EE210: HW-3

Date: 22.01.2019

The diode in the problems given below has the following characteristics:

$$I_S = 2 * 10^{-15} \text{A}; \text{ n} = 1; V_T = 26 \text{mV}; C_{i0} = 2.63 \text{pF}; V_{bi} = 0.85 \text{V}; \text{ m} = 0.5; \tau = 26 \text{ns}$$

Q.1 Using iterative analysis, determine the current flowing in a circuit shown in Fig. 1.

- **Q.2** For the circuit shown in Fig. 2, first, carry out a dc analysis of the circuit assuming a simple diode model to determine the dc value of output voltage. Using small signal analysis and small signal diode model, next, determine the sinusoidal output voltage. Assume that capacitor C_C is large enough, so that it can be approximated as a short for small signal ac analysis. Since the frequency is low, the internal capacitance of the diodes can be ignored. Sketch the complete output voltage (dc + ac).
- **Q.3** The diode in the circuit shown in Fig. 3 is used as a variable capacitor. Determine a suitable value of resistor R and reverse bias voltage V_R so that output sinusoidal voltage has a magnitude of 100mV. (Use the concept of resonance.) Can we call this circuit an amplifier?

Fig. 3

Q.4 Determine an expression for the output voltage in the circuit shown below. Assume that diodes are identical and that differential amplifier does not draw any input current and has a differential voltage gain $A_V = \frac{V_0}{V_+ - V_-}$.

Q.5 Figure 5a below shows a diode circuit, whose small signal sinusoidal response is shown in Fig. 5b. Determine the variables A, f_L and f_H . (Hint: For lower cutoff frequency f_L , only C_C matters, while for f_H , only diode capacitances matter).

Fig.5b

Fig. 5a