ADATSZERKEZETEK ÉS ALGORITMUSOK

Hierarchikus adatszerkezetek

- A hierarchikus adatszerkezet olyan $\langle A, R \rangle$ rendezett pár, amelynél van egy kitüntetett r elem, ez a **gyökérelem**, úgy, hogy:
 - 1. r nem lehet végpont $\forall a \in A$ esetén $\neg R(a, r)$
 - 2. $\forall a \in \{A \setminus \{r\}\}$ elem egyszer és csak egyszer lehet végpont, azaz $\forall a \in \{A \setminus \{r\}\}$ -hez $\exists ! b \neq a, b \in A$: R(b, a)
 - 3. $\forall a \in \{A \setminus \{r\}\}$ elem r-ből elérhető, azaz $\exists a_1, a_2, ..., a_n \in A, a_n = a: R(r, a_1), R(a_1, a_2), ..., R(a_{n-1}, a_n))$
- A hierarchikus adatszerkezetek bizonyos értelemben a lista általánosításai

Hierarchikus adatszerkezetek

- Egy elemnek akárhány rákövetkezője lehet, de minden elemnek csak egyetlen megelőző eleme van, azaz az adatelemek között egy-sok jellegű kapcsolat áll fenn
- Minden adatelem csak egy helyről érhető el, de egy adott elemből tetszés szerinti számú adatelem látható
 - Például
 - Fa
 - összetett lista
 - B-fa

- A fa egy hierarchikus adatszerkezet, mely véges számú csomópontból áll, és igazak a következők:
 - Két csomópont között a kapcsolat egyirányú, az egyik a kezdőpont, a másik a végpont
 - Van a fának egy kitüntetett csomópontja, ami nem lehet végpont
 - Ez a fa gyökere
 - Az összes többi csomópont pontosan egyszer végpont

- A fa rekurzív definíciója:
 - A fa vagy üres, vagy
 - Van egy kitüntetett csomópontja, ez a gyökér.
 - A gyökérhez 0 vagy több diszjunkt fa kapcsolódik
 - Ezek a gyökérhez tartozó részfák
- A fával kapcsolatos algoritmusok gyakran rekurzívak

- Az adatszerkezetben
 - A fa csúcsai az adatelemeknek felelnek meg,
 - Az élek az adatelemek egymás utáni sorrendjét határozzák meg egy csomópontból az azt követőbe húzott vonal egy él
 - A gyökérelem a fa első eleme, amelynek nincs megelőzője
 - Levélelem a fa azon eleme, amelynek nincs rákövetkezője
 - Közbenső elem az összes többi adatelem

- Az adatszerkezetben
 - Minden közbenső elem egy részfa gyökereként tekinthető, így a fa részfákra bontható:
 - részfa: "t" részfája "a" -nak, ha
 - "a" a gyökere, azaz közvetlen megelőző eleme "t"-nek, vagy
 - "t" részfája "a" valamely részfájának
 - elágazásszám: közvetlen részfák száma
 - a fa szintje a gyökértől való távolságot mutatja.
 - A gyökérelem a 0. szinten van.
 - A gyökérelem rákövetkezői az 1. szinten. stb.
 - a fa szintjeinek száma a fa magassága

- További definíciók:
 - Csomópont foka: a csomóponthoz kapcsolt részfák száma
 - Fa foka: a fában található legnagyobb fokszám
 - Levél: 0 fokú csomópont
 - Elágazás (közbenső v. átmenő csomópont): > 0 fokú csomópont
 - Szülő (ős): kapcsolat kezdőpontja
 - csak a levelek nem szülők
 - Gyerek (leszármazott): kapcsolat végpontja
 - csak a gyökér nem gyerek
 - ugyanazon csomópont leszármazottai egymásnak testvérei

- További definíciók
 - Szintszám: gyökértől mért távolság.
 - A gyökér szintszáma 0.
 - Ha egy csomópont szintszáma n, akkor a hozzá kapcsolódó csomópontok szintszáma n+1.
 - Útvonal: az egymást követő élek sorozata
 - Minden levélelem a gyökértől pontosan egy úton érhető el.
 - Ág: az az útvonal, amely levélben végződik
 - Üresfa az a fa, amelyiknek egyetlen eleme sincs. (Ω)
 - Fa magassága: a levelekhez vezető utak közül a leghosszabb
 - Mindig eggyel nagyobb, mint a legnagyobb szintszám

- További definíciók:
 - Minimális magasságú az a fa, amelynek a magassága az adott elemszám esetén a lehető legkisebb.
 - Valójában ilyenkor minden szintre a maximális elemszámú elemet építjük be.
 - Egy fát kiegyensúlyozottnak nevezünk, ha csomópontjai azonos fokúak, és minden szintjén az egyes részfák magassága nem ingadozik többet egy szintnél.
 - Rendezett fa: ha az egy szülőhöz tartozó részfák sorrendje lényeges, azok rendezettek.

Feladat

 Maximum hány csomópont helyezhető el egy f fokú, m szintet tartalmazó fában?

$$1 + f + f^2 + f^3 + \cdots$$

$$\frac{(f^{m+1}-1)}{(f-1)}$$

Fák műveletei

- Lekérdező
 - Üres_e logikai értéket ad vissza
 - Gyökérelem visszaadja a gyökér adatelemet
 - Keres(e) adott e adatelemet keres, egy ilyen elem mutatóját adja vissza

Fák műveletei

- Módosító
 - Üres
 - Beszúr(e)
 - MódosítGyökér(e)
 - Töröl(e)

TörölFa

- létrehoz egy üres fát
- adott e adatelemet beszúr
- adott e adatelem lesz a gyökér
- törli az e adatelemet
 - egy előfordulást
 - összes előfordulást
- törli az összes elemet

Fák műveletei

- Fák bejárása
 - A fa csomópontjaiban általában adatokat tárolunk. Ezeket valamilyen sorrendben szeretnénk egymás után elérni.
- Általános fa esetén a bejárási stratégiák
 - Gyökérkezdő (preorder)
 - gyökér, majd a részfák bejárása sorban
 - például balról jobbra
 - Gyökérvégző (postorder)
 - részfák bejárása sorban, majd a gyökér

Preorder bejárás

Gyökér, majd a részfák bejárása sorban (balról jobbra)

a b c d g e f

Postorder bejárás

Részfák bejárása sorban, majd a gyökér

bgdefca

Bináris fák

- A bináris fa olyan fa, amelynek csúcspontjaiból maximum 2 részfa nyílik
 - Azaz fokszáma 2
- A szülő mindig a gyerekek között helyezkedik el
 - Van értelme a "gyökérközepű" (inorder) bejárásnak

Bináris fa

Bináris fák bejárása

- A bejárási stratégiák
 - Gyökérkezdő (preorder)
 - gyökér, bal részfa, jobb részfa
 - Gyökérközepű (inorder)
 - bal részfa, gyökér, jobb részfa
 - Gyökérvégző (postorder)
 - bal részfa, jobb részfa, gyökér

Preorder

Gyökér, Bal részfa, Jobb részfa a b d c e g h i j f

Inorder

Bal részfa, Gyökér, Jobb részfa d b a g e i h j c f

Postorder

Bal részfa, Jobb részfa, Gyökér d b g i j h e f c a

Reprezentáció

- Általános fa esetén
 - "bal-gyermek, jobb-testvér"
 - Minden csomóponthoz tartozik három mutató
 - bal-gyermek a csúcs gyermekei közül a bal szélsőre mutat
 - jobb-testvér a csúcsnak arra a testvérére mutat, amelyik közvetlenül jobbra mellette található (azonos szinten ugyanahhoz az őshöz tartozó következő szomszédos elemre)
 - szülő

Általános fa

Bal-gyermek, jobb-testvér

Reprezentáció

- Általános fa esetén például multilista:
 - Minden csomóponthoz tartozik egy lineáris lista, amelynek első eleme az adat, a többi a kapcsolatok listája
 - Annyi kapcsolati elem, ahány fokú a csomópont.
 - A kapcsolatok újabb csomópontokra, illetve lineáris listákra mutatnak.

Általános fa

Multilista

Reprezentáció

- Korlátos általános fa esetén további lehetőség
 - Aritmetikai ábrázolás
 - Láncolt, ahol minden csomópontnak van pontosan k db mutatója a maximum k gyerekre