POMC User's Guide

Michele Chiari

Abstract

POMC is an implementation of the automaton construction for formulas of Precedence-Oriented Temporal Logic (POTL), and the model checking procedure thereof. This document is a reference guide to its input and output formats, and also describes at a high level its architecture and source code.

1 Introduction

Precedence-Oriented Temporal Logic (POTL) [6] is a novel temporal logic formalism based on the family of Operator Precedence Languages (OPL), a subclass of deterministic context-free languages. POTL is strictly more expressive than LTL and other temporal logics based on subfamilies of context-free languages, such as CaRet [3] and NWTL [2]. In particular, POTL reasons on an algebraic structure equipped with, besides the usual linear order, a binary nesting relation between word positions, which can be one-to-one, one-to-many, or many-to-one. Such a relation is more general than the one found in Nested Words [4], because the latter may only be one-to-one. POTL can be applied to the specification of several kinds of requirements on procedural programs with exceptions.

Besides some results concerning its expressiveness, we introduced an automata-based model checking procedure for POTL. This procedure consists in building an Operator Precedence Automaton (OPA), the class of pushdown automata that identifies OPL, accepting the language denoted by a given POTL formula. The size of the generated automaton is exponential in the length of the formula, which is asymptotically comparable with other linear-time temporal logic formalisms such as LTL, CaRet, and NWTL.

POMC is a tool that implements the automaton construction for POTL, and a model checking procedure for it. For the time being, only the construction for finite words has been implemented. Given a POTL formula φ and an input OPA modeling some system, POMC builds the OPA equivalent to $\neg \varphi$, computes its intersection with the input OPA, and checks the emptiness of the resulting OPA. Both the OPA construction and the intersection are done on-the-fly. POMC also supports providing input models in MiniProc, a simple procedural programming language with exceptions. MiniProc programs are automatically translated into equivalent OPA.

We used POMC to prove some interesting properties of programs which we modeled as OPA. Such experiments are contained in pomc files in the opa and opa-more subdirectories. Some more experiments where the model is written in MiniProc are contained in directory miniproc.

We show how to use POMC in Section 2. If you wish to examine the input formulas and OPA for the experiments more carefully, or to write your own, we describe the format of POMC input files in Section 3. We also demonstrate the use of the tool with

a few experiments in Section 4. Finally, Section 5 contains a high-level description of the source code.

2 Quick-Start Guide

POMC has been developed in the Haskell programming language, and packaged with the Haskell Tool Stack¹. POMC can be built from sources by typing the following commands in a shell:

```
$ cd ~/path/to/POMC-sources
```

- \$ stack setup
- \$ stack build

Then, POMC can be executed on an input file file.pomc as follows:

```
$ stack exec pomc -- file.pomc
```

Directory eval contains several POMC input files. Such files contain POTL formulas and OPA to be checked against them. For more details on the format of POMC input files, see Section 3.

Directory eval also contains the Python script mcbench.py, which may be useful to evaluate POMC input files, as it also prints a summary of the resources used by POMC. It must be executed with a subdirectory of ~/path/to/POMC-sources as its working directory. If invoked with no arguments, it executes POMC on all input files in the current working directory. E.g.,

```
$ cd ~/path/to/POMC-sources/eval
```

\$./mcbench.py opa

evaluates all *.pomc files in directory ~/path/to/POMC-sources/eval/opa. The script can also be invoked with POMC files as its arguments, which are then evaluated. E.g.,

```
$ cd ~/path/to/POMC-sources/eval/opa
```

```
$ ./mcbench.py 1-generic-small.pomc 2-generic-medium.pomc
```

executes POMC with input files 1-generic-small.pomc and 2-generic-medium.pomc. mcbench.py can be invoked with the following optional flags:

- -iter <#iters> Number of iterations of the benchmarks to be performed. The final table printed by the script contains the mean time and memory values computed on all iterations. (Default: 1)
- -jobs <#jobs> Number of benchmarks to be run in parallel. If you provide a value greater than 1, make sure you have enough CPU cores on your machine. (Default: 1)
- -ms Output time in milliseconds instead of seconds.

3 POMC Input/Output Format

POMC takes in input plain text files of two possible formats.

https://www.haskellstack.org/

	call	rot	han	ove			call	\mathbf{ret}	han	\mathbf{exc}	\mathbf{stm}
						call	<	÷	< <	>	<u></u> <
call	<	Ė	<	⋗							
			>			1		_	> <	· .	
han	<·	>	<	÷		nan	<	<i>></i>	<	=	<
						\mathbf{exc}	➣	>	>	⋗	➣
exc	<i>></i>	<i>></i>	>	<i>></i>		\mathbf{stm}	>	>	> >	≽	>
(a) OPM $M_{\mathbf{call}}$					((b) OPI	м $M_{ m stm}$	ı			

Figure 1

3.1 Providing input models as OPA

The first input format contains a requirement specification in terms of a list of POTL formulas, and an OPA to be checked against them:

where STATE_SET is either a single state, or a space-separated list of states, surrounded by parentheses. States are non-negative integer numbers (e.g. (0 1 ...)). AP_SET is a space-separated list of atomic propositions, surrounded by parentheses (e.g. (call p1) or ("call" "p1")). In more detail:

- prec is followed by a comma-separated list of precedence relations between structural labels, that make up an Operator Precedence Matrix. The list is terminated by a semicolon. Precedence relations (PR) can be one of <, =, or >, which respectively mean <, ≐, and >. Structural labels (SL) can be any sequence of alphabetic characters.
- formulas is followed by a comma-separated, semicolon-terminated list of POTL formulas. The syntax of such formulas is defined later in this section.
- opa is followed by the explicit description of an OPA. The list of initial and final states must be given, as well as the transition relations.

Additionally, POMC input files may contain C++-style single-line comments starting with $\$ and C-style multi-line comments enclosed in /* and */.

External files can be included with

```
include = "path/to/file.inc";
```

where the path is relative to the pomc file location.

POTL formulas can be written by using the operators in the "POMC Operator" column of Table 1, following the same syntax rules as in [5, 6].

Once POMC is executed on an input file in the format above, it checks whether the given OPA satisfies the given formulas, one by one.

Consider the example input file 1-generic-small.pomc, reported below:

```
prec = call < call, call = ret, call < han, call > exc,
       ret > call, ret > ret, ret > han, ret > exc,
       han < call, han > ret, han < han, han = exc,
       exc > call, exc > ret, exc > han, exc > exc;
formulas = G ((call And pb And (T Sd (call And pa)))
                  --> (PNu exc Or XNu exc));
opa:
  initials = 0;
  finals = 10;
  deltaPush =
    (0, (call pa),
                       1),
    (1, (han),
                       2),
    (2, (call pb),
                       3),
    (3, (call pc),
                       4),
    (4, (call pc),
                       4),
    (6, (call perr), 7),
    (8, (call perr), 7);
  deltaShift =
    (4, (exc),
                       5),
    (7, (ret perr),
                       7),
    (9, (ret pa),
                       11);
  deltaPop =
    (4, 2, 4),
    (4, 3, 4),
    (4, 4, 4),
    (5, 1, 6),
    (7, 6, 8),
    (7, 8, 9),
    (11, 0, 10);
First, OPM M_{call} from [6] (Figure 1a) is chosen.
   The meaning of the formula G ((call And pb And (T Sd (call And pa)))
-> (PNu exc Or XNu exc)), or \Box((\mathbf{call} \land p_B \land Scall(\top, p_A)) \implies CallThr(\top)),
is explained in the paper.
   POMC will check the OPA against the formula, yielding the following output:
Model Checking
Formula: G ((("call" And "pb") And (T Sd ("call" And "pa")))
                 --> ((PNu "exc") Or (XNu "exc")))
Input OPA state count: 12
Result: True
Elapsed time: 14.59 s
```

Group	POTL Operator	POMC Operator	Notation	Associativity
	「一	~, Not	Prefix	_
	\bigcirc^d	PNd	Prefix	_
	\bigcirc^u	PNu	Prefix	_
	\ominus^d	PBd	Prefix	_
	\ominus^u	PBu	Prefix	_
	χ_F^d	XNd	Prefix	_
>	χ_F^u	XNu	Prefix	_
Unary	$egin{array}{c} \chi_F^u \ \chi_P^d \end{array}$	XBd	Prefix	_
Ď	$egin{array}{c} \chi^u_P \ \circlearrowleft^d_H \ \end{array}$	XBu	Prefix	_
	\bigcirc_H^d	HNd	Prefix	_
	$igcircline{igcup_H^u}{igcircline{\ominus_H^d}}$	HNu	Prefix	_
	$ig _{\ominus^{\overline{d}}_H}$	HBd	Prefix	_
	$ig _{\ominus^u_H}$	HBu	Prefix	_
	\Diamond	F, Eventually	Prefix	_
		G, Always	Prefix	_
	\mathcal{U}_χ^d	Ud	Infix	Right
	$\mathcal{U}_{\chi}^{\tilde{u}}$	Uu	Infix	Right
ary	$\mid \mathcal{S}_{\chi}^{d} \mid$	Sd	Infix	Right
Bin	\mathcal{S}_{χ}^{u}	Su	Infix	Right
POTL Binary	$egin{array}{c} \mathcal{U}^d_\chi \ \mathcal{U}^u_u \ \mathcal{S}^d_\chi \ \mathcal{S}^u_\chi \ \mathcal{U}^d_H \end{array}$	HUd	Infix	Right
) O	$egin{array}{c} \mathcal{U}_H^u \ \mathcal{S}_H^d \end{array}$	HUu	Infix	Right
	$\mid \; \mathcal{S}^d_H \;$	HSd	Infix	Right
	\mathcal{S}_H^u	HSu	Infix	Right
5	٨	And, &&	Infix	Left
Prop. Binary	V	Or,	Infix	Left
Bi	0	Xor	Infix	Left
.ob	\implies	Implies,>	Infix	Right
Pı	\iff	Iff, <>	Infix	Right

Table 1: This table contains all currently supported POTL operators, in descending order of precedence. Operators listed on the same line are synonyms. Operators in the same group have the same precedence. Note that operators are case sensitive.

Total elapsed time: 14.59 s (1.4593e1 s)

Indeed, the OPA does satisfy the formula. POMC also outputs the time taken by each acceptance check and, when a formula is rejected, a (partial) counterexample trace.

3.2 Providing MiniProc input models

The second kind of input files also contain POTL formulas, and a program in the *MiniProc* language to be checked against them. MiniProc is a simplified procedural programming language, where variables are all global and only take Boolean values (note that MiniProc is not Turing-complete, so any use of the word 'program' when referring to it is a deliberate abuse of terminology). This limitation allows POMC to translate every MiniProc program into an OPA, that is then checked against the

supplied formulas. This kind of input files have this form:

```
formulas = FORMULA [, FORMULA ...] ;
program:
PROGRAM
MiniProc programs have the following syntax:
PROGRAM := [DECLS] FUNCTION [FUNCTION ...]
DECLS := var IDENTIFIER [, IDENTIFIER ...]
FUNCTION := IDENTIFIER () { STMT; [STMT ...] }
STMT := IDENTIFIER := BEXPR
      | while (BEXPR) { [STMT ...] }
      | if (BEXPR) { [STMT ...] } else { [STMT ...] }
      | try { [STMT ...] } catch { [STMT ...] }
      | IDENTIFIER()
      throw
BEXPR := BEXPR && BDISJ | BDISJ
BDISJ := BDISJ || BTERM | BTERM
BTERM := !BTERM | (BEXPR) | IDENTIFIER | true | false
```

In the definition, non-terminal symbols are uppercase, and keywords lowercase. Parts surrounded by square brackets are optional, and ellipses mean that the enclosing group can be repeated zero or more times. An IDENTIFIER is any sequence of letters, numbers, or characters '.', ':' and '_', starting with a letter or an underscore.

The program starts with a variable declaration, which must include all variables used in the program. Then, a sequence of functions are defined, the first one being the entry-point to the program. Function bodies consist of semicolon-separated statements. Assignments, while loops and ifs have the usual semantics. The try-catch statement executes the catch block whenever an exception is thrown by any statement in the try block (or any function it calls). Exceptions are thrown by the throw statement, and they are not typed (i.e., there is no way to distinguish different kinds of exceptions). Functions can be called by prepending their name to the () token (they do not admit arguments, as all variables are global). Since all variables are Boolean, expressions can be composed with the logical and (&&), or (||) and negation (!) operators.

POMC automatically translates such programs into OPA in a way similar to [6]. There are two main differences. First, assignment statements are explicitly represented as push transitions with label stm. We use OPM $M_{\rm stm}$ of Figure 1b. Second, a dummy exc is raised at the end of try blocks to match the han and pop its stack symbol. Such excs do not cause the execution of the catch block, and can be recognized because they do not terminate any function, so $\neg \ominus^u$ call holds in them.

It is possible to declare *modules* by including a double colon (::) in function names. E.g., function A::B::C() is contained in module A::B, which is contained in A. In the OPA resulting from the program, the module names hold whenever a contained function is called or returns. This is useful for referring to multiple functions at once in POTL formulas, hence drastically reducing formula length and closure size.

An example input file is given below:

```
program:
var foo;
pa() {
  foo = false;
  try {
    pb();
  } catch {
    pc();
}
pb() {
  if (foo) {
    throw;
  } else {}
pc() { }
  POMC prints the following:
Model Checking
Formula: G ((("call" And "pb") And ("call" Sd ("call" And "pa")))
  --> ((PNu "exc") Or (XNu "exc")))
Input OPA state count: 28
Result: True
Elapsed time: 803.7 ms
Total elapsed time: 803.7 ms (8.0370e-1 s)
```

4 Some experiments

In this section we report the results of some experiments provided in the eval directory. The experiments were executed on a laptop with a 2.2 GHz Intel processor and 15 GiB of RAM, running Ubuntu GNU/Linux 20.04.

4.1 Directory opa

This directory contains a few programs modeled as OPA, on which POMC proves or disproves some interesting specifications. The resources employed by POMC on such tasks are reported in Table 2. If you wish to repeat such experiments, you may run the following commands:

```
$ cd ~/path/to/POMC-sources/eval
$ ./mcbench.py opa
```

	Benchmark name	# states	Time (ms)	Memory (KiB)		Result
				Total	MC only	
1	generic small	12	867	70,040	10,166	True
2	generic medium	24	673	70,064	4,043	False
3	generic larger	30	1,014	70,063	14,160	True
4	Jensen	42	305	70,050	3,154	True
5	unsafe stack	63	1,493	109,610	43,177	False
6	safe stack	77	637	70,089	7,234	True
7	unsafe stack neutrality	63	5,286	383,312	167,654	True
8	safe stack neutrality	77	840	70,077	16,773	True

Table 2: Results of the evaluation.

Generic procedural programs. Formula

$$\Box \big((\mathbf{call} \wedge \mathbf{p}_B \wedge \mathit{Scall}(\top, \mathbf{p}_A)) \implies \mathit{CallThr}(\top) \big)$$

means that whenever procedure p_B is executed and at least one instance of p_A is on the stack, p_B is terminated by an exception. We checked it against three OPA representing some simple procedural programs with exceptions and recursive procedures. The formula holds on benchmarks no. 1 and 3, but not on no. 2.

Stack Inspection. [7] contains an example Java program for managing a bank account, which uses the security framework of the Java Development Kit to enforce user permissions. The program allows the user to check the account balance, and to withdraw money. To perform such tasks, the invoking program must have been granted permissions CanPay and Debit, respectively. We modeled such program as an OPA (bench. 4), and proved that the program enforces such security measures effectively by checking it against the formula

$$\Box(\mathbf{call} \land \mathtt{read} \implies \neg(\top \, \mathcal{S}^d_{_{Y}} \, (\mathbf{call} \land \neg \mathtt{CanPay} \land \neg \mathtt{read})))$$

meaning that the account balance cannot be read if some function in the stack lacks the CanPay permission (a similar formula checks the Debit permission).

Exception Safety. [8] is a tutorial on how to make exception-safe generic containers in C++. It presents two implementations of a generic stack data structure, parametric on the element type T. The first one is not exception-safe: if the constructor of T throws an exception during a pop action, the topmost element is removed, but it is not returned, and it is lost. This violates the strong exception safety [1] requirement that each operation is rolled back if an exception is thrown. The second version of the data structure instead satisfies such requirement.

While exception safety is, in general, undecidable, it is possible to prove the stronger requirement that each modification to the data structure is only committed once no more exceptions can be thrown. We modeled both versions as OPA, and checked such requirement with the following formula:

$$\square(\mathbf{exc} \implies \neg((\ominus^u \mathtt{modified}) \vee \chi^u_P \mathtt{modified}) \wedge \chi^u_P(\mathtt{Stack} :: \mathtt{push} \vee \mathtt{Stack} :: \mathtt{pop})))$$

POMC successfully found a counterexample for the first implementation (5), and proved the safety of the second one (6).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Formula	Time	Memor	y (KiB)	Res-
$ \bigcirc^{d}(\bigcirc^{d}(\operatorname{call} \wedge \chi_{F}^{u}(\operatorname{exc})) \\ \bigcirc^{d}(\operatorname{han} \wedge (\chi_{F}^{t}(\operatorname{exc} \wedge \chi_{F}^{u}\operatorname{call}))) \\ \square(\operatorname{exc} \implies \chi_{F}^{u}\operatorname{call}) \\ \square(\operatorname{exc} \implies \chi_{F}^{u}\operatorname{call}) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{ret} U_{X}^{d} \operatorname{WRx})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{call} U_{X}^{d} \cap \operatorname{call})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge (\neg \operatorname{call} U_{X}^{d} \cap \operatorname{call})) \\ \square(\operatorname{call} \wedge \operatorname{pa} \wedge \operatorname{call} \cap cal$		(ms)	Tot.	MC	ult
	$\chi_F^d \mathrm{p}_{Err}$	1.1	70,095	175	False
$ \begin{array}{ c c c c } \hline \Box(\textbf{exc} \implies \chi_F^u \textbf{call}) & 10.7 & 70,099 & 839 & True \\ \hline T $\mathcal{U}_d^d \textbf{exc} & 2.2 & 70,093 & 121 & False \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_d^d \textbf{exc})) & 4.3 & 70,094 & 113 & False \\ \hline \Box((\textbf{call} \land p_A \land (\neg \textbf{ret} \mathcal{U}_d^d \textbf{WRx})) \implies \chi_F^u \textbf{exc}) & 3,257.7 & 238,833 & 102,582 & True \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\bigcirc^d \textbf{call}))) & 0.7 & 70,094 & 139 & False \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\bigcirc^d \textbf{call}))) & 3.4 & 70,108 & 126 & False \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\bigcirc^d \textbf{call}))) & 1.3 & 70,096 & 137 & False \\ \hline \Box((\textbf{call} \land p_A \land CallThr(\top)) \implies CallThr(\textbf{e}_B)) & 7,793.7 & 402,420 & 173,639 & False \\ \hline \bigcirc(\textbf{call} \land p_A \land CallThr(\top)) \implies CallThr(\textbf{e}_B)) & 7,793.7 & 402,420 & 173,639 & False \\ \hline \bigcirc(\textbf{call} \land p_A \land \textbf{Call} \mathcal{U}_H^d p_C)) & 594.9 & 77,806 & 29,786 & True \\ \hline \bigcirc(\textbf{p}_C \land \textbf{call} \mathcal{S}_H^d p_A)) & 676.6 & 96,296 & 37,949 & True \\ \hline \bigcirc(\textbf{p}_C \land \chi_F^u \textbf{exc}) \implies (\neg p_A \mathcal{S}_H^d p_B)) & - & - & - & OOM \\ \hline \bigcirc(\textbf{call} \land p_B \implies \neg \textbf{pc} \mathcal{U}_H^u \textbf{p}_{Err}) & 198.2 & 70,088 & 10,606 & True \\ \hline \bigcirc(\textbf{call} \land p_B \implies \neg \textbf{pc} \mathcal{U}_H^u \textbf{p}_{Err}) & 1.2 & 70,089 & 114 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{U}_H^u p_B)) & 10.3 & 70,105 & 115 & False \\ \hline \bigcirc(\textbf{call} \implies \gamma_C^u \textbf{exc}) & 1.9 & 70,095 & 115 & False \\ \hline \bigcirc(\textbf{call} \implies \gamma_C^u \textbf{exc}) & 1.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \implies \gamma_C^u \textbf{exc}) & 1.9 & 70,096 & 113 & False \\ \hline \bigcirc(\textbf{call} \implies \gamma_C^u \textbf{call} \triangle_A) \lor \chi_P^u \textbf{call} \land \textbf{p}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \mathcal{A}_A) \lor \chi_P^u \textbf{call} \land \textbf{p}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \wedge P_A \land \mathcal{S}_A^d \textbf{n}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \wedge P_A \land \mathcal{S}_A^d \textbf{n}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \wedge P_A \land \mathcal{S}_A^d \textbf{n}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \wedge P_A \land \mathcal{S}_A^d \textbf{n}_A))) & 28.9 & 70,095 & 112 & False \\ \hline \bigcirc(\textbf{call} \land p_B \land \textbf{call} \mathcal{S}_A^d \textbf{call} \wedge P_A \land \mathcal{S}_A^d n$	$ \bigcirc^d (\bigcirc^d (\mathbf{call} \wedge \chi^u_F \mathbf{exc})) $	21.0	70,095	1,290	False
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		42.2	70,088	2,297	False
	$\square(\mathbf{exc} \implies \chi_P^u \mathbf{call})$	10.7	70,099	839	True
	$ig oxedsymbol{ op} \mathcal{U}_{\chi}^d \operatorname{exc}$	2.2	70,093	121	False
		4.3	70,094	113	False
	$\Box((\mathbf{call} \land \mathbf{p}_A \land (\neg \mathbf{ret} \mathcal{U}_{\chi}^d \mathbf{WRx})) \implies \chi_F^u \mathbf{exc})$	3,257.7	238,833	102,582	True
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.7	70,094	139	False
$ \begin{array}{ c c c c }\hline \Box((\operatorname{call} \wedge \operatorname{p}_A \wedge \operatorname{CallThr}(\top)) \implies \operatorname{CallThr}(\operatorname{e}_B)) & 7,793.7 & 402,420 & 173,639 & \operatorname{False} \\ \Diamond(\bigcirc_H^{d}\operatorname{p}_B) & 2.1 & 70,097 & 114 & \operatorname{False} \\ \Diamond(\ominus_H^{d}\operatorname{p}_B) & 2.8 & 70,097 & 114 & \operatorname{False} \\ \Diamond(\operatorname{p}_A \wedge (\operatorname{call} \mathcal{U}_H^{d}\operatorname{p}_C)) & 594.9 & 77,806 & 29,786 & \operatorname{True} \\ \Diamond(\operatorname{p}_C \wedge (\operatorname{call} \mathcal{S}_H^{d}\operatorname{p}_A)) & 676.6 & 96,296 & 37,949 & \operatorname{True} \\ \Box((\operatorname{p}_C \wedge \chi_F^{u}\operatorname{exc}) \implies (\neg \operatorname{p}_A \mathcal{S}_H^{d}\operatorname{p}_B)) & - & - & - & \operatorname{OOM} \\ \Box(\operatorname{call} \wedge \operatorname{p}_B \implies \neg \operatorname{p}_C \mathcal{U}_H^{u}\operatorname{p}_{Err}) & 198.2 & 70,088 & 10,606 & \operatorname{True} \\ \Diamond(\bigcirc_H^{u}\operatorname{p}_{Err}) & 1.1 & 70,093 & 114 & \operatorname{False} \\ \Diamond(\bigcirc_H^{u}\operatorname{p}_{Err}) & 1.2 & 70,089 & 114 & \operatorname{False} \\ \Diamond(\operatorname{p}_A \wedge (\operatorname{call} \mathcal{U}_H^{u}\operatorname{p}_B)) & 10.3 & 70,105 & 115 & \operatorname{False} \\ \Diamond(\operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_H^{u}\operatorname{p}_A)) & 10.8 & 70,095 & 115 & \operatorname{False} \\ \Box(\operatorname{call} \implies \chi_F^{c}\operatorname{ret}) & 3.0 & 70,095 & 112 & \operatorname{False} \\ \Box(\operatorname{call} \implies \gamma \bigcirc^{u}\operatorname{exc}) & 1.9 & 70,106 & 113 & \operatorname{False} \\ \Box(\operatorname{call} \wedge \operatorname{p}_A \implies \neg \operatorname{CallThr}(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \Box(\operatorname{call} \wedge \operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_A^{u} (\operatorname{call} \wedge \operatorname{p}_A))) \implies \operatorname{CallThr}(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \Box(\operatorname{han} \implies \chi_F^{u}\operatorname{ret}) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \Box(\operatorname{call} \wedge \operatorname{p}_A \wedge (\operatorname{call} \mathcal{S}_A^{u} (\operatorname{call} \wedge \operatorname{p}_A))) \implies \operatorname{CallThr}(\top) & 12.3 & 70,090 & 5,261 & \operatorname{False} \\ \Box(\operatorname{call} \wedge \operatorname{p}_C \implies (\top \mathcal{U}_X^{u}\operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ O^d(\bigcirc^d(\bigcirc^d(\top \mathcal{U}_X^{u}\operatorname{exc}))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \Box(\operatorname{call} \wedge \operatorname{p}_C \implies (\top \mathcal{U}_X^{u}\operatorname{exc})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \operatorname{call} \mathcal{U}_A^{d} (\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \operatorname{call} \mathcal{U}_A^{d} (\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,007 & 114 & \operatorname{False} \\ \operatorname{call} \mathcal{U}_A^{d} (\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,086 & 117 & \operatorname{False} \\ \end{array}$		3.4	70,108	126	False
		1.3	70,096	137	False
		7,793.7	402,420	173,639	False
		2.1	70,097	114	False
		2.8	70,097	114	False
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Diamond(\mathrm{p}_A \wedge (\mathbf{call}\mathcal{U}_H^d\mathrm{p}_C))$	594.9	77,806	29,786	True
$ \begin{array}{ c c c c } \hline \Box(\operatorname{call} \wedge \operatorname{p}_B \implies \neg \operatorname{p}_C \mathcal{U}_H^u \operatorname{p}_{Err}) & 198.2 & 70,088 & 10,606 & \operatorname{True} \\ \Diamond(\bigcirc_H^u \operatorname{p}_{Err}) & 1.1 & 70,093 & 114 & \operatorname{False} \\ \Diamond(\ominus_H^u \operatorname{p}_{Err}) & 1.2 & 70,089 & 114 & \operatorname{False} \\ \Diamond(\operatorname{p}_A \wedge (\operatorname{call} \mathcal{U}_H^u \operatorname{p}_B)) & 10.3 & 70,105 & 115 & \operatorname{False} \\ \Diamond(\operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_H^u \operatorname{p}_A)) & 10.8 & 70,095 & 115 & \operatorname{False} \\ \hline \Box(\operatorname{call} \implies \gamma_F^d \operatorname{ret}) & 3.0 & 70,095 & 112 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_A \implies \neg \operatorname{CallThr}(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_A \implies \neg \operatorname{CallThr}(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_\chi^d (\operatorname{call} \wedge \operatorname{p}_A))) \implies \operatorname{CallThr}(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \hline \Box(\operatorname{han} \implies \chi_F^u \operatorname{ret}) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \hline T \mathcal{U}_\chi^u \operatorname{exc} & 7.7 & 70,101 & 121 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\cap^d(\top \mathcal{U}_\chi^u \operatorname{exc}))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_C \implies (\top \mathcal{U}_\chi^u \operatorname{exc} \wedge \chi_P^d \operatorname{han})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \hline \subset_{\operatorname{call}} \mathcal{U}_\chi^d (\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \hline \mathcal{V}_F^d(\operatorname{call} \wedge (\operatorname{(call} \vee \operatorname{exc}) \mathcal{S}_\chi^u \operatorname{p}_B)) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \hline \end{array}$	$\Diamond(\mathrm{p}_C\wedge(\mathbf{call}\ \mathcal{S}^d_H\ \mathrm{p}_A))$	676.6	96,296	37,949	True
	$\square((p_C \wedge \chi_F^u \mathbf{exc}) \implies (\neg p_A \mathcal{S}_H^d p_B))$	_	_	_	OOM
		198.2	, ,	10,606	
			, ,		
	$\Diamond(\ominus_H^u p_{Err})$, ,		
$ \begin{array}{ c c c c c } \hline \Box(\operatorname{call} \implies \chi_F^d \operatorname{ret}) & 3.0 & 70,095 & 112 & \operatorname{False} \\ \hline \Box(\operatorname{call} \implies \neg \bigcirc^u \operatorname{exc}) & 1.9 & 70,106 & 113 & \operatorname{False} \\ \hline \Box(\operatorname{call} \land \operatorname{p}_A \implies \neg \operatorname{CallThr}(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \hline \Box(\operatorname{exc} \implies \neg(\bigcirc^u(\operatorname{call} \land \operatorname{p}_A) \lor \chi_F^u(\operatorname{call} \land \operatorname{p}_A))) & 28.9 & 70,095 & 112 & \operatorname{False} \\ \hline \Box(\operatorname{call} \land \operatorname{p}_B \land (\operatorname{call} \mathcal{S}_\chi^d(\operatorname{call} \land \operatorname{p}_A))) \implies \operatorname{CallThr}(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \hline \Box(\operatorname{han} \implies \chi_F^u \operatorname{ret}) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \hline \top \mathcal{U}_\chi^u \operatorname{exc} & 7.7 & 70,101 & 121 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc}))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \hline \Box(\operatorname{call} \land \operatorname{p}_C \implies (\top \mathcal{U}_\chi^u \operatorname{exc} \land \chi_F^d \operatorname{han})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \hline \operatorname{call} \mathcal{U}_\chi^d(\operatorname{ret} \land \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \chi_F^d(\operatorname{call} \land ((\operatorname{call} \lor \operatorname{exc}) \mathcal{S}_\chi^u \operatorname{p}_B)) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \hline \end{array}$	$\Diamond(\mathbf{p}_A \wedge (\mathbf{call} \mathcal{U}_H^w \mathbf{p}_B))$	l	, ,		
$ \begin{array}{ c c c c c } \hline \Box(\operatorname{call} & \Rightarrow \neg \bigcirc^u \operatorname{exc}) & 1.9 & 70,106 & 113 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_A & \Rightarrow \neg \operatorname{CallThr}(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \hline \Box(\operatorname{exc} & \Rightarrow \neg(\bigcirc^u(\operatorname{call} \wedge \operatorname{p}_A) \vee \chi_P^u(\operatorname{call} \wedge \operatorname{p}_A))) & 28.9 & 70,095 & 112 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_\chi^d(\operatorname{call} \wedge \operatorname{p}_A))) & \Rightarrow \operatorname{CallThr}(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \hline \Box(\operatorname{han} & \Rightarrow \chi_F^u \operatorname{ret}) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \hline \top \mathcal{U}_\chi^u \operatorname{exc} & 7.7 & 70,101 & 121 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc}))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_C & \Rightarrow (\top \mathcal{U}_\chi^u \operatorname{exc} \wedge \chi_P^d \operatorname{han})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \hline \operatorname{call} \mathcal{U}_\chi^d(\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \chi_F^d(\operatorname{call} \wedge (\operatorname{(call} \vee \operatorname{exc}) \mathcal{S}_\chi^u \operatorname{p}_B)) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \hline \end{array} $			·		
$ \begin{array}{ c c c c c } \hline \Box(\operatorname{call} \wedge \operatorname{p}_A \implies \neg CallThr(\top)) & 110.7 & 70,094 & 4,937 & \operatorname{False} \\ \hline \Box(\operatorname{exc} \implies \neg(\bigcirc^u(\operatorname{call} \wedge \operatorname{p}_A) \vee \chi_P^u(\operatorname{call} \wedge \operatorname{p}_A))) & 28.9 & 70,095 & 112 & \operatorname{False} \\ \hline \Box((\operatorname{call} \wedge \operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_\chi^d(\operatorname{call} \wedge \operatorname{p}_A))) \implies CallThr(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \hline \Box(\operatorname{han} \implies \chi_F^u(\operatorname{ret})) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \hline \top \mathcal{U}_\chi^u(\operatorname{exc}) & 7.7 & 70,101 & 121 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u(\operatorname{exc}))) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\neg^d(\top \mathcal{U}_\chi^u(\operatorname{exc})))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_C \implies (\top \mathcal{U}_\chi^u(\operatorname{exc} \wedge \chi_P^d(\operatorname{han}))) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \hline \operatorname{call} \mathcal{U}_\chi^d(\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \hline \chi_F^d(\operatorname{call} \wedge ((\operatorname{call} \vee \operatorname{exc}) \mathcal{S}_\chi^u(\operatorname{p}_B))) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \hline \end{array}$	$\sqcup (\operatorname{call} \implies \chi_F^*\operatorname{ret})$,		
$ \begin{array}{ c c c c c } \hline \Box(\operatorname{exc} \Longrightarrow \neg(\circleddash^u(\operatorname{call} \wedge \operatorname{p}_A) \vee \chi_P^u(\operatorname{call} \wedge \operatorname{p}_A))) & 28.9 & 70,095 & 112 & \operatorname{False} \\ \hline \Box((\operatorname{call} \wedge \operatorname{p}_B \wedge (\operatorname{call} \mathcal{S}_\chi^d(\operatorname{call} \wedge \operatorname{p}_A))) \Longrightarrow \operatorname{CallThr}(\top) & 926.1 & 70,104 & 13,310 & \operatorname{True} \\ \hline \Box(\operatorname{han} \Longrightarrow \chi_F^u\operatorname{ret}) & 17.0 & 70,079 & 1,252 & \operatorname{True} \\ \hline \top \mathcal{U}_\chi^u \operatorname{exc} & 7.7 & 70,101 & 121 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \hline \bigcirc^d(\bigcirc^d(\neg^d(\top \mathcal{U}_\chi^u \operatorname{exc}))) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \hline \Box(\operatorname{call} \wedge \operatorname{p}_C \Longrightarrow (\top \mathcal{U}_\chi^u \operatorname{exc} \wedge \chi_P^d \operatorname{han})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \hline \operatorname{call} \mathcal{U}_\chi^d(\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \hline \chi_F^d(\operatorname{call} \wedge ((\operatorname{call} \vee \operatorname{exc}) \mathcal{S}_\chi^u \operatorname{p}_B)) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \hline \end{array} $	\Box (call $\Longrightarrow \neg \cup$ exc)		,		
$ \begin{array}{ c c c c c } \hline \square((\mathbf{call} \wedge \mathbf{p}_B \wedge (\mathbf{call} \mathcal{S}_\chi^d (\mathbf{call} \wedge \mathbf{p}_A))) \implies CallThr(\top) & 926.1 & 70,104 & 13,310 & True \\ \hline \square(\mathbf{han} \implies \chi_F^u \mathbf{ret}) & 17.0 & 70,079 & 1,252 & True \\ \hline \top \mathcal{U}_\chi^u \mathbf{exc} & 7.7 & 70,101 & 121 & True \\ \hline \bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \mathbf{exc})) & 44.6 & 70,104 & 2,376 & True \\ \hline \bigcirc^d(\bigcirc^d(\bigcirc^d(\top \mathcal{U}_\chi^u \mathbf{exc}))) & 123.7 & 70,090 & 5,261 & False \\ \hline \square(\mathbf{call} \wedge \mathbf{p}_C \implies (\top \mathcal{U}_\chi^u \mathbf{exc} \wedge \chi_P^d \mathbf{han})) & 92.9 & 70,096 & 1,346 & False \\ \hline \mathbf{call} \mathcal{U}_\chi^d (\mathbf{ret} \wedge \mathbf{p}_{Err}) & 1.8 & 70,107 & 114 & False \\ \hline \chi_F^d(\mathbf{call} \wedge ((\mathbf{call} \vee \mathbf{exc}) \mathcal{S}_\chi^u \mathbf{p}_B)) & 10.8 & 70,086 & 117 & False \\ \hline \end{array} $		l	,	,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccc} \top \mathcal{U}_{\chi}^{u} \operatorname{exc} & 7.7 & 70,101 & 121 & \operatorname{True} \\ \bigcirc^{d}(\bigcirc^{d}(\top \mathcal{U}_{\chi}^{u} \operatorname{exc})) & 44.6 & 70,104 & 2,376 & \operatorname{True} \\ \bigcirc^{d}(\bigcirc^{d}(\top \mathcal{U}_{\chi}^{u} \operatorname{exc})) & 123.7 & 70,090 & 5,261 & \operatorname{False} \\ \square(\operatorname{call} \wedge \operatorname{p}_{C} \Longrightarrow (\top \mathcal{U}_{\chi}^{u} \operatorname{exc} \wedge \chi_{P}^{d} \operatorname{han})) & 92.9 & 70,096 & 1,346 & \operatorname{False} \\ \operatorname{call} \mathcal{U}_{\chi}^{d} (\operatorname{ret} \wedge \operatorname{p}_{Err}) & 1.8 & 70,107 & 114 & \operatorname{False} \\ \chi_{F}^{d}(\operatorname{call} \wedge ((\operatorname{call} \vee \operatorname{exc}) \mathcal{S}_{\chi}^{u} \operatorname{p}_{B})) & 10.8 & 70,086 & 117 & \operatorname{False} \\ \end{array}$		l	, ,		
			, ,	,	
$ \begin{array}{c ccccc} \square(\mathbf{call} \wedge \mathbf{p}_C \implies (\top \mathcal{U}_{\chi}^u \operatorname{exc} \wedge \chi_P^d \operatorname{han})) & 92.9 & 70,096 & 1,346 & \text{False} \\ \mathbf{call} \mathcal{U}_{\chi}^d \left(\operatorname{\mathbf{ret}} \wedge \mathbf{p}_{Err} \right) & 1.8 & 70,107 & 114 & \text{False} \\ \chi_F^d \left(\operatorname{\mathbf{call}} \wedge \left(\left(\operatorname{\mathbf{call}} \vee \operatorname{\mathbf{exc}} \right) \mathcal{S}_{\chi}^u \mathbf{p}_B \right)) & 10.8 & 70,086 & 117 & \text{False} \\ \end{array} $,	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!	,	-	
$\chi_F^d(\mathbf{call} \wedge ((\mathbf{call} \vee \mathbf{exc}) \mathcal{S}_{\chi}^u p_B))$ 10.8 70,086 117 False	$\operatorname{call} \mathcal{U}_{v}^d (\mathbf{ret} \wedge p_{Err})$,	,	
	$\chi_{E}^{d}(\operatorname{call} \wedge ((\operatorname{call} \vee \operatorname{exc}) \mathcal{S}_{v}^{u} p_{B}))$,		
$ \bigcirc \bigcirc$	$\bigcirc^d(\bigcirc^d((\operatorname{call}\vee\operatorname{exc})\mathcal{U}^u_{\scriptscriptstyle\mathcal{V}}\operatorname{ret}))$	5.3	70,094	114	False

Table 3: Results of the additional experiments on OPA "generic larger".

Additionally, we proved that both implementations are *exception neutral* (7, 8), i.e. they do not block exceptions thrown by the underlying types.

4.2 Directory opa-more

This directory contains more experiments devised with the purpose of testing all POTL operators, also in order to find the most critical cases. In fact, the complexity of POTL model checking is exponential in the length of the formula. This is of course unsurprising, since it subsumes logics such as LTL and NWTL, whose model checking is also exponential. Actually, model checking is feasible for many specifications useful in practice. There are, however, some cases in which the exponentiality of the construction becomes evident.

In Table 3 we show the results of model checking numerous POTL formulas on one of the OPA representing generic procedural programs. Some of them are checked

Benchmark name	# states	Time (s)	Memory (KiB)		Result
			Total	MC only	
doubleHan	22	52.96	2,091,256	869,661	False
jensen	1236	1.97	73,712	17,339	True
simpleExc	19	65.42	3,278,876	1,353,000	False
simpleExcNoHan	12	37.72	1,510,524	656,422	False
simpleIfElse	28	27.62	942,280	383,231	False
simpleIfThen	28	30.67	1,046,584	415,648	False
simpleWhile	16	0.09	73,768	3,251	True
stackSafe	340	31.51	653,616	265,363	True
stackUnsafe	162	16.48	532,736	224,573	False

Table 4: Results of the evaluation of miniproc files.

very quickly, while others require a long execution time and a very large amount of memory. POMC runs out of memory on one of such formulas. We were able to run it in 367 seconds on a server with a 2.0 GHz 16-core AMD CPU and 500 GB of RAM. If you wish to repeat such experiments, you may run the following commands:

```
$ cd ~/path/to/POMC-sources/eval
```

Of course, a machine with an appropriate amount of RAM is needed.

4.3 Directory miniproc

This directory contains a few verification tasks in which the model has been expressed as a MiniProc program. Each file in this directory contains multiple formulas.

jensen.pomc, stackUnsafe.pomc and stackSafe.pomc contain the same tasks as those with the same name described in Section 4.1. This time, however, models are expressed as MiniProc programs, and the resulting OPA contain many more states.

Other files contain simpler programs, checked against all formulas form Table 3.

Table 4 reports the results of such experiments. When more than one formula is checked in a single file, the reported result is True only if all formulas are verified, False if at least one of them is not.

5 Source Code

The source code of POMC is contained in the src/Pomc directory. We describe the contents of each file below.

Check.hs This file contains the data structures and functions that implement the translation of POTL formulas into OPA. The check and fastcheck functions build the OPA and check for string acceptance. makeOpa returns a thunk containing an un-evaluated OPA, which is built on-the-fly while the calling context evaluates the transition functions.

Encoding.hs contains a data structure that represents a set of POTL formulas as a bit vector. It is use to encode OPA states in a memory-efficient form in Check.hs.

MiniProc.hs contains code that translates MiniProc programs into OPA.

^{\$./}mcbench.py opa-more/generic-larger

MiniProcParse.hs contains a parser for MiniProc programs.

ModelChecker.hs contains the model checking launcher functions, and a data structure to represent the input OPA to be checked explicitly. It calls makeOpa to translate the negation of the specification into an equivalent OPA, creates a thunk representing an un-evaluated intersection of the two OPA, and then uses the reachability algorithm from Satisfiability.hs to determine emptiness.

Opa.hs contains an implementation of OPA, which is used to test string acceptance.

OpaGen.hs contains a simple automated OPA generator (still experimental).

Parse.hs contains a parser for POMC input files.

Potl.hs defines the datatype for POTL formulas.

Prec.hs defines the data type for precedence relations.

Prop.hs defines the data type for atomic propositions.

PropConv.hs contains dome functions useful to change the representation of atomic propositions from strings to unsigned integers. This is used by other parts of the program to achieve better performances, as strings are represented as lists of char in Haskell, which is quite inefficient.

Satisfiability.hs contains the reachability algorithms used in the model checker to decide OPA emptiness. They can also be use to decide satisfiability of a formula.

Util.hs contains various functions used in other parts of the code.

The test directory contains regression tests based on the HUnit provider of the Tasty² framework. They can be run with

\$ stack test

Acknowledgements

We are grateful to Davide Bergamaschi for developing an early prototype of this tool, and to Francesco Pontiggia for implementing the model checking algorithms for infinite words and performance optimizations.

References

- [1] D. Abrahams. Exception-Safety in Generic Components. In *Generic Programming*, pages 69–79. Springer, 2000.
- [2] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-order and temporal logics for nested words. *LMCS*, 4(4), 2008.
- [3] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In *TACAS 2004*, pages 467–481. Springer, 2004.

 $^{^2 \}verb|https://github.com/UnkindPartition/tasty|$

- [4] R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3), 2009.
- [5] M. Chiari, D. Mandrioli, and M. Pradella. POTL: A first-order complete temporal logic for operator precedence languages. *CoRR*, abs/1910.09327, 2019.
- [6] M. Chiari, D. Mandrioli, and M. Pradella. Model-checking structured context-free languages. In CAV 2021, LNCS. Springer, 2021. To appear.
- [7] T. Jensen, D. Le Metayer, and T. Thorn. Verification of control flow based security properties. In *Proc. '99 IEEE Symp. on Security and Privacy*, pages 89–103, 1999.
- [8] H. Sutter. Exception-safe generic containers. C++ Report, 1997.

A From MiniProc to OPA

A MiniProc program can be converted to an equivalent OPA or ω OPBA. This is done in two stages: first, we build an *extended* OPA whose transitions are labeled with Boolean expressions and assignments; then, we convert such OPA to a normal one, ready for model checking.

A.1 Extended OPA

Given a MiniProc program P and the set I_P of identifiers in P, we call $L_P = BExp_P \cup Ass_P$ the set of labels on P, where $BExp_P$ and Ass_P are resp. the sets of Boolean expressions and assignments on I_P . We build the extended OPA

$$\mathcal{A}_P^E = (\Sigma_P, M_{\mathbf{call}}, Q_P^E, \{q_0\}, \{q_f\}, \delta_P^E)$$

with $\Sigma_P = \Sigma_{\mathbf{call}} \cup L_P$. Q_P and δ_P^E are built inductively on the program structure. For each statement s in P, we define the set of entry state/label pairs $En_s \subseteq Q_P \times L_P$. Each entry state is labeled with an element form either $BExp_P$ or Ass_P , but not both.

Functions For each function f in P we define a set of entry states $En_f = En_s$, where s is the first statement in the function's body; we also add transitions and states $q_f^l \stackrel{\mathbf{ret}}{---} q_f^r$, to which we link the last statement in f, and $q_f^t \stackrel{\mathbf{exc}}{---} q_f^e$, which implements throw statements.

Function Call For a call s to function f, we add $q_s \stackrel{\mathbf{call}}{\longrightarrow} {}^l q$ for all $(q,l) \in En_f$, and $q_f^t \stackrel{q_s}{\Longrightarrow} q_{f'}^t$, where f' is the function containing s. Let s' be the successor of s: we add $q_f^r \stackrel{q_s}{\Longrightarrow} q$ for all $(q,l) \in En_s$.

Assignments For each assignment s we add $q_s \xrightarrow{\text{stm } s} q_s$, and set $En_s = Ex_s = \{(q_s, \top)\}$. Let s' be the successor of s: we add $q_s \xrightarrow{(q_s, l)} q$ for all $(q, l) \in En_s$.

If-then-else For each statement s of the form if b_s then $\{s_1; \ldots; s_n\}$ else $\{s_{n+1}; \ldots; s_m\}$ we have $En_s = \{(q, b_s \wedge l) \mid (q, l) \in En_{s_1}\} \cup \{(q, \neg b_s \wedge l) \mid (q, l) \in En_{s_{n+1}}\}.$

While For a statement s of the form while b_s { $s_1; \ldots; s_n$ } we set $En_s = \{(q, b_s \land l) \mid (q, l) \in En_{s_1}\} \cup \{(q, \neg b_s \land l) \mid (q, l) \in En_{s_{n+1}}\}$, where s_{n+1} is the successor of s. Also, both s_{n+1} and s itself are considered as successors of s_n , and their entry sets are merged.

Throw For a throw statement s in a function f we just set $En_s = \{(q_f^t, \top)\}.$

Try-Catch For a statement s in function f of the form try $\{s_1;\ldots;s_n\}$ catch $\{s_{n+1};\ldots;s_m\}$, we add a new state q_s and set $En_s=\{(q_s,\top)\}$, and a push transition $q_s \stackrel{\text{han }}{\longrightarrow} q$ for each $(q,l) \in En_{s_1}$ that installs the handler. We first deal with the case when an exception is caught. We add pop transitions $q_f^e \stackrel{q_s}{\longrightarrow} q$ for each $(q,l) \in En_{s_{n+1}}$ that pop the handler when an exception is thrown in the try block, and pass the execution flow to the catch block. Then, statement s_m is linked to the entry states of s', the first statement after s (how this is done depends on what kind of statement s_m is). For the case when no exception is thrown, we add a shift transition that simulates a dummy throw statement t after s_n , to uninstall the handler. When lowering s_n , we consider t as its next statement, add states q_t and q_t' , and set $En_t = \{(q_t, \top)\}$. Then we add $q_t \stackrel{\text{exc } dummy}{\longrightarrow} q_t'$, and $q_t' \stackrel{q_s}{\longrightarrow} q$ for all $(q,l) \in En_{s'}$, which pop the handler and continue the execution with the first statement after s.

Finally, if f_0 is the first function listed in the MiniProc program, we add transitions $q_0 \stackrel{\mathbf{call}}{\longrightarrow} \stackrel{f_0}{\longrightarrow} l q$ for all $(q,l) \in En_{f_0}$, and $q_{f_0}^r \stackrel{q_0}{\longrightarrow} q_f$.

A.2 From extended OPA to OPA

We expand states of \mathcal{A}_{P}^{E} with all possible variable valuations, to obtain OPA

$$\mathcal{A}_P = (\Sigma_{\mathbf{call}} \times I_P, M_{\mathbf{call}}, Q_P, \{q_0\} \times \{0, 1\}^{|I_P|}, \{q_f\} \times \{0, 1\}^{|I_P|}, \delta_P),$$

where $Q_P\subseteq Q_P^E\times\{0,1\}^{|I_P|}$. Each state is a pair (q,v) with $q\in Q_P^E$ and v is a bitvector representing a possible valuation of variables that hold in q. By $v\models l$ we mean that the variable valuation $v\in\{0,1\}^{|I_P|}$ satisfies Boolean expression $l\in BExp_P$; if $l=(x:=e)\in Ass_P$ with $x\in I_P$ and $e\in BExp_P$ we mean $v\models x\iff e$. By v=v we denote the set of variables satisfied by $v\in\{0,1\}^{|I_P|}$. We define $Q_P:=\bigcup_{i\in\mathbb{N}}Q_P^i$ inductively through the following equations:

$$Q_P^0 := \{q_0\} \times \{0, 1\}^{|I_P|}$$

$$Q_P^{n+1} := \{(q, v) \mid q' \in Q_P^n, (q', a \, l, q) \in \delta_P^E, v \models l\}$$

This is implemented through a depth-first visit of \mathcal{A}_{P}^{E} , from which we derive

$$\begin{split} \delta_P := & \{ q \overset{a \text{ vars(v)}}{\longrightarrow} q' \mid q \overset{a \ l}{\longrightarrow} q' \in \delta_P^E, \ q, q' \in Q_P \} \\ & \cup \{ q \overset{a \text{ vars(v)}}{\longrightarrow} q' \mid q \overset{a \ l}{\longrightarrow} q' \in \delta_P^E, \ q, q' \in Q_P \} \\ & \cup \{ q \overset{p}{\Longrightarrow} q' \mid q \overset{p \ l}{\Longrightarrow} q' \in \delta_P^E, \ q, q', p \in Q_P \} \end{split}$$

Note that A_P has size exponential in $|I_P|$ in the worst case, but not in general, since only reachable variable assignments are considered.