并行接口

- 1. 并行接口最基本的特点是在多根据数据线上以数据字节(字)为单位与I/O设备或被控对象传送信息(打印机接口、A/D和D/A转换器接口、IEEE-488接口(GPIB)、开关量接口、控制设备接口)
- 2. 接口与外设之间采用互锁异步握手方式(查询方式)进行通信:并行数据线、握手(联络)信号线

- 3. 在并行接口中,8位或16位一起工作(外设交换数据时,即使是只用到其中的一位,也是一次输入/输出8位或16位)
- 4. 并行传送信息,不要求固定的格式(与串行传送的数据格式的要求不同)

对于各种型号的CPU都有与其配套的并行接口芯片,例如,Intel公司8255A (PPI) ,Zilog公司Z80PIO,MC6820 (PIO) 等,它们的功能虽有差异,但工作原理基本相同

- 一、8255A的外部特性和内部结构
- 1. 8255A的基本特性
 - 具有两个8位 (A口和B口) 和两个4位 (C口高/低4位) 并行I/O端口的接口芯片
 - 适应CPU与I/O接口之间多种数据传送方式
 - 可执行功能强,3种工作方式,命令字内容 丰富(方式字和控制字)

灵活方便的编程环境,用户可根据外界条件使用8255A构成多种接口电路,组成微机应用系统 (I/O设备需要哪些信号线以及它能提供哪些状态线)

- PC口的使用比较特殊,除作数据口外,当工作在1方式和2方式时,它的大部分引脚被分配作专用联络信号; PC口可以进行按位控制;

在CPU读取8255A状态时,PC口又作1,2方式的状态口用

- 8255芯片内部主要由控制寄存器、状态寄存器和数据寄器组成

	ſ			1
1		PA_3	PA_4	40
2		PA_2	PA_5	39
3		PA_1	PA_6	38
4		PA_0	PA_7	37
5		/RD	/WR	36
6		/CS	RESET	35
7		GND	D_0	34
8		A_1	D_1	33
9		A_0	D_2	32
10		PC_7	D_3	31
11		PC_6	$\begin{array}{c} 8255A & D_4 \\ \end{array}$	30
12		PC_5	D_5	29
13		PC_4	D_6	28
14		PC_0	D_7	27
15		PC_1	V_{CC}	26
16		PC_2	PB_7	25
17		PC_3	PB_6	24
18		PB_0	PB_5	23
19		PB_1	PB_4	22
20		PB_2	PB_3	21
				I

2. 8255A的外部引线

8255A是一个单+5V电源供电,40个引脚的双列直插式组件。

- 外部引脚
- ①与系统总线的连接信号面向数据总线:

D₀₋₇ 双向数据线,用于CPU向8255A发送命令/数据; 8255A向CPU回送状态/数据

面向地址总线: A_1 , A_0 , /CS

面向控制的:

/RD: 读信号, 低电平有效

/WR: 写信号, 低电平有效

RESET: 复位信号, 高电平有效

- 清除控制寄存器并将8255A的A、B、C三个端口均置为输入方式
- 输入寄存器和状态寄存器被复位
- 屏蔽中断请求
- 24条面向外设信号线呈现高阻悬浮状态

- ②与外部设备的连接信号 PA₀₋₇ 端口A的输入/输出线 PB₀₋₇ 端口B的输入/输出线 PC₀₋₇ 端口C的输入/输出线 24根信号线均可用来连接I/O设备和传送信息
- A口和B口只作输入/输出的数据口尽管有时也利用它们从I/O设备读取一些状态信号,如打印机的"忙"(BUSY)状态信号、A/D转换器的"转换结束"(EOC)状态信号,但对A口和B口来说,都是作为8255A的数据口读入,而不是作为8255A的状态口读入

- C口的作用与8255A的工作方式有关,它除了作数据口以外,还有其他用途
 - 数据口, PC₄₋₇与A口一起组成A组, PC₀₋₃与
 B口一起组成B组
 - 状态口,区别于A口和B口不能作8255A本身的状态口
 - 专用(固定)联络(握手)信号线
 - · 按位控制用, C口的8个引脚可以单独从1个 引脚输出高电平

- 3. 8255A的内部结构
 - ① 数据总线缓冲器:三态双向8位缓冲器,8255A 与CPU系统数据总线的接口
 - ②读/写控制逻辑:读/写控制逻辑由读信号RD,写信号WR,片选信号CS以及端口选择信号 A_1A_0 等组成
 - ③输入/输出端口A/B/C: 3个8位输入输出端口 (port),每个端口都有一个数据输入寄存器和一个数据输出寄存器
 - ④ A组和B组控制电路:控制A、B和C三个端口的工作方式

8255A基本操作与端口地址

CS	A ₁	A_0	RD	WR	操作	内容	PC系统
0	0	0	0	1	PA→数据总线→CPU	数据	60H
0	0	1	0	1	PB→数据总线→CPU	数据	61H
0	1	0	0	1	PC → 数据总线 → CPU	数据	62H
0	0	0	1	0	PA ← 数据总线 ← CPU	数据	60H
0	0	1	1	0	PB ← 数据总线 ← CPU	数据	61H
0	1	0	1	0	PC ← 数据总线 ← CPU	数据	62H
0	1	1	1	0	控制寄存器 ← 数据总线 ← CPU	控制字	63H
1	×	×	×	×	高阻态		
0	×	X	1	1	高阻态		
0	1	1	0	1	控制口不能读		63H

- 二、8255A的编程命令
- 1. 方式命令
 - 指定8255A的工作方式及其方式下3个并行端口(PA、PB、PC)的功能,是作输入还是作输出
 - 最高位是特征位,必须写1

例1指定A口1方式,输入,C口上半部为输出;指定B口0方式,输出,C口下半部定为输入,则工作方式命令代码是:10110001B或B1H。

初始化的程序段为:

MOV DX, 303H

;8255A命令口地址

MOV AL, 0B1H

;初始化命令

OUT DX, AL

; 送到命令口

将此命令代码写到8255A的命令寄存器,即实现8255A工作方式及端口功能的指定,完成了对8255A的初始化

- 二、8255A的编程命令
- 2. 按位置位/复位命令
 - 指定PC口的某一位(某一个引脚)输出高平 或低电平
 - 最高位是特征位,必须写0

例2 若要把C口的PC2引脚置成高电平输出,则命令字应该为00000101B或05H

将该命令的代码写入8255A的命令寄存器,使得PC口PC₂引脚输出高电平,其程序段为

MOV DX, 303H ;8255A命令口地址

MOV AL, 05H ;使PC₂=1的命令字00000101

OUT DX, AL ;送到命令口

若使引脚PC。输出低电位,则程序段为

MOV DX, 303H ;8255A命令口地址

MOV AL, 04H ; 使PC₂=0的命令字0000<mark>0100</mark>

OUT DX, AL ;送到命令口

利用C口的按位控制特性还可以产生、负脉冲或方波输出,对外设进行控制

例3 利用8255A的PC₇产生负脉冲,作打印机接口电路的数据 选通信号,其程序段为:

MOV DX, 303H ;8255A命令ロ

MOV AL, 00001110B ; 置PC7=0

OUT DX, AL

NOP ;维持低电平

NOP

MOV AL, 00001111B ; 置PC7=1

OUT DX, AL

- 3. 关于两个命令的讨论
 - ① 方式命令指定8255A的3个端口的工作方式及功能,初始化工作在使用8255A之前进行
 - ②按位置位/复位命令只是对PC口的输出进行控制,不改变已经建立的3种工作方式,在初始化程序以后的任何时刻进行
 - ③ 两个命令的最高位 D_7 作为特征位,标识两个不同的命令;
 - ④ 按位置位/复位的命令代码只能写入命令口

- 4. A口/B口也可以按位输出高/低电平
 - A口/B口的按位输出: 以送数据到A口、B口来实现 (8255A的输出有锁存能力)
 - C口按位输出: C口按位置位/复位命令以命令的形式送到命令寄存器执行

例 若要使PA7位输出高/低电平

则用下列程序段: 使PA₇输出高电平

MOV DX, 300H

IN AL, DX

MOV AH, AL

OR AL, 80H

OUT DX, AL

• • •

MOV AL, AH OUT DX, AL ;PA数据口地址

;读入A口原输出内容

;保存原输出内容

;使PA₇=1

;输出PA₇

;恢复原输出内容

使PA₇输出低电平

MOV DX, 300H ; A口地址

IN AL, DX ;读入端口原输出值

MOV AH, AL ;保存原输出值

AND AL, 7FH ; 使PA₇=0

OUT DX, AL ;输出PA₇

• • •

MOV AL, AH ;恢复原输出内容

OUT DX, AL

三、8255A的工作方式

8255A的工作方式与端口有关

- PA口有三种方式 (0方式、1方式、2方式)
- PB口和PC口只有两种方式 (0方式、1方式)

一、特点

- 1. 0方式是一种基本输入/输出工作方式,通常不用 联络信号,或不使用固定的联络信号 基本I/O方式采用查询方式(包括无条件传送) 不能采用中断方式
- 2. 彼此独立的两个8位和两个4位并行口,都能被指定作为输入或者输出,共有16种不同的使用状态

- 3. 不设置专用联络信号线,需要联络时,由用户任意指定C口中的连线完成某种联络功能,不同于1方式、2方式下设置固定的专用联络信号线
 - 端口与I/O设备之间无固定的时序关系
 - 没有设置固定的状态字
- 4. 一次初始化只能指定端口PA/PB/PC作输入或输出,不能同时既作输入又作输出(单向I/O)

- 二、并行打印机接口设计
- 1. 要求:为某应用系统配置一个并行打印机接口, CPU采用查询方式把存放在BUF缓冲区的256个字(ASCII码)送去打印
- 2. 分析: 打印接口直接面向的对象是打印机接口标准, 而不是打印机本身, 要按照接口标准的要求进行设计(打印机接口标准Centronics信号线定义和时序)

采用查询方式时,打印机与CPU之间传送数据的过程

- ① 首先查询BUSY, 若BUSY=1, 打印机忙,则等待; 若BUSY=0, 打印机不忙,则送数据;
- ②通过并行接口把数据送给标准插座DATA BIT₁₋₈数据线上,此时数据并未送入打印机;
- ③ 再送出一个数据选通信号/DATA STROBE (负脉冲) 给标准插座的1号引脚,把数据线上 的数据打入到打印机的内部缓冲器;

- ④ 打印机在收到数据后,通过插座的11号引脚发出"忙"(BUSY=1)信号,表明打印机正在处理输入的数据;
- ⑤ 最后在10号引脚上送出一个回答信号/ACK给主机,表示上一个字符已经处理完毕

3. 设计

接口电路的设计包括硬件接口电路和软件驱动程序两部分。

打印机接口电路的设计思路:按照Centronics标准对打印机接口信号线的定义,最基本的信号线需要8根数据线 (DATABIT₁₋₈),1根控制线 (STB),1根状态线 (BUSY)和1根地线 选用8255A的PA口作数据口输出8位打印数据,工作方式为0方式,打印机接口电路原理框图

打印驱动程序流程图

CODE SEGMENT

ASSUME CS: CODE, DS: CODE

ORG 100H

START:

MOV AX, CODE

MOV CS, AX

MOV DS, AX

MOV DX, 303H

MOV AL, 10000001B

OUT DX, AL

;8255A命令口

;工作方式字

;A组0方式,输出,

;B组0方式,输出,

; C₄~C₇输出,C₀~C₃输入

```
;PC-位置高,使/STB=1
    MOV AL, 00001111B
    OUT DX, AL
    MOV SI, OFFSET BUF
                   ;打印字符内存首地址
    MOV CX, OFFH ;打印字符个数
L: MOV DX, 302H ; PC口地址
    IN AL, DX ; 查BUSY=0? (PC_2=0)
    AND AL, 04H ; 00000100B
   JNZ L ; 忙,则等待;不忙,则向A口送数
    MOV DX, 300H ; PA口地址
    MOV AL, [SI] ;从内存取数
    OUT DX, AL ;送数据到A口
    MOV AL, 303H ;8255A命令口
    MOV AL, 00001110B ; 置/STB信号为低 (PC,=0)
```

```
OUT DX, AL
```

NOP ;负脉冲宽度(延时)

NOP

MOV AL, 00001111B ; 置/STB为高 (PC₇=1)

OUT DX, AL

INC SI ;内存地址加1

DEC CX ;字符数减1

JNZ L ;未完,继续

MOV AX, 4C00H ;已完,退出

INT 21H

BUF DB 256个ASCII字符代码

CODE ENDS

END START

三、步进电机控制接口设计

1. 步进电机控制原理 步进电机是将电脉冲信号转换成角位移的一种 机电式数模转换器,步进电机旋转的角位移、 转速以及方向均受输入脉冲的控制 角位移与输入脉冲的个数据成正比 转速与输入脉冲的频率成正比 转速与输入脉冲的频率成正比 转动方向号输入脉冲对绕组加电的顺序相关

2. 运行方式与方向的控制(循环查表法) 步进电机的运行方式是指各相绕组循环轮流通电 的方式,例如,四相步进电机

步进电机运行方式

单四拍	双四排	单双八拍	双八拍
A	AB	AB	AB
В	ВС	В	ABC
С	CD	ВС	ВС
D	DA	С	BCD
A	AB	CD	CD
В	ВС	D	CDA
С	CD	DA	DA
D	DA	A	DAB

相序表

绕组与数据线的连接					运行	相序表		方向				
	D		С		В		A	77 A 14	加电代码	地址单元	正向	反向
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	双八拍	加电代码	地址平儿	正问	风问
0	0	0	0	0	1	0	1	AB	05H	400H	\downarrow	\uparrow
0	0	0	1	0	1	0	1	ABC	15H	401H	\downarrow	\uparrow
0	0	0	1	0	1	0	0	ВС	14H	402H	\downarrow	\uparrow
0	1	0	1	0	1	0	0	BCD	54H	403H	\downarrow	\uparrow
0	1	0	1	0	0	0	0	CD	50H	404H	\downarrow	\uparrow
0	1	0	1	0	0	0	1	CDA	51H	405H	\downarrow	\uparrow
0	1	0	0	0	0	0	1	DA	41H	406H	\downarrow	\uparrow
0	1	0	0	0	1	0	1	DAB	45H	407H	\downarrow	\uparrow

D	С	В	A	双八拍
D_6	D_4	D_2	D_0	
0	0	1	1	AB
0	1	1	1	ABC
0	1	1	0	ВС
1	1	1	0	BCD
1	1	0	0	CD
1	1	0	1	CDA
1	0	0	1	DA
1	0	1	1	DAB

步进电机原理

- 为了实现对各绕组按一定方式轮流加电,需要一个脉冲循环分配器,可用硬件电路实现 (控制字),也可用软件实现(循环查表法)
- 循环查表法,将各绕组加电顺序的控制代码制成一张步进电机相序表,存放在内存区,再设置一个地址指针
- 相序表的建立,要考虑两个因素:步进电机运行方式的要求,各相绕组与数据线连接的对应关系

- 3. 步进电机运行速度的控制(软件延时法) 控制步进电机速度有两个途径: 硬件改变输入 脉冲的频率,通过对定时器(例如8253)定时常 数的设定,使其升频、降频或恒频;软件延时, 或调用延时子程序
- 4. 步进电机的驱动 步进电机在系统中是一种执行元件(带负载), 需要功率驱动,在电子仪器和设备中,一般所 需功率较小,常采用达林顿复合管作功率驱动

5. 硬件电路与软件编程 步进电机接口的硬件部分主要是提供输送相序 代码的并行数据线(8根),以及保护电机绕组 的器件 软件设计 p149-150/p120-121

一、特点

- ①1方式是一种选通输入/输出方式,即应答方式,需设置专用的联络信号线或应答信号线,对I/O设备和CPU两侧进行联络,通常用于查询(条件)传送或中断传送,数据的输入/输出都有锁存功能;
- ②PA和PB为数据口,PC口的大部分引脚分配作专用(固定)联络信号的引脚,用户不能再指定作其他作用;
- ③ 各联络信号线之间有固定时序关系,传送数据时,严格按照时序进行

- ④ 输入/输出操作过程中,产生固定状态字,作为查询或中断请求之用,状态字从PC口读取
- ⑤ 单向传送,一次初始化只能设置在一个方向上传送,不能同时作两个方向的传送

- 二、1方式下联络信号线的定义及其时序
- 1. 输入联络信号线定义及时序

输入是从I/O设备向8255A送数据进来: I/O设备应先把数据准备好,并送到8255A,然后CPU从8255A读取数据当A口和B口为输入时,各指定了C口的3根线作为8255A与外设及CPU之间应答信号:

/STB 外设给8255A的"输入选通"信号,低电平有效 IBF 8255A给外设的回答信号"输入缓冲器满",高电平有效

INTR 8255A给CPU的"中断请求"信号,高电平有效

1方式输入信号线

- ① 数据输入时,外设处于主动地位,当外设准备好数据并放到数据线上后,首先发/STB信号,由它把数据输入到8255A;
- ② 在/STB的下降沿约300ns,数据已锁存到8255A的缓冲器后,引起IBF变高,表示8255A的"输入缓冲器满",禁止输入新数据;
- ③ 在/STB上升沿约300ns后,在中断允许(INTE=1)的情况下IBF的高电平产生中断请求,使INTR上升变高,通知CPU,接口中已有数据,请求CPU读取;
- ④ CPU得知INTR信号有效之后,执行读操作时,/RD 信号的下降沿使INTR复位,撤消中断请求,为下一次中断请求作好准备

1方式输入工作时序表

符号	参数	825	单位	
		MIN	MAX	
t_{ST}	/STB脉冲宽度	500		ns
t_{SIB}	/STB=0至IBF=1		300	ns
t _{SIT}	/STB=1至INTR=1		300	ns
t _{RIB}	/RD=1至IBF=0		300	ns
t _{RIT}	/RD=0至INTR=0		400	ns
t_{PS}	数据提前/STB无效的时间	0		ns
t_{PH}	数据保持时间	180		ns

- 二、1方式下联络信号线的定义及其时序
- 2. 输出联络信号线定义及时序

输出是8255A送数据到I/O设备: CPU先把数据准备好, 并送到8255A, 然后8255A把数据输出去

当A口和B口为输出时,各指定了C口的3根线作为8255A 与外设及CPU之间应答信号:

/OBF 8255A给外设的回答信号"输出缓冲器满",低电平有效

/ACK 外设给8255A的"回答"信号,低电平有效,外设已经从8255A的端口接收到了数据

INTR 8255A给CPU的"中断请求"信号,高电平有效

1方式输出信号线

- ① 数据输出时,CPU应先准备好数据,并把数据写到8255A输出数据寄存器,当CPU向8255A写完一个数据后,/WR下降沿使中断请求INTR变低,复位中断请求,/WR的上升沿使/OBF有效,表示8255A的输出缓冲器已满,通知外设读取数据;
- ② 外设得到/OBF有效的通知后,开始读数,当外设读取数据后,用/ACK回答8255A,表示数据已收到;
- ③ /ACK的下降沿将/OBF置高,使OBF无效,表示输出缓冲器变空,为下一次输出作准备,在中断允许(INTE=1)的情况下ACK上升沿使INTR变高,产生中断请求,CPU响应中断后,在中断服务程序中,执行OUT指令,向8255A写下一个数据

三、1方式的状态字

1. 状态字的作用

在1方式下8255A有固定的状态字,为查询方式提供了状态标志位IBF和OBF;

当8255A采用中断方式: CPU可以通过读状态字来确定中断源,实现查询中断(例如单片机系统); 也可以采用中断控制器来确定中断源,实现向量中断(例如PC系统)

2. 状态字的格式

分A和B两组,A组状态位占高5位,B组状位占低3位,输入和输出时的状态字不相同

	PC_7	PC_6	PC_5	PC_4	PC_3		PC_2	PC_1	PC_0
输入	I/O	I/O	IBF_A	INTEA	INTRA	 输入	INTEB	IBF_B	INTR _B
	PC ₇	PC	S ₆ PO	C_5 PC_4	PC ₃		PC_2	PC_1	PC_0
输出	OBF _A	INT	E _A I/	O I/O	INTRA	输出	INTEB	OBF _B	INTR _B

1方式状态字

- 3. 使用状态字时要注意的几个问题
- ① 状态字在8255A输入/输出操作过程中由内部产生, 从C口读取的,与C口的外部引脚无关
- ② 状态字中供CPU查询的状态位有: IBF位和INTR位 (输入时); OBF位和INTR位(输出时) 在1方式下采用查询方式时, 一般查询状态字中的 INTR位
- ③ 状态字中的INTE是控制标志位,控制8255A能否提出中断请求,不是I/O操作过程中自动产生的状态,由程序通过按位置位/复位命令设置或清除

例1 若允许PA口输入时,产生中断请求,则必须设置INTE_A=1,即置PC₄=1;若禁止它产生中断请求,则置INTE_A=0,即置PC₄=0,其程序段为

MOV DX, 303H ; 8255A命令口

MOV AL, 00001001B; 置PC4=1, 允许中断请求

OUT DX, AL

MOV AL, 00001000B; 置PC4=0, 禁止中断请求

OUT DX, AL

四、1方式的接口设计方法

- 首先根据实际情况确定A、B两口是输入还是 输出,然后把C口分配作联络的专用应答线与 外设相应的状态线和控制线相连
- 注意当使用中断方式和查询方式时,INTR的 连接
 - · 中断方式: INTR接微处理器或中断控制器
 - · 查询方式: INTR不连接, 查状态字中的 INTR状态位

五、两种方式并行传送接口设计

在甲乙两台微机之间并行传送1K字节数据,甲机发送,乙机接收,甲机一侧的8255A采用1方式工作,乙机一侧的8255A采用0方式工作,两机的CPU与接口之间都采用查询方式交换数据

双机均采用可编程并行接口芯片8255A构成接口电路,但是8255A的工作方式不同,双方的8255A把对方视为I/O设备

接口驱动程序包含发送与接收两个程序程序流程图 p158/p128 甲机发送程序段:

MOV DX, 303H

MOV AL, 10100000B

OUT DX, AL

MOV AL, 0DH

OUT DX, AL

MOV SI, OFFSET BUFS

MOV CX, 3FFH

; 8255A命令口

; 初始化工作方式字

; 置发送中断允许 $INTE_A=1$

; $PC_6=1$

; 设置发送数据区的指针

; 发送字节数

```
MOV DX, 300H
           ;向A口写第一个数,产生第一个/OBF信号
             ;送给乙方,以获取乙方的/ACK信号
MOV AL, [SI]
OUT DX, AL
INC SI
             ; 内存地址加1
             ;传送字节数减1
DEC CX
              ; 8255A状态口
L: MOV DX, 302H
             ; 查发送中断请求INTR<sub>A</sub>=1?
IN AL, DX
AND AL, 08H
             ; PC_3=1?
             ; 若无中断请求, 则等待;
JZ L
             ;若有中断请求,则向A口写数
```

MOV DX, 300H ; 8255A的PA口地址

MOV AL, [SI] ; 从内存取数

OUT DX, AL ; 通过A口向乙机发送第二个数据

INC SI ; 内存地址加1

DEC CX ; 字节数减1

JNZ L ; 字节未完,继续

MOV AX, 4C00H ; 已完, 退出

INT 21H ; 返回

BUFS DB 1024个数据

乙机接收程序段: (略)

- 一、特点
- ① PA口为双向选通输入/输出或叫双向应答式输入/输出:一次初始化可指定PA口既作输入口又作输出口
- ② 设置专用的联络信号线和中断请求号信线,可 采用中断方式和查询方式与CPU交换数据
- ③ 各联络线的定义及其时序关系和状态基本上是在1方式下输入和输出两种操作的组合

- 二、2方式下联络信号线的定义及其时序
- 1. 联络信号线的定义
 - 2方式是一种双向选通输入输出方式,将A口作为双向输入/输出口,将C口的5根线作为专用应答线PC₃₋₇
 - 8255A只有A口才有2方式
- 2. 引脚定义
- 3. 工作时序

三、2方式的状态字

2方式的状态字的含义是在1方式下输入和输出状态位的组合

2方式状态字

四、中断方式的双向并行接口设计

何 主从两个微机进行并行传送,共传送256个字节; 主机一侧的8255A采用2方式并且用中断方式传 送数据;从机一侧8255A工作在0方式,采用查 询方式传送数据

(1) 硬件设计

主机一侧的8255A的PA口作双向传送,既输出又输入,它的中断请示线接到8259A的IR₂上;从机一侧的8255A的PA和PB口是单向传送,分别作输出和输入

(2) 软件设计 p163/p132

2方式接口电路