■ Модуль: Коридор нормальности (Normality Corridor Module)

Тип

Аналитико-оценочный модуль институционального допуска

© Назначение

Непрерывно анализирует поведенческие траектории участников (водителей, операторов, парков) и формирует динамическую модель нормы — основанную не на фиксированных порогах, а на эмпирических траекториях успешного поведения. Обеспечивает допуск, ограничение, рекомендации и репутационные метки по справедливой, проверяемой логике.

※ Структура подсистем

Подсистема	Функция	Ключевые данные
trajectory_collector	Извлечение последовательностей действий водителей и операторов из ERP	действия, события, KPI, финансы
group_norm_bounds	Определение границ нормы на основе peer- групп	кластеризация, скользящие границы
normality_score	Композитная метрика отклонения от нормы	Z-score, Mahalanobis, Rank position
flagging_engine	Пометка аномалий (для FSM, Coach, Access)	флаг, сила отклонения, контекст
risk_path_typing	Обнаружение траекторий, ведущих к рискам	просрочки, штрафы, ДТП, убытки
operator_analysis	Оценка операторов: загрузка, KPI, поведенческие траектории	idle_rate, загрузка, замена водителей
response_context	Передача отклонений в Coach, Access и IMS	полное описание паттерна и реакции
meta_evaluation	Проверка справедливости и устойчивости самих норм	bias-detect, fairness audit, SDR-отчёты

🔍 Алгоритмы и методы

Метод	Назначение	
Z-score / Mahalanobis	Выявление отклонений от нормы	
Peer Group Ranking	Позиция участника относительно когорты	
Sequence Classification	Типизация поведенческих траекторий	
Segment Filtering	Учёт региона, ТС, роли, сезона	
QI-sat (Quartile Intelligent	Устойчивое квартильное разбиение при	
Categorization)	малых/смещённых выборках	
Trajectory Early Warning	Раннее выявление схожести с паттернами прошлых инцидентов (штрафы, ДТП)	

Метод Назначение

Causal Inference (в перспективе) Связь между действиями и последствиями (ДТП, штрафы и т.д.)

© Источники данных

Источник Обновление

ERP Feature Store batch / near real-time

event_log в реальном времени telemetry engine потоково / 15 сек

peer_groups пересчёт при накоплении новых траекторий contract_status по завершению аренды или расторжению

meta_audit_data ежедневно / еженедельно

🔁 Режим работы и поток данных

- 1. Извлечение и сбор
 - о ERP передаёт батчи фич и событий
 - о Сбор слайсов траекторий по ID субъекта
- 2. Обработка и нормализация
 - о Группировка по реег-группам
 - о Расчёт отклонений и норм
- **3. Вывод**
 - о Метки: normal, risky, anomalous, compliant
 - о Передача в Coach, FSM, IMS, Access Layer
 - о Логгирование в аудит и feature store

Пример вывода (Feature Store → Consumers)

ПолеОписаниеОбновлениеdriver_normality_scoreОценка нормальности по композитной модели batchoperator_efficiency_zZ-оценка KPI оператораbatchanomaly_flag0 / 1 (аномалия)real-timerisk_path_typeКласс опасной траекторииbatchmeta bias scoreМетрика возможного перекоса нормыеженедельно

† АРІ-сценарии

Beрсия: v1.0 (backward-compatible) Авторизация: OAuth2 (JWT Bearer)

1. Получить нормальность участника

GET /api/v1/norm/actor/{id} \rightarrow {score, flag, peers}

2. Проверить норму группы

GET /api/v1/norm/group/{segment} \rightarrow {mean, σ , bounds}

3. Обновить реег-группу

POST /api/v1/norm/peer_group/{group_id}/refresh

4. Получить отклонения по оператору

GET /api/v1/norm/operator/{operator id}

5. Аудит справедливости нормы

GET /api/v1/norm/meta/bias audit

Ü SLA, производительность и батчи

- Обновление норм: ≤ 10 мин после батча
- Импорт фич: ≤ 2 мин / 1000 записей
- Задержка API: ≤ 250 мс (р95)
- Поддержка ≥ 5000 участников в ежедневной оценке
- Масштабируемость до 100k участников через BQ + сегментную обработку

□ Безопасность и защита данных

- Аутентификация: OAuth2 (JWT Bearer)
- Разграничение доступа: RBAC
- Шифрование: TLS 1.2+ (в пути), AES-256 (в покое)
- Логгирование всех аномалий и решений \rightarrow immutable audit trail
- PII и поведенческие данные под защитой GDPR
- "Right to explanation" метки объяснимы (SHAP, LIME)

🔭 Наблюдаемость и CI/CD

- Логи: Fluentd → ELK
- Метрики: Prometheus + Grafana
- CI/CD: GitHub Actions → Docker → Deploy
- ETL: cron + Airflow DAGs
- Bias-Check: еженедельно → DataHub lineage + alert если перекос > 15%

Соответствие и аудит

- SHAP/LIME: объяснимость выводов
- Basel III: интерпретируемость, отсутствие black-box
- ESG / SDG: нечувствительность к полу, нации, возрасту
- Fairness Audit: скан на избыточные отклонения в нормах
- Data Lineage: https://datahub.tf/norm-corr-lineage

У Резерв и восстановление

- Бэкапы: раз в сутки + дифференциально каждые 6 ч
- RTO: ≤ 1 ч
- RPO: ≤ 24 ч
- DR-тесты: раз в квартал

★ Ключевые кейсы

1. Р Ограничение водителя

Если driver normality score $< -2.5 \rightarrow FSM$ -token = restricted $\rightarrow \kappa oy \Psi$

2. 💥 Допуск к дорогим активам

Если score > 0.5 и no flags \rightarrow доступ к автомобилю класса B+

3. 🧠 Коучинг-совет

Стиль сна, тип штрафов, частота обращений → рекомендация по ротации

4. 🔥 Оператор с неэффективным парком

Высокий idle rate + перераспределения → предупреждение, оценка репутации

Простыми словами:

Представь, что ты управляешь большой системой аренды автомобилей: у тебя сотни машин, десятки водителей, и всё это крутится каждый день. Кто-то аккуратен, кто-то безалаберный. Кто-то доводит машину до убытков, а кто-то бережёт. Как заранее понять, кто приведёт к проблемам, а кто — нет? Как вовремя заметить, что кто-то начал "съезжать с трассы"?

Вот тут и нужен модуль "Коридор нормальности".

📌 Зачем нужен

Он отслеживает, как ведут себя участники (водители и операторы), и сравнивает их поведение с тысячами других. Если кто-то повторяет траекторию тех, кто в прошлом попал в ДТП, получил кучу штрафов или угробил машину, система это заметит — ещё до того, как случится беда.

Это не просто "проверка по списку", а умная, обучающаяся система, которая говорит:

"Вот у тебя водитель — он вроде нормальный, но пошёл по дорожке, которая у 82% других водителей заканчивалась проблемами. Предупреждаю заранее."

- 1. **Смотрит на поведение всех** кто, как водит, как часто попадает в штрафы, насколько загружен автопарк, как часто машины простаивают, кто с кем работает и что из этого выходит.
- 2. Запоминает успешные траектории те, что привели к хорошим результатам: прибыль, отсутствие штрафов, сохранность машин.
- 3. **Запоминает провальные траектории** где были проблемы: убытки, поломки, ДТП.
- 4. **Сравнивает нового участника или текущее поведение** с этими шаблонами. Если находит сходство с плохими бьёт тревогу. Если всё ок даёт зелёный свет.

Что даёт

- **Предупреждение заранее** можно отключить проблемного водителя до того, как он устроит ДТП.
- Честный и проверяемый допуск не по субъективному мнению, а по статистике.
- Оценка операторов видно, кто управляет парком эффективно, а кто не умеет.
- Формирует доверие у инвесторов система показывает, что в ней не может случайно затесаться разрушительный участник.
- Снижение издержек меньше аварий, штрафов, убытков.

что меняет

До него:

- Работали "по наитию", надеясь на опыт менеджера.
- Поздно замечали, что кто-то ведёт к проблеме.
- Не было прозрачного критерия кого пускать, а кого нет.

С ним:

- Решения основаны на данных.
- Каждый шаг водителя и оператора под наблюдением.
- Нормы не заданы жёстко они живые, адаптируются к реальности.
- Даже если нет большого объёма данных работает QI-метод, который умеет оценивать устойчивость по квартилям, а не по средним, что даёт хорошую точность даже на малых выборках.

Пример:

Водитель Иван недавно начал работать. Он пунктуален, но слишком агрессивно ускоряется и часто едет выше разрешённой скорости.

Система видит, что похожее поведение у других водителей заканчивалось 60%

аварийностью и кучей штрафов.

Рекомендация: ограничить допуск, направить на коучинг.

1 И всё это — **с объяснением**. То есть можно открыть отчёт и понять: *почему система посчитала этого водителя отклонением*? Это важно для доверия и для аудиторов.