Communication Networks I

L3 Network Layer - Fundamentals

Prof. Dr.-Ing. **Ralf Steinmetz** KOM - Multimedia Communications Lab

Overview

- 1 Introduction
- 2 Functions (in) the Network Layer
- 3 Types of Switching
 - 3.1 Circuit Switching
 - 3.2 Message Switching
 - 3.3 Packet Switching Datagram
 - 3.4 Virtual Circuit Switching
 - 3.5 Comparison
- **4 Services: Concepts**
 - 4.1 Service: Connection Oriented

Communication

- 4.2 Service: Connectionless Communication
- 5 Routing Overview
 - 5.1 Routing: Foundations & Forwarding
 - 5.2 Broadcast and Multicast Routing

6 Congestion Control - Basics

- 7 Congestion Control Avoidance
 - 7.1 Traffic Shaping with Leaky Bucket
 - 7.2 Traffic Shaping with Token Bucket
 - 7.3 Avoidance by Reservation: Admission Control
 - 7.4 Avoidance by Isarithmic Congestion Control
- **8 Congestion Control Reaction and Correction**
 - 8.1 Packet Dropping Buffer Assignment Methods
 - 8.2 Choke Packets
 - 8.3 Fair Queuing
 - 8.4 Random Early Detection (RED)
- 9 Addressing Overview
 - 9.1 X.121 Addressing
 - 9.2 OSI Addressing
 - 9.3 Internet Addresses (IP)

1 Introduction

Data transfer from end system to end system

- Several hops, (heterogeneous) subnetworks
- Compensate for differences between end systems during transmission

Relevance of the interface: switching vs. transport service

- L1 up to L1,L2+L3: organization: carrier
- From L4 onward: user/customer/company

The provided services are

- Standardized for end systems
- Independent from network technology
- Independent from number, type and topology of the subnetworks

SUBNETWORKS (IS 7498):

A multitude of one or several intermediary systems that

- provide switching functionalities
- through which open end systems can establish network connections

Primary tasks

- Providing virtual circuits and datagram transmissions
- Routing
- Congestion control
- Internetworking providing transitions between networks
- Addressing
- Quality of Service (QoS)
 - example: bandwidth, delay, error rate
 - negotiate costs vs. quality of service to be provided

Secondary tasks, based on type service and request

- Multiplexing of network connections
- Fragmentation and reassembling
- Error detection and correction
- Flow control as a means to correct congestion
- Maintaining the sequence

Required knowledge

- Subnetwork topology
- Address / localization of the end system
- Packet / data stream communication requirements (Quality of Service)
- Network status (utilization,...)

Examples

- X.25 (ISDN, ...)
- Internet protocol IP (TCP/IP,..)

Nomenclature:

Layer	Data Entity	
Transport	•••	
Network	Packet	
Data Link	Frame	
Physical	Bit/Byte (bit stream)	

3 Types of Switching

Circuit switching

switching a physical connection

Message switching

message is stored and passed on by one hop

Packet switching

store-and-forward, but transmissions packets limited in size

Switching by virtual circuit

packets (or cells) over a pre-defined path

3.1 Circuit Switching

Principle

Connection (actually) exists physically for the duration of the conversation

Refers to

- Switching centers
- Connections between switching centers (frequency spectrum, dedicated ports)

Implementation examples

- Historically: on switching boards
- Mechanical positioning of the dialers
- Setting coupling points in circuits
- Early alternative at Broadband-ISDN: STM (Synchronous Transfer Mode)

- Connection has to occur before transmission
- Establishing a connection takes time
- Resource allocation too rigid (possibly waste of resources)
- Once connection is established it cannot be blocked anymore

3.2 Message Switching

Principle

- All data to be sent are treated as a "message"
- "Store and forward" network:
- In each node the message is handled as follows:
 - accepted
 - 2) treatment of possible errors
 - 3) stored
 - 4) forwarded (as a whole to the next node)

Example

Early telegram service

- High memory requirements at the node (switching centers),
 - because message may be of any size
 - usually stored on secondary repository (hard disk)
- Node may be used to its full capacity over a longer period of time by one message,
 - i. e. better if packets are of limited size (packet switching)

3.3 Packet Switching - Datagram

Examples

- Old Datex-P Service
- Internet

Principle

- Packets of limited size
- Dynamic route search (no connect phase)
- No dedicated path from source to destination

- Possibly only reservation of average bandwidth (static reservation)
- Possibility of congestion
- High utilization of resources

3.4 Virtual Circuit Switching

Principle

- Setup path from source to destination for entire duration of call
- Using state information in nodes but no physical connection
- Connection setup: defines data path
- Messages: as in packet switching
 - all follow ONE path
 - but (may) have only the address of the network entry point, not the destination address, e.g., ATM: VPI/VCI

Examples

- ATM (Asynchronous Transfer Mode) PVC (permanent virtual circuit)
 - established "manually" (similar to dedicated lines)
- ATM SVC (switched virtual circuit)
 - signaling: connect and disconnect corresponding to the telephone network
- Internet Integrated Services
 - state established via signaling protocol (RSVP)
 - full addresses are used

- All messages of a connection are routed over the same pre-defined data path, i.e., sequence is maintained
- It is easier to ensure Quality of Service (see also ATM)

Implementation Virtual Circuit

Connection set-up phase

- Select a path
- Intermediate systems (IS) store path information
- Network reserves all resources required for the connection

Data transfer phase: all packets follow the selected path

- Packet contains VC_number identification of connection, but no address information
- IS uses the stored path information to determine the successor

Disconnect phase

- Network forgets the path
- Releases reserved resources

Implementation Virtual Circuit

End systems allocate

VC-identifiers (VC-numbers) independently

Problem:

The same VC-identifiers may be allocated to different paths

Solution: to allocate VC-numbers for virtual circuit segments

- IS differentiates between incoming and outgoing VC-number
 - 1. IS receives incoming VC-number in CONNECT.ind
 - 2. IS creates outgoing VC-number (unique between IS and successor(IS))
 - 3. IS sends outgoing VC-number in CONNECT.req

Implementation Virtual Circuit

Example:

3.5 Comparison

Comparison: Circuit and Packet Switching

Circuit switching

- Connection establishment can take a long time
- Bandwidth is reserved
 - no danger of congestion
 - possibly poor bandwidth utilization (burst traffic)
- Continuous transmission time, because all data is transmitted over the same path
- Price calculation based on duration of connection

Packet switching

- Connect phase not absolutely necessary
- Dynamic allocation of bandwidth
 - danger of congestion
 - optimized bandwidth utilization
- Varying transmission time
 - because packets of a connection may use different paths
 - not suitable for isochronous data streams
- Price calculation based on transfer volume

Datagram vs. Virtual Circuit: A Comparison

Virtual circuit: destination address defined by connection

- + Packets contain short VC-number only
- + Low overhead during transfer phase
- + "Perfect" channel throughout the net
- + Resource reservation: "Quality of Service" guarantees possible
- Overhead for connection setup
- Memory for VC tables and state information needed in every IS
- Sensible to IS and link failures
- Resource reservation: potentially poor utilization

Datagram: IS routing table specifies possible path(s)

- + No connection setup delay
- + Less sensible to IS and link failures
- + Route selection for each datagram: quick reaction to failures
- Each packet contains the full destination and source address
- Route selection for each datagram: overhead
- QoS guarantees hardly possible

Types of Switching: Applicability

Circuit switching

- Telephone system
- Until now minor usage for computer networks, but various multimedia applications require isochronous data streams

Packet switching

- Used frequently for computer networks
- A bit more difficult for voice transmissions

Message switching

- Seldom used for computer systems
 - complex storage management (secondary storage)
 - "blockage" because of large messages

Virtual circuit switching

- Integrated services
- Voice transmission

4 Services: Concepts

Concepts

Connection oriented vs. connectionless communication

Connection oriented

- Error free communication channel
- Usually error control: L3 (or network)
 - flow control, ...
- Usually duplex communication
- More favorable for real-time communications
- Telephone and telecommunication companies:
 - X.25, ATM, in mobile systems

Connectionless

- Unreliable communication
- Hardly any error control: left to L4 or higher layers
 - maintaining sequence not ensured, ...
- Simplex communication
- More favorable for simple data communication:
 - SEND-PACKET, RECEIVE-PACKET
- Internet community: IP

4.1 Service: Connection Oriented Communication

Properties

- 3-phase interaction
 - 1) connect
 - 2) data transfer
 - 3) disconnect

- Allows for QUALITY OF SERVICE NEGOTIATION
 - e.g., throughput, error probability, delay
- (Typically) RELIABLE COMMUNICATION in both directions
 - no loss, no duplicates, no modification
 - ensures maintenance of the correct sequence of transmitted data
- FLOW CONTROL
- Relatively complex protocols

Example

Telephone service

4.2 Service: Connectionless Communication

Properties

- Network transmits packets as ISOLATED UNITS (datagram)
- UNRELIABLE COMMUNICATION:
 - loss, duplication, modification, sequence errors possible
- No flow control
- Comparatively SIMPLE PROTOCOLS

Example

Mail delivery service

Services: Comparison of Concepts

Arguments pro a connection oriented service

- Simple, powerful paradigm
- Simplification of the upper layers (L4 L7)
- Relieves end systems
- For some applications efficiency in time is more important than error-free transmission
 - e.g. real-time applications, digital voice transmission)
 - suitable for a wide range of applications

Arguments pro a connectionless service

- High flexibility and low complexity
- Costs for connects and disconnects are high for transaction oriented applications
- Easier to optimize the network load
- Compatibility and costs: IP common
- "END-TO-END ARGUMENTS" (Saltzer et al.):
 - secure communication requires error control within the application
 - but error control in one layer can replace the error control in the layer underneath it

Services of Layer 3 and their Implementations

		Service (upper layer/s)	
		Connectionless	connection-oriented
L3 Implementation	Datagram	typically: UDP via IP	TCP via IP
	Virtual circuit	UDP/IP via ATM	typically: ATM AAL1 via ATM

ISO IS 8348 Network Service Definition

2 Service classes

- Connection-oriented Network Service (CONS)
- Connectionless-mode Network Service (CLNS)

Implementations

- Virtual circuit
- Datagram

Comment: service does not equal implementation!

5 Routing – Overview

Task of routing

- Comp. A wants to send message to B
- A and B are both part of a larger network
- To find a route (path)
 - Through the network from A to B
- Belongs to Network Layer
 - (layer 3 in OSI model)

End systems Intermediate systems Subnetworks

Routing algorithm determines the path

- Network consists of
 - End systems and
 - Routers
- Router runs routing algorithm and forward packets to the right nodes
 - Defines on which outgoing line an incoming packet will be transmitted
- Given the network, routing algorithm finds a "good" path from A to B
 - "Good" typically means "lowest cost"

Different networks have different routing algorithms

Internet uses several routing algorithms "simultaneously"

5.1 Routing: Foundations & Forwarding

Distinction

- Routing: to take a decision which route to use
- Forwarding: to define what happens when a packet arrives

5.2 Broadcast and Multicast Routing

Terminology

Unicast: 1:1 communication

Multicast: 1:n communication

Broadcast: 1:all communication

Multicast Routing

Multicast Definition

Unicast: 1:1 communication

Multicast: 1:n communication

Tasks

- To send data to a group of end systems
- One-time sending instead of multiple sending
- To maintain the overall load at a low level

Sender Receiver Receiver

Results

- To lower load in the network
- To lower load at the sender

Precondition: group addressing

- Group membership may change, managed for example by
 - Internet Group Management Protocol (IGMP)
 - Group management (create, destroy, join, leave)
 - Somehow related protocols for session maintenance
 - Session Description Protocol (SDP)
 - Session Announcement Protocol (SAP)
 - Session Initiation Protocol (SIP)

6 Congestion Control - Basics

If too much traffic is offered

- Congestion occurs
- Performance degrades

Reasons for congestion, among others

- IS too slow for routing algorithms
- Incoming traffic overloads outgoing lines

Congestions tend to amplify themselves

Example:

IS drops packet due to congestion

- → Packet has to be retransmitted
- → Additional bandwidth used
- → Sender cannot release the buffer
- → Additional tying up of resources

Congestion control vs. Flow control			
managed by subnet (L3)	concatenated point-to-point (L2)		
global issue	more an end-to-end issue		
if possible, avoid from the beginning	reduce effects		
may use flow control			

Congestion Control - Basics

General methods of resolution

- To increase capacity
- To decrease traffic

Strategy 1: to avoidance

- Traffic shaping, leaky bucket, token bucket, reservation (multicast), isarithmic congestion control
- Flow control (not discussed herein)

Strategy 2: to repair

Drop packets, choke packets, hop-byhop choke packets, fair queuing,...

i.e. Taxonomy according to Yang/Reedy 1995

1. Open loop

- To avoid (before congestion happens)
 - Initiate countermeasures at sender
 - Initiate countermeasures at receiver

2. Closed loop

- To repair
 - Explicit feedback: packets are sent from the point of congestion
 - Implicit feedback: source assumes that congestion occurred due to other effects

Congestion Control Mechanisms

Congestion Avoidance

- Principle: Appropriate communication system behavior and design
- Policies at various layers can affect congestion

Congestion Repair / Correction

- Principle: No resource reservation
- Necessary steps
 - 1. to detect a congestion
 - 2. to introduce appropriate procedures for reduction

7 Congestion Control - Avoidance

Principle: appropriate communication system behavior and design

Policies at various layers can affect congestion

Data link layer

- Flow control
- Acknowledgements
- Error treatment / retransmission / FEC

Network layer

- Datagram (more complex) vs. virtual circuit (more procedures available)
- Packet queuing and scheduling in IS
- Packet dropping in IS (including packet lifetime)
- Selected route

Transport layer

- Basically the same as for the data link layer
- But some issues are harder (determining timeout interval)

Avoidance by Traffic Shaping

Motivation

- Congestion is often caused by bursts
- Bursts are relieved by smoothening the traffic (at the cost of a delay)

Application

- "Traffic shaper" smoothens extremely fluctuating traffic
- Differentiated services, Integrated services
 - traffic classification and prioritization

→ Procedure

- To negotiate the traffic contract beforehand (e.g., flow specification)
- The traffic is shaped by the end device
 - average rate and
 - burstiness

Note

- Sliding window
 - refers only to packets
 - does not refer to rate
- Trade-off:
 - loss of cells/packets
 - vs. delay

7.1 Traffic Shaping with Leaky Bucket

Principle

- Continuous outflow
- Congestion corresponds to data loss
- 1986: Turner

Bucket size determines maximum capacity until overflow (drop/loss) and possible delay

Another possibility is (*r*, *T*) shaping:

- Frames of T bits (system-wide), fraction r assigned per connection
- Within interval T, sender may not send more than r bits
- If "current packet" would exceed r, wait until next interval

Implementation

- Easy if packet length stays constant
- Example

Leaky Bucket (and Token Bucket)

Simulates

Leaky Bucket algorithm

See KN-1 Wiki and

Source: Prof. Dr. Carsten Vogt, FH Köln

http://www.nt.fh-koeln.de/fachgebiete/inf/vogt/mm/buckets/buckets.html

7.2 Traffic Shaping with Token Bucket

Principle

- Permit a certain amount of data to flow off for a certain amount of time
- Controlled by "tokens"
- Number of tokens limited

Implementation

- Add tokens periodically until maximum has been reached
- Remove token depending on the length of the packet (byte counter)

→ Comparison

- Leaky Bucket
 - max. constant rate (at any point in time)
- Token Bucket
 - permits a limited burst

(Leaky Bucket and) Token Bucket

Simulates

Token Bucket algorithm

See KN-1 Wiki and

Source: Prof. Dr. Carsten Vogt, FH Köln

http://www.nt.fh-koeln.de/fachgebiete/inf/vogt/mm/buckets/buckets.html

7.3 Avoidance by Reservation: Admission Control

Principle

- Prerequisite: virtual circuits
- Reserving the necessary resources (incl. buffers) during connect
- If buffer or other resources not available
 - alternative path
 - desired connection refused

Example

- Network layer may adjust routing based on congestion
- When the actual connect occurs

Avoidance by Buffer Reservation

Principle: buffer reservation

Implementation variant: Stop-and-Wait protocol

One buffer per IS and connection (simplex, VC=virtual circuit)

Implementation variant: Sliding Window protocol

■ *m* buffer per IS and (simplex-) connection (*m* corresp. to the window size)

Properties

- Congestion not possible
- Buffers remain reserved, even if there is no data transmission for some periods
- → usually only with applications that require low delay & high bandwidth
 - e. g. digital voice transmission

Avoidance by Reservation: Multicast and Time Guarantees

Reservation protocols

- Resource Reservation Protocol (RSVP)
- Stream Type Protocol Version 2 (ST-2)

Searching for the most ideal IS to connect to an multicast group

Example

7.4 Avoidance by Isarithmic Congestion Control

Principle

- Limiting the number of packets in the network by assigning "permits"
 - Amount of "permits" in the network
 - A "permit" is required for sending
 - when sending: "permit" is destroyed
 - when receiving: "permit" is generated

Problems

- Parts of the network may be overloaded
- Equal distribution of the "permits" is difficult
- Additional bandwidth for the transfer of "permits" necessary
- Bad for transmitting large data amounts (e.g. file transfer)
- Loss of "permits" hard to detect

8 Congestion Control – Reaction and Correction

Principle: no resource reservation

Necessary steps

- 1. to detect a congestion
- 2. to introduce appropriate procedures for reduction

Packet Dropping

Principle: incoming packet is dropped, if it cannot be buffered

Preconditions for

- Datagram:
 - no preparations necessary
- Connection-oriented service:
 - packet will be buffered until receipt has been acknowledged

... Buffer assignment methods

8.1 Packet Dropping - Buffer Assignment Methods

1. Permanent buffers per incoming line

But, e.g.

- If an ACK would have to be discarded
- ACK may have been required to release buffer
 - → critical

Packet Dropping - Buffer Assignment Methods

2. Maximum number of buffers per output line

- Example: packet dropped despite there are free lines
- Heuristic rule [Irland]

$$m = \frac{k}{\sqrt{s}}$$

m: max. number of buffers per output line

k: total number of buffers

s: number of output lines

lines

3. Minimal number of buffers per output line

Line cannot be starved

2. + 3. : Example ARPANET

A combination of 2) and 3)

Packet Dropping - Buffer Assignment Methods

4. Content-related dropping: relevance

- Reference
 - data connection as a whole
 - single data packets
 - from one end system to another end system
- Examples
 - WWW document: images vs. text and structural information
 - File transfer:
 - old packets more important than new ones
 - → algorithm to initiate correction process should start as late as possible
- Implementation of priorities in virtual circuits or datagrams

Packet Dropping

Properties

Very simple

But

- retransmitted packets waste bandwidth:
- packet has to be sent x times before it is accepted, with

$$x = \frac{1}{1 - p}$$

p: probability that packet will be dropped

Optimization necessary to reduce the wastage of bandwidth

Dropping packets that have not gotten that far yet

8.2 Choke Packets

Principle

Reduce traffic during congestion by telling source to slow down

Proedure for Intermediate Station (IS):

- Each outgoing line (OL) has one variable : utilization
- Calculating utilization u ($0 \le u \le 1$):
 - IS checks line usage f periodically ($f \in [0; 1]$)
 - $u = a * u_{previous_value} + (1 a) * f$
 - $0 \le a \le 1$: constant determining to what extent "history" is taken into account
- *u* > *threshold*: OL changes to condition "warning"
- Send CHOKE PACKET to source (indicating destination)
- Tag packet (to avoid further choke packets from down stream IS) and forward it

Procedure for source

- Source receives the choke packet and reduces the data traffic to the destination in question by X₁%
- Source recognizes 2 phases: (gate time so that the algorithm can take effect)
 - Ignore: source ignores further Choke packets
 - Listen: source listens if more Choke packets are arriving

Yes \rightarrow further reduction by $X_2\%$; go to Ignore phase

No → increase the data traffic

Choke Packets

Enhancements

- Varying choke packets depending on state of congestion
 - warning
 - acute warning
- Instead of utilization u use
 - queue length
 - **-**

Properties

- Effective procedure
- But
 - possibly many choke packets in the network, even if 'Choke bits' may be included in the data at the senders to minimize reflux
 - end systems (ES) can (but do not have to) adjust the traffic
 - superimposed by mechanisms
 - L2 flow control, ...
 - L4 TCP, ...

Choke Packets: Hop-by-Hop Choke Packets

Principle: reaction to Choke packets already at IS (not only at ES)

Example

8.3 Fair Queuing

Background

- End system ES which adapts itself to the traffic should not be disadvantaged
 - Adapting by e.g., Choke-Packet algorithm

Principle

- At the IS on each outgoing line (of the IS) each ES receives its own queue
- Packet sending based on Round-Robin always one packet of each queue (sender)

Enhancement "FAIR QUEUING WITH BYTE-BY-BYTE ROUND ROBIN"

- Adapt Round-Robin to packet length
- But weighting is not taken into account

Enhancement "WEIGHTED FAIR QUEUING"

- Favoring (statistically) certain traffic
- Criteria variants in relation to
 - VPs (virtual paths)
 - service specific (individual quality of service)
 - etc.

8.4 Random Early Detection (RED)

Idea

- Congestion should be attacked as early as possible
- Some transport protocols (e.g., TCP) react to lost packets by rate reduction

IS drops some packets before congestion is significant (i.e., early)

- → gives time to react
- Dropping starts when moving avg. of queue length exceeds threshold
 - small bursts pass through unharmed
 - only affects sustained overloads
 - packet drop probability is a function of mean queue length
 - prevents severe reaction to mild overload

RED; can MARK PACKETS INSTEAD OF DROPPING THEM

- Allows sources to detect network state without losses
- Improves performance of a network of cooperating TCP sources
- No bias against bursty sources
- Controls queue length regardless of endpoint cooperation

9 Addressing - Overview

3 types of identifiers: Names, Addresses and Routes [Shoch 78]

"The NAME of a resource indicates WHAT we seek, an ADDRESS indicates WHERE it is, and a ROUTE says HOW TO GET THERE."

Objectives

- Global addressing concept for ES
- Simplified address allocation
- Addresses independent from
 - type and topology of the subnetworks
 - number and type of the subnetworks to which the ES have been connected
 - location of a source ES

9.1 X.121 Addressing

CCITT/ITU "numbering scheme"

- Addressing concept for public data networks
- A.o., used by X.25

X.121 address

- A maximum of 14 digits
- Consisting of
 - Data Network Identification Code (4 digits)
 - Data Country Code (digits 1 3)
 - Network Identification (digit 4)
 - Network Terminal Number (max. 10 digits)

Example:

DCC for USA: 310 - 329, i. e. max. 200 networks

DCC for Tonga: 539, i. e. max. 10 networks

9.2 OSI Addressing

Objective

Global addressing concept for both existing and new subnetworks

Situation: different concepts exist for

- Public networks:
 - X.121: data networks
 - F.69: telex
 - E.163: telephone network
 - E.164: ISDN, ...
- Private networks

→ i.e., a flexible and expandable concept is necessary

OSI method: unique Network Service Access Point (NSAP) identification OSI method: hierarchic addresses

- OSI defines the ADDRESSING DOMAINS
- The domain contains the ADDRESSING AUTHORITY
- Addressing Authority
 - allocates addresses
 - creates new domains and delegates authority

OSI Addressing

Graphic representation of the domain hierarchy

A domain may be

- networks of one type
- networks of a geographical region
- networks of an organization
- **-** ...

OSI Addressing: Structure

Address length: 20 bytes (binary) or 40 digits

Address structure

IDP DSP

- Initial Domain Part (IDP) with
 - AUTHORITY AND FORMAT IDENTIFIER (AFI)
 - specifies how to interpret the IDI (syntax and semantics)
 - e.g. the format of the DSP (binary or digits)

IDI Format	DSP SYNTAX		
	Decimal	Binary	
X.121	36	37	
ISO DCC	38	39	
F.69	40	41	

Character	National Character	
50	51	

- INITIAL DOMAIN IDENTIFIER(IDI)
 - Identifies the Addressing Authority (AA),
 responsible for ALLOCATING THE NSAP ADDRESSES
 - identifies the domain
- Domain Specific Part (DSP)
 - contains the address clearly identifying the ES within the domain

9.3 Internet Addresses (IP)

Global addressing concept for ES (and IS) in the Internet

- 32 bit address (amount is limited!)
- Each address is unique worldwide
- Structure: Net-ID (Subnet-ID), ES-ID

overall 4 byte (32 bit)				
1 7		24		
0 Network	Host			
11	14 16			
1 0 Ne	etwork Host		ost	
111	21		8	
1 1 0	Network		Host	
1111	28			
1 1 1 0	Multicast address			
11111	28			
1 1 1 1 0	reserved for future use			

Internet Addresses (IP)

Notation

Decimal value for each byte (0...255)

Subdivided by dots

■ Value range: 0.0.0.0 ... 255.255.255.255

Formats: 5 classes

A: 1.0.0.0 up to 127.255.255.255

B: 128.0.0.0 up to 191.255.255.255

C: 192.0.0.0 up to 223.255.255.255

D: 224.0.0.0 up to 239.255.255 (Multicast)

E: 240.0.0.0 up to 247.255.255.255

Broadcast addresses: (convention: 11...1 for Host-ID)

Internet Addresses (IP)

Address allocation

- Class allocation and network range:
 - by a central authority
 - Network Information Center NIC
- End system
 - local
 - possibly forming a subnetwork

Example

Internet Addresses (IP): A Critical Review

Addresses IDENTIFIY "NETWORK CONNECTIONS", not the ES

- "Multi-homed" ES have more than one address
- A change of the connection forces the modification of the address
- The address has an impact on the chosen route (constitutes a problem in the mobile area)

Example: A cannot reach B via address I5 if G fails

Comment: is also valid for X.121

Amount of addresses

Limited

Internet Addresses - IPv6

IP Version 6 (IPv6)

■ 16 byte length (instead of 4 byte length, i.e. approx. 3 x 10³⁸)

Distribution

- Provider-based: approx. 16 mio. companies distribute addresses
- Geographic-based: distribution as it is today
- Link, site-used: address relevant only locally (security, Firewall concept)

E. g. new: Anycast

- Sending data to an individual of a group
- E. g., the one who is geographically the closest