Credit Scoring : biais d'échantillon ou *réintégration des refusés*

Adrien Ehrhardt

Christophe Biernacki, Vincent Vandewalle, Philippe Heinrich, Sébastien Beben

Crédit Agricole Consumer Finance INRIA Lille - Nord-Europe

Rencontres des jeunes statisticiens 2017 - Porquerolles

3-7 avril 2017

Sommaire

- Contexte
 - Entreprise
 - Système d'acceptation
 - Credit Scoring
- Réintégration des refusés
 - Par l'exemple
 - Formalisation du problème
 - Réinterprétation des méthodes
 - Résultats expérimentaux
- Conclusion

Contexte

Contexte: Entreprise

Contexte: Système d'acceptation

X : vecteur a. des caractéristiques

Y dans $\{0,1\}$: remboursement

Z dans $\{f, nf\}$: v. a. de financement

Contexte: Credit Scoring

$$\exists \, \theta \in \mathbb{R}^{d+1} \text{ s.t. } \forall \, x, \, \ln \left(rac{p_{ heta}(1|x)}{p_{ heta}(0|x)}
ight) = heta \cdot x$$

n clients financés (Z = f)*m* clients non financés (Z = nf)

x : features observées des clients

y : remboursement observé

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{f} \\ \mathbf{x}^{nf} \end{pmatrix}; \mathbf{y} = \begin{pmatrix} \mathbf{y}^{f} \\ \mathbf{y}^{nf} \end{pmatrix}$$

$$\underbrace{\ell(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y})}_{\text{vraisemblance complète}} = \left(\sum_{i=1}^{n} + \sum_{i=n+1}^{n+m}\right) \ln(p_{\boldsymbol{\theta}}(y_i|x_i)) = \underbrace{\ell(\boldsymbol{\theta}; \boldsymbol{x}^f, \boldsymbol{y}^f)}_{\text{vraisemblance observée}} + \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\text{nf}}, \boldsymbol{y}^{\text{nf}})$$

Quel intérêt à utiliser x^{nf} ? Quel risque à n'utiliser que (x^f, y^f) ?

Réintégration des refusés

Réintégration des refusés : Exemple Fuzzy Augmentation I

Décrit par [Nguyen, 2016].

$$\mathbf{y}^{\mathrm{f}}$$
 $\begin{pmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \\ \mathsf{NA} \\ \vdots \\ \mathsf{NA} \end{pmatrix}$

$$oldsymbol{x}^{ ext{f}} \left(egin{array}{cccc} x_1^1 & \cdots & x_1^d \ dots & dots & dots \ x_n^1 & \cdots & x_n^d \ x_{n+1}^1 & \cdots & x_{n+1}^d \ dots & dots & dots \ x_{n+m}^1 & \cdots & x_{n+m}^d \end{array}
ight)$$

Réintégration des refusés : Exemple Fuzzy Augmentation II

Abandon de \mathbf{x}^{nf} et construction de $\hat{\theta}^f$.

$$\mathbf{y}^{\text{f}}$$
 $\begin{pmatrix} y_1 \\ \vdots \\ y_n \\ \text{NA} \\ \vdots \\ \text{NA} \end{pmatrix}$

$$\mathbf{y}^{\text{f}} \begin{pmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \\ \text{NA} \end{pmatrix} \qquad \mathbf{x}^{\text{f}} \begin{pmatrix} \mathbf{x}_{1}^{1} & \cdots & \mathbf{x}_{1}^{d} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{n}^{1} & \cdots & \mathbf{x}_{n}^{d} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{n+1}^{1} & \cdots & \mathbf{x}_{n+1}^{d} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{n+m}^{1} & \cdots & \mathbf{x}_{n+m}^{d} \end{pmatrix}$$

Réintégration des refusés : Exemple Fuzzy Augmentation III

Remplacement de \mathbf{y}^{nf} par les proba données par $\hat{\theta}^{\mathrm{f}}$.

Apprendre $\hat{\theta}^{\text{fuzzy}}$ sur le dataset résultant.

Problème : $\hat{\theta}^{\text{fuzzy}} = \hat{\theta}^{\text{f}}$.

```
Objet d'intérêt : p_{\text{vrai}}(y|x)
```

Proposition d'un modèle : $p_{\theta}(y|x)$

Problème (sans surprise. . .) : estimer θ

Données:

- lacktriangle Cas idéal : $\mathbf{x}^f, \mathbf{x}^{nf}$ et $\mathbf{y}^f, \mathbf{y}^{nf}$
- Cas CACF: x^f et y^f

Objet d'intérêt : $p_{\text{vrai}}(y|x)$

Proposition d'un modèle : $p_{\theta}(y|x)$

Problème (sans surprise...) : estimer θ

Données:

1 Cas idéal : x^f, x^{nf} et y^f, y^{nf}

Cas CACF : x^f et y^f

Estimateurs:

- ① Cas idéal : avec toutes les données on obtient $\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta; \boldsymbol{x}, \boldsymbol{y})$ $\sqrt{n+m}(\hat{\theta} \theta_{\text{opt}}) \xrightarrow[n \ m \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{\text{opt}}})$
- ② Cas réaliste : avec les financés on obtient $\hat{\theta}^f = \operatorname{argmax}_{\theta} \ell(\theta; \mathbf{x}^f, \mathbf{y}^f)$ $\sqrt{n}(\hat{\theta}^f \theta_{\text{opt}}^f) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{\text{opt}}}^f)$

Estimateurs:

- ① Cas idéal : avec toutes les données on obtient $\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta; \boldsymbol{x}, \boldsymbol{y})$ $\sqrt{n+m}(\hat{\theta} \theta_{\text{opt}}) \xrightarrow[n \ m \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{\text{opt}}})$
- ② Cas réaliste : avec les financés on obtient $\hat{\theta}^f = \operatorname{argmax}_{\theta} \ell(\theta; \boldsymbol{x}^f, \boldsymbol{y}^f)$ $\sqrt{n}(\hat{\theta}^f \theta_{\text{opt}}^f) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{\text{opt}}}^f)$

Question 1 : propriétés asymptotiques des deux estimateurs

• MCAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x, y) = p_{\text{vrai}}(z)$ \rightarrow Inadapté au Credit Scoring.

- MCAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x, y) = p_{\text{vrai}}(z)$ \rightarrow Inadapté au Credit Scoring.
- MAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x,y) = p_{\text{vrai}}(z|x)$ \rightarrow Le score détermine l'acceptation : $Z = \mathbb{1}_{\{\theta'X > \text{cut}\}}$.

- MCAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x, y) = p_{\text{vrai}}(z)$ \rightarrow Inadapté au Credit Scoring.
- MAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x,y) = p_{\text{vrai}}(z|x)$ \rightarrow Le score détermine l'acceptation : $Z = \mathbb{1}_{\{\theta'X > \text{cut}\}}$.
- MNAR : $\exists x, y, z, \ p_{\text{vrai}}(z|x, y) \neq p_{\text{vrai}}(z|x)$ \rightarrow Influence du "feeling" des conseillers X^{c} .

- MCAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x, y) = p_{\text{vrai}}(z)$ \rightarrow Inadapté au Credit Scoring.
- MAR : $\forall x, y, z, \ p_{\text{vrai}}(z|x,y) = p_{\text{vrai}}(z|x)$ \rightarrow Le score détermine l'acceptation : $Z = \mathbb{1}_{\{\theta'X > \text{cut}\}}$.
- MNAR : $\exists x, y, z, \ p_{\text{vrai}}(z|x, y) \neq p_{\text{vrai}}(z|x)$ \rightarrow Influence du "feeling" des conseillers X^{c} .

Figure – Schéma des dépendances des variables aléatoires Y, X^c , X et Z

Réintégration des refusés : Bon/mauvais modèle

- Bon modèle : $\exists \theta_{\text{vrai}}, p_{\text{vrai}}(y|x) = p_{\theta_{\text{vrai}}}(y|x)$. \rightarrow Données réelles \Rightarrow hypothèse peu probable.
- Mauvais modèle : $\theta_{\rm opt}$ minimise l'ignorance sur la vraie loi. \rightarrow Utilisation de la régression logistique pour sa robustesse à la misspecification.

Réintégration des refusés : Bon/mauvais modèle

- Bon modèle : $\exists \theta_{\text{vrai}}, p_{\text{vrai}}(y|x) = p_{\theta_{\text{vrai}}}(y|x)$. \rightarrow Données réelles \Rightarrow hypothèse peu probable.
- Mauvais modèle : θ_{opt} minimise l'ignorance sur la vraie loi.
 → Utilisation de la régression logistique pour sa robustesse à la misspecification.

$p_{\text{vrai}}(z x)$	MCAR	MAR	MNAR
Bon	$ heta_{ extsf{opt}}^{ extsf{f}} = heta_{ extsf{opt}}$	$egin{aligned} heta_{opt}^{f} &= heta_{opt} \ \Sigma_{ heta_{opt}}^{f} & eq \Sigma_{ heta_{opt}} \end{aligned}$	$ heta_{ extsf{opt}}^{ extsf{f}} eq heta_{ extsf{opt}}$
Mauvais	$\Sigma_{ heta^{f}_{opt}}^{f} = \Sigma_{ heta_{opt}}$	$egin{aligned} heta_{ ext{opt}}^{ ext{f}} eq heta_{ ext{opt}} otag \ \Sigma_{ heta_{ ext{opt}}}^{ ext{f}} eq \Sigma_{ heta_{ ext{opt}}} \end{aligned}$	$\Sigma_{ heta^{ extsf{f}}_{oldsymbol{opt}}}^{ extsf{f}} eq \Sigma_{ heta_{oldsymbol{opt}}}$

Table – Réponses à (Q1) et (Q2b) selon le mécanisme des données manquantes et l'hypothèse du bon modèle

Question 2 : Comment améliorer $\hat{\theta}^f$?

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

• Changer le modèle (i.e. l'espace Θ),

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

- Changer le modèle (i.e. l'espace Θ),
- Modéliser la sélection (i.e. $p_{\alpha}(z|x,y)$),

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

- Changer le modèle (i.e. l'espace Θ),
- Modéliser la sélection (i.e. $p_{\alpha}(z|x,y)$),
- Utiliser x^{nf}.

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

- Changer le modèle (i.e. l'espace Θ),
- Modéliser la sélection (i.e. $p_{\alpha}(z|x,y)$),
- Utiliser x^{nf}.

Moyen "naturel" de faire les trois : le modèle génératif $p_{\theta}(y|x)$, $p_{\beta}(x)$ et $p_{\gamma}(z|x,y)$ où θ , β et γ sont fonctionnellement dépendants (en général).

$$\hat{\theta}^{\mathsf{gen}} = \mathsf{argmax}\, \ell(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y}^{\mathsf{f}}) = \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{f}}, \boldsymbol{y}^{\mathsf{f}}) + \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{nf}})$$

généralement obtenu par algorithme EM.

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

- Changer le modèle (i.e. l'espace Θ) régression logistique,
- Modéliser la sélection (i.e. $p_{\alpha}(z|x,y)$),
- Utiliser x^{nf}.

Moyen "naturel" de faire les trois : le modèle génératif $p_{\theta}(y|x)$, $p_{\beta}(x)$ et $p_{\gamma}(z|x,y)$ où θ , β et γ sont fonctionnellement dépendants (en général).

$$\hat{\theta}^{\mathsf{gen}} = \mathsf{argmax}\,\ell(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y}^{\mathsf{f}}) = \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{f}}, \boldsymbol{y}^{\mathsf{f}}) + \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{nf}})$$

généralement obtenu par algorithme EM.

Question 2 : Comment améliorer $\hat{\theta}^f$?

Leviers:

- Changer le modèle (i.e. l'espace Θ) régression logistique,
- Modéliser la sélection (i.e. $p_{\alpha}(z|x,y)$) relève de la croyance,
- Utiliser x^{nf}.

Moyen "naturel" de faire les trois : le modèle génératif $p_{\theta}(y|x)$, $p_{\beta}(x)$ et $p_{\gamma}(z|x,y)$ où θ , β et γ sont fonctionnellement dépendants (en général).

$$\hat{\theta}^{\mathsf{gen}} = \mathsf{argmax}\,\ell(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y}^{\mathsf{f}}) = \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{f}}, \boldsymbol{y}^{\mathsf{f}}) + \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{nf}})$$

généralement obtenu par algorithme EM.

Réintégration des refusés : Réinterprétation des méthodes

Reclassification

([Viennet et al., 2006, Banasik and Crook, 2007, Guizani et al., 2013]) :

$$(\hat{\theta}^{\mathsf{CEM}}, \hat{\boldsymbol{y}}^{\mathsf{nf}}) = \operatorname*{argmax}_{\boldsymbol{\theta}, \boldsymbol{y}^{\mathsf{nf}}} \ell(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y}^{\mathsf{f}}, \boldsymbol{y}^{\mathsf{nf}}) = \ell(\boldsymbol{\theta}; \boldsymbol{x}^{\mathsf{f}}, \boldsymbol{y}^{\mathsf{f}}) + \sum_{i=n+1}^{m+n} \mathsf{In}(p_{\boldsymbol{\theta}}(\hat{y}_i | x_i)).$$

où
$$\hat{y}_i = \operatorname{argmax}_{y_i} p_{\hat{\theta}^f}(y_i|x_i).$$

C'est une tentative de "mimer" le modèle génératif par l'utilisation d'un algorithme Classification-EM.

Problème: produit un estimateur inconsistent, aucune garantie d'amélioration.

Réintégration des refusés : Réinterprétation des méthodes

Augmentation ([Viennet et al., 2006, Banasik and Crook, 2007, Guizani et al., 2013, Nguyen, 2016]): critère issu de l'*Importance Sampling* permettant de corriger le biais de modèle mais algorithme insatisfaisant.

Twins (méthode interne CACF) : le critère conduit à $\hat{\theta}^{\text{twins}} = \hat{\theta}^{\text{f}}$.

Parcelling

([Viennet et al., 2006, Banasik and Crook, 2007, Guizani et al., 2013]) : hypothèses MNAR invérifiables.

Génératif : biais de modèle important.

Réintégration des refusés : Résultats expérimentaux

Conclusion

Conclusion

- Fuzzy Augmentation, Reclassification et Twins ont été écartées.
- Le choix d'une (autre) méthode relève de la croyance.
- La formalisation a permis de clotûrer un débat resté empirique jusqu'alors.
- Article en préparation.

Conclusion

- Fuzzy Augmentation, Reclassification et Twins ont été écartées.
- Le choix d'une (autre) méthode relève de la croyance.
- La formalisation a permis de clotûrer un débat resté empirique jusqu'alors.
- Article en préparation.
- Sujet en cours permettant de limiter le biais de modèle : discrétisation de variables continues, regroupement de modalités pour variables qualitatives et croisements automatiques de variables.
- Sujet à venir : augmentation du nombre de prédicteurs permettant d'abaisser l'erreur de Bayes.

Merci pour votre attention! Questions?

- Banasik, J. and Crook, J. (2007).

 Reject inference, augmentation, and sample selection.

 European Journal of Operational Research, 183(3):1582–1594.
 - Guizani, A., Souissi, B., Ammou, S. B., and Saporta, G. (2013). Une comparaison de quatre techniques d'inférence des refusés dans le processus d'octroi de crédit.
- In 45 emes Journ'ees de statistique, page pp.
- Nguyen, H. T. (2016).
 Reject inference in application scorecards: evidence from France.
 Technical report, University of Paris West-Nanterre la Défense,
 EconomiX.
 - Viennet, E., Soulié, F. F., and Rognier, B. (2006). Evaluation de techniques de traitement des refusés pour l'octroi de crédit.
 - arXiv preprint cs/0607048.