Al Compiler in Alibaba

Wei Lin

weilin.lw@alibaba-inc.com

为什么做AI Compiler

- Al爆发期,模型创新加快,需要快速上线
- 多样的异构加速器件,特别是端侧,需要通过编译的技术来构建快速执行器
- 模型越来越大,从数据并行演化到模型并行,需要通过编译技术来构建 分布式训练范式

使命(AI优化自动化)

WHAT HOW

可用性

规模化

高性能

低成本

提纲

- 挑战
- Al Compiler的整体结构
- 编译优化流程
- 扩大kernel fusion范围的FusionStitching技术
- 密集运算kernel的TVM上自动代码生成技术(Ansor)
- Dynamic shape上编译优化技术
- Al Compiler的阿里云应用

挑战

- 编译的正确性
- 编译的普适性, how to avoid worst case
- 易用性, 如何能够对用户透明
- 优化目标多样性: 推理, 训练, 多种设备, 多种框架
- 编译本身的负载

Al Compiler@Alibaba整体结构

PAI-DLC(training)/PAI-DSW(training)/PAI-Blade(inference)									
Framework		Tensorflow		Pytorch					
Al Compiler	Compiler componentization	Sand-box verification	Coarse-grained Fusion (FusionStitching)	Auto-codegen (Ansor)	Native dynamic shape support				
Hardware	GPU/CPU/FPGA/ASIC								

编译优化流程

奥运会全球指定云服务商

一些结果

- 阿里巴巴内部集群
 - 覆盖数万任务
 - 30%任务得到 > 1.1x 加速

AlCompiler end2end speed-up distribution

FusionStitching (扩大fusion范围)

多种选择

在不同具体size的情况下,上面三种CodeGen策略存在寻优空间,而Rule-based的策略则存在局限

FusionStitching整体设计

Figure 1. FusionStitching Overview.

- 基于代价评估来选择合理的计划
- 更为复杂的融合给codegen带来的挑战和机会

FusionStitching的结果

Table 1. Workloads for evaluation.

	Model	Field	Mode	Batch Size
,	BERT	NLP	Both	32
	DIEN	Recommendation	Both	256
	Transformer	NLP	Training	4096
	ASR	Speech Recognition	Inference	8
	CRNN	OCR	Inference	8

至全	全	球	指	定	굸	服	务	商
----	---	---	---	---	---	---	---	---

Model	Tech	T/#	CPU	Math	Mem	Cpy	E2E
BERT	TF	T	1.55	41.69	28.45	0.15	71.84
		#	-	98	561	102	761
	XLA	T	2.3	41.89	9.56	0.15	53.9
-train		#	-	98	200	97	395
	FS	T	2.8	42.11	7.02	0.03	51.96
		#	-	98	98	20	216
	TD	T	3.24	1.65	0.83	0.14	5.86
	TF	#	-	70	365	106	541
BERT	XLA	T	0.78	2.50	0.60	0.13	4.02
-infer		#	-	98	277	94	469
	TC.	T	0.59	2.46	0.40	0.04	3.49
	FS	#	-	98	77	30	205
	m	Т	90.13	7.77	32.54	7.12	137.56
	TF	#	-	1218	10406	1391	13015
DIEN	XLA	T	124.04	9.06	37.50	6.56	177.16
-train		#	-	1215	6842	1996	10053
	EC	T	48.42	7.91	35.84	5.55	97.72
	FS	#	-	1215	2109	1395	4719
	TF	Т	27.36	2.58	7.55	1.99	39.48
		#	-	406	3680	225	4311
DIEN	VI A	T	44.21	2.24	6.12	0.94	53.51
-infer	XLA	#	-	405	2585	627	3617
	FS	T	17.54	2.45	3.51	0.7	24.20
		#	-	405	815	422	1642
	TF	Т	7.99	109.13	69.53	1.63	188.28
		#	-	309	3860	724	4893
Trans	VI A	T	23.63	107.48	40.20	4.24	175.55
former	XLA	#	-	309	1923	2065	4297
	FS	T	8.21	110.70	42.57	3.05	164.53
		#	-	243	1384	1765	3392
	TF XLA	Т	21.02	2.14	3.63	0.78	27.57
		#	-	116	1292	534	1942
A CD		T	17.51	1.66	1.81	19.76	40.74
ASR		#	-	84	496	376	956
	FS	T	6.00	1.92	1.63	0.36	9.92
		#	-	108	212	199	519
	TF	Т	23.31	6.05	6.14	1.60	37.10
		#	-	256	3674	890	4820
(1813 P. T	3.57 *	T	12.17	0.30	11.37	1.04	24.88
CRNN	XLA	#	_	7	993	406	1406
	FS	T	6.35	0.31	7.69	1.01	15.36
		#	-	8	311	388	707

密集算子的优化技术 (Ansor)

- 自动构建搜索方式,避免人工书写搜索模板
- 利用采样在完整的程序上进行性能验证,提高搜索效率和质量
- [RFC] Ansor: An Auto-scheduler for TVM (AutoTVM v2.0)

Ansor结果

- 被OSDI 2020接收
 - https://arxiv.org/abs/2006.06762

Single Op workloads on Intel CPU

Fused subgraph workloads on Intel CPU/NVIDIA GPU

Model Inference on Intel CPU

Model Inference on NVIDIA GPU

Model Inference on ARM CPU

Dynamic Shape的支持

- 现有AI编译框架更多在固定shape条件下进行优化
 - Shape的变化会造成优化中的计算和IO之间关系剧烈变化
 - 某些AI模型具有Dynamic Shape的特性,在固定shape的优化方式下性能影响比较大,有较大的优化空间
 - Seq2Seq模型
 - Sparse模型中的unique op
 - 模型训练中的不同batch size等等

• MLIR基础上支持Dynamic Shape的编译器

- MLIR ODM
- 和现有其他部分有机结合

PAI-Blade 通用推理优化框架

充分利用集成了Intel® DL Boost加速指令集 (INT8/BF16)的Intel Xeon CPU

Thanks