$T_{EST}-1$

TEST FOR A POPULATION PROPORTION

Aim

To test the population proportion, P be regarded as P_0 , based on a random sample. That is, to investigate the significance of the difference between the observed sample proportion p and the assumed population proportion P_0 .

Source

If X is the number of occurrences of an event in n independent trials with constant probability P of occurrences of that event for each trial, then E(X) = nP and V(X) = nPQ, where Q = 1 - P, is the probability of non-occurrence of that event. It has proved that for large n, the binomial distribution tends to normal distribution. Hence, the normal test can be applied. In a random sample of size n, let X be the number of persons possessing the given attribute. Then the observed proportion in the sample be

$$\frac{X}{n} = p$$
, (say), then $E(p) = P$ and $S.E(p) = \sqrt{Var(p)} = \sqrt{\frac{P(1-P)}{n}}$.

Assumption

The sample size must be sufficiently large (i.e., n > 30) to justify the normal approximation to binomial.

Null Hypothesis

 H_0 : The population proportion (P) is regarded as P_0 . That is, there is no significant difference between the observed sample proportion p and the assumed population proportion P_0 . i.e., H_0 : $P = P_0$.

Alternative Hypotheses

 $H_1(1): P \neq P_0$

 $H_1(2): P > P_0$

 $H_1(3): P < P_0$

Level of Significance (α) and Critical Region

(1) $|Z| > |Z_{\alpha}|$ such that $P\{|Z| > |Z_{\alpha}|\} = \alpha$

(2) $Z > Z_{\alpha}$ such that $P\{Z > Z_{\alpha}\} = \alpha$

(3) $Z \le -Z_{\alpha}$ such that $P\{Z \le -Z_{\alpha}\} = \alpha$

Parametric Tests 11

Critical Values (Z,

Critical value	Level of Significance (α)		
(Z_{α})	1%	5%	10%
1. Two-sided test	$ Z_{\alpha} = 2.58$	$ Z_{\alpha} = 1.96$	$ Z_{\alpha} = 1.645$
2. Right-sided test	$Z_{\alpha} = 2.33$	$Z_{\alpha} = 1.645$	$Z_{\alpha} = 1.28$
3. Left-sided test	$Z_{\alpha} = -2.33$	$Z_{\alpha} = -1.645$	$Z_{\alpha} = -1.28$

Test Statistic

$$Z = \frac{p - P}{\sqrt{\frac{P(1 - P)}{n}}} \text{ (Under } H_0: P = P_0)$$

The statistic Z follows Standard Normal Distribution.

Conclusions

- 1. If $|Z| \le Z_{\alpha}$, we conclude that the data do not provide us any evidence against the null hypothesis H_0 . Hence, it may be accepted at $\alpha\%$ level of significance. Otherwise reject H_0 or accept H_1 (1).
- 2. If $Z \le Z_{\alpha}$, we conclude that the data do not provide us any evidence against the null hypothesis H_0 and hence it may be accepted at $\alpha\%$ level of significance. Otherwise reject H_0 or accept H_1 (2).
- 3. If $|Z| \le |Z_{\alpha}|$, we conclude that the data do not provide us any evidence against the null hypothesis H_0 and hence it may be accepted at $\alpha\%$ level of significance. Otherwise reject H_0 or accept H_1 (3).

Example 1

Hindustan Lever Ltd. Company expects that more than 30% of the households in Delhi city will consume its product if they manufacture a new face cream. A random sample of 500 households from the city is surveyed, 163 are favorable in manufacturing the product. Examine whether the expectation of the company would be met at 2% level.

Solution

Aim: To test the HLL Company's manufacture of a new product of face cream will be consumed by 30% of the households in New Delhi or more.

 H_0 : The HLL Company's manufacture of a new product of face cream will be consumed by 30% of the households in New Delhi. *i.e.*, H_0 : P = 0.3.

 H_1 : The HLL Company's manufacture of a new product of face cream will be consumed by more than 30% of the households in New Delhi. *i.e.*, H_1 : p > 0.3

12 Selected Statistical Tests

Level of Significance: $\alpha = 0.05$ and Critical Value: $Z_{\alpha} = 1.645$

Based on the above data, we observed that, n = 500, p = (163/500) = 0.326

Test Statistic:
$$Z = \frac{p - P}{\sqrt{\frac{P(1 - P)}{n}}}$$
 (Under H_0 : $P = 0.3$) = $\frac{0.326 - 0.3}{\sqrt{\frac{(0.3)(0.7)}{500}}} = 1.27$

Conclusion: Since $Z < Z_{\alpha}$, we conclude that the data do not provide us any evidence against the null hypothesis H_0 . Hence, accept H_0 at 5% level of significance. That is, the HLL Company's manufacture of a new product of face cream will be consumed by 30% of the households in New Delhi.

Example 2

A plastic surgery department wants to know the necessity of mesh repair of hernia. They think that 15% of the hernia patients only need mesh. In a sample of 250 hernia patients from hospitals, 42 only needed mesh. Test at 2% level of significance that the expectation of the department for mesh repair of hernia patients is true.

Solution

Aim: To test the necessity of hernia repair with mesh is 15% or not.

 H_0 : The necessity of mesh repair of hernia is 15%. i.e., H_0 : P = 0.15

 H_1 : The necessity of mesh repair of hernia is not 15%. i.e., H_1 : $P \neq 0.15$

Level of Significance: $\alpha = 0.02$ and Critical Value: $Z_{\alpha} = 2.33$

Based on the above data, we observed that, n = 250, p = (42/250) = 0.326

Test Statistic:
$$Z = \frac{p - P}{\sqrt{\frac{P(1 - P)}{n}}}$$
 (Under H_0 : $P = 0.15$) = $\frac{0.168 - 0.15}{\sqrt{\frac{(0.15)(0.85)}{250}}} = 0.80$

Conclusion: Since $|Z| < Z_{\alpha}$, we conclude that the data do not provide us any evidence against the null hypothesis H_0 . Hence, accept H_0 at 2% level of significance. That is, the necessity of mesh repair of hernia as expected by the plastic surgery department 15% is true.

EXERCISES

- 1. A random sample of 400 apples was taken from large consignment and 35 were found to be bad. Examine whether the bad items in the lot will be 7% at 1% level.
- 2. 150 people were attacked by a disease of which 5 died. Will you reject the hypothesis that the death rate, if attacked by this disease is 3% against the hypothesis that it is more, at 5% level?