# New model equations in BSIMSOIv3.1

If SoiMod=0 (default), the model equation is identical to BSIMPD equation.

If SoiMod=1 (unified model for PD&FD) or SoiMod=2 (ideal FD), the following equations (FD module) are added on top of BSIMPD.

$$\begin{split} V_{bs0} &= \frac{C_{Si}}{C_{Si} + C_{BOX}} \times \mathop{\mathbb{E}}_{k}^{w} phi - \frac{qN_{ch}}{2e_{Si}} \times T_{Si}^{2} + V_{nonideal} + DV_{DIBL} \frac{\ddot{0}}{\dot{\theta}} + h_{e} \frac{C_{BOX}}{C_{Si} + C_{BOX}} \times (V_{es} - V_{FBb}) \end{split}$$
 where  $C_{Si} = \frac{e_{Si}}{T_{Si}}$ ,  $C_{BOX} = \frac{e_{OX}}{T_{BOX}}$ ,  $C_{OX} = \frac{e_{OX}}{T_{OX}}$  
$$DV_{DIBL} = D_{vbd0} \mathop{\mathbb{E}}_{k}^{c} exp \mathop{\mathbb{E}}_{k}^{c} - D_{vbd1} \frac{L_{eff}}{2l} \mathop{\mathbb{E}}_{\frac{\dot{\theta}}{2}}^{\ddot{\theta}} + 2exp \mathop{\mathbb{E}}_{k}^{c} - D_{vbd1} \frac{L_{eff}}{l} \mathop{\mathbb{E}}_{\frac{\dot{\theta}}{2}}^{\ddot{\theta}} \times (V_{bi} - 2F_{B}) \end{split}$$
 
$$h_{e} = K_{1b} - K_{2b} \mathop{\mathbb{E}}_{k}^{c} exp \mathop{\mathbb{E}}_{k}^{c} - D_{k2b} \frac{L_{eff}}{2l} \mathop{\mathbb{E}}_{\frac{\dot{\theta}}{2}}^{\ddot{\theta}} + 2exp \mathop{\mathbb{E}}_{k}^{c} - D_{k2b} \frac{L_{eff}}{l} \mathop{\mathbb{E}}_{\frac{\dot{\theta}}{2}}^{\ddot{\theta}} + 2exp \mathop{\mathbb{E}}_{\frac{\dot{\theta}}{2}}$$

Here Nch is the channel doping concentration.  $V_{FBb}$  is the backgate flatband voltage.  $V_{th,FD}$  is the threshold voltage at  $V_{bs}=V_{bs0}(phi=2\Phi_B)$ .  $V_t$  is thermal voltage. K1 is the body effect coefficient.

If SoiMod=1, the lower bound of  $V_{bs}$  (SPICE solution) is set to  $V_{bs0}$ . If SoiMod=2,  $V_{bs}$  is pinned at  $V_{bs0}$ . Notice that there is body node and body leakage/charge calculation in SoiMod=2.

The zero field body potential that will determine the transistor threshold voltage,  $V_{bsmos}$ , is then calculated by

$$V_{bsmos} = V_{bs} - \frac{C_{Si}}{2qN_{ch}T_{Si}} \left(V_{bs0} \left(T_{OX} \otimes Y\right) - V_{bs}\right)^2 \quad \text{if } V_{bs} \notin V_{bs0} \left(T_{OX} \otimes Y\right)$$

$$= V_{bs} \quad \text{else}$$

The subsequent clamping of  $V_{bsmos}$  will use the same equation that utilized in BSIMPD. Please download the BSIMPD manual at (www-device.eecs.Berkeley.edu/~bsimsoi).

#### **RF Model in BSIMSOIv3.1**

BSIMSOI3.1 provides the gate resistance model for devices used in RF application. Four options for modeling gate electrode resistance (bias independent) and intrinsic-input resistance (Rii, bias-dependent) are provided.

Model Option and Schematic:

#### RgateMod = 0 (zero-resistance):



#### RgateMod = 1 (constant-resistance):



In this case, only the electrode gate resistance (bias-independent) is generated by adding an internal gate node. Rgeltd is given by

$$Rgeltd = \frac{RSHG \cdot \left(XGW + \frac{W_{eff}}{3 \cdot NGCON \cdot NSEG}\right)}{NGCON \cdot \left(L_{drawn} - XGL\right)}$$

## RgateMod = 2 (RII model with variable resistance):



In this case, the gate resistance is the sum of the electrode gate resistance and the intrinsic-input resistance Rii as given by

$$\frac{1}{Rii} = XRCRG1 \cdot \left( \frac{I_{ds}}{V_{dseff}} + XRCRG2 \cdot \frac{W_{eff} \, \mathbf{m}_{eff} \, C_{oxeff} k_{B} T}{q L_{eff}} \right)$$

An internal gate node will be generated.

## RgateMod = 3 (RII model with two nodes):

In this case, the gate electrode resistance is in series with the intrinsic-input resistance Rii through two internal gate nodes, so that the overlap capacitance current will not pass through the intrinsic-input resistance.



# New model parameters in BSIMSOIv3.1

| Symbol used in equation | Symbol used in SPICE | Description                                                                                                                                                                                | Unit | Default |
|-------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
| SoiMod                  | soiMod               | SOI model selector. SoiMod=0: BSIMPD. SoiMod=1: unified model for PD&FD. SoiMod=2: ideal FD.                                                                                               | -    | 0       |
| $V_{nonideal}$          | vbsa                 | Offset voltage due to non-idealities                                                                                                                                                       | V    | 0       |
| $N_{OFF,FD}$            | nofffd               | Smoothing parameter in FD module                                                                                                                                                           | -    | 1       |
| $V_{OFF,FD}$            | vofffd               | Smoothing parameter in FD module                                                                                                                                                           | V    | 0       |
| $K_{1b}$                | K1b                  | First backgate body effect parameter                                                                                                                                                       | -    | 1       |
| $K_{2b}$                | K2b                  | Second backgate body effect parameter for short channel effect                                                                                                                             | -    | 0       |
| $D_{k2b}$               | dk2b                 | Third backgate body effect parameter for short channel effect                                                                                                                              | -    | 0       |
| $D_{vbd0}$              | dvbd0                | First short channel effect parameter in FD module                                                                                                                                          | -    | 0       |
| $D_{vbd1}$              | dvbd1                | Second short channel effect parameter in FD module                                                                                                                                         | -    | 0       |
| MoinFD                  | moinfd               | Gate bias dependence coefficient of surface potential in FD module                                                                                                                         | -    | 1e3     |
| RgateMod                | rgateMod             | Gate resistance model selector rgateMod = 0 No gate resistance rgateMod = 1 Constant gate resistance rgateMod = 2 Rii model with variable resistance rgateMod = 3 Rii model with two nodes | -    | 0       |
| RSHG                    | rshg                 | Gate sheet resistance                                                                                                                                                                      | -    | 0.1     |
| XRCRG1                  | xrcrg1               | Parameter for distributed channel-<br>resistance effect for intrinsic input<br>resistance                                                                                                  | -    | 12.0    |
| XRCRG2                  | xrcrg2               | Parameter to account for the excess channel diffusion resistance for intrinsic input resistance                                                                                            | -    | 1.0     |
| NGCON                   | ngcon                | Number of gate contacts                                                                                                                                                                    | -    | 1       |
| XGW                     | xgw                  | Distance from the gate contact to the channel edge                                                                                                                                         | m    | 0.0     |
| XGL                     | xgl                  | Offset of the gate length due to variations in patterning                                                                                                                                  | m    | 0.0     |