

NIH: West Coast Metabolomics Center

Dmitry Grapov, PhD

Goals?

Metabolomics

Analytical Dimensions

Analyzing Metabolomic Data

- Pre-analysis
- Data properties

- Statistical approaches
- Multivariate approaches
- Systems approaches

Pre-analysis

Data quality metrics

- precision
- accuracy

Remedies

- normalization
- outliers detection
- missing values imputation

Normalization

- sample-wise
 - sum, adjusted
- measurement-wise
 - transformation (normality)
 - encoding (trigonometric, etc.)

Outliers

• single measurements (univariate)

two compounds (bivariate)

Outliers

univariate/bivariate

→outliers?

⇒mixed up samples

vs. multivariate

Transformation

- logarithm (shifted)
- power (BOX-COX)
- inverse

Quantile-quantile (Q-Q) plots are useful for visual overview of variable normality

Missing Values Imputation

(2) (A)

Why is it missing?

- random
- systematic
 - analytical
 - biological

Imputation methods

- •single value (mean, min, etc.)
- multiple
- multivariate

◆ Complete Data ▲ Imputed Data

Metabolomics@ucdavis.edu

Metabolomics.ucdavis.edu

Goals for Data Analysis

Exploration Classification Prediction

- Are there any trends in my data?
 - analytical sources
 - meta data/covariates
- Useful Methods
 - matrix decomposition (PCA, ICA, NMF)
 - cluster analysis
- Differences/similarities between groups?
 - discrimination, classification, significant changes
- Useful Methods
 - analysis of variance (ANOVA)
 - partial least squares discriminant analysis (PLS-DA)
 - Others: random forest, CART, SVM, ANN
- What is related or predictive of my variable(s) of interest?
 - regression
- Useful Methods
 - correlation

Data Structure

- univariate: a single variable (1-D)
- bivariate: two variables (2-D)
- multivariate: 2 > variables (m-D)
 - Data Types
 - continuous
 - discreet
 - binary

Data Complexity

Univariate Analyses

univariate properties

- length
- center (mean, median, geometric mean)
- dispersion (variance, standard deviation)
- Range (min / max)

Univariate Analyses

sensitive to distribution shape

•error in Y, not in X (Y = mX + error)

optimal for long data

- assumed independence
- false discovery rate

False Discovery Rate (FDR)

univariate approaches do not scale well

- Type I Error: False Positives
- Type II Error: False Negatives

Risk of Spurious Result

- •Type I risk =
 - •1-(1-p.value)^m

m = number of variables tested

FDR correction

Example:

Design: 30 sample, 300 variables

Test: t-test

FDR method: Benjamini and

Hochberg (fdr) correction at q=0.05

Results

FDR adjusted p-values (fdr) or estimate of FDR (Fdr, q-value)

Bioinformatics (2008) 24 (12):1461-1462

Metabolomics@ucdavis.edu

Metabolomics.ucdavis.edu

Achieving "significance" is a function of:

significance level (α) and power (1- β)

effect size (standardized difference in means)

Bivariate Data

relationship between two variables

- correlation (strength)
- regression (predictive)

Correlation

Parametric (Pearson) or rank-order (Spearman, Kendall)

•correlation is covariance scaled between -1 and 1

Correlation vs. Regression

Regression describes the least squares or best-fit-line for the relationship (Y = m*X + b)

Goal: Don't miss eruption!

Data

- time between eruptions
 - $-70 \pm 14 \text{ min}$
- duration of eruption
 - $-3.5 \pm 1 \, \text{min}$

Old Faithful, Yellowstone, WY

Two cluster pattern for both duration and frequency

Noted deviations from two cluster pattern

- -Outliers?
- -Covariates?

Covariates

Trends in data which mask primary goals can be accounted for using covariate adjustment and appropriate modeling strategies

Noted deviations from two cluster pattern can be explained by covariate:

Hydrofraking ⊗

Covariate adjustment is an integral aspect of statistical analyses (e.g. ANCOVA)

Summary

Data exploration and pre-analysis:

- increase robustness of results
- guards against spurious findings
- Can greatly improve primary analyses
 Univariate Statistics:
 - are useful for identification of statically significant changes or relationships
 - sub-optimal for wide data
 - best when combined with advanced multivariate techniques

Resources

Web-based data analysis platforms

- MetaboAnalyst(http://www.metaboanalyst.ca/MetaboAnalyst/faces/Home.jsp
- MeltDB (https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi)

Programming tools

- The R Project for Statistical Computing(http://www.r-project.org/)
- Bioconductor
 http://www.bioconductor.org/

GUI tools

• imDEV http://sourceforge.net/projects/imdev/?source=directory

