CONVOCATORIA DE **ENERO** (21/01/2013). CURSO 2012-13 GRADO EN INGENIERÍA INFORMÁTICA

Para las cuestiones 1-4 se debe marcar la opción correcta (sólo una).

1 [0,75 p] Elegir la formalización correcta de la proposición S1: "Es necesario que cante pero no baile, para que no trabaje ni estudie", según:

MC = {ca: cante; ba: baile; tr: trabaje; es: estudie}

a)	$ca \land \neg ba \land \neg (tr \land es)$
b)	$ca \land \neg ba \rightarrow \neg tr \land \neg es$
<mark>c)</mark>	$\neg tr \land \neg es \rightarrow ca \land \neg ba$
d)	$\neg(\operatorname{tr}\wedge\operatorname{es})\to\operatorname{ca}\wedge\neg\operatorname{ba}$

2 [1,25 p] Elegir la formalización correcta de la proposición S2: "Para cualquier_x, es suficiente que x no tenga escamas pero sea peludo para que sea un mono, sin embargo es necesario que a y b jueguen con y para que a y b no tengan escamas, o y sea un mono, para cualquier y", según:

(MC = {Es(x): x tiene escamas; Pe(x): x es peludo; Mo(x): x es mono; Ju(x,y): x juega con y}, Dominio = {a, b}, x: variable, y: variable)

<mark>a)</mark>	$\forall x [\neg Es(x) \land Pe(x) \to Mo(x)] \land \forall y [(\neg Es(a) \land \neg Es(b)) \lor Mo(y) \to Ju(a,y) \land Ju(b,y)]$
b)	$\forall x [\neg Es(x) \land Pe(x) \to Mo(x)] \land \forall y [Ju(a,b,y) \to \neg Es(a,b) \lor Mo(y)]$
c)	$\forall x [\ Mo(x) \to \neg Es(x) \land Pe(x)\] \land \forall y [\ Ju(a,y) \land Ju(b,y) \to (\neg Es(a) \land \neg Es(b)) \lor Mo(y)\]$
d)	$\exists x [\neg Es(x) \land Pe(x) \land Mo(x) \land Ju(a,b,y) \land \neg Es(a,b) \lor Mo(y)]$

3 [1 p] La proposición S3: "No es cierto A o B a menos que sea cierto C, sin embargo, o es falso A o es cierto C"

a)	Verdadera, si A es verdadera y B es falsa, tanto si C es verdadera o falsa
b)	Falsa, si A es verdadera pero C y B son falsas
c)	Falsa, si A, B y C son verdaderas
d)	Verdadera y falsa, si A es falsa

4 [1 p] Sea MC ={As(x): x es astronauta; Vu(x,y): x vuela con y};

La fbf: $As(javier) \land As(sergio) \rightarrow Vu(javier, sergio)$ se interpreta como:

a) Falsa, si Javier es astronauta y Sergio, que también lo es, vuela con Javier.
b) Verdadera, si Javier vuela con Sergio.
c) Falsa, siempre que Javier y Sergio no sean astronautas.
d) La fbf no se puede interpretar porque los predicados no tienen valor de verdad

CONVOCATORIA DE **ENERO** (21/01/2013). CURSO 2012-13 GRADO EN INGENIERÍA INFORMÁTICA

EJERCICIOS (7 ptos). DEMOSTRACIÓN DE LA VALIDEZ DE RAZONAMIENTOS.

Se debe estudiar la validez de los razonamientos Raz1 y Raz2, propuestos en los ejercicios siguientes, usando los métodos indicados en cada uno de ellos.

Ejercicio 1
Ejercicio 1

Sea Raz1 donde:

P1: Si el misil impactó en Marte entonces, o Pepe estaba inconsciente y apretó el botón sin querer, o había regañado con su novia marciana.

P2: in \rightarrow re

P3: ¬re

Q: mi $\rightarrow \neg ap$

a) Formaliza la proposición P1 del razonamiento Raz1 según:

MC = { **mi**: misil impactó en Marte; **in**: estaba inconsciente; **ap**: apretó el botón;

re: regañado con su novia marciana }

Escribe aquí la fórmula de P1: $mi \rightarrow (in \land ap) \lor re$

b) Comprueba si existe una interpretación contraejemplo para el razonamiento P1, P2, P3 $\Rightarrow \neg Q$.

P1: mi \rightarrow (in \land ap) \lor re	P2: in \rightarrow re	P3: ¬re	\Rightarrow	¬Q : ¬(mi → ¬ap)
V	V	V		F
		re=F		(mi → ¬ap) =V puede ser por: (mi=V, ap=F) o (mi=F, ap=V) o (mi=F, ap=F) Suponemos, (mi=F, ap=F)
	Como re=F en P3 ⇒ in=F para que P2=V			
(mi=F, ap=F) por Q, re=F por P3, in=F por P2 luego P1=V				

¿Existe al menos una interpretación contraejemplo?	SI	NC
	¿Existe al menos una interpretación contraejemplo?	¿Existe al menos una interpretación contraejemplo? SI

En caso afirmativo escribe el **valor de verdad** que tiene cada componente atómica en dicha interpretación:

mi – F

in – F

ro – F

ap = F

d) Según los **resultados** obtenidos en la tabla puedes afirmar que Raz1 es: VÁLIDO

NO VÁLIDO

CONVOCATORIA DE **ENERO** (21/01/2013). CURSO 2012-13 GRADO EN INGENIERÍA INFORMÁTICA

Ejercicio 2 [3,25 p] Método: Deducción natural

Sea Raz2: P1, P2, P3 \Rightarrow Q, donde:

P1: $A \lor B$

P2: $A \rightarrow C$

P3: $B \rightarrow D$

 $Q: \neg C \rightarrow D$

se consideran A, B, C y D fórmulas atómicas cualesquiera.

Escribe la deducción especificando cada fórmula **premisa** y justificando las que son **deducidas** de otras. Si añades alguna subdeducción márcala con corchete o indenta las filas en las que aparezca.

Deducción:

TD, 4-7

 $8 \neg C \rightarrow D$