Nano-Scale Heat Transfer Properties

MAE 284

Wilson Lam

Graduate Class

January 20, 2014

Nano-Scale Heat Transfer Outlines

- The size effects on the phonon and electron transport change the heat transferring significantly when compare to macroscales.
 - Surface contact at nanoscale becomes 1-dimensional channels (atomic-level contact points).
- Size effects:
 - Cause by particle and wave properties of phonons
 - This cause Fourier Law to fail by classical and quantum size effects.
- This size effect on nanostructures and potentials of highly efficient thermoelectric (TE)
 - Nanostructures: Thin fims, Superlattices, and Nanowires

Thin films

- Thin films heterostructures that have many materials layers may interferes with heat transfer
 - mean free path and film thickness will determine whether the phonons be scattered more frequently or not
- The interface of thin films may have a specular effect in which it will reflect the phonons wave back trapping the heat in the interface.

Superlattices

Superlattices impacts on device temperature rise.

• Multilayer thin films of superlattices create additional thermal resistance.

Increased boundary scattering of heat.

- Phonons properties in superlattices
 - Lower thermal conductivities
 - Phonons wavelength is schatter in the lattice leading to higher temperature.

Nanowires

- Nanowires are nanostructures with diameter of nanometer to tens of nanometers
 - Nanowires may be insulating, semiconducting, and metallic.
 - Possibilities of making more powerful solar cells.
- Interest in nanowires heat transfer is in the axial direction
 - During experimental conditions thermal conductivity for nanowires can be higher than diamond.

Thermoelectrics (TE)

- Govern by the Thermoelectric Effect:
 - Seebeck effect
 - converts temperature to current
 - Peltier effect
 - current to temperature
 - Thomson effect
 - cooling and heating of current carrying conductor that has a temperature gradient
- This technology is relatively new and hold potential to future developments.

References

- I. Chen, G., X. Chen and R. Yang. "Nanoscale heat transfer and thermal-electric energy conversion." J. Phys. IV France 125. 2005. 499-504.
- II. Chen, Gang. "Nanoscale Heat Transfer and NanostructuredThermoelectrics." IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES 29 (2006). Research Paper.
- III. Patch, Kimberly. "Chips turn more heat to power." *Technology Research News*. Technology Research News. Boston, 27 November 2001. 16 January 2014. http://www.trnmag.com/Stories/2001/121901/Chips_turn_more_heat_to_power_121901.html.
- IV. Skatssoon, Judy. "World's Strongest Nanowire." *News in Science*. ABC Science Online. 19 December 2006. electronic document. 15 January 2014. http://www.abc.net.au/science/news/stories/2006/1813845.htm.
- V. Stober, Dan. "Nanowire battery can hold 10 times the charge of existing lithium-ion battery." Stanford News. Stanford: Stanford Report, 18 December 2007. Electronic Document. 15 January 2014. http://news.stanford.edu/news/2008/january9/nanowire-010908.html.

Image Obtain from the following sites:

- 1. Mo, Yifei and Izabela Szlufarska. "Nanoscale heat transfer: Single hot contacts." *Nature Materials*. Nature Publishing Group. 2013. 19 January 2014. http://www.nature.com/nmat/journal/v12/n1/fig_tab/nmat3506_F2.html.
- 2. http://www.spring8.or.jp/en/news_publications/press_release/2012/120719/
- 3. http://cc.oulu.fi/~tf/tiedostot/pub/Isohatala/
- 4. http://phys.org/news/2012-09-interfaces-key-metal-oxide-superlattices.html
- 5. http://consciouslifenews.com/nanowires-make-powerful-solar-cells/
- 6. http://www.digikey.com/us/en/techzone/energy-harvesting/resources/articles/thermoelectric-energy-harvesting.html