Page 29

2.2-1 - Express the function
$$rac{n^3}{1000}-100n^2-100n+3$$
 in terms of Θ notation.

 $\Theta(n^3)$

2.2-2' - Write pseudocode for Selection Sort.

```
Selection Sort(A):
 1 for cur = 0 to A.length:
 2
         small = A[cur]
 3
         index = cur
         for k = cur + 1 to A.length:
 4
 5
              if A[k] < \text{small}:
                   small = A[k]
 7
                   index = k
         temp = A[cur]
                                        // Swap the values
 8
         A[\text{cur}] = \text{small}
 9
10
         A[index] = temp
```

Page 39

2.3-3 - Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2\\ 2T\left(\frac{n}{2}\right) + n & \text{if } n = 2^k \text{ for } k > 1 \end{cases}$$

is $T(n) = n \log n$.

Undefined

Induction Theorem:

$$P(n_0) \land \left(\forall n_i > n + o.P(n_i) \rightarrow P(n_{i+1}) \right) \rightarrow \forall n > n_o P(n)$$

1.1-1 - Use mathematical induction to show that $T(n) = \frac{n^2 + n}{2}$ for

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + n & \text{if } n > 1 \end{cases}$$

We show that T holds for $n_0 = 1$

$$T(1) = \frac{1^2 + 1}{2} = \frac{2}{2} = 1$$

Assuming $T(n-1) = \frac{(n-1)^2 + (n-1)}{2}$ and n > 1

$$T(n-1) = \frac{(n-1)^2 + n - 1}{2}$$

$$= \frac{n^2 - 2n + 1 + n - 1}{2}$$

$$= \frac{n^2 - n}{2}$$

By the definition of T(n)

$$T(n) = \frac{T(n-1) + n}{2}$$

$$= \frac{n^2 - n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n^2 + n}{2}$$

Therefore

$$T(n) = \frac{n^2 + n}{2}$$

By the induction theorem:

$$T(n) = \frac{n^2 + n}{2} \ \forall n \in \mathbb{N}, n \neq 0$$