$\mathbf{H}\mathbf{A}\mathbf{M}\mathbf{T}$

Heat and Mass Transfer

Contents

1	Introduction	3
2	Boundary Conditions	2
	2.1 Heat Flux	4
	2.2 Radiation	4

1 Introduction

 ${\rm Text}\ [1].$

2 Boundary Conditions

2.1 Heat Flux

Given a boundary segment we can prescribe the a heat flux normal to that boundary as

$$\lambda \left(\vec{n} \cdot \nabla T \right) = \dot{q} \, \tag{2.1}$$

where λ is the thermal conductivity, \vec{n} the normal vector of the boundary, ∇T the temperature gradient at a given point in the cell and \dot{q}_{\perp} the differential heat flux perpendicular to the boundary.

We use linear element as our ansatz function for T and triangles as cells which means that \vec{n} and ∇T are constants. If we now assume a per cell constant thermal conductivity λ this means that the differential heat flux \dot{q}_{\perp} must be constant over a given cell side.

2.2 Radiation

The net radiation heat flux from surface 1 to surface 2 using grey body radiation can be calculated as

$$\dot{Q}_{1\to 2} = A_1 F_{1\to 2} E_1 - A_2 F_{2\to 1} E_2. \tag{2.2}$$

using the formula for emission of grey bodies

$$E_i = \epsilon_i \sigma T_i^4 \tag{2.3}$$

and the reciprocity rule for configuration factors $A_1F_{1\rightarrow 2}=A_2F_{2\rightarrow 1}$ we can write

$$\dot{Q}_{1\to 2} = \sigma A_1 F_{1\to 2} \left(\epsilon_1 T 1^4 - \epsilon_2 T_2^4 \right) \tag{2.4}$$

and $\dot{Q}_{1\to 2} = -\dot{Q}_{2\to 1}$. Given two line segments as seen in Fig. 2.1

Figure 2.1: Radiation.

the configuration factor from surface \overline{AB} to surface \overline{CD} can be calculated as

$$F_{\overline{\rm AB} \to \overline{\rm CD}} = \frac{\overline{\rm AC} + \overline{\rm BD} - \overline{\rm AD} - \overline{\rm BC}}{2\overline{\rm AB}} \tag{2.5}$$

where \overline{XY} is the distance from X to Y. The total heat flux from or to a single surface is the sum of the heat fluxes to other surfaces plus the heat flux to the background

$$\dot{Q}_{tot} = \sigma A_1 \left\{ \epsilon_1 T_1^4 \sum_i F_{1 \to i} - \sum_i \epsilon_i F_{1 \to i} T_i^4 \right\} + \dot{Q}_{backgr}$$
 (2.6)

$$\dot{Q}_{tot} = \sigma A_1 \left\{ \epsilon_1 T_1^4 \sum_i F_{1 \to i} - \sum_i \epsilon_i F_{1 \to i} T_i^4 + F_{1 \to bg} (\epsilon_i T_1^4 - \epsilon_{bg} T_{bg}^4) \right\}$$
(2.7)

Since $F_{1\to bg} = 1 - \sum_i F_{1\to i}$ we get

$$\dot{Q}_{tot} = \sigma A_1 \left\{ \epsilon_1 T_1^4 - \sum_i \epsilon_i F_{1 \to i} T_i^4 - F_{1 \to bg} \right) \epsilon_{bg} T_{bg}^4 \right\}$$
(2.8)

In terms of boundary conditions, using $\dot{q}_{1\rightarrow 2}=\dot{Q}_{1\rightarrow 2}/A_1,$ we ca write

$$\lambda \left(\vec{n} \cdot \nabla T \right) = \dot{q}_{1 \to 2} \tag{2.9}$$

Bibliography

[1] Hans Dieter Baehr and Karl Stephan. Wärme- und Stoffübertragung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-58440-8 978-3-662-58441-5. DOI: 10.1007/978-3-662-58441-5. URL: http://link.springer.com/10.1007/978-3-662-58441-5 (visited on 10/20/2024).