Chapter 1 Matrices and System of Equations

Section 1.5 Elementary Matrices

Definition (Elementary Matrix)

Perform exactly one elementary row operation on the identity matrix *I*, the resulting matrix is called an **elementary matrix**.

Three types of elementary matrices corresponding to the three types of elementary row operations.

- (I) $R_i \leftrightarrow R_j$
- (II) $cR_i \rightarrow R_i, c \neq 0$
- (III) $cR_i + R_i \rightarrow R_i$

Type I elementary matrix:

A matrix obtained by interchanging two rows of I.

Example Exchanging the i^{th} row and j^{th} row of I_n , we obtain a Type I elementary matrix

Type II elementary matrix:

A matrix obtained by multiplying a row of I by a nonzero constant, α say.

Example Multiplying the i^{th} row of I_n by a nonzero real number α , we have a type II elementary matrix:

$$E = diag(1, \ldots, 1, \alpha, 1, \ldots, 1)$$

Type III elementary matrix:

A matrix obtained from I by adding a multiple of one row to another row.

Example Replacing R_i of A by $\alpha R_i + R_i$, we have a Type III elementary matrix

Theorem Let E be an elementary matrix of size $n \times n$.

- 1. For any $m \times n$ matrix A, EA is the matrix obtained when the same row operation is performed on A.
- 2. For any $n \times r$ matrix B, BE is the matrix obtained when the same column operation is performed on B.

Example (Type I)

$$EA = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ a_{31} & a_{32} & \cdots & a_{3n} \end{pmatrix}$$

$$BE = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{pmatrix} b_{12} & b_{11} & b_{13} \\ b_{22} & b_{21} & b_{23} \\ b_{32} & b_{31} & b_{33} \end{pmatrix}.$$

Example (Type II)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} & \alpha a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}.$$

Example (Type III)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} - 2a_{31} & a_{22} - 2a_{32} & a_{23} - 2a_{33} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Left multiply E onto A = The same Elementary Row Operation on A. Right multiply E onto A = The same Elementary Column Operation on A.

Extra exercises

Given that
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 0 & 1 \\ 0 & -3 & 1 \end{pmatrix}$$
, and elementary matrices $E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \beta \end{pmatrix}$, $E_3 = \begin{pmatrix} 1 & 0 & \beta \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Find

- 1. E_1A and AE_1 .
- 2. E_2A and AE_2 .
- 3. E_1E_3A and E_3E_2A .

Theorem If E is an elementary matrix, then E is nonsingular and E^{-1} is an elementary matrix of the same type.

Proof The inverse of an elementary matrix is constructed by doing the reverse row operation on I. E^{-1} will be obtained by performing the row operation which would carry E back to I.

If E is obtained by switching rows i and j, then E^{-1} is also obtained by switching rows i and j.

If E is obtained by multiplying row i by the scalar α , then E^{-1} is obtained by multiplying row i by the scalar $1/\alpha$.

If E is obtained by adding α times row i to row j, then E^{-1} is obtained by adding $-\alpha$ times row i from row j.

Extra exercises

Find the inverse matrices for the following elementary matrices:

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Answer:

$$E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

How about the inverse of A?

$$A = E_1 E_2 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

$$A^{-1} = (E_1 E_2)^{-1} = E_2^{-1} E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0.2 \end{pmatrix}$$

Definition (Row equivalent) A matrix B is **row equivalent** to a matrix A if there exists a finite sequence E_1, E_2, \ldots, E_k of elementary matrices such that

$$B = E_k E_{k-1} \cdots E_1 A$$
.

In other words, B is row equivalent to A if B can be obtained from A by a finite number of row operations.

In particular, if two augmented matrices $(A|\mathbf{b})$ and $(U|\mathbf{c})$ are row equivalent, then $A\mathbf{x} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{c}$ are equivalent systems.

Property of row equivalent matrices

I. If A is row equivalent to B, then B is row equivalent to A. II. If A is row equivalent to B, and B is row equivalent to C, then A is row equivalent to C.

Proof Exercise

Theorem (Equivalent Conditions for Nonsingularity)

Let A be an $n \times n$ matrix. The following are equivalent:

(a) A is nonsingular;

Theorem (Equivalent Conditions for Nonsingularity)

Let A be an $n \times n$ matrix. The following are equivalent:

- (a) A is nonsingular;
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{0}$;

Theorem (Equivalent Conditions for Nonsingularity)

Let A be an $n \times n$ matrix. The following are equivalent:

- (a) A is nonsingular;
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{0}$;
- (c) A is row equivalent to I. (Or simply, rref(A) = I. A can be written as a product of elementary matrices.)
- (d)more in Chap 2-6

A is nonsingular \rightarrow $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{0}$

Proof $(a) \Rightarrow (b)$ If A is nonsingular and \mathbf{x}_0 is a solution of $A\mathbf{x} = \mathbf{0}$, then

$$\mathbf{x}_0 = I\mathbf{x}_0 = (A^{-1}A)\mathbf{x}_0 = A^{-1}(A\mathbf{x}_0) = A^{-1}\mathbf{0} = \mathbf{0}.$$

Thus, $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

 $A\mathbf{x} = \mathbf{0}$ has only the trivial solution \rightarrow rref(A) = I

Proof $(b) \Rightarrow (c)$ If we use elementary row operations, the system can be transformed into the form $U\mathbf{x} = \mathbf{0}$, where U is in row echelon form. If one of the diagonal elements of U were 0, the last row of U would consist entirely of 0's. But then $A\mathbf{x} = \mathbf{0}$ would be equivalent to a system with more unknowns than equations and, hence, there would have a nontrivial solution. Thus, U must be a strictly triangular matrix with diagonal elements all equal to 1. Hence, I is the reduced row echelon form of A and A is row equivalent to I.

 $\operatorname{rref}(A) = I \rightarrow A \text{ is nonsingular}$

Proof $(c) \Rightarrow (a)$ If A is row equivalent to I_n , or we can say I_n is row equivalent to A. Then there exist elementary matrices E_1, E_2, \dots, E_k such that

$$I_n = E_k E_{k-1} \cdots E_1 A$$

Since the inverse of a matrix is unique if it exists, then A is nonsingular and

$$A^{-1}=E_kE_{k-1}\cdots E_1.$$

Corollary The system $A\mathbf{x} = \mathbf{b}$ of n linear equations in n unknowns has a unique solution **if and only if** A is nonsingular.

Proof If A is nonsingular and \mathbf{x}_0 is any solution of $A\mathbf{x} = \mathbf{b}$, then $A\mathbf{x}_0 = \mathbf{b}$. Multiplying both sides of this equation by A^{-1} , we must have $\mathbf{x}_0 = A^{-1}\mathbf{b}$.

Conversely, if $A\mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x}_0 , then we claim that A cannot be singular. Indeed, if A were singular, then the equation $A\mathbf{x}=\mathbf{0}$ would have a solution $\mathbf{z}\neq\mathbf{0}$. But this would imply that $\mathbf{y}=\mathbf{x}_0+\mathbf{z}$ is a second solution of $A\mathbf{x}=\mathbf{b}$, since

$$A\mathbf{y} = A(\mathbf{x}_0 + \mathbf{z}) = A\mathbf{x}_0 + A\mathbf{z} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

Therefore, if $A\mathbf{x} = \mathbf{b}$ has a unique solution, then A must be nonsingular.

Steps to compute the inverse of an $n \times n$ matrix A

- 1. Form the $n \times 2n$ matrix $[A|I_n]$
- 2. Compute rref(A|In)
- 3. If $\operatorname{rref}(A|I_n) = (I_n|C)$, then $A^{-1} = C$. Otherwise, A is singular.

Why it work? If A is nonsingular, then A is row equivalent to I and hence there exist elementary matrices E_1, \dots, E_k such that

$$\begin{array}{ll} (A|I_{n}) & \to E_{1}(A|I_{n}) = (E_{1}A|E_{1}) \\ & \to E_{2}(E_{1}A|E_{1}) = (E_{2}E_{1}A|E_{2}E_{1}) \\ & \vdots \\ & \to E_{k}(E_{k-1}\cdots E_{1}A|E_{k-1}\cdots E_{1}) = (E_{k}E_{k-1}\cdots E_{1}A|E_{k}E_{k-1}\cdots E_{1}) \end{array}$$

If
$$(E_k E_{k-1} \cdots E_1 A | E_k E_{k-1} \cdots E_1) = (I_n | C)$$
, then $E_k E_{k-1} \cdots E_1 A = I_n$ and $E_k E_{k-1} \cdots E_1 = C$, giving $A^{-1} = E_k E_{k-1} \cdots E_1 = C$.

Example Let
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix}$$
. Find inverse of A .

Solution

$$\begin{pmatrix} 1 & 3 & 1 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} -2R_1 + R_2 \to R_2 \\ -R_1 + R_3 \to R_3 \end{array}} \begin{pmatrix} 1 & 3 & 1 & 1 & 0 & 0 \\ 0 & -6 & -3 & -2 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{-1/6R_2+R_3\to R_3} \left(\begin{array}{ccc|c} 1 & 3 & 1 & 1 & 0 & 0 \\ 0 & -6 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1/2 & -2/3 & -1/6 & 1 \end{array}\right)$$

$$\xrightarrow[-2R_3 \to R_3]{-1/6R_2 \to R_2} \begin{pmatrix} 1 & 3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1/2 & 1/3 & -1/6 & 0 \\ 0 & 0 & 1 & 4/3 & 1/3 & -2 \end{pmatrix} \xrightarrow[-(1/2)R_3 + R_2 \to R_2]{-(1/2)R_3 + R_2 \to R_2}$$

$$\begin{pmatrix} 1 & 3 & 0 & -1/3 & -1/3 & 2 \\ 0 & 1 & 0 & -1/3 & -1/3 & 1 \\ 0 & 0 & 1 & 4/3 & 1/3 & -2 \end{pmatrix} \xrightarrow{-3R_2 + R_1 \to R_1} \begin{pmatrix} 1 & 0 & 0 & 2/3 & 2/3 & -1 \\ 0 & 1 & 0 & -1/3 & -1/3 & 1 \\ 0 & 0 & 1 & 4/3 & 1/3 & -2 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 2/3 & 2/3 & -1 \\ -1/3 & -1/3 & 1 \\ 4/3 & 1/3 & -2 \end{pmatrix}$$

Extra Example on matrix inverse*

Find the inverse matrix of A, where

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$

.

Answer:

$$A^{-1} = \begin{bmatrix} -0.1 & 0.3 \\ 0.4 & -0.2 \end{bmatrix}.$$

Definition (Triangular matrices)

- 1. A square matrix $U = (u_{ij})$ is upper triangular if $u_{ij} = 0$ for i > j.
- 2. A square matrix $L = (I_{ij})$ is *lower triangular* if $I_{ij} = 0$ for i < j.
- 3. A matrix is *triangular* if it is either upper triangular or lower triangular.
- 4. A matrix is *unit lower (upper respectively) triangular* if it is a lower (upper respectively) triangular matrix with 1's on the diagonal.

Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
 is upper triangular.
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$
 is lower triangular.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 is unit upper triangular.
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5 & 1 \end{pmatrix}$$
 is unit lower triangular.

Definition (LU factorization) The factorization of the matrix A into a product of a unit lower triangular matrix L times an upper triangular matrix U, i.e.,

$$A_{n\times n}=LU=\begin{bmatrix}\mathbf{1} & 0 & \cdots & 0\\ \star & \mathbf{1} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ \star & \cdots & \star & \mathbf{1}\end{bmatrix}\begin{bmatrix}\mathbf{A} & \mathbf{A} & \cdots & \mathbf{A}\\ 0 & \mathbf{A} & \ddots & \vdots\\ \vdots & \ddots & \ddots & \mathbf{A}\\ 0 & \cdots & 0 & \mathbf{A}\end{bmatrix}.$$

How to find L and U?

A square matrix A is row equivalent to an upper triangular matrix U using only elementary matrix of type III that add a multiple of one row to another row **below** it. Thus, there exist a sequence of unit lower triangular elementary matrices E_1, \dots, E_k s.t.

$$E_k \cdots E_1 A = U$$

and $L = (E_k \cdots E_1)^{-1} = E_1^{-1} \cdots E_k^{-1}$ is a unit lower triangular matrix.

How to use *LU* factorization? Why do we need it?

LU factorization in solving a linear system:

The system $A\mathbf{x} = \mathbf{b}$ becomes $LU\mathbf{x} = \mathbf{b}$. Therefore, we have

$$L(U\mathbf{x}) = \mathbf{b}.$$

Let $\mathbf{y} = U\mathbf{x}$, we can find \mathbf{x} by solving the following two systems of equations

$$L\mathbf{y} = \mathbf{b}, \quad U\mathbf{x} = \mathbf{y}.$$

Extra Example on LU Factorization*

Find the LU-decomposition of A, where

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$

.

Answer:

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & -5 \end{bmatrix}.$$

Example

$$\begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & -1 \\ 1 & 2 & 0 \end{pmatrix} \xrightarrow{\begin{array}{c} -2R_1 + R_2 \to R_2 \\ -1R_1 + R_3 \to R_3 \end{array}} \begin{pmatrix} 1 & 3 & 1 \\ 0 & -6 & -3 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{\begin{array}{c} -1 \\ 6 \end{array}} R_2 + R_3 \to R_3 \\ \begin{pmatrix} 1 & 3 & 1 \\ 0 & -6 & -3 \\ 0 & 0 & \frac{-1}{2} \end{pmatrix}$$

Let
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$, $E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{6} & 1 \end{pmatrix}$

Then

$$E_3E_2E_1A=U$$

Since $E_3E_2E_1A = U$, we have $A = E_1^{-1}E_2^{-1}E_3^{-1}U$. Take $L = E_1^{-1}E_2^{-1}E_3^{-1}$.

$$\begin{split} L = & E_1^{-1} E_2^{-1} E_3^{-1} \\ = & \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{6} & 1 \end{pmatrix}^{-1} \\ = & \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{6} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{6} & 1 \end{pmatrix} \end{split}$$

Remark This method does not work if A cannot be reduced into an upper triangular matrix using only type III row operation.

Extra Exercise*

Find the LU-decomposition of A, where

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

Answer:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0.1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 2 \\ 0 & 0 & 4.3 \end{bmatrix}$$

Remark This method does not work if A cannot be reduced into an upper triangular matrix using only *Type III* row operation by adding a multiple of one row to another row *below* it.

Example

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

.