CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

Aristotelian University of Thessaloniki (AUTh), Greece

Summary

Given

- a single 2D LIDAR measurement
- the map of the sensor's environment

CBGL \Rightarrow global localisation $\sim 1.0 \text{ sec } /100\text{m}^2$

Summary

Given

- a single 2D LIDAR measurement
- the map of the sensor's environment

CBGL \Rightarrow global localisation $\sim 1.0 \text{ sec }/100\text{m}^2$, robust to

- varying maximum sensor range
- varying field of view
- sensor & map noise
- similar surroundings

Global Localisation

(a) Environment + robot

(b) Map of environment

Global Localisation

Localisation problems in mobile robotics

Prabin Kumar Panigrahi, Sukant Kishoro Bisoy, "Localization strategies for autonomous mobile robots: A review" Journal of King Saud University - Computer and Information Sciences, 2022

Why global localisation in the first place?

Need for observer-based localisation due to:

- Indoors are GPS/GNSS-denied
- MoCap systems N/A

Contributions of this paper

• Fastest Monte Carlo method for 2D LIDAR/map (Cumulative Absolute Error per Ray (CAER) $\sim \mathcal{O}(N)$ [1])

[1] A. Filotheou, G. D. Sergiadis and A. G. Dimitriou, "FSM: Correspondenceless scan-matching of panoramic 2D range scans," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022

Contributions of this paper

- Fastest Monte Carlo method for 2D LIDAR/map (Cumulative Absolute Error per Ray (CAER) $\sim \mathcal{O}(N)$ [1])
- Higher discovery rates

[1] A. Filotheou, G. D. Sergiadis and A. G. Dimitriou, "FSM: Correspondenceless scan-matching of panoramic 2D range scans," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022

Contributions of this paper

- Fastest Monte Carlo method for 2D LIDAR/map (Cumulative Absolute Error per Ray (CAER) $\sim \mathcal{O}(N)$ [1])
- Higher discovery rates
- Extension and validation of pose-estimate-hierarchy-extraction-logic from CAER values [2]

^[1] A. Filotheou, G. D. Sergiadis and A. G. Dimitriou, "FSM: Correspondenceless scan-matching of panoramic 2D range scans," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022

^[2] A. Filotheou, A. L. Symeonidis, G. D. Sergiadis, and A. G. Dimitriou, "Correspondenceless scan-to-map-scan matching of 2D panoramic range scans", Array, 2023

Background (0/3)

Background (1/3): Map-scan

Background (2/3): Scan-to-map-scan matching (sm2)

Background (3/3): Cumulative Absolute Error per Ray (CAER)

$$\psi(\mathcal{S}_R(\mathbf{p}), \mathcal{S}_V(\hat{\mathbf{p}})) = \sum_{n=0}^{N_s-1} \left| \mathcal{S}_R[\theta_n] - \mathcal{S}_V[\theta_n] \right|$$
, where $\theta_n = -\frac{\lambda}{2} + n \cdot \frac{\lambda}{N_s}$, $n = 0, 1, \dots, N_s - 1$

Background (3/3): Cumulative Absolute Error per Ray (CAER)

$$\psi(\mathcal{S}_{R}(\mathbf{p}), \mathcal{S}_{V}(\hat{\mathbf{p}})) = \sum_{n=0}^{N_{s}-1} \left| \mathcal{S}_{R}[\theta_{n}] - \mathcal{S}_{V}[\theta_{n}] \right|, \text{ where}$$

$$\theta_{n} = -\frac{\lambda}{2} + n \cdot \frac{\lambda}{N_{s}}, n = 0, 1, \dots, N_{s} - 1, \text{ and } \hat{\mathbf{p}} - \mathbf{p} = (\Delta x, \Delta y, \Delta \theta)$$

$$\begin{bmatrix} \Xi \\ 0.25 \\ 0.20 \\ 0.15 \\ 0.15 \\ 0.05 \\ 0.05 \\ 0.005$$

CAER uses so far

Scan-matching

(a) A. Filotheou, G. D. Sergiadis and A. G. Dimitriou, "FSM: Correspondenceless scan-matching of panoramic 2D range scans," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022

Scan-to-map-scan matching

(b) A. Filotheou, A. L. Symeonidis, G. D. Sergiadis, and A. G. Dimitriou, "Correspondenceless scan-to-map-scan matching of 2D panoramic range scans", Array, 2023

CAER far from sensor pose?

CAER far from sensor pose

CAER-Based Global Localisation: CBGL

Algorithm CBGL

```
Require: S_R, \lambda, M, (d_I, d_{\alpha}), k
Ensure: Pose estimate of sensor measuring S_R
 1: A \leftarrow \text{calculate\_area}(\text{free}(M))
 2: \mathcal{H}, \mathcal{H}_1, \mathcal{H}_2 \leftarrow \{\emptyset\}
 3: for i \leftarrow 0, 1, \ldots, d_i \cdot A - 1 do
            (\mathring{x}.\mathring{d}i\mathring{s})persendense, posefree(M), \hat{\theta} \in
            hypotheses cloud into map's
           for javersable area
            \mathcal{H} \leftarrow \{\mathcal{H}, (\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\theta} + i \cdot 2\pi/d_{\alpha})\}
           end for
 8: end for
 9: \mathcal{H}_1 \leftarrow \text{bottom}_{-k}\text{-poses}(\mathcal{S}_R, \mathbf{M}, \mathcal{H}, k, \lambda)
                                                                                (Alg. 2)
10: for i \leftarrow 0, 1, ..., |\mathcal{H}_1| - 1 do
11: * \mathcal{H}_2 \leftarrow \{\mathcal{H}_{\mathcal{L}}(\mathcal{S}_R) \mid \mathcal{H}_{\mathcal{L}}(\mathcal{S}_R)\}
12: end for
```

Algorithm bottom_k_poses

Require: S_R , M, P, k, λ

Ensure: Set of k poses of \mathcal{P} with least CAER values, \mathcal{P}_{∇}

- 1: $\Psi \leftarrow \{\emptyset\}$
- 2: for $q \leftarrow 0, 1, \dots, |\mathcal{P}| 1$ do
- 3: $S_V^q \leftarrow S_V^M(\mathcal{P}[q]) = \operatorname{scan_map}(M, \mathcal{P}[q], \lambda)$
- 4: $\Psi \leftarrow \{\Psi, CAER(S_R, S_V^q)\}$
- 5: end for
- 6: $[\Psi_{\uparrow}, I^*] \leftarrow \text{sort}(\Psi, \text{asc})$, such that $\Psi[I^*] = \Psi_{\uparrow}$
- 7: return $\mathcal{P}_{\triangledown} = \{\mathcal{P}[\mathtt{I}^*[0]], \mathcal{P}[\mathtt{I}^*[1]], \dots, \mathcal{P}[\mathtt{I}^*[k-1]]\}$

13: return bottom_k_poses(S_R , M, \mathcal{H}_2 , 1, λ)

Experiments

Experiments in real conditions (1/3)

$$r_{
m max} = 30.0 \ {
m m}$$
 $\lambda = 270 \ {
m deg}$ Area $= 180 \ {
m m}^2$

Mean execution time = 1.6 sec

Figure: Trajectory of sensor, estimated locations, locations with error > 0.5 m

Experiments in real conditions (1/3)

Figure: Proportions of pose estimates whose location and orientation errors are lower than corresponding acceptance thresholds

Simulations in large environments (2/3)

Simulations in large environments (2/3)

Simulations in 45402 environments* (3/3)

$$r_{ ext{max}} = ext{inf}$$
 $\lambda = 270/360 ext{ deg}$ $\sigma_{ extbf{ extit{M}}} = 0.05 ext{ m}$ $\sigma_{ extit{R}} = 0.03 ext{ m}$ 4 sm2 methods

- $\lambda_{\text{NDT}} = \lambda_{\text{FastGICP}} = \lambda_{\text{FastVGICP}} = 270 \text{ deg but } \lambda_{\text{x1}} = 360 \text{ deg}$
- $\bullet \ \overline{e_{\mathcal{H}_1}}(\mathtt{NDT}) \simeq \overline{e_{\mathcal{H}_1}}(\mathtt{FastGICP}) \simeq \overline{e_{\mathcal{H}_1}}(\mathtt{FastVGICP}) \simeq \overline{e_{\mathcal{H}_1}}(\mathtt{x1})$
- \bullet Execution time $\sim 1.0~\text{sec}~/100~\text{m}^2$ @ 1 ray/deg

^{*} Courtesy of the Department of Computer Science, University of Freiburg, http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

Limitations

Figure: Trajectory of sensor, estimated locations, locations with error > 0.5 m

• small k in bottom_k_poses

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Thank you for your attention

- Code is available at github.com/li9i/cbgl
- Presentation at github.com/li9i/cbgl_presentation_iros24