Confidence Interval for the Mean

Group Statistics

CI %:

95

Variable	N	M	SD	SE	Lower	Upper	
Total	8	4.000	3.117	1.102	1.394	6.606	
				_			

One Sample T Test

Test:	7.000
-------	-------

t	df	р	Diff. /	SE	Lower	Upper
-2.722	7	0.030	-3.000	1.102	-5.606	-0.394

The Standard Error of the Mean ("SE") provides an estimate of how spread out the distribution of all possible random sample means would be. Here it's calculated as:

$$SE_M = \frac{SD}{\sqrt{N}} = \frac{3.117}{\sqrt{8}} = 1.102$$

These statistics were obtained using same formulas as in the previous section on Frequencies and Descriptives.

This section provides a confidence interval around (centered on) the Mean ("M"). Calculation requires the appropriate critical value. Specifically, the t statistic (with 7 df) that has a probability of .05 equals 2.365. As a result:

$$CI_M = M \pm (t_{CRITICAL})(SE_M) = 4.000 \pm (2.365)(1.102)$$

Thus, the researcher estimates that the true population mean is somewhere between 1.394 and 6.606 (knowing that the estimate could be incorrect).