

020802.sequence.ST25

SEQUENCE LISTING

<110> Purdue Research Foundation

Pak, William

Li, Chenjian

Geng, Chaoxian

<120> CALCIUM CHANNEL REGULATORS

<130> 290.00370101

<140> 09/700,869

<141> 2001-07-03

<150> 60/087,368

<151> 1998-05-18

<150> 60/098,072

<151> 1998-08-27

<160> 4

<170> PatentIn version 3.0

<210> 1

<211> 2905

<212> DNA

<213> Drosophila melanogaster

<400> 1

gaattccggcc tgctcacccct gttgctctac atgggcggcg ttagcggcat gggcttgact 60

ctggctgtct actacctgtt catctggat tcacgcgtgc cgccgctgcc cgtgttcaag 120

020802.sequence.ST25

cacacgcac	cgattggcta	ggatcgatg	gctatcattt	agtttagccat	ccatctccca	180
gcgacatca	tgaccggaat	tggataaaat	tgtgataccc	gagaaaatag	ccattcgct	240
cctgaactca	tcggaagtga	ccgcggagca	gttctacaag	cacatcctcg	agcagtaccg	300
catcctcagc	cacatgcaac	agcagcgcca	gcaactgctg	cagcgccaac	atctccaact	360
gcagcagctg	gaggcaaaca	atcgcttcca	ggaggtctt	gccacggcca	ccatcattca	420
ggcacatccg	catccccatc	cacatcccag	ggagccgccc	aagaagccgc	ttttaggacc	480
atatacgccg	caacccggca	acataagtca	cgctatgggt	ggtgatcagt	tggatgcaga	540
aacggaacag	ggtcacatgc	ctctaattcct	ggatacctca	ccgcccgtcg	aagtaaccgg	600
aatgggtcac	ctgaagcgga	agacacatcg	cggtaactac	aaacatcata	gagcccgagc	660
cggtgtcaa	aagaaactgt	ccattgccaa	ttcgatggcc	agctccacgc	cgagcaccac	720
agccggagga	gatgcgtcaa	tggccactgc	ggccactttg	ccacatggtt	atatggacgc	780
tccactaaat	ccggcggcag	gaaccattgt	ccaggcacca	caactgcagc	tatacacctc	840
gatgccatt	ccactgatcc	tgagtcccag	cgacgaaaag	cgtccttcgc	accacgccc	900
cggacatgtc	catggcgaga	ggcggAACGG	ggcgcaatcc	ggcggccggc	gaaggaccac	960
gacggcatcg	gtttctggct	acgaggcgca	gacctacctc	aatccgttcc	tcaccggcga	1020
gctgatcttc	gagaagtaag	ggactgcacc	cagatcagga	aacgtcgccg	ttcatttttt	1080
ttttttttt	tttttttttta	atgcatgtag	agggatatac	actacagtca	agatcgaaat	1140
tggagattag	ctcatagaaa	tggtaactgc	ccaagaaca	aaaaaaagaaa	tgactaaca	1200
atgggcaata	ataccctcaa	taccttgtca	tacctatttgc	aatggagaaa	taactcagtt	1260
aagctcagta	ctggcataag	catggggaaa	atatttcaat	taatcagttc	gagtagatat	1320
gttttccaaa	ttgatagcga	tattagacat	ttcatattga	aatttacagg	tacaaatata	1380
atctcagtt	atgcgtagaa	tgcgttgca	attgaacaaa	tttaacgttt	tatagcaaga	1440
acttaggaac	aaaagttgt	atcgcttatt	ctataataat	gttaactaaa	gccaaagcaa	1500
gtagatcggt	tgtataactc	atttctgcta	tagataagtc	ttgacttgc	tcaagtactga	1560
gctataaatt	ggtccatata	tacgtagcca	ggcctggcca	catatagagg	ttaataaaacg	1620
ttatgtactg	caaaggata	gttgaacca	tagctaaacg	atagtcgt	taccaaccac	1680
actccactcc	aatccaatcc	aatccaatcc	actcaaatac	attcaaaaca	acacactcgt	1740
aaggcacaca	cactcacgca	taatacggga	cccacttcag	tagaaagtca	cacgatatca	1800
gcgatcacgg	atcacgaatt	acggatcag	gaatacgtat	cacggatcac	acaggcgct	1860
cacccacca	agctcagcag	caaactcacc	ccacctagga	cactgcttcc	aggcagctag	1920
cgaacgctac	accaactaca	ataattagcc	aaccctagag	taatcagttt	accagtaaac	1980
agtaaccagt	aactagtaac	caattaccaa	ttaccagtaa	cccatccaag	gagtataccc	2040

020802.sequence.ST25

cccttgcaaa	cgggaaagcg	gataaatgtc	actagaattc	agcatcatca	gattgaatca	2100
cacacaatcc	tagtcgcctc	acgcgaagag	aactatgtca	tgatcagata	tcggtgtatg	2160
cattctatat	tatgtacttc	gaaatatgtta	atttattaag	tttcgctat	acttttcatt	2220
caaattggca	aaaaccaatt	caaaggaaaa	caatatttc	gaaaagcatt	ttaggcttc	2280
tatgtaacgt	atgttttca	aacaaaat	tagtttga	aactttatta	tcggataaac	2340
aaatgtaaagc	caaattacaa	cgttatgat	actccaaaga	ttcgactat	aaagtggcct	2400
aaaaatagct	gacgcattag	ccataggcgc	ttcgcttctc	aagataaaac	ctggcgtgc	2460
tcaactcaag	aacaaatatg	tggttatata	catatataca	tatatgggc	atataaccga	2520
tgtgtacgt	gacattggct	cgttctattc	acataactaa	acactaaatg	caaacctatc	2580
aaaaaccaac	tacactaagc	gaaaagcggc	agagatagtt	aaggaaagtg	gtcaagagag	2640
gacgagagag	agagagagag	aaagtgaaag	tgaaagggag	agatagtaaa	actgcacatcg	2700
catccaaaga	cacgagaatt	gaattcatca	ataataacat	acgtataaac	gatatgcata	2760
cgtatagaa	ttgaatctgt	aactgatggg	catataccgc	atatatatct	tatataccgc	2820
atatatctta	tatatgtata	ccaagaaaaa	caaagtctt	tggcaataat	aaagcatagc	2880
aaacaacaat	aaaaaaaagg	aattc				2905

<210> 2

<211> 3112

<212> DNA

<213> Drosophila melanogaster

<400> 2	gaattgtgtt	cagttcggttc	gaagaggcgg	ttacgggtgc	gattggccac	ctttttccat	60
	atcgcttggg	tcattcagca	cattctcgaa	ataaataaga	agcggcataa	tgagcggacc	120
	gtcggcactg	atggccaatc	tggccgatgt	ggtcaaggag	gccaaaggatg	aggagatccc	180
	gatgccaaa	tcgaatgact	tcttcgagtc	caagacccctc	cgcttgctca	ccctgatgct	240
	ctacatgggc	ggcgtagcg	gcatgggctt	gactctggct	gtctactacc	tgttcatctg	300
	ggattcacgc	atgccgcccgc	tgccctgttt	caagcacacg	catccgattt	gctaggatcg	360
	gatggctatc	attagtttag	ccatccatct	cccagcgaca	tcagtgaccg	gaattggata	420
	aaattgtat	acccgagaaaa	atagccattc	gcctcctgaa	ctcatcgaa	gtgaccgcgg	480
	agcagttcta	caagcacatc	ctcgagcagt	accgcattct	cagccacatg	caacagcagc	540
	gccagcaact	gctgcagcgc	caacatctcc	aactgcagca	gctggaggca	aacaatcgct	600

020802.sequence.ST25

tccaggaggt	cttgccacg	gccaccatca	ttcaggcaca	tccgcattcc	catccacatc	660
ccagggagcc	gccccagaag	ccgcTTTtag	gaccatatag	cccgcAACCC	ggcaacataa	720
gtcacgctat	gggtggtgat	cagttggatg	cagaaacgga	acagggtcac	atgcctctaa	780
tcctggatac	ctcaccGCCG	gtcgaaagtAA	ccggaatggg	tcacctgaag	cggaagacac	840
atcgcggtca	ctacaaacat	catagagCCC	gagCCGGTGG	tcaaaagaaa	ctgtccattg	900
ccaattcgat	ggccagCTCC	acgCCGAGCA	ccacAGCCG	aggagatgcg	tcaatggCCA	960
ctgCGGCCAC	tttggccacat	ggttatATGG	acgCTCCACT	aaatCCGGCG	gcaggaacca	1020
tttgtccaggc	accacaactg	cagctataca	cctcgatGCC	cattCCACTG	atcctgagTC	1080
ccagcgacga	aaagcgtcct	tcgcaccacg	cccacggaca	tgtccatGGC	gagaggcggA	1140
acggggcgcA	atccGGCGGC	cggcgaagga	ccacgacggc	atcggttct	ggctacgagg	1200
cgcagaccta	cctcaatCCG	tttctcaccg	gcgagctgat	cttcgagaag	taagggactg	1260
caccCAGATC	aggaaacgTC	gcggttcatt	gttttttttt	tttttttttt	tttaatgcat	1320
gtagagggat	atacactaca	gtcaagatcg	gaattggaga	ttagctcata	gaaatggtaa	1380
ctgcccAAGA	aacaaaaaaa	gaaatgacta	acaaatggc	aataataccc	tcaatacTT	1440
gtcataccta	tttgaatggA	gaaataactc	agttaagCTC	agtactggca	taagcatgg	1500
gaaaatattt	caattaatca	gttcgagtag	atatgtttc	caaattgata	gCGatattAG	1560
acatttcata	ttgaaatttA	caggtacaaa	tataatctca	gttaatgcgt	agaatgcgtt	1620
tgcaattgaa	caaatttaac	gttttatAGC	aagaacttag	gaacaaaagt	tgtaatcgct	1680
tattctataa	taatgttaac	taaAGCCAAA	gcaagttagat	cggttgtata	actcatttct	1740
gctatagata	agtcttgact	tgtatcagta	ctgagctata	aattggtcca	tatatacgtA	1800
gccaggcctg	gccacatata	gaggtaata	aacgttatgt	actgcAAAG	gatagttgaa	1860
accatagcta	aacgatagTC	gatgtaccaa	ccacactCCA	ctccaatCCA	atccaatCCA	1920
atccactcaa	atcaattcaa	aacaacacac	tcgtAaggGA	cacacactca	cgcataatac	1980
gggaccCact	tcagtagaaa	gtcacacgat	atcagcgtac	acggatcAcg	aattacggat	2040
cacggAAatac	gtatCACGGA	tcacacAGGC	ggctcacCTC	accaagCTCA	gcagcaaACT	2100
cacCCcacCT	aggacactgc	ttccaggcag	ctagcgaacg	ctacaccaac	tacaataatt	2160
agccaaccCT	agagtaatca	gtttaccagt	aaacagtaac	cagtaactag	taaccaatta	2220
ccaattacca	gtAACCCATC	caaggagtat	acCCCCCTTG	caaACGGGGa	agcggataaaa	2280
tgtcactaga	attcagcAtc	atcagattga	atcacacaca	atcctagtCG	cctcacgcga	2340
agagaactat	gtcatgatca	gatATCGGTG	tatgcattct	atattatgtA	cttcgaaata	2400
tgtAATTAT	taagTTTcG	ctataCTTT	cattcaaatt	ggcaaaaacc	aattcaaagg	2460
ttttcaatat	tttgcAAAAG	catttttaggc	tttctatgtA	acgtatgttt	ttcaaacaaa	2520

020802.sequence.ST25

atattagttt ttgaaacttt attatcgat aaacaaatgt aagccaaatt acaacgtta	2580
tgatactcca aagattcgca ctataaagtgc gcctaaaaat agctgacgca ttagccatag	2640
gcgcttcgct tctcaagata aaacctggc gtgctcaact caagaacaaa tatgtggtta	2700
tatacatata tacatatatg gggcatataa ccgatgttg acgtgacatt ggctcggtct	2760
attcacatac ttaaacacta aatgcaaacc tatcaaaaac caactacact aagcgaaaag	2820
cggcagagat agttaaggaa agtggtcaag agaggacgag agagagagag agagaaagtg	2880
aaagtgaaag ggagagatag taaaactgca tctgcatacca aagacacgag aattgaattc	2940
atcaataata acatacgtat aaacgatatg catacgatata agaattgaat ctgttaactga	3000
tggcatata ccgcatatat atcttatata ccgcatatat cttatataatg tataccaaga	3060
aaaacaaagt catttggcaa taataaagca tagcaaacaa caataaaaaaa aa	3112

<210> 3

<211> 241

<212> PRT

<213> Drosophila melanogaster

<400> 3

Met Gln Gln Gln Arg Gln Gln Leu Leu Gln Arg Gln His Leu Gln Leu	
1 5 10 15	

Gln Gln Leu Glu Ala Asn Asn Arg Phe Gln Glu Val Phe Ala Thr Ala	
20 25 30	

Thr Ile Ile Gln Ala His Pro His Pro His Pro Arg Glu Pro	
35 40 45	

Pro Lys Lys Pro Leu Leu Gly Pro Tyr Ser Pro Gln Pro Gly Asn Ile	
50 55 60	

Ser His Ala Met Gly Gly Asp Gln Leu Asp Ala Glu Thr Glu Gln Gly	
65 70 75 80	

His Met Pro Leu Ile Leu Asp Thr Ser Pro Pro Val Glu Val Thr Gly	
85 90 95	

Met Gly His Leu Lys Arg Lys Thr His Arg Gly His Tyr Lys His His	
100 105 110	

Arg Ala Arg Ala Gly Gly Gln Lys Lys Leu Ser Ile Ala Asn Ser Met	
115 120 125	

Ala Ser Ser Thr Pro Ser Thr Ala Gly Gly Asp Ala Ser Met Ala	
130 135 140	

Thr Ala Ala Thr Leu Pro His Gly Tyr Met Asp Ala Pro Leu Asn Pro	
145 150 155 160	

020802.sequence.ST25

Ala Ala Gly Thr Ile Val Gln Ala Pro Gln Leu Gln Leu Tyr Thr Ser
165 170 175

Met Pro Ile Pro Leu Ile Leu Ser Pro Ser Asp Glu Lys Arg Pro Ser
180 185 190

His His Ala His Gly His Val His Gly Glu Arg Arg Asn Gly Ala Gln
195 200 205

Ser Gly Gly Arg Arg Arg Thr Thr Ala Ser Val Ser Gly Tyr Glu
210 215 220

Ala Gln Thr Tyr Leu Asn Pro Phe Leu Thr Gly Glu Leu Ile Phe Glu
225 230 235 240

Lys

<210> 4

<211> 241

<212> PRT

<213> Drosophila melanogaster

<400> 4

Met Gln Gln Gln Arg Gln Gln Leu Leu Gln Arg Gln His Leu Gln Leu
1 5 10 15

Gln Gln Leu Glu Ala Asn Asn Arg Phe Gln Glu Val Phe Ala Thr Ala
20 25 30

Thr Ile Ile Gln Ala His Pro His Pro His Pro Arg Glu Pro
35 40 45

Pro Lys Lys Pro Leu Leu Gly Pro Tyr Ser Pro Gln Pro Gly Asn Ile
50 55 60

Ser His Ala Met Gly Gly Asp Gln Leu Asp Ala Glu Thr Glu Gln Gly
65 70 75 80

His Met Pro Leu Ile Leu Asp Thr Ser Pro Pro Val Glu Val Thr Gly
85 90 95

Met Gly His Leu Lys Arg Lys Thr His Arg Gly His Tyr Lys His His
100 105 110

Arg Ala Arg Ala Gly Gly Gln Lys Lys Leu Ser Ile Ala Asn Ser Met
115 120 125

Ala Ser Ser Thr Pro Ser Thr Thr Ala Gly Gly Asp Ala Ser Met Ala
130 135 140

Thr Ala Ala Thr Leu Pro His Gly Tyr Met Asp Ala Pro Leu Asn Pro
145 150 155 160

Ala Ala Gly Thr Ile Val Gln Ala Pro Gln Leu Gln Leu Tyr Thr Ser
165 170 175

020802.sequence.ST25

Met Pro Ile Pro Leu Ile Leu Ser Pro Ser Asp Glu Lys Arg Pro Ser
180 185 190

His His Ala His Gly His Val His Gly Glu Arg Arg Asn Gly Ala Gln
195 200 205

Ser Gly Gly Arg Arg Arg Thr Thr Thr Ala Ser Val Ser Gly Tyr Glu
210 215 220

Ala Gln Thr Tyr Leu Asn Pro Phe Leu Thr Gly Glu Leu Ile Phe Glu
225 230 235 240

Lys