杂题选讲

陈东武

广州大学附属中学

2022年2月24日

- 1 Replace All
- 2 Problem from Red Panda
- 3 Kuroni the Private Tutor
- 4 化学竞赛
- 5 合唱队形
- 6 萨菲克斯·阿瑞

- 7 字符串
- 8 迷宫
- 9 新年的贺电
- 10 在路上了
- 11 Name-Preserving Clubs
- 12 Tree Vertices XOR

给定两个 AB? 字符串 c,d 和正整数 n,求对所有将 ? 替换为 A 或 B 的方案,满足 $|S|,|T| \le n$ 且「将 c,d 的 A 和 B 分别替换为 S 和 T 得到的字符串相等」的 01 字符串对 (S,T) 的个数之和 $\operatorname{mod}(10^9+7)$ 。 1

 $|c|, |d|, n \le 3 \cdot 10^5$

引理

若 $c \neq d$ 则 S 和 T 有长为 $\gcd(|S|,|T|)$ 的整周期。

引理

若 $c \neq d$ 则 S 和 T 有长为 gcd(|S|, |T|) 的整周期。

证明.

对 |S| + |T| 归纳,当 |S| = |T| = 1 时显然成立。

否则不妨设 $|S| \leq |T|$,若 |S| = |T| 则显然 S = T,若 |S| < |T| 则把 c,d 的 lcp 去掉,不妨设 $c_1 = A$, $d_1 = B$,则 $S \in T$ 的前缀,设 T = S + T',并将 c,d 中的 B 替换为 AB,此时 |S| + |T'| 更小了,且 $c_2 \neq d_2$ 所以 $c \neq d$,由归纳假设知 S,T' 都有长为 gcd(|S|,|T'|) 的整周期。

设 $a \in c$ 的 A 个数减去 d 的 A 个数, $b \in d$ 的 B 个数减去 c 的 B 个数, 则再加上 $a \cdot |S| = b \cdot |T|$ 即为充要条件。

先特判掉 c=d 时方案数为 $(\sum_{i=1}^n 2^i)^2$,然后当 a=b=0 时

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 2^{\gcd(i,j)} = \sum_{p=1}^{n} 2^{p} \sum_{d=1}^{\lfloor n/p \rfloor} \mu(d) \lfloor \frac{n}{pd} \rfloor^{2}$$

后面的和式只与 $\lfloor n/p \rfloor$ 有关,整除分块即可 O(n)。

否则只有 ab>0 时才有解,方案数为 $\sum_{i=1}^r 2^i$,其中 $r=\lfloor \frac{n\gcd(a,b)}{\max(a,b)} \rfloor$ 。

然后要考虑有问号的情况: 设 x,y 表示 c,d 的 ? 数量, $f_{a,b}$ 表示上述答案的值, 则

$$Ans = \sum_{i} \sum_{j} f_{a+i-j,b+(y-j)-(x-i)} {x \choose i} {y \choose j}$$

$$= \sum_{k=-y}^{x} f_{a+k,b+y-x+k} \sum_{j} {x \choose k+j} {y \choose j}$$

$$= \sum_{k=0}^{x+y} f_{a-y+k,b-x+k} {x+y \choose k}$$

时间复杂度 O(n + |c| + |d|)。

Codeforces Round #572 (Codeforces 1188 E)

给定长为 n 的自然数序列 a_1, \cdots, a_n ,每次操作选择满足「对所有 $j \neq i$ 都有 $a_j > 0$ 」的下标 i,令 a_i 加上 n 然后全局减 1,求能得到的序列数量 mod 998244353。²

$$n \le 10^5$$
, $a_i \le 10^6$

²https://codeforces.com/contest/1188/problem/E → ← ■ → ← ■ → → ■ → へ ○

引理 (充要条件)

设 x_i 表示对下标 i 的操作次数, $s = \sum x_i$, 则操作可行当且仅当

- 对所有 i 都有 $x_i \geq \lceil \frac{s-a_i}{n} \rceil$;
- 对所有 $t \in [0,s)$ 都有 $t \ge \sum_{i=1}^n \lceil \frac{\max(t-a_i,0)}{n} \rceil$ 。

而两种 $\{x_i\}$ 得到的序列相同当且仅当每一位相差相同,所以数满足 $\min x_i = 0$ 的 $\{x_i\}$ 即可。

此时有 $s \leq \max a_i$,所以从小到大枚举 s,不满足引理的第二个条件就直接退出,然后就是插板法。

时间复杂度 $O(\operatorname{Sort}(n) + \max a_i)$.

Ozon Tech Challenge 2020 (Codeforces 1305 H)

m 个人参加一场 n 道题的考试,每题一分,已知所有人总成绩为 t,第 i 道题至少有 l_i 人答对,至多有 r_i 人答对。

q 个条件形如第 p_i 名得分为 s_i ,求最多能有多少人并列第一, 且在这种情况下第一名的分数最大值。需判断无解。 3

$$n, m < 10^5$$

考虑若已知每个人的得分 $s_1 \geq \cdots \geq s_m$ 如何判断可行性,这是上下界可行流的模型: u_i 表示第 i 道题, v_j 表示第 j 个人,

- \blacksquare S 到 u_i 连下界为 l_i , 上界为 r_i 的边;
- \bullet u_i 到 v_j 连容量为 1 的边;
- v_j 到 T 连上下界都为 s_j 的边;
- T 到 S 连容量为 ∞ 的边。

考虑若已知每个人的得分 $s_1 \geq \cdots \geq s_m$ 如何判断可行性,这是上下界可行流的模型: u_i 表示第 i 道题, v_j 表示第 j 个人,

- \blacksquare S 到 u_i 连下界为 l_i , 上界为 r_i 的边;
- *u_i* 到 *v_i* 连容量为 1 的边;
- v_i 到 T 连上下界都为 s_i 的边;
- \blacksquare T 到 S 连容量为 ∞ 的边。

转成通常的最大流再化简得到:建超级源点 $\mathcal S$ 和 $\mathcal T$,

- S 到 S 连容量为 $\sum s_j \sum l_i$ 的边;
- *S* 到 *u_i* 连容量为 *l_i* 的边;
- \blacksquare S 到 u_i 连容量为 $r_i l_i$ 的边;
- $\blacksquare u_i$ 到 v_j 连容量为 1 的边;
- \mathbf{v}_i 到 \mathcal{T} 连容量为 s_i 的边。

条件即为最小割 = $\sum s_j$, 或者说所有割的方案 $\geq \sum s_j$ 。设 S_u 表示被划分到 S 的 u_i 的集合, T_u , S_v , T_v 同理。

- 若 S 划分到 S, 则 $|S_u| \cdot |\mathcal{T}_v| + \sum_{u \in \mathcal{T}_u} r_u \ge \sum_{v \in \mathcal{T}_v} s_v$, 所以 S_u 取 r 比较大的, \mathcal{T}_v 取 s 比较大的;
- 若 S 划分到 \mathcal{T} , 则 $|\mathcal{S}_u| \cdot |\mathcal{T}_v| + \sum_{v \in \mathcal{S}_v} s_v \ge \sum_{u \in \mathcal{S}_u} l_u$, 所以 \mathcal{S}_u 取 l 比较大的, \mathcal{T}_v 取 s 比较大的。

条件即为最小割 = $\sum s_j$, 或者说所有割的方案 $\geq \sum s_j$ 。设 S_u 表示被划分到 S 的 u_i 的集合, T_u , S_v , T_v 同理。

- 若 S 划分到 S, 则 $|S_u| \cdot |\mathcal{T}_v| + \sum_{u \in \mathcal{T}_u} r_u \ge \sum_{v \in \mathcal{T}_v} s_v$, 所以 S_u 取 r 比较大的, \mathcal{T}_v 取 s 比较大的;
- 若 S 划分到 \mathcal{T} , 则 $|\mathcal{S}_u| \cdot |\mathcal{T}_v| + \sum_{v \in \mathcal{S}_v} s_v \ge \sum_{u \in \mathcal{S}_u} l_u$, 所以 \mathcal{S}_u 取 l 比较大的, \mathcal{T}_v 取 s 比较大的。

设 $\rho = |S_u|$, $\sigma = |T_v|$, 将 l, r 也都降序排序,条件即为

$$\rho \cdot \sigma + \sum_{j=\sigma+1}^{m} s_j \ge \max \left\{ t - \sum_{i=\rho+1}^{n} r_i, \sum_{i=1}^{\rho} l_i \right\}$$

可以用斜率优化 O(n+m) 检验。

对于求答案,可以直接二分,考虑判断前 w 名分数相同且 $\geq s$ 是否可行。先排除给定条件中前 w 名有两人分数不同的情况,然后:

- 若已知前 w 名的分数,则先让每人得到尽可能低的分数然后加到总成绩为 t,而后缀和越大越好,所以贪心加到靠后的位置;
- 否则按同样方法做,但若最后填得不满足条件(前 w 名中有分数为 Q 和 Q-1 的)则固定前 w 名分数为 Q 然后再做一遍。

时间复杂度 $O((n+m)(\log n + \log m))$ 。

└集训队作业 2018 (UOJ 427)

给定有限 Abel 群 $G=\prod_{i=1}^t\mathbb{Z}_{c_i}$ 的 m 个元素 g_1,\cdots,g_m ,q 次询问 [L,R] 求 g_L,\cdots,g_R 的生成子群的大小。 4

$$n = \prod_{i=1}^{t} c_i \le 3000$$
, $m, q \le 10^6$

根据中国剩余定理,可以只考虑 c_i 是质数次幂的情形。

类比线性基,考虑维护子群的直积分解式:设当前在第i维插入元素a,

- 若 a 第 i 维的阶不超过线性基第 i 个元素第 i 维的阶,则用这个元素消掉 a 的第 i 维然后插入到更高维;
- 否则把 a 插入线性基,把线性基对应元素 b 弹回,用 a 消掉 b 的第 i 维,然后找到最小的正整数 t 使得 a^t 在第 i 维是 0 并把 a^t 和 b 插入到更高维。

根据中国剩余定理,可以只考虑 c_i 是质数次幂的情形。

类比线性基,考虑维护子群的直积分解式:设当前在第i维插入元素a,

- 若 a 第 i 维的阶不超过线性基第 i 个元素第 i 维的阶,则用这个元素消掉 a 的第 i 维然后插入到更高维;
- 否则把 a 插入线性基,把线性基对应元素 b 弹回,用 a 消掉 b 的第 i 维,然后找到最小的正整数 t 使得 a^t 在第 i 维是 0 并把 a^t 和 b 插入到更高维。

对于求答案,把询问按左端点降序排序,对当前 L 用链表维护可以贡献答案的元素,这样的元素只有 $O(\log n)$ 个。

对每一维的 (x,y) 预处理最小的正整数 t 使得 $y \equiv tx \pmod{c_i}$ 就可以做到插入 $O(\log n)$ 。

时间复杂度 $O(\sum c_i^2 + m \log^2 n + \operatorname{Sort}(q))$ 。

给定 n 个不包含重复字符的字符串 t_i 和长为 m 的字符串 s, 有 n 个初始为空的字符集合 A_i ,每次操作等概率均匀随机选择这 n 个字符串中的一个字符 $t_{i,j}$,将 $t_{i,j}$ 加入 A_i 。

求存在 $l \in [0, n-m]$ 使得对 $i \in [1, m]$ 都有 $s_i \in A_{l+i}$ 的期望操作次数 mod 998244353,需判断无解。T 组数据。 5

 $T \le 5$, $m \le n \le 30$, 字符集为小写字母

⁵https://uoj.ac/problem/214

考虑 min-max 容斥,枚举可能出现的子串位置的非空子集 S,贡献为 $(-1)^{|S|-1}\mathbb{E}[\max(S)]$,即为 S 要求的这些字符必须出现,而 掷 n 面骰子掷出给定 k 个数字的期望次数为 nH_k 。时间复杂度 $O(n2^{n-m})$ 。

考虑 min-max 容斥,枚举可能出现的子串位置的非空子集 S,贡献为 $(-1)^{|S|-1}\mathbb{E}[\max(S)]$,即为 S 要求的这些字符必须出现,而 掷 n 面骰子掷出给定 k 个数字的期望次数为 nH_k 。时间复杂度 $O(n2^{n-m})$ 。

然后考虑优化,当 S 要求出现的字符数相同时贡献也相同,于是可以 dp,设 $f_{i,j,A}$ 表示考虑前 i 个位置,要求出现的字符数为 j,当前第 i 个位置要求出现 $\forall p \in A$, s_p 这些字符,对答案的贡献之和,转移考虑当前位置是否加入 S 即可,初值为 $f_{0,0,\varnothing}=-1$ 。时间复杂度 $O(n^32^m)$ 。

设字符集 $\Sigma = \{1, 2, \dots, m\}$, 求在所有字符 i 出现不超过 c_i 次的长度为 n 的字符串中,后缀数组的数量 mod 998244353。 ⁶

$$n, m \leq 500$$
, $0 \leq c_i \leq n \leq \sum c_i$

引理 (充要条件)

字符串 s 的后缀数组是 $p \iff s_{p_i} \le s_{p_i+1}$ 且当 $p_{i+1}+1$ 在 p_i+1 前面时不取等号。

所以考虑对每种不等式链求对应的后缀数组的数量。

引理 (充要条件)

字符串 s 的后缀数组是 $p \iff s_{p_i} \le s_{p_i+1}$ 且当 $p_{i+1}+1$ 在 p_i+1 前面时不取等号。

所以考虑对每种不等式链求对应的后缀数组的数量。

引理 (bijective proof)

 $s\mapsto p$ 是「字符 i 恰出现 c_i 次的字符串」到「对应的不等式链的 < 仅出现在第 $c_1+\cdots+c_i$ 个元素之后的后缀数组」的双射。

所以直接对 < 的位置做子集容斥: 设以 < 为分界的每一段长度为 c_i ,则枚举断点集合 $\{0=z_0,z_1,z_2,\cdots,z_k=m\}$,贡献系数为

$$\frac{(-1)^{m-k}n!}{\prod (c_{z_{i-1}+1}+\cdots+c_{z_i})!}$$

考虑判断一个不等式链是否满足条件,直接按顺序贪心填尽可能小的字符即可。

设 $f_{i,j,k}$ 表示填了前 i 种字符,已经填了 j 个位置,容斥的上一个断点在 k 的情况下的贡献之和,则初值 $f_{0,0,0}=1$,转移为:

- 第 i 种字符都在一段,且不是这段的最后一种字符: $f_{i,j,k} \leftarrow f_{i-1,j-c_i,k}$;
- 第 i 种字符是这段的最后一种字符,且后面的 < 是断点: $f_{i,j,j} \leftarrow f_{i-1,j-l,k}/(j-k)! \ (1 \le l \le c_i);$
- 第 i 种字符是这段的最后一种字符,且后面的 < 不是断点: $f_{i,j,k} \leftarrow -f_{i-1,j-l,k} \; (1 \leq l \leq c_i)$;

答案即为 $n! \sum_{i=1}^m f_{i,n,n}$,使用前缀和优化,时间复杂度 $O(n^2m)$ 。

└─ZJOI 2017 D2T3 (UOJ 296)

维护长为 n 的字符串,字符集 $\Sigma = [-10^9, 10^9] \cap \mathbb{Z}$, q 次操作:

- 给定 l, r, d, $\forall i \in [l, r]$, 令 $s_i := s_i + d$;
- 给定 l, r, 求 s[l..r] 的最小后缀。⁷

$$n \le 2 \cdot 10^5$$
, $q \le 3 \cdot 10^4$

定义 (Significant Suffixes)

对于字符串 s = uv,若存在字符串 t 使得 vt 是 st 的最小后缀,则称 v 是 s 的<mark>关键后缀</mark>。

定理 (Significant Suffixes Log Theorem)

对于长为 n 的字符串 s,关键后缀的数量不超过 $\log n$ 。

证明.

设 u,v 是两个关键后缀,不妨设 |u|<|v|,则 u 是 v 的 border,若 $|v|\leq 2|u|$,则 v 有长度为 $|v|-|u|\leq |v|/2$ 的周期 α ,即 $u=\alpha\beta$, $v=\alpha^2\beta$ 。设字符串 t 使得 ut 是 st 的最小后缀,则 ut< vt,所以 $\beta t<\alpha\beta t=ut$,与 u 是关键后缀相矛盾,所以 |v|>2|u|。

线段树维护区间关键后缀,考虑如何合并:左儿子只能留一个,即 在只考虑到右端点的情况下最小的那个,若范围内比较不出来就选 下标最小的。

使用分块维护 hash 值,时间复杂度 $O(n \log^2 n + q(\log^3 n + \sqrt{n}))$ 。

定义 (Deterministic Finite Automaton)

- 一个确定性有限状态自动机 (DFA) 意指以下资料:
 - 有限集合 Q, 其元素称为状态;
 - 有限集合 Σ, 其元素称为字符;
 - \bullet $\delta: Q \times \Sigma \to Q$,称为**转移函数**;
 - $q_0 \in Q$,称为**初始状态**;
 - $F \subset Q$,称为接受状态集合。

定义 Kleene 星号算子如下:

$$V^* := \bigcup_{n=0}^{+\infty} V^n = \{\epsilon\} \cup V \cup V^2 \cup V^3 \cup \cdots$$

其中 ϵ 表示空序列。 Σ^* 即为所有 Σ 上字符串的集合。

定义 (Regular Language)

递归定义扩展转移函数 $\delta^*: Q \times \Sigma^* \to Q$ 如下:

- \bullet $\delta^*(q,\epsilon) = q$, $\forall q \in Q$;
- \bullet $\delta^*(q,u\sigma)=\delta(\delta^*(q,u),\sigma)$, $\ \forall q\in Q,u\in \Sigma^*,\sigma\in \Sigma$

设 $M=(Q,\Sigma,\delta,q_0,F)$ 是一个 DFA, 若 $w\in\Sigma^*$ 满足 $\delta^*(q_0,w)\in F$ 则称 M 接受 w。

称 Σ^* 的子集为**形式语言**,令语言 $L(M) := \{w \mid M \text{ 接受 } w\}$,则称 **M 识别** L(M),能被 DFA 识别的语言称为**正则语言**,若两个 DFA 识别相同的语言则称它们等价。

⁸https://uoj.ac/problem/375

定义 (Regular Language)

递归定义扩展转移函数 $\delta^*: Q \times \Sigma^* \to Q$ 如下:

- \bullet $\delta^*(q,\epsilon)=q$, $\forall q\in Q$;
- \bullet $\delta^*(q,u\sigma)=\delta(\delta^*(q,u),\sigma)$, $\ \forall q\in Q,u\in \Sigma^*,\sigma\in \Sigma$

设 $M=(Q,\Sigma,\delta,q_0,F)$ 是一个 DFA, 若 $w\in\Sigma^*$ 满足 $\delta^*(q_0,w)\in F$ 则称 M 接受 w。

称 Σ^* 的子集为**形式语言**,令语言 $L(M) := \{w \mid M \text{ 接受 } w\}$,则称 **M 识别** L(M),能被 DFA 识别的语言称为**正则语言**,若两个 DFA 识别相同的语言则称它们等价。

给定正整数 m,k, 字符集 $\Sigma = \{0,1,\cdots,m-1\}$, 定义语言 $\mathcal L$ 表示 所有 m 进制意义下是 k 的倍数的字符串。求能识别 $\mathcal L$ 的 DFA 的状态数最小值。T 组数据。 $T \leq 3 \cdot 10^5$, $m,k \leq 10^{18}$

显然答案存在且不会超过 k: 取状态为 m 进制意义下模 k 的余数。但是可能有更优的答案,比如 m=2, k=4 时就只需要 3 个点那作办呢 qwq

定义 (Minimization of DFA)

对于 DFA 的两个状态 p,q,定义等价关系 $p \sim q$ 当且仅当对于所有 $w \in \Sigma^*$ 都有 $\delta^*(p,w) \in F \iff \delta^*(q,w) \in F$ 。

剔除初始状态无法到达的状态后,设状态的等价类为 $\{S_1, \dots, S_m\}$,考虑构造一个新的 DFA M':

- 将 M 中的等价类 S_i 作为 M' 中的状态 i;
- 对于等价类 S_i ,若存在 $u \in S_i$ 和 $c \in \Sigma$ 使得 $\delta_M(u,c) \in S_j$,则 对于任意 $v \in S_i$ 都有 $\delta_M(v,c) \in S_j$,所以可定义 $\delta_{M'}(i,c) := j$;
- 对于等价类 S_i 的所有状态,要么均为接受状态,要么均不是接受状态,所以可同理定义 M' 的接受状态;
- 令包含初始状态的等价类 S_i 对应的状态 i 为 M' 的初始状态。 容易验证新 DFA M' 与原 DFA M 等价, M' 即称为 M 的最小化。

对于语言 \mathcal{L} 和 $x,y \in \Sigma^*$, 定义等价关系 $x \equiv_{\mathcal{L}} y$ 当且仅当对于所有 $z \in \Sigma^*$ 都有 $xz \in \mathcal{L} \iff yz \in \mathcal{L}$ 。

定理 (Myhill-Nerode)

语言 \mathcal{L} 是正则的 $\iff \equiv_{\mathcal{L}}$ 的等价类个数有限,此时描述 \mathcal{L} 的最小 DFA 在同构意义下唯一,且它的状态与 $\equiv_{\mathcal{L}}$ 的等价类相对应。

对于语言 \mathcal{L} 和 $x,y \in \Sigma^*$,定义等价关系 $x \equiv_{\mathcal{L}} y$ 当且仅当对于所有 $z \in \Sigma^*$ 都有 $xz \in \mathcal{L} \iff yz \in \mathcal{L}$ 。

定理 (Myhill-Nerode)

语言 \mathcal{L} 是正则的 $\iff \equiv_{\mathcal{L}}$ 的等价类个数有限,此时描述 \mathcal{L} 的最小 DFA 在同构意义下唯一,且它的状态与 $\equiv_{\mathcal{L}}$ 的等价类相对应。

证明.

显然对任意的 DFA A, L(A) 的等价类个数不大于 A 的状态数。 而对等价类个数有限的语言 \mathcal{L} , 可以构造 DFA A 识别 \mathcal{L} : 初始状态 对应空串的等价类,接受状态对应全体元素属于 \mathcal{L} 的等价类,转移 边直接合并。

若存在与 A 不同构的 DFA B 识别 \mathcal{L} 且状态数不超过等价类个数,则存在不等价的串 x,y 到达 B 的同一个状态,矛盾。

所以题目所求即为给定 DFA 求最小化。

例 (等价类划分算法)

定义 $p\sim_k q$ 表示对于任意长度 $\leq k$ 的字符串 w 都有 $\delta^*(p,w)\in F\iff \delta^*(q,w)\in F$,设等价类集合为 Π_i ,则 $\Pi_0=\{F,Q\setminus F\}$,考虑由 Π_i 推出 Π_{i+1} :

枚举 $c\in \Sigma$ 和 $S\in \Pi_i$,若存在 $u,v\in S$ 使得 $\delta(u,c)$ 和 $\delta(v,c)$ 属于 Π_i 的不同组,则按照转移后的组把 S 划分。若不能再划分则 Π_i 即为所求的等价类集合。

时间复杂度 $O(n^2|\Sigma|)$, 在随机数据下会表现得更好。

所以题目所求即为给定 DFA 求最小化。

例 (等价类划分算法)

定义 $p\sim_k q$ 表示对于任意长度 $\leq k$ 的字符串 w 都有 $\delta^*(p,w)\in F\iff \delta^*(q,w)\in F$,设等价类集合为 Π_i ,则 $\Pi_0=\{F,Q\setminus F\}$,考虑由 Π_i 推出 Π_{i+1} :

枚举 $c\in \Sigma$ 和 $S\in \Pi_i$,若存在 $u,v\in S$ 使得 $\delta(u,c)$ 和 $\delta(v,c)$ 属于 Π_i 的不同组,则按照转移后的组把 S 划分。若不能再划分则 Π_i 即为所求的等价类集合。

时间复杂度 $O(n^2|\Sigma|)$, 在随机数据下会表现得更好。

可以获得 30 分的好成绩, 但是这和正解有什么关系呢 w

对于两个状态 x,y, 若 $x \cdot m^i \equiv y \cdot m^i \pmod k$ 且 x 和 y 在 i 步之内都到不了 0, 那么 x 就与 y 等价。

对 i 递推,设 $x\cdot m^i$ 的上界为 l,模数为 k, $d=\gcd(m,k)$,若 d=1 或 $l\leq k/d$ 则无法再合并,否则上界变为 k-m(k-l) (若 ≤ 0 也直接结束),合并之后都除以 d,多出来的 m(k-l)/d 个组不会再合并,直接贡献答案。

Goodbye Yiwei T5 (UOJ 178)

这是一道通信题

使用至多 12500 个 bit 编码 1024 个元素的 32 位整数到 10 位整数的 map。 9

思考题: 怎么用 32768 个 bit 编码 1024 个元素的 32 位整数到 32 位整数的 map?

⁹https://uoj.ac/problem/178

随机 hash 函数把 32 位压缩到 17 位,然后对每个值记录哪些键与其对应,可以做到 19 × 1024 个 bit, 期望得分 65。

随机 hash 函数把 32 位压缩到 17 位,然后对每个值记录哪些键与其对应,可以做到 19 × 1024 个 bit, 期望得分 65。

随机 hash 函数把键值均匀分成两组,把随机次数传过去然后分治,递归到只有8个键值的时候用随机 hash 函数将其压缩到排列。

传不定长整数的小技巧: 取初始长度 l, 若位数 $\leq l$ 则输出 1 然后输出 l 位,否则先输出 k 个 0 然后输出 l+k 位。

这是一道交互题

交互库有 n 个点的完全图,每条边染<mark>红色或蓝色</mark>,已知 $\forall i \in [1,k)$,i 到 i+1 的连边为红色,你可以询问 2k 次某条边的颜色,求一条 k+1 个点的简单路径,使得所有边的颜色相同。 10

$$k \le 2000$$
, $\frac{3k}{2} \le n \le 2k$

设 $2, \cdots, k-1$ 为红点, $k+1, \cdots, n$ 为蓝点。

称一条路径 C 为**交错路**当且仅当所有边都是蓝色,且两端点都是蓝点,且红蓝点交错。其大小 |C| 为路径上的点数。

设 $2, \dots, k-1$ 为红点, $k+1, \dots, n$ 为蓝点。

称一条路径 C 为**交错路**当且仅当所有边都是蓝色,且两端点都是蓝点,且红蓝点交错。其大小 |C| 为路径上的点数。

考虑两条不相交的交错路 A, B,若 |A| + |B| > k - 2,某个端点到 1 或 k 的连边为<mark>红色</mark>就直接做完了,否则可以找到至少 k + 1个点的蓝圈,也做完了。

设 $2, \dots, k-1$ 为红点, $k+1, \dots, n$ 为蓝点。

称一条路径 C 为**交错路**当且仅当所有边都是蓝色,且两端点都是蓝点,且红蓝点交错。其大小 |C| 为路径上的点数。

考虑两条不相交的交错路 A,B,若 |A|+|B|>k-2,某个端点到 1 或 k 的连边为<mark>红色</mark>就直接做完了,否则可以找到至少 k+1 个点的蓝圈,也做完了。

若 |A|+|B|=k-2,由交错路的定义知 k-2 个红点被占用了 $\frac{k-2}{2}-1$ 个,由抽屉原理知存在没被占用的相邻红点 r,s。设蓝圈上的一个蓝点为 v,讨论一下 (r,v) 和 (s,v) 的颜色即可。

UOJ Round #18 T3 (UOJ 486)

若 (x,r),(y,r) 都为蓝色 (单个蓝点也是交错路):

若 (x,r),(y,r) 都为<mark>红色</mark>,则查询 (x,s)

若 (x,r),(y,r) 都为红色,则查询 (x,s),(y,s):

若 (x,r) 为红色, (y,r),(z,s) 为蓝色, 则查询 (x,s):

若 (x,r),(z,s) 为红色, (y,r) 为蓝色, 则查询 (z,r):

若 (x,r),(z,s) 为红色, (y,r) 为蓝色, 则查询 (z,r):

从 A, B 都是单个蓝点开始,4 次询问使得 |A| + |B| 增加 2,最后 5 次询问合并 A 和 B,总询问次数不超过 2k-3。

求有多少个本质不同的 $\{1,2,\cdots,n\}$ 的子集构成的多重集 L,满足「对所有 $\{1,2,\cdots,n\}$ 的排列 σ ,将 L 的元素作置换得到的 $\sigma(L)$ 两两不同」且 |L| 尽量小。

若存在排列 σ 使得 $L_1=\sigma(L_2)$ 则认为 L_1 与 L_2 是本质相同的。 若答案 > 1000 则输出 -1。 11

 $2 \le n \le 2 \cdot 10^{18}$

¹¹https://atcoder.jp/contests/agc044/tasks/agc044_f > 4 = > 4 = > 9 9 0

先考虑 L 的元素不重复的情况。设 k=|L|,利用 $k\times n$ 的 01 矩阵 T 描述,定义满足条件的 L 对应的矩阵 T 是**好的**。

设 σ, τ 分别是 [k] 和 [n] 的排列, $\sigma \circ T$ 和 $T \circ \tau$ 分别表示对行/列作置换,则 T 是好的当且仅当 $\sigma \circ T = T \circ \tau \implies \sigma$ 和 τ 都是恒等排列蕴含没有两行/列完全相同

LAtcoder Grand Contest 044 F

引理 (对称性)

定义 T^t 表示矩阵转置, T^c 表示对列的集合取补集得到的 $k \times (2^k - n)$ 的矩阵, 则 T 是好的 $\iff T^t$ 是好的 $\iff T^c$ 是好的。

证明.

若 T 是好的,因为条件对行、列对称所以 T^t 也是好的,而 σ 对 $\{0,1\}^k$ 的置换作用构成排列,所以条件等价于 σ 对列集合的置换作用不映射到自身,则补集也满足条件,所以 T^c 也是好的。

设 g(n) 表示最小的 k 使得存在 $k \times n$ 的好矩阵。

则有不等式 $2^{g(n)} - n \ge g(g(n))$, 归纳定义 G(n) 如下:

$$G(n) = \begin{cases} 0, & n = 1, \\ \min\{k \in \mathbb{N}_+ \mid 2^k - n \ge G(k)\}, & n > 1. \end{cases}$$

引理

存在
$$k \times n$$
 的好矩阵 $\iff G(n) \le k \le 2^n - G(n)$

蕴含 g(n) = G(n)

证明.

考虑对 n 归纳。若 k < n,则 $k \ge G(n) \iff n \le 2^k - G(k) \iff$ 存在 $n \times k$ 的好矩阵。

若 $k \ge n$, 由对称性只需证 $k \le 2^{n-1}$ 的情况:

$$\{\{1\},\{1,2\},\cdots,\{n-1,n\}\}\$$
加上 $k-n$ 个大小 >2 的集合。

Atcoder Grand Contest 044 F

设 c(k,n) 表示 $k \times n$ 的好矩阵个数,所求即为 c(g(n),n)。

引理

若 $6 \le k \le n \le 2^{k-1}$,则 c(k,n) > 1000。

证明.

对于如下满足条件的两个方案:

$$\{\{1\}, \{1, 2\}, \cdots, \{k-3, k-2\}, \{k-2, k-1\}^c\}$$

 $\{\{1\}^c, \{1, 2\}^c, \cdots, \{k-3, k-2\}^c, \{k-2, k-1\}\}$

可以任意添加大小不是 2 和 k-2 的集合, 所以有

$$c(k,n) \ge 2 {2k - 2{k \choose 2} \choose n - k + 2} \ge 34 \cdot 33 > 1000.$$

然后考虑可重的情况即存在两行完全相同,则有 $2^{k-1} \ge n$ 。

由 G(n) 定义知 $k \geq G(n)$, 所以行数最小值不变。

若 k=G(n) 则 $2^{G(n)-1}\geq n$, 由 G(n) 定义知存在 $m\in\mathbb{N}_+$ 使得 $2^m-G(m)< n\leq 2^m$,结合上述放缩可知 n=4,7,8。

爆搜就完事了 /kx

Atcoder Grand Contest 052 F

给定 n 个点的树,每个点有初始为 1 的点权,每次操作选择相邻点权之和为奇数的点 v,把 v 的点权取反 (0 变为 1, 1 变为 0),求能得到的点权状态数 $\mod 998244353$ 。 12

 $n \le 2 \cdot 10^5$

¹²https://atcoder.jp/contests/agc052/tasks/agc052_f > < = > < = > 9 9 0

因为是数状态数,考虑怎样的状态可以被全 1 到达。又因为操作可逆所以考虑怎样的状态可以到达全 1。 发现操作不改变点权为 1 的点的连通分量个数的奇偶性。 因为是数状态数,考虑怎样的状态可以被全 1 到达。又因为操作可逆所以考虑怎样的状态可以到达全 1。

发现操作不改变点权为 1 的点的连通分量个数的奇偶性。

根据 AGC 套路猜想这也是充分条件,但是必不会有这么简单(

定理 (充要条件)

若点权为 1 的点的连通分量个数为大于 1 的奇数,且存在某个点的相邻点权之和为奇数即可以操作,且存在某个点的度数 ≥ 3 且其中至少 2 个子树大小 ≥ 2 ,则可以使得连通分量个数减少从而到达全 1 的状态。

首先可以将每个点权为 1 的连通分量压缩为一个点的权值为 1 而其他为 0,此时点权为 1 的点构成独立集。

定义合并操作选择点权为 0 且相邻点权之和为奇数的点 v, 将 v 改为 1 而把 v 相邻的 1 改为 0。

LAtcoder Grand Contest 052 F

引理

若可以改变某个点的权值,则所有点也都可以。

证明.

对点数归纳,设 u 的儿子为 x_1, \dots, x_k 。

- 若 u 的点权为 0,当 x_i 的点权之和为偶数时,由归纳假设知可以改变某个 x_i 的点权。从而对 u 使用合并操作改变 u 的点权;
- 若 u 的点权为 1 ,则 x_1, \dots, x_k 的点权都为 0 ,当所有 x_i 的儿子的点权之和为奇数时,由归纳假设知可以改变某个 x_i 的儿子的点权。从而对 x_i 使用合并操作改变 u 的点权。

引理

若存在点权为 1 但无法操作,则给点权为 0 的点 u 加上点权为 1 的 叶子 u_1 之后可以合并 \geq 3 个 1。

设定理条件所设为点 v , 若 v 的点权为 1 则由引理将其反转 , 设 儿子为 x_1,\cdots,x_k , 若点权之和 ≥ 3 则由引理将其合并到 v , 否则若

- 恰有 x_1 的点权为 1,若某个 x_2 的子树内有 1,则将 x_1 移到 v 之后由引理 2 做合并操作,否则可以将 x_1 移到另一个儿子 x_2 ,又因为 x_1 的子树内还有其他的 1 所以由引理将 x_1 反转,转化为下一种情况;
- 恰有 x_1, x_2 的点权为 1,同理其他的子树没有 1,不妨设可以把 x_1 的点权反转,则可以把 x_2 移到除 x_1 之外任意一个儿子,不 妨设 x_2 的子树大小 > 1,则把 x_2 移到更深,把 x_1 移到另一个 子树,同理再将 x_1 反转,此时 x_2 的儿子点权之和为 3。

对于两端扫帚,设链长为 l,两端 A, B 分别连出 x, y 个叶子,

- 若 *A*, *B* 点权为 1, 则叶子随便选, 链上都是 1, 共 2^{x+y} 种情况;
- 若 A 点权为 1, B 点权为 0, 则 A 的叶子随便选, B 的叶子恰有偶数个 1, 链上恰有 A 一侧的前缀为 1, 共 2^{x+y-1}l 种情况;
- 若 *A*, *B* 点权都为 0, 所有叶子恰有奇数个 1, 则链上全是 0, 共 2^{x+y-1} 种情况;
- 若 A, B 点权都为 0 , A, B 的叶子分别有偶数个 1 , 则链上恰有一个连续段为 1 , 共 $2^{x+y-2}\binom{l}{2}$ 种情况。

其他情况可以直接 dp, 时间复杂度 O(n)。