Feuille d'exercice n° 07 : **Réduction des** endomorphismes

I. Diagonalisation

Exercice 1 ($^{\bigcirc}$) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que rg A = 1. Établir : A diagonalisable ssi tr $A \neq 0$.

Exercice 2 Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$ et $p \in \mathcal{L}(E)$ tel que p^2 soit un projecteur. Quelles sont les valeurs propres possibles pour p? Montrer que p est diagonalisable ssi $p^3 = p$.

Exercice 3 () Diagonaliser
$$A = \begin{pmatrix} 1 & 0 & 6 \\ 2 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
.

Exercice 4 Résoudre dans $\mathcal{M}_3(\mathbb{C})$ l'équation $X + X^2 + X^3 = 0$. Si $A \in \mathcal{M}_3(\mathbb{R})$ est solution de cette équation, montrer qu'elle est de rang pair.

Exercice 5 (%) Soit

$$A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

- 1) Diagonaliser la matrice A en précisant la matrice de passage P.
- 2) Soit $M \in \mathcal{M}_2(\mathbb{R})$ une matrice telle que $M^2 + M = A$. Justifier que la matrice $P^{-1}MP$ est diagonale.

3) Déterminer les solutions de l'équation $M^2 + M = A$.

Exercice 6 (
$$\bigcirc$$
) Diagonaliser $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$.

Exercice 7

- 1) La matrice $A = \begin{pmatrix} -2 & 2 \\ -2 & 3 \end{pmatrix}$ est-elle diagonalisable ?
- 2) Combien existe-t-il de $B \in \mathcal{M}_2(\mathbb{R})$ vérifiant $B^2 = A$?

Exercice 8

Soit u l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ dans lui-même qui, à une matrice X, associe $-X + \operatorname{tr}(X) \cdot I_n$ où $\operatorname{tr}(X)$ est la trace de la matrice X. Montrer u est diagonalisable.

On pourra:

- 1) Montrer que I_n est vecteur propre, et donner la valeur propre associée.
- 2) Trouver d'autres vecteurs propres en utilisant les matrices E_{ij} , où $i, j \in [1, n]$, et E_{ij} est la matrice élémentaire dont tous les coefficients sont nuls sauf celui en position (i, j) qui vaut 1.
- 3) Aboutir ainsi à une base de vecteurs propres.

Exercice 9 Soit $A \in \mathcal{M}_n(\mathbb{R})$ ayant n valeurs propres distinctes. On pose $B = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$.

- 1) Quelles sont les valeurs propres de B?
- 2) Donner une condition nécessaire et suffisante pour que B soit diagonalisable.

Exercice 10 Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^2 - 2A$ est diagonalisable et 1 n'est pas valeur propre de A. Montrer que A est diagonalisable.

Exercice 11 Soient
$$a \in \mathbb{R}^*$$
 et $A = \begin{pmatrix} 0 & a & a^2 \\ a^{-1} & 0 & a \\ a^{-2} & a^{-1} & 0 \end{pmatrix}$. Montrer que

A est diagonalisable et déterminer $\operatorname{Sp} A$ sans calculer χ_A . Indication : on pourra calculer A^2 et en déduire un polynôme annulateur de A.

Exercice 12 Soit m un nombre réel et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{array}\right).$$

- 1) Quelles sont les valeurs propres de f?
- $\mathbf{2}$) Pour quelles valeurs de m l'endomorphisme est-il diagonalisable?
- 3) On suppose m=2. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 13 On considère la matrice
$$A = \begin{pmatrix} 1 & \dots & \dots & 1 \\ \vdots & 0 & \dots & 0 & \vdots \\ \vdots & \vdots & & \vdots & \vdots \\ \vdots & 0 & \dots & 0 & \vdots \\ 1 & \dots & \dots & 1 \end{pmatrix}$$
.

- 1) La matrice A est-elle diagonalisable? En donner le rang.
- 2) Déterminer le spectre de A.

Exercice 14 Soit
$$A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$
.

On propose de résoudre dans $\mathcal{M}_3(\mathbb{R})$ l'équation : $(E): X^2 + X = A$.

1) Déterminer une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$.

- 2) Déterminer les matrices $Y \in \mathcal{M}_3(\mathbb{R})$ telles que $Y^2 + Y = D$. On commencera pour cela par montrer qu'une telle matrice Y commute avec D, et par en déduire que c'est une matrice diagonale.
- 3) Résoudre alors l'équation (E).

Exercice 15 Résoudre, le système différentiel
$$\begin{cases} x' = 2x + y + 3z \\ y' = 2y \\ z' = x \end{cases}$$

Exercice 16 Résoudre le système différentiel
$$\begin{cases} x' = x + y \\ y' = -x + 3y \end{cases}$$

II. Trigonalisation

Exercice 17 Trigonaliser
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$$
.

Exercice 18 Soit $P = X^5 + X + 1$.

- 1) Montrer que P admet une unique racine réelle et que celle-ci est strictement négative.
- 2) Soit $A \in \mathcal{M}_{15}(\mathbb{R})$ telle que $A^5 + A + I_{15} = 0$. Montrer que $\det(A) < 0$.

Exercice 19 Soient $A \in \mathcal{M}_n(\mathbb{C})(n \ge 3)$ vérifiant rg A = 2, tr A = 0 et $A^n \ne O_n$. Montrer que A est diagonalisable.

