HOMEWORK ASSIGNMENTS FOR MATH 227 WINTER 2021

VLADIMIR G. TROITSKY

Date: April 18, 2021.

1. Due Tuesday, January 26

Problem 1.1. Suppose that $T: \mathbb{R}^3 \to \mathbb{R}^2$ is linear,

$$T \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, and $T \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$. Compute $T \begin{pmatrix} 3 \\ 3 \\ 9 \end{pmatrix}$.

Problem 1.2. Find the matrix of the given linear transformation:

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$, the reflection with respect to the straight line y = 2x;
- (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, the rotation around the y-axis by $\frac{\pi}{2}$ followed by the rotation around the z-axis by α .

Problem 1.3. Let $S, T: \mathbb{R}^6 \to \mathbb{R}^6$ be the linear transformations defined by

$$S: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \quad \text{and} \quad T: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} \mapsto \begin{pmatrix} x_6 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}.$$

- (a) Describe the action of S and T on the standard unit vectors.
- (b) Find the matrix representations of S and T.
- (c) Describe powers of these matrices: S^n and T^n for $n \in \mathbb{N}$.

(S is called the "right shift", while T is the "cyclic right shift".)

Problem 1.4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + 4x_2 - 3x_3 \\ -2x_1 - 7x_2 + 6x_3 \\ x_1 + 7x_2 - 2x_3 \end{pmatrix}$. Determine whether T is linear, onto, one-to-one, and/or bijection. If T is invertible, find the inverse operator.

Problem 1.5. Let A and B be two matrices. True or false:

- (a) If AB is invertible then both A and B are invertible;
- (b) If both A and B are invertible then AB is invertible;
- (c) If both A and B are invertible then A + B is invertible.

Problem 1.6. Let A be a 5×3 matrix, let B be a 3×3 matrix made up of any three rows of A. True or false:

- (a) If B is invertible then the columns of A are linearly independent;
- (b) If the columns of A are linearly independent then B is invetible.

Problem 1.7. Suppose that A is a square matrix such that the equation $A\bar{x} = \bar{b}$ is consistent for every \bar{b} . Show that the equation $A\bar{x} = \bar{b}$ has a *unique* solution for every \bar{b} .

Problem 1.8. Let $A = \begin{bmatrix} 2 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix}$. Find det A using the definition of the determinant.

Problem 1.9. Consider the following permutation: $\sigma = (2\ 3\ 1\ 5\ 4)$.

- (a) Compute σ^{-1} ;
- (b) Write σ as a product of transpositions;
- (c) Find sign σ ;
- (d) Compute powers of σ .

Problem 1.10. Find the determinants of the following matrix:

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 1 & \dots & 1 \\ 1 & 1 & 3 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & n \end{bmatrix}$$

4

2. Due Tuesday, February 2

Problem 2.1. Compute the determinants of the following matrices:

(a)
$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ -2 & -5 & 7 & 4 \\ 3 & 5 & 2 & 1 \\ 1 & -1 & 2 & -3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 5 & 4 & 1 \\ 4 & 7 & 6 & 2 \\ 6 & -2 & -4 & 0 \\ -6 & 7 & 7 & 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 2 & i & 3 \\ 7 & 3+i & 4 \\ 2 & 0 & 5i \end{bmatrix}$$
.

Problem 2.2. Given two 3×3 matrices A and B with det A = 2 and det B = 3, find $\det(2A^3B^2A^TB^{-1})$.

Problem 2.3. Let $A = \begin{bmatrix} 2 & 0 & 3 \\ 5 & 1 & 0 \\ 21 & 4 & 2 \end{bmatrix}$ and $\bar{b} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- (a) Find A^{-1} using Cramer's rule (no Gaussian elimination).
- (b) Solve $A\bar{x} = \bar{b}$ using Cramer's rule (no Gaussian elimination).

Problem 2.4. Find the eigenvalues and the eigenvectors of the following matrices over \mathbb{C} :

(a)
$$\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 6 & 0 & -4 \\ 0 & 3 & 0 & -5 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -5 \\ 2 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 2 & 4 \end{bmatrix}$

Problem 2.5. Show that A and A^T have the same characteristic equation and the same eigenvalues.

Problem 2.6. A matrix is *nilpotent* if some power of it equals the zero matrix. Show that if A is nilpotent then det A = 0 and zero is the only eigenvalue of A.

Problem 2.7. Verify whether the given collection \mathcal{B} is a basis of the given vector space X:

(a)
$$X = \mathbb{R}^3$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\3 \end{pmatrix} \right\}$
(b) $X = \mathbb{R}^3$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\3 \end{pmatrix}, \begin{pmatrix} 7\\2\\0 \end{pmatrix} \right\}$
(c) $X = \mathbb{R}^4$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\2\\-3 \end{pmatrix}, \begin{pmatrix} 1\\1\\3\\-1 \end{pmatrix} \right\}$
(d) $X = \mathbb{R}^4$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\2\\-3 \end{pmatrix}, \begin{pmatrix} 3\\1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 6\\2\\0\\4 \end{pmatrix} \right\}$
(e) $X = \mathbb{R}^4$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\2\\2\\-3 \end{pmatrix}, \begin{pmatrix} 3\\1\\3\\-1 \end{pmatrix}, \begin{pmatrix} 6\\2\\0\\5 \end{pmatrix} \right\}$
(f) $X = \text{the } xy\text{-plane in } \mathbb{R}^3$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\0\\1 \end{pmatrix} \right\}$
(g) $X = \text{the } xy\text{-plane in } \mathbb{R}^3$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\1\\1 \end{pmatrix} \right\}$
(h) $X = \text{the } xy\text{-plane in } \mathbb{R}^3$, $\mathcal{B} = \left\{ \begin{pmatrix} 3\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 6\\4\\0 \end{pmatrix} \right\}$

Problem 2.8. Find the (complex) eigenvalues of the right shift S and the cyclic right shift T from Problem 1.3 (n = 6).

Problem 2.9. On the dark side of Linear Algebra: Let $\lambda_1, \ldots, \lambda_n$ be scalars, find the formula for the van der Monde determinant:

$$\det \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & \lambda_n & \lambda_n^2 & \dots & \lambda_n^{n-1} \end{bmatrix}$$

3. Practice assignment; not to be collected

Problem 3.1. Prove that if A satisfies $3A^2 - 5A - I = 0$ then A is invertible.

Problem 3.2. Let $\bar{u}_1, \ldots, \bar{u}_9 \in \mathbb{C}^4$ such that the set $\{\bar{u}_2, \bar{u}_4, \bar{u}_6, \bar{u}_8\}$ is linearly independent. Show that the set $\{\bar{u}_1, \ldots, \bar{u}_9\}$ spans all of \mathbb{C}^4 .

Problem 3.3. Let $\bar{u}_1, \ldots, \bar{u}_m$ be vectors in \mathbb{R}^n and let $\bar{v}_k = \sum_{i=1}^k \bar{u}_i$ as $k = 1, \ldots, m$. Show that the set $\{\bar{u}_1, \ldots, \bar{u}_m\}$ is linearly independent iff the set $\{\bar{v}_1, \ldots, \bar{v}_m\}$ is linearly independent.

Problem 3.4. Let A be a 5×3 matrix, let B be a 3×3 matrix made up of any three rows of A. True or false:

- (a) If det $B \neq 0$ then the columns of A are linearly independent;
- (b) If the columns of A are linearly independent then det $B \neq 0$.

Problem 3.5. Let $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; then A is invertible and $A^T = -A$. Does there exist a 3×3 invertible matrix A satisfying $A^T = -A$?

Problem 3.6. Compute the determinant of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ in \mathbb{Z}_2 .

Problem 3.7. Compute det B^5 , where $B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$ (Hint: no need to compute B^5 .)

Problem 3.8. Compute the determinants of the following matricex:

(a)
$$\begin{bmatrix} 2 & 5 & -3 & -1 \\ 3 & 0 & 1 & -3 \\ -6 & 0 & -4 & 9 \\ 4 & 10 & -4 & -1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & \lambda & \lambda^2 \\ \lambda^2 & 1 & \lambda \\ \lambda & \lambda^2 & 1 \end{bmatrix}$$
, where $\lambda = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

(c)
$$\begin{bmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{bmatrix}$$
, where α , β , and γ are the roots of $x^3 + px + q = 0$.

(d)
$$\begin{pmatrix} 5 & -3 \\ -4 & 4 \end{pmatrix}$$
 (f) $\begin{pmatrix} 5 & 3 \\ -4 & 4 \end{pmatrix}$

Problem 3.9. (a) What can you say about $\det A$ if one of the columns of A is the sum (or, more generally, a linear combination) of other columns of A? Same for rows.

- (b) How does the determinant change if one multiplies the entire matrix by a common factor?
- (c) Find two matrices A and B such that $det(A + B) \neq det A + det B$.
- (d) Show that $\det AB = \det BA$ for any two $n \times n$ matrices A and B;

Problem 3.10. Find all the eigenvalues and all the eigenvectors of $\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$.

Problem 3.11. Let $\bar{u}, \bar{v} \in \mathbb{F}^n$ and $A = \bar{u}\bar{v}^T$. Show that \bar{u} is an eigenvector of A and \bar{v} is an eigenvector of A^T . Identify the null space and the range of A.

Problem 3.12. True or false: if $\det A = 0$ then A is nilpotent.

Problem 3.13. Suppose that X and Y are vector spaces and $T: X \to Y$ is a linear injection. Show that $X \simeq \operatorname{Range} T$.

Problem 3.14. Let

$$Y = \left\{ \begin{pmatrix} \frac{3\alpha + 2\beta}{2\alpha - \beta} \\ \frac{-7\beta}{-\alpha + 3\beta} \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}.$$

Show that Y is a subspace of \mathbb{R}^4 . Find a basis of Y and determine dim Y. Show that Y is linearly isomorphic to \mathbb{R}^2 . Find explicitly a linear isomorphism from \mathbb{R}^2 onto Y.

Problem 3.15. Verify whether the given collection \mathcal{B} is a basis of the given vector space X:

(a)
$$X = M_2(\mathbb{F}), \mathcal{B} = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$

(b)
$$X = \mathcal{P}_2(\mathbb{R}), \mathcal{B} = \{x^2 + 2, x + 3, x^2 - 5x\}.$$

Problem 3.16. Let
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 given by $f\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right) = \begin{pmatrix} x_1 - x_2 + 3x_3 - x_4 \\ 2x_1 - 2x_2 + 6x_3 - 5x_4 \\ 3x_1 - 3x_2 + 9x_3 - 10x_4 \end{pmatrix}$.

- (a) Find a basis of ker f. Show that ker f has dimension 2.
- (b) Find a basis of Range f. Show that Range f has dimension 2.

Problem 3.17. Given a collection \mathcal{B} in a vector space X and a vector $\bar{u} \in X$; verify that \mathcal{B} is a basis of X and find the expansion of \bar{u} with respect to \mathcal{B} .

(a)
$$X = \mathbb{C}^4$$
, $\mathcal{B} = \{\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4\}$, $\bar{u} = \begin{pmatrix} 10\\11\\8+3i\\-6 \end{pmatrix}$.

(b)
$$X = \mathbb{R}^3$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}, \bar{u} = \begin{pmatrix} 15\\11\\8 \end{pmatrix}$.

(b)
$$X = \mathbb{R}^{3}$$
, $\mathcal{B} = \left\{ \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}, \bar{u} = \begin{pmatrix} 15\\11\\8 \end{pmatrix}$.
(c) $X = \text{the } xy\text{-plane in } \mathbb{R}^{3}$, $\mathcal{B} = \left\{ \begin{pmatrix} 4\\5\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix} \right\}, \bar{u} = \begin{pmatrix} -4\\0\\0 \end{pmatrix}$.
(d) $X = \mathcal{P}_{2}(\mathbb{R})$, $\mathcal{B} = \{1 + 2x^{2}, 5x^{2}, 1 + 4x + 6x^{2}\}, \bar{u} = 2 + 6x + 10x^{2}$.

(d)
$$X = \mathcal{P}_2(\mathbb{R}), \mathcal{B} = \{1 + 2x^2, 5x^2, 1 + 4x + 6x^2\}, \ \bar{u} = 2 + 6x + 10x^2.$$

Problem 3.18. For each of the following vector spaces X, find a basis of X and determine $\dim X$.

- (a) X is the subspace of \mathbb{F}^6 consisting of all the vectors \bar{x} such that $x_2 = x_4 = x_6$.
- (b) X is the space of all upper-triangular 3×3 matrices.
- (c) X is the space of all 5×5 matrices A that are antisymmetric, i.e., satisfy $A^T = -A$.

Problem 3.19. Show that the space C[0,1] of all real-valued continuous functions on [0,1] is an infinite-dimensional vector space.

Problem 3.20. Find the rank of $\begin{bmatrix} 6 & 2 & 8 & 3 & 8 \\ 3 & 0 & 7 & 1 & 3 \\ 0 & 0 & 5 & 0 & 0 \\ 3 & 1 & 4 & 1 & 4 \end{bmatrix}$.

Problem 3.21. Let A and B be two matrices; let S be an invertible matrix. Assuming that the appropriate sums and products are defined, prove that

- (a) $rank(A + B) \leq rank A + rank B$;
- (b) $\operatorname{rank}(AB) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\};$
- (c) $\operatorname{rank} SA = \operatorname{rank} A$, $\operatorname{rank} AS = \operatorname{rank} A$;

4. Due Wednesday, March 3

Problem 4.1. Given two matrices A and B, we say that B is *similar* to A if $B = S^{-1}AS$ for some invertible matrix S. Prove the following statements.

- (a) Every matrix is similar to itself;
- (b) If A is similar to B then A^n is similar to B^n for every n
- (c) If B is similar to A then A is similar to B;
- (d) If A is similar to B and B is similar to C then A is similar to C;
- (e) If A and B are similar then rank $A = \operatorname{rank} B$.
- (f) If A and B are similar then they share the same determinant, characteristic polynomial, and eigenvalues.
- (g) Suppose that B is similar to A. What is the relationship between eigenvectors of A and those of B?

Problem 4.2. Let D be a diagonal matrix with non-zero diagonal entries d_1, \ldots, d_n . Let $A = (a_{ij})$ be an $n \times n$ matrix. Compute DA, AD, and DAD^{-1} .

Problem 4.3. Determine whether the following two matrices are similar:

Problem 4.4. Let $A = \begin{bmatrix} 20 & 0 & -10 \\ 0 & 40 & 10 \\ 10 & 0 & 50 \end{bmatrix}$. Find the matrix of A with respect to the basis $\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$.

Problem 4.5. Show that the functions $\sin x$, $\cos x$, and the constant one function are linearly independent, when viewed as vectors in the space $C(\mathbb{R})$ of all continuous functions from \mathbb{R} to \mathbb{R} .

Problem 4.6. Let $T: C(\mathbb{R}) \to C(\mathbb{R})$ defined as follows: for $f \in C(\mathbb{R})$, Tf is the function defined by $(Tf)(x) = f(0) + f(1) \sin x + f(2) \cos x$. Show that T is linear. Find rank T.

Problem 4.7. Let c_{00} be the subset $\mathbb{R}^{\mathbb{N}}$ consisting of the sequences that have only finitely many non-zero terms (i.e., eventually zero sequences).

- (a) Show that c_{00} is a subspace of $\mathbb{R}^{\mathbb{N}}$.
- (b) Show that $\{\bar{e}_n\}_{n=1}^{\infty}$ is a Hamel basis of c_{00} .
- (c) Show that c_{00} is linearly isomorphic to $\mathcal{P}(\mathbb{R})$.

Problem 4.8. Let $X = \mathcal{P}_4(\mathbb{R})$, all polynomials of degree at most 4 with real coefficients. Let $\mathcal{B} = \{x^0, x^1, x^2, x^3, x^4\}$ (note that \mathcal{B} is a basis of X). Let $D: X \to X$ be the differentiation operator defined by Dp = p'. Find the matrix of D with respect to \mathcal{B} .

Problem 4.9. Let $n \in \mathbb{N}$; fix n distinct points x_1, \ldots, x_n in \mathbb{R} . Let $X = \mathbb{P}_{n-1}(\mathbb{R})$.

(a) Define q_1, \ldots, q_n in X as follows:

$$q_i(x) = \frac{x - x_1}{x_i - x_1} \cdot \frac{x - x_2}{x_i - x_2} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_n}{x_i - x_n}.$$

Compute $q_i(x_j)$ for all pairs $i, j \in \{1, ..., n\}$. Show that $\{q_1, ..., q_n\}$ is a basis of X.

(b) Given $d_1, \ldots, d_n \in \mathbb{R}$, find $p \in \mathbb{P}_{n-1}(\mathbb{R})$ such that $p(x_1) = d_1, p(x_2) = d_2, \ldots, p(x_n) = d_n$.

Problem 4.10. In \mathbb{R}^6 , consider $X = \text{span}\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ and $Y = \text{span}\{\bar{e}_2, \bar{e}_3, \bar{e}_4\}$.

- (a) Identify $X \cap Y$ and X + Y.
- (b) Are X + Y and $X \oplus Y$ linearly isomorphic?
- (c) Find dim X + Y and dim $X \oplus Y$.

5. Due Monday, March 15

Problem 5.1. Let X_1, \ldots, X_m be subspaces of X. Show that TFAE:

- (a) Every vector $\bar{x} \in X_1 + \cdots + X_m$ has a unique representation $\bar{x} = \bar{x}_1 + \cdots + \bar{x}_m$ for some $\bar{x}_1 \in X_1, \ldots, \bar{x}_m \in X_m$.
- (b) If $\bar{x}_1 + \dots + \bar{x}_m = 0$ for some $\bar{x}_1 \in X_1, \dots, \bar{x}_m \in X_m$ then $\bar{x}_1 = \bar{0}, \dots, \bar{x}_m = \bar{0}$.

Note: if, in addition, $X = X_1 + \cdots + X_m$, we write $X = X_1 \oplus \cdots \oplus X_m$ and say that this is a direct sum decomposition of X.

Problem 5.2. Let \mathcal{U} and \mathcal{V} be two disjoint subsets of a vector space Z such that $\mathcal{U} \cup \mathcal{V}$ is a basis of Z. Show that $Z = \operatorname{span} \mathcal{U} \oplus \operatorname{span} \mathcal{V}$.

Problem 5.3. Let X be a subspace of \mathbb{R}^4 spanned by $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\1\\2 \end{pmatrix}$. Find an algebraic complement of X.

Problem 5.4. Let $P = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Show that P is a projection. Identify its range.

Problem 5.5. Let

- (a) Show that P and Q are projections. Find their ranges and kernels.
- (b) Compute PAP, QAQ, PAQ, and QAP.

Problem 5.6. Let X be a finite-dimensional vector space and $P: X \to X$ a projection. Show that there is a basis of X in which the matrix of P is diagonal and the diagonal entries are zeros and ones. Conclude that the only possible eigenvalues of P are 0 and 1.

Problem 5.7. Show that $C[0,1] = X \oplus Y$, where X consists of those functions f in C[0,1] such that f(0) = f(1) = 0 and Y consists of all the functions of the form f(x) = ax + b, where $a, b \in \mathbb{R}$.

Problem 5.8. Let $\mathbb{R}^{\mathbb{R}}$ be the vector space space of all functions $f \colon \mathbb{R} \to \mathbb{R}$. Let $P \colon \mathbb{R}^{\mathbb{R}} \to \mathbb{R}$ defined via $(Pf)(x) = \frac{f(x) + f(-x)}{2}$.

- (a) Show that P is a projection.
- (b) Identify Range P and Null P.

(c) Show that every function $f: \mathbb{R} \to \mathbb{R}$ may be written as a sum of an even and an odd function in a unique way.

Problem 5.9. Let $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$.

- (a) Find the eigenvectors and the eigenvalues of A;
- (b) Find a basis in which A is diagonal.
- (c) Show that A is similar to a diagonal matrix.

Problem 5.10. Let A be an $n \times n$ matrix. Show that

- (a) Null $A \subseteq \text{Null } A^2 \subseteq \text{Null } A^3 \subseteq \dots$ and Range $A \supseteq \text{Range } A^2 \supseteq \text{Range } A^3 \supseteq \dots$;
- (b) If Null $A^k = \text{Null } A^{k+1}$ for some k then Range $A^k = \text{Range } A^{k+1}$ and Null $A^{k+1} = \text{Null } A^{k+2}$.
- (c) There exists $k \leq n$ such that Null $A^i = \text{Null } A^k$ and Range $A^i = \text{Range } A^k$ for all $i \geq k$.

Problem 5.11. Let $A, B \in M_n(\mathbb{F})$ with n > 1 and $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Prove the following statements.

- (a) If AB is nilpotent then BA is nilpotent.
- (b) If A is nilpotent then $A^n = 0$.
- (c) A^2 is not equal to the $n \times n$ left shift.

Problem 5.12. Let $A \in M_n(\mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

- (a) Suppose that $A^k \bar{x} = \bar{0}$ but $A^{k-1} \bar{x} \neq \bar{0}$ for some $\bar{x} \in \mathbb{F}^n$ and $k \in \mathbb{N}$. Show that the set $\{\bar{x}, A\bar{x}, \dots, A^{k-1}\bar{x}\}$ is linearly independent.
- (b) Suppose that $A^n = 0$ but $A^{n-1} \neq 0$. Prove that A is similar to the left shift.
- (c) Show that the left and the right shift matrices in $M_n(\mathbb{F})$ are similar.

Problem 5.13. Let Y be a subspace of a finite-dimensional vector space X. Show that $\dim X/Y = \dim X - \dim Y$.

6. Practice assignment

- **Problem 6.1.** (a) Suppose that $3, 5, 7 \in \sigma(A)$, u_1, u_2, u_3 are eigenvectors for $2, v_1, v_2, v_3$ are eigenvectors for 5, and w_1, w_2, w_3 are eigenvectors for 7. Suppose that each of the three sets $\{u_1, u_2, u_3\}$, $\{v_1, v_2, v_3\}$, $\{w_1, w_2, w_3\}$ is linearly independent. Prove that the set $\{u_1, u_2, u_3, v_1, v_2, v_3, w_1, w_2, w_3\}$ is linearly independent.
 - (b) Suppose that $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of A. For each $i = 1, \ldots, m$. Let \mathcal{U}_i be a linear independent set in E_{λ_i} . Show that the union $\bigcup_{i=1}^m \mathcal{U}_i$ is linearly independent.

Problem 6.2. Let Y be a subspace of a finite-dimensional vector space X. If $\dim Y = \dim X$ then Y = X.

Problem 6.3. Let Y and Z be two subspaces of a finite-dimensional vector space X, such that dim Y + dim Z > dim X. Show that Y and Z have a common non-zero vector.

Problem 6.4. Let \mathcal{B} and \mathcal{C} be bases of vector spaces X and Y, respectively. Show that $\mathcal{B} \cup \mathcal{C}$ is a basis of $X \oplus Y$.

Problem 6.5. Let $P: Z \to Z$ be a projection onto X along Y.

- (a) Show that I P is a projection onto Y along X;
- (b) Find the eigenvalues and the eigenspaces of P.

Problem 6.6. * Let $X = C_{\infty}(0,1)$, the space of functions on (0,1) that have derivatives of all orders. let Y be the set of all functions f in X such that f vanishes on $(0,\varepsilon)$ for some positive ε (depending on f).

- (a) Show that Y is a subspace of X;
- (b) Describe elements of X/Y (they are called *germs*); characterize when $f \sim g$;
- (c) Show that each equivalence class contains at most one polynomial;
- (d) Does the equivalence class of cos contain a polynomial?

Problem 6.7. Find an example of a matrix A over \mathbb{R} such that $\sigma(A) = \{0\}$ yet A is not nilpotent.

Problem 6.8. Show that the following two matrices are similar:

$$\begin{pmatrix} 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Problem 6.9. Let X be the set of all polynomials p in $\mathcal{P}_5(\mathbb{R})$ such that p(7) = 0. Prove that X is a subspace of $\mathcal{P}_5(\mathbb{R})$; find a basis of X.

Problem 6.10. Let \mathcal{B} be a Hamel basis of a vector space X; let \mathcal{U} and \mathcal{V} be two subsets of X such that $\mathcal{U} \subsetneq \mathcal{B} \subsetneq \mathcal{V}$. Show that both \mathcal{U} and \mathcal{V} fail to be Hamel bases of X.

Problem 6.11. Show that the set $\{\bar{e}_1, 2\bar{e}_2, 3\bar{e}_3, 4\bar{e}_4, \dots\}$ is a Hamel basis of c_{00} .

Problem 6.12. Let X be the subset of $\mathbb{R}^{\mathbb{N}}$ consisting of those sequences that are eventually constant. That is, for $\bar{x} \in \mathbb{R}^{\mathbb{N}}$, we have $\bar{x} \in X$ when there exists $n \in \mathbb{N}$ such that $x_n = x_{n+1} = x_{n+2} = \dots$ (Note that n depends on \bar{x} .) Show that X is a vector space. Find a Hamel basis of X.

Problem 6.13. Let $P: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection onto the *xy*-plane along the vector $\begin{pmatrix} 1\\1 \end{pmatrix}$. Find the matrix if P.

Problem 6.14. Let X be a subspace of a vector space Z. Show that there exist linear operators S and T in L(Z) with Range T = Null S = X.

Problem 6.15. Find an algebraic complement of span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\3\\3 \end{bmatrix} \right\}$ in \mathbb{R}^4 .

Problem 6.16. Let Z be as follows, let

 $X = \{ f \in \mathbb{Z} : f \text{ vanishes on } (-\infty, 0) \}$ and $Y = \{ f \in \mathbb{Z} : f \text{ vanishes on } [0, \infty) \}$. Verify whether $\mathbb{Z} = X \oplus Y$.

(a)
$$Z = \mathbb{R}^{\mathbb{R}}$$
 (b) $Z = C(\mathbb{R})$.

Problem 6.17. Let $T, S \in L(X)$ be two linear operator on a vector space X such that TS = ST. Show that $\ker T$ and $\operatorname{Range} T$ are invariant under S. Show that every eigenspace of T is invariant under S. Show that for every $m \in \mathbb{N}$, $\operatorname{Null} T^m$ and $\operatorname{Range} T^m$ are invariant under T.

Problem 6.18. Let $T \in L(X)$ and Y be a subspace of X. Show that

- (a) Y is invariant under T iff (I P)TP = 0 for a projection P with Range P = Y;
- (b) T has a reducing decomposition iff T commutes with a projection.

Problem 6.19. Let A be a block diagonal matrix, $A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$. Show that Range $A = \text{Range } B \oplus \text{Range } C$ and rank A = rank B + rank C.

7. Due Wednesday, March 31

Problem 7.1. We write $J_{\lambda,k}$ for the $k \times k$ Jordan block with diagonal entries equal to λ . By $J_{0,1}$ we mean the 1×1 zero matrix. Suppose that $A \in M_{28}(\mathbb{C})$ such that its Jordan canonical form consists of the following blocks: $J_{2,3}$, $J_{3,1}$, $J_{3,5}$, $J_{1,4}$, $J_{0,2}$, $J_{0,3}$ repeated twice, $J_{0,4}$, and $J_{0,1}$ repeated thrice. Compute rank A^m as $m = 1, 2, 3, \ldots$

Problem 7.2. Let $A \in M_9(\mathbb{C})$ such that $a_{2,3} = 2$, $a_{4,1} = 3$, $a_{5,4} = 4$, $a_{7,9} = 5$, $a_{9,2} = 6$, $a_{8,8} = 7$, and the rest of the entries are zero. Find the Jordan canonical form of A.

Problem 7.3. Let A be a 7×7 matrix. Use the following data to find the Jordan form of A: rank(A - 2I) = 6, rank(A - 3I) = 5, rank $(A - 3I)^2 = 3$, rank $(A - 3I)^3 = 2$, rank $(A - 3I)^4 = 1$. (This problem illustrates that that the Jordan Canonical form of a matrix is uniquely determined by the matrix up to the order of the blocks.)

Problem 7.4. Let R be the 5×5 right shift matrix. Find the Jordan canonical forms of R and of R^2 .

Problem 7.5. Let $A = \begin{bmatrix} \frac{4}{2} & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}$. Find the eigenvalues of A and their algebraic and geometric multiplicities. Find a basis that brings A to its Jordan form. Find the Jordan form of A. Find the eigenspaces and the generalized eigenspaces of A.

Problem 7.6. Let A be a complex matrix and p a polynomial with complex coefficients. Show that if $\sigma(A) = \{\lambda_1, \ldots, \lambda_m\}$ then $\sigma(p(A)) = \{p(\lambda_1), \ldots, p(\lambda_m)\}$, without using the Spectral Mapping Theorem.

8. Due Wednesday, April 14

Problem 8.1. Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Fix any invertible matrix A in $M_n(\mathbb{F})$. For $\bar{x}, \bar{y} \in \mathbb{F}^n$, define $[\bar{x},\bar{y}] = \langle A\bar{x},A\bar{y}\rangle$. Show that $[\cdot,\cdot]$ is an inner product. Find a basis which is orthonormal under this inner product.

Problem 8.2. When are Cauchy-Schwartz and triangle inequalities equalities? Let \bar{x} and \bar{y} be two vectors in an inner product space. Show that $\langle \bar{x}, \bar{y} \rangle = \|\bar{x}\| \|\bar{y}\|$ iff $\|\bar{x} + \bar{y}\| = \|\bar{x}\| + \|\bar{y}\|$ iff one of the vectors is a positive scalar multiple of the other.

Problem 8.3. Let $X = C[0, 2\pi]$ viewed as a vector space over \mathbb{R} . For $f, g \in X$, define $\langle f, g \rangle = \int_0^{2\pi} f(t)g(t) dt.$

- (a) Show that this is an inner product on X;
- (b) Consider the set of all functions of the form $\sin nt$ and $\cos nt$, where $n \in \mathbb{N}$. Show that this is an orthogonal set. Is it orthonormal?

Problem 8.4. Let \mathcal{B} be an orthonormal basis in an inner product space X. Let $\bar{x}, \bar{y} \in X$ with $[\bar{x}]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $[\bar{y}]_{\mathcal{B}} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$. Show that $\langle \bar{x}, \bar{y} \rangle = x_1 \bar{y}_1 + \dots + x_n \bar{y}_n$.

Problem 8.5. Let Y be a subspace of an inner product space X. For $x \in X$, we write $x \perp Y$ if $x \perp y$ for every $y \in Y$. Let $Y^{\perp} = \{x \in X : x \perp Y\}$. Show that Y^{\perp} is again a subspace of X. Show that if there exists an orthogonal projection onto Y then $(Y^{\perp})^{\perp} = Y$.

Problem 8.6. A linear functional is a linear operator from a vector space to \mathbb{F} . Let X be an inner product space.

- (a) Fix $\bar{y} \in X$ and define a function $f: X \to \mathbb{F}$ via $f(\bar{x}) = \langle \bar{x}, \bar{y} \rangle$. Show that f is a linear functional.
- (b) Show that every linear functional on a finite-dimensional inner product space arises in this way.

Problem 8.7. Given a subspace Y, find orthonormal bases of Y and Y^{\perp} . Find the orthogonal projection onto Y.

- (a) Y is the plane $4x_1 x_2 + x_3 = 0$ in \mathbb{R}^3 . (b) $Y = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\3\\5 \end{pmatrix}, \begin{pmatrix} 3\\-2\\0\\1 \end{pmatrix} \right\}$.

Problem 8.8. Let $T \in L(X)$, where X is an inner product space over \mathbb{C} . Let $\bar{x}, \bar{y} \in X$. Show that

$$\langle T\bar{x},\bar{y}\rangle = \tfrac{1}{4} \Big[\big\langle T(\bar{x}+\bar{y}),\bar{x}+\bar{y} \big\rangle - \big\langle T(\bar{x}-\bar{y}),\bar{x}-\bar{y} \big\rangle \Big] + \tfrac{i}{4} \Big[\big\langle T(\bar{x}+i\bar{y}),\bar{x}+i\bar{y} \big\rangle - \big\langle T(\bar{x}-i\bar{y}),\bar{x}-i\bar{y} \big\rangle \Big].$$

The problem shows that $\langle T\bar{x}, \bar{y} \rangle$ may be written as a combination of expressions of the form $\langle T\bar{z}, \bar{z} \rangle$.

Problem 8.9. Let X be an inner product space over \mathbb{C} . Let $\bar{x}, \bar{y} \in X$. Show that

$$\langle \bar{x}, \bar{y} \rangle = \frac{1}{4} \Big[\|\bar{x} + \bar{y}\|^2 - \|\bar{x} - \bar{y}\|^2 \Big] + \frac{i}{4} \Big[\|\bar{x} + i\bar{y}\|^2 - \|\bar{x} - i\bar{y}\|^2 \Big].$$

This problem shows that inner product is uniquely determined by the norm.

Problem 8.10. Let $T, S \in L(X)$, where X is an inner product space over \mathbb{C} . Show that

- (a) If $\langle T\bar{x}, \bar{y} \rangle = 0$ for all $\bar{x}, \bar{y} \in X$ then T = 0;
- (b) If $\langle T\bar{x}, \bar{y} \rangle = \langle S\bar{x}, \bar{y} \rangle$ for all $\bar{x}, \bar{y} \in X$ then T = S;
- (c) If $\langle T\bar{x}, \bar{x} \rangle = \langle S\bar{x}, \bar{x} \rangle$ for all $\bar{x} \in X$ then T = S.

9. Extra practice problems

Problem 9.1. Let X and Y be vector spaces over \mathbb{F} ; let \mathcal{B} be a Hamel basis of X. Let $f: \mathcal{B} \to Y$ be an arbitrary function. Prove that f extends to a unique linear operator from X to Y. That is, prove that

- (a) there is a linear operator $T: X \to Y$ such that Tx = f(x) for every $x \in \mathcal{B}$, and
- (b) that if $S: X \to Y$ is a linear operator such that Sx = f(x) for every $x \in \mathcal{B}$ then S = T.

Problem 9.2. Let $A \in M_n(\mathbb{F})$, $\lambda_1, \ldots, \lambda_n$ distinct eigenvalues of A, and \bar{u}_i an eigenvector for λ_i as $i = 1, \ldots, n$. Show that span $\{\bar{u}_1, \ldots, \bar{u}_n\} = \mathbb{F}^n$.

Problem 9.3. The goal of this problem is to understand whether invertibility of a matrix is related to the number of non-zero entries in it.

- (a) Find an $n \times n$ non-invertible matrix with no zero entries;
- (b) What is the minimal possible number of non-zero entries in an invertible matrix?
- (c) Describe all invertible matrices with the minimal number of non-zero entries.

Problem 9.4. Let X be a vector space, Y and Z subspaces of X. True or false:

- (a) $Y \cap Z$ is a subspace of X;
- (b) $Y \cup Z$ is a subspace of X.

Problem 9.5. Let $\bar{u}, \bar{v} \in \mathbb{R}^n$ and $A = \bar{u}\bar{v}^T$. Identify the kernel (the null space) and the range of A.

Problem 9.6. Let Y be the subspace of \mathbb{P} spanned by the polynomials $p(x) = 1 + x^2$, $q(x) = x^2 - x^3$, and $r(x) = x^5$. Does the following polynomial belong to Y?

(a)
$$3 + x + 2x^3$$
 (b) $3 + x^2 + 2x^3 + 7x^5$ (c) $3 + x^2 + 4x^3 + 7x^5$

Problem 9.7. Let $f, g, h \in C(\mathbb{R})$ given by $g(t) = \sin t$, $h(t) = 1 + t^2$, and f(t) = 1, the constant 1 function. Prove that the set $\{f, g, h\}$ is linearly independent.

Problem 9.8. Let $T: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ be the "left shift":

$$T: (x_1, x_2, x_3, x_4, \dots) = (x_2, x_3, x_4, x_5, \dots).$$

Show that T is linear. Find ker T and Range T. Is T onto? One-to-one? Show that every real number λ is an eigenvalue of T and find an eigenvector for T and λ .

Problem 9.9. Let $S : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ be the "right shift":

$$S: (x_1, x_2, x_3, x_4, \dots) = (0, x_1, x_2, x_3, \dots).$$

Show that S is linear. Find ker S and Range S. Is S onto? One-to-one? Show that S has no eigenvalues.

Problem 9.10. Let X be the set of all upper-triangular 5×5 real matrices. Show that X is a vector space over \mathbb{R} . Show that X is linearly isomorphic to \mathbb{R}^{15} .

Problem 9.11. Let X be the set of all antisymmetric 5×5 real matrices, that is, matrices satisfying $A^T = -A$. Show that X is a vector space over \mathbb{R} . Show that X is linearly isomorphic to \mathbb{R}^{10} .

Problem 9.12. Show that the space of all polynomials with real coefficients is linearly isomorphic to c_{00} .

Problem 9.13. Let X be the vector space of all upper triangular 3×3 matrices with zero trace. Find a basis of X, and determine dim X.

Problem 9.14. Let $T: X \to Y$ be a linear operator between vector spaces with rank T = n. Show that there exist linear operators $U: X \to \mathbb{F}^n$ and $V: \mathbb{F}^n \to Y$ such that T = VU (we say that T factors through \mathbb{F}^n).

Problem 9.15. Let X be a vector space, $x \in X$, and $T \in L(X)$. Put $Y = \text{span}\{x, Tx, T^2x, \dots\}$. Show that Y is a subspace of X. Show that Y is invariant under T, that is, $T(Y) \subseteq Y$. Find an example where $T(Y) \neq Y$.

Problem 9.16. Find two non-similar matrices whose characteristic polynomial is $\lambda^2(\lambda - 2)^4(\lambda - 5)^6$ and whose minimal polynomial is $\lambda^2(\lambda - 2)^3(\lambda - 5)^4$.

Problem 9.17. Let $A = J_{0,3} \oplus J_{0,4}$. Compute e^A .

Problem 9.18. Let A be as in Problem 7.5. Find $\sin(\frac{\pi}{4}A)$.

Problem 9.19. Let $A \in M_n(\mathbb{F})$. Suppose that every $\lambda \in \sigma(A)$ satisfies $|\lambda| = 1$ and $\arg \lambda$ is a rational multiple of π . Show that there exists $k \in \mathbb{N}$ such that $(A^k - I)^n = 0$.

Problem 9.20. Prove that $(A + B)^* = A^* + B^*$, $(\alpha A)^* = \bar{\alpha} A^*$, and $(AB)^* = B^* A^*$.

Problem 9.21. Prove that $\langle A\bar{x}, \bar{y} \rangle = \langle \bar{x}, A^*\bar{y} \rangle$ for every $A \in M_n(\mathbb{C})$ and every $\bar{x}, \bar{y} \in \mathbb{C}^n$.

Problem 9.22. Let $A \in M_n(\mathbb{C})$. Show that the matrix A^*A is self-adjoint.

Problem 9.23. Let $A = \begin{bmatrix} 14 & -13 & 8 \\ -13 & 14 & 8 \\ 8 & 8 & -7 \end{bmatrix}$. Find an orthonormal basis which diagonalizes A.

Problem 9.24. Let T be a linear operator between two finite-dimensional inner product spaces. Show that

- (a) $\ker T^* = (\operatorname{Range} T)^{\perp};$
- (b) Range $T^* = (\ker T)^{\perp}$;
- (c) $\ker T = (\operatorname{Range} T^*) \perp$;
- (d) Range $T = (\ker T^*)^{\perp}$;
- (e) T is injective iff T^* is surjective;
- (f) T is surjective iff T^* is injective;
- (g) $\operatorname{rank} T^* = \operatorname{rank} T$.

Problem 9.25. Let $\theta \in [0, 2\pi]$ and $U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Show that U is unitary. Show that every unitary matrix in $M_2(\mathbb{R})$ is of this form.

Problem 9.26. Show that the product of two unitary matrices is unitary.

Problem 9.27. A self-adjoint operator T is said to be *positive semi-definite* (or just *positive*) if $\langle T\bar{x}, \bar{x} \rangle \geqslant 0$ for all \bar{x} .

- (a) Let T be self-adjoint; then is positive semi-definite iff the eigenvalues of T are non-negative.
- (b) Show that T^*T is positive semi-definite for every operator T.
- (c) Show that if T is positive semi-definite then there is a positive semi-definite operator S such that $S^2 = T$.

Problem 9.28. Let A be a 3×3 matrix with real entries, such that 4 + i is an eigenvalue of A. Show that A is diagonalizable.

Problem 9.29. Let Y be the subspace of \mathbb{R}^4 given by the equation $x_1+2x_2-3x_3+4x_4=0$.

- (a) Find an algebraic complement of Y in \mathbb{R}^4 .
- (b) Find a projection $P \colon \mathbb{R}^4 \to \mathbb{R}^4$ with Range P = Y.

Problem 9.30. Let $A \in M_n(\mathbb{C})$. Prove that there is a unique pair of self-adjoint operators T and S such that A = T + iS. (Hint: put $T = \frac{A+A^*}{2}$.)

Problem 9.31. Let X be an inner product space and $\bar{x} \in X$. Show that if $\bar{x} \perp \bar{y}$ for all $\bar{y} \in X$ then $\bar{x} = \bar{0}$. (Hint: put $\bar{y} = \bar{x}$.)

Problem 9.32. Let S be the set of all upper-triangular matrices in $M_n(\mathbb{F})$; let D be the set of all diagonal matrices in $M_n(\mathbb{F})$, let N be the set of matrices in S with only zero entries on the diagonal. Show that $S = D \oplus N$ as vector spaces. Show that S/N is linearly isomorphic to D.

Problem 9.33. Let X and Y are two vector spaces, let $T \in L(X,Y)$, and let Z be a subspace of ker T. Show that $\widetilde{T} \colon X/Z \to Y$ defined via $\widetilde{T}\widetilde{x} = Tx$ is well defined.

Problem 9.34. * Let X be a k-dimensional subspace of \mathbb{R}^n for some $1 \leq k \leq n$.

- (a) Show that X contains a vector \bar{x} such that $-1 \leqslant x_i \leqslant 1$ for all $i = 1, \ldots, n$ and there exist k distinct indices i_1, \ldots, i_k such that $|x_{i_1}| = \cdots = |x_{i_k}| = 1$.
- (b) Show that X contains a vector \bar{x} such that $-1 \leqslant x_i \leqslant 1$ for all $i = 1, \ldots, n$ and there exist k distinct indices $i_1 < \cdots < i_k$ such that $x_{i_1} = -1$, $x_{i_2} = 1$, $x_{i_3} = -1$, $x_{i_4} = 1, \ldots$

SOLUTIONS

1.1

$$T\begin{pmatrix} 3\\3\\9 \end{pmatrix} = T\begin{pmatrix} 3\begin{pmatrix} 1\\1\\2 \end{pmatrix} + \begin{pmatrix} 0\\0\\3 \end{pmatrix} \end{pmatrix} = 3T\begin{pmatrix} 1\\1\\2 \end{pmatrix} + T\begin{pmatrix} 0\\0\\3 \end{pmatrix} = 3\begin{pmatrix} 2\\3 \end{pmatrix} + \begin{pmatrix} -1\\5 \end{pmatrix} = \begin{pmatrix} 3\\11 \end{pmatrix}$$

- **1.2(a)** Hint: find $S\bar{e}_1$ and $S\bar{e}_2$ and use them as the columns of the matrix. Alternatively, observe that $S = A^{-1}BA$, where A is the rotation by θ clockwise and B is the reflection with respect to the x-axis, where θ is the slope of the line y = 2x.
- **1.2(b)** Find $T\bar{e}_1$, $T\bar{e}_2$, and $T\bar{e}_3$ and use them as the columns of the matrix. Alternatively, write T = AB where A is the rotation around the z-axis by α and B is the rotation around the y-axis by $\frac{\pi}{2}$ and find separately the matrices of A and B. Note: your answer may depend on how you orient the axis!
- **1.3** $S\bar{e}_1 = \bar{e}_2$, $S\bar{e}_2 = \bar{e}_3$, ..., $S\bar{e}_5 = \bar{e}_6$, and $S\bar{e}_6 = 0$. This allows us to write down the matrix of S. Then, using matrix product, we compute $S^2 = SS$, $S^3 = SSS$, etc:

It is clear that S^n is the zero matrix whenever $n \ge 6$.

Observe that $T\bar{e}_i = e_{i+1}$ when i < 6 and $T\bar{e}_6 = e_1$. That is, $T\bar{e}_i = e_{i+1 \mod 6}$. Iterating, we get $T^n\bar{e}_i = e_{i+n \mod 6}$. In particular, $T^6 = I$ and $T^7 = T$, $T^8 = T^2$, etc. So it suffices to identify T^2 through T^5 . Using $T^n\bar{e}_i = e_{i+n \mod 6}$, we can now write the matrix of T^n :

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, T^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}, T^3 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix},$$

$$T^4 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}, T^5 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, T^6 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- **1.4** The operator T may be given by a matrix-vector product: for every \bar{x} , we have $T\bar{x}=A\bar{x}$ where $A=\begin{pmatrix} 1 & 4 & -3 \\ -2 & -7 & 6 \\ 1 & 7 & -2 \end{pmatrix}$. It follows that T is linear. Now use row reduction on A to answer the questions and to find the inverse.
- **1.5(a)** This may fail for non-square matrices. For example, $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, yet the two matrices in the left hand side are non-square, hence not invertible.

The statement is true for square matrices, say $n \times n$. Indeed, in this case, it is easy to see that Null $B \subseteq \text{Null } AB = \{0\}$, which implies that B is one-to-one and, therefore invertible. On the other hand, it follows from Range $A \supseteq \text{Range } AB = \mathbb{F}^n$ that A is onto and, therefore, invertible.

- **1.5(b)** True: direct verification shows that $B^{-1}A^{-1}$ is the inverse of AB: $ABB^{-1}A^{-1} = AIA^{-1} = AA^{-1} = I$ and $B^{-1}A^{-1}AB = B^{-1}B = I$.
- **1.5(c)** False, for a counterexample, take A = I and B = -I.
- **1.7** Since $A\bar{x}=\bar{b}$ is consistent for every \bar{b} , this means that for every \bar{b} there is an \bar{x} such that $A\bar{x}=\bar{b}$; hence \bar{b} is in Range A, hence A is onto. Being a square matrix, A is also one-to-one. It follows that there may be only one \bar{x} satisfying $A\bar{x}=\bar{b}$. Actually, we can also say that A is invertible and the unique solution of $A\bar{x}=\bar{b}$ is $\bar{x}=A^{-1}\bar{b}$.
- 1.8 There is only only way to select one non-zero entry from every row and one non-zero entry from every column: we have to use 4 in row 2 (and in column 2), 5 in row 4 (and column 5), and 2 in row 5 (and column 3). This means that we cannot use 3 in column 3 (and row 1), hence we have to use 2 in row 1 (and column 1). Hence we cannot use 1 in column 1, so we have to use 2 in row 3. Hence det $A = \text{sign}(\sigma)a_{11}a_{22}a_{24}a_{35}a_{43} = \text{sign}(\sigma) \cdot 2 \cdot 4 \cdot 2 \cdot 5 \cdot 2$. where $\sigma = (1 \ 2 \ 4 \ 5 \ 3)$. Note that σ is obtained from the identity permutations by two swaps (transpositions):

$$(1\ 2\ 3\ 4\ 5) \mapsto (1\ 2\ 5\ 4\ 3) \mapsto (1\ 2\ 4\ 5\ 3)$$

hence σ is even and $sign(\sigma) = 1$.

- **1.9(a)** We have $\sigma(1) = 2$ so $\sigma^{-1}(2) = 1$. Similarly, $\sigma^{-1}(3) = 2$, $\sigma^{-1}(1) = 3$, $\sigma^{-1}(5) = 4$, $\sigma^{-1}(4) = 5$, so that $\sigma^{-1} = (3 \ 1 \ 2 \ 5 \ 4)$.
- **1.9(b)** One of possible solutions is $\varepsilon_{45}\varepsilon_{13}\varepsilon_{12}$.

- **1.9(c)** Since σ may be written as a product of an odd number of transpositions, sign(σ) = -1.
- **1.9(d)** $\sigma^2(1) = \sigma(2) = 3$. Similarly, find $\sigma^2(i)$ as i = 2, 3, 4, 5. Find σ^n for n = 2, 3, 4, 5, 6 in a similar way. Observe that $\sigma^6 = e$. It follows that $\sigma^n = \sigma^{n \mod 6}$ for n > 6.
- 1.10 Subtracting the first row from every other row results in an upper-triangular matrix.
- **2.6** Suppose $A^n = 0$. Then $0 = \det A^n = (\det A)^n$, hence $\det A = 0$, so that A is not invertible and zero is an eigenvalue of A. To show that A has no other eigenvalues, assume, for the sake of contradiction, that some non-zero λ is an eigenvalue of A. Let \bar{x} be a (non-zero) eigenvector for A and λ . It follows from $A^n = 0$ that

$$0 = A^n \bar{x} = A^{n-1} A \bar{x} = A^{n-1} \lambda \bar{x} = \lambda A^{n-1} \bar{x} = \dots = \lambda^n \bar{x}.$$

Since $\bar{x} \neq 0$, we have $\lambda = 0$.

- 2.7(a) Yes because the matrix whose columns are the vectors is \mathcal{B} is invertible.
- **2.7(b)** No, 4 vectors in \mathbb{R}^3 have to be linearly dependent.
- **2.7(c)** No, 3 vectors cannot span \mathbb{R}^4 .
- 2.7(d) No, because the matrix whose columns are the vectors is \mathcal{B} is not invertible.
- 2.7(e) Yes, because the matrix whose columns are the vectors is \mathcal{B} is invertible.
- 2.7(f) Yes. The vectors are linearly independent and span X.
- 2.7(g) No, the second vector is not even in X.
- **2.7(h)** No, the vectors are linearly dependent.
- **2.8** Since S is nilpotent, its one and only eigenvalue is zero. To find the characteristic polynomial of T, write down the matrix of T, then apply the co-factor expansion over the first row of $\det(\lambda I T)$. This gives the characteristic polynomial $\lambda^6 1$. This polynomial has two real roots, ± 1 . Viewed over \mathbb{C} , it has six roots; namely, the six 6-th roots of unity. Thus, this matrix has six complex eigenvalues, two of which are real.
- **3.1** Solution 1. If $A\bar{x} = 0$ then

$$\bar{0} = (3A^2 - 5A - I)x = (3A)(A\bar{x}) - 5A\bar{x} - \bar{x} = -\bar{x},$$

so that $\bar{x} = 0$ and, therefore, $A\bar{x} = 0$ has only the trivial solution. Since the problem implies that A is a square matrix, it means that A is invertible.

Solution 2. It follows that $I = 3A^2 - 5A = BA$ where B = 3A - 5I. Hence, A is left invertible. Since the problem implies that A is a square matrix, it means that A is invertible.

- **3.2** Being a set of four linearly independent vectors in \mathbb{C}^4 , the set $\{\bar{u}_2, \bar{u}_4, \bar{u}_6, \bar{u}_8\}$ spans all of \mathbb{C}^4 . Since $\{\bar{u}_1, \dots, \bar{u}_9\}$ is even larger, it also spans \mathbb{C}^4 .
- **3.3** Suppose $\alpha_1 \bar{v}_1 + \cdots + \alpha_m \bar{v}_m = \bar{0}$. Then

$$\alpha_1 \bar{u}_1 + \alpha_2 (\bar{u}_1 + \bar{u}_2) + \dots + \alpha_m (\bar{u}_1 + \dots + \bar{u}_m) = \bar{0}$$

Rearranging, we get

$$(\alpha_1 + \dots + \alpha_m)\bar{u}_1 + (\alpha_2 + \dots + \alpha_m)\bar{u}_2 + \dots + (\alpha_{m-1} + \alpha_m)u_{m-1} + \alpha_m u_m = \bar{0}.$$

Since $\{\bar{u}_1, \ldots, \bar{u}_m\}$ is linearly independent, we have

$$\alpha_1 + \cdots + \alpha_m = 0$$
, $\alpha_2 + \cdots + \alpha_m = 0$, ..., $\alpha_{m-1} + \alpha_m = 0$, $\alpha_m = 0$.

Working our way through these equation backwards, starting the last one, we get $\alpha_m = 0$, so that $\alpha_{m-1} = 0$, so that $\alpha_{m-2} = 0$, dots, $\alpha_2 = 0$, $\alpha_1 = 0$. Therefore, the set is $\{\bar{v}_1, \ldots, \bar{v}_m\}$ is linearly independent.

- **3.5** det $A = \det A^T = \det(-A) = (-1)^3 \det A = -\det A$ implies det A = 0.
- **3.8 (c)** Adding row 2 and row 3 to row 1, we make all the entries in row 1 equal to $\alpha + \beta + \gamma$. Equating the powers at x^2 in the identity $x^3 + px + q = (x \alpha)(x \beta)(x \gamma)$, we conclude that $\alpha + \beta + \gamma = 0$. It follows that the determinant is zero.
- **3.9(a)** The columns are linearly dependent, hence A is not invertible, so that $\det A = 0$.
- **3.9(b)** $\det(\lambda A) = \lambda^n \det A$.
- **3.9(d)** $\det AB = (\det A)(\det B) = \det BA$
- **3.12** False. Counterexample: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $A^n = A$ for every n, so A is not nilpotent. Yet det A = 0.
- 3.14(3.14) Yes,

$$Y = \left\{ \alpha \begin{pmatrix} \frac{3}{2} \\ 0 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} \frac{2}{-1} \\ -7 \\ 3 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\} = \operatorname{span}\{\bar{u}_1, \bar{u}_2\}, \text{ where } \bar{u}_1 = \begin{pmatrix} \frac{3}{2} \\ 0 \\ -1 \end{pmatrix} \text{ and } \bar{u}_2 = \begin{pmatrix} \frac{2}{-1} \\ -7 \\ 3 \end{pmatrix}.$$

Being a span, Y is a subspace of \mathbb{R}^4 . Since the two vectors are not proportional, they are linearly independent, hence form a basis of Y. Since Y has a basis consisting of two vectors, dim Y=2 and, therefore, Y is linearly isomorphic to \mathbb{R}^2 . The linear operator $T\colon \mathbb{R}^2\to Y$ defined by $T\bar{e}_1=\bar{u}_1$ and $T\bar{e}_2=\bar{u}_2$ is a linear isomorphism from \mathbb{R}^2 to Y; note that $T\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 3\alpha+2\beta \\ 2\alpha-\beta \\ -7\beta \\ -\alpha+3\beta \end{pmatrix}$.

3.15(a) Yes, every 2×2 matrix admits a unique expansion:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- **3.15(b)** Hint: we learned in class that there is a linear isomorphism between $\mathcal{P}_2(\mathbb{R})$ and \mathbb{R}^3 . Using this isomorphism, we may "transfer" the problem to \mathbb{R}^3 .
- **3.19** Suppose that C[0,1] is finite-dimensional. Since \mathbb{P} may be viewed as a subspace of C[0,1]; hence \mathbb{P} is finite-dimensional; contradiction.
- **3.21(a)** Suppose that A and B have k columns; let $\bar{a}_1, \ldots, \bar{a}_k$ be the columns of A and $\bar{b}_1, \ldots, \bar{b}_k$ be the columns of B. Let $n = \operatorname{rank} A$ and $m = \operatorname{rank} B$. Find a basis $\{\bar{u}_1, \ldots, \bar{u}_n\}$ of Range A and a basis $\{\bar{v}_1, \ldots, \bar{v}_m\}$ of Range B. Then for every $i = 1, \ldots, k$, \bar{a}_i is a linear combination of \bar{u}_1, \ldots, u_n , and \bar{b}_i is a linear combination of $\bar{v}_1, \ldots, \bar{v}_m$, hence $\bar{a}_i + \bar{b}_i$ is a linear combination of $\bar{u}_1, \ldots, \bar{v}_m$, hence

$$\bar{a}_i + \bar{b}_i \in \operatorname{span}\{\bar{u}_1, \dots, \bar{u}_n, \bar{v}_1, \dots, \bar{v}_m\}.$$

It follows that

$$\operatorname{Range}(A+B) = \operatorname{span}\{\bar{a}_1 + \bar{b}_1, \dots, \bar{a}_k + \bar{b}_k\} \subseteq \operatorname{span}\{\bar{u}_1, \dots, \bar{u}_n, \bar{v}_1, \dots, \bar{v}_m\},\$$

so that

$$rank(A + B) = dim Range(A + B)$$

$$\leq \dim \operatorname{span}\{\bar{u}_1, \dots, \bar{u}_n, \bar{v}_1, \dots, \bar{v}_m\} \leq n + m = \operatorname{rank} A + \operatorname{rank} B.$$

3.21(b) Range $AB \subseteq \text{Range } A$, so that $\text{rank}(AB) \leqslant \text{rank } A$. Furthermore,

$$\operatorname{rank} AB = \operatorname{rank} (AB)^T = \operatorname{rank} B^T A^T \leqslant \operatorname{rank} B^T = \operatorname{rank} B.$$

- **3.21(c)** rank $SA \leq \operatorname{rank} A$ and rank $A = \operatorname{rank} S^{-1}SA \leq \operatorname{rank} SA$, hence rank $SA = \operatorname{rank} A$. The other identity is similar.
- **4.1(a)** $A = I^{-1}AI$.
- **4.1(b)** If $A = S^{-1}BS$ then, after cancellations, $A^n = (S^{-1}BS)(S^{-1}BS) \dots (S^{-1}BS) = S^{-1}B^nS$.
- **4.1(c)** If $A = S^{-}BS$ then $B = SAS^{-1} = TAT^{-1}$ where $T = S^{-1}$.
- **4.1(e)** Let $B = S^{-1}AS$. Using Problem 3.21(c), we get rank $B = \operatorname{rank} S^{-1}AS = \operatorname{rank} S^{-1}A = \operatorname{rank} A$.
- **4.1(g)** Suppose that $B = S^{-1}AS$ and $A\bar{x} = \lambda \bar{x}$. Put $\bar{y} = S^{-1}\bar{x}$. Then

$$B\bar{y} = (S^{-1}AS)(S^{-1}\bar{x}) = S^{-1}\lambda\bar{x} = \lambda\bar{y},$$

so that $B\bar{y} = \lambda \bar{y}$.

4.3 Hint: for (a), use Problem 4.2; for (b), consider the powers of the matrices.

4.5 Assign names to the functions: let $f(x) = \sin x$, $g(x) = \cos x$, and h(x) = x. Suppose $\alpha f + \beta g + \gamma h = 0$ for some scalars α , β , and γ . This means that

$$\alpha \sin x + \beta \cos x + \gamma x = 0$$

for all values of $x \in \mathbb{R}$. In particular, plugging in x = 0, $x = \pi/2$, and $x = \pi$, we get a homogeneous linear system of three equations for α , β , and γ . This system has only the trivial solution: $\alpha = \beta = \gamma = 0$.

- **4.6(4.6)** Linearity of T is straightforward. Range $T = \text{span}\{u_1, u_2, u_3\}$, where u_1 is the constant one function, $u_2(x) = \sin x$, and $u_3(x) = \cos x$. The three functions are linearly independent, hence form a basis of Range T. It follows that rank T = 3.
- 4.7(a) Verify that it is closed under addition and scalar multiplication.
- **4.7(b)** Every member of c_{00} may be written as a linear combination of finitely many \bar{e}_i 's in a unique way:

if
$$\bar{x} = (x_1, \dots, x_m, 0, 0, \dots)$$
 then $\bar{x} = x_1 \bar{e}_1 + \dots + x_n \bar{e}_n$.

- **4.7(c)** Hint: the map $T: c_{00} \to \mathcal{P}(\mathbb{R})$ that sends $\bar{a} = (a_1, \dots, a_m, 0, 0, \dots)$ to the polynomial $a_1 + a_2x + \dots + a_mx^{m-1}$ is a linear bijection, hence an isomorphism.
- **4.9(a)** Observe that $q_i(x_j)$ equals 1 if i = j and zero otherwise. Deduce from this that the set $\{q_1, \ldots, q_n\}$ is linearly independent. Since dim X = n, this set is a basis.
- **4.9(b)** Take $p = d_1 q_1 + \dots + d_n q_n$.
- **4.10** $X \cap Y = \text{span}\{\bar{e}_2, \bar{e}_3\}, X + Y = \text{span}\{\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4\}$. It follows that dim X + Y = 4. On the other hand, properties of direct sums yield dim $X \oplus Y = \dim X + \dim Y = 3 + 3 = 6$. Since isomorphic vector spaces must have the same dimensions, this implies that X + Y and $X \oplus Y$ fail to be isomorphic.

Since $X \cap Y$ is non-trivial, we cannot interpret $X \oplus Y$ as an internal direct sum; that is, $X + Y \neq X \oplus Y$. So the only plausible way to interpret $X \oplus Y$ is as an external direct sum. While X + Y is a subset of \mathbb{R}^6 , $X \oplus Y$ is the Cartesian product $X \times Y$ with the

appropriate operations. As a set, $X \oplus Y$ consists of pairs of the form $\begin{pmatrix} \begin{bmatrix} a \\ b \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ e \\ f \\ 0 \end{bmatrix} \end{pmatrix}$

- **5.1** (a) \Rightarrow (b) The zero vector has a unique expansion. But the zero vector has the "trivial" expansion: $\bar{0} = \bar{0} + \cdots + \bar{0}$. Hence, every expansion of zero has to be the trivial one.
- (b) \Rightarrow (a) By the definition of the sum of subspaces, every vector in $X_1 + \cdots + X_m$ has a decomposition of the required form; we only need to check uniqueness. Suppose that \bar{x} has two decompositions: $\bar{x} = \bar{x}_1 + \cdots + \bar{x}_m = \bar{y}_1 + \cdots + \bar{y}_m$ for some $\bar{x}_1, \bar{y}_1 \in X_1, \ldots$,

 $\bar{x}_m, \bar{y}_m \in X_m$. Subtracting one from the other, we get $(\bar{x}_1 - \bar{y}_1) + \dots + (\bar{x}_m - \bar{y}_m) = 0$. By (b), we conclude that $\bar{x}_1 - \bar{y}_1 = 0, \dots, \bar{x}_m - \bar{y}_m = 0$, so that $\bar{x}_1 = \bar{y}_1, \dots, \bar{x}_m = \bar{y}_m$.

5.2 Put $X = \operatorname{span} \mathcal{U}$ and $Y = \operatorname{span} \mathcal{V}$. Since \mathcal{U} is a subset of a basis, it is linearly independent, hence \mathcal{U} is a basis of X. Similarly, \mathcal{V} is a basis of Y.

We claim that Z = X + Y. Indeed,

$$X + Y = \operatorname{span} X \cup Y \supseteq \operatorname{span} \mathcal{U} \cup \mathcal{V} = Z$$

because $\mathcal{U} \cup \mathcal{V}$ is a basis of Z. Hence, X + Y = Z.

It is left to show that $X \cap Y = {\bar{0}}$. Indeed, if $\bar{x} \in X \cap Y$ then \bar{x} can be written as a linear combination of elements of \mathcal{U} and as a linear combination of elements of \mathcal{V} :

$$\bar{x} = \alpha_1 \bar{u}_1 + \dots + \alpha_n \bar{u}_n = \beta_1 \bar{v}_1 + \dots + \beta_m \bar{v}_m,$$

which implies that

$$\alpha_1 \bar{u}_1 + \dots + \alpha_n \bar{u}_n - \beta_1 \bar{v}_1 - \dots - \beta_m \bar{v}_m = \bar{0}.$$

Since the set $\{\bar{u}_1,\ldots,\bar{u}_n,\bar{v}_1,\ldots,\bar{v}_m\}$ is linearly independent, it follows that $\alpha_1=\cdots=\alpha_n=\beta_1=\cdots=\beta_m=0$, hence $\bar{x}=\bar{0}$.

- **5.3** Since column operations do not affect the span, we may replace the second vector by the difference of the two, that is, $X = \operatorname{span}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$. We can now easily find an invertible matrix whose columns include these two vectors: $\begin{pmatrix} 1&0&0&0\\1&1&1&0&0\\1&1&1&1&0\\1&1&1&1&1 \end{pmatrix}$. Then the four columns of this matrix form a basis of \mathbb{R}^4 . The 1st and the 4th columns form a basis of X, so we can use the remaining two columns as a basis of an algebraic complement of X, that is, we may take $Y = \operatorname{span}\left\{\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}\right\}$. Note that the answer is not unique.
- **5.4** It can be easily verified that $P^2 = P$, hence P is a projection. The range of P is the span of its columns, hence the span of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- **5.6** Let Y = Range P and $Z = \ker P$, then $X = Y \oplus Z$ and P is the projection onto Y along Z. Being subspaces of a finite-dimensional vector space, Y and Z are finite-dimensional. Let $\{\bar{e}_1, \ldots, \bar{e}_m\}$ be a basis of Y; let $\{\bar{e}_{m+1}, \ldots, \bar{e}_n\}$ be a basis of Z. Then $\mathcal{B} = \{\bar{e}_1, \ldots, \bar{e}_m, \bar{e}_{m+1}, \ldots, \bar{e}_n\}$ is a basis of X. Note that $P\bar{e}_1 = \bar{e}_1, \ldots, P\bar{e}_m = \bar{e}_m, P\bar{e}_{m+1} = \bar{0}, \ldots, P\bar{e}_n = \bar{0}$. So the matrix of P with respect to the basis \mathcal{B} has columns $\bar{e}_1, \ldots, \bar{e}_n, \bar{0}, \ldots, \bar{0}$, so it has the required form.

In particular, the matrix of P with respect to this basis is diagonal; hence the eigenvalues of P are he diagonal entries, which are just zeros and ones.

- **5.7** A function of the form f(x) = ax + b is called *affine*. Observe that $X \cap Y = \{0\}$ because the only affine function that vanishes at the endpoints is the zero function. To show that X + Y = C[0, 1], take any $f \in C[0, 1]$ and observe that there is an affine function h such that h agrees with f at the endpoints. It follows that g := f h is in X. We have f = g + h with $g \in X$ and $h \in Y$. It follows that X + Y = C[0, 1].
- **5.8(5.8)** Hint: P is the projection onto the subspace of all even functions along the subspace of all odd functions.
- **5.9(a)** The characteristic polynomial $\det(\lambda I A) = \lambda^3 12\lambda 16 = (\lambda 4)(\lambda + 2)^2$; the roots = the eigenvalues are $\lambda = 4, -2$. Solving the homogeneous linear system $(4I A)\bar{x} = 0$, we see that the eigenspace of 4 is spanned by $\bar{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, hence every eigenvector for 4 is a scalar multiple of this vector. Solving the homogeneous linear system $(-2I A)\bar{x} = 0$, we see that the eigenspace of -2 is the span of $\bar{u}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\bar{u}_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.
- **5.9(b)** The set $\mathcal{B} = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ is a basis. It follows from $A\bar{u}_1 = 4\bar{u}_1$, $A\bar{u}_2 = -2\bar{u}_2$, and $A\bar{u}_3 = -2\bar{u}_3$ that in this basis the matrix of A is $\begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$.
- **5.9(c)** Since A is diagonal in some basis, it is similar to a diagonal matrix. More precisely, $S^{-1}AS$ is diagonal, where the columns of S are \bar{u}_1 , \bar{u}_2 , and \bar{u}_3 .
- 5.10(b) By Rank Theorem,

 $\dim \operatorname{Range} A^k = n - \dim \operatorname{Null} A^k = n - \dim \operatorname{Null} A^{k+1} = \dim \operatorname{Range} A^{k+1}$.

Combining this with Range $A^k \supseteq \text{Range } A^{k+1}$, we conclude that the two subspaces are equal.

- By (a), we have $\ker A^{k+1} \subseteq \ker A^{k+2}$. To prove the converse inclusion, let $\bar{x} \in \ker A^{k+2}$. Then $\bar{0} = A^{k+2}\bar{x} = A^{k+1}(A\bar{x})$. It follows that $A\bar{x} \in \ker A^{k+1}$ and, by assumption, $A\bar{x} \in \ker A^k$. Then $\bar{0} = A^k(A\bar{x}) = A^{k+1}\bar{x}$. It follows that $\bar{x} \in \ker A^{k+1}$.
- **5.10(c)** By (a), dim Null $A^i \leq \dim \text{Null } A^{i+1}$ for every i. Also, dim Null $A^i \leq n$ for every n as Null A^i is a subspace of \mathbb{F}^n . It follows that Null $A^k = \text{Null } A^{k+1}$ for some $k \leq n$. Now apply (b).
- **5.11(a)** Suppose $(AB)^k = 0$ for some k. Then $(BA)^{k+1} = (BA) \cdots (BA) = B(AB) \cdots (AB)A = B(AB)^k = 0$.
- **5.11(b)** By Problem 5.10, the sequence of the null spaces of A^k grows, and then stabilizes after some $k \leq n$. Since A is nilpotent, $A^m = 0$ for some m and, therefore Null $A^i = \mathbb{F}^n$ for all $i \geq m$. It follows that Null $A^k = \mathbb{F}^n$ and, therefore, Null $A^n = \mathbb{F}^n$.
- **5.11(c)** Suppose $A^2 = S$. Then $A^{2n} = S^n = 0$, so that A is nilpotent. Then, by (b), $A^n = 0$. $2n 2 \ge n$, we have $A^{2n-2} = 0$. However, $A^{2n-2} = S^{n-1} \ne 0$; contradiction.

5.12(a) Suppose that

$$\alpha_0 \bar{x} + \alpha_1 A \bar{x} + \dots + \alpha_{k-2} A^{k-2} \bar{x} + \alpha_{k-1} A^{k-1} \bar{x} = \bar{0}.$$

Applying A^{k-1} to both sides and using the fact that $A^k = 0$, we get $\alpha_0 A^{k-1} \bar{x} = \bar{0}$ and, therefore, $\alpha_0 = 0$. Therefore, we have

$$\alpha_1 A \bar{x} + \dots + \alpha_{k-2} A^{k-2} \bar{x} + \alpha_{k-1} A^{k-1} \bar{x} = \bar{0}.$$

Applying A^{k-2} to both sides and using the fact that $A^k = 0$, we get $\alpha_1 A^{k-1} \bar{x} = \bar{0}$ and, therefore, $\alpha_1 = 0$. Proceeding in a similar manner, we conclude that $\alpha_2 = 0, \ldots, \alpha_{k-1} = 0$.

- **5.12(b)** Since $A^{n-1} \neq 0$, we can find a vector $\bar{x} \in \mathbb{F}^n$ such that $A^{n-1}\bar{x} \neq \bar{0}$. Since $A^n = 0$, we have $A^n\bar{x} = \bar{0}$. By the first part of the problem, we conclude that the set $\{\bar{x}, A\bar{x}, \dots, A^{n-1}\bar{x}\}$ is linearly independent. Since this set consists of n vectors, it forms a basis of \mathbb{F}^n . Re-label this basis as $\bar{e}_1 = A^{n-1}\bar{x}$, $\bar{e}_2 = A^{n-2}\bar{x}$, ..., $\bar{e}_n = \bar{x}$. Then $A\bar{e}_1 = \bar{0}$, $A\bar{e}_2 = \bar{e}_1$, $A\bar{e}_3 = \bar{e}_2$, etc. Hence, in this basis, A is the left shift.
- **5.12(c)** The right shift satisfies the assumption of (b).
- **6.1(b)** Enumerate each \mathcal{U}_i : let $\mathcal{U}_i = \{\bar{u}_{i,1}, \dots, \bar{u}_{i,k_i}\}$. Note that here $\bar{u}_{i,j}$ is a *vector*, namely, the *j*-th vector of \mathcal{U}_i .

Suppose some linear combination of all these vectors equals zero: $\sum_{i=1}^{m} \sum_{j=1}^{k_i} \alpha_{i,j} \bar{u}_{i,j} = 0$. For each i, put $\bar{v}_i = \sum_{j=1}^{k_i} \alpha_{i,j} \bar{u}_{i,j}$. Then $\sum_{i=1}^{m} \bar{v}_i = 0$. Note that $\bar{v}_i \in E_{\lambda_i}$. We proved in class that eigenvectors corresponding to distinct eigenvalues are linearly independent. It follows that $\bar{v}_i = 0$ for each i. Hence, $\sum_{j=1}^{k_i} \alpha_{i,j} \bar{u}_{i,j} = 0$. Since for every fixed i, the vectors $\bar{u}_{i,1}, \ldots, \bar{u}_{i,k_i}$ come from \mathcal{U}_i , they are linearly independent; it follows from $\sum_{j=1}^{k_i} \alpha_{i,j} \bar{u}_{i,j} = 0$ that $\alpha_{i,1} = 1, \ldots, \alpha_{i,k_i} = 0$.

- **6.6(b)** $f \sim g$ iff there exists $\varepsilon > 0$ such that f and g agree on $(0, \varepsilon)$.
- **6.6(c)** If two polynomials p and q are in the same equivalence class then $p \sim q$, so that p and q agree on some open interval, hence p = q.
- **6.6(d)** No. Let $f(x) = \cos x$, and suppose that the equivalence class of f contains a polynomial p. Then p and f agree on some open interval. Then $p^{(n)}$ agrees with $f^{(n)}$ on this interval for every $n \in \mathbb{N}$. For a sufficiently large n, $p^{(n)}$ is the zero function, while derivatives of f do not vans on any open interval; a contradiction.
- **6.7** We know that the matrix $R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents the rotation of \mathbb{R}^2 by 90°, and has no real eigenvectors and no real eigenvalues, so $\sigma(R) = \emptyset$ over \mathbb{R} . Let N be the 1×1 zero matrix. Put A to be the block diagonal matrix $A = \begin{bmatrix} R & 0 \\ 0 & N \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then $\sigma(A) = 0$

- $\sigma(R) \cup \sigma(N) = \emptyset \cup \{0\} = \{0\}$. On the other hand, R is invertible, hence $R^m \neq 0$ for any m. It follows that $A^m = \begin{bmatrix} R^m & 0 \\ 0 & N^m \end{bmatrix} \neq 0$, hence A is not nilpotent.
- **6.8** Hint: Use Problem 4.2.
- **6.9** Let Y be the set of all polynomials p in $\mathbb{P}_5(\mathbb{R})$ such that p(0) = 0. Clearly, Y consists of all the polynomials with zero constant term, i.e., $\alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \alpha_4 x^4 + \alpha_5 x^5$. Hence Y is a subspace and the set $\mathcal{B} = \{x^1, x^2, x^3, x^4, x^5\}$ is a basis of Y. Let $T : \mathbb{P}_5(\mathbb{R}) \to \mathbb{P}_5(\mathbb{R})$ given by (Tf)(x) = f(x-7). It is easy to see that T is a linear isomorphism and T(Y) = X. Hence X is a subspace of $\mathbb{P}_5(\mathbb{R})$ and $X \simeq Y$. In particular, the set $T(\mathcal{B})$, which equals

$$\{x-7,(x-7)^2,(x-7)^3,(x-7)^4,(x-7)^5\}$$

is a basis of X.

- **6.11** Every linear combination of elements of this set may be also viewed as a linear combination of $\{\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4, \dots\}$. Since the latter set is a Hamel basis of c_{00} , so is the given set.
- **6.12** Let \bar{u} be the constant one sequence. Then $X = \operatorname{span} \mathcal{B}$, where $\mathcal{B} = \{\bar{u}, \bar{e}_1, \bar{e}_2, \dots\}$, hence X is a subspace of $\mathbb{R}^{\mathbb{N}}$. Every element of X has a unique expansion with respect to \mathcal{B} , hence \mathcal{B} is a Hamel basis of X.
- **6.14** Let Y be any algebraic complement of X in Z. Let T be the projection onto X along Y and S the projection onto Y along X.
- **6.17** Let $\bar{x} \in \ker T$. Then $T(S\bar{x}) = S(T\bar{x}) = S(\bar{0}) = \bar{0}$, so that $Sx \in \ker T$. It follows that $\ker T$ is S-invariant.

Let $\bar{y} \in \text{Range } T$. Then $\bar{y} = T\bar{x}$ for some $\bar{x} \in X$. Then $S\bar{y} = S(T\bar{x}) = T(S\bar{x}) \in \text{Range } T$. It follows that Range T is S-invariant.

Let λ be an eigenvalue of T. Then the corresponding eigenspace is $\ker(T - \lambda I)$. Since $T - \lambda I$ commutes with S, its kernel is S-invariant.

For the last claim, just note that T^m commutes with T.

6.18(a) Suppose that Y is T-invariant. Take any projection $P: X \to X$ with Y = Range P. For every $\bar{x} \in X$, we have $P\bar{x} \in Y$ and, since Y is T-invariant, $\bar{y} := TP\bar{x} \in Y$. It follows that $P\bar{y} = \bar{y}$, so that $PTP\bar{x} = TP\bar{x}$ and, therefore, $(I - P)TP\bar{x} = 0$. Since \bar{x} was an arbitrary element of X, we conclude that (I - P)TP = 0.

Conversely, suppose that (I - P)TP = 0 for some projection P with Range P = Y. It follows that TP = PTP. Let $\bar{y} \in Y$, we need to show that $T\bar{y} \in Y$. Indeed, $\bar{y} = P\bar{y}$, so $T\bar{y} = TP\bar{y} = PTP\bar{y} \in Y$.

6.18(b) Suppose TP = PT for some projection P. Then Range P and $\ker P$ are invariant under T by Problem 6.17. Since P is a projection, we have $X = (\operatorname{Range} P) \oplus (\ker P)$, hence this is a reducing decomposition for T.

Conversely, suppose that $X = Y \oplus Z$, where Y and Z are both invariant under T. Let $P: X \to X$ be the projection onto Y along Z. Let $x \in X$, then x = y + z where $y = Px \in Y$ and $z = (I - O)x \in Z$. Then TPx = Ty = PTy because $Ty \in Y$ as Y is invariant. On the other hand, PTx = PTy + PTz. Since Z is invariant, we have $Tz \in Z$ and, therefore, TPz = 0, so that PTx = PTy. Thus, TPx = PTx, so that TP = PT.

7.1 WLOG, changing to the appropriate basis, we may assume that A equals its Jordan Canonical Form. We will use the following notation:

$$A = J_{2,3} \oplus J_{3,1} \oplus J_{3,5} \oplus J_{1,4} \oplus J_{0,2} \oplus J_{0,3} \oplus J_{0,3} \oplus J_{0,4} \oplus J_{0,1} \oplus J_{0,1} \oplus J_{0,1}$$

Using block-matrix arithmetic, we conclude that

$$A^k = J_{2,3}^k \oplus J_{3,1}^k \oplus J_{3,5}^k \oplus J_{1,4}^k \oplus J_{0,2}^k \oplus J_{0,3}^k \oplus J_{0,3}^k \oplus J_{0,4}^k \oplus J_{0,1}^k \oplus J_{0,1}^k \oplus J_{0,1}^k$$

for every power k. By Problem 6.19, the rank of A^k is the sum of the ranks of its blocks. The block $J_{2,3}$ is an upper-triangular matrix with non-zero diagonal entries, hence is invertible, and every power of it is invertible. It follows that it has full rank, that is, rank $J_{2,3} = 3$, and the same is true for every power of $J_{2,3}$. The same reasoning goes for all the other blocks with non-zero entries. On the other hand, $J_{0,4}$ is a 4×4 shift, hence rank $J_{0,4} = 3$, rank $J_{0,4}^2 = 2$, rank $J_{0,4}^3 = 1$, and rank $J_{0,4}^k = 0$ for all $k \ge 4$. The other nilpotent blocks behave in a similar way. Therefore, grouping together the non-nilpotent blocks and grouping together the nilpotent block, we get

$$\begin{aligned} \operatorname{rank} A &= & \left(3+1+5+4 \right) + \left(1+2+2+3+0+0+0 \right) = 21, \\ \operatorname{rank} A^2 &= & \left(3+1+5+4 \right) + \left(0+1+1+2+0+0+0 \right) = 17, \\ \operatorname{rank} A^3 &= & \left(3+1+5+4 \right) + \left(0+0+0+1+0+0+0 \right) = 14, \\ \operatorname{rank} A^4 &= & \left(3+1+5+4 \right) + \left(0+0+0+0+0+0+0 \right) = 13, \\ \operatorname{rank} A^5 &= & \left(3+1+5+4 \right) + \left(0+0+0+1+0+0+0 \right) = 13, \\ &\vdots &\vdots \end{aligned}$$

7.2 Observe that

$$\bar{e}_1 \mapsto \bar{e}_4 \mapsto \bar{e}_5 \mapsto \bar{0}, \quad \bar{e}_3 \mapsto \bar{e}_2 \mapsto \bar{e}_9 \mapsto \bar{e}_7 \mapsto \bar{0}, \quad \bar{e}_6 \mapsto \bar{0}.\bar{e}_8 \mapsto \bar{e}_8,$$

Here an arrow means that A maps \bar{e}_i into a scalar multiple of \bar{e}_j . This includes three chains and one loop. Consider a basis which is a permutation of the original basis (we just

enumerate the chains in the reverse order):

$$\bar{u}_1 = \bar{e}_5, \bar{u}_2 = \bar{e}_4, \bar{u}_3 = \bar{e}_1, \bar{u}_4 = \bar{e}_7, \bar{u}_5 = \bar{e}_9, \bar{u}_6 = \bar{e}_2, \bar{u}_7 = \bar{e}_3, \bar{u}_8 = \bar{e}_6, \bar{u}_9 = \bar{e}_8.$$

Then

 $A\bar{u}_1 = \bar{0}, A\bar{u}_2 = 4\bar{u}_1, A\bar{u}_3 = 3\bar{u}_2, A\bar{u}_4 = \bar{0}, A\bar{u}_5 = 5\bar{u}_4, A\bar{u}_6 = 6\bar{u}_5, A\bar{u}_7 = 2\bar{u}_6, A\bar{u}_8 = \bar{0}, A\bar{u}_9 = 7\bar{u}_9.$ Hence, in this basis, the matrix of A is

For convenience, we replace zeros with dots. This is a block-diagonal matrix with blocks of size 3×3 , 4×4 , 1×1 , and 1×1 . Since it is obtained by re-arranging the order of the basis vectors, it is of the form PAP^{-1} for some permutation matrix P.

Finally, using Problem 4.2, we can find an appropriate diagonal matrix D to convert all the entries in the 2nd diagonal into ones:

Clearly, this is the Jordan Canonical Form of A.

7.3 It is more convenient to convert the data into nullities using the Rank-Nullity Theorem: $d(A-2I)=1, d(A-3I)=2, d(A-3I)^2=4, d(A-3I)^3=5, d(A-3I)^4=6$. Since $\ker(A-2I)$ and $\ker(A-3I)$ are non-trivial, it follows that $2,3 \in \sigma(A)$. Consider their generalized eigenspaces. It follows from $\widetilde{E}_2 \supseteq \ker(A-2I)$ that $\dim \widetilde{E}_2 \geqslant \dim(A-2I) = d(A-2I) = 1$. Similarly, $\widetilde{E}_3 \supseteq \ker(A-3I)^4$ implies $\dim \widetilde{E}_3 \geqslant \dim(A-3I)^4 = d(A-2I)^4=6$. It follows from $\dim \widetilde{E}_2 + \dim \widetilde{E}_3 = 6 = \dim X$ that $X = \widetilde{E}_2 \oplus \widetilde{E}_3$. Therefore, $\sigma(A) = \{2,3\}$. It also follows that $\dim \widetilde{E}_2 = 1$ and $\dim \widetilde{E}_3 = 6$, so the corresponding superblocks in the Jordan form are 1×1 and 6×6 . It follows from d(A-3I)=2 that there are two Jordan blocks

for $\lambda = 3$. It now follows from $d(A - 3I)^2 = 4$ and $d(A - 3I)^3 = 5$ that these blocks have to be 4×4 and 2×2 . Thus, $A = J_{2,1} \oplus J_{3,4} \oplus J_{3,2}$.

- 7.4 Hint: similar to Problem 7.2.
- **7.5** $p_A(\lambda) = \det(\lambda I A) = (\lambda 2)^2(\lambda 3)^2$. It follows that the eigenvalues of A are 2 and 3, both have algebraic multiplicities 2.

To find $E_2 = \ker(A - 2I)$, solve $(A - 2I)\bar{x} = \bar{0}$. Row reduction of $A - 2I = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 \\ -1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, so that x_2 and x_4 are free variables. Taking first $x_2 = 1$ and $x_4 = 0$ and then taking $x_2 = 0$ and $x_4 = 1$, we get two vectors $\bar{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\bar{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Hence, $\{\bar{u}_1, \bar{u}_2\}$ is a basis of E_2 . It follows that the geometric multiplicity of $\lambda = 2$ is two, equals its algebraic multiplicity. So the superblock for $\lambda = 2$ is just diag(2, 2).

To find $E_3 = \ker(A - 3I)$, solve $(A - 3I)\bar{x} = \bar{0}$. Row reduction of $A - 3I = \begin{bmatrix} \frac{1}{2} & \frac{0}{2} & \frac{1}{0} & 0 \\ -\frac{1}{4} & 0 & 1 & -1 \end{bmatrix}$ yields $\begin{bmatrix} 1 & 0 & 0 & -1/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 1/3 \end{bmatrix}$, so that x_4 is a free variable. Taking first $x_4 = 3$, we get $\bar{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$. \bar{u}_3 is an eigenvector for $\lambda = 3$. $E_3 = \operatorname{span}\{\bar{u}_3\}$. Hence, the geometric multiplicity of $\lambda = 3$ is 1. Find a generalized eigenvector \bar{u}_4 for $\lambda = 3$ by solving $(A - 3I)\bar{u}_4 = \bar{u}_3$. Then $\{\bar{u}_1, \bar{u}_2, \bar{u}_3, \bar{u}_4\}$ is a required basis, and the Jordan form of A is $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$.

- **7.6** WLOG, A is a Jordan Form, with eigenvalues $\lambda_1, \ldots, \lambda_m$. Then p(A) is an upper triangular matrix with $p(\lambda_1), \ldots, p(\lambda_m)$ on the diagonal, so $\sigma(p(A)) = \{p(\lambda_1), \ldots, p(\lambda_m)\}$.
- **8.1** To show that $[\cdot, \cdot]$ is an inner product, verify that it satisfies the axioms of the inner product. The set $\{A^{-1}\bar{e}_1, \ldots, A^{-1}\bar{e}_n\}$ is an orthogonal basis for this inner product. Normalizing it, we get a required basis.
- **8.2** *Hint:* analyze the proofs of the inequalities.
- **8.5** To show that Y^{\perp} is a subspace, we need to verify that it is closed under scalar multiplication and addition.

Suppose that $\bar{x} \in Y^{\perp}$ and $\alpha \in \mathbb{F}$. Then $\bar{x} \perp \bar{y}$ for every $\bar{y} \in Y$, so that $(\alpha \bar{x}) \perp \bar{y}$ for every $\bar{y} \in Y$, hence $\alpha \bar{x} \in Y^{\perp}$.

Suppose that $\bar{x}_1\bar{x}_2 \in Y^{\perp}$ and $\alpha \in \mathbb{F}$. Then $\bar{x}_1 \perp \bar{y}$ and $\bar{x}_2 \perp y$ for every $\bar{y} \in Y$, so that $(\bar{x}_1 + \bar{x}_2) \perp \bar{y}$ for every $\bar{y} \in Y$, hence $\bar{x}_1 + \bar{x}_2 \in Y^{\perp}$.

Let P be the orthogonal projection onto Y. Then Y = Range P and $Y^{\perp} = \ker P$. Let Q = I - P be the complementary projection. Then $\ker Q = \text{Range } P = Y$ and $\operatorname{Range} Q = \ker P = Y^{\perp}$. It follows that Q is again orthogonal and that $Y = (Y^{\perp})^{\perp}$.

- **8.6(b)** We may identify X with \mathbb{F}^n for some n. Let $f: X \to \mathbb{F}$ be a linear functional. Then we may view f as a $1 \times n$ matrix. Writing it as a column and taking the complex conjugate of every entry, we get the required vector \bar{y} .
- **9.2** Use the facts that eigenvectors corresponding to distinct eigenvalues are linearly independent, and that any n linearly independent vectors in \mathbb{F}^n span all of \mathbb{F}^n .
- **9.3(a)** Take the matrix of all 1's. Its columns are linearly dependent, hence this matrix is not invertible.
- **9.3(b)** We claim that the minimal possible number is n. The columns must be linearly independent, hence no column is zero, hence every column must contain at least one non-zero entry, so there must be at least n non-zero entries in total. On the other hand, I has exactly n non-zero entries.
- 9.3(c) The matrices that have exactly one non-zero entry in every row and in every column.
- **9.4(a)** Yes. If $\bar{x}, \bar{y} \in Y \cap Z$ then $\bar{x}, \bar{y} \in Y$ and $\bar{x}, \bar{y} \in Z$, so that $\bar{x} + \bar{y} \in Y$ and $\bar{x} + \bar{y} \in Y$, hence $\bar{x} + \bar{y} \in Y \cap Z$. Therefore, $Y \cap Z$ is closed under addition. It can be shown in a similar fashion that $Y \cap Z$ is closed under scalar multiplication.
- **9.4(b)** No. Counterexample: let Y and Z be the x-axis and the y-axis in \mathbb{R}^2 .
- **9.5** If $\bar{u} = \bar{0}$ or $\bar{v} = \bar{0}$ then A = 0, in which case Range $A = \{0\}$ and $\ker A = \mathbb{R}^n$. So from now on, assume that both \bar{u} and \bar{v} are non-zero.

For any vector \bar{x} , we have

$$A\bar{x} = (\bar{u}\bar{v}^T)\bar{x} = \bar{u}(\bar{v}^T\bar{x}) = \langle \bar{v}, \bar{x}\rangle\bar{u}$$

Note that $\bar{v}^T \bar{x} = \langle \bar{v}, \bar{x} \rangle$ is a number, so $A\bar{x} = \bar{0}$ iff this number is zero, so $\bar{x} \in \ker A$ iff $\langle \bar{v}, \bar{x} \rangle = 0$ iff \bar{x} is orthogonal to \bar{v} . Thus,

$$\ker A = \left\{ \bar{x} \in \mathbb{R}^n : \langle \bar{v}, \bar{x} \rangle = 0 \right\} = \left\{ \bar{x} \in \mathbb{R}^n : \bar{x} \perp \bar{v} \right\}$$

= the set of all vectors orthogonal to \bar{v} .

Since \bar{v} is non-zero, $\langle \bar{v}, \bar{x} \rangle$ could be any number as \bar{x} runs through \mathbb{R} , so $A\bar{x}$ could be any scalar multiple of \bar{u} , hence Range $A = \operatorname{span}\{\bar{u}\}$.

9.6 (a) No. The polynomials p, q, and r lack the first power of x, hence every linear combination of them also lacks it, while $3 + x + 2x^3$ has it.

(b)

$$3 + x^2 + 2x^3 + 7x^5 = \alpha p(x) + \beta q(x) + \gamma r(x) = \alpha + (\alpha + \beta)x^2 - \beta x^3 + \gamma x^5,$$

which is satisfied when $\alpha = 3$, $\beta = -2$, and $\gamma = 7$.

- **9.7** Suppose that $\alpha_1 f + \alpha_2 g + \alpha_3 h = 0$ (the constant zero function). Then $\alpha_1 + \alpha_2 \sin t + \alpha_3 (1 + t^2) = 0$ for every t. Plugging in t = 0 and $t = \pi$, we get $\alpha_1 + \alpha_3 = 0$ and $\alpha_1 + \alpha_3 (1 + \pi^2) = 0$. This is a linear system for α_1 and α_3 ; solving it, we get $\alpha_1 = \alpha_3 = 0$. Plugging this into the original equation, we get $\alpha_2 \sin t = 0$ for all t, which yields $\alpha_2 = 0$.
- **9.8** The proof that T is linear is straightforward. $\ker T = \{(x_1, 0, 0, \dots) : x_1 \in \mathbb{R}\}$. The kernel is non-trivial, hence T is not one-to-one. Range $T = \mathbb{R}^{\mathbb{N}}$; so T is onto. Let $\bar{x} = (1, \lambda, \lambda^2, \lambda^3, \dots)$, then $T\bar{x} = \lambda \bar{x}$, so λ is an eigenvalue for T, while \bar{x} is an eigenvector for T and λ .
- **9.9** The proof that S is linear is straightforward. It follows from the definition that S is one-to-one; hence its kernel is trivial. S is not onto because the vector $(1,0,0,\ldots)$ is not in the range. The range of S consists of all the sequences whose first component is 0. Since $\ker S = \{0\}$, zero is not an eigenvalue of S. Let $\lambda \neq 0$, show that λ is not an eigenvalue of S. Suppose it is, then $S\bar{x} = \lambda x$ for some non-zero vector x. Then

$$(0, x_1, x_2, x_3, \dots) = (\lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4, \dots).$$

Since $\lambda \neq 0$, we conclude from $0 = \lambda x_1$ that $x_1 = 0$. Then $0 = \lambda x_2$, so that $x_2 = 0$. Proceeding inductively, we see that $x_n = 0$ for all n, hence $\bar{x} = 0$; a contradiction.

9.16

$$J_{2,0} \oplus J_{3,2} \oplus J_{1,2} \oplus J_{4,3} \oplus J_{2,5}$$
 and $J_{2,0} \oplus J_{3,2} \oplus J_{1,2} \oplus J_{4,3} \oplus J_{1,5} \oplus J_{1,5}$

- **9.19** Suppose that $\sigma(A) = \{\lambda_1, \ldots, \lambda_m\}$ and $\arg \lambda_i = \frac{m_i}{k_i} \pi$, where $m_i \in \mathbb{Z}$ and $k_i \in \mathbb{N}$. Put $k = 2k_1 \cdots k_m$. Then $k \cdot \arg \lambda_i$ is an integer multiple of 2π , hence $\lambda_i^k = 1$. It follows from Spectral Mapping Theorem that $\sigma(A^k) = \{1\}$, so that $\sigma(A^k I) = \{0\}$. Hence $A^k I$ is an $n \times n$ nilpotent matrix, so that $(A^k I)^n = 0$.
- **9.22** $(A^*A)^* = A^*A^{**} = A^*A$.
- **9.24(a)** Let $\bar{x} \in \ker T^*$; we will show that $\bar{x} \in (\operatorname{Range} T)^{\perp}$ or, equivalently, $\bar{x} \perp \operatorname{Range} T$, that is, $\bar{x} \perp (T\bar{y})$ for every \bar{y} . Indeed, take an arbitrary \bar{y} , then

$$\langle \bar{x}, T\bar{y} \rangle = \langle T^*\bar{x}, \bar{y} \rangle = \langle \bar{0}, \bar{y} \rangle = 0.$$

Conversely, suppose that $\bar{x} \in (\operatorname{Range} T)^{\perp}$; we will show that $\bar{x} \in \ker T^*$. For every vector \bar{y} , we have

$$0 = \langle \bar{x}, T\bar{y} \rangle = \langle T^*\bar{x}, \bar{y} \rangle.$$

Since this holds true for every vector \bar{y} , it follows from Problem 9.31 that $T^*\bar{x} = 0$, hence $\bar{x} \in \ker T^*$.

9.24(b) Take the orthogonal complements of both sides of (a).

- **9.24(c)** Replace T with T^* in (a).
- **9.28** Let p_A be the characteristic polynomial of A. Then 4+i is a root of p_A . Since p_A has real coefficients, $\overline{4+i}=4-i$ is also a root of p_A . Since p_A is a cubic polynomial, it has a real root. Therefore, p_A has three distinct roots, so that A has three distinct eigenvalues. It follows that A is diagonalizable.