

588 West Jindu Road, Xingiao, Songjiang, 201612 Shanghai, China

ee.shanghai@sgs.com

TEST REPORT

Application No.: SHEM1808006651CR

FCC ID: XCO-ADIO150 **ID**: 7756A- ADIO150

Applicant: Hansong (Nanjing) Technology Ltd.

Address of Applicant: 8th Kangping Road, Jiangning Economy and Technology Development

Zone, Nanjing, 211106, China

Manufacturer: Hansong (Nanjing) Technology Ltd.

Address of Manufacturer: 8th Kangping Road, Jiangning Economy and Technology Development

Zone, Nanjing, 211106, China

Factory: Hansong (Nanjing) Technology Ltd.

Address of Factory: 8th Kangping Road, Jiangning Economy and Technology Development

Zone, Nanjing, 211106, China

Equipment Under Test (EUT):

EUT Name: Studio Controller and amplifier **Model No.:** Platin ADIO 150, Phasx ADIO 150¤

Please refer to section 2 of this report which indicates which model was

actually tested and which were electrically identical.

Trade mark: Platin

Standard(s): 47 CFR Part 15, Subpart C 15.247

RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, April 2018

Date of Receipt: 2018-08-08

Date of Test: 2018-08-15 to 2018-08-18

Date of Issue: 2018-08-29

Test Result: Pass*

^{*} In the configuration tested, the EUT complied with the standards specified above.

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SHEM180800665102

Page: 2 of 51

Revision Record								
Version Description Date Remark								
00	Original	2018-08-29	/					

Authorized for issue by:		
	Bril Wu	
	Bill Wu / Project Engineer	
	Eddy Zong	
	Eddy Zong / Reviewer	

Report No.: SHEM180800665102

Page: 3 of 51

2 Test Summary

Radio Spectrum Technical Requirement								
Item	Standard	Method	Requirement	Result				
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Customer Declaration				

Radio Spectrum Matt	Radio Spectrum Matter Part								
Item	Standard	Method	Requirement	Result					
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass					
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass					
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass					
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass					
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass					
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass					
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass					
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass					
99% Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 Section 6.9.3	RSS-Gen Section 6.6	Pass					

Declaration of EUT Family Grouping:

Note: There are series models mentioned in this report, and they are the identical in electrical and electronic characters. Only the model Platin ADIO 150 was tested since their differences were the model number and appearance.

Report No.: SHEM180800665102

Page: 4 of 51

3 Contents

			Page
1	COVE	R PAGE	1
2	TEST	SUMMARY	3
3	CONT	ENTS	4
4	GENE	RAL INFORMATION	6
_			
		DETAILS OF E.U.T.	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		TEST LOCATION	
		TEST FACILITY	
		DEVIATION FROM STANDARDS	
_			
5	EQUIF	PMENT LIST	8
6	RADIO	O SPECTRUM TECHNICAL REQUIREMENT	9
	6.1 A	ANTENNA REQUIREMENT	9
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
7	RADIO	O SPECTRUM MATTER TEST RESULTS	10
•		Conducted Emissions at AC Power Line (150kHz-30MHz)	
	7.1		10
	7.1.1	Test Setup Diagram	
	7.1.2	Measurement Procedure and Data	
		MINIMUM 6DB BANDWIDTH	
	7.2.1		
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Procedure and Data	
		CONDUCTED PEAK OUTPUT POWER	
	7.3.1		
	7.3.2	Test Setup Diagram	15
	7.3.3	Measurement Procedure and Data	15
	7.4 F	Power Spectrum Density	16
	7.4.1	E.U.T. Operation	
	7.4.2	Test Setup Diagram	
	7.4.3	Measurement Procedure and Data	
		CONDUCTED BAND EDGES MEASUREMENT	
	7.5.1	E.U.T. Operation	
	7.5.2	Test Setup Diagram	
	7.5.3	Measurement Procedure and Data	
		CONDUCTED SPURIOUS EMISSIONS	
	7.6.1	E.U.T. Operation	
	7.6.2 7.6.3	Test Setup Diagram Measurement Procedure and Data	
		Measurement Procedure and Data	
	7.7 F	E.U.T. Operation	
	7.7.1	Test Setup Diagram	
	7.7.2	Measurement Procedure and Data	

Report No.: SHEM180800665102

Page: 5 of 51

-	7.8 R	ADIATED SPURIOUS EMISSIONS	25
	7.8.1	E.U.T. Operation	25
	7.8.2	Test Setup Diagram	25
		Measurement Procedure and Data	
7		9% BANDWIDTH	
	7.9.1	E.U.T. Operation	30
	7.9.2	Test Setup Diagram	30
	7.9.3	Measurement Procedure and Data	30
8	TEST S	SETUP PHOTOGRAPHS	31
9	EUT C	ONSTRUCTIONAL DETAILS	31
ΔΡ	PENDIX	B SHFM180800665102	32

Report No.: SHEM180800665102

Page: 6 of 51

4 General Information

4.1 Details of E.U.T.

Power supply: AC 100~120V~, 60Hz/ 220~240V~ 50Hz ,110W

Test voltage: AC 120V/60Hz Cable: AC Cable 1.8m

Antenna Gain 2dBi

Antenna Type PIFA Antenna

Channel Spacing 2MHz
Modulation Type GFSK
Number of Channels 40

Operation Frequency 2402MHz to 2480MHz

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
BT test board	/	Test Plate 2	/
Laptop	LENOVO	R400	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout	2s
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	RF power density	2.84dB
7	Conducted Spurious emissions	0.75dB
0	DE Dadieted newer	4.5dB (Below 1GHz)
8	RF Radiated power	4.8dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Dadiated Churique emission test	4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.6dB (1GHz-18GHz)
		5.2dB (Above 18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM180800665102

Page: 7 of 51

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab

588 West Jindu Road, Xingiao, Songjiang, 201612 Shanghai, China

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC -Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Industry Canada (IC) - IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM180800665102

Page: 8 of 51

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Emission at AC			, ,		
EMI test receiver	R&S	ESR7	SHEM162-1	2017-12-20	2018-12-19
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2017-12-20	2018-12-19
LISN	EMCO	3816/2	SHEM019-1	2017-12-20	2018-12-19
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2017-12-20	2018-12-19
CE test Cable	/	CE01	/	2017-12-26	2018-12-25
Conducted Test	,	OLUT	/	2017-12-20	2010-12-23
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2010-12-19
· · · · · · · · · · · · · · · · · · ·	R&S			2018-08-13	2019-08-12
Signal Generator		SMR20	SHEM006-1		
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2018-08-13	2019-08-12
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01~RF04	/	2017-12-26	2018-12-25
Radiated Test	Г	T	Г	Г	1
EMI test Receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

Report No.: SHEM180800665102

Page: 9 of 51

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: SHEM180800665102

Page: 10 of 51

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

	Conducted	limit(dBμV)
Frequency of emission(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
*Decreases with the logarithm of the	frequency.	

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1020 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.1.2 Test Setup Diagram

Report No.: SHEM180800665102

Page: 11 of 51

7.1.3 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SHEM180800665102

Page: 12 of 51

LISN : LINE

Test mode : c

	Freq (MHz)	Read level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Emission Level (dBuV)	Limit (dBuV)	Over Limit (dB)	Remark
1	0.17	9.21	0.05	9.83	19.09	54.94	-35.85	Average
2	0.17	16.56	0.05	9.83	26.44	64.94	-38.50	QP
3	0.21	9.89	0.05	9.83	19.77	53.36	-33.59	Average
4	0.21	16.24	0.05	9.83	26.12	63.36	-37.24	QP
5	0.38	25.10	0.05	9.85	35.00	48.21	-13.21	Average
6	0.38	26.13	0.05	9.85	36.03	58.21	-22.18	QP
7	0.58	15.54	0.05	9.76	25.35	46.00	-20.65	Average
8	0.58	20.86	0.05	9.76	30.67	56.00	-25.33	QP
9	0.72	3.13	0.04	9.86	13.03	46.00	-32.97	Average
10	0.72	11.02	0.04	9.86	20.92	56.00	-35.08	QP
11	15.15	24.45	0.21	9.77	34.43	50.00	-15.57	Average
12	15.15	41.32	0.21	9.77	51.30	60.00	-8.70	QP

Notes: Emission Level = Read Level +LISN Factor + Cable loss

Report No.: SHEM180800665102

Page: 13 of 51

LISN : NEUTRAL

Test mode : c

	Freq (MHz)	Read level (dBuV)	LISN Factor (dB)	Cable Loss (dB)	Emission Level (dBuV)	Limit (dBuV)	Over Limit (dB)	Remark
1	0.15	13.24	0.06	9.82	23.12	55.87	-32.75	Average
2	0.15	21.87	0.06	9.82	31.75	65.87	-34.12	QP
3	0.21	9.99	0.06	9.83	19.88	53.10	-33.22	Average
4	0.21	17.92	0.06	9.83	27.81	63.10	-35.29	QP
5	0.38	27.38	0.05	9.85	37.28	48.21	-10.93	Average
6	0.38	27.92	0.05	9.85	37.82	58.21	-20.39	QP
7	0.59	18.17	0.05	9.77	27.99	46.00	-18.01	Average
8	0.59	23.78	0.05	9.77	33.60	56.00	-22.40	QP
9	0.69	5.51	0.05	9.85	15.41	46.00	-30.59	Average
10	0.69	15.87	0.05	9.85	25.77	56.00	-30.23	QP
11	15.07	23.88	0.22	9.77	33.87	50.00	-16.13	Average
12	15.07	40.82	0.22	9.77	50.81	60.00	-9.19	QP

Notes: Emission Level = Read Level +LISN Factor + Cable loss

Report No.: SHEM180800665102

Page: 14 of 51

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Report No.: SHEM180800665102

Page: 15 of 51

7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

Report No.: SHEM180800665102

Page: 16 of 51

7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Report No.: SHEM180800665102

Page: 17 of 51

7.5 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix B SHEM180800665102

Report No.: SHEM180800665102

Page: 18 of 51

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix B SHEM180800665102

Report No.: SHEM180800665102

Page: 19 of 51

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.7.2 Test Setup Diagram

Report No.: SHEM180800665102

Page: 20 of 51

7.7.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHEM180800665102

Page: 21 of 51

Mode:c; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Antenna Polarity : HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2376.03	41.16	26.01	6.45	37.36	36.26	74.00	-37.74	Peak
2390.00	39.47	26.03	6.47	37.36	34.61	74.00	-39.39	Peak
2402.35	97.89	26.05	6.50	37.35	93.09	74.00	19.09	Peak

Report No.: SHEM180800665102

Page: 22 of 51

Mode:c; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2366.28	40.55	26.00	6.42	37.36	35.61	74.00	-38.39	Peak
2390.00	39.93	26.03	6.47	37.36	35.07	74.00	-38.93	Peak
2402.25	92.72	26.05	6.50	37.35	87.92	74.00	13.92	Peak

Report No.: SHEM180800665102

Page: 23 of 51

Mode:c; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Antenna Polarity : HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.73	91.90	26.17	6.74	37.49	87.32	74.00	13.32	Peak
2483.50	56.78	26.18	6.80	37.51	52.25	74.00	-21.75	Peak
2483.81	54.16	26.18	6.80	37.51	49.63	74.00	-24.37	Peak

Report No.: SHEM180800665102

Page: 24 of 51

Mode:c; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Antenna Polarity : VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.66	90.31	26.17	6.74	37.49	85.73	74.00	11.73	Peak
2483.50	55.47	26.18	6.80	37.51	50.94	74.00	-23.06	Peak
2483.81	52.57	26.18	6.80	37.51	48.04	74.00	-25.96	Peak

Report No.: SHEM180800665102

Page: 25 of 51

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.8.2 Test Setup Diagram

Report No.: SHEM180800665102

Page: 26 of 51

7.8.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Report No.: SHEM180800665102

Page: 27 of 51

Below 1GHz:

Antenna Polarity : HORIZONTAL

Test mode :c

		Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	73.62	63.07	10.15	0.35	43.74	29.83	40.00	-10.17	QP
2	98.14	62.21	9.27	0.45	43.73	28.20	43.50	-15.30	QP
3	154.28	58.26	12.43	0.63	43.73	27.59	43.50	-15.91	QP
4	221.39	67.48	10.35	0.73	43.66	34.90	46.00	-11.10	QP
5	270.37	60.92	12.22	0.80	43.78	30.16	46.00	-15.84	QP
6	574.63	52.60	18.89	1.33	43.22	29.60	46.00	-16.40	QP

Report No.: SHEM180800665102

Page: 28 of 51

Antenna Polarity : VERTICAL

Test mode :c

		Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
1	39.99	56.47	16.30	0.22	43.70	29.29	40.00	-10.71	QP
2	45.53	59.98	13.00	0.24	43.71	29.51	40.00	-10.49	QΡ
3	75.71	64.87	9.43	0.36	43.73	30.93	40.00	-9.07	QP
4	93.11	60.69	8.57	0.43	43.72	25.97	43.50	-17.53	QP
5	420.58	49.36	15.57	1.03	43.55	22.41	46.00	-23.59	QP
6	640.61	48.24	19.75	1.48	43.17	26.30	46.00	-19.70	QP

Report No.: SHEM180800665102

Page: 29 of 51

Above	1GHz	<u>z:</u>
-------	------	-----------

Mode:c; Polarization:Horizontal;	Modulation:GFSK; ; Channel:Low
----------------------------------	--------------------------------

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	38.19	6.18	44.37	54	-9.63	peak
7206	33.86	10.63	44.49	54	-9.51	peak
9608	35.54	14.38	49.92	54	-4.08	peak

Mode:c; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	36.44	6.18	42.62	54	-11.38	peak
7206	34.89	10.63	45.52	54	-8.48	peak
9608	34.7	14.38	49.08	54	-4.92	peak

Mode:c; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4880	36.54	6.97	43.51	54	-10.49	peak
7320	35.52	11.12	46.64	54	-7.36	peak
9760	31.92	14.35	46.27	54	-7.73	peak

Mode:c; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4880	38.42	6.97	45.39	54	-8.61	peak
7320	38.35	11.12	49.47	54	-4.53	peak
9760	35.59	14.35	49.94	54	-4.06	peak

Mode:c; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	38.72	7.49	46.21	54	-7.79	peak
7440	37.72	11.65	49.37	54	-4.63	peak
9920	34.37	14.4	48.77	54	-5.23	peak

Mode:c; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	38.36	7.49	45.85	54	-8.15	peak
7440	38.17	11.65	49.82	54	-4.18	peak
9920	32.56	14.4	46.96	54	-7.04	peak

Report No.: SHEM180800665102

Page: 30 of 51

7.9 99% Bandwidth

Test Requirement RSS-Gen Section 6.6
Test Method: ANSI C63.10 Section 6.9.3

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode c:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Procedure and Data

Report No.: SHEM180800665102

Page: 31 of 51

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

Report No.: SHEM180800665102

Page: 32 of 51

Appendix B SHEM180800665102

1.6dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit	Verdict
BLE	2402	0.71	0.5	PASS
BLE	2440	0.70	0.5	PASS
BLE	2480	0.70	0.5	PASS

Report No.: SHEM180800665102

Page: 33 of 51

Report No.: SHEM180800665102

Page: 34 of 51

Report No.: SHEM180800665102

Page: 35 of 51

2.Occupied Bandwidth

Test Mode	Test Channel	OBW[MHz]	Limit[MHz]	Verdict
BLE	2402	1.03		PASS
BLE	2440	1.03		PASS
BLE	2480	1.03		PASS

Report No.: SHEM180800665102

Page: 36 of 51

Report No.: SHEM180800665102

Page: 37 of 51

Report No.: SHEM180800665102

Page: 38 of 51

3.Maximum peak conducted output power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	5.64	30	PASS
BLE	2440	6.37	30	PASS
BLE	2480	6.98	30	PASS

Report No.: SHEM180800665102

Page: 39 of 51

Report No.: SHEM180800665102

Page: 40 of 51

Report No.: SHEM180800665102

Page: 41 of 51

4.Maximum Peak power spectral density

Test Mode	Test Channel	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	-10.18	8.00	PASS
BLE	2440	-9.35	8.00	PASS
BLE	2480	-8.83	8.00	PASS

Report No.: SHEM180800665102

Page: 42 of 51

Report No.: SHEM180800665102

Page: 43 of 51

Report No.: SHEM180800665102

Page: 44 of 51

5.Band-edge for RF Conducted Emissions

Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	2402	5.35	-43.96	-14.66	PASS
BLE	2480	6.85	-49.60	-13.15	PASS

Report No.: SHEM180800665102

Page: 45 of 51

Report No.: SHEM180800665102

Page: 46 of 51

6.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	100	300	5.33	-47.53	<-14.67	PASS
BLE	2402	10000	26000	100	300	5.331	-43.491	<- 14.669	PASS
BLE	2440	30	10000	100	300	6.14	-49.01	<-13.86	PASS
BLE	2440	10000	26000	100	300	6.139	-43.692	<- 13.861	PASS
BLE	2480	30	10000	100	300	6.79	-48.50	<-13.21	PASS
BLE	2480	10000	26000	100	300	6.794	-43.729	<- 13.206	PASS

Report No.: SHEM180800665102

Page: 47 of 51

Report No.: SHEM180800665102

Page: 48 of 51

#VBW 300 kHz

Report No.: SHEM180800665102

Page: 49 of 51

Report No.: SHEM180800665102

Page: 50 of 51

Report No.: SHEM180800665102

Page: 51 of 51

- End of the Report -