	0.0000 0.0000 undef 0.9493 3.1748	15
Niere Pankreas	0.0208 0.0038 0.0000 0.0119 0.0017	0.0068 0.0110 0.0000 0.0106		0.3290 2.9168 undef 0.8939	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0059 0.0089 0.0000				25
 Entwicklung	FOETUS %Haeufigkeit 0.0000				30
_	0.0000 0.0118 0.0000 0.0000	• .			35
Niere Prostata Sinnesorgane	0.0000				40
Eierstock-Uterus Endokrines Gewebe	0.0000	TRAHIERTE BIB	LIOTHEK	EN	45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0057 0.0065 0.0156				50
Lunge Nerven Prostata Sinnesorgane	0.0070 0.0128				55

65

Elektronischer Northern für SEQ. ID. NO: 57

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0000
                                          0.0000
                                                       undef undef
5
                      Brust 0.0120
                                          0.0000
                                                       undef 0.0000
                  Eierstock 0.0000
                                          0.0000
                                                       undef undef
          Endokrines Gewebe 0.0000
                                          0.0000
                                                       undef undef
                                                       undef undef
           Gastrointestinal 0.0000
                                         0.0000
                                         0.0000
                                                       undef undef
                     Gehirn 0.0000
10
            Haematopoetisch 0.0000
                                         0.0000
                                                       undef undef
                                         0.0000
                                                       undef undef
                       Haut 0.0000
                  Hepatisch 0.0000
                                         0.0000
                                                       undef undef
                      Herz 0.0000
                                         0.0000
                                                       undef undef
                      Hoden 0.0000
                                         0.0000
                                                       undef undef
15
                      Lunge 0.0000
                                         0.0000
                                                       undef undef
        Magen-Speiseroehre 0.0000
                                         0.0000
                                                       undef undef
                                         0.0000
                                                       undef undef
            Muskel-Skelett 0.0000
                      Niere 0.0000
                                         0.0000
                                                      undef undef
                   Pankreas 0.0000
                                         0.0000
                                                       undef
                                                            undef
20
                      Penis 0.0000
                                         0.0000
                                                      undef undef
                   Prostata 0.0000
                                         0.0000
                                                      undef undef
                    Uterus 0.0000
                                         0.0000
                                                      undef undef
         Brust-Hyperplasie 0.0000
                 Duenndarm 0.0000
25
      Prostata-Hyperplasie 0.0000
                Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0000
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
35
                    Gehirn 0.0000
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0000
                     Niere 0.0000
                  Prostata 0.0000
40
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0000
         Endokrines Gewebe 0.0000
                    Foetal 0.0000
          Gastrointestinal 0.0000
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0000
55
                  Prostata 0.0000
              Sinnesorgane 0.0000
```

60

65

Elektronischer Northern für SEQ. ID. NO: 58

	NORMAL	TUMOR %Haeufigkeit		ltnisse T/N	
Rlase	0.0000	0.0026	0.0000	•	_
	0.0107	0.0000		0.0000	5
Eierstock		0.0026		0.1222	
Endokrines Gewebe		0.0054	0.0000		
Gastrointestinal		0.0000		0.0000	
	0.0212	0.0077	2.7647		
Haematopoetisch		0.0378	0.0000		10
-	0.0000	0.0000	undef		
Hepatisch	0.0050	0.0000	undef	0.0000	
	0.0021	0.0000	undef	0.0000	
Hoden	0.0244	0.0000	undef	0.0000	
Lunge	0.0087	0.0047	1.8435	0.5424	15
Magen-Speiseroehre	0.0000	0.0000	undef	undef	
Muskel-Skelett	0.0017	0.0060	0.2855	3.5025	
Niere	0.0030	0.0068	0.4342	2.3033	
Pankreas	0.0000	0.0000	undef	undef	
Penis	0.0060	0.0000	undef	0.0000	20
Prostata	0.0000	0.0021	0.0000	undef	
Uterus	0.0033	0.0142	0.2321	4.3088	
Brust-Hyperplasie	0.0036				
Duenndarm	0.0031				
Prostata-Hyperplasie	0.0030				25
Samenblase	0.0000				
Sinnesorgane					
Weisse_Blutkoerperchen	0.0009				
-					30
	FOETUS				50
	%Haeufigkeit				
Entwicklung	0.0000				
Gastrointenstinal	0.0062				
Gehirn					35
Gehirn Haematopoetisch	0.0000				35
	0.0000 0.0000				35
Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0000 0.0000 0.0111				35
Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0000 0.0111 0.0062				35
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000				40
Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000				
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000				
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000	frahierte bibi	LIOTHEKI	E N	
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUBS	frahierte bibi	LIOTHEK	EN	
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB: %Haeufigkeit 0.0000	rrahierte bibi	LIOTHEK	en	40
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.00047	FRAHIERTE BIBI	LIOTHEK	EN	40
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000	FRAHIERTE BIBI	LIOTHEKI	EN	40 45
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUBS %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40 45
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40 45
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000	FRAHIERTE BIBI	LIOTHEK	EN	40 45
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIBI	LIOTHEK	EN	40 45
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIBI	LIOTHEK	EN	40 45 50
Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0000 0.0111 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0000 0.0000 0.0000 0.0047 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIBI	LIOTHEK	EN	40 45 50

Elektronischer Northern für SEQ. ID. NO: 59

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
•	Blase	0.0000	0.0026	0.0000 undef
5		0.0133	0.0000	undef 0.0000
	Eierstock		0.0104	0.0000 undef
	Endokrines_Gewebe		0.0000	undef undef
	Gastrointestinal		0.0000	undef undef
10	*	0.0008	0.0011	0.7741 1.2918
10	Haematopoetisch	0.0000	0.0000	undef undef
		0.0050	0.0000	undef 0.0000
	Hepatisch	0.0000	0.0000	undef undef
	Herz	0.0011	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
13		0.0025	0.0000	undef 0.0000
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef undef
		0.0000	0.0000	undef undef
20	Pankreas		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Prostata		0.0021	3.3559 0.2980
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie	0.0036		
25	Duenndarm			
	Prostata-Hyperplasie Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen			
	weisse_bluckoelpelchen	0.0000		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0000		
	Gastrointenstinal	0.0000		
35	Gehirn			
	Haematopoetisch	0.0000		
	Herz-Blutgefaesse	0.0000		
		0.0074		
40		0.0062		
40	Prostata			
	Sinnesorgane	0.0279		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel	-		
		0.0156		
		0.0000		
55	Nerven			
	Prostata Sinnesorgane			
	Sinnesorgane	0.0000		

60

65

Elektronischer Northern für SEQ. ID. NO: 60

	0.0186 0.0160	TUMOR %Haeufigkeit 0.0051 0.0044 0.0052	Verhaeltnisse N/T T/N 3.6370 0.2750 3.6695 0.2725 1.1686 0.8557	5
Haematopoetisch Haut Hepatisch	0.0039 0.0305 0.0014 0.0050 0.0000	0.1634 0.0000 0.0110 0.0000 0.0000 0.0000	0.1228 8.1438 undef 0.0000 2.7868 0.3588 undef 0.0000 undef 0.0000 undef undef	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0120	0.0275 0.0000 0.0047 0.0000 0.0060	0.8864 1.1282 undef undef 1.0534 0.9493 undef undef 1.9985 0.5004	15
Pankreas Penis Prostata	0.0359	0.0205 0.0110 0.0000 0.0149 0.0071	0.0000 undef 0.0000 undef undef 0.0000 0.7990 1.2515 1.3925 0.7181	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0093 0.0059 0.0089			25
Weisse_Blutkoerperchen	0.0000 FOETUS %Haeufigkeit			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0092 0.0000 0.0039 0.0082			35
				40
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0068 0.0046	TRAHIERTE BIB	LIOTHEKEN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0035 0.0244 0.0114			50
	0.0000			55

65

Elektronischer Northern für SEQ. ID. NO: 61

```
NORMAL
                                           TUMOR
                                                         Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                       Blase 0.0046
                                           0.0051
                                                         0.9092 1.0998
 5
                                                                       0.0711
                      Brust 0.0306
                                           0.0022
                                                         14.0663
                  Eierstock 0.0030
                                           0.0078
                                                         0.3895 2.5671
          Endokrines Gewebe 0.0055
                                           0.0027
                                                         2.0093 0.4977
           Gastrointestinal 0.0058
                                           0.0238
                                                         0.2443 4.0937
                     Gehirn 0.0068
                                           0.0022
                                                         3.0964 0.3230
10
            Haematopoetisch 0.0014
                                           0.0000
                                                         undef 0.0000
                       Haut 0.0199
                                           0.0000
                                                         undef 0.0000
                  Hepatisch 0.0000
                                           0.0065
                                                         0.0000 undef
                                                        undef 0.0000
undef 0.0000
                       Herz 0.0085
                                           0.0000
                      Hoden 0.0061
                                           0.0000
15
                      Lunge 0.0075
                                           0.0047
                                                         1.5801 0.6329
        Magen-Speiseroehre 0.0000
                                           0.0077
                                                         0.0000 undef
             Muskel-Skelett 0.0017
                                           0.0060
                                                         0.2855 3.5025
                      Niere 0.0030
                                           0.0068
                                                        0.4342 2.3033
                   Pankreas 0.0000
                                           0.0000
                                                        undef undef
20
                                                        undef 0.0000
                      Penis 0.0060
                                           0.0000
                   Prostata 0.0024
                                           0.0043
                                                        0.5593 1.7879
                     Uterus 0.0033
                                           0.0000
                                                        undef 0.0000
         Brust-Hyperplasie 0.0145
                  Duenndarm 0.0125
25
      Prostata-Hyperplasie 0.0059
                 Samenblase 0.0000
               Sinnesorgane 0.0235
    Weisse Blutkoerperchen 0.0000
30
                             %Haeufigkeit
         Entwicklung 0.0000 Gastrointenstinal 0.0062
35
                     Gehirn 0.0063
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0074
Niere 0.0000
40
                   Prostata 0.0000
               Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                      Brust 0.0068
          Eierstock-Uterus 0.0137
         Endokrines Gewebe 0.0000
                     Foetal 0.0052
          Gastrointestinal 0.0000
50
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                      Hoden 0.0000
                      Lunge 0.0000
                     Nerven 0.0020
55
                   Prostata 0.0128
              Sinnesorgane 0.0155
```

60

65

Elektronischer Northern für SEQ. ID. NO: 62

Brust Eierstock		0.0026 0.0022 0.0104	0.0000 undef 5.5042 0.181 0.2922 3.422	5 7 3
Haematopoetisch Haut Hepatisch	0.0058 0.0119 0.0070 0.0000 0.0000	0.0027 0.0048 0.0131 0.0000 0.0000	2.0093 0.497 1.2214 0.818 0.9031 1.107 undef 0.000 undef undef 0.0000 undef	7 3
Hoden		0.0137 0.0000 0.0024 0.0077 0.0060	0.0000 undef undef 0.0000 1.5801 0.6329 0.0000 undef 0.2855 3.5029	15
Niere Pankreas	0.0030 0.0000 0.0090	0.0000 0.0000	undef 0.0000 undef undef undef 0.0000 0.2797 3.5758	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0073 0.0000 0.0000	0.0142	0.5802 1.7235	25
Sinnesorgane Weisse_Blutkoerperchen	0.0353			30
Entwicklung Gastrointenstinal				
Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0079			35
	0.0000 0.0000			40
Brust Eierstock-Uterus	NORMIERTE/SUB %Haeufigkeit 0.0000 0.0023	TRAHIERTE BIB	LIOTHEKEN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0245 0.0052 0.0000 0.0171			50
Lunge Nerven Prostata	0.0078 0.0246 0.0271 0.0192			55
Sinnesorgane	0.0000			

65

Elektronischer Northern für SEQ. ID. NO: 63

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0232	0.0204	1.1366 0.8799
	Brust	0.0267	0.0087	3.0579 0.3270
	Eierstock		0.0130	2.3372 0.4279
	Endokrines_Gewebe		0.0735	0.7194 1.3901
	Gastrointestinal	0.0174	0.0048	3.6642 0.2729
10	Gehirn	0.0170	0.0208	0.8148 1.2272
	Haematopoetisch	0.0070	0.0378	0.1848 5.4110
		0.0199	0.0000	undef 0.0000
	Hepatisch		0.0000	undef 0.0000
		0.0180	0.0550	0.3276 3.0528
15		0.0122	0.0117	1.0447 0.9572
		0.0249	0.0118	2.1069 0.4746
	Magen-Speiseroehre		0.0153	2.5198 0.3968
	Muskel-Skelett		0.0180	0.6662 1.5011
		0.0089	0.0068	1.3025 0.7678
20	Pankreas		0.0055	3.0855 0.3241
		0.0509	0.0000	undef 0.0000
	Prostata		0.0149	2.3971 0.4172
	Uterus		0.0214	1.3925 0.7181
	Brust-Hyperplasie			
25	Duenndarm			
	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0000		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung	_		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch	0.0000		
	Herz-Blutgefaesse			
	Lunge	0.0037		
	Niere	0.0432		
40	Prostata	0.0000		
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		*Haeufigkeit		
		0.0272		
	Eierstock-Uterus			
	Endokrines_Gewebe Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
		0.0246		
	Nerven			
55	Prostata			
	Sinnesorgane			

60

65

Elektronischer Northern für SEQ. ID. NO: 64

	NORMAL	TUMOR	Verhaeltnisse	
		%Haeufigkeit		
Blase	0.0232	0.0102	2.2731 0.4399	5
	0.0240	0.0065	3.6695 0.2725	,
Eierstock	0.0213	0.0416	0.5113 1.9559	
Endokrines Gewebe	0.0237	0.0027	8.7071 0.1148	
Gastrointestinal		0.0381	0.5598 1.7863	
Gehirn	0.0136	0.0099	1.3762 0.7266	10
Haematopoetisch	0.0042	0.0000	undef 0.0000	10
	0.0050	0.0000	undef 0.0000	
Hepatisch	0.0248	0.0129	1.9129 0.5228	
Herz	0.0191	0.0137	1.3873 0.7208	
	0.0000	0.0117	0.0000 undef	15
	0.0112	0.0095	1.1851 0.8438	13
Magen-Speiseroehre	0.0097	0.0000	undef 0.0000	
Muskel-Skelett	0.0051	0.0060	0.8565 1.1675	
Niere	0.0149	0.0205	0.7236 1.3820	
Pankreas	0.0076	0.0055	1.3713 0.7292	20
Penis	0.0269	0.0267	1.0108 0.9893	20
Prostata	0.0333	0.0170	1.9576 0.5108	
Uterus		0.0071	1.3925 0.7181	
Brust-Hyperplasie	0.0145		•	
Duenndarm				
Prostata-Hyperplasie	0.0178			25
Samenblase				
Sinnesorgane	0.0000			
Weisse Blutkoerperchen				
_				
	•			30
	FOETUS			
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal				35
Gehirn				33
Haematopoetisch				
Herz-Blutgefaesse				
-	0.0000		•	
	0.0062			40
Prostata				40
Sinnesorgane	0.0140			
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	45
Brust	%Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	45
	%Haeufigkeit 0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus	%Haeufigkeit 0.0000 0.0137	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0137 0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023	TRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244	TRAHIERTE BIB	LIOTHEKEN	45 50
Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000	TRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000	TRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000 0.0227 0.0000	TRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000 0.0227 0.0000	TRAHIERTE BIB	LIOTHEKEN	50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000 0.0227 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000 0.0227 0.0000 0.0000 0.0110 0.0385	TRAHIERTE BIB	LIOTHEKEN	50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0137 0.0000 0.0023 0.0244 0.0000 0.0227 0.0000 0.0000 0.0110 0.0385	TRAHIERTE BIB	LIOTHEKEN	50

65

Elektronischer Northern für SEQ. ID. NO: 65

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	
5	Blase	0.0139	0.0026	5.4554 0.1833
•	Brust	0.0093	0.0022	4.2811 0.2336
	Eierstock	0.0000	0.0130	0.0000 undef
	Endokrines Gewebe	0.0036	0.0082	0.4465 2.2395
	Gastrointestinal		0.0095	0.0000 undef
10	Gehirn	0.0000	0.0000	undef undef
10	Haematopoetisch	0.0028	0.0000	undef 0.0000
	Haut	0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
		0.0085	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
		0.0012	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0193	0.0000	undef 0.0000
	Muskel-Skelett	0.0000	0.0000	undef undef
		0.0000	0.0000	undef undef
20	Pankreas		0.0000	undef 0.0000
		0.0060	0.0000	undef 0.0000
	Prostata		0.0000	undef 0.0000
	Uterus		0.0214	0.3094 3.2316
	Brust-Hyperplasie			
25	Duenndarm			
	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0000		
30	•			
		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0000		
	Gastrointenstinal	0.0000		
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
40		0.0062		
40	Prostata			
	Sinnesorgane	0.0000		
			•	
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge Nerven			
55	Prostata			
	Sinnesorgane			
	ormie20ragiie			

60

Elektronischer Northern für SEQ. ID. NO: 66

Brust Eierstock		TUMOR %Haeufigkeit 0.0077 0.0022 0.0052 0.0054		0.1817 1.7114	5
Haematopoetisch Haut	0.0039 0.0008 0.0070 0.0050	0.0000 0.0033 0.0000 0.0000	undef 0.2580 undef undef	0.0000 3.8754 0.0000 0.0000	10
Hoden Lunge Magen-Speiseroehre	0.0053 0.0000 0.0062 0.0000	0.0000 0.0000 0.0117 0.0071 0.0000	undef undef 0.0000 0.8779 undef	0.0000 undef 1.1391 undef	15
Pankreas Penis Prostata	0.0000 0.0019 0.0030 0.0119	0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef	undef 0.0000 0.0000	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0036 0.0000 0.0000	0.0071	0.4642	2.1544	25
Sinnesorgane Weisse_Blutkoerperchen					30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0000 0.0000				35
Herz-Blutgefaesse Lunge	0.0082 0.0074 0.0000 0.0000				40
	NORMIERTE/SUB %Haeufigkeit 0.0000	TRAHIERTE BIB	LIOTHEKI	EN	45
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0046 0.0000 0.0023 0.0000				50
	0.0130 0.0078 0.0000				_
Prostata Sinnesorgane	0.0000				55

Elektronischer Northern für SEQ. ID. NO: 67

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0232	0.0051	4.5462 0.2200
	Brust	0.0506	0.0044	11.62000.0861
	Eierstock	0.0000	0.0000	undef undef
	Endokrines_Gewebe	0.0036	0.0000	undef 0.0000
	Gastrointestinal	0.0019	0.0000	undef 0.0000
10	Gehirn	0.0034	0.0000	undef 0.0000
	Haematopoetisch	0.0028	0.0378	0.0739 13.5274
		0.0348	0.0000	undef 0.0000
	Hepatisch		0.0000 ·	undef undef
		0.0254	0.0137	1.8498 0.5406
15		0.0000	0.0000	undef undef
	_	0.0025	0.0071	0.3511 2.8478
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0240	0.0714 14.0102
		0.0000	0.0000	undef undef
20	Pankreas		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Prostata		0.0000	undef 0.0000
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie			
25	Duenndarm			
	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0044		
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch	0.0157		
	Herz-Blutgefaesse			
		0.0074		
	Niere	0.0000		
40	Prostata	0.0000		
	Sinnesorgane	0.0000		
		MODATEDER / GTO	mpaurenme pro	t Tomereven
45		NORMIERTE/SUB	TRANIERTE BIB.	LIUTHEREN
45	Benet	%Haeufigkeit 0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
50	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
55	Prostata			
	Sinnesorgane			
	-			

60

65

Elektronischer Northern für SEQ. ID. NO: 68

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0046 0.0253 0.0152 0.0146 0.0078	TUMOR %Haeufigkeit 0.0077 0.0044 0.0312 0.0163 0.0048	0.6062 1.64 5.8100 0.17 0.4869 2.05 0.8930 1.11 1.6285 0.61	97 21 337 98 41	5
Haematopoetisch Haut Hepatisch	0.0099	0.0110 0.0378 0.0000 0.0065 0.0000	1.5482 0.64 0.1478 6.76 undef 0.00 0.7651 1.30 undef 0.00	37 00 69	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0000 0.0118 0.0077 0.0300 0.0205	undef unde 0.4214 2.37 0.0000 unde 0.0571 17.5 1.4472 0.69	32 f 127	15
Prostata Uterus Brust-Hyperplasie	0.0180 0.0048 0.0198 0.0327	0.0000 0.0000 0.0085 0.0142	undef unde undef 0.00 0.5593 1.78 1.3925 0.71	00 79	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0059 0.0000 0.0000			2	25
Entwicklung	FOETUS %Haeufigkeit 0.0154			3	30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0063 0.0079		•	3	35
Niere Prostata Sinnesorgane				4	10
Brust Eierstock-Uterus Endokrines Gewebe		TRAHIERTE BIB	LIOTHEKEN	4	ıs
	0.0122 0.0000 0.0065 0.0156			5	50
Lunge Nerven Prostata Sinnesorgane	0.0064			5	55

65

Elektronischer Northern für SEQ. ID. NO: 69

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0000	undef undef
,	Brust	0.0120	0.0000	undef 0.0000
	Eierstock	0.0030	0.0000	undef 0.0000
	Endokrines_Gewebe		0.0000	undef undef
	Gastrointestinal		0.0000	undef undef
	Gehirn		0.0033	1.5482 0.6459
10			0.0000	undef undef
	Haematopoetisch			
		0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef undef
		0.0011	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
13	Lunge	0.0037	0.0024	1.5801 0.6329
	Magen-Speiseroehre	0.0000	0.0077	0.0000 undef
	Muskel-Skelett	0.0000	0.0000	undef undef
	Niere	0.0059	0.0000	undef 0.0000
	Pankreas		0.0000	undef undef
20		0.0000	0.0000	undef undef
	Prostata		0.0000	undef undef
	Uterus		0.0000	under under
			0.0000	midel midel
	Brust-Hyperplasie			
25	Duenndarm			
23	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen	0.0000		
	_			
30				
		FOETUS		
		%Haeufigkeit		•
	Entwicklung			
	Gastrointenstinal	0.0000		•
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
		0.0000		
		0.0000		
40	Prostata			
	Sinnesorgane	0.0000		
				I TOMUTUM
		NORMIERTE/SUB	TKAHLERTE BIB	PIOLHEKEN
45		%Haeufigkeit		
		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
	Foetal	0.0105		
50	Gastrointestinal	0.0000		
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
		0.0000		
	Nerven			
55	Prostata			
	Sinnesorgane	0.0077	•	

60

65

Elektronischer Northern für SEQ. ID. NO: 70

	0.0347	TUMOR %Haeufigkeit 0.0026 0.0044 0.0026 0.0436 0.0095	Verhaeltnisse N/T T/N 7.2739 0.1375 15.28950.0654 0.0000 undef 0.7954 1.2573 0.8143 1.2281	5
Gehirn Haematopoetisch Haut Hepatisch	0.0288 0.0028 0.0497	0.0077 0.0000 0.0000 0.0000 0.0000	3.7599 0.2660 undef 0.0000 undef 0.0000 undef undef undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0000 0.0095 0.0000 0.0420 0.0000	undef undef 1.3168 0.7594 undef undef 0.2039 4.9036 undef 0.0000	15
Prostata	0.0000 0.0000 0.0000		undef 0.0000 undef undef undef undef undef undef	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0089 0.0000			25
Entwicklung	FOETUS %Haeufigkeit			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0313 0.0039			35
	0.0000 0.0000			40
Eierstock-Uterus		TRAHIERTE BIB	LIOTHEKEN	45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0099 0.0000 0.0000 0.0000			50
	0.0000			55

Elektronischer Northern für SEQ. ID. NO: 71

		NORMAL	TUMOR	Verhaeltnisse
_		%Haeufigkeit	%Haeufigkeit	n/T T/N
5				
		0.0232	0.0051 0.0044	4.5462 0.2200 3.9753 0.2516
	Brust Eierstock	0.0173 0.0091	0.0000	undef 0.0000
10	Endokrines_Gewebe		0.0163	0.3349 2.9861
10	Gastrointestinal	0.0039	0.0048	0.8143 1.2281
		0.0034	0.0131	0.2580 3.8754
	Haematopoetisch		0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
15	Hepatisch	0.0053	0.0129 0.0000	0.0000 undef undef 0.0000
		0.0000	0.0000	undef undef
		0.0062	0.0047	1.3168 0.7594
	Magen-Speiseroehre		0.0077	1.2599 0.7937
20	Muskel-Skelett		0.0000	undef 0.0000
20		0.0119	0.0000	undef 0.0000
	Pankreas		0.0166	0.4571 2.1876
		0.0150	0.0000	undef 0.0000
	Prostata		0.0085	0.8390 1.1919 undef 0.0000
25	Uterus Brust-Hyperplasie		0.0000	under 0.0000
	Brust-Hyperplasie Duenndarm			
	Prostata-Hyperplasie			
	Samenblase			•
	Sinnesorgane	0.0000		
30	Weisse_Blutkoerperchen	0.0026		
		FOETUS		
		%Haeufigkeit		
35				
	Entwicklung Gastrointenstinal			
	Gastrointenstinai			
	Haematopoetisch			
40	Herz-Blutgefaesse	0.0123		
	Lunge	0.0074		
		0.0000		
	Prostata			
	Sinnesorgane	0.0000		
45				
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
		%Haeufigkeit		
50		0.0068		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal Gastrointestinal			
	Haematopoetisch			
55	Haut-Muskel			
		0.0156		
	Lunge	0.0246		
	Nerven			
60	Prostata			
•	Sinnesorgane	0.0155		

Elektronischer Northern für SEQ. ID. NO: 72

	NORMAL %Haeufigkeit	TUMOR %Haeufigkeit		ltnisse T/N	
D 1			0.0000	undof	5
	0.0000 0.0107	0.0026 0.0000		0.0000	
Eierstock		0.0026	0.0000		
Endokrines Gewebe		0.0027	0.0000		
Gastrointestinal		0.0000		0.0000	
	0.0017	0.0055		3.2295	10
Haematopoetisch		0.0000		0.0000	
=	0.0050	0.0000		0.0000	
Hepatisch		0.0129	0.0000		
	0.0042	0.0000	undef	0.0000	
	0.0000	0.0000	undef	undef	15
	0.0012	0.0024	0.5267	1.8986	
Magen-Speiseroehre		0.0153	0.0000	undef	
Muskel-Skelett		0.0000	undef	undef	
	0.0089	0.0000	undef	0.0000	
Pankreas	0.0019	0.0000	undef	0.0000	20
Penis	0.0030	0.0000	undef	0.0000	
Prostata	0.0095	0.0043	2.2373	0.4470	
Uterus	0.0017	0.0071	0.2321	4.3088	
Brust-Hyperplasie	0.0000				
Duenndarm					25
Prostata-Hyperplasie					
Samenblase					
Sinnesorgane	0.0000				
${\tt Weisse_Blutkoerperchen}$	0.0009				20
					30
	FOETUS				
	%Haeufigkeit				
Entwicklung	%Haeufigkeit 0.0000				
Gastrointenstinal	%Haeufigkeit 0.0000 0.0092				35
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0092 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000	TRAHIERTE BIB	LIOTHEK	CEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000	TRAHIERTE BIB	LIOTHEK	CEN	
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEK	CEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068	TRAHIERTE BIB	LIOTHEK	CEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068	TRAHIERTE BIB	LIOTHEK	ŒN ·	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068	TRAHIERTE BIB	LIOTHEK	ŒN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0000 0.0035 0.0000	TRAHIERTE BIB	LIOTHEK	CEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0000 0.0035 0.0000	TRAHIERTE BIB	LIOTHEK	KEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0068 0.0000 0.0035 0.0000 0.0171 0.0097	TRAHIERTE BIB	LIOTHEK	KEN	40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0068 0.0068 0.0000 0.0035 0.0000 0.0171 0.0097	TRAHIERTE BIB	LIOTHEK	KEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0000 0.0035 0.0000 0.0171 0.0097 0.0000 0.0082	TRAHIERTE BIB	LIOTHEK	KEN	40 45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0006 0.0035 0.0000 0.0171 0.0097 0.0000 0.0082 0.0030	TRAHIERTE BIB	LIOTHER	CEN	40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0068 0.0000 0.0171 0.0097 0.0000 0.0082 0.0030 0.0128	TRAHIERTE BIB	LIOTHER	CEN	40 45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0092 0.0000 0.0039 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0068 0.0068 0.0068 0.0000 0.0171 0.0097 0.0000 0.0082 0.0030 0.0128	TRAHIERTE BIB	LIOTHER	CEN	40 45 50

60

Elektronischer Northern für SEQ. ID. NO: 73

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
5	Blase	0.0511	0.0026	20.00330.0500
		0.0506	0.0044	11.62000.0861
	Eierstock	0.0000	0.0078	0.0000 undef
	Endokrines Gewebe	0.0128	0.0027	4.6885 0.2133
	Gastrointestinal	0.0039	0.0000	undef 0.0000
10	Gehirn	0.0059	0.0077	0.7741 1.2918
	Haematopoetisch	0.0014	0.0000	undef 0.0000
	Haut	0.0348	0.0000	undef 0.0000
	Hepatisch	0.0149	0.0065	2.2954 0.4356
		0.0074	0.0000	undef 0.0000
15		0.0061	0.0117	0.5224 1.9144
		0.0025	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0097	0.0000	undef 0.0000
	Muskel-Skelett		0.0240	0.4996 2.0015
20		0.0535	0.0000	undef 0.0000
20	Pankreas		0.0000	undef undef
		0.0090	0.0000	undef 0.0000
	Prostata		0.0064	0.7458 1.3409
	Uterus		0.0000	undef 0.0000
25	Brust-Hyperplasie Duenndarm			
۵	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
30	wezboc_brackocrperonen	0.0000		
	•			
		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0615		
35	Gastrointenstinal			
	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0037		
40		0.0000		
	Prostata Sinnesorgane			
	Simesorgane	0.02/3		
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45		%Haeufigkeit		
	Brust	0.0272		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
50	Foetal			
50	Gastrointestinal	·		
	Haematopoetisch			
	Haut-Muskel			
	Hoden			
55	Lunge			
55	Nerven			
	Prostata			
	Sinnesorgane	0.0000		

65

Elektronischer Northern für SEQ. ID. NO: 74

	NORMAL	TUMOR	Verhaeltniss	e	
	%Haeufigkeit	%Haeufigkeit	N/T	T/N	
Place	0.0000	0.0026	0.0000		5
	0.0093	0.0000	0.0000 undef	undef 0.0000	
Eierstock		0.0000	undef	undef	
Endokrines Gewebe		0.0000	undef	0.0000	
Gastrointestinal		0.0000	undef	undef	
	0.0000	0.0000	undef	undef	10
Haematopoetisch		0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
Hepatisch		0.0000	undef	undef	
Herz	0.0032	0.0000	undef	0.0000	
Hoden	0.0000	0.0000	undef	undef	15
	0.0000	0.0024	0.0000	undef	
Magen-Speiseroehre		0.0000	undef	0.0000	
Muskel-Skelett		0.0000	undef	0.0000	
	0.0000	0.0000	undef	undef	
Pankreas		0.0000	undef	undef	20
	0.0030	0.0000	undef	0.0000	
Prostata		0.0000	undef	0.0000	
	0.0083	0.0000	undef	0.0000	
Brust-Hyperplasie				•	25
Duenndarm					25
Prostata-Hyperplasie Samenblase					
Samenbiase Sinnesorgane					
Weisse Blutkoerperchen					
weisse_bluckoelperchen	0.0000				30
					50
	FOETUS				
	%Haeufigkeit				
	0.0000				
Entwicklung					35
Gastrointenstinal Gehirn					
Haematopoetisch					
Herz-Blutgefaesse	0.0000				
	0.0000				
——————————————————————————————————————	0.0000				40
Prostata					
Sinnesorgane					
-					
					45
	NORMIERTE/SUB	rahierte bib	LIOTHEKEN		
	%Haeufigkeit				
Renet	0.0000				
Eierstock-Uterus					
Endokrines Gewebe					50
Foetal					
Gastrointestinal					
Haematopoetisch	0.0000				
Haut-Muskel					
Hoden	0.0000				55
	0.0000				
Nerven					
Prostata					
Sinnesorgane	0.0000				
					60

Elektronischer Northern für SEQ. ID. NO: 76

		NORMAL	TUMOR	Verhaeltnisse
			% Haeufigkeit	
5		0.0000	0.0153	0.0000 undef
		0.0080	0.0000	undef 0.0000
	Eierstock		0.0078	0.3895 2.5671
	Endokrines_Gewebe	0.0036	0.0000	undef 0.0000
	Gastrointestinal		0.0190	0.0000 undef
10	Gehirn		0.0033	0.5161 1.9377
	Haematopoetisch		0.0000	undef 0.0000
		0.0000	0.0000	undef undef undef undef
	Hepatisch		0.0000	under under undef undef
		0.0000 0.0000	0.0000 0.0117	0.0000 undef
15		0.0012	0.0024	0.5267 1.8986
	Magen-Speiseroehre		0.0024	undef undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Pankreas		0.0000	undef undef
20		0.0060	0.0000	undef 0.0000
	Prostata		0.0021	1.1186 0.8939
	Uterus			undef undef
	Brust-Hyperplasie			
	Duenndarm	0.0031		
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen			
	_			
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
35	Gastrointenstinal Gehirn			
33	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
		0.0062		
40	Prostata			
₩.	Sinnesorgane			•
	-			
		NORWINE /		t Tominiery
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45	- t	%Haeufigkeit		
		0.0136		
	Eierstock-Uterus	0.0735		
	Endokrines_Gewebe Foetal	•		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
55	Prostata	0.0000		
	Sinnesorgane	0.0077		

60

2.2 Fisher-Test

Um zu entscheiden, ob eine Partial-Sequenz S eines Gens in einer Bibliothek für Normal-Gewebe signifikant häufiger oder seltener vorkommt als in einer Bibliothek für entartetes Gewebe, wird Fishers Exakter Test, ein statistisches Standardverfahren (Hays, W. L., (1991) Statistics, Harcourt Brace College Publishers, Fort Worth), durchgeführt.

Die Null-Hypothese lautet: die beiden Bibliotheken können bezüglich der Häufigkeit zu S homologer Sequenzen nicht unterschieden werden. Falls die Null-Hypothese mit hinreichend hoher Sicherheit abgelehnt werden kann, wird das zu S gehörende Gen als interessanter Kandidat für ein Krebs-Gen akzeptiert, und es wird im nächsten Schritt versucht, eine Verlängerung seiner Sequenz zu erreichen.

Beispiel 3

Automatische Verlängerung der Partial-Sequenz

Die automatische Verlängerung der Partial-Sequenz S vollzieht sich in drei Schritten:

- 1. Ermittlung aller zu S homologen Sequenzen aus der Gesamtmenge der zur Verfügung stehenden Sequenzen mit Hilfe von BLAST
- 2. Assemblierung dieser Sequenzen mittels des Standardprogramms GAP4 (Bonfield, J. K., Smith, K. F., und Staden R. (1995), Nucleic Acids Research 23, 4992-4999) (Contig-Bildung).
- 3. Berechnung einer Konsens-Sequenz C aus den assemblierten Sequenzen.

Die Konsens-Sequenz C wird im allgemeinen länger sein als die Ausgangssequenz S. Ihr elektronischer Northern-Blot wird demzufolge von dem für S abweichen. Ein erneuter Fisher-Test entscheidet, ob die Alternativ-Hypothese der Abweichung von einer gleichmäßigen Expression in beiden Bibliotheken aufrechterhalten werden kann. Ist dies der Fall, wird versucht, O in gleicher Weise wie S zu verlängern. Diese Iteration wird mit der jeweils erhaltenen Konsensus-Sequenzen C_i (i: Index der Iteration) fortgesetzt, bis die Alternativ-Hypothese verworfen wird (if H_0 Exit; Abbruchkriterium I) oder bis keine automatische Verlängerung mehr möglich ist (while $C_i > C_{i-1}$; Abbruchkriterium II).

Im Fall des Abbruchkriteriums II bekommt man mit der nach der letzten Iteration vorliegenden Konsens-Sequenz eine komplette oder annähernd komplette Sequenz eines Gens, das mit hoher statistischer Sicherheit mit Krebs in Zusammenhang gebracht werden kann.

Analog der oben beschriebenen Beispiele konnten die in der Tabelle I beschriebenen Nukleinsäure-Sequenzen aus Brustgewebe gefunden werden.

Ferner konnten zu den einzelnen Nukleinsäuren-Sequenzen die Peptidsequenzen (ORFs) bestimmt werden, die in der Tabelle II aufgelistet sind, wobei wenigen Nukleinsäure-Sequenzen kein Peptid zugeordnet werden kann und einigen Nukleinsäure-Sequenzen mehr als ein Peptid zugeordnet werden kann. Wie bereits oben erwähnt, sind sowohl die ermittelten Nukleinsäure-Sequenzen, als auch die den Nukleinsäure-Sequenzen zugeordneten Peptid-Sequenzen Gegenstand der vorliegenden Erfindung.

30

35

5

10

40

45

50

55

60

Chrom.15, D15S120-15qter Chrom.17, D17S787-D17S792 Chrom.3, D3S1265-D3S1311 Chrom.3, D3S1597-D3S1263 Chromos. Lokalisat. Chrom.2, D2S315-D2S2237 5 unbkt. unbkt. unbkt. unbkt. Länge der angemel. Sequenz 10 1318 2719 2738 1062 786 1471 2031 1081 731 Ausg.-15 205 248 256 237 310 239 214 EST 247 241 20 humanes Homolog des Perilipin A aus Ratte 25 humaner Prä-mRNA splicing Faktor Funktion humanes Homolog des fsp-27 30 35 humanes LOT unbekannt unbekannt unbekannt unbekannt unbekannt 40 im normalen Brustgewebe erhöht 45 Expression 50 55 TABELLE ž Ľťď. 2 9 13 60 7 ည က 4

1			-	101		
;		:		2		Chromos.
Ž	Expression	Funktion			angemel.	Lokalisat.
			<u>∢ −</u>	Ausg länge	Sequenz	
14	im normalen Brust- und Prostatagewebe erhöht	unbekannt		225	1710	unbkt.
15	im normalen Burstgewebe erhöht	unbekannt		228	3159	unbkt.
16	im normalen Brustgewebe erhöht	humaner nukleärer Faktor I-B2		249	1708	unbkt.
18	im normalen Brustgwebe erhöht	humanes Dermatopontin		188	1722	unbkt.
19	im normalen Brustgewebe erhöht	unbekannt		287	1612	unbkt.
20	im normalen Brustgewebe erhöht	unbekannt		144	387	unbkt.
21		unbekannt		248	1304	unbkt.
22	im normalen Brustgewebe erhöht	verwandt mit humanem Inter-alpha-trypsin Inhibitor H (3)	Inhibitor	288	1533	unbkt.
23		unbekannt		204	1304	unbkt.
24	im normalen Brustgewebe erhöht	unbekannt		291	2403	unbkt.
25	im normalen Brust- und Ovarialgewebe erhöht	unbekannt		286	2517	Chrom.2, D2S155- D2S2382
26	ca. 9 x stärker im normalen Brustgewebe als im entspr. Tumorgebe	pl-Untereinheit des humanen GABA-A Rezeptors	eptors	268	1668	unbkt.
27	ca. 7 x stärker im normalen Brustgewebe als im entspr. Tumorgewebe	Collagen IV (Alpha-Kette)		238	1416	Hum. Chrom.13 (D13S1315)
		·				
60	45 50 55	25 30 35	20	15	10	5

Länge der Chromos. angemel. Lokalisat. 1768 unbkt. 933 unbkt. 2783 Hum. Chrom. 12 zw. D12S1648u. D12S1648u. D12S1620 (53-65 cM)	zw. D17S790u D17S794 (75-84 cM).
nge der gemel. 1768 933 2783	
244 244 244 269 269 265	
denden sk des erten ss "SRD-2 protein-2 protein-2 protein-2	
un utamat-bin ezeptors, Gegenstüc ors assozii genstück de nent binding jriseus knker-Prote	
Funktion Funktion agie zur Glutt s NMDA-Rez humanes G DA-Rezeptor Junanes Gege umanes Gege umanes Gege cricetulus gri	
Funktion Funktion Mäßige Homologie zur Glutamat-bindenden Untereinehti des NMDA-Rezeptors, möglicherweise humanes Gegenstück des Drosophila NMDA-Rezeptors assoziierten Proteins humanes ß-Spectrin wahrscheinlich humanes Gegenstück des "SRD-2 mutant sterol regulatory element binding protein-2 (AREBP-2)" von Cricetulus griseus humanes Protein Kinase A Anker-Protein; bindet die regulatorische Untereinheit (RII) der Protein-Kinase A	
45 US	
Expression ker im norme be als im ent ebe normalen Brus ir. Tumorgewe e als im entsp be als im normale e als im entsp be	,
Expression ca. 3 x stärker im normalen Brustgewebe als im entspr. Tumorgewebe als im entspr.	
28 29 C	

Ľť								Chromosom
						EST	Länge	
ż	TX	:				Acid	der	4001100
•		Funktion	=		<u>· · · · · · · · · · · · · · · · · · · </u>	Renv	angemel.	
ı						länge	Sequenz	
33	ca. 5 x stärker im normalen	humanes	humanes Mi-2 Autoantigen, vermutlich eine	tigen, vern	eine	244	1393	Hum. Chrom.
	Brustgewebe als im entspr.	Helicase,	Helicase, die die Transkription aktiviert	skription ak	diviert			12 zw.
	Tumorgewebe							D12S93u
								D12S77 (12-
				i				
34	ca. 7 x stärker im normalen	unbekannt	•			258	1236	unbkt.
	Brustgewebe als im entspr.							
	Tumorgewebe							
35	ca. 10 x stärker im normalen	humanes	humanes "obese protein" (ob)	(do) "ui		237	749	Hum. Chrom.
	Brustgewebe als im entspr.							2
	Tumorgewebe und ausschl. in							
	Brust exprimiert							
36	ca. 6 x stärker im normalen	humanes	humanes Duffy-Antigen (DARC-Gen)	n (DARC-C	Gen)	271	1251	unbkt.
	Brustgewebe als im entspr.			·				
	Tumorgewebe							
37	ca. 8 x stärker im normalen	möglicher	weise ein ne	ues Mitglie	möglicherweise ein neues Mitglied der Familie	199	3283	unbkt.
	Brustgewebe als im entspr.	der Adipo	der Adipophiline, dies sind Fettspeicher-	sind Fettsp	beicher-			
	Tumorgewebe	assoziiert	assoziierte Proteine					
38	ca. 5 x stårker im normalen	humanes	humanes Semaphorin E, vermittelt	E, vermitte	əlt	240	2720	unbkt.
	Brustgewebe als im entspr.	möglicher	weise zellulä	Ire Resiste	möglicherweise zelluläre Resistenz gegen cis-			
	Tumorgewebe	Platinum ((CDDP), eine	3r in der C	Platinum (CDDP), einer in der Chemotherapie			
		häufig ver	häufig verwendeten Substanz	ubstanz				
60	50	41	3:	30	2	1		
0	o 5	0	5	0	20	5	10	5

																_									
5	Chromos.	Lokalisat.		STS nicht	gemappi			Hum. Chrom.	2 zw.	D2S2371u.	D2S388	(107-111 cM)				Hum. Chrom.	8p21 (s.	Literatur)			STS nicht	kartiert			
10	Länge der Chromos.	angemel.	Sequenz	1036				2659								2939					3670				
13	EST	Ausa	- länge	247				265								252					273				
20				orüngi.	nd nd	oression	1939 463														also ein	zled" ist	pielen		
25				Gen, urs	esteron u	n. Die Exp		tein S1-5													protein",	vay" ("friz	e Rolle s		
30		Funktion		Crystallin	urch Prog	zu werde cht-nrolife	us.	uläres Pro								in-Lipase					d-related	less-path	zeptor) eir		
35				humanes alpha-B-Crystallin-Gen, ursprüngl.	im Endometrium durch Progesteron und	Ostrogen reguliert zu werden. Die Expression koreliert mit der Nicht-proliferativen Phase des	Menstruationszyklus.	humanes extrazelluläres Protein S1-5						·		humane Lipoprotein-Lipase					sezernierts "frizzled-related protein", also ein	Gen, das im "wingless-pathway" ("frizzled" ist	der "wingless"-Rezeptor) eine Rolle spielen		
40				humane:	im Endo	Ostroger	Menstru	humane								humane	•				sezernie	Gen, da	der "win	könnte	
45				malen	:			ıalen	tspr.	stärker	ewebe	webe, ca.	_	entspr.		nalen	ıtspr.	stärker	webe als	þe	malen	ıtspr.	x stärker	webe als	be
50		Expression		er im nor	90			ır im norm	als im en	e, ca. 7 x	Prostatag	Turmorge	normale	e als im	0	er im norr	als im er	ю, са. 7 x	Blasenge	morgewe	er im nor	als im er	e, ca. 20	Blasenge	morgewe
55	ı	ជ		ca. 21 x stärker im normalen Brustnewebe als im entspr	Turmorgewebe			ca. 4 x stärker im normalen	Brustgewebe als im entspr.	Fumorgewebe, ca. 7 x stärker	im normalen Prostatagewebe	als im entpr. Turmorgewebe, ca.	6 x stärker im normalen	Blasengewebe als im entspr.	Tumorgewebe	ca. 15x stärker im norma	Brustgewebe als im entsp	Tumorgewebe, ca. 7 x stärker	im normalen Blasengewebe als	im entspr. Tumorgewebe	ca. 12 x stärker im normalen	Brustgewebe als im entspr.	Tumorgewebe, ca. 20 x stärker	im normalen Blasengewebe als	im entspr. Tumorgewebe
60	Lfd.	ž		39 GE	<u> </u>			40 c	<u> </u>	<u> </u>	<u>.</u>	æ	ဖ	<u>ao</u>		41 G	<u>m</u>	<u> </u>	<u>.=</u>	ii	42 c	<u>aa</u>	<u> </u>	<u>.=</u>	.=

74			100	-	
<u> </u>			S C	Lange der Chromos.	Curomos.
ž —	Expression	Funktion		angemel.	Lokalisat
			Ausg.		
			länge	Sequenz	
 43	ca. 6 x stärker im normalen	unbekannt	259	1025	Hum. Chrom.
	Brustgewebe als im entspr.				10 zw.
	l umorgewebe				D10S222u.
					D10S597
44	ca. 4 x stärker im normalen	c-mvc Proto-Onkoden	220	4240	LIST-137 CMI)
•	Bristoawehe als im entenr		e S S	817	Hum. Chrom.
	Tumordewebe				8 ZWISChen
					D85284
					(140-142 cM)
45	ca. 9x stärker im normalen	möglicherweise humanes Gegenstück eines	328	538	unbkt.
	Brustgewebe als im entspr.	Fettzellen-spezifischen Gens der Maus			
4	i umorgewebe				
 0	ca. o x starker im normalen	numanes Profilin II, es spielt eine Rolle beim	240	1776	Hum.
	Brustgewebe als im entspr.	Zusammenbau des Zytoskellets und			Chrom. 3
	l umorgewebe	möglicherweise auch bei der zellulären			zwischen
		Endozytose			D3S1555u
					D3S1299
					(169-171
į					cM)
4	ım brustnormalgewebe ernont	human placenta copper monamine oxidase	256	360	unbkt.
60	45 50 55	20 25 30 35	13	10	5

							·	,	
5	Chrosom. Lokalisat.		unbkt.	unbkt.	Chrom. 7		Chrom. 11	unbkt.	Chrom. 6
10	Länge der Chrosom. angemel, Lokalisat.	Sequenz	2192	2952	615	1488	1304	2262	1301
15	EST	Ausg. länge	157	305	188	290	174	289	306
20									NA NA
25									otein mR
30	Funktion			otein					Homologes zu human B4-2 protein mRNA
35				-like pro		<u>.</u> .			s zu hur
40			unbekannt	human ras-like protein	unbekannt	unbekannt	unbekannt	unbekannt	Homologe
45			erhöht	erhöht	erhöht	erhöht	erhöht	erhöht	erhöht
50	Expression				gewebe	eqewebl	eqemeb		
55	Expi		im Brustnormalgewebe	im Brustnormalgewebe	im Brustnormalgewebe	im Brustnormalgewebe	im Brustnormalgewebe	im Brustnormalgewebe	im Brustnormalgewebe
60	Lfd. Nr.		48 ii		50 ii		, i		το 4

Lfd				EST	Länge der Chromos	Chromos
ž	Expression	Œ.	Funktion	Ausg.		Lokalisat.
				länge	Sequenz	
င်	im Brustnormalgewebe erhöht	human mitocheondrial aldehyde dehydrogenase I	ial aldehyde	321		Chrom. 12, D12S84- D12S369
56	im Brust- und Gehirnnormalgewebe	human mRNA for long-chain acyl-CoA synthetase	ng-chain acyl-CoA	569	1265	Chrom. 4
57	im Brustnormalgewebe erhöht	prepro-melanin-concentrating hormone	centrating hormone	247	274	unbkt.
28	im Brustnormalgewebe erhöht	unbekannt		270	2073	Chrom. 2
29	in Brust- und Prostatanormalgewebe erhöht	mögliches neues Mi Genfamilie	mögliches neues Mitglied der humanen tob- Genfamilie	502	850	unbkt.
09	in Brust- und Blasennormalgewebe erhöht	unbekannt		229	2091	unbkt.
60	45 50 55	35 40	25	15	10	5

5	Chromos. Lokalisat.		Chrom. 4	unbkt.	unbkt.	human STS SHGC- 36697	unbkt.		unbkt.	unbkt.	unbkt.
10	Länge der angemel.	Sequenz	2952	2313	1650	2851	1071	2375	1823	2403	1246
15	EST Ausg.	länge	225	223	192	223	221	199	221	248	230
20						<u>a</u>		NA		omyces y protein	
25			use Kryn		r PDGF-	UMP-CN		rase mR		sacchare pole bod	
30	Funktion		ges zu Mou		Mitglied de	ges zu Pig		sphodieste	36	g to Schizo	
35			humanes Homologes zu Mouse Kryn	ınnt	mögliches neues Mitglied der PDGF- Rezeptorfamilie	humanes Homologes zu Pig UMP-CMP Kinase	ınnt	human cAMP phosphodiesterase mRNA	human antigen CD 36	humanes Homolog to Schizosacchareomyces pombe sad1+ gene; Spindle pole body protein	ınnt
40			human	unbekannt	möglich Rezept	humane Kinase	unbekannt	human	human	human pombe	unbekannt
45	בי		be ernönt	be erhöht	be erhöht	inem ht	e erhöht	be erhöht	e erhöht	be erhöht	be erhöht
50	Expression	-	ım Brustnormalgewebe erhöht	im Brustnormalgeweb	im Brustnormalgeweb	im Brust- undendokrin Normalgewebe erhöhl	in Brust- und Blasennormatgewebe	im Brustnormalgeweb	im Brust- und Blasennormalgewebe	im Brustnormalgeweb	im Brustnormalgewebe erhöht
55		-	im Brustn	im Brustn	im Brustn	im Brust- Normalge	in Brust- und Blasennorma	im Brustno	im Brust- I Blasennor	im Brustno	im Brustn
60	Lfd. Nr.	П			63				67		69

Lfa.			FOL		Č
ŗ.	Expression	Funktion ·		angemel. Lokalisat.	ange der Coromos. angemel. Lokalisat.
			Ausg.		
70	im Brust- und Blasennormalgewebe erhöht	human lipoprotein lipase	225		Chrom. 8
71	ca. 4 x stärker im normalen Brustgewebe als im entspr. Tumorgewebe	vermutlich neues humanes Gen mit eine DNA-Box, die für eine SH3-Domäne kodiert (SH3-Protein), diese Proteine sind Mediatoren der interzellulären Zellkommunikation	7 263	1950	
72	stärker im normalen Brustgwebe als im entspr. Tumorgewebe	stärker im normalen Brustgwebe neues humanes Gen, das möglicherweise als im entspr. Tumorgewebe einen Transkriptionsfaktor darstellt, auf Nukleinsäure-Ebene besteht eine gewisse Sequenzidentität zu dem DNA-bindenden Protein CROC-1A	240	814	
73	ca. 12 x stärker im normalen Brustgewebe als im entspr. Tumorgewebe, ca. 20 x stärker im normalen Blasengewebe als im entspr. Tumorgewebe	sezerniertes humanes Gen, das mit Drosophila "frizzled" verwandt ist, es spielt eine Rolle beim programmierten Zelltod (Apoptosis)	404	3216	
74	stärker im normalen Brustgwebe als im entspr. Tumorgewebe	vermutlich humanes Gegenstück des Maus Sox-18 Gens, die Sox-Gene stellen eine wichtige Gruppe von Transkriptionsfaktoren dar, die Entwicklungsprozesse wie z.B. die Sex-Determination (Sox9) mitsteuern. Sox-Gene weisen eine so.g HMG-Box ("high mobility group") auf, Maus-Sox 18 ist verwandt mit Sry ("testis-determining factor")	264	747	
76	stärker im normalen Brustgwebe als im entspr. Tumorgewebe	unbekannt	296	2419	
55	45	25	15	10	5

Tabelle II

	DNA-Sequenzen Seq. ID. No.	Peptid-Sequenzen Seq. ID. No.
5	1	77
_	2	78
	•	79
		80
		81
10	3	82
	4	83
	5	84
	10	85
15	••	86
15	11 12	87 88
	13	89
	14	90
	15	91
20	18	92
	19	93
	20	94
	21	95
25	22	96
25	23 24	97 98
	24	99
	25	100
	20	101
30		102
		103
	28	104
	30	105
35		106 107
33	31	108
	34	109
		110
		111
40		112
	37	113
	42 43	114 115
	43	116
45		117
	45	118
		119
		120
		121
50	48	122
	50	123 124
	50	125
	51	126
55	52	127
	53	128
	54	129
	57	130
		131
60	58	132
	59	133 134
	3)	135
		136
65	60	137
	61	138
	62	139

DNA-Sequenzen	Peptid-Sequenzen		
Seq. ID. No.	Seq. ID. No.		
	140		
	141		
63	142		5
	143		
	144		
	145		
64	146		
65	147		10
68	148		
69	149		
	150		
71	151	•	
72	152		15
	153		
	154		
	155		
	156		
74	157		20
76	158		24
	159		
	160		

beschrieben.

Die erfinderischen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 76 der ermittelten Kandidatengene und die 25 ermittelten Aminosäure-Sequenzen Seq. ID No. 77 bis Seq. ID No. 160 werden in dem nachfolgenden Sequenzprotokoll

Sequenzprotokoll

(1) ALLGEMEINE INFORMATION:

- ⁵ (i) ANMELDER:
 - (A) NAME: metaGen Gesellschaft für Genomforschung mbH
 - (B) STRASSE: Ihnestrasse 63
- (C) STADT: Berlin
 - (E) LAND: Deutschland
 - (F) POST CODE (ZIP): D-14195 (G) TELEFON: (030)-8413 1672
- 15 (H) TELEFAX: (030)-8413 1671
- ²⁰ (ii) TITEL DER ERFINDUNG: Menschliche Nukleinsäure-Sequenzen aus

Brustgewebe

- (iii) Anzahl der Sequenzen: 154
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)
- 35 (2) INFORMATION ÜBER SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2031 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 45 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

65

30

40

50

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:1

ATTGCATCAG CCC							
ATGAGGGGGA CGG							5
CAGCCTGGGG ACA							
GTCAGGATTT ACA							
CTTCGGAAAG CCC	TCGAGCA	TGTTCCAAAC	TCGGTTCGCT	TGTGGAAAGC	AGCCGTTGAG	300	
CTGGAAGAAC CTG	AAGATGC	TAGAATCATG	CTGAGCCGAG	CTGTGGAGTG	CTGCCCCACC	360	
AGCGTGGAGC TCT	GGCTTGC	TCTGGCAAGG	CTGGAGACCT	ATGAAAATGC	CCGCAAGGTC	420	10
TTGAACAAGG CGC							
CTGGAGGAAG CCA	ATGGGAA	CACGCAGATG	GTGGAGAAGA	TCATCGACCG	AGCCATCACC	540	
TCGCTGCGGG CCA							
TGTGACAGGG CTG							15
GGGATTGAGG AGG							13
CACAATGCCC TGG							
AAGAAGAGTG TGT							
CTGGAAGCAC TCC							
ATGGGCGCCA AGT							20
CTGGCCTTCC AGG							
TCCGAGAATG ATG							
CCACCGCCCG GGT							
CAGCCCAAGA TCT							
TGATGAAGGG GCA							25
ACCAGGGGTT GAAG							
ACCAGGGGTT GAAG							
ACCCAAAGAA CCC							
AGAACATCGC AAA							30
TGTGGTCTGA GGC							
CCCTGAAGAA GTG							
GTCAGCGGAA GATO							
ACCTGGGGGA TGCC							35
AGCAGGAGGA GGTC							33
GCGCCGTGTC CAAC							
TGGCCGGCCG CATC							
GCAGGGTTGG GCCG						1980	
ATGTCTCGTG TCAG	AAAAAA A	AAAGAAAAGA	AAAAAGGGGG	CGCCCGGGGG	С	2031	40
(2) INFORMATION	ON ÜBEF	R SEQ ID NO	D: 2:				46
(B) TYP: N (C) STrang	E: 1081 l Nukleinsä g: einzel	Basenpaare ure					45 50
(D) TOPO			ESTs durch /	Assemblierur	ng und Editie	rung	
hergestell	•						55
(iii) HYPOTHE							40
(vi) HERKUNF	•	r					60
	NISMUS:	: MENSCH					65

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 2

10	AAGACCCCGT	CTCTACAAAG	CAAAACGAAA	AACAACAAAT	GGAGTTGTGC	TATGTTGTAT	60
10	TGCTTTGCAC	AAAATTAGGA	ACAGGTGTTT	GACAATTGAA	TTTGTTTTCT	GTGAATTCTA	120
	ACCTCTAAAG	GCATGCTTAG	AGGTCAAGGA	CCTTCCTGTG	TAGTTGGTGC	AAAAGCAATC	180
	TCCACAGGAC	AGCACTGCTT	CCATGCTTCA	TACATCAGGA	AATGAGGCCA	GAACTTGAGT	240
	ATTTACTAAC	ACGTTTTTCA	AAAGATGTCA	GTGTTATACC	TAAAGCTAAA	AAAAAGCAAG	300
15	GGTTTGTCAT	AGAGGGAACC	TCTAAATAAT	TTCAGGGGTA	GGGGAGATGT	TGTCAATAGG	360
	AAATGGGATA	AAATATCAAG	AGACAATGAA	AACACTGCCT	TGACATGAGG	ACCAGCAAGT	420
	TTATTCTTTT	CATTTTCAGT	GATGTTGGGA	ATGGACTGGG	TTTTAAAAGG	GAGCTTGAAG	480
	AGGGAATGTT	TGACAGTCAC	AGAAGGTTCC	TGCAGCAGAT	GCCTCTTTTA	GCCATTTCTC	540
	ATTTTTTCC	TCAAATTTTA	CCTACTGAGG	CTCAAGCCTT	CACAGTGAGC	TGATGGTCTC	600
20	TACAGGGGAG	GGGAGTCTAG	GGAATTTATT	TGGTATTTGT	AAGGCAAGAG	GTGATTTCTC	660
	TCTAATATAT	CTGAGTTATT	GCTCATTTAA	AACTGTTAAG	TCCAGTATAA	TTTTCCCTGA	720
	TATGAAAAAA	TGTGCATTTT	TTTCACTTAG	CAACAAAGTA	CCTTCTAATT	TCCAATAGTC	780
	CGTGAAAGTT	GGGGCTGAAG	TACCTAAGTG	TGAATGTCTC	TCCCGTTAAA	CTGAGTGTAG	840
25	AAATCTGAAT	TTTTAAAAGA	GCTGTAACTA	GTTGTAAGTG	CTTAGGAAGA	AACTTTGCAA	900
	ACATTTAATG	AGGATACACT	GTTCATTTTT	AAAATTCCTT	CACACTGTAA	TTTAATGTGT	960
	TTTATATTCT	TTTGTAGTAA	AACAACATAA	CTCAGATTTC	TACAGGAGAC	AGTGGTTTTA	1020
	TTTGGATTGT	CTTCTGTAAT	AGGTTTCAAT	AAAGCTGGAT	GAACTTAAAA	AAAAAAAAA	1080
	A						1081
30							

(2) INFORMATION ÜBER SEQ ID NO: 3:

35

40

45

50

55

60

65

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1318 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STrang: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 3

GCCAAAGCGC AGGGTCAGCG ACACTTCTTC CGGCCCAACG CCGTGCATGG AGCCCATCCT 60 GGGCCGCACG CATTACAGCC AGCTGCGCAA GAAGAGCTGA GTCGCCGCAC CAGCCGCCGC 120

GCCCCGGGCC	GGCGGGTTTC	TCTAACAAAT	AAACAGAACC	CGCACTGCCC	AGGCGAGCGT	180	
TGCCACTTTC	AAAGTGGTCC	CCTGGGGAGC	TCAGCCTCAT	CCTGATGATG	CTGCCAAGGC	240	
GCACTTTTTA	TTTTTATTTT	ATTTTTATTT	TTTTTTTAGC	ATCCTTTTGG	GGCTTCACTC	300	
		ACACCAGAGC					5
GTTACTATAA	GAGTAATTGC	CTAACTTGAT	TTTTCATCTC	TTTAACCAAA	CTTGTGGCCA	420	
AAAGATATTT	GACCGTTTCC	AAAATTCAGA	TTCTGCCTCT	GCGGATAAAT	ATTTGCCACG	480	
		ACTCTGAAGG					
CACTGAACTC	CTCTGTGATC	TAGGATGATC	TGTTCCCCCT	CTGATGAACA	TCCTCTGATG	600	10
ATCTAGGCTC	CCAGCAGGCT	ACTTTGAAGG	GAACAATCAG	ATGCAAAAGC	TCTTGGGTGT	660	10
TTATTTAAAA	TACTAGTGTC	ACTTTCTGAG	TACCCGCCGC	TTCACAGGCT	GAGTCCAGGC	720	
		GCTGCTTGCT					
GCCTTCACCT	GCATAGTCAC	TCTTTTGATG	CTGGGGAACC	AAAATGGTGA	TGATATATAG	840	
ACTTTATGTA	TAGCCACAGT	TCATCCCCAA	CCCTAGTCTT	CGAAATGTTA	ATATTTGATA	900	15
AATCTAGAAA	ATGCATTCAT	ACAATTACAG	AATTCAAATA	TTGCAAAAGG	ATGTGTGTCT	960	
TTCTCCCCGA	GCTCCCCTGT	TCCCCTTCAT	TGAAAACCAC	CACGGTGCCA	TCTCTTGTGT	1020	
		AGGCACGTGT					
CTCTCCCCTC	TTACGCATGC	CTGCTTTTTT	CACTTAATAA	TACAGCTTGG	AGAGATTTTT	1140	
CTGTGGGGTG	ATABATCCCA	CTCGCTCTTT	TTGATGGCCA	CATAATAACT	ACTGCATAAT	1200	20
PACCAMACCC	CTTATTCCCA	TTAACTAGTT	CCCTAATGAT	GGACTTTTAA	GTTGTTTCCT	1260	
		TGCAAACGAT				1318	
IIIIIIIICI	IIIIIGCIAC	IGCAMACGAI	·	41010011111	WELLETI	1310	
					•		25
							23
(2) INFORM	ATION ÜRE	R SEQ ID N	O- 4-				
(2) INFORM	ATION ODL	IN OLG ID IV	O. 1 .				
(i) SEQU	ENZ CHARA	AKTERISTIK	'• ••				30
(A) L	NGE: 731 E	Basenpaare					
	P: Nukleins			•			
` '				. •			
	Frang: einzel						
(D) T(OPOLOGIE:	linear					35
(ii) MOLE	KI'll TVD: au	s einzelnen	ESTe durch	Assemblien	na und Editie	בתווחם	
				A33CITIDIICI G	ng und Luid	siung .	
nerge	stellte partie	HIE CDINA					
							40
(iii) HYPO	THETISCH:	NEIN					
(,							
CON A NUTL O	PENCE, MEII	N1					
(III) AN H-S	SENSE: NEII	N			• •		45
							73
(vi) HERK	UNFT:						
	RGANISMUS	S MENSCH					
	RGAN:	3. 1112110011					
(0) (1	TOAIN.						50
(vii) SONS	TIGE HERK	UNFT:					
(A) Bi	BLIOTHEK:	cDNA library					
(, ,		,					
							55
(vi) SEOL	ENZ-RESCI	HREIBUNG:	SEO ID NO	Δ			
(XI) SEQU	LINZ-DEGCI	INLIBOING.	OLG ID NO.	7			
				OMMOC33636	1 C 1 1 C C 1 C C C C C C C C C C C C C	CO	
		AGCACATCAC					
		AAAGCATTAG					60
		TCCCAGAGGT					
		GGTGTTTCTC					
ACCCAGGTGT	mcmcmcs	ርጥጥጋርርርጥጥጋ	AGAGAACACG	CAGAGAGTTT	CCCTAGATAT	300	
	TCTCTGAAAG	CITACCITA					
ACTCCTGCCT	CCAGGTGCTG	GGACACACCT	TTGCAAAATG	CTGTGGGAAG	CAGGAGCTGG	360	~ =
GGAGCTGTGT	CCAGGTGCTG TAAGTCAAAG	GGACACACCT TAGAAACCCT	CCAGTGTTTG	GTGTTGTGTA	GAGAATAGGA	420	65
GGAGCTGTGT CATAGGGTAA	CCAGGTGCTG TAAGTCAAAG AGAGGCCAAG	GGACACACCT TAGAAACCCT CTGCCTGTAG	CCAGTGTTTG TTAGTAGAGA	GTGTTGTGTA AGAATGGATG	GAGAATAGGA TGGTTCTTCT	420 480	65
GGAGCTGTGT CATAGGGTAA	CCAGGTGCTG TAAGTCAAAG AGAGGCCAAG	GGACACACCT TAGAAACCCT	CCAGTGTTTG TTAGTAGAGA	GTGTTGTGTA AGAATGGATG	GAGAATAGGA TGGTTCTTCT	420 480	65

CTTTCACTGT TCTCACAGGA CATGTACCTA ATTATGGTAC TTATTTATGT AGTCACTGTA 660 TTTCTGGATT TTTAAATTAA TAAAAAAGTT AATTTTGAAA AATCAAAAAA AAAAGAAAGG 720 AAGTAAAAGG A 731

5

10

15

20

(2) INFORMATION ÜBER SEQ ID NO: 5:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2719 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 25 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

35

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5

40	GGAGACCAGG	CCCACAGAGA	ACAGGGCAAG	GAGCAGGCCA	TGTTTGATAA	GAAGGTGCAG	60
	CTCCAGAGAA	TGGTAGACCA	AAGGTCGGTG	ATTTCAGATG	AAAAGAAAGT	TGCCCTCCTC	120
	TATCTAGACA	ATGAGGAGGA	GGAGAATGAT	GGGCATTGGT	TTTAATAAGC	AGAAACATTT	180
	TGTTTTAATG	GCAGCCTGTT	GGCGACGTGC	CAACATCCAA	AGGCCTTAAC	TTATTTTAAG	240
45	AGGCCGAGGG	AGTCTATGAA	AATCTCCCCT	TTTTTACTTT	TTTAAAGAGT	ACTCCCGGCA	300
	TGGTCAATTT	CCTTTATAGT	TAATCCGTAA	AGGTTTCCAG	TTAATTCATG	CCTTAAAAGG	360
	CACTGCAATT	TTATTTTTGA	GTTGGGACTT	TTACAAAACA	CTTTTTTCCC	TGGAGTCTTC	420
	TCTCCACTTC	TGGAGATGAA	TTTCTATGTT	TTGCACCTGG	TCACAGACAT	GGCTTGCATC	480
	TGTTTGAAAC	TACAATTAAT	TATAGATGTC	AAAACATTAA	CCAGATTAAA	GTAATATATT	540
50	TAAGAGTAAA	TTTTGCTTGC	ATGTGCTAAT	ATGAAATAAC	AGACTAACAT	TTTAGGGGAA	600
	AAATAAATAC	AATTTAGACT	CTAAAAAGTC	TTTTCAAAAA	GAAATGGGAA		660
	TGTTTATGTT	AAAAAAATTC	TTGCTAAATG	ATTTCATCTT	TAGGAAAAAA	TTACTTGCCA	720
	TATAGAGCTA	AATTCATCTT	AAGACTTGAA	TGAATTGCTT	TCTATGTACA	GAACTTTAAA	780
55	CAATATAGTA		GGACAGCTGT				840
33	CACAGGTTCC	CTGGCACTGG	TAGGGTAGAT	GATTATTGGG	AATCGCTTAC	AGTACCATTT	900
	CATTTTTTGG	CACTAGGTCA	TTAAGTAGCA	CACAGTCTGA	0000	CTGGAGTGGC	960
	CAGTTCCTAT		AGACTTGCGC		011111000-	AGCACCCAAA	
	CATTTAATTT						
60	GACTGCAGCT	GGACCGGCAA	GCTGGCTGTG	TACAGGAAAA			1140
	GTGCCTCTTA	AAGATGCCTT	TCCCAACCCT	CCATTCATGG	011100110010	1110101001	1200
	CAAGGGTGAA	AGATGAATAC	AATAACAACC	ATGAACCCAC	0.0.000	01111100	1260
	ACTTTGAACA	GAAGTCATTG	CAGTTGGGGT	GTTTTGTCCA	000111101101	TTATTAAATA	
	GAAGGATGTT	TTGGGGAAGG	AACTGGATAT	CTCTCCTGCA	GCCCAGCACC	GAGATACCCA	
65	GGACGGGCCT	GGGGGGCGAG	AAAGGCCCCC	ATGCTCATGG	GCCGCGGAGT	GTGGACCTGT	1440
	AGATAGGCAC	CACCGAGTTT	AAGATACTGG		011011110011	TTCATTTTAT	1500
	TTTACACGTC	AGTATTGTTT	TAAAGTTTCT	GTCTGTAAAG	TGTAGCATCA		1560
	GAGTTTCGCT	AGCAGCGCAT	TTTTTTTAGT	TCAGGCTAGC	TTCTTTCACA	TAATGCTGTC	1620

TCAGCTGTAT TTCCAGTAAC ACAGCATCAT CGCACTGACT GTGGCGCACT GGGGAATAAC 168	0
AGTCTGAGCT AGCACCACCC TCAGCCAGGC TACAACGACA GCACTGGAGG GTCTTCCCTC 174	0
TCAGATTCAC CTGGAGGCCC TCAGACCCCC AGGGTGCACG TCTCCCCAGG TCCTGGGAGT 180	
GGCTACCGCA GTAGTTTCTG GAGAGCACGT TTTCTTCATT GATAAGTGGA GGAGAAATGC 186	
AGCACAGCTT TCAAGATACT ATTTTAAAAA CACCATGAAT CAGATAGGGA AAGAAAGTTG 192	
ATTGGAATGG CAAGTTTAAA CCTTTGTTGT CCATCTGCCA AATGAACTAG TGATTGTCAG 198	
ACTGGTATGG AGGTGACTGC TTTGTAAGGT TTTGTCGTTT CTAATACAGA CAGAGATGTG 204	
CTGATTTTGT TTTAGCTGTA ACAGGTAATG GTTTTTGGAT AGATGATTGA CTGGTGAGAA 210	
TTTGGTCAAG GTGACAGCCT CCTGTCTGAT GACAGGACAG	
CAGGTAATTA ATATTATGAC CCACTTCTAT TTACTTTGGG AAATATCTTG GATCTTAATT 228	
ATCATCTGCA AGTTTCAAGA AGTATTCTGC CAAAAGTATT TACAAGTATG GACTCATGAG 234	•
CTATTGTTGG TTGCTAAATG TGAATCACGC GGGAGTGAGT GTGCCCTTCA CACTGTGACA 240	1.5
TTGTGACATT GTGACAAGCT CCATGTCCTT TAAAATCAGT CACTCTGCAC ACAAGAGAAA 246	
TCAACTTCGT GGTTGGATGG GGCCGGAACA CAACCAGTCT TTTTGTATTT ATTGTTACTG 252	
AGACAAAACA GTACTCACTG AGTGTTTTTC AGTTTCCTAC TGGTGGTTTT GATATTGTTT 258	
GTTTAAGATG TATATTTAGA ATGACATCAT CTAAGAAGCT GATTTTGCTA AACTCCTGTT 264	
CCCTACAATG GGAAATGTCA CAAGAATGTG CAAAAATAAA AATCTGAGGA AAAAACCCAA 270	
AAAATTCCTA AAGAGAATG 271	
•	
	25
(2) INFORMATION ÜBER SEQ ID NO: 10:	25
• •	
(i) SEQUENZ CHARAKTERISTIK:	
(A) LÄNGE: 786 Basenpaare	
	30
(B) TYP: Nukleinsäure	
(C) STrang: einzel	
(D) TOPOLOGIE: linear	
·	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	3
hergestellte partielle cDNA	•
fielgestolic parable obtain	
(III) LIVIDOTUETICCH: NEIN	40
(iii) HYPOTHETISCH: NEIN	40
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT:	45
(A) ORGANISMUS: MENSCH	
(C) ORGAN:	
(O) ONOAN.	
(II) AANATIAT LIBBIZIANET	50
(vii) SONSTIGE HERKUNFT:	30
(A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10	55
(A) OLGOLAZ BEGGIA (LIBOTO) GEG IS 110. 10	
gggccgggca gcccagctga aggcaataag ctgggctcac cgctgcagca gagttctgtg	60
	20
	80 60
	40
	00
acccaggaac aagtatotga caggggacga ggcacccaca gtocototoc cataagcotg 3	60
ccaagaagat tgatgtggcc cgtgtaacgt ttgacctgta caagctgaac ccacaggact 4	20
	80 65
	40
-555	00
ctacqqaqqa aqqqcaqccc cccaaqqqca aqqcctcatc ccttatcccq acctqtctqa	60

	agatactgca	gtgaaagccc	aagtccttgg	aagctttccc	cagtgaagga	ctgactgggg	720
	gcctcacgct	taactggtag	tgcccacaag	cctggcagct	gtagagccgc	gaacctcccc	780
		caccgcgcag					840
5	ttggccaaag	gagaacctca	agctcctggc	ctgatccagc	tccttcctgc	ccaaggcagc	900
		cagactggtc					960
		ctcacaggct					1020
		gagtgaattc					1080
	-	ctgatgtaaa				_	1107
10							

(2) INFORMATION ÜBER SEQ ID NO: 11:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 585 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear

15

20

25

วก

35

40

65

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11

```
60
    45
                                                                      120
    gggggcagga cagtgtggaa tctctagggt gtatgggtag gtagggggca cagttagttc
                                                                      180
    taagtgggct tttatgctaa aagcctctgg ggatatctgt tttgaaaata aagataggtg
    teceeteett getgteatet ageecagaca etetgettge tetetggetg tetgeteeet
                                                                      240
                                                                      300
    gggaaggett taggaggace acceaggaca ggatgaceat getgeeatet getetggage
    tgggtctcag tgcagaggga cagtgactgt ggatggttgc agtctctggt gggaggtgag
                                                                      360
    gatagaagtg ataaagagct aagaggagct tctgggagcc ttggaggagg tcagtcttgc
                                                                      420
                                                                      480
    agtggtgaag ccaggacata ggagatggag cagggctgtg agaggaggag attctgagga
    ggatgcaggg gaaatcttgt ctgttaatga aataggggtg gggtggggtt tggggtgggg
                                                                      540
    tggtcattgc cgtttgagct gctgattttc atgagtcgcc ttcaaaactc tcgtgtaggg
                                                                      600
    ttgacaatgt ggggggtgg gggatccagc ttattcttt attttcaagt ccattcttgg
                                                                      660
    ggctggtggg gaggcaggag aatacccctc cctaagccct tagtgtgtgc cgagcttgct
                                                                      720
    ttqtqatqtt qqcaqqqqaq qqqaqacctq qqtqqact qaqttccctt tatcaaaccc
                                                                      780
    ttcaatqqqc acaaaattqa qtqcttqatt ttaqqtttta tttttttatq aatqtccaaa
                                                                     840
                                                                      900
    totgtgtttc cccctgccct cccagactgt gtggccagtt gaaagtgtct ggtttgtgtt
                                                                     960
    catctctccc tcatttctgg agcagggcct gagaccctgc cacatctcct atgctctgca
                                                                     1020
    tocacgeete ttttggacat taaaggttga ttgatgcaaa acaactttac aacggggtgg
    cttggggaag cctggggttg gccggcttat ggggttgcgg cg
                                                                     1062
```

- (2) INFORMATION ÜBER SEQ ID NO: 12:
 - (i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 833 Basenpaare(B) TYP: Nukleinsäure(C) STrang: einzel(D) TOPOLOGIE: linear		5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier hergestellte partielle cDNA	ung	10
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		20
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12		
	60	30
attacaggca tgagccactg tacccagcct ttccttataa aattcaaaga gaaaatttct acacctttat ccctcaaata aaacaagtgc tcagttctta ccgtgccctt gcaaggtcta	120 -	
tatqtaaaag aaatctgaaa tttagctgta gaataaaact tgataaataa aaagaaaaaa	180	
catacatttc tccagttggt ttgctctttg cttgttgaag taataaaccg ttttaaagag	240	
aaaatacttg ctgtaaaccc ccagtgcctt caactctttt ggcagaatat ttttaaagaa	300	35
atccagcaag caaactttga ggtgctaatg aaagtaaagg aaggtggtat ttctagtttt	360	
ggcagaaatg aaaagtgtct cacaagagac atcactaccc acgtggggtc tggctgcttt	420	
ctaccaaaga catttagaga agaagtgaat tgagtcaggg tgatggtgaa cactacatat	480	
tttatagatg gttaagttga gaattaatta tgtttatcat ggatggctac taataccaag	540	40
ctcatgattg ttgcagcctc aacgtcttag gcagtaaaac ttgtctgcag cactaaaggg	600	40
ggagaaaccc ttatattttg caaactgtcc attcgttaaa tttattgtaa cctaatacca	660	
aaaactgccg tttttcatat tatttcccca cctcctactt tttttttt	720	
ttgtaaaata accccttcta gaaaataagc attaactgga atgtttcaaa caattttgct	780	
tcattttact atcagccact agtgaactct tacagagatg tacatttaag ataaaattag	840	45
cttgtgctaa gtgttttaaa aacattgttt actgttaaag gggaattgca cattatattt	900	
aactgggatt gctccctccc tcagttcttt aaaaaacaag agtcaaggct cacaccaact	960	
tgtaggctgt gggagctttg ccataggtag atacaatgta gaagtatact tttttaaagc	1020	
atgaagaaga caaggaactt cattataatg taccaggtag aggacattat tattcaaagg	1080 1140	50
attatgcaca gctcagtgaa gatgaagtta caatttttct cgcagctttg ttgctattat tttcttctgc ataaatgtat gctcatttca ttatgtgcct tgctccctga ttgtgcaaag	1200	50
cttatatata tatatatata gatagataga tagataga	1260	
tcagtactac tgaggatgtt tttctgagga tgtttttgtt ctgctggatt aagttatttt	1320	
ccaagttact cttgccagtt atgtcagtaa actattgtaa tggcttagca cactagtcgt	1380	
acagtcagtg taaatgtttt tcatttacat gttttcatta tatcagctta tcaaatcctt	1440	55
aataaaaaaa attcatagat ttcatttaaa c	1471	
(2) INFORMATION ÜBER SEQ ID NO: 13:		60
() CECHENZ CHADAVTEDICTIV		30
(i) SEQUENZ CHARAKTERISTIK:		
(A) LÄNGE: 2409 Basenpaare		
(B) TYP: Nukleinsäure		,-
(C) STrang: einzel		65
(D) TOPOLOGIE: linear		

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

15

20

(A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 13

```
geteegtgee ageatgetae cetgggagge acatecagge ttgggaaaeg ggggtgteet
                                                                    60
                                                                   120
qqatctcatq actccaqcaq caccaqctqc tctctttcct cttccaaqta gacttccqtt
                                                                   180
cccccccac ttqqqtqttt ttqtttqttt taqcaattca gaqctcaaga taaagacctt
aaaqataact ttgtgtgtct ctccctttct aggtatttgc ataggaatca gaggagttaa
                                                                   240
                                                                   300
tcttqtctct tctcacaqqt ttqaatcttc agacaaact: ctgggaggac tcggtccatg
                                                                   360
cctcgcagca gatgttccct gtcaatcagt aggcaaatt; gctacccatt ctccccagaa
                                                                   420
atctcaccag tgtgctcact gtgagaagac gttcaaccg; aaagaccacc tgaaaaaacca
                                                                   480
cctccaqacc cacqacccca acaaaatggc ctttgggtgt gaggagtgtg ggaagaagta
                                                                   540
caacaccatq ctqqqctata agaggcacct ggccctccat gcggccagca gtggggacct
                                                                   600
cacctgtggg gtctgtgccc tggagctagg gagcaccgag gtgctactgg accacctcaa
                                                                   660
agcccatgcg gaagagaagc cccctagcgg aaccaaggaa aagaagcacc agtgcgacca
                                                                   720
ctgtgaaaga tgcttctaca cccggaagga tgtgcgacgc cacctggtgg tccacacagg
atgcaaggac ttcctgtgcc agttctgtgc ccagagattt gggcgcaagg atcacctcac
                                                                   780
ccggcatacc aagaagaccc actcacagga gctgatgaaa gagagcttgc agaccggaga
                                                                   840
cettetgage acettecaca ceatetegee tteattecaa etgaaggetg etgeettgee
                                                                   900
tcctttccct ttaggagett ctgcccagaa cgggcttgca agtagettgc cagctgaggt
                                                                   960
ccatagecte acceteagte ecceagaaca ageegeecag cetatgeage egetgeeaga
                                                                  1020
gtecetggee tecetecace ceteggtate ceetggete: ceteegceac ceetteccaa
tcacaaqtac aacaccactt ctacctcata ctccccact: gcaagcctgc ccctcaaagc
agatactaaa ggtttttgca atatcagttt gtttgaggac ttgcctctgc aagagcctca
cctqcccaaq qaqctqcctq caqatqctqt qaacctaaca atacctgcct ctctggacct
qtccccctq ttqqqcttct qqcaqctqcc ccctcctqct acccaaaata cctttqqgaa
tagcactett geeetgggge etggggaate tttgeeceas aggttaaget gtetggggea
gcagcagcaa gaacccccac ttgccatggg cactgtgagc ctgggccagc tccccctgcc
ccccatccct catgtgttct cagctggcac tggctctgcc atcctgcctc atttccatca 1560
tgcattcaga taattgattt ttaaagtgta tttttcgtat tctggaagat gttttaagaa 1620
gcattttaaa tgtcagttac aatatgagaa agatttggaa aacgagactg ggactatggc
ttattcagtq atqactggct tgagatgata agagaattc: cgaactgcat gtattgtgcc
                                                                 1740
aatctgtcct gagtgttcat gctttgtacc aaatttaatg aacgcgtgtt ctgtaatcaa
                                                                  1800
actgcaaata ttgtcataac caacatccaa aatgacggct gctatatata agtgtttgtc
                                                                  1860
atatggaatt taatcgtaag ccatgatcat aatgttaact aaataacttt atgtggcact
                                                                  1920
gcctagtaag ggaactatgg aaaggtttgg atttctccaa atctgggaga attttcaaaa
                                                                  2040
taagaaaata acctttatat gatatactat gactaggctg tgtatttctt ttcagggatt
tttctacctt cagggttgga tgtagtttag ttactattac catagccaac ctgtagtttt
                                                                  2100
acatatacat tttcttgtgg agcaatagag ttctccattt tacagaagca ttttaaatgt
                                                                  2160
agtttgaata ttttccacaa gatgctgcaa tgtgagtta: cacttcattt atcttaaaga
aagactaaac tggttgtcag ttacatctga cagaaaaaaa aaaaaaatca ctgtgtaacc
aggttaagtg gtaaaataat ccaggcgtca gtcaaaggca ttttgctgac tttaatattg
                                                                 2340
attatatttt taacaggaat ttaagaaaat attactggaa ttaaaaaatat atatatatta
                                                                  2400
aacaaqaatt ttctttqctc tqtctaqctt aaactactac tcaaqctqct taaqttctta
                                                                  2460
agtattqttt qtaatcacca ataaataaqt qcatttqtaa ttcatcaqtc attattaqct
```

tttattaaaa gaagattacg ttttacaatg taactataat ctcttgaatt tggtatctta ttaatgagtt ttaaagatgt aaaacctaac ctttttaaa gctccattgt cttatgtttt tagaggcttt tccgtaaaca tatatcttac atataataaa cttttcaaat cttgcaaaaa aaaaaaaaaa	2640 2700 2738	5
(2) INFORMATION ÜBER SEQ ID NO: 14:		
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1286 Basenpaare		10
(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear		15
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier hergestellte partielle cDNA	ung	20
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	•	30
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14		40
cgccgcggcc cctcctccca gagcggcagc cttttcccgc gcgtgctgcc ttcgccgctc gggccgcccg ggggaaaaca tggcgtctgc cctggagcag ttcgtgaaca gtgtccgaca gctctcagct caagggcaaa tgacacagct ttgtgaactg atcaacaaga gtggggaact	60 120 180	40
ccttgcgaag aacttatcc atctggacac tgtgctcggg gctctggatg tacaágaaca ctccttgggc gtccttgctg ttttgtttgt gaagttttct atgcccagtg ttcctgactt cgaaacgcta ttctcacagg ttcagetctt catcagcact tgtaatgggg agcacattcg atatgcaaca gacacttttg ctgggctttg ccatcagcta acaaatgcac ttgtggaaag	240 300 360 420	45
aaaacagtga caacataaga tocaatgtgo tgocatottt gagaacttat otgaaagaga tgtoatttot gacagocoot gogaggaatt ggoatootta agcaagocat agacaagatg cagatgaata caaaccagot gacotoaata catgotgato totgocagot ttgtttgota	480 540 600	50
gcaaaatgct ttaagcctgc ccttccatat cttgacgtgg atatgatgga tatctgtaaa gagaatggag cctatgatgc aaaacacttt ttatgttact attattatgg agggatgatc tatactgggc tgaagaactt tgaaagagct ctctactttt atgaacaggc tataactact	660 720 780	
cctgccatgg cggtcagtca tatcatgttg gaatcatata aaaagtatat tttagtgtct ttgatattac ttggcaaagt acaacagcta ccaaaatata catctcaaat tgtgggtaga ttcattaagc ctcttagcaa tgcataccac gagttagcac aagtgtattc aaccaacaac	840 900 960	55
ccctcagaac tccgaaacct ggtgaataag cacagtgaaa ccttcactcg cgataacaac atggggctgg tgaagcaatg cttgtcatct ctttataaga agaatattca gaggctaaca aagacctttt taactctatc attacaagat atggcaagtc gtgtgcagtt gtctggacct	1020 1080 1140	60
caggaggcag agaaatacgt tetgcacatg atagaagatg gtgagatttt tgcaagtatt aaccagaagg acggtatggt cagtttccat gataaccetg aaaaatataa taacceagce	1200 1260	
atgetteata acattgatea ggagatgetg aagtgeattg agetggatga geggetgaaa gecatggace aggagateae agtgaaceet eagtttgtae aaaagagtat gggeteaeaa	1320 1380	65
gaagatgatt caggaaacaa accatccagt tattcttgaa actaacatcc atcctgagct	1440 1500	
aaacaagaga aactaccatc ttggccagtg acaagtgttc ggagggcagc agagaggacc		

tgctttcaga aaaccatttt ctctgcaaag aaaggaaaca gatttgcaaa ctttaaagtc 1620 tgtcgtggat ttatttatcc tcagattatt gttactgcat taaatctacc tttttgtttt aagttgcttg aacattaaaa aaaaaaaaa 1710

(2) INFORMATION ÜBER SEQ ID NO: 15:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1089 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

10

15

20

25

30

35

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 15

	coctogataa	aagcattaac	catcagatcg	agtctcccag	tgaaaggcgg	aagtctataa	60
40	gtggaaagaa	actatactet	tcctgtgggc	ttcctttggg	taaaggagct	gcaatgatca	120
	togagacect	caatctctat	tttcacatcc	agtgtttcag	gtgtggaatt	tgtaaaggcc	180
	agcttggaga	tacaataaat	gggacggatg	ttaggattcg	aaatggtctc	ctgaactgta	240
	atgattgcta	catgcgatcc	agaagtgccg	ggcagcctac	aacattgtga	cacggctttc	300
45	aagcttccgg	atcactcacc	atttctttac	tgagagtgtc	ccctggcaac	tgcttaacaa	360
43	aatcccaagc	tcaggggctt	ctcagcattt	acctaatttc	tgaaaggctc	ttctgaaagg	420
	togtatctgt	tctttcqtaq	cacagtgttt	atgtttttcc	tgtttattgt	tttgggtttt	480
	tattttttt	ttqcatttqc	acagtataca	caaaagaata	tggggttgta	atgatcctga	540
	atageteaaa	aaaggtttta	gcatggtcaa	acaggcttat	ggtttaaaat	gtgttattct	600
50	cttctttaga	aattagctaa	atgatgcaat	aaacctgttt	tgttttagaa	tgtctaggaa	660
	ttaaacactt	tatqtttaca	gaattgagct	gcagaaagtg	caagacatgc	caatttgaga	720
	cacacggtct	tctaagactg	aaggataaat	ttaatgcatt	tcagaaacta	aacatcacag	780
	caagetetat	ctctgagcta	taatttgttt	ttaatgcaaa	gacactagtt	tgataatata	840
	tactgtaatc	ctgaaacatt	tgtgttactt	acctttggag	gtagaaatta	taccaataaa	900
55	ttattgcacc	gttagtatta	gattctgtgt	accttggaag	ttatgtcatt	aatataggct	960
	ggttcatcaa	ataaaqcaaa	accttgcaat	atcagctaga	tttacactcc	gggacgttgc	1020
	ccaaaggtag	qaaqaaaqca	gagggaaata	tttcagtcat	catttccaaa	gtcattatca	1080
	aaatctgtga	ggaagtttaa	tcttccaaag	agtcaatgtc	agacatcagg	cctctgttgc	1140
60	ctgcttctct	cgaggcacta	gattaggagt	cttcaataag	agacttaaca	.tgaggtatat	1200
-	ggaagatgag	gcaccgagat	aagttcatca	ttaggtgtga	gcactgctca	cccttgctgg	1260
	caagttctcc	ttaagggcct	gaagcacagg	tgtccaaaga	aaagcgttaa	gtccatctta	1320
	atagaatcta	tgtggtatat	gatgtggtca	gcccctggtc	tgtgatcagc	aagaacctac	1380
	agcacagatt	atgccctqcc	cacttcaatg	aatacctact	ctcctccatt	ctccatcact	1440
65	ttttttgcta	tcaagaactc	cggaccttgc	ccatggagaa	gtttagagag	gaactcttgt	1500
	ggagagetgg	tttattttct	gccctgtgcg	acgagtttca	gctggccaag	aaaggagtca	1560
	agttattaaa	aagcatcaca	atgtagatct	ccaggctggt	tttttgtttt	ttgttgttaa	1620
	gactggggaa	agggggacta	tttattctgc	cttaaatcaa	tggcaaataa	gtcaagatga	1680

cattttgtga atgtagacta tggatacact cctaatagat tgatgtagtc ataaaagggg	1 7 40	
gtcaagtaga tgtttttctg ttatgtaagc aataattttt ccgtgtctta ttgagtatgg	1800	
ctagcgatta tttattacat gctagatggg ttctttgcat gtgggttcca tataggtgca	1860	
gaaatttcct cagccactgg agggatttcg accatatttg tcatttggat gagctgttat	1920	, 5
tagattgaaa totacacato atttoattaa aaattgtgoo ttagaaaacg caaagctgtt	1980	
gcacatggcg ataaattatg gatgcagtac attgaagaga gatgaagtca cttccaagtt	2040	
tccaagactt ctcatggagg tgtttgctgt tttacaggaa aaaataaaaa taaaaaaaga	2100	
aaaaaaagag aaaaaattaa attcaaaaat tgttttgaaa atgtacagat caagtccaat	2160	
attttgatta tccacctgca tgttttatta aatattttga taatgtggat gtttacactt	2220	10
tgcatgatat tagcagagta ccactagtaa tgcacaaaca tgtacaatat ggtcattcat	2280	
aaccgatttt tatagaatac tttttacatg tgcaactcca tccgttatgt aaggattaca	2340	
tgaatattgc acattccctt ctggtttcac aaacccattt atacatattt cttagtgagg	2400	
ctcattgtac atgtattgaa gctagaatcg agtcaagaaa aataaagccc cattctccaa	2460	15
ctgcaaaatg tgctttccca taatgaacac tagtcaccag cacagaataa tctccaacat	2520	1.5
tttctaaatt ctaattgcca actgtttcta tttatatttg atttatattt catttggagt	2580	
ctgttacatg gcagcttagg cagactagat cttgttttt ccaatgcagc ataatgagta	2640	
tgatctattt cttttcaaat aatctttgag atcccaggaa aaaaaaaatg ctctgctcca	2700	
ttgagctata atgtaaatgt gtttgtttaa aaaacaggtg aggcaagtga gtgatttatt	2760	20
gttcctgagg aagtatatct gatttttttt ctcatactcc aaaagctagt ccctactctt	2820	
gricorgagg aagratatot gattititit breatactod aadagctagt coctactot	2880	
taataaaaat aatgggtaac tttttgtttt tcactagcga acttccatga catttccttt	2940	
ctatgtagtg tgattaatgc aatacatatt atagttatct atacacagtg taagatttaa	3000	
caaactgaaa tgatccacct catatgtgag tccgtccaaa agatgttact gctctgggtg		25
ggccagtgtt ctatatcggt tatactaact ttcatttaaa gtatttattc taaaatgcct	3060	
ctgagaaaca gtaaaaaata aaaacaacaa gttgtctaaa atgcaacagc ttttatagta	3120	
aatgtacatt tataaataaa atactcaaat caaaaaaaa	3159	
		30
		30
(2) INFORMATION ÜBER SEQ ID NO: 16:		
(i) SEQUENZ CHARAKTERISTIK:	•	35
(A) LÄNGE: 876 Basenpaare		
(B) TYP: Nukleinsäure		
(C) STrang: einzel		
(D) TOPOLOGIE: linear		40
(D) TOPOLOGIE. Illiedi		
#		
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier	ung	
hergestellte partielle cDNA		
		45
("IN LINCOCT IETICOLI, MEIN		
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		50
(,		-
(vi) HERKUNFT:		
(A) ORGANISMUS: MENSCH		
(C) ORGAN:		55
(-/		
(vii) SONSTIGE HERKUNFT:		
(A) BIBLIOTHEK: cDNA library		
		60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16		
(AI) OLGOLIAZ-DEGOLIACIDONO, OLG ID NO. 10		
	60	65
aataatttga tgcatctgga atttatattt ctcatattgt tgtagatttt aacattgtat	60	65
tttttcttt tttcttccct ccctgctgcc tctctcctct caacagtcct ggtacctggg	120	65
aataatttga tgcatctgga atttatattt ctcatattgt tgtagatttt aacattgtat ttttttcttt tttcttccct ccctgctgcc tctctcctct caacagtcct ggtacctggg ctagcttggt tcctttccaa gtgtcaaata ggacacccat cttaccggcc aatgtccaaa		65

```
240
     attacggttt gaacataatt ggagaacctt tccttcaagc agaaacaagc aactgaggga
     aaaagaaaca caacaatagt ttaagaaatt tttttttaa ataaaaaaaa ggaaaagagg
                                                                          300
     aagactggac aaaacaacac aaaggcagaa aggaaagaaa ctgaagaaag aagataatag
                                                                          360
     accagcaatt gcagcactta caatcactaa ttcccttaag gttgaaactg taatgacata
                                                                          420
                                                                          480
     aaaagggtcg atgatatttc actgatggta gatcgcagcc cctgcaacgt agcctttgtt
                                                                          540
     acatgaagtc cgctgggaaa tagatgttct gtctctatga caatatattt taactgactt
     tctagatgcc ttaatatttg catgataagc tagttttatt ggtttagtat tcttgttgtt
                                                                          600
                                                                          660
     tacqcatqqa atcactattc ctggttatct caccaacgaa ggctaggagg cggcgtcaga
     ggtgctgggt gacagagcca tgagccagcc attttataag cactctgatt tctaaaagtt
                                                                          720
                                                                          780
     aaaaaaaata tatqaaatct ctqtagcctt tagttatcag tacagattta ttaaatttcg
     qcccttaacc cagccttttc cagtgtgtaa cccagtttga aatcttaaaa aaagaaaaaa
                                                                          840
                                                                          900
     tgaaaaaaaa aggaaaaaaa gaaaaaaagga aaaaaacagt ttgaacacaa aggctctatg
                                                                          960
15
     gaagaaatgc ctctatgtag gtgaagtgtt ctctctgcat gcaacagtaa aaattaatat
                                                                        1020
     aatattttcc ccacaaaaqa aacacttaac agaggcaagt gcaatttata aatttatatc
                                                                        1080
     taaaggggaa tcatgattat aagtccttca gcccttggac tctaaattga ggggattaaa
                                                                        1140
     aagaatttaa aataattttg aacgaattta ttttcccctc agtttttgag ggcattaaaa
                                                                        1200
     aggcattaaa tcaagacaaa tcatgtgctt gagaaaaata aaattaatga aaacacagca
                                                                        1260
     cttatgttgg tttagctgca gcctccttgg aggtagaatt tatttattta aaattactgg
                                                                        1320
     ttqcatcaaq aacccataqq gtgtacaaaa ggttctataa aatctgcatt atagagacaa
                                                                        1380
    agaggcaggc aaatccatqt cacaagggta aagcttacag tttacaaact gggaacgcca
    gggtgtagga tataaaaacg cactcttgag aaaacaaatg taatcagggt gctgaaaact
                                                                        1440
     tgcatggtgc tttcagacat tagccttgtt caacaaattt cttgtattga cagatccata
                                                                        1500
                                                                        1560
    qtqtqcatqq qcaqacacat tttgcctcta tgtctcttaa aattttaatt aaaaatactc
     tttccagtaa tcctaatttg cacgaagata taatgtccac attacgtgcc ttgccttgaa
                                                                        1620
    atctaaaaaa caaaaaacaa aaaagaaaag gaacaaaaaa atacaacaaa gtgacatcac 1680
30
```

(2) INFORMATION ÜBER SEQ ID NO: 18:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1722 Basenpaare

(B) TYP: Nukleinsäure

(C) STrang: einzel

(D) TOPOLOGIE: linear

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

35

40

45

50

55

60

(A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18

cattgtttgc caaaatccca ggcagcatgg acctcagtct tetetgggta ettetgeccc

60 tagtcaccat ggcetgggge cagtatggeg attatggata eccataccag cagtateatg
actacagega tgatgggtgg gtgaatttga accggcaagg etteagetae cagtgteece
aggggcaggt gatagtggee gtgaggagea tetteageaa gaaggaaggt tetgacagae
240
aatggaacta egeetgeatg eccaegeeae agageetegg ggaacceaeg gagtgetggt
300

gggaggagat caacagggct ggcatggaat ggtaccagac gtgctccaac aatgggctgg	360	
tggcaggatt ccagagccgc tacttcgagt cagtgctgga tcgggagtgg cagttttact	420	
gttgtcgcta cagcaagagg tgcccatatt cctgctggct aacaacagaa tatccaggtc	480	
actatggtga ggaaatggac atgatttcct acaattatga ttactatatc cgaggagcaa	540	5
caaccacttt ctctgcagtg gaaagggatc gccagtggaa gttcataatg tgccggatga	600	
ctgaatacga ctgtgaattt gcaaatgttt agatttgcca cataccaaat ctgggtgaaa	660	
ggaaaggggc cggggacagg agggtgtcca catatgttaa catcagttgg atctcctata	720	
gaagtttetg etgetetett teetteteee tgagetggta aetgeaatge caactteetg	780	10
ggcctttctg actagtatca cacttctaat aaaatccaca attaaaccat gtttctcact	840	
tttcacatgt ttcatagcaa ctgctttata tgactgatga tggcttcctt gcacaccaca	900	
tatacagtgc gcatgcttac agccgggctt ctggagcacc agctgcagcc tggctactgc	960	
tttttactgc agaatgaact gcaagttcag catagtggag gggagaggca gaactggagg	1020	
agaggtgcag tgaaggttct ctacagctaa gcctgtttga atgatacgta ggttccccac	1080	15
caaaagcagg ctttctgccc tgagggacat cttcccactc ccctgctcca catgagccat	1140	
gcatgcttag caatccaagt gcagagctct ttgctccagg agtgaggaga ctgggaggtg	1200	
aaatggggaa atggaagggt ttggaggcag agctgaaaac agggttggaa ggatttcctg	1260	
aattagaaga caaacgttag catacccagt aaggaaaatg agtgcagggg ccaggggaac	1320	20
ccgtgaggat cactctcaaa tgagattaaa aacaaggaag cagagaatgg tcagagaatg	1380	20
ggattcagat tggggaacttg tggggatgag agtgaccagg ttgaactggg aagtggaaaa	1440	
aggagtttga gtcactggca cctagaagcc tgcccacgat tcctaggaag gctggcagac	1500	
accetggaac cetggggage tactggcaaa eteteetgga ttgggeetga tttttttggt	1560	
gggaaagget geeetgggga teaactttee ttetgtgtgt ggeteaggag ttettetgea	1620	25
gagatggcgc tatctttcct cctcctgtga tgtcctgctc ccaaccattt gtactcttca	1630	
ttacaaaaga aataaaaata ttaacgttca ctatgctgaa aa	1722	
		20
		30
(2) INFORMATION ÜBER SEQ ID NO: 19:		
(i) SEQUENZ CHARAKTERISTIK:		
(A) LÄNGE: 1612 Basenpaare		35
(B) TYP: Nukleinsäure	•	
(C) STrang: einzel		
(C) STrang: einzel (D) TOPOLOGIE: linear		40
(D) TOPOLOGIE: linear		40
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung un	Ing	40
(D) TOPOLOGIE: linear	Ing	40
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung un	Ing	
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	Ing	40
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung un	Ing	
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN 	Ing	
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	Ing	
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 	Ing	
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN 	Ing	45
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: 	Ing	45
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 	Ing	45
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: 	Ing	· 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 	Ing	45
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: 	Ing	· 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: 	Ing	· 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 	Ing	· 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: 	ing	· 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 	ing	45 · 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: 	ing	45 · 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 	ing	45 · 50
 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 ggccatggaa attaaagttg aaaaagactt gaagactgga gaaagtacag ttetgtette 	Ing	45 · 50
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 ggccatggaa attaaagttg aaaaagactt gaagactgga gaaagtacag ttctgtcttc aattacctct gccatcagat gactttaaag gtacaggaat aaaagtttat gatgatgggc		45 · 50
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 ggccatggaa attaaagttg aaaaagactt gaagactgga gaaagtacag ttctgtcttc aattacctct gccatcagat gactttaaag gtacaggaat aaaagtttat gatgatggc aaaagtcagt gtatgcagt agtcttaatc acagtgcagc atacaatggc accgatggcc	60	45 · 50 55
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 ggccatggaa attaaagttg aaaaagactt gaagactgga gaaagtacag ttctgtcttc aattacctct gccatcagat gactttaaag gtacaggaat aaaagtttat gatgatggc aaaagtcagt gtatgcagta agttctaatc acagtgcagc atacaatggc accgatggcc tggcaccagt tgaagtagag gaacttctaa gacaagcctc agagagaaac tctaaatccc	60 120	45 · 50 55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19 ggccatggaa attaaagttg aaaaagactt gaagactgga gaaagtacag ttctgtcttc aattacctct gccatcagat gactttaaag gtacaggaat aaaagtttat gatgatggc aaaagtcagt gtatgcagt agtcttaatc acagtgcagc atacaatggc accgatggcc	60 120 180	45 · 50 55

```
gagaaacggt gacccctgga ccaaactttc aagaaaggat aaagattaaa actaatggac
                                                                         360
    tgggtattgg tgtaaatgaa tccatacaca atatgggcaa tggtctttca gaggaaaggg
                                                                         420
    quaacaactt caatcacatc agtoccattc cgccagtgcc tcatccccga tcagtgattc
                                                                         480
    aacaagcaga agagaagctt cacaccccgc aaaaaaggct aatgactcct tgggaagaat
                                                                         540
    cgaatgtcat gcaggacaaa gatgcaccct ctccaaagcc aaggctgagc cccagagaga
                                                                         600
    caatatttgg gaaatctgaa caccagaatt cttcacccac ttgtcaggag gacgaggaag
                                                                         660
                                                                         720
    atgicagata taatatcgtt cattccctgc ctccagacat aaatgataca gaaccggtga
    caatgatttt catggggtat cagcaggcag aagacagtga agaagataag aagtttctga
                                                                         780
    caggatatga tgggatcatc catgctgagc tggttgtgat tgatgatgag gaggaggagg
                                                                         840
    atgaaggaga agcagagaaa ccgtcctacc accccatagc tccccatagt caggtgtacc
                                                                         900
    agccagccaa accaacacca cttcctagaa aaagatcaga agctagtcct catgaaaaca
                                                                         960
    caaatcataa atccccccac aaaaattcca tatctctgaa agagcaagaa gaaagcttag
                                                                        1020
    gcagccctgt ccaccattcc ccatttgatg ctcagacaac tggagatggg actgaggatc
                                                                        1080
15
    catccttaac agctttaagg atgagaatgg caaagctggg aaaaaaggtg atctaagagt
                                                                        1140
    tgtaccacct atataaacat cctttgaaga agaaactaag aagcatttgc aaatttctct
                                                                        1200
    totggatatt ttgtttattt tttotgaagt ocaaaaaatt atcattacag tgtaccatat
                                                                        1260
    taagccatgt gaataagtag tagtcattat ttgtgaaaaa ttcccaaaaa gctggggaaa
    acaaatgtgt aacttttcca gttacttgac acgattcagt gggggaaaac cagcattttt
    tattctattg ataccaaagc atttctaata agagcttgtt aaatttaaga ataaagttat
    ttaaaatata aagagtatag tatattaact ggcattgtaa ttttgatgat acaaagattg
                                                                        1500
    aaagatcata ggaaagcatt gcccttcatc acagaagtat tcaactctga caaataaata
                                                                        1560
    tgtcatcctg aattaaaaat gccttaataa aagtacatcc tcctgctaaa aa
                                                                        1612
```

(2) INFORMATION ÜBER SEQ ID NO: 20:

- 30 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 387 Basenpaare
 - (B) TYP: Nukleinsäure
- 35 (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 45 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:

40

50

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 20

```
ggggtttcac cccacattcg tcaggttggt ttcaaactcc ctgacctttg tgatccacc 60 ccgcctcggc ctccccaaag tgcctgggat taccaggcat gagcccatca caccctggtc 120 aactttcttt tgattagtgt ttttgtggta tatctttttc catcatgtta ctttaaatat 180 atctatatta ttgtatttaa aatgtgtttc ttacagactg catgtagttg ggtataattt 240 ttatccagtc taaaaatatc tgtcttttaa ttggtgttta gacaatttat atttaataaa 300 attgttgaat ttaagatgga tgacgggtat tggtggcggt tcaccacttc tgtttattct 360 cttccaqaat tctttggatt gttaaat
```

(2) INFORMATION ÜBER SEQ ID NO: 21:					
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1304 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear					
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung					
hergestellte partielle cDNA	15				
(iii) HYPOTHETISCH: NEIN					
(iii) ANTI-SENSE: NEIN	20				
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	25				
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library					
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21	30				
agaagttccc aggcatacgg ccttacctgg ctacactggc aggcaacttc cgaatgcctg tgttgaggga gtacctgatg tctggaggta tctgccctgt cagccgggac accatagact atttgcttc aaagaatggg agtggcaatg ctatcatcat cgtggtcggg ggtgcggctg agtctctgag ctccatgcct ggcaagaatg cagtcaccct gcggaaccgc aagggctttg 240	35				
tgaaactggc cctgcgtcat ggagctgacc tggttcccat ctactccttt ggagagaatg 300 aagtgtacaa gcaggtgatc ttcgaggagg gctcctgggg ccgatgggtc cagaagaagt 360 tccagaaaata cattggtttc gccccatgca tcttccatgg tcgaggcctc ttctcctccg 420 acacctgggg gctggtgccc tactccaagc ccatcaccac tgttgtggga gagcccatca 480 ccatccccaa gctggagcac ccaacccagc aagacatcga cctgtaccac accatgtaca 540	40				
tggaggccct ggtgaagctc ttcgacaagc acaagaccaa gttcggcctc ccggagactg 600 aggtcctgga ggtgaactga gccagccttc ggggccaatt ccctggagga accagctgca 660 aatcactttt ttgctctgta aatttggaag tgtcatgggt gtctgtgggt tatttaaaag 720 aaattataac aattttgcta aaccattaca atgttaggtc ttttttaaga aggaaaaagt 780	45				
cagtatttca agttcttca cttccagctt gccctgttct aggtggtggc taaatctggg 840 cctaatctgg gtggctcagc taacctctct tcttcccttc ctgaagtgac aaaggaaact 900 cagtcttctt ggggaagaag gattgccatt agtgacttgg accagttaga tgattcactt 1020 ccccacgctc gtctagtcct gaaactgcag gaccagttc tctgccaagg ggaggagttg 1080	50				
gagagcacag ttgccccgtt gtgtgagggc agtagtaggc atctggaatg ctccagtttg atctcccttc tgccacccct acctcacccc tagtcactca tatcggagcc tggactggcc tccaggatga ggatggggt ggcaatgaca gcctgcaggg gaaagagctt tcgcccgtgg acgattttag ggggggtttc gccaccagtt ggtgtggggg gtta 1140 1200 1200 1200 1200 1200	55				
(2) INFORMATION ÜBER SEQ ID NO: 22:	60				
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1533 Basenpaare (B) TYP: Nukleinsäure					

- (C) STrang: einzel (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 10 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 15 (vi) HERKUNFT:

5

20

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22

30	gcgaggagct	ggcacgcagc	cagggcctit	gctcaagaag	ccataccagc	caagaattaa	60
	aatctctaaa	acatcagtgg	atggtgatcc	ccactttgtt	gtggatttcc	ccctgagcag	120
	actcaccgtg	tgcttcaaca	ttgatgggca	gcccggggac	atcctcaggc	tggtctctga	180
	tcacagggac	tctggtgtca	cagtgaacgg	agagttaatt	ggggcacccg	cccctccaaa	240
35	tggccacaag	aaacagcgca	cttacttgcg	cactatcacc	atcctcatca	acaagccaga	300
	gagatcttat	ctcgagatca	caccgagcag	agtcatcttg	gatggtgggg	acagactggt	360
	gctcccctgc	aaccagagtg	tggtggtggg	gagctggggg	ctggaggtgt	ccgtgtctgc	420
	caacgccaat	gtcaccgtca	ccatccaggg	ctccatagcc	tttgtcatcc	tcatccacct	480
	ctacaaaaag	ccggcgccct	tccagcgaca	ccacctgggt	ttctacattg	ccaacagcga	540
40		agcaactgcc					600
		cctgcagggc					660
	agaggggcct	gaggccgtcc	taacagtgaa	aggccaccaa	gtcccagtgg	tctggaagca	720
	aaggaagatt	tacaacgggg	aagagcagat	agactgctgg	tttgccagga	acaatgccgc	780
		gacggggagt					840
	gacacttggc	cagggaatgt	ccagggagct	ctgaagctgg	cagccttaaa	gatgcaagtg	900
45		agtgatgtgg					960
	tcagctcctg	gcaattagct	ggactccatg	acccacccct	ggtgcagcat	agatccgacg	1020
		cgaagggtag					1080
		cctcttcctg					1140
50		aaatgcaaca					1200
	gcatatcata	aagtaagcct	ttctggtgaa	ggaaggttgc	tatgaaactt	tttttcttgg	1260
	tggaaatggc	caagtttagg	cactctgctt	tttgccttac	actaatgctt	agaaagctgt	1320
		gtgttgcagc					1380
55		aggccaccaa					1440
		ttgcaagacg					1500
		agaaatttga					1533

- (2) INFORMATION ÜBER SEQ ID NO: 23:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1304 Basenpaare
 - (B) TYP: Nukleinsäure (C) STrang: einzel
 - (D) TOPOLOGIE: linear

hergestellte partielle cDNA	·	
(iii) HYPOTHETISCH: NEIN		5
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT:		10
(A) ORGANISMUS: MENSCH (C) ORGAN:		
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	•	15
(A) BIBLIOTTICK. COVA IIDIAIY		20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 23		20
	60	
caagtgtgag ccaccacacc tggcctggaa ggaacctctt aaaatcagtt tacgtcttgt attttgttct gtgatggagg acactggaga gagttgctat tccagtcaat catgtcgagt	60 120	25
cactggactc tgaaaatcct attggttcct ttattttatt	180	
gggtttgtat tatgtctggc aaatgacctg ggttatcact tttcctccag ggttagatca	240	
tagatettgg aaacteetta gagageattt tgeteetace aaggateaga tactggagee	300	
ccacataata gatttcattt cactctagcc tacatagagc tttctgttgc tgtctcttgc	360	30
catgcacttg tgcggtgatt acacacttga cagtaccagg agacaaatga cttacagatc	420	
ccccgacatg cctcttcccc ttggcaagct cagttgccct gatagtagca tgtttctgtt	480	
tetgatgtac etttttete ttettettg cateagecaa tteecagaat tteeccagge	540 600	
aatttgtaga ggaccttttt ggggtcctat atgagccatg teetcaaage ttttaaacet eettgetete etacaatatt eagtacatga eeactgteat eetagaagge ttetgaaaag	660	35
aggggcaaga gccactctgc gccacaaagg ttgggtccat cttctctccg aggttgtgaa	720	
agtiticaaa tigtactaat aggctggggc cctgacttgg ctgtgggctt tgggaggggt	780	
aagctgcttt ctagatctct cccagtgagg catggaggtg tttctgaatt ttgtctacct	840	
cacagggatg ttgtgaggct tgaaaaggtc aaaaaatgat ggccccttga gctctttgta	900	40
agaaaggtag atgaaatatc ggatgtaatc tgaaaaaaag ataaaatgtg acttcccctg	960	
ctctgtgcag cagtcgggct ggatgctctg tggcctttct tgggtcctca tgccacccca	1020	
cagetecagg aacettgaag ecaatetggg ggaettteag atgtttgaca aagaggtace	1080	
aggcaaactt cetgetacac atgceetgaa tgaattgeta aattteaaag gaaatggace	1140	45
ctgcttttaa ggatgtacaa aagtatgtct gcatcgatgt ctgtactgta	1200 1260	43
ttgtttgtta aaaaaaaaaa aaaaaaaaa aaaaaaaa	1304	
(O) INFORMATION FIRED OF OID NO. 04.		50
(2) INFORMATION ÜBER SEQ ID NO: 24:		
(i) SEQUENZ CHARAKTERISTIK:		
(A) LÄNGE: 2403 Basenpaare		
(B) TYP: Nukleinsäure		55
(C) STrang: einzel		
(D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTVD: aug ginzalnan ESTa durah Assamblianung und Edition	Inc	60
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung und Editie	nig	
hergestellte partielle cDNA		
(iii) UVDOTUTTICOLI, NEINI		65
(iii) HYPOTHETISCH: NEIN		w
(iii) ANTI-SENSE: NEIN		

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

10

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 24

```
gtccctggcg ccctgccttt agccgtgggg cccccacctc caccctctgg gtttcctagg
                                                                           60
15
                                                                          120
     aatgtccage ctcggagace ttcacaaage cttgggaggg tgatgagtge tggtcctgae
     aagaggeege tggggacact gtgetgtttt gtttegttte tgtgatetee eggcaegttt
                                                                          180
     ggagetggga agaccacact ggtggcagaa tectaaaatt aaaggaggca ggeteetagt
                                                                          240
     tgctgaaagt taaggaatgt gtaaaacctc cacgtgactg tttggtgcat cttgacctgg
                                                                          300
     gaagacgcct catgggaacg aacttggaca ggtgttgggt tgaggcctct tctgcaggaa
                                                                          360
     gtccctgagc tgagacgcaa gttggctggg tggtccacac cctggctctc ctgcaggtcc
                                                                          420
     acacacette caggeetgtg geetgeetee aaagatgtge aagggeagge tggetgeacg
                                                                          480
     gggagaggga agtattttgc cgaaatatga gaactggggc ctcctgctcc cagggagctc
                                                                          540
     cagggeeet eteteetee acetggaett ggggggaact gagaaacaet tteetggage
                                                                          600
25
     tgctggcttt tgcacttttt tgatggcaga agtgtgacct gagagtccca ccttctcttc
                                                                          660
     aggaacgtag atgtcggggt gtcttgccct ggggggcttg gaacctctga aggtggggag
                                                                          720
     cggaacacct ggcatcettc cccagcactt gcattaccgt ccctgctctt cccaggtggg
                                                                          780
     gacagtggcc caagcaaggc ctcactcgca gccacttctt caagagctgc ctgcacactg
                                                                          840
                                                                          900
30
     tcttqqaqca tctqccttgt gcctqgcact ctqccqgtqc cttqggaagg tcggaagagt
     ggactttgtc ctggccttcc cttcatggcg tctatgacac ttttgtggtg atggaaagca
                                                                          960
     tgggacctgt cgtctcagcc tgttggtttc tcctcattgc ctcaaaccct ggggtaggtg
                                                                         1020
     ggacgggggg tctcgtgccc agatgaaacc atttggaaac tcggcagcag agtttgtcca
                                                                        1080
     aatgaccett ttcaggatgt ctcaaagett gtgccaaagg tcacttttct ttcctgcctt
                                                                        1140
     ctgctgtgag ccctgagatc ctcctcccag ctcaagggac aggtcctggg tgagggtggg
                                                                        1200
                                                                        1260
     agatttagac acctgaaact gggcgtggag agaagagccg ttgctgtttg ttttttggga
     agagetttta aagaatgeat gtttttttee tggttggaat tgagtaggaa etgaggetgt
                                                                        1320
     gcttcaggta tggtacaatc aagtggggga ttttcatgct gaaccattca agccctcccc
                                                                        1380
     qcccqttqca cccactttgg ctggcgtctg ctggagagga tgtctctgtc cgcattcccg
                                                                        1440
40
     tgcagctcca ggctcgcgca gttttctctc tctccctgga tgttgagtct catcagaata
                                                                        1500
     tgtgggtagg gggtggacgt gcacgggtgc atgattgtgc ttaacttggt tgtatitttc
                                                                        1560
                                                                        1620
     gatttgacat ggaaggcctg ttgctttgct cttgagaata gtttctcgtg tccccctcgc
                                                                        1680
     aggcctcatt ctttgaacat caactctgaa gtttgataca gataggggct tgatagctgt
45
                                                                        1740
     ggtcccctct cccctctgac tacctaaaat caatacctaa atacagaagc cttggtctaa
                                                                        1800
     cacgggactt ttagtttgcg aagggcctag atagggagag aggtaacatg aatctggaca
    gggagggaga tactatagaa aggagaacac tgcctacttt gcaagccagt gacctgcctt
                                                                        1860
                                                                        1920
     ttgaggggac attggacggg ggccgggggc gggggttggg tttgagctac agtcatgaac
                                                                        1980
    ttttggcgtc tactgattcc tccaactctc caccccacaa aataacgggg accaatattt
                                                                        2040
    ttaactttgc ctatttgttt ttgggtgagt ttcccccctc cttattctgt cctgagacca
                                                                        2100
    cgggcaaagc tcttcatttt gagagagaag aaaaactgtt tggaaccaca ccaatgatat
    ttttctttgt aatacttgaa atttatttt ttattatttt gatagcagat gtgctattta
                                                                        2160
                                                                        2220
    tttatttaat atgtataagg agcctaaaca atagaaagct gtagagattg ggtttcattg
    ttaattggtt tgggagcctc ctatgtgtga cttatgactt ctctgtgttc tgtgtatttg
                                                                        2280
     tctgaattaa tgacctggga tataaagcta tgctagcttt caaacaggag atgcctttca
                                                                        2340
    gaaatttgta tattttgcag ttgccagacc aataaaatac ctggttgaaa tacaaaaaaa
                                                                        2400
                                                                         2403
```

60

65

(2) INFORMATION ÜBER SEQ ID NO: 25:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2517 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

(D) T	OPOLOGIE:	linear					
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA						5	
(iii) HYPO	THETISCH:	NEIN					
(iii) ANTI-S	SENSE: NEI	N					10
	UNFT: RGANISMUS RGAN:	S: MENSCH					15
, ,	TIGE HERK BLIOTHEK:	UNFT: cDNA library					20
(xi) SEQU	ENZ-BESCH	HREIBUNG:	SEQ ID NO:	25			25
cagagtgaaa	ccttatacct	ggtgaccaaa	gtccctccaa	agtgctcttc	cttctgggtt	60	20
attcaagcca	aatatctggg	tttccccctc	tcctcattcc	ctagcaaacc	ccaattatct	120	
		ccatcccctt				180	
		gcatggatgt				240	30
		gctggggccc				300	
		cccaccacag				360 420	
		gcccctgcgg ggaaggagtc				480	
		agtccccaca				540	35
		ctgtgcaccc				600	
		caaagatttc				660	
		cttctgtctt				720	
		agccaggaga				780	40
		gatgggcaac				840	
		cagtcccgtg				900	
		gtcatgtccc				960 1020	
		gagcaagagg ggaggaagtg				1080	45
		aggcgcttaa				1140	43
aaaggccttt	gacccatgtc	atctgagcgt	ctcctccagt	agctctgaaa	gctgtggaca	1200	
		tcccctggtt				1260	
ccaggagagg	gatggtgggg	ccagtggttg	tgtgaaagca	ggaggggcag	ccctcctgga	1320	•
		acggctctca				1380	50
		ggctccaggg				1440	
		gtctcactcc				1500	
		cttctcccac				1560 1620	
		acccaatcct agccctttac				1680	55
		taacacagga				1740	
		tcatttcttt				1800	
		tcaatgtcgc				1860	
		ggagtctcag				1920	60
		gggcagatct				1980	
		tgttcatatc				2040	
		agcttgtttt				2100	
		tgcgtgtgtg				2160	-
		ttcagaccca				2220	65
		caggccctct				2280 2340	
		tatatagatg gtataaatcc				2400	
Juliagely	goodcoyL	gracaaaccc	Lygiquatyc	coccatott	ggacatgaat	- 400	

gtattgtaca ctgacgcgtc cccactcctg tacagctgct ttgtttcttt gcaatgcatt 2460 gtatggcttt ataaatgata aagttaaaga aaactcaaaa aaaaaaaaa aaaaaaaa 2517

(2) INFORMATION ÜBER SEQ ID NO: 26:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1668 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

30

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 26

```
gtatgccctc agaatcacga caactgttgc atgtaacatg gatctgtcta aataccccat
                                                                          60
40
    ggacacacag acatgcaagt tgcagctgga aactggggct atgatggaaa tgatgtggag
                                                                         120
    ttcacctqqc tqaqaqqqaa cqactctqtq cqtqqactqq aacacctqcq qcttqctcaq
                                                                         180
    tacaccatag ageggtattt caccttagtc accagatege ageaggagac aggaaattac
                                                                         240
    actagattgg tcttacagtt tgagcttcgg aggaatgttc tgtatttcat tttggaaacc
                                                                         300
    tacgtteett ecaettteet ggtggtgttg teetgggtzt eattttggat etetetegat
                                                                         360
45
                                                                         420
    tcagtccctq caaqaacctq cattqqqqac aacaaaqqaa qtagaaqaag tcagtattac
    taatatcatc aacagctcca tctccagctt taaacggaag atcagctttg ccagcattga
                                                                         480
    aatttccagc gacaacgttg actacagtga cttgacaatg aaaaccagcg acaagttcaa
                                                                         540
    gtttgtcttc cgagaaaaga tgggcaggat tgttgattat ttcacaattc aaaaccccag
                                                                         600
    taatgttgat cactattcca aactactgtt teetttgatt tttatgetag ccaatgtatt
                                                                         660
                                                                         720
    ttactqqqca tactacatqt atttttqaqt caatqttaaa tttcttqcat qccataqqtc
    ttcaacagga caagataatg atgtaaatgg tattttaggc caagtgtgca cccacatcca
                                                                         780
                                                                         840
    atggtgctac aagtgactga aataatattt gagtctttct gctcaaagaa tgaagctcca
                                                                         900
    accattotte taagetotot agaagteeta geattatagg atettotaat agaaacatea
                                                                         960
    qtccattcct ctttcatctt aatcaaqqac attcccatqq agcccaagat tacaaatgta
    ctcagggctg tttattcggt ggctccctgg tttgcattta cctcatataa agaatgggaa
                                                                        1020
    ggagaccatt gggtaaccct caagtgtcag aagttgtttc taaagtaact atacatgttt
                                                                        1080
                                                                        1140
    tttactaaat ctctgcagtg cttataaaat acattgttgc ctatttaggg agtaacattt
    tctagttttt gtttctggtt aaaatgaaat atgggcttat gtcaattcat tggaagtcaa
                                                                        1200
                                                                        1260
    tgcactaact caataccaag atgagttttt aaataatgaa tattatttat tcccacaaca
    gaattatccc caatttccaa taagtcctat cattgaaaat tcaaatataa gtgaagaaaa
                                                                        1320
                                                                        1380
    aattagtaga tcaacaatct aaacaaatcc ctcggttcta agatacaatg gattccccat
    actggaagga ctctgaggct ttattccccc actatgcata tcttatcatt ttattattat
                                                                        1440
    acacacatcc atcctaaact atactaaaqc ccttttccca tqcatqqatq gaaatggaaq
                                                                        1500
    atttttttt aacttgttct agaagtctta atatgggctg ttgccatgaa ggcttgcaga
                                                                        1560
                                                                        1620
    attgagtcca ttttctagct gcctttattc acatagtgat ggggtactaa aagtactggg
                                                                        1668
    ttgactcaga gagtcgctgt ccagtctgtc attgctgcta ctctaaca
```

(2) INFORMATION ÜBER SEQ ID NO: 27:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1416 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	1
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	1:
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	2
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	2:
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	34
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27	
tttttaaaca aatagtttta ttaccaaatt tgaattctaa ggaattacac atttaaagaa 60 ataacataaa aaggccctac tagtctaaaa aagttttgga gactttttag tgaaatgtca 120	3:
tttcaggcct agtggtccga atctgcccca cctgcgggtc catgcgatgc cctgctgagg 180 tctgtgaaca cagctcatga gaaaccacgg aaatggcccg aatgtgctta cgtgtgaaaa 240 tactgatact gtgattcaac agagctgttt ttcaagccag gatgcagaat gaggaatact 300 aatgaaatga cggcctttaa ggttgttgct tttgaagtca agtcattcag tttgtgatta 360 gtgtttaaaa ccctgaaaat atttaataca gaataaaaac aataagctca aagtacatgt 420	41
ttcactataa tagacaccat attcatgaac ctgggtttgg ttttggcaac acataatttt 480 tggtttagaa gtgaacaatg aaaacggatg tttcacattc aatatcctag tctttaaaaa 540 cctatgttaa aggacagcac agtctttcaa aggaagaaaa ctatgtaagc tttattttaa 600 cagtggaagt taaactaaac cttgatctgc ctaattgctc acatctatat atatatatta 660 gtaatttata tagatgcag caattaggca gatcaaggtt tagtttaact tccactgtta 720	45
aaataaagct tacatagttt tcttcctttg aaagactgtg ctgtccttta acataggttt 780 ttaaagacta ggatattgaa tgtgaaacat ccgttttcat tgttcacttc taaaccaaaa 840 attatgtgtt gccaaaacca aacccaggtt catgaatatg gtgtctatta tagtgaaaca tgtactttga gcttattgtt tttattctgt attaaatatt ttcagggttt taaacactaa 960 tcacaaactg aatgacttga cttcaaaagc aacaacctta aaggccgtca tttcattagt 1020	50
attecteatt etgeateetg gettgaaaaa eagetetgt gaateaeagt ateagtattt 1080 teaeaegtaa geacattegg geeattteeg tggtttetea tgagetgtgt teaeagacet 1140 eageagggea tegeatggae egeaggggg cagattegga ceaetaggee tgaaatgaea 1200 ttteaetaaa agteteeaaa acatttetaa gaetaetaag geettttatg taatttettt 1260 aaatgtgtat ttettaagaa tteaaatttg taataaaact atttgtataa aaattaaget 1320	5:
tttattaatt tgttgctagt attgccacag acgcattaaa agaaacttac tgcacaagct 1380 gctaataaat ttgtaagctt tgcatacctt aaaaaa 1416	60
(2) INFORMATION ÜBER SEQ ID NO:28:	
(i) SEQUENZ CHARAKTERISTIK:	65
·	

- (A) LÄNGE: 1768 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STrang: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 15 (iii) ANTI-SENSE: NEIN

5

20

25

65

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 28

30							
	ctccgaggcc	aggaacgctc	cgtctggaac	ggcgcagact	tttgccatgg	gcttcatgac	60
	gggcaccatt	tccagtatgt	accaaaccaa	agccgtcatc	attgcaatga	tcatcactgc	120
	ggtggtatcc	atttcagtca	ccatcttctg	ctttcagacc	aaggtggact	tcacctcgtg	180
	cacaggeete	ttctgtgtcc	tgggaattgt	gctcctggtg	actgggattg	tcactagcat	240
35	tgtgctctac	ttccaatacg	tttactggct	ccacatgctc	tatgctgctc	tgggggccat	300
	ttgtttcacc	ctgttcctgg	cttacgacac	acagctggtc	ctggggaacc	ggaagcacac	360
	catcagcccc	gaggactaca	tcactggcgc	cctgcagatt	tacacagaca	tcatctacat	420
	cttcaccttt	gtgctgcagc	tgatggggga	tcgcaattaa	ggagcaagcc	cccattttca	480
40	cccgatcctg	ggctctccct	tccaagctag	agggctgggc	cctatgactg	tggtctgggc	540
-10	tttaggcccc	tttccttccc	cttgagtaac	atgcccagtt	tcctttctgt	cctggagaca	600
	ggtggcctct	ctggctatgg	atgtgtgggt	acttggtggg	gacggaggag	ctagggacta	660
	actgttgctc	ttggtgggct	tggcagggac	taggctgaag	atgtgtcttc	tccccgccac	720
	ctactgtatg	acaccacatt	cttcctaaca	gctggggttg	tgaggaatat	gaaaagagcc	780
45	tattcgatag	ctagaaggga	atatgaaagg	tagaagtgac	ttcaaggtca	cgaggttccc	840
	ctcccacctc	tgtcacaggc	ttcttgacta	cgtagttgga	gctatttctt	ccccagcaa	900
	agccagagag	ctttgtcccc	ggcctcctgg	acacataggc	cattatcctg	tattcctttg	960
	gcttggcatc	ttttagctca	ggaaggtaga	agagatctgt	gcccatgggt	ctccttgctt	1020
	caatcccttc	ttgtttcagt	gacatatgta	ttgtttatct	gggttaggga	tgggggacag	1080
50	ataatagaac	gagcaaagta	acctatacag	gccagcatgg	aacagcatct	cccctgggct	1140
	tgctcctggc	ttgtgacgct	ataagacaga	gcaggccaca	tgtggccatc	tgctccccat	1200
	tcttgaaagc	tgctggggcc	tccttgcagg	cttctggatc	tctggtcaga	gtgaactctt	1260
	gcttcctgta	ttcaggcagc	tcagagcaga	aagtaagggg	cagagtcata	cgtgtggcca	1320
55	ggaagtagcc	agggtgaaga	gagactcggt	gcgggcaggg	agaatgcctg	ggggtccctc	1380
	acctggctag	ggagataccg	aagcctactg	tggtactgaa	gacttctggg	ttctttcctt	1440
	ctgctaaccc	agggagggtc	ctaagaggaa	ggtgacttct	ctctgtttgt	cttaagttgc	1500
	actgggggat	ttctgacttg	aggcccatct	ctccagccag	ccactgcctt	ctttgtaata	1560
	ttaagtgcct	tgagctggaa	tggggaaggg	ggacaagggt	cagtctgtcg	ggtgggggca	1620
60	gaaatcaaat	cagcccaagg	atatagttag	gattaattac	ttaatagaga	aatcctaact	1680
	atatcacaca	aagggataca	actataaatg	taataaaatt	tatgtctaga	agttaaaaaa	1740
		gtaaaattaa					1768

(2) INFORMATION ÜBER SEQ ID NO: 29:

 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2273 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	10
(iii) HYPOTHETISCH: NEIN	15
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	20
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29	30
ccaggagaca ccttcggccc agatggaagg cttcctcaat cggaaacacg agtgggaggc 60 ccacaataag aaagcctcaa gcaggtcctg gcacaatgtt tattgtgtca taaataacca 120 agaaatgggt ttctacaaag atgcaaagac tgctgcttct ggaattccct accacagcga 180 ggtccctgtg agtttgaaag aagctgtctg cgaagtggcc cttgattaca aaaagaagaa 240 acacgtattc aagctaagac taaatgatgg caatgagtac ctcttccaag ccaaagacaa 300 agagaagcgg ttcagccttt ttggcaaaaa gaaatgaact cctttccttc acctcctgcc 360 acctctatata	35
cttctcttac cttttcagtc aaactccagc acgcaagctc attgacacaa gaacacagat 420 tcttgccgct tcctatgaac tgcacaagtt ttaccacgat gccaaggaga tctttgggcg 480 tatacaggac aaacacaaga aactccctga ggagcttggg agagatcaga acacagtgga 540 gaccttacag agaatgcaca ctacatttga gcatgacatc caggctctgg gcacacaggt 600	40
gaggcagctg caggaggatg cagccegcet ccaggcggce tatgegggtg acaaggccga 660 cgatatecag aagegcgaga acgaggteet ggaagcetgg aagteetee tggacgcetg 720 tgagagcege agggtgegge tggtggacae aggggacaag tteegettet teagcatggt 780 gegegacete atgetetgga tggaggatgt cateeggeag ategaggee aggagaagee 840 aagggatgta teatetgttg aactettaat gaataateat caaggeatea aagetgaaat 900 tgatgeacgt aatgacagtt teacaacetg cattgaactt gggaaateee tgttggegag 960	45
aaaacactat gcatctgagg agatcaagga aaaattactg cagttgacgg aaaagaggaa 1020 agaaatgatc gacaagtggg aagaccgatg ggaatggtta agactgattc tggaggtcca 1080 tcagttctca agagacgcca gtgtggccga ggcctggctg cttggacagg agccgtacct 1140 atccagccga gagataggcc agagcgtgga cgaggtggag aagctcatca agcgccacga 1200	50
ggcatttgaa aagtctgcag caacctggga tgagaggttc tctgccctgg aaaggctgac 1260 tacattggag ttactggaag tgcgcagaca gcaagaggaa gaggagagga	55
ctctaaagag tccagccca tcccctcccc gacctctgat cgtaaagcca agactgccct 1560 cccagcccag agtgccgca ccttaccagc cagaacccag gagacacctt cggccagat 1620 ggaaggcttc ctcaatcgga aacacgagtg ggaggcccac aataagaaag cctcaagcag 1680 gtcctggcac aatgtttatt gtgtcataaa taaccaagaa atgggtttct acaaagatgc 1740	60
aaagactgct gettetggaa tteectacca cagegaggte cetgtgagtt tgaaagaage 1800 tgtetgegaa gtggceettg attacaaaaa gaagaaacae gtatteaage taagactaaa 1860 tgatggeaat gagtacetet teeaageeaa agaegatgag gaaatgaaca catggateea 1920 ggetatetet teegeeatet eetetgataa acaegaggtg tetgeeagea eecagageae 1980 geeageatee ageegegee agaeeeteee caceagegte gteaceatea eeagegagte 2040 eagteeegge aagegggaaa aggacaaaga gaaagacaaa gagaageggt teageetttt 2100	65

```
tggcaaaaag aaatgaactc ctttccttca cccctqccc ttctctracc ttttcaqtga 2160
     aattccaqca tqcaaqctca gaaccaacac attactctct gtgcctaatg ttcctcaatg
                                                                      2220
     tqqttqattt tttttttt ttaatttata gagcatttcg gggggggtgg gggaaacaca
                                                                      2280
     cctaaacact ttatctccaa gttacaaaag tttgaggtgc agagggaagg ccagattttt
                                                                     2340
     tttttaatqa aattatatag attagatctc agtatttaaa ctqttcctca attttqtqag 2400
     qctqttqtgg aaataacccg cctctagtgc tgttggtatg caaggcagcg gtgcttaatc
                                                                     2460
     aatattteet gtgeteacca gaggeaaaat gtaccaatat cetgacacca tteteteec 2520
     atttacttct ggtggttacc ctgactcttg actcttagaa gtgcccgaga tggggctaac 2580
10
     ctttattaaa cagatcgcat attatgatct tgctgcagcc acagtgcagc tccacattaa
                                                                     2640
     ctctacagac caaaccattt gtatctggca tcacttacta acacacgaca tgcggctttt
                                                                     2700
     ctgcatcaac tgctatgacg gttaagaatg tcagtataca agaaggaata gaaaactgat
                                                                     2760
     actgttttaa ataatctgta atttcaattt ttttttttt gctgaaatac attatattgt
                                                                     2820
     acgittgaga taattctagt acaaagtata ataaaactag atgtataata aaccctttaa
                                                                     2880
15
     atcattggta agtgtacaag tggtggaact gaagcattta ctggacaaag taatgttact
                                                                     2940
     ctaatggtta cttgctcgtg cgttgccaca ctgtgttata atttgcttca tttccttgct
                                                                     3000
     atttqataca taqtqtqcat ttctctqtca ctqtaactat tqtaatqaca aattttcatc
                                                                     3060
     ttactqcaca atcaaaatga cattgatagg aatgaactcc agagqctqqq cctqaacaqq
                                                                     3120
20
     qaqqtqqtcq ctcaqqcctq qtgctcaqtc gtacqacctq tacctctcaa cttttqccct
                                                                     3180
     atctqttaaa tatatqctat qtcattaaat qcttttaaat ctaaaaaaaa aaaaagttqt
     tqttcttcct ctqctqcqtq tqcatqccca qtaqqqaaac tqcaaaqqqq aqaaatqaca
                                                                     3300
     aacaaqaaac attttacaac caqtctqqqc tcacttttqc attttttatq catqtctqqt
                                                                     3360
     qcacaaqctt tqaaaactac aqcaaacaqt aataaatqtq actqttttqt aqttataaqa
                                                                     3420
25
     3479
```

(2) INFORMATION ÜBER SEQ ID NO: 30:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 933 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 40 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

30

35

45

50

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- ω (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 30

```
gctcctcct tccttcttt tacattttag tcttagcatt tactttcccc accccacatt
cttggaacag cctttagttc tacaggaaat ggcactgatg gacagaagac tagcattacc
ttcatgaaag ggctgttaga gctgcctggg aagaaggcgt gccttgggga actgggaaga
tgccgtcagt gtgggtgggc aggaggacag ccagtcgtcc tgctgccagc ccaatagctt
ccagcggcag gtgcccaggt gctaccggag cccctcatag gggtaggggc agggactgca
cctcctccag gcactcatcg taagcctcct ggtactcctc atggggcttg accattatca
360
cacaggtggg gcgcttggga cctgcggctg cacccaggtc cqttcaqagg ggaaagaagt
420
```

getgtttgga aaaaagetgt acaacetgta tgecaggaag teaceaactg atgacecace 480 ageetaatet ggeceacaae catgttetgt teggteeatg ttetatttaa aageatettg 540 aattggttge cateatttaa acteaateag actttgaagg catggteeag eeacacaggg 600 cetacattee cacatggeaa etatgaaagg geteeagee ageagggget gteeeggtee 660 etgecacece cactteetgt geeteagate tggeceetgt tacgtaagat aaggacaget 720 acaggteect etgageetaa acceacetaa eeggactaae atgggtgaag atettagett 780 acaaagetet tteacataca tetatetett tatteteata gteeacagat aactgactat 840 ttggttetta ceateaggee aaacggtaag tteetteaga acagggeete etgetttate 900 ecaagaagtg ataatgtagg tacceaagat cea 933	5
(2) INFORMATION ÜBER SEQ ID NO: 31:	15
(i) SEQUENZ CHARAKTERISTIK:	
(I) SEQUENZ CHARACTERISTIC. (A) LÄNGE: 2783 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	25
(iii) HYPOTHETISCH: NEIN	30
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	35
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 31	45
gactttaaaa aaatttttac agttattttt attttgtaga atgagctgaa agccagtggt 60	
ggcgaaatca aaattcataa aatggagcaa aaggagaatg tgcccccagg tcctgaggtc 120 tgcatcaccc atcaggaagg ggaaaagatt tctgcaaatg agaatagcct ggcagtccgt 180	50
tccacccctg ccgaagatga ctcccgtgac tcccaggtta agagtgaggt tcaacagcct 240	
gtccatccca agccactaag tccagattcc agagcctcca gtctttctga aagttctcct 300 cccaaagcaa tgaagaagtt tcaggcacct gcaagagaga cctgcgtgga atgtcagaag 360	
acagtotate caatggageg tetettggee aaccageagg tgtttcacat cagetgette 420	
cgttgctcct attgcaacaa caaactcagt ctaggaacat atgcatcttt acatggaaga 480	55
atctattgta agcctcactt caatcaactc tttaaatcta agggcaacta tgatgaaggc 540 tttgggcaca gaccacacaa ggatctatgg gcaagcaaaa atgaaaacga agagattttg 600	
gagagaccag cccagcttgc aaatgcaagg gagacccctc acagcccagg ggtagaagat 660	
gcccctattg ctaaggggg tgtcctggct gcaagtatgg aagccaaggc ctcctctcag 720	60
caggagaagg aagacaagcc agctgaaacc aagaagctga ggatcgcctg gccacccccc 780	
actgaacttg gaagttcagg aagtgccttg gaggaaggga tcaaaatgtc aaagcccaaa 840	
tggcctcctg aagacgaaat cagcaagece gaagtteetg aggatgtega tetagatetg 900 aagaagetaa gacgatette tteaetgaag gaaagaagee geecatteae tgtageaget 960	
tcatttcaaa gcacctctgt caagagccca aaaactgtgt ccccacctat caggaaaggc 1020	65
tggagcatgt cagagcagag tgaagagtct gtgggtggaa gagttgcaga aaggaaacaa 1080	
gtggaaaatg ccaaggcttc taagaagaat gggaatgtgg gaaaaacaac ctggcaaaac 1140 aaagaatcta aaggagagac aggaagaga agtaaggaag gtcatagttt ggagatggag 1200	
aaagaatcta aaggagagac agggaagaga agtaaggaag gtcatagttt ggagatggag 1200	

```
aatgagaatc ttgtagaaaa tggtgcagac tccgatgaag atgataacag cttcctcaaa
     caacaatoto cacaaqaaco caagtototg aattggtoga gttttgtaga caacacottt
                                                                         1320
     gctgaagaat tcactactca gaatcagaaa tcccaggatg tggaactctg ggagggagaa
                                                                         1380
     gtggtcaaag agctctctgt ggaagaacag ataaagagaa atcggtatta tgatgaggat
                                                                         1440
     qaqqatqaaq aqtgacaaat tqcaatgatq ctgggcctta aattcatgtt agtgttagcg
                                                                         1500
     agccactgcc ctttgtcaaa atgtgatgca cataagcagg tatcccagca tgaaatgtaa
                                                                         1560
     tttacttgga agtaactttg gaaaagaatt ccttcttaaa atcaaaaaca aaacaaaaaa
                                                                         1620
     acacaaaaaa cacattctaa atactagaga taactttact taaattcttc attttagcag
                                                                         1680
                                                                         1740
     tgatgatatg cataagtgct gtaaggcttg taactgggga aatattccac ctgataatag
     cccagattct actgtattcc caaaaggcaa tattaaggta gatagatgat tagtagtata
                                                                         1800
                                                                         1860
     ttqttacaca ctattttgga attagagaac atacagaagg aatttagggg cttaaacatt
     acquetquat gcactttagt ataaagggca cagtttgtat atttttaaat gaataccaat
                                                                         1920
     ttaatttttt agtatttacc tgttaagaga ttatttagtc tttaaatttt ttaggttaat
                                                                         1980
15
     tttcttgctg tgatatatat gaggaattta ctactttatg tcctgctctc taaactacat
                                                                         2040
     cctgaactcg acgtcctgag gtataataca acagagcact ttttgaggca attgaaaaac
                                                                         2100
     caacctacac tetteggtge ttagagagat etgetgtete ecaaataage ttttgtatet
                                                                         2160
     gccagtgaat ttactgtact ccaaatgatt gctttctttt ctggtgatat ctgtgcttct
                                                                         2220
20
     cataattact gaaagctgca atattttagt aataccttcg ggatcactgt cccccatctt
                                                                         2280
                                                                         2340
     ccqtqttaga qcaaaqtgaa gagtttaaag gaggaagaag aaagaactgt cttacaccac
                                                                         2400
    ttgagctcag acctctaaac cctgtatttc ccttatgatg tccccttttt gagacactaa
     tttttaaata cttactagct ctgaaatata ttgattttta tcacagtatt ctcagggtga
                                                                         2460
    aattaaacca actataggcc tttttcttgg gatgattttc tagtcttaag gtttggggac
                                                                        2520
    attataaact tgagtacatt tgttgtacac agttgatatt ccaaattgta tggatgggag
                                                                        2580
    ggagaggtgt cttaagctgt aggcttttct ttgtactgca tttatagaga tttagcttta
                                                                        2640
    atatttttta qagatgtaaa acattctgct ttcttagtct tacctagtct gaaacatttt
                                                                        2700
                                                                        2760
    tattcaataa agattttaat taaaatttga aaaaaaagga aaggggaggg ggggtggagg
                                                                         2783
30
    aaaaaaaaa gggcggccgc cgc
```

(2) INFORMATION ÜBER SEQ ID NO: 32:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 3411 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

35

40

45

55

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- 50 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 32

65							
	gaagetetgt	tgtctcggga	acatgtcttg	gaattggaga	acagcaaggg	ccccagcctg	60
	gcctctttag	agggggaaga	agataagggg	aagagcagct	catcccaggt	ggtggggcca	120
	-	aagagtatqt					180

acadadetde	, caaaggacga	tacaacacca	gcacccccag	tcgcagacgc	caaaqcccaq	240	
gatagagagg	tcaagggaga	actoggcaat	gaggagagct	togatagaaa	tgaggagggc	300	
ttaataaa	, togagggaga	cttggataga	aatgaggaga	octtogatag	aaatgaggag	360	
aacttaasts	gaaatgagga	gattaagggg	actacettee	agataatctc	ccaagtgatc	420	5
toagaagea	ccgaacaggt	getgecace	acogttogca	aggttgcagg	tcatatatat	480	
ccayaaycad	: agctccaagg	acsassaass	gagagetgt	teccagttea	ccagaaaact	540	
caggedaged	cagacactgc	geagaaggaa	dadadacaca	anctattacc	ccaccagata	600	
gtettggget	cttgccaggc	ggaccigcca	aggagagge	ageegeegee	acctacatas	660	
etggeeteet	- crigicagge	tractageag	agggereace	taagecaaat	atctctccac	720	10
getgeetgaa	gageettetg cetggeetee	trastrassa	tasassassas	caagecaaac	ttacagaaca	780	
						840	
gggcaggcat	cctggtggaa	gatgeeacet	gryceasery	tttereset	torgaretta	900	
gtgtcccttt	ggtggcttct	ccaggacacc	geteagatte	ggggataag	ccayyyctry	960	
aagactcttg	cacagagacc	agetegagee	ccayyyacaa	ggedateace	cogodactyc	1020	15
cagaaagtac	tgtgcccttc	agcaatgggg	tgetgaaggg	ggagilgica	gacttggggg	1020	
ctgaggatgg	atggaccatg	gatgcggaag	tagattattt	aggaggitti	gacaggaaca	1140	
gcatggatto	cgtggatagc	tgttgcagtc	ccaagaagac	rgagagette	caaaatgccc		
aggcaggctc	caaccctaag	aaggtcgacc	tcatcatctg	ggagatcgag	gtgccaaagc	1200	20
acttagtcgg	tcggctaatt	ggcaagcagg	ggcgctatgt	gagttttctg	aagcaaacat	1260	
	gatctacatt					1320	
	tcaacatcat					1380	
	caccaatatc					1440	
	ctggctcatg					1500	25
	cgggcacctg					1560	
	ccagcagatg					1620	
	aataacggtc					1680	
	tgcctcctac					1740	20
	gagggtgaaa					1800	30
tgccgtttca	gggagcagaa	gtccttctgg	acagtgtgat	gcccctgtca	gacgatgacc	1860	
	ggaagcagat					1920	
ctcaggtgac	aagttacagt	ccaactggtc	ttcctctgat	tcagctgtgg	agtgtggttg	1980	
gagatgaagt	ggtgttgata	aaccggtccc	tggtggagcg	aggccttgcc	cagtgggtag	2040	35
acagctacta	cacaagcctt	tgacccccat	gctgcttcct	gagagtcttt	ttttgcactg	2100	
	gcttggcact					2160	
	cctttcttc					2220	
	tggaactatg					2280	
agctggctta	tcctggttct	cagctgtttc	aaccagattg	tcctattccc	cctgttccat	2340	40
	ttccttctat					2400	
	tgttgcttgc					2460	
	aactgactaa					2520	
	ccagttttta					2580	45
gcaactgtaa	atatgaaatg	gtcatcacat	ctgaccttgg	tcagtgggga	ggggaactgg	2640	
tatcctgcca	agcctggttg	taatttgtaa	ccattttcta	tttgtgcaaa	ctctgtaaat	2700	
atgtgtttaa	acaaatgtaa	tattttgtac	aagatacact	ggagaacaaa	gggaactcaa	2760	
	gccacatgtc					2820	
	ctggccaggg					2880	50
	gatctgggaa					2940	
atatttaacc	agtttttata	aacttcattt	aggtctctaa	acacagactt	tttaaaattg	3000	
	tatgaaatgg					3060	
	gcctggttgt					3120	
	caaatgtaat					3180	55
attcttccag	ccacatgtca	cctgtaggta	gaagtaaact	ctgcagtgca	gcttctgctc	3240	
	tggccagggc					3300	
	atctgggaac					3360	
gtggtgtgtt	tgattctttt	ttagactggc	ttcagcattg	tgcagtttaa	a	3411	60

(2) INFORMATION ÜBER SEQ ID NO: 33:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1393 Basenpaare

- (B) TYP: Nukleinsäure (C) STrang: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33
- gaagaagaga aaaaagaggt gatgcttcag aatggagaga cccccaagga cctgaatgat 60 gagaaacaga agaaaaatat taaacaacgt ttcatgtita acattgcaga tggtggtttt 120 180 actgagttgc actccctttg gcagaatgaa gagcgggcag ccacagttac caagaagact tatgagatet ggcategaeg geatgaetae tggetgetag eeggeattat aaaceatgge 240 tatgcccggt ggcaagacat ccagaatgac ccacgctatg ccatcctcaa tgagcctttc 300 aagggtgaaa tgaaccgtgg caatttctta gagatcaaga ataaatttct agctcgaagg 360 tttaagetet tagaacaage tetggtgatt gaggaacage tgegeeggge tgettaettg 420 480 aacatgtcag aagaccette teaccettee atggeeetca acaccegett tgetgaggtg gagtgtttgg cggaaagtca tcagcacctg tccaaggagt caatggcagg aaacaagcca 540 gccaatgcag tcctgcacaa agttctgaaa cagctggaag aactgctgag tgacatgaaa 600 getgatgtga etegaetece agetaceatt geeegaatte ecceagttge tgtgaggtta 660 cagatgtcag agcgtaacat totcagccgc ctggcaaacc gggcacccga acctacccca cagcaggtag cccagcagca gtgaagatgc agactgatac cacctccacc gctgagcagt gacettecte actttetett gteceagett eteceetggg ggeetgagag acceteacet 840 900 teettetgee catetteeat gttgtaaagg aacageessa gtgcaetggg ggaggggagg 45 960 gagtgaggg cagtggtgcc cttcctgcag aagagacatg cagcagtagc gctggcgcca 1020 tetgeaggag etggegget ggeettetgg accetggett etceceaetg taacgeetgt 1080 tacacacaaa ctgttgtggg ttcctgccag gcttgaagaa aatgatctga attttttcct ccttttggtt ttattttgtt ggtttatttt gtgttttctt ttctcctttt tgggggggtat 1200 tcagagttgg ctgggcccct gggcgagaca cagctacccc tgttggcatc tttttaatac 1260 aaggaaaaaa ccaaaagcat aaaaaaccac agcaaatttc ttgatgaaaa ttgaaaataa 1320 aagtttcctt gtattttaaa aagggaaaaa gaaggaaaaa aaggagaggg aaaaagggag 1380 1393 gggggagagg agt
 - (2) INFORMATION ÜBER SEQ ID NO: 34:
- 60 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1236 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN	5
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	10
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 34	20
gtgggccacc cctaatcact attgcttcct aaaggtatt tcaccctctt cgcctggtac agccctcaca gctcttcaga gcaagcactg gactacaagg gcatggctca caaaaggtta 120 atggatgggg gttacctage cctggctaat tccccttcca ttcccaactc tctctctct 180 tttgaagaaa aatgctaagg gcagccctgc ctgccctcc catccccgc tgtaaatata 240 cactatttt gatagcacac atggggcccc catatctctt ggccttggtt ttgatgttga 300	25
aatcctggcc ttgggagaga tgccttccag gcagacacag ctgtctggtt caggccaagc 360 ccctttgcaa tgcaagccct ttctggtgtt atgaagtccc tctatgtcgt cgttttcacc 420 agcaactggt gactgtccct tcgacacgga cctgctttga gatttcctga cagggaaaag 480 atttctgtcc attttttcc tgtgcctaac agcataattg ccttttccta tgtaaatatt 540 atgatggtgg atcaagacat aagtaaatga gccttctgc ctcacatcag ccctgtgtat 600	30
aaagccatta ttctctgatg cactgtttgc cccagtaact cactttaaaa cctctcttc 660 cagtgttccc tctctccctc cagggccact gcttgaagaa gaatatgtat gtttctatct 720 tgtatgtctg tgtgcccctc ctgccccgaa agtgctgact atggggaaat cttttagctg 780 ctgtttttag actccaagga gtggaaatta tgtggaagaa gcaaacctga tacaatttgc 840	35
ccaaggtaaa cagtttgaaa agacaaatgg gcctgccaaa ctgtacagtt tcttcccaa 900 gagctgttag gtatcaaaat gttgtccttt ccccctccg tgcttttctg gttgagatca 960 tgtcattgat gaactgccaa agtcagggga ggagggcaga gactttgtgt ttacatctgc 1020 atttctacat gttttagaca gagacaattt aaggcctgca ctcttatttc actaaagaaa 1080 aactaatgtc agcacatgtt gctaatgaca gtggattttt ttttaaaataa aaaagtttac 1140	40
agatcaaatg tgaaataaat atgaatggag tggtcctctt gtctgttatc tgagttttca 1200 aaagctttaa gactctggga acatctgatt ttatgg 1236	45
(2) INFORMATION ÜBER SEQ ID NO: 35: (i) SEQUENZ CHARAKTERISTIK:	50
(A) LÄNGE: 749 Basenpaare(B) TYP: Nukleinsäure(C) STrang: einzel(D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	65
(vi) HERKUNFT:	

(A) ORGANISMUS: MENSCH

(C) ORGAN:

```
5
     (vii) SONSTIGE HERKUNFT:
         (A) BIBLIOTHEK: cDNA library
10
      (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35
    ggagatgcag aggtaaaagt gtgagcagtg agtttacttt tcaaggcatc ttagcttcta
    ttatagecae atecetttga aacaagataa etgagaattt aaaaataaaa aaatacataa
                                                                      120
    gaccataaca gccaacaggt ggcacgacca ggactatagc ccaggtcctc tgatacccag
                                                                      180
    agcattacgt gagccaggta atgagggact ggaaccaggg agaccgagcg ctttctggaa
                                                                      240
    aaqaqqaqtt toqaqqtaga gtttgaagga ggtgagggat gtgaattgcc tgcagagaga
                                                                      300
    agcctgtttt gttggaaggt ttggtgtgtg gagatgcaga ggtaaaagtg tgagcagtga
                                                                     360
    gttacagcga gaggcagaga aagaagagac aggagggaaa gggccatgct gaagggacct
                                                                      420
    tgaagggtaa agaagtttga tattaaagga gttaagagta gcaagttcta gagaagaggc
                                                                      480
    tggtgctgtg gccagggtga gagctgctct ggaaaatgtg acccagatcc tcacaaccac
    ctaatcaggc tgaggtgtct taagcctttt gctcacaaaa cctggcacaa tggctaattc
    660
    aaaaaagttt ggccgggtgc ggtggctcac gcctgtaatc ccaqcacttt qqgaqgccaa
25
                                                                     720
    ggtggggga tcacaaggtc actagatqq
                                                                     749
   (2) INFORMATION ÜBER SEQ ID NO: 36:
      (i) SEQUENZ CHARAKTERISTIK:
         (A) LÄNGE: 1251 Basenpaare
         (B) TYP: Nukleinsäure
35
         (C) STrang: einzel
         (D) TOPOLOGIE: linear
     (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
40
         hergestellte partielle cDNA
     (iii) HYPOTHETISCH: NEIN
45
     (iii) ANTI-SENSE: NEIN
     (vi) HERKUNFT:
50
         (A) ORGANISMUS: MENSCH
        (C) ORGAN:
    (vii) SONSTIGE HERKUNFT:
55
        (A) BIBLIOTHEK: cDNA library
     (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36
    gtgaccccca taggcctgag gcttgtgcag gcagtgggcg tggggtaagg cttcctgatg
                                                                       60
    ccccctgtcc ctgcccagaa cctgatggcc ctcattagtc cttggctctt atcttggaag
                                                                      120
                                                                      180
    cacaggeget gacageegte ecageeette tgtetgeggg eetgaaceaa acggtgecat
    ggggaactgt ctgcacaggg cggagtctcc ccctcaactg agaactcaag tcagctggac
                                                                      240
                                                                      300
    ttcgaagatg tatggaattc ttcctatggt gtgaatgatt ccttcccaga tggagactat
    gatgccaacc tggaagcagc tgccccctgc cactcctgta acctgctgga tgactctgca
                                                                      360
    ctgcccttct tcatcctcac cagtgtcctg ggtatcctag ctagcagcac tgtcctcttc
                                                                      420
```

atgetttea gacetetet eegetggeag etetgeeet getggeeeg aggetaeggt ageaetegea getetgeeet gtgtageet getetgeeeg tettggeee agggetaeggt teteggeagget teegetagg gtgeeatgee teeetgggee acagaetggg teegetgee teeetggge acagaetggg teegetgee teeetggg geteaetgtg ggaatttggg gagtggetge eetaetgaea eetgeetgtea eetggeeag tggtgettet ggtggaetet geaeeetgga etetgeagge eacaeaeaet gtageetgte tggetaetgt tgtttggage eaaggggetg aagaaggeat tgggtattgtg geeaggeeee tggatgaata teetgtggge etggttaatt teetggtgge etaggaetee tggtgaettee tggtgaaeet tggtgaaeet tggetgaaeet tggetgaaeet tggetgaaeet etggaeeege etggeaaeet tgetgaaeee etggeaaeet tgetgaaeee etggeaaeee etggeaaeee eetggaaeee eetggaaeeee eetggaaeeeeeeee eetggaaeeee eetggaaeeee eetggaaeeeeeeeeee	480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1251	10
(O) INFORMATION ÜDER SEO IR NO. 27.		20
(2) INFORMATION ÜBER SEQ ID NO: 37:		
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 3283 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 		25
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier.	ıng	30
hergestellte partielle cDNA		
(iii) HYPOTHETISCH: NEIN		35
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT:		40
(A) ORGANISMUS: MENSCH (C) ORGAN:		45
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		
(A) BIBLIC MER. CONTRIBITION		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 37		50
	50	
ctggcctcag caccttccag aactggttac ctagtacccc cgccacctcc tggggtggac tcaccagttc caggaccaca gacaatggtg gggagcagac tgccctgagc ccccaagagg	60 120	
ccccqttctc tggcatctcc acgcccccgg atgtgctcag tgtaggcccg gagcctgcct	180	55
gggaagcege agccactace aagggeettg egactgaegt ggegaegtte acccaagggg	240	
ccgccccagg cagggaggac acggggcttt tgaccaccac acacggcccc gaagaagccc	300 360	
cacgettgge aatgetgeag aatgagttgg aggggetggg ggacatette caccecatga atgeggagga geaageteag etggetgeet eccageeegg geeaaaggtg etgteggegg	420	
aacagggag ctacttcgtt cgtttaggtg acctgggtcc cagcttccgc cagcgggcat	480	60
ttgaacacgc ggtgagccac ctgcagcacg gccagttcca agccagggac actctggccc	540	
agctccagga ctgcttcagg ctgattgaaa aggcccagca ggctccagaa gggcagccac	600	
gtetggacca gggetcaggt gecagtgegg aggacgetge tgtecaggag gagegggatg	660 720	
coggggttot gtocagggto tgogggotto tcoggcagot gcacacggco tacagtggco	720 780	65
tggtetecag cetecaggge etgecegeeg agetecagea geeagtgggg egggegegge acageetetg tgagetetat ggeategtgg eetcagetgg etetgtagag gagetgeeeg	840	
cagagegget ggtgcagage egegagggtg tgcaccagge ttggcagggg ttagagcage	900	

```
tgctggaggg cctacagcac aatcccccgc tcagctggct ggtagggccc ttcgccttgc.
     ccgctggcgg gcagtagctg taggagcctg caggcccggc gcggggtcgc cctgctctgt 1020
     ccagggagga gctgcctcag aactttctcc ccgcccccaa acctggatcg gttccctaaa
     gccctagacc tttggggctg cagctggctg agcgccgagg ggctgcggag gcagtgacct
     tettaactga gecaceccae gecetgetee gggeetgeet geateteeea eeteeteeec 1200
     agegetgeet geeceteteg gageetgggg teacteagae caccagecaa gageetteee 1260
     ttqaaqtccc caaqcaaqca ctgcaattag gaaagagaaa aagcagcgtg cccagcctgg 1320
     aagggcatct gtttgccccg ctagcaaccc ttttatatct agcagggctc ttccagtcct 1380
10
    gcagcacggg cccccagcta tcagcggtgc aggcagtgct gtggcatccc aggctccggg 1440
    cageteegtt eteatgetga aagtgggtet eeggeettag cacacacac ttqaqqqtet
    taagaaccac attocctcat agtagaaagt actagaaaaa gcgacactgc catcatcatc 1560
    ccaaggeagg etgetactge etttgetgae eeeeggggtg geetcaeggt ggggacaaag 1620
    ctgccaggag ccacagcagc cacagctggg gctttgcacc agcctggctt gagactgagc 1680
    agtttgcagg gggtgggggg tgcaaaaaac aagcaaacag gctgctgctg cctccagctg 1740
    cccaccacag gcctgcccca ggcacctggg gctctgaggc ccctggggag gctgggccca 1800
    gcagctgccc ctggagaaca cagacaaagg acttccccgc agggaactgt gccctatgga 1860
    gggatcagac agggctggga acagccacag aggctgcgtg cctatggcac agcccttcct 1920
20
    cegeegeaca etececetgg gteeteagge ecaeceaage geegggetge agaggaageg 1980
    gggctgggga ggctgcaggc atcagagaca ctggtggtgg cggacccggc cgccgggccc 2040
    cgtgctctca ggctagccca ggtcgtggag gctggcaggc tcaggtcggg tgtgagacgt 2100
    gccgtggctg cgctcagtcc agcggggagg agccgttcag cccggcctcc ccaggaagcc 2160
                                                                       2220
    atatececae teaceeggta agagaacett gtegteecet ttecatgete teetaggaca
    cgagcccagg aaccccagac ccagggggag gaagggtgga ggggccccag gggtcaccat
    gtgcaccagg ggccgtgagg ggccgggggca ttcagctcag ctctgaaccg gggaagctgg
                                                                       2340
    cacggcaagg actgcctcag gtgacgggcc gtgagagggg acgggtcagg agccttccca
                                                                       2400
    agcettetee teagecegae acceatggee ateggagget aggatgeeag acacagecat
    ttgcagaaat caggcacagt gactgcagct cacgtccagc caaccaagca tggggccgca
                                                                       2520
    getcaggaag teeetteeeg ecacaceaca geetaattet taetgggaeg gaggeaacte
    ggctacgctg ggcaggacga caaacacgag acgccactgt ggaatgagca acttcggagc
                                                                       2640
    acggggtgac ttgcttggga ccgtgcccac gtgacagccc cttatgcaga ggaggaaaga
                                                                       2700
    gaagccccga gtgggagggg aacctgtcca aagtcacacg gtgtgtgggt gacacagctg
                                                                       2760
    gggtgagtcg aggctggccc ctgaggccca tgctccctga acgctggaga ccactgtcgg
                                                                       2820
    ctagcagcgg ctctcaggga aggcctggtc tccaccctcc cagcctagcc tcgcggaccc
                                                                       2880
                                                                       2940
    tequence cacateggae etgeteacet geetggaeee tgggetgeea gatgeaggaa
                                                                       3000
    gcatcaaacc ccccagcctc gtgggtgcgg ggcagggcgc aggcagcaca gcttagatgc
    cctggtttgt ccctcttgtc tcctgggaag agcttgctcc cgcccagctc tcctgccact
                                                                       3060
40
    ggcctttcag ggttgggctg ggcccagagt gccttttagt cgcttctcac ggtggcctga
                                                                       3120
    tggctcaacc cagtcccaaa cgggcccagt gacactgccg actgcacccc agctcaggcc
                                                                       3180
    cccactgcac cagcaatgct agaaaaccaa gccaataaaa gtgatttctt ttttcattaa 3240
    aaaaaagaaa aaaagagaca gaggaagtag atgctggccg ggc
                                                                       3283
45
```

(2) INFORMATION ÜBER SEQ ID NO: 38:

- 50 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2720 Basenpaare
 - (B) TYP: Nukleinsäure(C) STrang: einzel
 - (D) TOPOLOGIE: linear

55

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- 65 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH

5

10

65

(C) ORGAN:

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38

60 aqaaaatagt ttcaagcaga ccatagccaa gatcaacttc aaagttttag attcagaaat qqtqqctqtt qtqacqgaca aatggtcccc gtggacctgg gccagctctg tgagggcttt 120 accettecae ecgaaggaca teatggggge atteageeae teagaaatge agatgattaa 180 15 240 ccaatactgc aaagacactc ggcagcaaca tcagcaggga gatgaatcac agaaaatgag 300 aggggactat ggcaagttaa aggccctcat caatagtcgg aaaagtagaa acaggaggaa 360 tcagttgcca gagtcataat attttcttat gtgggtctta tgcttccatt aacaaatgct 420 ctgtcttcaa tgatcaaatt ttgagcaaag aaacttgtgc tttaccaagg ggaattactg 480 aaaaaggtga ttactcctga agtgagtttt acacgaactg aaatgagcat gcattttctt 20 540 qtatgatagt gactagcact agacatgtca tggtcctcat ggtgcatata aatatattta acttaaccca gattttattt atatctttat tcaccttttc ttcaaaatcg atatggtggc 600 tqcaaaacta qaattgttgc atccctcaat tgaatgaggg ccatatccct gtggtattcc 660 720 tttcctgctt tggggcttta gaattctaat tgtcagtgat tttgtatatg aaaacaagtt 25 780 ccaaatccac aqcttttacg tagtaaaagt cataaatgca tatgacagaa tggctatcaa 840 aaqaaataqa aaaqqaaqac ggcatttaaa gttgtataaa aacacgagtt attcataaag 900 agaaaatgat gagtttttat ggttccaatg aaatatgttg gggttttttt aagattgtaa aaataatcag ttactggtat ctgtcactga cctttgtttc cttattcagg aagataaaaa 960 1020 tcagtaacct accccatgaa gatatt:ggt gggagttata tcagtgaagc agttttggttt 30 1080 atattettat gttateacet tecaaacaaa ageaettaet ttttttggaa gttatttaat ttattttaga ctcaaagaat ataatcttgc actactcagt tattactgtt tgttctctta 1140 ttccctagtc tgtgtggcaa attaaacaat ataagaagga aaaatttgaa gtattagact 1200 tctaaataag gggtgaaatc atcagaaaga aaaatcaaag tagaaactac taatttttta 1260 35 agaggaattt ataacaaata tggctagttt tcaacttcag tactcaaatt caatgattct tccttttatt aaaaccagtc tcagatatca tactgatttt taagtcaaca ctatatattt tatgatettt teagtgtgat ggeaaggtge ttgttatgte tagaaagtaa gaaaacaata tqaqqaqaca ttctqtcttt caaaaggtaa tggtacatac gttcactggt ctctaagtgt 1500 aaaaqtaqta aattttqtqa tqaataaaat aattatctcc taattgtatg ttagaataat 1560 1620 tttattagaa taatttcata ctgaaattat tttctccaaa taaaaattag atggaaaaat gtgaaaaaaa ttattcatgc tctcatatat attttaaaaa cactactttt gctttttat 1680 ttacctttta agacattttc atgcttccag gtaaaaacag atattgtacc atgtacctaa tccaaatatc atataaacat tttatttata gttaataatc tatgatgaag gtaattaaag tagattatgg cctttttaag tattgcagtc taaaacttca aaaactaaaa tcattgtcaa 1860 45 aattaatatg attattaatc agaatatcag aatatgattc actatttaaa ctatgataaa ttatgataat atatgaggag gcctcgctat agcaaaaata gttaaaatgc tgacataaca ccaaacttca ttttttaaaa aatctgttgt tccaaatgtg tataatttta aagtaatttc 2040 taaaqcaqtt tattataatg gtttgcctgc ttaaaaggta taattaaact tcttttctct 2100 50 tctacattga cacacagaaa tgtgtcaatg taaagccaaa accatcttct gtgtttatgg 2160 2220 ccaatctatt ctcaaagtta aaagtaaaat tgtttcagag tcacagttcc ctttatttca cataagccca aactgataga cagtaacggt gtttagtttt atactatatt tgtgctattt 2280 aattettet atttteacaa ttattaaatt gtgtacaett teattaettt taaaaatgta 2340 gaaattotto atgaacataa ototgotgaa tgtaaaaagag aattttttt caaaaaatgot 2400 55 gttaatgtat actactggtg gttgattggt tttatittat gtagcttgac aattcagtga 2460 2520 cttaatatct attccatttg tattgtacat aaaattttct agaaatacac ttttttccaa 2580 agtgtaagtg tgtgaataga ttttagcatg atgaaactgt cataatggtg aatgttcaat 2640 ctgtgtaaga aaacaaacta aatgtagttg tcacactaaa atttaattgg atattgatga aatcattggc ctggcaaaat aaaacatgtt gaattcccca aaaaaagaaa gggaggacgg 2700 60 gagggagaa ggaaggaagg

(2) INFORMATION ÜBER SEQ ID NO: 39:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1036 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STrang: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 15 (iii) ANTI-SENSE: NEIN

5

20

25

30

55

60

65

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39

gccggccgcc ctttttaacc cccttccctt cctttttttc tgttgctgaa tgatatttta ttagettgat aatttgggee tgeeettage attaataage tteageacta gteacaagae 120 tttcattcac tggtggggaa actttcttgt tttaaaaaat gcaattcaag aaagggcatc 180 tatttcttgg gggctgcggt gacagcaggc ttctcttcac gggtgatggg aatggtgcgc 240 300 tragggreag agacetgttt cettggtera ttracagtga ggaceccate agatgaragg gatgaagtaa tggtgagagg gtctacatca gctgggatcc ggtatttcct gtggaactcc 360 420 ctggagatga aaccatgttc atcctggcgc tcttcatgtt ttccatgcac ctcaatcaca tctcccaaca ccttaacttt gagttcctct ggggagaagt gcttcacatc caggttgaca 480 qaqaacctqt ccttctccaq qcqcatctct qaqaqtccaq tqtcaaacca gctgggtgcc 540 cgcaggaagg agggtggccg aaggtagaag ggactcaggg aagtagacgt cgggaaaaga 600 tcagactcca acaggtgctc tccgaagaac tggtcaaaga ggcggctggg ggagtggaaa 660 ggaaagaagg ggcggcggat ccaggggtgg tggatggcga tgtccatggt ggctaggtga 720 gtgtgagggg tcagctggcc tggtcagctc cttcagctgc agctacagcc agccccttat 780 45 atatgcagtc ttgtgaagct tctggaatgg tgatgtcagg ggttttatta tcctagctca 840 ccagcagttc atggagactt gtgatccggg atttggcaat gtgacacata cccagtactc 900 actgagctaa gaaaagagag acacaaacac gtctgagccg gccagtgact tgtcatggtc 960 ttgtttcact agctttctgt ccacacccaa tggcacccac ccccacccct gttctctgaa 1020 1036 gctggtacag agtcag

(2) INFORMATION ÜBER SEQ ID NO: 40:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÂNGE: 2659 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

(iii) ANTI-S	ENSE: NEI	١					
	UNFT: RGANISMUS RGAN:	S: MENSCH					:
	TIGE HERK BLIOTHEK: (10
(xi) SEQU	ENZ-BESCH	REIBUNG:	SEQ ID NO:	40			15
	ctgccctccc					60	
ggccgcacag	attcacaatg	ttgaaagccc	ttttcctaac	tatgctgact	ctggcgctgg	120	
tcaagtcaca	ggacaccgaa	gaaaccatca	cgtacacgca	atgcactgac	ggatatgagt	180	20
gggatcctgt	gagacagcaa	tgcaaagata	ttgatgaatg	tgacattgtc	ccagacgctt	240	
gtaaaggtgg	aatgaagtgt	gtcaaccact	atggaggata	cctctgcctt	ccgaaaacag	300	
cccagattat	tgtcaataat	gaacagcctc	agcaggaaac	acaaccagca	gaaggaacct	360	
caggggcaac	caccggggtt	gtagctgcca	gcagcatggc	aaccagtgga	gtgttgcccg	420	25
ggggtggttt	tgtggccagt	gctgctgcag	tcgcaggccc	tgaaatgcag	actggccgaa	480	
ataactttgt	catccggcgg	aacccagctg	accctcagcg	cattccctcc	aacccttccc	540	
accgtatcca	gtgtgcagca	ggctacgagc	aaagtgaaca	caacgtgtgc	caagacatag	600	
acgagtgcac	tgcagggacg	cacaactgta	gagcagacca	agtgtgcatc	aatttacggg	660	
gatcctttgc	atgtcagtgc	cctcctggat	atcagaagcg	aggggagcag	tgcgtagaca	720	30
tagatgaatg	taccatccct	ccatattgcc	accaaagatg	cgtgaataca	ccaggctcat	780	
	gtgcagtcct					840	
	tgatgccagc					900	
tcatctgtca	gtgcaatcaa	ggatatgagc	taagcagtga	caggctcaac	tgtgaagaca	960	35
ttgatgaatg	cagaacctca	agctacctgt	gtcaatatca	atgtgtcaat	gaacctggga	1020	
aattctcatg	tatgtgcccc	cagggatacc	aagtggtgag	aagtagaaca	tgtcaagata	1080	
taaatgagtg	tgagaccaca	aatgaatgcc	gggaggatga	aatgtgttgg	aattatcatg	1140	
geggetteeg	ttgttatcca	cgaaatcctt	gtcaagatcc	ctacattcta	acaccagaga	1200	
accgatgtgt	ttgcccagtc	tcaaatgcca	tgtgccgaga	actgccccag	tcaatagtct	1260 1320	40
acaaatacat	gagcatccga	tctgataggt	ctgtgccatc	agacatette	cagatacagg	1320	
ccacaactat	ttatgccaac	accatcaata	ctttcggat	taaatctgga	aacgaaaacg	1440	
gagagttcta	cctacgacaa	acaagtcctg	taagtgcaat	gettgtgete	grgaagrear	1500	
	aagagaacat					1560	45
ccttccgcac	aagctctgtg	LLaagailya	caataatayt	ggggccaccc	accttaaacc	1620	
	agtcaaccac ttatagatat					1680	
	attacaccat					1740	
attitaatta	ctatatgtaa	attagagatt	aatccactaa	actootette	ttcaacacac	1800	
otaagtataa	actatctggt	gazacttoca	ttctttccta	taaaaataaa	accaagcaat	1860	50
claagtatat	tgtggtgctt	gaaaccegga	actagaacta	cactaacagt	ctcataacca	1920	
gatgatette	ataaccattg	aayyaaaccc	accagagece	atgagtttt	aactgctttg	1980	
taaraaaatr	gaaaaggtca	ataaagatat	atttctttag	aaaatgggga	tctgccatat	2040	
	ttttattttc					2100	55
atcattacta	tacaatatgc	taatttctat	agggtatttt	taattttgtc	agaaatttta	2160	
dattotoaat	attttgtaaa	aaacagtaag	caaaattttc	cagaattece	aaaatgaacc	2220	
agatatocco	tagaaaatta	tactattgag	aaatctatoo	ggaggatatg	agaaaataaa	2280	
	accacattgg					2340	
	aggacttcca					2400	60
raanttttaa	tttctaagta	aaatttaaat	cctaacactt	cactaattta	taactaaaat	2460	
	cgtacttgat					2520	
acce	-guarugut	Juluacugug		~			

65

2659

catccagagt gacagtgaac ttaagcaaat taccetceta cccaatteta tggaatattt 2580 tatacgtete ettgtttaaa atgtcactge tttactttga tgtatcatat ttttaaataa 2640

aaataaatat tootttaga

(2) INFORMATION ÜBER SEQ ID NO: 41:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2939 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

10

20

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41

```
ttttttttt tttttttqt qqtaataaaa tqttqtcaat tttattaaaa gctgattcca
                                                                    60
                                                                   120
180
qaqttqqctc tqtqaqacca tcactqataa agacacatac agttagcacc acacatttat
                                                                   240
aaatgcagat agccacaatg acctttccaa tatgtacaag ctccatttac acatccacac
atgtatttac agctaataaa taaaatgtaa agccagaaca tccttgatat atataacaaa
                                                                   300
gtttttcgga gccagagttc ccagtgctat gtgctgcttt agtgaatctt ttaagttaat
                                                                   360
                                                                  420
gcaccctggg tcacaaccca aatccagaaa tttaatgaat taataaaggg gatgccaaca
                                                                   480
acaaatcata catcattta tttttagaga gaattcattc caagcctgat gatgttaatc
acaacattgg tcctactatt tataggcacg atcatctctc tcagagaaag ggtcgaagtt
                                                                   540
ctggcacatc aggaacaatt tctactccga catgttccaa tacatccctt gatcgactgt
                                                                   600
                                                                   660
tttcccttcc qaattatgct gaaggacaac acacatgcag agctttctag tatgtgttca
                                                                  720
qatatcacat actttcacaq tcgggttccc agctatagcc tctgagatat ttgacatctt
                                                                  780
tatcatttca tatttatacg tagaagagca ttctgaaaaa taggagatct agtttataaa
                                                                  840
tagttqttca ctcactcttq attagttqtt aaaaacaaca aatagcaacc ctcatggtac
tccatctggc tcattgcacg cgatggttta caagcactgc ttaggaatcc accccaggaa
                                                                  900
                                                                  960
cctctccacc cttttactta gtaaaaacgg tccttgtcta aaatctgtag aagctcacac
                                                                 1020
aatgcaaaat ttgaactcaa acctatcttt tcatgtcaaa gccaggaaca aaagagacgc
actggaagta caactgaagc atgaccaagg taagcctaaa actgaagagt aactgtcaga
tattgaatga ttttaaattg atgaaaatca tttggagaat ctaataataa aattacggtt
tettttttt tttetgeace atteaaatta tgtgteaget gaggattaca ggeteatttt
caacacctac ccagagaaca ttattataat ataatcttga gacaaaaaaag aagggggaga
gagggattaa gcaataaacg ataaagccta ttaagaatta attgatctag attttatatc
tccttgaatt tgtaactttg tcatgatgca ggccaatggt agggactgtt taaaacctct
gtgtttatca gaccctttct tcgtccctct ccaagttaca tgttcctggt tgacgtctgg
accacattcc aatagcaaga gggaatcatt ctaaaacatc attcatactg ctgtgtagat
gagtetgatt egtgeegegg aaaageattt tetgtattet tggagaetta gagtaaagtt
tgagaaggcc tcagtccgaa agatccagaa ttccaattaa aataggaggt tctaaccaat
tataggetat ggeccaatac gecacatgaa ggageettat tttaetetge geteaaacaa
                                                                 1740
ttatttcttt ctcaaaggac aaaacagcac ttttcatgat ccactgtctt ttaacgttgg
aggatgtgct atttggccac tataccccat aaattgaatt agccactttt tagtgcttga
gactgtctcc taaaataact aacaagggta gggctgggat taatattcag gaaaatccac
ttttgaaaca ccccaaacac tgggtatgtt ttgtaaaagt tacttcctcc acttcattct
```

tcacagaat cacatgeegt tettigitet gtagattege ceagitteag cetgacitet tatteagaga etigicatgg catiteaeaa atacegeagg tgeetiteet tietgeaaat gagacaetti eteeetagaa eagaagatea eetititetg agteteeet getititaete tgatetietg aatggegaag eegggaetge teeaeeagte tgaeeageta aagtatgaat eactetieea titigagetie aacatgagta giteteeaat atetaeetet gigiaagagagagagagagagagagagagaaaett eaggeagagi gaatgggatg teeteeeteeggeeaeggi geeataeaga gaaateteaa aggeetgati gitagggeate teeaeeagagagagagagagagagagagagagagagagag	1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820	5 10 15
atgtgtgtaa gacgtctaca aaatctgcat catcaggaga aagacgactc ggggcttctg catactcaaa gttaggtcca gctggatcga ggccagtaat tctgttgaac tttcttattg gtcagacttc ctgcaatgcc agcagcatgg gctccaaggc tgtatcccaa gagatggac	2880 2939	20
(2) INFORMATION ÜBER SEQ ID NO: 42: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1292 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	·	25
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier	una	30
hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN	3	35
(iii) ANTI-SENSE: NEIN		40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT:		45
(A) BIBLIOTHEK: cDNA library		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 42		55
gcatcgccat gacgccgccc aatgccaccg aagcctccaa gccccaaggc acaacggtgt gtcctcctg tgacaacgag ttgaaatctg aggccatcat tgaacatctc tgtgccagcg agtttgcact gaggatgaaa ataaaagaag tgaaaaaaga aaatggcgac aagaagattg tccccaagaa gaagaagccc ctgaagttgg ggcccatcaa gaagaaggac ctgaagaagc	60 120 180 240	55
ttgtgctgta cctgaagaat ggggctgact gtccctgcca ccagctggac aacctcagcc accacttcct catcatgggc cgcaaggtga agagccagta cttgctgacg gccatccaca agtgggacaa gaaaaacaag gagttcaaaa acttcatgaa gaaaatgaaa aaccatgagt gccccacctt tcagtccgtg tttaagtgat tctcccgggg gcagggtggg gagggagcct cgggtgggt gggagcgggg gggacagtgc cccgggaacc cggtgggtca cacacacgca	300 360 420 480 540	60
ctgcgcctgt cagtagtgga cattgtaatc cagtcggctt gttcttgcag cattcccgct cccttccctc catagccacg ctccaaaccc cagggtagcc atggccgggt aaagcaaggg	600	65

```
qcggaaagtg agagccagca gcaaaaacta cattttgcaa cttgttggtg tggatctatt
                                                                          840
                                                                         900
     qgctgatcta tgcctttcaa ctagaaaatt ctaatgattg gcaagtcacg ttgttttcag
                                                                         960
     gtccagagta gtttctttct gtctgcttta aatggaaaca gactcatacc acacttacaa
     ttaaggtcaa gcccagaaag tgataagtgc agggaggaaa agtgcaagtc cattatgtaa
                                                                        1020
     tagtgacagc aaagggacca ggggagaggc attgccttct ctgcccacag tctttccgtg
                                                                        1080
     tqattqtctt tqaatctqaa tcaqccagtc tcaqatqccc caaaqtttcq qttcctatqa
                                                                        1140
     qcccqqqqca tqatctqatc cccaaqacat qtqqaqqqqc aqcctqtqcc tqcctttqtq
     tcagaaaaag gaaaccacag tgagcctgag agagacggcg attttcgggc tgagaaggca
10
     gtagttttca aaacacatag ttaaaaaaga aacaaatgaa aaaaatttta gaacagtcca
                                                                        1320
     gcaaattgct agtcagggtg aattgtgaaa ttgggtgaag agcttaggat tctaatctca
                                                                        1380
     tgttttttcc ttttcacatt tttaaaagaa caatgacaaa cacccactta tttttcaagg
     ttttaaaaca qtctacattq aqcatttgaa aggtgtgcta qaacaagqtc tcctqatccq
     tocqaqqctq cttcccaqaq qaqcaqctct ccccaqqcat ttqccaaqqq aqqcqqattt
                                                                        1560
     ccctqqtaqt qtagctgtgt ggctttcctt cctgaagagt ccgtggttgc cctagaacct
                                                                        1620
     aacaccccct agcaaaactc acagagcttt ccgttttttt ctttcctgta aagaaacatt
                                                                        1680
     tcctttgaac ttgattgcct atggatcaaa gaaattcaga acagcctgcc tgtccccccg
                                                                        1740
     cactttttac atatatttgt ttcatttctg cagatggaaa gttgacatgg gtggggtgtc
                                                                        1800
     cccatccage gagagagttt caaaagcaaa acatctctgc agtttttccc aagtaccctg
                                                                        1860
20
     agatacttcc caaagccctt atgtttaatc agcgatgtat ataagccagt tcacttagac
                                                                        1920
    aactttaccc ttcttgtcca atgtacagga agtagttcta aaaaaaaatgc atattaattt
                                                                        1980
    cttcccccaa agccggattc ttaattctct gcaacacttt gaggacattt atgattgtcc
                                                                        2040
    ctctgggcca atgcttatac ccagtgagga tgctgcagtg aggctgtaaa gtggcccct
                                                                       2100
    gcggccctag cctgacccgg aggaaaggat ggtagattct gttaactctt gaaqactcca
                                                                        2160
    gtatgaaaat cagcatgccc gcctagttac ctaccggaga gttatcctga taaattaacc
    totcacagtt agtgatoctg toottttaac accttttttg tggggttotc totgaccttt
    catcgtaaag tgctggggac cttaagtgat ttgcctgtaa ttttggatga ttaaaaaatg
    tgtatatata ttagctaatt agaaatattc tacttctctg ttgtcaaact gaaattcaga
    qcaaqttcct qaqtqcqtqq atctqqqtct taqttctqqt tqattcactc aaqaqttcaq
    tgctcatacg tatctgctca ttttgacaaa gtgcctcatg caaccgggcc ctctctctgc
                                                                       2520
    ggcagagtcc ttagtggagg ggtttacctg gaacattagt agttaccaca gaatacggaa
                                                                       2580
    gagcaggtga ctgtgctgtg cagctctcta aatgggaatt ctcaggtagg aagcaacagc 2640
    ttcagaaaga gctcaaaata aattggaaat gtgaatcgca gctgtgggtt ttaccaccgt
35
    ctgtctcaga gtcccaggac cttgagtgtc attagttact ttattgaagg ttttagaccc 2760
    atagcagett tgtetetgte acateageaa ttteagaace aaaagggagg etetetgtag 2820
    gcacagaget gcactateae gageetttgt tttteteeae aaagtateta acaaaaceaa
    tgtgcagact gattggcctg gtcattggtc tccgagagag gaggtttgcc tgtgatttcc
    taattatcqc taqqqccaaq qtqqqatttq taaaqcttta caataatcat tctqqataqa
                                                                       3000
    gteetgggag gteettggea gaacteagtt aaatetttga agaatatttg tagttatett
                                                                       3060
    agaaqataqc atqqqaqqtq aqqattccaa aaacatttta tttttaaaat atcctqtqta
                                                                       3120
                                                                       3180
    acacttggct cttggtacct gtgggttagc atcaagttct ccccagggta gaattcaatc
    agageteeag titigeattig gatgigtaaa tiacagtaat eecattieee aaacetaaaa
                                                                       3240
    totgtttttc tcatcagact ctgagtaact ggttgctgtg tcataacttc atagatgcag
                                                                       3300
    gaggeteagg tgatetgttt gaggagagea ceetaggeag cetgeaggga ataacatact
                                                                       3360
    qqccqttctq acctqttqcc aqcaqataca cagqacatqq atqaaattcc cqtttcctct
                                                                       3420
    agtttcttcc tgtagtactc ctcttttaga tcctaagtct cttacaaaaa ctttgaatac
                                                                       3480
    tqtqaaaatq ttttacattc catttcattt qtqttqtttt tttaactqca ttttaccaqa
                                                                       3540
                                                                       3600
    tgttttgatg ttatcgctta tgttaatagt aattcccgta cgtgttcatt ttattttcat
                                                                       3660
    gctttttcag ccatgtatca atattcactt gactaaaatc actcaattaa tcaataaaaa
                                                                       3670
    aaaaaaaaa
```

(2) INFORMATION ÜBER SEQ ID NO: 43:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1025 Basenpaare

(B) TYP: Nukleinsäure

(C) STrang: einzel

65 (D) TOPOLOGIE: linear

55

60

(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN	5
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	. 10
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43	20
ctttaaccag ttatttacag tgtgctcatt cgttcagaaa ttagatacaa aatctcaaga cctgttacta ctgatttat taaatcagag tctttaattc ttgcatgttt gtatctaatt tctgaacgaa tgagcacact ttaaccagtt atttacagtt acctttttcc tttaaccgga ttgtgaaagc ttcatgtatt ttaatttaga ttctgtgttt ttaagggttc tgagcatgaa gctggcagat agtcggcagg actcattttt tcatcatggc tggctgattt ctccatagat	60 120 180 25 240 300
tgataacagt attitgttat citigcticto tgtagtittg cateagoigt tiaactitga gotgagigag gggagagggg taaagagaaa gaaacttaag tittottica cagaactoca coatigtigg cititgagaga goodtaaago attigtacota giggtacota gigacticoa accaaagoot tigagiatgo actaaatagg tgagaagaaa ggagagaagg tittitaggit agaaacotti aaccgataga aggatatggi atgitgtaaa gotggaacoa agittigoatt	360 420 30 480 540 600
tttgagggct tgagatgaag ggaagactct taccagatag taagacagct gagttttcct cagttttctc gtcttaacac tagtggacaa ttctagcatt ttgtttggag gatttcagag ttaacctcat ggaattcagg attitttagc aagtttgctt ttggttttat cttggctttt agtaatcatg ttggctggtc tggtcacagg tgactgtgaa acagatgccc tggtcttgct	660 720 35 780 840 900
	960 960 1020 L025
(2) INFORMATION ÜBER SEQ ID NO: 44:	45
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1219 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	50
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierur hergestellte partielle cDNA	ng ⁵⁵
(iii) HYPOTHETISCH: NEIN	60
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	65

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 44

```
cttagatgtg gctctttggg gagataattt tgtccagaga cctttctaac gtattcatgc
10
     cttgtatttg tacagcatta atctggtaat tgattatttt aatgtaacct tgctaaagga
     gtgatttcta tttcctttct taaagaggag gaacaagaag atgaggaaga aatcgatgtt
                                                                         180
     qtttctqtqq aaaaqaqqca ggctcctggc aaaaggtcag agtctggatc accttctgct
     ggaggccaca gcaaacctcc tcacagccca ctggtcctca agaggtgcca cgtctccaca
     catcagcaca actacgcagc gcctccctcc actcggaagg actatcctgc tgccaagagg
    gtcaagttgg acagtgtcag agtcctgaga cagatcagca acaaccgaaa atgcaccagc
                                                                         420
    cccaggtcct cggacaccga ggagaatgtc aagaggcgaa cacacaacgt cttggagcgc
                                                                         480
    cagaggagga acgagctaaa acggagcttt tttgccctgc gtgaccagat cccggagttg
    gaaaacaatg aaaaggcccc caaggtagtt atccttaaaa aagccacagc atacatcctg
20
    tccgtccaag cagaggagca aaagctcatt tctgaagagg acttgttgcg gaaacgacga
                                                                         660
    gaacagttga aacacaaact tgaacagcta cggaactctt qtqcgtaagg aaaaqtaaqq
                                                                         720
    aaaacgattc cttctaacag aaatgtcctg agcaatcacc tatgaacttg tttcaaatgc
                                                                         780
    atqatcaaat qcaacctcac aaccttggct gagtcttgag actgaaagat ttagccataa
                                                                         840
    tgtaaactgc ctcaaattgg actttgggca taaaagaact tttttatgct taccatcttt
                                                                         900
    tttttttctt taacagattt gtatttaaga attgttttta aaaaatttta agatttacac
                                                                         960
    aatqtttctc tgtaaatatt gccattaaat gtaaataact ttaataaaac gtttatagca
                                                                        1020
    gttacacaga atttcaatcc tagtatatag tacctagtat tataggtact ataaacccta
                                                                        1080
    attitttta titaaqtaca titigctiti taaagtigat titittctat tgttittaga
    aaaaataaaa taactqqcaa atatatcatt qaqccaaaaa qaaaaaaaaa gaaaaaaaaa
                                                                        1200
                                                                        1219
    qaaqaaaaqq qaqqqqqq
```

(2) INFORMATION ÜBER SEQ ID NO: 45:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 538 Basenpaare

(B) TYP: Nukleinsäure

(C) STrang: einzel

(D) TOPOLOGIE: linear

45

60

65

35

40

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 55 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 45

ccaggaggct gtgaggggga gaatgttctt ttggccactg tgaagcctca ggaaggggct

cggattgctc aaggacccat gggagagag aggetttgac tgggetgcet gcctgtgagg 12 tetetggact agaggtccaa cgcagtccag ctgacaagga tggaatacgc catgaagtcc 18 ettagcettc tetaccccaa gtccctetcc aggcatgtgt cagtgegtac etetgtggtg 24 acccagcagc tgetgtegga gcccagccc aaggceccaa gggcceggcc etgcegegta 30 agcacggegg atcgaagegt gaggaagggc atcatggett acagtettga ggacctectc 36 etcaaggtcc gggacactct gatgetggca gacaagccet tettectggt gctggaggaa 42	0 0 0 0
gatggcacaa ctgtagagac agaagagtac ttccaagccc tggcagggga tacagtgttc 48 atggtcctcc agaaggggca gaaatggcag cccccatcag aacaggggac aaggcacc 53	0
(2) INFORMATION ÜBER SEQ ID NO: 46:	15
(i) SEQUENZ CHARAKTERISTIK:(A) LÄNGE: 1776 Basenpaare(B) TYP: Nukleinsäure(C) STrang: einzel	20
(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	25
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	30
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	35
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 46	
ctcgaagatg gccggttggc agagctacgt ggataacctg atgtgcgatg gctgctgcca 12 ggaggccgcc attgtcggct actgcgacgc caaatacgtc tgggcagcca cggccggggg 18	30
cgtctttcag agcattacgc caatagaaat agatatgatt gtaggaaaag accgggaagg 24 tttctttacc aacggtttga ctcttggcgc gaagaaatgc tcagtgatca gagatagtct 30 atacgtcgat ggtgactgca caatggacat ccggacaaag agtcaaggtg gggagccaac 36	00 50
atacaatgtg gctgtcggca gagctggtag agcattggtt atagtcatgg gaaaggaagg 42	
tgtccacgga ggcacactta acaagaaagc atatgaactc gctttatacc tgaggaggtc 48 tgatgtgtaa gcagcctctc cccatctacc tagcaactgt cttcatcaac aaccctaatt 54	
atggtcacaa tgctaccaaa ctgtagatgg tagctaattt ttctttacct attttctaat 60	
gtcatgattc ctgtttgccc aatggatcat ttgtatgtta accactgtat gtaaccaacc 66	
cttatctggc aacataattg cagcacaata atgatttgca tgataccttg aaattggggg 72 gagggggcat gccaagttgg gcatcacttt gtcttagcaa ttaatgggat attgattact 78	
gagggggcat gccaagttgg gcatcacttt gtcttagcaa ttaatgggat attgattact 78 aaaataagtt aatattaagc aaggtgccgg ttgtacaatc tctgatcagt gtcttttcag 84	Δ
cactttgage atttacttgg ctcatttagt cttccttttg tagcgcatgg ttgggaggaa 90	
aaagtgcatg catcattect teactettet ettttteeeg ecceecete eettegcaca 96	
taggeattig gtttgettee atettittt atgeagtgee tgttttttt taaccaatta 102	
aaatcccttt tgttgatgag ctattgagag ctgcagtagt ttgcttttag tattgttgtt 108 gcacttgagc agagacaaac ctttattcat agtgtctaca ggacatatga agagtgcaat 114	
gcacttgagc agagacaaac ctttattcat agtgtctaca ggacatatga agagtgcaat 114 ggcaaaacaa gagcaaaaag cacttcctcc catgacctta cagtaaccat actgattgaa 120	
tococaggga cattocatca ttgcaatago toagattttt ottocttttt otttgcacac 126	
cagetetact etttagtaaa attgtaaaag getgeeatta tggacattag gtateecaac 132	

	ataaccatct	ggagtgtgtc	cagtttgttc	ttcataggac	caatttttat	ttgcagcttg	1380
					ttgtgatgaa		1440
					tattgtgaga		1500
5					ggacattcta		1560
					caaatcttgt		1620
					tctaactcat		1680
					tacagacaga		1740
	•	caaaaaaaaa		_		-	1776
113							

(2) INFORMATION ÜBER SEQ ID NO: 47:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 360 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

15

20

30

35

55

60

65

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 40 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 47

	gccacgggtc	cggccacggg	tgcggccacg	ggtccgacaa	tagtatgcag	ctaaaaaata	60
50					tgaaaaaggc		120
	aatgtgtata	gcgcacttcc	catttgtgtt	tcagaaagga	gtagaatata	aacacataat	180
	tgcttatgta	tgcctattca	gaataaatgg	gtaacactga	ttacttttgg	gaggggaacc	240
	agtaggttga	ggacaggaga	gggaagggtc	ttaacactta	cacccttttg	tacattttga	300
					aataaatggg		360

- (2) INFORMATION ÜBER SEQ ID NO: 48:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: Basenpaare
 - (B) TYP: 2192 Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

		•	
(iii) HYPOTHETISCH: NEIN			
(iii) ANTI-SENSE: NEIN			5
(vi) HERKUNFT:			
(A) ORGANISMUS: MENSCH (C) ORGAN:			10
(vii) SONSTIGE HERKUNFT:			
(A) BIBLIOTHEK: cDNA library			
,			15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 48			
gaggeetgeg eccaeacect etectgteca gecetegeec geetgggea	a aacccaacac	60	20
cgtccgtgga tgagccacag aacctcttcc accttccgag cggagagaa		120	
tetteetett ceteeteege tgecacetee teeteeggeet ceegtgete		180	
gacccgcca tggagaagge cetgagcatg ttttecgatg actttggca		240	
ccccactcgg agcccctggc cttcccagcc cgccccggtg gggcaggca		300	
ctaggagacg cctatgagtt tgcggtggac gtgagagact tctcacctg		360	25
gtcaccacct ccaacaacca catcgaggtg cgggctgaga agctggcgg		420	
gtcatgaaca ccttcgctca caagtgccag ctgccggagg acgtggacc		480	
accteggete tgegggagga eggeageete actateeggg caeggegte		540	
gaacacgtcc agcagacctt ccggacggag atcaaaatct gagtgcctc		600	30
tecetytyce cecegecea cycetyccay caaagestey ctaacecca		660	
ccaggacate teageccagg ttetagecce caegeacece agaceccag		720	
teccaaacta gggeeeteea etetateeag ggeaggeeag ggaeteeet		780	
tgatgcccag atttcagatt tggcctccgt cacttaatcc agagtacag		840	ar
agggaaggaa gatctaaaga acccactgtg ggtcagggga atgggacca		900	35
gggcaagctc tgcaggacag acaggcagac aaaccctctg atctatgaa		960	
gcaaggggac cagggacctg gaaccctctt ggccaagggg agtgggaga		1020	
ggtcacaggc aagggtgcct atctaagtgg aactaattgc ccgagggct		1080	
agaggagaca gccgtgacgg taaacttccc ctctaccagc ctccaagcc		1140 1200	40
agcaggetge etgeceacce egtgececca gecagetgg tgtgecagg		1260	
ccacatctgt atatagatgg ggtttttcca atacagctgg ttcgtgata actcctgccg tcctgcgcct gctggggcct ccaggcaagg ccacgtggg		1320	
ggetggteet teteceteee acaggestgt gttettgggg etgeteeca		1380	
tcacctaaca gagatggaag ccagggcatg gatggggctt tgggtcctc		1440	45
ccagettett gecacettee ceteegggea gteagetete catecatee		1500	13
ctatgaatct ataggctcgg tgtgtgtaac acacacaccc ctatcgttg	ccttcaaata	1560	
ctcagcatta ccattggttg aggccaaatt cagagctttc tcaaatcag	tttacaatct	1620	
ccattttcat taacggggaa acatccccga gccactgagt gctgtgctt	gtcactgaag	1680	
gttagatctg aacccagggt gtcaacagct gctctcaact ccccacctc	gggcactgag	1740	50
gagtatttcc cctcattcta cctctctaag gctatgcacc cctccccac	f tettecaget	1800	
gggggatggg gggagtcata ggaaaagccc ccatctccca tctgggata	g ggaccttcca	1860	
tcagcettaa ccetgggaaa tgeetgetge ceccagtgae tettggttt	gteteccaca	1920	
tacagaagca gggtggaggg gaagggtggg teteagttag caggggtee	c cagggcaagt	1980	55
cagectecte cetecatgee tetetggtea gtgtgeetta gggtggeet	c tcactcccac	2040	
cactetgggc cccttggggg aggactgggg agggggccgt gggagagcc		2100	
acctgtatac acaataaagg acagtctcac agacaaaaag aggccgcct	g eeggagttet	2160 2192	
caaacttagg gcagggcctt acttgagaga aa		2192	40
			60
(2) INFORMATION ÜBER SEQ ID NO: 49:			
(i) SEQUENZ CHARAKTERISTIK:			65
(A) LÄNGE: 2952 Basenpaare			
(B) TYP: Nukleinsäure			

- (C) STrang: einzel(D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 10 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 15 (vi) HERKUNFT:

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- ²⁰ (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 49

60 gtgeggatge eggeeggeag eageateatg geteaeggge eeggegeget gatgeteaag tgcgtggtgg tcggcgacgg ggcggtgggc aagacgtgcc tactcatgag ctatgccaac 120 180 gacgcettee eggaggagta egtgeecace gtettegace aetaegeagt cagegteace 240 gtgggggca agcagtacct cctaggactc tatgacacgg ccggacagga agactatgac 300 cgtctgaggc ctttatctta cccaatgacc gatgtcttcc ttatatgctt ctcggtggta aatccagcct catttcaaaa tgtgaaagag gagtgggtac cggaacttaa ggaatacgca 360 420 ccaaatgtac cctttttatt aataggaact cagattgatc tccgagatga ccccaaaact 480 ttaqcaaqac tqaatqatat qaaaqaaaaa cctatatqtg tgqaacaagg acagaaacta qcaaaaqaqa taqqaqcatq ctgctatgtq gaatgttcag ctttaaccca gaagggattq 540 600 aagactgttt ttgatgaggc tatcatagcc attttaactc caaagaaaca cactgtaaaa aaaagaatag gatcaagatg tataaactgt tgtttaatta cgtgagaaac atcttcagtg 660 720 gccaaggaaa ctgtccattt ctctcagaaa gcaaatgaaa tgctacagct atacccagac cttttatagg taatgaagca gttcaaaact tgaaagaaaa caaaacctgt cctcagaatt 780 840 ctataaagtg tattaagaat gttccttaaa ggtttaagaa gcagtaagca gcatctgaag ccacaatcta ttataaatac tttatttcaa ctagaaggta caatctctca ggggtttcat 900 agtttaaaaa gctacaatca catcatgttg taactacgta aaaaacagag ctgtaaatgg 960 aactgcttgg ctttgaccat acacatttct gcccagccct tacagaatct gcacaaagaa 1020 atatctccct ttgctccagt taattgttct tgtatgtaag ttgctttcta ttccagtata 1080 tocaqaqtqq tqaaataaca aggccagcca cqtagccaaa ggtcgctcca agcgtacagg 1140 agatgggcca tacctgagga gagaatgtat gagatcaaaa aagaacaaat gttttattat 1200 tacttgagca caagtgtaac ctaaatattt ctatattaaa gcttaatgtg ctttcttaaa 1260 gaatgccaaa agtgtaataa ggtcataact gcatttatca tgaacactaa aaatgtacac 1320 attttagtta atgtgcatta aactgtaaca aggcttctgg caattgtaga tttagtttga 1380 cgctccccaa agtgcatgag acacatgcta aaattacaaa ttaaaatttt gggtcagact ttgccataat gatagactca atttagctct ctgaactagt tggtaatttt tttttttaa ttcccacttt ggctgtgtac atcaaatgaa atgagaagtg tgtatgctga ccaaaccaca agaaactttc tttaagttgt gttaaagagg aaagacctag aatccaagcg tgttacatga aaattgtaac agagcagctg cttccacctt tcagatatag atgttggaac cacagcagaa gttatagagc gacaacttat atacacacct agaatgtaag ttaaacaaaa taccggcttc 1740 cagagacccc ttttctccag ccatattaca tcaggctaga agtaattaat gttgatttat 1800 ttcatctaca agcagttggt ccctaagtga aaggctctgc ttqaaaaaaa aaagaaaaaa aagttggagg aaaattttca tgttcttctg tgaagcttat ttggtacact ggagccattt 1920 ctaatctttc tctgggggga acaggccaca gaactgtgtt agaggtgaac catcttaatt actagttcta ttacctaatt cagcttcctt gtttggtctg ctgtggatct gccttattgc atatgccatg catcagataa tggatgcatc agataatggt gttagacaaa gcttcattgt gaacaaccta atgcatttta gagaaacaat ctcatcacat tttttctagc ctttcctaca 2160 tttaaacttg ctgttgccca aattataatt ttttaaatgt ctttggtggg cttctgttaa ttcacatgac ttgagcttat agctatgtct actgcacaga ttgggtaatg gaacactaaa

cttttatact tgaaaatgac agccttaaat gctcataca gtcacaaatc taggatgtac tgtcttgttg tatgtgagct ttgtagagat ttttaaaaat ataagcatca ccttcccatt gaagagtgga gagagtctac tggatgactg gccaggaact ttctctctga atcggacatt tggatgtctt ctttctcca agaaatggtg gtcacatta aagtatcatg gccttatgta tgctcaaatg gaatcttatg taactttctt atttaatttt ggtctgctta tttttagata aaattgaaag gaattgtata aatcaattaa catattagct gagttgtcca acacatggta taaacgaatt acaacagtaa actattacac atttccaact tgcctttggg gatttatgag gattttttt ggtgggggga gggggctcca attcatact ctgaaaccct tcacacttgg tttactaatt caaagttaga agtctagaat ttgcctgcc ctaacagaaa cagattagga atttgtctac acaaactggt gtcacctgtt tcttgactgg gatttggtt cctcattata aatatgggag gtagaacaga gatctccaac gtctctccca tttatcacag taattttctt attcacagta at	2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 2952	11
(2) INFORMATION ÜBER SEQ ID NO: 50:		
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 615 Basenpaare (B) TYP: Nukleinsäure		21
(C) STrang: einzel (D) TOPOLOGIE: linear		25
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier hergestellte partielle cDNA	ung	30
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		40
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50		
gcaaggatgg teteaatete gacetegtga teegeecace ttggeeteec aaagtgttgg gattacagge gtgaeteace atgeecagee acttagtttt ttettattee eacettteta teecatagaa caetetttt tatetteeet gaaceatatt gatgagataa atagggetgg gggetgggee eegetggtea eteaacagag tattteeett ggeegagatg gaagttttgt	60 120 180 240	50
cccaatagat gagctgctga gtatcaacaa ggtgacattt ttctgctgcc catttgtgtc ctggagacgg tggtaccctg aaggcagagg ccagctgccg caagacagca atgacagtcc acctgccgac ctgattcctg catcatggaa taaccacatg gctaccttct atcctctgtt cccaaatggt ggtggcactt atcctgaagt cgtcaatgat ttccctttga aactacttta	300 360 - 420 480	55
ttttactaat ttaaactatt ttgtactgat gtagccctga ggtagttcat gaaaatgctg tgcactcatt ccatggaata aatgttggaa agctgatctt ttctgatata aaatgttgaa tgataaaaaa aaaaa	540 600 615	60
2) INFORMATION ÜBER SEQ ID NO: 51:		65
(i) SEQUENZ CHARAKTERISTIK:		

- (A) LÄNGE: 1488 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STrang: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 5 (iii) ANTI-SENSE: NEIN

5

20

25

65

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 51

30							
	ttttactgac	cttgctagaa	gtttacagca	aggaagtgca	ggaacatttc	acaaatctac	60
	aatctgtgag	tatcacatcc	tgtatagctg	taaacactgg	aataaggaag	ggctgatgac	120
	tttcagaaga	tgaaggtaag	tagaaaccgt	tgatgggact	gagaaaccag	agttaaaacc	180
						caccatcatg	240
35	acatcacaac	ctgttcccaa	tgagaccatc	atagtgctcc	catcaaatgt	catcaacttc	300
	tcccaagcag	agaaacccga	acccaccaac	caggggcagg	atagcctgaa	gaaacatcta	360
	cacgcagaaa	tcaaagttat	tgggactatc	cagatcttgt	gtggcatgat	ggtattgagc	420
	ttggggatca	ttttggcatc	tgcttccttc	tctccaaatt	ttacccaagt	gacttctaca	480
40					ttatcatctc		540
-					atagcagcct		600
	attctgagtg	ctctgtctgc	cctggtgggt	ttcattatcc	tgtctgtcaa	acaggccacc	660
	ttaaatcctg	cctcactgca	gtgtgagttg	gacaaaaata	atataccaac	aagaagttat	720
	gtttcttact	tttatcatga	ttcactttat	accacggact	gctatacagc	caaagccagt	780
45					tggaattctg		840
	ctcactgctg	tgctgcggtg	gaaacaggct	tactctgact	tccctggggt	gagtgtgctg	900
	gccggcttca	cttaaccttg	cctagtgtat	cttatccctg	cactgtgttg	agtatgtcac	960
	caagagtggt	agaaggaaca	accagccaat	cacgagatac	acatgggagg	gcatttgcat	1020
50	tgtgatggaa	gacagagaag	aaaagcagat	ggcaattgag	tagctgataa	gctgaaaatt	1080
30	cactggatat	gaaaatagtt	aatcatgaga	aatcaactga	ttcaatcttc	ctattttgtc	1140
	agcgaaggga	atgagactct	gggaagttaa	atgactggcc	tggcattatg	ctatgagttt	1200
	gtgcctttgc	tgaggacact	agaacctggc	ttgcctccct	tataagcaga	aacaatttct	1260
	gccacaacca	ctagtctctt	taatagtatt	gacttggtaa	agggcattta	cacacgtaac	1320
55	tggatccagt	gaatgtctta	tgctctgcat	ttgcccctgg	tgatcttaaa	attcgtttgc	1380
	ctttttaaag	ctatattaaa	aatgtattgt	tgaatcaaaa	aaaaaaggg	agtgagaggt	1440
	ggggtggggg	gggggaggag	ggggggccgt	ttaggggggg	ccgggttt		1488

- (2) INFORMATION ÜBER SEQ ID NO: 52:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1304 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

(ii) MOLEKULTYP: aus einzelnen ESTs durch Assemblierung und Editie hergestellte partielle cDNA	rung	
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		
A.S. LIEDKIMET.		1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		
		1:
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	•	
		20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52		
caagtgtgag ccaccacacc tggcctggaa ggaaccictt aaaatcagtt tacgtcttgt	60	25
attttgttct gtgatggagg acactggaga gagttgstat tccagtcaat catgtcgagt	120	4
cactggactc tgaaaatcct attggttcct ttattttatt	180	
gggtttgtat tatgtctggc aaatgacctg ggttatcact tttcctccag ggttagatca	240	
tagatettgg aaacteetta gagageattt tgeteerace aaggateaga taetggagee	300	
ccacataata gatttcattt cactctagcc tacatagagc tttctgttgc tgtctcttgc	360	30
catgcacttg tgcggtgatt acacacttga cagtaccagg agacaaatga cttacagatc	420	
ccccgacatg cctcttcccc ttggcaagct cagttgccct gatagtagca tgtttctgtt	480	
totgatgtac ctttttctc ttcttctttg catcagccaa ttccccagaat ttccccaggc	540	
aatttgtaga ggaccttttt ggggtcctat atgagccatg tcctcaaagc ttttaaacct	600	35
ccttgctctc ctacaatatt cagtacatga ccactgccat cctagaaggc ttctgaaaag	660	
aggggcaaga gccactctgc gccacaaagg ttgggtccat cttctctccg aggttgtgaa	720	
agtittcaaa tigtactaat aggctggggc cctgacitgg ctgtgggctt tgggaggggt	780	
aagctgcttt ctagatctct cccagtgagg catggaggtg tttctgaatt ttgtctacct	840 900	
cacagggatg ttgtgaggct tgaaaaggtc aaaaaatgat ggccccttga gctctttgta	960	40
agaaaggtag atgaaatatc ggatgtaatc tgaaaaaaag ataaaatgtg acttcccctg ctctgtgcag cagtcgggct ggatgctctg tggcctttct tgggtcctca tgccacccca	1020	
cagetecagg ascettgasg cosstettggg ggaetttes tyggteetes tycesetes tygetaetes	1080	
aggcaaactt cctgctacac atgccctgaa tgaattgcta aatttcaaag gaaatggacc	1140	
ctgcttttaa ggatgtacaa aagtatgtct gcatcgatgt ctgtactgta	1200	45
ttatcactgt acaaagaaaa ccccttgcta tttaattttg tattaaagga aaataaagtt	1260	
ttgtttgtta aaaaaaaaaa aaaaaaaaa aaaaaaaa	1304	
		50
(2) INFORMATION ÜBER SEQ ID NO: 53:		
(i) SEQUENZ CHARAKTERISTIK:	•	
(A) LÄNGE: 2262 Basenpaare		55
· ·		
(B) TYP: Nukleinsäure		
(C) STrang: einzel		
(D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTYD: aug einzelnen ESTe durch Accombilenum und Edition	ma	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editiert	ıı ı y	
hergestellte partielle cDNA		,.
		65
(iii) HYPOTHETISCH: NEIN		

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

10

15

60

65

(A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 53

```
ctcgagccga ttcggctcga gctaattttt aagtctcgat tggaaatcag tgagtaggtt
                                                                           60
                                                                          120
     cataatgtgc atgacagaaa taagctttat agtggtttac cttcatttag ctttggaagt
     tttctttgcc ttagttttgg aagtaaattc tagtttgtag ttctcatttg taatgaacac
                                                                          180
20
                                                                          240
     attaacqact agattaaaat attgccttca agattgttct tacttacaag acttgctcct
                                                                          300
     acttctatqc tqaaaattqa ccctqqataq aatactataa ggttttgagt tagctggaaa
     aqtqatcaqa ttaataaatq tatattggta qttgaattta qcaaaqaaat aqagataatc
                                                                          360
                                                                          420
     atqattatac ctttattttt acaggaagag atgatgtaac tagagtatgt gtctacagga
                                                                          480
     gtaataatgg tttccaaaga gtattttta aaggaacaaa acgagcatga attaactctt
                                                                          540
     caatataagc tatgaagtaa tagttggttg tgaattaaag tggcaccagc tagcacctct
                                                                          600
     gtgttttaag ggtctttcaa tgtttctaga ataagccctt attttcaagg gttcataaca
     ggcataaaat ctcttctcct ggcaaaagct gctatgaaaa gcctcagctt gggaagatag
                                                                          660
     attttttcc ccccaattac aaaatctaag tattttggcc cttcaatttg gaggagggca
                                                                          720
                                                                          780
     aaagttggaa gtaagaagtt ttattttaag tactttcagt gctcaaaaaa atgcaatcac
                                                                          840
     tgtgttgtat ataatagttc ataggttgat cactcataat aattgactct aaggctttta
                                                                          900
     ttaagaaaac agcagaaaga ttaaatcttg aattaagtct ggggggaaat ggccactgca
                                                                         960
     gatggagttt tagagtagta atgaaattct acctagaatg caaaattggg tatatgaatt
                                                                        1020
     acatagcatg ttgttgggat tttttttaat gtgcagaaga tcaaagctac ttggaaggag
35
                                                                        1080
     tqcctataat ttqccaqtaq ccacaqatta agattatatc ttatatatca gcagattagc
     tttagcttag ggggagggtg ggaaagtttg gggggggggt tgtgaagatt taggggggacc
     ttgatagaga actttataaa cttctttctc tttaataaag acttgtctta caccgtgctg
    ccattaaagg cagctgttct agagtttcag tcacctaagt acacccacaa aacaatatga
    atatggagat cttcctttac ccctcaactt taatttgccc agttatacct cagtgttgta
    quaqtactqt qatacctggc acagtgcttt gatcttacga tgccctctgt actgacctga
    aggagaccta agagtccttt ccctttttga gtttgaatca tagccttgat gtggtctctt
    gttttatgtc cttgttccta atgtaaaagt gcttaactgc ttcttggttg tattgggtag
    cattgggata agattttaac tgggtattct tgaattgctt ttacaataaa ccaattttat
    aatctttaaa tttatcaact ttttacattt gtgttatttt cagtcagggc ttcttagatc
                                                                        1620
    tacttatggt tgatggagca cattgatttg gagtttcaga tcttccaaag cactatttgt
                                                                        1680
    tgtaataact tttctaaatg tagtgccttt aaaggaaaaa tgaacacagg gaagtgactt
                                                                        1740
                                                                        1800
    tgctacaaat aatgttgctg tgttaagtat tcatattaaa tacatgcctt ctatatggaa
    catggcagaa agactgaaaa ataacagtaa ttaattgtgt aattcagaat tcataccaat
                                                                        1860
                                                                        1920
    cagtgttgaa actcaaacat tgcaaaagtg ggtggcaata ttcagtgctt aacacttttc
    tagcgttggt acatctgaga aatgagtgct caggtggatt ttatcctcgc aagcatgttg
                                                                        1980
    ttataaqaat tgtgggtgtg cctatcataa caattgtttt ctgtatcttg aaaaagtatt
                                                                        2040
                                                                        2100
    ctccacattt taaatgtttt atattagaga attctttaat gcacacttgt caaatatata
    tatataqtac caatgttacc tttttatttt ttgttttaga tgtaagagca tgctcatatg
                                                                        2160
    ttaggtactt acataaattg ttacattatt ttttcttatg taataccttt ttgtttgttt
                                                                        2220
    atgtggttca aatatattct ttccttaaaac tcttaaaaaa aa
                                                                        2262
```

(2) INFORMATION ÜBER SEQ ID NO: 54:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1301 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	1
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	1:
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 54	25
accagcaage aaccggeega agtetggaag ggegeeggag eeeegegaae eggeeegaeg 60 gagegeagga ggtteeege egeegeegee tiggeeeega gtteetgeag eegeageegg 120 caeggaggga geeageeeeg acettgeeee getgeggeee geggeteeeg geeaaaceee 180	
cctcaggaaa gaggttttaa aatcaaagat gggaaaatcg gagaaaattg cccttcccca 240 tggccagctt gttcatggta tacacttgta tgagcaacca aagataaaca gacagaaaag 300 caaatataac ttgccactaa ccaagatcac ctctgcaaaa agaaatgaaa acaacttttg 360 gcaggattct gtttcatctg acagaattca gaagcaggaa aaaaagcctt ttaaaaatac 420	36
cgagaacatt aaaaattcgc atttgaagaa atcagcattt ctaactgaag tgagccaaaa 480 ggaaaattat gctggggcaa agtttagtga tccaccttct cctagtgttc ttccaaagcc 540 tcctagtcac tggatgggaa gcactgttga aaattccaac caaaacaggg agctgatggc 600 agtacactta aaaacgctcc tcaaagttca aacttagatt tcagatttca gtatgtgtt 660	35
aaaacataat ttttcccata tccctggact cttgagaaaa ttggtacaga aatggaaatt 720 tgccttgttg caacatacaa ttgcaaaaga tgagtttaaa aaattacata caaacagctt 780 gtattatatt ttatattttg taaatactgt ataccatgta ttatgtgtat attgttcata 840 cttgagaggt atattatagt tttgttatga aagtatgtat	40
gattttattt gcacaaggta ctgagatttt tttcaagaaa cagctgtcaa atctcaaggt 1020 gaagatctaa atgtgaacag tttactaatg cactactgaa gtttaaatct gtggcacaat 1080 caatgtaagc atggggtttg tttctctaaa ttgatttgta atctgaaatt actgaacaac 1140 tcctattccc attttgcta aactcaattt ctggttttgg tatatatcca ttccagctta 1200 atgcctctaa ttttaatgcc aacaaaattg gttgtaatca aattttaaaa taataataat 1260	45
ttggccccc ctttttaaaa aaaaaaaaa aaaaaaaaa a 1301	50
(2) INFORMATION ÜBER SEQ ID NO: 55:	55
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2036 Basenpaare (B) TYP: Nukleinsäure	
(C) STrang: einzel (D) TOPOLOGIE: linear	60
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	65
(iii) HYPOTHETISCH: NEIN	

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 10 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 55

	cggctcagtg	gccctgagac	catagetetg	ctctcggtcc	gctcgctgtc	cgctagcccg	60
	ctgcgatgtt	gcgcgctgcc	gcccgcttcg	ggccccgcct	gggccgccgc	ctcttgtcag	120
20	ccgccgccac	ccaggccgtg	cctgccccca	accagcagcc	cgaggtcttc	tgcaaccaga	180
	ttttcataaa	caatgaatgg	cacgatgccg	tcagcaggaa	aacattcccc	accgtcaatc	240
	cgtccactgg	agaggtcatc	tgtcaggtag	ctgaagggga	caaggaagat	gtggacaagg	300
	cagtgaaggc	cgcccgggcc	gccttccagc	tgggctcacc	ttggcgccgc	atggacgcat	360
	cacacagggg	ccggctgctg	aaccgcctgg	ccgatctgat	cgagcgggac	cggacctacc	420
25		ggagaccctg					480
	tggacatggt	cctcaaatgt	ctccggtatt	atgccggctg	ggctgataag	taccacggga	540
	aaaccatccc	cattgacgga	gactitcttca	gctacacacg	ccatgaacct	gtgggggtgt	600
	gcgggcagat	cattccgtgg	aatttcccgc	tcctgatgca	agcatggaag	ctgggcccag	660
30	ccttggcaac	tggaaacgtg	gttgtgatga	aggtagctga	gcagacaccc	ctcaccgccc	720
	tctatgtggc	caacctgatc	aaggaggctg	gctttcccc	tggtgtggtc	aacattgtgc	780
	ctggatttgg	cccacggct	ggggccgcca	ttgcctccca	tgaggatgtg	gacaaagtgg	840
	cattcacagg	ctccactgag	attggccgcg	taatccaggt	tgctgctggg	agcagcaacc	900
	tcaagagagt	gaccttggag	ctggggggga	agagccccaa	catcatcatg	tcagatgccg	960
35	atatggattg	ggccgtggaa	caggcccact	tcgccctgtt	cttcaaccag	ggccagtgct	1020
	gctgtgccgg	ctcccggacc	ttcgtgcagg	aggacatcta	tgatgagttt	gtggagcgga	1080
	gggttgcccg	ggccaagtct	cgggtggtcg	ggaacccctt	tgatagcaag	accgagcagg	1140
	ggccgcaagt	ggatgaaact	cagtttaaga	agatcctcgg	ctacatcaac	acggggaagc	1200
40	aagaggggc	gaagtgctgt	gtggtgggg	cattgctgct	gaccgtggtt	acttcatcca	1260
		tttggagatg					1320
		cagatcctga					1380
		gggctggccg					1440
		ctccaggcgg					1500
45		ggtggctaca					1560
		actgaagtga					1620
		cttcctccct	-			-	1680
		gatccttgcg					1740
50		gaaagttcta					1800
		ggaacctttt					1860
		caaatgtgtt					1920
		agctattgtt					1980
	ttgtattctg	ggctaagatt	cattaaaaac	tagctgctct	taaaaaaaaa	aaagaa	2036
55							

- (2) INFORMATION ÜBER SEQ ID NO: 56:
- 60 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1265 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- 65 (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN	5
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	10
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 56	20
ctctaaagag tacagtgcac tagagggaag tgttcccttt aaaaataaga acaactgtcc tggctggaga atctcacaag cggaccagag atcttttaa atccctgcta ctgtcccttc tcacaggcat tcacaggac cttctgattc gtaagggtta cgaaactcat gttcttctcc	60 120 180 ²⁵ 240
tcagaaccat gcagataagg agcctctggc aaatgggtgc tcatcagaac gcgtggattc tctttcatgg cagaatgctc ttggactcgg ttctccaggc ctgattcccc gactccatcc tttttcaggg gttatttaaa aatctgcctt agattctata gtgaagacaa gcatttcaag aaagagttac ctggatcagc catgctcagc tgtgacgcct gaataactgt ctactttatc	360 120 ₃₀ 180 540 500
aaagatcatg ttgggattaa cttgcctttt tccccaaaaa ataaactctc aggcaagcat ttctttaaag ctattaaggg agtatatact tgagtactta ttgaaatgga cagtaataag caaatgttct tataatgcta cctgatttct atgaaatgtg tttgacaagc caaaattcta ggatgtagaa atctggaaag ttcatttcct gggattcact tctccaggga ttttttaaag	720 ³⁵ 780 340 900
ttgagctgtc atttgtacat ttaaagcagc tgttttgggg tctgtgagag tacatgtatt 10 atatacaagc acaacagggc ttgcactaaa gaattgtcat tgtaataaca ctacttggta 10 gcctaacttc atatatgtat tcttaattgc acaaaaagtc aataatttgt caccttgggg 11 ttttgaatgt ttgctttaag tgttggctat ttctatgttt tataaaccaa aacaaaattt 12	960 ₄₀ 920 980 .40
	260 45 265
(2) INFORMATION ÜBER SEQ ID NO: 57:	50
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 274 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60 J
(iii) HYPOTHETISCH: NEIN	65
(iii) ANTI-SENSE: NEIN	

	(vi) HERKUNF1:	
	(A) ORGANISMUS: MENSCH	
_	(C) ORGAN:	
5	(0) 0110/111.	
	(") CONOTION LEDICINET	
	(vii) SONSTIGE HERKUNFT:	
	(A) BIBLIOTHEK: cDNA library	
10		
10		
	4.3 OF OUT AT DECCUPER INC. SEC ID NO. 57	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 57	
15	attgcgagtt tttttgtttg ttgtttcaat gtgacttgtc gtttatttca atgaaaattt	60
		120
		180
	2 2 3	240
20	agggattttt aaaaagtcaa aaacagtggc aggg	274
20		
	(2) INFORMATION ÜBER SEQ ID NO: 58:	
25	(i) SEQUENZ CHARAKTERISTIK:	
	(A) LÄNGE: 2073 Basenpaare	
	(B) TYP: Nukleinsäure	
30	(C) STrang: einzel	
	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	ng
25	hergestellte partielle cDNA	•
35	noigosomo parasiono de la companya d	
	(iii) HVDOTHETICCH: NEIM	
	(iii) HYPOTHETISCH: NEIN	
	OR ANTI OCNIOR NICINI	
40	(iii) ANTI-SENSE: NEIN	
	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
45	(C) ORGAN:	
	(vii) SONSTIGE HERKUNFT:	
50	(A) BIBLIOTHEK: cDNA library	
50		
		•
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 58	
	• •	
55	taaattteca aatgtteact egaggatett agaaaecaae catacagaeg ageegatgeg	60
	gtgaggagaa gcgtcaggcg gcgctttgat gatcagaact tgcgttctgt taatggtgcc	120
	gaaataacaa tgtgaacctg agactggcct gcatgaatac agggtgtgcg tgaatgaaac	180
	tgcccacatg aactttatgt gctacgattt aactgcagcc ttgaacacac acaaaaatat	240
60	tottaagggo toagatttag caaacacaga agaattttaa aatgagotot cotttcaaco	300
	cttgttaaca agtgcctaaa aatggaagta cctgttcaga ttaatcaaag caataggatt	360
	tgatttgatt aggtatcttt ttacaccagt atgttatttt taaccaaaat gtaaagttct	420
	tattaaactc attacctgcc attgtgattg tcccatcatg gcccacctgg tttcctgatg	480
	ttgtaaataa catcaatgca tctgctgtgg gtcctttgct gagatgtctt cgaaggaatt	540
65	ttgttttagc catatccatc aactttgtat tttacttgca atttggaaga aggaaagtca	600
	catgatgaaa ctccttttgt ctataaccag gccctggcaa agtgcaaaca ggatgcaact	660
	gcagtggcac aaaggtcact caatcctttg tttccagttt cacattctac tacttctgtg	720
	ctagagaacg atgctctgtg agaggcattc actagtatga atgtggggat atagtgtata	780

agacttattt gcagtactgt gttcttcagc tagaggcagc tttttaaata atgcaagtgt atttattagc attaaaatta acatctcagt aatcagcatt agcatttctg aggaccatta ttaattctga gaacagaaat tggtgccttg caaggaagtt tactagctct atcaacaagc attcaaggtt acatctgcta gcagagtagt gttaggaacc tggccttact ctcctctgac aatcgcaatt ttttcttatt ttttataaat tcaagaagat acacttggca tcgtgtatcg aggctaagtt tttcatgcat ttcccagact acttatggag aattgcagtt taagttgctg	900 960 1020 1080	s
aaaagtatta acatggtatt aagcttaaat aatacgtaat gggactagat ggcccactaa gccactgtta ttttccttcc tctctggcag ggcacttgat ccattccaaa gtcaaaaact ggactgaagc taaatttgta cttttcataa tatacattct gcttctggct tatcttcttg gtacatcaat atattaattg taaagtttat tgtatagtat ttaaccgctg aagttcctat	1200 1260 1320 1380	10
tttatgttgt gettatgtga acceettggt gaaggteeet ttteettgga tgtgtagtta tatgatettt ttaaatgtae agatattttg etataaaate ggtgeagttt tttatggttt ttacaettet etttaattee eacetaagee tetgggtaat attgtaaata ttgtttaaa atgeateage etatgetata eaatetgaat gttatttaa ettatagttt tttttaatat atatattaa etataaggae agtttaggga acaagttaee taccaeattt eactttagtg	1440 1500 1560 1620 1680	15
tacctattta cagaaagatt aaactgccac ctgcgggcac attcccataa atgtgtactt tactttaaaa agaacatgcc acgattttgt ctttctgtgg actcaacatt cacttcgatt aaaaatagca atttgaccaa gttggacttc cactacaaag cagctgtttt ccaaagttca atgctgacat atatgtatat taaaataatt gcctatttat taatctacaa atagacaacg ttggcatgtt cttttctgtt tgtctattaa tgggcctgct tcttagcaat attagaatgt tttataaaag caattcatgt tacttttctg gtcttttcat ggcatatgag caaataataa	1740 1800 1860 1920 1980 2040	20
actatttaca ctactagaaa gaaaagagaa gaa	2073	25
(2) INFORMATION ÜBER SEQ ID NO: 59: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 850 Basenpaare		30
(A) DANGE. 830 Baserpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear		35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editier hergestellte partielle cDNA	ung	40
(iii) HYPOTHETISCH: NEIN		45
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 59		60
ctattacaca tgaggttttt aatgtattta gacctgacaa taggggtgtc acttagatgt gatctcagtg ttgtgggtaa ctttgtgtg ctttaattcg aaatctggaa catagatgat gatttttcc tttgaattaa cttaatggt tctcttccct acagatttca gaacttatat ttccacctct tccaatgtgg caccctttgc ccagaaaaaa gccaggaatg tatcgaggga atggccatca gaatcactat cctcctcgt ttccatttgg ttatccaaat cagggaagaa aaaataaacc atatcgccca attccagtga catgggtacc tcctctgga atgcattgtg	60 120 180 240 300 360	65
accggaatca ctggattaat cctcacatgt tagcacctca ctaacttcgt ttttgattgt	420	

```
gttggtgtca tgttgagaaa aaggtagaat aaaccttact acacattaaa agttaaaagt
                                                                      480
    tcttactaat agtagtgaag ttagatgggc caaaccatca aacttattt tatagaagtt
                                                                      540
    attgagaata atctttctta aaaaatatat gcactttaga tattgatata gtttgagaaa
                                                                      600
    ttttattaaa gttagtcaag tgcctaagtt tttaatattg gacttgagta tttatatatt
                                                                      660
    qtqcatcaac tctqttqqat acgagaacac tgtagaagtg gacqatttgt tctagcacct
                                                                      720
    ttqaqaattt actttatqqa qcqtatqtaa qttatttata tacaaqqaaa tctattttat
                                                                      780
    qtcqttqttt aaqaqaattq tqtqaaatca tqtaqttqca aataaaaaat aqtttqaqqc
                                                                      840
    atgaaaaaaa
                                                                      850
10
   (2) INFORMATION ÜBER SEQ ID NO: 60:
      (i) SEQUENZ CHARAKTERISTIK:
         (A) LÄNGE: 2091 Basenpaare
        (B) TYP: Nukleinsäure
         (C) STrang: einzel
20
        (D) TOPOLOGIE: linear
     (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung
         hergestellte partielle cDNA
25
     (iii) HYPOTHETISCH: NEIN
30
     (iii) ANTI-SENSE: NEIN
     (vi) HERKUNFT:
        (A) ORGANISMUS: MENSCH
35
        (C) ORGAN:
    (vii) SONSTIGE HERKUNFT:
        (A) BIBLIOTHEK: cDNA library
40
     (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 60
    aagagacaga ctattaactc cacagttaat taaggacgta tgttccatgt ttatttgtta
                                                                       60
                                                                      120
    aagcagtgtg aatagcette aagcatgtga ataatettee atetteeceg cegetttttg
                                                                      180
    tttctttcag gtagacacct tttaaaatgc agaactaact gaggcatttc agtaactttg
                                                                      240
   ctttcaaatc aataaagtca aatgtatgga aacattttgt gccctactct ccataccccg
   tgtactcaaa ttctctactg tatgaattat gctttaagta gaattcagtg ccaaggagaa
                                                                      300
   cttggtgaaa taaattattt taatttttt tttatccttt acaaagccat ggattttatt
                                                                      360
                                                                      420
   tggttgatgt gtgctctgta cacaagccat ttcaatagga tggagctgtt aattattttc
   caaagagtaa tagacatgca aaagtttcaa taaaaactgg gccattaaca aataaattaa
                                                                      480
   taaactaata agcattccct tctaggtttt tgccaaactg cctatccaat aacaaatttg
                                                                      540
   agaatcgttg aaaaagctag ttatatttca gagaaatgat tttcattatt gaaactgttc
                                                                      600
   tecetageag gecattitee etititeetg ggagtttage aagtttagga gagaatagte
                                                                      660
                                                                      720
```

780

840

900

960

1020

1080

1140

1200

1260

atgaacgtaa tccctttgct agaaatattt aagagcagct cagcttggtt gaaactgagt

tttgtcatct tccatatttg caggaaggta ttttctgact tgcaatgcag ctagatgtaa

aattttattt tatcatccta gaaagccttg actagaaaaa tgaataaata ttgagggttt

cctgtccata tctggcttgc atgtgccaga aagcagagaa tagaaaatgt aatctccaac

atccaagcat cgaaacccaa ggggtaggca attctatgta ggttttggac atgaagtttg

gtgcatcttg gtttatgctg gctcaactgc tattaaacct ctctggctta tagtctcttc

attctattag acaagcacgt atcgaacact tgcttcgcac aaggctcttt agttaacaat

ttagcagcta ctgtttgtgt taaacacact tttcaccaaa taggttctga ggcaaacgag

agcaatgact atttaaagaa aggctttccc agcatcactt acacatccca aaactaaaaa

gatcaactct tccaactgag aaaagactcc tggctttgaa tggaaactta cagcagagag

tcacaggcca cggcaacaac aacgacaaca acaaacattt ggaatattat tctcaactca 1380 cgttttaata atacatcta ttattttct agtagagaaa ctacaaatca gcctcttcaa 1440 catttatata cagtttaata agcctcttgc aagttacttg ttctctcacc tgaggtattt 1500 ttttcctccc caccttgccc ctgttcctcc cttcctcttc tccctttgca agaggaaata 1560 tttaacatat ttgggtccaa cttcaataat gtaataatta atacattaaa agcatttaac 1620 ttccttcta gaaaaatgca caggctaagg catagacaaa acaaagagaa atgctgagaa 1680 atttgccact ggagacaagc aatctgaata aatatttgcc aaaagttctt tttatgccat 1740	5
atagtgtcag gatttgaagg agctatttt ttttaatgtt gcaactagca actcatcttc 1800 ggaagacaca gccaggagaa tgaagtagaa gtgaaaggtt tataaatcca tttgtaagca 1860 tttatcccat atattttaaa ttcaagaaaa attgtgttta tctttagaat tttgtattca 1920 atactttatg tactatgtga ctcatgcttc tggataaata aagcaccaaa tatgtatctg 1980 taaccacaat cacacatatt atattaaata tatatctata taacagccaa aaaaaaaaaa	10
(2) INFORMATION ÜBER SEQ ID NO: 61: (i) SEQUENZ CHARAKTERISTIK:	20 ,
(A) LÄNGE: 2952 Basenpaare(B) TYP: Nukleinsäure(C) STrang: einzel(D) TOPOLOGIE: linear	25
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	30
(iii) HYPOTHETISCH: NEIN	35
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	40
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 61	50
ctcgtcccaa accaggacac cctctctaca gtaaatacat gcgtggggat gtacttgtga 60 tgctgaagca gacggaaaat aattacttgg agtgccaaaa gggagaagac actggcagag 120 ttcacctgtc tcaaatgaag attatcactc cacttgatga acatcttaga agcagaccaa 180 acgatccaag ccacgctcag aagcctgttg acagtggtgc tcctcatgct gtcgttcttc 240 atgatttccc agcagagcaa gttgatgatt tgaacctcac ttctggagaa attggttat 300 cttctggaga agatagatac agattggtac agagggaact gtagaaacca gattggcata 360	SS
tttcctgcca actatgtcaa agtgattatt gatatcccag aaggaggaaa tgggaaaaga 420 gaatgtgttt catctcattg tgttaaaggc tcaagatgtg ttgctcggtt tgaatatatt 480 ggagagcaga aggatgagtt gagtttctca gagggagaaa ttattattct taaagagtat 540 gtgaatgagg aatgggccag aggagaagtt cgaggcagaa ctgggatttt ccccctgaac 600 tttgtggagc ctgttgagga ttatcccacc tctggtgcaa atgttttaag cacaaaggta 660	60
ccactgaaaa ccaaaaaaga agattctggc tcaaactctc aggttaacag tcttccggca 720 gaatggtgtg aagctcttca cagttttaca gcagagacca gtgatgactt atcattcaag 780 aggggagacc ggatccagat tctggaacgt ctggattctg actggtgcag gggcagactg 840 caggacaggg aggggatctt cccagcagtg tttgtgaggc cctgcccagc tgaggcaaaa 900	65

```
qqaqaatqaa qatgaacttt ccttcaaggc tggaqatata ataacagagc tggaatctgt
                                                                           1020
       agatgatgac tggatgagtg gagaacttat gggaaaatct ggaatatttc ccaaaaacta
                                                                           1080
       catacagttt ctacagatca gctagaggag aagettgtct gtgttccttg gcacaagaac
                                                                           1140
       tcacttgaac tatcaccttg actatcagat atgtttttgc actatttttt ttaactgaaa
                                                                           1200
       aagaaatatc taagctgtac atggtacact agaattttct gaaagcagaa aacgttcaga
                                                                           1260
       ttttgtagtt aattttcatt acaatagaaa catgcacatg gaaacccatg agctaggatt
                                                                           1320
       ctaccqaqqa aaacatctag tgggattagc aaggtqaaqg gaaagcatct ggtggcatqq
                                                                          1380
       cagcatgggg aggeteacac acagaagttg cacgtggaca tetgttttaa teagcacaag
                                                                          1440
10
       tqaattaacc atgcttcttc atttttttac tttagttaaa aaagaggaca tttaatattc
                                                                           1500
       tacatgctqt aactatcagg acatggttag caatctcaat ttcatttttg atattcaaat
                                                                           1560
       taattettac agettgagea tateageett attaccagag caaateette etteagatgg
                                                                          1620
       gatagtttac tgactagttg gagcatttgt aagcacatgg tgaaatcagc ccctgcccac
                                                                          1680
                                                                          1740
       caaaataatc tttatgttac caagtgattc ccatttgtct aaggatttga agggggtcta
15
                                                                          1800
       aattggatgt atcttagtct aaagaaccaa aaccatccct gaaatgcctt gctaatacaa
       ctaatccttc catatatqtq ccatacttat ttttttcctc agtqtatact ttatqttaac
                                                                          1860
       agggttatta caaagcacat tttctgaatc tgcaatcatt cctttgacaa ttactggacc
                                                                          1920
      caaaqqaaaa ttcattttct ttgcattatt ccagtaatat ataaaaactg tgtcttgtta
                                                                          1980
20
      tagtagtaca ttatgaatca catataaaat cttacaatac agaacaactg ttaagatgga
                                                                          2040
      aaacagtgcc aaacctccac agctcatttc tttgtaatat aatcagaatg aaaaataatt
      taaqaqqaca qaaqactggt acttttttgt tttatttttt ctctagctta tccctgcaca
                                                                          2160
      attattagag tgaatgaaaa accactttcc tgctttccat tgttataaat tctaagctta
      agataaaagt ggttctttac atgactgaat caattacaat ttatgggcta gagccaaata
25
      ggttgaagac aatcatccaa acagatcaat ggaatagaat ttcattggaa atgtaaaaca
                                                                          2340
      ctttcccaac aatggtcatg actttcttct gtttttgaga agagtttcat atgctggacc
                                                                          2400
      acattttagc ttttattgtt tttttttcc cattgtccaa aaagttaagc aacaagtqqc
                                                                          2460
      cacactttta cgtgactaca acctggagtt ctgcaaagaa ggtaatattt acttggtctt
30
      tgactaaagt tatctcccca ttctatggtt acattttatt ttggactatg gggacttcta
      atacqttttq qtaaagaaga gagtataaag aaaattcttg tcaaatttca ctcaaaagta
      atttcatgag aaatcaatga tttaaagcat tatccaaatt aaattatcat ttgcagcaaa
      ctgtacaaca gcaggaagga tatggaatgg aacatgaggt atatatcttt gcctttataa
      ttttaacatc ttatattgaa gattctgaaa acctatcttt attagaggaa aatctcaatc
35
      ttcagttttg gccttctgtc accagaatga taagtgcaat agttgtaaat ctacttgaca
      ctgtaataaa ctgaactgaa ctttcaaaat ccctttctca tactagactg agttttttga
                                                                          2940
      gaatggaggt gg
```

(2) INFORMATION ÜBER SEQ ID NO: 62:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2313 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

40

45

SO

55

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 62

cataatagtt	aactctactt	actgttttaa	catacatttg	atttaacaaa	ttgttcagca	60	5
taacacttct	aattaagttt	atcaagttgt	actgtattag	ataatcagca	gtgtatctgg	120	,
agtatgttta	aagagaacag	ttcgcaatac	aaaaagttac	atggagcttt	acatcttaac	180	
tttctttgtc						240	
atgtaaagga	aatcacctac	tttcatgcag	gtgtataatc	ttgaaaagga	aaaatgcttc	300	
catgttgaag	ccagattttc	tgtagtaaaa	cttttaaata	ttattttaaa	agaaatatgt	360	10
atataaatat	ctctatattc	tttggaatga	tactaaagtc	tctggtctag	gaccatacct	420	
tatataaagg	tataaqaqac	catgacaatg	tctgaaaatg	gaatagataa	tgatgccttt	480	
tatttaaagt					_ •	540	
aatgtgttga						600	
aatcagatga	_	_	-			660	15
gaagtgcata						720	
agaaatgtta						780	
ttctgttgtc						840	
taagattagt a		-		-	_	900	20
gtcagactta						960	20
gtttgattat a						1020	
tttcttattt				_	_	1080	
ccctattcag						1140	
tttatatttg a						1200	25
tacgttcttt						1260	
tgaaagcagg						1320	
tgggattgtt t	-		-			1380	
ataaaagcat t			-		-	1440	
tttccattat a						1500	30
ttaggattac a						1560	
attcttatgt o						1620	
tacaggcagg a						1680	
aggtttttt d	•		-	•		1740	35
cagetgetet o	-		-			1800	
ttatatgtct a			-			1860	
cttttggatg g						1920	
tgctcttcta						1980	
ttgagaaaaa d		-	-		-	2040	40
actggattac a						2100	
ttattgaatt a		-				2160	
ttcctggtgg t						2220	
ctttgtcagt t						2280	45
aattigagia a	-		-	•	,	2313	45
3.3							
(2) INFORMAT	TION ÜBER	SEQ ID NO	: 63:				50
(,							
(I) OFFICE		ZTEDICTIV.					
		CTERISTIK:					
	GE: 1650 B						
(B) TYP:	: Nukleinsäi	ure					55
(C) STra	ang: einzel						
	OLOGIE: lii	near			• •		
(5) 10.	OLOGIL. III	ioui					
(II) MOLEKT	il TVD	ain-alman F	OT- domak A				60
			S I S durch A	ssemblierun	g una Ealtien	ung	
hergeste	ellte partielle	e cDNA					
(iii) HYPOTH	IETISCH: N	EIN					15
• •							65
(iii) ANTI-SE	NSE: NEIN						
, ,							

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

10

55

60

65

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 63

```
ccgcggggct gggggagctc ggggagcctg cgggaccggg ggagcccgaa ggccaggggg
                                                                      60
     120
     gcaggacttg gatggtgaga aggggccatc atcggaaggg cctgaggagg ggggacggag
                                                                     180
     aaggettete etteaaatae ageeceggga agetgagggg aaaceagtae aagaagatga
                                                                     240
     tgaccaaaga ggagctggag gaggagcaga gaactgaaga ataacgaagt tatccttagc
                                                                     300
20
     gtcctcctaa aggcttttcc ttttggcatc ttaaaagctt gagagataaa acggaaaccc
                                                                     360
     cagagaggag totgggcagg ctcccagggt gcatgctgcc tccataaatc tgctgagctc
                                                                     420
     tagaccetca atcaggaett gteeettgge tageaggate etgggaacae etttggeeet
                                                                     48C
     gccctgtgta gagatgttca tgtctgttcc tgtgggtcac tttgttaagc tgaagagttt
                                                                     540
     taagaggtag ageteagace etggaetggg atttttetta ceaeteaaac ttgetateea
                                                                     60G
25
    cacaccetge acacettaga taaaaagaac attttaaaag cagagtteac tttcacteea
                                                                     660
    qtctcccctc ttttqccctc actqaaqcca aaccacaqaa qactttqaqq aatqaqaqac
                                                                     720
    aaatgaggta gageteacet gtgeteacea geteegteag ggtggteage egacecettt
                                                                     780
    ccctgggaac cccacttctc tctgtggctg gcttggttgt cgggggtgag atgccatatt
                                                                     840
    qattacaqgg cagcaaagaa ccagtaccag gaatttactt gaccattccc cttatttttc
                                                                     900
    atctagagga atctcggatt cagccctttc attgctaaga caccttttca ctgaggttct
                                                                    .960
    taccagetea gecaaatete eactetgeta tageagaage aataatgttt getttaaaaa
                                                                    1020
    gatttcttga cctatgcctt ttcttagaaa gtttgataga ttagttagaa cttcagatca
                                                                   1080
    tcagatcagt ctcaaatggg tttcttggaa ttttatattt gacaatattt atactatacc
                                                                   1140
35
    aaactcattt gcagttctta ggtttgttgg ttaaaacatt tttttaaagc agtaagttta
                                                                   1200
    tagaaaatgt tttcatttaa tggaaggctg gggaatgtcc agcatcaacc cctatqgcat
                                                                   1260
    gcattcccag tggccttctc atctgggcct ggaacctttg gttcagggct taggggagaa
                                                                   1320
    caqqccacat ggcaacagcc acacagtcat tgccttcaac acagagccac gtgtccccaa
    acagcaatag tcatgccctt gtccaggctg ggatctaatt gatacaatag gtcgttgact
    ccctcctagt agagetatet aggtttgtet ggaaagttte eqaccetgge ttataggeae
    cacacctcat gtactcctca tggcttggat ctctqtattc aqcctttqtt caqtccaata
                                                                   1560
    1620
    gggcacaaag gcggaatggg ggtgagcttt
                                                                   1650
45
```

(2) INFORMATION ÜBER SEQ ID NO: 64:

- 50 (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2851 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

5

10

65

(A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 64

cgccccgcgc cggccccgcg ctgtcagctc cctcagcgtc cggccgaggc gcggtgtatg 60 ctgagccgct gccgcagccg gctgctccac gtcctgggcc ttagcttcct gctgcagacc 120 15 cgccggccga ttctcctctg ctctccacgt ctcatgaagc cgctggtcgt gttcgtcctc 180 ggcggccccg gcgccggcaa ggggacccag tgcgcccgca tcgtcgagaa atatggctac 240 acacaccttt ctgcaggaga gctgcttcgt gatgaaagga agaacccaga ttcacagtat 300 qqtqaactta ttqaaaagta cattaaagaa ggaaagattg taccagttga gataaccatc 360 aqtttattaa aqaqqqaaat qqatcagaca atggctgcca atgctcagaa gaataaattc 420 20 ttgattgatg ggtttccaag aaatcaagac aaccttcaag gatggaacaa gaccatggat 480 gggaaggcag atgtatcttt cgttctcttt tttgactgta ataatgagat ttgtattgaa 540 cqatqtcttq agagggaaa gagtagtggt aggagtgatg acaacagaga gagcttggaa 600 aaqaqaattc agacctacct tcagtcaaca aagccaatta ttgacttata tgaagaaatg 660 25 qqqaaaqtca agaaaataga tgcttctaaa tctgttgatg aagtttttga tgaagttgtg 720 cagatttttg acaaggaagg ctaattctaa acctgaaagc atccttgaaa tcatgcttga 780 ataltgcttt gatagctgct atcatgaccc ctttttaagg caattctaat ctttcataac 840 tacatctcaa ttaqtggctg gaaagtacat ggtaaaacaa agtaaatttt tttatgttct 900 tttttttggt cacaggagta qacagtgaat tcaggtttaa cttcacctta gttatggtgc 960 tcaccaaacq aaqqqtatca qctatttttt tttaaattca aaaaqaatat cccttttata 1020 gtttgtgcct tctgtgagca aaacttttta gtacgcgtat atatccctct agtaatcaca 1080 acattttagg atttagggat accegettee tettttett geaagtttta aattteeaac 1140 cttaagtgaa tttgtggacc aaatttcaaa ggaacttttt gtgtagtcag ttcttgcaca 1200 atqtqtttqq taaacaaact caaaatggat tcttaggagc attttagtgt ttattaaata 35 1260 actgaccatt tgctgtagaa agatgagaaa acttaagctt tgttttacta caacttgtac 1320 aaaqttqtat qacaqqqcat attctttqct tccaaqattt gggttggggg cactaggggt 1380 tcagagcctg qcagaattgt cagctttagt ctgacataat ctaagggtat ggggcaagga 1440 tcacatctaa tgcttgtgtt ccttatactc tattatatag tgttattcat gattcagctg 1500 40 atcttaacaa aattcgtagc agtggaacct tgaaatgcat gtggctagat ttatgctaaa 1560 atgattetea gttageattt tagtaacaet teaaaggttt ttttttgttt gttttetaga cttaataaaa gcttaggatt aattagaaga agcaatctag ttaaatttcc catttgtatt ttattttctt qaatactttt ttcatagtta tttgtttaaa aagatttaaa aatcattgca ctttggtcag aaaaataata aatatatctt ataaatgttt gattcccttc cttgctattt 1800 45 ttattcagta gatttttgtt tggcatcatg ttgaagcacc gaaagataaa tgatttttaa aaggetatag agtecaaagg aatattettt tacaccaatt etteetttaa aaatetetga ggaatttgtt ttcqccttac ttttttttct tctgtcacaa tgctaagtgg tatccgaggt 1980 2040 tcttaatatg agatttaaaa tcttaaaatg tttcttattt tcagcactta catcatttgg 50 tacacagggt caaatagggc aaataatttt gtctttgtat aatagatttg atatttaaag 2100 tcactggaaa taggacaagt taatggatgt ttttatattt taatagaatc atttatttct atgtgttatg aaattcactt aatgataaat ttttcaacat acttgccatt agaaaacaaa 2220 gtattgctaa gtactataac atattggcca ctaaaattca tattgagatt atcttggttt cttggaagag ataggaatga gttcttatct agtgttgcag gccagcaaat acagaggtgg 2340 55 tttaatcaaa cagctctagt atgaagcaag agtaaagact aaggtttega gagcattcct 2400 actcacataa gtgaagaaat ctgtcagata ggaatctaaa tatttatagt gagattgtga 2460 2520 ggtatctttc tqtqgcattt gagaacagaa accaagaaac atqqtaatta ctaaattatg 2580 aggetttget ttttgtttge ttttaagtag aaaaacatgt tggcaacatt gagttttgga 60 qttqattqaq ataatatgac ttaactagtt ttgtcattcc atttgttaaa gatacagtca ccaaqaatqt tttqaqtttt ttqaaaqacc ccaatttaaq ccttqcttat ttttaaatta tttccattca gtgatgttgg atgtatatca attatttagt aaataatctc aataaatttt 2820 gtgctgtggc ctttgctaaa aaaaaaaaa t 2851

(2) INFORMATION ÜBER SEQ ID NO: 65:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1071 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

5

15

20

60

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 65

		+		a+a+++a+a	~~~~~~~	anat accept	60
		tggcggctcc					
	caggccccgc	cgggccttcc	gggccaagct	tcgcttcttc	aggcagctcc	aggcgctcct	120
	agaccttcca	gcagtacttt	ggtggacgag	ttggagtcat	ctttcgaggc	ttgctttgca	180
35	tctctggtga	gtcaggacta	tgtcaatggc	accgatcagg	aagaaattcg	aaccggtgtt	240
		tccagaagtt					300
	aaaagattgc	agttatctgt	ccagaaacca	gagcaagtta	tcaaagagga	tgtgtcagaa	360
	ctaaggaatg	aattacagcg	gaaagatgca	ctagtccaga	agcacttgac	aaagctgagg	420
40	cattggcagc	aggtgctgga	ggacatcaac	gtgcagcaca	aaaagcccgc	cgacatccct	480
	cagggctcct	tggcctacct	ggagcaggca	tctgccaaca	tccctgcacc	tctgaagcca	540
	acgtgagcaa	agggcagagg	cagttggcct	atgagtgggc	tgatgcgtga	ggttggccac	600
	acattccttc	ctgtggactt	gacattttgg	aagaactctt	tgccagataa	tgagttcatt	660
	ttagttttat	gctcccattg	aaaaattttc	cactatttt	ataagctgtt	aatttcttga	720
45	gtactttata	acatgtctgt	agcttggata	aaccaagtaa	gtatttttt	tttgtcttta	780
	gcgaagttta	gactgtgaat	atgatgacac	agattctttt	ttatggtggc	tttgcttgtt	840
	ttaaattttt	gcatgacttt	tcatcttttt	atgtgtgttt	cctgtagttt	gatccgaagg	900
	aaaagagtat	agtagcctga	gaatcaggag	atgggagttt	tagtcgtagg	ccttatgata	960
	attaccccgc	ggtggtgtgt	agaaaagtat	gtaaatttgc	tctgttttaa	gactttgaac	1020
50	tacctcaaga	agaggaatct	aatacaatat	ttgtaatgtt	tccagaaaaa	a	1071

- 55 (2) INFORMATION ÜBER SEQ ID NO: 66:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2375 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

(iii) HYPO	THETISCH:	NEIN					
(iii) ANTI-S	SENSE: NEII	N					5
` '	UNFT: RGANISMUS RGAN:	S: MENSCH					10
· ,	TIGE HERK BLIOTHEK: (15
(xi) SEQU	ENZ-BESCH	HREIBUNG:	SEQ ID NO:	66			
acettoccaa	ttctataact	ccttaggata	tettaetaaa	cttaattgca	gctgccactc	60	20
					cattacttgg	120	
	caagaatacc					180	
					caaatggaga	240	
	tgctctgata					300	
	ccatttggat					360	25
	gatggctttg					420	
	gtggagtgaa					480	
	tttgggtgtg					540	
	ttttatgact					600	30
	gctatcccag					660	
	gagagaacag					720	
	acctcaggaa					780	
	gtttttagaa					840	
	tttccaagtg					900	35
	tttgaaccca				_	960	
tggctttcat	gtgaaacctt	gaatatgcaa	agcccagcag	gagagaatcc	gaaaggagta	1020	
acaaaggaag	ttttgatatg	tgccacgact	ttttcaaagc	atctaatctt	caaaacgtga	1080	
aacttgaatt	gttcagcaac	aatctcttgg	aatttaacca	gtctgatgca	acaatgtgta	1140	40
	tccactaagt					1200	
	caagacaatg					1260	
	ttgtgaagga					1320	
	ctggtttgcc					1380	
	tcatgcactg					1440	45
	tttggcaatg					1500	
gggaagaaca	ccaatgtcct	agctgtatta	tgattctgca	gtgaagacat	tgcatgttgt	1560	
	gtacacttga					1620	
	agggtatttg					1680	50
	tactaaagtc					1740	
	gtgtttgcgt					1800	
	aagatttgaa					1860 1920	
agcagccaca	ctcgggggag atgcacatag	gygaaggicg	graggraage	tytaacayat	aaaaaaataa	1920	
	tgtccctccc					2040	55
	tctaggacaa					2100	
	ttaaattgtt					2160	
	ttcttttagt					2220	
	agtttgttgc					2280	60
	gctttgccat					2340	
	tatcttttca			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2375	
						-	

(2) INFORMATION ÜBER SEQ ID NO: 67:

65

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1823 Basenpaare
 - (B) TYP: Nukleinsäure (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

15

2Ω

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 25 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 67

```
qtcaqqataa ccttaaqqat aqatqaaqqq ttgaqaqcct qtqcctcatt tctgagttct
                                                                      60
caqctqctat qccqtqqaaa tcctqtttac tttctqcatc tqctcctqca agactctqqa
                                                                     120
                                                                     180
qccaqtcttq agqtcctaca tctccgaaag caagctcttc tagaagttga tagctttcca
                                                                     240
atgattagac quattgattc tttctgtgac tcatcagttc atttcctgta aaattcatgt
cttgctgttg atttgtgaat aagaaccaga gcttgtagaa accactttaa tcatatccag
                                                                     300
gagtttgcaa gaaacaggtg cttaacacta attcacctcc tgaacaagaa aaatgggctg
                                                                     360
                                                                     420
tgaccggaac tgtgggctca tcgctggggc tgtcattggt gctgtcctgg ctgtgtttgg
                                                                     480
aggtattcta atgccagttg gagacctgct tatccagaag acaattaaaa agcaagttgt
                                                                     540
cctcgaagaa ggtacaattg cttttaaaaa ttgggttaaa acaggcacag aagtttacag
acagttttgg atctttgatg tgcaaaatcc acaggaagtg atgatgaaca gcagcaacat
                                                                     600
                                                                     660
tcaagttaag caaagaggtc cttatacgta cagagttcgt tttctagcca aggaaaatgt
                                                                     720
aacccaggac getgaggaca acacagtete ttteetgeag eccaatggtg ceatettega
accttcacta tcagttggaa cagaggctga caacttcaca gttctcaatc tggctgtggc
                                                                     780
agctgcatcc catatctatc aaaatcaatt tgttcaaatg atcctcaatt cacttattaa
                                                                     840
                                                                     900
caagtcaaaa tottotatgt tocaagtcag aactttgaga gaactgttat ggggotatag
ggatccattt ttgagtttgg ttccgtaccc tgttactacc acagttggtc tgttttatcc
                                                                     960
ttacaacaat actgcagatg gagtttataa agttttcaat ggaaaagata acataagtaa
                                                                    1020
agttqccata atcqacacat ataaaggtaa aaggaatctg tcctattggg aaagtcactg
                                                                    1080
cgacatgatt aatggtacag atgcagcctc atttccacct tttgttgaga aaagccaggt
                                                                    1140
attqcaqttc ttttcttctg atatttgcag gtcaatctat gctgtatttg aatccgacgt
taatetgaaa ggaateeetg tgtatagatt tgttetteea tecaaggeet ttqeetetee
aqttqaaaac ccaqacaact attgtttctg cacaqaaaaa attatctcaa aaaattgtac
atcatatqqt qtqctaqaca tcaqcaaatq caaaqaaqqq agacctqtqt acatttcact
tcctcatttt ctgtatgcaa gtcctgatgt ttcagaacct attgatggat taaacccaaa
tgaagaagaa cataggacat acttggatat tgaacctata actggattca ctttacaatt
tgcaaaacgg ctgcaggtca acctattggt caagccatca gaaaaaattc agtgagtctc
ttgaaaatgg gtattttgat atgatctgta gtatcgtagt atcttcttgt aaggacatga
gtaaatctat gtaagtaagt gggaataaca tetggtatea aettatettt agettaatgt
caccaatcag tattaaatgc ttatgactaa tttcacagat tttggaatgg ttttatggtt
ttatttgagc atttgatagc atctctgatt ttgttagctg cgcaaatatt tctatgacaa
                                                                   1800
taattaattt ttggaattca tat
                                                                   1823
```

(2) INFORMATION ÜBER SEQ ID NO: 68:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2403 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	15
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 68	30
tgaaactcct gttttccgaa gatcagcaag gcggttctct ggaacagctg ctgcagaggt 60 tctcatcaca gtttgtgagc aaaggcgact tgcagacgat gctgcgagac ctgcagctgc 120 agatcctgcg gaacgtcacc caccacgttt ccgtgaccaa gcagctccca acctcagaag 180	35
ccatcgtgatc tgctgtgagc gaggcggggg cgtctggaat aacagaggcg caagcacgtg 240 ccatcgtgaa cagcgccttg aagctgtatt cccaagataa gaccgggatg gtggactttg 300 ctctggaatc tggtggtgc agcatcttga gtactcgctg ttctgaaact tacgaaacca 360 aaacggcgct gatgagtctg ttttgggatcc cgctgtggta cttctcgcag tccccgcgcg 420	40
tggtcatcca gcctgacatt taccccggta actgctgggc atttaaaggc tcccaggggt 480 acctggtggt gaggctctcc atgatgatcc acccagccgc cttcactctg gagcacatcc 540 ctaagacgct gtcgccaaca ggcaacatca gcagcgccc caaggacttc gccgtctatg 600 gattagaaaa tgagtatcag gaagaagggc agcttctggg acagttcacg tatgatcagg 660 atggggagtc gctccagatg ttccaggccc tgaaaagacc cgacgacaca gctttccaaa 720	45
tagtggaact teggatttt tetaaetggg gecateetga gtatacetgt etgtateggt 780 teagagttea tggegaacet gteaagtgaa gacaetaete attatttttg tacatttttg tatatatetgg gacagegtga aacaetggaa teetteatgg aegagggeat atacaatgat 900 gggacagtge eacaeteett eaataaacgt ggetgetgge eagaggaegt gagegtgtga 960 egggegeett ggegeacet gttgggtget eactgeetet geaggtgeag aggggteage 1020	50
agcaggagaa gcgtgttgaa cacgtggctc tcagacactc cttgttttta acgggaagct 1080 ctttgcattt gcatttcctc aacaaaggag caaagcagag gaagctgaga gtctggcgtg 1140 ttcttgacgc tttggtcttc agccttgcac tggctcttct aaaggacttt tggagggcag 1200 ataatttcat ctgttaaatc caacacacat ttctttcagg gaaaaacaat gtcaccaaat 1260 tttcagagtt ctaaactcct ttccttcaag ccggaatttt cctttttca gcaccagtag 1320	55
gtactaagtc tccagatggg gaaataacta aaatgtgttt ttctgctttg ttcgctctta 1380 cttctgagga aggtttccag tcaggactcg ctgtaccaat atccatggag gaatatggga 1440 gcgtttcgct ctccttgtag gctgaagtca gtctgacttg aaggggcctg gtttggatct 1500 aagcaaacac ccagatgggg ttctctggtc tcagcaaggc ttttcctgtt gggagtcaca 1560	60
gtaaacagaa acccaaaaat ctcatcttgg gtgttttcag ggcttgtttt gagttttgct 1620 gaatagggag cgcaagacgc cctgagcete cctctcactg gtggtgataa gaggagccgt 1680 ctggtgtgtc agggtcacga acccgttaca tttcaggacg atcctttttc cttcagcagc 1740 attcttact ggctgtggct ggaatctgcc ttttatcaca gctgtcacca ttctcacgtg 1800 attcttgtga gactctttt ggttataart actatttaat atttagacta ttttactgag 1860	65

- (2) INFORMATION ÜBER SEQ ID NO: 69:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1246 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 30 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:

15

20

25

35

40

45

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 69

```
actaagattt tatgttggag atacttettt aaataaceta cagettgggt etatggettg
                                                                      60
tgacccccag attcatggag gggctttagc aatcagcttt gtacatcatc atttttctga
                                                                     120
atgaccaatc ccactaaaca tctttgaagt cggcctagag aggtccttca gatgattcag
                                                                     180
aaatagctgg cttgtctgag tccagatttc tcatcaactg gcaatacaaa ggaaaatatg
                                                                     240
gtacaggagt tagttagaaa ggtcttattg attttacttc tacttttcac tacagttaca
                                                                     300
ggtagaatac tgtaggaagt cagtgcaagg tgcatgcttg attgatagat attgattgtt
                                                                     360
tttcagtctc tggggtcagt tttgtggttt ctgctttctt gcctaaatca aagactattt
                                                                     420
caagtcaaca acactgaaaa ctgcttttcg cctccactct tacagctgtg cctaataata
                                                                     480
attaattaat aaacgcacag ccctatgtga acagacagga atttcttgtg caatgtggag
                                                                     540
caaatggaat ggtctccttc cgcaagtctt tttaatcctc atatctggag tacaagggta
                                                                     600
gacctctggc ttaccacata cactatgcta aagtcatcag ccactgctac tacatcttgc
                                                                     660
cagaaggttt ccctcgccaa caaacagttg aaatttaagg gaagaagcaa aagctaaact
                                                                     720
gtctttgacc ctaagataga tagaaagcta tttatttgtc ttcagtgttc aaggcatgac
                                                                     780
tagtatttct aattagccta ataaattccc acactttctg aagtgaacac taatggtatt
                                                                     840
gtcctactaa aactgtcatt gtttcttttt ttttaactgg tcagtcattc acaataagct
                                                                     900
atgagggtaa ataaatatgt gttataacaa gtaaaccgta gttgcaagaa tataccatga
                                                                     960
agattaaagt aggctgggtt tcatttccat cttcccacac atctcattga atttgatggt
tgacttaatt ggcaccataa ctttgtatga tattatacat taacctttat ttatgtaaag
taaaatgcct tatatattaa agagtaagtg caataatatg aaatagcctg tacattttaa
```

	taaacactct		-		c ccaaycaacc	1246	
(2) INFORM	ATION ÜBE	R SEQ ID N	O: 70:				5
(A) LA (B) TY (C) ST	ENZ CHARA NGE: 2939 P: Nukleins: Trang: einzel DPOLOGIE:	Basenpaare äure					10
• •	KÜLTYP: au stellte partie		ESTs durch	Assemblieru	ng und Editien	ung	
(iii) HYPO	THETISCH:	NEIN					20
(iii) ANTI-S	ENSE: NEI	٠ .					
(vi) HERK					·		25
(C) OF	RGANISMUS RGAN: TIGE HERK						30
	BLIOTHEK:						
(xi) SEQU	ENZ-BESCH	REIBUNG:	SEQ ID NO:	70			35
aataagaaag agaagccccg	ttcaacagaa agtcgtcttt	ttactggcct ctcctgatga	cgatccagct tgcagatttt	ggacctaact gtagacgtct	aagtctgacc ttgagtatgc tacacacatt atgttgacat	60 120 180 240	40
ttacccgaat tgcagagaga tcatctcttc	ggaggtactt ggacttggag atcgactctc	ttcagccagg atgtggacca tgttgaatga	atgtaacatt gctagtgaag agaaaatcca	ggagaagcta tgctcccacg agtaaggcct	tccgcgtgat agcgctccat acaggtgcag gctgcaacaa	300 360 420 480	45
	gagatcaata atgccctaca	aagtcagagc aagtcttcca	caaaagaagc ttaccaagta	agcaaaatgt aagattcatt	acctgaagac tttctgggac	540 600 660	50
gagtgagaac aatttacaca ttcatacttt	gaggtagata	ttggagaact	actcatgttg	aagctcaaat	ggaagagtga	720 780 840	
agtaaaagca tttgcagaaa gaagtcaggc	ggagagactc ggaaaggcac	agaaaaaggt ctgcggtatt	gatcttctgt tgtgaaatgc	tctagggaga catgacaagt	aagtgtctca ctctgaataa	900 960 1020	55
gaatgaagtg tggattttcc caagcactaa	gaggaagtaa tgaatattaa	cttttacaaa tcccagccct	acatacccag acccttgtta	tgtttggggt gttattttag	gtttcaaaag gagacagtct	1080 1140 1200	60
caacgttaaa tgtttgagcg ttggttagaa	agacagtgga cagagtaaaa	tcatgaaaag taaggctcct	tgctgttttg tcatgtggcg	tcctttgaga tattgggcca	aagaaataat tagcctataa	1260 1320 1380	
actttactct tctacacagc cagacgtcaa	aagtctccaa agtatgaatg	gaatacagaa atgttttaga	aatgcttttc atgattccct	cgcggcacga cttgctattg	atcagactca gaatgtggtc	1440 1500 1560	65
gaggttttaa atataaaatc	acagtcccta	ccattggcct	gcatcatgac	aaagttacaa	attcaaggag	1620 1680	

```
ctcccccttc ttttttgtct caagattata ttataataat gttctctggg taggtgttga
     aaatgagcct gtaatcctca gctgacacat aatttgaatg gtgcagaaaa aaaaaaagaa
                                                                        1800
     acceptaattt tattattaga ttctccaaat gattttcatc aatttaaaat cattcaatat
                                                                        1860
     ctgacagtta ctcttcagtt ttaggcttac cttggtcatg cttcagttgt acttccagtg
                                                                        1920
     cgtctctttt gttcctggct ttgacatgaa aagataggtt tgagttcaaa ttttgcattg
                                                                        1980
     tgtgagcttc tacagatttt agacaaggac cgtttttact aagtaaaagg gtggagaggt
                                                                         2040
     tcctggggtg gattcctaag cagtgcttgt aaaccatcgc gtgcaatgag ccagatggag
                                                                        2100
     taccatgagg gttgctattt gttgttttta acaactaatc aagagtgagt gaacaactat
                                                                        2160
10
     ttataaacta gateteetat tttteagaat getettetae gtataaatat gaaatgataa
                                                                        2220
     agatgtcaaa tatctcagag gctatagctg ggaacccgac tgtgaaagta tgtgatatct
                                                                        2280
     qaacacatac tagaaaqctc tgcatgtgtg ttgtccttca gcataattcg gaagggaaaa
                                                                        2340
     cagtcgatca agggatgtat tggaacatgt cggagtagaa attgttcctg atgtgccaga
                                                                        2400
     acttcqaccc titctctgag agagatgatc gtgcctataa atagtaggac caatgttgtg
                                                                        2460
     attaacatca tcaggcttgg aatgaattct ctctaaaaat aaaatgatgt atgatttgtt
                                                                        2520
                                                                        2580
     gttggcatcc cctttattaa ttcattaaat ttctggattt gggttgtgac ccagggtgca
     ttaacttaaa agattcacta aagcagcaca tagcactggg aactctggct ccgaaaaact
     ttqttatata tatcaaqqat gttctggctt tacattttat ttattagctg taaatacatg
                                                                        2700
     tgtggatgtg taaatggagc ttgtacatat tggaaaggtc attgtggcta tctgcattta
     taaatqtqtq qtqctaactq tatqtqtctt tatcaqtqat qgtctcacaq aqccaactca
                                                                        2880
    ctcttatqaa atqqqcttta acaaaacaag aaagaaacgt acttaactgt gtgaagaaat
                                                                        2939
    qqaatcagct tttaataaaa ttgacaacat tttattacca caaaaaaaaa aaaaaaaaa
25
```

(2) INFORMATION ÜBER SEQ ID NO: 71:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1950 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

30

35

40

55

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- 45 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
- - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 71

```
ggggtcgcgg gccctgattg cgccgtttcc ccgcgcagag ctcgccggcg ccccgacggg 60
ccccggagca gcggccccg gccggcccgg cctcagcctg gagctccagc tacccacatg 120
caccttacct gggttccgcc cggtccctga gtccccaca aatggctgat ggaggaagcc 180
ccttcctagg tcggagggac tttgtctacc cttcctcaac ccgagaccct agtgcctcta 240
acggaggggg cagcccagcc aggagggaag agaagaagag aaaggccgcc aggctcaagt 300
ttgacttca ggcgcagtcc cccaaggagc tgactctga gaagggtgac attgtctaca 360
tccacaagga ggtggacaag aactggctgg agggagagca ccacggccgc ctgggcatct 420
tccctgctaa ttatgtggag gtgctgcccg cagatgagat ccctaagccc atcaagccc 480
```

cgacctacca ggtgctggag tatggagagg ctgtggccca gtacaccttc aagggggacc 540 tggaggtgga gctgtccttc cgcaagggag agcacatctg cctgatccgc aaggtgaacg 600 agaactggta cgagggacgc atcacgggca cggggcgcca aggcatattc cctgccagct 660 acgtgcaggt gtctcgtgaa ccccggctcc ggctctgtga cgacggccc cagctccca 720 cgtctccccg cctgaccgct gccgccgct cagcccgtga ccccagcgcc ccctcagccc 780 tgcgcagccc agctgacccc accgacttgg ggggacagac ctcccccgt cgcactggct 840	5
tetecticee cacceaggag cetagacece agacecagaa tettggeace cetggtecag 900 ctetgtecca etetegaggt cecagecate ecetggacet ggggacetee tetectaaca 960 ceteteagat acactggace cegtaceggg egatgtacea gtacaggece cagaacgaag 1020 acgagetgga getgegegag ggggacaggg tggatgteat geageagtgt gaegatgget 1080 ggtttgtggg tgtetecegg aggaeecaga aatteggaae gtteeetgga aattacgttg 1140	10
ccccggtgtg agtggtctcc atggcaactt ggagccagcc aggatggggt ggggagcggt 1200 ggcactcgtg ggagggagag gacccccgcc cacatcctcc ttccccagga cctgagctcc 1260 cagcatctgc agacgacccc cgcagcattt ccctcggacc cccctcgaag cccctggac 1320 tgattcccac ccacgactca caggcattcc tcccacagcc ctttcatttc ctccccaccc 1380 cactccccaa atacagaggt ctgctttgaa gcggagacca tttccaggcc ttattgagac 1440	15
cagaccccaa gtccccacc cccatcctgc tccagcgttt cctctaacag ggaccagctc 1500 tccgctttgc ccccacgggg ttcctctaac cagaaccagc ttcctagcct cgtagagacc 1560 aaaggccgcc cccgcctgct ggggttcctc ccagcacccc agcttgctgg ctgccctctt 1620 tgccttctgg cctccagctg ggtgtggggg ggcggacaag gcgggggaca gacgcagcac 1680	20
cttettageg atetaggeet ggeaagaget etggeeceaa ggeeteetet teceagggge 1740 tgeeaagtee tggeectgge eetggeatat cacceegeae tgtggggeea ggeaceaeta 1800 geetggetea aatatteece agggagaetg etgtgtgetg eeegeetgee tgetggetet 1860 eeeeeageee cacateeeet etggaagaga atgtaaaata aacetggaea caagggaaag 1920 aaaaaaatag attgggggg aggaaaaaaa	25
addadadag adogggggg ogganna vi	30
(2) INFORMATION ÜBER SEQ ID NO: 72: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 814 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	35
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	40
(iii) HYPOTHETISCH: NEIN	45
(iii) ANTI-SENSE: NEIN (vi) HERKUNFT:	50
(A) ORGANISMUS: MENSCH (C) ORGAN:	55
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 72	
cggggggag ccgggcctgc gcggtagtgg gacccgaccc	65

```
ggatagatgc aggaagcgat ggttaagacc catttteacc caactteteg cegcagtetg 300 gcttaceaca cgctcetec catteceagt gagecgettt ttgeagcace aggegaacac 360 ttacaccagt getttgtaaa ggaatettat tgtccaccec gtgtcttgge aaaagaacag 420 tgatcacaca gattectact tgggetettt ecettaatet teggaggetg agttgeeca 480 acteaggttt aaccaccaag gactetgaga getggeaggt etgagtaacc etggtaacaa 540 ttetetteac ettateaaaa eetgaagetaa aaccaatgea teagetgaag aaacegeag 600 agagagaagaat gagaagacag gagacaaact gtttggaaag etaaatette eetettaatg 720 aataaaggtt tttgeettgt ettaaaaaat aacaggaaga agcagggaaa aataaataac 780 ttatggtaat etggaattgt atttgtaat atta
```

- 15 (2) INFORMATION ÜBER SEQ ID NO: 73:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 3216 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 30 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 35 (vi) HERKUNFT:

20

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 40 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 73

```
ttcggcaact ggtggaggga gcctcgggtg gctgtgggag cggggggggga cagtgccccg 60
      ggaacccggt gggtcacaca cacgcactgc gcctgtcagt agtggacatt gtaatccagt 120
      cggcttgttc ttgcagcatt cccgctcct tccctccata gccacgctcc aaaccccagg 180
      gtagccatgg ccgggtaaag caagggccat ttagattagg aaggttttta agatccgcaa 240
      tgtggagcag cagccactgc acaggaggag gtgacaaacc atttccaaca gcaacacagc 300
      cactaaaaca caaaaagggg gattgggcgg aaagtgagag ccagcagcaa aaactacatt 360
      ttgcaacttg ttggtgtgga tctattggct gatctatgcc tttcaactag aaaattctaa 420
55
      tgattggcaa gtcacgttgt tttcaggtcc agagtagttt ctttctgtct gctttaaatg 480
      gaaacagact cataccacac ttacaattaa ggtcaagccc agaaagtgat aagtgcaggg 540
      aggaaaagtg caagtccatt atgtaatagt gacagcaaag ggaccagggg agaggcattg 600
      ccttctctgc ccacagtctt tccgtgtgat tgtctttgaa tctgaatcag ccagtctcag 660
      atgccccaaa gtttcggttc ctatgagccc ggggcatgat ctgatcccca agacatgtgg 720
60
      aggggcagcc tgtgcctgcc tttgtgtcag aaaaaggaaa ccacagtgag cctgagagag 780
      acggcgattt tcgggctgag aaggcagtag ttttcaaaac acatagttaa aaaagaaaca 840
      aatgaaaaaa attttagaac agtccagcaa attgctagtc agggtgaatt gtgaaattgg 900
      gtgaagaget taggatteta ateteatgtt tttteetttt cacattttta aaagaacaat 960
      gacaaacacc cacttatttt tcaaggtttt aaaacagtct acattgagca tttgaaaggt 1020
65
      gtgctagaac aaggtctcct gatccgtccg aggctgcttc ccagaggagc agctctcccc 1080
      aggcatttgc caagggaggc ggatttccct ggtagtgtag ctgtgtggct ttccttcctg 1140
      aagagteegt ggttgeecta gaacetaaca eeceetagea aaacteacag agettteegt 1200
```

ttttttcttt	cctgtaaaga	aacatttcct	ttgaacttga	ttgcctatgg	atcaaagaaa	1260	
ttcagaacag	cctacctatc	cccccqcact	ttttacatat	atttgtttca	tttctgcaga	1320	
tagaaagtta	acatoggtog	ggtgtcccca	tccagcgaga	gagtttcaaa	agcaaaacat	1380	
ctctgcagtt	tttcccaaqt	accctgagat	acttcccaaa	gcccttatgt	ttaatcagcg	1440	
atgtatataa	accaattcac	ttagacaact	ttacccttct	tgtccaatgt	acaggaagta	1500	
ottctaaaaa	aaatgcatat	taatttcttc	ccccaaagcc	ggattcttaa	ttctctgcaa	1560	
cactttgagg	acatttatga	ttgtccctct	gggccaatgc	ttatacccag	tgaggatgct	1620	
gcagtgaggc	tgtaaagtgg	cccctgcgg	ccctagcctg	acccggagga	aaggatggta	1680	
gattetgtta	actcttgaag	actccagtat	gaaaatcagc	atgcccgcct	agttacctac	1740	1
cogagagtta	tcctgataaa	ttaacctctc	acagttagtg	atcctgtcct	tttaacacct	1800	
tttttataaa	atteteteta	acctttcatc	gtaaagtgct	ggggacctta	agtgatttgc	1860	
ctgtaatttt	ggatgattaa	aaaatgtgta	tatatattag	ctaattagaa	atattctact	1920	
tetetattat	caaactgaaa	ttcagagcaa	gttcctgagt	gcgtggatct	gggtcttagt	1980	1:
tetaattaat	tcactcaaga	attcagtact	catacotatc	tqctcatttt	gacaaagtgc	2040	
ctcatgcaac	cagaccctct	ctctgcggca	gagtccttag	tggaggggtt	tacctggaac	2100	
attactactt	accacagaat	acqqaaqaqc	aggtgactgt	gctgtgcagc	tctctaaatg	2160	
graattetea	ggtaggaagc	aacagcttca	gaaagagctc	aaaataaatt	ggaaatgtga	2220	
atcocaacta	tagattttac	caccatctat	ctcagagtcc	caggaccttg	agtgtcatta	2280	20
attactttat	tgaaggtttt	agacccatag	cagctttqtc	tetetcacat	cagcaatttc	2340	
araaccaaaa	aggaggetet	ctgtaggcac	agagetgeae	tatcacgage	ctttgttttt	2400	
ctccacaaa	tatctaacaa	aaccaatgtg	cagactgatt	ggcctggtca	ttggtctccg	2460	
ananannann	tttacctata	atttcctaat	tatcgctagg	gccaaggtgg	gatttgtaaa	2520	-
agagaggagg	aatcattcto	gatagagtcc	taggaggtcc	ttggcagaac	tcagttaaat	2580	2.5
ctttmaamaa	tatttataat	tatcttagaa	gatagcatgg	gaggtgagga	ttccaaaaac	2640	
attttattt	tasastatco	tototagas	ttaactctta	gtacctgtgg	gttagcatca	2700	
acticactic	aggatagaat	tcaatcagag	ctccagtttg	catttggatg	tgtaaattac	2760	
agttectcccc	tttcccaaac	ctaaaatctg	tttttctcat	cagactctga	gtaactggtt	2820	36
agtaacccca	aacttcatad	atacaaaaaa	ctcaggtgat	ctgtttgagg	agagcaccct	2880	
gergreeta	cannaataa	catactorco	gttctgacct	ottoccaoca	gatacacagg	2940	
aggeageerg	aattoccatt	tectetagtt	tetteetata	gtactcctct	tttagatcct	3000	
acatggatga	aacccccgcc	gaatactgtg	aaaatotttt	acattccatt	tcatttgtgt	3060	
Latette	actoratttt	accadatatt	tratatat	cacttatatt	aatagtaatt	3120	35
tgtttttta	accocattt	tttcatactt	tttcagccat	otatcaatat	tcacttgact	3180	
ceegtaegtg	aattaatcaa	taaaaaaaa	aaaaaa	gcaccaacac		3216	
aaaatcactc	aattaattaa	Laaaaaaaaa	aaaaaa				
							40
(0) INTEGRAL	ATION ÜDE	D CEO ID N	0.74				
(2) INFORM	IATION ÜBE	K SEC ID N	U: 74:				
(i) SEQU	ENZ CHARA	AKTERISTIK	.		••		4:
` '	NGE: 747 E						
` '		•	•			·	
	YP: Nukleins						
(C) S	Trang: einze						
(D) T(OPOLOGIE:	linear	•				50
\- ,							
(ii) MOI E	KIJI TVD: at	ic einzelnen	ESTs durch	Assemblieru	ng und Editie	eruna	
			LO 13 dulon	Aggerrancia	ng and color	J. G	
nerge	estellte partie	elle CUNA					
							55
(iii) HYPO	THETISCH:	NEIN					
(,							
COLABITE O	PENICE: NEI	NI .					
(III) AN (III)	SENSE: NEI	IA					60
							•
(vi) HERK	(UNFT:						
	RGANISMU	S: MENSCH					
	RGAN:	- : -::. : - - • • • •					
(0)0	NOAN.						65
	STIGE HERK						
(A) BI	BLIOTHEK:	cDNA library	1				

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 74

```
tgggcacgcc cggcccgtac cccggcccgc tgtcgccgcc gcccgaggcc ccgccgctgg 60
agagcgccga gccgctgggg cccgcggccg atctgtggc cgacgtggac ctcaccgagt 120
tcgaccagta cctcaactgc agccggactc ggcccgacgc ccccgggctc ccgtaccacg 180
tggcactggc caaactgggc ccgcggcca tgtcctgccc agagggagac agcctgatct 240
ccgcgctgtc ggacgccage agcgggtct attacagegc gtgcatctcc ggctaggccg 300
ccggcgccgc ccgggtccct gcagcgcttc ctccatacgcg tgtatgtttg gttccatgtc acagcccct 420
aggagccagt gatgctcgc cttgcgccg ttccacctcc caggccaccc ttcctgggct 480
tctgggccac ctgccctcgg ggggcccctg cgagggtgcc tggagttccc acgtgtcccg 540
gggctttcc aggaagcccg agcccaggac ctgttggcag agttgccagg gttacatttt 600
tgagcacct ttccaagaa atatacctaa tacaatatat ttaatttta attaaactct 720
taaacttttc ttccaagaga aaggagc
```

(2) INFORMATION ÜBER SEQ ID NO: 76:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2419 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

20

25

30

35

40

45

50

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 76

```
teectgagga gtgggeatte tgggecagec ggegetgget tegtgeetee acgtgggeca 780
  gccccagctg ctccgtgttt cctggcgttg gcaatttact gtgctgctga gtgtgaggtc 840
  atctccggag cgttttcagc agcccctggc tctgcggcgt ctcttccggg ctgtgggcat 900
  gcagggaagt ggctgtgagg cagtctgcgc tgtggccctg cctctgccca gcgagaggcc 960
  gtgggctctg gacaagccgc ccttcaggct ggggtagcag gtcagtccag gcaggaagca 1020
  gcacctgccc cccgcgccag cccagcccca gcctgagtgc aggagctgca ggacccgcgg 1080
  gggettttee agetactetg tteetteacg tecteeette teageetegt ceaageaceg 1140
  ggaagacete caggetgace cettgagcag cagtcagcae aggtgcgtgg gggcgtgagg 1200
                                                                              10
  gaggcagggt cttcaccaca ggcgccttcc tctgtccttc ctgctctttc ttctctgccc 1260
  aggeogetge agetgeacag cetetgetae acctgggetg cetgggagge tteetggtgt 1320
  ggtgtctgga ccccacggcc ttgggtcatc ctgtggctgg tctggggtgg ggtctgttgt 1380
  ggtccttcca cggtgtcagt ggcctgaagt ccctcgcttt tggggggggg gtctctcacc 1440
  cccaggccac atagggccag tggtaggggt tccctctatg tcgggcagtg ctgagggctg 1500
                                                                              15
  ggatgetetg tgaccccage tggageccae acetaaggge tggcatecae ateattteae 1560
  cctgcagtga gggaagaggc caccaggtgg cagcacagcc acacccgttc ccacgtcaga 1620
  ggagggcaag gctgggtact cagcagccac tctgagccgg ggctccttcc aggagctgaa 1680
  atccacctgt ctccatcttc cttgcctgcc tgggtactca tgccaagcag agactgggat 1740
                                                                              20
- taggggttct gtgctcttgc ctaattagga acattctccc atgtctcttg tgtggtccca 1800
 gaaggagaag tgagtttgcc aaggatatgg ggcaggaggc tccctctgct gaccccctgc 1860
 agcctggagc cagcccgggg actgtcctgg gtggagggca ggtgaacaca agctgctgcc 1920
 ggggactgtc ctgggtggac ggcaggtgaa cacaagcggc tgccgcatgt agccactcac 1980
  togacttttt ttcagctgtg accattcctg ggagctcttt gagcctttct gtctcatttg 2040
                                                                              25
 gaaccagggg gaaccaggaa ggggctcctg gcctctctgt gtcctctgca gtgggggttg 2100
 tggggggcgc agatccacgc cttgctgccc ttcttcatg aagtctgttt tttaagtgct 2160
 ggttcccccg aatatttat gcagaggagg gaaaatttat agtggcaatt attttctcac 2220
 agtctggtga gcaggcaatt aattaggagt aagggggcct agtagagcgt ggcgtgtggc 2280
                                                                              30
 agaategcac egeceegget ecceagecea eegecatgea gggetegegt gegggaaaac 2340
 taatatgeeg gegtttaage etgtgeeect etgetgggtg taaetgeget gaaataaatg 2400
 atctgacaat gtgaaaaaa
                                                                              35
 (2) INFORMATION ÜBER SEQ ID NO: 77:
       (A) LÄNGE: 366 Aminosäuren
       (B) TYP: Protein
       (C) STRANG: einzel
       (D) TOPOLOGIE: linear
                                                                              45
   (ii) MOLEKÜLTYP: ORF
   (iii) HYPOTHETISCH: ja
                                                                              50
   (vi) HERKUNFT:
       (A) ORGANISMUS: MENSCH
                                                                             55
    (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 77
 IASARLEEVT GKLQVARNLI MRGTEMCPKS EDVWLEAARL QPGDTAKAVV AQAVRHLPQS 60
                                                                              60
 VRIYIRAAEL ETDIRAKKRV LRKALEHVPN SVRLWKAAVE LEEPEDARIM LSRAVECCPT 120
 SVELWLALAR LETYENARKV LNKARENIPT DRHIWITAAK LEEANGNTQM VEKIIDRAIT 180
 SLRANGVEIN REQWIQDAEE CDRAGSVATC QAVMRAVIGI GIEEEDRKHT WMEDADSCVA 240
 HNALECARAI YAYALOVFPS KKSVWLRAAY FEKNHGTRES LEALLQRAVA HCPKAEVLWL 300
                                                                             65
 MGAKSKWLAG DVPAARSILA LAFQANPNSE EIWLAAVKLE SENDEYERAR RLLAKARTVP 360
 PPPGCS
```

	(2) INFORMATION UBER SEQ ID NO: 78:	
5	(A) LÄNGE: 62 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
10	(ii) MOLEKÜLTYP: ORF	
15	(iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 78	
25	MRTSKFILFI FSDVGNGLGF KRELEEGMFD SHRRFLQQMP LLAISHFFPQ ILPTEAQAFT 60 VS 62	
30	(2) INFORMATION ÜBER SEQ ID NO: 79:	
35	(A) LÄNGE: 39 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	٠
40	(ii) MOLEKÜLTYP: ORF	•
	(iii) HYPOTHETISCH: ja	
45 50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 79	
55	RPRLYKAKRK TTNGVVLCCI ALHKIRNRCL TIEFVFCEF	39
60	(2) INFORMATION ÜBER SEQ ID NO: 80: (A) LÄNGE: 25 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
65	(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF	

(III) HYPOTHETISCH. Ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 80		. 10
KTPSLQSKTK NNKWSCAMLY CFAQN	25	15
(2) INFORMATION ÜBER SEQ ID NO: 81:		
(A) LÄNGE: 29 Aminosäuren(B) TYP: Protein(C) STRANG: einzel		20
(D) TOPOLOGIE: linear		25
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		30
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 81		40
DPVSTKQNEK QQMELCYVVL LCTKLGTGV	29	
(2) INFORMATION ÜBER SEQ ID NO: 82:		45
(A) LÄNGE: 32 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		50
(ii) MOŁEKÜLTYP: ORF		55
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 82		65
PKRRVSDTSS GPTPCMEPIL GRTHYSQLRK KS	32	

	(2) INFORMATION UBER SEQ ID NO: 83:	
5	(A) LÄNGE: 54 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
10	(ii) MOLEKÜLTYP: ORF	
15	(iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 83	
25	LGQDSHQHIT HVLLGREKQY IPVERSQSIS GRNVVKGGRC YAAAPSVPEV AVIP	54
30	(2) INFORMATION ÜBER SEQ ID NO: 84:	
35	(A) LÄNGE: 54 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
40	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 84	
55	GDQAHREQGK EQAMFDKKVQ LQRMVDQRSV ISDEKKVALL YLDNEEEEND GHWF	54
,,	(2) INFORMATION ÜBER SEQ ID NO: 85:	
50	(A) LÄNGE: 116 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
55	(ii) MOLEKÜLTYP: ORF	

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		-
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 85	1	.(
GTRHPLSLSH KPAKKIDVAR VTFDLYKLNP QDFIGCLNVK ATFYDTYSLS YDLHCCGAKR IMKEAFRWAL FSMQATGHVL LGTSCYLQQL LDATEEGQPP KGKASSLIPT CLKILQ	60 116 1	.5
(2) INFORMATION ÜBER SEQ ID NO: 86:		
(A) LÄNGE: 167 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	2	C
(D) TOPOLOGIE: linear	2	5
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	3	C
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	3	:5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 86	4	(
FIANSLISHA SMLANSLTNV LGWGPEGREH HESTACEAGL LRGRLHANGG TDFRTSLDGL SCLGQEGAGS GQELEVLLWP THPRFPAPPP HSGSCAVREV WGGSRLYSCQ ACGHYQLSVR PPVSPSLGKA SKDLGFHCSI FRQVGIRDEA LPLGGCPSSV ASRSCCR		.5
(2) INFORMATION ÜBER SEQ ID NO: 87:		
(A) LÄNGE: 71 Aminosäuren (B) TYP: Protein	5	0
(C) STRANG: einzel (D) TOPOLOGIE: linear	5	5
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	6	0
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	6	5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 87

5	NRGGVGFGVG WSLPFELLIF MSRLQNSRVG LTMWGGGGSS LFFYFQVHSW GWWGGRRIPL PKPLVCAELA L	60 71
10	(2) INFORMATION ÜBER SEQ ID NO: 88:	
15	(A) LÄNGE: 55 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 88	
	YRHEPLYPAF PYKIQRENFY TFIPQIKQVL SSYRALARSI CKRNLKFSCR IKLDK	55
35	(2) INFORMATION ÜBER SEQ ID NO: 89:	
40	(A) LÄNGE: 411 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
45	(ii) MOLEKÜLTYP: ORF	
50	(iii) HYPOTHETISCH: ja	
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 89	
50	LATHSPOKSH QCAHCEKTFN RKDHLKNHLQ THDPNKMAFG CEECGKKYNT MLGYKRHLAL HAASSGDLTC GVCALELGST EVLLDHLKAH AEEKPPSGTK EKKHQCDHCE RCFYTRKDVR RHLVVHTGCK DFLCQFCAQR FGRKDHLTRH TKKTHSQELM KESLQTGDLL STFHTISPSF	120
55	QLKAAALPPF PLGASAQNGL ASSLPAEVHS LTLSPPEQAA QPMQPLPESL ASLHPSVSPG SPPPPLPNHK YNTTSTSYSP LASLPLKADT KGFCNISLFE DLPLQEPQSP QKLNPGFDLA KGNAGKVNLP KELPADAVNL TIPASLDLSP LLGFWQLPPP ATQNTFGNST LALGPGESLP	240 300

(2) INFORMATION ÜBER SEQ ID NO: 90:	
(A) LÄNGE: 314 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	10
(iii) HYPOTHETISCH: ja	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 90	
KRCQRKQPLR GIGILKQAID KMQMNTNQLT SIHADLCQLC LLAKCFKPAL PYLDVDMMDI 60 CKENGAYDAK HFLCYYYYGG MIYTGLKNFE RALYFYEQAI TTPAMAVSHI MLESYKKYIL 120 VSLILLGKVQ QLPKYTSQIV GRFIKPLSNA YHELAQVYST NNPSELRNLV NKHSETFTRD 180	25
NNMGLVKQCL SSLYKKNIQR LTKTFLTLSL QDMASRVQLS GPQEAEKYVL HMIEDGEIFA 240 SINQKDGMVS FHDNPEKYNN PAMLHNIDQE MLKCIELDER LKAMDQEITV NPQFVQKSMG 300 SQEDDSGNKP SSYS 314	30
(2) INFORMATION ÜBER SEQ ID NO: 91:	35
(A) LÄNGE: 58 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	40
(ii) MOLEKÜLTYP: ORF	45
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 91	55
/LQEKIKIKK EKKEKIKFKN CFENVQIKSN ILIIHLHVLL NILIMWMFTL CMILAEYH 58	60
2) INFORMATION ÜBER SEQ ID NO: 92:	
(A) LÄNGE: 201 Aminosäuren (B) TYP: Protein	65

	(C) STRANG: einzel (D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
10		
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 92	
20	MDLSLLWVLL PLVTMAWGQY GDYGYPYQQY HDYSDDGWVN LNRQGFSYQC PQGQVIVAVR SIFSKKEGSD RQWNYACMPT PQSLGEPTEC WWEEINRAGM EWYQTCSNNG LVAGFQSRYF ESVLDREWQF YCCRYSKRCP YSCWLTTEYP GHYGEEMDMI SYNYDYYIRG ATTTFSAVER DROWKFIMCR MTEYDCEFAN V	120
25		
30	(2) INFORMATION ÜBER SEQ ID NO: 93:	
30	(A) LÄNGE: 247 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
35	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
40	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 93	
55	MGNGLSEERG NNFNHISPIP PVPHPRSVIQ QAEEKLHTPQ KRLMTPWEES NVMQDKDAPS PKPRLSPRET IFGKSEHQNS SPTCQEDEED VRYNIVHSLP PDINDTEPVT MIFMGYQQAE DSEEDKKFLT GYDGIIHAEL VVIDDEEEED EGEAEKPSYH PIAPHSQVYQ PAKPTPLPRK	120 180
	RSEASPHENT NHKSPHKNSI SLKEQEESLG SPVHHSPFDA QTTGDGTEDP SLTALRMRMA KLGKKVI	247
60	(2) INFORMATION ÜBER SEQ ID NO: 94:	
65	(A) LÄNGE: 43 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	

(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	S
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 94	15
GFHPTFVRLV SNSLTFVIPP RLGLPKVPGI TRHEPITPWS TFF 4	.3
(2) INFORMATION ÜBER SEQ ID NO: 95:	20
(A) LÄNGE: 188 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	25
(ii) MOLEKÜLTYP: ORF	30
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 95	
MPVLREYLMS GGICPVSRDT IDYLLSKNGS GNAIIIVVGG AAESLSSMPG KNAVTLRNRK GFVKLALRHG ADLVPIYSFG ENEVYKQVIF EEGSWGRWVQ KKFQKYIGFA PCIFHGRGLF SSDTWGLVPY SKPITTVVGE PITIPKLEHP TQQDIDLYHT MYMEALVKLF DKHKTKFGLP ETEVLEVN	120 45
(2) INFORMATION ÜBER SEQ ID NO: 96:	50
(A) LÄNGE: 290 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	60
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 96

5	RGAGTQPGPL LKKPYQPRIK ISKTSVDGDP HFVVDFPLSR LTVCFNIDGQ PGDILRLVSD HRDSGVTVNG ELIGAPAPPN GHKKQRTYLR TITILINKPE RSYLEITPSR VILDGGDRLV LPCNQSVVVG SWGLEVSVSA NANVTVTIQG SIAFVILIHL YKKPAPFQRH HLGFYIANSE GLSSNCHGLL GQFLNQDARL TEDPAGPSQN LTHPLLLQVG EGPEAVLTVK GHQVPVVWKQ RKIYNGEEQI DCWFARNNAA KLIDGEYKDY LASHPFDTGM TLGQGMSREL	12 18
15	(2) INFORMATION ÜBER SEQ ID NO: 97:	
20	(A) LANGE: 66 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
25	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 97	
40	NQFTSCILFC DGGHWRELLF QSIMSSHWTL KILLVPLFYL SLEFPSGFVL CLANDLGYHF SSRVRS	60 66
	(2) INFORMATION ÜBER SEQ ID NO: 98:	
45	(A) LÄNGE: 54 Aminosäuren (B) TYP: Protein	
50	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
65	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 98	
w	VPGALPLAVG PPPPPSGFPR NVOPRRPSOS LGRVMSAGPD KRPLGTLCCF VSFL 5	4

(2) INFORMATION OBER SEQ ID NO. 99.	
(A) LÄNGE: 59 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	10
(iii) HYPOTHETISCH: ja	1:
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	24
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 99	
FFLYFNQVFY WSGNCKIYKF LKGISCLKAS IALYPRSLIQ TNTQNTEKS 59	2.5
(2) INFORMATION ÜBER SEQ ID NO: 100:	30
(A) LÄNGE: 98 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	3:
(ii) MOLEKÜLTYP: ORF	41
(iii) HYPOTHETISCH: ja	•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 100	50
MGNKEPGSHG HRSDADPSRF SPVLPPAVQL GVWREEGRGG SCPFSWGRGP VSSTWLFPKG 60 SKREGLGEKT MERGPAKENR EEVSGLISLL SRCSGSLI 98	55
2) INFORMATION ÜBER SEQ ID NO: 101:	
(A) LÄNGE: 117 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	60
(D) TOPOLOGIE: linear	65

	(ii) MOLEKÜLTYP: ORF	
5	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 101	
	MGKGLGEDGQ QRARESWTSQ RRRPQQVQSR AATSCPAGCL EGRGQRRVMS LQLGEGPSEL 6 HVAFSQREQE GRIGRENNGE GTCEGKQGGS ERFDQPAITV FWLSYLARRL RDRYITS 1	0 17
20	(2) INFORMATION ÜBER SEQ ID NO: 102:	
25	(A) LÄNGE: 145 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
30	(ii) MOLEKÜLTYP: ORF	
35	(iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 102	
45	MNRGPPTFWT FEDRGAKRDR SARGPHPAPL GEPLLTWVSL RLHQLVGLQA SPPDSPHCWA 60 TLNLKFHCPA PPTPTPKFPK EMSKTHAHTY IHTCTCAHTS CVTTGQGNAS LRIPGPGPGV 12 KGCSGTLPPN LLEDPECGGR IGCLP	
50	(2) INFORMATION ÜBER SEQ ID NO: 103:	
55	(A) LÄNGE: 197 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
60	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
65	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 103		
MRTHVLCYHW PRKRESQDSR AWTWGKGLLW DSAPQPLGGP RVWGQDWVSA LTHRISPGPK AEKKSGRRSR RQGWWTKVGV RLKSGSETRF DHTHHPSVPP GQHAPLEPLH RLIRTRQNLL LTNLLRAVYR GITLVQEGCP SCFHTTTGPT IPLLASLRRP RDPQKPGEKE SWPLVSTAFR ATGGDAQMTW VKGLSQT	120	•
(2) INFORMATION ÜBER SEQ ID NO: 104:	1	•
(A) LÄNGE: 152 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	2	(
(ii) MOLEKÜLTYP: ORF	2	•
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	3	(
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 104	3.	5
SEARNAPSGT AQTFAMGFMT GTISSMYQTK AVIIAMIITA VVSISVTIFC FQTKVDFTSC 6 TGLFCVLGIV LLVTGIVTSI VLYFQYVYWL HMLYAALGAI CFTLFLAYDT QLVLGNRKHT 1 ISPEDYITGA LQIYTDIIYI FTFVLQLMGD RN 1		c
(2) INFORMATION ÜBER SEQ ID NO: 105:	4	5
(A) LÄNGE: 66 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	s	c
(ii) MOLEKÜLTYP: ORF	5.	
(iii) HYPOTHETISCH: ja	э.	2
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	6	c
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 105	6	5

5	HLLSPPHILG TAFSSTGNGT DGQKTSITFM KGLLELPGKK ACLGELGRCR QCGWAGGQPV VLLPAQ	60 66
,	(2) INFORMATION ÜBER SEQ ID NO: 106:	
10	(A) LÄNGE: 91 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
15	(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 106	
30	PTSLIWPTTM FCSVHVLFKS ILNWLPSFKL NQTLKAWSSH TGPTFPHGNY ERAPAQQGLS RSLPPPLPVP QIWPLLRKIR TATGPSEPKP T	60 91
35	(2) INFORMATION ÜBER SEQ ID NO: 107:	
40	(A) LÄNGE: 41 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
45	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 107	
60	LLPSFFLHFS LSIYFPHPTF LEQPLVLQEM ALMDRRLALP S 4	1
	(2) INFORMATION ÜBER SEQ ID NO: 108:	
65	(A) LÄNGE: 471 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	

(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	:
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	10
	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 108	
NELKASGGEI KIHKMEQKEN VPPGPEVCIT HQEGEKISAN ENSLAVRSTP AEDDSRDSQV 60 KSEVQQPVHP KPLSPDSRAS SLSESSPPKA MKKFQAPARE TCVECQKTVY PMERLLANQQ 120 VFHISCFRCS YCNNKLSLGT YASLHGRIYC KPHFNQLFKS KGNYDEGFGH RPHKDLWASK 180 NENEEILERP AQLANARETP HSPGVEDAPI AKGGVLAASM EAKASSQQEK EDKPAETKKL 240	20
RIAWPPPTEL GSSGSALEEG IKMSKPKWPP EDEISKPEVP EDVDLDLKKL RRSSSLKERS 300 RPFTVAASFQ STSVKSPKTV SPPIRKGWSM SEQSEESVGG RVAERKQVEN AKASKKNGNV 360 GKTTWQNKES KGETGKRSKE GHSLEMENEN LVENGADSDE DDNSFLKQQS PQEPKSLNWS 420 SFVDNTFAEE FTTQNQKSQD VELWEGEVVK ELSVEEQIKR NRYYDEDEDE E 471	25
(2) INFORMATION ÜBER SEQ ID NO 109 :	30
(A) LÄNGE: 60 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: ORF	40
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT:	45
(A) ORGANISMUS: MENSCH	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 109	
SLLLPKGIFT LFAWYSPHSS SEQALDYKGM AHKRLMDGGY LALANSPSIP NSLSLFEEKC 60	55
(2) INFORMATION ÜBER SEQ ID NO: 110:	
(A) LÄNGE: 39 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	60
(D) TOPOLOGIE: linear	65
(ii) MOLEKÜLTYP: ORE	

	(iii) HYPOTHETISCH: ja	
5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 110	
15	WATPNHYCFL KVFSPSSPGT ALTALQSKHW TTRAWLTKG	39
	(2) INFORMATION ÜBER SEQ ID NO:111:	
20	(A) LÄNGE: 38 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
25	(ii) MOLEKÜLTYP: ORF	
30	(iii) HYPOTHETISCH: ja	
35	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 111	
40	RYFHPLRLVQ PSQLFRASTG LQGHGSQKVN GWGLPSPG	38
45	(2) INFORMATION ÜBER SEQ ID NO:112 :	
50	(A) LÄNGE: 94 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
55	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
65	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 112	
	RKMLRAALPA LPIPRCKYTL FLIAHMGPPY LLALVLMLKS WPWERCLPGR HSCLVQAKPL	60

CNASPFWCYE VPLCRRFHQQ LVTVPSTRTC FEIS	94
(2) INFORMATION ÜBER SEQ ID NO: 113:	5
(A) LÄNGE: 324 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	10
(ii) MOLEKÜLTYP: ORF	15
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 113	
GLSTFQNWLP STPATSWGGL TSSRTTDNGG EQTALSPQEA PFSGISTPPD VLSVGPEPAW 60 EAAATTKGLA TDVATFTQGA APGREDTGLL TTTHGPEEAP RLAMLQNELE GLGDIFHPMN 120 AEEQAQLAAS QPGPKVLSAE QGSYFVRLGD LGPSFRQRAF EHAVSHLQHG QFQARDTLAQ 180 LQDCFRLIEK AQQAPEGQPR LDQGSGASAE DAAVQEERDA GVLSRVCGLL RQLHTAYSGL 240	30
VSSLQGLPAE LQQPVGRARH SLCELYGIVA SAGSVEELPA ERLVQSREGV HQAWQGLEQL 300 LEGLQHNPPL SWLVGPFALP AGGQ 324	35
(2) INFORMATION ÜBER SEQ ID NO: 114: (A) LÄNGE: 148 Aminosäuren	40
(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	50
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 114	60
IAMTPPNATE ASKPQGTTVC PPCDNELKSE ALIEHLCASE FALRMKIKEV KKENGDKKIV 60 PKKKKPLKLG PIKKKDLKKL VLYLKNGADC PCHQLDNLSH HFLIMGRKVK SQYLLTAIHK 120 WDKKNKEFKN FMKKMKNHEC PTFQSVFK 148	65
(2) INFORMATION ÜBER SEQ ID NO: 115:	

5	(A) LÄNGE: 45 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
20	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 115	
	PVIYSVLIRS EIRYKISRPV TTDFIKSESL ILACLYLISE RMSTL	45
25	(2) INFORMATION ÜBER SEQ ID NO: 116:	
30	(A) LÄNGE: 40 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
35	(ii) MOLEKÜLTYP: ORF	
40	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 116	
50	PDCESFMYFN LDSVFLRVLS MKLADSRQDS FFHHGWLISP	40
55	(2) INFORMATION ÜBER SEQ ID NO:117:	
60	(A) LÄNGE: 27 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
•-	(ii) MOLEKÜLTYP: ORF	
65	(iii) HYPOTHETISCH: ja	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 117			
TNEHTLTSYL QLPFSFNRIV KASCILI	2	.7	10
(2) INFORMATION ÜBER SEQ ID NO: 118:			15
(A) LÄNGE: 32 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			20
(ii) MOLEKÜLTYP: ORF			
(iii) HYPOTHETISCH: ja			25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 118			35
PGGCEGENVL LATVKPQEGA RIAQGPMGER RL	32		
(2) INFORMATION ÜBER SEQ ID NO: 119:			40
(A) LÄNGE: 135 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			45
(ii) MOLEKÜLTYP: ORF			50
(iii) HYPOTHETISCH: ja			
(vi) HERKUNFT:			55
(A) ORGANISMUS: MENSCH			60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 119			
RSNAVQLTRM EYAMKSLSLL YPKSLSRHVS VRTSVVTQQL LSEPSPKAPR ARPCRVSTAD RSVRKGIMAY SLEDLLLKVR DTLMLADKPF FLVLEEDGTT VETEEYFQAL AGDTVFMVLQ KGQKWQPPSE QGTRH			65

	(2) INFORMATION ÜBER SEQ ID NO:120:	
5	(A) LÄNGE: 56 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
10	(ii) MOLEKÜLTYP: ORF	
15	(iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 120	
25	GGECSFGHCE ASGRGSDCSR THGREEALTG LPACEVSGLE VQRSPADKDG IRHEVP	56
30	(2) INFORMATION ÜBER SEQ ID NO:121:	
35	(A) LÄNGE: 54 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
40	(ii) MOLEKÜLTYP: ORF	
70	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 121	
55	PSLPQVPLQA CVSAYLCGDP AAAVGAQPQG PQGPALPRKH GGSKREEGHH GLQS	54
	(2) INFORMATION ÜBER SEQ ID NO:122:	
60	(A) LÄNGE: 193 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
~	11 11 11 11 11 11 11 11 11 11 11 11 11	

(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 122	15
EACAHTLSCP ALARLGRARR RPWMSHRTSS TFRAERSFHS SSSSSAATS SSASRALPAQ DPPMEKALSM FSDDFGSFMR PHSEPLAFPA RPGGAGNIKT LGDAYEFAVD VRDFSPEDII VTTSNNHIEV RAEKLAADGT VMNTFAHKCQ LPEDVDPTSV TSALREDGSL TIRARRHPHT EHVQQTFRTE IKI	120
(2) INFORMATION ÜBER SEQ ID NO: 123:	
(A) LÄNGE: 102 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	25
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 123	45
MPHLYIDGVF PIQLVRDKLH ETPAVLRLLG PPGKATWGWG WGWSFSLPQA CVLGAAPMQT GSPNRDGSQG MDGALGPRGW TPASCHLPLR AVSSPSIPLF NL	60 102
(2) INFORMATION ÜBER SEQ ID NO: 124:	50
(A) LÄNGE: 38 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	SS
(ii) MOLEKÜLTYP: ORF	60
(iii) HYPOTHETISCH: ja	65
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	ω.

	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 124	
5	MATFYPLFPN GGGTYPEVVN DFPLKLLYFT NLNYFVLM 38	
	(2) INFORMATION ÜBER SEQ ID NO: 125:	
10	(A) LÄNGE: 65 Aminosäuren (B) TYP: Protein	
15	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 125	
	MWLFHDAGIR SAGGLSLLSC GSWPLPSGYH RLQDTNGQQK NVTLLILSSS SIGTKLPSRP REILC .	60 65
35	•	
	(2) INFORMATION ÜBER SEQ ID NO: 126:	
40	(A) LÄNGE: 250 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
45	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
50	(iii) HYPOTHETISCH: ja	
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 126	
60	ETRVKTSLEL LRTQLEPTGT VGNTIMTSQP VPNETIIVLP SNVINFSQAE KPEPTNQGQD SLKKHLHAEI KVIGTIQILC GMMVLSLGII LASASFSPNF TQVTSTLLNS AYPFIGPFFF IISGSLSIAT EKRLTKLLVH SSLVGSILSA LSALVGFIIL SVKQATLNPA SLQCELDKNN IPTRSYVSYF YHDSLYTTDC YTAKASLAGT LSLMLICTLL EFCLAVLTAV LRWKQAYSDF	120 180 240
65	PGVSVLAGFT	250

(2) INFORMATION UBER SEQ ID NO: 127:		
(A) LÄNGE: 66 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	1	5
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	1	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	2	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 127		
NQFTSCILFC DGGHWRELLF QSIMSSHWTL KILLVPLFYL SLEFPSGFVL CLANDLGYHF SSRVRS	60 66	:>
(2) INFORMATION ÜBER SEQ ID NO: 128:	3	90
(A) LÄNGE: 61 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	3	15
(ii) MOLEKÜLTYP: ORF	4	Ю
(iii) HYPOTHETISCH: ja	4	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	s	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 128		
MHTCQIYIYS TNVTFLFFVL DVRACSYVRY LHKLLHYFFL CNTFLFVYVV QIYSFLKLLK	60 61	55
(2) INFORMATION ÜBER SEQ ID NO:129:		
(A) LÄNGE: 211 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: ORF	·	نهد

	(iii) HYPOTHETISCH: ja	
5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 129	
15	PASNRPKSGR APEPREPARR SAGGSPPPPP WPRVPAAAAG TEGASPDLAP LRPAAPGQTP 60 LRKEVLKSKM GKSEKIALPH GQLVHGIHLY EQPKINRQKS KYNLPLTKIT SAKRNENNFW 12 QDSVSSDRIQ KQEKKPFKNT ENIKNSHLKK SAFLTEVSQK ENYAGAKFSD PPSPSVLPKP 18 PSHWMGSTVE NSNQNRELMA VHLKTLLKVQ T 21	20 30
20	(2) INFORMATION ÜBER SEQ ID NO: 130:	
25	(A) LÄNGE: 36 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
30	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
35	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
40	· · · · · · · · · · · · · · · · · · ·	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 130	
45	MQTVTICIRT TDDISYMPGS SSIPANTSYL KVFFLL 36	
	(2) INFORMATION ÜBER SEQ ID NO: 131:	
50	(A) LÄNGE: 48 Aminosäuren (B) TYP: Protein	
55	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
60	(iii) HYPOTHETISCH: ja	
65	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 131

MILTNPLKSK TDTFINRSIC KQSQYALGRL TIFLTCQGVL PSQQTPLI 48	5
(2) INFORMATION ÜBER SEQ ID NO: 132:	
(A) LÄNGE: 78 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	16
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 132	30
LGIFLHQYVI FNQNVKFLLN SLPAIVIVPS WPTWFPDVVN NINASAVGPL LRCLRRNFVL AISINFVFYL QFGRRKVT	60 78
(2) INFORMATION ÜBER SEQ ID NO: 133:	
(A) LÄNGE: 72 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	40
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF	45
(iii) HYPOTHETISCH: ja	50
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 133	
MDMAKTKFLR RHLSKGPTAD ALMLFTTSGN QVGHDGTITM AGNEFNKNFT FWLKITYWCK KIPNQIKSYC FD	60 72
(2) INFORMATION ÜBER SEQ ID NO: 134:	65

5	(A) LÄNGE: 61 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
20	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 134	
25	MCSLPYRFQN LYFHLFQCGT LCPEKSQECI EGMAIRITIL LLFHLVIQIR EEKINHIAQF 60 61	
30	(2) INFORMATION ÜBER SEQ ID NO:135:	
	(A) LÄNGE: 87 Aminosäuren (B) TYP: Protein	
35	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
40	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 135	
55	LNVFSSLQIS ELIFPPLPMW HPLPRKKPGM YRGNGHQNHY PPPVPFGYPN QGRKNKPYRP IPVTWVPPPG MHCDRNHWIN PHMLAPH	60 87
	(2) INFORMATION ÜBER SEQ ID NO: 136:	
60	(A) LÄNGE: 62 Aminosäuren	
	(B) TYP: Protein (C) STRANG: einzel	
65	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	

(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		•
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 136		10
MHSRRRYPCH WNWAIWFIFS SLIWITKWNR RRIVILMAIP SIHSWLFSGQ RVPHWKRWKY KF	60 62	15
(2) INFORMATION ÜBER SEQ ID NO: 137:		20
(A) LÄNGE: 83 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		25
(ii) MOLEKÜLTYP: ORF	•	30
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 137		40
MYGNILCPTL HTPCTQILYC MNYALSRIQC QGELGEINYF NFFFILYKAM DFIWLMCALY TSHFNRMELL IIFQRVIDMQ KFQ	60 83	45
(2) INFORMATION ÜBER SEQ ID NO:138:		
(A) LÄNGE: 366 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		50
(ii) MOLEKÜLTYP: ORF		55
(iii) HYPOTHETISCH: ja		60
(vi) HERKUNFT:		
(A) ORGANISMUS: MENSCH :		65
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 138		

5	RPKPGHPLYS KYMRGDVLVM LKQTENNYLE CQKGEDTGRV HLSQMKTTP LDEHLRSRP DPSHAQKPVD SGAPHAVVLH DFPAEQVDDL NLTSGEIVYL LEKIDTDWYR GNCRNQIGI PANYVKVIID IPEGGNGKRE CVSSHCVKGS RCVARFEYIG EQKDELSFSE GEIIILKEY NEEWARGEVR GRTGIFPLNF VE?VEDYPTS GANVLSTKVP LKTKKEDSGS NSQVNSLPAWCEALHSFTA ETSDDLSFKR GDRIQILERL DSDWCRGRLQ DREGIFPAVF VRPCPAEAK MLAIVPKGRK AKALYDFRGE NEDELSFKAG DIITELESVD DDWMSGELMG KSGIFPKNY QFLQIS	F 120 V 180 E 240 S 300
10		
	(2) INFORMATION ÜBER SEQ ID NO: 139:	
15	(A) LÄNGE: 68 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
20	(ii) MOLEKÜLTYP: ORF	
25	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 139	
35	MNPYISIIVF IVFLCSENYP WNNMLRITGS SPYLHFLSVL GVLVNSYVLI LFNSEFLTQH FRERIQAG	60 68
40	(2) INFORMATION ÜBER SEQ ID NO:140:	
45	(A) LÄNGE: 28 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
50	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
60	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 140	
	FFFFFFLLK FFFNKDKGFN NFCATILN	28
65	(2) INFORMATION ÜBER SEQ ID NO: 141:	

(A) LANGE: 22 Aminosauren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		<u> </u>
(ii) MOLEKÜLTYP: ORF		10
(iii) HYPOTHETISCH: ja		10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 141		20
EGTTRKKDKY ILSLENASRQ KY	22	
(2) INFORMATION ÜBER SEQ ID NO:142:		25
(A) LÄNGE: 46 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		30
(ii) MOLEKÜLTYP: ORF		35
(iii) HYPOTHETISCH: ja		40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 142		
MPFLRKFDRL VRTSDHQISL KWVSWNFIFD NIYTIPNSFA VLRFVG	46	50
(2) INFORMATION ÜBER SEQ ID NO: 143:		55
(A) LÄNGE: 56 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		65

5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 143	
10	MEGWGMSSIN PYGMHSQWPS HLGLEPLVQG LGENRPHGNS HTVIAFNTEP RVPKQQ 56	
15	(2) INFORMATION ÜBER SEQ ID NO:144:	
20	(A) LÄNGE: 56 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
25	(ii) MOLEKÜLTYP: ORF	
25	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 144	
40	MNISTQGRAK GVPRILLAKG QVLIEGLELS RFMEAACTLG ACPDSSLGFP FYLSSF 56	
	(2) INFORMATION ÜBER SEQ ID NO: 145:	
45	(A) LÄNGE: 109 Aminosäuren (B) TYP: Protein	
50	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 145	
65	MPKGKAFRRT LRITSLFFSS LLLLQLLFGH HLLVLVSPQL PGAVFEGEAF SVPPPQALPM 60 MAPSHHPSPA PLPASPPPPA PPPPWRRRGI PLAFGLPRSR RLPELPQPR 109	•

(2) INFORMATION ÜBER SEQ ID NO: 146:	
(A) LÄNGE: 247 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	10
(iii) HYPOTHETISCH: ja	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 146	
RPAPAPRCQL PQRPAEARCM LSRCRSRLH VLGLSFILQT RRPILLCSPR LMKPLVVFVL GGPGAGKGTQ CARIVEKYGY THLSAGELLR DERKNPDSQY GELIEKYIKE GKIVPVEITI SLLKREMDQT MAANAQKNKF LIDGFPRNQD NLQGWNKTMD GKADVSFVLF FDCNNEICIE RCLERGKSSG RSDDNRESLE KRIQTYLQST KPIIDLYEEM GKVKKIDASK SVDEVFDEVV QIFDKEG	180
QII DALLO	
(2) INFORMATION ÜBER SEQ ID NO: 147:	35
(A) LÄNGE: 181 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	. 40
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH : .	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 147	55
IPNMAAPLGG MFSGQPPGPP QAPPGLPGQA SLLQAAPGAP RPSSSTLVDE LESSFEACFA SLVSQDYVNG TDQEEIRTGV DQCIQKFLDI ARQTECFFLQ KRLQLSVQKP EQVIKEDVSE LRNELQRKDA LVQKHLTKLR HWQQVLEDIN VQHKKPADIP QGSLAYLEQA SANIPAPLKP T	120
(2) INFORMATION ÜBER SEQ ID NO:148:	65
(A) LÄNGE: 236 Aminosäuren	

5	(C) STRANG: einzel (D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
10	(iii) HYPOTHETISCH: ja
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
20	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 148
25	MLRDLQLQIL RNVTHHVSVT KQLPTSEAVV SAVSEAGASG ITEAQARAIV NSALKLYSQD 60 KTGMVDFALE SGGGSILSTR CSETYETKTA LMSLFGIPLW YFSQSPRVVI QPDIYPGNCW 12 AFKGSQGYLV VRLSMMIHPA AFTLEHIPKT LSPTGNISSA PKDFAVYGLE NEYQEEGQLL 18 GQFTYDQDGE SLQMFQALKR PDDTAFQIVE LRIFSNWGHP EYTCLYRFRV HGEPVK 23
30	(2) INFORMATION ÜBER SEQ ID NO: 149:
35	(A) LÄNGE: 57 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear
40	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 149
	MEWSPSASLF NPHIWSTRVD LWLTTYTMLK SSATATTSCQ KVSLANKQLK FKGRSKS 57
55	(2) INFORMATION ÜBER SEQ ID NO: 150:
60	(A) LÄNGE: 52 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
65	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	•
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 150	•
MHLALTSYSI LPVTVVKSRS KINKTFLTNS CTIFSFVLPV DEKSGLRQAS YF	52 10
(2) INFORMATION ÜBER SEQ ID NO: 151:	15
(A) LÄNGE: 377 Aminosäuren (B) TYP: Protein	-
(C) STRANG: einzel (D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 151	35
LRRFPAQSSP APRRAPEQRP PAGPASAWSS SYPHAPYLGS ARSLSPHKMA DGGSPFLGRR DFVYPSSTRD PSASNGGSP ARREEKKRKA ARLKFDFQAQ SPKELTLQKG DIVYIHKEVD KNWLEGEHHG RLGIFPANYV EVLPADEIPK PIKPPTYQVL EYGEAVAQYT FKGDLEVELS FRKGEHICLI RKVNENWYEG RITGTGRQGI FPASYVQVSR EPRLRLCDDG PQLPTSPRLT AAARSARDPS APSALRSPAD PTDLGGQTSP RRTGFSFPTQ EPRPQTQNLG TPGPALSHSR GPSHPLDLGT SSPNTSQIHW TPYRAMYQYR PQNEDELELR EGDRVDVMQQ CDDGWFVGVS	120 180 240 300 360
RRTQKFGTFP GNYVAPV	377 45
(2) INFORMATION ÜBER SEQ ID NO: 152:	
(A) LÄNGE: 39 Aminosäuren (B) TYP: Protein	50
(C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 152 WDPTLSPVGV LGPGSILGCG PGKGSPGAK 39 (2) INFORMATION ÜBER SEQ ID NO: 153: 10 (A) LÄNGE: 58 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 15 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 20 (vi) HERKUNFT: 25 (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 153 30 MQEAMVKTHF HPTSRRSLAY HTLLPIPSEP LFAAPGEHLH QCFVKESYCP PRVLAKEQ 58 35 (2) INFORMATION ÜBER SEQ ID NO: 154: (A) LÄNGE: 41 Aminosäuren (B) TYP: Protein 40 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 45 (iii) HYPOTHETISCH: ja 50 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 55 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 154 GGEPGLRGSG TRPCLQWASW APALFWAAGL GRARRVPNEL S 41

(2) INFORMATION ÜBER SEQ ID NO: 155:

(A) LÄNGE: 75 Aminosäuren

(B) TYP: Protein

60

65

(C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	:
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	1:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 155	
MMLGSLAPDP GSRRHSGQAA LRPRRYPTLW DRCRKRWLRP IFTQLLAAVW LTTRSSPFPV 60 SRFLQHQANT YTSAL 75	
(2) INFORMATION ÜBER SEQ ID NO: 156:	25
(A) LÄNGE: 50 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	3:
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	41
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 156	4:
GASRACAVVG PDPVSSGRLG PRLYSGLRAW EGLAGCQMSC PNSAGLQLPA 50	50
(2) INFORMATION ÜBER SEQ ID NO: 157:	
(A) LÄNGE: 97 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	66
(iii) HYPOTHETISCH: ja	65
(vi) HERKUNFT:	

	(A) ORGANISMUS: MENSCH	
5	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 157	
10	GTPGPYPGPL SPPPEAPPLE SAEPLGPAAD LWADVDLTEF DQYLNCSRTR PDAPGLPYHV ALAKLGPRAM SCPEESSLIS ALSDASSAVY YSACISG	60 97
	(2) INFORMATION ÜBER SEQ ID NO: 158:	
15	(A) LÄNGE: 173 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
20	(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF	•
25	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 158	
40	GLFPAVCPWP ALDLLSGPQW QRGPGPGAGV GDPGLSAVAF WWGAMETGNQ AVGSQRWSLR GEWRAFCFCL VPPHGTWFPG ENERRGEVEN RTFHKGYFLI GCKMLMPRMM IFFPADETIR KGLRLWQVGF GAGAETFLSM RTSYSSSWGG AACGMAGEDA LENRPPSVEG PFP	
	(2) INFORMATION ÜBER SEQ ID NO: 159:	
45	(A) LÄNGE: 109 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
50	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 159	
65	GHLRSVFSSP WLCGVSSGLW ACREVAVRQS ALWPCLCPAR GRGLWTSRPS GWGSRSVQAG SSTCPPRQPS PSLSAGAAGP AGAFPATLFL HVLPSQPRPS TGKTSRLTP	60 109

(2) INFORMATION ÜBER SEQ ID NO: 160:	
(A) LÄNGE: 152 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 160	25
NIRGNQHLKN RLHERRAARR GSAPPTTPTA EDTERPGAPS WFPLVPNETE RLKELPGMVT 60 AEKKSSEWLH AAAACVHLPS TQDSPRQQLV FTCPPPRTVP GLAPGCRGSA EGASCPISLA 120 NSLLLLGPHK RHGRMFLIRQ EHRTPNPSLC LA 152	30
Patentansprüche	
 Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend a) eine Nukleinsäurn-Sequenz, ausgewählt aus der Gruppe Seq ID No 1-5, 10-12, 14, 15, 19-21, 23-25, 38, 30, 31, 34, 37, 43, 45, 48, 50-52, 58-65, 68, 69 und 71-76. b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder 	35
c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.	40
 Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID Nos 1-5, 10-12, 14, 15, 19-21, 23-25, 28, 30, 31, 34, 37, 43, 45, 48, 50-52, 58-65, 68, 69 und 71-76, oder eine komplementäre oder allelische Variante davon. Nukleinsäure-Sequenz Seq. ID No. 1 bis Seq. ID No. 76, dadurch gekennzeichnet, daß sie in Brustnormalgewebe erhöht exprimiert sind. BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 76, zur Verwendung als Vehikel zum Gentransfer. 	45
5. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.	
 6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist. 7. Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisie- 	50
ren. 8. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 4500 bp aufweist.	55
9. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 4000 bp aufweist.	
 Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 9, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprü- 	60
che 1 bis 9, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz. 12. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß Anspruch 11, worin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist. 13. Eine Expressionskassette gemäß einem der Ansprüche 11 und 12, dadurch gekennzeichnet, daß die auf der Kas-	65
sette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.	
14. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 10 zur Herstellung von Vollängen-Ge-	

nen.

10

15

- 15. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 14 erhältlich ist.
- Wirtszelle, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 10.
- 5 17. Wirtszelle gemäß Anspruch 16, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.
 - 18. Wirtszelle gemäß einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.
 - 19. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 16 bis 18 kultiviert werden.
 - 20. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 76 kodiert wird, das gemäß Anspruch 19 erhältlich ist.
 - 21. Ein Antikörper gemäß Anspruch 20, dadurch gekennzeichnet, daß er monoklonal ist.
 - 22. Polypeptid-Teilsequenzen, gemäß den Sequenzen Seq. ID Nos. 67–70, 71, 73–81, 84–89, 93–109, 111–114, 116–137, 139–149, 153–164, 166–172, 181–182, 188–193 und 196–216.
 - 23. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 80% iger Homologie zu diesen Sequenzen.
 - 24. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 90%iger Homologie zu diesen Sequenzen.
 - 25. Verwendung der Polypeptid-Teilsequenzen gemäß den Sequenzen Seq. ID No. 65 bis Seq. ID No. 216, als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs.
- Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 76 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.
 Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 67 in sense oder antisense Form.
 - 28. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 68 bis Seq. ID No. 216 als Arzneimittel in der Gentherapie zur Behandlung des Brustkrebses.
- 25 29. Verwendung der Polypeptid-Teilsequenzen Seq. . ID No. 65 bis Seq. ID No. 216, zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.
 - 30. Arzneimittel, enthaltend mindestens eine Polypeptid-Teilsequenz Seq. ID No. 65 bis Seq. ID No. 216.
 - 31. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.
- 32. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist
 - 33. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 76.
 - 34. Verwendung der genomischen Gene gemäß Anspruch 33, zusammen mit geeigneten regulativen Elementen.
 - 35. Verwendung gemäß Anspruch 34, dadurch gekennzeichnet, daß das regulative Element ein geeigneter Promotor und/oder Enhancer ist.
 - 36. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 300 bis 3500 bp aufweist.
- 37. Nukleinsäuresequenzen Seq. ID No.: 3, 37, 45 dadurch gekennzeichnet, daß sie mit dem Fettstoffwechsel assoziiert sind und zur Behandlung von krankhasten Veränderungen des Fettstoffwechsels verwendet werden können.

Hierzu 10 Seite(n) Zeichnungen

45

35

50

55

60

65

Systematische Gen-Suche in der Incyte LifeSeq Datenbank

Fig. 1

DE 198 13 835 A1 C 07 K 14/43523. September 1999

Prinzip der EST-Assemblierung

5000-6000 Contigs ~25.000 übrige Singletons

~30.000 Konsensussequenzen pro Gewebe

Fig. 2a

Fig. 2b2

Fig. 2b3

Nummer: Int. Cl.6:

C 07 K 14/435 Offenlegungstag: 23. September 1999

DE 198 13 835 A1

assemblierte Datenbank eines spezifischen Gewebes (z.B.: Brust Normal) Consensus 6 Einlesen als Singletons Datenbank eines Datenbank eines zweiten spezifischen Gewebes spezifischen Gewebes (z.B.: Brust Normal) (z.B.: Brust Tumor) GAP4 assembly minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 4 Tumor-Gewebsnicht Gewebs-Normal-Gewebsspezifische spezifische spezifische **ESTs ESTs ESTs**

Fig. 2b4

Fig. 3

Fig. 4a

Fig. 4b

DE 198 13 835 A1 C 07 K 14/435 23. September 1999

Isolieren von genomischen BAC und PAC Klonen

Chromosomale Klon-Lokalisation über FISH

Sequenzierung von Klonen, die in Regionen lokalisiert sind, die chromosomale Deletionen in Prostata- und Brustkrebs aufweisen, führt zur Identifizierung von Kandidatengenen

Bestätigung der Kandidatengene durch Screening von Mutationen und/oder Deletionen in Krebsgeweben