Oxygen-Hemoglobin Dissociation: Physiologic Principles to Bedside Care

By team 'SIGMOID':

Jonathon Schwartz MD, Sumit Kapoor MD, Vinai M. Modem MD

Donghao Li, Aya El Mir, Fredrik Willumsen Haug, Susannah Oster

What are our Research Questions?

- 1. How does the oxygen-hemoglobin dissociation curve shifts for variables like changes in pH, temperature, pCo2, lactate, HCO3 etc?
- 2. Do we see any association of oxygen-hemoglobin dissociation curve shifts with factors like gender, race/ethnicity, socio-economic status, mortality etc?
- 3. Create an unsupervised machine learning clustering algorithm for p50 based on various variables.

 $p50 = ((100x((pO2)^3)/SpO2)-(pO2)^3)^{1/3}$

P50 Categories

- <22 mmHg- leftward shift of Oxy-Hb dissociation curve
- 22-30 mmHg- normal Oxy-Hb dissociation curve
- >30 mmHg- rightward shift of Oxy-Hb dissociation curve

Project Roadmap

Summary Statistics

Variable	Mean (SD)
Age (years)	64.42 (15.8)
Admission Weight (kg)	85.6 (27.8)
ICU LOS (days)	5.2 (7.1)
Hospital LOS (days)	11.5 (13.6)

Variable	Count	
Gender	Male-27660 Female- 21433	
Teaching Status	Non-Teaching-3 0270 Teaching- 18823	
Race/Ethnicity	White- 37380 NonWhite-11713	
Region	South- 14018 Midwest- 13979 West- 9062 Northeast- 9052	
Number of Beds	>=500- 25986 250-499-10112 100-249-7516 <100- 1554	

Gender distribution

Region distribution

Age distribution

R Race/Ethnicity distribution

Source of data

Count of Missing Values in Data Columns in Raw Dataset

source db	0
numbedscategory	3925
teachingstatus	0
region	2975
admission_age	2
sex_female	0
weight_admission	1104
height_admission	1284
BMI_admission	1985
los_hospital	0
los_ICU	0
comorbidity_score_name	0
comorbidity_score_value	2
<pre>in_hospital_mortality</pre>	404
race_ethnicity	0
рН	0
pCO2	0
p02	0
SaO2	0
SpO2	0
Carboxyhemoglobin	38133
Methemoglobin	38517
vitals_heart_rate	5450
vitals_resp_rate	6876
vitals_sbp_ni	14952
vitals_dbp_ni	14956

SpO2-pO2 Relationship by Insurance Status

p50 vs. Insurance Status in MIMIC III subset

Example Analysis via Pandas

Mann-Whitney Medicaid vs. Private p50:

pvalue=0.323174398056146 45

Association between SpO2-SaO2 discrepancy and race_ethnicity in MIMIC III subset of Dataset

Example Analysis via Pandas

Mann-Whitney Black vs. Non-black population:

p-value=0.037901933270495 29)

OxyHemoglobin dissociation curve with pH categories

pH Groups Red - pH < 7.2 Green - pH 7.2-7.35 Blue - pH >7.35

Oxyhemoglobin dissociation curve with Race (white versus non white)

<u>Race</u> Red - White Green -Non-White

p50 variability with pH Groups

Variation of p50 with pH


```
Df Sum Sq Mean Sq F value Pr(>F)
pHGroups[valid == 1] 1 31229 31229 685 <2e-16 ***
Residuals 28749 1310637 46
```

p50 variability with Hemoglobin

Variation of p50 with Hb


```
Df Sum Sq Mean Sq F value Pr(>F)
HbGr[valid == 1] 1 3792 3792 81.33 <2e-16 ***
Residuals 24715 1152290 47
```

p50 variability with Race

Variation of p50 with Race

Race

Association between p50 and Mortality

	Non-Survivors	Survivors
Right-shifted oxygen dissociation curve (p50>30)	1876 (20.5%)	7257
Normal oxygen dissociation curve (p50≤30)	3115 (16%)	16275

p-value < 0.001, Odds Ratio 1.35

ML Process

- Data Preprocessing
 - Handling missing values
 - Unnecessary rows and columns
 - Variable Encoding
 - Computing p50
 - Group exclusion based on non physiological values

(49093, 142) -> (23036, 67)

	ColumnName	MissingPercentage
25	Carboxyhemoglobin	77.675025
26	Methemoglobin	78.457214
33	vitals_mbp_i	63.306378
34	vitals_sbp_i	64.685393
35	vitals_dbp_i	64.701689
46	coag_fibrinogen	83.698287
59	bmp_lactate	52.905710
64	hfp_bilirubin_direct	88.458640
66	others_ck_cpk	74.912920
67	others_ck_mb	81.848736
68	others_ld_ldh	91.012975
	26 33 34 35 46 59 64 66 67	25 Carboxyhemoglobin 26 Methemoglobin 33 vitals_mbp_i 34 vitals_sbp_i 35 vitals_dbp_i 46 coag_fibrinogen 59 bmp_lactate 64 hfp_bilirubin_direct 66 others_ck_cpk 67 others_ck_mb

Column names: ['unique_subject_id', 'unique_hospital_admission_id', 'unique_icustay_id', <mark>'subject_id'</mark>, 'h<mark>ospital_admi</mark> ssion_id', 'icustay_id', 'source_db', 'hospitalid', 'numbedscategory', 'teachingstatus', 'region', 'admission_age', 'sex female', 'weight admission', 'height admission', 'BMI admission', 'datetime hospital admit', 'datetime hospital discharge', 'datetime_icu_admit', 'datetime_icu_discharge', 'los_hospital', 'los_ICU', 'comorbidity score name', 'com orbidity score value', 'in hospital mortality', 'race ethnicity', 'SaO2 timestamp', 'pH', 'pCO2', 'pO2', 'SaO2', 'SpO 2', 'Carboxyhemoglobin', 'Methemoglobin', 'SpO2 timestamp', 'delta SpO2', 'delta vitals heart rate', 'vitals heart ra ce', 'delta_vitals_resp_rate', 'vitals_resp_rate', 'delta_vitals_mbp_ni', 'vitals_mbp_ni', 'delta_vitals_sbp_ni', 'vi tals sbp ni', 'delta vitals dbp ni', 'vitals dbp ni', 'delta vitals mbp i', 'vitals mbp i', 'delta vitals sbp i', 'vi tals_sbp_i', 'delta_vitals_dbp_i', 'vitals_dbp_i', 'delta_vitals_tempc', <mark>'vitals_tempc</mark>', 'delta_cbc_hemoglobin', 'cbc hemoglobin', 'delta cbc hematocrit', 'cbc hematocrit', 'delta cbc mch', 'cbc mch', 'delta cbc mchc', 'cbc mchc', 'de ta cbc mcv', 'cbc mcv', 'delta cbc platelet', 'cbc platelet', 'delta cbc rbc', 'cbc rbc', 'delta cbc rdw', 'cbc rd w', 'delta cbc wbc', 'cbc wbc', 'delta coag fibrinogen', 'coag fibrinogen', 'delta coag inr', 'coag inr', 'delta coag pt', 'coag pt', 'delta coag ptt', 'coag ptt', 'delta bmp sodium', 'bmp sodium', 'delta bmp potassium', 'bmp potassium' m', 'delta bmp chloride', 'bmp chloride', 'delta bmp bicarbonate', 'bmp bicarbonate', 'delta bmp bun', 'bmp bun', 'de lta bmp_creatinine', 'bmp_creatinine', 'delta bmp_glucose', 'bmp_glucose', 'delta_bmp_aniongap', 'bmp_aniongap', 'del ta_bmp_calcium', 'bmp_calcium', 'delta_bmp_lactate', 'bmp_lactate', 'delta_hfp_alt', 'hfp_alt', 'delta_hfp_alp', 'hfp alp', 'delta hfp ast', 'hfp ast', 'delta hfp bilirubin total', 'hfp bilirubin total', 'delta hfp bilirubin direct', 'hfp bilirubin direct', 'delta hfp albumin', 'hfp albumin', 'delta others ck cpk', 'others ck cpk', 'delta others ck mb', 'others ck mb', 'delta others ld ldh', 'others ld ldh', 'delta sofa past overall 24hr', 'sofa past overall 24h t', 'delta_sofa_past_coagulation_24hr', 'sofa_past_coagulation_24hr', 'delta_sofa_past_liver_24hr', 'sofa_past_liver 24hr', 'delta sofa past cardiovascular 24hr', 'sofa past cardiovascular 24hr', 'delta sofa past cns 24hr', 'sofa past _cns_24hr', 'delta_sofa_past_renal_24hr', 'sofa_past_renal_24hr', 'delta_sofa_future_overall_24hr', 'sofa_future_over all 24hr', 'delta sofa future coagulation 24hr', 'sofa future coagulation 24hr', 'delta sofa future liver 24hr', 'sof a future liver 24hr', 'delta sofa future cardiovascular 24hr', 'sofa future cardiovascular 24hr', 'delta sofa future cns 24hr', 'sofa future cns 24hr', 'delta sofa future renal 24hr', 'sofa future renal 24hr']

Exploratory Data Analysis

Q

MIT Critical Datathon 2023: a MIMIC-IV Derived Dataset for Pulse Oximetry Correction Models

João Matos 1, Tristan Struja 1, David S Restrepo 1, Luis Filipe Nakayama 1, Jack Gallifant 1, Luca Weishaupt 1, Nikita Mullangi 1, Maria Loureiro 1, Skyler Shapiro 1, Adrien Carrel 1, Leo Anthony Celi 1

Published: May 8, 2023. Version: 1.0.0

SQL code: https://github.com/CriticalDatathon/data-prep/tree/main/MIMIC-IV

Dataset Distribution

Features of Interest

Clustering

- Choosing the number of Clusters (Elbow)
- Different unsupervised ML models
 - K means
 - o DBSCAN
 - o tSNE

K means: Pairplot of p50 categories with variables (2D)

K means: Pairplot of p50 categories with variables (3D)

K-means clustering can assist in discovering race and geography related patterns in data

Conclusions

- Oxy-Hb dissociation curve worked well with changes in pH, HC03, lactate levels
- Non-White race had higher Sp02 levels compared to white race
- Rightward shift in Oxy-Hb dissociation curve is associated with higher mortality
- No differences in Oxy-Hb curves based on age categories, gender, insurance type
- P50 represents shift of Oxy-Hb dissociation curve
- Higher p50 (RIGHTWARD) shifts associated with increased mortality

Challenges we encountered

- Formulating a relevant clinical question.
- Understanding the strengths and limitations of Data Scientists and Clinicians and working as one team
- Finalizing the dataset to work on
- P50 as the outcome variable and understanding it from clinical standpoint
- Preprocessing data/ finalizing the relevant machine learning algorithm

Future Steps

- We will study relationship of oxyhemoglobin dissociation curve with changes in pH, pCO2, lactate, SOFA scores, age etc.
- We will investigate any disparities based on gender, race, socio-economic status, age.
- Inspired by Dr. Celi's talk this morning we are curious to see what will happen if we run an unsupervised clustering model to look for unexplainable race classification based on clinical conditions alone.
- Incorporate MIMIC IV data for subgroup analysis on Insurance
- Create a prediction algorithm based on K-means clustering prediction

Limitations

- Class Imbalance and Confounding
 - \circ Multiple admissions per patient \rightarrow overrepresented patients bias data with hidden confounders
- Inconsistent Insurance Data across source Databases
- General data entry errors (e.g. incorrect gender entry for a subject, out of range values for variables)
- Temporal analysis for data quality
 - e.g. general trends in SpO2 and PaO2,
 - May reflect changes in instrument calibration)

Thank You!

We're would appreciate questions, constructive feedback, and further discussion!

The Simoid Team

Code

Code: https://github.com/SCCMdatathon2023/team_02

Dataset used in our analysis

- Hybrid dataset comprised on MIMIC-III, MIMIC-IV and eICU from MIT Critical Data Consortium
- 109 columns, 49093 rows

In hospital Mortality versus...

Age

Whites-21% mortality
Non-Whites- 21.5% mortality

Scatterplots of SpO2 versus pO2 by gender and mortality

Scatterplots of SpO2 versus pO2 with HCO3, lactate, Age, pCO2

