A Bounded Verification Tool

for Java Source Code

Stefan Koppier and Wishnu Prasetya (supervisor)

The Running Example

Let us use the fibonacci sequence as a running example:

```
int fib(int n) {
    int result = 0;
    int a = 0, b = 1;
    for (int i = 0; i < n; i++) {
        result = a + b;
        b = a;
        a = result;
    }
    return result;
}</pre>
```

The Running Example - Binet's Fibonacci number formula

We can use Binet's Fibonacci number formula to verify that our algorithm is correct.

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$

where F_n is the nth term in the fibonacci sequence.

Architecture

37 10 11

11 10 11

Control Flow Analysis

The first step after parsing is constructing the Control Flow Graph (CFG). The CFG is a data structure containing the flow of the program to be analyzed.

Control Flow Analysis

The first step after parsing is constructing the Control Flow Graph (CFG). The CFG is a data structure containing the flow of the program to be analyzed.

Let G=(V,E) be a graph where the nodes are the statements of the program and the edges are the possible flows between these statements.

Control Flow Analysis - The CFG of Fibonacci

Path Unfolding

Path Unfolding - Two Subsequent Statements

Path Unfolding - If-Then-Else Statements

Path Unfolding - Loops

Compilation

Verification

Experiments

Conclusion

Questions

