数学建模与数学实验

最短路问题

实验目的

- 1、了解最短路的算法及其应用
- 2、会用Matlab软件求最短路

实验内容

- 1、图论的基本概念
- 2、最短路问题及其算法
- 3、最短路的应用
- 4、建模案例:最优截断切割问题
- 5、实验作业

图论的基本概念

- 一、图的概念
 - 1、图的定义
 - 2、顶点的次数
 - 3、子图
- 二、图的矩阵表示
 - 1、关联矩阵
 - 2、邻接矩阵

图的定义

定义 有序三元组 $G=(V,E, \Psi)$ 称为一个图.

- [1] $V = \{v_1, v_2, \dots, v_n\}$ 是有穷非空集,称为**顶点集**, 其中的元素叫图 G 的**顶点**.
- [2] E 称为边集,其中的元素叫图 G 的边.
- [3] Ψ 是从边集 E 到顶点集 V 中的有序或无序的元素 偶对的集合的映射,称为**关联函数.**

例1 设 G=(V,E,Ψ), 其中

$$V=\{v_1,v_2, v_3, v_4\},$$

$$E=\{e_1, e_2, e_3, e_4, e_5\},\$$

$$\Psi(e_1) = v_1 v_2, \Psi(e_2) = v_1 v_3, \Psi(e_3) = v_1 v_4, \Psi(e_4) = v_1 v_4, \Psi(e_5) = v_3 v_3.$$

G 的图解如图.

定义 在图 G 中,与 V 中的有序偶(v_i , v_j)对应的边 e,称为图的**有向** 边 (或弧),而与 V 中顶点的无序偶 v_iv_j 相对应的边 e,称为图的无向边.每一条边都是无向边的图,叫无向图;每一条边都是有向边的图,称为**有向图**;既有无向边又有有向边的图称为混合图.

定义 若将图 G 的每一条边 e 都对应一个实数 w(e), 称 w(e)为边的权, 并称图 G 为赋权图.

规定用记号 ν 和 ε 分别表示图的顶点数和边数.

e_{z} e_{z}

常用术语:

- (1)端点相同的边称为环.
- (2) 若一对顶点之间有两条以上的边联结,则这些边称为重边.
- (3)有边联结的两个顶点称为**相邻的顶点**,有一个公共端点的边 称为**相邻的边**.
- (4)边和它的端点称为互相关联的.
- (5) 既没有环也没有平行边的图, 称为简单图.
- (6)任意两顶点都相邻的简单图,称为**完备图**,记为 K_n,其中 n 为顶点的数目.

顶点的次数

定义 (1) 在无向图中,与顶点 v 关联的边的数目(环算两次) 称为 v 的**次数**,记为 d(v).

(2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度,记为 $d^+(v)$,从顶点 v 引入的边的数目称为的入度,记为 $d^-(v)$, $d(v)=d^+(v)+d^-(v)$ 称为 v 的次数.

$$d(v_{\scriptscriptstyle A}) = 4$$

$$d^{+}(v_{4}) = 2$$
 $d^{-}(v_{4}) = 3$
 $d(v_{4}) = 5$

定理 1
$$\sum_{v \in V(G)} d(v) = 2\varepsilon(G)$$

推论1 任何图中奇次顶点的总数必为偶数.

例 在一次聚会中,认识奇数个人的人数一定是偶数。

子图

定义 设图 G=(V,E,Ψ),G₁=(V₁,E₁,Ψ₁)

- (1) 若 $V_1 \subseteq V$, $E_1 \subseteq E$,且当 $\in E_1$ 时, Ψ_1 (e)= Ψ (e),则称 G_1 是 G 的子图. 特别的,若 $V_1 = V$,则 G_1 称为 G 的生成子图.
- (2) 设 $V_1 \subseteq V$,且 $V_1 \neq \Phi$,以 V_1 为顶点集、两个端点都在 V_1 中的图 G 的边为边集的图 G 的子图,称为 G 的由 V_1 导出的子图,记为 $G[V_1]$.
- (3)设 E_1 ⊆ E,且 E_1 ≠ Φ ,以 E_1 为边集, E_1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E_1 导出的子图,记为 $G[E_1]$.

关联矩阵

对无向图G, 其关联矩阵 $\mathbf{M} = (m_{ii})_{\nu \times \varepsilon}$, 其中:

$$m_{ij} = \begin{cases} 1 & \exists v_i = je_j \\ 0 & \exists v_i = je_j \end{cases}$$
注: 假设图为简单图

对有向图G, 其关联矩阵 $\mathbf{M} = (m_{ii})_{v \times \varepsilon}$, 其中:

邻接矩阵

对无向图G, 其邻接矩阵 $A = (a_{ii})_{v \times v}$, 其中:

注: 假设图为简单图

对有向图G = (V, E), 其邻接矩阵 $A = (a_{ii})_{v \times v}$, 其中:

$$a_{ij} = \begin{cases} 1 & \stackrel{\text{若}}{\text{-}} (v_i, v_j) \in E \\ 0 & \stackrel{\text{-}}{\text{-}} (v_i, v_j) \notin E \end{cases}$$

对有向赋权图G, 其邻接矩阵 $A = (a_{ij})_{v \times v}$, 其中:

$$a_{ij} = \begin{pmatrix} w_{ij} & \ddot{\Xi}(v_i, v_j) \in E, \exists w_{ij} \rangle \chi \\ 0 & \ddot{\Xi}i = j \\ \infty & \ddot{\Xi}(v_i, v_j) \notin E \end{pmatrix}$$

无向赋权图的邻接矩阵可类似定义.

$$A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 2 & \infty & 7 \\ 2 & 0 & 8 & 3 \\ \infty & 8 & 0 & 5 \\ \infty & 3 & 5 & 0 \end{pmatrix} v_4$$

最短路问题及其算法

- 一、基本概念
- 二、固定起点的最短路
- 三、每对顶点之间的最短路

基本概念

定义1 在无向图 G=(V,E,Ψ)中:

(1) 顶点与边相互交错且 $\Psi(e_i) = v_{i-1}v_i$ (i=1,2,···k)的有限非空序列 $w = (v_0 e_1 v_1 e_2 \cdots v_{k-1} e_k v_k)$ 称为一条从 v_0 到 v_k 的**通路**,记为 $W_{v_0 v_k}$

- (2) 边不重复但顶点可重复的通路称为**道路**,记为 $T_{v_0v_k}$
- (3)边与顶点均不重复的通路称为**路径**,记为 $P_{\nu_0\nu_k}$

通路
$$W_{v_1v_4} = v_1e_4v_4e_5v_2e_1v_1e_4v_4$$

道路 $T_{v_1v_4} = v_1e_1v_2e_5v_4e_6v_2e_2v_3e_3v_4$
路径 $P_{v_1v_4} = v_1e_1v_2e_5v_4$

定义2 (1)任意两点均有路径的图称为连通图.

- (2) 起点与终点重合的路径称为圈.
- (3)连通而无圈的图称为树.

定义3 (1)设 P(u,v)是赋权图 G 中从 u 到 v 的路径,则称 $w(P) = \sum_{e \in E(P)} w(e)$ 为路径 P 的权.

(2) 在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路 $P^*(u,v)$,称为 u 到 v 的**最短路**.

固定起点的最短路

最短路是一条路径,且最短路的任一段也是最短路.

假设在u0-v0的最短路中只取一条,则从u0到其余顶点的最短路将构成一棵以u0为根的树.

因此,可采用树生长的过程来求指定顶点到其余顶点的最短路.

Dijkstra 算法: 求 G 中从顶点 u_0 到其余顶点的最短路

设 G 为赋权有向图或无向图, G 边上的权均非负.

对每个顶点, 定义两个标记(l(v), z(v)), 其中:

l(v): 表从顶点 u_0 到 v 的一条路的权.

z(v): v的父亲点,用以确定最短路的路线

算法的过程就是在每一步改进这两个标记,使最终l(v) 为从顶点 u_0 到 v 的最短路的权.

S: 具有永久标号的顶点集

输入: G 的带权邻接矩阵 w(u,v)

$u_0 \leftarrow v$ $l(u) \qquad W(u,v)$

算法步骤:

- (1) 赋初值: 令 $S = \{u_0\}, \ l(u_0) = 0$ $\forall v \in \overline{S} = V \setminus S, \Leftrightarrow l(v) = W(u_0, v), z(v) \neq u_0$ $u \leftarrow u_0$
- (2) 更新 l(v)、z(v): $\forall v \in \overline{S} = V \setminus S$, 若 l(v) > l(u) + W(u, v) 则令 l(v) = l(u) + W(u, v) , z(v) = u
- (3) 设 v^* 是使l(v) 取最小值的 \overline{S} 中的顶点,则令 $S=S \cup \{v^*\}$, $u \leftarrow v^*$
- (4) 若 $\overline{S} \neq \Phi$,转 2,否则,停止.

用上述算法求出的l(v) 就是 u_0 到 的最短路的权,从 的父亲标记z(v) 追溯到 u_0 ,就得到 u_0 到 的最短路的路线.

例 求下图从顶点 u_1 到其余顶点的最短路.

TO MATLAB (road1)

先写出带权邻接矩阵:

$$W =$$

因 G 是无向图, 故 W 是对称阵.

迭代	$l(u_i)$							
次数	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
1 2 3 4 5 6 7 8	0	2 2		%88887	∞ ∞ ∞ 3	∞ ∞ ∞ ∞ 6	∞ 10 10 10 10 9	∞ ∞ ∞ ∞ 12 12 12 12
最后标记: <i>l(v)</i> <i>z(v)</i>	$\begin{array}{c} 0 \\ u_1 \end{array}$	u_1^2	u_1	7 u ₆	u_2	6 u ₅	9 <i>u</i> ₄	12 <i>u</i> ₅

	$l(u_i)$							
	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
最后标记:								
l(v)	0	2	1	7	3	6	9	12
	u_1	u_1	u_1	u_6	u_2	u_5	u_4	u_5

每对顶点之间的最短路

- (一) 算法的基本思想
- (二)算法原理
 - 1、求距离矩阵的方法
 - 2、求路径矩阵的方法
 - 3、查找最短路路径的方法
- (三) 算法步骤

算法的基本思想

直接在图的带权邻接矩阵中用插入顶点的方法依次构造出 ν 个矩阵 $\mathbf{D}^{(1)}$ 、 $\mathbf{D}^{(2)}$ 、… 、 $\mathbf{D}^{(\nu)}$),使最后得到的矩阵 $\mathbf{D}^{(\nu)}$ 成为图的距离矩阵,同时也求出插入点矩阵以便得到两点间的最短路径.

算法原理—— 求距离矩阵的方法

把带权邻接矩阵 W 作为距离矩阵的初值,即 $\mathbf{D}^{(0)}=(d_{ij}^{(0)})_{\nu\times\nu}=\mathbf{W}$

(1)
$$D^{(1)} = (d_{ij}^{(1)})_{v \times v}$$
, $\sharp + d_{ij}^{(1)} = \min\{d_{ij}^{(0)}, d_{i1}^{(0)} + d_{1j}^{(0)}\}$

 $d_{ij}^{(1)}$ 是从 v_i 到 v_j 的只允许以 v_1 作为中间点的路径中最短路的长度.

(2)
$$D^{(2)} = (d_{ij}^{(2)})_{v \times v}$$
, $\sharp \oplus d_{ij}^{(2)} = \min\{d_{ij}^{(1)}, d_{i2}^{(1)} + d_{2j}^{(1)}\}$

 $d_{ij}^{(2)}$ 是从 v_i 到 v_j 的只允许以 v_1 、 v_2 作为中间点的路径中最短路的长度.

. . .

 $d_{ij}^{(v)}$ 是从 v_i 到 v_j 的只允许以 v_1 、 v_2 、...、 v_v 作为中间点的路径中最短路的长度. 即是从 v_i 到 v_j 中间可插入任何顶点的路径中最短路的长,因此 D(v)即是距离矩阵.

算法原理—— 求路径矩阵的方法

在建立距离矩阵的同时可建立路径矩阵R.

 $\mathbf{R}=(r_{ij})_{\nu\times\nu}, r_{ij}$ 的含义是从 \mathbf{v}_i 到 \mathbf{v}_j 的最短路要经过点号为 r_{ij} 的点.

$$R^{(0)} = (r_{ij}^{(0)})_{v \times v}, \quad r_{ij}^{(0)} = j$$

每求得一个 D^(k)时, 按下列方式产生相应的新的 R^(k)

即当v_k被插入任何两点间的最短路径时,被记录在**R**^(k)中,依次求*D*^(v)时求得 *R*^(v),可由*R*^(v)来查找任何点对之间最短路的路径.

算法原理—— 查找最短路路径的方法

若 $r_{ij}^{(v)} = p_1$, 则点 p_1 是点i到点j的最短路的中间点.

然后用同样的方法再分头查找. 若:

(1) 向点
$$i$$
 追朔得: $r_{ip_1}^{(\nu)} = p_2$, $r_{ip_2}^{(\nu)} = p_3$, ..., $r_{ip_k}^{(\nu)} = p_k$

(2) 向点
$$j$$
追朔得: $r_{p_1j}^{(v)} = q_1, r_{q_1j}^{(v)} = q_2, \dots, r_{q_mj}^{(v)} = j$

则由点i到j的最短路的路径为: $i, p_k, \dots, p_2, p_1, q_1, q_2, \dots, q_m, j$

算法步骤

Floyd 算法: 求任意两点间的最短路.

D(i,j): i 到 j 的距离.

R(i,j): i 到 j 之间的插入点.

输入: 带权邻接矩阵 w(i,j)

(1) 赋初值:

对所有 i,j, d(i,j) $\leftarrow w(i,j), r(i,j)$ $\leftarrow j, k \leftarrow 1$

(2) 更新 *d(i,j), r(i,j)*

对所有 i,j,若 d(i,k)+d(k,j)< d(i,j),则 d(i,j) d(i,k)+d(k,j),r(i,f) k

(3) 若 *k*=ν ,停止.否则 *k*← *k*+*1*,转(2).

例 求下图中加权图的任意两点间的距离与路径.

TO MATLAB

(road2(floyd))

$$D = \begin{pmatrix} 0 & 7 & 5 & 3 & 9 \\ 7 & 0 & 2 & 4 & 6 \\ 5 & 2 & 0 & 2 & 4 \\ 3 & 4 & 2 & 0 & 6 \\ 9 & 6 & 4 & 6 & 0 \end{pmatrix}, R = \begin{pmatrix} 1 & 4 & 4 & 4 & 4 \\ 3 & 2 & 3 & 3 & 3 \\ 4 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 4 & 3 \\ 4 & 3 & 3 & 3 & 5 \end{pmatrix}$$

 $d_{51} = 9$, 故从 v_5 到 v_1 的最短路为 9.

$$r_{51} = 4$$
. 由 v_4 向 v_5 追朔: $r_{54} = 3, r_{53} = 3$; 由 v_4 向 v_1 追朔: $r_{41} = 1$

所以从 v_5 到 v_1 的最短路径为: $5 \rightarrow 3 \rightarrow 4 \rightarrow 1$.

<u>返回</u>

最短路的应用

- 一、可化为最短路问题的多阶段决策问题
- 二、选址问题
 - 1、中心问题
 - 2、重心问题

可化为最短路问题的多阶段决策问题

例1 设备更新问题:企业使用一台设备,每年年初,企业领导就要确定是购置新的,还是继续使用旧的.若购置新设备,就要支付一定的购置费用;若继续使用,则需支付一定的维修费用.现要制定一个五年之内的设备更新计划,使得五年内总的支付费用最少.

已知该种设备在每年年初的价格为:

第一年	第二年	K.	第三年	第四年	第五年
11	11		12	12	13
使用不同	时间设备所	「 需维修费	贵为:		
使用年限	0-1	1-2	2-3	3-	-4 4-5
维修费	5	6	8	1	1 18

构造加权有向图 G1(V,E)

(1) 顶点集 $V = \{X_{ib}, i=1,2,3,4,5\} \cup \{X_{ir}^{(k)}, i=2,3,4,5,6; k=1,2,\cdots,i-1\},$ 每个顶点代表年初的一种决策,其中顶点 X_{ib} 代表第 i 年初购置新设备的决策,顶点 $X_{ir}^{(k)}$ 代表第 i 年初修理用过 k 年的旧设备的决策

(2) 弧集 $E=\{(X_{ib},X_{i+1,b}),(X_{ir}^{(k)},X_{i+1,b}),i=1,2,3,4;k=1,2,\cdots,i-1\}$ $\cup\{(X_{ib},X_{i+1,r}^{(1)}),i=1,2,3,4,5\}\cup\{(X_{ir}^{(k)},X_{i+1,r}^{(k+1)}),i=1,2,3,4,5;k=1,2,i-1\}$ 若第 i 年初作了决策 X_i 后,第 i+1 年初可以作决策 X_{i+1} ,则顶点 X_i 与 X_{i+1} 之间有弧 (X_i,X_{i+1}) ,其权 $W(X_i,X_{i+1})$ 代表第 i 年初到第 i+1 年初之间的费用.例如,弧 $(X_{3b},X_{4r}^{(1)})$ 代表第 3 年初买新设备,第四年初决定用第三年买的用过一年的旧设备,其权则为第三年初的购置费与三、四年间的维修费之和,为 12+5=17

(3) 问题转化为顶点 X_{1b} 到 $X_{6r}^{(k)}$ 的最短路问题.五年的最优购置费为 $\min_{k=1,2,3,4,5} \{d(X_{1b},X_{6r}^{(k)})\}$

其中 $d(X_{1b}, X_{6r}^{(k)})$ 为顶点 X_{1b} 到 $X_{6r}^{(k)}$ 的最短路的权.

求得最短路的权为53,而两条最短路分别为

$$X_{1b} - X_{2r}^{(1)} - X_{3r}^{(2)} - X_{4b} - X_{5r}^{(1)} - X_{6r}^{(2)};$$

$$X_{1b} - X_{2r}^{(1)} - X_{3b} - X_{4r}^{(1)} - X_{5r}^{(2)} - X_{6r}^{(3)}$$

因此,计划为第一、三年初购置新设备,或第一、四年初购置新设备, 五年费用均最省,为 53.

也可构造加权有向图 G2(V,E).

- (1) 顶点集 $V=\{V_1,V_2,V_3,V_4,V_5,V_6\}$, V_i 表第 i 年初购置新设备的决策, V_6 表第五年底.
- (2) 弧集 $E=\{(V_i,V_j), i=1,2,3,4,5; i < j \le 6\}$, 弧 (V_i,V_j) 表第 i 年初购进一台设备一直使用 到第 j 年初的决策,其权 $W(V_i,V_j)$ 表由这一决策在第 i 年初到第 j 年初的总费用,如 $W(V_1,V_4)=11+5+6+8=30$.

选址问题--中心问题

例2 某城市要建立一个消防站,为该市所属的七个区服务,如图所示.问应设在那个区,才能使它至最远区的路径最短.

- (1) 用 Floyd 算法求出距离矩阵 $D=(d_{ij})_{v\times v}$. VI
- (2) 计算在各点 v_i 设立服务设施的 最大服务距离 $S(v_i)$.

$$S(v_i) = \max_{1 \le j \le v} \{d_{ij}\}$$
 $i = 1, 2, \dots v$

(3) 求出顶点 v_k ,使 $S(v_k) = \min_{1 \le i \le v} \{S(v_i)\}$

则 v_k 就是要求的建立消防站的地点.此点称为图的中心点.

TO MATLAB

(road3(floyd))

$$D = \begin{pmatrix} 0 & 3 & 5 & 10 & 7 & 5.5 & 7 \\ 3 & 0 & 2 & 7 & 4 & 2.5 & 4 \\ 5 & 2 & 0 & 5 & 2 & 4.5 & 6 \\ 10 & 7 & 5 & 0 & 3 & 7 & 8.5 \\ 7 & 4 & 2 & 3 & 0 & 4 & 5.5 \\ 5.5 & 2.5 & 4.5 & 7 & 4 & 0 & 1.5 \\ 7 & 4 & 6 & 8.5 & 5.5 & 1.5 & 0 \end{pmatrix}$$

$$S(v_1)=10$$
, $S(v_2)=7$, $S(v_3)=6$, $S(v_4)=8.5$, $S(v_5)=7$, $S(v_6)=7$, $S(v_7)=8.5$

 $S(v_3)=6$,故应将消防站设在 v_3 处。

选址问题--重心问题

例3 某矿区有七个矿点,如图所示.已知各矿点每天的产矿量 $q(v_j)$ (标在图的各顶点上).现要从这七个矿点选一个来建造矿厂.问应选在哪个矿点,才能使各矿点所产的矿运到选矿厂所在地的总运力(千吨公里)最小.

- (1) 求距离阵 $D=(d_{ij})_{v\times v}$.
 - (2) 计算各顶点作为选矿厂的总运力 $m(v_i)$

$$m(v_i) = \sum_{j=1}^{\nu} q(v_j) \times d_{ij} \qquad i = 1, 2, \dots \nu$$

 $\sqrt{7}(4)^{1.5}\sqrt{6}(1)$ 4

实验作业

生产策略问题:现代化生产过程中,生产部门面临的突出问题之一,便是如何选取合理的生产率。生产率过高,导致产品大量积压,使流动资金不能及时回笼;生产率过低,产品不能满足市场需要,使生产部门失去获利的机会。可见,生产部门在生产过程中必须时刻注意市场需求的变化,以便适时调整生产率,获取最大收益。

某生产厂家年初要制定生产策略,已预知其产品在年初的需求量为a=6万单位,并以b=1万单位/月速度递增。若生产产品过剩,则需付单位产品单位时间(月)的库存保管费 $C_2=0.2$ 元;若产品短缺,则单位产品单位时间的短期损失费 $C_3=0.4$ 元。假定生产率每调整一次带有固定的调整费 $C_1=1$ 万元,试问工厂如何制定当年的生产策略,使工厂的总损失最小?

<u>返回</u>