Assignment 2

Machine Learning COMS 4771 Spring 2017, Itsik Pe'er

Assigned: Feb 6th Due: Class time, Feb 13th

Submission: Courseworks

1. Legendre polynomials (en.wikipedia.org/wiki/Legendre_polynomials) are a basis for the space of real functions, with unique properties for approximating functions in [-1,1]. Repeat the simulation question 2 from Assignment 1 run #3, this time learning an approximation for the function in [-1,1] using L2 regularized regression with a regularization weight λ , and using as a basis the seven Legendre polynomials even of degree ≤ 6 . This regression task involves fitting them with a vector θ of 7 respective coefficients. Perform this regression fitting 5 times with the same data using different values $\lambda_1 = 0, \lambda_2, ..., \lambda_5$ respectively. You should choose $\lambda_2, ..., \lambda_5$ to show a range of behaviors till a high enough lambda that essentially ignores the data. On a single plot, show the original polynomial, the training points and the 5 inferred approximations.

Your code should save the plot file ApproximationPlot.pdf as well as a pickle file called **problem1.pkl** containing a Python dictionary with the following entries:

xtrain - training input (as numpy array or pandas dataframe)

xtest - testing input
ytrain - training output
ytest - testing output

ThetaStar_[Lambda] - one entry for each of your 5 choices of Lambda each with the fit coefficients for the Legendre polynomials, as a numpy array.

Risktrain,

Risktest - training and testing empirical risk values for the 5 polynomials

The function to do all of this should be called should be called RegularizedFitPoly() in a file RegularizedFitPoly.py within a submitted folder called Assignment02_Problem01 [40 points]

2. Men are from Mars, Women are from Venus, but when you land on Saturn you discover a new gender whose height distribution you wish to parameterize. You assume it is a Gaussian, with standard deviation of σ , but you don't know the mean μ . You have a prior assumption about μ . You assume it is distributed normally around some value μ_{prior} with standard deviation σ_{prior} . Compute the posterior distribution of μ , the maximum-a-posteriori value and the expected-a-posteriori value given sample x_1, \dots, x_N ,

[20 points]

- 3. You need to compute the posterior distribution of the distribution parameter and the expected-a-posteriori value, given data $x_1, ..., x_N$ for the following cases:
 - a. Exponential distribution of rate λ with assumed prior $p(\lambda)=\frac{\lambda^3 e^{-\lambda}}{6}$. You may use the notation $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt$

b. A potentially biased coin, with probability of Heads α , for which you assume the prior $p(\alpha) = 30\alpha^2(1-\alpha)^2$.

[40 points]

Good luck!