Handout 03: Quadratische Funktionen (Die Normalparabel)

Hausaufgabe

Bitte lest zur nächsten Präsenzstunde die Seiten 32 bis 35 im Buch und bearbeitet damit die Ubungen dieses Handouts bzw. aus dem Buch.

Wie immer optional könnt ihr die (handschriftlichen) Ausarbeitungen zu den folgenden Aufgaben dieses Handouts auch in digitaler Form (pdf) bis zum 10.9. auf Nextcloud oder LANIS hochladen. Achtet dabei, die Dateien sinnvoll (ohne Umlaute) und mit einem Bezug zum Handout zu benennen.

Wichtig: Vergesst nicht, den Haken in LANIS zu setzen, wenn ihr die Hausaufgabe bearbeitet habt.

Übungen

1. Übung 3 im Buch auf Seite 33

Lösung:

a)
$$f(x) = x^2 + 7$$

b)
$$f(x) = x^2 - 3$$

c)
$$f(x) = x^2 - 20$$

a)
$$f(x) = x^2 + 7$$

b) $f(x) = x^2 - 3$
c) $f(x) = x^2 - 20$
d) $f(x) = x^2 + 4$

2. Übung 5 im Buch auf Seite 34

Lösung: Eine Verschiebung der Normalparabel entlang der x-Achse, muss zu einer Funktion der Form $f(x) = (x - a)^2$ führen. Daraus folgt:

a) nein:
$$g(x) = x^2 + x + 1 = x^2 + x + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 + 1 = \left(x - \frac{1}{2}\right)^2 + \dots$$

13. September 2020

b) ja:
$$g(x) = x^2 + 2x + 1 = x^2 + 2x + 1^2 - 1 + 1 = (x+1)^2$$

c) nein: $g(x) = x^2 - 6x = (x-0)^2 - \dots$
d) nein: $g(x) = 2(x-0)^2 - \dots$

c) nein:
$$g(x) = x^2 - 6x = (x - 0)^2 - ...$$

d) nein:
$$q(x) = 2(x-0)^2 - ...$$

3. Übung 8 im Buch auf Seite 35

Lösung: Ansatz (x-Achse entlang der Fahrbahnebene): $y(x) = a(x-0)^2 + 7$ mit $a \in \mathbb{R}$

Mit
$$y(20) = 17$$
 folgt: $a(20)^2 + 7 = 17$

a)
$$\Rightarrow$$
 $a = \frac{1}{40}$; $y = \frac{1}{40}x^2 + 7$

b) und somit
$$l_1 = y(20) = 17 \,\text{m}; \ l_2 = y(15) = 12,625 \,\text{m}; \ l_3 = y(10) = 9,5 \,\text{m}; \ l_4 = y(5) = 7,625 \,\text{m}$$

4. Es werden je drei Transformationen nacheinander ausgeführt. Ergänzt die Funktionsgleichungen und vergleicht diese in Geogebra

Abkürzungen der Transformationen:

Vx: Verschieben um 2 nach links

St: Strecken um den Faktor 2

Vy: Verschieben um 3 nach unten

Sx: Spiegeln an der x-Achse

Sy: Spiegeln an der y-Achse

Funktion am Anfang	Ergebnis der ersten Veränderung	Ergebnis der zweiten Veränderung	Ergebnis der drit- ten Veränderung
$f_0(x) = 3x^2$	$Vx: f_1(x) =$	Sy: $f_2(x) = 3(x-2)^2$	Vy: $f_3(x) =$
$g_0(x) = (x-2)^2$	Sx: $g_1(x) =$	Vy: $g_2(x) =$	St: $g_3(x) =$
$h_0(x) = 2x^2 + 1$	Sy: $h_1(x) =$	$Sx: h_2(x) =$	Vx: $h_3(x) =$

Funktion am Anfang	Ergebnis der ersten Veränderung	Ergebnis der zweiten Veränderung	Ergebnis der dritten Veränderung
$f_0(x) = 3x^2$	$f_1(x) = 3(x+2)^2$	$f_2(x) = 3(x-2)^2$	$f_3(x) = 3(x-2)^2 - 3$
$g_0(x) = (x-2)^2$	$g_1(x) = -(x-2)^2$	$g_2(x) = -(x-2)^2 - 3$	$g_3(x) = -2(x-2)^2 - 3$
$h_0(x) = 2x^2 + 1$	$h_1(x) = 2x^2 + 1$	$h_2(x) = -2x^2 - 1$	$h_3(x) = -2(x+2)^2 - 1$

Tipp: Die zu dem Thema zugehörige Playlist von Daniel Jung lautet Quadratische Funktionen, Parabeln¹, siehe auch Lesezeichen auf Nextcloud.

Feedback: https://t1p.de/xdox