10 - Lexical Semantics

CS 6320

Outline

- Lexical Semantics
- WordNet
- Thematic roles
- Semantic relations
- PropBank
- Metaphor
- Metonymy
- Problem of Knowledge Discovery

Lexical Semantics

- Lexical Semantics is the study of word meanings and relations between word meanings.
- Lexeme is an entry in a vocabulary or lexicon.
- Lexicon has a finite list of lexemes. It includes individual words, compound nouns, idioms, and others.
- Lexeme (word) sense refers to the meaning of that particular lexeme.

Lexical and Semantic Relations

- Homonymy relation between two words that have the same form (same orthographic form and same pronunciation) but unrelated meanings.
- Homographs words with the same orthographic form, but unrelated words.

```
bank – financial institution; bank – river bankbass – musical instrument; bass – a type of fish
```

Homophones – are distinct words that have the same pronunciation.

```
would & wood
be & bee
weather & whether
```

Lexical and Semantic Relations

Polysemy – when one word has multiple meanings.

```
table has 6 noun senses in WordNet 1 verb sense
```

- Word Sense Disambiguation is the NLP task that when given a lexicon with word meanings it finds the correct meaning of a word in a context.
- Synonymy two words are synonymous if the substitution of one for the other does not change the truth value of a sentence in which the substitution is made.

In WordNet these are called **synsets**.

```
{ telephone, phone, telephone set}
```

Category	Unique Forms	Number of Senses
Noun	94474	116317
Verb	10319	22066
Adjective	20170	29881
Adverb	4546	5677

Scope of the current WordNet 1.6 release in terms of unique entries and total number of senses for the four databases.

Relation	Definition	Example
Hypernym	From concepts to superordinates	breakfast -> meal
Hyponym	From concepts to subtypes meal -> /u	
Has-Member	From groups to their members faculty -> profess	
Member-Of	From members to their groups copilot -> crew	
Has-Part	From wholes to parts table -> leg	
Part-Of	From parts to wholes	course -> meal
Antonym	Opposites	leader -> follower

Noun relations in WordNet

Relation	Definition	Example
Hypernym	From events to superordinates	fly -> travel
Troponym	From events to their subtypes walk -> stroll	
Entails	From events to the events they entail	snore -> sleep
Antonym	Opposites	increase ⇔ decrease

Verb relations in WordNet.

Relation	Definition	Example
Antonym	Opposite	heavy ⇔ light
Antonym	Opposite	quickly ⇔ slowly

Adjective and Adverb relations in WordNet

 Relations between Verbs: The dominant relation between verbs is lexical entailment. In logic, entailment or strict implication is written as

$$P \mid => Q$$

- Proposition P entails proposition Q.
- Lexical entailment is similar, although has many forms and complications.

snore sleep

verb₁ verb₂

Bidirectional entailment means that V_1 and V_2 are **synonyms**.

beat and defeat

• **Troponomy** is a particular kind of entailment, in that every troponym V_1 of a more general verb V_2 also entails V_2 .

```
limp – walk
lisp – talk
```

 Causative relation between one causative verb (give) and one resultative verb (have).

```
{teach, instruct, educate} -> {learn, acquire, knowledge}
If V<sub>1</sub> necessarily causes V<sub>2</sub>, then V<sub>1</sub> also entails V<sub>2</sub>.
expel - leave
```

bequeath - own

Verb Taxonomy

There are also relations between different parts of speech.

Thematic Roles

Thematic Role	Definition Example
Agent	The volitional causer of an event The waiter spilled the soup.
Experiencer	The experiencer of and event John has a headache.
Force	The non-volitional causer of the event The wind blows debris from the mall into our yards.
Theme	The participant most directly affected by an event Only after Benjamin Franklin broke the ice
Result	The end product of an event The French government has built a regular-size baseball diamond
Content	The proposition or content of a propositional event Mona asked "You met Mary Ann at a super market?"
Instrument	An instrument used in an event He turned to poaching catfish, stunning them with a shocking device
Beneficiary	The beneficiary of an event Whenever Ann Callahan makes hotel reservations for her boss
Source	The origin of the object of a transfer event I flew in from Boston.
Goal	The destination of an object of a transfer event I drove to Portland.

More Case Examples

```
<u>John</u> believed that it was raining.
   experiencer
I gave the book to Jack for Susan.
   beneficiary
I used some flour to make a cake.
   instrument
Jack used the sun to dry the apples.
   instrument
The ice melted.
   theme
<u>Jack</u> enjoyed <u>the play</u>.
   Jack – experiencer
   the play – theme
Jack ran with a crutch for Susan.
   John – agent
   for Susan – beneficiary
```

Common Realizations of the Major Roles

Role	Realization
AGENT	as subject in active sentences preposition <i>by</i> in passive sentences
THEME	as object of transitive verbs as subject of nonaction verbs
INSTR	as subject in active sentences with no agent preposition with
EXPERIENCER	as animate subject in active sentences with no agent
BENEFICIARY	as indirect object with transitive verbs preposition <i>for</i>
AT-LOC	prepositions in, on, beyond, etc.
TO-LOC	prepositions to, into
FROM-LOC	prepositions from, out, of, etc.

Assigning the subject

- Thematic hierarchy for assigning the subject
- AGENT > INSTRUMENT > THEME

```
John opened the door.

AGENT THEME
```

```
John opened the door with a key.

AGENT THEME INSTRUMENT
```

```
The key opened the door.

INSTRUMENT THEME
```

```
The door was opened by John.

THEME AGENT
```

Semantic Relations in text

Semantic Relations are the interconnections between words or concepts that define the meaning of text. They are used as elements of knowledge bases.

Example:

John went to the park yesterday because he saw hot air balloons taking off from there

Agent(John, went)	
At-Location(went, to the park)	
At-Time(went, yesterday)	
Cause(saw, went)	
Experiencer(He, saw)	
Stimulus(hot air balloons taking off from there, saw)	
Value(hot, air)	
Part-Whole(hot air, balloons)	
Is-A(hot air balloons, balloons)	
Theme(hot air balloons, taking off)	
At-Loc(taking off, from there)	

A Comprehensive list of Semantic Relations

Code	Relation	Definition	Example
POS	Possession	X is a possession of Y, Y owns/has X	[YX] [John] owns [a Porsche]; [YX] [John] has [4 acres]
PW	Part-Whole/ Meronymy	X is a part of Y	[XY] [The engine] is the most important part of [the car]; [XY] [steel][cage]; [YX] [faculty] [professor]; [XY] [door] of the [car]
KIN	Kinship	X is a kinship of Y; X is related to Y by blood or by marriage	[XY] [John]'s [uncle]
ASO	Association	X is associated with Y; X and Y can be people or groups	[XY] [John] and [Mary] are friends for 20 years. [XY] [John] talked to [Mary] about her catering service.
SRC	Source/Origin	X is the origin or previous location of Y	[XY] [Chilean] [Sea Bass]; [YX] [Student] from [Russia]
ISA	ISA	X is a (kind of) Y	[XY] [John] is a [person].
SYN	Synonymy/Name	X is a synonym/name/equal for/to Y	[XY] [FBI] ([Federal Bureau of Investigation]) [YX] [This car] is called ["Johann"]
PRO	Property Type	X is a property type of Y	[XY] [The color] of [the car] is blue.
VAL	Property/ Attribute/ Value	X is a property/attribute/value of Y	[YX] [The car] is [blue] [YX] [The color] of the car is [blue].
QNT	Quantification/ Extent	X is a quantification of Y; Y can be an entity or event	[XY] [XY] John saw [three] [hurricanes] in the last [two] [years]. [Y X]The budget [increased] with [10%]

A Comprehensive list of Semantic Relations Cont.

Code	Relation	Definition	Example
AGT	Agent	X is the agent for Y; X is prototypically a person.	[XY] [John] [eats] eggs and ham
EXP	Experiencer	X is an experiencer of Y; involves cognition and senses; X is a person	[XY] [John] [feels] bad
INS	Instrument	X is an instrument in Y	[YX] John [broke] the window with [a hammer]. [XY] [The hammer] [broke] the window. [YX] John [played] the Brandenburg Concerto on [the harmonica]
THM	Theme/Patient/ Result/ Consumed	X is the theme/patient/result/consumed in/from/of Y	[YX] John [painted] [his truck]. [YX] John [baked] [a cake].
RCP	Recipient/ Receiver	X is the recipient of Y; X is an animated entity. The theme of received can be both positive and negative.	[YX] John [gave] [Mary] roses. [YX] John [stole] [Mary]'s car.
TPC	Topic/ Content	X is the topic/focus of cognitive communication Y	[YX] John [talked] about [politics] with Mary. [YX] John [said] [he likes the other party].
INT	Intent	X is the intent/goal/reason of Y	[YX][YX] [John] wants to [finish the paper] so [he] can [go on vacation].
STI	Stimulus	X is the stimulus of Y; Perceived thorough senses	[YX] [YX] Mary [heard] [the train] while [smelling] [the roses].

A Comprehensive list of Semantic Relations Cont.

Code	Relation	Definition	Example
MNR	Manner	X is the manner in which Y happens	[YX] John [read] [carefully]; [ran] [quickly]; [spoke] [hastily]
LOC	At-Location/ Space/ Direction/ Source/ Path/ Goal	X is at location y	[XY] There is [a cat] on [the roof] [XY] The hurricane [passes] through [Galveston].
TMP	At-Time	X is at time Y	[XY] John [woke up] at [noon]
CAU	Cause	X causes Y; X and Y are events, states	[XY] [Drinking] causes [accidents].
MAK	Make-Produce	X is a product of Y	[YX] [GM] manufactures [cars].
JST	Reason/ Justification	X is the reason/motive/justification for Y	[XY] [The severity of the crime] justifies [the harsh sentence]; [YX] [He is innocent] by reason of [insanity]
PRP	Purpose	X is the purpose for Y; Y did something because this person wanted X	[YX] John [swims] for [fun]; Mary [works] part- time [to earn some extra money]
IFL	Influence	X caused something to happen to Y	[XY] [The war] had an impact on [the Economy]

Semantic Relations – Extended Definition

- Given R(x, y), we define:
 - R : relation type
 - x : first argument
 - y: second argument
 - Domain(R): set of sorts of concepts that can be part of the first argument
 - Range(R): set of sorts of concepts that can be part of the second argument
- A semantic relation R(x,y) is defined by stating:
 - R
 - Domain(R)
 - Range(R)
- Advantages:
 - Difference between relations is more clear
 - Can discard potential relations that don't hold
 - Helps combining relations

Semantic Relation Discovery: An approach for lexico-syntactic pattern discovery

- Pick one Semantic Relation at a time
- Find lexico-syntactic patterns that express that SR
- Create a corpus with positive and negative examples
- Learn constraints that discover the SR
- Evaluate performance: precision and recall.

IS-A Relations

Relation	Lexico-syntactic Patterns	Examples
·	These capabilities are vital in the study of infectious diseases such as AIDS	
	NP1 and other NP2	Its local links connect major telecommunications users, such as brokerages and other financial institutions
	NP1, including NP2	An abandoned compound in the heart of Afganistan's capital city used by Osama bin Laden's Al Qaeda network appears to have been a makeshift for studying unconventional arms, including nuclear weapons

Cause relations

Relation	Lexico-syntactic Patterns	Examples
CAUSE	NP2 consequence of NP1	Grief was just the first consequence of the World Trade Center attacks.
	NP1 lead to NP2	Interferon is the first treatment to relieve and even cure lingering hepatitis B infections that lead to cirrhosis and liver cancer
	NP1 produce NP2	The economic dislocations produced by the Sept. 11 attacks are so unprecedented that it is impossible for anyone to forecast their duration or eventual magnitude.

Influence Relation

INFLUENCE	NP1 impact on NP2	Listeriosis is usually manifested as meningitis or meningoencephalitis, which have impact on the brain tissues	
	effect of NP1 on NP2	The effect of new <i>issues</i> on the <i>market</i> was seen on April 5, when the Bank of England announced the issue Pounds 800m 9 percent Treasury bonds.	
	inverse relation between NP1 and NP2	Moreover, the inverse relationship between <i>blood cholesterol level</i> and <i>risk</i> was limited to only one type of stroke.	

"Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations" (Girju, Badulescu and Moldovan 2003)

 Automatic procedure for the discovery of semantic constraints for the disambiguation of meronymic lexico-syntactic patterns;

"The car's main messenger is busy at work in the <u>mail car</u> as the <u>train</u> moves along. Through the open <u>slide door</u> of the car, moving scenery can be seen.. He peeks through the <u>door</u>'s <u>keyhole</u> leading to the tender and <u>locomotive cab</u>.."

Relation Discovery: Lexico-syntactic patterns expressing meronymy

- Variety of meronymy expressions:
 - Explicit part-whole constructions. E.g.,

The substance *consists of* two ingredients.

Iceland is a *member of* NATO.

He is *part of* the game. (*not part-whole)

Implicit part-whole constructions:

```
"girl's mouth", "eyes of the baby", "high heel shoes";
```

- Manual inspection of pattern types:
 - Phrase-level patterns;
 - Sentence-level pattern;
- Get pattern statistics and select the most frequent ones:

```
"NP1 of NP2"; "NP1's NP2"; "NP1 have NP2";
```

Relation Discovery: Learning Semantic Constraints

- Machine Learning approach (decision trees);
- Training corpus:
 - SemCor 1.7 (19,000 sentences) and TREC9 (100,000 sentences) text collections => Corpus A;
 - Each sentence was parsed (Charniak 2000);
 - Focusing only on the three patterns, all NPs in the 53,944 relationships matched by the patterns were manually annotated with their corresponding WordNet glosses;
 - Positive examples: 34,609;
 - Negative examples: 46,971;

Relation Discovery: Learning Algorithm

- Input: pos. and neg. meronymic examples of concept pairs;
- Output: semantic constraints on concepts;
- Step 1: Generalize the training examples:
 - Example: <part#sense; whole#sense; target>
 - Generalized example:
 - <part#sense, class_part#sense; whole#sense, class_whole#sense;
 target>
 - E.g.: <aria#1, entity#1; opera#1, abstraction#6; Yes>
 - Types of examples:
 - Positive: <X_class#sense; Y_class#sense; Yes>
 - Negative: <X_class#sense; Y_class#sense; No>
 - Ambiguous: <X_class#sense; Y_class#sense; Yes/No>
- Step 2: Learn constraints for the unambiguous examples (positive and negative);

- Step 3: Specialize the ambiguous examples:
 - Based on the IS-A information provided by WordNet;
 - Initially, each semantic class represented the root of one of the noun hierarchies in WordNet;
 - Go down in the hierarchy and specialize the semantic classes that correspond to the part, respectively whole;
 - Repeat the specialization until no more ambiguous examples in the training corpus;

Results:

- Corpus B: 10,000 sentences from TREC9-LA Times;
- Sentences were automatically disambiguated (81% accuracy);

Part Class	Whole Class	Value	Accuracy	Freq	Example
object#1	social_event#1	1	69.84	9	scene#4 - movie#1 (scene of a movie)
organism#1	system#1	0	50.00	8	archbishop#1 — York#1 (archbishop of York)
point#2	object#1	0	89.55	10	place#1 - wall#2 (place on the wall)
location#1	object#1	1	85.64	10	base#16 - box#1 (base of a box)

Number of Relations	Y verb X	Y's X	X of Y	All Patterns
Number of patterns	280	225	962	1467
Number of correct relations	18	23	78	119
Number of relations retrieved	25	24	91	140
Number of correctly retrieved relations	18	22	77	117
Precision	72%	91.16%	84.61%	83.57%
Recall for pattern(s)	100%	95.65%	89.71%	98.31%

Example 1:

Some domestic US terrorist groups, including Aryan Nation and the Phineas Priesthood, and some militia members are also religiously motivated in addition to being driven by a hatred of the federal government.

```
HYPERNYM (terrorist group, US terrorist group)HYPERNYM (US terrorist group, Aryan Nation)HYPERNYM (US terrorist group, Phineas Priesthood)HYPERNYM (terrorist group, Latin American terrorist group)
```

AT-LOCATION (US terrorist group, US) **MANNER** (religiously motivated, militia members) **MERONYM** (members, militia)

Example 2:

We want to work together to build our new economy, creating jobs by investing in technology so America can continue to lead the world in growth and opportunity.

(from the Democratic response to the President Bush's 2003 State of the Union Address)

MANNER (together, work)

PURPOSE (to build our new economy, work)

MANNER (creating jobs, build)

MANNER (by investing in technology, create)

MANNER (in growth and opportunity, lead)

Example 3:

The car's mail messenger is busy at work in the mail car as the train moves along. Through the open side door of the car, moving scenery can be seen. The worker is alarmed when he hears an unusual sound. He peeks through the door's keyhole leading to the tender and locomotive cab and sees the two bandits trying to break through the express car door.

MERONYM (mail car, train)
MERONYM (side door, car)
MERONYM (keyhole, side door)
MERONYM (tender, train)
MERONYM (locomotive cab, train)
MERONYM (locomotive, train)

MERONYM (car, express)
HYPERNYM (door, side door)
AT-LOCATION (messenger, car)
HYPERNYM (messenger, mail messenger)
MERONYM (cab, locomotive)

Example 4:

Colleagues today recall with some humor how meetings would crawl into the early morning hours as Mr. Dinkins would quietly march his staff out of board meetings and into his private office to discuss, en masse, certain controversial proposals the way he knows best.

MANNER (with some humor, recall)

MANNER (how, crawl)

MANNER (quietly, march)

MANNER (en masse, discuss)

MANNER (the way he knows, discuss)

MANNER (best, knows)