On the other hand, if $\lim_{t\to 1} \int_0^t \frac{1+\sigma_z^2(s)}{\lambda^2(s)} ds = \infty$, consider the process

$$X_t = \int_0^t \frac{1}{\lambda(s)} dB_s^2 - \int_0^t \frac{\sigma_z(s)}{\lambda(s)} dB_s^1,$$

and a change of time $\tau(t)$ given by

$$\int_0^{\tau(t)} \frac{1 + \sigma_z^2(s)}{\lambda^2(s)} ds = t.$$

Then, $W_s = X_{\tau(s)}$ is a Brownian motion. Hence, we can use the law of iterated logarithm to get

$$\limsup_{s \to \infty} \frac{W_s}{\sqrt{2s \log \log s}} = 1$$

$$\liminf_{s \to \infty} \frac{W_s}{\sqrt{2s \log \log s}} = -1$$

or, in the original time,

$$\limsup_{t \to 1} \frac{X_t}{\sqrt{2\Xi(t)\log\log(\Xi(t))}} = 1$$

$$\liminf_{t \to 1} \frac{X_t}{\sqrt{2\Xi(t)\log\log(\Xi(t))}} = -1$$

where $\Xi(t) = \int_0^t \frac{1+\sigma_z^2(s)}{\lambda^2(s)} ds$. Since, due to the Assumptions 2.2, 3.1 and 3.2, we have

$$\lim_{t \to 1} \lambda^2(t)\Xi(t)\log\log\left(\Xi(t)\right) = 0,$$

it follows that $\lim_{t\to 1} \lambda(t)X_t = 0$, therefore $Y_1 = Z_1$.

With this lemma at hand, establishing that the pair (H^*, θ^*) given in the Theorem 3.1 is indeed an equilibrium is straightforward, as the following proposition demonstrates.

Proposition 3.2 Suppose that Assumptions 2.1, 2.2, 3.1 and 3.2 are satisfied. Then the pair (H^*, θ^*) , where $H^*(y, t)$ satisfies the partial differential equation (PDE) (3.7) with terminal condition (3.8), and the process θ_t^* is given by (3.9), is an equilibrium.