Polynôme de degré 2 - Découverte

Situation: Véronique a fait installer des panneaux photovoltaïques sur le toit de sa maison. Elle a la possibilité de revendre l'électricité produite. Des études statistiques ont permis de modéliser sur une année, le gain mensuel g en \in de cette vente, à l'aide de la relation :

 $g(x) = -3.3x^2 + 39.6x + 94.4$ où x représente le rang du mois.

Problématique : Véronique voudrait déterminer les mois où son gain sera supérieur à 200 €.

1. Calculer le gain pour le mois de février.

2 Montrer que trouver le rang du mois qui permet d'avoir un gain de 200 € revient à résoudre

2. Montrer que trouver le rang du mois qui permet d'avoir un gain de 200 € revient à résoudre l'équation : $-3.3x^2 + 39.6x - 105.6 = 0$

3. Résoudre cette équation

4. La représentation graphique de la fonction f définie par : $f(x) = -3.3 x^2 + 39.6 x - 105.6$ est donnée cidessous. En suivant la méthode ci-contre, **déterminer** les solutions de l'équation : $-3.3 x^2 + 39.6 x - 105.6 = 0$

Comment résoudre graphique une équation de la forme f(x) = 0?

- **Tracer** la courbe représentant la fonction *f*
- **Lire** les abscisses des points d'intersection entre la courbe et l'axe horizontale

(suivant le nombre d'intersection, l'équation peut avoir : 2, 1 ou 0 solutions)

c =

5. Répondre à la problématique.

A retenir : Une fonction polynôme de degré 2 est une fonction de la forme :

$$f(x) = ax^2 + bx + c$$

Ici, pour $g(x) = -3.3x^2 + 39.6x + 94.4$; on a: a = b =

Et pour $f(x) = -3.3x^2 + 39.6x - 105.6$; on a : a = b = c =

Rappel : Distributivité et double distributivité

$$4(x + 5) =$$

$$(x + 5)(x + 6) =$$

$$(x-2)(x+7) =$$

$$2(x-5)(x+6) =$$

Distributivité:

$$k \times (a + b) = k \times a + k \times b$$

Double distributivité:

Compléter le tableau suivant :

$f(x) = x^2 - 7x + 10$	$f(x) = x^2 + x - 6$	$f(x) = x^2 + 5x + 4$
a = b = c =	a= b= c=	a= b= c=
Représentation graphique de f	Représentation graphique de f	Représentation graphique de f

Nombre de solution de f(x) = 0: Nombre de solution de f(x) = 0: Nombre de solution de f(x) = 0:

Solution(s) de f(x) = 0:

Solution(s) de f(x) = 0:

Solution(s) de f(x) = 0:

Développer (x-2)(x-5):

Développer (x + 3)(x - 2):

Développer (x + 4)(x + 1):

A retenir: Soit une fonction polynôme de degré 2 définie par : $f(x) = ax^2 + bx + c$ On appelle **racines** du polynôme de degré 2 les solutions de l'équation : f(x) = 0

Si une fonction polynôme de degré 2 a deux racines x_1 et x_2 alors on a :

 $f(x) = a(x - x_1)(x - x_2)$; c'est la forme **factorisée** de f.

$f(x) = x^2 - 7x + 10$	$f(x) = 2x^2 + 8x + 6$	$f(x) = -2x^2 + 14x - 20$
a = b = c =	a= b= c=	a= b= c=
Représentation graphique de f	Représentation graphique de f	Représentation graphique de f
Signe de a :	Signe de a :	Signe de a :
La fonction admet un : ☐ maximum ☐ minimum	La fonction admet un : ☐ maximum ☐ minimum	La fonction admet un : ☐ maximum ☐ minimum
Abscisse x_0 du maximum (ou du minimum) :	Abscisse x_0 du maximum (ou du minimum) :	Abscisse x_0 du maximum (ou du minimum) :
Racines de f :	Racines de f :	Racines de f :
$x_1 = $ et $x_2 =$	$x_1 = $ et $x_2 =$	$x_1 = $ et $x_2 =$
Calculer $\frac{x_1 + x_2}{2}$:	Calculer $\frac{x_1 + x_2}{2}$:	Calculer $\frac{x_1 + x_2}{2}$:
Calculer $\frac{-b}{2a}$:	Calculer $\frac{-b}{2a}$:	Calculer $\frac{-b}{2a}$:

A retenir: Soit une fonction polynôme de degré 2 définie par : $f(x) = ax^2 + bx + c$

alors : si a > 0, alors la fonction admet un **minimum** ou

si a < 0, alors la fonction admet un **maximum**

L'abscisse x_0 du maximum (ou du minimum) est donnée par : $x_0 = \frac{x_1 + x_2}{2} = \frac{-b}{2a}$