Facultad de Ciencia y Tecnología – UADER – Sede Oro Verde.

Licenciatura en Sistemas Informáticos - MATEMÁTICA DISCRETA - REPASO para Tercer Parcial

Ejercicio 1.

- a) Calcular, si es posible, el inverso multiplicativo de 72 en Z_{113} .
- c) Demostrar que existen (encontrarlos) generadores para el grupo Z₁₄.
- c) Construir el grupo multiplicativo U_{14} , (construir la tabla). Identificar los inversos de cada elemento.
- d) ¿Cuál es el último dígito de 27²⁰¹⁰?
- e) Utilizar el Teorema Chino del Resto para encontrar un isomorfismo para el anillo Z₁₂.
- f) ¿Cuántos inversos multiplicativos tiene el anillo Z₂₂₂?

Ejercicio 2.

Sea G el grupo de la matrices reales de orden 2x2 de la forma $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ donde $ac \neq 0$, con la operación

multiplicación matricial. Sea $S = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, con \ b \in R \right\}.$

- a) ¿S es un subgrupo de G?
- b) ¿Es G un grupo abeliano? Justificar su respuesta.
- c) ¿El elemento N⁻¹AN con N \in S y A \in G, es un elemento de G o de S?

Ejercicio 3.

- a) Encontrar la matriz G generadora del Código de 3 repeticiones (es decir la que se utiliza para codificar 01 en 010101), donde E: $Z_2^2 \rightarrow Z_2^6$.
- b) ¿Cuál es la matriz de verificación de paridad H asociada en este caso?
- c) Si $x \in \mathbb{Z}_2^6$, ¿cuánto vale |S(x,2)|?

Ejercicio 4.

- a) El primero de diciembre se depositaron 800 pesos en una cuenta que paga intereses mensualmente a razón de un 8% anual. Si se continúa realizando esto durante los próximos cuatro años, ¿cuánto dinero habrá en la cuenta tras esos cuatro años?, ¿Cuánto habrá que esperar para duplicar el depósito inicial?
- b) El primero de Noviembre se depositaron 1000 pesos en una cuenta que paga intereses mensualmente a razón de un 8% anual. Al principio de cada mes, se realizará un ingreso por valor de 150 pesos. Se continúa así, ¿cuál es el modelo recursivo para esta nueva situación?

Ejercicio 5.

- a) Encontrar la solución general de la relación de recurrencia de segundo orden homogénea: a_n $3a_{n-1}$ + $2a_{n-2}$ = 0 para $n \ge 2$.
- b) Encontrar la solución general de la relación de recurrencia de segundo orden no homogénea: a_n $3a_{n-1}$ + $2a_{n-2} = n$ para $n \ge 2$.
- c) Encontrar la solución particular de la relación de recurrencia de segundo orden no homogénea: a_n $3a_{n-1}$ + $2a_{n-2} = n$ para $n \ge 2$, con $a_0 = 1$ y $a_1 = 3$.
- d) Encontrar la solución particular de la relación de recurrencia de segundo orden no homogénea: a_n $3a_{n-1}$ + $2a_{n-2} = 7^n$ para $n \ge 2$, con $a_0 = 1$ y $a_1 = 3$.
- e) Para $n \in Z^+$ se sabe que $S_n = 1 + 3^2 + 5^2 + \ldots + (2n-1)^2 = (1/3)(n)(2n-1)(2n+1)$. Determinar el último dígito de S_{8642} .

Ejercicio 6.

- a) Sea (m) = $\{mz, con z \in Z\}$. Demostrar que I = (m) es un ideal del anillo de los enteros.
- b) Sea S = $\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} con \ a \ y \ b \ reales \right\}$. Probar que es un subanillo del anillo de las matrices 2x2 con

componentes reales. ¿Es un subanillo conmutativo?

Ejercicio 7.

Para el grupo ($G = Z_8, +$):

- a) Identificar el neutro y dar la lista de los inversos aditivos.
- b) Dar la lista de los elementos del subgrupo generado por b = 2, es decir <2>.
- c) Determinar el valor de γ , tal que: $\left| \frac{G}{<2>} \right| = \gamma$. Interpretar ese valor.

Ejercicio 8.

a) Dada la matriz H de Hamming de verificación de paridad dada por: $H = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$, determinar todas

las secuencias
$$x = [x_1 \ x_2 \ x_3 \ x_4]$$
 donde los $x_i \in \{0, 1\}$, tales que $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$. $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

b) Encontrar la distancia mínima, d, para el código C asociado a la matriz de verificación de paridad

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Ejercicio 9.

Consideremos los dos grupos: $G_1 = (ZxZ, "+: suma usual de pares ordenados", es decir <math>(x, y) + (z, w) = (x+z, y+w))$ y $G_2 = (Z, +)$. Sea $f: G_1 \to G_2$, tal que: f(x, y) = x - y.

- a) Probar que f es un homomorfismo de grupos y que f es sobreyectiva. ¿Es f inyectiva?
- b) Hallar el conjunto f(x, y) = 1.

Ejercicio 10.

Sea $G = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} con \ a \in Z_4 \}$. a) Escribir todos los elementos de G. b) Construir la tabla para G como grupo multiplicativo. Identificar: Neutro e inverso multiplicativo de cada elemento.

Ejercicio 11.

Si $x \equiv 3 \pmod{17}$, $y \equiv 6 \pmod{17}$, se pide:

- a) x + 20y módulo 17.
- b) x⁻⁴ módulo 17.
- c) 12x 14 y módulo 17.