Metoda podziału i ograniczeń

- relaksacja problemu

Zadanie 1

- Należy uzupełnić odpowiedzi na pytania zamieszczone w ramkach algorytmu B&B dla:
 - Osoby z parzystym numerem indeksu TSP z wykorzystaniem metody węgierskiej i reguły podziału Bellmore'a
 - Osoby z nieparzystym numerem indeksu OTSP z wykorzystaniem algorytmu Dijksry-Prima
- PP oznacza podproblem

Krok 1: Tworzymy listę kandydatów - **LK**, na której umieszczamy wszystkie niezamknięte problemy

■ LK:={P} (wyjściowy problem)

Jak jest zdefiniowany rozwiązywany problem

Rozwiązywany problem to tzw. OTSP, czyli problem wyznaczenia otwartej ścieżki zawierającej wszystkie wierzchołki w grafie oraz przechodzącej przez każdy wierzchołek tylko jeden raz.

■ v*:=∞

Z czego wynika początkowa wartość v*

Początkowa wartość v* zależy od rozważanego problemu – w przypadku problemu, który chcemy minimalizować v* = ∞ , czyli v* przyjmuje największą możliwą. Natomiast w przypadku problemu, który chcemy maksymalizować początkowo v* przyjmie najmniejszą możliwą wartość, czyli zazwyczaj 0 lub $-\infty$.

Krok 2: Wybór kandydata problemu – KP.

■ Jeżeli LK = Ø to **STOP** (v* - f.c. rozwiązania opt.)

Kiedv LK bedzie pusta

Kiedy zostaną zamknięte wszystkie podproblemy.

■ KP:= wybór z LK

Jaka jest reguła wyboru PP z listy LK

Wybieramy PP z najmniejszym LB, jeżeli te wartości dla kilku PP są równe, racjonalnym jest wybrać podproblem bardziej zaawansowany, czyli ten, który ma więcej krawędzi zabronionych.

■ LK:=LK-{KP}

Krok 3: Rozwiąż problem zrelaksowany RKP.

■ Algorytmem dokładnym wyznaczamy rozw. opt. RKP

Do jakiego problemu relaksujemy wyjściowy problem

Do problemu znalezienia MST

Jakie ograniczenia w wyniku relaksacji zostają odrzucone

W wyniku relaksacji odrzucamy ograniczenie związane z jednokrotnym odwiedzeniem każdego wierzchołka w ścieżce. Inaczej mówiąc, jeśli potraktujemy rozwiązanie problemu OTSP jako drzewo rozpinające, każdy stopień każdego wierzchołka w tym drzewie musi zawierać się w przedziale <1, 2>, na wierzchołki w MST takie ograniczenie nie jest nakładane.

Jakie ograniczenia przy relaksacji pozostają

Ograniczeniem, które pozostaje jest odwiedzenie wszystkich wierzchołków oraz nieutworzenie cyklu.

Czy stosowany algorytm dedykowany dla RKP można zmodyfikować pod kątem wyjściowego problemu – jeśli tak, to w jaki sposób

Można uwzględnić w algorytmie Prima, sytuację, w której w danym kroku możemy wybrać kilka krawędzi. W takim przypadku, należałoby wybrać krawędź, która jest incydentna z wierzchołkami o najmniejszym stopniu

Krok 4: Analiza KP.

■ Próba zamknięcia KP za pomocą KZ1, KZ2, KZ3 (v*!)

Podaj jakie konkretne warunki są przesłanką zastosowania: KZ1

Gdy nie da się wyznaczyć MST – w danym podproblemie graf nie jest spójny

KZ2

Gdy zachodzi LB > v^* lub LB $\geq v^*$ zależnie od tego, czy interesują nas alternatywne rozwiązania optymalne.

KZ3

Wszystkie wierzchołki w wyznaczonym drzewie mają stopień nie większy niż 2

Czv zastosowanie KZ3 zawsze prowadzi do poprawy wartości odcinającej v*

Nie, jeżeli poniższy warunek nie zostanie spełniony, to zastosowanie KZ3 nie doprowadzi do poprawy wartości odcinającej v*

Czy może się zdarzyć, że od razu zostanie zamknięty problem wyjściowy – jeśli tak, to w jakiej sytuacji

Może się tak zdarzyć, jeżeli wyznaczone MST, będzie spełniało warunki rozwiązania problemu OTSP. Stanie się tak, np. wtedy gdy w rozważanym grafie jedyną ścieżką będzie interesująca nas ścieżka. Przykładowo, graf o trzech wierzchołkach i dwóch krawędziach (1,2) i (2,3).

Krok 5: Jeżeli KP – zamknięty to idź do Kroku 2.

Krok 6: Podziel KP - następniki umieść na LK i idź do Kroku 2.

Jak definiujemy nowe PP (zabronienia / dodatkowe ograniczenia)

Nowe PP są definiowane poprzez zabronienie przejść przez poszczególne krawędzie incydentne z wierzchołkiem o zbyt dużym stopniu.

lle powstanie PP

Liczba podproblemów jest równa liczbie kombinacji, na które można wybrać krawędzie do usunięcia.

lle wynosi ograniczenie LB dla PP

LB dla PP jest równy sumie wag wybranych krawędzi.

Czy dzielony problem musi być wcześniej zamknięty / zostaje zamknięty przy podziale Dzielony problem zostaje zamknięty przy podziale

Uwagi:

• Sprawozdanie proszę umieścić na UPEL na zakończenie zajęć (indywidualnie).

Kryteria zamykania podproblemów

- Jeżeli $X(RP_i) = \emptyset \Rightarrow X(P_i) = \emptyset$ zbiór rozwiązań dopuszczalnych jest pusty to RP_i oraz P_i jest sprzeczny → **KZ1**: Jeżeli $X(RP_i) = \emptyset$ to zamykamy P_i .
- •Jeżeli rozważamy **minimalizację** to $v(P_i)$ ≥ $v(RP_i)$ rozwiązanie optymalne problemu P_i nie jest lepsze niż dla problemu zrelaksowanego RP_i
- Jeżeli v* jest wartością odcinającą wartość funkcji celu najlepszego znanego rozwiązania dopuszczalnego P
 - •→ **KZ2**: Jeżeli v(RP_i) ≥ v* to zamykamy P_i .
- •Jeżeli rozwiązanie optymalne RP_i jest rozwiązaniem dopuszczalnym dla P_i to jest rozwiązaniem optymalnym P_i tzn. $v(P_i) = v(RP_i)$
 - ***-> KZ3**: Jeżeli rozwiązanie optymalne RP_i jest dopuszczalne dla P_i to zamykamy P_i .
 - •do **KZ3**: Jeżeli $v(P_i) < v^*$ to $v^* := v(P_i)$ poprawa wartości odcinającej