1 Topology

1.1 Continuity

1.1.1 Definitions/Equivalence

Definition 1.1. (Global Continuity)

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$. We say that f is **continuous** if

$$(\forall V \in \mathcal{T}_Y)(f^{-1}(V) \in \mathcal{T}_X)$$

Definition 1.2. (Local Continuity)

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$. Let $x_0 \in X$. We say f is **continuous at** x_0 if

$$(\forall V_{f(x_0)} \in \mathcal{T}_Y)(\exists U_{x_0} \in \mathcal{T}_X) \pitchfork (f(U_{x_0}) \subset V_{f(x_0)})$$

Theorem 1. (Global Local Continuity)

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$. Then the following are equivalent.

- 1.) f is globally continuous.
- 2.) $(\forall x_0 \in X)(f \text{ is continuous at } x_0).$

Proof. $(1 \implies 2)$

Pick $x_0 \in X$. Let $f(x_0) \in V \in \mathcal{T}_Y$. Since f is continuous, $f^{-1}(V) \in \mathcal{T}_X$. Thus $f^{-1}(V)$ is a neighborhood of x_0 such that $f(f^{-1}(V)) \subset V$, so f is continuous at x_0 .

Proof. $(2 \implies 1)$

Let $V \in \mathcal{T}_Y$. I must show $f^{-1}(V) \in \S_X$. Let $x \in f^{-1}(V)$. Since f is continuous at x, $(\exists U_x \in \mathcal{T}_X) \pitchfork f(U_x) \subset V$

 $\iff U_x \subset f^{-1}(V)$. Thus an arbitrary element of $f^{-1}(V)$ has a neighborhood contained within $f^{-1}(V)$. Hence $f^{-1}(V) \in \mathcal{T}_X$. Since V was an arbitrary element of \mathcal{T}_Y , we conclude that this is true for all open sets in Y, and thus f is globally continuous.

1.1.2 Basic Facts

Theorem 2. (Composition Continuity)

Let X, Y, and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$ be continuous. Then $g \circ f: X \to Z$ is continuous.

Proof. let $V \in \mathcal{T}_Z$.

$$\implies g^{-1}(V) \in \mathcal{T}_Y.$$

$$\implies f^{-1}(g^{-1}(V)) \in \mathcal{T}_X$$

$$\iff (g \circ f)^{-1}(V) \in \mathcal{T}_X.$$

Theorem 3. (Global Continuity Facts)

Let X and Y be topological spaces. Let $f: X \to Y$. Then the following are equivalent.

- 1.) f is continuous.
- 2.) $f^{-1}(F)$ is closed in X for all F closed in Y.
- 3.) $f^{-1}(U)$ is open in X for all U members of a subbasis of \mathcal{T}_Y .
- 4.) $f(\overline{A}) \subset \overline{f(A)}(\forall A \subset X)$
- 5.) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$

Proof. $(1 \implies 2)$

Let F be closed in Y. Then $Y \setminus CF \in \mathcal{T}_Y$.

$$\implies \mathbb{C}f^{-1}(F) = f^{-1}(\mathbb{C}F) \in \mathcal{T}_X$$

 $\implies f^{-1}(F)$ is closed in X.

Proof. $2 \implies 3$.

Proof. $(3 \implies 4)$

Proof. $(4 \implies 1)$ A good challenging question for you to work on.

1.2 Continuity in Metric Spaces

Definition 1.3. Let (X,d) and (Y,ρ) be metric spaces, and let $f:X\to Y$. We say that f is continuous at $x_0\in X$ if for every $\epsilon>0$ there exists $\delta>0$ such that

$$f(B(x_0; \delta)) \subset B(f(x_0; \epsilon)).$$

Theorem 4. Let (X,d) and (Y,ρ) be metric spaces, and let $f:X\to Y$. Then the following are equivalent:

- 1. f is continuous at $x_0 \in X$
- 2. $(\forall \epsilon > 0)(\exists \delta > 0)(f(B(x_0; \delta)) \subset B(f(x_0); \epsilon))$.

Proposition 1. Let (X, d) and (Y, ρ) be metric spaces, and let $f : X \to Y$. Then the following are equivalent:

- 1. f is continuous at $x_0 \in X$
- 2. $(\forall \epsilon > 0)(\exists \delta > 0)(x \in B(x_0; \delta) \Rightarrow f(x) \in B(f(x_0); \epsilon)).$

Definition 1.4. Let (X,d) be a metric space and let $\{x_k\}$ be a sequence in X. We say that $\{x_k\}$ is a convergent sequence to a point x_0 if for every $\epsilon > 0$ there exists $K \in \mathbb{N}$ such that $d(x_k, x_0) < \epsilon$ for all $k \geq K$.

Theorem 5. Let (X,d) and (Y,ρ) be metric spaces, and let $f:X\to Y$. Then the following are equivalent:

1. f is continuous at $x_0 \in X$

2.
$$(\forall \{x_k\})(x_k \to x_0 \Rightarrow f(x_k) \to f(x_0))$$
.

Proof. (1) \Rightarrow (2) Let $\epsilon > 0$. Since f is continuous at x_0 , There exists $\delta > 0$ so that

$$f(B(x_0; \delta)) \subset B(f(x_0; \epsilon)).$$

Since $x_k \to x_0$, there exists $K \in \mathbb{N}$ such that $d(x_k, x_0) < \delta$ for all $k \geq K$. This means,

$$x_k \in B(x_0; \delta)$$
 for all $k \geq K$.

Consequently,

$$f(x_k) \in B(f(x_0); \epsilon)$$
 for all $k \ge K$.

 $(2) \Rightarrow (1)$ exercise

1.3 Semicontinuity

Definition 1.5. (Semicontinuity)

Let X be a topological space. Let $f: X \to \mathbb{R}$.

We say f is upper semicontinuous if $(\forall \alpha \in \mathbb{R})(f^{-1}(-\infty,\alpha)) \in \tau_X)$

We say that f is lower semicontinuous if $(\forall \alpha \in \mathbb{R})(f^{-1}(\alpha, +\infty) \in \tau_X)$

Theorem 6. Let X be a topological space. Let $f, g: X \to \mathbb{R}$. be continuous. Then

- 1.) |f| is continuous.
- 2.) af + bg is continuous $(\forall a, b \in \mathbb{R})$
- 3.) fg is continuous.
- 4.) If $f(X) \cap \{0\} = \phi$, then $\frac{1}{f}$ is continuous.

You should prove it using lower and upper semicontinuity.

Proof. (3) Use the fact $4ab = (a+b)^2 - (a-b)^2$

Proof. (4) Formal assessment: Combine results on continuity.

1.3.1 Pasting Lemma

Theorem 7. (The Pasting lemma)

Let X and Y be topological spaces such that $X=A\cup B$ where A and B are closed. Let $f:A\to Y$ and let $g:B\to Y$ be continuous such that $f|_{A\cap B}=g|_{A\cap B}$. Define $h:X\to Y$ by h(x)=f(x) for $x\in A$ and h(x)=g(x) for $x\in B$. (That is, $h=f\cup g$) as sets.

Then h is continuous.

Proof. Let K be closed in Y. Then $h^{-1}(K) = f^{-1}(K) \cup g^{-1}(K)$ which is closed in X.

1.3.2 Homeomorphisms

Definition 1.6. (Homeomorphism)

Let X and Y be topological spaces. Let $h: X \to Y$. We say h is a homeomorphism if h is continuous, bijective, and h^{-1} is continuous.

Definition 1.7. Let X and Y be topological spaces. and let $f: X \to Y$.

- 1.) f is said to be open if f(G) is open in Y for every G open in X.
- 2.) f is said to be closed if f(C) is closed in Y for every C closed in X..

Theorem 8. Let X and Y be topological spaces. Let $f: X \to Y$ be a continuous bijection. Then f is a homeomorphism if either of the following hold.

- 1.) f is an open mapping
- 2.) f is a closed mapping.

Proof. Define $g: Y \to X$ by $g = f^{-1}$. Then for all $B \subset X$, we have $g^{-1}(B) = f(B)$. Our conclusion follows directly.