Tanya Sethil Homework 1 1. A die is tossed n times. Find the probability of Events where: (i) Atleast one of the outcomes a equal to 6 = 1- none of the outcomes are equal to 6. An outcome equal to 6 is observed exactly once. None of the times Atleast once 2 All The brue-

(A)	The corresponding CDF, $f(x)=Jx$ is not uniformly continuous as for a function to be uniformly continuous, all its devivate, need to be bounded. But at $x=0$, $f'(x) = 1/2$ $f(x) = \infty$
	For the statement to be satisfied, the polyment have density everywhere on the bounded segment.

Q4 '2	
	We assume that the marbles are distinct.
Ф	numerator:
	No um is empty => There is a marble in
	= n/ vays of placing the
ð	Denominator = n° ways to place the moubles in n ums
	$P(no un is empty) = \frac{n!}{n!}$

Q 5	For $f(x)$ to be a distribution function, it has to fulfill the following properties:
(J	Monotonicity
	$2f x_1 \leq x_2 \Rightarrow H(x_1) \leq H(x_2)$
	Assume $x_1 \leq x_2$ $(A) (x_1) (A) (x_2) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A$
	Let $y_1 = Q(x_1)$ by $y_2 = G(x_2)$
	$\Rightarrow y, \leq y_{2}$ $\Rightarrow f(y_{1}) \leq f(y_{2}) \xrightarrow{\text{(a dist'' function)}}$
	$\Rightarrow f(g(x_1)) \in f(g(x_2))$
	> M(x,) < H(xz) [] No conditions required.

2)
$$\lim_{x\to-\infty} H(x) = 0$$
 and $\lim_{x\to+\infty} H(x) = 1$

$$\lim_{x\to-\infty} K(x) = \lim_{x\to-\infty} F(G(x))$$

$$\lim_{x\to-\infty} K(x) = \lim_{x\to-\infty} F(G(x))$$

$$\lim_{x\to-\infty} F(G(x))$$

$$\lim_{x\to-\infty$$

For lim + + (x) =) F(1) should be continuous F(1) = 1Left continuity: lim H (x) = H (xo) lin F(G(x F(lim(q(x)) F should be continous at every

