and by combining the above two equations, we get

$$2(\lambda - \overline{\lambda})\varphi(u, v) = \lambda\varphi(u + v, u + v) - \lambda\varphi(u - v, u - v) - \varphi(u + \lambda v, u + \lambda v) + \varphi(u - \lambda v, u - \lambda v).$$
 (*)

If the automorphism $\lambda \mapsto \overline{\lambda}$ is not the identity, then there is some $\lambda \in K$ such that $\lambda - \overline{\lambda} \neq 0$, and if K is not of characteristic 2, then we see that the sesquilinear form φ is completely determined by its restriction to the diagonal (that is, the set of values $\{\varphi(u,u) \mid u \in E\}$). In the special case where $K = \mathbb{C}$, we can pick $\lambda = i$, and we get

$$4\varphi(u,v) = \varphi(u+v,u+v) - \varphi(u-v,u-v) + i\varphi(u+\lambda v,u+\lambda v) - i\varphi(u-\lambda v,u-\lambda v).$$

Remark: If the automorphism $\lambda \mapsto \overline{\lambda}$ is the identity, then in general φ is not determined by its value on the diagonal, unless φ is symmetric.

In the sesquilinear setting, it turns out that the following two cases are of interest:

1. We have

$$\varphi(v, u) = \overline{\varphi(u, v)}, \text{ for all } u, v \in E,$$

in which case we say that φ is *Hermitian*. In the special case where $K = \mathbb{C}$ and the involutive automorphism is conjugation, we see that $\varphi(u, u) \in \mathbb{R}$, for $u \in E$.

2. We have

$$\varphi(v, u) = -\overline{\varphi(u, v)}, \text{ for all } u, v \in E,$$

in which case we say that φ is skew-Hermitian.

We observed that in characteristic different from 2, a sesquilinear form is determined by its restriction to the diagonal. For Hermitian and skew-Hermitian forms, we have the following kind of converse.

Proposition 29.8. If φ is a nonzero Hermitian or skew-Hermitian form and if $\varphi(u,u) = 0$ for all $u \in E$, then K is of characteristic 2 and the automorphism $\lambda \mapsto \overline{\lambda}$ is the identity.

Proof. We give the proof in the Hermitian case, the skew-Hermitian case being left as an exercise. Assume that φ is alternating. From the identity

$$\varphi(u+v,u+v) = \varphi(u,u) + \varphi(u,v) + \overline{\varphi(u,v)} + \varphi(v,v),$$

we get

$$\varphi(u,v) = -\overline{\varphi(u,v)}$$
 for all $u,v \in E$.

Since φ is not the zero form, there exist some nonzero vectors $u, v \in E$ such that $\varphi(u, v) = 1$. For any $\lambda \in K$, we have

$$\lambda \varphi(u, v) = \varphi(\lambda u, v) = -\overline{\varphi(\lambda u, v)} = -\overline{\lambda} \, \overline{\varphi(u, v)},$$