Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria

Ejercicio 1. (2.5 puntos) Probar que, para $a, t \in \mathbb{R}^+$, se tiene:

$$\int_{-\infty}^{+\infty} \frac{\cos(tx)}{(x^2 + a^2)^2} dx = \frac{\pi}{2a^3} (1 + at) e^{-at}.$$

Ejercicio 2. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{e^{\frac{z^3}{1+t}}}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 3. (2.5 puntos) Probar que no hay más funciones enteras e inyectivas que los polinomios de grado uno.

Ejercicio 4. (2.5 puntos) Sea $f \in \mathcal{H}(D(0,1))$ y supongamos que existe $n \in \mathbb{N}$ tal que, para cada $r \in]0,1[$ se verifica

$$\max\{|f(z)|: |z| = r\} = r^n.$$

Probar que existe $\alpha \in \mathbb{T}$ tal que $f(z) = \alpha z^n$ para todo $z \in D(0,1)$.

Ejercicio 2. (2.5 puntos) Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{e^{\frac{z^3}{1+t}}}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb C$ y que su suma es una función entera.
 - a) Definitions $\sigma: [n, n+1] \rightarrow \mathbb{C}$ σ es un comino $\sigma(t) = t$ $\sigma'(t) = 1$
 - $\phi: [n, n+1] \times \mathbb{C} \longrightarrow \mathbb{C} \qquad \phi(t, \overline{\epsilon}) = \frac{e^{\frac{\epsilon}{2} + t}}{1 + t^2}$
 - esociones S ab estresion con tima en σ* D x * D ne sunitario φ(·

 continua en σ × ponencial y una polimacional y de denaminador no se anula

Para cada $t \in \sigma^*$ se define $\phi_t = \phi(t, \bar{t})$ $\forall \bar{t} \in C$ y $\phi_t \in H(C)$. Por el τ^{ma} de habanarfia de la integral dependiente de un parametro, $f_n \in H(C)$.

b) $|f_n(\xi)| = |\int_{0}^{\infty} \frac{1+\xi^3}{1+\xi^3} d\xi| \leq 2([n,n+1]) \cdot M^n$

 $M_n \ge max$ $\left\{ \frac{e^{\frac{2}{3}}}{1+t^2} \right\}$ $\left\{ \frac{e^{\frac{2}{3}}}{1+t^2} \right\}$

$$|\underline{A} + \underline{t^2}| \ge \underline{A} + \underline{n^2}$$

$$|\underline{e^{3}}_{\underline{A} + \underline{t}}|$$