Question 1

- 1.1 What is the optimal value of alpha for ridge and lasso regression?
 - I applied GridSearchCV and use the metrics **neg_mean_absolute_error** and **fold is 5** to compare the outcome of alpha value
 - Detail

Ridge				Lasso					
pa	aram_alpha	mean_train_score	mean_test_score	rank_test_score		param_alpha	mean_train_score	mean_test_score	rank_test_sco
28	500	-15345.398726	-19083.715866	1	28	500	-13493.582026	-19047.664107	
	400	-15039.765571	-19147.708658	2	27	400	-13074.719609	-19065.603881	
26	300	-14721.445746	-19303.388477	3	26	300	-12646.520253	-19178.253666	
29	1000	-16775.984771	-19445.293906	4	29	1000	-15226.803114	-19193.537792	
25	200	-14366.603623	-19600.294503	5	25	200	-12084.445761	-19301.535950	
24	100	-13906.315422	-20142.523317	6	24	100	-11565.597877	-19752.311978	
	2.0	-11284.275322	-20473.832315	7	23	50	-11301.528025	-19992.210141	
14	3.0	-11447.678347	-20489.310573	8	22	20	-11139.345757	-20302.939946	
12	1.0	-11131.600797	-20525.159630	9	21	10.0	-11089.505895	-20556.631647	
	0.9	-11119.599847	-20539.505772	10	20	9.0	-11084.487007	-20588.047875	
15	4.0	-11598.866959	-20540.224620	11	19	8.0	-11079.463775	-20620.776030	
10	0.8	-11107.874553	-20556.233673	12	18	7.0	-11074.927874	-20655.868936	
	0.7	-11096.994882	-20575.349988	13	17	6.0	-11070.085085	-20690.704933	
16	5.0	-11737.292152	-20590.589668	14	16	5.0	-11065.765193	-20723.628562	
	0.6	-11087.154466	-20596.371941	15	15	4.0	-11061.332598	-20756.514626	
23	50	-13499.891401	-20607.124885	16	14	3.0	-11056.840369	-20790.759999	
	0.5	-11078.250823	-20620.888472	17	13	2.0	-11052.449634	-20831.092655	
	6.0	-11869.151236	-20632.412678	18	12	1.0	-11048.500158	-20876.238113	
	0.4	-11070.107849	-20652.657876	19	11	0.9	-11048.122263	-20881.005941	
18		-11992.323961	-20672.424020	20	10	0.8	-11047.718933	-20885.708986	
	0.3	-11062.488244	-20695.320991	21	9	0.7	-11047.297137	-20890.512291	
19	8.0	-12102.561041	-20708.783799	22	8	0.6	-11046.902681	-20895.640383	
20	9.0	-12200.423373	-20742.071403	23	7	0.5	-11046.547031	-20899.988260	
	0.2	-11055.358909	-20744.884619	24	6	0.4	-11046.180970	-20903.626572	
21	10.0	-12288.477424	-20774.767592	25	5	0.4	-11045.777770	-20908.770236	
	0.1	-11048.334480	-20802.232401	26	4	0.3	-11045.404899	-20908.770230	
	0.01	-11043.046273	-20861.396002	27	3	0.2	-11045.060430	-20914.904017	
	0.001	-11042.580064	-20869.130670	28	2	0.01	-11044.796780	-20925.414451	
	0.0001	-11042.534071	-20869.930161	29	1	0.001	-11044.776009	-20926.056700	
22		-12862.425227	-20882.890489	30	0	0.001	-11044.774367	-20926.036700	

- Conclusion the best alpha

- Ridge: 500 - Lasso: 500

1.2 What will be the changes in the model if you choose double the value of alpha for both ridge and lasso?

Before	After

Ridge Metrics	r2_train = 0.88 r2_test = 0.83 rss_train = 713428853122 rss_test = 414482032987.7721 mse_train = 739304511 mse_test = 1001164330	r2_train = 0.89 r2_test = 0.83 rss_train = 667779160766 rss_test = 424503240467 mse_train = 691999130 mse_test = 1025370146
Lasso Metrics	r2_train = 0.92 r2_test = 0.83 rss_train = 461885142905 rss_test = 429313320892 mse_train = 478637453 mse_test = 1036988697	r2_train = 0.89 r2_test = 0.82 rss_train = 667779160766 rss_test = 424503240467 mse_train = 691999130 mse_test = 1025370146

1.3 What will be the most important predictor variables after the change is implemented?

Ridge before:

Ridge after:

Lasso Before:

Lasso After:

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- We apply GridSearchCV to find out the alpha has the best mean_test_score and mean_train_score.
- When the score continues improving we will increase the alpha until the score decreases. Grid search is a hyperparameter tuning technique that performs an exhaustive search over a specified hyperparameter space to find the combination of hyperparameters that yields the best model performance.
- Grid search then systematically explores every possible combination of hyperparameters from the parameter grid. It fits and evaluates the model for each combination using cross-validation and selects the combination that yields the best performance.

Ridge:

	param_alpha	mean_train_score	mean_test_score	rank_test_score
25	500	-15362.095904	-19071.852779	
26	1000	-16798.276076	-19454.338394	
24	100	-13908.741846	-20149.319648	
13	2.0	-11289.767516	-20442.125180	
14	3.0	-11452.505449	-20466.620546	
12	1.0	-11139.289406	-20470.172155	
11	0.9	-11127.528259	-20480.565438	
10	8.0	-11116.218180	-20492.887605	
	0.7	-11105.269934	-20508.960391	
	4.0	-11599.710139	-20519.799907	10
8	0.6	-11094.898968	-20527.999709	11
	0.5	-11085.867079	-20550.647632	12
16	5.0	-11735.846419	-20571.196428	13
	0.4	-11077.565786	-20580.092162	14
	0.3	-11069.941823	-20617.119161	15
17	6.0	-11864.758218	-20618.629703	16
23	50	-13500.575094	-20629.944436	17
	0.2	-11063.067774	-20659.003115	18
18	7.0	-11985.350599	-20663.158122	19
19	8.0	-12094.699141	-20702.916409	20
	0.1	-11057.407252	-20707.747173	21
20	9.0	-12193.172209	-20736.658976	22
	0.01	-11052.977818	-20760.646239	23
21	10.0	-12281.983409	-20766.003717	24
	0.001	-11052.536649	-20766.580197	25
	0.0001	-11052.494444	-20767.180896	26
22	20	-12859.306155	-20883.894830	27

Lasso

	param_alpha	mean_train_score	mean_test_score	rank_test_score
25	500	-13492.152795	-19036.503260	1
26	1000	-15243.188318	-19171.220276	2
24	100	-11576.918963	-19685.407220	3
23	50	-11315.228553	-19942.976567	4
22	20	-11151.867740	-20263.148581	5
21	10.0	-11100.966241	-20485.539988	6
20	9.0	-11095.812870	-20514.905129	7
19	8.0	-11090.730362	-20546.694864	8
18	7.0	-11085.958706	-20579.897983	9
17	6.0	-11081.550472	-20613.548052	10
16	5.0	-11076.850917	-20645.116960	11
15	4.0	-11071.943279	-20674.907048	12
14	3.0	-11066.995489	-20707.702456	13
13	2.0	-11062.319153	-20743.830019	14
12	1.0	-11057.884548	-20784.018614	15
11	0.9	-11057.463621	-20788.159586	16
10	0.8	-11057.013948	-20792.284209	17
9	0.7	-11056.563067	-20796.939260	18
8	0.6	-11056.230091	-20801.756427	19
7	0.5	-11055.882388	-20805.891954	20
6	0.4	-11055.540176	-20809.086760	21
5	0.3	-11055.189617	-20815.407172	22
4	0.2	-11054.834609	-20822.514856	23
3	0.1	-11054.508941	-20827.151660	24
2	0.01	-11054.272039	-20830.256372	25
1	0.001	-11054.254306	-20830.575472	26
0	0.0001	-11054.252996	-20830.621933	27

Question 3

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables.

Answer:

1. Ridge top 5 features in the first training with the best alpha (500) include:

After excluding the top 5 features we have the new top 5 features

2. Lasso top 5 features in the first training with the best alpha (500) include:

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

I think we can consider a model robust when they are not impacted by outliers in the training data and any variations in the test dataset will not affect its performance too much. To achieve this, we have to **make the model not overfit or underfit.** This is because an overfitting model has very high variance and a smallest change in data affects the model prediction heavily. Such a model will identify all the patterns of a training data, but fail to pick up the patterns in unseen test data. On the other hand, we have to find a way to balance between model accuracy and complexity. This can be achieved by Regularization techniques like Ridge Regression and Lasso.