# Mathematical Foundations for Data Science DA5000

Session 3 – Probability Distributions
Nandan Sudarsanam,
Department of Data Science and AI,
Wadhwani School of Data Science and AI,
Indian Institute of Technology Madras

## Common distributions: Bernoulli

A distribution where there are only two outcomes



- State space (k) is {0,1}
- PMF is (1-p) for k=0 and p for k=1
- CDF is 0 for k<0, (1-p) for k=0, and 1 for k =</li>
   1
- Mean is *p*
- Variance is p(1-p)
- Even if there are many outcomes, we can always split the state space into two-outcomes and define a new random variable which is Bernoulli.
- Examples: Success/failure, Yes/No, Male/Female, Greater 3% or not

### Common distributions: Uniform

- Discrete
  - The six sided dice, coin toss, choosing from 4 different models, searching for a matching part from a given set.
  - Formula for pdf:  $f(X = x) = \frac{1}{k}$  for all x that belongs to a specific set with k elements and f(X = x) = 0 for all other values of x.
- Continuous
  - number of seconds past the minute, searching for a part (over time).
  - Simplistic model of number of kilometres that a truck will last
  - Formula for PDF:

$$f(x) = \left\{ \frac{1}{b-a} \text{ for } a \le x \le b \\ 0 \text{ for } x < a \text{ and } x > b \right\}$$



What is the CDF, mean and Variance? How would you derive them?

$$CDF = \frac{x - a}{b - a}$$

$$Mean = \frac{1}{2}(b+a)$$

Variance = 
$$\frac{1}{12}(b-a)^2$$

## Common distributions: Binomial

#### Binomial

- Discrete distribution signifying number of successes of *n* independent Bernoulli experiments
- Example Real-world: Probability of 4 out of 10 deep sea drills will fail. Probability of there being 5 purchases out of 20 demo invites
- Formula for PMF:  ${}^{n}_{k}C.p^{k}(1-p)^{n-k}$
- Formula for CDF is just the summation. How would you derive it?
- Mean: np, variance: np(1-p). How would you derive it?

### Common distributions: Poisson

#### Poisson

- Discrete distribution that signifies the probability of 'x' occurrences of a certain event over a certain period of time or space.
- Examples: Number of failures per month, Number of purchases per square kilometre.
- PMF  $\frac{\lambda^k}{k!}e^{-\lambda}$  Mean and variance are  $\lambda$  (lambda >0). How would you derive
- CDF: How would you derive it?
- Relating it with the binomial: <a href="https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-">https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-</a> binomial-distribution-840cc1668239

## Common distribution: Geometric

#### Geometric

- Number of attempts before an event. How many sales calls before one successful sale.
- The interarrival distributions counterpart of a binomial. Take any of the binomial examples.
- PMF:
- CDF:
- Mean is  $\frac{1}{p}$ , and variance  $\frac{1-p}{p^2}$

## Common distributions: Exponential

#### Exponential

- The interarrival times of the Poisson distribution
- The equivalent of the geometric distribution for the Poisson process. Example: Time it takes for the next sales call
- PDF:  $\lambda e^{-\lambda x}$ , where lambda>0
- CDF:  $1-e^{-\lambda x}$
- Mean:  $\frac{1}{\lambda}$
- Variance:  $\frac{1}{\lambda^2}$

## Summary of four distributions

| The Environment/Context | Count per some unit frame | Interarrival distribution |
|-------------------------|---------------------------|---------------------------|
| Bernoulli Process       | Binomial                  | Geometric                 |
| Poisson Process         | Poisson                   | Exponential               |

<sup>•</sup> The Exponential is the only continuous distribution, whereas the other three are discrete distributions

## Hypergeometric and Negative Binomial

#### Hypergeometric:

- We can think of the Binomial as a sampling with replacement
- What if we sample from a finite population?
- When will this distribution be similar/different from the binomial?

#### Negative Binomial:

- Trials till the k<sup>th</sup> success
- How does it help to think of this in terms of the Binomial and Geometric

### Normal Distribution

- Also referred to as a Gaussian distribution
- The most widely used distribution of a random variable
- Characterized by a bell shaped curve
- Why?
  - Central Limit theorem
  - Examples: Various physical characteristics (height, weight, length, etc.), large counts (characters in a page, steps taken in day, etc.), and many approximations.

### Normal Distribution

• PDF: 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}; N(\mu, \sigma^2)$$

- CDF? Mean? Variance?
- Some useful results:
  - $P(X > \mu) = P(X < \mu) = 0.5$  (what is  $P(X = \mu)$ ?)
  - $P(\mu \sigma < X < \mu + \sigma) = 0.6827$
  - $P(\mu 2\sigma < X < \mu + 2\sigma) = 0.9545$
  - $P(\mu 3\sigma < X < \mu + 3\sigma) = 0.9973$
- Standard Normal:  $N(0, 1^2)$

## Normal and Poisson approximations

- Implications when n is large and np and nq is >5
  - Example: Making 10,000 sales calls
  - Computational implications
  - Value of determining the probability of each discrete outcome
  - Mean = np and variance = np(1-p)
- Poisson approximation of the Binomial when n>100, but np or nq<10</li>
- Normal can also be used to approximate Poisson when  $\lambda > 5$

### Simulation

- Replicate the uncertainty in distributions to answer business questions.
   Uncertainty in Supply, demand, weather, flight timings, defaulting on loans, stock prices, competitors prices, etc.
- Why not use the distributions directly? What about complex dependencies?
- Toy example for binomial
- Assume that we looking at number of visitors for a one hour online offer. The per minute number of people visiting the site is a Normal distribution. However, this is a changing distribution. The mean number of people visiting the site changes as a function of time  $8000 t^2$  (time t goes from 0 to 60). The standard deviation is 800 people (per minute). Finally we cannot support more than 9000 visitors at any given minute.