

RNA-seq Quantification

Outline

- short-read RNA-seq
- quantification:
 - read counts
 - generative models; relative abundances
 - pseudo-mapping
- the RNA-seq setting
- normalizing fractions

Typical setting for bulk RNA-seq

Given a tissue or cell line:

- ~25'000 genes in the genome
- ~10 18'000 genes expressed at any given time; expression level of the different genes differs largely

Working hypotheses:

- relative prevalence of a gene reflects activity of associated pathways; more prevalent, more active
- baseline abundance is not known → perturbation experiments: treatment vs control
- informative quantity: relative abundance of the genes in a tissue Limitations:
- genes vs protein
- alternative explanations cell size effects; other side effects

Perturbation Experiments

- The top row shows the assumption how a baseline expression profile (black) changes as a response (red) to a perturbation
- Note: in this example, expression counts of individual genes are around \sim 10, in practice they range from 0 1 Mio

Transcript Expression with NGS

Read mapping and counting (ideal)

Read mapping and counting (short reads with SNPs and sequencing errors)

Read mapping and counting (short reads with SNPs and sequencing errors)

Abundance estimates

Abundance of what???

- Biologically relevant:
 - gene level:
 - # molecules transcribed from one gene locus (per cell)
 - isoform level:
 - # molecules of a specific isoform transcribed from one gene (per cell)
- Feasible with RNA-seq:
 - relative fractions that indicate the abundance relative to all other genes/isoforms

Gene-level Read Counts

- rather straightforward to compute:
 - number of reads that uniquely map to a gene locus
 - → biased by length, discards information in multi-mappers
 - number of reads that map to gene locus (including multi-mappers)
 - → disambiguation is not possible if you do not have abundance estimates of the isoforms
 - → needs to resort to heuristics to assign multi-mappers
 - randomly assign to one of the matching genes
 - do a fractional assignment with a with 1/#genes mapped

Rsubread::featureCounts – assigning reads to genes

- versatile function to count reads towards exons, transcripts, genes, ...
- implements many different counting modes
- covers different aspects of overlap situations
 - partial overlap
 - overlapping multiple features at the same alignment position
 - overlapping multiple features at different alignment positions
- Simple overlap is not sufficient, read must be compatible with exon structure

Model-free Counting of Overlapping reads – Count Modes

mmquant: resolve multi-mapping reads based on heuristics

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1816-4

Generative Models for RNA-seq quantification

Pachter 2011, https://doi.org/10.48550/arXiv.1104.3889

RNA-seq model

Likelihood that a read/fragment from transcript t is generated:

$$\alpha_t = P[\text{read from transcript } t] = \frac{1}{Z} \rho_t l_t$$

with:

 ρ_t expression level / abundance / fraction

 l_t transcript length

 $Z = \sum_{t} \rho_{t} l_{t}$ normalization factor

The normalization factor is the weighted mean length of the transcripts.

RNA-seq model

Estimate of the probability that a read from a specific transcript is generated:

$$\hat{\alpha}_t = \frac{X_t}{N} = \frac{\text{\#reads mapping to transcript } t}{\text{\#mappable reads in total}}$$

Abundance estimates:

$$\hat{\rho}_t \propto \frac{\hat{\alpha}_t}{l_t}$$

Maximum Likelihood Estimation

The estimated abundances represent unique MLE estimates

with
$$\alpha = \{\alpha_t\}_{t \in T}$$

$$L[\alpha] = \prod_{t \in T} \prod_{f \in F_t} P[f \in t] \frac{1}{l_t}$$

$$= \prod_{t \in T} \prod_{f \in F_t} \alpha_t \frac{1}{l_t}$$

$$= \prod_{t \in T} \left(\frac{\alpha_t}{l_t}\right)^{X_t}$$

Effective Transcript Length

 Since fragments have a non-zero length the read probabilities depend actually on an effective length:

 $l_t := \text{transcript length} - \text{fragment length} + 1$

- For simplicity, we continue to use the symbol without tilde but will always assume it is the effective length
- The effective length represents the stretch of the transcript from which I can get a fragment that I can then map back to the transcript
- The effective length should also consider mappability!
- > Mappability does depend on mapping algorithm, mutations, ...

Multi-reads

- Reads that cannot be uniquely assigned to one transcript were ignored so far
- Multi-reads can occur
 - if a read aligns more than once in the genome
 - if at an alignment position there is more than one transcript defined
- Multi-reads do occur due to homology not due to pure chance

Considering Multi-reads

Define a compatibility matrix

$$\mathbf{Y} = \left\{ y_{ft} \right\}_{f \in F, t \in T}$$

with

$$y_{ft} = \begin{cases} 1 \text{ if read } f \text{ aligns to transcript } t \\ 0 \text{ else} \end{cases}$$

• The likelihood is now:

$$L[\alpha] = \prod_{f} \left(\sum_{t} y_{ft} \frac{\alpha_{t}}{l_{t}} \right)$$

but now abundances must be estimated iteratively

Iterative Estimation

Three step algorithm

- 1. Estimate abundances based on uniquely mapping reads only
- 2. For each multi-read, divide it between the transcripts to which it maps, proportionally to their abundances estimated in the first step
- 3. Recompute abundances based on updated counts for each transcript
- 4. Continue with Step 2

Expectation-Maximization Estimation

General Formulation of Abundance Estimation

A full model for the abundance estimation would ideally consider:

- position bias
- fragment-length distribution
- sequencing errors
- site-specific bias
- •

RSEM: Model specification

Dewey: RSEM

Example: RSEM

Ccl6 gene locus with 3 isoforms

follows the example:

https://github.com/bli25broad/RSEM_tutorial

RSEM result:

transcript_id effective_length expected_count TPM **FPKM** IsoPct gene_id length ENSMUSG00000018927_Ccl6 1440 ENSMUST00000019071_Ccl6-001 1194.85 7805.95 8862.10 9334.46 31.00 ENSMUST00000138145_Ccl6-002 ENSMUSG00000018927_Ccl6 776 530.94 7719.05 19721.39 20772.55 69.00 ENSMUST00000150243_Ccl6-003 ENSMUSG00000018927_Ccl6 442 202.64 0.00 0.00 0.00 0.00

Ccl6 coverage in transcript space

- orientation is flipped because gene is on negative strand
- black: unique alignments
- red: expected depth from multi-mapping reads

Limitations of Generative Models

- Estimates can not be correct if underlying model of transcripts are incorrect or incomplete
- Abundance estimates are fractions; these can be used to get estimates of the number of reads generated by a given gene; error distribution of estimated read counts may be unclear

Implementation of Generative Models

• RSEM:

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

• Review:

Pachter, L. Models for transcript quantification from RNA-Seq. *arXiv preprint arXiv:1104.3889* (2011).

• MISO:

Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. *Nat Methods* **7**, 1009–1015 (2010)

• MMSEQ:

Turro, E. et al. Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. *Genome Biol* **12**, R13 (2011).

NSMAP:

Xia, Z., Wen, J., Chang, C.-C. & Zhou, X. NSMAP: a method for spliced isoforms identification and quantification from RNA-Seq. *BMC Bioinformatics* **12**, 162 (2011).

Definition of expression levels

 Goal: Start from read counts and define a quantity that indicates relative molar concentration of a transcript

Transcripts Per Million Transcripts

TPM for transcript
$$t = 10^6 \times Z \times \frac{X_t}{l_t N}$$

- TPM is unitless and is a measure of relative abundance
- TPM assumes that the total sum of all counts (N) can be used to normalize across samples

Shortcomings of TPM

- Sum of RPKM varies from sample to sample, i.e. RPKM is not a measure of relative concentration because the measures of relative concentrations would sum up to constant
- TPM is unitless and satisfies this requirement
- Only TPM should be used!
- Limitation of TPM: normalization relies on assumption that the total sum of all counts is a good metric to normalize
 - This assumption does not hold true, especially if comparison is across different tissues or different protocols

Comparing samples across protocols

• surveyed populations are not comparable

issues:

- expression of top 3 genes will drive the TPM normalization (because it has a
- major influence on the sum of all reads)

Comparing samples across tissues

Different tissues may have different populations of genes expressed

Fast approaches to get the Read-Transcript Compatibility Matrix

Salmon: quasi-mapping

kallisto: pseudo-alignments

Quasi-mapping

Default k-mer size: 31

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/04 quasi alignment salmon.html

Quasi-mapping

- 1. The read is scanned from left to right until a k-mer that appears in the hash table is discovered.
- 2. The k-mer is looked up in the hash table and the SA intervals are retrieved, giving all suffixes containing that k-mer
- 3. Similar to STAR, the maximal matching prefix (MMP) is identified by finding the longest read sequence that exactly matches the reference suffixes.
- 4. Salmon identifies the next informative position (NIP), by skipping ahead 1 k-mer (speedup)
- 5. Repeat above until the end of the read.
- 6. The final mappings are generated by determining the set of transcripts appearing in all MMPs for the read. The transcripts, orientation and transcript location are output for each read.

Quasi-mapping

- Result: Read-Transcript compatibility matrix
- Only based on compatibility of short k-mers
- Has an optional step to validate mappings:
 - goes through all the read-transcript associations and validates if the entire read is compatible with the transcripts by doing a base-by-base comparison

kallisto: Quantification with pseudo-alignments

- Instead of hashing the transcriptome build a de Bruijn graph
- Find k-mer hits in the de Bruijn graph
- Identifies only transcripts that are consistent with all k-mer hits

Performance comparison

Fig. 6 ROC curves indicating performance of quantification methods based on differential expression analysis of **a** an experimental dataset and **b** a simulation dataset. Seven quantification methods are shown. *FP* false positive, *TP* true positive

Read Counting Accuracy

Uniqueness: Isoform-level vs gene-level

- Fraction of unique k-mer sequences for genes and transcripts
- Ambiguity is mainly between alternative transcripts from the same gene locus

Misassignments to unexpressed transcripts

 Simulated data show that misassignments do happen

Isoform level has higher variability

Positional bias of read distributions

Highly Multiplicated Reads

- Mainly a concern for low starting amounts
- <1ng of total RNA</p>

Unspliced transcripts

- Isoform quantification assumes that only spliced transcripts have been measured
- But: unspliced transcripts are also present:
 - these are transcripts from the nucleus that are not yet spliced
 - limited capturing with poly-A based protocols
 - fully captured by random-priming protocols (1 10% of mRNA is in the nucleus)

3'-Tagging

Reads are only generated near the 3'-end Isoforms can not be resolved Allows counting of the reads at the 3'-end → Assignment is to genes

Typical setting for bulk RNA-seq

Given a tissue or cell line:

- ~25'000 genes in the genome
- ~10 18'000 genes expressed at any given time; expression level of the different genes differs largely

Working hypotheses:

- relative prevalence of a gene reflects activity of associated pathways; more prevalent, more active
- baseline prevalence is not known → perturbation experiments: treatment vs control
- the majority of the genes is not affected by the perturbation
- informative quantity: relative abundance of the genes in a tissue
- gene expression has a large dynamic range

Limitations of RNA-seq experiments

- genes vs protein
- alternative explanations cell size effects; other side effects
- tissue composition changes

Perturbation Experiments

- The top row shows the assumption how a baseline expression profile (black) changes as a response (red) to a perturbation
- Note: expression counts are all around \sim 10, in practice they range from 0 1 Mio

Dynamic Range of Expression and Normalization

TPM normalizes to total count. Is the total count a good measure?

Summary

- Alignment + expression estimation using generative models give good results, let you inspect the aligned reads, and can be used to discover new genes and new isoforms
- Pseudo-alignment is reliable and fast but needs as input the accurate and complete set of transcripts
- 3'-end tag sequencing provides only gene-level estimates without isoform resolution
- Full-length transcript sequencing detects isoforms accurately, sequencing depth is typically lower than for short-read sequencing

References

- Compares kallisto, salmon, featureCounts, ... https://bmcbioinformatics.biomedcentral.co m/articles/10.1186/s12859-021-04198-1
- from the salmon people, performance evaluation and tuning options (especially genomic "decoy") https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02151-8
- from the salmon people, confirm that decoys help https://www.biorxiv.org/content/10.1101/202

 1.01.17.426996v1

```
Review Open access | Published: 25 May 2021
Comparative evaluation of full-length isoform
quantification from RNA-Seq
Dimitra Sarantopoulou, Thomas G. Brooks, Soumyashant Nayak, Antonijo Mrčela, Nicholas F.
Lahens & Gregory R. Grant □
BMC Bioinformatics 22, Article number: 266 (2021) | Cite this article
9472 Accesses 8 Citations 21 Altmetric Metrics
 Research | Open access | Published: 07 September 2020
 Alignment and mapping methodology influence
 transcript abundance estimation
 Avi Srivastava, Laraib Malik, Hirak Sarkar, Mohsen Zakeri, Fatemeh Almodaresi, Charlotte Soneson
 Michael I. Love, Carl Kingsford & Rob Patro ™
 Genome Biology 21, Article number: 239 (2020) | Cite this article
 26k Accesses | 47 Citations | 47 Altmetric | Metrics
   Confirmatory Results
                                                                      Follow this preprint
   Accounting for fragments of unexpected origin improves transcript
   quantification in RNA-seq simulations focused on increased realism
   📵 Avi Srivastava, 📵 Mohsen Zakeri, 📵 Hirak Sarkar, 📵 Charlotte Soneson, 📵 Carl Kingsford, 📵 Rob Patro
   doi: https://doi.org/10.1101/2021.01.17.426996
```