Data Mining Tasks

Classification Algorithms

- Nearest Neighbor
- Naïve Bayes
- Decision Tree

...

An Example

Whether a customer is likely to purchase a computer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

A Decision Tree for "Buys Computer"

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong to <u>the same</u> <u>class</u> y_t
 - then t is a **leaf** node labeled as y_t
 - If D_t is an <u>empty set</u>,
 - then t is a **leaf** node labeled as the default class y_d (e.g., Cheat=No)
 - If D_t contains records that belong to <u>more than</u> one class,
 - then use an attribute test to split the data into smaller subsets
 - Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Nominal Attributes

- Nominal attributes provide enough information to distinguish one object from another (e.g., zip codes, ID, gender)
- Multi-way split: Use as many partitions as distinct values.

 Binary split: Divides values into two subsets - need to find optimal partitioning.

Splitting Ordinal Attributes

- The values of an ordinal attribute provide enough information to **order** objects (e.g., rankings, grades, height)
- Multi-way split: Use as many partitions as <u>distinct</u> values.

Binary split: Divides values into two subsets - need to find optimal partitioning

Splitting Continuous Attributes

- Different ways of handling
 - Discretization to form an <u>ordinal categorical</u> attribute

- Binary Decision: (A < v) or (A ≥ v)</p>
 - consider <u>all possible splits</u> and finds the **best** cut

Splitting Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting:

10 records of class C0, and

10 records of class C1

Assume **C0**: bad loan (default) and **C1**: good loan (pay)

Which test condition is the best?

- Greedy approach:
 - Prefers nodes with homogeneous class distribution
 - Need a measure of node impurity/heterogeneity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous

High degree of impurity

Homogeneous

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Misclassification error
- Entropy

Measure of Impurity: GINI

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j=1}^{n_c} [p(j \mid t)]^2$$
 (NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

Minimum

- when <u>all records belong to one class</u>
- Impurity = 0.0
- implying most interesting information

Maximum

- when <u>records are equally distributed among all classes</u>
- Impurity = $1 1/n_c$ (n_c :number of classes)
- implying least interesting information

4

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

Goal: Minimize this weighted average impurity measure

Binary Attributes: Computing GINI

- Šplits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$
$$= 0.408$$

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$
$$= 0.32$$

	N1	N2							
C1	5	1							
C2	2	4							
Gini=0.371									

Gini(Children)

Categorical Attributes: Computing Gini Index

- For each distinct value
 - gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType											
	Family	Sports	Luxury										
C1	1	2	1										
C2	4	1	1										
Gini		0.393											

Two-way split (find best partition of values)

		CarType								
		{Sports, Luxury}	{Family}							
C1		3	1							
C2	2	2	4							
Gir	ni	0.400								

	CarType									
	{Sports}	{Family, Luxury}								
C1	2	2								
C2	1	5								
Gini	0.419									

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 - = Number of distinct values

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- Sort the attribute on values
- Split positions are identified by taking <u>midpoints</u> between two adjacent values 55, 65, 72, ...
- Scan these values, each time updating the count matrix and computing gini index
- Choose the split position that has the <u>least gini index</u>

Sorted Values
Split Positions

Cheat		No		No)	N	0	Ye	s	Yes		Yes		N	lo N		No N		No		No	
•	Taxable Income																					
	60		60 70		70		5	85		90		9	95 100		00	0 120		125		220		
	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
	<=	>	<=	>	<=	>	<=	^	\=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini 0.420		0.4	100	0.3	375	0.3	343	0.417		7 0.400		0.300		0.343		0.3	375	75 0.4		00 0.420		

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node
 - Minimum
 - when <u>all records belong to one class</u>
 - Impurity = 0.0
 - implying most interesting information

4

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Tree Induction

- Greedy strategy
 - Split the records based on an attribute test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria

- Stop expanding a node when <u>all the records</u> belong to the <u>same class</u>
- Stop expanding a node when <u>all the records</u> <u>have similar attribute values</u>
- But sometimes, early termination!
 - To avoid overfitting!

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by **noise** point

Notes on Overfitting

- An induced tree may overfit the training data
 - Too many branches (complex tree)
 - Some may reflect noise or outliers
 - Poor accuracy for unseen samples
 - Training error no longer provides a good estimate

How to Address Overfitting

- Stop the algorithm before creating fully-grown tree!
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - 2. Stop if all the attribute values are the same
 - More <u>restrictive</u> conditions:
 - Stop if number of instances is <u>less than some user-specified</u> threshold
 - 2. Stop if expanding the current node <u>does not improve impurity</u> <u>measures</u> (e.g., Gini).

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets