

Obligatorisk Innlevering 1

DAT102-80

04.02.22

Høgskulen på Vestlandet (HVL)

Studieprogram for Informasjonsteknologi

Anders Fimreite, Eric Alexander Gjerstad & Jørgen Fjølstad

Oppgave 2

- a)
 - i. $O(n^2)$
 - ii. O(n)
- iii. $O(n^3)$
- iv. $O(log_2n)$
- b)

Gjennom testing har vi sett at løkken utføres 2 ganger for n=4, 3 ganger for n=8, 4 ganger for for n=16, osv. Dette betyr at antall tilordninger er log_2n og effektiviteten er $O(log_2n)$.

c)

Den yttre løkken utføres n ganger. Den indre løkken utføres log_2n ganger. Dette betyr at antall tilordninger er $nlog_2n$ og effektiviteten er $O(nlog_2n)$.

- d)
- $O(n^2)$ for areal og O(n) for omkrets der n er radius r.
- e)

 $O(n^2)$ fordi hvert element må i værste fall sammenlignes med alle andre element (omtrent n*n ganger)

f)

- i. $O(n^3)$
- ii. $O(log_2n)$
- iii. $O(nlog_2n)$
- iv. O(n)

Vekstfunksjonene rangert fra best til verst blir da: ii, iv, iii, i.

g)

Vekstfunksjonen til metoden er T(n) = cn fordi løkken i funksjonen er linær. c er en konstant for antall millisekunder det tar å utføre operasjonen k = k + 5. Algoritmen tok ca. 115 millisekunder når n = 100000000, noe som betyr at c = 0.00000115.

Oppgave 3

- i. O(n) fordi den må sjekke hver eneste film om den tilhører den gitte sjanger og inkrementerer counteren.
- ii. O(n * k) fordi den går gjennom alle sjangere og for hver sjanger så går den gjennom alle filmer.