Chap 23 : Quelques compléments sur les groupes

 (G,\cdot) désignera un groupe

I. Groupes monogènes, cyclique, ordre d'un élément

$$a \in G \quad \theta_a \begin{cases} (\mathbb{Z},+) & \to (G,\cdot) \\ \\ n & \mapsto a^n = \begin{cases} \overbrace{a \cdot \ldots \cdot a}^{n \text{ fois}} & \sin n > 0 \\ \\ e & \sin n = 0 \end{cases} \quad \text{est un morphisme de groupe de } (\mathbb{Z},+) \text{ dans } (G,\cdot) \end{cases}$$

 $\operatorname{Im}(\theta_a) = \{a^n, n \in \mathbb{Z}\}\$ est un sous groupe engendré par a: on le note $\langle a \rangle = \{a^n, n \in \mathbb{Z}\}\$

On dit que G est monogène s'il existe $a \in G$ tel que $G = \langle a \rangle \Leftrightarrow \theta_a$ surjectif

 $\ker(\theta_a)$ est un sous groupe de \mathbb{Z} : $\ker\theta_a=\alpha\mathbb{Z}$ avec $\alpha\in\mathbb{Z}$

- * Si θ_a injectif, $\alpha = 0$
- * Sinon, $\alpha \in \mathbb{N}^*$

Si θ_a n'est pas injectif, on dit que a est d'ordre fini. On définit $ord(a) = \alpha \in \mathbb{N}^*$ tel que $\ker \theta_a = \alpha \mathbb{Z}$ $ord(a) = \min\{k \in \mathbb{N}^*, a^k = e\}$

 $a \in G$ d'ordre n

$$\overline{\theta_a} \begin{cases} \mathbb{Z}/n\mathbb{Z} & \to < a > \subset G \\ \overline{k} & \mapsto a^k \end{cases} \text{ est un isomorphisme de groupes de } (\mathbb{Z}/n\mathbb{Z}, +) \text{ dans } < a > 0$$

Si a est d'ordre $n, < a >= \{a^k, k \in \llbracket 0, n-1 \rrbracket \}$ et card(a) = n

Un groupe cyclique est un groupe monogène et fini : $\operatorname{card} G$ est l'ordre du groupe G

Tout sous-groupe cyclique de cardinal n est isomorphe à $(\mathbb{Z}/_{n\mathbb{Z}},+)$

Pour tout
$$x \in G$$
, $\operatorname{ord}(x) | \operatorname{ord}(G)$ Si $x = a^k$, $\operatorname{ord}(x) = \frac{n}{k \wedge n}$

II. Résultats plus généraux sur les groupes finis

(Plus on avancera dans cette partie, plus on s'éloignera du programme)

 (G, \cdot) groupe fini de cardinal n

Pour tout H sous groupe de G, card $H \mid \operatorname{card} G$

Preuve : \Re : $(x\Re y) \Leftrightarrow x \in yH$ est une relation d'équivalence

Les classes d'équivalences pour $\mathfrak R$ ont toutes le cardinal de H

Elles sont en union disjointe dans G: card $H \mid \operatorname{card} G$

Théorème de Lagrange : $a \in G$ avec G fini de cardinal n $a^n = e$

Soit φ morphisme de groupes de G dans G':

 $\operatorname{card} G = \operatorname{card}(\ker \varphi) \times \operatorname{card}(\operatorname{Im} \varphi)$

Preuve: $H_0 = \ker \varphi$ On pose $G_{H_0} = \{\bar{x}, x \in G\} = \{\text{classes d'équivalences de } \Re \text{ pour } H_0\}$

On montre $a \cdot H_0 = H_0 \cdot a$: $x \in \ker \varphi, \varphi(a \cdot x \cdot a^{-1}) = \varphi(a) \cdot \varphi(x) \cdot \varphi(a^{-1}) = e \Longrightarrow a \cdot x \cdot a^{-1} \in \ker \varphi$

On en déduit que si $x\Re x'$ et $y\Re y'$, alors $xy\Re x'y'$ et $\overline{xy} = \overline{x'y'}$ (Car $xy = x'h_1y'h_2 = x'y'h_1'h_2$)

On définit une lci \cdot sur G/H_0 : $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$: $(G/H_0, \circ)$ est un groupe

On construit un unique $\overline{\varphi}: G/H_0 \to G'$ tel que pour tout $x \in G, \overline{\varphi}(x) = \varphi(x)$

On vérifie qu'il existe et que c'est un isomorphisme de groupes dans ${
m Im} \overline{\phi}$

 $\operatorname{card} G / H_0 = \operatorname{card} (\operatorname{Im} \varphi) \qquad \operatorname{card} (G) = \operatorname{card} (H_0) \operatorname{card} (G / H_0) = \operatorname{card} (\ker \varphi) \operatorname{card} (\operatorname{Im} \varphi)$

Si, pour H sous-groupe de G, et pour tout $a \in G$, $a \cdot H = H \cdot a$, on dit que H est distingué

III. Retour sur les groupes cycliques (et au programme)

Rappel: $(\mathbb{Z}/n\mathbb{Z})^* = \{\text{inversibles de } \mathbb{Z}/n\mathbb{Z}\} = \{\overline{k}, k \land n = 1\}$

Pour tout $n \in \mathbb{N}^*$, on définit la caractéristique d'Euler : $\varphi(n) = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^*) = \operatorname{card}\{k \in [0, n-1], k \land n = 1\}$

Pour tout p premier, $\varphi(p) = p-1$

Pour tout $(m,n) \in \mathbb{N}^2$ tels que $m \land n = 1$, $\varphi(mn) = \varphi(m)\varphi(n)$

Preuve: Lemme chinois: $\mathbb{Z}/_{mn\mathbb{Z}} \simeq (\mathbb{Z}/_{m\mathbb{Z}}) \times (\mathbb{Z}/_{n\mathbb{Z}})$ si $m \neq n \Rightarrow$ isomorphisme

G et H deux groupes cycliques

 $G \times H$ est cyclique ssi card $G \wedge \text{card } H = 1$

Preuve: Mg $\operatorname{ord}(a,b) = \operatorname{ord}(a) \vee \operatorname{ord}(b)$ Si $m \neq a \Rightarrow a$ as d'élément d'ordre a non cyclique

IV. Groupe symétrique

 $n \in \mathbb{N}^*$ $\mathfrak{S}_n = \{\text{permutations de } \llbracket 1, n \rrbracket \} = \{f \text{ bijective de } \llbracket 1, n \rrbracket \}$

 (\mathfrak{S}_n, \circ) est un groupe de cardinal n!

 $\sigma \in \mathfrak{S}_n$ Pour tout $(x, y) \in \llbracket 1, n \rrbracket^2$, on dit que $x \Re y$ s'il existe $k \in \mathbb{Z}, x = \sigma^k(z)$

 \Re est une relation d'équivalence. L'orbite d'un élément $x \in \llbracket 1, n \rrbracket$ est la classe d'équivalence de x

 $orb(x) = {\sigma^k(x), k \in \mathbb{Z}} = {x, \sigma(x), ..., \sigma^{d-1}(x)} \text{ avec } d = ord(x)$

Un cycle est une permutation σ de \mathfrak{S}_n qui a une unique orbite non réduite à un point

On note $\sigma = (x_1, \sigma(x_1)...\sigma^k(x_1))$

On appelle support du cycle l'orbite unique non réduite à un point de σ

 $\sigma, \tau \in \mathfrak{S}_n$ deux cycles à supports disjoints. On a alors $\sigma \circ \tau = \tau \circ \sigma$

Soit $\sigma \in \mathfrak{S}_n$ Il existe $\sigma_1 ... \sigma_p \in \mathfrak{S}_n$ des cycles à supports 2 à 2 disjoints tels que :

 $\sigma = \sigma_1 \circ ... \circ \sigma_p$ cette décomposition est unique à l'ordre près

Preuve: Existence: on considère les orbites non réduites à un point ⇒ 2 à 2 disjointes...

Unicité : on suppose qu'on en a une autre : $\sigma = \tau_1 \circ ... \circ \tau_p$ On considère leurs orbites

On distingue à chaque fois le cas où l'orbite de x n'est pas réduite à un point de celui où elle l'est

On montre que les cycles des au_i obt pour support les orbites \Rightarrow comme les σ_i

On appellera p-cycle un cycle dont le support a p éléments ($p \ge 2$)

On appellera transposition les 2 – cycles : $\tau = (i, j) = (j, i)$ avec $j, i \in [1, n]$ et $j \neq i$

$$\sigma = (a_1...a_p) \Leftrightarrow \sigma^{-1} = (a_p, a_{p-1}, ...a_1)$$

On dit que σ inverse i et j si i < j et $\sigma(i) > \sigma(j)$

Soit
$$\sigma = (a_1...a_n) \in \mathfrak{S}_n$$
 un p – cycle. Soit $\tau \in \mathfrak{S}_n$

$$\tau \circ \sigma \circ \tau^{-1} = (\tau(a_1), ..., \tau(a_p))$$

Les transpositions engendrent \mathfrak{S}_n : Toute permutation s'écrit comme produit de transpositions (non unique)

Preuve : Récurrence sur n : montrer le cas où $\sigma(n+1) = n+1$, puis s'y ramener avec une transposition dans le cas général

Soit
$$\sigma \in \mathfrak{S}_n$$
 La signature de $\sigma : \varepsilon(\sigma) = \prod_{(i,j) \in \mathbb{N}^2} \frac{\sigma(i) - \sigma(j)}{i - j}$

 $\varepsilon(\sigma)\in\{-1,1\} \text{ et } \varepsilon(\sigma)=(-1)^{N_0} \text{ où } N_0 \text{ est le nombre d'inversions de } \sigma$

Preuve : $\{i,j\} \mapsto \{\sigma(i),\sigma(j)\}$ bijection de $\mathcal{G}_2(\mathbb{N}_n)$. Valeur absolues \Rightarrow dissociation dividende/diviseur $\Rightarrow |\varepsilon(\sigma)| = 1$ + Le signe change quand dividende et diviseur sont de signes \neq

 ε est un morphisme de groupes

(Preuve : comme la dérivation composée + bijectivité)

Soit τ transposition : $\varepsilon(\tau) = -1$

(Compter les inversions)

Soit σ p-cycle : $\varepsilon(\sigma) = (-1)^{p-1}$

(Conséquence de $\varepsilon(\tau) = -1$)

 $\mathcal{A}_n = \ker \varepsilon$ est le groupe alterné, sous groupe de \mathfrak{S}_n

$$\operatorname{card}(\mathcal{A}_n) = \frac{\operatorname{card}(\mathfrak{S}_n)}{2} = \frac{n!}{2}$$

Les 3-cycles engendrent A_n

(Utiliser les 2-cycles)