

## Statistics and Sensor Data Fusion

- Winter Term 2023/2024 -Worksheet 2 Prof. Dr.-Ing. Gernot Fabeck

Exercise 1. The table below presents data belonging to eight different high-tech companies considering the size of each company (number of employees) and the average duration of employment (in years). Calculate the corresponding coefficients of correlation of Spearman and Bravais-Pearson and interpret the values of the two coefficients:

| 1 0                            | 221 | l   | l   |     |     |     |     |     |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| average duration of employment | 9.7 | 7.9 | 8.6 | 7.2 | 7.3 | 7.1 | 7.0 | 6.8 |

Exercise 2. An enterprise focuses on the production of only one kind of product (integrated assembly lines). Over a period of five seasons, production volume and total production costs (in million EUR) have been recorded as follows:

| number of produced units  |    |    |    |    |    |
|---------------------------|----|----|----|----|----|
| total costs of production | 12 | 13 | 14 | 13 | 13 |

Compute the **fixed costs** of the enterprise (costs that do not depend on the amount of goods or services produced by the enterprise) and try to indicate the **variable costs** (costs that change in proportion to the amount of produced goods or services). Assess the quality of your regression analysis by means of the **coefficient of determination**.

**Exercise 3.** The following two-dimensional raw data has been recorded:

$$((x_i, y_i))_{i=1}^4 = ((1, 4), (5, 120), (7, 253), (9, 418))$$

Inspection of the data and previous knowledge propose a **regression function** of the type  $y = f(x) = b \cdot x^a$ ,  $a, b \in \mathbb{R}$ . Determine the regression function based on this suggestion.

## Exercise 4. Right or wrong?

- (a) The raw data can always be reconstructed from a table of frequencies.
- (b) The coefficient of determination improves with the number of observed values.
- (c) In linear regression analysis, the point  $(\bar{x}, \bar{y})$  always hits the trend line.
- (d) For every regression line, it holds for the residuals  $\hat{u}_i$  that

$$\sum_{i=1}^{n} \hat{u}_i = 0$$