Radial distribution functions

gmx rdf

The radial distribution function (RDF) or pair correlation function $g_{AB}(r)$ between particles of type A and B is defined in the following way:

$$g_{AB}(r) = \frac{\langle \rho_B(r) \rangle}{\langle \rho_B \rangle_{local}}$$

$$= \frac{1}{\langle \rho_B \rangle_{local}} \frac{1}{N_A} \sum_{i \in A}^{N_A} \sum_{j \in B}^{N_B} \frac{\delta(r_{ij} - r)}{4\pi r^2}$$
(435)

with $\langle \rho_B(r) \rangle$ the particle density of type B at a distance r around particles A, and $\langle \rho_B \rangle_{local}$ the particle density of type B averaged over all spheres around particles A with radius r_{max} (see Fig. 52 C).

Fig. 52 Definition of slices in gmx rdf: A. $g_{AB}(r)$. B. $g_{AB}(r,\theta)$. The slices are colored gray. C. Normalization $\langle \rho_B \rangle_{local}$. D. Normalization $\langle \rho_B \rangle_{local}$, θ . Normalization volumes are colored gray.

Usually the value of r_{max} is half of the box length. The averaging is also performed in time. In practice the analysis program gmx rdf divides the system into spherical slices (from r to r+dr, see Fig. 52 A) and makes a histogram in stead of the δ -function. An example of the RDF of oxygen-oxygen in SPC water Fig. 53

1 of 2 11/3/23, 14:38

Fig. 53 $g_{OO}(r)$ for Oxygen-Oxygen of SPC-water.

With $\underline{\mathsf{gmx}}\ \mathsf{rdf}$ it is also possible to calculate an angle dependent $\mathsf{rdf}\ g_{AB}(r,\theta)$, where the angle θ is defined with respect to a certain laboratory axis \mathbf{e} , see $\underline{\mathsf{Fig.}}\ 52$ B.

$$g_{AB}(r,\theta) = rac{1}{\langle
ho_B
angle_{local, \, heta}} rac{1}{N_A} \sum_{i \in A}^{N_A} \sum_{j \in B}^{N_B} rac{\delta(r_{ij} - r)\delta(heta_{ij} - heta)}{2\pi r^2 sin(heta)}$$
 (436)

$$cos(\theta_{ij}) = \frac{\mathbf{r}_{ij} \cdot \mathbf{e}}{\|r_{ij}\| \|e\|} \tag{437}$$

This $g_{AB}(r,\theta)$ is useful for analyzing anisotropic systems. **Note** that in this case the normalization $\langle \rho_B \rangle_{local,\;\theta}$ is the average density in all angle slices from θ to $\theta+d\theta$ up to r_{max} , so angle dependent, see Fig. 52 D.

Copyright © 2023, GROMACS development team Made with <u>Sphinx</u> and <u>@pradyunsg</u>'s <u>Furo</u>

2 of 2 11/3/23, 14:38