But he

TEST REPORT

APPLICANT: C.O.B.O. S.p.A. - Divisione 3B6

Via Sivo, 74-28053 Castelletto Ticino (NO)-Italy Tel. +39 0331-92861 Fax +39 0331-972160

Mail: Paolo.staurengo@3b6.it

EUT DESCRIPTION Digging measurement system for Excavator

EUT TRADEMARK C.O.B.O. S.p.A. - Divisione 3B6

Complex Electronics Ltd.

WESTLINE sarl

EUT MODEL Remote sensor RAL S02

REFERENCE STANDARDS: FCC 47 CFR part 15 subpart C section 15.249

23/09/2008

TEST REPORT NUMBER FCC.TR.TX.08.1505-2

TEST REPORT ISSUE DATE 03/03/2009

TESTING LABORATORY Prima Ricerca & Sviluppo S.r.l.

Via Campagna, 92 -22020 Faloppio (Co) -Italy

TESTING LOCATION As Above

DATE OF TEST SAMPLE

RECEIPT

DATE OF TEST 13-14/01-03/03/2009

TESTED BY Andrea Bortolotti

APPROVED BY Massimo Maltempi

The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have be obtained.

Percentuation of this Test Percent should not be reproduced, execut in full, without the written outborization of the

Reproduction of this Test Report, should not be reproduced, except in full, without the written authorization of the Laboratory

TRFCC_15.249 Page 1 of 38

0. CONTENTS

			Page
0.	СО	NTENTS	2
1.	TE	CHNICAL INFORMATION OF EQUIPMENT UNDER TEST (EUT)	3
1.	.1	Identification	3
1.	.2	Technical data	3
1.	.3	General Technical data	4
1.	.4	Transceiver data	7
1.	.5	Modifications incorporated in E.U.T	9
1.	.6	Ports identification	9
1.	.7	Auxiliary equipment	9
2.	TES	ST CONDITIONS	10
2.	.1	Operating test modes and test conditions	10
2.	.2	Test overview	10
3.	RE	FERENCE STANDARD FOR PERFORMED TESTS	11
4.	SU	MMARY OF TEST RESULTS	12
5.	TES	ST RESULTS	13
5.	.1 P	Photographic documentation	36
6.	TES	ST EQUIPMENT LIST	38
6.	.1	Equipment List	38

TECHNICAL INFORMATION OF EQUIPMENT UNDER TEST (EUT) 1.

1.1 Identification

Manufacturer:

C.O.B.O. S.p.A. - Divisione 3B6 **Brand name:**

Complex Electronics Ltd.

WESTLINE sarl

C.O.B.O. S.p.A. - Divisione 3B6

Complex Electronics Ltd.

WESTLINE sarl

Equipment: Digging measurement system for Excavator

Serial number: Not present

FCC ID: **WXNEZDIGPRO**

Country of manufacturer: **ITALY**

1.2 Technical data

FCC class: 47 CFR FCC Part 15 Subpart C § 15.249

Product type: **WLAN**

Radio type: Intentional transceiver

Power type: **Battery**

Frequency range: 2400 - 2483.5 MHz

Channel number:

Carrier Frequency for 20MHz Channel No.1: 2401 MHz

badwidth (protocol b/g/n):

Channel No.2: 2414 MHz

Channel No.3: 2427 MHz Channel No.4: 2440 MHz

Channel No.5: 2453 MHz

Channel No.6: 2466 MHz

Field Antenna: Antenna Type: wire

Page 3 of 38 TRFCC_15.249

1.3 General Technical data

385°	QUALITY S PROJECT SPEC	Document: SP EZDig System Radio - UK	
	Date: 23 / 09 / 2008	Page: 1 / 3	Project Code: EDZ System

Application Description

Digging measurement system for Excavator

EZDig System Radio Description

The base, transmitter and receiver module (MD360R - EZD001-SE01 - Led Display) sends a synch packet (it takes about 500 µs to send it), then it goes in RX and listens for a response packet of one sensor (RALS01 - EZD002-0010 - angle sensor & RALS02 -

EZD003-0010 - angle sensor and laser receiver) for 4 ms; after that, it sends a synch again and waits the remaining 4 ms without going in RX.

This time slot of 10 ms is repeated for 10 times at a specified carrier frequency, that is changed at the end.

The first frequency used is 2401 MHz, then 2414 MHz, 2427 MHz, 2440 MHz, 2453 MHz, and finally 2466 MHz. So 6 frequency hops are used in cycle mode. Every next hop is obtained by adding 13 MHz to the current one.

The transmission is done in GFSK modulation at the nominal power of 0 dBm, with 250 kbps data rate.

The synch packets are 11 bytes long and they are made of 1 byte Preamble, 4 bytes Address, 4 bytes Payload, 2 bytes CRC.

The sensors (up to 8) transmit a response packet (about 500 μ s to send it) every 100 ms; every response is sent at one of the 6 carriers, in cycle mode. The response sending is repeated 10 times, then, before sending for the 11th time, the sensors go in RX for 4 ms to receive the base synch.

The transmission is done in GFSK modulation at the nominal power of 0 dBm, with 250 kbps data rate.

The response packets are 11 bytes long and they are made of 1 byte Preamble, 4 bytes Address, 4 bytes Payload, 2 bytes CRC.

TRFCC_15.249 Page 4 of 38

QUALITY SISTEM PROJECT SPECIFICATION

Document: SP EZDig System Radio -UK

> Project Code: EDZ System

Date: 23 / 09 / 2008

Page: 2 / 3

Radio packet

Byte10	Byte9	Byte8	Byte7	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0
Preamble	Address			Payl	oad		CF	RC		

Receiver Classification

Class 3 according to ETSI 300440 - 1.

Technical Data

MD360R - EZD001-SE01 - Led Display

Power supply: 9 ÷ 30 Vdc
 Supply Current: 300 mA

• Operating Temperature Range: from $-20\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$ • Storage Temperature Range: from $-30\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C}$

• Protection: IP54

RALS01 - EZD002-0010 - Angle Sensor

Angle Sensor

Measurement Range: 360°
Resolution: 0.3°
Accuracy: ± 0,2°

• Max thermal drift ± 0,5° on the operating temperature range

• Power supply: 2,7 ÷ 4,2 Vdc by 3,6 V 750 mA Li-ion battery

• Supply Current : 6 mA

• Operating Temperature Range: from −20℃ to +70℃ • Storage Temperature Range: from −30℃ to +85℃

• Protection: IP67

RALS02 - EZD003-0010 - Angle Sensor and Laser Receiver

Angle Sensor

Measurement Range: 360°
Resolution: 0.3°
Accuracy: ± 0,2°

• Max thermal drift $\pm 0.5^{\circ}$ on the operating temperature range

Laser Receiver

Measurement Range: 80 mm
 Resolution: 2 mm
 Accuracy: ± 2 mm

Power supply:
 Supply Current:
 2,7 ÷ 4,2 Vdc by 3,6 V 750 mA Li-ion battery
 6 mA (13 mA with laser receiver active)

• Operating Temperature Range: $from -20 \ \ \, C \ \ \, to +70 \ \ \, C$ • Storage Temperature Range: $from -30 \ \ \, C \ \, to +85 \ \ \, C$

• Protection: IP67

TRFCC_15.249 Page 5 of 38

TRFCC_15.249 Page 6 of 38

1.4 Transceiver data

PRODUCT SPECIFICATION

Single chip 2.4 GHz Transceiver

nRF2401

FEATURES

- True single chip GFSK transceiver in a small 24-pin package (QFN24 5x5mm)
- Data rate 0 to1Mbps
- Only 2 external components
- Multi channel operation
 - 125 channels
 - Channel switching time <200 µs.
 - Support frequency hopping
- Data slicer / clock recovery of data
- Address and CRC computation
- DuoCeiverTM for simultaneous dual receiver topology
- ShockBurstTM mode for ultra-low power operation and relaxed MCU performance
- Power supply range: 1.9 to 3.6 V
- Low supply current (TX), typical 10.5mA peak
 @ -5dBm output power
- Low supply current (RX), typical 18mA peak in receive mode
- 100 % RF tested
- No need for external SAW filter
- World wide use

APPLICATIONS

- Wireless mouse, keyboard, joystick
- · Keyless entry
- · Wireless data communication
- · Alarm and security systems
- Home automation
- Surveillance
- Automotive
- Telemetry
- · Intelligent sports equipment
- Industrial sensors
 - Toys

GENERAL DESCRIPTION

nRF2401 is a single-chip radio transceiver for the world wide 2.4 - 2.5 GHz ISM band. The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a crystal oscillator and a modulator. Output power and frequency channels are easily programmable by use of the 3-wire serial interface. Current consumption is very low, only 10.5mA at an output power of -5dBm and 18mA in receive mode. Built-in Power Down modes makes power saving easily realizable.

QUICK REFERENCE DATA

Parameter	Value	Unit
Minimum supply voltage	1.9	V
Maximum output power	0	dBm
Maximum data rate	1000	kbps
Supply current in transmit @ -5dBm output power	10.5	mA
Supply current in receive mode	18	mA
Temperature range	-40 to +85	°C
Sensitivity	-90	dBm
Supply current in Power Down mode	400	nA

Table 1 nRF2401 quick reference data

TRFCC_15.249 Page 7 of 38

ELECTRICAL SPECIFICATIONS

Conditions: VDD = +3V, VSS = 0V, $T_A = -40$ °C to +85°C

Symbol	Parameter (condition)	Notes	Min.	Тур.	Max.	Units		
	Operating conditions							
VDD	Supply voltage		1.9	3.0	3.6	V		
TEMP	Operating Temperature		-40	+27	+85	°C		
	Digital input pin							
V_{IH}	HIGH level input voltage		VDD- 0.3		VDD	V		
V_{IL}	LOW level input voltage		Vss		0.3	V		
	Digital output pin							
V _{OH}	HIGH level output voltage (I _{OH} =-0.5mA)		VDD- 0.3		VDD	V		
V _{OL}	LOW level output voltage (I _{OL} =0.5mA)		Vss		0.3	V		
OL.	General RF conditions							
fop	Operating frequency	1)	2400		2524	MHz		
f _{XTAL}	Crystal frequency	2)	4		20	MHz		
Δf	Frequency deviation	2)	T T	±156	20	kHz		
R _{GFSK}	Data rate ShockBurst TM		>0	_100	1000	kbps		
R _{GFSK}	Data rate Direct Mode	3)	250		1000	kbps		
F _{CHANNEL}	Channel spacing		200	1	1000	MHz		
CHANNEL								
	Transmitter operation					_		
P_{RF}	Maximum Output Power	4)		0	+4	dBm		
P_{RFC}	RF Power Control Range		16	20		dB		
P_{RFCR}	RF Power Control Range Resolution				±3	dB		
P_{BW}	20dB Bandwidth for Modulated Carrier				1000	kHz		
P_{RF2}	2 nd Adjacent Channel Transmit Power 2MHz				-20	dBm		
P_{RF3}	3 rd Adjacent Channel Transmit Power 3MHz				-40	dBm		
I_{VDD}	Supply current @ 0dBm output power	5)		13		mA		
I_{VDD}	Supply current @ -20dBm output power	5)		8.8		mA		
I_{VDD}	Average Supply current @ -5dBm output	6)		0.8		mA		
,	power, ShockBurst™			1.0				
I _{VDD}	Average Supply current in stand-by mode	7)		12		μA		
I_{VDD}	Average Supply current in power down			400		nA		
	Receiver operation							
I_{VDD}	Supply current one channel 250kbps			18		mA		
I_{VDD}	Supply current one channel 1000kbps			19		mA		
I_{VDD}	Supply current two channels 250kbps			23		mA		
I_{VDD}	Supply current two channels 1000kbps			25		mA		
RX_{SENS}	Sensitivity at 0.1%BER (@250kbps)			-90		dBm		
RX_{SENS}	Sensitivity at 0.1%BER (@1000kbps)			-80		dBm		
C/I _{CO}	C/I Co-channel	8)		10/4		dB		
C/I_{1ST}	1st Adjacent Channel Selectivity C/I 1MHz	8)		-20/0		dB		
C/I_{2ND}	2 nd Adjacent Channel Selectivity C/I 2MHz	8)		-37/-20		dB		
C/I_{3RD}	3 rd Adjacent Channel Selectivity C/I 3MHz	8)		-43/-30		dB		
RX_B	Blocking Data Channel 2 pand is determined by local regulations			-45/-41		dB		

- Usable band is determined by local regulations
 The crystal frequency may be chosen from 5 different values (4, 8, 12, 16, and 20MHz) which are specified in the configuration word, see Table 9. 16MHz are required for 1Mbps operation.
- 3) Data rate must be either 250kbps or 1000kbps.
- 4) Antenna load impedance = $100\Omega + j175\Omega$
- Antenna load impedance = $100\Omega + j175\Omega$. Effective data rate 250kbps or 1Mbps. Antenna load impedance = $100\Omega + j175\Omega$. Effective data rate 10kbps.
- 6)
- Current if 4 MHz crystal is used.
- 250kbps/1000kbps

Page 8 of 38 TRFCC_15.249

1.5 Modifications incorporated in E.U.T.

The following items are the modifications introduced in the equipment under test:

None

1.6 Ports identification

This section contains descriptions of all signal ports and AC/DC power input/output ports, the length and the type of the cable provided by manufacturer needed for the tests.

Moreover it is specified if the ports are ever or optionally connected.

Port		Description	Connection
1	Enclosure	Plastic case	By screws and by pressure
2	AC power input/output ports		
3	DC power input/output ports	3.6Vdc	Internal battery connector
4	Signals / control lines		
5	Telecommunication ports		

Note: During the tests all cables must be what provided the manufacturer or the same that used in the real employment of the EUT.

1.7 Auxiliary equipment

none

TRFCC_15.249 Page 9 of 38

2. TEST CONDITIONS

2.1 Operating test modes and test conditions

The equipment has been tested according to the operative conditions described in the user/installation manual provided by the manufacturer and by following reference standards:

Reference Standard:

47 CFR FCC Part 15 Subpart C § 15.249(a) sub-clauses (c), (d), (e)

In the following table there are the operating conditions adopted during tests identified by an indicator (#..) at which has been referred the item "Operating condition of the equipment under test" of all technical sheets of the tests (see Section 4)

Operating condition	Description
#1	TX in Operating Mode

2.2 Test overview

The appliance is classified as "Intentional radiator" in conformity to FCC Part 15 Subpart C § 15.249.

TRFCC_15.249 Page 10 of 38

3. REFERENCE STANDARD FOR PERFORMED TESTS

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

TRFCC_15.249 Page 11 of 38

SUMMARY OF TEST RESULTS 4.

	Phenomena	Basic standard FCC part 15 section	Operating condition	Result
1	Field strength of emissions from intentional radiators	15.249(a)	#1	PASS
2	Fixed, point-to-point operation equipment	15.249(b)	-	N.A. ¹
3	Field strength limits are specified at a distance of 3 meters	15.249(c)	-	Considered
4	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.	15.249(d) 15.209	#1	PASS ²
5	For frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits.	15.249(e) 15.35(b)	-	Considered
6	Peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.	15.249(e)	#1	PASS ³
7	For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.	15.249(e)	-	N.A. ⁴
8	Parties considering the manufacture, importation, marketing or operation of equipment under this section should also note the requirement in 15.37(d).	15.249(f) 15.37 (d)	-	N.A. ⁵

¹appliance is not Fixed and/or for point-to-point operation ²emission limits in § 15.209, is the lesser attenuation

Page 12 of 38 TRFCC_15.249

³worst condition has been considered ⁴appliance is not for point-to-point operation

⁵appliance does not operate as intentional radiator in the band 902-905 MHz

5. TEST RESULTS

FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS	
(FUNDAMENTAL EMISSION)	14
RADIATED EMISSION (SPURIUS)	16
20 DB BANDWIDTH OF THE EMISSION	33

TRFCC_15.249 Page 13 of 38

TEST 1

FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS (FUNDAMENTAL EMISSION)

REFERENCE DOCUMENT FCC 47CFR Part 15 sub part C

Section 15.249(a)

• TEST LOCATION: Semi-anechoic chamber

• TEST EQUIPMENT USED FOR TEST: EMI receiver Rohde & Schwarz Mod. ESU40

Spectrum Analyzer Rohde & Schwarz Mod. FSP40

Log periodic antenna broad band 1-18 GHz R&S HL025

• TESTED PORT: Enclosure

• EMISSION LIMITS: Acc. to Section 15.249(d), (e), 15.209 of reference

document

• **UNCERTAINTY OF MEASURE:** Combined uncertainty = \pm 1.75 dB

Total uncertainty = $(k=2) \pm 3.5 dB$

TEST CONDITIONS:			MEASURED
Ambient temperature :	15 - 35 °C		23,5 ± 3 °C
Ambient humidity :	25 - 75 %rH		39 ± 5 %rH
Pressure :	85 - 106 kPa	(860 mbar - 1060 mbar)	950 ± 50 mbar

OPERATING CONDITION (Rif. Section. 2): #1

RESULT: WITHIN THE LIMIT

TRFCC_15.249 Page 14 of 38

Frequency [MHz]	Angle [degree]	Height [cm]	Polar [H/V]	Maximum level [mV/m]	Limit [mV/m]	Result	
			Low chann	el			
2401	17.0	165	V	0,298	50	Pass	
2401	23.0	172	Н	0,133	50	Pass	
		N	liddle chan	nel			
2427	4.0	170	V	0,473	50	Pass	
2427	1.0	171	Н	0,237	50	Pass	
	High channel						
2466	4.0	174	V	0,375	50	Pass	
2466	1.0	174	Н	0,188	50	Pass	

TRFCC_15.249 Page 15 of 38

TEST 2

RADIATED EMISSION (SPURIUS)

REFERENCE DOCUMENT FCC 47CFR Part 15

Section 15.249(d), (e), 15.209

• TEST LOCATION: Semi-anechoic chamber

• TEST EQUIPMENT USED FOR TEST: EMI receiver Rohde & Schwarz Mod. ESU 40

Chase Antenna Mod. CBL 6111 A

Bilog Antenna Mod. HL025

• TESTED PORT: Enclosure

EMISSION LIMITS:

Acc. to Section 15.209 of reference document

• UNCERTAINTY OF MEASURE: Combined uncertainty = \pm 1.75 dB

Total uncertainty = $(k=2) \pm 3.5 dB$

TEST CONDITIONS:			MEASURED
Ambient temperature :	15 - 35 °C		23,5 ± 3 °C
Ambient humidity :	25 - 75 %rH		39 ± 5 %rH
Pressure :	85 - 106 kPa	(860 mbar - 1060 mbar)	950 ± 50 mbar

OPERATING CONDITION (Rif. Section. 2): #1

RESULT: WITHIN THE LIMIT

TRFCC_15.249 Page 16 of 38

CH1	2401MHz
СНЗ	2427MHz
CH6	2466MHz

EMI Auto Test Template: Electric Field Strength FCC

Hardware Setup: Electric Field Strengh FCC
Measurement Type: Open-Area-Test-Site
Frequency Range: 30 MHz - 18 GHz
Graphics Level Range: 0 dBμV/m - 80 dBμV/m

Data Reduction:

Limit Line #1: FCC 15 249 Peak
Limit Line #2: FCC 15 249 AV

Peak Search: 6 dB

Maximum Results: 4

Subrange Maxima: 0

Maxima per Subrange: 1

Acceptance Offset: -10 dB

Maximum Number of Results: 4

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver
30 MHz - 1 GHz	MaxPeak; Average	120 kHz	1 s	Receiver
1 GHz - 2.8 GHz	MaxPeak; Average	1 MHz	0.1 s	Receiver
2.8 GHz - 18 GHz	MaxPeak; Average	1 MHz	0.1 s	Receiver

TRFCC_15.249 Page 17 of 38

CH1: 30-1000MHz

VERTICAL

Electric Field Strength FCC

TRFCC_15.249 Page 18 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 19 of 38

CH1: 1-18GHz

Vertical

Electric Field Strength FCC

TRFCC_15.249 Page 20 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 21 of 38

CH1: 18-25GHz

Vertical

Horizontal*

^{*} No disturbance above CSA noise level in both polarization. The plot from 18GHz to 25GHz are equal.

TRFCC_15.249 Page 22 of 38

CH3: 30-1000 MHz

Vertical

Electric Field Strength FCC

TRFCC_15.249 Page 23 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 24 of 38

CH3: 1-18GHz

Vertical

Electric Field Strength FCC

TRFCC_15.249 Page 25 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 26 of 38

CH3: 18-25GHz

Vertical

Horizontal*

^{*} No disturbance above CSA noise level in both polarization. The plot from 18GHz to 25GHz are equal.

TRFCC_15.249 Page 27 of 38

CH6: 30-1000MHz

Vertical

Electric Field Strength FCC

TRFCC_15.249 Page 28 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 29 of 38

CH6:1-18GHz

Vertical

Electric Field Strength FCC

TRFCC_15.249 Page 30 of 38

Horizontal

Electric Field Strength FCC

TRFCC_15.249 Page 31 of 38

CH6: 18-25GHz

Vertical

Horizontal*

^{*} No disturbance above CSA noise level in both polarization. The plot from 18GHz to 25GHz are equal.

TRFCC_15.249 Page 32 of 38

TEST 3

20 dB BANDWIDTH OF THE EMISSION

REFERENCE DOCUMENT FCC 47CFR Part 15 sub part C

DOCUMENT Section 15.249(e)

• TEST LOCATION: Semi-anechoic chamber

• TEST EQUIPMENT USED FOR TEST: Spectrum Analyzer Rohde & Schwarz Mod. FSP40

• TESTED PORT: Enclosure

• EMISSION LIMITS: Acc. to Section 15.249(e)

• **UNCERTAINTY OF MEASURE:** Combined uncertainty = \pm 1.75 dB

Total uncertainty = (k=2) \pm 3.5 dB

TEST CONDITIONS:			MEASURED
Ambient temperature :	15 - 35 °C		23,5 ± 3 °C
Ambient humidity :	25 - 75 %rH		39 ± 5 %rH
Pressure :	85 - 106 kPa	(860 mbar - 1060 mbar)	950 ± 50 mbar

OPERATING CONDITION (Rif. Section. 2): #1

RESULT: WITHIN THE LIMIT

TRFCC_15.249 Page 33 of 38

2401 MHz

TRFCC_15.249 Page 34 of 38

2466 MHz

TRFCC_15.249 Page 35 of 38

5.1 Photographic documentation

TRFCC_15.249 Page 36 of 38

PHOTO 2 - SET-UP FOR EMISSION RADIATED TEST

TRFCC_15.249 Page 37 of 38

6. TEST EQUIPMENT LIST

6.1 Equipment List

EQUIPMENT	MANUFACTURER	MODEL	SERIAL N.	CAL. DUE
EMI TEST RECEIVER 20HZ 40GHZ	ROHDE & SCHWARZ	ESU40	100111	JUL 2009
ARTIFICIAL MAINS NETWORK	ROHDE & SCHWARZ	ESH 2 - Z5	841887/011	SEPT.2009
ABSORBING CLAMP	ROHDE & SCHWARZ	MDS21	840031/005	JUL.2009
RF SEMI-ANECHOIC CHAMBER (CSSA)	SIEMENS	B83117-D6019-T232	003-005-134/94C	APR.2010
BILOG ANTENNA	CHASE	CBL6111A	1798	JUL.2009
BILOG ANTENNA	CHASE	CBL6111C	2717	JUL.2009
ESD GENERATOR	SCHAFFNER	NSG435-01	1063	APR.2009
RF SIGNAL GENERATOR 9 KHZ - 6 GHZ	ROHDE & SCHWARZ	SMB100A	100831	JUN 2011
LOG PERIODIC ANTENNA BROAD BAND 1-18 GHZ	ROHDE & SCHWARZ	HL025	350380/007	DEC.2009
SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSP40	100038	FEB.2009
PROGRAMMABLE DC POWER SUPPLY	HEWLETT PACKARD	6623A	3448A04501	SEPT.2009
RF PREAMPLIFIER	BONN ELEKTRONIK	BLMA 1840-1A	087084B	AUG 2009
RF PREAMPLIFIER	BONN ELEKTRONIK	BLMA 0118-M	087084A	AUG 2009
RF SIGNAL GENERATOR 40 GHZ	ROHDE & SCHWARZ	SMP 04	825007/005	AUG 2009
DOUBLE RIDGED GUIDE ANTENNA	ELECTRO-METRICS	EM-6961	6278	JUL.2009
DIGITAL OSCILLOSCOPE	TEKTRONIX	TDS 680B	B010130	MAY.2009

TRFCC_15.249 Page 38 of 38