UNCLASSIFIED

AD NUMBER AD857479 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; AUG 1969. Other requests shall be referred to Armospheric Science Office, White Sands Missile Range, NM. **AUTHORITY** USAEC ltr 13 Sep 1971

DR-449 August 1969

TRIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE COLY WITH PRIOR APPROVAL OF ATMOSPHERIC SCIENCES OFFICE, WHITE SAMDS MISSILE RANGE, NEW MEXICO.

METEOROLOGICAL DATA REPORT

NIKE-HYDAC STV-88 (10 July 1969)

AND

NIKE-HYDAC, BALLISTIC ROUND (10 July 1969)

BY

LEN E. CARTER

ATMOSPHERIC SCIENCES OFFICE WHITE SANDS MISSILE RANGE, NEW MEXICO

ECOM UNITED STATES ARMY ELECTRONICS COMMAND

HETEOROLOGICAL DATA REPORT

NIKE-HYDAC SIV-88 (10 July 1969)

And

NIKE-HYDAC, BALLISTIC ROUND (10 July 1969)

Ву

Leu E. Carter

DR-449

August 1969

DA Task 1T665702D127-02

ATMOSPHERIC SCIENCES OFFICE WHITE SANDS HISSILE RANGE, NEW MEXICO

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Atmospheric Sciences Office, White Sands Missile Range, New Mexico.

ABSTRACT

Meteorological data gathered for the Isunching of Nike-Hydac STV-88 and Nike-Hydac Ballistic Round are presented for the Space and Hissile Systems Organization, AFMPC, Holloman Air Force Base, New Mexico and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

CONTENTS

		PAGE
ABSTRAC	Z	- iii
INTRODU	CTION	- 1
DISCUSS	SION	- 1
TABLES		
ı.	Theoretical Rocket Performance Values, STV-88	- 2
II.	Theoretical Rocket Performance Values, Ballistic Round	- 3
III.	Ballistic Factors, STV-88	- 4
IV.	Ballistic Factors, Ballistic Round	- 5
٧.	Anemometer Wind Speed & Direction	- 6
۷I.	Pilot-Balloon-Measured Wind Data	- 7
VII.	Rawinsonde-Heasured Wind Data, STV-88	- 9
VIII.	Rawinsonde-Measured Wind Data, Ballistic Round	- 10
IX.	Significant Level Data (Release Time: 0830 MDT)	- 11
X.	Upper Air Data (Release Time: 0830 MDT)	- 12
XI.	Mandatory Levels (Release Time: 0830 MDT)	- 19
XII.	Significant Level Data (Release Time: 1100 MDT)	- 20
XIII.	Upper Air Data (Release Time: 1100 MDT)	- 21
XIV.	Mandatory Levels (Release Time:	20

INTRODUCTION

Nike-Hydac STV-88 was launched from Launch Complex 33, L-314, White Sands Missile Range, New Mexico, at 1130 hours MDT, 10 July 1969.

Nike-Hydac Ballistic Round was launched from Launch Complex 33, L-361, White Sands Missile Range, New Mexico, at 1230 hours MDT, 10 July 1969.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Division, U.S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. Ballistics Meteorologists for these firings were Len E. Carter and John M. Sharpe.

DISCUSSION

Wind data for the first 216 feet above the surface were obtained from a system composed of five Aerovanes mounted on a 200-foot tower and cabled to component wind indicators.

From 216 to 4,000 feet above the surface, wind data were obtained from T-9 Radar-observed balloon ascents.

Temperature, pressure, and humidity data, along with upper wind data from 4,000 to 70,000 feet above the surface, were obtained from standard rawinsonde observations.

Mean wind component values in each ballistic zone were determined from vertical cross sections by the equal-area method.

Theoretical rocket performance values and wind-weighting values as a function of altitude were provided by the Atmospheric Sciences Office and are the basis for the data appearing in Table I.

PAYLOAD		225	Pounds
CORIOLIS DISPLACEMENT	West	4.2	Miles
WOTHINGT BOARD GWODES	TIME	20.0	Seconds
SECOND-SIAGE LUNILLUN	ALTITUDE	35,576	Fest MSL
DEAV	TIME	232	Saconds
i inter	ALTITUDE	696,560	Fast MSL
	RANGE	2.06	Miles/MPR
UNIT WIND EFFECT	CROSS	2,13	Miles/Mph
			Miles/MPB
TOWER TILT EFFECT		13,8	Miles/Degree

AND THE ASSESSMENT OF THE PROPERTY OF THE PROP

THE PROPERTY OF THE PROPERTY O

TABLE II. THEORETICAL ROCKET PERFORMANCE VALUES NIKE-HYDAC, BALLISTIC ROUND

					. <u>. </u>					
LAYERS IN FRET ABOVE GROUND	26000-31,770	31770-36000	36000-41000	41000-46000	46000-55000	56000-66000	66000-73300			
BALLISTIC FACTORS	.0710	.0650	.0310	.0270	.0100	0600.	0240	0180	0180	0120
LAYERS IN FEET ABOVE GROUND	1000- 1400	1400- 2000	2020- 2500	2500- 3000	3000- 3500	3500- 4160	4160-11000	11000-16000	.16000-21000	21000-26000
BALLISTIC FACTORS	.1350	.0750	0020,	.0310	.0290	.0520	.0480	,0820	.0580	.0390
LAYERS IN FEET ABOVE GROUND	11- 60	60- 108	108- 148	148~ 184	134- 216	216- 300	300- 400	400- 600	600- 300	800-1000

BALLISTIC FACTORS

-.0120

.1320

.0580

.0320

.0180

.0110

.0010

TABLE III. BALLISTIC FACTORS
NIKE-HYDAC STV-88

F4										
LAXERS IN FRET ABOVE GROUND	21000-26000	26000-31000	31000-36000	36000-41000	41000-46000	46000-51000	51000-56000	56000-61000		
							•			
BALLISTIC FACTORS	.0742	6990*	.0341	.0227	.0143	.0051	0051	0117	0168	0160
LAYERS IN FEET ABOVE GROUND	1000- 1400	1400- 2000	2000- 2500	2500- 3000	3000- 3500	3500- 4000	4000- 5000	5000- 9000	9000-15000	15000-21000
BALLISTIC FACTORS	.1265	.0844	.0535	.0410	.0235	.0592	.0520	0620.	.0530	.0407
LAYERS IN FEET ABOVE GROUND	11- 60	60- 108	108- 148	148- 184	184- 216	216- 300	300- 400	400- 600	008 -009	800-1000

BALLISTIC FACTORS

9600.-

-.0048

.1288

.0546

.0256

.0152

.0093

.0016

TABLE IV. BALLISTIC FACTORS
NIKE-HYDAC, BALLISTIC ROUND

					MEAN W	IND COM	PONENTS	MEAN WIND COMPONENTS IN MILKS PER HOUR	ES PER	HOUR		•		
AERO- VANE NO. *	1 0935 MDT	1 MDT	2 1000 MDT	2) MDT	3 1030 MDT	3 MDT	1045	4 1045 MDT	1100	5 1100 MDT	6 1110 MDT	6 MDT	7 1120 MDT	, MDT
	N-S	E-W	S-N	E-W	N-S	E-W	N~S	E-W	S-N	E-W	N-S	74 22	N-S	H-3
- -1	S.0N	0.0	6.0N	1.0E	2.0N	2.0E	0.0	0.0	0.0	0.0	0.0	0°0	2.0N	0.0
2	6.0	0.0	6.0	2.0	2.0	3.0	0.0	0.0	0.0	0,0	0.0	0.0	2.0	1.0
ო	0.9	0.0	6.5	2.0	2.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0
7	7.0	0.0	7.0	2.5	2.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0
3	6.0	0.0	7.0	2.0	2.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0

MEAN WIND COMPONENTS IN MILES PER HOUR	9 10 11 12 13 1150 MDT 1210 MDT 1220 MDT 1230 MDT	N-S E-W N-S E-W N-S E-W N-S E-W N-S E-W N-S	3.0N 2.0E 4.0N 2.0E 3.0N 1.0E 5.0N 2.0E 4.0N 1.0E	3.0 1.0 3.0 2.0 4.0 1.0 5.0 3.0 4.6 2.0	3.0 1.0 2.0 1.0 4.0 1.0 6.0 3.0 4.0 2.0	0 4.0 2.0 3.0 2.0 4.0 2.0 6.0 3.0 6.0 2.0	3.0 3.0 3.0
PONENTS	11 1210 M						0.4
TEND COME	O MDT	E-W	2.0E	2°0	1.0	2.0	2.0
MEAN W	1(1200	S-N	4.0N	3.0	2.0	3.0	3,0
	9 MDT	E-W	2.0E	1.0	1.0	2.0	2,0
	1150	N-S	3.0N	3.0	3.0	4.0	3.0
	8 1130 MDT	E-W	0.0	0.0	0.0	0.0	0.0
	1130	N-S	0.0	1.0	2.0	2.0	2.0
	AERO VANE NO. *		1	7	er	7	V

TABLE V. ANEMOMETER WIND SPEED AND DIRRCTION NIKE-HYDAC STV-88, AND BALLISTIC ROUND

5 m 200 Feet 3 = 128 Feet 4 = 168 Feet * Heights corresponding to Aerovane Numbers: 1 = 35 Feet 2 = 88 Feet

					MEAN 4	TIND COI	MEAN WIND COMPONENTS	S IN MI	IN MILES PER HOUR	HOUR	:			
LAYEKS IN FEET ABOVE	0935	1 0935 MDT	1000	2 1000 MDT	3 1030 MDT	MDT	4 1045 MDT	MDT	1100	5 1100 MDT	6 1110 MDT	6 MDT	1120	7 1120 MDT
GROUND	N-S	M-B	N-S	M-3	N-S	E-W	N-S	RW	14 -8	M-21	R-S	R-W	N-S	E-W
216- 300	3.0N	1.5W	7.0N	2.0E	2.0N	4,0E	2.08	1.0E	2.0N	1.5W	0,0	0.0	1.5N	0.5E
300- 400	3.0	1.5	7.0	2.5	2.0	4.0	0.5	2.0	2°2	1.08	3.0N	0.5E	1.0	1.0
400- 600	5.0	0.0	6.5	2.0	1.5	3.5	1.0N	2.0	2.0	1.5	3.0	1.0	1.0	0.5
008 -009	6.5	1.0E	5.5	2.5	1.5	3.0	1.0	1.5	1.5	0.5	3.5	0.5	2.0	0.5
800-1000	7.5	2.0	5.0	3.0	1.0	3.0	1,5	3.0	1.5	1.5W	2.5	0.0	2.5	0.5
1000-1400	6.5	0.0	0.9	1.0	2.0	2.0	1.0	2.0	2.5	1.5E	3.0	0.5E	2.0	0.0
1400-2000	5.5	0.0	4.0	2.5	1.0%	3.0	1.08	0.3	0.58	0.0	0.0	0.5	3.05	0.0
2000-2500	2.5	0.5	1.5	. 0.5	2.5	0.5	3.0	0.5	3.0	0.5W	5.58	1.5W	8,5	2.0W
2500-3000	0.58	3.5	0.0	3.0	8.0	1.5	8.5	2.5	8.0	0.0	11.0	0.0	13.0	1.0
3000-3500	5.0	3.5	5.0s	3.5	10,5	2.0	10.5	2.0	11.5	1.0E	14.0	0.0	14.0	0.5
3500-4160	6.5	3.0	7.0s	3.0	10.08	1.0	11.0	0.5W	15.0	1.5	15.0	1.0W	15.0	2.0
						V ()	-							

TABLE VI. PILOT-BALLOON-MRASURED WIND DATA NIKE-HYDAC STV-88 AND BALLISTIC ROUND

THE PROPERTY OF THE PROPERTY O

				MEAN W	MEAN WIND COMPONENTS	PONENTS	IN MILES	es per houp	HOUP.			
LAYERS IN FEET ABOVE	8 1130 MDT	8 MDT	9 1150 MDT	MDT	1200 MDT	MDT	11 1216. MDT	MOT	12 1220 MDT	Z MDT	13 1230 MDT	MDT
GROUND	N6	N-31	N-S	E-W	N-S	\$K	N-8	E-W	N-8	N-3	N-3	EW
216- 300	2.0N	0.5E	1°0N	2.0E	3.0N	2.0E	NO.₽	2.5E	4.0N	2,58	7.0N	2.08
300- 400	3.0	1.0	1.5	3.0	2.0	2.0	4.0	ω δ.	2.5	1.5	7.0	1.0
400- 600	2.5	0.5	4.0	3.5	3,0	2.5	3.0	1.5	4.5	2.0	8.5	8.0
900- 800	2.0	0.0	2.0	4.0	2.5	ស្ន	3.0	3.0	6.5	2.5	0.6	2.0
800-1000	4.0	0.5W	3.0	3.0	3,0	1.0	5,5	3.0	6.0	1.0	6.0	2.0
1000-1400	2.5	0.0	2.0	1.0	2,4	0.59	ى ئ	1,0	3.0	0.5	5.0	0.0
1400-2000	1.58	0.5W	3,58	1.5W	1,08	1.5	2.03	7.5W	3.08	J 0W	1.08	0.5W
2000-2500	8.5	2,0	9.0	3.0	6,5	3.0	7.5	1.5	6.3	0.0	5.5	1.5E
2500-3000	11.5	1.5	10.5	2.0	0.6	2.5	0.0	1.5	7.0	0.5W	3.5	2.0W
3000-3500	12.0	1.5	14.0	3,5	11.0	1.0	9.5	2.0	6.0	1,0E	2.0	2.0
3500-4160	13.0	1.5	12.0	3.5	10.0	3.0	7.0	2.0	4.5	0.5W	7.0	0.5

TABLE VI. PILOT-RALLOOM-MEASURED WIND DATA (CONT) NIKE-HYDAC STV-88 AND BALLISTIC ROUND

TAVEDO	æ	ean win	MEAN WIND CUMPONENTS		IN KNOTS	
IN FEET		1		2		
ABOVE	0830 MDT	MOT	1100	1100 MDT		
GROOM	S-N	E-W	N~8	K-X	NS	R-W
4160-11000	14.08	2.5W	13.08	0.0		
11000-16000	18.5	3.5	15.0	2.58		
16000-21000	18.0	0.0	12.0	2.0		
21000-26000	7.0	4.0W	7.0	2.5		
26000-31770	8.5	3.08	10.5	6.0		
31770-36000	11.0	0.0	11.0	6.5		
36000-41000	16.0	2,58	16.5	3.0		
41000-46000	11.0	2.0	13.0	5.0		
46000-56000	5.5	1,5.0	ب م	11.5		
26000-66000	0.0	21.0	4.0	21.5		
6600073300	0.0	29.0	4.5	25;3		

TABLE VII. RAWINSONDE-MEASURRD WIND DATA NIKE-HYDAC STV-88

9 A & # # #	X	MEAN WIND COMPONENTS	р сомпо		IN KNOTR	٠-
IN FEET		1		2		3
ABOVE	0830	0830 <i>Mo</i> t	1100	1100 MDT	1318	1318 MDT
	N~S	E-W	S-N	M-2	S-X	N-Z
0005 -0007	8.08	2°2	.10.08	1.5W	2.58	3.0E
2000 -0005	15.0	5.5W	12.0	0.0	12.0	0,0
9000-15000	18.5	3.5	16.0	3.04	19.0	0.0
15000-21000	13.0	0.0	13.0	2.5	10.5	4.0W
21000-26000	7.0	4.0W	7.0	2.5	6.0	1.0%
26000-31000	8.0	2.5	9.5	5.5E	13.0	2.5
31000-36000	11.0	2,0	11.0	6.5	16.0	2.5
36000-41000	16.0	2.5	16.5	3.0	16.0	3.0W
41000-46000	11.0	2.0	13.0	5.0	12.0	2.0E
46000-51000	7.5	13.0	7.5	0.6	0.6	3.5.5
51000-56000	0.9	17.0	13.5	16:0	ຄຸ	13.0
56000-61000	0.0	18.0	0.0	18.0	0.0	18.0

TABLE VIII. RAWINSONDE-MEASURED WIND DATA NIKE-HYDAC BALLISTIC ROUND

SIG	MSL		
	3985.CC FERT MSL	0830 HRS MDT	
	ALTITULE 3	59	N NC. 675
	STATICE	10 JULY	ASCENSICA

CONFICANT LEYEL CATA 0031003904 WHITE SANDS

WSIM SITE COURDINATES 483540.00FEET E 185045.00FEET N

TABLE IX

REL.HUM.	PERCENT	
TEMPERATURE	UENPCINT	DEGREES CENTIGRADE
TEMPE	AIR	DEGREES
PRESSURE GEUMETRIC	ALTITUDE	MSL FEET
PKESSURE		MILLIBAKS MSL FEET

PERCERT	•	₹	77.0	e			•	•	•	•	•	•		# "0-	•	** *0~	•	•	** 0-	** •0-	** •0-	** •0-	***	** •0-
ue np cint centigrade			14.1	*	S.	0	13.	75	18.	18.	21.	စို	46	•	•0	•0	తీ	ŏ	° 0	0	•	• •	. .	• •
AIR DEGREES	ů	•	16.1	•	•	Š	•	ئ	-	•	4.	25.	36.	55		¢¢.	72.	71.	4	57.	~	-	•	ငံ
ALTITUDE ILLIBAKS MSL FEET	63.0 3585.	73.0 4311.	833.0 5635.4	56.0 12241.	07.0 19664.	98.0 18476.	9C.0 15544.	50.0 22119.	39.0 22746.	22.0 2373E.	14.0 24216.	C7.C 31461.	55.0 32C80.	95.0 4157C.	54.0 46418.	31.0 49694.	69.0 53275.	00.0 54551.	4.0 63755.	6.0 10572.	9.0 85458.	3.5 57037.	0.0 103766.	•2 1C564C°

** RELATIVE FUMIDITY NOT SUPPLIED. ZERO VALUE ASSUMEL FOR COMPUTATIONS.

	ASCENSION NO. 673
KHITE SAND	10 JULY 65 0830 HRS MOT
6031003	ITUDE 39
UPPER AIR D	

The state of the s

UPPER AIR DATA GG31003904 WHITE SANDS

WSTM SIRE COORDINATES 486580.00FEET E 185045,00FEET N

TABLE X

GECRETRIC ALTITUDE MSL FEET	PRESSURE MILLIEARS	TEMR AIR Cecrees	TEMPERATURE IR DEWPOINT REES CENTIGRADE	REL.HUM. Percent	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	WIND CAT DIRECTION DEGREES(TN)	FA SPEED KNOTS	INDEX OF REFRACT ION
989.	83.		•	4	046.	1.194	ဝံ	•	.00032
. 000	82.	16.4	•	e e	•		•		00
500	67.	\$	•	÷	024.	68	æ	•	.00031
300 •	529	ж Ж	•	4	008.	689	Ŷ	•	.00030
5500°C	5.5	18.3	•	•	993.5	67.	*		.00029
.000	22.	-	•				8	•	.00028
500.	010	6.	•	÷	•	•	6	•	.00028
0000	53.	S	•	ф			3		000027
500	38.	4.	•	ŝ	•	63.	4	•	.00027
.000	64.	•	•	ô	•	62.	Ö	•	•00026
500.	7 5	(1)	Ġ	ċ	•	6.00	•	•	.00025
9000	270	2	•	7.	•	59.	7	•	.00025
9500.	24.	•	e	2.	•	58.	8	0	.00024
•	11.	ċ	6.2	82.9	868.5	657.8	ŝ	-	.00024
0200	98	•	•	m	•	56.	=	8	.00023
1000	86.	•	•	4	•	55.	*	Ç,	.00023
1500.	73.	•	•	ທຸ	•	54.	•	•	.00022
2000	61.	•	•	ş		53.	c	5	•00022
2500.	48.	•	•	ů		4	6		.00022
3000	37.	•	•	ę,	•	51.	-		.00021
3500~	25.	•	•	?	•	50.	3.	80	.00021
00	13.	•	•	7.	769.0	48	3	6	.00020
4500.	02.	•	•	ູ້	•	48	ŝ	6	•00020
2000	91.	٥	•	္ဆံ	•		?	6	•00019
5500.	80.	•		ů	•	•	ô	•	.00019
00	68.	•	•	\$			•	-	.00018
6500°	58	•	•	ċ	711.2	•	8	-	.00018
000	48.	•	•	ပံ		43.	8	-	.00018
O		-2.2	4.8-	51.4		42	176.2	20.5	001
.000	27.	•	4.2	•	678°7	6.049	•	6	*00017

	ひとし シーク ション・ローク	
IEN ALTITUCE 2483.CC PPFT MSL	CC31 C03904	WSTM SITE COUR!
LY 65 0830 HRS MDT	MHI 1E SANLS	466980 0051
NSICN NC. 673		185045 00F
	TABLE X (Cont)	

STATION FLITTOCE AGNALCE FFT WSL 10 JULY 69 ACENSION NC. 673 TABLE X (Cont)	RESSONE TEMPERATURE REL-MUM- DENSITY SPEED OF WIND DATA INDEX
STATIEN ALTHUE 2423 10 JULY 69 ASCENSION NO. 673	CECTOR DATES SONE

INDEX	40	REFRACTION	1.000171	.00016	\$1000°	.00015	.0000.5		₹000•	.000.14	.00014	.00013	.00013	.00013	.00012	.00012	.00012	400032	* 000° 3	*00011	1000	*00011	\$000 P.	.00010	*00010	01000	\$ G00010	01000.	6 0000°	60000	₩000	60000°X
4	SPEED	NOT		ŝ	4	Š	ŝ	•	60	11.4	•	•	•		•	•			•	•	•		•	•	•	•	•	æ•.œ	ଫ ଡ	7.9	7.5	\$ (10 ± 8)
UNIM	CIRECTICA	GREES (T	173.0	72.	74.	75.	76.	77.	62	182.2	84.	87.	84.	77.	76.	77,	780	80.	.26	12.	17.	210	240	19.	06.	•96	88.	77.	かなる	50.	35.	28,
SPEED CF	SOCNO	KNOTS	639.9	38.	37.	36.	35.	•	99	632.1	31.	29.	28.	27.	26.	24.	23.	22.	20.	6:	8.	17.		14.	13.	11.	•	960	07°		•	603,3
ENSITY	CLBIC	1 EX		•	•	638.3	•	خ		597.7			•			•		524.7	•	•	٠			475.6	•	ė		44545	38.	6	99	416.3
KEL . 11CK.	PERCENT		20	8	. *	•	ئ	4	•	66.5	ڼ	ڻ	•	2	ហ	*	m,	ij	-	%	ů		•	Š	4.	ส์		, -	X)	18.2	14.34%	15,544
1 EMPEKA ILKE	Z	CEN 1 IGRADE	•	41	ڻ	•	4	7.	4.	-15.1	-	3	ن د	15.	21.	(7)	4	25.	26.	<u>2</u> & •	•	ۍ پږ	-	13	4.	4	ę,	-	9		5	=
	~	LL(REES		•		•		•	•	-10.0	ڻ	12.	6	14.	4	ŝ	•	18.	ŝ	ڻ		22.	77	4	47	ć,	[-	œ	\$	ပံ	-	m
PRESSONE		FILLLEANS	17.	8 (3	စ တ တ	εα.	5.	70.	6.1.	452.1	43.	34.	, ¢	17.	*60	000	375	\$4.8	16.	689	61.	54.	4 E.	53	17	26.	5.4	17.0	C 6.	CC.	53.	۲. د د د
ECPETR	-	St fee	8500 ·	.0006	. 0036	9000	.0050	1cco.	1500.	2200000	2500.	3000.	35CO.	4000+	4500.	25000.	55C0.	.0000	6500.	10007	7500.	8000	45CO.	.0006	9500.	.0000	0500	1000	1500.	2000.	2500.	3000

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE HAS USED EN THE INTERPOLATIONS

FEET MSE		
<u>.</u>	MOT	
i.	HRS	
• 00	0830 HRS MDT.	
3989.00	õ	
		613
ALTITUGE		
111		NO.
A	59	Z.
3	10 JULY 65	ASCENSION
STATION	₹	CEI
Ś	10	AS

CPPER AIR DATA OBJECT OF SANDS

MSTWTSITE GOORDINATES 488580.00 FEET E 185045.00 FEET N

数ながら

TABLE X (Cont)

<u>, ၁</u>

INDEX	REFRACT IUN	• 00000	60000	\$0000	.00008	• 00008	• 0000	•00000	• 00008	€0000	* 00007	100000	.00000	-	•00001	20000	.00300		90000	S	•00000•	90000	•0000	90000°	90000	•0000	.0000	5	0005	Õ	S
	KNOTS	•	•	9	`●	•	•		•	•	å	1:	å	8	4	4	5	٥٠	9	-	•	8	8	-	\$	3.	*	Š		8.1	•
111111111111111111111111111111111111111	DEGREES (T.N.).	22.	26.	2	36.	42.	48*	56.	64.	72.	79.	19.	76.		659	63.	62.	63	6.0	68.	•	73.	75.	77.	•	81.	85.	85.	79.	172.7	•
SPEED GR	KNOTS	0	000	98	96	95.	93.	91.	90.	88	87.	85.	83.	82.	80.	78.	76.	75.	73.	72.	70.	6.9	68.	66.	\$50	63.	62.	60.	60.	560.6	60
DENSITY	METER	0.8	029	950	88.	82.	75.	*69	63.	57.	51.	45.	39.	33.	28.	22.	17.	12.	90	000	94.	89.	83.	78.	73.	67.	62.	57.	51.	245.2	39.
REL.HUM.	* CALLEN !	2	2	11.2**	ċ	5.6**	8	•	7.2**	£.4**	5.6**	**O • 7	4.14*		2.5**		•	•	-C. **	** •O-	+* •0-	#* *O-	+* °5-	+* *0-	** •0		** *0-	** •0-	+* *0-	+* •) -	** *0-
	ES CENTIGRADE	(1)	5	.	\$	6	•	(1)	'n	-	8	0	(1)	-75.5	8	•	ç						•				.	3	•	•	.
TEMP	CE CREES	4	r.		\$	o,	0	•	•	9	Ú	7	8	\$	-	(.4	W)	40	•	•		\$	Ç	-m	~	m •	*	ທ	i()	-65.8	•
PRESSURE	MILLIEARS	e C C	74.	÷8.	62.	100	05	45.	90	34.	25.	23.	18.	14.	*50	0.40	.00	95.5	919	86.	81.	77.	73.	669	65.	61.	57.	(1) (1)	400	45	17
ECMETR	MSL FEET	***	4000	4500.	5000	5500	•0009	6500.	7000.	7500.	8000	8500.	.0006	39500	.0000	0500	1000	1500.	2000.	2500.	00	3500.	4000	4500	5000	5500.	6000	6500	7000	500	00

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

	MSTM SITE COURDINATES	488580.00FEET E	185045.00FERT N	
LPPER AIR CATA	0031003904	AHI TE SANDS		A STATE
	STATILA ALTITULE SYNNICO PERT MOL	10 JULY 65 G830 HRS MDT	ASCENSICA NC. 673	

488580.00FEET E	N WWW.DD. OR	INDEX	. OF
7 -	~	ATA	SPEEC
		WIND CATA	DIRECTION SPEED
CS	ont.)	SPEED UF	SGUND
MHITE SANDS	TABLE X (Cont)	REL.HLM. DENSITY SPEED CF	PERCENT GM/CLBIC SGUND
		REL. HLM.	PERCENT
DT		1 EMPERATURE	DEAPCINI
G630 HRS MDT		1 EM	AIK
27	•	PRESSURE	
10 JULY 65	7 1101 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GECRETRIC PRESSURE	ALTITUDE

INDEX		REFRACTION	• 90000	.00005	.0000	.00000	+00000+	• 00000	1.000045	*00000*	.00004	•00004	.00004	.00004	.0000	.0000	•0000v•	.00003	• 0000	.0000°	.0000	• 00000	.00003	.0000	.00003	.0000°	.0000	.00002	.0000	0000	N	O.
\ 4 :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*	•	•	4	-	2		-4	٠ د		4	•	ម	•	2	*	6	4	m •	*	4	2	6	•	-	2	9	•	&	,21.3
ONTR	2 1	SREES (T	52.	41.	30.	29.	290	30.	132.3	28.	19.	.60	98.	6	4	00	04.	8	32.	62.	57.	35°	20°	14.	15.	07.	æ	4	•	-	ş	.
SPEED CF	22020	X LON X	60.	60,	60.	59	500	570	555.9	540	53.	333	520	52.	520	53.	53.	54.	54.	55.	55	56.	56.	57.	57.	58.	58•	56	59.	60.	900	61.
	いてはいいと	T T T T	33.	27.	22.	17.	12.	CB.	203:9	55	95.	91.	86.	81.	76.	72.	67.	63.	58.	54.	50.	46.	45	380	35.	31.	27.	24.	21.	17.	14.	110
REL. HLM.	アルストルント		** •0-	** •0-	** • 0 €	** *5-	** *O-	** *O-	-C. **	+ * * O -	** °) ;	1C. 44	+* *)-	** •0-	-C. **	# C • C +	-C• **	** **	+ ** *O-	+ * *) -	-C. **	-O- **	-C. **	-	-C. **	-C. **	** •51	+ C * *	+C. **	-C. **	+¢ •0-	* * * O -
	これでいるというに	CENTIGRACE	ů	ပံ	ပံ	ڻ	ů	• •	ပံ	ئ	ڻ	ပံ	ပံ	• •	ڻ	ڻ	ပံ	ပံ	.	ပံ	.	ပံ	္	ن	ပံ	ပ်	ပံ့	.	ပံ	္	•	•
Her ()	X7 7	LECKEES	-66.1	-66.2	0	Ç	•	ဆီ		•	ن	4	4		-		-	C	0	•	•	ŝ	φ (2)	-68.4	ů	•	-67.3	-66.9	4	•	-65.E	-65.4
PRESSURE		KILLIEDRS	8	4	Ċ	æ	'n	'n	119.3	9	å	0	7	Š	02.	\$	<u>د</u>	4	1,4	ċ	70	Š	m	~	6	-	Ŝ	'n	, - -	ö	သံ	•
* :	4 (St FEE	8500.	-0006	9500.	0000	0200	1000	51500.0	2000.	2500.	3000	3500.	4000	4500.	55000	5500.	•0000°	6500.	7000	7500.	8CC0.	8500.	9000	9500.	.0000	0500	1000	1500.	2000.	2500.	3000

** 27 LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

SIATION ALTITUDE 3985.00 FEET MS!
10 JULY 65 0830 HRS MDT
ASCENSION NO. 673

CPPER AIR CATA 0031003904 WHITE SANDS

WSTM SITE COORDINATES 488580.00FEET E 185045.00FEET N

TABLE X (Cont)

INDEX	REFRACTION	00000	Ň	• 0000 5	.0000	.00000	•0000	• 00005	•00005	• 00001	.00001	•00001	•00001	0000	10000 ·	10000	0000	.0000	.0000	. 0000	00000	10000	10000	*0000*	• 00001	100000	.0000	.0000.	.00001	* COOO 1	.00001
u	KNOTS	*	-	•		*	•	8	8	\$	0	-	e m	26.1	ထ	6	å	ċ	G.	•	æ	8	8	æ	æ	8	ж Ж	Ġ	o,	ć	ė
J ONZE	DEGREES (TN)	10	\$	\$	•	ŧ	•		4	•	٦,	•	ŝ	18.5	2	÷		å	å	*	ŝ	ທ	÷	*	w S	е	n	ä	0	ç	æ
SPEED OF	KNOTS	51.	562.4	63.	63.	54.	65.	66.	66*	67.	68.	*69	70.	570.7	71.	720	72.	72.	73.	73.	7.3	74.	14.	74.	75	15	75,	76.	76.	76.	77.
ALISA	METER	08	10	63.	00		10	~	á		٠. د	m	9	78.6	\$	ر ج	å	å	9	7.	ຜ	4	4	rd rd	•	8	9	ŝ	4	~	-
HUK.	- - -	*	*	*	*	*	*	¥	¥	*	*	*	¥	*	¥	*	* *	* *	*	* *	*	* >	* *	*	¥	*	* #	¥	*	*	*
ə ;	EKLEN	** *O-1		** •0-			•	9		•				+* •3-	*	•	•	•	•		•	•	•	•	** °O -	•	* # * 0 i	•	•	+**	•
TURE REL-	EKLEN	1	0-	1	3-	0-	3-	င်ပါ		0	0-	91	0-	ပံ	* •°0 =	0-100	•0-	0 1	۲	ۍ ا	0 1	٠0٠	0-	0-	•0-	ئ ا ا	01	0,	0-	3	•0-
EMPERATURE REL	DEWFOIN! FEKLEN ENTICKADE	•0	0- 0- 9	4.0	3.4 0.	2.5 C0.	2.3 C.	1 -7 C.	1.2 CC.	0.0	0.0	00 100	.0- C. C.	B C. − C.	7.8 CC. *	7.2 C0.	·00 5•9	ć.6 C0.	•0-4	*2 CC.	0.0	5.7 C0.	5.4 00.	5.2	•0 - 6•	4.7 CC.	0- 0- 5-7	4.2 0° -0•	-0-1 -0-1	13.7 0. I.C.	3.4
EMPERATURE REL	FIR DEWPUINT PERCEN ECREES CENTIGRADE	1 65.0	3.4 -64.6	1-8 - 64.0 C.	3.4 -63.4 CC.	3.9 - 62.5 00.	7.5 -62.3 CU.	5-1 -61-7 C0-	4.7 -61.2 CC.	3.4 -60.6 00.	2.1 -60.0 00.	0.9 -55.5 C6.	- 158° 5 C. 10°	8.5 -58.3 66.	7.3 -57.8 CC. *	6.2 -57.2 C0.	5.1 -56.9 00.	4.0 -56.6 C0.	3.0 -5c.4 CC.	2.0 -56.2 00.	1.1 -55.9 00.	0.1 -55.7 C0.	9.2 -55.4 00.	8.3 -55.2 60.	7.4 -54.9 00.	6.5 -54.7 CC.	5.7 1.54.4 0. 10.	4.9 -54.2 0.	-0-1 -0-5 -0-5 -0-5 -0-5 -0-5 -0-5 -0-5	Tenna Tonna	5 - 53 • 6 0 · 10 •

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE NAS USED IN THE INTERPOLATION.

	WSTM SITE COURDINATES	48658G+00FEET E	185045-00FEET N
LPPER AIR CATA	0051003904	WHI TE SANDS	
	STAILEN ALTITULE 3989.CC FRET MSL	10 JULY 65 0830 HRS 147I	ASCENSION NO. 673

TABLE X (Cont)

index Of Refraction	10000	100000 00000 00001	1000000 0000000 0000000000000000000000					
S PEED KAGTS	0 = -	ન છે. છે.	មានស្ន	0 ~ ~ ~ ~	- 12 - 0	& Same	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WAND CAT DIRECTION DEGREES(TN)	~ o u	ร์ เกล	m 4 W 1	- 33 C3 V	\$ c, ~ ∞	0404	9 4 6. 8 6 9 4 6. 8 6	00000000000000000000000000000000000000
SPLED OF SOUND KNSTS	77.	78.	9000	0000	882.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 CD CD CD CD	
DENSITY GM/CUBIC METER	90,4		4000	4000	56.40	4400-	40000	2000000 200000 200000
EKCENT	* * *	+ + +	* * * ;	• * * * • * * *	* * *	* * * * * *	* * * * *	****
REL.	300	200					ာ်ဝီဝီဝီဝီ 	
FEMPERATURE A DEMPOINT EES CENTIGRADE	900	.	ငံ ပံ ငံ ပ	် ဝံပ ံဗ်	် ပွဲ ဝီဝီ		• ပင်ပင်	တွင် မိုင်းမှ မိုင်း တွင်းမှ ဝိုင်းမှ
Temp Lir Secrees	• •	41416	(1) red red r	• • • · ·	1 41 72 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14444 140000 100000	+ 50 mm co co
PRESSUKE MILLIEARS	m ====================================	 	\$ 1- 40 V	ถ ญ ญ 4	360	* • • 9	္တီလီလီလီ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GECRETRIC ALTITUDE MSL FEET		00000	X000. 1500.	83500 . 83500 .	4 500 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	65000° 6500° 7000° 7500°	8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900000 9100000 9100000 9200000

** AT LEAST CNE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 29.00 FEET MSE 10 JULY 65 0830 HRS MDT ASCENSION NO. 673

UPPER AIR DATA 0031003904 WHITE SANDS

WSTR SITE COOKDINATES 486580400FEET E 185045400FEET N

the second control of the second control of

TABLE X (Cont)

INDEX	REFRACTION	.0000	1.000005		3		£00000	000000	1.00000	1.000004	1.000004	1.0000004	1.000004	1.000004	1.000004	1,000004	1.000004	1.000004	1.000004	1.000004	1.000003	00000*	• 00000	00000	0000	1.000003
TA Speed	KNOTS	30.6	31.03	32.9	33.3	ののの	33.7	O• ₹6	34.6	35.1	35.7	36.8	37.9	39.0	40°5	42.2	B	4	44.8	44.8						
MIND DATA	DEGREES(TN)	86.9	66.1	89.2	90•3	91.4	92.4	95.8	92.3	91.8	91.2	2.06	90.1	89.6	89.4	89.3	•	6	•	3						
u _z	KNULTS	589.2	589.8	590.4	500.8	591.5	592.1	592.7	593.2	593.1	592.9	592.7	592.5	59%,3	592.I	591.9	591.3	591.5	591.3	59%.1	590.9	590.1	591.0	592*0	593.0	594.0
DENSITY S		24.1	23.5	22.9	22.4	21.8	21.3	26.8	20.3	19.9	19.4	19.0	18.6	18.2	17.8	17.4	17.1	16.7	16.3	16.0	15.7	15.3	•	•		13.9
		*	*	*	*	*	*	*	*	*	*	*	* *	**	*	* *	¥ ¥	*	*	*	¥	*	¥	*	*	¥
REL.HUM. PERCENT		0-	•	• 0	0	.	ô	•0	ဦ 	9	9	0-	0-	0	0-	0	0	0	-0-	ö	0-	ပံ	ပီ 	0-	-0-	0
ERA TURE DEMPOINT	CENTIGRADE	•	•	ပံ	ئ	ပီ	•	3	•	ů	ວໍ	. ၁	ပီ	.	•0	* 3	ပံ	ပံ	• •	.	.	•	ပံ	•0	ບ	ဗီ
TEMPERATURE AIR DEWPOINT	REES CENTIGRAD	-44.2	-43.7	-43.3 C.		-42.4 C.			0.		ก		9•	œ.	6.	.1		4.			-42.9 C.			-42.0 0.	-41.2 C.	-46.4
TEMPE	(REES CENTIGRAD	.8 -44.	-43	43.3	4.8 -42.8	-42.4	4.1 -41.9	-8 -41.5	.5 -41.0	.2 -41.1	2.9 -41.3	.6 -41.5	2.4 -41.6	-41.8	I.8 -41.9	1.6 -42.1	.3 -42.2	1.1 -42.4	0.8 -42.5	0.6 -42.7	.3 -42.9	0.1 -43.0	•9 -42.7	-42.0	.5 -41.2	46.

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE. WAS USED IN THE INTERPOLATION. *

STATICN ALTITUCE 3585.CC FEET MSL 10 JULY 65 ASCENSIER NG. 675

Same and the same of the same of

MANDATORY LEVELS 0031003904 WHITE SANDS

WSTM SITE COORDINATES 468580.00FEET E 185045.00FEET N

TABLE XI

	GTENTIAL	AIR AIR	TURE WPOIN	REL.HUM. PERCENT	DIRECTION	SPEED
Ţ		DEGKEES C	N N		skees ()	X POR X
	÷	æ	Ś	82.	0.69	2.3
	73.	•	•	.62	127.1	•
25	~	100	ċ	81.	2	
4	6 8•	•	7.3	84.	-	C
24	82,	•		86.	6	-
4,6	28.	•		88.	4	
165	27.	-1.2	-2.5	91.	178.4	21.4
46	90		٠	7.3.	3	S
2 C	55.		•	67.	2.	•
3	, I •		•	54.	-	6
8	•	•	-31.1	47.	6	•
51	,,	•		18.	ċ	•
€ 1	ج •		•	***	1.2	
S	6 •	- 53° 7	•	***"	1.9	•
12	•	6	ကိ	***01	4.8	œ
έε	•		ö	***0-	0•3	å
7	u)	•	ô	***0-	0•6	6
48	6 *	•	•	***0-	1.6	-
75	* 8	•	ဝ်	***0-	9•9	6
3	2.	•	o	***01	7.4	\$
4. m	7.		ð	***0-	4.6	-
εe	1.	•	°	***0-	7.1	9
44	ć.	•	ô	***0-	5.2	8
S	£.		•	***0-	5.55	-
5	2.		ပံ	***0-	6.0	
56	8		Ġ	***0-	ις.	-
4	ڻ	-43.1	ċ	***0-	9	m •
(1)	η, •	-43.1	• •	***0-		,

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATIONS

The state of the s

SIGNIFICANT LEVEL DATA 0031003905 WHITE SANDS

TABLE XII

STATICN ALTITUEF 3589,00 FFFT MSL 10 JULY 65 ASCEPSIGN NO. 674

on on month of the order of the contract of the system is such executable to a contract of the contract of the contract of

REN. HUM.	PERCENT	
JEHPERATURE	AIR DEMPOINT	DEGREES CENTIGRADE
JEHPE	AIR	UEGREES
SEUME TRIC	ALT TTUDE	SL FEET
PRESSURE GEOMETRIC	4	"ILLIBARS MSL FEET

PERCENT.		•			6	EQ.	8		å	9	56.0	ċ	9	-	O	O	•	•	** *0-	•	•	•	•	*	** *0-	** •0=	
<u>ب</u>		4	ŝ		*	7	•		÷	*	6	24.	, t	404	•			•0		•	•	•			ő	° 0	
AZR	示 .开	~	.,	ê	2		сд •	2,	6	5	1.2.	14.	ij	32.	*8 %	5.5	64.	£5.	70.	720	64.	64.	ين ج م	57.	-37.1	35.	
GEUME TRICAL TRICAL	l fee	*585	332	669.	287.	260.	151.	4840.	9384	9653.	2700.	4410*	8849	2742.	9223	3391.	6064.	8860.	1588.	5365.	1462,	2530	25'8	1969	C4439.8	4231.	
KESSUR	PILLIBARS	e (1)	13.	56.	44.	59.	35.	36.0	01.0	0.96	o.	10.0	43.0	91.0	18.0	19.0	57.0	37.0	19.0	0 • 8	2.0	5.0	2.0	7.0	5.8 3	.4.1	

** RELATIVE FUMIDITY NOT SUPPLIED. ZENG VALUE ASSUMED FOR COMPUTATIONS.

UPPER AIR DATA OC31003905 WHITE SANDS

WSTM SATE CUDRDINATES 488580.00FEET E 185045.00FEET N

TABLE XIII

STATION ALTHOLE 2985.CG FEET MSL 10 JULY 65 1100 HRS MDT ASCENSION NO. 674

INDEX OF REFRACTION	1.000322	.00032	.00030	.00030	•00059	•00028	4000€	.00027	.00027	.00026	.00026	\$2000*	.00024	40004	.00023	.00023	.00022	.00022	.00021	.00021	400021	•00020	.00020	.00019	.00019	.00018	.00018	,00018	.00017	2100
TA SPEED KNGTS	1.9	•	•	•	•			•	•	•	•		•	•	•	•	*	4	•	\$	8	8	~	•		*	4	4	å	
WIND CAT UIRECTION DEGREES(IN)	0*07	ċ	4	05.	370	69	74.	78.	79.	82,	86.	68	91.	87.	82.	77.	73.	72.	71.	77.	72.	73,	76.	79.	04.	98	91.	91,	ċ	86.
SPEED CF SOUND KNCTS	671.5	7:	689	67.	66.	65.	64.	649	63.	62.	61.	\$00	59.	34 8	57.	500	5. S.S.	54.	25	5.	000	•64	3 R 7	47.	40,	45.50	* * *	43,	41.	*0 *
DENSITY S GM/CUBIC METER	103201	Ca 5	026.	011.	995.	80°	6.5	51.	36.	22.	089	* 45	.18	68	55.	2.3	29.	27.	05.	93	81.	69	58	47.	350	23*	12.	019	90.	79.
REL.HUM. Percent	£1. C	.	ပိ	ะวั	ູ້	ŝ	ပံ	~	63	4.	*	*	e	ហំ	ç	8	3	4	٠ ش	'n		ŝ	ئ	-	ċ	ŝ	4	43	3	8
EMPERATURE DEMPOINT ES CENTIGRADE	e e :	.	e Cì	ş	*	(=)	'n	2	*	. *	ċ	•	•	•	•	•	8		*	•	•	•	•	•	•	•	•	•	•	•
TEMP AAR Cegrees	91	•	ŝ	3	2	-	Ç	ង	4	*	(4.) *	W.	, Y	-	ပံ	•	•	•		•			•		•	•	•	•	å	
PRESSURE MILLIEARS	3 • E & B	က် က	67.	9.2	ري م	22.	မ	53.	466	66.	ري دي	38	25.	12.	.65	86.	74.	61.	49.	37.	:0 6	14.	63	92.	81.	70.	50.	48.	38.	28
GECMETRIC Altatude MSL feet	0 685E	000	500.	0000	500°	.000	500.	*000	500 •	000	500°	.000	3000	10000	0050	10001	15003	200C.	2500.	3000	3500.	40004	4500.	5000	5500.	•0009	6500.	7000	500,	3000g

STATION ALTITUDE 3989,00 FEET MSI	10 JULY 65 ASCEASION NO. 674

THE PROPERTY OF THE PROPERTY O

COORDINATES OOFEET E

Marie

THE PART SHADON CHARACTER AND AND THE COMMENSATIONS OF THE COMMENSATIONS OF THE COMMENSATION OF THE COMMEN

NOTE SITE CO. O. O	T >	Z	Ω	S. REFR
E SAN		ATA	SPEE	KNOT
	`	HIND DATA	CIRECTION	DEGREES(IN) KNOTS REFR
3905	(Cont)	SPEED OF	SOUND	KNOTS
WHI TE SANDS	TABLE XIII (Cont)	DENSITY	CM/CUBIC	METER KNOTS
· , .		REL.HUM.	PERCENT	
T A St		RA TURE	₩	CENTIGRADE
1100 HRS MDT		T EMP E	HIV	ce crees
CN ALTITUDE 3989,00 FEF. LY 65 SIOA NO. 674		TRIC PRESSURE		MILLIEARS DEGREES
20 AL		ra i c	JUE	EET

Index Of Rephaction	1.000167	00015	.00015	.00015	.00014	.00014	.00014	.00013	.00013	\$00013	.00013	•00015	.00012	.00012	.00012	.0001	.00011	10000	.00011	.0001	.00010	•000010	.00010	• 00010	000010	60000	00000	600000	60000*
S PEED KNOTS	4.04	- 43	•	•	ĸ,	4	t)	4	÷	•	•	•	•	•	•	•	•	•	•			•	•			ċ	7	•	4
MING DAT CIRECTION DEGREES(IN)	181.5	74.	73.	730	74%	462	86.	91.	96	- 26	98.	97.	97	000	40	90	08.	04.	98.	91.	88	86.	87.	86.	74.	62.	51.	41.	34.
SPEED OF SOUND KNOTS	639.8	37.	35	4	m m	17 17 18	30	29.	29.	28.	2. 1.2.	27.	25.	24.	23.	21.	20.	19.	17.	16.	15,	13.	12.	1,1.	•60	90	90	050	03,
DENSITY GM/CUBIC METER	1.6999		40	30.	20.8	¥ G•	900	.06	80.	70.	60.	50.	47.	320	24.	75.	07.	66	91.	83.	15.	670	600	52.	45.	37.	30.	23.	16.
REL . HUM. PERCENT	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.) 4 0	6	ത	4	4	÷,	*;	ë,	ď,	*	ပံ	ئ	ئ	-		÷	S	å	å	å	ů	ş,	.;	a	#1	Š	å	Ġ.
EMPERATURE Dempgint ES centigrade	1 1	• • • ~	15	40	16.	-	18.	19.	ċ	-	, A	4	ŝ	Ć.	÷	3 8 9	253	30.	0	27.	63	34.	÷	3	0	th.	ŝ	4.7.	œ.
TEMP AIN DEGREES	0 F	• • • •!		•	(P		ئ	11.	, ,	E	13.	* + 1	e)	16.	-	1E,	15	2 C •	21.	•	37	•	25.	Ģ	28.	5	3	4	2.
PRESSURE MILLIEARS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, o	\$ C	19.	10.	£ 1.	* U	43	34.	26.	17,	• 50	02.	60	85,	71.	رد دي دي	680	3.	47.	40.	93	26.	19.	£1	6.69	000	94.	В7.
TRIC UDE EET	00	• 3		•	•	•	•	•	•		•	ċ	9		•	•	•	•	•	E	8	•	6	•	å		•	e	•

II LEAST UNE ASSUMED RELATIVE HUMIDITY VAILE NAS USED IN THE INTERPOLATION. Я Н

					UPPER AIR	CAIA		•		
STATILN AL	STATICN ALTHURE JOSS-CO FEET MSL	4.CC FEE	T MSL		2031003905	3905		WSTM SATE COURDINATES	COURDINATES	
10 JULY 65		1100 HRS MDT)T		WHITE SANDS	SO		466580.	488580.00FEET E	
ASCENSION NO. 674								185045	185045.00FEET N	
					TABLE XX11 (Cont)	(Cont)				
GECPETRIC	FFESSUNE	1 EMP	TEMPERA JUKE	AEL.KLM.	AEL.HLM. DENSITY SPEED OF	SPLEU CF	MIND CATA		INDEX	
alt Itlue		AIA	DEMPOINT	PERCENT	PERCENT GM/CUBIL SOUND	SCUND	CIRECTION	SPEED	0.6	

INDEX ED OF ITS REFRACTION	2 1.0000	1.00008	1.00008	90000 1 600008	.8 1.00003	.4 1.00008	2.9 1.00008	3.1 1.00008	3.2 1.00007	3.3 1.00007	3.3 1.00007	2.7 1.00007	2.4 1.00007	3.0 1.00007	3.8 1.00007	4.8 1.00006	5.9 1.00006	7.0 1.00006	7.9 1.00006	8.5 1.00006	8.7 1.00004	8.0 1.00004	7.3 1.00006	6.7 1.00006	6.0 1.00005	4.9 2.00005	3.7 1.00005	3.2 1.00005	2.8 3.90005
WIND CATA DIRECTION SPE DEGREES(IN; KNO	191.4	96.	38.	43.	Θ.	49.	7.0%	50.	▶•○ 5	52.5	54.7	59.	63.2	9.99	68.9	9.69	69.5	89.89	68.9	70.1	71.1	72.0	73.4	77.3	81.1	81.4	81.7	9*69	54.7
SPLED CF SCUND KNOTS	602.2	900	97.	911.0	4.6	.46	000	89,,	87.	85.	84.	82.	* 0R	79.	77.	750	74.	72.	70.	5.9	67.	499	65.	63.	52.	62.	61.	61.	610
DENSITY GM/CLUBIL HETER	409°8	900	62	83.	76.	70.	64.	58.	5.2	46.	414	35.	29.	17 17	17.	12.	000	01.	95.	90.	84.	46.	73.	68.	62,	56.	50	440	39°
AEL.KUM. PERCENT	というのできる。		-4	37	'n	•	3	•	•	Ç	Ç.	** *O-	•	*	•	•	## *O-	** •01	** ·0 ··	*** ** O	+ * * '	÷	•	** *07	** *0~	+* •O-	- C. *	** **	** •0I
E REL.KUM Int Percent Kade	3 6	12. A. 2. A. 2. A. 4. A.	744 11.1	8.5 5.5	61,00 6.5	3.9 7.1	66.4 5.B	69.2 4.5	2.5 3.2	6.9	4.8 C.6	0 !	· • • • • • • • • • • • • • • • • • • •	* •3-	÷ °0 -	•0-		•0-	¥ •0 = 3	÷ 5-	31	÷ °O;	* 0-	07	•0-	•0-	•		•
RAJURE REL-HUM DEMPOINT PERCENT ENTIGRADE	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.5 -57.4 11.1	8 * 5 * 5 * 5 * T * 5	0.4 -61.0 E.B	1.7 -63.9 7.1	3.0 166.4 5.8	44.3 -65.2 4.5	45.6 -72.5 3.2	6.9 16.9 1.5	48.2 -E4.8 C.6	0 ! 30 W	5C,8 0C.	52.0 C	3 · 3 · C · I · C · · · · · · · · · · · · · ·	#4.6 O0.	SS 0- 10.	7.X	£ • C	# C	C.6 O. 1.C.	»•55 C	2.5 00. #	.00.	4.4 C O.	64.7 00.	65.00 C.	65.2 O. 1C.	٠.٥
TEMPERATURE REL-HUM AIR DEMPOINT PERCENT EIREES CENTIGRADE	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		63.2 -37.9 -57.4 11.1	8.5 5.55- 1.25- 4.75	51.7 -40.4 -61.0 E.S	46.1 -41.7 -63.9 7.1	4).7 -43.0 -66.4 5.B	35.4 144.3 165.2 4.5	30.2 45.6 72.5 3.2	25.2 146.9 "76.9 1.5	20.2 -48.2 -84.8 C.6	13.2 -49.5 Cv =0	10.2 ±5C,8 0. −6.	± +51 +52 +0 +51 + 1€ + 1€ + 1€ + 1€ + 1€ + 1€ + 1€	CO.4 - 153.3 C. 10. 4	55.8 -14.6 O0.	93.2 155.6 O. 10.	86.7 -57.1 00.	82.3 TEE.4 C. 10. #0	28.0 155.6 C. 1C.	73.7 -6C.6 0C.	69.5 163.5 C. 10. #	65.4 -62.5 00. #1	61.4 -63.4 CC.	57.5 -64.4 C0.	53.c -64.7 00.	49.9 "65.0 C	46.2 -65.2 0C.	42.6 165.5 O. I

** AT LEAST UNE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

UPPER AIR CATA	*0031003905	HITE SANDS
さ		

STATECN ALTITUDE 3989.CG FEET MSL 10 JULY 69 1100 HRS MDT ASCENSION NO. 674

and the second second second and second second

WSTM SITE COURDINATES 486580.00FEET E 185045.00FEET N

State of the

			-
\ - (905	U	·)
٤	Ø.	MHTTE SANDS	
.	0031	TE	
		Į	
Š			_

TABLE XIII (Cont)

INDEX	REFRACT KON	. 0000	.0000	•0000°	+00000	.00000	+00000+	\$0000	.00004	.0000	\$0000°	•0000	40000	1.000040	•00003	•00003	.0000	€00000•	.0000	.00003	.00003	e0000°	*00003	.0000	.0000.	.0000	.0000	.00002	00002	.00002	0.2
⋖	SPEED	Ę	4	33	6	4		•	ċ	0	-6	2	ě	15.5	-	8	œ	Š	6	Ġ	7.	ŝ	•	•	-	8	•	*	2.	u.	ec.
MIND	Direction Degrees (TN)	*	39.	360	33.	32.	•	G	23	25.	26.	26.	26.	125.6	24.	24.	25.	24.	24.	23.	27.	32.	27.	•	07.	01.	ij	4	0	6	4
SPEED OF	SOUND	60	60.	S. C.	57.	56.	55	54.	e E S	53.	30	52.	22.5	551,7	51.	51.	52.	53.30	54.	550	56.	57.	58.	59.	600	61.	62.	63.	63.	63.	53.
NSITY	M/CLB1C METER	90	28	23	8	14.	.50	050	00	93	. 15	860	82.	177.8	73.	. 69	64.	59.	55.	50.	46 *	42.	38.	34.	30.	26.	23.	19.	16.	14.	11.
_	-																														
HC&	الله الله الله	¥	茶	*	*	*	¥	*	*	*	*	* *	*	*	* *	*	*	y	*	*	*	* *	}) j	*	*	*	¥	¥	*	*
	EXCEN *	** *O-	•	•	*****	** **	*	+* • O -	•	** °5 -	•		•	•	•		•	•	** *0-	•		+* *O-	8	•	+* •0-	•	e	•	** *O-	•	•
E REL.HUM.	EXCEN *	•	• ຕູ-	-0-		1	* "0"	50	3-	• ၁	•0-	•0-	•0-		0-	*\(\frac{1}{2}\)-		-0-	•0	•0-	•0-	*O-	°0-	•0-	0-1	•0-	, 0,2	• O	-0-	01	•0-
TEMPERATURE REL.HUM.	OENPOINT PERCENT ENTIGRADE	• 0	•2 C• -0•	•1 C• -C•	7.9 CC.	.0 9.	* 0- 0 9*5	C.5 C. 1C.	· 0 - 0 - 5 · 0	1.2 CC.	3.5 00.	1.8 C0.	2.3 C O.	4 C0.	2.7 00.	2.7 Cc -C.	2.0 CC.	1.3 60.	C.5 - C C.	.0 - CO.	5.1 0· -0·	*0 - 0 +*	7.7 C0.	•01	6.2 C0.	E.S. C. 10.	4.38 CC.	3 0 -0	4.1 00.	4.1 00.	4.1 00.
TEMPERATURE REL.HUM.	AIR DENDINT PERCENT ECREES CENTIGRADE	9.1 - 65.7 C	5.6 -66.2 C0.	2.2 -67.1 CC.	8.9 -67.9 CC.	25.7 -66.6 0	22.6 -65.6 06. *	9.5 -76.5 60.	6.5 -7C.9	13.6 -71.2 CC.	6.7 -71.5 60.	07.9 -71.8 C0.	05.1 -72.1 C0.	02.5 -72.4 C0.	5.9 -72.7 O0.	7.3 -72.7 CC.	4.9 -72.0 CC.	2.5 -71.3 60.	0.2 -7C.5 C0.	8.0 -65.8 C0.	5.8 -65.1 00.	3.668.4 00.	1.5 -£7.7 C0.	\$.5 -66.9 O0.	7.5 -66.2 C0.	5.6 -65.5	3.7 -64.8 CC.	1.9 -64.1 00.	C.1 -64.1 O0.	8.4 -64.1 00.	6.7 -64.1 00.
ECHETRIC PRESSURE TEMPERATURE REL.HUM.	FEET MILLIEAKS DECREOS CENTIGRADE	4500.0 139.1 -65.7 C	000.0 135.6 -64.2 C0.	9500.C 132.2 -67.1 CC.	00000.0 12.8.9 -67.9 CC.	0500.0 125.7 -66.6 0	1000°C 122.6 -65.6 00. *	1500.0 119.5 -70.5 60.	2000.0 116.5 -7C.5 CC.	2500.0 113.6 -71.2 CC.	3000°C 110.7 -71.5 00.	3500.0 107.9 -71.8 C0.	4000.0 105.1 -72.1 C0.	500.0 102.5 -72.4 C0.	55000°C 59.9 -72.7 00.	5500.6 57.3 -72.7 CC.	\$0000.0 94.9 -72.0 CC.	6500°C 92.5 -71.3 C0.	7000.0 90.2 -70.5 C0.	7500.C 88.O -65.8 C0.	8000.0 85.8 -65.1 00.	8500.0 83.6 -68.4 00.	9000.0 81.5 -67.7 C0.	9500.0 75.5 -66.9 00.	0000°C 77.5 -66.2 C0.	0500°C 75.6 ~65.5 C0.	1000°C 73°7 -64,8 CC.	1500.0 71.9 -64.1 00.	2000.0 70.1 -64.1 00.	2500.0 68.4 -64.1 00.	3000.0 66.7 -64.1 00.

AT LEAST ONE ASSUMED KELATIVE HUMIDITY VALUE MAS USED IN THE INTERPOLATION. *****

S C C		77 674	COR ALICARDA
488	MHI TE SANDS	1100 HRS MDT	59 X70C 0
ESTA SI	0031003905	TUDE 3985.CC FEET MSL	TATION ALTITUCE
	CFFFK ALK CALA		

STATION ALTITUDE 3989, CC FEET MSL	0031003905	ESTA SITE COURDINATES
10 JULY 69 1100 HRS MDT	MHI SE SANDS	486580.00FEET E
ASCENSICN NO. 674		185045.00FEET N
	TABLE XIII (Cont)	

INDEK EED OF OTS PEFRACTION	000			2.9 1.00002	2.6 1.00002	2.3 1.00002	2.2 1.00002	3.1 1.00002	4.0 1.00001	5.0 1.00001	6.1 1.00001	7.3 1.00001	8.5 1.00001	1.00001	0.1 1.00001	10050-1 5.00001	1.00001	1.00001	9.5 1.00001	8.6 1.00001	7.4 1.660001	6.0 1.00001	4.6 1.00001	4.1 1.00001	4.0 1.00001	3.9 1.00001	4.0 1.00001	4.2 1.00001	4.4
WIND CATA DIRECTION SP DEGREESITN) KN	7.66	ة 10 م		80	05.	01.	98	\$	-3	÷	ŝ	4	5	2	*	•	6	•	2	*	٠ ئ	ŝ	۶	-	~	ê	•	Š	*
SPEED OF C SCUND KNOTS		0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, 0 5,45 0 5,45	いない	.0 566	.5 5.57.	.0 567.	.7 568.	.4 569.	•1 569ª	.9 570.	•8 571.	.7 572.	.7 572.	.8 573.	.9 574.	.0 574.	.2 575.	.6 575.	•0 5750	.5 576.	.0 576,	.5 576.	.1 576.	.7 577.	.3 577°	.0 577.	.7 577.	.4 577.
DENSITY GR/CUBI METER	801) C	Ċ	S Q	35	92	06	87	e S	80	30	78	16	74	7	7	•	•	9	49	62	19	99	30	56	55	54	52	51
•																	*	*											
REL.HLM. PERCENT	30		•		** *D-	++ •0-	-C• **	** *0-	** *0-	** *O-	** *O−	** *0-	-0.	** *D:-	₩₩ •0-	** *O-	** •0-	** **	******	** *0-	+* • O =	** ·0-	+* °O-	+* •) -	** *O-	** *0:	** °0-	-C. *	** *0 :
N T ADE	30				.D	•0-		•0-	•0-	•0- -	50-	0	0-	• ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	•0-	* O - I	• 0-	5	.0-	0 1	5	•0-	.0-	3-	*0-	*0 =	-0-		•
RATUKE Dewpoint Entigrade	64.1 CC.			, C C C C C C C C C C C C C C C C C C C	1.5 00.	1.0	0 8 0	·0- 0• 0• 0• 0	•00 -5	£.5 CC.	8.4 0.		7.4 C0.	6.8 OC.	e•3 0• −0•	N.8	•9 •0 •e•	4.8 G. G.	•3 C•	*0- 00 5.4	5	4.0 0.4	•0- 0 6*	•7 C• -C•	±51 0° 1€	B.4 0. 10.	20.0	•0 0•	2.8 0.
TEMPERATURE AIR DENPOINT ECREES CENTIGRADE	64.1 CC.			S. 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (7.7 -61.5 00.	6.3 -£1.0 CO.	5.0 -60.5 0.	3.6 .66.0	5.4 -55.4 00.	1.1 -56.5 CC.	9.9 -58.4 GC.	8.7 -57.9 C0.	7.5 -57.4 C0.	6.4 -56.8 CC.	N. W 156.44 C 10.	4.2 -55.8 0C.	3.255.3 0O.	2.1 -54.8 G. 10.	3.1 154.3 C	09.2 54.4 0.4	9.3 - 154.2 CC.	8.3 4.54.0 CC.	7.5 -53.9 06.	6.6 -53.7 C6.	5.7 - FB.5 0 C.	4.9 -53.4 0. 10.	401 -52.2	3	2.552.8 0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

TE COORDINATES 580°00 FEET E 045°00 FEET N	•	INDEX	REFRACTION	10000	.0000	• 000	.00001	.0000	.0000	0000	0000	00000	• 00000	• 00000	0000	00000	• 00000	0000	• 00000	00000	00000	00000	00000	000000	00000	00000*	•00000	• 00000	00000	00000	00000	000.	00000
ESTA SIT		ີ : ຍ ຍ ເ	KNOTS	E.	Ġ	27.2		2.		÷	3	&	30	Ġ.	6	Ġ	5	3	э Э	ဆ	င္မ	• •	•	ċ	Ñ	٠ ص	4	ŝ	J.	e P	4	÷	4
•		ON THE	DEGREES (TN)	N	()	87.6	Q	•	ಚಾ	S	ಚಾ	S	3	N	3.46 3.40	~	00	102.7	50	00	9	2	~	÷	~	-	:2	'n,	S	~	7.5°C	ස	60.1
24TA 3805 38	(Cont)	SPEED OF	KNOTS	78.	3	•		7.7.	79.	79.	79.	80	÷03	81.	81.	81.	82.	\mathfrak{D}	B 3.	H 33.	£3.	84.	£4.	æ Sv	3 3 4 4	60	86.	\$6.	248	587.6	*8	* ? ?	3 3 8
UPPER AIR COSTOOS	TABLE XIII	DENSITY	METER.	ဝိ	¢	~	\$	ઙ૽	4	6	* **	•	င်	ċ	*		9	3.58	ચ •	*	e C	2		ä	္	\$	ж •	ක		Ģ	\$	₹.	٠. •
- -		KEL. HUM.		** * 0 -	** **	*	** *0-	+ 0 ·	* * O	** •01	* & * O -	** •O.	•	•	** * J I	** 01	₹ ₹ 101	.C. **	* * O -	-C. *	•	**	•		•	*	•	*	** *0-	** *0-	+* •0!		1 C. *
T 28.51.	-	TEMPEKATURE	CENTIGRADE	•	0	_	ڻ	ڻ	ပံ	.	ပ်	•	ပ်	ပံ	ڻ	ပံ	9	.	ပံ	ó	3	•	Ċ	ئ	ి	<u>ئ</u>	ပံ	ċ	ပ	ċ	ပံ	• •	• •
3985.00 FFET 1100 HRS MDT		TEMP	CE (REES	1-52-	- * * * - * * * * * * * * * * * * * * *		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0+25-	B • [3]		-	•	•	္ခ်	- 5C • 2	G.	•	2.55-	•	•	•	•	-41.6	2	-43.0	146.7	- 46 • 4	•	-45.4	145.4	ທ	D• 44-	7 • 77 -
TITUDE 390		PRESSURE	MILLICARS	α • •		30.5		ဆိ			2	÷	ņ	3	4.	4	4	23.0	2	2,	-	•	္	ပံ	\$	•	&	သိ	•	17.6	•		10.4
STATICN AL 10 JULY 69 ASCENSION		GECPETRIC	PSE FEET	78500.0	*0006	300	80000	1500.	10001	15CO.	2000.	2500.	3000.	3500.	*000	4500.	5000	9.60448	00000	£ 500.	7000.	*	8000	45CC.	•0006	9500.	0000	0200	10001	150	2000.	£500°	3c.00 •

The same of the sa

AT LEAST UNE ASSUMIL MELATIVI HUMIUITY VALUE WAS USED IN THE INTERPOLATION. * *

SITE COORDINATES 86580.00FEET E 85045.00FEET N		INDEX OF REFRACTION	• 00000	00000	1.00000	0000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	3.00000	1.00000	\$ 00000	1.000	1.00000	3.0000 a	1.00000	1.00000	1.00000	1.00000	1.00000	3.00000	3.00000	1,00000	1.00000	1.00000	00000	
H STR		ATA SPEED KNOTS	4.0	34.	*		67	*	ĸ.	•	•	Š	*	*	8		6	ċ	• •	4	رن پ	œ.	8	4	a	41.	å		* -	15	9	*	
		WIND CA DIRECTION DEGREES(IN)	3	*	N	96•3	000	02.	03.	05,	04.	9	01.	ċ	000	•	e Ch	9	•	-	•	•	*	\$	*	5		÷	ě	*	ě		
EATA 3905 08	(Cont)	SPEED OF SOUND KNOTS	89.	89.	90.		90	910	91.	92.	92.	93.	£ 5	93.	46	94.	98	95	95	96	•96	97.	97.	26	98	98	98	98.	98	98	98.	98.	
CPPER AIR 003100 WHITE SAN	TABLE XIII	DENSITY GM/CUBIC AETER	*	6	9	22°04	2	-	:	0	0	•	¢	8	8	-	÷	7	•	3	5	30	ş	+	*	*	е	3	9	2	2	•	
3		CENT.	¥	*	*	¥	*	*	*	*	*	# #	*	*	*	¥ ¥	*	÷	¥	*	*	*	¥	*	급 불	*	*	¥	*	*	井 부	*	
		REL. PERCE	• •	0,	ů.	0	Ö	0	ပ	0 !	-0-	0	0	0	0	0	ö	0	•	0	ပို	ģ	0	0 1	0	0	9	-0-	ģ	0-	-0 -	-0-	
er MSL Dr		TEMPERATURE AIR DEMPOINT GREES CENTIGRADE	6 0	9	ô	•	90	•	.	3	•	ţ	ô	•	ပံ	•	ပံ	0	ຸ ວ	ပံ	ပီ	•	å	•	ò	°	•	•	ô	•	•0	Ö	
1989.CO FEET 1100 HRS MDT		TEMP AIR CRUREES	-44.	-43.8	•	-43 · B	•	•	•		-41.5		6.04-	•	ċ	5	5	E - 32 -	•	•	1 56 3 3		70	ارت •	•	-37.0	<u>ب</u>	6.95-	•	Ĝ	Ĝ	Ĉ.	
1110EE 398		PRESSUR! MILLIBARS		•	•	S		14.3	4.	ë	13.4	•	12.8	•	•	•	-	•	<u>.</u>	ဝိ	0	•	0	•	9	9.6	•	•	•	•	8.6	0	
STATIEN AL 10 JULY 69 ASCENSIEN		GEGMETRIC ALTITUDE MSL FEET		4	94500.0	5000	5500	0.00096	6500	7000	7500.	98000°C	8500	00066	9500	00000	00200	01000	101500.0	02000	02500	03000	03500	C1230	04800.	0 2000	05500.	106000.0	06500.	07000.	107500.0	68000.	

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED. IN THE INTERPOLATIONS

UPPER AIR DATA	S08E001E00	SONES SELEC	-
	STATION ALTITUDE 3989.00 FEET MSL	10 JULY 65 1100 HRS MDT	ASCENSICA NO. 674

and the second second

THE PARTY OF THE PARTY PARTY PROPERTY AND PR

					TABLE XIII (Cont)	(Cont)		8	944000 RF0601
GECKETRIC	PRESSURF	~ °	EMPERATURE PERMITATION	KEL. HUM.	DENSITY		KAND CAT	€ (INDEX
PSL FEET	MILLIPARS	CECKEES	CENTICRACE MENLENI MATER KNOTS	rekren	かまくつUB4 D An TER		DEGREES(TN) KNOTS	KNOTS	UF REFRACT 10
0000			1	,	1	;	;		

REFRACTION	1.000003	1.000003	1.000003		1.000002	1.000002	1.000002	1.000002	1.000002	1.000002	1,000003		
KNOTS			•	32.8	٠								
DEGREESTAN	9405	95.1	7.56	96	97.0								
KNOTS	598.9	.65	66	599.2	66	66	66	466	66	66	5	599.8	
1年 日本	12.1	7	-	11.3	~	0	10.0	ö	1.00.7	6.6	7.0%	15° C	
	¥	¥	*	*	*	*	*	¥	*	¥	¥	*	
	-0-	0,1	0	ပီ ၂	0-	0	o i	ဒီ 1	0	0	0	•0	
CENTIGRADE	. 0	°	•	•	• •	•0	င်	ပီ	• •	•0	ů	•	
	Ç	Ġ.	Ĝ	-36.4	ć,	÷	ç	•	ć.	ć.	e (1)	ŝ	
MILLIEARS LECKEES	•			7.7	•	•	•		•	•	•	•	
1114 174	108500.0	*00060	99 500	110000.0	10500.	11000.	11500°	12000	125000	13000.	113500.0	11400000	0
	,					~		_					2

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *****

MANDATORY LEVELS 0C31003905 WHITE SANDS

WSTM SITE COORDINATES 488580.00FEET E 185045.00FEET N

TABLE XIV

G 33	NOTS					-															_		;		r Sa	,	->	١.	28	· ;
AT.A SPI	X	-	•		•	Ġ	•.	*	ŝ	Ċ	•	Š		ă	ď	æ	'n	å	~	Ġ	તંઃ	i.	v.	ö		œ.	a.	÷	4%	٤
MIND	-	9	~	37.	Si Si	71.	177.2	31.	74.	9.7.	96	93.	50.	6 6	69	02	91.	32.	24.	19.	90.	å	Š	•	2	å	Š	Š	Ġ	•
REL.HUM. PERCENT	,	83.	82.	80.	17.	84.	91.	S M M	68.	55.	*0*	69	22.	8 * *	**°0-	***0*	** °.O-	***0-	***0-	***0-	***0-	**•01	***0-	****	***0-	***0-	***0-	*		****
RATURE NEWDOIN		· ĸŝ		ċ	ŝ		1.4		•	18.	25.	. •			o	ဝီ	° 0	•0	å	ő	ö	ð	•	•	ô	•	•	0	•	0.7.5.
TEX	S S	œ	å	n	10.4	9	2.6	•	'n		163 1		0	ó		ď		59	2		*	2	8		2	0	2	m	-3.7.4	9
GEOPOTENTIAL	FEET		Q.	Q)	4.8	8 6	, 12 C	40.0	42	7	0.00	·(1)	151	. 	9	37.5	6.6.7	24.5	482	7	184	757	£67	(5)	940	17	803	44(034	158
PRESSURE GI	MILL IBARS																	10						Č	ó	L.	o	J.	10.0	-

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE MAS USED IN THE

STATION ALTITUDE 3989, ON FEET MSL 10 JULY 69 1315 HRS MDT ASCENSION NO. 675

SIGNIFICANT LEVEL DATA 0032003901 WHITE SANDS

WSTM SITE COORDINATES 488580.00FEET E 185045.00FEET N

TABLE XV

REL'S HUM.	PERCENT		_			77.0	-					-	_		** 0-	** *O-	** •0-	** • 0-	** •0-	** *0-	** •0-	** • O-	*** 0-	** •0-
RATUR	DEMPOINT	9		ξ,	•	5.2			•	•					.	•0	•	•0	° 0	•0	• •	°,	•0	o ,
TEMPE		DEGREES	8	21.2	4.	0.6	•	0•2		•		•	•		540	62.	-68.7	•	•	-64.4		•	-49.8	-45.6
GE	AL TI TUD	S MSL FEE	989	664.	385	11167.6	307.	842.	484	292	658	868	932.	966	438	114.	695	135.	993	928	693	4510	•96	414.
PRESSURE		MILLIBAR	82.	62.	42.	683.0	55.	74.	19.	84.	24.	04.	89.	76.	97	65.	3.8	10.	000	8	æ	23.6	ð	

ZERO VALUE ASSUMED FOR COMPUTATIONS. RELATIVE HUMIDITY NOT SUPPLIED.

UPPER AIR DATA 0032003401 WHITE SANDS

STATION ALTITUDE 3989.00 FEET MSL 10 JULY 69 1315 HRS MDT ASCENSION NO. 675

WSTM SITE COURDINATES 488580.00FEET E 185045.GOFEET N

TABLE XVI

INDEX OF .	Refraction	. 00031	0,00031	0.0000.	6200Q°	1,000288	•00028	.00027	.00026	0000°	. 00025	.00024	.0000	.00024	£00003	.00023	.00023	*,00025	.00022	.00021	.00021	02000	00000	.0000	• 000°C	.00019	000018	00018	00018	00017	01.7
T S	NO ES		•	•		1.3	•	•	•	•	٥	•	•		æ	4	4	•	Š	ô	.	2,	å.	5	ď	ъ. 20	e.	ŝ	4	ŝ	10
WIND DA	ш	•	0		Š	53.3	1,	7.	ဆိ	11.	25.	43.	59	70.	78.	84.	88	ŝ	92.	91.	88	85.	* 64 00	77.	75.	74.	76.	79.	840	800	• 16
SPERD OF SOUND	NOT	72.	72.	71.	• 69	668.8	67.	• 99	65.	64.	63.	62.	61.	60	58	52	56.	55	54.	53.	52.	51.	•64	48.	47.	4 5	4.4	430	2	45.	41.
DENSITY GM/CUBIC	TER.	029.	50.	016.	002.	988.2	73.	59	456	310	18.	04*	91.	79.	67.	55.	43.	30.	160	03	92.	80.	• 69	ខ្លួ	47.	360	25.	13.	01.	06	79.
REL. HUM. PERCENT		6	6	ф	-	66.2	ហំ	4	å	2.	ô	ç	6	ě	10	-	ស	Š	2.	end prod	å	ĸ.	۴	6	ô	5	3	ů	ě	ç	2
URE	o Lin	-	•	Š	4.	13.5	2,	~	ô			•		,	۵	•	•	•	1	•	•	•			•	•	0	•	٠	•	•
TE MP R	ВS	8	3		ċ	19.9	9	ж	7	\$	r,	Š	4	2.	*	ô			•	•	C	•	•	•	•		¢	•	•		-2.7
PRESSURE	MILLIBARS	82.	82.	67.	٠ سا لا:		22.	C7.	93.	79.	65	52.	38.	25.	120	66	87.	74.	62.	50.	38.	26.	14.	03.	920	81.	70.	n o	4 9	38	•
GEDMFTRIC ALTITUDE	St FEE1	0 80	.000	£00°	0000	F 500.0	.000	£00°	.000	×00°	000	F00.	.000	500.	10000.	0.000	1000	1500	2000	2 F C O .	2000.	3500.	40004	4500.	500C.	5 FOO.	£0003	6.00.	7000	7600.	000

UPPER AIR DATA	0032003401	HHITE SANDS	
	STATION ALTITUDE 3989.00 FEET MSL	10 JULY 69 1315 HRS MDT	ASCENSION NO. 679

#STM SITE COORDINATES 488580.00FEET F 485045.00FEET N

TABLE XVI (Cont)

	INDEX OF REFRACTION	.00016	1.000164	.00015	.00019	.00015	• 10000 •	.00014	*1000	• 0000 •	.00013	.00013	.00013	.00012	.00012	.00012	.00012	.00011	. 1000	.00001	.0001	.00011	01000	.00010	.00010	.00010	• 000010	.0000	60000	* 00000	60000°	
	TA SPEED KNGTS	2	12.5	÷	÷	ស៊ី	?		-	<u>.</u>	ċ	•	•		•		æ	•	•			•	•	•		ċ	•	ċ		÷	£0	
	MIND DA DIRECTION DEGREES(TN)	91.	191.1	88.	23	79.	80.	83.	89.	95.	03.	11.	13.	13.	08.	01.	89.	78.	75.	90	38	53 13	52.	33.00	ಪ ಬ	ي ئ	62,0	64.	64.	63.	64.	
(Cont)	SPEED OF SQUND KNOTS	04	639.4	38.	37.	36.	35.	33.	32.	31.	30.	29.	28	27.	26.	25.	23.	22.	20.	19.	¥ 8 •	16.	75*	13.	12.	10.	000	0.4	90	0 %	03*	
TABLE XVI	DENSITY S GM/CUBIC METER	68	657.4	46.	36.	26.	16.	90	97.	87.	78.	69	₹09	50.	404	31.	23.	2.5	90	98.	90.	A 2 •	75.	67.	609	52.5	453	38.	31.	24.	17.	
	REL.HUM. PERCENT	•	74,3	•	6	Š		6	.	ιυ •	υ. •	~	ဝံ	6	ċ	ċ	¢.	ċ	œ.	æ	۴	ર્જુ	ş	ઌ૾	3	*	4	÷	٠ ش	2	.	
	ERATURE DEWPOINT CFNTIGRADE	9	130	10.	2	# 3°	14.	•	15.	16.	16.	17.	10.	22.	24.	26.	27.	2 R.	29.	30	32.	33,	34.	35.	37.	39.	39.	40,		9	*	
	TEMP AIR DEGREES	•	4	•	•	•	•	•	•	ċ	-4	12.	13.	S S	T it	.5	16.	2.7.	19.	20.	21.	22.	23.	24.	26.	27.	28.	Ċ.	30,	*	-32.0	
	PRESSURE MILL IB AR S	a	0.0	, , ,	٠ د م	A 0.	70.	61,	к2.	430	رن ري	2.k.	8	10.	01.	· Eo	85.	77.	60.	£2.	540	47.	40.	33.	26.	10.	3.	90	00	94.	288.2	
	GEOMFIRIC ALTITUDE MSL FEET	P = 00.	C	9 - 00 - 6	0000	0.000	1000	1 500.	2000.	2500.	3000	3.00.	4000	4 F 0 0 .	25000	F F 0 0.	6 CO 0.	6F00.	7000	7F00.	AC00.	9 F 0 0 .	٥٥٥٥ ،	9500°	* 0000	0.000	1000	1500.	2000	2500.	0	

STATION ALTITUEL 3989, ON FEFT MSL 10 JULY 49 1315 HRS MDT ASCENSION NO. 67#

Control of the Contro

UPPER AIR UATA OO32003901 WHITE SANDS

#STR SITE COURDINATES 488580.00FERT F 185048.00FERT N

TABLE XVI (Cont)

INDEX OF REPRACTION	1.00009	.0000	.00000	.00000	# 00000	# 00000 #	.0000	.00000	00000	400007	4 00007	400004	* 00000 *	.0000	40000	*0000°	1.0000 ¥	90000	\$00007*	90000	0000	90000	\$0000¢	90000	4.00,000	\$0000 ×	\$0000A	\$0000A	\$00000*	0000
SPEED SPEED SNOVS		i	\$	3	ž,	ะำ	\$ 7		*	+	;	•	9.41	*	3	ž.		÷	*	÷	٠	8	*	÷	*	څ چ	*	75	÷	0,77
MIND DA DIRECTION DEGREES(IN)	184.8	27.	63.	61.	\$0	37	54.	5.	704	ج ت ش	533	æ ⊷	161.4	3 4 5	99	20.	* * * * * * * * * * * * * * * * * * *	7.50	, o o ,	₹	90	٠ در و	53.	• 0 8	\$ 55 Q	* 50	*	90	10.	90
SPEED OF SOUND KNOTS	602	00	00	96	96	. 60	93.	*	60	688	₽6.	**	90500	10	70	*	9	74.	43	7.	20.	68 କ	67.	\$	540	. A.	67	93	er.	50.
DENSITY GM/CUBIC METER	410	20	93	89.	02.	76.	\$ 65	63.	2.00	51.	\$. \$.	404	334.4	9 7	%	÷ ? :	2	500	91.	93.	90	64.	70.	7.	\$0°	\$29	7	8 22 4	**	3
REL. HUM. Percent		8.0	# 5	5,6	* ウェケ	3.8	Ċ.	0.1	* F.	£ 5. 8	* ~.	サン・	4-7-4	• • •	*	-	*	*	*	ő	¥ •	*	*	* *0	*	*	*	*		•
FURE REL.HU MPDINI PERCEN FIGRADE	-47.2 24.	0.6 18.0	52.3 16.A#	4.0 15.64	55.8 14.4#	7.6 13.2	0°8 11°0	1.4 10.7*	63.4 0.54	5.5 Ro 3#	67.6 7.1*	0.0	* / *	ಸ• ೧೩ ೧೩ ೯೩ ಕ	*6.2 2.04	#107 2 6 y	* 301	* .0-	* *02	* *0" ·	¥ *0"	# *0-	* 0-	* *0;-	* • 6	* 0-	* *0-	* 0-	* 0-	*0"
URE REL+HU Point Percen Igrade	-33.7 -47.2 24.	.4 -50.6 18.0	.7 -52.3 16.A#	*1 -54.0 15.6#	*455.8 14.4*	.7	.1	.A61.4 10.7*	•7 -63.4 0.54	*I -65.5 8.3*	.4 -67.6 7.1*	.7 -70.0 5.04	72.6 4.7#	*** 175.4 3.55	*8.2 2.07- 7.	-0 -84.7 Tel	* 90 E	* ·0- ·0 · · ·	* •0~ •0 9•	* *0" 0" 2"	** O	* *0" °0 b*	* *O · · · · · · · · · · · · · · · · · ·	*1 00. *	• 1 0 0 -0 -0	* .00	* * * * * * * * * * * * * * * * * * * *	* 0- 0-	66.6 0O. *	67.5 0. ±0.
TEMPFRATURE REL.HU AIR DEWPOINT PERCEN EGREES CENTIGRADE	282.0 -33.7 -47.2 24.	76.0 -34.4 -50.6 18.0	69.8 -35.7 -52.3 16.8#	63.7 -37.1 -54.0 15.6#	57.9 -38.4 -55.8 14.4*	52.0 -39.7 -87.6 13.2	46.4 -41.1 m50.8 11.0	40.9 -42.4 -61.4 10.7*	354.5 -43.7 -63.4 0.54	30.2 -45.1 -65.5 8.3*	25.1 -46.4 -67.6 7.1*	20.0 -47.7 -70.0 5.04	15.1 -49.0 -72.6 4.7#	10.3 150.4 175.5 3.05	05.6 -51.7 -79.2 2.3*	01.0 -63.0 -63.7 1.1	06.4 -54.3 0. 10. #	01.7 -55.5 OU. *	87.2 -56.6 00. *	82.2 -57.7 00. #	78.4 -58.8 O0. #	74.1 -59.9 00. *	70.0 -61.0 00. *	65.9 -62.1 00. *	61.9 -63.1 00. *	# .0 -0 -0 -0 - 10 - 10 - 10 - 10 - 10 -	₹ *O	₹0°°5 = €5°°7 = 0° = 10° *	46.5 -66.6 00. *	2.9 -67.5 00.

** AT LEAST ONE ASSUMED RELATIVE HUMIOITY VALUE WAS USED IN THE TIVERPORMANION

THE CALLEY A LOUIS TRACTOR AND SAFEDIA, NO LANGUAGE AND SECURE SE

to 110 to 1

STATION ALTITUDE 3989.00 FEET MSL.
10 JULY 69 1315 HBA NOT
ASCENSION NO. 675

1.5

AND COCKET OF STANKING SOFTER TO COCKET TO COC

TABLE XVI (Cont.)

.0000	00000	00000	*0000°	\$0000°	*0000°	\$0000°	*0000	\$000U	\$0000°	* 0000 *	\$0000 •	00000				E0000	.0000	£0000 *	.0000	. 0000	£0000 •	0000	0000	20000	20000	\$000°D*	0000	2000
0	ċ	Č.	3	٠,	Ř.	÷.	á.	•	Š.	€.	-	ᡱ.	: .	40	; (· =	• •	IJ	: :	-	ŏ			œ.	ż	2		3
201.	100 K	48	56.	36.	→ •	36.		<u> </u>	* ~3 } ~4 ;	P - (00	*	٠ 5 (3		, ,	- c:	. E	* *	40.	23		0	د	*	ċ	å	ċ	.
5.4	ŝ	÷	23 83 8	*	450	33	330	がい	: 12 : 23 : 43	87 103	e Si	عاد الانت ا		• • = • =		3 × 5		\$0	60.	61.	61.	6 29	 •	62	٠ د د د	¢1,	- - -	%
5.7	31.	26.	2 2	38.	200	90	010	\$	91.	86.	81.	16.	25.	* c	\$ 0 \$ 0	9 5 % 3 £		5.5	41.	37.	33.		52	23.	ე ე	7.	14.	12.
	¥								풋				를 - 를 -				÷	*	&	*	*	委会	*	¥	춫 출	*	*	÷
*	*	*	*	*	*	*	*	*	*	*	*	*	* •	F 1	•	F 1	* * * * * * * * * * * * * * * * * * *	*	*	*	*	>	_	¥.	*	*	*	** °C-
* *0-	* 0 ×	* °C-	¥ 01	* 0-	# 40°	* °C1	* 0-	* 0-	* 0-	* *0-	# °C-	******	* *0	0			f =	*	* 0-	* 0-	* *0-	* •0-	01	* '0-	* 0-	* •0-	* *0-	•
* *0" *0 **8	68.9 Q. E.O. E.O.	₹ °01 °0 € 60	4 0 0 LO 4	0.1	0.0	± •0- 0 € 0	1.2 00. *	1.5 000.	2+0 00 +	1,8 00. *	11.7 OO. *	1.1 0,	O. 8 O O O	* 401 00 1 00.				* 0 · · · · · · · · · · · · · · · · · ·	* 0- * 0- * 0 * * 0 * * 0 * * 0 * * 0 * * 0 * * 0	65.t 00. *	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4°4 0° -0° #	- 01 °C '5 '5	* '01 00 1"'	# *O	* °0	A,1 0. ■0. #	•0
* *0" *0 ***	# O	32.4 -69.3 00. #	* "0" -69" 1 -69" 1 -69" W	2 Kg - 70.1 0. 10. #	222.7 -70.5 00. +	10.6 -70.8 010. #	16.6 -71.2 00. *	13.6 -71.5 00. *	10.8 -72.0 0° -0. #	08.0 -71.8 00. *	05.2 -71.5 0. =0. =0.	2,4 -71.1 0, -0. ±	00.0 -70.8 000.	7.5 -70.1 0. 10.4			00 10 10 10 10 10 10 10 10 10 10 10 10 1	# 01: 0 (V) (V)	# -QQQQQ	1.7 165.6 0. 10. 10. *	9.7 -65.0 0. ±0. 4	7.7 -64.4 00. #	5.8 164.8 U. 10.	* '0" 0° Level 0° 10° 10° 10° 10° 10° 10° 10° 10° 10°	2.1 -64.8 00. *	# •0- •0 6 • 99 · • 50	8.7 -65,1 00.	7.0 -64.9 0.
	37.1 B57.2 2 201.5 1046 1.000	37.1 257.2 201.5 100.6 1.00.0 31.0 25.0000	11-1	27.1	24.0000	20000000000000000000000000000000000000	######################################	######################################	######################################	######################################	######################################		######################################	######################################		######################################		######################################	######################################	44444444444444444444444444444444444444	######################################	######################################	######################################	######################################	00000000000000000000000000000000000000	######################################	2000000000000000000000000000000000000	

AT LEAST ONE ASSUMED RELATIVE NUMIDITY VALUE WAS USED IN THE INTERPOLATION. ⊊ ¥

STATION ALTITUDE REPS.OO FEFT MSI 10 JULY P ASCENSION NO. 675

UPPER AIR UATA OO32001901 WHITE SANDS

WSIM SITE COURDINATES ARBSHO-OOFEET FIBSOAB-OOFEET N

TABLE XVI (COLU)

GEOMETRIC ALTITUDE MSL FFFT	PRESSURE HILLIBARS	TEMPERATURE AIR DEWPOINT DEGREES CENTIGRAD	REL. HUM. PERGENT	DENSITY SP GM/CUBIC S METER K	PEED OF SOUND KNOTS	WIND DA DIRECTION DEGREESLIN	TA SPEED KNO TS	INDEX OF REPRACTION
3500.	S.	ج	*	.60	\$ %	*	หา	.00002
4000	39	64.1	** 0-	90	63	11.	æ.	20000°
ならつじょう	2	63.7	÷	63.	63	144	ċ	\$0000
6 4 0 0 0 4 0	ċ	63.3	** 0-		640	30	÷	0000000000
r coo。	c.	62.0	** °C+	*	64.	5	á	₹0000
4000°	÷	2.5	***	÷	65.	17.	ö	40000
£00°	ç	•1 0	** *0-	æ 203	64.	05.	ં	400002
000	٠ ت	1.7	-0°		66.	ë	ૄ	* 0000 *
.00 a	*	61.3	***	÷	999	ئ		.0000
	~	60.0	** °C-	\$	6.7.	3	4	100000
F00.	-	0.5	*	\$	67.		4	★ 00001
69000	ċ	1009	***	*	68.	2	Š	10000
FOO.	C	7.6	*	ô	68.	£	ย์	.0000
70000	œ	5,3	*	e	609	3	Š	10000
F00°	· ·	S. O.	*	•	70.	ф Ф	ä	10000
	Š	58.5	-O-	*	70.	010	4	.0000
500°	4	58.1	*	å	71.	*	÷	10000
000	3.	7.7	*	ċ	71.	₩ ₩	ż	10000
£00°	Ė	7.3	*	e	72.	es es	÷	10000
.000	-	6.9 0	** °O-		72.	02.	ย์	100003
£00°	ċ	6. ₽	** °0-	ت. •	73.	01.	ĸ.	10000°
000	Ć.	6.1	* * Oi	60	73.	÷	ກ	.0000.
£170.	œ	5.7	*	å	ż	•	÷	10000°
000	7	5. • 3.	*	ó	74.	4	÷	.00001
c	÷	6.4	*	Ģ	75.	-	÷	10000
£000°	ç	,	*	÷	7.	ê	4.	1,00,00
4500	r.	4.1	*	ŝ	76.	*	÷	0000
7000	4	3.7	*	4	76.	N	4	40000
7500	33.6	-53.3	₩ •01	53.8	577.a3	80 ° 3	25.0	3.000012
Ċ	2°	2.9	*		77.			.0000
•					3			Ξ.

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE HAS USED IN THE INTERPOLY ¥ ¥

STATION ALTITUDE 3989.00 FEET MSL 10 JULY 49 ASCENSION NO. 675

UPPER AIR DATA

ASTA STRE COORDINAT

TABLE XVI (Cone)

REFRACTION	0.00.4	.0000	.0000	0.1	.0000	100000	00000	00000	000000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	000	000
SPEED KNOTS	28.60	ŝ		8	•	å	-	<u>, , , , , , , , , , , , , , , , , , , </u>	.	0	ċ	Oi:	ဆံ	•	ġ.	Š	4	Ġ.	*	*	4		•		•	
WIND DA DIRECTION DEGREES (TN)	76.3	Ļ	œ.	S.	2 , इन्द	m)	Ŋ.	φ.	e in	4	,	.	0	200	60	Ġ.	10,	11.	10.	600	08	-				
SPEED OF SOUND KNOTS	7.8	78.	64	579.9	80.	81.	81,	82.	0.5	83.	83.	84.	84.	85.	855	84.	84.	83.	83.	82.	87,0	82*	83.	84*	85.	86.
DENSITY S GM/CUBIC METER	· C	6	္ထိ		بى •	÷	60	ເໍ	, , , ,	ċ	G-	.	!	ģ	Š	4.	60	ຕ	cy.	-	,	ċ	6	8	œ	۴
REL. HUN. PERCENT	** *0-	** •0-	** *0-	-0-	-0° **	** °0-	_	** °0-		_	** 0-	** *0-	****	** •0-			-0° **	** *0	+* °Q-	** *0	** •0-		** *0-	** •O-	** °0-	** •0-
ERATURE Dewfoint Centigrade	0	°	0	Ö	0	°	• 0	•	౮	°	° 0	ô	້າ	•0	° 0	•	°	°0	ô	ô	0	°	ం	0	0	0.
APERATURE DEWFOINT S CENTIGRAD	5 . 5		1.7	-51,33 0.	٥ • ه	0. 5	0.1	7.46	•3	6.	8.6	• 2	7.8	4.	. O°2	K/	8.0	4.0	6.	63		9,1	4.	7.6	6.9	-46.2 0e
FMPERATURE DEWFOLNT ES CENTIGRAD	2.0 -52.5	1.3 -52.1	0.5 -51.7	8 -5133	٥٠١ – 50.	8.4 -50.5	7.8 -50.1	7.1 -49.7	5.5 :49.3	5.8 -48.9	5.2 -48.6	4.6 -48.2	4.1 -47.8	3.5 -41.4	2.9 -47.0	2.4 -47.5	1.9 -48.0	1.54 -48.4	0.9 48.9	0.5 -49.3	0.0 -49.8	9.5 -49.1	9.1 -48.4	8.7 -47.6	.2 -46.9	.8 -46.2

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3989,00 FFLT MSL 10 JULY 49 ASCENSION NO. 675

MANDATORY LEVELS 0032003901 WHITE SANDS

WSTM SITE COORDINATES 488580.00FEET E 185045.00FEET N

TABLE XVIT.

							-	•	•			•								-	• •	* . 				٠,	,
		•															•		;		• .: .	- A		. :		, ,	پد د
DÄTA	. ≠	10° 11			-	ô	19.7	*	2,		٠.	•	6	ស្	*		*	2	*	•			S	Z	22.0	•	
± 2 ± CT	DEGREES(9	•	9		ċ	177.0	83.	86.	91.	90	54.	6	56.	71.	82.	070	45.	.8	23,		Š	å	ċ		8	10847
REL. HUM.		67.	64.	60 %	72.	72.	80.	83.	68.	62°	41.	37.	33.	13.44	***1	***0-	***	***0	***	***0-	***0-	***	***	****	****	***	***
	CENT I GRADE	4.	•	•		2.7	•		•	•	25.		÷	•	86%	• •	•	•0	°	ô	•0	* O	•0	•	0	•	•
ATR	DEGREES	°			ô	•	2.8			8 • 6 -	-14.7	å	-30.7	ð	m	6	9	-70.2	ô	-65.1	-65.0	•	ċ	-56,2	-51,4	-48.4	8*64-
OPOTENTIAL	FEET	5063	6777.	8583.	10489.	12506.	14655*	16951	19432	22129	25083	28355	32011.	36180.	41035,	43614.	46 92 8.	50515	54844	59245.	61920.	65015.	68723e	73335	79398	83309	88134
PRESSURE GEO	MILLIBARS	င်္	ċ	ô	င္ပံ	o	က်	ð	ð	å	ô	ô	ð	ċ	င္ပံ	ເດ	ô	ις\ •	ငိ	ď	ô	ဝီ	ô	ð	ئے	15.V	20.0

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE

RELEASE TIME	E TIME	380	SECOND-STAGE	E IMPACT	DISPLAC	DISPLACEMENT IN MILES	MILES D	DUE TO WIND	KD	AZI	NORM.	OMETICAL I	THEACT
, Land	,	11-216 FT	FT	216-4160 FT	.60 PT	4.160-7	4160-7000 FT	TOTAL	AĽ	MUTH		(INCHESTAS)	×
RAWIN-	PIBAL	N-S	M-2	N-8	35	N8	A-8	3-2	A2	KEERS)	RANCE	¥ .	E-W
0830	08 30	4.3N	0.0	4.8N	10.1	4.88	2.28	4.3N	3.28	358.9	81.2	81.2N	1.6W
0830	1000	4.7N	1.2E	5.0N	2.3E	4.85	2.2%	4.9N	3.7%	9.000	81.8	81.8N	0.9E
0830	1030	1.5N	2.1E	0.1N	3.3E	4.88	2.2E	3.28	29.9	001.4	73.7	73.7N	1.88
0830	1045	0.0	0.0	1.08	1.88	4.88	2.2E	80.8	4.0E	359.3	71,1	71.1N	O. 8W
0830	1100	0.0	0.0	0.3N	0.413	4.88	2.28	4.58	2.6E	358.3	72.4	72.6N	2.2W
0830	1110	0.0	0.0	0.4N	ac.0	4.88	2.2K	4.48	2.52	358.2	72.5	72.5N	2.3W
0830	1120	1.4N	M7.0	1.13	0.18	4.88	2.2E	4.58	1.98	357.7	72.5	72.4N	2.9W
0830	1130	0.7N	0.0	0.0	0.1W	4.88	2.2E	4.18	2.1E	357.8	72.9	72.9N	2.78
1100	*1130	0.7K	0.0	0.0	0.1W	5,18	4.48	6.48	4.3E	359,7	72.5	72.5N	0.5W

	AZI- MUTH		MILES FROM LAUNCHER	UNCHER
	KRES)	RANGE N-8	8-X	M-2
LAUNCHER SETTING (ELEVATION 84.7 DRORRES QE)	360	6'9%	96.9N	0.0
NO WIND IMPACT	356,9	77.0	356.9 77.0 76.9N	4.8W
PREDICTED SECOND-STAGE IMPACT	360	70.0	70.0 70.0N	0.0
SECOND-STAGE IMPACT, RADAR TRACK	351.4	351.4 70.8	70.0N 10.5W	10.5W
PREDICTED BOOSTER IMPACT	003	1.2	T.ON	0.18
ACTUAL BOOSTER IMPACT	N/A	N/A	N/A	N/A

TABLE XVIII. IMPACT PREDICTION DATA NIKE-HYDAC STV-88

RELEASE TIME	E TIME	DAS	OND-STAG	E IMPACI	DISFLAC	EMEN'T IN	SECOND-SIAGE IMPACT DISPLACEMENT IN MILES DUE TO WIND	UE TO WI	ND	VZI~	THEORKT	THEORKTICAL IMPACT	MPACT
(Tab)		11_216 ##	ניינו	21641	64160 WT	4160-6	4160-65000 FT	TOTAL	'AL	MUTH	(IN		wer (
MATTER		77_77	τ.τ	777	1 7 00.	0071	2 2005			(DRG-			
SONDE	PIBAL	N-S	M-3	N-S	M-33	N-S	K-W	N-8	R.W	Rees)	RANCE	N-S	HH
0830	1110	0.0	0.0	O.4N	0.3E	4.58	2.48	4.18	2.78	357.6	8,79	67.7N	2.8W
0830	1120	1.4N	W4.0	1.18	0.1E	4.58	2.48	4.28	2.18	357.1	67.7	67.6N	3.4W
0830	1130	2.1N	29·0	0.0	1.2E	4.58	2,4E	2.48	4.2E	358.9	4.69	89.4N	1.3W
0830	1150	2.3N	0.7E	0.48	1.3E	4.58	2,48	2.68	4.48	359.1	69.2	69.2N	1.18
1100	1.200	2.2N	1.3E	0.8N	0.5E	5.18	3.7R	2.18	5.5%	360.0	69.7	69.7N	0.0
1100	1210	2.5N	0.8E	1.2N	1.4E	5.18	3.78	1.48	36.S	000.3	70.4	70.4N	27.0
1100	1220	3,63	1.8E	1.7N	1.2E	5.18	3.7K	0.2N	6.7E	6.000	72.0	72.0N	1.2E
1100	1230	3.0N	1.18	4.5N	0.7E	5.18	3.7E	2.1N	5.5%	360.0	73.9	73.9N	0.0
1315	*1230	3.0N	1.18	4.5N	0.7E	6.38	1.58	1.2N	3.311	358,2	73.0	73.0N	2.2W

71.8N 71.8N 72.0N 70.0N 70.0N 70.0N 1.1N 1.1N 1.1N 1.1N		AZI- MUTH	MILES PROM LAUNCHUR	FROM LA	UNCHER
359.0 71.8N 71.8N 355.6 72.0N 71.8N 360.0 70.0N 70.0N 70.0N 70.0N 358.0 1.1 1.1N 1.1N 1.1N 1.1N 1.1N 1.1N 1.1		REES)	KANGE	1.	X-M
ND-STAGE IMPACT 360.0 70.0N 70.0N FER IMPACT 004,3 69.3 69.1N IMPACT 358.0 1.1 F.1N IMPACT N/A	LAUNCHER SETTING (ELEVATION 84.8 DEGREES QE)	359.0	71.8N	71.8N	1.3W
360.0 70.0N 70.0N 004.3 69.3 69.1N 358.0 1.1 F.1N N/A N/A N/A	NO WIND IMPACT	355.6	72.0N	71.8N	5.5
358.0 1.1 Y.1N N/A N/A N/A	PREDICTED SECOND-STAGE IMPACT	360.0	70.0N	70.07	0.0
ACT 358.0 1.1 E.1N NA N/A N/A	SPCOND-STAGE IMPACT, RADAR TRACK	004,3		69.IN	5.2B
	PREDICTEN BOOSTER IMPACT	358.0	1.1	X, 13	, 0.1W
	ACTUAL BOOSIER IMPACT	N/A	N/A	N/A	V/K

INPACT PREDICTION DATA NIKE-HYDAC BALLISTIC R TABLE XIX.

* POST SHOOT DATA

MILES FROM LAUNCHER

Security Classification							
DOCUMENT CONTROL DATA - R & D . (Security elecantication of title, body of obstract and indexing constation must be entered when the everal report is classified)							
(Security classification of title, body of abstract and indexing a	mnelation must be ex	niered when the	everal! report la classified)				
1. ORIEMATINE ACTIVITY (Companie auchar)	am report st	CURITY CLASHFICATION					
U. S. Army Electronics Command		UNCLASSI	FIED				
Pt. Hommouth, New Jersey	28. SROUP						
S. PEPORT TITLE							
METEOROLOGICAL DATA REPORT. NIVE-HYDAC S	T17_90						
•							
NIKE-HYDAC BALLISTIC ROUND							
DR-449							
A. DESCRIPTIVE NOTES (Type of report sed bichefre dated)							
and the second of the second o							
2. AUTHORIS (Fire: mens, middle faithil, had? se)							
LenE. Carter			•				
Len E. Carter							
6. REFORT DATE	70. TOTAL NO. OF PAGES 78. HO, OF RIFE						
August 1969	47 0						
tel CONTRACT OR GRANT NO.	SE. OSHSHATOR'S REPORT HUMBERIES						
& PROJECT NO.	DR-449						
	UK-447						
- DA Task 1T665702D127-02	9b. OTHER REPORT HOW (Any other numbers that may be assigned this report)						
•							
4							
10. SISTRIBUTION STATEMENT	<u> </u>						
This document is subject to special export controls and each transmittal to foreign							
governments or fore: gn nationals may be ma	de only with	prior app	royal of Atmospheric				
Sciences Office, White Sands Missile Range	•	•					
	·						
11- HUPPLEMENTARY HOTES	12. SPONSORING MILITARY ACTIVITY						
	U. S. Army Electronics Command						
	Atmospheric Sciences Office						
	White San	ds Missile	Range, New Maxico				
IL ARETRACT							
io neevike i							

Meteorological data gathered for the launching of Nike-Hydac STV-88 and Nike-Hydac Ballistic Round are presented for the Space and Missile Systems Organization, AFMDC, Holloman Air Force Base, New Mexico and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

DE TOOM 1473 REPLACES DO PORM 1472, 1 JAN 64, WHICH IS

UNCLASSIFIED

Security Classification

UNCLASSIFIED Security Classification			-	وستفينين		K C
	£180	ć A	LIM			
CGROW YBN	ROLZ	27	ROLE	WY.	MOLE	E1
					1	
				i		
		ļ	-	1		
		į		[. /
			1	İ	İ	
1. Ballistics	•		ĺ	1		
_	1					
2. Meteorology			1			
3. Wind			}		1	
J. William		Į		1		
					I	
	•					
			1		1	
						Ĭ
			ļ			
		1				1
			ł		Ì	1
		-				
			1			
	ļ				\$	
			Í			
					Î	
			l		i	
			ļ			
					l l	
	İ				1	}
		Ì				
				1		
			•		ł	
		i I	Į	1	1	
	***	1	ļ		ļ	
	i		ļ		1	
	1					
		į				
		-				
			Ì	ļ		Ì
			l			
						1
		1			1	
	ļ		1		1	i
						ļ
				Ì	-	
	· ·		l		Į	
		1	1	1		

UNCLASSIFIED