LFC 2021, sessione 2

Nel seguito, dato lo stato P di un automa deterministico A, si indica con $P[Y_1 ... Y_n]$ lo stato di A che si raggiunge da P tramite il cammino $Y_1 ... Y_n$.

Si assumono inoltre le seguenti definizioni.

 \mathcal{N}_1 : Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	a	b	ϵ
\overline{A}	$\{B,E\}$	Ø	Ø
B	$\{C\}$	Ø	$\{E\}$
C	Ø	$\{D\}$	Ø
\overline{D}	$\{E\}$	Ø	$\{B\}$
\overline{E}	Ø	$\{E\}$	$\{A\}$

 \mathcal{G}_1 : Sia \mathcal{G}_1 la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & BA \mid b \\ B & \rightarrow & b \mid \epsilon \\ A & \rightarrow & AaBS \mid \epsilon \end{array}$$

 S_1 : Sia S_1 il seguente SDD:

Esercizio 1

Sia \mathcal{G} la grammatica con insieme di produzioni $\{S \to Ad, A \to aB \mid bBc, B \to dA \mid \epsilon\}$. Se \mathcal{G} è LL(1) rispondere "VERO", altrimenti rispondere "FALSO".

Esercizio 2

Sia \mathcal{G}_j la grammatica con produzioni nell'insieme $\{R \to R + R \mid RR \mid R* \mid (R) \mid a \mid b\}$ e sia \mathcal{G}_k la grammatica con produzioni nell'insieme $\{R \to R + S \mid S, S \to ST \mid T, T \to T* \mid (T) \mid a \mid b\}$. Se $\mathcal{L}(\mathcal{G}_j) = \mathcal{L}(\mathcal{G}_k)$ rispondere "STESSO LINGUAGGIO". Altrimenti: (i) fornire una parola w che appartiene a uno dei due linguaggi $\mathcal{L}(\mathcal{G}_j)$ e $\mathcal{L}(\mathcal{G}_k)$ ma non appartiene all'altro; (ii) dire a quale dei due linguaggi non appartiene w.

Esercizio 3

Sia $r = (a \mid b)^*ab \mid (a^* \mid b^*)$ e sia \mathcal{D} il DFA minimo per il riconoscimento di $\mathcal{L}(r)$. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 4

Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 5

Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction e Q lo stato iniziale di \mathcal{D} . Dire a quale sottoinsieme degli stati di \mathcal{N}_1 corrisponde Q[ababb].

Esercizio 6

Chiamiamo \mathcal{D}_m il minimo DFA equivalente a \mathcal{N}_1 . Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali

Esercizio 7

Scrivere l'intera riga della tabella di parsing LL(1) per \mathcal{G}_1 relativa al non-terminale A.

Esercizio 8

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 , J lo stato iniziale di \mathcal{A} , T la tabella di parsing LR(1) per \mathcal{G}_1 . Se T non contiene alcun conflitto nello stato $J[\![BAa]\!]$, rispondere "NO CON-FLICT". Altrimenti, per ciascuna X tale che $T[J[\![BAa]\!], X]$ contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 9

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LALR(1) di \mathcal{G}_1 , H lo stato iniziale di \mathcal{A} , T la tabella di parsing LALR(1) per \mathcal{G}_1 . Se non ci sono conflitti nello stato H[BA] di T, rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che T[H[BA], X] contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 10

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LALR(1) di \mathcal{G}_1 , H lo stato iniziale di \mathcal{A} , T la tabella di parsing LALR(1) per \mathcal{G}_1 . Se non ci sono conflitti nello stato $H[\![b]\!]$ di T, rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che $T[H[\![b]\!], X]$ contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 11

Sia P lo stato iniziale del parser LALR(1) per la grammatica dello SDD S_1 . Il parser ha 4 conflitti shift/reduce. Supponiamo che tutti e 4 i conflitti siano risolti a favore di reduce. Supponiamo inoltre che l'attributo n.lexval del terminale n sia il numero intero rappresentato da n. Se l'input 4b3a3 non è riconosciuto, rispondere "ERROR". Altrimenti dire quale valore viene valutato per S.v su input 4b3a3.

Esercizio 12

Sia P lo stato iniziale del parser LALR(1) per la grammatica dello SDD S_1 . Il parser ha 4 conflitti shift/reduce. Indicare in quali entry [stato, simbolo] del parser si trovano i conflitti dovuti al fatto che la grammatica non esprime la precedenza dell'operatore a di moltiplicazione sull'operatore b di somma. Per identificare la prima componente delle entry, usare la notazione $P[\![\alpha]\!]$ definita nel preambolo del presente documento.

Esercizio 13

Sia $\mathcal G$ la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & Aa \mid Bb \\ A & \rightarrow & aAb \mid ab \\ B & \rightarrow & aBbb \mid abb \end{array}$$

- 1. Dire qual è l'upper bound al numero di stati dell'automa LR(0) per il parsing SLR(1) di \mathcal{G} .
- 2. Dire qual è l'upper bound al numero di stati dell'automa LR(1) per il parsing LR(1) di \mathcal{G} .
- 3. Evitando di ricorrere alla computazione della tabella di parsing, spiegare perché $\mathcal G$ certamente non è LR(1).