Predicting Paper Authorship

Springboard Capstone 1

The Problem

- + Plagiarism in scientific writing
 - + 30% of Scientists have witnessed it
- + Outright fraud
 - + Russian paper mill offered authorship on paper for \$5000
- + Can NLP help this problem?

Who Would be Interested?

- + Scientific Journals
- + Universities/University Libraries
- + Professors
- +The general public

Data Wrangling Merging and Cleaning the Data

Data Wrangling

- + Joined three separate .csv files such that each paper was duplicated once for each author
- + Features included title, abstract, year published, event type, author, and paper text
- + Four papers had duplicated paper texts
- + Some identical author names had different author ids

	year	title	event_type	pdf_name	abstract	paper_text	paper_id	author_id/
(2016	Only H is left: Near-tight Episodic PAC RL	Poster	6052-only-h-is-left-near-tight-episodic- pac-rl	In many applications such as advertisement pla	Launch and Iterate: Reducing Prediction Churn\	6052	8474
1	2017	Deep Multi-task Gaussian Processes for Surviva	Poster	6827-deep-multi-task-gaussian-processes- for-su	Designing optimal treatment plans for patients	Deep Multi-task Gaussian Processes for\nSurviv	6827	9344
4	2017	Deep Multi-task Gaussian Processes for Surviva	Poster	6827-deep-multi-task-gaussian-processes- for-su	Designing optimal treatment plans for patients	Deep Multi-task Gaussian Processes for\nSurviv	6827	9351
2	2017	Bayesian Inference of Individualized Treatment	Poster	6934-bayesian-inference-of-individualized- trea	Predicated on the increasing abundance of elec	Bayesian Inference of Individualized Treatment	6934	9344
	2017	Bayesian Inference of Individualized Treatment	Poster	6934-bayesian-inference-of-individualized- trea	Predicated on the increasing abundance of elec	Bayesian Inference of Individualized Treatment	6934	9351

Potential issues

- +No record of who was the primary author!
- +A very imbalanced dataset, most authors write only a few papers!

Initial Modeling

- + Focused on predicting one author (Bernhard Schulkopf)
- + Used only the title of the paper as a feature
- + Scikit-learn's TFIDF vectorizer
- + 4865 new features generated

Initial Modeling

- + Very imbalanced, Bernhard is only 0.8% of the dataset!
- + Used class weights, oversampling, and undersampling
- + For this stage, only logistic regression was used

Predicting From the Paper Text

Predicting From the Paper Text

- + Created new features (title length, paper length, avg word length)
- + Models tested were logistic regression, LinearSVD, and random forest
- + A "manual" grid-search was used to tune hyperparameters
- + F2 score was used as the scoring metric
 - + F2-Measure = (5 * Precision * Recall) / (4 * Precision + Recall)
 - + More weight on minimizing false negatives than F1-score

PCA Analysis

- + TFIDF vectorizer created almost 200,000 features
- + A way to do topic modeling?
- + Any more than 1000 components was impossible
- + Ultimately did not help

Predicting From the Paper Text

- + LinearSVD model gave best results
- + No inherent way to predict probabilities

	LogReg_C_value	SVC_C_value	Sampler	F2_score_train_avg	F2_score_test_avg	Model
4	NaN	0.1	None	0.839164	0.462798	SVC
7	NaN	0.05	ros	0.837961	0.461768	SVC
3	1.0	NaN	ros	0.874637	0.453942	LogisticRegression
5	NaN	0.1	ros	0.917847	0.445585	SVC
6	NaN	0.05	None	0.744874	0.434137	SVC
5	0.5	NaN	ros	0.801624	0.432396	LogisticRegression
2	1.0	NaN	None	0.804469	0.422821	LogisticRegression
1	5.0	NaN	ros	0.963199	0.419485	LogisticRegression

Predicting From the Paper Text

Multi-Class Multi-Label C = 3 Samples Labels Labels [100] [010] [001] [110] [011] [111]

Multiple Authors

- + Papers can have multiple authors!
- + Used sklearn's MultiOutputClassifier
- + Had to use "next best" model because predicting probabilities was important!

Multiple Authors

- + Initial test used two authors that co-wrote many papers
- + Tested sklearn's

 MultiOutputClassifier and

 ClassifierChain
 - + Both strategies were almost identical
- + Why did ten authors provide the best results and 5 the worst?

	Num_authors_tested	F1_score_train_avg	F1_score_test_avg
1	10	0.790582	0.464970
2	15	0.799741	0.447966
0	5	0.775275	0.427062

Conclusion

- + Final model not good enough to firmly predict, but much better than random
 - + (F2 scores ~0.46)
- + Largely achieved separation from the bulk of papers
- + Could be useful with a human to help it
- + Other vectorizers that retain word-order information could help
- + Knowing primary authorship would help