SLAM-Particle Filter

Jinwook Huh University of Pennsylvania

Contents

- I. Ground Detection
- II. RGB-Depth Image Alignment
- III. Texture Mapping
- IV. Occupancy Grid Mapping
- V. Map Registration
- VI. PF-Based SLAM

I. Ground Detection

II.RGB-Depth Image Alignment

III. Texture Mapping

Preliminaries

$$\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

(3D) Camera coordinate

image u

(2D) Image coordinate frame

frame

Preliminaries

$$\frac{u}{f_u} = \frac{x}{z} \qquad \qquad \frac{v}{f_v} = \frac{y}{z}$$

Projection of a 3D point on the image plane

Understanding Depth Image

Depth Image

Pixel value at (u,v): z-value of the point in 3D

Preliminaries

•Plane model in *x-y-z* domain

$$a_0x + a_1y + a_2z + a_3 = 0$$

• Can use image (u-v) and inverse depth $(d:=z^{-l})$ domain $a_0u + a_1'v + a_2' + a_3'd = 0$

I. Ground Detection

- 1) Aligned Camera
- 2) Rotated Camera

II.RGB-Depth Image Alignment

III. Texture Mapping

Ground Detection (1) Aligned Camera

Ground Plane model

$$y = h$$

$$\frac{v}{f_{xx}} = \frac{y}{z}$$

A ground point should satisfy this:

$$\left| \frac{v}{f_v} - \frac{h}{z} \right| < \varepsilon$$

^{*}h,f are constants!

Ground Detection (2) Rotated Camera

(viewed in the global frame)

$$\mathbf{n}_{gound} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Ground Detection (2) Rotated Camera

Ground Plane model

$$a_0x + a_1y + a_2z + a_3 = 0$$

Projectio

A ground point should satisfy this:

$$|a_0'u + a_1'v + a_2' + a_3'd| < \varepsilon$$

Ground Detection (2) Rotated Camera

I. Ground Detection

II.RGB-Depth Image Alignment

III. Texture Mapping

Aim: we want to obtain the tuple of 3d point and its color.

ISSUE: RGB images are obtained from the RGB camera, Depth images are from the IR camera. They are physically separated, and have different camera parameters.

Essential Problem: Given all camera parameters(R,t,f), find the corresponding points of a RGB and a depth image.

Recall this:
$$\frac{u}{f_u} = \frac{x}{z}$$

1) Compute the 3d coordinate X^{IR} in IR camera frame

$$x^{IR} = uz/f^{IR} \quad y^{IR} = vz/f^{IR} \qquad \qquad x^{IR} = [x^{IR} \quad y^{IR} \quad z^{IR}]$$

2) Transform into the RGB camera frame

$$X^{RGB} = RX^{IR} + t$$

3) Reproject them on to the image plane

$$u^{RGB} = f^{RGB} \frac{x^{RGB}}{z^{RGB}} \quad v^{RGB} = f^{RGB} \frac{x^{RGB}}{z^{RGB}}$$

4) Read (r,g,b) at $(u,v)^{RGB}$

$$\frac{u}{f_u} = \frac{x}{z}$$

1) Compute the 3d coordinate X^{IR} in IR camera frame

$$x^{IR} = uz/f^{IR}$$
 $y^{IR} = vz/f^{IR}$

$$X^{IR} = \begin{bmatrix} x^{IR} & y^{IR} & z^{IR} \end{bmatrix}$$

2) Transform into the RGB camera frame

$$X^{RGB} = RX^{IR} + t$$

3) Reproject them on to the image plane

$$u^{RGB} = f^{RGB} \frac{x^{RGB}}{z^{RGB}} \quad v^{RGB} = f^{RGB} \frac{x^{RGB}}{z^{RGB}}$$

4) Read (r,g,b) at $(u,v)^{RGB}$

This is the color of this point.

I. Ground Detection

II.RGB-Depth Image Alignment

III. Texture Mapping

Camera Parameters

•fci: IR camera focal length

•cci : IR camera principal point

•fcc : RGB camera focal length

•ccc : RGB camera principal point

•IR Image : 512 X 424

•RGB image: 1920 X 1080

Procedure

- •Find homogeneous transformation between global frame and camera frame (based on the best particle)
- •Find 3D points from depth image w.r.t. camera frame

$$x^{IR} = uz/f^{IR}$$
 $y^{IR} = vz/f^{IR}$ $x^{IR} = [x^{IR} \ y^{IR} \ z^{IR}]$

For 'fc' (focal length), the first element corresponds to f_u and the second element corresponds to f_v compute appropriate pixel positions using the principal point values before applying the equations

- •Find colors corresponding to 3D points
- •Transform 3D points from camera frame to global frame
- •Find the ground plane in the transformed data via RANSAC or simple thresholding on the height
- Project color points in the the occupancy grid map

Transformation

- Input
 - $pf(x, y, \theta)$
 - Body roll and pitch: r, p
 - Head yaw and pitch

 $T = T_{xyz}(pf(x), pf(y), l_3)R_z(pf(\theta))R_y(p)R_x(r)T_z(l_2)R_z(head_yaw)R_y(head_pitch)T_z(l_1)$

Project #4 SLAM-PF

Good examples

Project #4 SLAM-PF

Previous good examples

Project #4 SLAM-PF

Previous good examples

- Occupancy: binary R.V. $m_{x,y}$: $\{free, occupied\} \rightarrow \{0, 1\}$
- Occupancy grid map
 : fine-grained grid with occupancy variable associated with cell
- Bayesian filtering $p(m_{x,y}|z) \propto p(z|m_{x,y})p(m_{x,y})$
- Usually based on a range sensor

For each cell, we update $p(m_{x,v}|z)$

• Measurement $z \sim \{-1, 1\}$

Free

• Measurement model $p(z|m_{x,y})$

Measurement model

$$p(z|m_{x,y})$$

$$p(z = 1|m_{x,y} = 1)$$

$$p(z = -1|m_{x,y} = 1) = 1 - p(z = 1|m_{x,y} = 1)$$

$$p(z = 1|m_{x,y} = 0)$$

$$p(z = -1|m_{x,y} = 0) = 1 - p(z = 1|m_{x,y} = 0)$$

Odd

$$\frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \frac{p(m_{x,y} = 1|z)}{1 - p(m_{x,y} = 1|z)} = \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)}{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}$$

Log-odd

$$\log \frac{p(m_{x,y} = 1|z)}{p(m_{x,y} = 0|z)} = \log \frac{p(z|m_{x,y} = 1)p(m_{x,y} = 1)}{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}$$

$$= \log \frac{p(z|m_{x,y} = 0)p(m_{x,y} = 0)}{p(z|m_{x,y} = 0)} + \log \frac{p(m_{x,y} = 1)}{p(m_{x,y} = 0)}$$
(Log odd) = (Log LH ratio) + (Log prior ratio)

(log odd) ← (log odd) + (log Likelihood model ratio)

Example

$$\log odd += \log \frac{p(z|m_{x,y} = 1)}{p(z|m_{x,y} = 0)}$$

Initially,

 $\log odd = 0$ for all (x,y)

$$p(m_{x,y}=1)=p(m_{x,y}=0)=0.5$$

Measurement Model

$$\log odd_occ := \log \frac{p(z=1|m_{x,y}=1)}{p(z=1|m_{x,y}=0)} = \log \frac{0.7}{0.2}$$

$$\log odd_free := \log \frac{p(z = -1|m_{x,y} = 0)}{p(z = -1|m_{x,y} = 1)} = \log \frac{0.8}{0.3}$$

Example (continued)

Case I: cells with z=1

$$\log odd \leftarrow \log odd + \log odd_occ$$
$$\log odd \leftarrow \log odd + \log(\frac{0.7}{0.2})$$

Case II: cells with z=-1

$$\log odd \leftarrow \log odd - \log odd_free$$
$$\log odd \leftarrow \log odd - \log(\frac{0.8}{0.3})$$

Case III: cells with no z

$$\log odd = 0$$

$$\log odd += \log \frac{p(z|m_{x,y}=1)}{p(z|m_{x,y}=0)}$$

• In summary... for cells with z = 1

$$\log odd += \log odd_occ$$

• In summary... for cells with z = -1

$$\log odd -= \log odd free$$

• Tips: Never make anything certain! Saturate log-odd.

Map Registration

Correlation-based Matching

- 1) General hypotheses
- 2) Evaluate hypotheses
- 3) Pick the best

Map Registration

Map

Range measurement

- Correlation-based Matching
 - Generate hypotheses (particles)

- Correlation-based Matching
 - For each hypothesis

- Correlation-based Matching
 - Build a local map from the measurement in a form that can be compared with the global map

- Correlation-based Matching
 - Evaluate hypotheses
 - score the hypothesis

- Correlation-based Matching (Find the best*)
 - Among all the hypotheses, choose the one that has the largest score in order to represent your current location

Lidar

Global map

- Uniform grid map/Quad-tree map
- Accuracy depends on grid resolution

Update Global Map

Map correlation

- MU.mapCorrelation(MAP['map'],x_im,y_im, pReading_world[0:3,:], x_range, y_range)
 - Evaluate the correlation of a particle in the patch (X_range, yrange)
- MAP['map']: Global Map (int8)
- x_im, y_im: physical x, y positions of the grid map cells (unit: m)
- pReading_world: occupied x, y positions from lidar based on a particle w.r.t. world frame (unit: m)
 - (np.concatenate([np.concatenate([xs0,ys0],axis=0),np.zeros(xs0.shape)],axis=0)

Map correlation

- Compute the weight based on the map correlation function
 - C = MU.mapCorrelation(MAP['map'],x_im,y_im, pReading_world[0:3,:], x_range, y_range)
- x_range,y_range: physical x, y, positions you want to evaluate "correlation"
- pReading_world : lidar scan data based on a particle frame w.r.t global frame
- c = map_correlation(pp, GM.grid, GM.grid, [pReading_world; zeros(1, numReading)], x_range, y_range);
- weight of each particle : max(c(:));

Lidar scan base on a particle

example

- 25m X 25m, resolution 0.05m map
- c = MU.mapCorrelation(MAP['map'],x_im,y_im,Y[0:3,:],x_range,y_range)
- MAP['map']: 1000 X 1000 int8
- X_im: 1X1001 vector (1:0.05:25)
- Y: 3X1081 scan data w.r.t. world frame (based on the particle)
 - Note that elements in last row of Y (Z values) are zero
- x_range, y_range : [-0.05 0 0.05] or [-0.025 -0.0125 0 0.0125 0.025]
 - : the range you want to evaluate

weight of each particle: max(c(:))

Update weights/Best particle

- Multiplication
 - pfWt(i) = pfWt(i)*maxC(i);
- normalization
 - pfWt = pfWt / sum(pfWt);
- Choose the best particle based on the weight
 - [~, as] = max(pfWt);
 - pfBest = pf(as, :);

3. PF-based SLAM

Particle Filter

- Non-parametric model (multimodal)
 - Mixtures of Gaussians, multi-hypothesis Kalman Filter
- Uses particles instead of probability distribution
- Fast and efficient

Particle Filter

Flowchart

1st step: New pose from motion

New pose given new control

1st step: New pose from motion

New pose given new control

2nd step: Importance weight

New pose given new control

Importance weight

3rd step: Resampling

PF-Based SLAM

- Humanoid SLAM
 - 2D SLAM based on several sensors
 - Odometry, Lidar (Head), IMU, Vision (Kinect)
- Ground Detection
 - Visualization of the detected ground
- Difficulties
 - 3D jerky motion of the THOR
 - Roll & Pitch motion
 - Head motion
 - Moving obstacles

- 3D jerky motion of the THOR
 - Roll and Pitch motion
 - Poor odometry
- Head motion while moving
 - Compensate roll and yaw motion
 - Remove the lidar scan of the ground
- Relative coordinate
 - IMU, Lidar, Kinect coordinates
- Etc.
 - Moving obstacles

- Training Data set(#0 ~ #3)
 - Train_lidar.mat
 - Train_joint.mat
 - RGB.mat
 - Depth.mat
- Maputils
 - Map_correlation
 - GetMapCellsFromRay

- Joint.mat
 - Joint angles
 - pos: Matrix of positions (Maybe you don't need)
 - ts: timestamps (absolute time)
 - gyro: angular velocity of body
 - acc: acceleration of body
 - rpy: roll, pitch and yaw angles of body
 - Head_angles = [Neck angle(yaw), head angle(Pitch)];
 - Ft_I, ft_r : Torque/Force sensor of left and right foot (Maybe you don't need)

- lidar.mat
 - t: 1.4268e+09(absolute time)
 - rsz: 4324 (You don't need it)
 - pose: [0 0 0] (global odometry)
 - res: 0.0044 (radian, resolution) (theta = -135:0.25:135)
 - rpy: [-0.0120 -0.0164 -0.1107] (IMU roll pitch yaw)
 - scan: [1x1081 single] (Scan data, range -135deg to 135 deg)
- lidar.rpy and joint.rpy are identical I for the same time stamps

- Odometry
 - lidar{i}.pose: [x, y, theta]
 - +x: forward from robot
 - +y: left from robot
 - +z: up from robot
 - theta: rotation around +z

PF-Based SLAM

- Relative pose based on the odometry $(o_{t+1} \ominus o_t)$
 - Given global odometry
 - Find delta x, delta y and delta theta

$$\begin{bmatrix} O_{x_{-}t} \\ O_{y_{-}t} \end{bmatrix} = \begin{bmatrix} \cos\theta_{t-1} & \sin\theta_{t-1} \\ -\sin\theta_{t-1} & \cos\theta_{t-1} \end{bmatrix} \times \begin{bmatrix} x_t - x_{t-1} \\ y_t - y_{t-1} \end{bmatrix}$$

$$O_{\theta_{-}t} = \theta_t - \theta_{t-1}$$
 Transform to local coordinate frame!!!!

Implementation

Adding random noise

 $p_{t+1} = p_t \oplus (o_{t+1} \ominus o_t)$

- Random noises (mu = 0, sigma = σ) to odometry
- For N particles, generate N random noise values
- Prediction[P_{x_t} , P_{y_t} , P_{θ_t}]

$$\bullet \quad \begin{bmatrix} P_{x_{-}t} \\ P_{y_{-}t} \end{bmatrix} = \begin{bmatrix} P_{x_{t-1}} \\ P_{y_{t}-1} \end{bmatrix} + \begin{bmatrix} \cos P_{\theta_{t-1}} & -\sin P_{\theta_{t-1}} \\ \sin P_{\theta_{t-1}} & \cos P_{\theta_{t-1}} \end{bmatrix} \times \begin{bmatrix} O_{x_{-}t} \\ O_{y_{-}t} \end{bmatrix}$$

- $\bullet \quad P_{\theta_{-}t} = P_{\theta_{t}-1} + O_{\theta_{-}t}$
- Note : $P_{\theta_{t-1}}$ is the heading of a particle
- Example
 - for i =1:N(=100)
 noise_odo(i) = odo + normrnd(0, sigma)
 pf(jj,:) = [pf(i,1:2) + (R* noise_odo(i,1:2)')', pf(i,3)+ noise_odo(i, 3)]
- TIP: Sigma = sigma * norm(odo)(when the robot doesn't move, norm(odo = 0))

Implementation

- Motion noise
 - Gaussian Random Noise (mu = 0, sigma = σ)

PF-Based SLAM

Transformation

- Input
 - $pf(x, y, \theta)$
 - Body roll and pitch: r, p
 - Head yaw and pitch

Global $T_x \& T_y$ Frame

 $T = T_{xyz}(pf(x), pf(y), l_3)R_z(pf(\theta))R_y(p)R_x(r)T_z(l_2)R_z(head_yaw)R_y(head_pitch)T_z(l_1)$

Transformation

scan =
$$[x_1, y_1, z_1;$$

... $x_{1081}, y_{1081}, z_{1081}]$

Polar Coordinate

Cartesian Coordinate w. r. t lidar frame

 $scan_world = T \times scan$

Implementation

- Lidar Data
 - Remove the hits on the ground
 - Compensate the roll and yaw of head pose
 - Possible to compensate the motion of the robot

PF-Based SLAM

PF-Based SLAM

Resampling

- wsum = cumsum(w(:)');
- wsum = wsum./wsum(end);
- r = rand(1, n);
- [~, isort] = sort([wsum r]);
- s = [ones(1,nw) zeros(1,n)];
- s = s(isort);
- ssum = cumsum(s);
- index = ssum(s == 0) + 1;

PF-Based SLAM

Occupancy grid map

getMapCellsFromRay

- [x_between, y_between] = getMapCellsFromRay(xori, yori, xis(i), yis(i));
- returns empty indices in the global map between robot position and scan point
- xori, yori : pose of robot in the global map (indices)
- xis, yis: scan points in the global map (indices)

Tips

- Skip static part at the beginning part
- MapUtils2 with bresenham2D.py for getMapCellsFromRay
- Fast Debugging
 - Start with a small number of particles
 - Small size of grid map for debugging
- Interval between scan data: 10
 - First, start with large interval value
- Check Transformation!
 - From lidar to global
 - Odometry

Tips: Parameters (baseline)

- The number of particles: 50 ~ 150
- Map resolution : 0.05
- Noise (when interval is 10)
 - Normal random([0.01, 0.01, 0.5*pi/180])
 - If norm(odo) $< \varepsilon$, noise is also zero
- Log odds Parameter
 - logOddOcc = 3, logOddFree = -1
 - Maximum: 120
 - Minimum:-120

Tips: Parameters (baseline)

- Resampling (100 particles)
 - Effective number (1/sum(weights*weights)) < 20

• Train#0

Mapping based on odometry

Particle-SLAM

• Train#3

Mapping based on odometry

Particle-SLAM

