DMA Přednáška – Zobrazení

Definice.

Nechť A,B jsou množiny. Definujeme **zobrazení** z A do B jako libovolnou podmnožinu $A\times B$ splňující

$$\forall a \in A \ \exists! b \in B: \ (a,b) \in T.$$

Množina A je **definiční obor** T, značeno D(T), množina B je cílová množina T. Definujeme také **obor** hodnot T jako

$$R(T) = \{b \in B : \exists a \in A : T(a) = b\} = \{T(a) : a \in A\}.$$

Definice.

Nechť $T\colon A\mapsto B$ a $S\colon C\mapsto D$ jsou zobrazení. Řekneme, že jsou si rovna, značeno T=S, jestliže $A=C,\,B=D$ a

$$\forall a \in A: T(a) = S(a).$$

Definice.

Nechť $T\colon A\mapsto B$ a $S\colon B\mapsto C$ jsou zobrazení. Definujeme jejich složené zobrazení či kompozici $S\circ T\colon A\mapsto C$ předpisem

$$(S \circ T)(a) = S(T(a))$$
 pro $a \in A$.

Značíme také $S \circ T = S(T)$.

Věta.

Nechť $T: A \mapsto B, S: B \mapsto C$ a $R: C \mapsto D$ jsou zobrazení. Pak platí $(R \circ S) \circ T = R \circ (S \circ T)$.

Definice.

Nechť $T\colon A\mapsto B$ je zobrazení. Řekneme, že zobrazení $S\colon B\mapsto A$ je **inverzní** k T, jestliže platí

- \bullet $(S \circ T)(a) = a$ pro všechna $a \in A$
- $(T \circ S)(b) = b$ pro všechna $b \in B$.

Pokud takové zobrazení existuje, tak řekneme, že T je **invertibilní**, a inverzní zobrazení značíme T^{-1} .

Nechť $T: A \mapsto B$ je invertibilní zobrazení. Pak $T^{-1}(b) = a$ právě tehdy, když T(a) = b.

Důsledek.

Nechť $T\colon A\mapsto B$ je zobrazení. Jestliže je invertibilní, tak je jeho inverzní zobrazení T^{-1} dáno jednoznačně.

Věta.

Nechť $T:A\mapsto B$ a $S:B\mapsto C$ jsou zobrazení. Jestliže jsou invertibilní, tak je i $S\circ T$ invertibilní a navíc platí $(S\circ T)^{-1}=T^{-1}\circ S^{-1}$.

Definice.

Nechť $T: A \mapsto B$ je zobrazení.

Řekneme, že T je **prosté** či **injektivní**, jestliže

$$\forall x, y \in A: T(x) = T(y) \implies x = y.$$

Řekneme, že T je na či surjektivní, jestliže R(T) = B.

Řekneme, že T je **vzájemně jednoznačné** či **bijekce**, jestliže je prosté a na.

Věta.

Nechť $T \colon A \mapsto B$ je zobrazení. Je invertibilní právě tehdy, když je to bijekce.

Nechť $T \colon\thinspace A \mapsto B$ a $S \colon\thinspace B \mapsto C$ jsou zobrazení. Pak platí:

- (i) Jestliže jsou T a S prosté, tak je $S\circ T$ prosté.
- (ii) Jestliže jsou T a S na, tak je $S \circ T$ na.
- (iii) Jestliže jsou T a S bijekce, tak je $S \circ T$ bijekce.

Nechť $T: A \mapsto B$ je zobrazení a A, B mají konečně mnoho prvků.

- (i) Jestliže má B více prvků než A, pak T nemůže být na.
- (ii) Jestliže má A více prvků než B, pak T nemůže být prosté.
- (iii) Jestliže A a B nemají stejně prvků, pak T nemůže být bijekce.

Definice.

Řekneme, že množiny A, B mají stejnou **mohutnost**, značeno |A| = |B|, jestliže existuje bijekce z A na B.

Řekneme, že množina A má mohutnost stejnou nebo menší než B, značeno $|A| \leq |B|$, jestliže existuje prosté zobrazení z A do B.

Fakt.

Nechť A, B jsou množiny.

- (i) |A| = |B| právě tehdy, když |B| = |A|.
- (ii) Jestliže |A| = |B|, pak $|A| \le |B|$ a $|B| \le |A|$.

 $\textbf{V\'eta.} \quad (\textbf{Cantor-Bernstein-Schroeder}) \\$

Nechť A, B jsou množiny. Jestliže $|A| \leq |B|$ a $|B| \leq |A|$, pak |A| = |B|.

Fakt.

Jestliže $A \subseteq B$, pak $|A| \le |B|$.

Definice.

Množina A se nazve **konečná**, jestliže $A = \emptyset$ (pak píšeme |A| = 0) nebo existuje takové $m \in \mathbb{N}$, aby $|A| = |\{1, 2, ..., m\}|$, pak píšeme |A| = m.

Jinak se množina nazve **nekonečná**.

Množina A se nazve **spočetná**, jestliže má stejnou mohutnost jako množina \mathbb{N} .

Množina A se nazve **nespočetná**, jestliže je nekonečná, ale není spočetná.

Věta.

- (i) Jestliže je A konečná množina, pak je i každá její podmnožina B konečná a platí $|B| \leq |A|$. Je-li navíc B podmnožina vlastní, pak |B| < |A|.
- (ii) Nechť A,B jsou konečné množiny. Pak je i $A \cup B$ konečná a platí $|A \cup B| \le |A| + |B|$. Jsou-li navíc A,B disjunktní, pak $|A \cup B| = |A| + |B|$.
- (iii) Nechť A, B jsou konečné množiny. Pak je $A \times B$ konečná a platí $|A \times B| = |A| \cdot |B|$.

Věta.

(i) Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak je i $\bigcup_{i=1}^n A_i$ konečná a $\left|\bigcup_{i=1}^n A_i\right| \leq \sum_{i=1}^n |A_i|$.

Jsou-li navíc po dvou disjunktní, tak $\Big|\bigcup_{i=1}^n A_i\Big| = \sum_{i=1}^n |A_i|.$

(ii) Jsou-li A_i pro $i=1,2,\ldots,n$ konečné množiny, pak je i $A_1\times\cdots\times A_n$ konečná a

$$|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n| = \prod_{i=1}^n |A_i|.$$

Věta.

- (i) Jestliže je A nekonečná množina, pak je i každá její nadmnožina B nekonečná.
- (ii) Nechť A,Bjsou množiny. Jestliže je Anekonečná, pak je i $A\cup B$ nekonečná.
- (iii) Nechť A, B jsou množiny. Jestliže je A nekonečná a $B \neq \emptyset$, pak je $A \times B$ nekonečná.

Nechť A je množina. Jestliže je nekonečná, pak $|\mathbb{N}| \leq |A|.$

Věta.

- (i) Množina \mathbb{N}_0 je spočetná.
- (ii) Množina Z je spočetná.
- (iii) Množina $\mathbb{N} \times \mathbb{N}$ je spočetná.
- (iv) Množina $\mathbb{Z} \times \mathbb{Z}$ je spočetná.

Věta.

Množina racionálních čísel Q je spočetná.

Věta.

- (i) Jestliže je množina nekonečná, tak má vlastní podmnožinu, která má stejnou mohutnost.
- (ii) Nechť A, B jsou množiny, A je nekonečná a $|B| \leq |A|$. Pak $|A \cup B| = |A|$.
- (iii) Nechť A, B jsou množiny, A je nekonečná a $|B| \leq |A|$. Pak $|A \times B| = |A|$.

Fakt.

- (i) Jestliže jsou A_n pro $n \in \mathbb{N}$ nejvýše spočetné množiny, pak je $\bigcup_{n=1}^{\infty} A_n$ nejvýše spočetná. (ii) Jestliže jsou navíc A_n neprázdné a po dvou disjunktní, pak je $\bigcup_{n=1}^{\infty} A_n$ spočetná.

Věta.

Interval reálných čísel (0,1) je nespočetný.

Důsledek.

Množina reálných čísel \mathbb{R} je nespočetná.

Definice.

Nechť A je množina. Definujeme **potenční množinu** A, značeno P(A), jako množinu všech podmnožin A.

Fakt.

Jestliže je Akonečná množina, pak $|P(A)|=2^{|A|}.$

Věta. (Cantorova)

Pro každou množinu A platí |A| < |P(A)|.