Содержание

1. Слабая сходимость в банаховом пространстве 2
1.1. Изометричность вложения E в E^{**} . Критерий слабой сходимости последо-
вательности
1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные множе-
ства
1.3. Замкнутый шар в Гильбертовом пространстве секвенциально компактен
(теорема Банаха)

Функциональный анализ 2.0.

Disclaymer: доверять этому конспекту или нет выбирайте сами

1. Слабая сходимость в банаховом пространстве

1.1. Изометричность вложения E в E^{**} . Критерий слабой сходимости последовательности.

Теорема 1.1.1 (Хана Банаха, напоминание): Пусть E - ЛНП. $M \subset E - ли$ нейное многообразие, f – линейный ограниченный функционал на M. Тогда $\exists \tilde{f} \in E^*$:

1.
$$\tilde{\tilde{f}}|_{M} = f$$

2. $\|\tilde{f}\| = \|f\|$

Следствие 1.1.1.1:

$$\forall x \in E: \|x\| = \mathrm{sup}_{f \in E, \|f\|_{E^*} = 1} |f(x)|$$

Теорема 1.1.2 (Об изометрии): E изометрично E^{**} , через отображение π : $E \to E^{**}$, где

$$\pi x = F_x \in E^{**}; \quad F_x(f) = f(x)$$

Доказательство: Нужно доказать, что отображение π не меняет норму.

В силу приведённого выше следствия из теоремы Хана-Банаха:

$$\|F_x\|=\sup_{\|f\|=1}|F_x(f)|=\sup_{\|f\|=1}|f(x)|=\|x\|$$

Определение 1.1.1: Пусть E — нормированное пространство. Говорим, что последовательность элементов $\{x_n\}_{n=1}^\infty$ слабо сходится к x: $x_n \stackrel{w}{\to} x \Leftrightarrow \forall f \in E^*: f(x_n) \to f(x)$

$$x_n \xrightarrow{w} x \Leftrightarrow \forall f \in E^* : f(x_n) \to f(x)$$

Теорема 1.1.3 (Критерий поточечной сходимости операторов. Напоминание из прошлого семестра):

Пусть E_1 – банахово, E_2 – ЛНП. Причём $\left\{A_n\right\}_{n=1}^\infty\subset\mathcal{L}(E_1,E_2), A\in$ $\mathcal{L}(E_1,E_2)$. Тогда

$$A_n \overset{\text{поточечно}}{\rightarrow} A \Leftrightarrow \begin{cases} \exists M \colon \forall n \colon \|A_n\| \leq M \\ \exists S \colon [S] = E_1 \colon \forall s \in S \colon A_n s \rightarrow As \end{cases}$$

Теорема 1.1.4 (критерии следовательность $\left\{x_n\right\}_{n=1}^{\infty} \subset E$: $x_n \overset{w}{\to} x \Leftrightarrow \begin{cases} \left\{\|x\|_n\right\}_{n=1}^{\infty} \text{ ограничена} \\ \exists S \colon [S] = E \colon \forall f \in S \colon f(x_n) \to f(x) \end{cases}$ **Теорема 1.1.4** (Критерий слабой сходимости): Пусть $E - \Pi H\Pi$. Тогда по-

$$x_{n}\overset{w}{
ightarrow}x\Leftrightarrow\begin{cases}\left\{ \left\Vert x
ight\Vert _{n}
ight\} _{n=1}^{\infty}\text{ ограничена}\ \exists S\colon\left[S\right]=E\colon\forall f\in S\colon f(x_{n})\rightarrow f(x)\end{cases}$$

 Доказательство: Перейдём к рассмотрению операторов $F_{x_n}, F_x \in E^{**}$. Тогда слабая сходимость $x_n \to x$ по определению является поточечной сходимостью $F_{x_n}(f) \to F_x(f)$.

Из условия:

- $E^{**} = \mathcal{L}(E^*, \mathbb{K})$
- Пространство E^* всегда полно
- Нормы $\|F_{x_n}\|=\|x_n\|$ ограничены $\exists S:\ [S]=E^*:\ \forall f\in S:\ F_{x_n}f\to F_xf$

Эти условия позволяют нам применить упомянутый выше критерий поточечной сходимости операторов из предыдущего семестра. А поточечная сходимость оператором во всём пространстве соответствует $x_n \stackrel{w}{\to} x$.

Замечание 1.1.1: В случае рефлексивного банахова пространства E условие для слабой сходимости множно ослабить. Достаточно потребовать не сходимости $f(x_n) \to f(x)$, а существования предела $\lim_{n\to\infty} f(x_n)$ (тем самым, нам не нужно знать конкретный x).

1.2. Слабая сходимость и ограниченные операторы. Слабо ограниченные множества.

Теорема 1.2.1 (Слабая сходимость и ограниченные операторы):

Пусть E_1, E_2 – ЛНП, $\left\{x_n\right\}_{n=1}^\infty \subset E_1, x \in E_1$, причём $x_n \stackrel{w}{\to} x$, а также $A \in \mathcal{L}(E_1, E_2)$. Тогда есть слабая сходимость образов:

$$Ax_n \stackrel{w}{\to} Ax$$

Доказательство: По определению слабой сходимости, выполняется

$$\forall f \in E_1^*: f(x_n) \xrightarrow[n \to \infty]{} f(x)$$

 $\forall f\in E_1^*:\ f(x_n)\underset{n\to\infty}{\to} f(x)$ В частности, можно рассмотреть функционал $f=g\circ A$ для любого $g\in$ E_2^* . Тогда

$$\forall g \in E_2^*: g(Ax_n) \underset{n \to \infty}{\longrightarrow} g(Ax)$$

 $\forall g \in E_2^*: \ g(Ax_n) \underset{n \to \infty}{\to} g(Ax)$ Это утверждение в точности совпадает с определением слабой сходимости $Ax_n \stackrel{w}{\to} Ax.$

П

Определение 1.2.1: Множество $S \subseteq E$ называется слабо ограниченным, если

 $\forall f \in E^*: \ f(S)$ - ограниченное множество в $\mathbb K$

Теорема 1.2.2 (Хана): Пусть $S \subseteq E$ – слабо ограниченное множество. Тогда S ограничено.

 $\exists \{x_n\}_{n=1}^{\infty} \subset S: \ \forall n \in \mathbb{N}: \ \|x_n\| \geq n^2$ Рассмотрим последовательность $y_n = \frac{x_n}{n}.$ В силу слабой ограниченности, мы можем сделать следующую оценку на образ $f(y_n), f \in E^*$ (где K_f – кон-

станта, ограничивающая образ f(S)): $\forall f \in E^*: \ |f(y_n)| = \frac{|f(x_n)|}{n} \leq \frac{K_f}{n} \underset{n \to \infty}{\to} 0$ Стало быть, $y_n \overset{w}{\to} 0$. В силу критерия слабой сходимости, $\|y_n\| \leq M$ – есть ограниченность норм. Отсюда

 $\forall n \in \mathbb{N}: M \ge ||y_n|| = \frac{||x_n||}{n} \ge \frac{n^2}{n} = n$

Противоречие.

1.3. Замкнутый шар в Гильбертовом пространстве секвенциально компактен (теорема Банаха).

Определение 1.3.1: Множество $S \subseteq E$ называется **слабо секвенциально** компактным (или секвенциально слабо компактным), если из любой последовательности можно выделить слабо сходящуюся подпоследовательность:

$$\forall \{x_n\}_{n=1}^{\infty} \subseteq S: \ \exists \{n_k\}_{k=1}^{\infty} \subseteq \mathbb{N}: \ \exists x \in S: \ x_{n_k} \xrightarrow{w}_{k \to \infty} x$$

Теорема 1.3.1 (Банаха): Пусть H – гильбертово пространство. Тогда $\overline{B}(0,R)$ – слабо секвенциально компактное множество.

Доказательство:

- 1. Рассмотрим любую последовательность $\{x_n\}_{n=1}^{\infty}\subseteq \overline{B}(0,R)$. Хотим показать, что в ней выделяется слабо сходящаяся подпоследовательность $\left\{x_{n_k}\right\}_{k=1}^{\infty}$.
- 2. Рассмотрим $L = \left[\left\{ x_n \right\}_{n=1}^{\infty} \right]$. В силу гильбертовости пространства H, мы можем воспользоваться теоремой о проекции. Тогда $H=L\oplus L^\perp.$
- 3. Выделим такую подпоследовательность $\{y_k\}_{k=1}^{\infty}\subseteq \{x_n\}_{n=1}^{\infty}$, что есть сходимость для любого скалярного произведения с x_m :

$$\forall m \in \mathbb{N}: \ \exists \lim_{k \to \infty} (x_m, y_k)$$

Тогда, в силу критерия слабой сходимости (смотреть замечание после него), y_k будет слабо сходящейся последовательностью в L.

4. Заметим, что из имеющейся сходимости следует слабая сходимость и во всём пространстве H:

$$H = L \oplus L^{\perp} \Rightarrow \forall h = l + l^{\perp}: \ (y_k, h) = (y_k, l) + (y_k, l^{\perp}) = (y_k, l)$$
 А (y_k, l) сходится в силу результата предыдущего пункта.

Единственная вещь, требующая пояснения – пункт 3, выделение слабо сходящейся последовательности. Воспользуемся диагональным методом Кантора:

- 1. Зафиксируем x_m . Тогда $(x_m, x_n) \le R^2$ и, получается, $\{(x_m, x_n)\}_{n=1}^{\infty}$ является ограниченной последовательностью чисел. По теореме Больцано-Вейерштрасса, из неё можно выделить сходящуюся подпоследовательность x_n .
- 2. Итерируемся по $m \in \mathbb{N}$ (с началом m=1 и последовательностью x_n) и выделяем новую подпоследовательность из той, что была получена на предыдущем шаге. Обозначаем их как $x_{m,n}$
- 3. Получили искомую последовательность $y_k = x_{k,k}$.