A Playful Dive into the World of RL

Haozhe Tian,
Research Postgraduate,
Dyson School of Design Engineering,
Imperial College London.

1. Overview

The Gloomy Comment

The RL Paradigm

: state

: reward

Most likely the agent does not know the inner working of the environment, i.e. model-free RL

An Example: Pac-Man

$$: \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$$

$$: \{I_0, I_{-1}, I_{-2}, I_{-3}\}$$

$$: \{+1, 0, -100\}$$

The choice of state and reward are fexible

2. Methodology

How RL Works

Reinforcement Learning

At state, choose action, that maximizes the expected cumulative reward. Formally:

RL Classification

Tabular Solution Method Example: Q-Learning

Q-Learning

Reinforcement Learning

Find that maximizes the expected cumulative reward.

Assume at leads to determined

10 2. Methodology

Q-Learning

2. Update:

At state, take, update:

Bootstrapped estimation of Based on greedy assumption for future states

Start Point $R = -10 \quad 1 \quad 2 \quad R = +10$ R = 0

1. Act:

If , act randomly

2. Update:

At state , take , update :

1. Act:

2. Update:

Q(s, a)		Actions		
		-1	+1	
	0	-10	0	Update:
Stat es	1	0	0	
	2	0	+10	

1. Act:

If , act randomly

2. Update:

At state, take, update:

1. Act:

Q(s, a)		Actions		
		-1	+1	
	0	-10	0	
Stat es	1	0	0	
	2	0	+10	
13	1. Background			

Policy:

2. Update:

Q(s, a)		Actions			
		-1	+1		
	0	-10	0	Update:	
Stat es	1	0	+10	•	
	2	0	+10		

1. Act:

Policy:

If , act randomly

2. Update:

At state, take, update:

1. Act:

Q(s, a)		Actions		
		-1	+1	
	0	-10	0	
Stat es	1	0	0	
	2	0	+10	
14	1 1. Background			

2. Update:

	Q(s, a)		Actions			
			-1	+1		
		0	-10	0	Update:	
	Stat es	1	0	+10		
		2	0	+10		

Q-Learning

Q-learning: An off-policy TD control algorithm Initialize $Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A from S using policy derived from Q (e.g., $\epsilon\text{-}greedy$) Take action A, observe R, S'Q(S, A) \leftarrow Q(S, A) $+ \alpha$ [S $+ \gamma$ max $_{S}$ Q(S, S) 2. Update S + S'until S is terminal

Approximated Solution Method Example: DQN

- Short for Deep Q-Network
- Proposed by Minh et al. in "Playing Atari with Deep

Reinforcement Learning"

17 Methodology

Figures from https://gymnasium.farama.org/environments/atari/complete_list/

- Use NN to approximate.
- Suitable for large state and action space.
- Ability to generalize.

- To update in the NN
- Use NN to approximate

• Seems "straight-forward":

Deeper -> More Powerful?

- In fact, the paper was not the first to propose deep networks for approximating .
- The main contribution is the **Replay Memory**.

DQN: Replay Memory

- Save experience in the Replay Buffer.
- In each iteration, sample a batch from the Replay Buffer.
- Benefits for doing this:
 - Breaks Correlation in Successive Samples
 - Promotes Sample Efficiency
 - Facilitates Learning from Rare Events
 - Improves Gradient Descent Stability (by having a batch).

3. Summary

Summary

Reinforcement Learning

RL learns from **trial and error** through interaction with an environment

Compared with Other ML Paradigm

RL generates a sequence of decision each depending on previous actions; Data distribution changes according to the agent's action.

Compared with Planning (DP, MPC)

No system model!!

Back to the Gloomy Comment

A minimal dose of RL is inevitable.

But the purpose of RL research should be to find ways to minimize its use because it's so sample inefficient.

My vision is to use SSL-trained world models & intrinsic objectives (hopefully differentiable), and planning.

If you are still interested

Sutton&Barto Book

Available free online:

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf

David Silver UCL Lectures

Recording free on YouTube: https://www.youtube.com/watch?v=2pWv7GOvuf0

Thank you

Haozhe Tian,

Research Postgraduate,

Dyson School of Design Engineering,

Imperial College London.