

Model Development Phase

Date	10 July 2024
Team ID	SWTID1720078683
Project Title	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
log = LogisticRegression()

log.fit(x_train,y_train)

* LogisticRegression
LogisticRegression()
```

```
rf = RandomForestClassifier()

rf.fit(x_train,y_train)

* RandomForestClassifier
RandomForestClassifier()
```



```
dec = DecisionTreeClassifier()

dec.fit(x_train,y_train)

* DecisionTreeClassifier

DecisionTreeClassifier()
```

```
NB = GaussianNB()

NB.fit(x_train,y_train)

▼ GaussianNB

GaussianNB()
```

```
SVM = SVC()

SVM.fit(x_train,y_train)

* SVC
SVC()
```

```
GB = GradientBoostingClassifier()

GB.fit(x_train,y_train)

* GradientBoostingClassifier

GradientBoostingClassifier()
```


Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic Regression	acc_lr = accuracy_score(y_test,y_predict) acc_lr 0.9798387096774194 rep_lr = classification_report(y_test,y_predict) print(rep_lr) precision recall f1-score support 0 0.99 0.97 0.98 123 1 0.97 0.99 0.98 125 accuracy 0.98 0.98 248 macro avg 0.98 0.98 0.98 248 weighted avg 0.98 0.98 0.98 0.98 248	0.9798	<pre>confusion_matrix(y_test,y_predict) array([[119, 4],</pre>
Random Forest Classifier	acc_rf = accuracy_score(y_test,y_predict) acc_rf 1.0 rep_rf = classification_report(y_test,y_predict) print(rep_rf) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>
Decision Tree Classifier	acc_dc = accuracy_score(y_test,y_predict) acc_dc 1.0 rep_dc = classification_report(y_test,y_predict) print(rep_dc) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>

Gaussian Naïve Bayes	acc_NB = accuracy_score(y_test,y_predict) acc_NB 0.9516129032258065 rep_NB = classification_report(y_test,y_predict) print(rep_NB) precision recall f1-score support 0 0.97 0.93 0.95 123 1 0.93 0.98 0.95 125 accuracy 0.95 248 macro avg 0.95 0.95 0.95 248 weighted avg 0.95 0.95 0.95 248	0.9516 array([[113, 10],
Support Vector Machine	acc_svm = accuracy_score(y_test,y_predict) acc_svm 0.9032258064516129 rep_svm = classification_report(y_test,y_predict) print(rep_svm) precision recall f1-score support 0 0.98 0.82 0.89 123 1 0.85 0.98 0.91 125 accuracy 0.90 248 macro avg 0.91 0.90 0.90 248 weighted avg 0.91 0.90 0.90 248	<pre>confusion_matrix(y_test,y_predict) array([[101, 22],</pre>
Gradient Boosting Classifier	acc_GB = accuracy_score(y_test,y_predict) acc_GB 1.0 rep_GB = classification_report(y_test,y_predict) print(rep_GB) precision recall f1-score support 0	confusion_matrix(y_test,y_predict) 1.00 array([[119, 4],