Inverse Trigonometric Functions Cheatsheet Exercise 13.1

1 Definitions and Ranges

1.1 Inverse Trigonometric Functions

In $\triangle ABC$, inverse functions are defined with restricted domains to be one-to-one:

• Inverse Sine: $y = \sin^{-1} x \iff x = \sin y$

Domain:
$$[-1,1]$$
, Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

• Inverse Cosine: $y = \cos^{-1} x \iff x = \cos y$

Domain:
$$[-1,1]$$
, Range: $[0,\pi]$

• Inverse Tangent: $y = \tan^{-1} x \iff x = \tan y$

Domain:
$$(-\infty, \infty)$$
, Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

• Inverse Cotangent: $y = \cot^{-1} x \iff x = \cot y$

Domain:
$$(-\infty, \infty)$$
, Range: $(0, \pi)$

• Inverse Secant: $y = \sec^{-1} x \iff x = \sec y$

Domain:
$$|x| \ge 1$$
, Range: $[0, \pi] \setminus \left\{\frac{\pi}{2}\right\}$

• Inverse Cosecant: $y = \csc^{-1} x \iff x = \csc y$

Domain:
$$|x| \ge 1$$
, Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$

2 Key Techniques

2.1 Evaluating Inverse Functions

- 1. Let $y = f^{-1}(x)$, find y such that f(y) = x and y is in the principal range.
- 2. Example: For $\sin^{-1}(-1)$, find $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ where $\sin y = -1$. Thus, $y = -\frac{\pi}{2}$.

1

2.2 Proving Equalities

- 1. Convert one side to a trigonometric function of the other (e.g., for $\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13}$, show $\sin \left(\tan^{-1} \frac{5}{12}\right) = \frac{5}{13}$).
- 2. Use right triangle: For $\tan^{-1} \frac{a}{b}$, assume opposite a, adjacent b, hypotenuse $\sqrt{a^2 + b^2}$.

2.3 Evaluating Composite Expressions

- 1. Find inner inverse function: $y = f^{-1}(x)$, so f(y) = x.
- 2. Compute outer function: Use identities (e.g., $\cos(\sin^{-1}x) = \sqrt{1-x^2}$).
- 3. Example: For $\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$, let $y = \sin^{-1}\frac{1}{\sqrt{2}} = \frac{\pi}{4}$, then $\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$.

3 Common Values

- $\sin^{-1} 1 = \frac{\pi}{2}$, $\sin^{-1} (-1) = -\frac{\pi}{2}$, $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$, $\sin^{-1} \left(-\frac{1}{\sqrt{2}} \right) = -\frac{\pi}{4}$.
- $\cos^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{6}$, $\cos^{-1}\frac{1}{2} = \frac{\pi}{3}$.
- $\tan^{-1}\frac{1}{\sqrt{3}} = \frac{\pi}{6}$, $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$, $\tan^{-1}(-1) = -\frac{\pi}{4}$.
- $\cot^{-1}(-1) = \frac{3\pi}{4}$.
- $\bullet \quad \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = -\frac{\pi}{3}.$

4 Problem Types

• Evaluate Inverse Functions: Find principal angle (e.g., Q.1: $\sin^{-1}(1) = \frac{\pi}{2}$).

E.g.,
$$\csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) \implies \csc y = -\frac{2}{\sqrt{3}}, \ \sin y = -\frac{\sqrt{3}}{2}, \ y = -\frac{\pi}{3}.$$

• Prove Equalities: Show equivalence (e.g., Q.2: $\tan^{-1} \frac{5}{12} = \sin^{-1} \frac{5}{13}$).

Let
$$\theta = \tan^{-1} \frac{5}{12}$$
, $\tan \theta = \frac{5}{12}$, $\sin \theta = \frac{5}{\sqrt{169}} = \frac{5}{13}$.

• Composite Expressions: Evaluate nested functions (e.g., Q.3: $\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$).

Let
$$y = \sin^{-1} \frac{1}{\sqrt{2}}$$
, $\sin y = \frac{1}{\sqrt{2}}$, $\cos y = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$.

5 Tips and Tricks

- Check domain/range: Ensure x is valid (e.g., $|x| \le 1$ for $\sin^{-1} x$).
- Use identities: $\cos(\sin^{-1} x) = \sqrt{1 x^2}$, $\sin(\cos^{-1} x) = \sqrt{1 x^2}$.

- Negative arguments: $\sin^{-1}(-x) = -\sin^{-1} x$, $\tan^{-1}(-x) = -\tan^{-1} x$.
- Simplify fractions: Rationalize denominators (e.g., $\frac{2}{\sqrt{3}}$).
- Right triangle for Q.2: For $\tan^{-1} \frac{a}{b}$, use opposite a, adjacent b.
- Verify signs: Ensure angle sign matches quadrant (e.g., $\tan^{-1}(-1) = -\frac{\pi}{4}$).

6 Applications

- Physics: Compute angles in projectile motion.
- Calculus: Simplify derivatives/integrals of inverse functions.
- Geometry: Solve for angles in triangles.

