

Reinforcement learning

Bibliographic search by Matthieu Vilain

Tutor: Pierre Andry

May 2017

Reinforcement learning

What is reinforcement learning?

Way of programming agents by reward and punishment without needing to specify how the task is to be achieved

- o TD Learning R.Sutton 1988
- o Q Learning C.Watkins 1989-1992

Exemple

Reinforcement learning How does it work?

The agent and his environment

The environment must be divided into several states

Exemple

Informations:

- List of possible actions
- o Reward:
 - Positive
 - Negative
 - Null
- o Value

3

How does agent choose his action?

Markov Decision Process

- S: sates set
- A: actions set
- o T: time

- o P(): probability of transition between states
- o R(): reward function for transition
- o h: historic of actions

How does agent choose his action?

The policy

<u>Definition</u>:

Procedure to be followed by the agent to choose at a moment the action to be executed (noted π)

GOAL \longrightarrow found the optimal policy (π^*)

Bellman equation

Estimation of the future reward if the agent do a action

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') [\mathcal{R}(s, a, s') + \gamma V^{\pi}(s')]$$

P(s,a,s'): probability to go to the state s' with the action a if I am in s

^[1] Sutton, R. Planning by incremental dynamic programming.

In Eight International Workshop on Machine Learning, pages 353-357. Morgan Kaufmann. 1991

^[2] L.P. Kaelbling, M. L. Littman, A.W. Moore, « Reinforcement Learning : A Survey », Journal of Artificial Intelligence Research 4, 1996

^[3] S. Russell P. Norving, Book « Artifial Intelligence : A Modern Approach » 2010

Reinforcement learning algorithm: Q-Learning

The value of the estimation is not on the state St but on the action to go from St to St+1

From Bellman to Q-Learning

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') [\mathcal{R}(s, a, s') + \gamma V^{\pi}(s')]$$

$$Q^{\cdot \cdot \cdot}(s,a) = \sum_{a'} P(s,a,s')[R(s,a,s') + \gamma \max_{a'} Q^{\cdot \cdot \cdot}(s',a')]$$

Actualization function

$$Q(s_{t}, a_{t}) = Q(s_{t}, a_{t}) + \alpha(R_{t} + \gamma \max_{a} Q(s_{(t+1)}, a_{(t+1)}) - Q(s_{t}, a_{t}))$$

Algorithm

Q-Learning

Q-Learning, algorithm explication

10,01	[0,1]	[0, 2]	[0,3]	[0, 4]	[0,5]	[0,6]	[0,7]	[0,8]	[0,9]	
[1,0]	[1,1]	[1,2]	[1,3]	[1,4]	[1,5]	[1,6]	[1,7]	[1,8]	[1,9]	
[2,0]	[2,1]	[2,2]	[2,3]	[2,4]	[2,5]	[2,6]	[2,7]	[2,8]	[2,9]	
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]	[3,5]	[3,6]	[3, 7]	[3,8]	[3, 9]	
[4,0]	[4,1]	[4,2]	[4,3]	[4,4]	[4,5]	[4,6]	[4,7]	[4,8]	[4, 9]	
[5,0]	[5,1]	[5,2]	[5,3]	[5, 4]	[5,5]	[5, 6]	[5,7]	[5,8]	[5, 9]	
[6,0]	[6,1]	[6, 2]	[6,3]	[6, 4]	[6,5]	[6,6]	[6, 7]	[6,8]	[6, 9]	
[7,0]	[7,1]	[7,2]	[7,3]	[7,4]	[7,5]	[7,6]	[7,7]	[7,8]	[7,9]	
[8,0]	[8,1]	[8, 2]	[8,3]	[8, 4]	[8,5]	[8, 6]	[8,7]	[8,8]	[8, 9]	
[9,0]	[9,1]	[9,2]	[9,3]	[9,4]	[9,5]	[9,6]	[9,7]	[9,8]	[9, 9]	

 $Q(s_{t},a_{t}) = Q(s_{t},a_{t}) + \alpha(R_{t} + \gamma \max_{a} Q(s_{(t+1)},a_{(t+1)}) - Q(s_{t},a_{t}))$

1920 moves

19 backup

2mins (16moves/sec)

 $\alpha = 0.5$

y = 0.5

Issue exploration vs exploitation

Issue

Algorithm

Possible amelioration: Dyna Q

Algorithm

Test

	Steps before	Backups before			
	convergence	convergence			
Q-learning	531,000	531,000			
Dyna	62,000	3,055,000			
prioritized sweeping	28,000	1,010,000			

- [1] L.P. Kaelbling, M. L. Littman, A.W. Moore, « Reinforcement Learning : A Survey », Journal of Artificial Intelligence Research 4, 1996
- [2] Watkins, C.J.C.H. "Q-Learning", Machine Learning, 8(3), 279-292, 1992
- [3] H. Larochelle, YouTube video « Intelligence Artificielle [13.7] : Apprentissage par renforcement Q-learning »
- [4] P.Norving, S.Thrun, Udacity cours, « Introduction to Artificial Inteligence » 2010

In this project we will simulate the evolution of a population in a urban environment

Reinforcement learning in robotics

Reinforcement learning in robotics

To many states ⇒ exploration time Delimitate states in real world

Function approximator

- o Make a generalization
- Use only the visible states

Reinforcement learning **Issues, discussion**

Lemma: let n denote the number of actions applicable at state s'. If all n actions share target Q-Value, i.e, $\exists q: \forall \hat{\mathbf{a}}: q = Q^{target}(s', \hat{\mathbf{a}}), then the average overestimation <math>E[Z_s]$ is γc with $c = \varepsilon \frac{n-1}{n+1}$

Table 1: Upper bound on the error ε of the function approximator, according to Theorem 2. These bounds are significant. For example, if episodes of length L=60 with n=5 actions shall be learned, ε must be smaller than .00943 (bold number).

	L=10	L=20	L = 30	L = 40	$L\!=\!50$	$L\!=\!60$	L = 70	$L\!=\!80$	L = 90	L = 100	$L\!=\!1000$
n = 2	.12991	.05966	.03872	.02866	.02275	.01886	.01611	.01405	.01247	.01120	.00110
n = 2 n = 3	.08660	.03977	.02581	.02800	.02273	.01257	.01011	.00937	.00831	.01120	.00110
n = 4	.07217	.03314	.02151	.01592	.01264	.01048	.00895	.00781	.00692	.00622	.00061
n = 5	.06495	.02983	.01936	.01433	.01137	.00943	.00805	.00702	.00623	.00560	.00055
n = 6	.06062	.02784	.01807	.01337	.01061	.00880	.00751	.00656	.00581	.00522	.00051
n = 8	.05567	.02557	.01659	.01228	.00975	.00808	.00690	.00602	.00534	.00480	.00047
n = 10	.05292	.02430	.01577	.01167	.00927	.00768	.00656	.00572	.00508	.00456	.00045
n = 20	.04786	.02198	.01426	.01056	.00838	.00695	.00593	.00517	.00459	.00412	.00040
$n = \infty$.04330	.01988	.01290	.00955	.00758	.00628	.00537	.00468	.00415	.00373	.00036

[1] J.Morimoto, G.Cheng, C.G.Atkeson, G.Zeglin, « A simple reinforcement learning algorithm for biped walking » International conference on robotics & automation, New Orleans, 2004

[2] S.Thrun, A.Schwartz « Issues in using function approximation for reinforcement learning » Proceedings of the Fourth Connectionist Models Summer School, Lawrence Erlbaum Publisher, Hillsdale, NJ, Dec. 1993

[3] L.P. Kaelbling, M. L. Littman, A.W. Moore, « Reinforcement Learning : A Survey », Journal of Artificial Intelligence Research 4, 1996

[4] S. Russell P. Norving, Book « Artifial Intelligence : A Modern Approach » 2010