MapReduce

COMPUTAÇÃO DE ALTO DESEMPENHO 2018/2019 HERVÉ PAULINO

SLIDES ADAPTED FROM "DATA-INTENSIVE TEXT PROCESSING WITH MAPREDUCE" BY JIMMY LIN

Bibliography

Chapters 1 and 2 of **Data-Intensive Text Processing with MapReduce,** Jimmy Lin and Chris Dyer, Morgan and Claypool Publishers

https://lintool.github.io/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf

Typical Large-Data Problem

Map Iterate over a large number of records

Extract something of interest from each

Shuffle and sort intermediate results

Aggregate intermediate results Reduce

Generate final output

Key idea: provide a functional abstraction for these two operations

(Dean and Ghemawat, OSDI 2004)

MapReduce ~ Map + Fold from functional programming!

MapReduce

Programmers specify two functions:

- map $(k_1, v_1) \rightarrow \langle k_2, v_2 \rangle^*$
- \circ reduce $(k_2, v_2^*) \rightarrow \langle k_3, v_3 \rangle^*$
 - All values with the same key are reduced together

The runtime handles everything else...

MapReduce Key Concepts

Data distributed at load time

Records are processed in isolation

Benefit: reduced communication

Tasks:

- Mapper task that processes records
- Reducer task that aggregates results from mappers

Distribute data at load time

MapReduce

CAD 2018/2019

MapReduce versus Grid/Cluster Computing

How is the previous picture different from normal grid/cluster computing?

Grid/cluster:

Programmer manages communication via MPI

VS

Hadoop:

communication is implicit

Hadoop manages data transfer and cluster topology issues

Scalability

Hadoop overhead

• MPI does better for small numbers of nodes

Hadoop – flat scalabity → pays off with large data

Little extra work to go from few to many nodes

MPI – requires explicit refactoring from small to larger number of nodes

CAD 2018/2019

MapReduce

Programmers specify two functions:

- \circ map (k, v) \rightarrow <k', v'>*
- reduce $(k', v') \rightarrow \langle k', v' \rangle^*$
- All values with the same key are reduced together

The runtime handles everything else...

Not quite...usually, programmers also specify:

- ∘ partition (k', number of partitions) → partition for k'
- Often a simple hash of the key, e.g., hash(k') mod n
- Divide up key space for parallel reduce operations
- ∘ combine (k', v') \rightarrow <k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic

MapReduce Runtime

Handles scheduling

Assigns workers to map and reduce tasks

Handles "data distribution"

Moves processes to data

Handles synchronization

Gathers, sorts, and shuffles intermediate data

Handles faults

Detects worker failures and restarts

Everything happens on top of a distributed FS (later)

"Hello World": Word Count

```
Map(String docId, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
    Emit(term, sum);
```

In Practice - Mapper Code

Input of type <LongWritable, Text>

 The key (the LongWritable) can be assumed to be the position in the document our input is in. This doesn't matter for this example.

Output of type <Text, LongWritable>.

 The key is the token, and the value is the count. This is always 1.

```
public static class TokenizerMapper extends Mapper<Object, Text,
Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);

    public void map(Object key, Text value, Context context) throws
IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            Text word = new Text(itr.nextToken());
            context.write(word, one);
        }
    }
}
```

In Practice - Reducer Code

Input is the Mapper's output, of type <Text, LongWritable>

Output is still a <Text,LongWritable>

 but it reduces N inputs for token T, into one output <T, N>

Word Count with Combiner

In Practice- Combiner Code

All reductions that are associative an commutative may be used as combiners So it is the same

Putting It All Together

```
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, ...);
FileOutputFormat.setOutputPath(job, ...);
```

Iterative Procedure in MapReduce

CAD 2018/2019

Interactive Procedure in MapReduce

CAD 2018/2019

22

MapReduce Implementations

MapReduce is a programming model

Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop is an open-source implementation in Java

- Project led by Yahoo, used in production
- Rapidly expanding software ecosystem

How do we get data to the workers?

Distributed File System

Don't move data to workers... move workers to the data!

- Store data on the local disks of nodes in the cluster
- Start up the workers on the node that has the data local

Why?

- Not enough RAM to hold all the data in memory
- Disk access is slow, but disk throughput is reasonable

A distributed file system is the answer

- GFS (Google File System)
- HDFS for Hadoop (= GFS clone)

Distributed File System: Assumptions

Commodity hardware over "exotic" hardware

Scale out, not up

High component failure rates

Inexpensive commodity components fail all the time

"Modest" number of HUGE files

Files are write-once, mostly appended to

Perhaps concurrently

Large streaming reads over random access

High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

Distributed File System: Design Decisions

Files stored as chunks

Fixed size (64MB)

Reliability through replication

Each chunk replicated across 3+ chunkservers

Single master to coordinate access, keep metadata

Simple centralized management

No data caching

Little benefit due to large datasets, streaming reads

Simplify the API

• Push some of the issues onto the client

Redrawn from (Ghemawat et al., SOSP 2003)

Master's Responsibilities

Metadata storage

Namespace management/locking

Periodic communication with chunkservers

Chunk creation, re-replication, rebalancing

Garbage collection

YARN - Yet Another Resource Negotiator

Next version of MapReduce or MapReduce 2.0 (MRv2)

In 2010 group at Yahoo! Began to design the next generation of MR

YARN architecture

Resource Manager

 Central Agent – Manages and allocates cluster resources

Node Manager

 Per-node agent – Manages and enforces node resource allocations

Application Master

- Per Application
- Manages application life cycle and task scheduling

Apache Hadoop Ecosystem

