4T_L02 Four T

单片机应用技术开发板 用户手册

四梯科技有限公司

目录

-,	总体概述	1
	1.1 产品特点	1
	1.2 资源配置	1
	1.3 开发环境	2
	1.4 订购信息	2
	1.5 获取支持	2
	1.6 版本信息	2
Ξ,	硬件规格详情	3
	2.1 供电方式	3
	2.2 主控单元	3
	2.3 时钟与复位系统	4
	2.4 存储电路	4
	2.5 通信接口	4
	2.6 人机交互接口	4
	2.7 传感器与执行器	4
	2.8 物理特性	5
Ξ,	接线详情	5
四、	硬件资源布局	9
五、	教材贴合实验实施指导	. 10

一、总体概述

单片机应用技术开发板由四梯科技有限公司为《单片机应用技术(C语言版)》 (主编:王静霞)配套开发。

本教学开发板的设计,紧密围绕王静霞老师主编的《单片机应用技术》核心知识体系,旨在打破传统理论教学中"纸上谈兵"的隔阂,构建一个"学中做,做中学"的一体化实践平台。

但在此之外该开发板不仅是一款优秀的教学工具,同样也是一个实用的开发平台。它能够伴随学习者从入门阶段的验证性实验,平滑过渡到进阶阶段的创新性开发,从而全面培养其在嵌入式系统领域的综合设计与工程实现能力。

更多信息可参考《单片机应用技术开发板原理图》、以及教材《单片机应用技术--王静霞》。

1.1 产品特点

- 1)全面贴合教材,与教材知识体系紧密结合。
- 2)集成 USB-ISP 下载,无需外置的下载器,降低设备门槛。
- 3) 双 MCU 协同设计,可以实现双机串口通讯等通常需要两块开发板才能实现的功能。
- 4)丰富的外设与接口,支持测量外部信号,以及驱动外部直流电机或者直流电机。
- 5) 详尽的配套教学资源,包含全套的用户例程以及教学指导。

1.2 资源配置

- 1) U1_MCU: STC12C5A60S2
- 2) U2 MCU: STC12C5A60S2
- 3) 4*4 矩阵键盘(可切换为四路独立键盘)
- 4) 2*4 位数码管
- 5) 1*2 位数码管
- 6) AD、DA 转换模块
- 7) EEPROM 存储模块
- 8) USB 转串口模块
- 9) 蜂鸣器模块
- 10) 红外模块

4T L02

- 11) RTC 时钟模块
- 12) 温度传感器模块
- 13) 直流电机接口
- 14) 步进电机接口
- 15) 8*8LED 点阵
- 16) LCD1602 接口
- 17) LCD12864 接口
- 18) LED 灯矩阵 (两种)

1.3 开发环境

1) IDE: Keil / VIsual Sudio

2) 下载工具: STC-ISP

1.4 订购信息

1).官方淘宝: https://gxct.taobao.com/

2).四梯商城: https://4t.wiki/mall

1.5 获取支持

请通过以下方式联系我们,获取更多硬件学习资源和技术支持。

1).技术支持: tech@4t.wiki

2).交流社区: https://www.4t.wiki/community

3).学习资源: https://www.4t.wiki/curriculum

打开 4t.wiki 网站,获取更多资讯。

1.6 版本信息

版本编号	日期	修改内容	页码
V1.0	2025-9	新修订	1-8

二、硬件规格详情

直接使用 USB1 与 USB2 进行供电,通过电源控制按键来实现冷启动,各自配合 USB 转 TTL 串口芯片进行程序的下载。各自搭配不同的外设,其中按键矩阵以及蜂鸣器作为通用的输入器件与执行机构,可以在 U1 与 U2 之间切换使用。

单片机应用技术开发板的系统框图如下所示:

图 2.1 单片机应用技术开发板系统框图

2.1 供电方式

● 供电接口 1: Type-C USB 接口----USB1

输入电压: 5V DC ±5% 额定电流: ≥ 500mA

● 供电接口 2: Type-C USB 接口----USB2

输入电压: 5V DC ±5% 额定电流: ≥ 500mA

● 电源按键: DOWNLOAD 按键

实现设备冷启动

2.2 主控单元

● 型号: STC12C5A60S2*2

● 架构:增强型8051内核,单时钟指令周期

● 存储器:

Flash ROM:60KB

RAM: 256 字节内部 RAM + 1024 字节内部扩展 RAM

● 工作电压: 5V

2.3 时钟与复位系统

● 时钟源: 每个 MCU 配备单独的 11.0592MHZ/12MHZ 晶振

● 复位电路: 每个 MCU 配备单独的复位电路与按键

2.4 存储电路

• EEPROM: AT24C02

I2C接口 EEPROM 存储器

2.5 通信接口

● USB-to-USART: CH340C, 实现 USB 串口下载与调试 通过跳线帽可实现双 mcu 之间进行串口通讯

● I2C: 实现与 EEPROM 等设备的 I2C 通讯

● 串行、并行:通过串行数据控制点阵屏,数码管等

● 单总线:实现与 DS18B20 等外设通讯

● 三线:实现与 DS1302 实时时钟模块进行通信

2.6 人机交互接口

● 输入:

按键矩阵(可切换为独立按键)4*4

拨动开关*3

滑动变阻器*3

独立按键*2

复位按键*2

冷启动电源按键*1

编码开关*3

● 输出:

蜂鸣器*1

LED 矩阵 (1*8+4*3)

● 显示:

4 位数码管*2

1 位数码管*2

8*8 点阵屏*1

LCD1602 接口*1

LCD12864 接口*1

2.7 传感器与执行器

● 传感器:

温度传感器 DS18B20*1

红外热释电传感器*1

● 执行器接口:

直流电机接口*1

步进电机接口*1

DAC 输出接口*1

2.8 物理特性

PCB尺寸: 112mm*89mm*1.6mm产品尺寸: 112mm*89mm*15mm

● 底壳颜色:白色

● 电机接口: XH-2.54

三、接线详情

	U1 MCU			
PIN	名称	接线	备注	
1	P1.5	矩阵键盘第二列	与 U2 共用	
2	P1.6	矩阵键盘第三列	与 U2 共用	
3	P1.7	矩阵键盘第四列	与 U2 共用	
4	P4.7	复位信号	接复位按键	
5	P3.0	USART RX		
6	P4.3	步进电机 STEP_B		
7	P3.1	USART TX		
8	P3.2	8*8 点阵屏驱动 A2	接 4-16 译码器	
9	P3.3	8*8 点阵屏驱动 A3	接 4-16 译码器	
10	P3.4	8*8 点阵屏驱动 RCLK	接 595 锁存器	
11	P3.5	8*8 点阵屏驱动 SER	接 595 锁存器	
12	P3.6	8*8 点阵屏驱动 SRCLK	接 595 锁存器	
13	P3.7	8*8 点阵屏驱动 SRCLR	接 595 锁存器	
14	XTAL2	外部晶振		
15	XTAL1	外部晶振		
16	GND	MCU 电源地		
17	P4.0	直流电机驱动输入 1		
18	P2.0	拨动开关 1 输入		
19	P2.1	拨动开关 2 输入		

			1
20	P2.2	红外热释电模块 单总线通讯	
21	P2.3	蜂鸣器	与 U2 共用
22	P2.4	NC	
23	P2.5	8*8 点阵屏驱动 CE	接 4-16 译码器
24	P2.6	8*8 点阵屏驱动 A0	接 4-16 译码器
25	P2.7	8*8 点阵屏驱动 A1	接 4-16 译码器
26	P4.4	步进电机 STEP_C	
27	P4.5	步进电机 STEP_D	
28	P4.1	直流电机驱动输入 1	
29	P4.6	NC	
30	P0.7	LED 矩阵输入 8	
31	P0.6	LED 矩阵输入 7	
32	P0.5	LED 矩阵输入 6	
33	P0.4	LED 矩阵输入 5	
34	P0.3	LED 矩阵输入 4	
35	P0.2	LED 矩阵输入 3	
36	P0.1	LED 矩阵输入 2	
37	P0.0	LED 矩阵输入 1	
38	VCC	MCU 电源供电	
39	P4.2	步进电机 STEP_A	
40	P1.0	矩阵键盘第一行	与 U2 共用
41	P1.1	矩阵键盘第二行	与 U2 共用
42	P1.2	矩阵键盘第三行	与 U2 共用
43	P1.3	矩阵键盘第四行	与 U2 共用
44	P1.4	矩阵键盘第一列	与 U2 共用

注: 与 U2 共用指的是需要通过编码开关切换。

	7 3 0 = 7 (7) 3 H 3 (2) (1) (2) (3) (3) (4)					
	U2_MCU					
PIN	名称	接线	备注			
1	P1.5	矩阵键盘第二列	与 U1 共用			
2	P1.6	矩阵键盘第三列	与 U1 共用			
3	P1.7	矩阵键盘第四列	与 U1 共用			
4	P4.7	复位信号	接复位按键			
5	P3.0	USART RX/1*2 位数码管 SDR				

6	P4.3	LCD1602_E	
7	P3.1	USART TX/1*2 位数码管 CLK	
8	P3.2	独立按键 1	
9	P3.3	独立按键 2	
10	P3.4	NC	
11	P3.5	NC	
12	P3.6	NC	
13	P3.7	NC	
14	XTAL2	外部晶振	
15	XTAL1	外部晶振	
16	GND	MCU 电源地	
17	P4.0	蜂鸣器	与 U1 共用
18	P2.0	2*4 位数码管输入选择	位选/段选
19	P2.1	I2C_SCL	
20	P2.2	I2C_SDA	
21	P2.3	1*2 位数码管 CLR	接串入并出 IC
22	P2.4	RTC_IO	
23	P2.5	RTC_SCLK	
24	P2.6	RTC_CE	
25	P2.7	DS18B20 单总线通讯	
26	P4.4	LCD12864_CE	
27	P4.5	LCD12864_RST	
28	P4.1	LCD_WR	
29	P4.6	LCD12864_CD	
30	P0.7	2*4 位数码管数据输入 7/LCD_DB7	
31	P0.6	2*4 位数码管数据输入 6/LCD_DB6	
32	P0.5	2*4 位数码管数据输入 5/LCD_DB5	
33	P0.4	2*4 位数码管数据输入 4/LCD_DB4	
34	P0.3	2*4 位数码管数据输入 3/LCD_DB3	
35	P0.2	2*4 位数码管数据输入 2/LCD_DB2	
36	P0.1	2*4 位数码管数据输入 1/LCD_DB1	
37	P0.0	2*4 位数码管数据输入 0/LCD_DB0	
38	VCC	MCU 电源供电	

39	P4.2	LCD_RD	
40	P1.0	矩阵键盘第一行/扩展 IO 接出	与 U1 共用
41	P1.1	矩阵键盘第二行	与 U1 共用
42	P1.2	矩阵键盘第三行	与 U1 共用
43	P1.3	矩阵键盘第四行	与 U1 共用
44	P1.4	矩阵键盘第一列	与 U1 共用

四、硬件资源布局

图 4.1 单片机应用技术开发板硬件资源布局正面图

图 4.2 单片机应用技术开发板硬件资源布局背面图

五、教材贴合实验实施指导

下表中给出如何在单片机原理及接口技术开发板中进行配置,从而实现《单片机应用技术--王静霞》中的各种实验例程以及应用案例。具体的实验内容以及实验的具体实现代码请参考《单片机应用技术--王静霞》,部分代码实现方式可参考综合实验程序 U1 与 U2。

实验名称	实验描述	硬件连接	MCU	页码
ex1_1-控制一个 LED 闪烁的程序	拨码开关 1X8LED 控制 LD1 有规律的闪烁	P0.0LD1	U1	16
ex1_2-控制一个 LED 发光二极管闪 烁程序	拨码开关 1X8LED 控制 LD1 有规律的闪烁	P0.0LD1	U1	17
ex2_1-控制蜂鸣器 发生程序	拨码开关 U1_BUZZ 蜂鸣器发出高频声音	P2.3BUZZ	U1	24
ex2_2-模拟汽车转 向灯控制程序	拨码开关 1X8LED SW2 控制 LD2 的闪烁, SW24 控制 LD1 的闪烁。	SW2P2.0、SW24P2.1、P0.0LD1、 P0.1LD2	U1	36
ex3_1-采用库函数 实现的流水灯控制 程序	拨码开关选择 1X8LED LD8 至 LD1 流水灯效果从左到右依次点亮	P0 控制 LD1 至 LD8	U1	49
ex3_2-采用循环程 序和移位操作实现 的流水灯控制程序	拨码开关选择 1X8LED LD8 至 LD1 流水灯效果从左到右依次点 亮,循环往复	P0 控制 LD1 至 LD8	U1	51
ex3_3-单个按键控制花样霓虹灯控制程序	拨码开关 1X8LED、U1KB、独立键盘 8 个 LED 全亮,按键按下从右到左的单向 流水灯。	P1.0K1, P0 控制 LD1 至 LD8	U1	55
ex3_4-多个按键控制多种花样霓虹灯控制程序	拨码开关 1X8LED、U1KB、独立键盘 所有 LED 熄灭,按键 S1:8 灯全亮,按 键 S2:交叉亮,按键 S3:高四位亮,按 键 S4:低四位亮。		U1	57
ex3_5-单个按键控制多种花样霓虹灯控制程序	拨码开关 1X8LED、U1KB、独立键盘 所有 LED 熄灭,每按 S1 按键,灯光模 式切换到下一种;按到第5次回到第1种	P1.0K1, P0 控制 LD1 至 LD8	U1	58

实验名称	实验描述	硬件连接	MCU	页码
ex3_6-声光报警器	拨码开关 1X8LED、U1KB、独立键盘、 U1_BUZZ LD1 常亮, LD2 灭, 蜂鸣器静音; 按键触 发 LD2 亮、蜂鸣器鸣响。	P1.0K1, P0 控制 LD1 至 LD8 P2.3BUZZ	U1	72
ex3_7-自动感应垃 圾桶	直流电机、红外模块 通过红外传感器检测控制直流电机实现自 动开盖、关盖。	P2.2红外模块,P4.0电机控制 A 端, P4.1 电机控制 B 端	U1	75
ex3_8-可调光台灯 控制程序	拨码开关 1X8LED、U1KB、独立键盘 基于 PWM 原理,通过两个按键调节 P0 口 8 个 LED 的亮暗。	P0 控制 LD1 至 LD8, P1.0K1, P1.1K2	U1	90
ex3_9-风扇控制程 序	拨码开关 U1KB、独立键盘、直流电机 通过 两个独立按键 S1S2,风速正反转切 换	P1.0K1, P1.1K2, P4.0电机控制A端, P4.1 电机控制B端	U1	92
ex3_10-采用步进 电机实现的风扇控 制程序	拨码开关 U1KB、独立键盘、直流电机 通过 两个独立按键 S1S2,风速正反转切 换	P1.0K1, P1.1K2, P1.2K3, P1.3K4, P4.0电机控制 A 端, P4.1 电机控制 B 端	U1	94
ex4_1-8 路抢答器 控制程序	拨码开关 U2KB、矩阵键盘、8 位数码管 通过矩阵键盘实现 8 个选手抢答, 抢答成 功后在共阳极数码管上显示 0~7.	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入P1.0-P1.3 控制矩阵按键 ROW1-ROW4P1.4-P1.7 控制矩阵按键 COL1-COL4	U2	105
ex4_2-简易密码锁	拨码开关 U2KB、独立按键、8 位数码管 通过独立键盘输入密码,数码管显示状态, 实现密码验证开锁功能。	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入	U2	107
ex4_3-采用数组实 现的流水灯控制程 序	拨码开关 1X8LED LD8 至 LD1 流水灯效果从左到右依次点 亮,循环往复	P0 控制 LD1 至 LD8	U1	113
ex4_4-6 位数码管 动态显示生日 "901225"	使用 8 位数码管 用于在共阳极数码管上 循环显示生日 "901225"。	P2.0 控制数码管位选和段选(P2.0=0时,控制位码, P2.0=1时,控制段码), P0 控制数码管输入	U2	116
ex4_5-6 位数码管 交替稳定显示	使用 8 位数码管 6 个数码管先稳定显示 "901225", 然后	P2.0 控制数码管位选和段选(P2.0=0时,控制位码, P2.0=1时,控制段码),	U2	118

实验名称	实验描述	硬件连接	мси	页码
"901225" 和 "125315" 两屏内 容	切换为 "125315" 循环往复	P0 控制数码管输入		
ex4_6-六个数码管 移动显示 "HELLO"	使用 8 位数码管 6 位数码管上显示 "HELLO" 在数码管上 滚动的效果	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入	U2	118
ex4_7-在 8x8LED 点阵式电子广告牌 上稳定显示数字 0	使用 8x8 点阵 8x8 LED 点阵屏上稳定显示一个清晰的 数字 "0"	4-16 译码器: A0 = P2.6;A1 = P2.7;A2 = P3.2;A3 = P3.3;E0 = P2.5; 595 锁存器: SER = P3.5;SRCLK = P3.6;SRCLR = P3.7;RCLK = P3.4;	U1	121
ex4_8-采用二维数 组实现在 8x8LED 点阵式电子广告牌 上循环显示数字 0-9	使用 8x8 点阵 8x8 LED 点阵屏 上 循环动态显示数字 0 到 9	4-16 译码器: A0 = P2.6;A1 = P2.7;A2 = P3.2;A3 = P3.3;E0 = P2.5; 595 锁存器: SER = P3.5;SRCLK = P3.6;SRCLR = P3.7;RCLK = P3.4;	U1	122
ex4_9-在 16x16LED 点阵式 电子广告牌上循环 显示文字 "单片机"	使用 8x8 点阵 8x8 LED 点阵屏上循环动态显示"单片 机"。	4-16 译码器: A0 = P2.6;A1 = P2.7;A2 = P3.2;A3 = P3.3;E0 = P2.5; 595 锁存器: SER = P3.5;SRCLK = P3.6;SRCLR = P3.7;RCLK = P3.4;	U1	123
ex4_10-LCD 液晶 显示程序	使用 1602LCD 上电后, 1602 LCD 屏幕显示字符串	数据线 P0.0-P0.7;控制 线:RSP4.1,RWP4,2,ENP4.3	U2	129
ex4_11-显示 "工 人"	使用 1602LCD 上电后, 1602 LCD 屏幕显示"工人"	数据线 P0.0-P0.7;控制 线:RSP4.1,RWP4,2,ENP4.3	U2	132
ex4_12-一位数码 管现实的密码锁	拨码开关 U2KB、独立按键、8 位数码管 若按下 "8",显示 "8", "P";若按下其 他键,显示该键值, "E", "-"	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入;P1.0-P1.3 控制矩阵按键 ROW1-ROW4P1.4-P1.7 控制矩阵按键 COL1-COL4	U2	141
ex4_13-具有六位 密码设置的使用密 码锁程序	拨码开关 U2KB、矩阵按键、1602LCD	1602 数据线 P0.0-P0.7;控制 线:RSP4.1,RWP4,2,ENP4.3。 P1.0-P1.3 控制矩阵按键 ROW1-ROW4	U2	143

实验名称	实验描述	硬件连接	MCU	页码
		P1.4-P1.7 控制矩阵按键 COL1-COL4		
ex5_1-00~99的 简易秒表设计,两 个静态数码管,定 时器采用中断方式	使用 8 位数码管数码管每秒加 1,显示 01、、99,然回到 00,循环计时	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入	U2	153
ex5_2-00~99的 简易秒表设计,两 个静态数码管,定 时器采用查询方式	数码管每秒加 1,显示 01、、99,然 回到 00,循环计时	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入	U2	155
ex5_3-交通灯控制 程序	拨码开关交通灯 模拟交通灯的基本功能。	P0.0-P0.5 控制六个模拟红绿灯	U1	174
ex6_1-甲机发送数 据采用查询方式	向乙机发送一组 6 字节数据。	使用杜邦线连接 U1 和 U2 的串口,使之通讯。	U1	183
ex6_2-乙机接收数 据,采用查询方式	通过串口接收6个字节的数据,并用6位共阳极数码管动态扫描显示出来。	P2.0 控制数码管位选和段选(P2.0=0时,控制位码, P2.0=1时,控制段码), P0 控制数码管输入;使用杜邦线连接U1和U2的串口,使之通讯。	U2	183
ex6_3-甲机发送数 据(握手信号)	通过串口方式 1 向乙机发送 6 个数据,并实现握手协议	使用杜邦线连接 U1 和 U2 的串口,使之通讯。	U1	185
ex6_4乙机接收 数据(握手信号)	接收甲机发来的握手信号 0x01, 回复 0x02;接收 6 个数据并在 6 位数码管上循环显示接收到的数字	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入;使用杜邦线连接U1和U2的串口,使之通讯。	U2	185
ex6_5-乙机接收数 据,采用中断方式	通过串口接收6个字节的数据,并用6位共阳极数码管动态扫描显示出来。	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入;使用杜邦线连接U1和U2的串口,使之通讯。	U2	196
ex6_6-移动终端数 据上传程序	接收来自 PC (或其他设备)的数据(以 换行符 0x0A 为帧结束标志),收到完整 一帧后,立即将该帧原样回传。	PC 端通过数据线连接 U1。	U1	199

实验名称	实验描述	硬件连接	MCU	页码
ex6_7-串行输入控	使用串口、两个8位数码管	P3.0595 数据输入、P3.1595 时钟、	111	200
制数码管	两个数码管循环显示显示数字 0-9	P2.3595 锁存信号	U1	208
ex7_1-0~5 V 连续 可变的模拟电压信 号测量	使用单片机内部 A/D 转换器、可变电阻器四位共阳极数码管动态显示当前 P1.0 引脚输入的模拟电压对应的数字值	P2.0 控制数码管位选和段选(P2.0=0时,控制位码, P2.0=1时,控制段码), P0 控制数码管输入杜邦线链接 P1.0RV3	U2	213
ex7_2-可调光台灯 控制程序	使用 PCF8591 连接到 PCF8591 模拟输出端的 LD21 或 灯泡亮度从暗逐渐变亮,再从亮逐渐变暗	SCLP2.1 SDAP2.2	U2	224
ex7_3-产生正弦 波,周期约 256ms, 幅度约 2.5V	使用 PCF8591 PCF8591 DAC 芯片输出一个正弦波。	SCLP2.1 SDAP2.2	U2	229
ex8_1-数字钟程序	拨码开关选择 U2KB、独立按键、8 位数码管由 6 位 LED 显示时、分、秒;可以设置当前时间;具备启闹功能;可以主动关闭闹钟功能	P2.0 控制数码管位选和段选(P2.0=0时,控制位码,P2.0=1时,控制段码),P0 控制数码管输入U2_BUZZP4.0	U2	240
ex8_2-PG12864F 图形液晶模块显示" 深圳"	使用 LCD12864 在图形液晶上显示相应的字符	P0.0-P0.7LCD12864 的数据端口 P4.1LCD 写选择 P4.2LCD 读选择 P4.4LCD 片选 P4.5LCD 复位 P4.6LCD 命令数据选择	U2	252
ex8_3-PG12864F 液晶模块显示图片	使用 LCD12864 在图形液晶上显示相应的图片	LCD12864 接线如上	U2	256
ex 单片机综合设计	基于 STC12 单片机的实时时钟、温度采集、数据存储与串口上传功能的嵌入式系统,配合 12864 LCD 显示屏、DS1302 时钟芯片、DS18B20 温度传感器和 AT24C02实现数据记录	P2.1IIC_SCL	U2	258