나는 코더다 입부시험 문제 풀이

ICQT 2023

나는 코더다 39기 및 40기

나는 코더다 입부시험 문제 풀이 죄송합니다.

문제		의도한 난이도	출제자
A 1	옷걸이	Easy	ehlee0815
A2	다이어트	Easy	ehlee0815
A3	공룡 게임	Medium	roynine
A4	낱말 퍼즐	Medium	gs22059
A5	외계 분자	Medium	denniskim
A6	정화조	Hard	ehlee0815
A7	성벽 쌓기	Challenging	gs22123

A1. 옷걸이

constructive 출제진 의도 - **Easy**

✓ 제출 243회, 정답 67명

✓ 처음 푼 사람: bnb2011, 3분

✓ 출제자: ehlee0815

A1. 옷걸이 『m

부분 문제 1 (23점)

- ✓ 옷걸이의 종류가 1 또는 2 밖에 없는 경우입니다.
- \checkmark 이 경우 1의 개수가 U 개고 2의 개수가 D 개라면, 모든 옷을 걸 수 있습니다. 이때는 1에 상의를, 2에 하의를 걸면 됩니다.
- ✓ 만약 그렇지 않다면, 어떻게 하더라도 옷을 걸 수 없습니다.

A1. 옷걸이 I'm

부분 문제 2 (77점)

- \checkmark 만약 1의 개수와 3의 개수의 합이 U 개보다 많다면, 하의를 모두 걸 수 없습니다.
- ✓ 만약 2의 개수와 3의 개수의 합이 D 개보다 많다면, 상의를 모두 걸 수 없습니다.
- 위 두 경우가 모두 아닌 경우에는 항상 옷걸이에 모든 옷을 걸 수 있습니다.
- ✓ 먼저, 1에는 상의를 2에는 하의를 겁니다. 이후, 3에 나머지 상의와 하의를 모두 걸어주면 됩니다.
- \checkmark 시간복잡도는 $\mathcal{O}(N)$ 입니다.

5

A2. 보디빌딩

greedy 출제진 의도 - **Easy**

✓ 제출 135회, 정답 28명

✓ 처음 푼 사람: bnb2011, 7분

✓ 출제자: ehlee0815

A2. 보디빌딩 l'm

✓ 이 문제는 두 가지의 greedy 알고리즘 풀이 방법이 존재합니다. 먼저 출제자의 의도를 설명하겠습니다.

- \checkmark C_i 라는 새로운 배열을 정의하겠습니다. 이는 건표가 마지막 날까지 쓰러지지 않고 살기 위해서 i 번째 날에 가져야 하는 최소 몸무게를 의미합니다.
- \checkmark 먼저 $C_N=A_N$ 이라는 사실을 알 수 있습니다. A_N 이상의 몸무게를 가진다면 건표는 살겠고, 그렇지 않는다면 쓰러질 것이기 때문입니다.
- \checkmark 또한 $C_i = max(A_i, C_{i+1} B_{i+1})$ 이라는 점화식을 얻을 수 있습니다. i+1 번째 날에는 B_{i+1} 만큼 살이 찐 뒤, 그 몸무게가 C_{i+1} 이상이어야 하기 때문입니다.

A2. 보디빌딩 I'm

- \checkmark 그다음, i 번째 날의 몸무게를 나타내는 수열 D_i 를 정의해봅시다.
- \checkmark 먼저, $D_i = D_{i-1} + B_i$ 일 것입니다.
- \checkmark 이후 $C_i \leq D_i X$ 일 때까지 D_i 에서 X를 빼주고, D_{i+1} 을 업데이트하면 됩니다.
- ✓ 이 빼주는 과정을 나눗셈으로 잘 처리해주면 만점을 받을 수 있습니다.
- \checkmark 만약 $D_i < C_i$ 이면 -1을 출력해주면 됩니다.

A2. 보디빌딩 l'm

- 또다른 풀이가 있습니다.
- 어떤 날에 루틴을 진행할 수 있다고 가정해봅시다. 그럼 그 날에 루틴을 굳이 진행하지 않고,
 마지막 날에 몰아서 한꺼번에 루틴을 진행할 수도 있습니다.
- \checkmark 따라서, $\left\lfloor rac{B_1+B_2+\ldots+B_N-A_N}{X}
 ight
 floor$ 가 답이 됩니다.
- \checkmark 단, $B_1+B_2+\ldots+B_i< A_i$ 가 되는 i가 존재한다면 -1을 출력해주면 됩니다. 이는 누적합으로 계산해도 되고, 스위핑하면서 업데이트해도 됩니다.
- \checkmark 어떤 방법을 이용하든 $\mathcal{O}(N)$ 만에 답을 구할 수 있습니다.

A3. 공룡게임

dp 출제진 의도 - **Medium**

✓ 제출 41회, 정답 8명

✓ 처음 푼 사람: bnb2011, 22분

✓ 출제자: roynine

A3. 공룡 게임 I'm

부분 문제 1 (10점)

- ✓ 옷걸이 문제랑 같은 논리입니다. 1에서는 점프만 하면 되고, 2에서는 슬라이딩만 하면 됩니다. 다르게 액션을 취하여 주어진 장애물을 모두 넘는 방법은 없습니다.
- ✓ 따라서 주어진 장애물을 모두 넘을 수 있다는 것은 임의의 두 장애물 1 사이의 시간 차가 모두 A이상이고, 임의의 두 장애물 2 사이의 시간 차가 모두 B이상이라는 것과 필요충분조건 관계에 있습니다.
- \checkmark 만약 장애물을 모두 넘을 수 있다면, 장애물 1의 개수 cnt_1 과 장애물 2의 개수 cnt_2 에 대해, $Xcnt_1+Ycnt_2$ 가 최소 비용이 됩니다.

A3. 공룡 게임 I'm

부분 문제 2 (20점)

- V $D_{i,j,k}$ 를 i 번째 장애물까지 넘었을 때 가장 마지막으로 점프한 시각이 j 초이고 가장 마지막으로 슬라이딩한 시각이 k 초인 경우의 최소비용을 나타낸다고 해봅시다.
- \checkmark 그럼 $D_{i,j,k}$ 다음으로 전이할 수 있는 상태를 생각해봅시다. 먼저, i+1 번째 장애물에서 점프하는 경우, $D_{i+1,T_{i+1},k}$ 인 상태로 전이합니다. 만약, i+1 번째 장애물에서 슬라이딩하는 경우, $D_{i+1,j,T_{i+1}}$ 인 상태로 전이합니다.
- \checkmark i+1 에서 점프하려면 j 와 T_{i+1} 의 차이가 A 이상이고, i+1 번째 장애물이 1 또는 3 이어야함에 유의합시다. 슬라이딩할 때도 쿨타임과 장애물의 종류를 잘 확인하여 주어진 시각에 슬라이딩이 가능한지 판별해 줍시다.

A3. 공룡 게임 l'm

 \checkmark 만약 i+1 번째 장애물에서 점프했다면 $D_{i+1,T_{i+1},k}=\min(D_{i+1,T_{i+1},k},D_{i,j,k}+X)$ 로, 슬라이딩했다면 $D_{i+1,i,T_{i+1}}=\min(D_{i+1,i,T_{i+1}},D_{i,j,k}+Y)$ 로 dp를 업데이트해주면 됩니다.

- \checkmark 그렇다면, 답은 $\min_{1 \leq j \leq T_i} (D_{N,T_N,j}, D_{N,j,T_N})$ 가 됩니다.
- \checkmark 초기에 모든 i,j,k에 대해 $D_{i,j,k}$ 를 매우 큰 하나의 정수 INF로 초기화시켜준 뒤, $\min_{1\leq j\leq T_i}(D_{N,T_i,j},D_{N,j,T_i})$ 값이 마지막까지 INF을 유지하고 있다면 -1를 출력해 줍시다.
- \checkmark 아, 참! $D_{0,0,0}$ 을 0으로 초기화하는 것을 잊지 마세요. 검수자의 구현 팁으로 말씀드리자면, 0 번째 장애물을 -INF로 설정하면 초기 상태를 쉽게 표현할 수 있습니다.
- \checkmark 시간복잡도는 $\mathcal{O}(NT^2)$ 입니다.

나는 코더다 입부시험 문제 풀이

12

A3. 공룡 게임 I'm

부분 문제 3 (30점)

 \checkmark 부분 문제 2에서 j,k로 가능한 값은 T_1,T_2,\ldots,T_N 밖에 없습니다. 이를 이용해서 dp를 살짝 수정해줍시다.

- V $D_{i,j,k}$ 를 가장 마지막으로 점프로 넘은 장애물이 j 번째 장애물이고, 가장 마지막으로 슬라이딩으로 넘은 장애물이 k 번째 장애물인 경우의 최소 비용이라고 정의합시다.
- \checkmark 이렇게만 바꿔주고 부분 문제 2처럼 업데이트해주면 $\mathcal{O}(N^3)$ 이 됩니다.

A3. 공룡 게임 I'm

만점 풀이

- \checkmark 부분 문제 3의 $D_{i,j,k}$ 에서 j,k 중 하나는 무조건 i 라는 관찰을 할 수 있습니다. 결국에는 마지막 장애물인 i 번째 장애물에서 점프하면 i 가 i, 슬라이딩하면 k 가 i 가 될테니까요.
- \checkmark 따라서 $D_{i,j,0}$ 을 부분 문제 3의 $D_{i,i,j}$ 로, $D_{i,j,1}$ 을 부분 문제 3의 $D_{i,j,i}$ 로 대응해주면, $\mathcal{O}(N^2)$ 짜리 dp가 만들어집니다.
- 추가로 이 문제는 백준의 2618 번 경찰차 문제랑 비슷한 문제입니다. 꼭 한 번 풀어보시기 바랍니다.

A4. 낱말퍼즐

ad-hoc 출제진 의도 – **Medium**

✓ 제출 14회, 정답 4명

✓ 처음 푼 사람: aeren, 40분

✓ 출제자: gs20059

부분 문제 1 (20점)

- ✓ Q가 충분히 작기 때문에, 1번 쿼리가 주어질 때마다 각 조각을 돌리면 됩니다.
- 배열의 원소를 그 배열의 중심에 대칭되는 원소와 바꿔주시면 됩니다.
- \checkmark 참고로, 이때 1번 쿼리의 시간복잡도는 쿼리당 $\mathcal{O}\left(NM\right)$ 입니다.

부분 문제 2 (80점)

- \checkmark Q가 좀 많이 크기 때문에, 1번 쿼리를 $\mathcal{O}(1)$ 이나 $\mathcal{O}(logNM)$ 에 해결해야 합니다.
- ✓ 풀이에 들어가기 전에, 실제로 배열을 몇 번만 돌려 봅시다.
- ✓ 쿼리 1 2 2, 쿼리 1 3 3 이 순서대로 들어간 모습입니다.

```
abcde.....gfjih.....yuvwx
fghij.....baedc....eabcd
klmno.....vuyxw.....jfghi
pqrst.....qptsr....oklmn
uvwxy.....lkonm.....tpqrs
```

✓ 가장 오른쪽에 있는 배열을 보면, 원래 배열을 오른쪽 아래로 한 칸 민 것처럼 생겼습니다.

- ✓ 이로써, 쿼리 1이 짝수 번 실행된 후의 배열은 초기 상태를 민 상태임을 추측할 수 있습니다.
- ✓ 홀수 번 실행된 후는 최초 배열의 점대칭 상태를 민 모습을 띠고 있습니다.
- ✓ 이렇게 해서 최초의 맨 왼쪽 위 칸이 어딨는지만 알면 나머지 배열을 채울 수 있습니다.

```
abcde.....gfjih.....yuvwx
fghij.....baedc.....eabcd
klmno.....vuyxw.....jfghi
pqrst.....qptsr....oklmn
uvwxy.....lkonm.....tpqrs
```

- ✓ 이게 진짜 되는지 증명해 봅시다.
- ✓ 우선 배열을 미는 게 정확히 무엇인지 확실히 하고 갑시다.
- ✓ '배열을 (a,b)만큼 밀었다'라는 것은 기존에 arr[i][j]에 있던 원소가 arr[(i+a)%n][(j+b)%m]로 가는 것을 이야기합니다. 0-index를 전제로 합니다.
- ✓ 이는 arr[n-a][m-b]를 기준으로 배열을 쿼리 1번에서와 같이 네 조각으로 자른 뒤, 왼쪽 위조각은 오른쪽 아래로, 오른쪽 위조각은 왼쪽 아래로 옮기는 것과 같은 작업입니다.

- 배열 돌리기를 한 번 하면 무슨 일이 일어날까요?
- ✓ (a,b)에서 배열 돌리기를 한 번 시행한다고 합시다.
- ✓ 그 상태에서, 시행에 의해 잘린 네 조각을 기준으로 해 배열을 밀어봅시다. 왼쪽 위의, (1,1)부터 (a,b)까지 조각은 오른쪽 아래, 오른쪽 아래 조각은 왼쪽 위...와 같이 이동하게 됩니다.
- ✓ 이때 배열의 상태는, 최초의 전체 배열을 180도 회전한 결과와 같게 됩니다!

✓ 이 과정을 그려보면 다음과 같습니다. (2,3)을 기준으로 돌려 봅시다.

```
  abcde.....hgfji.....yxwvu
  fghij.....cbaed.....tdrqp
  klmno.....wvxyx.....onmlk
  pqrst.....rqpts.....jihgf
  uvwxy.....mlkon....edcba
```

- ✓ 첫번째 배열을 180도 회전하면 3번쨰 배열이 됩니다.
- ✓ 따라서, 우리는 각 배열 회전을 전체 배열을 회전한 뒤 이를 미는 것으로 처리할 수 있습니다!

- 왜 배열 회전을 배열을 미는 것으로 처리했을까요?
- ✓ 배열을 밀어놓은 상태는 배열을 실제로 밀지 않고도 빠르게 출력할 수 있기 때문입니다!
- \checkmark 최초 배열에서 (a,b)에 있던 칸이 현재 (1,1)으로 밀려 왔다면, $0 \le i \le n-1$ 및 $0 \le j \le m-1$ 의 모든 i,j에 대해 arr[(a+i)%n][(b+j)%m]를 출력하면 됩니다.
- 따라서, 우리는 1번 쿼리가 주어질 때마다 최초 위치가 (1,1)이었던 것이 어디로 이동하는지만 저장해 두면 됩니다.
- ✓ 1번 쿼리가 짝수번 주어진 뒤 2번 쿼리가 나온다면 처음 배열을 밀어서, 홀수번 주어졌다면 처음 배열을 돌린 배열을 밀어서 배열을 출력할 수 있습니다.

- 마지막으로 시간 복잡도를 구해 봅시다.
- \checkmark 배열을 회전할 때마다 임의의 위치에 있는 칸이 어디로 이동하는지는, 자명하게도 쿼리당 $\mathcal{O}\left(1\right)$ 에 구할 수 있습니다.
- \checkmark 그와 별개로, 2번 쿼리는 최대 75번 주어지게 되고 각 쿼리에서 출력되는 문자의 수는 최대 nm 개입니다.
- ✓ 전체 시간복잡도는 $\mathcal{O}(75nm)$ 입니다. 시간복잡도 표기상 상수를 표기하는 것은 옳지 않으나, 이 문제에서는 상수가 크므로 따로 표기해두었습니다.

A5. 외계 분자

segtree, lazyprop, hashing 출제진 의도 – **Medium**

✓ 제출 18회, 정답 3명

✓ 처음 푼 사람: aeren, 60분

✓ 출제자: denniskim

A5. 외계 분자 **I'm**

부분 문제 1 (10점)

- \checkmark $1 \le Q \le 20$ 입니다.
- ✓ 그냥 문제에서 시키는대로 구현하면 됩니다.
- \checkmark 시간복잡도는 $\mathcal{O}(Q(|S| + \sum_{i=1}^n |T_i|))$ 입니다.

A5. 외계 분자

ľm

부분 문제 2 (30점)

✓ 1번 질의가 주어지지 않습니다.

A5. 외계 분자 『I'm

 \checkmark hash[i]를 1부터 i 까지의 문자를 해싱한 값이라고 정의합시다.

- \checkmark hash $[i] = \sum_{k=1}^{i} S[k] * p^k \mod M$ ($M \succeq 소수$)
- \checkmark 위 배열과 그들의 누적합을 구하면, l 부터 r 까지의 문자를 해싱한 값을 모듈러 역원을 사용하여 빠르게 구할 수 있습니다.
- \checkmark 모든 문자열 T_i 에 대해 해싱한 값을 먼저 구해놓고, l 부터 r 까지의 문자를 해싱한 값과 같은 값이 있는지를 구하면 됩니다. 이 과정은 set 등을 사용하여 빠르게 처리할 수 있습니다.
- \checkmark 시간복잡도는 $\mathcal{O}(|S| + \sum_{i=1}^{n} |T_i| + Q(\log N + \log M))$ 입니다.

27

A5. 외계 분자

ľm

부분 문제 3 (30점)

 \checkmark 1번 질의에서 l=r입니다.

✓ 세그먼트 트리를 사용해서 구간의 해시값을 빠르게 구합시다.

- $\checkmark H[i] = S[i] * p^i \mod M$ 라고 정의합시다.
- $\checkmark s \sim e$ 의 구간을 담당하는 노드의 값을 $\sum_{k=a}^{c} H[k]$ 라고 정의합시다.
- \checkmark 세그먼트 트리를 만들었으면, 마찬가지로 l 부터 r 까지의 문자를 해싱한 값을 구간 합 쿼리와 모듈러 역원을 사용하여 빠르게 구할 수 있습니다.
- ✓ 비교는 마찬가지로 set 등으로 처리합니다.
- \checkmark 시간복잡도는 $\mathcal{O}(|S|log|S| + \sum_{i=1}^{n} |T_i| + Q(log|S| + logN + logM))$ 입니다.

A5. 외계 분자 『m

부분 문제 4 (30점)

- ✓ 추가 제한 조건이 없습니다.
- ✓ 부분 문제 3에서 사용한 세그먼트 트리를 lazy로 바꿔주면 됩니다.
- \checkmark 길이 len의 같은 문자만 있는 문자열의 해싱값을 미리 전처리해두면 lazy처리를 하기 편해집니다.
- ullet 시간복잡도는 $\mathcal{O}(|S|log|S| + \sum_{i=1}^n |T_i| + Q(log|S| + logN + logM))$ 입니다.

A6. 정화조

tree, dp, convex_hull_trick, smaller_to_larger, segment_tree, offline_queries 출제진 의도 - Challenging

- ✓ 제출 1회, 정답 0명
- ✓ 처음 푼 사람: -, -분
- ✓ 출제자: ehlee0815

- 부분 문제를 떠나서 이 문제에서 요구하는 핵심적인 관찰 몇 가지만 해봅시다.
- VD_i 를 i 번째 정화조에서 정화하여 0등급수를 얻기까지 걸리는 최소 비용으로 정의합시다. 만약 그러한 방법이 존재하지 않는다면 매우 큰 수 INF를 넣어줍니다.
- \checkmark 그렇다면 $D_i = \min_j (D_j + C_i (dep_j dep_i)) = \min_j (D_j + C_i dep_j) C_i dep_i$ 가 됩니다. 여기서 dep_i 는 트리의 루트로부터의 거리라고 두겠습니다. 즉, 나가는 간선이 없는 정화조와 i 번째 정화조 사이의 경로 중 간선의 개수라고 정의하겠습니다.
- $ightharpoonup D_i$ 점화식이 cht 꼴이네요. 좋습니다. 이젠 이 문제에서 가장 처리하기 까다로운 조건을 고려해보겠습니다.

부분 문제 1 (10점)

- \checkmark 앞 장의 점화식에서 j로 가능한 후보들을 생각해 봅시다. 이는 i 번째 정화조의 subtree에 존재하는 정화조 중 $l_i \leq dep_i dep_i \leq r_i$ 을 만족하는 정화조라고 생각해볼 수 있습니다.
- \checkmark 이 j 를 어떻게 구하느냐가 부분 문제의 난이도를 결정해준다고 보면 되겠습니다.
- \checkmark 부분 문제 1의 경우, D_i 를 업데이트할 때마다 모든 j를 다 탐색하면서 j 가 i 의 subtree 내에 존재하는지와 $l_i \leq dep_j dep_i \leq r_i$ 를 만족하는지를 확인하면 됩니다.
- ightharpoonup Euler Tour Technique을 이용합시다. 즉, dfs ordering을 이용하여 자신의 subtree 정점들을 하나의 구간으로 표현해봅시다. 이를 통하여 j 가 i 의 subtree 내에 존재하는지를 $\mathcal{O}(1)$ 에 탐색할 수 있고, dp 업데이트하는데 걸리는 시간은 총 $\mathcal{O}(N^2)$ 입니다.

- 그럼 쿼리는 어떻게 처리할까요?
- \checkmark X 번 정점에 도달했을 때, K 이하의 수질을 얻으려면 결국 X 의 subtree에 존재하는 정화조 j 중 $dep_j-dep_X\leq K$ 를 만족하는 j 에서 정화가 한 번 이상 일어나야 합니다.
- \checkmark 또한 만약 j 에서 정화했다면 더이상 다른 정화조에서 정화하여 비용을 낭비할 필요가 없습니다.
- \checkmark 따라서 위 조건을 만족하는 j 들 중에 D_j 의 최솟값을 구하여 출력하면 답이 됩니다. 참고로, 그 최솟값이 INF인 경우에는 -1을 출력해야 합니다.
- \checkmark 이 역시 똑같이 모든 j에 대하여 탐색하면서 j가 X의 subtree에 있는지, 그리고 $dep_j-dep_X\leq K$ 가 만족하는지를 검사해주면 됩니다.
- ✓ 시간복잡도는 $\mathcal{O}(N(N+Q))$ 입니다.

부분 문제 2 (30점)

- \checkmark dep_i 는 N을 넘을 수 없습니다. 따라서, 부분 문제 2는 i의 subtree에 존재하는 모든 정화조가 j의 후보가 됩니다.
- \checkmark 아까 언급했던 dp 점화식은 cht를 사용하여 하나의 D_i 값을 $\mathcal{O}(\log N)$ 에 계산할 수 있습니다.
- ✓ cht에 대한 자세한 내용은 이곳에서 언급하지 않겠습니다.

- \checkmark segment tree 하나를 형성합시다. segment tree의 한 정점이 $s\sim e$ 까지를 관할한다면, 이 정점은 dfs ordering의 번호가 $s\sim e$ 인 정화조의 직선들의 lower envelope을 가지고 있습니다. 즉, dfs ordering 번호가 s 이상 e 이하인 모든 정화조 i 에 대하여 $D_i+x\times dep_i$ 라는 일차함수들의 lower envelope를 가지고 있습니다.
- \checkmark 한 직선은 최대 $\mathcal{O}(\log N)$ 개의 노드에만 관여하므로 공간복잡도는 $\mathcal{O}(N\log N)$ 이 됩니다.
- \checkmark dfs ordering 번호가 l_i 이상 r_i 이하인 직선들의 $x=C_i$ 에서의 함숫값의 최솟값은 segment tree의 query 연산을 통해 $\mathcal{O}(\log^2 N)$ 에 구현할 수 있습니다. 이는 어떤 노드가 $s\sim e$ 를 관할하고 있고, $l\leq s$ 이며, $e\leq r$ 이라면 그 노드에 저장하고 있는 직선의 함숫값 중 최솟값을 이분 탐색으로 계산할 수 있기 때문입니다.

 \checkmark 따라서, 자신의 subtree를 Euler Tour Technique을 이용하여 하나의 구간으로 대응시키고, 이 구간에 존재하는 convex hull에서 함숫값의 최솟값을 구해주면 $\mathcal{O}(N\log N + Q\log^2 N)$ 만에 dp 업데이트와 쿼리 처리를 실행할 수 있습니다.

 \checkmark lower envelope을 업데이트하는 과정에서 li chao tree를 쓰면 $\mathcal{O}((N+Q)\log N\log C)$ 가되지만, 그렇게 추천드리는 방법은 아닙니다.

A6. 정화조 I'm

부분 문제 3 (60점)

- 전체적인 풀이의 틀은 아래와 같습니다.
- \checkmark 정화조마다 segment tree를 만듭시다. 다만, 이때 정화조 i에 부여된 segment tree에서는 한 정점이 $s\sim e$ 까지를 관할할 때, dep가 $s\sim e$ 이면서 i의 subtree에 해당하는 정화조의 직선들의 lower envelope를 가지고 있습니다.
- \checkmark dep 별로 lower envelope를 만들어 이를 segment tree로 관리해준다면, cht를 이용해 $l_i \leq dep_j \leq r_i$ 이면서 i의 subtree에 속하는 모든 j들에 대해 $D_j + C_i dep_j$ 의 최솟값을 $\mathcal{O}(\log^2 N)$ 계산할 수 있게 됩니다.

- ✓ 이젠 우리는 두 가지의 문제에 직면하게 됩니다.
- \checkmark 먼저 각 정점마다 자신의 subtree에 포함된 정화조들의 직선들을 모두 담게 된다면, 정점마다 $\mathcal{O}(N)$ 개의 직선들을 담고 있는 segment tree를 만들게 되고, 따라서 총 공간복잡도는 $\mathcal{O}(N^2\log N)$ 이 됩니다.
- \checkmark 이뿐만 아니라 각 직선은 최대 $\mathcal{O}(N)$ 개의 노드에 삽입하게 되므로, 시간 복잡도상으로도 $\mathcal{O}(N^2\log N)$ 이 되어 시간 초과를 받게 됩니다.
- \checkmark 하지만, 놀랍게도 이 과정을 dynamic segment tree와 smaller to larger technique을 이용해 $\mathcal{O}((N+Q)\log^2 N)$ 으로 만들 수 있습니다.

어떤 정화조가 두 개의 자식 정화조가 있다고 합시다. 그럼 그 정화조의 segment tree 는
 자신의 두 자식 정화조에 저장되어 있는 직선들과 자신의 직선을 모두 저장하게 될 것입니다.

- 여기서 두 자식의 정화조 중 저장되어 있는 직선의 개수가 적은 segment tree를 직선의 개수가 많은 segment tree로 넣어 주면, smaller to larger technique을 이용해서 시간을 줄이는 것이 가능하다고 생각해 볼 수 있습니다.
- \checkmark 각 직선마다 최대 $\mathcal{O}(\log N)$ 개의 segment tree에 삽입될 수 있고, 하나의 segment tree에 하나의 직선을 삽입할 때마다 $\mathcal{O}(\log N)$ 개의 노드(convex hull)를 건드리게 됩니다.

A6. 정화조 I'm

 \checkmark 이젠 하나의 노드(convex hull)에 직선을 $\mathcal{O}(1)$ 만에 삽입할 수 있다면, 각 직선마다 segment tree 삽입에 최대 $\mathcal{O}(\log^2 N)$ 의 시간복잡도가 걸리고, 모든 직선을 삽입하는데는 최대 $\mathcal{O}(N\log^2 N)$ 의 시간 복잡도가 됩니다.

- \checkmark 하지만, cht에 저장되는 직선의 형태는 $D_i+x imes dep_i$ 으로 두 segment tree를 merge할 때 dep_i 가 단조성을 가지지 않아 일반적인 방법으로는 삽입하기 어려워 보입니다.
- ✓ 만약 기존의 convex hull에 직선을 그대로 삽입하게 된다면, 다음 슬라이드와 같이 잘못된 cht 가 만들어집니다.
- \checkmark 이를 해결하기 위해 li chao tree를 노드에 박게 된다면, 한 노드에 직선을 삽입하는 과정이 $\mathcal{O}(\log C)$ 가 되어 segment tree 구성에 총 $\mathcal{O}(N\log^2 N\log C)$ 가 소요됩니다.

- ✓ 그럼 smaller to larger를 사용할 수 없게 되는 건가요?
- \checkmark 그렇지만은 않습니다. 삽입 과정을 잘 처리해준다면 amortized $\mathcal{O}(1)$ 에 직선을 삽입할 수 있습니다. 그러기 위해서는 두 가지 포인트를 짚고 넘어가야 합니다.
- \checkmark 첫 번째는 smaller to larger 과정에서 작은 집합의 크기만큼 연산한다면 $\mathcal{O}(\log N)$ 이 보장된다는 당연한 사실입니다.
- \checkmark 두 번째는 직선의 기울기가 dep_i 라는 점입니다! 이 두 번째 사실이 smaller to larger를 가능하게 만듭니다.

A6. 정화조 I'm

먼저 큰 집합에 삽입된 직선들 중 작은 집합에 삽입된 직선들의 기울기보다 작거나 같은
 기울기를 가진 직선들을 모두 제거해줍니다.

- ✓ 이때 기울기는 dep이고 이는 1씩 늘어나고 줄어드는 연속성이 있기 때문에, 큰 집합에 제거된 직선들의 크기는 작은 집합의 크기보다 작거나 같습니다.
- ✓ 이후 제거된 직선과 작은 집합에 있는 직선 중에서 기울기가 같은 두 직선끼리 묶은 다음, 그중 y 절편이 작은 직선들을 선택합니다.
- \checkmark 이렇게 선택된 직선을 큰 집합에 기울기가 큰 순서대로 삽입해주면 $\mathcal{O}(1)$ 에 한 직선을 한 노드에 삽입할 수 있습니다.

 \checkmark 따라서, 시작할 때 리프마다 먼저 segment tree를 구현해준 뒤, 위상정렬 순서대로 D_i 를 업데이트하면서 segment tree를 merge해주면 됩니다.

- \checkmark 위 방법으로 하면 모든 직선을 최대 $\mathcal{O}(N\log^2 N)$ 에 삽입할 수 있습니다.
- ✓ 한 정화조는 smaller to larger technique을 이용하여 합쳐준 뒤, 쿼리를 부분 문제 2와 같이 처리해주면 됩니다.
- ✓ 이때, 쿼리를 오프라인 쿼리로 처리하여 X 가 같은 쿼리끼리 모아 한꺼번에 처리해줍니다.
- \checkmark 따라서 시간복잡도는 최대 $\mathcal{O}((N+Q)\log^2 N)$ 입니다.

A6. 정화조 I'm

- \checkmark 마지막으로 리프마다 segment tree를 만들면 공간복잡도가 $\mathcal{O}(N^2 \log N)$ 가 됩니다.
- \checkmark 그렇지만, 다시 이야기해서 한 직선은 최대 $\mathcal{O}(\log N)$ 개의 segment tree에 삽입될 수 있습니다.
- \checkmark 그렇기에 필요한 정점만 직접 생성해주는 dynamic segment tree를 통하여 $\mathcal{O}(N\log N)$ 의 공간복잡도로 해결할 수 있습니다.
- dynamic segment tree 안에 lower envelope를 넣어야 하는 셈이라 구현이 굉장히 복잡합니다. 화이팅하시길 바랍니다.

49

A7. 성벽쌓기

geometry, convex_hull, divide_and_conquer, implementation 출제진 의도 – Challenging

✓ 제출 1회, 정답 0명

✓ 처음 푼 사람: -, -분

✓ 출제자: gs22123

부분 문제 1 (1점)

- ✓ 원이 2개 밖에 안 주어집니다.
- ✓ 그렇기 때문에 두 원의 중심의 좌표와 반지름을 가지고 볼록 껍질의 둘레를 계산할 수 있습니다.
- 또한, 한 원이 다른 원에 포함 되는지를 미리 확인하고 예외 처리해야 합니다.
- \checkmark 두 원의 좌표를 $(x_1,y_1),(x_2,y_2)$ 라 하고, 반지름의 길이를 $r_1,r_2(r_1\leq r_2)$ 라 합시다.

A7. 성벽 쌓기

$$\checkmark$$
 $d = \overline{AC} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

$$\checkmark \ \alpha = \arccos \frac{r_1 - r_2}{d}$$

$$\beta = \arccos \frac{r_2 - r_1}{d}$$

$$\checkmark l = \overline{GH} = d \sin \beta$$

$$\checkmark$$
 : $ans = 2l + 2r_1\beta + 2r_2\alpha$

부분 문제 2 (1점)

- 주어지는 모든 원의 반지름이 같습니다.
- 이 부분 문제는 백준 7420번 맹독 방벽과 같습니다
- \checkmark 원의 반지름이 전부 같기 때문에 볼록 껍질에 있는 접선들은 원의 중심의 볼록 껍질과 평행하며 그 거리는 반지름 r 만큼 떨어져 있습니다.
- ✓ 그래서 원의 중심의 볼록 껍질의 둘레의 길이를 구한 뒤, 원의 호는 따로 계산해주면 됩니다.
- ✓ 원의 호 부분을 다 모으면 원 한바퀴가 나온다는 것을 알 수가 있습니다.
- \checkmark 그래서 답은 원의 중심들의 볼록 껍질의 둘레와 반지름 r 짜리 원의 둘레를 더하면 구할 수 있습니다.

부분 문제 3 (총 9점)

- ✓ 주어지는 원의 개수가 100개 이하입니다.
- ✓ 그렇기 때문에 웬만한 시간복잡도는 통과할 수 있을 것입니다.
- \checkmark 여러가지 풀이가 있겠지만, 여기서는 시간복잡도 O(Nh) 풀이를 설명하겠습니다.
- ✓ 여기서 h는 볼록 껍질에 포함된 호의 수입니다.

✓ 점들의 볼록 껍질을 구하는 알고리즘 중에 Gift Wrapping Algorithm, 혹은 Jarvis March라 불리는 알고리즘이 있습니다.

- ✓ 이 알고리즘을 간단하게 설명하면 현재 볼록 껍질 위에 있는 점이랑 모든 다른 점들을 각각 이었을 때, 나머지 점들이 그 선분의 왼쪽(혹은 오른쪽)에만 놓이는 점을 찾습니다.
- ✓ 그렇게 찾은 점은 볼록 껍질에 포함이 되는 점이며, 현재 점을 이렇게 찾은 점으로 옮기고, 볼록 껍질이 완성될 때까지 반복합니다.
- ✓ 이제 이 알고리즘을 원에다가 똑같이 적용하면 됩니다.

✓ 우선 볼록 껍질에 포함되는 원 하나를 찾을 때는 가장 낮은 점을 포함하는 원을 찾으면 됩니다 (가장 높은 점, 가장 왼쪽에 있는 점 등도 상관없습니다).

✓ 이후 점일 때랑 똑같이 현재 원에서 다른 모든 원에 공통외접선을 그었을때, 다른 모든 원이 왼쪽에 오는 원을 찾아서 진행하면 됩니다.

- \checkmark 이 알고리즘은 다음 원을 찾는데 O(N)의 시간이 걸리고, 이를 볼록 껍질에 포함된 호마다 반복하므로, 시간복잡도는 O(Nh)입니다.
- ✓ 여담으로, 일반적으로 원들이 랜덤하게 놓여있을 때 볼록 껍질에 포함되는 호의 수가 그렇게 많지 않아서, 이 풀이만으로 거의 모든 테스트 케이스의 답을 시간 초과 없이 구할 수 있습니다.
- 사실, 이 방법 말고도 원주에 수천 개의 점을 찍은 다음, 이들의 convex hull의 둘레를 구해도 맞긴 합니다.

만점 풀이 (100점)

- 추가적인 제한이 없습니다.
- \checkmark 볼록 껍질을 O(NlogN)에 구할 수 있는 알고리즘이 필요합니다.
- 본 문제는 David Rappaport의 A convex hull algorithm for discs을 구현한 문제임을 밝힙니다.
- 위 논문 또는 https://equinox134.github.io/posts/convex-hull-of-circles/에 자세한 풀이가 적혀 있으니 참고해주세요 and applications

- 우선 몇가지 기호들을 정의합시다.
- \checkmark Hull(S): S의 볼록 껍질
- \checkmark $\partial(R)$: R의 경계, 즉, $\partial(Hull(S))$ 는 S의 볼록 껍질의 경계
- \checkmark H(L): L이 방향이 있는 선일 때, L의 오른쪽 반평면
- \checkmark $S \in H(L)$ 이고 H(L)의 어떠한 부분 집합도 S를 포함하지 않으면 L은 S의 $support\ line$ 이라 한다.
- \checkmark L(A, B): A 에서 B로 향하는 A와 B의 공통 $support\ line$ (존재한다면)
- \checkmark t(A,B): L(A,B)의 부분 집합인 선분으로, 한쪽 끝은 $\partial(A)$, 다른 쪽은 $\partial(B)$ 에 있다.

 \checkmark $a,b \in S$ 일 때, L(a,b)가 Hull(S)의 $support\ line$ 이면 t(a,b)를 Hull(S)의 edge라 한다.

- \checkmark $\partial(Hull(S))$ 는 $s\in S$ 인 s 들의 배열로 나타낸다. 즉, $CH(S)=(s_0,s_1,\cdots,s_h)$ 이다. 이때 하나의 원이 $\partial(S)$ 에 여러번 나타날 수 있으므로 $i\neq j$ 이고 $s_i=s_j$ 일 수 있다. 또한, $s_0=s_h$ 를 유지한다(처음 원을 마지막에도 추가함).
- \checkmark $p \in P, q \in Q$ 에 대해서, L(p,q)가 $CH(P \cup Q)$ 를 support하면 t(p,q)를 CH(P)와 CH(Q)의 bridge라 한다.

 \checkmark 알고리즘이 시간 내에 돌아가기 위해서는 CH(S)의 크기는 O(N) 이어야 합니다. 이를 증명합시다.

- $\vee u, v \in S$ 에 대해서 CH(S) 를 $S_0, u, S_1, v, S_2, u, S_3, v, S_4$ 로 표현합시다.
- \checkmark 여기서 $S_i \subset CH(S)$ 의 부분집합입니다.
- \checkmark 만약 S_1 과 S_3 의 크기가 0이라면 t(u,v)가 CH(S)의 edge로 2번 나타난다는 것이데, 이는 말이 안됩니다.
- \checkmark 만약 S_1 의 크기가 0이 아니라면, L(u,v)는 Hull(S) 과의 어떠한 점 ψ 에서 만나야 합니다.
- \checkmark CH(S) 에서 나타는 두 번째 u, \cdots, v 는 L(u, v) 가 ψ 가 아닌 다른 점에서 만나거나, 안 만나야 한다는 것을 의미하는데, 이는 모순입니다.

- \checkmark 즉, CH(S) 에서는 $u, \dots, v, \dots, u, \dots, v$ 는 나타날 수 없습니다.
- \checkmark 이런식으로 $u, \dots, v, \dots, u, \dots, v$ 꼴이 나타날 수 없는 수열을 Davenport-Schinzel Sequence of Order 2라고 합니다.
- ✓ 이러한 수열의 길이는 2n − 1을 넘을 수 없습니다.
- \checkmark 결론적으로 CH(S)의 크기는 2n-1 이하입니다.

- 다음으로는 몇가지 함수들을 정의합니다.
- \checkmark 두 방향 있는 선 L_1, L_2 에 대해, $\alpha(L_1, L_2)$ 는 L_1 에서 L_2 까지의 시계방향 각도를 반환한다.
- \checkmark $s \in CH(P)$ 에 대해 succ(s)는 CH(P)에서 s 다음으로 오는 원소를 반환한다. s가 마지막 원소이면 첫 원소를 반환한다.
- \checkmark P와 Q의 평행한 $support\ line$ 을 각각 L_p , L_q 라 할 때, $H(L_q) \in H(L_p)$ 이면 $dom(L_p, L_q)$ 는 참, 아니면 거짓을 반환한다.
- \checkmark 어떤 배열 ϑ 와 원소 ψ 가 주어졌을때, $add(\vartheta,\psi)$ 는 ϑ 의 마지막 원소가 ψ 이면 ϑ 를, 안 그러면 ψ 를 ϑ 에 마지막에 추가하고 ϑ 를 반환한다.

- 볼록 껍질을 구하는 알고리즘은 분할 정복을 사용하여 구합니다.
- \checkmark 즉, 우선 S를 크기가 최대 1 차이나는 두 집합 P와 Q로 나눕니다.
- \checkmark 그 다음으로는 재귀적으로 CH(P)와 CH(Q)를 구합니다.
- \checkmark 마지막으로 두 볼록 껍질을 합쳐 $CH(S) = CH(P \cup Q)$ 를 구합니다.
- 이제 두 볼록 껍질을 합치는 법에 대해 설명하겠습니다.

- ✓ 우선 CH(S)는 길이 0으로 초기화합니다.
- \checkmark 또, 어떠한 선 L^* 에 평행하면서 $p\in P$, $q\in Q$ 에 접하는 P 와 Q의 $support\ line\ L_p$ 와 L_q 를 정합니다.
- \checkmark Advance 는 P와 Q 중 어떤 집합의 다음 원으로 넘어가게 하는 함수로, 나중에 설명합니다.
- \checkmark 이제 아래의 과정을 CH(S)가 완성될 때까지 반복합니다:
- \checkmark 만약 $dom(L_p,L_q)$ 라면 add(CH(S),p) 를 한 후, $Advance(L^*,p,q)$ 를 합니다.
- \checkmark 그렇지 않다면 add(CH(S),q)를 한 후, $Advance(L^*,q,p)$ 를 합니다.
- \checkmark 이후 L_p 를 L^* 와 평행하며 P와 p에서 접하는 $support\ line$, L_q 를 L^* 와 평행하며 Q와 q에서 접하는 $support\ line$ 으로 바꿉니다.

- ✓ 이제 $Advance(L^*, x, y)$ 함수에 대해서 설명하겠습니다(x와 y는 원).
- \checkmark Advance 함수는 간단하게 t(x,y)와 t(y,x)가 두 볼록 껍질을 연결하는지 (즉, bridge 인지)를 확인하고, x, 혹은 y를 다음 원으로 옮깁니다.
- ✓ 우선 4개의 변수 a_1, a_2, a_3, a_4 를 구합니다:
- $a_1 = \alpha(L^*, L(x, y)), a_2 = \alpha(L^*, L(x, succ(x))), a_3 = \alpha(L^*, L(y, succ(y))),$ $a_4 = \alpha(L^*, L(y, x))$
- \checkmark 이때 L(x,y) 가 존재하지 않으면 $\alpha(L^*,L(x,y))$ 는 정의되지 않습니다.
- \checkmark 만약 $a_1 = min(a_1, a_2, a_3)$ 라면 t(x, y)가 bridge이므로, add(CH(S), y)를 합니다.
- \checkmark 이 상태에서 $a_4=min(a_2,a_3,a_4)$ 라면 t(y,x)도 bridge 이므로, add(CH(S),x)를 합니다.

- \checkmark 이제 x나 y를 다음 원으로 옮길 차례입니다.
- \checkmark 만약 $a_2 < a_3$ 라면 $L^* = L(x, succ(x))$ 로, x = succ(x) 로 바꿉니다.
- \checkmark 그렇지 않다면 L^* 를 L(y,succ(y))로, y를 succ(y)로 바꿉니다.
- ✓ 이상으로 알고리즘에 대한 설명을 마치겠습니다.

- ✓ 이제 알고리즘의 정당성을 증명합시다.
- \checkmark 우선 두 볼록 껍질을 합치는 과정에서 L_p 와 L_q 가 평행하며, 각각 P와 Q 를 support 함을 보입시다.
- \checkmark 처음 L_p 와 L_q 는 위 조건을 만족하도록 설정했습니다.
- \checkmark 임의의 iteration에서 L_p 와 L_q 가 위 조건을 만족할 때, 다음 iteration에서도 위 조건을 만족한다는 것을 보이면 됩니다.
- $ightharpoonup L_p$ 와 L_q 가 매번 평행한 것은 자명합니다.

 \checkmark CH(P)(혹은 CH(Q))에서 p와 연속한 원들을 생각해보면, 어떤 선이 L(pred(p),p)와 L(p,succ(p)) 사이에 있으면 p에 접하는 P의 $support\ line$ 이 될 수 있습니다.

- \checkmark 이때 Advance 에서 L_p 와 L_q 중 하나는 연속한 원의 공통접선으로 바뀝니다. 편의상 바뀌는 선을 L_q 라 합시다. 그러면 L_q 는 L(q,succ(q))로 바뀝니다.
- \checkmark 바뀌는 선은 각도가 더 작은 걸로 바뀌기 때문에 L(q,succ(q))는 L(p,succ(p)) 보다 작고, 그러므로 L_p 의 각도도 L(p,succ(p)) 보다 작습니다. 즉, L_p 는 P를 support 합니다.
- \checkmark 결론적으로, 어떤 iteration에서 L_p,L_q 가 위 조건을 만족하면, 다음 iteration에서도 만족하므로, L_p 와 L_q 는 두 볼록 껍질을 합치는 과정에서 위 조건을 항상 만족합니다.

 \checkmark 다음으로는 $dom(L_p,L_q)$ 가 참일 때, $a_1=min(a_1,a_2,a_3)$ 일 때만 L(p,q)가 bridge가 되고, L(q,p)는 t(p,q)가 bridge이면서 $a_4=min(a_2,a_3,a_4)$ 일 때만 bridge가 됨을 보입시다.

- \checkmark 먼저 저희는 $P \vdash L_p, L(p, succ(p)), Q \vdash L_q, L(q, succ(q))$ 에 의해 support 됨을 압니다.
- \checkmark a_1 이 최소가 아니라고 가정합시다.
- \checkmark a_1 이 최소가 아니라는 것은 L(p,succ(p)) 와 L(q,succ(q)) 중에서 L(p,q) 보다 L^* 와의 각도가 작은 선이 있다는 것입니다.
- \checkmark 이는 다른 말로 L(p,q)의 왼쪽 영역에 CH(P)나 CH(Q)에 해당하는 점이 있다는 뜻이고, 그렇기 때문에 L(p,q)는 bridge가 될 수 없습니다.
- \checkmark 결론적으로 a_1 이 최소일 때만 L(p,q)가 bridge가 됩니다.
- \checkmark 같은 방식을 사용하면 L(q,p) 에 대해서도 보일 수 있습니다.

 \checkmark 마지막으로 두 볼록 껍질을 합치는 과정이 $CH(S) = CH(P \cup Q)$ 를 제대로 구함을 보입시다.

- \checkmark CH(S)의 edge 들은 CH(P), CH(Q)의 edge이거나 둘의 bridge일 것입니다.
- \checkmark 합치는 과정에서 CH(P)와 CH(Q)의 모든 edge를 확인하므로, CH(S)의 edge가 될 수 있는 edge들을 모두 확인함을 알 수 있습니다.
- $\checkmark \ bridge$ 의 경우에는 합치는 과정에서 평행한 $support\ line$ 이 있는 모든 $p\in P, q\in Q$ 쌍을 확인합니다.
- \checkmark 각 쌍마다 t(p,q), 그리고 t(q,p)의 2개의 bridge가 생길 수 있는데, 이는 바로 전에 Advance에서 제대로 구함을 보였습니다.
- \checkmark 결론적으로 앞에서 설명한 두 볼록 껍질을 합치는 알고리즘은 $CH(S) = CH(P \cup Q)$ 를 제대로 구합니다.

- 진짜 마지막으로 시간복잡도를 분석해 봅시다.
- \checkmark 이 알고리즘은 다음 점화식을 만족합니다: T(N) = 2T(N/2) + Cost(Merge)
- \checkmark 여기서 Merge 는 두 볼록 껍질을 합치는 알고리즘으로, O(N) 에 작동함을 알 수 있습니다.
- \checkmark 고로, 이 알고리즘의 시간복잡도는 O(NlogN) 입니다.

✓ 수고하셨습니다.

이 문제 테스트 케이스 中