Системный анализ процессов переработки нефти и газа

Лабораторная работа №4

Введение в библиотеку SciPy. Визуализация данных при помощи библиотеки Matplotlib

Задание 1

Закон Бугера–Ламберта–Бера связывает концентрацию c вещества в образце раствора с интенсивностью света, проходящего через этот образец I_t с заданной толщиной слоя вещества l при известной длине волны λ :

$$I_t = I_0 e^{-lpha c l}$$

где I_0 - интенсивность света на входе в вещество, α - коэффициент поглощения при длине волны λ .

После проведения ряда измерений, позволяющих определить часть света, которая прошла сквозь раствор, I_t/I_0 , коэффициент поглощения α можно найти при помощи линейной аппроксимации:

$$y=\ln{(I_t/I_0)}=-lpha c l$$

Несмотря на то что эта прямая проходит через начало координат (y=0 при c=0), мы будем выполнять подгонку для более общего линейного отношения:

$$y = mc + k$$

где $m=-\alpha l$ с проверкой k на приближение к нулю.

При рассмотрении образца раствора с толщиной слоя 0.8 см при измерениях были получены данные, приведенные в таблице: отношение I_t/I_0 при пяти различных концентрациях:

С, моль/л	I_t/I_0
0.4	0.891
0.6	0.841
0.8	0.783
1.0	0.744
1.2	0.692

Используя линейную аппроксимацию, определите коэффициент α . Постройте график по табличным данным и результатам аппроксимации.

Задание 2

Дана зависимость давления паров вещества от температуры:

$T,^{\circ}C$	p, атм
40	0.2453
50	0.5459
60	1.2151
70	2.7042
80	6.0184
90	13.3943
100	29.8096

Определить значения давления паров при $T \in [40; 100]$ с шагом 5 °C, используя:

- Кубический сплайн;
- Одну из аппроксимирующих функций: проверить степенную и экспоненциальную аппроксимирующие функции, выбрать наиболее подходящую (по значению суммарной ошибки) и провести расчеты с использованием данной функции.

Задание 3

Дана схема химических превращений:

$$A \stackrel{k_1}{\longleftarrow} B \stackrel{k_2}{\stackrel{k_2}{\longleftarrow}} C$$
 $C_{A_0} = 0.0 \, (ext{моль}/\pi); \qquad k_1 = 0.8 \, ig(c^{-1}ig); \ C_{B_0} = 0.8 \, (ext{моль}/\pi); \qquad k_2 = 0.96 \, ig(c^{-1}ig); \ C_{C_0} = 0.2 \, (ext{моль}/\pi); \qquad k_3 = 0.1 \, ig(c^{-1}ig).$

Решите систему дифференциальных уравнений изменения концентраций веществ во времени при помощи функции $scipy.integrate.solve_ivp()$ на отрезке $[0;\ 5]$ с шагом h=0.1. По результатам расчетов постройте зависимость $C\left(t\right)$ для каждого компонента при помощи библиотеки matplotlib.

Задание 4

Используя функцию scipy.integrate.quad() для вычисления значения энтропии воды при ее нагревании от 400 до $500~{\rm K}$ по формуле:

$$\Delta S = \eta \int\limits_{400}^{500} rac{C_v\left(T
ight)dT}{T} \ C_v\left(T
ight) = R \sum_{j=1}^{12} A_j au^{j-1} \ au = 1 - T/T_c$$

где T - температура, K; $\eta=3$ - количество молей; C_v - теплоемкость, Дж/(моль K); R - универсальная газовая постоянная; $T_c=647.126$ - критическая температура, K.

Коэффициенты полинома A(1) - A(12):

Коэффициент	Значение
A_1	7.4305055
A_2	-24.93618016
A_3	195.5654567
A_4	1986.485797
A_5	-53305.43411
A_6	505697.1723
A_7	-2724774.677
A_8	9167737.673
A_9	-19622033.78
A_{10}	25984725.33
A_{11}	-19419431.35
A_{12}	6263206.554