

Escuela Profesional de Matemática Faculdad de Ciencias Universidad Nacional de Ingeniería

Práctica Calificada 4

Tema: Operadores autoadjuntos

Curso: Álgebra lineal 2 Ciclo: 2016.1

A lo largo de esta práctica, E denotará un e.p.i. real de dimensión finita y $\operatorname{End}(E) := \mathcal{L}(E, E)$. Un subconjunto $\Sigma \subset E$ es llamado de **elipsoide** cuando existe una base ortonormal $\{u_1, \ldots, u_n\}$ de E y números positivos a_1, \ldots, a_n tales que

$$\Sigma = \{ v = x_1 u_1 + \dots + x_n u_n \in E ; a_1 x_1^2 + \dots + a_n x_n^2 = 1 \}.$$

- 1. [6 pts.] Sean $A, B \in \text{End}(E)$ autoadjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a A y a B.
- 2. [6 pts.] Sea $A \in \text{End}(E)$.
 - (a) Si $A^*A = -A$, pruebe que los autovalores de A pertenecen al conjunto $\{0, -1\}$.
 - (b) Dé una matriz $\mathbf{a} \in \mathcal{M}(2 \times 2)$ tal que $a_{11} = -1/3$ y $\mathbf{a}^{\top} \mathbf{a} = -\mathbf{a}$.
 - (c) ¿Cuántas matriz del tipo del ítem anterior existen?
- 3. [6 pts.] Sea $A \in \operatorname{End}(E)$ invertible y sea $\Sigma \subset E$ un elipsoide. Pruebe que $A(\Sigma)$ es un elipsoide. (Sugerencia: use el Teorema de los Valores Singulares.)
- 4. [6 pts.] Sea $A \in \text{End}(E)$ autoadjunto. Pruebe que

$$A = \lambda_1 P_1 + \cdots + \lambda_m P_m$$

donde

- (a) $\lambda_1 < \cdots < \lambda_m$.
- (b) P_i es una proyección ortogonal, i = 1, ..., m.
- (c) $P_i P_j = 0$ si $i \neq j$.
- (d) $P_1 + \cdots + P_m = I$.

Pruebe también que la expresión de A con las propiedades de arriba es única.