CS 473: Algorithms

Chandra Chekuri Ruta Mehta

University of Illinois, Urbana-Champaign

Fall 2016

Inequalities & QuickSort w.h.p.

Lecture 8
September 16, 2016

Outline

Slick Analysis of Randomized QuickSort

Concentration of Mass Around Mean

Markov's Inequality

Chebyshev's Inequality

Chernoff Bound

Randomized QuickSort: High Probability Analysis

Part I

Slick analysis of QuickSort

Recall: Randomized QuickSort

Randomized QuickSort

- Pick a pivot element uniformly at random from the array.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Let Q(A) be number of comparisons done on input array A:

- For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- 2 X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij}=1$ if rank i is compared with rank j element, otherwise 0.

6

Let Q(A) be number of comparisons done on input array A:

- For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- ② X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij}=1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\label{eq:energy_energy} E\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} E\Big[X_{ij}\Big] = \sum_{1 \leq i < j \leq n} Pr\Big[R_{ij}\Big]\,.$$

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is $Pr[R_{ij}]$?

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is $Pr[R_{ij}]$?

7 | 5 | 9 | 1 | 3 | 4 | 8 | 6

With ranks: 6 4 8 1 2 3 7 5

 $\mathbf{R}_{ij} = \text{rank } \mathbf{i} \text{ element is compared with rank } \mathbf{j} \text{ element.}$

Question: What is Pr[R_{ij}]?

With ranks: 6 4 8 1 2 3 7 5

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

 $\boldsymbol{R_{ij}} = \text{rank}~\boldsymbol{i}$ element is compared with rank \boldsymbol{j} element.

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

• If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

 $\mathbf{R}_{ij} = \mathsf{rank}~i$ element is compared with rank j element.

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

② If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

1 If pivot is 5 (rank 4). Bingo!

8

Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

• If pivot is 5 (rank 4). Bingo!

If pivot is 8 (rank 7). Bingo!

8

Question: What is Pr[R_{i,j}]?

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

• If pivot is 5 (rank 4). Bingo!

If pivot is 8 (rank 7). Bingo!

If pivot in between the two numbers (say 6 [rank 5]):

8

5 and 8 will never be compared to each other.

Question: What is $Pr[R_{i,j}]$?

Conclusion:

R_{i,i} happens if and only if:

ith or jth ranked element is the first pivot out of ith to jth ranked elements.

9

Question: What is $Pr[R_{ij}]$?

Question: What is $Pr[R_{ij}]$?

Lemma

$$\text{Pr}\Big[R_{ij}\Big] = \tfrac{2}{j-i+1}.$$

Question: What is $Pr[R_{ij}]$?

Lemma

$$\text{Pr}\Big[R_{ij}\Big] = \tfrac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of **A** in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_i\}$

 $\mathbf{S} = \{\mathbf{a}_{\mathsf{i}}, \mathbf{a}_{\mathsf{i}+1}, \dots, \mathbf{a}_{\mathsf{j}}\}$

Observation: If pivot is chosen outside **S** then all of **S** either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from **S** for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if the first chosen pivot from S is either a_i or a_j .

Continued...

Lemma

$$\Pr\left[\mathsf{R}_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of \boldsymbol{A} . Let

$$S = \{a_i, a_{i+1}, \dots, a_j\}$$

Observation: a_i is compared with a_j if and only if the first chosen pivot from S is either a_i or a_j .

Observation: Given that pivot is chosen from **S** the probability that it is a_i or a_j is exactly 2/|S| = 2/(j-i+1) since the pivot is chosen uniformly at random from the array.

Continued...

Lemma

$$\Pr\left[\mathsf{R}_{\mathsf{i}\mathsf{j}}\right] = \tfrac{2}{\mathsf{j}-\mathsf{i}+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of **A**. Let

 $\boldsymbol{S} = \{a_i, a_{i+1}, \dots, a_j\}.$ Event \boldsymbol{E} when first pivot from \boldsymbol{S} is chosen.

Observation: Given **E** probability that the pivot is a_i or a_j is exactly 2/|S| = 2/(j-i+1),

Continued...

Lemma

$$\Pr\left[\mathsf{R}_{\mathsf{i}\mathsf{j}}\right] = \tfrac{2}{\mathsf{j}-\mathsf{i}+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_n$ be sort of **A**. Let

 $S = \{a_i, a_{i+1}, \dots, a_j\}$. Event **E** when first pivot from **S** is chosen.

Observation: Given **E** probability that the pivot is a_i or a_j is exactly 2/|S| = 2/(j-i+1), *i.e.*

$$Pr[R_{ij}|E] = 2/(j-i+1)$$
.

Continued...

Lemma

$$\Pr\left[\mathsf{R}_{ij}\right] = \frac{2}{j-i+1}$$
.

Proof.

Let $a_1, \ldots, a_i, \ldots, a_n$ be sort of **A**. Let

 $S = \{a_i, a_{i+1}, \dots, a_j\}$. Event **E** when first pivot from **S** is chosen.

Observation: Given **E** probability that the pivot is $\mathbf{a_i}$ or $\mathbf{a_j}$ is exactly $2/|\mathbf{S}| = 2/(\mathbf{i} - \mathbf{i} + \mathbf{1})$, *i.e.*

$$Pr[R_{ij}|E] = 2/(j-i+1)$$
.

Since Pr[E] = 1, we get $Pr[R_{ij}] = 2/(j - i + 1)$.

Continued...

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

Continued...

$$\Pr[\mathsf{R}_{ij}] = \tfrac{2}{\mathsf{j}-\mathsf{i}+1}.$$

$$\mathsf{E}\!\left[\mathsf{Q}(\mathsf{A})\right] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}\!\left[\mathsf{R}_{ij}\right] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}$$

Continued...

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

$$\mathsf{E}\big[\mathsf{Q}(\mathsf{A})\big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\mathsf{E} \big[\mathsf{Q}(\mathsf{A}) \big] = 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1}$$

Continued...

$$\Pr[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$E\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1} \sum_{j< i}^{n} \frac{1}{j-i+1} \le 2\sum_{j=1}^{n-1} \quad \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$$

Continued...

$$\Pr[\mathsf{R}_{ij}] = \tfrac{2}{j-i+1}.$$

$$\begin{split} E\Big[Q(A)\Big] &= 2\sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \leq 2\sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\ &\leq 2\sum_{i=1}^{n-1} (H_{n-i+1}-1) \leq 2\sum_{1 \leq i < n} H_{n} \end{split}$$

Continued...

$$\text{Pr}[R_{ij}] = \tfrac{2}{j-i+1}.$$

$$\begin{split} E\Big[Q(A)\Big] &= 2\sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j-i+1} \leq 2\sum_{i=1}^{n-1} \quad \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\ &\leq 2\sum_{i=1}^{n-1} (H_{n-i+1}-1) \; \leq \; 2\sum_{1 \leq i < n} H_{n} \\ &\leq 2nH_{n} = O(n\log n) \end{split}$$

Part II

Inequalities

14

Consider flipping a fair coin **n** times independently, head gives **1**, tail gives zero. How many **1**s? Binomial distribution: k w.p. $\binom{n}{k} 1/2^n$.

Chandra & Ruta (UIUC)

This is known as **concentration of mass**.

This is a very special case of the **law of large numbers**.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Use of well known inequalities in analysis.

Analysis

Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $Pr[Q \ge 10nlgn] \le c$. Also we know that $Q \le n^2$.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $Pr[Q \ge 10nlgn] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le 10 n \log n + (n^2 10 n \log n) c$.

Analysis

- Random variable Q = #comparisons made by randomized
 QuickSort on an array of n elements.
- Suppose $Pr[Q \ge 10nlgn] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le 10 n \log n + (n^2 10 n \log n) c$.

Question:

How to find c, or in other words bound $Pr[Q \ge 10n \log n]$?

Markov's Inequality

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, Pr) . For any a>0,

$$\Pr[X \ge a] \le \frac{E[X]}{a}$$

Markov's Inequality

Markov's inequality

Let **X** be a **non-negative** random variable over a probability space (Ω, Pr) . For any a > 0,

$$\Pr[X \ge a] \le \frac{E[X]}{a}$$

Proof:

$$\begin{array}{ll} \mathbf{E}[\mathbf{X}] & = & \sum_{\omega \in \Omega} \mathbf{X}(\omega) \Pr[\omega] \\ & \geq & \sum_{\omega \in \Omega, \ \mathbf{X}(\omega) \geq \mathbf{a}} \mathbf{X}(\omega) \Pr[\omega] \\ & \geq & \mathbf{a} \sum_{\omega \in \Omega, \ \mathbf{X}(\omega) \geq \mathbf{a}} \Pr[\omega] \\ & = & \mathbf{a} \Pr[\mathbf{X} \geq \mathbf{a}] \end{array}$$

Markov's Inequality: Proof by Picture

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is **p***.

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is p*.
- An approach: Draw **k** balls with replacement. If **B** are black then output $\mathbf{p} = \frac{\mathbf{B}}{\mathbf{k}}$.

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is p*.
- An approach: Draw **k** balls with replacement. If **B** are black then output $\mathbf{p} = \frac{\mathbf{B}}{\mathbf{k}}$.

Question

How large k needs to be before our estimated value p is close to p^* ?

A rough estimate through Markov's inequality.

Lemma

For any $k\geq 1$, $\text{Pr}[p\geq 2p^*]\leq \frac{1}{2}$

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

- For each $1 \le i \le k$ define random variable X_i , which is 1 if i^{th} ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

- For each $1 \le i \le k$ define random variable X_i , which is 1 if i^{th} ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.
- B = $\sum_{i=1}^k X_i$, then $E[B] = \sum_{i=1}^k E[X_i] = kp^*$. p = B/k.

A rough estimate through Markov's inequality.

Lemma

For any
$$k \geq 1$$
, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

- For each $1 \le i \le k$ define random variable X_i , which is 1 if i^{th} ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.
- B = $\sum_{i=1}^k X_i$, then $E[B] = \sum_{i=1}^k E[X_i] = kp^*$. p = B/k.
- Markov's inequality gives, $Pr[p \ge 2p^*] =$

$$\mathsf{Pr}\Big[\frac{\mathsf{B}}{\mathsf{k}} \geq 2\mathsf{p}^*\Big] = \mathsf{Pr}[\mathsf{B} \geq 2\mathsf{k}\mathsf{p}^*] = \mathsf{Pr}[\mathsf{B} \geq 2\,\mathsf{E}[\mathsf{B}]] \leq \frac{1}{2}$$

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Intuitive Derivation

Define $Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$.

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Intuitive Derivation

Define
$$Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$$
.
 $Var(X) = E[Y]$
 $= E[X^2] - 2 E[X] E[X] + E[X]^2$
 $= E[X^2] - E[X]^2$

Independence

Random variables X and Y are called mutually independent if

$$\forall x, y \in \mathbb{R}, \ Pr[X = x \land Y = y] = Pr[X = x] Pr[Y = y]$$

Lemma

If X and Y are independent random variables then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Independence

Random variables X and Y are called mutually independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Lemma

If X and Y are independent random variables then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Lemma

If X and Y are mutually independent, then E[XY] = E[X] E[Y].

Chebyshev's Inequality

Chebyshev's Inequality

Given a \geq 0, $\Pr[|\mathbf{X} - \mathbf{E}[\mathbf{X}]| \geq a] \leq \frac{Var(\mathbf{X})}{a^2}$

Chebyshev's Inequality

Chebyshev's Inequality

Given
$$a \ge 0$$
, $Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $\mathbf{Y} = (\mathbf{X} - \mathbf{E}[\mathbf{X}])^2$ is a non-negative random variable. Apply Markov's Inequality to \mathbf{Y} for \mathbf{a}^2 .

$$\begin{array}{ll} \text{Pr}\big[\textbf{Y} \geq a^2\big] \leq E[\textbf{Y}]/a^2 & \Leftrightarrow & \text{Pr}\big[(\textbf{X} - \textbf{E}[\textbf{X}])^2 \geq a^2\big] \leq Var(\textbf{X})/a^2 \\ & \Leftrightarrow & \text{Pr}\big[|\textbf{X} - \textbf{E}[\textbf{X}]| \geq a\big] \leq Var(\textbf{X})/a^2 \end{array}$$

Chebyshev's Inequality

Chebyshev's Inequality

Given
$$a \ge 0$$
, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$$\begin{array}{ll} \text{Pr}\big[\textbf{Y} \geq \textbf{a}^2\big] \leq \textbf{E}[\textbf{Y}]/\textbf{a}^2 & \Leftrightarrow & \text{Pr}\big[(\textbf{X} - \textbf{E}[\textbf{X}])^2 \geq \textbf{a}^2\big] \leq \textbf{Var}(\textbf{X})/\textbf{a}^2 \\ & \Leftrightarrow & \text{Pr}\big[|\textbf{X} - \textbf{E}[\textbf{X}]\,| \geq \textbf{a}\big] \leq \textbf{Var}(\textbf{X})/\textbf{a}^2 \end{array}$$

$$\text{Pr}[\textbf{X} \leq \textbf{E}[\textbf{X}] - \textbf{a}] \leq {}^{\text{Var}(\textbf{X})}\!/_{\!\textbf{a}^2} \text{ AND Pr}[\textbf{X} \geq \textbf{E}[\textbf{X}] + \textbf{a}] \leq {}^{\text{Var}(\textbf{X})}\!/_{\!\textbf{a}^2}$$

Example:Balls in a bin (contd)

Lemma

For
$$0 < \epsilon < 1$$
 and $k \ge 1$, $\Pr[|p - p^*| > \epsilon] \le 1/k\epsilon^2$.

Proof.

• Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.

Example:Balls in a bin (contd)

Lemma

For $0 < \epsilon < 1$ and $k \ge 1$, $\Pr[|p - p^*| > \epsilon] \le 1/k\epsilon^2$.

- Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.
- $Var(X_i) = E[X_i^2] E[X_i]^2 = E[X_i] E[X_i]^2 = p^*(1 p^*)$

Example:Balls in a bin (contd)

Lemma

For $0<\epsilon<1$ and $\mathsf{k}\geq 1$, $\mathsf{Pr}[|\mathsf{p}-\mathsf{p}^*|>\epsilon]\leq 1/\mathsf{k}\epsilon^2$.

- Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.
- $Var(X_i) = E[X_i^2] E[X_i]^2 = E[X_i] E[X_i]^2 = p^*(1 p^*)$
- $Var(B) = \sum_{i} Var(X_i) = kp^*(1 p^*)$ (Exercise)

Example:Balls in a bin (contd)

Lemma

For
$$0<\epsilon<1$$
 and $\mathsf{k}\geq 1$, $\mathsf{Pr}[|\mathsf{p}-\mathsf{p}^*|>\epsilon]\leq 1/\mathsf{k}\epsilon^2$.

Proof.

- Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.
- $Var(X_i) = E[X_i^2] E[X_i]^2 = E[X_i] E[X_i]^2 = p^*(1 p^*)$
- $Var(B) = \sum_{i} Var(X_i) = kp^*(1 p^*)$ (Exercise)

•

$$\begin{array}{lll} \Pr[|^{\mathsf{B}}/\mathsf{k} - \mathsf{p}^*| \geq \epsilon] & = & \Pr[|\mathsf{B} - \mathsf{k}\mathsf{p}^*| \geq \mathsf{k}\epsilon] \\ & (\mathsf{Chebyshev}) & \leq & \mathsf{Var}(\mathsf{B})/\mathsf{k}^2\epsilon^2 = \mathsf{k}\mathsf{p}^*(1-\mathsf{p}^*)/\mathsf{k}^2\epsilon^2 \\ & < & 1/\mathsf{k}\epsilon^2 \end{array}$$

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1, k]$, X_i equals 1 with probability p_i , and 0 with probability $(1 - p_i)$.

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1,k]$, X_i equals 1 with probability p_i , and 0 with probability $(1-p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = E[X] = \sum_i p_i$. For any $0 < \delta < 1$, it holds that:

$$\mathsf{Pr}[|\mathsf{X} - \mu| \geq \delta \mu] \leq 2\mathsf{e}^{rac{-\delta^2 \mu}{3}}$$

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1,k]$, X_i equals 1 with probability p_i , and 0 with probability $(1-p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = E[X] = \sum_i p_i$. For any $0 < \delta < 1$, it holds that:

$$\Pr[|\mathsf{X} - \mu| \geq \delta \mu] \leq 2e^{\frac{-\delta^2 \mu}{3}}$$

$$\mathsf{Pr}[\mathsf{X} \geq (1+\delta)\mu] \leq \mathsf{e}^{rac{-\delta^2\mu}{3}}$$
 and $\mathsf{Pr}[\mathsf{X} \leq (1-\delta)\mu] \leq \mathsf{e}^{rac{-\delta^2\mu}{2}}$

Lemma

Let X_1, \ldots, X_k be k independent random variables such that, for each $i \in [1,k]$, X_i equals 1 with probability p_i , and 0 with probability $(1-p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = E[X] = \sum_i p_i$. For any $0 < \delta < 1$, it holds that:

$$\Pr[|\mathsf{X} - \mu| \geq \delta \mu] \leq 2e^{\frac{-\delta^2 \mu}{3}}$$

$$\mathsf{Pr}[\mathsf{X} \geq (1+\delta)\mu] \leq \mathsf{e}^{rac{-\delta^2\mu}{3}}$$
 and $\mathsf{Pr}[\mathsf{X} \leq (1-\delta)\mu] \leq \mathsf{e}^{rac{-\delta^2\mu}{2}}$

Proof.

In notes!

Example:Balls in a bin (Contd.)

Lemma

For any $0<\epsilon<1$, and $\mathtt{k}\geq 1$, $\mathsf{Pr}[|\mathtt{p}-\mathtt{p}^*|>\epsilon]\leq 2\mathsf{e}^{-\frac{\mathsf{k}\epsilon^2}{3}}$.

Proof.

Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$.

$$E[X_i] = p^*, E[B] = kp^*. p = B/k.$$

Example:Balls in a bin (Contd.)

Lemma

For any
$$0<\epsilon<1$$
, and $\mathbf{k}\geq 1$, $\Pr[|\mathbf{p}-\mathbf{p}^*|>\epsilon]\leq 2\mathrm{e}^{-\frac{\mathrm{k}\epsilon^2}{3}}$.

Proof.

Recall: X_i is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.

$$\begin{aligned} \Pr[|\mathbf{p} - \mathbf{p}^*| \ge \epsilon] &= \Pr[|\frac{\mathbf{B}}{\mathbf{k}} - \mathbf{p}^*| \ge \epsilon] \\ &= \Pr[|\mathbf{B} - \mathbf{k}\mathbf{p}^*| \ge \mathbf{k}\epsilon] \\ &= \Pr[|\mathbf{B} - \mathbf{k}\mathbf{p}^*| \ge (\frac{\epsilon}{\mathbf{p}^*})\mathbf{k}\mathbf{p}^*] \end{aligned}$$

Example:Balls in a bin (Contd.)

Lemma

For any
$$0<\epsilon<1$$
, and $\mathbf{k}\geq 1$, $\Pr[|\mathbf{p}-\mathbf{p}^*|>\epsilon]\leq 2\mathrm{e}^{-\frac{\mathrm{k}\epsilon^2}{3}}$.

Proof.

Recall:
$$X_i$$
 is 1 is i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. $p = B/k$.

$$\begin{array}{ll} \Pr[|\mathsf{p}-\mathsf{p}^*| \geq \epsilon] & = & \Pr\big[|\frac{\mathsf{B}}{\mathsf{k}}-\mathsf{p}^*| \geq \epsilon\big] \\ & = & \Pr[|\mathsf{B}-\mathsf{k}\mathsf{p}^*| \geq \mathsf{k}\epsilon\big] \\ & = & \Pr\big[|\mathsf{B}-\mathsf{k}\mathsf{p}^*| \geq \left(\frac{\epsilon}{\mathsf{p}^*}\right)\!\mathsf{k}\mathsf{p}^*\big] \\ \\ & \qquad \qquad \left(\mathsf{Chernoff}\right) & \leq & 2\mathrm{e}^{-\frac{\epsilon^2}{3\mathsf{p}^*}\mathsf{k}\mathsf{p}^*} = 2\mathrm{e}^{-\frac{\mathsf{k}\epsilon^2}{3\mathsf{p}^*}} \\ & \qquad \qquad \left(\mathsf{p}^* < 1\right) & \leq & 2\mathrm{e}^{-\frac{\mathsf{k}\epsilon^2}{3}} \end{array}$$

Example Summary

The problem was to estimate the fraction of black balls \mathbf{p}^* in a bin filled with white and black balls. Our estimate was $\mathbf{p} = \frac{B}{k}$ instead, where out of \mathbf{k} draws (with replacement) \mathbf{B} balls turns out black.

Markov's Inequality

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

Example Summary

The problem was to estimate the fraction of black balls \mathbf{p}^* in a bin filled with white and black balls. Our estimate was $\mathbf{p} = \frac{B}{k}$ instead, where out of \mathbf{k} draws (with replacement) \mathbf{B} balls turns out black.

Markov's Inequality

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

Chebyshev's Inequality

For any $0<\epsilon<1$, and $\mathbf{k}\geq 1$, $\Pr[|\mathbf{p}-\mathbf{p}^*|>\epsilon]\leq 1/\mathbf{k}\epsilon^2$.

Example Summary

The problem was to estimate the fraction of black balls \mathbf{p}^* in a bin filled with white and black balls. Our estimate was $\mathbf{p} = \frac{B}{k}$ instead, where out of \mathbf{k} draws (with replacement) \mathbf{B} balls turns out black.

Markov's Inequality

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

Chebyshev's Inequality

For any $0<\epsilon<1$, and $\mathbf{k}\geq 1$, $\Pr[|\mathbf{p}-\mathbf{p}^*|>\epsilon]\leq 1/\mathsf{k}\epsilon^2$.

Chernoff Bound

For any $0<\epsilon<1$, and $\mathbf{k}\geq 1$, $\Pr[|\mathbf{p}-\mathbf{p}^*|>\epsilon]\leq 2\mathrm{e}^{-\frac{\mathrm{k}\epsilon^2}{3}}$.

Part III

Randomized **QuickSort** (Contd.)

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Randomized QuickSort: Recall

Input: Array **A** of **n** numbers. **Output:** Numbers in sorted order.

Randomized QuickSort

- Pick a pivot element uniformly at random from A.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Question: With what probability it takes $O(n \log n)$ time?

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

If n = 100 then this gives $Pr[Q(A) \le 32n \ln n] \ge 0.999999$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion ≤ 32 ln n with high probability.
 Which will imply the result.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion

 32 In n with high probability.
 Which will imply the result.
 - Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - ② By union bound, any of the n elements participates in $> 32 \ln n$ levels with probability at most

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion

 32 In n with high probability.
 Which will imply the result.
 - Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - ② By union bound, any of the **n** elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $Pr[Q(A) \le 32n \ln n] \ge 1 - 1/n^3$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq kn$.
- Prove that depth of recursion \leq 32 ln n with high probability. Which will imply the result.
 - Gocus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - 2 By union bound, any of the **n** elements participates in $> 32 \ln n$ levels with probability at most $1/n^3$.
 - **3** Therefore, all elements participate in $\leq 32 \ln n$ w.p. $(1 1/n^3)$.

34

• If **k** levels of recursion then **kn** comparisons.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| < (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| < (3/4)|S_i|$.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in ith iteration, if balanced split: $|S_{i+1}| \le (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \le (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first k rounds, then $|S_k| \leq (3/4)^{\rho} n$.

- If **k** levels of recursion then **kn** comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first **k** rounds, then $|\mathbf{S}_{\mathbf{k}}| \leq (3/4)^{\rho}\mathbf{n}$.
- For $|S_k| = 1$, $\rho = 4 \ln n \ge \log_{4/3} n$ suffices.

• $X_i = 1$ if s is lucky in i^{th} iteration.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = E[\rho] = \frac{k}{2}$.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = E[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = E[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds is,

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k X_i$. Let $\mu = E[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting **4 In n** lucky rounds out of **32 In n** rounds is,

$$\Pr[\rho \le 4 \ln n] = \Pr[\rho \le \frac{k}{8}] \\
= \Pr[\rho \le (1 - \delta)\mu]$$

- $X_i = 1$ if s is lucky in i^{th} iteration.
- Observation: X_1, \ldots, X_k are independent variables.
- $Pr[X_i = 1] = \frac{1}{2}$ Why?
- Clearly, $\rho = \sum_{i=1}^k \mathbf{X}_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
- Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds is,

$$\begin{array}{lll} \Pr[\rho \leq 4 \ln n] & = & \Pr[\rho \leq \frac{k}{8}] \\ & = & \Pr[\rho \leq (1 - \delta)\mu] \\ \text{(Chernoff)} & \leq & e^{\frac{-\delta^2 \mu}{2}} \\ & = & e^{-\frac{9k}{64}} \\ & = & e^{-4.5 \ln n} \leq \frac{1}{n^4} \end{array}$$

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in **QuickSort** > 32 ln n is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in QuickSort > 32 ln n is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Randomized **QuickSort** w.h.p. Analysis

• n input elements. Probability that depth of recursion in QuickSort > 32 ln n is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to n comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Q: How to increase the probability?