Concours commun Mines-Ponts

PREMIERE EPREUVE. FILIERE MP

I Permanents

Tout d'abord, notons que l'on a aussi

$$\mathrm{per}(\mathfrak{m}_1,\ldots,\mathfrak{m}_\mathfrak{n}) = \sum_{\sigma \in \mathfrak{S}_\mathfrak{n}} \mathfrak{m}_{\sigma(1)1} \ldots \mathfrak{m}_{\sigma(\mathfrak{n})\mathfrak{n}}.$$

En effet, pour $\sigma \in \mathfrak{S}_n$, posons $\mathfrak{j}_1 = \sigma(1), \ldots, \mathfrak{j}_n = \sigma(n)$ de sorte que $1 = \sigma^{-1}(\mathfrak{j}_1), \ldots, \mathfrak{n} = \sigma^{-1}(\mathfrak{j}_n)$. On réordonne alors le produit $\mathfrak{m}_{1\sigma(1)}, \ldots, \mathfrak{m}_{n\sigma(n)}$ dans l'ordre croissant des numéros de colonnes et on obtient

$$m_{\sigma(1)1}\dots m_{\sigma(n)n} = m_{\sigma^{-1}(j_1)j_1}\dots m_{\sigma^{-1}(j_n)j_n} = m_{\sigma^{-1}(1)1}\dots m_{\sigma^{-1}(n)n}.$$

Maintenant, l'application $\sigma \mapsto \sigma^{-1}$ est une permutation de \mathfrak{S}_n et donc

$$\mathrm{per}(\mathfrak{m}_1, \ldots, \mathfrak{m}_\mathfrak{n}) = \sum_{\sigma \in \mathfrak{S}_\mathfrak{n}} \mathfrak{m}_{1\sigma(1)} \ldots \mathfrak{m}_{\mathfrak{n}\sigma(\mathfrak{n})} = \sum_{\sigma \in \mathfrak{S}_\mathfrak{n}} \mathfrak{m}_{\sigma^{-1}(1)1} \ldots \mathfrak{m}_{\sigma^{-1}(\mathfrak{n})\mathfrak{n}} = \sum_{\sigma \in \mathfrak{S}_\mathfrak{n}} \mathfrak{m}_{\sigma(1)1} \ldots \mathfrak{m}_{\sigma(\mathfrak{n})\mathfrak{n}}.$$

$$\textbf{1.} \ \mathrm{Pour} \ (\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!]^2 \ \mathrm{et} \ \sigma \in \mathfrak{S}_n, \ \mathrm{on} \ \mathrm{a} \ |\mathfrak{m}_{\sigma(\mathfrak{i})\mathfrak{j}}| = \sqrt{\mathfrak{m}_{\sigma(\mathfrak{i})\mathfrak{j}}^2} \leq \sqrt{\sum_{k=1}^n \mathfrak{m}_{k\mathfrak{j}}^2} = \|\mathfrak{m}_{\mathfrak{j}}\| \ \mathrm{et} \ \mathrm{donc}$$

$$|m_{\sigma(1)1}m_{\sigma(2)2}\dots m_{\sigma(n)n}| \le ||m_1|| ||m_2|| \dots ||m_n||,$$

puis

$$\begin{split} |\mathrm{per}(m_1,\dots,m_n)| &\leq \sum_{\sigma \in \mathfrak{S}_n} |m_{\sigma(1)1} m_{\sigma(2)2} \dots m_{\sigma(n)n}| \\ &\leq \sum_{\sigma \in \mathfrak{S}_n} \|m_1\| \|m_2\| \dots \|m_n\| = \|m_1\| \|m_2\| \dots \|m_n\| \times \mathrm{card}(\mathfrak{S}_n) = n! \prod_{j=1}^n \|m_j\|. \\ \\ &\forall (m_1,\dots,m_n) \in (\mathfrak{M}_{n,1}(\mathbb{R}))^n, \ |\mathrm{per}(m_1,\dots,m_n)| \leq n! \prod_{j=1}^n \|m_j\|. \end{split}$$

2. Soit $\sigma \in \mathfrak{S}_n$. Avec la convention $\mathfrak{m}_{\sigma(1)1} \dots \mathfrak{m}_{\sigma(j-1)j-1} = 1$ si j = 1 et $\mathfrak{r}_{\sigma(j+1)j+1} \dots \mathfrak{r}_{\sigma(n)n} = 1$ si j = n,

$$\begin{split} m_{\sigma(1)1} m_{\sigma(2)2} \dots m_{\sigma(n)2} &= m_{\sigma(1)1} \dots m_{\sigma(n-1)n-1} (m_{\sigma(n)n} - r_{\sigma(n)n}) + m_{\sigma(1)1} \dots m_{\sigma(n-1)n-1} r_{\sigma(n)n} \\ &= \dots \\ &= \left(\sum_{j=1}^n m_{\sigma(1)1} \dots m_{\sigma(j-1)j-1} (m_{\sigma(j)j} - r_{\sigma(j)j}) r_{\sigma(j+1)j+1} \dots r_{\sigma(n)n} \right) + r_{\sigma(1)1} \dots r_{\sigma(n)n}, \end{split}$$

et donc

$$\begin{split} |m_{\sigma(1)1}m_{\sigma(2)2}\dots m_{\sigma(n)n} - r_{\sigma(1)1}\dots r_{\sigma(n)n}| & \leq \sum_{j=1}^{n} |m_{\sigma(1)1}|\dots |m_{\sigma(j-1)j-1}| |m_{\sigma(j)j} - r_{\sigma(j)j}| |r_{\sigma(j+1)j+1}|\dots |r_{\sigma(n)n}| \\ & \leq \sum_{j=1}^{n} \|m_1\|\dots \|m_{j-1}\| \|m_j - r_j\| \|r_{j+1}\|\dots \|r_n\|, \end{split}$$

puis

$$\begin{split} |\mathrm{per}(m_1,\dots,m_n) - \mathrm{per}(r_1,\dots,r_n)| &\leq \sum_{\sigma \in \mathfrak{S}_n} |m_{\sigma(1)1} m_{\sigma(2)2} \dots m_{\sigma(n)n} - r_{\sigma(1)1} \dots r_{\sigma(n)n}| \\ &\leq \sum_{\sigma \in \mathfrak{S}_n} \sum_{j=1}^n \|m_1\| \dots \|m_{j-1}\| \|m_j - r_j\| \|r_{j+1}\| \dots \|r_n\| \\ &= n! \sum_{j=1}^n \|m_1\| \dots \|m_{j-1}\| \|m_j - r_j\| \|r_{j+1}\| \dots \|r_n\|. \end{split}$$

$$\begin{split} \forall ((m_1,\ldots,m_n),(r_1,\ldots,r_n)) \in ((\mathfrak{M}_{n,1}(\mathbb{R})))^2, \\ |\mathrm{per}(m_1,\ldots,m_n) - \mathrm{per}(r_1,\ldots,r_n)| & \leq n! \sum_{j=1}^n \|m_1\|\ldots\|m_{j-1}\| \|m_j - r_j\| \|r_{j+1}\|\ldots\|r_n\|. \end{split}$$

3. Soit $j \in I_n$.

$$\begin{split} \operatorname{per} M &= \sum_{\sigma \in \mathfrak{S}_{\mathfrak{n}}} m_{\sigma(1)1} \dots m_{\sigma(j)j} \dots m_{\sigma(\mathfrak{n})\mathfrak{n}} = \sum_{i=1}^{\mathfrak{n}} \sum_{\substack{\sigma \in \mathfrak{S}_{\mathfrak{n}} \\ \sigma(j)=i}} m_{\sigma(1)1} \dots m_{\sigma(j-1)j-1} m_{ij} m_{\sigma(j+1)j+1} \dots m_{\sigma(\mathfrak{n})\mathfrak{n}} \\ &= \sum_{i=1}^{\mathfrak{n}} m_{i,j} \sum_{\substack{\sigma \in \mathfrak{S}_{\mathfrak{n}} \\ \sigma(i)=i}} m_{\sigma(1)1} \dots m_{\sigma(j-1)j-1} m_{\sigma(j+1)j+1} \dots m_{\sigma(\mathfrak{n})\mathfrak{n}}. \end{split}$$

Ainsi, on a isolé comme facteur de $\mathfrak{m}_{i,j}$ la somme de tous les produits de $\mathfrak{n}-1$ facteurs où le numéro de ligne \mathfrak{i} et le numéro de colonne \mathfrak{j} ne sont pas utilisés. Cette somme est per $(M(\mathfrak{i}|\mathfrak{j}))$.

On a donc établi la formule de développement d'un permanent suivant sa j-ème colonne :

$$\forall j \in I_n, \; \mathrm{per} M = \sum_{i=1}^n m_{i,j} \mathrm{per} \left(M(i|j) \right).$$

II Formes quadratiques

4. Soient $H \in \mathcal{V}_0^+$ et $G \in \mathcal{V}^-$ puis $x \in H \cap G$. La restriction de Φ_Q à H est positive et donc $Qx.x \ge 0$. Si $x \ne 0$, puisque la restriction de Φ_Q à G est définie négative, on a $Q\frac{x}{\|x\|}.\frac{x}{\|x\|} < 0$ et donc Qx.x < 0 ce qui n'est pas. Donc, x = 0.

On a montré que $H \cap G = \{0\}$ et donc la somme H + G est directe. On choisit alors pour H (resp. G) un sous-espace élément de \mathcal{V}^+ tel que $r(\Phi_Q) = \dim H$ (resp. élément de \mathcal{V}^- tel que $s(\Phi_Q) = \dim G$). H est en particulier élément de V_0^+ et donc la somme H + G est directe. Par suite,

$$n \geq \mathrm{dim} H + \mathrm{dim} G = r(\Phi_Q) + s(\Phi_Q).$$

$$r(\Phi_Q) + s(\Phi_Q) \le n.$$

5. Le résultat est clair si $n^+(Q) = 0$. Sinon, on suppose ordonnées les valeurs propres de Q de sorte que pour $1 \le i \le n^+(Q)$, $\lambda_i > 0$ (et $\lambda_i < 0$ pour $i > n^+(Q)$).

Q est symétrique réelle et donc diagonalisable dans une base orthonormée d'après le théorème spectral. Soit (e_1, \ldots, e_n) une base orthonormée de \mathbb{R}^n formée de vecteurs propres de Q et associée à la famille $(\lambda_1, \ldots, \lambda_n)$.

$$\mathrm{Soit}\; \mathsf{H} = \mathrm{Vect}(e_1, \dots, e_{n^+(Q)}). \; \mathrm{Pour}\; \mathsf{x} = \sum_{i=1}^{n^+(Q)} x_i e_i \; \mathrm{tel} \; \mathrm{que} \; \|\mathsf{x}\| = 1, \; \mathrm{on} \; \mathrm{a} \; Q \mathsf{x}. \mathsf{x} = \sum_{i=1}^{n^+(Q)} \lambda_i x_i^2 > \mathrm{car} \; \mathrm{les} \; \lambda_i \; \mathrm{sont} \; \mathrm{strictement}$$

positifs et les x_i^2 sont positifs, l'un d'entre l'étant strictement.

Ainsi, la restriction de Q à H est définie positive et donc $n^+(Q) = \dim(H) \le r(\Phi_Q)$.

En appliquant ce résultat à -Q, on a aussi $s(\Phi_Q) \ge n^-(Q)$.

$$r(\Phi_Q) \ge n^+(Q) \text{ et } s(\Phi_Q) \ge n^-(Q).$$

6. Les valeurs propres de Q sont réelles et non nulles. Par suite, $n = n^+(Q) + n^-(Q)$. On a donc

$$n = n^+(Q) + n^-(Q) \le r(\Phi_O) + s(\Phi_O) \le n$$

ce qui montre que les inégalités $r(\Phi_Q) \ge n^+(Q)$ et $s(\Phi_Q) \ge n^-(Q)$ sont des égalités.

$$r(\Phi_Q) = \mathfrak{n}^+(Q) \text{ et } s(\Phi_Q) = \mathfrak{n}^-(Q).$$

7. Supposons que $r(\Phi_Q) \ge 1$. Soit H un sous-espace de \mathbb{R}^n tel que la restriction de Φ_Q à H est définie positive et $\dim H = r(\Phi_Q)$.

 $\Phi_Q \text{ est une forme quadratique et est donc continue sur } H \cap S. \text{ De plus, } H \cap S \text{ est un fermé borné de } H \text{ et donc un compact de } H \text{ d'après le théorème de Borel-Lebesque, non vide car } \dim H \geq 1. \ \Phi_Q \text{ admet donc un minimum sur } H \cap S \text{ atteint en un certain } x_0 \text{ de } H \cap S. \text{ Puisque la restriction de } \Phi_Q \text{ à } H \text{ est définie positive, on a } \Phi_Q(x_0) > 0. \text{ Soit } \delta = \frac{1}{2} \Phi_Q(x_0) > 0.$

Soit maintenant R une matrice symétrique réelle inversible de taille n telle que $\exists k \in [0, \delta]$ tel que $\forall (x, y) \in (\mathbb{R}^n)^2$, $|B_{\Omega}(x, y) - B_{R}(x, y)| \le k||x||||y||$.

En particulier, $\forall x \in H \cap S$, $|\Phi_O(x) - \Phi_R(x)| \le k$. Mais alors pour $x \in H \cap S$,

$$\Phi_{R}(x) = \Phi_{O}(x) + (\Phi_{R}(x) - \Phi_{O}(x)) \le \Phi_{O}(x) - |\Phi_{R}(x) - \Phi_{O}(x)| \ge \Phi_{O}(x_{0}) - k = 2\delta - k \ge \delta > 0.$$

Ainsi, la restriction de Φ_R à H est définie positive et on en déduit que $r(\Phi_Q) = \dim H \le r(\Phi_R)$. Par symétrie des rôles de Q et R, on a aussi $r(\Phi_R) \le r(\Phi_Q)$ et donc $r(\Phi_Q) = r(\Phi_R)$.

Si $r(\Phi_Q) = 0$, on applique ce qui précède à -Q.

On a montré que

$$\exists \delta > 0/ \; r(\Phi_Q) = r(\Phi_R) \; \mathrm{si} \; k \leq \delta.$$

III Espaces de Lorentz

8. Soit H = Vect(a, b). Puisque (a, b) est libre, H est un plan.

Supposons par l'absurde que $\forall \rho \in \mathbb{R}, \ \phi(\rho) > 0$.

 $\mathrm{Soit} \ (\lambda, \mu) \in \mathbb{R}^2. \ \mathrm{Si} \ \lambda = 0, \ \mathrm{on} \ \mathrm{a} \ \Phi_Q(\lambda b + \mu a) = \Phi_Q(\mu a) = \mu^2 \Phi_Q(a) \geq 0 \ \mathrm{et} \ \mathrm{si} \ \lambda \neq 0, \ \mathrm{on} \ \mathrm{a} \ \Phi_Q(\lambda b + \mu a) = \lambda^2 \Phi_Q\left(b + \frac{\mu}{\lambda} a\right) = \lambda \phi\left(\frac{\mu}{\lambda}\right) \geq 0.$

Finalement, la restriction de Φ_Q à H est positive.

Si maintenant G est un élément de V^- tel que dim $G = s(\Phi_Q) = n - 1$, la question 4. permet d'affirmer que

$$n > \dim H + \dim G = 2 + (n - 1) = n + 1.$$

Ceci est absurde et donc

$$\exists \lambda \in \mathbb{R}/\ \phi(\lambda) < 0.$$

9. Supposons encore que b ne soit pas colinéaire à α . Pour tout réel ρ , on a $\phi(\rho) = \Phi_Q(\alpha)\rho^2 + 2B_Q(\alpha,b)\rho + \Phi_Q(b)$. Puisque $\Phi_Q(\alpha) > 0$, ϕ est un trinôme du second degré tendant vers $+\infty$ en $+\infty$. Comme d'autre part $\exists \lambda \in \mathbb{R}/|\phi(\lambda)| < 0$, le discriminant réduit de ϕ est strictement positif et donc

$$0 < \Delta' = B_O(a, b)^2 - \Phi_O(a)\Phi_O(b).$$

Ainsi, si b n'est pas colinéaire à a, on a $B_O(a,b)^2 > \Phi_O(a)\Phi_O(b)$.

Si maintenant b est colinéaire à a, il existe $k \in \mathbb{R}$ tel que b = ka. On a alors

$$B_Q(\mathfrak{a},\mathfrak{b})^2 - \Phi_Q(\mathfrak{a})\Phi_Q(\mathfrak{b}) = B_Q(\mathfrak{a},k\mathfrak{a})^2 - \Phi_Q(\mathfrak{a})\Phi_Q(k\mathfrak{a}) = k^2(B_Q(\mathfrak{a},\mathfrak{a})^2 - \Phi_Q(\mathfrak{a})^2) = 0.$$

On a montré que

 $B_Q(\mathfrak{a},\mathfrak{b})^2 \geq \Phi_Q(\mathfrak{a})\Phi_Q(\mathfrak{b}) \text{ avec \'egalit\'e si et seulement si } \mathfrak{a} \text{ et } \mathfrak{b} \text{ sont colin\'eaires}.$

IV Inégalité d'ALEXANDROV

10. $\chi_Q = (X-1)(X+1)$ et donc $\operatorname{Sp}Q = (1,-1)$. Q est donc inversible et d'après la question 6., on a alors $r(\Phi_Q) = n^+(Q) = 1$ et $s(\Phi_Q) = n^-(Q) = 1 = n - 1$. Le théorème 1 est donc établi quand n = 2.

On suppose dorénavant que $n \geq 3$ et que le théorème 1 est établi pour tout $k \leq n-1$.

11. Soit $j \in I_n$. En développant le permanent $per(m_1, \ldots, m_{n-3}, m_{n-2}, c, e_j)$ suivant sa dernière colonne à partir de la formule de la question 3., on obtient

$$\operatorname{per}(m_1, \dots, m_{n-3}, m_{n-2}, c, e_j) = \operatorname{per}(m_1(j), \dots, m_{n-3}(j), m_{n-2}(j), c(j)).$$

Maintenant, l'application $B_j: (m_{n-2}(j), c(j)) \mapsto \operatorname{per}(m_1(j), \ldots, m_{n-3}(j), m_{n-2}(j), c(j))$ est une forme bilinéaire symétrique sur \mathbb{R}^{n-1} . De plus, pour $1 \leq k, l \leq n-1$, le coefficient de $m_{n-2}(j)_k c(j)_l$ dans le développement de $\operatorname{per}(m_1(j), \ldots, m_{n-3}(j), m_{n-2}(j), c(j))$ est le permanent de la matrice carrée de format n-3 obtenu en retirant aux vecteurs m_1, \ldots, m_{n-3} leurs lignes n° j, k et l ou plutôt le permanent de $(m_1(j), \ldots, m_{n-3}(j), e_k, e_l)$ c'est-à-dire le coefficient ligne k, colonne l d'une matrice Q de format n-1 notée $Q_{n-1}(j)$.

Ainsi, la matrice de B_j dans la base canonique de \mathbb{R}^{n-1} est $Q_{n-1}(j)$. Par hypothèse de récurrence, $Q_{n-1}(j)$ est inversible et $r(\Phi_{Q_{n-1}(j)}) = 1$ et $s(\Phi_{Q_{n-1}(j)}) = n-1$.

Maintenant, $\Phi_{Q_{n-1}(j)}(\mathfrak{m}_{n-2}(j)) = \operatorname{per}(\mathfrak{m}_1(j), \dots, \mathfrak{m}_{n-3}(j), \mathfrak{m}_{n-2}(j), \mathfrak{m}_{n-2}(j)) > 0$ car les \mathfrak{m}_j sont à composantes strictement positives. La question 9. permet alors d'affirmer que

 $B_{\mathfrak{j}}(\mathfrak{m}_{n-1}(\mathfrak{j}),c(\mathfrak{j}))^{2}\geq\Phi_{Q_{n-1}(\mathfrak{j})}(\mathfrak{m}_{n-2}(\mathfrak{j}))\Phi_{Q_{n-1}(\mathfrak{j})}(c(\mathfrak{j})) \text{ avec \'egalit\'e si et seulement si } c(\mathfrak{j}) \text{ est colin\'eaire \`a } \mathfrak{m}_{n-2}(\mathfrak{j}),$

ce qui s'écrit encore

$$\begin{split} \forall j \in I_n, \ \forall c \in \mathbb{R}^n, \\ (\operatorname{per}(m_1, \dots, m_{n-3}, m_{n-2}, c, e_j))^2 & \geq \operatorname{per}(m_1, \dots, m_{n-3}, m_{n-2}, m_{n-2}, e_j) \times \operatorname{per}(m_1, \dots, m_{n-3}, c, c, e_j) \\ & \operatorname{avec} \ \text{\'egalit\'e} \ \operatorname{si} \ \operatorname{et} \ \operatorname{seulement} \ \operatorname{si} \ c(j) \ \operatorname{est} \ \operatorname{colin\'e} \ \operatorname{aire} \ \operatorname{\grave{a}} \ m_{n-2}(j). \end{split}$$

12. Par n-linéarité et symétrie, on a

$$\begin{split} 0 &= Qc.c = \sum_{1 \leq i,j \leq n} q_{i,j} c_i c_j = \sum_{1 \leq i,j \leq n} \operatorname{per}(m_1,m_2,\ldots,m_{n-2},e_i,e_j) c_i c_j = \operatorname{per}(m_1,\ldots,m_{n-2},\sum_{i=1}^n c_i e_i,\sum_{j=1}^n c_j e_j) \\ &= \operatorname{per}(m_1,\ldots,m_{n-2},c,c) = \operatorname{per}(m_1,\ldots,m_{n-3},c,c,\sum_{j=1}^n m_{j,n-2} e_j) \\ &= \sum_{i=1}^n m_{j,n-2} \operatorname{per}(m_1,\ldots,m_{n-3},c,c,e_j). \end{split}$$

On a montré que

$$\mathrm{si}\ Qc=0,\ \mathrm{alors}\ \sum_{j=1}^n m_{j,n-2}\mathrm{per}(m_1,\ldots,m_{n-3},c,c,e_j)=0.$$

13. Soit $j \in I_n$.

• Par linéarité par rapport à l'avant dernière colonne et par symétrie, on a

$$\begin{split} \mathrm{per}(m_1,\dots,m_{n-2},c,e_j) &= \mathrm{per}(m_1,\dots,m_{n-2},\sum_{i=1}^n c_i e_i,e_j) = \sum_{i=1}^n \mathrm{per}(m_1,\dots,m_{n-2},e_i,e_j) c_i \\ &= \sum_{i=1}^n q_{i,j} c_i = \sum_{i=1}^n q_{j,i} c_i = 0 \; (\mathrm{car} \; Qc = 0). \end{split}$$

• En développant $per(m_1, ..., m_{n-2}, m_{n-2}, e_i)$ suivant sa dernière colonne, on obtient

$$\operatorname{per}(\mathfrak{m}_1, \dots, \mathfrak{m}_{n-2}, \mathfrak{m}_{n-2}, e_j) = \operatorname{per}(\mathfrak{m}_1(j), \dots, \mathfrak{m}_{n-2}(j), \mathfrak{m}_{n-2}(j)) > 0,$$

car les \mathfrak{m}_k sont à composantes strictement positives.

$$\boxed{ \forall j \in I_n, \; \mathrm{per}(m_1, \dots, m_{n-2}, c, e_j) = 0 \; \mathrm{et} \; \mathrm{per}(m_1, \dots, m_{n-2}, m_{n-2}, e_j) > 0. }$$

14. Supposons Qc = 0.

La question 13. et les inégalités (3) fournissent : $\forall j \in I_n$, $per(m_1, \ldots, m_{n-3}, c, c, e_j) \leq 0$.

Puisque les $\mathfrak{m}_{j,n-2}$ sont strictement positifs, la question 12. montre que $\forall j \in I_n$, $\operatorname{per}(\mathfrak{m}_1,\ldots,\mathfrak{m}_{n-3},c,c,e_j)=0$.

Mais alors, l'inégalité (3) est une égalité et d'après la question 11., $\forall j \in I_n$, c(j) et $m_{n-2}(j)$ sont colinéaires. Comme $n \geq 3$, c est colinéaire à $\mathfrak{m}_{n-2}.$ Ceci impose aux composantes de c d'être toutes de même signe.

Enfin, tous les $q_{i,j}$, $i \neq j$ sont strictement positifs et les égalités $\forall i \in I_n$, $\sum_{j=1}^n q_{i,j} c_j = 0$ impose $\forall j \in I_n$, $c_j = 0$ et donc c = 0.

On a montré que Qc = 0 équivaut à c = 0 et donc que $KerQ = \{0\}$. On en déduit que

15. Pour $(x, y) \in (\mathbb{R}^n)^2$,

$$B_0(x,y) = \operatorname{per}(e,\ldots,e,x,y) = \sum_{1 \leq i,j \leq n} \operatorname{per}(e,\ldots,e,e_i,e_j) x_i y_j.$$

On en déduit que $\forall (i,j) \in I_n, \ q_{i,j} = per(e, ..., e, e_i, e_j).$

- Si i = j, en développant suivant la dernière colonne puis l'avant dernière, on obtient $q_{i,j} = 0$.
- Si i = j, en developpant suivant la dernière puis suivant l'avant dernière colonne, on obtient per(e',...,e') où n-2

$$e'=(\underbrace{1,\ldots,1}\in\mathbb{R}^{n-2}$$
 . Or

$$\operatorname{per}(e',\ldots,e') = \sum_{\sigma \in \mathfrak{S}_{n-2}} 1 \times \ldots \times 1 = \operatorname{card}(\mathfrak{S}_{n-2}) = (n-2)!.$$

Finalement.

$$Q_0 = (n-2)! \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix}.$$

Q est symétrique réelle et donc diagonalisable dans R. L'ordre de multiplicité de chacune de ses valeurs propres est donc la dimension du sous espace propre correspondant.

 $\operatorname{rg}(Q_0 + (n-2)!I) = 1$ et donc -(n-2)! est valeur propre d'ordre n-1. La trace de Q_0 fournit la dernière valeur propre $\lambda : \lambda + (n-1)(-(n-2)!) = 0$ et donc $\lambda = (n-1)!$.

$$\boxed{ \operatorname{SpQ_0} = ((n-1)!, \underbrace{-(n-2)!, \dots, -(n-2)!}_{n-1}), \ r(\Phi_{Q_0}) = 1, \ s(\Phi_{Q_0}) = n-1. }$$

16. Soient θ et θ' deux éléments distincts de [0,1]. Pour $(x,y) \in (\mathbb{R}^n)^2$, d'après la question 2.,

$$\begin{split} |B_{\theta}(x,y) - B_{\theta'}(x,y)| &= |\mathrm{per}(\theta m_1 + (1-\theta)e, \ldots, \theta m_{n-2} + (1-\theta)e, x, y) - \mathrm{per}(\theta' m_1 + (1-\theta')e, \ldots, \theta m_{n-2} + (1-\theta')e, x, y)| \\ &\leq n! \sum_{j=1}^{n-2} \|\theta m_1 + (1-\theta)e\| \ldots \|\|\theta m_{j-1} 1 + (1-\theta)e\| \\ &\qquad \qquad \|(\theta' - \theta)(m_j - e)\|\theta' m_{j+1} + (1-\theta')e\| \ldots \|\theta' m_{n-2} + (1-\theta')e\|\|x\|\|y\| \\ &\leq n! |\theta - \theta'| \|x\| \|y\| \sum_{j=1}^{n-2} \prod_{i=1}^{n-2} (\|m_i\| + \|e\|) = (n-2)n! |\theta - \theta'| \|x\| \|y\| \prod_{j=1}^{n-2} (\|m_j\| + \sqrt{n}) \\ &\leq n \; n! |\theta - \theta'| \|x\| \|y\| \prod_{j=1}^{n-2} (\|m_j\| + \sqrt{n}). \end{split}$$

$$\forall (x,y) \in (\mathbb{R}^n)^2, \ \forall (\theta,\theta') \in [0,1]^2, \ |B_\theta(x,y) - B_{\theta'}(x,y)| \leq n \ n! |\theta - \theta'| \|x\| \|y\| \prod_{j=1}^{n-2} (\|m_j\| + \sqrt{n}).$$

17. Tout d'abord, pour $\theta \in [0,1]$, les vecteurs $\theta m_i + (1-\theta)e$, $1 \le i \le n-2$ sont à composantes strictement positives et on peut appliquer à la matrice Q_θ les questions 11. à 14. pour obtenir

$$\forall \theta \in [0, 1], \ Q_{\theta} \in \mathcal{GL}(\mathbb{R}).$$

Considérons alors $\mathscr{P} = \{\theta \in [0,1]/ \ r(\Phi_{Q_{\theta}}) = 1\}$. \mathscr{P} est une partie non vide \mathbb{R} (car $0 \in \mathscr{P}$) et majorée par 1. \mathscr{P} admet donc une borne supérieure $\tau \in [0,1]$.

• Montrons que $\tau \in \mathscr{P}$. Il existe une suite $(\theta_{\mathfrak{p}})_{\mathfrak{p} \in \mathbb{N}}$ d'éléments de \mathscr{P} tendant vers τ . La suite de matrices correspondantes $(Q_{\theta_{\mathfrak{p}}})_{\mathfrak{p} \in \mathbb{N}}$ tend vers la matrice Q_{τ} car les coefficients de Q_{θ} sont des fonctions continues de θ . Mais alors, la suite des spectres $(\mathrm{Sp}(Q_{\theta_{\mathfrak{p}}}))_{\mathfrak{p} \in \mathbb{N}})$ tend vers le spectre de Q_{τ} puisque les coefficients du polynôme caractéristique de Q_{θ} sont des fonctions continues de θ .

On en déduit que Q_{τ} admet une valeur propre positive ou nulle et n-1 valeurs propres négatives ou nulles. Comme d'autre part 0 n'est pas valeur propre de Q_{τ} , Q_{τ} admet une valeur propre strictement positive et n-1 valeurs propres strictement négatives. Finalement $\tau \in \mathscr{P}$.

• Supposons par l'absurde que $\tau < 1$.

D'après la question 7. et la question 16., il existe un réel $\delta \in]0,1-\tau[$ tel que si \mathfrak{n} $\mathfrak{n}!|\theta-\tau|\prod_{j=1}^{n-2}(\|\mathfrak{m}_i\|+\sqrt{\mathfrak{n}})\leq \delta$ alors

 $r(\Phi_{Q_\theta})=1 \ {\rm et \ donc \ il \ existe} \ \theta \in]\tau,1] \cap \mathscr{P} \ {\rm ce \ qui \ contradit \ la \ d\'efinition \ de } \ \tau.$

Finalement, $\tau \in \mathscr{P}$ et $\tau = 1$ ce qui montre que (\mathbb{R}^n, Q_1) est un espace de Lorentz. Le théorème 1 est donc démontré par récurrence.

18. Puisque (\mathbb{R}^n,Q) est un espace de Lorentz, on peut appliquer la question 9. à la forme B_Q . Puisque les \mathfrak{m}_i , $1 \leq i \leq n-1$, sont à composantes strictement positives, on a $\Phi_Q(\mathfrak{m}_{n-1}) = \operatorname{per}(\mathfrak{m}_1,\ldots,\mathfrak{m}_{n-2},\mathfrak{m}_{n-1},\mathfrak{m}_{n-1}) > 0$ et donc, si b n'est pas colinéaire à \mathfrak{m}_{n-1} , on a

$$(B_Q(\mathfrak{m}_{n-1},\mathfrak{b}))^2 \geq \Phi_Q(\mathfrak{m}_{n-1})\Phi_Q(\mathfrak{b}),$$

 $\mathrm{ce}\ \mathrm{qui}\ \mathrm{s'\acute{e}crit}\ (\mathrm{per}(m_1,\ldots,m_{n-2},m_{n-1},b))^2 \geq \mathrm{per}(m_1,\ldots,m_{n-2},m_{n-1},m_{n-1})\mathrm{per}(m_1,\ldots,m_{n-2},b,b).$

Il reste à étudier le cas où b est colinéaire à m_{n-1} . Dans ce cas, il existe un réel λ tel que $b = \lambda m_{n-1}$. On a alors

$$\left(\operatorname{per}(m_1, \dots, m_{n-2}, m_{n-1}, b) \right)^2 - \operatorname{per}(m_1, \dots, m_{n-2}, m_{n-1}, m_{n-1}) \operatorname{per}(m_1, \dots, m_{n-2}, b, b) = \\ \lambda^2 \left(\left(\operatorname{per}(m_1, \dots, m_{n-2}, m_{n-1}, m_{n-1}) \right)^2 - \left(\operatorname{per}(m_1, \dots, m_{n-2}, m_{n-1}, m_{n-1}) \right)^2 \right) = 0.$$

On a montré que l'inégalité de la question 18. est valable pour tout choix de b.