Procesamiento digital de señales

Análisis espectral

Integrantes:

- Barco Valentín
- Estrada Anselmo

b)
$$\times [m] = X_{c}(t)$$
 $t = \frac{1}{3}$
 $\times [m] = 3$. $nem(\frac{1}{3}\Pi, m)$
 $t = 2\pi$
 $w = \frac{1}{3}\pi \longrightarrow \theta = \frac{w}{2\pi} = \frac{1}{6}H_{\frac{1}{2}}$
 $W = 6$
 $\times [m + 2\pi k] = 3$. $nem(\frac{1}{3}\Pi, m + 2\pi k) = 0$
 $= 3 nem(\frac{1}{3}\pi m)$. $cos(2\pi k) + 3cos(\frac{1}{3}\pi m)$. $rem(2\pi k)$
 $= 3 nem(\frac{1}{3}\pi m)$
 $= 2\pi$
 $\times [m] = 2\pi$
 \times

d)

La mínima Fs seria:

 $X_{*}(*) = Cor(2\pi.1500.*) + 0,5 cor(2\pi.3000.*)$ $X_{c}(t) = \frac{1}{2} e^{j2\pi} 6 \cdot t + \frac{1}{2} e^{j2\pi} (-6) t + \frac{1}{4} e^{j2\pi} (-6) t$ 5 {xc(*)}= + 5(6-60)+ + 5(6+60)+ + 5(6-80)+ + 5(6+60) Xc(8) = 18(6-1500)+18(6+1500)+18(6-3000)+18(6+300) X (6) -1500 -3000 3000

$$X_s(\beta) = 5000 \sum_{K} X_c(\beta - kFs)$$

$$X_{5}(6) = 5000.$$
 $\sum_{k=-\infty}^{\infty} \left[\frac{1}{2} \left(\delta(6 + 1500 - 5000 K) + \delta(6 - 1500 - 5000 K) + \frac{1}{4} \left(\delta(6 + 3000 - 5000 K) \right) \right]$

$$\times (e^{\beta \omega}) = \times (\beta)$$

$$\beta = \frac{\omega F_s}{2\pi}$$

$$\chi(e^{j\omega}) = 5000.$$
 $\sum_{k=-\infty}^{\infty} \frac{1}{2} \left(S\left(\frac{F_s}{2\pi} \left(w + \frac{3}{5}\pi - 2\pi k \right) \right) + S\left(\frac{F_s}{2\pi} \left(w - \frac{3}{5}\pi - 2\pi k \right) \right) \right) +$

Por propedod de excelodo del impulso S(aw) = 1. S(w)

$$X_{s}(e^{\partial w}) = \sum_{k=-\infty}^{\infty} \left[\pi \left(\delta \left(w + \frac{3\pi}{5} - 2\pi k \right) + \delta \left(w - \frac{3\pi}{5} - 2\pi k \right) \right) + \left(\frac{3\pi}{5} - 2\pi k \right) \right] + \left(\frac{3\pi}{5} - 2\pi k \right) + \left(\frac{3\pi}{5} - 2\pi k \right$$

De forma gráfica sería

$$X(e)$$
 = $X(b)$ = $\frac{w Fs}{2\pi}$

$$W_0 = \frac{2\pi h}{F_S} = \frac{3\pi}{5}$$

$$w_3 = 7\pi$$

e) $Y(e^{2\pi i}) = \frac{1}{2} (e^{3\pi i}) \times (e^{3\pi i}) \times (e^{3\pi i}) + e^{310\frac{3\pi}{5}} S(w - \frac{3\pi}{5} - 2\pi k)$ $Y(e^{2\pi i}) = \frac{1}{2} \sum_{-\infty} \pi(e^{310\frac{3\pi}{5}} S(w + \frac{3\pi}{5} - 2\pi k) + e^{310\frac{5\pi}{5}} S(w - \frac{3\pi}{5} - 2\pi k))$ $\frac{1\pi}{2} (e^{310\frac{5\pi}{5}} S(w + 6\pi - 2\pi k) + e^{310\frac{5\pi}{5}} S(w - \frac{6\pi}{5} - 2\pi k))$ Como $e^{310\frac{3\pi}{5}} e^{310\frac{3\pi}{5}} e^{310\frac{5\pi}{5}} e^{310\frac{5\pi}{5}} y e^{310\frac{5\pi}{5}}$ Romo $e^{310\frac{3\pi}{5}} e^{310\frac{3\pi}{5}} e^{310\frac{5\pi}{5}} y e^{310\frac{5\pi}{5}} x e^{310\frac{5\pi}$

En site coro el retordodos h[m] esta retordando a los cosenos una contidod entera de feriodos, por lo que a la salida los corenos tieren la misma fase

$$H_r(\beta) = \begin{cases} T & |\beta| < \frac{F_s}{2} \\ 0 & \text{coro continuo} \end{cases}$$

$$H_{r}(\beta) = \begin{cases} T & |\beta| < \frac{F_{s}}{2} \\ 0 & \text{coro continuo} \end{cases}$$

$$Y_{c}(\beta) = \begin{cases} T Y_{s}(\beta) & |\beta| < \frac{F_{s}}{2} \\ 0 & \text{coro continuo} \end{cases}$$

$$Y_{c.}(t) = \frac{1}{2} (ar (2\pi.1500.t) + \frac{1}{4} (ar (2\pi.2000.t))$$

En este coro, al mo cumplisse el teoremo de Nyquins oscer que lo free de muestro er menor al doble de la moremo franchero de X (1). for la que hour aboring of esto me genero un corremento de fremencio en el coreno (21 3000 t).

```
Ejeruno 3
```

0)

La rolado y [m] deployado mo muestron

To sold y, [m] ante una entrolo x, [m] = x[m-mo]

Er invocante en el trempo yo que y[m-mo] = 5{x[m

 $S[x[m]] = x^{2}[m]$ $S[x[m]] + bx_{2}[m]] = aS[x_{1}[m]] + bS[x_{2}[m]]$ $(ax_{1}[m] + bx_{2}[m])^{2} = (ax_{1}[m])^{2} + abx_{1}[m] \cdot x_{2}[m] + (bx_{2}[m])^{2}$ No er un resterns lineal zo que no cample el principo de Suferfocición

$$Y(6) = Y(e^{2w}) \bigg|_{w = \frac{2\pi 6}{F_5}}$$

$$Y(\xi) = \sum_{k=-\infty}^{\infty} \pi. \ S(\frac{2\pi}{F_5}(\xi - kF_5) + \frac{\pi}{2} \ S(\frac{2\pi}{F_5}(\xi + 1000 - kF_5)) + \frac{\pi}{2} \ S(\frac{2\pi}{F_5}(\xi - 1000 - kF_5))$$

$$y_c(t) = \frac{1}{2} + \frac{1}{2} (or (2\pi 1000 t))$$