UNIOESTE Ciência da Computação

Sistemas Digitais Minimização

Prof. Jorge Habib El Khouri Prof. Antonio Marcos Hachisuca

Referências Bibliográficas

- 1. Digital Fundamentals, Thomas L. Floyd; Editora: Pearson; Edição: 11; Ano: 2015;
- Sistemas Digitais Princípios e Aplicações, Ronald J. Tocci; Editora: Pearson; Edição: 11; Ano: 2011;
- 3. Computer Organization and Design, David A. Patterson; Editora: Elsevier; Edição: 1; Ano: 2017
- 4. Digital Design: Principles and Practices, John F. Wakerly; Editora: Pearson; Edição: 5; Ano: 2018;
- 5. Guide to Assembly Language Programming in Linux, Sivarama P. Dandamudi; Editora: Springer; Edição: 1; Ano: 2005.

Regras Básicas da Álgebra Booleana

Comutativa

$$A + B = B + A$$

$$AB = BA$$

Associativa

$$(A+B)+C=A+(B+C)$$

$$(AB)C = A(BC)$$

Distributiva

$$A(B+C) = AB + AC$$

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \bar{A} = 1$$

$$\bar{\bar{A}} = A$$

$$A\cdot 0=0$$

$$A \cdot 1 = A$$

$$A \cdot A = A$$

$$A\cdot \bar{A}=0$$

$$\overline{X \cdot Y \cdot Z} = \overline{X} + \overline{Y} + \overline{Z}$$

$$A \oplus 0 = A$$

$$A \oplus 1 = \bar{A}$$

$$A \oplus A = 0$$

$$A \oplus A = 0$$

 $A \oplus \overline{A} = 1$

$$\Lambda + \Lambda D = \Lambda$$

$$A + AB = A$$

$$A + \bar{A}B = A + B$$

$$(A+B)(A+C) = A+BC$$

$$A \oplus B = A \bar{B} + \bar{A} B$$

$$\overline{OB}$$
 $AB : \overline{AB}$

 $\overline{X+Y+Z} = \overline{X} \cdot \overline{Y} \cdot \overline{Z}$

$$\overline{A \oplus B} = AB + \overline{A}\overline{B}$$

Transformações entre Representações Lógicas

Expressão Lógica Tabela Verdade

Técnica alternativa: Desenvolver a expressão de tal forma que suas parcelas fiquem completas com todas as variáveis. Para isto aplicar as diversas regras.

$$X = (A + B) \cdot \bar{C}$$

$$X = A\bar{C} + B\bar{C}$$

$$X = A\bar{C}(B + \bar{B}) + B\bar{C}(A + \bar{A})$$
$$X = A\bar{C}B + A\bar{C}\bar{B} + B\bar{C}A + B\bar{C}\bar{A}$$

$$X = AB\bar{C} + A\bar{B}\bar{C} + AB\bar{C} + \bar{A}B\bar{C}$$

$$X = AB\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C}$$

Expressão Lógica → Tabela Verdade

 $X = AB\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C}$

 $X = (A + B) \cdot \bar{C}$

Tabela Verdade → Expressão Lógica

Soma dos Produtos - SOP

$$X = f(A, B, C)$$

$$X = \bar{A}B\bar{C} + A\bar{B}\bar{C} + AB\bar{C}$$

Tabela Verdade → Expressão Lógica

Produto das Somas - POS

$$X = (A + B + C)(A + B + \bar{C})(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + \bar{C})$$

Tabela Verdade → Expressão Lógica

Soma dos Produtos - SOP

Exemplo

Expressão Lógica Circuito Lógico

Circuito Lógico → Expressão Lógica

Teorema de DeMorgan

$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

$$X \longrightarrow \overline{XY} \equiv X \longrightarrow \overline{X} + \overline{Y}$$

$$NAND \qquad Negative-OR$$

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$X \longrightarrow \overline{X + Y} \equiv X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{XY}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

$$X \longrightarrow \overline{X + Y} = X \longrightarrow \overline{X + Y}$$

Teorema de DeMorgan

$$\overline{X \cdot Y \cdot Z \cdot W} = \overline{X} + \overline{Y} + \overline{Z} + \overline{W}$$

$$\overline{X + Y + Z + W} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{W}$$

Exemplo

$$X = A \oplus B$$

$$X = \bar{A}B + A\bar{B}$$

$$\top AD$$

$$\overline{X} = \overline{A \oplus B} = A \odot B = \overline{\overline{A}B + A\overline{B}}$$

$$\overline{\triangleright B} = A$$

$$OB = A \odot B = AB + AB$$

$$\frac{1}{\overline{D}} = \frac{1}{\overline{A}D} = \frac{1}{A}$$

$$\overline{A}\overline{B} + A\overline{B} = \overline{A}\overline{B} \cdot \overline{A}\overline{B} = (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B}) =$$

$$=\overline{AB}\cdot\overline{AB}=$$

$$AB = (A +$$

$$(A + \overline{B}) \cdot (\overline{A} + B) = A\overline{A} + AB + \overline{A}\overline{B} + B\overline{B} =$$

$$B + \bar{A}\bar{B}$$

$$\overline{A \oplus B} = AB + \overline{A}\overline{B}$$

Mapa de Karnaugh (K-map) é um método para simplificar lógica combinacional de até 6 variáveis. Para 3 variáveis, são necessárias 8 (2³) células.

- O mapa mostrado é para três variáveis rotuladas A, B e C. Cada célula representa um possível termo do produto.
- Células adjacentes são aquelas células que diferem por apenas uma variável.
- Células adjacentes podem estar espacialmente distantes.

Exemplo:

1

1

1

0

- Agrupar os 1's em grupos de 1, 2, 4 ou 8 células. Neste caso são dois grupos sobrepostos.
 - Interprete cada grupo, eliminando as variáveis que se alteram entre as células adjacentes.

Exemplo:

	\boldsymbol{A}	В	С	X
000	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	0
100	1	0	0	1
	1	0	1	0
110	1	1	0	1
111	1	1	1	1

- Agrupar os 1's em grupos de 1, 2, 4 ou 8 células. Neste caso são dois grupos sobrepostos.
- Interprete cada grupo, eliminando as variáveis que se alteram entre as células adjacentes.

AB

Exemplo:

Exemplo:

 $\bar{A} + \bar{B} + \bar{C}$

Exemplo: Como agrupar?

Exemplo: Como agrupar?

		С	С
	AB C	0	1
$ar{A}ar{B}$	00	1 ,	$\begin{bmatrix} 1 & 1 \end{bmatrix}$
$\bar{A}B$	01	1	0 3
AB	11	1	$\frac{1}{5}$
$Aar{B}$	10	1	1 5
			<u> </u>

Exemplo:

Quatro variáveis

O mapa com 4 variáveis possui células adjacentes em todas as bordas

Quatro variáveis

AB CL	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

		$\bar{C}\bar{D}$	$\bar{C}D$	CD	$C\overline{D}$
	AB CD	00	01	11	10
$ar{A}ar{B}$	00	1 ₀	1	3	1 2
$ar{A}B$	01	1	5	7	1 6
AB	11	12	1 13	1 15	14
$Aar{B}$	10	8	1 ,	1 11	10
$AD + \overline{A}\overline{D}$					

Exemplo: Como agrupar e qual a função? $F_2 = \Sigma(2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15)$

Exemplo: Como agrupar?

Exemplo: Como agrupar?

Exemplo: Display de 7 segmentos: Função para o segmento a.

$$f_a = \sum (0,2,3,5,6,7,8,9)$$

Exemplo: Como agrupar e qual a função? $f_a = \sum (0,2,3,5,6,7,8,9)$

BD

+

 $\overline{B}\overline{D}$ X = Don't Care

Exemplo: Display de 7 segmentos: Função para o segmento c.

$$f_c = \sum (0,1,3,4,5,6,7,8,9)$$

Exemplo: Como agrupar e qual a função? $f_c = \sum (0,1,3,4,5,6,7,8,9)$

$$\overline{C}$$
 + B + D

X = Don't Care

Exemplo: Display de 7 segmentos: Função para o segmento e.

$$f_e = \sum (0,2,6,8)$$

Exemplo: Como agrupar e qual a função? $f_e = \sum (0,2,6,8)$

		$\overline{C}\overline{D}$	$\bar{C}D$	CD	$C\overline{D}$
	AB CD	00	01	11	10
$ar{A}ar{B}$	00	1)0	1	3	1 2
$ar{A}B$	01	4	5	7	1 6
AB	11	X 12	X ₁₃	X 15	X ₁₄
$Aar{B}$	10	1) 8	9	X 11	X_{10}

$$C\overline{D} + \overline{B}\overline{D}$$

X = Don't Care

Display de 7 segmentos

EXERCÍCIOS