theAwesome_PredModel

May 7, 2017

1 Prediction Model

Course: Data MiningName: Enes Kemal Ergin

Dataset from Breast Cancer UCI Machine Learning Repo

Attribute Information:

- 1. ID number
- 2. Diagnosis (M = malignant, B = benign)

3-32: Ten real-valued features are computed for each cell nucleus:

- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.

All feature values are recoded with four significant digits.

Missing attribute values: none

Class distribution: 357 benign, 212 malignant

1.1 Step 0: Data Preparation and Cleaning

```
df.drop('id',axis=1,inplace=True)
         # delete unnamed colum at the end
         df.drop('Unnamed: 32',axis=1,inplace=True)
         df.head()
Out[20]:
           diagnosis
                      radius_mean texture_mean perimeter_mean area_mean
                              17.99
                                             10.38
                                                             122.80
                                                                        1001.0
                    Μ
         1
                    М
                              20.57
                                            17.77
                                                             132.90
                                                                        1326.0
                                                                        1203.0
         2
                    М
                              19.69
                                            21.25
                                                             130.00
                              11.42
                                             20.38
         3
                    Μ
                                                              77.58
                                                                         386.1
         4
                    М
                              20.29
                                             14.34
                                                             135.10
                                                                        1297.0
            smoothness_mean
                             compactness_mean concavity_mean concave points_mean
         0
                     0.11840
                                        0.27760
                                                          0.3001
                                                                                0.14710
                     0.08474
                                        0.07864
                                                          0.0869
                                                                                0.07017
         1
         2
                     0.10960
                                        0.15990
                                                          0.1974
                                                                                0.12790
         3
                     0.14250
                                        0.28390
                                                          0.2414
                                                                                0.10520
         4
                     0.10030
                                        0.13280
                                                          0.1980
                                                                                0.10430
            symmetry_mean
                                                       radius_worst
                                                                     texture worst
         0
                    0.2419
                                                               25.38
                                                                               17.33
                                       . . .
                    0.1812
                                                               24.99
                                                                               23.41
         1
         2
                    0.2069
                                                                               25.53
                                                               23.57
         3
                    0.2597
                                                               14.91
                                                                               26.50
         4
                    0.1809
                                                               22.54
                                                                               16.67
                                       . . .
                                           smoothness_worst
                                                              compactness_worst
            perimeter_worst
                               area_worst
         0
                      184.60
                                   2019.0
                                                      0.1622
                                                                          0.6656
         1
                      158.80
                                   1956.0
                                                      0.1238
                                                                          0.1866
         2
                                                      0.1444
                      152.50
                                   1709.0
                                                                          0.4245
         3
                       98.87
                                    567.7
                                                      0.2098
                                                                          0.8663
         4
                      152.20
                                   1575.0
                                                                          0.2050
                                                      0.1374
                               concave points_worst
                                                      symmetry_worst
            concavity_worst
         0
                      0.7119
                                             0.2654
                                                               0.4601
         1
                      0.2416
                                             0.1860
                                                               0.2750
                                             0.2430
         2
                      0.4504
                                                               0.3613
                      0.6869
         3
                                             0.2575
                                                               0.6638
         4
                      0.4000
                                             0.1625
                                                               0.2364
            fractal_dimension_worst
         0
                              0.11890
         1
                              0.08902
         2
                              0.08758
         3
                              0.17300
         4
                              0.07678
```

[5 rows x 31 columns]

1.2 Step 1: Data Information and Descriptive Statistics

Generate the information about your dataset: number of columns and rows, names and data types of the columns, memory usage of the dataset.

Hint: Pandas data frame info() function.

Generate descriptive statistics of all columns (input and output) of your dataset. Descriptive statistics for numerical columns include: count, mean, std, min, 25 percentile (Q1), 50 percentile (Q2, median), 75 percentile (Q3), max values of the columns. For categorical columns, determine distinct values and their frequency in each categorical column.

Hint: Pandas, data frame describe() function.

```
In [9]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):
diagnosis
                          569 non-null int64
radius mean
                          569 non-null float64
                        569 non-null float64
texture_mean
                          569 non-null float64
perimeter_mean
area_mean
                         569 non-null float64
smoothness_mean
                        569 non-null float64
compactness_mean
                         569 non-null float64
concavity_mean
                          569 non-null float64
concave points_mean
                        569 non-null float64
symmetry_mean
                          569 non-null float64
fractal_dimension_mean
                          569 non-null float64
radius_se
                          569 non-null float64
                          569 non-null float64
texture_se
                          569 non-null float64
perimeter_se
                          569 non-null float64
area_se
                          569 non-null float64
smoothness_se
                          569 non-null float64
compactness_se
concavity_se
                          569 non-null float64
                        569 non-null float64
concave points_se
symmetry_se
                          569 non-null float64
fractal_dimension_se
                        569 non-null float64
```

radius_worst	569	non-null	float64
texture_worst	569	non-null	float64
perimeter_worst	569	non-null	${\tt float64}$
area_worst	569	non-null	float64
smoothness_worst	569	non-null	float64
compactness_worst	569	non-null	${\tt float64}$
concavity_worst	569	${\tt non-null}$	${\tt float64}$
concave points_worst	569	${\tt non-null}$	${\tt float64}$
symmetry_worst	569	non-null	float64
fractal_dimension_worst	569	non-null	float64

dtypes: float64(30), int64(1)

memory usage: 137.9 KB

In [10]: df.describe()

Out[10]:		diagnosis	radi	us_mean	texture_m	ean	perimeter_m	nean	area_mean	\	
	count	569.000000	569	.000000	569.000	000	569.000	000	569.000000		
	mean	0.372583	14	.127292	19.289	649	91.969	033	654.889104		
	std	0.483918	3	.524049			24.298	981	351.914129		
	min	0.000000	6	.981000			43.790000		143.500000		
	25%	0.000000	11	.700000	16.170	000	75.170	000	420.300000		
	50%	0.000000	13	.370000	18.840	000	86.240	000	551.100000		
	75%	1.000000	15	.780000	21.800	000	104.100	000	782.700000		
	max	1.000000	28	.110000	110000 39.28000		188.500000		2501.000000		
		smoothness_	mean	compact	ness_mean	con	cavity_mean	con	.cave points_me	ean	\
	count	569.00	0000	5	69.000000		569.000000		569.000	000	
	mean	0.09	6360		0.104341		0.088799		0.0489	919	
	std	0.01	4064		0.052813		0.079720 0.000000 0.029560 0.061540 0.130700		0.038803 0.000000 0.020310 0.033500 0.074000		
	min	0.05	2630		0.019380						
	25%	0.08	6370		0.064920						
	50%	0.09	5870		0.092630						
	75%	0.10	5300		0.130400						
	max	0.16	3400		0.345400 0.426800			0.201200			
		symmetry_me	an				radius_wor	st	texture_worst	\	
	count	569.0000	00				569.0000	00	569.000000		
	mean	0.1811	62				16.2691	.90	25.677223		
	std	0.0274	14				4.8332	42	6.146258		
	min	0.1060	00				7.9300	00	12.020000		
	25%	0.1619	00				13.0100	00	21.080000		
	50%	0.1792	00				14.9700	00	25.410000		
	75%	0.1957	00				18.7900	00	29.720000		
	max	0.3040	00				36.0400	00	49.540000		
		perimeter_w	orst	area_w	orst smoo	thne	ss_worst co	mpac	tness_worst '	\	
	count	569.00	0000	569.00	0000	56	9.000000		569.000000		

mean	107.261213	880.583128	0.132369	0.254265
std	33.602542	569.356993	0.022832	0.157336
min	50.410000	185.200000	0.071170	0.027290
25%	84.110000	515.300000	0.116600	0.147200
50%	97.660000	686.500000	0.131300	0.211900
75%	125.400000	1084.000000	0.146000	0.339100
max	251.200000	4254.000000	0.222600	1.058000
	concavity_worst	concave points_worst	symmetry_worst	\
count	569.000000	569.000000	569.000000	
mean	0.272188	0.114606	0.290076	
std	0.208624	0.065732	0.061867	
min	0.000000	0.000000	0.156500	
25%	0.114500	0.064930	0.250400	
50%	0.226700	0.099930	0.282200	
75%	0.382900	0.161400	0.317900	
max	1.252000	0.291000	0.663800	
	fractal_dimensio	n_worst		
count	569	.000000		
mean	0	.083946		
std	0	.018061		
min	0	.055040		
25%	0	.071460		
50%	0	.080040		
75%	0	.092080		
max	0	.207500		

[8 rows x 31 columns]

1.3 Step 2: Train Test Split

Split your data into Training and Test data set by randomly selecting; use 70% for training and 30% for testing. Generate descriptive statistics of all columns (input and output) of Training and Test datasets. Review the descriptive statistics of input output columns in Train, Test and original Full (before the splitting operation) datasets and compare them to each other. Are they similar or not? Do you think Train and Test dataset are representative of the Full datasets? why?

Hint: Scikit learn, data train_test_split(), stratified function.

```
train_df = df[msk]
         test_df = df[~msk]
In [15]: train df.describe()
Out[15]:
                  diagnosis
                              radius_mean
                                            texture_mean
                                                           perimeter_mean
                                                                               area_mean
         count
                 422.000000
                               422.000000
                                              422.000000
                                                               422.000000
                                                                              422.000000
                   0.383886
                                14.184332
                                               19.225924
                                                                 92.302227
                                                                              663.239100
         mean
         std
                   0.486908
                                 3.650024
                                                4.335877
                                                                 25.114122
                                                                             365.713579
                   0.000000
                                 6.981000
                                                9.710000
                                                                43.790000
                                                                              143.500000
         min
         25%
                   0.00000
                                11.602500
                                                                74.262500
                                                                             412.550000
                                               16.162500
         50%
                   0.000000
                                13.415000
                                               18.760000
                                                                86.210000
                                                                             555.900000
                                               21.575000
                                                               106.525000
                                                                             812.200000
         75%
                   1.000000
                                16.167500
                   1.000000
                                               39.280000
                                                               188.500000
                                                                            2501.000000
                                28.110000
         max
                 smoothness mean
                                   compactness_mean
                                                       concavity_mean
                                                                        concave points_mean
                      422.000000
         count
                                          422.000000
                                                           422.000000
                                                                                  422.000000
                        0.096341
                                            0.103223
                                                             0.086774
                                                                                    0.048537
         mean
                        0.013840
         std
                                            0.051327
                                                             0.076341
                                                                                    0.038415
                        0.052630
                                            0.019380
                                                             0.00000
                                                                                    0.000000
         min
         25%
                        0.086688
                                            0.062370
                                                             0.028973
                                                                                    0.020195
         50%
                        0.096530
                                            0.091705
                                                             0.061745
                                                                                    0.033285
         75%
                        0.105375
                                            0.130200
                                                             0.123275
                                                                                    0.073580
                                            0.345400
                                                             0.426800
                                                                                    0.201200
         max
                        0.163400
                 symmetry_mean
                                                            radius_worst
                                                                           texture_worst
                    422.000000
                                                              422,000000
                                                                               422.000000
         count
                                                                                25.683531
                      0.180788
                                                               16.405773
         mean
         std
                      0.027480
                                                                 5.027512
                                                                                 6.185842
         min
                      0.120300
                                                                7.930000
                                                                                12.020000
         25%
                                                               12.842500
                                                                                20.992500
                      0.161900
                                           . . .
         50%
                      0.178750
                                                               14.975000
                                                                                25,465000
         75%
                      0.195225
                                                               19.792500
                                                                                30.100000
                      0.304000
                                                               36.040000
                                                                                47.160000
         max
                 perimeter_worst
                                    area_worst
                                                 smoothness_worst
                                                                     compactness_worst
         count
                      422.000000
                                    422.000000
                                                        422.000000
                                                                            422.000000
         mean
                      108.022346
                                    900.204976
                                                          0.132793
                                                                               0.252230
                       34.791385
         std
                                    594.827452
                                                          0.022765
                                                                               0.155543
                       50.410000
                                    185.200000
                                                          0.071170
                                                                               0.027290
         min
         25%
                       83.535000
                                    507.425000
                                                                               0.144425
                                                          0.117275
         50%
                                    685.550000
                       98.115000
                                                          0.132650
                                                                               0.211750
         75%
                      129.075000
                                   1216.000000
                                                                               0.341175
                                                          0.146075
                                   4254.000000
                      251.200000
                                                          0.222600
                                                                               0.937900
         max
                 concavity_worst
                                   concave points_worst
                                                           symmetry_worst
                                              422.000000
                      422,000000
                                                               422.000000
         count
```

msk = np.random.rand(len(df)) < 0.7

mean	0.268960	0.114119	0.290083
std	0.205858	0.065442	0.062144
min	0.00000	0.000000	0.164800
25%	0.108950	0.064945	0.250250
50%	0.229800	0.098330	0.280600
75%	0.385300	0.162725	0.316875
max	1.252000	0.286700	0.663800

fractal_dimension_worst 422,000000 count 0.083759 mean0.017556 std 0.055210 min 25% 0.071572 50% 0.079460 75% 0.092082 max 0.173000

[8 rows x 31 columns]

1.4 Step 3: Analysis of the Output Column

Analyze the output columns in Train and Test dataset. If the output column is numerical then calculate the IQR (inter quartile range, Q3-Q1) and Range (difference between max and min value). If your output column is categorical then determine if the column is nominal or ordinal, why?. Is there a class imbalance problem? (check if there is big difference between the number of distinct values in your categorical output column)

Out[13]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	\
	count	422.000000	422.000000	422.000000	422.000000	422.000000	
	mean	0.383886	14.184332	19.225924	92.302227	663.239100	
	std	0.486908	3.650024	4.335877	25.114122	365.713579	
	min	0.000000	6.981000	9.710000	43.790000	143.500000	
	25%	0.000000	11.602500	16.162500	74.262500	412.550000	
	50%	0.000000	13.415000	18.760000	86.210000	555.900000	
	75%	1.000000	16.167500	21.575000	106.525000	812.200000	
	max	1.000000	28.110000	39.280000	188.500000	2501.000000	

smoothness_mean compactness_mean concavity_mean concave points_mean \

count	422.000000	422.000000	422.000000	422.000000
mean	0.096341	0.103223	0.086774	0.048537
std	0.013840	0.051327	0.076341	0.038415
min	0.052630	0.019380	0.00000	0.000000
25%	0.032030	0.062370	0.028973	0.00000
50%	0.096530	0.091705	0.061745	0.033285
75%	0.105375	0.130200	0.123275	0.073580
max	0.163400	0.345400	0.426800	0.201200
			1'	
	symmetry_mean	• • •	radius_worst	texture_worst \
count	422.000000	• • •	422.000000	422.000000
mean	0.180788	• • •	16.405773	25.683531
std	0.027480	• • •	5.027512	6.185842
min	0.120300		7.930000	12.020000
25%	0.161900	• • •	12.842500	20.992500
50%	0.178750	• • •	14.975000	25.465000
75%	0.195225	• • •	19.792500	30.100000
max	0.304000		36.040000	47.160000
	perimeter_worst		-	actness_worst \
count	422.000000	422.000000	422.000000	422.000000
mean	108.022346	900.204976	0.132793	0.252230
std	34.791385	594.827452	0.022765	0.155543
min	50.410000	185.200000	0.071170	0.027290
25%	83.535000	507.425000	0.117275	0.144425
50%	98.115000	685.550000	0.132650	0.211750
75%	129.075000	1216.000000	0.146075	0.341175
max	251.200000	4254.000000	0.222600	0.937900
	concavity_worst	concave points_wor	st symmetry_wors	t \
count	422.000000	422.0000	00 422.00000)
mean	0.268960	0.1141	19 0.29008	3
std	0.205858	0.0654	42 0.06214	4
min	0.000000	0.0000	00 0.16480	0
25%	0.108950	0.0649		
50 %	0.229800	0.0983		
75%	0.385300	0.1627		
max	1.252000	0.2867		
	_,	3,233.		
	fractal_dimensio	n worst		
count		2.000000		
mean		.083759		
std		.017556		
min		0.055210		
25%		0.071572		
50%		0.079460		
75%		0.092082		
max	U	.173000		

[8 rows x 31 columns]

Out[14]:		diagnosis	radius_mea	n texture_	mean perin	neter_mean	area_mean	\	
	count	147.000000	147.00000	0 147.00	-	47.000000	147.000000		
	mean	0.340136	13.96354	4 19.47	2585	91.012517	630.918367		
	std	0.475374	3.14031	0 4.20	8618	21.842541	308.798010		
	min	0.000000	8.95000	0 10.38	0000	56.360000	245.200000		
	25%	0.000000	11.94000	0 16.57	0000	77.080000	439.300000		
	50%	0.000000	13.17000	0 19.22	0000	86.870000	537.300000		
	75%	1.000000	14.99500	0 22.21	5000	98.570000	696.250000		
	max	1.000000	24.63000	0 33.56	0000 1	165.500000	1841.000000		
		smoothness_	mean compa	ctness_mean	concavity	_mean cor	ncave points_me	ean	\
	count	147.00	0000	147.000000	147.0	00000	147.000	000	
	mean	0.09	6415	0.107551	0.0	94612	0.0500)17	
	std	0.01	4738	0.056924	0.0	88731	0.0400	800	
	min	0.06	4290	0.026750	0.0	00000	0.000	000	
	25%	0.08	5130	0.067720	0.0	32380	0.0220)85	
	50%	0.09	4620	0.095090	0.0	60150	0.035	280	
	75%	0.10	5100	0.130900	0.1	133350	0.074	135	
	max	0.13	9800	0.311400	0.4	126400	0.1823	300	
		symmetry_me	an		radi	us_worst	texture_worst	\	
	count	147.0000	00		14	17.000000	147.000000		
	mean	0.1822	35		1	15.877095	25.659116		
	std	0.0272	91			4.217536	6.052036		
	min	0.1060	00			9.414000	14.100000		
	25%	0.1620	50		1	13.220000	21.380000		
	50%	0.1813	00		1	14.960000	25.210000		
	75%	0.1968	50		1	17.375000	29.125000		
	max	0.2556	00		3	31.010000	49.540000		
		perimeter_w	orst area	_worst smo	othness_wor	st compa	ctness_worst '	\	
	count	147.00	0000 147.	000000	147.0000	000	147.000000		
	mean	105.07	6190 824.	253741	0.1311	.49	0.260109		
	std	29.93	1954 486.	390633	0.0230)61	0.162776		
	min	60.90	0000 270.	000000	0.0856	;70	0.050360		

25%	86.160000	532.000000	0.114150	0.152400
50%	97.170000	686.500000	0.130100	0.216400
75%	115.800000	926.950000	0.144050	0.327600
max	206.800000	2944.000000	0.190900	1.058000
	concavity_worst	concave points_worst	symmetry_worst	\
coun	t 147.000000	147.000000	147.000000	
mean	0.281458	0.116004	0.290055	
std	0.216822	0.066766	0.061277	
min	0.000000	0.000000	0.156500	
25%	0.131700	0.064410	0.251350	
50%	0.224100	0.101500	0.292900	
75%	0.379200	0.153000	0.320400	
max	1.105000	0.291000	0.488200	
	fractal_dimensio	n_worst		
coun	it 147	.000000		
mean	. 0	.084481		
std	0	.019493		
min	0	.055040		
25%	0	.071370		
50%	0	.081130		
75%	0	.091870		
max	0	.207500		
г.				

[8 rows x 31 columns]

Our output/classification label is diagnosis(M(1)/B(0)), which is nominal categorical data.

The ratios between Benign and Malignant outputs in train and test are pretty similar to what we had in the full data.

1.5 Step 4: Scale Training and Test Dataset

Using one of the scaling method (max, min-max, standard or robust), create a scaler object and scale the numerical input columns of the Training dataset. Using the same scaler object, scale the numerical input columns of the Test set. Generate the descriptive statistics of the scaled input columns of Training and Test set.

If some of the input columns are categorical then convert them to binary columns using one-hotencoder() function (scikit learn) or dummy() function (Pandas data frame).

Hint: http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

/Users/eneskemalergin/anaconda3/lib/python3.5/site-packages/pandas/core/indexing.py:477: Setting A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#self.obj[item] = s

In [11]: train_df.head()

2

Out [11] :	diagnogia radii	ıs_mean te	z+1120 moon	norimotor mo	on oron	maan \	
	•	643144	0.272574	perimeter_me			
1 2		601496	0.390260				
3		210090	0.360839	0.2335			
5		258839	0.202570	0.2679 0.3020			
8	1 0.	284869	34869 0.409537		52 0.15	9618	
	smoothness_mean	compactnes	ss mean co	oncavity_mean	concave	points_me	ean \
1	0.277910	_	.181768	0.203799	Concavo	0.3668	
2	0.588699		.431017	0.462946		0.6685	
3	1.000000		.811361	0.566135		0.5499	
5	0.816227		.461996	0.370075		0.4228	
8	0.809976		. 533157	0.435976		0.4889	
· ·	0.000010	Ü	.000107	0.100070		0.1003	10
	symmetry_mean			radius_wor	st textu	re_worst	\
1	0.407367			0.6069		0.324132	
2	0.546587		•	0.5563	86	0.384462	
3	0.832611		•	0.248310		0.412066	
5	0.556338			0.268232		0.333808	
8	0.698808		•	0.2689	43	0.532442	
	perimeter_worst	area_wors			pactness_		
1	0.539818	0.435214		0.301026		48757	
2	0.508442	0.374508		0.446763		81154	
3	0.241347	0.094008	3	0.909445	0.8	12734	
5	0.263908	0.136748	3	0.692253	0.4	79232	
8	0.277852	0.136183	3	0.629996	0.4	94080	
	concavity_worst	concave po	oints_worst	symmetry_wo	rst \		
1	0.192971	concave p	0.639175				
2	0.359744		0.835052				
3	0.548642		0.884880				
5	0.427716		0.598282				
8	0.430511		0.707904				
	fractal_dimension						
1	(.222878					

0.213433

```
5
                            0.454939
         8
                            0.342123
         [5 rows x 31 columns]
In [12]: test_df.head()
Out[12]:
             diagnosis
                         radius_mean
                                      texture_mean perimeter_mean
                                                                       area_mean
         0
                      1
                            0.521037
                                           0.022658
                                                            0.545989
                                                                        0.363733
         4
                      1
                            0.629893
                                           0.156578
                                                            0.630986
                                                                        0.489290
         6
                      1
                            0.533343
                                           0.347311
                                                            0.523875
                                                                        0.380276
         7
                      1
                            0.318472
                                           0.376057
                                                            0.320710
                                                                        0.184263
         17
                      1
                            0.433007
                                           0.370984
                                                            0.444406
                                                                        0.277964
             smoothness_mean
                               compactness_mean
                                                  concavity_mean concave points_mean
         0
                                                         0.703799
                     0.698712
                                        0.792037
                                                                                0.768949
         4
                     0.472434
                                        0.347893
                                                         0.464353
                                                                                0.545217
         6
                     0.401550
                                        0.274891
                                                                                0.386827
                                                         0.264306
         7
                     0.704963
                                        0.445126
                                                         0.219653
                                                                                0.312859
         17
                     0.681210
                                        0.560763
                                                         0.403846
                                                                                0.537376
             symmetry_mean
                                                        radius_worst texture_worst
         0
                   0.736186
                                                            0.620776
                                                                            0.151110
         4
                   0.405742
                                                            0.519744
                                                                             0.132328
                                        . . .
         6
                   0.397616
                                                            0.531839
                                                                             0.445077
                                                                             0.458736
         7
                   0.615385
                                                            0.324795
         17
                   0.598050
                                                            0.463536
                                                                            0.553785
             perimeter worst
                                            smoothness worst
                                                                compactness worst
                               area worst
                     0.668310
         0
                                  0.450698
                                                     0.572692
                                                                         0.616677
         4
                     0.506948
                                  0.341575
                                                     0.397241
                                                                         0.166732
         6
                     0.511928
                                  0.349194
                                                     0.445348
                                                                         0.218115
         7
                     0.299766
                                                     0.595331
                                                                         0.326157
                                  0.174941
                                                     0.690838
         17
                     0.430251
                                  0.277674
                                                                         0.379982
             concavity_worst
                               concave points_worst
                                                       symmetry_worst
         0
                     0.568610
                                            0.912027
                                                             0.598462
         4
                     0.319489
                                            0.558419
                                                             0.157500
         6
                     0.302236
                                            0.663918
                                                             0.295289
                                            0.534708
         7
                     0.213898
                                                             0.321506
         17
                     0.382109
                                            0.712371
                                                             0.422038
             fractal_dimension_worst
         0
                             0.418864
         4
                             0.142595
         6
                             0.187853
         7
```

3

0.773711

0.393939

```
17 0.388036
[5 rows x 31 columns]
```

1.6 Step 5: Build Predictive Model

Using one of the methods (K-Nearest Neighbor, Naïve Bayes, Neural Network, Support Vector Machines, Decision Tree), build your predictive model using the scaled input columns of Training set. You can use any value for the model parameters, or use the default values. In building your model, use k-fold crossvalidation.

Hint: - http://scikit-learn.org/stable/supervised_learning.html#supervised-learning , - http://scikit-learn.org/stable/modules/cross_validation.html

```
In [15]: # Input and Output
        inp_train = train_df.iloc[:, 1:]
         out_train = train_df["diagnosis"]
         inp_test = test_df.iloc[:, 1:]
        out_test = test_df["diagnosis"]
In [16]: # Naive Bayes:
        from sklearn.naive_bayes import GaussianNB
         from sklearn.model_selection import cross_val_score
        nb_model = GaussianNB()
         nb_model.fit(inp_train, out_train)
         # Cross validation score of my model
         nb_model_scores = cross_val_score(nb_model, inp_train, out_train, cv=10, scoring='accur
         print(nb_model_scores)
[ 0.95
              0.875
                          0.9
                                      0.9
                                                0.925 0.925
                                                                          0.95
 0.925
             0.94871795 0.94736842]
```

1.7 Step 6. Model Predictions on Training Dataset

Apply your model to input (scaled) columns of Training dataset to obtain the predicted output for Training dataset. If your model is regression then plot actual output versus predicted output column of Training dataset. If your model is classification then generate confusion matrix on actual and predicted columns of Training dataset.

Hint: Matplotlip, Seaborn, Bokeh scatter(), plot() functions - http://scikit-learn.org/0.15/auto_examples/plot_confusion_matrix.html - http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

1.8 Step 7. Model Predictions on Test Dataset

Apply your model to input (scaled) columns of Test dataset to obtain the predicted output for Test dataset. If your model is regression then plot actual output versus predicted output column of

Test dataset. If your model is classification then generate confusion matrix on actual and predicted columns of Test dataset.

Hint: Matplotlip, Seaborn, Bokeh scatter(), plot() functions - http://scikit-learn.org/0.15/auto_examples/plot_confusion_matrix.html - http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

1.9 Step 8. Model Performance

Using one of the error (evaluation) metrics (classification or regression), calculate the performance of the model on Training set and Test set. Compare the performance of the model on Training and Test set. Which one (Training or Testing performance) is better, is there an overfitting case, why? Would you deploy (Productionize) this model for using in actual usage in your business system? why?

Classification Metrics: Accuracy, Precision, Recall, F-score, Recall, AUC, ROC etc Regression Metrics: RMSE, MSE, MAE, R2 etc

- http://scikit-learn.org/stable/model_selection.html#model-selection
- http://scikit-learn.org/stable/modules/model_evaluation.html#classification-report

```
In [20]: # I would like to use ROC
         # Area under ROC Curve (or AUC for short) is
         # a performance metric for binary classification problems.
         from sklearn.metrics import roc curve
         # ROC curve for train data
         fpr,tpr,thresholds = roc_curve(out_train, out_train_pred)
         # plot the curve
         plt.plot(fpr, tpr, label="Train Data")
         # ROC curve for test data
         fpr, tpr, thresholds = roc_curve(out_test, out_test_pred)
         # Plotting the curves
         plt.plot(fpr, tpr, label="Test Data")
         plt.xlim([0.0,1.0])
         plt.ylim([0.0,1.0])
         plt.title('ROC curve for Cancer classifer')
         plt.xlabel('False positive rate (1-specificity)')
         plt.ylabel('True positive rate (sensitivity)')
         plt.legend(loc=4,)
         plt.show()
```


As it seems clear in the plot we created, the Test data is better than the Train data. Which is not expected. I do not see the traces of overfitting since the test data is also performing well.

But there is also another chance that Test data is also overfitting...??

Naive bayes on this particular data set works really good. It might be good for fast prototyping and usage.

1.10 Step 9. Update the Model

Go back to Step5, and choose different values of the model parameters and re-train the model. Repeat Steps: 6 and 7. Using the same error metric, generate the accuracy of the model on Training and Test dataset. Did you get a better performance on Training or Test set? Explain why the new model performs better or worse than the former model.

Let's try to calibrate the GaussianNB(); I will be using isotonic, sigmoid calibration for Gaussian Naive Bayes:

```
from sklearn.calibration import CalibratedClassifierCV
         # Gaussian Naive-Bayes with isotonic calibration
         nb_model_isotonic = CalibratedClassifierCV(nb_model, cv=2, method='isotonic')
         nb_model_isotonic.fit(inp_train, out_train)
         out_train_isotonic = nb_model_isotonic.predict_proba(inp_train)[:, 1]
         out_test_isotonic = nb_model_isotonic.predict_proba(inp_test)[:, 1]
In [20]: # Gaussian Naive-Bayes with sigmoid calibration
         nb_model_sigmoid = CalibratedClassifierCV(nb_model, cv=2, method='sigmoid')
         nb_model_sigmoid.fit(inp_train, out_train)
         out_train_sigmoid = nb_model_sigmoid.predict_proba(inp_train)[:, 1]
         out_test_sigmoid = nb_model_sigmoid.predict_proba(inp_test)[:, 1]
In [21]: ## Plotting the comparison of train Data roc_curves
         # ROC curve for train data no calibration
         fpr,tpr,thresholds = roc_curve(out_train, out_train_pred)
         # plot the curve
         plt.plot(fpr, tpr, label="No Cal - Train Data")
         # ROC curve for train data isotonic calibration
         fpr,tpr,thresholds = roc_curve(out_train, out_train_isotonic)
         # plot the curve
         plt.plot(fpr, tpr, label="Isotonic - Train Data")
         # ROC curve for train data sigmoid calibration
         fpr,tpr,thresholds = roc_curve(out_train, out_train_sigmoid)
         # plot the curve
         plt.plot(fpr, tpr, label="Sigmoid - Train Data")
         plt.xlim([-0.05,1.05])
         plt.ylim([-0.05,1.05])
         plt.title('ROC curve of Train Data with Calibrations')
         plt.xlabel('False positive rate (1-specificity)')
         plt.ylabel('True positive rate (sensitivity)')
         plt.legend(loc=4,)
         plt.show()
```



```
In [22]: # ROC curve for test data no calibration
         fpr, tpr, thresholds = roc_curve(out_test, out_test_pred)
         # Plotting the curves
         plt.plot(fpr, tpr, label="No Cal - Test Data")
         # ROC curve for test data isotonic calibration
         fpr,tpr,thresholds = roc_curve(out_test, out_test_isotonic)
         # plot the curve
         plt.plot(fpr, tpr, label="Isotonic - Test Data")
         # ROC curve for test data sigmoid calibration
         fpr,tpr,thresholds = roc_curve(out_test, out_test_sigmoid)
         # plot the curve
         plt.plot(fpr, tpr, label="Sigmoid - Test Data")
         plt.xlim([-0.05,1.05])
         plt.ylim([-0.05,1.05])
         plt.title('ROC curve of Test Data with Calibrations')
         plt.xlabel('False positive rate (1-specificity)')
         plt.ylabel('True positive rate (sensitivity)')
         plt.legend(loc=4,)
         plt.show()
```


Extra calibration which add one more layer above the GaussianNB() works better than no calibration. Isotonic and Sigmoid calibrations are performed better than the initial no calibration version.

1.11 Step 10. Change the Error Metric

Choose another error metric other than you used in Step 8 and evaluate the performance of the model on Training and Test dataset by generating the accuracy of the model based on the new metric. Compare the results and explain which error metric is better for your modeling and why?

```
Brier scores: (the smaller the better)
No calibration: 0.058
With isotonic calibration: 0.026
With sigmoid calibration: 0.037
In [24]: # Applying other metrics
         from sklearn import metrics
         print("Printing the different metric results for Not calibrated test data")
         print("-"*60)
         print("Precision score: %1.3f" %
               metrics.precision_score(out_test, out_test_pred))
         print("Recall score on: %1.3f" %
               metrics.recall_score(out_test, out_test_pred))
         print("F1 score on: %1.3f" %
               metrics.f1_score(out_test, out_test_pred) )
         print("Fbeta score with b=0.5 on: %1.3f" %
               metrics.fbeta_score(out_test, out_test_pred, beta=0.5))
         print("Fbeta score with b=1.0 on: %1.3f" %
               metrics.fbeta_score(out_test, out_test_pred, beta=1))
         print("Fbeta score with b=2.0 on: %1.3f" %
               metrics.fbeta_score(out_test, out_test_pred, beta=2))
Printing the different metric results for Not calibrated test data
Precision score: 0.931
Recall score on: 0.915
F1 score on: 0.923
Fbeta score with b=0.5 on: 0.928
Fbeta score with b=1.0 on: 0.923
Fbeta score with b=2.0 on: 0.918
```

When it comes to selecting a way to show how well my models are working I always use both error and accuracy together. In this specific task I had an opportunity to try different metrics available in scikit-learn. In terms of showing a better results, for this model, I would go with Recall score. However I usually go with precision_score.

As the ending remarks for the project I would like to emphasize that Naive Bayes is working suprisingly good for this particular dataset (Breast Cancer from UCI ML website). I am suspecting that my model overfitted because for both test and train data is produced ~92-98% precision, which is quite impossible with ~30 or so features and 500 data points.

I could use more data and selected features to get more real results. For the Final project I am planning to use some techniques that will allow me to select features and only work with them.

-Enes K. Ergin-