Optimalisasi Sasaran Kehamilan dan Pengelompokan Kecamatan untuk Penanganan Kesehatan di Surabaya Menggunakan Algoritma K-Means Clustering

Oleh Kelompok 3:

Axel Gavan	(IT-02-02 - 1202190004)
Rifki Faiz Khairullah	(IT-02-02 - 1202180018)
Syahrul Suhura	(IT-02-02 - 1202190027)
Wiranti Maharani	(IT-02-02 - 1202190030)

PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS TEKNOLOGI INFORMASI DAN BISNIS INSTITUT TEKNOLOGI TELKOM SURABAYA 2022

KATA PENGANTAR

Puji syukur kita panjatkan kehadirat Allah Swt. yang telah memberikan rahmat dan hidayah-Nya sehingga kami dapat menyelesaikan tugas yang berjudul "Optimalisasi Sasaran Kehamilan dan Pengelompokan Kecamatan untuk Penanganan Kesehatan di Surabaya Menggunakan Algoritma K-Means Clustering".

Adapun tujuan dari penulisan dari laporan ini adalah untuk memenuhi tugas pada mata kuliah Pembelajaran Mesin (*Machine Learning*). Selain itu, laporan ini juga bertujuan untuk menambah wawasan tentang optimalisasi yang dilakukan menggunakan metode K- Means Clustering Pada sasaran kehamilan di Surabaya. Terlebih dahulu, kami mengucapkan terima kasih kepada Ibu Regita Putri Permata, S.Stat., M.Stat. selaku Dosen Pembelajaran Mesin (Machine Learning) yang telah memberikan tugas ini sehingga dapat menambah pengetahuan dan wawasan sesuai dengan mata kuliah ini.

DAFTAR ISI

KATA	PENGANTAR	2
DAFT	AR ISI	3
DAFT	AR GAMBAR	4
BAB I		5
PENDA	AHULUAN	5
1.1	Latar Belakang	5
1.2	Rumusan Masalah	ϵ
1.3	Tujuan	ϵ
1.4	Manfaat Penelitian	ϵ
1.5	Batasan Masalah	7
BAB II		8
TINJA	UAN PUSTAKA	8
2.1	kehamilan	8
2.2	Data Mining	8
2.2.1	Tahapan Data Mining	8
2.3	K-Means Clustering	9
BAB II	I	11
METO	DOLOGI PENELITIAN	11
3.1	Sumber Data	11
3.2	Langkah Analisis	11
3.3	Alur Penelitian	12
BAB I	V	1
4.1	PRE-PROCESSING	1
4.2	Exploratory Data Analysis (EDA)	1
4.3	Pengelompokan Atau Kategorisasi Kelompok	4
4.4	Analisa K-Means	5
BAB V		7
PENUT	ГИР	7
5.1 k	Kesimpulan	7
5.2 S	Saran	7

DAFTAR GAMBAR

Gambar 3. 1 Diagram Alur Penelitian 1	12
Gambar 4. 1 Preparation Data	. 1
Gambar 4. 2 Hasil Transform Preparation Data	. 1
Gambar 4. 3 Histogram Sasaran pada Kecamatan	. 2
Gambar 4. 4 Histogram Masing-Masing Sasaran	3
Gambar 4. 5 Data Hasil Cluster	. 4
Gambar 4. 6 Hasil Cluster Elbow Method	4
Gambar 4. 7 Data pada Segment 0	5
Gambar 4. 8 Data pada Segment 1	5
Gambar 4. 9 Data pada Segment 2	. 5
Gambar 4. 10 Hasil Scatter Plot antara Total dan Kelurahan	. 5

BABI

PENDAHULUAN

1.1 LATAR BELAKANG

Kehamilan merupakan proses berkesinambungan yang dimulai dengan sel telur yang berubah menjadi zigot kemudian berkembang menjadi embrio. Zigot menempel pada dinding rahim selama beberapa hari setelah proses pembuahan. Pada masa ini mulai memasuki awal kehamilan yang biasanya ditandai dengan pendarahan ringan satu sampai dua hari yang biasa disebut pendarahan implantasi. Setelah itu akan terbentuknya kantung ketuban dan plasenta. Kemudian untuk melakukan tes kehamilan dengan menggunakan *test pack* yang biasanya dapat dilakukan pada minggu kedua sampai ketiga setelah berhubungan intim. Biasanya pada trimester awal kehamilan akan ada gejala mual atau *nausea* dan muntah atau *emesis gravidarum*, hal ini merupakan gejala umum yang sering terjadi pada trimester awal [1].

Pemeriksaan kehamilan pada ibu hamil merupakan hal sangat penting untuk mengurangi angka kematian ibu akibat keterlambatan dalam mendeteksi adanya resiko tinggi ibu hamil. Adapun kegiatan yang konsultasi dalam kegiatan posyandu yang bermanfaat untuk menangani kasus per kasus tetapi kelemahannya yaitu pengetahuan yang diperoleh hanya terbatas pada masalah kesehatan yang dialami saat konsultasi, tidak adanya rencana kerja sehingga pemantauan kehamilan secara lintas sektor dan lintas program. Untuk mengatasi kelemahan tersebut dapat diatasi dengan adanya edukasi dengan pembahasan materi buku KIA dalam bentuk tatap muka dalam kelompok yang diikuti dengan diskusi dan tukar pengalaman antara ibu-ibu hamil dan pelayan kesehatan [1].

Data mining dapat diterapkan untuk menggali nilai tambah dari suatu kumpulan data, dalam data mining dua jenis metode yang biasa digunakan yaitu metode clustering yang digunakan untuk pengelompokan data, yaitu hierarchical clustering dan non-hierarchical clustering.

K-means clustering merupakan salah satu metode data *clustering* non-hirarki mempartisi data yang ada ke dalam bentuk satu atau lebih *cluster*, sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam

satu *cluster* yang sama dan data mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompokkan ke dalam kelompok yang lain. *Cluster* yang didapat merupakan informasi yang bermanfaat bagi pengguna kebijakan dalam proses pengambilan keputusan [3].

Banyaknya tingkat kehamilan di Indonesia sangat mempengaruhi fakes yang tersedia, karena semakin banyaknya penduduk membuat kurangnya optimalisasi yang menyebabkan kebutuhan fakes semakin meningkat karena tidak tepatnya sasaran kehamilan. Penelitian ini membahas analisa sasaran kehamilan dan pengelompokan kecamatan menggunakan K-Means Clustering untuk optimalisasi jumlah fasilitas ibu hamil yang lebih membutuhkan di setiap kecamatan. Diharapkan dengan adanya analisa ini dapat menjadi petunjuk untuk mengetahui kecamatan mana yang membutuhkan penanganan lebih dulu agar dapat dioptimalkan jumlah fasilitas kesehatan bagi ibu hamil.

1.2 RUMUSAN MASALAH

Berdasarkan uraian yang telah dijelaskan, maka identifikasi masalah dalam penyusunan Tugas Akhir ini adalah sebagai berikut :

- 1. Bagaimana mengetahui karakteristik tiap kecamatan untuk mengoptimalkan jumlah fakes pada penanganan ibu hamil,
- 2. Bagaimana mengetahui kelompok yang harus dioptimalkan terlebih dahulu untuk mengoptimalkan jumlah fasilitas kesehatan di Surabaya

1.3 TUJUAN

- 1. Untuk mengurangi tingkat tertularnya virus pada bumil yang dapat mempengaruhi kesehatan diri dan bayinya.
- 2. Untuk meningkatkan fakes pada tiap-tiap wilayah yang lebih membutuhkan.

1.4 MANFAAT PENELITIAN

- 1. Manfaat bagi Mahasiswa
 - Dapat menambah pengetahuan bagi mahasiswa tentang algoritma K-means clustering.
 - Dapat menambah pengetahuan tentang Machine Learning yang sangat berperan besar pada kehidupan sehari-hari

2. Manfaat bagi Masyarakat

- Agar dapat melakukan pengoptimalan jumlah fakes pada tiap-tiap wilayah yang ter-prediksi sebagai wilayah kekurangan fakes.
- Agar dapat mengurangi tingkat terjadinya penularan virus terhadap bumil dan bayinya.

1.5 BATASAN MASALAH

Agar tidak melenceng jauh dari maksud dan tujuan penelitian maka dibuat batasan masalah sebagai berikut :

- 1. Penelitian hanya dilakukan di kota Surabaya.
- 2. Penelitian hanya bermaksud untuk mendata dan melakukan eksplorasi data agar dapat menemukan suatu pola baru yang tidak terdeteksi sebelumnya.
- 3. Penelitian hanya menggunakan metode K-means Clustering

BAB II

TINJAUAN PUSTAKA

2.1 KEHAMILAN

Kehamilan adalah istilah yang digunakan untuk perkembangan janin di dalam rahim perempuan. kehamilan didefinisikan sebagai fertilisasi atau penyatuan dari spermatozoa dan ovum lalu dilanjutkan dengan nidasi atau implantasi. kehamilan normal akan berlangsung dalam waktu 40 minggu atau 10 bulan lunar dan 9 bulan dalam kalender internasional.

2.2 DATA MINING

Data mining merupakan suatu proses mengekstrak atau menggali knowledge yang ada pada sekumpulan data yang didapatkan dari banyak bidang, seperti manajemen bisnis, pendidikan, kesehatan dan sebagainya. Istilah data mining memiliki hakikat sebagai disiplin ilmu yang tujuan utamanya adalah untuk menemukan, menggali, atau menambang pengetahuan dari data atau informasi yang kita miliki. sesuai dengan namanya, berkonotasi sebagai pencarian informasi bisnis yang berharga dari basis data yang sangat besar. Dengan tersedianya basis data dalam kualitas dan ukuran yang memadai,teknologi data mining memiliki kemampuan-kemampuan sebagai berikut:

- a. Mengotomatisasi prediksi *trend* sifat-sifat bisnis.
- b. Mengotomatisasi penemuan pola-pola yang tidak diketahui sebelumnya.

2.2.1 TAHAPAN DATA MINING

Tahap - tahap data mining adalah sebagai berikut :

- a. Pembersihan data (data cleaning)
 - Pembersihan data merupakan proses menghilangkan *noise* dan data yang tidak konsisten atau data tidak relevan.
- b. Integrasi data (data integration)
 - Integrasi data merupakan penggabungan data dari berbagai *database* ke dalam satu *database* baru.
- c. Seleksi data (data selection)
 - Data yang ada pada *database* sering kali tidak semuanya dipakai, oleh karena itu hanya data yang sesuai untuk dianalisis yang akan diambil dari *database*

d. Transformasi data (data transformation)

Data diubah atau digabung ke dalam format yang sesuai untuk diproses dalam *data mining*

e. Proses mining

Merupakan suatu proses utama saat metode diterapkan untuk menemukan pengetahuan berharga dan tersembunyi dari data.

f. Evaluasi pola (pattern evaluation)

Untuk mengidentifikasi pola-pola menarik ke dalam *knowledge based* yang ditemukan

g. Presentasi pengetahuan (knowledge presentation)

Merupakan visualisasi dan penyajian pengetahuan mengenai metode yang digunakan untuk memperoleh pengetahuan yang diperoleh pengguna.

2.3 K-MEANS CLUSTERING

Algoritma K-means clustering adalah metode penganalisaan data dengan pemodelan unsupervised learning. K-means digunakan untuk menganalisis data dengan melakukan pengelompokkan sesuai atribut yang sama atau karakteristik kedalam sejumlah grup. Algoritma ini menggunakan proses secara berulangulang untuk mendapatkan basis data cluster. Dibutuhkan jumlah cluster awal yang diinginkan sebagai masukan dan menghasilkan titik centroid akhir sebagai output. Metode K-means akan memilih pola k sebagai titik awal centroid secara acak atau random. jumlah iterasi untuk mencapai cluster centroid akan dipengaruhi oleh calon cluster centroid awal secara random. sehingga didapat cara dalam pengembangan algoritma dengan menentukan centroid cluster yang dilihat dari kepadatan data awal yang tinggi agar mendapatkan kinerja yang lebih tinggi [4].

tahap-tahap clustering K-means [5]:

Menentukan nilai K sebagai jumlah cluster yang ingin dibentuk. kemudian membangkitkan nilai random untuk pusat cluster awal (centroid) sebanyak K. Setelah itu Menghitung jarak setiap data input terhadap masing-masing centroid menggunakan rumus jarak Euclidean (Euclidean Distance) hingga ditemukan jarak yang paling dekat dari setiap data dengan centroid. berikut adalah persamaan Euclidean Distance:

$$d(xi, \mu j) = \sqrt{\sum (xi - \mu j)^2}$$

setelah ditemukan jarak terdekat, dilakukan klasifikasi setiap data berdasarkan kedekatannya dengan centroid. lalu memperbaharui nilai centroid baru diperoleh dari rata-rata cluster yang bersangkutan dengan menggunakan rumus :

$$\mu j (t+1) = \frac{1}{Nsj} \sum_{j \in sj} xj$$

setelah itu, terus melakukan perulangan sampai tiap anggota cluster tidak ada yang berubah.

BAB III

METODOLOGI PENELITIAN

3.1 SUMBER DATA

Data yang akan diujikan menggunakan Data Jumlah Sasaran Kelahiran Hidup yang diperoleh dari Open Data yang sudah disediakan data Dataset diperoleh dari data yang sudah disediakan , dengan jurnal mahasiswa D3 Teknik. Dalam Data Jumlah Sasaran Kelahiran Hidup memiliki 154 data dan beberapa tabel yaitu Kelurahan , Jumlah sasaran ibu hamil, jumlah sasaran ibu bersalin, jumlah sasaran kelahiran hidup, Jumlah sasaran bayi, jumlah sasaran balita. tools yang digunakan dalam penelitian ini adalah dengan menggunakan Google Collab sebagai pendukung pengolahan data sekaligus optimalisasi data menggunakan algoritma K-Means Clustering

3.2 LANGKAH ANALISIS

a. Dataset

Dataset diperoleh dari Opendata yang berisikan data Jumlah Sasaran Kelahiran Hidup. Dataset ini berisikan 154 data dan beberapa tabel yaitu Kelurahan, Jumlah sasaran ibu hamil, jumlah sasaran ibu bersalin, jumlah sasaran kelahiran hidup, Jumlah sasaran bayi, jumlah sasaran balita.

b. PreProcessing Data

Tahap awal sebelum melakukan proses pengelompokan kelompok adalah mempersiapkan teks yang ada didalam data. Pada tahap pra proses ini dilakukan sub proses pembuatan data baru yang berisikan transform isi tabel Kelurahan menjadi integer secara manual agar data dapat digunakan untuk melakukan proses pengelompokan

c. Proses Pengelompokan Atau Kategorisasi Kelompok

Proses pengelompokan dilakukan terhadap hasil pra-proses yang merupakan representasi data dalam bentuk model ruang vektor. Metode pertama ialah pengelompokan kelompok yang ada dengan K-Means Clustering. Kemudian setelah itu setiap kelompok kelompok tersebut akan diklasifikasi untuk mengambil keputusan jumlah segmentasi optimal yang akan digunakan

d. Evaluasi dan Validasi Penelitian

Dari k model klasifikasi yang telah ada, maka dapat dilakukan klasifikasi kelompok baru. Pengujian dilakukan dengan mengelompokkan kelompok baru kedalam kelompok yang ada menggunakan tetangga terdekat dari centroid pada masing-masing kelompok. Setelah didapatkan kelompok yang sesuai maka dilakukan proses klasifikasi kelompok baru pada kelompok yang bersangkutan.

3.3 ALUR PENELITIAN

Gambar 3. 1 Diagram Alur Penelitian

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 PRE-PROCESSING

Pada proses preparation data kita lakukan seleksi data yang dibutuhkan.Pada kasus ini kita menggunakan dataset Kelurahan , Jumlah sasaran ibu hamil, jumlah sasaran ibu bersalin, jumlah sasaran kelahiran hidup, Jumlah sasaran bayi, jumlah sasaran balita.

	Kelurahan	Jumlah_sasaran_ibu_hamil	Jumlah_sasaran_ibu_bersalin	Jumlah_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita
0	Kandangan	512	489	465	495	1843
1	Romokalisari	45	43	42	44	226
2	Tambak Oso Wilangon	57	54	52	55	317
3	Pakal	158	151	144	153	786
4	Babat Jerawat	324	309	294	313	1659

149	Siwalankerto	256	245	233	248	1243
150	Kebonsari	169	161	153	163	828
151	Pagesangan	221	211	202	214	1082
152	Jambangan	179	171	163	173	837
153	Karah	244	233	222	236	1136

Gambar 4. 1 Preparation Data

Selanjutnya adalah mengkonversi data yang bertipe string menjadi integer. Dikarenakan dalam kasus ini isi data dalam tabel Kelurahan tidak memiliki satu kesatuan dengan data yang lainnya, maka proses transform ini dilakukan secara manual. Hasil Transform data dapat dilihat pada gambar 4.1.

	Kelurahan	Jumlah_sasaran_ibu_hamil	Jumlah_sasaran_ibu_bersalin/nifas	Jumla_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita
0	1	512	489	465	495	1843
1	2	45	43	42	44	226
2	3	57	54	52	55	317
3	4	158	151	144	153	786
4	5	324	309	294	313	1659

149	150	256	245	233	248	1243
150	151	169	161	153	163	828
151	152	221	211	202	214	1082
152	153	179	171	163	173	837
153	154	244	233	222	236	1136

Gambar 4. 2 Hasil Transform Preparation Data

4.2 EXPLORATORY DATA ANALYSIS (EDA)

Exploratory Data Analysis (EDA) adalah proses untuk pengenalan data sekaligus menjawak kebutuh informasi dari setiap data. Eksplorasi data pada kasus ini menggunakan teknik grafis dalam meringkas data pengamatan.

Gambar 4. 3 Histogram Sasaran pada Kecamatan

Pada gambar 4.3 Menampilkan Range Jumlah Sasaran Kehamilan per Kelurahan. Sehingga dapat disimpulkan bahwa terdapat kurang lebih 50 kecamatan yang memiliki Jumlah sasaran ibu hamil tertinggi dengan range 208-316 jumlah

Gambar 4. 4 Histogram Masing-Masing Sasaran

Pada gambar 4.4 masing masing histogram menampilkan visualisasi untuk mengetahui masing masing karakteristik dari variabel yang membutuhkan pengoptimalan jumlah fakes di surabaya. Pada Histogram Jumlah Sasaran Ibu Hamil , dapat disimpulkan bahwa sekitar 50 lebih kelurahan yang memiliki jumlah ibu hamil sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu.

Pada Histogram Jumlah Sasaran Ibu Bersalin, dapat disimpulkan bahwa sekitar 50 lebih kelurahan yang memiliki jumlah ibu bersalin sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu. Pada Histogram Jumlah Sasaran Ibu Kelahiran Hidup, dapat disimpulkan bahwa sekitar 50 lebih kelurahan yang memiliki jumlah ibu kelahiran hidup sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu. Pada Histogram Jumlah Sasaran Ibu Kelahiran Hidup, dapat disimpulkan bahwa sekitar 50 lebih kelurahan yang memiliki jumlah ibu kelahiran hidup sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu. Pada Histogram Jumlah Sasaran Bayi, dapat disimpulkan bahwa sekitar 50 lebih kelurahan yang memiliki jumlah sasaran bayi sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu. Pada Histogram Jumlah Sasaran Balita, dapat disimpulkan bahwa sekitar 60 lebih kelurahan yang memiliki jumlah sasaran balita sekitar 100 - 250 membutuhkan pengoptimalan fakes terlebih dahulu.

4.3 PENGELOMPOKAN ATAU KATEGORISASI KELOMPOK

Pada tahap pengelompokan ini menggunakan K-Means Clustering sebagai model yang digunakan. Langkah berikutnya adalah melakukan eksperimen terlebih dahulu untuk mendapatkan nilai K(cluster) data. Sehingga didapatkan hasil cluster, yaitu cluster 3 yang dimasukkan dalam kelompok baru bernama segment.

	Kelurahan	Jumlah_sasaran_ibu_hamil	Jumlah_sasaran_ibu_bersalin/nifas	Jumla_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita	Total	segment
0	1	512	489	465	495	1843	3804	2
1	2	45	43	42	44	226	400	0
2	3	57	54	52	55	317	535	0
3	4	158	151	144	153	786	1392	0
4	5	324	309	294	313	1659	2899	2
149	150	256	245	233	248	1243	2225	0
150	151	169	161	153	163	828	1474	0
151	152	221	211	202	214	1082	1930	0
152	153	179	171	163	173	837	1523	0
153	154	244	233	222	236	1136	2071	0

Gambar 4. 5 Data Hasil Cluster

Pada kasus ini metode Elbow memanfaatkan WCSS untuk mengambil keputusan jumlah segmentasi optimal yang kita gunakan . pada gambar 4.6 titik cluster 2 ke 3 menjadi jarak terjauh karena memiliki jarak yang signifikan jika dibanding titik sebelumnya, sehingga cluster 3 menjadi cluster terbaik dalam eksperimen percobaan dalam range 2-10.

Gambar 4. 6 Hasil Cluster Elbow Method

4.4 ANALISA K-MEANS

Setelah mengelompokkan untuk mengelola dan analisa data yang telah melalui proses, selanjutnya memanfaatkan grafik scatterplot untuk mendapatkan kesimpulan pada kasus ini

	Kelurahan	Jumlah_sasaran_ibu_hamil	<pre>Jumlah_sasaran_ibu_bersalin/nifas</pre>	Jumla_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita	Total	segment
1	2	45	43	42	44	226	400	0
2	3	57	54	52	55	317	535	0
3	4	158	151	144	153	786	1392	0
5	6	178	170	162	172	945	1627	0
6	7	176	168	160	170	890	1564	0

Gambar 4. 7 Data pada Segment 0

	Kelurahan	Jumlah_sasaran_ibu_hamil	Jumlah_sasaran_ibu_bersalin/nifas	Jumla_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita	Total	segment
22	23	661	631	600	639	3151	5682	1
32	33	744	710	676	719	2974	5823	1
62	63	1134	1082	1031	1096	5556	9899	1
67	68	832	794	756	804	3478	6664	1
72	73	953	909	866	921	4684	8333	1

Gambar 4. 8 Data pada Segment 1

	Kelurahan	Jumlah_sasaran_ibu_hamil	Jumlah_sasaran_ibu_bersalin/nifas	Jumla_sasaran_kelahiran_hidup	Jumlah_sasaran_bayi	Jumlah_sasaran_balita	Total	segment
0	1	512	489	465	495	1843	3804	2
4	5	324	309	294	313	1659	2899	2
13	14	411	392	373	397	2191	3764	2
14	15	298	284	271	288	1497	2638	2
20	21	343	328	312	332	1577	2892	2

Gambar 4. 9 Data pada Segment 2

Gambar 4. 10 Hasil Scatter Plot antara Total dan Kelurahan

Berdasarkan grafik scatter plot di atas, dapat disimpulkan bahwa pada segmen 0 (berwarna hijau) fasilitas kesehatan yang ada sangat memadai, karena hasil perhitungan yang didapat pada kelurahan di segmen 0 berada di antara 0 hingga 2000 an. Sehingga belum dibutuhkan penanganan khusus untuk penambahan fasilitas kesehatan pada kelurahan pada segmen 0 tersebut. Segmen 1 (berwarna merah) fasilitas kesehatan yang ada kurang memadai, karena hasil perhitungan yang didapat pada kelurahan di segmen 1 berada di antara 4000 hingga 10000 an. Sehingga sangat membutuhkan penanganan khusus untuk penambahan fasilitas kesehatan pada kelurahan pada segmen 1 tersebut. Segmen 2 (berwarna biru) fasilitas kesehatan yang ada cukup memadai, karena hasil perhitungan yang didapat pada kelurahan di segmen 2 berada di antara 2000 hingga 5000 an. Sehingga belum terlalu dibutuhkan penanganan khusus untuk penambahan fasilitas kesehatan pada kelurahan pada segmen 2 tersebut.

	Kelurahan	Jumlah sasaran ibu hamil	Jumlah sasaran ibu bersalin/nifas	Jumlah sasaran kelahiran hidup	Jumlah sasaran bayi	Jumlah sasaran balita	Total
1	Romokalisari	45	43	42	44	226	400
45	Alun-Alun Contong	34	33	31	33	310	441
2	Tambak Oso Wilangon	57	54	52	55	317	535
36	Ketabang	104	100	95	101	404	804
12	Sumurwelut	89	85	80	86	464	804
119	Putat Jaya	795	759	723	769	3327	6373
67	Morokrembangan	832	794	756	804	3478	6664
72	Kali Kedinding	953	909	866	921	4684	8333
73	Sidotopo Wetan	1062	1014	966	1027	4863	8932
62	Wonokusumo	1134	1082	1031	1096	5556	9899

Berdasarkan hasil perhitungan yang didapat, kelurahan yang mendapatkan hasil perhitungan tertinggi dan membutuhkan penanganan lebih lanjut untuk fasilitas kesehatan adalah Putat Jaya, Morokrembangan, Kalli Kedinding, Sidotopo Wetan, dan Wonokusomo.

BAB V

PENUTUP

5.1 KESIMPULAN

Optimalisasi yang dilakukan pada studi kasus ini melalui empat tahapan yaitu, Pre-Processing data yang berguna untuk seleksi data, Exploratory data analysis (EDA) yang berguna untuk pengenalan sekaligus meringkas data dalam bentuk histogram, pengelompokan kelompok yang berguna untuk menentukan clustering K-Means, dan Analisa untuk mendapatkan hasil kesimpulan dari studi kasus ini. Pada Studi Kasus yang dijabarkan dapat disimpulkan bahwa kelurahan yang membutuhkan fasilitas yang optimal adalah kelurahan yang terdapat di segment 1 dengan kisaran total 2000 - 5000 jiwa di masing masing kelurahan. Kelurahan yang mendapatkan hasil perhitungan dan menbutuhkan penangan lebih lanjut untuk fasilitas kesehatan adalah Putat Jaya, Morokrembangan, Kalli Kedinding, Sidotopo Wetan, dan Wonokusomo.

5.2 SARAN

Saran dari kami,segera tingkatkan layanan fasilitas kesehatan ibu dan bayi terlebih kepada keluarga yangs sangat membutuhkan fasilitas kesehatan yang memadai. Salahsatu untuk mengimbangi fasilitas kesehatan dimasing-masing kelurahan adalah memantau kondisi sarana dan prasarana yang ada dipuskesmas maupun rumah sakit secara berkala.

DAFTAR PUSTAKA

- [1] S. Rofi'ah, S. Widatiningsih and . S. Chunaeni, "Optimalisasi Kelas Ibu Hamil Sebagai Upaya Peningkatan Kesehatan Masa Kehamilan," *LINK*, vol. 16, pp. 43-48, 2020.
- [2] T. Hariyani, A. Nursinta and W. E. Tribintari, "Optimalisasi Kesehatan Melalui Kegiatan Kelas Ibu Hamil," *Journal of Community Engagement and Employment*, vol. 2, pp. 94-103, 2020.
- [3] A. N. Khomarudin, Teknik Data Mining: Algoritma K-Means Clustering, IlmuKomputer.com, 2016.
- [4] R. A. Indraputra and R. Fitriana, "K-Means Clustering Data COVID-19," *Jurnal Teknik Industri*, vol. 10, pp. 275-282.
- [5] D. Means, "Implementasi dan Perhitungan Manual Algoritma K-Means dalam Clustering Data," *Dosbing.id*, 09 03 2022.

LAMPIRAN