Movie Buzz Breakdown 🙀

Jennifer Warren

Presentation Date: 12/7/2021

Summary of Data

I found this data online because I don't have any of my own data. So as a preface: this whole script is just me playing around with R and R Markdown!

Since I had free range on this project, I thought it would be interesting to look at the relationship between how much money a movie makes in its first U.S. box office run, and several different factors such as if the movie is a:

- sequel
- · action movie
- · comedy movie
- · animated movie
- · horror movie

as well how what the film's rating and budget were, how many views it received on http://traileraddict.com (http://traileraddict.com), number of message board comments on https://https://www.comingsoon.net/ (https://https://www.comingsoon.net/), and the percentage of votes on Fandango that "can't wait to see" the film.

However, this script focuses on a just few of these data. These are the codes for each data type that are analyzed:

- BOX = Gross (\$) from U.S. box office first run
- MPRATING = MPAA Rating code, where 1=G, 2=PG, 3=PG13, AND 4=R
- BUDGET = Production Budget in Millions (\$)
- ADDICT = Number of Trailer Views on traileraddict.com
- CMNGSOON = Number of message board comments at comingsoon.net
- CNTWAIT3 = Percentage of Fandango votes that can't wait to see the film

Importing Data

```
df_movies <- read_csv('C:/Users/091wa/Documents/5th year/EconS 523 (Data)/Final Presentation/mov
ie_data.csv')

df <- df_movies %>%
   select(BOX, MPRATING, BUDGET, SEQUEL, ACTION, COMEDY, ANIMATED, HORROR, ADDICT, CMNGSOON, CNTW
AIT3)
```

Raw Data

This is what the data from the Excel file I used looks like:

print(df)

```
## # A tibble: 62 x 11
##
            BOX MPRATING BUDGET SEOUEL ACTION COMEDY ANIMATED HORROR ADDICT CMNGSOON
##
          <dbl>
                    <dbl>
                            <dbl>
                                    <dbl>
                                            <dbl>
                                                   <dbl>
                                                             <dbl>
                                                                     <dbl>
                                                                             <dbl>
                                                                                       <dbl>
    1 19167085
                                                                  0
                                                                             7860.
##
                        4
                             28
                                                0
                                                        1
                                                                                          10
                        2
    2 63106589
                            150
                                        1
                                                0
                                                        0
                                                                  1
                                                                             5737
                                                                                          59
##
    3 5401605
                        4
                             37.4
                                                0
                                                        1
                                                                  0
                                                                              850
                                                                                          24
##
##
    4 67528882
                        3
                            200
                                        1
                                                1
                                                        0
                                                                  0
                                                                          0 15326
                                                                                          93
                                                                            4574.
##
    5 26223128
                        2
                            150
                                        0
                                                0
                                                        0
                                                                  1
                                                                                          30
    6 69637740
                        3
                             37
                                        0
                                                        0
                                                                  0
                                                                          0 33324
                                                                                         533
##
##
    7 14800723
                        3
                            130
                                                                             3890.
                                                                                          20
    8 31069826
                        3
                             80
                                        0
                                                       1
                                                                             2340.
##
                                                0
                                                                                           6
##
    9 12063452
                        3
                             40
                                        1
                                                1
                                                        0
                                                                  0
                                                                             3678
                                                                                          75
## 10 4271451
                             35
                                        1
                                                1
                                                        0
                                                                             3586.
                                                                                         419
                        4
## # ... with 52 more rows, and 1 more variable: CNTWAIT3 <dbl>
```

Shortened Data for Summary

I didn't want to use that much information though, so I shortened it:

```
df1 <- subset(df, select = -c(SEQUEL, ACTION, COMEDY, ANIMATED, HORROR))
print(df1)</pre>
```

```
## # A tibble: 62 x 6
##
            BOX MPRATING BUDGET ADDICT CMNGSOON CNTWAIT3
                    <dbl>
                            <dbl>
##
          <dbl>
                                   <dbl>
                                              <dbl>
                                                        <dbl>
##
    1 19167085
                        4
                             28
                                   7860.
                                                 10
                                                         0.49
##
    2 63106589
                        2
                           150
                                   5737
                                                 59
                                                         0.79
##
       5401605
                        4
                             37.4
                                    850
                                                 24
                                                         0.36
                           200
                                                 93
                                                         0.76
    4 67528882
                        3
                                  15326
##
##
    5 26223128
                        2
                            150
                                   4574.
                                                 30
                                                         0.53
    6 69637740
                                                         0.77
##
                        3
                             37
                                  33324
                                                533
    7 14800723
                        3
                           130
                                   3890.
                                                 20
                                                         0.49
##
    8 31069826
                        3
                             80
                                                  6
                                                         0.63
##
                                   2340.
##
    9 12063452
                        3
                             40
                                   3678
                                                 75
                                                         0.59
## 10 4271451
                                                419
                             35
                                   3586.
                                                         0.62
## # ... with 52 more rows
```

Using the "subset" function, I created a new data frame with only the columns that I wanted to use later on. I used the "-c" to delete the data columns I didn't want and left everything else alone.

Summary Stats for Shortened Data

I didn't really want to see an average for all the ones and zeros in the five columns that I deleted (whether the movie was action, comedy, animated, horror, or a sequel). This table is much shorter and easier to digest that it otherwise would have been!

Summary Statistics

	вох	MPRATING	BUDGET	ADDICT	CMNGSOON	CNTWAIT3
mean	20720651	2.97	53.29	5933.81	78.21	0.48
min	511920	1.00	5.00	568.00	2.00	0.15
max	70950500	4.00	200.00	45865.69	594.00	0.79
sd	17492443	0.81	42.87	7674.61	124.55	0.16

Correlation between Budget and Box Office \$\$

```
attach(df)
movies <- lm(BOX~BUDGET)
plot(BUDGET,BOX)
abline(coefficients(movies), lwd=2, lty=2, col='red')</pre>
```


Wow! Imagine that! Movies that have higher budgets make more money! The theory has been confirmed.

And who doesn't love a good summary stats table? Here it is:

```
summary(movies)
```

```
##
## Call:
## lm(formula = BOX ~ BUDGET)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                        3Q
                                                  Max
  -23844872 -10060273
                       -3032775
                                   7565032 52722776
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                8269445
                                     2.809
                                             0.0067 **
## (Intercept)
                           2944005
## BUDGET
                 233663
                             43183
                                     5.411 1.15e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14460000 on 60 degrees of freedom
## Multiple R-squared: 0.3279, Adjusted R-squared: 0.3167
## F-statistic: 29.28 on 1 and 60 DF, p-value: 1.153e-06
```

We can see that a movie's budget is not the main reason for its box office revenue, but it can take some credit for why a movie makes the money it does.

Correlation between Trailer Views and Box Office \$\$

Now let's look at how the amount of views a movie trailer recieved corresponds to how much money it made:

```
## The following objects are masked from df (pos = 3):
##
## ACTION, ADDICT, ANIMATED, BOX, BUDGET, CMNGSOON, CNTWAIT3, COMEDY,
## HORROR, MPRATING, SEQUEL

movies2 <- lm(BOX~ADDICT)
plot(ADDICT,BOX)
abline(coefficients(movies2), lwd=2, lty=2, col='blue')</pre>
```


This involves the same steps as the last graph, I just wanted to switch up one of the variables.

Correlation between % Who "Can't Wait to See" and Box Office \$\$

```
## `geom_smooth()` using formula 'y ~ x'
```


That's all Folks!

7/7