Уеб система за изпълнимост в контактната логика с мярка

Факултет по математика и информатика Катедра по математическа логика и приложенията ѝ

Стоев Мартин

Магистерска програма Логика и Алгоритми, Информатика, Факултетен Номер: 25790

Научен ръководител: проф. Тинко Тинчев

27 март 2023 г.

∟Табло метод за съждителната логика

Табло метод за съждителната логика

Маркиране на валидността на формула φ

- ightharpoonup $ext{$\mathbb{T}\varphi$}$ маркиране на формулата $ext{$\varphi$}$ за вярна
- ightharpoonup ightharpoonup маркиране на формулата arphi за невярна

Стъпки на табло метода

- Правила
- ▶ Разширяване на дърво, което строи табло методът
- Намиране на противоречия

Табло метод за контактната логика

Вид на табло клон:

- **▶ T***C*(*a*, *b*)
- **▶ F***C*(*a*, *b*)
- $ightharpoonup \mathbb{F}t = 0 \iff \mathbb{F}a \sqcap b * = 0$
- ▶ $\mathbb{T}a \leq_{\mu} b$
- Fa <_μ b

∟Табло метод за контактната логика

За дадена формула
$$\varphi$$
 търсим: $\mathcal{M} = (W, R, v)$ $\mathcal{M} \models \varphi$

Построяване на система линейни неравенства

Нека х и у са два терма, тогава формулата $\leq_{\mu} (x,y)$ се преобразува в:

$$\sum_{i:p_i\in v(x)} X_i \leq \sum_{j:p_j\in v(y)} X_j$$

Това преобразуване може да се опрости до:

$$\sum_{i:p_i\in \nu(x)\setminus \nu(y)} X_i \leq \sum_{j:p_j\in \nu(y)\setminus \nu(x)} X_j$$

Дефиниция (Множеството на всички променливи)

С \mathbb{V} *аг*_B ще ознчаваме множеството от всички променливи използвани в табло клона B.

Дефиниция (Оценка на променливи)

С р ще ознчаваме функцията, която за всяка променлива от \mathbb{V} a r_B дава истина или лъжа.

$$p: \mathbb{V}$$
ar $_B \to \{$ лъжа, истина $\}$

Дефиниция (Булева оценка)

Нека р е оценка на променливи и \mathcal{T}_s е множеството от всички термове, тогава функцията $\xi_p:\mathcal{T}_s \to \{$ лъжа, истина $\}$ ще наричаме булева оценка, която се дефинира по следния начин:

- $\xi_p(0) = лъжа$
- ▶ $\xi_{p}(1) = \text{истина}$
- ▶ $\xi_p(t) = p(t)$, където $t \in \mathbb{V}$ ar_B
- ► $\xi_p(a \sqcap b) = \xi_p(a)$ и $\xi_p(b)$
- ► $\xi_p(a \sqcup b) = \xi_p(a)$ или $\xi_p(b)$
- $\xi_p(a*) = \text{He } \xi_p(a)$

Изпълнимост в контактна логика с мярка

Дефиниция

Нека В е клон в таблото. Казваме, че модалната точка р е валидна в В, когато:

- ▶ $t = 0 \in B : \xi_p(t) =$ лъжа
- ightharpoonup $eg C(e,f) \in B : \xi_p(e) =$ лъжа или $\xi_p(f) =$ лъжа

Дефиниция

Нека В е клон в таблото и нека р и q са две валидни модални точки. Казваме, че $\langle p,q \rangle$ е валидна релация, когато:

$$\neg C(e,f) \in B : (\xi_p(e) =$$
 лъжа или $\xi_q(f) =$ лъжа) и $(\xi_p(f) =$ лъжа или $\xi_q(e) =$ лъжа)

Изпълнимост в контактна логика с мярка

Дефиниция

Нека В е клон в таблото и нека W е множество от валидни модални точки в В. Дефинираме модел $\mathcal{M}=(W,R,\mu,\nu)$ в В, където:

$$u(t) = \{ \rho \mid \rho \in W \text{ и } \xi_{\rho}(t) = \text{ истина} \},$$
където t е терм от атомарните формули в В

$$R = \{\langle p,q \rangle \mid p,q \in W \text{ и } \langle p,q \rangle \text{ е валидна релация} \}$$

Лема (Невъзможни подмножествени модели)

Нека $\mathcal{M} = (W, R, \mu, v)$ е модел, където W е множество от валидни модални точки. Нека $\mathcal{M}' = (W', R', \mu, v')$ е модел, където $W' \subseteq W, R' \subseteq R$, тогава:

- 1. $\mathcal{M} \not\models t \neq 0 \implies \mathcal{M}' \not\models t \neq 0$
- 2. $\mathcal{M} \not\models C(a,b) \implies \mathcal{M}' \not\models C(a,b)$

Лема (Дедукция на променливите)

Нека $\mathcal{M} = (W, R, \mu, \nu)$ е модел, където W е множество от валидни точки. Нека $\mathcal{M}' = (W', R', \mu, \nu')$ е подмодел на \mathcal{M} :

$$v'(t) = v(t) \cap W'$$

∟Табло метод за контактната логика

Имплементация

- ► FLEX + BISON за построяване на формулата в AST (абстрактно синтактично дърво)
- Търсене на последователни атомарни клонове с табло метода
- Генериране на модел с мярка
- Кіwі библиотека за смятане на система линейни неравенства
- Уеб приложение за извикване на генерирането на модела и визуализиране на самия

https://github.com/Anton94/modal_logic_formula_prover

```
Уеб система за изпълнимост в контактната логика с мярка \bot_{{
m Tafno}}
```

─Табло метод за контактната логика

Демо

 $http://logic.fmi.uni-sofia.bg/theses/Dudov_Stoev/$

Уеб система за изпълнимост в контактната логика с мярка

— Табло

— Табло метод за контактната логика

Благодаря за вниманието.