Algorithm Complexity

"How long is this gonna take?"

Terence Parr
MSDS program
University of San Francisco

The goal

- Recall "algorithms + data structures = programs"
- Get a feel for algorithm performance operating on a specific data structure or structures
- Be able to meaningfully compare multiple algorithms' performance across a wide variety of input sizes
- Analyze best, typical, and worst-case behavior
- Reducing algorithm complexity is by far the most effective strategy for improving algorithm performance

Why can't we just time program execution?

- Execution time is a single snapshot that measures:
 - Choice of specific data structure(s)
 - Machine processor speed, memory bandwidth, possibly disk speed
 - Implementation language (in)efficiency (e.g., Python vs C)
 - One possible input (is it the best or worst-case scenario?)
 - One possible input size
- · And, we have to actually implement an algorithm in order to time it
- (Measuring exec time is still useful)

Algorithm complexity to the rescue

- Complexity analysis encapsulates an algorithm's performance across a wide variety of inputs and input sizes, *n*.
- In a sense, complexity analysis predicts future performance of your algorithm as, say, your company grows and the number of users on your website gets larger (be afraid of non-linear alg's)
- We can compare performance of two algorithms without having to implement them
- Comparisons are independent of machine speed, implementation language, and any optimization work done by the programmer

Space vs time complexity

- Space complexity measures the amount of storage necessary to execute an algorithm as a function of input size
- Time complexity measures the amount of time necessary to execute an algorithm as a function of input size
- There is often a trade-off between using more memory and increasing speed
- Be aware that space complexity is a thing, but we will focus on time complexity

If not exec time, what do we measure?

- We count fundamental operations of work; e.g., comparisons, floating-point operations, visiting nodes, swapping array elements.
- For example, in sorting, we (usually) count the number of comparisons required to sort n elements.
- Of primary interest is growth: how many more operations are required for each increase in input size
- If it takes 2 operations for input of size 2, how many operations are needed for input of size 3? Is it 3, 4, 8, or worse?
- Define T(n) = total operations required to operate on size n

Array sum example

- Let's count array accesses (memory is slow) and floating-point additions
- Charge two operations for each iteration to a single element in a (it's like accounting, charging work to input elements)
- $T(n) = \sum_{i=1}^{n} 1 + 1 = 2n$ which gives us great performance info!

```
s = 0.0
n = len(a)
for i in range(n):
    s = s + a[i]
```

Sample execution times for T(n)

n f(n)	log n	n	n l og	n ²	2 ⁿ	n!
10	0.003ns	0.01ns	0.033ns	0.1ns	1ns	3.65ms
20	0.004ns	0.02ns	0.086ns	0.4ns	1ms	77years
30	0.005ns	0.03ns	0.147ns	0.9ns	1sec	8.4x10 ¹⁵ yrs
40	0.005ns	0.04ns	0.213ns	1.6ns	18.3min	
50	0.006ns	0.05ns	0.282ns	2.5ns	13days	
100	0.07	0.1ns	0.644ns	0.10ns	4x10 ¹³ yrs	
1,000	0.010ns	1.00ns	9.966ns	1ms		
10,000	0.013ns	10ns	130ns	100ms		
100,000	0.017ns	0.10ms	1.67ms	10sec		
1'000,000	0.020ns	1ms	19.93ms	16.7min		
10'000,000	0.023ns	0.01sec	0.23ms	1.16days		
100'000,000	0.027ns	0.10sec	2.66sec	115.7days		
1,000'000,000	0.030ns	1sec	29.90sec	yaeta iis		

Graphical view of growth

Asymptotic behavior

- We count operations, not time, to make comparisons independent of algorithm impl language, machine speed, etc.
- We care about growth in effort given growth in input
- The best picture comes from imagining *n* getting very big and the worst-case input scenario
- This asymptotic behavior is called "big O" notation O(n)
- Therefore, ignore constants, keep only most important terms:
 - T(n) = 2n implies O(n)
 - $T(n) = n^3 + kn^2 + nlogn implies O(n^3)$
 - T(n) = k implies O(1)

Process

- Identify what we are counting as a unit of work
- Identify the key indicator(s) of problem size
 - Usually just some size n, but could be n, m if n x m matrix, for example
 - Even for n x m, you could claim worst-case that n is bigger, so n x n is input size but we'll compute complexity as a function of n
- Define T(n) = ... then solve for closed form
- Define O(n) as asymptotic behavior of T(n)

Tips

- With experience, you'll be able to go from algorithm description straight to O(n) by looking at max loop iterations
- Look for loops and recursion
- Verify loop steps by constant amount like 1 or k (e.g., not i *= 2)
- Loops nested k deep, going around n times, are often $O(n^k)$
- Ask yourself what the maximum amount of work is
 - Touching every element of the list means O(n), touching every element of an $n \times m$ matrix means O(nm) or $O(n^2)$
 - Touching every element of a tree with n nodes is O(n) but tracing the path from root to a leaf is O(log n) in balanced tree

Recursive algorithms are trickier

- Define initial condition: T(0) = 0
- Define recurrence relation for recursion then turn the crank

```
T(n) = 1 + T(n-1)

T(n) = 1 + 1 + T(n-2)

T(n) = 1 + 1 + 1 + T(n-3) = n + T(n-n) = n + T(0) = n + 0 = n
```

```
def sum(a): # recursive sum array
  if len(a)==0:
    return 0
  return a[0] + sum(a[1:])
```

Linear search

```
def find(a,x): # find x in a
    n = len(a)
    for i in range(n):
        if a[i]==x: return i
    return -1
```

- Count comparisons
- Charge 1 comparison per loop iteration
- T(n) is sum of n ones or n, giving O(n), same as sum(a)
- The intuition is that we have to touch every element of the input array once in the worst case
- What is complexity of max or argmax for array of size n?
- What is complexity to zero out an array of size n?
- Zero out matrix with n total elements? (careful)

Don't count lines of code, count operations

- What is O(n) for findw()?
- Let n be len(words),
 m be len(a)

```
def findw(words, a):
    c = 0
    for i in range(len(a)):
        if words[i] in a:
            c += 1
    return c
```

```
• T(n) = \sum_{i=1}^{n} 1 + cost \ of \ in \ operation
= n + \sum_{i=1}^{n} cost \ of \ in \ operation
= n + ???
```

Don't count lines of code

- What is O(n) for findw()?
- Let n be len(words),
 m be len(a)

```
def findw(words:list, a:set):
    c = 0
    for i in range(len(a)):
        if words[i] in a:
            c += 1
    return c
```

```
• T(n) = \sum_{i=1}^{n} 1 + cost \ of \ in \ operation
= n + \sum_{i=1}^{n} cost \ of \ in \ operation
= n + \sum_{i=1}^{n} 1 = n + n = 2n which means this findw is O(n)
```

Don't count lines of code

- What is O(n) for findw()?
- Let n be len(words),
 m be len(a)

```
def findw(words:list, a:list):
    c = 0
    for i in range(len(a)):
        if words[i] in a:
            c += 1
    return c
```

- $T(n) = \sum_{i=1}^{n} 1 + cost \ of \ in \ operation$ = $n + \sum_{i=1}^{n} cost \ of \ in \ operation$ = $n + \sum_{i=1}^{n} m = n + n \times m = n \times m$
- So, this findw is O(nm) or, more commonly, $O(n^2)$

List operation	Worst Case
Сору	O(n)
Append[1]	O(1)
Pop last	O(1)
Pop intermediate	O(k)
Insert	O(n)
Get Item	O(1)
Set Item	O(1)
Delete Item	O(n)
Iteration	O(n)
Get Slice	O(k)
Set Slice	O(k+n)
<u>Sort</u>	O(n log n)
Multiply	O(nk)
x in s	O(n)
min(s), max(s)	O(n)
Get Length	O(1)

Set operation	Average Case	Worst Case
Сору	O(n)	O(n)
Get Item	O(1)	O(n)
Set Item	O(1)	O(n)
Delete Item	O(1)	O(n)
Iteration	O(n)	O(n)

From https://wiki.python.org/moin/TimeComplexity

Faster than linear search via binary search trees (BST)

- Let *n* be num of values, count comparisons
- Charge 2 comparisons to each iteration
- How many iterations is key question?

```
p = root
while p is not None:
    if p.value==x: return p
    if x < p.value: p = p.left
    else: p = p.right</pre>
```


What is average height? What is max height?

USUALLY faster than linear search

What is average height? What is max height?


```
p = root
while p is not None:
    if p.value==x: return p
    if x < p.value: p = p.left
    else: p = p.right</pre>
```


Careful of loop iteration step size

- Let n be the input size
- Let's count math ops
- Charge 2 ops per iteration
- How many iterations?

```
• T(1) = 0
 T(n) = 2 + T(n/2)
      = 2 + 2 + T(n/4)
      = 2 + 2 + 2 + T(n/2^3) stop when 2^i reaches n, at T(n/n)=T(1)
```

```
def intlog2(n): # for n>=1
    if n == 1: return 0
    count = 0
    while n > 0:
        n = int(n / 2)
        count += 1
    return count-1
```

Sum of $\log n$ twos = $2 \log n$, giving $O(\log n)$

Common recurrence relations / big O

Recurrence	Expanded	Complexity	Scenario
T(n) = 1 + T(n-1)	T(n) = 1 + 1 + 1 + T(n-3) = n	O(n)	Process one item then rest of items
T(n) = n + T(n-1)	T(n) = n + (n-1) + (n-2) + T(n-3) = $n + (n-1) + (n-2) + + 2 + 1$ = $n(n-1)/2 = n^2/2$	$O(n^2)$	Looping through all <i>n</i> items, eliminating one from consideration each iteration or nested loops
T(n) = 1 + T(n/2)	T(n) = 1 + 1 + 1 + T(n/8) = log n	O(log n)	Cut amount of work in half each iteration, doing 1 operation
T(n) = n + T(n/2)	T(n) = n + n/2 + n/4 + T(n/8) = = n + n/2 + n/4 + + 2 + 1 = 2n	O(n)	Cut amount of work in half each iteration, but examine <i>n</i> items
T(n) = n + 2T(n/2)	T(n) = n + 2T(n/2) = = n + 2(n/2) + 2T(n/4) = n + n + n + T(n/8) = n log n	O(n log n)	Divide and conquer algs. Cut amount of work in half each iteration, but process both halves, the combine results in linear time

Complexity	Scenario	Sample operations
O(1)	Perform constant number of ops	Hashtable lookup, access a[i], insert into middle of linked list
O(n)	Process one item then rest of items; or, cut amount of work in half each iteration, but examine <i>n</i> items	Linear search, zero an array, max, sum array, merge two sorted lists, insert into array, bucket sort, find median
$O(n^2)$	Looping through all <i>n</i> items, eliminating one from consideration each iteration	Touch all elems of matrix, bubble sort, worst-case quicksort, process all pairs of <i>n</i> items
O(log n)	Cut amount of work in half each iteration, doing 1 operation	Binary search, search in binary search tree (BST), add to BST
O(n log n)	Divide and conquer algs. Cut amount of work in half each iteration, but process both halves, the combine results in linear time.	Average quicksort, mergesort, median by sorting/picking middle item

Compute complexity following our process

```
Algorithm 1 - generic for-loop code
Require: Input X with |X| = n
 1: Do c_a things to initialise
 2: for i = 1 to n do
        c_i things to X_i
        for j = 1 to n do
            c_i things to X_i
            c_{ij} things to X_i and X_j
           for k = 1 to n do
 7:
               c_k things to X_k
               c_{ik} things to X_i and X_k
               c_{ik} things to X_i and X_k
10:
               c_{ijk} things to X_i, X_j and X_k
11:
            end for
12:
        end for
14: end for
15: Do c_b things to return result
```

- Identify unit of work
- Identify key size indicator
- Define $T(n) = \dots$
- Reduce *T*(*n*) to closed form
- O(n) is asymptotic behavior of T(n)

Compute complexities for these too

Algorithm 2 – example 1 Require: Input X with |X| = n1: sum = 02: for i = 1 to n do 3: for j = 1 to n do 4: $sum \leftarrow sum + 1$ 5: end for6: end for7: for k = 1 to n do 8: $X_k \leftarrow k$ 9: end for10: return X

```
Algorithm 3 – example 2

1: sum1 = 0

2: for i = 1 to n do

3: for j = 1 to n do

4: sum1 \leftarrow sum1 + 1

5: end for

6: end for

7: sum2 = 0

8: for i = 1 to n do

9: for j = 1 to i do

10: sum2 \leftarrow sum2 + 8

11: end for

12: end for
```

Binary search

- If we know data is sorted, we can search much faster than linearly
- Means we don't have to examine every element even worst-case

```
left = 0; right = n-1
while left<=right:
    mid = (first + last)/2
    if a[mid]==x: return mid
    if x < a[mid]: right = mid-1
    else: left = mid+1</pre>
```


Exercise: What is complexity? Show recurrence relation then closed form.

