4CCS1ELA: Tutorial list 5

- 1. Assume that $\exists x \forall y P(x,y)$ is true. Which of the following formulas must also to be true? If the formula is true, explain. Otherwise, give a counterexample.
 - (i) $\forall x \forall y P(x, y)$.
 - (ii) $\forall x \exists y P(x, y)$.
- (iii) $\exists x \exists y P(x, y)$.
- **2.** Consider the formula $\mathcal{F} = \neg \forall x \exists y P(x,y)$. Determine which of the following formulas is <u>logically equivalent</u> to \mathcal{F} and which is not. If the formula is equivalent to \mathcal{F} , then show it using successive equivalences.
 - (i) $\exists x \neg \forall y P(x, y)$.
 - (ii) $\forall x \neg \exists y P(x, y)$.
- (iii) $\exists x \forall y \neg P(x, y)$.
- (iv) $\exists x \exists y \neg P(x, y)$.
- 3. Give a reason based on interpretations and the meaning of quantifiers why
 - (i) the following first-order sentence is valid:

$$\exists x P(x) \land \forall y (P(y) \to Q(y)) \to \exists z Q(z)$$

(ii) the following first-order sentence is not valid:

$$\exists x P(x) \land \forall y (P(y) \to Q(y)) \to \forall z \neg Q(z)$$

4. Use successive equivalences, showing your work, to show that the formula

$$\neg \exists x \forall y (\neg P(x) \land (Q(y) \rightarrow R(x,y)))$$
 is logically equivalent to $\forall x (P(x) \lor \exists y (Q(y) \land \neg R(x,y))).$

5. Determine whether the formula \mathcal{F}

$$\exists x \forall y (P(x) \to x = y)$$

is true or false under each of the following interpretations over the domain $D = \{a, b\}$.

- (i) both P(a) and P(b) are true;
- (ii) both P(a) and P(b) are false;
- (iii) P(a) is true and P(b) is false.