Non convex optimisation: CMA-ES with gradient

A combination of evolution strategy and gradient information

Semester project @CV Lab Student: Huajian Qiu

Supervisor: Benoit Guillard

Professor: Pascal Fua

Optimisation method

Stochastic search based:

CMA-ES, swarm intelligence, ...

No gradient information,

low search efficiency

Gradient based:

Adam, line search, SGD...

Hard to escape from local minimas

My contribution:

Inject gradient based optimiser into cma

injected inner optimiser into cma

Effect of inner optimiser

State of the art

Covariance Matrix Adaptation-Evolution Strategy(CMA-ES):

- Probably the most successful evolution strategy,
- Easily Parallelizable
- Randomly sample candidates from normal distribution,
- Update mean and cov from better half part of candidates

Connection with neural network:

- Cma-es For Hyperparameter Optimization Of Deep Neural Networks

 | Ilya Loshchilov & Frank Hutter, University of Freiburg, ICLR 2016
- Evolution Strategies as a Scalable Alternative to Reinforcement Learning Tim Salimans, et. al. OpenAl, arXiv preprint

Neural network training application

Method	Train Set	Test Set
Adam (BackProp) Baseline	99.8	98.9
Simple GA	82.1	82.4
CMA-ES	98.4	98.1
OpenAI-ES	96.0	96.2
PEPG	98.5	98.0

Neural network:

2-layer convnet, ~ 11k parameters

"A Visual Guide to Evolution
Strategies"

Ha, David 2017

objective function (as Benchmarks)

- 1. Ackley
- 2. Tuned Ackley
- 3. Bukin
- 4. Eggholder

$$f(\mathbf{x}) = -a \exp\left(-b\sqrt{\frac{1}{d}\sum_{i=1}^{d} x_i^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d} \cos(cx_i)\right) + a + \exp(1)$$

Benchmark: Bukin

$$f(\mathbf{x}) = 100\sqrt{\left|x_2 - 0.01x_1^2\right|} + 0.01|x_1 + 10|$$

Benchmark: Eggholder

$$f(\mathbf{x}) = -(x_2 + 47)\sin\left(\sqrt{\left|x_2 + \frac{x_1}{2} + 47\right|}\right) - x_1\sin\left(\sqrt{\left|x_1 - (x_2 + 47)\right|}\right)$$

Benchmark: Tuned Ackley

Tuned Ackley has a big trap zone, with local minimas leading to edge rather than global minima

Performance: on Ackley

Performance: on Tuned Ackley

Performance: on Bukin

Average cost	P(find global minimum)
14.64	0.43%
0.22	0.7%
0.017	95.6%

Performance: on Eggholder

0

P(find global minimum):

1.3%

5.6%

Efficiency

Number of evaluations on benchmark functions

Time per evaluation: ~10^(-6) s

Summary on 2D case

objective	optimizer	prob of convergence	cost	# of evaluations	$_{ m time}$
ackley	$do \ nothing$	0	21.55	1	0.01s
	adam	0.	19.98	0.14k	0.9s
	line search	0.	19.98	39.9k	0.12s
	cma	0.	19.82	1.46k	12.6s
	cma-line-search	$\boldsymbol{0.41}$	11.73	70.9k	199s
	cma-adam	0.19	16.27	156.4k	818s
eggholder	$do \ nothing$	0	940.7	1	0.019s
	adam	0.	715	1.6k	15.6s
	line search	0.	464	0.24k	1.3s
	cma	0.	436	0.27k	4.9s
	cma-line-search	0.136	341	45k	280s
	$\operatorname{cma-adam}$	0.012	428	0.28k	8.1s
tuned ackley	$do \ nothing$	0	21.55	1	0.012s
	adam	0.2.	15.1	0.12k	0.8s
	line search	0.27	13.3	0.31k	0.9s
	cma	0.47	4.0	0.46k	4.7s
	cma-line-search	0.62	3.6	26.1k	75s
	cma-adam	0.54	2.9	14.5k	128s
bukin	$do \ nothing$	0	260	1	0.007s
	adam	0.	11.36	7.2k	21.7s
	line search	0.46	0.12	2.1k	11.8s
	cma	0.	0.99	2.4k	12.7s
	cma-line-search	0.97	4e-5	266k	263s
	cma-adam	0.	0.89	22.4k	64s

Scalability

Sample starting point

Unsolved limitation

Efficiency:

- How to mitigate Curse of dimensionality?

Possible solution: early stop of cma-es, rely more on injected gradient based optimiser

Saddle points problem:

The performance in face of local minimas is excellent, but how about saddle points?
 In high dimensional problem of practical interest, the number of saddle points is exponentially high.

"Identifying and attacking the saddle point problem in high-dimensional non-convex optimization"

Dauphin, Yann N., Yoshua Benjio, et al. NIPS, 2014.

Conclusion

CMA-ES with line search/adam has big advantages over Adam, original CMA-ES, line search in terms of :

- More convergence on low dimensional benchmark functions
- Keep effective on high dimensional benchmark functions

for objective function satisfying:

- Differentiable and efficient to compute gradient
- low dimensional parameter space(< 500 Dims)
- Multi-modal function with many local minimas