软件测试 --等价类测试

■ 主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

■ 主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

■ 等价类

- ■定义:
 - ■等价类是指某个输入域的子集合,在该子集合中,各个输入数据对于揭露程序中的错误都是等效的,或者进行相同的处理
 - 测试某等价类的一组数据就等价于对这一类其他值的 测试
- ■分类:
 - ■有效等价类
 - 无效等价类
- ■等价类构成集合的划分,其重要意义:
 - 提供了完备性
 - 保证了无冗余性

■ 等价类测试用例生成步骤

- ■选择确定类的等价关系
- ■选择每个等价类中的一组数据标识测试用例

■具有两个变量x₁和x₂的函数F,如果F实现为一个程序,则输入变量x₁和x₂将拥有以下边界,以及边界内的区间: a≤x₁≤d,区间为[a,b),[b,c),[c,d] e≤x₂≤g,区间为[e,f),[f,g]

强一般等价类测试

- 强一般等价类测试是基于多缺陷假设的
- 等价类笛卡儿积的每个元素对应的测试用例

| 弱健壮等价类测试

- 对于有效输入,使用每个有效类的一个值
- 对于无效输入,测试用例将拥有一个无效值,并保持其 余的值都是有效的

■ 强健壮等价类测试

■所有等价类笛卡尔积的每个元素中获得测试用例

■ 主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

■ 三角形问题的等价类测试用例

■划分等价类(输出值域)

R1={<a, b, c>: 有三条边a、b和c的等边三角形}

R2={<a,b,c>: 有三条边a、b和c的等腰三角形}

R3={<a, b, c>: 有三条边a、b和c的不等边三角形} R4={<a, b, c>: 三条边a、b和c不构成三角形}

■弱一般等价类测试用例

测试用例	а	b	С	预期输出
WN1	5	5	5	等边三角形
WN2	2	2	3	等腰三角形
	2	4	_	7.0.7
WN3	3	4	5	三角形
WN4	4	1	2	非三角形

由于变量a、b、c没有有效区间,则**强一般等价类测试用例与弱一般等价类测试用例相同**

■ 额外的弱健壮等价类测试用例(考虑a,b,c的无效值产生的)

ſ	测试用例	a	b	c	预期输出
ı	WR1	-1	5	5	a取值不在允许的范围内
ı	WR2	5	-1	5	b取值不在允许的范围内
ı	WR3	5	5	-1	c取值不在允许的范围内
ı	WR4	201	5	5	a取值不在允许的范围内
Ī	WR5	5	201	5	b取值不在允许的范围内
Ī	WR6	5	5	201	c取值不在允许的范围内

■强健壮等价类测试用例的一"角"(考虑取值范围)

测试用例	a	b	c	预期输出
SR1	-1	-1	5	a、b取值不在允许的范围内
SR2	5	-1	-1	b、c取值不在允许的范围内
SR3	-1	5	-1	a、c取值不在允许的范围内
SR4	-1	-1	-1	a、b、c取值不在允许的范围内

■ 练习

■根据这种划分,给出相应的弱一般等价类、 强一般等价类、弱健壮等价类、强健壮等价 类的测试用例

■ 三角形问题的又一种划分

D1 = {
$$\langle a, b, c \rangle$$
: $a = b = c$ }
D2 = { $\langle a, b, c \rangle$: $a = b, a \neq c$ }
D3 = { $\langle a, b, c \rangle$: $a = c, a \neq b$ }
D4 = { $\langle a, b, c \rangle$: $c = b, a \neq c$ }
D5 = { $\langle a, b, c \rangle$: $b \neq a \neq c$ }
D6 = { $\langle a, b, c \rangle$: $a \geq b + c$ }
D7 = { $\langle a, b, c \rangle$: $b \geq a + c$ }
D8 = { $\langle a, b, c \rangle$: $c \geq a + b$ }

■要彻底一些,还可以将"小于或等于"分解,如D6可变为:

D6 _1=
$$\{\langle a, b, c \rangle: a=b+c \}$$

D6 _2 = $\{\langle a, b, c \rangle: a>b+c \}$

主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

NextDate函数的等价类测试用例

■ 确定等价类:

有效等价类:

M1 = {月份: 1≤月份≤12} D1 = {日: 1≤日≤31} Y1 = {年: 1812≤年 ≤2012}

无效等价类:

M2 = {月份:月份<1}
M3 = {月份:月份>12}
D2 = {日:日期<1}
D3 = {日:日期>31}
Y2 = {年:年<1812}
Y3 = {年:年>2012}

■ NextDate函数的弱(强)一般等价类测试用例

用例ID	月份	日期	年	预期输出
WN1, SN1	6	15	1912	6/16/1912

----NextDate函数的弱健壮等价类测试用例

用例ID	月份	日期	年	预期输出
WR1	6	15	1912	6/16/1912
WR2	-1	15	1912	无效输入
WR3	13	15	1912	无效输入
WR4	6	-1	1912	无效输入
WR5	6	32	1912	无效输入
WR6	6	15	1811	无效输入
WR7	6	15	2013	无效输入

NextDate函数的强健壮等价类测试用例一"角"

用例ID	月份	日期	年	预期输出
SR1	-1	15	1912	无效输入
SR2	6	-1	1912	无效输入
SR3	6	15	1811	无效输入
SR4	-1	-1	1912	无效输入
SR5	6	-1	1811	无效输入
SR6	-1	15	1811	无效输入
SR7	-1	-1	1811	无效输入

NextDate函数的等价类另一种划分

M1 = {月份:每月有30天}

M2 = {月份:每月有31天}

M3 = {月份:此月是2月}

D1 = {日: 1≤日期≤28}

D2 = {日:日期=29}

D3 = {日:日期=30}

D4 = {日:日期=31}

Y1 = {年: 年=2000**}**

Y2 = {年: 年是闰年}

Y3 = {年: 年是平年}

■NextDate函数的弱一般等价类测试用例

用例ID	月	日	年	预期输出
WN1	6	14	2000	2000年6月15日
WN2	7	29	1996	1996年7月30日
WN3	2	30	2002	2002年2月31日(不可能的日期)
WN4	6	31	2000	2001年7月1日(不可能的日期)

NextDate函数的其它等价类测试用例

- 强一般等价类测试用例**的个数: M×D×Y = 3 * 4 * 3** = 36
- (参见书中94、95页)
- 弱健壮等价类测试用例的个数: 4 + 6 = 10; (4个有效类测试用例,与弱一般等价类相同;6个无效等价类对应的测试用例)
- 强健壮等价类测试用例的个数: 5 * 6 * 5 = 150; (对每个变量加上2个无效等价类)

练习

- 针对NextDate问题、列出:
- 弱健壮等价类测试用例
- 部分强健壮等价类测试用例

■ 主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

■ 佣金问题的等价类测试用例

- 除了变量的名称和端点值区间不同之外,与NextDate函数的第一个版本完全相同
- 弱一般等价类测试用例的个数: 1
- 强一般等价类测试用例的个数: 1
- 弱健壮等价类测试用例的个数: 1+6=7
- 强健壮等价类测试用例的个数: 3*3*3=27; (对每个变量加上2个无效等价类)

■佣金问题的输入域等价类划分

■输入变量有效类:

L1 = {枪机: 1≤枪机≤70}

L2 = {枪机: 枪机 = -1}

S1 = {枪托: 1≤枪托≤80}

B1 = {枪管: 1≤枪管≤90}

■ 输入变量无效类:

L3 = {枪机:枪机=0或枪机<-1}

L4 = {枪机: 枪机>70}

S2 = {枪托:枪托<1}

S3 = {枪托: 枪托>80}

B2 = {枪管:枪管<1}

B3 = {枪管:枪管>90}

■佣金问题的强健壮等价类测试用例(一角)

用例ID	枪机	枪托	枪管	预期输出
SR1	-1	40	45	枪机值不在有效值域 170 中
SR2	35	- 1	45	枪托值不在有效值域 180 中
SR3	35	40	-1	枪管值不在有效值域 190 中
SR4	-1	-1	45	枪机值不在有效值域 170 中 枪托值不在有效值域 180 中
SR5	-1	40	-1	枪机值不在有效值域 170 中 枪管值不在有效值域 190 中
SR6	35	-1	-1	枪托值不在有效值域 180 中 枪管值不在有效值域 190 中
SR7	-1	-1	-1	枪机值不在有效值域 170 中 枪托值不在有放值域 180 中 枪管值不在有效值域 190 中

■佣金问题的输出域等价类划分

销售额 = 45 × 枪机 + 30 × 枪托 + 25 × 枪管

佣金值域定义三个变量的等价类:

S1 = {<枪机,枪托,枪管>:销售额≤1000}

S2 = {<枪机,枪托,枪管>: 1000<销售额≤1800}

S3 = {<枪机,枪托,枪管>:销售额>1800}

■ 主要内容

- ■等价类
- ■三角形问题的等价类测试用例
- ■NextDate函数的等价类测试用例
- ■佣金问题的等价类测试用例
- ■指导方针和观察

■ 佣金问题的输出域等价类测试用例

用例ID	枪机	枪托	枪管	销售额	佣金
OR1	5	5	5	500	50
OR2	15	15	15	1500	175
OR3	25	25	25	2500	360

■ 指导方针和观察

- ■等价类测试的弱形式(一般或健壮)不如对应的强形式的测试全面
- ■如果实现语言是强类型的(无效值会引起运行时错误),则没有必要使用健壮形式的测试
- ■如果错误条件非常重要,则进行健壮形式的测试是合适的
- ■如果输入数据以离散值区间和集合定义,则等价类测试是合适的; 当然也适用于如果变量值越界系统就会出现故障的系统
- ■通过结合边界值测试,等价类测试可得到加强
- ■如果程序函数很复杂,则等价类测试是被指示的;在这种情况下,函数的复杂性可以帮助标识有用的等价类,就像NextDate函数一样
- ■强等价类测试假设变量是独立的,相应的测试用例相乘会引起冗余问题;如果存在依赖关系,则常常会生成"错误"测试用例
- ■在发现"合适"的等价关系之前,可能需要进行多次尝试
- ■强和弱形式的等价类测试之间的差别,有助于区分累进测试和回归测试。

■ 总结

- ■等价类测试的思想是什么?
- ■弱一般等价类测试的思想是什么?
- ■强一般等价类测试的思想是什么?
- ■弱健壮等价类测试的思想是什么?
- ■弱健壮等价类测试的思想是什么?

■ 练习

- 第六章课后习题6
- 运行BlackBox程序,运用本章所学知识设计三角形问题、NextDate问题、佣金问题的测试用例,然后进行测试,并与第二章、第五章的测试结果进行比较。

