Technische Dokumentation: Hardware-Schaltpläne

GNSS-Sensor Schaltplan

Verbindungstabelle GNSS-Sensor

ESP32 Pin	Verbunden mit	Funktion
GPIO 16	GNSS TX	UART Datenempfang
GPIO 17	GNSS RX	UART Datenübertragung
GPIO 23	SD MOSI	SPI Master Out Slave In
GPIO 19	SD MISO	SPI Master In Slave Out
GPIO 18	SD SCK	SPI Clock
GPIO 5	SD CS	SD Chip Select
RED_LED	Rote LED	Fehleranzeige
GREEN_LED	Grüne LED	Betriebsanzeige
5V	Stromversorgung	Betriebsspannung
GND	Masse	Gemeinsamer Massepunkt

Spezifikation der Komponenten

1. ESP32-WROOM-32

• Betriebsspannung: 3,3V (5V über USB)

o CPU: Dual-Core Xtensa LX6, bis zu 240 MHz

o Flash-Speicher: 4 MB

o RAM: 520 KB

2. GNSS-Modul

Betriebsspannung: 3,3V

o Stromaufnahme: ca. 30-50 mA

o Empfänger: GPS, GLONASS, BeiDou, Galileo

Update-Rate: 1 Hz (Standard)

3. SD-Kartenmodul

Betriebsspannung: 3,3V

Unterstützt SD- und SDHC-Karten

Kommunikation: SPI

4. Status-LEDs

Betriebsspannung: 3,3V

Vorwiderstand: 220 Ohm pro LED

o Farben: Rot, Grün, Gelb

RPM-Sensor Schaltplan

Verbindungstabelle RPM-Sensor

ESP32 Pin	Verbunden mit	Funktion
GPIO 15	Hall-Sensor	Impulssignal
GPIO 21	SDA (I2C-1)	I2C-Datenleitung für OLED und RTC
GPIO 22	SCL (I2C-1)	I2C-Taktleitung für OLED und RTC
GPIO 16	SDA (I2C-2)	I2C-Datenleitung für EEPROM
GPIO 17	SCL (I2C-2)	I2C-Taktleitung für EEPROM
GPIO 25	PLUS-Taste	Werterhöhung (blau)
GPIO 26	MINUS-Taste	Wertverringerung (weiß)
GPIO 27	SET-Taste	Bestätigung/Einstellung (gelb)
GPIO 12	Status-LED	Betriebsanzeige
GPIO 5	SD CS	SD Chip Select
MOSI	SD MOSI	SPI Master Out Slave In
MISO	SD MISO	SPI Master In Slave Out
SCK	SD SCK	SPI Clock
5V	Stromversorgung	Betriebsspannung
GND	Masse	Gemeinsamer Massepunkt

Spezifikation der Komponenten

1. ESP32-WROOM-32

- Betriebsspannung: 3,3V (5V über USB)
- o CPU: Dual-Core Xtensa LX6, bis zu 240 MHz

- Flash-Speicher: 4 MB
- o RAM: 520 KB

2. Hall-Sensor

- Betriebsspannung: 3,3V-5V
- Ausgang: Digital (High/Low)
- Empfindlichkeit: Optimiert für 1-3 mm Abstand zum Magneten

3. OLED-Display

- o Typ: 128x64 Pixel
- o Schnittstelle: I2C
- Betriebsspannung: 3,3V

4. **DS3231 RTC**

- Hochpräzise Echtzeituhr
- o I2C-Schnittstelle
- o Backup-Batterie: CR2032

5. SD-Kartenmodul

- Betriebsspannung: 3,3V
- Unterstützt SD- und SDHC-Karten bis 16 GB
- Kommunikation: SPI

6. 24AA512-MIC EEPROM

- Kapazität: 64 KB
- o I2C-Schnittstelle
- o Datenhaltung: > 100 Jahre
- o Schreib-/Lesezyklenzahl: >1 Million

7. Tasten und LED

- 3 Tasten mit Pull-up-Widerständen (10 kOhm)
- LED mit Vorwiderstand (220 Ohm)

Montage der Magnete

Für die korrekte Funktion des RPM-Sensors ist die richtige Montage der Magnete entscheidend:

Generelle Montage eines Hall Sensors: Die Anzahl der Magnete muss mit dem verwendeten Progamm des ESP32 abgestimmt sein. Im Fall dieses Projektes werden 4 Magnete pro Umdrehung gemessen.

- Verwenden Sie 4 Magnete, gleichmäßig verteilt um den Umfang des rotierenden Teils
- Abstand zwischen Magneten und Hall-Sensor: max 18-20 mm da in der in diesem Projekt verwendeten Magnetmanschette jeweils 4 starke Neodym-Magnete pro Position zum Einsatz kommen. (sonst Abstand 1-3 mm)
- Die Magnete sollten alle mit der gleichen Polarität zum Sensor ausgerichtet sein
- Befestigen Sie die Magnete sicher, um ein Lösen während des Betriebs zu vermeiden

Schematische Darstellung der Magnete

Anhang: Bildmaterial

GNSS-Sensor

GNSS-Sensor Grundplatine mit Komponenten

RPM-Sensor

RPM-Box Hauptplatine (Ansicht 1)

RPM-Box Hauptplatine (Ansicht 2)

RPM-Box Hauptplatine mit EEPROM

Montage des Hall-Sensors

GitHub-Repositories

Der vollständige Quellcode, Schaltpläne und 3D-Druckvorlagen für beide Projekte sind in den folgenden GitHub-Repositories verfügbar:

GNSS-Sensor

Repository: github.com/hansratzinger/GnssSensor

RPM-Sensor

Repository: github.com/hansratzinger/RpmSensor

Im Ordner /3d beider Repositories finden Sie .3mf Dateien für den 3D-Druck aller benötigten Gehäuseteile, Halterungen und anderer Komponenten.

Diese technische Dokumentation ist Teil der Dokumentation des RNLI-Projekts. Version 1.0, Juli 2025