

2025 Illinois Statistics Datathon

Team Conquistadors Vinit, Shobha, Anushka, Nagarathna

Our goal was to build a Predictive Framework for managing Credit Lines

Forecasting customer spending for Q4 2025

Segmenting accounts by credit line eligibility & risk

Recommending personalized credit line increases or no change

What we analysed

Financials

8 Structured Tables

Credit Behaviors

Fraud metrics

Account summaries

Preprocessing the Data

Data Cleaning and Merging

The data consisted of 8 structured tables covering financials, credit behaviour, fraud measures, delinquencies, and account summaries.

- Columns with >70% missing values were removed to ensure data quality.
- Tables were combined using primary and foreign keys as stated in the mapping specification.
- Accounts with null credit line values were excluded, since they are not eligible for limit adjustments.
- Retained only active accounts.

Exploratory Data Analysis

Insights from Historical Data

- Examined average quarterly spending patterns(i.e Q2 2023 to Q1 2025)
- Observed correlation between Confidence Level & Credit Line
- Evaluated customer spending across multiple periods to assess repeat behavior and brand loyalty.

Exploratory Data Analysis

Insights from Historical Data

- Examined correlation between Delinquency, Customer Behaviour Score with Credit Line.
- Observed Negative correlation between Delinquency & Credit Line.
- Observed Positive correlation with Behavioral Score & Credit Line.
- Since there is a visible correlation between these metrics we used them in making predictions for future Q4 credit line adjustments.

Feature Engineering

Engineered

Features Including

Average Quarterly Spend

(from Q2 2023 to Q1 2025)

Credit Utilization

(balance / credit limit)

Average Quarterly Open-to-Buy (OTB) (from Q3 2024 to Q1 2025)

Behavioral Scores

(internal and bureau)

Total Net Fraud Amount & Excl Flag

If an account is tagged for exclusion from credit limit changes and an account's total fraud amount

Delinquency metrics:

days past due, NSF counts, returned checks

Objective 1: Predict Q4 2025 Customer Spending

Model Used: GradientBoostingRegressor

Input Features (X): All behavioral, credit, and historical spending features

Target Variable (y): avg_spend_2025_Q4 (predicted)

Training Data Range: Q2 2023 – Q1 2025

Verification method: Used

avg_spend_2024_Q4 as proxy for validation

Model Metrics

RMSE: 64.046

R² Score:

0.9985

0000 20000 30000 40000 Predicted Q4 2025 Spend

Objective 2: Segment Accounts for Credit Line Eligibility

Step 1: Manual Labeling using Business Logic

- 1. Eligible No Risk (Class 0):
- Predicted Q4 spend > \$300
- Utilization > 50%
- Bureau Score > 600 and

Behavioral

Score > 550

 Moderate/low spenders or underutilized accounts

- 2. Eligible With Risk (Class1):
- High spenders with good utilization but low credit scores

- 4. Non-Performing / High Risk (Class 3): Fraud > \$100 NSF count > 3
- Days delinquent > 60
- Behavior score < 400
- Returned checks > 3

Step 2: Model Used

- We experimented with multiple models like XGBoost Classifier, RandomForestClassifier is used for the final analysis.
- Due to class imbalance, we implemented SMOTE to address the issue.
- We tested combinations of SMOTE with Random Forest and SMOTE with XGBoost.
- After evaluation, we concluded that SMOTE + XGBoost provided the best performance.

Model Performance

High Accuracy for Majority Classes 6,510 No-Increase accounts

correctly predicted
3,894 Eligible-Safe accounts
correctly predicted
Only 9 No-Increase accounts
wrongly predicted as Eligible-Risk

Rare Class Segmentation Still Effective

70 Eligible-Risk accounts correctly classified2,788 High-Risk accounts correctly predicted0 misclassifications of High-Risk customers

Model Performance

Class	Description	Precision	Recall	F-1 Score	Support
0	No Increase Required	0.89	0.87	0.88	1372
1	Eligible – No Risk	0.80	0.82	0.81	824
2	Eligible – With Risk	0.47	0.53	0.50	15
3	Non-Performing / High Risk	1.00	1.00	1.00	558
accuracy				0.88	2769
macro avg		0.79	0.81	0.80	2769
weighted avg		0.88	0.88	0.88	2769

Insights

Overall Accuracy: 88%

Excellent at classifying highrisk and low-risk groups eligible for increase

Slight underperformance in minority class (Class 2) due to class imbalance

Weighted Average F1 Score: 0.88 confirms general robustness of the model.

Objective 3: Recommend Credit Line Adjustments

To recommend personalized credit line increases, we built a regression-based framework that balances spending demand, utilization trends, and risk factors.

Model

RandomForestRegressor

Applied to

Accounts from Segments 1 (without risk) and 2(with risk)

Features

Current credit line, utilization, spending, behavioral scores

Output

Personalized credit line increase per account

High Risk Check

1 in 173 accounts expected to commit fraud

- 3+ NSF incidents
- 2+ returned Checks YTD
- 45+ Delinquent or max deliquency in 6 months > 30
- Low behavioral or recent risk scores <400

Spending Demand Logic

Spend to Limit Ratio	Credit Line Increase
> 1.2 and utilization > 60%	30%
> 1.0	20%
>0.8	10%
Otherwise	No increase

Step 2: Model Training and Evaluation

Features Used:

- Predicted Q4 spend
- Credit utilization (3M, 6M, current)
- Risk and delinquency signals
- Historical spend and fraud markers
- Available credit and current balance
- Credit line segmentation

✓ Final Output

The best model (RandomForestRegressor) was used to predicted credit line increase amount for all accounts in the eligible segments. The model was off by just \$3.3759 on an average.

This approach allowed us to recommend data-backed, risk-aware credit line increases tailored to each customer's financial profile.

Conclusion

Key Achievements

- Developed a comprehensive predictive framework addressing all three challenge objectives
- Achieved exceptional model performance:
 - Spending Prediction: R² of **0.9985** (GBRegressor)
 - Customer Segmentation: 88% accuracy (XGBClassifier + SMOTE)
 - Credit Line Recommendations: MAE of \$3.38 (RandomForestRegressor)

Business Impact

- Enables data-driven decisions for credit line management
- Identifies high-value customers while mitigating risk exposure
- Provides personalized recommendations balancing growth opportunities with risk management

"Our solution provides Synchrony with a powerful, data-driven framework to optimize credit line decisions, maximize customer value, and minimize financial risk - all built on robust machine learning foundations."

