

NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2020

ELEKTRIESE TEGNOLOGIE: KRAGSTELSELS

Tyd: 3 uur 200 punte

LEES ASSEBLIEF DIE VOLGENDE INSTRUKSIES NOUKEURIG DEUR

- 1. Hierdie vraestel bestaan uit 8 bladsye en 'n Formuleblad van 2 bladsye (i–ii). Maak asseblief seker dat jou vraestel volledig is.
- 2. Beantwoord alle vrae en nommer jou antwoorde soos die vrae genommer is.
- 3. Moet nie in die kantlyn skryf nie.
- 4. Trek 'n lyn na elke vraag.
- 5. Neem altyd die puntetoekenning in ag, veral waar feite gelys moet word.
- 6. Alle sketse moet in potlood geskets word, met die nodige byskrifte in pen.
- 7. Gebruik die formuleblad.
- 8. Alle antwoorde moet afgerond word tot die tweede desimaal.
- 9. 'n Nieprogrammeerbare sakrekenaar mag gebruik word.
- 10. Dit is in jou eie belang om leesbaar te skryf en jou werk netjies aan te bied.

VRAAG 1 BEROEPSGESONDHEID EN VEILIGHEID

1.1	Noem werksv	EEN voorbeeld van 'n onveilige handeling in 'n Elektriese Tegnologie-vinkel.	(1)
1.2	Definie	er die term <i>risiko</i> .	(2)
1.3	Beskry	f kortliks wat bedoel word met 'n kritieke noodgeval in 'n werkswinkel.	(2)
1.4	Verduidelik kortliks waarom dissipline as belangrike werksetiek in die Suid- Afrikaanse nywerheidskonteks beskou word.		
VRA	AG 2	RLC-KRINGBANE	
2.1	Noem	die TWEE reaktiewe komponente in 'n RLC-kring.	(2)
2.2		skei tussen die twee konsepte <i>ware drywing</i> en <i>reaktiewe drywing</i> , rwysing na werksverrigting.	(2)
2.3	Teken die tipiese impedansie-teenoor-frekwensiekenkromme van 'n parallelle RLC-kring. Die grafiek moet ook die resonansiepunt van die kring aandui.		(4)
2.4	'n Parallelle RLC-stroombaan bestaan uit 'n weerstand met 'n waarde van 50 Ω , 'n induktiewe reaktansie van 60 Ω en 'n kapasitiewe reaktansie van 30 Ω . Die toevoerspanning is 220 V/50 Hz.		
	Bereken:		
	2.4.1	Die stroom deur die resistor.	(3)
	2.4.2	Die stroom deur die induktor.	(3)
	2.4.3	Die stroom deur die kapasitor.	(3)
	2.4.4	Die totale stroomvloei.	(3)
	2.4.5	Die fasehoek.	(3)

2.5 Verwys na die kringdiagram in FIGUUR 1:

FIGUUR 1: RLC-seriekring

Bereken die:

- 2.5.1 Spanningsval oor die resistor. (3)
- 2.5.2 Induktiewe reaktansie. (3)
- 2.5.3 Spanningsval oor die induktor. (3)
- 2.5.4 Kapasitiewe reaktansie. (3)
- 2.6 Teken die spanning- en stroomgolfvorms van die volgende op dieselfde assestelsel:
 - 2.6.1 'n Suiwer resistor. (2)
 - 2.6.2 'n Suiwer induktor. (2)
- 2.7 Verduidelik waarom die helderheid van 'n lamp wat in serie met 'n induktor gekoppel is, sal afneem wanneer die toevoerfrekwensie verhoog word. (3)

 [42]

VRAAG 3 DRIEFASE-WS-OPWEKKING

3.1	Verduidelik die term gebalanseerde driefasestelsel.	(2)	
3.2	Noem TWEE nadele van driefasestelsels bo enkelfasestelsels.	(2)	
3.3	Teken 'n netjies benoemde fasorvoorstelling van 'n Sterverbinde driefase-WS-opwekker.	(5)	
3.4	'n Driefase gebalanseerde las is in Delta oor 'n 380 V-toevoer verbind. Die las trek 'n stroom van 5 A teen 'n arbeidsfaktor van 0,9.		
	Bereken die:		
	3.4.1 Stroom in elke fase van die las.	(3)	
	3.4.2 Totale drywing van die las.	(3)	
3.5	'n 35 kW-driefasestelsel het 'n drywingsfaktor van 0,87 nalopend. Twee wattmeters word volgens die tweewattmetermetode aan die blou en rooi fase gekoppel.		
	Bereken die:		
	3.5.1 Fasehoek.	(3)	
	3.5.2 Bereken die lesing van die wattmeter op die blou fase.	(3)	
	3.5.3 Bereken die lesing van die wattmeter aan die rooi fase.	(3)	
3.6	Bespreek kortliks DRIE maniere waarmee die drywingsfaktor verbeter kan word.	(6)	
3.7	Onderskei tussen TWEE voordele wat drywingsfaktorverbetering vir die verskaffer het, asook TWEE voordele vir die verbruiker.	(4) [34]	

VRAAG 4 DRIEFASETRANSFORMATORS

4.1	Beskryf die doel van 'n transformator.		
4.2	Noem enige DRIE van die identiese eienskappe wat 'n transformator se drie windings moet hê om in driefase gekoppel te kan word.		
4.3	Verduidelik die werksbeginsel van 'n driefasetransformator.		
4.4	In watter TWEE hoofgroepe word die kerns van transformators verdeel?		
4.5	'n Driefasetransformator met 'n windingsverhouding van 50:1 is in delta-ster verbind. Die toevoerspanning is 11 kV en die sekondêre fasestroom is 450 A.		
	Bereken die:		
	4.5.1 Sekondêre fasespanning.	(3)	
	4.5.2 Sekondêre lynspanning.	(3)	
	4.5.3 Die primêre fasestroom.	(3)	
	4.5.4 Die primêre lynstroom.	(3)	
4.6	Noem TWEE tipes verliese wat algemeen in driefasetransformators voorkom.	(2) [26]	
VRA	AG 5 DRIEFASEMOTORS EN -AANSITTERS		
5.1	Noem EEN beskermingstoestel wat in driefasemotorbeheerkringe gebruik word.	(1)	
5.2	Beskryf die werking van 'n driefasemotor.	(7)	
5.3	Noem TWEE meganiese toetse wat op 'n driefasemotor uitgevoer kan word voor bekragtiging.		
5.4	Noem die DRIE elektriese toetse wat gedoen moet word voordat 'n driefase- motor bekragtig word.		
	<u> </u>	(3)	
5.5	<u> </u>	(3) (1)	
5.5 5.6	motor bekragtig word.		
	motor bekragtig word. Noem hoe die draairigting van 'n driefasemotor verander kan word. 'n Driefase-induksiemotor word oor 'n 380 V/50 Hz-toevoer verbind. Die		
	motor bekragtig word. Noem hoe die draairigting van 'n driefasemotor verander kan word. 'n Driefase-induksiemotor word oor 'n 380 V/50 Hz-toevoer verbind. Die motor het 'n sinchrone spoed van 1500 r/min en 'n glip van 6%.		

5.7 'n Driefase deltaverbinde motor is aan 'n 380 V/50 Hz toevoer verbind. Die motor trek 'n stroom van 16 A teen vollas. Dit het 'n arbeidsfaktor van 0,85 en 'n rendement van 90%.

Bereken die:

- 5.7.2 Die drywing ontwikkel deur die motor teen 100% doeltreffendheid. (3)
- 5.7.3 Die werklike uitsetdrywing van die motor. (3)
- 5.8 Tabel 1 hieronder wys die naamplaat van 'n driefase-induksiemotor. Beantwoord die vrae wat volg:

TABEL 1: NAAMPLAAT VAN 'N DRIEFASE-INDUKSIEMOTOR

Motorvervaardigerspesifikasie				
Fase	3			
Spanning	380 V			
Stroom	1,5 A			
Spoed	1500 r/min			
Drywing	10 kW			
Frekwensie	50 Hz			
$\cos heta$	0,8 nalopend			
Raamnommer	31MVH89			
P _{in}	8,5 kW			

- 5.8.1 Noem die hoeveelheid stroom wat die motor teen vollas vanaf die toevoer trek. (1)
- 5.8.2 Verduidelik waarom die motor vir gebruik in Suid-Afrika geskik is. (2)
- 5.8.3 Noem wat die 10 kW op die naamplaat aandui. (1)
- 5.9 Beskryf die doel van die endplaat as onderdeel van 'n driefasemotor. (1)
 [34]

VRAAG 6 PROGRAMMEERBARE LOGIKABEHEERDERS (PLB's)

- 6.1 Met verwysing na 'n PLB, verduidelik wat jy verstaan onder die volgende terme:
 - 6.1.1 Hardeware. (2)
 - 6.1.2 Sagteware. (2)
 - 6.1.3 Harde bedrading. (2)
- 6.2 Noem DRIE voordele van die gebruike van PLB's bo harde bedrading. (3)
- 6.3 Noem en beskryf kortliks die DRIE stappe van 'n PLB se skandeersiklus. (6)
- 6.4 Teken die leerlogikadiagramme vir die volgende logiese hekke:

6.4.2 Eksklusiewe OF-hek (XOF) (4)

6.5 Bestudeer die motoraansitter soos in Figuur 2 gesien en beantwoord die vrae wat volg:

FIGUUR 2

6.5.1 Identifiseer die motoraansitkring.

6.5.2 Skets die leerlogikadiagram vir die beheerkring.

(12)

(1)

6.10	Noem DRIE voorbeelde waar regeneratiewe remming toegepas word.	(3) [56]
6.9	Verduidelik die beginsel van regeneratiewe remming met verwysing na 'n motor.	(5)
6.8	Noem twee tipe toepassings wat van 'n verstelbare spoedbeheerder gebruik maak.	(2)
6.7	Beskryf die werking van die verstelbare spoedbeheerder in drie basiese stappe.	(6)
6.6	nodige byskrifte.	(5)

Totaal: 200 punte