

# Linguagens Formais e Autômatos (LFA)

Aula de 16/10/2013

Linguagens Livres de Contexto



### Características Formais da LLC's

Linguagens Livres de Contexto (LLC's) são classificadas como linguagens de tipo 2, na Hierarquia de Chomsky

Suas produções têm por característica padrões do tipo  $\alpha \rightarrow \beta$  onde:

- 1.  $|\alpha|$  = 1 e lpha é um símbolo não-terminal da linguagem
- 2.  $\beta$  é uma cadeia qualquer de terminais e não-terminais
  - V: conjunto (finito e não-vazio) dos símbolos terminais e não-terminais;
  - Σ: conjunto (finito e não-vazio) dos símbolos terminais; corresponde ao alfabeto da linguagem definida pela gramática;
  - P: conjunto (finito e não-vazio) das regras de produção, todas no formato α → β, com α ∈ (V − Σ) e β ∈ V\*;
  - S: raiz da gramática, S ∈ (V Σ).



### Aninhamento: Marca Registrada das LLC's

A representação de aninhamentos em gramáticas do tipo 2 decorre de uma propriedade característica das gramáticas deste tipo, denominada "Self-embedding Property". Um não-terminal Y é dito "self-embedded", ou **auto-recursivo central**, se, a partir dele, for possível derivar alguma forma sentencial em que o não-terminal Y ressurja, delimitado por cadeias não-vazias de terminais à sua esquerda e à sua direita:

$$Y \Rightarrow^* \alpha Y \beta$$
, com  $\alpha, \beta \in \Sigma^+$ 

Um não-terminal Z é dito simplesmente **auto-recursivo** se, a partir dele, for possível derivar alguma forma sentencial em que Z ressurja, acompanhado de pelo menos uma cadeia nãovazia de terminais à sua esquerda ou à sua direita:

$$Z \Rightarrow \alpha Z \beta$$
, com  $\alpha, \beta \in \Sigma^*, \alpha \beta \neq \varepsilon$ 

Se uma gramática livre de contexto G possui pelo menos um não-terminal auto-recursivo central, diz-se que G é **auto-embutida** (do inglês "self-embedded").



### Linguagens ESTRITAMENTE Livres de Contexto

Um símbolo não-terminal **essencial** é aquele que não pode ser removido da gramática (ou substituído) sob pena de provocar modificações na linguagem sendo definida. Uma linguagem L é dita **estritamente livre de contexto**, ou livre de contexto não-regular, se e apenas se todas as gramáticas que geram L forem auto-embutidas, ou seja, se todas elas possuírem pelo menos um não-terminal **auto-recursivo central essencial**.



O simples fato de uma gramática ser auto-embutida não garante a não-regularidade da linguagem definida: é possível identificar linguagens regulares geradas por gramáticas com não-terminais auto-recursivos centrais que, nesses casos, não são essenciais. O Exemplo 4.2 ilustra essa situação.

**Exemplo 4.2** A gramática cujas regras constituem o conjunto abaixo é do tipo 2 e possui um não-terminal auto-recursivo central  $(S, \text{ em decorrência da produção } S \rightarrow aSa)$ , podendo portanto ser caracterizada como uma gramática auto-embutida:

$$\{S \rightarrow aS,$$

$$S \rightarrow bS$$

$$S \rightarrow a$$
,

$$S \rightarrow b$$

 $S \rightarrow aSa$ 



### Linguagens ESTRITAMENTE Livres de Contexto

No entanto, a linguagem gerada por essa gramática é  $\{a,b\}^*$ , ou seja, a linguagem é regular. Na verdade, é fácil observar que essa linguagem também pode ser gerada por um conjunto de regras equivalente, em que a última produção da gramática acima é removida:

$$\begin{cases}
S & \to & aS \\
S & \to & bS \\
S & \to & a, \\
S & \to & b
\end{cases}$$

Tal fato ocorre, neste caso particular, porque a produção  $S \rightarrow aSa$  é **não-essencial** à gramática, ou seja, a sua inclusão no conjunto P de produções em nada contribui para modificar a linguagem definida pelas demais produções.





# Expressão de Padrões Sonoros (Linguagem Rítmica)



 $S \rightarrow \text{tempo, tempo} \mid \square$   $S \rightarrow \text{tempo, tempo, } S$  $\text{tempo} \rightarrow \square \mid \square \mid$ 



# Expressão de Padrões Visuais (Imagem Fractal)





$$52 \rightarrow 5$$

A imagem fractal exata tem uma particularidade em relação à gramática ao lado: seus nós-filhos de mesmo nível têm de ser raiz de sub-árvores de igual profundidade (altura).





### Expressão de Padrões Linguísticos

5 → Frase Nominal, Verbo, Preposição, Frase Nominal

Frase Nominal → 'Pedro' | 'Joana' | Artigo, Nome Verbo → 'trabalha' | 'joga' | 'mora' Preposição → 'com' Artigo → a Nome → menina



### Expressão de Padrões Linguísticos

5 → Frase Nominal, Verbo, Preposição, Frase Nominal

Frase Nominal → 'Pedro' | 'Joana' | Artigo, Nome Verbo → 'trabalha' | 'joga' | 'mora' Preposição → 'com' Artigo → a | o Nome → menina | menino



### Expressão de Padrões Linguísticos

5 → Frase Nominal, Verbo, Preposição, Frase Nominal

5 → 'que', Verbo, Preposição, Frase, Nominal

Frase Nominal → 'Pedro' | 'Joana' | Artigo, Nome | S Verbo → 'trabalha' | 'joga' | 'mora' Preposição → 'com'

Artigo → a

Nome → menina



### Quais das linguagens ilustradas são estritamente LLC's?

A Linguagem Rítmica?

A Linguagem Visual?

A Linguagem (pseudo)Natural?



### Exercício

Considere que os termos "a", "b", "c", "d", "e" são variáveis booleanas de uma linguagem de programação.

Considere também que, com os conectivos "AND", "OR" e "NOT" podem-se montar expressões booleanas, as quais podem conter sub-expressões delimitadas por parênteses balanceados.

Exemplo: "(a AND ((b OR c OR d) OR (d AND e)))"

Escreva uma Gramática Livre de Contexto (GLC) para caracterizar tais expressões booleanas.