Problem 1: (50 points) Solve the linear system Ax = b with A the Hilbert matrix with elements

$$a_{ij} = \frac{1}{(i+j-1)}, \quad i, j = 1, ..., n.$$

b is chosen in such a way that the exact solution is $\mathbf{x} = (1, 1, ..., 1)^T$.

For n = 5, 9, 20, 100:

- (1) Find the condition number of **A**. (10 points)
- (2) Solve it with the direct method (using the MATLAB builtin function \, or Python builtin function numpy.linalg.solve). (10 points)
- (3) Solve it with two iterative methods (1: Gauss-Seidel or PG; 2: PCG). For PCG, you can choose the preconditioner as the diagonal matrix made of the diagonal entries of the Hilbert matrix. (20 points)
- (4) Compare the error for all three methods (direct + two iterative) and number of iterations for two iterative methods. (10 points)

Show your results like in the following table:

		\	PG		PCG	
\overline{n}	$K(A_n)$	Error	Error	Iter	Error	Iter
$\overline{4}$	1.55e + 04	7.72e-13	8.72e-03	995	1.12e-02	3
6	1.50e + 07	7.61e-10	3.60e-03	1813	3.88e-03	4
8	1.53e + 10	6.38e-07	6.30e-03	1089	7.53e-03	4
10	1.60e + 13	5.24e-04	7.98e-03	875	2.21e-03	5
12	1.70e + 16	6.27 e - 01	5.09e-03	1355	3.26e-03	5
14	6.06e + 17	4.12e+01	3.91e-03	1379	4.32e-03	5

Problem 2: (50 points) Numerically solve the following 1D heat equation:

$$u_t(x,t) - u_{xx}(x,t) = -\sin(x)\sin(t) + \sin(x)\cos(t), \quad x \in (0,\pi/2), t > 0.$$

subject to Dirichlet BCs:

$$u(0,t) = 0$$
 and $u(\pi/2,t) = \cos(t)$ for $t > 0$,

and the initial condition:

$$u(x,0) = \sin(x) \quad \text{ for } x \in [0,\pi/2].$$

Use one explicit and one implicit schemes for solving the resulting IVP until $T = \pi$.

- (1) (30 points) Use some plots to demonstrate that your numerical solutions are accurate. The exact solution of this 1D heat equation is $u(x,t) = \sin(x)\cos(t)$.
- (2) (20 points) Choose two different Δ_x and two different Δt , discuss how they affect the accuracy of your numerical solutions. To assist your discussion, you can evaluate the error as $\frac{\|\mathbf{u}(T)-\mathbf{u}^n\|^2}{\|\mathbf{u}(T)\|^2}$, and then compare the errors obtained with different Δ_x and Δt , where $\mathbf{u}(T)$ denotes the exact solution at $T = \pi$; \mathbf{u}^n denotes your numerical solution at the last time step; $\|\cdot\|^2$ is square of the vector magnitude.