Vector model Distributive semantics Dimension reduction

Stanislav Protasov

Agenda

- Vector interpretation of boolean query
- Distributive semantics
- Dimension reduction and LSA

Term document matrix								
words\documents	Document1	document2	query term					
cat	1	1						
runs	1	1						
behind	1	1						
rat	1	0	- 8					
dog	0	1						

Term-document matrix

TDM — describes the **frequency of terms** that occur in a collection of documents.

term-document matrix ... documents are the columns and terms are the rows (Wiki)

In a document-term matrix ($DTM = TDM^{T}$), rows correspond to documents in the **collection and columns correspond to terms**

- Column is a description (vector, BoW) of a document
- Row is a vector representation of a word
- Sparse for short texts

Venue Keyword	CAMAD	EUNICE	HAISA	HPCC-ICESS	IJESMA	ISCA	KMIS	NMR	SPRINGL	VSS
algorithm	2	8	0	24	0	5	0	2	1	1
cellular	2	1	0	1	0	0	0	0	0	0
game	1	1	0	1	0	0	1	1	0	0
hardwar	1	0	1	4	0	18	0	0	1	0
internet	2	6	2	0	2	0	0	0	0	0
mobil	10	8	0	6	17	5	2	0	2	0
network	58	60	4	38	2	25	12	0	3	0
search	0	1	0	1	2	4	1	0	0	0
secur	4	4	29	5	1	12	3	0 ,	, 4	0
web	0	2	0	3	3	1	13	0 '	2	0

Vector space model

- Represents both doc and query by "concept vectors"
 - Each <u>concept</u> defines one dimension
 - K concepts define a high-dimensional space
 - Element of vector corresponds to concept weight
 - E.g.,for $d=(x_1,...,x_k)^T$, x_i is the "weight" of concept i (e.g. TF-IDF)
- Measures relevance approximation
 - Distance between the query vector and document vector in this concept space
 - o relevance ≈ similarity = 1 distance
 - How can we define distance?

VS Model: an illustration

Which document is the closest to the query?

What the VS model doesn't say

- How to define/select the "basic concept"
 - Concepts are assumed to be <u>orthogonal</u>
- How to assign weights
 - Weight in a query indicates importance of the concept for a query
 - Weight in a doc indicates how well the concept characterizes the doc
- How to define distance measure?

How to define a good similarity measure?

Euclidean distance?

From distance to angle

Cosine similarity – projection of one vector onto another

- ±1 if vectors are collinear
- 0 if vectors are orthogonal

$$similarity = \cos(doc, query) = \frac{\overrightarrow{doc} \cdot \overrightarrow{query}}{\left\| \overrightarrow{doc} \right\| * \left\| \overrightarrow{query} \right\|}$$

Stop here!

- 1. We found a way, which allows to **represent any document** (even unseen) **as a vector**.
- 2. We introduced a **relevance metric** using a simple well-known mathematical concept **cosine similarity**
- 3. Still non-orthogonal concepts
- 4. To measure similarity of 2 documents (or doc vs query) we need to do circa **100K arithmetic operations** with floating point numbers

Reduce dimensions!

Compression approach #1 — works great for sparse databases:

```
max_size = N
doc_compressed[i % max_size] += doc[i] (or max, or =)
```

- Compression approach #2:
 - Random projection
 - Or even randomly remove some dimensions!
- Compression approach #3 <u>latent semantic analysis</u>:
 - o LDA, PCA/SVD, GDA, ...
 - Embedding using encoder networks (BERT, doc2vec, DSSM, ...)

Distributional semantics

Term document matrix						
words\documents	Document1	document2	query term			
cat	1	1	0			
runs	1	1	0			
behind	1	1	0			
rat	1	0	1			
dog	0	1	0			

Recall: word is just a vector in the vector space model

The distributional hypothesis:

- linguistic items with similar distributions have similar meanings
- words that are used and occur in the same contexts tend to purport similar meanings
- You shall know a word by the company it keeps (Firth, J. R. 1957)

Notes on distributional semantics

"Similar context" and "same distribution" are not well-defined terms. It can go for bag of words model (TDM) or for near-context (as in word2vec).

Distributional hypothesis is a powerful model, which made to happen topic modelling, and all the ML-based NLP.

Consequence:

- If 2 word-corresponding rows from TDM correlate, we fail with orthogonality.
- But we can infer orthogonal vector from TDM!

Hypothesis 2: Maybe there is a **latent semantic space** of smaller dimension?

Latent semantic analysis (patent)

Idea: search for low-rank approximation of TDM!

What does it mean? By now, query is (assume vectors are **normed**):

Rankings = $TDM^T * Q_{vector}$

What if

 $TDM^T = LATENT_MX * PROJECTION_MX$

Then

Rankings = LATENT_MX * [PROJECTION_MX * Q_{vector}]

Decompositions

<u>SVD</u>

U is eigenvectors for **MM**^T

 \mathbf{V}^{T} is eigenvectors for $\mathbf{M}^{\mathsf{T}}\mathbf{M}$

 Σ is diagonal with square roots of non-negative eigenvalues of $\mathbf{M}^{\mathsf{T}}\mathbf{M}$

$$M = U \cdot \Sigma \cdot V^*$$

Matrix approximation

$$M = U_R \Sigma_R V_R^T$$

$$\mathsf{TDM}^\mathsf{T} = [\mathsf{U}_\mathsf{R} \mathsf{\Sigma}_\mathsf{R}]^* \mathsf{V}_\mathsf{R}^\mathsf{T}$$

Principal component analysis (similar idea)

... Convert a set of observations of **possibly correlated variables** (entities each of which takes on various numerical values) **into a set of values** of linearly uncorrelated variables ... (wiki)

... the **first principal component** has the **largest possible variance** ... and each succeeding component in turn has the highest variance possible under the constraint that it is orthogon to the preceding components (wiki)

NB: Implemented with SVD, PCA requires **data centering** first, which affects the **cosine metric**.

Stop Here!

- 1. **Vector space** model is cool, but (1) TDM is sparse (2) concepts are not orthogonal
- 2. **Distributional hypothesis** gives an insight: words correlate and their distribution defines semantics
- 3. **Latent semantic analysis** says: yes, and we know that there is a small-dimensional latent space for semantics. TDM is just a **linear projection**
- 4. **SVD** says: mmmm... We know how this latent space should look like!

 Orthogonal features + decreasing variance

Reading

- The Book chapter 6.2-6.5
- All links in this presentation