# Лабораторная работа №2.3.1 Получение и измерение вакуума

Гёлецян А.Г.

22 июля 2022 г.

**Цель работы:** 1) измеренеи объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

# 1 Экспериментальная установка



Рис. 1: Схема экспериментальной установки.

Установка изготовлена из стекла и состоит из форвакуумного баллона ( $\Phi$ B), высоковакуумного диффузионного насоса (BH), высоковакуумного баллона (BB), масляного (M) и ионизационного (И) манометров, термопарных манометров ( $M_1$  и  $M_2$ ), форвакуумного насоса ( $\Phi$ H) и соединительных кранов (Рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

**Маслянный манометр:** Представляет собой U-образную трубку, до половины наполненную вязким маслом, обладающим весьма низким давлением насыщенных паров. Так как плотность масла мала,  $\rho=0,885 \ r/cm^3$ , то при помощи манометра можно измерить только небольшие разности давлений (до нескольких торр). Во время откачки и заполнения установки атмосферным воздухом кран  $K_4$  соединяющий оба колена манометра, должен быть открыт во избежание выброса масла и загрязнения установки. Кран  $K_4$  закрывается только при измерении давления U-образным манометром.

Термопарный манометр: Чувствительным элементом манометра является термопара, заключенная в стеклянный баллон. Устройство термопары поясненона (Рис. 2). По нити накала НН пропускается ток постоянной величины. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла вокружающее пространство. Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы и теплоизлучением нити (инфракрасноетепловое излучение). В обычном режимелампы основную роль играет теплопроводность газа. При давлениях >1 торр теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает. При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает и температура спая возрастает. При вакууме  $10^{-3}$  торр теплоотвод, осуществляемый газом, становится сравнимым с другими видами потерь теплаи температура нити становится практически постоянной. Градуировочная кривая термопарного манометра приведена на (Рис. 3).





Рис. 2: Схема термопаного манометра.

Рис. 3: Градуировочная кривая термопарного манометра.

Ионизационный манометр: Схема ионизационного манометра изображена на (Рис. 4). Он представляет собой трехэлектродную лампу. Электроны испускаются накаленным катодом и увлекаются электрическим полем к аноду, имеющему вид спирали. Проскакивая за ее витки, электроны замедляются полем коллектора и возвращаются к катоду, а от него вновь увлекаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своем пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притяги ваются полем коллектора и определяют его ток. Ионный ток в цепи коллектора пропорционален плотности газа и поэтому может служить мерой давления. Вероятность ионизации зависит от рода газа, заполняющего лампу (а значит, и откачиваемый объем). Калибровка манометра верна, если остаточным газом является воздух. Накаленный катод ионизационного манометра перегорает, если давление в системе превышает  $10^{-3}$  торр. Поэтому включать ионизационный манометр можно, только убедившись по термопарному манометру, что давление в системе не превышает  $10^{-3}$  торр. При измерении нить ионизационного манометра сильно греется. При этом она сама, окружающие ее электроды и стенки стеклянного баллона могут десорбировать поглощенные ранее газы. Выделяющиеся газы изменяют давление в лампе и приводят к неверным показаниям. Поэтому перед измерениями ионизационный манометр прогревается (обезгаживается) в течение 10-15 мин. Для прогрева пропускается ток через спиральный анод лампы.



Рис. 4: Схема ионизационного манометра.

Диффузионный насос: Откачивающее действие диффузионногонасоса основано на диффузии (внедрении) молекул разреженного воздуха в струю паров масла. Попавшие в струю молекулы газа увлекаются ею и уже не возвращаются назад. Устройство одной ступени масляного диффузионного насоса схематически показано на (Рис. 5) (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубе Б и вырываются из сопла В. Струя паров увлекает молекулы газа,которые поступают из откачиваемого сосуда через трубку ВВ. Дальше смесь попадает в вертикальную трубу  $\Gamma$ . Здесь масло осаждаетсяна стенках трубы и маслосборников и стекает вниз, а оставшийся газчерез трубу  $\Phi$ В откачивается форвакуумным насосом. Диффузионный насос работает наиболее эффективно при давлении, когда длинасвободного пробега молекул воздуха примерно равна ширине кольцевого зазора между соплом В и стенками трубы ВВ. В этом случае пары масла увлекают молекулы воздуха из всего сечения зазора. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше  $5 \cdot 10^{-2}$  торр. Именно поэтому пары масла создают плотную струю, которая и увлекаетс собой молекулы газа. Если диффузионный насос включить при давлении, сравнимом с давлением насыщенного пара масла, то последнее никакой струи не создаст и масло будет просто окисляться и угорать.

Диффузионный насос, используемый в нашей установке, имеет две ступени и соответственно два сопла (Рис. 6). Одно сопло вертикальное (первая ступень), второе сопло горизонтальное (вторая ступень). За второй ступенью имеется еще одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла, испаряясь, поступают в первую ступень, обогащая ее легколетучей фракцией масла. По этой причине плотность струи первой ступени выше и эта ступень начинает откачивать при более высоком давлении в форвакуумной части установки. Вторая ступень обогощается малолетучими фракциями. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров масла в этой ступени. Соответственно в откачиваемый объем поступает меньше паров масла и его удается откачать до более высокого вакуума, чем если бы мы работали только с одной ступенью.



Диффузионный насос

Рис. 5: Схема одной ступени диффузионного насоса.

Рис. 6: Диффузионный насос используемый в нашей работе.

# 2 Теоретическая часть

**Процесс откачки:** Производительность насоса определяется скоростью откачки W ( $\pi/c$ ): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форваку-умного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду.

Обозначим через  $Q_{\rm H}$  количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времеи, через  $Q_{\rm H}$  – количество газа, проникающего в единицу времени в этот объем извне – через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть  $Q_{\rm H}$  — поток газа, поступающего из насоса назад в откачиваемую систему.  $Q = Q_{\rm H} + Q_{\rm H}$  измеряем в единицах (моль/с). Получаем формулу

$$-\frac{VdP}{RT} = \left(\frac{PW}{RT} - Q\right)dt$$

При предельном давлении dP = 0 и поэтому получаем

$$Q = \frac{P_{\rm np}W}{RT}$$

Подставляя получаем

$$-VdP = W(P - P_{\text{nd}})dt$$

Интегрируем полученное ур-е и получаем

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V}t\right) \tag{1}$$

Пренебрегая  $P_{\rm np}$  относитеьно  $P_0$ 

$$P = P_0 \exp\left(-\frac{W}{V}t\right) \tag{2}$$

Как видим, величина  $\tau = V/W$  показывает характерное время откачки системы.

Теперь попробуем понять чем обусловлена скорость откачки. Очевидно, скорость W зависит от скорости откачки насоса  $W_{\rm H}$ , но она так же зависит от трубопровода соединяющего насос к откачиваемой части, т.к. если трубопровод не сможет обеспечить достаточное количество газа к входу насоса то, производительность упадет.



Рис. 7: Схема насоса с трубопроводом.

Попробуем описать систему математически. Пусть у нас есть насос со скоростью откачки  $W_{\rm H}$  и трубопровод с пропускной способностью C. Давление в откачиваемом объеме –  $P_1$ . Исследовав схему 7 получаем

$$C(P_1-P_2)=W_{\scriptscriptstyle \rm H}P_2\Rightarrow P_2=\frac{CP_1}{C+W_{\scriptscriptstyle \rm H}}\Rightarrow WP_1=W_{\scriptscriptstyle \rm H}P_2=\frac{CW_{\scriptscriptstyle \rm H}}{C+W_{\scriptscriptstyle \rm H}}P_1$$

Как видим, для результирующей скорости W верно соотношение

$$\frac{1}{W} = \frac{1}{W_{\scriptscriptstyle \mathrm{H}}} + \frac{1}{C}$$

Обобщая это выражение для последовательно соединенных труб получаем

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{3}$$

Заметим только что данные формулировки верны при молекулярном режиме течения, когда вязкое трение не имеет большого вклада в движение газа.

**Течение газа через трубу:** Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}$$
 (4)

где r и L соответственно радиус и длина трубы. Если пренебречь давлением  $P_1$  у конца, обращенного к насосу, получаем формулу для пропускной способности трубы

$$C_{\rm TP} = \frac{dV}{dt} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \tag{5}$$

Для пропускной способности отверстия (например в кранах) имеем формулу

$$C_{\text{\tiny OTB}} = S \frac{\overline{v}}{4} \tag{6}$$

## 3 Ход работы

#### 3.1 Измерение объема высоковакуумной части

Открываем все краны и запускаем в систему воздух из атмосферы ( $P_{\rm atm}=99.7\cdot 10^3\Pi a=748$ торр). Закрываем краны  $K_5$  и  $K_6$ , тем самым заперев в кранах и в капилляре воздух объемом  $V_{\rm san}=(50\pm1){\rm cm}^3$ . Откачиваем воздух из системы при помощи форвакуумного насоса. После откачки до давления  $\sim 10^{-2}$ торр запираем кран 2 и изолируем систему от атмосферы. Закрывая кран у масляного манометра приводим его в рабочее состояние. Отсакаем высоковакуумную часть закрытием крана 3 и впускаем запертый в кране 5 воздух в форвакуумную часть установки. при этом, давление в форвакуумной части возрастает, о чем свидетельствует маслянный манометр. Измеряем давление при помощи последнего и следующим шагом открываем кран 3, соединяя высоковакуумную часть с остальной. При этом давление падает. По этим данным считаем объем высоковакуумной части пользуясь законом Бойля-Мариотта. Заметим, что здесь мы пренебрегли начальным давлением (порядка  $\sim 10^{-2}$ торр) т.к. оно в  $\sim 1000$  раз меньше других давлении.

$$P_{\text{атм}}V_{\text{зап}} = P_1V_{\text{dbB}} = P_2(V_{\text{dbB}} + V_{\text{BB}})$$

Измеренные давления

$$\Delta h_1 = (28.8 \pm 0.2)_{\text{CM}} \Rightarrow P_1 = (18.8 \pm 0.1)_{\text{Topp}}$$
  
 $\Delta h_1 = (18.3 \pm 0.2)_{\text{CM}} \Rightarrow P_1 = (11.9 \pm 0.1)_{\text{Topp}}$ 

Подставляя получаем

$$V_{\rm dbB} = (1990 \pm 40) \,\rm cm^3 \tag{7}$$

$$V_{\rm BB} = (1150 \pm 60) \text{cm}^3 \tag{8}$$

#### 3.2 Получение высокого вакуума и измерение скорости откачки

Открываем все краны и проводим первоначальную выкачку воздуха форвакуумным насосом. После приближения к предельному давлению ( $\sim 10^{-2} {
m topp}$ ), закрываем кран 6 и включаем диффузионный насос. Ждем пока масло закипит и начнется дальнейшая выкачка уже диффузионным насосом. По достижению давления порядка  $\sim 10^{-3} {
m topp}$  включаем ионизационный манометр, которым и будем измерять давление в дальнейшем.

Чтобы измерить скорость откачки W замерим как изменяется давление в высоковакуумной части от времени. Сосгласно теории давление должно падать по правилу, где у нас  $P_{\rm np}=1.2\cdot 10^{-4}$ торр

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V_{\text{BB}}}t\right) \tag{9}$$

Логарифмируя, получаем

$$\ln(P - P_{\text{np}}) = -\frac{W}{V_{\text{BB}}}t + c \tag{10}$$

Аппроксимируя наши данные согласно формуле (10) получим значение для W. Измерение проведем 2 раза. Результаты изображены на графиках 8 (данные предоставлены в таблице 1). Учитывая что погрешности логарифмов растут со временем, и зависимость теряет характерный линейный вид, линеяная аппроксимация была сделана только для оранжевых точек. Пользуясь объемом высоковакуумной части из формулы (7) и данными аппроксимации получаем следующие значения для скорости откачки

$$W_1 = (237 \pm 14) \frac{\text{cm}^3}{c}; W_2 = (241 \pm 14) \frac{\text{cm}^3}{c}$$
 (11)

Как видим, значеня лежат в пределах погрешности, чего и следовало ожидать.

Теперь определим величину потока  $Q_{\rm H}$ . Для обшего потока имеем формулу

$$P_{\rm np}W = (Q' + Q_{\rm H})RT \tag{12}$$

где  $Q' = Q_{\rm u} + Q_{\rm д}$ . Теперь, если по достижению предельного давления закрыть кран 3, то насос будет отсоиденен от высоковакуумной части, и уравнение описывающее давление от времени примет вид

$$V_{\rm BB}dP = QRTdt$$

интегрируя которую получим

$$P = \frac{QRT}{V_{\text{\tiny BB}}}t + c \tag{13}$$

Измерив зависимость давления от времени и аппроксимируя данные прямой можно получить Q. Графики приведены на рисунке 9. Отсюда получаем

$$Q_1RT = (97 \pm 6) \cdot 10^{-4} \text{Topp} \cdot \text{cm}^3 \text{c}^{-1}; Q_2RT = (94 \pm 5) \cdot 10^{-4} \text{Topp} \cdot \text{cm}^3 \text{c}^{-1}$$
(14)

Опять же, значения совпадают в пределах погрешности, как и ожидалось. Теперь, используя значения  $W_1, W_2, Q_1, Q_2$  по формуле (12) считаем значение  $Q_{\rm H}$ 

$$Q_{\rm H} = \frac{(1.9 \pm 0.3) \cdot 10^{-2} \text{Topp} \frac{\rm cm^3}{\rm c}}{RT} = (1.03 \pm 0.16) \cdot 10^{-9} \frac{\rm MOJIb}{\rm c}$$
(15)





Рис. 8: Линеаризованные графики улучшения вакуума.

#### 3.3 Измерение скорости откачки путем создания исскуственной течи

Открывая краны 5 и 6 мы создаем исскуственную течь через каппиляр. Измеряя изменение давления при создании течи можно посчитать производительность насоса. Опишем данную мысль математически. Обозначим  $P_{\rm BB}$  – давление в высоковакуумной части, а  $P_{\rm \varphi B}$  – давление в форвакуумной части. До открытия каппиляра

$$\frac{P_{\rm np}W}{RT} = Q \tag{16}$$

а после открытия

$$\frac{P_{\text{ycr}}W}{RT} = Q + Q_{\text{кап}} \tag{17}$$

где  $P_{\text{уст}}$  – установившееся давление после открытия каппиляра, а  $C_{\text{кап}}$  – пропускная способность каппиляра, которую считаем по формуле (4). В нашей установке

$$P_{\text{пр}} = (1.2 \pm 0.1) \cdot 10^{-4} \text{торр}$$
  
 $P_{\text{уст}} = (1.7 \pm 0.1) \cdot 10^{-4} \text{торр}$   
 $P_{\Phi \text{B}} = (2.3 \pm 0.1) \cdot 10^{-2} \text{торр}$   
 $r = 0.4 \text{мм}$   
 $L = 10 \text{см}$   
 $T = 295 \text{K}$ 

Подставляя числа получаем

$$Q_{\text{кап}} = \frac{4}{3} r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi B} - P_{\text{уст}}}{LRT} = (7.7 \pm 0.3) \cdot 10^{-11} \frac{\text{моль}}{\text{c}}$$
 (18)

A для W получаем

$$W = \frac{4}{3} \frac{r}{L} \sqrt{\frac{2\pi RT}{\mu}} r^2 \frac{P_{\Phi B} - P_{ycr}}{P_{ycr} - P_{np}} = (286 \pm 80) \frac{\text{cm}^3}{\text{c}}$$
(19)

### 4 Выводы

В ходе работы было измерено скорость откачки диффузионного насоса двумя способами

$$W_{\text{ухудшение вакуума}} = (239 \pm 14) \frac{\text{см}^3}{\text{с}}; W_{\text{искуственная течь}} = (286 \pm 80) \frac{\text{см}^3}{\text{с}}$$
 (20)

Значения совпадают в пределах погрешности. Погрешность значения измеренной методом создания исскуственной течи большая в связи с наличием разности двух близких величин в формуле подсчета  $(P_{\rm ycr}-P_{\rm np})$ . Во время работы так же было проверенно справедливость отношения

$$P - P_{\rm np} = (P_0 - P_{\rm np}) \exp\left(-\frac{W}{V}t\right)$$

при откачке воздуха и отношения

$$P = \frac{QRT}{V_{\text{\tiny BB}}}t + c$$

описывающее рост давления при отключении насоса от системы.

| Улучшение 1 |                   | Улучшение 2 |                   | Ухудшение 1 |                   | Ухудшение 2 |                   |
|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|
| t, c        | $P, 10^{-4}$ Topp | t, c        | $P, 10^{-4}$ Topp | t, c        | $P, 10^{-4}$ торр | t, c        | $P, 10^{-4}$ ropp |
| 0.0         | 7.4               | 0.0         | 7.2               | 0.0         | 1.7               | 0.0         | 1.6               |
| 0.5         | 7.3               | 0.5         | 7.0               | 1.5         | 1.8               | 1.0         | 1.7               |
| 1.0         | 7.2               | 1.0         | 6.7               | 2.5         | 1.9               | 2.0         | 1.8               |
| 1.5         | 7.0               | 1.5         | 6.3               | 3.5         | 2.0               | 3.0         | 1.9               |
| 2.0         | 6.8               | 2.0         | 5.9               | 4.5         | 2.1               | 4.5         | 2.0               |
| 2.5         | 6.6               | 2.5         | 5.5               | 5.5         | 2.2               | 5.5         | 2.1               |
| 3.0         | 6.2               | 3.0         | 5.1               | 6.5         | 2.3               | 6.5         | 2.2               |
| 3.5         | 5.9               | 3.5         | 4.7               | 7.5         | 2.4               | 7.5         | 2.3               |
| 4.0         | 5.5               | 4.0         | 4.3               | 8.5         | 2.5               | 8.5         | 2.4               |
| 4.5         | 5.1               | 4.5         | 4.0               | 9.5         | 2.6               | 9.5         | 2.5               |
| 5.0         | 4.7               | 5.0         | 3.7               | 10.5        | 2.7               | 11.0        | 2.6               |
| 5.5         | 4.3               | 5.5         | 3.4               | 12.0        | 2.8               | 12.0        | 2.7               |
| 6.0         | 4.0               | 6.0         | 3.2               | 13.0        | 2.9               | 13.0        | 2.8               |
| 6.5         | 3.6               | 6.5         | 3.0               | 14.0        | 3.0               | 14.0        | 2.9               |
| 7.0         | 3.4               | 7.0         | 2.8               | 15.0        | 3.1               | 15.5        | 3.0               |
| 7.5         | 3.1               | 7.5         | 2.6               | 16.0        | 3.2               | 16.5        | 3.1               |
| 8.0         | 2.9               | 8.0         | 2.5               | 17.0        | 3.3               | 18.0        | 3.2               |
| 8.5         | 2.8               | 8.5         | 2.4               | 18.5        | 3.4               | 19.0        | 3.3               |
| 9.0         | 2.6               | 9.0         | 2.3               | 19.5        | 3.5               | 20.0        | 3.4               |
| 9.5         | 2.5               | 9.5         | 2.2               | 20.5        | 3.6               | 21.5        | 3.5               |
| 10.0        | 2.4               | 10.0        | 2.1               | 21.5        | 3.7               | 22.5        | 3.6               |
| 10.5        | 2.3               | 11.0        | 2.0               | 23.0        | 3.8               | 24.0        | 3.7               |
| 11.0        | 2.2               | 12.0        | 1.9               | 24.0        | 3.9               | 25.0        | 3.8               |
| 11.5        | 2.1               | 13.0        | 1.8               | 25.5        | 4.0               | 26.5        | 3.9               |
| 12.0        | 2.0               | 13.5        | 1.7               | 26.5        | 4.1               | 27.5        | 4.0               |
| 13.0        | 1.9               | 19.0        | 1.5               | 28.5        | 4.3               | 30.0        | 4.2               |
| 14.0        | 1.8               | 35.5        | 1.3               | 31.0        | 4.5               | 33.0        | 4.4               |
| 15.0        | 1.7               |             |                   | 34.0        | 4.7               | 35.5        | 4.6               |
| 18.0        | 1.6               |             |                   | 43.0        | 5.3               | 43.5        | 5.2               |
| 21.5        | 1.5               |             |                   | 53.5        | 6.0               | 53.0        | 5.9               |
| 28.5        | 1.4               |             |                   |             |                   |             |                   |

Таблица 1: Данные для построения графиков





Рис. 9: Графики ухудшения вакуума.