Non-linear gap penalties

Waterman-Smith-Beyer (1976) Gotoh (1982)

Rolf Backofen

Lehrstuhl für Bioinformatik Institut für Informatik Albert-Ludwigs-Universität Freiburg

Course Bioinformatics I

built on November 24, 2020

 Observation: gaps are different in nature - given a fixed number of gaps, a "small number of long gaps" is biologically "" " number of small gaps"

- Observation: gaps are different in nature given a fixed number of gaps, a "small number of long gaps" is biologically likelier +h- number of small gaps"
- **Problem:** with linear gap score not distinguishable:

$$score \left(\begin{array}{c} AAA--- \\ --TTT \end{array} \right) = score \left(\begin{array}{c} A-A-A- \\ -T-T-T \end{array} \right)$$

- Observation: gaps are different in nature given a fixed number of gaps, a "small number of long gaps" is biological "" number of small gaps"
- **Problem:** with linear gap score not distinguishable:

$$score \left(\begin{array}{c} AAA--- \\ --TTT \end{array} \right) = score \left(\begin{array}{c} A-A-A- \\ -T-T-T \end{array} \right)$$

• **Solution:** use explicit gap function $g: \mathbb{N}^+ \to \mathbb{R}$

Gaps

- Observation: gaps are different in nature given a fixed number of gaps, a "small number of long gaps" is biologically likelier than a "big number of small gaps"
- **Problem:** with linear gap score not distinguishable:

$$score \begin{pmatrix} AAA--- \\ ---TTT \end{pmatrix} = score \begin{pmatrix} A-A-A- \\ -T-T-T \end{pmatrix}$$

- **Solution:** use explicit gap function $g: \mathbb{N}^+ \to \mathbb{R}$

$$\Rightarrow$$
 Wanted: gap cost $g(2) + g(3) + g(1)$ < $(2+3+1)*g(1)$

Gaps

- Observation: gaps are different in nature given a fixed number of gaps, a "small number of long gaps" is biologically likelier than a "big number of small gaps"
- **Problem:** with linear gap score not distinguishable:

$$score \begin{pmatrix} AAA--- \\ --TTT \end{pmatrix} = score \begin{pmatrix} A-A-A- \\ -T-T-T \end{pmatrix}$$

- **Solution:** use explicit gap function $g: \mathbb{N}^+ \to \mathbb{R}$

translates to - - ATTTGTalignment scores ⇒ distinguishable length 1

$$\Rightarrow$$
 Wanted: gap cost $g(2) + g(3) + g(1) \leq (2+3+1)*g(1)$

gap score difference

A gap penalty is a function $g: \mathbb{N}^+ \to \mathbb{R}$ that is subadditive, i.e.,

$$\forall k,l: g(k+l) \leq g(k) + g(l).$$

A gap penalty is a function $g: \mathbb{N}^+ \to \mathbb{R}$ that is subadditive, i.e.,

$$\forall k,l: g(k+l) \leq g(k) + g(l).$$

$$g(k) = \alpha + \beta k^2$$
 not subadditive!
 \Rightarrow unintended behaviour

A gap penalty is a function $g: \mathbb{N}^+ \to \mathbb{R}$ that is subadditive, i.e.,

$$\forall k, l : g(k+l) \leq g(k) + g(l).$$

$$g(k) = \alpha + \beta k^2$$
 not subadditive!
 \Rightarrow unintended behaviour

$$g(k) = \alpha + \beta \ln(k) \sqrt{1}$$

⇒ biologically the best approximation

A gap penalty is a function $g: \mathbb{N}^+ \to \mathbb{R}$ that is subadditive, i.e.,

$$\forall k, l: g(k+l) \leq g(k) + g(l).$$

$$g(k) = \alpha + \beta k^2$$
 not subadditive! \Rightarrow unintended behaviour

$$g(k) = \alpha + \beta \ln(k) \sqrt{}$$

 \Rightarrow biologically the best approximation

$$g(k) = \alpha + \beta k$$

 \Rightarrow affine, very common

Idea: make initiation of gaps more expensive than extension of an existing gap

Definition (Affine gap penalty)

A gap penalty is called affine if there are $\alpha,\beta\in\mathbb{R}$ such that

$$g(k) = \alpha + \beta k$$

- **Now:** How to calculate optimal alignments using a gap function?
- Problem: split like Needleman/Wunsch not working

$$w\begin{pmatrix} A & A & -- \\ -A & G & T \end{pmatrix}$$
$$g(1) + w(A, A) + g(2)$$

- Now: How to calculate optimal alignments using a gap function?
- Problem: split like Needleman/Wunsch not working

$$w\begin{pmatrix} A & A & - \\ - & A & G & T \end{pmatrix} \qquad w\begin{pmatrix} A & A & - \\ - & A & G \end{pmatrix} + w\begin{pmatrix} - \\ T \end{pmatrix}$$
$$g(1) + w(A, A) + g(2) \qquad \neq \qquad (g(1) + w(A, A) + g(1)) + g(1)$$

Solution: more distinctions

■ Substitution: √

Solution: more distinctions

Substitution: √

Delete 1 position:

$$a^{\diamond} = \dots ? | a_i \\ b^{\diamond} = \dots b_i | - \Rightarrow D_{i,j} = D_{\underline{i-1},j} + g(1)$$

Solution: more distinctions

 $a^{\diamond} = \ldots a_i$ $b^{\diamond} = \ldots b_i$

■ Substitution: √

- Delete 1 position:

- Delete 2 positions:

 $\Rightarrow D_{i,j} = D_{i-1,j-1} + w(a_i, b_j)$

 $a^{\diamond} = \dots ? a_{i-1} a_i$ $b^{\diamond} = \dots b_i - - \Rightarrow D_{i,j} = D_{\underline{i-2},j} + \underline{g(2)}$

Theorem (Waterman, Smith, and Beyer (1976))

Let $g: \mathbb{N} \to \mathbb{R}$ be a gap penalty and w be a distance function on $\Sigma \times \Sigma$. Let $a = a_1 \dots a_n$ and $b = b_1 \dots b_m$ be two words in Σ^* . We define $(D_{i,j})$ with $1 \le i \le n$ and $1 \le j \le m$ by

$$D_{0,0} = 0,$$

 $D_{0,j} = g(j),$
 $D_{i,0} = g(i),$

$$D_{i,j} = \min \left\{ \begin{array}{l} \min\limits_{1 \leq k \leq j} \{D_{i,j-k} + g(k)\}, \\ D_{i-1,j-1} + w(a_i, b_j), \\ \min\limits_{1 \leq k \leq i} \{D_{i-k,j} + g(k)\} \end{array} \right\}.$$

Then $D_{i,j} = opt$. prefix alignment score for $a_1 \dots a_i$ and $b_1 \dots b_j$.

- \Rightarrow on average a cell cost O(n) for filling
- \Rightarrow total: $O(n^2)$ space and $O(n^3)$ time

- Example: 2 RNA sequences with $n = 30000 = 3 \cdot 10^4$
 - assume: computer with 1 Ghz
 - $+\ 1$ operation per unit

$$\Rightarrow \frac{27 \cdot 10^{12} \text{ops}}{10^9 \text{ops}/s} = 27 \cdot 10^3 \text{ s}$$
$$/ 3,600 \frac{s}{h}$$
$$\approx 10.5 \text{ h}$$

How much time a *quadratic* algorithm would have taken?

- W-S-B problem: arbitrarily long gaps tested in each step
- Solution: restrict to affine gap penalties $g(k) = \alpha + \beta k$

- W-S-B problem: arbitrarily long gaps tested in each step
- Solution: restrict to affine gap penalties $g(k) = \alpha + \beta k$

Analyzing gap case:

$$a^{\diamond} = \dots \qquad a_i \\ b^{\diamond} = \dots \qquad \Rightarrow \quad \text{look at subcases}$$

- W-S-B problem: arbitrarily long gaps tested in each step
- Solution: restrict to affine gap penalties $g(k) = \alpha + \beta k$

Analyzing gap case:

$$a^{\diamond} = \dots$$
 $a_i \Rightarrow$ look at subcases

$$\begin{array}{ccc}
& \cdots & ? \\
& \cdots & b_j
\end{array} \Rightarrow D_{i,j} = D_{i-1,j} + g(1)$$

- W-S-B problem: arbitrarily long gaps tested in each step
- Solution: restrict to affine gap penalties $g(k) = \alpha + \beta k$

Analyzing gap case:

... analogously for end gaps in a^{\diamond}

- recursion cases: a. no gap $\Rightarrow +w(..)$
 - b. starting a new gap $\Rightarrow +g(1)$ c. elongate an existing gap $\Rightarrow +\beta$
- length of the gap doesn't matter
- ⇒ saving time because:
 - W-S-B: test with all possible gap lengths
 - Gotoh: just add β if a gap is elongated

- \Rightarrow recursion cases: a. no gap $\Rightarrow +w(..)$
 - b. starting a new gap $\Rightarrow +g(1)$ c. elongate an existing gap $\Rightarrow +\beta$
- \Rightarrow length of the gap doesn't matter
- \Rightarrow saving time because:
 - W–S–B: test with all possible gap lengths
 - ullet Gotoh: just add eta if a gap is elongated
 - Comment: if gap penalty is not affine (e.g. $g(k) = \alpha + \beta \cdot \ln(k)$) then

$$D_{i,j} = \star - g(k-1) + g(k)$$

Gotoh's idea

- recursion cases: a. no gap $\Rightarrow +w(..)$ b. starting a new gap $\Rightarrow +g(1)$
 - c. elongate an existing gap $\Rightarrow +\beta$
- length of the gap doesn't matter
- ⇒ saving time because:
 - W-S-B: test with all possible gap lengths
 - Gotoh: just add β if a gap is elongated
 - Comment: if gap penalty is not affine (e.g. $g(k) = \alpha + \beta \cdot \ln(k)$) then $D_{i,i} = \star - g(k-1) + g(k)$

$$= \star -\alpha - \ln(k-1) + \alpha + \ln(k)$$

$$= \star -\alpha - \ln(k-1) + \alpha + \ln(k)$$

- = $\star + \ln(k) \ln(k-1)$ $= \star + \ln(\frac{k}{k-1})$
- $\bullet \Rightarrow$ depends on $k \Rightarrow$ Gotoh's idea doesn't work

Gotoh matrices

- ⇒ further matrices needed
 - $(D_{i,j})$ cost for alignment of prefixes $(a_1 \dots a_i, b_1 \dots b_i)$
 - $(P_{i,i})$ cost for alignment of prefixes $(a_1 \dots a_i, b_1 \dots b_i)$ that ends with a gap in b^{\diamond} (i.e., last column is $\binom{a_i}{-}$))
 - $(Q_{i,i})$ cost for alignment of prefixes $(a_1 \ldots a_i, b_1 \ldots b_j)$ that ends with a gap in a^{\diamond} (i.e., last column is $\begin{pmatrix} -\\b_i \end{pmatrix}$))

- affine gap penalty $g(k)=\alpha+k\beta$; distance function $w:\Sigma\times\Sigma\to\mathbb{R}$ recursive definition of matrices $(D_{i,j}), (P_{i,i})$ and (C_i)

- affine gap penalty $g(k)=\alpha+k\beta$; distance function $w:\Sigma\times\Sigma\to\mathbb{R}$ recursive definition of matrices $(D_{i,j})$, $(P_{i,j})$ and $(P_{i,j})$

$$D_{i,j} = \min \left\{ egin{array}{l} D_{i-1,j-1} + w(a_i,b_j) \ P_{i,j} \ Q_{i,j} \end{array}
ight\},$$

with $i, j \ge 1$, where for $1 \le i \le |a|$ and $1 \le j \le |b|$,

Gotoh (1982)

- affine gap penalty $g(k)=\alpha+k\beta$; distance function $w:\Sigma\times\Sigma\to\mathbb{R}$ recursive definition of matrices $(D_{i,j})$, $(P_{i,j})$ and $(P_{i,j})$

$$D_{i,j}=\min\left\{egin{array}{l} D_{i-1,j-1}+w(a_i,b_j)\ P_{i,j}\ Q_{i,j} \end{array}
ight\},$$
 with $i,i>1$, where for $1\leq i\leq |a|$ and $1\leq i\leq |b|$

with $i, j \ge 1$, where for $1 \le i \le |a|$ and $1 \le j \le |b|$,

$$P_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j} + g(1) \\ P_{i-1,j} + \beta \end{array} \right\}$$

$$Q_{i,j} = \min \left\{ \begin{array}{l} D_{i,j-1} + g(1) \\ Q_{i,j-1} + \beta \end{array} \right\}$$

Gotoh (1982)

- affine gap penalty $g(k)=\alpha+k\beta$; distance function $w:\Sigma\times\Sigma\to\mathbb{R}$ recursive definition of matrices $(D_{i,j})$, $(P_{i,j})$ and $(P_{i,j})$

$$D_{i,j} = \min \left\{ egin{array}{l} D_{i-1,j-1} + w(a_i,b_j) \ P_{i,j} \ Q_{i,i} \end{array}
ight\},$$

with
$$i, j \ge 1$$
, where for $1 \le i \le |a|$ and $1 \le j \le |b|$,

$$P_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j} + g(1) \\ P_{i-1,j} + \beta \end{array} \right\}$$

$$Q_{i,j} = \min \left\{ egin{array}{l} D_{i,j-1} + g(1) \ Q_{i,j-1} + eta \end{array}
ight\}$$

order of calculation: $P_{i,j}$, $Q_{i,j}$ before $D_{i,i}$

 $\begin{array}{cccc} \bullet & D \text{ as usual:} & D_{0,0} & = & 0, \\ & D_{0,j} & = & g(j), \\ & D_{i,0} & = & g(i) \end{array}$

- D as usual: $D_{0,0} = 0$, $D_{0,j} = g(j),$ $D_{i,0} = g(i)$
- P: recursion only on the first index $(P_{i,j} \to P_{i-1,j} \to \ldots \to P_{0,j})$ • hence: only initialization for $P_{0,i} \Rightarrow P_{i,0}$ not used

- D as usual: $D_{0,0} = 0$, $D_{0,j} = g(j),$ $D_{i,0} = g(i)$
- P: recursion only on the first index $(P_{i,j} \to P_{i-1,j} \to \ldots \to P_{0,j})$
 - hence: only initialization for $P_{0,i} \Rightarrow P_{i,0}$ not used
 - **but:** $P_{0,i}$ is best alignment of ϵ and $b_1 \dots b_i$ that ends with gap in $b^{\diamond} \Rightarrow$ the only possible alignment would be:

```
b_1 b_2 \ldots b_{i-1} b_i
          disallowed in alignments!
```

$$\Rightarrow P_{0,j} = \infty$$

- D as usual: $D_{0,0} = 0$, $D_{0,j} = g(j),$ $D_{i,0} = g(i)$
- P: recursion only on the first index $(P_{i,j} \to P_{i-1,j} \to \ldots \to P_{0,j})$
 - hence: only initialization for $P_{0,i} \Rightarrow P_{i,0}$ not used
 - **but:** $P_{0,i}$ is best alignment of ϵ and $b_1 \dots b_i$ that ends with gap in $b^{\diamond} \Rightarrow$ the only possible alignment would be:

Q analogously . . .

- given: a = CC and b = ACCT.
- cost functions:
 - substitutions: $w(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$
 - gap penalty: $g(k) = 4 + k (\beta = 1)$.
- wanted: optimal alignment using Gotoh

			\boldsymbol{A}	C	C	T
$(P_{i,j}) =$		0	$\infty_{\mathbf{A}}$	8	8	8
	C	_	₂ 10			
	C					
	$\overline{}$	ı	ı	ı	ı	ı
$(Q_{i,j}) =$			\boldsymbol{A}	C	C	T
		0	-	-	-	-
	C	∞				
\	C	∞				
			\boldsymbol{A}	C	C	T

$$P_{1,1} = \min \left\{ \begin{array}{ll} D_{1,0} + g(1) & (= 5 + 5 = 10) \\ P_{1,0} + \beta & (= \infty + 1 = \infty) \end{array} \right\}$$

$$= 10$$

$$\begin{split} Q_{1,1} &= \min \left\{ \begin{array}{l} \frac{D_{0,1} + g(1)}{Q_{0,1} + \beta} & (= 5 + 5 = 10) \\ Q_{0,1} + \beta & (= \infty + 1 = \infty) \end{array} \right\} \end{split}$$

$$D_{1,1} = \min \left\{ egin{array}{ll} D_{0,0} + w(C,A) & (=1) \ P_{1,1} & (=10) \ Q_{1,1} & (=10) \end{array}
ight\}$$

$$P_{1,1} = \min \left\{ \begin{array}{l} D_{1,0} + g(1) & (=5+5=10) \\ P_{1,0} + \beta & (=\infty+1=\infty) \end{array} \right\}$$
= 10

$$egin{aligned} Q_{1,1} &= \min \left\{ egin{array}{ll} m{D_{0,1}} + g(1) & (=5+5=10) \ Q_{0,1} + eta & (=\infty+1=\infty) \end{array}
ight\} \ &= 10 \end{aligned}$$
 $D_{1,1} &= \min \left\{ egin{array}{ll} m{D_{0,0}} + w(C,A) & (=1) \ P_{1,1} & (=10) \ Q_{1,1} & (=10) \end{array}
ight\}$

$(P_{i,j}) = -$			\boldsymbol{A}	C	C	T
		0	∞	∞	∞	∞
	C	-	10	11	12	13
	C	_	6	10	11	13

 \boldsymbol{A}

Final matrices

 $(D_{i,j}) = -$

 \boldsymbol{T}

Example - traceback

Final matrices and tracebacks $D \nearrow D \nearrow D \leftarrow Q \leftarrow Q_{\bullet}$

$(P_{i,j}) =$			A	C	C	
		0	∞	∞	∞	∞
	C	_	10	11	12	13
	C	_	6	10	11	13

Final matrices and tracebacks 1. $D \land D \land D \leftarrow Q \leftarrow Q_{\bullet}$

2.
$$D \leftarrow D \leftarrow D \land D \land$$

Example - traceback

2.
$$D \leftarrow D \leftarrow D \land D \land$$

Final matrices and tracebacks

1. $D \land D \land D \leftarrow Q \leftarrow Q_{\bullet}$

- Problem: long gaps are often single evol. events
 - ⇒ linear gap scoring leads to gap distribution
 - ⇒ too high penalty for long gaps (need subadditive gap scoring)

Summary

- Problem: long gaps are often single evol. events
 - ⇒ linear gap scoring leads to gap distribution
 - ⇒ too high penalty for long gaps (need subadditive gap scoring)
- Waterman-Smith-Beyer: optimization with subadditive gap score
 - ⇒ explicit consideration of every gap length
 - \Rightarrow increases runtime complexity to $O(n^3)$ compared to linear gap cost

Summary

- Problem: long gaps are often single evol. events
 - ⇒ linear gap scoring leads to gap distribution
 - ⇒ too high penalty for long gaps (need subadditive gap scoring)
- Waterman-Smith-Beyer: optimization with subadditive gap score
 - ⇒ explicit consideration of every gap length
 - \Rightarrow increases runtime complexity to $O(n^3)$ compared to linear gap cost
- Gotoh: optimization with affine gap score
 - ⇒ distinction of gap start and extension
 - ⇒ auxiliary matrices needed for gap handling
 - \Rightarrow runtime complexity again $O(n^2)$