Discrete Mathematics CMSC 27100 Winter Quarter 2022 Practice Midterm

1 Mathematical Sets

Exercise 1.1. Write down the following sets using mathematical notation:

- a) The set of prime numbers which are greater than 10.
- b) The set of integers which are either negative or prime.
- c) The set of natural numbers whose roots are also natural numbers.
- d) The set of natural numbers whose third root is prime and whose square is even.

Exercise 1.2. Consider the set $A = \{1, 2, 17, 31, 12\}$ and $B = \{13, 17, 16, 8, 22\}$.

- a) What is $A \cap B$, $A \cup B$, and $A \setminus B$?
- b) How many elements are there in $A \times B$? While you may explicitly write every such combination, doing so is not necessary.

Exercise 1.3. Consider any sets A, B, and C.

- a) Prove that $A = (A \setminus B) \cup (A \cap B)$.
- b) Prove that $(A \setminus B) \cap C \subset A \cap C$. Give an example of sets A, B, and C where the backwards direction is false.

2 Mathematical Sets w/ Quantifiers

Exercise 2.1. Write the following statements and their negations using mathematical notation:

- a) There exists a prime number p where p+1 is also prime.
- b) For all natural numbers n, if n is even and has a rational root, then \sqrt{n} is a natural number.
- c) If z is an integer, then there exists such an integer z' where $z'>z^2$.

3 Divisibility

Exercise 3.1. Either prove the following statements or give a counterexample to show they are false.

- a) For all integers z_1, z_2, z_3, p , if $z_1 z_2 | p z_3$, then $z_1 | p z_3$ and $z_2 | p z_3$.
- b) Consider a to be a natural number whose root is not a natural number (e.g. 7, as $\sqrt{7} \notin N$). If a|z and z is not of the form a^k with $k \in \mathbb{N}$, then the root of z must also not be a natural number.

Exercise 3.2. Find the positive divisors and sum of the positive divisors for the following numbers:

- a) 120
- b) 210
- c) 985

Exercise 3.3. Show the following sets through mathematical notation:

- a) The set of all natural numbers which have exactly 10 positive divisors.
- b) The set of all natural numbers which have 6 or less positive divisors.

4 GCD and LCM w/ Euclid's Algorithm

Exercise 4.1. Find gcd(x,y) and integers $a,b\in\mathbb{Z}$ such that gcd(x,y)=ax+by using Euclid's algorithm.

- a) x = 34, y = 46
- b) x = 87, y = 126

Exercise 4.2. Find lcm(x,y). For this, you may use the formula $lcm(x,y) = \frac{xy}{gcd(x,y)}$ and you may use any method you would like to find gcd(x,y).

- a) x = 24, y = 36
- b) x = 51, y = 72
- c) x = 81, y = 162

5 Proofs Via Contradiction and Induction

Exercise 5.1. Prove the following statements using contradiction:

- a) If $p \in \mathbb{P}$, then $\sqrt{p} \notin \mathbb{N}$.
- b) Consider $\sum_{i=1}^{n} x_i$, where each x_i is a non-negative integer. Suppose $\sum_{i=1}^{n} x_i = x_n$. Show that for each x_i with $i \in [n-1]$, then $x_i = 0$.

Exercise 5.2. Prove the following through the use of induction:

- a) Consider a recursive function where $a_1 = 1$ and $a_{n+1} = 2a_n$. Show that $a_n = 2^{n-1}$.
- b) Consider the sum $\sum_{i=1}^{n} i$. Show that this sum is equal to $\frac{n(n+1)}{2}$.

6 More Proofs

Exercise 6.1. Let $k \in \mathbb{N}$ and consider $a = \frac{k(k-1)}{2}$. Explain in general terms why a will always be an integer.

Exercise 6.2. Let $a, b \in \mathbb{R}$ such that a > 0 and b > 0. Prove that $a^{\log(b)} = b^{\log(a)}$ (here we take log to mean the natural log).

Hint: Consider writing a and b in terms of the exponential. Also note that $(a^x)^y = a^{xy}$.

Exercise 6.3. Let $n \in \mathbb{N}$ such that $n \geq 3$. Prove that $\binom{n}{2} + \binom{n}{3} = \binom{n+1}{3}$.

Exercise 6.4. Let $n \in \mathbb{N}$. We say that n is "3-prime" if n has exactly 3 positive divisors.

- (a) Give an example of an even number with exactly three positive divisors. Afterwards, prove that all other 3-prime numbers must be odd.
- (b) For a 3-prime number x, prove that the only factors are 1, x, and p for some prime number p.
- (c) Prove that having a 3-prime number is equivalent to having the square of a prime. In mathematical language, this means that we must prove

x is 3-prime $\iff x = p^2$ for a prime number p.

Exercise 6.5. Bonus: Suppose you know that

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

Prove that for any $x \ge 0$, then $\sqrt{x\sqrt{x\sqrt{x...}}} = x$. That is, the infinite nested square root of x is equal to x.

Hint: Do not use induction. Instead, consider a way to rewrite $\sqrt{x\sqrt{x\sqrt{x}}}$ to allow for algebraic manipulation.

7 GCD and LCM w/ Prime Factorization

Exercise 7.1. Find gcd(x,y) and lcm(x,y) using prime factorizations.

- a) x = 12, y = 16
- b) x = 49, y = 14
- c) x = 72, y = 20

Exercise 7.2. Prove the following or provide such a counterexample which disproves the statement:

- a) If $p \in \mathbb{P}$, then for any $n \in \mathbb{N}$ with $n \neq p$, we know that lcm(p, n) = pn.
- b) For any $x, y, z \in \mathbb{N}$, if x|y and z|y, then xz|y.
- c) Consider $p_1, p_2, p_3 \in \mathbb{P}$. If $x | p_1 p_2 p_3$ and $x < p_1 p_2 p_3$, then $x | p_1 p_2$, $x | p_2 p_3$, or $x | p_1 p_3$.
- d) For all $x, y \in \mathbb{Z}$, if x|gcd(x, y) and y|gcd(x, y) then x = y.

8 Modular Arithmetic

Exercise 8.1. Calculate the following:

- a) $20 + 33 \mod 41$
- b) 6 * 21 mod 18
- c) 22! mod 23
- $d) 7^8 \mod 20$

Exercise 8.2. For the following, explain why or why not the inverse exists. If it exists, calculate its value.

- a) 12^{-1} in \mathbb{Z}_{21}
- b) 18^{-1} in \mathbb{Z}_{25}

9 Chinese Remainder Theorem and Totient Function

Exercise 9.1. Use the Chinese Remainder Theorem to find the following:

- a) Find $x \in \{0, 1, ..., 265\}$ where $x \equiv 6 \mod 14$ and $x \equiv 13 \mod 19$.
- b) Find $x \in \{0,1,...,503\}$ where $x \equiv 4 \mod 9, x \equiv 7 \mod 8,$ and $x \equiv 2 \mod 7.$

Exercise 9.2. Find Euler's Totient function for the following n:

- a) n = 19
- b) n = 34
- c) n = 105
- d) n = 87
- e) n = 136
- f) n = 468

10 Exponentiation Modulo n

Exercise 10.1. Find the following:

- a) $17^{94} \mod 31$
- b) $12^{62} \mod 18$
- c) $9^{139} \mod 80$