In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PN
0	2002-04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.9900
1	2002-04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.9800
2	2002-04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.4400
3	2002-04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.1800
4	2002-04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.3300
217291	2002-11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.7500
217292	2002-11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.3899
217293	2002-11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640(
217294	2002-11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	N
217295	2002-11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.2400

217296 rows × 16 columns

In [3]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	217296 non-null	object
1	BEN	66747 non-null	float64
2	CO	216637 non-null	float64
3	EBE	58547 non-null	float64
4	MXY	41255 non-null	float64
5	NMHC	87045 non-null	float64
6	NO_2	216439 non-null	float64
7	NOx	216439 non-null	float64
8	OXY	41314 non-null	float64
9	0_3	216726 non-null	float64
10	PM10	209113 non-null	float64
11	PXY	41256 non-null	float64
12	S0_2	216507 non-null	float64
13	TCH	87115 non-null	float64
14	TOL	66619 non-null	float64
15	station	217296 non-null	int64
dtype	es: float	54(14), int64(1),	object(1)

memory usage: 26.5+ MB

In [4]: b=a.fillna(value=135)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	2002-04-01 01:00:00	135.00	1.39	135.00	135.00	135.00	145.100006	352.100006	135.00	6.54
1	2002-04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85
2	2002-04-01 01:00:00	135.00	0.80	135.00	135.00	135.00	103.699997	134.000000	135.00	13.01
3	2002-04-01 01:00:00	135.00	1.61	135.00	135.00	135.00	97.599998	268.000000	135.00	5.12
4	2002-04-01 01:00:00	135.00	1.90	135.00	135.00	135.00	92.089996	237.199997	135.00	7.28
217291	2002-11-01 00:00:00	4.16	1.14	135.00	135.00	135.00	81.080002	265.700012	135.00	7.21
217292	2002-11-01 00:00:00	3.67	1.73	2.89	135.00	0.38	113.900002	373.100006	135.00	5.66
217293	2002-11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11
217294	2002-11-01 00:00:00	4.51	0.91	4.83	10.99	135.00	149.800003	202.199997	1.00	5.75
217295	2002-11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38

217296 rows × 16 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	2002-04-01 01:00:00	135.00	1.39	135.00	135.00	135.00	145.100006	352.100006	135.00	6.540000
1	2002-04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000
2	2002-04-01 01:00:00	135.00	0.80	135.00	135.00	135.00	103.699997	134.000000	135.00	13.010000
3	2002-04-01 01:00:00	135.00	1.61	135.00	135.00	135.00	97.599998	268.000000	135.00	5.120000
4	2002-04-01 01:00:00	135.00	1.90	135.00	135.00	135.00	92.089996	237.199997	135.00	7.280000
5	2002-04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000
6	2002-04-01 01:00:00	135.00	0.78	135.00	135.00	0.09	101.000000	119.300003	135.00	20.549999
7	2002-04-01 01:00:00	135.00	1.06	135.00	135.00	135.00	127.300003	204.100006	135.00	3.150000
8	2002-04-01 01:00:00	135.00	1.21	135.00	135.00	135.00	106.300003	126.599998	135.00	22.389999
9	2002-04-01 01:00:00	135.00	0.61	135.00	135.00	0.14	95.540001	110.699997	135.00	27.770000
10	2002-04-01 01:00:00	135.00	0.70	135.00	135.00	135.00	110.099998	138.600006	135.00	11.580000

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	135.00	1.39	135.00	135.00	135.00	145.100006	352.100006	135.00	6.540000
1	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000
2	135.00	0.80	135.00	135.00	135.00	103.699997	134.000000	135.00	13.010000
3	135.00	1.61	135.00	135.00	135.00	97.599998	268.000000	135.00	5.120000
4	135.00	1.90	135.00	135.00	135.00	92.089996	237.199997	135.00	7.280000
5	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000
6	135.00	0.78	135.00	135.00	0.09	101.000000	119.300003	135.00	20.549999
7	135.00	1.06	135.00	135.00	135.00	127.300003	204.100006	135.00	3.150000
8	135.00	1.21	135.00	135.00	135.00	106.300003	126.599998	135.00	22.389999
9	135.00	0.61	135.00	135.00	0.14	95.540001	110.699997	135.00	27.770000
10	135.00	0.70	135.00	135.00	135.00	110.099998	138.600006	135.00	11.580000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x21852285490>
         80
80
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
         from sklearn.model_selection import train_test_split
In [11]:
In [12]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         3.410605131648481e-13
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
                  1.513985e-15
             BEN
             CO
                  2.304437e-15
             EBE -1.502077e-15
            MXY
                  3.275995e-15
           NMHC -1.602261e-15
            NO_2 -2.340866e-17
            NOx 1.000000e+00
            OXY -1.373097e-15
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x21856098fd0>
           350
           300
           250
           200
           150
           100
                                          250
                       150
                                200
                                                   300
                                                            350
              100
In [16]:
          1.0
In [17]:
          rr=Ridge(alpha=10)
In [18]:
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999982814360505
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999838094834425
In [22]:
           a1=b.head(5000)
Out[22]:
                                     CO
                                           EBE
                                                   MXY
                                                        NMHC
                       date
                               BEN
                                                                     NO_2
                                                                                 NOx
                                                                                         OXY
                                                                                                0_3
                 2002-04-01
                             135.00 1.39 135.00
                                                135.00 135.00 145.100006 352.100006 135.00
                                                                                                6.54
                    01:00:00
                  2002-04-01
                               1.93 0.71
                                            2.33
                                                   6.20
                                                          0.15
                                                                 98.150002 153.399994
                                                                                         2.67
                                                                                                6.85
                                                                                                      2
                    01:00:00
                  2002-04-01
                             135.00 0.80 135.00 135.00 135.00 103.699997
                                                                           134.000000 135.00
                                                                                              13.01
                    01:00:00
                  2002-04-01
                             135.00 1.61
                                         135.00
                                                 135.00 135.00
                                                                 97.599998
                                                                            268.000000
                                                                                       135.00
                                                                                                5.12
                    01:00:00
                  2002-04-01
                             135.00 1.90 135.00 135.00 135.00
                                                                 92.089996 237.199997
                                                                                      135.00
                                                                                                7.28
                                                                                                      7
                    01:00:00
                  2002-04-09
            4995
                             135.00 1.16 135.00 135.00 135.00
                                                                 51.880001 268.399994
                                                                                      135.00
                                                                                                6.18
                                                                                                      3
                    08:00:00
                  2002-04-09
            4996
                               1.63 0.97
                                                 135.00
                                            1.60
                                                          0.18
                                                                 58.910000
                                                                          184.399994
                                                                                       135.00
                                                                                                7.95
                                                                                                      2
                    08:00:00
                  2002-04-09
            4997
                               1.09 0.60
                                            0.95
                                                   1.84
                                                          0.13
                                                                 34.119999
                                                                             39.279999
                                                                                         0.89
                                                                                                4.47
                    08:00:00
                  2002-04-09
            4998
                               2.03 1.14
                                                   3.71 135.00
                                            1.85
                                                                 79.870003
                                                                           362.000000
                                                                                         0.80
                                                                                                7.37
                                                                                                     13
                    08:00:00
                  2002-04-09
            4999
                               2.12 1.28
                                            2.14
                                                   5.70
                                                          0.22
                                                                 70.230003 214.699997
                                                                                         2.30
                                                                                                6.17
                                                                                                      3
                    08:00:00
           5000 rows × 16 columns
           e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
           f=e.iloc[:,0:14]
In [24]:
In [25]:
          logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
           from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
         [28079003]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079009,
               28079011, 28079012, 28079014, 28079015, 28079016, 28079017,
               28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
               28079025, 28079035, 28079036, 28079038, 28079039, 28079040,
               28079099], dtype=int64)
In [31]:
Out[31]: 5.6002597380155035e-62
In [32]: -
Out[32]: 0.9999998612380067
In [33]:
Out[33]: 0.54733333333333333
In [34]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
         [-0.00000000e+00 0.00000000e+00 -0.00000000e+00 -0.00000000e+00
          1.18989985e-04 -0.00000000e+00 9.99505705e-01 -0.00000000e+00]
In [36]:
        0.08314912939138708
In [37]: | prediction=en.predict(x_test)
         0.9999997755985716
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]:
        parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
                                                grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                                                    param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                                                                                                     'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                                                                                                    'n_estimators': [10, 20, 30, 40, 50]},
                                                                                                                     scoring='accuracy')
In [41]:
Out[41]: 0.5697142857142857
In [42]:
In [43]: from sklearn.tree import plot_tree
                                                plt.figure(figsize=(80,50))
Out[43]: [Text(2182.7647058823527, 2491.5, 'X[2] <= -0.403\ngini = 0.959\nsamples = 22
                                                 14\nvalue = [129, 107, 107, 153, 150, 129, 146, 131, 136, 149\n141, 121, 151,
                                                 138, 181, 151, 151, 130, 128, 131\n137, 154, 151, 154, 144]'),
                                                     Text(1083.1764705882351, 2038.5, 'X[10] <= -0.664 \setminus gini = 0.856 \setminus gini = 6
                                                 09\nvalue = [0, 0, 0, 151, 0, 0, 0, 0, 149, 0, 0, 0, 0\n0, 0, 151, 122, 12
                                                 8, 131, 0, 0, 0, 0, 144]'),
                                                     Text(656.470588235294, 1585.5, 'X[4] \leftarrow -0.208 \cdot gini = 0.799 \cdot samples = 430 \cdot samples = 430
                                                 0, 0, 0, 0, 144]'),
                                                     Text(525.1764705882352, 1132.5, 'X[0] <= -1.47 \setminus gini = 0.748 \setminus gini = 341 \setminus gini = 0.748 \setminus gi
                                                 nvalue = [0, 0, 0, 151, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
                                                 0, 0, 0, 0, 144]'),
                                                     Text(262.5882352941176, 679.5, 'X[6] \leftarrow -0.501  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.706  | 0.
                                                 nvalue = [0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 118, 0, 72, 0,
                                                 0, 0, 0, 117]'),
                                                     Text(131.2941176470588, 226.5, 'gini = 0.55\nsamples = 91\nvalue = [0, 0, 0,
                                                 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 93, 0, 14, 0, 0, 0, 30]'),
                                                     Text(393.88235294117646, 226.5, 'gini = 0.671 \nsamples = 118 \nvalue = [0, 0, 0]
                                                 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 25, 0, 58, 0, 0, 0, 87]'),
```

From this observation I had observe that the RIDGE has the highest accuracy of 0.9999982814360505

```
In [ ]:
```