第一章

第七节 函数的连续性与间断点

- 一、函数连续性的定义
- 二、函数的间断点

一、连续函数的概念

1. 函数的增量

函数:
$$y = f(x)$$

$$x_0$$
点附近的点: $x = x_0 + \Delta x$

自变量的增量:
$$\Delta x = x - x_0$$

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$
 为函数在点 x_0 的增量.

2. 函数连续性的定义

设函数 y = f(x) 在点 x_0 点某邻域内有定义,如果 $\Delta x \to 0$ 时,

也有 $\Delta y \rightarrow 0$,即

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x_0) - f(x_0)] = 0$$

则称函数 y = f(x) 在点 x_0 处连续, x_0 为 f(x) 的连续点.

连续的等价定义: $\lim_{x \to x_0} f(x) = f(x_0)$

定义: 设函数 y = f(x) 在 x_0 的某邻域内有定义,且

$$\lim_{x \to x_0} f(x) = f(x_0)$$
,则称函数 $f(x)$ 在 x_0 连续.

可见,函数f(x) 在点 x_0 连续必须具备下列条件:

- (1) f(x) 在点 x_0 有定义,即 $f(x_0)$ 存在;
- (2) 极限 $\lim_{x \to x_0} f(x)$ 存在;
- (3) $\lim_{x \to x_0} f(x) = f(x_0).$

若 f(x) 在某区间上每一点都连续,则称它在该区间上连续,或称它为该区间上的<mark>连续函数,</mark>

在闭区间 [a,b] 上的连续函数的集合记作 C[a,b].

例如,
$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$
 (有理整函数)
在 $(-\infty, +\infty)$ 上连续.

又如,有理分式函数
$$R(x) = \frac{P(x)}{Q(x)}$$

在其定义域内连续.

只要
$$Q(x_0) \neq 0$$
,都有 $\lim_{x \to x_0} R(x) = R(x_0)$

对自变量的增量 $\Delta x = x - x_0$,有函数的增量

$$\Delta y = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$$

函数 f(x) 在点 x_0 连续有下列等价命题:

$$\lim_{x \to x_0} f(x) = f(x_0) \longrightarrow \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$$

$$\lim_{\Delta x \to 0} \Delta y = 0$$

$$f(x_0^-) = f(x_0) = f(x_0^+)$$

左连续 右连续

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, $\dot{\exists} |x - x_0| = |\Delta x| < \delta$ 时, 有 $|f(x) - f(x_0)| = |\Delta y| < \varepsilon$

例.证明函数 $y = \sin x$ 在 $(-\infty, +\infty)$ 内连续.

i.e.
$$\forall x \in (-\infty, +\infty)$$

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})$$

$$|\Delta y| = 2\left|\sin\frac{\Delta x}{2}\right|\cos(x + \frac{\Delta x}{2})\right|$$

$$\leq 2\left|\frac{\Delta x}{2}\right| \cdot 1 = |\Delta x| \xrightarrow{\Delta x \to 0} 0$$

$$\lim_{\Delta x \to 0} \Delta y = 0$$

这说明 $y = \sin x$ 在 $(-\infty, +\infty)$ 内连续.

同样可证: 函数 $y = \cos x$ 在 $(-\infty, +\infty)$ 内连续

二、函数的间断点

设 f(x) 在点 x_0 的某去心邻域内有定义,则下列情形

之一函数 f(x) 在点 x_0 不连续:

- (1) 函数f(x) 在 x_0 无定义;
- (2) 函数f(x) 在 x_0 虽有定义,但 $\lim_{x \to \infty} f(x)$ 不存在; $x \rightarrow x_0$
- (3) 函数f(x)在 x_0 虽有定义,且 $\lim_{x \to \infty} f(x)$ 存在,但 $x \rightarrow x_0$ $\lim_{x \to \infty} f(x) \neq f(x_0)$ $x \rightarrow x_0$

这样的点 x_0 称为**间断点**.

间断点分类:

第一类间断点:

$$f(x_0^-)$$
 及 $f(x_0^+)$ 均存在,

若
$$f(x_0^-) = f(x_0^+)$$
,称 x_0 为可去间断点.

 $\overline{\Xi}f(x_0^-) \neq f(x_0^+)$,称 x_0 为跳跃间断点.

第二类间断点:

 $f(x_0^-)$ 及 $f(x_0^+)$ 中至少一个不存在,

若其中有一个为 ∞ , 称 x_0 为无穷间断点.

若其中有一个为振荡,称 x_0 为振荡间断点,

例如:

(1)
$$y = \tan x$$

 $x = \frac{\pi}{2}$ 为其无穷间断点.

(2)
$$y = \sin \frac{1}{x}$$

 $x = 0$ 为其振荡间断点.

$$x=1$$
 为可去间断点.

(4)
$$y = f(x) = \begin{cases} x, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$

显然
$$\lim_{x\to 1} f(x) = 1 \neq f(1)$$

x=1 为其可去间断点.

(5)
$$y = f(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}$$

$$f(0^-) = -1, \qquad f(0^+) = 1$$

x = 0 为其跳跃间断点.

无穷型

振荡型

内容小结

1. f(x) 在点 x_0 连续的等价形式

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

$$\iff f(x_0^-) = f(x_0) = f(x_0^+)$$

$$\iff f(x_0^-) = f(x_0) = f(x_0^+)$$

2. f(x) 在点 x_0 间断的类型

左右极限都存在

第二类间断点

个不存在

左右极限至少有一

思考与练习

1. 讨论函数
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$$
 间断点的类型.

答案: x = 1 是第一类可去间断点,

x=2是第二类无穷间断点.

2. 设
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x < 0 \\ a + x^2, & x \ge 0 \end{cases}$$
 , $a = 0$ 时 $f(x)$ 为

连续函数.

提示:
$$f(0^-) = 0$$
, $f(0^+) = f(0) = a$

备用题 确定函数 $f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$ 间断点的类型.

解: 间断点 x = 0, x = 1

$$\lim_{x\to 0} f(x) = \infty$$
, $\therefore x = 0$ 为无穷间断点;

$$\stackrel{\text{up}}{=} x \to 1^+$$
 时, $\frac{x}{1-x} \to -\infty$,∴ $f(x) \to 1$

故x=1为跳跃间断点.

在 $x \neq 0,1$ 处, f(x)连续.

