# Álgebra Relacional

Larissa Lautert Banco de Dados I

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

## Introdução

- Álgebra relacional
  - · conjunto básico de operações para o modelo relacional
- Operadores
  - manipulam relações
  - resultam em outras relações



## Introdução

- Fundamento formal para operações do MR
- Base para implementar e otimizar consultas em SGBDs
- SQL incorpora alguns conceitos



- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

## Seleção

- Seleciona tuplas de acordo com condição
- É unária
- $\sigma_{\langle condição \rangle}(R)$ 
  - <condição>: expressão boleana
    - <nome de atributo de R> <operador comparação> <valor constante ou nome de atributo>

# σ <sub>SALARIO> 30.000</sub> (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

# $\sigma_{SALARIO>30.000}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

#### • Relação resultante:

- o mesmo número de atributos
- o número menor ou igual de tuplas

# $\sigma_{SALARIO>30.000}$ (Empregados)

| NOME  | DATANASC   | SEXO | SALARIO | DEPTO |
|-------|------------|------|---------|-------|
| Alice | 1968-01-19 | F    | 35.000  | 3     |
| Júlia | 1962-09-15 | F    | 40.000  | 4     |



## $\sigma_{\text{(SALARIO > 30.000) AND (DEPTO = 4)}}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

## $\sigma_{\text{(SALARIO > 30.000) AND (DEPTO = 4)}}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

# $\sigma_{\text{(SALARIO > 30.000) AND (DEPTO = 4)}}$ (Empregados)

| NOME  | DATANASC   | SEXO | SALARIO | DEPTO |
|-------|------------|------|---------|-------|
| Júlia | 1962-09-15 | F    | 40.000  | 4     |

## Seleção

- Operadores (=, >, ≥, <, ≤): aplicáveis a domínios ordenáveis
  - o numéricos
  - o datas
  - o strings
- Quanto menos tuplas retorna, maior a <u>seletividade</u>

## Seleção

#### Comutativa

$$\sigma_{\text{SALARIO} > 30.000} (\sigma_{\text{DEPTO} = 4} (\text{Empregados}))$$

$$\sigma_{DEPTO = 4} (\sigma_{SALARIO > 30.000} (Empregados))$$

$$\sigma_{(SALARIO > 30.000) \text{ AND (DEPTO = 4)}}$$
 (Empregados)



- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

## Projeção

- Seleciona colunas da tabela
  - o ressalta atributos de interesse
- $\pi_{\text{<lista de atributos>}}(R)$

# $\pi_{SALARIO, NOME}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

# $\pi_{SALARIO, NOME}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

# $\pi_{SALARIO, NOME}$ (Empregados)

| SALARIO | NOME   |
|---------|--------|
| 30.000  | João   |
| 35.000  | Alice  |
| 25.000  | Marcos |
| 40.000  | Júlia  |

Atributos aparecem na ordem solicitada

# $\pi_{SEXO}$ ( $\sigma_{SALARIO > 30.000}$ (Empregados))

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

# $\pi_{SEXO}$ ( $\sigma_{SALARIO > 30.000}$ (Empregados))

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

## $\pi_{SEXO}$ ( $\sigma_{SALARIO > 30.000}$ (Empregados))

**SEXO** 

F

• Relação resultante não possui tuplas repetidas



- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

### Renomeação

- Renomeia relações e atributos
- Importante para operações entre relações com atributos de mesmo nome
- $\rho_{\text{<novo nome>(<lista de atributos>)}}(R)$
- Exemplos:
  - $\bigcirc \quad \rho_{Employees \, (name, \, birth, \, gender, \, salary, \, depto)} \, (Empregados)$
  - $\bigcirc \quad \rho_{Employees} \, (Empregados) \\$
  - $\bigcirc \quad \rho_{(name,\;birth,\;gender,\;salary,\;depto)} \, (Empregados) \\$

## Sequência de operações

•  $\pi_{\text{SEXO}}$  ( $\sigma_{\text{SALARIO} > 30.000}$  (Empregados))

R1  $\leftarrow$   $\sigma_{SALARIO > 30.000}$  (Empregados)

 $R2 \leftarrow \pi_{SEXO}(R1)$ 

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

## Operações da teoria dos conjuntos

- Operações binárias
- Compatibilidade de união
  - o mesmo número de atributos
  - o atributos do mesmo domínio

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

### União

- Tuplas que estão em R1 **ou** em R2
- R1 U R2
- Elimina tuplas repetidas
- Comutativa:  $R1 \cup R2 = R2 \cup R1$
- Associativa:  $R1 \cup (R2 \cup R3) = (R1 \cup R2) \cup R3$



### $\sigma_{\text{(DEPTO = 3)}}$ (Empregados) $\sigma_{\text{(DEPTO = 4)}}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

### $\sigma_{\text{(DEPTO = 3)}}$ (Empregados) $\sigma_{\text{(DEPTO = 4)}}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

### $\sigma_{\text{(DEPTO = 3)}}$ (Empregados) $\cup \sigma_{\text{(DEPTO = 4)}}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |



- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

### Intersecção

- Tuplas que estão em R1 e em R2
- $R1 \cap R2$
- Comutativa:  $R1 \cap R2 = R2 \cap R1$
- Associativa:  $R1 \cap (R2 \cap R3) = (R1 \cap R2) \cap R3$



#### $\sigma_{(DATANASC \ > \ 1967 \text{-} 01 \text{-} 01)} \, (Empregados) \cap \, \sigma_{(SALARIO \ > \ 30.000)} \, (Empregados)$

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

#### $\sigma_{(DATANASC > 1967 \text{-} 01 \text{-} 01)} \text{ (Empregados)} \cap \sigma_{(SALARIO > 30.000)} \text{ (Empregados)}$

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

#### $\sigma_{(DATANASC \ > \ 1967 \text{-} 01 \text{-} 01)} \, (Empregados) \cap \, \sigma_{(SALARIO \ > \ 30.000)} \, (Empregados)$

| NOME  | DATANASC   | SEXO | SALARIO | DEPTO |
|-------|------------|------|---------|-------|
| Alice | 1968-01-19 | F    | 35.000  | 5     |



### Roteiro

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

### Diferença

- Tuplas que estão em R1 e não estão em R2
- R1 R2
- Não é comutativa: R1 R2 ≠ R2 R1
- Associativa: R1 (R2 R3) = (R1 R2) R3



 $\sigma_{(DATANASC > 1967-01-01)}$  (Empregados) -  $\sigma_{(SALARIO > 30.000)}$  (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

 $\sigma_{(DATANASC > 1967-01-01)}$  (Empregados) -  $\sigma_{(SALARIO > 30.000)}$  (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| João   | 1965-01-09 | M    | 30.000  | 3     |
| Alice  | 1968-01-19 | F    | 35.000  | 5     |
| Marcos | 1972-07-31 | M    | 25.000  | 4     |
| Júlia  | 1962-09-15 | F    | 40.000  | 4     |

#### $\sigma_{(DATANASC > 1967-01-01)}$ (Empregados) - $\sigma_{(SALARIO > 30.000)}$ (Empregados)

| NOME   | DATANASC   | SEXO | SALARIO | DEPTO |
|--------|------------|------|---------|-------|
| Marcos | 1972-07-31 | M    | 25.000  | 4     |



### Roteiro

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

### Produto cartesiano

- Cruza tuplas de R1 com tuplas de R2
- Arr R1 imes R2
- Relações não precisam ser compatíveis
- Associativa

### Dependentes

| CODEMP | NOMEDP  | SEXO | PARENTESCO |
|--------|---------|------|------------|
| 01     | Luiza   | F    | cônjuge    |
| 01     | Roberto | M    | filho      |
| 02     | Rafaela | F    | filha      |
| 03     | Cláudia | F    | cônjuge    |

• Exemplo: encontrar funcionárias com dependentes

### EmpFem $\leftarrow$ ( $\sigma_{SEXO > 'F'}$ Empregados)

| COD | NOME  | DATANASC   | SEXO | SALARIO | DEPTO |
|-----|-------|------------|------|---------|-------|
| 02  | Alice | 1968-01-19 | F    | 35.000  | 5     |
| 04  | Júlia | 1962-09-15 | F    | 40.000  | 4     |

### NomesEmp $\leftarrow$ ( $\pi_{\text{COD, NOME}}$ EmpFem)

| COD | NOME  |
|-----|-------|
| 02  | Alice |
| 04  | Júlia |

### DependentesEmp ← (NomesEmp x Dependente)

|     | No.   |        |         |      | ,         |
|-----|-------|--------|---------|------|-----------|
| COD | NOME  | CODEMP | NOMEDP  | SEXO | PARENTESC |
| 02  | Alice | 01     | Luiza   | F    | cônjuge   |
| 02  | Alice | 01     | Roberto | M    | filho     |
| 02  | Alice | 02     | Rafaela | F    | filha     |
| 02  | Alice | 03     | Cláudia | F    | cônjuge   |
| 04  | Júlia | 01     | Luiza   | F    | cônjuge   |
| 04  | Júlia | 01     | Roberto | M    | filho     |
| 04  | Júlia | 02     | Rafaela | F    | filha (   |
| 04  | Júlia | 03     | Cláudia | F    | cônjuge   |

### DependentesReais $\leftarrow$ ( $\sigma_{COD = CODEMP}$ DependentesEmp)

| COD | NOME  | CODEMP | NOMEDP  | SEXO | PARENTESCO |
|-----|-------|--------|---------|------|------------|
| 02  | Alice | 02     | Rafaela | F    | filha      |

# $\pi_{NOME, NOMEDP}$ (Dependentes Reais)

| NOME  | NOMEDP  |
|-------|---------|
| Alice | Rafaela |

### Roteiro

- Introdução
- Seleção
- Projeção
- Renomeação
- Operações da teoria dos conjuntos
  - União
  - Intersecção
  - Diferença
  - Produto cartesiano
- Exercícios

# Exercícios

Download lista: http://db.tt/BIs3w6Vg



## Exercícios

Download software SimAlg: http://db.tt/KhRvxNQu