Fizika 1

Zadaci za samostalan rad 6

6.1. Kolica mase 150 kg postavljena na tračnice pomaknu se za 20 m pod djelovanjem stalne sile iznosa $\vec{F}_0 = 200~N$ koja djeluje pod kutom 30° od prema tračnicama (vidjeti skicu – pogled odozgora). Koliki je iznos konačne brzine kolica ako su krenula iz stanja mirovanja? (Trenje po tračnicama i otpor zraka se zanemaruju.)

Rješenje: $\vec{v} = 6,796 \ ms^{-1}$

6.2. Dječak s mosta visokog 5 m iznad rijeke baci loptu vertikalno u zrak brzinom 11 kmh^{-1} . Na kojoj visini iznad rijeke bi potencijalna energija bila jednaka kinetičkoj, kad bi mogli zanemariti otpor zraka?

Rješenje: h = 2,738

6.3. Opruga (konstanta opruge je 100 Nm^{-1}) stisnuta je 5 cm. Na koju maksimalnu visinu ta opruga može izbaciti tijelo mase 10 g koje je u početnom trenutku u stanju mirovanja na visini $h_1=0$?

Rješenje: $h_2 = 1,274$

6.4. Tijelo mase 5 kg giba se pravocrtno po horizontalnoj podlozi. U početnom trenutku brzina tijela je 40 kmh^{-1} , a poslije prijeđenih 8 m brzina tijela smanji se na 10 kmh^{-1} . Koliki je iznos sile trenja između tijela i podloge?

Rješenje: $F_{tr} = 36,169N$

6.5. S vrha strme ceste dugačke 100 m, visinske razlike 20 m, spuštaju se saonice mase 5 kg. Izračunajte iznos sile trenja koja se javlja pri spuštanju

niz brijeg ako saonice na dnu brijega imaju brzinu 16 ms^{-1} . Početna brzina saonica je nula.

Rješenje: $F_{tr} = 3,41 \ N$

6.6. Iz stanja mirovanja na visini h=0.8~m na vrhu kosine tijelo počinje kliziti niz kosinu te kad dođe do dna kosine nastavi još četiri metra kliziti horizontalno prije nego se zaustavi. Koeficijent kinetičkog trenja μ_k između tijela i podloge je isti kad tijelo klizi niz kosinu i horizontalno. Koliki je μ_k ako je nagib kosine $\vartheta=20^\circ$?

Rješenje: $\mu_k = 0.129$