Ogr. 1 Bader (A-G)

Or. 2 Cioffi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

- **1.** Dato il sistema lineare $S: \left\{ \begin{array}{rcl} x-2y+t & = & 1 \\ 2x-y-2z & = & 0 \\ 3y-2z-2t & = & 1 \end{array} \right.$
 - (i) con il metodo di eliminazione di Gauss, calcolarne l'insieme delle soluzioni;
 - (ii) dire (giustificando la risposta) se l'insieme delle soluzioni è un sottospazio di \mathbb{R}^4 .

2. Esistono sistemi di vettori linearmente indipendenti in \mathbb{R}^3 contenenti 4 vettori? (Se si scriverne uno, se no dire perché)

3. Dimostrare che $\mathcal{B} = ((1,1),(1,0))$ è un riferimento di \mathbb{R}^2 e trovare le componenti del vettore (3,5) in \mathcal{B} .

4. Dati gli spazi vettoriali V e W sul campo reale, scrivere la definizione di applicazione lineare $f: V \mapsto W$ e scrivere un esempio di applicazione non lineare $f: \mathbb{R}^2 \mapsto \mathbb{R}^3$.

5. Scrivere la matrice A associata all'endomorfismo $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che f(x,y) = (x-2y,y-2x) nel riferimento B = ((1,1),(-1,1)).

6. Dimostrare che la matrice $A = \begin{pmatrix} t & -1 \\ 1 & t \end{pmatrix}$ è invertibile per ogni $t \in \mathbb{R}$ e calcolarne l'inversa (in funzione del parametro t).

7. Verificare, utilizzando la definizione, che (1,0,-1) è autovettore della matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 3 \end{pmatrix}$ e calcolare l'autovalore relativo.

- 8. Sia f l'endomorfismo di \mathbb{R}^3 definito da f(x,y,z)=(x,x+2y,z).
 - (i) Dire se f è iniettiva;
 - (ii) calcolare gli autovalori e scrivere una base per ciascuno degli autospazi di f;
 - (iii) dire se f è diagonalizzabile e perché.

9.	Fissato	nel	piano	un	${\bf riferimento}$	cartesiano	monometrico	ortogonale,	\sin	considerino	le	rette
r:x	-2y + 1	l = 0) e s :	(x, y)	y = (1, -2)t	+(3,2).						

- (i) Le rette r e s sono parallele? \bigcirc si \bigcirc no Perché?
- (ii) Le rette r e s sono ortogonali? \bigcirc si \bigcirc no Perché?
- (iii) Il punto P(4,1) appartiene alla retta s? \bigcirc si \bigcirc no Perché?

- 10. Fissato nello spazio un riferimento cartesiano monometrico ortogonale, siano dati il punto P=(1,0,1), la retta $r: \left\{ \begin{array}{ccc} x-y&=&0\\ 3y-2z+3&=&0 \end{array} \right.$ ed il piano $\pi:2x+y-4z-1=0$. Rappresentare
 - (i) il piano passante per Pe parallelo a π
 - (ii) il piano passante per P e ortogonale a r
 - (iii) il piano contenente l'origine e la retta \boldsymbol{r}