Systemverifzierungsplan - und Bericht Vegetationsbranderkennung CE755 Advanced Computer Engineering

Moritz Lechner Leon Niklas Sobotta Konstantin Roßmann

Inhalt

- 1 Einleitung
- 2 Verifizierungsobjekt
- 3 Verifizierungsansatz
- 4 Verifizierungsprogramme
- 5 Testbeschreibung
- 6 Anomalien
- 7 Zusammenfassung

1. Einleitung

- Inhalt:
 - Ansatz zur Überprüfung des Systems
 - Ergebnisse der Tests
- kein vollständiges System, nur KNN
- Verzögerung durch Umstieg von Bildklassifizierung zu Objekt Erkennung
- aktueller Stand: KNN in Python implementiert
- nächster Schritt: Gewichtungen in Rust importieren

2. Verifizierungsobjekt

- ursprünglich Gesamtsystem
- aktuellem Fortschritt entsprechend nur trainiertes KNN zur Objekterkennung

3. Verifizierungsansatz

- Bezug auf Verifizierungsmethoden aus M1
 - Relevant für KNN:

Nr.	Anforderungsbeschreibung	Verifikation	Bestanden
SW- 0001	Wenn ein Vegetationsbrand fotografiert wird, muss dieser erkannt werden.	Testdurchlauf des Programms mithilfe des Datensatzes, sowie darauffolgende Stichproben.	-
SW- 0007	Nach dem Trainieren soll das Netz minimiert werden.	Testdurchlauf vor und nach dem minimieren, sowie vergleich der Daten, mithilfe von Test-Datensatz.	-
SW- 0015	Die Ausgabe des Programmes sollen die Parameter der Bounding Boxes sein	Sichtprobe	-

3. Verifizierungsansatz

- Trainiertes Netz überprüft Testbilder
- Erfolgsbedingung:
 - >75% der Bilder mit Bränden erkannt
 - jedes erkannte Feuer markiert

4. Verifizierungsprogramme

- Trainings -und Testdatensatz erstellen
- Netz trainieren

5. Testbeschreibung

- 8000 Trainingsbilder
- Netz trainieren und dann mit Testbildern verifzieren
- danach Stichproben
- erwartetes Ergebnis: ca 70% richtig

6. Anomalien

- Netzmodell basiert auf YOLOv8 von Ultralytics
- → nutzt nur 552 von 8000 Bildern
- Erkennung stellenweise fragwürdig

7. Zusammenfassung

7. Zusammenfassung

- Aufgrund von Object Detection deutlich komplexer
- 75% erkannt und erfolgreich markiert

Nr.	Anforderungsbeschreibung	Verifikation	Bestanden
SW- 0001	Wenn ein Vegetationsbrand fotografiert wird, muss dieser erkannt werden.	Testdurchlauf des Programms mithilfe des Datensatzes, sowie darauffolgende Stichproben.	Х
SW- 0007	Nach dem Trainieren soll das Netz minimiert werden.	Testdurchlauf vor und nach dem minimieren, sowie vergleich der Daten, mithilfe von Test-Datensatz.	-
SW- 0015	Die Ausgabe des Programmes sollen die Parameter der Bounding Boxes sein	Sichtprobe	X

7. Zusammenfassung

Nr.	Ziel
MG-01	Die Mission wird zeigen, ob sich KNN eignen, um Satellitenbilder nach Vegetationsbränden zu untersuchen.
MO-01	Die Mission wird zeigen, dass ein kompaktes KNN besser geeignet ist, als andere Algorithmen um Vegetationsbrände zu erkennen.
MO-02	Die Mission wird zeigen, ob KNN zu rechenintensiv sind im Vergleich zur Genauigkeit.
MO-03	Die Mission wird zeigen, dass Rust auch für Neuronale Netze verwendbar ist.

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

www.htw-berlin.de