

SDS 384 11: Theoretical Statistics

Lecture 4: Sub-gaussian and sub-exponential random variables

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

 $\verb|www.cs.cmu.edu|/\sim psarkar/teaching|$

Sub-Gaussian random variables

Theorem

For X_1, \ldots, X_n independent sub-gaussian random variables with sub-gaussian parameters σ_i and $E[X_i] = \mu_i$, for $\forall t > 0$,

$$P\left(\sum_{i}(X_{i}-\mu_{i})\geq t\right)\leq e^{-\frac{t^{2}}{2\sum_{i}\sigma_{i}^{2}}}$$

- If $X_i \in [a, b]$, $E[X_i] = 0$, using Hoeffding's lemma we have: $\sigma_i^2 = (b a)^2/4$.
- So, the above theorem immediately gives the original Hoeffding inequality back.

$$P\left(\sum_{i} X_{i} \ge t\right) \le e^{-\frac{2t^{2}}{n(b-a)^{2}}}$$

ı

Sub-exponential random variables

Definition

X is sub-exponential with parameters (ν, b) if, $\forall |\lambda| < 1/b$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \nu^2}{2}$$

Examples:

- Sub-Gaussian X with parameter σ is sub-exponential with parameters $(\sigma, b) \ \forall b > 0$.
- How about the converse?

Sub-exponential but not sub-gaussian

Example

Let $Z \sim N(0,1)$ and consider the random variable $X = Z^2$. For $\lambda < 1/2$, we have:

Sub-exponential but not sub-gaussian

Example

Let $Z \sim N(0,1)$ and consider the random variable $X = Z^2$. For $\lambda < 1/2$, we have:

$$E[e^{\lambda(X-1)}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda(z^2 - 1)} e^{-z^2/2} dz$$

$$= e^{-\lambda} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-z^2(1 - 2\lambda)/2} dz$$

$$= \frac{e^{-\lambda}}{\sqrt{1 - 2\lambda}}$$

$$\leq e^{2\lambda^2} \quad \forall |\lambda| < 1/4$$

Sub-exponential but not sub-gaussian

Example

Let $Z \sim N(0,1)$ and consider the random variable $X = Z^2$. For $\lambda < 1/2$, we have:

$$\begin{split} E[e^{\lambda(X-1)}] &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda(z^2 - 1)} e^{-z^2/2} dz \\ &= e^{-\lambda} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-z^2(1 - 2\lambda)/2} dz \\ &= \frac{e^{-\lambda}}{\sqrt{1 - 2\lambda}} \\ &\le e^{2\lambda^2} \quad \forall |\lambda| < 1/4 \end{split}$$

The MGF is only defined for $\lambda < 1/2$. So this is a sub-exponential random variable with parameter (2,4), but not a sub-gaussian random variable.

Concentration

Theorem

Let X be a sub-exponential random variable with parameters (ν, b) . Then,

$$P(X \ge \mu + t) \le \begin{cases} e^{-\frac{t^2}{2\nu^2}} & \text{if } 0 \le t \le \frac{\nu^2}{b} \\ e^{-\frac{t}{2b}} & \text{if } t \ge \frac{\nu^2}{b} \end{cases}$$

• For small t this is sub-gaussian in nature, whereas for large t the exponent decays linearly with t.

Proof.

$$\begin{split} P(X \geq t) & \leq \inf_{\lambda \geq 0} \mathrm{e}^{-\lambda t} E[\mathrm{e}^{\lambda X}] \\ & \leq \inf_{\lambda \geq 0} \exp\left(\underbrace{-\lambda t + \lambda^2 \nu^2 / 2}_{f(\lambda)}\right) & \text{When } 0 \leq \lambda < 1/b \end{split}$$

• If
$$\frac{t}{\nu^2} \le \frac{1}{b}$$
,

$$\inf_{\lambda \ge 0} f(\lambda) = f(t/\nu^2) = -\frac{t^2}{2\nu^2}$$

• If $\frac{t}{\nu^2} > \frac{1}{b}$, then $f(\lambda)$ is minimized at the boundary $\lambda' = 1/b$. $f(\lambda') = -t/b + \nu^2/2b^2 \le -\frac{t}{2b}$

• Its typically difficult to check if a random variable is subexponential.

- Its typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, if $|E[(X-\mu)^k]|\leq \frac{1}{2}k!\sigma^2b^{k-2}$ for $k\geq 2$.

- Its typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, if $|E[(X-\mu)^k]|\leq \frac{1}{2}k!\sigma^2b^{k-2}$ for $k\geq 2$.

- Its typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, if $|E[(X-\mu)^k]|\leq \frac{1}{2}k!\sigma^2b^{k-2}$ for $k\geq 2$.

• A bounded random variable with $|X - \mu| \le b$ satisfies the above.

Bernstein's condition and the sub-exponential property

Theorem

If X ($E[X] = \mu$, $var(X) = \sigma^2$) satisfies the Bernstein condition with parameter b > 0, then X is sub-exponential with ($\sqrt{2}\sigma$, 2b).

Proof.

$$\begin{split} E[e^{\lambda(X-\mu)}] &= \sum_{k=0}^{\infty} \frac{\lambda^k E[(X-\mu)^k]}{k!} \\ &= 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \frac{|\lambda|^k \sigma^2 b^{k-2}}{2} \\ &\leq 1 + \frac{\lambda^2 \sigma^2}{2} \left(1 + \sum_{k=1}^{\infty} (|\lambda| b)^k \right) \\ &= 1 + \frac{\lambda^2 \sigma^2}{2(1-|\lambda| b)} \quad \text{For } |\lambda| < 1/b \\ &\leq e^{\frac{\lambda^2 \sigma^2}{2(1-|\lambda| b)}} \leq e^{\lambda^2 \sigma^2} = e^{\frac{\lambda^2 (\sqrt{2} \sigma)^2}{2}} \quad \text{For } |\lambda| < 1/2b \end{split}$$

Theorem

If X with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, then

$$P(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}}$$
 (1)

• Why not use Hoeffding?

Theorem

If X with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, then

$$P(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}}$$
 (1)

- Why not use Hoeffding?
- ullet For small t, Bernstein gives us a subgaussian tail with parameter σ

Theorem

If X with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, then

$$P(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}}$$
 (1)

- Why not use Hoeffding?
- \bullet For small t, Bernstein gives us a subgaussian tail with parameter σ
- In contrast, Hoeffding always gives us a subgaussian tail with parameter $b \ge \sigma$.

Proof.

$$P(X - \mu \ge t) \le \inf_{\lambda \in [0, 1/b)} e^{-\lambda t + M} X_{-\mu}(\lambda)$$

$$= \inf_{\lambda \in [0, 1/b)} e^{-\lambda t + \frac{\lambda^2 \sigma^2 / 2}{1 - b\lambda}}$$

$$\le e^{-\frac{t^2}{2(bt + \sigma^2)}} \qquad \text{Setting } \lambda = \frac{t}{bt + \sigma^2} \in [0, 1/b)$$

a

sub-exponential property

- The sub-exponential property is preserved under summation of independent random variables.
- Consider X_k , $k=1,\ldots,n$ independent sub-exponential (ν_k,b_k) random variables with $E[X_k]=\mu_k$.

•

$$E\left[e^{\lambda \sum_{k}(X_{k}-\mu_{k})}\right] = \prod_{i=1}^{n} E\left[e^{\lambda(X_{i}-\mu_{i})}\right]$$

$$\leq \prod_{i=1}^{n} e^{\frac{\lambda^{2}\nu_{k}^{2}}{2}} \quad \text{For } |\lambda| \leq 1/\max_{i} b_{i}$$

• So $\sum_k (X_k - \mu_k)$ is sub-exponential with parameters $(\sqrt{n}\nu_*, b_*)$.

$$b_* = \max_k b_k$$
, and $\nu_*^2 = \sum_i \nu_i^2 / n$ (2)

Concentration of sub-exponential mean

• Plugging into our previous tail bound we have:

$$P(\bar{X}_n - \mu \ge t) \le \begin{cases} e^{-\frac{nt^2}{2\nu_*^2}} & \text{for } 0 \le t \le \frac{\nu_*^2}{b_*} \\ e^{-\frac{nt}{2b_*}} & \text{for } t > \frac{\nu_*^2}{b_*} \end{cases}$$

- Given m data points u_i , i = 1 : m in \mathbb{R}^d , one wants to compute low dimensional projections $F(u_i)$, $F: \mathbb{R}^d \to \mathbb{R}^n$ with n << d.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.

- Given m data points u_i , i = 1 : m in \mathbb{R}^d , one wants to compute low dimensional projections $F(u_i)$, $F: \mathbb{R}^d \to \mathbb{R}^n$ with n << d.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$||u_i - u_j||^2 (1 - \epsilon) \le ||F(u_i) - F(u_j)||^2 \le ||u_i - u_j||^2 (1 + \epsilon)$$
 (3)

- Given m data points u_i , i=1:m in \mathbb{R}^d , one wants to compute low dimensional projections $F(u_i)$, $F:\mathbb{R}^d\to\mathbb{R}^n$ with n<< d.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$||u_i - u_j||^2 (1 - \epsilon) \le ||F(u_i) - F(u_j)||^2 \le ||u_i - u_j||^2 (1 + \epsilon)$$
 (3)

• Construct a random matrix $X \in \mathbb{R}^{n \times d}$ with $X_{ij} \sim N(0,1)$.

- Given m data points u_i , i=1:m in \mathbb{R}^d , one wants to compute low dimensional projections $F(u_i)$, $F:\mathbb{R}^d\to\mathbb{R}^n$ with n<< d.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$\|u_i - u_j\|^2 (1 - \epsilon) \le \|F(u_i) - F(u_j)\|^2 \le \|u_i - u_j\|^2 (1 + \epsilon)$$
 (3)

- Construct a random matrix $X \in \mathbb{R}^{n \times d}$ with $X_{ii} \sim N(0,1)$.
- Define F(u) as Xu/\sqrt{n}

Theorem

As long as m > 2, and $u_i \neq u_j, \forall i \neq j$ and $n = \Omega(\log(m/\delta)/\epsilon^2)$, Equation (3) is satisfied with probability at least $1 - \delta$.

•

We can do this easily with our tools

Proof.

- u' = u/||u||. We will assume that $u \neq 0$.
- Let $Y := \frac{\|F(u)\|^2}{\|u\|^2} = \sum_i (Xu')_i^2$.
- But $Y_i := (Xu')_i = \sum_j X_{ij} u'_j \sim N(0,1)$
- Note that Y_i^2 is sub-exponential with parameters (2,4). So by the summation property, Y is sub-exponential ($2\sqrt{n}$,4).
- So $P\left(\left|\frac{Y}{n}-1\right| \ge t\right) \le 2e^{-\frac{nt^2}{8}}$ for $t \in (0,1)$.
- $P\left(\left|\frac{\|F(u_i-u_j)\|^2}{\|u_i-u_j\|^2}-1\right| \ge \epsilon \text{ For some } u_i \ne u_j\right) \le 2\binom{m}{2}e^{-\frac{n\epsilon^2}{8}}$
- If $m \ge 2$ and $n > \frac{16}{\epsilon^2} \log(m/\delta)$, the above probability can be made as small as δ .