Отчет по лабораторной работе N210

Исследование линейных двухполюсников и четырёхполюсников

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	Схема №1. Последовательная RC – цепочка	2
2	Вторая схема	4
3	Третья схема	6
4	Четвертая схема	7
5	Пятая схема	8
6	Шестая схема	8

1. Схема №1. Последовательная RC – цепочка

Рассчитаем импеданс конденсатора методом комплексных амплитуд.

$$\hat{U} = U_0 e^{i(\omega t + \phi_U)} \tag{1}$$

Величину $\hat{U_0} = U_0 e^{i\phi_U}$ будем называть комплексной амплитудой напряжения

$$I = C \frac{\mathrm{d}U}{\mathrm{d}t} \tag{2}$$

Отсюда получаем:

$$\hat{I} = U_0 \,\omega i C \exp(i\omega t + \phi_U) \tag{3}$$

И комплексная амплитуда тока:

$$\hat{I}_0 = U_0 i \omega C e^{i\phi_U} \tag{4}$$

Получаем комплексный импеданс конденсатора

$$\hat{z}_C = \frac{\hat{U}_0}{\hat{I}_0} = \frac{U_0 e^{i\phi_U}}{U_0 i\omega C e^{i\phi_U}} = \frac{1}{i \cdot \omega C}$$

$$(5)$$

Нетрудно получить, что $\hat{z}_R = R$. Тогда импеданс RC –цепочки

$$\hat{z} = \frac{1}{i \cdot \omega C} + R \tag{6}$$

$$z = \sqrt{\frac{1}{\omega^2 C^2} + R^2} = \sqrt{\frac{1}{\omega^2 C^2} + \frac{R^2 \omega^2 C^2}{\omega^2 C^2}} = \frac{\sqrt{1 + (\omega R C)^2}}{\omega C}$$
(7)

Экспериментально можно снимать зависомость $U_{13} \equiv U_{\rm вx}$ и $U_{23} \equiv U_{\rm выx}$ от частоты. Из закона Ома найдем тогда импеданс цепочки.

$$\hat{J}_{13} = \hat{J}_{23} \quad \Rightarrow \quad \frac{\hat{U}_{13}}{\hat{z}} = \frac{\hat{U}_{23}}{R}$$
 (8)

Взяв по модулю получим нужное соотношение

$$z = \frac{U_{\text{BX}}}{U_{\text{BMX}}}R\tag{9}$$

Также найдем зависимость разности фаз от частоты:

$$|\tan \phi| = |\frac{\text{Im }\hat{z}}{\text{Re }\hat{z}}| = |\frac{-(\omega C)^{-1}}{R}| = \frac{1}{\omega RC}$$
 (10)

Таблица 1: Результаты эксперимента для первой схемы

ν, Гц	ω , Гц	a	b	ϕ , рад	$\tan \phi$	U_{in} , B	U_{in} , B	z, Om
15	94	6.9	7.0	1.19	2.502	7.446	0.453	213 683
25	157	6.9	7.0	1.19	2.502	7.532	1.064	92026
40	251	6.9	7.0	1.19	2.502	7.512	1.600	61035
100	628	6.2	7.0	1.00	1.566	7.412	3.364	28643
200	1256	4.7	7.0	0.74	0.906	7.410	5.016	19205
300	1884	3.7	7.0	0.56	0.623	7.320	5.909	16104
400	2512	3.0	7.0	0.44	0.474	7.270	6.297	15009
500	3140	2.5	7.0	0.37	0.382	7.236	6.536	14392
1000	6280	1.3	7.0	0.19	0.189	7.300	7.030	13499
2000	12560	0.7	7.0	0.10	0.101	7.282	7.160	13221
3000	18 840	0.4	7.0	0.06	0.057	7.270	7.175	13172

Рис. 1: Зависимость $z(\omega)$ для последовательной RC–цепочки

Рис. 2: Зависимость $\tan\phi(\omega)$ для последовательной RC–цепочки

2. Вторая схема

$$\hat{I} = I_0 e^{i(\omega t + \phi_I)} \tag{11}$$

$$\hat{I} = I_0 e^{i(\omega t + \phi_I)}$$

$$U = L \frac{dI}{dt}$$

$$\hat{U} = I_0 i \omega L e^{i(\omega t + \phi_I)}$$

$$(11)$$

$$(12)$$

$$\hat{U} = I_0 i \omega L e^{i(\omega t + \phi_I)} \tag{13}$$

Отсюда

$$\hat{z} = i\omega L \tag{14}$$

Рис. 3: Зависимость $z(\omega)$ для последовательной LC–цепочки

Рис. 4: Зависимость $\tan\phi(\omega)$ для последовательной LC–цепочки

3. Третья схема

Сначала расчитаем импеданс параллельно соединенных конденсатора и резистора R_2

$$\frac{1}{\hat{z_0}} = \frac{1}{R_2} + i\omega C \tag{15}$$

$$\hat{z_0} = \frac{R_2}{1 + i\omega C R_2} \tag{16}$$

Комплексный импеданс всей схемы будет равен:

$$\hat{z} = \hat{z}_0 + R_1 = \frac{R_2}{1 + i\omega R_2 C} + R_1 = \frac{R_2 (1 - i\omega R_2 C)}{1 + (\omega R_2 C)^2} + R_1$$
(17)

Отсюда

$$\tan \phi = \frac{\operatorname{Im} \hat{z}}{\operatorname{Re} \hat{z}} = \frac{-\frac{\omega R_2^2 C}{1 + (\omega R_2 C)^2}}{\frac{R_2 + R_1 + R_1 (\omega R_2 C)^2}{1 + (\omega R_2 C)^2}} = \frac{-\omega R_2^2 C}{R_2 + R_1 + R_1 (\omega R_2 C)^2}$$
(18)

4. Четвертая схема

Рассчитаем импеданс параллельно соединенных катушки и резистора R_2

$$\frac{1}{\hat{z_1}} = \frac{1}{R_2} + \frac{1}{i\omega L} \tag{19}$$

$$\hat{z}_1 = \frac{R_2 \omega^2 L^2 + i R_2^2 \omega L}{R_2 + \omega L} \tag{20}$$

А импеданс всей схемы:

$$\hat{z}_0 = \frac{R_2 \omega^2 L^2}{R_2 + \omega L} + R_1 + i \frac{i R_2^2 \omega L}{R_2 + \omega L}$$
(21)

5. Пятая схема

6. Шестая схема

