

W'21 CS 584/684
Algorithm Design &
Analysis

Fang Song

Lecture 8

- Longest common subsequence
- Bellman-Ford algorithm

Credit: based on slides by K. Wayne

Essence of dynamic programming

Top-down
 DP is about smart recursion (i.e. without repetition) by momoization.

up a table iteratively.

Credit: Mary Wootters

Bottom up

Usually easy to express by building

A recipe for DP

- 1. Formulate the problem recursively (key step).
 - a. Specification. Describe what problems to solve (not how).
 - b. Recursion. Give a recursive formula for the whole problem in terms of answers to smaller instances of the same problem.
 - c. Step back and double check.
- 2. Build solutions to your recurrence (kinda routine).
 - a. Identify subproblems.
 - b. Choose a memoization data structure.
 - c. Identify dependencies and find a good order (DAG in topological order).
 - d. Write down your algorithm.
 - e. Analyze time. Find possible improvement if possible.

up approach in this class. topological order).

We usually go with bottom-

Longest common subsequence (LCS)

Input: two sequences x[1,...,m] and y[1,...,n]

Output: A longest subsequence common to both.

- Other names you may've heard of
 - Sequence alignment
 - Edit distance: n length(LCS(x, y))

Motivation

String matching [Levenshtein 1965]

- Auto corrector
- Spell checker
- Speech recognition
- Machine translation

© Computational biology [Needleman-Wunsch, 1970's]

• Simple measure of genome similarity

DP1: develop a recurrence

- Simplification: look at the length of a longest-common subsequence
 - Extend the algorithm to find the LCS itself
- 1.a Specification. What problems to solve?
 - Definition. c(i,j) := |LCS(x[1,...,i], y[1,...,j])|. |s|: length of string s
 - Goal. Find c(m, n).
- 1.b Recursion. Recurrence to solve an subproblems from smaller ones.
 - Base. c(i,j) = 0, if i = 0 or j = 0.
 - How to compute c(i, j) recursively?

DP1: develop a recurrence, cont'd

• Case 1.
$$x[i] = y[j]$$
.

$$c(i,j) = c(i-1,j-1) + 1$$

$$ullet$$
 Case 2. $x[i] \neq y[j]$.

$$c(i,j) = \max\{c[i-1,j], c[i,j-1]\}$$

$$c(i,j) = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0 \\ c(i-1,j-1) + 1, & \text{if } x[i] = y[j] \\ \max\{c[i-1,j], c[i,j-1]\}, & \text{if } x[i] \neq y[j] \end{cases}$$

DP2: build up solutions

- ullet Subproblems. O(mn)
- Memoization data structure
 - 2-D array c[0,...,m,0,...,n]
- Dependencies
 - Each c(i,j) depends on its 3 neighbors: c(i-1,j-1), c(i,j-1), c(i-1,j).
- Evaluation order
 - Left-to-right, row by row

DP2: build up solutions, cont'd

ullet Running time: O(mn).

Example

x = BDCABA

y = ABCBDAB

	У	A	В	C	В	D	A	В
\mathcal{X}	0	0	0	0	0	0	0	0
В	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C								
A								
В								
A								4

DP3: constructing an optimal solution

x = BDCABA

y = ABCBDAB

- Reconstruct LCS by tracing backwards
 - LCS(x, y) = BCBA
 - Multiple solutions possible.
- ullet Space: O(mn)
 - Can you do it in min{m, n}?
 [Hint: divide-&-conquer]

	y	A	В	C	В	D	A	В
$\boldsymbol{\mathcal{X}}$	0	0	0	0	0	0	0	0
В	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	$\mid 2 \mid$
A	0		1		2	2	3	3
В	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4

Improved algorithms

- [MasekPatersen 1980] $O(n^2/\log n)$
- How about $O(n^{1.9999})$?

Quadratic Barrier [BackursIndyk'STOC2015]

Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)

[BEG'SODA2018]

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce* †

[CDGKS'FOCS2018]

Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time

... Check STOC'20 for further improvements

Shortest path problem, revisited

Input: Graph G, nodes s and t.

Output: dist(s, t).

- Every edge has a length ℓ_e .
- . Length of a path $\ell(P) = \sum_{e \in P} \ell_e$.
- Distance $dist(s, t) = \min_{P:u \rightsquigarrow v} \ell(P)$.

Special cases

- All edges have equal length: BFS O(m + n).
- DAG: DP in topological order O(m + n).

A technical issue: negative length cycles

Observation

- If some $s \rightsquigarrow t$ path contains a negative length cycle, there does not exist a shortest $s \rightsquigarrow t$ path.
- Otherwise there exists a simple (i.e., no repetition node) path $\leq n-1$ edges.
- ullet For simplicity, assuming G has no NegativeLengthCycle
 - Can be detected with little overhead.

DP1: develop a recurrence

- Simplification: look at the length of a shortest path.
- 1.a Specification. What problems to solve?
 - Definition. $OPT(i, v) := length of shortest <math>v \rightsquigarrow t$ path P using $\leq i$ edges.
 - Goal. Find OPT(n-1,s).
- 1.b Recursion. Recurrence to solve an subproblems from smaller ones.
 - Base. OPT(i, v) = 0 or ∞ if i = 0.
 - How to compute OPT(i, v) recursively?

DP1: develop a recurrence, cont'd

 $OPT(i,j) := \text{length of shortest } v \rightsquigarrow t \text{ path } P \text{ using } \leq i \text{ edges.}$

- Case 1. P uses at most i-1 edges. OPT(i,v)=OPT(i-1,v)
- ullet Case 2. P uses exactly i edges.
 - If (v, w) is the first edge, then OPT uses (v, w) and then select best $w \rightsquigarrow t$ path using $\leq i 1$ edges.
 - $OPT(i, v) = \min_{v \to w \in E} \{ OPT(i 1, w) + \ell_{v \to w} \}$

$$OPT(i,v) = \begin{cases} 0, & \text{if } v = t \\ \infty, & \text{if } i = 0 \end{cases}$$

$$\min\{OPT(i-1,v), \min_{v \to w \in E}\{OPT(i-1,w) + \mathcal{C}_{v \to w}\}\}, \text{ otherwise}$$

DP2: build up solutions

- ullet Subproblems. $O(n^2)$
- Memoization data structure
 - 2-D array $M[0,...,n-1,v_1,...,v_n]$.
- Dependencies
 - Each OPT(i, v) depends on subproblems in the row above.
- Evaluation order
 - Row by row, arbitrary within a row.

$$OPT(i,v) = \begin{cases} 0, & \text{if } v = t \\ \infty, & \text{if } i = 0 \end{cases}$$

$$\min\{OPT(i-1,v), \min_{v \to w \in E}\{OPT(i-1,w) + \mathcal{E}_{v \to w}\}\}, \text{ otherwise}$$

DP2: build up solutions, cont'd


```
SPLen(G, s, t):

// M[i, v] store subproblem values

// M[0,t] = 0, M[0,v] = \infty otherwise.

1. For i = 1, ..., n - 1 // row by row

2. For v \in V // arbitrary order

M[i, v] \leftarrow M[i - 1, v] // case 1

For edge v \rightarrow w \in E // case 2

M(i, j) \leftarrow \min\{M[i, v], M[i - 1, w] + \ell_{vw}\}

3. Return M[n - 1, s]
```

Example

	V	t	A	В	C	D	E
i	O	0	8	8	∞	∞	∞
	1	0					
	2	0					
	3	0					
	4	0					
	5	0					

For
$$v \in V/$$
 arbitrary order
$$M[i,v] \leftarrow M[i-1,v] / \text{case 1}$$
 For edge $v \rightarrow w \in E / \text{case 2}$
$$M(i,j) \leftarrow \min\{M[i,v], M[i-1,w] + \mathcal{C}_{vw}\}$$

Scratch