

GENETIC PRODUCTS DIFFERENTIALLY EXPRESSED IN TUMORS AND THE USE THEREOF

5 Despite interdisciplinary approaches and exhaustive use of classical therapeutic procedures, cancers are still among the leading causes of death. More recent therapeutic concepts aim at incorporating the patient's immune system into the overall therapeutic concept by
10 using recombinant tumor vaccines and other specific measures such as antibody therapy. A prerequisite for the success of such a strategy is the recognition of tumor-specific or tumor-associated antigens or epitopes by the patient's immune system whose effector functions
15 are to be interventionally enhanced. Tumor cells biologically differ substantially from their nonmalignant cells of origin. These differences are due to genetic alterations acquired during tumor development and result, *inter alia*, also in the
20 formation of qualitatively or quantitatively altered molecular structures in the cancer cells. Tumor-associated structures of this kind which are recognized by the specific immune system of the tumor-harboring host are referred to as tumor-associated antigens. The
25 specific recognition of tumor-associated antigens involves cellular and humoral mechanisms which are two functionally interconnected units: CD4⁺ and CD8⁺ T lymphocytes recognize the processed antigens presented on the molecules of the MHC (major histocompatibility complex) classes II and I, respectively, while B lymphocytes produce circulating antibody molecules which bind directly to unprocessed antigens. The potential clinical-therapeutical importance of tumor-associated antigens results from the fact that the
30 recognition of antigens on neoplastic cells by the immune system leads to the initiation of cytotoxic effector mechanisms and, in the presence of T helper cells, can cause elimination of the cancer cells
35

- 2 -

(Pardoll, *Nat. Med.* 4:525-31, 1998). Accordingly, a central aim of tumor immunology is to molecularly define these structures. The molecular nature of these antigens has been enigmatic for a long time. Only after 5 development of appropriate cloning techniques has it been possible to screen cDNA expression libraries of tumors systematically for tumor-associated antigens by analyzing the target structures of cytotoxic T lymphocytes (CTL) (van der Bruggen et al., *Science* 10 254:1643-7, 1991) or by using circulating autoantibodies (Sahin et al., *Curr. Opin. Immunol.* 9:709-16, 1997) as probes. To this end, cDNA expression libraries were prepared from fresh tumor tissue and recombinantly expressed as proteins in suitable 15 systems. Immunoeffectors isolated from patients, namely CTL clones with tumor-specific lysis patterns, or circulating autoantibodies were utilized for cloning the respective antigens.

20 In recent years a multiplicity of antigens have been defined in various neoplasias by these approaches. However, the probes utilized for antigen identification in the classical methods illustrated above are immunoeffectors (circulating autoantibodies or CTL 25 clones) from patients usually having already advanced cancer. A number of data indicate that tumors can lead, for example, to tolerization and anergization of T cells and that, during the course of the disease, especially those specificities which could cause 30 effective immune recognition are lost from the immunoeffector repertoire. Current patient studies have not yet produced any solid evidence of a real action of the previously found and utilized tumor-associated antigens. Accordingly, it cannot be ruled out that 35 proteins evoking spontaneous immune responses are the wrong target structures.

It was the object of the present invention to provide

- 3 -

target structures for a diagnosis and therapy of cancers.

According to the invention, this object is achieved by
5 the subject matter of the claims.

According to the invention, a strategy for identifying and providing antigens expressed in association with a tumor and the nucleic acids coding therefor was
10 pursued. This strategy is based on the fact that particular genes which are expressed in an organ specific manner, e.g. exclusively in colon, lung or kidney tissue, are reactivated also in tumor cells of the respective organs and moreover in tumor cells of
15 other tissues in an ectopic and forbidden manner. First, data mining produces a list as complete as possible of all known organ-specific genes which are then evaluated for their aberrant activation in different tumors by expression analyses by means of
20 specific RT-PCR. Data mining is a known method of identifying tumor-associated genes. In the conventional strategies, however, transcriptoms of normal tissue libraries are usually subtracted electronically from tumor tissue libraries, with the assumption that the
25 remaining genes are tumor-specific (Schmitt et al., *Nucleic Acids Res.* 27:4251-60, 1999; Vasmatzis et al., *Proc. Natl. Acad. Sci. USA.* 95:300-4, 1998; Scheurle et al., *Cancer Res.* 60:4037-43, 2000).

The concept of the invention, which has proved much
30 more successful, however, is based on utilizing data mining for electronically extracting all organ-specific genes and then evaluating said genes for expression in tumors.

35 The invention thus relates in one aspect to a strategy for identifying tissue-specific genes differentially expressed in tumors. Said strategy combines data mining of public sequence libraries ("in silico") with

- 4 -

subsequent evaluating laboratory-experimental ("wet bench") studies.

According to the invention, a combined strategy based
5 on two different bioinformatic scripts enabled new
tumor genes to be identified. These have previously
been classified as being purely organ-specific. The
finding that these genes are aberrantly activated in
tumor cells allows them to be assigned a substantially
10 new quality with functional implications. According to
the invention, these tumor-associated genes and the
genetic products encoded thereby were identified and
provided independently of an immunogenic action.

15 The tumor-associated antigens identified according to
the invention have an amino acid sequence encoded by a
nucleic acid which is selected from the group
consisting of (a) a nucleic acid which comprises a
nucleic acid sequence selected from the group
20 consisting of SEQ ID NOS: 1-8, 41-44, 51-59, 84, 117,
and 119, a part or derivative thereof, (b) a nucleic
acid which hybridizes with the nucleic acid of (a)
under stringent conditions, (c) a nucleic acid
which is degenerate with respect to the nucleic acid of
25 (a) or (b), and (d) a nucleic acid which is
complementary to the nucleic acid of (a), (b) or (c).
In a preferred embodiment, a tumor-associated antigen
identified according to the invention has an amino acid
sequence encoded by a nucleic acid which is selected
30 from the group consisting of SEQ ID NOS: 1-8, 41-44,
51-59, 84, 117, and 119. In a further preferred
embodiment, a tumor-associated antigen identified
according to the invention comprises an amino acid
sequence selected from the group consisting of SEQ ID
35 NOS: 9-19, 45-48, 60-66, 85, 90-97, 100-102, 105, 106,
111-116, 118, 120, 123, 124, and 135-137, a part or
derivative thereof.

The present invention generally relates to the use of tumor-associated antigens identified according to the invention or of parts or derivatives thereof, of nucleic acids coding therefor or of nucleic acids directed against said coding nucleic acids or of antibodies directed against the tumor-associated antigens identified according to the invention or parts or derivatives thereof for therapy and diagnosis. This utilization may relate to individual but also to combinations of two or more of these antigens, functional fragments, nucleic acids, antibodies, etc., in one embodiment also in combination with other tumor-associated genes and antigens for diagnosis, therapy and progress control.

15 Preferred diseases for a therapy and/or diagnosis are those in which one or more of the tumor-associated antigens identified according to the invention are selectively expressed or abnormally expressed.

20 The invention also relates to nucleic acids and genetic products which are expressed in association with a tumor cell.

25 Furthermore, the invention relates to genetic products, i.e. nucleic acids and proteins or peptides, which are produced by altered splicing (splice variants) of known genes or altered translation using alternative open reading frames. In this aspect the invention relates to nucleic acids which comprise a nucleic acid sequence selected from the group consisting of sequences according to SEQ ID NOS: 3-5 of the sequence listing. Moreover, in this aspect, the invention relates to proteins or peptides which comprise an amino acid sequence selected from the group consisting of the sequences according to SEQ ID NOS: 10 and 12-14 of the sequence listing. The splice variants of the invention can be used according to the invention as targets for

- 6 -

diagnosis and therapy of tumor diseases.

In particular, the invention relates to the amino acid sequence according to SEQ ID NO: 10 of the sequence listing which is encoded by an alternative open reading frame identified according to the invention and differs from the previously described protein sequence (SEQ ID NO: 9) in additional 85 amino acids at the N terminus of the protein.

10

Very different mechanisms may cause splice variants to be produced, for example

- utilization of variable transcription initiation sites
- 15 - utilization of additional exons
- complete or incomplete splicing out of single or two or more exons,
- splice regulator sequences altered via mutation (deletion or generation of new donor/acceptor 20 sequences),
- incomplete elimination of intron sequences.

Altered splicing of a gene results in an altered transcript sequence (splice variant). Translation of a splice variant in the region of its altered sequence results in an altered protein which may be distinctly different in the structure and function from the original protein. Tumor-associated splice variants may produce tumor-associated transcripts and tumor-associated proteins/antigens. These may be utilized as molecular markers both for detecting tumor cells and for therapeutic targeting of tumors. Detection of tumor cells, for example in blood, serum, bone marrow, sputum, bronchial lavage, bodily secretions and tissue 30 biopsies, may be carried out according to the invention, for example, after extraction of nucleic acids by PCR amplification with splice variant-specific 35 oligonucleotides. In particular, pairs of primers are

suitable as oligonucleotides at least one of which binds to the region of the splice variant which is tumor-associated under stringent conditions. According to the invention, oligonucleotides described for this purpose in the examples are suitable, in particular oligonucleotides which have or comprise a sequence selected from SEQ ID NOS: 34-36, 39, 40, and 107-110 of the sequence listing. According to the invention, all sequence-dependent detection systems are suitable for detection. These are, apart from PCR, for example gene chip/microarray systems, Northern blot, RNase protection assays (RDA) and others. All detection systems have in common that detection is based on a specific hybridization with at least one splice variant-specific nucleic acid sequence. However, tumor cells may also be detected according to the invention by antibodies which recognize a specific epitope encoded by the splice variant. Said antibodies may be prepared by using for immunization peptides which are specific for said splice variant. In this aspect, the invention relates, in particular, to peptides which have or comprise a sequence selected from SEQ ID NOS: 17-19, 111-115, 120, and 137 of the sequence listing and specific antibodies which are directed thereto. Suitable for immunization are particularly the amino acids whose epitopes are distinctly different from the variant(s) of the genetic product, which is (are) preferably produced in healthy cells. Detection of the tumor cells with antibodies may be carried out here on a sample isolated from the patient or as imaging with intravenously administered antibodies. In addition to diagnostic usability, splice variants having new or altered epitopes are attractive targets for immunotherapy. The epitopes of the invention may be utilized for targeting therapeutically active monoclonal antibodies or T lymphocytes. In passive immunotherapy, antibodies or T lymphocytes which recognize splice variant-specific epitopes are

- 8 -

adoptively transferred here. As in the case of other antigens, antibodies may be generated also by using standard technologies (immunization of animals, panning strategies for isolation of recombinant antibodies) 5 with utilization of polypeptides which include these epitopes. Alternatively, it is possible to utilize for immunization nucleic acids coding for oligo- or polypeptides which contain said epitopes. Various techniques for in vitro or in vivo generation of 10 epitope-specific T lymphocytes are known and have been described in detail (for example Kessler JH, et al. 2001, Sahin et al., 1997) and are likewise based on utilizing oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids 15 coding for said oligo- or polypeptides. Oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids coding for said polypeptides may also be used as pharmaceutically active substances 20 in active immunotherapy (vaccination, vaccine therapy).

25 The present invention also describes proteins which differ in nature and degree of their secondary modifications in normal and tumor tissue (for example Durand & Seta, 2000; Clin. Chem. 46: 795-805; Hakomori, 1996; Cancer Res. 56: 5309-18).

30 The analysis of protein modifications can be done in Western blots. In particular, glycosylations which as a rule have a size of several kDa result in a higher overall mass of the target protein which can be separated in an SDS-PAGE. For the detection of specific O- and N-glycosidic bonds protein lysates are incubated with O- or N-glycosylases (according to the 35 instructions of the respective manufacturers, for example, PNGase, endoglycosidase F, endoglycosidase H, Roche Diagnostics) prior to denaturation using SDS. Thereafter, a Western blot is performed. If the size of target protein is reduced a specific glycosylation can

- 9 -

be detected in this manner following incubation with a glycosidase and thus, also the tumor specificity of a modification can be analyzed. Protein regions which are differentially glycosylated in tumor cells and healthy

5 cells are of particular interest. Such differences in glycosylation, however, have hitherto only been described for a few cell surface proteins (for example, Mucl).

10 According to the invention, it was possible to detect a differential glycosylation for Claudin-18 in tumors. Gastrointestinal carcinomas, pancreas carcinomas, esophagus tumors, prostate tumors as well as lung tumors have a form of Claudin-18 which is glycosylated

15 at a lower level. Glycosylation in healthy tissues masks protein epitopes of Claudin-18 which are not covered on tumor cells due to lacking glycosylation. Correspondingly it is possible according to the invention to select ligands and antibodies which bind

20 to these domains. Such ligands and antibodies according to the invention do not bind to Claudin-18 on healthy cells since here the epitops are covered due to glycosylation.

25 As has been described above for protein epitopes which are derived from tumor-associated splice variants it is thus possible to use the differential glycosylation to distinguish normal cells and tumor cells with diagnostic as well as therapeutic intention.

30 In one aspect, the invention relates to a pharmaceutical composition comprising an agent which recognizes the tumor-associated antigen identified according to the invention and which is preferably

35 selective for cells which have expression or abnormal expression of a tumor-associated antigen identified according to the invention. In particular embodiments, said agent may cause induction of cell death, reduction

- 10 -

in cell growth, damage to the cell membrane or secretion of cytokines and preferably have a tumor-inhibiting activity. In one embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen, in particular a complement-activated or toxin conjugated antibody which binds selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively recognize different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention. Recognition needs not be accompanied directly with inhibition of activity or expression of the antigen. In this aspect of the invention, the antigen selectively limited to tumors preferably serves as a label for recruiting effector mechanisms to this specific location. In a preferred embodiment, the agent is a cytotoxic T lymphocyte which recognizes the antigen on an HLA molecule and lyses the cells labeled in this way. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen and thus recruits natural or artificial effector mechanisms to said cell. In a further embodiment, the agent is a T helper lymphocyte which enhances effector functions of other cells specifically recognizing said antigen.

30

In one aspect, the invention relates to a pharmaceutical composition comprising an agent which inhibits expression or activity of a tumor-associated antigen identified according to the invention. In a preferred embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds

- 11 -

selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively inhibit expression or activity of different tumor-associated antigens, at 5 least one of which is a tumor-associated antigen identified according to the invention.

The invention furthermore relates to a pharmaceutical composition which comprises an agent which, when 10 administered, selectively increases the amount of complexes between an HLA molecule and a peptide epitope from the tumor-associated antigen identified according to the invention. In one embodiment, the agent comprises one or more components selected from the 15 group consisting of (i) the tumor-associated antigen or a part thereof, (ii) a nucleic acid which codes for said tumor-associated antigen or a part thereof, (iii) a host cell which expresses said tumor-associated antigen or a part thereof, and (iv) isolated complexes 20 between peptide epitopes from said tumor-associated antigen and an MHC molecule. In one embodiment, the agent comprises two or more agents which each selectively increase the amount of complexes between MHC molecules and peptide epitopes of different tumor- 25 associated antigens, at least one of which is a tumor-associated antigen identified according to the invention.

The invention furthermore relates to a pharmaceutical 30 composition which comprises one or more components selected from the group consisting of (i) a tumor-associated antigen identified according to the invention or a part thereof, (ii) a nucleic acid which codes for a tumor-associated antigen identified 35 according to the invention or for a part thereof, (iii) an antibody which binds to a tumor-associated antigen identified according to the invention or to a part thereof, (iv) an antisense nucleic acid which

- 12 -

hybridizes specifically with a nucleic acid coding for a tumor-associated antigen identified according to the invention, (v) a host cell which expresses a tumor-associated antigen identified according to the invention or a part thereof, and (vi) isolated complexes between a tumor-associated antigen identified according to the invention or a part thereof and an HLA molecule.

10 A nucleic acid coding for a tumor-associated antigen identified according to the invention or for a part thereof may be present in the pharmaceutical composition in an expression vector and functionally linked to a promoter.

15 A host cell present in a pharmaceutical composition of the invention may secrete the tumor-associated antigen or the part thereof, express it on the surface or may additionally express an HLA molecule which binds to

20 said tumor-associated antigen or said part thereof. In one embodiment, the host cell expresses the HLA molecule endogenously. In a further embodiment, the host cell expresses the HLA molecule and/or the tumor-associated antigen or the part thereof in a recombinant

25 manner. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.

30 An antibody present in a pharmaceutical composition of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody, a fragment of a natural antibody or a synthetic antibody, all of which may be produced by

35 combinatorial techniques. The antibody may be coupled to a therapeutically or diagnostically useful agent.

An antisense nucleic acid present in a pharmaceutical

composition of the invention may comprise a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of the nucleic acid coding for the tumor-associated antigen identified according to the 5 invention.

In further embodiments, a tumor-associated antigen, provided by a pharmaceutical composition of the invention either directly or via expression of a 10 nucleic acid, or a part thereof binds to MHC molecules on the surface of cells, said binding preferably causing a cytolytic response and/or inducing cytokine release.

15 A pharmaceutical composition of the invention may comprise a pharmaceutically compatible carrier and/or an adjuvant. The adjuvant may be selected from saponin, GM-CSF, CpG nucleotides, RNA, a cytokine or a chemokine. A pharmaceutical composition of the 20 invention is preferably used for the treatment of a disease characterized by selective expression or abnormal expression of a tumor-associated antigen. In a preferred embodiment, the disease is cancer.

25 The invention furthermore relates to methods of treating or diagnosing a disease characterized by expression or abnormal expression of one or more tumor-associated antigens. In one embodiment, the treatment comprises administering a pharmaceutical composition of 30 the invention.

In one aspect, the invention relates to a method of diagnosing a disease characterized by expression or abnormal expression of a tumor-associated antigen 35 identified according to the invention. The method comprises detection of (i) a nucleic acid which codes for the tumor-associated antigen or of a part thereof and/or (ii) detection of the tumor-associated antigen

- 14 -

or of a part thereof, and/or (iii) detection of an antibody to the tumor-associated antigen or to a part thereof and/or (iv) detection of cytotoxic or T helper lymphocytes which are specific for the tumor-associated antigen or for a part thereof in a biological sample isolated from a patient. In particular embodiments, detection comprises (i) contacting the biological sample with an agent which binds specifically to the nucleic acid coding for the tumor-associated antigen or 5 to the part thereof, to said tumor-associated antigen or said part thereof, to the antibody or to cytotoxic or T helper lymphocytes specific for the tumor-associated antigen or parts thereof, and (ii) detecting the formation of a complex between the agent and the 10 nucleic acid or the part thereof, the tumor-associated antigen or the part thereof, the antibody or the cytotoxic or T helper lymphocytes. In one embodiment, the disease is characterized by expression or abnormal expression of two or more different tumor-associated 15 antigens and detection comprises detection of two or more nucleic acids coding for said two or more different tumor-associated antigens or of parts thereof, detection of two or more different tumor-associated antigens or of parts thereof, detection of 20 two or more antibodies binding to said two or more different tumor-associated antigens or to parts thereof or detection of two or more cytotoxic or T helper lymphocytes specific for said two or more different tumor-associated antigens. In a further embodiment, the 25 biological sample isolated from the patient is compared 30 to a comparable normal biological sample.

In a further aspect, the invention relates to a method for determining regression, course or onset of a 35 disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises monitoring a sample from a patient who has said disease

- 15 -

or is suspected of falling ill with said disease, with respect to one or more parameters selected from the group consisting of (i) the amount of nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) the amount of the tumor-associated antigen or a part thereof, (iii) the amount of antibodies which bind to the tumor-associated antigen or to a part thereof, and (iv) the amount of cytolytic T cells or T helper cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule. The method preferably comprises determining the parameter(s) in a first sample at a first point in time and in a further sample at a second point in time and in which the course of the disease is determined by comparing the two samples. In particular embodiments, the disease is characterized by expression or abnormal expression of two or more different tumor-associated antigens and monitoring comprises monitoring (i) the amount of two or more nucleic acids which code for said two or more different tumor-associated antigens or of parts thereof, and/or (ii) the amount of said two or more different tumor-associated antigens or of parts thereof, and/or (iii) the amount of two or more antibodies which bind to said two or more different tumor-associated antigens or to parts thereof, and/or (iv) the amount of two or more cytolytic T cells or of T helper cells which are specific for complexes between said two or more different tumor-associated antigens or of parts thereof and MHC molecules.

According to the invention, detection of a nucleic acid or of a part thereof or monitoring the amount of a nucleic acid or of a part thereof may be carried out using a polynucleotide probe which hybridizes specifically to said nucleic acid or said part thereof or may be carried out by selective amplification of said nucleic acid or said part thereof. In one

- 16 -

embodiment, the polynucleotide probe comprises a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.

5 In particular embodiments, the tumor-associated antigen to be detected or the part thereof is present intracellularly or on the cell surface. According to the invention, detection of a tumor-associated antigen or of a part thereof or monitoring the amount of a
10 tumor-associated antigen or of a part thereof may be carried out using an antibody binding specifically to said tumor-associated antigen or said part thereof.

15 In further embodiments, the tumor-associated antigen to be detected or the part thereof is present in a complex with an MHC molecule, in particular an HLA molecule.

20 According to the invention, detection of an antibody or monitoring the amount of antibodies may be carried out using a protein or peptide binding specifically to said antibody.

25 According to the invention, detection of cytolytic T cells or of T helper cells or monitoring the amount of cytolytic T cells or of T helper cells which are specific for complexes between an antigen or a part thereof and MHC molecules may be carried out using a cell presenting the complex between said antigen or said part thereof and an MHC molecule.

30 The polynucleotide probe, the antibody, the protein or peptide or the cell, which is used for detection or monitoring, is preferably labeled in a detectable manner. In particular embodiments, the detectable
35 marker is a radioactive marker or an enzymic marker. T lymphocytes may additionally be detected by detecting their proliferation, their cytokine production, and their cytotoxic activity triggered by specific

- 17 -

stimulation with the complex of MHC and tumor-associated antigen or parts thereof. T lymphocytes may also be detected via a recombinant MHC molecule or else a complex of two or more MHC molecules which are loaded 5 with the particular immunogenic fragment of one or more of the tumor-associated antigens and which can identify the specific T lymphocytes by contacting the specific T cell receptor.

10 In a further aspect, the invention relates to a method of treating, diagnosing or monitoring a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises administering an 15 antibody which binds to said tumor-associated antigen or to a part thereof and which is coupled to a therapeutic or diagnostic agent. The antibody may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a 20 fragment of a natural antibody.

The invention also relates to a method of treating a patient having a disease characterized by expression or abnormal expression of a tumor-associated antigen 25 identified according to the invention, which method comprises (i) removing a sample containing immunoreactive cells from said patient, (ii) contacting said sample with a host cell expressing said tumor-associated antigen or a part thereof, under conditions 30 which favor production of cytolytic T cells against said tumor-associated antigen or a part thereof, and (iii) introducing the cytolytic T cells into the patient in an amount suitable for lysing cells expressing the tumor-associated antigen or a part 35 thereof. The invention likewise relates to cloning the T cell receptor of cytolytic T cells against the tumor-associated antigen. Said receptor may be transferred to other T cells which thus receive the desired

specificity and, as under (iii), may be introduced into the patient.

5 In one embodiment, the host cell endogenously expresses an HLA molecule. In a further embodiment, the host cell recombinantly expresses an HLA molecule and/or the tumor-associated antigen or the part thereof. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting 10 cell, in particular a dendritic cell, a monocyte or a macrophage.

In a further aspect, the invention relates to a method of treating a patient having a disease characterized by 15 expression or abnormal expression of a tumor-associated antigen, which method comprises (i) identifying a nucleic acid which codes for a tumor-associated antigen identified according to the invention and which is expressed by cells associated with said disease, (ii) 20 transfecting a host cell with said nucleic acid or a part thereof, (iii) culturing the transfected host cell for expression of said nucleic acid (this is not obligatory when a high rate of transfection is obtained), and (iv) introducing the host cells or an 25 extract thereof into the patient in an amount suitable for increasing the immune response to the patient's cells associated with the disease. The method may further comprise identifying an MHC molecule presenting the tumor-associated antigen or a part thereof, with 30 the host cell expressing the identified MHC molecule and presenting said tumor-associated antigen or a part thereof. The immune response may comprise a B cell response or a T cell response. Furthermore, a T cell response may comprise production of cytolytic T cells 35 and/or T helper cells which are specific for the host cells presenting the tumor-associated antigen or a part thereof or specific for cells of the patient which express said tumor-associated antigen or a part

thereof.

The invention also relates to a method of treating a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises (i) identifying cells from the patient which express abnormal amounts of the tumor-associated antigen, (ii) isolating a sample of said cells, (iii) culturing said cells, and (iv) introducing said cells into the patient in an amount suitable for triggering an immune response to the cells.

Preferably, the host cells used according to the invention are nonproliferative or are rendered nonproliferative. A disease characterized by expression or abnormal expression of a tumor-associated antigen is in particular cancer.

The present invention furthermore relates to a nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 3-5, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). The invention furthermore relates to a nucleic acid, which codes for a protein or polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 10 and 12-14, a part or derivative thereof.

In a further aspect, the invention relates to promoter sequences of nucleic acids of the invention. These sequences may be functionally linked to another gene, preferably in an expression vector, and thus ensure

- 20 -

selective expression of said gene in appropriate cells.

In a further aspect, the invention relates to a recombinant nucleic acid molecule, in particular DNA or 5 RNA molecule, which comprises a nucleic acid of the invention.

The invention also relates to host cells which contain 10 a nucleic acid of the invention or a recombinant nucleic acid molecule comprising a nucleic acid of the invention.

The host cell may also comprise a nucleic acid coding 15 for a HLA molecule. In one embodiment, the host cell endogenously expresses the HLA molecule. In a further embodiment, the host cell recombinantly expresses the HLA molecule and/or the nucleic acid of the invention or a part thereof. Preferably, the host cell is nonproliferative. In a preferred embodiment, the host 20 cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.

In a further embodiment, the invention relates to oligonucleotides which hybridize with a nucleic acid 25 identified according to the invention and which may be used as genetic probes or as "antisense" molecules. Nucleic acid molecules in the form of oligonucleotide primers or competent samples, which hybridize with a nucleic acid identified according to the invention or 30 parts thereof, may be used for finding nucleic acids which are homologous to said nucleic acid identified according to the invention. PCR amplification, Southern and Northern hybridization may be employed for finding homologous nucleic acids. Hybridization may be carried 35 out under low stringency, more preferably under medium stringency and most preferably under high stringency conditions. The term "stringent conditions" according to the invention refers to conditions which allow

specific hybridization between polynucleotides.

In a further aspect, the invention relates to a protein, polypeptide or peptide which is encoded by a 5 nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 3-5, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent 10 conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). In a preferred embodiment, the invention relates to a protein or polypeptide or 15 peptide which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS: 10 and 12-14, a part or derivative thereof.

In a further aspect, the invention relates to an 20 immunogenic fragment of a tumor-associated antigen identified according to the invention. Said fragment preferably binds to a human HLA receptor or to a human antibody. A fragment of the invention preferably comprises a sequence of at least 6, in particular at 25 least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, amino acids.

In this aspect the invention relates, in particular, to a peptide which has or comprises a sequence selected 30 from the group consisting of SEQ ID NOS: 17-19, 90-97, 100-102, 105, 106, 111-116, 120, 123, 124, and 135-137, a part or derivative thereof.

In a further aspect, the invention relates to an agent 35 which binds to a tumor-associated antigen identified according to the invention or to a part thereof. In a preferred embodiment, the agent is an antibody. In further embodiments, the antibody is a chimeric, a

- 22 -

humanized antibody or an antibody produced by combinatory techniques or is a fragment of an antibody. Furthermore, the invention relates to an antibody which binds selectively to a complex of (i) a tumor-
5 associated antigen identified according to the invention or a part thereof and (ii) an MHC molecule to which said tumor-associated antigen identified according to the invention or said part thereof binds, with said antibody not binding to (i) or (ii) alone. An
10 antibody of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a fragment of a natural antibody.

In particular, the invention relates to such an agent,
15 in particular an antibody, which specifically binds to a peptide which has or comprises a sequence selected from the group consisting of SEQ ID NOs: 17-19, 90-97, 100-102, 105, 106, 111-116, 120, 123, 124, and 135-137, a part or derivative thereof.

20 The invention furthermore relates to a conjugate between an agent of the invention which binds to a tumor-associated antigen identified according to the invention or to a part thereof or an antibody of the invention and a therapeutic or diagnostic agent. In one embodiment, the therapeutic or diagnostic agent is a toxin.

30 In a further aspect, the invention relates to a kit for detecting expression or abnormal expression of a tumor-associated antigen identified according to the invention, which kit comprises agents for detection (i) of the nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) of the tumor-associated antigen or of a part thereof, (iii) of antibodies which bind to the tumor-associated antigen or to a part thereof, and/or (iv) of T cells which are specific for a complex between the tumor-associated
35

- 23 -

antigen or a part thereof and an MHC molecule. In one embodiment, the agents for detection of the nucleic acid or the part thereof are nucleic acid molecules for selective amplification of said nucleic acid, which 5 comprise, in particular a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.

Detailed description of the invention

10

According to the invention, genes are described which are expressed in tumor cells selectively or aberrantly and which are tumor-associated antigens.

15 According to the invention, these genes and/or their genetic products and/or their derivatives and/or parts are preferred target structures for therapeutic approaches. Conceptionally, said therapeutic approaches may aim at inhibiting the activity of the selectively 20 expressed tumor-associated genetic product. This is useful, if said aberrant respective selective expression is functionally important in tumor pathogenecity and if its ligation is accompanied by selective damage of the corresponding cells. Other 25 therapeutic concepts contemplate tumor-associated antigens as labels which recruit effector mechanisms having cell-damaging potential selectively to tumor cells. Here, the function of the target molecule itself and its role in tumor development are totally 30 irrelevant.

“Derivative” of a nucleic acid means according to the invention that single or multiple nucleotide substitutions, deletions and/or additions are present 35 in said nucleic acid. Furthermore, the term “derivative” also comprises chemical derivatization of a nucleic acid on a nucleotide base, on the sugar or on the phosphate. The term “derivative” also comprises

nucleic acids which contain nucleotides and nucleotide analogs not occurring naturally.

According to the invention, a nucleic acid is 5 preferably deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Nucleic acids comprise according to the invention genomic DNA, cDNA, mRNA, recombinantly produced and chemically synthesized molecules. According to the invention, a nucleic acid may be 10 present as a single-stranded or double-stranded and linear or covalently circularly closed molecule.

The nucleic acids described according to the invention have preferably been isolated. The term "isolated" 15 nucleic acid" means according to the invention that the nucleic acid was (i) amplified *in vitro*, for example by polymerase chain reaction (PCR), (ii) recombinantly produced by cloning, (iii) purified, for example by cleavage and gel-electrophoretic fractionation, or (iv) 20 synthesized, for example by chemical synthesis. An isolated nucleic acid is a nucleic acid which is available for manipulation by recombinant DNA techniques.

25 A nucleic acid is "complementary" to another nucleic acid if the two sequences are capable of hybridizing and forming a stable duplex with one another, with hybridization preferably being carried out under conditions which allow specific hybridization between 30 polynucleotides (stringent conditions). Stringent conditions are described, for example, in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., Editors, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989 or Current 35 Protocols in Molecular Biology, F.M. Ausubel et al., Editors, John Wiley & Sons, Inc., New York and refer, for example, to hybridization at 65°C in hybridization buffer (3.5 x SSC, 0.02% Ficoll, 0.02%

- 25 -

polyvinylpyrrolidone, 0.02% bovine serum albumin, 2.5 mM NaH₂PO₄ (pH 7), 0.5% SDS, 2 mM EDTA). SSC is 0.15 M sodium chloride/0.15 M sodium citrate, pH 7. After hybridization, the membrane to which the DNA has 5 been transferred is washed, for example, in 2 × SSC at room temperature and then in 0.1-0.5 × SSC/0.1 × SDS at temperatures of up to 68°C.

According to the invention, complementary nucleic acids 10 have at least 40%, in particular at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and preferably at least 95%, at least 98% or at least 99%, identical nucleotides.

15 Nucleic acids coding for tumor-associated antigens may, according to the invention, be present alone or in combination with other nucleic acids, in particular heterologous nucleic acids. In preferred embodiments, a nucleic acid is functionally linked to expression 20 control sequences or regulatory sequences which may be homologous or heterologous with respect to said nucleic acid. A coding sequence and a regulatory sequence are "functionally" linked to one another, if they are covalently linked to one another in such a way that 25 expression or transcription of said coding sequence is under the control or under the influence of said regulatory sequence. If the coding sequence is to be translated into a functional protein, then, with a regulatory sequence functionally linked to said coding 30 sequence, induction of said regulatory sequence results in transcription of said coding sequence, without causing a frame shift in the coding sequence or said coding sequence not being capable of being translated into the desired protein or peptide.

35

The term "expression control sequence" or "regulatory sequence" comprises according to the invention promoters, enhancers and other control elements which

- 26 -

regulate expression of a gene. In particular embodiments of the invention, the expression control sequences can be regulated. The exact structure of regulatory sequences may vary as a function of the 5 species or cell type, but generally comprises 5'untranscribed and 5'untranslated sequences which are involved in initiation of transcription and translation, respectively, such as TATA box, capping sequence, CAAT sequence, and the like. More 10 specifically, 5'untranscribed regulatory sequences comprise a promoter region which includes a promoter sequence for transcriptional control of the functionally linked gene. Regulatory sequences may also comprise enhancer sequences or upstream activator 15 sequences.

Thus, on the one hand, the tumor-associated antigens illustrated herein may be combined with any expression control sequences and promoters. On the other hand, 20 however, the promoters of the tumor-associated genetic products illustrated herein may, according to the invention, be combined with any other genes. This allows the selective activity of these promoters to be utilized.

25 According to the invention, a nucleic acid may furthermore be present in combination with another nucleic acid which codes for a polypeptide controlling secretion of the protein or polypeptide encoded by said 30 nucleic acid from a host cell. According to the invention, a nucleic acid may also be present in combination with another nucleic acid which codes for a polypeptide causing the encoded protein or polypeptide to be anchored on the cell membrane of the host cell or 35 compartmentalized into particular organelles of said cell. Similarly, a combination with a nucleic acid is possible which represents a reporter gene or any "tag".

In a preferred embodiment, a recombinant DNA molecule is according to the invention a vector, where appropriate with a promoter, which controls expression of a nucleic acid, for example a nucleic acid coding 5 for a tumor-associated antigen of the invention. The term "vector" is used here in its most general meaning and comprises any intermediary vehicle for a nucleic acid which enables said nucleic acid, for example, to be introduced into prokaryotic and/or eukaryotic cells 10 and, where appropriate, to be integrated into a genome. Vectors of this kind are preferably replicated and/or expressed in the cells. An intermediary vehicle may be adapted, for example, to the use in electroporation, in bombardment with microprojectiles, in liposomal 15 administration, in the transfer with the aid of agrobacteria or in insertion via DNA or RNA viruses. Vectors comprise plasmids, phagemids or viral genomes.

The nucleic acids coding for a tumor-associated antigen 20 identified according to the invention may be used for transfection of host cells. Nucleic acids here mean both recombinant DNA and RNA. Recombinant RNA may be prepared by in-vitro transcription of a DNA template. Furthermore, it may be modified by stabilizing 25 sequences, capping and polyadenylation prior to application.

According to the invention, the term "host cell" relates to any cell which can be transformed or 30 transfected with an exogenous nucleic acid. The term "host cells" comprises according to the invention prokaryotic (e.g. *E. coli*) or eukaryotic cells (e.g. dendritic cells, B cells, CHO cells, COS cells, K562 cells, yeast cells and insect cells). Particular 35 preference is given to mammalian cells such as cells from humans, mice, hamsters, pigs, goats, primates. The cells may be derived from a multiplicity of tissue types and comprise primary cells and cell lines.

Specific examples comprise keratinocytes, peripheral blood leukocytes, stem cells of the bone marrow and embryonic stem cells. In further embodiments, the host cell is an antigen-presenting cell, in particular a 5 dendritic cell, monocyte or a macrophage. A nucleic acid may be present in the host cell in the form of a single copy or of two or more copies and, in one embodiment, is expressed in the host cell.

10 According to the invention, the term "expression" is used in its most general meaning and comprises the production of RNA or of RNA and protein. It also comprises partial expression of nucleic acids. Furthermore, expression may be carried out transiently 15 or stably. Preferred expression systems in mammalian cells comprise pcDNA3.1 and pRc/CMV (Invitrogen, Carlsbad, CA), which contain a selectable marker such as a gene imparting resistance to G418 (and thus enabling stably transfected cell lines to be selected) 20 and the enhancer-promoter sequences of cytomegalovirus (CMV).

In those cases of the invention in which an HLA molecule presents a tumor-associated antigen or a part 25 thereof, an expression vector may also comprise a nucleic acid sequence coding for said HLA molecule. The nucleic acid sequence coding for the HLA molecule may be present on the same expression vector as the nucleic acid coding for the tumor-associated antigen or the 30 part thereof, or both nucleic acids may be present on different expression vectors. In the latter case, the two expression vectors may be cotransfected into a cell. If a host cell expresses neither the tumor-associated antigen or the part thereof nor the HLA 35 molecule, both nucleic acids coding therefor are transfected into the cell either on the same expression vector or on different expression vectors. If the cell already expresses the HLA molecule, only the nucleic

- 29 -

acid sequence coding for the tumor-associated antigen or the part thereof can be transfected into the cell.

The invention also comprises kits for amplification of
5 a nucleic acid coding for a tumor-associated antigen. Such kits comprise, for example, a pair of amplification primers which hybridize to the nucleic acid coding for the tumor-associated antigen. The primers preferably comprise a sequence of 6-50, in
10 particular 10-30, 15-30 and 20-30 contiguous nucleotides of the nucleic acid and are nonoverlapping, in order to avoid the formation of primer dimers. One of the primers will hybridize to one strand of the nucleic acid coding for the tumor-associated antigen,
15 and the other primer will hybridize to the complementary strand in an arrangement which allows amplification of the nucleic acid coding for the tumor-associated antigen.

20 "Antisense" molecules or "antisense" nucleic acids may be used for regulating, in particular reducing, expression of a nucleic acid. The term "antisense molecule" or "antisense nucleic acid" refers according to the invention to an oligonucleotide which is an
25 oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide or modified oligo-deoxyribonucleotide and which hybridizes under physiological conditions to DNA comprising a particular gene or to mRNA of said gene, thereby inhibiting
30 transcription of said gene and/or translation of said mRNA. According to the invention, an "antisense molecule" also comprises a construct which contains a nucleic acid or a part thereof in reverse orientation with respect to its natural promoter. An antisense
35 transcript of a nucleic acid or of a part thereof may form a duplex with the naturally occurring mRNA specifying the enzyme and thus prevent accumulation of or translation of the mRNA into the active enzyme.

- 30 -

Another possibility is the use of ribozymes for inactivating a nucleic acid. Antisense oligonucleotides preferred according to the invention have a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous 5 nucleotides of the target nucleic acid and preferably are fully complementary to the target nucleic acid or to a part thereof.

10 In preferred embodiments, the antisense oligonucleotide hybridizes with an N-terminal or 5' upstream site such as a translation initiation site, transcription initiation site or promoter site. In further embodiments, the antisense oligonucleotide hybridizes with a 3'untranslated region or mRNA splicing site.

15 In one embodiment, an oligonucleotide of the invention consists of ribonucleotides, deoxyribonucleotides or a combination thereof, with the 5' end of one nucleotide and the 3' end of another nucleotide being linked to 20 one another by a phosphodiester bond. These oligonucleotides may be synthesized in the conventional manner or produced recombinantly.

25 In preferred embodiments, an oligonucleotide of the invention is a "modified" oligonucleotide. Here, the oligonucleotide may be modified in very different ways, without impairing its ability to bind its target, in order to increase, for example, its stability or therapeutic efficacy. According to the invention, the 30 term "modified oligonucleotide" means an oligonucleotide in which (i) at least two of its nucleotides are linked to one another by a synthetic internucleoside bond (i.e. an internucleoside bond which is not a phosphodiester bond) and/or (ii) a 35 chemical group which is usually not found in nucleic acids is covalently linked to the oligonucleotide. Preferred synthetic internucleoside bonds are phosphorothioates, alkyl phosphonates,

- 31 -

phosphorodithioates, phosphate esters, alkyl phosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters and peptides.

5

The term "modified oligonucleotide" also comprises oligonucleotides having a covalently modified base and/or sugar. "Modified oligonucleotides" comprise, for example, oligonucleotides with sugar residues which are 10 covalently bound to low molecular weight organic groups other than a hydroxyl group at the 3' position and a phosphate group at the 5' position. Modified oligonucleotides may comprise, for example, a 2'-O-alkylated ribose residue or another sugar instead of 15 ribose, such as arabinose.

Preferably, the proteins and polypeptides described according to the invention have been isolated. The terms "isolated protein" or "isolated polypeptide" mean 20 that the protein or polypeptide has been separated from its natural environment. An isolated protein or polypeptide may be in an essentially purified state. The term "essentially purified" means that the protein or polypeptide is essentially free of other substances 25 with which it is associated in nature or *in vivo*.

Such proteins and polypeptides may be used, for example, in producing antibodies and in an immunological or diagnostic assay or as therapeutics. 30 Proteins and polypeptides described according to the invention may be isolated from biological samples such as tissue or cell homogenates and may also be expressed recombinantly in a multiplicity of pro- or eukaryotic expression systems.

35

For the purposes of the present invention, "derivatives" of a protein or polypeptide or of an amino acid sequence comprise amino acid insertion

variants, amino acid deletion variants and/or amino acid substitution variants.

5 Amino acid insertion variants comprise amino- and/or carboxy-terminal fusions and also insertions of single or two or more amino acids in a particular amino acid sequence. In the case of amino acid sequence variants having an insertion, one or more amino acid residues are inserted into a particular site in an amino acid 10 sequence, although random insertion with appropriate screening of the resulting product is also possible. Amino acid deletion variants are characterized by the removal of one or more amino acids from the sequence. Amino acid substitution variants are characterized by 15 at least one residue in the sequence being removed and another residue being inserted in its place. Preference is given to the modifications being in positions in the amino acid sequence which are not conserved between homologous proteins or polypeptides. Preference is 20 given to replacing amino acids with other ones having similar properties such as hydrophobicity, hydrophilicity, electronegativity, volume of the side chain and the like (conservative substitution). Conservative substitutions, for example, relate to the 25 exchange of one amino acid with another amino acid listed below in the same group as the amino acid to be substituted:

1. small aliphatic, nonpolar or slightly polar 30 residues: Ala, Ser, Thr (Pro, Gly)
2. negatively charged residues and their amides: Asn, Asp, Glu, Gln
3. positively charged residues: His, Arg, Lys
4. large aliphatic, nonpolar residues: Met, Leu, Ile, 35 Val (Cys)
5. large aromatic residues: Phe, Tyr, Trp.

Owing to their particular part in protein architecture,

three residues are shown in brackets. Gly is the only residue without a side chain and thus imparts flexibility to the chain. Pro has an unusual geometry which greatly restricts the chain. Cys can form a 5 disulfide bridge.

The amino acid variants described above may be readily prepared with the aid of known peptide synthesis techniques such as, for example, by solid phase 10 synthesis (Merrifield, 1964) and similar methods or by recombinant DNA manipulation. Techniques for introducing substitution mutations at predetermined sites into DNA which has a known or partially known sequence are well known and comprise M13 mutagenesis, 15 for example. The manipulation of DNA sequences for preparing proteins having substitutions, insertions or deletions, is described in detail in Sambrook et al. (1989), for example.

20 According to the invention, "derivatives" of proteins, polypeptides or peptides also comprise single or multiple substitutions, deletions and/or additions of any molecules associated with the enzyme, such as carbohydrates, lipids and/or proteins, polypeptides or 25 peptides. The term "derivative" also extends to all functional chemical equivalents of said proteins, polypeptides or peptides.

According to the invention, a part or fragment of a 30 tumor-associated antigen has a functional property of the polypeptide from which it has been derived. Such functional properties comprise the interaction with antibodies, the interaction with other polypeptides or proteins, the selective binding of nucleic acids and an 35 enzymatic activity. A particular property is the ability to form a complex with HLA and, where appropriate, generate an immune response. This immune response may be based on stimulating cytotoxic or

T helper cells. A part or fragment of a tumor-associated antigen of the invention preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at 5 least 20, at least 30 or at least 50, consecutive amino acids of the tumor-associated antigen.

A part or a fragment of a nucleic acid coding for a tumor-associated antigen relates according to the 10 invention to the part of the nucleic acid, which codes at least for the tumor-associated antigen and/or for a part or a fragment of said tumor-associated antigen, as defined above.

15 The isolation and identification of genes coding for tumor-associated antigens also make possible the diagnosis of a disease characterized by expression of one or more tumor-associated antigens. These methods comprise determining one or more nucleic acids which 20 code for a tumor-associated antigen and/or determining the encoded tumor-associated antigens and/or peptides derived therefrom. The nucleic acids may be determined in the conventional manner, including by polymerase chain reaction or hybridization with a labeled probe. 25 Tumor-associated antigens or peptides derived therefrom may be determined by screening patient antisera with respect to recognizing the antigen and/or the peptides. They may also be determined by screening T cells of the patient for specificities for the corresponding tumor- 30 associated antigen.

The present invention also enables proteins binding to tumor-associated antigens described herein to be isolated, including antibodies and cellular binding 35 partners of said tumor-associated antigens.

According to the invention, particular embodiments ought to involve providing "dominant negative"

polypeptides derived from tumor-associated antigens. A dominant negative polypeptide is an inactive protein variant which, by way of interacting with the cellular machinery, displaces an active protein from its 5 interaction with the cellular machinery or which competes with the active protein, thereby reducing the effect of said active protein. For example, a dominant negative receptor which binds to a ligand but does not generate any signal as response to binding to the 10 ligand can reduce the biological effect of said ligand. Similarly, a dominant negative catalytically inactive kinase which usually interacts with target proteins but does not phosphorylate said target proteins may reduce phosphorylation of said target proteins as response to 15 a cellular signal. Similarly, a dominant negative transcription factor which binds to a promoter site in the control region of a gene but does not increase transcription of said gene may reduce the effect of a normal transcription factor by occupying promoter 20 binding sites, without increasing transcription.

The result of expression of a dominant negative polypeptide in a cell is a reduction in the function of active proteins. The skilled worker may prepare 25 dominant negative variants of a protein, for example, by conventional mutagenesis methods and by evaluating the dominant negative effect of the variant polypeptide.

30 The invention also comprises substances such as polypeptides which bind to tumor-associated antigens. Such binding substances may be used, for example, in screening assays for detecting tumor-associated antigens and complexes of tumor-associated antigens 35 with their binding partners and in the purification of said tumor-associated antigens and of complexes thereof with their binding partners. Such substances may also be used for inhibiting the activity of tumor-associated

antigens, for example by binding to such antigens.

The invention therefore comprises binding substances such as, for example, antibodies or antibody fragments, 5 which are capable of selectively binding to tumor-associated antigens. Antibodies comprise polyclonal and monoclonal antibodies which are produced in the conventional manner.

10 Such antibodies can recognize proteins in the native and/or denatured state (Anderson et al., J. Immunol. 143: 1899-1904, 1989; Gardsvoll, J. Immunol. Methods 234: 107-116, 2000; Kayyem et al., Eur. J. Biochem. 208: 1-8, 1992; Spiller et al., J. Immunol. Methods 15 224 : 51-60, 1999).

Antisera which contain specific antibodies specifically binding to the target protein can be prepared by various standard processes; see, for example, 20 "Monoclonal Antibodies: A Practical Approach" by Philip Shepherd, Christopher Dean ISBN 0-19-963722-9; "Antibodies: A Laboratory Manual" by Ed Harlow, David Lane, ISBN: 0879693142 and "Using Antibodies: A Laboratory Manual: Portable Protocol NO" by Edward 25 Harlow, David Lane, Ed Harlow ISBN 0879695447. Thereby it is also possible to generate affine and specific antibodies which recognize complex membrane proteins in their native form (Azorsa et al., J. Immunol. Methods 229: 35-48, 1999; Anderson et al., J. Immunol. 143: 30 1899-1904, 1989; Gardsvoll, J. Immunol. Methods 234: 107-116, 2000). This is in particular relevant for the preparation of antibodies which are to be used therapeutically, but also for many diagnostic applications. In this respect, it is possible to 35 immunize with the whole protein, with extracellular partial sequences as well as with cells which express the target molecule in physiologically folded form.

Monoclonal antibodies are traditionally prepared using the hybridoma technology. (for technical details see: "Monoclonal Antibodies: A Practical Approach" by Philip Shepherd, Christopher Dean ISBN 0-19-963722-9; 5 "Antibodies: A Laboratory Manual" by Ed Harlow, David Lane ISBN: 0879693142; "Using Antibodies: A Laboratory Manual: Portable Protocol NO" by Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447).

10 It is known that only a small part of an antibody molecule, the paratope, is involved in binding of the antibody to its epitope (cf. Clark, W.R. (1986), *The Experimental Foundations of Modern Immunology*, Wiley & Sons, Inc., New York; Roitt, I. (1991), *Essential Immunology*, 7th Edition, Blackwell Scientific Publications, Oxford). The pFc' and Fc regions are, for example, effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically removed or which 15 has been produced without the pFc' region, referred to as F(ab')₂ fragment, carries both antigen binding sites of a complete antibody. Similarly, an antibody from which the Fc region has been enzymatically removed or which has been produced without said Fc region, referred to as Fab fragment, carries one antigen binding site of an intact antibody molecule. Furthermore, Fab fragments consist of a covalently bound light chain of an antibody and part of the heavy chain of said antibody, referred to as Fd. The Fd 20 fragments are the main determinants of antibody specificity (a single Fd fragment can be associated with up to ten different light chains, without altering the specificity of the antibody) and Fd fragments, when 25 produced without the pFc' region, referred to as F(ab')₂ fragment, carries both antigen binding sites of a complete antibody. Similarly, an antibody from which the Fc region has been enzymatically removed or which has been produced without said Fc region, referred to as Fab fragment, carries one antigen binding site of an intact antibody molecule. Furthermore, Fab fragments consist of a covalently bound light chain of an antibody and part of the heavy chain of said antibody, referred to as Fd. The Fd 30 fragments are the main determinants of antibody specificity (a single Fd fragment can be associated with up to ten different light chains, without altering the specificity of the antibody) and Fd fragments, when produced without the pFc' region, referred to as F(ab')₂ fragment, carries both antigen binding sites of a complete antibody. Similarly, an antibody from which the Fc region has been enzymatically removed or which has been produced without said Fc region, referred to as Fab fragment, carries one antigen binding site of an intact antibody molecule. Furthermore, Fab fragments consist of a covalently bound light chain of an antibody and part of the heavy chain of said antibody, referred to as Fd. The Fd 35 fragments are the main determinants of antibody specificity (a single Fd fragment can be associated with up to ten different light chains, without altering the specificity of the antibody) and Fd fragments, when isolated, retain the ability to bind to an epitope.

35

Located within the antigen-binding part of an antibody are complementary-determining regions (CDRs) which interact directly with the antigen epitope and

- 38 -

framework regions (FRs) which maintain the tertiary structure of the paratope. Both the Fd fragment of the heavy chain and the light chain of IgG immunoglobulins contain four framework regions (FR1 to FR4) which are 5 separated in each case by three complementary-determining regions (CDR1 to CDR3). The CDRs and, in particular, the CDR3 regions and, still more particularly, the CDR3 region of the heavy chain are responsible to a large extent for antibody specificity.

10

Non-CDR regions of a mammalian antibody are known to be able to be replaced by similar regions of antibodies with the same or a different specificity, with the specificity for the epitope of the original antibody 15 being retained. This made possible the development of "humanized" antibodies in which nonhuman CDRs are covalently linked to human FR and/or Fc/pFc' regions to produce a functional antibody.

20

This is utilized in the so called "SLAM" technology, wherein B cells from whole blood are isolated and the cells are monocloned. Then, the supernatant of the single B cells is analyzed with respect to its antibody specificity. In contrast to the hybridoma technology 25 the variable region of the antibody gene is amplified using single cell PCR and cloned into a suitable vector. In this way, the provision of monoclonal antibodies is accelerated (de Wildt et al., J. Immunol. Methods 207: 61-67, 1997).

30

As another example, WO 92/04381 describes the production and use of humanized murine RSV antibodies in which at least part of the murine FR regions have been replaced with FR regions of a human origin. 35 Antibodies of this kind, including fragments of intact antibodies with antigen-binding capability, are often referred to as "chimeric" antibodies.

The invention also provides $F(ab')_2$, Fab, Fv, and Fd fragments of antibodies, chimeric antibodies, in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous 5 human or nonhuman sequences, chimeric $F(ab')_2$ -fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, chimeric Fab-fragment antibodies in which the FR and/or CDR1 and/or 10 CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, and chimeric Fd-fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced with homologous human or nonhuman sequences. The invention 15 also comprises "single-chain" antibodies.

The invention also comprises polypeptides which bind specifically to tumor-associated antigens. Polypeptide binding substances of this kind may be provided, for 20 example, by degenerate peptide libraries which may be prepared simply in solution in an immobilized form or as phage-display libraries. It is likewise possible to prepare combinatorial libraries of peptides with one or more amino acids. Libraries of peptoids and nonpeptidic 25 synthetic residues may also be prepared.

Phage display may be particularly effective in identifying binding peptides of the invention. In this connection, for example, a phage library is prepared 30 (using, for example, the M13, fd or lambda phages) which presents inserts of from 4 to about 80 amino acid residues in length. Phages are then selected which carry inserts which bind to the tumor-associated antigen. This process may be repeated via two or more 35 cycles of a reselection of phages binding to the tumor-associated antigen. Repeated rounds result in a concentration of phages carrying particular sequences. An analysis of DNA sequences may be carried out in

- 40 -

order to identify the sequences of the expressed polypeptides. The smallest linear portion of the sequence binding to the tumor-associated antigen may be determined. The "two-hybrid system" of yeast may also 5 be used for identifying polypeptides which bind to a tumor-associated antigen. Tumor-associated antigens described according to the invention or fragments thereof may be used for screening peptide libraries, including phage-display libraries, in order to identify 10 and select peptide binding partners of the tumor-associated antigens. Such molecules may be used, for example, for screening assays, purification protocols, for interference with the function of the tumor-associated antigen and for other purposes known to the 15 skilled worker.

The antibodies described above and other binding molecules may be used, for example, for identifying tissue which expresses a tumor-associated antigen. 20 Antibodies may also be coupled to specific diagnostic substances for displaying cells and tissues expressing tumor-associated antigens. They may also be coupled to therapeutically useful substances. Diagnostic substances comprise, in a nonlimiting manner, barium sulfate, iocetamic acid, iopanoic acid, calcium ipodate, sodium diatrizoate, meglumine diatrizoate, metrizamide, sodium tyropanoate and radio diagnostic, including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123, 30 technetium-99m, iodine-131 and indium-111, nuclides for nuclear magnetic resonance, such as fluorine and gadolinium. According to the invention, the term "therapeutically useful substance" means any therapeutic molecule which, as desired, is selectively 35 guided to a cell which expresses one or more tumor-associated antigens, including anticancer agents, radioactive iodine-labeled compounds, toxins, cytostatic or cytolytic drugs, etc. Anticancer agents

- 41 -

comprise, for example, aminoglutethimide, azathioprine, bleomycin sulfate, busulfan, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabidine, dacarbazine, dactinomycin, daunorubin, 5 doxorubicin, taxol, etoposide, fluorouracil, interferon- α , lomustine, mercaptourine, methotrexate, mitotane, procarbazine HCl, thioguanine, vinblastine sulfate and vincristine sulfate. Other anticancer agents are described, for example, in Goodman and 10 Gilman, "The Pharmacological Basis of Therapeutics", 8th Edition, 1990, McGraw-Hill, Inc., in particular Chapter 52 (Antineoplastic Agents (Paul Calabresi and Bruce A. Chabner). Toxins may be proteins such as pokeweed antiviral protein, cholera toxin, pertussis 15 toxin, ricin, gelonin, abrin, diphtheria exotoxin or *Pseudomonas* exotoxin. Toxin residues may also be high energy-emitting radionuclides such as cobalt-60.

20 The term "patient" means according to the invention a human being, a nonhuman primate or another animal, in particular a mammal such as a cow, horse, pig, sheep, goat, dog, cat or a rodent such as a mouse and rat. In a particularly preferred embodiment, the patient is a human being.

25 According to the invention, the term "disease" refers to any pathological state in which tumor-associated antigens are expressed or abnormally expressed. "Abnormal expression" means according to the invention 30 that expression is altered, preferably increased, compared to the state in a healthy individual. An increase in expression refers to an increase by at least 10%, in particular at least 20%, at least 50% or at least 100%. In one embodiment, the tumor-associated 35 antigen is expressed only in tissue of a diseased individual, while expression in a healthy individual is repressed. One example of such a disease is cancer, wherein the term "cancer" according to the invention

- 42 -

comprises leukemias, seminomas, melanomas, teratomas, gliomas, kidney cancer, adrenal cancer, thyroid cancer, intestinal cancer, liver cancer, colon cancer, stomach cancer, gastrointestinal cancer, lymph node cancer, 5 esophagus cancer, colorectal cancer, pancreas cancer, ear, nose and throat (ENT) cancer, breast cancer, prostate cancer, cancer of the uterus, ovarian cancer and lung cancer and the metastases thereof.

10 According to the invention, a biological sample may be a tissue sample and/or a cellular sample and may be obtained in the conventional manner such as by tissue biopsy, including punch biopsy, and by taking blood, bronchial aspirate, sputum, urine, feces or other body 15 fluids, for use in the various methods described herein.

According to the invention, the term "immunoreactive cell" means a cell which can mature into an immune cell 20 (such as B cell, T helper cell, or cytolytic T cell) with suitable stimulation. Immunoreactive cells comprise CD34⁺ hematopoietic stem cells, immature and mature T cells and immature and mature B cells. If 25 production of cytolytic or T helper cells recognizing a tumor-associated antigen is desired, the immunoreactive cell is contacted with a cell expressing a tumor-associated antigen under conditions which favor production, differentiation and/or selection of cytolytic T cells and of T helper cells. The 30 differentiation of T cell precursors into a cytolytic T cell, when exposed to an antigen, is similar to clonal selection of the immune system.

Some therapeutic methods are based on a reaction of the 35 immune system of a patient, which results in a lysis of antigen-presenting cells such as cancer cells which present one or more tumor-associated antigens. In this connection, for example autologous cytotoxic T

lymphocytes specific for a complex of a tumor-associated antigen and an MHC molecule are administered to a patient having a cellular abnormality. The production of such cytotoxic T lymphocytes *in vitro* is known. An example of a method of differentiating T cells can be found in WO-A-9633265. Generally, a sample containing cells such as blood cells is taken from the patient and the cells are contacted with a cell which presents the complex and which can cause propagation of cytotoxic T lymphocytes (e.g. dendritic cells). The target cell may be a transfected cell such as a COS cell. These transfected cells present the desired complex on their surface and, when contacted with cytotoxic T lymphocytes, stimulate propagation of the latter. The clonally expanded autologous cytotoxic T lymphocytes are then administered to the patient.

In another method of selecting antigen-specific cytotoxic T lymphocytes, fluorogenic tetramers of MHC class I molecule/peptide complexes are used for detecting specific clones of cytotoxic T lymphocytes (Altman et al., *Science* 274:94-96, 1996; Dunbar et al., *Curr. Biol.* 8:413-416, 1998). Soluble MHC class I molecules are folded *in vitro* in the presence of β_2 microglobulin and a peptide antigen binding to said class I molecule. The MHC/peptide complexes are purified and then labeled with biotin. Tetramers are formed by mixing the biotinylated peptide-MHC complexes with labeled avidin (e.g. phycoerythrin) in a molar ratio of 4:1. Tetramers are then contacted with cytotoxic T lymphocytes such as peripheral blood or lymph nodes. The tetramers bind to cytotoxic T lymphocytes which recognize the peptide antigen/MHC class I complex. Cells which are bound to the tetramers may be sorted by fluorescence-controlled cell sorting to isolate reactive cytotoxic T lymphocytes. The isolated cytotoxic T lymphocytes may then be propagated *in vitro*.

In a therapeutic method referred to as adoptive transfer (Greenberg, *J. Immunol.* 136(5):1917, 1986; Riddel et al., *Science* 257:238, 1992; Lynch et al., 5 *Eur. J. Immunol.* 21:1403-1410, 1991; Kast et al., *Cell* 59:603-614, 1989), cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of the patient to be treated, resulting in a propagation of specific cytotoxic T lymphocytes. The 10 propagated cytotoxic T lymphocytes are then administered to a patient having a cellular anomaly characterized by particular abnormal cells presenting the specific complex. The cytotoxic T lymphocytes then lyse the abnormal cells, thereby achieving a desired 15 therapeutic effect.

Often, of the T cell repertoire of a patient, only T cells with low affinity for a specific complex of this kind can be propagated, since those with high affinity 20 have been extinguished due to development of tolerance. An alternative here may be a transfer of the T cell receptor itself. For this too, cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of healthy individuals or 25 another species (e.g. mouse). This results in propagation of specific cytotoxic T lymphocytes with high affinity if the T lymphocytes are derived from a donor organism which had no previous contact with the specific complex. The high affinity T cell receptor of 30 these propagated specific T lymphocytes is cloned. If the high affinity T cell receptors have been cloned from another species they can be humanized to a different extent. Such T cell receptors are then transduced via gene transfer, for example using 35 retroviral vectors, into T cells of patients, as desired. Adoptive transfer is then carried out using these genetically altered T lymphocytes (Stanislawska et al., *Nat Immunol.* 2:962-70, 2001; Kessels et al.,

Nat Immunol. 2:957-61, 2001).

The therapeutic aspects above start out from the fact that at least some of the abnormal cells of the patient 5 present a complex of a tumor-associated antigen and an HLA molecule. Such cells may be identified in a manner known per se. As soon as cells presenting the complex have been identified, they may be combined with a sample from the patient, which contains cytotoxic T 10 lymphocytes. If the cytotoxic T lymphocytes lyse the cells presenting the complex, it can be assumed that a tumor-associated antigen is presented.

Adoptive transfer is not the only form of therapy which 15 can be applied according to the invention. Cytotoxic T lymphocytes may also be generated *in vivo* in a manner known per se. One method uses nonproliferative cells expressing the complex. The cells used here will be those which usually express the complex, such as 20 irradiated tumor cells or cells transfected with one or both genes necessary for presentation of the complex (i.e. the antigenic peptide and the presenting HLA molecule). Various cell types may be used. Furthermore, it is possible to use vectors which carry one or both 25 of the genes of interest. Particular preference is given to viral or bacterial vectors. For example, nucleic acids coding for a tumor-associated antigen or for a part thereof may be functionally linked to promoter and enhancer sequences which control 30 expression of said tumor-associated antigen or a fragment thereof in particular tissues or cell types. The nucleic acid may be incorporated into an expression vector. Expression vectors may be nonmodified extrachromosomal nucleic acids, plasmids or viral 35 genomes into which exogenous nucleic acids may be inserted. Nucleic acids coding for a tumor-associated antigen may also be inserted into a retroviral genome, thereby enabling the nucleic acid to be integrated into

the genome of the target tissue or target cell. In these systems, a microorganism such as vaccinia virus, pox virus, Herpes simplex virus, retrovirus or adenovirus carries the gene of interest and de facto 5 "infects" host cells. Another preferred form is the introduction of the tumor-associated antigen in the form of recombinant RNA which may be introduced into cells by liposomal transfer or by electroporation, for example. The resulting cells present the complex of 10 interest and are recognized by autologous cytotoxic T lymphocytes which then propagate.

A similar effect can be achieved by combining the tumor-associated antigen or a fragment thereof with an 15 adjuvant in order to make incorporation into antigen-presenting cells *in vivo* possible. The tumor-associated antigen or a fragment thereof may be represented as protein, as DNA (e.g. within a vector) or as RNA. The tumor-associated antigen is processed to produce a 20 peptide partner for the HLA molecule, while a fragment thereof may be presented without the need for further processing. The latter is the case in particular, if these can bind to HLA molecules. Preference is given to administration forms in which the complete antigen is 25 processed *in vivo* by a dendritic cell, since this may also produce T helper cell responses which are needed for an effective immune response (Ossendorp et al., *Immunol Lett.* 74:75-9, 2000; Ossendorp et al., *J. Exp. Med.* 187:693-702, 1998). In general, it is possible to 30 administer an effective amount of the tumor-associated antigen to a patient by intradermal injection, for example. However, injection may also be carried out intranodally into a lymph node (Maloy et al., *Proc Natl Acad Sci USA* 98:3299-303, 2001). It may also be carried 35 out in combination with reagents which facilitate uptake into dendritic cells. Preferred tumor-associated antigens comprise those which react with allogenic cancer antisera or with T cells of many cancer

patients. Of particular interest, however, are those against which no spontaneous immune responses pre-exist. Evidently, it is possible to induce against these immune responses which can lyse tumors (Keogh et al., *J. Immunol.* 167:787-96, 2001; Appella et al., *Biomed Pept Proteins Nucleic Acids* 1:177-84, 1995; Wentworth et al., *Mol Immunol.* 32:603-12, 1995).

The pharmaceutical compositions described according to the invention may also be used as vaccines for immunization. According to the invention, the terms "immunization" or "vaccination" mean an increase in or activation of an immune response to an antigen. It is possible to use animal models for testing an immunizing effect on cancer by using a tumor-associated antigen or a nucleic acid coding therefor. For example, human cancer cells may be introduced into a mouse to generate a tumor, and one or more nucleic acids coding for tumor-associated antigens may be administered. The effect on the cancer cells (for example reduction in tumor size) may be measured as a measure for the effectiveness of an immunization by the nucleic acid.

As part of the composition for an immunization, one or more tumor-associated antigens or stimulating fragments thereof are administered together with one or more adjuvants for inducing an immune response or for increasing an immune response. An adjuvant is a substance which is incorporated into the antigen or administered together with the latter and which enhances the immune response. Adjuvants may enhance the immune response by providing an antigen reservoir (extracellularly or in macrophages), activating macrophages and/or stimulating particular lymphocytes. Adjuvants are known and comprise in a nonlimiting way monophosphoryl lipid A (MPL, SmithKline Beecham), saponins such as QS21 (SmithKline Beecham), DQS21 (SmithKline Beecham; WO 96/33739), QS7, QS17, QS18 and

- 48 -

QS-L1 (So et al., Mol. Cells 7:178-186, 1997), incomplete Freund's adjuvant, complete Freund's adjuvant, vitamin E, montanide, alum, CpG oligonucleotides (cf. Kreig et al., Nature 374:546-9, 1995) and various water-in-oil emulsions prepared from biologically degradable oils such as squalene and/or tocopherol. Preferably, the peptides are administered in a mixture with DQS21/MPL. The ratio of DQS21 to MPL is typically about 1:10 to 10:1, preferably about 1:5 to 5:1 and in particular about 1:1. For administration to humans, a vaccine formulation typically contains DQS21 and MPL in a range from about 1 µg to about 100 µg.

15 Other substances which stimulate an immune response of the patient may also be administered. It is possible, for example, to use cytokines in a vaccination, owing to their regulatory properties on lymphocytes. Such cytokines comprise, for example, interleukin-12 (IL-12) 20 which was shown to increase the protective actions of vaccines (cf. Science 268:1432-1434, 1995), GM-CSF and IL-18.

There are a number of compounds which enhance an immune 25 response and which therefore may be used in a vaccination. Said compounds comprise costimulating molecules provided in the form of proteins or nucleic acids. Examples of such costimulating molecules are B7-1 and B7-2 (CD80 and CD86, respectively) which are 30 expressed on dendritic cells (DC) and interact with the CD28 molecule expressed on the T cells. This interaction provides a costimulation (signal 2) for an antigen/MHC/TCR-stimulated (signal 1) T cell, thereby enhancing propagation of said T cell and the effector 35 function. B7 also interacts with CTLA4 (CD152) on T cells, and studies involving CTLA4 and B7 ligands demonstrate that B7-CTLA4 interaction can enhance antitumor immunity and CTL propagation (Zheng, P. et

- 49 -

al., *Proc. Natl. Acad. Sci. USA* 95(11):6284-6289 (1998)).

5 B7 is typically not expressed on tumor cells so that these are no effective antigen-presenting cells (APCs) for T cells. Induction of B7 expression would enable tumor cells to stimulate more effectively propagation of cytotoxic T lymphocytes and an effector function. Costimulation by a combination of B7/IL-6/IL-12 10 revealed induction of IFN-gamma and Th1-cytokine profile in a T cell population, resulting in further enhanced T cell activity (Gajewski et al., *J. Immunol.* 154:5637-5648 (1995)).

15 A complete activation of cytotoxic T lymphocytes and a complete effector function require an involvement of T helper cells via interaction between the CD40 ligand on said T helper cells and the CD40 molecule expressed by dendritic cells (Ridge et al., *Nature* 393:474 20 (1998), Bennett et al., *Nature* 393:478 (1998), Schönberger et al., *Nature* 393:480 (1998)). The mechanism of this costimulating signal probably relates to the increase in B7 production and associated IL-6/IL-12 production by said dendritic cells (antigen-presenting cells). CD40-CD40L interaction thus 25 complements the interaction of signal 1 (antigen/MHC-TCR) and signal 2 (B7-CD28).

30 The use of anti-CD40 antibodies for stimulating dendritic cells would be expected to directly enhance a response to tumor antigens which are usually outside the range of an inflammatory response or which are presented by nonprofessional antigen-presenting cells (tumor cells). In these situations, T helper and 35 B7-costimulating signals are not provided. This mechanism could be used in connection with therapies based on antigen-pulsed dendritic cells.

- 50 -

The invention also provides for administration of nucleic acids, polypeptides or peptides. Polypeptides and peptides may be administered in a manner known per se. In one embodiment, nucleic acids are administered 5 by *ex vivo* methods, i.e. by removing cells from a patient, genetic modification of said cells in order to incorporate a tumor-associated antigen and reintroduction of the altered cells into the patient. This generally comprises introducing a functional copy 10 of a gene into the cells of a patient *in vitro* and reintroducing the genetically altered cells into the patient. The functional copy of the gene is under the functional control of regulatory elements which allow the gene to be expressed in the genetically altered 15 cells. Transfection and transduction methods are known to the skilled worker. The invention also provides for administering nucleic acids *in vivo* by using vectors such as viruses and target-controlled liposomes.

20 In a preferred embodiment, a viral vector for administering a nucleic acid coding for a tumor-associated antigen is selected from the group consisting of adenoviruses, adeno-associated viruses, pox viruses, including vaccinia virus and attenuated 25 pox viruses, Semliki Forest virus, retroviruses, Sindbis virus and Ty virus-like particles. Particular preference is given to adenoviruses and retroviruses. The retroviruses are typically replication-deficient (i.e. they are incapable of generating infectious 30 particles).

Various methods may be used in order to introduce according to the invention nucleic acids into cells *in vitro* or *in vivo*. Methods of this kind comprise 35 transfection of nucleic acid CaPO_4 precipitates, transfection of nucleic acids associated with DEAE, transfection or infection with the above viruses carrying the nucleic acids of interest, liposome-

mediated transfection, and the like. In particular embodiments, preference is given to directing the nucleic acid to particular cells. In such embodiments, a carrier used for administering a nucleic acid to a 5 cell (e.g. a retrovirus or a liposome) may have a bound target control molecule. For example, a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell may be incorporated into or attached to the 10 nucleic acid carrier. Preferred antibodies comprise antibodies which bind selectively a tumor-associated antigen. If administration of a nucleic acid via liposomes is desired, proteins binding to a surface membrane protein associated with endocytosis may be 15 incorporated into the liposome formulation in order to make target control and/or uptake possible. Such proteins comprise capsid proteins or fragments thereof which are specific for a particular cell type, antibodies to proteins which are internalized, proteins 20 addressing an intracellular site, and the like.

The therapeutic compositions of the invention may be administered in pharmaceutically compatible preparations. Such preparations may usually contain 25 pharmaceutically compatible concentrations of salts, buffer substances, preservatives, carriers, supplementing immunity-enhancing substances such as adjuvants, CpG and cytokines and, where appropriate, other therapeutically active compounds.

30 The therapeutically active compounds of the invention may be administered via any conventional route, including by injection or infusion. The administration may be carried out, for example, orally, intravenously, 35 intraperitoneally, intramuscularly, subcutaneously or transdermally. Preferably, antibodies are therapeutically administered by way of a lung aerosol. Antisense nucleic acids are preferably administered by

slow intravenous administration.

The compositions of the invention are administered in effective amounts. An "effective amount" refers to the 5 amount which achieves a desired reaction or a desired effect alone or together with further doses. In the case of treatment of a particular disease or of a particular condition characterized by expression of one or more tumor-associated antigens, the desired reaction 10 relates to inhibition of the course of the disease. This comprises slowing down the progress of the disease and, in particular, interrupting the progress of the disease. The desired reaction in a treatment of a disease or of a condition may also be delay of the 15 onset or a prevention of the onset of said disease or said condition.

An effective amount of a composition of the invention will depend on the condition to be treated, the 20 severeness of the disease, the individual parameters of the patient, including age, physiological condition, size and weight, the duration of treatment, the type of an accompanying therapy (if present), the specific route of administration and similar factors.

25 The pharmaceutical compositions of the invention are preferably sterile and contain an effective amount of the therapeutically active substance to generate the desired reaction or the desired effect.

30 The doses administered of the compositions of the invention may depend on various parameters such as the type of administration, the condition of the patient, the desired period of administration, etc. In the case 35 that a reaction in a patient is insufficient with an initial dose, higher doses (or effectively higher doses achieved by a different, more localized route of administration) may be used.

Generally, doses of the tumor-associated antigen of from 1 ng to 1 mg, preferably from 10 ng to 100 μ g, are formulated and administered for a treatment or for 5 generating or increasing an immune response. If the administration of nucleic acids (DNA and RNA) coding for tumor-associated antigens is desired, doses of from 1 ng to 0.1 mg are formulated and administered.

10 The pharmaceutical compositions of the invention are generally administered in pharmaceutically compatible amounts and in pharmaceutically compatible compositions. The term "pharmaceutically compatible" refers to a nontoxic material which does not interact 15 with the action of the active component of the pharmaceutical composition. Preparations of this kind may usually contain salts, buffer substances, preservatives, carriers and, where appropriate, other therapeutically active compounds. When used in 20 medicine, the salts should be pharmaceutically compatible. However, salts which are not pharmaceutically compatible may be used for preparing pharmaceutically compatible salts and are included in the invention. Pharmacologically and pharmaceutically 25 compatible salts of this kind comprise in a nonlimiting way those prepared from the following acids: hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic acids, and the like. Pharmaceutically 30 compatible salts may also be prepared as alkali metal salts or alkaline earth metal salts, such as sodium salts, potassium salts or calcium salts.

A pharmaceutical composition of the invention may 35 comprise a pharmaceutically compatible carrier. According to the invention, the term "pharmaceutically compatible carrier" refers to one or more compatible solid or liquid fillers, diluents or encapsulating

- 54 -

substances, which are suitable for administration to humans. The term "carrier" refers to an organic or inorganic component, of a natural or synthetic nature, in which the active component is combined in order to 5 facilitate application. The components of the pharmaceutical composition of the invention are usually such that no interaction occurs which substantially impairs the desired pharmaceutical efficacy.

10 The pharmaceutical compositions of the invention may contain suitable buffer substances such as acetic acid in a salt, citric acid in a salt, boric acid in a salt and phosphoric acid in a salt.

15 The pharmaceutical compositions may, where appropriate, also contain suitable preservatives such as benzalkonium chloride, chlorobutanol, paraben and thimerosal.

20 The pharmaceutical compositions are usually provided in a uniform dosage form and may be prepared in a manner known per se. Pharmaceutical compositions of the invention may be in the form of capsules, tablets, lozenges, suspensions, syrups, elixir or in the form of 25 an emulsion, for example.

Compositions suitable for parenteral administration usually comprise a sterile aqueous or nonaqueous preparation of the active compound, which is preferably 30 isotonic to the blood of the recipient. Examples of compatible carriers and solvents are Ringer solution and isotonic sodium chloride solution. In addition, usually sterile, fixed oils are used as solution or suspension medium.

35

The present invention is described in detail by the figures and examples below, which are used only for illustration purposes and are not meant to be limiting.

- 55 -

Owing to the description and the examples, further embodiments which are likewise included in the invention are accessible to the skilled worker.

5 **Figures:**

Fig. 1. GPR35 mRNA expression in colon carcinoma biopsies

10 RT-PCR investigations with DNA-free RNA show GPR35 expression in most of the colon carcinoma biopsies. By contrast, there is no detectable expression in normal tissues. (1-Breast, 2-lung, 3-lymph nodes, 4-thymus, 5-colon, 6-15 colon carcinoma, 16-neg. control).

15 **Fig. 2. Quantitative PCR analysis of GUCY2C mRNA expression in normal and tumor tissues**

Real-time PCR investigation with GUCY2C-specific primers (SEQ ID NO: 22-23) shows selective mRNA expression in normal ileum, colon, and in all colon 20 carcinoma biopsies. Distinct quantities of GUCY2C transcripts were also detected in a colon carcinoma metastasis in the liver.

25 **Fig. 3. Identification of tumor-specific GUCY2C splice variants**

PCR products from normal colon tissues and colon carcinomas were cloned, and clones from both groups were checked by restriction analysis (EcoR I) and sequenced.

30

Fig. 4. Selective SCGB3A expression in normal lung and lung carcinoma

RT-PCR analysis with gene-specific SCGB3A2 primers (SEQ ID NO: 37, 38) shows cDNA amplification 35 exclusively in normal lung (lane 8, 14-15) and in lung carcinoma biopsies (lane 16-24). (1-Liver-N, 2-PBMC-N, 3-lymph node-N, 4-stomach-N, 5-testis-N, 6-breast-N, 7-kidney-N, 8-lung-N, 9-thymus-N, 10-ovary-N,

- 56 -

11-adrenal-N, 12-spleen-N, 14-15-lung-N, 16-24-lung carcinoma, 25-negative control).

5 **Fig. 5. Claudin-18A2.1 expression in stomach, esophagus, stomach carcinoma and pancreatic carcinoma**

RT-PCR analysis with claudin-18A2.1-specific primers (SEQ ID NO: 39, 40) showed according to the invention pronounced claudin-18A2.1 expression in 8/10 stomach carcinoma biopsies and in 3/6 pancreatic carcinoma 10 biopsies. Distinct expression was also detected in stomach and normal esophageal tissue. In contrast thereto, no expression was detected in the ovary and in ovarian carcinoma.

15 **Fig. 6. SLC13A1 expression in the kidney and renal cell carcinoma**

RT-PCR analysis with SLC13A1-specific primers (SEQ ID NO: 49, 50) showed expression in 7/8 renal cell carcinoma samples. Otherwise, transcripts within normal 20 tissues were detected exclusively in the kidney. (1-2-kidney, 3-10-renal cell carcinoma, 11-breast, 12-lung, 13-liver, 14-colon, 15-lymph nodes, 16-spleen, 17-esophagus, 18-thymus, 19-thyroid, 20-PBMCs, 21-ovary, 22-testis).

25

Fig. 7. CLCA1 expression in colon, colon carcinoma and stomach carcinoma

RT-PCR investigations with CLCA1-specific primers (SEQ ID NO: 67, 68) confirmed selective expression in 30 the colon and showed high expression in (3/7) investigated colon carcinoma and (1/3) investigated stomach carcinoma samples. The other normal tissues (NT) showed no or only very weak expression.

35 **Fig. 8. FLJ21477 expression in the colon and colon carcinoma**

RT-PCR investigations with FLJ21477-specific primers (SEQ ID NO: 69, 70) showed selective expression in the

- 57 -

colon and additionally various levels of expression in (7/12) investigated colon carcinoma samples. The other normal tissues (NT) showed no expression.

5 **Fig. 9. FLJ20694 expression in the colon and colon carcinoma**

RT-PCR investigations with FLJ20694-specific primers (SEQ ID NO: 71, 72) showed selective expression in the colon and additionally various levels of expression in 10 (5/9) investigated colon carcinoma samples. The other normal tissues (NT) showed no expression.

Fig. 10. von Ebner expression in stomach, lung and lung carcinoma

15 RT-PCR investigations with von Ebner-specific primers (SEQ ID NO: 73, 74) showed selective expression in the stomach, in the lung and in (5/10) investigated lung carcinoma samples. The other normal tissues (NT) showed no expression.

20 **Fig. 11. Plunc expression in thymus, lung and lung carcinoma**

RT-PCR investigations with Plunc-specific primers (SEQ ID NO: 75, 76) showed selective expression in the 25 thymus, in the lung and in (6/10) investigated lung carcinoma samples. The other normal tissues showed no expression.

Fig. 12. SLC26A9 expression in lung, lung carcinoma and thyroid

30 RT-PCR investigations with SLC26A9-specific primers (SEQ ID NO: 77, 78) showed selective expression in the lung and in all (13/13) investigated lung carcinoma samples. The other normal tissues (NT) showed no expression with the exception of the thyroid.

Fig. 13. THC1005163 expression in stomach, ovary, lung and lung carcinoma

- 58 -

RT-PCR investigations with a THC1005163-specific primer (SEQ ID NO: 79) and a nonspecific oligo dT tag primer showed expression in stomach, ovary, lung and in (5/9) lung carcinoma biopsies. The other normal tissues (NT) 5 showed no expression.

Fig. 14. LOC134288 expression in kidney and renal cell carcinoma

RT-PCR investigations with LOC134288-specific primers 10 (SEQ ID NO: 80, 81) showed selective expression in the kidney and in (5/8) investigated renal cell carcinoma biopsies.

Fig. 15. THC943866 expression in kidney and renal cell carcinoma

RT-PCR investigations with THC943866-specific primers (SEQ ID NO: 82, 83) showed selective expression in the kidney and in (4/8) investigated renal cell carcinoma biopsies.

20

Fig. 16. FLJ21458 expression in colon and colon carcinoma

RT-PCR investigations with FLJ21458-specific primers (SEQ ID NO: 86, 87) showed selective expression in the 25 colon and in (7/10) investigated colon carcinoma biopsies. (1-2-colon, 3-liver, 4-PBMCs, 5-spleen, 6-prostate, 7-kidney, 8-ovary, 9-skin, 10-ileum, 11-lung, 12-testis, 13-22 colon carcinoma, 23-neg. control).

30

Fig. 17. Cellular localization of GPR35

Immunofluorescence for detecting the cellular localization of GPR35 after transfection of a plasmid that expresses a GPR35-GFP fusion protein. The arrows 35 identify the membrane-associated fluorescence of the fluorescent GFP.

Fig. 18. Quantitative expression of GPR35

- 59 -

A. Quantitative RT-PCR with GPR35-specific primers (SEQ ID NO: 88, 89) show selective expression in the intestine, in colon tumor samples and in metastases from intestinal tumors. The following 5 normal tissues were analyzed: liver, lung, lymph nodes, stomach, spleen, adrenal, kidney, esophagus, ovary, testis, thymus, skin, breast, pancreas, lymphocytes, activated lymphocytes, prostate, thyroid, fallopian tube, endometrium, 10 cerebellum, brain.

B. Prevalence of GPR35 in colon tumors and metastases thereof. GPR35 is expressed both in the tumor and in metastases in more than 90% of the cases.

15 **Fig. 19. Quantitative expression of GUCY2C**

Quantitative RT-PCR with GUCY2C-specific primers (SEQ ID NO: 98, 99) show high and selective expression in normal colonic and gastric tissue (A) and GUCY2C-specific expression in colonic and gastric tumor 20 samples (B). GUCY2C is detectable in 11/12 colon carcinomas and in 7/10 stomach carcinomas.

Fig. 20. Quantitative expression of SCGB3A2

Quantitative RT-PCR with SCGB3A2-specific primers 25 (SEQ ID NO: 103, 104) show selective expression in lung samples and lung tumor samples. 19/20 lung tumor samples are SCGB3A2-positive, and SCGB3A2 is over-expressed by a factor of at least 10 in more than 50% of the samples. The following normal tissues were 30 analyzed: liver, lung, lymph nodes, stomach, spleen, adrenal, kidney, esophagus, ovary, testis, thymus, skin, breast, pancreas, lymphocytes, activated lymphocytes, prostate, thyroid, fallopian tube, endometrium, cerebellum, brain.

35

Fig. 21. Immunofluorescence with SCGB3A2-specific anti-bodies

COS7 cells were transfected with a plasmid which codes

- 60 -

for an SCGB3A2-GFP fusion protein. A. Detection of the transfected fusion protein with an SCGB3A2-specific rabbit antiserum (immunization with SEQ ID NO: 105). B. Detection of the transfected fusion protein by GFP fluorescence. C. Superimposition of the two fluorescences from A and B. The yellow color is produced at the points where the two fluorescences are superimposed and thus demonstrates the specificity of the SCGB3A2 antiserum.

10

Fig. 22. Diagrammatic depiction of claudin-18 splice variants

The two claudin-18 splice variants A1 and A2 differ in the N terminus and show different potential 15 glycosylation sites.

Fig. 23. Quantitative expression of claudin-18, variant A1

Claudin-A1 is highly activated in a large number of 20 tumor tissues. Particularly strong expression is found in gastric tumors, lung tumors, pancreatic carcinomas and esophageal carcinomas.

Fig. 24. Quantitative expression of claudin-18, variant A2

Variant A2 is, like variant A1, activated in many tumors.

Fig. 25. Use of claudin-18A2-specific antibodies (extracellular domain)

(Top) Staining of claudin-18A2-positive gastric carcinoma cells (SNU-16) with an antibody which was produced by immunization with a peptide (SEQ ID NO: 17). Membrane staining appears particularly 35 strongly in the cell/cell interaction regions. A-preimmune, MeOH; B-immune serum MeOH, 5 µg/ml; (Below) Demonstration of the specificity of the antibody by colocalization analysis in claudin-18A2-

- 61 -

GFP-transfected 293T cells. A-Claudin-18A2 GFP; B-anti-claudin-A2; C-superimposition.

5 Fig. 26. Use of claudin-18A2-specific antibodies (extracellular domain)

Membrane staining of claudin-18A2-positive gastric carcinoma cells (SNU-16) with an antibody which was produced by immunization with a peptide (SEQ ID NO: 113, N-terminally located extracellular domain). A monoclonal antibody which is directed against E-cadherin was used for counterstaining. A-antibody; B-counterstaining; C-superimposition.

15 Fig. 27. Use of antibodies against the C-terminal extracellular domain of claudin-18

(Left, top and below) Membrane staining of claudin-18A2-positive gastric carcinoma cells (SNU-16) with an antibody which was produced by immunization with a peptide (SEQ ID NO: 116, C-terminally located extracellular domain). A monoclonal antibody which is directed against E-cadherin was used for counterstaining (right top, below).

Fig. 28. Use of claudin-18A1-specific antibodies

25 (Top) Weak to absent staining of gastric carcinoma cells (SNU-16; claudin18A2 positive) with an antibody which was produced by immunization with a claudin-18A1-specific peptide (SEQ ID NO: 115). A-anti-E-cadherin; B-anti-claudin-18A1; C-superimposition.

30 (Below) Demonstration of the specificity of the antibody by colocalization analysis in claudin-18A1-GFP-transfected 293T cells. A-GFP-claudin-18A1; B-anti-claudin-18A1; C-superimposition.

35 Fig. 29. Detection of claudin-18A2 in a Western blot.

Western blotting with lysates from various healthy tissues with a claudin-18A2-specific antibody directed against the epitope with SEQ ID NO: 17. 1-Stomach;

- 62 -

2-testis; 3-skin; 4-breast; 5-liver; 6-colon; 7-lung;
8-kidney; 9-lymph nodes.

5 **Fig. 30. Claudin-18A2 Western blotting with samples from stomach and stomach tumors**

Lysates from stomach and stomach tumors were blotted and tested using a claudin-18A2-specific antibody against the epitope having SEQ ID NO: 17. Stomach tumors show a less glycosylated form of claudin-18A2.
10 PNGase F treatment of stomach lysates leads to the formation of the low-glycosylated form.

Left: 1-stomach No #A; 2-stomach Tu #A; 3-stomach No #B; 4-stomach Tu #B

Right: 1-stomach No #A; 2-stomach No #B; 3-stomach No #B + PNGase F; 4-stomach Tu #C; 5-stomach Tu #D; 15 6-stomach Tu #D + PNGase F

Fig. 31. Expression of claudin-18 in lung tumors

Low-glycosylated claudin-18A2 variants were detected in
20 lung tumors in accordance with fig. 30. 1-Stomach No; 2-stomach Tu; 3-9-lung Tu.

25 **Fig. 32. Immunohistochemical analysis of claudin-18 using claudin-18A2-specific antibodies in stomach tumor tissue**

Fig. 33. Indirect immunofluorescence of stomach-specific Snu16 cells with a claudin-18-specific polyclonal antiserum

30 A. Staining with a preimmune serum generated before the immunization; B. Staining with the claudin-18-specific serum.

Fig. 34. Quantitative expression of SLC13A1

35 Quantitative RT-PCR with SLC13A1-specific primers (SEQ ID NO: 121, 122) show high and selective expression in normal kidney tissue (A) and SLC13A1-specific expression in renal cell carcinomas (B).

- 63 -

SLC13A1 transcription is detectable in 5/8 renal cell carcinomas.

Fig. 35. Cellular localization of SLC13A1

5 Immunofluorescence to demonstrate the cellular localization of SLC13A1 after transfection of a plasmid which provides an SLC13A1-GFP fusion protein. The membrane-associated fluorescence of the SLC13A1 fusion protein is to be seen clearly (as ring around the
10 transfected cell).

Fig. 36. Quantitative expression of CLCA1

Quantitative RT-PCR with CLCA1-specific primers (SEQ ID NO: 125, 126) show high and selective expression in normal colonic tissue and stomach tissue (A) and CLCA1-specific expression in colonic and gastric tumor samples (B). CLCA1 is detectable in 6/12 colon carcinomas and in 7/10 stomach carcinomas.

20 **Fig. 37. Quantitative expression of FLJ21477**

Quantitative RT-PCR with FLJ21477-specific primers (SEQ ID NO: 127, 128) show high and selective expression in normal colonic and gastric tissue and weak expression in thymus, esophagus and brain (A) and the
25 FLJ21477-specific expression in colonic tumor samples (B). FLJ21477 is detectable in 11/12 colon carcinomas.

Fig. 38. Quantitative expression of FLJ20694

Quantitative RT-PCR with FLJ20694-specific primers (SEQ ID NO: 129, 130) show high and selective expression in normal colonic and gastric tissue (A) and FLJ20694-specific overexpression in colonic and gastric tumor samples (B). FLJ20694 is detectable in 11/12 colon carcinomas and in 7/10 stomach carcinomas.

35

Fig. 39. Quantitative expression of FLJ21458

Quantitative RT-PCR with FLJ21458-specific primers (SEQ ID NO: 133, 134) show selective expression in

- 64 -

testis, gastric and intestinal tissue. In addition, FLJ21458-specific transcripts were detectable in 20/20 colonic tumors and in 7/11 colonic metastases. The following normal tissues were analyzed: liver, lung, 5 lymph nodes, spleen, adrenal, kidney, esophagus, ovary, testis, thymus, skin, breast, pancreas, lymphocytes, activated lymphocytes, prostate, thyroid, fallopian tube, endometrium, cerebellum, brain.

10 **Fig. 40. Immunofluorescence with FLJ21458-specific antibodies**

(Top) 293 cells were transfected with a plasmid which codes for an FLJ21458-GFP fusion protein. A: detection of the transfected fusion protein with an FLJ21458-15 specific rabbit antiserum (immunization with SEQ ID NO: 136). B: detection of the transfected fusion protein by GFP fluorescence. C: superimposition of the two fluorescences from A and B. The yellow color is produced at the points where the two fluorescences are 20 superimposed and thus demonstrates the specificity of the FLJ21458 antiserum.

(Below) Analysis of Snu16 cells which endogenously synthesize FLJ21458. A: protein detection using an FLJ21458-specific rabbit antiserum (immunization with 25 SEQ ID NO: 136). B: detection of the membrane protein E-cadherin. C: superimposition of the two fluorescences from A and B. The yellow color is produced at the points where the two fluorescences are superimposed, and demonstrates the membrane localization of FLJ21458.

30

Fig. 41. Sequences

The sequences to which reference is made herein are shown.

Examples:**Material and methods**

5

The terms "in silico", "electronic" and "virtual cloning" refer solely to the utilization of methods based on databases, which may also be used to simulate laboratory experimental processes.

10 Unless expressly defined otherwise, all other terms and expressions are used so as to be understood by the skilled worker. The techniques and methods mentioned are carried out in a manner known per se and are described, for example, in Sambrook et al., Molecular
15 Cloning: A Laboratory Manual, 2nd Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. All methods including the use of kits and reagents are carried out according to the manufacturers' information.

20

Datamining-based strategy for determining new tumor-associated genes

Two *in silico* strategies, namely GenBank keyword search and the cDNAxProfiler, were combined. Utilizing the
25 NCBI ENTREZ Search and Retrieval System (<http://www.ncbi.nlm.nih.gov/Entrez>), a GenBank search was carried out for candidate genes annotated as being specifically expressed in specific tissues (Wheeler et al., *Nucleic Acids Research* 28:10-14, 2000).
30 Carrying out queries with keywords such as "colon-specific gene", "stomach-specific gene" or "kidney-specific gene", candidate genes (GOI, genes of interest) were extracted from the databases. The search was restricted to part of the total information of
35 these databases by using the limits "homo sapiens", for the organism, and "mRNA", for the type of molecule.

- 66 -

The list of the GOI found was curated by determining different names for the same sequence and eliminating such redundancies.

All candidate genes obtained by the keyword search were 5 in turn studied with respect to their tissue distribution by the "electronic Northern" (eNorthen) method. The eNorthern is based on aligning the sequence of a GOI with an EST (expressed sequence tag) database (Adams et al., *Science* 252:1651, 1991) 10 (<http://www.ncbi.nlm.nih.gov/BLAST>). The tissue origin of each EST which is found to be homologous to the inserted GOI can be determined and in this way the sum of all ESTs produces a preliminary assessment of the tissue distribution of the GOI. Further studies were 15 carried out only with those GOI which had no homologies to EST from non organ-specific normal tissues. This evaluation also took into account that the public domain contains wrongly annotated cDNA libraries (Scheurle et al., *Cancer Res.* 60:4037-4043, 2000) 20 (www.fau.edu/cmmb/publications/cancergenes6.htm).

The second datamining method utilized was the **cDNA xProfiler** of the NCBI Cancer Genome Anatomy Project (<http://cgap.nci.nih.gov/Tissues/xProfiler>) (Hillier et 25 al., *Genome Research* 6:807-828, 1996; Pennisi, *Science* 276:1023-1024, 1997). This allows pools of transcriptomes deposited in databases to be related to one another by logical operators. We have defined a 30 pool A to which all expression libraries prepared for example from colon were assigned, excluding mixed libraries. All cDNA libraries prepared from normal tissues other than colon were assigned to pool B. Generally, all cDNA libraries were utilized independently of underlying preparation methods, but 35 only those with a size > 1000 were admitted. Pool B was digitally subtracted from pool A by means of the BUT NOT operator. The set of GOI found in this manner was

- 67 -

also subjected to eNorthern studies and validated by a literature research.

This combined datamining includes all of the about 13 000 full-length genes in the public domain and 5 predicts out of these genes having potential organ-specific expression.

All other genes were first evaluated in normal tissues by means of specific RT-PCR. All GOI which had proved 10 to be expressed in non-organ specific normal tissues had to be regarded as false-positives and were excluded from further studies. The remaining ones were studied in a large panel of a wide variety of tumor tissues. The antigens depicted below proved here to be activated 15 in tumor cells.

RNA extraction, preparation of poly-d(T) primed cDNA and conventional RT-PCR analysis

Total RNA was extracted from native tissue material by 20 using guanidium isothiocyanate as chaotropic agent (Chomczynski & Sacchi, *Anal. Biochem.* 162:156-9, 1987). After extraction with acidic phenol and precipitation with isopropanol, said RNA was dissolved in DEPC-treated water.

25 First strand cDNA synthesis from 2-4 µg of total RNA was carried out in a 20 µl reaction mixture by means of Superscript II (Invitrogen), according to the manufacturer's information. The primer used was a dT(18) oligonucleotide. Integrity and quality of the 30 cDNA were checked by amplification of p53 in a 30 cycle PCR (sense CGTGAGCGCTTCGAGATGTTCCG, antisense CCTAACCGCTGCCAACTGTAG, hybridization temperature 67 °C).

An archive of first strand cDNA was prepared from a 35 number of normal tissues and tumor entities. For expression studies, 0.5 µl of these cDNAs was amplified in a 30 µl reaction mixture, using GOI-specific primers (see below) and 1 U of HotStarTaq DNA polymerase

(Qiagen). Each reaction mixture contained 0.3 mM dNTPs, 0.3 μ M of each primer and 3 μ l of 10 \times reaction buffer. The primers were selected so as to be located in two different exons, and elimination of the interference by 5 contaminating genomic DNA as the reason for false-positive results was confirmed by testing nonreverse-transcribed DNA as template. After 15 minutes at 95°C to activate the HotStarTaq DNA polymerase, 35 cycles of PCR were carried out (1 min at 94°C, 1 min at the 10 particular hybridization temperature, 2 min at 72°C and final elongation at 72°C for 6 min). 20 μ l of this reaction were fractionated and analyzed on an ethidium bromide-stained agarose gel.

15 The following primers were used for expression analysis of the corresponding antigens at the hybridization temperature indicated.

GPR35 (65°C)

20 Sense: 5'-AGGTACATGAGCATCAGCCTG-3'
Antisense: 5'-GCAGCAGTTGGCATCTGAGAG-3'

GUCY2C (62°C)

Sense: 5'-GCAATAGACATTGCCAAGATG-3'
Antisense: 5'-AACGCTGTTGATTCTCCACAG-3'

25 SCGB3A2 (66°C)

Sense: 5'-CAGCCTTGTAGTTACTCTGC-3'
Antisense: 5'-TGTACACACCAAGTGTGATAGC-3'

Claudin18A2 (68°C)

Sense1: 5'-GGTCGTGGTTCACTGATTGGGATTGC-3'
30 Antisense1: 5'-CGGCTTGTAGTTGGTTCTCTGGTG-3'

Sense2: 5'-TGTTTTCAACTACCAGGGGC-3'
Antisense2: 5'-TGTTGGCTTGGCAGAGTCC-3'

Claudin18A1 (64°C)

Sense: 5'-GAGGCAGAGTTCAGGCTTCACCGA-3'
35 Antisense: 5'-TGTTGGCTTGGCAGAGTCC-3'
SLC13A1 (64°C)

- 69 -

Sense: 5'-CAGATGGTTGTGAGGAGTCTG-3'
Antisense: 5'-CCAGCTTAACCATGTCAATG-3'
CLCA1 (62°C)
Sense: 5'-ACACGAATGGTAGATACAGTG-3'
5 Antisense: 5'-ATACTTGTGAGCTGTTCCATG-3'
FLJ21477 (68°C)
Sense: 5'- ACTGTTACCTTGCATGGACTG-3'
Antisense: 5'- CAATGAGAACACATGGACATG-3'
FLJ20694 (64°C)
10 Sense: 5'- CCATGAAAGCTCCATGTCTA-3'
Antisense: 5'- AGAGATGGCACATATTCTGTC
Ebner (70°C)
Sense: 5'-ATCGGCTGAAGTCAAGCATCG-3'
Antisense: 5'-TGGTCAGTGAGGACTCAGCTG-3'
15 Plunc (55°C)
Sense: 5'-TTTCTCTGCTTGATGCACTTG-3'
Antisense: 5'-GTGAGCACTGGGAAGCAGCTC-3'
SLC26A9 (67°C)
Sense: 5'-GGCAAATGCTAGAGACGTGA-3'
20 Antisense: 5'-AGGTGTCCTTCAGCTGCCAAG-3'
THC1005163 (60°C)
Sense: 5'- GTTAAGTGCTCTGGATTG-3'
LOC134288 (64°C)
Sense: 5'-ATCCTGATTGCTGTGTGCAAG-3'
25 Antisense: 5'-CTCTTCTAGCTGGTCAACATC-3'
THC943866 (59°C)
Sense: 5'-CCAGCAACAACTTACGTGGTC-3'
Antisense: 5'-CCTTTATTCACCCAATCACTC-3'
FLJ21458 (62°C)
30 Sense: 5'-ATTCATGGTCCAGCAGGGAC-3'
Antisense: 5'-GGGAGACAAAGTCACGTACTC-3'

Preparation of random hexamer-primed cDNA and quantitative real-time PCR

The expression of several genes was quantified by real-time PCR. The PCR products were detected using SYBR Green as intercalating reporter dye. The reporter fluorescence of SYBR Green is suppressed in solution and the dye is active only after binding to double-stranded DNA fragments. The increase in the SYBR Green fluorescence as a result of the specific amplification using GOI-specific primers after each PCR cycle is utilized for quantification. Expression of the target gene is quantified absolutely or relative to the expression of a control gene with constant expression in the tissues to be investigated. Expression was measured after standardization of the samples against 18s RNA as so-called housekeeping gene using the $\Delta\Delta-C_t$ method (PE Biosystems, USA). The reactions were carried out in duplicates and determined in triplicates. The QuantiTect SYBR Green PCR kit (Qiagen, Hilden) was used in accordance with the manufacturer's instructions. The cDNA was synthesized using the high capacity cDNA Archive Kit (PE Biosystems, USA) with use of hexamer primers in accordance with the manufacturer's instructions. Each 5 μ l portions of the diluted cDNA were employed in a total volume of 25 μ l for the PCR: sense primer 300 nM, antisense primer 300 nM; initial denaturation 95°C for 15 min; 95°C for 30 sec; annealing for 30 sec; 72°C for 30 sec; 40 cycles. The sequences of the primers used are indicated in the respective examples.

30 Cloning and sequence analysis

Cloning of full-lengths and gene fragments took place by conventional methods. To ascertain the sequence, corresponding antigenes were amplified using the proofreading polymerase pfu (Stratagene). After completion of the PCR, adenosine was ligated by means of HotStarTaq DNA polymerase to the ends of the amplicon in order to clone the fragments in accordance with the manufacturer's instructions into the TOPO-TA

vector. The sequencing was carried out by a commercial service. The sequences were analysed using conventional prediction programs and algorithms.

5 **Western blotting**

Cells from cell culture (endogenous expression of the target gene or synthesis of the target protein after transfection of an expression vector which encodes the target protein) or tissue samples which might contain 10 the target protein are lysed in a 1% SDS solution. The SDS denatures the proteins present in the lysate. The lysates of an experimental mixture are fractionated according to size by electrophoresis on 8-15% denaturing polyacrylamide gels (containing 1% SDS) 15 depending on the expected protein size (SDS polyacrylamide gel electrophoresis, SDS-PAGE). The proteins are then transferred by the semi-dry electroblotting method (Biorad) to nitrocellulose membrane (Schleicher & Schüll) on which the desired 20 protein can be detected. For this purpose, the membrane is initially blocked (e.g. with milk powder) and then incubated with the specific antibody in a dilution of 1:20-1:200 (depending on the specificity of the antibody) for 60 minutes. After a washing step, the 25 membrane is incubated with a second antibody coupled to a marker (e.g. enzymes such as peroxidase or alkaline phosphatase) which recognizes the first antibody. After a further washing step, subsequently the target protein is visualized in a color or chemiluminescence reaction 30 on the membrane by means of an enzyme reaction (e.g. ECL, Amersham Bioscience). The result is documented by photographing with a suitable camera.

Analysis of protein modifications usually takes place 35 by Western blotting. Glycosylations, which usually have a size of several kDa, lead to a larger total mass of the target protein, which can be fractionated in the SDS-PAGE. To detect specific O- and N-glycosidic

linkages, protein lysates from tissues or cells are incubated before denaturation by SDS with O- or N-glycosidases (in accordance with their respective manufacturer's instructions, e.g. PNGase, 5 endoglycosidase F, endoglycosidase H, Roche Diagnostics). This is followed by Western blotting as described above. Thus, if there is a reduction in the size of a target protein after incubation with a glycosidase it is possible to detect a specific 10 glycosylation and, in this way, also analyse the tumor specificity of a modification. The exact position of the glycosilated amino acid can be predicted with algorithms and prediction programs.

15 **Immunofluorescence**

Cells of established cell lines which either synthesize the target protein endogenously (detection of the RNA in RT-PCR or of the protein by Western blotting) or else have been transfected with plasmid DNA before the 20 IF are used. A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium phosphate precipitation) are well established for transfecting cell lines with DNA (e.g. Lemoine et al. Methods Mol. Biol. 1997; 75: 441-7). The transfected 25 plasmid may in the immunofluorescence encode the unmodified protein or else couple various amino acid markers to the target protein. The most important markers are, for example, the fluorescing "green fluorescent protein" (GFP) in its various 30 differentially fluorescing forms and short peptide sequences of 6-12 amino acids for which high-affinity and specific antibodies are available. Cells which synthesize the target protein are fixed with paraformaldehyde, saponin or methanol. The cells can 35 then if required be permeabilized by incubation with detergents (e.g. 0.2% Triton X-100). After the fixation/permeabilization, the cells are incubated with a primary antibody which is directed against the target

- 73 -

protein or against one of the coupled markers. After a washing step, the mixture is incubated with a second antibody coupled to a fluorescent marker (e.g. fluorescin, Texas Red, Dako) which binds to the first 5 antibody. The cells labeled in this way are then covered with a layer of glycerol and analysed with the aid of a fluorescence microscope according to the manufacturer's instructions. Specific fluorescence emissions are achieved in this case by specific 10 excitation depending on the substances employed. The analysis normally allows reliable localization of the target protein, the antibody quality and the target protein being confirmed in double stainings to stain in addition to the target protein also the coupled amino 15 acid markers or other marker proteins whose localization has been described in the literature. GFP and its derivatives represents a special case that can be directly excited and itself fluoresces, so that no antibodies are necessary for the detection.

20

Immunohistochemistry

IHC serves specifically for (1) being able to estimate the amount of target protein in tumor and normal tissues, (2) analysing how many cells in the tumor and 25 healthy tissue synthesize the target gene, and/or (3) defining the cell type in a tissue (tumor, healthy cells) in which the target protein is detectable. Different protocols must be used depending on the individual antibody (e.g. "Diagnostic 30 Immunohistochemistry by David J., MD Dabbs ISBN: 0443065667" or in "Microscopy, Immunohistochemistry, and Antigen Retrieval Methods: For Light and Electron Microscopy ISBN: 0306467704").

35 Immunohistochemistry (IHC) on specific tissue samples serves to detect protein in the corresponding tissue. The aim of this method is to identify the localization of a protein in a functionally intact tissue aggregate.

- 74 -

IHC serves specifically for (1) being able to estimate the amount of target protein in tumor and normal tissues, (2) analysing how many cells in tumor and healthy tissue synthesize the target gene, and (3) 5 defining the cell type in a tissue (tumor, healthy cells) in which the target protein is detectable. Alternatively, the amounts of protein of a target gene can be quantified by tissue immunofluorescence using a digital camera and suitable software (e.g. Tillvision, 10 Till-photonics, Germany). The technology has frequently been published, and details of staining and microscopy can therefore be found for example in "Diagnostic Immunohistochemistry" by David J., MD Dabbs ISBN: 0443065667 or "Microscopy, Immunohistochemistry, and 15 Antigen Retrieval Methods: For Light and Electron Microscopy" ISBN: 0306467704. It should be noted that, because of the properties of antibodies, different protocols have to be used (an example is described below) in order to obtain a valid result.

20 Ordinarily, histologically defined tumor tissues and, as reference, comparable healthy tissues are employed in the IHC. It is moreover possible to use as positive and negative controls cell lines in which the presence 25 of the target gene is known through RT-PCR analyses. A background control must always be included.

30 Fixed tissue (e.g. fixation with aldehyde-containing substances, formaldehyde, paraformaldehyde or in alcoholic solutions) or shock-frozen tissue pieces with a thickness of 1-10 µm are applied to a glass support. Paraffin-embedded samples are deparaffinated for example with xylene. The samples are washed with TBS-T and blocked in serum. This is followed by incubation 35 with the first antibody (dilution: 1:2 to 1:2000) for 1-18 hours, with affinity-purified antibodies normally being used. A washing step is followed by incubation with a second antibody which is coupled to an alkaline

- 75 -

phosphatase (alternative: for example peroxidase), and is directed against the first antibody, for about 30-60 minutes. This is followed by color reaction using color substrates which are converted by the bound 5 enzymes (cf. for example, Shi et al., *J. Histochem. Cytochem.* 39: 741-748, 1991; Shin et al., *Lab. Invest.* 64: 693-702, 1991). To demonstrate the antibody specificity, the reaction can be blocked by previous addition of the immunogen.

10

Immunization

(See also *Monoclonal Antibodies: A Practical Approach* by Philip Shepherd, Christopher Dean isbn 0-19-963722-9; *Antibodies: A Laboratory Manual* by Ed 15 Harlow, David Lane ISBN: 0879693142; *Using Antibodies: A Laboratory Manual: Portable Protocol NO.* by Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447). The process for preparing antibodies is described briefly below, and details can be found in the cited 20 publications. Firstly, animals (e.g. rabbits) are immunized by a first injection of the desired target protein. The animal's immune response to the immunogen can be enhanced by a second or third immunization within a defined period (about 2-4 weeks after the 25 preceding immunization). Again after various defined periods (first bleeding after 4 weeks, then about every 2 weeks with a total of up to 5 samplings), blood is taken from the animals, and an immune serum is obtained therefrom.

30 The animals are usually immunized by one of four well-established methods, with other methods also being available. It is moreover possible to immunize with peptides which are specific for the target protein, with the complete protein or with extracellular partial 35 sequences of a protein which can be identified experimentally or via prediction programs.

(1) In the first case, peptides (length: 8-12 amino acids) conjugated to KLH (keyhole

5 limpet hemocyanin) are synthesized by a standardized in vitro method, and these peptides are used for the immunization. Usually, 3 immunizations are carried out with a concentration of 5-1000 µg/immunization. The immunization can also be carried out as service from service providers.

10 (2) Alternatively, the immunization can be carried out with recombinant proteins. For this purpose, the cloned DNA of the target gene is cloned into an expression vector, and the target protein is synthesized in analogy to the conditions of the particular manufacturer (e.g. Roche Diagnostics, Invitrogen, Clontech, Qiagen) for example cell-free in vitro, in bacteria (e.g. *E. coli*), in yeast (e.g. *S. pombe*), in insect cells or in mammalian cells. After synthesis in one of the systems, the target protein is purified, the purification in this case usually taking place by standardized chromatographic methods. It is also possible in this connection to use for the immunization proteins which have a molecular anchor as aid for purification (e.g. His tag, Qiagen; FLAG tag, Roche Diagnostics; Gst fusion proteins). A large number of protocols is to be found for example in the "Current Protocols in Molecular Biology", John Wiley & Sons Ltd., Wiley Interscience.

15 (3) If a cell line which synthesizes the desired protein endogenously is available, this cell line can also be used to produce the specific antiserum. In this case, the immunization takes place in 1-3 injections in each case with about $1-5 \times 10^7$ cells.

20 (4) The immunization can also take place by injection of DNA (DNA immunization). For this

- 77 -

purpose, the target gene is initially cloned into an expression vector so that the target sequence is under the control of a strong eukaryotic promoter (e.g. CMV promoter).
5 Subsequently, 5-100 µg of DNA are transferred as immunogen using a "gene gun" into capillary regions with a strong blood flow in an organism (e.g. mouse, rabbit). The transferred DNA is taken up by the animal's cells, the target gene is expressed, and the animal finally develops an immune response to the target gene (Jung et al., Mol Cells 12:41-49, 2001; Kasinrerk et al., Hybrid 10 Hybridomics 21:287-293, 2002).
15

Quality control of the polyclonal serum or antibody

Assays based on cell culture with subsequent Western blotting are most suitable for demonstrating specificity (various variations are described for 20 example in "Current Protocols in Protein Chemistry", John Wiley & Sons Ltd., Wiley InterScience). For the demonstration, cells are transfected with a cDNA, which is under the control of a strong eukaryotic promoter (e.g. cytomegalovirus promoter), for the target 25 protein. A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium phosphate precipitation) are well established for transfecting cell lines with DNA (e.g. Lemoine et al., *Methods Mol. Biol.* 75:441-7, 1997). It is also possible 30 alternatively to use cell lines which express the target gene endogenously (demonstration by target gene-specific RT-PCR). As control, in the ideal case homologous genes are also transfected in the experiment, in order to be able to demonstrate in the 35 following Western blot the specificity of the analysed antibody.

In the subsequent Western blot, cells from cell culture

or tissue samples which might contain the target protein are lysed in a 1% SDS solution, and the proteins are denatured thereby. The lysates are fractionated according to size by electrophoresis on 5 8-15% denaturing polyacrylamide gels (contain 1% SDS) (SDS polyacrylamide gel electrophoresis, SDS-PAGE). The proteins are then transferred by one of a plurality of blotting methods (e.g. semi-dry electroblot; Biorad) to a specific membrane (e.g. nitrocellulose, Schleicher & 10 Schüll). The desired protein can be visualized on this membrane. For this purpose, the membrane is first incubated with the antibody which recognizes the target protein (dilution about 1:20-1:200, depending on the specificity of the antibody) for 60 minutes. After a 15 washing step, the membrane is incubated with a second antibody which is coupled to a marker (e.g. enzymes such as peroxidase or alkaline phosphatase) and which recognizes the first antibody. It is then possible in a color or chemiluminescent reaction to visualize the 20 target protein on the membrane (e.g. ECL, Amersham Bioscience). An antibody with a high specificity for the target protein should in the ideal case recognize only the desired protein itself.

25 Various methods are used to confirm the membrane localization of the target protein identified in the *in silico* approach. An important and well-established method using the antibodies described above is immunofluorescence (IF). Cells of established cell lines 30 which either synthesize the target protein (detection of the RNA in an RT-PCR or of the protein in a Western blot) or else have been transfected with plasmid DNA are used for this. A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium 35 phosphate precipitation) are well established for transfection of cell lines with DNA (e.g. Lemoine et al., *Methods Mol. Biol.* 75:441-7, 1997). The plasmid transfected into the cells can in the

immunofluorescence encode the unmodified protein or else couple various amino acid markers to the target protein. The principal markers are, for example, the fluorescent "green fluorescent protein" (GFP) in its various differentially fluorescent forms, short peptide sequences of 6-12 amino acids for which high-affinity and specific antibodies are available, or the short amino acid sequence Cys-Cys-X-X-Cys-Cys which can bind via its cysteine specific fluorescent substances (Invitrogen). Cells which synthesize the target protein are fixed for example with paraformaldehyde or methanol. The cells can then, if required, be permeabilized by incubation with detergents (e.g. 0.2% Triton X-100). The cells are then incubated with a primary antibody which is directed against the target protein or against one of the coupled markers. After a washing step, the mixture is incubated with a second antibody which is coupled to a fluorescent marker (e.g. fluorescin, Texas Red, Dako) and which binds to the first antibody. The cells labeled in this way are then covered with a layer of glycerol and analysed with the aid of a fluorescence microscope according to the manufacturer's instructions. Specific fluorescence emissions are achieved in this case by specific excitation depending on the substances employed. The analysis usually permits reliable localization of the target protein, the antibody quality and the target protein being confirmed in double stainings to stain in addition to the target protein also the coupled amino acid markers or other marker proteins whose localization has already been described in the literature. GFP and its derivatives represents a special case, being excitable directly and themselves fluorescing. The membrane permeability, which can be controlled through the use of detergents, permits demonstration in the immunofluorescence of whether an immunogenic epitope is located inside or outside the cell. The prediction of the selected proteins can thus

- 80 -

be supported experimentally. An alternative possibility is to detect extracellular domains by means of flow cytometry. For this purpose, cells are fixed under non-permeabilizing conditions (e.g. with PBS/Na azide/2%
5 FCS/5 mM EDTA) and analysed in a flow cytometer in accordance with the manufacturer's instructions. Only extracellular epitopes can be recognized by the antibody to be analysed in this method. A difference from immunofluorescence is that it is possible to
10 distinguish between dead and living cells by use of, for example, propidium iodide or Trypan blue, and thus avoid false-positive results.

Affinity purification

15 Purification of the polyclonal sera took place in the case of the peptide antibodies entirely, or in the case of the antibodies against recombinant proteins in part, as service by the contracted companies. For this purpose, in both cases, the appropriate peptide or
20 recombinant protein was covalently bonded to a matrix, and the latter was, after the coupling, equilibrated with a native buffer (PBS: phosphate buffered saline) and then incubated with the crude serum. After a further PBS washing step, the antibody was eluted with
25 100 mM glycine, pH 2.7, and the eluate was immediately neutralized in 2M TRIS, pH 8. The antibodies purified in this way could then be employed for specific detection of the target proteins both by Western blotting and by immunofluorescence.

30

Preparation of EGFP transfecants

For the immunofluorescence microscopy of heterologously expressed tumor-associated antigens, the complete ORF of the antigens was cloned in pEGFP-C1 and pEGFP-N3 vectors (Clontech). CHO and NIH3T3 cells cultivated on slides were transfected with the appropriate plasmid constructs using Fugene transfection reagent (Roche) in accordance with the manufacturer's instructions and,

after 12-24 h, analysed by immunofluorescence microscopy.

Example 1: Identification of GPR35 as diagnostic and therapeutic cancer target

5 GPR35 (SEQ ID NO:1) and its translation product (SEQ ID NO:9) have been described as putative G protein-coupled receptor. The sequence is published in Genbank under accession No. AF089087. This transcript 10 codes for a protein of 309 amino acids with a molecular weight of 34 kDa. It was predicted that GPR35 belongs to the superfamily of G protein-coupled receptors with 7 transmembrane domains (O'Dowd et al., *Genomics* 47:310-13, 1998). In order to confirm the predicted 15 localization of GPR35 in the cell, the protein was fused to eGFP as reporter molecule and, after transfection of the appropriate plasmid, expressed heterologously in 293 cells. The localization was then analysed in a fluorescence microscope. It was confirmed 20 according to the invention that GPR35 is an integral transmembrane molecule (fig. 17). Investigation to date on human GPR35 (see, inter alia, Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa 25 Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI *Nat Genet.* 2000 Oct; 26(2):163-75) suggested that GPR35 is activated in many healthy tissues. The reading frame of 30 the gene comprises a single exon. According to the invention, a gene-specific primer pair (SEQ ID NO:20, 21) for GPR35 was used in RT-PCR analyses to amplify cDNA in the colon and in colon carcinoma (13/26). By contrast, no significant expression is detectable in 35 other normal tissues. Because of the particular fact that GPR35 consists of a single exon, genomic DNA impurities cannot be detected with intron-spanning primers. In order to preclude genomic contamination of

- 82 -

the RNA samples, therefore, all RNAs were treated with DNase. GPR35 transcripts were detected according to the invention only in the colon, in the rectum, in the testis and in colon carcinomas using DNA-free RNA.

Tab. 1 GPR35 expression in normal tissues

Normal tissue	Expression
Brain	-
Cerebellum	-
Myocardium	-
Skeletal muscle	-
Rectum	++
Stomach	-
Colon	++
Pancreas	-
Kidney	-
Testis	-
Thymus	-
Mammary glands	-
Ovary	-
Uterus	n.d.
Skin	-
Lung	-
Thyroid	-
Lymph nodes	-
Spleen	-
PBMC	-
Adrenal	-
Esophagus	-
Small intestine	+
Prostate	-

(nd = not determined)

The selective and high expression of GPR35 transcripts in normal colonic tissue and in colon carcinoma biopsies (fig. 1) was not previously known and can be utilized according to the invention for molecular 5 diagnostic methods such as RT-PCR for detecting disseminating tumor cells in the serum and bone marrow and for detecting metastases in other tissues. Quantitative RT-PCR with specific primers (SEQ ID NO:88 and 89) also confirms that GPR35 is a highly selective 10 intestine-specific differentiation antigen which is also contained in intestinal tumors and in intestinal tumor metastases. In some intestinal tumors, it is in fact overexpressed by one log compared with normal intestine (fig. 18). Antibodies were produced by 15 immunizing rabbits for detecting GPR35 protein. The following peptides were used to propagate these antibodies:

SEQ ID NO:90 GSSDLTWPPAIKLGC (AA 9-23)

SEQ ID NO:91: DRYVAVRHPLRARGLR (AA 112-127)

20 SEQ ID NO:92: VAPRAKAHKSQDSLC (C terminus)

SEQ ID NO:93 CFRSTRHNFSNSMR (extracell. domain 2)

Stainings with these antibodies for example in a 25 Western blot confirm the expression in tumors. All 4 extracellular domains of GPR35 (position of the predicted extracellular domains in the sequence of SEQ ID NO:9 AA 1-22 (SEQ ID NO:94); AA 81-94 (SEQ ID NO:95); AA 156-176 (SEQ ID NO:96); AA 280-309 (SEQ ID NO:97)) can be used according to the invention as target structures of monoclonal antibodies. These 30 antibodies bind specifically to the cell surface of tumor cells and can be used both for diagnostic and for therapeutic methods. Overexpression of GPR35 in tumors provides additional support for such a use. In addition, the sequences coding for proteins can be used 35 according to the invention as vaccine (RNA, DNA, peptide, protein) for inducing tumor-specific immune responses (T-cell and B-cell-mediated immune responses). In addition, it has surprisingly been found

that a further start codon exists 5' in front of the generally known start codon and expresses an N-terminally extended protein.

5 It has thus been found according to the invention that GPR35, a protein which was previously described as expressed ubiquitously, is tumor-associated overexpressed, selectively in gastrointestinal tumors, especially in tumors of the colon. GPR35 is therefore
10 suitable in particular as molecular target structure for the diagnosis and treatment of these tumors. Investigation to date of human GPR35, cf., for example, Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del
15 Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI Nat Genet. 2000 Oct;26(2):163-75 suggested that GPR35 is activated in many healthy tissues. By
20 contrast, the investigations according to the invention showed that GPR35 is surprisingly not significantly detectable in most normal tissues and, in contrast thereto, is highly activated in primary and metastatic colon tumors. In addition, besides the described GPR35
25 sequence, according to the invention a novel translation variant which makes use of an alternative start codon has been found (SEQ ID NO:10).

GPR35 is a member of the group of G-coupled receptors
30 (GPCR), a very large protein family whose structure and function has been very well investigated. GPCR are outstandingly suitable as target structures for the development of pharmaceutically active substances, because the methods necessary therefor (e.g. receptor
35 expression, purification, ligand screening, mutagenizing, functional inhibition, selection of agonistic and antagonistic ligands, radiolabeling of ligands) is very well developed and described in

detail, cf., for example, "G Protein-Coupled Receptors" by Tatsuya Haga, Gabriel Berstein and Gabriel Bernstein ISBN: 0849333849 and in "Identification and Expression of G-Protein Coupled Receptors Receptor Biochemistry and Methodology" by Kevin R. Lynch ASIN: 0471183105. Realization according to the invention that GPR35 is undetectable in most healthy tissues but undergoes tumor-associated expression on the cell surface, enables it to be used as tumor-associated target structure for example for pharmaceutically active ligands, especially in conjugation for example with radioactive molecules as pharmaceutical substances. It is possible in a particular embodiment to use radiolabeled ligands which bind to GPR35 for detecting tumor cells or for treating colon tumors *in vivo*.

Example 2: Identification of GUCY2C in hepatic and ovarian tumors and novel GUCY2C splice variants as diagnostic and therapeutic cancer targets

Guanylate cyclase 2C (SEQ ID NO:2; translation product: SEQ ID NO:11) - a type I transmembrane protein - belongs to the family of natriuretic peptide receptors. The sequence is published in Genbank under the accession number NM_004963. Binding of the peptides guanylin and uroguanylin or else heat-stable enterotoxins (STa) increases the intracellular cGMP concentration, thus inducing signal transduction processes inside the cell.

Recent investigations indicate that expression of GUCY2C also extends to extraintestinal regions such as, for example, primary and metastatic adenocarcinomas of the stomach and of the esophagus (Park et al., *Cancer Epidemiol Biomarkers Prev.* 11: 739-44, 2002). A splice variant of GUCY2C which is found both in normal and transformed tissue of the intestine comprises a 142 bp deletion in exon 1, thus preventing translation of a GUCY2C-like product (Pearlman et al., *Dig. Dis. Sci.*

45:298-05, 2000). The only splice variant described to date leads to no translation product.

5 The aim according to the invention was to identify tumor-associated splice variants for GUCY2C which can be utilized both for diagnosis and for therapy.

10 RT-PCR investigations with a GUCY2C-specific primer pair (SEQ ID NO:22, 23, 98, 99) show pronounced expression of GUCY2C transcripts in normal colon and stomach, and weak expression in liver, testis, ovary, thymus, spleen, brain and lung (tab. 2, fig. 19). Expression in colon and stomach was at least 50 times higher than in all other normal tissues. Marked GUCY2C transcript levels were detected in colon carcinoma and 15 stomach carcinoma (tab. 2). These results were specified by a quantitative PCR analysis and showed pronounced GUCY2C expression in normal colon, ileum, and in almost all colon carcinoma samples investigated (fig. 2, 19B). A massive overexpression was detectable 20 in some colon carcinoma samples. In addition, expression is found in 7/10 stomach tumors. We also surprisingly found that the gene is activated in many other previously undescribed tumors, *inter alia* ovarian, breast, liver and prostate tumors (fig. 19B, 25 tab. 2).

Table 2: GUC2C expression in normal and tumor tissues

Normal tissues	Expression	Tumor type	Expression
Brain	+	Colon carcinoma	+++
Cerebellum		Pancreatic carcinoma	-
Myocardium		Esophageal carcinoma	-
Skeletal muscle	-	Stomach carcinoma	+++
Myocardium		Bronchial carcinoma	-

Normal tissues	Expression	Tumor type	Expression
Stomach	+++	Mammary carcinoma	-+
Colon	+++	Ovarian carcinoma	+
Pancreas	-	Endometrial carci	
Kidney	-	ENT tumors	
Liver	+	Renal cell carcinoma	
Testis	++	Prostate carcinoma	+
Thymus	+	Liver carcinoma	+
Breast	-		
Ovary	+		
Uterus	+		
Skin			
Lung	+		
Thyroid			
Lymph nodes	-		
Spleen	+		
PBMC	-		
Prostate	-		

The following primer pairs were used to detect splice variants in colonic tissue and colon carcinoma tissue:

GUCY2C-118s/GUCY2C-498as (SEQ ID NO:24, 29); GUCY2C-

5 621s/GUCY2C-1140as (SEQ ID NO:25, 30);

GUCY2C-1450s/GUCY2C-1790as (SEQ ID NO:26, 31);

GUCY2C-1993s/GUCY2C-2366as (SEQ ID NO:27, 32);

GUCY2C-2717s/GUCY2C-3200as (SEQ ID NO:28, 33);

GUCY2C-118s/GUCY2C-1140as (SEQ ID NO:24, 30);

10 GUCY2C-621s/GUCY2C-1790as (SEQ ID NO:25, 31);

GUCY2C-1450s/GUCY2C-2366as (SEQ ID NO:26, 32);

GUCY2C-1993s/GUCY2C-3200as (SEQ ID NO:27, 33).

On investigation of splice variants in colon carcinoma

15 tissue, three previously unknown forms were identified according to the invention.

a) A deletion of exon 3 (SEQ ID NO:3) which leads

- 89 -

to a variant of GUCY2C which is only 111 amino acids long and in which the asparagine at position 111 is replaced by a proline.

5 b) A deletion of exon 6 (SEQ ID NO:4) which results in an expression product 258 amino acids long. This would generate a C-terminal neoepitope comprising 13 amino acids.

10 c) A variant in which the nucleotides at positions 1606-1614, and the corresponding amino acids L(536), L(537) and Q(538), are deleted (SEQ ID NO:5).

The splice variants according to the invention with deletions respectively in exon 3 and exon 6 (SEQ ID NO:3, 4) are distinguished in particular by the 15 translation products (SEQ ID NO:12, 13) having no transmembrane domain. The result in the case of exon 6 deletion is a C-terminal neoepitope of 13 amino acids which shows no homology whatsoever with previously known proteins. This neoepitope is thus predestined to 20 be a target structure for immunotherapy. The splice variant of the invention with base deletions at positions 1606-1614 (SEQ ID NO:5) and its translation product (SEQ ID NO:14) likewise comprises a neoepitope. Antibodies for detecting GUCY2C protein were produced 25 by immunizing rabbits. The following peptides were used to propagate these antibodies:

SEQ ID NO:100: HNGSYEISVLMGMNS (AA 31-45)

SEQ ID NO:101: NLPTPPPTVENQQRLA (AA 1009-1023)

Such antibodies can in principle be used for diagnostic 30 and therapeutic purposes.

In particular, the extracellular domain of GUCY2C (position of the predicted extracellular domain from the sequence of SEQ ID NO:11: AA 454-1073 35 (SEQ ID NO:102)) can be used according to the invention as target structure of monoclonal antibodies. However, the structural prediction is somewhat ambiguous and not yet verified experimentally, so that an alternative

- 90 -

membrane orientation is also conceivable. In this case, amino acids 1-431 would be outside the cell and be suitable as starting point for monoclonal antibodies. These antibodies bind specifically to the cell surface 5 of tumor cells and can be used both for diagnostic and for therapeutic methods. Overexpression of GUCY2C, especially in the colon tumors, provides additional support for such a use. Sequences coding for proteins can moreover be used according to the invention as 10 vaccine (RNA, DNA, peptides, protein) for inducing tumor-specific immune responses (T-cell- and B-cell-mediated immune responses).

It is moreover possible in accordance with the cellular function of the GUCY2C molecule to develop according to 15 the invention substances, especially small molecules, which modulate the function of the enzyme on tumor cells. The product of the enzymic reaction, cGMP, is a known cellular signal molecule with a wide variety of functions (Tremblay et al. Mol Cell Biochem 230, 31).

20

Example 3: Identification of SCGB3A2 as diagnostic and therapeutic cancer target

SCGB3A2 (SEQ ID NO:6) (translation product: SEQ ID NO:15) belongs to the secretoglobin gene family. 25 The sequence is published in GenBank under accession number NM_054023. SCGB3A2 (UGRP1) is a homodimeric secretory protein with a size of 17 kDa, which is expressed exclusively in the lung and in the spiracles (Niimi et al., *Am J Hum Genet* 70:718-25, 2002). RT PCR 30 investigations with a primer pair (SEQ ID NO:37, 38) confirmed selective expression in normal lung tissue. Lung- and trachea-specific genes, e.g. for surfactant proteins, are highly downregulated in malignant tumors during dedifferentiation and are normally undetectable 35 in lung tumors. It was surprisingly found that SCGB3A2 is active in primary and metastatic lung tumors. The investigations according to the invention showed that SCGB3A2 is strongly and frequently expressed in

- 91 -

bronchial carcinomas (fig. 4). All the other 23 normal tissues tested, apart from lung and trachea, show no expression (cf. fig. 20).

5 This was additionally confirmed in a specific quantitative RT-PCR (SEQ ID NO:103, 104) (fig. 20) which additionally shows overexpression by at least one log in more than 50% of bronchial carcinomas.

10 The selective and high expression of SCGB3A2 in normal lung tissue and in lung carcinoma biopsies can be used according to the invention for molecular diagnostic methods such as RT-PCR for detecting disseminating tumor cells in blood and bone marrow, sputum, bronchial aspirate or lavage and for detecting metastases in other tissues, e.g. in local lymph nodes. In the 15 healthy lung, SCGB3A2 is secreted by specialized cells exclusively into the bronchi. Accordingly, it is not to be expected that SCGB3A2 protein will be detectable in body fluids outside the respiratory tract in healthy individuals. By contrast, in particular metastatic 20 tumor cells secrete their protein products directly into the bloodstream. One aspect of the invention therefore relates to detection of SCGB3A2 products in serum or plasma of patients via a specific antibody assay as diagnostic finding for lung tumors.

25

Antibodies for detecting SCGB3A2 protein were produced by immunizing rabbits. The following peptides were used to propagate these antibodies:

SEQ ID NO:105: LINKVPLPVDKLAPL

30 SEQ ID NO:106: SEAVKKLLEALSHLV

An SCGB3A2-specific reaction was detectable in immunofluorescence (fig. 21). As expected for a secreted protein, the distribution of SCGB3A2 in the cell was assignable to the endoplasmic reticulum and 35 secretion granules (fig. 21A). To check the specificity, the cells were transfected in parallel with a plasmid that synthesizes an SCGB3A2-GFP fusion protein. Protein detection took place in this case via

the autofluorescent GFP (green fluorescent protein) (fig. 21B). Superimposition of the two fluorescence diagrams shows unambiguously that the immune serum specifically recognizes SCGB3A2 protein (fig. 21C).

5 Such antibodies can be used according to the invention for example in the form of immunoassays for diagnostic and therapeutic purposes.

10 **Example 4: Identification of claudin-18A1 and claudin-18A2 splice variants as diagnostic and therapeutic cancer targets**

15 The claudin-18 gene codes for a surface membrane molecule having 4 transmembrane domains and intracellular N terminus and C terminus. Niimi and colleagues (*Mol. Cell. Biol.* 21:7380-90, 2001) describe two splice variants of the murine and human claudin-18 which have been described as expressed selectively in lung tissue (claudin-18A1) and in stomach tissue (claudin-18A2), respectively. These variants differ in 20 the N terminus (fig. 22).

It was investigated according to the invention how far the splice variants claudin-18A2 (SEQ ID NO:7) and claudin-18A1 (SEQ ID NO:117), and their respective translation products (SEQ ID NO:16 and 118), can be 25 used as markers or therapeutic target structures for tumors. A quantitative PCR able to distinguish between the two variants was established by selecting A1-specific (SEQ ID NO:109 & 110) and A2-specific (SEQ ID NO:107 & 108) primer pairs. The A2 splice 30 variant was additionally tested with a second primer pair in a conventional PCR (SEQ ID NO:39 & 40). The A1 variant is described to be active only in normal lung. However, it was surprisingly found according to the invention that the A1 variant is also active in the 35 gastric mucosa. Stomach and lung are the only normal tissues showing significant activation. All other normal tissues are negative for claudin-A1. On investigating tumors, it was surprisingly found that

- 93 -

claudin-A1 is highly activated in a large number of tumor tissues. Particularly strong expression is to be found in stomach tumors, lung tumors, pancreatic carcinomas, esophageal carcinomas (fig. 23), ENT tumors 5 and prostate carcinomas. The claudin-A1 expression levels in ENT, prostate, pancreatic and esophageal tumors are 100-10 000 higher than the levels in the corresponding normal tissues. The oligonucleotides used to investigate the claudin-A2 splice variant 10 specifically enable this transcript to be amplified (SEQ ID NO:39 & 40 and 107 & 108). Investigation revealed that the A2 splice variant is expressed in none of the more than 20 normal tissues investigated apart from gastric mucosa and to a small extent also 15 testis tissue. We have found that the A2 variant is also, like the A1 variant, activated in many tumors (depicted by way of example in fig. 24). These include stomach tumors (8/10), pancreatic tumors (6/6), esophageal carcinomas (5/10) and liver carcinomas. 20 Although no activation of claudin-18A2 is detectable in healthy lung, it was surprisingly found that some lung tumors express the A2.1 splice variant.

Table 3A. Expression of claudin-18A2 in normal and tumor tissues

Normal tissue	Expression	Tumor type	Expression
Brain	-	Colon carcinoma	-
Cerebellum	-	Pancreatic carcinoma	++
Myocardium	-	Esophageal carcinoma	++
Skeletal muscle	-	Gastric carcinoma	+++
Endometrium	-	Bronchial carcinoma	++
Stomach	+++	Breast carcinoma	-
Colon	-	Ovarian carcinoma	-
Pancreas	-	Endometrial carcinoma	n.i.
Kidney	-	ENT tumors	++
Liver	-	Renal cell carcinoma	-
Testis	+	Prostate carcinoma	-
Thymus	-		
Breast	-		
Ovary	-		
Uterus	-		
Skin	-		
Lung	-		
Thyroid	-		
Lymph nodes	-		
Spleen	-		
PBMC	-		
Esophagus	-		

Table 3B. Expression of claudin-18A1 in normal and tumor tissues

Normal tissue	Expression	Tumor type	Expression
Brain	-	Colon carcinoma	-
Cerebellum	-	Pancreatic carcinoma	++
Myocardium	-	Esophageal carcinoma	++
Skeletal muscle	-	Gastric carcinoma	+++
Endometrium	-	Bronchial carcinoma	++
Stomach	+++	Breast carcinoma	+
Colon	-	Ovarian carcinoma	n.i.
Pancreas	-	Endometrial carcinoma	n.i.
Kidney	-	ENT tumors	++
Liver	-	Renal cell carcinoma	-
Testis	+	Prostate carcinoma	++
Thymus	-		
Breast	-		
Ovary	-		
Uterus	-		
Skin	-		
Lung	+++		
Thyroid	-		
Lymph nodes	-		
Spleen	-		
PBMC	-		
Esophagus	-		

Conventional PCR as independent control investigation also confirmed the results of the quantitative PCR. The oligonucleotides (SEQ ID NO:39, 40) used for this permit specific amplification of the A2 splice variant.

5 It was shown according to the invention that 8/10 gastric carcinomas and half of the tested pancreatic carcinomas showed strong expression of this splice variant (fig. 5). By contrast, expression is not detectable in other tissues by conventional PCR. In

10 particular, there is no expression in lung, liver, blood, lymph nodes, breast tissue and kidney tissue (tab. 3).

15 The splice variants thus represent according to the invention highly specific molecular markers for tumors of the upper gastrointestinal tract as well as lung tumors, ENT tumors, prostate carcinomas and metastases thereof. These molecular markers can be used according to the invention for detecting tumor cells. Detection

20 of the tumors is possible according to the invention with the oligonucleotides described (SEQ ID NO:39, 40, 107-110). Particularly suitable oligonucleotides are primer pairs of which at least one binds under stringent conditions to a segment of the transcript

25 which is 180 base pairs long and is specific for one (SEQ ID NO:8) or the other splice variant (SEQ ID NO:119).

In order to confirm these data at the protein level, claudin-specific antibodies and immune sera were

30 generated by immunizing animals. The plasma membrane localization of claudin-18 and the protein topology was confirmed by analysis of the transmembrane domains with bioinformatic tools (TMHMM, TMPRED) and immunofluorescence investigations of cells which

35 expressed claudin-18 fusion proteins tagged with enhanced GFP. Claudin-18 has two extracellular domains. The N-terminal extracellular domain differs in sequence in the two splice variants (SEQ ID NO:111 for A1 and SEQ ID NO:112 for A2). The C-terminal extracellular

domain is identical for both variants (SEQ ID NO:137). To date, no antibodies which bind to the extracellular domains of claudin-18 have yet been described. According to the invention, peptide epitopes which are 5 located extracellularly and are specific for variant A1 or A2 or occur in both variants were selected for the immunization. Both variants of claudin-18 have no conventional glycosylation motifs and the glycosylation of the protein was therefore not to be expected. 10 Nevertheless, account was taken in the selection of the epitopes that epitopes which comprise asparagine, serine, threonine are potentially glycosylated in rare cases even without conventional glycosylation sites. Glycosylation of an epitope may prevent the binding of 15 an antibody specific for this epitope. Inter alia, epitopes were selected according to the invention so that the antibodies generated thereby permit the glycosylation status of the antigen to be distinguished. The following peptides, inter alia, were 20 selected for producing antibodies for the immunization: SEQ ID NO:17: DQWSTQDLYN (N-terminal extracellular domain, A2-specific, binding independent of glycosylation)

SEQ ID NO:18: NNPVTAVFNYQ (N-terminal extracellular 25 domain, A2-specific, binding mainly to unglycosylated form, N37)

SEQ ID NO:113: STQDLYNNPVTAVF (N-terminal extracellular domain, A2-specific, binding only to non-glycosylated form, N37)

30 SEQ ID NO:114: DMWSTQDLYDNP (N-terminal extracellular domain, A1-specific)

SEQ ID NO:115: CRPYFTILGLPA (N-terminal extracellular domain, mainly specific for A1)

SEQ ID NO:116: TNFWMSTANMYTG (C-terminal extracellular 35 domain, recognizes both A1 and A2).

The data for the A2-specific antibody produced by immunization with SEQ ID NO:17 are shown by way of example. The specific antibody can be utilized under

various fixation conditions for immunofluorescence investigations. With comparative stainings of RT-PCR-positive and negative cell lines, in an amount which is readily detectable, the corresponding protein can be 5 specifically detected in the gastric carcinoma cell lines typed as positive (fig. 25). The endogenous protein is membrane-located and forms relatively large focal aggregates on the membrane. This antibody was additionally employed for protein detection in Western 10 blotting. As expected, protein is detected only in stomach and in no other normal tissue, not even lung (fig. 29). The comparative staining of stomach tumors and adjacent normal stomach tissue from patients surprisingly revealed that claudin-18 A2 has a smaller 15 mass weight in all stomach tumors in which this protein is detected (fig. 30, left). It was found according to the invention in a series of experiments that a band also appears at this level when lysate of normal stomach tissue is treated with the deglycosylating 20 agent PNGase F (fig. 30, right). Whereas exclusively the glycosylated form of the A2 variant is detectable in all normal stomach tissues, A2 is detectable as such in more than 60% of the investigated gastric carcinomas, in particular exclusively in the 25 deglycosylated form. Although the A2 variant of claudin-18 is not detected in normal lung even at the protein level, it is to be found in bronchial carcinomas, as also previously in the quantitative RT-PCR. Once again, only the deglycosylated variant is 30 present (fig. 31). Antibodies which recognize the extracellular domain of the claudin-18-A2 splice variant have been produced according to the invention. In addition, antibodies which selectively recognize the N-terminal domain of the claudin-18-A1 splice variant 35 (fig. 28) and antibodies which bind to both variants in the region of the C-terminal extracellular domain (fig. 27) have been produced. It is possible according to the invention to use such antibodies for diagnostic

purposes, e.g. immunohistology (fig. 32), but also for therapeutic purposes as explained above. A further important aspect relates to differentially glycosylated domains of claudin-18. Antibodies which exclusively bind to non-glycosylated epitopes have been produced according to the invention. Claudin-18 itself is a highly selective differentiating antigen for stomach tissue (A2) and for the lung and stomach (A1). Since it is evidently affected by changes in the glycosylation machinery in tumors, a particular, deglycosylated, variant of A2 is produced in tumors. This can be utilized diagnostically and therapeutically. Immune sera such as the one described here (against peptide of SEQ ID NO:17) can be utilized diagnostically for example in Western blotting. Antibodies which are entirely unable to bind to the glycosylated epitope as obtained for example by immunization with peptide of SEQ ID NO:113 (figure 26), can distinguish tumor tissue from normal tissue in the binding. It is possible in particular to employ such antibodies therapeutically because they are highly selective. The produced antibodies can be used directly also for producing chimeric or humanized recombinant antibodies. This can also take place directly with antibodies obtained from rabbits (concerning this, see J Biol Chem. 2000 May 5;275(18):13668-76 by Rader C, Ritter G, Nathan S, Elia M, Gout I, Jungbluth AA, Cohen LS, Welt S, Old LJ, Barbas CF 3rd. "The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies"). For this purpose, lymphocytes from the immunized animals were preserved. The amino acids 1-47 (SEQ ID NO:19 and 120) also represent particularly good epitopes for immunotherapeutic methods such as vaccines and the adoptive transfer of antigen-specific T lymphocytes.

Example 5: Identification of SLC13A1 as diagnostic and therapeutic cancer target

- 100 -

SLC13A1 belongs to the family of sodium sulfate cotransporters. The human gene is, in contrast to the mouse homolog of this gene, selectively expressed in 5 the kidney (Lee et al., *Genomics* 70:354-63). SLC13A1 codes for a protein of 595 amino acids and comprises 13 putative transmembrane domains. Alternative splicing results in 4 different transcripts (SEQ ID NO:41-44) and its corresponding translation products 10 (SEQ ID NO:45-48). It was investigated whether SLC13A1 can be used as marker for kidney tumors. Oligonucleotides (SEQ ID NO:49, 50) which enable specific amplification of SLC13A1 were used for this purpose.

15

- 101 -

Table 4. Expression of SLC13A1 in normal and tumor tissues

Normal tissue	Expression	Tumor type	Expression
Brain	-	Colon carcinoma	nd
Cerebellum	nd	Pancreatic carcinoma	nd
Myocardium	nd	Esophageal carcinoma	nd
Skeletal muscle	nd	Gastric carcinoma	nd
Myocardium	-	Bronchial carcinoma	nd
Stomach	-	Breast carcinoma	nd
Colon	-	Ovarian carcinoma	nd
Pancreas	nd	Endometrial carcinoma	nd
Kidney	+++	ENT tumors	nd
Liver	-	Renal cell carcinoma	+++
Testis	+	Prostate carcinoma	nd
Thymus	-		
Breast	-		
Ovary	-		
Uterus	nd		
Skin	nd		
Lung	-		
Thyroid	-		
Lymph nodes	-		
Spleen	-		
PBMC	-		
Sigmoid	-		
Esophagus	-		

RT-PCR investigations with an SLC13A1-specific primer pair (SEQ ID NO:49, 50) confirmed virtually selective expression in the kidney, and showed according to the invention a high expression in virtually all (7/8) 5 investigated renal cell carcinoma biopsies (tab. 4, fig. 6). Quantitative RT-PCR with specific primers (SEQ ID NO:121, 122) also confirmed these data (fig. 34). Weak signals were detectable in the following normal tissues: colon, stomach, testis, 10 breast, liver and brain. Expression in renal carcinomas was, however, at least 100 times higher than in all other normal tissues.

In order to analyse the subcellular localization of SLC13A1 in the cell, the protein was fused to eGFP as 15 reporter molecule and, after transfection of the appropriate plasmid, expressed heterologously in 293 cells. The localization was then analysed under the fluorescence microscope. Our data impressively confirmed that SLC13A1 is an integral transmembrane 20 molecule (fig. 35).

Antibodies for detecting the SLC13A1 protein were produced by immunizing rabbits. The peptides of SEQ ID NO:123 and 124 were used for propagating these 25 antibodies. Such antibodies can in principle be used for diagnostic and therapeutic purposes.

The SLC13A1 protein has 13 transmembrane domains and 7 extracellular regions. These extracellular domains of SLC13A1 in particular can be used according to the invention as target structures for monoclonal 30 antibodies. SLC13A1 is involved as channel protein in the transport of ions. The extracellular domains of SLC13A1 in the healthy kidney are directed polarically in the direction of the urinary tract (luminally). However, high molecular weight monoclonal antibodies 35 employed therapeutically are not excreted into the urinary tract, so that no binding to SLC13A1 takes place in the healthy kidney. By contrast, the polarity of SLC13A1 is abolished in tumor cells, and the protein is available for antibody targeting directly via the

- 103 -

bloodstream. The pronounced expression and high incidence of SLC13A1 in renal cell carcinomas make this protein according to the invention a highly interesting diagnostic and therapeutic marker. This includes
5 according to the invention the detection of disseminated tumor cells in serum, bone marrow, urine, and detection of metastases in other organs by means of RT-PCR. It is additionally possible to use the extracellular domains of SLC13A1 according to the
10 invention as target structure for immunodiagnosis and therapy by means of monoclonal antibodies. SLC13A1 can moreover be employed according to the invention as vaccine (RNA, DNA, protein, peptides) for inducing tumor-specific immune responses (T and B cell-mediated
15 immune responses). This includes according to the invention also the development of so-called small compounds which modulate the biological activity of SLC13A1 and can be employed for the therapy of renal tumors.

20

Example 6: Identification of CLCA1 as diagnostic and therapeutic cancer target

CLCA1 (SEQ ID NO:51; translation product: SEQ ID NO:60)
25 belongs to the family of Ca^{++} -activated Cl^- channels. The sequence is published in Genbank under the accession No. NM_001285. CLCA1 is exclusively expressed in the intestinal crypt epithelium and in the goblet cells (Gruber et al., *Genomics* 54:200-14, 1998). It was
30 investigated whether CLCA1 can be used as marker for colonic and gastric carcinoma. Oligonucleotides (SEQ ID NO:67, 68) which enable specific amplification of CLCA1 were used for this purpose. RT-PCR investigations with this primer set confirmed selective
35 expression in the colon, and showed according to the invention high expression in (3/7) investigated colonic and (1/3) investigated gastric carcinoma samples (fig. 7). The other normal tissues showed no or only

- 104 -

very weak expression. This was additionally confirmed with a specific quantitative RT-PCR (SEQ ID NO:125, 126), in which case no expression could be detected in the normal tissues analyzed (fig. 36). Of the tumor 5 samples investigated in this experiment, 6/12 colonic carcinoma samples and 5/10 gastric carcinoma samples were positive for CLCA1. Overall, expression of the gene in tumors appears to be dysregulated. Besides samples with very strong expression, CLCA1 was markedly 10 downregulated in other samples.

The protein is predicted to have 4 transmembrane domains with a total of 2 extracellular regions. These extracellular domains of CLCA1 in particular can be used according to the invention as target structures 15 for monoclonal antibodies.

The pronounced expression and high incidence of CLCA1 in gastric and colonic carcinomas make this protein according to the invention an interesting diagnostic and therapeutic marker. This includes according to the 20 invention the detection of disseminated tumor cells in serum, bone marrow, urine, and detection of metastases in other organs by means of RT-PCR. It is additionally possible to use the extracellular domains of CLCA1 according to the invention as target structure for 25 immunodiagnosis and therapy by means of monoclonal antibodies. CLCA1 can moreover be employed according to the invention as vaccine (RNA, DNA, protein, peptides) for inducing tumor-specific immune responses (T and B cell-mediated immune responses). This includes 30 according to the invention also the development of so-called small compounds which modulate the biological activity as transport proteins of CLCA1 and can be employed for the therapy of gastrointestinal tumors.

35 **Example 7: Identification of FLJ21477 as diagnostic and therapeutic cancer target**

FLJ21477 (SEQ ID NO:52) and its predicted translation

- 105 -

product (SEQ ID NO:61) was published as hypothetical protein in Genbank under the accession No. NM_025153. It is an integral membrane protein having ATPase activity and 4 transmembrane domains, which is 5 accordingly suitable for therapy with specific antibodies. RT-PCR investigations with FLJ21477-specific primers (SEQ ID NO:69, 70) showed selective expression in the colon, and additionally various levels of expression in (7/12) investigated colonic 10 carcinoma samples (fig. 8). The other normal tissues showed no expression. This was confirmed additionally by a specific quantitative RT-PCR (SEQ ID NO:127, 128). FLJ21477-specific expression was detectable both in colon (fig. 37A) and in 11/12 of colonic carcinomas. 15 Besides the expression in colon tissue, expression was additionally detectable in stomach tissue. In addition, under the conditions of the quantitative RT-PCR, the expression detectable in brain, thymus and esophagus was distinctly weaker compared with colon and stomach 20 (fig. 37A). It was moreover additionally possible to detect FLJ21477-specific expression in the following tumor samples: stomach, pancreas, esophagus and liver. The protein is predicted to have 4 transmembrane 25 domains with a total of 2 extracellular regions. These extracellular domains of FLJ21477 in particular can be used according to the invention as target structures for monoclonal antibodies.

The expression and the high incidence of FLJ21477 for 30 gastric and colonic carcinomas make this protein according to the invention a valuable diagnostic and therapeutic marker. This includes according to the invention the detection of disseminated tumor cells in serum, bone marrow, urine, and the detection of metastases in other organs by means of RT-PCR. In 35 addition, the extracellular domains of FLJ21477 can be used according to the invention as target structure for immunodiagnosis and therapy by means of monoclonal antibodies. In addition, FLJ21477 can be employed

- 106 -

according to the invention as vaccine (RNA, DNA, protein, peptides) for inducing tumor-specific immune responses (T and B cell-mediated immune responses).

5 **Example 8: Identification of FLJ20694 as diagnostic and therapeutic cancer target**

FLJ20694 (SEQ ID NO:53) and its translation product (SEQ ID NO:62) were published as hypothetical protein 10 in Genbank under accession No. NM_017928. This protein is an integral transmembrane molecule (transmembrane domain AA 33-54), very probably with thioredoxin function. RT-PCR investigations with FLJ20694-specific primers (SEQ ID NO:71, 72) showed selective expression 15 in the colon, and additionally various levels of expression in (5/9) investigated colonic carcinoma samples (fig. 9). The other normal tissues showed no expression. This was additionally confirmed by a specific quantitative RT-PCR (SEQ ID NO:129, 130) 20 (fig. 38). FLJ29694 expression was undetectable in any other normal tissue apart from colon and stomach (not analysed in the first experiment).

The protein is predicted to have one transmembrane domain with an extracellular region. These 25 extracellular domains of FLJ20694 in particular can be used according to the invention as target structures for monoclonal antibodies.

In addition, FLJ20694 can be employed according to the invention as vaccine (RNA, DNA, protein, peptides) for 30 inducing tumor-specific immune responses (T and B cell-mediated immune responses). This includes according to the invention also the development of so-called small compounds which modulate the biological activity of FLJ20694 and can be employed for the therapy of 35 gastrointestinal tumors.

Example 9: Identification of von Ebner's protein (c20orf114) as diagnostic and therapeutic cancer target

von Ebner's protein (SEQ ID NO:54) and its translation product (SEQ ID NO:63) were published as Plunc-related protein of the upper airways and of the nasopharyngeal 5 epithelium in Genbank under the accession No. AF364078. It was investigated according to the invention whether von Ebner's protein can be used as marker of lung carcinoma. Oligonucleotides (SEQ ID NO:73, 74) which enable specific amplification of Ebner's protein were 10 used for this purpose. RT-PCR investigations with this primer set showed selective expression in the lung and in (5/10) investigated lung carcinoma samples (fig. 10). In the group of normal tissues there was also expression in the stomach. The other normal tissues 15 showed no expression.

Example 10: Identification of Plunc as diagnostic and therapeutic cancer target

20 Plunc (SEQ ID NO:55) and its translation product (SEQ ID NO:64) were published in Genbank under the accession No. NM_016583. Human Plunc codes for a protein of 256 amino acids and shows 72% homology with the murine Plunc protein (Bingle and Bingle, *Biochem 25 Biophys Acta* 1493:363-7, 2000). Expression of Plunc is confined to the trachea, the upper airways, nasopharyngeal epithelium and salivary gland. It was investigated according to the invention whether Plunc can be used as marker of lung carcinoma. 30 Oligonucleotides (SEQ ID NO:75, 76) which enable specific amplification of Plunc were used for this purpose. RT-PCR investigations with this primer set showed selective expression in the thymus, in the lung and in 35 (6/10) investigated lung carcinoma samples (fig. 11). Other normal tissues showed no expression.

Example 11: Identification of SLC26A9 as diagnostic and

therapeutic cancer target

SLC26A9 (SEQ ID NO:56) and its translation product (SEQ ID NO:65) were published in Genbank under the 5 accession No. NM_134325. SLC26A9 belongs to the family of anion exchangers. Expression of SLC26A9 is confined to the bronchiolar and alveolar epithelium of the lung (Lohi et al., J Biol Chem 277:14246-54, 2002). It was investigated whether SLC26A9 can be used as 10 marker of lung carcinoma. Oligonucleotides (SEQ ID NO:77, 78) which enable specific amplification of SLC26A9 were used for this purpose. RT-PCR investigations with SLC26A9-specific primers (SEQ ID NO:77, 78) showed selective expression in the 15 lung and in all (13/13) investigated lung carcinoma samples (fig. 12). The other normal tissues showed no expression, with the exception of the thyroid. It was possible in quantitative RT-PCR experiments with the primers of SEQ ID NO:131 and 132 firstly to confirm 20 these results, and to obtain additional information. It was possible in pooled samples of 4-5 tumor tissues to detect high expression levels for SLC26A9-specific RNA in lung, colon, pancreas and stomach tumors. SLC26A9 is member of a family of transmembrane anion transporters. 25 In the healthy lung, the protein is luminally directed in the direction of the airways and thus not directly available to IgG antibodies from the blood. By contrast, the polarity of the protein is abolished in tumors. It is therefore possible according to the 30 invention to address SLC26A9 as therapeutic target using monoclonal antibodies in the defined tumors, inter alia lung tumors, gastric carcinomas, pancreatic carcinomas. The pronounced, high expression and high incidence of SLC26A9 for lung, stomach, pancreatic and 35 esophageal carcinomas make this protein according to the invention an excellent diagnostic and therapeutic marker. This includes according to the invention the detection of disseminated tumor cells in serum, bone

- 109 -

marrow and urine, and detection of metastases in other organs by means of RT-PCR. In addition, the extracellular domains of SLC26A9 can be used according to the invention as target structure for 5 immunodiagnosis and therapy by means of monoclonal antibodies. It is additionally possible to employ SLC26A9 according to the invention as vaccine (RNA, DNA, protein, peptides) for inducing tumor-specific immune responses (T and B cell-mediated immune 10 responses). This includes according to the invention also the development of so-called small compounds which modulate the biological activity of SLC26A9 and can be employed for the therapy of lung tumors and gastrointestinal tumors.

15

Example 12: Identification of THC1005163 as diagnostic and therapeutic cancer target

THC1005163 (SEQ ID NO:57) is a gene fragment from the 20 TIGR gene index. The gene is defined only in the 3' region, while an ORF is lacking. RT-PCR investigations took place with a THC1005163-specific primer (SEQ ID NO:79) and an oligo dT₁₈ primer which had a specific tag of 21 specific bases at the 5' end. This 25 tag was examined using database search programs for homology with known sequences. This specific primer was initially employed in the cDNA synthesis in order to preclude genomic DNA contaminations. RT-PCR investigations with this primer set showed expression 30 in the stomach, ovary, lung and in (5/9) lung carcinoma biopsies (fig. 13). Other normal tissues showed no expression.

35 **Example 13: Identification of LOC134288 as diagnostic and therapeutic cancer target**

LOC134288 (SEQ ID NO:58) and its predicted translation product (SEQ ID NO:66) were published in Genbank under

- 110 -

accession No. XM_059703.

It was investigated according to the invention whether LOC134288 can be used as marker of renal cell carcinoma. Oligonucleotides (SEQ ID NO:80, 81) which 5 enable specific amplification of LOC134288 were used for this purpose. RT-PCR investigations showed selective expression in the kidney and in (5/8) investigated renal cell carcinoma biopsies (fig. 14).

10 **Example 14: Identification of THC943866 as diagnostic and therapeutic cancer target**

THC 943866 (SEQ ID NO:59) is a gene fragment from the TIGR gene index. It was investigated whether THC943866 15 can be used as marker of renal cell carcinoma. Oligonucleotides (SEQ ID NO:82, 83) which enable specific amplification of THC943866 were used for this purpose.

RT-PCR investigations with THC943866-specific primers 20 (SEQ ID NO:82, 83) showed selective expression in the kidney and in (4/8) investigated renal cell carcinoma biopsies (fig. 15).

25 **Example 15: Identification of FLJ21458 as diagnostic and therapeutic cancer target**

FLJ21458 (SEQ ID NO:84) and its predicted translation product (SEQ ID NO:85) were published in Genbank under the accession No. NM_034850. Sequence analyses revealed 30 that the protein represents a new member of the butyrophillin family. Structural analyses revealed that it represents a type 1 transmembrane protein with an extracellular immunoglobulin domain. Oligonucleotides (SEQ ID NO:86, 87) which enable specific amplification 35 of FLJ21458 were used for investigating expression. RT-PCR investigations with FLJ21458-specific primers (SEQ ID NO:86, 87) showed selective expression in colon and in (7/10) investigated colonic carcinoma biopsies

- 111 -

(fig. 16, tab. 5). Quantitative RT-PCR with specific primers (SEQ ID NO:133, 134) confirmed this selective expression profile (fig. 39). It was additionally possible in the experiment to detect FLJ21458 5 gastrointestinal-specifically in the colon, and in stomach, in the rectum and cecum and in testis. 7/11 colon metastasis samples were also positive in the quantitative PCR. FLJ21458-specific expression was extended to other tumors, and a protein-specific 10 expression was detectable in stomach, pancreas and liver tumors (tab. 5). Antibodies for detecting FLJ21458 protein were produced by immunizing rabbits. The following peptides were used to propagate these antibodies:

15 SEQ ID NO:135: QWQVFGPDKPVQAL

SEQ ID NO:136: AKWKGPQGQDLSTDS

An FLJ21458-specific reaction was detectable in immunofluorescence (fig. 40). To check the specificity of the 20 antibodies, 293 cells were transfected with a plasmid that codes for an FLJ21458-GFP fusion protein. Specificity was demonstrated on the one hand by colocalization investigations using the FLJ21458-specific antibody, and on the other hand via the auto-fluorescent GFP. Superimposition of the two fluorescent 25 diagrams showed unambiguously that the immune serum specifically recognises FLJ21458 protein (fig. 40a). Owing to the overexpression of the protein, the resultant cell staining was diffuse and did not allow unambiguous protein localization. For this reason, a 30 further immunofluorescence experiment was carried out with the stomach tumor-specific cell line Snu16 which expresses FLJ21458 endogenously (fig. 41B). The cells were stained with the FLJ21458-specific antiserum and with another antibody which recognizes the membrane 35 protein E-cadherin. The FLJ21458-specific antibody stains the cell membranes at least weakly and is thus evidence that FLF21458 is localized in the cell membrane.

Bioinformatic investigations showed that the protein encoded by FLJ21458 represents a cell surface molecule and has an immunoglobulin supermolecule domain.

5 Selective expression of this surface molecule makes it a good target for developing diagnostic methods for the detection of tumor cells and therapeutic methods for the elimination of tumor cells.

10 The pronounced expression and high incidence of FLJ21458 for gastric and colonic carcinomas make this protein according to the invention a highly interesting diagnostic and therapeutic marker. This includes according to the invention the detection of disseminated tumor cells in serum, bone marrow and 15 urine, and the detection of metastases in other organs by means of RT-PCR. It is additionally possible to employ the extracellular domains of FLJ21458 according to the invention as target structure for immuno-diagnosis and therapy by means of monoclonal 20 antibodies. It is additionally possible to employ FLJ21458 according to the invention as vaccine (RNA, DNA, protein, peptides) for inducing tumor-specific immune responses (T and B cell-mediated immune responses). This includes according to the invention 25 also the development of so-called small compounds which modulate the biological activity of FLJ21458 and can be employed for the therapy of gastrointestinal tumors.

Table 5 FLJ21458 expression in normal and tumor tissues

Normal tissue	Expression	Tumor type	Expression
Brain	-	Colonic carcinoma	7/10
Cerebellum	-	Pancreatic carcinoma	5/6
Myocardium	nd	Esophageal carcinoma	nd
Skeletal muscle	-	Gastric carcinoma	8/10
Myocardium	-	Bronchial carcinoma	nd
Stomach	++	Breast carcinoma	nd
Colon	+++	Ovarian carcinoma	nd
Pancreas	-	Endometrial carcinoma	nd
Kidney	-	ENT tumors	nd
Liver	-	Renal cell carcinoma	nd
Testis	++	Prostate carcinoma	nd
Thymus	nd	Colonic metastases	7/11
Breast	nd	Liver carcinoma	5/8
Ovary	-		
Uterus	-		
Skin	-		
Lung	-		
Thyroid	nd		
Lymph nodes	-		
Spleen	-		
PBMC	-		
Adrenal	nd		
Esophagus	-		
Small intestine	-		
Prostate	-		