Similarità di sottografi nelle reti complesse

Gaspare Ferraro

Relatori prof. Roberto Grossi prof. Andrea Marino

Università di Pisa Dipartimento di Informatica

Pisa, 1 dicembre 2017

II problema

Reti complesse

Sei gradi di separazione

"Ho letto che ognuno di noi su questo pianeta è separato dagli altri solo da sei persone. Sei gradi di separazione tra noi e tutti gli altri su questo pianeta [...] una tortura cinese essere così vicini ma dover trovare sei persone giuste per il collegamento."

Ouisa Kittredge, Six Degrees of Separation

In facebook la separazione media tra gli 1.6 miliardi di utenti registrati è 3.57. Fonte: facebook research. Feb 2016

La distanza media di collaborazioni dall'attore Kevin Bacon è 3, il 98% degli attori è a distanza minore uguale a 6. Fonte: IMDb, Ott 2017

n-grammi e reti etichettate

Indici di similarità

Il problema

Applicazioni pratiche

In facebook la separazione media tra gli 1.6 miliardi di utenti registrati è 3.57. Fonte: facebook research. Feb 2016

La distanza media di collaborazioni dall'attore Kevin Bacon è 3, il 98% degli attori è a distanza minore uguale a 6.

Fonte: IMDb, Ott 2017

Approcci di risoluzione

Ricerca esaustiva

Complessità

- Tempo: $O(|V|^q) \to \operatorname{Color} \operatorname{Coding} \to O(2^{O(q)} |V|)$
- Spazio: $O(|\Sigma|^q \ q) \to \mathsf{Sampling} \to O(\tau q)$

Color Coding

Sketching & Sampling

F-Count

F-Samp

Baseline

Risultati pratici

Color Coding

Tempi di esecuzione e memoria occupata

Dataset	q	Tempo	Memoria
NETINF	13	0.39s	11.20MiB
NetInf	14	0.81s	22.63MiB
NETINF	15	1.66s	45.21MiB
NetInf	16	3.47s	90.93MiB
IMDB	3	48.22s	17.94MiB
IMDB	4	105.94s	34.91MiB
IMDB	5	241.22s	69.01MiB
IMDB	6	557.48s	137.26MiB

Scalabilità al variare dei cores usati

Query

					Tempi (in ms)		
Dataset	q	A	B	r	F-Count	F-Samp	Base
NETINF	3	100	100	1 000	20	4	2
NETINF	3	100	100	5 000	60	30	15
NETINF	5	100	100	1 000	2682	426	3
NETINF	5	100	100	5 000	4767	784	20
NETINF	7	100	100	100	5455	4	2
NETINF	7	100	100	200	16 634	197	2
IMDB	3	10	10	100	5035	66	1
IMDB	4	10	10	100	/	443	8
IMDB	5	10	10	100	/	781	12
IMDB	6	10	10	100	/	1 379	14 M

Tempi per il calcolo dell'indice di Bray-Curtis $r={\sf Dimensione}$ del campione

ϵ -approssimazione

Confronto a parità di livello di approssimazione ϵ

		F-COUNT		F-SAMP			BASE			
q	ϵ	r	Т	VAR	r	Т	VAR	r	Т	VAR
3	0.20	2	1	0.0725	400	1	0.1194	420	1	0.1150
3	0.10	3	1	0.0692	1000	1	0.0601	900	1	0.1338
3	0.05	4	1	0.0535	3200	1	0.0273	1500	1	0.1025
4	0.20	3	2	0.0677	1300	1	0.1194	1300	1	0.2424
4	0.10	5	4	0.0532	3200	2	0.0992	2500	2	0.1806
4	0.05	10	8	0.0518	8 000	4	0.0612	7 900	3	0.1081
5	0.20	5	6	0.0511	5000	4	0.1678	6000	3	0.2234
5	0.10	10	18	0.0370	20000	12	0.0745	30 000	8	0.1234
5	0.05	20	58	0.0204	80 000	30	0.0376	/	/	/

Dati riferiti all'indice di Bray-Curtis su NETINF

Dimensione sottografi |A| = |B| = 100

r = Dimensione del campione

T = Tempo medio elaborazione (in millisecondi)

VAR = Varianza indici

Nella pratica

Attore/Attrice	Attore/Attrice	BC index	FJ index
Stan Laurel	Oliver Hardy	0.936167	0.774053
Robert De Niro	Al Pacino	0.730935	0.231474
Woody Allen	Meryl Streep	0.556071	0.222857
Meryl Streep	Roberto Benigni	0.482909	0.160181

 $\operatorname{IMDB},$ Similarità tra ego-network di attori famosi (F-Samp)

Sito	Sito	BC index	FJ index
Stan Laurel	Oliver Hardy	0.936167	0.774053
Robert De Niro	Al Pacino	0.730935	0.231474
Woody Allen	Meryl Streep	0.556071	0.222857
Meryl Streep	Roberto Benigni	0.482909	0.160181
		'	

NETINF, Similarità tra siti di informazione (F-Samp)

Conclusioni

F-Count

Pro:

- Accurato anche con campioni di piccole dimensioni
- Varianza ridotta

Contro:

- Lento su grafi di elevate dimensioni
- Preprocessing grafo (una volta sola)

F-Samp

Pro:

- Efficiente anche in grafi di elevate dimensioni
- Varianza ridotta

Contro:

- Necessita di campioni di grandi dimensioni
- Preprocessing grafo (una volta sola)

Base

Pro:

Efficiente anche in gradi di elevate dimensioni

Contro:

- Varianza elevata
- Necessita di campioni di grandi dimensioni

Fine

Grazie per l'attenzione

