

The next generation supercomputer

Alex Ramirez, **Paul Carpenter**Barcelona Supercomputing Center

Disclaimer: Not only I speak for myself ... All references to unavailable products are speculative, taken from web sources. There is no commitment from ARM, Samsung, TI, Nvidia, Bull, or others, implied.

Project goals

- To develop an European Exascale approach
- Based on embedded power-efficient technology

- Objetives
 - Develop a first prototype system, limited by available technology
 - Design a Next Generation system, to overcome the limitations
 - Develop a set of Exascale applications targeting the new system

Outline

- A bit of history
 - Vector supercomputers
 - Commodity supercomputers
 - The next step in the commodity chain
- Supercomputers from mobile components
 - Killer mobile examples
 - Mont-Blanc architecture strawman
 - Rely on OmpSs to handle the challenges
- BSC prototype roadmap
- Mont-Blanc project goals and milestones

In the beginning ... there were only supercomputers

- Built to order
 - Very few of them
- Special purpose hardware
 - Very expensive
- Control Data, Convex, ...
- Cray-1
 - 1975, 160 MFLOPS
 - 80 units, 5-8 M\$
- Cray X-MP
 - 1982, 800 MFLOPS
- Cray-2
 - 1985, 1.9 GFLOPS
- Cray Y-MP
 - 1988, 2.6 GFLOPS
- Fortran+vectorizing compilers

The Killer Microprocessors

- Microprocessors killed the Vector supercomputers
 - They were not faster ...
 - ... but they were significantly cheaper and greener
- Need 10 microprocessors to achieve the performance of 1 Vector CPU
 - SIMD vs. MIMD programming paradigms

Then, commodity took over special purpose

- ASCI Red, Sandia
 - 1997, 1 TFLOPS (Linpack),
 - 9298 cores @ 200 Mhz
 - 1.2 Tbytes
 - Intel Pentium Pro
 - Upgraded to Pentium II Xeon, 1999, 3.1 Tflops

- MareNostrum, BSC
 - 2004, 20 TFLOPS
 - IBM PowerPC 970 FX
 - Blade enclosure
 - Myrinet + 1 GbE network
 - SuSe Linux

Message-Passing Programming Models

The next step in the commodity chain

ARM Processor improvements in DP FLOPS

- IBM BG/Q and Intel AVX implement DP in 256-bit SIMD
 - 8 DP ops / cycle
- ARM quickly moved from optional floating-point to state-of-the-art
 - ARMv8 ISA introduces DP in the NEON instruction set (128-bit SIMD)

Integrated ARM GPU performance

 GPU compute performance increases faster than Moore's Law

* Data from web sources, not an ARM commitment

Are the "Killer Mobiles™" coming?

- Where is the sweet spot? Maybe in the low-end ...
 - Today ~ 1:8 ratio in performance, 1:100 ratio in cost
 - Tomorrow ~ 1:2 ratio in performance, still 1:100 in cost ?
- The same reason why microprocessors killed supercomputers
 - Not so much performance ... but much lower cost, and power

Samsung Exynos 5 Dual Superphone SoC

- 32nm HKMG
- Dual-core ARM Cortex-A15 @ 1.7 GHz
- Quad-core ARM Mali T604
 - OpenCL 1.1
- Dual-channel DDR3
- USB 3.0 to 1 GbE bridge
- All in a low-power mobile socket

High density packaging architecture

 Standard BullX blade enclosure

 Multiple compute nodes per blade

> Additional level of interconnect, on-blade network

There is no free lunch

OmpSs runtime layer manages architecture complexity

Overlap

- Programmer exposed a simple architecture
- Task graph provides lookahead
 - Exploit knowledge about the future
- Automatically handle all of the architecture challenges
 - Strong scalability
 - Multiple address spaces
 - Low cache size
 - Low interconnect bandwidth
- Enjoy the positive aspects
 - Energy efficiency
 - Low cost

BSC ARM-based prototype roadmap

- Prototypes are critical to accelerate software development
 - System software stack + applications

Very high expectations ...

- High media impact of ARM-based HPC
- Scientific, HPC, general press quote Mont-Blanc objectives
 - Highlighted by Eric Schmidt, Google Executive Chairman, at the EC's Innovation Convention

The hype curve

We'll see how deep it gets on the way down ...

Conclusions

- Mont-Blanc architecture is shaping up
 - ARM multicore + integrated OpenCL accelerator
 - Ethernet NIC
 - High density packaging
- OmpSs programming model port to OpenCL
- Applications being ported to tasking model
- Stay tuned!

