

Integrative analysis of sequencing and array genotype data for discovering disease associations with rare mutations

Yi-Juan Hu^a, Yun Li^{b,c}, Paul L. Auer^d, and Dan-Yu Lin^{b,1}

^aDepartment of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322; ^bDepartment of Biostatistics, University of North Carolina at Chapel Hill, NC 27599-7420; ^cDepartment of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264; and ^dJoseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI 53201-0413

Edited by Elizabeth A. Thompson, University of Washington, Seattle, WA, and approved December 9, 2014 (received for review April 3, 2014)

Outline

- Motivating example: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Application to the WHI data
- Conclusions

Outline

- Motivating example: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Analyzing the WHI data
- Conclusions

Motivating example: Women's Health Initiative (WHI) data

- Original WHI, 1991
 - Enrolled ≥160,000 postmenopausal women (aged 50–79)
- WHI genome-wide association study (WHI-GWAS), 2007
 - Genotyped 12,008 women
 - Affymetrix 6.0 array: ~550,000 SNPs
- WHI exome sequencing project (WHI-ESP), 2010
 - Due to the high cost of sequencing, only 2,150 women were sequenced
 - Whole-exome sequencing: all variants in the exome

Now we are interested in mapping SNPs for BMI in AA ...

Affymetrix 6.0 array

- -8,142 AA
- $-\sim 550,000$ SNPs, most of which are common

Whole-exome sequencing

- 360 AA with BMI values >40 or <25 (extreme-trait sampling)</p>
- All variants, including all rare variants

Mapping rare variants for BMI

- Rare variants have been hypothesized to have a large impact
- Assayed by sequencing, not arrays (missing by design)

- Existing approach 1: use sequenced subjects only (Tennessen et al 2012, Science)
- Existing approach 2: genotype imputation (Auer et al 2012, AJHG)
 - Use a reference panel; fill in missing data by posterior means
 - MaCH, minimac (Li 2010, Gen Epid)

Observed Genotypes

		Α				Α			Α		
		G				С			Α		

Reference Haplotypes

С	G	Α	G	Α	T	С	Т	С	С	Т	Т	С	Т	Т	С	Т	G	Т	G	С
С	G	Α	G	Α	Т	С	Т	С	С	С	G	Α	С	С	Т	С	Α	Т	G	G
С	С	Α	Α	G	С	Т	С	т	Т	т	Т	С	Т	Т	С	т	G	Т	G	С
С	G	Α	Α	G	С	т	С	т	т	т	Т	С	Т	Т	С	т	G	т	G	С
С	G	Α	G	Α	С	Т	С	т	С	С	G	Α	С	С	т	т	Α	Т	G	С
Т	G	G	G	Α	Т	С	Т	С	С	С	G	Α	С	С	Т	С	Α	Т	G	G
С	G	Α	G	Α	Т	С	Т	С	С	С	G	Α	С	С	Т	Т	G	Т	G	С
С	G	Α	G	Α	С	Т	С	Т	Т	Т	Т	С	Т	Т	Т	Т	G	Т	Α	С
С	G	Α	G	Α	С	Т	С	Т	С	С	G	Α	С	С	Т	С	G	Т	G	С
С	G	Α	Α	G	С	Т	С	Т	Т	Т	Т	С	Т	Т	С	Т	G	Т	G	С

Observed Genotypes

		Α				Α			Α		
		G				С			Α		

Reference Haplotypes

Observed Genotypes

С	g	a	g	Α	t	С	t	С	С	С	g	Α	С	С	t	С	Α	t	g	g
С	g	а	а	G	С	t	С	t	t	t	t	С	t	t	t	С	Α	t	g	g

Reference Haplotypes

Observed Genotypes

С																				
С	g	а	а	G	С	t	С	t	t	t	t	С	t	t	t	С	Α	t	g	g

Index Reference Haplotypes

Hidden State S

Mapping rare variants using sequenced & imputed values

- Burden score: $S = G_1 + \ldots + G_M$
- $\bullet \ Y = \gamma + \beta S + \epsilon$
- Test $H_0: \beta = 0$ with the *standard* score statistic

Quantile-quantile (QQ) plot

Inflated type I error!

Reasons for inflated type I error

- Imputation creates differential quality in genotype data
 - Rare variants cannot be imputed very accurately, so imputed values have a smaller variance than sequenced
- Extreme-trait sampling creates differential variation in BMI
 - Sequenced subjects have a greater variance

Thus, the variance of genotype values is **related** to the variance of phenotype values, causing the standard score statistic to fail

Existing solution to inflated type I error

- Use accurately imputed variants only
 - Quality control (QC): exclude poorly imputed variants
 - Type I error controlled
 - However, 82.9% variants were removed. Power loss?

Summarizing WHI data and generalizing the problem

Goal: to map rare variants for a disease/trait

- Sequence all in a large cohort? Economically infeasible
- A cost-effective sampling strategy: trait-dependent
- The past wave of GWAS have collected array genotype data
- Genotype imputation
- Inflated type I error when applying the standard score test
- Existing solutions lose power

Our goals in this work

Develop valid and efficient association tests for genotype data with differential qualities

- Show the score statistic is unbiased
- Show the standard variance estimator for the score statistic is invalid when the sequenced subjects are not a random subset
- Derive a robust variance estimator for the score statistic

Our tests have correct type I error (under any sampling scheme for sequencing) and improved power

Features of our methodology

- Handle many types of trait and any sub-sampling scheme
- Encompass all commonly used rare variant tests (Burden, SKAT, etc); include single-variant tests as special cases
- Allow for covariates
- Simple implementation: replacing the standard variance estimator with the robust one

Outline

- Motivating example: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Application to the WHI data
- Conclusions

Notation

Consider the simplest case: a single variant, no covariate

- *G*: genotype of the variant
- *Y*: trait (here, quantitative)
- N: number of all cohort members, having array data
- n: number of subjects selected for sequencing, having array and sequencing data
 - The first n subjects are the sequenced ones
- $\bullet \widetilde{G}$
 - imputed G (by posterior mean) for a non-sequenced subject
 - observed G for a sequenced subject

The score statistic is unbiased

To test $H_0: \beta = 0$ in the linear regression

$$Y = \gamma + \beta G + \epsilon$$

The score statistic based on (Y_i, \widetilde{G}_i) $(1 \le i \le N)$, $\overline{Y} = N^{-1} \sum_{i=1}^{N} Y_i$

$$U = \sum_{i=1}^{N} (Y_i - \overline{Y})\widetilde{G}_i$$

By some simple algebra, denoting $\overline{G} = N^{-1} \sum_{i=1}^{N} \widetilde{G}_i$

$$U = \sum_{i=1}^{n} Y_i(\widetilde{G}_i - \overline{G}) + \sum_{i=n+1}^{N} Y_i(\widetilde{G}_i - \overline{G})$$

 $\mathrm{E}(U)=0$, because Y is independent of \widetilde{G} in both samples

- *Y* is independent of *G* in both samples
- Imputation does not depend on Y

$V_{\rm std}$ tends to underestimate ${\rm Var}(U)$

The standard variance estimator for U

$$V_{\text{std}} = N^{-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2 \sum_{i=1}^{N} (\widetilde{G}_i - \overline{G})^2$$

- Consider balanced extreme-trait sampling for sequencing
- $Var(Y_u) < Var(Y_s)$, $Var(\widetilde{G}) < Var(G)$
- $Var(U) = nVar(Y_S)Var(G) + (N n)Var(Y_U)Var(\widetilde{G})$
- $V_{\text{std}} \approx N^{-1} \left\{ n \text{Var}(Y_s) + (N-n) \text{Var}(Y_u) \right\} \left\{ n \text{Var}(G) + (N-n) \text{Var}(\widetilde{G}) \right\}$
- By Chebyshev's sum inequality, $V_{\rm std} < {\rm Var}(U)$

We propose a robust variance estimator

$$V_{\text{rob}} = \sum_{i=1}^{n} \left\{ Y_i - \overline{Y} - (1 - r^2)(\overline{Y}_{\text{seq}} - \overline{Y}) \right\}^2 (\widetilde{G}_i - \overline{G})^2$$

$$+\sum_{i=n+1}^{N} (Y_i - \overline{Y})^2 (\widetilde{G}_i - \overline{G})^2$$

$$\overline{Y}_{\text{seq}} = n^{-1} \sum_{i=1}^{n} Y_i$$

- r: correlation coefficient between true and imputed genotypes
- r^2 : estimated by Rsq = $Var(\widetilde{G})/[2\widehat{p}(1-\widehat{p})]$, where \widehat{p} is MAF
- Rsq: imputation accuracy

Deriving V_{rob} ...

- $E(\widetilde{G}|G, \mathcal{G}_{seq}) = (1 r^2)\overline{G}_{seq} + r^2G$ $\mathcal{G}_{seq} = (G_1, \dots, G_n), \overline{G}_{seq} = n^{-1} \sum_{i=1}^n \widetilde{G}_i$
- $Var(U) = E\{Var(U|\mathcal{Y})\} + Var\{E(U|\mathcal{Y})\}$ = $E[E\{Var(U|\mathcal{Y}, \mathcal{G}_{seq})|\mathcal{Y}\} + Var\{E(U|\mathcal{Y}, \mathcal{G}_{seq})|\mathcal{Y}\}] + Var\{E(U|\mathcal{Y})\}$

Connection between $V_{\rm rob}$ and $V_{\rm std}$

If the imputation is perfect or the selection for sequencing is random ...

• $(1 - r^2)(\overline{Y}_{seq} - \overline{Y}) = 0$, and V_{rob} becomes

$$\sum_{i=1}^{N} (Y_i - \overline{Y})^2 (\widetilde{G}_i - \overline{G})^2 \tag{1}$$

• $(Y - \overline{Y})^2$ and $(\widetilde{G} - \overline{G})^2$ are uncorrelated, and (1) is equivalent to

$$V_{\text{std}} = N^{-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2 \sum_{i=1}^{N} (\widetilde{G}_i - \overline{G})^2$$

 $\dots V_{\rm std}$ will be valid

Outline

- Motivating problem: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Application to the WHI data
- Conclusions

Simulation setup

- Choose one gene, NPHS2; restrict analysis to 5 rare variants
- Generate genotype data of all variants by GWAsimulator (Li and Li, 2008)
- Generate the trait
 - *Y* quantitative: $Y = \beta S + \gamma_1 X + \epsilon$
 - Y binary: logit{Pr(Y = 1)} = $\beta S + \gamma_1 X + \gamma_0$
 - $-X \sim N(0,1)$
- N = 5,000

Sampling schemes for selecting subjects for sequencing

- Quantitative trait
 - 500 random
 - 250 largest, 250 smallest
 - 500 largest, 250 smallest
 - 250 largest, 250 random
 - 250 largest, 1000 random
- Binary trait
 - Five disease rates: 50%, 30%, 20%, 10%, 5%
 - Always sample 250 cases and 250 controls
- Imputation by minimac: the largest Rsq is 0.22

Simulation results: type I error

			$V_{ m rob}$		$V_{ m std}$	
Sampling scheme	Bias	SE	SEE	Size	SEE	Size
500 random	0.000	0.120	0.118	0.87	0.118	1.02
250 largest, 250 smallest	-0.001	0.181	0.180	0.68	0.118	36.22
500 largest, 250 smallest	-0.006	0.192	0.191	0.96	0.131	27.95
250 largest, 250 random	-0.006	0.134	0.130	0.89	0.118	3.61
250 largest, 1000 random	-0.005	0.171	0.169	0.97	0.152	3.39
50%	0.000	0.060	0.059	0.78	0.059	0.93
30%	-0.001	0.057	0.056	0.94	0.054	1.63
20%	-0.002	0.053	0.052	0.91	0.047	3.16
10%	-0.003	0.047	0.046	1.00	0.036	13.47
5%	-0.003	0.043	0.041	1.09	0.026	50.95

Nominal significance level: $\alpha = 0.001$; Replicates: 100,000

Simulation results: power for quantitative traits

Outline

- Motivating problem: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Application to the WHI data
- Conclusions

WHI data: recall...

Affymetrix 6.0 array

- -8,142 AA
- Assay ~ 550,000 SNPs, most of which are common

Whole-exome sequencing

- 360 AA with BMI values >40 or <25
- Assay all variants, including all rare variants
- Goal: to map rare variants for BMI
- Imputation has been done using minimac

WHI data: imputation accuracy

WHI data: QQ-plots

WHI data: top ten genes for BMI identified by T5-rob

					P va	alue
Gene	Description	Chr	m	Rsq	T5-rob	T5-std
ODF2L	outer dense fiber of sperm tails 2-like	1	11	0.685	3.1×10^{-5}	1.7×10^{-5}
ITSN1	intersectin 1 (SH3 domain protein)	21	7	0.609	5.0×10^{-5}	3.3×10^{-5}
KDM6B	lysine (K)-specific demethylase 6B	17	30	0.266	5.8×10^{-5}	1.0×10^{-5}
SOCS1	suppressor of cytokine signaling 1	16	2	0.348	7.8×10^{-5}	1.6×10^{-5}
ODF2L	[with a different accession number]	1	9	0.689	1.1×10^{-4}	7.1×10^{-5}
ACADVL	acyl-CoA dehydrogenase,	17	15	0.189	1.6×10^{-4}	6.8×10^{-5}
	very long chain					
BDNF	brain-derived neurotrophic factor	11	2	0.628	2.1×10^{-4}	2.5×10^{-4}
TRDMT1	tRNA aspartic acid	10	3	0.718	2.3×10^{-4}	1.8×10^{-4}
	methyltransferase 1					
FAM60A	family with sequence similarity 60,	12	1	0.768	2.3×10^{-4}	4.0×10^{-4}
	member A					
PDGFRA	platelet-derived growth factor	4	12	0.563	2.4×10^{-4}	2.2×10^{-4}
	receptor, alpha polypeptide					

Outline

- Motivating problem: Women's Health Initiative (WHI) data
- Our approach: a robust variance estimator
- Simulation studies
- Application to the WHI data
- Conclusions

Conclusions

We developed an approach to integrative analysis of sequencing and GWAS array data

- Simple and versatile (handle any trait, sampling scheme, test)
- Have correct type I error
- More powerful than
 - use of sequencing data alone
 - use of accurately imputed variants only
- Software: **SEQGWAS**, ~ 2 hrs to analyze the WHI data