Chapter 29: The Minimum distance.

In which we again use monotonicity.

Given f[0..M), g[0..N) of int, which contain values. $\{0 \le M \land 0 \le N\}$ We are also given that both of these are ascending.

We are asked to establish

Post:
$$r = \langle \downarrow i, j : 0 \le i < M \land 0 \le j < N : |f.i - g.j| \rangle$$

Where |x| means the absolute value of x.

Domain modelling.

* (0) C.m.n =
$$\langle \downarrow i,j : m \le i < M \land n \le j < N : |f.i - g.j| \rangle$$

Appealing to emptying or falsifying the range we immediately get the following theorems

$$-(1) C.M.n = Id \downarrow ,0 \le n \le N$$

-(2) C.m.N = Id \(\psi,0 \le m \le M \)

We observe

$$C.m.n$$

$$= \{(0)\}$$

$$\langle \downarrow i,j : m \le i < M \land n \le j < N : |f.i - g.j| \rangle$$

$$= \{split off i=m term \}$$

$$\langle \downarrow i,j : m+1 \le i < M \land n \le j < N : |f.i - g.j| \rangle \downarrow \langle \downarrow j : n \le j < N : |f.m - g.j| \rangle$$

$$= \{(0) (5) \}$$

$$C.(m+1).n \downarrow D.n$$

$$- (3) \text{ C.m.n} = \text{ C.(m+1).n} \downarrow \text{ D.n} , 0 \le m < M$$

We observe

$$- (4) \text{ C.m.n} = \text{ C.m.(n+1)} \downarrow \text{ E.m} , 0 \le n < \text{N}$$

* (5) D.n =
$$\langle \downarrow j : n \le j < N : |f.m - g.j| \rangle$$

* (6) E.m =
$$\langle \downarrow i : m \le i < M : |f.i - g.n| \rangle$$

Now lets explore the monotonicity of f and g.

$$-(7) D.n = g.n - f.m \Leftarrow f.m \leq g.n$$

$$-(9) \text{ E.m} = ? \iff \text{f.m} < \text{g.n}$$

$$-(10)$$
 E. = f.m - g.n \Leftarrow g.n \leq f.m

Now let us return to our program. We can now rephrase our postcondition as

Post :
$$r = C.0.0$$

Choose invariants.

P0 :
$$r \downarrow C.m.n = C.0.0$$

P1:
$$0 \le m \le M \land 0 \le n \le N$$

Establish invariants.

$$r, m, n := Id \downarrow, 0, 0$$

Termination.

(1) and (2) allow us to conclude that

$$P0 \land P1 \land (m=M \lor n=N) \Rightarrow Post$$

Guard.

 $m\neq M \land n\neq N$

```
Loop body.
```

We observe

P0
= {definition P0}

$$r \downarrow C.m.n = C.0.0$$

= {case analysis $f.m \le g.n$, (7)}
 $r \downarrow C.(m+1).n \downarrow (g.n - f.m) = C.0.0$
= {WP}
 $(r, m := r \downarrow (g.n - f.m), m+1).P0$

Giving us

if
$$f.m \le g.n \rightarrow r$$
, $m := r \downarrow (g.n - f.m)$, $m+1$

We observe

which gives us

if
$$g.n \le f.m \rightarrow r$$
, $n := r \downarrow (f.m - g.n)$, $n+1$

Finished program.