WHAT IS CLAIMED IS:

▶ 1. A method of operating a computer system that includes first and second ocessors and memory shared thereby, the method comprising: concurrently executing first and second instructions on respective ones of the first and second processors, the first and second instructions each reserving in a same predefine order plural respective locations of the memory, 7 wherein, for at least the first instruction, signaling of a fault corresponding to a later reserved one of the respective locations depends on a value read 8 from an earlier reserved one of the respective locations. 9 2. The method of claim 1, 1 wherein the predefined order is in accordance with a fixed total order of 2 locations within the memory. 3 3. The method of claim 1, 1 2 wherein the predefined order is one of ascending and descending memory 3 address order. 4. The method of claim 1, 1 2 wherein the reserving includes locking an associated cache-line. 5. The method of claim 1, 1 wherein the reserving locks at least the respective location, but substantially 2 3 less than all the memory. 1 6. The method of claim 1, 2 wherein the first and second instructions are linearizable synchronization 3 operations. 7. The method of claim 1, 1 2 wherein the first instruction is a double compare-and-swap instruction.

	•
1	8. The method of claim 1,
2	wherein the first instruction is a compound compare-and-swap instruction;
3	wherein the respective locations reserved by the compound compare-and-swap
4 .	instruction number N; and
5	wherein signaling of a fault corresponding to a later reserved one of N
6	locations depends on at least one value read from an earlier reserved
7	one the N locations.
1	9. The method of claim 1,
2	wherein the first instruction is a double compare-and-swap instruction; and
3	wherein, unless a value read from the earlier reserved one of the respective
4	locations compares to a corresponding test value, no fault
5	corresponding to the later reserved one of the respective locations is
6	signaled.
1	10. The method of claim 1,
2	wherein the execution of the first instruction includes access to the earlier
3	reserved one of the respective locations; and
4	wherein, unless the access succeeds, no fault corresponding to the later
5	reserved one of the respective locations is signaled.
1	11. The method of claim 1, wherein the execution of the first instruction
2	includes
3	a first access corresponding to an earlier reserved one of the respective
4	locations; and
5	an optional second access that signals a fault only if the first access succeeds.
1	12. The method of claim 1,
2	wherein the respective locations reserved by the first and second instructions
3	are disjoint; and
4	wherein the concurrent execution is non-blocking.

	1
1	13. A processor that implements an instruction that separately reserves plural
2	memory locations in an order prescribed by a fixed total order of the memory
3	locations.
1	14. The processor of claim 13,
2	wherein the fixed total order of the memory locations is one of ascending
3	memory address order and descending memory address order.
1	15. The processor of claim 13,
2	wherein the separately reserved memory locations include an earlier reserved
3	first memory location and a later reserved second memory location;
4	and
5	wherein signaling of a fault corresponding to the second memory location
6	depends on a value read from the first memory location.
1	16. The processor of claim 13.
2	wherein the instruction is a compound compare-and-swap instruction; and
3	wherein the instruction signals a fault corresponding to a later reserved one of
4	the memory locations only if a value read from an earlier reserved one
5	of the memory locations compares to a test value.
1	17. The processor of claim 13,
2	wherein the instruction signals a fault corresponding to a later reserved one of
3	the memory locations only if access to an earlier reserved one of the
4	memory locations succeeds.
1	18. The processor of claim 3, wherein access to at least the first memory
2	location is one of:
3	a compare-and-swap access
4	a test-and-set access;
5	a read-compute-conditional write access; and
6	a read-modify-write access.

1	19. The processor of claim 13,
2	wherein the reserving includes locking an associated cache line.
1	20. A computer system comprising:
2.	first and second processors and storage shared thereby;
3	the first and second processors each implementing an instruction that
4	separately reserves ocations of the storage addressed thereby in an
5	order prescribed by a fixed total order of the locations.
1	21. The computer system of claim 20,
2	wherein, on execution of the instruction, the locations addressed thereby
3	include an earlier reserved first location and a later reserved second
4	location; and
5	wherein signaling of a fault corresponding to the second location depends on a
6	value read from the first location.
1	22. The computer system of claim 20,
2	wherein the instruction is a compound compare-and-swap operation; and
3	wherein the instruction signals a fault corresponding to a later reserved one of
4	the locations only if a value read from an earlier reserved one of the
5	locations compares to a test value.
1	23. The computer system of claim 20,
2	wherein instances of the instruction that address disjoint sets of the locations
3	are concurrently executed by the first and second processors.
1	24. The computer system of claim 20, further comprising:
2	a coherently maintained set of caches including first and second caches
3	respectively associated with the first and second processors,
4	wherein, if a first instance of the instruction and a second instance of the
5	instruction address locations associated with distinct sets of cache
6	lines, then the first and second instances of the instruction are
7	concurrently executable by the first and second processors.

1	25. A computer program product encoded in at least one computer readable
2	medium, the computer program product comprising:
3	a first set of instructions executable on a first processor,
4	the first set including at least one instance of a particular instruction directing
5	the processor to separately reserve plural storage locations referenced
6	thereby in a predefined order such that concurrent execution of the
7	particular instruction and a corresponding instruction avoids deadlock,
8	the corresponding instruction also separately reserving plural storage
9	locations referenced thereby in the predefined order.
1	26. The computer program product of claim 25,
2	wherein the particular instruction itself provides reservation in the predefined
3	order.
1	27. The computer program product of claim 25,
2	wherein the first set includes additional instructions to ensure that storage
3	location references supplied to the particular instruction are ordered in
4	accordance with the predefined order.
1	28. The computer program product of claim 25, further comprising:
2	a second set of instructions executable on a second processor,
3	the second set including at least one instance of the corresponding instruction.
1	29. The computer program product of claim 25,
2	wherein the predefined order is ascending memory address order.
1	30. The computer program product of claim 25,
2	wherein the predefined order is descending memory address order.
1	31. The computer program product of claim 25,
2	wherein the particular instruction and the corresponding instruction are same
3 ·	instructions.

	1
1	32. The computer program product of claim 25,
2	wherein the particular instruction and the corresponding instruction each
3	implement a compound Compare-and-swap (nCAS) operation.
1	33. The computer program product of claim 25,
2	wherein the at least one computer readable medium is selected from the set of
3	a disk, tape or other magnetic, optical, or electronic storage medium
4	and a network, wireline wireless or other communications medium.
1	34. A computer system that allows two or more DCAS instructions to operate
2	concurrently if they operate on distinct cache lines.
1	35. A processor that implements a first instruction that reserves, in an
2	predefined order, plural storage locations referenced thereby, wherein concurrent
3	execution of the first instruction and a corresponding instruction that also reserves, in
4	the same predefined order, plural storage locations referenced thereby is non-blocking
5	if the first and the corresponding instructions reference distinct memory portions.
1	36. The processor of claim 35, further implementing the corresponding
2	instruction.
1	37. The processor of claim 35,
2	wherein the storage locations are sharable with a second processor; and
3	wherein the corresponding instruction is implemented at least by the second
4	processor.
1	38. The processor of claim 35,
2	wherein the reserving includes locking the referenced storage locations.
1	39. The processor of claim 35,
2	wherein the reserving includes locking cache lines associated with the
3	referenced storage locations.

- 20 -

1	40. A processor of claim 35,
2	wherein the predefined order is ascending memory address order.
_	
1	41. A processor of claim 35,
2	wherein the predefined order is descending memory address order.
1	42. The processor of claim 35,
2	wherein the first instruction and the corresponding instruction are same
3	instructions.
1	43. The processor of claim 35,
2	wherein the first instruction and the corresponding instruction both implement
3	a compound Compare-and-swap (nCAS) operation.
1	44. An apparatus comprising:
2	a memory store; and
3	means for separately reserving in response to a single instruction, plural
4	locations of the memory store in a predefined order in accordance with
5	a fixed total order of locations in the memory store.
1	45. The apparatus of claim 44, further comprising:
2	a cache,
3	wherein the means for separately reserving includes means for separately
4	locking cache lines associated with each of the plural locations.
1	46. The apparatus of claim 44, further comprising:
2	means for signaling, if at all, a fault corresponding to a later reserved one of
3	the locations based on a result of access to an earlier reserved one of
4	the locations.
1	47. A method of operating a computer system that includes a memory shared
2	by plural processors thereof, the method comprising:
3	in response to execution of a single instruction by one of the processors,

a

4	separately reserving plural locations of the memory; and
5	signaling a fault corresponding to a later reserved one of the locations
6	based on a value read from an earlier reserved one of the
7	locations.
1	48. The method of claim 47,
2	wherein, unless the value read from the earlier reserved location compares to a
3	corresponding test value, no fault corresponding to the later reserved
4	location is signaled.
1	49. The method of claim 47,
2	wherein the separately reserving includes separately locking at least the plural
3	locations, but substantially less than all the memory.
1	50. The method of claim 47,
2	wherein the computer system further includes cache storage; and
3	wherein the separately reserving includes separately locking respective cache
4	lines associated with the plural locations.
1	51. The method of claim 50,
2	wherein the cache storage includes a coherently maintained set of caches
3	including ones respectively associated with each of the plural
4	processors.
1	52. The mostle die Soloide 47
1	52. The method of claim 47,
2	wherein the instruction implements a compound Compare-and-swap (nCAS)
3	operation.
1	53. The method of claim 47,
2	wherein the instruction implements a Double Compare-and-swap (DCAS)
3	operation.
,	opolation.
	1

	\
1	54. The method of claim 47,
2	wherein at least one of the plural locations is identified by an operand of the
3	instruction.
1	55. A method of operating a processor, the method comprising:
2	in response to execution by the processor of a single instruction that separately
3	accesses plural memory locations,
4	accessing a first one of the memory locations; and
5	signaling a fault corresponding to a second one of the memory
6	locations depending on a result of the first memory location
7	access.
1	
1	56. The method of claim 55, further comprising:
2	in response to the execution of the single instruction,
3	reserving the first and second memory locations;
4	detecting the fault as part of the second memory location reservation;
5	and
6	signaling the fault, if at all, only upon success of the first memory
7	location access.
•	57 77 41 1 6 1 5 5
1	57. The method of claim 55,
2	wherein the first memory location access includes comparing a value read
3	from the first memory location to a corresponding test value; and
4	wherein the signaling is performed, if at all, only upon success of the
5	comparing.
1	58. The method of claim 55, further comprising:
2	reserving the first and second memory locations; and
3	signaling the fault corresponding to the second memory location, if at all,
4	based on a value read from the reserved first memory location.

1	59. A processor that implements an instruction that addresses first and second
2	memory locations but for which signaling of a fault corresponding to the second
3	memory location depends on a value read from the first memory location.
1	60. The processor of claim 59,
2	wherein, unless the value read compares to a test value, no fault corresponding
3	to the second memory location is signaled.
1	61. The processor of claim 59,
2	wherein the instruction is a compound compare-and-swap instruction.
1	62. The processor of claim 59
2	wherein the instruction separately reserves the first and second memory
3	locations;
4	wherein the fault, if any, corresponding to the second memory location is
5	detected upon reservation thereof, but signaled, if at all, based on the
6	value read from the reserved first memory location.
1	63. A computer program product encoded in at least one computer readable
2	medium, the computer program product comprising:
3	a set of instructions executable on a processor,
4	the set of instructions including at least one instance of an instruction directing
5	the processor to access first and second memory locations but for
6	which signaling of a fault corresponding to the second memory
7	location depends on a value read from the first memory location.
1	64. The computer program product of claim 63,
2	wherein the instruction further directs the processor to separately reserve the
3	first and second memory locations; and
4	wherein the fault, if any, corresponding to the second memory location is
5	detected upon reservation thereof, but signaled, if at all, based on the
6	value read from the reserved first memory location.
	1

1	65. The computer program product of claim 63,
2	wherein the instruction further directs the processor to reserve the first and
3	second memory locations in a predefined order in accordance with a
4	fixed total order of memory locations.
1	66. The computer program product of claim 63,
2	wherein, unless the value read compares to a test value, no fault corresponding
3	to the second memory location is signaled.
1	67. The computer program product of claim 63,
2	wherein the instruction is a compound compare-and-swap instruction.
1	68. The computer program product of claim 63,
2	wherein the at least one computer readable medium is selected from the set of
3	a disk, tape or other magnetic, optical, or electronic storage medium
4	and a network, wireline, wireless or other communications medium.
1	69. An apparatus comprising:
2	a memory store;
3	means for accessing in response to a single instruction, first and second
4	locations of the memory store; and
5	means for signaling, if at all, a fault corresponding to the second location
6	based on a value read from the first location.