

Please feel free to introduce yourself to your neighbors—name, pronouns, a hobby, etc.

and/or

Answer the first question on Wooclap!

Learning outcomes Topic 5: The Molecule – Nomenclature

- Use IUPAC rules to name binary ionic and binary covalent (molecular) compounds
- Use accepted names for common polyatomic ions

Why is it important to name compounds?

- Learning how to accurately name compounds will save you LOTS of time and hassle later!
- Chemical compounds are on many products we encounter in our lives!

Rules for naming compounds depend on the type of compound

Ionic Compounds

- A metal cation (+ charged ion) and a nonmetal anion (- charged ion) or any combination of molecular or elemental ions
- For an ionic compound to be stable its chemical formula must be neutral
- Ions combine to form an ionic lattice

e.g. NaCl is made up of Na⁺ and Cl⁻ or sodium ion and chloride ion

called: Sodium chloride

Each Na⁺ is associated with 6 Cl⁻ and each Cl⁻ is associated with Na⁺

Binary ionic compounds: only containing monatomic ions

- Contain monatomic metal cations and non-metal anions
- Two types of metals
 - only 1 charge
 - Have more than one stable charge (transition metals)

Metals that form more than one ion

Element	Ion Formula	Systematic Name	Common Name
Chromium	Cr ²⁺	chromium(II)	chromous
	Cr³+	chromium(III)	chromic
Cobalt	Co ²⁺	cobalt(II)	
	Co ³⁺	cobalt(III)	
Copper	Cu⁺	copper(I)	cuprous
	Cu ²⁺	copper(II)	cupric
Iron	Fe ²⁺	iron(II)	ferrous
	Fe³+	iron(III)	ferric
Lead	Pb ²⁺	lead(II)	
	Pb ⁴⁺	lead(IV)	
Mercury	Hg_2^{2+}	mercury (I)	mercurous
	Hg ²⁺	mercury (II)	mercuric
Tin	Sn ²⁺	tin(II)	stannous
	Sn ⁴⁺	tin(IV)	stannic

e.g. Crl₃

mercuric chloride

Naming binary ionic compounds

- 1. Name the cation (metal) first, then the anion (non-metal)
- 2. Name the anion (non-metal) replace its ending with the suffix ide
- 3. For transition metals with multiple possible charges, write the charge in roman numerals in parenthesis after the name of the metal

Chemical Formula	Name
KBr	Potassium brom ide
CaCl ₂	Calcium chlor ide
Al_2O_3	Aluminum ox ide
Crl ₃	Chromium (III) iodide
Fel ₂	Iron (II) iod ide
Fe ⁺² l ⁻	

Compounds containing polyatomic ions

- Sometimes, the anion or cation is polyatomic
- Polyatomic ions stay together as a charged unit

Polyatomic Anions			
Hydrogen carbonate (or bicarbonate) Chromate Dichromate Peroxide Phosphate Hydrogen phosphate Dihydrogen phosphate Sulfite Sulfate Hydrogen sulfate (or bisulfate)			

Naming compounds containing polyatomic ions

- Compounds containing polyatomic ions are named similarly to those containing only monatomic ions, except there is no need to change to an -ide ending, since the suffix is already present in the name of the anion
- Identify which are monatomic ions and polyatomic ions

Examples:

Chemical Formula	Name
$KC_2H_3O_2$	Potassium acetate
NH ₄ Cl	Ammonium chloride
NaHCO ₃	Sodium Bicarbonate
$Mg_3(PO_4)_2$	Magnesium phosphate
$Al_2(CO_3)_3$	Aluminum carbonate

Learning check!

Name the following ionic compounds:

a) Mn_2O_3

b) CrCl₃

c) $Cu_3(PO_4)_2$

hydroxide ion

acetate ion

nitrate ion

sulfate ion

carbonate ion

phosphate ion 10

OH-CH₃COO- NO_3 CO_3^{2} SO_4^{2} PO_4^{3}

Name to chemical formula?

Write the chemical formula for the following compounds:

a) Lead (IV) sulfide

a) Magnesium hydroxide (active ingredient in antacids)

 OH^- hydroxide ion CH_3COO^- acetate ion NO_3^- nitrate ion CO_3^{2-} carbonate ion SO_4^{2-} sulfate ion PO_4^{3-} phosphate ion

Covalent (molecular) Compounds

Atoms bonded covalently form individual, discrete assemblies called molecules

Atoms far apart: No interactions occur.

Atoms closer: Attractions (green arrows) between nucleus of one atom and electron of the other increase. Repulsions between nuclei and between electrons are very weak.

Optimum distance: H_2 molecule forms because attractions (green arrows) balance repulsions (red arrows).

Some compounds have common names:

$$H_2O = water$$

$$NH_3 = ammonia$$

Naming Covalent (molecular) Compounds

- 1. Name the **lower group number** or **lower electronegative** element first, using its element name unchanged
- 2. Name the second element using the suffix *-ide*
- 3. Add greek prefixes to indicate the numbers of each element in the compound

Number	Prefix	Example
1	mono-	NO – nitrogen mono xide
2	di-	CO ₂ – carbon di oxide
3	tri-	BCl ₃ – boron tri chloride
4	tetra/tetr-	CCl ₄ – carbon tetra chloride
5	penta/pent-	N ₂ O ₅ – di nitrogen pent oxide
6	hexa/hex-	SF ₆ – Sulfur hexa fluoride
7	hepta/hep-	IF ₇ — iodine hepta fluoride
8	octa/oct	P ₄ O ₈ – tetra phosphorous oct oxide
9	nona/non	P ₄ S ₉ – tetra phosphorous nona sulfide
10	deca/dec	P ₄ O ₁₀ – tetra phosphorous dec oxide

Learning check!

Write the name for the following covalent compounds:

a) Cl_2O_7

b) H₂O (IUPAC name not common name)