qpp

0.1

Generated by Doxygen 1.8.5

Thu May 1 2014 16:56:43

Contents

1	Nam	nespace	Index															1
	1.1	Names	space List					 	 	 	 	 		 				1
2	Hier	archica	l Index															3
	2.1	Class I	Hierarchy					 	 	 	 	 		 		-		3
3	Clas	ss Index																5
	3.1	Class I	List					 	 	 	 	 		 				5
4	File	Index																7
	4.1	File Lis	st					 	 	 	 	 		 			 -	7
5	Nam	nespace	Documer	ntati	on													9
	5.1	qpp Na	amespace	Refe	erence			 	 	 	 	 		 				9
		5.1.1	Function	Doc	umen	tatior	١.	 	 	 	 	 		 				13
			5.1.1.1	abs	sm .			 	 	 	 	 		 				14
			5.1.1.2	adj	oint			 	 	 	 	 		 				14
			5.1.1.3	ant	ticomr	n		 	 	 	 	 		 				15
			5.1.1.4	cha	annel			 	 	 	 	 		 				15
			5.1.1.5	cha	annel			 	 	 	 	 		 				16
			5.1.1.6	cho	oi			 	 	 	 	 		 				16
			5.1.1.7	cho	oi2kra	us .		 	 	 	 	 		 				17
			5.1.1.8	cor	mm			 	 	 	 	 		 				17
			5.1.1.9	cor	mpper	m .		 	 	 	 	 		 				18
			5.1.1.10	cor	njugat	e		 	 	 	 	 		 				18
			5.1.1.11	cos	sm .			 	 	 	 	 		 				18
			5.1.1.12	cw	ise .			 	 	 	 	 		 				19
			5.1.1.13	det	i			 	 	 	 	 		 				19
			5.1.1.14	dis	p			 	 	 	 	 		 				19
			5.1.1.15	dis	p			 	 	 	 	 		 				19
			5.1.1.16	dis	p			 	 	 	 	 		 	 			19
			5.1.1.17	dis	p			 	 	 	 	 		 	 			19
			5 1 1 18	die	nln													20

iv CONTENTS

displn	20
displn	20
displn	21
entanglement	21
evals	22
evects	22
expandout	23
expm	23
funm	23
gate	25
gconcurrence	26
grams	26
grams	27
grams	27
hevals	27
hevects	28
inverse	28
invperm	28
kron	28
kron	29
kron	29
kron	29
kronpow	30
load	30
loadMATLABmatrix	30
loadMATLABmatrix	30
loadMATLABmatrix	30
logdet	30
logm	31
mket	31
mket	31
mket	32
multiidx2n	32
n2multiidx	32
norm	33
powm	33
prj	34
ptrace	35
ptrace1	36
ptrace2	36
	displn

CONTENTS

5.1.1.59	ptranspose	37
5.1.1.60	qmutualinfo	38
5.1.1.61	rand	38
5.1.1.62	rand	38
5.1.1.63	rand	38
5.1.1.64	rand	39
5.1.1.65	randH	39
5.1.1.66	randint	39
5.1.1.67	randket	40
5.1.1.68	randkraus	40
5.1.1.69	randn	40
5.1.1.70	randn	40
5.1.1.71	randn	40
5.1.1.72	randn	41
5.1.1.73	randperm	41
5.1.1.74	randrho	41
5.1.1.75	randU	41
5.1.1.76	randV	42
5.1.1.77	renyi	42
5.1.1.78	renyi_inf	42
5.1.1.79	reshape	43
5.1.1.80	save	43
5.1.1.81	saveMATLABmatrix	43
5.1.1.82	saveMATLABmatrix	43
5.1.1.83	saveMATLABmatrix	44
5.1.1.84	schmidtcoeff	44
5.1.1.85	schmidtprob	45
5.1.1.86	schmidtU	45
5.1.1.87	schmidtV	46
5.1.1.88	shannon	46
5.1.1.89	sinm	47
5.1.1.90	spectralpowm	47
5.1.1.91	sqrtm	47
5.1.1.92	sum	48
5.1.1.93	super	48
5.1.1.94	syspermute	49
5.1.1.95	trace	49
5.1.1.96	transpose	50
5.1.1.97	tsallis	50
Variable I	Documentation	50

5.1.2

vi CONTENTS

		5.1.2.1	gt	50
		5.1.2.2	rdevs	50
		5.1.2.3	st	50
5.2	qpp::ct	Namespa	ce Reference	50
	5.2.1	Function	Documentation	51
		5.2.1.1	omega	51
	5.2.2	Variable	Documentation	51
		5.2.2.1	chop	51
		5.2.2.2	ee	51
		5.2.2.3	eps	51
		5.2.2.4	ii	51
		5.2.2.5	maxn	51
		5.2.2.6	pi	51
5.3	qpp::in	ternal Nan	nespace Reference	51
	5.3.1	Function	Documentation	52
		5.3.1.1	_check_col_vector	52
		5.3.1.2	_check_dims	52
		5.3.1.3	_check_dims_match_cvect	52
		5.3.1.4	_check_dims_match_mat	52
		5.3.1.5	_check_dims_match_rvect	52
		5.3.1.6	_check_eq_dims	52
		5.3.1.7	_check_nonzero_size	52
		5.3.1.8	_check_perm	52
		5.3.1.9	_check_row_vector	52
		5.3.1.10	_check_square_mat	52
		5.3.1.11	_check_subsys_match_dims	52
		5.3.1.12	_check_vector	52
		5.3.1.13	_kron2	52
		5.3.1.14	_multiidx2n	53
		5.3.1.15	_n2multiidx	53
		5.3.1.16	variadic_vector_emplace	53
		5.3.1.17	variadic_vector_emplace	53
5.4	qpp::ty	pes Name	space Reference	53
	5.4.1	Typedef I	Documentation	53
		5.4.1.1	bra	53
		5.4.1.2	cmat	53
		5.4.1.3	cplx	53
		5.4.1.4	dmat	53
		5.4.1.5	DynMat	53
		5.4.1.6	ket	53

CONTENTS vii

6	Clas	s Docu	mentation 5
	6.1	qpp::D	iscreteDistribution Class Reference
		6.1.1	Constructor & Destructor Documentation
			6.1.1.1 Discrete Distribution
			6.1.1.2 Discrete Distribution
			6.1.1.3 Discrete Distribution
		6.1.2	Member Function Documentation
			6.1.2.1 probabilities
			6.1.2.2 sample
		6.1.3	Member Data Documentation
			6.1.3.1 _d
	6.2	qpp::D	iscreteDistributionAbsSquare Class Reference
		6.2.1	Constructor & Destructor Documentation
			6.2.1.1 Discrete Distribution Abs Square
			6.2.1.2 DiscreteDistributionAbsSquare
			6.2.1.3 DiscreteDistributionAbsSquare
			6.2.1.4 Discrete Distribution Abs Square
		6.2.2	Member Function Documentation
			6.2.2.1 cplx2weights
			6.2.2.2 probabilities
			6.2.2.3 sample
		6.2.3	Member Data Documentation
			6.2.3.1 _d
	6.3	qpp::E	xception Class Reference
		6.3.1	Member Enumeration Documentation
			6.3.1.1 Type
		6.3.2	Constructor & Destructor Documentation
			6.3.2.1 Exception
			6.3.2.2 Exception
			6.3.2.3 ~Exception
		6.3.3	Member Function Documentation
			6.3.3.1 _construct_exception_msg
			6.3.3.2 what
		6.3.4	Member Data Documentation
			6.3.4.1 _custom
			6.3.4.2 _msg
			6.3.4.3 _type
			6.3.4.4 _where
	6.4	qpp::G	ates Class Reference
		6.4.1	Constructor & Destructor Documentation

viii CONTENTS

		6.4.1.1	Gates	. 62
		6.4.1.2	Gates	. 62
		6.4.1.3	~Gates	. 62
	6.4.2	Member	Function Documentation	. 62
		6.4.2.1	CTRL	. 63
		6.4.2.2	Fd	. 63
		6.4.2.3	getInstance	. 63
		6.4.2.4	ld	. 63
		6.4.2.5	operator=	. 63
		6.4.2.6	Rtheta	. 63
		6.4.2.7	Xd	. 64
		6.4.2.8	Zd	. 64
	6.4.3	Member	Data Documentation	. 64
		6.4.3.1	CNOTab	. 64
		6.4.3.2	CNOTba	. 64
		6.4.3.3	CZ	. 64
		6.4.3.4	FRED	. 64
		6.4.3.5	Н	. 64
		6.4.3.6	ld2	. 64
		6.4.3.7	S	. 64
		6.4.3.8	SWAP	. 64
		6.4.3.9	T	. 64
		6.4.3.10	TOF	. 64
		6.4.3.11	X	. 64
		6.4.3.12	Y	. 65
		6.4.3.13	z	. 65
6.5	qpp::N	ormalDistr	ribution Class Reference	. 65
	6.5.1	Construc	ctor & Destructor Documentation	. 65
		6.5.1.1	NormalDistribution	. 65
	6.5.2	Member	Function Documentation	. 65
		6.5.2.1	sample	. 65
	6.5.3	Member	Data Documentation	. 65
		6.5.3.1	_d	. 65
6.6	qpp::Q	udit Class	Reference	. 66
	6.6.1	Construc	ctor & Destructor Documentation	. 66
		6.6.1.1	Qudit	. 66
		6.6.1.2	\sim Qudit	. 66
	6.6.2	Member	Function Documentation	. 66
		6.6.2.1	getD	. 66
		6.6.2.2	getRho	. 66

CONTENTS

		6.6.2.3	measure	67
		6.6.2.4	measure	67
	6.6.3	Member	Data Documentation	67
		6.6.3.1	_D	67
		6.6.3.2	_rho	67
6.7	qpp::R	andomDev	vices Class Reference	68
	6.7.1	Construc	tor & Destructor Documentation	68
		6.7.1.1	RandomDevices	68
		6.7.1.2	RandomDevices	68
		6.7.1.3	\sim RandomDevices	68
	6.7.2	Member	Function Documentation	68
		6.7.2.1	getInstance	68
		6.7.2.2	operator=	68
	6.7.3	Member	Data Documentation	68
		6.7.3.1	_rd	68
		6.7.3.2	_rng	68
6.8	qpp::S	tates Class	s Reference	68
	6.8.1	Construc	tor & Destructor Documentation	69
		6.8.1.1	States	69
		6.8.1.2	States	69
		6.8.1.3	~States	69
	6.8.2	Member	Function Documentation	69
		6.8.2.1	getInstance	69
		6.8.2.2	operator=	70
	6.8.3	Member	Data Documentation	70
		6.8.3.1	b00	70
		6.8.3.2	b01	70
		6.8.3.3	b10	70
		6.8.3.4	b11	70
		6.8.3.5	GHZ	70
		6.8.3.6	pb00	70
		6.8.3.7	pb01	70
		6.8.3.8	pb10	70
		6.8.3.9	pb11	70
		6.8.3.10	pGHZ	70
		6.8.3.11	pW	70
		6.8.3.12	px0	70
		6.8.3.13	px1	70
			py0	70
		6.8.3.15	py1	70

CONTENTS

			6.8.3.16 pz0	70
			6.8.3.17 pz1	70
			6.8.3.18 W	70
			6.8.3.19 x0	70
			6.8.3.20 x1 7	70
			6.8.3.21 y0	70
			6.8.3.22 y1 7	70
			6.8.3.23 z0	70
			6.8.3.24 z1 7	70
	6.9	qpp::Ti	mer Class Reference	71
		6.9.1	Constructor & Destructor Documentation	71
			6.9.1.1 Timer	71
			6.9.1.2 ~Timer	71
		6.9.2	Member Function Documentation	71
			6.9.2.1 seconds	71
			6.9.2.2 tic	71
			6.9.2.3 toc	71
		6.9.3	Friends And Related Function Documentation	71
			6.9.3.1 operator<<	71
		6.9.4	Member Data Documentation	71
			6.9.4.1 _end	71
			6.9.4.2 _start	71
	6.10	qpp::Uı	niformRealDistribution Class Reference	71
		6.10.1	Constructor & Destructor Documentation	72
			6.10.1.1 UniformRealDistribution	72
		6.10.2	Member Function Documentation	72
			6.10.2.1 sample	72
		6.10.3	Member Data Documentation	72
			6.10.3.1 _d	72
7	File I	Docume	entation 7	73
	7.1			73
	7.2			74
	7.3			75
	7.4		9	76
	7.5			77
	7.6			78
	7.7			79
	7.8			30
	7.9	include	/constants.h File Reference	31

CONTENTS xi

7.10	include/entanglement.h File Reference	83
7.11	include/entropies.h File Reference	84
7.12	include/functions.h File Reference	85
7.13	include/internal.h File Reference	88
7.14	include/io.h File Reference	90
7.15	include/matlab.h File Reference	92
7.16	include/qpp.h File Reference	92
7.17	include/random.h File Reference	93
7.18	include/types h File Reference	95

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp	 			-	 		-	 												 		9
qpp::ct	 				 			 												 		50
qpp::internal	 				 			 												 	 	51
qpp::types .	 				 			 							 					 		53

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

::DiscreteDistribution	55
::DiscreteDistributionAbsSquare	56
eption	
qpp::Exception	58
::Gates	62
::NormalDistribution	65
::Qudit	66
::RandomDevices	68
::States	
::Timer	71
::UniformRealDistribution	71

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::DiscreteDistribution	 	 	 55
qpp::DiscreteDistributionAbsSquare	 	 	 56
qpp::Exception	 	 	 58
qpp::Gates			
qpp::NormalDistribution			
qpp::Qudit			
qpp::RandomDevices			
qpp::States			
qpp::Timer	 	 	 71
<pre>gpp::UniformRealDistribution</pre>	 	 	 71

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

73
31
33
34
35
38
90
92
92
93
95
74
75
76
77
78
79
30

8 File Index

Chapter 5

Namespace Documentation

5.1 qpp Namespace Reference

Namespaces

- ct
- · internal
- types

Classes

- class Exception
- · class Gates
- class Qudit
- class RandomDevices
- class NormalDistribution
- · class UniformRealDistribution
- · class DiscreteDistribution
- · class DiscreteDistributionAbsSquare
- · class States
- class Timer

Functions

- types::cmat super (const std::vector< types::cmat > &Ks)
- types::cmat choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- template<typename Derived >
 types::cmat channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- $\begin{tabular}{ll} \bullet & template < typename \ Derived > \\ types::cmat \ schmidtcoeff \ (const \ Eigen::MatrixBase < Derived > \&A, \ const \ std::vector < size_t > \&dims) \\ \end{tabular}$
- $\label{lem:policy} \begin{array}{ll} \bullet & \mathsf{template} < \mathsf{typename\ Derived} > \\ & \mathsf{types} :: \mathsf{cmat\ schmidtU}\ (\mathsf{const\ Eigen} :: \mathsf{MatrixBase} < \mathsf{Derived} > \& \mathsf{A}, \ \mathsf{const\ std} :: \mathsf{vector} < \ \mathsf{size_t} > \& \mathsf{dims}) \end{array}$
- template<typename Derived >
 types::cmat schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

```
    template<typename Derived >

  types::cmat schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &dims)
• template<typename Derived >
  double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

    template<typename Derived >

  double gconcurrence (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double shannon (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double renyi_inf (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys, const
  std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > transpose (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > conjugate (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > adjoint (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > inverse (const Eigen::MatrixBase < Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
 template<typename Derived >
  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  double norm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat evects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::dmat hevals (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat hevects (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

    template<typename Derived >

  types::cmat sqrtm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat expm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >
```

types::cmat logm (const Eigen::MatrixBase< Derived > &A)

```
• template<typename Derived >
  types::cmat sinm (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  types::cmat cosm (const Eigen::MatrixBase< Derived > &A)
template<typename Derived >
  types::cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))
template<typename T >
  types::DynMat< typename T::Scalar > kron (const T &head)
template<typename T, typename... Args>
  types::DynMat< typename T::Scalar > kron (const T &head, const Args &...tail)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kron (const std::vector < Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kron (const std::initializer_list< Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > kronpow (const Eigen::MatrixBase < Derived > &A, size_t n)
\bullet \ \ \text{template}{<} \text{typename Derived} >
  types::DynMat< typename
  Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, size t rows, size t cols)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > syspermute (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &perm,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace1 (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace2 (const Eigen::MatrixBase < Derived > &A, const std::vector < size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
  const std::vector< size_t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > ptranspose (const Eigen::MatrixBase < Derived > &A, const std::vector < size t > &sub-
  sys, const std::vector< size t > &dims)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > prj (const Eigen::MatrixBase < Derived > &V)
```

• template<typename Derived > types::DynMat< typename Derived::Scalar > expandout (const Eigen::MatrixBase < Derived > &A, size t pos, const std::vector < size t > &dims) • template<typename Derived1 , typename Derived2 > types::DynMat< typename Derived1::Scalar > gate (const Eigen::MatrixBase < Derived1 > &state, const Eigen::MatrixBase < Derived2 > &A, const std::vector< size t > &subsys, const std::vector< size t > &dims) template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const std::vector < Derived > &Vs) template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const std::initializer list< Derived > &Vs) template<typename Derived > types::DynMat< typename Derived::Scalar > grams (const Eigen::MatrixBase < Derived > &A) std::vector< size_t > n2multiidx (size_t n, const std::vector< size_t > &dims) size_t multiidx2n (const std::vector< size_t > &midx, const std::vector< size_t > &dims) types::ket mket (const std::vector< size t > &mask) types::ket mket (const std::vector< size t > &mask, const std::vector< size t > &dims) types::ket mket (const std::vector< size_t > &mask, size_t d) std::vector< size_t > invperm (const std::vector< size_t > &perm) • std::vector< size t > compperm (const std::vector< size t > &perm, const std::vector< size t > &sigma) template<typename T > void disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) • template<typename T > void disp (const T *x, const size t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout) template<typename T > void displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std-::string &end="]", std::ostream &os=std::cout) template<typename Derived > void disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void displn (const Eigen::MatrixBase < Derived > &A, double chop=ct::chop, std::ostream &os=std::cout) void disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) • void displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout) template<typename Derived > void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname) template<typename Derived > types::DynMat< typename Derived::Scalar > load (const std::string &fname) template<typename Derived > Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<> types::dmat loadMATLABmatrix (const std::string &mat file, const std::string &var name) template<> types::cmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name) template<typename Derived > void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std-

::string &var_name, const std::string &mode)

```
• template<>
  void saveMATLABmatrix (const Eigen::MatrixBase < typename types::dmat > &A, const std::string &mat_file,
  const std::string &var_name, const std::string &mode)
template<>
  void saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file,
  const std::string &var_name, const std::string &mode)
• template<typename Derived >
  Derived rand (size trows, size t cols, double a=0, double b=1)
template<>
 types::dmat rand (size t rows, size t cols, double a, double b)
template<>
 types::cmat rand (size_t rows, size_t cols, double a, double b)
• double rand (double a=0, double b=1)
• long long randint (long long a, long long b)
• template<typename Derived >
  Derived randn (size t rows, size t cols, double mean=0, double sigma=1)
template<>
  types::dmat randn (size t rows, size t cols, double mean, double sigma)
template<>
  types::cmat randn (size_t rows, size_t cols, double mean, double sigma)
• double randn (double mean=0, double sigma=1)
types::cmat randU (size_t D)

    types::cmat randV (size_t Din, size_t Dout)

    std::vector< types::cmat > randkraus (size_t n, size_t D)

    types::cmat randH (size_t D)

    types::ket randket (size_t D)

    types::cmat randrho (size_t D)
```

Variables

- RandomDevices & rdevs = RandomDevices::getInstance()
- const Gates & gt = Gates::getInstance()

std::vector< size t > randperm (size t n)

• const States & st = States::getInstance()

5.1.1 Function Documentation

5.1.1.1 template < typename Derived > types::cmat qpp::absm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.2 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase< Derived > & A)

5.1.1.3 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::anticomm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Here is the call graph for this function:

5.1.1.4 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks)

5.1.1.5 template<typename Derived > types::cmat qpp::channel (const Eigen::MatrixBase< Derived > & rho, const std::vector< types::cmat > & Ks, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.6 types::cmat qpp::choi (const std::vector< types::cmat > & Ks)

5.1.1.7 std::vector<types::cmat> qpp::choi2kraus (const types::cmat & A)

Here is the call graph for this function:

5.1.1.8 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

5.1.1.9 std::vector<size_t> qpp::compperm (const std::vector< size_t> & perm, const std::vector< size_t> & sigma)

Here is the call graph for this function:

5.1.1.10 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.11 template < typename Derived > types::cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

5.1.1.12 template < typename OutputScalar , typename Derived > types::DynMat < OutputScalar > qpp::cwise (const Eigen::MatrixBase < Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Here is the call graph for this function:

5.1.1.13 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.1.14 template<typename T > void qpp::disp (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.15 template < typename T > void qpp::disp (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)
- 5.1.1.16 template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)
- 5.1.1.17 void qpp::disp (const types::cplx c, double chop = ct : :chop, std::ostream & os = std: :cout)

5.1.1.18 template<typename T > void qpp::displn (const T & x, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.19 template < typename T > void qpp::displn (const T * x, const size_t n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ", std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.20 template<typename Derived > void qpp::displn (const Eigen::MatrixBase< Derived > & A, double chop = ct::chop, std::ostream & os = std::cout)

5.1.1.21 void qpp::displn (const types::cplx c, double chop = ct : :chop, std::ostream & os = std::cout)

Here is the call graph for this function:

5.1.1.22 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.23 template < typename Derived > types::cmat qpp::evals (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.24 template < typename Derived > types::cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

5.1.1.25 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::expandout (const Eigen::MatrixBase< Derived > & A, size_t pos, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.26 template < typename Derived > types::cmat qpp::expm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.27 template<typename Derived > types::cmat qpp::funm (const Eigen::MatrixBase< Derived > & A, types::cplx(*)(const types::cplx &) f)

Parameters

Α	input matrix
f	function pointer

Returns

types::cmat

5.1.1.28 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::gate (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.29 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.30 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::grams (const std::vector< Derived > & Vs)

5.1.1.31 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const std::initializer_list < Derived > & Vs)

Here is the call graph for this function:

5.1.1.32 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.33 template < typename Derived > types::dmat qpp::hevals (const Eigen::MatrixBase < Derived > & A)

5.1.1.34 template<typename Derived > types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.35 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::inverse (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.36 std::vector<size_t> qpp::invperm (const std::vector< size_t> & perm)

Here is the call graph for this function:

5.1.1.37 template<typename T > types::DynMat<typename T::Scalar> qpp::kron (const T & head)

5.1.1.38 template<typename T , typename... Args> types::DynMat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Here is the call graph for this function:

5.1.1.39 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kron (const std::vector< Derived > & As)

Here is the call graph for this function:

5.1.1.40 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::kron (const std::initializer_list < Derived > & As)

5.1.1.41 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::kronpow (const Eigen::MatrixBase< Derived > & A, size_t n)

Here is the call graph for this function:

- $\textbf{5.1.1.42} \quad \textbf{template} \small < \textbf{typename Derived} > \textbf{types::DynMat} \small < \textbf{typename Derived::Scalar} \\ > \textbf{qpp::load (const std::string \& \textit{fname })}$
- 5.1.1.43 template<typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- $5.1.1.44 \quad template <> types::dmat \ qpp::loadMATLAB matrix (\ const \ std::string \ \& \ \textit{mat_file}, \ const \ std::string \ \& \ \textit{var_name} \)$
- 5.1.1.45 template <> types::cmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
- $5.1.1.46 \quad template < type name\ Derived > Derived :: Scalar\ qpp::logdet\ (\ const\ Eigen:: Matrix Base < Derived > \&\ A\)$

5.1.1.47 template < typename Derived > types::cmat qpp::logm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.48 types::ket qpp::mket (const std::vector< size_t > & mask)

Here is the call graph for this function:

5.1.1.49 types::ket qpp::mket (const std::vector < size_t > & mask, const std::vector < size_t > & dims)

5.1.1.50 types::ket qpp::mket (const std::vector< size_t > & mask, size_t d)

Here is the call graph for this function:

5.1.1.51 size_t qpp::multiidx2n (const std::vector < size_t > & midx, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.52 std::vector < size_t > qpp::n2multiidx (size_t n, const std::vector < size_t > & dims)

5.1.1.53 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.54 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase < Derived > & A, size_t n)

5.1.1.55 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::prj (const Eigen::MatrixBase < Derived > & V)

5.1.1.56 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.57 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

Here is the call graph for this function:

5.1.1.58 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptrace2 (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.59 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

5.1.1.60 template<typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & subsys, const std::vector< size_t > & dims)

- 5.1.1.61 template < typename Derived > Derived qpp::rand (size_t rows, size_t cols, double a = 0, double b = 1)
- 5.1.1.62 template <> types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- 5.1.1.63 template <> types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)

5.1.1.64 double qpp::rand (double a = 0, double b = 1)

Here is the call graph for this function:

5.1.1.65 types::cmat qpp::randH (size_t D)

Here is the call graph for this function:

5.1.1.66 long long qpp::randint (long long a, long long b)

5.1.1.67 types::ket qpp::randket (size_t D)

Here is the call graph for this function:

5.1.1.68 std::vector<types::cmat> qpp::randkraus (size_t n, size_t D)

Here is the call graph for this function:

- 5.1.1.69 template < typename Derived > Derived qpp::randn (size_t rows, size_t cols, double mean = 0, double sigma = 1)
- $5.1.1.70 \quad template <> types::dmat\ qpp::randn\ (\ size_t\ \textit{rows},\ size_t\ \textit{cols},\ double\ \textit{mean},\ double\ \textit{sigma}\)$

Here is the call graph for this function:

5.1.1.71 template<> types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)

5.1.1.72 double qpp::randn (double mean = 0, double sigma = 1)

Here is the call graph for this function:

5.1.1.73 std::vector<size_t> qpp::randperm (size_t n)

Here is the call graph for this function:

5.1.1.74 types::cmat qpp::randrho (size_t D)

Here is the call graph for this function:

5.1.1.75 types::cmat qpp::randU (size_t D)

5.1.1.76 types::cmat qpp::randV (size_t Din, size_t Dout)

Here is the call graph for this function:

 $\textbf{5.1.1.77} \quad \textbf{template} < \textbf{typename Derived} > \textbf{double qpp::renyi (const double } \textbf{alpha}, \ \textbf{const Eigen::MatrixBase} < \textbf{Derived} > \textbf{\& A)}$

Here is the call graph for this function:

 $5.1.1.78 \quad template < type name \ Derived > double \ qpp::renyi_inf \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$

5.1.1.79 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, size_t rows, size_t cols)

Here is the call graph for this function:

5.1.1.80 template < typename Derived > void qpp::save (const Eigen::MatrixBase < Derived > & A, const std::string & fname)

Here is the call graph for this function:

- 5.1.1.81 template<typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > & A, const std::string & mat_file, const std::string & mode)
- 5.1.1.82 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

5.1.1.83 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Here is the call graph for this function:

5.1.1.84 template<typename Derived > types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > & A, const std::vector< size_t > & dims)

5.1.1.85 template < typename Derived > types::cmat qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.86 template < typename Derived > types::cmat qpp::schmidtU (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

5.1.1.87 template < typename Derived > types::cmat qpp::schmidtV (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.88 template<typename Derived > double qpp::shannon (const Eigen::MatrixBase< Derived > & A)

5.1.1.89 template<typename Derived > types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.90 template<typename Derived > types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > & A, const types::cplx z)

Here is the call graph for this function:

5.1.1.91 template < typename Derived > types::cmat qpp::sqrtm (const Eigen::MatrixBase < Derived > & A)

5.1.1.92 template < typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

5.1.1.93 types::cmat qpp::super (const std::vector< types::cmat > & Ks)

5.1.1.94 template < typename Derived > types::DynMat < typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase < Derived > & A, const std::vector < size_t > & perm, const std::vector < size_t > & dims)

Here is the call graph for this function:

5.1.1.95 template<typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > & A)

5.1.1.96 template<typename Derived > types::DynMat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Here is the call graph for this function:

5.1.1.97 template < typename Derived > double qpp::tsallis (const double alpha, const Eigen::MatrixBase < Derived > & A)

Here is the call graph for this function:

- 5.1.2 Variable Documentation
- 5.1.2.1 const Gates& qpp::gt = Gates::getInstance()
- 5.1.2.2 RandomDevices& qpp::rdevs = RandomDevices::getInstance()
- 5.1.2.3 const States& qpp::st = States::getInstance()

5.2 qpp::ct Namespace Reference

Functions

std::complex< double > omega (size_t D)

Variables

• const double chop = 1e-10

```
 const double eps = 1e-12

    • const size_t maxn = 64

 const std::complex < double > ii = { 0, 1 }

    const double pi = 3.141592653589793238462643383279502884

    const double ee = 2.718281828459045235360287471352662497

5.2.1 Function Documentation
5.2.1.1 std::complex<double> qpp::ct::omega ( size_t D )
5.2.2 Variable Documentation
5.2.2.1 const double qpp::ct::chop = 1e-10
5.2.2.2 const double qpp::ct::ee = 2.718281828459045235360287471352662497
```

5.2.2.3 const double qpp::ct::eps = 1e-12

```
5.2.2.4 const std::complex < double > qpp::ct::ii = { 0, 1 }
```

```
5.2.2.5 const size_t qpp::ct::maxn = 64
```

5.2.2.6 const double qpp::ct::pi = 3.141592653589793238462643383279502884

gpp::internal Namespace Reference 5.3

Functions

```
• void _n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)
• size t multiidx2n (const size t *midx, size t numdims, const size t *dims)

    template<typename Derived >

  bool <u>_check_square_mat</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  bool <u>_check_vector</u> (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  bool <u>_check_row_vector</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)
• template<typename T >
 bool check nonzero size (const T &x)

    bool check dims (const std::vector < size t > &dims)

    template<typename Derived >

 bool <u>_check_dims_match_mat</u> (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
 bool _check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >
  &V)

    template<typename Derived >

  bool _check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase< Derived >
  &V)

    bool check eq dims (const std::vector < size t > &dims, size t dim)

    bool _check_subsys_match_dims (const std::vector < size_t > &subsys, const std::vector < size_t > &dims)

    bool <u>_check_perm</u> (const std::vector< size_t > &perm)
```

- template<typename Derived1, typename Derived2 >
 types::DynMat< typename
 Derived1::Scalar > _kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)
- template<typename T > void variadic vector emplace (std::vector< T > &)
- template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

5.3.1 Function Documentation

- 5.3.1.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.2 bool qpp::internal::_check_dims (const std::vector < size_t > & dims)
- 5.3.1.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.4 template<typename Derived > bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & A)
- 5.3.1.5 template<typename Derived > bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > & dims, const Eigen::MatrixBase< Derived > & V)
- 5.3.1.6 bool qpp::internal::_check_eq_dims (const std::vector < size_t > & dims, size_t dim)
- 5.3.1.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 5.3.1.8 bool qpp::internal::_check_perm (const std::vector < size_t > & perm)
- 5.3.1.9 template < typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.10 template<typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > & A)
- 5.3.1.11 bool qpp::internal::_check_subsys_match_dims (const std::vector < size_t > & subsys, const std::vector < size_t > & dims)
- 5.3.1.12 template < typename Derived > bool qpp::internal::_check_vector (const Eigen::MatrixBase < Derived > & A)
- 5.3.1.13 template<typename Derived1 , typename Derived2 > types::DynMat<typename Derived1::Scalar> qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

- 5.3.1.14 size_t qpp::internal::_multiidx2n (const size_t * midx, size_t numdims, const size_t * dims)
- 5.3.1.15 void qpp::internal::_n2multiidx (size_t n, size_t n
- 5.3.1.16 template < typename T > void qpp::internal::variadic_vector_emplace (std::vector < T > &)
- 5.3.1.17 template < typename T , typename First , typename... Args > void qpp::internal::variadic_vector_emplace (std::vector < T > & v, First && first, Args &&... args)

Here is the call graph for this function:

5.4 qpp::types Namespace Reference

Typedefs

- using cplx = std::complex< double >
- using cmat = Eigen::MatrixXcd
- using dmat = Eigen::MatrixXd
- using ket = Eigen::Matrix < cplx, Eigen::Dynamic, 1 >
- using bra = Eigen::Matrix < cplx, 1, Eigen::Dynamic >
- template<typename Scalar >
 using DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >

5.4.1 Typedef Documentation

- 5.4.1.1 using qpp::types::bra = typedef Eigen::Matrix < cplx, 1, Eigen::Dynamic >
- 5.4.1.2 using qpp::types::cmat = typedef Eigen::MatrixXcd
- 5.4.1.3 using qpp::types::cplx = typedef std::complex < double >
- 5.4.1.4 using qpp::types::dmat = typedef Eigen::MatrixXd
- 5.4.1.5 template<typename Scalar > using qpp::types::DynMat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
- 5.4.1.6 using qpp::types::ket = typedef Eigen::Matrix < cplx, Eigen::Dynamic, 1>

Names	pace	Docur	nentation

Chapter 6

Class Documentation

6.1 qpp::DiscreteDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- template<typename InputIterator > DiscreteDistribution (InputIterator first, InputIterator last)
- DiscreteDistribution (std::initializer_list< double > weights)
- Discrete Distribution (std::vector< double > weights)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Attributes

```
std::discrete_distributionsize_t > _d
```

6.1.1 Constructor & Destructor Documentation

- 6.1.1.1 template<typename InputIterator > qpp::DiscreteDistribution::DiscreteDistribution (InputIterator first, InputIterator last) [inline]
- **6.1.1.2** qpp::DiscreteDistribution::DiscreteDistribution (std::initializer_list < double > weights) [inline]
- 6.1.1.3 qpp::DiscreteDistribution::DiscreteDistribution (std::vector< double > weights) [inline]

6.1.2 Member Function Documentation

6.1.2.1 std::vector<double> qpp::DiscreteDistribution::probabilities () [inline]

56 Class Documentation

6.1.2.2 size_t qpp::DiscreteDistribution::sample() [inline]

Here is the call graph for this function:

6.1.3 Member Data Documentation

6.1.3.1 std::discrete_distribution<**size_t**> **qpp::DiscreteDistribution::_d** [protected]

The documentation for this class was generated from the following file:

· include/classes/stat.h

6.2 qpp::DiscreteDistributionAbsSquare Class Reference

#include <stat.h>

Public Member Functions

- template<typename InputIterator > DiscreteDistributionAbsSquare (InputIterator first, InputIterator last)
- DiscreteDistributionAbsSquare (std::initializer_list< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (std::vector< types::cplx > amplitudes)
- DiscreteDistributionAbsSquare (const types::cmat &V)
- size_t sample ()
- std::vector< double > probabilities ()

Protected Member Functions

template<typename InputIterator >
 std::vector< double > cplx2weights (InputIterator first, InputIterator last)

Protected Attributes

std::discrete_distribution < size_t > _d

6.2.1 Constructor & Destructor Documentation

6.2.1.1 template<typename InputIterator > qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (InputIterator *first*, InputIterator *last*) [inline]

Here is the call graph for this function:

6.2.1.2 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare(std::initializer_list< types::cplx > amplitudes) [inline]

Here is the call graph for this function:

 $\textbf{6.2.1.3} \quad \textbf{qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (\ \textbf{std::vector} < \textbf{types::cplx} > \textbf{amplitudes} \ \textbf{)} \\ \text{[inline]}$

58 Class Documentation

6.2.1.4 qpp::DiscreteDistributionAbsSquare::DiscreteDistributionAbsSquare (const types::cmat & V) [inline]

Here is the call graph for this function:

6.2.2 Member Function Documentation

- **6.2.2.2** std::vector<double> qpp::DiscreteDistributionAbsSquare::probabilities() [inline]
- $\textbf{6.2.2.3} \quad \textbf{size_t qpp::DiscreteDistributionAbsSquare::sample ()} \quad \texttt{[inline]}$

Here is the call graph for this function:

6.2.3 Member Data Documentation

6.2.3.1 std::discrete_distribution<size_t> qpp::DiscreteDistributionAbsSquare::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

6.3 qpp::Exception Class Reference

#include <exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

• enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_CV-ECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::DIMS_INVALID, Type::DIMS_NOT_EQUAL, Type::DIMS_MISMATCH_MATRIX,

Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVECTOR, Type::DIMS_MISMATCH_VECTOR, Type::SUBSYS_MISMATCH_DIMS,

Type::PERM_INVALID, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT_BIPARTITE, Type::OUT_OF_RANGE, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPTION }

Public Member Functions

- Exception (const std::string &where, const Type &type)
- Exception (const std::string &where, const std::string &custom)
- virtual const char * what () const noexceptoverride
- virtual ∼Exception () noexcept

60 Class Documentation

Private Member Functions

• std::string _construct_exception_msg ()

Private Attributes

```
· std::string _where
```

• std::string _msg

Type _type

• std::string _custom

6.3.1 Member Enumeration Documentation

```
6.3.1.1 enum qpp::Exception::Type [strong]
```

Enumerator

UNKNOWN_EXCEPTION

ZERO_SIZE

MATRIX_NOT_SQUARE

MATRIX_NOT_CVECTOR

MATRIX_NOT_RVECTOR

MATRIX_NOT_VECTOR

MATRIX_NOT_SQUARE_OR_CVECTOR

MATRIX_NOT_SQUARE_OR_RVECTOR

MATRIX_NOT_SQUARE_OR_VECTOR

DIMS_INVALID

DIMS_NOT_EQUAL

DIMS_MISMATCH_MATRIX

DIMS_MISMATCH_CVECTOR

DIMS_MISMATCH_RVECTOR

DIMS_MISMATCH_VECTOR

SUBSYS_MISMATCH_DIMS

PERM_INVALID

NOT_QUBIT_GATE

NOT_QUBIT_SUBSYS

NOT_BIPARTITE

OUT_OF_RANGE

UNDEFINED_TYPE

CUSTOM_EXCEPTION

6.3.2 Constructor & Destructor Documentation

6.3.2.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Here is the call graph for this function:

6.3.2.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Here is the call graph for this function:

- **6.3.2.3** virtual qpp::Exception::~Exception() [inline], [virtual], [noexcept]
- 6.3.3 Member Function Documentation
- **6.3.3.1** std::string qpp::Exception::_construct_exception_msg() [inline], [private]
- **6.3.3.2** virtual const char* qpp::Exception::what () const [inline], [override], [virtual], [noexcept]
- 6.3.4 Member Data Documentation
- **6.3.4.1 std::string qpp::Exception::_custom** [private]
- **6.3.4.2 std::string qpp::Exception::_msg** [private]
- **6.3.4.3 Type qpp::Exception::_type** [private]
- **6.3.4.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

• include/classes/exception.h

62 Class Documentation

6.4 qpp::Gates Class Reference

```
#include <gates.h>
```

Public Member Functions

- Gates (const Gates &)=delete
- Gates & operator= (const Gates &)=delete
- virtual ∼Gates ()=default
- types::cmat Rtheta (double theta) const
- types::cmat Id (size_t D) const
- types::cmat Zd (size_t D) const
- types::cmat Fd (size_t D) const
- types::cmat Xd (size_t D) const
- types::cmat CTRL (const types::cmat &A, const std::vector< size_t > &ctrl, const std::vector< size_t > &subsys, size_t n, size_t d=2) const

Static Public Member Functions

• static const Gates & getInstance ()

Public Attributes

- · types::cmat ld2
- types::cmat H
- types::cmat X
- types::cmat Y
- types::cmat Z
- types::cmat Stypes::cmat T
- types::cmat CNOTab
- types::cmat CZ
- types::cmat CNOTba
- · types::cmat SWAP
- types::cmat TOF
- types::cmat FRED

Private Member Functions

• Gates ()

6.4.1 Constructor & Destructor Documentation

```
6.4.1.1 qpp::Gates::Gates( ) [inline],[private]
6.4.1.2 qpp::Gates::Gates( const Gates & ) [delete]
6.4.1.3 virtual qpp::Gates::~Gates( ) [virtual],[default]
```

6.4.2 Member Function Documentation

6.4.2.1 types::cmat qpp::Gates::CTRL (const types::cmat & A, const std::vector < size_t > & ctrl, const std::vector < size_t > & subsys, size_t n, size_t d = 2) const [inline]

Here is the call graph for this function:

6.4.2.2 types::cmat qpp::Gates::Fd (size_t D) const [inline]

Here is the call graph for this function:

- 6.4.2.3 static const Gates& qpp::Gates::getInstance() [inline], [static]
- 6.4.2.4 types::cmat qpp::Gates::ld (size_t D) const [inline]
- 6.4.2.5 Gates& qpp::Gates::operator=(const Gates &) [delete]
- 6.4.2.6 types::cmat qpp::Gates::Rtheta (double theta) const [inline]

64 Class Documentation

6.4.2.7 types::cmat qpp::Gates::Xd (size_t D) const [inline]

Here is the call graph for this function:

6.4.2.8 types::cmat qpp::Gates::Zd(size_t D)const [inline]

Here is the call graph for this function:

- 6.4.3 Member Data Documentation
- 6.4.3.1 types::cmat qpp::Gates::CNOTab
- 6.4.3.2 types::cmat qpp::Gates::CNOTba
- 6.4.3.3 types::cmat qpp::Gates::CZ
- 6.4.3.4 types::cmat qpp::Gates::FRED
- 6.4.3.5 types::cmat qpp::Gates::H
- 6.4.3.6 types::cmat qpp::Gates::ld2
- 6.4.3.7 types::cmat qpp::Gates::S
- 6.4.3.8 types::cmat qpp::Gates::SWAP
- 6.4.3.9 types::cmat qpp::Gates::T
- 6.4.3.10 types::cmat qpp::Gates::TOF
- 6.4.3.11 types::cmat qpp::Gates::X

```
6.4.3.12 types::cmat qpp::Gates::Y
```

6.4.3.13 types::cmat qpp::Gates::Z

The documentation for this class was generated from the following file:

• include/classes/gates.h

6.5 qpp::NormalDistribution Class Reference

```
#include <stat.h>
```

Public Member Functions

- NormalDistribution (double mean=0, double sigma=1)
- double sample ()

Protected Attributes

· std::normal_distribution_d

6.5.1 Constructor & Destructor Documentation

6.5.1.1 qpp::NormalDistribution::NormalDistribution (double mean = 0, double sigma = 1) [inline]

6.5.2 Member Function Documentation

6.5.2.1 double qpp::NormalDistribution::sample() [inline]

Here is the call graph for this function:

6.5.3 Member Data Documentation

6.5.3.1 std::normal_distribution qpp::NormalDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

66 Class Documentation

6.6 qpp::Qudit Class Reference

```
#include <qudit.h>
```

Public Member Functions

- Qudit (const types::cmat &rho=States::getInstance().pz0)
- size_t measure (const types::cmat &U, bool destructive=false)
- size_t measure (bool destructive=false)
- types::cmat getRho () const
- size_t getD () const
- virtual \sim Qudit ()=default

Private Attributes

- · types::cmat _rho
- size_t _D

6.6.1 Constructor & Destructor Documentation

6.6.1.1 qpp::Qudit::Qudit (const types::cmat & rho = States::getInstance () .pz0) [inline]

Here is the call graph for this function:

- 6.6.1.2 virtual qpp::Qudit::~Qudit() [virtual], [default]
- 6.6.2 Member Function Documentation
- 6.6.2.1 size_t qpp::Qudit::getD() const [inline]
- 6.6.2.2 types::cmat qpp::Qudit::getRho()const [inline]

6.6.2.3 size_t qpp::Qudit::measure (const types::cmat & U, bool destructive = false) [inline]

Here is the call graph for this function:

6.6.2.4 size_t qpp::Qudit::measure(bool destructive = false) [inline]

Here is the call graph for this function:

6.6.3 Member Data Documentation

6.6.3.1 size_t qpp::Qudit::_D [private]

6.6.3.2 types::cmat qpp::Qudit::_rho [private]

The documentation for this class was generated from the following file:

• include/classes/qudit.h

68 Class Documentation

6.7 qpp::RandomDevices Class Reference

```
#include <randevs.h>
```

Public Member Functions

- RandomDevices (const RandomDevices &)=delete
- RandomDevices & operator= (const RandomDevices &)=delete
- virtual ∼RandomDevices ()=default

Static Public Member Functions

• static RandomDevices & getInstance ()

Public Attributes

- std::random device rd
- std::mt19937 _rng

Private Member Functions

· RandomDevices ()

6.7.1 Constructor & Destructor Documentation

```
\textbf{6.7.1.1} \quad \textbf{qpp::RandomDevices::RandomDevices()} \quad \texttt{[inline], [private]}
```

- 6.7.1.2 qpp::RandomDevices::RandomDevices (const RandomDevices &) [delete]
- **6.7.1.3** virtual qpp::RandomDevices::~RandomDevices() [virtual], [default]
- 6.7.2 Member Function Documentation
- **6.7.2.1** static RandomDevices& qpp::RandomDevices::getInstance() [inline], [static]
- **6.7.2.2 RandomDevices& qpp::RandomDevices::operator= (const RandomDevices &)** [delete]
- 6.7.3 Member Data Documentation
- 6.7.3.1 std::random_device qpp::RandomDevices::_rd
- 6.7.3.2 std::mt19937 qpp::RandomDevices::_rng

The documentation for this class was generated from the following file:

• include/classes/randevs.h

6.8 qpp::States Class Reference

#include <states.h>

Public Member Functions

- States (const States &)=delete
- States & operator= (const States &)=delete
- virtual ∼States ()=default

Static Public Member Functions

• static const States & getInstance ()

Public Attributes

- types::ket x0
- types::ket x1
- types::ket y0
- types::ket y1
- types::ket z0
- types::ket z1
- types::cmat px0
- types::cmat px1
- types::cmat py0
- types::cmat py1
- types::cmat pz0
- types::cmat pz1
- types::ket b00
- types::ket b01
- types::ket b10
- types::ket b11
- types::cmat pb00
- types::cmat pb01
- types::cmat pb10
- types::cmat pb11types::ket GHZ
- types::ket W
- types::cmat pGHZ
- types::cmat pW

Private Member Functions

- States ()
- 6.8.1 Constructor & Destructor Documentation
- 6.8.1.1 qpp::States::States() [inline],[private]
- **6.8.1.2** qpp::States::States (const States &) [delete]
- **6.8.1.3 virtual qpp::States::∼States()** [virtual], [default]
- 6.8.2 Member Function Documentation
- **6.8.2.1** static const States& qpp::States::getInstance() [inline], [static]

70 Class Documentation

```
6.8.2.2 States& qpp::States::operator=(const States & ) [delete]
6.8.3
        Member Data Documentation
6.8.3.1 types::ket qpp::States::b00
6.8.3.2 types::ket qpp::States::b01
6.8.3.3 types::ket qpp::States::b10
6.8.3.4 types::ket qpp::States::b11
6.8.3.5 types::ket qpp::States::GHZ
6.8.3.6 types::cmat qpp::States::pb00
6.8.3.7 types::cmat qpp::States::pb01
6.8.3.8 types::cmat qpp::States::pb10
6.8.3.9 types::cmat qpp::States::pb11
6.8.3.10 types::cmat qpp::States::pGHZ
6.8.3.11 types::cmat qpp::States::pW
6.8.3.12 types::cmat qpp::States::px0
6.8.3.13 types::cmat qpp::States::px1
6.8.3.14 types::cmat qpp::States::py0
6.8.3.15 types::cmat qpp::States::py1
6.8.3.16 types::cmat qpp::States::pz0
6.8.3.17 types::cmat qpp::States::pz1
6.8.3.18 types::ket qpp::States::W
6.8.3.19 types::ket qpp::States::x0
6.8.3.20 types::ket qpp::States::x1
6.8.3.21 types::ket qpp::States::y0
6.8.3.22 types::ket qpp::States::y1
6.8.3.23 types::ket qpp::States::z0
6.8.3.24 types::ket qpp::States::z1
```

The documentation for this class was generated from the following file:

• include/classes/states.h

6.9 qpp::Timer Class Reference

```
#include <timer.h>
```

Public Member Functions

- Timer ()
- void tic ()
- void toc ()
- double seconds () const
- virtual ∼Timer ()=default

Protected Attributes

- std::chrono::high_resolution_clock::time_point _start
- std::chrono::high resolution clock::time point end

Friends

• std::ostream & operator<< (std::ostream &os, const Timer &rhs)

6.9.1 Constructor & Destructor Documentation

```
6.9.1.1 qpp::Timer::Timer( ) [inline]
6.9.1.2 virtual qpp::Timer::~Timer( ) [virtual], [default]
```

6.9.2 Member Function Documentation

```
6.9.2.1 double qpp::Timer::seconds( ) const [inline]
```

```
6.9.2.2 void qpp::Timer::tic( ) [inline]
```

6.9.2.3 void qpp::Timer::toc() [inline]

6.9.3 Friends And Related Function Documentation

```
6.9.3.1 std::ostream& operator<< ( std::ostream & os, const Timer & rhs ) [friend]
```

6.9.4 Member Data Documentation

```
6.9.4.1 std::chrono::high_resolution_clock::time_point qpp::Timer::_end [protected]
```

6.9.4.2 std::chrono::high_resolution_clock::time_point qpp::Timer::_start [protected]

The documentation for this class was generated from the following file:

• include/classes/timer.h

6.10 qpp::UniformRealDistribution Class Reference

```
#include <stat.h>
```

72 Class Documentation

Public Member Functions

- UniformRealDistribution (double a=0, double b=1)
- double sample ()

Protected Attributes

• std::uniform_real_distribution_d

6.10.1 Constructor & Destructor Documentation

6.10.1.1 qpp::UniformRealDistribution::UniformRealDistribution (double a = 0, double b = 1) [inline]

6.10.2 Member Function Documentation

6.10.2.1 double qpp::UniformRealDistribution::sample() [inline]

Here is the call graph for this function:

6.10.3 Member Data Documentation

6.10.3.1 std::uniform_real_distribution qpp::UniformRealDistribution::_d [protected]

The documentation for this class was generated from the following file:

• include/classes/stat.h

Chapter 7

File Documentation

7.1 include/channels.h File Reference

```
#include <algorithm>
#include <cmath>
#include <vector>
#include "constants.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for channels.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- types::cmat qpp::super (const std::vector< types::cmat > &Ks)
- types::cmat qpp::choi (const std::vector< types::cmat > &Ks)
- std::vector< types::cmat > qpp::choi2kraus (const types::cmat &A)
- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks)
- template<typename Derived >
 types::cmat qpp::channel (const Eigen::MatrixBase< Derived > &rho, const std::vector< types::cmat > &Ks,
 const std::vector< size_t > &subsys, const std::vector< size_t > &dims)

7.2 include/classes/exception.h File Reference

#include <stdexcept>
#include <string>
Include dependency graph for exception.h:

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Exception

Namespaces

qpp

7.3 include/classes/gates.h File Reference

```
#include <algorithm>
#include "constants.h"
#include "functions.h"
#include "exception.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for gates.h:

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Gates

Namespaces

qpp

7.4 include/classes/qudit.h File Reference

```
#include "exception.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/gates.h"
#include "classes/stat.h"
#include dependency graph for qudit.h:
```


This graph shows which files directly or indirectly include this file:

Classes

class qpp::Qudit

Namespaces

qpp

7.5 include/classes/randevs.h File Reference

#include <cstdlib>
#include <random>
Include dependency graph for randevs.h:

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Namespaces

• qpp

7.6 include/classes/stat.h File Reference

```
#include <algorithm>
#include <functional>
#include "exception.h"
#include "internal.h"
#include "randevs.h"
#include "types.h"
```

Include dependency graph for stat.h:

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::NormalDistribution

• class qpp::UniformRealDistribution

• class qpp::DiscreteDistribution

• class qpp::DiscreteDistributionAbsSquare

Namespaces

• qpp

7.7 include/classes/states.h File Reference

```
#include <cmath>
#include "constants.h"
#include "types.h"
```

Include dependency graph for states.h:

This graph shows which files directly or indirectly include this file:

Classes

class qpp::States

Namespaces

• qpp

7.8 include/classes/timer.h File Reference

#include <chrono>

#include <ostream>

Include dependency graph for timer.h:

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Timer

Namespaces

qpp

7.9 include/constants.h File Reference

#include <complex>

Include dependency graph for constants.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::ct

Functions

• std::complex < double > qpp::ct::omega (size_t D)

Variables

- const double qpp::ct::chop = 1e-10
- const double qpp::ct::eps = 1e-12
- const size_t qpp::ct::maxn = 64
- const std::complex< double > qpp::ct::ii = { 0, 1 }
- const double qpp::ct::pi = 3.141592653589793238462643383279502884
- const double qpp::ct::ee = 2.718281828459045235360287471352662497

7.10 include/entanglement.h File Reference

```
#include <Eigen/SVD>
#include "entropies.h"
#include "functions.h"
#include "internal.h"
#include "types.h"
```

Include dependency graph for entanglement.h:

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

- template<typename Derived >
 types::cmat qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtU (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 types::cmat qpp::schmidtV (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)

- $\label{eq:const_period} \begin{array}{l} \bullet \ \ \text{template} < \text{typename Derived} > \\ \text{types} :: \text{cmat } \ \text{qpp} :: \text{schmidtprob} \ \ \text{(const Eigen} :: \text{MatrixBase} < \ \text{Derived} > \& A, \ \text{const std} :: \text{vector} < \ \text{size_t} > \& \text{dims}) \end{array}$
- template<typename Derived >
 double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &dims)
- template<typename Derived >
 double qpp::gconcurrence (const Eigen::MatrixBase< Derived > &A)

7.11 include/entropies.h File Reference

```
#include <cmath>
#include "functions.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "io.h"
```

Include dependency graph for entropies.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

```
    template<typename Derived >
        double qpp::shannon (const Eigen::MatrixBase< Derived > &A)
```

- template<typename Derived >
 double qpp::renyi (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::renyi_inf (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::tsallis (const double alpha, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t > &subsys,
 const std::vector< size_t > &dims)

7.12 include/functions.h File Reference

```
#include <algorithm>
#include <cmath>
#include <numeric>
#include <vector>
#include "constants.h"
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
Include dependency graph for functions.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Functions

```
    template<typename Derived >
        types::DynMat< typename
        Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
```

template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
types::DynMat< typename
Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 types::DynMat< typename
 Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 Derived::Scalar qpp::det (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
 template<typename Derived >

Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > &A)

template < typename Derived >
 double qpp::norm (const Eigen::MatrixBase < Derived > &A)

template<typename Derived >
 types::cmat qpp::evals (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 types::cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 types::dmat qpp::hevals (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 types::cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)

template<typename Derived >
 types::cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, types::cplx(*f)(const types::cplx &))

```
• template<typename Derived >
  types::cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat <a href="mailto:qpp::logm">qpp::logm</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  types::cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  types::cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const types::cplx z)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::powm (const Eigen::MatrixBase < Derived > &A, size_t n)

    template<typename OutputScalar , typename Derived >

  types::DynMat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, Output-
  Scalar(*f)(const typename Derived::Scalar &))
• template<typename T >
  types::DynMat< typename T::Scalar > qpp::kron (const T &head)
• template<typename T , typename... Args>
  types::DynMat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::kron (const std::initializer_list< Derived > &As)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, size_t n)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, size_t rows, size t cols)
 \bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >
  types::DynMat< typename
  Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &perm, const std::vector< size t > &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, const std::vector< size t >
  &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector< size t > &sub-
  sys, const std::vector< size t > \&dims)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< size_t >
  &subsys, const std::vector< size_t > &dims)
```

```
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)

    template<typename Derived1 , typename Derived2 >

  types::DynMat< typename
  Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase<
  Derived2 > &B)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::prj (const Eigen::MatrixBase < Derived > &V)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::expandout (const Eigen::MatrixBase< Derived > &A, size_t pos, const std::vector<
  size t > \&dims)
• template<typename Derived1 , typename Derived2 >
  types::DynMat< typename
  Derived1::Scalar > qpp::gate (const Eigen::MatrixBase < Derived1 > &state, const Eigen::MatrixBase < De-
  rived2 > &A, const std::vector< size t > &subsys, const std::vector< size t > &dims)
• template<typename Derived >
  types::DynMat< typename
  Derived::Scalar > qpp::grams (const std::vector < Derived > &Vs)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::grams (const std::initializer_list< Derived > &Vs)

    template<typename Derived >

  types::DynMat< typename
  Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > &A)

    std::vector< size_t > qpp::n2multiidx (size_t n, const std::vector< size_t > &dims)

• size t qpp::multiidx2n (const std::vector< size t > &midx, const std::vector< size t > &dims)

    types::ket qpp::mket (const std::vector< size_t > &mask)

    types::ket qpp::mket (const std::vector< size_t > &mask, const std::vector< size_t > &dims)

    types::ket qpp::mket (const std::vector< size t > &mask, size t d)

    std::vector< size_t > qpp::invperm (const std::vector< size_t > &perm)

    std::vector< size_t > qpp::compperm (const std::vector< size_t > &perm, const std::vector< size_t >

  &sigma)
   include/internal.h File Reference
```

7.13

```
#include <algorithm>
#include <iostream>
#include <utility>
#include <vector>
#include "types.h"
#include "classes/exception.h"
```

Include dependency graph for internal.h:

This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::internal

Functions

- void qpp::internal::_n2multiidx (size_t n, size_t numdims, const size_t *dims, size_t *result)
- size_t qpp::internal::_multiidx2n (const size_t *midx, size_t numdims, const size_t *dims)
- template<typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename T >
 bool qpp::internal::_check_nonzero_size (const T &x)
- bool qpp::internal::_check_dims (const std::vector< size_t > &dims)
- template<typename Derived >
 bool qpp::internal::_check_dims_match_mat (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &A)

```
    template<typename Derived >
        bool qpp::internal::_check_dims_match_cvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
    Derived > &V)
```

- template<typename Derived >
 bool qpp::internal::_check_dims_match_rvect (const std::vector< size_t > &dims, const Eigen::MatrixBase
 Derived > &V)
- bool qpp::internal:: check eq dims (const std::vector< size t > &dims, size t dim)
- bool qpp::internal::_check_subsys_match_dims (const std::vector< size_t > &subsys, const std::vector< size_t > &dims)
- bool qpp::internal::_check_perm (const std::vector< size_t > &perm)
- template<typename Derived1, typename Derived2 > types::DynMat< typename
 Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic_vector_emplace (std::vector< T > &)
- template < typename T, typename First, typename... Args > void qpp::internal::variadic vector emplace (std::vector < T > &v, First &&first, Args &&...args)

7.14 include/io.h File Reference

```
#include <fstream>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <vector>
#include "types.h"
#include "classes/exception.h"
Include dependency graph for io.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename T >
 void qpp::disp (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]",
 std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T &x, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::disp (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename T >
 void qpp::displn (const T *x, const size_t n, const std::string &separator, const std::string &start="[", const std::string &end="]", std::ostream &os=std::cout)
- template<typename Derived > void qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived > void qpp::displn (const Eigen::MatrixBase< Derived > &A, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::disp (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- void qpp::displn (const types::cplx c, double chop=ct::chop, std::ostream &os=std::cout)
- template<typename Derived >
 void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)
- template < typename Derived >
 types::DynMat < typename
 Derived::Scalar > qpp::load (const std::string &fname)

7.15 include/matlab.h File Reference

```
#include <Eigen/Dense>
#include <stdexcept>
#include <string>
#include "internal.h"
#include "types.h"
#include "classes/exception.h"
#include "mat.h"
#include "mex.h"
```

Include dependency graph for matlab.h:

Namespaces

qpp

Functions

- template<typename Derived >

 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<>
 types::cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
- template<typename Derived >
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)
- template<>
 void qpp::saveMATLABmatrix (const Eigen::MatrixBase< typename types::cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

7.16 include/qpp.h File Reference

#include "channels.h"

```
#include "constants.h"
#include "entanglement.h"
#include "entropies.h"
#include "functions.h"
#include "io.h"
#include "random.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/gates.h"
#include "classes/qudit.h"
#include "classes/randevs.h"
#include "classes/stat.h"
#include "classes/states.h"
#include "classes/states.h"
#include dependency graph for qpp.h:
```


Namespaces

• qpp

Variables

- RandomDevices & qpp::rdevs = RandomDevices::getInstance()
- const Gates & qpp::gt = Gates::getInstance()
- const States & qpp::st = States::getInstance()

7.17 include/random.h File Reference

```
#include "constants.h"
#include "types.h"
#include "classes/exception.h"
#include "classes/stat.h"
```

Include dependency graph for random.h:

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Functions

- template<typename Derived >
 Derived qpp::rand (size_t rows, size_t cols, double a=0, double b=1)
- template<>
 types::dmat qpp::rand (size_t rows, size_t cols, double a, double b)
- template<>
 types::cmat qpp::rand (size_t rows, size_t cols, double a, double b)
- double qpp::rand (double a=0, double b=1)
- long long qpp::randint (long long a, long long b)
- template<typename Derived >
 Derived qpp::randn (size_t rows, size_t cols, double mean=0, double sigma=1)
- template<>
 types::dmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- template<>
 types::cmat qpp::randn (size_t rows, size_t cols, double mean, double sigma)
- double qpp::randn (double mean=0, double sigma=1)

- types::cmat qpp::randU (size_t D)
- types::cmat qpp::randV (size_t Din, size_t Dout)
- std::vector< types::cmat > qpp::randkraus (size_t n, size_t D)
- types::cmat qpp::randH (size_t D)
- types::ket qpp::randket (size_t D)
- types::cmat qpp::randrho (size_t D)
- std::vector< size_t > qpp::randperm (size_t n)

7.18 include/types.h File Reference

```
#include <Eigen/Dense>
#include <complex>
Include dependency graph for types.h:
```


This graph shows which files directly or indirectly include this file:

Namespaces

- qpp
- qpp::types

Typedefs

- using qpp::types::cplx = std::complex< double >
- using qpp::types::cmat = Eigen::MatrixXcd
- using qpp::types::dmat = Eigen::MatrixXd
- using qpp::types::ket = Eigen::Matrix< cplx, Eigen::Dynamic, 1 >

```
• using qpp::types::bra = Eigen::Matrix< cplx, 1, Eigen::Dynamic >
```

template<typename Scalar >
 using qpp::types::DynMat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >