

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Física Moderna

Auxiliar: Diego Sarceño 18 de octubre de 2022

$\overline{\mathrm{T}}$ ALLER 4

Tarea 4

Ejercicio 1

Teniendo la velocidad de fase $v_p = \sqrt{\frac{g\lambda}{2\pi}},$ reescribiendo
la en términos de ω

$$v_p = \sqrt{\frac{g}{k}} = \frac{\omega}{k} \qquad \Rightarrow \qquad \omega = \sqrt{gk}.$$

Entonces, sabiendo que la velocidad de grupo esta dada por $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}$, se tiene

$$v_g = \frac{1}{2}\sqrt{\frac{g}{k}} = \frac{1}{2}v_p.$$

Ejercicio 2

Dado que la energía del haz es mucho menor que su energía en reposo, podemos utilizar a $\gamma=1$. Entonces, dada la longitud de onda de De Broglie $\lambda=\frac{h}{mv}$ con $p=mv=\sqrt{2m\mathrm{KE}}$, entonces, sustituyendo en la ecuación de Bragg para n=1

$$\phi = \arcsin \frac{h}{2d\sqrt{2m\text{KE}}} = 18.65^{\circ}.$$