NIST 耐量子計算機暗号計画の 追加署名方式プロジェクト第二ラウンドにおける 多変数多項式署名方式 UOV とその変種の動向

中村周平 (茨城大学)

2025 年 8 月 18-19 日 第 9 回情報数理セミナー@日本大学理工学部

量子計算機を利用した情報社会

現在の我々の情報社会

情報セキュリティ

暗号(公開鍵暗号)

危殆化

- ・RSA 暗号
- ・EC 暗号

耐量子計算機暗号

- ・格子暗号
- ・符号暗号
- ・多変数暗号
- ・同種暗号
- ・ハッシュ暗号

量子計算機の急速な開発

主な対応:

- ①耐量子計算機暗号
- ②量子暗号(量子鍵配送)

困難な数学問題 … 安全性の根拠

多項式時間での求解可能

- ・素因数分解問題
- ・離散対数問題

量子計算機でも求解困難

- ・最短ベクトル問題
- ・復号問題
- ・連立代数方程式問題
- ・同種写像問題
- ・ハッシュ関数衝突問題

①耐量子計算機暗号

NIST (米国標準技術研究所) による耐量子計算機暗号標準化プロジェクト

これまでの経過暗号化 署名2016: 公募開始82 件 = 59 + 232017: Round 1 の候補発表69 件 = 48 + 212019: Round 2 の候補発表26 件 = 17 + 92020: Round 3 の最終候補7 件 = 4 + 3代替候補8 件 = 5 + 3

2022:

- ・格子暗号・ Hash 暗号の標準化を決定
- ・残りの暗号化方式は引き続き Round 4 へ
- ・署名方式の追加プロセスを 2023 年から開始

耐量子計算機暗号標準化プロセス: 2022 年度標準化決定方式

Type	PKE/KEM	Signature
格子暗号	CRYSTALS-Kyber	CRYSTALS-Dilithum, FALCON
Hash 暗号		SPHINCS+

耐量子計算機暗号標準化プロセス: Round 4 (2022.7.5)

Type	PKE/KEM
符号暗号	BIKE, Classical McEliece, HQC
同種暗号	SIKE

耐量子計算機暗号 追加署名方式プロセス: Round 1 (40 件, 2023.7.1)

Type	Signature
符号暗号	Enhanced pqsigRM, FuLeeca, LESS, MEDS, Wave
同種暗号	SQIsign
格子暗号	EagleSign, EHTv3 and EHTv4, HAETAE, HAWK, HuFu, Raccoon, SQUIRRELS
MPC 系	CROSS, MIRA, MiRitH, MQOM, Biscuit, PERK, RYDE, SDitH
多変数系	3WISE, DME-Sign, HPPC, MAYO, PROV, QR-UOV, SNOVA, TUOV, UOV, VOX
共通鍵系	AlMer, Ascon-Sign, FAEST, SPHINCS-alpha
その他	ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon, Xifrat1-Sign.I

耐量子計算機暗号標準化プロセス: NIST announcement (2025.5.11)

Type	PKE/KEM
符号暗号	BIKE, Classical McEliece, HQC
同種暗号	SIKE

耐量子計算機暗号 追加署名方式プロセス: Round 2 (14 件, 2024.10.24)

Type	Signature
符号暗号	Enhanced pqsigRM, FuLeeca, LESS, MEDS, Wave
同種暗号	SQIsign
格子暗号	EagleSign, EHTv3 and EHTv4, HAETAE, HAWK, HuFu, Raccoon, SQUIRRELS
MPC 系	CROSS, Mirath(MIRA/MiRitH), MQOM, Biscuit, PERK, RYDE, SDitH
多変数系	3WISE, DME-Sign, HPPC, MAYO, PROV, QR-UOV, SNOVA, TUOV, UOV, VOX
共通鍵系	AlMer, Ascon-Sign, FAEST, SPHINCS-alpha
その他	ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon, Xifrat1-Sign.I

SCOPE

- NIST is primarily interested in additional general-purpose signature schemes that are not based on structured lattices.
- NIST may also be interested in signature schemes that have short signatures and fast verification.
- Any lattice signature would need to significantly outperform CRYSTALS-Dilithium and FALCON and/or ensure substantial additional security properties.

cf. D. Moody, The onramp submissions, In response to NIST's call for additional digital signatures, NIST PQC Seminars, 2023.6.9

目次

1. UOV とその解析

- ・ UOV 方式
- ・署名偽造、秘密鍵復元

2. UOV の変種

- MAYO, SNOVA, QR-UOV
- ・鍵長比較

3. Round 1 における解析

- ・ SNOVA 秘密鍵復元 : [IA2024], [LD2024], [NTF2024]
- ・ SNOVA 署名偽造 : [Beu2024], [CLVV2024]

4. Round 2 における解析

- ・ Round 1 に対する NIST の評価とチームの対応
- ・ SNOVA 秘密鍵復元 : [FINA2025]
- ・ UOV 系 秘密鍵復元 : [Ran2025], [JPHGD2025]

5. まとめ & 感想

目次

1. UOV とその解析

- ・ UOV 方式
- ・署名偽造、秘密鍵復元

2. UOV の変種

- MAYO, SNOVA, QR-UOV
- ・鍵長比較

3. Round 1 における解析

- ・ SNOVA 秘密鍵復元 : [IA2024], [LD2024], [NTF2024]
- ・ SNOVA 署名偽造: [Beu2024], [CLVV2024]

4. Round 2 における解析

- ・ Round 1 に対する NIST の評価とチームの対応
- ・ SNOVA 秘密鍵復元 : [FINA2025]
- ・ UOV 系 秘密鍵復元 : [Ran2025], [JPHGD2025]

5. まとめ & 感想

記号

q: 奇素数のべき

 \mathbb{F}_q :位数qの有限体

 $\operatorname{Mat}_{m\times n}(\mathbb{F}_q)$:有限体を係数に取る $m\times n$ 行列全体のなす集合

 $\operatorname{SymMat}_{n\times n}(\mathbb{F}_q)$:有限体を係数に取る $n\times n$ 対称行列全体のなす集合

$$\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m \quad \text{where } \mathcal{F}_i \in \mathbb{F}_q[x_1, \dots, x_n]$$

$$\boldsymbol{a} \mapsto (\mathcal{F}_1(\boldsymbol{a}), \dots, \mathcal{F}_m(\boldsymbol{a}))$$

UOVとその解析

多変数多項式署名方式 UOV は主に次の3つのアルゴリズムからなる.

$$UOV(q, v, o, m)$$
 with $n = v + o$

① 写像生成(鍵生成)

秘密鍵
$$T: \mathbb{F}_q^n \to \mathbb{F}_q^n$$
 全単射線形写像
$$\mathcal{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m \quad \text{UOV 写像(逆像元計算容易な二次写像)}$$

 $igcup \Delta 開鍵 \ \mathcal{P} := \mathcal{F} \circ \mathcal{T} : \mathbb{F}_a^n
ightarrow \mathbb{F}_a^m$

※ 秘密鍵を知っていると逆像元計算が容易な二次写像

② 逆像元計算(署名生成)

$$oldsymbol{b} \in \mathbb{F}_q^m \hspace{1cm} oldsymbol{a}' \in \mathcal{F}^{-1}(\{oldsymbol{b}\}) \hspace{1cm} oldsymbol{a} := \mathcal{T}^{-1}(oldsymbol{a}')$$

③代入計算(署名検証)

$$oldsymbol{a} \in \mathbb{F}_q^n$$
 $oldsymbol{b} = \mathcal{P}(oldsymbol{a}) \in \mathbb{F}_q^m$

例:署名を用いて公開鍵の持ち主かどうか検証する

UOV 写像:

$$\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$
s.t.
$$\mathcal{F}_k(\boldsymbol{x}) = \sum_{1 \le i \le v, i \le j \le n} a_{ij} x_i x_j \quad (a_{ij} \in \mathbb{F}_q) = {}^t \boldsymbol{x} F_k \boldsymbol{x}$$

${f UOV}$ 写像での逆像元計算: ${m a}'\in {\mathcal F}^{-1}(\{{m b}\}), o\geq m$ 署名のための条件

1.
$$a'_1, \ldots, a'_v \in \mathbb{F}_q$$

2.
$$\overline{\mathcal{F}}_k(a'_1, \dots, a'_v, x_{v+1}, \dots, x_n) = \sum_{1 \le i \le j \le v} a_{ij} a'_i a'_j + \sum_{1 \le i \le v, v+1 \le j \le n} a_{ij} a'_i x_j$$

3.
$$\overline{\mathcal{F}}=(\overline{\mathcal{F}}_1,\ldots,\overline{\mathcal{F}}_m):\mathbb{F}_q^o\to\mathbb{F}_q^m$$
,線型写像

全射でない

4.
$$(a'_{v+1},\ldots,a'_n)\in\overline{\mathcal{F}}^{-1}(\pmb{b})$$
 全射である

5.
$$\mathbf{a}' := (a'_1, \dots, a'_n) \in \mathcal{F}^{-1}(\{\mathbf{b}\})$$

署名偽造,秘密鍵復元

署名偽造: $\mathcal{P}(x) = b$ から解 a' を求める.

秘密鍵復元:公開鍵 \mathcal{P} から秘密鍵 \mathcal{F} \mathcal{T} を求める.

→署名された全ての文書に対して署名偽造可能

UOV に対する秘密鍵復元

※ 説明のため *q* を奇数とする . $\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_m) : \mathbb{F}_a^n \to \mathbb{F}_a^m$ s.t. $\mathcal{F}_k(\boldsymbol{x}) = \sum a_{ij} x_i x_j \quad (a_{ij} \in \mathbb{F}_q) = {}^t \boldsymbol{x} F_k \boldsymbol{x}$ $\therefore F_{k} = \begin{pmatrix}
a_{11} & \dots & a_{1v}/2 & a_{1v+1}/2 & \dots & a_{1n}/2 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{1v}/2 & \dots & a_{vv} & a_{vv+1}/2 & \dots & a_{vn}/2 \\
a_{1v+1}/2 & \dots & a_{vv+1}/2 & 0 & \dots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{1n}/2 & \dots & a_{vn}/2 & 0 & \dots & 0
\end{pmatrix} \in \operatorname{Mat}_{n \times n}(\mathbb{F}_{q})$ $\mathcal{T}: \mathbb{F}_q^n \to \mathbb{F}_q^n, \quad \mathcal{T}(\boldsymbol{x}) = T\boldsymbol{x} \quad (T \in \operatorname{Mat}_{n \times n}(\mathbb{F}_q))$

$$\Rightarrow \mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_m) = \mathcal{F} \circ \mathcal{T} : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ s.t. } \mathcal{P}_k(\boldsymbol{x}) = {}^t\boldsymbol{x} P_k \boldsymbol{x}$$
$$\therefore P_k = {}^tT F_k T \ (1 \le \forall k \le m)$$

秘密鍵復元:公開鍵 P_1,\ldots,P_m から秘密鍵 F_1,\ldots,F_m,T を求める.

 $\mathbf{UOV}(q, v, o, m)$ 秘密鍵復元問題 n := o + v, q : odd

Given: $P_1, \ldots, P_m \in \operatorname{Mat}_{n \times n}(\mathbb{F}_q)$

Find: $F_1, \ldots, F_m, T \in \operatorname{Mat}_{n \times n}(\mathbb{F}_q)$ s.t.

1.
$$P_k = {}^t T F_k T$$
, $1 < \forall k < m$

2.
$$F_k = \begin{pmatrix} F_k^{11} & F_k^{12} \\ {}^t F_k^{12} & O_{o \times o} \end{pmatrix}, \quad T = \begin{pmatrix} I_v & T^{12} \\ O_{o \times v} & I_o \end{pmatrix}$$

where $F_k^{11} \in \operatorname{SymMat}_{v \times v}(\mathbb{F}_q), F_k^{12}, T^{12} \in \operatorname{Mat}_{v \times o}(\mathbb{F}_q)$

秘密鍵復元攻撃 = "秘密鍵復元問題を解くアルゴリズム"

UOV に対する代数的攻撃手法

※ 連立二次方程式問題

Rectangular MinRank 攻擊 [Beu2021],[Fl2023]

(Rectangular) MinRank 問題

Given:
$$A_1, \ldots, A_m \in \operatorname{Mat}_{a \times b}(\mathbb{F}_q), r \in \mathbb{Z}_{\geq 0}$$

Find:
$$t_1, \ldots, t_m \in \mathbb{F}_q$$
 s.t. rank $\left(\sum_{i=1}^m t_i A_i\right) \leq r$

$$\Leftrightarrow \dim \operatorname{Ker} \left(\sum_{i=1}^{m} t_i A_i \right) \ge a - r$$

連立方程式問題への帰着手法

例: Kipnis-Shamir 手法

$$\mathbf{y}_j \left(\sum_{i=1}^m x_i A_i \right) = 0 \qquad (1 \le j \le a - r)$$

例: 小行列式手法

$$\operatorname{Minors}^{r+1}\left(\sum_{i=1}^{m}x_{i}A_{i}\right)$$
 $(r+1)$ 次小行列式全体

UOV から MinRank 問題への帰着

注意
$$(P_1, \dots, P_m) = ({}^tTF_1{}^tT, \dots, TF_m{}^tT)$$

$$\Rightarrow (P_*^{[1]}, \dots, P_*^{[n]}) = ({}^tTF_*^{[1]}, \dots, {}^tTF_*^{[n]})T$$

$$(P_*^{[1]}, \dots, P_*^{[n]})T^{-1} = ({}^tTF_*^{[1]}, \dots, {}^TF_*^{[n]})$$

$$T^{-1} = \begin{pmatrix} t'_{11} & \cdots & t'_{1n} \\ \vdots & \ddots & \vdots \\ t'_{n1} & \cdots & t'_{nn} \end{pmatrix}$$

$$\vdots & t'_{1i}P_*^{[1]} + \dots + t'_{ni}P_*^{[n]} = {}^tTF_*^{[i]} \qquad v < m \Rightarrow \operatorname{rank}(F_*^{[v+i]}) < m$$

$$\Rightarrow \operatorname{rank}(TF_*^{[v+i]}) < m$$

UOV からの Rectangular MinRank 問題

Given:
$$P_*^{[1]}, \dots, P_*^{[n]} \in \operatorname{Mat}_{n \times m}(\mathbb{F}_q), m \in \mathbb{Z}_{\geq 0}$$

Find: $t_1, \dots, t_n \in \mathbb{F}_q$ s.t. $\operatorname{rank}\left(\sum_{i=1}^n t_i P_*^{[i]}\right) < m$