Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- The test has seven (7) pages, including this one.
- Enter your answer in the box(es) provided.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.

Page	Max	Points
2	20	
3	10	
4	20	
5	20	
6	20	
7	10	
Total	100	

Skills tested on this page:

Terminology	Notation	Background Algebra
Derivatives	Integration	Management of constants

Problem 1 (20 pts). Consider the following *first-order separable* differential equation:

$$y' = x(y+1)$$

(a) [5 pts] Find an *implicit form* of its general solution.

Test #1

(b) [5 pts] Find a particular solution that solves the following initial value problem

$$y' = x(y+1), \quad y(0) = e-1$$

(c) [5 pts] Are there any singular solutions? Find at least one.

y =

(d) [5 pts] Find an explicit particular solution that solves this other initial value problem

$$y' = x(y+1), \quad y(0) = -1$$

Skills on this page: Slope fields, Euler's Method

Problem 2 (5 pts—all or nothing). Which of the following is the slope field of the following differential equation?

$$y' = x^2 - x - 2$$

(You do not need to show work)

Problem 3 (5 pts). Use Euler's method with a step size h = 0.5 to obtain a numerical approximation of the following **initial value problem**

$$y' = x^2 y, \quad y(0) = 1$$

n	x_n	y_n	$f(x_n, y_n)$
0			
1			
2			

Skills on this page: First-order differential equations

Problem 4 (10 pts). Solve the following differential equation

$$(e^x + ye^{xy}) + (e^y + xe^{xy})y' = 0$$

Problem 5 (10 pts). Solve the following differential equation:

$$xy' = \sqrt{x^2 - y^2} + y$$

Skills on this page: First-order differential equations

Problem 6 (20 pts). Solve the following differential equation:

$$2x^2y - x^3y' = y^3$$

Skills on this page: Second-order differential equations

Problem 7 (10 pts). Solve the following initial value problem:

$$y'' + 4y = 2x - 3$$
, $y(0) = 1$, $y'(0) = 2$

Problem 8 (10 pts). Solve the following differential equation (assume y, y' > 0):

$$yy'' + \left(y'\right)^2 = 0$$

MATH 242

Skills on this page: Second-order differential equations

Problem 9 (10 pts—5 pts each part). Given the differential equation $x^2y'' - 2xy' + 2y = 0$,

- (a) Verify that the functions $y_1 = x$ and $y_2 = x^2$ are particular solutions.
- (b) Find a particular solution if initial conditions are given by y(1) = 3, y'(1) = 1.