模块一 集合 (★☆)

强化训练

- 1. (2022 河南宜阳月考 ★) 集合 $A = \{x \in \mathbb{N} \mid x = \frac{16}{n}, n \in \mathbb{N}\}$ 中的元素个数为()

- (A) 3 (B) 4 (C) 5 (D) 6

答案: C

解析:分析可知 A 中的元素 x 为自然数,且 $x = \frac{16}{n}(n \in \mathbb{N})$,故考虑哪些自然数 n 能使 $\frac{16}{n}$ 也为自然数即可,

当且仅当n取 1, 2, 4, 8, 16 这些自然数时, $\frac{16}{1}$ 才是自然数,所以集合A中有 5 个元素.

- 2. (2022 广州模拟 ★) 已知集合 $A = \{a-2, a^2+4a, 12\}$,且 $-3 \in A$,则a的值为()
 - (A) -3 或 -1 (B) -1 (C) 3 (D) -3

答案: D

解析: -3这个元素在集合 A 中,故依次考虑 A 中的每一个待定元素为 -3,

因为 $-3 \in A$,所以a-2=-3或 $a^2+4a=-3$,解得: a=-1或-3;

注意还需代回去检验集合 A 是否满足元素互异,

当a=-1时, $a-2=a^2+4a=-3$,不满足元素互异,舍去;

当 a = -3 时, $A = \{-5, -3, 12\}$,满足题意;综上所述,a 的值为 -3.

3. $(2022 \cdot 山西忻州月考 \cdot ★★)$ 已知 $m \in \mathbb{R}$, $n \in \mathbb{R}$, 若集合 $\{m, \frac{n}{m}, 1\} = \{m^2, m + n, 0\}$, 则 $m^{2023} + n^{2023} = ($

- $(A) -2 \qquad (B) -1 \qquad (C) 1$

- (D) 2

答案: B

解析:两个集合中已经确定的元素分别是1和0,其中0比较特殊,故分析在另一集合中谁是0,

由题意, $0 \in \{m, \frac{n}{n}, 1\}$,而 $m \neq 0$,所以 $\frac{n}{n} = 0$,故n = 0,此时两个集合分别为 $\{m, 0, 1\}$, $\{m^2, m, 0\}$,

对比可得 $m^2=1$,解得: $m=\pm 1$,还需检验是否满足元素互异,

经检验,当m=1时,两个集合都不满足元素互异,所以m=-1,故 $m^{2023}+n^{2023}=(-1)^{2023}+0^{2023}=-1$.

4. (2022 • 安徽模拟 • ★) 已知集合 $A = \{1, 2, m^2\}$, $B = \{1, m\}$, 若 $A \cup B = A$, 则实数 m 的值为_____.

答案: 2或0

解析:因为 $A \cup B = A$,所以 $B \subseteq A$,对比两集合的元素可得m = 2或 $m = m^2$,所以m = 2或1或0,

还需检验是否满足元素互异,经检验,当m=1时,A,B都不满足元素互异;当m=2或0时,满足题意.

【反思】 $A \cup B = A \Leftrightarrow B \subset A$, $A \cap B = A \Leftrightarrow A \subset B$.

5. (2023 •河北衡水中学统考一模 •★)已知集合 $A = \{x \mid a < x < a + 2\}$, $B = \{x \mid y = \ln(6 + x - x^2)\}$,且 $A \subseteq B$, 则 a 的取值范围是 ()

$$(A)$$
 [-1,2]

(A)
$$[-1,2]$$
 (B) $(-1,2)$ (C) $[-2,1]$ (D) $(-2,1)$

$$(C)$$
 [-2,1]

$$(D)$$
 $(-2,1)$

答案: C

解析: 先分析集合 B, B 中的元素是 x, x 要能使 $y = \ln(6 + x - x^2)$ 有意义,

由 $6+x-x^2>0$ 可得 $x^2-x-6=(x+2)(x-3)<0$,解得: -2< x<3,所以 $B=\{x\mid -2< x<3\}$,

如图,因为 $A \subseteq B$,所以 $\begin{cases} a \ge -2 \\ a+2 < 3 \end{cases}$,解得: $-2 \le a \le 1$.

6. (2023 • 广州一模 • ★) 已知集合 $A = \{x \in \mathbb{Z} | x^2 - 2x - 3 < 0\}$,则集合 A 的子集个数为()

$$(A)$$
 3

答案: C

解析: $x^2 - 2x - 3 < 0 \Leftrightarrow (x+1)(x-3) < 0 \Leftrightarrow -1 < x < 3$,又 $x \in \mathbb{Z}$,所以 $A = \{0,1,2\}$,故A的子集个数为 $2^3 = 8$.

7. (2023 • 浙江模拟 • ★)已知集合 M 满足 $\{2,3\}$ ⊆ M ⊆ $\{1,2,3,4,5\}$,那么这样的集合 M 的个数为()

答案: C

解析:分析发现M中必有元素 2, 3, 而元素 1, 4, 5可有可无,所以我们从 1, 4, 5中选出若干元素加 入到 $\{2,3\}$ 中,得到的集合就是M,故M的个数即为集合 $\{1,4,5\}$ 的子集个数,

集合 $\{1,4,5\}$ 有 3 个元素 \Rightarrow 其子集个数为 $2^3 = 8$,所以满足条件的集合 M 有 8 个.

8. (2023•山西模拟•★) 已知集合 $A = \{x \in \mathbb{Z} | x^2 - x - 6 < 0\}$, $B = \{y | y = x^2\}$, 则 $A \cap B$ 的子集有()

答案: C

解析: $x^2 - x - 6 < 0 \Leftrightarrow (x+2)(x-3) < 0 \Leftrightarrow -2 < x < 3$, 结合 $x \in \mathbb{Z}$ 可得 $A = \{-1,0,1,2\}$;

集合B中的元素用y表示,在 $y=x^2$ 中y的取值范围即为集合B,

 $y = x^2 \ge 0 \Rightarrow B = \{y \mid y \ge 0\}$, 所以 $A \cap B = \{0,1,2\}$, 故 $A \cap B$ 的子集个数为 $2^3 = 8$.

9. (2023 • 江西模拟 • ★) 己知集合 $A = \{-1,0\}$, $B = \{1,2\}$,则集合 $C = \{z \mid z = x^2 + y^2, x \in A, y \in B\}$ 的真子集 个数为(

(A) 3

- (B) 7
- (C) 15
- (D) 16

答案: C

解析: 先分析集合 C,可将 x 和 y 所有可能的组合列表来看,

х	-1	-1	0	0
y	1	2	1	2

$x^2 + v^2$	2	5	1	4
		_		_

所以 $C = \{2,5,1,4\}$, C 中有 4 个元素 \Rightarrow C 的真子集有 $2^4 - 1 = 15$ 个.

10. (2022 • 新高考 II 卷 • ★) 已知集合 A = {-1,1,2,4}, B = {x | |x-1| ≤ 1}, 则 A ∩ B = ()

- (A) $\{-1,2\}$ (B) $\{1,2\}$ (C) $\{1,4\}$ (D) $\{-1,4\}$

答案: B

解析: $|x-1| \le 1 \Leftrightarrow -1 \le x - 1 \le 1 \Leftrightarrow 0 \le x \le 2$,所以 $B = \{x \mid 0 \le x \le 2\}$,又 $A = \{-1,1,2,4\}$,所以 $A \cap B = \{1,2\}$.

11. (2021・全国乙卷・★) 已知集合 $S = \{s \mid s = 2n+1, n \in \mathbb{Z}\}$, $T = \{t \mid t = 4n+1, n \in \mathbb{Z}\}$, 则 $S \cap T = ($

- $(A) \varnothing$
- $(B) S \qquad (C) T$
- (D) Z

答案: C

解法 1: 若看不出两个集合的公共部分,可列出部分元素来找规律,

集合 S 中的元素为…,-7,-5,-3,-1,1,3,5,7,…,集合 T 中的元素为…,-7,-3,1,5,9,…,

对比可发现 T 中的元素 S 中全部都有,所以 $T \subseteq S$,故 $S \cap T = T$.

解法 2: 也可通过推理来得出 $T \subseteq S$,把 T 中的元素化为 S 中元素的形式即可,

对任意的 $t \in T$,可设t = 4m + 1,其中 $m \in \mathbb{Z}$,则 $t = 2 \times 2m + 1$,

记 2m=n,于是 t=2n+1,由 $m \in \mathbb{Z}$ 可得 $n=2m \in \mathbb{Z}$,所以 $t \in S$,从而 $T \subseteq S$,故 $S \cap T = T$.

12. (2022・全国乙卷・★)设全集 $U = \{1,2,3,4,5\}$,集合M满足 $_U M = \{1,3\}$,则()

- (A) $2 \in M$ (B) $3 \in M$ (C) $4 \notin M$ (D) $5 \notin M$

答案: A

解析: 因为 $_{U}M = \{1,3\}$, 所以 M = $) = <math>\{2,4,5\}$, 故 $2 \in M$.

【反思】设A是全集U任意的一个子集,则A=擦 $(_UA)$.

13. (2022 •新疆乌鲁木齐二模 •★) 已知集合 $M = \{x \mid x^2 - 4x - 5 \le 0\}$, $N = \{x \mid -3 < x < 1\}$,则 $M \cup N = ($

- (A) (-3,5] (B) [-1,1) (C) (-3,-1] (D) (1,5]

答案: A

解析: $x^2 - 4x - 5 \le 0 \Leftrightarrow (x+1)(x-5) \le 0 \Leftrightarrow -1 \le x \le 5$, 所以 M = [-1,5], 如图, $M \cup N = (-3,5]$.

14. (2023 •全国乙卷 •★) 设全集 $U = \mathbb{R}$,集合 $M = \{x \mid x < 1\}$, $N = \{x \mid -1 < x < 2\}$,则 $\{x \mid x \geq 2\} = ($

- (A) $_{U}(M \cup N)$ (B) $N \cap _{U}M$ (C) $_{U}(M \cap N)$ (D) $M \cap _{U}N$

答案: A

解析:正面求解不易,直接验证选项,A 项,由题意, $M \cup N = \{x \mid x < 2\}$,所以 $_U(M \cup N) = \{x \mid x \ge 2\}$, 故选 A.

15. (2023 •江苏扬州期末 •★) 集合 $A = \{-1,0,1,2,3\}$, $B = \{0,2,4\}$,则图中阴影部分所表示的集合为()

(A) $\{0,2\}$ (B) $\{-1,1,3,4\}$ (C) $\{-1,0,2,4\}$ (D) $\{-1,0,1,2,3,4\}$

答案: B

解析:观察图形可得图中阴影部分表示在 $A \cup B$ 中把 $A \cap B$ 的部分去掉后余下的部分,

由题意, $A \cup B = \{-1,0,1,2,3,4\}$, $A \cap B = \{0,2\}$,所以阴影部分表示的集合为 $\{-1,1,3,4\}$.

16. (2023・全国模拟・★★)设全集 $U = \{x \in \mathbb{N} \mid -2 \le x < 7\}$, $_U(A \cup B) = \{1,5,6\}$, $_{B = \{2,4\}}$, 则图中阴 影部分表示的集合是()

(A) $\{-2,-1,0,3\}$ (B) $\{0,3\}$ (C) $\{0,2,3,4\}$

(D) {3}

答案: B

解析:由题意, $U = \{x \in \mathbb{N} \mid -2 \le x < 7\} = \{0,1,2,3,4,5,6\}$,因为 $_U(A \cup B) = \{1,5,6\}$,所以 $A \cup B = \{0,2,3,4\}$, 接下来应先弄清楚阴影那块表示什么,阴影部分表示的是在 $A \cup B$ 中把B去掉,余下的部分,即 $\{0,3\}$.

17. (2023 •江苏苏州模拟 •★★) 已知 $f(x) = \sqrt{x^2 - 1}$ 的定义域为 A,集合 $B = \{x \in \mathbb{R} \mid 1 < ax < 2\}$,若 $B \subseteq A$, 则实数a的取值范围是(

(A) [-2,1] (B) [-1,1] (C) $(-\infty,-2] \cup [1,+\infty)$ (D) $(-\infty,-1] \cup [1,+\infty)$

答案: B

解析: $x^2 - 1 \ge 0 \Rightarrow x^2 \ge 1 \Rightarrow x \le -1$ 或 $x \ge 1$, 所以 $A = (-\infty, -1] \cup [1, +\infty)$,

再求 B,要解不等式 1 < ax < 2,只需同除以 a 即可,但需讨论 a 的正负,

当 a=0 时, $\forall x \in \mathbb{R}$, 1 < ax < 2 都不成立,所以 $B=\emptyset$,满足 $B \subset A$;

当 a > 0 时,由 1 < ax < 2 可得 $\frac{1}{a} < x < \frac{2}{a}$,所以 $B = (\frac{1}{a}, \frac{2}{a})$,

注意到此时 $\frac{1}{a} > 0$,从而 $B \subseteq A$ 的情况如图 1,故 $\frac{1}{a} \ge 1$,解得: $0 < a \le 1$;

当 a < 0 时,由 1 < ax < 2 可得 $\frac{2}{a} < x < \frac{1}{a}$,所以 $B = (\frac{2}{a}, \frac{1}{a})$,

注意到此时 $\frac{1}{a}$ <0,从而 $B \subseteq A$ 的情况如图 2,故 $\frac{1}{a} \le -1$,解得: $-1 \le a < 0$;

综上所述,实数a的取值范围是[-1,1].

18. (2023 • 江苏扬州期末 • ★★)已知集合 $A = \{x \mid \frac{4-x}{x+1} \ge 0\}$, $B = \{x \mid x^2 - (a+1)^2 x + 2a(a^2+1) < 0\}$, 若 $A \cap B = \emptyset$, 则实数 a 的取值范围是 ()

(B)
$$\{1\} \bigcup (2, +\infty)$$

(A)
$$(2,+\infty)$$
 (B) $\{1\} \cup (2,+\infty)$ (C) $\{1\} \cup [2,+\infty)$ (D) $[2,+\infty)$

(D)
$$[2,+\infty)$$

答案: C

解析:
$$\frac{4-x}{x+1} \ge 0 \Leftrightarrow \begin{cases} (4-x)(x+1) \ge 0 \\ x+1 \ne 0 \end{cases}$$
, 解得: $-1 < x \le 4$, 所以 $A = (-1,4]$;

对于集合 B 中的不等式,若将常数项 $2a(a^2+1)$ 拆成 -2a 和 $-(a^2+1)$,即可产生 $-(a+1)^2$,故能分解因式, $x^2 - (a+1)^2 x + 2a(a^2+1) < 0 \Leftrightarrow (x-2a)(x-a^2-1) < 0$ ①,要解此不等式,需比较 2a 和 a^2+1 的大小, 因为 $a^2+1-2a=(a-1)^2\geq 0$,所以 $a^2+1\geq 2a$,其中 $a^2+1=2a$ 和 $a^2+1>2a$ 对应①的解集不同,又得讨论, 当a=1时,不等式①即为 $(x-2)^2<0$,无解,所以 $B=\emptyset$,满足 $A\cap B=\emptyset$;

当 $a \neq 1$ 时,由①可得 $2a < x < a^2 + 1$,所以 $B = (2a, a^2 + 1)$,要看A = B何时交集为空集,可画数轴分析, 如图,要使 $A \cap B = \emptyset$,注意到 $a^2 + 1 > 0 > -1$,所以不会出现图 1 所示的情形,只可能是图 2 的情形, 且端点 2a 与 4 可以重合,重合时端点处也不是公共元素,所以 $2a \ge 4$,解得: $a \ge 2$; 综上所述, 实数 a 的取值范围是 $\{1\} \cup [2, +\infty)$.

19. (2023•全国模拟•★★) 某班 45 名学生参加"3.12 植树节"活动,每位学生都参加除草、植树两项 劳动,依据劳动表现,评定为优秀、合格两个等级,结果如下表:

项目 等级	优秀	合格	合计
除草	30	15	45
植树	20	25	45

若在两个项目中都合格的学生最多有10人,则在两个项目中都优秀的人数最多为()

答案: C

解析: 涉及两个项目两个等级, 关系较复杂, 故考虑画图分析,

设除草优秀的学生构成集合 A,植树优秀的学生构成集合 B,设都合格和都优秀的人数分别为 x,y, 我们已知的是 $x \le 10$,故只需建立x和y的关系,就能求出y的范围,可由总人数为 45 来建立,

如图,(20-y)+y+(30-y)+x=45,所以y=x+5,因为x≤10,所以y≤15,当且仅当x=10时取等号, 故两个项目中都优秀的人数最多为15.

20. (2023 · 重庆模拟 · ★★) 某班有 40 名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组. 已知参加数学、物理、化学小组的人数分别为 26, 15, 13, 同时参加数学和化学小组的有 6 人, 同时参加物理和化学小组的有 4 人,则同时参加数学和物理小组的人数为____.

答案: 4

解析: 涉及三个小组, 且彼此的人员有重叠, 关系较复杂, 故考虑画图分析,

如图,设同时参加数学和物理小组的人数为 x,则只参加数学、物理小组的分别有 20-x 人,11-x 人,要求 x,可由总人数为 40 来建立方程并求解,由题意,(20-x)+(11-x)+x+6+4+3=40,解得: x=4.

《一数•高考数学核心方法》