

A) What are valid IP addresses for H1-H4?

Use the subnet mask and the IP address of the router on each network to decide.

You can copy and experiment with the IPv4 Addresses Google Sheet at http://ipv4.heinz-ds.is/

The host address of all 0's is reserved as a network address and is not used for any hosts.

The host address of all 1's is reserved as a broadcast IP address on the network.

Assign IP addresses to each of H1-H4

B) How is an HTTP request passed via TCP/IP from H1 to H4?

Simplified TCP Seament:

Ethernet	Frame Header	Ethernet Frame Payload							
		IP Datagram Header			Datagram Payload				
		-			TCP Segment Header		TCP Payload		
MAC	MAC	IP	IP	Protocol	Source	Destination	Application Data		
Source	Destination	Source	Destination		Port	Port			
				TCP					

Step 1: Begin at the Application layer (HTTP) and fill in the Application Data.

Note that last week we covered the HTTP protocol, including its header and payload sections.

Step 2: What are the transport protocol source and destination Ports?

Refer to transport protocol slides.

Step 3: The next layer down is the Internet Protocol Layer. What are the source and destination IP addresses?

Refer to the IP Layer slide

Step 4: Is the IP address of H4 is on the same network as H1 or not? How do you know?

Because the IP Destination address is on a different network than the IP Source address, the Ethernet Frame cannot be directly addressed to H4. Therefore, the Ethernet Frame must be addressed to a router that will pass the message on to the destination network.

Step 5: What is the address of the *Default Gateway* for this network? How was it obtained?

Step 6: What is the MAC Destination of the *Default Gateway?*

Refer to MAC addressing slides.

We have the IP Address of the *Default Gateway*, but we might not yet have cached the MAC address corresponding to that IP Address.

Therefore, H1 broadcasts an ARP request on the network asking, "Who is < IP address>"? The packet structure for the data in this request can be found at:

http://en.wikipedia.org/wiki/Address_Resolution_Protocol.

Step 6a: Our purposes, you can simply use the string "Who is _____". Fill in the MAC source and destination addresses.

Simplified Ethernet Frame:

Frame Header		Ethernet Frame Payload				
MAC MAC		Data				
Source	Destination					

Step 6b: R1 receives the ARP request and replies. "I am <IP address>"

Simplified Ethernet Frame:

JI	Simplified Edictrict Frame.									
F	rame Header		Ethernet Frame Payload							
N	MAC MAC		Data							
S	Source Destination									

Step 7: H1 can now complete addressing of the Ethernet Frame, and put the message on the network

Step 8: R1 receives the Ethernet Frame and passes its payload up to the IP layer. The IP layer decides where to route the message. It then sends the Datagram to the Data Link layer of the network interface on the destination network.

You can assume that R1 has cached the IP address to MAC address mapping of H4 in its ARP table.

Simplified TCP Segment:

Ethernet	Frame Header	Ethernet Frame Payload						
		IP Datagram Header			Datagram Payload			
					TCP Segment Header		TCP Payload	
MAC	MAC	IP	IP	Protocol	Source	Destination	Application Data	
Source	Destination	Source	Destination		Port	Port		
				TCP				

Step 9: H4 receives the Ethernet Frame, and the request is sent up the network stack.

What is the application that handles the request?

Step 10: H4 replies to H1

Simplified TCP Segment:

Ethernet	Frame Header	Ethernet Frame Payload							
		IP Datagram Header			Datagram Payload				
		-		TCP Segment Header		TCP Payload			
MAC	MAC	IP	IP	Protocol	Source	Destination	Application Data		
Source	Destination	Source	Destination		Port	Port			
				TCP					

Step 11: R1 routes the message to the appropriate network

Simplified TCP Segment:

	a rei begine								
Ethernet	Frame Header	Ethernet Frame Payload							
		IP Datagram Header			Datagram Payload				
				TCP Segment Header		TCP Payload			
MAC	MAC	IP	IP	Protocol	Source	Destination	Application Data		
Source	Destination	Source	Destination		Port	Port			
				TCP					