- 4.7 1) En remplaçant a par a x, b par 1 et k par y dans l'énoncé de l'exercice 2.6, on obtient aussitôt : a $x \equiv 1 \mod m$ si et seulement s'il existe $y \in \mathbb{Z}$ tel que 1 = a x + m y.
 - 2) (a) Supposons que l'équation $a \, x \equiv 1 \mod m$ admette une solution. Il existe alors des entiers x et y tels que $a \, x + m \, y = 1$. D'après le théorème de Bachet de Mériziac, $a \, x + m \, y = k \cdot \operatorname{pgcd}(a,m)$ pour un certain entier k. Ainsi $\operatorname{pgcd}(a,m)$ divise $a \, x + m \, y = 1$, de sorte que $\operatorname{pgcd}(a,m) = 1$: en d'autres termes, a et m sont premiers entre eux.
 - (b) Supposons que a et m soient premiers entre eux. D'après le théorème de Bézout, il existe des entiers x et y tels que $a\,x + m\,y = \mathrm{pgcd}(a,m) = 1$. Cette égalité entraı̂ne $a\,x \equiv 1 \mod m$.