Handling Seasonal Datasets and Working with Seasonality

Martin Burger

STATS PROGRAMMING TUTOR

www.r-tutorials.com

Seasonal Datasets

Seasonality in time series datasets

Capturing the seasonal pattern via data visualizations

- Season plot, month plot

Extending the ARIMA model by seasonal parameters (SARIMA)

- Function auto_arima() from pmdarima

Exploratory analysis with simple and STL decomposition

Seasonality in Time Series

Seasonality

A recurring pattern of seasonal cycles (year, month, week, day, hour). The pattern is enabled by a seasonal frequency, the number of periods that form one seasonal cycle.

Temperature Patterns

Yearly seasonal cycle

By month (12)

By week (approx. 52)

The seasonal cycle structures the data

Visualizing the Seasonal Pattern

Month Plot

Extracts patterns by plotting the seasons of a cycle in chronological order

Season Plot

Emphasizes the pattern by plotting the seasonal cycles over one another

Seasonal ARIMA Model

ARIMA(p,d,q)(P,D,Q)[m]

ARIMA(2,1,0)(0,0,2)[12]

Parameters of a SARIMA Model

- General terms: Two autoregressive orders and one differencing step
- Seasonal terms: Two moving average terms
- Frequency of 12

SARIMA Model Setup

The parameter selection process gets more complex

- Use ACF and PACF plots with a minimum of three seasonal cycles
- Example: Plot 36 lags if frequency is 12 (3x12)

Automatic parameter selection tool

Function auto_arima() from pmdarima

Dataset: nottem.csv

Simple Seasonal Decomposition

Modeling Univariate Seasonal Time Series

Seasonal ARIMA (SARIMA)

Holt-Winters exponential smoothing

Seasonal decomposition

Seasonal Decomposition

Divides the time series into its components: Trend, seasonality, residuals

Additive model: Summation of the components

Multiplicative model: Multiplication of the components

Simple Seasonal Decomposition

Constant seasonal component

NaN values

Slow to catch fast rises

Simplicity

A good starting point

STL Decomposition

Seasonal and Trend Decomposition Based on Loess

No missing observations

Robust towards outliers

Seasonality can be adjusted

Predictive analysis

Pre-Defined Forecast Functions

Naive: Last observation carried forward

Drift: Trend carried forward

Mean: Average of the series carried forward

Naive seasonal: LOCF with seasonal effect

STL decomposition is a great benchmark against more advanced models.

Seasonal Datasets

Seasonality is captured by the frequency

Generating month plots (statsmodels) and season plots (custom code)

Automatic ARIMA parameter selection with auto_arima (pmdarima)

Dividing the time series into its components (statsmodels, stldecompose)

