1

The Foundations: Logic and Proofs

- **1.1** Propositional Logic
- **1.2** Applications of Propositional Logic
- **1.3** Propositional Equivalences
- **1.4** Predicates and Quantifiers
- 1.5 Nested Ouantifiers
- **1.6** Rules of Inference
- 1.7 Introduction to Proofs
- **1.8** Proof Methods and Strategy

he rules of logic specify the meaning of mathematical statements. For instance, these rules help us understand and reason with statements such as "There exists an integer that is not the sum of two squares" and "For every positive integer n, the sum of the positive integers not exceeding n is n(n+1)/2." Logic is the basis of all mathematical reasoning, and of all automated reasoning. It has practical applications to the design of computing machines, to the specification of systems, to artificial intelligence, to computer programming, to programming languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem. A collection of theorems on a topic organize what we know about this topic. To learn a mathematical topic, a person needs to actively construct mathematical arguments on this topic, and not just read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find it surprising how important proofs are in computer science. In fact, proofs are used to verify that computer programs produce the correct output for all possible input values, to show that algorithms always produce the correct result, to establish the security of a system, and to create artificial intelligence. Furthermore, automated reasoning systems have been created to allow computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and introduce tools to construct these arguments. We will develop an arsenal of different proof methods that will enable us to prove many different types of results. After introducing many different methods of proof, we will introduce several strategies for constructing proofs. We will introduce the notion of a conjecture and explain the process of developing mathematics by studying conjectures.

1.1

Propositional Logic

1.1.1 Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to distinguish between valid and invalid mathematical arguments. Because a major goal of this book is to teach the reader how to understand and how to construct correct mathematical arguments, we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numerous applications to computer science. These rules are used in the design of computer circuits, the construction of computer programs, the verification of the correctness of programs, and in many other ways. Furthermore, software systems have been developed for constructing some, but not all, types of proofs automatically. We will discuss these applications of logic in this and later chapters.

1.1.2 Propositions

x Claim

Our discussion begins with an introduction to the basic building blocks of logic—propositions. A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

- 1. Washington, D.C., is the capital of the United States of America.
- 2. Toronto is the capital of Canada.
- 3. 1 + 1 = 2.
- 4. 2 + 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false.

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

- 1. What time is it?
- 2. Read this carefully.
- 3. x + 1 = 2.
- 4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3 and 4 are not propositions because they are neither true nor false. Note that each of sentences 3 and 4 can be turned into a proposition if we assign values to the variables. We will also discuss other ways to turn sentences such as these into propositions in Section 1.4.

We use letters to denote **propositional variables** (or **sentential variables**), that is, variables that represent propositions, just as letters are used to denote numerical variables. The conventional letters used for propositional variables are p, q, r, s, \dots . The **truth value** of a proposition

Links

ARISTOTLE (384 B.C.E.—322 B.C.E.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle could not follow the custom of following his father's profession. Aristotle became an orphan at a young age when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of 17, his guardian sent him to Athens to further his education. Aristotle joined Plato's Academy, where for 20 years he attended Plato's lectures, later presenting his own lectures on rhetoric. When Plato died in 347 B.C.E., Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead, Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip of Macedonia, he tutored Alexander, Philip's son, who later became Alexander the Great. Aristotle tutored Alexander for five years and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

Aristotle's followers were called the peripatetics, which means "to walk about," because Aristotle often walked around as he discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the morning and gave popular lectures to a broad audience in the evening. When Alexander the Great died in 323 B.C.E., a backlash against anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle fled to Chalcis to avoid prosecution. He only lived one year in Chalcis, dying of a stomach ailment in 322 B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientific facts, and systematic treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. Aristotle's writings were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.

sozialojus

compound tion

Proposition

Links

Combined

Claims Propositions **Definition 1** using

is true, denoted by T, if it is a true proposition, and the truth value of a proposition is false, denoted by F, if it is a false proposition. Propositions that cannot be expressed in terms of simpler propositions are called **atomic propositions**.

The area of logic that deals with propositions is called the **propositional calculus** or **propo** sitional logic. It was first developed systematically by the Greek philosopher Aristotle more than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that we already have. These methods were discussed by the English mathematician George Boole in 1854 in his book The Laws of Thought. Many mathematical statements are constructed by combining one or more propositions. New propositions, called **compound propositions**, are formed from existing propositions using logical operators.

Let p be a proposition. The *negation of p*, denoted by $\neg p$ (also denoted by \overline{p}), is the statement

"It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Remark: The notation for the negation operator is not standardized. Although $\neg p$ and \overline{p} are the most common notations used in mathematics to express the negation of p, other notations you might see are $\sim p$, -p, p', Np, and !p.

EXAMPLE 3 Find the negation of the proposition

"Michael's PC runs Linux"

and express this in simple English.

Solution: The negation is

"It is not the case that Michael's PC runs Linux."

This negation can be more simply expressed as

"Michael's PC does not run Linux."

EXAMPLE 4 Find the negation of the proposition

"Vandana's smartphone has at least 32 GB of memory" and express this in simple English.

Solution: The negation is

"It is not the case that Vandana's smartphone has at least 32 GB of memory."

This negation can also be expressed as

"Vandana's smartphone does not have at least 32 GB of memory"

or even more simply as

"Vandana's smartphone has less than 32 GB of memory."

a = true

(b) = mod a

>not true

>False

Proposition

Proposition

Compaind

TABLE 1 The Truth Table for the Negation of a Proposition.

Proposition.	
p	$\neg p$
T	F
F	T

Table 1 displays the **truth table** for the negation of a proposition p. This table has a row for each of the two possible truth values of p. Each row shows the truth value of $\neg p$ corresponding to the truth value of p for this row.

The negation of a proposition can also be considered the result of the operation of the **negation operator** on a proposition. The negation operator constructs a new proposition from a single existing proposition. We will now introduce the logical operators that are used to form new propositions from two or more existing propositions. These logical operators are also called **connectives**.

Definition 2

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \wedge q$, is the proposition "p and q." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Table 2 displays the truth table of $p \land q$. This table has a row for each of the four possible combinations of truth values of p and q. The four rows correspond to the pairs of truth values TT, TF, FT, and FF, where the first truth value in the pair is the truth value of p and the second truth value is the truth value of q.

Note that in logic the word "but" sometimes is used instead of "and" in a conjunction. For example, the statement "The sun is shining, but it is raining" is another way of saying "The sun is shining and it is raining." (In natural language, there is a subtle difference in meaning between "and" and "but"; we will not be concerned with this nuance here.)

EXAMPLE 5

Find the conjunction of the propositions *p* and *q* where *p* is the proposition "Rebecca's PC has more than 16 GB free hard disk space" and *q* is the proposition "The processor in Rebecca's PC runs faster than 1 GHz."

Solution: The conjunction of these propositions, $p \wedge q$, is the proposition "Rebecca's PC has more than 16 GB free hard disk space, and the processor in Rebecca's PC runs faster than 1 GHz." This conjunction can be expressed more simply as "Rebecca's PC has more than 16 GB free hard disk space, and its processor runs faster than 1 GHz." For this conjunction to be true, both conditions given must be true. It is false when one or both of these conditions are false.

Definition 3

Let p and q be propositions. The *disjunction* of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3 displays the truth table for $p \vee q$.

TABLE 2 The Trut the Conjunction of T Propositions.	

Propositions.		
p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

Propositions.		
p	\boldsymbol{q}	$p \lor q$
T	T	T
T	F	Т
F	T	T
F	F	F

The use of the connective or in a disjunction corresponds to one of the two ways the word or is used in English, namely, as an **inclusive or**. A disjunction is true when at least one of the two propositions is true. That is, $p \vee q$ is true when both p and q are true or when exactly one of p and q is true.

EXAMPLE 6

Translate the statement "Students who have taken calculus or introductory computer science can take this class" in a statement in propositional logic using the propositions p: "A student who has taken calculus can take this class" and q: "A student who has taken introductory computer science can take this class."

Solution: We assume that this statement means that students who have taken both calculus and introductory computer science can take the class, as well as the students who have taken only one of the two subjects. Hence, this statement can be expressed as $p \lor q$, the inclusive or, or disjunction, of p and q.

EXAMPLE 7

What is the disjunction of the propositions p and q, where p and q are the same propositions as in Example 5?

Solution: The disjunction of p and $q, p \vee q$, is the proposition

"Rebecca's PC has at least 16 GB free hard disk space, or the processor in Rebecca's PC runs faster than 1 GHz."

This proposition is true when Rebecca's PC has at least 16 GB free hard disk space, when the PC's processor runs faster than 1 GHz, and when both conditions are true. It is false when both of these conditions are false, that is, when Rebecca's PC has less than 16 GB free hard disk space and the processor in her PC runs at 1 GHz or slower.

Besides its use in disjunctions, the connective or is also used to express an exclusive or. Unlike the disjunction of two propositions p and q, the exclusive or of these two propositions is true when exactly one of p and q is true; it is false when both p and q are true (and when both are false).

Definition 4

Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$ (or p XOR q), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Links

Source: Library of Congress USA [LC-USZ62-61664]

GEORGE BOOLE (1815–1864) George Boole, the son of a cobbler, was born in Lincoln, England, in November 1815. Because of his family's difficult financial situation, Boole struggled to educate himself while supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s. Although he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a school of his own. In his preparation for teaching mathematics, Boole—unsatisfied with textbooks of his day—decided to read the works of the great mathematicians. While reading papers of the great French mathematician Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with finding curves and surfaces by optimizing certain parameters.

In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to symbolic logic. In 1849 he was appointed professor of mathematics at Queen's College in Cork, Ireland. In 1854 he published The Laws of Thought, his most famous work. In this book, Boole introduced what is now called Boolean algebra in his honor. Boole wrote textbooks on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole married in 1855; his wife was the niece of the professor of Greek at Queen's College. In 1864 Boole died from pneumonia, which he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.

The truth table for the exclusive or of two propositions is displayed in Table 4.

EXAMPLE 8

Let p and q be the propositions that state "A student can have a salad with dinner" and "A student can have soup with dinner," respectively. What is $p \oplus q$, the exclusive or of p and q?

Solution: The exclusive or of p and q is the statement that is true when exactly one of p and q is true. That is, $p \oplus q$ is the statement "A student can have soup or salad, but not both, with dinner." Note that this is often stated as "A student can have soup or a salad with dinner," without explicitly stating that taking both is not permitted.

EXAMPLE 9

Express the statement "I will use all my savings to travel to Europe or to buy an electric car" in propositional logic using the statement p: "I will use all my savings to travel to Europe" and the statement q: "I will use all my savings to buy an electric car."

Solution: To translate this statement, we first note that the or in this statement must be an exclusive or because this student can either use all his or her savings to travel to Europe or use all these savings to buy an electric car, but cannot both go to Europe and buy an electric car. (This is clear because either option requires all his savings.) Hence, this statement can be expressed as $p \oplus q$.

1.1.3 Conditional Statements ___ lec.2

We will discuss several other important ways in which propositions can be combined.

Definition 5

Let p and q be propositions. The *conditional statement* $p \to q$ is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \to q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

Assessment

The statement $p \to q$ is called a conditional statement because $p \to q$ asserts that q is true on the condition that p holds. A conditional statement is also called an **implication**.

The truth table for the conditional statement $p \to q$ is shown in Table 5. Note that the statement $p \to q$ is true when both p and q are true and when p is false (no matter what truth value q has).

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.		
p	q	$p \oplus q$
T	T	F
T	F	Т
F	T	T
F	F	F

input	output

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.		
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	Т