PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-034859

(43)Date of publication of application: 07.02.2003

(51)Int.CI

C23C 14/06 B23B 27/14

B23C 5/16 C23C 14/34

(21)Application number : 2001-221773

(71)Applicant : KOBE STEEL LTD

(22)Date of filing:

23.07.2001

(72)Inventor: YAMAMOTO KENJI

SATO TOSHIKI

(54) HARD COATING FOR CUTTING TOOL, MANUFACTURING METHOD THEREFOR, AND TARGET FOR FORMING HARD COATING

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a hard coating for a cutting tool superior to a TiAIN film in abrasion resistance.

SOLUTION: The hard coating is constituted by a compound expressed by (Alb, $[Cr1-\alpha V\alpha]c$) (C1-dNd), where the symbols satisfy $0.5 \le b \le 0.8$, $0.2 \le c \le 0.5$, b+c=1, $0.05 \le \alpha \le 0.95$, and $0.5 \le d \le 1$. Alternatively, the hard coating is constituted by a compound expressed by (Ma, Alb, $[Cr1-\alpha V\alpha]$ c) (C1-dNd), where M is at least one selected from the group consisting of Ti, Nb, W, Ta and Mo, and other symbols satisfy $0.02 \le a \le 0.3$, $0.5 \le b \le 0.8$, $0.05 \le c$, a+b+c=1, $0.5 \le d \le 1$, and $0 \le \alpha \le 1$ ((a) indicates an atomic ratio of M). However, M and α shall no be simultaneously Ti and zero respectively.

LEGAL STATUS

[Date of request for examination]

22.10.2004

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特期2003-34859 (P2003-34859A)

(43)公開日 平成15年2月7日(2003.2.7)

		(45)公明日 千成13年2月7日(2003.2.1)
(51) Int.Cl.'	識別記号	F I デーマコート*(参考)
C 2 3 C 14/06		C 2 3 C 14/06 H 3 C 0 4 6
B 2 3 B 27/14		B 2 3 B 27/14 A 4 K 0 2 9
B 2 3 C 5/16		B 2 3 C 5/16
C 2 3 C 14/34		C 2 3 C 14/34 A
		審査請求 未請求 請求項の数20 OL (全 19 頁)
(21)出廣番号	特顧2001-221773(P2001-221773)	(71)出願人 000001199
		株式会社神戸製鋼所
(22)出廣日	平成13年7月23日(2001.7.23)	兵庫県神戸市中央区脇浜町二丁目10番26号
		(72)発明者 山本 兼司
		神戸市西区高塚台1丁目5番5号 株式会
		社神戸製鋼所神戸総合技術研究所内
		(72)発明者 佐藤 俊樹
		神戸市西区高塚台1丁目5番5号 株式会
		社神戸製鋼所神戸総合技術研究所内
		(74)代理人 100067828
		弁理士 小谷 悦司 (外1名)
		最終頁に続く

(54) 【発明の名称】 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット

(57)【要約】

【課題】 TiAlN膜よりも耐摩耗特性に優れた切削 工具用硬質皮膜を提供する。

【特許請求の範囲】

【請求項1】 (Alb, $[Cr_{1-\alpha}V_{\alpha}]_c$) (C 1-d Nd) からなる硬質皮膜であって、

 $0.5 \le b \le 0.8$

 $0.2 \le c \le 0.5$

b + c = 1

 $0.05 \le \alpha \le 0.95$

 $0. 5 \leq d \leq 1$

(b, cはそれぞれAl, Cr+Vの原子比、dはNの ることを特徴とする切削工具用硬質皮膜。

【請求項2】 (Ma, Alb, [Cr1-α Vα] c) (Ci-dNd) からなる硬質皮膜であって、

Mは、Ti、Nb、W、TaおよびMoよりなる群から 選択される少なくとも1種であり、かつ、

 $0.02 \le a \le 0.3$

 $0.5 \le b \le 0.8$

 $0.05 \le c$

a + b + c = 1.

 $0. 5 \leq d \leq 1,$

 $0 \le \alpha \le 1$

(a, b, cはそれぞれM, Al, Cr+Vの原子比、 dはNの原子比を示し、αはVの原子比を示す。以下同 じ)であることを特徴とする切削工具用硬質皮膜。但 し、MがTiであって、かつ α の値が0の場合を除く。

【請求項3】 前記MがTiである請求項2に記載の切 削工具用硬質皮膜。

【請求項4】 前記 dの値が1である請求項1~3のい ずれかに記載の切削工具用硬質皮膜。

である請求項1~4のいずれかに記載の切削工具用硬質 皮膜。

【請求項6】 請求項1~5のいずれかに記載の要件を 満たし、且つ相互に異なる硬質皮膜が2層以上形成され ていることを特徴とする切削工具用硬質皮膜。

【請求項7】 請求項1~6のいずれかに記載の硬質皮 膜の片面側または両面側に、岩塩構造型主体の結晶構造 を有し、且つ前記硬質皮膜とは異なる成分組成である金 属窒化物層、金属炭化物層および金属炭窒化物層よりな る群から選択される少なくとも1層が積層されているこ $40 \quad 0 \le B \le 1$ とを特徴とする切削工具用硬質皮膜。

【請求項8】 請求項1~7のいずれかに記載の硬質皮 膜の片面側または両面側に、4A族、5A族、6A族、 AlおよびSiよりなる群から選択される少なくとも1 種の金属を含む金属層または合金層が1以上積層されて いることを特徴とする切削工具用硬質皮膜。

【請求項9】 請求項1~8のいずれかに記載の切削工 具用硬質皮膜の製造方法であって、成膜ガス雰囲気中で 金属を蒸発させイオン化して、前記金属とともに成膜ガ 切削工具用硬質皮膜の製造方法。

【請求項10】 ターゲットを構成する金属の蒸発およ びイオン化をアーク放電にて行うアークイオンプレーテ ィング法において、該ターゲットの蒸発面にほぼ直交し て前方に発散ないし平行に進行する磁力線を形成し、こ の磁力線によって被処理体近傍における成膜ガスのプラ ズマ化を促進しつつ成膜する請求項9に記載の切削工具 用硬質皮膜の製造方法。

【請求項11】 前記被処理体に印加するバイアス電位 原子比を示し、lphaはVの原子比を示す。以下同じ)であ 10 をアース電位に対して-50V $\sim <math>-300V$ とする請求 項10に記載の切削工具用硬質皮膜の製造方法。

> 【請求項12】 成膜時の前記被処理体温度を300℃ 以上800℃以下とする請求項10または11に記載の 切削工具用硬質皮膜の製造方法。

> 【請求項13】 成膜時の反応ガスの分圧または全圧を 0. 5 Pa以上 6 Pa以下とする請求項 10~12のい ずれかに記載の切削工具用硬質皮膜の製造方法。

【請求項14】 A1、CrおよびV、またはM(M は、Ti、Nb、W、TaおよびMoよりなる群から選 20 択される少なくとも1種)、A1、CrおよびVからな り、且つ相対密度が95%以上であることを特徴とする 硬質皮膜形成用ターゲット。

【請求項15】 (Aly, [Cr1-8V8]z) からなる ターゲットであって、

 $0.5 \le y \le 0.8$

 $0. \ 2 \le z \le 0. \ 5$

y + z = 1

0. $0.5 \le \beta \le 0.95$

(y, zはそれぞれAl, Cr+Vの原子比を示し、 β 【請求項5】 結晶構造が岩塩構造型を主体とするもの 30 はVの原子比を示す。以下同じ)である請求項14に記 載の硬質皮膜形成用ターゲット。

> 【請求項16】 $(M_x, Al_y, [Cr_{1-\beta}V_{\beta}]_z)$ からなるターゲットであって、Mは、Ti、Nb、W、 TaおよびMoよりなる群から選択される少なくとも1 種であり、かつ、

 $0.02 \le x \le 0.3$

 $0.5 \le y \le 0.8$

0. $0.5 \le z$

x + y + z = 1

(x、y、zはそれぞれM、Al、Cr+Vの原子比を 示し、βはVの原子比を示す。以下同じ) である請求項 14に記載の硬質皮膜形成用ターゲット。但し、MがT iであって、かつβの値がOの場合を除く。

【請求項17】 前記MがTiである請求項16に記載 の硬質皮膜形成用ターゲット。

【請求項18】 前記ターゲット中に存在する空孔の大 きさが半径0.3mm未満である請求項14~17のい ずれかに記載の硬質皮膜形成用ターゲット。

スのプラズマ化を促進しつつ成膜することを特徴とする 50 【請求項19】 酸素含有量が0.3質量%以下で、水

-2-

素含有量が0.05質量%以下であり、更に塩素含有量 が0.2質量%以下である請求項14~18のいずれか に記載の硬質皮膜形成用ターゲット。

【請求項20】 Cu含有量が0.05質量%以下で、 Mg含有量が0.03質量%以下である請求項14~1 9のいずれかに記載の硬質皮膜形成用ターゲット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、チップ、ドリル、 エンドミル等の切削工具の耐摩耗性を向上するための硬 10 質皮膜およびその製造方法、更には、この様な硬質皮膜 の製造において蒸発源として使用されるターゲットに関 するものである。

[0002]

【従来の技術】従来より、超硬合金、サーメットまたは 高速度工具鋼を基材とする切削工具の耐摩耗性を向上さ せることを目的に、TiNやTiCN、TiAlN等の 硬質皮膜をコーティングすることが行われている。特 に、特許第2644710号に開示されるようなTiと れた耐摩耗性を示すことから、前記チタンの窒化物や炭 化物、炭窒化物等からなる皮膜に代わって、高速切削用 や焼き入れ鋼等の高硬度材切削用の切削工具に適用され つつある。しかしながら、近年の被削材高硬度化や切削 速度の高速度化に伴い、更に耐摩耗性の高められた皮膜 が求められている。

[0003]

【発明が解決しようとする課題】本発明はこのような事 情に鑑みてなされたものであって、その目的は、高速・ 耐摩耗性に優れた切削工具用硬質皮膜、およびこの様な 硬質皮膜を得るための有用な製造方法、更には前記製造 にて本発明の切削工具用硬質皮膜を効率よく得ることの できるターゲットを提供することにある。

[0004]

【課題を解決するための手段】本発明に係る切削工具用 硬質皮膜とは、 (Alb, [Cr1-αVα]c) (C 1-d Nd)からなる硬質皮膜であって、

- 0.5≦b≦0.8、
- $0.2 \le c \le 0.5$

b+c=1

- 0. $0.5 \le \alpha \le 0.95$
- $0. \quad 5 \leq d \leq 1$

(b, cはそれぞれAl, Cr+Vの原子比、dはNの 原子比を示し、 α はVの原子比を示す)であることを要 旨とするものである(以下、第1の硬質皮膜ということ がある)。

【0005】また本発明は、(Ma, Alb, [Cri-a Vα]c) (C1-dNd) からなる硬質皮膜であって、M が、Ti、Nb、W、TaおよびMoよりなる群から選 50 の様な、皮膜の成分組成に必要な元素を含むガスをい

択される少なくとも1種であり、かつ、

- $0.02 \le a \le 0.3$
- $0.5 \le b \le 0.8$
- $0.05 \le c$
- a + b + c = 1
- $0.5 \leq d \leq 1$

 $0 \le \alpha \le 1$

(a, b, cはそれぞれM, Al, Cr+Vの原子比、 dはNの原子比を示し、αはVの原子比を示す) である ことを要旨とする切削工具用硬質皮膜も含むものであっ て、MがTiの場合を好ましい形態とするが、MがTi であって、かつαの値が0の場合については、特願20 01-185464号として先に特許出願済み(但し、 未公開)であるので、本発明からは除くこととする(上 記皮膜を、以下、第2の硬質皮膜ということがある)。 【0006】本発明の切削工具用硬質皮膜は、更に、前 記dの値が1であるものや、結晶構造が岩塩構造型を主 体とするものを好ましい形態とする。

【0007】また本発明の切削工具用硬質皮膜には、上 Alの複合窒化皮膜[以下、TiAlNと記す]が、優 20 記要件を満たし、且つ相互に異なる硬質皮膜が2層以上 形成されているものや、前記1層もしくは2層以上の本 発明の硬質皮膜の片面側または両面側に、岩塩構造型を 主体とする結晶構造を有し、且つ前記硬質皮膜とは異な る成分組成の金属窒化物層、金属炭化物層および金属炭 窒化物層よりなる群から選択される少なくとも1層や、 4A族、5A族、6A族、AlおよびSiよりなる群か ら選択される少なくとも1種の金属を含む金属層または 合金層が1以上積層されているものも含まれる。

【0008】本発明は、上記切削工具用硬質皮膜を形成 高能率切削が可能な、TiAlNよりも高硬度であって 30 する方法も規定するものであって、成膜ガス雰囲気中で 金属を蒸発させイオン化して被処理体上に本発明で規定 する皮膜を形成する方法にて、前記金属とともに成膜ガ スのプラズマ化を促進しつつ成膜することを要旨として いる。また、アーク放電を行ってターゲットを構成する 金属を蒸発およびイオン化して被処理体上に本発明で規 定する皮膜を形成するアークイオンプレーティング法 (AIP法) において、前記ターゲットの蒸発面にほぼ

直交して前方に発散ないし平行に進行する磁力線を形成 し、この磁力線によって前記被処理体近傍における成膜 40 ガスのプラズマ化を促進しつつ成膜することを好ましい 形態とする。尚、この場合に前記被処理体に印加するバ イアス電位は、アース電位に対して-50V~-300 Vとすることが好ましい。また、成膜時の被処理体温度 (以下、基板温度ということがある) は300℃以上8 00℃以下の範囲内とすることが望ましく、成膜時の反 応ガスの分圧または全圧は、0.5Pa以上6Pa以下 の範囲内とすることが望ましい。

【0009】尚、本発明における上記反応ガスとは、窒 素ガス、メタンガス、エチレンガス、アセチレンガス等 い、それら以外に用いられるアルゴンなどの様な希ガス 等をアシストガスといい、これらをあわせて成膜ガスと いうこととする。

【0010】更に本発明は、Al、CrおよびV、また はM(Mは、Ti、Nb、W、TaおよびMoよりなる 群から選択される少なくとも1種)、 A1、Crおよび Vからなり、且つ相対密度が95%以上であることを特 徴とする硬質皮膜形成用ターゲットも含み、該ターゲッ ト中に存在する空孔の大きさが半径 0. 3 mm未満であ ることを好ましい形態とする。

【0011】前記 (Alb, [Crι-αVα]c) (C1-d Na) で示される本発明の硬質皮膜 (第1の硬質皮膜) の成膜には、ターゲットとして、その成分組成が (A1) y, [C r 1- β V β]z) からなるものであって、

- $0.5 \le y \le 0.8$
- $0.2 \le z \le 0.5$

y + z = 1

0. $0.5 \le \beta \le 0.95$

(y, zはそれぞれAl, Cr + Vの原子比を示し、 β はVの原子比を示す)を満足するものを用いるのがよ い。

【0012】また、前記 (Ma, Alb, [Cr 1-α Vα] c,) (C1-d Nd) で示される本発明の硬質 皮膜(第2の硬質皮膜)の成膜には、ターゲットとし て、その成分組成が (Mx, Aly, [Cr 1-β V β]z) からなるものであって、Mは、Ti、N b、W、TaおよびMoよりなる群から選択される少な くとも1種であり、かつ、

- $0.02 \le x \le 0.3$
- $0.5 \le y \le 0.8$
- $0.05 \le z$
- x + y + z = 1

 $0 \le \beta \le 1$

(x、y、zはそれぞれM, A1, Cr+Vの原子比を 示し、βは∨の原子比を示す)を満たすものを用いるの がよく、本発明の好ましい形態であるMがTiの硬質皮 膜の形成には、上記MがTiであるターゲットを用いる ことが好ましい。

【0013】但し、本発明の硬質皮膜は、前記MがTi ことから、ターゲットについても、前記MがTiであっ て、かつ前記βの値が0のものを除くこととする。

【0014】また前記ターゲット中の酸素含有量が0. 3質量%以下で、水素含有量が0.05質量%以下であ り、更に塩素含有量が0.2質量%以下であることが好 ましく、更にCu含有量がO.05質量%以下で、Mg 含有量が0.03質量%以下であることが好ましい。 [0015]

【発明の実施の形態】本発明者らは、前述した様な状況

皮膜の実現を目指して鋭意研究を進めた。その結果、指 標として皮膜の硬度を高めることにより耐摩耗性が著し く向上することを見出した。

【0016】そして、その手段として(TiAl) (C N) 膜のA1 濃度およびその他の添加元素の影響に着目 して研究を進めた結果、Al濃度を増加させると共に、 Cr あるいはVを添加すること、更にはTi、Nb、 W、TaおよびMoよりなる群から選択される少なくと も1種(以下、単に元素Mと総称することがある)を添 10 加することによって、膜の硬度が向上し、結果として耐 摩耗性が飛躍的に向上することを突き止め、更に、これ らA1、元素M、CrおよびVの定量的作用効果につい て追求を重ねた結果、上記本発明に想到したのである。 【0017】即ち、本発明の硬質皮膜とは、(Alb. [C r 1-α V α] c) (C1-d Nd) からなる硬質皮膜で あって、該皮膜の成分組成が、

- $0.5 \le b \le 0.8$
- $0.2 \le c \le 0.5$

b + c = 1

- 20 0. $0.5 \le \alpha \le 0.95$
 - $0.5 \leq d \leq 1$

(b, cはそれぞれAl, Cr+Vの原子比、dはNの 原子比を示し、 α はVの原子比を示す)を満たすこと、 または、(Ma, Alb, [Cri-aVa]c) (Ci-dN a)からなる硬質皮膜であって、Mは、Ti、Nb、 W、TaおよびMoよりなる群から選択される少なくと も1種であり、かつ、

- $0.02 \le a \le 0.3$
- $0.5 \le b \le 0.8$
- 30 0.05 $\leq c$
 - a+b+c=1
 - $0. \quad 5 \leq d \leq 1,$

 $0 \le \alpha \le 1$

(a, b, cはそれぞれM, A1, Cr+Vの原子比、 dはNの原子比を示し、αはVの原子比を示す)を満た すことを特徴とするものであるが、この様に皮膜中の M、Al、Cr、V、CおよびNの組成を規定した理由 について、以下詳細に説明する。

【0018】前記TiA1N皮膜は岩塩構造型の結晶で であって、かつ前記αの値が0の場合を除くものである 40 あり、岩塩構造型のTiNのTiのサイトにA1が置換 して入った岩塩構造型の複合窒化物である。ところで、 岩塩構造型のA1N(格子定数4.12Å)は高温高圧 相であるため、高硬度物質であると予想されることか ら、岩塩構造を維持しながらTiAlN中のAlの比率 を高めれば、前記TiAlN皮膜の硬度をさらに高める ことができると考えられる。しかしながら岩塩構造型の AlNは、常温常圧、高温常圧では準安定相であること から、気相コーティングを行ってAlN単独の皮膜を形 成しても、通常は軟質なZnS型AlNのみが形成さ の下で、より優れた耐摩耗性を発揮する切削工具用硬質 50 れ、岩塩構造型のAlNは生成されない。ところで、T

iNは常温常圧において岩塩構造型で、かつ岩塩構造型 のAlNと格子定数が近いことから、TiにAlを添加 して窒化物を形成することによって、TiNの構造にA 1 Nが引き込まれて岩塩構造型のTiAlN膜または (TiAl) (CN) 膜を形成することができるのであ る。しかしながら前記公報では、TiAlNにおけるA 1の比率が原子比で0.6~0.7を越えると、軟質な ZnS型AlNが析出するため硬度の低下が生じること が開示されている。これは、Al濃度が髙くなると岩塩 構造型のTiNによる引き込み効果が弱くなり、軟質な 10 Zn S型のAl Nの形成が優勢になるためと考えられ る。一方、CrNやVNは、TiNよりさらに岩塩構造 型のAINに格子定数が近いことから(AIN:4.1 2Åに対し、TiN: 4. 24Å、CrNおよびVN: 4. 14Å)、TiAlN中のTiをCr、Vに置換す ることにより、さらに高A1濃度で岩塩構造型を維持す ることが可能であると考えられる。

【0019】そこで本発明では、まず、第1の硬質皮膜 として、TiのかわりにCrとVを添加した(Al, C 限に発揮させて、岩塩構造型のAlNを析出させ、髙A 1 濃度であっても岩塩構造型を主体とする皮膜を形成す べく、成分組成について検討した。

【0020】その結果、上記引き込み効果を有効に発揮 させるには、Cr+Vの原子比cを0.2以上で0.5 以下とする必要があることが分かった。 さらにA1量を 増加させて岩塩構造型のAlNの比率を高めるには、前 記Cr+Vの原子比cの上限を0.4とすることが好ま しく、より好ましくは0.3であることも分かった。 尚、上記(Cr+V)量が少なくなると、格子定数が岩 30 塩構造型のA1Nに近い (CrN+VN) による上記引 き込み効果が小さくなることから、Cr+Vの原子比c の下限を0.23とすることが好ましい。

【0021】また、(Cr+V) 中のVの原子比αに関 しては、CrNとVNで格子定数がほぼ等しく、Crを 添加すると、鉄系の被削材料に対して耐摩耗性を高める ことができ、Vを添加するとドライ切削状態にて潤滑効 果をもたらすなど独自の効果を有することから、用途に よりCrおよびVの比率を調整すればよいが、切削工具 として両者の特性を兼ね備えていることが望ましいの で、 α の下限を0.05、上限を0.95とした。 α の 下限は、好ましくは0.2で、より好ましくは0.3で あり、 α の上限は、好ましくは0. 8で、より好ましく は0.7である。

【0022】A1の原子比bは、前記 (Cr+V) の原 子比cの値により定まるが、Alの比率が小さすぎる と、岩塩構造型のAlNの析出量が少なく高硬度化の効 果が得られないので、Alの原子比もの下限をO.5と した。前記しの下限は、好ましくは0.6であり、より 好ましくは0.65である。一方、Alの原子比の上限 50 Cr, V) (CN) 膜における(Cr+V)の原子比c

を0.8としたのは、A1の比率が大きすぎると、相対 的にCr、Vの添加量が少なくなって前記引き込み効果 が弱くなり、その結果、軟質なZnS型のAlN析出に より皮膜が軟質化するからである。Alの原子比bの上 限は、好ましくは0.77であり、より好ましくは0. 75である。

【0023】さらに本発明では、第2の硬質皮膜とし て、CrNおよびVN (格子定数: 4. 14A) と格子 定数の異なる窒化物を形成する元素M:Ti(TiNの 格子定数: 4. 24Å)、Nb(NbNの格子定数: 4.39Å)、W(W2Nの格子定数:4.12Å)、 Ta (TaNの4.33Å)、Mo (Mo2Nの格子定 数: 4. 16Å) をCr、Vと置換させることによっ て、高A1濃度による高硬度化に加え、格子歪みの効果 により、更なる皮膜の高硬度化を図ることが可能である ことを見い出した。

【0024】この様に (M, A1, Cr, V) (CN) 膜にて、CrN、VNと格子定数の異なる窒化物を形成 する元素Mとして、Ti、Nb、W、TaおよびMoよ r, V) (CN) 膜について、前記引き込み効果を最大 20 りなる群から選択される少なくとも1種を添加して、C rNやVNの格子定数との違いにより結晶格子の歪みを 生じさせて高硬度化を図るには、Mの原子比aの下限を 0.02とする必要があり、好ましくは、0.05以上 であり、より好ましくは0. 1以上であることが分かっ

> 【0025】一方、Mの原子比aが大きすぎると、C r、Vの添加量が抑えられ、前記引き込み効果が弱くな り、Al含有量が同一であってもMの比率の高い皮膜で は、ZnS型AlNが析出して皮膜が軟質化する。従っ て、Mの原子比aの上限を0.3とした。Mの原子比a の上限は、好ましくは0.25であり、より好ましくは 0.2である。

【0026】特に、元素MとしてTi、NbまたはTa を添加する場合、これらの窒化物がCrNあるいはVN と比較して格子定数が大きく、格子歪みによる高硬度化 を有効に図ることができることから好ましく、元素Mと してTiを単独で用いる場合が最も好ましい。また、上 記Ti、Nb、またはTaを各々単独で添加する他、T iとNb、TiとTa、TaとNbまたはNbとTaと 40 いった2元素の組み合わせや、Ti、TaおよびNbと いった3元素の組み合わせで添加することも有効であ る。2元素以上を同時に添加する場合、これらの元素間 で特に比率を規定するものではないが、最も添加量の少 ない元素が、原子比で0.05a(aは元素Mの原子 比) 以上含まれていることが好ましく、より好ましくは 0.1 a 以上である。

【0027】Cr、Vに関しては、上述の通り、引き込 み効果により岩塩構造型のAlNを皮膜中に形成させる のに必要な元素であることから、本発明の(M, A1,

の下限を0.05とした。好ましくは0.1以上であ り、より好ましくは0.15以上である。尚、上記 (C r+V) 量が少なくなると、格子定数が岩塩構造型のA 1Nに近い(CrN+VN)による上記引き込み効果が 小さくなることから、Cr+Vの原子比cの下限をO. 23とすることが好ましい。

【0028】また、 (Cr+V) 中のVの原子比 α に関 しては、CrNとVNで格子定数がほぼ等しく、Crは 鉄系の被削材料に対して耐摩耗性が優れ、Vはドライ切 削状態にて潤滑効果をもたらすなど独自の効果を有する ことから、用途によって使い分ければよく、特に制限さ れるものではないが、両特性を確保する観点からは、α の下限を0.2とすることが好ましく、より好ましくは 0.3である。また、 α の上限を0.8とすることが好 ましく、0.7とすることがより好ましい。

【0029】A1の原子比bの下限を0.5としたの は、Alの比率が小さすぎると、岩塩構造型のAlNの 析出量が少なく、結果として低硬度となるからであり、 前記bの下限は、好ましくは0.6で、より好ましくは 0.65である。一方、A1の原子比の上限を0.8と したのは、A1の比率が大きすぎると、相対的にCr、 Vの添加量が少なくなることから前記引き込み効果が弱 くなり、その結果、軟質なZnS型のA1N析出により 皮膜が軟質化するからである。Alの原子比bの上限 は、好ましくは0.77であり、より好ましくは0.7 5である。

【0030】前記第1の硬質皮膜および第2の硬質皮膜 にて、C、Nの量を規定した理由は次の通りである。即 ち、皮膜中にCを添加し、VC、またはMとしてTi、 Nb、Taを添加した場合のTiC、NbC、TaC等 の高硬度の炭化物を析出させて皮膜の硬度を高める場 合、C量は、前記第1の硬質皮膜ではVの添加量(原子 比)と同量程度、また前記第2の硬質皮膜ではM+Vの 添加量(原子比)と同量程度存在させることが望まし い。しかしながら、Cを過剰に添加すると、水分と反応 して容易に分解する不安定なアルミの炭化物を過度に析*

【数1】

[0034]

... (1)

IB(111) + IB(200) + IB(220)IB(111) + IB(200) + IB(220) + IH(100) + IH(102) + IH(110)

【0035】本発明の皮膜としては、上記要件を満足す る単層の皮膜の他、上記要件を満たし、且つ相互に異な る皮膜を複数積層させたものを用いることもできる。ま た用途によっては、前記1層または2層以上の本発明で 規定する (A1, Cr, V) (CN) 膜、または (M, Al, Cr, V) (CN) 膜の片面側または両面側に、 岩塩構造型主体の結晶構造を有し、且つ前記硬質皮膜と は異なる成分組成の金属窒化物層、金属炭化物層および 金属炭窒化物層よりなる群から選択される少なくとも1 層が積層されていてもよい。

【0036】尚、ここでいう「岩塩構造型主体の結晶構

*出させることになるので、Cの原子比 (1-d) は0. 5未満、即ち、Nの原子比dを0.5以上とする必要が ある。 d は、0. 7以上であることが好ましく、より好 ましくは0.8以上であり、d=1の場合を最も望まし い形態とする。

10

【0031】尚、本発明の硬質皮膜の結晶構造は、実質 的に岩塩構造型を主体とするものであることが好まし い。前述のようにZnS型構造が混入すると高強度を確 保することができないからである。しかしながら皮膜の 特性を損なわない範囲で若干のZnS型構造が構造中に 10 含まれることは許容され、その目安として、以下にX線 回折により測定した岩塩構造型とZnS型構造の望まし い範囲を示す。

【0032】即ち、上記岩塩構造型を主体とする結晶構 造とは、 $\theta-2\theta$ 法によるX線回折における岩塩構造を 示すピークのうち、(111)面、(200)面、(2 20) 面のピーク強度をそれぞれ、IB(111)、I B(200)、IB(220)とし、ZnS型構造を示 すピークのうち、(100)面、(102)面、(11 0) 面のピーク強度をそれぞれ、IH(100)、IH (102)、IH(110)とした場合に、下記式 (1)の値が0.8以上となるような結晶構造のことを いう。0.8未満になると膜の硬度が本発明で好ましい とする硬度よりも低くなるのである。

【0033】前記ZnS型構造のピーク強度は、X線回 折装置にて $CuOK\alpha$ 線を用い、(100)面は 2θ = $32^{\circ} \sim 33^{\circ}$ 付近、 (102) 面は $2\theta = 48^{\circ} \sim 5$ 0°付近、また(110)面は2 θ =57°~58°付 近に現れるピークの強度を測定して求める。尚、ZnS 型の結晶はAlNが主体であるが、Ti、V、Cr、M o、Ta、W等が混入すると、実測されるZnS型A1 Nのピーク位置は、JCPDSカードのZnS型AlN のピーク位置と若干ずれる。

る岩塩構造を示すピークのうち、(111)面、(20 0) 面、(220) 面のピーク強度をそれぞれ、IB (111)、IB(200)、IB(220)とし、Z nS型構造を示すピークのうち、(100)面、(10 2) 面、(110) 面のピーク強度をそれぞれ、IH (100)、IH(102)、IH(110)とした場 合に、上記式(1)の値が0.8以上となるような結晶 構造のことをいうものとする。また、岩塩構造型であっ て、本発明の規定とは異なる成分組成の金属窒化物層、 金属炭化物層または金属炭窒化物層として、例えばTi N. Tialn, Ticraln, Ticn, Tial

20

11

る。

【0037】本発明の切削工具用硬質皮膜は、前記1層もしくは2層以上の本発明の硬質皮膜の片面側または両面側に、4A族、5A族、6A族、A1およびSiよりなる群から選択される少なくとも1種の金属を含む金属層または合金層が1以上積層されているものであってもよく、前記4A族、5A族、6A族の金属として、Cr、Ti、Nb等が挙げられ、合金としてTi-A1等を用いることができる。

【0038】上記(i)本発明の要件を満たし且つ相互に異なる皮膜や、(ii)岩塩構造型であって前記硬質皮膜とは異なる成分組成の金属窒化物層、金属炭化物層または金属炭窒化物層、(iii)4 A族、5 A族、6 A族、A1 およびSiよりなる群から選択される少なくとも1種の金属を含む金属層または合金層を、複数層形成して本発明の硬質皮膜とする場合には、1層の膜厚が0.005~2 μ mの範囲内にあればよいが、本発明の硬質皮膜は、単層の場合であっても上記複数層の場合であっても、トータルとしての膜厚は、0.5 μ m以上で20 μ m以下の範囲内とすることが望ましい。0.5 μ m未満だと膜厚が薄すぎて耐摩耗性が好ましくなく、一方、上記膜厚が20 μ mを超えると、切削中に膜の欠損や剥離が発生するからである。尚、より好ましい膜厚は、1 μ m以上で15 μ m以下である。

【0039】更に、A1の組成比が高くても結晶構造が 実質的に岩塩構造型を主体とする本発明の硬質皮膜を作 製するには、本発明で規定する様な方法で成膜すること が大変有効である。即ち、成膜ガス雰囲気中でアーク放 電を行ってターゲットを構成する金属を蒸発させてイオ ン化し、被処理体上に本発明の硬質皮膜を形成する方法 にて、前記金属とともに成膜ガスのプラズマ化を促進し つつ成膜することが必要であり、このとき前記被処理体 近傍における成膜ガスのプラズマ化を、ターゲットの蒸 発面にほぼ直交して前方に発散ないし平行に進行するよ う形成した磁力線によって促進しつつ成膜することを好 ましい形態とする。

【0040】尚、本発明の成膜方法は、本発明で規定する岩塩構造型を主体とした(A1, Cr, V)(CN)皮膜または(M, A1, Cr, V)(CN)皮膜の成膜に有効であるのは勿論のこと、それ以外の皮膜を成膜するにあたっても大変有効な方法であることは言うまでもない。

【0041】アークイオンプレーティング(AIP)装置においては、従来のように磁場がターゲットの裏側に配置されたカソード蒸発源では本発明の皮膜を作製することが困難であり、磁石がターゲットの横または前方に配置されて、ターゲット蒸発面にほぼ直交して前方に発散ないし平行に進行する磁力線を形成し、この磁力線によって窒素ガスのプラズマ化を促進することが本発明の硬質皮膜を形成する上で大変有効なのである。

2

【0042】本発明を実施するための装置の一例として、図1にAIP装置を示しながら簡単に説明する。 【0043】このAIP装置は、真空排気する排気口1 1および雰囲気ガスを供給するガス供給口12とを有する真空容器1と、アーク放電によって陰極を構成するターゲットを蒸発させてイオン化するアーク式蒸発源2と、コーティング対象である被処理体(切削工具)Wを支持する支持台3と、この支持台3と前記真空容器1との間で支持台3を通して被処理体Wに負のバイアス電圧を印加するバイアス電源4とを備えている。

【0044】前記アーク式蒸発源2は、陰極を構成する ターゲット6と、このターゲット6と陽極を構成する真 空容器1との間に接続されたアーク電源7と、ターゲッ ト6の蒸発面Sにほぼ直交して前方に発散ないし平行に 進行し、被処理体Wの近傍まで伸びる磁力線を形成する 磁界形成手段としての磁石(永久磁石)8とを備えてい る。被処理体Wの近傍付近における磁束密度としては、 被処理体の中心部において磁束密度が10G(ガウス) 以上、好ましくは30G以上とするのが良い。尚、蒸発 面にほぼ直交するとは、蒸発面の法線方向に対してO° を含み、30°程度以下の角度をなすことを意味する。 【0045】図2は、本発明の実施に供するアーク式蒸 発源要部の一例を拡大した断面概略図であるが、前記磁 界形成手段としての磁石8は、ターゲット6の蒸発面S を取り囲むように配置されている。磁界形成手段として は、前記磁石に限らず、コイルとコイル電源とを備えた 電磁石でも良い。また、磁石の配置場所は図3に示すよ うに、ターゲット6の蒸発面5の前方(被処理体側)を 取り囲むように設けても良い。尚、図2では、チャンバ ーをアノードとしたが、例えばターゲット側面前方を取 り囲むような円筒形状の専用アノードを設けても良い。 【0046】尚、図4に示す従来のAIP装置のアーク 式蒸発源102にも、アーク放電をターゲット106上 に集中させるための電磁石109を備えたものがある が、電磁石109がターゲット106の裏側に位置して いるため、磁力線がターゲット蒸発面近傍でターゲット 表面と平行となり、磁力線が被処理体Wの近傍にまで伸 びないようになっている。

【0047】本発明で使用するAIP装置のアーク式蒸発源と、従来のそれとの磁場構造の違いは、雰囲気ガスのプラズマの広がり方の違いにある。

【0048】前記図3に示すように、放電で発生した電子eの一部が磁力線に巻き付くように運動を行い、この電子が成膜ガスを構成する窒素分子等と衝突することによって成膜ガスがプラズマ化する。前記図4における従来の蒸発源102では、磁力線がターゲット近傍に限られるため、上記の様にして生成された成膜ガスのプラズマの密度はターゲット近傍が最も高く、彼処理体Wの近傍ではプラズマ密度がかなり低いものとなっている。これに対し、図2および図3に示す様な本発明で使用する

13

蒸発源では、磁力線が被処理体Wにまで伸びるため、被 処理体W近傍における成膜ガスのプラズマ密度が従来の 蒸発源に比べ格段に高いものとなっている。

【0049】そしてこの様なターゲット表面における磁 力線配置、および基板(被処理体)近傍のプラズマ密度 の違いが、生成される膜の結晶構造、ひいては得られる 特性に大きく影響を与えると考えられる。図5はこのよ うな影響を確認した一実施例であり、従来型の蒸発源と 本発明者らのアーク蒸発源のそれぞれを用いて、本発明 の(TiAlV) (CN) を成膜したときの皮膜の表面 電子顕微鏡写真である。成膜条件は、両蒸発源ともにア ーク電流を100A、窒素ガスの圧力を2.66Pa、 基板(被処理体)温度を500℃とし、基板(被処理 体)のバイアス電圧を100Vとしている。尚、バイア スの電位は、アース電位に対してマイナスとなるように 印加しており、例えばバイアス電圧100Vとは、アー ス電位に対してバイアス電位が-100Vであることを 示す。

【0050】この図5(1)に示されるように、磁石が ターゲットの横または前方に位置している本発明者らの AIP装置の蒸発源で形成した皮膜表面は、非常に平滑 であるのに対し、磁石がターゲットの背面に位置してい る従来型の蒸発源で形成した皮膜は、図5(2)に示さ れる様に、表面に「マクロパーティクル」と呼ばれる溶 融したターゲット物質の付着が多く認められ、表面粗度 (Ra)が大きく、切削特性に悪影響を及ぼす。従っ て、成膜には本発明の蒸発源を用いることが大変有効な のである。

【0051】成膜時の基板(被処理体)に印可するバイ アス電圧は、50~300Vの範囲にあることが望まし い。もともと岩塩構造型のAlNは、常温常圧では非平 衡相であり生成しにくい物質であるが、本発明者等の蒸 発源によって成膜ガスのプラズマ化が促進されて、成膜 ガスがイオン化することから、基板にバイアス電圧を印 可することで基体(被処理体)へのイオン衝撃が有効に 行われ、岩塩構造型のAINの形成が促進されるものと 考えられる。この様な効果を発揮させるには、前記バイ アス電圧を50V以上とすることが好ましく、より好ま しくは70 V以上である。しかし前記バイアス電圧が高 すぎると、イオン化した成膜ガスによって膜がエッチン グされ、成膜速度が極端に小さくなることから、前記バ イアス電圧は300V以下とすることが好ましく、より 好ましくは260V以下である。岩塩構造型のA1N形 成の促進作用と成膜速度を勘案すれば、基板に印加する バイアス電圧は、70V以上で200V以下とすること が好ましい。

【0052】また本発明では、皮膜形成時の基板(被処 理体)温度の範囲を300℃以上800℃以下とするこ とが好ましいとしているが、これは形成された皮膜の応 力と関係している。図6は、一例として(Tio.iAl

0.7 C r 0.1 V 0.1) N皮膜を形成した時の基板(被処理 体) 温度と形成した皮膜の残留応力の関係を示したもの であり、成膜時の基板のバイアス電圧を150V、窒素 ガスの圧力を2.66 Paとして実験を行ったものであ る。この図6より、基板(被処理体)温度が上昇すれば 皮膜の残留応力は低減する傾向にあることが分かる。得 られた硬質皮膜に過大な残留応力が作用していると、成 膜ままの状態で剥離が生じ易く、密着性に劣る。従っ て、基板(被処理体)温度の下限は300℃とするのが 好ましく、より好ましくは400℃である。一方、基板 (被処理体) 温度を高めれば上記残留応力は低減する が、残留応力が小さすぎる場合には圧縮応力が小さくな り、基板の抗折力増加作用が損なわれ、また高温による 基板の熱的変質も生じることとなる。従って基板(被処 理体) 温度の上限は800℃とすることが好ましい。よ り好ましくは700℃以下である。

【0053】更に本発明では、成膜時の反応ガスの分圧 または全圧を0.5Pa以上6Pa以下の範囲とするこ とを好ましい成膜条件としている。ここで反応ガスの 「分圧あるいは全圧」と表示しているのは、本発明が、 前述のように窒素ガスやメタンガスといった皮膜の成分 組成に必要な元素を含むガスを反応ガス、それ以外のア ルゴンなどの様な希ガス等をアシストガスといい、これ らをあわせて成膜ガスとしており、成膜ガスとして、ア シストガスを用いず反応ガスのみを用いる場合には、反 応ガスの全圧を制御することが有効で、また、反応ガス およびアシストガスの両方を用いる場合には、反応ガス の分圧を制御することが有効だからである。この反応ガ スの分圧または全圧が O. 5 P a 未満の場合には、ター ゲットをアーク蒸発させた場合に、前記マクロパーティ 30 クル(ターゲットの溶融物)が多量に付着して皮膜の表 面粗度が大きくなり、用途によっては不都合を生じるこ とから好ましくない。一方、反応ガスの分圧または全圧 が6Paを超える場合には、反応ガスがターゲット構成 成分の蒸発粒子と衝突して該蒸発粒子の散乱が多くな り、成膜速度が低下するため好ましくない。尚、反応ガ スの分圧または全圧は、下限を1Paとし、上限を5P aとすることがより好ましく、更に好ましくは下限を 1. 5 Paとし、上限を4 Paとすることである。

【0054】本発明では、成膜方法としてAIP法につ いて述べたが、金属元素とともに成膜ガスのプラズマ化 が促進される成膜方法であれば、AIP法に限定される ものではなく、例えば、パルススパッタリング法や窒素 のイオンビームアシストデポジション法で成膜すること ができる。

【0055】本発明の硬質皮膜は、上述の如くターゲッ トを蒸発またはイオン化させて、被処理体上に成膜する イオンプレーティング法やスパッタリング法等の気相コ ーティング法にて製造するのが有効であるが、該ターゲ 50 ットの特性が好ましくない場合には、成膜時に安定した

放電状態が保てず、得られる皮膜の成分組成が均一でない等の問題が生じる。そこで優れた耐摩耗性を発揮する 本発明の切削工具用硬質皮膜を得るにあたり、使用する ターゲットの特性についても検討したところ、下記の様 な知見が得られた。

【0056】まず、ターゲットの相対密度を95%以上とすることで、成膜時の放電状態が安定し、効率よく本発明の硬質皮膜が得られることが分かった。即ち、ターゲットの相対密度が95%未満になると、ターゲット中にミクロポア等の合金成分の粗な部分が生じるようになり、この様なターゲットを成膜に用いた場合に該合金成分の蒸発が不均一となって、得られる皮膜の成分組成がばらついたり膜厚が不均一となったりしてしまう。また、空孔部分は成膜時に、局所的かつ急速に消耗するので、減耗速度が速くなりターゲットの寿命が短くなる。空孔が多数存在する場合には、局所的な減耗が急速に進むのみならず、ターゲットの強度が劣化して割れが生じる原因ともなるのである。

【0057】ターゲットの相対密度が95%以上であっても、ターゲット中に存在する空孔が大きい場合には、20放電状態が不安定となり良好に皮膜が成膜されないため好ましくない。ターゲット中に半径0.5μm以上の空孔が存在すると、ターゲットを構成する合金成分の蒸発またはイオン化のためのアーク放電が中断して成膜を行うことができないことが知られている。本発明者らが検討したところ、空孔の半径が0.3μm以上になると放電中断には至らずとも放電状態が不安定となることが分かった。従って、安定した放電状態を保ち、良好にかつ効率よく成膜を行うには、ターゲット中に存在する空孔の半径を0.3μm未満、好ましくは0.2μm以下と30するのがよいのである。

【0058】AIP法等の気相コーティング法では、使用するターゲットの成分組成が、形成される皮膜の成分組成を決定付けることから、ターゲットの成分組成は、目的とする皮膜の成分組成と同一であることが好ましい。即ち、耐摩耗性に優れた本発明の硬質皮膜として、組成が(Al_b , $[Cr_1-aV_a]_c$)(Cl_-dN_d)で示される前記第1の硬質皮膜を成膜する場合には、ターゲットとして、(Al_y , $[Cr_1-\beta V_\beta]_z$)からなるものであって、

 $0.5 \le y \le 0.8$

0. $2 \le z \le 0$. 5, y + z = 1,

0. $0.5 \le \beta \le 0.95$

(y, zはそれぞれAl, Cr+Vの原子比を示し、 β はVの原子比を示す)を満足するものを用いるのがよい。

【0059】また組成が (Ma, Alb, [Cr 1-αVα] c) (C1-αNa) で示される第2の硬質皮膜 を成膜する場合には、ターゲットとして、 (Mx, A 16

 l_y , $[C_{r_1-8}V_8]_z$) からなるターゲットであって、Mは、 T_i 、 N_b 、W、 T_a および M_o よりなる群から選択される少なくとも1種であり、かつ、

 $0.02 \le x \le 0.3$

 $0.5 \le y \le 0.8$

 $0.05 \le z$

x + y + z = 1

 $0 \le \beta \le 1$

(x, y, z)はそれぞれM, A1, Cr + Vの原子比を示し、 β はVの原子比を示す)を満たすものを用いるのがよく、本発明の好ましい形態であるMがT i の硬質皮膜の形成には、上記MがT i であるターゲットを用いることが好ましい。

【0060】上記ターゲットの成分組成を満足していても、ターゲットの成分組成分布がばらついていると、得られる硬質皮膜の成分組成分布も不均一となり、該皮膜の耐摩耗性が部分的に異なることとなってしまう。またターゲットの成分組成分布にばらつきがあると、ターゲットに局所的な電気伝導性や融点等の差異が生ずることとなり、これが放電状態を不安定にして良好に成膜されないのである。従って、本発明のターゲットは、組成分布のばらつきが0.5 a t %以内にあることが好ましい

【0061】更に本発明者らは、ターゲットの製造に用いる原料あるいはターゲット製造時の雰囲気が原因で、ターゲット中に不可避的に混入する不純物(酸素、水素、塩素、飼およびマグネシウム)の含有量が、成膜時の放電状態等に及ぼす影響についても調べた。

【0062】その結果、酸素、水素および塩素がターゲット中に多量に含まれていると、成膜時にターゲットからこれらのガスが突発的に発生し、放電状態が不安定となったり最悪の場合にはターゲットそのものが破損して良好に成膜されないことが分かった。従って、ターゲット中に含まれる酸素は0.3質量%以下、水素は0.05質量%以下、塩素は0.2質量%以下に抑えるのがよいのである。より好ましくは、酸素を0.2質量%以下、水素を0.02質量%以下、塩素を0.015質量%以下に抑える。

【0063】また、銅やマグネシウムは、本発明のター がットを構成する前記元素M、A1、CrおよびVより も蒸気圧が高く気化しやすいので、多量に含まれる場合 には、ターゲット製造時にガス化してターゲット内部に 空孔が形成され、この様な欠陥が原因で成膜時の放電状態が不安定となるのである。従って、ターゲット中に含まれる銅の含有量は、0.05質量%以下に抑えることが好ましく、より好ましくは0.02質量%以下である。また、マグネシウムの含有量は、0.03質量%以下に抑えることが好ましく、より好ましくは0.02質量%以下である。

50 【0064】この様な不純物の含有量を本発明で規定す

る範囲にまで低減する方法として、例えば原料粉末の真 空溶解や、清浄雰囲気で原料粉末の配合・混合を行うこ と等が挙げられる。

【0065】ところで本発明は、ターゲットの製造方法についてまで特定するものではないが、例えば、量比や 粒径等を適切に調整した原材料の元素Mの粉末や、Cr 粉末、V粉末、A1粉末を、V型ミキサー等で均一に混合して混合粉末とした後、これに冷間静水圧加圧処理

(CIP処理) あるいは熱間静水圧加圧処理 (HIP処理) を施すことが本発明のターゲットを得る有効な方法 10 として挙げられる。これらの方法の他、熱間押出法や超高圧ホットプレス法等によっても本発明のターゲットを製造することができる。

【0066】尚、上記の様にして混合粉末を調製した 後、ホットプレス処理(HP)にてターゲットを製造す る方法も挙げられるが、この方法では、本発明で用いる Vが高融点金属であるため相対密度の高いターゲットが 得られ難いといった問題点がある。また、上記の様に混 合粉末を用いて製造する方法の他、予め合金化させた粉 末を用いて、CIP処理やHIP処理を行ったり、溶解 ・凝固させてターゲットを得る方法も挙げられる。しか し前記合金化粉末を用いてCIP処理またはHIP処理 を行う方法では、組成の均一なターゲットが得られると いう利点があるものの、合金粉末が難焼結性であるた め、高密度ターゲットが得られ難いといった問題点があ る。また後者の合金化粉末を溶解・凝固させる方法で は、組成が比較的均一なターゲットが得られるという利 点があるが、凝固時に割れや引け巣が発生し易いといっ た問題があり、本発明のターゲットを得ることは難し

[0067]

【実施例】以下、実施例を挙げて本発明をより具体的に 説明するが、本発明はもとより下記実施例によって制限 を受けるものではなく、前・後記の趣旨に適合し得る範 囲で適当に変更を加えて実施することも可能であり、そ れらはいずれも本発明の技術的範囲に含まれる。

【0068】 [実施例1] 前記図1に示すAIP装置の*

*カソードに〔A1, Cr, V〕または〔M(Ti、Nb、W、Ta、Moの1種以上), A1, Cr, V〕からなる合金ターゲットを取り付け、さらに、支持台上に被処理体として超硬合金製チップ、超硬合金製エンドミル(直径10mm、2枚刃)を取り付け、チャンバー内を真空状態にした。その後、チャンバー内にあるヒーターで被処理体の温度を500℃に加熱し、窒素ガスを導入してチャンバー内の圧力を2.66Paにしてアーク放電を開始し、基板(被処理体)の表面に膜厚3μmの皮膜を形成した。なお、成膜中にアース電位に対して基板(被処理体)がマイナス電位となるよう100~150Vのバイアス電圧を基板(被処理体)に印加した。

18

【0069】成膜終了後、膜中の金属成分組成、膜の結晶構造、ビッカース硬度を調べた。膜中の金属元素の成分組成はEPMAにより測定した。また皮膜中の金属元素および窒素以外の不純物元素量は、酸素が1at%以下で、炭素が2at%以下のレベルであった。膜の結晶構造はX線回折により同定した。前記式(1)の値は、前述のようにX線回折装置にてCuのKα線を用いて各結晶面のピーク強度を測定して求めた。さらに耐摩耗性を評価すべく、硬質皮膜を形成したエンドミルを用い、以下の条件で切削試験を行って刃中部分の摩耗幅を測定した。

切削条件

20

被削材:SKD61 (HRC50)

切削速度:200m/分 刃送り:0.06mm/刃 軸切り込み:5mm

径方向切り込み:1mm

30 切削長:30m

その他:ダウンカット、ドライカット、エアプローのみ 得られた膜の成分組成、結晶構造、ビッカース硬度、前 記式(1) および切削試験で測定した摩耗幅の値を表1 ~3に示す。

[0070]

【表1】

実験		ターゲッ	ント組斥	克 (原	(子比)		結晶構造 [※]	式(1)の値	硬度	摩耗幅
No.	Ti	Al	Ċr	٧	С	N			(HY)	(µm)
	0.4	0.6	0	0	0	1	В	1	2800	45.8
2	1	0	0	0	0	1	В	1	2400	98.9
3	1	0	0	0	0.5	0.5	В	1	2700	54. 9
4	0	0.4	0.3	0.3	0	1	В	1	2600	66.3
5	00	0.55	0.2	0.25	O	1	В	1	3020	31.4
6	0	0.65	0.2	0.15	0	1	В	1	3050	29.8
7	0	0.75	0.1	0. 15	0	1	В	1	3100	27.5
8	0	0.85	0.07	0.08	0	1	B+H	0.2	2500	80.7
9	00	0.65	0.01	0.34	0	1	В	1	2870	40.5
10	0	0.65	0.34	0.01	0	1	В	ì	2850	41.9

※ Bは岩塩構造型を示し、HはZnS構造型を示す

[0071]

【表2】

実験		ターゲッ	卜組成	(原:	子比)			結晶構造 ^{※2}	式(1)の値	硬度	摩耗幅
No.	M.	2 1	Al	Cr	ν_	С	N			(HV)	(µm)
11	0.2	Ta	0.4	0.25	0.15	0	1	В	1	2600	66.3
12	0.3	Ti,W	0.4	0.15	0.15	0	1	В	1	2550	73.1
13	0.5	Ti, Nb	0.4	0.05	0.05	0	1	8	1	2400	98.9
14	0.35	Nb, Mo	0.6	0.025	0. 025	0	1	В	1	2700	54.9
15	0.08	Ta, Mo	O. B5	0.03	0.04	0	1	B+H	0.5	2450	89.2
16	0.1	Ti,Nb	0.55	0.15	0.2	0	1	В	1	2950	35.3
17	0.2	Ti, Ta, Nb	0.55	0.1	0.15	0	_1_	В	1	2900	38.4
18	0.25	Nb, Ta	0.67	0.05	0.03	0	1	В	1	2950	35.3
19	0.14	Ti, Mo	0.63	0.11	0.12	0		В	1	3000	32.4
20	0. 07	Nb, Mo	0.7	0.12	0.11	0	1	В	1	3005	32.2
21	0.1	Ti, Ta	0.76	0.07	0.07	0	1	B+H	0.9	3050	29.8
22	0.1	Ti, Nb	0.7	0.1	0, 1	0	T	В	1	3100	27.5
23	0.28	Ti, Nb	0.65	0	0.07	0		В	1	3000	32.4
24	0. 28	Ti,Ta	0.65	0.07	0	0	T	В	1	3050	29.8

※1…多元素添加時の各元素の原子比はM元素添加量の等分

※2…Bは岩塩構造型を示し、Hは2nS構造型を示す

[0072]

【表3】

実験		ターゲ	ット組反	2 (原	子比)		結晶構造 [※]	式(1)の値	硬度	摩耗幅
No.	Ti	Al	Cr	Y	C	N		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(HV)	(μm)
25	0.2	0.4	0.25	0.15	0	1	В	1	2500	66.3
26_	0, 3	0.4	0.15	0.15	0	1	В	1	2550	73.1
27	0.5	0.4	0.05	0.05	0		В	1	2400	98. 9
28	0.35	0.6	0.025	0.025	0	1	В	1	2700	54. 9
29	0.08	0.85	0.03	0.04	0		BHH	0.5	2450	89.2
30	0.1	0.55	0.15	0. 2	0		В	1	3000	32.4
31	0. 2	0. 55	0.1	0.15	0		В	1	2950	35.3
32	0.25	0.67	0.05	0.03	0	1	В	1	3000	32.4
33	0.14	0.63	0.11	0.12	0	1	В	1	3050	29.8
34	0.07	0.7	0.12	0.11	0	_ 1	В	1	3055	29.6
35	0.1	0.76	0.07	0.07	ß		B+H	0.9	3100	27.5
36	0.1	0.7	0.1	0. 1	0	1	В	1	3150	25.4
37	0.38	0.55	0.005	0.065	0	1	В	1	2750	50.1
38	0.38	0.55	0.065	0.005	0	1	В	1	2780	47.4

※ Bは岩塩構造型を示し、HはZnS構造型を示す

【0073】表1~3より、本発明の成分組成範囲を満たすNo.5~7、16~24、および30~36では、高いビッカース硬度を達成することができ、切削試 30 験における摩耗も摩耗幅 40μ m未満と抑えられている。これに対し、従来例として(TiA1) N膜、Ti N膜、および<math>Ti CN膜を形成した<math>No.1~3、および、本発明の硬質皮膜と構成元素を同じくするがその組成が本発明範囲を外れるNo.4、8~15、25~29、37 および38 は、硬度がHV2900以下と低く、切削試験でも摩耗幅が 40μ m以上と摩耗の大きいものとなっている。

【0074】図7~9は、(A1, Cr, V) N膜、(M, A1, Cr, V) N膜、および(Ti, A1, C 40r, V) N膜における金属元素の組成図にて、本発明範囲とNo. $4 \sim 3$ 8の実施例を示したものであり、図7~9中の●と口の境界線で囲まれる領域は本発明の範囲を示し、口と〇の境界線で囲まれる領域は好ましい本発明の範囲を示し、更に〇と◎の境界線で囲まれる領域はより好ましい本発明の範囲を示す。これらの図及び表1~3に示される様に、図7~9にて◎、〇および□で示される本発明の範囲内にあるNo. $5 \sim 7$ 、 $16 \sim 2$ 4、および30~36は、図7~9にて●で示される本発明の規定成分組成を満たさないNo. 4、8、 $11 \sim 50$

15および25~29と比較して皮膜硬度の高いものとなっており、特に、図7~9にて◎および○で示される好ましい成分組成範囲内にあるNo.6、7、19~22および33~36では、非常に硬度が高く、耐摩耗性に優れている結果となった。

【0075】 [実施例2] 次に、前記図1に示すAIP 装置のカソードに〔Al, Cr, V〕または〔M(T i、Nb、W、Ta、Moの1種以上), Al, Cr, V〕からなる合金ターゲットを取り付け、さらに、支持 台上に被処理体として超硬合金製チップ、超硬合金製エ ンドミル (直径10mm、2枚刃) を取り付け、チャン バー内を真空状態にした。その後、チャンバー内にある ヒーターで被処理体の温度を500℃に加熱し、窒素と メタンの混合ガスを導入してチャンバー内の圧力を2. 66Paにしてアーク放電を開始し、基板(被処理体) の表面に膜厚 3 μ m の 各皮膜を形成した。 なお、成膜中 にアース電位に対して基板(被処理体)がマイナス電位 となるよう100~150Vのバイアス電圧を基板(被 処理体)に印加した。得られた皮膜中の金属元素の成分 組成はEPMAにより測定した。皮膜中の金属元素、窒 素および炭素以外の不純物元素量は、酸素が1 a t %以 下のレベルであった。

[0076]

【表4】

実験	ターケ	ット組	成	(原子)	t)		結晶構造 ^{※2}	式(1)の値	硬度	摩耗幅
No.	[[]	Al	Cr	Y	С	N	_		(HV)	(µm)
39	_	0.75	0.15	0.1	0.1	0.9	В	i	3100	27.5
40		0.75	0.15	0.1	0.3	0.7	В	1	3020	31.4
41		0.75	0.15	0.1	0.4	0.6	В	1	3010	31.9
42		0.75	0.15	0.1	0.6	0.4	В	1	2750	50.1
43	0.1 Ti, Nb	0.7	0.1	0.1	0.1	0.9	В	1	3150	25.4
44	0.1 Ti, Nb	0.7	0.1	0.1	0.3	0.7	В	1	3040	30.3
45	0.1 Ti, Nb	0.7	0.1	0.1	0.4	0.6	В	1	2950	35.3
45	0.1 Ti, Nb	0.7	0.1	0.1	0.6	0.4	В	1	2750	50.1
47	0.1 Ti	0.7	0.1	0.1	0.1	0.9	В	1	3100	27.5
48	0.1 Ti	0.7	0.1	0.1	0.3	0.7	В		3050	29.8
49	0.1 TI	0.7	0.1	0.1	0.4	0.6	В	1	2950	35.3
50	0.1 Ti	0.7	0.1	0.1	0.6	0.4	В		2700	54.9

※1…多元素添加時の各元素の原子比はM元素添加量の等分

※ 2 ···Bは岩塩構造型を示す

【0077】表4より、本発明の要件を満たす皮膜をコ ーティングしたNo. 39~41、43~45、および 47~49のエンドミルは、皮膜中のC、Nの組成比が 本発明の規定範囲外であるNo. 42、46および50 のエンドミルと比較して、切削試験における摩耗幅が小 さく、耐摩耗性に優れていることがわかる。

【0078】 [実施例3] 表5~7にて皮膜1 および皮 20 評価した。これらの結果を表5~7に併記する。 膜2として示す、本発明の要件を満足する皮膜および種 々の金属窒化物、金属炭化物、金属炭窒化物または金属 膜の積層膜を超硬合金製エンドミル(直径10mm、2*

*枚刃)上に形成した。積層の仕方は、超硬合金製エンド ミル上に、表5~7における皮膜1、次に表5~7にお ける皮膜2の順に、表5~7に示す厚みにて交互に積層 した。表5~7に示す積層数は、[皮膜1+皮膜2]を 1単位としたときの繰り返し数を示す。得られた皮膜の 耐摩耗性は、前記実施例1と同様にして切削試験を行い

[0079]

【表5】

実験 No.	皮膜 1 ※	皮膜1の膜厚(μη)	皮膜 2 8	皮膜2の膜厚	積層數	摩耗幅 (μπ)
51	Ti (C _{0.5} N _{0.5})	0.05	AICTVN	0.05	30	31
52	TIC	0.5	AICTVN	2.5	2	33
53	Tio.sAlo.sN	0.5	AICTVN	2.5	2	32
54	Tio. 5 A Io. 5 N	0.05	AICTVN	0.05	30	34
55	Tio, sAlo, sN	0.005	AICTVN	0.005	300	33
56	TiN	0.5	AICTVN	2.5	2	34
57	TiN	0.05	AICTVN	0.05	30	35
58	TiN	0.005	AICTYN	0.005	300	34
59	Tio. 5A 10.5	0.01	AICTVN	3	2	35
60	Ţi	0.1	AICTVN	3	2	34
61	Cr	1	AICTYN	2	2	37
62	AICTVN	1.5	Ala.75Cr0, 13Va, 12N	1.5	2	37
63	AICTVN	0.05	Ald. 77 Cro. 31 Vo. 12 N	0.05	30	34
64	AICTVN	0.005	Alo.77Cro.11Vo.12N	0.005	300	33

**...AICrVN(AI:Cr:Y=75:15:10)

[0080]

【表 6】

24

実験 No.	皮膜 1 [※]	皮膜1の膜障 (μm)	皮膜 2 ※	皮膜 2 の膜厚 (μm)	積層数	摩耗幅 (μm)
65	Ti (C _{0.5} N _{0.5})	0.05	TITBAICTVN	0.05	30	30
66	TIC	0. 5	TITEAICTVN	2.5	2	32
67	Tie.sAle.sN	0. 5	TiTaAlCrVN	2.5	2	31
68	Tio. 5Ala. 5N	0.05	TITAAICTVN	0.05	30	33
69	Tio.sAlo.sN	0.005	TiTaAlCrVN	0.005	300	32
70	TiN	0.5	TiTaAlCrVN	2.5	2	33
71	TiN	0.05	TiTaAICrVN	0.05	30	34
72	TiN	0.005	TiTaAICrVN	0.005	300	33
73	Tio.sAlo.s	0.01	TITAAICTVN	3	2	34
74	Ti	0.1	TITEAICTVN	3	2	33
75	Cr	1	TiTaAICrVN	2	2	36
76	TITAAICTYN	1.5	Tio. 03 Tac. 07 Alo. 7 Crp. 03 Vo. 12 N	1.5	2	36
77	TITHAICTYN	0.05	Tio. 04Tao. 08Ato. 73Crg. e7Vg. 1N	0.05	30	33
78	TiTaAICrVN	0.005	TIO. 04T80. 05A10. 73CF0. 07V0. 1N	0.005	300	32

※…TiTaAlCrYN(Ti:Ta:Al:Cr:Y=5:5:70:10:10)

[0081]

【表7】

			120 1			
実験 No.	皮膜 1 [※]	皮膜1の膜厚 (μπ)	皮膜2≝	皮膜2の膜厚 (μm)	積層数	摩耗幅 (μm)
79	Ti (Co. 5No. 5)	0.05	TIAICTYN	0.05	30	29
80	TiC	0.5	TIAICIVN	2.5	2	31
81	Tio. 5A10.5N	0.5	TIAICTVN	2.5	2	30
82	Tio. 5A10. 5N	0.05	TIAICTVN	0.05	30	32
83	Tio.sAlo.sN	0.005	TIAICTVN	0.005	300	31
84	TiN	0.5	TIAICTVN	2.5	2	32
85	TIN	0.05	TIAICTVN	0.05	30	33
86	TiN	0.005	TIAICTVN	0.005	300	32
87	Tio.sAla.s	0.01	TIAICTVN	3	2	33
88	Ti	0.1	TIAICTVN	3	2	32
89	Cr	1	TIAICTVN	2	2	35
90	TIAICEVN	1.5	TIO. 1AIO. 7CFO. 08 YO. 12N	1.5	2	35
91	TIAICEVN	0.05	Tio. 1Alo. 73Cro. 07Vo. 1N	0.05	30	32
92	TIAICTYN	0.005	Tio. 1A10.73Cro.07Vo. 1N	0.005	300	31

*...TiAlCrVN(Ti:Al:Cr:V=10:70:10:10)

【0082】表5~7のNo. 51~92より、切削工 具用硬質皮膜を複数層とする場合であっても、本発明の 要件を満たす皮膜をコーティングしたものであれば、切 削試験での摩耗幅が40μm未満と優れた耐摩耗性を示 すことが分かる。

【0083】 [実施例4] 組成がA1:75at%、C r:15at%、およびV:10at%の窒化物皮膜、 またはTi:5%、Ta:5at%、Al:70at 皮膜、またはTi:10at%、A1:70at%、C r:10at%、およびV:10at%の窒化物皮膜 を、それぞれ基板に印可するバイアス電圧を30V~4 00 V、基板(被処理体)の温度を300℃~1000

℃、および反応ガスである窒素ガスの圧力を0.3~7 Paの範囲で変化させて、超硬合金チップまたは超硬合 金製エンドミル(直径10mm、2枚刃)上に形成し た。得られた皮膜のビッカース硬度を測定するととも に、実施例1と同様にして切削試験を実施し、耐摩耗性 について評価した。これらの結果を実験条件とともに、 前記 (A1, Cr, V) N膜については表8に、前記 (Ti, Ta, Al, Cr, V) N膜については表9 %、Cr:10at%、およびV:10at%の窒化物 40 に、また前記(Ti, Al, Cr, V) N膜については 表10に示す。

[0084]

【表8】

25

実験	ハイアス電圧	基板温度	反応ガス圧力	結晶構造 [※]	硬度	摩拜幅
No.	(V)	(℃)	(Pa)		(HV)	(µm)
93	30	500	2.66	H+B	2700	54.9
94	100	500	2.66	В	2900	38.4
95	150	500	2.66	В	3100	27.5
96	200	500	2.66	В	3100	27.5
97	400	500	2.66	膜形成なし		_
98	100	250	2.66	膜剝離	_	
99	100	450	2.65	В	3200	23.5
100	100	550	2.66	В	3150	25, 4
101	100	650	2.66	B+H	3100	27.5
102	100	750	2.66	B+H	3050	29.8
103	100	1000	2.66	B+H	2850	41.9
104	150	600	0.3	В	2650	60.3

Bは岩塩構造型を示し、HはZnS構造型を示す

600

[0085]

【表9】

実験	パイアス電圧	基板温度	反応ガス圧力	結晶構造 ^光	硬度	摩耗幅
No.	(V)	(%)	(Pa)		(HV)	(µm)
108	30	500	2.66	H+B	2750	50.1
109	100	500	2.66	В	2950	35.3
110	150	500	2.65	В	3100	27.5
111	200	500	2.66	В	3100	27.5
112	40D	500	2.66	膜形成なし	-	-
113	100	250	2.66	膜剥離		-
114	100	450	2.66	В	3100	27.5
115	100	550	2.66	В	3100	27.5
116	100	650	2.66	B+H	3050	29.8
117	100	750	2.66	B+H	3000	32.4
118	100	1000	2.66	B+H	2800	45.8
119	150	600	0.3	В	2600	66.3
120	150	600	1.33	В	3000	32.4
121	150	600	5. 2	В	2960	34.7
122	150	600	7	В	2900	皮膜薄

※ Bは岩塩構造型を示し、HはZnS構造型を示す

[0086]

【表10】

			•			
実験 No.	バイアス電圧 (V)	基板温度 (℃)	反応ガス圧力 (Pa)	特晶構造 [※]	硬度 (HV)	摩耗幅 (μm)
123	30	500	2.66	H+B	2600	66.3
124	100	500	2.66	В	3100	27.5
125	150	500	2.65	В	3100	27.5
126	200	500	2.66	В	3050	29.8
127	400	500	2.66	膜形成なし	-	-
128	100	250	2.66	膜剥離	-	-
129	100	450	2.66	В	3200	23.5
130	100	550	2.66	В	3100	27.5
131	100	650	2.66	B+H	3050	29.8
132	100	750	2.66	8+H	3000	32.4
133	100	1000	2.66	B+H	2800	45. B
134	150	600	0.3	В	2670	58.1
135	150	600	1.33	В.	3100	27.5
136	50	600	5. 2	В	3050	29.8
137	150	600	7	В	2950	皮膜薄

※ Bは岩塩構造型を示し、Hは2nS構造型を示す

【0087】表8~10より、本発明の要件を満たすN 0. 94~96, 99~102, 105, 106, 10 9~111, 114~117, 119~121, 124 ~126、129~132、135および136は、N 0. 93, 97, 98, 103, 104, 107, 10 8, 112, 113, 118, 122, 123, 12 7、128、133、134および137と比較して、 高硬度の皮膜が得られ、切削試験時の摩耗幅も小さいも のが得られていることから、団摩耗性に優れた皮膜を得 50 Nb粉末、Cr粉末、V粉末またはAl粉末を所定量混

るには、基板に印加するバイアス電圧や基板(被処理 体)温度、更には反応ガスの圧力(分圧または全圧)を 本発明の規定範囲内とすることが好ましいことが分か

【0088】 [実施例5] ターゲットの相対密度や不純 物含有量が成膜時の放電状態に及ぼす影響について調べ

【0089】それぞれ100メッシュ以下のTi粉末、

合し、温度:900℃かつ圧力:8×10⁷ Paの条件でHIP処理を行って、表11~13に示す各成分組成のターゲットを作製した。上記ターゲットの成分組成はICP-MSにて測定した。また得られたターゲットの放電特性を調べるため、外径254mm、厚さ5mmに成形したターゲットをスパッタリング装置に装着し、反応性パルススパッタリング法により膜厚3μmの皮膜を被処理体である超硬合金製チップ上に成膜した。成膜は、反応ガスとしてN2ガスを用い、出力500Wで行った。

【0090】得られた硬質皮膜の成分組成はAPSで測定し、耐摩耗性は、実施例1と同様の切削試験を行い下記の基準で評価した。また成膜時の放電状態については、表面における放電状況を目視で観察したり、放電電圧のモニターを観察して行った。これらの結果を表11*

*~13に併記する。

切削試験における評価基準

〇:摩耗量が40 μm未満

×:摩耗量が40μm以上

放電状態の評価基準

・安定 : 放電電圧の瞬間的な上昇や放電の場所的

な偏りが認められないもの

・やや不安定:放電電圧の瞬間的な上昇や放電の場所的

な偏りが多少認められるもの

10 ・不安定 : 放電電圧の瞬間的な上昇や放電の場所的

な偏りがかなり認められるもの

・放電中断 : 放電が停止するもの

【0091】 【表11】

実験	ターゲッ	卜組成	(原子比)	相对密度	欠陥・空孔の	放電状態	皮膜組	6ž (1	(子比)	耐摩耗性
No.	AI	Cr	V		有無・サイズ		Al	Cr	V	MINTELL.
138	0.55	0.2	0.25	99.8	<0.3 mm	安定	0.53	0.21	0.26	0
139	0.65	0.2	0.15	99.5	<0.3 mm	安定	0.63	0.21	0, 16	Ŏ
140	0.75	0.1	0, 15	99	<0.3 mm	安定	0.73	0.11	0.16	ŏ
141	0.55	0.2	0.25	97	<0.3mm	安定	0.53	0.21	0.26	Ŏ
142	0.65	0.2	0.15	96	<0.3mm	安定	0.63	0.21	0.16	Ŏ
143	0.75	0.1	0. 15	94	0.3mm以上の 空孔有り	不安定	0.73	0. 11	0.16	×
144	0.55	0. 2	0. 25	93	0.3mm以上の 空孔有り	不安定	0. 53	0.21	0.26	×
145	0.65	0.2	0.15	94	<0.3 mm	不安定	0.63	0.21	0.16	×
146	0.75	0.1	0.15	90	0.3mm以上の 空孔有り	放電中断	0.73	0.11	0.16	測定不可

[0092]

【表12】

							• • • •	-					
実験		ターゲット組成(原子比)					欠陥・空孔	放電状態	皮膜組成(原子比)				耐摩耗性
No.		N*	AI	Cr	٧	1	サイズ		M	AI	Cr	U	Market
147	0.1	Ti,Nb	D. 55	D. 15	0.2	99.8	⟨0.3mm	安定	0.1	0.5	0. 2	0.21	0
148	0.2	Ti, Ta, Nb	D. 55	0.1	0.15	99.5	<0.3mm	安定		0.5		0.16	\vdash
149	0.25	i Nb, Ta	0.67	0.05	0.03	99	<0.3mm	安定	0.3	0.7	0 1	0.04	$\vdash \overset{\sim}{\succ}$
150	0.14	Ti, Mo	0.63	0.11	D. 12	97	<0.3mm	安定	0.1	0.6	0. 1	0.13	8
151	0.07	Nb, Mo	0.7	0.12	0.11	96	<0.3mm	安定	0.1	0.7	0.1	0.12	<u> </u>
152	0.1	Ti, Ta	0.76	0. 07	0. 07	94	0.3mm以上 の空孔有り	不安定	0.1	0.7	0.1		×
153	0.1	Ti,Nb	0.7	0. 1	0.1	93	0.3mm以上 の空孔有り	不安定	0.1	0.7			×
154	0.28	Ti, Nb	0.65	0	0.07	94	<0.3mm	不安定		0.6		0.08	×
155	0.28	Tí, Ta	0. 65	0.07	0	90	0.3mn以上 の空孔有り	放電中断					測定不可

※…多元素添加時の各元素の原子比はM元素添加量の等分

[0093]

【表13】

CD 80			A 71-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
実験	9-1	ゲット組	以 (原-	7比)	相対密度	欠陥・空孔	放電状態	皮	膜組成	(原子比	:)	耐摩耗性
No.	Ti	A I	Cr	Υ		サイズ		Ti	A!	Cr	Ÿ	
156	0.1	0.55	0.15	0.2	99.8	<0.3mm	安定	0.1	0.53	0.16	0.21	
157	0.2	0.55	0.1	0.15	99.5	<0.3mm	安定	0.2	0.53	0.11	0.16	<u> </u>
158	0.25	0.67	0.05	0.03	99	<0.3mm	安定	0.25	0.65	0.06	0.04	Ŏ
159	0.14	0.63	0.11	0.12	97	<0.3mm	安定	0.14	0.61	0.12	0.13	8
160	0.07	0.7	0.12	0.11	96	<0.3mm	安定	0.07	0.68	0.13	0.12	ŏ
						0.3mm以上の		-				
161	0. 1	0.76	0.07	0.07	94	空孔有り	不安定	0.13	0.66	0.08	0.13	l x l
						0.3mm以上の						- 1
162	0.1	0.7	0.1	0.1	93	空孔有り	不安定	0.13	0.6	0.11	0.16	l × l
163	0.25	0.67	0.05	0.03	94	<0.3mm	不安定	0.28	0.57	0.06	0.09	×
						0.3mm以上の						
164	0.14	0.63	0.11	0.12	90	空孔有り	放電中断	0.17	0.53	0.12	0.18	灣定不可

【0094】表11~13より、No. 138~14 2、147~151、および156~160は、本発明 で規定する相対密度を満足するものであることから放電 状態は良好で、その結果、ターゲットと成分組成がほぼ 同一で、良好な耐摩耗性を発揮する皮膜が得られている ことが分かる。これに対し、No. 143~146、1 52~155、および161~164は、ターゲットの 相対密度が本発明の要件を満足するものではないため、 放電状態が不安定であったり継続不可能となり、その結 果、得られる皮膜の成分組成がターゲットの成分組成と 10 た成膜時の放電状態は、実施例5と同様にして評価し 大きくずれ、耐摩耗性の好ましくない皮膜が得られる結 果となった。

【0095】 [実施例6] 次にターゲット中の不純物 *

* (酸素、水素、塩素、銅およびマグネシウム) の含有量 が成膜時の放電状態に与える影響について調べた。

【0096】 表14に示す各成分組成のターゲットを実 施例5と同様の方法で作製した。得られたターゲットの 相対密度はいずれも99%以上で、0.3mm以上の空 孔や連続した欠陥はいずれにも存在しなかった。得られ たターゲットを用い、実施例1で使用したAIP装置に て、窒素ガスを成膜ガスとして成膜を行った。ターゲッ ト中の不純物の含有量は、ICP-MSで測定した。ま た。これらの結果を表14に併記する。

[0097]

【表	1	4	1	
120		-3	4	

	70 LOG	.107		ツイ神			发 1 4 .	<i></i> _			
実験		*		アーゲッ	<u>卜組成</u>	(質量	%)				放電特性
No.		*	Al	Cr	V	0	Н	CI	Си	Me	
155	12.69	Ti_	39.30	20.66	26.98	0.28	0.02	0.03	0.03	0.01	安定
166	25.56	Ti	39.60	13.88	20.39	0.31	0.03	0.17	0.04	0.02	では、
167	34.95	Ti	52.75	7.59	4.46	0.07	0.01	0.14	0.01	0.02	安定
168	18.79	Ti	47.64	16.03	17.13	0.22	0.05	0.08	0.03	0.03	安定
169	9.82	Ti	55.30	18. 27	16.41	0.10	0.03	0.04	0.03	0.01	安定
170	14.67	Ti	62.78	11.14	10.92	0.26	0.02	0.15	0.05	0.01	安定
171	14.03	Ti	55.33	15. 23	14. 92	0.28	0.04	0.12	0. 02	0.02	安定
172		-	38.98	27.31	33.45	0.14	0.04	0.03	0.04	0.01	安定
173	-		49.06	29.09	21.37	0.23	0.01	0.19	0.03	0.02	安定
174			60.87	15.64	22.99	0.33	0.02	0.13	0.01	0.01	やや不安定
175	17.53	Ti,Nb	36.94	19.42	25.36	0, 52	0.03	0.14	0.04	0.02	
176	33.59	II, No	35.40	12.41	18.23	U. Tb	0.07	0.10	0.03	0.01	TRAGG
177	43.97	Ti, Nb	45.16	6.49	3.82	0. 24	0.01	0. 28	0.01	0.02	で安不中や
178	25. 36	Ti, Nb	43.73	14.72	15.73	0.30	0.03	0.06	0.07	0.01	大安不中中
179	13.75	Ti, Nb	52.71	17.41	15.64	0. 28	0.02	0.13	0.02	0.04	
180	29.16	Ti, Ta	52.26	9. 28	9.09	0.10	0.04	0.03	0.03	0.02	安定
181	28.03	Ti, Ta	46.27	12.74	12.48	0.25	0.01	0.17	0.04	0.01	安定
182	59.71	TI, Ta	3 2.68	0.00	6.65	0.66	0.03	0.18	0.03	0.06	
183	59.80	Ti, Ta	32.73	6.79	0.00	0.27	0.04	0.22	0.08	0.07	やや不安急

※…多元素添加時の各元素の原子比はM元素添加量の等分

【0098】表14より、No. 165、167~17 3、180および181は、酸素、水素、塩素、飼およ びマグネシウムのすべての不純物の含有量が本発明の要 件を満足するものであることから、放電状態が良好とな っていることが分かる。これに対し、No. 166、1 74および175では酸素含有量、No. 176では水 素含有量、No. 177では塩素含有量、No. 178 では銅含有量、No. 179ではマグネシウム含有量、 No. 182では酸素およびマグネシウムの含有量、N 0.183では、塩素、飼およびマグネシウムの含有量 40 が本発明で好ましいとする規定範囲を超えている。この 結果より、成膜時の放電状態を良好にして効率よく本発 明の切削工具用硬質皮膜を得るには、ターゲット中の不 純物(酸素、水素、塩素、銅およびマグネシウム)の含 有量を本発明の規定範囲内とすることが好ましいことが 分かる。

[0099]

【発明の効果】本発明は以上の様に構成されており、従 来のTiAlNにCr、V、またはM元素として、T i、Nb、W、TaおよびMoよりなる群から選択され 50

る少なくとも1種を添加し、かつこれらの成分組成を本 発明の如く制御することによって、従来の切削工具用硬 質皮膜よりも耐摩耗性に優れた硬質皮膜を得ることがで きた。こうした硬質皮膜の実現によって、高速切削や焼 き入れ鋼など高硬度鋼の切削に用いることのできる長寿 命の切削工具を供給できることとなった。

【図面の簡単な説明】

【図1】本発明の実施に使用するアークイオンプレーテ ィング(AIP)装置の一例を示した概略図である。

【図2】本発明の実施に供するアーク式蒸発源要部の一 例を拡大した断面概略図である。

【図3】本発明の実施に供する別のアーク式蒸発源要部 を拡大した断面概略図である。

【図4】従来の本発明の実施に供するアーク式蒸発源要 部の一例を拡大した断面概略図である。

【図5】成膜した (Tio.1Alo.7Cro.1Vo.1) N膜 の表面電子顕微鏡写真を示したものであり、(1)は本 発明者らの蒸発源、(2)は従来の蒸発源を用いて成膜 した結果を示す。

【図 6 】一例として(T i o. 1 A l o. 7 C r o. 1 Vo. 1) N

皮膜を成膜した場合の基板温度と皮膜の残留応力との関 係を示したグラフである。

【図7】 (A1, Cr, V) N膜における金属成分A 1、CrおよびVの組成図にて本発明範囲と実施例を示 したものである。

【図8】 (M, A1, Cr, V) N膜における金属成分 M、Al、CrおよびVの組成図にて本発明範囲と実施 例を示したものである。

【図9】 (Ti, Al, Cr, V) N膜における金属成 分Ti、Al、CrおよVVの組成図にて本発明範囲と 10 12 ガス供給口 実施例を示したものである。

【符号の説明】

1 真空容器

2、2A アーク式蒸発源

3 支持台

4 バイアス電源

6 ターゲット

7 アーク電源

8 磁石(磁界形成手段)

9 電磁石(磁界形成手段)

11 排気口

W 被処理体

S ターゲットの蒸発面

[図5]

(2) 従来蒸発源で形成した皮膜

(1) 本発明の蒸発源で形成した皮膜

$Ra=0.1 \mu m$

BEST AVAILABLE COPY

【図9】

フロントページの続き

F ターム(参考) 3C046 FF11 FF16 FF19 FF24 4K029 AA02 AA04 BA54 BB07 BD05 CA04 DD06 EA03 EA08