Matemática Discreta – ACH2013	Data://			
Primeira Lista de Exercícios	Turma:	04	I	94
Nome:				
N° USP:	Nota:			

Exercício 1) Quais são todos os subconjuntos dos seguintes conjuntos? (1,0)

Exercício 2) Em que condições o conjunto de todos os palíndromos sobre um alfabeto constitui uma linguagem finita? (3,0)

Exercício 3) Determine V(p) e V(q) em cada um dos seguintes casos, sabendo que: (1,0)

A)
$$V(p \rightarrow q) = V e V(p \land q) = F$$
 $V(p) =$

$$V(p) =$$

$$V(q) =$$

B)
$$V(p < -> q) = V e V(p ^ q) = V$$

$$V(p) =$$

$$V(q) =$$

C)
$$V(p < -> q) = F e V(\neg p \lor q) = V$$

$$V(p) =$$

$$V(q) =$$

D)
$$V(p <-> q) = V e V(p \lor q) = V$$

$$V(p) =$$

$$V(q) =$$

E)
$$V(p -> q) = V e V(p \lor q) = F$$
 $V(p) =$

$$V(n) =$$

$$V(q) =$$

Exercício 4) Construa as tabelas- verdade das seguintes fórmulas e marque a opção mais adequada para a tabelaverdade: (2,0)

a) p-> (q->(q->p))

TAUTOLOGIA | CONTRADIÇÃO | AMBAS | NENHUMA Resposta:

b)p->(p-> \neg r)<->q \lor 1	b)ı	p->((p->¬r)<->a	٧	r
----------------------------------	-----	------	--------	-------	---	---

Resposta: TAUTOLOGIA | CONTRADIÇÃO | AMBAS | NENHUMA

Exercício 5) Prove, usando tabela- verdade as seguintes equivalências : (2,0)

DeMorgan (Augustus DeMorgan, nascido na india, de familia/educação inglesa, 1806-1871).

¬ (p ^ q) ⇔ ¬p v ¬ q

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

Exercício 6) Suponha o conjunto universo {2,3,4,5,6,7,8,9}. (1,0)

Para cada uma das proposições abaixo:

(a) Determine o valor-verdade(V ou F); (b) Escreva sua negação:

1) $(\forall x)(\forall y)(X+5< y+12)$

Valor Verdade: Negação:

2) (∀x) (∃y) (x * y não é primo)

Valor Verdade: Negação:

3) $(\exists y)(\forall x)(x * y não é primo)$

Valor Verdade: Negação:

4) $(\exists x)(\forall y)(x^2 > y)$

Valor Verdade: Negação:

5) $(\forall x)(\exists y)(\exists z)(x+y>z)$

Valor Verdade: Negação: