Regulation of Water Content in the Human Body

PREPARED BY: BESIR

ZENELI

Importance of Water

Key Points:

60% of body weight is water.

Vital for blood circulation, cell function, and waste removal.

Osmosis & Blood Water Balance

What Happens When Balance is Lost?

High Blood Water: Cells swell/burst (hypotonic).

Low Blood Water: Cells shrink (hypertonic).

(a) There is a higher concentration of free water molecules outside the cell than inside, so water diffuses into the cell.

(b) The extra water makes the cell swell up.

96

Role of Kidneys and Brain

Key Organs:

Kidneys: Filter blood, adjust

urine concentration.

Brain: Monitors blood, controls

ADH via pituitary gland.

ADH (Antidiuretic Hormone)

Function:

Makes kidney nephrons permeable → reabsorbs water.

Less ADH = dilute urine; More ADH = concentrated urine.

Hormonal Control of Kidney Function

- ADH makes the collecting ducts more permeable to water so that more water is reabsorbed.
- As a result, a small volume of concentrated urine is produced.

Factors Affecting Blood Concentration

Triggers:

↑ Water: Drinking fluids.

↓ Water: Sweating, salty

foods

Negative Feedback System

Definition: Self-regulating process to maintain balance.

Visual: Circular flowchart icon (\rightarrow receptor \rightarrow brain \rightarrow effect \rightarrow).

Low Blood Water Scenario

Steps:

Brain detects low water.

Pituitary releases ADH.

Kidneys reabsorb water → concentrated urine.

High Blood Water Scenario

Steps:

Brain detects excess water.

Reduces ADH.

Kidneys excrete dilute urine.

