Curso propedeutico

A) Vamos aprender a programar y también la matemática y física detrás

1. Introducción

- a) Orientación hacia el problema
- b) Creación rápida de prototipos en Python
- c) La codificación de Matemáticas luce como Matemáticas
- d) Las unidades juegan un papel en los prototipos de la Física

2. Python

2.1. Instalación de Python

- 1. Windows y Linux
- 2. Evite el infierno de versiones de Python

2.2. ipython como calculadora

- 1. Un medio mas tres octavos
 - 1.1 Enteros
 - 1.2 Python no redondea los decimales
- 2. Un radian en grados 4
- 3. Hay un error porque Python aún no conoce ese valor
- 4. Asigne un valor y luego asigne un valor nuevo
- 5. Use la flecha hacia arriba para buscar los comandos anteriores

2.3. Aprender Python

- B) Principio básico: aprendes mejor lo que haces todos los días
 - 1. Crear directorio /bin
 - 2. Ejecutar un script
 - 3. Crear una función en un archivo
 - 4. Cargar la función y ejecutarla
 - 5. Navegar por sistema de archivos con comandos cd y ls

3. Importar modulos

3.1. numpy

- 1. Vamos a usar numpy para guardar arreglos de muchos valores
- 2. Vetorizacion
- 3. Posición de numpy en el stack científico de Python
- 4. Las matrices son una subclase de los arreglos
- 1. Creación de 1D ndarrays
- 2. np.e 8.1.1
- 3. np.pi
- 4. Funciones clásicas 6.3

3.2. matplotlib

- 1. Queremos graficar los arreglos de muchos valores
- 2. Un grafico en un solo subplot 8.1.2
- 3. plt.plot()
- 4. plt.show(block=False)

4. Radian

- a) Un radian no tiene unidades
- b) Un radian en grados
- c) Circulo

5. Constantes y Unidades

5.1. Constantes

- a) import astropy.constants as cte
- b) Ver constantes disponibles
- c) Velocidad de la luz
- d) Aceleración de gravedad
- e) Convertir c y g0
- f) Las constantes tienen unidades

galanh Horacio Galán: 3 of 5

5.2. Unidades MKS

- a) import astropy.units as u
- b) Ver unidades disponibles
- c) Crear velocidad de 6 km/h
- d) Convertir a m/s
- e) Encuentre equivalencia para cada unidad MKS

5.3. Unidades imperiales

- a) import astropy.units.imperial as imp
- b) Ver unidades disponibles
- c) Crear una distancia de 6 pies
- d) Convertir aceleración de gravedad 7.1
- e) Calcular el perímetro de la Tierra en millas náuticas

6. Matemática

6.1. Trigonometria

- 1. Definiciones senos y cosenos sobre el circulo unitarion
- 2. Parámetros oscilatorios
- 3. Frecuencia
- 4. Periodo
- 5. Amplitud

6.2. Álgebra

- 1. isympy
- 2. Fracciones
- 3. fraction-sympy.py
- 1. Sistema de ecuaciones
- 2. Cuatro incógnitas
- 3. 4D.py

6.3. Utilizar funciones

- C) Muchos recursos para funciones disponibles
 - 1. Funciones clásicas
 - 2. three-random.py

galanh Horacio Galán: 4 of 5

- 1. Nuestro propio modelo
- 2. guess_a_number.py
- 1. Cómo ajustar un polinomio a partir de un conjunto de puntos
- 2. fit-polynomial.py

6.4. Conjuntos

- D) Los conjuntos se usan como base en la fundación de la Matemática
 - 1. set-operations.py
 - 2. Desigualdades

6.5. Graficar la derivada de una función

- 1. derivative-numpy.py
- 2.

7. Física

7.1. Cinemática en una dimensión.

- 1. Aceleración de Galileo
- 2. freefall.py

7.2. Movimiento de proyectiles

- 1. Ecuaciones del proyectil
- 2. projectile.py
- 3. Compare con resistencia del aire

7.3. Leyes de Newton

- 1. Plano no inclinado con fricción
- 2. Plano inclinado con fricción

7.4. Energía

1.

7.5. Espectro EM

1.

3

8. Ejemplos

8.1. Ejemplos en Matemática

8.1.1. Aproximar e

a) e-aprox.py

8.1.2. Modelar latidos

- a) modelar-ciclos.py
- b) np.arange()
- c) linewidth=, 'r-'

8.2. Ejemplos en Física

8.2.1. Energía

- a) cost-of-heat.py
- b) gasoline-to-houses.py
- c) car_consumption.py

8.2.2. Rotación de la Tierra

a) UTC-datetime.py

8.2.3. Espectro EM

- a) limits_EM.py
- b) EM.py

3