

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - P3: information loss
- Desired output (a good balance):
 - □ P2, P3, P4

- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- \Box δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ -cover)
- □ All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., Xin et al., VLDB'05)

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy

(a) a set of patterns

(b) redundancy-aware top-k

(c) traditional top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06