

# CII4F3 / Pengolahan Citra Digital Image Segmentation and Registration

Dr. Eng. Ir. Wikky Fawwaz Al Maki, S.T., M.Eng.

Intelligent Computing and Multimedia (ICM)





#### **Introduction**

- Image Segmentation
  - What is it?
  - Tresholding
  - K-means clustering
  - Canny edge detection
  - Graph cut
  - Region growing
  - Level set
- Image Registration
  - What is it?
  - Main components
  - Feature-based
  - Intensity-based
  - Examples



## **IMAGE SEGMENTATION**



#### **Image Segmentation**







#### **Aim of Image Segmentation**

- Partition image into a set of regions which
  - are visual distinct and
  - share certain visual properties
    - Intensity
    - Colour
    - Texture
- To simplify representation for easier analysis



#### **Segmentation via Thresholding**







- Value above threshold: Object
- Value below threshold: Background



### **Automatic Thresholding – Two Classes**

- Algorithm :
- 1. Choose initial threshold (e.g. randomly)
- 2. Segment the image into object and background
- 3. Compute mean intensity of object  $(m_1)$  and background  $(m_2)$
- 4. Set new threshold to  $(m_1+m_2)/2$
- 5. Repeat from 2. until no change





#### **Segmentation via K-Means Clustering**







Use K means  $\rightarrow$  get K classes

- 1) K initial means  $(m_k)$
- 2) Assign each pixel p to cluster k
  - argmin<sub>k</sub> |intensity(p) m<sub>k</sub>|
- 3) Recalculate cluster mean
- 4) Repeat from 2) until convergence



#### **K-Means Clustering for Color Images**

- So far K-means clustering in 1D (intensities)
- Same process for nD by using vector distances
  - e.g. color images (RGB described as 3D-vector)









R

G

В



### **K-Means Clustering – Number of Clusters**





10 clusters



## **K-Means Clustering - Initialization**









#### **K-Means Clustering - Summary**

- Result depends on initialization
- Number of clusters is very important
- No spatial considerations



#### **Edge Detection**

Why Edge Detection?



#### **Edge Detection**



# **Task:**Segment the image by finding relevant edges



#### **Edge Detection Task**



- > **Task:**Segment the image by finding relevant edges
- Simple Way:
  - Smooth the image
  - Calculate magnitude of image gradient
  - Threshold



#### **Canny Edge Detection**

- Aim for "optimal" edge detection algorithm
- Good detection
  - find all relevant edges
- Good localization
  - find edge at the right location
- Minimal response
  - find only relevant edges



### **Canny Edge Detection**



Optimal edges?

good detection: yes

good localization: NO

minimal response: yes/no



#### **Canny Edge Detection – Edge Direction**







#### **Canny Edge Detection – Thinning**







#### **Canny Edge Detection – Thresholding**





Strong edges

#### Hysteresis thresholding

- To find relevant edges
- Keep strong edges (response > T<sub>high</sub>)
- Keep weaker edges connected to strong edges (response > T<sub>low</sub> and connectable to T<sub>high</sub> pixels)



#### **Canny Edge Detection – Result**





#### **Canny Edge Detection - Steps**

- 1. Convolve image with Gaussian filter
- 2. Compute edges and estimate edge direction
- 3. Find edge locations using non-maximal suppression
- 4. Trace edges using hysteresis thresholding



#### **Canny Edge Detection - Summary**

- Affected by noise
- No automatic threshold selection
- Useful as preprocessing step



Axial slice of lung CT image





Sagittal slice of liver MR image



#### **Hybrid Methods**

- So far methods based on
  - properties of single pixels (e.g. thresholding, K-mean clustering)
  - relationship between neighbouring pixels (e.g. Canny edge detection)
- Combine these!



#### **Graph Cut**



$$E(y) = \sum_{p \in P} E_d(y_p) +$$

Unary term: cost to not assign label  $y_p$  to pixel p





#### **Graph Cut**



Cut graph such that cost E(y) is minimal



Sink: label 2

$$E(y) = \sum_{p \in P} E_d(y_p) + \lambda \sum_{p \in P, q \in N_2(p)} E_s(y_p, y_q)$$

Unary Term: cost to

Binary Term: cost to not assign label  $y_p$  to pixel p assign label  $y_p$  to p and  $y_q$  to q



#### **Examples: K-Means refined by Graph Cut**



Graph cut



Graph cut



#### **Graph Cut - Summary**

- Hybrid method: intensity and edge costs
  - Provides method to solve such a problem
  - Global optimum
- But high memory usage



#### **Region Growing**

- Region based perspective
  - From a (manually selected) seed (pixel or region)
  - Expand boundary to enclose homogenous region (e.g. allowed intensities within range of mean±delta)
  - Leakage when to stop?





#### **Level Set**

- Want smooth boundary enclosing homogenous regions
- Hybrid method: intensities and curvature of boundary



http://en.wikipedia.org/wiki/Level\_set\_method



#### **Top-down Methods**

- So far all methods were bottom-up
- Can we use prior knowledge?
  - What objects are expected in the images?
  - E.g. searching for certain shapes and appearances
  - Important especially for noisy, low-contrast, low-resolution images
  - Involves image registration → next



## **IMAGE REGISTRATION**



#### **Image Registration**

Aim: to establish spatial correspondences

Result: motion vect









between images











#### **Main Component: Optimization Criteria**

- Feature-based
  - Find feature candidates
  - Match features (minimize feature difference)
  - Estimate spatial transformation



 Transform source image such that similarity between images is maximized











#### **Main Component: Spatial Transformation**

- What spatial transformation is expected?
  - E.g. rigid transformation for bones
  - Helps to constrain problem



- Defines interpolation function
  - From sparse correspondences (e.g. at features)
  - To dense displacement field



#### **Image Registration Approaches**





#### **Landmarks - SIFT Features**

- > **SIFT** = Scale Invariant Feature Transform
- Rotation and scale invariant









#### **Landmarks - SIFT Features**

- 1. Scale-space extrema detection
- 2. Keypoint localization
- 3. Orientation assignment
- 4. Keypoint descriptor



#### **Scale Space**



- Convolve image with Gaussian kernel
- · Get DoG images
- Downsample by factor of 2
- Repeat



## **Scale Space**

Gaussian blurred images

Difference of Gaussian images



## **Scale Space Extrema Detection**



Detect extrema of DoG images:

- Compare pixel to its 26 neighbors
  - In 3x3x3 regions
  - At current and adjacent scales
- Current pixel extrema of all neighbours?



## **Keypoint Localization**

- Where exactly is the extrema?
  - Fit a 3D quadratic function to the local sample points
  - Determine the interpolated location of the extrema



Reject extrema with low contrast





## **Keypoint Localization**

- Remove edge responses
- DoG function gives strong response at edges
- But location along the edge is poorly determined
  - 1 large principal curvature (across edge)
  - 1 small principal curvature (along edge)
- Eigenvalues (α>β) of Hessian matrix H are proportional to principle curvatures

$$\mathbf{H} = \left[ \begin{array}{cc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array} \right]$$

Reject if ratio of eigenvalues  $(r = a/\beta)$  is large





## **Orientation Assignment**

- Assign one or more orientations to each keypoint
  - Histogram of local image gradient directions in neighborhood
  - ▶ Peaks in histograms (>80% of max) define dominant orientations
- Achieves rotation invariance
  - Future operations on images after transformation relative to this orientation, scale, location



#### **Keypoint Descriptor**



- Compute image gradient magnitude and orientation around keypoint
- Surrounding divided into 4x4 subregions
- Accumulate into orientation histograms (8 bins) relative to keypoint orientation
- Keypoint descriptor of length 128 (=16 subregions\*8 bins)
- Correspondences indicated by small distance between key point descriptors



#### **Stitching Example**

High-resolution sub-images

Low-resolution image

- 1) Detect keypoints
- 2) Establish correspondences between keypoints
- 3) Determine transformation



#### **Transformations**

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \text{translation}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \text{rotation}$$

All 2D affine transformations (translation, rotation, scaling, shearing) can be expressed in a 3x3 transformation matrix **A**, i.e.  $\underline{x}' = \mathbf{A}\underline{x}$ 



# 7HANK YOU