0.0.1 電磁場のハミルトニアン

前節での議論により, 系のハミルトニアンは,

$$\hat{H}_{\text{sys}} = \int d^3k \sum_{\sigma=1}^2 \frac{\hbar \omega_{\mathbf{k}}}{2} \left(\hat{a}_{\mathbf{k}\sigma}^{\dagger} \hat{a}_{\mathbf{k}\sigma} + \hat{a}_{\mathbf{k}\sigma} \hat{a}_{\mathbf{k}\sigma}^{\dagger} \right)$$
(0.0.1)

と書けるのであった. 以下では、簡単のために、1方向成分・シングルモードの波を考える.

$$\hat{H}_{\text{sys}} = \frac{\hbar\omega}{2} \left(\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger} \right) \tag{0.0.2}$$

$$=\hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) \tag{0.0.3}$$

と書ける. 屈折率がn の物質中では 1 ,

$$\hat{H}_{n,\text{sys}} = \frac{\hbar\omega}{n} \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \tag{0.0.4}$$

と書ける

0.0.2 ビームスプリッタ行列

2 入力 2 出力のビームスプリッタを考える. E_1 と E_2 の電場が入射して, E_1' と E_2' が出力されるとする. 古典的に考えると,

$$\begin{pmatrix} E_1' \\ E_2' \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix} \tag{0.0.5}$$

と書ける.このまま電場演算子を中心に議論を進めることはいささか冗長である.なぜならば, \hat{a}_1 と \hat{a}_1^{\dagger} は複素共役の関係にあるのだから,片方が定まれば自然ともう片方が定まるからだ.よって**式** (0.0.5) を量子化して,消滅演算子 \hat{a}_1 , \hat{a}_2 を用いて表せば,

$$\begin{pmatrix} \hat{a}_1' \\ \hat{a}_2' \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} \tag{0.0.6}$$

と書ける. 2つの消滅演算子の交換関係は、

$$\left[\hat{a}_i, \hat{a}_j^{\dagger}\right] = \delta_j^i \tag{0.0.7}$$

$$[\hat{a}_i, \hat{a}_j] = 0 \tag{0.0.8}$$

である. B はビームスプリッタ行列という. 光子数が保存することから,

$$\hat{a}_{1}^{\dagger}\hat{a}_{1} + \hat{a}_{2}^{\dagger}\hat{a}_{2} = \hat{a}_{1}^{\prime\dagger}\hat{a}_{1}^{\prime} + \hat{a}_{2}^{\prime\dagger}\hat{a}_{2}^{\prime} \tag{0.0.9}$$

$$= (B_{11}\hat{a}_1 + B_{12}\hat{a}_2)^{\dagger} (B_{11}\hat{a}_1 + B_{12}\hat{a}_2) + (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)^{\dagger} (B_{21}\hat{a}_1 + B_{22}\hat{a}_2)$$

$$(0.0.10)$$

$$= \left(B_{11}^* \hat{a}_1^{\dagger} + B_{12}^* \hat{a}_2^{\dagger}\right) \left(B_{11} \hat{a}_1 + B_{12} \hat{a}_2\right) + \left(B_{21}^* \hat{a}_1^{\dagger} + B_{22}^* \hat{a}_2^{\dagger}\right) \left(B_{21} \hat{a}_1 + B_{22} \hat{a}_2\right) \tag{0.0.11}$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{12}^*B_{11} + B_{21}^*B_{21})\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.12)$$

$$= (|B_{11}|^2 + |B_{21}|^2)\hat{a}_1^{\dagger}\hat{a}_1 + (|B_{12}|^2 + |B_{22}|^2)\hat{a}_2^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})\hat{a}_1^{\dagger}\hat{a}_2 + (B_{11}^*B_{12} + B_{21}^*B_{22})^*\hat{a}_2^{\dagger}\hat{a}_1$$

$$(0.0.13)$$

となり,

$$\begin{cases}
|B_{11}|^2 + |B_{21}|^2 = |B_{12}|^2 + |B_{22}|^2 = 1 \\
B_{11}^* B_{12} + B_{21}^* B_{22} = 0
\end{cases}$$
(0.0.14)

 $^{^1}$ 謎である.屈折率により波動は変化しないはずである.

$$\Leftrightarrow B^{\dagger}B = \begin{pmatrix} B_{11}^* & B_{21}^* \\ B_{12}^* & B_{22}^* \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (0.0.15)

となればよい. つまり, ビームスプリッタ行列 B がユニタリ行列であれば良い. ??での議論によりビームスプリッタ 演算子は,

$$B = e^{i\Lambda/2} \begin{pmatrix} e^{i\Psi/2} & 0 \\ 0 & e^{-i\Psi/2} \end{pmatrix} \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} e^{i\Phi/2} & 0 \\ 0 & e^{-i\Phi/2} \end{pmatrix}$$
(0.0.16)

と書ける. ところが,

$$\begin{pmatrix} e^{i\Psi/2} & 0\\ 0 & e^{-i\Psi/2} \end{pmatrix} \tag{0.0.17}$$

は2つの入力電場 E_1 , E_2 に位相差をかけること,

$$\begin{pmatrix} e^{i\Phi/2} & 0\\ 0 & e^{-i\Phi/2} \end{pmatrix} \tag{0.0.18}$$

は2つの出力電場 E'_1 , E'_2 に位相差をかけること,

$$e^{i\Lambda/2}$$
 (0.0.19)

は2つの出力電場場 E_1' , E_2' に共通するグローバル位相を書けることに対応するから、実験のセットアップとして、

$$\Lambda = \Psi = \Phi = 0 \tag{0.0.20}$$

とすることができる. また, 透過率Tと反射率Rを,

$$\sqrt{T} \coloneqq \cos(\Theta/2) \tag{0.0.21}$$

$$\sqrt{R} := -\sin(\Theta/2) \tag{0.0.22}$$

と定義すれば、ビームスプリッタ行列 Bは、

$$B = \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix}$$
 (0.0.23)

$$= \begin{pmatrix} \sqrt{T} & -\sqrt{R} \\ \sqrt{R} & \sqrt{T} \end{pmatrix} \tag{0.0.24}$$

と書ける.

$$T + R = 1 (0.0.25)$$

が成立することに注意する.

0.0.3 ビームスプリッタハミルトニアン

ビームスプリッタ行列を再び考えよう. 今度は入力電場と出力電場の位相差が存在することにして、 $\Lambda=0$ のみ課し ておく. するとビームスプリッタ行列は,

$$B = \begin{pmatrix} e^{i(\Psi+\Phi)/2}\cos(\Theta/2) & e^{i(\Psi-\Phi)/2}\sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2}\sin(\Theta/2) & e^{-i(\Psi+\Phi)/2}\cos(\Theta/2) \end{pmatrix}$$
(0.0.26)

と書ける. ビームスプリッタ行列を用いて,

$$\begin{pmatrix} \hat{a}'_1 \\ \hat{a}'_2 \end{pmatrix} = \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) & e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) & e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2} \cos(\Theta/2) \hat{a}_1 + e^{i(\Psi-\Phi)/2} \sin(\Theta/2) \hat{a}_2 \\ -e^{-i(\Psi-\Phi)/2} \sin(\Theta/2) \hat{a}_1 + e^{-i(\Psi+\Phi)/2} \cos(\Theta/2) \hat{a}_2 \end{pmatrix}$$
(0.0.28)

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2}\cos(\Theta/2)\hat{a}_1 + e^{i(\Psi-\Phi)/2}\sin(\Theta/2)\hat{a}_2 \\ -e^{-i(\Psi-\Phi)/2}\sin(\Theta/2)\hat{a}_1 + e^{-i(\Psi+\Phi)/2}\cos(\Theta/2)\hat{a}_2 \end{pmatrix}$$
(0.0.28)

$$= \begin{pmatrix} e^{i(\Psi+\Phi)/2} \sqrt{T} \hat{a}_1 - e^{i(\Psi-\Phi)/2} \sqrt{R} \hat{a}_2 \\ e^{-i(\Psi-\Phi)/2} \sqrt{R} \hat{a}_1 + e^{-i(\Psi+\Phi)/2} \sqrt{T} \hat{a}_2 \end{pmatrix}$$
(0.0.29)

と書ける.出力それぞれでの光の強度は, \hat{a}_1 と \hat{a}_2^\dagger や \hat{a}_1^\dagger と \hat{a}_2 が交換することを思い出せば,

$$\hat{a}_{1}^{\prime\dagger}\hat{a}_{1}^{\prime} = \left(e^{i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{1} - e^{i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{2}\right)^{\dagger}\left(e^{i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{1} - e^{i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{2}\right)$$
(0.0.30)

$$= T\hat{a}_{1}^{\dagger}\hat{a}_{1} + R\hat{a}_{2}^{\dagger}\hat{a}_{2} - \sqrt{T}\sqrt{R}\left(e^{i\Phi}\hat{a}_{1}\hat{a}_{2}^{\dagger} + e^{-i\Phi}\hat{a}_{1}^{\dagger}\hat{a}_{2}\right)$$
(0.0.31)

$$\hat{a}_{2}^{\prime\dagger}\hat{a}_{2}^{\prime} = \left(e^{-i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{1} + e^{-i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{2}\right)^{\dagger}\left(e^{-i(\Psi-\Phi)/2}\sqrt{R}\hat{a}_{1} + e^{-i(\Psi+\Phi)/2}\sqrt{T}\hat{a}_{2}\right)$$
(0.0.32)

$$= R\hat{a}_{1}^{\dagger}\hat{a}_{1} + T\hat{a}_{2}^{\dagger}\hat{a}_{2} + \sqrt{T}\sqrt{R}\left(e^{i\Phi}\hat{a}_{1}\hat{a}_{2}^{\dagger} + e^{-i\Phi}\hat{a}_{1}^{\dagger}\hat{a}_{2}\right)$$
(0.0.33)

となる. 式 (0.0.31) と式 (0.0.33) について,第 1 項と第 2 項はそれぞれモード 1 の入力光子数,モード 2 の入力光子数に対応する.これらの重ね合わせに依って位相が変化して,そのパラメータは T である.相互作用を表す項は第 3 項であるから,ビームスプリッタによる相互作用ハミルトニアン \hat{H}_{int} を,

$$\hat{H}_{\text{int}} := \frac{1}{2} \left(e^{i\Phi} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\Phi} \hat{a}_1^{\dagger} \hat{a}_2 \right) \tag{0.0.34}$$

と定義する.

また,以下の演算子を定義する.

$$\hat{L}_0 := \frac{1}{2} \left(\hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 \right) \tag{0.0.35}$$

$$\hat{L}_1 := \frac{1}{2} \left(\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.36}$$

$$\hat{L}_2 := \frac{1}{2i} \left(\hat{a}_1^{\dagger} \hat{a}_2 - \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.37}$$

$$\hat{L}_3 := \frac{1}{2} \left(\hat{a}_1^{\dagger} \hat{a}_1 - \hat{a}_2^{\dagger} \hat{a}_2 \right) \tag{0.0.38}$$

 \hat{L}_2 と \hat{H}_{int} の関係を調べよう. 唐突だが,

$$e^{-i\Theta\hat{L}_2} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} e^{i\Theta\hat{L}_2} \tag{0.0.39}$$

考える.式 (0.0.39) の第1成分について, Baker-Campbell-Hausdorff の公式より,

$$e^{-i\Theta\hat{L}_{2}}\hat{a}_{1}e^{i\Theta\hat{L}_{2}} = \hat{a}_{1} + \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right] + \frac{1}{2!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right] + \frac{1}{3!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] + \frac{1}{4!}\left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \left[-i\Theta\hat{L}_{2}, \hat{a}_{1}\right]\right]\right]\right] + \cdots \quad (0.0.40)$$

$$= \hat{a}_{1} + (-i\Theta)\left[\hat{L}_{2}, \hat{a}_{1}\right] + \frac{(-i\Theta)^{2}}{2!}\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right] + \frac{(-i\Theta)^{3}}{3!}\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] + \frac{(-i\Theta)^{4}}{4!}\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] + \cdots \quad (0.0.41)$$

となる. \hat{L}_2 と \hat{a}_1 , \hat{L}_2 と \hat{a}_2 との交換関係についてそれぞれ,

$$\left[\hat{L}_{2}, \hat{a}_{1}\right] = \left[\frac{1}{2i} \left(\hat{a}_{1}^{\dagger} \hat{a}_{2} - \hat{a}_{1} \hat{a}_{2}^{\dagger}\right), \hat{a}_{1}\right] \tag{0.0.42}$$

$$= \frac{1}{2i} \left(\hat{a}_2 \left[\hat{a}_1^{\dagger}, \hat{a}_1 \right] - \hat{a}_2^{\dagger} \left[\hat{a}_1, \hat{a}_1 \right] \right) \tag{0.0.43}$$

$$= -\frac{1}{2i}\hat{a}_2 \tag{0.0.44}$$

$$\left[\hat{L}_{2}, \hat{a}_{2}\right] = \left[\frac{1}{2i} \left(\hat{a}_{1}^{\dagger} \hat{a}_{2} - \hat{a}_{1} \hat{a}_{2}^{\dagger}\right), \hat{a}_{2}\right] \tag{0.0.45}$$

$$= \frac{1}{2i} \left(\hat{a}_1^{\dagger} [\hat{a}_2, \hat{a}_2] - \hat{a}_1 [\hat{a}_2^{\dagger}, \hat{a}_2] \right) \tag{0.0.46}$$

$$=\frac{1}{2i}\hat{a}_1\tag{0.0.47}$$

となる. ただし、 \hat{a}_1 と \hat{a}_2 が交換することを用いた. よって、

$$\left[\hat{L}_{2}, \hat{a}_{1}\right] = -\left(\frac{1}{2i}\right)^{1} \hat{a}_{2} \tag{0.0.48}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right] = -\frac{1}{2i} \left[\hat{L}_{2}, \hat{a}_{2}\right] = -\left(\frac{1}{2i}\right)^{2} \hat{a}_{1} \tag{0.0.49}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right] = -\left(\frac{1}{2i}\right)^{2} \left[\hat{L}_{2}, \hat{a}_{1}\right] = \left(\frac{1}{2i}\right)^{3} \hat{a}_{2} \tag{0.0.50}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{1}\right]\right]\right]\right] = \left(\frac{1}{2i}\right)^{3} \left[\hat{L}_{2}, \hat{a}_{2}\right] = \left(\frac{1}{2i}\right)^{4} \hat{a}_{1}$$

$$(0.0.51)$$

であるから式 (0.0.41) は,

$$e^{-i\Theta\hat{L}_{2}}\hat{a}_{1}e^{i\Theta\hat{L}_{2}} = \hat{a}_{1} + (-i\Theta)\left[\hat{L}_{2},\hat{a}_{1}\right] + \frac{(-i\Theta)^{2}}{2!}\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{1}\right]\right] + \frac{(-i\Theta)^{3}}{3!}\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{1}\right]\right] + \frac{(-i\Theta)^{4}}{4!}\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\left[\hat{L}_{2},\hat{a}_{1}\right]\right]\right] + \cdots$$

$$= \hat{a}_{1} + (-i\Theta)(-1)\left(\frac{1}{2i}\right)^{1}\hat{a}_{2} + \frac{(-i\Theta)^{2}}{2!}(-1)\left(\frac{1}{2i}\right)^{2}\hat{a}_{1} + \frac{(-i\Theta)^{3}}{3!}\left(\frac{1}{2i}\right)^{3}\hat{a}_{2} + \frac{(-i\Theta)^{4}}{4!}\left(\frac{1}{2i}\right)^{4}\hat{a}_{1} + \cdots$$

$$(0.0.53)$$

$$= \hat{a}_1 + \left(\frac{\Theta}{2}\right)^1 \hat{a}_2 - \frac{1}{2!} \left(\frac{\Theta}{2}\right)^2 \hat{a}_1 - \frac{1}{3!} \left(\frac{\Theta}{2}\right)^3 \hat{a}_2 + \frac{1}{4!} \left(\frac{\Theta}{2}\right)^4 \hat{a}_1 + \cdots$$
 (0.0.54)

$$= \left[1 - \frac{1}{2!} \left(\frac{\Theta}{2}\right)^2 + \frac{1}{4!} \left(\frac{\Theta}{2}\right)^4 - \cdots\right] \hat{a}_1 + \left[\left(\frac{\Theta}{2}\right)^1 - \frac{1}{3!} \left(\frac{\Theta}{2}\right)^3 + \cdots\right] \hat{a}_2 \tag{0.0.55}$$

$$=\cos(\Theta/2)\hat{a}_1 + \sin(\Theta/2)\hat{a}_2 \tag{0.0.56}$$

となる. 同様に,式(0.0.39)の第2成分について,

$$\left[\hat{L}_2, \hat{a}_2\right] = \left(\frac{1}{2i}\right)^1 \hat{a}_1$$
 (0.0.57)

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right] = \frac{1}{2i} \left[\hat{L}_{2}, \hat{a}_{1}\right] = -\left(\frac{1}{2i}\right)^{2} \hat{a}_{2} \tag{0.0.58}$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right]\right] = -\left(\frac{1}{2i}\right)^{2} \left[\hat{L}_{2}, \hat{a}_{2}\right] = -\left(\frac{1}{2i}\right)^{3} \hat{a}_{1}$$

$$(0.0.59)$$

$$\left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \left[\hat{L}_{2}, \hat{a}_{2}\right]\right]\right]\right] = -\left(\frac{1}{2i}\right)^{3} \left[\hat{L}_{2}, \hat{a}_{1}\right] = \left(\frac{1}{2i}\right)^{4} \hat{a}_{2} \tag{0.0.60}$$

なる関係を用いると,

$$\begin{split} e^{-i\Theta\hat{L}_{2}}\hat{a}_{2}e^{i\Theta\hat{L}_{2}} &= \hat{a}_{2} + (-i\Theta)\Big[\hat{L}_{2},\hat{a}_{2}\Big] + \frac{(-i\Theta)^{2}}{2!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{2}\Big]\Big] \\ &+ \frac{(-i\Theta)^{3}}{3!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{2}\Big]\Big]\Big] + \frac{(-i\Theta)^{4}}{4!}\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\Big[\hat{L}_{2},\hat{a}_{2}\Big]\Big]\Big]\Big] + \cdots \\ &= \hat{a}_{2} + (-i\Theta)\Big(\frac{1}{2i}\Big)^{1}\hat{a}_{1} + \frac{(-i\Theta)^{2}}{2!}(-1)\Big(\frac{1}{2i}\Big)^{2}\hat{a}_{2} + \frac{(-i\Theta)^{3}}{3!}(-1)\Big(\frac{1}{2i}\Big)^{3}\hat{a}_{1} + \frac{(-i\Theta)^{4}}{4!}\Big(\frac{1}{2i}\Big)^{4}\hat{a}_{2} + \cdots \\ &= \hat{a}_{2} - \Big(\frac{\Theta}{2}\Big)^{1}\hat{a}_{1} - \frac{1}{2!}\Big(\frac{\Theta}{2}\Big)^{2}\hat{a}_{2} + \frac{1}{3!}\Big(\frac{\Theta}{2}\Big)^{3}\hat{a}_{1} + \frac{1}{4!}\Big(\frac{\Theta}{2}\Big)^{4}\hat{a}_{2} + \cdots \end{aligned} \tag{0.0.63}$$

$$= -\left[\left(\frac{\Theta}{2}\right)^{1} - \frac{1}{3!}\left(\frac{\Theta}{2}\right)^{3} + \cdots\right]\hat{a}_{1} + \left[1 - \frac{1}{2!}\left(\frac{\Theta}{2}\right)^{2} + \frac{1}{4!}\left(\frac{\Theta}{2}\right)^{4} - \cdots\right]\hat{a}_{2}$$

$$(0.0.64)$$

$$= -\sin(\Theta/2)\hat{a}_1 + \cos(\Theta/2)\hat{a}_2 \tag{0.0.65}$$

である. よって, 式(0.0.39)は,

$$e^{-i\Theta\hat{L}_2} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} e^{i\Theta\hat{L}_2} = \begin{pmatrix} \cos(\Theta/2) & \sin(\Theta/2) \\ -\sin(\Theta/2) & \cos(\Theta/2) \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix}$$
(0.0.66)

と書ける.式 (0.0.66) の解釈を考えよう.相互作用ハミルトニアン \hat{H}_{int} の定義は、

$$\hat{H}_{\text{int}} := \frac{1}{2} \left(e^{i\Phi} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\Phi} \hat{a}_1^{\dagger} \hat{a}_2 \right)$$
 (0.0.67)

であった. $\Phi = \pi/2$ とすると,

$$\hat{H}_{\text{int}} = \frac{1}{2} \left(e^{i\pi/2} \hat{a}_1 \hat{a}_2^{\dagger} + e^{-i\pi/2} \hat{a}_1^{\dagger} \hat{a}_2 \right)$$
 (0.0.68)

$$= \frac{1}{2} \left(i \hat{a}_1 \hat{a}_2^{\dagger} - i \hat{a}_1^{\dagger} \hat{a}_2 \right) \tag{0.0.69}$$

$$= \frac{1}{2i} \left(\hat{a}_1^{\dagger} - \hat{a}_1 \hat{a}_2^{\dagger} \right) \tag{0.0.70}$$

$$=\hat{L}_2\tag{0.0.71}$$

と書ける. さらに、式 (0.0.66) において、 $\Theta = -t/\hbar$ とすれば、

$$\exp\left(-i\frac{\hat{H}_{\text{int}}}{\hbar}t\right)\begin{pmatrix}\hat{a}_1\\\hat{a}_2\end{pmatrix}\exp\left(i\frac{\hat{H}_{\text{int}}}{\hbar}t\right) = \begin{pmatrix}\cos(-t/2\hbar) & \sin(-t/2\hbar)\\-\sin(-t/2\hbar) & \cos(-t/2\hbar)\end{pmatrix}\begin{pmatrix}\hat{a}_1\\\hat{a}_2\end{pmatrix}$$
(0.0.72)

となる. 左辺は、

$$\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} \tag{0.0.73}$$

なる消滅演算子のペアを時間発展演算子で挟んでいる格好である.となれば,右辺は Heisenberg 描像で表した消滅演算子であろう 2 .

 $^{^2}$ 右辺に出てくる行列はビームスプリッタ行列でないことに注意する。確かに 2 つの入力電場間の位相ずれや,2 つの出力電場間の位相ずれがないと仮定したとき,ビームスプリッタ演算子は式 (0.0.24) と書ける。しかし, $\Phi=\pi/2$ なる仮定のもと議論している。このような入力電場の位相ずれ Φ に対して,出力電場の位相ずれ Ψ をうまく定めれば式 (0.0.24) の形を実現することができると思うかもしれないが,その試みははかなく終わる。そのような Ψ は, $\pi/2+\Psi=2n\pi$ かつ $\pi/2-\Psi=2m\pi$, $n,m\in\mathbb{Z}$ としなければいけないが,2 式を足して, $\pi=2(n+m)\pi$ となり,そのような n0、m1 は存在しない。要するに,式 n2 (n3 の右辺の行列はビームスプリッタ行列ではないのだ。なお,テキストでの n3 に何を言いたいのかわからない。