Matematyka dyskretna, zestaw 9.

- 9.1. Sprawdź czy zbiór \mathbb{R} wraz z działaniem
 - a) $a \circ b = a + b + 5$,
 - b) $a \circ b = ab a b + 2$,

tworzy grupę.

- 9.2. Wyznacz rząd grupy \mathbb{Z}_7^* i rzędy jej elementów oraz podaj generatory, o ile istnieją. Analogicznie dla grupy \mathbb{Z}_{15}^* .
- 9.3. Niech X będzie zbiorem niepustym i niech $\mathcal{P}(X)$ będzie rodziną wszystkich podzbiorów zbioru X. Pokaż, że struktura algebraiczna ($\mathcal{P}(X), \div, \cap$), gdzie \div oznacza różnicę symetryczną, jest pierścieniem przemiennym z jedynką.
- 9.4. Pokaż, że zbiór $\mathbb{Q}(\sqrt{5}) := a + b\sqrt{5} : a, b \in \mathbb{Q}$ wraz ze zwykłymi działaniami dodawania i mnożenia liczb tworzy ciało.
- 9.5. Weźmy dwa elementy ciała GF (2³): $A(x) = x^2 + x$ i B(x) = x + 1. Oblicz ich sumę oraz iloczyn, tj. A(x) + B(x), $A(x) \cdot B(x)$, wybierając wielomian pierwotny $P(x) = x^3 + x + 1$.
- 9.6. Rozważmy ciało GF (2^8) z wielomianem pierwotnym $P(x) = x^8 + x^4 + x^3 + x + 1$. Jest ono wykorzystywane w szyfrowaniu AES, a jego elementy można reprezentować przez ciągi 8-bitowe lub jedno/dwucyfrowe liczby szesnastkowe. Oblicz odwrotność elementu 5D i sprawdź swój wynik w tabeli z wykładu. Wskazówka: wymaga to zastosowania rozszerzonego algorytmu Euklidesa w stosunku do wielomianów.
- 9.7. Zbiór \mathbb{Z}_4 wraz z dodawaniem i mnożeniem modulo 4 tworzy pierścień, różny od $GF(4) = GF(2^2)$. Możemy również rozważyć pierścień oznaczany przez $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, którego elementy to pary liczb (0,0), (0,1), (1,0), (1,1), a ich dodawanie i mnożenie definiujemy jako:

$$(a,b) + (a',b') := (a + a' \mod 2, b + b' \mod 2),$$

 $(a,b) \cdot (a',b') := (a \cdot a' \mod 2, b \cdot b' \mod 2).$

Tabelka mnożenia w $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ ma zatem postać:

	(0,0)	(0, 1)	(1, 0)	(1, 1)
(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
(0, 1)	(0,0)	(0, 1)	(0, 0)	(0, 1)
(1,0)	(0,0)	(0,0)	(1,0)	(1,0)
(1, 1)	(0,0)	(0, 1)	(1, 0)	(1, 1)

Zapisz tabelki dla dodawania i mnożenia w GF(4) oraz \mathbb{Z}_4 , a także dla dodawania w $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Chociaż te trzy pierścienie wyglądają różnie, mogą być w pewnym sensie tożsame. Mówi o tym pojęcie izomorfizmu, czyli bijekcji, która zachowuje strukturę danego obiektu algebraicznego.

Nadobowiązkowo: sprawdź, czy dla którejś pary spośród omawianych trzech pierścieni istnieje bijekcja $h: R_1 \longrightarrow R_2$ spełniająca warunki (tzn. izomorfizm):

$$\forall_{a,b \in R_1} h(a +_1 b) = h(a) +_2 h(b), \forall_{a,b \in R_1} h(a \cdot_1 b) = h(a) \cdot_2 h(b),$$

gdzie $(R_1, +_1, \cdot_1)$, $(R_2, +_2, \cdot_2)$ to dane dwa pierścienie. W tym celu można zauważyć, że izomorfizm odwzorowuje element neutralny dodawania w $(R_1, +_1, \cdot_1)$ na element neutralny dodawania w $(R_2, +_2, \cdot_2)$.

9.8. Wiadomość o treści KARAT można przesłać przy użyciu czterech elementarnych przekazów $K, A, R, T \in \mathbb{Z}_2 \times \mathbb{Z}_2$ (ściśle rzecz biorąc, są to wektory z przestrzeni wektorowej $GF(2) \times GF(2)$ nad ciałem GF(2)):

$$K = (0,0), \quad A = (1,0), \quad R = (0,1), \quad T = (1,1).$$

Jednakże, zakłócenia są w stanie spowodować, że niektóre 0 zmienią się w 1 lub odwrotnie, w rezultacie czego odbiorca otrzyma np. wiadomość o treści KATAR. Aby zmniejszyć prawdopodobieństwo takiej sytuacji, należy zastosować kod korekcji błędów, oparty na dłuższych przekazach elementarnych. Rozważmy zatem $K, A, R, T \in \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ i niech na przykład:

$$K = (0, 0, 1, 1, 0), \quad A = (1, 0, 0, 1, 1).$$

Jak należy podobnie zakodować R i T, aby wszystkie przekazy elementarne pozostały odróżnialne nawet wtedy, gdy w każdym z nich na jednej z pozycji pojawi się błędna wartość (np. K zmieni się w (1,0,1,1,0) i podobnie dla innych)? Przedstaw K, A, R i T oraz wszystkie możliwe ich zakłócone wersje w postaci tabelki.

Michał Bujak Piotr Czarnik Andrzej Kapanowski Alicja Kawala Jakub Mielczarek Andrzej Rostworowski