ЛАБОРАТОРНАЯ РАБОТА 5. РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ

Рекуррентные соотношения Оператор конечных разностей Решетчатые функции Разностные уравнения Производящие функции Z-преобразование и его свойства Свертка функций

Восстановление решетчатой функции по ее Z-преобразованию

Краткая таблица Z-преобразования основных решетчатых функций

f(n)	F(z)
1(n)=1	$\frac{z}{z-1}$
a^n	$\frac{z}{z-a}$
$(-1)^n$	$\frac{z}{z+1}$
$e^{\alpha n}$	$\frac{z}{z-e^{\alpha}}$
$\frac{a^n}{n!}$	$e^{\frac{a}{z}}$
cosβn	$\frac{z(z-\cos\beta)}{z^2-2\cos\beta+1}$
sinβn	$\frac{z\mathrm{sin}\beta}{z^2-2\mathrm{cos}\beta+1}$
n	$\frac{z}{(z-1)^2}$
n^2	$\frac{z(z+1)}{(z-1)^3}$
$\sum_{k=0}^{n} f(k)$	$\frac{z}{z-1}F(z)$
f(n-k)	$\frac{1}{z^k}F(z)$
f(n+k)	$z^{k}F(z) - \left(z^{k}f(0) + z^{k-1}f(1) + \dots + zf(k-1)\right)$
nf(n)	-zF'(z)
$a^n f(n)$	F(az)
f(n) * g(n)	F(z)G(z)

Пример.

Найти формулу общего члена последовательности, если $x_0 = 1$, а каждый последующий на 2 больше удвоенного предыдущего.

Имеем рекуррентную формулу:

$$x_{n+1} = 2 + 2x_n, x_0 = 1.$$

Пусть x(n) – неизвестная решетчатая функция. Тогда имеем линейное разностное уравнение с постоянными коэффициентами

$$x(n+1) = 2 + 2x(n), x(0) = 1.$$

С помощью Z-преобразования переведем это уравнение из области оригиналов в область изображений.

Применим Z-преобразование к обеим частям разностного уравнения

$$Z(x(n+1)) = Z(2+2x(n)),$$

Учитывая свойство <u>линейности</u> Z -преобразования, получим

$$Z(x(n+1)) = 2Z(1) + 2Z(x(n)).$$

Воспользуемся табличными значениями и применим формулу сдвига

$$f(n+k) \leftrightarrow z^k F(z) - \left(z^k f(0) + z^{k-1} f(1) + \cdots + z f(k-1)\right)$$

B частности, имеем Z(x(n)) = F(z),

$$Z(x(n+1)) = zF(z) - zx(0),$$

$$Z(1) = \frac{z}{z - 1},$$

и операторное соотношение относительно F(z) – изображения искомого решения x(n):

$$zF(z) - z \cdot 1 = \frac{2z}{z-1} + 2F(z),$$

или
$$(z-2)F(z) = \frac{2z}{z-1} + 1$$
, следовательн

следовательно,
$$F(z) = \frac{z^2 + z}{(z-1)(z-2)}.$$

Восстановим решение x(n), применяя теорию вычетов.

Функция F(z) имеет две особые точки $z_1 = 1$ и $z_2 = 2$ — простые полюсы.

Если
$$a_1, a_2, ..., a_m$$
 – особые точки функции $F(z)$, то $x(n) = \sum_{k=1}^m \mathop{\mathrm{Res}}_{z=a_k} F(z) z^{n-1}$.

Если
$$a$$
 – простой полюс, то $\underset{z=a}{\mathrm{Res}}\,F(z)z^{n-1}=\lim_{z\to a}F(z)z^{n-1}(z-a).$

Если же
$$a$$
 – полюс кратности m , то $\underset{z=a}{\operatorname{Res}} F(z) z^{n-1} = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1} \left(F(z) z^{n-1} (z-a)^m \right)}{dz^{m-1}}$.

Имеем

Res_{z=1}
$$\frac{z^2 + z}{(z-1)(z-2)} z^{n-1} = \lim_{z \to 1} \frac{z^2 + z}{(z-2)} z^{n-1} = -2;$$

$$\operatorname{Res}_{z=2} \frac{z^2 + z}{(z-1)(z-2)} z^{n-1} = \lim_{z \to 2} \frac{z^2 + z}{(z-1)} z^{n-1} = 6 \cdot 2^{n-1} = 3 \cdot 2^n.$$

Таким образом, искомое решение имеет вид: $x_n = 3 \cdot 2^n - 2$.

Пример 2.

Решить линейное разностное уравнение, используя Z -преобразование:

$$x(n+3)-3x(n+2)+3x(n+1)-x(n)=2^n$$

$$x(0) = 0$$
,

$$x(1) = 0$$
,

$$x(2) = 1$$
.

Установим соответствие:

$$x(n) \leftrightarrow F(z)$$

$$x(n+1) \leftrightarrow z(F(z) - x(0)) = zF(z)$$

$$x(n+2) \leftrightarrow z^{2}(F(z) - x(0) - \frac{x(1)}{z}) = z^{2}F(z)$$

$$x(n+3) \leftrightarrow z^{3}(F(z) - x(0) - \frac{x(1)}{z} - \frac{x(2)}{z^{2}}) = z^{3}F(z) - z$$

$$2^2 \leftrightarrow \frac{z}{z-2}$$

Тогда, подставляя в уравнение, получим:

$$z^{3}F(z)-z-3z^{2}F(z)+3zF(z)-F(z)=\frac{z}{z-2}.$$

Операторное уравнение имеет вид:

$$F(z)(z^{3} - 3z^{2} + 3z - 1) = \frac{z}{z - 2} + z$$

$$F(z) = \frac{z + z^{2} - 2z}{(z - 2)((z - 1)(z^{2} + z + 1) - 3z(z - 1))} = \frac{z^{2} - z}{(z - 2)(z - 1)(z^{2} - 2z + 1)} = \frac{z}{(z - 2)(z - 1)^{2}}.$$

Вычислим вычеты:

$$z = 2 - \text{простой полюс: } \underset{z=2}{\text{Res }} F(z) z^{n-1} = \lim_{z \to 2} \frac{z \cdot z^{n-1}}{(z-2)(z-1)^2} \cdot (z-2) = 2^n,$$

$$z=1$$
 – полюс кратности 2: $\frac{d^{m-1}}{dz^{m-1}}\Big(F(z)z^{n-1}(z-1)^2\Big)=\left(\frac{z^n}{z-2}\right)'=\frac{nz^{n-1}(z-2)-z^n}{(z-2)^2},$

$$\operatorname{Res}_{z=1} F(z) z^{n-1} = \lim_{z \to 1} \frac{n z^{n-1} (z-2) - z^n}{(z-2)^2} = \frac{-n-1}{(-1)^2} = -n-1.$$

Таким образом,

$$x(n) = \operatorname{Res}_{z=2} F(z) z^{n-1} + \operatorname{Res}_{z=1} F(z) z^{n-1} = 2^{n} - n - 1.$$

Otbet:
$$x(n) = 2^n - n - 1$$
.

ЗАДАНИЕ 1.

- 1. Найти формулу общего члена x_n последовательности.
- 2. Найти $\sum_{k=0}^{n} x_k$.
- 3. Найти $\sum_{k=0}^{n} x_k x_{n-k}$. Если:

Вариант 1. $x_0 = 0$, а каждый последующий на 3 единицы больше предыдущего, умноженного на 5;

Вариант 2. $x_0 = 8$, а каждый последующий на единицу меньше предыдущего, умноженного на 4;

Вариант 3. $x_0 = 5$, а каждый последующий на 5 единиц больше предыдущего, умноженного на 2;

Вариант 4. $x_0 = 12$, а каждый последующий на 10 единиц меньше предыдущего, умноженного на 2;

Вариант 5. $x_0 = -6$, а каждый последующий на 9 единиц меньше предыдущего, умноженного на 2;

Вариант 6. $x_0 = 8$, а каждый последующий на 10 единиц меньше предыдущего, умноженного на 5;

Вариант 7. $x_0 = 18$, а каждый последующий на 2 единицы больше предыдущего, умноженного на 6;

Вариант 8. $x_0 = -12$, а каждый последующий на 2 единицы больше предыдущего, умноженного на 2;

Вариант 9. $x_0 = -16$, а каждый последующий на 6 единиц больше предыдущего, умноженного на 5;

Вариант 10. $x_0 = 13$, а каждый последующий на 8 единиц больше предыдущего, умноженного на 7;

Вариант 11. $x_0 = 3$, а каждый последующий на 3 единицы меньше предыдущего, умноженного на 8;

Вариант 12. $x_0 = 4$, а каждый последующий на 9 единиц больше предыдущего, умноженного на 2;

Вариант 13. $x_0 = 0$, а каждый последующий на 8 единиц меньше предыдущего, умноженного на 3;

Вариант 14. $x_0 = 0$, а каждый последующий на 5 единиц меньше предыдущего, умноженного на 2;

Вариант 15. $x_0 = -3$, а каждый последующий на 4 единиц меньше предыдущего, умноженного на 7;

Вариант 16. $x_0 = 9$, а каждый последующий на 7 единиц меньше предыдущего, умноженного на 5;

Вариант 17. $x_0 = 8$, а каждый последующий на 2 единицы больше предыдущего, умноженного на 5;

Вариант 18. $x_0 = 18$, а каждый последующий на 6 единиц меньше предыдущего, умноженного на 3;

Вариант 19. $x_0 = -1$, а каждый последующий на 9 единиц меньше предыдущего, умноженного на 5;

Вариант 20. $x_0 = 6$, а каждый последующий на 8 единиц больше предыдущего, умноженного на 3;

Вариант 21. $x_0 = -7$, а каждый последующий на 5 единиц меньше предыдущего, умноженного на 6;

Вариант 22. $x_0 = 17$, а каждый последующий на 3 единицы меньше предыдущего, умноженного на 5;

Вариант 23. $x_0 = -9$, а каждый последующий на 10 единиц меньше предыдущего, умноженного на 5;

Вариант 24. $x_0 = -18$, а каждый последующий на 4 единицы больше предыдущего, умноженного на 6;

Вариант 25. $x_0 = -2$, а каждый последующий на 2 единицы меньше предыдущего, умноженного на 8;

Вариант 26. $x_0 = 4$, а каждый последующий на 6 единиц больше предыдущего, умноженного на 8;

Вариант 27. $x_0 = -1$, а каждый последующий на 6 единиц меньше предыдущего, умноженного на 8;

Вариант 28. $x_0 = -13$, а каждый последующий на 7 единиц меньше предыдущего, умноженного на 7;

Вариант 29. $x_0 = 18$, а каждый последующий на 3 единицы меньше предыдущего, умноженного на 7;

Вариант 30. $x_0 = -20$, а каждый последующий на 6 единиц меньше предыдущего, умноженного на 4;

ЗАДАНИЕ 2.

Используя Z-преобразование, решить начальную задачу для разностного уравнения:

Bapuahm 1.
$$x(n+2)-6x(n+1)+9x(n)=n\cdot 3^n,$$
 $x(0)=0, x(1)=0.$

Указание: $nf(n) \leftrightarrow -ZF'(Z)$.

Bapuarm 2.
$$x(n+2)-5x(n+1)+4x(n)=2\cdot(-1)^n,$$

 $x(0)=0, x(1)=1.$

Bapuahm 3.
$$x(n+2)-x(n) = \sin \frac{\pi n}{2}$$
,

$$x(0) = 0, x(1) = 0.$$

Bapuahm 4.
$$x(n+2)+16x(n)=17,$$

$$x(0) = 1, x(1) = 5.$$

Bapuarm 5.
$$x(n+2)-5x(n+1)+6x(n)=2\cdot 4^n$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuarm 6.
$$x(n+2)+x(n)=1-(-1)^n$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuahm 7.
$$x(n+2)-4x(n)=4^n$$
,

$$x(0) = x(1) = 1$$
.

Bapuahm 8.
$$x(n+2)-x(n)=2^n$$
,

$$x(0) = 0, x(1) = 0.$$

Bapuarm 9.
$$x(n+2)-5x(n+1)+6x(n)=1$$
,

$$x(0) = 1, x(1) = -1.$$

Bapuarm 10.
$$x(n+2)+6x(n+1)+13x(n)=1$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuarm 11.
$$x(n+2)-x(n)=(-1)^n$$
,

$$x(0) = 1, x(1) = -1.$$

Bapuahm 12.
$$x(n+2)+2x(n+1)+x(n)=(-1)^n$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuahm 13.
$$x(n+2)-4x(n)=4^n$$
,

$$x(0) = 1, x(1) = 1.$$

Bapuahm 14.
$$x(n+2)-3x(n+1)-10x(n)=0$$
,

$$x(0) = 3, x(1) = -1.$$

Bapuarm 15.
$$x(n+2)+2x(n+1)+x(n)=n$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuahm 16.
$$x(n+2)-3x(n+1)+2x(n)=0$$
,

$$x(0) = 2, x(1) = 3.$$

Bapuarm 17.
$$x(n+2)-5x(n+1)+6x(n)=0$$
,

$$x(0) = 1, x(1) = 2.$$

Bapuarm 18.
$$x(n+2)-6x(n+1)+8x(n)=3^n$$
,

$$x(0) = 0, x(1) = 0.$$

Bapuahm 19.
$$x(n+2)-4x(n+1)+4x(n)=(-1)^n$$
,

$$x(0) = 0, x(1) = 1.$$

Bapuarm 20.
$$x(n+2)-3x(n+1)-4x(n)=1$$
,

$$x(0) = 1, x(1) = 1.$$

Bapuarm 21.
$$x(n+2)-10x(n+1)+25x(n)=5,$$

 $x(0)=1,x(1)=0.$

Bapuahm 22.
$$x(n+2)-8x(n+1)+7x(n)=n$$
, $x(0)=0, x(1)=1$.

Bapuahm 23.
$$x(n+2)-5x(n)=2^n$$
, $x(0)=0, x(1)=0$.

Bapuahm 24.
$$x(n+2) + 2x(n+1) = 2^n \cos \frac{\pi n}{2},$$

 $x(0) = 1, x(1) = 0.$

Bapuarm 25.
$$x(n+2) + x(n+1) - 20x(n) = 2 \cdot 2^n,$$

 $x(0) = 1, x(1) = 1.$

Bapuarm 26.
$$x(n+2)-5x(n+1)+4x(n)=1+(-1)^n,$$

 $x(0)=0, x(1)=1.$

Bapuarm 27.
$$x(n+2)+6x(n+1)+9x(n)=3n,$$
 $x(0)=0, x(1)=1.$

Bapuahm 28.
$$x(n+2)-9x(n+1)+20x(n)=3^n$$
, $x(0)=1, x(1)=1$.

Bapuahm 29.
$$x(n+2)-7x(n+1)+10x(n)=1,$$
 $x(0)=1, x(1)=1.$

Bapuahm 30.
$$x(n+2)-8x(n+1)=1,$$

 $x(0)=0, x(1)=1.$