සියලු ම හිමිකම් ඇවිටිම /(மුழுப் பதிப்புரிமையுடையது/All Rights Reserved)

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

2019.08.05 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමහර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம்

- 10 நிமிடங்கள்

Additional Reading Time

- 10 minutes

අමහර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය			
------------	--	--	--

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සීයලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🗱 පුශ්න පකුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණි	තය I
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
•	5	
A	6	
	7	
	8	
	9	
	10	
	11	
1	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

	වකතුව
ඉලක්කමෙන්	
අකුරින්	

	සංකොත අංක
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ: 2	
අධීක්ෂණය කළේ:	

	A කොටස
1.	ගණිත අභපුහන මූලධර්මය භාවිතමයන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n (2r\!-\!1)=n^2$ බව සාධනය කරන්න.

	······
	······································
2.	එක \emptyset රූප සටහනක $y=\left 4x-3\right $ හා $y=3-2\left x\right $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාක්ක්වික අගයන් සොයන්න.
	••••••
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3.	ආගන්ඩ් සටහනක, $\operatorname{Arg} \left(z - 2 - \frac{1}{2} \right)$	$2i\big) = -\frac{3\pi}{4}$	සපුරාලන	z සංකීර්ණ	සංඛනා	නිරූපණය	කරන	ලක්ෂාව(
	පථයෙහි දළ සටහනක් අඳින්න.	•	2					

ඒ නයින් හෝ අන් අයුරකින් හෝ. $\operatorname{Arg}\left(z-2-2i\right)=-rac{3\pi}{4}$ වන පරිදි $\left|i\,\overline{z}\right|+1$ හි අවම අගය සොයන්න.

4. $\left(x^3 + \frac{1}{x^2}\right)^7$ හි ද්විපද පුසාරණයේ x^6 හි සංගුණකය 35 බව පෙන්වන්න.

ඉහත ද්විපද පුසාරණයේ x වලින් ස්වායත්ත පදයක් **නොපවතින** බවත් පෙන්වන්න.

5.	$\lim_{x\to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi}$ බව පෙන්වන්න.
6.	
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi+\ln 4)$ බව පෙන්වන්න.
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi+\ln 4)$ බව පෙන්වන්න.
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi+\ln 4)$ බව පෙන්වන්න.
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින් හුමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi+\ln 4)$ බව පෙන්වන්න.

7.	C යනු t \in \mathbb{R} සඳහා $x=at^2$ සහ $y=2at$ මගින් පරාමිතිකව දෙනු ලබන පරාවලය යැයි ගනිමු; මෙහි $a eq 0$ වේ.
	C පරාවලයට $\left(at^2,2at\right)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය $y+tx=2at+at^3$ මගින් දෙනු ලබන බව පෙන්වන්න.
	C පරාවලය මත $P\equiv (4a,4a)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවට එම පරාවලය නැවත $Q\equiv (aT^2,2aT)$
	ලක්ෂායක දී හමු වේ. $T=-3$ බව පෙන්වන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
	ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි බණ්ඩාංක සොයන්න.

9.	$A \equiv (-7,9)$ ලක්ෂාය $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.
	S=0 වෘත්තය මත වූ, A ලක්ෂායට ආසන්නතම ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.
	······································
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{2}$ බව පෙන්වන්න.
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න.
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න. $ anrac{\pi}{12}=2-\sqrt{3}$ බව අපෝහන ය කරන්න.
10.	
10,	
10.	
10.	
10,	
10.	
10.	
10.	
10.	
10.	
10.	
10.	
10.	
10.	
10.	

සියලු ම හිමිකම් ඇවිරිනි/முழுப் பதிப்புரிமையுடையது/All Rights Reserved)

(නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $p \in \mathbb{R}$ හා $0 යැයි ගනිමු. <math>p^2 x^2 + 2x + p = 0$ සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. α හා β යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමු. α හා β දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් $\alpha + \beta$ හා $\alpha\beta$ ලියා දක්වා

$$\frac{1}{(\alpha-1)}\cdot\frac{1}{(\beta-1)}=\frac{p^2}{p^2+p+2}$$

බව පෙත්වත්ත.

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සමීකරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මූල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශන** තාත්ත්වික සංඛන දෙකක් යැයි ද $f(x) = x^3 + 2x^2 dx + cd$ යැයි ද ගනිමු. (x-c) යන්න f(x) හි සාධකයක් බවත්, (x-d) මගින් f(x) බෙදූ විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x+2)^2$ මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) P_1 හා P_2 යනු පිළිවෙළින් $\left\{A,B,C,D,E,1,2,3,4\right\}$ හා $\left\{F,G,H,I,J,5,6,7,8\right\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛාාංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සෑදීමට අවශාව ඇත. පහත එක් එක් අවස්ථාවේ දී සෑදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P_1 න් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.
 - $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6U_r$ බව පෙන්වන්න.

ඒ නගීන්, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r=rac{5}{144}-rac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගනිමු.

 $n\in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n W_r=rac{5}{144}-rac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව **අපෝහන**ය කරන්න.

ඒ නයින්, $\sum_{r=1}^\infty W_r$ අපරිමිත ශේණිය අභිසාරී බව පෙන්වා එහි ඓකාශ සොයන්න.

$$\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$ හා $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ යනු $\mathbf{A} \mathbf{B}^{\mathsf{T}} = \mathbf{C}$ වන පරිදි වූ නාහස යැයි

ගනිමු; මෙහි $a,b\!\in\!\mathbb{R}$ වේ.

a=2 හා b=1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොපවතින බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු. ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදි ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසය වේ.

- (b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.
 - (i) Re $z \le |z|$, 800

(ii)
$$z_2 \neq 0$$
 සඳහා $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$

බව පෙන්වන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(rac{z_1}{z_1+z_2}
ight) \leq rac{\left|z_1
ight|}{\left|z_1+z_2
ight|}$ බව **අපෝහනය** කරන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)+\operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right)=1$ බව සතාපාපනය කර,

 $z_1,z_2\in\mathbb{C}$ සඳහා $\left|z_1+z_2\right|\leq \left|z_1\right|+\left|z_2\right|$ බව පෙන්වන්න.

(c)
$$\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$$
 යැයි ගනිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියත වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගනිමු.

 $x \neq 3$ සඳහා f(x) හි වනුත්පන්නය, f'(x) යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුඛ, y – අන්තෘඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

 $x \neq 3$ සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ බව දී ඇත. y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල x - 0ණ්ඩාංක

ෂොයන්න.

(b) යාබද රූපයෙන් පතුලක් සහිත සෘජු වෘත්තාකාර කේතු ඡින්නකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග 30 cm ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය r cm යැයි ගනිමු.

බේසමේ පරිමාව $V\,\mathrm{cm}^3$ යන්න $0\!<\!r\!<\!30$ සඳහා

$$V = rac{7}{3} \pi r^2 \sqrt{900 - r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.
බෙසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

$$15.(a)$$
 $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int\limits_3^4 \sqrt{\frac{x-3}{5-x}} \,\mathrm{d}x$ අගයන්න.

(b) භින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න,

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ බව **අපෝහනය** කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියතයකි.

ඒ නයින්, $\int f(t) \, \mathrm{d}t$ සොයන්න.

(c) a හා b නියත වන $\int\limits_a^b f(x)\mathrm{d}x=\int\limits_a^b f(a+b-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} \, \mathrm{d}x$$
 හි අගය සොයන්න.

16. 12x-5y-7=0 හා y=1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි ඛණ්ඩාංක ලියා දක්වන්න.

 $m{l}$ යනු මෙම රේඛාවලින් සෑදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගනිමු. $m{l}$ සරල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායයක් යැයි ගනිමු. P හි බණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ \in \mathbb{R} වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

 $S\!=\!0$ යනු AB විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහනය** කරන්න.

 $U\!=\!0$ යනු l \supset ලම්බව, B හරහා යන සරල රේඛාවේ සමීකරණය බව පෙන්වන්න.

සියලු $\lambda \in \mathbb{R}$ සඳහා $S + \lambda U = 0$ සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුභින්න වූ ද අචල ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
 to

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

බව **අපෝහනය** කරන්න.

ඒ නයින්, $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විසඳන්න.

- (b) ABC නිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=\beta$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහත (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- $(c) \ 2 an^{-1} x + an^{-1} (x+1) = rac{\pi}{2}$ විසඳන්න. ඒ නයින්, $\cos \left(rac{\pi}{4} rac{1}{2} an^{-1} \left(rac{4}{3}
 ight)
 ight) = rac{3}{\sqrt{10}}$ බව පෙන්වන්න.