

FUNCTION INVERSES

Why

We want a notion of reversing functions.

Definition

Reversing functions does not make sense if the function is not one-to-one. Let $f: X \to Y$. If x_1 goes to y and x_2 goes to y (i.e., $f(x_1) = f(x_2) = y$), then what should y go to. One answer is that we should have a function which gives all the domain values which could lead to y. This is the inverse image (see Function Images) $f^{-1}(\{y\})$. Nor does reversing functions make sense if f is not onto. If there does not exist $x \in X$ so that y = f(x), then $f^{-1}(\{y\}) = \emptyset$.

In the case, however, that the function is one-to-one and onto, then each element of the domain corresponds to one and only one element of the codomain and vice versa. In this case, for all $y \in Y$, $f^{-1}(\{y\})$ is a singleton $\{x\}$ where f(x) = y. In this case, we define a function $g: Y \to X$ so that g(y) = x if and only if f(x) = y.

Proposition 1 (Uniqueness). Let $f: A \to B$, $g: B \to A$, and $h: B \to A$. If g and h are both inverse functions of f, then g = h.

Proposition 2 (Existence). If a function is one-to-one and onto, it has an inverse; and conversely.¹

Composites and inverses

Let $f: X \to Y$ and $g: Y \to Z$. Then g^{-1} maps $\mathcal{P}(Z)$ to $\mathcal{P}(Y)$ and f^{-1} maps $\mathcal{P}(Y)$ to $\mathcal{P}(X)$. Then the following is immediate

Proposition 3. $(gf)^{-1} = f^{-1}g^{-1}$

¹A proof will appear in future editions.

