1. (6 points) Write an equation for the linear function f where f(2) = 5 and f(4) = -1.

$$f(x) = \underline{\hspace{1cm}}$$

2. (12 points) Find the domain and the range of the function, and also state the equations for any vertical or horizontal asymptotes.

(a)
$$f(x) = -x^2 + 3$$

(b)
$$f(x) = \sqrt{4 - x^2}$$

(c)
$$f(x) = \frac{1}{x-3} + 2$$

3. (6 points) Find the inverse function $f^{-1}(x)$ for the function f(x) = 7x - 4.

4. (12 points) Find the coordinates of the vertex for the following quadratic functions.

(a)
$$f(x) = -2(x-3)^2 + 4$$

(b)
$$f(x) = x^2 - 4x + 7$$

- 5. (6 points) Consider the function $f(x) = -x^3 + 3$. True or false?

 - (b) $\lim_{x \to \infty} f(x) = \infty$
 - (c) $\lim_{x \to -\infty} f(x) = \infty$
- 6. (6 points) Let $f(x) = x^3$ and $g(x) = \sqrt[3]{x+1}$.
 - (a) What is (f+g)(3)?
 - (b) What is $(\frac{f}{g})(3)$?
 - (c) What is $(f \circ g)(x)$? What is its domain?
- 7. (6 points) Write in the simplified form a + bi.
 - (a) (4-5i)+(2+7i)
 - (b) (1-i)(2+4i)
 - (c) $\frac{i-4}{3i}$
- 8. (6 points) Write the inequality in interval notation. $|x-4| \ge 1$.

9. (8 points) Use the Rational Zeros Theorem to list all **possible** rational zeros for the function $f(x) = 3x^3 + x^2 + 2$. Then, plug in to find which ones are **actual** zeros.

Possible rational zeros: x =

Actual rational zeros: x =

10. (8 points) Use synthetic division to divide the following (Write the final answer in **fraction form**).

$$\frac{2x^3 - 5x^2 + 3x + 7}{x - 2}$$

11. (6 points) Find the zeroes of the following functions.

(a)
$$f(x) = 2x^2 + x - 1$$

x =

(b)
$$f(x) = x(x-2)(x-3)^2$$

 $x = \underline{\hspace{1cm}}$

12. (6 points) The graph of $f(x) = -x^3$ is drawn below. Draw $g(x) = (x-3)^3 - 5$. (Note: pay attention to the different scales on the axes)

13. (6 points) The graph of f(x) is drawn below. Draw the graph of $f^{-1}(x)$.

14. (6 points) Please sketch the graph of f(x) = (x+1)(x-2)(x-3).

