ESERCIZI SVOLTI SUBNETTING A MASCHERA FISSA

ESERCIZIO 1 (classe C) Dato l'indirizzo di rete 200.3.200.0 realizzare 4 sottoreti (A,B,C,D) aventi le seguenti caratteristiche:

- A: 60 host
- B: 32 host
- C:15 host
- D: 5 host

Completare la tabella del Piano di indirizzamento generico

SOLUZIONE ESERCIZIO 1

- Determino la classe di indirizzo 200.3.200.0 convertendo il byte più significativo: (200)₁₀ = (11001000)₂. Poiché i primi bit sono 110 → è un indirizzo di classe C perciò avrà una struttura del tipo N.N.N.H.
- 2. Il subnetting può essere fatto solo sull'ultimo byte
- 3. Considero la sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 60 host . Max Int log₂ 62 = 6. Occorrono 6 bit (teoricamente potrei indirizzare 2⁶-2=62 host
- 4. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-6 = 26 → la subnet mask avrà 26 bit a uno (a partire dal MSB) →
 - 11111111. 11111111. 111111111. 11000000 \Rightarrow 255.255.255.192 che sarà la stessa per ogni sottorete
- 5. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0₁₀) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 00 e ovviamente quelli dedicati agli host sono messi a zero → 00000000 . quindi, essendo un indirizzo di classe A i primi 3 byte rimangono invariati mentre il quarto byte sarà 0 → l'indirizzo della prima sottorete sarà: 200.3.200.0
- 6. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 200
 - b. Secondo byte (invariato) $\rightarrow 3$
 - c. Terzo byte (invariato)→200
 - d. Quarto byte $\rightarrow 00111111 \rightarrow 63$

Indirizzo di broadcast \rightarrow 200.3.200.63

- 7. Determino il range di indirizzi utile: 200.3.200.1 200.3.200.62
- 8. Considero la seconda sottorete con più host → la sottorete B e determino l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 200.3.200.63 +1 = 200.3.200.64
- 9. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 200
 - b. Secondo byte (invariato) $\rightarrow 3$
 - c. Terzo byte (invariato)→200
 - d. Quarto byte→indirizzo di sottorete 64 →01000000→pongo a 1 quelli dedicati agli host →01111111 = 127

Indirizzo di broadcast \rightarrow 200.3.200.127

- 10. Determino il range di indirizzi utile: **200.3.200.65 200.3.200.126**
- 11. Considero la terza sottorete con più host \rightarrow la sottorete C e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 200.3.200.127 +1 = $\frac{200.3.200.128}{200.3.200.128}$
- 12. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 200
 - b. Secondo byte (invariato) $\rightarrow 3$
 - c. Terzo byte (invariato)→200

d. Quarto byte→ indirizzo di sottorete 128 →10000000→pongo a 1 quelli dedicati agli host →10111111 = 191

Indirizzo di broadcast \rightarrow 200.3.200.191

- 13. Determino il range di indirizzi utile: 200.3.200.129 200.3.200.190
- **14.** Considero l'ultima sottorete → la sottorete D e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 200.3.200.191 +1 = **200.3.200.192**
- 15. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 200
 - b. Secondo byte (invariato) $\rightarrow 3$
 - c. Terzo byte (invariato)→200
 - d. Quarto byte→ indirizzo di sottorete 192 →11000000 → pongo a 1 quelli dedicati agli host →11111111 = 255

Indirizzo di broadcast \rightarrow 200.3.200.255

- 16. Determino il range di indirizzi utile: 200.3.200.193 200.3.200.254
- 17. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP	Ultimo IP
	sottorete	broadcast		utile	utile
В	200.3.200.0	200.3.200.63	255.255.255.192	200.3.200.1	200.3.200.62
A	200.3.200.64	200.3.200.127	255.255.255.192	200.3.200.65	200.3.200.126
С	200.3.200.128	200.3.200.191	255.255.255.192	200.3.200.129	200.3.200.190
D	200.3.200.192	200.3.200.255	255.255.255.192	200.3.200.193	200.3.200.254

ESERCIZIO 2 (Classe B): Dato l'indirizzo di rete 150.13.0.0 realizzare 3 sottoreti (A,B,C) aventi le seguenti caratteristiche:

- A: 5000 host
- B: 450 host
- C:12 host

Completare la tabella del Piano di indirizzamento generico:

SOLUZIONE ESERCIZIO 2

- Determino la classe di indirizzo 150.13.0.0 convertendo il byte più significativo: (150)₁₀ = (10010110)₂. Poiché i primi bit sono 10 → è un indirizzo di classe B perciò avrà una struttura del tipo N.N.H.H.
- 2. Il subnetting può essere fatto solo sugli ultimi 2 byte
- 3. Considero la sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 5000 host. Max Int log₂ 5002 = 13. Occorrono 13 bit (teoricamente potrei indirizzare 2¹³-2=8192 host
- 4. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-13=19 → la subnet mask avrà 19 bit a uno (apartire dal MSB) →

11111111. 11111111.11100000.00000000 \rightarrow 255.255.224.0

- 5. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0₁0) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 000 e ovviamente quelli dedicati agli host sono messi a zero → 00000.00000000 . quindi, essendo un indirizzo di classe B il primo e il secondo byte rimangono invariati mentre agli altri 2 byte sostituirò i bit calcolati → l'indirizzo della prima sottorete sarà: 150.13.0.0
- 6. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 10010110 \rightarrow 150
 - b. Secondo byte (invariato): $\rightarrow 00001101 \rightarrow 13$
 - c. Terzo byte $\rightarrow 000111111 \rightarrow 31$

- d. Quarto byte \rightarrow 11111111 \rightarrow 255 Indirizzo di broadcast \rightarrow 150.13.31.255
- 7. Determino il range di indirizzi utile: 150.13.0.1 150.13.31.254
- 18. Considero la seconda sottorete con più host \rightarrow la sottorete B e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 150.13.31.255 +1 = 150.13.32.0
- 19. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 150
 - b. Secondo byte (invariato) $\rightarrow 13$
 - c. Terzo byte $00100000 \rightarrow 32$
 - d. Quarto byte \rightarrow 00000000
 - \rightarrow 00111111.11111111 \rightarrow Indirizzo di broadcast \rightarrow 150.13.63.255
- 8. Determino il range di indirizzi utile: **150.13.32.1 150.13.63.254**
- **20.** Considero la terza sottorete \rightarrow la sottorete C e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 150.13.63.255 + 1 = 150.13.64.0
- 21. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host ->
 - a. Primo byte (invariato): \rightarrow 150
 - b. Secondo byte (invariato) $\rightarrow 13$
 - c. Terzo byte $01000000 \rightarrow 64$
 - d. Quarto byte $\rightarrow 00000000$
 - \rightarrow 01011111.11111111 → Indirizzo di broadcast \rightarrow 150.13.95.255
- 9. Determino il range di indirizzi utile: 150.13.64.0 150.150.95.254

10. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP utile	Ultimo IP
	sottorete	broadcast			utile
В	150.13.0.0	150.150.31.255	255.255.224.0	150.13.0.1	150.150.31.254
C	150.13.32.0	150.150.63.255	255.255.224.0	150.13.32.1	150.150.63.254
A	150.13.64.0	150.150.95.255	255.255.224.0	150.13.64.1	150.150.95.254

ESERCIZIO 3 (Classe A): Dato l'indirizzo di rete 12.0.0.0 realizzare 3 sottoreti (A,B,C) aventi le seguenti caratteristiche:

- A: 6300 host
- B: 320 host
- C:150 host

Completare la tabella del Piano di indirizzamento generico

SOLUZIONE ESERCIZIO 3

- 11. Determino la classe di indirizzo 12.0.0.0 convertendo il byte più significativo: $(12)_{10} = (00001100)_2$. Poiché il primo bit è $0 \rightarrow$ è un indirizzo di classe A perciò avrà una struttura del tipo N.H.H.H.
- 12. Il subnetting può essere fatto sui primi 3 byte
- 13. Considero la sottorete con più host → la sottorete A e determino il numero di bit necessari ad indirizzare 6300 host . Max Int log₂ 6302 = 13. Occorrono 13 bit
- 14. Determino la subnet mask: dai 32 bit complessivi sottraggo quelli dedicati agli host e ottengo 32-13=19 → la subnet mask avrà 19 bit a uno (apartire dal MSB) → 11111111. 11111111.11100000.000000000 → 255.255.224.0
- 15. Determino l'indirizzo della prima sottorete (1° sottorete = numero 0₁₀) quindi tutti i bit dedicati al subnetting della subnet mask rappresentano lo zero decimale 0000000.000 e ovviamente quelli dedicati agli host sono messi a zero → 00000.00000000 . quindi, essendo un indirizzo di classe A il primo byte rimane invariato mentre agli altri byte sostituirò i bit calcolati → l'indirizzo della prima sottorete sarà: 12.0.0.0

- 16. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit della subnet mask dedicati a questa sottorete e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 00001100 \rightarrow 12$
 - b. Secondo byte $\rightarrow 000000000 \rightarrow 0$
 - c. Terzo byte $\rightarrow 000111111 \rightarrow 31$
 - d. Quarto byte→111111111→255

Indirizzo di broadcast → 12.0.31.255

- 17. Determino il range di indirizzi utile: **12.0.0.1-12.0.31.254**
- 22. Considero la seconda sottorete con più host \rightarrow la sottorete B e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 12.0.31.255 + 1 = 12.0.32.0
- 23. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): $\rightarrow 12$
 - b. Secondo byte $00000000 \rightarrow 0$
 - c. Terzo byte $00100000 \rightarrow 32$
 - d. Quarto byte $\rightarrow 00000000$
 - \rightarrow 00111111.11111111 \rightarrow Indirizzo di broadcast \rightarrow 12.0.63.255
- 24. Determino il range di indirizzi utile: **12.0.32.1-12.0.63.254**
- 25. Considero la terza sottorete \rightarrow la sottorete C e calcolo l'indirizzo di sottorete come quello successivo all'indirizzo di broadcast precedente: 12.0.63.255 + 1 = 12.0.64.0
- 26. Calcolo l'indirizzo di broadcast di questa sottorete lasciando invariati i bit dedicati al net-ID e subnet-id e ponendo a 1 i bit degli host →
 - a. Primo byte (invariato): \rightarrow 12
 - b. Secondo byte $00000000 \rightarrow 0$
 - c. Terzo byte $01000000 \rightarrow 64$
 - d. Quarto byte \rightarrow 00000000
 - \rightarrow 01011111.11111111 \rightarrow Indirizzo di broadcast \rightarrow 12.0.95.255
- 27. Determino il range di indirizzi utile: **12.0.64.1-12.0.95.254**
- 28. Definisco il piano di indirizzamento:

Sottorete	Indirizzo di	Indirizzo di	Subnet mask	Primo IP utile	Ultimo IP
	sottorete	broadcast			utile
В	12.0.0.0	12.0.31.255	255.255.224.0	12.0.0.1	12.0.31.254
A	12.0.32.0	12.0.63.255	255.255.224.0	12.0.32.1	12.0.63.254
C	12.0.64.0	12.0.95.255	255.255.224.0	12.0.64.1	12.0.95.254