or Moder Lindon Li Odh $V(8) = V(8, \pi(8), s) [R(8, \pi(8), s) + Y V(s)]$

T. (8) = arg max IT (8, a, 8) [R(8, a, 8) + Y 1 (8)]

in er - 150 (8) Line

3, 32 33 84 35 36

v. (8)

· L. finish of lower out. In the

32 33 34 35 56 0 15, 18) finish Piness finish PiniSh Ruish Linish Rnish dica dice

Enjoison purpus $T_{1}(8_{1}) = arg max = T(8_{1}a_{1}s') [R(8_{1}a_{2}s') + YU^{(8)}] = arg max$

max (1 9 = (5+ 1+2+3+4+5+6)) = dice

ive Ruish Turispon, 33 mor, $\pi_{1}(32) = (2) = dic$

- 15 31 clas

52 7(BI) (C 7, (B2) 52 = 1 FUNCTIVE E $\pi_{2}(8_{1}) = \max \left(2.5, \frac{1}{6}(-6+2.5+2.5+3+4+5+6)\right) = \frac{1}{\text{dice}}$ - In finish Olemostr, of o dice 1/1/7/2182), 72180) dvil 3_1 3_2 3_3 3_4 5_5 5_6 3_1 3_2 3_3 3_4 3_5 3_6 $V_3^{70(5)} = (\frac{1}{6}(-6+2.5+2.5+3+4+5+6)) = \frac{17}{6} = 2.833$ 13 (8) = man (2.833, = (-6+2.833x2+18) dice finish finish finish 13(3) 2.94 2.99

while when the state of its state is it reset in state of its will be will prove the interval its in the will be in the interval in the will be in the interval in the will be in the interval in the will be in the wil

2)-

(+(n) = max [T(8;a,8) [R(8;a,8) + * + (8)]

rightenings Ossie Guain possiciation à pleu de state et

 $V^{*}(n) = \left(1 \left[10 + \frac{1}{2} \times V^{*}(n)\right]\right) + V^{*}(n) = 10 + \frac{V^{*}(n)}{2}$

-3 $\sqrt{(n)}$ = 20 $\sqrt{(x_n)} = 20$

 $V^{*}(1) = \max \left(\frac{1}{2} \left(0 + \frac{1}{2} V^{*}(1) \right), \frac{1}{2} \left(1 + \frac{1}{2} V^{*}(2) \right) \right)$ $V^{*}(1) = \max \left(\frac{1}{2} \left(0 + \frac{1}{2} V^{*}(1) \right), \frac{1}{2} \left(1 + \frac{1}{2} V^{*}(2) \right) \right)$

 $v^{*}(2) = \max \left(\frac{v^{*}(1)}{4}, v^{*}(3) + 2 \right)$

vt(n-1) = max (vt(1), vt(n-2)+2) vt(n-1) = max (vt(1), 20+2)

m jeon 161

$$V_{k,1}(s) \leftarrow \max_{s} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \sum_{s=1}^{2} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \sum_{s=1}^{2}$$