Supplementary Material: Analysis of COVID-19 Vaccination Trends Between 2021 and 2023

1 Overview

Analysis of COVID-19 Vaccination Trends: Distribution and Administration

This document provides supplementary material for the manuscript "Analysis of COVID-19 Vaccination Trends: Distribution and Administration". It includes additional details on the methods used in the analysis, as well as additional results that were not included in the main manuscript.

2 Code and file information

- "Cann-MADA-project.Rproj": Establishes relative file paths for project
- "README.md": Provides brief order of scripts for reproducing and summarizes the folders within the project
- "code" folder: Contains all code for processing, exploratory data analysis, and modeling analysis
 - "processing-code" subfolder:
 - * "processing.qmd": Contains code for processing the raw data into the processed data
 - "eda-code" subfolder:
 - * "eda.qmd": Contains code for exploratory data analysis
 - "analysis-code" subfolder:
 - * "analysis.qmd": Contains code for modeling analysis
- "data" folder:

- "raw-data" subfolder: Contains the raw COVID-19 Vaccine data
- "processed-data" subfolder: Contains the processed data used in the analysis
- "results" folder: Contains all results from the analysis
 - "figures" subfolder: Contains all figures generated from eda and analysis
 - "tables" subfolder: Contains all tables generated from eda and analysis
- "assets" folder:
 - Contains workflow schematic image
 - Contains the CDC U.S. Regions image
 - Contains american journal of epidemiology reference style and vancouver reference style (.csl files)
 - "references" subfolder:
 - * "project-citations.bib": Contains the references used in the manuscript
- "products" folder:
 - "manuscript" subfolder: Contains manuscript.qmd file to create project manuscript
 - \ast "supplement" subfolder: Contains this file and the supplementary figures and tables

3 Reproducing Results

Reproducing this project requires R, RStudio, and Microsoft Word. Files should be run in the following order.

- 1) In the code > processing-code folder: processing.qmd
- 2) In the code > eda-code folder: exploratoryanalysis.qmd
- 3) In the code > analysis-code folder: analysis.Rmd
- 4) In the products > manuscript folder: manuscript.qmd
- 5) In the products > manuscript > supplement folder: Supplementary-Material.qmd

4 Supplementary Results

Table one displays a summary of each variable of the COVID-19 vaccine dataset.

Variable	Mean
Total Distributed (All)	5.667000e + 08
Total Distributed – Janssen	2.550002e+07
Total Distributed – Moderna	2.141924e + 08
Total Distributed – Pfizer	3.186000e+08
Total Distributed – Novavax	2.410320e+05
Total Distributed – Unknown	7.701900e+04
Total Administered (All)	4.479000e+08
Total Administered – Janssen	1.504262e+07
Total Administered – Moderna	1.733713e + 08
Total Administered – Pfizer	2.582345e+08
Total Administered – Novavax	1.365400e + 04
Total Administered – Unknown	4.439420e+05
Total Distributed per 100k	4.996000e-01
Distributed – Janssen per 100k	3.090400e+04
Distributed – Moderna per 100k	2.594080e + 05
Distributed – Pfizer per 100k	3.873940e + 05
Distributed – Novavax per 100k	2.790220e+02
Distributed – Unknown per 100k	9.357000e+01
Total Administered per 100k	5.490530e + 05
Administered – Janssen per 100k	1.856900e + 04
Administered – Moderna per 100k	2.122234e+05
Administered – Pfizer per 100k	$3.167740\mathrm{e}{+05}$
Administered – Novavax per 100k	$1.617800e{+01}$
Administered – Unknown per 100k	4.892019e+02

Supplement Table 1: Summary Statistics of the Vaccination Data in Original Dataset and Population Adjusted Dataset

Figure one displays the correlations between all variables within the COVID-19 vaccine population adjusted dataset.

Figure 1: Supplement Figure 1: Overall Correlation Plot of COVID-19 Vaccine Data

Figure two shows the correlations of specifically the distribution and administration variables in the dataset. The correlation between total_administered and total_distributed is 0.89; the correlation between total_admin_janssen and total_dist_janssen is 0.96; the correlation between total_admin_moderna and total_dist_moderna is 0.87; the correlation between total_admin_pfizer and total_dist_pfizer is 0.90; the correlation between total_admin_novavax and total_dist_novavax is 0.90, which is the lowest of all manufacturers; and the correlation between total_admin_unk and total_dist_unk is -0.01. The distributed and administered unknown variables are likely a part of this dataset due to poor data recording.

Figure 2: Supplement Figure 2: Correlation Plot of Distributed vs. Administrated COVID-19 Vaccine Data

Below, you will several scatterplots. Figure three is an overall scatterplot of the relationship between administered and distributed doses. The points closely follow the diagonal line, indicating a strong relationship between the two variables (confirmed by the correlation coeffecient of 0.89).

Figure 3: Supplement Figure 3: Scatterplot of Distributed vs Administered Doses

Figures 4.1, 4.2, 4.3, and 4.2 show the scatterplots of the relationship between administered and distributed doses for each vaccine manufacturer. It appears as though all regions have a strong positive correlation between the number of vaccines distributed and administered. However, Pfizer and Moderna's points still follow the diagonal line the closest.

Supplement Figure 4.1: Scatter plot of Distributed vs Administered Moderna Vaccines in Population Adjusted Dataset

Figure 4: Supplement Figure 4.1: Scatterplot of Distributed vs Administered Moderna Doses

Supplement Figure 4.2: Scatter plot of Distributed vs Administered Janssen Vaccines in Population Adjusted Dataset

Figure 5: Supplement Figure 4.2: Scatterplot of Distributed vs Administered Janssen Doses

Figure 6: Supplement Figure 4.3: Scatterplot of Distributed vs Administered Pfizer Doses

Figure 7: Supplement Figure 4.4: Scatterplot of Distributed vs Administered Novavax Doses

Figures 5.1, 5.2, 5.3, and 5.4 show the scatterplots of the relationship between administered and distributed doses for each region of the U.S..

Supplement Figure 5.1: Scatter plot of Distributed vs Administered Vaccines in the South in Population Adjusted Dataset

Figure 8: Supplement Figure 5.1: Scatterplot of Distributed vs Administered Doses in the South

Supplement Figure 5.2: Scatter plot of Distributed vs Administered Vaccines in the Northeast in Population Adjusted Dataset

total_admin_per_100k

500000

Figure 9: Supplement Figure 5.2: Scatterplot of Distributed vs Administered Doses in the Northeast

500000

total_dist_per_100k

1500000

13

Supplement Figure 5.3: Scatter plot of Distributed vs Administered Vaccines in the Midwest in Population Adjusted Dataset 1200000 400000 0

Figure 10: Supplement Figure 5.3: Scatterplot of Distributed vs Administered Doses in the Midwest

total_dist_per_100k

500000

1000000

1500000

Figure 11: Supplement Figure 5.4: Scatterplot of Distributed vs Administered Doses in the West

total_dist_per_100k

Table two shows the correlations between doses administered and distributed in each region of the U.S.. All four regions have high correlations, however the west is the highest.

Region	cor
Midwest	0.9980132
Northeast	0.9983011
South	0.9987066
West	0.9990827

Supplement Table 2: Regional Correlations Between Doses Administered and Distributed in Pouplation Adjusted Dataset

Table three shows the percent rate change in distribution and administration of the COVID-19 vaccine across time in each region of the U.S.. The drops depicted in figures 3 and 4 in the manuscript can be seen in this table by the large percent drops in doses administered and distributed.

Year	Region	total_distributedtotal	_administere p ct_	_change_distribuped	_change_administered
2021	Midwest	35652869	29311185	NA	NA
2021	Northeast	40435158	34364697	NA	NA
2021	South	36233233	28111986	NA	NA
2021	West	38700528	32296475	NA	NA
2022	Midwest	39811314	31061255	11.663702	5.970653
2022	Northeast	46080990	37372257	13.962682	8.751889
2022	South	39742533	29711380	9.685308	5.689365
2022	West	42680522	34861661	10.284083	7.942619
2023	Midwest	5306961	3600733	-86.669716	-88.407638
2023	Northeast	6028417	4298397	-86.917780	-88.498429
2023	South	5005472	3294600	-87.405250	-88.911320
2023	West	5557185	4045517	-86.979576	-88.395514

Supplement Table 3: Percent Rate Change in Distribution and Administration of COVID-19 Vaccine with time in each Region (in Population Adjusted Dataset)

Table 4.1 and 4.2 show the percent rate change in distribution (4.1) and administration (4.2) of the COVID-19 vaccine across time for each manufacturer. The drops depicted in figures 5 and 6 in the manuscript can be seen in this table by the large percent drops in doses administered and distributed.

Manufacturer	Year	Total Doses Distributed	Rate of Change
Janssen	2021	7485221.42	-
Janssen	2022	7131071.61	-4.73%
Janssen	2023	712227.99	-90.01%
Moderna	2021	59085477.92	-
Moderna	2022	62011953.91	4.95%
Moderna	2023	7569083.75	-87.79%
Novavax	2021	0.00	-
Novavax	2022	19611.74	$\mathrm{Inf}\%$
Novavax	2023	26147.80	33.33%
Pfizer	2021	80496466.34	-
Pfizer	2022	99150229.37	23.17%
Pfizer	2023	12500508.65	-87.39%

Supplement Table 4.1: Percent Rate Change in Distribution of COVID-19 Vaccine with time for each Manufacturer (in Population Adjusted Dataset)

Manufacturer	Year	Total Doses Administered	Rate of Change
Janssen	2021	4.433968e+06	-
Janssen	2022	4.345841e + 06	-1.99%
Janssen	2023	4.303261e+05	-90.1%
Moderna	2021	4.966932e+07	-
Moderna	2022	5.007688e + 07	0.82%
Moderna	2023	5.516585e + 06	-88.98%
Novavax	2021	0.000000e+00	-
Novavax	2022	9.065808e + 02	$\mathrm{Inf}\%$
Novavax	2023	1.746609e + 03	92.66%
Pfizer	2021	6.986818e + 07	-
Pfizer	2022	7.846953e + 07	12.31%
Pfizer	2023	8.782378e + 06	-88.81%

Supplement Table 4.2: Percent Rate Change in Administration of COVID-19 Vaccine with time for each Manufacturer (in Population Adjusted Dataset)

Table 5 shows the RMSE value of the null model (with no predictors) from the modeling analysis. The R-squared can be assumed to be 0 here.

.estimator	.estimate
standard	0.1547925
standard	0.0864073
standard	NA
	standard standard

Supplement Table 5: Null Model RMSE

Table 6 shows the Simple Linear Regression Metrics results from the modeling analysis.

Supplement Table 6: Simple Linear Regression Metrics

RMSE, MAE, and R-squared for each predictor

Predictor	MAE	RMSE	R-squared
doses_per_100k_adj	0.083757	0.144470	0.127558
avg_age_vaccinated_adj	0.086842	0.154294	0.008659
hesitancy_index_adj	0.086892	0.153561	0.011871
accessibility_index_adj	0.087087	0.153504	0.013138
Proportion_Male_adj	0.086787	0.154385	0.007682
Year	0.091073	0.142359	0.153559
MMWR_week	0.081458	0.147878	0.098128
public_health_campaign_score_adj	0.086739	0.153600	0.011364
covid_burden_score_adj	0.086820	0.153714	0.009506

Figure 12: Supplement Table 6: Simple Linear Regression Metrics

An additional model (the random forest model including all predictors) was fitted to the test data out of curiosity. The metrics are shown in Table 7.

$. \\ estimator$.estimate
standard	0.0132909
	0.9930341 0.0052497

Supplement Table 7: Original/All Predictors Random Forest Model Test Data Metrics

Figure 6 displays the corresponding observed vs predicted plot for this model when it was fitted to the test data.

Figure 13: Supplement Figure 6: All Predictors Random Forest Model Observed vs Predicted (Test Data Fit)