WE CLAIM:

1	1. A field effect device, comprising:
2	a crystalline Si body of one conductivity type;
3	a SiGe layer epitaxially disposed on said Si body;
4	a Si layer epitaxially disposed on said SiGe layer; and
5	a source and a drain comprising SiGe in an epitaxial relation with the Si body and
6	connected to each other by the SiGe layer and the Si layer, the source and the drain
7	having a conductivity type opposite to that of the Si body and each forming a
8	heterojunction and a metallurgical junction with the Si body, wherein the heterojunction
9	coincides with the metallurgical junction with a tolerance of less than about 10nm.
1	2. The device of claim 1, wherein the tolerance is less than about 5nm.
1	3. The device of claim 1, wherein the Si body is disposed on top of an insulating layer.
1	4. The device of claim 3, wherein the insulating layer is SiO ₂ .
1	5. The device of claim 1, wherein the Si body conductivity is n-type, and wherein a hole
1	5. The device of claim 1, wherein the 51 body conductivity is n-type, and wherein a note

1	6. The device of claim 5, wherein the hole device current is directed along one of a <100>
2	or a <110> crystallographic direction.
1	7. The device of claim 1, wherein the Si body conductivity is p-type, and an electron
2	device current is confined predominantly in the Si layer.
1	8. The device of claim 1, wherein the SiGe layer and the SiGe in the source and the drain
2	are compressively strained.
1	9. The device of claim 1, wherein the SiGe layer is between about 5nm and 15nm thick.
1	10. The device of claim 1, wherein the SiGe layer has a Ge concentration which
2	substantially equals a Ge concentration in the SiGe in the source and the drain.
1 2	11. The device of claim 10, wherein the Ge concentration in the SiGe layer is between about 15% and 50%.
1	12. The device of claim 1, wherein the device has a top surface plane, and wherein the
2	source and the drain are raising above the top surface plane.

1	13. The device of claim 1, wherein the device has a top surface plane that lies essentially
2	in one of a (100), (110) or (111) crystallographic plane.
1	14. The device of claim 1, wherein the source and the drain further comprise an epitaxial
2	Si cap layer disposed on top of the strained SiGe, wherein the Si cap layer is between
3	about 2nm and 30nm thick.
1	15. The device of claim 1, wherein the Si body conductivity is n-type, and the device is
2	connected in a complementary circuit configuration with a field effect device comprising:
3	a crystalline Si body of p-type conductivity;
4	a SiGe layer epitaxially disposed on the p-type Si body;
5	a Si layer epitaxially disposed on the SiGe layer; and
6	a source and a drain of n-type conductivity comprising SiGe in an epitaxial
7	relation with the p-type Si body and connected to each other by the SiGe layer and the Si
8	layer, the source and the drain each forming a heterojunction and a metallurgical junction
9	with the p-type Si body, wherein the heterojunction coincides with the metallurgical
10	junction with a tolerance of less than about 10nm.
1	16. The device of claim 1, wherein the Si body conductivity is n-type, and the device is
2	connected in a complementary circuit configuration with a field effect device comprising:
3	a crystalline Si body of p-type conductivity;

22

Q. Ouyang and X. Chen

YOR920030327US1

2	a Si layer epitaxially disposed on the SiGe layer; and					
3	a source and a drain of n-type conductivity comprising SiGe in an epitaxial					
4	relation with the p-type Si body and connected to each other by the SiGe layer and the Si					
5	layer.					
6	17. The device of claim 1, wherein the Si body conductivity is n-type, and the device is					
7	connected in a complementary circuit configuration with a field effect device comprising:					
8	a crystalline Si body of p-type conductivity;					
9	a SiGe layer epitaxially disposed on the p-type Si body;					
10	a Si layer epitaxially disposed on the SiGe layer; and					
11	a source and a drain of n-type conductivity connected to each other by the SiGe					
12	layer and the Si layer.					
1	18. The device of claim 1, wherein the Si body conductivity is n-type, and the device is					
2	connected in a complementary circuit configuration with an NMOS device.					
	·					
1	19. A PMOS field effect device, comprising:					
2	a crystalline Si body of n-type conductivity;					
3	a SiGe layer epitaxially disposed on the n-type Si body;					
	YOR920030327US1 23 Q. Ouyang and X. Chen					

a SiGe layer epitaxially disposed on the p-type Si body;

1	a Si layer epitaxially disposed on the SiGe layer; and
2	a source and a drain of p-type conductivity comprising SiGe in an epitaxial
3	relation with the n-type Si body and connected to each other by the SiGe layer and the Si
4	layer, the source and the drain each forming a heterojunction and a metallurgical junction
5	with the n-type Si body, wherein the heterojunction coincides with the metallurgical
6	junction with a tolerance of less than about 10nm.
1	20. The device of claim 19, wherein the tolerance is less than about 5nm.
1	21. The device of claim 19, wherein the Si body is disposed on top of an insulating layer.
1	22. The device of claim 21, wherein the insulating layer is SiO ₂ .
1	23. The device of claim 19, wherein the SiGe layer is between about 5nm and 15nm
2	thick.
1	24. The device of claim 19, wherein the SiGe layer has a Ge concentration of between
2	about 15% and 50%.
1	25. The device of claim 24, wherein the Ge concentration in SiGe layer substantially

2

equals a Ge concentration in the SiGe in the source and the drain.

26. A method for producing a field effect device comprising the step of:

fabricating a source and a drain by epitaxial deposition of a first material, wherein the first material forms a heterojunction with a second material, and wherein the second material constitutes a body of the device.

27. The method of claim 26, further comprising the step of:

providing a channel between the source and the drain, wherein the channel consists essentially of the first material.

28. The method of claim 26, further comprising the step of:

providing a channel between the source and the drain, wherein the channel consists essentially of the second material.

29. The method of claim 26, further comprising the step of:

providing the body with one conductivity type and providing the source and the drain with an opposing conductivity type forming a metallurgical junction between the body and the source and the drain, and wherein the heterojunction and the metallurgical junction coincide with a tolerance of less than about 10nm.

30. The method of claim 29, wherein the body conductivity is selected one of n-type or p-type.

2	second material is selected to be Si.
1	32. The method of claim 31, wherein the body is selected to be a Si layer on an insulator.
1	33. The method of claim 31, wherein in the epitaxial deposition the SiGe is selected to be
	in one of an undoped state or a p-doped state.
1	34. The method of claim 31, wherein in the epitaxial deposition the SiGe is selected to
2	have a Ge concentration of between about 15% and 50%.
1	35. The method of claim 31, wherein the SiGe channel is selected to be between about 5nm and 15nm thick.
1	36. The method of claim 26, further comprising the step of capping the first material with
2	an epitaxial layer of the second material having a thickness of between about 2nm and
3	30nm.
1	37. The method of claim 26, wherein the device has a top surface plane and the source
2	and the drain are fabricated to raise above the top surface plane.

31. The method of claim 27, wherein the first material is selected to be SiGe and the

1

20			
- 1X /	Δ.	nrocessor	comprising:
JU. 1		processor,	comprising.

at least one chip, wherein the chip comprises at least one field effect de	evice,	and
wherein the at least one field effect device comprise:		

- a crystalline Si body of one conductivity type;
- a SiGe layer epitaxially disposed on the Si body;
- a Si layer epitaxially disposed on the SiGe layer; and

a source and a drain comprising SiGe in an epitaxial relation with the Si body and connected to each other by the SiGe layer and the Si layer, the source and the drain having a conductivity type opposite to that of the Si body and each forming a heterojunction and a metallurgical junction with the Si body, wherein the heterojunction coincides with the metallurgical junction with a tolerance of less than about 10nm.