Techniques et systèmes de communications numériques sans-fil (TS218)

Romain Tajan

- Contexte
- Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

Signal émis

Expression du signal émis en bande de base :

$$s_l(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - mT_s)$$

Expression du signal émis en bande étroite (ou bande transposée) :

$$s(t) = Re\left(s_l(t)e^{j2\pi f_C t}\right)$$

Notations

- a_m : symboles complexes,
- $s_l(t)$: enveloppe complexe du signal émis,
- T_s: temps symbole,
- $R_s = T_s^{-1}$: débit symbole,
- *h*(*t*) : **filtre de mise en forme à l'émission**, (filtre demi-Nyquist)
- fc: fréquence porteuse.

Signal reçu dans le cas mono-trajet BBAG 1 :

$$r(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s)e^{j2\pi(f_c + \delta_f)t + j\phi}\right) + w(t)$$

But:

Récupérer l'information transmise (détection des symboles an)

Problème:

Les paramètres $\mathbf{p} = [\phi, \tau, T_s, \delta_f]$ sont inconnus ...

- lacktriangle ϕ : Déphasage entres oscillateurs aux émetteur/récepteur
 - ⇒ Synchronisation en phase
- lacktriangledown : Temps de propagation du signal
 - ⇒ Synchronisation en temps
- T_s: Rythme symbole
 - ⇒ Synchronisation du rythme
- δ_f : Décalage en fréquence (effet Doppler, différences f_c émetteur/récepteur)
 - ⇒ Synchronisation en fréquence
- Bruit Blanc Additif Gaussien

- Contexte
- 2 Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

- Contexte
- 2 Synchronisation en phase / fréquence
- Contexte
- ▶ Asservissement de phase : cas de la porteuse non-modulée
- > Asservissement de phase : cas de la porteuse modulée
- 3 Synchronisation temporelle / récupération du rythme

- 2 Synchronisation en phase / fréquence
 - Contexte

Approche retenue pour la synchronisation

- Estimations des paramètres $[\tau, T_s]$ et $[\phi, \delta_f]$ réalisées séparément
- Erreur sur $[\tau, T_s]$ négligée : paramètres connus

Autre approche possible

- Estimations conjointe des paramètres $[\tau, T_s, \phi, \delta_t]$
- plus complexe, non abordé en cours

- Signal reçu :

$$r(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t-mT_s)e^{j2\pi(f_c+\delta_f)t+j\phi}\right) + w(t)$$

- Expression en bande de base :

$$r_{l}(t) = \sum_{m=-\infty}^{+\infty} a_{m}h(t - mT_{s})e^{j2\pi\delta_{f}t + j\phi} + w_{l}(t)$$
$$= \sum_{m=-\infty}^{+\infty} a_{m}h(t - mT_{s})e^{j\phi_{t}} + w_{l}(t)$$

- En supposant que h vérifie le critère de Nyquist et une transmission sans bruit : représenter la constellation $r_{l,k} = r_l(kT_s)$ pour des symboles 4-QAM dans les cas suivants :
 - \rightarrow Déphasage constant $\phi_t = \phi$
 - \rightarrow Déphasage variant linéairement dans le temps $\phi_t = 2\pi \delta_t t + \phi$

Déphasage constant

Déphasage variant linéairement dans le temps

- Contexte
- 2 Synchronisation en phase / fréquence
- ▶ Contexte
- ▶ Asservissement de phase : cas de la porteuse non-modulée
- > Asservissement de phase : cas de la porteuse modulée
- 3 Synchronisation temporelle / récupération du rythme

On se concentre ici sur le cas d'une porteuse non modulée (avec $s_l(t) = A, A \in \mathbb{R}$), le cas d'une porteuse modulée par un signal sera traité ensuite.

• Porteuse non-modulée :

$$r(t) = A\cos(j2\pi f_c t + \phi_t) + w(t)$$

avec

$$\phi_t = 2\pi\delta_t t + \phi$$
.

\rightarrow On veut estimer ϕ_t

- Boucle d'asservissement de phase (Phase Lockded Loop, PLL)
- ightarrow Asservir la phase $\hat{\phi}_t$ du signal de sortie d'un VCO (oscillateur commendé en tension) à la phase ϕ_t du signal reçu

Schéma de principe d'une PLL :

• Multiplicateur + Filtre passe bas = Comparateur de phase But : produire un signal fonction de l'erreur d'estimation $\phi_t - \hat{\phi}_t$ Signal en sortie du filtre proportionnel à :

$$e(t) = sin(\phi_t - \hat{\phi}_t)$$

- Filtre de boucle : Fixe les performances de l'asservissement
- VCO : génère une sinusoïde à la fréquence

• PLL (modèle sur les phases) :

- ullet Analyse petite erreur $(\hat{\phi}_t \sim \phi_t)$:
 - \rightarrow Dans ce cas : $\sin(\phi_t \hat{\phi}_t) \sim \phi_t \hat{\phi}_t$
 - → Le système bouclé ci-dessus devient linéaire
 - → Sa fonction de transfert en boucle fermée est :

$$H(p) = \frac{KG(p)/p}{1 + KG(p)/p}$$

Choix du filtre de boucle

- \rightarrow Boucle du **premier ordre** : G(p) = 1,
- → Boucle du second ordre :
 - → Filtre 1 :

$$G(p) = \frac{1 + \tau_2 p}{\tau_1 p}$$

→ Filtre 2 :

$$G(p) = \frac{1 + \tau_2 p}{1 + \tau_1 p}$$

Les paramètres τ_1 et τ_2 sont des paramètres qui contrôlent la bande-passante de la boucle.

• Performance des PLLs - Réponse à un saut de phase $\phi_t = \phi_0 U(t)$

→ Toutes les boucles accrochent : en régime établi erreur nulle

• **Performance des PLLs** - Réponse à un saut de fréquence $\phi_t = 2\pi\delta_t t U(t)$

→ Erreur de phase nulle seulement pour la boucle du 2ème ordre - Filtre 1
→ Toutes les boucles ont une erreur de fréquence nulle

Modèle d'observation après échantillonnage au rythme T_s de $r_l(t)$:

$$r_{l,k} = e^{j\phi_k} + w_k$$

On cherche toujours à estimer ϕ_k

• Phase constante : $\phi_k = \phi$ inconnue

Vecteur d'observations : $\mathbf{r}_k = (r_{l,0}, r_{l,1}, \dots, r_{l,k})$

Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) =$$

Modèle d'observation après échantillonnage au rythme T_s de $r_l(t)$:

$$r_{l,k} = e^{j\phi_k} + w_k$$

On cherche toujours à estimer ϕ_k

• Phase constante : $\phi_k = \phi$ inconnue

Vecteur d'observations : $\mathbf{r}_k = (r_{l,0}, r_{l,1}, \dots, r_{l,k})$

Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) = \prod_{n=0}^k \frac{1}{\sigma^2 \pi} \exp\left(-\frac{\left|\mathbf{r}_{l,n} - \mathbf{e}^{j\phi}\right|^2}{\sigma^2}\right)$$

Modèle d'observation après échantillonnage au rythme T_s de $r_l(t)$:

$$r_{l,k} = e^{j\phi_k} + w_k$$

On cherche toujours à estimer ϕ_k

• Phase constante : $\phi_k = \phi$ inconnue

Vecteur d'observations : $\mathbf{r}_k = (r_{l,0}, r_{l,1}, \dots, r_{l,k})$

Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) = \prod_{n=0}^k \frac{1}{\sigma^2 \pi} \exp\left(-\frac{\left|\mathbf{r}_{l,n} - \mathbf{e}^{j\phi}\right|^2}{\sigma^2}\right)$$

→ Estimateur du Maximum de Vraisemblance (MV) vérifie :

Modèle d'observation après échantillonnage au rythme T_s de $r_l(t)$:

$$r_{l,k} = e^{j\phi_k} + w_k$$

On cherche toujours à estimer ϕ_k

• Phase constante : $\phi_k = \phi$ inconnue

Vecteur d'observations : $\mathbf{r}_k = (r_{l,0}, r_{l,1}, \dots, r_{l,k})$

Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) = \prod_{n=0}^k \frac{1}{\sigma^2 \pi} \exp\left(-\frac{\left|\mathbf{r}_{l,n} - \mathbf{e}^{j\phi}\right|^2}{\sigma^2}\right)$$

→ Estimateur du Maximum de Vraisemblance (MV) vérifie :

$$\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k | \phi)) = 0$$

Modèle d'observation après échantillonnage au rythme T_s de $r_l(t)$:

$$r_{l,k} = e^{j\phi_k} + w_k$$

On cherche toujours à estimer ϕ_k

• Phase constante : $\phi_k = \phi$ inconnue

Vecteur d'observations : $\mathbf{r}_k = (r_{l,0}, r_{l,1}, \dots, r_{l,k})$

Le canal étant ABBG et les échantillons de bruits iid $\mathcal{CN}(0, \sigma^2)$

$$p(\mathbf{r}_k|\phi) = \prod_{n=0}^k \frac{1}{\sigma^2 \pi} \exp\left(-\frac{\left|\mathbf{r}_{l,n} - \mathbf{e}^{j\phi}\right|^2}{\sigma^2}\right)$$

→ Estimateur du Maximum de Vraisemblance (MV) vérifie :

$$\frac{\partial}{\partial \phi} ln(p(\mathbf{r}_k | \phi)) = 0$$

Montrer que

$$\hat{\phi}_k = \arctan \frac{\sum_{n=0}^k r_{Q,n}}{\sum_{n=0}^k r_{I,n}}$$

Pour $\hat{\phi}_k \sim \phi_k$ on a

$$\sum_{n=0}^{k} Im(r_n e^{-j\phi_k}) = Im(r_k e^{-j(\hat{\phi}_k - \hat{\phi}_{k-1}) + j\hat{\phi}_{k-1}}) + \sum_{n=0}^{k-1} Im(r_n e^{-j(\hat{\phi}_k - \hat{\phi}_{k-1}) + j\hat{\phi}_{k-1}}) = 0$$

En utilisant le développement $\epsilon = \left| \hat{\phi}_k - \hat{\phi}_{k-1} \right| \ll 1$

$$Im(ze^{j\epsilon}) \sim Im(z) + \epsilon Re(z)$$

Montrer que $\hat{\phi}_k$ peut s'écrire récursivement comme :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu_k \operatorname{Im}(r_k e^{-j\hat{\phi}_{k-1}}) \tag{1}$$

avec

$$\mu_k = \left[\sum_{n=0}^k Re(r_k e^{-j\hat{\phi}_{k-1}})\right]^{-1}$$

L'équation (1) est appelée PLL numérique.

- Contexte
- 2 Synchronisation en phase / fréquence
- ▶ Contexte
- Asservissement de phase : cas de la porteuse non-modulée
- ▶ Asservissement de phase : cas de la porteuse modulée
- 3 Synchronisation temporelle / récupération du rythme

Télécommunications : la porteuse est modulée

$$r(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t-mT_s)e^{j\phi_t}e^{j2\pi f_c t}\right) + w(t)$$

⇒ On ne peut pas utiliser directement la PLL sur ce signal!

Télécommunications : la porteuse est modulée

$$r(t) = Re\left(\sum_{m=-\infty}^{+\infty} a_m h(t - mT_s)e^{j\phi_t}e^{j2\pi f_c t}\right) + w(t)$$

⇒ On ne peut pas utiliser directement la PLL sur ce signal!

Les solutions proposées sont les suivantes :

- → Boucle à quadrature
- → Boucle de Costas
- → Boucle avec séquence d'apprentissage
- → Boucle à remodulation

• Cas de la modulations BPSK : $a_m \in \{A, -A\}$ et $h(t) = \Pi_{T_s}(t)$

Dans ce cas on observe que pour
$$t \in [nT_s(n+1)T_s[$$

$$r(t)^2 = (a_n \cos(2\pi f_c t + \phi_t) + w(t))^2$$

• Cas de la modulations BPSK : $a_m \in \{A, -A\}$ et $h(t) = \Pi_{T_s}(t)$

Dans ce cas on observe que pour $t \in [nT_s(n+1)T_s[$

$$r(t)^2 = (a_n \cos(2\pi f_c t + \phi_t) + w(t))^2$$

D'où

$$r(t)^2 = \frac{\sigma_a^2}{2} + \frac{\sigma_a^2}{2}\cos(4\pi f_c t + 2\phi_t) + \tilde{w}(t)$$

• Cas de la modulations BPSK : $a_m \in \{A, -A\}$ et $h(t) = \Pi_{T_s}(t)$

Dans ce cas on observe que pour $t \in [nT_s(n+1)T_s[$

$$r(t)^2 = (a_n \cos(2\pi f_c t + \phi_t) + w(t))^2$$

D'où

$$r(t)^2 = \frac{\sigma_a^2}{2} + \frac{\sigma_a^2}{2}\cos(4\pi f_c t + 2\phi_t) + \tilde{w}(t)$$

 \rightarrow On peut récupérer $2\phi_t$ avec une PLL

Comment faire pour une M-PSK?

$$a_n \in (1, e^{j\frac{2\pi}{M}}, e^{j\frac{4\pi}{M}} \dots e^{j\frac{2\pi(M-1)}{M}})$$

Comment faire pour une M-PSK?

$$a_n \in (1, e^{j\frac{2\pi}{M}}, e^{j\frac{4\pi}{M}} \dots e^{j\frac{2\pi(M-1)}{M}})$$

 \rightarrow Méthode généralisable en élevant à la puissance M.

Pourquoi cette boucle fonctionne-t'elle?

Après calcul:

$$e(t) = r_{l,l}(t)r_{l,Q}(t) \propto -\sin(2(\phi_t - \hat{\phi}_t))\left(\sum_s a_n g(t - nT_s)\right)^2$$

Quand la boucle est accrochée on a $\hat{\phi}_t = \phi_t(\pi) \Rightarrow$ ambiguïté sur la phase

Quand la boucle est accrochée on a $\hat{\phi}_t = \phi_t(\pi) \Rightarrow$ ambiguïté sur la phase

→ Solution : codage différentiel

Boucles à remodulation

- Les systèmes présentés jusqu'ici sont des estimateurs aveugles.
- ⇒ Ils n'exploitent pas une éventuelle séquence d'apprentissage.

Soit une séquence d'apprentissage $\{a_n\}_{n=1...N}$, en sortie de filtre adapté, et échantillonnage on peut montrer que l'estimateur

$$\hat{\phi}_k = \arctan \frac{\sum_{n=0}^{N} Im(r_n a_n^*)}{\sum_{n=0}^{N} Re(r_n a_n^*)}$$

⇒ l'estimateur en ligne suivant :

$$\hat{\phi}_k = \hat{\phi}_{k-1} + \mu \operatorname{Im}(r_k a_k^* e^{-j\hat{\phi}_{k-1}})$$

- Contexte
- 2 Synchronisation en phase / fréquence
- 3 Synchronisation temporelle / récupération du rythme

Retour sur le signal reçu dans le cas mono-trajet BBAG en bande de base :

$$r_l(t) = \sum_{m=-\infty}^{+\infty} a_m h(t - \tau - mT_s) + w_l(t)$$

But:

Estimer τ et $T_s \Leftrightarrow$ estimer les instants d'échantillonnage $mT_s + \tau_m$

Contexte :

On suppose que la synchronisation en fréquence/phase est réalisée

Approche avec séquence d'apprentissage

Retour sur le signal reçu en bande de base, en sortie du filtre adapté :

$$y_l(t) = \sum_{m=-\infty}^{+\infty} a_m g(t - \tau - mT_s) + w'_l(t)$$

Le critère considéré ici est le critère d'Erreur Quadratique Moyenne (EQM) :

$$J_{EQM}(au') = \mathbb{E}\left[\left|y_l(mT_s + au') - a_m\right|^2\right]$$

Algorithme du Gradient Stochastique :

$$au_{m+1} = au_m - \mu \left. \frac{d}{d au'} \left| y_l(mT_s + au') - a_m \right|^2 \right|_{ au' = au_s}$$

Approche avec séquence d'apprentissage

Algorithme du Gradient Stochastique (suite) :

$$au_{m+1} = au_m - \mu \mathsf{Re} \left(\left. rac{d}{dt} y_l(t)
ight|_{t=m\mathsf{T}_s + au_m} [y_l(m\mathsf{T}_s + au_m) - a_m]^*
ight)$$

En théorie : La dérivée du signal reçu est obtenue à partir de la formule d'interpolation de Shannon.

En pratique : On utilise une estimation par différence finie (à deux points).

Approche sans séquence d'apprentissage

Idée générale : le signal $r_l(t)$ est cyclostationnaire de période T_s

- \Rightarrow on applique une non-linéarité à $r_l(t)$ qui fait apparaître des composantes sinusoïdales aux fréquences $\frac{k}{T_s}$
- \Rightarrow on récupère $1/T_s$ avec une PLL

Exemple de non-linéarité :

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = \sigma_{a}^{2} \sum^{+\infty} \left|g(t - mT_{s} - \tau)\right|^{2} + \sigma^{2}$$

Approche sans séquence d'apprentissage

Décomposition en série de Fourier de $\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right]$:

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = \sum_{k} c_{k} e^{j2\pi kt/T_{s}}$$

avec

$$c_k = \frac{1}{T} \int_0^T \mathbb{E}\left[|r_l(t)|^2\right] e^{-j2\pi kt/T_s} dt$$
$$= \frac{\sigma_a^2}{T} e^{-j2\pi \frac{k\tau}{T_s}} \int_{-\infty}^{\infty} G(t) G^*(t - \frac{k}{T}) dt + \sigma^2 \delta(k)$$

Remarques

- Généralement, $c_k = 0$ pour k > 1, en effet le filtre de mise en forme possède généralement une bande passante inclue dans $\left[\frac{-1}{T_c}, \frac{1}{T_c}\right]$
- Roll-off faible $\Rightarrow |c_1| = |c_{-1}|$ faible

Approche sans séquence d'apprentissage

Remarque (suite)

On obtient finalement

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right] = c_{0} + c_{1}e^{j2\pi\frac{t}{T_{S}}} + c_{-1}e^{j2\pi\frac{t}{T_{S}}}$$

En supposant que g(t) est paire on a

$$\mathbb{E}\left[\left|r_{l}(t)\right|^{2}\right]=c_{0}+\left|c_{1}\right|\cos(2\pi\frac{t-\tau}{T_{s}})$$

Donc

$$|r_l(t)|^2 = c_0 + |c_1|\cos(2\pi\frac{t-\tau}{T_c}) + w_l''(t)$$

 \Rightarrow c_0 est enlevé via filtrage passe haut/bande

 $\Rightarrow \tau/T_s$ estimés avec une PLL

Contact : Romain Tajan

- THE END -