

Review complements:

- X The subtraction of unsigned binary numbers can be done by complements.
- X 1's complement can be formed by changing 1's to 0's and 0's to 1's
- X 2's complement of a number is done by Taking the 1's complement and adding 1 to the least significant bit in the number.

11

BINARY ADDER/SUBTRACTOR

- X How can we implement subtraction?
 - X Subtraction is addition of complement
 - X N M = N +(two's complement of M)
- X How do we determine 2's complement?
 - imes 1's complement (flip bits) and add 1
- X How can we flip bits?
 - X NOT gate (subtraction only)
 - X XOR gate (to provide control: Add/Sub):
 - $x \oplus 0 = x$ (use for Add)
 - $x \oplus 1 = x'$ (use for Sub)
 - X How can we add 1?
 - Input carry

12

OVERFLOW

- X n-bit addition can generate (n+1)-bit number
 - X Resulting in "overflow"
 - X Problem: Needs to be detected by computer system
- X How can we detect overflow?
- X For unsigned numbers
 - X End carry out of most significant position
- X For signed numbers
 - X Most significant bit indicates sign
 - X If carry into sign position and out of sign position differ, then overflow
 - X Detected by XOR gate

15

OVERFLOW

8 bits can hold signed numbers: -128 to + 127

Overflow may occur when both numbers are positive or both are negative

17

17

OVERFLOW

+70 -80 -10

X

X

+70 +80 +150

- 70 - 80 - 150

18

20

BCD ADDER

- \times Full adder \rightarrow (1+1) Bit + 1 Carry= 3 bits
- \times BCD \rightarrow (4+4) Bits + 1 Carry= 9 bits input
- X Max output is 9+9+1=19
- X Use 4 bit binary adder
 - X Input 2 BCD numbers
 - X Sum will be in binary form
 - X Output binary number from 0 to 19
 - X AIM: Convert Binary back to BCD

23

23

BCD ADDER

BCD Sum

Number	С	S8	S4	S2	S1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1

Upto 9, the sum of Binary Adder and BCD Adder is same

BCD ADDER

BCD Sum

Number	С	S8	S4	S2	S1
10	1	0	0	0	0
11	1	0	0	0	1
12	1	0	0	1	0
13	1	0	0	1	1
14	1	0	1	0	0
15	1	0	1	0	1
16	1	0	1	1	0
17	1	0	1	1	1
18	1	1	0	0	0
19	1	1	0	0	1

25

25

BCD ADDER

BCD adder sum

Numbe r	С	S8	S4	S2	S1
10	1	0	0	0	0
11	1	0	0	0	1
12	1	0	0	1	0
13	1	0	0	1	1
14	1	0	1	0	0
15	1	0	1	0	1
16	1	0	1	1	0
17	1	0	1	1	1
18	1	1	0	0	0
19	1	1	0	0	1

Binary sum

K	Z8	Z4	Z2	Z1
0	1	0	1	0
0	1	0	1	1
0	1	1	0	0
0	1	1	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	0	0
1	0	0	0	1
1	0	0	1	0
1	0	0	1	1

26

26

BCD ADDER

- If sum is up to 9
 - Use the regular Adder.
- If the sum > 9
 - Use the regular adder and add 6 to the result

28

BCD Adder											
		В	inary Su	n				BCD Sun	1		Dec
	K	Z8	Z4	Z2	Z1	С	S8	S4	S2	S1	
	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	1	1
	0	0	0	1	0	0	0	0	1	0	2
If sum exceeds	0	0	0	1	1	0	0	0	1	1	3
binary 9 then	0	0	1	0	0	0	0	1	0	0	4
represent it as two	0	0	1	0	1	0	0	1	0	1	5
separate binary	0	0	1	1	0	0	0	1	1	0	6
numbers	0	0	1	1	1	0	0	1	1	1	7
	0	1	0	0	0	0	1	0	0	0	8
Add binary 6(0110)	0	1	0	0	1	0	1	0	0	1	9
	0	1	0	1	0	1	0	0	0	0	10
	0	1	0	1	1	1	0	0	0	1	11
	0	1	1	0	0	1	0	0	1	0	12
	0	1	1	0	1	1	0	0	1	1	13
	0	1	1	1	0	1	0	1	0	0	14
	0	1	1	1	1	1	0	1	0	1	15
	1	0	0	0	0	1	0	1	1	0	16
	1	0	0	0	1	1	0	1	1	1	17
	1	0	0	1	0	1	1	0	0	0	18
	1	0	0	1	1	1	1	0	0	1	19

BCD ADDER - WHEN IS THE SUM > 9

Binary sum

Number	K	Z8	Z4	Z2	Z1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	0	0	0	0
17	1	0	0	0	1
18	1	0	0	1	0
19	1	0	0	1	1

N	K	Z8	Z4	Z2	Z 1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1

$$C = K + Z8*Z4+$$

31

31

BCD ADDER - WHEN IS THE SUM > 9

Binary sum

Number	K	Z8	Z4	Z2	Z1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	0	0	0	0
17	1	0	0	0	1
18	1	0	0	1	0
19	1	0	0	1	1

N	K	Z8	Z4	Z2	Z1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1

$$C = K + Z8*Z4 + Z8*Z2$$

32

BINARY MULTIPLIER

- Multiplication of binary numbers is done in the same way as decimal numbers
- Multiplicand B is multiplied by the multiplier A starting from the LSB.
- Successive partial products are shifted one position from the left and the final product is obtained from the sum of partial products.

\boldsymbol{B}_1	\boldsymbol{B}_0
A_1	A_0
A_0B_1	A_0B_0

 $\begin{array}{cccc}
 & A_1B_1 & A_1B_0 \\
\hline
C_3 & C_2 & C_1 & C_0
\end{array}$

35

35

MULTIPLIER — LAST CLASS QUERIES

X 4-bit x 3-bit multiplier

X J=3, K=4

X How many AND gates

X J x K gates

X How many adders

X (J-1) K-bit adders

X How many output bits

X J + K bits

PRACTICE EXERCISES

- X Design a 3-bit by 4-bit multiplier
- x Design a 4-bit by 4-bit multiplier

39

39

