DATA 100: Vitamin 11 Solutions

April 26, 2019

1 Random Forests

1.1 Definition

To train a Random Forest regression model, fit a to each of several and select covariates at random for consideration at each node.
\Box linear regression model, randomly sampled learning sets
\Box regression tree, randomly sampled learning sets
\Box linear regression model, bootstrap samples of the learning set
${\bf \mbox{\it Z}}$ regression tree, bootstrap samples of the learning set
1.2 By-Products
Which of the following are useful by-products of Random Forests?
$ \mathbf{\underline{\mathscr{C}}} $ variable importance measures
✓ risk estimates
\square an estimate of model bias
2 Statistical Inference
2.1 Sampling Distribution
A sampling distribution is:
\Box A function of a sample that estimates the true value of a parameter
\Box The observed empirical distribution of an estimator's values based on a sample

	The unknown distribution of an estimator's value for different random samples from the population
	The observed distribution of an estimator's value for different bootstrap samples
2.2	Bootstrap Assumption
Selec	t all that apply: Bootstrap resampling can be used to:
\checkmark	Estimate parameters of a sampling distribution
\checkmark	Estimate the variance of an estimator
\checkmark	Estimate a confidence interval for an estimator
Ø	Generate samples that resemble random samples from the population, assuming that the bootstrap population is representative of the population.
2.3	Confidence Interval Interpretation
parai	ose we compute the 95% bootstrap confidence interval of some unknown meter θ to be (a,b) using a random sample of size n . Which of the ving should be true?
	There is a 95% chance that the true value of θ falls within (a, b) .
	The probability that the true value of θ is within the 95% confidence interval is 95%.
	About 95% of the estimates computed from bootstrap samples fell within (a,b) .
Ø	Under multiple repetitions of the bootstrap procedure, we would expect the true value of θ to be within the 95% confidence intervals 95% of the time.