EE4C06 Networking

Graph Theory

Week 1

- Adjacency matrix: A
 - o walk成为一个 path 需要所有的顶点都不相同。它是 trail 需要所有的边不相同。一个图是连 通的需要对任意两个顶点,有 path 连接它们。一个 cycle 是一个闭的 path,一个 tree 是不 含 cycle 的连通图。
 - ullet complementary Adjacency matrix: $A^c = u \cdot u^T I A$
 - ullet subgraph Adjacency matrix, $A=egin{bmatrix} A_s & B \ C & A_{G\setminus S} \end{bmatrix}$, $C=B^T$
 - Number of k-hop walks between node i and j: $(A^k)_{ij}$
 - \circ Total number of k-hop walks in G: $N_k = u^T A^k u = \sum_{i=1}^N \sum_{j=1}^N (A^k)_{ij}$
 - ullet Total number of closed k-hop walks in G: $W_k = \Sigma_{j=1}^N (A^k)_{ij} = trace(A^k)$
- Incidence matrix: B, $u^T \cdot B = 0$
- Laplacian matrix: $Q = B \cdot B^T$
- degree of nodes: $d = A \cdot u$
 - Regular graph: all nodes have the same degree
 - \circ degree & #link: $u^T d = u^T A u = \Sigma_{j=1}^N d_j = 2L$ $0 o 2 - rac{2}{N} \le E[D] = rac{1}{N} \Sigma_{j=1}^N d_j = rac{2L}{N} \le N-1$ (connected graph)
 - degree \$ Adjacency matrix: $d_i = (A^2)_{ij}$
 - At least two nodes in G have the same degree
 - The number of nodes with odd degree is even
- links of graph:
 - \circ Tree: L=N-1
 - \circ Ring: L=N
- \circ Complete graphL L=N(N-1)/2 \bullet Clustering coefficient: $C_G(V)=rac{2y}{dv(dv-1)}\leq 1$, where y is the number of links between neighbors. If $d_v = 1$, $C_G(V) = 0$
 - \circ It measures the local density around node v

 - The clustering coefficient of a graph G: $C_B = \frac{1}{N} \sum_{v=1}^N C_G(v)$ Another definition: $C_G = \frac{6 \times \#triangles}{N_2 W_2} = \frac{trace(A^3)}{d^T d L} = \frac{\sum_{j=1}^N (A^k)jj}{\sum_{i=1}^N di(di-1)}$
- ullet Hopcount: Hopcount from node i to node j: $H_{i o j}=h(P_{i o j}^*)$ where $P_{i o j}^*$ is the shortest hop path from i to j
 - \circ diameter ρ of G: hopcount of the longest shortest path in G. The average hopcount E[H]reflects "efficiency" of transport in G.
 - \circ The shortest walk between i and j is also a shortest path, $H_{ij}=k$
 - faster test of ho: test till $(1+A)^{
 ho}$ contains no zero
- Betweenness: The betweenness B_l / B_n of a link l / node n equals the number of shortest paths traversing link l / node n in G
 - ullet The average betweenness: $H_G = \Sigma_{i=1}^N \Sigma_{j=i+1}^N H_{ij} = \Sigma_{l=1}^L B_l$ $0 o E[B_l] = rac{1}{L} \Sigma_{l=1}^L B_l = rac{1}{L} inom{N}{2} E[H_G]$, where H is the distance matrix

- Degree Assortativity: $ho_D=rac{N_1N_3-N_2^2}{N_1\Sigma_{j=1}^Nd_j^3-N_2^2}$
 - $\circ~$ A network is (degree) assortative if $ho_D>0$
 - \circ A network is (degree) disassortative if $ho_D < 0$
 - Degree-preserving rewiring (DPR) only changes Degree Assortativity rather than the degree
- Connectivity of a Graph: $\lambda(G)$ (or k(G)): the minimum number of links (or nodes) whose removal disconnects G
 - Menger's Theorem: The maximum number of Link(node)-disjoint paths between A and B is equal to the minimum number of links(nodes) disconnecting A and B
 - \circ If the graph G is disconnected, then its complement G^c is connected

Week 2

- Spectrum of A:
 - $\begin{array}{ccc} \circ & d_{max} \geq \lambda_1 \geq \frac{2L}{N} = E[D] \\ & & & \lambda_1 \geq E[D] \sqrt{1 + \frac{Var[D]}{E^2[D]}} \end{array}$
 - \circ all eigenvalues lie in the interval $(-d_{max},d_{max}]$
 - $\begin{array}{c} \Sigma_{j=1}^N \lambda_k^k = trace(A^k) = \Sigma_{i=1}^N (A^k)_{ii} = W_k \text{ (total number of closed walks)} \\ \bullet \quad \Sigma_{j=1}^N \lambda_j = 0 \\ \bullet \quad \Sigma_{j=1}^N \lambda_j^2 = 2L \\ \bullet \quad \Sigma_{j=1}^N \lambda_j^3 = 6 \times triangles \end{array}$
 - \circ λ_1 and components of eigenvector x_1 are non-negative (when disconnected, $\equiv 0$)
- Spectrum of Q:
 - $\circ~$ any eigenvalue μ_k is non-negative and smallest $\mu_N=0$
 - \circ complexity (number of spanning tree) is $\xi(G)=rac{1}{N}\prod_{k=1}^{N-1}\mu_k$
 - $\circ \;\;$ algebraic connectivity $a(G)=\mu_{N-1}.$ The graph G is only connected if and only if $a(G)=\mu_{N-1}>0$. The graph G with larger a(G) is more difficult to disconnect
- ullet The number of links between G_1 and G_2 : $R=rac{1}{4}y^TQy$, $y_i=1$ if $i\in G_1$, else $y_i=-1$ if $i\in$ $G_2 \setminus$
 - $\circ \ \ R = rac{1}{4} \Sigma_{j=1}^N lpha_k^2 u_j$
 - $\circ \ \ R \geq rac{1}{4} (\c{y}^T \c{z}_{N-1})^2 \mu_{N-1}$
- Degree-preserving rewiring:
 - Largest eigenvalue of adjacency increases with degree assortativity ρ_D
 - while algebraic connectivity decreases which implies that increasing assortativity creates more disconnected components.
- Erdos-Renyi random graph
 - $\circ \ \ a_{ij}$ is a bernoulli random variable with mean ho
 - $\circ E[a_{ij}] = \rho$

 - \circ the complement graph of $G_p(N)$ is $G_{1-p}(N)$ $\circ \ \ \, \text{the average number of links: } E[L] = \frac{N(N-1)}{2} \rho$

 - \circ the average cluster coefficient is $E[C_{Gp(N)}]=
 ho$ \circ $Pr[D=k]=inom{N-1}{k}p^k(1-p)^{(N-1-k)}pprox rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(k-\mu)^2}{2\sigma^2}}$
 - \blacksquare $\mu=(N-1)
 ho$ and $\sigma^2=(N-1)
 ho(1ho)$

- lacksquare ho constant, $N o \infty$ => tendency towards a regular graph
- lacksquare E[D] constant, $N o\infty$ => Pr[D=k] becomes Poisson distribution
- lacktriangledown the critical link density: $ho_c \sim log N/N$
- ρ_c small, compact $f_\lambda(x)$, high spike at zero, graph tends to be disconnected; ρ_c large, disperse $f_\lambda(x)$, lower spike at zero, graph tends to be connected.
- o rewiring makes clustering coefficient and average hotcount lower
- $\circ \ f_{\lambda}(-x) = f_{\lambda}(x)$ refers a tree graph
- Power-law graph (scale-free)
 - $\circ \ Pr[D=k]=ck^{-\tau}$
 - The mean is not representative, because the variance is (very) large
 - o robustness to random node failure
 - vulnerability to targeted hub attacks and cascading failures