AA203 Optimal and Learning-based Control

CoV extensions, NOC for optimal control

Roadmap

• Let $\mathbf{x}:\mathbb{R}\to\mathbb{R}^n$ be a vector-valued function, where each component x_i is in the class of functions with continuous first derivatives. It is desired to find the function \mathbf{x}^* for which the functional

$$J(\mathbf{x}) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

has a relative extremum

- Assumptions:
 - $g \in C^2$
 - t_0 and $\mathbf{x}(0)$ are fixed
 - t_f might be fixed or free, and each component of $\mathbf{x}(t_f)$ might be fixed or free
- Reading:
 - D. E. Kirk. *Optimal Control Theory: An Introduction*, 2004.

Regardless of the boundary conditions, the Euler equations

$$g_{\mathbf{x}}(\mathbf{x}^*(t),\dot{\mathbf{x}}^*(t),t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t),\dot{\mathbf{x}}^*(t),t) = \mathbf{0}$$

must be satisfied

Regardless of the boundary conditions, the Euler equations

$$g_{\mathbf{x}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t), \dot{\mathbf{x}}^*(t), t) = \mathbf{0}$$

must be satisfied

The required boundary conditions are found from the equation

$$g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)^T \delta \mathbf{x}_f + \left[g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)^T \dot{\mathbf{x}}^*(t_f) \right] \delta t_f = 0$$

by making the "appropriate" substitutions for $\delta \mathbf{x}_f$ and δt_f

- $\delta \mathbf{x}_f$ and δt_f capture the notion of "allowable" variations at the end point, thus $\delta t_f = 0$ if the final time is fixed, and $\delta x_i(t_f) = 0$ if the end value of state variable $x_i(t_f)$ is fixed
- For example, suppose that t_f is fixed, $x_i(t_f)$, i=1,...,r are fixed, and $x_j(t_f)$, j=r+1,...,n are free. Then the substitutions are:

$$\delta t_f = 0$$
 $\delta x_i(t_f) = 0, \qquad i = 1, ..., r$
 $\delta x_j(t_f)$ arbitrary, $j = r + 1, ..., n$

Problem description	Substitution	Boundary conditions	Remarks
1. $\mathbf{x}(t_f)$, t_f both specified (<i>Problem 1</i>)	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$	2n equations to determine 2n constants of integration
2. $\mathbf{x}(t_f)$ free; t_f specified (Problem 2)	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$	2n equations to determine 2n constants of integration
3. t_f free; $\mathbf{x}(t_f)$ specified (Problem 3)	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)$ $- \left[\frac{\partial g}{\partial \dot{\mathbf{x}}} (\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) \right]^T \dot{\mathbf{x}}^*(t_f) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
4. t_f , $\mathbf{x}(t_f)$ free and independent (Problem 4)		$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
5. t_f , $\mathbf{x}(t_f)$ free but related by $\mathbf{x}(t_f) = \mathbf{\theta}(t_f)$ (Problem 4)	$\delta \mathbf{x}_f = \frac{d\mathbf{\theta}}{dt}(t_f)\delta t_f \dagger$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{\theta}(t_f)$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)$ $+ \left[\frac{\partial g}{\partial \dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)\right]^T \left[\frac{d\mathbf{\theta}}{dt}(t_f) - \dot{\mathbf{x}}^*(t_f)\right] = 0\dagger$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f

Example

- Determine the smooth curve of smallest length connecting the point x(0) = 1 to the line t = 5
 - Solution: x(t) = 1

CoV extension II: constrained extrema

• Let $\mathbf{w}: \mathbb{R} \to \mathbb{R}^{n+m}$ be a vector-valued function, where each component w_i is in the class of functions with continuous first derivatives. It is desired to find the function \mathbf{w}^* for which the functional

$$J(\mathbf{w}) = \int_{t_0}^{t_f} g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) dt$$

has a relative extremum, subject to the constraints

$$f_i(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) = 0, \qquad i = 1, ..., n$$

- Assumptions:
 - $g \in C^2$
 - t_0 and $\mathbf{w}(0)$ are fixed

CoV extension II: constrained extrema

- Because of the n differential constraints, only m of the n+m components of ${\bf w}$ are independent
- Constraints of this type may represent the state equation constraints in optimal control problems where \mathbf{w} corresponds to the n+m vector $\mathbf{w}=[\mathbf{x},\mathbf{u}]^T$
- Similar to the case of constrained optimization, define the augmented integrand function

$$g_a(\mathbf{w}(t), \dot{\mathbf{w}}(t), \mathbf{p}(t), t) := g(\mathbf{w}(t), \dot{\mathbf{w}}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{w}(t), \dot{\mathbf{w}}(t), t)$$

Lagrange multipliers (now functions of time!), the "costate"

CoV extension II: constrained extrema

• A necessary condition for optimality is then

$$\frac{\partial g_a}{\partial \mathbf{w}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) - \frac{d}{dt} \frac{\partial g_a}{\partial \dot{\mathbf{w}}}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), \mathbf{p}^*(t), t) = \mathbf{0}$$
 along with

$$\mathbf{f}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), t) = \mathbf{0}$$

- That is, to determine the necessary conditions for an extremal we simply form the augmented integrand g_a and write the Euler equations as if there were no constraints among the functions $\mathbf{w}(t)$
- Note the similarity with the case of constrained optimization!

The variational approach to optimal control

Roadmap:

- We will first derive necessary conditions for optimal control assuming that the admissible controls are not bounded
- Next, we will heuristically introduce Pontryagin's Minimum Principle as a generalization of the fundamental theorem of CoV
- Finally, we will consider special cases of problems with bounded controls and state variables

Necessary conditions for optimal control (with unbounded controls)

 The problem is to find an admissible control u* which causes the system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

to follow an *admissible trajectory* **x*** that minimizes the *functional*

$$J(\mathbf{u}) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

• Assumptions: $h \in C^2$, state and control regions are unbounded, t_0 and $\mathbf{x}(0)$ are fixed

Necessary conditions for optimal control (with unbounded controls)

• Define the Hamiltonian

$$H(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq g(\mathbf{x}(t), \mathbf{u}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

• The necessary conditions for optimality (proof to follow) are

$$\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \qquad \text{for all } t \in [t_0, t_f]$$

$$\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

with boundary conditions

$$\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f + \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0$$

Necessary conditions for optimal control

(with unbounded controls)

Problem	Description	Substitution in Eq. (5.1-18)	Boundary-condition equations	Remarks
t _f fixed	1. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$	2n equations to determine 2n constants of integration
	2. $\mathbf{x}(t_f)$ free	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) - \mathbf{p}^*(t_f) = 0$	2n equations to determine 2n constants of integration
	3. $\mathbf{x}(t_f)$ on the surface $\mathbf{m}(\mathbf{x}(t)) = 0$	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) - \mathbf{p}^*(t_f) = \sum_{i=1}^k d_i \left[\frac{\partial m_i}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) \right]$ $\mathbf{m}(\mathbf{x}^*(t_f)) = 0$	$(2n + k)$ equations to determine the $2n$ constants of integration and the variables d_1, \ldots, d_k
t _f free	4. $\mathbf{x}(t_f) = \mathbf{x}_f$ specified final state	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f
	5. $\mathbf{x}(t_f)$ free		$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f) = 0$ $\mathcal{H}(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine the $2n$ constants of integration and t_f

Interlude: Pontryagin's minimum principle (with bounded controls)

• Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are (H is the Hamiltonian)

$$\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$for all to the formula of the fo$$

along with the boundary conditions:

$$\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f + \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0$$

Necessary conditions for optimal control (with unbounded controls)

- Necessary conditions consist of a set of 2n, first-order, differential equations (state and costate equations), and a set of m algebraic equations (control equations)
- The solution to the state and costate equations will contain 2n constants of integration
- To obtain values for the constants, we use the n equations $\mathbf{x}(t_0) = \mathbf{x}_0$, and an additional set of n (or n+1) equations from the boundary conditions
- Once again: 2-point boundary value problem

Example

Find optimal control u(t) to steer the system

$$\ddot{x}(t) = u(t)$$

from x(0) = 10, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0$, $\dot{x}(t_f) = 0$, and to minimize

$$J = \frac{1}{2}\alpha t_f^2 + \frac{1}{2}\int_{t_0}^{t_f} b \, u^2(t)dt, \quad \alpha, b > 0$$

(note: the final time t_f is free)

Example

Find optimal control u(t) to steer the system

$$\ddot{x}(t) = u(t)$$

from x(0) = 10, $\dot{x}(0) = 0$ to the origin $x(t_f) = 0$, $\dot{x}(t_f) = 0$, and to minimize

$$J = \frac{1}{2}\alpha t_f^2 + \frac{1}{2}\int_{t_0}^{t_f} b \, u^2(t)dt, \quad \alpha, b > 0$$

• Solution: optimal time is

$$t_f = \left(\frac{1800b}{\alpha}\right)^{1/5}$$

Necessary conditions for optimal control (with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality conditions are $(H = g + \mathbf{p}^T \mathbf{f})$ is the Hamiltonian)

$$\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t) \qquad \text{for all } t \in [t_0, t_f]$$

$$\mathbf{0} = \frac{\partial H}{\partial \mathbf{u}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

along with the boundary conditions:

$$\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f + \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0$$

- For simplicity, assume that the terminal penalty is equal to zero, and that t_f and $\mathbf{x}(t_f)$ are fixed and given
- Consider the augmented cost function $g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) \coloneqq g(\mathbf{x}(t), \mathbf{u}(t), t) + \mathbf{p}(t)^T [\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \dot{\mathbf{x}}(t)]$ where the $\{p_i(t)\}$'s are Lagrange multipliers
- Note that we have simply added zero to the cost function!
- The augmented cost function is then

$$J_a(\mathbf{u}) = \int_{t_0}^{t_f} g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), \mathbf{u}(t), \mathbf{p}(t), t) dt$$

On an extremal, by applying the fundamental theorem of the CoV

On an extremal, by applying the fundamental theorem of the CoV

By the CoV theorem $= \frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t) = -\frac{d}{dt}(-\mathbf{p}^*(t))$ $0 = \delta J_{a}(\mathbf{u}) = \int_{t_{0}}^{t_{f}} \left(\left[\frac{\partial g_{a}}{\partial \mathbf{x}} (\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) - \frac{d}{dt} \frac{\partial g_{a}}{\partial \dot{\mathbf{x}}} (\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{x}(t) + \left[\frac{\partial g_{a}}{\partial \mathbf{u}} (\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{u}(t) + \left[\frac{\partial g_{a}}{\partial \mathbf{p}} (\mathbf{x}^{*}(t), \dot{\mathbf{x}}^{*}(t), \mathbf{u}^{*}(t), \mathbf{p}^{*}(t), t) \right]^{T} \delta \mathbf{p}(t) dt$ $= \mathbf{f}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) - \dot{\mathbf{x}}^*(t)$

Considering each term in sequence,

- $\mathbf{f}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) \dot{\mathbf{x}}^*(t) = \mathbf{0}$, on an extremal
- The Lagrange multipliers are arbitrary, so we can select

them to make the coefficient of
$$\delta \mathbf{x}(t)$$
 equal to zero, that is
$$\dot{\mathbf{p}}^*(t) = -\frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t) - \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), t)^T \mathbf{p}^*(t)$$

• The remaining variation $\delta \mathbf{u}(t)$, is independent, so its coefficient must be zero; thus

$$\frac{\partial g}{\partial \mathbf{u}}(\mathbf{x}^*(t),\mathbf{u}^*(t),t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{x}^*(t),\mathbf{u}^*(t),t)^T \mathbf{p}^*(t) = \mathbf{0}$$

By using the Hamiltonian formalism, one obtains the claim

Necessary conditions for optimal control (with bounded controls)

- So far, we have assumed that the admissible controls and states are not constrained by any boundaries
- However, in realistic systems, such constraints do commonly occur
 - control constraints often occur due to actuation limits
 - state constraints often occur due to safety considerations
- We will now consider the case with control constraints, which will lead to the statement of the Pontryagin's minimum principle

Why do control constraints complicate the analysis?

By definition, the control u* causes the functional J
to have a relative minimum if

$$J(\mathbf{u}) - J(\mathbf{u}^*) = \Delta J \ge 0$$

for all admissible controls "close" to u*

• If we let $\mathbf{u} = \mathbf{u}^* + \delta \mathbf{u}$, the increment in J can be expressed as

$$\Delta J(\mathbf{u}^*, \delta \mathbf{u}) = \delta J(\mathbf{u}^*, \delta \mathbf{u}) + \text{higher order terms}$$

- The variation $\delta {\bf u}$ is arbitrary only if the extremal control is strictly within the boundary for all time in the interval $[t_0,t_f]$
- In general, however, an extremal control lies on a boundary during at least one subinterval of the interval $[t_0,t_f]$

Why do control constraints complicate the analysis?

- As a consequence, admissible control variations $\delta \mathbf{u}$ exist whose negatives $(-\delta \mathbf{u})$ are not admissible
- This implies that a necessary condition for \mathbf{u}^* to minimize J is $\delta J(\mathbf{u}^*, \delta \mathbf{u}) \geq 0$

for all admissible variations with $\|\delta \mathbf{u}\|$ small enough

Pontryagin's minimum principle

• Assuming bounded controls $\mathbf{u} \in U$, the necessary optimality conditions are (H is the Hamiltonian)

$$\dot{\mathbf{x}}^*(t) = \frac{\partial H}{\partial \mathbf{p}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$\dot{\mathbf{p}}^*(t) = -\frac{\partial H}{\partial \mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t), t)$$

$$for all to the equation of the equa$$

along with the boundary conditions:

$$\left[\frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), t_f) - \mathbf{p}^*(t_f)\right]^T \delta \mathbf{x}_f + \left[H(\mathbf{x}^*(t_f), \mathbf{u}^*(t_f), \mathbf{p}^*(t_f), t_f) + \frac{\partial h}{\partial t}(\mathbf{x}^*(t_f), t_f)\right] \delta t_f = 0$$

Additional necessary conditions

1. If the final time is fixed and the Hamiltonian does not depend explicitly on time, then

$$H(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t)) = c$$
 for all $t \in [t_0, t_f]$

If the final time is free and the Hamiltonian does not depend explicitly on time, then

$$H(\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}^*(t)) = \mathbf{0}$$
 for all $t \in [t_0, t_f]$

Next time

- Notable applications of PMP
- Intro to dynamic programming