ULB

Université Libre de Bruxelles – Département de Mathématique

Titulaire: Guillaume Dujardin

Assistants: Thibaut Grouy et Robson Nascimento

Exercices de Calcul Différentiel et Intégral 2 - 2016/2017

Séance 15 - Principe du maximum - Singularités isolées

Exercice 1. Soit f une fonction holomorphe sur D(0,1[, le disque ouvert de centre 0 et de rayon 1, telle que

$$f(0) = 0$$
 et $\forall z \in D(0, 1[, |f(z)| \le 1.$

a) Montrer qu'il existe une fonction q holomorphe sur D(0,1] telle que

$$g(0) = f'(0)$$
 et $\forall z \in D(0, 1[, f(z) = zg(z).$

Indication: Utiliser le développement en série de Taylor de f autour de 0.

b) Montrer que

$$\forall r \in]0,1[, \quad \forall z \in D(0,1[, \quad |z| \le r \Rightarrow |g(z)| \le \frac{1}{r}.$$

Indication: Appliquer le principe du maximum.

c) En déduire que

$$\forall z \in D(0,1[, |f(z)| \le |z|.$$

d) Montrer que, s'il existe $z_0 \in D(0, 1[$ tel que $z_0 \neq 0$ et $|f(z_0)| = |z_0|$, alors il existe $\lambda \in \mathbb{C}$ tel que $|\lambda| = 1$ et

$$\forall z \in D(0, 1[, f(z) = \lambda z.$$

Exercice 2. Soient U un ouvert connexe de \mathbb{C} et $z_0 \in U$.

1. Soit f une fonction holomorphe sur $U \setminus \{z_0\}$. Montrer que f possède un pôle d'ordre p en z_0 si et seulement s'il existe une fonction g holomorphe sur U telle que $g(z_0) \neq 0$ et

$$\forall z \in U \setminus \{z_0\}, \quad f(z) = \frac{g(z)}{(z - z_0)^p}.$$

Dans ce cas, montrer que le résidu de f en z_0 est donné par :

Rés_{z₀}(f) =
$$\frac{g^{(p-1)}(z_0)}{(p-1)!}$$
.

2. On considère $f(z) := \frac{g(z)}{h(z)}$ où g et h sont deux fonctions holomorphes sur U, en supposant que h ne soit pas identiquement nulle. Montrer que, si h possède un zéro d'ordre p en z_0 et $g(z_0) \neq 0$, alors f possède un pôle d'ordre p en z_0 .

3. Déterminer l'ordre des pôles des deux fonctions suivantes et calculer leur résidu en chacun des pôles :

$$f(z) = \frac{z}{\sin(z)}$$
 et $f(z) = \frac{1}{z(e^z - 1)}$.

Exercice 3. Pour chacune des fonctions suivantes, déterminer le type de singularité en $z_0 = 0$ et calculer leur résidu en z_0 lorsqu'il s'agit d'un pôle :

$$f(z) = e^{1/z}$$
, $f(z) = \frac{e^z - 1}{z}$, $f(z) = \frac{\sin(z^2)}{z^4}$ et $f(z) = \frac{1 - e^{2z}}{z^4}$.

Exercice 4. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière. On définit

$$g(z) := f\left(\frac{1}{z}\right), \quad \text{pour } z \neq 0.$$

- 1. Montrer que, si 0 est une singularité effaçable de g, alors f est constante.
- 2. Montrer que, si 0 est un pôle d'ordre p de g, alors f est un polynôme de degré p. Indication: Utiliser les formules de Cauchy et le théorème de Liouville pour conclure.