

Introduction to Optimization and Automatic Algorithm Design

MARIE-ÉLÉONORE KESSACI

Associate Professor at University of Lille

Optimization problem

- An **optimization problem** is a pair (Ω, f) where
 - Search space = set of feasible (possible) solutions Ω
 - Objective function = quality criterion : $f: \Omega \to \mathbb{R}$
- Solving an optimization problem
 - Find the best solution(s) for the quality criterion
 - Example for a maximization problem

$$s^* = \operatorname*{argmax} f(s)$$

Categories of optimization problems

- Classification based on variables
 - Discrete Optimization: the set of feasible solutions is discrete or can be reduced to a discrete set
 - Combinatorial problems: traveling salesman problem, flowshop /jobshop/... scheduling, routing...
 - Continuous Optimization: set of real values between which there are no gaps.
- Classification based on the criterion/criteria
 - Single-objective Optimization
 - Only one criterion is minimized/maximized
 - Multi-objective Optimization
 - At least two criteria are optimized : simultaneously ? In sequence ? With the same interest ? ...
 - Bi-level Optimization
 - Leader/follower each have their own criterion/criteria and evolve in separate but linked search spaces
 - ...

Example of optimization problems

Solving methods

Trajectory-based metaheuristics

- Gradient methods are simple and efficient for numerical optimization
 - But : No relation/connection between solutions

NEIGHBORHOOD DEFINITION

- $\mathcal{N}:\Omega\to 2^\Omega$: neighborhood relation which associates with any solution $x\in\Omega$ a set of solutions of Ω
- $\blacksquare \mathcal{N}(x)$: set of neighboring solutions / neighbors of the solution x
- In practice, the neighborhood
 - Is defined from one (or more) move operators
 - Is used to connect solutions of the search space and cross the search space step by step

Optimality

- Global Optimum s*
 - Optimale solution of the problem (may be several)

$$\forall s \in \Omega, \ s \leq s^*$$

A > B : A is (strictly) **better** than B in terms of optimization

- minimization : f(A) < f(B)
- maximization : f(A) > f(B)

- Local Optimum s^{LO}
 - Linked to the definition of the neighborhood
 - Solution with no better neighboring solutions : $\forall s \in \mathcal{N}(s^{LO}), \ s \leq s^{LO}$

Local Search

- Principle
 - Cross the search space step by step
 - Move from solutions to neighboring solutions
- Algorithm

```
Choose s \in \Omega initial solution 

Repeat 

Choose s' \in \mathcal{N}(s) 

If accept (s,s') Then s \leftarrow s'
```

Until termination criterion is reached

s is the current solution s' is a neighboring solution of s

Exploration vs. Exploitation

- Exploration
 - Ability to explore the seach space in width
- Exploitation
 - Ability to explore the seach space in depth
- Definition of the method accept
 - Exploration : the solution is always accepted
 - -> random walk
 - Exploitation : only improving solutions are accepted
 - -> Hill Climbing algorithm
- Definition of the termination criterion
 - Exploration: « never » stop, then must be fixed (ex: nb of iterations/evaluations or maximum runtime)
 - Exploitation: natural, because no improvement is possible among the neighborhood of the local optimum found

Choose $s \in \Omega$ initial solution Repeat $\begin{array}{c} \text{Choose } s' \in \mathcal{N}(s) \\ \text{If } \text{accept } (s,s') \text{ Then } \\ s \leftarrow s' \end{array}$

Until termination criterion is reached

Choose $s \in \Omega$ initial solution Repeat $\text{Choose } s' \in \mathcal{N}(s) \\ \text{If } \operatorname{accept} (s,s') \text{ Then } \\ s \leftarrow s'$

Until termination criterion is reached

Choice of the best neighbor

- Hill Climbing Algorithm
 - Inspired of the gradient descent
 - Different strategies to choose $s' \in \mathcal{N}(s)$
- Best improvement Hill Climbing = Choose the best neighbors
 - Make the best (the deepest) possible move at each iteration
 - Need the evaluation of the whole neighborhood of a solution
- First improvement Hill Climbing = Choose an improving neighbor
 - Consider small improvements
 - Increase (generally) the number of iterations
 - Evaluate (generally) the neighborhood of the current solution only partially

Choose $s \in \Omega$ initial solution

Repeat

Choose $s' \in \mathcal{N}(s)$ If accept (s, s') Then $s \leftarrow s'$

Until termination criterion is reached

Choose $s \in \Omega$ initial solution

Evaluate s

Reapet

Choose $s' \in \mathcal{N}(s)$ such as f(s') is maximal If f(s') > f(s) Then $s \leftarrow s'$

Until s is a local optimum

Choose $s \in \Omega$ initial solution

Evaluate s

Reapet

Choose $s' \in \mathcal{N}(s)$ such as f(s') > f(s) (if possible)

If
$$f(s') > f(s)$$
 Then $s \leftarrow s'$

Until s is a local optimum

Equivalent Solutions and Neutrality

- Optimization problems may have numerous solutions with the same quality
 - What is the impact on the search space?

Tradeoff Exploration/Exploitation

- HC has a good exploitation ability but remains trapped in a local optimum
- A random walk has a good exploration ability but little chance of improvement

- Need sophisticated trajectory-based metaheuristics to have a good tradeoff exploration/exploitation
 - Simulated Annealing (SA)
 - Tabu Search (TS)
 - Iterated Local Search (ILS)
 - Guided Local Search (GLS)
 - Greedy Ramdomized Adaptive Search Procedure (GRASP)
 - Variable Neighborhood Search (VNS)

Simulated Annealing [Kirkpatrick et al, 1983]

- Goal: Escape from local optimum solutions
- Principle: non-zero probability to select a non improving neighboring solution

- Neighborhood definition / move operator
- Temperature: control the acceptance of a non-improving solutions
 - Large: high exploration ability (> > random walk)
 - Small: high exploitation ability (> > hill climbing)
- Cooling schedule: control the variation of the temperature

Tabu Search [Glove, 1986]

- Goal: Escape from local optimum solutions
- Principle: use a memory in order to avoid recently visited solutions

- Neighborhood
- Memory mechanism: forbid moves, forbid solutions
- Size of the memory:
 - If too small, the tabu may be unefficient
 - If too large, the exploration may be too diversified
- Aspiration criterion: Accept a tabu solution if it improves the best so far

Iterated Local Search [Lourenço et al, 2003]

- Goal: Escape from local optimum solutions
- **Principle**: move towards solutions that are "not to far" to restart a climber/descent

- Neighborhood
- Perturbation mechanism: manage the exploration strength
- Acceptance criterion: manage the start of the next iteration

Genetic Algorithm [Holland, 1992]

- Inspired by Charles Darwin's theory of natural evolution where the fittest individuals are selected to produce offspring
- Principle: merge and mutate solutions

- Crossover mechanism: merge two solutions to provide new solutions
- Mutation mechanism: add a random move in the generated solutions
- Selection mechanism: control the way to choose the solutions for the next iteration

Metaheuristics

Knowledge-based Design

Algorithm Configuration

[López-Ibáñez 2016, Hu ter 2009]

Algorithm Selection

[Rice 1976, Kottho 2014, Kerschke 2019]

Parameter Control

[Eiben 1999, Karofati s 2015, Doerr 2018]

Hyper-heuristics

[Burke 2013]

Landscape-based Design

Fitness Landscape Analysis

Local Optima Networks

[Jones 1995]

[Ochoa 2008]

Multi-Objective Optimization Problems

- ■Ω: Search space
- $F = (f_1, f_2, \dots, f_m)$: vector of m objective functions

 $\min_{x \in \Omega} \left(f_1(x), f_2(x), \cdots, f_m(x) \right)$

- Solving methodologies:
 - Lexicographic order
 - Aggregation
 - Pareto

Performance Assessment [Zitzler et al, 2003]

- Epsilon-indicator
- Hypervolume-indicator
- Generational distance / Inverted Generational Distance

Multi-objective Approaches

- Multi-objective Local Search Algorithms [Blot et al, 2018]
 - Extension of the trajectory-based metaheuristics
 - Use an archive to store solutions

- Multi-objective nature-inspired Algorithms
 - Extension of GA: NSGA-2, NSGA-3
 - Extension of ACO: MOACO
 - Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D)

ORKAD team

Automatic Configuration of MO-SLS

"Exhaustive" analysis: x (300 configurations)

Configurator: ○ ParamILS △ ParamILS(0.75,0.25) □ MO-ParamILS

MO-AAC: excellent spread, no loss of convergence

Algorithms & Parameters Recommendation

Multi-objective Auto-ML

COV Detection

21

Jacques, Jourdan, Kessaci

MO-AAD and KDD

Feature-based Instances Selection

AAD

Improving MOEA/D with Knowledge Discovery

Neutrality in Multi-objective Combinatorial Optimization

First definitions

Landscape-aware SLS

Reduction of search space	Reduction of neighborhood
Case study	
no-wait FSP	 Feature selection problem
Analysis	
 Structure of local optima 	 Favorite moves (1 → 0)
 Definition of super-jobs 	 Interactions between features
Knowledge integration	
 Identification of super-jobs 	 Estimation of neighbors quality
 Exploitation of super-jobs 	 Intensification/diversification mechanism
Algorithm	
 Iterated Greedy with super-jobs 	 Tabu search

Mousin, Jourdan, Kessaci-Marmion and Dhaenens -- LION 2016 Mousin, Kessaci and Dhaenens -- LION 2017

Landscape-based Design

Landscape-based Performance Prediction of Local Search

