Z1-PU7 WYDANIE N1 Strona 1 z 3

KARTA PRZEDMIOTU

(pieczęć wydziału)

1. Nazwa przedmiotu:INŻYNIERIA OPROGRAMOWANIA2. Kod przedmiotu:IO

3. Karta przedmiotu ważna od roku akademickiego: 2019/20

4. Forma kształcenia: studia pierwszego stopnia

5. Forma studiów: studia stacjonarne

6. Kierunek studiów: INFORMATYKA (SYMBOL WYDZIAŁU) RMS

7. Profil studiów: praktyczny

8. Specjalność: WSZYSTKIE

9. Semestr: V

10. Jednostka prowadząca przedmiot: Instytut Matematyki

11. Prowadzący przedmiot: dr inż. Zdzisław Sroczyński

12. Przynależność do grupy przedmiotów: Wybrane działy informatyki (WDI)

13. Status przedmiotu: obowiązkowy

14. Język prowadzenia zajęć: polski

15. Przedmioty wprowadzające oraz wymagania wstępne: Programowanie I-III, Algorytmy i struktury

danych, Programowanie obiektowe i graficzne, Bazy danych

16. Cel przedmiotu: Nabycie umiejętności projektowania systemów informatycznych, doboru języków i bibliotek programistycznych, technik i narzędzi oraz poznanie metod uruchamiania i testowania oprogramowania.

17. Efekty kształcenia

Student który zaliczy przedmiot:

Nr	Opis efektu kształcenia	Metoda	Forma	Odniesienie
		sprawdzenia	prowadzenia	do efektów
		efektu	zajęć	dla kierunku
		kształcenia		studiów
	potrafi zaprojektować z uwzględniem wiedzy o			
	cyklu życia złożonych systemów informatycznych,		walkład	K1P_W15,
1	zrealizować i udokumentować system	proj	wykład,	K1P_W17
	informatyczny posługując się właściwie dobraną		projekt	K1P_U35
	metodyką i odpowiednimi narzędziami			
	potrafi wykorzystywać narzędzia i systemy			K1P_U13,
2	wspomagające zarządzanie zespołowym projektem	proj	projekt	K1P_U29,
	informatycznym, w tym systemy kontroli wersji			K1P_K04
	potrafi dobrać właściwe wzorce architektoniczne		walktad	
3	oprogramowania, w szczególności stosując zasady	proj	wykład, projekt	K1P_U19
	projektowania obiektowego		projekt	
	potrafi przeprowadzać systematyczne testy		wykład,	
4	oprogramowania z wykorzystaniem właściwie	proj	projekt	K1P_U27
	dobranych przypadków i danych testowych		projekt	

5	zna i potrafi zastosować metody szacowania złożoności i pracochłonności produkcji oprogramowania w celu uzyskania systemów o właściwej wydajności i odpowiednim zapotrzebowaniu na pamięć	proj	wykład, projekt	K1P_U32
6	potrafi identyfikować czynniki społeczne, prawne i organizacyjne wpływające na jakość i bezpieczeństwo projektowanego systemu	proj	wykład, projekt	K1P_U11, K1P_U16, K1P_K02

18. Formy zajęć dydaktycznych i ich wymiar (liczba godzin)

Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
30			75	

19. Treści kształcenia:

Wykład: Projektowanie oprogramowania. Modele cyklu życia oprogramowania. Projektowanie niezawodnego oprogramowania, programowanie zwinne (agile) oraz ekstremalne. Specyfikacja wymagań. Koncepcje tworzenia złożonego oprogramowania - podejście strukturalne i obiektowe. Korzystanie i projektowanie API (Application Programming Interface). Narzędzia i środowiska wytwarzania oprogramowania. Modelowanie. UML. Narzędzia CASE. Dobre praktyki notacyjne, przenośność kodu źródłowego. Uruchamianie i testowanie oprogramowania. Refaktoring kodu. Zarządzanie projektem informatycznym. Systemy pracy grupowej, hostingowe, systemy kontroli wersji. Projektowanie interakcji człowiek-komputer: komunikacja program-użytkownik. Dokumentacja procesu tworzenia oprogramowania oraz dokumentacja użytkowa. Optymalizacja czasowa i pamięciowa programów. Przygotowywanie aplikacji do wykorzystania przez osoby niepełnosprawne. Wdrożenie, utrzymanie i konserwacja oprogramowania. Ocena jakości i złożoności oprogramowania (kryteria, metryki). Wzorce projektowe. Standardy i metodyki zarządzania jakością.

Projekt: Założenia projektu zespołowego, oszacowanie pracochłonności zadań. Dobór narzędzi, przygotowanie środowiska pracy. Wirtualizacja systemu operacyjnego, uruchamianie aplikacji. Przeprowadzanie systematycznych testów. Dobór struktur danych, przygotowanie modelu obiektowego. Ocena i poprawa efektywności oprogramowania, zastosowanie właściwych algorytmów bibliotecznych. Komunikacja programów z użytkownikiem. Zarządzanie projektem informatycznym, notacje wspomagające modelowanie. Tworzenie dokumentacji użytkowej oprogramowania. Narzędzia pracy grupowej, systemy hostingowe dla projektów informatycznych, wykorzystanie systemu kontroli wersji.

20. Egzamin: nie

21. Literatura podstawowa:

- 1. K. Sacha: "Inżynieria oprogramowania", PWN, 2010.
- 2. J. Nielsen, R. Budiu: "Funkcjonalność aplikacji mobilnych. Nowoczesne standardy UX i UI". Helion 2013.
- 3. K. Kaczor: "SCRUM i nie tylko. Teoria i praktyka w metodach Agile", PWN 2014.
- 4. P. Szmal (red.): "Inżynieria programowania. Metody i ćwiczenia laboratoryjne", Wydawnictwo Politechniki Śląskiej, Gliwice, 2003.
- 5. A. Jaszkiewicz: "Inżynieria oprogramowania", Helion, 1997.

22. Literatura uzupełniająca:

- 1. W. Dąbrowski, A. Stasiak, M. Wolski: "Modelowanie systemów informatycznych w języku UML 2.1", PWN, 2009.
- 2. S. H. Kan: "Metryki i modele w inżynierii jakości oprogramowania", PWN, 2006.
- 3. P. Wróblewski: "Zarządzanie projektami z wykorzystaniem darmowego oprogramowania", Helion 2009.
- 4. I. Sommerville: "Inżynieria Oprogramowania", WNT, 2003.
- 5. B. Wiszniewski, B. Bereza-Jarociński: "Teoria i praktyka testowania programów", PWN, 2006.
- 6. J. Spolsky: "Projektowanie interfejsu użytkownika. Poradnik dla programistów", Mikom 2001.
- 7. S. Krug: "Nie każ mi myśleć. O życiowym podejściu do funkcjonalności stron internetowych", Helion, 2006.

23. Nakład pracy studenta potrzebny do osiągnięcia efektów kształcenia

Lp.	Forma zajęć	Liczba godzin kontaktowych / pracy studenta
1	Wykład	30/10
2	Ćwiczenia	/
3	Laboratorium	/
4	Projekt	75/155
5	Seminarium	/
6	Inne	/
	Suma godzin	105/165

24.

Suma wszystkich godzin	270

25.

|--|

26.

Liczba punktów ECTS uzyskanych na zajęciach z bezpośrednim	a
udziałem nauczyciela akademickiego	9

27.

Liczba punktów ECTS uzyskanych na zajęciach o charakterze	0
praktycznym (laboratoria, projekty)	8

28. Uwagi:

Aktywność na wykładzie 0-10 pkt. Projekt 0-90 pkt. W ramach projektu obowiązkowa praca w zespole lub międzyzespołowa, z wykorzystaniem narzędzi pracy grupowej.

Student powinien uzyskać powyżej 40% punktów z każdego efektu kształcenia. Końcowa ocena wg skali punktowej: 41-55: dost, 56-70: dost plus, 71-80: dobry, 81-90: dobry plus, 91-100: bdb.

	Zatwierdzono:		
data i podpis prowadzącego)	(data i podpis dyrektora instytutu/kierownika katedry/		
	Dyrektora Kolegium Języków Obcych/kierownika lub		
	dyrektora jednostki mjedzywydziałowej)		