Combinatory Analysis meeting Computer Algebra

Shane Chern

Dalhousie University chenxiaohang92@gmail.com

The Legacy of Ramanujan

@ Penn State

Jun 08, 2024

College Algebra

College Algebra

Combinatory Analysis Computer Algebra

Combinatory Analysis & Computer Algebra

Conference Board of the Mathematical Sciences

CBMS

Regional Conference Series in Mathematics

Number 66

q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra

George E. Andrews

American Mathematical Society with support from the National Science Foundation

Theorem (First Rogers–Ramanujan Identity)

The number of partitions of a nonnegative integer n into parts congruent to ± 1 modulo 5 is the same as the number of partitions of n such that each two consecutive parts have difference at least 2.

Theorem (First RR Identity (analytic form))

$$\frac{1}{(q, q^4; q^5)_{\infty}} = \sum_{n \ge 0} \frac{q^{n^2}}{(q; q)_n}.$$

Taken in Week 1 of Fall 20

Alladi-Schur

Theorem (Schur, 1926)

Let A(n) denote the number of partitions of n into parts congruent to ± 1 modulo 6. Let B(n) denote the number of partitions of n into distinct nonmultiples of 3. Let D(n) denote the number of partitions of n of the form $\mu_1 + \mu_2 + \cdots + \mu_s$ where $\mu_i - \mu_{i+1} \geq 3$ with strict inequality if $3 \mid \mu_i$. Then

$$A(n)=B(n)=D(n).$$

Theorem (Alladi, unpublished)

Let C(n) denote the number of partitions of n into odd parts with none appearing more than twice. Then

$$C(n) = A(n) = B(n) = D(n).$$

• A(n) G.F.: $\prod_{k>0} \frac{1}{(1-q^{6k+1})(1-q^{6k+5})}$

• C(n) G.F.: $\prod_{k>0} (1+q^{2k+1}+q^{4k+2})$

• B(n) G.F.: $\prod_{k>0} (1+q^{3k+1})(1+q^{3k+2})$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなべ

S. Chern (Dalhousie) Linked partition ideals

Alladi-Schur

• *D*(*n*) G.F.? **Andrews–Bringmann–Mahlburg (2015):**

$$\sum_{\lambda} \mathbf{x}^{\sharp(\lambda)} q^{|\lambda|} \stackrel{\mathsf{HARDI}}{=} \sum_{n_1,n_2 \geq 0} \frac{(-1)^{n_2} q^{3\binom{n_1}{2} + 18\binom{n_2}{2} + 6n_1 n_2 + n_1 + 9n_2} \mathbf{x}^{n_1 + 2n_2}}{(q;q)_{n_1} (q^6;q^6)_{n_2}}.$$

Theorem (Andrews, 2017)

Let C(m,n) denote the number of partitions of n into m odd parts with none appearing more than twice. Let D(m,n) denote the number of partitions of n enumerated by D(n) such that the total number of parts plus the number of even parts equals m. Then

$$C(m, n) = D(m, n)$$
.

S. Chern (Dalhousie)

George Andrews — Linked Partition Ideals

ADVANCES IN MATHEMATICS 9, 10-51 (1972)

Partition Identities*

GEORGE E. ANDREWS

Department of Mathematics, Massachusetts Institute of Technology and Pennsylvania State University

Linked Partition Ideals are **NOT** ideal for the pencil-and-paper mode!

S. Chern (Dalhousie) Linked partition ideals Jun 08, 2024

$$\mathscr{D}: \ \mu_1 + \mu_2 + \cdots + \mu_s$$

- $\mu_i \mu_{i+1} \ge 3$;
- $\mu_i \mu_{i+1} > 3$ if $3 \mid \mu_i$.

Example. We decompose each partition in \mathscr{D} into blocks B_0, B_1, \ldots such that all parts between 3i+1 and 3i+3 fall into block B_i .

$$4 + 7 + 12 + 17 + 20 + 24$$

$$\downarrow \qquad \qquad () + (4) + (7) + (12) + () + (17) + (20) + (24)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\phi^{0}(\varnothing) + \phi^{3}(1) + \phi^{6}(1) + \phi^{9}(3) + \phi^{12}(\varnothing) + \phi^{15}(2) + \phi^{18}(2) + \phi^{21}(3)$$

$$\downarrow \qquad \qquad \varnothing \rightarrow 1 \rightarrow 1 \rightarrow 3 \rightarrow \varnothing \rightarrow 2 \rightarrow 2 \rightarrow 3$$

We define operators ϕ^ℓ with $\ell \geq 0$ for partitions by adding ℓ to each part of the partition. In particular, $\phi^\ell(\varnothing) = \varnothing$ for all $\ell \geq 0$.

10 / 30

$$\mathscr{D}$$
: $\mu_1 + \mu_2 + \cdots + \mu_s$

- $\mu_i \mu_{i+1} \ge 3$;
- $\mu_i \mu_{i+1} > 3$ if $3 \mid \mu_i$.

From the decomposition:

- Finite set of partitions $\Pi = \{\pi_1 = \emptyset, \pi_2 = (1), \pi_3 = (2), \pi_4 = (3)\}.$
- Further requirements:
 - $\pi_1 \to \{\pi_1, \pi_2, \pi_3, \pi_4\}$. If $\phi^{-3i}(B_i)$ is $\pi_1 = \emptyset$, then $\phi^{-3(i+1)}(B_{i+1})$ can be any among $\{\pi_1, \pi_2, \pi_3, \pi_4\}$.
 - $\pi_2 \to \{\pi_1, \pi_2, \pi_3, \pi_4\}.$
 - $\pi_3 \to \{\pi_1, \pi_3, \pi_4\}$. $(3i+2) \to (3(i+1)+1) \times$
 - $\pi_4 \to \{\pi_1\}$. $(3i+3) \to (3(i+1)+1)$ or (3(i+1)+2) or (3(i+1)+3) X

S. Chern (Dalhousie)

Assume that we are given

- a finite set $\Pi = \{\pi_1, \pi_2, \dots, \pi_K\}$ of integer partitions with $\pi_1 = \emptyset$, the empty partition,
- a map of linking sets, $\mathcal{L}:\Pi\to P(\Pi)$, the power set of Π , with especially, $\mathcal{L}(\pi_1)=\mathcal{L}(\varnothing)=\Pi$ and $\pi_1=\varnothing\in\mathcal{L}(\pi_k)$ for any $1\leq k\leq K$,
- and a positive integer T, called the *modulus*, which is greater than or equal to the largest part among all partitions in Π .

Consider

ullet an infinite chain of partitions in Π :

$$\lambda_0 \to \lambda_1 \to \cdots \to \lambda_N \to \pi_1 \to \pi_1 \to \cdots$$

ending with a series of empty partitions, such that $\lambda_i \in \mathcal{L}(\lambda_{i-1})$ for each i;

ullet an integer partition λ by

$$\lambda = \phi^{0}(\lambda_{0}) \oplus \phi^{T}(\lambda_{1}) \oplus \phi^{2T}(\lambda_{2}) \oplus \cdots \oplus \phi^{NT}(\lambda_{N}),$$

where $\mu \oplus \nu$ is the partition constructed by collecting all parts in partitions μ and ν , and $\phi^m(\mu)$ is the partition obtained by adding m to each part of μ .

We collect all such partitions λ constructed as above and call this partition set a span one linked partition ideal, denoted by $\mathscr{I} = \mathscr{I}(\langle \Pi, \mathcal{L} \rangle, T)$.

S. Chern (Dalhousie)

We Are playing with LEGOs!

Define for any partition λ ,

- $|\lambda|$: its size (aka. sum of all parts);
- $\sharp(\lambda)$: its length (aka. the number of parts);
- $s(\lambda)$: a statistic of $\lambda \in \mathscr{I}$ such that

$$s(\lambda) = s(\phi^T(\lambda)) \text{ and } s(\lambda) = s(\lambda_0) + s(\lambda_1) + \dots + s(\lambda_N).$$

For each 1 < k < K, we write

$$G_k(x) := \sum_{\substack{\lambda \in \mathscr{I} \\ \lambda_0 = \pi_k}} x^{\sharp(\lambda)} y^{\mathfrak{s}(\lambda)} q^{|\lambda|}.$$

Then these generating functions satisfy a **system of** q**-difference equations**:

$$\begin{pmatrix} G_1(x) \\ G_2(x) \\ \vdots \\ G_K(x) \end{pmatrix} = \mathcal{M} \cdot \begin{pmatrix} G_1(xq^T) \\ G_2(xq^T) \\ \vdots \\ G_K(xq^T) \end{pmatrix}$$

Theorem (Andrews-C.-Li, 2022)

$$\begin{split} \sum_{\lambda \in \mathscr{D}} x^{\sharp(\lambda)} y^{\sharp_{0,2}(\lambda)} q^{|\lambda|} &= \sum_{n_1, n_2, n_3 \geq 0} \frac{(-1)^{n_3} x^{n_1 + n_2 + 2n_3} y^{n_2 + n_3}}{(q^2; q^2)_{n_1} (q^2; q^2)_{n_2} (q^6; q^6)_{n_3}} \\ &\times q^{4\binom{n_1}{2} + 4\binom{n_2}{2} + 18\binom{n_3}{2} + 2n_1 n_2 + 6n_2 n_3 + 6n_3 n_1 + n_1 + 2n_2 + 9n_3}. \end{split}$$

Corollary

$$\begin{split} \prod_{n\geq 0} (1+xq^{2n+1}+x^2q^{4n+2}) &= \sum_{n_1,n_2,n_3\geq 0} \frac{(-1)^{n_3}x^{n_1+2n_2+3n_3}}{(q^2;q^2)_{n_1}(q^2;q^2)_{n_2}(q^6;q^6)_{n_3}} \\ &\quad \times q^{4\binom{n_1}{2}+4\binom{n_2}{2}+18\binom{n_3}{2}+2n_1n_2+6n_2n_3+6n_3n_1+n_1+2n_2+9n_3}. \end{split}$$

S. Chern (Dalhousie) Linked partition ideals Jun 08, 2024

$$\begin{pmatrix} A_1(x) \\ A_2(x) \\ A_3(x) \end{pmatrix} = \mathcal{M} \cdot \begin{pmatrix} A_1(xq^6) \\ A_2(xq^6) \\ A_3(xq^6) \end{pmatrix}$$

where

$$\mathcal{M} = \begin{pmatrix} 1 + xq + xyq^2 + xq^3 + xyq^4 + x^2yq^5 & xq^5 + x^2q^6 + x^2yq^7 & xyq^6 + x^2yq^7 + x^2y^2q^8 \\ 1 + xyq^2 + xq^3 + xyq^4 & xq^5 + x^2yq^7 & xyq^6 + x^2y^2q^8 \\ 1 + xyq^4 & xq^5 & xyq^6 \end{pmatrix}.$$

$$\sum_{\lambda \in \mathscr{D}} x^{\sharp(\lambda)} y^{\sharp_{0,2}(\lambda)} q^{|\lambda|} = A_1(x)$$

An algorithm of C.–Li (Discrete Math., 2020): Given a q-difference system

$$\begin{pmatrix} F_{1}(x) \\ F_{2}(x) \\ \vdots \\ F_{k}(x) \end{pmatrix} = \begin{pmatrix} p_{1,1}(x) & p_{1,2}(x) & \cdots & p_{1,k}(x) \\ p_{2,1}(x) & p_{2,2}(x) & \cdots & p_{2,k}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{k,1}(x) & p_{k,2}(x) & \cdots & p_{k,k}(x) \end{pmatrix} \begin{pmatrix} F_{1}(xq^{m}) \\ F_{2}(xq^{m}) \\ \vdots \\ F_{k}(xq^{m}) \end{pmatrix},$$

can we determine the *q*-difference equation satisfied by $F_1(x)$?

Idea. Making substitutions to reduce this *q*-difference system as

$$\begin{pmatrix} u_1(x) \\ u_2(x) \\ \vdots \\ u_{\ell-1}(x) \\ u_{\ell}(x) \end{pmatrix} = \begin{pmatrix} r_{1,1}(x) & 1 & 0 & 0 & \cdots & 0 \\ r_{2,1}(x) & r_{2,2}(x) & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{\ell-1,1}(x) & r_{\ell-1,2}(x) & \cdots & \cdots & r_{\ell-1,\ell-1}(x) & 1 \\ r_{\ell,1}(x) & r_{\ell,2}(x) & \cdots & \cdots & r_{\ell,\ell-1}(x) & r_{\ell,\ell}(x) \end{pmatrix} \begin{pmatrix} u_1(xq^m) \\ u_2(xq^m) \\ \vdots \\ u_{\ell-1}(xq^m) \\ u_{\ell}(xq^m) \end{pmatrix}.$$

S. Chern (Dalhousie) Linked partition ideals Jun 08, 2024 18/30

• *q*-Difference equation for $A_1(x)$:

$$\begin{split} 0 &= \left[1 + x(q^7 + yq^8)\right] A_1(x) \\ &- \left[1 + x(q + q^3 + q^5 + q^7 + yq^2 + yq^4 + yq^6 + yq^8) \right. \\ &+ x^2(q^6 + q^8 + q^{10} + yq^5 + 2yq^7 + 2yq^9 + 2yq^{11} + yq^{13} + y^2q^8 + y^2q^{10} + y^2q^{12}) \\ &+ x^3(yq^{12} + yq^{14} + y^2q^{13} + y^2q^{15})\right] A_1(xq^6) \\ &+ \left[x^2yq^{15} + x^3(-q^{21} + yq^{16} + y^2q^{17} - y^3q^{24}) \right. \\ &+ x^4(-q^{22} - yq^{23} + y^2q^{30} - y^3q^{25} - y^4q^{26}) \\ &+ x^5(y^2q^{31} + y^3q^{32})\right] A_1(xq^{12}). \end{split}$$

• Let $A_1(x) = \sum_{M \geq 0} a(M)x^M$. For any $M \geq 0$,

$$\begin{split} 0 &= q^{12M}(y^2q^{31} + y^3q^{32})a(M) \\ &+ q^{12(M+1)}(-q^{22} - yq^{23} + y^2q^{30} - y^3q^{25} - y^4q^{26})a(M+1) \\ &+ \left[-q^{6(M+2)}(yq^{12} + yq^{14} + y^2q^{13} + y^2q^{15}) \right. \\ &+ q^{12(M+2)}(-q^{21} + yq^{16} + y^2q^{17} - y^3q^{24}) \right]a(M+2) \\ &+ \left[-q^{6(M+3)}(q^6 + q^8 + q^{10} + yq^5 + 2yq^7 + 2yq^9 + 2yq^{11} + yq^{13} + y^2q^8 + y^2q^{10} + y^2q^{12}) \right. \\ &+ q^{12(M+3)}yq^{15} \right]a(M+3) \\ &+ \left[(q^7 + yq^8) - q^{6(M+4)}(q + q^3 + q^5 + q^7 + yq^2 + yq^4 + yq^6 + yq^8) \right]a(M+4) \\ &+ \left[1 - q^{6(M+5)} \right]a(M+5). \end{split}$$

• Assume the ansatz that $A_1(x)$ can be represented in the form:

$$\sum_{n_1,\ldots,n_r\geq 0}\frac{(-1)^{L_1(n_1,\ldots,n_r)}q^{Q(n_1,\ldots,n_r)+L_2(n_1,\ldots,n_r)}}{(q^{A_1};q^{A_1})_{n_1}\cdots(q^{A_r};q^{A_r})_{n_r}}.$$

Compute initial coefficients:

$$\begin{split} & \mathbf{a}(0) = 1, \\ & \mathbf{a}(1) = \frac{q(1+yq)}{1-q^2}, \\ & \mathbf{a}(2) = \frac{q^5(q-q^7+y+yq^2-yq^4-yq^{10}+y^2q^3-y^2q^9)}{(1-q^2)(1-q^4)(1-q^6)}, \\ & \mathbf{a}(3) = \frac{q^{12}(1+yq)(q^3+y+yq^2-yq^4+yq^8+y^2q^5)}{(1-q^2)(1-q^4)(1-q^6)}. \end{split}$$

• From a(1), it is natural to expect summations of the form:

$$\sum_{n_1>0} \frac{q^7 x^{n_1}}{(q^2; q^2)_{n_1}} \quad \text{and} \quad \sum_{n_2>0} \frac{q^7 x^{n_2} y^{n_2}}{(q^2; q^2)_{n_2}}.$$

• From a(2), it is also highly possible that an extra summation is needed:

$$\sum_{n_3\geq 0} \frac{(-1)^{?} q^{?} x^{2n_3} y^{n_3}}{(q^6; q^6)_{n_3}}.$$

• Guess(?)

$$A_{1}(x) \stackrel{?}{=} \sum_{n_{1}, n_{2}, n_{3} \geq 0} \frac{(-1)^{n_{3}} x^{n_{1} + n_{2} + 2n_{3}} y^{n_{2} + n_{3}}}{(q^{2}; q^{2})_{n_{1}} (q^{2}; q^{2})_{n_{2}} (q^{6}; q^{6})_{n_{3}}} \times q^{4\binom{n_{1}}{2} + 4\binom{n_{2}}{2} + 18\binom{n_{3}}{2} + 2n_{1}n_{2} + 6n_{2}n_{3} + 6n_{3}n_{1} + n_{1} + 2n_{2} + 9n_{3}}$$

Prove(!)

$$a(M) = \tilde{a}(M)$$

where

$$\sum_{M\geq 0} \tilde{a}(M) x^M = \sum_{\substack{n_1, n_2, n_3 \geq 0}} \frac{(-1)^{n_3} x^{n_1 + n_2 + 2n_3} y^{n_2 + n_3}}{(q^2; q^2)_{n_1} (q^2; q^2)_{n_2} (q^6; q^6)_{n_3}} \times q^{4\binom{n_1}{2} + 4\binom{n_2}{2} + 18\binom{n_3}{2} + 2n_1 n_2 + 6n_2 n_3 + 6n_3 n_1 + n_1 + 2n_2 + 9n_3}.$$

Wilf-Zeilberger Algorithm

JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, January 1990

RATIONAL FUNCTIONS CERTIFY COMBINATORIAL IDENTITIES

HERBERT S. WILF AND DORON ZEILBERGER

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395

DEPARTMENT OF MATHEMATICS, DREXEL UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19104

• qMultiSum implemented by Riese.

```
Inf = 7:= (**
                                       Computing the recurrence for a(M) using the aMultiSum package.
                                 ClearAll[M, n1, n2, n3, U1, U2, U3, v1;
                                 U1 = 1;
                                 U2 = 2;
                                 U3 = 9;
                                 n1 = M - n2 - 2 n3;
                                  summand = ((-1)^{n3} q^{4 \text{ Binomial}\{n1,2\} + 4 \text{ Binomial}\{n2,2\} + 18 \text{ Binomial}\{n3,2\} + 2 \text{ ni} \text{ n2} + 6 \text{ n2} \text{ n3} + 6 \text{ n3} \text{ n1} + \text{U1} \text{ n1} + \text{U2} \text{ n2} + \text{U3} \text{ n3} \text{ y}^{n2 + n3})} / q^{4 \text{ Binomial}\{n1,2\} + 4 \text{ Binomial}\{n2,2\} + 18 \text{ Binomial}\{n3,2\} + 2 \text{ ni} \text{ n2} + 6 \text{ n2} \text{ n3} + 6 \text{ n3} \text{ n1} + \text{U1} \text{ n1} + \text{U2} \text{ n2} + \text{U3} \text{ n3} \text{ y}^{n2 + n3})} / q^{4 \text{ Binomial}\{n1,2\} + 4 \text{ Binomial}\{n2,2\} + 18 \text{ Binomial}\{n3,2\} + 2 \text{ ni} \text{ n2} + 6 \text{ n3} \text{ n1} + \text{U1} \text{ n1} + \text{U2} \text{ n2} + \text{U3} \text{ n3} \text{ y}^{n2 + n3})} / q^{4 \text{ Binomial}\{n1,2\} + 4 \text{ Binomial}\{n2,2\} + 18 \text{ Binomial}\{n3,2\} + 2 \text{ ni} \text{ n2} + 6 \text{ n3} \text{ n1} + \text{U1} \text{ n1} + \text{U2} \text{ n2} + \text{U3} \text{ n3} \text{ n3} + \text{U2} \text{ n2} + \text{U3} \text{ n3} \text{ n3} + \text{U3} + \text{U3} \text{ n3} + \text{U3} + \text{U
                                                         (qPochhammer[q^2, q^2, n1] qPochhammer[q^2, q^2, n2] qPochhammer[q^6, q^6, n3]);
                                  stru = qFindStructureSet[summand, {M}, {n2, n3}, {2}, {2, 2}, {2, 2}, qProtocol <math>\rightarrow True]
                                  rec = qFindRecurrence[summand, \{M\}, \{n2, n3\}, \{2\}, \{2, 2\}, \{2, 2\}, \{Protocol \rightarrow True,
                                                StructSet → stru[[1]]]
                                 sumrec = qSumRecurrence[rec]
```

```
 \begin{array}{c} \text{Cull}_{\text{F},\text{F}} = \left\{ q^{24+12\text{M}} \, y^2 \, \left( 1 + q^{22+6\text{M}} + 2 \, q \, y + q^{23+6\text{M}} \, y + q^2 \, y^2 + q^{24+6\text{M}} \, y^2 \right) \, \text{SUM} \left[ M \right] \, - \\ q^{27+12\text{M}} \, \left( 1 + q \, y \right) \, \left( 1 + q^{22+6\text{M}} + q \, y + q^2 \, y^2 - q^8 \, y^2 + q^{24+6\text{M}} \, y^2 + q^3 \, y^3 + q^4 \, y^4 + q^{26+6\text{M}} \, y^4 \right) \, \text{SUM} \left[ 1 + \text{M} \right] \, + \\ q^{17+6\text{M}} \, \left( q^{15+6\text{M}} - q^{21+6\text{M}} - y - q^2 \, y + 2 \, q^{16+6\text{M}} \, y - 2 \, q^{22+6\text{M}} \, y - q^{24+6\text{M}} \, y + q^{38+12\text{M}} \, y - \\ 2 \, q \, y^2 - 2 \, q^3 \, y^2 + 3 \, q^{17+6\text{M}} \, y^2 - 2 \, q^{23+6\text{M}} \, y^2 - q^{25+6\text{M}} \, y^2 + q^{39+12\text{M}} \, y^2 - q^2 \, y^3 - q^4 \, y^3 + \\ 2 \, q^{18+6\text{M}} \, y^3 - 2 \, q^{24+6\text{M}} \, y^3 - q^{26+6\text{M}} \, y^3 + q^{40+12\text{M}} \, y^3 + q^{49+6\text{M}} \, y^4 - q^{25+6\text{M}} \, y^4 \right) \, \text{SUM} \left[ 2 + \text{M} \right] - \\ q^{17+6\text{M}} \, \left( 1 - q + q^2 \right) \, \left( 1 + q + q^2 \right) \, \left( 1 + q \, y \right) \, \left( 1 + q^{20+6\text{M}} + q \, y + q^3 \, y + q^{21+6\text{M}} \, y + q^2 \, y^2 + q^{22+6\text{M}} \, y^2 \right) \\ \text{SUM} \left[ 3 + \text{M} \right] \, - \left( -1 + q^{4+\text{M}} \right) \, \left( 1 + q^{4+\text{M}} \right) \, \left( 1 - q^{4+\text{M}} + q^{8+2\text{M}} \right) \, \left( 1 + q^{16+6\text{M}} + 2 \, q \, y + q^{17+6\text{M}} \, y + q^2 \, y^2 + q^{18+6\text{M}} \, y^2 \right) \, \text{SUM} \left[ 4 + \text{M} \right] \, \equiv \theta \right\} \end{array}
```

- $\tilde{a}(M)$: Order 4
- *a*(*M*): Order 5

- Let $d(M) := a(M) \tilde{a}(M)$.
- qGeneratingFunctions implemented by Koutschan.

• *d*(*M*): Order 5

As long as we have verified that

$$d(M) = 0$$
 for $M = 0, 1, 2, 3, 4$,

then

$$d(M) = 0$$
 for all $M \ge 0$,

so that

$$a(M) = \tilde{a}(M)$$
 for all $M \ge 0$,

so that

$$A_{1}(x) = \sum_{\substack{n_{1}, n_{2}, n_{3} \geq 0}} \frac{(-1)^{n_{3}} x^{n_{1} + n_{2} + 2n_{3}} y^{n_{2} + n_{3}}}{(q^{2}; q^{2})_{n_{1}} (q^{2}; q^{2})_{n_{2}} (q^{6}; q^{6})_{n_{3}}}$$

$$\times q^{4\binom{n_{1}}{2} + 4\binom{n_{2}}{2} + 18\binom{n_{3}}{2} + 2n_{1}n_{2} + 6n_{2}n_{3} + 6n_{3}n_{1} + n_{1} + 2n_{2} + 9n_{3}}$$

Epilogue

What a successful meeting between

Combinatory Analysis & Computer Algebra!

Epilogue

What a flourishing time of

Partition Analysis in

PA (PENNSYLVANIA)

George has been bringing to us over the past six decades!

Epilogue

And my adventure in partitions and *q*-series all starts with the 10 volumes of

Indian Legacies compiled in ILLINOIS

by Bruce!

Happy Birthday, George and Bruce!

