CS 5830 Cryptography

Instructor: Tom Ristenpart

TAs: Yan Ji, Sanketh Menda

CCA Attacks against PKE

- Ad-hoc fix to Bleichanbacher:
 - Don't leak whether padding was wrong or not
 - This is harder than it looks (timing attacks, control-flow side channel attacks, etc.)
- Better:
 - use chosen-ciphertext secure encryption
 - OAEP is common choice

RSA-OAEP (optimal asymmetric encryption padding)

 Provide better padding scheme than PKCS#1v1.5

- OAEP is such a padding scheme
 - r chosen randomly
 - G,H hash functions
 - $-C = (X||Y)^e \mod N$
- RSA one-wayness implies CCA security

Formalizing security: IND-CPA & IND-CCA for PKE

- Indistinguishability under chosen-plaintext attack formal notion can be adapted to PKE setting
 - Only difference: provide public key to adversary
- Semantic security [Goldwasser, Micali 1984]:
 - Can't learn any predicate over message
 - Equivalent to IND-CPA
- Neither model chosen-ciphertext attacks (like Bleichanbacher's attack)

```
\frac{\text{IND-CPA}(\text{SE}, \mathcal{A}):}{(\text{M}_0, \text{M}_1) <-\$ \, \mathcal{A}} \\ (\text{pk,sk}) <-\$ \, \text{Kg} \; ; \; b <-\$ \, \{0,1\} \\ \text{C} <-\$ \, \text{Enc}(\text{pk}, \text{M}_b) \\ \text{b}' <-\$ \, \mathcal{A}(\text{pk,C}) \\ \text{Return (b = b')}
```

Formalizing security: IND-CPA & IND-CCA for PKE

 Can formalize chosen-ciphertext attack (CCA) security for PKE: IND-CCA

```
\frac{\text{IND-CPA}(\text{SE}, \mathcal{A}):}{(\text{M}_0, \text{M}_1) < -\$ \mathcal{A}} \\ (\text{pk,sk}) < -\$ \text{Kg} ; b < -\$ \{0,1\} \\ \text{C} < -\$ \text{Enc}(\text{pk}, \text{M}_b) \\ \text{b}' < -\$ \mathcal{A}(\text{pk,C}) \\ \text{Return (b = b')}
```

Formalizing security: IND-CPA & IND-CCA for PKE

- Can formalize chosen-ciphertext attack (CCA) security for PKE: IND-CCA
- This is different than authenticity in AEAD
 - Why?
 - Anyone can encrypt: ciphertext forgeries trivial!
- Combine digital signatures (stay tuned) with PKE to achieve authenticity in asymmetric setting
- Reduction showing RSA uninvertability => OAEP is IND-CCA

```
\frac{\text{IND-CCA(SE}, \mathcal{A}):}{(\mathsf{M}_0, \mathsf{M}_1) < -\$ \, \mathcal{A}} \\ (\mathsf{pk}, \mathsf{sk}) < -\$ \, \mathsf{Kg} \; ; \; \mathsf{b} < -\$ \, \{0, 1\} \\ \mathsf{C} < -\$ \, \mathsf{Enc}(\mathsf{pk}, \mathsf{M}_\mathsf{b}) \\ \mathsf{b}' < -\$ \, \mathcal{A}^{\mathsf{Dec}}(\mathsf{pk}, \mathsf{C}) \\ \mathsf{Return} \; (\mathsf{b} = \mathsf{b}')
```

<u>Dec(C')</u> If C' = C then Return ⊥ M <- Dec(sk,C) Return M

TLS handshake for RSA transport

Pick random Nc	ClientHello, MaxVer, Nc, Ciphers/CompMethods					
	ServerHello, Ver, Ns, SessionID, Cipher/CompMethod	Pick random Ns				
Check CERT using CA public	CERT = (pk _s , signature over it)					
verification key						
Diale was also a DNAC	С					
Pick random PMS C <- Enc(pk,PMS)		PMS <- Dec(sk,C)				
	ChangeCipherSpec, { Finished, PRF(MS, "Client finished" H(transcript)) }					
Bracket notation	ChangeCipherSpec,					
means contents	{ Finished, PRF(MS, "Server finished" H(transcript')) }					
encrypted						
MS <- PRF(PMS, "master secret" Nc Ns)						

Forward-secrecy

Future compromises of long-lived secrets should not enable decryption of past communications

Towards achieving forward secrey

- Can't encrypt secret session key material under long-lived encryption key
- Need *ephemeral* secrets that can be deleted after key exchange
 - Basic recipe: generate new asymmetric key for each key exchange
 - Could use new RSA keys, but this is pretty slow (prime generation)
- Instead: Diffie-Hellman key exchange

Diffie-Hellman using integers modulo prime

Let p be a large prime number Fix the group $G = \mathbf{Z}_p^* = \{1,2,3,..., p-1\}$ Multiplicative subgroup of finite field GF(p) (which includes 0)
So often called **finite field DH**

Then G is *cyclic*. This means one can give a member $g \in G$, called the generator, such that

$$G = \{g^0, g^1, g^2, ..., g^{p-1}\}$$

General exponentiation notation for group; many of our protocols agnostic to exact group.

gⁱ is gⁱ mod p in this case

Example: p = 7. Is 2 or 3 a generator for \mathbb{Z}_7^* ?

Х	0	1	2	3	4	5	6
2 ^x mod 7	1	2	4	1	2	4	1
3 ^x mod 7	1	3	2	6	4	5	1

The discrete log problem

Fix a cyclic group G with generator g

Pick x at random from **Z**_{|G|}

Give adversary g, $X = g^x$. Adversary's goal is to compute x

The discrete log problem

Fix a cyclic group G with generator g

Pick x at random from $\mathbf{Z}_{|G|}$

Give adversary g, $X = g^x$. Adversary's goal is to compute x

```
\underline{\mathcal{A}(X)}:
for i = 2, ..., |G|-1 do
if X = g<sup>i</sup> then
Return i
```

```
Very slow for large groups! O(|G|)
```

Baby-step giant-step is better: $O(|G|^{0.5})$

Nothing faster is known for some groups.

Baby-Step Giant-Step algorithm

• DLP: Given g^x for random x, compute x

```
Rewrite x as x = az + b with z = ceil(p^{0.5})
g^x g^{-az} = g^b
For b = 1, ..., z
Store (b, g^b)
For a = 1, ..., z
Check if g^x g^{-az} equals one of precomputed g^b values
Return az + b
```

- Works in time O(p^{0.5}) and space O(p^{0.5})
- Pollard rho method: reduce space to constant

Better than Baby-Step, Giant Step?

 If prime factorization of group order p-1 is "smooth", can use Pohlig-Hellman algorithm

$$\prod_{i} p_{i}^{e_{i}} = p-1 \qquad \text{All } p_{i} \text{ are primes}$$

$$\prod_i p_i^{e_i} = \text{p-1} \qquad \text{All } p_i \text{ are primes}$$

$$- \text{ Run time is } \mathcal{O}\left(\sum_i e_i (\log{(p-1)} + \sqrt{p_i})\right)$$

- Should choose *safe prime*: p = 2q + 1 for large prime q
- Even for safe primes: index calculus methods & NFS for DL in Z_n
 - Run time is about $1.92 \cdot (\ln p)^{1/3} \cdot (\ln \ln p)^{2/3}$
 - Same as for RSA, so need pretty large p

Comparison

Security level	RSA (log N)	DLP in finite field (log p)	DLP subgroup size (log q)
80	1024	1024	1023
112	2048	2048	2047
128	3072	3072	3071
256	15360	15360	15359

Exponentiation time performance scales with O(n³) for bit length n numbers So RSA and finite field DL are basically same performance wise

Finite field DL primes are specified in standards, see e.g.: https://datatracker.ietf.org/doc/html/rfc7919

Unauthenticated Diffie-Hellman Key Exchange

$$K = H(Y^x \mod p)$$
 $K = H(X^y \mod p)$

Get the same key. Why?
$$Y^x = g^{yx} = g^{xy} = X^y$$

What does adversary *need* to compute to break security (learn K)?

What *suffices* for adversary to compute to break security (learn K)?

Computational Diffie-Hellman Problem

Fix a cyclic group G with generator g

Pick x,y both at random **Z**_{|G|}

Give adversary g, $X = g^x$, $Y = g^y$ Adversary must compute g^{xy}

For most groups, best known algorithm solves DL of X or Y But we have no proof that this is best approach

TLS handshake for Diffie-Hellman Key Exchange

Pick random Nc

Check CERT using CA public verification key Check σ

Pick random y $Y = g^y \mod p$

 $PMS = g^{xy} \mod p$

Bracket notation means contents encrypted

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = $(pk_s, signature over it)$

 $p, g, X, \sigma = Sign(sk_s, Nc||Ns||p||g||X)$

Υ

Pick random x

Pick random Ns

 $X = g^x \mod p$

 $PMS = g^{xy} \mod p$

ChangeCipherSpec, { Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PMS, "master secret" || Nc || Ns)

Meddler-in-the-middle (MITM) attacks

Historically called man-in-the-middle

Attacker can choose X*, Y*, so it knows discrete logs

Completes handshake on both sides

Client thinks its talking to Server

All communications decrypted by adversary, re-encrypted and forwarded to server

MITM proxy implementation:

https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/

When we discuss digital signatures & PKI we will show how to prevent this

Public-key encryption beyond TLS

- Many other places where we want to use public-key encryption
 - Password encryption at TLS endpoint (LinkedIn example)
 https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf

The logging problem and complex infrastructure

18:38:55.572) verifyPassword(email="foobar@yahoo.com", password=monkey,

ip_address="1.1.1.1"), PASS, 11ms

Public-key encryption beyond TLS

- Many other places where we want to use public-key encryption
 - Password encryption at TLS endpoint (LinkedIn example)
 https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
 - PGP and encrypted email
 - Encrypted messaging

— ...

Public key encryption from CDH

Fix cyclic group G with generator g Kg outputs random sk from $\mathbf{Z}_{|G|}$ and pk = g^{sk}

AEnc, ADec are authenticated encryption & decryption, respectively such as AES-GCM

Can optionally bind KEM ciphertext to DEM ciphertext by using it as associated data with AEnc & ADec

Example hybrid encryption schemes in practice

- ECIES (Elliptic curve with included encryption scheme), also called DHIES (Diffie-Hellman Integrated Encryption Scheme)
- libsodium / NaCL library cryptobox primitive
- Many standards: ANSI X9.63, IEEE 1363a, ISO/IEC 18033-2 and SECG SEC 1
- HPKE new standard to try to have interoperable, widely supported hybrid encryption scheme
 - https://tools.ietf.org/id/draft-barnes-cfrg-hpke-01.html

Hybrid encryption sender is not authenticated

- Use of AEAD does not provide sender authenticity
 - Anyone can generate valid ciphertext
- Does provide non-malleability
 - Can't modify ciphertext on unknown message M to some related M'

```
\begin{split} & \underline{\mathsf{Enc}(\mathsf{pk},\mathsf{M})} \\ & \mathsf{r} <\!\!\!\!\! - \$ \, \boldsymbol{\mathsf{Z}}_{|\mathsf{G}|} \;\; ; \quad \mathsf{K} <\!\!\!\!\! - \mathsf{KDF}(\,\mathsf{pk}^{\mathsf{r}}) \\ & \mathsf{C}_{\mathsf{kem}} <\!\!\!\!\! - \mathsf{g}^{\mathsf{r}} \\ & \mathsf{C}_{\mathsf{dem}} <\!\!\!\!\! - \mathsf{AEnc}(\mathsf{K},\mathsf{C}_{\mathsf{kem}}\,,\mathsf{M}) \\ & \mathsf{Return} \; (\mathsf{C}_{\mathsf{kem}}\,,\mathsf{C}_{\mathsf{dem}}) \end{split}
```

Sender authenticity requires digital signatures, or pre-shared symmetric key (PSK)

Summary

- Diffie-Hellman can be built from integers modulo large prime
 - Sometimes called finite field Diffie-Helman
 - Should use safe primes due to Pollard-Hellman algorithm, size and efficiency about same as RSA
- Used to generate ephemeral keys for TLS key exchange, providing forward secrecy
- Used for hybrid encryption schemes, such as HPKE