

What is claimed is:

- 1 1. A switch comprising:
2 a plurality of field effect transistors connected in series, each field effect transistor
3 including a gate, a source, and a drain;
4 said gate of one of said series connected field effect transistors being a different
5 size from said gate of another series connected field effect transistor.

- 1 2. The switch as claimed in claim 1, wherein said gate of one of said plurality of
2 series connected field effect transistor has a longer gate length and/or gate width than said
3 gate of said other series connected field effect transistor.

- 1 3. The switch as claimed in claim 1, wherein said gate of one of said plurality of
2 series connected field effect transistor has a distance to its drain port that is less than a
3 distance to its source port.

- 1 4. The switch as claimed in claim 1, wherein said gate of one of said plurality of
2 series connected field effect transistor has a distance to its source port that is less than a
3 distance to its drain port.

- 1 5. The switch as claimed in claim 3, wherein said gate of said other series
2 connected field effect transistor has a distance to its source port that is equal to a distance
3 to its drain port.

- 1 6. The switch as claimed in claim 4, wherein said gate of said other series
2 connected field effect transistor has a distance to its source port that is equal to a distance
3 to its drain port.

- 1 7. The switch as claimed in claim 1, wherein the different gate sizes increase a
2 parasitic capacitance within the switch.

- 1 8. A switch comprising:

2 a plurality of dual-gate field effect transistors connected in series, each dual-gate
3 field effect transistor including two gates, a source, and a drain;
4 one of said series connected dual-gate field effect transistors having a modified
5 gate therein that is of a different size from gates of other series connected dual-gate field
6 effect transistors.

1 9. The switch as claimed in claim 8, wherein said modified gate of said series
2 connected dual-gate field effect transistor has a longer gate length and/or gate width than
3 gates of said other series connected dual-gate field effect transistor.

1 10. The switch as claimed in claim 8, wherein said modified gate of said series
2 connected dual-gate field effect transistor has a distance to its drain port that is less than a
3 distance to its source port.

1 11. The switch as claimed in claim 8, wherein said modified gate of said series
2 connected dual-gate field effect transistor has a distance to its source port that is less than
3 a distance to its drain port.

1 12. The switch as claimed in claim 10, wherein gates of said other series
2 connected dual-gate field effect transistors have a distance to its source port that is equal
3 to a distance to its drain port.

1 13. The switch as claimed in claim 11, wherein gates of said other series
2 connected dual-gate field effect transistors have a distance to its source port that is equal
3 to a distance to its drain port.

1 14. The switch as claimed in claim 8, wherein a second series connected dual-
2 gate field effect transistor has a modified gate therein that is of a different size from gates
3 of other series connected dual-gate field effect transistors.

1 15. The switch as claimed in claim 8, wherein said dual-gate field effect
2 transistors are high-electron-mobility-transistors.

1 16. The switch as claimed in claim 8, wherein the different gate sizes increase a
2 parasitic capacitance within the switch.

1 17. The switch as claimed in claim 8, wherein said dual-gate field effect
2 transistors include a transistor connection segment between said gates and a heavily
3 doped cap layer fabricated upon said transistor connection segment between said gates.

1 18. A high-electron-mobility-transistor, comprising:
2 two gate fingers;
3 a transistor connection segment between said gate fingers; and
4 a heavily doped cap layer fabricated upon said transistor connection segment
5 between said gate fingers.

1 19. The high-electron-mobility-transistor as claimed in claim 18, wherein said
2 gate fingers are of different sizes.

1 20. The high-electron-mobility-transistor as claimed in claim 19, wherein one of
2 said gate fingers has a distance to its source port that is less than a distance to its drain
3 port.

1 21. The high-electron-mobility-transistor as claimed in claim 19, wherein one of
2 said gate fingers has a distance to its drain port that is less than a distance to its source
3 port.

1 22. A radio frequency single pole double throw switch, comprising:
2 a receiver port;
3 a transmitter port;
4 an antenna port;
5 a receiver section connecting said receiver port to said antenna; and
6 a transmitter section connecting said transmitter port to said antenna;
7 said receiver section including a plurality of dual-gate field effect transistors
8 connected in series, each dual-gate field effect transistor including two gates, a source,
9 and a drain such that one of said series connected dual-gate field effect transistors has a

10 modified gate therein that is of a different size from gates of other series connected dual-
11 gate field effect transistors.

1 23. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein a source of said modified gate transistor is connected to said receiver port.

1 24. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein a drain of said modified gate transistor is connected to said antenna port.

1 25. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein a second series connected dual-gate field effect transistor has a second modified
3 gate therein that is of a different size from gates of other series connected dual-gate field
4 effect transistors.

1 26. The radio frequency single pole double throw switch as claimed in claim 25,
2 wherein a source of said modified gate transistor is connected to said receiver port and a
3 drain of said second modified gate transistor is connected to said antenna port.

1 27. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein said dual-gate field effect transistors are high-electron-mobility-transistors.

1 28. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein said modified gate of said series connected dual-gate field effect transistor has a
3 longer gate length and/or gate width than gates of said other series connected dual-gate
4 field effect transistor.

1 29. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein said modified gate of said series connected dual-gate field effect transistor has a
3 distance to its drain port that is less than a distance to its source port.

1 30. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein said modified gate of said series connected dual-gate field effect transistor has a
3 distance to its source port that is less than a distance to its drain port.

1 31. The radio frequency single pole double throw switch as claimed in claim 29,
2 wherein gates of said other series connected dual-gate field effect transistors have a
3 distance to its source port that is equal to a distance to its drain port.

1 32. The radio frequency single pole double throw switch as claimed in claim 30,
2 wherein gates of said other series connected dual-gate field effect transistors have a
3 distance to its source port that is equal to a distance to its drain port.

1 33. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein the different gate sizes increase a parasitic capacitance within the switch.

1 34. The radio frequency single pole double throw switch as claimed in claim 22,
2 wherein said dual-gate field effect transistors include a transistor connection segment
3 between said gates and a heavily doped cap layer fabricated upon said transistor
4 connection segment between said gates.

1 35. A radio frequency single pole double throw switch, comprising:
2 a receiver port;
3 a transmitter port;
4 an antenna port;
5 a receiver section connecting said receiver port to said antenna; and
6 a transmitter section connecting said transmitter port to said antenna;
7 said receiver section including a plurality of field effect transistors connected in
8 series, each field effect transistor including a gate, a source, and a drain such that one of
9 said series connected field effect transistors has a modified gate therein that is a different
10 size from said gate of another series connected field effect transistor.

1 36. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein the source of said modified gate transistor is connected to said receiver port.

1 37. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein the drain of said modified gate transistor is connected to said antenna port.

1 38. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein a second series connected field effect transistors has a second modified gate
3 therein that is of a different size from gates of other series connected field effect
4 transistors.

1 39. The radio frequency single pole double throw switch as claimed in claim 38,
2 wherein the source of said modified gate transistor is connected to said receiver port and
3 the drain of said second modified gate transistor is connected to said antenna port.

1 40. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein said modified gate of said series connected field effect transistor has a longer
3 gate length and/or gate width than gates of said other series connected field effect
4 transistor.

1 41. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein said modified gate of said series connected field effect transistor has a distance
3 to its drain port that is less than a distance to its source port.

1 42. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein said modified gate said series connected field effect transistor has a distance to
3 its source port that is less than a distance to its drain port.

1 43. The radio frequency single pole double throw switch as claimed in claim 41,
2 wherein gates of said other series connected field effect transistors have a distance to its
3 source port that is equal to a distance to its drain port.

1 44. The radio frequency single pole double throw switch as claimed in claim 42,
2 wherein gates of said other series connected field effect transistors have a distance to its
3 source port that is equal to a distance to its drain port.

1 45. The radio frequency single pole double throw switch as claimed in claim 35,
2 wherein the different gate sizes increase a parasitic capacitance within the switch.

1 46. The radio frequency single pole double throw switch claimed in claim 35,
2 wherein the different gate sizes improve the linearity without impacting the ESD and
3 EOS ruggedness.