ĐỀ THI MẪU CUỐI KỲ 2 NĂM 2020-2021 (BỘ MÔN TOÁN LÝ)

Phần trắc nghiệm

Câu 1: Cho ma trận có hướng G như sau:

Ma trận kề (được lập theo thứ tự các đỉnh lần lượt là A, B, C, D, E ở cả hàng và cột) của G là:

	0	1	0	1	0		$\lceil 0 \rceil$	1	0	1	0		0	1	0	1	0		0	1	0	1	0
	l				- 1		1				- 1		I						l				- 1
A.	0	1	1	1	0	<mark>B.</mark>	0	1	1	0	0	C.	0	1	1	1	0	D.	0	1	1	0	0
	1	0	0	0	1		1	0	0	0	1		1	0	0	0	1		1	0	0	1	1
	0	1	1	0	1		0	1	1	0	1		0	1	1	0	1		0	1	1	0	1

Dòng 2: loại câu A, xét đỉnh B

Dòng 3: loại câu C, xét đỉnh C

Dòng 4: chọn câu B, xét đỉnh D

Quy ước về chiều: dòng \rightarrow cột

Câu 2: Cho đồ thị vô hướng G như sau:

- A. G có chu trình Euler nhưng không có chu trình Hamilton
- B. G không có chu trình Euler
- C. G không có chu trình Hamilton
- D. G có chu trình Euler và chu trình Hamilton

Câu 3: Cho đồ thị có hướng G

Hãy cho biết khẳng định nào sau đây đúng?

A. G liên thông yếu và không liên thông mạnh

B. G liên thông mạnh

C. Giữa hai đỉnh bất kỳ của G đều có đường đi từ đỉnh này đến đỉnh kia và ngược lại

D. Tồn tại hai đỉnh của G mà có đường đi từ đỉnh này đến đỉnh kia và ngược lại

G liên thông yếu và không liên thông mạnh: bỏ dấu mũi tên → đồ thị vô hướng vẫn liên thông Câu D sai (không tồn tại bất kỳ cặp nào)

Câu 4: Đồ thị vô hướng G có bao nhiều đỉnh bậc 3 nếu G có 13 cạnh và có 3 đỉnh bậc 1, 4 đỉnh bậc 2, 1 đỉnh bậc 5, các đỉnh còn lại có bậc là 3 hoặc 4.

$$13 = \frac{1}{2}(3 * 1 + 4 * 2 + 1 * 5 + 3x + 4y) \Rightarrow 3x + 4y = 10 \Rightarrow x = 2, y = 1$$

Câu 5: Cho đồ thi vô hướng G như sau:

Hãy cho biết đâu là một đường đi sơ cấp của G:

A. a, b, c, e, d, f, g B. a, b, c, e, d, c, b C. a, b, c, d, e, g, e D. a, b, c, d, e, c, a đường đi sơ cấp: đường đi qua mỗi đinh 1 lần

Câu 6: Cho đồ thị vô hướng G như sau:

Hãy cho biết đâu là một đường đi đơn của G

A. a, b, c, d, c, a, b B. a, b, c, e, d, c, b C. a, b, c, d, e, g, f, d, e D. a, b, c, e, d, c đường đi đơn: đường đi qua mỗi cạnh 1 lần

Câu 7: Đồ thị vô hướng G có bao nhiều cạnh nếu G có 5 đỉnh với số bậc như sau 5, 5, 4, 4, 4?

$$=\frac{1}{2}(5+5+4+4+4)=11$$

Câu 8: Đồ thị đầy đủ $K_{2n} (n \ge 1)$ có bao nhiều cạnh?

A.
$$\frac{n(n-1)}{2}$$

B.
$$\frac{n(2n-1)}{2}$$

C.
$$n(2n-1)$$

D.
$$n^2$$

$$K_n$$
: Số cạnh = $C_n^2 = \frac{n(n-1)}{2}$

$$K_{2n} := n(2n-1)$$

Câu 9: Cho đồ thị G như sau:

Hãy cho biết đâu là một chu trình Euler của G

B. a, e, c, f, e, d, f, b, d, e, a

D. a, d, b, f, c, e, a

9 cạnh → chu trình Euler có 10 đỉnh → loại B, D

C sai do ko có cạnh be

Câu 10: Cho đồ thi G như sau:

Hãy cho biết đâu là một đường đi Hamilton của G?

Câu 11: Cho đồ thị G như sau:

Hãy cho biết đâu là một chu trình Hamilton của G?

Câu 12: Cho đồ thị G như sau:

Hãy cho biết đâu là một đường đi Euler của G?

$$C.\ 3,\ 2,\ 1,\ 4,\ 3,\ 6,\ 2,\ 7,\ 6,\ 4,\ 5,\ 7,\ 7,\ 9,\ 5,\ 10,\ 9,\ 8$$

Loại C và D, bắt đầu & kết thúc bởi 3 và 7

Câu 13: Hãy tìm một chu trình Euler của đồ thị cho bởi ma trận kề dưới đây

Đồ thị có 9 cạnh → chu trình Euler phải có 10 đỉnh → loại A, C, D

Câu 14: Cho đồ thị có hướng G như sau:

Hãy cho biết khẳng định nào sau đây đúng?

A. G không có chu trình Hamilton

B. G có chu trình Euler

C. G không có đường đi Hamilton

D. G có đường đi Euler

Chu trình Euler: all đỉnh cân bằng, loại B, do a dư 1 bậc ra, b dư 1 bậc vào

c, d, e cân bằng → có đường đi Euler từ a về b

Phần tự luận

Bài 1: Cho hàm Bool f theo 4 biến x, y, z, t biết:

$$f^{-1}(0) = \{0000, 0101, 1111, 1000, 0111, 0010\}$$

Hãy cho biết các kết quả sau:

- a) Dạng nối rời chính tắc của hàm f là tổng Bool của bao nhiều đơn thức tối tiểu?
- b) Kar(f) có bao nhiều tế bào lớn? Hãy viết các đơn thức của các tế bào lớn đó.
- c) Tìm được tất cả bao nhiều công thức đa thức tối tiểu của hàm f?
- d) Có thể dùng ít nhất bao nhiều cổng cơ bản (có 3 loại cổng cơ bản: NOT, OR, AND) để thiết kế mạch logic cho hàm f?

	$x\bar{y}$	xy	$\bar{x}y$	$\bar{x}\bar{y}$
$z\bar{t}$	3,4	2,4	2	
zt	1,3			1
Ξt	1,6	5,6		1
$\bar{z}\bar{t}$		2,5	2	

- a) 10 đơn thức tối tiểu
- b) 6 tế bào lớn: y't, yt', xy'z, xzt', xyz', xz't
- c) Sơ đồ phủ: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$, $1 \rightarrow 2 \rightarrow 3 \rightarrow 6$, $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$, $1 \rightarrow 2 \rightarrow 4 \rightarrow 6$: cả 4 đều đơn giản như nhau Trả lời: 4 công thức

d) y't + yt' + xy'z + xyz' 4 từ tối tiểu → 4 cổng AND Cần 1 cổng OR cho phép cộng 4 đơn thức Số cổng NOT: = 3 (cho y', z', t')

Trả lời: 8 cổng

Bài 2: Cho đồ thị như sau:

- a) Liệt kê thứ tự các đỉnh lần lượt được bổ sung vào tập đỉnh S (S: tập các đỉnh mà đường đi ngắn nhất từ điểm xuất phát đến chúng đã được xác định) khi dùng thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh F đến đỉnh G.
- b) Gọi $T = (V_T, E_T)$ cây khung nhỏ nhất của đồ thị đã cho, trong đó V_T, E_T lần lượt là tập đỉnh và tập cạnh của T. Chọn 1 trong 2 mục sau để làm:
- b1) Giả sử ta dùng thuật toán Prim tìm cây khung T với việc chọn đỉnh A ở bước khởi tạo. Hãy liệt kê thứ tự các đỉnh lần lượt bổ sung vào V_T và cho biết trọng số của T.
- b2) Giả sử ta dùng thuật toán Kruskal để tìm cây khung T. Hãy liệt kê thứ tự các cạnh lần lượt bổ sung vào E_T và cho biết trọng số của T.

a) Dijkstra

Đỉnh	A	В	C	D	Е	G	Н	I	J	Cạnh
F	F,10	Vc	Vc	Vc	F ,3	Vc	F,8	F,5	Vc	
Е	E ,4	Vc	Vc	E,5	I	E,9	F,8	F,5	Vc	FE
A	1	A ,6	A,10	E ,5	-	E,9	F,8	F ,5	Vc	AE
D		A,6	D,7	l	ı	D,6	F,8	F ,5	Vc	DE
I		<mark>A,6</mark>	D,7			<mark>D,6</mark>	I,7		I,8	FI
G		<mark>A,6</mark>	D,7	l	ı	l	I,7	ı	I,8	DG
В		l	D ,7	l	ı	l	I ,7	ı	I,8	AB
C	l	l	l	I	I	l	I ,7	I	I,8	DC
Н							_		I,8	HI
J	_	_	_	_	_	_	_	_	_	HJ

a)
$$S=\{F,E,A,D,I,G\}$$

Prim

Đỉnh	Cạnh	Trọng số					
A	AB	1					
A,B	<mark>AE</mark>	2					
A,B,E	<mark>ED</mark>	2					
A,B,E,D	<mark>DG</mark>	1					
A,B,E,D,G	<mark>DC</mark>	2					
A,B,E,D,G,C	<mark>GJ</mark>	3					
A,B,E,D,G,C,J	<mark>HJ</mark>	1					
A,B,E,D,G,C,J,H,	<mark>HI</mark>	2					
A,B,E,D,G,C,J,H,I	<mark>EF</mark>	3					
A,B,E,D,G,C,J,H,I,F							
Tổng	Tổng						

c) V_T ={ A,B,E,D,G,C,J,H,I} trọng số: 17

Kruskal

Cạnh	Trọng Số
AE	1
DG	1
НЈ	1
DE	2
IH	2
CD	2
AB	2
EF	3
GJ	3
Tổng	17

B) $E_T = \{AE,DG,HJ,DE,IH,CD,AB,EF,GJ\}$ TRONG Số = 17