1

Tres teoremas fuertes

TEOREMA 1.1 Si f es continua en [a,b] y f(a) < 0 < f(b) entonces existe algún x en [a,b] tal que f(x) = 0.

Geométricamente, esto significa que la gráfica de una función continua que empieza por debajo del eje horizontal y termina por encima del mismo debe cruzar a este eje en algún punto.

TEOREMA 1.2 Si f es continua en [a,b], entonces f está acotada superiormente en [a,b], es decir, existe algún número N tal que $f(x) \leq N$ para todo x en [a,b].

Geométricamente, este teorema significa que la gráfica f queda por debajo de alguna línea paralela al eje horizontal.

TEOREMA 1.3 Si f es continua en [a,b] entonces existe algún número y en [a,b] tal que $f(y) \le f(x)$ para todo x en [a,b].

Se dice que una función continua en un intervalo cerrado alcanza su valor máximo en dicho intervalo.

TEOREMA 1.4 Si f es continua en [a,b] y f(a) < c < f(b), entonces existe algún x en [a,b] tal que f(x) = c.

Demostración.- Sea g = f - c. Entonces g es continua, g $g(a) + c < c < g(b) + c \implies g(a) < 0 < g(b)$. Por el teorema 1, existe algún g en g el teorema 2. Pero esto significa que g el teorema 2.

TEOREMA 1.5 Si f es continua en [a,b] y f(a) > c > f(b), entonces existe algún x en [a,b] tal que f(x) = c.

Demostración.- La función -f es continua en [a,b] y-f(a) < -c < -f(b). Por el teorema 4 existe algún x en [a,b] tal que -f(x) = -c, lo que significa que f(x) = c.

Si una función continua en un intervalo toma dos valores, entonces toma todos los valores comprendidos entre ellos; esta ligera generalización del teorema 1 recibe a menudo el nombre de **teorema de los valores**

intermedios.

TEOREMA 1.6 Si f es continua en [a,b], entonces f es acotada inferiormente en [a,b], es decir, existe algún número N tal que $f(x) \ge N$ para todo x en [a,b].

Demostración.- La función -f es continua en [a,b], así por el teorema 2 existe un número M tal que $-f(x) \leq M$ para todo x en [a,b]. Pero esto significa que $f(x) \geq -M$ para todo x en [a,b], así podemos poner N=-M.

Los teoremas 2 y 6 juntos muestran que una función continua f en [a,b] son acotados en [a,b], es decir, existe un número N tal que $|f(x)| \le N$ para todo x en [a,b]. En efecto, puesto que el teorema 2 asegura la existencia de un número N_1 tal que $f(x) \le N$, para todo x de [a,b] y el teorema 6 asegura la existencia de un número N_2 tal que $f(x) \ge N$, para todo x en [a,b], podemos tomar $N = \max(|N_1|,|N_2|)$.

TEOREMA 1.7 Si f es continua en [a,b], entonces existe algún y en [a,b] tal que $f(y) \leq f(x)$ para todo x en [a,b].

Demostración.- La función -f es continua en [a,b]; por el teorema 3 existe algún y en [a,b] tal que $-f(y) \ge -f(x)$ para todo x en [a,b], lo que significa que $f(y) \le f(x)$ para todo x en [a,b].

TEOREMA 1.8 Todo número positivo posee una raíz cuadrada. En otras palabras, si $\alpha > 0$, entonces existe algún número x tal que $x^2 = \alpha$.

Demostración.- Consideremos la función $f(x) = x^2$, el cual es ciertamente continuo. Notemos que la afirmación del teorema puede ser expresado en términos de f: "el número α posee una raíz cuadrada" significa que f toma el valor alpha. La demostración de este hecho acerca de f será una consecuencia fácil del teorema f.

Existe, evidentemente, un número b > 0 tal que $f(b) > \alpha$; en efecto, si $\alpha > 1$ podemos tomar $b = \alpha$, mientras que si $\alpha < 1$ podemos tomar b = 1. Puesto que $f(0) < \alpha < f(b)$, el teorema 4 aplicado a [0,b] implica que para algún x de [0,b], tenemos $f(x) = \alpha$, es decir, $x^2 = \alpha$.

Precisamente el mismo raciocinio puede aplicarse para demostrar que todo número positivo tiene una raíz n-ésima, cualquiera que sea el número n. Si n es impar, se puede decir mas: todo número tiene una raíz n-ésima. Para demostrarlo basta observar que si el número positivo α tiene la raíz n-ésima x, es decir, si $x^n = \alpha$, entonces $(-x)^n = -\alpha$ (puesto que n es impar), de modo que α tiene una raíz n-ésima $-\alpha$. Afirmar que, para un n impar, cualquier número α tiene una raíz n-ésima equivale a afirmar que la ecuación

$$x^n - \alpha = 0$$

tiene una raíz si n es impar. El resultado expresado de este modo es susceptible de gran generalización.

TEOREMA 1.9 Si n es impar, entonces cualquier ecuación

$$x^n + a_{n-1}x^{n-1} + \ldots + a_0 = 0$$

posee raíz.

Demostración.- Tendremos que considerar, evidentemente, la función

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \ldots + a_0$$

habría que demostrar que f es unas veces positiva y otras veces negativa. La idea intuitiva es que para un |x| grande, la función se parece mucho más a $g(x) = x^n$ y puesto que n es impar, ésta función es positiva para x grandes positivos y negativos para x grandes negativos. Un poco de cálculo algebraico es todo lo que hace falta para dar formar a esta idea intuitiva.

Para analizar debidamente la función f conviene escribir

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 = x^n \left(1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n}\right)$$

obsérvese que

$$\left| \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_0}{x^n} \right| \le \frac{|a_{n-1}|}{|x|} + \ldots + \frac{|a_0|}{|x^n|}$$

En consecuencia, si elegimos un x que satisfaga

$$|x| > 1, 2n|a_{n-1}|, \dots, 2n|a_0|$$
 (*)

entonces $|x^k| > |x| y$

$$\frac{|a_{n-k}|}{x^k} < \frac{a_{n-k}}{|x|} < \frac{|a_{n-k}|}{2n|a_{n-k}} = \frac{1}{2n}$$

de modo que

$$\left| \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_0}{x^n} \right| \le \frac{1}{2n} + \ldots + \frac{1}{2n} = \frac{1}{2}$$

expresado de otra forma,

$$-\frac{1}{2} \le \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x_n} \le \frac{1}{2},$$

lo cual implica que

$$\frac{1}{2} \le 1 + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x_n} \ldots$$

Por lo tanto, si elegimos un $x_1 > 0$ que satisfaga (*), entonces

$$\frac{x_1^n}{2} \le x_1^n \left(1 + \frac{a_{n-1}}{x_1} + \dots + \frac{a_0}{x_n^n} \right) = f(x_1)$$

así que $f(x_1) > 0$. Por otro lado, si $x_2 < 0$ satisface (*), entonces $x_2^n < 0$ y

$$\frac{x_2^n}{2} \ge x_2^n \left(1 + \frac{a_{n-1}}{x_2} + \ldots + \frac{a_0}{x_2^n} \right) = f(x_2),$$

 $asi\ f(x_2) < 0.$

Ahora aplicando el teorema 1 para el intervalo $[x_2, x_1]$ llegamos a la conclusión de que existe un x en $[x_2, x_1]$ tal que f(x) = 0.

TEOREMA 1.10 Si n es par y $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$, entonces existe un número y tal que $f(y) \le f(x)$ para todo x.

Demostración.- Lo mismo que en el teorema 9, si

$$M = \max(1, 2n|a_{n-1}|, \dots, 2n|a_0|),$$

entonces para todo x con $|x| \ge M$, tenemos

$$\frac{1}{2} \le 1 + \frac{a_{n-1}}{r} + \ldots + \frac{a_0}{r^n}$$

Al ser n par, $x^n \geq 0$ para todo x, de modo que

$$\frac{x^n}{2} \le x^n \left(1 + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right) = f(x),$$

siempre que $|x| \ge M$. Consideremos ahora el número f(0). Sea b > 0 un número tal que $b^n \ge 2f(0)$ y también b > M. Entonces si $x \ge b$, tenemos

$$f(x) \ge \frac{x^n}{2} \ge \frac{b^n}{2} \ge f(0).$$

Análogamente, si $x \le -b$, entonces

$$f(x) \ge \ge = \ge f(0)$$
.

Resumiendo ahora el teorema 7 a la función f en el intervalo [-b,b]. Se deduce que existe un número y tal que

(1)
$$si - b \le x \le b$$
, entonce $f(y) \le f(x)$.

En particular, $f(y) \leq f(0)$. De este modo

(2)
$$si \ x \le -b \ o \ x \ge b, \ entonces \ f(x) \ge f(0) \ge f(y).$$

Cambiando (1) y (2) vemos que $f(y) \le f(x)$ para todo x.

TEOREMA 1.11 Consideremos la ecuación

(*)
$$x^n + a_{n-1}x^{n-1} + \ldots + a_0 = c$$
,

y supongamos que n es par. Entonces existe un número m tal que (*) posee una solución para $c \ge m$ y no posee ninguna para c < m.

Demostración.- Sea $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ Según el teorema 10, existe un número y tal que $f(y) \le f(x)$ para todo x.

Sea m = f(y). Si c < m entonces la ecuación (*) no tiene, evidentemente, ninguna solución, puesto que el primer miembro tiene un valor $\geq m$. Si c = m entonces (*) tiene y como solución. Finalmente, supongamos c > m. Sea b un número tal que b > y, f(b) > c. Entonces f(y) = m < c < f(b). En consecuencia, según el teorema 4, existe algún número x en [y, b] tal que f(x) = c, con lo que x es una solución de (*).

1.1. Problemas

- 1. Para cada una de las siguientes funciones, decidir cuáles está acotadas superiormente o inferiormente en el intervalo indicado, y cuáles de ellas alcanzan sus valores máximo y mínimo.
 - (i) $f(x) = x^2$ en (-1, 1).

Respuesta.- Se encuentra acotada superior como inferiormente. El mínimo es 0 e no tiene máximo.

(ii)
$$f(x) = x^3$$
 en $(-1, 1)$.

Respuesta.- Se encuentra acotada superior como inferiormente. No tiene máximo ni mínimo

(iii)
$$f(x) = x^2 \text{ en } \mathbf{R}$$
.

Respuesta.- No está acotado superior pero si inferiormente. Su mínimo es 0 y no tiene máximo.

1.1. PROBLEMAS 5

(iv)
$$f(x) = x^2 \text{ en } [0, \infty).$$

Respuesta.- Está acotada inferiormente pero no así superiormente. Su mínimo es 0 y no tiene máximo.

(v)
$$f(x) = \begin{cases} x^2, & x \le a \\ a+2, & x \ge a \end{cases}$$
 en $(-a-1, a+1)$

Respuesta.- Es acotado superior e inferiormente. Se entiende que a>-1 (de modo que -a-1< a+1). Si $-1< a\le 1/2$, entonces a<-a-1, así f(x)=a+2 para todo x en (-a-1,a+1), por lo tanto a+2 es el máximo y mínimo valor. Si $-1/2< a\le 0$, entonces f tiene el mínimo valor en a^2 , y si $a\ge 0$, entonces f tiene un mínimo valor en 0. Ya que $a+2>(a+1)^2$ solo para $[-1-\sqrt{5}]/2< a<[1+\sqrt{5}]/2$, cuando $a\ge -1/2$ ésta función f tiene un máximo valor solo para $a\le [1+\sqrt{5}]/2$ (el máximo valor será a+2).

(vi)
$$f(x) = \begin{cases} x^2, & x < a \\ a+2, & x \ge a \end{cases}$$
 en $[-a-1, a+1]$.

Respuesta.- Está acotado superior e inferiormente. Como en la parte (v), se asume que a>-1. Si $a\leq -1/2$ entonces f tiene el valor mínimo y un máximo 3/2. Si $a\geq 0$, entonces f tiene un valor mínimo en 0, y un valor máximo $max(a^2,a+2)$. Si -1/2 < a < 0, entonces f tiene un máximo valor 3/2 y no así con un valor mínimo.

(vii)
$$f(x) = \begin{cases} 0, & x \text{ irracional} \\ 1/q, & x = p/q \text{ fracción irreducible} \end{cases}$$
 en $[0, 1]$.

Respuesta.- Acotada superior e inferiormente. El mínimo es 0 y el máximo es 1.

(viii)
$$f(x) = \begin{cases} 1, & x \text{ irracional} \\ 1/q, & x = p/q \text{ fracción irreducible} \end{cases}$$
 en $[0, 1]$.

Respuesta.- Acotada superior e inferiormente. El máximo es 1 y no existe un mínimo.

(ix)
$$f(x) = \begin{cases} 1, & x \text{ irracional} \\ 0, & x = p/q \text{ fracción irreducible} \end{cases}$$
 en $[0, 1]$.

Respuesta.- Acotada superior e inferiormente. El mínimo es -1 y el máximo es 1.

(x)
$$f(x) = \begin{cases} x, & x \text{ racional} \\ 0, & x \text{ irracional} \end{cases}$$
 en $[0, a]$.

Respuesta.- Acotada superior e inferiormente. El mínimo es 0 y el máximo es a.

(xi)
$$f(x) = \sin^2(\cos x + \sqrt{1 - a^2})$$
 en $[0, a^3]$.

Respuesta.- Ya que es continua f tiene máximo como también mínimo.

(xii)
$$f(x) = [x]$$
 en $[0, a]$.

Respuesta.- Acotada superior e inferiormente. El mínimo es 0 y el máximo es a.

- **2.** Para cada una de las siguientes funcione polinómicas f, hallar un entero n tal que f(x) = 0 para algún x entre n y n + 1.
 - (i) $f(x) = x^3 x + 3$.

Respuesta. n = -2, ya que $f(-2) = (-2)^3 + 2 + 3 = -3 < 0 < 3 = (-1)^3 - (-1) + 3$

(ii) $f(x) = x^5 + 5x^4 + 2x + 1$.

Respuesta.- n = -5 ya que f(-5) = -11 < 0 < f(-4).

(iii) $f(x) = x^5 + x + 1$.

Respuesta.- n = -1 ya que, f(-1) = -1 < 0f(0).

(iv) $4x^2 - 4x + 1$

Respuesta.- No existe un entero n tal que f(x) = 0.

- **3.** Demostrar que existe algún número x tal que
 - (i) $x^{179} + \frac{163}{1 + x^2 + \sin^2 x} = 119.$

Respuesta.- Si x^{179} y $\frac{163}{1+x^2+\sin^2 x}$, son continuas en $\mathbb R$ entonces $f(x)=x^{179}+\frac{163}{1+x^2+\sin^2 x}$ es continua en $\mathbb R$ y f(1)>0, mientras que f(-2)<0, de modo que f(x)=0 para algún x en (-2,1).

(ii) $\sin x = x - 1$.

Respuesta.- Sea $f(x) = \operatorname{sen} x - x + 1$ entonces f es continua en \mathbb{R} y f(0) > 0, mientras que f(2) < 0, así por el teoremas 4 se tiene que f(x) = c para algún x en (0, 2).

- 4. Este problema es una continuación del problema 3-7
 - (a) Si n-k es par, $y \ge 0$, hallar una función polinómica de grado n que tenga exactamente k raíces.

Respuesta.- Sea l = (n - k)/2 de donde

$$f(x) = (x^{2(n-k)/2} + 1)(x-1)(x-2)\cdots(x-k).$$

1.1. PROBLEMAS

(b) Una raíz a de una función polinómica f se dice que tiene multiplicidad m si $f(x) = (x-a)^m g(x)$, donde g es una función polinómica que no tiene la raíz a. Sea f una función polinómica de grado n. Supóngase que f tiene k raíces, contando multiplicidades, es decir supóngase que k es la suma de las multiplicidades de todas las raíces. Demostrar que n-k es par.

Demostración.- Por la condición dada, f es una función polinómica real de grado n tal que f tiene exactamente k raíces en \mathbb{R} contando multiplicidades. Probaremos que n-k es par. Para ello consideraremos los siguientes casos.

Caso 1.- Si n = k es trivial decir que n - k = 0 de donde se sabe que es par.

Caso 2.- Si n > k, sea x_1, x_2, \ldots, m raíces reales de f con multiplicidades k_1, k_2, \ldots, k_m respectivamente y por lo tanto,

$$k_1 + k_2 + \ldots + k_m = k.$$

Entonces f puede ser escrito como,

$$f(x) = (x - x_1)^{k_1} (x - x_2)^{k_2} \cdots (x - x_m)^{k_m} p_1(x) p_2(x) \cdots p_i(x)$$

donde $p_i(x)$ son polinomios irreducibles en $\mathbb R$ tal que el grado de p_i suma n-k. Ahora recordemos que todo polinomio irreducible en $\mathbb R$ debe tener de grado un entero par. Esto se debe a que cada polinomio de orden impar tiene al menos una raíz real, esto por el teorema 9, por lo tanto $p_i(x)$ no puede ser irreducible en $\mathbb R$. Ahora observe que sin pérdida de generalidad hemos asumido que hay l polinomios irreducibles tales que la suma de sus grados n-k. Dado que cada uno de los l polinomios tienen grado par, entonces la suma de sus grados debe ser un entero par. Se sigue que n-k es un entero par.

5. Supóngase que f es continua en [a,b] y que f(x) es siempre racional. ¿Qué puede decirse acerca de f?.

Respuesta.- f es constante, ya que si f tomara dos valores distintos, entonces f tomaría todos los valores intermedios, incluyendo valores irracionales, es decir, si no fuera constante, entonces existe dos números racionales r_1 y r_2 tal que para algún c,d se tiene $a \le c < d \le f(c) = r_1$ y $f(d) = r_2$. Por el teorema 7.4 en el intervalo [c,d], f toma todos los valores entre r_1 y r_2 , donde se concluye que existe algún número irracional, contradiciendo el hecho de que f solo toma valores racionales.

6. Supóngase que f es una función continua en [-1,1] tal que $x^2 + f^2(x) = 1$ para todo x. (Esto significa que (x, f(x)) siempre está sobre el circulo unidad.) Demostrar que o bien es $f(x) = \sqrt{1 - x^2}$ para todo x, o bien $f(x) = -\sqrt{1 - x^2}$ para todo x.

Demostración.- De lo contrario, f toma valores tanto positivos como negativos, por lo que f tendría el valor 0 en (-1,1), lo cual es imposible, ya que $\sqrt{1-x^2} \neq 0$ para x en (-1,1).

7. ¿Cuántas funciones continuas f existen satisfaciendo $f^2(x)=x^2$ para todo x?.

Respuesta.- Existen 4 funciones continuas que satisfacen la condición dada, es decir,

$$f(x) = x$$

$$f(x) = -x$$

$$f(x) = |x|$$

$$f(x) = -|x|$$

8. Supóngase que f y g son continuas, que $f^2 = g^2$, y que $f(x) \neq 0$ para todo x. Demostrar que o bien f(x) = g(x) para todo x, o bien f(x) = -g(x) para todo x.

Demostración.- Si no fuera así, entonces f(x)=g(x) para algún x y f(y)=-g(y) para algún y. Pero ya que $f(x)\neq 0$ \forall x, entonces será o bien siempre positiva o bien siempre negativa. Así pues, g(x) y g(y) tendría distinto signo. Esto implicaría que g(z)=0 para algún z, lo cual es imposible, ya que $0\neq f(z)=\pm g(z)$.

9. (a) Supóngase que f es continuo, que f(x) = 0 solo para x = a, y que f(x) > 0 tanto para algún x > a, así como para algún x < a. Que puede decirse acerca de f(x) para todo $x \ne a$?.

Respuesta.- Por hipótesis, existe algún $x_1 \in (a, \infty)$ tal que $f(x_1) > 0$. Ahora si existe algún $y_i \in (a, \infty)$ con $f(y_1) < 0$, entonces debe existir $z_1 \in (a, \infty)$ entre x_1 y y_1 tal que $f(z_1) = 0$. Pero esto contradice que f es cero solo en x = a. Por lo tanto, no existe algún $y_1 \in (a, \infty)$ con $f(y_1) < 0$.

Esto es, f(x) > 0 para todo $x \in (a, \infty)$. Similarmente, f(x) > 0 para todo $x \in (-\infty, a)$. Por lo tanto podemos decir que f(x) > 0 para todo $x \neq a$.

(b)