Introduction to Random Process

Outline

- ► Textbook: chapter 1 Shreve I
- ► Introduction to Random process
- Classify random process
- Martingale property
- Stopping time

Table of Contents

Random/Stochastic processes

Martingale

Stopping time

Stochastic processes or Random process

- ➤ A stochastic process is a mathematical model of a probabilistic experiment that evolves in time and generates a sequence of numerical values.
- ► Each numerical value in the sequence is modeled by a random variable
- A collection of random variables

Example

- the sequence of daily prices of a stock;
- the sequence of scores in a football game;
- the sequence of failure times of a machine;
- the sequence of hourly traffic loads at a node of a communication network;
- the sequence of radar measurements of the position of an airplane

Stochastic process is a collection of random variables $(X_t)_{t\in I}$ on a probability space (Ω, \mathcal{F}, P) taking values in \mathcal{S}

▶ *t*: time

- **▶** *t*: time
- ► *I*: the index set of the process

- **▶** *t*: time
- ► *I*: the index set of the process
- \triangleright \mathcal{S} : the set of state of the stochastic process.

- ▶ t: time
- ► *I*: the index set of the process
- \triangleright \mathcal{S} : the set of state of the stochastic process.
- ▶ For each fixed ω , $X_t(\omega)$ is a deterministic function of time, which is called the sample path (realization, trajectory, sample function)
- ightharpoonup At each instant t, X_t is a random variable

Example

A collection (S_0, S_1, S_2) is a stochastic process.

 S_0 , S_1 , S_2 are RV

Corresponding to an outcome w=HH, we have a sample path (4,8,16)

Binomial tree of stock prices with $S_0 = 4$, u = 1/d = 2.

Use random processes to

- model some phenomena which evolves over time
- ▶ take into account the dependence, e.g how knowledge about asset price up to today effect on the behavior of asset price tomorrow or in the future
- forecasting
- evaluate risk

Example

Consider a binomial asset pricing model

- $ightharpoonup S_0 = 4$
- $p(H) = p(T) = \frac{1}{2}$
- $u = 2, d = \frac{1}{2}$

Suppose we know that $S_1=2$, $S_2=4$, $S_3=8$.

Then $E(S_4|S_1=2,S_2=4,S_3=8)$ is used to forecast the asset price at period 4.

Example - Auto regressive model AR(1)

Let S_n be asset price at period n and $r_n = \frac{S_n - S_{n-1}}{S_{n-1}}$ be percentage return at period n

Return at period n depends on the return at period n-1 and random noise ϵ_n

$$r_n = c + \phi r_{n-1} + \epsilon_n$$

 $\epsilon_1,\epsilon_2,\ldots$ are independent (unpredictable term effects on return)

- ▶ Assume that c = 3, $\phi = 1$ and $\epsilon_n \sim \mathcal{N}(0, 1)$
- ▶ Given that $r_0 = 3$, $r_1 = 1$, $r_2 = 4$, $r_3 = -1$
- ightharpoonup the conditional distribution of r_5

$$r_5|(r_0=3, r_1=1, r_2=4, r_3=-1) \sim \mathcal{N}(2, 1)$$

- ▶ Assume that c = 3, $\phi = 1$ and $\epsilon_n \sim \mathcal{N}(0, 1)$
- ▶ Given that $r_0 = 3$, $r_1 = 1$, $r_2 = 4$, $r_3 = -1$
- ightharpoonup the conditional distribution of r_5

$$r_5|(r_0=3, r_1=1, r_2=4, r_3=-1) \sim \mathcal{N}(2, 1)$$

► Forecast return at period 5

$$E(r_5|(r_0=3, r_1=1, r_2=4, r_3=-1)=2$$

- ▶ Assume that c = 3, $\phi = 1$ and $\epsilon_n \sim \mathcal{N}(0, 1)$
- ▶ Given that $r_0 = 3$, $r_1 = 1$, $r_2 = 4$, $r_3 = -1$
- \blacktriangleright the conditional distribution of r_5

$$r_5|(r_0=3, r_1=1, r_2=4, r_3=-1) \sim \mathcal{N}(2, 1)$$

Forecast return at period 5

$$E(r_5|(r_0=3, r_1=1, r_2=4, r_3=-1)=2$$

▶ Risk that the return at period 5 is negative

$$P(r_5 < 0 | (r_0 = 3, r_1 = 1, r_2 = 4, r_3 = -1) = P(X < 0)$$
 where $X \sim \mathcal{N}(2, 1)$

Exercise - AR(2)

Return at period n depends on the two last returns at period n-1 and n-2 and random noise ϵ_n

$$r_n = 1 + 0.5S_{n-2} + 2S_{n-1} + \epsilon_n$$

 $\epsilon_1, \epsilon_2, \ldots$ are independent and normally distributed $\mathcal{N}(0,1)$. Given that $r_0=3, \ r_1=1, \ r_2=4, \ r_3=-1$

- 1. Forecast return at period 5
- 2. Evaluate the risk that the return at period 5 is less than -1.

Classification of stochastic processes

$$X: I \times \Omega \to \mathcal{S}$$

 $(t,\omega) \to X_t(\omega)$

- Based on time observation I
 - ▶ Discrete: I is countable, e.g, $\{0, 1, 2, \dots\}$
 - ▶ Continuous: I is uncountable, e.g $[0, \infty)$, [0, 1]
- Based on state observation S
 - ▶ Discrete *S* is countable, e.g, $\{0, 1, 2, ...\}$, $\{2^0, 2^{\pm 1}, 2^{\pm 2}, ...\}$
 - ▶ Continuous: S is uncountable, e.g $[0, \infty)$, [0, 1]

Discrete time vs Continuous time

Discrete state vs Continuous state

An air-monitoring station in southern California records oxidant concentration levels every hour in order to monitor smog pollution.

- An air-monitoring station in southern California records oxidant concentration levels every hour in order to monitor smog pollution.
- Concentration levels are recorded every hour.

- An air-monitoring station in southern California records oxidant concentration levels every hour in order to monitor smog pollution.
- Concentration levels are recorded every hour.
- \triangleright X_i : the concentration level at i-th hour.

- An air-monitoring station in southern California records oxidant concentration levels every hour in order to monitor smog pollution.
- Concentration levels are recorded every hour.
- $ightharpoonup X_i$: the concentration level at i-th hour.
- X₀, X₁, ...: is discrete-time continuous-state stochastic process.

Continuous-time discrete-state stochastic process

▶ Dany receives text messages at random times day and night.

Continuous-time discrete-state stochastic process

- ▶ Dany receives text messages at random times day and night.
- $ightharpoonup X_t$: the number of texts he receives up to time t

Continuous-time discrete-state stochastic process

- ▶ Dany receives text messages at random times day and night.
- X_t: the number of texts he receives up to time t
- ▶ $\{X_t, t \in [0, \infty]\}$ is a continuous-time stochastic process with discrete state space $\{0, 1, 2, ...\}$

Discrete-time discrete-state stochastic process

- ▶ Flip a coin infinitely many times, X_k : the number of heads in the first k flips
- ► Stock price in binomial stock model

Discrete-time discrete-state stochastic process

- ▶ Flip a coin infinitely many times, X_k : the number of heads in the first k flips
- $ightharpoonup X_1, X_2, \dots$ is a discrete-time discrete-state stochastic process
- Stock price in binomial stock model

Modeling stock prices as stochastic processes

The stock price S_t at each future time t varies randomly.

Modeling stock prices as stochastic processes

The stock price S_t at each future time t varies randomly.

If we only observe the closed price at the end of each trading day, then we have a discrete collection $(S_t)_{t=0,1,2,...}$: discrete-time continuous state stochastic process.

Modeling stock prices as stochastic processes

The stock price S_t at each future time t varies randomly.

- If we only observe the closed price at the end of each trading day, then we have a discrete collection $(S_t)_{t=0,1,2,...}$: discrete-time continuous state stochastic process.
- ▶ If we observe all intra-day prices (all prices during a trading day), we obtain a continuous collection $(S_t)_{0 \le t \le T}$:a continuous-time continuous-state stochastic process.

Information affects on stock prices

► The market price of a stock: the price at which a buyer and a seller agree to trade.

Information affects on stock prices

- ► The market price of a stock: the price at which a buyer and a seller agree to trade.
- ► The change of the market price of a stock is caused by the supply and demand.

- ► The market price of a stock: the price at which a buyer and a seller agree to trade.
- ► The change of the market price of a stock is caused by the supply and demand.
- Supply increases: low expectation of the company's profitability.

- ► The market price of a stock: the price at which a buyer and a seller agree to trade.
- ► The change of the market price of a stock is caused by the supply and demand.
- Supply increases: low expectation of the company's profitability.
- Demand increases: high expectation of the company's profitability.

- ► The market price of a stock: the price at which a buyer and a seller agree to trade.
- ► The change of the market price of a stock is caused by the supply and demand.
- Supply increases: low expectation of the company's profitability.
- Demand increases: high expectation of the company's profitability.
- News changes the expectation of the company's profitability

- ► The market price of a stock: the price at which a buyer and a seller agree to trade.
- ► The change of the market price of a stock is caused by the supply and demand.
- Supply increases: low expectation of the company's profitability.
- Demand increases: high expectation of the company's profitability.
- News changes the expectation of the company's profitability
- ► Filtration: time-evolving information structure to study random process of a stock price.

A filtered probability space is a quadruple $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$:

 $ightharpoonup (\Omega, \mathcal{F}, P)$: a probability space

- \blacktriangleright (Ω, \mathcal{F}, P) : a probability space
- ▶ Filtration $\{\mathcal{F}_t\}$: a non-decreasing collection of σ -algebras $\{\mathcal{F}_t \subset \mathcal{F}\}_{t\geq 0}$ such that $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall 0 \leq s \leq t$.

- \blacktriangleright (Ω, \mathcal{F}, P) : a probability space
- ▶ Filtration $\{\mathcal{F}_t\}$: a non-decreasing collection of σ -algebras $\{\mathcal{F}_t \subset \mathcal{F}\}_{t>0}$ such that $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall 0 \leq s \leq t$.
- $ightharpoonup \sigma$ -algebra \mathcal{F}_t : "information set"

- \blacktriangleright (Ω, \mathcal{F}, P) : a probability space
- ▶ Filtration $\{\mathcal{F}_t\}$: a non-decreasing collection of σ -algebras $\{\mathcal{F}_t \subset \mathcal{F}\}_{t\geq 0}$ such that $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall 0 \leq s \leq t$.
- $ightharpoonup \sigma$ -algebra \mathcal{F}_t : "information set"
- ► Filtration functions like a filter of information flow to control information propagation.

- \blacktriangleright (Ω, \mathcal{F}, P) : a probability space
- ▶ Filtration $\{\mathcal{F}_t\}$: a non-decreasing collection of σ -algebras $\{\mathcal{F}_t \subset \mathcal{F}\}_{t\geq 0}$ such that $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall 0 \leq s \leq t$.
- $ightharpoonup \sigma$ -algebra \mathcal{F}_t : "information set"
- ► Filtration functions like a filter of information flow to control information propagation.
- $ightharpoonup \mathcal{F}_t$ represents the information available up to time t.

- $ightharpoonup (\Omega, \mathcal{F}, P)$: a probability space
- ▶ Filtration $\{\mathcal{F}_t\}$: a non-decreasing collection of σ -algebras $\{\mathcal{F}_t \subset \mathcal{F}\}_{t\geq 0}$ such that $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall 0 \leq s \leq t$.
- $ightharpoonup \sigma$ -algebra \mathcal{F}_t : "information set"
- ► Filtration functions like a filter of information flow to control information propagation.
- $ightharpoonup \mathcal{F}_t$ represents the information available up to time t.
- ▶ The condition $\mathcal{F}_s \subset \mathcal{F}_t, \forall 0 \leq s \leq t$ ensures that the amount of information grows as time evolves and that no information is lost with increasing time.

Example

Some important $\sigma - algebra$ of subsets of Ω in Example 2

1. $\mathcal{F}_0 = \{\emptyset, \Omega\}$: trial $\sigma - algebra$ - contains **no information**. Knowing whether the outcome w of the three tosses is in \emptyset and whether it is in Ω tells you nothing about w.

Example

Some important $\sigma-algebra$ of subsets of Ω in Example 2

- 1. $\mathcal{F}_0 = \{\emptyset, \Omega\}$: trial $\sigma algebra$ contains **no information**. Knowing whether the outcome w of the three tosses is in \emptyset and whether it is in Ω tells you nothing about w.
- 2.

$$\mathcal{F}_1 = \{0, \Omega, \{HHH, HHT, HTH, HTT\}, \{THH, THT, TTH, TTT\}$$

$$= \{0, \Omega, A_H, A_T\}$$

where

$$A_H = \{HHH, HHT, HTH, HTT\} = \{ \text{ H on first toss } \}$$

$$A_T = \{THH, THT, TTH, TTT\} = \{ \text{ H on first toss } \}$$

 \mathcal{F}_1 : information of the first coin or "information up to time 1". For example, you are told that the first coin is H and no more.

3.

$$\mathcal{F}_2 = \{\emptyset, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}\}$$
 and all sets which can be built by taking unions of these } where

$$A_{HH} = \{HHH, HHT\} = \{\text{HH on the first two tosses}\}$$
 $A_{HT} = \{HTH, HTT\} = \{\text{HT on the first two tosses}\}$
 $A_{TH} = \{THH, THT\} = \{\text{TH on the first two tosses}\}$
 $A_{TT} = \{TTH, TTT\} = \{\text{TT on the first two tosses}\}$

 \mathcal{F}_2 : information of the first two tosses or "information up to time 2"

3.

$$\mathcal{F}_2 = \{\emptyset, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}\}$$
 and all sets which can be built by taking unions of these \}

where

$$A_{HH} = \{HHH, HHT\} = \{\text{HH on the first two tosses}\}$$

$$A_{HT} = \{HTH, HTT\} = \{\text{HT on the first two tosses}\}$$

$$A_{TH} = \{THH, THT\} = \{\text{TH on the first two tosses}\}$$

$$A_{TT} = \{TTH, TTT\} = \{\text{TT on the first two tosses}\}$$

 \mathcal{F}_2 : information of the first two tosses or "information up to time 2"

4. $\mathcal{F}_3 = \mathcal{G}$ set of all subsets of Ω : "full information" about the outcome of all three tosses

Natural filtration

Consider a stochastic process on a probability space (Ω, \mathcal{F}, P) .

► The filtration $(\mathcal{F}_t)_{t\geq 0}$ is called a natural filtration of the process $(X_t)_{t\geq 0}$ if $\mathcal{F}_t = \sigma(X_s, 0 \leq s \leq t), t \geq 0$.

Natural filtration

Consider a stochastic process on a probability space (Ω, \mathcal{F}, P) .

- ► The filtration $(\mathcal{F}_t)_{t\geq 0}$ is called a natural filtration of the process $(X_t)_{t\geq 0}$ if $\mathcal{F}_t = \sigma(X_s, 0 \leq s \leq t), t \geq 0$.
- ▶ \mathcal{F}_t is the σ -algebra generated by random variables $X_s, 0 \leq s \leq t$

Consider a stochastic process $(X_t)_{t\geq 0}$ on a filter probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$.

 $(X_t)_{t\geq 0}$ is adapted to the filtered probability space if X_t is \mathcal{F}_t -measurable for each $t\geq 0$, i.e., $\sigma(X_t)\in \mathcal{F}_t$.

- $(X_t)_{t\geq 0}$ is adapted to the filtered probability space if X_t is \mathcal{F}_t -measurable for each $t\geq 0$, i.e., $\sigma(X_t)\in \mathcal{F}_t$.
- $ightharpoonup X_t$ can be completely determined from the information available in \mathcal{F}_t .

- $lacksquare (X_t)_{t\geq 0}$ is adapted to the filtered probability space if X_t is \mathcal{F}_t -measurable for each $t\geq 0$, i.e., $\sigma(X_t)\in \mathcal{F}_t$.
- $ightharpoonup X_t$ can be completely determined from the information available in \mathcal{F}_t .
- For each t>s, X_t may not be \mathcal{F}_s -measurable, i.e., at time s, X_t is considered unknown

- $(X_t)_{t\geq 0}$ is adapted to the filtered probability space if X_t is \mathcal{F}_t -measurable for each $t\geq 0$, i.e., $\sigma(X_t)\in \mathcal{F}_t$.
- X_t can be completely determined from the information available in \mathcal{F}_t .
- For each t > s, X_t may not be \mathcal{F}_s -measurable, i.e., at time s, X_t is considered unknown
- ► The notion of adaptedness can be interpreted as inability to have knowledge about future events.

Example

- Binomial asset pricing
- ► $S = (S_0, S_1, S_2, S_3)$: stock price up to time period 3
- ▶ Filtration $(\mathcal{F}_t) = \mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3)$ with

$$\mathcal{F}_{0} = \{\emptyset, \Omega\}$$

$$\mathcal{F}_{1} = \{\emptyset, \Omega, A_{T}, A_{H}\} = \sigma(A_{H}, A_{T})$$

$$\mathcal{F}_{2} = \sigma(A_{HH}, A_{HT}, A_{TH}, A_{TT})$$

$$\mathcal{F}_{3} = \sigma(A_{HHH}, A_{HHT}, A_{THH}, A_{THT}, A_{THH}, A_{THT}, A_{THH}, A_{THT}, A_{TTT})$$

lacksquare S is adapted to the filtration (\mathcal{F}_t)

Table of Contents

Random/Stochastic processes

Martingale

Stopping time

Martingale

- 1. (Discrete case)A (discrete time) stochastic process $(X_n)_{n\in\mathbb{N}}$ is a martingale with respect to the filtration (\mathcal{F}_n) if
 - $ightharpoonup X_n$ is \mathcal{F}_n measurable.
 - $ightharpoonup E(X_{n+1}\mathcal{F}_n)=X_n \text{ for all } n.$
- 2. (Continuous case) A (continuous time) stochastic process $(X_t)_{t\geq 0}$ is a martingale with respect to the filtration (\mathcal{F}_t) if
 - $ightharpoonup X_t$ is \mathcal{F}_t measurable.
 - $ightharpoonup E(X_t \mathcal{F}_s) = X_s \text{ for all } t \geq s.$

Property

Martingale tends to neither go up nor go down. The expectation of a martingale is constant over time

$$E(X_t) = E(E(X_t|\mathcal{F}_0)) = E(X_0)$$

for all t

Remark

In order to verify

$$E(X_{n+1}|\mathcal{F}_n) = X_n$$

for a discrete time stochastic process

ightharpoonup Represent X_{n+1} as

$$X_{n+1} = U_n + Y_{n+1}$$

or

$$X_{n+1} = U_n Y_{n+1}$$

where U_n is F_n - measurable and Y_{n+1} is independent of \mathcal{F}_n

Example

Binomial asset pricing model $(S_n)_{n\geq 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 0}$ where \mathcal{F}_n is σ - algebra generated by the first n tossing results.

Proof

Denote

$$X_n = \begin{cases} u & \text{if the } n \text{th toss is H} \\ d & \text{if the } n \text{th toss is T} \end{cases}$$

then $(X_n)_n$ are independent and identically distributed

$$P(X_n = u) = p P(X_n = d) = q$$

and

$$S_{n+1} = S_n X_{n+1}$$

$$\Rightarrow E(S_{n+1}|\mathcal{F}_n) = E(\underbrace{S_n}_{\text{depends on }\mathcal{F}_n \text{ independent of }\mathcal{F}_n}|\mathcal{F}_n)$$

$$= \underbrace{S_n}_{\text{take out of what is known}} E(X_{n+1}|S_n) = S_n \underbrace{E(X_{n+1})}_{\text{independent property}}$$

The price process $(S_k)_k$ is a martingale if $E(X_{n+1})=1$ or pu+qd=1.

Example - Gambler

Consider a fair game in which the chances of winning and losing equal amounts are the same, i.e. if we denote X_k the outcome of k-th trial at the game, then it is known that $E[X_k] = 0$. Suppose that the initial wealth of a gambler is 0 and he is allowed to borrow as much as possible at no extra cost to play. Then his total wealth after k trials is determined by

$$M_k = X_1 + \dots + X_k = \sum_{n=1}^k X_n$$

Denote $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$: information sets generated by the first k-trial. Then

$$E(M_{k+1}|\mathcal{F}_k) = E\left(\sum_{n=1}^{k+1} X_n|\mathcal{F}_k\right)$$

$$\sum_{n=1}^{k+1} X_n = \sum_{n=1}^{k} X_n + \underbrace{X_{k+1}}_{\text{independent of } \mathcal{F}_k}$$

Hence

$$E(M_{k+1}|\mathcal{F}_k) = E\left(\sum_{n=1}^{k+1} X_n | \mathcal{F}_k\right) = \sum_{n=1}^{k} X_n + E(X_{k+1}|\mathcal{F}_k)$$
$$= \sum_{n=1}^{k} X_n + \underbrace{E(X_{k+1})}_{=0}$$
$$= \sum_{n=1}^{k} X_n = M_k$$

So the wealth proces $(M_k)_{k\geq 0}$ is a martingale

Practice - Double or nothing

The gambler starts with an initial wealth of 1 dollar and she always bets all of her wealth on the head of a fair coin. If the coin lands on a head, she doubles her wealth. Otherwise, she goes broke. Let

$$X_n = \begin{cases} 2 \text{ if the } n^{th} \text{ tossing is head} \\ 0 \text{ if the } n^{th} \text{ tossing is tail} \end{cases}$$

- 1. Determine a formula for her wealth process $(M_k)_k \ge 0$
- 2. Is her wealth process a martingale?

Table of Contents

Random/Stochastic processes

Martingale

Stopping time

Stopping time

Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration on a probability space (Ω,\mathcal{F},P) . A nonnegative random variable T is called to be a stopping time with respect to $(\mathcal{F}_t)_{t\geq 0}$ if $(\tau\leq t)\in\mathcal{F}_t)$ for all $t\geq 0$

Stopping time

Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration on a probability space (Ω,\mathcal{F},P) . A nonnegative random variable T is called to be a stopping time with respect to $(\mathcal{F}_t)_{t\geq 0}$ if $(\tau\leq t)\in\mathcal{F}_t)$ for all $t\geq 0$

Example

In gambler problem, the first time that a gambler gains \$8 is a stopping time.

Stopped process

Let $((X_t)_{t\geq 0}$ be a random process and T is a stopping time with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$ then the stopped process X_t^T is given by

$$X_t^T(\omega) = X_{\min(t, T(\omega))}(\omega) = \begin{cases} X_t(\omega) & \text{if } t < T(\omega) \\ X_{T(\omega)}(\omega) & \text{if } t \ge T(\omega) \end{cases}$$

Optimal stopping theorem

Let $(X_t)_{t\geq 0}$ be a martingale and T is a stopping time with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$.

If T is bounded (T < c a.s for some c) then the stopped process X_{+}^{T} is also a martingale.

Consequently

$$E(X_t^T) = E(X_0)$$

Example

Consider a fair game in which the change of winning or losing \$1 each round are equal . The gambler starts with an initial wealth of \$3. He plays until he broke or his wealth reaches \$10. What is the probability that he wins the game.

 $ightharpoonup M_n$: his wealth after round n

 $ightharpoonup M_n$: his wealth after round n

$$M_n = 10 + X_1 + \dots X_n = M_{n-1} + X_n$$

where X_k are i.i.d with $P(X_k=1)=P(X_k=-1)=\frac{1}{2}$

 $ightharpoonup (M_n)_{n\geq 0}$ is a martingale because

 $ightharpoonup M_n$: his wealth after round n

$$M_n = 10 + X_1 + \dots X_n = M_{n-1} + X_n$$

where X_k are i.i.d with $P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$

 $ightharpoonup (M_n)_{n\geq 0}$ is a martingale because

$$E(M_n|\mathcal{F}_{n-1}) = M_{n-1} + E(X_n|\mathcal{F}_{n-1}) = M_{n-1} + E(X_n) = M_{n-1}$$

Let τ be the time that the game stops then τ is a stopping time

 $ightharpoonup M_n$: his wealth after round n

$$M_n = 10 + X_1 + \dots X_n = M_{n-1} + X_n$$

where X_k are i.i.d with $P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$

 $ightharpoonup (M_n)_{n\geq 0}$ is a martingale because

$$E(M_n|\mathcal{F}_{n-1}) = M_{n-1} + E(X_n|\mathcal{F}_{n-1}) = M_{n-1} + E(X_n) = M_{n-1}$$

- Let τ be the time that the game stops then τ is a stopping time
- Apply optimal stopping time, we have

$$E(M_{\tau}) = E(M_0) = 3$$

ightharpoonup p: probability the the gambler wins, i.e he has \$10 at time τ

- ightharpoonup p: probability the the gambler wins, i.e he has \$10 at time au
- lacktriangle Probability that he loses (remains \$0 at time au) is 1-p

$$M_{\tau} \begin{cases} 10, & \text{with prob} p \\ 0, & \text{with prob} 1-p \end{cases}$$

- ightharpoonup p: probability the the gambler wins, i.e he has \$10 at time au
- lacktriangle Probability that he loses (remains \$0 at time au) is 1-p

$$M_{\tau} \begin{cases} 10, & \text{with prob} p \\ 0, & \text{with prob} 1-p \end{cases}$$

$$E(M_{\tau}) = 10p + 0(1-p) = 10p$$

▶ But $E(M_{\tau}) = 3$. So

$$10p = 3 \Rightarrow p = 0.3$$