Itô's lemma

Itô's lemma

Itô's lemma: short plan

Light version for functions of time and Wiener process.

Itô's lemma: short plan

- Light version for functions of time and Wiener process.
- Check the martingale property with Itô's lemma.

Itô's lemma: short plan

- Light version for functions of time and Wiener process.
- Check the martingale property with Itô's lemma.
- More general version.

Itô's lemma: light version

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written as

$$Y_t = Y_0 + \int_0^t f_W' dW_u + \int_0^t \left(f_t' + \frac{1}{2} f_{WW}'' \right) du.$$

Itô's lemma: light version

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written as

$$Y_t = Y_0 + \int_0^t f_W' dW_u + \int_0^t \left(f_t' + \frac{1}{2} f_{WW}'' \right) du.$$

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written in the short form as

$$dY_{t} = f'_{W}dW_{t} + f'_{t}dt + \frac{1}{2}f''_{WW}dt.$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \clubsuit .

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \blacksquare .

$$dY_t =$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \mathbb{Z} .

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt +$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \mathbb{Z} .

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process $\stackrel{\textstyle \sim}{\sim}$.

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

$$= 3W_t^2 t^4 dW_t + (4W_t^3 t^3 + 3W_t t^4) dt.$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process $\ref{eq:substant}$.

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

$$= 3W_t^2 t^4 dW_t + (4W_t^3 t^3 + 3W_t t^4) dt.$$

$$Y_t = 0 + \int_0^t 3W_u^2 u^4 dW_u + \int_0^t (4W_u^3 u^3 + 3W_u u^4) du.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:special}$.

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:special}$.

$$dY_t =$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale \clubsuit .

$$dY_t = 4W_t^3 dW_t - 2t dt +$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\stackrel{\textstyle \leftarrow}{\rightleftharpoons}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:substant}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\stackrel{\textstyle \bullet}{=}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

$$Y_t = 0 + \int_0^t 4W_u^3 dW_u + \int_0^t (6W_u^2 - 2u) du.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:substant}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

$$Y_t = 0 + \int_0^t 4W_u^3 dW_u + \int_0^t (6W_u^2 - 2u) du.$$

 (Y_t) is not a martingale!

$$dY_t =$$

$$dY_t = 2W_t dW_t + 0 dt +$$

$$dY_t = 2W_t \, dW_t + 0 \, dt + \frac{1}{2} 2dt =$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2} 2dt = 2W_t dW_t + dt.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u \, dW_u + \int_0^t 1 \, du.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u \, dW_u + \int_0^t 1 \, du.$$

$$W_t^2 = 0 + 2 \int_0^t W_u dW_u + t.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u \, dW_u + \int_0^t 1 \, du.$$

$$W_t^2 = 0 + 2 \int_0^t W_u dW_u + t.$$
 $\rightarrow \int_0^t W_u dW_u = \frac{1}{2}(W_t^2 - t).$

Itô's lemma: general version

Informal theorem

If $Y_t = f(X_t, t)$ where (X_t) is an Itô process then Y_t may be written in the short form as

$$dY_t = f_X' dX_t + f_t' dt + \frac{1}{2} f_{XX}''(dX_t)^2,$$

where $(dX_t)^2$ is calculated using symbolic rules

$$dt \cdot dW_t = 0$$
, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t \bigcirc .

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt +$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\text{\tiny constant}}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt + \frac{1}{2}2(dS_t)^2 =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt + \frac{1}{2}2(dS_t)^2 =$$

$$= 2S_t(\mu S_t dt + \sigma S_t dW_t) + 1 \cdot (\mu S_t dt + \sigma S_t dW_t)^2 =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2}2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for $Y_t \gtrsim 1$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2} 2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

$$= (2\mu S_{t}^{2} + \sigma^{2} S_{t}^{2}) dt + 2\sigma S_{t}^{2} dW_{t}.$$

Exercise

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for $Y_t \gtrsim 1$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2} 2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

$$= (2\mu S_{t}^{2} + \sigma^{2} S_{t}^{2}) dt + 2\sigma S_{t}^{2} dW_{t}.$$

$$Y_t = S_0^2 + \int_0^t 2\sigma S_u^2 dW_u + \int_0^t (2\mu S_u^2 + \sigma^2 S_u^2) du.$$

Informal theorem 🧲

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

Informal theorem 🧲

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

1. Calculate the second order Taylor expansion of f.

Informal theorem

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

- 1. Calculate the second order Taylor expansion of f.
- 2. Simplify the result using symbolic rules $dt \cdot dW_t = 0$, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Informal theorem

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

- 1. Calculate the second order Taylor expansion of f.
- 2. Simplify the result using symbolic rules $dt \cdot dW_t = 0$, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Reminder: dW_t , dY_t , dX_t , dZ_t do not exist!

It's only a quick way to find the full form.

Itô's lemma: summary

Basic tool to study stochastic integrals.

Itô's lemma: summary

- Basic tool to study stochastic integrals.
- Easy to check whether the process is a martingale.

Itô's lemma: summary

- Basic tool to study stochastic integrals.
- Easy to check whether the process is a martingale.
- Easily written in short form:

$$dt \cdot dW_t = 0$$
, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Black and Scholes model

Black and Scholes model: short plan

Assumptions of the model.

Black and Scholes model: short plan

- Assumptions of the model.
- The main question.

Black and Scholes model: short plan

- Assumptions of the model.
- The main question.
- Solving the price stochastic differential equation.

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

 The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

No taxes, no dividends, no transaction costs.

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t \, dt + \sigma S_t \, dW_t.$$

■ The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

- No taxes, no dividends, no transaction costs.
- Time is continuous, shares are infinitely divisible.

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

- No taxes, no dividends, no transaction costs.
- Time is continuous, shares are infinitely divisible.
- Short selling is allowed.

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

 The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

- No taxes, no dividends, no transaction costs.
- Time is continuous, shares are infinitely divisible.
- Short selling is allowed.
- No arbitrage opportunities.

• Unique share type is traded. The share price S_t satisfies

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

■ The risk free interest rate r is constant and unique for all horizons.

$$dB_t = rB_t dt$$
 $B_t = B_0 \exp(rt), B_0 = 1.$

- No taxes, no dividends, no transaction costs.
- Time is continuous, shares are infinitely divisible.
- Short selling is allowed.
- No arbitrage opportunities.
- The parameters r, σ , μ are known.

BS-model

The Question

How can we calculate the price of a particular financial claim?

BS-model

The Question

How can we calculate the price of a particular financial claim?

Example. At time moment T=2 John would like to get 10 if the $S_2>100$ and nothing otherwise.

BS-model

The Question

How can we calculate the price of a particular financial claim?

Example. At time moment T=2 John would like to get 10 if the $S_2>100$ and nothing otherwise.

What is the fair price John should pay at t = 0?

SDE for the price

Stochastic differential equation for the price:

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

SDE for the price

Stochastic differential equation for the price:

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

In full form:

$$S_t = S_0 + \int_0^t \mu S_u \, du + \int_0^t \sigma S_u \, dW_u.$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 =$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dS_t = \mu S_t \, dt + \sigma S_t \, dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dY_t =$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dY_t = \frac{1}{S_t} dS_t + 0 dt +$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dY_t = \frac{1}{S_t} dS_t + 0 dt + \frac{1}{2} \left(\frac{-1}{S_t^2} \right) (dS_t)^2 =$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t.$$

By mnemonic rules,

$$(dS_t)^2 = (\mu S_t dt + \sigma S_t dW_t)^2 = 0 + 0 + \sigma^2 S_t^2 dt.$$

$$dY_t = \frac{1}{S_t} dS_t + 0 dt + \frac{1}{2} \left(\frac{-1}{S_t^2} \right) (dS_t)^2 =$$

$$= \mu dt + \sigma dW_t - \frac{1}{2} \sigma^2 dt.$$

Solving the SDE...

The log-price $Y_t = \ln S_t$ in short form,

$$dY_t = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW_t.$$

Solving the SDE...

The log-price $Y_t = \ln S_t$ in short form,

$$dY_t = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW_t.$$

In full form,

$$Y_t = Y_0 + \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) du + \int_0^t \sigma dW_u$$

Solving the SDE...

The log-price $Y_t = \ln S_t$ in short form,

$$dY_t = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW_t.$$

In full form,

$$Y_t = Y_0 + \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) du + \int_0^t \sigma dW_u$$

Without integrals,

$$\ln S_t = \ln S_0 + \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t.$$

Solving the SDE...

The log-price $Y_t = \ln S_t$ in short form,

$$dY_t = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW_t.$$

In full form,

$$Y_t = Y_0 + \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) du + \int_0^t \sigma dW_u$$

Without integrals,

$$\ln S_t = \ln S_0 + \left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t.$$

Finally,

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

With BS model we will calculate the fair price.

- With BS model we will calculate the fair price.
- The share price follows geometric brownian motion,

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

- With BS model we will calculate the fair price.
- The share price follows geometric brownian motion,

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

Risk free rate r is constant.

- With BS model we will calculate the fair price.
- The share price follows geometric brownian motion,

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

- Risk free rate r is constant.
- There are no arbitrage opportunities.

Girsanov theorem: short plan

• The wrong answer to the pricing problem.

Girsanov theorem: short plan

- The wrong answer to the pricing problem.
- Idea of alternative probability.

Girsanov theorem: short plan

- The wrong answer to the pricing problem.
- Idea of alternative probability.
- Girsanov theorem.

The wrong answer

Wrong intuition

The future payoff X_T is random, we just need to calculate the expected payoff given all available information,

$$X_0 \stackrel{???}{=} \mathbb{E}(X_T \mid \mathcal{F}_0).$$

The wrong answer

Wrong intuition

The future payoff X_T is random, we just need to calculate the expected payoff given all available information,

$$X_0 \stackrel{????}{=} \mathbb{E}(X_T \mid \mathcal{F}_0).$$

This is true for a martingale, but the claim price is not a martingale.

Alternative probability

A	X = -2	X = 0	X = 4
$\mathbb{P}(A)$	0.3	0.4	0.3
$\mathbb{P}^*(A)$	0.4	0.1	0.5

Alternative probability

A	X = -2	X = 0	X = 4
$\mathbb{P}(A)$	0.3	0.4	0.3
$\mathbb{P}^*(A)$	0.4	0.1	0.5

$$\mathbb{E}(X) = 0.6$$

Alternative probability

A	X = -2	X = 0	X = 4
$\mathbb{P}(A)$	0.3	0.4	0.3
$\mathbb{P}^*(A)$	0.4	0.1	0.5

$$\mathbb{E}(X) = 0.6$$

$$\mathbb{E}^*(X) = 1.2$$

Idea

We will introduce a new probability \mathbb{P}^* in the Black and Scholes model to simplify the calculation of prices.

Theorem 2

Theorem 🔑

$$\mathbb{E}(W_t) = 0,$$

Theorem 🔑

$$\mathbb{E}(W_t) = 0, \quad \mathbb{E}(W_t^*) = b \cdot t,$$

Theorem 🔑

$$\mathbb{E}(W_t) = 0, \quad \mathbb{E}(W_t^*) = b \cdot t, \quad \mathbb{E}^*(W_t^*) = 0.$$

Girsanov theorem in BS model

Theorem 🚵

In the Black and Scholes model there is an alternative probability \mathbb{P}^* such that (W_t^*) is a Wiener process under \mathbb{P}^* and

$$S_t = S_0 \exp\left(\left(\frac{\mathbf{r} - \frac{\sigma^2}{2}\right)t + \sigma W_t^*\right).$$

Girsanov theorem in BS model

Theorem 🚣

In the Black and Scholes model there is an alternative probability \mathbb{P}^* such that (W_t^*) is a Wiener process under \mathbb{P}^* and

$$S_t = S_0 \exp\left(\left(\frac{\mathbf{r} - \frac{\sigma^2}{2}\right)t + \sigma W_t^*\right).$$

Old formula is still valid,

$$S_t = S_0 \exp\left(\left(\frac{\mu - \sigma^2}{2}\right)t + \sigma W_t\right),\,$$

where (W_t) is a Wiener process under probability \mathbb{P} .

Link between (W_t) and (W_t^*)

Equivalent formula for share price means that

$$\left(\frac{\mu - \frac{\sigma^2}{2}}{2}\right)t + \sigma W_t = \left(\frac{r - \frac{\sigma^2}{2}}{2}\right)t + \sigma W_t^*$$

Link between (W_t) and (W_t^*)

Equivalent formula for share price means that

$$\left(\frac{\mu - \frac{\sigma^2}{2}}{2}\right)t + \sigma W_t = \left(\frac{r - \frac{\sigma^2}{2}}{2}\right)t + \sigma W_t^*$$

We simplify,

$$(\mu - r)t + \sigma W_t = \sigma W_t^*$$

Link between (W_t) and (W_t^*)

Equivalent formula for share price means that

$$\left(\frac{\mu - \frac{\sigma^2}{2}}{2}\right)t + \sigma W_t = \left(\frac{r}{2} - \frac{\sigma^2}{2}\right)t + \sigma W_t^*$$

We simplify,

$$(\mu - r)t + \sigma W_t = \sigma W_t^*$$

In short form

$$(\mu - r)dt + \sigma dW_t = \sigma dW_t^*.$$

The meaning of probabilities:

■ P — real world probability;

The meaning of probabilities:

- P real world probability;
- \mathbb{P}^* artificial probability to simplify formulas.

Girsanov theorem: summary

• Fair price is not a simple expected value.

Girsanov theorem: summary

- Fair price is not a simple expected value.
- Girsanov theorem gives equivalent formula for S_t :

$$S_{t} = S_{0} \exp\left(\left(\frac{r - \frac{\sigma^{2}}{2}}{2}\right)t + \sigma W_{t}^{*}\right) =$$

$$= S_{0} \exp\left(\left(\frac{\mu - \frac{\sigma^{2}}{2}}{2}\right)t + \sigma W_{t}\right).$$

Girsanov theorem: summary

- Fair price is not a simple expected value.
- Girsanov theorem gives equivalent formula for S_t :

$$S_{t} = S_{0} \exp\left(\left(\frac{r - \frac{\sigma^{2}}{2}}{2}\right)t + \sigma W_{t}^{*}\right) =$$

$$= S_{0} \exp\left(\left(\frac{\mu - \frac{\sigma^{2}}{2}}{2}\right)t + \sigma W_{t}\right).$$

• (W_t^*) is a Wiener process under artificial probability \mathbb{P}^* ,

$$(\mu - r)dt + \sigma dW_t = \sigma dW_t^*.$$