

Animation for Computer Games COMP 477/6311

Prof. Tiberiu Popa

Rigid Body Simulation

Physics in Computer Graphics

Rigid Body Simulation

Collision Handling

Larger Scale

Real-Time

http://www.nvidia.com/

Outline

y

- Representation of a Rigid Body
 - Position and orientation
 - Center of mass
- Rigid Body Kinematics
 - Linear and angular velocity
- Rigid Body Dynamics
 - Force and torque
 - Linear and angular momentum
- Collision Handling

Tutorials

Siggraph course notes
 http://www.cs.cmu.edu/~baraff/pbm/pbm.html

David Baraff:

- An Introduction to Physically Based Modeling:
 Rigid Body Simulation I Unconstrained Rigid Body Dynamics
- An Introduction to Physically Based Modeling: Rigid Body Simulation II -Nonpenetration Constraints
- The lecture slides follow these course notes and some illustrations are taken from there

Linear Velocity

- Time integration: $\chi(t + \Delta t) = ?$
- How do position change over time?
 - Position: x(t)
 - Linear Velocity: $v(t) = \dot{x}(t) = \frac{d}{dt}x(t)$
 - Vector representation:
 - direction
 - magnitude

The general case

- Location of rigid body: translation and rotation
- Translation x(t) (position) and rotation (orientation) R(t)

Spin

- Body can spin around axis
 - angular velocity $\omega(t)$
 - spin axis: direction of $\omega(t)$
- Linear velocity:

$$v(t) = \frac{d}{dt}x(t)$$

- Angular velocity:
 - $-\omega(t)$ is a vector \rightarrow corresponds to v(t)
 - R(t) is a matrix \rightarrow corresponds to x(t)
 - What is the relationship between $\dot{R}(t)$ and $\omega(t)$

Rotation Matrix

- Rotation matrix $R(t) = [x^{\prime}, y^{\prime}, z^{\prime}]$
 - 3x3 matrix, each column describes direction of the transformed x, y, z axis
 - Columns of $\dot{R}(t)$ describe velocity with which axes are transformed

x(t)

Rotation Matrix

- Rotation matrix R(t) = [x', y', z']
 - 3x3 matrix, each column describes direction of the transformed x, y, z axis

- Let r(t) be a point on your object expressed as a vector from center of mass
- Unaffected by linear velocity
- -r(t) traces a circle around the object

 $\omega(t)$

Vector Rate of Change

$$r(t) = a + b$$

• Change of r(t) perpendicular to b and $\omega(t)$

Vector Rate of Change

$$r(t) = a + b$$

Change of r(t) perpendicular to b and $\omega(t)$

$$\dot{r}(t) = \omega(t) \times b$$
 $\dot{r}(t) = \omega(t) \times b + \omega(t) \times a$
 $\dot{r}(t) = \omega(t) \times (a+b)$
 $\dot{r}(t) = \omega(t) \times r(t)$

Put it Together

• Given a point on the objects expressed as a vector from center of mass to the point $\boldsymbol{r}(t)$

$$\dot{r}(t) = \omega(t) \times r(t)$$

- If $\begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix}$ is the first column of R(t), its rate of change is $\omega(t) imes \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix}$
- For all columns we can write:

$$\dot{R} = \begin{pmatrix} \omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} & \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} & \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \end{pmatrix}$$

Simplifications

Cross product:

$$a \times b = \begin{pmatrix} a_y b_z - b_y a_z \\ -a_x b_z + b_x a_z \\ a_x b_y - b_x a_y \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{bmatrix} a_z b_z \\ b_y \\ b_z \end{pmatrix}$$

• Define a* operator $\begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_z & a_z & 0 \end{pmatrix}$

$$egin{pmatrix} 0 & -a_z & a_y \ a_z & 0 & -a_x \ -a_y & a_x & 0 \end{pmatrix}$$

 Why? It works between vectors as well as vector matrix operator

Angular Velocity

Using * notation:

$$\dot{R}(t) = \left(\omega(t)^* \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} - \omega(t)^* \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} - \omega(t)^* \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix}\right)$$

$$\dot{R}(t) = \omega(t)^* \left(\left(\begin{array}{c} r_{xx} \\ r_{xy} \\ r_{xz} \end{array} \right) - \left(\begin{array}{c} r_{yx} \\ r_{yy} \\ r_{yz} \end{array} \right) - \left(\begin{array}{c} r_{zx} \\ r_{zy} \\ r_{zz} \end{array} \right) \right)$$

$$\dot{R}(t) = \omega(t)^* R(t)$$

$$\dot{r}(t) = \omega(t) \times r(t)$$

Total Velocity

• (Constant) location of particle i in body space: r_{0_i}

$$r_i(t) = R(t)r_{0_i} + x(t)$$

$$\begin{split} \dot{r}_i &= \omega(t) * R(t) r_{0_i} + v(t) \\ &= \omega(t) * (R(t) r_{0_i} + x(t) - x(t)) + v(t) \\ &= \omega(t) * (r_i(t) - x(t)) + v(t) \\ &= \omega(t) \times (r_i(t) - x(t)) + v(t) \end{split}$$

Outline

- Representation of a Rigid Body
 - Position and orientation
 - Center of mass
- Rigid Body Kinematics
 - Linear and angular velocity
- Rigid Body Dynamics
 - Force and torque
 - Linear and angular momentum
- Collision Handling

Dynamics - May the force be with you!

- Relationship between force and velocity:
 - Physics tools:
 - I) Newton second law of motion:

$$F = ma$$

- Not sufficient here...
- Why?
- Acceleration changes velocity
- When we have 2 types of velocities → which type is changed and in what amount?

Dynamics - May the force be with you!

- Newton first law of motion
- Conservation of momentum
 - Linear momentum:

$$P(t) = Mv(t)$$

– Angular momentum:

$$L(t) = I(t)\omega(t)$$

Conservation of momentum

Dynamics - May the force be with you!

- Newton first law of motion
- Conservation of momentum
 - Linear momentum:

$$P(t) = Mv(t)$$

– Angular momentum:

$$L(t) = I(t)\omega(t)$$

Conservation of momentum

Conservation of momentum

https://www.youtube.com/watch?v=FmnkQ2ytlO8

Inertia Tensor

- 3x3 matrix describes how mass in a body is distributed relative to CM.
- Depends on orientation but not on translation of body

$$I(t) = \sum \begin{pmatrix} m_i(r'_{iy} + r'_{iz}) & -m_i r'_{ix} r'_{iy} & -m_i r'_{ix} r'_{iz} \\ -m_i r'_{ix} r'_{iy} & m_i (r'_{ix} + r'_{iz}) & -m_i r'_{iz} r'_{iy} \\ -m_i r'_{ix} r'_{iz} & -m_i r'_{iz} r'_{iy} & m_i (r'_{iy} + r'_{ix}) \end{pmatrix}$$

$$r_i{'} = r_i(t) - x(t)$$

Body Space Inertia Tensor

 The inertia tensor (and inverse) in the original body space can be precomputed

$$I(t) = \sum_{i} m_i ((r_i'^T r_i') 1 - r_i' r_i'^T)$$

$$I_{body} = \sum_{i} m_i ((r_{0i}^T r_{0i}) 1 - r_{0i} r_{0i}^T)$$

$$I(t) = R(t) I_{body} R(t)^T$$

Dynamics - May the force be with you!

• Linear momentum:

$$P(t) = Mv(t)$$

Newton Second law:

$$\frac{dP}{dt} = F$$

Dynamics - May the force be with you!

Angular momentum:

$$L(t) = I(t)\omega(t)$$

Newton second law:

$$-\frac{dL}{dt} = \tau$$

$$\tau_i(t) = (r_i(t) - x(t)) \times F_i(t)$$

T

F

$$\tau(t) = \sum \tau_i(t)$$

Putting all together

Angular momentum:

Torque:

Angular version of

Newton's 2nd law:

Explicit Newton:

$$L = I\omega$$

$$\tau = \sum (r_i - x_i) \times F_i$$

$$\dot{L}= au$$

$$L \leftarrow L + \Delta t \cdot \tau$$

$$\omega \leftarrow I^{-1}L$$

Algorithmic chain (Euler)

$$r_i(t) = R(t)r_{0_i} + x(t)$$

Translation component:

$$x(t + \Delta t) \approx x(t) + \Delta t \cdot \dot{x}(t) \Rightarrow \dot{x}(t) = v(t) \Rightarrow v(t) \approx v(t - \Delta t) + \Delta t \cdot \dot{v}(t - \Delta t)$$
$$\dot{v}(t - \Delta t) = a(t - \Delta t) \Rightarrow F(t - \Delta t) = m \cdot a(t - \Delta t)$$

Rotation component

$$R(t + \Delta t) \approx R(t) + \Delta t \cdot \dot{R}(t) \rightarrow \dot{R}(t) = \omega(t) * R(t) \rightarrow \omega(t) = I(t)^{-1} L(t)$$

$$L(t) \approx L(t - \Delta t) + \Delta t \cdot \dot{L}(t - \Delta t) \rightarrow \dot{L} = \tau = \sum (r_i - x_i) \times F_i$$

$$I(t) = R(t) I_{body} R(t)^T$$

Euler Time Integration Algorithm for rigid bodies

Input: Initial state (pos. and vel.), external forces at every time frame Output: position at each time frame

Compute object specific parameters that do not change over time
 Center of mass & inertia tensor

$$x = \frac{1}{M} \sum_{i} m_{i} r_{i} \qquad I_{body}^{-1} \leftarrow (\sum_{i} m_{i} ((r_{0_{i}}^{T} r_{0_{i}}) 1 - r_{0_{i}} r_{0_{i}}^{T})^{-1}$$

- I. Given current state of the system, compute the state at the next time interval
 - I. Compute external forces: $F = \sum F_i$ (no internal F)
 - 2. Estimate linear velocity: $v(t + \Delta t) \approx v(t) + \Delta t \cdot \frac{F}{M}$
 - 3. Estimate translational motion:

$$x(t + \Delta t) \approx x(t) + \Delta t \cdot v(t)$$

Euler Time Integration Algorithm for rigid bodies

- 4. Compute torque: $\tau = \sum_{i=1}^{n} (r_i x_i) \times F_i$
- 5. Estimate angular momentum: $L(t + \Delta t) \approx L(t) + \Delta t \cdot \tau$
- 6. Compute the inverse of the inertial tensor: $I^{-1} \leftarrow RI_{body}^{-1}R^{T}$
- 7. Compute angular velocity: $\omega(t) = I(t)^{-1}L(t)$
- 8. Estimate new rotation: $R(t + \Delta t) \approx R(t) + \Delta t \cdot \omega(t) * R(t)$
- 9. Update position for each particle: $r_i = Rr_{0i} + x$

