Comparison tables: BBOB 2009 function testbed in 40-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [9, 5]. The experimental set-up is described in [8].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [8] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 40-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	2.08	2800	1200	3.2		П	58	39	340			520	29	Н	33		51
		1e-05	2.08	1700	920	3.2	64e-6/2e3	н	45	31	260	٠		410	55	П	26		41
		-	2.08																
		1e-03	2.08	1100	069	3.2	790	П	34	23	180	٠	45e-3/1e5	290	42	-	19		30
	$_{ m Sphere}$	$^{-}$ 1e-02	2.08	870	260	3.2	650	1	28	19	130	15e-2/2e3	6.8e5	240	35	1	16		25
usion	<u>-</u>	1e-01	2.08	640	430	3.2	200	1	21	15	94	1.4e4	2.3e4	180	28	1	13		19
y anne		1e+00	2.08	420	290	3.2	350	1	15	11	22	360	3e3	130	21	Н	9.5		14
ividea c		1e+01	2.08	220	150	3.2	210	П	9.6	7	33	65	1500	73	13	Н	5.8 8.0		8.7
this value d		1e + 02	2.07	46	46	3.2	09	1	3.1	က	13	12	400	17	3.9	1	2.5	13e+1/1e6	က
o reacn		1e + 03	0.025	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
inction evaluations to reach thi		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 2: 40-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

1e+02 96.6 15 14 4.7 13 5.5 9.8 8.1 2.1 2.1 2.1 1 1 1 1 1 1 1 1 1 1 1 1 1	function evaluations to reach this	to reach this	value c	livided by dimension	mension							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	2 Ellip	soid sepa	$_{ m rable}$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
14 15 17 19 20 23 26 32 46 140 2 47 6 9 14 <th< td=""><td>ERT_{best}/D</td><td>74.3</td><td>9.96</td><td>118</td><td>137</td><td>155</td><td>172</td><td>190</td><td>208</td><td>221</td><td>256</td><td>${ m ERT_{best}/D}$</td></th<>	ERT_{best}/D	74.3	9.96	118	137	155	172	190	208	221	256	${ m ERT_{best}/D}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ALPS	14	15	17	19	20	23	26	32	46	140	ALPS [12]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AMaLGaM IDEA	14	14	14	14	14		14	14	14	14	AMaLGaM İDÉA [4]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	avg NEWUOA	7	4.7	9	6	10		12	13	13	14	avg NEWUOA [17]
4.3 5.5 6 6.1 5.9 5.6 5.4 5 4.8 4.4 7.7 9.8 11 10 10 9.5 9 8.4 8 7.1 F 6 8.1 9.3 9.5 9.5 9 8.7 8.7 6.8 1.7 2.1 2.5 2.8 3 3.3 3.4 3.5 3.7 3.8 28 310 $65e+1/2e3$ </td <td>$_{ m BayEDAcG}$</td> <td>13</td> <td>13</td> <td>13</td> <td>14</td> <td>33e-2/2e3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BayEDAcG [6]</td>	$_{ m BayEDAcG}$	13	13	13	14	33e-2/2e3						BayEDAcG [6]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BFGS	4.3	5.5	9		5.9		5.4	22	4.8	4.4	BFGS [16]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BIPOP-CMA-ES	7.7	8.6	11		10		6	8.4	∞	7.1	BIPOP-CMA-ES [10]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1+1)-CMA-ES	9	8.1	9.3		9.2		8.7	8.2	2.8	8.9	(1+1)-CMA-ES [2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DASA	1.7	2.1	2.5		က		3.4	3.5	3.7	8.8	DASA [13]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPSO	28	310	65e+1/2e3								DEPSO [7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	simple GA	610	2200	24e+1/1e5								simple GA [14]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	iAMaLGaM IDEA	6.2	7.4	7.7	7.7	7.7	7.6	7.4	7.3	7.4	7.3	iAMaLGaM IDEA [4]
	NELDER (Han)	1.1	1	П	1	1	1	1	1	1	П	NELDER (Han) [11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NEWUOA	П	5.6	4.4	6.4	8.	6.6	11	12	13	13	NEWUOA [17]
12e+5/1e6 1.4 1.5 1.4 1.3 1.2 1.2 1.2 1.1 IPOI	(1+1)-ES	140	630	1500	2500	3400	4400	8900	1.4e4	6.8e4	93e-5/1e6	(1+1)-ES [1]
1.4 1.5 1.5 1.4 1.3 1.2 1.2 1.2 1.1 IPOP	Monte Carlo	12e+5/1e6										Monte Carlo [3]
	POP-SEP-CMA-ES	1.4	1.5	1.5	1.4	1.3	1.3	1.2	1.2	1.2	1.1	IPOP-SEP-CMA-ES [15]

Table 3: 40-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median function value and the median number of

			Д		EA [4]	1 [17]	[9]		3S[10]	3S [2]	-	, <u></u>	14]	EA [4]	n) [11]	17]	<u>.</u>	3	1 2 2 2 3
		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	1.59e5				•		•		Т		•		•				
		1e-05	1.59e5						•		1		•						
		1e-04	1.59e5	•			•		•		-		•		•				
		1e-03	1.59e5		٠				•		П		•						
	$^{\circ}$ able	1e-02	1.59e5	•			٠				П				٠				
)	n sepai	1e-01	1.59e5		٠		٠		•		1		•		٠				
mension	3 Rastrigin separable	1e+00	24600	•	11e+0/1e6	•	٠		•		Н		11e+0/1e5	90e-1/1e6	•				,
ivided by di	•	1e+01	440	16e+0/1e5	2800				12e+0/3e5		1		420	770					160+0/10/
this value d		1e + 02	116	32	16	38e+1/1e4	24e+1/2e3	64e+1/8e3	1.1	33e+1/1e4	1	28e+1/2e3	39	4.6	38e+1/1e4	46e+1/7e3	42e+1/1e6	87e+1/1e6	1.2
to reach		1e + 03	5.56	11	13	21	19	110	1	4.1	3.5	3.1	92	4	1.9	7.7	300	1.5e4	-
function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 4: 40-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM İDÈA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA $[13]$	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES $[1]$	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	nan		•		•		•		•		•		•		•		•
		1e-04 1e-05	nan				٠		•				•				•		٠
		1e-04	nan				٠										•		٠
	əle	$\overline{1}e-02$ $1e-03$	nan				٠		•				•				•		٠
	eparal	$\overline{1}e-02$	nan				٠		•				•				•		٠
	Bueche s	1e-01	nan		٠		٠		•		20e-1/1e6		•				٠		٠
EIISIOII	4 Skew Rastrigin-Bueche separable	1e+00	1.7e6		•		٠		•		П		17e+0/1e5				٠		٠
ividea by aim	4 Skew	1e+01	574	26e+0/1e5	32e+0/1e6	•	٠		27e+0/3e5		1		2500	34e+0/1e6	•	•		•	30e+0/1e4
uiis vaiue u		1e+02	134	99	18	36e+1/3e4	25e+1/2e3	97e+1/1e4	3.9	54e+1/1e4	1	33e+1/2e3	39	4.3	63e+1/1e4	54e+1/2e4	67e+1/1e6	11e+2/1e6	5.3
o reacii		1e+03	11	12	24	7.5	27	1200	1.1	16	2.2	3.4	82	6.4	110	14	2900	6.3e5	-
michon evaluations to leach tills value divided by minension		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 5: 40-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [12]	AMaLGaM İDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES $[1]$	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	3.01	230	100	3.4	220	2.2	4.4	က	69	31	19e-8/1e5	7.1	13		2.9		5.3
		1e-05	3.01	230	100	3.4	220	2.5	4.4	က	20	31	1.9e4	7.1	13	Н	5.9		5.3
		1e-04	3.01	220	100	3.4	220	2.5	4.4	က	41	31	1.5e4	7.1	13	П	2.9	٠	5.3
		1e-03	3.01	210	100	3.4	220	2.5	4.4	က	34	31	1.2e4	7.1	13	-	2.9		5.3
			3.01																
_	inear	1e-01	3	180	100	3.4	220	2.5	4.4	5.9	23	30	7e3	7.2	13	1	2.9		5.3
mensior	5 Linear	1e+00	2.89	160	100	3.2	220	2.5	4.5	က	19	30	4800	7.4	13	П	က		5.4
d by dii	•		2.45																
zalue divide		1e+02	2.13	81	26	3.1	140	1.4	3.2	1.9	12	18	1100	5.6	9.1	П	1.8	36e+1/1e6	3.3
$^{\circ}$		1e+03	0.025	1	1	1	1	1	1	1	1	1	1	1	1	1	П	П	1
ction evaluations to reach this value divided by dimension		Δ ftarget	_		AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 6: 40-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	481		40	1.1	٠	18	1.4		20			11	89	П	6		7
		1e-05	375		41	1.1		4.9	1.4		26			11	16	П	8.6		7
		1e-04	332		41	1.2		4.6	1.4		25			11	5.5	П	8.1		7
		1e-03	288		42	1.1		4.5	1.4		46			10	3.5	П	7.4		1.8
	ctor	1e-02	237	24e-3/1e5	43	1.2	-	4.5	1.4		41			10	2.8	1	8.9		1.8
	ive sec	1e-01	179	330	47	1.2		4.6	1.5		36			11	5.6	1	6.1		1.9
nension	6 Attractive sector	1e+00	138	93	48	1.3	•	4.4	1.5	12e+0/1e4	22		·	6.6	2.5	-	4.6	٠	1.8
iviaea by an		1e + 01	87.7	53	26	1.3	13e+1/2e3	4.2	1.6	360	18	38e+0/2e3	65e+0/1e5	10	2.7	-1	3.2		1.9
value d		1e+02	46	28	29	1.5	160	3.3	1.9	9.9	8.	19	730	9.4	2.7	1	1.9		1.9
o reach this		1e + 03	4.87	56	280	4.7	20	1.9	6.1	3.6	6	12	350	26	3.3		3.1	12e+4/1e6	6.5
unction evaluations to reach tr		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 7: 40-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	1700	-	1				2.2				٠	1.7					1.6
		1e-05	1660		П		•		5.6		•			1.7					1.6
		1e-04	1660		П				5.6					1.7					1.6
		1e-03	1660	-	1				5.6					1.7					1.6
		1e-02	1660		П				$^{2.6}$					1.7					1.6
	bioso	1e-01	1030		1.3		•		4		•			Н					2.2
ion	7 Step-ellipsoid	1e+00	446	13e+0/1e5	2.2				8.3	12e+0/1e4				1	•				5.2
ed by dimens	,	1e+01	267	2e3	2.5	24e+0/4e4	26e+0/2e3		1.2	100	76e+0/2e5	27e+0/2e3	36e+0/1e5	1	70e+0/1e4	77e+0/6e4			2.3
value divide		1e+02	30.6	14	12	5.4	23		1	73	2200	7.5	110	4	100	880	24e+1/1e6	54e+1/1e6	1
to reach this		1e+03	2.64	14	14	2.6	24	20e+2/100	1.5	1.8	9	4.9	96	3.9	1.8	П	220	260	1.4
unction evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 8: 40-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
			1e-07	299		44	1.6		2.5	2.8	8.9	290		٠	16	510	1	170		6
			1e-05	293		43	1.6		2.5	6.7	8. 8.	220			16	520	П	130		9.1
			1e-04	289	14e-1/1e5	43	1.6		2.2	7.9	∞. ∞.	190			16	530	1	120		9.1
		F F	1e-03	286	3200	43	1.6		2.3	6.7	8. 8.	150			16	530	-	100		9.1
D	•	origina	1e-02	282	2e3	42	1.6		2.3	6.7	8.7	120			15	540	-	82		9.1
	•	cock	1e-01	275	1900	41	1.6		2.3	6.7	8.6	82			15	550	-	73		9.5
	nsion .	Kosent	1e+00	266 275 282 28	1100	40	1.6		2.3	7.7	8.3	61			15	280	1	29		9.1
Jest 1-1	this value divided by difficultion	×	1e+01	177	530	47	1.2	87e+0/2e3	2.4	7.3	8.3	55	13e+1/2e3	91e+0/1e5	17	150	1	27		9.7
	lue anvi		1e + 02	40.4	84	20	1.7	20	1.7	1.7	1	27	130	1200	7.5	4	1.4	5.5		7
			1e + 03	15.2	40	27	1.6	38	1.1	1.8	1.2	9.9	16	270	11	2.4	П	-	87e+3/1e6	1.6
- 6	inction evaluations to reach		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaMIDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 9: 40-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this value divided by dimension	reach this	value div	this value divided by dimension	ension							
			6	9 Rosenbrock rotated	$_{\rm brock}$	rotate	þ				
Δ ftarget	1e+03	1e+02	1e + 01	1e+00		1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	12.7	34.9	153	325	333	337	341	345	348	354	${ m ERT_{best}/D}$
ALPS	21	36	28e+0/1e5						-		ALPS [12]
AMaLGaM IDEA	28	18	54	32	34	35	35	36	36	37	AMaLGaM İDEA [4]
avg NEWUOA	1.7	1.3	1.4	1.1	1.1	1.2	1.2	1.2	1.2	1.2	avg NEWUOA [17]
BayEDAcG	38	26	38e+0/2e3								BayEDAcG [6]
BFGS	1.1	1.4	2.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	BFGS [16]
BIPOP-CMA-ES	1.8	1.5	8.2	6.2	6.4	6.5	6.5	6.5	6.5	6.5	BIPOP-CMA-ES [10]
(1+1)-CMA-ES	1.2	1.2	9.7	9.7	10	10	10	10	10	10	(1+1)-CMA-ES [2]
DASA	7.7	12	410	420	520	650	820	086	1100	1600	DASA [13]
DEPSO	14	110	11e+1/2e3								DEPSO [7]
simple GA	270	3500	11e+1/1e5						٠		simple GA [14]
iAMaLGaM IDEA	13	8.5	20	12	13	13	13	13	13	14	iAMaLGaM IDEA [4]
NELDER (Han)	1.6	2.3	160	230	460	450	440	440	14e+0/1e4		NELDER (Han) [11]
NEWUOA	1	1	1	1	1	1	П	1	П	П	NEWUOA [17]
(1+1)-ES	1.2	1.4	33	91	92	110	120	130	150	170	(1+1)-ES [1]
Monte Carlo	83e+3/1e6										Monte Carlo [3]
IPOP-SEP-CMA-ES	1.6	1.2	10	6.9	7.1	7.1	7.1	7.1	7.1	7.1	IPOP-SEP-CMA-ES [15]

Table 10: 40-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM İDĒA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	1770		2.1	2.1		40e-6/1e5	1	1				1.1		2.1			1.4
		1e-05	1630		1.9	1.9	-	220		1.1	-			-	-	1.9	33e-5/1e6		1.5
		1e-04	1520		1.9	1.9		34	1.2	1.1				1		1.8	1600		1.5
		1e-03	1400		1.9	1.8		2.8	1.2	1.2			-	Н		1.7	1e3		1.7
	bid	1e-02	1290		1.8	1.7		2.1	1.3	1.3				-		1.5	620		1.8
	10 Ellipsoid	$1e-\overline{0}1$	920	٠	2.2	1.8		Н	1.7	1.6			•	1.3		1.8	580		2.4
IIIIeIISIOII	10	1e+00	759	-	2.4	1.9		П	1.9	1.7	23e+0/1e6		•	1.4		1.6	430		2.7
nvidea by c	,	1e+01	647		2.4	1.4		1	1.9	1.7	2.3e4			1.4		1.2	260		2.9
varue c		1e+02	402		3.2	1.6		1.2	2.3	7	1e3			1.9	35e+1/1e4	-1	130		3.8
s to reach thi		1e+03	165	28e + 2/1e5	6.3	1.3	16e+4/2e3	1.7	3.6	2.8	290	14e+4/2e3		2.9	5.9	1	46	13e+5/1e6	6.2
Infiction evaluations to reach this		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 11: 40-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of

		$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [12]	AMaLGaM IDEA [4]	avg NEWUOA [17]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES $[1]$	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	1090		2.5	Н	•		1.1	5.6	1e3			1.1		က	250		1.7
		1e-05	888		2.2	П	٠		1.3	2.4	630		٠	1.1		က	240		2.1
		1e-04	692	-	2.5	1	-	29e-4/1e4	1.5	2.3	540			1.1		က	240		2.3
		1e-03	674	-	2.4	П		72	1.6	2.5	490			1.1		က	240		2.6
		1e-02		-	2.2	-		2.2	1.9	2.1	440		٠	1.1		3.2	240		က
	Discus	1e-01	292		3.8	1.5	٠		3.5	3.1	200		٠	1.8		4.9	320		5.7
mension	[] I	1e+00	121	33e-1/1e5	8.9	2.8		1	∞	5.5	790			3.3		6.6	650		13
this value divided by dimension	•	1e+01	59.2	920	9.5	3.9		1	15	7.1	290		43e+0/1e5	ro	53e+0/1e4	13	870		25
this value d		1e+02	22.6	240	11	5.5	26e+1/2e3	1	35	8.6	230	24e+1/2e3	820	8.5	88	18	1100	20e+1/1e6	57
reach		1e+03	1.78	2.7	5.6	3.4	2.3	5.8	66	21	П	9	3.5	1.8	1.6	П	2300	2.4	130
function evaluations to reach		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 12: 40-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Δftarget ERT _{best} /D ALPS AMaLGaM IDEA	1e+03 36 67 46	1e+02 39.9 81 48	1e+01 104 180 21	Afrarget 1e+03 1e+02 1e+01 1e+00	ш		1e-03 329	1e-04 526	1e-05 569	1e-07 630	$\begin{array}{c} \Delta \text{ftarget} \\ \text{ERT}_{\text{bost}}/D \\ \text{ALPS} [12] \\ \text{AMaLGaM IDEA} [4] \\ \end{array}$
avg NEW UOA BayEDAcG BFGS	1.5 66 1	6.5 44e+1/2e3 1.1	1 · 1	24	31	38 - 1	42	32 4.6	39	98	avg NEW UOA [17] BayEDAcG [6] BFGS [16]
BIPOP-CMA-ES $(1+1)$ -CMA-ES	2.1	2.8	2.2	2.3 3.1	2.5	2.5 4.4	2.5 4.6	1.8 3.4	1.9 3.6	1.9 4.1	BIPOP-CMA-ES [10] $(1+1)$ -CMA-ES [2]
DASA	20 12e+4/2e3	27	3.8e4	3.5e4	22e+0/1e6						DASA [13] DEPSO [7]
simple GA iAMaLGaM IDEA	40e+3/1e5	. 18	. 8.	6.4	. 1-	7.3	7.2	5.2	. 5.4	5.7	simple GA [14] iAMaLGaM IDEA [4]
NELDER (Han) NEWUOA	2.4	1.5	15 1.4	24 1.4	52 1.4	190 1.5	42e-3/1e4 1.4	٠ ٦	٠ ન	٠ ٦	$egin{aligned} ext{NELDER} & (ext{Han}) & [11] \ ext{NEWUOA} & [17] \end{aligned}$
(1+1)-ES Monte Carlo	1.2 16e+7/1e6	1300	4800		14e-1/1e6						(1+1)-ES $[1]$ Monte Carlo $[3]$
IPOP-SEP-CMA-ES	1.8	2.8	8.7	3.6	4.2	4.2	3.9	2.7	2.7	2.7	IPOP-SEP-CMA-ÈS [15]

Table 13: 40-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median final function value and the median number of

Affarget 143 Sharp ridge 16-02 16-03 16-04 <th>function evaluations to reach this value</th> <th>s to reach th</th> <th>is value</th> <th>divided by dimension</th> <th>limensi</th> <th>on</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	function evaluations to reach this value	s to reach th	is value	divided by dimension	limensi	on						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•		13 SI	arp ridge					
3.73 9.74 50.7 173 218 297 1800 2100 2460 2990 88 180 130 190 860 85e-3/1e5 .<	$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	Δ ftarget
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m ERT_{best}/D}$	3.73	9.74	50.7	173	218	297	1800	2100	2460	2990	ERT_{best}/D
88 93 28 12 12 10 2 2 1.9 1.9 100 160 $52e+0/2e3$. .	ALPS	80	180	130	190	860	85e-3/1e5					ALPS [12]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AMaLGaM IDEA	88	93	28	12	12	10	77	7	1.9	1.9	AMaLGaM IDEA [4]
1.2 1.8 1.4 1 1 46 73 $16e-4/4e4$ 4.6 5.1 2.6 2.6 5 17 4.4 5.2 5.3 5.9 4.6 5.1 2.6 5 17 4.4 5.2 5.3 5.9 3.3 1.7 4.2 9.5 20 540 2900 $21e-5/1e6$ 5.40 6800 $91e+0/1e5$ 5.40 6800 $91e+0/1e5$ 5.40 6800 $91e+0/1e5$ 5.4 6800 $91e+0/1e5$ 4.8 5.9 9.8 2.0 71 160 41 $13e-2/1e4$ 4.8 5.9 9.8 4.7 4.5 18 36 15 38 2.9 3.3	$_{ m BayEDAcG}$	100	160	52e+0/2e3								BayEDAcG [6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BFGS	1.2	1.8	1.4	-1	П	1	46	73	16e-4/4e4		BFGS [16]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BIPOP-CMA-ES	4.6	5.1	2.6	5.6	ಬ	17	4.4	5.2	5.3		BIPOP-CMA-ES [10]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1+1)-CMA-ES	3.3	3.3	1.7	4.2	9.2	20	5.6	9.7	18		(1+1)-CMA-ES [2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DASA	15	24	40	73	150	540	220	940	2900	21e-5/1e6	DASA $[13]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPSO	21	1500	12e+1/2e3								DEPSO [7]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	simple GA	540	0089	91e+0/1e5								simple GA [14]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	iAMaLGaM IDEA	25	33	11	4.5	4.7	4.8	1	1	1	1	iAMaLGaM IDEA [4]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NELDER (Han)	4.8	5.9	8.6	20	71	160	41	13e-2/1e4			
2.9 3.3 4.7 4.5 18 36 11 37 100 1400 $21e+2/1e6$ 2.1 2.8 6.3 8.2 2.6 2.8 2.8 2.9 1	NEWUOA	1	1	1	81	က	13	7.3	15	28	88e-5/1e4	
21e+2/1e6 4.4 4.6 2.1 2.8 6.3 8.2 2.6 2.8 2.9 I	(1+1)-ES	2.9	3.3	4.7	4.5	18	36	11	37	100	1400	
4.4 4.6 2.1 2.8 6.3 8.2 2.6 2.8 2.9 I	Monte Carlo	21e+2/1e6										
	IPOP-SEP-CMA-ES	4.4	4.6	2.1	8.7	6.3	8.3	5.6	2.8	2.8	2.9	IPOP-SEP-CMA-ES [15]

Table 14: 40-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median final function value and the median number of

table 14. 40-D, tunning since excess prod pest on 114, in teates is given the median mind function value and the incuran number of		powers	1e-04 $1e-05$	90.6 121 1440 E	27e-5/1e5	22 20 2.1 AMaLGaM İDEA [4]		1 1	5.4 6.6 1.1 B	3.2 5.3 1	4600			9.2 8.6 1 iAMaLGaM IDEA [4]	11 $40e-6/1e4$	2 8.6 24 N	37 400	-	0
SIVEIL		nt po			510	30			4.4		71	33		12	3.4		5.2	٠	O C
i realies i		14 Sum of different	1e-02	27.6	140	20	63e-3/2e	1.7	3.9	2.5	22	11e-2/2e.	17e-2/1e	19	3.4	1	2.2		2
, 114, 11	ension	Sum o	1e-01	19.4	80	53	180	1.8	3.1	7	13	300	1.1e4	19	က	П	1.8		0 6
best on	by dim	, 14	1e+00	15.7	59	46	88	1.6	2.2	1.7	8.6	28	390	15	8.8	Н	1.6		9 3
THE LINE	value divided by dimension		1e+01	7.61	38	44	74	1.7	2.7	2.1	8.7	11	280	13	2.5	Н	1.9	29e+0/1e6	7 0
	h this v		1e+02	1.01	2.4	2.2	3.3	2.4	1.1	2.3	4.8	1.7	3.3	1	5.9	77	7		-
umg am	to reac		1e + 03	0.025	1	1.1	1	1	1	1	1	1.1	1	1	1	1.2	1.2	1.1	-
Table 14. 40-D, 1um	function evaluations to reach this		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 15: 40-D, running time excess ERT/ERT_{best} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

, , , , , , , , , , , , , , , , , , , ,	-	,	.i .i jest	(016	0						
function evaluations to reach this value divided by dimension	o reach	this value dr	vided by din	ension							
				$15 \mathrm{ I}$	15 Rastrigin						
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	4.79	190	4700	19700	26200	26600	27000	27300	27700	28400	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	12	1100	10e+1/1e5								ALPS [12]
AMaLGaM IDEA	13	9.6	1.9	1.5	1.6	1.6	1.6	1.6	1.6	1.7	AMaLGaM IDEA [4]
${ m BayEDAcG}$	23	24e+1/2e3									BayEDAcG [6]
BFGS	28	53e+1/9e3									BFGS [16]
BIPOP-CMA-ES	1.2	1	1.4	1	1	-	П	П	1	1	BIPOP-CMA-ES [10]
(1+1)-CMA-ES	5.1	34e+1/1e4	٠			•	•	•			(1+1)-CMA-ES [2]
DASA	640	39e+1/1e6									DASA [13]
DEPSO	3.7	35e+1/2e3	-								DEPSO [7]
simple GA	100	2200	11e+1/1e5								simple GA [14]
iAMaLGaM IDEA	3.9	2.9	8.6	14	11	11	11	11	10	10	iAMaLGaM IDEA [4]
NELDER (Han)	1.6	33e+1/1e4									NELDER (Han) [11]
NEWUOA	7.4	37e+1/7e3					•	•			NEWUOA [17]
(1+1)-ES	450	42e+1/1e6									(1+1)-ES $[1]$
Monte Carlo	3.6e4	91e+1/1e6			•						Monte Carlo [3]
IPOP-SEP-CMA-ES	-	1.3		3.6	40e-1/1e4						IPOP-SEP-CMA-ES [15]

Table 16: 40-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			Δ ftarget	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
			1e-07	50500		3.8			1					27					
			1e-05	49700		3.1			1					27					30e-3/1e4
			1e-04	49300		3.1			1					23					က
2			1e-03	35200		3.4			1					17					1.4
0		rass	1e-02	17800		8.8			1.3					27					П
		16 Weierstrass	1e-01	8040		3.6			1					24					п
1016 18	dimension	16 \	1e+00	1800	38e-1/1e5	3.4			1	12e+0/1e4	13e+0/1e6		79e-1/1e5	4.3	10e+0/1e4	78e-1/1e4			1.5
ise / Pe	this value divided by dimension		1e + 01	131	11	17	31e+0/2e3	41e+0/2e4	П	550	1.1e5	35e+0/2e3	260	3.1	95	17	15e+0/1e6	22e+0/1e6	1.8
	his valu		1e+02	0.025	1.1	1.1	1.3	3.7	1.1	1.1	1.2	1.2	1.1	1.1	1.1	1.2	1	1.1	1.1
0			1e + 03	0.025	1	1	Т	1	1	П	П	1	Н	П	Н	Н	П	П	Н
	unction evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 17: 40-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

				ſ														
		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [12]	AMaLGaM IDEA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	$NELDER$ (Han) $[1\overline{1}]$	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
		1e-07	6640		4.5			1.4					62		•		•	-
		1e-05	3330		1.6			П	•		٠		100		•		•	1.3
		1e-04	2220	-	1.9			-					110				-	1.3
	10	1e-03	1300		5.6			П					54		•		-	1.6
	dition	1e-02	874		က			П					-		-		-	1.6
	r F7, cone	1e-01	354	12e-1/1e5	4.9	47e-2/2e3		1			97e-2/2e3	89e-2/1e5	1.5					2.4
y dimension	17 Schaffer F7, condition 10	1e+00	106	3800	9.3	14	68e-1/3e4	1	68e-1/1e4	98e-1/1e6	31	230	2.6	77e-1/1e4	54e-1/1e5	80e-1/1e6	91e-1/1e6	2.1
vided b		1e + 01	86.6	7	13	22	410	1	29	9.4e4	4	63	5.2	310	38	5.6e4	2.2e4	Н
value di		1e + 02	0.025	1.1	1.3	1.1	5.6	1	П	4.2	1.2	1.3	1.4	1.7	1.9	7.4	1.1	1.2
$^{\circ}$ ch this		1e+03	0.025	1	1	1	1	1	1	-	1	1	-	1	1	1	-	-
tion evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 18: 40-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

inction evaluations to reach	reach t	his value	this value divided by dimension	dimension							unction evaluations to reach this value divided by dimension
			18	8 Schaffer F7, condition 1000	F7, condit	ion 10	00				
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-02 1e-03	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT}_{ m best}/{ m D}$	0.025	0.403	36.1	425	1180	3180	4690	6420	16800	23700	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	Т	П	38	39e-1/1e5							ALPS [12]
AMaLGaM IDEA	1	1.1	18	3.3	1.9	1	2.5	က	5.6	ro	AMaLGaM IDEA [4]
$_{ m BayEDAcG}$	П	1.1	23	35	16e-1/2e3						BayEDAcG [6]
BFGS	3.7	620	28e+0/3e4			٠					BFGS [16]
BIPOP-CMA-ES	1.1	2.9	1.1	1.1	1.4	1.1	1.1	1.2	1.2	1.1	BIPOP-CMA-ES [10]
(1+1)-CMA-ES	П	3.1	25e+0/1e4			•			•	•	(1+1)-CMA-ES [2]
DASA	Н	13	41e+0/1e6								DASA [13]
DEPSO	1.1	1.5	25	57e-1/2e3					•	٠	DEPSO [7]
simple GA	1.1	1.3	100	46e-1/1e5							simple GA [14]
iAMaLGaM IDEA	1.1	1.1	4.6	П	1	6	25	54	44	43	iAMaLGaM IDEA [4]
NELDER (Han)	1.1	12	29e+0/1e4								NELDER (Han) [11]
NEWUOA	1.1	4.2	20e+0/1e5						•	٠	NEWUOA [17]
(1+1)-ES	П	100	35e+0/1e6								(1+1)-ES [1]
Monte Carlo	П	П	32e+0/1e6								Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	2.5	Н	1.3	1.7	1.1	П	П	П		IPOP-SEP-CMA-ES [15]

Table 19: 40-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of

the rest of the control of the best of 19, in the control of the c			$1e-07$ Δ ftarget	1.14e6 ERT _{best} /D	. ALPS [12]	4.2 AMaLGaM IDEA [4]	. BayEDAcG [6]	. BFGS [16]	1 BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	. DASA [13]	DEPSO [7]	simple GA [14]	. iAMaLGaM IDEA [4]	. NELDER (Han) [11]	. NEWUOA [17]	(1+1)-ES [1]	. Monte Carlo [3]	. IPOP-SEP-CMA-ES [15]
110010011			1e-05	1.13e6		4.2			1	•									
71 1001111			1e-04	1.13e6		4.2			1	•									
TIPO CHICATI		22	1e-03	6.38e5		7.4			1	•									
STACII OTIO		brock F8F	1e-02	4.21e5	-	2.6			П	٠		٠		10e-2/1e6		•		•	
, iii ivaiivo ii	on	19 Griewank-Rosenbrock F8F2	1e-01	34800	16e-1/1e5	1			1.2				24e-1/1e5	46					84e-2/1e4
best on 119	by dimensi	19 Griew	1e+00	1410	620	2.4	57e-1/2e3		1	38e-1/1e4	16e+0/1e6	67e-1/2e3	1e3	11	40e-1/1e4	28e-1/1e5	16e+0/1e6		4.6
1,117 / 1,117 0	alue divided		1e + 01	8.79	6.5	11	18	19e+0/2e4	1.1	16	1.6e6	3.9	130	7	12	-	7.7e5	14e+0/1e6	1.1
70000	this v		1e + 02	0.025	1.2	1	1.1	-	1	1	1	1.1	1.1	1.1	1	1.2	1.4	1.1	1
S	to reac		1e + 03	0.025	1	1	1	П	1	1	1	1	1	П	П	П	П	1	1
Table 10: 10 D) tal	function evaluations to reach this value divided by dimension		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 20: 40-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of

table 20. 40-D, running time excess first lest on 120, in rance is given the median man function value and the median number			Δ ftarget	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA $[13]$	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES $[15]$
value			1e-07	nan				•		•		•		•		•		•	
HICHOH			1e-04 $1e-05$ $1e-07$	nan						٠				٠					
ma re			1e-04	nan		•		•		•		•		•		•		•	
negian			1e-03	nan						•				٠					
giveii tiie ii		in(x)	1e-02	nan		•		٠	17e-2/6e5	•		٠		•		٠			•
ii ivalica la		20 Schwefel $x*\sin(x)$	1e-01	4.03e6	•	11e-1/1e6		11e-1/3e4	1	٠	57e-2/1e6	·	65e-2/1e5	•		11e-1/3e4	12e-1/1e6		
st on $J20$, 1	y dimension	20 Sch	1e+00	3280	13e-1/1e5	1400	34e-1/2e3	33	22	14e-1/1e4	П	30e-1/2e3	2.9	15e-1/1e6	14e-1/1e4	310	1400		16e-1/1e4
9 татт /	vided b		1e + 01	5.54	40	52	64	1.5	4.1	2.7	14	22	510	23	4.1	1	2.6		3.5
SS LILL	value di		1e+02	4.33	44	62	75	1.5	4.6	3.1	16	21	570	28	4.6	1	က		4
ing time care	o reach this		1e+03	3.12	45	74	85	1.6	5.4	3.6	18	20	630	31	4.8	1	3.4	28e+3/1e6	4.6
1able 20. 40-D, 1 uiiii.	function evaluations to reach this value divided by dimension		$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 21: 40-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Afternat	Transer 1	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple $GA[\overline{14}]$	iAMaLGaM IDEA [4]	$NELDER$ (Han) $[1\bar{1}]$	NEWUOA [17]	(1+1)-ES $[1]$	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
	10.07	70-0-1	2560	5.9	1700		9.3	110	1.6	22			840	5.5	1	8.8	•	16
	, ,	70-07	2550	4.2	1700		2.1	110	1.6	22			840	5.5	П	8.8		16
	10.01	#O-01	2540	3.7	1700		2.1	110	1.7	22			840	5.5	-	8.8		16
	10.03	201	2530	3.3	1700		2.1	110	1.7	22			820	5.5	1	8.7		16
01 20012	or peaks	10-01	2530	က	1700		2.1	110	1.7	27	33e-1/2e3	25e-1/1e5	820	5.5	1	2.8		16
Hombon 1	zı Ganağıler ı baton 1501	TO-OT	2520	2.7	1700	13e-1/2e3	2.1	110	1.7	27	12	260	850	5.6	1	2.8		16
7	5 E	100	529	6.5	1800	œ	2.3	49	1.8	44	16	770	099	14	1	5.2		19
	10 01	TOLL	26.1	20	21	37	2.9	2.7	4.1	46	18	120	38	13	1	3.6	69e+0/1e6	3.4
	10109	70 10 10 10 10 10 10 10 10 10 10 10 10 10	0.025	1	1	Т	1	1	1	1	1	1	1	Т	1	1	П	н
	10103	TC+OT	0.025	1	1	П	1	1	1	-	1	1	1	П	1	п	П	1
	A ff. 22. 43. A	128 1211	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 22: 40-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median final function value and the median number of

table 22. 40-D; fulling time excess $D(1) = \frac{1}{1} \int \frac$			Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [12]	AMaLGaM İDĒA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple $GA[14]$	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [15]
ı valuc			1e-07	16400						7	45				8.9	П	9.9		
Tailcai			1e-05	16300						7	45	٠			6.8	П	9.9	•	
ii iiia			1e-04	16300						7	45	٠			8.9	П	9.9		
i viic ilicaia		ks	1e-03	16300	69e-2/1e5					7	45			-	6	1	9.9		
is giver		21 peal	1e-02	16200	110					7	45				6	П	9.9		
22, 111 10ames	sion	22 Gallagher 21 peaks	1e-01	16200	35	69e-2/1e6	73e-1/2e3	69e-2/8e3	69e-2/1e5	7	45	26e-1/2e3	20e-1/1e5	69e-2/1e6	6	1	9.9	-	69e-2/1e4
st on f :	dimen.	22 (1e+00	988	12	092	10	1.5	09	1.8	31	10	180	092	3.8	П	2.7		9
$_{1117}$ / $_{111}$	this value divided by dimension		1e+01	116	8.5	2200	18	П	6.4	2.7	32	7.3	87	370	4.7	2.7	3.3	71e+0/1e6	13
CACCOS L	his valu		1e + 02	0.025	1	1	1	-	1	П	-	1	1	1	-	1	1	П	1
g tille	reach t		1e + 03	0.025	1	1	П	Н	1	П	н	1	1	1	Н	1	1	Н	1
Table 22. ±0-D, 1 unim	function evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 23: 40-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

table 29. FULL) turning time excess first \log_{10} on 123, in itemes is given the inequal fine time and the energy value and the inequal finite.			1e-07 Δ ftarget	84000 ERT $_{ m best}/{ m D}$. ALPS [12]	1 AMaLGaM IDEA [4]	. BayEDAcG [6]	. BFGS [16]	.4 BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	. DASA [13]	DEPSO [7]	. simple GA [14]	7 iAMaLGaM IDEA [4]	. NELDER (Han) [11]	. NEWUOA [17]	(1+1)-ES[1]	. Monte Carlo [3]	. IPOP-SEP-CMA-ÈS [15]
ICUIOII V			1e-05 1e	81100 84		1			.4					8					
na m			1e-04 1e						4 1					1					
וו וושוו				00062 (•	П	•	٠	ij	•	•	٠	•	œ	•	•	٠	•	•
			1e-03	32000		П			7					12		•		•	
13 814011 61		ıras	1e-02	16500	-	1			1.6					3.1					89e-3/1e4
23, 111 tearies	sion	23 Katsuuras	1e-01	1890	80e-2/1e5	2.5		30e-1/5e3	1	82e-2/1e4	68e-2/6e5		79e-2/1e5	1.1	29e-2/1e4	46e-2/8e3	73e-2/1e6		6.3
$^{\text{L}}$ pest on J :	this value divided by dimension		1e+00	298	150	12	37e-1/2e3	260	4.8	12	92	44e-1/2e3	440	2.3	1	1.8	280	22e-1/1e6	4.9
יונד / דיונ	e divide		1e + 01	0.237	1	1.1	1.1	58	5.6	12	1.5	1.2	1.1	1.1	1.3	7.1	24	1.4	6.2
T CCOOK	nis valu		1e+02	0.025	1	-1	п	1	1	П	1	1	1	1	1		1	П	-
S UIIIC	reach tl		1e + 03	0.025	1	П	П	1	1	П	1	1	1	1	1	-	П	1	П
able 20. 40-D, 1 milling	function evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 24: 40-D, running time excess ERT/ERT_{hort} on f_{24} , in italics is given the median final function value and the median number of

table 24: 40-D, running time excess first $b_{\rm est}$ on J_{24} , in traines is given the inequal runcion value and the inequal runner			$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [12]	AMaLGaM IDEA [4]	BayEDAcG [6]	BFGS [16]	BIPOP-CMA-ES [10]	(1+1)-CMA-ES [2]	DASA [13]	DEPSO [7]	simple GA [14]	iAMaLGaM IDEA [4]	NELDER (Han) [11]	NEWUOA [17]	(1+1)-ES $[1]$	Monte Carlo [3]	IPOP-SEP-CMA-ES $[15]$
value			1e-07	7.51e6		•			1	•		•		٠		•			
unction			1e-05	7.51e6				•	1			٠		٠					
ıımaı			1e-04	7.51e6					1					•					
mearan			1e-03	7.51e6					1			•		٠					
ivell tilvi		trigin	$1e-\widetilde{02}$	7.51e6					1										
S er estr		bi-Ras	1e-01 $1e-02$	7.5e6					1										
n <i>J</i> 24, m na	nension	24 Lunacek bi-Rastrigin	1e+00	2.45e6		42e+0/1e6			1					10e+0/1e6					46e+0/1e4
/ TILL best c	ivided by din		1e+01	1.46e5	91e+0/1e5	17			4.6	-			14e+1/1e5	8. 73.					-
CACCES LILL	this value d		1e+02	296	82	4.2	28e+1/2e3	89e+1/8e3	12	34e+1/1e4	55e+1/1e6	37e+1/2e3	1500	-1	64e+1/1e4	25e+1/9e3	49e+1/1e6	82e+1/1e6	1.5
mg ume	o reach		1e + 03	2.06	5.8	13	15	560	2.3	2.3	3200	9.9	110	9.9	28	1	1700	650	2.3
14016 24. 40-D, 1 ullil.	function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	simple GA	iAMaLGaM IDEA	NELDER (Han)	NEWUOA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [18], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [18], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [18], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [18], pages 2247–2254.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [6] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [18], pages 2281–2286.
- [7] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [18], pages 2231–2238.
- [8] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [9] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [10] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [18], pages 2389–2396.
- [11] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [18], pages 2403–2408.
- [12] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [13] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [18], pages 2295–2302.
- [14] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [18], pages 2473–2478.
- [15] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [18], pages 2435–2440.
- [16] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [18], pages 2409–2414.

- [17] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [18], pages 2421–2428.
- [18] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.