Congruences of Integers

Contents

Congruences

Congruences

Definitions

Definition 1 (Congruences)

Let a, b, and m be integers. To say that a is congruent to b modulo m (written $a \equiv b \mod m$) means that m divides b - a.

• Let $x, m \in \mathbb{Z}$. Then $x \equiv 0 \mod m$ iff m divides x.

$$D \equiv 0 \mod m$$
 iff $m \mid (0-x)$ iff $m \mid x$

For each integer x,

"
$$x$$
 is even." $\iff x \equiv 0 \mod 2$
" x is odd." $\iff x \equiv 1 \mod 2$

• For all integers a and b, $\underline{a \equiv b \mod 0}$ iff $\underline{a = b}$.

Congruences as Relation

Theorem 2 (Congruence Is An Equivalence Relation)

Let $m \in \mathbb{Z}$. The relation of congruence modulo m satisfies the following properties:

- **1** (Reflexivity) For each $a \in \mathbb{Z}$, $a \equiv a \mod m$.
- **2** (Symmetry) For all $a, b \in \mathbb{Z}$, if $a \equiv b \mod m$, then $b \equiv a \mod m$.
- **3** (Transitivity) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

 $\frac{cf}{(4a)}$ Equality (∀a,b) (a=b ⇒ b=0) (ta,b,c) (a=b 1 b=c

Proof of (1) Let a & I be arbitrary. Then

$$\alpha - \alpha = 0 = 0 \cdot m$$

 $\alpha - \alpha = 0 = 0 \cdot m$. That is, m divides $\alpha - \alpha$, so $\alpha = \alpha$ mod m.

Balancing Congruences

of Equality: Assum (a, = b,) 1 (az=bz). Then $a_1 + a_2 = b_1 + b_2$; $a_1 a_2 = b_1 b_2$

Theorem 3 (Preserving Congruences)

Let $m, a_1, b_1, a_2, b_2 \in \mathbb{Z}$. Suppose that $a_1 \equiv b_1 \mod m$ and $a_2 \equiv b_2 \mod m$.

- Then $a_1 + a_2 \equiv b_1 + b_2 \mod m$.

$$2 a_1 a_2 \equiv b_1 b_2 \mod m$$

$$2 a_1 a_2 \equiv b_1 b_2 \mod m.$$

$$2 a_1 a_2 \equiv b_1 b_2 \mod m.$$

2 $a_1 a_2 \equiv b_1 b_2 \mod m$.

$$2 a_1 a_2 \equiv b_1 b_2 \mod m.$$

$$a_1a_2 \equiv b_1b_2 \mod m.$$

$$v_1v_2 \mod m$$
.

Proof of a: Since a = b, mod m, m (b,-a,)

go b, -a, = km for some integer k.

Since
$$a_2 \equiv b_2 \mod m$$
, $m \mid (b_2 - a_2)$,
so $b_2 - a_2 = lm$ for some integer l .

Then $(b_1-a_1)+(b_2-a_2)=km+lm=(k+l)m$ • 2.1=2 2 2=-28 mod m Note that the LHS early (b_1+b_2)-(a_1+a_2) 7.(-4)=-26 Note that the LHS equals (b,+b2)-(a,+a2)

2+1=3 $3 \equiv 3 \mod m$.

It follows that
$$m \left\{ (b_1+b_2) - (a_1+a_2) \right\}$$
, so $a_1+a_2 \equiv b_1+b_2 \mod m$.

Interesting Behavior of Congruences

Let $m \in \mathbb{Z}$. Congruence modulo m shares many similarities with equality as seen in the previous slides. Differences?

Let $a, b \in \mathbb{Z}$.

- If ab = 0, then a = 0 or b = 0. (True)
- If $ab \equiv 0 \mod m$, then $a \equiv 0 \mod m$ or $b \equiv 0 \mod m$. (Not always true)

$$(5 \text{ m}=6: 2.3 \equiv 0 \text{ mod } \text{m}, \text{ but } 2 \not\equiv 0 \text{ mod } \text{m} \text{ and } 3 \not\equiv 0 \text{ mod } \text{m}.$$

Let $u, v, w \in \mathbb{Z}$. Cancellation

- If $w \neq 0$ and uw = vw, then u = v. (True)
- If $w \not\equiv 0$ and $uw \equiv vw \mod m$, then $u \equiv v \mod m$. (Not always true)

 where $u \equiv v \mod m$ is $u \equiv v \mod m$. $u \equiv v \mod m$ and $u \equiv v \mod m$.

Question. For which m values is the second sentence in each paragraph true?

When m Is Prime

Let m be prime.

- **1** Let $a,b\in\mathbb{Z}$ such that $ab\equiv 0\mod m$. Then $a\equiv 0\mod m$ or $b\equiv 0\mod m$.
- 2 Let $u, v, w \in \mathbb{Z}$ such that $w \not\equiv 0 \mod m$ and $uw \equiv vw \mod m$. Then $u \equiv w \mod m$.

Proof of
$$O$$
 Since $ab \equiv 0 \mod m$, $m \mid ab$. But since m is prime, by Rmk 4.50, $m \mid a$ or $m \mid b$.

If follows that $a \equiv 0 \mod m$ or $b \equiv 0 \mod m$. \square

Congruence Classes

Example. (m=2) For each $x\in\mathbb{Z}$, $x\equiv 0\mod 2$ or $x\equiv 1\mod 2$:

• $x \equiv 0 \mod 2$: ..., -4, -2, 0, 2, ... even / can also say $x \equiv 2 \mod 2$ • $x \equiv 1 \mod 2$: ..., -3, -1, 1, 3, ... odd

These two sets of integers are called the *congruence classes modulo 2*. Each integer belongs to exactly one of the two congruence classes.

Example. (m=3) For each $x\in\mathbb{Z}$,

- $x \equiv 0 \mod 3$: ..., -9, -6, -3, 0, 3, 6, 9, ...
- $x \equiv 1 \mod 3$: ..., -8, -5, -2, 1, 4, 7, 10, ...
- $x \equiv 2 \mod 3$: ..., -7, -4, -1, 2, 5, 8, 11, ...

These three sets of integers are called the *congruence classes modulo* 3. Each integer belongs to exactly one of the three congruence classes.

In general, there are M congruence dasses and each of & belongs to exactly one of them.

Division Lemma

R -> quotent

The Division Lemma (Euclid)

Let $m \in \mathbb{N}$. For each $x \in \mathbb{Z}$, there exists a unique $k \in \mathbb{Z}$ and a unique $r \in \{0, \dots, m-1\}$ such that x = mk + r.

remainder

divisor quotient remainder

Using the division lemma, one can show that two integers x_1 and x_2 belong to the same congruence class modulo m if and only if they yield the same remainder upon division by m.

$$m = 3$$
. $\chi = 14$

m divides & iff x = 0 mod m.

iff the remainder left after dividing 2 by m is 0

$$L = 3.4 + 2$$

$$= 3.5 + -1$$

Congruence Class Criterion

Example 4

Let $m \in \mathbb{N}$, $x_1, x_2 \in \mathbb{Z}$, $k_1, k_2 \in \mathbb{Z}$, and $r_1, r_2 \in \{0, \dots, m-1\}$ such that $x_1 = mk_1 + r_1$ and $x_2 = mk_2 + r_2$. Then $x_1 \equiv x_2 \mod m$ iff $r_1 = r_2$.

Observation We have
$$\Gamma_1 \leq \Gamma_2$$
 or $\Gamma_2 \leq \Gamma_1$.

Consider the case $\Gamma_1 \leq \Gamma_2$; the other is handled similarly. Note that

$$d_2 - d_1 = \left\{ m \, k_2 + \Gamma_2 \right\} - \left(m \, k_1 + \Gamma_1 \right)$$

$$= m \left(k_2 - k_1 \right) + \Gamma_2 - \Gamma_1.$$
Here, $0 \leq \Gamma_1 \leq \Gamma_2 \leq m - 1$, and so
$$0 \leq \Gamma_2 - \Gamma_1 \leq \Gamma_2 \leq m - 1$$
, so
$$\Gamma_2 - \Gamma_1 \leq \Gamma_2 \leq m - 1$$
.

$$m=6$$
 $\lambda_1 = 10 = 6.1 + 4$
 $\lambda_2 = 13 = 6.2 + 1$
 $\lambda_3 = 13 = 6.3 + 1$

Note that $\lambda_1 < \lambda_2$, but $\Gamma_1 > \Gamma_2$.

 $\mathcal{N}_1 \equiv \mathcal{I}_2 \mod m$ iff m divides $\mathcal{I}_2 - \mathcal{N}_1$

iff 12-1, = 0

the remainder obtained after by dividing de-to by m is 0