一般の確率空間

確率・統計 第2回

村田 昇

2020年8月23日

有理数の可算性

集合を含まれる要素の数によって分類することがある.この場合無限個の要素からなる集合でも,"数えられる無限個"と"数えられない無限個"では性質が異なる.まず数えられる無限個を考える.

可算集合

定義

集合の全ての要素に自然数で順番に番号が与えられることを**可算 (可付番) (enumerable, countable)** という.

- 自明な可算集合の例
 - 要素が有限個の集合
 - 自然数

有理数の可算性

 区間 (0,1) に含まれる全ての有理数は可算 有理数と自然数に1対1の対応があることを示せばよい。

分子 \ 分母	2	3	4	5	6	
1	1/2	1/3	1/4	1/5	1/6	
2		2/3	$\frac{2}{4}$	2/5	$\frac{2}{6}$	
3			3/4	3/5	$\frac{3}{6}$	
4				4/5	4/6	
5				•	5/6	
					,	
•						• • •

対応づけ出来そうだが規則の記述は難しそう

Bernstein の定理

• 1対1の対応が存在することを示す代わりに、以下の1対1の対応がそれぞれ存在することを示す。

有理数の可算性 (再考)

- Bernstein の定理を用いた場合
 - 全ての自然数 n から有理数の部分集合 1/q への 1 対 1 対応

$$n \mapsto \frac{1}{q} = \frac{1}{n+1}$$

図 1: Bernstein の定理

- 全ての有理数 p/q から自然数 n の部分集合への 1 対 1 対応

$$\frac{p}{q} \mapsto n = 2^p \times 3^q$$

(n としては2と3の倍数しか現れない)

演習

- 整数が可算であることを示せ.
- 自然数の組 (m,n) が可算であるかどうか論じよ.
- 1以上の有理数が可算であるかどうか論じよ.

整数の可算性

• 示すべきこと

自然数と整数の間に1対1の対応づけがある.

- 構成例
 - 奇数の自然数: $n \mapsto z = (n-1)/2$ (非負の整数)
 - 偶数の自然数: $n\mapsto z=-n/2$ (負の整数)
- Bernstein の定理を使った場合も考えてみよ

自然数の組の可算性

• 以下の表に番号を振ることを考えればよい

(m,n)	1	2	3	4	5	
	(1,1)					
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	
:						
•						

自然数の組の可算性 (続)

• 例えば斜めに振っていく

(m,n)	1	2	3	4	5	
1	1	2	4	7	11	
2	3	5	8	12	17	
3	6	9	13	18	24	
4	10	14	19	25		
5	15	20	26			
:						
:						

• 規則(数式)は考えてみよ

1以上の有理数の可算性

- 1以上の有理数は (自然数, 区間 [0,1) の有理数) と分解して考えることができる
- 区間 [0,1) の有理数は番号付けできる (区間 (0,1) に 0 を加えただけ) ので、(自然数、自然数) に対応 づけられる
- 前間の結果を用いれば明らか

無理数の非可算性

次に数えられない無限個とは何かを考える.

非可算集合

定義

可算でないことを**非可算 (unenumerable, uncountable)** という。(不可算と書かれている場合もある)

- 非可算集合の例
 - 区間 (0,1) に含まれる無理数
 - 実数全体

Cantor の対角線論法

- 無理数の非可算性の証明 (背理法)
- 証明の概要 (詳しくは講義資料)
- その1

区間 (0,1) に含まれる **無理数の集合は可算** と仮定する.

その2

有理数の集合は可算なので、仮定より無理数と有理数の和である実数も可算となる。

その3

自然数との対応付けを行い、番号順に並べる.

 $\begin{array}{lll} 1: & 0.\,d_1^1\,d_2^1\,d_3^1\,d_4^1\cdots \\ 2: & 0.\,d_1^2\,d_2^2\,d_3^2\,d_4^2\cdots \\ 3: & 0.\,d_1^3\,d_2^3\,d_3^3\,d_4^3\cdots \\ 4: & 0.\,d_1^4\,d_2^4\,d_3^4\,d_4^4\cdots \\ \vdots & & \vdots & \end{array}$

ただし、有限桁の小数の場合は 0 で埋める.

その4

第 n 番の数の第 n 桁目 d_n^n とは **異なる数** $\tilde{d}_n^n \neq d_n^n$ を選び、これらを並べた次の数を考える。 $0.\ \tilde{d}_1^1\ \tilde{d}_2^2\ \tilde{d}_3^3\ \tilde{d}_4^4\cdots$

その5

区間 (0,1) に含まれるこの数の番号を探す.

その6

第 n 番の数とは第 n 桁目が **違っている** ので、この数は区間 (0,1) の **全ての実数を並べた** はずの表にはない

その7

番号が振られていない数が存在するので区間 (0,1) の実数が可算である (並べて番号が付けられる) ことに矛盾する.

その8

つまり最初の仮定"無理数の集合は可算"が間違っていたということ.

集合の分類

- 無限集合を更に分類 (可算と非可算) する必要がある
- 集合の濃度
 - この講義で必要な概念は以下の3つ 有限の濃度 有限個の要素からなる集合 可算の濃度 自然数,有理数など 連続の濃度 無理数,実数など
- より詳しくは位相と集合の本を参照

演習

- 以下の集合の濃度を答えなさい.
 - 区間 (0,1) に含まれる有理数
 - 区間 (0,1) に含まれる無理数
 - 実数 \mathbb{R} (区間 $(-\infty,\infty)$)
 - -2つの実数の組 $(x,y) \in \mathbb{R}^2$
 - 2次元空間において xy 座標がともに整数となる点の集合
 - 表が出るまでコインを投げ続ける試行の見本空間

一般の確率測度

有限試行ではない一般の見本空間を考えた場合に、確率測度 P がどんな性質をもたなくてはいけないかを説明する.

可測集合

可測集合 (measurable set) 確率測度 P で確率の値を測ることができる集合 (見本点の集合の中で事象として考えてよいもの)

可測 (measurable) "集合 A が可測" とは集合 A を確率測度 P で測ることができること

集合族

- 確率測度 P で確率の値を測ることができる対象全体 (関数 P の 定義域) を F と書く
- 定義域 \mathcal{F} は可測な事象 (見本空間の部分集合) $A \subset \Omega$ の集まり
- このような "集合の集合" を集合族 (family of sets) という

σ -加法族

定義

以下の $(\sigma.1)$ - $(\sigma.3)$ の 3 つの条件を満たす集合族を σ -加法族 $(\sigma$ -algebra) と呼ぶ.

- $(\sigma.1)$ $\Omega \in \mathfrak{F}$
- $(\sigma.2)$ $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$

$$(\sigma.3)$$
 $A_n \in \mathcal{F}, (n = 1, 2, \dots) \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

• (σ.1)-(σ.3) は定義域 牙 の満たすべき条件でもある

条件の意味

- $(\sigma.1)$ 見本空間 (全事象) は可測である (P で測ることができる)
- $(\sigma.2)$ ある事象が可測なら、その余事象も可測である
- (σ.3) 可測集合の可算 (自然数で番号付けできる) 無限和も可測である

確率測度

定義

集合関数 P は条件 (P.1), (P.2) を満たすとき**測度 (measure)** と呼ばれ、さらに (P.3) まで満たすとき**確率測度 (probability measure)** と呼ばれる. また P(A) を A の**測度**という.

$$(P.1)$$
 $P(A) \ge 0, A \in \mathcal{F}$

$$(P.2) \quad P\left(\sum_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n), \ A_n \in \mathcal{F}$$

$$(P.3) P(\Omega) = 1$$

• (P.2) を σ -加法性 (σ -additivity) という.

確率空間

定義

見本空間 Ω と確率測度 P ,および P の定義域である σ -加法族 $\mathfrak F$ の組 $(\Omega, \mathfrak F, P)$ を**確率空間** (probability speae) という.

Lebesgue 測度

一般の確率測度の中でも応用上最も重要な測度について説明する.

ルーレット回しの確率測度

• 区間 (0,1] からの無作為抽出

試行 T を "区間 (0,1] から無作為に一点抜き出すこと"とする。このとき見本空間は

$$\Omega = (0, 1]$$

であり無限試行となる. 確率測度は事象 A が区間 [a,b],(a,b),[a,b) または (a,b] といった簡単な集合であれば

$$P(A) = |A| = b - a$$
, ($|A|$ は区間の長さを表す)

とすればよい

確率測度の定義域

- 確率測度 P の定義域 牙 は集合演算で作られる
- 可算個 の区間を組み合わせてつくられる集合

チ= {可算個の任意の区間の和,差,交, 余集合から作られる集合}

• 集合の測度 (確率) は (P.2) の性質より排反な区間の長さの和から計算できる

Lebesgue 測度

定義

"区間 (0,1] から無作為に一点抜き出す"試行 T によって考えられる確率測度 P を (0,1] 上の Lebesgue 測度 (Lebesgue measure) という。また Lebesgue 測度の定義域となる σ -加法族を $\mathbb R$ の Borel 集合族 (Borel field) という。

- Lebesgue 測度は μ で表されることが多い
- 厳密な定義については Lebesgue 積分の本を参考

Lebesgue 測度の計算

• 一点が抜き出される確率

Lebesgue 測度において, $P\{a\}$ (一点 a が抜き出される確率) は 0 となる.例えば $\{1,1/2,1/3,\dots\}$ という可算集合を考えると,

$$P\left\{\frac{1}{n}\right\} \ge \varepsilon > 0 \Rightarrow P\left(\left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}\right) = \sum_{n=1}^{\infty} P\left\{\frac{1}{n}\right\} \to \infty$$

となり矛盾が生じる.

• 抜き出した点が有理数である確率

$$\mathbb{R}_{(0,1]} = \{ 区間 (0,1] 上の実数全体 \} (= \Omega)$$
 $\mathbb{Q}_{(0,1]} = \{ 区間 (0,1] 上の有理数全体 \}$

と書くことにする。有理数は 可算 であるからその要素に番号が付けられ、

$$\mathbb{Q}_{(0,1]} = \{q_1, q_2, q_3, \dots, q_n, \dots\}$$

と書けるので、(P.2)の性質により計算できる.

$$P(\mathbb{Q}_{(0,1]}) = P(\{q_1, q_2, q_3, \dots, q_n, \dots\})$$

= $P\{q_1\} + P\{q_2\} + P\{q_3\} + \dots + P\{q_n\} + \dots$
= $0 + 0 + 0 + \dots + 0 + \dots = 0$

• 抜き出した点が無理数である確率

(区間
$$(0,1]$$
 上の無理数全体) = $\mathbb{R}_{(0,1]} - \mathbb{Q}_{(0,1]}$

を用いて求められる.

$$P(\mathbb{R}_{(0,1]} - \mathbb{Q}_{(0,1]}) = P(\mathbb{R}_{(0,1]}) - P(\mathbb{Q}_{(0,1]}) = 1 - 0 = 1$$

無理数全体は **可算でない** ため有理数のように成分毎の可算無限和では書けず、したがって (P.2) の性質を使って計算することはできない.

• 異なる区間の場合

"区間 (0,5] から無作為に一点抜き出す" 試行を考えたとき,その見本空間は $\Omega=(0,5]$ となる.この試行の確率測度は Lebesgue 測度 μ を定数倍 (正規化) し,

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{\mu(A)}{5}, \ A \in \mathcal{F}$$

とすることによって構成できる.

零集合

定義

空集合でない集合 A でその事象が起こる確率が P(A)=0 となるものがある。こうした集合を **零集合 (null set)** と呼ぶ。

- 以下は等しくないことに注意 (有理数と無理数の例)
 - 事象 A の確率が 0 である
 - 事象 A に含まれる見本点が全く起こらない

"ほとんど確実"

• 確率での特殊な言い回し

事象 $A = \{\omega | \alpha(\omega)\}$ の確率が 1 であるとき、"ほとんど確実に (almost surely)" あるいは "条件 $\alpha(\omega)$ が確率 1 で成り立つ" といい、以下のように書く.

$$\alpha(\omega)$$
 a.s.

- 別の表現
 - 事象 A の余事象 A^c は零集合
 - 条件 α は成り立たないこともあるが、その確率は 0

演習

• Buffon の針 (Buffon's needle) の問題を考えよ

2次元平面上に等間隔 d で平行線が引いてある。長さ l の針をこの平面上にランダムに落としたとき、平行線と交わる確率を求めよ。ただし l < d とする。

Buffon's needle

図 2: Buffon の針

まとめ

- 一般の確率空間
 - 有限集合と無限集合
 - 集合の濃度 (無限集合は更に分類される)
 - * 可算集合: 自然数, 整数, 有理数
 - * 連続集合: 無理数, 実数
 - 一般の確率測度と σ -加法性の関係
 - Lebesgue 測度と Borel 集合族 (応用上重要な概念)
 - "ほとんど確実に成り立つ"