Statistics Lab 033.020 Seoul National University

Assignment #1

2016-19516, Sangjun Son

Example 1

1부터 100 사이에서 40개의 정수를 임의로 선택하여 저장하자.

```
v = sample(1:100, 40, replace=F)
```

Explanation: 임의의 정수를 선택하기 위해 sample() 함수를 통해 정수배열을 생성하고 이를 v에 대입하였다.

(1-1) 예제 1에서 만들어진 벡터를 사용하여 5행 8열의 행렬을 생성하시오.

```
1  m = matrix(v, nrow=5, ncol=8)
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
                         34
                            17
55
                                  40
          20
                    47
                         9
                                  29
          59
              81
                        77
                                  80
                                        71
                    28
                             85
                                            89
   [3,]
          67
                    97
              24
                                  83
                                       15
                             32
                        63
```

Explanation: 40개의 정수 배열을 함수로 재생성하기 위해 matrix() 생성자로 5×8 행렬을 생성 후 m에 저장하고 출력하였다.

(1-2) 예제 1에서 생성된 행렬에서 2행과 3행만을 추출하여 저장하시오.

```
1  m1 = m[2:3,]
2  m1

      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
      [1,]  20  2  47  9  55  29  37  16
      [2,]  59  81  28  77  85  80  71  89
```

Explanation: 위 예제에서 저장한 행렬 m의 $2 \sim 3$ 행을 가져오기 위해 indexing을 하여 m1에 저장 후 출력하였다.

(1-3) 예제 1에서 생성된 행렬에서 (1, 4, 7, 8)열을 추출하여 저장하시오.

```
[,1] [,2] [,3] [,4]
[1,] 6 34 88 36
[2,] 20 9 37 16
[3,] 59 77 71 89
[4,] 67 4 15 8
```

m2 = m[,c(1,4,7,8)]

Explanation: 행렬 m의 1, 4, 7, 8 열을 가져오기 위해 두 번째 인덱스에 대한 indexing을 하여 m2에 저장 후 출력하였다.

(1-4) 예제 1에서 생성된 행렬의 7번째 열의 평균과 분산을 구하시오.

```
1 mean(m[,7]); var(m[,7])
   [1] 57.4
   [1] 920.3
```

Explanation: 행렬 m의 7열을 가져오기 위해 두 번째 인덱스에 대한 indexing을 하고 이렇게 생성된 벡터에 대한 평균과 분산을 구하기 위해 각각 mean(), var() 함수를 사용하여 구하였다.

Statistics Lab 033.020 Seoul National University

Assignment #1

2016-19516, Sangjun Son

Example 2

(2-1) 1부터 20 사이에서 1개의 숫자를 임의로 선택하여 저장하자. 이 숫자가 10 이상이면 "P"를 출력하고 10 미만이면 "NP"를 출력하는 코드를 작성해보시오.

```
1    n = sample(1:20, 1, replace=F)
2    if (n >= 10) print("P") else print("NP")
[1] "P"
```

Explanation: $1 \sim 20$ 사이의 숫자 1개를 선택하여 정수 n에 저장하고 if-else 문을 사용하여 n의 값이 10 이상일 경우 "P" 아니면 "NP"를 출력하였다.

Example 3

(3-1) 1부터 20 사이에서 8개의 숫자를 임의로 선택하여 저장하자. 8개의 숫자들 각각에 대해 숫자가 10 이상이면 "P"를 출력하고 10 미만이면 "NP"를 출력하는 코드를 작성해보시오.

```
1  v = sample(1:20, 8, replace=F)
2  for (n in v) { if (n >= 10) print("P") else print("NP") }

[1] "NP"
[1] "NP"
[1] "P"
[1] "NP"
[1] "P"
[1] "P"
[1] "P"
[1] "P"
```

Explanation: 위의 코드를 활용하면 조금 더 수월하게 8개 숫자에 대한 구현한 논리를 재사용할 수 있다. 한 숫자가 아닌 벡터에 대해 for 반복문을 통해 8개에 대한 "P" 또는 "NP"를 출력한다.

Example 4

(4-1) 1부터 100까지의 자연수를 n으로 저장하고, 그 합을 구하시오.

```
n = 1:100
sum(n)
[1] 5050
```

 $Explanation: 1 \sim 100$ 에 대한 모든 숫자를 벡터 n에 저장하고 벡터의 합을 sum()로 구하여 출력하였다.

(4-2) 1부터 200까지의 자연수 중 3의 배수를 three로 저장하고, 그 합을 구하시오.

```
three = seq(from=3, to=200, by=3)
sum(three)

[1] 6633
```

Explanation: $1 \sim 200$ 사이의 모든 3의 배수를 저장하기 위해 seq()를 통해 초기값 3, 경계값 200, 간격 3을 주어 구간에 해당하는 모든 숫자 벡터를 three에 저장한다. three 벡터 원소의 합을 sum()로 구하여 출력하였다.

Statistics Lab 033.020 Seoul National University

Assignment #1

2016-19516, Sangjun Son

(4-3) 위 예제 4-2에서 저장한 three 벡터의 표준편차를 구하시오. 단, 소수점 둘째자리까지 반올림한 값을 출력한다.

1 round(sd(three), 2)

[1] 57.59

Explanation: 벡터의 표준편차를 구하기 위해 sd() 함수를 사용하고 소수 둘째자리까지 반올림하여 표현한 실수값을 구하여 출력하였다.

Example 5

다음과 같은 행렬을 변수명 m으로 저장한다.

$$m = \begin{pmatrix} 7 & 3 \\ 6 & 1 \\ 9 & 10 \end{pmatrix}$$

(5-1) 행렬 m의 각 성분을 4로 나눈 나머지를 성분으로 갖는 행렬을 구하시오.

```
1 m = cbind(c(7, 6, 9), c(3, 1, 10))
2 m \% 4
```

Explanation: 열 벡터를 만들어 열 방향으로 계속 쌓아 행렬을 만들기 위해 cbind()를 사용해 행렬 m을 생성하고 각원소 별로 나머지 연산 %%을 수행하여 출력하였다.

(5-2) 행렬 m의 1행에는 10씩을, 2행에는 20씩을, 3행에는 30씩을 더한 값을 성분으로 갖는 행렬을 구하시오.

1 rbind(m[1,]+10, m[2,]+20, m[3,]+30)

Explanation: 각각의 행 방향 인덱싱을 통해 i 행에 해당하는 벡터를 추출하고 원소별 덧셈 $(+10 \cdot i)$ 을 하여 행 방향으로 쌓아 행렬을 만들고 출력하였다.