## Cálculo diferencial e integral I Ayudantía 15

**Ejercicio 1.** Sea  $f: \mathbb{R} \to \mathbb{R}$  definida por

$$f(x) = \begin{cases} x & si \ x \in \mathbb{Q}, \\ -x & si \ x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- (I) Pruebe que  $\lim_{x\to 0} f(x) = 0$ .
- (II) Sea  $c \neq 0$ . Demuestre que no existe el límite de f cuando x tiende a c.

Demostración. (I) Haremos la prueba por definición. Sea  $\varepsilon > 0$ . Queremos hallar  $\delta > 0$  tal que si  $x \in \mathbb{R}$  cumple que  $0 < |x - 0| < \delta$ , entonces  $|f(x) - 0| < \varepsilon$ .

Proponemos  $\delta = \varepsilon > 0$ . Ahora, sea  $x \in \mathbb{R}$  tal que  $0 < |x - 0| < \delta$ . Entonces,  $x \neq 0$  y  $|x| < \delta = \varepsilon$ : por un lado, si  $x \in Q$ , tenemos que |f(x) - 0| = |f(x)| = |x|, por lo cual  $|f(x) - 0| < \varepsilon$ ; por otro lado, si  $x \in \mathbb{R} \setminus \mathbb{Q}$ , entonces |f(x) - 0| = |f(x)| = |-x| = |x|, así que también se implica que  $|f(x) - 0| < \varepsilon$ . Así, a partir de ambos casos se obtiene que si  $0 < |x - 0| < \delta$  entonces  $|f(x) - 0| < \varepsilon$ . Por lo tanto,  $\lim_{x \to 0} f(x) = 0$ .



Figura 1: Gráfica de la función f. Se han exagerado las distancias entre los puntos con la finalidad de remarcar las diferencias existentes entre las imágenes de los valores racionales y los valores irracionales.

(II) Sea  $c \neq 0$ . Para demostrar que no existe el límite de f cuando x tiende a c utilizaremos la equivalencia entre límites de funciones y límites de sucesiones, así, consideremos los dos casos posibles.

Caso 1. Supongamos que  $c \in \mathbb{Q}$ .

Consideremos la sucesión  $\{c+\frac{1}{n}\}$ . Notamos que  $c+\frac{1}{n}\in \mathrm{Dom}(f)$  y  $c+\frac{1}{n}\neq c$  para toda  $n\in\mathbb{N}$ , y además  $\lim_{n\to\infty}\left(c+\frac{1}{n}\right)=c$ ; luego, tenemos que

$$\lim_{n \to \infty} f\left(c + \frac{1}{n}\right) = \lim_{n \to \infty} \left(c + \frac{1}{n}\right) = c$$

por la definición de f y porque para toda  $n \in \mathbb{N}$  se cumple que  $c + \frac{1}{n} \in \mathbb{Q}$  porque  $c \in \mathbb{Q}$  y estamos sumando números racionales en cada caso.

Por otro lado, si consideramos la sucesión  $\left\{c+\frac{\sqrt{2}}{n}\right\}$ , obtenemos que  $c+\frac{\sqrt{2}}{n}\in \mathrm{Dom}(f)$  y  $c+\frac{\sqrt{2}}{n}\neq 0$ c para toda toda  $n\in\mathbb{N},$ y adicionalmente  $\lim_{n\to\infty}\left(c+\frac{\sqrt{2}}{n}\right)=c;$ ahora, observamos que

$$\lim_{n \to \infty} f\left(c + \frac{\sqrt{2}}{n}\right) = \lim_{n \to \infty} \left(-\left(c + \frac{\sqrt{2}}{n}\right)\right) = -c$$

por la definición de f y porque  $c+\frac{\sqrt{2}}{n}\in\mathbb{R}\setminus\mathbb{Q}$  para toda  $n\in\mathbb{N}$  porque  $\frac{\sqrt{2}}{n}\in\mathbb{R}\setminus\mathbb{Q}$  para toda  $n\in\mathbb{N}$ . Así, ya que tenemos dos sucesiones distintas contenidas en el dominio de f que convergen a c pero cuyas sucesiones de imágenes convergen a puntos distintos, en virtud del Teorema de equivalencia entre límites de funciones y límites de sucesiones (ver Teorema 1 de la Clase 22), se concluye que no existe el límite de f cuando x tiende a c.

## Caso 2. Supongamos que $c \in \mathbb{R} \setminus \mathbb{Q}$ .

En primer lugar tomemos la sucesión  $\{c+\frac{1}{n}\}$ . Nuevamente se tiene que  $c+\frac{1}{n}\in \mathrm{Dom}(f)$  y  $c+\frac{1}{n}\neq c$  para toda  $n\in\mathbb{N}$ , y también  $\lim_{n\to\infty}\left(c+\frac{1}{n}\right)=c$ ; además, notamos que

$$\lim_{n \to \infty} f\left(c + \frac{1}{n}\right) = \lim_{n \to \infty} \left(-\left(c + \frac{1}{n}\right)\right) = -c$$

por la definición de f y porque  $c+\frac{1}{n}\in\mathbb{R}\setminus\mathbb{Q}$  porque  $c\in\mathbb{R}\setminus\mathbb{Q}$  y  $\frac{1}{n}\in\mathbb{Q}$  para toda  $n\in\mathbb{N}$ . A continuación, construiremos inductivamente una sucesión  $\{r_n\}$  tal que  $r_n\neq c$  y  $r_n\in\mathbb{Q}$  para toda  $n\in\mathbb{N}$  y además  $\lim_{n\to\infty}r_n=c$ . En primer lugar, tomamos  $r_1\in((c-1,c+1)\cap\mathbb{Q})\setminus\{c\}$ , note que podemos tomar dicho punto  $r_1$  gracias a que en cualquier intervalo abierto siempre existe un número racional (de hecho hay una infinidad); supongamos que se han construido  $r_1,\dots,r_n,$ construimos  $r_{n+1}$  como sigue: tomamos  $r_{n+1} \in \left(\left(c - \frac{1}{n+1}, c + \frac{1}{n+1}\right) \cap \mathbb{Q}\right) \setminus \{c, r_1, \dots, r_n\}$ . Esto termina la construcción inductiva. Notemos que por construcción,  $\lim_{n \to \infty} r_n = c$  y también  $r_n \neq c$  y  $r_n \in \mathbb{Q}$  para toda  $n \in \mathbb{N}$ . En virtud de lo anterior obtenemos que

$$\lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} r_n = c$$

por la definición de f. Como en el caso anterior, hemos obtenido dos sucesiones distintas contenidas en el dominio de f que convergen a c pero cuyas sucesiones de imágenes convergen a puntos distintos, entonces, por el Teorema de equivalencia entre límites de funciones y límites de sucesiones concluimos que NO existe el límite de f cuando x tiende a c.

Finalmente, los Casos 1 y 2 prueban que para toda  $c \neq 0$  no existe el límite de f cuando x tiende a c. 

Ejercicio 2. Encuentre los siguientes límites.

(I) 
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$
.

(II) 
$$\lim_{x \to \infty} \left( \sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} \right).$$

(III) 
$$\lim_{x \to 3^+} \frac{x-3}{\sqrt{x^2-9}}$$
.

(IV) 
$$\lim_{x \to \infty} \frac{x^2}{(x-5)(3-x)}.$$

Demostración. (I) Este fue el límite que motivó todo el trabajo realizado en este capítulo, por lo cual lo analizamos ahora. En primer lugar, observamos que  $\text{Dom}(f) = \mathbb{R} \setminus \{1\}$ . Ahora, si  $x \neq 1$  se tiene que

$$\frac{x^2 + x - 2}{x - 1} = \frac{(x + 2)(x - 1)}{x - 1} = x + 2.$$

Así, ya que para obtener el límite solo nos interesan puntos alrededor del punto donde queremos hallar el límite, calculamos el límite como sigue

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1} (x + 2) = 1 + 2 = 3.$$

(II) Ya que queremos hallar un límite al infinito, siempre es posible considerar valores grandes de x, por lo cual, si x > 50 (¿puede decir cuál es el dominio de la función subyacente) entonces

$$\sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} = \frac{\left(\sqrt{2x^2 + 3} - \sqrt{2x^2 - 5}\right)\left(\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}\right)}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

$$= \frac{(2x^2 + 3) - (2x^2 - 5)}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

$$= \frac{8}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

por lo cual

$$\lim_{x \to \infty} \left( \sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} \right) = \lim_{x \to \infty} \frac{8}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

Tenemos que para toda x > 50 se cumple que

$$0 \le \frac{8}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}} \le \frac{8}{x}$$

v además

$$\lim_{x \to \infty} 0 = 0 = \lim_{x \to \infty} \frac{8}{x}.$$

Ahora, existe una versión del Teorema del Sándwich válido para límite al infinito que aparece en la lista de Ejercicios de Práctica (y por ello lo invitamos a demostrarlo), así que por dicho resultado se sigue

$$\lim_{x \to \infty} \frac{8}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}} = 0.$$

A partir de lo anterior concluimos que

$$\lim_{x \to \infty} \left( \sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} \right) = 0.$$

(III) Notamos que la función  $f(x) = \frac{x-3}{\sqrt{x^2-9}}$  tiene dominio  $\text{Dom}(f) = (-\infty, -3) \cup (3, \infty)$  (demuéstrelo). Ahora, notemos que si x > 3 entonces se cumple que

$$\frac{x-3}{\sqrt{x^2-9}} = \frac{x-3}{\sqrt{(x-3)(x+3)}} = \frac{\sqrt{x-3}}{\sqrt{x+3}},$$

por lo cual

$$\lim_{x \to 3^+} \frac{x-3}{\sqrt{x^2-9}} = \lim_{x \to 3^+} \frac{\sqrt{x-3}}{\sqrt{x+3}}.$$

Ya que  $\lim_{x\to 3^+} \sqrt{x-3}=0$  y  $\lim_{x\to 3^+} \sqrt{x+3}=\sqrt{6}$ , por el Teorema del álgebra de límites para el caso de límites laterales obtenemos que

$$\lim_{x \to 3^+} \frac{x-3}{\sqrt{x^2-9}} = \frac{0}{\sqrt{6}} = 0.$$

(IV) Ya que estamos calculando un límite al infinito, podemos considerar solamente valores mayores a 50 (¿cuál es el dominio de la función subyacente?). Así, si x > 50, entonces

$$\frac{x^2}{(x-5)(3-x)} = \frac{x}{x-5} \cdot \frac{x}{3-x}$$

$$= \left(\frac{\frac{1}{x}}{\frac{1}{x}} \cdot \frac{x}{x-5}\right) \left(\frac{\frac{1}{x}}{\frac{1}{x}} \cdot \frac{x}{3-x}\right)$$

$$= \frac{1}{1-\frac{5}{x}} \cdot \frac{1}{\frac{3}{x}-1}$$

por lo cual

$$\lim_{x \to \infty} \frac{x^2}{(x-5)(3-x)} = \lim_{x \to \infty} \left( \frac{1}{1-\frac{5}{x}} \cdot \frac{1}{\frac{3}{x}-1} \right).$$

Ya que  $\lim_{x\to\infty} \frac{5}{x} = 0$ ,  $\lim_{x\to\infty} \frac{3}{x} = 0$ ,  $\lim_{x\to\infty} 1 = 1$ , por el teorema de álgebra de límites para límites al infinito obtenemos que

$$\lim_{x \to \infty} \left( 1 - \frac{5}{x} \right) = 1 - 0 = 1$$

у

$$\lim_{x\to\infty}\left(\frac{3}{x}-1\right)=0-1=-1.$$

Entonces, por el ya mencionado teorema, se sigue que

$$\lim_{x\to\infty}\frac{1}{1-\frac{5}{x}}=\frac{1}{1}=1$$

y también

$$\lim_{x \to \infty} \frac{1}{\frac{3}{x} - 1} = \frac{1}{-1} = -1.$$

Por lo tanto

$$\lim_{x \to \infty} \left( \frac{1}{1 - \frac{5}{x}} \cdot \frac{1}{\frac{3}{x} - 1} \right) = 1(-1) = -1$$

En conclusión,

$$\lim_{x \to \infty} \frac{x^2}{(x-5)(3-x)} = -1.$$