Predicting the percentage of marks based on number of study hours

This is simple Linear regression task in this only two variables are present.

```
In [1]:
        ## Importing all necessary libraries, required for simple linear regression task
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
In [3]: ## Reading data from url
        url = "https://bit.ly/w-data"
```

```
student data = pd.read csv(url)
student data.head() ## head function returns by default 5 rows of raw data
```

Out[3]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

Plot 2D graph based on the data

```
In [4]: # Plotting the scatter plot to visualize the data
        student_data.plot(x = "Hours",y = "Scores",style = '*')
        plt.title("Hours v/s Scores")
        plt.xlabel("Hours studied")
        plt.ylabel("Percentage Score")
        plt.show()
```


In above graph we can cleary see that the there is positive linear regression between the no of hours studied and percentage score

Preparing Data

```
In [5]:
       X = student data.iloc[:,:-1].values ## Here we divided the data into two parts attributes(input) and 1
        ables (output)
        Y = student data.iloc[:,1].values
In [6]: from sklearn.model_selection import train_test_split ##Here we split the data into two parts trainin
        g and testing
```

test_size=0.2, random_state=0)

Train Algorithm For Data

X_train, X_test, y_train, y_test = train_test_split(X, Y,

```
In [7]: from sklearn.linear_model import LinearRegression
        regression = LinearRegression()
        regression.fit(X_train, y_train)
        print("Training Complete")
```

Training Complete

```
In [8]: line = regression.coef *X+regression.intercept ## Draw line of linear regression
        # Plotting for the test data
        plt.scatter(X, Y)
        plt.plot(X, line);
        plt.show()
```

```
80
60
40
20
```

```
print(X_test) # Testing data - In Hours
In [9]:
        y_pred = regression.predict(X_test) # Predicting the scores
        [[1.5]]
         [3.2]
         [7.4]
         [2.5]
         [5.9]]
```

```
In [10]:
         # Comparing Actual vs Predicted
         s_data = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
         s data
```

```
Out[10]:
```

	Actual	Predicted
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

Evaluating the model Here we use mean square method to evaluate the model

```
In [11]: from sklearn import metrics
         print('Mean Absolute Error:',
               metrics.mean_absolute_error(y_test, y_pred))
```

Mean Absolute Error: 4.18385989900298