1

Abstract

The algorithm checks the propositional formulas for patterns of unsatisfiability. $\,$

A Polynomial Time Algorithm for 3-SAT

Sergey Gubin

September 2, 2013

1 Introduction

3-SAT (or 3SAT) [1, 2, 3, 4] is a problem to determine whether a given logical formula, written in the conjunctive normal form, is satisfiable:

$$f = c_1 \wedge c_2 \wedge \ldots \wedge c_m, \tag{1}$$

- where clauses c_k , k = 1, 2, ..., m, are disjunctions of three or less literals on set of n Boolean variables

$$B = \{b_1, b_2, \dots, b_n\}.$$

In other words, given formula (1), it is required to determine whether there exists a truth assignment

$$\tau: B \rightarrow \{false, true\},$$

- which satisfies the formula:

$$f(\tau(B)) = true.$$

3-SAT was among four first NP-complete problems identified [1].

Using reductions [3, 4, or other], an effective solution of the problem can be deduced from the solutions of DHC and TCP described in [5]. But algorithm described in this article seems to be simple. Its computational complexity is $O(m^3)$, where m is the number of clauses. The algorithm uses the self-reducibility property of 3-SAT but in reverse. Instead of "bushing" the tree of possibilities, it "trims" the tree.

Each clause in 3-SAT dependents on three or less variables. So, it is fair

^{*}Author's~email:~sgubin@genesyslab.com

simple to build the truth-tables for each of the m clauses. The algorithm iterates the tables, filtering them against strings' compatibility with strings in the table for the first clause, the second clause, and so on up to the last clause. Each iteration reduces number of possibilities (does not increase it, at least) in the clauses left. The given 3-SAT instance is satisfiable iff there is a compatible combination of strings in the clauses' truth-tables.

Author expresses his gratitude for responses on previous version of the article.

2 Solution

Let's calculate truth table T_i for each clause c_i , i = 1, 2, ..., m. Let's enumerate strings in each of the tables. Let t_{ij} be j-th string in truth-table T_i . Two strings $t_{i_1j_1}$ and $t_{i_2j_2}$ from truth-tables T_{i_1} and T_{i_2} appropriately will be called compatible iff

- 1). Values of variables in strings $t_{i_1j_1}$ and $t_{i_2j_2}$ are compatible. This means that if there are common variables in clauses c_{i_1} and c_{i_2} , then the values of these variables in strings $t_{i_1j_1}$ and $t_{i_2j_2}$ must be the same.
- **2).** Both clauses c_{i_1} and c_{i_2} are true in strings $t_{i_1j_1}$ and $t_{i_2j_2}$.

In an obvious way, the notion of compatibility of truth-tables' strings can be extended on 3, 4, ..., m strings.

Let's rewrite formula (1) in the following form:

$$(c_{1} \wedge c_{2}) \wedge (c_{1} \wedge c_{3}) \wedge \dots \wedge (c_{1} \wedge c_{m}) \\ \wedge (c_{2} \wedge c_{3}) \wedge \dots \wedge (c_{2} \wedge c_{m}) \\ \vdots \\ \wedge (c_{m-2} \wedge c_{m-1}) \wedge (c_{m-2} \wedge c_{m}) \\ \wedge (c_{m-1} \wedge c_{m})$$

$$(2)$$

Let's present each conjunction $c_i \wedge c_j$, j > i, i = 1, 2, ..., m - 1 in (2) with a Boolean matrix C_{ij} calculated in the following way:

- 1). Size of matrix C_{ij} is $l_i \times l_j$, where l_i and l_j are numbers of strings in truth-tables T_i and T_j appropriately.
- 2). Elements of matrix C_{ij} are Boolean true or false.
- 3). Element $e_{\alpha\beta}$ of matrix C_{ij} is truth iff strings $t_{i\alpha}$ and $t_{j\beta}$ are compatible.

The size of the matrix is 8×8 at most. Let's call C_{ij} a matrix of compatibility of clauses c_i and c_j .

In accordance with (2), let's build the following box-matrix:

$$C_{12} \quad C_{13} \quad \dots \quad C_{1m-1} \qquad C_{1m} \\ C_{23} \quad \dots \quad C_{2m-1} \qquad C_{2m} \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ C_{m-2m-1} \quad C_{m-2m} \\ C_{m-1m}$$

$$(3)$$

The box-matrix contains at most 32m(m-1) elements, which are sorted over m(m-1)/2 compatibility matrices for clauses of formula (1).

Theorem 1. (The algorithm)

The following $O(m^3)$ -time algorithm decides whether formula (1) is satisfiable.

Start: Build box-matrix (3). This step takes time $O(m^2)$. If there is any matrix, whose elements all equal false, then stop - formula (1) is unsatisfiable.

Step k: For each k = 2, ..., m-1, deplete all matrices C_{ij} , $i \geq k$, in (3) ridding them of such elements $e_{\alpha\beta}$, that α column of matrix $C_{k-1}i$ and β column of matrix $C_{k-1}j$ do not have any true element in the same string. This step takes time $O(m^2)$. If in the result there is any matrix, whose elements all equal false, then stop - formula (1) is unsatisfiable.

Finish: Stop - formula (1) is satisfiable. It took time $O(m^3)$ to reach this point.

Proof. Correctness: there is an element in matrix (3), which survives all iterations, iff there are m different strings in the clauses' truth-tables, which are compatible.

Time: each of m-2 steps of the algorithm takes time $O(m^2)$.

Without any change, the algorithm can be applied to SAT per se. The computational complexity of such method will be $O(2^{k+l}m^3)$, where k and l are numbers of literals in the two longest clauses. In case of 3-SAT, the numbers are less than or equal 3.

Thus, formula (1) is satisfiable iff the algorithm does not create any matrix filled with false completely. Let's call such false-matrix a pattern of unsatisfiablity.

3 Formalization

Let k be an integer between 1 and m. Let $C_{ij,0}$, i > k, be the initial compatibility matrix of clauses c_i and c_j . Let $C_{ij,k}$ be that matrix (or, more precisely, what is left of it) after k-th step of the algorithm. Then, Step k of the algorithm can be formalized with the following formula

$$C_{ij,k} = (C_{ki,k-1}^T \times C_{kj,k-1}) \wedge C_{ij,k-1}, \tag{4}$$

- where the operations with Boolean matrices are defined in the following way. Let

$$C_{ki,k-1} = (x_{\alpha\beta}), \ C_{kj,k-1} = (y_{\alpha\gamma}), \ C_{ij,k-1} = (z_{\beta\gamma}).$$

Then,

$$C_{ki,k-1}^{T} = (x_{\beta\alpha});$$

$$C_{ki,k-1}^{T} \times C_{kj,k-1} = (\bigvee_{\alpha} x_{\beta\alpha} \wedge y_{\alpha\gamma}) = (w_{\beta\gamma});$$

$$C_{ij,k} = (w_{\beta\gamma}) \wedge (z_{\beta\gamma}) = (z_{\beta\gamma} \wedge z_{\beta\gamma}).$$

The formula (4) shows how the tree of possibilities does collapse.

References

- [1] Stephen Cook. The complexity of theorem-proving procedures. In Conference Record of Third Annual ACM Symposium on Theory of Computing. p.151-158, 1971
- [2] Stephen Cook. The P versus NP problem. http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf
- [3] Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y. New York: Plenum, p.85-103, 1972.
- [4] M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory of NP-Completeness. W.H. Freeman and Co. San Francisco, 1979.
- [5] Sergey Gubin. A Polynomial Time Algorithm for The Traveling Salesman Problem. http://arxiv.org/PS_cache/cs/pdf/0610/0610042.pdf