Basic Statistics and Data Visualization

Sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, Population variance $\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$,

Sample variance $s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$. Excel function, AVERAGE() for mean and STDEV or (STDEV.S) for s (sample standard deviation), and STDEV.P for σ .

Histogram (distribution); Box Plot Scatter Diagram shows correlation

Discrete Random Variables

Def: r.v. with a finite (or countably infinite) set of real numbers for its range

Probability mass function (PMF): $f(x_i) = P(X = x_i)$;

Cumulative distribution function (CDF): $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$

Expectation (or mean)
$$\mu = E(X) = \sum_{i=1}^{n} x_i f(x_i)$$
, Variance $\sigma^2 = V(X) = E(X - \mu)^2 = \sum_{i=1}^{n} (x_i - \mu)^2 f(x_i) = \sum_{i=1}^{n} x_i^2 f(x_i) - \mu^2$

Bernoulli: X = 0 or 1 with P(X = 1) = p; E(X) = p, V(X) = p(1 - p)

Binomial: X = 0, 1, 2, ..., representing the number of successes out of n independent trials with the probability of success for each trial being p. $f(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, ..., n$.

E(X) = np, V(X) = np(1-p). Excel Function BINOMDIST does not work in the online spreadsheet. Use the equation for calculation.

Poisson: X = 0, 1, 2, ..., representing the number of events in an interval with rate parameter λ .

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $E(X) = \lambda$, and $Var(X) = \lambda$. **POISSON**(x, λ , FALSE) for PMF, set to TRUE for CDF.

Continuous Random Variables

Def: r.v. with an interval (either finite or infinite) of real numbers for its range.

Probability density function (**PDF**): $P(a < X < b) = \int_a^b f(x) dx$.

CDF:
$$(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Mean
$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
, Variance $\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = E(X^2) - \mu^2$

Normal: mean μ , variance σ^2 Standard normal $Z = \frac{X - \mu}{\sigma}$

$$P(X \le x) = P(\frac{x - \mu}{\sigma} \le \frac{x - \mu}{\sigma}) = P(Z \le z)$$

NORMDIST $(x, \mu, \sigma, \text{ cumulative})$ to find probability

NORMINV(prob, μ , σ) to derive z

Exponential: distance between successive events of a Poisson process with mean $\lambda > 0$

$$f(x) = \lambda e^{-\lambda x}$$
, for $0 \le x < \infty$; $E(X) = \frac{1}{\lambda}$ and $V(X) = \frac{1}{\lambda^2}$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} du$$

EXPONDIST(x, λ , cumulative)

Central Limit Theorem: Sample averages will converge to a normal distribution if the sample size is large.

Use normal probability plot to check if normality assumption is satisfied.

Statistical Inference

 $\alpha = P(\text{Type I error}) = P(\text{reject } H_0 \text{ when } H_0 \text{ is true}), \text{ level of significance}$

 $\beta = P(\text{Type II error}) = P(\text{fail to reject } H_0 \text{ when } H_0 \text{ is false}), \text{ Power = } 1 - \beta$

The P-value is the smallest level of significance that would lead to the rejection of H_0

7-step Hypothesis Testing Procedure

- 1. Parameter of Interest; 2. Null hypothesis, H_0 ; 3. Alternative hypothesis, H_1 ; 4. Test statistic
- 5. Reject *H*₀ if; 6: Computations; 7. Conclusions

One-Sample Mean Test, Variance Known (Z-test)

Confidence interval

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \qquad H_1: \mu \neq \mu_0 \qquad \text{Probability above } |z_0| \text{ and probability below } -|z_0|, \\ P = 2 \big[1 - \Phi(|z_0|) \big] \qquad \qquad \overline{x} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \leq \mu \leq \overline{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \\ P = 1 - \Phi(z_0) \qquad \qquad \overline{x} - z_{\alpha}\sigma/\sqrt{n} \leq \mu \leq \overline{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \\ P = 1 - \Phi(z_0) \qquad \qquad \overline{x} - z_{\alpha}\sigma/\sqrt{n} = l \leq \mu \\ P = 1 - \Phi(z_0) \qquad \qquad P = \Phi(z_0) \qquad \qquad D = \Phi(z_0)$$

$$\beta = \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) \qquad n \approx \frac{(z_{\alpha/2} + z_{\beta})^2\sigma^2}{\delta^2} \qquad \delta = \mu - \mu_0$$

One-Sample Mean Test, Variance Unknown (t-test)

CI: $\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n}$ Use t.dist to get probability and use t.inv to get t

Inference on the Variance of a Normal Population (Chi-squared test)

Use **chisq.dist** to find probability and use **chisq.inv** to find chisq value.

CI:
$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

Proportion Test (Z-test) $z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$ Follow z-test procedures CI: $\hat{p} - z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{0.025} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$