Thread

Syllabus

Unit	Contents	Lectures
4.	CPU Scheduling	8
	CPU scheduling (CPU-I/O Burst Cycle, CPU Scheduler, Types of Scheduling (Pre-	
	emptive and Non-Pre-Emptive Scheduling and Dispatcher), Scheduling Criteria (CPU	
	Utilization, Throughput, Turnaround Time, Waiting Time and Response Time),	
	Scheduling Algorithms (First Come First Served Scheduling, Shortest Job First	
	Scheduling, Priority Scheduling, Round Robin Scheduling, Multi Level Queue	
	Scheduling, Multi Level Feedback Queue Scheduling.	
5.	Memory	12
	Memory Management (Address Binding (Compile Time, Load Time and Execution	
	Time), Dynamic Loading, Dynamic Linking and Overlays). Comparison between Logical	
	and Physical Address Space. Swapping. Contiguous Allocation (Single Partition	
	Allocation, Multiple Partition Allocation and External and Internal Fragmentation),	
	Paging (Idea of Paging, Page Table Structure, Multi Level Paging, Inverted Page Table	
	and Shared Pages), Segmentation (idea of Segmentation, Hardware Support,	
	Implementation of Segment Tables, Protection and Sharing and Fragmentation).	
	Virtual memory (Idea of Virtual Memory, Demand Paging, Page Replacement, Page	
	Replacement Algorithms (First In First Out Algorithm and Least Recently Used	
	Algorithm). Thrashing.	

Syllabus

Unit	Contents	Lectures
1.	Introduction to Operating System	5
	Introduction to operating System. Basic Functions of Operating System. Simple Batch	
	Systems, Multi Programmed Batch Systems, Time-Sharing Systems, Parallel System,	
	Distributed systems, Real-Time Systems. Computer System structure- Computer	
	System Operation, I/O Structure (I/O Interrupts and DMA Structure) Storage	
	Structure, Storage Hierarchy and Hardware Protection (Dual Mode Operation, I/O	
	Protection, Memory Protection and CPU protection).	
2.	Operating System Structure	5
	System Components (Process Management, Main Memory Management, File	
	Management, I/O System Management, Secondary Storage Management,	
	Networking, Protection System and Command Interpreter System), Operating System	
	Services (Program Execution, I/O Operations, File System Manipulation,	
	Communication and Error detection).	
3.	Process	5
	Process Concept (Process, Process State, Process Control Blocks), Process Scheduling	
	(Scheduling Queues, Schedulers and Context Switching) Operations of Processes	
	(Process Creation and Process Termination), Inter Process Communication	
	(Information Sharing, Computation Speedups, Modularity and Convenience), Thread	
	(Thread Structure) and difference between Thread and Process.	

Lecture On Introduction to Operating System by Surya Narayan Prasad

Syllabus

Unit	Contents	Lectures
6.	File	5
	File (Idea of File, File Attributes, File Operations, File Types and File Structure), File	
	System Structure (File System Organization, File Allocation Methods (Contiguous	
	Allocation, Liked Allocation, Indexed Allocation)), Free Space Management (Bit Vector,	
	Linked List, Grouping and Counting).	
7.	Introduction to Linux / Unix	5
	What is Linux / Unix Operating systems	
	Difference between Linux / Unix and other operating systems	
	Features and Architecture	
	Various Distributions available in the market	
	Installation, Booting and shutdown process	
	System processes (an overview)	
	External and internal commands	
	Creation of partitions in OS	
	 Processes and its creation phases – Fork, Exec, wait 	

Syllabus

Unit	Contents	Lectures
8.	Shell introduction and Shell Scripting	5
	What is shell and various type of shell, Various editors present in Linux	
	Different modes of operation in vi editor	
	What is shell script, Writing and executing the shell script	
	Shell variable (user defined and system variables)	
	System calls, Using system calls	
	Pipes and Filters	
	Decision making in Shell Scripts (If else, switch), Loops in shell	
	• Functions	
	Utility programs (cut, paste, join, tr , uniq utilities)	
	Pattern matching utility (grep)	

Lecture On Introduction to Operating System by Surya Narayan Prasad

Thread ...

•A thread shares with its peer threads few information like code segment, data segment and open files. When one thread alters a code segment memory item, all other threads see that.

Thread

•A thread is a flow of execution through the process code, with its own program counter that keeps track of which instruction to execute next, system registers which hold its current working variables, and a stack which contains the execution history.

Lecture On "Thread" by Surya Narayan Prasad

Slide Number 6

Thread ...

•A thread is also called a lightweight process. Threads provide a way to improve application performance through parallelism. Threads represent a software approach to improving performance of operating system by reducing the overhead thread is equivalent to a classical process.

Thread ...

•Each thread belongs to exactly one process and no thread can exist outside a process. Each thread represents a separate flow of control. Threads have been successfully used in implementing network servers and web server. They also provide a suitable foundation for parallel execution of applications on shared memory multiprocessors.

Lecture On "Thread" by Surya Narayan Prasad

Slide Number 9

Thread ...

•The following figure shows the working of a single-threaded and a multithreaded process.

Lecture On "Thread" by Surya Narayan Prasad

Slide Number 10

Thread ...

