Tema II: Teoria de martingales a temps discret

Josep Vives

Primavera 2017

1 Conceptes bàsics de la teoria de processos estocàstics a temps discret

En modelització determinista la dinàmica d'un fenomen es descriu mitjançant una funció

$$f: t \in \mathbb{T} \longrightarrow f(t) \in \mathbb{R}$$

on \mathbb{T} és un conjunt que representa el temps. A temps continu es té habitualment $\mathbb{T} = [0, T]$ o $\mathbb{T} = [0, \infty)$. A temps discret tindrem $\mathbb{T} := \{0, 1, \dots, N\}$ o $\mathbb{T} = \mathbb{N}$. Quan calgui escriurem $\mathbb{T}^* := \mathbb{T} - \{0\}$.

En modelització estocàstica treballarem amb processos estocàstics.

Definició 1.1 Sigui $(\Omega, \mathcal{F}, \mathbb{P})$ un espai de probabilitat. Un procés estocàstic X és una aplicació:

$$X: (\omega, t) \in \Omega \times \mathbb{T} \longrightarrow X_t(\omega) \in \mathbb{R}$$

mesurable, és a dir, tal que

$$X^{-1}(B) \in \mathcal{F} \otimes \mathcal{B}(\mathbb{T})$$

per a tot $B \in \mathcal{B}(\mathbb{R})$.

En aquest sentit, un procés estocàstic és una funció que depèn no només del temps sinó també d'un element ω d'un espai de probabilitat.

En aquest curs considerarem només procéssos estocàstics a temps discret, és a dir, suposarem sempre que $\mathbb{T} := \{0, 1, \dots, N\}$ per a cert $N \in \mathbb{N}$ fixat o $\mathbb{T} = \mathbb{N}$. La σ -àlgebra associada a \mathbb{T} serà el conjunt de parts de \mathbb{T} en tots els casos. Escriurem $n \in \mathbb{T}$ i $X_n(\omega)$.

Observació 1.2

• Si fixem $n \in \mathbb{T}$, X_n és una variable aleatòria de Ω a \mathbb{R} . Per tant, un procés estocàstic és en particular una successió de variables aleatòries indexada per \mathbb{T} , és a dir, una seqüència d'aplicacions

$$X_n: \omega \in \Omega \longrightarrow X_n(\omega) \in \mathbb{R}$$

tals que

$$X_n^{-1}(B) \in \mathcal{F}$$

per a tot borelià $B \in \mathcal{B}$ i $n \in \mathbb{T}$

• Si en canvi fixem ω , tenim per a cada ω , una funció mesurable

$$X(\omega, \cdot) : n \in \mathbb{T} \longrightarrow X(\omega, n) = X_n(\omega) \in \mathbb{R}.$$

Això ens permet interpretar un procés X com l'elecció a l'atzar segons la llei \mathbb{P} d'una funció en el conjunt de funcions de \mathbb{T} a \mathbb{R} , que podem denotar per $\mathbb{R}^{\mathbb{T}}$, o en un subconjunt d'aquest conjunt.

El segon concepte essencial de la teoria de processos estocàstics és el concepte de filtració.

Definició 1.3 Una filtració associada a un espai de probabilitat $(\Omega, \mathcal{F}, \mathbb{P})$ és una successió de σ -àlgebres $\mathbb{F} := \{\mathcal{F}_n, n \in \mathbb{T}\}$ tals que

- $\mathcal{F}_n \subset \mathcal{F}, \forall n \in \mathbb{T},$
- $\mathcal{F}_{n-1} \subset \mathcal{F}_n, \forall n \in \mathbb{T}^*$.

Un espai de probabilitat amb una filtració associada $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ s'anomena espai de probabilitat filtrat.

Definició 1.4 Donat un procés estocàstic X es defineix la seva filtració natural com la successió de σ -àlgebres

$$\mathcal{F}_n := \sigma\{X_k, k \le n\}$$

és a dir, les σ -àlgebres generades per les propies variables del procés.

Definició 1.5 Es diu que un procés estocàstic X definit sobre un espai de probabilitat filtrat és adaptat si per a cada $n \in \mathbb{T}$, X_n és \mathcal{F}_n -mesurable.

Observació 1.6 Notem que tot procés estocàstic està adaptat a la seva filtració natural.

Definició 1.7 Un procés X es diu que és previsible si X_0 és \mathcal{F}_0 -mesurable i X_n és \mathcal{F}_{n-1} - mesurable per a tot $n \in \mathbb{T}^*$.

Observació 1.8 Òbviament, tot procés previsible és adaptat.

Observació 1.9 Completació.

- Donat un espai de probabilitat (Ω, F, P), es diu que un subconjunt d' Ω
 és negligible si està inclòs en un subconjunt de F de probabilitat nul·la.
- 2. Es diu que \mathcal{F} està completada si conté tots els conjunts negligibles. Evidentment, la probabilitat de qualsevol conjunt negligible és 0. Es diu aleshores que $(\Omega, \mathcal{F}, \mathbb{P})$ és un espai de probabilitat complet.
- 3. En un espai de probabilitat complet, es diu que una filtració està completada si F₀ conté tot els conjunts de probabilitat nul·la. Evidentment, aleshores, totes les σ-àlgebres contenen tots els conjunts de probabilitat nul·la. Intuitivament, això vol dir que ja en n = 0 sabem quins són els conjunts de trajectòries de probabilitat nul·la.
- 4. Observem que si Ω és un conjunt finit o numerable, l'únic conjunt de probabilitat nul·la és el buit i per tant $\mathcal{F} = \mathcal{P}(\Omega)$ ja és una σ -àlgebra completada.
- 5. S'anomena σ-àlgebra trivial a la σ-àlgebra formada per Ω i Ø. La σ-àlgebra trivial completada és la σ-àlgebra generada per tots els conjunts de probabilitat nul·la de F i per tant està formada per tots els conjunts de probabilitat 0 i tots els de probabilitat 1.

6. Observem que donat un procés estocàstic X, la variable X_0 és constant quasi-segurament si i només si $\sigma\{X_0\}$ és la σ -àlgebra trivial completada.

En efecte, d'una banda, si X=c quasi-segurament, l'antiimatge de qualsevol borelià B és un conjunt de probabilitat 0 si $c \notin B$ i és un conjunt de probabilitat 1 si $c \in B$. D'altra banda, si X pren dos valors diferents c_1 i c_2 amb probabilitats positives, necessàriament $\sigma\{X_0\}$ ha d'incloure $X_0^{-1}(c_1)$ i $X_0^{-1}(c_2)$ i aquests conjunts tenen probabilitats diferents de 0 i 1. Per tant, $\sigma\{X_0\}$ no pot ser la σ -àlgebra trivial completada.

2 Martingales

No pretenem aqui desenvolupar una teoria completa de martingales; només veure els conceptes bàsics i necessaris per a la modelització financera. Suposarem en tota la resta del capítol que treballem en un espai de probabilitat filtrat completat.

Definició 2.1 Es diu que un procés $M := \{M_n, n \in \mathbb{T}\}$ és una martingala respecte una filtració \mathbb{F} si

- i) M és un procés adaptat a F.
- ii) $\mathbb{E}(|M_n|) < \infty$ per a tot $n \in \mathbb{T}$. És a dir, totes les variables del procés són integrables.
- iii) $E[M_n|\mathcal{F}_{n-1}] = M_{n-1}, q.s., \forall n \in \mathbb{T}^*.$

Observació 2.2 Notem que la tercera propietat es pot re-escriure com

$$E[M_n - M_{n-1} | \mathcal{F}_{n-1}] = 0, q.s., \forall n \in \mathbb{T}^*.$$

Definició 2.3 Es diu que un procés M és una supermartingala si es compleixen les propietats (i) i (ii) de la definició anterior i

$$E[M_n|\mathcal{F}_{n-1}] \le M_{n-1}, q.s., \forall n \in \mathbb{T}^*.$$

Definició 2.4 Es diu que un procés M és una submartingala si es compleixen les propietats (i) i (ii) de la definició anterior i

$$E[M_n|\mathcal{F}_{n-1}] \ge M_{n-1}, q.s., \forall n \in \mathbb{T}^*.$$

Observació 2.5 Notem que tota martingala és en particular una submartingala i una supermartingala.

Observació 2.6 M és una martingala si i només si per a tot $j \geq 0$,

$$E[M_{n+i}|\mathcal{F}_n] = M_n.$$

 $Aix\grave{o}$ es veu immediatament aplicant recursivament, per a tot $j\geq 2,$ la igualtat

$$E[M_{n+j}|\mathcal{F}_n] = E[E[M_{n+j}|\mathcal{F}_{n+j-1}]|\mathcal{F}_n] = E[M_{n+j-1}|\mathcal{F}_n],$$

conseqüència de la propietat de la torre de les esperances condicionades. Per a supermartingales i submartingales es té un resultat anàleg.

Proposició 2.7 Si M és una martingala, $\mathbb{E}(M_n) = \mathbb{E}(M_0)$, $\forall n \in \mathbb{T}$. En el cas de supermartingales es té $\mathbb{E}(M_n) \leq \mathbb{E}(M_{n-1})$ i en el cas de submartingales, $\mathbb{E}(M_n) \geq \mathbb{E}(M_{n-1})$. És a dir, una martingala és un procés amb esperança constant, una supermartingala és un procés amb esperança decreixent i una submartingala, un procés amb esperança creixent.

Prova: Notem que en el cas d'una martingala,

$$\mathbb{E}(M_n) = \mathbb{E}(E[M_{n+1}|\mathcal{F}_n]) = \mathbb{E}(M_{n+1}).$$

La primera igualtat és deguda a la definició de martingala i la segona a una propietat bàsica del concepte d'esperança condicionada.

La prova en el cas de supermartingales i submartingales és anàloga.

3 Exemples

1. Sigui $\{X_n, n \geq 1\}$ uns successió de variables aleatòries independents i identicament distribuïdes, còpies de X. Suposem que X és integrable i té esperança $\mu \in \mathbb{R}$. Definim $M_0 = c$, constant, i per a cada n,

$$M_n = c + X_1 + \dots + X_n.$$

Considerem com a filtració, la filtració generada per les variables X_n , és a dir, $\mathcal{F}_0 = \sigma\{c\}$ i

$$\mathcal{F}_n := \sigma\{X_j, j \leq n\}.$$

El procés M satisfà les dues primeres propietats de martingala ja que

$$\sigma\{X_i, j \leq n\} = \sigma\{M_i, j \leq n\}, \forall n \in \mathbb{T}$$

i la suma finita de variables integrables és integrable. Finalment,

$$E[M_n - M_{n-1}|\mathcal{F}_{n-1}] = E[X_n|\mathcal{F}_{n-1}] = \mathbb{E}(X) = \mu.$$

Per tant, si $\mu > 0$ es tracta d'una submartingala, si $\mu = 0$ d'una martingala i si $\mu < 0$ d'una supermartingala.

Notem que aquest exemple descriu l'evolució del capital d'un jugador que en cada jugada independent juga a un joc amb esperança de guany μ . La variable M_n representa el capital després de la jugada n-èssima. Per exemple en el cas de la ruleta francesa, si juguem a vermell o negre, tenim $\mu = \frac{18}{37} - \frac{19}{37} = -\frac{1}{37}$, és a dir, una esperança lleugerament negativa.

2. Sigui $\{X_n, n \geq 1\}$ uns successió de variables aleatòries independents i identicament distribuïdes, còpies de X. Suposem que X és positiva i té esperança μ . Definim $M_0 = c \geq 0$, constant, i per a cada n,

$$M_n = cX_1 \cdots X_n.$$

Considerem com a filtració, la filtració generada per les variables X_n , és a dir, $\mathcal{F}_0 = \sigma\{c\}$ i

$$\mathcal{F}_n := \sigma\{X_j, j \leq n\}.$$

El procés M satisfà les dues primeres propietats de martingala ja que

$$\sigma\{X_j, j \le n\} = \sigma\{M_j, j \le n\}, \forall n \in \mathbb{T}$$

i utlitzant la independència i la distribució idèntica,

$$\mathbb{E}(cX_1\cdots X_n)=cE(X)^n=c\mu^n.$$

Finalment,

$$E[M_n|\mathcal{F}_{n-1}] = E[M_{n-1}X_n|\mathcal{F}_{n-1}] = M_{n-1}\mathbb{E}(X) = \mu M_{n-1}.$$

Per tant, si $\mu > 1$ es tracta d'una submartingala, si $\mu = 1$ d'una martingala i si $\mu < 1$ d'una supermartingala.

3. Sigui \mathbb{F} una filtració i X una variable aleatòria integrable. Aleshores

$$M_n := E[X|\mathcal{F}_n]$$

és una martingala.

Evidentment, M_n és \mathcal{F}_n -mesurable i

$$\mathbb{E}(|M_n|) = \mathbb{E}(|E[X|\mathcal{F}_n]|) \le \mathbb{E}(E[|X||\mathcal{F}_n]) = \mathbb{E}(|X|) < \infty.$$

Finalment,

$$\mathbb{E}(M_n | \mathcal{F}_{n-1}) = E[E[X | \mathcal{F}_n] | \mathcal{F}_{n-1}] = E[X | \mathcal{F}_{n-1}] = M_{n-1}.$$

4. Si M és una martingala i $Y_n := |M_n|$, Y és una submartingala. En efecte, la mesurabilitat i la integrabilitat de les Y_n són evidents ja que M és una martingala. Pel que fa a la tercera propietat, tenim

$$E[Y_n|\mathcal{F}_{n-1}] = E[|M_n||\mathcal{F}_{n-1}] \ge |E[M_n|\mathcal{F}_{n-1}]| = |M_{n-1}| = Y_{n-1}.$$

5. Sigui $Z := \{Z_n, n \in \mathbb{T}\}$ una successió de variables aleatòries adaptades a una filtració \mathbb{F} i integrables. Suposem $\mathbb{T} := \{0, 1, ..., N\}$. Definim $X_N := Z_N$ i per a tot $n \leq N - 1$,

$$X_n := \max\{Z_n, E[X_{n+1}|\mathcal{F}_n]\}.$$

La mesurabilitat és evident. Pel que fa a la integrabilitat notem que

$$|X_n| \le |Z_n| + E[|X_{n+1}||\mathcal{F}_n]$$

i per tant

$$\mathbb{E}|X_n| \le \mathbb{E}(|Z_n|) + \mathbb{E}(|X_{n+1}|).$$

Tenint en compte que $\mathbb{E}(|X_N|) = \mathbb{E}(|Z_N|) < \infty$, la integrabilitat es dedueix per inducció inversa de n = N fins a n = 0. En efecte,

$$\mathbb{E}|X_{N-1}| \le \mathbb{E}(|Z_{N-1}|) + \mathbb{E}(|X_N|) = \mathbb{E}(|Z_{N-1}|) + \mathbb{E}(|Z_N|) < \infty,$$

i aplicant aquesta idea recursivament tenim

$$\mathbb{E}(|X_n|) \le \sum_{j=n}^N \mathbb{E}(|Z_j|).$$

Finalment, per construcció, és clar que

$$X_n \ge E[X_{n+1}|\mathcal{F}_n]$$

i per tant es tracta d'una supermartingala.

Aquesta supermartingala s'anomena envoltant de Snell del procés Z i juga un paper important en la valoració d'opcions financeres de tipus americà.

4 Transformacions d'una martingala

Definició 4.1 Donada una martingala M, un procés previsible i afitat H i una constant x_0 , respecte una filtració donada \mathbb{F} , es defineix la transformació de la martingala M pel procés previsible H com el procés $X := \{X_n, n \in \mathbb{T}\}$ tal que

$$X_n := x_0 + \sum_{k=1}^n H_k(M_k - M_{k-1}), n \in \mathbb{T}.$$

Proposició 4.2 La transformació d'una martingala és una martingala.

Prova: Està clar que X és adaptat. L'afitació del procés H en garanteix la integrabilitat. Finalment, com que H és previsible,

$$E[X_{n+1} - X_n | \mathcal{F}_n] = E[H_{n+1}(M_{n+1} - M_n) | \mathcal{F}_n] = H_{n+1}E[M_{n+1} - M_n | \mathcal{F}_n] = 0.$$

I passa el mateix amb les submartingales i les supermartingales si a més a més suposem que el procés H és positiu.

Proposició 4.3 Si H és un procés previsible, afitat i positiu, i M és una supermartingala o una submartingala, la transformació de M per H, conserva el caràcter de submartingala o supermartingala.

Prova: Sigui Y la transformació de M. Es té

$$E[Y_{n+1} - Y_n | \mathcal{F}_n] = H_{n+1} E[M_{n+1} - M_n] | \mathcal{F}_n],$$

i si H és positiu, l'atre terme del producte de la dreta manté el caràcter de submartingala o supermartingala. \blacksquare

Notem que H és pot interpretar com el model d'estratègia d'inversió d'un jugador en un casino on M representa l'evolució dels resultats del joc i X l'evolució del capital del jugador. Deprés de i-1 jugades el jugador decideix apostar H_i (una quantitat \mathcal{F}_{i-1} -mesurable), i després de la jugada i-èssima el seu guany és $H_i(M_i-M_{i-1})$. El fet que el caràcter de M es mantingui a X mostra que cap estratègia que no prevegi el futur (previsible) i que tingui un límit d'aposta màxima pot garantir guanys en el cas d'una supermartingala.

De fet, la transformació d'una martingala permet caracteritzar-la, com mostra el resultat següent:

Proposició 4.4 Sigui $M := \{M_n, n \geq 0\}$ un procés adaptat i integrable. Aleshores M és una martingala si i només si per a tot procés previsible i afitat H i per a tot $n \geq 1$, tenim

$$\mathbb{E}(\sum_{i=1}^{n} H_i(M_i - M_{i-1})) = 0.$$

Prova:

1. Suposem primer que M és una martingala. Sigui H un procés previsible i afitat qualsevol. Podem definir $X_0:=0$ i

$$X_n := \sum_{i=1}^n H_i(M_i - M_{i-1}).$$

Això és una transformació d'una martingala i per tant és també una martingala, com acabem de veure. En particular, la seva esperança és constant i per tant $\mathbb{E}(X_n) = \mathbb{E}(X_0) = 0$ per a qualsevol $n \geq 0$.

2. Fixem un $m \geq 1$ qualsevol. Sigui $A \in \mathcal{F}_{m-1}$. Podem definir el procés previsible H tal que $H_n = 0$ per a tot $n \neq m$ i $H_m := \mathbbm{1}_A$. Aleshores, si $n \geq m$, d'acord amb la hipòtesi,

$$\mathbb{E}(\sum_{i=1}^{n} H_i(M_i - M_{i-1})) = \mathbb{E}(H_m(M_m - M_{m-1})) = \mathbb{E}(\mathbb{1}_A(M_m - M_{m-1})) = 0.$$

Per tant, $\mathbb{E}(\mathbb{1}_A(M_m - M_{m-1})) = 0$ per a tot $A \in \mathcal{F}_{m-1}$. I això implica

$$E[M_m - M_{m-1}|\mathcal{F}_{m-1}] = 0,$$

i per tant M és una martingala.

5 Instants d'aturada

Definició 5.1 Donada una filtració $\mathbb{F} := \{\mathcal{F}_n, n \geq 0\}$, es defineix instant d'aturada com una variable aleatòria

$$\tau: \omega \in \Omega \longrightarrow \tau(\omega) \in \mathbb{T} \cup \{\infty\}$$

tal que per a tot $n \in \mathbb{T}$,

$$\{\tau \leq n\} \in \mathcal{F}_n$$
.

Observació 5.2 Notem que $\{\tau \leq n\} \in \mathcal{F}_n$ per a tot $n \in \mathbb{T}$ si i només si $\{\tau = n\} \in \mathcal{F}_n$ per a tot $n \in \mathbb{T}$. Això és una conseqüència immediata de les igualtats

$$\{\tau = n\} = \{\tau \le n\} - \{\tau \le n - 1\}$$

i

$$\{\tau \le n\} = \bigcup_{j=0}^{n} \{\tau = j\}.$$

Exemple 5.3 Donat un procés X adaptat a una filtració \mathbb{F} i un borelià $B \in \mathcal{B}$, es defineix τ^B com l'instant d'entrada del procés en B, és a dir,

$$\tau^B(\omega) := \min\{n : X_n(\omega) \in B\}.$$

Aquest instant és un instant d'aturada ja que

$$\{\tau^B = n\} = \{X_0 \notin B, \dots X_{n-1} \notin B, X_n \in B\} = \bigcap_{k=0}^{n-1} X_k^{-1}(B^c) \cap X_n^{-1}(B) \in \mathcal{F}_n.$$

La proposició següent recull algunes propietats elementals dels instants d'aturada.

Proposició 5.4 Siguin S i T dos instants d'aturada. Es té

- 1. $S \vee T$ i $S \wedge T$ són instants d'aturada.
- 2. La classe de subconjunts

$$\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \le n \} \in \mathcal{F}_n, \, \forall n \in \mathbb{T} \}$$

és una σ -àlgebra.

- 3. Si $S \leq T$ es té $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- 4. Si X és un procés adaptat, la variable X_T és \mathcal{F}_T -mesurable.

Prova:

1. $S \vee T$ i $S \wedge T$ són instants d'aturada com a conseqüència de les igualtats següents:

$$\{S \vee T \le n\} = \{S \le n\} \cap \{T \le n\},\$$

$$\{S \wedge T \le n\} = \{S \le n\} \cup \{T \le n\}.$$

- 2. Comprovem que \mathcal{F}_T és una σ -àlgebra:
 - $\Omega \in \mathcal{F}_T$ ja que $\Omega \cap \{T \leq n\} = \{T \leq n\} \in \mathcal{F}_n$.
 - Si $A \in \mathcal{F}_T$, A^c també ja que

$$A^{c} \cap \{T \leq n\} = ((A \cap \{T \leq n\}) \cup \{T > n\})^{c} \in \mathcal{F}_{n}.$$

• Si $\{A_k, k \geq 1\}$ és una successió d'esdeveniments de \mathcal{F}_T la seva reunió també ja que

$$\left(\bigcup_{k=1}^{\infty} A_k\right) \cap \left\{T \le n\right\} = \bigcup_{k=1}^{\infty} (A_k \cap \left\{T \le n\right\}).$$

3. Si $A \in \mathcal{F}_S$, com que $S \leq T$ q.s. tenim

$$A \cap \{T \le n\} = A \cap \{S \le n\} \cap \{T \le n\} \in \mathcal{F}_n$$

ja que $A \cap \{S \leq n\} \in \mathcal{F}_n$ perque $A \in \mathcal{F}_S$ i $\{T \leq n\} \in \mathcal{F}_n$ perquè T és un instant d'aturada.

4. Si B és un borelià de \mathbb{R} podem escriure

$$\{X_T \in B\} \cap \{T \le n\} = \bigcup_{j=0}^n \{X_j \in B, T = j\} \in \mathcal{F}_n$$

ja que $\{X_j \in B, T = j\} \in \mathcal{F}_j$, per a tot $j \leq n$.

Definició 5.5 Sigui X un procés adaptat i τ un instant d'aturada. Es defineix el procés aturat

$$X_n^{\tau}(\omega) := X_{\tau(\omega) \wedge n}(\omega).$$

És a dir, donada una trajectòria ω , el procés s'atura en $\tau(\omega) = m$ de manera que a partir de m es té $X_n(\omega) = X_m(\omega)$ per a tot $n \geq m$.

Proposició 5.6 Si X és un procés adaptat i τ un instant d'aturada, X^{τ} també és adaptat. A més a més, si X és una martingala, una supermartingala o una submartingala, X^{τ} , també.

Prova: X^{τ} és adaptat ja que

$$\{\omega: X_{n \wedge \tau(\omega)}(\omega) \in B\}$$

$$= \bigcup_{j=0}^{n-1} \{\omega : X_j(\omega) \in B, \tau(\omega) = j\} \cup \{\omega : X_n(\omega) \in B, \tau(\omega) \ge n\}$$

i aquests conjunts pertànyen a \mathcal{F}_n .

D'altra banda, podem escriure

$$X_n^{\tau} = X_0 + \sum_{j=1}^n \mathbb{1}_{\{j \le \tau\}} (X_j - X_{j-1}).$$

Notem que

$${j \le \tau} = {\tau < j}^c = {\tau \le j - 1}^c,$$

que evidentment és \mathcal{F}_{j-1} -mesurable. Per tant, com que $\mathbb{1}_{\{j \leq \tau\}}$ és un procés previsible, afitat i positiu, X^{τ} és la transformació d'una martingala si X is a martingala. I anàlogament si X és una supermartingala o una submartingala. Per exemple, en el cas d'una supermartingala tenim

$$E[X_n^{\tau}|\mathcal{F}_{n-1}] = X_{n-1}^{\tau} + E[\mathbb{1}_{\{n \le \tau\}}(X_n - X_{n-1})|\mathcal{F}_{n-1}]$$

= $X_{n-1}^{\tau} + \mathbb{1}_{\{n \le \tau\}}E[X_n - X_{n-1}|\mathcal{F}_{n-1}] \le X_{n-1}^{\tau}$

ja que

$$E[X_n - X_{n-1}|\mathcal{F}_{n-1}] \le 0.$$

Finalment el teorema següent demostra que la propietat de martingala es manté per instants d'aturada afitats:

Teorema 5.7 (Teorema de Doob) Si X és una martingala respecte una filtració $\mathbb{F} := \{\mathcal{F}_n, n \geq 0\}$ i S i T són instants d'aturada tals que $S \leq T \leq c$ q.s., on $c \in \mathbb{N}$ és una constant, aleshores $E(X_T | \mathcal{F}_S) = X_S$ q.s. Si X és una submartingala, es té $E(X_T | \mathcal{F}_S) \geq X_S$ i si X és una supermartingala, es té $E(X_T | \mathcal{F}_S) \leq X_S$.

Prova: Observem primer de tot que com que T està afitat, $|X_T| \le \sum_{n=0}^{c} |X_n|$ i per tant X_T té esperança finita. El mateix passa amb X_S . Cal veure que per a tot $A \in \mathcal{F}_S$ es té

$$\mathbb{E}(X_S \mathbb{1}_A) = \mathbb{E}(X_T \mathbb{1}_A),$$

o equivalentment

$$\mathbb{E}[(X_T - X_S)\mathbb{1}_A] = 0.$$

Definim $H_n := \mathbb{1}_{\{S < n \le T\} \cap A}$. Es tracta d'un procés afitat, positiu i previsible ja que

$$\{S < n \le T\} \cap A = \{S < n\} \cap \{T \ge n\} \cap A$$

$$= \{S \le n - 1\} \cap (\{T \le n - 1\})^c \cap A$$

i aquest conjunt pertany a \mathcal{F}_{n-1} ja que tant $\{S \leq n-1\} \cap A$ com $(\{T \leq n-1\})^c$ hi pertànyen.

Aleshores,

$$W_n := X_0 + \sum_{i=1}^n \mathbb{1}_{\{\{S < i \le T\} \cap A\}} (X_i - X_{i-1})$$

és martingala, submartingala o supermatingala en funcio del que sigui XFinalment, podem reescriure l'expressió anterior com

$$X_0 + \sum_{i=S \wedge n+1}^{T \wedge n} \mathbb{1}_A (X_i - X_{i-1}) = X_0 + \mathbb{1}_A (X_{T \wedge n} - X_{S \wedge n}).$$

Si el procés X és una martingala, $X_0 + \mathbbm{1}_A(X_{T\wedge n} - X_{S\wedge n})$ també ho és i aleshores

$$\mathbb{E}(X_0 + \mathbb{1}_A(X_{T \wedge n} - X_{S \wedge n})) = \mathbb{E}(X_0)$$

i per tant,

$$\mathbb{E}(\mathbb{1}_A(X_{T\wedge n}-X_{S\wedge n}))=0$$

per a tot $n \geq 0$.

Escollint n > c tenim $T \wedge n = T$ i $S \wedge n = S$, i per tant

$$\mathbb{E}(\mathbb{1}_A(X_T - X_S)) = 0.$$

Si el procés X és una submartingala, analogament, tenim, per a tot n,

$$\mathbb{E}(X_0 + \mathbb{1}_A(X_{T \wedge n} - X_{S \wedge n})) \ge \mathbb{E}(X_0)$$

i per tant

$$\mathbb{E}(\mathbb{1}_A(X_T - X_S)) \ge 0. \tag{1}$$

Aquesta darrera desigualtat implica

$$E[X_T|\mathcal{F}_S] \geq X_S.$$

En efecte, a partir de (1) tenim $\mathbb{E}(X_T \mathbb{1}_A) \geq \mathbb{E}(X_S \mathbb{1}_A)$ i per la definició d'esperança condicionada el terme de l'esquerra és igual a $\mathbb{E}(E(X_T | \mathcal{F}_S) \mathbb{1}_A)$. Per tant tenim que

$$\mathbb{E}(E(X_T|\mathcal{F}_S)\mathbb{1}_A) \geq \mathbb{E}(X_S\mathbb{1}_A).$$

Notem que $E(X_T|\mathcal{F}_S)$ i X_S són variables \mathcal{F}_S -mesurables. Per tant el problema es redueix a provar que donada una variable aleatòria Z, mesurable respecte una σ -algebra \mathcal{F} , i tal que $E(Z\mathbb{1}_A) \geq 0$ per a tot $A \in \mathcal{F}$, es té necessàriament que $Z \geq 0$, q.s.

Sigui $A := \{Z < 0\}$, conjunt que evidentment pertany a \mathcal{F} . Tenim doncs $E(Z11_{\{Z<0\}}) \ge 0$. Però d'altra banda, $Z11_{\{Z<0\}} \le 0$ per a tot ω i per tant la seva esperança és necessàriament negativa o nul·la. Per tant tenim

$$E(Z11_{\{Z<0\}})=0$$

Això implica que necessàriament $Z1_{\{Z<0\}}=0$ q.s. Ho demostrem en el Lemma de sota. Si això és cert tenim $\mathbb{P}(Z<0)=0$ i per tant necessàriament $Z\geq 0$ q.s.

Si el procés X és una supermartingala tenim que per a tot n,

$$\mathbb{E}(X_0 + \mathbb{1}_A(X_{T \wedge n} - X_{S \wedge n})) \le \mathbb{E}(X_0)$$

i per tant,

$$\mathbb{E}(\mathbb{1}_A(X_T - X_S)) \le 0$$

i la resta del raonament es fa de manera anàloga i simètrica a l'anterior.

Falta veure el lema següent:

Lema 5.8 Si X és una variable integrable i positiva quasi-segurament i la seva esperança és nul·la, X és nul·la quasi segurament. El mateix passa si X és integrable i negativa quasi-segurament i la seva esperança és nul·la.

Prova: Observem primer que l'esperança d'una variable aleatòria X és una mitjana ponderada dels seus valors possibles. Per tant, si X és una variable positiva o nul·la, la seva esperança també. I si és negativa o nul·la, la seva esperança també.

Ara, el que volem demostrar és que si $X \leq 0$ o $X \geq 0$, q.s., i $\mathbb{E}(X) = 0$, necessàriament X = 0, q.s.

En efecte, suposem que $X \ge 0$ i que $\mathbb{E}(X) = 0$. Fixem $\epsilon > 0$. Tenim

$$\mathbb{E}(X) = \mathbb{E}(X \mathbb{1}_{\{X \le \epsilon\}}) + \mathbb{E}(X \mathbb{1}_{\{X > \epsilon\}}) = 0,$$

i com que tots els termes són positius, necessàriament,

$$\mathbb{E}(X \mathbb{1}_{\{X > \epsilon\}}) = 0.$$

D'altra banda,

$$\mathbb{E}(X1_{\{X>\epsilon\}}) \ge \epsilon \mathbb{P}(X>\epsilon).$$

Per tant,

$$\mathbb{P}(X > \epsilon) = 0$$

per a tot $\epsilon>0.$ I això implica necessàriament que X=0, q.s. El cas en que $X\leq 0$ es demostra anàlogament. \blacksquare