Data Analytics and Machine Learning Group Department of Informatics Technical University of Munich

Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness

Simon Geisler*, Johanna Sommer*, Jan Schuchardt, Aleksandar Bojchevski and Stephan Günnemann

tl;dr: Neural Combinatorial Solvers are highly vulnerable to small perturbations of the problem instances

- ☐ We study **adversarial robustness** of neural combinatorial solvers
- ☐ We propose **sound and efficient** perturbation models for SAT and TSP
- Adversarial robustness is a more realistic evaluation procedure to measure local generalization

Generalization of Neural Combinatorial Solvers

Goal: learn how to solve a wide range of combinatorial problems

Learn from small problem instances and generalize to large problem instances

Learn from randomly generated data and generalize to different domains

Adversarial Robustness

Find a perturbed problem instance \widetilde{x} s.t. the prediction $\widehat{Y} = f_{\theta}(\widetilde{x})$ is very different from the new optimal solution $ilde{Y}$ (optionally with locality constraint between \tilde{x} and the original problem instance x with optimal solution Y).

 $Y \neq \tilde{Y}$ in the general case, even for perturbations with a very small budget!

 \tilde{Y} should be obtained exactly and efficiently \rightarrow sound and efficient

optimal tour length: 350

Ground truth Y and \tilde{Y} Prediction $f_{\theta}(\widetilde{x})$ Adversarial point

optimal tour length: 270

Adversarial attacks can alleviate

- An efficient data generator must

be incomplete and a complete

- A dataset with high coverage of

the problem space is costly

data generator must be inefficient

dataset construction:

some of the challenges faced during

Satisfiability of Boolean Expressions (SAT)

We construct the perturbed problem instance \tilde{x} s.t. it retains SATisfiability / UNSATisfiability

SAT Invariance

Removing or adding literals retains satisfiability if one literal in Y remains in each clause.

 $[\boldsymbol{l_1} \vee \neg \boldsymbol{l_2}] \wedge [\boldsymbol{l_2}] \wedge [\neg \boldsymbol{l_1} \vee \boldsymbol{l_2} \vee \boldsymbol{l_3}] \wedge [\boldsymbol{l_1} \vee \neg \boldsymbol{l_3}] = \text{True if } \boldsymbol{l_1}, \boldsymbol{l_2} = \text{True and } \boldsymbol{l_3} = \text{False}$ $= [\mathbf{l_1} \vee \neg \mathbf{l_2}] \wedge [\mathbf{l_1} \vee \mathbf{l_2}] \wedge [\neg \mathbf{l_1} \vee \mathbf{l_2} \vee \mathbf{l_3}] \wedge [\mathbf{l_1} \vee \neg \mathbf{l_3}]$

Graph representation:

DEL Invariance

Deleting literals from a problem will retain unsatisfiability (retain one literal per clause).

$$\begin{bmatrix} l_1 \lor l_2 \end{bmatrix} \land \begin{bmatrix} \neg l_1 \lor \neg l_2 \end{bmatrix} \land \begin{bmatrix} l_1 \lor \neg l_2 \end{bmatrix} \land \begin{bmatrix} \neg l_1 \lor l_2 \end{bmatrix} = \text{False}$$

$$= \begin{bmatrix} l_1 \lor l_2 \end{bmatrix} \land \begin{bmatrix} \neg l_1 \lor \neg l_2 \end{bmatrix} \land \begin{bmatrix} l_1 \lor \neg l_2 \end{bmatrix} \land \begin{bmatrix} \neg l_1 \lor l_2 \end{bmatrix}$$

ADC Invariance

Adding clauses to a problem will retain unsatisfiability.

$$[l_1] \wedge [\neg l_1] = \text{False} = [l_1] \wedge [\neg l_1] \wedge [\textcolor{red}{l_2} \wedge \neg \textcolor{red}{l_3}]$$

Traveling Salesperson Problem (TSP)

We construct the perturbed problem instance \tilde{x} s.t. we can determine the updated route \tilde{Y} efficiently:

- (1) Choose nodes P and Q that are **neighboring** on the optimal route Y for the original problem instance \boldsymbol{x} .
- (2) Choose additional node Z s.t. the route $P \rightarrow Z \rightarrow Q$ is the smallest among all pairs of nodes in \boldsymbol{x} (constraint $\boldsymbol{\square}$)
- \rightarrow The optimal route \widetilde{Y} of \widetilde{x} is given via inserting Z between P and Q.

We can then use a variant of projected gradient descent to optimize over node Z's coordinates.

In the paper: How to add multiple adversarial nodes simultaneously.

Original problem instance \boldsymbol{x}

 $\{ ullet \}$ + ullet Perturbed problem instance $\widetilde{oldsymbol{x}}$

Unchanged optimal route Y and $ilde{Y}$

Robustness of NeuroSAT

Budget: 5% of literals

Our attacks are effective: changing ~0.5% of the literals suffices to push the accuracy below 50%

Our attacks are efficient: one attack step suffices to push the accuracy below 50%,

Robustness of Neural TSP Solvers

Neural TSP solvers are also **not robust to small perturbations** of the input.

↑ Route prediction, ↓ qualitative examples, and ↑ the decision problem

