

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ЛЕКЦИОННЫЕ МАТЕРИАЛЫ по дисциплине

Цифровые устройства и микропроцессоры

Часть 1 (5 семестр)

Лекция 2

Основные темы лекции

Транзисторный ключ на биполярном транзисторе.

Транзисторный ключ на МДП транзисторе.

Транзисторный ключ на биполярном транзисторе

Обозначение биполярного n-p-n транзистора и его упрощенная эквивалентная схема:

Закрытое состояние транзистора — эквивалентно разрыву между К и Э:

Открытое (насыщенное) состояние транзистора — эквивалентно очень малому сопротивлению между К и Э:

В цифровых устройствах, в отличие от аналоговых, транзистор, как правило, имеет только 2 показанных выше состояния.

Для p-n-p транзистора полярности напряжений и токов — противоположные:

ВАХ биполярного транзистора в схеме с общим эмиттером

Биполярный транзистор управляется базовым током, напряжение база-эмиттер, т.е. напряжение на открытом диоде, при этом составляет $0.5...1.0~\mathrm{B}$ (в среднем около $0.7~\mathrm{B}$). Типовые уровни напряжения логических сигналов — $3...5~\mathrm{B}$, поэтому в цепи базы необходим ограничительный резистор.

Схема устройства на биполярном транзисторе:

При подаче на вход лог. "1" транзистор открыт (режим насыщения), Э и К практически соединены, т.е. выход соединен с землей, на выходе – лог. "0".

Если на входе присутствует лог. "0", транзистор закрыт, имеем резистивный делитель напряжения:

При отсутствии нагрузки ($R_H \to \infty$), выходное напряжение практически равно напряжению питания (твердая лог. "1"), при $R_H = R_K$ — половине питания, т.е. попадает в зону неопределенности. При большой нагрузке (малом R_H) необходимо уменьшать R_K —

другими словами, уменьшать выходное сопротивление каскада, что однако ведет к повышенному энергопотреблению.

Таким образом, транзисторный ключ выполняют функцию инвертора:

Транзисторный ключ на МДП транзисторе

Условное обозначение МДП - транзисторов:

У транзисторов со встроенным каналом существует некоторый ток стока при нулевом входном воздействии. В логических схемах обычно используют транзисторы с индуцированным каналом, у которых при нулевом напряжении между затвором и истоком ток стока равен 0, т.е. их можно назвать "нормально закрытыми". Основные характеристики такого транзистора приведены ниже:

Схема каскада на МДП-транзисторе:

Работа ключей на биполярном n-p-n и n-канальном МДП транзисторах аналогичны. Каскад на МДП транзисторе также является инвертором.

Главные различия транзисторов:

Биполярный (n-p-n, p-n-p)	МДП (n, p-канальный)
Низкое входное сопротивление цепи базы	Очень высокое входное сопротивление цепи затвора (отсюда и боязнь статического электричества)
Управление (открытие/закрытие) — током база-эмиттер, в цепи базы требуются резистивные элементы и/или схемы сдвига уровней	Управление — напряжением затвор-исток. Затвор можно прямо подключать к источникам логических уровней (например, питанию)
	Малое сопротивление исток-сток в режиме насыщения.