Building Smarter Cities from analyzing geolocation records

Jin Cong Ho <jincongho@gmail.com>

Overview

Part 1 Methodology for Building Prediction Model

Part 2 Use Cases

Understanding Data

Feature Engineering Model Finetuning

Findings and Applications

Part 1 Methodology for Building Prediction Model

Setup: aws c4.8xlarge instance with 36 CPUs

Libraries: pandas, matplotlib, seaborn, xgboost

1 Understanding Data - Dataset

Features	Example
hash	0000a8602cf2def930488dee7cdad104_1
trajectory_id	traj_0000a8602cf2def930488dee7cdad104_1_0
time_entry	15:00:32
time_exit	15:29:48
vmax	1.149404
vmean	1.149404
vmin	1.149404
x_entry	3.749088e+06
y_entry	-1.926605e+07
x_exit	3.749610e+06
y_exit	-1.926594e+07

Identifications

Time

Velocity

Geolocation

1 Understanding Data - Time

- ► The trend is going upward, more data in the afternoon
- ▶ Both histograms are very close (hour of entry is close to the hour of exit for each pt?)

1 Understanding Data - Velocity

- Most trajectories have velocity < 20</p>
- ▶ When vmin/vmean > 40, vmax will most likely be the same

1 Understanding Data - Geolocation

Histogram for Length of Journey of Each Device

Maximum trajectories for a single device is 20

2 Feature Engineering

- ► Target = whether the device is in the city centre between 15:00-16:00
 - ► Modelling the problem as coordinate prediction ~75% accuracy
- Time
 - Duration = Time Exit Time Entry (Seconds)
 - Time_Entry into entry_hour, entry_ minute, entry_seconds
 - ► Time_Exit into exit_hour, exit_ minute, exit_seconds
 - Entry/Exit_Quarter_Hour = hour*4 + ceil(minute/15)
- Distance = Euclidean distance of entry and exit point
- Speed = Distance / Duration

93.60% Local Acc (Last Traj)

2 Feature Engineering

- Fill missing values as 0
- Concatenate trajectories in a day into a row
- Standardize all values by removing means and scaling to unit variance
 - ightharpoonup z = (x u) / s, where u = mean and s = std. deviation
- If a device has less than 20 trajectories, then we pad the last entry point as the entry and exit point of all previous trajectories
 94.19% Local Acc

94.11% Local Acc

3 Model Finetuning - XGBoost

- eXtreme Gradient Boosting, uses the concept of boosting = an ensemble method of "weak" classifiers that sequentially adds predictors (trees) to corrects previous models
 - ▶ Fast and Scalable: parallelize tree construction using distributed computing
 - ▶ **High Explainability**: can calculate the importance of a feature by its impact to final prediction in tree

3 Model Finetuning - XGBoost

► Grid search parameters from coarse to fine with 4-folds CV 94.25% Local Acc

Improvement can be done by stacking more models, eg: Neural Network (92% acc)

3 Model Finetuning - Feature Importance

	Top 10 Features	Importance
1	y_entry_19	0.116769
2	x_entry_19	0.041110
3	duration_19	0.025248
4	entry_hour_19	0.024366
5	y_entry_2	0.019652
6	y_entry_18	0.019642
7	y_exit_18	0.014287
8	y_exit_1	0.014023
9	vmax_9	0.010111
10	x_entry_2	0.009191

- Traj18 & 19 contributed most and X & Y coordinates are the most useful features
- Quarter hour feature almost contributed 0%

Part 2 Use Cases

From findings to applications

Use Case 1: Finding Congested Area with Velocity

Coordinates
 on the map
 with mean
 velocity as
 color

Use Case 2: Travel Demand by Area & Time

► Travel from the surroundings of the city centre increases between 6 am and 8 am from east and west direction

Applications

- Traffic Volume Analysis and Prediction (combine with weather data?)
 - congested area
 - travel demand by area & time
 - ▶ land use & investment decisions
 - ▶ infrastructure maintenance time & frequency
 - A data-driven approach to measuring the impact of new projects
- Other aspects of smart cities: pollution

Thank You! Any Question?