Analysis

Elodie Kwan and Katia Voltz

2022-04-26

Methodology

In this section we will talk about the methodology that has been used and the different models analysis that has been conducted.

Traning set and Test set

First of all we started by splitting our dataset into 2 sets: **training set** (German_credit.tr) and **test set** (German_credit.te). We do not forget to take the first variable **OBS**. out as it represents the index number for each observation. These two sets will allow us to train some models on the **training set** and then test the accuracy of the model fit on the **test set**.

Balancing the dataset

Then, we applied the balancing data technique in order to improve the predictions of **Good Credit** and **Bad Credit**, since we have more observations on the **Good Credit**.

Indeed, we observe that the "Good Credit" (1) response appears **527** times in the training set and "Bad Credit" (0) **223**, two times less. Since there are many more "Good Credit" than "Bad Credit", any model favors the prediction of the "Good Credit". It results a good accuracy but the specificity is low, as well as the balanced accuracy.

Sub-sampling Balancing using sub-sampling consists of taking all the cases in the smallest class (here "Bad Credit") and extract at random the same amount of cases in the largest category (here "Good").

The **training set** is now balanced, we have 223 observations for both "Good Credit" (1) and "Bad Credit" (0). The new balanced training set is called German_Credit.tr.subs.

Models Fitting

Once we had our training set and test set, we could fit some models and compare them with together to choose the best model.

1. Classification Tree (Decision Tree) We first started with a decision tree and more specifically we chose the classification tree as we want to classify the applicants. The model was build on our previously balanced training set German_Credit.tr.subs. We used the R function rpart.

We obtained the following large tree.

We could see that among the 31 explanatory variables, this model uses 6 of them: CHK_ACCT, AMOUNT, HISTORY, DURATION, GUARANTOR and EMPLOYMENT.

Table 1: Confusion Matrix of the Big classification tree

		Bad cre	edit risk	Good credit risk
	Bad credit ri	\mathbf{sk} 5	8	70
	Good credit r	risk 1	9	103
	Sensitivity	Specificity	Pos Pred Val	ue
	0.7532468	0.5953757	0.45312	50
	Neg Pred Value	Precision	Reca	11
	0.8442623	0.4531250	0.75324	68
	F1	Prevalence	Detection Ra	te
	0.5658537	0.3080000	0.23200	00
D	etection Prevalence	Balanced Accuracy		
	0.5120000	0.6743112		

We first have an insight on how well it predict the test set (German_credit.te). We recall that 0 means a "Bad Credit" risk and 1 means a "Good Credit" risk. It seems that this model has difficulty to predict the "Bad Credit" risk applicants. Indeed from the table have 70 observations that were misclassified as being "Bad credit" while it was in fact a "Good credit".

As the tree is quite big and we want to know if we can prune it. To do so, we decided to use the printcp and plotcp commands and choose the best cp (complexity parameter) value to prune our tree.

Pruning the tree

```
##
## Classification tree:
## rpart(formula = RESPONSE ~ ., data = German_Credit.tr.subs, method = "class")
```

```
##
## Variables actually used in tree construction:
                              DURATION
                                         EMPLOYMENT GUARANTOR HISTORY
   [1] AMOUNT
                  CHK ACCT
##
## Root node error: 223/446 = 0.5
##
## n= 446
##
##
           CP nsplit rel error xerror
                                            xstd
## 1 0.399103
                   0
                       1.00000 1.08520 0.047179
  2 0.022422
                   1
                        0.60090 0.63677 0.044117
                   2
  3 0.014574
                       0.57848 0.66816 0.044668
##
                   7
                        0.48430 0.69058 0.045028
##
  4 0.011958
## 5 0.011211
                   10
                        0.44843 0.67265 0.044742
## 6 0.010000
                  12
                        0.42601 0.67265 0.044742
                                              size of tree
```


From the list of **cp** (complexity parameter), we would choose the line that has the lowest cross validation error. This can be seen on the column **xerror**. So the best cp would be 0.022422 with one split.

From the graph, we can identify that, according to the 1-SE rule, the tree with 2 and 3 are equivalent. The tree with 3 nodes should be preferred. It appears below the dotted-line.

The value of cp can be chosen arbitrarily between 0.018 and 0.095. So we decided to go with the suggested cp of 0.022 from the summary.

With these value, we obtain a very small tree.

This pruned decision tree with a cp of 0.022 uses the variables CHK_ACCT and HISTORY.

Using this pruned tree, we can computed the prediction and build a confusion matrix to see the performance of the model.

Table 2: Confusion Matrix of the Pruned classification tree

		Bad	eredit risk	Good credit risk
	Bad credit ri	sk	63	95
	Good credit r	isk	14	78
##	Sensitivity	Specificity	Pos Pred Val	ue
##	0.8181818	0.4508671	0.39873	42
##	Neg Pred Value	Precision	Recai	11
##	0.8478261	0.3987342	0.81818	18
##	F1	Prevalence	Detection Ra	te
##	0.5361702	0.3080000	0.25200	00
##	Detection Prevalence	Balanced Accuracy		
##	0.6320000	0.6345244		

Here again, this model has difficulty to predict the "Bad credit" cases. The model also decreased in its precision values.

We also decided to look at what would an automatically pruned using 1-SE rule would give us and whether or not it is better than the pruned tree we made by looking at the cp.

Here, only the variable CHK_ACCT is used. As we prune the tree more information are lost.

Table 3: Confusion Matrix of the Autoruned classification tree

		Bad c	redit risk	Good credit risk
	Bad credit r	isk	61	88
	Good credit	risk	16	85
	Sensitivity	Specificity	Pos Pi	red Value
	0.7922078	0.4913295	(0.4093960
	Neg Pred Value	Precision		Recall
	0.8415842	0.4093960	(0.7922078
	F1	Prevalence	Detect	tion Rate
	0.5398230	0.3080000	(0.2440000
Det	ection Prevalence	Balanced Accuracy		
	0.5960000	0.6417686		

Again, it seems that in general the classification trees we perfored have difficulty to predict the "Bad credit" cases.

Variable importance of the classification tree Then we analysed the variable importance of one of the models. We decided to compute the variable importance of the **pruned classisication tree** german.ct.prune by applying the function varImp on the model.

It is summarized below on the plot.

From this plot, we see that the variables that influences the most are CHK_ACCT, HISTORY, SAV_ACCT, DURATION, AMOUNT and REAL_ESTATE. They are not exactly the same as the one we saw above.

The variable CHK_ACCT and HISTORY were already noticed though.

2. Logistic Regression The next model we performed is a logistic regression.

```
##
## Call:
## glm(formula = RESPONSE ~ ., family = binomial, data = German_Credit.tr.subs)
##
## Deviance Residuals:
##
       Min
                   1Q
                        Median
                                       3Q
                                                Max
## -2.34578 -0.68043
                        0.00049
                                  0.65178
                                            2.74937
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      1.1911402 1.7958756
                                             0.663 0.507161
## CHK ACCT1
                     0.5692882 0.3363406
                                             1.693 0.090533 .
## CHK_ACCT2
                     0.8404451 0.5339512
                                            1.574 0.115485
## CHK ACCT3
                     2.4337691
                                0.3770606
                                            6.455 1.09e-10 ***
## DURATION
                     -0.0123731
                                0.0142153 -0.870 0.384078
## HISTORY1
                     -1.0734853 0.8514386 -1.261 0.207384
## HISTORY2
                     0.0865599 0.6747882
                                            0.128 0.897930
## HISTORY3
                     -0.0598560 0.7410028 -0.081 0.935619
## HISTORY4
                     1.1072483 0.6576414
                                            1.684 0.092246 .
## NEW_CAR1
                     -0.4538649 0.5853211 -0.775 0.438096
```

```
## USED CAR1
                      1.6322817
                                 0.7540134
                                              2.165 0.030404 *
## FURNITURE1
                      0.0509645
                                 0.6182782
                                              0.082 0.934305
## RADIO.TV1
                      0.5261147
                                 0.5896893
                                              0.892 0.372291
## EDUCATION1
                      0.5441469
                                 0.7499724
                                              0.726 0.468111
## RETRAINING1
                     -0.4293160
                                 0.6787931
                                             -0.632 0.527080
## AMOUNT
                     -0.0002155
                                 0.0000739
                                             -2.916 0.003550 **
## SAV ACCT1
                      0.6181742
                                 0.4475399
                                             1.381 0.167195
## SAV_ACCT2
                     -0.2531524
                                 0.5541205
                                             -0.457 0.647776
## SAV_ACCT3
                      0.7292579
                                 0.6813687
                                              1.070 0.284492
## SAV_ACCT4
                      1.4221687
                                 0.4243610
                                              3.351 0.000804 ***
## EMPLOYMENT1
                      0.7574673
                                 0.7956778
                                              0.952 0.341108
## EMPLOYMENT2
                      1.4785839
                                 0.7640267
                                              1.935 0.052959
                      1.9691166
## EMPLOYMENT3
                                 0.7947873
                                              2.478 0.013229 *
## EMPLOYMENT4
                                              2.471 0.013475 *
                      1.8560330
                                 0.7511387
## INSTALL_RATE
                     -0.3367533
                                 0.1411404
                                             -2.386 0.017035 *
## MALE_DIV1
                     -0.5653453
                                 0.5705857
                                             -0.991 0.321775
## MALE_SINGLE1
                      0.1618525
                                 0.3327207
                                              0.486 0.626647
## MALE MAR or WID1
                     -0.5551862
                                 0.5312986
                                             -1.045 0.296041
                                             -1.011 0.312179
## CO.APPLICANT1
                     -0.6994379
                                 0.6920599
## GUARANTOR1
                      1.7126786
                                 0.6556150
                                             2.612 0.008993 **
## PRESENT_RESIDENT2 -1.1195205
                                 0.4773294
                                             -2.345 0.019008 *
## PRESENT RESIDENT3 -0.2590309
                                 0.5313455
                                             -0.487 0.625904
## PRESENT_RESIDENT4 -0.9082582
                                 0.4793144
                                             -1.895 0.058104
## REAL ESTATE1
                     -0.0137202
                                 0.3384983
                                             -0.041 0.967669
## PROP UNKN NONE1
                     -1.4578770
                                 0.6505748
                                            -2.241 0.025032 *
## AGE
                      0.0167050
                                 0.0141041
                                              1.184 0.236255
## OTHER_INSTALL1
                     -0.6758552
                                 0.3404321
                                             -1.985 0.047113
                                             -1.464 0.143315
## RENT1
                     -1.2066453
                                 0.8244600
## OWN_RES1
                     -0.4707135
                                 0.7665544
                                             -0.614 0.539173
                                             -1.207 0.227474
## NUM_CREDITS
                     -0.3634820
                                 0.3011721
## JOB1
                     -0.7402802
                                 1.1619781
                                             -0.637 0.524069
## JOB2
                     -1.2142377
                                 1.1317833
                                             -1.073 0.283337
## JOB3
                     -1.4358446
                                 1.1604352
                                             -1.237 0.215964
## NUM_DEPENDENTS
                      0.1270172
                                 0.3832474
                                              0.331 0.740325
## TELEPHONE1
                      0.6259633
                                 0.3143236
                                              1.991 0.046430 *
## FOREIGN1
                      1.2496315
                                 0.8543880
                                              1.463 0.143576
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
                              on 445
                                      degrees of freedom
##
       Null deviance: 618.29
## Residual deviance: 390.97
                              on 400 degrees of freedom
## AIC: 482.97
## Number of Fisher Scoring iterations: 5
```

We see that a lot of variables are not statistically significant for the model so we can think of a model reduction.

Before doing a reduction of the model, we fitted the model and predicted on the test set.

Table 4: Confusion Matrix of the Logistic Regression

		Bad cr	edit risk	Good credit risk
	Bad credit ri	isk	49	46
	Good credit 1	risk	28	127
	Sensitivity	Specificity	Pos Pred V	alue
	0.6363636	0.7341040	0.515	7895
	Neg Pred Value	Precision	Re	call
	0.8193548	0.5157895	0.636	3636
	F1	Prevalence	Detection 1	Rate
	0.5697674	0.3080000	0.196	0000
ete	ction Prevalence	Balanced Accuracy		
	0.3800000	0.6852338		

From the confusion matrix, we see again the the model has difficulty to predict the "Bad credit" althought the wronged classified amount of observation is lower when it comes to the "Bad credit" one.

Variable selection and interpretation with step method (AIC criteria) In order to reduce the logistic regression we used a stepwise variable selection. This has been done with the command step.

The final reduced model is as follow.

```
##
## Call:
## glm(formula = RESPONSE ~ CHK_ACCT + HISTORY + NEW_CAR + USED_CAR +
       RETRAINING + AMOUNT + SAV_ACCT + EMPLOYMENT + INSTALL_RATE +
##
       GUARANTOR + PRESENT_RESIDENT + PROP_UNKN_NONE + AGE + OTHER_INSTALL +
##
       RENT + TELEPHONE + FOREIGN, family = binomial, data = German_Credit.tr.subs)
##
## Deviance Residuals:
                         Median
##
        Min
                   1Q
                                        3Q
                                                 Max
## -2.39343 -0.68768 -0.02628
                                  0.71315
                                             2.60726
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -0.6339113 1.1570626
                                            -0.548 0.583786
## CHK_ACCT1
                      0.5970566
                                 0.3291383
                                              1.814 0.069678
## CHK_ACCT2
                      1.1123874
                                 0.5042812
                                              2.206 0.027392 *
## CHK ACCT3
                      2.4109175
                                 0.3597629
                                              6.701 2.06e-11 ***
## HISTORY1
                                 0.8007632
                     -0.6393459
                                             -0.798 0.424626
## HISTORY2
                      0.3153810
                                 0.6295178
                                              0.501 0.616379
## HISTORY3
                      0.0245812
                                 0.7411154
                                              0.033 0.973541
## HISTORY4
                      1.0638624
                                 0.6476870
                                              1.643 0.100475
## NEW_CAR1
                     -0.7159178
                                 0.3141611
                                             -2.279 0.022678 *
## USED CAR1
                      1.3489217
                                 0.5579072
                                              2.418 0.015614 *
## RETRAINING1
                                 0.4619050
                     -0.8489518
                                            -1.838 0.066072
## AMOUNT
                     -0.0002631
                                 0.0000595
                                             -4.421 9.81e-06 ***
## SAV_ACCT1
                      0.5675624
                                 0.4173990
                                             1.360 0.173906
## SAV_ACCT2
                     -0.0693577
                                 0.5399345
                                             -0.128 0.897788
## SAV_ACCT3
                      0.5603771
                                 0.6437202
                                              0.871 0.384011
## SAV ACCT4
                      1.3592948
                                 0.4069584
                                              3.340 0.000837 ***
## EMPLOYMENT1
                      0.5542570
                                 0.6967423
                                              0.795 0.426324
## EMPLOYMENT2
                      1.2338686 0.6524020
                                              1.891 0.058588 .
```

```
## EMPLOYMENT3
                      1.7999683 0.6887566
                                             2.613 0.008966 **
## EMPLOYMENT4
                     1.5521376 0.6518729
                                            2.381 0.017264 *
## INSTALL RATE
                     -0.3278020
                                0.1249721
                                           -2.623 0.008716 **
## GUARANTOR1
                                            2.789 0.005282 **
                      1.6927223
                                0.6068573
## PRESENT_RESIDENT2 -1.1117822
                                0.4641005
                                           -2.396 0.016595 *
## PRESENT RESIDENT3 -0.3408387
                                0.5041109 -0.676 0.498966
## PRESENT RESIDENT4 -0.7613632
                                0.4531619 -1.680 0.092935 .
## PROP_UNKN_NONE1
                    -1.0532655
                                0.3848454
                                           -2.737 0.006203 **
## AGE
                     0.0181856
                                0.0128738
                                            1.413 0.157769
## OTHER_INSTALL1
                    -0.6281982
                                0.3256821
                                           -1.929 0.053747
## RENT1
                    -0.8736712
                                0.3412119
                                           -2.560 0.010452 *
## TELEPHONE1
                     0.5251823
                                0.2863172
                                             1.834 0.066614
## FOREIGN1
                      1.2896516
                                0.8049248
                                             1.602 0.109111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 618.29
                             on 445 degrees of freedom
## Residual deviance: 403.37
                             on 415 degrees of freedom
## AIC: 465.37
##
## Number of Fisher Scoring iterations: 5
```

The variables that have been removed are: FURNITURE, RADIO.TV, EDUCATION, RETRAINING, MALE_DIV, MALE_SINGLE, MALE_MAR_or_WID, CO.APPLICANT, REAL_ESTATE, OWN_RES, NUM_CREDITS, JOB and NUM_DEPENDENTS

In the end, we get the most significant model:

 $RESPONSE = -0.6339113 + 0.5970566 * CHK_{ACCT1} + 1.1123874 * CHK_{ACCT2} + 2.4109175 * CHK_{ACCT3} - 0.6393459 * HISTOCOMPACE + 1.1123874 * CHK_{ACCT3} + 1.1123874 * CHK_{ACCT4} + 1.1123874 * CHK_{ACCT5} + 1.1123874 * CHK_{$

$$p = (e^{RESPONSE})/(1 + e^{RESPONSE})$$

It means that:

- The predicted probability of being a good applicant for CHCK_ACCT3 is higher than for CHK_ACCT0 (and also higher than for CHK_ACCT1 and CHK_ACCT2).
- The predicted probability of being a good applicant for **HISTORY1** is lower than for **HISTORY0**.
- The predicted probability of being a good applicant for **HISTORY4** is higher than for **HISTORY0** (and also higher than for **HISTORY2** and **HISTORY3**).
- The predicted probability of being a good applicant for NEW_CAR1 is lower than for NEW_CAR0.
- The predicted probability of being a good applicant for USED_CAR1 is higher than for USED CAR0.
- The predicted probability of being a good applicant for RETRAINING1 is lower than for RETRAINING0.
- AMOUNT is negatively associated with RESPONSE.
- The predicted probability of being a good applicant for SAV_ACCT4 is higher than for SAV_ACCT0 (and also higher than for SAV_ACCT1 and SAV_ACCT3).
- The predicted probability of being a good applicant for SAV ACCT2 lower than for SAV ACCT0.
- The predicted probability of being a good applicant for **EMPLOYMENT3** is higher than for **Employment0** (and also higher than for **EMPLOYMENT1**, **EMPLOYMENT2** and **EMPLOYMENT4**).
- INSTALL_RATE is negatively associated with RESPONSE.

- The predicted probability of being a good applicant for **GUARANTOR1** is higher than for **GUARANTOR0**.
- The predicted probability of being a good applicant for PRESENT_RESIDENT2 is lower than for PRESENT_RESIDENT0 (and also lower than PRESENT_RESIDENT3 and PRESENT_RESIDENT4).
- The predicted probability of being a good applicant for PROP_UNKN_NONE1 is lower than for PROP_UNKN_NONE0.
- AGE is positively associated with RESPONSE.
- The predicted probability of being a good applicant for OTHER_INSTALL1 is lower than for OTHER_INSTALL0.
- The predicted probability of being a good applicant for **RENT1** is lower than for **RENT0**.
- The predicted probability of being a good applicant for TELEPHONE1 is higher than for TELE-PHONE0.
- The predicted probability of being a good applicant for **FOREIGN1** is higher than for **FOREIGN0**.

Table 5: Confusion Matrix of the AIC reduced Logistic regression

		Bad cr	edit risk	Good credit risk
	Bad credit ris	sk -	50	52
	Good credit ri	isk :	27	121
	•			
##	Sensitivity	Specificity	Pos Pred Value	1
##	0.6493506	0.6994220	0.4901961	
##	Neg Pred Value	Precision	Recall	
##	0.8175676	0.4901961	0.6493506	
##	F1	Prevalence	Detection Rate	
##	0.5586592	0.3080000	0.2000000	1
##	Detection Prevalence	Balanced Accuracy		
##	0.4080000	0.6743863		

From this point we might think that the problem for the difficulty to predict the "Bad Credit" cases is not due to the models but rather the data itself. We might still want to perfom other models to make sure of our intuition.

Variable importance for logistic regression

Listed above are the most important variables for the logarithmic regression we reduced. Here again, the CHK_ACCT variable differentiate itself from the others in term of importance in the model prediction.

3.a K-Nearest Neighbor (K=2) To perform a k-nearest neighbor method, we do not need to balance the data so we will use the unbalanced training set.

We first try to model it using a 2-NN (with Euclidean distance). Note that the model is fitting on the training set and the predictions are computed on the test set.

Table 6: Confusion Matrix of the 2-Nearest neighbor

		Bad cr	edit risk	Good credit risk
	Bad credit r	isk 2	21	45
	Good credit i	risk	56	128
	Sensitivity	Specificity	Pos Pred	Value
	0.2727273	0.7398844	0.31	181818
	Neg Pred Value	Precision	F	Recall
	0.6956522	0.3181818	0.27	727273
	F1	Prevalence	Detection	n Rate
	0.2937063	0.3080000	0.08	340000
Dete	ction Prevalence	Balanced Accuracy		
	0.2640000	0.5063058		

The table is read as follow:

- We predicted 21 Bad credits and there were indeed 21 observed Bad credits. But the prediction misjudges 45 good credits by predicting them as bad credits.
- We predicted 128 Good credits as it was in fact a Good credits but 56 where predicted as Good while it
 was in fact Bad.

So again, this model also have difficulties to predict the "Bad Credit" cases.

The prediction is not perfect. We need to try to improve the prediction by changing K at that point. Therefore, we use K=3.

3.b K-Nearest Neighbor (K=3)

Table 7: Confusion Matrix of the 3-Nearest neighbor

		Bad cre	dit risk	Good credit risk
-	Bad credit r	risk 5	8	70
_	Good credit	risk 1	19	
	Sensitivity	Specificity	Pos Pred Valu	ıe
	0.1818182	0.8381503	0.333333	33
	Neg Pred Value	Precision	Recal	.1
	0.6971154	0.3333333	0.181818	32
	F1	Prevalence	Detection Rat	e
	0.2352941	0.3080000	0.056000	00
etec	ction Prevalence	Balanced Accuracy		
	0.1680000	0.5099842		

The table is read as follow :

- We predicted 58 Bad credits and they were indeed observed Bad credits. But the prediction misjudges 70 good credits by predicting them as being bad credits.
- We predicted 103 Good credits as it was in fact a Good credits but 19 where predicted as Good while it was in fact Bad.

Again it seems not to have improved anything, the **F-measure** even seems to have decreased a little bit.

4. Linear Support Vector Machine The next model is the linear Support Vector Machine.

```
##
## Call:
## svm(formula = RESPONSE ~ ., data = German_Credit.tr.subs, kernel = "linear")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 1
##
## Number of Support Vectors: 246
```

Table 8: Confusion Matrix of the Linear support vector machine

		Bad cre	dit risk	Good credit risk
	Bad credit r	isk 50	0	50
	Good credit	risk 2'	7	123
	Sensitivity	Specificity	Pos Pred Va	alue
	0.6493506	0.7109827	0.5000	0000
	Neg Pred Value	Precision	Rec	all
	0.8200000	0.5000000	0.6493	3506
	F1	Prevalence	Detection F	late
	0.5649718	0.3080000	0.2000	0000
De	tection Prevalence	Balanced Accuracy		
	0.400000	0.6801667		

This model seems to have improved a little bit our ability to predict the "Bad Credit" cases. As half of the "Bad Credit" predicted by the model are correct.

Tunning the hyperparameters of Linear SVM We want to select the good hyperparameters for our linear SVM.

```
## Support Vector Machines with Linear Kernel
##
## 446 samples
##
   30 predictor
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7264361 0.4530209
```

```
##
## Tuning parameter 'C' was held constant at a value of 1
We see that we have a good accuracy (0.72).
## Support Vector Machines with Linear Kernel
##
## 446 samples
    30 predictor
##
##
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results across tuning parameters:
##
##
     С
            Accuracy
                       Kappa
##
     1e-02
            0.7264339
                       0.4532044
##
     1e-01
           0.7286056
                       0.4575791
##
     1e+00
           0.7264361
                       0.4530209
##
     1e+01
           0.7108278
                       0.4216992
                       0.4261940
##
     1e+02 0.7130501
##
     1e+03 0.7197672 0.4397558
##
## Accuracy was used to select the optimal model using the largest value.
```


Table 9: Confusion Matrix of the Tuned linear support vector machine

	Bad o	redit risk	Good credit risk
Bad credit ri	sk	49	49
Good credit r	isk	28	124
Sensitivity	Specificity	Pos Pr	ed Value
0.6363636	0.7167630	0	.5000000
Neg Pred Value	Precision		Recall
0.8157895	0.5000000	0	.6363636
F1	Prevalence	Detect	ion Rate
0.5600000	0.3080000	0	.1960000
Detection Prevalence	Balanced Accuracy		
0.3920000	0.6765633		

Again, half of the "Bad Credit" predicted observations are indeed "Bad credit".

The Linear support vector models are not too bad in the sense that they are better that the models we have seen so far.

5. Radial Basis Support Vector Machine We try now with a radial basis kernel (the default).

```
##
## Call:
## svm(formula = RESPONSE ~ ., data = German_Credit.tr.subs, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 334
```

Table 10: Confusion Matrix of the Radial base support vector machine

		Bad cre	edit risk	Good credit risk
	Bad credit ri	sk 5	4	52
	Good credit r	isk 2	3	121
	Sensitivity	Specificity	Pos Pred Valu	ıe
	0.7012987	0.6994220	0.509434	-0
	Neg Pred Value	Precision	Recal	.1
	0.8402778	0.5094340	0.701298	37
	F1	Prevalence	Detection Rat	e
	0.5901639	0.3080000	0.216000	0
ete	ction Prevalence	Balanced Accuracy		
	0.4240000	0.7003603		

This model performance is very close to the linear support vector models. We need to infer more by looking at the tunned version.

Tunning the hyperparameters of Radial basis SVM

```
## Support Vector Machines with Radial Basis Function Kernel
##
## 446 samples
##
   30 predictor
    2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 402, 400, 402, 401, 402, 402, ...
## Resampling results across tuning parameters:
##
##
    sigma C
                 Accuracy
                            Kappa
##
    0.01
              1 0.7309289
                            0.4618150
##
    0.01
                 0.6971476 0.3942416
             10
##
    0.01
            100
                 0.6907708 0.3814209
##
                 0.6975889 0.3950572
    0.01
            500
##
    0.01
           1000
                 0.6975889 0.3950572
##
    0.02
                 0.7309816 0.4620420
              1
##
    0.02
             10
                 0.6972925 0.3946754
##
    0.02
            100
                 0.7064273 0.4127482
##
    0.02
            500
                 0.7064273 0.4127482
##
    0.02
           1000 0.7064273 0.4127482
##
    0.05
              1 0.7038647 0.4085756
##
    0.05
             10 0.6860299 0.3726705
##
    0.05
            100
                 0.6860299 0.3726705
##
    0.05
            500
                 0.6860299
                            0.3726705
##
    0.05
           1000 0.6860299 0.3726705
##
    0.10
             1
                 0.6588603 0.3190546
##
    0.10
             10 0.6611792 0.3234506
##
    0.10
            100
                 0.6611792 0.3234506
##
            500
                 0.6611792 0.3234506
    0.10
##
    0.10
           1000 0.6611792 0.3234506
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.02 and C = 1.
```


sigma C ## 6 0.02 1

Table 11: Confusion Matrix of the Tuned radial base support vector machine

		Bad o	eredit risk	Good credit risk
	Bad credit r	isk	54	53
	Good credit	risk	23	
	Sensitivity	Specificity	Pos Pred V	/alue
	0.7012987	0.6936416	0.504	16729
	Neg Pred Value	Precision	Re	ecall
	0.8391608	0.5046729	0.701	12987
	F1	Prevalence	Detection	Rate
	0.5869565	0.3080000	0.216	80000
Det	ection Prevalence	Balanced Accuracy		
	0.4280000	0.6974702		

The model seems to be well balanced and it has good scores. The F-measure is quite high as well.

6. Neural Network - Simple hyperparameter tuning To select the good parameters, we build a search grid and fit the model with each possible value in the grid. This is brute force and time consuming. The best model is selected among all the possible choices.

The best Neural Networks parameters would be to choose 3 hidden layers, with a decay of 0.4.

Table 12: Confusion Matrix of the Hyperparameter tuned neural network 3 nodes

		Bad o	eredit risk	Good credit risk
	Bad credit ri	sk	52	53
	Good credit r	isk	25	120
##	Sensitivity	Specificity	Pos Pred Valu	ıe
##	0.6753247	0.6936416	0.495238	31
##	Neg Pred Value	Precision	Recal	.1
##	0.8275862	0.4952381	0.675324	.7
##	F1	Prevalence	Detection Rat	e
##	0.5714286	0.3080000	0.208000	00
##	Detection Prevalence	Balanced Accuracy		
##	0.4200000	0.6844831		

We see that this Neural Network competes quite close to the support vector machines ones. Almost half of the "Bad credit" cases that it has predicted are correct.

7. Gradient Boosting The Gradient Boosting model accepts only numerical values so we have some transformation to do on our data in order to use it.

```
## ##### xgb.Booster
## raw: 31.2 Mb
## call:
## xgb.train(params = xgb_params, data = xgb_train, nrounds = 5000,
## verbose = 1)
```

```
## params (as set within xgb.train):
## booster = "gbtree", eta = "0.01", max_depth = "8", gamma = "4", subsample = "0.75", colsample_bytr
## xgb.attributes:
## niter
## callbacks:
## cb.print.evaluation(period = print_every_n)
```

of features: 46

niter: 5000
nfeatures : 46

Here we have an accuracy of 68.4%. It is good but there is room for improvement.

Table 13: Confusion Matrix of the Gadient boosting

		Bad cre	dit risk	Good credit risk	
	Bad credit r	risk 5	7	59	
	Good credit	risk 2	0	114	
	Sensitivity	Specificity	Pos Pred Valu	e	
	0.7402597	0.6589595	0.491379	3	
	Neg Pred Value	Precision	Recal	1	
	0.8507463	0.4913793	0.740259	7	
	F1	Prevalence	Detection Rat	е	
	0.5906736	0.3080000	0.228000	0	
Detect	ion Prevalence	Balanced Accuracy			
	0.4640000	0.6996096			

Review of statistics

Once all the models were modelized we compared them according to their scores and metrics. Below we summarized all their accuracy into one table.

Table 14: Scores of the models (continued below)

	Big classifi- cation tree	Pruned classification tree	Autoprune classification tree	Logistic regression	AIC reduced Logistic regression	Linear support vector machine
Accuracy	0.644	0.564	0.584	0.704	0.684	0.692
Kappa	0.2945	0.2083	0.2251	0.3479	0.32	0.3328
Accuracy	0.5812	0.5001	0.5202	0.6432	0.6224	0.6307
lower						
\mathbf{bound}						
Accuracy	0.7033	0.6264	0.6458	0.7599	0.7411	0.7486
upper						
\mathbf{bound}						
Accuracy	0.692	0.692	0.692	0.692	0.692	0.692
null						
Accuracy	0.9552	1	0.9999	0.369	0.6369	0.5308
P-value						
Mcnemar	1.158e-07	1.822e-14	3.352e-12	0.04813	0.00693	0.01217
P-value						

	Big classifi- cation tree	Pruned classification tree	Autoprune classification tree	Logistic regression	AIC reduced Logistic regression	Linear support
Balanced Accuracy	0.6743	0.6345	0.6418	0.6852	0.6744	0.6802

	Tuned linear support vector machine	Radial base support vector machine	Tuned radial base support vector machine	Hyperparameter tuned neural network 3 nodes	Gradient Boosting
Accuracy	0.692	0.7	0.696	0.688	0.684
Kappa	0.3283	0.3628	0.3564	0.3352	0.35
Accuracy	0.6307	0.6391	0.6349	0.6266	0.6224
lower bound					
Accuracy	0.7486	0.7561	0.7524	0.7449	0.7411
upper bound					
Accuracy null	0.692	0.692	0.692	0.692	0.692
Accuracy	0.5308	0.4219	0.4762	0.5847	0.6369
P-value					
Mcnemar	0.02265	0.001224	0.0008794	0.002235	1.909e-05
P-value					
Balanced	0.6766	0.7004	0.6975	0.6845	0.6996
Accuracy					

According to these two first tables, the best model would be the "Radial base linear support vector machine" as it has the highest accuracy level of 0.7 and the best kappa value of 0.3628.

The accuracy means that out of total number of observations, the model predicted correctly 70% of them. The Cohen's Kappa Coefficient means that there is 36% of agreement, indicating that the raters agree in their classification for 36% of the cases.

We also remember that the model was almost better than the other models when it came to predict the "Bad credit" cases. Although the model remains quite poor at predicting them since only half of the predicted ones are correct.

Another table is done to compare the KNN because they were not performed on the balanced dataset.

Table 16: Scores of the KNN models

	2-Nearest neighbor	3-Nearest neighbor
Accuracy	0.596	0.636
Kappa	0.01313	0.02285
AccuracyLower	0.5323	0.573
${f Accuracy Upper}$	0.6574	0.6957
${f Accuracy Null}$	0.692	0.692
AccuracyPValue	0.9995	0.9752
McnemarPValue	0.3197	0.000365

Overall, we see that the worst model is the 'Autoprune classification tree'. This is understandable because we pruned the model so much that we lost many observations on the way.