Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Optimal bound on the quantum Fisher Information

Based on few initial expectation values of the prove state.

lagoba Apellaniz ¹, Matthias Kleinmann ¹, Otfried Ghüne ², & Géza Tóth ^{1,3,4}

iagoba.apellaniz@gmail.com

¹Department of Theoretical Physics, University of the Basque Country, Spain
 ²Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Germany
 ³IKERBASQUE, Basque Foundation for Science, Spain
 ⁴Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary

Recent Advances in Quantum Metrology; Warsaw - 2016

Outline

- Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- Conclusion and outlook

Many inequalities have been proposed to lower bound the quantum Fisher Information.

Bounds for qFI

$$\mathcal{F}[\varrho, J_z] \ge rac{\langle J_x
angle^2}{\left(\Delta J_y
ight)^2}, \qquad \mathcal{F}[\varrho, J_y] \ge eta^{-2} rac{\langle J_x^2 + J_z^2
angle}{\left(\Delta J_z
ight)^2 + rac{1}{4}},
onumber \ \mathcal{F}[\varrho, J_z] \ge rac{4(\langle J_x^2 + J_y^2
angle)^2}{2\sqrt{\left(\Delta J_x^2
ight)^2 \left(\Delta J_y^2
ight)^2} + \langle J_x^2
angle - 2\langle J_y^2
angle (1 + \langle J_x^2
angle) + 6}$$

[I.A., B. Lücke, J. Peise, C. Klempt & G. Toth, NJP 17, 083027 (2015)]

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]

[Z. Zhang & L.-M. Duan, NJP 16, 103037 (2014)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 Typically, we only have a couple of expectation values to characterize the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.

$$\mathcal{F}[\varrho,J_z] \geq \frac{\langle J_x
angle}{\left(\Delta J_z
ight)^2}$$

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② Typically, we only have a couple of expectation values to characterize the state.
- The archetypical criteria that demonstrates useful entanglement on the state.
- It is essential either to verify them or find new ones for different set of expectation values.

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- Conclusion and outlook

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$
$$\mathcal{F}[\varrho, J_z] = \min_{\{p_k, |\Psi_k\rangle\}} 4 \sum_{k} p_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

```
[ G. Tóth & D. Petz, PRA 87, 032324 (2013) ] [ S. Yu, arXiv:1302.5311 ]
```

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2\sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{\rho_k, |\Psi_k\rangle\}} 4 \sum_k \rho_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

- [G. Tóth & D. Petz, PRA **87**, 032324 (2013)] [S. Yu, arXiv:1302.5311]
- For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$\mathcal{F}[\varrho, J_z] = 2\sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_{\lambda} + p_{\gamma}} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$\mathcal{F}[\varrho, J_z] = \min_{\{\rho_k, |\Psi_k\rangle\}} 4 \sum_k \rho_k \left(\Delta J_z\right)_{|\Psi_k\rangle}^2$$

- [G. Tóth & D. Petz, PRA **87**, 032324 (2013)] [S. Yu, arXiv:1302.5311]
- For pure states it's extremely simple

$$\mathcal{F}[\varrho,J_z]=4\left(\Delta J_z\right)^2$$

• In the general case, usually *lower bounded* by its "classical" counterparts.

Optimization: Legendre Transform

 For a convex function of the state, we construct a thight lower bound as follows,

$$g(\varrho) \geq \mathcal{B}(\lbrace w_k := \langle W_k \rangle \rbrace) = \sup_{\lbrace r_k \rbrace} (r \cdot w - \sup_{\varrho} [r \cdot \langle W \rangle - g(\varrho)]).$$

• When $g(\varrho)$ is deffined as infimum over the convex roof, the $2^{\rm nd}$ optimization simplified to pure states only,

$$\mathcal{B}(\lbrace w_k \rbrace) = \sup_{\lbrace r_k \rbrace} \big(r \cdot w - \sup_{|\psi\rangle} [r \cdot \langle W \rangle - g(|\psi\rangle)] \big).$$

- [O. Gühne, M. Reimpell & R.F. Werner, PRL **98**, 110502 (2007)]
- [J. Eisert, F.G.S.L. Brandão & K.M.R. Audenaert, NJP **9**, 46 (2007)]

Optimization for the qFI

Different because of simplicity of the qFI for pure states.

$$\mathcal{F}(\{w_k\}) = \sup_{\{r_k\}} \left(r \cdot w - \sup_{\mu} [\lambda_{\mathsf{max}}(r \cdot W - 4(J_z - \mu)^2)]\right).$$

• Therefore, we have parametrised the optimization, which leads to a *more efficient finding* of the solution.

[I.A., M. Kleinmann, O. Güne & G. Tóth, arXiv:1511.05203]

- Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimization problem
- Case study
 - Spin squeezed states
 - Unpolarized Dicke states
- 4 Conclusion and outlook

- We'll present 2 main cases, spin-squeezed states and unpolarized Dicke states.
- Though, we apply our method to projectors with great success, we will focus on collective J_n operators.
- One of the cases using projector operators, *i.e.*, using the *fidelity* leads to *analytic soulution*!

• We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the *value zero*.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the value zero.
- Hence, the optimisation can be accomplished *only using 2* operators $\{J_z, J_x^2\}$ while the resulting bound is mapped directly to $\langle J_z \rangle, (\Delta J_x)^2$.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the value zero.
- Hence, the optimisation can be accomplished *only using 2* operators $\{J_z, J_x^2\}$ while the resulting bound is mapped directly to $\langle J_z \rangle, (\Delta J_x)^2$.
- **3** Since $\mathcal{F} \geq \langle J_z \rangle^2 / (\Delta J_x)^2$ can be used too, we compare it with our numerical result.

• We numerically optimise the lower bound of qFI for a 4 particle system for all possible values of $\langle J_z \rangle$ and $(\Delta J_x)^2$.

Figure: Below the dashed line, \mathcal{F} surpasses the shot noise limit. Cross point enhanced with extra parameter. The result shows an extreme similarity with respect to $\mathcal{F} \geq \langle J_z \rangle^2/\left(\Delta J_x\right)^2$.

Metrology with unpolarised Dicke states

• In order to characterize the unpolarized Dicke state, we use these 3 operators, $\{J_x^2, J_y^2, J_z^2\}$, with the following constraint, $\langle J_x^2 \rangle = \langle J_v^2 \rangle$.

Metrology with unpolarised Dicke states

- 1 In order to characterize the unpolarized Dicke state, we use these 3 operators, $\{J_x^2, J_y^2, J_z^2\}$, with the following constraint, $\langle J_x^2 \rangle = \langle J_v^2 \rangle$.
- ② For $\sum_{I}\langle J_{I}^{2}\rangle=\frac{N}{2}(\frac{N}{2}+1)$, *i.e.* maximal, the following figure shows an illustrative result for 6 particles.

Realistic characterization of Dicke state

Experiment \rightarrow [B. Lücke et al., PRL 112, 155304 (2014)]

 We now consider an interesting experimental case with BECs where the following initial values are measured.

Experimental details of unpolarized Dicke state with BEC

$$\begin{split} \textit{N} = 7900 & \langle \textit{J}_{z}^{2} \rangle = 112 \pm 31 \\ \langle \textit{J}_{x}^{2} \rangle = \langle \textit{J}_{y}^{2} \rangle = 6 \times 10^{6} \pm 0.6 \times 10^{6} \end{split}$$

 For that number of particles we developed a powerful extrapolation tool.

Extrapolation

Procedure:

• First, we proportionally extrapolate the expectation values to the symmetric subspace. Easier to handle for larger systems.

$$\langle J_z^2 \rangle_{\mathrm{sym},N} = 145.69 \qquad \langle J_x^2 \rangle_{\mathrm{sym},N} = 7.8 \times 10^6$$

Extrapolation

Procedure:

• First, we proportionally extrapolate the expectation values to the symmetric subspace. Easier to handle for larger systems.

$$\langle J_z^2 \rangle_{\mathrm{sym},N} = 145.69 \qquad \langle J_x^2 \rangle_{\mathrm{sym},N} = 7.8 \times 10^6$$

② We freeze $\langle J_z^2 \rangle$ while we reduce the particle number of an auxiliary system. Here, we perform optimisation.

$$2\langle J_x^2\rangle_{\mathrm{sym},N'}=\frac{N'}{2}(\frac{N'}{2}+1)-\langle J_z^2\rangle_{\mathrm{sym},N'}$$

Extrapolation

Procedure:

• First, we proportionally extrapolate the expectation values to the symmetric subspace. Easier to handle for larger systems.

$$\langle J_z^2 \rangle_{\mathrm{sym},N} = 145.69 \qquad \langle J_x^2 \rangle_{\mathrm{sym},N} = 7.8 \times 10^6$$

② We freeze $\langle J_z^2 \rangle$ while we reduce the particle number of an auxiliary system. Here, we perform optimisation.

$$2\langle J_x^2\rangle_{\mathrm{sym},N'}=\frac{N'}{2}(\frac{N'}{2}+1)-\langle J_z^2\rangle_{\mathrm{sym},N'}$$

The extrapolation is directly obtained by

$$\mathcal{F}_N pprox rac{N^2}{N'^2} \mathcal{F}_{N'}$$

• We have found that on very interesting cases the optimization case is feasible.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bound can be improved with few extra considerations.

- We have found that on very interesting cases the optimization case is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bound can be improved with few extra considerations.
- It has been show that

Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Thank you for your attention!

Group's home page \rightarrow https://sites.google.com/site/gedentqopt