

IRISS at CEPS/INSTEAD

An Integrated Research
Infrastructure in the Socio-Economic
Sciences

A COMPARISON BETWEEN UNIDIMENSIONAL AND MULTIDIMENSIONAL APPROACHES TO THE MEASUREMENT OF POVERTY

by Michele Costa

IRISS WORKING PAPER SERIES
No. 2003-02

An Integrated Research Infrastructure in the Socio-Economic Sciences at CEPS/Instead, Luxembourg

Project supported by the European Commission and the Ministry of Culture, Higher Education and Research (Luxembourg)

RESEARCH GRANTS

for individual or collaborative research projects (grants awarded for periods of 2-12 weeks)

What is IRISS-C/I?

IRISS-C/I is a project funded by the European Commission in its 'Access to Major Research Infrastructures' programme. IRISS-C/I funds short visits at CEPS/Instead for researchers willing to undertake collaborative and/or internationally comparative research in economics and other social sciences.

Who may apply?

We encourage applications from all interested individuals (doing non-proprietary research in a European institution) who want to carry out their research in the fields of expertise of CEPS/Instead.

What is offered by IRISS-C/I?

Free access to the IRISS-C/I research infrastructure (office, computer, library...); access to the CEPS/Instead archive of micro-data (including e.g. the ECHP); technical and scientific assistance; free accommodation and a contribution towards travel and subsistence costs.

Research areas

Survey and panel data methodology; income and poverty dynamics; gender, ethnic and social inequality; unemployment; segmentation of labour markets; education and training; social protection and redistributive policies; impact of ageing populations; intergenerational relations; regional development and structural change.

Additional information and application form

IRISS-C/I

B.P. 48 L-4501 Differdange (Luxembourg)

Email: iriss@ceps.lu

Homepage: http://www.ceps.lu/iriss

A COMPARISON BETWEEN UNIDIMENSIONAL AND MULTIDIMENSIONAL APPROACHES TO THE MEASUREMENT OF POVERTY¹

Michele Costa

IRISS visitor University of Bologna², Italy

Abstract

The paper presents a comparison between an unidimensional approach to the measurement of poverty, obtained as a function of observable income, and a multidimensional approach, defined on the basis of economic, social, demographic and cultural indicators. The comparison is carried out by means of rank correlation analysis, which stresses how the two approaches indicate the presence of two different sets of poor households. An analysis performed on 12 European countries shows that income based evaluation provides only partial insights on poverty condition.

¹ This research was (co-)funded by a grant of the European Commission under the Transnational Access to major Research Infrastructures contract HPRI-CT-2001-00128 hosted by IRISS-C/I at CEPS/INSTEAD Differdange (Luxembourg). Valuable comments were provided by Philippe Van Kerm.

² University of Bologna, Department of Statistics, Via Belle Arti 41, 40126 Bologna. Email: costa@stat.unibo.it

1. Introduction

Modern concept of poverty greatly differs from traditional view: actually sociologists, psychologists, economists and politicians refer to poverty as social exclusion, that is a wide and general notion, which includes many aspects other than income or wealth (Hagenaars, 1986; Dagum, 1989; Sen, 1992; World Bank, 2001). While unidimensional approach to the measurement of poverty refers only to one information variable, usually the income, in the multidimensional approach several indicators are used, in order to obtain a more exhaustive and useful measure. By means of the multidimensional analysis it is possible to identify the main causes of poverty and, therefore, to adopt socioeconomic policies to reduce poverty diffusion. A relevant step in the poverty analyses is to compare uni- and multidimensional approaches, in order to find if the set identified as poor on the basis of income information corresponds to the set identified as poor according to the multidimensional approach. If the differences are negligible, unidimensional analysis maintains an important role in poverty studies, on the other hand, when the two sets of poor display strong dissimilarities, it is necessary to choose the most adequate framework.

The paper presents a rank correlation analysis between uni- and multidimensional approaches, allowing a comprehensive comparison for household population in 12 European countries on the basis of European Community Household Panel data.

2. Methodology

This section follows the research program outlined in Dagum and Costa (2002) in order to compare uni- and multidimensional approaches to the measurement of poverty. The methodological tool is represented by correlation analysis, carried out by means of different measures (Balakrishnan and Rao, 1998*a*,*b*; Stuart et al., 1999): Bravais-Pearson correlation coefficient, Kendall correlation index, Spearman rank correlation index and Gini rank correlation, or cograduation, index.

The first step of the research refers to the unidimensional approach.

By using only the net income as information about poverty status of the household, the OECD equivalence scale is adopted in order to ensure comparability among incomes of households of different sizes. By indicating with $\mathbf{n_e}$ the number of adult equivalents, with \mathbf{n} the household size and with $\mathbf{n_a}$ the number of adults (14 years or more), the OECD equivalence scale states that:

$$n_e = 1 + 0.7 * (n_a - 1) + 0.5 * (n - n_a)$$
.

Table 1 Household size n, number of adults n_a and number of adults equivalents n_e according to OECD equivalence scale

n	1	2	2	3	3	3	4	4	4	5	5	5
n_a	1	2	1	3	2	1	4	3	2	4	3	2
n_e	1	1.7	1.5	2.4	2.2	2	3.1	2.9	2.7	3.6	3.4	3.2

Table 1 shows the relation between household size and number of adults equivalents for some values of \mathbf{n} and \mathbf{n}_a ; with respect to the simple per capita household income \mathbf{y}_i / \mathbf{n}_i , the transformation $\mathbf{y}_{ei} = \mathbf{y}_i$ / \mathbf{n}_{ei} gives the per capita household income corrected by the effect of different household sizes, thus allowing to correctly compare household incomes.

Given an information variable and an equivalence scale it is possible to obtain the unidimensional list (list A) of the households by ascending order of their equivalent income y_{ei} , i.e. from the poorest to the richest household.

The last relevant element needed in the unidimensional approach is represented by a poverty line (Ravallion, 1998), that is a rule partitioning total population into poor and non-poor. In the following it is adopted the International Standard of Poverty Line (ISPL), which states that the poverty line for a two-person household corresponds to the per capita average income of the population, or, equivalently, that the individual poverty line is equal to 50% of the per capita average income of the population.

By using OECD equivalence scale, thus moving from y_i to $y_{ei} = y_i / n_{ei}$, the reference is represented by a one-member household and therefore the poverty line is defined as

$$\sum_{i=1}^{N} y_i / (2*NN)$$

where N and NN are, respectively, the number of households and the number of individuals belonging to the population. The i-th household is considered poor if $y_{ei} \leq \sum_{i=1}^{N} y_i / (2*NN)$.

Given an equivalence scale and a poverty line it is finally possible to obtain some synthetic unidimensional poverty measure, such as the head count ratio

$$\mathbf{H} = \mathbf{q} / \mathbf{N}$$

that is the ratio of poor households, \mathbf{q} , to total population of households, \mathbf{N} .

The second step of the research takes into account the multidimensional approach to the measurement of poverty (Dagum and Costa, 2002).

The multidimensional poverty ratio of the i-th household, μ_{Bi} , i=1, ..., N, i.e. the degree of membership of the i-th household to the set of poor households, is obtained from the results in Costa (2002), where are also explained the choice of the m indicators of poverty, $X_1, ..., X_m$, the choice of the weights $\mathbf{w}_1, ..., \mathbf{w}_m$, attached to each indicator X_j , and the choice of the degrees of membership of the i-th household to the set of poor households with respect to the j-th indicator. The poverty ratios μ_{Bi} allow to obtain the multidimensional list (list B) of the households by descending order of μ_{Bi} , i.e. from the poorest to the richest household.

Given the poverty ratios μ_{Bi} , it is possible to calculate the multidimensional poverty ratio for the population, μ_{Bi} , as the average³ of μ_{Bi} :

$$\mu_B = \sum_{i=1}^N \mu_{Bi} / N \ .$$

The third step of the research deals with the comparison between uni- and multidimensional approaches by means of four correlation measures which are applied to lists A and B.

Correlation analysis is carried out on the ranks $\mathbf{p_i}$, i=1,...,N, of list A, derived from the unidimensional approach, and on the ranks π_i , i=1,...,N, of list B, obtained in the multidimensional framework. Rank correlation analysis aims to assess the similarity between the ranks related to the two approaches and also allows to evaluate the similarity between the ranks of specific subsets of households, that is an extension of particular interest for the case of the subset of poor households.

The first standard correlation measure used is the Bravais-Person correlation coefficient \mathbf{r} applied to the ranks $(\mathbf{p_i}, \pi_i)$:

$$r = \frac{\sum_{i=1}^{N} (\mathbf{p}_{i} - \overline{\mathbf{p}})(\mathbf{\pi}_{i} - \overline{\mathbf{\pi}})}{\sqrt{\sum_{i=1}^{N} (\mathbf{p}_{i} - \overline{\mathbf{p}})^{2}} \sqrt{\sum_{i=1}^{N} (\mathbf{\pi}_{i} - \overline{\mathbf{\pi}})^{2}}}$$

where \overline{p} and $\overline{\pi}$ are, respectively, the mean of p_i and the mean of π_i .

The second correlation measure is represented by Kendall's τ , which can be expressed as

$$\tau = \frac{C - D}{N(N-1)/2}$$

³ Working with survey data usually requires to resort to a weighted average, where the weights are attached to the sample observations.

where C is the number of concordant pairs of ranks $(\mathbf{p_i}, \pi_i)$, and D is the number of discordant pairs of ranks $(\mathbf{p_i}, \pi_i)$. Kendall's index does not consider the amount of the differences between $\mathbf{p_i}$ and π_i and therefore can be less informative than other measures, such as Bravais-Person \mathbf{r} .

A further important rank correlation measure is represented by Spearman index:

$$S = \frac{1 - 6 * \sum_{i=1}^{N} (p_i - \pi_i)^2}{N(N^2 - 1)}$$

Finally, the fourth correlation measure considered is the Gini rank correlation, or cograduation, index:

$$G = \frac{\sum_{i=1}^{N} \left| \mathbf{p}_{i} - \mathbf{\pi}_{i} \right| \left| \mathbf{p}_{i} - \mathbf{\pi}_{i} \right|}{N^{2} / 2}$$

where π_i is the reverse rank of list B, that is the rank of multidimensional list of the households by ascending order, i.e. from the richest to the poorest.

All indexes range between -1 and 1, reaching their maximum (minimum) value for perfect positive (negative) correlation and assuming value zero for the absence of correlation between $\mathbf{p_i}$ and $\mathbf{\pi_i}$.

3. Data

The data used in this study are derived from the 2001 release⁴ of the European Community Household Panel (Eurostat, 1996a,b, 2001a,b) and refer to household total net income, household size, number of adults (14 years or more) and sample weight. These variables contain all information for unidimensional approach, while the multidimensional poverty ratio μ_{Bi} for each household is obtained from the results of a previous research (Costa, 2002).

On the basis of ECHP data, 12 European countries (Germany, Denmark, The Netherlands, Belgium, France, United Kingdom, Ireland, Italy, Greece, Spain, Portugal, Austria) are analyzed for 1998.

Tables 2 and 3 report for the case of Germany a subset of observations of the four variables of interest:

- (i) the household equivalent income y_{ei} ,
- (ii) its rank **p**_i,
- (iii) the multidimensional poverty ratio μ_{Bi} ,
- (iv) its rank π_i .

⁴ ECHP UDB, version of December 2001.

Table 2 $\label{eq:multidimensional} \text{Multidimensional poverty ratio μ_{Bi}, rank of μ_{Bi}, equivalent income y_{ei}, rank of y_{ei} for increasing ranks of $\mu_{Bi}$$

		Germany		
$F(\pi_i)\%$	$\pi_i,$ rank of μ_{Bi}	μ_{Bi}	p_i , rank of y_{ei}	y _{ei}
0	1	0.937	18	2541.0
0	2	0.906	107	7054.4
0	3	0.847	174	8777.3
0	4	0.837	269	10544.1
0	5	0.828	295	10800.0
0	6	0.819	73	5946.0
0	7	0.817	63	5400.0
0	8	0.817	154	8400.0
0	9	0.792	311	11040.0
0	10	0.788	102	6955.0
1	56	0.657	710	14675.3
5	289	0.482	3029	25667.0
10	612	0.345	1065	16784.0
25	1487	0.207	705	14661.7
50	2986	0.097	1976	20975.9
75	4319	0.056	1964	20934.1
90	5028	0.029	3016	25588.0
95	5305	0	2075	21412.6
99	5542	0	5472	70847.0
100	5561	0	5546	104652.4
100	5562	0	5548	108607.1
100	5563	0	5552	118020.0
100	5564	0	5559	141474.1
100	5565	0	5561	144102.4
100	5566	0	5565	155877.0
100	5567	0	5566	193699.0
100	5568	0	5567	205328.0
100	5569	0	5568	231142.3
100	5570	0	5569	243729.0

Table 3 $\label{eq:multidimensional} \text{Multidimensional poverty ratio μ_{Bi}, rank of μ_{Bi}, equivalent income y_{ei}, rank of y_{ei} for increasing ranks of $y_{ei}$$

		ermany	G	
y _{ei}	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(p_i)\%$
82.0	1	0.233	1235	0
97.0	2	0.238	1170	0
140.0	3	0.694	35	0
185.0	4	0.703	32	0
208.0	5	0.541	182	0
447.1	6	0.231	1255	0
972.0	7	0.207	1485	0
1033.5	8	0.233	1236	0
1294.1	9	0.442	348	0
1500.0	10	0.575	126	0
3946.0	36	0.262	1019	1
9764.0	226	0.238	1175	5
12769.0	464	0.489	273	10
18686.5	1452	0.085	3456	25
25457.1	2991	0.191	1591	50
34287.7	4363	0.066	3962	75
47482.3	5158	0.061	4148	90
57211.4	5357	0.061	4159	95
97381.8	5541	0.212	1425	99
144102.4	5561	0	5565	100
146134.1	5562	0.177	1792	100
151402.0	5563	0.031	4983	100
152423.5	5564	0.031	4984	100
155877.0	5565	0	5566	100
193699.0	5566	0	5567	100
205328.0	5567	0	5568	100
231142.3	5568	0	5569	100
243729.0	5569	0	5570	100
391460.0	5570	0.056	4616	100

The first column of Table 2 shows selected values of the cumulative distribution of μ_{Bi} , the second and the fourth columns contain, respectively, multidimensional list B and unidimensional list A, which will be used in the rank correlation analysis. Observations presenting the same value of μ_{Bi} are sorted by increasing size of y_{ei} : that is only a simplifying procedure which ensures a more clear and regular synthesis of the relation between p_i and π_i , without influencing neither its direction or its importance.

By comparing column 2 to column 4 in Table 2 it is immediate to observe how the highest ranks of μ_{Bi} generally correspond to the highest ranks of equivalent income, while, on the contrary, the lowest ranks of μ_{Bi} do not correspond to the lowest ranks of equivalent income.

Analogously to Table 2, Table 3 reports multidimensional poverty ratio μ_{Bi} , rank of μ_{Bi} , equivalent income \mathbf{y}_{ei} and rank of \mathbf{y}_{ei} for increasing ranks of \mathbf{y}_{ei} : from Table 3 it is possible to observe how, for the lowest ranks of \mathbf{y}_{ei} , the differences between \mathbf{p}_{i} and π_{i} are even more accentuated than on the case of Table 3. Similarly to the previous case, observations presenting the same value of \mathbf{y}_{ei} are sorted by decreasing size of μ_{Bi} .

Data for the other countries are reported in Table A.1 in the Appendix and regularly confirm the pattern outlined for Germany: while highest ranks of μ_{Bi} correspond to highest ranks of y_{ei} , lowest ranks of μ_{Bi} generally differ from lowest ranks of y_{ei} .

Multidimensional and undimensional approaches seem to define two different sets of poor households: a more complete analysis, carried out on the basis of rank correlation, will be illustrated in the next paragraph.

4. Results

The results of the first step of the research refer to unidimensional poverty ratio. On the basis of OECD equivalence scale, the international standard of poverty line is obtained dividing the per capita average income of the population by 2. For Germany the per capita average income and the ISPL in 1998 are, respectively, equal to 19698.28 and to 9849.14. Consequently, all incomes equal or less than 9849.14 indicate a poor household belonging to the unidimensional set **q**. From Table 2 it is possible to observe how, in the set of the 10 poorest households according to multidimensional approach, 7 households have an equivalent income lower than 9849.14, and therefore are to be considered poor also in the unidimensional approach.

The ratio of the poor households \mathbf{q} to total population of households \mathbf{N} gives an important unidimensional poverty ratio, the head count ratio, which for Germany is equal to 0.059.

The head count ratio by country is reported on Table 5 and indicates that, in the set of 12 European countries analyzed in this study, Portugal, Greece and Spain are the poorest, while Denmark, Austria and the Netherlands are the richest countries.

In the second step of the research the multidimensional poverty ratio for the population μ_B is obtained as a weighted average of the multidimensional poverty ratio for the household μ_{Bi} , where the weights are the sample weights attached to the survey observations.

The multidimensional approach does not possess a poverty line partitioning total population into poor and non-poor: in order to individuate poor households it is necessary to calculate the rank π^* corresponding to $F(\pi^*)=\mu_B$.

For Germany μ_B =0.152, and F(π^*)= μ_B for π^* =952: therefore in the multidimensional approach the German poor households are the first 952 by descending order of μ_{Bi} . From Table 3 it is possible to observe how, in the set of the 10 poorest households according to unidimensional approach, only 5 are also poor in the multidimensional framework, having a rank π_i lower than 952.

Table 4

Values observed in the multidimensional approach variables for 5 German households

Household	I, p _I =1,	II, p _{II} =2,	III, p _{III} =6,	IV, p _{IV} =7,	V, p _V =8,
Variables	$\pi_I = 1235$	$\pi_{II} = 1170$	π_{III} =1255	$\pi_{IV} = 1485$	$\pi_{V} = 1236$
Observed income	82.0	97.0	760.1	972.0	1757.0
Equivalent income	82.0	97.0	447.1	972.0	1033.5
Household size	1	1	2	1	2
Number of adults	1	1	2	1	2
Household residence:					
- Number of rooms					
without kitchen	3	2	3	2	4
- Heating	yes	yes	yes	yes	yes
- Bath or shower	yes	yes	yes	yes	yes
- Indoor flushing toilet	yes	yes	yes	yes	yes
Reference person:					
-level of education	ISCED 3	ISCED 3	ISCED 0-2	ISCED 0-2	ISCED 3
-principal activity	Retired	Employer in	Retired	Self-	Retired
		paid		employment,	
		apprenticeship		manager	
Household type	Female	Female	2 adults both	Male	2 adults both
	under 65	under 65	under 65	under 65	under 65

^{*}For the level of education, ISCED 3 corresponds to second stage of secondary level education, ISCED 0-2 corresponds to less than second stage of secondary education.

In order to assess the poverty condition of these 5 households it is possible to observe analytically (Table 4) the values which they present in the variables used for the multidimensional analysis.

The household with the lowest equivalent income, y_e =82, is a one-adult, retired female under 65 household, with the second stage of secondary level education achieved, living in a dwelling of 4 rooms, with heating, bath and indoor flushing toilet: the only poverty signal originates from equivalent income, while other variables do not detect any condition of deprivation. Also for the other four cases illustrated in Table 4 the same pattern is repeated: the only clear poverty signal comes from equivalent income, while other variables indicate a non-poor condition. The more exhaustive and complete information provided by multidimensional approach allows to correctly classify these households as non-poor units.

The multidimensional poverty ratio by country is reported on Table 5 and indicates Portugal, Spain and Greece as the poorest countries (the same results given by the head count ratio), while Denmark, France and United Kingdom are the richest.

Table 5 Unidimensional H and multidimensional μ_B poverty ratios by country

Country	D	DK	NL	В	F	UK	IRL	I	GR	SP	P	A
Н	0.059	0.033	0.046	0.059	0.065	0.113	0.046	0.075	0.144	0.122	0.159	0.041
μ_{B}	0.152	0.102	0.130	0.142	0.127	0.127	0.160	0.154	0.172	0.177	0.191	0.142

In the two approaches Denmark and Portugal maintain the same position, respectively at the top and at the bottom of the list. It also interesting to observe how in all countries, the unidimensional poverty ratio indicates a lower diffusion of poverty with respect to the multidimensional measure.

The global and aggregate measures reported on Table 5 provide only partially insights on the comparison between uni- and multidimensional approaches and, moreover, on the socio-economic policies able to reduce poverty. The key point in poverty analyses is not to establish how many are the poor households, but who are they.

These objectives require a more exhaustive analysis, which can be performed on the basis of the rank correlation indexes presented in paragraph 2.

Table 6 reports the results of rank correlation analysis related to Germany. The first column shows selected values of the cumulative distribution of μ_{Bi} , $F(\mu_{Bi})$, with μ_{Bi} in decreasing order, while the following four columns contain the values of the four rank correlation indexes.

Table 6 $Rank\ correlation\ between\ multidimensional\ poverty\ ratio\ \mu_{Bi}\ and\ equivalent\ income\ y_{ei}$

		Germany		
$F(\mu_{\rm Bi})$		Rank corre	elation index	
	Kendall	Bravais	Spearman	Gini
5	0.2680	0.3574	0.3010	0.2969
10	0.3174	0.4610	0.3333	0.4489
25	0.2390	0.2930	0.0902	0.2583
50	0.3422	0.4597	0.3625	0.4173
75	0.4081	0.5604	0.5008	0.4813
90	0.4207	0.5925	0.5672	0.4935
95	0.4370	0.6127	0.5918	0.5059
100	0.4597	0.6396	0.6229	0.5244

The rank correlation indexes for the whole population, that is for $F(\mu_{Bi}) = 100$, are, respectively:

0.4597, 0.6396, 0.6229 and 0.5244.

If only the poorest 5% of total population is analyzed, that is for $F(\mu_{Bi}) = 5$, the rank correlation indexes are, respectively:

0.2680, 0.3574, 0.3010 and 0.2969.

From Table 6 it is possible to observe how, moving from $F(\mu_{Bi}) = 100$ to $F(\mu_{Bi}) = 5$, there is a strong decrease in rank correlation, clearly indicating that only few of the households identified as poor in the multidimensional analysis correspond to the households which are poor with respect to their income.

Rank correlation results for the other countries here analysed are reported in Table A.2 in the Appendix. In all countries the same pattern is easily detectable, with rank correlation indexes which decrease from $F(\mu_{Bi}) = 100$ to $F(\mu_{Bi}) = 5$, generally reaching the minimum value for $F(\mu_{Bi}) = 25$. For Greece are also present negative rank correlation indexes for $F(\mu_{Bi}) = 25$ and $F(\mu_{Bi}) = 10$.

As a synthesis of the values of the rank correlation indexes, Figure 1 illustrates their mean in the 12 European countries for some values of $F(\mu_{Bi})$.

Kendall's and Gini's measures give quite similar results and report a lower correlation between p_i and π_i than Bravais-Pearson and Spearman indexes. All indexes, however, clearly signal a decreasing rank correlation for decreasing values of $F(\mu_{Bi})$, with a minimum value corresponding to $F(\mu_{Bi})=25$.

Figure 1 Mean of rank correlation indexes in the 12 countries for some values of $F(\mu_{Bi})$

5. Conclusion

Perception of poverty changes greatly in the last decades, leading to a wide theoretical debate, which states that income and wealth provide insufficient information on poverty condition. The adoption of a more general and multidimensional definition of poverty requires to adequate methodological tools for the measurement of poverty, actually generally still obtained on the basis of income only.

The paper illustrates a comparison between traditional unidimensional approach to the measurement of poverty and a new multidimensional approach, obtained by taking into account economic, social, demographic and cultural indicators. The results of a rank correlation analysis allow to demonstrate that the two approaches define two different sets of poor households.

Therefore any socio-economic policy to reduce poverty developed on the basis of income information is likely to not achieve its proposed goals, being addressed to socioeconomic units which are, in effect, non-poor. Only in the framework of the multidimensional approach it is possible to correctly individuate the set of the poor and to formulate actions able to reduce poverty.

References

Balakrishnan N., Rao C.R. (1998*a*), *Order statistics: theory and methods*, Handbook of statistics n. 16, North Holland, Amsterdam.

Balakrishnan N., Rao C.R. (1998b), *Order statistics: applications*, Handbook of statistics n. 17, North Holland, Amsterdam.

Dagum C. (1989), "Poverty as Perceived by the Leyden Evaluation Project. A Survey of Hagenaars' Contribution on the Perception of Poverty", *Economic Notes*, 1, 99-110.

Costa M. (2002), "A Multidimensional Approach to the Measurement of Poverty", *IRISS Working Paper* 2002-05, CEPS/INSTEAD, Differdange, G.-D. Luxembourg.

Dagum C., Costa M. (2002), "Analysis and Measurement of Poverty. Univariate and Multivariate Approaches and their Policy Implications. A Case Study: Italy", in *Household Behaviour*, *Equivalence Scales and Well-Being*, C. Dagum and G. Ferrari, eds., Springer-Verlag, Berlin, forthcoming.

Eurostat (1996a), European Community Household Panel: Methods, Luxembourg.

Eurostat (1996b), European Community Household Panel: Survey Methodology and Implementation, Luxembourg.

Eurostat (2001a), ECHP UDB Description of Variables, Luxembourg.

Eurostat (2001b), ECHP UDB Manual, Luxembourg.

Hagenaars A.J.M. (1986), The Perception of Poverty, North Holland, Amsterdam.

Ravallion M. (1998), *Poverty Lines in Theory and Practice*, LSMS Working Paper n. 133, The World Bank, Washington..

Sen A.K. (1992), *Inequality Reexamined*, Harvard University Press, Cambridge (MA).

Stuart A., Ord J.K., Arnold S. (1999), *Kendall's Advanced Theory of Statistics*, vol. 2A, sixth edition, Arnold, London.

World Bank (2001), World Development Report 2000/2001, Oxford University Press, New York.

Appendix

Table A.1 $\label{eq:multidimensional} \mbox{Multidimensional poverty ratio μ_{Bi}, rank of μ_{Bi}, equivalent income y_{ei}, rank of y_{ei} for increasing sizes of $\mu_{Bi}$$

		Denmark		
yei	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
41600.0	37	0.500	21	1
81037.1	434	0.329	125	5
93176.5	652	0.237	245	10
113011.1	1067	0.137	574	25
144851.2	1684	0.065	1140	50
150624.0	1761	0.041	1732	75
260942.9	2330	0.021	2136	90
146148.1	1701	0	2257	95
239070	2304	0	2369	99
239070	2304	0	2369	99

	,	The Netherlands		
$F(\mu_{Bi})$	$\pi_i,$ rank of μ_{Bi}	μ_{Bi}	$p_{i}, rank of y_{ei}$	y_{ei}
1	39	0.517	163	10326.0
5	202	0.363	2647	28112.5
10	412	0.298	1623	21348
25	1050	.0200	1031	18276.0
50	2204	0.106	2883	30145.3
75	3389	0.016	1364	20004.7
90	4102	0	3504	36768.2
95	4309	0	4061	46782.5
99	4474	0	4419	73252.0

Table A.1 (continued)

		Belgium		
y ei	$p_i, rank of y_{ei}$	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
119546.7	32	0.579	26	1
45229.0	14	0.426	111	5
611771.2	1640	0.327	218	10
384364.7	675	0.191	562	25
1449373.0	2365	0.104	1146	50
960000.0	2211	0.053	1762	75
514193.6	1262	0.020	2168	90
541381.0	1392	0	2290	95
1050000.0	2263	0	2426	99
		France		
yei	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
8326.0	39	0.585	53	1
63632.0	1910	0.422	275	5
1651.8	15	0.320	531	10
89655.6	3448	0.178	1304	25
56478.0	1524	0.071	2697	50
140747.8	4915	0.029	4106	75
163270.0	5173	0.021	4954	90
117911.5	4473	0	5258	95
201831.2	5364	0	5470	99
		ted Kingdom	Uı	
yei	$p_i, rank of y_{ei}$	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
2117.2	102	0.492	54	1
9072.0	2424	0.371	234	5
6175.9	1385	0.303	439	10
5424	1091	0.186	1101	25
5466.3	1102	0.091	2171	50
7071.1	1698	0.033	3299	75
9410.4	2523	0	4011	90
15642.3	3875	0	4246	95
26632.9	4376	0	4437	99

Table A.1 (continued)

		Ireland		
y ei	$p_i, rank of y_{ei}$	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
3461.3	236	0.627	12	1
3829.0	380	0.438	101	5
2935.0	133	0.364	190	10
4297.0	589	0.238	509	25
5597.5	1009	0.111	1169	50
9384.8	1848	0.055	1915	75
14867.0	2374	0.020	2326	90
10295.9	1975	0	2466	95
22017.1	2530	0	2571	99
		Italy		
y _{ei}	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
1764.7	102	0.585	59	1
23000.0	4742	0.427	295	5
17550.0	3644	0.334	590	10
11334.7	1914	0.198	1473	25
22028.3	4588	0.099	2946	50
11503.1	1967	0.057	4419	75
47847.1	5799	0.038	5302	90
15466.7	3116	0.018	5597	95
29010.0	5360	0	5833	99
		Greece		
y _{ei}	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{\text{Bi}})$
630808.0	440	0.532	40	1
495000.0	279	0.410	209	5
1320000.0	1568	0.352	407	10
2752941.0	3262	0.232	1059	25
1800000.0	2374	0.142	2125	50
1375294.0	1651	0.082	3129	75
3540000.0	3657	0.044	3691	90
4128067.0	3791	0.032	3855	95
2819362.0	3323	0	4008	99

Table A.1 (continued)

		Spain		
y ei	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
50746.5	68	0.560	33	1
868125.0	2378	0.432	203	5
779800.0	1916	0.359	469	10
609734.7	1146	0.251	1261	25
815961.2	2130	0.139	2627	50
1565792.0	4266	0.090	4041	75
2378824.0	5011	0.047	4887	90
1666667.0	4396	0.022	5141	95
2690177.0	5128	0	5302	99
		Portugal		
y _{ei}	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
32127.0	23	0.611	55	1
1415000.0	3849	0.433	272	5
1009511.0	3166	0.353	516	10
426166.7	892	0.247	1146	25
758925.8	2404	0.152	2286	50
2716000.0	4408	0.110	3428	75
1103230.0	3387	0.072	4229	90
4414118.0	4544	0.054	4421	95
4970000.0	4555	0.019	4560	99
		Austria		
yei	p_i , rank of y_{ei}	μ_{Bi}	$\pi_i,$ rank of μ_{Bi}	$F(\mu_{Bi})$
102500.0	462	0.510	32	1
73200.0	167	0.373	148	5
94175.9	352	0.317	273	10
85264.7	237	0.202	739	25
139825.5	1053	0.099	1435	50
148510.0	1193	0.048	2161	75
263000.0	2435	0.038	2605	90
236584.0	2269	0.022	2758	95
246628.4	2333	0	2871	99

Table A.2 $\label{eq:Rank} Rank\ correlation\ between\ multidimensional\ poverty\ ratio\ \mu_{Bi}\ and\ equivalent\ income\ y_{ei}$

		Denmark		
$F(\mu_{\text{Bi}})$		Rank corre	elation index	
	Kendall	Bravais	Spearman	Gini
5	0.2570	0.3463	0.3300	0.3369
10	0.2777	0.4423	0.4476	0.3757
25	0.0655	0.1170	0.1830	0.0337
50	0.2770	0.4080	0.4979	0.2761
75	0.3361	0.5175	0.5629	0.3931
90	0.4187	0.6159	0.6296	0.4873
95	0.4088	0.5830	0.5950	0.4747
100	0.4575	0.6296	0.6352	0.5142
	П	The Netherland	ls	
$F(\mu_{\text{Bi}})$		Rank corre	elation index	
	Kendall	Bravais	Spearman	Gini
5	0.2584	0.3644	0.5272	0.2428
10	0.2578	0.3038	0.4573	0.1930
25	0.2261	0.3251	0.4515	0.2366
50	0.2925	0.4173	0.4721	0.3104
75	0.2993	0.4225	0.4407	0.3196
90	0.3352	0.4575	0.4684	0.3494
95	0.3796	0.5139	0.5246	0.3910
100	0.4289	0.5748	0.5859	0.4402

Table A.2 (continued)

able A.2 (co		Belgium			
$F(\mu_{Bi})$	Rank correlation index				
- (P•BI)	Kendall Bravais Spearman Gir				
5	0.1135	0.1702	0.3320	0.1539	
10	0.2929	0.3893	0.5582	0.2604	
25	0.1983	0.2807	0.4288	0.2019	
50	0.3611	0.5310	0.6078	0.3903	
75	0.3744	0.5354	0.5849	0.4037	
90	0.3888	0.5417	0.5713	0.4177	
95	0.3909	0.5467	0.5729	0.4246	
100	0.4259	0.5772	0.5895	0.4515	
		France			
$F(\mu_{Bi})$	Rank correlation index				
	Kendall	Bravais	Spearman	Gini	
5	0.1843	0.2330	0.2322	0.1879	
10	0.3346	0.4800	0.5173	0.3696	
25	0.2021	0.2786	0.3704	0.1990	
50	0.3014	0.4333	0.4587	0.3299	
75	0.3960	0.5361	0.5387	0.4233	
90	0.4179	0.5529	0.5512	0.4333	
95	0.4269	0.5657	0.5606	0.4521	
100	0.4696	0.6149	0.6112	0.4900	
	J	Inited Kingdon	m		
$F(\mu_{\text{Bi}})$	Rank correlation index				
	Kendall	Bravais	Spearman	Gini	
5	0.1486	0.2184	0.1595	0.1987	
10	0.1901	0.2643	0.3187	0.2163	
25	0.1911	0.2488	0.3036	0.1847	
50	0.2419	0.3413	0.3879	0.2504	
75	0.3200	0.4485	0.4729	0.3396	
90	0.3482	0.4888	0.4965	0.3817	
95	0.3749	0.5220	0.5256	0.4067	
100	0.4308	0.5832	0.5837	0.4563	

Table A.2 (continued)

Table A.2 (C		Ireland			
$F(\mu_{Bi})$	Rank correlation index				
·/	Kendall	Bravais	Spearman	Gini	
5	0.0590	0.0429	0.3797	0.0037	
10	0.1423	0.2468	0.5691	0.1543	
25	0.3391	0.4800	0.6864	0.2803	
50	0.3726	0.5590	0.6528	0.4185	
75	0.3816	0.5688	0.5716	0.4728	
90	0.4297	0.6431	0.6193	0.5497	
95	0.4451	0.6646	0.6367	0.5755	
100	0.4859	0.7052	0.6787	0.6117	
		Italy			
$F(\mu_{Bi})$	Rank correlation index				
	Kendall	Bravais	Spearman	Gini	
5	0.1430	0.2411	0.5391	0.1333	
10	0.2273	0.3437	0.5271	0.2425	
25	0.1557	0.2454	0.3213	0.1569	
50	0.2562	0.3524	0.3561	0.2642	
75	0.3160	0.4259	0.4532	0.3274	
90	0.3691	0.4939	0.5131	0.3813	
95	0.4014	0.5322	0.5457	0.4100	
100	0.4246	0.5609	0.5693	0.4332	
		Greece			
$F(\mu_{\text{Bi}})$	Rank correlation index				
	Kendall	Bravais	Spearman	Gini	
5	0.1861	0.2876	0.2144	0.2404	
10	-0.0352	-0.0216	-0.0592	-0.0549	
25	0.0143	-0.0412	-0.2092	-0.0665	
50	0.3088	0.3258	0.2231	0.2973	
75	0.3885	0.4587	0.4099	0.3953	
90	0.4386	0.5416	0.5188	0.4539	
95	0.4553	0.5732	0.5589	0.4775	
100	0.4833	0.6095	0.6010	0.5054	

Table A.2 (continued)

Table A.2 (Co		C ·					
- ()	Spain						
$F(\mu_{Bi})$	Rank correlation index						
	Kendall	Bravais	Spearman	Gini			
5	0.2069	0.4497	0.6491	0.2723			
10	0.3642	0.5339	0.6310	0.3906			
25	0.1221	0.2091	0.2619	0.1364			
50	0.2295	0.3441	0.3436	0.2554			
75	0.3486	0.4927	0.4728	0.3936			
90	0.4076	0.5614	0.5393	0.4560			
95	0.4285	0.5927	0.5721	0.4832			
100	0.4567	0.6245	0.6112	0.5071			
Portugal							
$F(\mu_{Bi})$							
	Kendall	Bravais	Spearman	Gini			
5	0.4505	0.5685	0.3066	0.6081			
10	0.3150	0.4303	0.2272	0.4191			
25	0.0554	0.0960	0.0646	0.0591			
50	0.2813	0.3342	0.3244	0.2618			
75	0.3767	0.4499	0.4374	0.3536			
90	0.4103	0.4903	0.4504	0.3873			
95	0.4364	0.5301	0.4992	0.4185			
100	0.4642	0.5809	0.5598	0.4597			
		Austria					
$F(\mu_{Bi})$	Rank correlation index						
	Kendall	Bravais	Spearman	Gini			
5	0.1125	0.1329	0.0557	0.1245			
10	0.2769	0.4154	0.4847	0.3165			
25	0.1798	0.2584	0.2309	0.2126			
50	0.2560	0.4004	0.3949	0.3133			
75	0.3419	0.4906	0.4903	0.3790			
90	0.3733	0.5166	0.5113	0.4004			
95	0.3996	0.5422	0.5365	0.4209			
100	0.4327	0.5827	0.5788	0.4520			

IRISS-C/I is currently supported by the European Community under the Transnational Access to Major Research Infrastructures action of the Improving the Human Research Potential and the Socio-Economic Knowledge Base programme (5th framework programme)

[contract HPRI-CT-2001-00128]

Please refer to this document as IRISS Working Paper 2003-02, CEPS/INSTEAD, Differdange, G.-D. Luxembourg.