Network Architecture Evolution in Ultra Broadband Era

- L3 Aggregation is the Trend

www.huawei.com

Agenda

- Current network pain points
- Network architecture evolution
- Opportunity to realize new architecture

Pain Point #1: Too Many Parallel Networks

Multiple metro networks for similar purpose

- ME for triple play
- Metro ATM for broadband Internet
- ME over SDH for enterprise Ethernet private lines (VLL)
- SDH (or even PDH/X.25) for private lines
- Multiple core networks for similar purpose
 - 1 IP core for Internet, another for high value service (e.g. VoIP)

Pain Point #2: Too Much Bandwidth Demand

- 10x network expansion to handle 10x traffic increase is NOT an economical solution
- Certain architecture change can reduce cost significantly

Pain Point #3: Too Many Layers

- Because of historic burden, existing networks have too many layers -> more provisioning points, slower service turn-up, lower service reliability
 - Metro has 2 or even 3 aggregation layers (DT: AGS1-AGS2, TI: R-feeder, Feeder, Metro)
 - Backbone has 3-4 layers (OSP: edge-distributiontransit-peering)
 - DT's testimony
 - More than 100k subscribers already signed up for IPTV, but DT can't rollout service to them quickly
 - Within 6 months, of the 80 possible issues, 60 actually happened. 3-play service's MTBA much lower (see Slide 3)

6 layers, 8 types of devices!

Page 5

Pain Point #4: High Complexity for IPTV

- IPTV brought higher network requirements, complicated operations, and made problems more visible to end users
 - TV has higher delay, jitter, packet Loss ratio requirements than VoIP and HSI
 - Higher complexity makes networks more difficult to operate
 - TV makes network problems more visible
- Because of BTV's real time nature, although it may be just 30% of total traffic, it may cause 70% associated complexity.
 - In contrast, Internet can rely on TCP, VoD can rely on buffering, VoIP can rely on jitter buffer and PLC. Therefore they have low requirements on network QoS.

Consequence of the Pain Points – DT as an Example

- Slow service provisioning → lower competitiveness
- 3-play service reliability 3 times lower than pure DSL → higher OPEX

T-Home Products	MTBA E2008 in years	Customer E2008 in mill.
"Entertain" (Ethernet based triple play w. IPTV & FE; Voice mostly ongoing PSTN)	1.3	0.38
T-DSL	4.1	10.6 (plus 2.5 resale)
T-ISDN	6.6	8.3
T-Net (POTS)	12.2	20.3

MTBA - Mean Time Between Assists

The average time the equipment performed its intended function between assists; productive time divided by the number of assists during that time. Only productive time is included in this calculation.

Agenda

- Current network pain points
- Network architecture evolution
- Opportunity to realize new architecture

Possible Architecture Changes for Consideration

- 1. Content (e.g. D-servers, CDN) moving down?
- 2. BRAS moving down?
- 3. PPPoE replaced with IPoE/DHCP?
- 4. Single metro for multiple services (e.g. mobile backhaul, ATM offload)
- 5. Metro WDM?
- 6. Core optical shortcut?

Content Moving Down (1): Unicast (VoD, CDN)?

What

Move VoD / D-servers down; introduce CND

- Move content closer to end users will reduce bandwidth cost significantly (5-hop path need 10 ports, 1-hop only 2 ports)
- 80% users viewing 20% hot content → local storage of 20% hot content saving 80% bandwidth
- □ Content closer to end users → better performance & QoE

Cons

- Extra content storage cost
- Distributed content storage and its management (e.g. what content to store) will increase OPEX
- Require BRAS moving down as a condition, dictating architecture change
- Huawei opinion: possible, if bandwidth saving is greater than multiple Gbps*
- Industry opinion: BT, FT evaluating

^{* 2} thing that may delay/prevent SP from moving down content (1) metro WDM, which reduces backhaul cost from users to content → content can afford to stay in current SPOPs (2) Internet becomes a major TV distribution platform, causing 3rd party CDN (e.g. Akamai) to prevail

A Major European SP's Opinion on CDN

Fixed

- CDN for top web sites in 12 COs (outer core PoPs)
- BRAS in 74 CoS

Mobile

- Specific content caching just for Microsoft Windows Update
- Highly centralized in a few locations

Huawei Confidential

Content Moving Down (2): Multicast?

What

Push multicast content (e.g. all TV channels) to UPEs (or even DSLAMs)

Pros

- Better QoE
- Multicast routing become very static (to all UPEs, virtually no change over time) → higher reliability, easier troubleshooting

Cons

- Extra bandwidth for not viewed channels (generally not much, and the bandwidth has been planned in the network)
- Requires PIM support on metro UPEs
- Huawei opinion: yes
- Industry opinion: Telefonica did; DT evaluating

BRAS Moving Down? (Assuming same # BRAS, distributed vs. centralized)

What

 Put BRAS next to DSLAM (possibly with just LAN switch in middle)

Pros

- Metro (behind BRAS) becomes L3, uniform with backbone →
 easier service provisioning across the network
- Lower BRAS position enables CDN or content caching to move down as well
- Lower BRAS position more flexible for traffic (see right picture)

Cons

- Distributed BRAS may increase OPEX slightly (vs. centralized)
- Change existing metro architecture from L2 to L3
- Huawei opinion: yes only if there is other reason to change metro architecture
- Industry opinion: CT did, FT, BT, DT evaluating

Traffic direction2, to other metros: more flexible. 10-50% of traffic depending on amount of P2P traffic

BRAS / GGSN Convergence?

Pros

Fewer devices

Con

- Significantly different functions in a box
- Different user scale, not necessarily in the same CO
- Vague organization border (fixed vs. mobile)
- Huawei opinion: more political reason than technical reason
- Industry opinion: O2, Telia exploring

Comparison between BRAS and GGSN

	BRAS	GGSN	
Users scale	high bandwidth, 8K-16K users	low bandwidth,1000K users	
Forwarding	heavy users traffic, high forwarding performance	light users traffic, low forwarding performance	
Signaling	low requirement for signal processing	high requirement for signal processing	
Packet Processing	low requirements for datagram fragmentation and reassembly; low processing performance for IPSEC	high requirements for datagram fragmentation and reassembly; IP/PPP fragmentation/reassembly; tunnel/MIP encapsulation /reassembly; high processing performance for IPSEC	
Billing Requirements	Billing based on duration and traffic	Content-based billing, DPI, service awareness from L3 to L7	
Access Mode	L2 access	L3 accessGTP/GRE tunnel access	

PPPoE Replaced with IPoE/DHCP?

What

Use DHCP for HSI/VoIP rather than PPPoE

Pros

- Remove 1 network layer → lower cost, higher reliability, faster provisioning (see right picture)
- □ IPTV uses DHCP → simpler mgmt if VoIP & HSI also use DHCP
- Metro (behind BRAS) becomes L3, uniform with backbone → easier service provisioning across the network

Cons

- Less familiar operations model: can DHCP do everything PPPoE can, e.g. wholesale?
- Change existing metro architecture from L2 to L3
- Huawei's opinion: yes, combine with building new network for IPTV or FTTH
- Industry opinion: AT&T did, DT, FT evaluating, TI no

Single-Metro Multi-Play?

What

Use ME for 3-play & ATM, MBH

Pros

□ Single network for multiple
 applications → lower CAPEX / OPEX

Cons

 ME network more complicated (but not much more as 3-play is most complicated)

Huawei opinion: yes

Industry opinion: yes

ATM Migration is a Big Dilemma Walk Out the Dilemma with ATM Offload

- · ATM network works well now
- ATM needs expansion because of increase of ATM DSL users' Internet traffic
- ATM expansion investment questionable because ATM considered sun-set technology
- Full ATM migration with PWE attempted many times but almost no success
 - Enterprise customers like ATM for quality & stability
 - Enterprise customers & SPs themselves not confident that IP PWE can provide same quality & stability
 - Migration will cause service disruption
 - SPs have little incentive to discard working well ATM

- · Proposal: terminate residential ATM DSL traffic, but keep existing ATM networks for enterprise customers
- · Solve the expansion dilemma nicely
 - Removed expansion pressure source → no need for expansion
 - Enterprises customers stay on ATM → no quality/stability concern
 - Simple solution, no migration, no service disruption, no need to discard ATM

Move Traffic to Lower Layer (1): Metro WDM?

What

Replacing metro SDH with metro DWM

Pros

Carrying traffic in metro WDM more cost effective and reliable than in metro
 Ethernet network

Cons

■ Need to build it → additional CAPEX

Huawei opinion: yes

It's predicted that as FTTH is rolled out, metro WDM will soon follow. Metro
 WDM footprint will reach the COs where OLTs locate

Industry opinion: yes

Move Traffic to Lower Layer (2): Core Optical Shortcut?

What

If traffic between 2 PEs can occupy a λ , set up a new λ between them. No longer transit the P router

Pros

■ Move network expansion from P router to
 optical layer → lower CAPEX, higher reliability

Cons

- Optical layer needs OTN capability (but this will happen anyway)
- Huawei's opinion: yes
- Industry opinion: yes when OTN deployed

Agenda

- Current network pain points
- Network architecture evolution
- Opportunity to realize new architecture

Huawei's Recommended Network Architecture Evolution

10 electric boxes → 7
HUAWEI TECHNOLOGIES CO., LTD.

Internet: 5 layers → 3 layers

Start this architecture from CO74 (current SPOP), expand towards CO900

Summary of Differences & Benefits

	Fields	Existing Architecture	New Architecture	Benefits
Flatten	Metro layers	2-3	1	Faster provisioning, fewer failure points, lower OPEX
	Network layers for Triple-play	5	3	Faster provisioning, fewer failure points, lower OPEX
Simpler	BRAS or DHCP	BRAS/PPPoE for HSI/VoIP, DHCP for IPTV/VoD	DHCP for all	Uniform subscriber management using DHCP Multi-Edge → Single Box
	L3 or L2 metro	Emulated L2 over L3 with MPLS	L3	Simpler: no MAC learning, withdrawal, flooding
Faster	Metro WDM	No	Yes	Economic backhaul of OLT's traffic to (extended) SPOPs
	Backbone Optical shortcut	No	Yes with OTN	Lower cost, more reliable network

New network thinner, simpler, faster in provisioning and lower in OPEX

Page 22

Thank You

www.huawei.com