Matematická morfológia

"Morfológia je štúdium veľkosti, tvaru a vnútornej štruktúry objektu"

- Študuje množstvo pixelov na obraze
- Na obraz sa dá pozrieť ako množina bodov, kde bod predstavuje polohu v obraze

$$X = \{(1,0), (1,1), (1,2), (2,2), (0,3), (0,4)\}$$

- Možnosti:
 - binárna matematická morfológia množina dvojíc celých čísel (Z²)
 - šedotónová matematická morfológia trojica (Z³)
 - Ďalšie informácie uložené k bodom, napr. intenzita bodov

Štruktúrny element

- Niečo ako jadro pri konvolúcií
- Je dôležitá informácia o počiatku, voči ktorej sú jednotlivé body v relácií

 Aplikácia prebieha rovnako ako konvolučným jadrom, posúvanie štruktúrneho elementu po obraze

Binárna morfológia

Binárna dilatácia

- Sčíta dve bodové množiny

$$X \oplus B = \{ p \in \mathbb{E}^2 : p = x + b, \ x \in X \text{ and } b \in B \}$$

Je možné vyjadriť ako zjednotenie posunutých obrazov X:

$$X \oplus B = \bigcup_{b \in B} X_b .$$

$$X = \{(1,0), (1,1), (1,2), (2,2), (0,3), (0,4)\}$$

$$B = \{(0,0), (1,0)\}$$

$$X \oplus B = \{(1,0), (2,0), (1,1), (2,1), (1,2), (2,2), ...\}$$

- Zaplenie malých dier a úzkých zálivov v objektoch
- Dochádza k zväčšeniu objektu
 - O Zamezdiť to je možné aplikáciou dilátácie s eróziou

Binárna erózia

- Duálná morfologická operácia k dilatácií

$$X\ominus B=\{p\in\mathbb{E}^2:\ p+b\in X\ {\rm pro\ ka\check{z}d\acute{e}}\ b\in B\}$$

- Pre každý bod obrazu sa overuje, či pre všetky možné p + b leží výsledok v X
- Eróziu je možné vyjadriť ako prienik všetkých posunov obrazu X o vektor -b:

$$X\ominus B=\bigcap_{b\in B}X_{-b}\;.$$

Binárne otvorenie

- Erózia nasledovaná dilatáciou

- Odstránenie šumu, najprv sa vykoná erózia a vráti sa späť dilatáciou

Binárne uzavrenie

- Dilatácia nasledovaná eróziou

- Vyplnenie dier objektu dilatáciou a vrátenie veľkosti objektu eróziou
- Po jednom otvorení/uzavrení objektu je už množina otvorená/uzavrená
 - o ďalšia aplikácia transformácie už nič nezmení

Šedotónová morfológia

Šedotónová dilatácia

- Maximalizácia hodnôt pixelov zasiahnutým štruktúrnym elementom $\max_{b \in \mathcal{B}} f(x+b)$

Šedotónová erózia

- Minimalizácia hodnôt pixelov zasiahnutých štruktúrnym elementom

Kostra objektu

- Kruh musí byť maximálny
- Výpočet podľa definície kruhu je výpočetne náročná

Skeletonizácia oblastí

- Vpisovanie kruhov výpočetne náročná, nepoužíva sa
- <u>Sekvenčné ztenšenie</u> aplikácia erózie až do doby kým by bola porušená nejaká kontinuita objektu
 - o nutné zvoliť vhodný štrukturálny element

- <u>Vzdialenostná transformácia</u> transformácia priraďuje každému bodu v obraze jeho vzdialenosť k najbližšej hranici medzi pozadím a popDredím, alebo objektom a pozadím
 - o minimálna vzdialenosť k hranici
 - o je možná extrakcia kostry

- o metóda je dvojpriechodová, vysvetlenie v 1D
 - Označím si hraničné body a nastavím im vzdialenosti nulovú (predstavujú hranicu medzi objektom a pozadím), bodom objektu sú priradené nekonečné hodnoty
 - Najprv prechádza doľava potom doprava a vyberám medzi susedom a mnou minimum + 1

- o v 2D to isté ale štruktúrny element vyzerá nasledovne:
 - 0 nepričítam, 1 pričítam, s aktuálny element
 - 0 aj 1 beriem do úvahy

