ACID STRENGTH & BASIC STRENGTH

EXERCISE # O-1

- Write correct order of acidic strength of following compounds: 1.
 - (i) (a) $NO_2 CH_2 C O H$
- (b) $F-CH_2-C-O-H$

- $\begin{array}{c} O \\ \parallel \\ (c) \ Ph-CH_2-C-O-H \end{array}$
- (d) CH₃ CH₂ C O H

AB0001

- (ii) (a) $CH_3 CH_2 CH C O H$ (b) $CH_3 CH CH_2 C O H$ (c) $CH_2 CH_2 CH_2 C O H$

AB0002

(iii) (a) $Cl - CH_2 - C - O - H$

Ċl

- (c) Cl-C-C-O-H
- (iv)(a) CH₃-CH₂-O-H

(b) $CH_3 - CH - O - H$ ĊH₃

AB0004

AB0003

AB0005

- COOH (vi) (a)
- (b) CH₂. COOH
- $\begin{array}{c} \operatorname{CH_2-COOH} \\ \text{(c)} \mid \\ \operatorname{CH_2-COOH} \end{array}$

AB0006

- (vii) (a) H-F
- (b) H-Cl
- (c) H-Br
- (d) H-I

- (viii) (a) CH₄
- (b) NH₃
- (c) H₂O
- (d) H-F

- (ix)(a) F-CH₂-CH₂-O-H
 - (c) Br-CH₂-CH₂-O-H

(b) NO₂-CH₂-CH₂-O-H (d) $\stackrel{\oplus}{NH_3}$ – CH_2 – CH_2 – O – H

AB0009

- (x) (a) CH₃COOH
- (b) CH₃CH₂OH
- (c) C_6H_5OH (d) $C_6H_5SO_3H$

AB0010

- 2. Explain which is a stronger acid.
 - (a) CH₃CH₃ or BrCH₂NO₂

AB0011

O O
$$\parallel$$
 (b) CH_3-C-CH_3 or CH_3-C-CH_2CN

AB0012

(c)
$$\bigcirc$$
 OH OH OH \bigcirc OH \bigcirc CH₃

AB0013

$$(d) \bigcirc^{SH} \quad \text{or} \quad \bigcirc^{OH}$$

AB0014

- **3.** Which of the following would you predict to be the stronger acid?
 - (a) Benzoic acid or para-nitrobenzoic acid

AB0015

(b)
$$CH_3$$
- CH_2 - CH_2 - OH or CH_3 - $CH = CH - OH$

AB0016

(c)
$$CH_3 - CH = CH - CH_2 - OH$$
 or $CH_3 - CH = CH - OH$

AB0017

Arrange the given phenol & its derivative in their decreasing order of acidity: 4.

(I)
$$C_6H_5$$
-OH

$$(II)$$
 F \bigcirc OH

$$(III) Cl \longrightarrow OH$$

$$-OH (IV) O_2N - \langle O \rangle - OH$$

Select the correct answer from the given code:

- (A) IV > III > I > II
- (B) IV > II > III > I
- (C) IV > III > II > I
- (D) IV > I > III > II

AB0018

5. Which one of the following is the most acidic?

(D) CH₂=CH-CH₃

6. Which of the following is weakest acid?

AB0020

- 7. Arrange pH of the given compounds in decreasing order:
 - (1) Phenol
- (2) Ethyl alcohol
- (3) Formic acid
- (4) Benzoic acid

- (A) 1 > 2 > 3 > 4
- (B) 2 > 1 > 4 > 3
- (C) 3 > 2 > 4 > 1
- (D) 4 > 3 > 1 > 2

AB0021

8. Arrange acidity of given compounds in decreasing order:

(I)
$$CH_3$$
- NH - CH_2 - CH_2 - OH

(III)
$$(CH_3)_3 \stackrel{\oplus}{N} - CH_2 - CH_2 - OH$$

(B)
$$III > II > I$$

$$(D) II > I > III$$

AB0022

9. Consider the following compound

I

Which of the above compounds reacts with NaHCO₃ giving CO₂

II

- (A) I, II and III
- (B) I and III
- (C) II and III

Ш

(D) I and II

AB0023

10. Say which pk_a belong to which functional group in case of following amino acids:

(i) cysteine : HS

1.8, 8.3 & 10.8

AB0024

(ii) glutamic acid : HO_2C COOH : 2.19, 4.25, 9.67

AB0025

node06\B0B0-BA\Kota\EE(Advanced)\Wadule Coding (V-Tag)\Nurture\Chemistry\Acidic &BasicStren

11. Record the following sets of compounds according to increasing pK_a (= - log Ka)

AB0026

(b) 1-butyne, 1-butene, butane

AB0027

(c) Propanoic acid, 3-bromopropanoic acid, 2-nitropropanoic acid

AB0028

(d) Phenol, o-nitrophenol, o-cresol

AB0029

(e) Hexylamine, aniline, methylamine

AB0030

12. Write correct order of acidic strength of following compounds:

(c)
$$NO_2$$

$$(d) \xrightarrow{NO_2} NO_2$$

$$NO_2 \xrightarrow{NO_2} NO_2$$

AB0031

AB0033

13.

OH NO_2 NO_2 (b) (iv) (a)

$$(d) \bigcup_{NO_2}^{OH} NO_2$$

$$AB0041$$

14. The strongest acid is:

(A)HF

(B) CH₃CO₂H

(C) $HF + SbF_5$

(D) H₂S

AB0042

AB0040

15. The weakest acid (does not show acidic character) is:

 $(A)HC \equiv CH$

(B) $CH_2 = CH_2$

(C) Me₃CH

(D) Ph₃CH

AB0043

Which of the following is most acidic: **16.**

ÇOOH (B) NO₂

Paragraph for Question 17 to 18

The most important condition for resonance to occur is that the involved atoms in resonating structure must be coplanar or nearly coplanar for maximum delocalisation. If this condition does not fulfil, involved orbitals cannot be parallel to each other and as a consequence delocalisation cannot occur. Bulky groups present on adjacent atoms inhibit the planarity of atoms involved in resonance. This phenomenon is known as steric inhibition of resonance. Steric inhibition of resonance has profound effect on

- (1) Physical properties
- (2) Acidity and basicity (3) Reactivity of organic compounds
- **17.** Arrange the following in the decreasing order of basicity:

$$(IV) \bigcirc_{NO_2}^{NH_2}$$

- (A) I > II > III > IV
- (B) IV > III > II > I (C) II > I > IV > III (D) I > IV > III > II
 - **AB0045**

18. Which of the following is most acidic:

AB0046

- **19.** How many following compounds are more acidic than water?
 - SO₃H
- (b) HCl
- (c) $CH_3 C \equiv CH$ (d) CO_2H

(i) NaOH

AB0047

- **20.** Select correct order regarding acidic strength of given compounds:
 - (1) o-methylbenzoic acid

(2) m-methylbenzoic acid

(3) p-methylbenzoic acid

(4) benzoic acid

- (A)1 > 2 > 3 > 4
- (B) 4 > 3 > 2 > 1
- (C) 1 > 4 > 2 > 3
- (D) 3 > 2 > 4 > 1

EXERCISE # O-2

- 1. Write decreasing order of basic strength of following:
 - (i) (a) CH₃
- (b) NH₂
- (c) OH
- (d) F

AB0049

- (ii) (a) F
- (b) Cl
- (c) Br
- (d)I

AB0050

- (iii) (a) NH₃
- (b) MeNH₂
- (c) Me₂NH
- (d) Me_3N (in H_2O)

AB0051

- (iv) (a) NH₃
- (b) MeNH₂
- (c) Me₂NH
- (d) Me₃N (Gas phase)

AB0052

- (v) (a) R-NH₂
- (b) Ph-NH₂
- (c) $R C NH_2$

AB0053

AB0054

AB0055

AB0056

2. Write decreasing order of basic strength of following:

(i) (a)
$$CH_3 - CH_2 - NH_2$$
 (b) $CH_3 - CH = NH$ (c) $CH_3 - C \equiv N$

AB0058

(ii) (a)
$$CH_3 - C - NH_2$$
 (b) $CH_3 - CH_2 - NH_2$ (c) $CH_3 - C - NH_2$ (d) $NH_2 - C - NH_2$ (d) $NH_2 - NH_2$ NH

(b)
$$CH_3 - CH_2 - NH_2$$

(d)
$$\stackrel{\bullet}{N}H_2 - \stackrel{\bullet}{C} - \stackrel{\bullet}{N}H_2$$
 \parallel
 $\stackrel{\circ}{N}H$

AB0059

AB0060

(iv) (a)
$$NO_2$$

$$(b) \overbrace{\bigcup_{CN}^{NH_2}}$$

(c)
$$\bigcap_{OMe}$$

AB0061

(v) (a)
$$\bigvee_{NO_2}^{NH_2}$$

$$(b) \overbrace{\bigcirc \qquad \qquad }^{\hbox{NH}_2}_{\hbox{NO}}$$

(c)
$$NH_2$$
 NO_2

AB0062

$$(d) \bigcirc^{NH_2}$$

AB0065

$$(ix) (a) \bigcirc^{NH_2}_{CH_3}$$

$$(c) \bigcup_{CH_3}^{NH_2}$$

AB0066

3. Select the strongest base in following compound :

AB0067

AB0068

AB0069

(iv) (a)
$$N^-Li^+$$

$$(c) \begin{cases} H \\ I \\ N \end{cases}$$

$$(d) \stackrel{Me}{\nearrow}$$

- (i) (a) $H_2C = CHNa$
- (b) CH₃CH₂Na
- (c) CH₃CH₂ONa
- (d) $HC \equiv CNa$

$$(d)$$
 $C - NH_2$

AB0072

- (iii) (a) HO
- (b) NH₃
- $(c) H_2O$
- $(d) HSO_{4}$

AB0073

5. Correct decreasing order of basic strength -

$$\begin{array}{c|cccc} NH_2 & NH_2 & NMe_2 \\ N & & & N\\ N & & & N\\ N & N\\ N & N\\ N & & N\\ N &$$

Of following compound -

- (A) III > II > I
- (B) II > I > III
- (C) I > II > III
- (D) III > I > II

AB0074

- **6.** Consider the following bases:
 - (I) o-nitroaniline
- (II) m-nitroaniline
- (III) p-nitroaniline

The decreasing order of basicity is:

- (A) II > III > I
- (B) II > I > III
- (C) I > II > III
- (D) I > III > II

AB0075

- 7. Consider the basicity of the following aromatic amines:
 - (I) aniline
- (II) p-nitroaniline
- (III) p-methoxyaniline (IV) p-methylaniline

The correct order of decreasing basicity is:

- (A) III > IV > I > II
- (B) III > IV > II > I
- (C) I > II > III > IV
- (D) IV > III > II > I

AB0076

8. Which one of the following is least basic in character?

- 9. In each of the following pair of compounds, which is more basic in aqueous solution?

 Give an explanation for your choice:
 - (a) CH₃NH₂ or CF₃NH₂

AB0078

(c) CH₃CH₂CH₂NH₂ or CH₃CN

AB0078

(d) $C_6H_5N(CH_3)_2$ or 2,6-dimethyl-N-N-dimethylaniline

AB0078

- 10. Choose the member of each of the following pairs of compunds that is likely to be the weaker base.
 - (a) H_2O or H_3O^+

AB0079

 $(b) Cl^-, SH^-$

AB0079

(c) F^- , OH^- , NH_2^- , CH_3^-

AB0079

(d) HF, H₂O, NH₃

AB0079

(e) OH, SH, SeH

AB0079

11. Explain which compound is the weaker base.

AB0080

(b) $CH_2 = CH - CH = CH - CH_2^-$ or $CH_2 = CH - CH_2^-$

AB0080

(c) COOT COOH COOH

AB0080

$$(d) \bigcirc^{OH}_{CH_3} \quad or \quad \bigcirc^{OH}_{CF}$$

AB0080

- **12.** Arrange the basic strength of the following compounds.
 - (a) OH

CH₃COO

Cl

(i)

(ii)

(iii)

AB0081

- (b) $CH \equiv C$
- $CH_2 = CH^-$
- CH₃CH₂

(i)

- (ii)
- (iii)

AB0082

- (c) $CH_2 = CHCH_2NH_2 CH_3CH_2CH_2NH_2$
- $CH \equiv C CH_2NH_2$

(i)

- (ii)
- (iii)

AB0083

E

$$\begin{array}{c}
\text{NH} - \text{C}_6\text{H}_5 \\
\end{array}$$

$$\bigvee^{\mathrm{NH_2}}$$

(i)

(ii)

(iii)

AB0084

13. Arrange the following compounds in order of increasing basicity.

(a)
$$CH_3NH_2$$
, $CH_3NH_3^{\oplus}$, $CH_3NH_3^{-}$

AB0085

AB0085

14. Which of the following is most basic:

$$(D) \bigvee_{N}$$

AB0086

15. Basicity order of N in following compound is:

$$\begin{array}{c} CH_3 \\ H_2N - C - CH_2 \\ C \\ CH_3 \\ CH_2 - NH - C - CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$$

(A)
$$b > d > a > c$$

(B)
$$a > b > d > c$$

(C)
$$a > b > c > d$$

(D)
$$a > c > b > d$$

AB0087

16. The conjugate base of serotonin (used as tranquilisers) is given as follows:

How many basic groups present in following compound ?

AB0088

Ε

17. The structure of saccharin is given as follows:

How many following compounds are more basic than saccharin?

(iii)
$$CH_3 - C - NH_2$$

$$(v) \ \ \, \bigcap^{CH_2-NH}$$

EXERCISE # S-1

In given reaction Gas liberated is/are 1.

- (A) CO₂ & SO₃
- (B) $SO_3 \& {}^{14}CO_2$ (C) ${}^{14}CO_2$ only (D) SO_2 only

AB0090

2. Arrange marked atom in decreasing order of acidic strength

- (A) 1 > 2 > 3
- (B) 3 > 2 > 1
- (C) 2 > 1 > 3

Column-I

(D) 2 > 3 > 1

AB0091

3. Column - I

(Q) React with NaHCO₃

(P) React with NaOH

(R) React with NaH

- (S) React with Na
- (T) React with NaNH₂

4. Compound which can give effevescences with NaHCO₃

$$(iii) \begin{picture}(20,5) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$

(iv)
$$O_2N$$
 OH OO_2 (Picric acid) OOO_2

(v) Ph-CH=CH-COOH (cinnamic acid)

$$(ix) \bigcup_{NO_2}^{OH} NO_2$$

$$(x) \bigcirc \bigvee_{NO_2}^{OH}$$

AB0093

5. Statement-1: For the given two compounds-I is more acidic than compounds-II.

and

Statement-2: Due to presence of $-CH_3$ group at ortho positions to $-NO_2$; the plane of $-NO_2$ deviates, w.r.t plane of ring.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

6. Statement 1:

and

Statement 2: Lone pair electrons on nitrogen in compound (I) does not participate in resonance.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

AB0095

7. Match Column-I with Column-II.

Column - I (Facts)

- (A) Guanidine H_2N –C– NH_2 is example of strong base NH
- (B) Carbanion stability $\overline{CCl}_3 > \overline{CF}_3$
- (C) Alkyne is more acidic than alkene
- (D) Acidity:

Column - II (Reasons)

- (P) Resonance stabilisation of conjugate acid of strong base.
- (Q) Due to s-character of central atoms
- (R) Due to d-orbital resonance
- (S) Due to formation of aromatic anion
- (T) Stability of conjugate acid/base due to more number of identical resonating structure

AB0096

8. Match Column-I with Column-II.

Column - I (Compounds)

Column - II (pKa)

(P) 7.15

(Q) 10.14

(R) 9.98

(S) 9.38

(T) pKa is more than phenol

(Comprehension) (Q.9 to Q.11)

Observe the following feasible reactions:

(i)
$$ONa ONa OH$$

$$ONa OONa OH$$

$$NO_2 OONa OH$$

$$NO_2 OONa OH$$

(ii)
$$NO_2$$
 + NaHCO₃ NO_2 + H₂CO₃

(iii)
$$ONa \longrightarrow OH \longrightarrow H_2CO_3 \longrightarrow NaHCO_3$$

Answer the following question:

9. Which of the following is the correct order of acidic strength.

(C)
$$> H_2CO_3 > OH$$
 NO₂ OH NO₂ NO₃ NO₃

AB0098

10. Which of the following compound does not react with NaHCO₃

AB0099

node06\B0B0-BA\Kota\LEEAdvanced\Wodule Coding (V-Tog)\Nurture\Chemistry\Acidic & Basic Strength\Eng.p65

Ε

11. Identify the feasible reactions

(A)
$$\begin{array}{c} \text{COOH} \\ + \text{ NaHCO}_3 \\ \end{array} \begin{array}{c} \text{COONa} \\ + \text{ H}_2\text{O} + \text{CO}_2 \\ \end{array}$$

(C)
$$OH$$
 ONa ONa + $H_2O + CO_2$

AB0100

12. Identify the non-feasible reaction

(A)
$$CH_3-C \equiv CH + NH_2^- \iff CH_3-C \equiv C + NH_3$$

(B)
$$CH_3CH_2$$
— $OH + NaH \Longrightarrow CH_3CH_2ONa + H_2$

(C)
$$CH_3$$
— $OH + NaOH \Longrightarrow CH_3ONa + H_2O$

(D) HC=CH + NaOH
$$\Longrightarrow$$
 HC=CNa + H₂O

AB0101

13. Select the number of compounds in which deprotonation gives aromatic anion :

Paragraph for Questions 14 and 15

14. Identify salt 'A'?

AB0103

15. Identify compound 'C'?

EXERCISE # (JEE-MAIN)

1. Pieric acid is - [AIEEE-2002]

AB0104

2. Which of the following speices acts both as bronsted acid & base –

[AIEEE-2002]

- (1) NH₃
- $(2) OH^{-}$
- (3) HSO₄[⊕]
- (4) 1 and 3 both

AB0105

3. The correct order of increasing basic nature for the bases NH₃, CH₂NH₂ and (CH₃)₂NH is-

[AIEEE-2003]

- (1) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
- $(2) (CH_3)_2NH < NH_3 < CH_3NH_2$
- (3) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
- (4) $CH_3NH_2 < (CH_3)_2NH < NH$

AB0106

4. Consider the acidity of the carboxylic acids-

[AIEEE-2004]

(i) PhCOOH

(ii) o-NO₂C₆H₄COOH

(iii) p-NO₂C₆H₄COOH

(iv) m-NO₂C₆H₄COOH

which of the following is the correct order of acidity-

(1) i > ii > iii > iv

(2) ii > iv > iii > i

(3) ii > iv > i > iii

(4) ii > iii > iv > i

AB0107

5. Which of the following is the strongest base -

[AIEEE-2004]

(1) \sim NH₂

(2) NHCH

(3) NH

 $(4) \bigcirc CH_2NH$

AB0108

6. Among the following acids which has the lowest pk_a value-

[AIEEE-2005]

(1) CH₃CH₂COOH

(2) $(CH_3)_2$ CHCOOH

(3) HCOOH

(4) CH₃COOH

7.	Amongest the following the most basic compound is-				[AIEEE-2005]
	(1) p-nitro aniline		(2) Acetanilide	(2) Acetanilide	
	(3) Aniline		(4) Benzylamine	(4) Benzylamine	
					AB0110
8.	What is the conjugate base of OH ⁻ ?			[AIEEE-2005]	
	$(1) H_2O$	$(2) O_2$	$(3) O^{2-}$	$(4) O^{-}$	
					AB0111
9.	Among the following acids which has the lowest pK _a value?				[AIEEE-2005]
	(1) HCOOH		(2) CH ₃ COOH		
	(3) CH ₃ CH ₂ COOH		(4) (CH ₃) ₂ CH–COOH		
					AB0112
10.	The correct order of increasing acid strength of the compounds is				[AIEEE-2006]
	(a) CH ₃ CO ₂ H		(b) MeOCH ₂ CO ₂ H		
	· -			_	
	(c) CF_3CO_2H		(d) $\frac{\text{Me}}{\text{Me}}$ \rightarrow $-\text{CO}_2\text{H}$		
	(1) $d < a < c < b$		(2) $d < a < b < c$		
	(3) $a < d < c < b$		(4) $b < d < a < c$		
					AB0113
11.	Which one of the following is the strongest base in aqueous solution? [A				[AIEEE-2007]
	(1) Trimethylamine		(2) Aniline		
	(3) Dimethylamine		(4) Methylamine		
					AB0114
12.	The correct order of increasing basicity of the given conjugate base (R=CH ₃) is :- [AIEEE-2010]				
	(1) RCOO < HO	$C \equiv \overline{C} < \overline{N}H_2 < \overline{R}$	(2) $RCO\overline{O} < HC$	(2) $RCO\overline{O} < HC = \overline{C} < \overline{R} < \overline{N}H$	
			(A) = ==	(4) - - - - - - - - -	
	(3) $\overline{R} < HC = \overline{C} < RCO\overline{O} < \overline{N}H_2$		(4) RCOO < NI	$H_2 < HC \equiv C$	< R
					AB0115
13.	The strongest acid amongst the following compounds is ?			[AIEEE-2011]	
	(1) $CH_3CH_2CH(Cl)CO_2H$		(2) ClCH ₂ CH ₂ C	(2) CICH ₂ CH ₂ CH ₂ COOH	
	(3) CH ₃ COOH		(4) HCOOH	(4) HCOOH	
					AB0116
14.	The correct order of acid strength of the following compounds:-				
	A. Phenol		B. p-Cresol		
	C. m-Nitropheno	1	D. p- Nitropheno	ol	
	is:-				[AIEEE-2011]
	(1) $C > B > A >$	D	(2) $D > C > A >$	В	
	(3) $B > D > A >$	• C	(4) $A > B > D >$	·C	
					AB0117

nods06 \B0B0-BA\Kota\LEE|Advanced|\Woddle Coding (Y-Tag)\Nurture\Chemistry\Acidic & Basic Strength\Eng.p65

15. In the following compounds :

[JEE(Main)-2012]

the order of basicity is as follows:

(1) IV > III > II > I

(2) II > III > I > IV

(3) I > III > II > IV

(4) III > I > II > IV

AB0118

16. The most basic compound among the following is :-

[JEE(Main)-2012]

(1) Acetanilide

(2) Benzylamine

(3) p-Nitro aniline

(4) Aniline

AB0119

17. The order of basicity of amines in gaseous state is :-

[JEE(Main)-2013]

(1) $3^{\circ} > 2^{\circ} > NH_{3} > 1^{\circ}$

(2) $1^{\circ} > 2^{\circ} > 3^{\circ} > NH_{3}$

(3) NH₃ > 1° > 2° > 3°

 $(4) 3^{\circ} > 2^{\circ} > 1^{\circ} > NH_{3}$

AB0120

- **18.** Arrange the following compounds in order of decreasing acidity:
- [JEE(Main)-2013]

$$\begin{array}{ccccc} OH & OH & OH & OH \\ \hline \bigcirc & ; & \hline \bigcirc & ; & \hline \bigcirc & ; & \hline \bigcirc \\ CI & CH_3 & NO_2 & OCH_3 \\ \hline (I) & (II) & (III) & (IV) \\ \end{array}$$

(1) II > IV > I > III

(2) I > II > III > IV

(3) III > I > II > IV

(4) IV > III > I > II

AB0121

19. The conjugate base of hydrazoic acid is :-

[JEE(Main)-2014]

- (1) HN_3
- (2) N_3^-
- (3) N_2^-
- $(4) N^{-3}$

AB0122

20. Which one of the following compounds will not be soluble in sodium bicarbonate?

[JEE(Main)-2014]

(1) Benzene sulphonic acid

(2) Benzoic acid

(3) o-Nitrophenol

(4) 2, 4, 6 - Trinitrophenol

21. Considering the basic strength of amines in aqueous solution, which one has the smallest pK_b value?

[JEE(Main)-2014]

 $(1) (CH_3)_3N$

 $(2) C_6H_5NH_2$

 $(3) (CH_3)_2NH$

(4) CH₃NH₂

AB0124

22. Among the following oxoacids, the correct decreasing order of acid strength is: [JEE(Main)-2014]

(1) $HClO_4 > HClO_3 > HClO_2 > HOCl$

 $(2) \text{ HClO}_2 > \text{HClO}_4 > \text{HClO}_3 > \text{HOCl}$

 $(3) \ \ HOCl > HClO_2 > HClO_3 > HClO_4$

(4) $HClO_4 > HOCl > HClO_2 > HClO_3$

AB0125

23. Among the following compounds, the increasing order of their basic strength is:-

 $(II) \overbrace{ {N \atop H} }$

(III) N CH

(IV) NI

(1) (II) < (I) < (III) < (IV)

(2) (I) < (II) < (IV) < (III)

[JEE(Main)-On-Line 2017]

(3) (II) < (I) < (IV) < (III)

(4) (I) < (II) < (III) < (IV)

AB0126

24. The increasing order of basicity of the following compounds is:

[JEE(Main)-2018]

(b) /\/NH

(1) (b) < (a) < (c) < (d)

(2) (b) < (a) < (d) < (c)

(3) (d) < (b) < (a) < (c)

(4) (a) < (b) < (c) < (d)

EXERCISE # J-ADVANCED

1. In the following compounds [IIT-JEE-1996]

The order of acidity is -

- (A) III>IV>I>II
- (B) I>IV>III>II
- (C) II>I>III>IV
- (D) IV>III>I>II

AB0137

2. Although phenoxide ion has more number of resonating structures than benzoate ion, benzoic acid is [IIT-JEE-1997] a stronger acid than phenol. Why?

AB0138

3. Amongst the following, the most basic compound is - [IIT-JEE-2000]

- (A) $C_6H_5NH_2$
- (B) $p-NO_2-C_6H_4NH_2$ (C) $m-NO_2-C_6H_4NH_2$ (D) $C_6H_5CH_2NH_2$
 - **AB0139**

4. The correct order of basicities of the following compounds is: [IIT-JEE-2001]

$$CH_{3}-C \nearrow NH$$
 $CH_{3}CH_{2}NH_{2}$ $(CH_{3})_{2}NH$ 1 2 3

- (B) 1 > 3 > 2 > 4 (C) 3 > 1 > 2 > 4 (D) 1 > 2 > 3 > 4

O || CH₃CNH₂

AB0140

5. Statement-I: p-Hydroxybenzoic acid has a lower boiling point that o-hydroxybenzoic acid.

Because

Statement-II: o-Hydroxybenzoic acid has intramolecular hydrogen bonding. [IIT-JEE-2003]

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.

6. Match K_a values with suitable acid:

[IIT-JEE-2003]

 K_a

(A) 3.3×10^{-5}

Acid

(p) COOH

(B) 4.2×10^{-5}

(q) Me—COOH

(C) 6.3×10^{-5}

(r) Cl—COOH

(D) 6.4×10^{-5}

(s) MeO—COOH

(E) 30.6×10^{-5}

(t) O_2N —COOH

AB0142 [IIT-JEE-2004]

7. (a) Which of the following is more acidic and why?

СН

) CH AB0143

8. ON

 $\xrightarrow{\text{2Moles NaNH}_2}$ A. The product (A) will be:

[IIT-JEE-2007]

HOOC
(A) O₂N

(B) O₂N CO

₀00С ОН

HOOC OH

(C) O₂N CH

(D) O₂N

AB0144

node06\B0B0-BA\Kota\LEEAdvanced}\Wodule Coding (V-Tog)\Nurture\Chemistry\Acidic & Basic Strength\Eng.p65

9. The correct acidity order of the following is: [IIT-JEE-2009]

- (A) (III) > (IV) > (II) > (I)
- (B) (IV) > (III) > (I) > (II)
- (C) (III) > (II) > (I) > (IV)
- (D) (II) > (III) > (IV) > (I)

AB0145

10. Amongst the following, the total number of compounds soluble in aquesous NaOH is:

[IIT-JEE-2010]

$$H_3C$$
 CH_3
 $COOH$
 OCH_2CH_3
 CH_2OH
 OH
 CH_2CH_3
 $COOH$
 CH_2CH_3
 $COOH$
 CH_2CH_3
 $COOH$
 CH_2CH_3
 $COOH$
 CH_2CH_3
 $COOH$
 CH_3CH_3
 $COOH$

AB0146

Among the following compounds, the most acidic is 11.

[IIT-JEE-2011]

(A) p-nitrophenol

- (B) p-hydroxybenzoic acid
- (C) o-hydroxybenzoic acid
- (D) p-toluic acid

AB0147

12. The carboxyl functional group (-COOH) is present in - [IIT-JEE-2012]

- (A) picric acid
- (B) barbituric acid (C) ascorbic acid
- (D) aspirin

AB0148

13. Identify the binary mixtures (s) that can be separated into the individual compounds, by differential

extraction, as shown in the given scheme -

[IIT-JEE-2012]

- (A) C₆H₅OH and C₆H₅COOH
- (B) C₆H₅COOH and C₆H₅CH₇OH
- (C) C₆H₅CH₂OH and C₆H₅OH
- (D) C₆H₅CH₂OH and C₆H₅CH₂COOH

The compound that does NOT liberate CO₂, on treatment with aqueous sodium bicarbonate solution, **14.**

is -

[JEE-ADVANCED-2013]

- (A) Benzoic acid (B) Benzenesulphonic acid (C) Salicylic acid (D) Carbolic acid (phenol)

AB0150

- **15.** Hydrogen bonding plays a central role in the following phenomena [JEE-ADVANCED-2014]
 - (A) Ice floats in water
 - (B) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions
 - (C) Formic acid is more acidic than acetic acid
 - (D) Dimerisation of acetic acid in benzene

AB0151

16. The order of basicity among the following compounds is [JEE-ADVANCED-2017]

II

Ш

- (A) II > I > IV > III
- (C) I > IV > III > II

(B) IV > II > III > I(D) IV > I > II > III

ANSWER-KEY

EXERCISE # O-1

- 1. (i) a > b > c > d,
- (ii) a > b > c,
- (iii) c > b > a,
- (iv) a > b > c,

(C)

- **(v)** c > b > a
- (vi) a > b > c
- (vii) d > c > b > a,
- (viii)d > c > b > a,

- (ix) d > b > a > c,
- (x) d>a>c>b
- 2. (a) 2; (b) 2; (c) 1; (d) 1
- **3.** (a) 2; (b) 2; (c) 2 4.
- 5. **(B)**

6. **(B)**

- **(B)** 7.
- 8. **(A)**
- 9. **(A)**
- (ii) glutamic acid : $^{\mathrm{HO_2C}}_{^{\prime}}$ (i) cysteine : $^{HS}_{8.3}$ 10. NH_2 9.67
- (a) 3 < 2 < 1; (b) 1 < 2 < 3; (c) 3 < 2 < 1; (d) 2 < 1 < 3; (e) 2 < 3 < 111.
- **12.** (i) d > c > a > b,
- (ii) a > b > c,
- (iii) c > a > b > d,
- (iv) d > b > c > a,

- (v) a > b > c,
- (vi) b > a
- (vii) c > a > b
- **13.** (i) b, (ii) a, (iii) b, (iv) b
- 14. **(C)**
- 15. (C)
- **16.** (B)

17. (C)

- **18.** (B)
- **19.** (4)
- **20** (C)

EXERCISE # O-2

- 1. (i) a > b > c > d,
- (ii) a > b > c > d,
- (iii) c > b > d > a,
- (iv) d > c > b > a

- (v) a > b > c,
- (vi) c > b > a
- (vii) c > a > b, (viii) b > c > a, (ix) c > d > b > a

- 2. (i) a > b > c,
- (ii) d > c > b > a,
- (iii) b > c > a,
- (iv) d > c > b > a,

- (v) b > a > c,
- (vi) b > a,
- (vii) c > b > a,
- (viii) d > a > b > c

- (ix) d > c > b > a
- **3.** (i) d, (ii) b, (iii) a, (iv) a
- 4. (i) b > a > d > c,
- (ii) b > a > c > d,
- (iii) a > b > c > d

5. (A)

- 6. (A)
- 7. (A)

8. (A)

9. (a) i, (b) ii, (c) i, (d) ii

- 10. (a) 2; (b) 1; (c) 1; (d) 1; (e) 3
- 11. (a) 2; (b) 1; (c) 2; (d) 2 12. (a) 1 > 2 > 3; (b) 1 < 2 < 3; (c) 3 < 1 < 2; (d) 2 < 1 < 3
- 13. (a) 2 < 1 < 3; (b) 1 < 2 < 3
- **14.** (C)
- 15. (B)
- 3, 3 basic groups are NH₂;-NH-;O⁻ **17.** (6)

EXERCISE # S-1

1. (C)

- 2. (C)
- 3. (A) R, S, T; (B) P, R, S, T; (C) P, Q, R, S, T; (D) P, Q, R, S, T
- 4. (i), (ii) (iii) (iv), (v) (ix) 5. (D)
- **6.** (A)
- 7. (A) -P,T; (B) -R; (C) -Q; (D) -S,T
- 8. (A) R; (B) S; (C) P; (D) Q, T

9. (A)

- 10. (A)
- 11. (A, D)
- 12. (D)

- 13. (A, B, C, D)
- **14.** (B)
- **15.** (C)

EXERCISE # JEE-MAIN

1. (3)

- 2. (4)
- **3.** (3)
- 4. (4)
- **5.** (4)

6. (3)

- 7. (4)
- 8. (3)
- 9. (1)
- **10.** (2)

11. (3)

- 12. (1)
- 13. (1)
- **14.** (2)
- **15.** (3)

16. (2)

- **17.** (4)
- **18.** (3)
- **19.** (2)
- 20. (3)

21. (3)

- **22.** (1)
- 23. (3)
- 24. (2)

EXERCISE # J-ADVANCED

1. (D)

- 2. Benzoate has equivalent resonating structures
- 3. (D)

4. (**B**)

- **5.** (D)
- 6. A-(s); B-(q); C-(p); D-(r); E-(t)

- 7. (II is most acidic)
- 8. (C)
- 9. (A)
- **10.** (4)
- **11.** (C)

12. (D)

- 13. (B, D)
- **14. (D)**
- 15. (A, B, D)

16. (**D**)