

Université Constantine 2 Abdelhamid Mehri Faculté des Nouvelles Technologies de l'Information et de la Communication Département de l'Informatique Fondamentale et ses Applications

Module

Applications of Artificial Intelligence

La reconnaissance d'iris

Modalités biométriques

Caractéristiques biologiques

Caractéristiques comportementales

Caractéristiques morphologiques

Modalités biométriques

Caractéristiques morphologiques

L'appareil développé par CASIA utilisé pour la collection de la base de donnée CASIA-IrisV1

Iris

L'iris est la zone **colorée visible** entre le blanc de l'œil et la pupille.

Iris

•L'iris est:

- Un objet sombre.
- De petite taille.
- Localisée derrière la cornée qui constitue un miroir hautement réfléchissant.

Structure de l'iris

Avantages

Avantages:

- Grande quantité d'information contenue dans l'iris.
- Vrais jumeaux non confondus.
- Stabilité de la texture de l'iris durant la vie.
- Acquisition de l'image d'iris sans contact.

Inconvénients

Inconvénients:

• La petite dimension de l'iris (1cm) rend l'acquisition de l'image à partir d'une certaine distance (1m) difficile.

• L'iris est situé derrière le cornée qui est une surface courbée et humide ce qui donne des reflets qui apparaissent sous forme de tâche de flash sur les images.

Inconvénients

Inconvénients:

- L'iris est partiellement caché par les paupières et les cils.
- L'éclairage ambiant ne doit pas être élevé ou brillant.

Architecture d'un système de reconnaissance d'iris

Acquisition

Image acquise en lumière visible, conditions normales

Acquisition

- Mode d'acquisition:
 - Visible: peu de texture.
 - Infrarouge: plus de reflet.

Lumière visible

Lumière infrarouge

Image acquise en infrarouge

Segmentation

Elle consiste à isoler l'iris du reste de l'œil (pupille, blanc

de l'oie, paupières et cils).

Segmentation

Méthode 1: méthodes de détection par des contours circulaires

• Les chercheurs ont supposé que les deux frontières de l'iris sont circulaires.

Segmentation

Méthode 1:

Pour chercher les frontières il est nécessaire de déterminer:

- Le centre (x, y).
- Le rayon r, de chaque cercle.

La limite de cette méthode se base sur la netteté de

l'image

Segmentation

Méthode 1:

- La limite de cette méthode se base sur la netteté de l'image.
- La pupille peut subir des déformations qui affectent sa frontière. Cette dernière ne peut donc plus être approximée par un cercle ou une ellipse parfaite.

Segmentation

Méthode 2 consiste à:

- Définir les frontières de l'iris par contours elliptiques.
- Cette méthode nécessite à définir les 5 paramètres de chaque ellipse:
- Les longueurs du petit et du grand axe a et b.
- Le centre de l'ellipse (x, y).
- L'angle de rotation de l'ellipse θ .

Segmentation

Méthode 3:

- Elle consiste à représenter les frontières de l'iris en forme libre.
- La segmentation ne fait aucune hypothèse à la forme des frontières de l'iris.
- Dans ce cas la complexité des frontières est plus élevée mais le résultat de la segmentation est plus précis par apport aux méthodes citées ci-dessus

Segmentation

Méthode 3:

• Cette technique utilise les contours actifs (snake).

Segmentation

Méthode 3:

• Cette technique utilise les contours actifs (snake).

$$E_{Snake} = E_{interne} + E_{externe}$$

Exemple: technique de Hough

• La transformée de *Hough* est une technique qui peut être utilisée afin d'isoler des objets de formes géométriques simples dans l'image.

• En général, on se limite aux lignes, cercles ou ellipses présents dans l'image.

Exemple: technique de Hough

Avantages:

- Elle est tolérante aux occlusions dans les objets recherchés et demeure relativement inaffectée par les bruits.
- Cette technique nous permet de reconnaitre les lignes (droite), les cercles ou n'importe quelle forme présente dans une image.

Exemple: technique de Hough

Avantages:

- Les objets à détecter dans l'image de l'œil (iris, pupille, paupières) sont circulaires ou ellipsoïdaux et donc se prêtent bien à une détection par la trasformée de Hough.

Exemple: technique de Hough

• Etapes:

- Une image de contours est générée par une quelconque méthode de génération de contours.

Exemple: technique de Hough

• Etapes:

- Un processus de vote est mis en place sur l'image de contours obtenue.
- Chaque point de contour vote pour les cercles dont il appartient et le cercle qui obtient le plus de vote est le cercle recherché.

Exemple : Déterminer le centre de la pupille

- Binariser 1'image.
- Seuillage.
- Déterminer le rayon et le centre de la pupille.

: Détermination du rayon et du centre de la pupille

Exemple : Déterminer le centre de la pupille

Le rayon et le centre de la pupille sont donnés par les formules suivantes :

$$R_{P} = (x_{max} - x_{min})/2$$

$$x_{p} = R_{p} + x_{min}$$

$$y_{p} = R_{p} + y_{min}$$

: Détermination du rayon et du centre de la pupille

Exemple : Déterminer le centre de la pupille

Le rayon de l'iris est donné par l'équation: $\mathbf{R}i = c_p - x_i$

Exemple : Déterminer le centre de la pupille

La normalisation

• Une comparaison entre deux iris de tailles différentes ne sera possible qu'à partir d'une représentation consistante entre toutes les images.

Encodage

- Filtre de Gabor:
- Un filtre linéaire utilisé pour l'analyse de texture.

Défis

Reconnaissance d'iris

Défis

Image avec lunettes

Défis

Lors du mouvement du corps, la caméra peut capturer des parties du visage

Défis

Filtre de Canny

Défis

Les cils : Les cils peuvent apparaître comme une ligne très mince et sombre dans la région de l'iris ou un petit fragment. Ils génèrent une région uniforme et sombre.

Défis

Les cils:

Défis

Le mouvement de la paupière : naturellement l'œil est toujours en mouvement, ce mouvement des paupières peut obstruer les parties pertinentes de l'iris, spécialement dans ses extrêmes supérieures et inférieures de l'image d'iris.

Défis

Le mouvement de la paupière :

Défis

Qualité de l'iris acquise:

(a) Réflexions lors de l'acquisition (b) Image de l'iris acquise sous lumière naturelle (c) Image de l'œil acquise sous lumière infrarouge

BD CASIA (V1.0): se compose de 756 images d'iris.

BD MMU: se compose de 450 images d'iris.

BD UPOL: se compose de 384 images d'iris.

BD UBIRISv1: se compose de 1877 images d'iris.

Merci pour votre attention