Задача 1. В каждой клетке бесконечной шахматной доски сидит по зайцу (все зайцы одинаковы и одинаково расположены).

- а) Охотник стреляет по направлению с иррациональным тангенсом угла наклона к линиям доски. Докажите, что он попадет хотя бы в одного зайца.
- 6) Докажите, что если тангенс угла наклона рационален, то достаточно малых зайцев можно расположить так, что охотник промахнется.

Задача 2. Конь прыгает скачками $(\sqrt{2}, \sqrt{3})$ по полю, где квадратно-гнездовым способом посеяна кукуруза. Докажите, что он обязательно сшибет хотя бы один росток (конь сшибает росток только в том случае, если приземляется на него; в прыжках конь ростки не задевает).

Определение 1. Коэффициентом качества приближения p/q иррационального числа α (где $p, q \in \mathbb{Z}$, q > 0) называется число q>0) называется число $q\left|\alpha-\frac{p}{q}\right|.$ Из двух приближений лучшим считается то, у которого меньший коэффициент качества.

Задача 3. Какое из приближений числа $\sqrt{2}$ лучше: 3/2; 7/5 или 1,41?

Задача 4. Пусть α — некоторое иррациональное число. Докажите, что для любого $q \in \mathbb{N}$ существует приближение $p/q \in \mathbb{Q}$ числа α с коэффициентом качества, меньшим 1/2.

Задача 5. Докажите, что для любых натуральных чисел $N,\ k$ и любого иррационального числа α существует по крайней мере k таких различных дробей $p/q \in \mathbb{Q}$, что $q \leqslant Nk$ и $q \left| \alpha - \frac{p}{q} \right| < \frac{1}{N}$.

Задача 6. Докажите, что для любого $\alpha \notin \mathbb{Q}$ и для сколь угодно большого N существует бесконечно много различных приближений $p/q \in \mathbb{Q}$ с коэффициентом качества, меньшим 1/N.

Задача 7. Пусть число α иррационально. Докажите, что существует бесконечно много таких рациональных чисел p/q, что $\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.$

Определение 2. Число $\alpha \in \mathbb{R}$ называется t-неприближаемым, если найдется такое положительное число $c\in\mathbb{R},$ что при любых $m\in\mathbb{Z},$ $n\in\mathbb{R}$ выполнено однолиз двух условий: $\alpha=\frac{1}{n}$ или $\left|\alpha-\frac{1}{n}\right|>\frac{1}{n^t}.$

Задача 8. Докажите, что рациональные числа 1-неприближаемы.

Задача 9. Докажите, что число $e = \sum_{i=0}^{+\infty} \frac{1}{i!}$ иррационально.

Задача 10. Пусть $\alpha \notin \mathbb{Q}$ — корень многочлена A(x) степени $n \in \mathbb{N}$ с целыми коэффициентами. а) Докажите, что для любого рационального числа p/q, не являющегося корнем A(x), справедливо неравенство $|q^n A(p/q)| \ge 1$. **6)** Докажите, что α является n-неприближаемым.

Задача 11. Докажите, что ряд $\sum_{i=1}^{+\infty} \frac{1}{2^{i!}}$ сходится к *такому числу*, т. е. к такому числу, которое не может быть корнем ненулевого многочлена с целыми коэффициентами.

Задача 12*. Докажите, что для любого $\varepsilon > 0$ множество действительных чисел, не являющихся $(2 + \varepsilon)$ -неприближаемыми, имеет меру 0 (т. е. для каждого $\delta > 0$ это множество можно покрыть счётной системой интервалов, сумма длин которой меньше δ).

Задача 13**. a) (*Теорема Гурвица-Бореля*) Докажите, что для любого иррационального числа α существует бесконечно много таких его приближений $p/q \in \mathbb{Q}$, что $\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2\sqrt{5}}$.

б) Число $\sqrt{5}$ в условии теоремы пункта а) нельзя увеличить: найдутся иррациональные числа, имеющие лишь конечное число приближений, удовлетворяющих неравенству измененной теоремы.

1 a	1 б	2	3	4	5	6	7	8	9	10 a	10 б	11	12	13 a	13 6