Part III. first steps on the command line

Table of Contents

7. man pages	
7.1. man \$command	
7.2. man \$configfile	72
7.3. man \$daemon	72
7.4. man -k (apropos)	72
7.5. whatis	72
7.6. whereis	72
7.7. man sections	
7.8. man \$section \$file	
7.9. man man	
7.10. mandb	
8. working with directories	
8.1. pwd	
8.2. cd	
8.3. absolute and relative paths	
8.4. path completion	
8.5. ls	
8.6. mkdir	
8.7. rmdir	
8.8. practice: working with directories	
8.9. solution: working with directories	82
9. working with files	84
9.1. all files are case sensitive	
9.2. everything is a file	
9.3. file	
9.4. touch	
9.5. rm	
9.6. cp	
9.7. mv	
9.8. rename	
9.9. practice: working with files	
9.10. solution: working with files	
10. working with file contents	
10.1. head	
10.2. tail	
10.3. cat	
10.4. tac	
10.5. more and less	98
10.6. strings	98
10.7. practice: file contents	99
10.8. solution: file contents	100
11. the Linux file tree	101
11.1. filesystem hierarchy standard	
11.2. man hier	
11.3. the root directory /	
11.4. binary directories	
11.5. configuration directories	
11.6. data directories	
11.7. in memory directories	
11.8. /usr Unix System Resources	
11.9. /var variable data	
11.10. practice: file system tree	
11.11. solution: file system tree	120

Chapter 7. man pages

This chapter will explain the use of **man** pages (also called **manual pages**) on your Unix or Linux computer.

You will learn the **man** command together with related commands like **whereis**, **whatis** and **mandb**.

Most Unix files and commands have pretty good man pages to explain their use. Man pages also come in handy when you are using multiple flavours of Unix or several Linux distributions since options and parameters sometimes vary.

7.1. man \$command

Type **man** followed by a command (for which you want help) and start reading. Press \mathbf{q} to quit the manpage. Some man pages contain examples (near the end).

```
paul@laika:~$ man whois
Reformatting whois(1), please wait...
```

7.2. man \$configfile

Most **configuration files** have their own manual.

```
paul@laika:~$ man syslog.conf
Reformatting syslog.conf(5), please wait...
```

7.3. man \$daemon

This is also true for most daemons (background programs) on your system..

```
paul@laika:~$ man syslogd
Reformatting syslogd(8), please wait...
```

7.4. man -k (apropos)

man -k (or apropos) shows a list of man pages containing a string.

```
paul@laika:~$ man -k syslog
lm-syslog-setup (8) - configure laptop mode to switch syslog.conf ...
logger (1) - a shell command interface to the syslog(3) ...
syslog-facility (8) - Setup and remove LOCALx facility for sysklogd
syslog.conf (5) - syslogd(8) configuration file
syslogd (8) - Linux system logging utilities.
syslogd-listfiles (8) - list system logfiles
```

7.5. whatis

To see just the description of a manual page, use **whatis** followed by a string.

```
paul@u810:~$ whatis route
route (8) - show / manipulate the IP routing table
```

7.6. whereis

The location of a manpage can be revealed with **whereis**.

```
paul@laika:~$ whereis -m whois
whois: /usr/share/man/man1/whois.1.gz
```

This file is directly readable by **man**.

```
paul@laika:~$ man /usr/share/man/man1/whois.1.gz
```

7.7. man sections

By now you will have noticed the numbers between the round brackets. **man man** will explain to you that these are section numbers. Executable programs and shell commands reside in section one.

```
1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conventions), e.g. man(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]
```

7.8. man \$section \$file

Therefor, when referring to the man page of the passwd command, you will see it written as **passwd(1)**; when referring to the **passwd file**, you will see it written as **passwd(5)**. The screenshot explains how to open the man page in the correct section.

```
[paul@RHEL52 ~]$ man passwd  # opens the first manual found
[paul@RHEL52 ~]$ man 5 passwd  # opens a page from section 5
```

7.9. man man

If you want to know more about man, then Read The Fantastic Manual (RTFM).

Unfortunately, manual pages do not have the answer to everything...

```
paul@laika:~$ man woman
No manual entry for woman
```

7.10. mandb

Should you be convinced that a man page exists, but you can't access it, then try running mandb on Debian/Mint.

```
root@laika:~# mandb
0 man subdirectories contained newer manual pages.
0 manual pages were added.
0 stray cats were added.
0 old database entries were purged.
```

Or run makewhatis on CentOS/Redhat.

Chapter 8. working with directories

This module is a brief overview of the most common commands to work with directories: **pwd**, **cd**, **ls**, **mkdir** and **rmdir**. These commands are available on any Linux (or Unix) system.

This module also discusses **absolute** and **relative paths** and **path completion** in the **bash** shell.

8.1. pwd

The **you are here** sign can be displayed with the **pwd** command (Print Working Directory). Go ahead, try it: Open a command line interface (also called a terminal, console or xterm) and type **pwd**. The tool displays your **current directory**.

```
paul@debian8:~$ pwd
/home/paul
```

8.2. cd

You can change your current directory with the cd command (Change Directory).

```
paul@debian8$ cd /etc
paul@debian8$ pwd
/etc
paul@debian8$ cd /bin
paul@debian8$ pwd
/bin
paul@debian8$ cd /home/paul/
paul@debian8$ pwd
/home/paul
```

8.2.1. cd ~

The **cd** is also a shortcut to get back into your home directory. Just typing **cd** without a target directory, will put you in your home directory. Typing **cd** ~ has the same effect.

```
paul@debian8$ cd /etc
paul@debian8$ pwd
/etc
paul@debian8$ cd
paul@debian8$ pwd
/home/paul
paul@debian8$ cd ~
paul@debian8$ pwd
/home/paul
```

8.2.2. cd ..

To go to the **parent directory** (the one just above your current directory in the directory tree), type \mathbf{cd} .

```
paul@debian8$ pwd
/usr/share/games
paul@debian8$ cd ..
paul@debian8$ pwd
/usr/share
```

To stay in the current directory, type cd.;-) We will see useful use of the . character representing the current directory later.

8.2.3. cd -

Another useful shortcut with **cd** is to just type **cd** - to go to the previous directory.

```
paul@debian8$ pwd
/home/paul
paul@debian8$ cd /etc
paul@debian8$ pwd
/etc
paul@debian8$ cd -
/home/paul
paul@debian8$ cd -
/etc
```

8.3. absolute and relative paths

You should be aware of **absolute and relative paths** in the file tree. When you type a path starting with a **slash** (/), then the **root** of the file tree is assumed. If you don't start your path with a slash, then the current directory is the assumed starting point.

The screenshot below first shows the current directory /home/paul. From within this directory, you have to type cd /home instead of cd home to go to the /home directory.

```
paul@debian8$ pwd
/home/paul
paul@debian8$ cd home
bash: cd: home: No such file or directory
paul@debian8$ cd /home
paul@debian8$ pwd
/home
```

When inside /home, you have to type cd paul instead of cd /paul to enter the subdirectory paul of the current directory /home.

```
paul@debian8$ pwd
/home
paul@debian8$ cd /paul
bash: cd: /paul: No such file or directory
paul@debian8$ cd paul
paul@debian8$ pwd
/home/paul
```

In case your current directory is the **root directory** /, then both **cd /home** and **cd home** will get you in the /home directory.

```
paul@debian8$ pwd
/
paul@debian8$ cd home
paul@debian8$ pwd
/home
paul@debian8$ cd /
paul@debian8$ cd /home
paul@debian8$ pwd
/home
```

This was the last screenshot with **pwd** statements. From now on, the current directory will often be displayed in the prompt. Later in this book we will explain how the shell variable **\$PS1** can be configured to show this.

8.4. path completion

The **tab key** can help you in typing a path without errors. Typing **cd /et** followed by the **tab key** will expand the command line to **cd /etc/**. When typing **cd /Et** followed by the **tab key**, nothing will happen because you typed the wrong **path** (upper case E).

You will need fewer key strokes when using the **tab key**, and you will be sure your typed **path** is correct!

8.5. Is

You can list the contents of a directory with ls.

```
paul@debian8:~$ ls
allfiles.txt dmesg.txt services stuff summer.txt
paul@debian8:~$
```

8.5.1. Is -a

A frequently used option with ls is **-a** to show all files. Showing all files means including the **hidden files**. When a file name on a Linux file system starts with a dot, it is considered a **hidden file** and it doesn't show up in regular file listings.

```
paul@debian8:~$ ls
allfiles.txt dmesg.txt services stuff summer.txt
paul@debian8:~$ ls -a
. allfiles.txt .bash_profile dmesg.txt .lesshst stuff
.. .bash_history .bashrc services .ssh summer.txt
paul@debian8:~$
```

8.5.2. Is -I

Many times you will be using options with **ls** to display the contents of the directory in different formats or to display different parts of the directory. Typing just **ls** gives you a list of files in the directory. Typing **ls** -**l** (that is a letter L, not the number 1) gives you a long listing.

```
paul@debian8:~$ 1s -1
total 17296
-rw-r--r- 1 paul paul 17584442 Sep 17 00:03 allfiles.txt
-rw-r--r- 1 paul paul 96650 Sep 17 00:03 dmesg.txt
-rw-r--r- 1 paul paul 19558 Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4096 Sep 17 00:04 stuff
-rw-r--r- 1 paul paul 0 Sep 17 00:04 summer.txt
```

8.5.3. Is -Ih

Another frequently used ls option is **-h**. It shows the numbers (file sizes) in a more human readable format. Also shown below is some variation in the way you can give the options to **ls**. We will explain the details of the output later in this book.

Note that we use the letter L as an option in this screenshot, not the number 1.

```
paul@debian8:~$ ls -l -h
total 17M
-rw-r--r 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
                         0 Sep 17 00:04 summer.txt
-rw-r--r-- 1 paul paul
paul@debian8:~$ ls -lh
total 17M
-rw-r--r 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul
                         0 Sep 17 00:04 summer.txt
paul@debian8:~$ ls -hl
total 17M
-rw-r--r 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r-- 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul
                         0 Sep 17 00:04 summer.txt
paul@debian8:~$ ls -h -l
total 17M
-rw-r--r 1 paul paul 17M Sep 17 00:03 allfiles.txt
-rw-r--r 1 paul paul 95K Sep 17 00:03 dmesg.txt
-rw-r--r-- 1 paul paul 20K Sep 17 00:04 services
drwxr-xr-x 2 paul paul 4.0K Sep 17 00:04 stuff
-rw-r--r-- 1 paul paul
                         0 Sep 17 00:04 summer.txt
paul@debian8:~$
```

8.6. mkdir

Walking around the Unix file tree is fun, but it is even more fun to create your own directories with **mkdir**. You have to give at least one parameter to **mkdir**, the name of the new directory to be created. Think before you type a leading /.

```
paul@debian8:~$ mkdir mydir
paul@debian8:~$ cd mydir
paul@debian8:~/mydir$ ls -al
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:07 .
drwxr-xr-x 48 paul paul 4096 Sep 17 00:07 ..
paul@debian8:~/mydir$ mkdir stuff
paul@debian8:~/mydir$ mkdir otherstuff
paul@debian8:~/mydir$ ls -l
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
paul@debian8:~/mydir$
```

8.6.1. mkdir -p

The following command will fail, because the **parent directory** of **threedirsdeep** does not exist.

```
paul@debian8:~$ mkdir mydir2/mysubdir2/threedirsdeep
mkdir: cannot create directory 'mydir2/mysubdir2/threedirsdeep': No such fi\
le or directory
```

When given the option **-p**, then **mkdir** will create **parent directories** as needed.

```
paul@debian8:~$ mkdir -p mydir2/mysubdir2/threedirsdeep
paul@debian8:~$ cd mydir2
paul@debian8:~/mydir2$ ls -1
total 4
drwxr-xr-x 3 paul paul 4096 Sep 17 00:11 mysubdir2
paul@debian8:~/mydir2$ cd mysubdir2
paul@debian8:~/mydir2/mysubdir2$ ls -1
total 4
drwxr-xr-x 2 paul paul 4096 Sep 17 00:11 threedirsdeep
paul@debian8:~/mydir2/mysubdir2$ cd threedirsdeep/
paul@debian8:~/mydir2/mysubdir2/threedirsdeep$ pwd
/home/paul/mydir2/mysubdir2/threedirsdeep
```

8.7. rmdir

When a directory is empty, you can use **rmdir** to remove the directory.

```
paul@debian8:~/mydir$ ls -1
total 8
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 otherstuff
drwxr-xr-x 2 paul paul 4096 Sep 17 00:08 stuff
paul@debian8:~/mydir$ rmdir otherstuff
paul@debian8:~/mydir$ cd ..
paul@debian8:~$ rmdir mydir
rmdir: failed to remove 'mydir': Directory not empty
paul@debian8:~$ rmdir mydir/stuff
paul@debian8:~$ rmdir mydir
paul@debian8:~$
```

8.7.1. rmdir -p

And similar to the **mkdir** -**p** option, you can also use **rmdir** to recursively remove directories.

```
paul@debian8:~$ mkdir -p test42/subdir
paul@debian8:~$ rmdir -p test42/subdir
paul@debian8:~$
```

8.8. practice: working with directories

- 1. Display your current directory.
- 2. Change to the /etc directory.
- 3. Now change to your home directory using only three key presses.
- 4. Change to the /boot/grub directory using only eleven key presses.
- 5. Go to the parent directory of the current directory.
- 6. Go to the root directory.
- 7. List the contents of the root directory.
- 8. List a long listing of the root directory.
- 9. Stay where you are, and list the contents of /etc.
- 10. Stay where you are, and list the contents of /bin and /sbin.
- 11. Stay where you are, and list the contents of \sim .
- 12. List all the files (including hidden files) in your home directory.
- 13. List the files in /boot in a human readable format.
- 14. Create a directory testdir in your home directory.
- 15. Change to the /etc directory, stay here and create a directory newdir in your home directory.
- 16. Create in one command the directories ~/dir1/dir2/dir3 (dir3 is a subdirectory from dir2, and dir2 is a subdirectory from dir1).
- 17. Remove the directory testdir.
- 18. If time permits (or if you are waiting for other students to finish this practice), use and understand **pushd** and **popd**. Use the man page of **bash** to find information about these commands.

Chapter 9. working with files

In this chapter we learn how to recognise, create, remove, copy and move files using commands like **file**, **touch**, **rm**, **cp**, **mv** and **rename**.

9.1. all files are case sensitive

Files on Linux (or any Unix) are **case sensitive**. This means that **FILE1** is different from **file1**, and **/etc/hosts** is different from **/etc/Hosts** (the latter one does not exist on a typical Linux computer).

This screenshot shows the difference between two files, one with upper case W, the other with lower case w.

```
paul@laika:~/Linux$ ls
winter.txt Winter.txt
paul@laika:~/Linux$ cat winter.txt
It is cold.
paul@laika:~/Linux$ cat Winter.txt
It is very cold!
```

9.2. everything is a file

A **directory** is a special kind of **file**, but it is still a (case sensitive!) **file**. Each terminal window (for example /dev/pts/4), any hard disk or partition (for example /dev/sdb1) and any process are all represented somewhere in the **file system** as a **file**. It will become clear throughout this course that everything on Linux is a **file**.

9.3. file

The **file** utility determines the file type. Linux does not use extensions to determine the file type. The command line does not care whether a file ends in .txt or .pdf. As a system administrator, you should use the **file** command to determine the file type. Here are some examples on a typical Linux system.

```
paul@laika:~$ file pic33.png
pic33.png: PNG image data, 3840 x 1200, 8-bit/color RGBA, non-interlaced
paul@laika:~$ file /etc/passwd
/etc/passwd: ASCII text
paul@laika:~$ file HelloWorld.c
HelloWorld.c: ASCII C program text
```

The file command uses a magic file that contains patterns to recognise file types. The magic file is located in /usr/share/file/magic. Type man 5 magic for more information.

It is interesting to point out **file -s** for special files like those in /dev and /proc.

```
root@debian6~# file /dev/sda
/dev/sda: block special
root@debian6~# file -s /dev/sda
/dev/sda: x86 boot sector; partition 1: ID=0x83, active, starthead...
root@debian6~# file /proc/cpuinfo
/proc/cpuinfo: empty
root@debian6~# file -s /proc/cpuinfo
/proc/cpuinfo: ASCII C++ program text
```

9.4. touch

9.4.1. create an empty file

One easy way to create an empty file is with **touch**. (We will see many other ways for creating files later in this book.)

This screenshot starts with an empty directory, creates two files with **touch** and the lists those files.

```
paul@debian7:~$ ls -1
total 0
paul@debian7:~$ touch file42
paul@debian7:~$ touch file33
paul@debian7:~$ ls -1
total 0
-rw-r--r- 1 paul paul 0 Oct 15 08:57 file33
-rw-r--r- 1 paul paul 0 Oct 15 08:56 file42
paul@debian7:~$
```

9.4.2. touch -t

The **touch** command can set some properties while creating empty files. Can you determine what is set by looking at the next screenshot? If not, check the manual for **touch**.

```
paul@debian7:~$ touch -t 200505050000 SinkoDeMayo
paul@debian7:~$ touch -t 130207111630 BigBattle.txt
paul@debian7:~$ ls -1
total 0
-rw-r--r- 1 paul paul 0 Jul 11 1302 BigBattle.txt
-rw-r--r- 1 paul paul 0 Oct 15 08:57 file33
-rw-r--r- 1 paul paul 0 Oct 15 08:56 file42
-rw-r--r- 1 paul paul 0 May 5 2005 SinkoDeMayo
paul@debian7:~$
```

9.5. rm

9.5.1. remove forever

When you no longer need a file, use **rm** to remove it. Unlike some graphical user interfaces, the command line in general does not have a **waste bin** or **trash can** to recover files. When you use **rm** to remove a file, the file is gone. Therefore, be careful when removing files!

```
paul@debian7:~$ ls
BigBattle.txt file33 file42 SinkoDeMayo
paul@debian7:~$ rm BigBattle.txt
paul@debian7:~$ ls
file33 file42 SinkoDeMayo
paul@debian7:~$
```

9.5.2. rm -i

To prevent yourself from accidentally removing a file, you can type **rm** -i.

```
paul@debian7:~$ ls
file33 file42 SinkoDeMayo
paul@debian7:~$ rm -i file33
rm: remove regular empty file `file33'? yes
paul@debian7:~$ rm -i SinkoDeMayo
rm: remove regular empty file `SinkoDeMayo'? n
paul@debian7:~$ ls
file42 SinkoDeMayo
paul@debian7:~$
```

9.5.3. rm -rf

By default, **rm** -**r** will not remove non-empty directories. However **rm** accepts several options that will allow you to remove any directory. The **rm** -**rf** statement is famous because it will erase anything (providing that you have the permissions to do so). When you are logged on as root, be very careful with **rm** -**rf** (the **f** means **force** and the **r** means **recursive**) since being root implies that permissions don't apply to you. You can literally erase your entire file system by accident.

```
paul@debian7:~$ mkdir test
paul@debian7:~$ rm test
rm: cannot remove `test': Is a directory
paul@debian7:~$ rm -rf test
paul@debian7:~$ ls test
ls: cannot access test: No such file or directory
paul@debian7:~$
```

9.6. cp

9.6.1. copy one file

To copy a file, use **cp** with a source and a target argument.

```
paul@debian7:~$ ls
file42 SinkoDeMayo
paul@debian7:~$ cp file42 file42.copy
paul@debian7:~$ ls
file42 file42.copy SinkoDeMayo
```

9.6.2. copy to another directory

If the target is a directory, then the source files are copied to that target directory.

```
paul@debian7:~$ mkdir dir42
paul@debian7:~$ cp SinkoDeMayo dir42
paul@debian7:~$ ls dir42/
SinkoDeMayo
```

9.6.3. cp -r

To copy complete directories, use **cp** -**r** (the -**r** option forces **recursive** copying of all files in all subdirectories).

```
paul@debian7:~$ ls
dir42 file42 file42.copy SinkoDeMayo
paul@debian7:~$ cp -r dir42/ dir33
paul@debian7:~$ ls
dir33 dir42 file42 file42.copy SinkoDeMayo
paul@debian7:~$ ls dir33/
SinkoDeMayo
```

9.6.4. copy multiple files to directory

You can also use cp to copy multiple files into a directory. In this case, the last argument (a.k.a. the target) must be a directory.

```
paul@debian7:~$ cp file42 file42.copy SinkoDeMayo dir42/
paul@debian7:~$ ls dir42/
file42 file42.copy SinkoDeMayo
```

9.6.5. cp -i

To prevent **cp** from overwriting existing files, use the **-i** (for interactive) option.

```
paul@debian7:~$ cp SinkoDeMayo file42
paul@debian7:~$ cp SinkoDeMayo file42
paul@debian7:~$ cp -i SinkoDeMayo file42
cp: overwrite `file42'? n
paul@debian7:~$
```

9.7. mv

9.7.1. rename files with my

Use **mv** to rename a file or to move the file to another directory.

```
paul@debian7:~$ ls
dir33 dir42 file42 file42.copy SinkoDeMayo
paul@debian7:~$ mv file42 file33
paul@debian7:~$ ls
dir33 dir42 file33 file42.copy SinkoDeMayo
paul@debian7:~$
```

When you need to rename only one file then mv is the preferred command to use.

9.7.2. rename directories with my

The same **mv** command can be used to rename directories.

9.7.3. mv -i

The **mv** also has a **-i** switch similar to **cp** and **rm**.

this screenshot shows that **mv** -i will ask permission to overwrite an existing file.

```
paul@debian7:~$ mv -i file33 SinkoDeMayo
mv: overwrite `SinkoDeMayo'? no
paul@debian7:~$
```

9.8. rename

9.8.1. about rename

The **rename** command is one of the rare occasions where the Linux Fundamentals book has to make a distinction between Linux distributions. Almost every command in the **Fundamentals** part of this book works on almost every Linux computer. But **rename** is different.

Try to use **mv** whenever you need to rename only a couple of files.

9.8.2. rename on Debian/Ubuntu

The **rename** command on Debian uses regular expressions (regular expression or shor regex are explained in a later chapter) to rename many files at once.

Below a **rename** example that switches all occurrences of txt to png for all file names ending in txt

```
paul@debian7:~/test42$ ls
abc.txt file33.txt file42.txt
paul@debian7:~/test42$ rename 's/\.txt/\.png/' *.txt
paul@debian7:~/test42$ ls
abc.png file33.png file42.png
```

This second example switches all (first) occurrences of **file** into **document** for all file names ending in .png.

```
paul@debian7:~/test42$ ls
abc.png file33.png file42.png
paul@debian7:~/test42$ rename 's/file/document/' *.png
paul@debian7:~/test42$ ls
abc.png document33.png document42.png
paul@debian7:~/test42$
```

9.8.3. rename on CentOS/RHEL/Fedora

On Red Hat Enterprise Linux, the syntax of **rename** is a bit different. The first example below renames all *.conf files replacing any occurrence of .conf with .backup.

```
[paul@centos7 ~]$ touch one.conf two.conf three.conf
[paul@centos7 ~]$ rename .conf .backup *.conf
[paul@centos7 ~]$ ls
one.backup three.backup two.backup
[paul@centos7 ~]$
```

The second example renames all (*) files replacing one with ONE.

```
[paul@centos7 ~]$ ls
one.backup three.backup two.backup
[paul@centos7 ~]$ rename one ONE *
[paul@centos7 ~]$ ls
ONE.backup three.backup two.backup
[paul@centos7 ~]$
```

9.9. practice: working with files

- 1. List the files in the /bin directory
- 2. Display the type of file of /bin/cat, /etc/passwd and /usr/bin/passwd.
- 3a. Download wolf.jpg and LinuxFun.pdf from http://linux-training.be (wget http://linux-training.be/files/studentfiles/wolf.jpg and wget http://linux-training.be/files/books/LinuxFun.pdf)

```
wget http://linux-training.be/files/studentfiles/wolf.jpg
wget http://linux-training.be/files/studentfiles/wolf.png
wget http://linux-training.be/files/books/LinuxFun.pdf
```

- 3b. Display the type of file of wolf.jpg and LinuxFun.pdf
- 3c. Rename wolf.jpg to wolf.pdf (use mv).
- 3d. Display the type of file of wolf.pdf and LinuxFun.pdf.
- 4. Create a directory ~/touched and enter it.
- 5. Create the files today.txt and yesterday.txt in touched.
- 6. Change the date on yesterday.txt to match yesterday's date.
- 7. Copy yesterday.txt to copy.yesterday.txt
- 8. Rename copy.yesterday.txt to kim
- 9. Create a directory called ~/testbackup and copy all files from ~/touched into it.
- 10. Use one command to remove the directory ~/testbackup and all files into it.
- 11. Create a directory ~/etcbackup and copy all *.conf files from /etc into it. Did you include all subdirectories of /etc?
- 12. Use rename to rename all *.conf files to *.backup . (if you have more than one distro available, try it on all!)

Chapter 10. working with file contents

In this chapter we will look at the contents of **text files** with **head**, **tail**, **cat**, **tac**, **more**, **less** and **strings**.

We will also get a glimpse of the possibilities of tools like cat on the command line.

10.1. head

You can use **head** to display the first ten lines of a file.

```
paul@debian7~$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
root@debian7~#
```

The **head** command can also display the first **n** lines of a file.

```
paul@debian7~$ head -4 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
paul@debian7~$
```

And **head** can also display the first **n bytes**.

```
paul@debian7~$ head -c14 /etc/passwd
root:x:0:0:roopaul@debian7~$
```

10.2. tail

Similar to **head**, the **tail** command will display the last ten lines of a file.

```
paul@debian7~$ tail /etc/services
vboxd
                20012/udp
                                                 # binkp fidonet protocol
binkp
                24554/tcp
                27374/tcp
                                                 # Address Search Protocol
asp
                27374/udp
asp
                                                 # cluster synchronization tool
csync2
                30865/tcp
                57000/tcp
                                                 # Detachable IRC Proxy
dircproxy
tfido
                60177/tcp
                                                 # fidonet EMSI over telnet
fido
                60179/tcp
                                                 # fidonet EMSI over TCP
# Local services
paul@debian7~$
```

You can give **tail** the number of lines you want to see.

```
paul@debian7~$ tail -3 /etc/services

fido 60179/tcp # fidonet EMSI over TCP

# Local services
paul@debian7~$
```

The **tail** command has other useful options, some of which we will use during this course.

10.3. cat

The **cat** command is one of the most universal tools, yet all it does is copy **standard input** to **standard output**. In combination with the shell this can be very powerful and diverse. Some examples will give a glimpse into the possibilities. The first example is simple, you can use cat to display a file on the screen. If the file is longer than the screen, it will scroll to the end.

```
paul@debian8:~$ cat /etc/resolv.conf
domain linux-training.be
search linux-training.be
nameserver 192.168.1.42
```

10.3.1. concatenate

cat is short for **concatenate**. One of the basic uses of **cat** is to concatenate files into a bigger (or complete) file.

```
paul@debian8:~$ echo one >part1
paul@debian8:~$ echo two >part2
paul@debian8:~$ echo three >part3
paul@debian8:~$ cat part1
one
paul@debian8:~$ cat part2
two
paul@debian8:~$ cat part3
paul@debian8:~$ cat part1 part2 part3
two
three
paul@debian8:~$ cat part1 part2 part3 >all
paul@debian8:~$ cat all
one
two
three
paul@debian8:~$
```

10.3.2. create files

You can use **cat** to create flat text files. Type the **cat > winter.txt** command as shown in the screenshot below. Then type one or more lines, finishing each line with the enter key. After the last line, type and hold the Control (Ctrl) key and press d.

```
paul@debian8:~$ cat > winter.txt
It is very cold today!
paul@debian8:~$ cat winter.txt
It is very cold today!
paul@debian8:~$
```

The **Ctrl d** key combination will send an **EOF** (End of File) to the running process ending the **cat** command.

10.3.3. custom end marker

You can choose an end marker for **cat** with **<<** as is shown in this screenshot. This construction is called a **here directive** and will end the **cat** command.

```
paul@debian8:~$ cat > hot.txt <<stop
> It is hot today!
> Yes it is summer.
> stop
paul@debian8:~$ cat hot.txt
It is hot today!
Yes it is summer.
paul@debian8:~$
```

10.3.4. copy files

In the third example you will see that cat can be used to copy files. We will explain in detail what happens here in the bash shell chapter.

```
paul@debian8:~$ cat winter.txt
It is very cold today!
paul@debian8:~$ cat winter.txt > cold.txt
paul@debian8:~$ cat cold.txt
It is very cold today!
paul@debian8:~$
```

10.4. tac

Just one example will show you the purpose of **tac** (cat backwards).

```
paul@debian8:~$ cat count
one
two
three
four
paul@debian8:~$ tac count
four
three
two
one
```

10.5. more and less

The **more** command is useful for displaying files that take up more than one screen. More will allow you to see the contents of the file page by page. Use the space bar to see the next page, or **q** to quit. Some people prefer the **less** command to **more**.

10.6. strings

With the **strings** command you can display readable ascii strings found in (binary) files. This example locates the **ls** binary then displays readable strings in the binary file (output is truncated).

```
paul@laika:~$ which ls
/bin/ls
paul@laika:~$ strings /bin/ls
/lib/ld-linux.so.2
librt.so.1
__gmon_start__
_Jv_RegisterClasses
clock_gettime
libacl.so.1
...
```

10.7. practice: file contents

- 1. Display the first 12 lines of /etc/services.
- 2. Display the last line of /etc/passwd.
- 3. Use cat to create a file named **count.txt** that looks like this:

One
Two
Three
Four
Five

- 4. Use **cp** to make a backup of this file to **cnt.txt**.
- 5. Use **cat** to make a backup of this file to **catcnt.txt**.
- 6. Display **catcnt.txt**, but with all lines in reverse order (the last line first).
- 7. Use more to display /etc/services.
- 8. Display the readable character strings from the /usr/bin/passwd command.
- 9. Use **ls** to find the biggest file in /etc.
- 10. Open two terminal windows (or tabs) and make sure you are in the same directory in both. Type **echo this is the first line > tailing.txt** in the first terminal, then issue **tail -f tailing.txt** in the second terminal. Now go back to the first terminal and type **echo This is another line >> tailing.txt** (note the double >>), verify that the **tail -f** in the second terminal shows both lines. Stop the **tail -f** with **Ctrl-C**.
- 11. Use **cat** to create a file named **tailing.txt** that contains the contents of **tailing.txt** followed by the contents of **/etc/passwd**.
- 12. Use **cat** to create a file named **tailing.txt** that contains the contents of **tailing.txt** preceded by the contents of **/etc/passwd**.

Chapter 11. the Linux file tree

This chapter takes a look at the most common directories in the **Linux file tree**. It also shows that on Unix everything is a file.

11.1. filesystem hierarchy standard

Many Linux distributions partially follow the **Filesystem Hierarchy Standard**. The **FHS** may help make more Unix/Linux file system trees conform better in the future. The **FHS** is available online at **http://www.pathname.com/fhs/** where we read: "The filesystem hierarchy standard has been designed to be used by Unix distribution developers, package developers, and system implementers. However, it is primarily intended to be a reference and is not a tutorial on how to manage a Unix filesystem or directory hierarchy."

11.2. man hier

There are some differences in the filesystems between **Linux distributions**. For help about your machine, enter **man hier** to find information about the file system hierarchy. This manual will explain the directory structure on your computer.

11.3. the root directory /

All Linux systems have a directory structure that starts at the **root directory**. The root directory is represented by a **forward slash**, like this: /. Everything that exists on your Linux system can be found below this root directory. Let's take a brief look at the contents of the root directory.

```
[paul@RHELv4u3 ~]$ ls /
bin dev home media mnt proc sbin srv tftpboot usr
boot etc lib misc opt root selinux sys tmp var
```

11.4. binary directories

Binaries are files that contain compiled source code (or machine code). Binaries can be **executed** on the computer. Sometimes binaries are called **executables**.

11.4.1. /bin

The /bin directory contains binaries for use by all users. According to the FHS the /bin directory should contain /bin/cat and /bin/date (among others).

In the screenshot below you see common Unix/Linux commands like cat, cp, cpio, date, dd, echo, grep, and so on. Many of these will be covered in this book.

```
paul@laika:~$ ls /bin
archdetect
                                                 setupcon
autopartition
               false
                                 mt-gnu
                                                 sh
               fgconsole
                                                 sh.distrib
bash
                                 mν
               fgrep
                                                 sleep
bunzip2
                                nano
bzcat
               fuser
                                nc
                                                 stralign
                            nc.traditional stty
bzcmp
               fusermount
bzdiff
               get mountoptions netcat
bzegrep
                               netstat
                                                sync
bzexe
               gunzip
                               ntfs-3g
                                                sysfs
bzfgrep
                               ntfs-3g.probe
               gzexe
                                                tailf
                               parted_devices tar
bzgrep
               gzip
                                parted_server
bzip2
               hostname
                                                 tempfile
bzip2recover
               hw-detect
                                partman
                                                 touch
                ip
kbd_mode
bzless
                                 partman-commit
                                                 true
bzmore
                                 perform_recipe
                                                 ulockmgr
                kill
cat
                                 pidof
                                                 umount
```

11.4.2. other /bin directories

You can find a **/bin subdirectory** in many other directories. A user named **serena** could put her own programs in **/home/serena/bin**.

Some applications, often when installed directly from source will put themselves in /opt. A samba server installation can use /opt/samba/bin to store its binaries.

11.4.3. /sbin

/sbin contains binaries to configure the operating system. Many of the system binaries require root privilege to perform certain tasks.

Below a screenshot containing **system binaries** to change the ip address, partition a disk and create an ext4 file system.

```
paul@ubu1010:~$ ls -l /sbin/ifconfig /sbin/fdisk /sbin/mkfs.ext4
-rwxr-xr-x 1 root root 97172 2011-02-02 09:56 /sbin/fdisk
-rwxr-xr-x 1 root root 65708 2010-07-02 09:27 /sbin/ifconfig
-rwxr-xr-x 5 root root 55140 2010-08-18 18:01 /sbin/mkfs.ext4
```

11.4.4. /lib

Binaries found in /bin and /sbin often use shared libraries located in /lib. Below is a screenshot of the partial contents of /lib.

```
paul@laika:~$ ls /lib/libc*
/lib/libc-2.5.so /lib/libcfont.so.0.0.0 /lib/libcom_err.so.2.1
/lib/libcap.so.1 /lib/libcidn-2.5.so /lib/libconsole.so.0
/lib/libcap.so.1.10 /lib/libcidn.so.1 /lib/libconsole.so.0.0.0
/lib/libcfont.so.0 /lib/libcom err.so.2 /lib/libcrypt-2.5.so
```

/lib/modules

Typically, the **Linux kernel** loads kernel modules from **/lib/modules/\$kernel-version**/. This directory is discussed in detail in the Linux kernel chapter.

/lib32 and /lib64

We currently are in a transition between **32-bit** and **64-bit** systems. Therefore, you may encounter directories named /**lib32** and /**lib64** which clarify the register size used during compilation time of the libraries. A 64-bit computer may have some 32-bit binaries and libraries for compatibility with legacy applications. This screenshot uses the **file** utility to demonstrate the difference.

```
paul@laika:~$ file /lib32/libc-2.5.so
/lib32/libc-2.5.so: ELF 32-bit LSB shared object, Intel 80386, \
version 1 (SYSV), for GNU/Linux 2.6.0, stripped
paul@laika:~$ file /lib64/libcap.so.1.10
/lib64/libcap.so.1.10: ELF 64-bit LSB shared object, AMD x86-64, \
version 1 (SYSV), stripped
```

The ELF (Executable and Linkable Format) is used in almost every Unix-like operating system since System V.

11.4.5. /opt

The purpose of /opt is to store optional software. In many cases this is software from outside the distribution repository. You may find an empty /opt directory on many systems.

A large package can install all its files in /bin, /lib, /etc subdirectories within /opt/ \$packagename/. If for example the package is called wp, then it installs in /opt/wp, putting binaries in /opt/wp/bin and manpages in /opt/wp/man.

11.5. configuration directories

11.5.1. /boot

The /boot directory contains all files needed to boot the computer. These files don't change very often. On Linux systems you typically find the /boot/grub directory here. /boot/grub contains /boot/grub/grub.cfg (older systems may still have /boot/grub/grub.conf) which defines the boot menu that is displayed before the kernel starts.

11.5.2. /etc

All of the machine-specific **configuration files** should be located in /etc. Historically /etc stood for etcetera, today people often use the **Editable Text Configuration** backronym.

Many times the name of a configuration files is the same as the application, daemon, or protocol with **.conf** added as the extension.

```
paul@laika:~$ ls /etc/*.conf
/etc/adduser.conf
                       /etc/ld.so.conf
                                             /etc/scrollkeeper.conf
/etc/brltty.conf
                       /etc/lftp.conf
                                             /etc/sysctl.conf
/etc/ccertificates.conf /etc/libao.conf
                                             /etc/syslog.conf
/etc/cvs-cron.conf /etc/logrotate.conf
                                             /etc/ucf.conf
/etc/ddclient.conf
                       /etc/ltrace.conf
                                             /etc/uniconf.conf
/etc/debconf.conf
                       /etc/mke2fs.conf
                                             /etc/updatedb.conf
/etc/deluser.conf
                       /etc/netscsid.conf
                                             /etc/usplash.conf
/etc/fdmount.conf
                       /etc/nsswitch.conf
                                             /etc/uswsusp.conf
                                             /etc/vnc.conf
/etc/hdparm.conf
                        /etc/pam.conf
/etc/host.conf
                        /etc/pnm2ppa.conf
                                             /etc/wodim.conf
/etc/inetd.conf
                       /etc/povray.conf
                                             /etc/wvdial.conf
/etc/kernel-img.conf
                       /etc/resolv.conf
paul@laika:~$
```

There is much more to be found in /etc.

/etc/init.d/

A lot of Unix/Linux distributions have an /etc/init.d directory that contains scripts to start and stop daemons. This directory could disappear as Linux migrates to systems that replace the old init way of starting all daemons.

/etc/X11/

The graphical display (aka **X Window System** or just **X**) is driven by software from the X.org foundation. The configuration file for your graphical display is /etc/X11/xorg.conf.

/etc/skel/

The **skeleton** directory **/etc/skel** is copied to the home directory of a newly created user. It usually contains hidden files like a **.bashrc** script.

/etc/sysconfig/

This directory, which is not mentioned in the FHS, contains a lot of **Red Hat Enterprise Linux** configuration files. We will discuss some of them in greater detail. The screenshot below is the **/etc/sysconfig** directory from RHELv4u4 with everything installed.

```
paul@RHELv4u4:~$ ls /etc/sysconfig/
            firstboot
                                                       saslauthd
                         irda
                                           network
apm-scripts grub
                         irqbalance
                                           networking selinux
                        keyboard
                                                       spamassassin
authconfig hidd
                                           ntpd
           httpd
autofs
                        kudzu
                                           openib.conf squid
bluetooth
            hwconf
                        lm sensors
                                                   syslog
                                           pand
clock
            i18n
                        mouse
                                           pcmcia
                                                       sys-config-sec
                                           pysql sys-config-users
prelink sys-low-
                        mouse.B
            init
console
crond
            installinfo named
desktop
            ipmi
                         netdump
                                           rawdevices
                                                       tux
            ipmi netdump
iptables netdump_id_dsa
diskdump
                                           rhn
                                                       vncservers
            iptables-cfg netdump_id_dsa.p samba
dund
                                                        xinetd
paul@RHELv4u4:~$
```

The file /etc/sysconfig/firstboot tells the Red Hat Setup Agent not to run at boot time. If you want to run the Red Hat Setup Agent at the next reboot, then simply remove this file, and run chkconfig --level 5 firstboot on. The Red Hat Setup Agent allows you to install the latest updates, create a user account, join the Red Hat Network and more. It will then create the /etc/sysconfig/firstboot file again.

```
paul@RHELv4u4:~$ cat /etc/sysconfig/firstboot
RUN_FIRSTBOOT=NO
```

The /etc/sysconfig/harddisks file contains some parameters to tune the hard disks. The file explains itself.

You can see hardware detected by **kudzu** in /**etc/sysconfig/hwconf**. Kudzu is software from Red Hat for automatic discovery and configuration of hardware.

The keyboard type and keymap table are set in the /etc/sysconfig/keyboard file. For more console keyboard information, check the manual pages of keymaps(5), dumpkeys(1), loadkeys(1) and the directory /lib/kbd/keymaps/.

```
root@RHELv4u4:/etc/sysconfig# cat keyboard
KEYBOARDTYPE="pc"
KEYTABLE="us"
```

We will discuss networking files in this directory in the networking chapter.

11.6. data directories

11.6.1. /home

Users can store personal or project data under /home. It is common (but not mandatory by the fhs) practice to name the users home directory after the user name in the format /home/ \$USERNAME. For example:

```
paul@ubu606:~$ ls /home
geert annik sandra paul tom
```

Besides giving every user (or every project or group) a location to store personal files, the home directory of a user also serves as a location to store the user profile. A typical Unix user profile contains many hidden files (files whose file name starts with a dot). The hidden files of the Unix user profiles contain settings specific for that user.

```
paul@ubu606:~$ ls -d /home/paul/.*
/home/paul/. /home/paul/.bash_profile /home/paul/.ssh
/home/paul/. /home/paul/.bashrc /home/paul/.viminfo
/home/paul/.bash_history /home/paul/.lesshst
```

11.6.2. /root

On many systems /**root** is the default location for personal data and profile of the **root user**. If it does not exist by default, then some administrators create it.

11.6.3. /srv

You may use /srv for data that is served by your system. The FHS allows locating cvs, rsync, ftp and www data in this location. The FHS also approves administrative naming in / srv, like /srv/project55/ftp and /srv/sales/www.

On Sun Solaris (or Oracle Solaris) /export is used for this purpose.

11.6.4. /media

The /media directory serves as a mount point for removable media devices such as CD-ROM's, digital cameras, and various usb-attached devices. Since /media is rather new in the Unix world, you could very well encounter systems running without this directory. Solaris 9 does not have it, Solaris 10 does. Most Linux distributions today mount all removable media in /media.

```
paul@debian5:~$ ls /media/
cdrom cdrom0 usbdisk
```

11.6.5. /mnt

The /mnt directory should be empty and should only be used for temporary mount points (according to the FHS).

Unix and Linux administrators used to create many directories here, like /mnt/something/. You likely will encounter many systems with more than one directory created and/or mounted inside /mnt to be used for various local and remote filesystems.

11.6.6. /tmp

Applications and users should use /tmp to store temporary data when needed. Data stored in /tmp may use either disk space or RAM. Both of which are managed by the operating system. Never use /tmp to store data that is important or which you wish to archive.

11.7. in memory directories

11.7.1. /dev

Device files in /dev appear to be ordinary files, but are not actually located on the hard disk. The /dev directory is populated with files as the kernel is recognising hardware.

common physical devices

Common hardware such as hard disk devices are represented by device files in /dev. Below a screenshot of SATA device files on a laptop and then IDE attached drives on a desktop. (The detailed meaning of these devices will be discussed later.)

```
#
# SATA or SCSI or USB
#
paul@laika:~$ ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sdb /dev/sdb1 /dev/sdb2
#
# IDE or ATAPI
#
paul@barry:~$ ls /dev/hd*
/dev/hda /dev/hda1 /dev/hda2 /dev/hdb /dev/hdb1 /dev/hdb2 /dev/hdc
```

Besides representing physical hardware, some device files are special. These special devices can be very useful.

/dev/tty and /dev/pts

For example, /dev/tty1 represents a terminal or console attached to the system. (Don't break your head on the exact terminology of 'terminal' or 'console', what we mean here is a command line interface.) When typing commands in a terminal that is part of a graphical interface like Gnome or KDE, then your terminal will be represented as /dev/pts/1 (1 can be another number).

/dev/null

On Linux you will find other special devices such as /dev/null which can be considered a black hole; it has unlimited storage, but nothing can be retrieved from it. Technically speaking, anything written to /dev/null will be discarded. /dev/null can be useful to discard unwanted output from commands. /dev/null is not a good location to store your backups;-).

11.7.2. /proc conversation with the kernel

/proc is another special directory, appearing to be ordinary files, but not taking up disk space. It is actually a view of the kernel, or better, what the kernel manages, and is a means to interact with it directly. /proc is a proc filesystem.

```
paul@RHELv4u4:~$ mount -t proc
```

```
none on /proc type proc (rw)
```

When listing the /proc directory you will see many numbers (on any Unix) and some interesting files (on Linux)

```
mul@laika:~$ ls /proc
1 2339 4724 5418 6587 7201
                                                 cmdline
                                                               mounts
                            6596
10175 2523
               4729
                      5421
                                    7204
                                                 cpuinfo
                                                               mtrr
10211 2783
               4741
                      5658 6599
                                    7206
                                                 crypto
                                                devices
10239 2975
                                                devices pagetypeinfo diskstats partitions dma sched_debug
                                    7214
               4873 5661
                            6638
       29775 4874 5665 6652 7216
141
15045 29792 4878 5927 6719 7218
                                                dma sche
driver scsi
1519 2997 4879 6
                             6736 7223
1548 3
               4881 6032 6737 7224
                                                execdomains self
1551 30228 4882 6033 6755 7227
                                                              slabinfo
1554 3069 5
                       6145 6762 7260
                                                filesystems stat
1557 31422 5073 6298 6774 7267
                                                fs
                                                              swaps
1606 3149 5147 6414 6816 7275
                                                ide
                                                               sys
       31507 5203 6418 6991 7282
180
                                                 interrupts sysrq-trigger
181
       3189 5206 6419 6993 7298
                                                 iomem sysvipc
182 3193
18898 3246
               5228 6420 6996 7319
5272 6421 7157 7330
                                                 ioports
                                                               timer list
               5272
                                                               timer stats
                                                 irq
19799 3248 5291 6422 7163 7345
                                                 kallsyms
                                                               tty
19803 3253 5294 6423 7164 7513
                                                kcore
                                                               uptime
19804 3372 5356 6424 7171 7525
                                                key-users
                                                               version
                                                kmsg Versal vmcore
               5370 6425 7175 7529
1987 4
                                                              version_signature

      1987
      4
      5370
      6425
      7175
      7529
      kmsg

      1989
      42
      5379
      6426
      7188
      9964
      loadavg

      2
      45
      5380
      6430
      7189
      acpi
      locks

      20845
      4542
      5412
      6450
      7191
      asound
      meminfo

                                                              vmnet
                                                              vmstat
221 46 5414 6551 7192 buddyinfo misc
                                                              zoneinfo
2338 4704 5416 6568 7199 bus
                                                 modules
```

Let's investigate the file properties inside /proc. Looking at the date and time will display the current date and time showing the files are constantly updated (a view on the kernel).

```
paul@RHELv4u4:~$ date
Mon Jan 29 18:06:32 EST 2007
paul@RHELv4u4:~$ ls -al /proc/cpuinfo
-r--r-- 1 root root 0 Jan 29 18:06 /proc/cpuinfo
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$
paul@RHELv4u4:~$ late
Mon Jan 29 18:10:00 EST 2007
paul@RHELv4u4:~$ ls -al /proc/cpuinfo
-r--r--- 1 root root 0 Jan 29 18:10 /proc/cpuinfo
```

Most files in /proc are 0 bytes, yet they contain data--sometimes a lot of data. You can see this by executing cat on files like /proc/cpuinfo, which contains information about the CPU.

```
paul@RHELv4u4:~$ file /proc/cpuinfo
/proc/cpuinfo: empty
paul@RHELv4u4:~$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 43
```

```
model name : AMD Athlon(tm) 64 X2 Dual Core Processor 4600+
stepping
             : 1
             : 2398.628
cpu MHz
cache size
             : 512 KB
fdiv_bug
             : no
hlt bug
              : no
f00f_bug
              : no
coma_bug
              : no
fpu
              : yes
fpu_exception : yes
cpuid level : 1
cpuid level
wp
              : yes
flags
              : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge...
bogomips
              : 4803.54
```

Just for fun, here is /proc/cpuinfo on a Sun Sunblade 1000...

```
paul@pasha:~$ cat /proc/cpuinfo
cpu : TI UltraSparc III (Cheetah)
fpu : UltraSparc III integrated FPU
promlib : Version 3 Revision 2
prom : 4.2.2
type : sun4u
ncpus probed : 2
ncpus active : 2
Cpu0Bogo : 498.68
Cpu0ClkTck: 000000002cb41780
Cpu1Bogo : 498.68
Cpu1ClkTck: 000000002cb41780
MMU Type : Cheetah
State:
CPU0: online
CPU1: online
```

Most of the files in /proc are read only, some require root privileges, some files are writable, and many files in /proc/sys are writable. Let's discuss some of the files in /proc.

/proc/interrupts

On the x86 architecture, /proc/interrupts displays the interrupts.

```
paul@RHELv4u4:~$ cat /proc/interrupts
         CPU0
 0:
      13876877
                 IO-APIC-edge timer
                IO-APIC-edge i8042
 1:
           15
 8 :
           1
                IO-APIC-edge rtc
 9:
           0 IO-APIC-level acpi
12:
           67 IO-APIC-edge i8042
14:
          128
               IO-APIC-edge ide0
15:
      124320
                IO-APIC-edge ide1
      111993 IO-APIC-level ioc0
169:
              IO-APIC-level eth0
177:
        2428
NMI:
           0
    13878037
LOC:
ERR:
            0
MIS:
            0
```

On a machine with two CPU's, the file looks like this.

```
paul@laika:~$ cat /proc/interrupts
         CPU0
                CPU1
       860013
                    0 IO-APIC-edge
                                       timer
 1:
        4533
                    0
                      IO-APIC-edge
                                       i8042
                   0 IO-APIC-edge
 7:
           0
                                       parport0
                   0 IO-APIC-edge
 8:
     6588227
                                      rtc
10:
                   0 IO-APIC-fasteoi acpi
       2314
                   0 IO-APIC-edge
12:
         133
                                      i8042
14:
          0
                  0 IO-APIC-edge
                                      libata
15:
      72269
                  0 IO-APIC-edge
                                      libata
18:
           1
                   0 IO-APIC-fasteoi yenta
19:
      115036
                  0 IO-APIC-fasteoi eth0
      126871
                   0 IO-APIC-fasteoi libata, ohci1394
20:
21:
      30204
                   0 IO-APIC-fasteoi ehci_hcd:usb1, uhci_hcd:usb2
        1334
                      IO-APIC-fasteoi saa7133[0], saa7133[0]
IO-APIC-fasteoi nvidia
22:
                   0
24:
       234739
                   0
NMI:
       72
                   42
       860000
               859994
LOC:
ERR:
```

/proc/kcore

The physical memory is represented in /proc/kcore. Do not try to cat this file, instead use a debugger. The size of /proc/kcore is the same as your physical memory, plus four bytes.

```
paul@laika:~$ ls -lh /proc/kcore
-r----- 1 root root 2.0G 2007-01-30 08:57 /proc/kcore
paul@laika:~$
```

11.7.3. /sys Linux 2.6 hot plugging

The /sys directory was created for the Linux 2.6 kernel. Since 2.6, Linux uses sysfs to support usb and IEEE 1394 (FireWire) hot plug devices. See the manual pages of udev(8) (the successor of devfs) and hotplug(8) for more info (or visit http://linux-hotplug.sourceforge.net/).

Basically the /sys directory contains kernel information about hardware.

11.8. /usr Unix System Resources

Although /usr is pronounced like user, remember that it stands for Unix System Resources. The /usr hierarchy should contain shareable, read only data. Some people choose to mount /usr as read only. This can be done from its own partition or from a read only NFS share (NFS is discussed later).

11.8.1. /usr/bin

The /usr/bin directory contains a lot of commands.

```
paul@deb508:~$ ls /usr/bin | wc -l
1395
```

(On Solaris the /bin directory is a symbolic link to /usr/bin.)

11.8.2. /usr/include

The /usr/include directory contains general use include files for C.

```
paul@ubu1010:~$ ls /usr/include/
aalib.h
              expat_config.h
                                  math.h
                                                   search.h
af vfs.h
              expat external.h
                                  mcheck.h
                                                   semaphore.h
aio.h
              expat.h
                                  memory.h
                                                   setjmp.h
              fcntl.h
                                  menu.h
                                                   sgtty.h
aliases.h
              features.h
                                  mntent.h
                                                   shadow.h
```

11.8.3. /usr/lib

The /usr/lib directory contains libraries that are not directly executed by users or scripts.

```
paul@deb508:~$ ls /usr/lib | head -7
4Suite
ao
apt
arj
aspell
avahi
bonobo
```

11.8.4. /usr/local

The /usr/local directory can be used by an administrator to install software locally.

```
paul@deb508:~$ ls /usr/local/
bin etc games include lib man sbin share src
paul@deb508:~$ du -sh /usr/local/
128K /usr/local/
```

11.8.5. /usr/share

The /usr/share directory contains architecture independent data. As you can see, this is a fairly large directory.

```
paul@deb508:~$ ls /usr/share/ | wc -1
```

```
263
paul@deb508:~$ du -sh /usr/share/
1.3G /usr/share/
```

This directory typically contains /usr/share/man for manual pages.

```
paul@deb508:~$ ls /usr/share/man
cs fr hu it.UTF-8 man2 man6 pl.ISO8859-2 sv
de fr.ISO8859-1 id ja man3 man7 pl.UTF-8 tr
es fr.UTF-8 it ko man4 man8 pt_BR zh_CN
fi gl it.ISO8859-1 man1 man5 pl ru zh_TW
```

And it contains /usr/share/games for all static game data (so no high-scores or play logs).

```
paul@ubu1010:~$ ls /usr/share/games/
openttd wesnoth
```

11.8.6. /usr/src

The /usr/src directory is the recommended location for kernel source files.

```
paul@deb508:~$ ls -l /usr/src/
total 12
drwxr-xr-x 4 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-686
drwxr-xr-x 18 root root 4096 2011-02-01 14:43 linux-headers-2.6.26-2-common
drwxr-xr-x 3 root root 4096 2009-10-28 16:01 linux-kbuild-2.6.26
```

11.9. /var variable data

Files that are unpredictable in size, such as log, cache and spool files, should be located in /var.

11.9.1. /var/log

The /var/log directory serves as a central point to contain all log files.

```
[paul@RHEL4b ~]$ ls /var/log
acpid
                      cron.2
                                    maillog.2
                                                     quagga
                                                                              secure.4
amanda
                      cron.3
                                    maillog.3
                                                     radius
                                                                              spooler
anaconda.log
                     cron.4
                                    maillog.4
                                                     rpmpkgs
                                                                             spooler.1
anaconda.syslog cups
                  log cups mailman rpmpkgs.1 spooler.2
g dmesg messages rpmpkgs.2 spooler.3
exim messages.1 rpmpkgs.3 spooler.4
gdm messages.2 rpmpkgs.4 squid
httpd messages.3 sa uucp
iiim messages.4 samba vbox
iptraf mysqld.log scrollkeeper.log vmware-tools-guestd
                                   mailman
                                                     rpmpkgs.1
                                                                             spooler.2
anaconda.xlog dmesg
audit
boot.log
boot.log.1
boot.log.2
boot.log.3
                      lastlog news secure
mail pgsql secure.1
maillog ppp secure.2
boot.log.4
                                                                            wtmp
canna
                                                                             wtmp.1
cron
                                                                             Xorg.0.log
cron.1
                      maillog.1 prelink.log secure.3
                                                                             Xorg.0.log.old
```

11.9.2. /var/log/messages

A typical first file to check when troubleshooting on Red Hat (and derivatives) is the /var/log/messages file. By default this file will contain information on what just happened to the system. The file is called /var/log/syslog on Debian and Ubuntu.

```
[root@RHEL4b ~]# tail /var/log/messages
Jul 30 05:13:56 anacron: anacron startup succeeded
Jul 30 05:13:56 atd: atd startup succeeded
Jul 30 05:13:57 messagebus: messagebus startup succeeded
Jul 30 05:13:57 cups-config-daemon: cups-config-daemon startup succeeded
Jul 30 05:13:58 haldaemon: haldaemon startup succeeded
Jul 30 05:14:00 fstab-sync[3560]: removed all generated mount points
Jul 30 05:14:01 fstab-sync[3628]: added mount point /media/cdrom for...
Jul 30 05:14:01 fstab-sync[3646]: added mount point /media/floppy for...
Jul 30 05:16:46 sshd(pam_unix)[3662]: session opened for user paul by...
Jul 30 06:06:37 su(pam_unix)[3904]: session opened for user root by paul
```

11.9.3. /var/cache

The /var/cache directory can contain cache data for several applications.

```
paul@ubu1010:~$ ls /var/cache/
apt dictionaries-common gdm man software-center
binfmts flashplugin-installer hald pm-utils
cups fontconfig jockey pppconfig
debconf fonts ldconfig samba
```

11.9.4. /var/spool

The /var/spool directory typically contains spool directories for mail and cron, but also serves as a parent directory for other spool files (for example print spool files).

11.9.5. /var/lib

The /var/lib directory contains application state information.

Red Hat Enterprise Linux for example keeps files pertaining to rpm in /var/lib/rpm/.

11.9.6. /var/...

/var also contains Process ID files in /var/run (soon to be replaced with /run) and temporary files that survive a reboot in /var/tmp and information about file locks in /var/lock. There will be more examples of /var usage further in this book.

11.10. practice: file system tree

- 1. Does the file /bin/cat exist? What about /bin/dd and /bin/echo. What is the type of these files?
- 2. What is the size of the Linux kernel file(s) (vmlinu*) in /boot?
- 3. Create a directory ~/test. Then issue the following commands:

```
cd ~/test
dd if=/dev/zero of=zeroes.txt count=1 bs=100
od zeroes.txt
```

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /**dev/zero** to ~/test/zeroes.txt. Can you describe the functionality of /**dev/zero**?

4. Now issue the following command:

```
dd if=/dev/random of=random.txt count=1 bs=100; od random.txt
```

dd will copy one times (count=1) a block of size 100 bytes (bs=100) from the file /**dev/random** to ~/test/random.txt. Can you describe the functionality of /**dev/random**?

5. Issue the following two commands, and look at the first character of each output line.

```
ls -l /dev/sd* /dev/hd*
ls -l /dev/tty* /dev/input/mou*
```

The first ls will show block(b) devices, the second ls shows character(c) devices. Can you tell the difference between block and character devices?

- 6. Use cat to display /etc/hosts and /etc/resolv.conf. What is your idea about the purpose of these files?
- 7. Are there any files in /etc/skel/? Check also for hidden files.
- 8. Display /proc/cpuinfo. On what architecture is your Linux running?
- 9. Display /proc/interrupts. What is the size of this file? Where is this file stored?
- 10. Can you enter the **/root** directory? Are there (hidden) files?
- 11. Are if config, fdisk, parted, shutdown and grub-install present in /sbin? Why are these binaries in /sbin and not in /bin?
- 12. Is /var/log a file or a directory? What about /var/spool?
- 13. Open two command prompts (Ctrl-Shift-T in gnome-terminal) or terminals (Ctrl-Alt-F1, Ctrl-Alt-F2, ...) and issue the **who am i** in both. Then try to echo a word from one terminal to the other.

14. Read the man page of random and explain the difference between /dev/random and /dev/urandom.

Table of Contents

12. commands and arguments	125
12.1. arguments	126
12.2. white space removal	
12.3. single quotes	
12.4. double quotes	
12.5. echo and quotes	
12.6. commands	
12.7. aliases	
12.8. displaying shell expansion	
12.9. practice: commands and arguments	
12.10. solution: commands and arguments	
13. control operators	
13.1.; semicolon	
13.2. & ampersand	
13.3. \$? dollar question mark	
13.4. && double ampersand	
13.5. double vertical bar	
13.6. combining && and	
13.7. # pound sign	
13.8.\ escaping special characters	
13.9. practice: control operators	
13.10. solution: control operators	
14. shell variables	
14.1. \$ dollar sign	
14.2. case sensitive	
14.3. creating variables	
14.4. quotes	
14.5. set	
14.6. unset	
14.7. \$PS1	
14.8. \$PATH	
14.9. env	
14.10. export	
14.11. delineate variables	
14.12. unbound variables	
14.13. practice: shell variables	
14.14. solution: shell variables	
15. shell embedding and options	
15.1. shell embedding	
15.2. shell options	
15.3. practice: shell embedding	
15.4. solution: shell embedding	
16. shell history	
16.1. repeating the last command	
16.2. repeating other commands	
16.3. history	
16.4. !n	
16.5. Ctrl-r	
16.6. \$HISTSIZE	
16.7. \$HISTFILE	
16.8. \$HISTFILESIZE	
16.9. prevent recording a command	
16.10. (optional) regular expressions	
16.11. (optional) Korn shell history	
16.12. practice: shell history	139

shell expansion

16.13. solution: shell history	160
17. file globbing	
17.1. * asterisk	
17.2. ? question mark	162
17.3. [] square brackets	
17.4. a-z and 0-9 ranges	
17.5. \$LANG and square brackets	
17.6. preventing file globbing	165
17.7. practice: shell globbing	
17.8. solution: shell globbing	

Chapter 12. commands and arguments

This chapter introduces you to **shell expansion** by taking a close look at **commands** and **arguments**. Knowing **shell expansion** is important because many **commands** on your Linux system are processed and most likely changed by the **shell** before they are executed.

The command line interface or **shell** used on most Linux systems is called **bash**, which stands for **Bourne again shell**. The **bash** shell incorporates features from **sh** (the original Bourne shell), **csh** (the C shell), and **ksh** (the Korn shell).

This chapter frequently uses the **echo** command to demonstrate shell features. The **echo** command is very simple: it echoes the input that it receives.

paul@laika:~\$ echo Burtonville Burtonville paul@laika:~\$ echo Smurfs are blue Smurfs are blue

12.1. arguments

One of the primary features of a shell is to perform a **command line scan**. When you enter a command at the shell's command prompt and press the enter key, then the shell will start scanning that line, cutting it up in **arguments**. While scanning the line, the shell may make many changes to the **arguments** you typed.

This process is called **shell expansion**. When the shell has finished scanning and modifying that line, then it will be executed.

12.2. white space removal

Parts that are separated by one or more consecutive **white spaces** (or tabs) are considered separate **arguments**, any white space is removed. The first **argument** is the command to be executed, the other **arguments** are given to the command. The shell effectively cuts your command into one or more arguments.

This explains why the following four different command lines are the same after **shell expansion**.

```
[paul@RHELv4u3 ~]$ echo Hello World
Hello World
```

The **echo** command will display each argument it receives from the shell. The **echo** command will also add a new white space between the arguments it received.

12.3. single quotes

You can prevent the removal of white spaces by quoting the spaces. The contents of the quoted string are considered as one argument. In the screenshot below the **echo** receives only one **argument**.

```
[paul@RHEL4b ~]$ echo 'A line with single quotes'
A line with single quotes
[paul@RHEL4b ~]$
```

12.4. double quotes

You can also prevent the removal of white spaces by double quoting the spaces. Same as above, **echo** only receives one **argument**.

```
[paul@RHEL4b ~]$ echo "A line with double quotes"
A line with double quotes
[paul@RHEL4b ~]$
```

Later in this book, when discussing **variables** we will see important differences between single and double quotes.

12.5. echo and quotes

Quoted lines can include special escaped characters recognised by the **echo** command (when using **echo -e**). The screenshot below shows how to use \n for a newline and \t for a tab (usually eight white spaces).

```
[paul@RHEL4b ~]$ echo -e "A line with \na newline"
A line with
a newline
[paul@RHEL4b ~]$ echo -e 'A line with \na newline'
A line with
a newline
[paul@RHEL4b ~]$ echo -e "A line with \ta tab"
A line with a tab
[paul@RHEL4b ~]$ echo -e 'A line with \ta tab'
A line with a tab
[paul@RHEL4b ~]$
```

The echo command can generate more than white spaces, tabs and newlines. Look in the man page for a list of options.

12.6. commands

12.6.1. external or builtin commands?

Not all commands are external to the shell, some are **builtin**. **External commands** are programs that have their own binary and reside somewhere in the file system. Many external commands are located in **/bin** or **/sbin**. **Builtin commands** are an integral part of the shell program itself.

12.6.2. type

To find out whether a command given to the shell will be executed as an **external command** or as a **builtin command**, use the **type** command.

```
paul@laika:~$ type cd
cd is a shell builtin
paul@laika:~$ type cat
cat is /bin/cat
```

As you can see, the **cd** command is **builtin** and the **cat** command is **external**.

You can also use this command to show you whether the command is **aliased** or not.

```
paul@laika:~$ type ls
ls is aliased to `ls --color=auto'
```

12.6.3. running external commands

Some commands have both builtin and external versions. When one of these commands is executed, the builtin version takes priority. To run the external version, you must enter the full path to the command.

```
paul@laika:~$ type -a echo
echo is a shell builtin
echo is /bin/echo
paul@laika:~$ /bin/echo Running the external echo command...
Running the external echo command...
```

12.6.4. which

The which command will search for binaries in the \$PATH environment variable (variables will be explained later). In the screenshot below, it is determined that cd is builtin, and ls, cp, rm, mv, mkdir, pwd, and which are external commands.

```
[root@RHEL4b ~]# which cp ls cd mkdir pwd
/bin/cp
/bin/ls
/usr/bin/which: no cd in (/usr/kerberos/sbin:/usr/kerberos/bin:...
/bin/mkdir
/bin/pwd
```

12.7. aliases

12.7.1. create an alias

The shell allows you to create **aliases**. Aliases are often used to create an easier to remember name for an existing command or to easily supply parameters.

```
[paul@RHELv4u3 ~]$ cat count.txt
one
two
three
[paul@RHELv4u3 ~]$ alias dog=tac
[paul@RHELv4u3 ~]$ dog count.txt
three
two
one
```

12.7.2. abbreviate commands

An **alias** can also be useful to abbreviate an existing command.

```
paul@laika:~$ alias ll='ls -lh --color=auto'
paul@laika:~$ alias c='clear'
paul@laika:~$
```

12.7.3. default options

Aliases can be used to supply commands with default options. The example below shows how to set the -i option default when typing rm.

```
[paul@RHELv4u3 ~]$ rm -i winter.txt
rm: remove regular file `winter.txt'? no
[paul@RHELv4u3 ~]$ rm winter.txt
[paul@RHELv4u3 ~]$ ls winter.txt
ls: winter.txt: No such file or directory
[paul@RHELv4u3 ~]$ touch winter.txt
[paul@RHELv4u3 ~]$ alias rm='rm -i'
[paul@RHELv4u3 ~]$ rm winter.txt
rm: remove regular empty file `winter.txt'? no
[paul@RHELv4u3 ~]$
```

Some distributions enable default aliases to protect users from accidentally erasing files ('rm -i', 'mv -i', 'cp -i')

12.7.4. viewing aliases

You can provide one or more aliases as arguments to the **alias** command to get their definitions. Providing no arguments gives a complete list of current aliases.

```
paul@laika:~$ alias c ll
alias c='clear'
alias ll='ls -lh --color=auto'
```

12.7.5. unalias

You can undo an alias with the **unalias** command.

12.8. displaying shell expansion

You can display shell expansion with **set -x**, and stop displaying it with **set +x**. You might want to use this further on in this course, or when in doubt about exactly what the shell is doing with your command.

```
[paul@RHELv4u3 ~]$ set -x
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ echo $USER
+ echo paul
paul
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ echo \$USER
+ echo '$USER'
$USER
++ echo -ne '\033]0;paul@RHELv4u3:~\007'
[paul@RHELv4u3 ~]$ set +x
+ set +x
[paul@RHELv4u3 ~]$ echo $USER
paul
```

12.9. practice: commands and arguments

1. How many **arguments** are in this line (not counting the command itself).

```
touch '/etc/cron/cron.allow' 'file 42.txt' "file 33.txt"
```

- 2. Is **tac** a shell builtin command?
- 3. Is there an existing alias for **rm**?
- 4. Read the man page of **rm**, make sure you understand the **-i** option of rm. Create and remove a file to test the **-i** option.
- 5. Execute: alias rm='rm -i'. Test your alias with a test file. Does this work as expected?
- 6. List all current aliases.
- 7a. Create an alias called 'city' that echoes your hometown.
- 7b. Use your alias to test that it works.
- 8. Execute **set -x** to display shell expansion for every command.
- 9. Test the functionality of **set -x** by executing your **city** and **rm** aliases.
- 10 Execute **set +x** to stop displaying shell expansion.
- 11. Remove your city alias.
- 12. What is the location of the **cat** and the **passwd** commands?
- 13. Explain the difference between the following commands:

echo

/bin/echo

14. Explain the difference between the following commands:

```
echo Hello
```

echo -n Hello

15. Display **A B C** with two spaces between B and C.

(optional)16. Complete the following command (do not use spaces) to display exactly the following output:

```
4+4 =8
10+14 =24
```

17. Use **echo** to display the following exactly:

??\\

Find two solutions with single quotes, two with double quotes and one without quotes (and say thank you to René and Darioush from Google for this extra).
18. Use one echo command to display three words on three lines.

Chapter 13. control operators

In this chapter we put more than one command on the command line using **control operators**. We also briefly discuss related parameters (\$?) and similar special characters(&).

13.1.; semicolon

You can put two or more commands on the same line separated by a semicolon; The shell will scan the line until it reaches the semicolon. All the arguments before this semicolon will be considered a separate command from all the arguments after the semicolon. Both series will be executed sequentially with the shell waiting for each command to finish before starting the next one.

```
[paul@RHELv4u3 ~]$ echo Hello
Hello
[paul@RHELv4u3 ~]$ echo World
World
[paul@RHELv4u3 ~]$ echo Hello ; echo World
Hello
World
[paul@RHELv4u3 ~]$
```

13.2. & ampersand

When a line ends with an ampersand &, the shell will not wait for the command to finish. You will get your shell prompt back, and the command is executed in background. You will get a message when this command has finished executing in background.

```
[paul@RHELv4u3 ~]$ sleep 20 &
[1] 7925
[paul@RHELv4u3 ~]$
...wait 20 seconds...
[paul@RHELv4u3 ~]$
[1]+ Done sleep 20
```

The technical explanation of what happens in this case is explained in the chapter about **processes**.

13.3. \$? dollar question mark

The exit code of the previous command is stored in the shell variable \$?. Actually \$? is a shell parameter and not a variable, since you cannot assign a value to \$?.

```
paul@debian5:~/test$ touch file1
paul@debian5:~/test$ echo $?
0
paul@debian5:~/test$ rm file1
paul@debian5:~/test$ echo $?
0
paul@debian5:~/test$ rm file1
rm: cannot remove `file1': No such file or directory
paul@debian5:~/test$ echo $?
1
paul@debian5:~/test$
```

13.4. && double ampersand

The shell will interpret && as a **logical AND**. When using && the second command is executed only if the first one succeeds (returns a zero exit status).

```
paul@barry:~$ echo first && echo second
first
second
paul@barry:~$ zecho first && echo second
-bash: zecho: command not found
```

Another example of the same **logical AND** principle. This example starts with a working **cd** followed by **ls**, then a non-working **cd** which is **not** followed by **ls**.

```
[paul@RHELv4u3 ~]$ cd gen && ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[paul@RHELv4u3 gen]$ cd gen && ls
-bash: cd: gen: No such file or directory
```

13.5. Il double vertical bar

The II represents a **logical OR**. The second command is executed only when the first command fails (returns a non-zero exit status).

```
paul@barry:~$ echo first || echo second ; echo third
first
third
paul@barry:~$ zecho first || echo second ; echo third
-bash: zecho: command not found
second
third
paul@barry:~$
```

Another example of the same **logical OR** principle.

```
[paul@RHELv4u3 ~]$ cd gen || ls
[paul@RHELv4u3 gen]$ cd gen || ls
-bash: cd: gen: No such file or directory
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
```

13.6. combining && and II

You can use this logical AND and logical OR to write an **if-then-else** structure on the command line. This example uses **echo** to display whether the **rm** command was successful.

```
paul@laika:~/test$ rm file1 && echo It worked! || echo It failed!
It worked!
paul@laika:~/test$ rm file1 && echo It worked! || echo It failed!
rm: cannot remove `file1': No such file or directory
It failed!
paul@laika:~/test$
```

13.7. # pound sign

Everything written after a **pound sign** (#) is ignored by the shell. This is useful to write a **shell comment**, but has no influence on the command execution or shell expansion.

```
paul@debian4:~$ mkdir test  # we create a directory
paul@debian4:~$ cd test  #### we enter the directory
paul@debian4:~/test$ ls  # is it empty ?
paul@debian4:~/test$
```

13.8. \ escaping special characters

The backslash \ character enables the use of control characters, but without the shell interpreting it, this is called **escaping** characters.

```
[paul@RHELv4u3 ~]$ echo hello \; world
hello ; world
[paul@RHELv4u3 ~]$ echo hello\ \ world
hello world
[paul@RHELv4u3 ~]$ echo escaping \\\ \#\ \&\ \"\ \'
escaping \ # & " '
[paul@RHELv4u3 ~]$ echo escaping \\\?\*\"\'
escaping \ ?*"'
```

13.8.1. end of line backslash

Lines ending in a backslash are continued on the next line. The shell does not interpret the newline character and will wait on shell expansion and execution of the command line until a newline without backslash is encountered.

```
[paul@RHEL4b ~]$ echo This command line \
> is split in three \
> parts
This command line is split in three parts
[paul@RHEL4b ~]$
```

13.9. practice: control operators

- 0. Each question can be answered by one command line!
- 1. When you type **passwd**, which file is executed?
- 2. What kind of file is that ?
- 3. Execute the **pwd** command twice. (remember 0.)
- 4. Execute **ls** after **cd /etc**, but only if **cd /etc** did not error.
- 5. Execute **cd/etc** after **cd etc**, but only if **cd etc** fails.
- 6. Echo it worked when touch test42 works, and echo it failed when the touch failed. All on one command line as a normal user (not root). Test this line in your home directory and in /bin/.
- 7. Execute **sleep 6**, what is this command doing?
- 8. Execute sleep 200 in background (do not wait for it to finish).
- 9. Write a command line that executes **rm file55**. Your command line should print 'success' if file55 is removed, and print 'failed' if there was a problem.

(optional)10. Use echo to display "Hello World with strange' characters \ * [$\} \sim \$ \ ." (including all quotes)

Chapter 14. shell variables

In this chapter we learn to manage environment **variables** in the shell. These **variables** are often needed by applications.

14.1. \$ dollar sign

Another important character interpreted by the shell is the dollar sign \$. The shell will look for an **environment variable** named like the string following the **dollar sign** and replace it with the value of the variable (or with nothing if the variable does not exist).

These are some examples using \$HOSTNAME, \$USER, \$UID, \$SHELL, and \$HOME.

```
[paul@RHELv4u3 ~]$ echo This is the $SHELL shell
This is the /bin/bash shell
[paul@RHELv4u3 ~]$ echo This is $SHELL on computer $HOSTNAME
This is /bin/bash on computer RHELv4u3.localdomain
[paul@RHELv4u3 ~]$ echo The userid of $USER is $UID
The userid of paul is 500
[paul@RHELv4u3 ~]$ echo My homedir is $HOME
My homedir is /home/paul
```

14.2. case sensitive

This example shows that shell variables are case sensitive!

```
[paul@RHELv4u3 ~]$ echo Hello $USER
Hello paul
[paul@RHELv4u3 ~]$ echo Hello $user
Hello
```

14.3. creating variables

This example creates the variable **\$MyVar** and sets its value. It then uses **echo** to verify the value.

```
[paul@RHELv4u3 gen]$ MyVar=555
[paul@RHELv4u3 gen]$ echo $MyVar
555
[paul@RHELv4u3 gen]$
```

14.4. quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent this.

```
[paul@RHELv4u3 ~]$ MyVar=555
[paul@RHELv4u3 ~]$ echo $MyVar
555
[paul@RHELv4u3 ~]$ echo "$MyVar"
555
[paul@RHELv4u3 ~]$ echo '$MyVar'
$MyVar
```

The bash shell will replace variables with their value in double quoted lines, but not in single quoted lines.

```
paul@laika:~$ city=Burtonville
paul@laika:~$ echo "We are in $city today."
We are in Burtonville today.
paul@laika:~$ echo 'We are in $city today.'
We are in $city today.
```

14.5. set

You can use the **set** command to display a list of environment variables. On Ubuntu and Debian systems, the **set** command will also list shell functions after the shell variables. Use **set I more** to see the variables then.

14.6. unset

Use the **unset** command to remove a variable from your shell environment.

```
[paul@RHEL4b ~]$ MyVar=8472
[paul@RHEL4b ~]$ echo $MyVar
8472
[paul@RHEL4b ~]$ unset MyVar
[paul@RHEL4b ~]$ echo $MyVar
[paul@RHEL4b ~]$
```

14.7. \$PS1

The \$PS1 variable determines your shell prompt. You can use backslash escaped special characters like \u for the username or \w for the working directory. The bash manual has a complete reference.

In this example we change the value of \$PS1 a couple of times.

```
paul@deb503:~$ PS1=prompt
prompt
promptPS1='prompt '
prompt
prompt PS1='> '
>
    PS1='\u@\h$ '
paul@deb503$
paul@deb503$ PS1='\u@\h:\W$'
paul@deb503:~$
```

To avoid unrecoverable mistakes, you can set normal user prompts to green and the root prompt to red. Add the following to your **.bashrc** for a green user prompt:

```
# color prompt by paul
RED='\[\033[01;31m\]'
WHITE='\[\033[01;00m\]'
GREEN='\[\033[01;32m\]'
BLUE='\[\033[01;34m\]'
export PS1="${debian_chroot:+($debian_chroot)}$GREEN\u$WHITE@$BLUE\h$WHITE\w\$ "
```

14.8. \$PATH

The **\$PATH** variable is determines where the shell is looking for commands to execute (unless the command is builtin or aliased). This variable contains a list of directories, separated by colons.

```
[[paul@RHEL4b ~]$ echo $PATH /usr/kerberos/bin:/usr/local/bin:/usr/bin:
```

The shell will not look in the current directory for commands to execute! (Looking for executables in the current directory provided an easy way to hack PC-DOS computers). If you want the shell to look in the current directory, then add a . at the end of your \$PATH.

```
[paul@RHEL4b ~]$ PATH=$PATH:.
[paul@RHEL4b ~]$ echo $PATH
/usr/kerberos/bin:/usr/local/bin:/usr/bin:.
[paul@RHEL4b ~]$
```

Your path might be different when using su instead of **su** - because the latter will take on the environment of the target user. The root user typically has /**sbin** directories added to the \$PATH variable.

```
[paul@RHEL3 ~]$ su
Password:
[root@RHEL3 paul]# echo $PATH
/usr/local/bin:/usr/bin:/usr/X11R6/bin
[root@RHEL3 paul]# exit
[paul@RHEL3 ~]$ su -
Password:
[root@RHEL3 ~]# echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/usr/bin:
[root@RHEL3 ~]#
```

14.9. env

The **env** command without options will display a list of **exported variables**. The difference with **set** with options is that **set** lists all variables, including those not exported to child shells.

But **env** can also be used to start a clean shell (a shell without any inherited environment). The **env** -**i** command clears the environment for the subshell.

Notice in this screenshot that **bash** will set the **\$SHELL** variable on startup.

```
[paul@RHEL4b ~]$ bash -c 'echo $SHELL $HOME $USER'
/bin/bash /home/paul paul
[paul@RHEL4b ~]$ env -i bash -c 'echo $SHELL $HOME $USER'
/bin/bash
[paul@RHEL4b ~]$
```

You can use the **env** command to set the **\$LANG**, or any other, variable for just one instance of **bash** with one command. The example below uses this to show the influence of the **\$LANG** variable on file globbing (see the chapter on file globbing).

```
[paul@RHEL4b test]$ env LANG=C bash -c 'ls File[a-z]'
Filea Fileb
[paul@RHEL4b test]$ env LANG=en_US.UTF-8 bash -c 'ls File[a-z]'
Filea FileA Fileb FileB
[paul@RHEL4b test]$
```

14.10. export

You can export shell variables to other shells with the **export** command. This will export the variable to child shells.

```
[paul@RHEL4b ~]$ var3=three
[paul@RHEL4b ~]$ var4=four
[paul@RHEL4b ~]$ export var4
[paul@RHEL4b ~]$ echo $var3 $var4
three four
[paul@RHEL4b ~]$ bash
[paul@RHEL4b ~]$ echo $var3 $var4
four
```

But it will not export to the parent shell (previous screenshot continued).

```
[paul@RHEL4b ~]$ export var5=five
[paul@RHEL4b ~]$ echo $var3 $var4 $var5
four five
[paul@RHEL4b ~]$ exit
exit
[paul@RHEL4b ~]$ echo $var3 $var4 $var5
three four
[paul@RHEL4b ~]$
```

14.11. delineate variables

Until now, we have seen that bash interprets a variable starting from a dollar sign, continuing until the first occurrence of a non-alphanumeric character that is not an underscore. In some situations, this can be a problem. This issue can be resolved with curly braces like in this example.

```
[paul@RHEL4b ~]$ prefix=Super
[paul@RHEL4b ~]$ echo Hello $prefixman and $prefixgirl
Hello and
[paul@RHEL4b ~]$ echo Hello ${prefix}man and ${prefix}girl
Hello Superman and Supergirl
[paul@RHEL4b ~]$
```

14.12. unbound variables

The example below tries to display the value of the \$MyVar variable, but it fails because the variable does not exist. By default the shell will display nothing when a variable is unbound (does not exist).

```
[paul@RHELv4u3 gen]$ echo $MyVar
[paul@RHELv4u3 gen]$
```

There is, however, the **nounset** shell option that you can use to generate an error when a variable does not exist.

```
paul@laika:~$ set -u
paul@laika:~$ echo $Myvar
bash: Myvar: unbound variable
paul@laika:~$ set +u
paul@laika:~$ echo $Myvar

paul@laika:~$
```

In the bash shell **set -u** is identical to **set -o nounset** and likewise **set +u** is identical to **set +o nounset**.

14.13. practice: shell variables

- 1. Use echo to display Hello followed by your username. (use a bash variable!)
- 2. Create a variable **answer** with a value of **42**.
- 3. Copy the value of \$LANG to \$MyLANG.
- 4. List all current shell variables.
- 5. List all exported shell variables.
- 6. Do the **env** and **set** commands display your variable?
- 6. Destroy your **answer** variable.
- 7. Create two variables, and **export** one of them.
- 8. Display the exported variable in an interactive child shell.
- 9. Create a variable, give it the value 'Dumb', create another variable with value 'do'. Use **echo** and the two variables to echo Dumbledore.
- 10. Find the list of backslash escaped characters in the manual of bash. Add the time to your **PS1** prompt.

Chapter 15. shell embedding and options

This chapter takes a brief look at child shells, embedded shells and shell options.

15.1. shell embedding

Shells can be **embedded** on the command line, or in other words, the command line scan can spawn new processes containing a fork of the current shell. You can use variables to prove that new shells are created. In the screenshot below, the variable \$var1 only exists in the (temporary) sub shell.

```
[paul@RHELv4u3 gen]$ echo $var1

[paul@RHELv4u3 gen]$ echo $(var1=5;echo $var1)
5
[paul@RHELv4u3 gen]$ echo $var1

[paul@RHELv4u3 gen]$
```

You can embed a shell in an **embedded shell**, this is called **nested embedding** of shells.

This screenshot shows an embedded shell inside an embedded shell.

```
paul@deb503:~$ A=shell
paul@deb503:~$ echo $C$B$A $(B=sub;echo $C$B$A; echo $(C=sub;echo $C$B$A))
shell subshell subsubshell
```

15.1.1. backticks

Single embedding can be useful to avoid changing your current directory. The screenshot below uses **backticks** instead of dollar-bracket to embed.

```
[paul@RHELv4u3 ~]$ echo `cd /etc; ls -d * | grep pass`
passwd passwd- passwd.OLD
[paul@RHELv4u3 ~]$
```

You can only use the \$() notation to nest embedded shells, backticks cannot do this.

15.1.2. backticks or single quotes

Placing the embedding between **backticks** uses one character less than the dollar and parenthesis combo. Be careful however, backticks are often confused with single quotes. The technical difference between ' and ` is significant!

```
[paul@RHELv4u3 gen]$ echo `var1=5;echo $var1`
5
[paul@RHELv4u3 gen]$ echo 'var1=5;echo $var1'
var1=5;echo $var1
[paul@RHELv4u3 gen]$
```

15.2. shell options

Both **set** and **unset** are builtin shell commands. They can be used to set options of the bash shell itself. The next example will clarify this. By default, the shell will treat unset variables as a variable having no value. By setting the -u option, the shell will treat any reference to unset variables as an error. See the man page of bash for more information.

```
[paul@RHEL4b ~]$ echo $var123

[paul@RHEL4b ~]$ set -u
[paul@RHEL4b ~]$ echo $var123
-bash: var123: unbound variable
[paul@RHEL4b ~]$ set +u
[paul@RHEL4b ~]$ echo $var123
[paul@RHEL4b ~]$
```

To list all the set options for your shell, use **echo \$-**. The **noclobber** (or **-C**) option will be explained later in this book (in the I/O redirection chapter).

```
[paul@RHEL4b ~]$ echo $-
himBH
[paul@RHEL4b ~]$ set -C; set -u
[paul@RHEL4b ~]$ echo $-
himuBCH
[paul@RHEL4b ~]$ set +C; set +u
[paul@RHEL4b ~]$ echo $-
himBH
[paul@RHEL4b ~]$
```

When typing **set** without options, you get a list of all variables without function when the shell is on **posix** mode. You can set bash in posix mode typing **set -o posix**.

15.3. practice: shell embedding

- 1. Find the list of shell options in the man page of **bash**. What is the difference between **set** -**u** and **set** -**o nounset**?
- 2. Activate **nounset** in your shell. Test that it shows an error message when using non-existing variables.
- 3. Deactivate nounset.
- 4. Execute **cd /var** and **ls** in an embedded shell.

The **echo** command is only needed to show the result of the **ls** command. Omitting will result in the shell trying to execute the first file as a command.

- 5. Create the variable embvar in an embedded shell and echo it. Does the variable exist in your current shell now?
- 6. Explain what "set -x" does. Can this be useful?

(optional)7. Given the following screenshot, add exactly four characters to that command line so that the total output is FirstMiddleLast.

```
[paul@RHEL4b ~]$ echo First; echo Middle; echo Last
```

8. Display a **long listing** (ls -l) of the **passwd** command using the **which** command inside an embedded shell.

Chapter 16. shell history

The shell makes it easy for us to repeat commands, this chapter explains how.

16.1. repeating the last command

To repeat the last command in bash, type !!. This is pronounced as bang bang.

```
paul@debian5:~/test42$ echo this will be repeated > file42.txt
paul@debian5:~/test42$ !!
echo this will be repeated > file42.txt
paul@debian5:~/test42$
```

16.2. repeating other commands

You can repeat other commands using one **bang** followed by one or more characters. The shell will repeat the last command that started with those characters.

```
paul@debian5:~/test42$ touch file42
paul@debian5:~/test42$ cat file42
paul@debian5:~/test42$ !to
touch file42
paul@debian5:~/test42$
```

16.3. history

To see older commands, use **history** to display the shell command history (or use **history n** to see the last n commands).

```
paul@debian5:~/test$ history 10
38 mkdir test
39 cd test
40 touch file1
41 echo hello > file2
42 echo It is very cold today > winter.txt
43 ls
44 ls -l
45 cp winter.txt summer.txt
46 ls -l
47 history 10
```

16.4. !n

When typing! followed by the number preceding the command you want repeated, then the shell will echo the command and execute it.

```
paul@debian5:~/test$ !43
ls
file1 file2 summer.txt winter.txt
```

16.5. Ctrl-r

Another option is to use **ctrl-r** to search in the history. In the screenshot below i only typed **ctrl-r** followed by four characters **apti** and it finds the last command containing these four consecutive characters.

```
paul@debian5:~$
(reverse-i-search)`apti': sudo aptitude install screen
```

16.6. \$HISTSIZE

The \$HISTSIZE variable determines the number of commands that will be remembered in your current environment. Most distributions default this variable to 500 or 1000.

```
paul@debian5:~$ echo $HISTSIZE
500
```

You can change it to any value you like.

```
paul@debian5:~$ HISTSIZE=15000
paul@debian5:~$ echo $HISTSIZE
15000
```

16.7. \$HISTFILE

The \$HISTFILE variable points to the file that contains your history. The **bash** shell defaults this value to **~/.bash_history**.

```
paul@debian5:~$ echo $HISTFILE /home/paul/.bash_history
```

A session history is saved to this file when you **exit** the session!

Closing a gnome-terminal with the mouse, or typing **reboot** as root will NOT save your terminal's history.

16.8. \$HISTFILESIZE

The number of commands kept in your history file can be set using \$HISTFILESIZE.

```
paul@debian5:~$ echo $HISTFILESIZE
15000
```

16.9. prevent recording a command

You can prevent a command from being recorded in **history** using a space prefix.

```
paul@debian8:~/github$ echo abc
abc
paul@debian8:~/github$ echo def
def
paul@debian8:~/github$ echo ghi
ghi
paul@debian8:~/github$ history 3
9501 echo abc
9502 echo ghi
9503 history 3
```

16.10. (optional) regular expressions

It is possible to use **regular expressions** when using the **bang** to repeat commands. The screenshot below switches 1 into 2.

```
paul@debian5:~/test$ cat file1
paul@debian5:~/test$ !c:s/1/2
cat file2
hello
paul@debian5:~/test$
```

16.11. (optional) Korn shell history

Repeating a command in the **Korn shell** is very similar. The Korn shell also has the **history** command, but uses the letter \mathbf{r} to recall lines from history.

This screenshot shows the history command. Note the different meaning of the parameter.

```
$ history 17
17 clear
18 echo hoi
19 history 12
20 echo world
21 history 17
```

Repeating with **r** can be combined with the line numbers given by the history command, or with the first few letters of the command.

```
$ r e
echo world
world
$ cd /etc
$ r
cd /etc
$
```

16.12. practice: shell history

- 1. Issue the command echo The answer to the meaning of life, the universe and everything is 42.
- 2. Repeat the previous command using only two characters (there are two solutions!)
- 3. Display the last 5 commands you typed.
- 4. Issue the long **echo** from question 1 again, using the line numbers you received from the command in question 3.
- 5. How many commands can be kept in memory for your current shell session?
- 6. Where are these commands stored when exiting the shell?
- 7. How many commands can be written to the **history file** when exiting your current shell session?
- 8. Make sure your current bash shell remembers the next 5000 commands you type.
- 9. Open more than one console (by press Ctrl-shift-t in gnome-terminal, or by opening an extra putty.exe in MS Windows) with the same user account. When is command history written to the history file ?

Chapter 17. file globbing

The shell is also responsible for **file globbing** (or dynamic filename generation). This chapter will explain **file globbing**.

17.1. * asterisk

The asterisk * is interpreted by the shell as a sign to generate filenames, matching the asterisk to any combination of characters (even none). When no path is given, the shell will use filenames in the current directory. See the man page of **glob(7)** for more information. (This is part of LPI topic 1.103.3.)

```
[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls File*
File4 File55 FileA Fileab FileAB
[paul@RHELv4u3 gen]$ ls file*
file1 file2 file3 fileab fileabc
[paul@RHELv4u3 gen]$ ls *ile55
File55
[paul@RHELv4u3 gen]$ ls F*ile55
File55
[paul@RHELv4u3 gen]$ ls F*55
File55
[paul@RHELv4u3 gen]$ ls F*55
File55
[paul@RHELv4u3 gen]$
```

17.2. ? question mark

Similar to the asterisk, the question mark ? is interpreted by the shell as a sign to generate filenames, matching the question mark with exactly one character.

```
[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab fileabc
[paul@RHELv4u3 gen]$ ls File?
File4 FileA
[paul@RHELv4u3 gen]$ ls Fil?4
File4
[paul@RHELv4u3 gen]$ ls Fil??
File4 FileA
[paul@RHELv4u3 gen]$ ls File??
File55 Fileab FileAB
[paul@RHELv4u3 gen]$
```

17.3. [] square brackets

The square bracket [is interpreted by the shell as a sign to generate filenames, matching any of the characters between [and the first subsequent]. The order in this list between the brackets is not important. Each pair of brackets is replaced by exactly one character.

```
[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls File[5A]
FileA
[paul@RHELv4u3 gen]$ ls File[A5]
FileA
[paul@RHELv4u3 gen]$ ls File[A5][5b]
File55
[paul@RHELv4u3 gen]$ ls File[a5][5b]
File55 Fileab
[paul@RHELv4u3 gen]$ ls File[a5][5b][abcdefghijklm]
ls: File[a5][5b][abcdefghijklm]: No such file or directory
[paul@RHELv4u3 gen]$ ls file[a5][5b][abcdefghijklm]
fileabc
[paul@RHELv4u3 gen]$
```

You can also exclude characters from a list between square brackets with the exclamation mark! And you are allowed to make combinations of these wild cards.

```
[paul@RHELv4u3 gen]$ ls
file1 file2 file3 File4 File55 FileA fileab Fileab FileAB fileabc
[paul@RHELv4u3 gen]$ ls file[a5][!Z]
fileab
[paul@RHELv4u3 gen]$ ls file[!5]*
file1 file2 file3 fileab fileabc
[paul@RHELv4u3 gen]$ ls file[!5]?
fileab
[paul@RHELv4u3 gen]$
```

17.4. a-z and 0-9 ranges

The bash shell will also understand ranges of characters between brackets.

```
[paul@RHELv4u3 gen]$ ls
file1 file3 File55 fileab FileAB fileabc
file2 File4 FileA Fileab fileab2
[paul@RHELv4u3 gen]$ ls file[a-z]*
fileab fileab2 fileabc
[paul@RHELv4u3 gen]$ ls file[0-9]
file1 file2 file3
[paul@RHELv4u3 gen]$ ls file[a-z][a-z][0-9]*
fileab2
[paul@RHELv4u3 gen]$
```

17.5. \$LANG and square brackets

But, don't forget the influence of the **LANG** variable. Some languages include lower case letters in an upper case range (and vice versa).

```
paul@RHELv4u4:~/test$ ls [A-Z]ile?
file1 file2 file3 File4
paul@RHELv4u4:~/test$ ls [a-z]ile?
file1 file2 file3 File4
paul@RHELv4u4:~/test$ echo $LANG
en_US.UTF-8
paul@RHELv4u4:~/test$ LANG=C
paul@RHELv4u4:~/test$ echo $LANG
C
paul@RHELv4u4:~/test$ ls [a-z]ile?
file1 file2 file3
paul@RHELv4u4:~/test$ ls [A-Z]ile?
File4
paul@RHELv4u4:~/test$
```

If **\$LC_ALL** is set, then this will also need to be reset to prevent file globbing.

17.6. preventing file globbing

The screenshot below should be no surprise. The **echo** * will echo a * when in an empty directory. And it will echo the names of all files when the directory is not empty.

```
paul@ubu1010:~$ mkdir test42
paul@ubu1010:~$ cd test42
paul@ubu1010:~/test42$ echo *
*
paul@ubu1010:~/test42$ touch file42 file33
paul@ubu1010:~/test42$ echo *
file33 file42
```

Globbing can be prevented using quotes or by escaping the special characters, as shown in this screenshot.

```
paul@ubu1010:~/test42$ echo *
file33 file42
paul@ubu1010:~/test42$ echo \*
*
paul@ubu1010:~/test42$ echo '*'
*
paul@ubu1010:~/test42$ echo "*"
*
```

17.7. practice: shell globbing

- 1. Create a test directory and enter it.
- 2. Create the following files:

```
file1
file10
file11
file2
File2
File3
file3
file36
file4
file4
file4
file6
file6
file6
file6
file6
file6
file6
file6
file7
```

(the last one has 6 characters including a space)

- 3. List (with ls) all files starting with file
- 4. List (with ls) all files starting with File
- 5. List (with ls) all files starting with file and ending in a number.
- 6. List (with ls) all files starting with file and ending with a letter
- 7. List (with ls) all files starting with File and having a digit as fifth character.
- 8. List (with ls) all files starting with File and having a digit as fifth character and nothing else.
- 9. List (with ls) all files starting with a letter and ending in a number.
- 10. List (with ls) all files that have exactly five characters.
- 11. List (with ls) all files that start with f or F and end with 3 or A.
- 12. List (with ls) all files that start with f have i or R as second character and end in a number.
- 13. List all files that do not start with the letter F.
- 14. Copy the value of \$LANG to \$MyLANG.
- 15. Show the influence of \$LANG in listing A-Z or a-z ranges.
- 16. You receive information that one of your servers was cracked, the cracker probably replaced the **ls** command. You know that the **echo** command is safe to use. Can **echo** replace **ls**? How can you list the files in the current directory with **echo**?
- 17. Is there another command besides cd to change directories?

Table of Contents

18. I/O redirection	171
18.1. stdin, stdout, and stderr	
18.2. output redirection	173
18.3. error redirection	175
18.4. output redirection and pipes	176
18.5. joining stdout and stderr	176
18.6. input redirection	177
18.7. confusing redirection	178
18.8. quick file clear	178
18.9. practice: input/output redirection	179
18.10. solution: input/output redirection	180
19. filters	181
19.1. cat	182
19.2. tee	182
19.3. grep	182
19.4. cut	184
19.5. tr	184
19.6. wc	185
19.7. sort	186
19.8. uniq	187
19.9. comm	188
19.10. od	189
19.11. sed	190
19.12. pipe examples	191
19.13. practice: filters	192
19.14. solution: filters	193
20. basic Unix tools	195
20.1. find	196
20.2. locate	197
20.3. date	197
20.4. cal	198
20.5. sleep	198
20.6. time	199
20.7. gzip - gunzip	200
20.8. zcat - zmore	200
20.9. bzip2 - bunzip2	201
20.10. bzcat - bzmore	201
20.11. practice: basic Unix tools	202
20.12. solution: basic Unix tools	203
21. regular expressions	
21.1. regex versions	206
21.2. grep	
21.3. rename	
21.4. sed	215
21.5. bash history	219

Chapter 18. I/O redirection

One of the powers of the Unix command line is the use of **input/output redirection** and **pipes**.

This chapter explains **redirection** of input, output and error streams.

18.1. stdin, stdout, and stderr

The bash shell has three basic streams; it takes input from **stdin** (stream **0**), it sends output to **stdout** (stream **1**) and it sends error messages to **stderr** (stream **2**).

The drawing below has a graphical interpretation of these three streams.

The keyboard often serves as **stdin**, whereas **stdout** and **stderr** both go to the display. This can be confusing to new Linux users because there is no obvious way to recognize **stdout** from **stderr**. Experienced users know that separating output from errors can be very useful.

The next sections will explain how to redirect these streams.

18.2. output redirection

18.2.1. > stdout

stdout can be redirected with a **greater than** sign. While scanning the line, the shell will see the > sign and will clear the file.

The > notation is in fact the abbreviation of 1> (stdout being referred to as stream 1).

```
[paul@RHELv4u3 ~]$ echo It is cold today!
It is cold today!
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$
```

Note that the bash shell effectively **removes** the redirection from the command line before argument 0 is executed. This means that in the case of this command:

```
echo hello > greetings.txt
```

the shell only counts two arguments (echo = argument 0, hello = argument 1). The redirection is removed before the argument counting takes place.

18.2.2. output file is erased

While scanning the line, the shell will see the > sign and will clear the file! Since this happens before resolving argument 0, this means that even when the command fails, the file will have been cleared!

```
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ zcho It is cold today! > winter.txt
-bash: zcho: command not found
[paul@RHELv4u3 ~]$ cat winter.txt
[paul@RHELv4u3 ~]$
```

18.2.3. noclobber

Erasing a file while using > can be prevented by setting the **noclobber** option.

```
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ set -o noclobber
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ set +o noclobber
[paul@RHELv4u3 ~]$
```

18.2.4. overruling noclobber

The **noclobber** can be overruled with >1.

```
[paul@RHELv4u3 ~]$ set -o noclobber
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
-bash: winter.txt: cannot overwrite existing file
[paul@RHELv4u3 ~]$ echo It is very cold today! >| winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is very cold today!
[paul@RHELv4u3 ~]$
```

18.2.5. >> append

Use >> to **append** output to a file.

```
[paul@RHELv4u3 ~]$ echo It is cold today! > winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
[paul@RHELv4u3 ~]$ echo Where is the summer ? >> winter.txt
[paul@RHELv4u3 ~]$ cat winter.txt
It is cold today!
Where is the summer ?
[paul@RHELv4u3 ~]$
```

18.3. error redirection

18.3.1. 2> stderr

Redirecting **stderr** is done with **2>**. This can be very useful to prevent error messages from cluttering your screen.

The screenshot below shows redirection of **stdout** to a file, and **stderr** to **/dev/null**. Writing **1>** is the same as >.

```
[paul@RHELv4u3 ~]$ find / > allfiles.txt 2> /dev/null
[paul@RHELv4u3 ~]$
```

18.3.2. 2>&1

To redirect both **stdout** and **stderr** to the same file, use **2>&1**.

```
[paul@RHELv4u3 ~]$ find / > allfiles_and_errors.txt 2>&1
[paul@RHELv4u3 ~]$
```

Note that the order of redirections is significant. For example, the command

```
ls > dirlist 2>&1
```

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the file dirlist, while the command

```
ls 2>&1 > dirlist
```

directs only the standard output to file dirlist, because the standard error made a copy of the standard output before the standard output was redirected to dirlist.

18.4. output redirection and pipes

By default you cannot grep inside **stderr** when using pipes on the command line, because only **stdout** is passed.

```
paul@debian7:~$ rm file42 file33 file1201 | grep file42
rm: cannot remove 'file42': No such file or directory
rm: cannot remove 'file33': No such file or directory
rm: cannot remove 'file1201': No such file or directory
```

With **2>&1** you can force **stderr** to go to **stdout**. This enables the next command in the pipe to act on both streams.

```
paul@debian7:~$ rm file42 file33 file1201 2>&1 | grep file42 rm: cannot remove 'file42': No such file or directory
```

You cannot use both 1>&2 and 2>&1 to switch stdout and stderr.

```
paul@debian7:~$ rm file42 file33 file1201 2>&1 1>&2 | grep file42
rm: cannot remove 'file42': No such file or directory
paul@debian7:~$ echo file42 2>&1 1>&2 | sed 's/file42/FILE42/'
FILE42
```

You need a third stream to switch stdout and stderr after a pipe symbol.

```
paul@debian7:~$ echo file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/' file42 paul@debian7:~$ rm file42 3>&1 1>&2 2>&3 | sed 's/file42/FILE42/' rm: cannot remove 'FILE42': No such file or directory
```

18.5. joining stdout and stderr

The &> construction will put both **stdout** and **stderr** in one stream (to a file).

```
paul@debian7:~$ rm file42 &> out_and_err
paul@debian7:~$ cat out_and_err
rm: cannot remove 'file42': No such file or directory
paul@debian7:~$ echo file42 &> out_and_err
paul@debian7:~$ cat out_and_err
file42
paul@debian7:~$
```

18.6. input redirection

18.6.1. < stdin

Redirecting **stdin** is done with < (short for 0<).

```
[paul@RHEL4b ~]$ cat < text.txt
one
two
[paul@RHEL4b ~]$ tr 'onetw' 'ONEZZ' < text.txt
ONE
ZZO
[paul@RHEL4b ~]$</pre>
```

18.6.2. << here document

The **here document** (sometimes called here-is-document) is a way to append input until a certain sequence (usually EOF) is encountered. The **EOF** marker can be typed literally or can be called with Ctrl-D.

```
[paul@RHEL4b ~]$ cat <<EOF > text.txt
> one
> two
> EOF
[paul@RHEL4b ~]$ cat text.txt
one
two
[paul@RHEL4b ~]$ cat <<broon > text.txt
> brel
> brol
[paul@RHEL4b ~]$ cat text.txt
brel
[paul@RHEL4b ~]$
```

18.6.3. <<< here string

The **here string** can be used to directly pass strings to a command. The result is the same as using **echo string** I **command** (but you have one less process running).

```
paul@ubu1110~$ base64 <<< linux-training.be
bGludXgtdHJhaW5pbmcuYmUK
paul@ubu1110~$ base64 -d <<< bGludXgtdHJhaW5pbmcuYmUK
linux-training.be</pre>
```

See rfc 3548 for more information about **base64**.

18.7. confusing redirection

The shell will scan the whole line before applying redirection. The following command line is very readable and is correct.

```
cat winter.txt > snow.txt 2> errors.txt
```

But this one is also correct, but less readable.

```
2> errors.txt cat winter.txt > snow.txt
```

Even this will be understood perfectly by the shell.

```
< winter.txt > snow.txt 2> errors.txt cat
```

18.8. quick file clear

So what is the quickest way to clear a file?

>foo

And what is the quickest way to clear a file when the **noclobber** option is set?

>|bar

18.9. practice: input/output redirection

- 1. Activate the **noclobber** shell option.
- 2. Verify that **noclobber** is active by repeating an **ls** on /etc/ with redirected output to a file.
- 3. When listing all shell options, which character represents the **noclobber** option?
- 4. Deactivate the **noclobber** option.
- 5. Make sure you have two shells open on the same computer. Create an empty **tailing.txt** file. Then type **tail -f tailing.txt**. Use the second shell to **append** a line of text to that file. Verify that the first shell displays this line.
- 6. Create a file that contains the names of five people. Use **cat** and output redirection to create the file and use a **here document** to end the input.

Chapter 19. filters

Commands that are created to be used with a **pipe** are often called **filters**. These **filters** are very small programs that do one specific thing very efficiently. They can be used as **building blocks**.

This chapter will introduce you to the most common **filters**. The combination of simple commands and filters in a long **pipe** allows you to design elegant solutions.

19.1. cat

When between two pipes, the cat command does nothing (except putting stdin on stdout).

```
[paul@RHEL4b pipes]$ tac count.txt | cat | cat | cat | cat |
five
four
three
two
one
[paul@RHEL4b pipes]$
```

19.2. tee

Writing long **pipes** in Unix is fun, but sometimes you may want intermediate results. This is were **tee** comes in handy. The **tee** filter puts **stdin** on **stdout** and also into a file. So **tee** is almost the same as **cat**, except that it has two identical outputs.

```
[paul@RHEL4b pipes]$ tac count.txt | tee temp.txt | tac
one
two
three
four
five
[paul@RHEL4b pipes]$ cat temp.txt
five
four
three
two
one
[paul@RHEL4b pipes]$
```

19.3. grep

The **grep** filter is famous among Unix users. The most common use of **grep** is to filter lines of text containing (or not containing) a certain string.

```
[paul@RHEL4b pipes]$ cat tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$ cat tennis.txt | grep Williams
Serena Williams, usa
Venus Williams, usa
```

You can write this without the cat.

```
[paul@RHEL4b pipes]$ grep Williams tennis.txt
Serena Williams, usa
Venus Williams, USA
```

One of the most useful options of grep is **grep** -i which filters in a case insensitive way.

```
[paul@RHEL4b pipes]$ grep Bel tennis.txt
Justine Henin, Bel
[paul@RHEL4b pipes]$ grep -i Bel tennis.txt
```

```
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$
```

Another very useful option is **grep -v** which outputs lines not matching the string.

```
[paul@RHEL4b pipes]$ grep -v Fra tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
Venus Williams, USA
[paul@RHEL4b pipes]$
```

And of course, both options can be combined to filter all lines not containing a case insensitive string.

```
[paul@RHEL4b pipes]$ grep -vi usa tennis.txt
Amelie Mauresmo, Fra
Kim Clijsters, BEL
Justine Henin, Bel
[paul@RHEL4b pipes]$
```

With grep -A1 one line after the result is also displayed.

```
paul@debian5:~/pipes$ grep -A1 Henin tennis.txt
Justine Henin, Bel
Serena Williams, usa
```

With **grep -B1** one line **before** the result is also displayed.

```
paul@debian5:~/pipes$ grep -B1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
```

With **grep -C1** (context) one line **before** and one **after** are also displayed. All three options (A,B, and C) can display any number of lines (using e.g. A2, B4 or C20).

```
paul@debian5:~/pipes$ grep -C1 Henin tennis.txt
Kim Clijsters, BEL
Justine Henin, Bel
Serena Williams, usa
```

19.4. cut

The **cut** filter can select columns from files, depending on a delimiter or a count of bytes. The screenshot below uses **cut** to filter for the username and userid in the **/etc/passwd** file. It uses the colon as a delimiter, and selects fields 1 and 3.

```
[[paul@RHEL4b pipes]$ cut -d: -f1,3 /etc/passwd | tail -4
Figo:510
Pfaff:511
Harry:516
Hermione:517
[paul@RHEL4b pipes]$
```

When using a space as the delimiter for **cut**, you have to quote the space.

```
[paul@RHEL4b pipes]$ cut -d" " -f1 tennis.txt
Amelie
Kim
Justine
Serena
Venus
[paul@RHEL4b pipes]$
```

This example uses **cut** to display the second to the seventh character of /**etc/passwd**.

```
[paul@RHEL4b pipes]$ cut -c2-7 /etc/passwd | tail -4
igo:x:
faff:x
arry:x
ermion
[paul@RHEL4b pipes]$
```

19.5. tr

You can translate characters with **tr**. The screenshot shows the translation of all occurrences of e to E.

```
[paul@RHEL4b pipes]$ cat tennis.txt | tr 'e' 'E'
AmEliE MaurEsmo, Fra
Kim ClijstErs, BEL
JustinE HEnin, BEl
SErEna Williams, usa
VEnus Williams, USA
```

Here we set all letters to uppercase by defining two ranges.

```
[paul@RHEL4b pipes]$ cat tennis.txt | tr 'a-z' 'A-Z'
AMELIE MAURESMO, FRA
KIM CLIJSTERS, BEL
JUSTINE HENIN, BEL
SERENA WILLIAMS, USA
VENUS WILLIAMS, USA
[paul@RHEL4b pipes]$
```

Here we translate all newlines to spaces.

```
[paul@RHEL4b pipes]$ cat count.txt
one
two
```

```
three
four
five
[paul@RHEL4b pipes]$ cat count.txt | tr '\n' ' '
one two three four five [paul@RHEL4b pipes]$
```

The **tr** -s filter can also be used to squeeze multiple occurrences of a character to one.

You can also use **tr** to 'encrypt' texts with **rot13**.

```
[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'nopqrstuvwxyzabcdefghijklm'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$ cat count.txt | tr 'a-z' 'n-za-m'
bar
gjb
guerr
sbhe
svir
[paul@RHEL4b pipes]$
```

This last example uses **tr** -**d** to delete characters.

```
paul@debian5:~/pipes$ cat tennis.txt | tr -d e
Amli Maursmo, Fra
Kim Clijstrs, BEL
Justin Hnin, Bl
Srna Williams, usa
Vnus Williams, USA
```

19.6. wc

Counting words, lines and characters is easy with wc.

```
[paul@RHEL4b pipes]$ wc tennis.txt
5  15 100 tennis.txt
[paul@RHEL4b pipes]$ wc -l tennis.txt
5 tennis.txt
[paul@RHEL4b pipes]$ wc -w tennis.txt
15 tennis.txt
[paul@RHEL4b pipes]$ wc -c tennis.txt
[paul@RHEL4b pipes]$ wc -c tennis.txt
[paul@RHEL4b pipes]$
```

19.7. sort

The **sort** filter will default to an alphabetical sort.

```
paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Led Zeppelin
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Led Zeppelin
Queen
```

But the **sort** filter has many options to tweak its usage. This example shows sorting different columns (column 1 or column 2).

```
[paul@RHEL4b pipes]$ sort -k1 country.txt
Belgium, Brussels, 10
France, Paris, 60
Germany, Berlin, 100
Iran, Teheran, 70
Italy, Rome, 50
[paul@RHEL4b pipes]$ sort -k2 country.txt
Germany, Berlin, 100
Belgium, Brussels, 10
France, Paris, 60
Italy, Rome, 50
Iran, Teheran, 70
```

The screenshot below shows the difference between an alphabetical sort and a numerical sort (both on the third column).

```
[paul@RHEL4b pipes]$ sort -k3 country.txt
Belgium, Brussels, 10
Germany, Berlin, 100
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
[paul@RHEL4b pipes]$ sort -n -k3 country.txt
Belgium, Brussels, 10
Italy, Rome, 50
France, Paris, 60
Iran, Teheran, 70
Germany, Berlin, 100
```

19.8. uniq

With uniq you can remove duplicates from a sorted list.

```
paul@debian5:~/pipes$ cat music.txt
Queen
Brel
Queen
Abba
paul@debian5:~/pipes$ sort music.txt
Abba
Brel
Queen
Queen
paul@debian5:~/pipes$ sort music.txt | uniq
Abba
Brel
Queen
Queen
```

uniq can also count occurrences with the -c option.

```
paul@debian5:~/pipes$ sort music.txt |uniq -c
1 Abba
1 Brel
2 Queen
```

19.9. comm

Comparing streams (or files) can be done with the **comm**. By default **comm** will output three columns. In this example, Abba, Cure and Queen are in both lists, Bowie and Sweet are only in the first file, Turner is only in the second.

```
paul@debian5:~/pipes$ cat > list1.txt
Abba
Bowie
Cure
Queen
Sweet
paul@debian5:~/pipes$ cat > list2.txt
Abba
Cure
Queen
Turner
paul@debian5:~/pipes$ comm list1.txt list2.txt
                Abba
Bowie
                Cure
                Queen
Sweet
        Turner
```

The output of **comm** can be easier to read when outputting only a single column. The digits point out which output columns should not be displayed.

```
paul@debian5:~/pipes$ comm -12 list1.txt list2.txt
Abba
Cure
Queen
paul@debian5:~/pipes$ comm -13 list1.txt list2.txt
Turner
paul@debian5:~/pipes$ comm -23 list1.txt list2.txt
Bowie
Sweet
```

19.10. od

European humans like to work with ascii characters, but computers store files in bytes. The example below creates a simple file, and then uses **od** to show the contents of the file in hexadecimal bytes

```
paul@laika:~/test$ cat > text.txt
abcdefg
1234567
paul@laika:~/test$ od -t x1 text.txt
00000000 61 62 63 64 65 66 67 0a 31 32 33 34 35 36 37 0a
0000020
```

The same file can also be displayed in octal bytes.

```
paul@laika:~/test$ od -b text.txt
0000000 141 142 143 144 145 146 147 012 061 062 063 064 065 066 067 012
0000020
```

And here is the file in ascii (or backslashed) characters.

```
paul@laika:~/test$ od -c text.txt
0000000 a b c d e f g \n 1 2 3 4 5 6 7 \n
0000020
```

19.11. sed

The stream editor sed can perform editing functions in the stream, using regular expressions.

```
paul@debian5:~/pipes$ echo level5 | sed 's/5/42/'
level42
paul@debian5:~/pipes$ echo level5 | sed 's/level/jump/'
jump5
```

Add **g** for global replacements (all occurrences of the string per line).

```
paul@debian5:~/pipes$ echo level5 level7 | sed 's/level/jump/'
jump5 level7
paul@debian5:~/pipes$ echo level5 level7 | sed 's/level/jump/g'
jump5 jump7
```

With **d** you can remove lines from a stream containing a character.

```
paul@debian5:~/test42$ cat tennis.txt
Venus Williams, USA
Martina Hingis, SUI
Justine Henin, BE
Serena williams, USA
Kim Clijsters, BE
Yanina Wickmayer, BE
paul@debian5:~/test42$ cat tennis.txt | sed '/BE/d'
Venus Williams, USA
Martina Hingis, SUI
Serena williams, USA
```

19.12. pipe examples

19.12.1. who I wc

How many users are logged on to this system?

```
[paul@RHEL4b pipes]$ who
root tty1     Jul 25 10:50
paul pts/0     Jul 25 09:29 (laika)
Harry pts/1     Jul 25 12:26 (barry)
paul pts/2     Jul 25 12:26 (pasha)
[paul@RHEL4b pipes]$ who | wc -1
4
```

19.12.2. who I cut I sort

Display a sorted list of logged on users.

```
[paul@RHEL4b pipes]$ who | cut -d' ' -f1 | sort
Harry
paul
paul
root
```

Display a sorted list of logged on users, but every user only once.

```
[paul@RHEL4b pipes]$ who | cut -d' ' -f1 | sort | uniq
Harry
paul
root
```

19.12.3. grep I cut

Display a list of all bash **user accounts** on this computer. Users accounts are explained in detail later.

```
paul@debian5:~$ grep bash /etc/passwd
root:x:0:0:root:/root:/bin/bash
paul:x:1000:1000:paul,,,:/home/paul:/bin/bash
serena:x:1001:1001::/home/serena:/bin/bash
paul@debian5:~$ grep bash /etc/passwd | cut -d: -f1
root
paul
serena
```

19.13. practice: filters

- 1. Put a sorted list of all bash users in bashusers.txt.
- 2. Put a sorted list of all logged on users in onlineusers.txt.
- 3. Make a list of all filenames in /etc that contain the string conf in their filename.
- 4. Make a sorted list of all files in /etc that contain the case insensitive string conf in their filename.
- 5. Look at the output of /sbin/ifconfig. Write a line that displays only ip address and the subnet mask.
- 6. Write a line that removes all non-letters from a stream.
- 7. Write a line that receives a text file, and outputs all words on a separate line.
- 8. Write a spell checker on the command line. (There may be a dictionary in /usr/share/dict/.)

Chapter 20. basic Unix tools

This chapter introduces commands to **find** or **locate** files and to **compress** files, together with other common tools that were not discussed before. While the tools discussed here are technically not considered **filters**, they can be used in **pipes**.

20.1. find

The **find** command can be very useful at the start of a pipe to search for files. Here are some examples. You might want to add **2>/dev/null** to the command lines to avoid cluttering your screen with error messages.

Find all files in /etc and put the list in etcfiles.txt

```
find /etc > etcfiles.txt
```

Find all files of the entire system and put the list in allfiles.txt

```
find / > allfiles.txt
```

Find files that end in .conf in the current directory (and all subdirs).

```
find . -name "*.conf"
```

Find files of type file (not directory, pipe or etc.) that end in .conf.

```
find . -type f -name "*.conf"
```

Find files of type directory that end in .bak .

```
find /data -type d -name "*.bak"
```

Find files that are newer than file42.txt

```
find . -newer file42.txt
```

Find can also execute another command on every file found. This example will look for *.odf files and copy them to /backup/.

```
find /data -name "*.odf" -exec cp {} /backup/ \;
```

Find can also execute, after your confirmation, another command on every file found. This example will remove *.odf files if you approve of it for every file found.

```
find /data -name "*.odf" -ok rm {} \;
```

20.2. locate

The **locate** tool is very different from **find** in that it uses an index to locate files. This is a lot faster than traversing all the directories, but it also means that it is always outdated. If the index does not exist yet, then you have to create it (as root on Red Hat Enterprise Linux) with the **updatedb** command.

```
[paul@RHEL4b ~]$ locate Samba
warning: locate: could not open database: /var/lib/slocate/slocate.db:...
warning: You need to run the 'updatedb' command (as root) to create th...
Please have a look at /etc/updatedb.conf to enable the daily cron job.
[paul@RHEL4b ~]$ updatedb
fatal error: updatedb: You are not authorized to create a default sloc...
[paul@RHEL4b ~]$ su -
Password:
[root@RHEL4b ~]# updatedb
[root@RHEL4b ~]# updatedb
[root@RHEL4b ~]#
```

Most Linux distributions will schedule the **updatedb** to run once every day.

20.3. date

The **date** command can display the date, time, time zone and more.

```
paul@rhel55 ~$ date
Sat Apr 17 12:44:30 CEST 2010
```

A date string can be customised to display the format of your choice. Check the man page for more options.

```
paul@rhel55 ~$ date +'%A %d-%m-%Y'
Saturday 17-04-2010
```

Time on any Unix is calculated in number of seconds since 1969 (the first second being the first second of the first of January 1970). Use **date** +%s to display Unix time in seconds.

```
paul@rhel55 ~$ date +%s
1271501080
```

When will this seconds counter reach two thousand million?

```
paul@rhe155 ~$ date -d '1970-01-01 + 2000000000 seconds'
Wed May 18 04:33:20 CEST 2033
```

20.4. cal

The cal command displays the current month, with the current day highlighted.

You can select any month in the past or the future.

```
paul@rhel55 ~$ cal 2 1970
February 1970
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
```

20.5. sleep

The **sleep** command is sometimes used in scripts to wait a number of seconds. This example shows a five second **sleep**.

```
paul@rhel55 ~$ sleep 5
paul@rhel55 ~$
```

20.6. time

The **time** command can display how long it takes to execute a command. The **date** command takes only a little time.

```
paul@rhel55 ~$ time date
Sat Apr 17 13:08:27 CEST 2010

real    0m0.014s
user    0m0.008s
sys    0m0.006s
```

The sleep 5 command takes five real seconds to execute, but consumes little cpu time.

```
paul@rhel55 ~$ time sleep 5

real 0m5.018s
user 0m0.005s
sys 0m0.011s
```

This **bzip2** command compresses a file and uses a lot of **cpu time**.

```
paul@rhel55 ~$ time bzip2 text.txt

real 0m2.368s
user 0m0.847s
sys 0m0.539s
```

20.7. gzip - gunzip

Users never have enough disk space, so compression comes in handy. The **gzip** command can make files take up less space.

```
paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
paul@rhel55 ~$ gzip text.txt
paul@rhel55 ~$ ls -lh text.txt.gz
-rw-rw-r-- 1 paul paul 760K Apr 17 13:11 text.txt.gz
```

You can get the original back with **gunzip**.

```
paul@rhel55 ~$ gunzip text.txt.gz
paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
```

20.8. zcat - zmore

Text files that are compressed with **gzip** can be viewed with **zcat** and **zmore**.

```
paul@rhel55 ~$ head -4 text.txt
/
/opt
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
paul@rhel55 ~$ gzip text.txt
paul@rhel55 ~$ zcat text.txt.gz | head -4
/
/opt
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
```

20.9. bzip2 - bunzip2

Files can also be compressed with **bzip2** which takes a little more time than **gzip**, but compresses better.

```
paul@rhel55 ~$ bzip2 text.txt
paul@rhel55 ~$ ls -lh text.txt.bz2
-rw-rw-r-- 1 paul paul 569K Apr 17 13:11 text.txt.bz2
```

Files can be uncompressed again with **bunzip2**.

```
paul@rhel55 ~$ bunzip2 text.txt.bz2
paul@rhel55 ~$ ls -lh text.txt
-rw-rw-r-- 1 paul paul 6.4M Apr 17 13:11 text.txt
```

20.10. bzcat - bzmore

And in the same way **bzcat** and **bzmore** can display files compressed with **bzip2**.

```
paul@rhel55 ~$ bzip2 text.txt
paul@rhel55 ~$ bzcat text.txt.bz2 | head -4
/
/opt
/opt
/opt/VBoxGuestAdditions-3.1.6
/opt/VBoxGuestAdditions-3.1.6/routines.sh
```

20.11. practice: basic Unix tools

1. Explain the difference between these two commands. This question is very important. If you don't know the answer, then look back at the **shell** chapter.

```
find /data -name "*.txt"

find /data -name *.txt
```

2. Explain the difference between these two statements. Will they both work when there are 200 .odf files in /data? How about when there are 2 million .odf files?

```
find /data -name "*.odf" > data_odf.txt
find /data/*.odf > data_odf.txt
```

- 3. Write a find command that finds all files created after January 30th 2010.
- 4. Write a find command that finds all *.odf files created in September 2009.
- 5. Count the number of *.conf files in /etc and all its subdirs.
- 6. Here are two commands that do the same thing: copy *.odf files to /backup/ . What would be a reason to replace the first command with the second ? Again, this is an important question.

```
cp -r /data/*.odf /backup/
find /data -name "*.odf" -exec cp {} /backup/ \;
```

- 7. Create a file called **loctest.txt**. Can you find this file with **locate**? Why not? How do you make locate find this file?
- 8. Use find and -exec to rename all .htm files to .html.
- 9. Issue the **date** command. Now display the date in YYYY/MM/DD format.
- 10. Issue the **cal** command. Display a calendar of 1582 and 1752. Notice anything special?

Chapter 21. regular expressions

Regular expressions are a very powerful tool in Linux. They can be used with a variety of programs like bash, vi, rename, grep, sed, and more.

This chapter introduces you to the basics of **regular expressions**.

21.1. regex versions

There are three different versions of regular expression syntax:

```
BRE: Basic Regular Expressions
ERE: Extended Regular Expressions
PRCE: Perl Regular Expressions
```

Depending on the tool being used, one or more of these syntaxes can be used.

For example the **grep** tool has the **-E** option to force a string to be read as ERE while **-G** forces BRE and **-P** forces PRCE.

Note that **grep** also has **-F** to force the string to be read literally.

The **sed** tool also has options to choose a regex syntax.

Read the manual of the tools you use!

21.2. grep

21.2.1. print lines matching a pattern

grep is a popular Linux tool to search for lines that match a certain pattern. Below are some examples of the simplest **regular expressions**.

This is the contents of the test file. This file contains three lines (or three **newline** characters).

```
paul@rhel65:~$ cat names
Tania
Laura
Valentina
```

When **grepping** for a single character, only the lines containing that character are returned.

```
paul@rhel65:~$ grep u names
Laura
paul@rhel65:~$ grep e names
Valentina
paul@rhel65:~$ grep i names
Tania
Valentina
```

The pattern matching in this example should be very straightforward; if the given character occurs on a line, then **grep** will return that line.

21.2.2. concatenating characters

Two concatenated characters will have to be concatenated in the same way to have a match.

This example demonstrates that **ia** will match Tan**ia** but not Valentina and **in** will match Valentina but not Tania.

```
paul@rhel65:~$ grep a names
Tania
Laura
Valentina
paul@rhel65:~$ grep ia names
Tania
paul@rhel65:~$ grep in names
Valentina
paul@rhel65:~$
```

21.2.3. one or the other

PRCE and ERE both use the pipe symbol to signify OR. In this example we **grep** for lines containing the letter i or the letter a.

```
paul@debian7:~$ cat list
Tania
Laura
paul@debian7:~$ grep -E 'i|a' list
Tania
Laura
```

Note that we use the **-E** switch of grep to force interpretion of our string as an ERE.

We need to **escape** the pipe symbol in a BRE to get the same logical OR.

```
paul@debian7:~$ grep -G 'i|a' list
paul@debian7:~$ grep -G 'i\|a' list
Tania
Laura
```

21.2.4. one or more

The * signifies zero, one or more occurences of the previous and the + signifies one or more of the previous.

```
paul@debian7:~$ cat list2
11
101
1001
10001
paul@debian7:~$ grep -E 'o*' list2
11
101
1001
10001
paul@debian7:~$ grep -E 'o+' list2
101
1001
10001
paul@debian7:~$ grep -E 'o+' state
1001
10001
10001
10001
10001
10001
10001
```

21.2.5. match the end of a string

For the following examples, we will use this file.

```
paul@debian7:~$ cat names
Tania
Laura
Valentina
Fleur
Floor
```

The two examples below show how to use the **dollar character** to match the end of a string.

```
paul@debian7:~$ grep a$ names
Tania
Laura
Valentina
paul@debian7:~$ grep r$ names
Fleur
Floor
```

21.2.6. match the start of a string

The **caret character** (^) will match a string at the start (or the beginning) of a line.

Given the same file as above, here are two examples.

```
paul@debian7:~$ grep ^Val names
Valentina
paul@debian7:~$ grep ^F names
Fleur
Floor
```

Both the dollar sign and the little hat are called **anchors** in a regex.

21.2.7. separating words

Regular expressions use a **\b** sequence to reference a word separator. Take for example this file:

```
paul@debian7:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?
```

Simply grepping for **over** will give too many results.

```
paul@debian7:~$ grep over text
The governer is governing.
The winter is over.
Can you get over there?
```

Surrounding the searched word with spaces is not a good solution (because other characters can be word separators). This screenshot below show how to use \b to find only the searched word:

```
paul@debian7:~$ grep '\bover\b' text
The winter is over.
Can you get over there?
paul@debian7:~$
```

Note that **grep** also has a **-w** option to grep for words.

```
paul@debian7:~$ cat text
The governer is governing.
The winter is over.
Can you get over there?
paul@debian7:~$ grep -w over text
The winter is over.
Can you get over there?
paul@debian7:~$
```

21.2.8. grep features

Sometimes it is easier to combine a simple regex with **grep** options, than it is to write a more complex regex. These options where discussed before:

```
grep -i
grep -v
grep -w
grep -A5
grep -B5
grep -C5
```

21.2.9. preventing shell expansion of a regex

The dollar sign is a special character, both for the regex and also for the shell (remember variables and embedded shells). Therefore it is advised to always quote the regex, this prevents shell expansion.

```
paul@debian7:~$ grep 'r$' names
Fleur
Floor
```

21.3. rename

21.3.1. the rename command

On Debian Linux the /usr/bin/rename command is a link to /usr/bin/prename installed by the perl package.

```
paul@pi ~ $ dpkg -S $(readlink -f $(which rename))
perl: /usr/bin/prename
```

Red Hat derived systems do not install the same **rename** command, so this section does not describe **rename** on Red Hat (unless you copy the perl script manually).

There is often confusion on the internet about the rename command because solutions that work fine in Debian (and Ubuntu, xubuntu, Mint, ...) cannot be used in Red Hat (and CentOS, Fedora, ...).

21.3.2. perl

The **rename** command is actually a perl script that uses **perl regular expressions**. The complete manual for these can be found by typing **perldoc perlrequick** (after installing **perldoc**).

```
root@pi:~# aptitude install perl-doc
The following NEW packages will be installed:
    perl-doc
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 8,170 kB of archives. After unpacking 13.2 MB will be used.
Get: 1 http://mirrordirector.raspbian.org/raspbian/ wheezy/main perl-do...
Fetched 8,170 kB in 19s (412 kB/s)
Selecting previously unselected package perl-doc.
(Reading database ... 67121 files and directories currently installed.)
Unpacking perl-doc (from .../perl-doc_5.14.2-21+rpi2_all.deb) ...
Adding 'diversion of /usr/bin/perldoc to /usr/bin/perldoc.stub by perl-doc'
Processing triggers for man-db ...
Setting up perl-doc (5.14.2-21+rpi2) ...
root@pi:~# perldoc perlrequick
```

21.3.3. well known syntax

The most common use of the **rename** is to search for filenames matching a certain **string** and replacing this string with an **other string**.

This is often presented as s/string/other string/ as seen in this example:

```
paul@pi ~ $ ls
abc     allfiles.TXT bllfiles.TXT Scratch tennis2.TXT
abc.conf backup     cllfiles.TXT temp.TXT tennis.TXT
paul@pi ~ $ rename 's/TXT/text/' *
paul@pi ~ $ ls
abc     allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup     cllfiles.text temp.text tennis.text
```

And here is another example that uses **rename** with the well know syntax to change the extensions of the same files once more:

```
paul@pi ~ $ ls
abc allfiles.text bllfiles.text Scratch tennis2.text
abc.conf backup cllfiles.text temp.text tennis.text
paul@pi ~ $ rename 's/text/txt/' *.text
paul@pi ~ $ ls
abc allfiles.txt bllfiles.txt Scratch tennis2.txt
abc.conf backup cllfiles.txt temp.txt tennis.txt
paul@pi ~ $
```

These two examples appear to work because the strings we used only exist at the end of the filename. Remember that file extensions have no meaning in the bash shell.

The next example shows what can go wrong with this syntax.

```
paul@pi ~ $ touch atxt.txt
paul@pi ~ $ rename 's/txt/problem/' atxt.txt
paul@pi ~ $ ls
abc allfiles.txt backup cllfiles.txt temp.txt tennis.txt
abc.conf aproblem.txt bllfiles.txt Scratch tennis2.txt
paul@pi ~ $
```

Only the first occurrence of the searched string is replaced.

21.3.4. a global replace

The syntax used in the previous example can be described as **s/regex/replacement/**. This is simple and straightforward, you enter a **regex** between the first two slashes and a **replacement string** between the last two.

This example expands this syntax only a little, by adding a **modifier**.

```
paul@pi ~ $ rename -n 's/TXT/txt/g' aTXT.TXT
aTXT.TXT renamed as atxt.txt
paul@pi ~ $
```

The syntax we use now can be described as **s/regex/replacement/g** where s signifies **switch** and g stands for **global**.

Note that this example used the **-n** switch to show what is being done (instead of actually renaming the file).

21.3.5. case insensitive replace

Another **modifier** that can be useful is **i**. this example shows how to replace a case insensitive string with another string.

```
paul@debian7:~/files$ ls
file1.text file2.TEXT file3.txt
paul@debian7:~/files$ rename 's/.text/.txt/i' *
paul@debian7:~/files$ ls
file1.txt file2.txt file3.txt
paul@debian7:~/files$
```

21.3.6. renaming extensions

Command line Linux has no knowledge of MS-DOS like extensions, but many end users and graphical application do use them.

Here is an example on how to use **rename** to only rename the file extension. It uses the dollar sign to mark the ending of the filename.

```
paul@pi ~ $ ls *.txt
allfiles.txt bllfiles.txt cllfiles.txt really.txt.txt temp.txt tennis.txt
paul@pi ~ $ rename 's/.txt$/.TXT/' *.txt
paul@pi ~ $ ls *.TXT
allfiles.TXT bllfiles.TXT cllfiles.TXT really.txt.TXT
temp.TXT tennis.TXT
paul@pi ~ $
```

Note that the **dollar sign** in the regex means **at the end**. Without the dollar sign this command would fail on the really.txt.txt file.

21.4. sed

21.4.1. stream editor

The **stream editor** or short **sed** uses **regex** for stream editing.

In this example **sed** is used to replace a string.

```
echo Sunday | sed 's/Sun/Mon/'
Monday
```

The slashes can be replaced by a couple of other characters, which can be handy in some cases to improve readability.

```
echo Sunday | sed 's:Sun:Mon:'

Monday
echo Sunday | sed 's_Sun_Mon_'

Monday
echo Sunday | sed 's|Sun|Mon|'

Monday
```

21.4.2. interactive editor

While **sed** is meant to be used in a stream, it can also be used interactively on a file.

```
paul@debian7:~/files$ echo Sunday > today
paul@debian7:~/files$ cat today
Sunday
paul@debian7:~/files$ sed -i 's/Sun/Mon/' today
paul@debian7:~/files$ cat today
Monday
```

21.4.3. simple back referencing

The **ampersand** character can be used to reference the searched (and found) string.

In this example the **ampersand** is used to double the occurrence of the found string.

```
echo Sunday | sed 's/Sun/&&/'
SunSunday
echo Sunday | sed 's/day/&&/'
Sundayday
```

21.4.4. back referencing

Parentheses (often called round brackets) are used to group sections of the regex so they can leter be referenced.

Consider this simple example:

```
paul@debian7:~$ echo Sunday | sed 's_\(Sun\)_\lny_'
Sunnyday
paul@debian7:~$ echo Sunday | sed 's_\(Sun\)_\lny \l1_'
Sunny Sunday
```

21.4.5. a dot for any character

In a **regex** a simple dot can signify any character.

```
paul@debian7:~$ echo 2014-04-01 | sed 's/...-..-./YYYY-MM-DD/'
YYYY-MM-DD
paul@debian7:~$ echo abcd-ef-gh | sed 's/...-../YYYY-MM-DD/'
YYYY-MM-DD
```

21.4.6. multiple back referencing

When more than one pair of **parentheses** is used, each of them can be referenced separately by consecutive numbers.

```
paul@debian7:~$ echo 2014-04-01 | sed 's/\(...\)-\(..\)-\(..\)/\1+\2+\3/'
2014+04+01
paul@debian7:~$ echo 2014-04-01 | sed 's/\(...\)-\(..\)-\(..\)/\3:\2:\1/'
01:04:2014
```

This feature is called **grouping**.

21.4.7. white space

The \s can refer to white space such as a space or a tab.

This example looks for white spaces (\s) globally and replaces them with 1 space.

```
paul@debian7:~$ echo -e 'today\tis\twarm'
today is warm
paul@debian7:~$ echo -e 'today\tis\twarm' | sed 's_\s_ _g'
today is warm
```

21.4.8. optional occurrence

A question mark signifies that the previous is **optional**.

The example below searches for three consecutive letter o, but the third o is optional.

```
paul@debian7:~$ cat list2
11
101
1001
10001
paul@debian7:~$ grep -E 'ooo?' list2
1001
10001
paul@debian7:~$ cat list2 | sed 's/ooo\?/A/'
11
101
1A1
1A1
```

21.4.9. exactly n times

You can demand an exact number of times the oprevious has to occur.

This example wants exactly three o's.

```
paul@debian7:~$ cat list2
ll
lol
lool
loool
paul@debian7:~$ grep -E 'o{3}' list2
loool
paul@debian7:~$ cat list2 | sed 's/o\{3\}/A/'
ll
lol
lool
lal
paul@debian7:~$
```

21.4.10. between n and m times

And here we demand exactly from minimum 2 to maximum 3 times.

```
paul@debian7:~$ cat list2
11
101
1001
10001
paul@debian7:~$ grep -E '0{2,3}' list2
1001
10001
paul@debian7:~$ grep 'o\{2,3\}' list2
1001
10001
paul@debian7:~$ cat list2 | sed 's/o\{2,3\}/A/'
11
101
1A1
1A1
paul@debian7:~$
```

21.5. bash history

The **bash shell** can also interprete some regular expressions.

This example shows how to manipulate the exclamation mask history feature of the bash shell.

```
paul@debian7:~$ mkdir hist
paul@debian7:~$ cd hist/
paul@debian7:~/hist$ touch file1 file2 file3
paul@debian7:~/hist$ ls -1 file1
-rw-r--r- 1 paul paul 0 Apr 15 22:07 file1
paul@debian7:~/hist$ !1
ls -1 file1
-rw-r--r- 1 paul paul 0 Apr 15 22:07 file1
paul@debian7:~/hist$ !1:s/1/3
ls -1 file3
-rw-r--r- 1 paul paul 0 Apr 15 22:07 file3
paul@debian7:~/hist$
```

This also works with the history numbers in bash.

```
paul@debian7:~/hist$ history 6
2089 mkdir hist
2090 cd hist/
2091 touch file1 file2 file3
2092 ls -l file1
2093 ls -l file3
2094 history 6
paul@debian7:~/hist$ !2092
ls -l file1
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file1
paul@debian7:~/hist$ !2092:s/1/2
ls -l file2
-rw-r--r-- 1 paul paul 0 Apr 15 22:07 file2
paul@debian7:~/hist$
```