Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	10 November 2022
Team ID	PNT2022TMID24798
Project Name	Real-Time Communication System Powered By Al For Specially Abled
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	Task	Story Points	Priority	Team Members
Sprint-1	Checking all the requirements	Downloading the anaconda navigator for the python programming	5	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint-1	Import libraries as per requirements	learn to get familiar with python and conda environment and learn required libraries such as NumPy ,TensorFlow ,opency,IMULTS and get ready with git environment	1	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint 2	Play with dataset	Using dataset for image agumentation and analyze the data			Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint 2	Training the data	Using the data trained the data gen and test datagen for manipulating the image	3	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.

Sprint	Functional Requirement (Epic)	Task	Story Points	Priority	Team Members
Sprint-2	CNN	Classify the images based on dataset And the using Convolution Neural network by using TensorFlow and keras	10	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint-2	Training the model	Implementing the functions and measure the cross entropy and metrices and saving the model	`10	Medium	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint-3	IBM cloud	A notebook in Watson studio and API key has to get and use the service as requirement like machine learning cloud storage and download the model	20	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint-4	Deployment	Creating deployment space and set the space for deployment creating flask application Html frontend and flask as backend	10	Medium	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.
Sprint-4	Application	Run the server for flask application get output according to the ML model deployed	10	High	Mohamed Marzjuk M, Srivarshan U, Naveen V, Eniya Tamil S.

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	27 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Sprint duration = 6 days Velocity of the team = 20 points

$$AV = 20/6 = 3.34$$

Average Velocity= 3.34

Burndown Chart:
A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Sprint duration