MATH 8090: ARMA Prediction and a Case Study

Whitney Huang, Clemson University

9/26-9/28/2023

Contents

NOA	AA wind data example	2
	Load and plot the data	2
	"Estimate" ϕ using sample ACF and center the data	2
	One-step-ahead forecast	4
Fill	in missing value example	5
	Simulate an AR(-0.9)	5
Let's	s remove some data to illustrate how to fill in missing values using forecasting algorithm	6
	Fill in "missing" values	7
	Prediction Errors from Best Linear Predictor	8
Irela	and wind data case study	9
	Load and plot the data	9
	Deseasonalization: Harmonic Regression	10
	ACF Plots: Original and Deseasonalized Series	11
	Apply transformation to make wind speed more Gaussian like	12
	Now take square roots of the original data and deseasonalizeagain!	13
	Checking Normality ACF/PACF	14
	Model identification, fitting, and selection	15
	Let's first fit an AR(1)	15
	Fit an AR(2) model	18
	Fit an ARMA(1,1) model	21
	Use AIC to conduct model selection	27
	Forecasting	28
	Visualizing the Forecasts	29
	riodomania ono rotocomo	20

NOAA wind data example

This example is taken from Don Percival's time series course (UW Stat 519).

The one-step-ahead forecast of an AR(1) process is:

$$P_n X_{n+1} = \hat{\mu} + \hat{\phi}(X_n - \hat{\mu}),$$

where $\hat{\phi}$ is our estimate of ϕ , and $\hat{\mu}$ is an estimate of μ .

Load and plot the data

"Estimate" ϕ using sample ACF and center the data

```
acf.ws <- acf(ws, lag.max = 40, plot = FALSE) $acf
phi.ws <- acf.ws[2] # this is an estimate for the coefficient of AR(1)
gen.whh.ar <- function(h, phi){</pre>
    p.2 <- phi^2; p.2h <- p.2^h
    -2 * h * p.2h + (1 - p.2h) * (1 + p.2) / (1 - p.2)
}
plot.ACFbartlettAR <- function(ts, n.lags = 40){</pre>
    n.ts <- length(ts)
    lags <- 1:n.lags</pre>
    acf.est <- acf(ts, lag.max = n.lags, plot = FALSE)$acf[-1]</pre>
    acf.model <- acf.est[1]^lags</pre>
    plot(lags, acf.est, type = "h", xlab = "h (lag)",
         ylab = "ACF", ylim = c(-1, 1),
         main = "Model & Sample ACFs & 95% Confidence Bounds", las = 1)
    points(lags, acf.est, pch = "*")
    points(lags, acf.model, col = "red")
    CI.AR <- 1.96 * sqrt(sapply(lags, function(h) gen.whh.ar(h, acf.est[1]))) / sqrt(n.ts)
    lines(lags, acf.est + CI.AR, col = "red", lty = 2)
    lines(lags, acf.est - CI.AR, col = "red", lty = 2)
    abline(h = 0, lty = "dashed")
    CI.IID <- rep(1.96 / sqrt(n), n.lags)</pre>
    lines(lags, -CI.IID, col = "gray", lty = 2)
    lines(lags, CI.IID, col = "gray", lty = 2)
    legend("bottomleft", legend = c("IID", "AR(1)"), lty = "dashed",
           col = c("gray", "red"), bty = "n")
}
par(mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.4, 0.6))
plot.ACFbartlettAR(ws)
```

Model & Sample ACFs & 95% Confidence Bounds 1.0 0.5 0.0F -0.5IID 10 20 0 30 40 h (lag) ## Alternatively, we can estimate phi using MLE $(phi_hat \leftarrow arima(ws, order = c(1, 0, 0)))$ ## ## Call: ## arima(x = ws, order = c(1, 0, 0)) ## ## Coefficients:

```
##
## Call:
## arima(x = ws, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.906 -1.1136
## s.e. 0.037 0.6035
##
## sigma^2 estimated as 0.4615: log likelihood = -132.99, aic = 271.99
ws.centered <- ws - xbar_ws</pre>
```

One-step-ahead forecast

```
ws.hat <- phi.ws * ws.centered[1:(n - 1)] + xbar_ws
## prediction errors
zt.ws <- ws.hat - ws[2:n]
## plot it
par(las = 1, mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.2, 0.6))
plot(ws, col = "blue", xlab = "Time", type = "b", ylab = expression(x[t]),</pre>
```



```
var(zt.ws) # sample prediction variance
```

[1] 0.4629379

```
var(ws) # sample variance
```

[1] 2.50251

Fill in missing value example

Simulate an AR(-0.9)

```
generate.AR1.ts <- function(phi = 0.0){
   ts <- rep(0, 100)</pre>
```


Let's remove some data to illustrate how to fill in missing values using forecasting algorithm

```
ar1.ts.subsampled <- ar1.ts
ar1.ts.subsampled[seq(2, 100, 2)] <- NA
par(las = 1, mgp = c(2, 1, 0), mar = c(3.5, 3.5, 1.4, 0.6))
plot(ar1.ts.subsampled, xlab = "Time", type = "b", ylab = expression(x[t]),
    main = expression(paste("Subsampled ", phi, " = -0.9 AR(1) ", x[1], ", ",x[3], ",.")),
    cex = 0.5, col = alpha("blue", 0.8), pch = 16)</pre>
```


Fill in "missing" values

$$\hat{X}_2 = \phi(X_1 + X_3)/(1 + \phi^2)$$

MSPE = $\frac{\sigma^2}{1 + \phi^2}$

Prediction Errors from Best Linear Predictor

Ireland wind data case study

20

Load and plot the data

0

-1.5

In this case study, we use the data at the Rosslare station from 1965 to 1969.

40

60

Time

80

100

Deseasonalization: Harmonic Regression

We use harmonic regression with 4 harmonics per year to model the seasonal components.

```
## create harmonic terms
Harmonic <- function(year, K){
   t <- outer(2 * pi * year, 1:K)
   return(cbind(apply(t, 2, cos), apply(t, 2, sin)))
}
harmonics <- Harmonic(year, 4)
## fit a harmonic regression
harm.model <- lm(rosslare ~ harmonics)
summary(harm.model)</pre>
```

```
##
## Call:
  lm(formula = rosslare ~ harmonics)
##
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
##
   -10.8538 -3.3813
                      -0.4892
                                 2.8395
                                         20.8290
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.584141
                            0.112377 103.083
                1.687468
                            0.158936
                                     10.617
## harmonics1
```

```
## harmonics2
               -0.435273
                           0.158936
                                     -2.739 0.00623 **
## harmonics3
               -0.060047
                           0.158936
                                     -0.378
                                             0.70562
## harmonics4
               -0.251396
                           0.158936
                                     -1.582
                                             0.11388
                0.412363
## harmonics5
                           0.158915
                                      2.595
                                             0.00954
## harmonics6
                0.003874
                           0.158915
                                      0.024
                                             0.98055
                0.107245
                           0.158915
                                      0.675
                                             0.49985
## harmonics7
## harmonics8
                0.217870
                           0.158915
                                      1.371
                                             0.17055
## ---
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 4.802 on 1817 degrees of freedom
## Multiple R-squared: 0.06771,
                                    Adjusted R-squared: 0.06361
## F-statistic: 16.5 on 8 and 1817 DF, p-value: < 2.2e-16
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), mgp = c(2, 1, 0), las = 1)
plot(year, rosslare, type = "1",
     xlab = "year", ylab = "Wind speed (knots)", col = "grey")
lines(year, fitted(harm.model), lwd = 2)
```


ACF Plots: Original and Deseasonalized Series

Let's plot the ACF and PACF plots to investigate the possible order for the ARMA model.

```
library(forecast)
```

Registered S3 method overwritten by 'quantmod':

```
## method from
## as.zoo.data.frame zoo

par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), mgp = c(2, 1, 0), las = 1,
    mfrow = c(2, 1))

Acf(rosslare, lag.max = 365, xlab = "", ylab = "Sample ACF", main = "")
Acf(resid(harm.model), lag.max = 365, xlab = "Lag in days",
    ylab = "Sample ACF", main = "")
```


Apply transformation to make wind speed more Gaussian like

Now look at a histogram of the values, along with the normal quantile-quantile plot.

Now take square roots of the original data and deseasonalizeagain!

```
## now we start again from the beginning with a sqrt transformation
sqrt.rosslare <- sqrt(rosslare)</pre>
## refit the periodicity, without the intercept term
harm.model <- lm(sqrt.rosslare ~ harmonics[, 1:4] - 1)</pre>
summary(harm.model)
##
## Call:
## lm(formula = sqrt.rosslare ~ harmonics[, 1:4] - 1)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                   Max
##
   1.146 2.848 3.316 3.799
                                5.656
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## harmonics[, 1:4]1 0.2391111
                                 0.1126203
                                              2.123
                                                      0.0339 *
## harmonics[, 1:4]2 -0.0606520
                                 0.1126203
                                             -0.539
                                                      0.5903
## harmonics[, 1:4]3 -0.0001588
                                 0.1126203
                                             -0.001
                                                      0.9989
## harmonics[, 1:4]4 -0.0363877
                                 0.1126202
                                             -0.323
                                                      0.7467
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```


Checking Normality ACF/PACF

##

Model identification, fitting, and selection

Let's first fit an AR(1) Fit an AR(1) model

```
ar1.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 0))</pre>
```

Summarize the fitted model

```
ar1.model
```

```
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(1, 0, 0))
##
## Coefficients:
##
            ar1
                 intercept
##
         0.4060
                    3.3257
        0.0214
                    0.0254
##
  s.e.
## sigma^2 estimated as 0.4148: log likelihood = -1787.72, aic = 3581.43
```

Sample and fitted ACF

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
Acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = c(ar1.model$coef[1]), lag.max = 32)[-1]
points(1:32, acf_true, col = "red")</pre>
```


Extract residuals

Sample ACF and PACF of the residuals

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.4, 1, 0), mfrow = c(1, 2))
Acf(ar1.resids, ylab = "Sample ACF", xlab = "lag (day)", main = "")
Acf(ar1.resids, ylab = "Sample PACF", type = "partial", xlab = "lag (day)")
```



```
## Carry out the Box-Pierce test
Box.test(ar1.resids, lag = 32, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: ar1.resids
## X-squared = 53.142, df = 32, p-value = 0.01085
```

```
(ar2.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 0)))</pre>
```

Fit an AR(2) model

```
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(2, 0, 0))
##
  Coefficients:
##
                          intercept
            ar1
                     ar2
##
         0.4425
                 -0.0905
                             3.3254
## s.e. 0.0233
                  0.0233
                             0.0232
## sigma^2 estimated as 0.4114: log likelihood = -1780.23, aic = 3568.46
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = c(ar2.model$coef[1:2]), lag.max = 32)[-1]
points(1:32, acf_true, col = "red")</pre>
```



```
## Sample ACF and PACF of the residuals
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.4, 1, 0), mfrow = c(1, 2))
Acf(ar2.resids, ylab = "Sample ACF", xlab = "lag (day)", main = "")
pacf(ar2.resids, ylab = "Sample PACF", xlab = "lag (day)")
```

```
0.06
  0.06
                                                      0.04
  0.04
                                                     0.02
20.02
00.0<u>6</u>
00.00
00.00
20.00
                                                   Sample PACF
0.00
0.02
 -0.04
                                                    -0.04
 -0.06
                                                    -0.06
                                20
                                                                   5
                5
                          15
                                      25
          0
                                            30
                                                                              15
                                                                                   20
                                                                                         25
                                                                                               30
                     10
                                                              0
                                                                        10
                        lag (day)
                                                                            lag (day)
## Carry out the Box-Pierce test
Box.test(ar2.resids, lag = 32, type = "Ljung-Box")
##
##
    Box-Ljung test
##
## data: ar2.resids
## X-squared = 36.548, df = 32, p-value = 0.2656
```

```
(arma11.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 1)))</pre>
```

Fit an ARMA(1,1) model

```
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(1, 0, 1))
##
##
  Coefficients:
##
                         intercept
            ar1
                    ma1
##
         0.1978
                0.2502
                            3.3254
## s.e. 0.0556 0.0553
                            0.0234
## sigma^2 estimated as 0.4108: log likelihood = -1778.82, aic = 3565.64
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = arma11.model$coef[1], ma = arma11.model$coef[2], lag.max = 32)[-1]
points(1:32, acf_true, col = "red")</pre>
```



```
(arma21.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 1)))</pre>
```

Fit an ARMA(2,1) model

```
##
## Call:
## arima(x = sqrt.rosslare.ds, order = c(2, 0, 1))
##
##
  Coefficients:
                                 intercept
##
            ar1
                    ar2
                            ma1
##
         0.0703 0.0587
                         0.3768
                                    3.3253
## s.e. 0.1691 0.0772 0.1663
                                    0.0237
## sigma^2 estimated as 0.4107: log likelihood = -1778.56, aic = 3567.11
```

```
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.2, 1, 0))
Acf(sqrt.rosslare.ds, main = "")
acf_true <- ARMAacf(ar = arma21.model$coef[1:2], ma = arma11.model$coef[3], lag.max = 32)[-1]
points(1:32, acf_true, col = "red")</pre>
```



```
## Sample ACF and PACF of the residuals
par(bty = "L", mar = c(3.6, 3.6, 0.5, 0.6), las = 1, mgp = c(2.4, 1, 0), mfrow = c(1, 2))
Acf(arma21.resids, ylab = "Sample ACF", xlab = "lag (day)", main = "")
pacf(arma21.resids, ylab = "Sample PACF", xlab = "lag (day)")
```



```
## Carry out the Box-Pierce test
Box.test(arma21.resids, lag = 32, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: arma21.resids
## X-squared = 32.171, df = 32, p-value = 0.4583
```

Use AIC to conduct model selection

```
AIC.to.AICC <- function (aic, n, npars) {
   aic - 2 * npars * ( 1 - n/(n-1-npars))
}
# calculate the length of the time series
n <- length(sqrt.rosslare.ds)

# Here are the AIC values
ar1.model$aic</pre>
```

[1] 3581.432

```
## [1] 3568.46
arma11.model$aic
## [1] 3565.642
arma21.model$aic
## [1] 3567.112
# convert the AIC values to AICC values.
AIC.to.AICC(ar1.model$aic, n, 2)
## [1] 3581.438
AIC.to.AICC(ar2.model$aic, n, 3)
## [1] 3568.473
AIC.to.AICC(arma11.model$aic, n, 3)
## [1] 3565.655
AIC.to.AICC(arma21.model$aic, n, 4)
## [1] 3567.134
Based on the AIC (and AICc as well), we choose the ARMA(1,1) model.
Forecasting
## How many days will we predict into the future?
h <- 10
## Predict 'h' days into the future using the ARMA(1,1) model.
sqrt.rosslare.forecast <- predict(arma11.model, h)</pre>
sqrt.rosslare.forecast$pred; sqrt.rosslare.forecast$se
## Time Series:
## Start = 1827
## End = 1836
## Frequency = 1
## [1] 3.997161 3.458299 3.351724 3.330646 3.326477 3.325652 3.325489 3.325457
## [9] 3.325451 3.325449
```

ar2.model\$aic

```
## Time Series:
## Start = 1827
## End = 1836
## Frequency = 1
## [1] 0.6409326 0.7022959 0.7045876 0.7046771 0.7046806 0.7046807 0.7046807
## [8] 0.7046807 0.7046807 0.7046807
## define the forecast variable
forecast <- sqrt.rosslare.forecast$pred
## The plus or minus value is the z critical value
## times the standard error for the forecast
me <- qnorm(0.975) * sqrt.rosslare.forecast$se
lower <- forecast - me
upper <- forecast + me
## Define the prediction time
fyear <- 1970 + (0:(h - 1)) / 365.25</pre>
```

Visualizing the Forecasts

```
par(bty = "L", mar = c(3.6, 3.6, 0.75, 0.6), las = 1, mgp = c(2.4, 1, 0),
   mfrow = c(3, 1)
## Show the data for 1969 onwards
plot(year[year > 1969], sqrt.rosslare.ds[year > 1969], type = "1",
     xlim = c(1969, max(fyear)), col = "grey", xlab = "year", ylab = "")
## Add the BLUP, along with the prediction limits
lines(fyear, forecast, lwd = 2)
lines(fyear, lower, lty = 2, lwd = 2)
lines(fyear, upper, lty = 2, lwd = 2)
## add a horizontal line at the mean
abline(h = mean(sqrt.rosslare.ds), lty = 3)
title("Forecasts for the deseasonalized square root wind speed")
## now add the seasonality estimate for the first 10 days in a year.
adj.forecast <- fitted(harm.model)[1:h] + sqrt.rosslare.forecast$pred</pre>
## adjust the lower and upper values of the interval
lower <- adj.forecast - me</pre>
upper <- adj.forecast + me
## Show the data for 1969 onwards
plot(year[year > 1969], sqrt.rosslare[year > 1969], type = "1",
     xlim = c(1969, max(fyear)), col = "grey", xlab = "year", ylab = "")
title("Forecasts for the square root wind speed")
## Add the BLUP, along with the prediction limits
lines(fyear, adj.forecast, lwd = 2)
lines(fyear, lower, lty = 2, lwd = 2)
lines(fyear, upper, lty =2 , lwd = 2)
## We square everything (forecast, lower limit, and upper limit)
## to get the forecast on the original wind speed (knots) scale.
## Show the data for 1969 onwards
plot(year[year > 1969], rosslare[year > 1969], type = "1",
```

```
xlim = c(1969, max(fyear)), col = "grey", xlab = "year", ylab = "")
title("Forecasts for the wind speed")

## Add the BLUP, along with the prediction limits
lines(fyear, adj.forecast^2, lwd = 2)
lines(fyear, lower^2, lty = 2, lwd = 2)
lines(fyear, upper^2, lty = 2, lwd = 2)
```


1969.6

1969.8

1970.0

1969.4

1969.0

1969.2