The strength of "weak" models

ENSEMBLE METHODS IN PYTHON

Román de las Heras

Data Scientist, SAP / Agile Solutions

"Weak" model

Voting and Averaging:

- Small number of estimators
- Fine-tuned estimators
- Individually trained

New concept: "weak" estimator

"Weak" model

Fine-tuned model

Properties of "weak" models

Weak estimator

- Performance better than random guessing
- Light model
- Low training and evaluation time

Example: Decision Tree

Examples of "weak" models

Some "weak" models:

- Decision tree: small depth
- Logistic Regression
- Linear Regression
- Other restricted models

Sample code:

```
model = DecisionTreeClassifier(
    max_depth=3
)
model = LogisticRegression(
    max_iter=50, C=100.0
)
model = LinearRegression(
    normalize=False
)
```

Let's practice!

ENSEMBLE METHODS IN PYTHON

Bootstrap aggregating

ENSEMBLE METHODS IN PYTHON

Román de las Heras

Data Scientist, SAP / Agile Solutions

Heterogeneous vs Homogeneous Ensembles

Heterogeneous:

- Different algorithms (fine-tuned)
- Small amount of estimators
- Voting, Averaging, and Stacking

Homogeneous:

- The same algorithm ("weak" model)
- Large amount of estimators
- Bagging and Boosting

Condorcet's Jury Theorem

Requirements:

- Models are independent
- Each model performs better than random guessing
- All individual models have similar performance

Conclusion: Adding more models improves the performance of the ensemble (*Voting* or *Averaging*), and this approaches 1 (100%)

Marquis de Condorcet, French philosopher and mathematician

Bootstrapping

Bootstrapping requires:

- Random subsamples
- Using replacement

Bootstrapping guarantees:

- **Diverse crowd:** different datasets
- Independent: separately sampled

Pros and cons of bagging

Pros

- Bagging usually reduces variance
- Overfitting can be avoided by the ensemble itself
- More stability and robustness

Cons

It is computationally expensive

It's time to practice!

ENSEMBLE METHODS IN PYTHON

BaggingClassifier: nuts and bolts

ENSEMBLE METHODS IN PYTHON

Román de las Heras

Data Scientist, SAP / Agile Solutions

Heterogeneous vs Homogeneous Functions

Heterogeneous Ensemble Function

```
het_est = HeterogeneousEnsemble(
    estimators=[('est1', est1), ('est2', est2), ...],
    # additional parameters
)
```

Homogeneous Ensemble Function

```
hom_est = HomogeneousEnsemble(
    base_estimator=est_base,
    n_estimators=chosen_number,
    # additional parameters
)
```

BaggingClassifier

Bagging Classifier example:

```
# Instantiate the base estimator ("weak" model)
clf_dt = DecisionTreeClassifier(max_depth=3)
# Build the Bagging classifier with 5 estimators
clf_bag = BaggingClassifier(
    base_estimator=clf_dt,
    n estimators=5
# Fit the Bagging model to the training set
clf_bag.fit(X_train, y_train)
# Make predictions on the test set
y_pred = clf_bag.predict(X_test)
```


BaggingRegressor

Bagging Regressor example:

```
# Instantiate the base estimator ("weak" model)
reg_lr = LinearRegression(normalize=False)
# Build the Bagging regressor with 10 estimators
reg_bag = BaggingRegressor(
    base_estimator=reg_lr
# Fit the Bagging model to the training set
reg_bag.fit(X_train, y_train)
# Make predictions on the test set
y_pred = reg_bag.predict(X_test)
```


Out-of-bag score

- Calculate the individual predictions using all estimators for which an instance was out of the sample
- Combine the individual predictions
- Evaluate the metric on those predictions:
 - Classification: accuracy
 - **Regression**: R^2

```
clf_bag = BaggingClassifier(
    base_estimator=clf_dt,
    oob_score=True
)
clf_bag.fit(X_train, y_train)
```

```
print(clf_bag.oob_score_)
```

0.9328125

```
pred = clf_bag.predict(X_test)
print(accuracy_score(y_test, pred))
```

0.9625

Now it's your turn!

ENSEMBLE METHODS IN PYTHON

Bagging parameters: tips and tricks

ENSEMBLE METHODS IN PYTHON

Román de las Heras

Data Scientist, SAP / Agile Solutions

Basic parameters for bagging

BASIC PARAMETERS

- base_estimator
- n_estimators
- oob_score
 - est_bag.oob_score_

Additional parameters for bagging

ADDITIONAL PARAMETERS

- max_samples : the number of samples to draw for each estimator.
- max_features : the number of features to draw for each estimator.
 - Classification ~ sqrt(number_of_features)
 - Regression ~ number_of_features / 3
- bootstrap: whether samples are drawn with replacement.
 - True --> max_samples = 1.0
 - False --> max_samples < 1.0

Random forest

Classification

```
from sklearn.ensemble import RandomForestClassifier

clf_rf = RandomForestClassifier(
     # parameters...
)
```

Regression

```
from sklearn.ensemble import RandomForestRegressor

reg_rf = RandomForestRegressor(
     # parameters...
)
```

Bagging parameters:

- n_estimators
- max_features
- oob_score

Tree-specific parameters:

- max_depth
- min_samples_split
- min_samples_leaf
- class_weight ("balanced")

Bias-variance tradeoff

Let's practice!

ENSEMBLE METHODS IN PYTHON

