IRIS flower classification Using Machine Learning

Author: Krishna Sayanti Deb

Data Description:

The IRIS dataset consists of 3 types of IRIS flowers(Setosa, Versicolour, Virginica). The rows of the dataset are sample where the columns are the features.

Features:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class:
- -- Iris Setosa
- -- Iris Versicolour
- -- Iris Virginica

Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
   import warnings
   warnings.filterwarnings("ignore")
```

Importing Dataset

In [2]: data = pd.read_csv(r'C:\Users\LENOVO\Desktop\Internship\CipherByte Technoligies\Task-1\Iris Flower - Iris

In [3]: data

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

```
In [4]: data.shape
```

Out[4]: (150, 6)

In [5]: #ID column in not important for analysing the data, so have to drop ID column
data = data.drop('Id', axis=1)

```
In [6]: data
```

Out[6]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Data Summarization

```
In [7]: #shape
         data.shape
Out[7]: (150, 5)
In [8]: #Checking null values
         data.isnull().sum()
Out[8]: SepalLengthCm
         SepalWidthCm
                         a
         PetalLengthCm
                          0
         PetalWidthCm
                         0
         Species
                          0
         dtype: int64
In [9]: #there is no null value in the dataset
In [10]: #columns name
         data.columns
Out[10]: Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                 'Species'],
               dtype='object')
In [11]: #Species value Counts
         data.Species.value_counts()
Out[11]: Iris-setosa
                            50
         Iris-versicolor
                            50
         Iris-virginica
                           50
         Name: Species, dtype: int64
In [12]: #Information
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 5 columns):
                            Non-Null Count Dtype
          #
             Column
                             -----
             SepalLengthCm 150 non-null
          0
                                            float64
              SepalWidthCm 150 non-null
                                            float64
             PetalLengthCm 150 non-null
                                            float64
          2
              PetalWidthCm 150 non-null
                                            float64
             Species
                            150 non-null
                                            object
         dtypes: float64(4), object(1)
         memory usage: 6.0+ KB
```

In [13]: #Description
data.describe()

Out[13]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Data Visalization

In [14]: #boxplot
data.plot(kind = 'box', subplots = True, layout=(2,2), sharex=False, sharey= False, figsize=(20,10), tit
plt.show()

Box Plot


```
In [16]:
sns.set_theme(style='ticks')
fig=sns.pairplot(data, hue = "Species", markers= ['o','D','^'],palette='rocket')
fig.fig.suptitle('Pairplot of Iris Dataset', y=1.02, fontsize = 18)
plt.show()
```


#explanation

From the above diagram it is clear that--

- 1. Sepal Length is more dependent on Sepal width and vice versa
- 2. Petal Length is more dependent on Sepal width
- 3. Petal width is more dependent on Sepal Length

In [17]: data.corr()

Out[17]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000

```
In [35]: #heatmap
plt.figure(figsize=(10,8))
sns.heatmap(data.corr(),annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap of Iris Features' , fontsize = 18)
plt.show()
```


Data Preprocessing

```
In [19]: | x = data.values[:, :4]
          y = data.values[:,4]
In [20]: x
Out[20]: array([[5.1, 3.5, 1.4, 0.2],
                   [4.9, 3.0, 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
                   [4.6, 3.1, 1.5, 0.2],
                   [5.0, 3.6, 1.4, 0.2],
                   [5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
                   [5.0, 3.4, 1.5, 0.2],
                   [4.4, 2.9, 1.4, 0.2],
                   [4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
                   [4.8, 3.4, 1.6, 0.2],
                   [4.8, 3.0, 1.4, 0.1],
                   [4.3, 3.0, 1.1, 0.1],
                   [5.8, 4.0, 1.2, 0.2],
                   [5.7, 4.4, 1.5, 0.4],
                   [5.4, 3.9, 1.3, 0.4],
                   [5.1, 3.5, 1.4, 0.3],
                   [5.7, 3.8, 1.7, 0.3],
```

```
In [21]: y
                                                                                                                #Transform y into label encoding and built the model
Out[21]: array(['Iris-setosa', 'Iris-setosa', 'Iris
                                                                                                                                                                                                  'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa'
'Iris-setosa', 'Iris-setosa', 'Iris-setosa'
                                                                                                                                                                                                'Iris-setosa', 'Iris-setosa', 'Iris-setosa'
                                                                                                                                                                                                'Iris-setosa', 'Iris-setosa', 'Iris-setosa'
                                                                                                                                                                                              'Iris-setosa', 'Iris-
                                                                                                                                                                                            'Iris-versicolor', 'Iris-versico
                                                                                                                                                                                              'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
                                                                                                                                                                                              'Iris-versicolor', 'Iris-versicolor'
                                                                                                                                                                                          'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
                                                                                                                                                                                                'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
                                                                                                                                                                                              'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
                                                                                                                                                                                            'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virgin
                                                                                                                                                                                              'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
                                                                                                                                                                                                  'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica'], dtype=object)
```

Transform categorical data to numeric data

Creating a Validation Dataset

```
In [26]: #import train_test_split
    from sklearn.model_selection import train_test_split
```

```
In [27]: x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=123)
```

Model Selection

As the IRIS-Flower dataset contains Target column so it is a supervised data. So to classify this dataset we have to use supervised classification model such as Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, K Nearest Neighbour.

Model Building

```
In [28]: from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.metrics import accuracy_score
```

```
In [39]: #models
           models = [
               ("Logistic Regression", LogisticRegression()),
("Decision Tree Classifier", DecisionTreeClassifier()),
("Random Forest Classifier", RandomForestClassifier()),
               ("K Nearest Neighbors Classifier", KNeighborsClassifier()),
               ("Support Vector Machine Classifier", SVC())
           #train models
           results = []
           for name, model in models:
               model.fit(x_train,y_train)
               y_pred = model.predict(x_test)
               accuracy = accuracy_score(y_test, y_pred)
               results.append((name,accuracy))
           #print result
           print("Model Performance:")
           for name,accuracy in results:
               print(f'{name}: {accuracy}')
               #prepare a bar chart
               plt.bar(name,accuracy)
               plt.xticks(rotation= 90)
               plt.xlabel("Modeels")
               plt.ylabel("Accuracy")
               plt.title("Model-wise Accuracy Score", fontsize=18, fontweight= 'bold')
```

Model Performance:
Logistic Regression: 1.0
Decision Tree Classifier: 0.966666666666667
Random Forest Classifier: 0.96666666666667
K Nearest Neighbors Classifier: 0.966666666666667
Support Vector Machine Classifier: 0.9666666666666666

Inferences:

From the above accuracy score it is clearly vissible that Logistic Regression classifier is the based suitable model to classify IRIS-Flower dataset.

Model Testing

```
In [40]: #show Y pred y test
           y_test
Out[40]: array([1, 2, 2, 1, 0, 2, 1, 0, 0, 1, 2, 0, 1, 2, 2, 2, 0, 0, 1, 0, 0, 2,
                     0, 2, 0, 0, 0, 2, 2, 0])
In [41]: #map Labeled column (y_test,y_pred)
            def map_label(label):
                 if label == 0:
                      return "Iris-setosa"
                 elif label == 1:
                      return "Iris-versicolor"
                 elif label == 2:
                      return "Iris-virginica"
                 else:
                      return "Unknown"
            mapped_y_pred = list(map(map_label,y_pred))
            mapped_y_test = list(map(map_label,y_test))
In [42]: #tally y_test and y_pred value
            df = pd.DataFrame({"y_test":mapped_y_test, "y_pred":mapped_y_pred})
In [43]: df
Out[43]:
                       y_test
                                    y_pred
              0 Iris-versicolor Iris-versicolor
              1
                  Iris-virginica
                                Iris-virginica
              2
                  Iris-virginica
                                Iris-virginica
              3 Iris-versicolor Iris-versicolor
              4
                    Iris-setosa
                                  Iris-setosa
                  Iris-virginica Iris-versicolor
              5
              6
                Iris-versicolor Iris-versicolor
              7
                    Iris-setosa
                                  Iris-setosa
                                  Iris-setosa
              8
                    Iris-setosa
              9
                 Iris-versicolor Iris-versicolor
             10
                  Iris-virginica
                                Iris-virginica
             11
                    Iris-setosa
                                  Iris-setosa
             12
                 Iris-versicolor
                               Iris-versicolor
             13
                  Iris-virginica
                                Iris-virginica
             14
                  Iris-virginica
                                Iris-virginica
             15
                                Iris-virginica
                  Iris-virginica
             16
                    Iris-setosa
                                  Iris-setosa
             17
                    Iris-setosa
                                  Iris-setosa
             18
                 Iris-versicolor Iris-versicolor
             19
                    Iris-setosa
                                  Iris-setosa
             20
                    Iris-setosa
                                  Iris-setosa
             21
                  Iris-virginica
                                Iris-virginica
             22
                   Iris-setosa
                                  Iris-setosa
             23
                  Iris-virginica
                                Iris-virginica
             24
                    Iris-setosa
                                  Iris-setosa
             25
                    Iris-setosa
                                  Iris-setosa
             26
                    Iris-setosa
                                  Iris-setosa
                                Iris-virginica
             27
                  Iris-virginica
             28
                  Iris-virginica
                                Iris-virginica
             29
                   Iris-setosa
                                  Iris-setosa
```
