

Contrasting Intra-Modal and Ranking Cross-Modal Hard-Negatives to Enhance Visio-Linguistic Fine-grained Understanding

Le Zhang

Rabiul Awal

Aishwarya Agrawal

Visio-Linguistic fine-grained understanding

Visual Genome Relation

Assessing relational understanding (23,937 test cases)

✓ the horse is eating the grassX the grass is eating the horse

[Yuksekgonul et al. ICLR 2023]

What existing approaches do

- 1. **Create** hard-negative sentences and retrieve similar images
- 2. **Contrast** them against correct image-caption pairs

A cat sleeping on Add A black cat sitting A black desk a desk next to a on a desk sitting on a cat targeted monitor negative captions I_1 Add strong alternative images

NegCLIP approach from Yuksekgonul et al. ICLR 2023

Our approach

1. **Create** featured hard-negative sentences and images

Our approach

2. Additionally **contrast** hard-negative **sentences** against correct **sentences**

$$\mathcal{L}_{imc} = \sum_{(I,T)\in\mathcal{B}} -\log \frac{\exp^{S(I,T)}}{\sum_{T_k\in\mathcal{T}_{hn}} \exp^{S(T,T_k)}}$$

3. Add **rank loss** between correct and hard-negative image-text pairs

$$\mathcal{L}_{cmr} = \sum_{(I,T)\in\mathcal{B}} \sum_{T_k\in\mathcal{T}_{hn}} \max(0, S(I,T_k) - S(I,T) + Th_k)$$

Our approach

4. Use **adaptive margin** for the rank loss – **curriculum learning**

$$\mathcal{L}_{cmr} = \sum_{(I,T)\in\mathcal{B}} \sum_{T_k\in\mathcal{T}_{hn}} \max(0, S(I,T_k) - S(I,T) + Th_k^t)$$

$$Th_k^t = min\left(u, \frac{1}{N}\sum_{(I,T)\in\mathcal{B}}(S^{t-1}(I,T) - S^{t-1}(I,T_k)))\right) \quad \text{u = upper bound to stabilize training}$$

$$\mathcal{L} = \mathcal{L}_{itm(hn)} + \alpha \cdot \mathcal{L}_{imc} + \beta \cdot \mathcal{L}_{cmr}$$

Experimental Results

• We **outperform** existing methods **significantly** in both relation and attribution understanding.

Benchmark	Task	# image-text pairs			
Fine-grained Tasks ARO Relation, Attributes 24 /ALSE Linguistic Phenomena 6.8					
ARO	Relation, Attributes	24k			
VALSE	Linguistic Phenomena	6.8k			
VL-CheckList	Objects, Attributes and Relations	410k			

Learning Dynamics

- 1. Growing threshold indicate growing ability, underlining curriculum learning
- 2. CMR loss remain stable, indicating balance between growing ability and task difficulty

Adaptive vs. Fixed Thresholds

Adaptive threshold yields better results, without the need for complex hyper-parameters tuning

Qualitative Examples

Experimental Results

 We outperform existing methods significantly in both relation and attribution understanding.

 Ablation studies show that both proposed losses are effective for learning compositionality

Le Zhang

Contrasting intra-modal and ranking cross-modal hard negatives to enhance visio-linguistic fine-grained understanding

Le Zhang, Rabiul Awal, Aishwarya Agrawal Mila - Quebec Al Institute, Université de Montréal

Introduction

• Task: fine-grained understanding (relation, attribution, object existence)

- Limitation of current models
 - o High intro-modal similarity
 - Small gap between true and hard negative pairs

Intra-similarity

Method

- Featured Hard Negative Generation
- Hard Negative ITC
- Intro-Modal Contrastive
- Cross-Modal Rank with adaptive threshold

$$\mathcal{L}_{itc(hn)} = \sum_{(I.T) \in \mathcal{B}} - \left(\log \frac{\exp^{S(I,T)}}{\sum\limits_{T_n} \exp^{S(I,T_i)} + \sum\limits_{T_k \in \mathcal{T}_{hn}} \exp^{S(I,T_k)}} + \log \frac{\exp^{S(I,T)}}{\sum\limits_{I_j \in \mathcal{B}} \exp^{S(I_j,T)}} \right)$$

$$\mathcal{L}_{imc} = \sum_{(I,T) \in \mathcal{B}} -\log \frac{\exp^{S(I,T)}}{\sum\limits_{T_k \in \mathcal{T}_{hn}} \exp^{S(T,T_k)}}$$

$$\begin{split} \mathcal{L}_{cmr} &= \sum_{(I,T) \in \mathcal{B}} \sum_{T_k \in \mathcal{T}_{hn}} max(0, S(I,T_k) - S(I,T) + Th_k^t) \\ Th_k^t &= \frac{1}{|\mathcal{B}|} \sum_{(I,T) \in \mathcal{B}} (S^{t-1}(I,T) - S^{t-1}(I,T_k)) \end{split}$$

$$\mathcal{L} = \mathcal{L}_{itm(hn)} + \alpha \cdot \mathcal{L}_{imc} + \beta \cdot \mathcal{L}_{cmr}$$

Experiments

Model	ARO		VALSE							
	Relation	Attribution	Existence	Plurality	Counting	Relations	Actions	Coreference	Foil-it	Avg
Random					50					
BLIP	59.0	88.0	86.3	73.2	68.1	71.5	69.1	51.0	93.8	69.96
LXMERT†	~	-	78.6	64.4	58.0	60.2	50.3	45.5	87.1	59.6
CLIP	59.3	62.9	68.7	57.1	61.0	65.4	74.8	52.5	89.8	65.3
NegCLIP	80.2	70.5	76.8	71.7	65.0	72.9	83.2	56.2	91.9	71.6
CLIP Ours	83.0	76.4	78.6	77.7	64.4	74.4	84.9	54.7	93.7	72.5
XVLM-coco	73.4	86.8	83.0	75.6	67.5	69.8	71.2	48.0	94.8	69.5
XVLM Ours	73.9	89.3	83.3	73.8	69.8	70.0	71.5	48.4	93.3	70.8

Table 2: **Results** (%) **of ARO and VALSE**, the best scores for each section emphasized in boldface. † represents scores extracted from papers.

Model	VL-CheckList									
	Attribute					Object		Relation		Avg
	Action	Color	Material	Size	State	Location	Size	Action	Spatial	AT 5
Random Chance	50									
BLIP† CLIP-SVLC†	79.5 69.4	83.2 77.5	84.7 77.4	59.8 73.4	68.8 62.3	83.0	81.3	81.5 74.7	59.5 63.2	75.7
CLIP	70.5	69.4	69.5	60.7	67	80.2	79.7	72.2	53.8	69.2
NegCLIP CLIP Ours	72.1 75.6	75.7 72.7	78.1 79.7	61.3 65.3	67.3 69.8	84.4 84.8	83.8 84.5	80.7 78.5	57.1 65.0	73.4 75.1
XVLM-coco XVLM Ours	80.4 80.5	81.1 76.0	83.1 80.6	60.3 67.2	70.8 69.8	86.3 87.3	85.3 86.6	79.0 80.8	61.8 78.6	76.5 78.6

Table 3: Results (%) of VL-CheckList. † represents scores are extracted from papers.

Figure 4: Ablation study and analysis on threshold (Top Left) Adaptive threshold vs Fixed threshold; (Top Right) Performance with different upper bound values.; (Bottom Left) Curves showing how the thresholds evolve over time; (Bottom Right) Proposed loss curves change over time

Conclusion

- Hard-negatives can largely improve fine-grained understanding of VLMs
- Teach model to distinguish intro-modal hard negatives improve cross-modal fine-grained understanding
- Cross-modal rank encourage model to distinguish hard negatives, adaptive threshold entails curriculum learning