

SISTEMAS INTELIGENTES

Prática 5 – Implementação de Redes PMC (Especificação Estrutural)

(Aplicação em Classificação de Padrões)

Ivan Nunes da Silva

Objetivos da Aula

- Fixar a teoria sobre redes PMC estudadas nas aulas anteriores, visando sua aplicação em classificação de padrões.
- Implementar exemplos aplicativos para realizar tarefas de classificação de padrões.

Problema de Classificação de Padrões

- ➢ Problema de Classificação de Padrões consiste de associar um padrão de entrada (amostra) para uma daquelas classes que já foram previamente definidas.
- ➤ Diferentemente dos problemas envolvendo Aproximação Funcional (saídas reais/analógicas), as respostas associadas aos problemas de Classificação de Padrões estão sempre relacionadas com grandezas discretas (enumeráveis).

3

TSP

Problema de Aplicação Prática (Classificação de Padrões // Introdução ao Problema)

- ➤ Uma determinada indústria pretende lançar diferentes tipos de vinhos para atender perfis de clientes diferenciados. Os vinhos serão classificados em três classes {A, B e C}.
- ➤ Para tanto, uma equipe de engenheiros e cientistas pretende aplicar um PMC como classificador de padrões, utilizando-se para tanto uma base de dados que contém 13 atributos relacionados às diversas características físico-químicas do vinho, tais como acidez, concentração de álcool, cor, teor de água, etc.
- Os 10 primeiros elementos da tabela de dados contidos no arquivo "treinamento.txt" são representados na tabela seguinte.

Problema de Aplicação Prática (Classificação de Padrões // Tabela de Treinamento PMC)

Conjunto de treinamento referente às 10 primeiras amostras do arquivo "treinamento.txt".

Amostra	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X 9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	d ₁	d ₂	d ₃
1	0.7079	0.1364	0.6096	0.3144	0.4130	0.8345	0.7025	0.1132	0.5142	0.4710	0.3333	0.5861	0.7183	0	0	1
2	0.3658	0.1719	0.4439	0.6134	0.4130	0.3517	0.3692	0.3962	0.3786	0.0666	0.4715	0.6191	0.0478	0	1	0
3	0.8421	0.1917	0.5722	0.2577	0.6196	0.6276	0.5738	0.2830	0.5931	0.3720	0.4553	0.9707	0.5613	0	0	1
4	0.3526	0.0395	0.0000	0.0000	0.1957	0.3448	0.0485	0.2830	0.0032	0.0572	0.4634	0.2015	0.1726	0	1	0
5	0.4816	0.1206	0.5134	0.3814	0.5652	0.1828	0.1920	0.1509	0.1672	0.2406	0.2276	0.0073	0.2511	1	0	0
6	0.3526	0.1759	0.5027	0.7165	0.1957	0.4276	0.4452	0.5094	0.4700	0.0717	0.3333	0.5531	0.0456	0	1	0
7	0.2658	0.7036	0.5455	0.5876	0.1087	0.3862	0.2975	0.5472	0.2965	0.1126	0.2520	0.4762	0.2154	0	1	0
8	0.5711	0.2055	0.4171	0.0309	0.3261	0.5759	0.5106	0.2453	0.2745	0.2645	0.4634	0.7802	0.5506	0	0	1
9	0.3421	0.0711	0.4920	0.2784	0.3370	0.3690	0.1582	0.9434	0.0000	0.1698	0.6260	0.1465	0.2867	0	1	0
10	0.4868	0.4447	0.5562	0.4845	0.3696	0.1103	0.1857	0.2076	0.1325	0.3515	0.2114	0.0549	0.1797	1	0	0

5

Problema de Aplicação Prática (Classificação de Padrões // Topologia do PMC)

- \triangleright Como existe 13 grandezas físicas que estão sendo medidas, o PMC terá então 13 entradas { $x_1, x_2, ..., x_{13}$ }.
- ➤ Consequentemente, a saída { d₁, d₂, d₃ } do PMC estará então identificando, baseada em suas 13 entradas, qual a classe que determinada amostra de vinho estará pertencendo.
- O diagrama representativo do modelo da rede PMC e a definição de suas classes são ilustrados abaixo.

Classe	d ₁	d ₂	d ₃
Α	1	0	0
В	0	1	0
С	0	0	1

TST

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte I)

- 1. Carregue a matriz de treinamento referente ao arquivo "treinamento.txt".
- Construa o vetor de entrada (vet_entrada) do PMC e o vetor de saída desejada (vet_desejado), conforme a representação a seguir:

Amostra	X ₁	X ₂	X ₃	()	d ₁	d ₂	d ₃
1	0.7079	0.1364	0.6096	()	0	0	1
2	0.3658	0.1719	0.4439	()	0	1	0
3	0.8421	0.1917	0.5722	()	0	0	1
()	()	()	()	()	()	()	()

- Imprima os vetores para checar se os mesmos estão ok. Verifique também a dimensão de cada um deles.
- 3. Obtenha os valores mínimos e valores máximos para cada uma das variáveis de entrada.
 - Utilize os comandos "min" e "max".

7

TSP

<u>Problema de Aplicação Prática</u> (Classificação de Padrões // Atividades // Parte II)

- 4. Crie o PMC com duas camadas neurais, treinada com o algoritmo de "Levenberg-Marquardt", tendo a seguinte topologia:
 - > 1ª Camada Neural → 05 neurônios (Logística).
 > 2ª Camada Neural → 03 neurônios (Linear).

<u>Topologia</u>: Perceptron Multicamadas (Feed-Forward).

Função: newff

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte III)

Descrição de Parâmetros Internos (slide anterior):

a

TST)

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte IV)

- Especifique os parâmetros internos da rede considerando os seguintes valores:
 - > 500 épocas de treinamento (trainParam.epochs).
 - ➤ Precisão de 10-6 (trainParam.goal).
 - > Taxa de aprendizado de 0.5 (trainParam.lr).
 - > Refresh (atualização) de tela a cada 5 épocas (trainParam.show).

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte V)

6. Efetue o treinamento da rede.

Procedimento de Treinamento do PMC

> Função: train

11

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte VII)

7. Visando validar a rede, prepare os vetores de testes baseados nas amostras contidas no arquivo "teste.txt".

Amostra	X ₁	X ₂	<i>X</i> ₃	()	d ₁	d ₂	d ₃
1	0.1526	0.1206	0.7166	()	0	1	0
2	0.7368	0.1798	0.6631	()	0	0	1
3	0.1131	0.5929	0.2459	()	0	1	0
()	()	()	()	()	()	()	()

Visualize os vetores para checar se estão ok.

13

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte VIII)

8. Obtenha as saídas computadas pela rede (já treinada) frente ao conjunto de teste.

Procedimento de Teste do PMC Treinado

Função: sim

Problema de Aplicação Prática (Classificação de Padrões // Atividades // Parte IX)

9. Imprima lado a lado (por meio de uma matriz) os valores de saída obtidos pela rede (vet_saida) com aqueles que seriam os valores desejados (vet_teste_desejado), conforme formato da tabela abaixo. Efetue o pós-processamento a fim de gerar somente valores inteiros.

ve	t_sai	da	vet_teste_desejado				
0	1	0	0 1 0				
0	0	1	0 0 1				
0	1	0	0 1 0				
	()		()				

- 10. Faça um procedimento que dado "vet_saída" e "vet_teste_desejado", retorne então o percentual de acertos entre os dois vetores.
- 11. Para propósitos de comparação de velocidade e desempenho, execute agora o treinamento usando o algoritmo "Gradiente Descendente". Compare a velocidade com o "Levenberg-Marquardt", assim como o percentual de acertos frente ao conjunto de teste.

Problema de Aplicação Prática (Extraindo os Parâmetros do PMC Treinado)

- 12. Utilizando agora somente os valores contidos nas matrizes W1 e W2, assim como nos vetores b1 e b2, implemente as instruções que nos permita utilizar a estrutura da rede (já treinada). Para tanto, implemente a seguinte função:
 - Faça uma função que receba como argumento um vetor \mathbf{X} , constituído por $[x_1, x_2, ..., x_{13}]$, retornando como resposta o valor calculado pela rede (ver slide anterior), ou seja:

$$a^2 = f^2(W2 \cdot f^1(W1 \cdot x + b1) + b2)$$

Obs. Utilize o comando "save" para salvar a workspace ou as suas variáveis de interesse. O comando "load" pode ser utilizado para recuperar os valores dessas variáveis.

13. Pegue a primeira amostra do Item 7 e verifique se a função (rede) está produzindo a mesma resposta que aquela obtida pela instrução "sim".