Envelopes, Support Functions and the Convex Hull

Jeffrey Rosenbluth

April 2015

We define both envelopes and convex hulls in terms of *support functions* and show that the convex hull is a (possibly proper) subset of the envelope. We start with the definition of support functions on \mathbb{R}^n .

Definition 1 (Support Function). Let S be a set in \mathbb{R}^n . We define the support function q_S as

$$q_S(v) = \sup_{s \in S} \langle s, v \rangle$$

where $\langle \cdot, \cdot \rangle$ denotes inner product.

Note that $q_S(v)$ may be ∞ for some v.

In contrast to diagrams we will not distinguish between points and vectors, taking the definition of both to be elements in \mathbb{R}^n . This allows us to fix the origin at 0 and to consider two diagrams that are identical except for their origins to be translations of one another.

From the diagrams documentation and Definition 1 we can rewrite the definition of an envelope in terms of its support function q_d .

Definition 2 (Envelope). The envelope of a diagram d in direction v is

(1)
$$e_d(v) = \sup_{u \in d} \frac{\langle u, v \rangle}{\|v\|}$$

$$= \sup_{u \in d} \langle u, v / || v || \rangle$$

$$= q_d(v/||v||)$$

We can create an intensional representation of the envelope by taking the union over all v of the sets

$$\{av : a \le e_d(v)\} \cap \{bv : b \le e_d(-v)\}$$

Therefore if we can represent the convex hull as the union over all v of the sets

$$\{av : a \le c_d(v)\} \cap \{bv : b \le c_d(-v)\}$$

where $c_d(v) \leq e_d(v)$, then we will have shown the convex hull of d is a subset of its envelope.

¹The definition of a support function can be generalized to arbitrary vector spaces. Let S be any set in a vector space X. We define the support function q_S on the dual X' of X as $q_S(\ell) = \sup_{s \in S} \ell(s)$ for any linear function ℓ . (see *Linear Algebra*, by Peter Lax, 1997 or just about any text book on linear functional analysis).

To define the convex hull in terms of the support function we use the following theorem. ²

Theorem 1 (Convex Hull). The closed convex hull of any set S is the set of points x satisfying $\langle u, x \rangle \leq q_S(u)$ for all u in \mathbb{R}^n .

Theorem 2. The convex hull of a diagram is a subset of its envelope

PROOF: We consider all points in the convex hull of diagram d that lie on some vector v, these points have the form $c_d(v)v$ for some scalar $c_d(v)$. By Theorem 1, for all u, these points must satisfy

$$\langle u, c_d(v)v \rangle \le q_d(u)$$

$$(5) c_d(v)\langle u, v\rangle \le q_d(u)$$

(6)
$$c_d(v) \le \frac{q_d(u)}{\langle u, v \rangle}$$

Since the last inequality hold for all u we have,

(7)
$$c_d(v) \le \inf_{u} \frac{q_d(u)}{\langle u, v \rangle}$$

$$\leq \frac{q_d(v)}{\langle v, v \rangle}$$

(9)
$$= q_d(v/||v||) = e_d(v)$$

and hence $c_d(v) \leq e_d(v)$ which is sufficient to prove the Theorem as explained above.

Finally, in order to show that the convex hull may be a proper subset of the envelope it is enough to find some diagram d and vector v such that $c_d(v) < e_d(v)$. We take d equal to the horizontal line from (0,0) to (1,0) in \mathbb{R}^2 and v=(1,1). Then

(10)
$$e_d((1,1)) = \sup_{x \in [0,1]} \frac{\langle (x,0), (1,1) \rangle}{\sqrt{2}}$$

$$= \sup_{x \in [0,1]} \frac{x}{\sqrt{2}}$$

$$= \sup_{x \in [0,1]} \frac{x}{\sqrt{2}}$$

$$(12) = \frac{1}{\sqrt{2}}$$

The convex hull of d is d since a line segment is convex, and the only point in d lying on (1,1) is (0,0), hence $c_d((1,1)) = 0$ which is less than $1/\sqrt{2}$, thus $c_d((1,1)) < e_d((1,1))$.

²Linear Algebra, by Peter Lax, 1997, page 162