4. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Definíció

Egy f relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha $(x,y)\in f \land (x,y')\in f \Rightarrow y=y'.$ Az $(x,y)\in f$ jelölés helyett ilyenkor az f(x)=y (vagy $f:x\mapsto y$, $f_x=y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

Példa

- $f = \{(x, x^2) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$ reláció függvény: $f(x) = x^2$.
- Az $f^{-1} = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$ inverz reláció nem függvény: $(4, 2), (4, -2) \in f^{-1}$.
- Legyen F_n a Fibonacci sorozat: $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$: $1, 1, 2, 3, 5, 8, \dots$

Ekkor az $F \subset \mathbb{N} \times \mathbb{N}$ reláció függvény, n helyen az értéke $F(n) = F_n$.

Definíció

Az $f \subset X \times Y$ függvények halmazát $X \to Y$ jelöli. Ha dmn(f) = X, akkor az $f: X \to Y$ jelölést használjuk.

Megjegyzés

Ha $f: X \to Y$, akkor dmn(f) = X és $rng(f) \subset Y$.

Példa

Legyen $f(x) = \sqrt{x}$. Ekkor

- $f \in \mathbb{R} \to \mathbb{R}$, de nem $f : \mathbb{R} \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{C}$.

Definíció

Az $f: X \rightarrow Y$ függvény

- injektív, ha $f(x) = y \wedge f(x') = y \Rightarrow x = x'$;
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Megjegyzés Egy f függvény pontosan akkor injektív, ha f^{-1} reláció függvény.

- Az $f : \mathbb{R} \to \mathbb{R}$, $f : x \mapsto x^2$ függvény nem injektív, és nem szürjektív: f(-1) = f(1), $rrg(f) = \mathbb{R}_0^+$.
- Az $f : \mathbb{R} \to \mathbb{R}_0^+$, $f : x \mapsto x^2$ függvény nem injektív, de szürjektív.
- Az $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $f: x \mapsto x^2$ függvény injektív és szürjektív, tehát bijektív.

Megjegyzés

Az, hogy egy $f: X \to Y$ függvény szürjektív-e, függ Y-tól. Ha $Y \subsetneq Y'$, akkor $f \subset X \times Y \subset X \times Y'$, így az $f: X \to Y'$ függvény biztos nem szürjektív.

Definíció

Az $f: X \to X$ bijektív függvényt permutációnak nevezzük.

- Ha $X = \{1, 2, \ldots, n\}$, akkor az $X \to X$ permutációk száma n!: az $f(1), f(2), \ldots, f(n)$ az $1, 2, \ldots, n$ elemek egy ismétlés nélküli permutációja.
- Az $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ a valós számok egy permutációja.
- Az $f(x) = x^3$ függvény nem permutációja \mathbb{C} -nek: legyen ε primitív harmadik egységgyök, ekkor $f(\varepsilon) = f(1)$, de $\varepsilon \neq 1$.

Legyen $E_n \subset \mathbb{C}$ az n-edik egységgyökök halmaza: $E_n = \{z \in \mathbb{C} : z^n = 1\}$. Rendnél szerepelt: $z^k = z^l \Leftrightarrow o(z)|k-l$.

Állítás

Ekkor az $f: x \mapsto x^k$ függvény pontosan akkor bijekció, ha (n, k) = 1.

Bizonyítás

Ha (n,k)=d>1, akkor f nem injektív: ha ε primitív n-edik egységgyök, akkor $f(\varepsilon^{n/d})=f(1)=1$, u.i. $(\varepsilon^{n/d})^d=\varepsilon^n=1$, de $\varepsilon^{n/d}\neq 1$.

Ha (n, k) = 1, f injektív: ha ε primitív n-edik egységgyök, és $f(\varepsilon^i) = f(\varepsilon^j) \iff \varepsilon^{ik} = \varepsilon^{jk} \Leftrightarrow n \mid k(i-j) \iff n \mid i-j \Leftrightarrow \varepsilon^i = \varepsilon^j$.

Mivel $f: E_n \to E_n$ injektív, ezért E_n végessége miatt bijektív is.

Függvények kompozíciója

Emlékeztető

Relációk kompozíciója $R \circ S = \{(x,y) | \exists z : (x,z) \in S, (z,y) \in R\}.$ Függvény Az f reláció függvény, ha $(x,y) \in f \land (x,y') \in f \Rightarrow y = y'.$

Tétel

- 1. Ha f és g függvény, akkor $g \circ f$ is függvény.
- 2. Ha f és g injektív, akkor $g \circ f$ is injektív.
- 3. Ha $f: X \to Y$, $g: Y \to Z$ szürjektívek, akkor $g \circ f: X \to Z$ is szürjektív.

Bizonvítás

- 1. Legyen $(x, y) \in g \circ f$, $(x, y') \in g \circ f$: $\exists z : (x, z) \in f$, $(z, y) \in g$, $\exists z' : (x, z') \in f$, $(z', y') \in g$. Mivel f függény z = z', mivel g függvény y = y'.
- 2. Legyen $(g \circ f)(x) = (g \circ f)(x')$. Legyen f(x) = y, f(x') = y', így g(y) = g(y'). Mivel g injektív: y = y'. Mivel f injektív: x = x'.
- 3. HF.

Monoton függvények

Definíció

Legyenek X, Y részbenrendezett halmazok. Az $f: X \to Y$ függvény

- 1. monoton növekedő, ha $x, y \in X$, $x \leq y \Rightarrow f(x) \leq f(y)$;
- 2. szigorúan monoton növekedő, ha $x, y \in X$, $x \prec y \Rightarrow f(x) \prec f(y)$;
- 3. monoton csökkenő, ha $x, y \in X$, $x \leq y \Rightarrow f(x) \succeq f(y)$;
- 4. szigorúan monoton csökkenő, ha $x, y \in X$, $x \prec y \Rightarrow f(x) \succ f(y)$.

Példa

- Legyen $X = \mathbb{R}$ a szokásos rendezéssel. Ekkor az f(x) = x; $g(x) = x^3$ szigorúan monoton növekedő függvények.
- Legyen X az $\{a, b, c\}$ hatványhalmaza a részhalmaza részbenrendezéssel.

Ekkor az $f(A) = A \setminus \{a\}$ monoton növekedő: $A \subset B \Rightarrow$

 $A \setminus \{a\} \subset B \setminus \{a\};$

A $g(A) = \overline{A}$ szigorúan monoton csökkenő: $A \subseteq B \Rightarrow \overline{A} \supseteq \overline{B}$.

Monoton függvények

Megjegyzés

- Ha X, Y rendezett halmazok, akkor egy szigorúan monoton növekedő (ill. csökkenő) függvény injektív is: Ha $x \neq y \Rightarrow x \prec y$ vagy $x \succ y \Rightarrow f(x) \prec f(y)$ vagy $f(x) \succ f(y) \Rightarrow f(x) \neq f(y)$.
- Ha X, Y rendezett halmazok, és f szigorúan monoton növekedő (ill. csökkenő) függvény, akkor f^{-1} szigorúan monoton növekedő (ill. csökkenő) függvény: Mivel f injektív, f^{-1} is függvény. Ha $f(x) \prec f(y)$, akkor nem lehet $x \succ y$.

Példa

Legyen $X = \mathbb{R}$ a szokásos rendezéssel. Ekkor az $f(x) = \sqrt[3]{x}$ szigorúan monoton növekedő függvény.

Műveletek

Definíció

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x,y) helyett x*y-t írunk. Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

Példa

- \mathbb{C} halmazon az +, \cdot binér, $z \mapsto -z$ (ellentett) unér művelet.
- $\mathbb C$ halmazon az \div (osztás) nem művelet, mert $\mathrm{dmn}(\div) \neq \mathbb C \times \mathbb C$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ halmazon az \div binér, az $x \mapsto 1/x$ (reciprok) unér művelet.
- C halmazon a 0 illetve 1 konstans kijelölése nullér művelet.

10.

Műveletek

Egy véges halmazon bármely binér művelet megadható a műveleti táblájával.

Definíció (Műveletek függvényekkel)

Legyen X tetszőleges halmaz, Y halmaz a * művelettel, $f,g:X\to Y$ függvények. Ekkor

$$(f*g)(x) = f(x)*g(x).$$

$$(\sin + \cos)(x) = \sin x + \cos x$$

2014. ősz

Műveleti tulajdonságok

Definíció

```
A *: X \times X \to X művelet asszociatív, ha \forall a, b, c \in X : (a*b)*c = a*(b*c); kommutatív, ha \forall a, b \in X : a*b = b*a.
```

- C-n az + ill. a · műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: (f o g) o h = f o (g o h).
- A függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- Az osztás nem asszociatív: $\frac{a}{bc} = (a \div b) \div c \neq a \div (b \div c) = \frac{ac}{b}$.

2014. ősz

Művelettartó leképezések

Definíció

Legyen X halmaz a * művelettel, Y a \circ művelettel. Az $f:X\to Y$ függvény művelettartó, ha $\forall x,y\in X$ esetén

$$f(x*y)=f(x)\circ f(y).$$

- Legyen $X = \mathbb{R}$ az + művelettel, $Y = \mathbb{R}^+$ a · művelettel. Ekkor az $x \mapsto a^x$ művelettartó: $a^{x+y} = a^x \cdot a^y$.
- Legyen $X = Y = \mathbb{C}$ az + művelettel. Ekkor a $z \mapsto \overline{z}$ művelettartó: $\overline{z+w} = \overline{z} + \overline{w}$.