tdistribution

- review: conditions for inference so far
- large → small n
- introduce the t-distribution

Dr. Mine Çetinkaya-Rundel Duke University

review:

what purpose does a large sample serve?

As long as observations are independent, and the population distribution is not extremely skewed, a large sample would ensure that...

- the sampling distribution of the mean is nearly normal
- the estimate of the standard error is reliable: $\frac{s}{\sqrt{n}}$

review:

normality of sampling distributions

- CLT: sampling distributions are nearly normal as long as the population distribution is nearly normal, for **any** sample size.
- Helpful special case, but difficult to verify normality in small data sets.
- Careful with the normality condition for small samples: don't just examine the sample, also think about where the data come from.
 - "Would I expect this distribution to be symmetric, and am I confident that outliers are rare?"

population $\sim N(0,1)$

t distribution

- n is small & σ unknown (almost always), use the t distribution to address the uncertainty of the standard error estimate
- bell shaped but thicker tails than the normal
 - by observations more likely to fall beyond 2 SDs from the mean
 - extra thick tails helpful for mitigating the effect of a less reliable estimate for the standard error of the sampling distribution

t distribution

- ▶ always centered at 0 (like the standard normal)
- has one parameter: degrees of freedom (df) determines thickness of tails
 - remember, the normal distribution has two parameters: mean and SD

What happens to the shape of the t-distribution as degrees of freedom increases?

approaches the normal dist.

t statistic

- Interest of the form of the fo
 - > σ unknown
 - n < 30
- calculated the same way

$$T = \frac{obs - null}{SE}$$

- p-value (same definition)
 - one or two tail area, based on HA
 - using R, applet, or table

http://bitly.com/dist calc

Distribution Calculator

Find the following probabilities.

Say you have a two sided hypothesis test, and your test statistic is 2. Under which of these scenarios would you be able to reject the null hypothesis at the 5% sig. level?

a.
$$P(|Z| > 2)$$

b.
$$P(|t_{df} = 50| > 2)$$

c.
$$P(|t_{df} = 10| > 2)$$

origins of the t distribution

- Student's t
- William Gosset (1876 1937)
- "Head Experimental Brewer" at the Guinness brewing company