Mesh evaluation

The estimation of the spacing for the mesh along the y direction is performed through one of the utilities that can be found inside the folder 1-pre_processing/Stretching Mesh. For a channel flow case, the default function of Incompact3d can be used, stretching_parameter_channel.f90.

For a temporal TBL case instead, a new function was developed, starting from the stretching subroutine that can be found inside the original solver of Incompact3d. This new function is a Python script, mesh_evaluation_ttbl.py. This function allows to estimate the mesh size by introducing the following inputs:

• Number of points: n_x, n_y, n_z .

• Domain dimensions: L_x, L_y, L_z .

• Stretching parameter: β .

• Skin friction coefficient: c_f .

• Kinematic viscosity: ν .

• Velocity of the wall: U_w .

• Time step: Δt .

• Tripping wire diameter: D.

And it produces the following outputs:

- Non-dimensional domain dimensions at IC and at peak c_f : L_x^+, L_y^+, L_z^+ .
- CFL, Péclet, Numerical Fourier and stability parameter: Co, \mathcal{D} , $P\acute{e}$, S.
- Mesh size at the first element near the wall at peak c_f : Δy_1^+ .
- Mesh size at the last element away from the wall at peak c_f : Δy_n^+ .
- Mesh spacings in x and z directions at peak c_f : $\Delta x^+, \Delta z^+$.
- Aspect ratios (ARs) of grid elements at bottom and top walls in x and z directions: AR_{x_1} , AR_{x_n} , AR_{z_1} , AR_{z_n} .
- Number of mesh nodes npvis in the viscous sublayer at c_f peak.
- Number of mesh nodes npsl in the initial shear layer.
- Approximate initial shear layer momentum thickness θ_{sl} .
- Initial shear layer thickness δ_{99}^+ .

It is worth noticing that in a temporal BL simulation, the peak c_f value constraints the height of the first cell at the wall Δy_1 , as in standard CFD simulations. However, the decrease of c_f along the simulation (and thus the increase in viscous length δ_{ν}) imposes a constraint for the domain dimensions L_x , L_y , L_z since they appear progressively "smaller" (their non-dimensional counterparts decreases). Too low values of L_x^+, L_y^+, L_z^+ must be avoided in order to do not enforce a too strong periodicity in the turbulent structures at the wall.

For numerical stability, it is recommended to maintain Co < 1, D < 0.5, $P\acute{e} < 2$ and S < 1.

Pre-processing quantities

Calculated quantities for a temporal TBL in mesh evaluation ttbl.py.

Shear velocity at IC

$$rac{\partial U}{\partial y} = -rac{U_w}{4 heta_{sl}} \cdot rac{1}{\cosh^2\left(rac{D}{2 heta_{sl}}
ight)}$$

$$u_{ au} = \sqrt{
u \left| rac{\partial U}{\partial y}
ight|}$$

Shear velocity at peak friction coefficient

$$u_{ au}=U_{w}\sqrt{rac{c_{f}}{2}}$$

Initial velocity profile

$$U_0^+(y) = rac{U_w^+}{2} + rac{U_w^+}{2} anh \left[rac{D}{2 heta_{sl}} \Big(1 - rac{y}{D}\Big)
ight]$$

Initial shear layer momentum thickness

$$heta_{sl}pprox rac{54
u}{U_w}$$

Initial Courant-Friedrichs-Lewy number

$$Co = rac{U_w \Delta t}{\Delta x}$$

Initial Numerical Fourier number

$$\mathcal{D}=rac{
u\Delta t}{\Delta x^2}$$

Initial Péclet number

$$Pcute{e}=rac{U_w\Delta x}{
u}$$

Initial stability parameter

$$S = rac{U_w^2 \Delta t}{2
u}$$