CS2102 Database Systems

Previously in CS2102

- ER model
- Relational algebra
- SQL
- PL/pgSQL
- Triggers

What is next?

Normal forms

Normal Forms vs. ER, SQL, and RA

Roadmap

- We will do it step by step:
 - Functional dependencies (FD)

Closures

Keys, superkeys, and prime attributes

Normal forms and schema refinement

Motivation

- Suppose that we give an ER diagram to Alice and Bob
- Each of them translates the diagram into a relational schema
 - And claims that it is the best relational schema of all time
- How do we decide which one is better?

Motivation

- There could be many different ways to evaluate whether a relational schema is good
 - Different people may have different opinions
- But there are things that just should NOT be done
 - i.e., there are some minimum requirements to meet
- A normal form is a definition of minimum requirements to
 - reduce data redundancy, and
 - improve data integrity

Redundancy: Example

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- There is some redundancy in terms of Alice's address: it is unnecessarily stored twice
- In addition, the table is susceptible to several other anomalies

Update Anomalies

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- First, update anomalies:
 - We may accidentally update one of Alice's addresses, leaving the other unchanged

Deletion Anomalies

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- Second, deletion anomalies:
 - Bob no longer uses a phone
 - Can we remove Bob's phone number?
 - No. (Note: Primary key attributes cannot be NULL)

Insertion Anomalies

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- Third, insertion anomalies:
 - Name = Cathy, NRIC = 9394, HomeAddress = YiShun
 - Can we insert this information into the table?
 - No. (Note: Primary key attributes cannot be NULL)

Normalization

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- How do we get rid of those anomalies?
- Normalize the table (i.e., decompose it)

Name	<u>NRIC</u>	HomeAddress
Alice	1234	Jurong East
Bob	5678	Pasir Ris

<u>NRIC</u>	<u>PhoneNumber</u>
1234	67899876
1234	83848384
5678	98765432

Effects of Normalization

Name	<u>NRIC</u>	HomeAddress
Alice	1234	Jurong East
Bob	5678	Pasir Ris

<u>NRIC</u>	<u>PhoneNumber</u>
1234	67899876
1234	83848384
5678	98765432

- Redundancy?
 - No. (Alice's address is no longer duplicated.)
- Update anomalies?
 - No. (There is only one place where we can update the address of Alice)
- Deletion anomalies?
 - No. (We can freely delete Bob's phone number)
- Insertion anomalies?
 - No. (We can insert an individual with a phone)

Effects of Normalization

Name	<u>NRIC</u>	HomeAddress
Alice	1234	Jurong East
Bob	5678	Pasir Ris

<u>NRIC</u>	<u>PhoneNumber</u>
1234	67899876
1234	83848384
5678	98765432

- How do we perform such normalizations?
- Following some procedures designed based on normal forms

Roadmap

- We will do it step by step:
 - Functional dependencies (FD)

Closures

Keys, superkeys, and prime attributes

Normal forms and schema refinement

Previous Example

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- We mentioned that this table is bad because of the redundancy in HomeAddress
- What causes this redundancy?
 - Some dependency between NRIC and HomeAddress
- In particular, NRIC uniquely decides HomeAddress
- This is called a functional dependency (FD)
 - □ Denoted as NRIC → HomeAddress

Formal Definition of FD

- Let A_1 , A_2 , ..., A_m , B_1 , B_2 , ..., B_n be some attributes
- We say that $A_1A_2...A_m \rightarrow B_1B_2...B_n$, if:
 - □ Whenever two objects have the same values on A_1 , A_2 , ..., and A_m ,
 - \Box they always have the same values on B₁, B₂, ..., B_n
- Example: NRIC → Name
 - Read as "NIRC decides Name" or "NIRC determines Name"
- Meaning: If two tuples have the same NRIC value, then they have the same Name value

- Matric_Number → Student_Name
- Postal_Code → Building_Name

- Postal_Code Unit_Number
- Matric_Number Degree
 - We have double degrees

FDs on Tables

- An FD may hold on one table but does not hold on another
- Example:
 - Supervise(eid, pid)
 - pid denotes the id of the project
 - eid denotes the employee id of the supervisor for the project
 - If each project has only one supervisor, then we have pid → eid on Supervise
 - Work(<u>eid</u>, <u>pid</u>)
 - pid denotes the id of the project
 - eid denotes the id of an employee who work on the project
 - We don't have pid → eid on Work

Name	Category	Color	Department	Price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office Supplies	59

- Find the functional dependencies that are FALSE on the above table
 - □ Category → Department
 - □ Category, Color → Price
 - □ Price → Color
 - Name → Color
 - Department, Category → Name
 - □ Color, Department → Name, Price, Category

Where Do FDs Come From?

- From common sense
- From the application's requirements
- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: Each shop can sell at most one product
 - □ FD implied: ShopID → ProductID

- Purchase(CustomerID, ProductID, ShopID, Price, Date)
- Requirement: No two customers buy the same product
- FD implied: ProductID → CustomerID

- Purchase(CustomerID, ProductID, ShopID, Price, Date)
- Requirement: No two shops sell the same product
- FD implied: ProductID → ShopID

- Purchase(CustomerID, ProductID, ShopID, Price, Date)
- Requirement: No two shops sell the same product on the same date
- FD implied: ProductID, Date → ShopID

- Purchase(CustomerID, ProductID, ShopID, Price, Date)
- Requirement: No shop should sell the same product to the same customer on the same date at two different prices
- FD implied: CustomerID, ProductID, ShopID, Date → Price

Roadmap

- Now we know what FDs are
- Next, we will discuss how to do reasoning with FDs

FD Reasoning: Example

- We know that
 - NRIC → Matric_Number, and
 - Matric_Number → Name
- We can derive
 - NRIC → Name, by transitivity
- FD reasoning: given a set of FDs, figure out what other FDs they can imply
- This is important for normal forms

Armstrong's Axioms

- Three fundamental axioms for FD reasoning
- Axiom of Reflexivity
 - \square A set of attributes \rightarrow A subset of the attributes
- Example
 - NRIC, Name → NRIC
 - StudentID, Name, Age → Name, Age
 - \square ABCD \rightarrow ABC
 - \square ABCD \rightarrow BCD
 - \square ABCD \rightarrow AD

Armstrong's Axioms

- Three fundamental axioms for FD reasoning
- Axiom of Augmentation
 - \Box If A \rightarrow B
 - then AC → BC for any C
- Example
 - □ If NRIC → Name
 - □ Then NRIC, Age → Name, Age
 - □ and NRIC, Salary, Weight → Name, Salary, Weight
 - □ and NRIC, Addr, Postal → Name, Addr, Postal

Armstrong's Axioms

- Three fundamental axioms for FD reasoning
- Axiom of Transitivity
 - \Box If A \rightarrow B and B \rightarrow C
 - \Box then A \rightarrow C
- Example
 - □ If NRIC → Addr, and Addr → Postal
 - □ Then NRIC → Postal

Additional Rules

Reflexivity: AB→A

Augmentation: If A→B then AC→BC

• Transitivity: If A→B and B→C

then $A \rightarrow C$

Rule of Decomposition

□ If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$

Proof:

- \square By reflexivity, we have BC \rightarrow B and BC \rightarrow C
- By transitivity, we have
 - A \rightarrow BC and BC \rightarrow B ==> A \rightarrow B
 - A \rightarrow BC and BC \rightarrow C ==> A \rightarrow C

Additional Rules

- Reflexivity: AB→A
- Augmentation: If A→B then AC→BC
- Transitivity: If A→B and B→C
 - then A→C
- Decomposition: If A→BC then A→B
 - and A→C

Rule of Union

- □ If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow BC$
- Proof:
 - By augmentation, $A \rightarrow B ==> A \rightarrow AB$
 - □ By augmentation, $A \rightarrow C ==> AB \rightarrow BC$
 - By transitivity, $A \rightarrow AB$ and $AB \rightarrow BC ==> A \rightarrow BC$

Exercise

- Given A \rightarrow B, BC \rightarrow D
- Prove that $AC \rightarrow D$
- Proof
 - \square Given A \rightarrow B, we have AC \rightarrow BC (Augmentation)
 - □ Given AC→BC and BC→D, we have AC→D (Transitivity)

Reflexivity: AB→A

Augmentation: If A→B then AC→BC

• Transitivity: If A→B and B→C

then $A \rightarrow C$

Decomposition: If A→BC then A→B

and $A \rightarrow C$

• Union: If $A \rightarrow B$ and $A \rightarrow C$

then A→BC

Reasoning with FD

- Given A \rightarrow B, D \rightarrow C
- Prove that AD→BC

- Reflexivity: AB→A
- Augmentation: If A→B then AC→BC
- Transitivity: If A→B and B→C

then A→C

Decomposition: If A→BC then A→B

and $A \rightarrow C$

• Union: If $A \rightarrow B$ and $A \rightarrow C$

then A→BC

- Proof
 - \square Given A \rightarrow B, we have AD \rightarrow BD (Augmentation)
 - \square Given AD \rightarrow BD, we have AD \rightarrow B (Reflexivity)
 - □ Given D \rightarrow C, we have AD \rightarrow AC (Augmentation)
 - \square Given AD \rightarrow AC, we have AD \rightarrow C (Reflexivity)
 - □ Given AD→B and AD→C, we have AD → BC (Union)

Reasoning with FD

- Reflexivity: AB→A
- Augmentation: If A→B then AC→BC
- Transitivity: If A→B and B→C

then A→C

Decomposition: If A→BC then A→B

and $A \rightarrow C$

• Union: If $A \rightarrow B$ and $A \rightarrow C$

then A→BC

- Given A \rightarrow C, AC \rightarrow D, AD \rightarrow B
- Prove that $A \rightarrow B$
- Proof
 - \square Given A \rightarrow C, we have A \rightarrow AC (Augmentation)
 - □ Given $A \rightarrow AC$ and $AC \rightarrow D$, we have $A \rightarrow D$ (Transitivity)
 - □ Given A→D, we have A→AD (Augmentation)
 - □ Given $A \rightarrow AD$ and $AD \rightarrow B$, we have $A \rightarrow B$ (Transitivity)

Reasoning with FD

- Use Armstrong's axioms to do FD reasoning is a bit cumbersome
 - As shown in the previous slides
- We will discuss a more convenient approach: closure

Closure: Motivating Example

- Question:
 - □ Given $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$, check if $B \rightarrow C$ holds
- Observation: intuitively, FDs are kind of like components on a circuit board

Closure: Motivating Example

- Four attributes: A, B, C, D
- Given: $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$
- Check if $B \rightarrow C$ holds

Closure: Motivating Example

- Four attributes: A, B, C, D
- Given: $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$
- Check if B→C holds

- First, activate B
 - Activated set = { B }
- Second, activate whatever B can activate
 - Activated set = $\{B, D\}$, since $B \rightarrow D$
- Third, use all activated elements to activate more
 - \square Activated set = { B, D, A }, since DB \rightarrow A
- Repeat the third step, until no more activation is possible
 - \square Activated set = { B, D, A, C }, since AD \rightarrow C; done
- { B, D, A, C } is referred to as the closure of {B}

Closure

- Let $S = \{A_1, A_2, ..., A_n\}$ be a set of attributes
- The closure of S is the set of attributes that can be decided by A_1 , A_2 , ..., A_n (directly or indirectly)
- Notation: $\{A_1, A_2, ..., A_n\}^+$
- Example
 - □ Given $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$, $D \rightarrow E$

 - $B^+ = \{B, C, D, E\}$
 - \Box {D}⁺ = {D, E}
 - $| \{E\}^+ = \{E\}$

Computing Closures

- Given A_1 , A_2 , ..., A_n , the closure $\{A_1, A_2, ..., A_n\}^{\dagger}$ can be computed as follows:
 - 1. Initialize the closure to $\{A_1, A_2, ..., A_n\}$
 - If there is an FD: A_i , A_j , ..., $A_m \rightarrow B$, such that A_i , A_j , ..., A_m are all in the closure, then put B into the closure
 - 3. Repeat step 2, until we cannot find any new attribute to put into the closure

Example

- A Table with five attributes A, B, C, D, E
- \square A \rightarrow B, C \rightarrow D, BC \rightarrow E
- $\Box \{A, C\}^+ =$

Computing Closures

- Given A_1 , A_2 , ..., A_n , the closure $\{A_1, A_2, ..., A_n\}^{\dagger}$ can be computed as follows:
 - 1. Initialize the closure to $\{A_1, A_2, ..., A_n\}$
 - If there is an FD: A_i , A_j , ..., $A_m \rightarrow B$, such that A_i , A_j , ..., A_m are all in the closure, then put B into the closure
 - 3. Repeat step 2, until we cannot find any new attribute to put into the closure

Example

- A Table with five attributes A, B, C, D, E
- \square A \rightarrow B, C \rightarrow D, BC \rightarrow E

- $| \{B\}^+ = \{B\}$

Closure & FD

- To prove that X → Y holds, we only need to show that {X}+ contains Y
- \blacksquare AB \rightarrow C, AD \rightarrow E, B \rightarrow D, AF \rightarrow B
- Prove that $AF \rightarrow D$
- {AF}+ = {AFBCDE}, which contains D
- Therefore, AF→D holds

Closure & FD

- To prove that X → Y does not hold, we only need to show that {X}⁺ does not contain Y
- \blacksquare AB \rightarrow C, AD \rightarrow E, B \rightarrow D, AF \rightarrow B
- Prove that AD→F does not hold
- {AD}+ = {ADE}, which does not contain F
- Therefore, AD→F does not hold

Exercise

- Given: $C \rightarrow D$, $AD \rightarrow E$, $BC \rightarrow E$, $E \rightarrow A$, $D \rightarrow B$
- \blacksquare Check if C \rightarrow A holds
- We start with {C}
- \blacksquare Since C \rightarrow D, we have {C, D}
- \blacksquare Since D \rightarrow B, we have {C, D, B}
- Since BC \rightarrow E, we have {C, D, B, E}
- Since $E \rightarrow A$, we have $\{C, D, B, E, A\}$
- So A must be in $\{C\}^+$, hence, $C \rightarrow A$ holds

Roadmap

- We will do it step by step:
 - Functional dependencies (FD)

Closures

Keys, superkeys, and prime attributes

Normal forms and schema refinement

Superkeys of a Table

Name	NRIC	Postal	Address
Alice	1234	939450	Jurong East
Bob	5678	234122	Pasir Ris
Cathy	3576	420923	Yishun

- Definition: A set of attributes in a table that decides all other attributes
- Example:
 - {NRIC} is a superkey
 - □ Since NRIC → Name, Postal, Address
 - {NRIC, Name} is a superkey
 - □ Since {NRIC, Name} → Postal, Address

Keys of a Table

Name	NRIC	Postal	Address
Alice	1234	939450	Jurong East
Bob	5678	234122	Pasir Ris
Cathy	3576	420923	Yishun

- Definition: A superkey that is minimal
- i.e., if we remove any attribute from the superkey, it will not be a superkey anymore
- Example:
 - {NRIC} is a superkey
 - Since NRIC → Name, Postal, Address
 - {NRIC, Name} is a superkey
 - □ Since {NRIC, Name} → Postal, Address
 - NRIC is a key, but {NRIC, Name} is not a key

Keys of a Table

Name	NRIC	Postal	Address
Alice	1234	939450	Jurong East
Bob	5678	234122	Pasir Ris
Cathy	3576	420923	Yishun

Note: Not to be confused with the keys of entity sets

Keys of a Table

Name	NRIC	StudentID	Postal	Address
Alice	1234	1	939450	Jurong East
Bob	5678	2	234122	Pasir Ris
Cathy	3576	3	420923	Yishun

- A table may have multiple keys
- Example:
 - {NRIC} is a key
 - □ Since NRIC → Name, StudentID, Postal, Address
 - {StudentID} is a key
 - □ Since StudentID → Name, NRIC, Postal, Address
 - Both {NRIC} and {StudentID} are keys

Keys of a Table: Exercise

- We have
 - A table T(A, B, C) with three attributes A, B, C
 - \square Two FDs: A \rightarrow BC and BC \rightarrow A
- Find the key(s) of T
- Answer: there are two keys

 - BC
- Note: BC is a key even though it contains more attribute than A
 - Because BC is a minimal superkey

Why are we talking about keys?

- Because they are needed in our discussion of normal forms
 - Whether or not a table T has redundancy and anomalies would partially depend on what the keys of T are
- Question: how do we know the keys of T?
- Answer:
 - Check the FDs on the T, and use closures to derive the keys

Algorithm for finding keys

- Definition: a key is a minimal set of attributes that decides all other attributes
- Given: a table T(A, B, C, ...) and a set of FDs on T
- Algorithm for finding keys:
 - Consider every subset of attributes in T:
 - A, B, C, ..., AB, BC, CA, ..., ABC, ...
 - Derive the closure of each subset:
 - {A}+, {B}+, {C}+, ..., {AB}+, {BC}+, {AC}+, ..., {ABC}+, ...
 - Identify all superkeys based on the closures
 - Identify all keys from the superkeys

Algorithm for finding keys: Example

- \blacksquare A table R(A, B, C), with A \rightarrow B, B \rightarrow C
- Steps for finding keys:
 - Consider every subset of attributes in T:
 - A, B, C, AB, BC, CA, ABC
 - Derive the closure of each subset:

$$\{B\}^{+}=$$

$$AB^{+}= \{BC\}^{+}= \{AC\}^{+}= \{ABC\}^{+}= \{AB$$

$$\{BC\}^+=$$

$$\{AC\}^+=$$

- Identify all superkeys based on the closures
- Identify all keys from the superkeys

Algorithm for finding keys: Example

- \blacksquare A table R(A, B, C), with A \rightarrow B, B \rightarrow C
- Steps for finding keys:
 - Consider every subset of attributes in T:
 - A, B, C, AB, BC, CA, ABC
 - Derive the closure of each subset:
 - A⁺={ABC}, {B}⁺={BC}, {C}⁺={C}
 - \blacksquare {AB}+={ABC}, {BC}+={BC}, {AC}+={ABC}, {ABC}+={ABC}
 - Identify all superkeys based on the closures
 - A, AB, AC, ABC
 - Identify all keys from the superkeys
 - A

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- First, enumerate all attribute subsets:

```
{A}, {B}, {C}, {D}
{AB}, {AC}, {AD},
{BC}, {BD}, {CD},
{ABC}, {ABD},
{ACD}, {BCD},
{ABCD}
```

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Second, compute the closures of the subsets:

```
{A}, {B}, {C}, {D}
{AB}, {AC}, {AD},
{BC}, {BD}, {CD},
{ABC}, {ABD},
{ACD}, {BCD},
```

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Second, compute the closures of the subsets:

```
□ \{A\}^{+} = \{A\}, \quad \{B\}^{+} = \{BD\}, \quad \{C\}^{+} = \{C\}, \quad \{D\}^{+} = \{D\}
□ \{AB\}^{+} = \{ABCD\}, \quad \{AC\}^{+} = \{AC\}, \quad \{AD\}^{+} = \{ABCD\}
□ \{BC\}^{+} = \{BCD\}, \quad \{BD\}^{+} = \{BD\}, \quad \{CD\}^{+} = \{CD\}
□ \{ABC\}^{+} = \{ABCD\}, \quad \{ABD\}^{+} = \{ABCD\}
□ \{ACD\}^{+} = \{ABCD\}, \quad \{BCD\}^{+} = \{BCD\}
□ \{ABCD\}^{+} = \{ABCD\}
```

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Third, identify the superkeys:

```
□ \{A\}^{+} = \{A\}, \qquad \{B\}^{+} = \{BD\}, \quad \{C\}^{+} = \{C\}, \qquad \{D\}^{+} = \{D\}
□ \{AB\}^{+} = \{ABCD\}, \qquad \{AC\}^{+} = \{AC\}, \qquad \{AD\}^{+} = \{ABCD\}
□ \{BC\}^{+} = \{BCD\}, \quad \{BD\}^{+} = \{BD\}, \qquad \{CD\}^{+} = \{CD\}
□ \{ABC\}^{+} = \{ABCD\}, \qquad \{ABD\}^{+} = \{ABCD\}
□ \{ACD\}^{+} = \{ABCD\}, \qquad \{BCD\}^{+} = \{BCD\}
□ \{ABCD\}^{+} = \{ABCD\}
```

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Third, identify the superkeys:

```
□ \{A\}^{+} = \{A\}, \qquad \{B\}^{+} = \{BD\}, \quad \{C\}^{+} = \{C\}, \quad \{D\}^{+} = \{D\}
□ \{AB\}^{+} = \{ABCD\}, \quad \{AC\}^{+} = \{AC\}, \quad \{AD\}^{+} = \{ABCD\}
□ \{BC\}^{+} = \{BCD\}, \quad \{BD\}^{+} = \{BD\}, \quad \{CD\}^{+} = \{CD\}
```

- \square {ABCD}⁺ = {ABCD}

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Fourth, identify the keys from the superkeys

- \Box {BC}⁺= {BCD}, {BD}⁺= {BD}, {CD}⁺= {CD}

- \square {ABCD}⁺ = {ABCD}

- A table R(A, B, C, D)
- With AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Fourth, identify the keys from the superkeys

```
□ \{A\}^{+} = \{A\}, \quad \{B\}^{+} = \{BD\}, \quad \{C\}^{+} = \{C\}, \quad \{D\}^{+} = \{D\}
□ \{AB\}^{+} = \{ABCD\}, \quad \{AC\}^{+} = \{AC\}, \quad \{AD\}^{+} = \{ABCD\}
□ \{BC\}^{+} = \{BCD\}, \quad \{BD\}^{+} = \{BD\}, \quad \{CD\}^{+} = \{CD\}
□ \{ABC\}^{+} = \{ABCD\}, \quad \{BCD\}^{+} = \{BCD\}
□ \{ABCD\}^{+} = \{ABCD\}
```

A Small Trick

- Always check small attribute sets first
- A table R(A, B, C, D)
- $\blacksquare A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A$
- Compute the closures:

 - No need to check others
 - The others are all superkeys but not keys
- Keys: {A}, {B}, {C}, {D}

Another Small Trick

- A table R(A, B, C, D)
- \blacksquare AB \rightarrow C, AD \rightarrow B, B \rightarrow D
- Notice that A does not appear in the right hand side of any functional dependencies
- In that case, A must be in every key
- Keys of R: AB, AD (see the previous exercises)
- In general, if an attribute that does not appear in the right hand side of any FD, then it must be in every key

Exercise (Find the Keys)

- A table R(A, B, C, D)
- $\blacksquare A \rightarrow B, A \rightarrow C, C \rightarrow D$
- A must be in every key
- Compute the closures:

 - No need to check others
- Keys: {A}

Exercise (Find the Keys)

- A table R(A, B, C, D, E)
- \blacksquare AB \rightarrow C, C \rightarrow B, BC \rightarrow D, CD \rightarrow E
- A must be in every key
- Compute the closures:
- Keys: AB, AC

Exercise (Find the Keys)

- A table R(A, B, C, D, E, F)
- AB \rightarrow C, C \rightarrow B, CBE \rightarrow D, D \rightarrow EF
- A must be in every key
- Compute the closures:

Keys: ABD, ABE, ACD, ACE

```
    {A}<sup>+</sup> = {A}
    {AB}<sup>+</sup> = {ABC}
    {AC}<sup>+</sup> = {ACB}
    {AD}<sup>+</sup> = {ADEF}
    {AE}<sup>+</sup> = {AE}, {AF}<sup>+</sup> = {AF}
    {ABC}<sup>+</sup> = {ABC}
    {ABD}<sup>+</sup> = {ABE}<sup>+</sup> = {ACD}<sup>+</sup> = {ACE}<sup>+</sup> = {ABCDEF}
    {ADE}<sup>+</sup> = {ADEF}
```

Prime Attributes

- If an attribute appears in a key, then it is a prime attribute
- Otherwise, it is a non-prime attribute
- This concept will be used when we talk about normal forms

Roadmap

- We will do it step by step:
 - Functional dependencies (FD)

Closures

Keys, superkeys, and prime attributes

Normal forms and schema refinement