

United Flight Satisfaction Prediction

Team Members

Michael Crosson

Saaket Joshi

Luke Leon

Quinlan O'Connell

Austin Yeh

Table of Contents

01

Data Context

02

Background Info 03

Exploratory Data Analysis

04

Statistical Learning Models

05

Final Model Selection 06

Conclusion

Data Context

Dataset Focus: Predict if a customer had a satisfactory flight experience

Passenger Age

Average Age: ~ 40 Highest Age: 85 Lowest Age: 7

14 other flight service metrics were ranked from 0-5 by respondents

~ 43% of passengers were classified as "satisfied", while ~ 57% of passengers were classified as "neutral/dissatisfied."

Flight Distance

Average Distance: 1191 miles Farthest: 4983 miles Shortest: 31 miles

Passenger

Class Business Class: 11,462 people

Eco Plus: 1,752 people Economy: 10,765 people

Data Preparation

Missing Values

Removed 80 NA's in Arrival.Delay.in.Minutes

Categorical Predictors

One-hot encoded nominal categorical variables like Gender, Travel Class, etc.

Data Dictionary

Customer Satisfaction - Binary

Binary Variables

- Sex
- Loyal Customer
- Business Travel
- Business Class
- Economy Plus Class

Numerical Variables

- Age
- Flight Distance
- Departure Delay (mins)
- Arrival Delay (mins)

Range Variables (0 - 5 scale)

- Inflight Wifi Service
- Convenience of Arrival Time
- Ease of Online Booking
- Gate Location
- Food and Drink
- Online Boarding
- Seat Comfort
- Inflight Entertainment
- Onboard Service
- Leg Room Service
- Baggage Handling
- Check in Service
- Inflight Service
- Cleanliness

Market Size

Problem

United Airlines continues to funnel a variety of passengers through their planes. Customers each have a different satisfaction level, depending on how they view the experience.

How can they make sure this experience is consistent across the company?

Question

Can we predict customer satisfaction on **United Airline** Flights?

Continuous (Age)

Continuous (Flight Distance)

Range Variables PT. 1

Range Variables PT. 2

Corr. Matrix (Filtered)

Highly Correlated Predictors

Highly Correlated Predictors

Highly Correlated Predictors

Models Used

KNN Model

Key considerations

- 10-Fold Validation on K from 5 to 13
 - o Optimal K was 7
- Lowest AUC & accuracy → established as baseline model

	Not Satisfied	Satisfied	
Not Satisfied	2601	1037	
Satisfied	749	1593	Accuracy 70.13%

Logistic Regression Model

Key considerations

- Use of LASSO
 - Optimal alpha was 0.8
 - o Optimal lamba 0.003268
- Trained on full model

	Not Satisfied	Satisfied	
Not Satisfied	3060	456	
Satisfied	290	2174	Accuracy 87.53%

Single Tree

Key considerations

- Trained w/o:
 - o 10-fold validation
 - Pruning
- Baseline for tree models
- Performed surprisingly well
- Very high number of false positives (costly errors)

	Not Satisfied	Satisfied	
Not Satisfied	2906	270	
Satisfied	444	2360	Accuracy 88.06%

Boosting Model

Key considerations

- Use of gradient boosting classifier
- Bernoulli distribution for binary classification tasks

	Not Satisfied	Satisfied	
Not Satisfied	3110	285	
Satisfied	240	2345	Accuracy 91.22%

BART Model

Key considerations

- lbart function → used for classification tasks
- Extremely lengthy runtime
- Lowest value of false positives between all models (the more costly prediction)

	Not Satisfied	Satisfied	
Not Satisfied	3257	189	
Satisfied	93	2441	Accuracy 95.28%

® UNITED

Bagging Model

Key considerations

- No parameter tuning for "treebag" method
- Highest number of classified "True Positives"

	Not Satisfied	Satisfied	
Not Satisfied	3249	174	
Satisfied	101	2456	Accuracy 95.40%

Model Comparison

Final Model Analysis

Final Model → **Bagging Model**

Actual

		Not Satisfied	Satisfied	
	Not isfied	3249	174	
Sat	isfied	101	2456	Accuracy 95.40%

Top predictors:

- Traveling for Business
- Online boarding Satisfaction
- Wifi service and entertainment

		Overall
	ClassBusiness1	100.000
	Online.boarding	94.443
	Business.Travel1	91.774
	Inflight.wifi.service	90.537
	Inflight.entertainment	70.886
	Leg.room.service	36.417
	Baggage.handling	31.252
	Age	22.488
	Flight.Distance	22.136
	Ease.of.Online.booking	20.898
	On.board.service	19.434
	Inflight.service	19.380
	Checkin.service	18.715
	Seat.comfort	14.557
_	Cleanliness	13.404
	Gate.location	11.375
	Departure.Arrival.time.convenient	9.688

Conclusion

Conclusion

United Airlines could capitalize on this information through:

11111111

Any Questions?

Created an SVM model to broaden our scope and test a model we did not specifically cover in class. Upon research, SVM Models are supposed to perform well on binary classification problems. However, this model had extremely long runtimes and performed in the middle of the pack compared to the other models. The confusion matrix for this model can be seen below:

Actual			ual		
		Not Satisfied	Satisfied		Would make it the 5th best performing model
icted	Not Satisfied	3081	477		
Predicted	Satisfied	269	2153	Accuracy 87.53%	

Predicted