- A dye emits 50% of the absorbed energy as fluorescence. If the number of quanta absorbed and emitted out is in the ratio 1:2 and it absorbs the radiation of wavelength 'x' Å, then the wavelength of the emitted radiation will be
 - (a) x Å

(b) 0.5 x Å

(c) 4x Å

- (d) $0.25 \times \text{Å}$
- An electron revolving round H-nucleus in ground state absorbs 10.2 eV energy. Its angular momentum increases by
 - (a) $\frac{h}{2\pi}$

(b) $\frac{h}{\pi}$

(c) $\frac{2h}{\pi}$

- (d) $\frac{h}{4\pi}$
- What is the orbit number of the He⁺ ion in which electron have speed $\frac{1}{205.67}$ times the speed of light?
 - (a) 1

(b) 2

(c) 3

- (d) 4
- The ratio of spacing between the third and fourth orbit to the spacing between sixth and seventh orbit of H-atom is
 - (a) 7:13

(b) 13:7

(c) 16:49

(d) 1:1

95	The ratio of circumference of third and second orbits of He ⁺ ion is	
	(a) 3:2 (c) 9:4	(b) 2:3 (d) 4:9

- The angular momentum of electron revolving in the second orbit of H-atom is 'x' J·s. The angular momentum of electron in the second orbit of He^+ ion should be
 - (a) $x J \cdot s$

(b) $2x J \cdot s$

(c) $0.5x \text{ J} \cdot \text{s}$

- (d) $4x \text{ J} \cdot \text{s}$
- The force of attraction on electron by the nucleus is directly proportional to
 - (a) $\frac{n^3}{Z^4}$

(b) $\frac{Z^3}{n^4}$

(c) $\frac{n^4}{Z^2}$

- (d) $\frac{Z^2}{n^4}$
- An electron is revolving round the nucleus of He⁺ ion with speed 2.188×10^6 m/s. The potential energy of the electron is
 - (a) -13.6 eV

(b) -6.8 eV

(c) -27.2 eV

- (d) Zero
- What is the frequency of the second line of the Paschen series in the spectrum of He⁺ ion?
 - (a) $\frac{64 \ R.C}{225}$

(b) $\frac{64 R}{225}$

(c) $\frac{225}{64 R}$

(d) $\frac{225 C}{64 R}$

- The ionization energy of He^+ ion is x eV. The ionization energy of Be^{3+} ion should be
 - (a) 4*x* eV

(b) 2*x* eV

(c) $\frac{x}{4}$ eV

(d) $\frac{x}{2}$ eV