Project Coversheet

Full Name	RISHI MALPANI		
Email	Rishimalpani754@gmail.com		
Contact Number	9680411516		
Date of Submission	07/19/2025		
Project Week	(Example: Week 1, Week 2, etc.)		

Project Guidelines and Rules

1. Submission Format

- Document Style:
 - Use a clean, readable font such as Arial or Times New Roman, size 12.
 - Set line spacing to 1.5 for readability.
- File Naming:
- Use the following naming format:
 Week X [Project Title] [Your Full Name Used During Registration]
 - Example: Week 1 Customer Sign-Up Behaviour Mark Robb
- File Types:
 - Submit your report as a PDF.
 - If your project includes code or analysis, attach the .ipynb notebook as well.

2. Writing Requirements

- Use formal, professional language.
- Structure your content using headings, bullet points, or numbered lists.

3. Content Expectations

Answer all parts of each question or task.

- Reference tools, frameworks, or ideas covered in the programme and case studies.
- Support your points with practical or real-world examples where relevant.
- Go beyond surface-level responses. Analyse problems, evaluate solutions, and demonstrate depth of understanding.

4. Academic Integrity & Referencing

- All submissions must be your own. Plagiarism is strictly prohibited.
- If you refer to any external materials (e.g., articles, studies, books), cite them using a consistent referencing style such as APA or MLA.
- Include a references section at the end where necessary.

5. Evaluation Criteria

Your work will be evaluated on the following:

- Clarity: Are your answers well-organised and easy to understand?
- Completeness: Have you answered all parts of the task?
- Creativity: Have you demonstrated original thinking and thoughtful examples?
- Application: Have you effectively used programme concepts and tools?
- Professionalism: Is your presentation, language, and formatting appropriate?

6. Deadlines and Extensions

- Submit your work by the stated deadline.
- If you are unable to meet a deadline due to genuine circumstances (e.g., illness or emergency), request an extension before the deadline by emailing: support@uptrail.co.uk

Include your full name, week number, and reason for extension.

7. Technical Support

• If you face technical issues with submission or file access, contact our support team promptly at support@uptrail.co.uk.

8. Completion and Certification

- Certificate of Completion will be awarded to participants who submit at least two projects.
- Certificate of Excellence will be awarded to those who:
 - Submit all four weekly projects, and
 - Meet the required standard and quality in each.
- If any project does not meet expectations, you may be asked to revise and resubmit it before receiving your certificate.

1. Introduction

- StreamWorks Media is a UK-based video streaming service aiming to compete with global platforms like Netflix. The business goal is to analyze why users cancel their subscriptions (churn) and to predict future churners.
- The dataset contains subscriber-level information including demographics, usage behavior, subscription types, and churn status. This project's goal is to support the retention team by analyzing churn behavior and building a predictive model.

• 2. Data Cleaning Summary

- Converted signup date and last active date into datetime format.
- Filled missing values:
 - o age and average watch hours with median.
 - monthly_fee with median.
 - o complaints raised with 0.
- Dropped rows with missing dates (2 values).
- Standardized string categories (like gender, country).
- Encoded categorical variables using one-hot encoding.
- Ensured all columns used in modeling were numeric and had no missing values.

```
0
user_id
                         0
age
gender
                         0
signup_date
last active date
                         3
country
                         3
subscription_type
                         0
average_watch_hours
mobile_app_usage_pct
                         0
complaints_raised
                         3
received_promotions
                         3
                         2
referred_by_friend
                         0
is_churned
monthly_fee
dtype: int64
```

.

3. Feature Engineering Summary

- tenure_days: Days between signup and last login.
- **is_loyal**: Binary feature 1 if tenure > 180 days, else 0.

subscription_type	average_watch_hours	mobile_app_usage_pct	complaints_raised	$received_promotions$	referred_by_friend	is_churned	monthly_fee	tenure_days	is_loyal
Standard	42.6	77.4	1.0	No	No	1.0	10.99	102	0
Basic	65.3	98.0	4.0	No	Yes	1.0	5.99	923	1
Premium	40.1	47.8	0.0	No	Yes	1.0	13.99	1057	1
Premium	5.8	53.2	1.0	Yes	Yes	1.0	13.99	668	1
Standard	32.7	16.8	5.0	No	Yes	0.0	9.99	715	1
4		_							-

• Categorical variables like gender, country, subscription_type, etc. were encoded using dummy variables for modeling.

```
df.isnull().sum()
]: user_id
                            0
   age
                            0
   gender
                            0
   signup_date
   last_active_date
                            0
   country
                            0
   subscription_type
                            0
   average_watch_hours
                            0
   mobile_app_usage_pct
   complaints_raised
                            0
   received_promotions
                            0
   referred_by_friend
                            0
   is_churned
                            0
   monthly_fee
                            0
   tenure_days
                            0
   is_loyal
   dtype: int64
```

4. Key Findings (Statistical Tests & Trends)

• Gender vs Churn: No significant relationship found (p-value > 0.05).

```
pd.crosstab(df['gender'], df['is_churned'])

is_churned 0.0 1.0

gender

Female 374 135

Male 377 104

Other 394 109

p-value: 0.10738677055898697
```

Since p value is > 0.05. There is no statistically significant relationship between gender and churn.

• Received Promotions: Slight difference in churn rates; not statistically strong.

	is_churned		1.0			
received_promotions						
	Nan	0	3			
	No	571	188			
	Yes	574	157			

So basically 21.4% received promotions and 24.8% received no promotions.

• Referral Impact: Minor churn difference; not significant.

• Watch Hours vs Churn: T-test showed no strong difference in average watch time between churned and active users.

```
from scipy.stats import ttest_ind

churned = df[df['is_churned'] == 1]['average_watch_hours']

retained = df[df['is_churned'] == 0]['average_watch_hours']

t_stat, p_val = ttest_ind(churned, retained, equal_var=False)

print("T-statistic:", t_stat)
print("p-value:", p_val)
```

T-statistic: -0.1459981349971575 p-value: 0.8839747765330624

So no relationship between average watch hours and churned

Average_watch_hours vs is_churned Box Plot.

HISTOGRAM:

Average_watch_hours vs is_churned

• Monthly Fee: Similar fees paid by both churned and retained users.

• **Overall**: Churn does not seem strongly linked to these individual variables when viewed in isolation.

5. Model Results

• Model Used: Logistic Regression

```
<class 'pandas.core.frame.DataFrame'>
Index: 1493 entries, 0 to 1499
Data columns (total 16 columns):
    Column
                         Non-Null Count Dtype
    _____
0
    user_id
                         1493 non-null
                                        float64
                         1493 non-null float64
1
    age
 2
    gender
                         1493 non-null
                                        object
 3
    signup_date
                         1493 non-null
                                        datetime64[ns]
   last_active_date
4
                         1493 non-null
                                        datetime64[ns]
5
                         1493 non-null
    country
                                        object
    subscription_type
                         1493 non-null
                                        object
    average_watch_hours
7
                         1493 non-null
                                        float64
                                        float64
    mobile app usage pct 1493 non-null
9
    complaints_raised
                         1493 non-null
                                        object
10 received promotions
                         1493 non-null
                                        object
11 referred_by_friend
                         1493 non-null
                                        object
12 is_churned
                         1493 non-null
                                        float64
13 monthly_fee
                                        float64
                         1493 non-null
14 tenure days
                         1493 non-null
                                         int64
15 is_loyal
                         1493 non-null
                                        int32
dtypes: datetime64[ns](2), float64(6), int32(1), int64(1), object(6)
memory usage: 192.5+ KB
```

Metrics:

- Accuracy: ~78%
- o Precision, Recall, F1 for churned users: Very low due to class imbalance

o ROC-AUC Score: 0.50 (indicates poor classification of churners)

• Confusion Matrix: Model predicts most users as not churned

Top 3 Predictors of Churn:

- 1. **Not being referred by a friend** users who joined without a referral showed higher churn likelihood.
- 2. Lower loyalty users with shorter tenure (not loyal) were more likely to cancel.
- 3. **Users from the UK** country-based differences indicate higher churn from the UK segment

6. Business Questions Answered

1. Do users who receive promotions churn less?

Slightly, but no strong evidence. Churn rate for promo users: 21.4%, non-promo: ~24.8%.

2. Does watch time impact churn likelihood?

No strong relationship. T-test showed p-value > 0.05.

3. Are mobile dominant users more likely to cancel?

No clear evidence. Correlation is weak, and t-test did not show strong difference.

4. What are the top 3 features influencing churn based on your model?

is loyal, referred by friend No, country UK

7. Recommendations

- Target new users early: Focus on converting short-tenure users (<180 days) into loyal customers.
- Monitor low activity users: Users with low watch hours may be at higher risk.

8. Data Issues or Risks

- Class Imbalance: Far fewer users churned than retained affected model performance.
- No strong predictors: Many features showed weak correlation with churn.
- Model Limitations: Logistic regression struggled to detect churners.