SensorArray for Laser Lissajous Curves

ESP32 + MicroPython + 5 Fototransistores OP598

Detección y análisis de movimiento láser usando un arreglo de sensores distribuidos espacialmente

Índice

- Introducción
- Diseño del Sistema
- Implementación
- Resultados
- Trabajo Futuro

Motivación del Proyecto

 Objetivo: Desarrollar un sistema capaz de detectar y analizar patrones de movimiento láser

Motivación del Proyecto

- Objetivo: Desarrollar un sistema capaz de detectar y analizar patrones de movimiento láser
- Aplicaciones:
 - Análisis de vibraciones mecánicas
 - Detección de patrones geométricos (Lissajous)

Arquitectura General

- Entrada: Láser de 635nm con movimiento controlado
- **Detección:** 5 fototransistores OP598 distribuidos espacialmente
- Procesamiento: ESP32 con adquisición a 10Hz
- Análisis: Python con librerías científicas

Hardware: Componentes Principales

Lista de Componentes:

- ESP32 DevKit v1
- 5× Fototransistores OP598 NPN
- $5 \times$ Resistencias $100 k\Omega$
- LED láser 635nm
- Protoboard y cables

Especificaciones Técnicas:

- ADC 12-bit (0-4095)
- Rango: 0-3.3V
- Frecuencia: 10Hz
- Atenuación: 11dB

Configuración física del sistema

Disposición Espacial de Sensores

Coordenadas Normalizadas:

X	Υ
0.0	1.0
1.0	1.0
0.47	0.6
0.2	0.0
8.0	0.0
	0.0 1.0 0.47 0.2

Formato de Datos

Estructura CSV:

tiempo	azul	verde	amarillo	naranja	rojo
0	1024	2048	3072	1536	2560
100	1034	2038	3062	1546	2550
200	1044	2028	3052	1556	2540

Características:

• Tiempo: Milisegundos desde inicio de captura

• Sensores: Valores ADC (0-4095, 12-bit)

• Frecuencia: 10Hz (100ms entre muestras)

Rango útil: 200-3500 ADC (evita saturación)

Tipos de Patrones Detectados

Patrones Implementados:

- Barrido Horizontal
 - Movimiento lineal en X
 - Frecuencia: 0.5-2 Hz
- Barrido Vertical
 - Movimiento lineal en Y
 - Sincronización temporal
- Patrones Diagonales
 - Movimiento esquina a esquina
 - Trayectorias complejas
- Movimiento Aleatorio
 - Para calibración y pruebas
 - Validación de algoritmos

Ejemplo de trayectoria reconstruida

Estado Actual del Proyecto

Nota Importante

Actualmente: El sistema está validado con movimiento manual de una luz roja. La implementación de detección automática de curvas de Lissajous está en desarrollo.

Completado:

- Sistema de hardware funcional
- Adquisición de datos estable
- Algoritmos de reconstrucción

En Desarrollo:

- Detección automática de Lissajous
- Análisis frecuencial avanzado
- Interfaz de usuario

Roadmap de Desarrollo

Objetivos por Fase:

- Fase 2: Implementar generador de Lissajous mecánico/electrónico
- Fase 3: Algoritmos de machine learning para clasificación automática
- Fase 4: Sistema completo con interfaz web y análisis en tiempo real