Optimization-Based Data Analysis – Brett Bernstein

Recitation 1

1. If a matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal, must its transpose also be orthogonal?

Solution. Yes. As U is orthogonal, we have $U^TU=I$. Thus U,U^T are inverses of each other, so $UU^T=I$. This shows $(U^T)^TU^T=I$ proving U^T is orthogonal.

2. Suppose $A \in \mathbb{R}^{m \times n}$ with $\operatorname{trace}(AA^T) = 0$. What can be said about A?

Solution. We must have A=0. Note that

$$\operatorname{trace}(AA^T) = \langle A^T, A^T \rangle = ||A^T||_F^2 = 0,$$

implying $A^T = 0$.

3. Prove or disprove: If $A, B \in \mathbb{R}^{n \times n}$ with $\operatorname{trace}(A) = 0 = \operatorname{trace}(B)$ then $\operatorname{trace}(AB) = 0$.

Solution. False. Let

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and note that trace(A) = 0 and $trace(A^2) = trace(I) = 2$.

4. Prove the converse to the Pythagorean theorem holds in a real inner product space: If $\|\vec{x}\|^2 + \|\vec{y}\|^2 = \|\vec{x} + \vec{y}\|^2$ then $\langle \vec{x}, \vec{y} \rangle = 0$.

Solution. Note that

$$\|\vec{x} + \vec{y}\|^2 = \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle = \langle \vec{x}, \vec{x} + \vec{y} \rangle + \langle \vec{y}, \vec{x} + \vec{y} \rangle$$
 (1)

$$= \langle \vec{x}, \vec{x} \rangle + \langle \vec{x}, \vec{y} \rangle + \langle \vec{y}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle \tag{2}$$

$$= \|\vec{x}\|^2 + 2\langle \vec{x}, \vec{y} \rangle + \|\vec{y}\|^2. \tag{3}$$

By assumption, the last line is equal to $\|\vec{x}\|^2 + \|\vec{y}\|^2$ proving $\langle \vec{x}, \vec{y} \rangle = 0$.

5. Prove Bessel's inequality: Let $\vec{x}, \vec{u}_1, \dots, \vec{u}_n \in V$ where V is a (real or complex) inner product space. Then

$$\sum_{i=1}^{n} |\langle \vec{x}, \vec{u}_i \rangle|^2 \le ||\vec{x}||^2$$

if $\vec{u}_1, \dots, \vec{u}_n$ are orthonormal.

Solution. Let $S = \operatorname{span}(\vec{u}_1, \dots, \vec{u}_n)$. Then

$$\mathcal{P}_{\mathcal{S}}\vec{x} = \sum_{i=1}^{n} \langle \vec{x}, \vec{u}_i \rangle \vec{u}_i.$$

By the Pythagorean theorem, we have

$$\|\mathcal{P}_{\mathcal{S}}\vec{x}\|^2 + \|\mathcal{P}_{\mathcal{S}^{\perp}}\vec{x}\|^2 = \|\vec{x}\|^2.$$

Thus

$$\|\vec{x}\|^2 \ge \|\mathcal{P}_{\mathcal{S}}\vec{x}\|^2 = \sum_{i=1}^n |\langle \vec{x}, \vec{u}_i \rangle|^2.$$

6. If V, W are subspaces of \mathbb{R}^n with $\dim(V) + \dim(W) > n$ then there is a non-zero vector in $V \cap W$.

Solution. Let $\mathcal{B}_V = (\vec{v}_1, \dots, \vec{v}_r)$ and $\mathcal{B}_W = (\vec{w}_1, \dots, \vec{w}_s)$ be bases for V, W, respectively. If $V \cap W = \{0\}$ then

$$\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_r, \vec{w}_1, \dots, \vec{w}_s)$$

is linearly independent in \mathbb{R}^n with r+s>n, a contradiction.

To see that \mathcal{B} is linearly independent, suppose

$$a_1\vec{v}_1 + \dots + a_r\vec{v}_r + b_1\vec{w}_1 + \dots + b_s\vec{w}_s = 0,$$

for some $a_1, \ldots, a_r, b_1, \ldots, b_s \in \mathbb{R}$. Then

$$a_1\vec{v}_1 + \dots + a_r\vec{v}_r = -b_1\vec{w}_1 - \dots - b_s\vec{w}_s$$
.

Since $V \cap W = \{0\}$ by assumption, both sides must be zero. Since $\mathcal{B}_V, \mathcal{B}_W$ are linearly independent, we have $a_1 = \cdots = a_r = 0$ and $b_1 = \cdots = b_s = 0$.

To see that \mathbb{R}^n cannot have a linearly independent sequence $(\vec{x}_1, \dots, \vec{x}_k)$ with k > n, put $\vec{x}_1, \dots, \vec{x}_k$ as the columns of a matrix $A \in \mathbb{R}^{n \times k}$. Then rank $(A) \leq n < k$ showing the columns cannot be linearly independent.

7. For any $\vec{x} \in \mathbb{R}^n$ show that

$$\|\vec{x}\|_{\infty} \le \|\vec{x}\|_{2} \le \|\vec{x}\|_{1}.$$

Solution. For the first inequality, let m be such that $|\vec{x}[m]| = ||\vec{x}||_{\infty}$. Then

$$\|\vec{x}\|_2 = \sqrt{\sum_{i=1}^n \vec{x}[i]^2} \ge \sqrt{|\vec{x}[m]|^2} = |\vec{x}[m]| = \|\vec{x}\|_{\infty}.$$

For the second inequality, note that

$$\|\vec{x}\|_1^2 = \left(\sum_{i=1}^n |\vec{x}[i]|\right)^2 = \sum_{i=1}^n |\vec{x}[i]|^2 + \sum_{i \neq j} |\vec{x}[i]\vec{x}[j]| \ge \sum_{i=1}^n |\vec{x}[i]|^2 = \|\vec{x}\|_2^2.$$

For an alternative proof of the second inequality, let $|\vec{x}| \in \mathbb{R}^n$ be the vector with $|\vec{x}|[i] = |\vec{x}[i]|$. Then

$$\|\vec{x}\|_2^2 = |\vec{x}|^T |\vec{x}| = \operatorname{trace}(|\vec{x}|^T |\vec{x}|) = \operatorname{trace}(|\vec{x}||\vec{x}|^T) \leq \vec{1}^T |\vec{x}||\vec{x}|^T \vec{1} = \|\vec{x}\|_{1}^2$$

where $\vec{1} \in \mathbb{R}^n$ is the vector with 1 in every coordinate.

- 8. Consider the equation $A\vec{x} = \vec{b}$ where $A \in \mathbb{R}^{m \times n}$, $\vec{x} \in \mathbb{R}^n$, and $\vec{b} \in \mathbb{R}^m$.
 - (a) Give conditions on A, \vec{b} so that there is always an \vec{x} satisfying the equation.
 - (b) When is the solution unique?
 - (c) Under what conditions does $A^T A \vec{x} = A^T \vec{b}$ have a solution?

Solution.

- (a) $\vec{b} \in \operatorname{col}(A)$.
- (b) $\text{null}(A) = \{0\}$, or equivalently, that A has full column rank.
- (c) It always has a solution. We will prove this by showing $col(A^TA) = col(A^T)$. As $A^TA\vec{x} = A^T(A\vec{x})$ we see that $col(A^TA) \subseteq col(A^T)$. To complete the proof we will show that $dim(col(A^TA)) = dim(col(A^T))$. We begin by showing $null(A) = null(A^TA)$. To see this note that $A\vec{x} = 0$ implies $A^TA\vec{x} = 0$ and $A^TA\vec{y} = 0$ implies

$$0 = \vec{y}^T A^T A \vec{y} = ||A\vec{y}||_2^2.$$

This proves $null(A) = null(A^T A)$, which implies $rank(A) = rank(A^T A)$ since

$$rank(A) + dim(null(A)) = n = rank(A^{T}A) + dim(null(A^{T}A)).$$

Thus

$$\dim(\operatorname{col}(A^T)) = \operatorname{rank}(A) = \operatorname{rank}(A^T A) = \dim(\operatorname{col}(A^T A)).$$

9. Let $f(\vec{x}) = A\vec{x}$ and $g(\vec{x}) = \vec{b}^T\vec{x}$ where $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^n$. Give necessary and sufficient conditions for $\text{null}(f) \subseteq \text{null}(g)$.

Solution. We will show that $\vec{b} \in \text{row}(A)$ is a necessary and sufficient condition. If $\vec{b} \in \text{row}(A)$ then we can write $\vec{b} = A^T \vec{y}$ for some $\vec{y} \in \mathbb{R}^m$. Thus if $A\vec{x} = 0$ then $\vec{b}^T \vec{x} = \vec{y}^T A \vec{x} = 0$. Conversely, suppose $\vec{b} \notin \text{row}(A)$. Express \vec{b} as

$$\vec{b} = A^T \vec{y} + \vec{w},$$

where $\vec{y} \in \mathbb{R}^m$ and $\vec{w} \in \text{row}(A)^{\perp}$ with $\vec{w} \neq 0$. Then $A\vec{w} = 0$ but

$$\vec{b}^T \vec{w} = (\vec{y}^T A + \vec{w}^T) \vec{w} = ||\vec{w}^T||_2^2 > 0.$$