23. Singular Value Decomposition (SVD) and eigen-decomposition

Last time

- Least squares
- Optimization
- Solution by linear algebra
- Pseudo-inverse

Goals for today

- Action of a matrix
- Eigenvector decomposition
- Singular Value Decomposition (SVD)

- lacksquare Consider arbitrary (m imes n) matrix A
- \blacksquare Study its action on unit sphere \mathbb{S}_n in \mathbb{R}^n
- $\blacksquare \; \mathbb{S}_n := \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 = 1\}$

- lacksquare Consider arbitrary (m imes n) matrix A
- \blacksquare Study its action on unit sphere \mathbb{S}_n in \mathbb{R}^n
- $\blacksquare \; \mathbb{S}_n := \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 = 1\}$
- \blacksquare Visualization suggests $A(\mathbb{S}_n)$ is **ellipsoid** (hyper-ellipse)
- Stretched and rotated sphere

- lacksquare Consider arbitrary (m imes n) matrix A
- \blacksquare Study its action on unit sphere \mathbb{S}_n in \mathbb{R}^n
- $\blacksquare \; \mathbb{S}_n := \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 = 1\}$
- lacktriangle Visualization suggests $A(\mathbb{S}_n)$ is **ellipsoid** (hyper-ellipse)
- Stretched and rotated sphere

- Key quantities:
 - Lengths σ_i of semi-axes amount of stretch
 - Directions u, of stretches

Let's try to understand how this comes about:

- Let's try to understand how this comes about:
- Suppose $\mathbf{x} \in \mathbb{S}_n$; define $\mathbf{y} := A\mathbf{x}$ to be its image

- Let's try to understand how this comes about:
- lacksquare Suppose $\mathbf{x} \in \mathbb{S}_n$; define $\mathbf{y} := \mathbf{A}\mathbf{x}$ to be its image
- Suppose that A square + invertible for now

- Let's try to understand how this comes about:
- lacksquare Suppose $\mathbf{x} \in \mathbb{S}_n$; define $\mathbf{y} := \mathbf{A}\mathbf{x}$ to be its image
- Suppose that A square + invertible for now
- $\blacksquare \text{ Then } \|\mathbf{A}^{-1}\mathbf{y}\|^2 = 1$

- Let's try to understand how this comes about:
- Suppose $\mathbf{x} \in \mathbb{S}_n$; define $\mathbf{y} := A\mathbf{x}$ to be its image
- Suppose that A square + invertible for now
- Then $\|\mathbf{A}^{-1}\mathbf{y}\|^2 = 1$

Hence

$$\mathbf{y}^{\top} \mathbf{S} \mathbf{y} = 1$$

where $\mathbf{S} := (\mathbf{A}^{-1})^{\top} (\mathbf{A}^{-1})$ is symmetric + positive definite

Eigenvalues

Recall: square $m \times m$ matrix M has eigenvector $\mathbf{v} \neq \mathbf{0}$ with eigenvalue $\lambda \in \mathbb{C}$ if

$$M\mathbf{v} = \lambda \mathbf{v}$$

Eigenvalues¹

 \blacksquare Recall: square $m\times m$ matrix M has $\text{eigenvector v} \neq \textbf{0} \text{ with eigenvalue } \lambda \in \mathbb{C} \text{ if }$

$$M\mathbf{v} = \lambda \mathbf{v}$$

- Geometrical meaning: Direction îs invariant (unchanged) under A
- lacksquare Stretched (and possibly reflected) by factor λ

■ Spectrum of matrix: set of eigenvalues

- Spectrum of matrix: set of eigenvalues
- \blacksquare Eigenvalues satsify $\det(\mathbf{A}-\lambda\mathbf{I})=0$ characteristic polynomial
- lacksquare Fundamental thm of algebra \Longrightarrow there are m eigenvalues
- For a real, **symmetric** matrix S, *exercise*:
 - lacksquare eigenvalues λ_i are **real**
 - lacktriangle eigenvectors $oldsymbol{v}_i$ with distinct λ_i are orthogonal

■ Spectrum of matrix: set of eigenvalues

- \blacksquare Eigenvalues satsify $\det(\mathbf{A}-\lambda\mathbf{I})=0$ characteristic polynomial
- lacksquare Fundamental thm of algebra \Longrightarrow there are m eigenvalues
- For a real, **symmetric** matrix S, *exercise*:
 - lacktriangle eigenvalues λ_i are **real**
 - lacktriangle eigenvectors $oldsymbol{v}_i$ with distinct λ_i are orthogonal
- "Hence" spectral theorem: real symmetric matrices have a basis of orthonormal eigenvectors

■ Spectrum of matrix: set of eigenvalues

- \blacksquare Eigenvalues satsify $\det(\mathbf{A}-\lambda\mathbf{I})=0$ characteristic polynomial
- lacksquare Fundamental thm of algebra \Longrightarrow there are m eigenvalues
- For a real, **symmetric** matrix S, *exercise*:
 - lacktriangle eigenvalues λ_i are **real**
 - lacktriangle eigenvectors $oldsymbol{v}_i$ with distinct λ_i are orthogonal
- "Hence" spectral theorem: real symmetric matrices have a basis of orthonormal eigenvectors

Eigen-decomposition

■ Have $SQ = Q\Lambda$, where

$$\mathbf{Q} := (\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n)$$

$$\Lambda := \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix}$$

Eigen-decomposition

■ Have $SQ = Q\Lambda$, where

$$\mathbf{Q} := (\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n)$$

$$\Lambda := \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix}$$

■ Hence $S = Q\Lambda Q^{\top}$

 $\qquad \qquad \mathbf{So} \ \mathbf{y}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{y} = 1$

- $\blacksquare \text{ Hence } \mathbf{z}^\top \Lambda \mathbf{z} = 1$

where $\mathbf{z} := \mathbf{Q}^{\top} y$

- $\blacksquare \text{ Hence } \mathbf{z}^{\top} \Lambda \mathbf{z} = 1$
 - where $\mathbf{z} := \mathbf{Q}^{\top} y$
- $\blacksquare \text{ So } \lambda_1 z_1^2 + \dots + \lambda_n z_n^2 = 1$

- \blacksquare So $\mathbf{y}^{\top} \mathbf{Q} \Lambda \mathbf{Q}^{\top} \mathbf{y} = 1$
- $\begin{tabular}{ll} \blacksquare & \mbox{Hence } \mathbf{z}^\top \Lambda \mathbf{z} = 1 \\ & \mbox{where } \mathbf{z} := \mathbf{Q}^\top y \\ \end{tabular}$
- $\bullet \operatorname{So} \lambda_1 z_1^2 + \dots + \lambda_n z_n^2 = 1$
- \blacksquare Can show $(\mathbf{A}^{\top}\mathbf{A})^{-1}$ has eigenvalues $\lambda_i>0$ (exercise)

- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \begin{t$
- $\bullet \operatorname{So} \lambda_1 z_1^2 + \dots + \lambda_n z_n^2 = 1$
- Can show $(\mathbf{A}^{\top}\mathbf{A})^{-1}$ has eigenvalues $\lambda_i>0$ (exercise)
- \blacksquare Hence \mathbf{z} lies on ellipse $\text{with semi-axis lengths } \sigma_i := \sqrt{\lambda_i}$
- y lies on rotated ellipse

Singular values and singular vectors

lacksquare σ_i are singular values of A [terrible name]

Singular values and singular vectors

- lacksquare σ_i are **singular values** of A [terrible name]
- lacktriangle Directions lacktriangle , columns of Q, are left singular vectors
 - directions in which ellipse is stretched
- ${\bf v}_i$ such that ${\bf A}{\bf v}_i=\sigma_i{\bf u}_i$ are right singular vectors

Singular-value decomposition (SVD)

Any $(m \times n)$ matrix A has an SVD:

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$$

- \blacksquare columns of U are \mathbf{u}_i
- columns V are v_i
- \blacksquare Σ is diagonal matrix with σ_i on diagonal

Singular-value decomposition (SVD)

Any $(m \times n)$ matrix A has an SVD:

$$\mathsf{A} = \mathsf{U} \Sigma \mathsf{V}^{ op}$$

- lacktriangle columns of U are $oldsymbol{\mathbf{u}}_i$
- \blacksquare columns V are \mathbf{v}_i
- lacksquare Σ is diagonal matrix with σ_i on diagonal
- Geometrical interpretation:

Calculating eigenvalues

As usual, still don't know how to actually calculate anything!

Calculating eigenvalues

- As usual, still don't know how to actually calculate anything!
- \blacksquare Need to calculate eigenvalues λ_i and eigenvectors \mathbf{v}_i of symmetric matrix S

Calculating eigenvalues

- As usual, still don't know how to actually calculate anything!
- \blacksquare Need to calculate eigenvalues λ_i and eigenvectors \mathbf{v}_i of symmetric matrix S
- \blacksquare Note: there are direct methods for the singular values σ_i that avoid g $\mathbf{A}^{\top}\mathbf{A}$

 Simple method to get eigenvector with largest eigenvalue, leading eigenvector

- Simple method to get eigenvector with largest eigenvalue, leading eigenvector
- Start with any initial $\mathbf{v} \neq \mathbf{0}$

- Simple method to get eigenvector with largest eigenvalue, leading eigenvector
- Start with any initial $\mathbf{v} \neq \mathbf{0}$
- \blacksquare Apply A repeatedly to form $A^n \mathbf{v}$
- In general will explode, so normalize
- Converges to leading eigenvector!

- Simple method to get eigenvector with largest eigenvalue, leading eigenvector
- Start with any initial $\mathbf{v} \neq \mathbf{0}$
- \blacksquare Apply A repeatedly to form $A^n \mathbf{v}$
- In general will explode, so normalize
- Converges to leading eigenvector!
- To see this expand v in basis of eigenvectors

- lacksquare Suppose start with several vectors ${f v}_1,\,...,\,{f v}_k$
- If iterate each separately, all will converge to leading eigenvector

- \blacksquare Suppose start with several vectors $\mathbf{v}_1,\,...,\,\mathbf{v}_k$
- If iterate each separately, all will converge to leading eigenvector

Solution: Orthogonalize using Gram–Schmidt

- \blacksquare Suppose start with several vectors $\mathbf{v}_1,\,...,\,\mathbf{v}_k$
- If iterate each separately, all will converge to leading eigenvector

- Solution: Orthogonalize using Gram–Schmidt
- lacktriangle Converge to leading k eigenvectors

- lacksquare Suppose start with several vectors $oldsymbol{v}_1,\,...,\,oldsymbol{v}_k$
- If iterate each separately, all will converge to leading eigenvector

- Solution: Orthogonalize using Gram–Schmidt
- Converge to leading k eigenvectors
- This is part of QR algorithm:
 - Factorize QR = A
 - 2 Set A ← RQ
 - 3 Repeat

- lacksquare Suppose start with several vectors $oldsymbol{v}_1,\,...,\,oldsymbol{v}_k$
- If iterate each separately, all will converge to leading eigenvector

- Solution: Orthogonalize using Gram-Schmidt
- Converge to leading k eigenvectors
- This is part of QR algorithm:
 - Factorize QR = A
 - 2 Set A ← RQ
 - 3 Repeat
- A converges to diagonal matrix of eigenvalues!

Rank of a matrix

■ Number of non-zero singular values = column rank = rank

Rank of a matrix

- Number of non-zero singular values = column rank = rank
- SVD gives **best approximation** to A by matrix of rank *k*a:

$$\mathbf{A}_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

Rank of a matrix

- Number of non-zero singular values = column rank = rank
- SVD gives **best approximation** to A by matrix of rank *k*a:

$$\mathbf{A}_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- Use to find low-rank approximation of collection of data PCA (Principal Component Analysis in statistics)
- E.g. image compression

Summary

- SVD gives matrix as rotation + stretch + rotation
- Closely related to eigendecomposition of A^TA

Summary

- SVD gives matrix as rotation + stretch + rotation
- Closely related to eigendecomposition of A^TA
- Applications to data summarization compression