

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

Aplicação do Sistema Time-Driven Activity-Based Costing: um Estudo de Caso em uma Microempresa do Setor Metalúrgico

Júlia Flach Allgaier Universidade Federal do Rio Grande do Sul (UFRGS) julia.all93@gmail.com

Wendy Beatriz Witt Haddad Carraro Universidade Federal do Rio Grande do Sul (UFRGS) wendy.carraro@ufrgs.br

Ariel Behr Universidade Federal do Rio Grande do Sul (UFRGS) <u>ariel.behr@ufrgs.br</u>

Resumo

A competitividade se torna mais acirrada a cada ano e uma análise adequada dos custos torna-se fundamental no processo decisório das empresas. O Time-Driven Acitivy-Based Costing –TDABC é um modelo de custeio baseado em atividades e tempo que possibilita uma gestão estratégica dos custos, definindo custos e despesas com mais fundamento e critério. Esta pesquisa discorre acerca de um estudo de caso cujo objetivo é avaliar a aplicabilidade da abordagem TDABC em uma microempresa de produção por encomenda do ramo metalúrgico localizada na região metropolitana de Porto Alegre/RS. A metodologia empregada foi de natureza exploratória e qualitativa, com a utilização de técnicas como entrevistas semi-estruturadas, análise documental e observação participante. Os resultados da pesquisa apresentam benefícios que o modelo TDABC proporcionou como maior agilidade para tomada de decisão, identificação de onde os recursos são efetivamente consumidos, informações gerenciais relevantes no que tange à estimativa da capacidade prática disponível, da capacidade prática utilizada. Como limitação, verifica-se que o setor econômico da empresa avaliada é peculiar, apesar de ser de grande relevância no cenário econômico brasileiro, todavia não sendo possível generalizar os resultados obtidos, porquanto também tenha se tratado de um estudo de caso único.

Palavras-chave: Time-Driven Activity-Based Costing. Produção por encomenda. Ramo Metalúrgico. Gestão Estratégica de Custos.

1 INTRODUÇÃO

A Secretaria de Geologia, Mineração e Transformação Mineral (SGM), do Ministério de Minas e Energia, apresenta a cada ano um panorama do setor metalúrgico, visto que este tem uma importância significante na economia brasileira, possuindo uma vasta cadeia

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

produtiva, entre usinagem e produção de manufaturados metálicos, serve também de base para outras atividades como indústria automobilista e construção civil. O Centro de Apoio Tecnológico à Indústria Metalomecânica (CATIM, 2012, p. 23) afirma que "[...] na Indústria Metalúrgica e Metalomecânica verifica-se que as micro e pequenas empresas representam mais de 80% das empresas do setor".

No ramo metalúrgico é muito comum as microempresas¹ trabalharem com produtos sob encomenda. Salienta-se que as empresas que atuam no setor de produção por encomenda, de modo geral, têm a essência de sua competitividade calcada nas informações de custos (CAMPOS, 2003; MEGLIORINI, 2003; SOUZA *et al.*, 2006). Segundo Duarte (2003), o mercado vem buscando cada vez mais o tripé custo, qualidade e prazo sendo que sobreviverá a empresa que conseguir buscar este equilíbrio entre estes três elementos. É necessário planejar e controlar, tendo como base as ferramentas de gestão que servem de apoio para as tomadas de decisão. Entre algumas existentes, tem-se a gestão de custos. Hansen e Mowen (2000) descrevem que a gestão de custos produz informações para usuários internos, ou seja, identifica, coleta, mensura, classifica e relata informações que são úteis aos gestores para o custeio (determinar quanto algo custa), planejamento, controle e tomada de decisão.

Nesse contexto, Kaplan e Cooper (1998) destacam que, no atual ambiente em que as empresas atuam, a gestão de custos se torna um dos aspectos de extrema importância para a sustentação da competitividade. Entre os métodos de custeio utilizados para gerir custos, existem o *Activity Based Costing* (ABC) que atribui os custos às atividades e posteriormente atribui custos das atividades aos produtos, e o *Time-Driven Activity-Based Costing* (TDABC) proposto por Kaplan e Anderson (2004) que utiliza novas ferramentas como as equações de tempo para uma maior precisão. Sendo assim, surge a questão que norteia a pesquisa: *Quais as potencialidades que o sistema de TDABC fornece para o processo de tomada de decisões de uma empresa de produção por encomenda do ramo metalúrgico?*

Dessa forma, o objetivo do presente estudo é aplicar o sistema de TDABC - *Time-Driven Activity-Based Costing* no processo de produção de uma EPE (Empresa de Produção por Encomenda) do ramo metalúrgico. A opção pelo tema de pesquisa de custos aplicada a uma microempresa que trabalha sob encomenda é feita por dois motivos. O primeiro se deve a relevância que essa categoria representa no aspecto tanto econômico, quanto social dentro da realidade brasileira e visto que muitas não conseguem manter-se no atual mercado competitivo. O segundo lugar deve-se a importância do tema no processo decisório. Acredita-se que o TDABC pode ser uma importante ferramenta gerencial para as organizações, entretanto, suas limitações devem ser mais bem estudadas para efetivar sua importância no suporte ao processo decisório (SOUZA *et al.*, 2010).

O artigo está estruturado da seguinte forma: além desta introdução, são abordados, na segunda seção os principais conceitos teóricos necessários para o desenvolvimento da pesquisa sendo também apresentados outros estudos sobre o tema do TDABC; na terceira seção apresentam-se os procedimentos metodológicos; na quarta seção os dados da pesquisa

¹ Microempresa é a sociedade empresária, a sociedade simples, a empresa individual de responsabilidade limitada e o empresário, devidamente registrados nos órgãos competentes, que aufira em cada ano calendário, a receita bruta igual ou inferior a R\$ 360.000,00.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

são demonstrados e analisados; e, por fim, na quinta seção, são apresentadas as conclusões e considerações finais do estudo.

2 REFERENCIAL TEÓRICO

Para embasamento da pesquisa a fundamentação teórica comtempla conceitos de mapeamento de processos, a gestão estratégica de custos e a abordagem *Time Driven Activity Based Costing*.

2.1 MAPEAMENTO DE PROCESSOS

Toda e qualquer organização é formada por processos. De acordo com Soliman (1999), um processo integra pessoas, ferramentas e métodos para executar uma sequencia de passos com o objetivo definido de transformar determinadas entradas em determinadas saídas. Através da análise do processo, é possível propor um gerenciamento, no sentido de oferecer melhorias, mediante um prévio mapeamento.

O mapeamento de processos é fundamental para identificação das atividades principais e para uma análise sistêmica das organizações. Para Rother e Shook (2000), o mapeamento é uma ferramenta que nos fornece uma figura de todo o processo de produção, incluindo atividades de valor e não agregadoras de valor. Johnston e Clark (2002) definem o mapeamento dos processos como a técnica de se colocar em um gráfico o processo do serviço para orientação em suas fases de avaliação, desenho e desenvolvimento. Afirmam Mello e Salgado (2005, p. 13), "o mapeamento é realizado pela utilização de uma técnica para representar as diversas tarefas necessárias, na sequencia em que elas ocorrem, para a realização e entrega de um serviço ou produto."

Existem várias formas de mapeamento de processos, cada uma com um enfoque diferente, este estudo utilizará o modelo de fluxograma para tal. O fluxograma de processo, segundo Vicente Campos (1992), é fundamental para padronizar e entender o processo. Outra definição também seria que o fluxograma (SLACK *et al.*, 1997): é uma técnica de mapeamento que permite o registro de ações de algum tipo e pontos de tomada de decisão que ocorrem no fluxo real. Segundo Pinto (2009) com modelo de fluxograma pode-se propor um específico para o estudo, possibilitando visualizar de forma mais clara o macro processo da empresa a ser estudada para um maior entendimento do processo desde o pedido do cliente até a entrega.

2.2. GESTÃO ESTRATÉGICA DE CUSTOS

Conceitualmente, de acordo com Marques, Lima e Dos Santos (2010, p. 1), "custo é o gasto que é aplicado na produção ou em qualquer outra função de custo, gasto esse desembolsado ou não." É o valor aceito pelo comprador para adquirir um bem ou é a soma de todos os valores agregados ao bem, desde sua aquisição, até que ele atinja o estágio de comercialização (Dutra, 2003). Por este motivo, é imprescindível gerir estes custos.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

Afirmam Pompermayer e Lima (2002, p. 55) que "a atual gestão de custos apoia-se em métodos de custeios discutidos sob a luz de duas correntes: métodos tradicionais e métodos estratégicos." Citam ainda Pompermayer e Lima (2002, p. 56)

Os sistemas tradicionais focalizam a apuração dos custos em três elementos: materiais utilizados na produção, mão de obra empregada e custos indiretos de fabricação, tendo os dois primeiros como elementos principais na composição dos custos dos produtos. [...]. A segunda corrente dos métodos de custeio é a da gestão estratégica de custos.

À vista disso, "a Gestão Estratégica de Custos passa a representar um papel cada vez mais importante nas organizações" (CARRARO et al., 2013, p. 3). Segundo Hansen e Mowen (2001) a Gestão Estratégica de Custos corresponde ao uso de dados que permitem desenvolver e identificar as estratégias que são superiores nas práticas da organização e que, de alguma forma, produzirão uma vantagem competitiva sustentável. De acordo com Carraro et al. (2013), este é o principal objetivo da Gestão Estratégica de Custos, atingir uma vantagem competitiva através dos custos, consequentemente, favorecer a formação de um preço de mercado menor, sendo assim mais competitivo, gerando mais receita e lucros. Conforme Kaplan e Anderson (2007), o TDABC é um poderoso instrumento para vincular a gestão operacional com a gestão estratégica.

2.3 ABORDAGEM DO TIME-DRIVEN ACTIVITY-BASED COSTING (TDABC)

O *Time-Driven Activity-Based Costing* - TDABC é um método adequado para subsidiar o processo decisório em processos complexos e dinâmicos, como em hospitais, indústrias de produção sob encomenda e empresas varejistas (KAPLAN; ANDERSON, 2007). De acordo com Kaplan e Anderson (2007) o objetivo é fornecer dados mais exatos e com maior agilidade para obtenção das informações necessárias, possibilitando uma maior flexibilidade nas atividades de forma a identificar mais corretamente a lucratividade dos pedidos, produtos e clientes. Segundo Schmidt, Santos e Leal (2009) o TDABC ignora a etapa de definir as atividades, eliminando a necessidade de alocar os custos dos departamentos entre as várias atividades por eles executadas, evitando o trabalho dispendioso, demorado e subjetivo de pesquisa de atividades do ABC, pois conforme Varilla, Sepännen e Suomala (2007), o ABC tem dificuldades em modelar atividades complexas e variáveis que utilizam diferentes métodos de trabalho.

Dessa maneira, "o Time-Driven Activity-Based Costing incorpora com facilidade variações nas demandas de tempo em diferentes tipos de transações" (KAPLAN; ANDERSON, 2007, p. 16). Ou seja, este método não considera que os pedidos e transações sejam iguais e nem tenham o mesmo tempo de processamento. Como ele é adaptável a diversos tipos e segmentos de empresas e neste estudo se estrutura numa microempresa que trabalha com produtos sob encomenda, se considera, como relata Kaplan e Anderson (2007) que as unidades de tempo estimadas no modelo TDABC apresentem variação com base nas características do pedido e da atividade. Afirmam Kaplan e Anderson (2007, p. 9) "o TDABC não exige que todos os pedidos de clientes sejam iguais". Citam os referidos, que se a

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

empresa possui uma padronização dos processos e uma diversidade de produtos e clientes a utilização do TDABC traz mais benefícios para empresa do que um método convencional.

Para estruturar o modelo TDABC é necessário estimar dois parâmetros: a taxa de custo da capacidade para o departamento e o uso da capacidade por cada transação processada no departamento. Primeiramente calcula-se a taxa de custo da capacidade que é determinada pela equação:

Equação 1 - Cálculo da taxa de custo da capacidade

Taxa do custo da capacidade = <u>Custo da capacidade fornecida</u>
Capacidade prática dos recursos fornecidos

Fonte: Adaptada de Kaplan e Anderson (2007, p.12).

Kaplan e Anderson (2007) descrevem que o TDABC utiliza equações de tempo, que de maneira automática e direta, distribuem os recursos de custo das atividades executadas e as transações processadas.

O custo da capacidade fornecida é o custo total do departamento, incluso todos os custos relacionados a ele, multiplicando-se o tempo para execução do trabalho pela taxa de custo da capacidade obtém-se o custo da atividade. Para estimar a capacidade prática, é preciso que se identifique a quantidade de recursos (tipicamente pessoas ou equipamentos) que realmente executam o trabalho (KAPLAN; ANDERSON, 2007, p. 12), saber quantos dias por mês, em média, os empregados e as máquinas trabalham e em quantas horas ou em quantos minutos por dia os funcionários estão realmente disponíveis para realização do trabalho.

Depois de calculada a taxa do custo da capacidade, a segunda etapa é estimar a capacidade necessária, ou seja, tempo para executar cada atividade (KAPLAN; ANDERSON, 2007). Esta estimativa, segundo os autores anteriormente citados, pode ser obtida por observação direta ou por entrevistas. Para a estruturação do TDABC deve se seguir algumas fases de acordo com Everaert e Bruggeman (2007):

- a) levantamento dos recursos fornecidos às atividades, segregando-os em grupos;
- b) apuração do valor gasto com cada recurso;
- c) mensuração da capacidade prática das atividades;
- d) determinar o custo unitário de cada recurso, com a divisão do valor encontrado para cada grupo de recursos pela capacidade prática da atividade (calculado no item anterior);
- e) aferição do tempo consumido para execução de uma atividade;
- f) multiplicação do custo unitário (apurado no item "d") pelo tempo requerido por cada objeto de custo (item "e").

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

A respeito das equações, Kaplan e Anderson (2007) exemplificam o modo fácil como o Time-Driven Activity Based Costing lida com as variações na demanda. O exemplo é com um setor de embalagem, no qual um pacote padronizado do um produto consumiria apenas meio minuto. No entanto, se esse mesmo produto necessitasse de uma embalagem especial seria possível acrescentar 6,5 minutos para esse fator. Ainda, caso o transporte fosse aéreo e exigisse a colocação do pacote num saco plástico, caberia introduzir mais 0,2 minuto. Nesse caso, a equação poderia ser a reproduzida na equação abaixo:

Equação 2 - Exemplo de equação do TDABC

Tempo de embalagem = 0.5 + 6.5 (caso necessite de manuseio especial) + 0.2 (em caso de transporte aéreo)

Fonte: Adaptada de Kaplan e Anderson (2007, p. 16).

O TDABC é de rápida implantação e apresenta onerosidade reduzida. Essa metodologia possibilita a geração de melhores informações para fins de gestão em empresas de todos os portes. Algumas de suas vantagens são o baixo custo de implantação e manutenção, a facilidade e rapidez na construção de um modelo, possibilita feedback dos gestores, boas estimativas sobre o consumo de recursos, utilização em indústrias com grande e complexa variedade de produtos, clientes, canais de distribuição e despesas.

O *Time Driven Activity Based Costing* está sendo mais explorado nos últimos anos, conforme pesquisa realizada tendo como referência os artigos apresentados no Congresso Brasileiro de Custos (CBC).

Percebeu-se que o tema ainda esta em desenvolvimento e precisa de mais estudos, pois, somente 13 artigos foram publicados e a teoria foi desenvolvida em 2004. No CBC os primeiros artigos foram em 2008 com 04 estudos, em 2009, 2010 e 2012 com 03 pesquisas a cada ano. (SANTANA; AFONSO; FAGUNDES, 2013, p.13)

A utilização de metodologias tradicionais de custeio pode gerar informações inadequadas, e como consequência decisões distorcidas (LEAL, 2010). Por esse motivo se sugere a abordagem do TDABC. Também comprovado por Pereira (2011) que através do custeio baseado em atividades e tempo, as respostas se tornam menos arbitrárias do que as formas de custeio tradicionais. Destaca ainda que o custeio baseado em atividades e tempo estrutura de forma simplificada e relevantemente correta, informações que permitem perceber adequadamente custo de atividades críticas como vender, produzir e carregar, como também permite avaliar de forma mais precisa a rentabilidade de produtos, clientes e unidades de negócio. Gervais, Levant e Ducrocq (2010, p.13) afirmam "Para pôr em prática o método TDABC exigem análises precisas e elaboradas que o tornam e mais moroso e dispendioso. Por outro lado, o uso de tempos normais e até mesmo custos padrão reduz sua complexidade."

O desenvolvimento de um modelo de custos *Time-Driven ABC* envolve uma sequencia de fases definidos (SANTOS, 2013, p. 75). O respectivo autor também ressalta a flexibilidade que o modelo TDABC permite e constata que o conceito de modelagem dos processos de negócios não é novo, e também não é novidade a ideia de alocar custos com base no tempo,

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

porém a diferença se encontra na utilização das equações de tempo baseadas em processos, que é algo inovador.

3 PROCEDIMENTOS METODOLÓGICOS

A pesquisa realizada neste estudo é classificada quanto aos seguintes aspectos: (a) pela forma de abordagem do problema, (b) de acordo com seus objetivos e (c) com base nos procedimentos técnicos utilizados.

No que tange à abordagem do problema, esta pesquisa tem natureza qualitativa, adotando como estratégia de pesquisa o estudo de caso realizado em uma Empresa de Produção por Encomenda (EPE), da região metropolitana de Porto Alegre, que não utiliza um modelo tradicional de custos. Na pesquisa qualitativa objetiva verificar a relação da realidade com o objeto de estudo, obtendo várias interpretações de uma análise indutiva por parte do pesquisador (DIEHL, 2004). E, segundo Yin (2001), o estudo de caso representa uma investigação empírica e compreende um método abrangente, considerando-se uma lógica seqüencial de planejamento, coleta e análise de dados.

De acordo com os objetivos a pesquisa classifica-se como exploratória e descritiva. A pesquisa exploratória, sengundo Gil (1999), é desenvolvida no sentido de proporcionar uma visão geral acerca de determinado fato. Portanto, esse tipo de pesquisa é realizado, sobretudo, quando o tema escolhido é pouco explorado, tornando-se difícil formular hipóteses precisas e operacionalizáveis. Já a pesquisa descritiva tem como característica exigir do pesquisador uma delimitação de técnicas, métodos, modelos e teorias que orientem a coleta e a interpretação dos dados (TRIVIÑOS, 1987); a fim de conferir validade aos resultados da pesquisa realizada.

Com relação aos procedimentos técnicos utilizados, coletaram-se dados para o estudo por meio de análise documental, entrevistas semi-estruturadas e observação direta. Conforme Richardson (1999) a análise documental consiste em uma série de operações que propõem estudar um ou mais documentos para descobrir as circunstâncias sociais e econômicas com as quais podem estar relacionados. Foram utilizados na pesquisa as demonstrações financeiras da empresa, bem como outros documentos comprovantes dos custos e despesas verificados. Quanto às entrevistas semi-estruturadas, de acordo com Hair et al. (2005), estas vem sendo cada vez mais utilizadas pelos pesquisadores, uma vez que permitem o surgimento de informações inesperadas e esclarecedoras com um planejamento relativamente aberto, em contraposição à entrevista estruturada (padronizada) ou questionário. O roteiro de entrevistas utilizado tinha como questões a descrição dos processos de produção da empresa, bem como a identificação dos gastos e do consumo de insumos de produção. Estas entrevistas foram aplicadas ao administrador/proprietário do negócio, e aos dois funcionários do setor analisado. E, por fim, ainda coletaram-se dados por meio de observação direta, verificando-se como eram realizados os processos de produção, e realizando o controle de tempos das atividades desse processo. Na etapa de análise dos dados coletados foi empregada a análise de conteúdo das entrevistas e documentos coletados, e a descrição das atividades observadas; corroborando com o que afirma Gil (1999) ao dizer que que o objetivo da análise dos dados é organizá-los de forma sistêmica para que possibilitem o fornecimento de respostas ao

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

problema de investigação. Como fruto da coleta e análise dos dados foi possível realizar o mapeamento dos principais processos da empresa (indicados pelo administrador/proprietário, e não restringindo-se somente a processos do setor finalístico analisado), a fim de se obter uma visão geral do funcionamento do negócio.

A apresentação do caso estudado terá como base conceitual as elaborações teóricas do método de custeio *Time Driven Activity Based Costing*, tendo como principal referência a obra de Kaplan e Anderson (2007). Logo, para a alocação dos custos verificados, utilizaramse as seguintes definições:

O custos indiretos foram apropriadas ao processo de solda na mesma proporção do uso da mão de obra.

O custos diretos foram mensurados a partir do material utilizado para produzir o produto.

O custo do setor estudado foi atribuído com base na soma dos tempos despendidos pelas atividades do setor e com os valores atribuíveis somente a ele, desconsiderando o que não foi usufruído.

4 ESTUDO DE CASO

Nesta sessão é apresentada a análise dos dados obtidos, tendo em vista o mapeamento do processo e a aplicação do *Time-Driven Activity-Based Costing*. São classificadas como Empresas de Produção por Encomenda (EPEs) as empresas que produzem uma grande variedade de produtos em um volume relativamente baixo (HENDRY, 1998). Paranhos Filho (2007) define produção sob encomenda, a qual também denomina de produção sob projeto, como tendo alta variedade e sendo o produto fabricado de acordo com as especificações exigidas pelo cliente. Destaca também Araújo (2009), que o processo produtivo na estratégia de produção por encomenda acontece apenas após o pedido do cliente, podendo existir maior ou menor grau de customização.

A empresa analisada situa-se na região sul do Brasil, mais precisamente na região metropolitana de Porto Alegre/RS, atuando no ramo metalúrgico com a fabricação de máquinas e equipamentos, bem como na industrialização e reforma de peças e máquinas em geral. A empresa conta com serviços terceirizados para desenvolver parte do processo. O processo de produção conta com quatro funcionários e cada um é responsável por uma ou mais etapas. Os seus produtos são ferramental e equipamentos para máquinas de corte e dobra, prensa-dobradeira, manutenção dos conjuntos de corte de pneus em desuso como: faca e navalha industrial, matriz e punção para prensas, dobradeiras e ligas. Não há um produto definido. Trabalha-se sempre de acordo com as necessidades dos clientes, partindo do objetivo de solucionar o problema, normalmente as peças são otimizadas para melhorar a desempenho dos equipamentos em geral.

4.1 MAPEAMENTO DO PROCESSO

Realizou-se o mapeamento dos processos, a fim de se identificar o setor principal da empresa que será escolhido para demonstração. Como também a empresa trabalha com diferentes tipos de produto, dependendo do pedido do cliente, escolheu-se um produto

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

principal para acompanhar seu processo: as navalhas para corte de pneus. A figura 2 apresenta o mapeamento de processos feito do macro processo das navalhas para corte de pneus desde o pedido até a entrega do produto.

Embalagem Emissão de Nota Pedido do Cliente Envio da mercadoria Projeto Fim Orçamento Tudo certo? Contato com Cliente Inspeção de medidas Cliente aceita? Retifica Sim Contrato Solda Compra de MP Aquecimento Usinagem Beneficiamento

Figura 1 - Macro processo das navalhas para corte de pneus

Fonte: Elaborada pelos autores (2014).

Com o mapeamento do macro processo da empresa, juntamente, com entrevista com o administrador identificou-se que o setor da Solda é o processo principal, levando em conta o quesito de não terceirizar tal processo em nenhuma hipótese. Sendo assim, a aplicação do *Time-Driven Activity Based Costing* terá enfoque na produção, no setor da Solda.

4.2 APLICAÇÃO DO TDABC

Para estruturar o método TDABC, a primeira etapa consiste em estimar os gastos totais do departamento ou da atividade, ou seja, os gastos diretos e indiretos, além das despesas gerais mensais necessárias referentes às operações executadas no setor de Solda, todo o levantamento de dados foi feito com perguntas realizadas ao administrador da empresa e análise documental desta. Ainda, são utilizados como parâmetros uma produção mensal de navalhas e o salário por hora dos dois funcionários alocados neste setor, deste modo os dados tabela 1 servem como base para os próximos cálculos:

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

7D 1 1	4 1	^	4
Tahela	1 - 1	Parame	trns

		************	0.0
Parâmetro)		
S			
Produção			
mensal			60
Salário-		R\$	
hora (func. A)	7,75		
Salário-		R\$	
hora (func. B)	7,27		

Fonte: Elaborada pelos autores.

Com isso, foram apurados os valores referentes a seguir:

- a) Levantamento das despesas e custos mensais do setor de Solda.
- b) Levantamento do número de funcionários envolvidos em cada atividade e da capacidade
- c) Cálculo da taxa do custo da capacidade.

4.2.1 Levantamento das despesas e custos mensais do setor de Solda

A tabela 2 permite evidenciar o levantamento das despesas e custos mensais do setor de Solda considerando todos os gastos indiretos incidentes sobre o departamento.

Tabela 2 - Gastos indiretos mensais do setor de Solda

		%
Gastos Indiretos	Valor	Total
	R\$	77,
Custos Indiretos do Setor de Solda	4.643,12	%
	R\$	46.
Salários	2.775,70	%
	R\$	20.
Encargos Sociais	1.207,43	%
	R\$	11,
Despesas do Setor de Solda	660,00	%
	R\$	
Depreciação mensal dos equipamentos (3 máquinas)	660,00	-
	R\$	22.
Despesas Gerais do Negócio	1.314,49	%
	R\$	10.
Energia Elétrica (Média)	594,49	%
	R\$	12,
Outros Custos Indiretos (máscaras, luvas,)	720,00	%
	R\$	100
Total	5.957,61	0%

Fonte: Elaborada pelos autores.

Os valores apurados na tabela 2 são os gastos indiretos mensais do setor de Solda, considerando que tais gastos repetiram-se em valores aproximados mensalmente nos últimos três meses e que todas as despesas indiretas estão sendo apropriadas ao processo de solda na mesma proporção do uso da mão de obra. Percebe-se que o gasto de maior participação percentual é a remuneração dos dois funcionários que trabalham no setor (66,9%) somando-se

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade

os salários e a incidência de 43,5% de encargos sociais sobre o salário de cada operador. Além disso, foi considerada a depreciação mensal de três equipamentos utilizados neste departamento, sendo R\$ 660,00/mês as três máquinas ao se considerar um período de cinco anos (60 meses), logo o cálculo de depreciação foi feito pelo valor total das três máquinas dividido pelo período (R\$ 39.600,00/60meses = R\$ 660,00/mês). As outras despesas gerais do negócio incluem a energia elétrica média dos últimos três meses (agosto, setembro e outubro) totalizando R\$ 594,49. Os outros custos indiretos são os materiais utilizados pelos dois funcionários, tais como: protetor auricular, máscara descartável, luva para soldador, avental de couro, manga de couro, luva de couro, touca para soldador, óculos normal, máscara de solda, botina, guarda-pó manga longa e calça especial; todo este material é considerado pelo administrador como um custo de R\$ 12,00 por cada peça, dessa forma considerando a produção mensal média de 60 peças, totaliza-se R\$ 720,00 de custos. Depois de calculados os gastos indiretos, apurou-se também os gastos diretos do setor.

Tabela 3 - Gastos diretos mensais do setor de Solda

			Custo	Custo	
	Materiais Diretos	Unitário		Total	
			R\$	R\$	
	Revestimento especial duro/arame	463,52		27.811,18	2,8%
			R\$	R\$	
	Solda inox base	1.430,00		85.800,00	9,5%
			R\$	R\$	
	Revestimento especial duro/eletrodo	1.680,91		100.854,60	6,4%
	Custo de frete dos eletrodos vindos de			R\$	
SP ou PR		R\$	0,50	30,00	,0%
			R\$	R\$	
	CO2 p/aplicar solda	12,50		750,00	,3%
			R\$	R\$	
	Gás de cozinha	3,00		180,00	,1%
			R\$	R\$	
	Segmentos para retifica	19,95		1.197,00	,6%
			R\$	R\$	
	Consumíveis	12,00		720,00	,3%
			R\$	R\$	
1	Total	3.622,38		217.342,78	00,0%

Fonte: Elaborada pelos autores.

Nos gastos diretos mensais do setor de Solda é considerado todo o material utilizado na produção das navalhas de corte de pneus, calculando-se o custo unitário de cada navalha e o custo total tendo como parâmetro a produção mensal referida na tabela 1. Uma navalha pesa em média 35,00 Kg, para tal foram utilizados 3,8Kg de revestimento especial duro/arame; 0,7kg de Solda inox base; 0,5kg de revestimento especial duro/eletrodo; custo de R\$ 1,00/Kg de frete dos eletrodos vindos de SP ou PR; CO2 p/ aplicar solda; gás de cozinha; segmentos para retifica e consumíveis que referem-se a: ponteira, conduites, bocal, lixadifusos, vidros, e topo de contato. Destaca-se o gasto de material com o revestimento especial duro/eletrodo representando quase 46,4% do material para confeccionar a navalha. O custo total apurado é de R\$ 217.342,78 considerando a produção mensal (60 peças).

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

4.2.2 Levantamento do número de funcionários em cada atividade e da capacidade

Na segunda etapa, após os gastos apurados, é preciso determinar a capacidade prática do setor em questão. Sendo necessário levantar os seguintes dados:

- a) Número de funcionários do setor: dois funcionários no setor de Solda
- b) Expediente de trabalho (em dias): foi considerado 21 dias úteis.
- c) Número de horas de trabalho por dia: a carga diária de trabalho da empresa era de 8,8 horas no setor em lume.

Tabela 4 - Capacidade prática do setor de produção

Fatores	antidad	Qu e
Nº de funcionários do setor		2
Expediente de trabalho em dias		21
Hrs diárias de trabalho por dia	8,80	
Horas totais disponíveis por mês	369,60	
Minutos por hora		60
Capacidade prática do setor de produção (em minutos)	22.176	

Fonte: Elaborada pelos autores.

Conforme pode ser observado, o setor de produção tem jornada mensal de trabalho de 22.176 minutos, esses são os minutos disponíveis para os dois funcionários executarem todas as atividades do setor de produção.

4.2.3 Cálculo da taxa do custo da capacidade

A seguir é possível estimar a taxa do custo de capacidade do setor por minuto, utilizando a equação da taxa do custo da capacidade.

Taxa do custo da capacidade = <u>Custo da capacidade fornecida</u> = R\$3.983,12 = R\$0,176/min

Capacidade prática 22.176 (min)

Dividiu-se o valor total de gasto mensal com a mão de obra do setor de produção (R\$ 3.983,12) pelo número de minutos trabalhados no período (22.176 minutos), apurou-se então o valor de R\$ 0,176 como taxa do custo de capacidade do setor de produção por minuto.

A próxima fase do TDABC consiste em determinar as atividades do setor de Solda e o tempo de execução das atividades do mesmo. Estando presente no local, foram apurados os tempos de duração das atividades relacionadas:

Tabela 5 - Tempo necessário para atividades do processo de solda para uma peça

	Tempo Ter		inteiro
 Atividades	consumido	em minutos	
Aquecer a peça	00:11:24		11,40

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

	Medir temperatura Levar para mesa de	00:00:08	0,13
solda	Levar para mesa de	00:00:03	0,05
	Limpar a peça Solda almofada	00:01:26	1,43
Inox		00:23:31	23,52
revestim	F	00:08:05	8,08
	Solda revestimento Levar e ajustar para	00:15:00	15,00
retifica	Devar e ajustar para	00:01:11	1,18
	Retificar 1	00:21:17	21,28
	Conferir/Medir	00:00:40	0,67
	Retificar 2	00:04:00	4,00
mão de	Tempo total de obra	01:26:45 86,74	

Fonte: Elaborada pelos autores.

Conhecido o tempo de execução das atividades e a taxa de custo da capacidade por minuto, é possível calcular o custo indireto do setor em tela. Esse cálculo está demonstrado na tabela 6.

Tabela 6 - Custo Indireto do processo de Solda

	Atividades	empo (min)	td.	(empo total (min)	capa	Taxa do custo da cidade/min (R\$)	ati	Custo total da vidade (R\$)
				6	6		R\$		R\$
	Aquecer da peça	11,40		0	84	0,1796		122,86	
				6	7		R\$		R\$
	Medir temperatura	0,13		0	,8	0,1796		1,40	
	Levar para mesa de			6			R\$		R\$
solda		0,05		0	3	0,1796		0,54	
				6	8		R\$		R\$
	Limpar da peça	1,43		0	5,8	0,1796		15,41	
				6	1		R\$		R\$
	Solda almofada Inox	23,52		0	411,2	0,1796		253,47	
	Pré-passe de			6	4		R\$		R\$
revestim	ento	8,08		0	84,8	0,1796		87,08	
				6	9		R\$		R\$
	Solda revestimento	15,00		0	00	0,1796		161,65	
	Levar e ajustar para			6	7		R\$		R\$
etifica		1,18		0	0,8	0,1796		12,72	
				6	1		R\$		R\$
	Retificar 1	21,28		0	276,8	0,1796		229,33	
				6	4		R\$		R\$
	Conferir/Medir	0,67		0	0,2	0,1796		7,22	
				3	1		R\$		R\$
	Retificar 2	4,00		0		0,1796		21,55	
	Capacidade				5				R\$
Utilizad	a	86,74			084,40			913,23	

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

DABC 3%

Fonte: Elaborada pelos autores.

Foi acompanhado o processo de produção de uma peça, tendo em vista a produção mensal média de 60 peças ao mês (tabela 1), o tempo total foi calculado utilizando o valor do tempo estimado para uma peça, multiplicado pela produção mensal média. Na atividade Retificar 2 são consideradas apenas 30 peças, pois em média metade das navalhas não estão na medida correta e precisam de um outro reparo, ou seja, retificar novamente. Para estabelecer o custo total da atividade multiplicou-se o tempo total estimado pela taxa do custo da capacidade. Apurou-se a capacidade utilizada no setor da Solda de 5.084,40 minutos e o custo total de R\$ 913,23, representando 23% da capacidade do setor de produção, como explana a tabela seguinte:

Tabela 7 - Capacidade não utilizada do período

Fatores	Tempo total (em minutos)	Custo total da Atividade (R\$)	
		R\$	
(a) Capacidade prática utilizada no período	5.084,40	913,23	3%
		R\$	
(b) Capacidade prática disponível no período	22.176,00	3.983,12	00%
(c = b-a) Capacidade prática dedicada a outros		R\$	
processos	17.091,60	3.069,89	7%

Fonte: Elaborada pelos autores.

Com a tabela acima é possível visualizar melhor a capacidade que não é utilizada no setor de Solda, ou seja, 17.091,60 minutos são usados em outras atividades e processos no setor de produção e apenas 5.084,40 minutos são percebidos no setor em questão. Ainda, para elucidar de melhor forma a análise feita, é elaborada uma tabela com os gastos totais do mês para o setor em estudo.

Tabela 8 - Resultado do setor de Solda

	Resultado do Setor de		Unitári	
Solda		0)	Total
			R\$	R\$
	Custos Diretos do mês	3.622,38		217.342,78
			R\$	R\$
	Custos Indiretos do mês	15,22		913,23
	Despesas do Setor de		R\$	R\$
Solda do	mês	11,00		660,00
			R\$	R\$
	Despesas Gerais do mês	5,02		301,38
			R\$	R\$
	Gasto Total do mês	3.653,62		219.217,39

Fonte: Elaborada pelos autores.

O valor total de R\$ 219.217,39 é o custo do setor de Solda observando a produção de 60 peças/mês, sem a parte das despesas gerais que não cabem ao setor, e também desconsiderando a parte da mão de obra não usufruída efetivamente no setor.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

5 CONCLUSÕES E CONSIDERAÇÕES FINAIS

O estudo propôs a aplicação do sistema de *Time-Driven Activity-Based Costing* – TDABC no processo de produção de uma EPE (Empresa de Produção por Encomenda) do ramo metalúrgico, o que se encontra apresentado na seção 4.2 deste artigo. Foi empregando também o mapeamento de processos para melhor visualização dos processos da empresa como apresentado na seção 4.1 do estudo. Para os resultados encontrados a pesquisa baseouse no referencial teórico exposto por Kaplan e Cooper (2007), na análise documental, observação participante e em entrevistas semi-estruturadas.

Com base na pesquisa realizada, os resultados decorrentes da aplicação do TDABC proporcionaram uma melhor visualização da potencialidade do método, apresentando os gastos e a capacidade utilizada do setor de Solda para o administrador averiguar de forma mais clara o quão efetiva está sendo a sua produção. As tabelas elaboradas no estudo oferecem a possibilidade de estimar novos valores, por exemplo: se o administrador resolva dar um aumento de salário a seus funcionários o quanto essa mudança acarretaria em valor no departamento e no produto final, ou também pode simular o pedido do cliente, com o aumento e a diminuição da produção, assim como, estipular o tempo de produção das peças do pedido, para estimar sua entrega.

As vantagens observadas foram informações mais acuradas possibilitando uma visualização que identifique onde estes recursos são efetivamente consumidos, informações gerenciais relevantes no que tange à estimativa da capacidade prática disponível, da capacidade prática utilizada e da ociosidade relacionada. Ademais, a estruturação deste método proporciona o benefício de gerenciar as decisões de forma mais rápida, averiguando o trabalho de seus operadores, de modo que possa cobrar mais agilidade no processo. Outrossim, esta pesquisa pode esclarecer quanto da capacidade é utilizada no setor de Solda em relação a todo o setor de produção, podendo reaplicar-se esse conceito nos outros departamentos da organização. Afora a parte prática, o aprofundamento do conhecimento geral sobre o setor metalúrgico foi de grande apresso.

Dentre as dificuldades encontradas, de acordo com a teoria, o TDABC é um método de rápida aplicabilidade, entretanto, dependendo do tamanho da empresa, o departamento ou processo que se acompanha demandará mais tempo, não sendo tão ágil quanto poderia. A existência de possíveis distorções nos tempos atribuídos às atividades é outro fator a ser considerado, pois há um grau de subjetivismo inerente à metodologia.

Tendo em vista os resultados apresentados neste trabalho, destacam-se algumas limitações da pesquisa. Como se trata de um estudo de caso único, em uma microempresa de produção por encomenda no ramo metalúrgico, um setor um tanto peculiar, não se pode generalizar os resultados. Outro ponto é a quantidade de pesquisas sobre o tema, que não é expansivo. Por outro lado, positivamente, averiguou-se mais estudos relacionados de 2010 em diante, demonstrando que o assunto é de importância da atualidade e está gerando interesse dos pesquisadores. Sugere-se pesquisas futuras para explorar mais as potencialidades deste método e suas limitações, analisando a aplicabilidade do *Time Driven Activity Based Costed* - TDABC em outras empresas de produção por encomenda do ramo e de outros setores.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

REFERÊNCIAS

ARAÚJO, Marco Antônio de. **Administração de produção e operações**: uma abordagem prática. Rio de Janeiro: Brasport, 2009.

CAMPOS, Ricardo Lanna. O capital intelectual e o processo de estimação de custos e formação de preços em empresas de produção por encomenda. 2003. 152 f. Dissertação (Mestrado em Administração) — Universidade Federal de Minas Gerais, Belo Horizonte, 2003.

CAMPOS, Vicente Falconi. **TQC – Controle da qualidade total**: no estilo japonês. 5. ed. Belo Horizonte: INDG, 1992.

CARRARO, Wendy Beatriz Witt Haddad *et al.* Resource Consumption Accounting RCA: Metodologia Alternativa para Gestão de Custos. 2013.

CATIM - Centro de Apoio Tecnológico à Indústria Metalomecânica. **Plano sectorial de melhoria da eficiência energética em PME** - Sector metalúrgico e metalomecânico. Lisboa: IAPMEI, 2012. Disponível em: http://efinerg.aeportugal.pt/DocsFinais/EFINERG_Eficiencia%20Energetica_Setor%20Metalurgico%20e%20Metalomecanico.pdf>. Acesso em: 30 nov. 2013.

DIEHL, Astor Antônio. **Pesquisa em ciências sociais aplicadas:** métodos e técnicas. São Paulo: Prentice Hall, 2004.

DUARTE, Roberto Nunes. **Simulação Computacional:** Análise de uma Célula de Manufatura em Lotes do Setor de Autopeças. 2003. 168 f. Dissertação (Mestrado) - Engenharia de Produção, Programa de Pós-Graduação em Engenharia de Produção, UNIFEI, Itajubá, MG, 2003.

DUTRA, René Gomes. **Custos uma abordagem prática**. 5. ed. São Paulo: Atlas, 2003.

EVERAERT, Patricia; BRUGGEMAN, Werner. Time-Driven Activity-Based Costing: Exploring the underlying model. **Cost Management**, v. 21, n. 2, p. 16-20, mar./apr. 2007.

GERVAIS, Michel; LEVANT, Yves; DUCROCQ, Charles. Time-Driven activity-Based Costing (TDABC): an initial appraisalthrough a longitudinal case study. **JAMAR**, v. 8 n. 10, p. 1-20, 2010.

GIL, Antônio Carlos. **Métodos e técnicas de pesquisa social.** 5. ed. São Paulo: Atlas, 1999.

HAIR JUNIOR, Joseph F. *et al.* **Fundamentos de pesquisa em administração.** Porto Alegre: Bookman, 2005.

HANSEN, Don R.; MOWEN, Maryanne M. **Gestão de custos:** contabilidade e controle. São Paulo: Pioneira; Thomson Learning, 2000.

HANSEN, Don R.; MOWEN, Maryanne M. **Gestão de Custos:** contabilidade e controle. 3. ed. São Paulo: Pioneira, 2001.

HENDRY, Linda C. Applying world class manufacturing to make-to-order companies: problems and solutions. **International Journal of Operations & Production Management**, v. 18, n. 11, p. 1086-1100, nov. 1998.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

JOHNSTON, Robert; CLARK, Grahan. **Administração de operações de serviços.** São Paulo: Atlas, 2002.

KAPLAN, Robert S.; ANDERSON, Steven R. Custeio Baseado em Atividade e Tempo: Time-Driven Activity-Based Costing. São Paulo: Elsevier, 2007.

KAPLAN, Robert S.; ANDERSON, Steven R. Time-driven activity-based costing. **Harvard Business Review**, n. 11, p. 131-138, nov. 2004.

KAPLAN, Robert S.; COOPER, Robin. Custo & Desempenho. São Paulo: Futura, 1998.

LEAL, Ricardo da Rosa. **Avaliação da rentabilidade do relacionamento com clientes em uma empresa de varejo.** 2010. 79 f. Dissertação (Mestrado em Economia) - Faculdade de Ciências Econômicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

MARQUES, Jozélio Inácio; LIMA, Jossel Barbosade; SANTOS, Romeu Bertone Silva dos. **A influência dos sistemas de custeio para a tomada de decisões.** João Pessoa, 2010. Disponível em:

http://www.cchsa.ufpb.br/portalantigo/index.php?option=com_docman&task=doc_download&gid=166&Itemid=28. Acesso em: 12 nov. 2014.

MEGLIORINI, Evandir. **Análise crítica dos conceitos de mensuração utilizados pro empresas brasileiras produtoras de bens de produção por encomenda**. 2003. 216 f. Tese (Doutorado) — Programa de Pós-Graduação em Ciências Contábeis, Faculdade de Economia, Administração, e Contabilidade, Universidade de São Paulo, São Paulo, 2003.

MELLO, Carlos Henrique Pereira; SALGADO, Eduardo Gomes. Mapeamento dos processos em serviços: estudo de caso em duas pequenas empresas da área de saúde. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 25. **Anais...** Porto Alegre, 2005.

PARANHOS FILHO, Moacyr. **Gestão da Produção Industrial**. Curitiba: Ibpex, 2007.

PEREIRA, André da Rosa. **Aplicabilidade do Sistema de Custeio Baseado em Atividade e Tempo em Indústria de Bebidas**, 2011. 142 f. Dissertação (Mestrado em Economia) - Faculdade de Ciências Econômicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.

PINTO, Diogo Rodrigues. **Mapeamento de processos como ferramenta de avaliação de processo produtivo:** estudo de caso em uma empresa do polo de cerâmica de Campos-RJ. 2009. 63 f. Monografia (Bacharelado) — Engenharia de Produção, Centro de Ciência e Tecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 2009.

POMPERMAYER, Cleonice Bastos; LIMA, João Evangelista Pereira. Gestão de custos. In: FACULDADES BOM JESUS. **Finanças empresariais.** Curitiba: Associação Franciscana de Ensino Senhor Bom Jesus, 2002. (Coleção Gestão Empresarial, 4). p. 49-58.

RICHARDSON, Roberto Jarry. **Pesquisa social: métodos e técnicas.** 3. ed. São Paulo: Atlas, 1999.

ROTHER, Mike; SHOOK, John. **Aprendendo a enxergar.** São Paulo: Lean Institute Brasil, 2000.

- 6º Congresso UFSC de Controladoria e Finanças
- 6º Congresso UFSC de Iniciação Científica em Contabilidade
- 9º Congresso IBEROAMERICANO de Contabilidad e Gestión

SANTANA, Alex Fabiano Bertollo; AFONSO, Paulo; FAGUNDES, Jair Antônio. Time Driven Activity Based Costing (TDABC): Um perfil dos artigos publicados no Congresso Brasileiro de Custos. In: CONGRESSO BRASILEIRO DE CUSTOS, 20. Uberlândia, MG, Brasil, 18 a 20 de novembro de 2013. Disponível em: http://anaiscbc.emnuvens.com.br/anais/article/viewFile/141/141>. Acesso em: 12 nov. 2014.

SANTOS, Luciano Gomes dos. **Proposição de Modelo de Implantação do Método de Custeio Baseado em Atividade e Tempo -TDABC**, 2013. 81 f. Dissertação (Mestrado em Economia) - Faculdade de Ciências Econômicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2013.

SCHMIDT, Paulo; SANTOS, José Luiz dos; LEAL, Ricardo. Time Driven Activity Based Costing (TDABC): Uma Ferramenta Evolutiva na Gestão de Atividades. **Revista Iberoamericana de Contabilidad de Gestión**, Valencia, n. 14, dez. 2009.

SLACK, Nigel et al. Administração da Produção. São Paulo: Atlas, 1997.

SOLIMAN, F. Optimum level of process mapping and least cost business process reengineering. **International Journal of Operations Production Management**, Sydney, v. 18, n. 9-10, p. 810-816, 1998.

SOUZA, Antônio Artur de *et al.* **Análise da aplicabilidade do time-driven ABC:** estudos de casos múltiplos. In: CONGRESSO BRASILEIRO DE CUSTOS, 17. **Anais...** Belo Horizonte, 2010. Disponível em: http://www.abcustos.org.br/texto/viewpublic?ID_TEXTO=3362>. Acesso em: 30 nov. 2013.

SOUZA, Antônio Artur de *et al*. Análise de sistemas de informações utilizados como suporte para os processos de estimação de custos e formação de preços. **ABCustos Associação Brasileira de Custos**, v. 1, n. 1, set./dez. 2006.

SPRADLEY, James P. **Participant Observation**. New York: Holt, Rinehart and Winston, 1980.

TRIVIÑOS, Augusto Nibaldo Silva. **Introdução à pesquisa em ciências sociais:** a pesquisa qualitativa em educação. São Paulo: Atlas, 1987.

VARILLA, M.; SEPÄNNEN, M.; SUOMALA. Detailed cost modelling: a case study in warehouse logistics. **International Journal of Physical Distribution & Logistics Management**, v. 37, n.3, p.184-200, 2007.

YEH, Chung-Hsing. A customer-focused planning approach to make-to-order production. **Industrial Management & Data Systems**, v. 100, n. 4, p. 180-187, 2000.

YIN, Robert K. **Estudo de caso:** planejamento e métodos. 2. ed. Porto Alegre: Bookman, 2001.