INICIACIÓN A LA ROBÓTICA TAREA FINAL

Sirena de policía

1. DESCRIPCIÓN

En la presente práctica vamos a programar el encendido de un Led, de forma que se intercalen los colores rojo y azul, mientras suena la sirena.

2. MATERIALES

Para llevar a cabo la práctica necesitaremos:

- 1 placa Arduino UNO
- 1 placa protoboard
- 6 latiguillos
- 1 diodo LED RGE ánodo común
- 1 zumbador
- 1 resistencia 220 Ω (rojo rojo marrón)

• 2 resistencia 100 Ω (Marrón – negro - marrón)

3. DIAGRAMA DE BLOQUES

Antes de ponernos con el desarrollo de la práctica, el siguiente diagrama de flujo ayudará a entender la lógica de la programación.

4. ESQUEMA ELÉCTRICO

Para el LED RGB hay que añadir las respectivas resistencias. Cuando conectamos el componente electrónico a la placa se ejerce sobre él una diferencia de potencial de 5 v en ambos extremos, es decir, si conectamos el LED a una placa de Arduino, estará recibiendo una tensión de 5 v, que es la tensión operativa que ejerce el Arduino en sus pines.

DIODO LED RGB ÁNODO COMÚN		
Polarizado	Si	
Diámetro	5 mm	
Intensidad de corriente	20 mA	
Tensión Led Rojo	2.1 v	
Tensión Led Verde	3.3 v	
Tensión Led azul	3.3 v	

En definitiva, admite una tensión máxima de 2.1 V por la del led Rojo y 3.3 v por las patillas del led verde y azul.

Requiere la colocación de resistencias en el circuito. Siguiendo la ley de OHM:

- La tensión en la patilla del led rojo es de 2.1 v
- Si el pin de Arduino da 5 v → la tensión que circula por la resistencia será de 5 v - 2.1 v = 2.9 v.
- De la misma forma, las patillas verde y azul del led tienen una tensión de 3.3 v. Por lo que por la resistencia circulará: 5v 3.3v = 1.7 v
- Como la Intensidad que circula por el LED es de 20 mA y constante en todo el circuito, deducimos:

LED R	OJO LED VERDE - AZUL
V = 2.9 V	V = 1.7 V
I = 20 mA	I = 20 mA

$$R = V/I = 2.9 / 0.02 = 145 \Omega \rightarrow 220 \Omega$$
 $R = V/I = 1.7 / 0.02 = 85 \Omega \rightarrow 100 \Omega$

Por último:

ZUMBADOR PIEZOELÉCTRICO		
Polarizado	Si	
Tensión de trabajo	3 - 12 V	

El siguiente paso será conectar correctamente los componentes en la placa:

5. PROGRAMACIÓN EN MBLOCK

Fijándonos en el diagrama, la práctica queda programada de la siguiente forma:

- Lo primero es identificar los tres pines correspondientes a los colores RGB de led (10 rojo; 6 verde; 11 azul).
- Éste se encenderá siguiendo una secuencia

Iniciación a la Robótica 0357.17 Laura Asensio Martínez - 23009813s

- Solo se activarán los colores de rojo y azul simulando los colores de una sirena de policía.
- A la vez que suena el zumbador por el pin
 9 siguiendo las notas programadas

6. video RESUMEN

```
figur pin PWM (1) a (252)

figur pin PWM (1) a (252)

figur pin PWM (1) a (252)

por siemere

enviar (2010) V esperar

reproducir tono (1) en nota (2.2) best (3650)

reproducir tono (1) en nota (3.2) best (3650)

enviar (2010) V esperar

reproducir tono (1) en nota (3.2) best (3650)

reproducir tono (1) en nota (3.2) best (3650)

figar pin PWM (1) a (255)

figar pin PWM (1) a (255)

figar pin PWM (1) a (255)
```