2020-MA

EE24BTECH11020 - Ellanti Rohith

1) Let $\mathcal{P}(\mathbb{R})$ denote the power set of \mathbb{R} , equipped with the metric

$$d(U, V) = \sup_{x \in \mathbb{R}} |\chi_U(x) - \chi_V(x)|,$$

where χ_U and χ_V denote the characteristic functions of the subsets U and V, respectively, of \mathbb{R} . The set $\{\{m\}: m \in \mathbb{Z}\}$ in the metric space $(\mathcal{P}(\mathbb{R}), d)$ is [GATE 2020]

- a) bounded but not totally bounded
- c) compact
- b) totally bounded but not compact
- d) not bounded

2) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \chi_{(n,n+1)}(x),$$

where $\chi_{(n,n+1)}$ is the characteristic function of the interval (n,n+1]. For $\alpha \in \mathbb{R}$, let $S_{\alpha} = \{x \in \mathbb{R} : f(x) > \alpha\}$. Then [GATE 2020]

c) S_0 is closed

a) $S_{\frac{1}{2}}$ is open b) $S_{\frac{\sqrt{3}}{2}}$ is not measurable

d) $S_{\frac{1}{\sqrt{2}}}$ is measurable

3) For $n \in \mathbb{N}$, let $f_n, g_n : (0, 1) \to \mathbb{R}$ be functions defined by

$$f_n(x) = x^n$$
 and $g_n(x) = x^n(1-x)$.

Then [GATE 2020]

- a) $\{f_n\}$ converges uniformly but $\{g_n\}$ does not converge uniformly
- b) $\{g_n\}$ converges uniformly but $\{f_n\}$ does not converge uniformly
- c) both $\{f_n\}$ and $\{g_n\}$ converge uniformly
- d) neither $\{f_n\}$ nor $\{g_n\}$ converge uniformly
- 4) Let u be a solution of the differential equation y' + xy = 0 and let $\phi = u\psi$ be a solution of the differential equation $y'' + 2xy' + (x^2 + 2)y = 0$ satisfying $\phi(0) = 1$ and $\phi'(0) = 0$. Then $\phi(x)$ is [GATE 2020]
 - a) $(\cos^2 x) e^{-\frac{x^2}{2}}$

b) $(\cos x) e^{-\frac{x^2}{2}}$

- 5) For $n \in \mathbb{N} \cup \{0\}$, let y_n be a solution of the differential equation

$$xy'' + (1 - x)y' + ny = 0$$

satisfying $y_n(0) = 1$. For which of the following functions w(x), the integral

$$\int_0^\infty y_p(x) \ y_q(x) \ w(x) \ dx, \quad (p \neq q)$$

a)
$$e^{-x^2}$$

b)
$$e^{-x}$$

c)
$$xe^{-x^2}$$

d)
$$xe^{-x}$$

6) Suppose that

$$X = \{(0,0)\} \cup \left\{ \left(x, \sin \frac{1}{x} \right) \colon x \in \mathbb{R} \setminus \{0\} \right\}$$

and

$$Y = \{(0,0)\} \cup \left\{ \left(x, x \sin \frac{1}{x}\right) : x \in \mathbb{R} \setminus \{0\} \right\}$$

are metric spaces with metrics induced by the Euclidean metric of \mathbb{R}^2 . Let B_X and B_Y be the open unit balls around (0,0) in X and Y, respectively. Consider the following statements:

[GATE 2020]

- I. The closure of B_X in X is compact.
- II. The closure of B_Y in Y is compact.

a) both I and II are true

c) I is false II is true

b) I is true II is false

- d) both I and II are false
- 7) If $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ is a function such that $f(z) = f\left(\frac{z}{|z|}\right)$ and its restriction to the unit circle is continuous, then [GATE 2020]
 - a) f is continuous but not necessarily analytic
 - b) f is analytic but not necessarily a constant function
 - c) f is a constant function
 - d) $\lim_{z\to 0} f(z)$ exists
- 8) For a subset S of a topological space, let Int(S) and \overline{S} denote the interior and closure of S, respectively. Then which of the following statements is TRUE? [GATE 2020]
 - a) If S is open, then S = Int(S)
 - b) If the boundary of S is empty, then S is open
 - c) If the boundary of S is empty, then S is not closed
 - d) If $S \setminus S$ is a proper subset of the boundary of S, then S is open
- 9) Suppose $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 are the smallest topologies on \mathbb{R} containing S_1, S_2 and S_3 , respectively, where

$$S_1 = \left\{ \left(a, a + \frac{\pi}{n} \right) : a \in \mathbb{Q}, n \in \mathbb{N} \right\},$$

$$S_2 = \{(a, b) : a < b, \ a, b \in \mathbb{Q}\},\$$

$$S_3 = \{(a,b) : a < b, \ a,b \in \mathbb{R}\}.$$

Then

[GATE 2020]

a) $\mathcal{T}_3 \supseteq \mathcal{T}_1$

b) $\mathcal{T}_3 \supseteq \mathcal{T}_2$

- c) $\mathcal{T}_1 = \mathcal{T}_2$ d) $\mathcal{T}_1 \subseteq \mathcal{T}_2$
- 10) Let $M = \begin{pmatrix} \alpha & 3 & 0 \\ \beta & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}$. Consider the following statements:
 - I: There exists a lower triangular matrix L such that $M = LL^t$, where L^t denotes the transpose of L.
 - II: Gauss-Seidel method for Mx = b $(b \in \mathbb{R}^3)$ converges for any initial choice $x_0 \in \mathbb{R}^3$. Then:

- a) I is not true when $\alpha > \frac{9}{2}, \beta = 3$
- b) I is true when $\alpha = 5, \beta = 3$

- c) II is not true when $\alpha > \frac{9}{2}, \beta = -1$
- d) II is not true when $\alpha = 4, \beta = \frac{3}{2}$
- 11) Let I and J be the ideals generated by $\{5, \sqrt{10}\}$ and $\{4, \sqrt{10}\}$ in the ring $\mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$, respectively. Then:
 - a) both I and J are maximal ideals
- c) I is not a maximal ideal but J is a prime ideal
- b) I is a maximal ideal but J is not a prime ideal d) neither I nor J is a maximal ideal
- 12) Suppose V is a finite dimensional vector space over \mathbb{R} . If W_1, W_2 and W_3 are subspaces of V, then which of the following statements is **TRUE**?

[GATE 2020]

a) If
$$W_1 + W_2 + W_3 = V$$
 then span $(W_1 \cup W_2) \cup \text{span}(W_2 \cup W_3) \cup \text{span}(W_3 \cup W_1) = V$

b) If
$$W_1 \cap W_2 = \{0\}$$
 and $W_1 \cap W_3 = \{0\}$, then $W_1 \cap (W_2 + W_3) = \{0\}$

- c) If $W_1 + W_2 = W_1 + W_3$, then $W_2 = W_3$
- d) If $W_1 \neq V$, then span $(V \setminus W_1) = V$
- 13) Let $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$. The system

$$x_1 - 2x_2 + \alpha x_3 = 8$$

$$x_1 - x_2 + x_4 = \beta$$

$$x_1, x_2, x_3, x_4 \ge 0$$

has NO basic feasible solution if:

[GATE 2020]

a)
$$\alpha < 0, \beta > 8$$

b)
$$\alpha > 0, 0 < \beta < 8$$

c)
$$\alpha > 0, \beta < 0$$

d)
$$\alpha < 0, \beta < 8$$