ASSIGNMENT 1

Problem-01:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	3	4
P2	5	3
P3	0	2
P4	5	1
P5	4	3

If the CPU scheduling policy is FCFS, calculate the average waiting time and average turn around time.

Ans→

Problem -1			
	T) - (Burs		
Gantt chart	0 2 B //	3 7 10 ///// P1 Ps 1	
Process No	C·T	TAT	WT
Pı	7	7-3=4	4-4=
12	13	13-5 = 8	8-3=
P3	2	2-0=2	2-2=
P4	14	14-5=9	9-1=
P5	10	10 - 4 = 6	6-3:
Avg TAT =	(4+8+2+	9+6)/5 = 3	5.8 unit
AV9 WT =	(0+5+0+	8+3)/5= 3	.2 unit

Problem-02:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	3	1
P2	1	4
Р3	4	2
P4	0	6
P5	2	3

If the CPU scheduling policy is SJF preemptive, calculate the average waiting time and average turn around time.

Ans**→**

Problem - 2			
TAT=	CT-AT	e Year of the second of the	No.
WT =	TAT - BT		
Gantt	chart		
	1000	D= Pa	
		9 12 16	
0	0 /	3 12 10	
P.NO.	СТ	TAT	WT
P,	7	7-3=4	4-1=
P2	16	16-1=12	15-4=
P3	9	9-4=5	5-2=
P4	6	6-0=6	6-6 =
Ps	12	12-2 = 10	10-3=
AV BVA	T = (4+1	2+2+6+10) 12	= 8 unit

Problem-03:

Consider the set of 6 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	0	7
P2	1	5
Р3	2	3
P4	3	1
P5	4	2
P6	5	1

If the CPU scheduling policy is shortest remaining time first, calculate the average waiting time and average turn around time.

Ans→

TAT =	CT-AT		
wt =	TAT - BT		
Gantt	chart		
		Pa P6 Ps F	13 19
0 1	2 3 4	1 6 7 9	15 13
P.No	CT	TAT	W
		- 17	
Ρ,	19	19-0=19	19-7 =
P2	13	13-1=12	12-5
f3	6	6-2=4	4-3
Pq	4	4-3=1	1-1=
P5	9	9-4=5	5-2
P6	7	7-5=2	2-1=

Problem-04:

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	0	5
P2	1	3
P3	2	1
P4	3	2
P5	4	3

If the CPU scheduling policy is Round Robin with time quantum = 2 unit, calculate the average waiting time and average turn around time.

Ans-

Problem - 4				
TAT =	CT-AT			
WT = T	AT-BT			
Geantt	chart			
P1 P2	Pa P	P4 P5	Pal	P. Ps
0 2	4 5	7 9 11	12	13
P.NO.	CT	TAT		WT
f,	13	13-0=13		13 -5 =
12	12	12-1=11		11 - 3 =
Pa	5	5-2=3		3-1=2
P4	9	9-3=6		6-2=
P5	14	14-4=10		10-3=
Avg TAT	= (13+1	1+3+6+10)/5 :	= 8.6 un