Step-1

4764-1-27RE AID: 124

RID: 232 | 3/2/2012

1) Given statement is $\hat{a} \in \text{Tif } L_1 U_1 = L_2 U_2$ (upper triangular $U \hat{a} \in \text{TM}$ s with nonzero diagonal, lower triangular $L \hat{a} \in \text{TM}$ s with unit diagonal), then $L_1 = L_2$ and $U_1 = U_2$. The LU factorization is unique $\hat{a} \in \text{TM}$.

We have to determine whether the given statement is true or false.

Step-2

The given statement is **true**.

Since the factorization is unique.

Consider $L_1U_1 = L_2U_2$

Multiplying both sides by L_1^{-1} , we get

$$L_{\rm l}^{-1}\left(L_{\rm l}U_{\rm l}\right)\!=\!L_{\rm l}^{-1}\!\left(L_{\rm 2}U_{\rm 2}\right)$$

$$(L_1^{-1}L_1)U_1 = (L_1^{-1}L_2)U_2$$

$$U_1 = (L_1^{-1}L_2)U_2$$

Step-3

Similarly multiplying $L_1U_1 = L_2U_2$ by L_2^{-1} , we get

$$L_2^{-1}(L_1U_1) = L_2^{-1}(L_2U_2)$$

$$(L_2^{-1}L_1)U_1 = (L_2^{-1}L_2)U_2$$

$$(L_2^{-1}L_1)U_1 = U_2$$

But L_1, L_2 are elementary matrices and its inverses exists and $L_1^{-1}L_2 = L_2L_1^{-1}$ becomes identity.

Hence $U_1 = U_2$

Similarly we can prove that $L_1 = L_2$

Hence the given statement is **true**.

Step-4

2) Given statement is $\hat{\mathbf{a}} \in \mathsf{TF} A^2 + A = I$ then $A^{-1} = A + I \hat{\mathbf{a}} \in \mathsf{TM}$.

We have to determine whether the given statement is true or false.

Step-5

The given statement is **true**.

Consider

$$A^{2} + A = I$$

$$\Rightarrow A^{-1} (A^{2} + A) = A^{-1} (I) \qquad \text{(Multiplying both sides with } A^{-1} \text{)}$$

$$\Rightarrow A^{-1} A^{2} + A^{-1} A = A^{-1}$$

$$\Rightarrow (A^{-1} A) A + A^{-1} A = A^{-1}$$

$$\Rightarrow IA + I = A^{-1} \qquad \text{(Since } A^{-1} A = AA^{-1} = I \text{)}$$

$$\Rightarrow A + I = A^{-1}$$

Hence $A^{-1} = A + I$

Step-6

(c) Given statement is $\hat{a} \in \hat{A}$ and \hat{A} are zero, then \hat{A} is singular.

We have to determine whether the given statement is true or false.

Step-7

The given statement is **false.**

Since let
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

Then

$$\det A = 0(0) - 1(2) = 0 - 2 = -2$$

Since $\det A \neq 0$

So *A* is nonsingular.

Hence the given statement is **false**.