Chapter 1

Introduction, Big-O-notation. Horner's method. [1.1, 2.6]

Motivation:

- Sometimes problems require too much time, effort, etc. to be pratically solved with a computer.
- Some problems cannot be solved analytically.
- For applications, numerical solutions are often sufficient.

Example 1.0.1. Can you solve:

1. $\sin(0.67)$

2.
$$\int_0^1 e^{-x^2} dx$$

3.
$$x^2 - \sin(x) - 1 = 0, x = ?$$

Numerical problems lead to new mathematical questions.

Example 1.0.2. Suppose $Ax = b, A \in \mathbb{R}^{n \times n}$, $det(A) \neq 0$, and A is symmetric. Find det(A).

Approach I: Use Sarrus' rule $det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$. For each permutation σ , we have n!permutations. So we have $n \cdot n!$ product operations. Furthermore, we have n! - 1 additions, meaning that the method requires n(n!) + n! - 1 operations. This approach works fine for small n, but not for large n.

Approach II: Use the diagonalization method. Since A is symmetric, we can find an orthogonal matrix Q such that $Q^TAQ = D$, where D is a diagonal matrix. Then, we have det(A) = det(Q)det(D) = det(D). We can compute det(A) in $cn^3 + n - 1$ operations where c is a constant.

Definition 1.0.1. Consider sequences (x_n) and (α_n) , where $n=0,1,2,\ldots$ We say that (x_n) is in $O(\alpha_n)$ if there exist constants C, N such that

$$|x_n| \le C|\alpha_n|, \quad \forall n \ge N$$

Example 1.0.3. $\frac{n+1}{n^2}$ is in $O(\frac{1}{n})$. $Cn^3 + n - 1$ is in $O(n^3)$. n(n!) is in O(n(n!)).

Remark It is also true that $Cn^3 + n - 1$ is in O(n(n!)).

Definition 1.0.2. Let (x_n) , (α_n) be sequences, where $n = 0, 1, 2, \ldots$ We say that (x_n) is in $\Theta(\alpha_n)$ if there exist constants C_1, C_2, N such that

$$C_1|\alpha_n| \le |x_n| \le C_2|\alpha_n|, \quad \forall n \ge N$$

Example 1.0.4. $n(n!) \le n(n!) + n! - 1 \le 2n(n!)$ for $n \ge 1$. So n(n!) + n! - 1 is in $\Theta(n(n!))$.

Example 1.0.5. $Cn^3 \le Cn^3 + n - 1 \le (C+1)n^3$ for $n \ge 1$. So $Cn^3 + n - 1$ is in $\Theta(n^3)$.

Question How many operations are required to evaluate a polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ at a point z_0 where $a_n, a_{n-1}, \ldots, a_1, a_0, z_0 \in \mathbb{R}$? The simplest approach computes $a_k z^k$ by using k multiplications, and then sums them up. This requires

 $n + (n-1) + \cdots + 1 + n = \frac{n(n+1)}{2} + n$ which is in $\Theta(n^2)$.

The Horner's method is based on the remaider theorem, which reduce complexity of evaluation of a polynometric polynometr

mial. It only requires $\Theta(n)$ operations.

Theorem 1.0.1 (Horner's Method). Let p(z) be a polynomial of degree n, with real coefficients, and $z_0 \in \mathbb{R}$. Then there exists $r \in \mathbb{R}$ and a polynomial q(z) of degree n-1 such that

$$p(z) = r + (z - z_0)q(z)$$

Proof. Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$. Our goal is to find coefficients $b_{n-1}, b_{n-2}, \ldots, b_1, b_0$ and a constant r such that

$$p(z) = r + (z - z_0)(b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0)$$

Equating coefficients of like powers of z on both sides, we get a system of equations:

$$a_{n} = b_{n-1}$$

$$a_{n-1} = b_{n-2} - z_{0}b_{n-1}$$

$$a_{n-2} = b_{n-3} - z_{0}b_{n-2}$$

$$\vdots$$

$$a_{1} = b_{0} - z_{0}b_{1}$$

$$a_{0} = r - z_{0}b_{0}$$

Solving the equations from the top the the bottom recursively leads to a unique solution:

$$b_{n-1} = a_n$$

$$b_{n-2} = a_{n-1} + z_0 b_{n-1}$$

$$b_{n-3} = a_{n-2} + z_0 b_{n-2}$$

$$\vdots$$

$$b_0 = a_1 + z_0 b_1$$

$$r = a_0 + z_0 b_0$$

Remark. It is convenient to write $b_{-1} = r$ which leads to equations

$$b_{n-1} = a_n$$
 $a_k = b_{k-1} - z_0 b_k, \quad k = n - 1, \dots, 0$

These equations can be graphically represented as:

Remark We have n equations, each of which requires one addition and one multiplication. Overall complexity of computing $p(z_0)$ is in $\Theta(n)$.

Remark The algorithm can be used for finding all roots of p(z) by starting with a root z_0 , then writing $p(z) = (z - z_0)q(z)$, and finding z_1 and etc. We will later learn how to find these roots and how to apply the algorithm.

Remark Note that $p'(z) = q(z) + (z - z_0)q'(z)$, so $p'(z_0) = q(z_0)$ which can be evaluated by Horner again.

Example 1.0.6. Let $p(z) = z^4 - 4z^3 + 7z^2 - 5z - 2$. We compute p(3) and p'(3).

We set up the following table:

So we have p(3) = r = 19. Then we set up the following table to compute p'(3) = q(3):

So we have p'(3) = q(3) = 37.