

Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配) → 获得状态转移表
- (4) 状态转移表 → 触发器激励表 触发器特征 →
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关状态

例: 利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

 S₀—初始状态,表示收到1位数据: "0"

 S₁—表示收到1位数据: "1"
 只标记感兴趣的子串

 S₂—表示收到2位数据: "11"
 趣的子串

 S₃—表示收到3位数据: "110",此时输出标志 Z=1.

(2) 分析状态转换情况

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
So	S ₀ /0	S ₁ / 0			
S ₁	S ₀ / 0	S ₂ / 0			
S ₂	S ₃ /1	S ₂ / 0			
S_3	S ₀ / 0	S ₁ / 0			

2. 状态化简

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
S _o	S ₀ / 0	S ₁ / 0			
S ₁	S ₀ / 0	S ₂ /0			
S ₂	S ₃ /1	S ₂ / 0			
S_3	S ₀ / 0	S ₁ /0			

现态	Q ⁿ⁺¹ / Z					
Qn	X=0	X=1				
So	S ₀ / 0	S ₁ / 0				
S ₁	S ₀ / 0	S ₂ /0				
S ₂	S ₀ / 1	S ₂ / 0				

3. 状态分配

使用2个JK触发器

	y_2y_1
S ₀ —	— 00
S ₁ —	— 10
S ₂ —	— 11

JK触发器驱动表

Q _n	\rightarrow	Q _{n+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

4. 状态转换真值表

						١.			
输入	现	态	次	态	Á	触り		Life.	输出
X	Y ₂ n	Y ₁ n	Y_2^{n+1}	Y ₁ n+1	J_2	K ₂	J₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	0	X	0
0	1	1	0	0	X	1	X	1	1
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	1	X	0
1	1	1	1	1	X	0	X	0	0
0	0	1	X	X	X	X	X	X	X
1	0	1	X	X	X	X	X	X	X

J₂ K₂:看Q₂ⁿ→Q₂ⁿ⁺¹

规 则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

4. 状态转换真值表

输入	现	态	次态		触发器			输出	
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J_2	K_2	J_1	\mathbf{k}_{1}	Ζ
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	0	X	0
0	1	1	0	0	X	1	X	1	1
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	1	X	0
1	1	1	1	1	X	0	X	0	0
0	0	1	Χ	Χ	Х	Χ	Χ	X	Х
1	0	1	X	X	X	X	X	X	X

5. 卡诺图化简

$$K_2 = \overline{X}$$

$X^{Y_2^1}$	¹ Y ₁ ⁿ	01	11	10				
0	X	Х	1	X				
1	Х	Х	0	Х				

$$Z = \overline{X}Y_1^n$$

6. 电路实现

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动