关于测试单周期 CPU 的简单方法

1. 测试程序段(汇编代码)

address	instruction	ор	rs	rt	immediate	code	result
0x00000000	addiu \$1,\$0,8	001001	00000	00001	0000 0000 0000 1000	24010008	\$1 = 8
0x00000004	ori \$2,\$0,2	001101	00000	00010	0000 0000 0000 0010	34020002	\$2 = 2

address	instruction	ор	rs	rt	rd	shamt	funct	code	result
0x00000008	add \$3, \$2 ,\$1	000000	00010	00001	00011	00000	100000	00411820	\$3 = 10
0x0000000C	sub \$5, \$3 , \$ 2	000000	00011	00010	00101	00000	100010	00622822	\$5 = 8
0x00000010	and \$4, \$ 5,\$2	000000	00101	00010	00100	00000	100100	00a22024	\$4 = 0
0x00000014	or \$8, \$4 ,\$2	000000	00100	00010	01000	00000	100101	00824025	\$8 = 2
0x00000018	sll \$8,\$8,1	000000	00000	01000	01000	00001	000000	00084040	\$8 = 4 \$8 = 8

address	instruction	ор	rs	rt	immediate	code	result
0x0000001C	bne \$8,\$1,-2 (≠,转 18)	000101	00001	01000	1111 1111 1111 1110	1501fffe	
0x00000020	slti \$6,\$2,4	001010	00010	00110	0000 0000 0000 0100	28460004	\$6 = 1
0x00000024	sltiu \$7, \$ 6,0	001011	00110	00111	0000 0000 0000 0000	2cc70000	\$7 = 0
0x00000028	addiu \$7, \$ 7,8	001000	00111	00111	0000 0000 0000 1000	24e70008	\$7 = 8 \$7 = 16
0x0000002C	beq \$7,\$1,-2 (=,转 28)	000100	00111	00001	1111 1111 1111 1110	10e1fffe	
0x00000030	sw \$2,4(\$1)	101011	00001	00010	0000 0000 0000 0100	ac220004	mem[12:15]<=2
0x00000034	lw \$9,4(\$1)	100011	00001	01001	0000 0000 0000 0100	8c290004	\$9 = 2
0x00000038	addiu \$10,\$0,-2	001001	00000	01010	1111 1111 1111 1110	240afffe	\$10 = -2
0x0000003C	addiu \$10, \$10 ,1	001001	01010	01010	0000 0000 0000 0001	254a0001	\$10 = -1
0x00000040	andi \$11,\$2,2	001100	00010	01011	0000 0000 0000 0010	304b0002	\$11 = 2

address	instruction	ор	rs	rt	rd	shamt	funct	code	result
0x00000044	addu \$10,\$0,\$2	000000	00000	00010	01010	00000	100001	00025021	\$10 = 2
0x00000048	subu \$10,\$10,\$2	000000	01010	00010	01010	00000	100011	01425023	\$10 = 0
0x0000004C	xor \$10,\$8,\$2	000000	01000	00010	01010	00000	100110	01025026	\$10 =10
0x00000050	nor \$10,\$8,\$2	000000	01000	00010	01010	00000	100111	01025027	\$10 = fffffff5
0x00000054	sltu \$10,\$8,\$2	000000	01000	00010	01010	00000	101011	0102502b	\$10 = 0
0x00000058	srl \$10,\$8,1	000000	00000	01000	01010	00001	000010	00085042	\$10 = 4
0x0000005C	sllv \$10,\$8,\$6	000000	01000	00110	01010	00000	000100	00c85004	\$10 =16
0x00000060	srlv \$10,\$8,\$6	000000	01000	00110	01010	00000	000110	00c85006	\$10 = 4

address	instruction	ор	rs	rt	immediate	code	result
0x00000064	addi \$10,\$0,-1	001000	00000	01010	1111 1111 1111 1111	200affff	\$10 = -1

address	instruction	ор	rs	rt	rd	shamt	funct	code	result
0x00000068	sra \$11,\$10,1	000000	00000	01010	01011	00001	000011	000a5843	\$11 = -1
0x0000006C	srav \$11,\$10,\$6	000000	01010	00110	01011	00000	000111	00ca5807	\$11 = -1

address	instruction	ор	rs	rt	immediate	code	result
0x00000070	xori \$10,\$3,7	001110	00011	01010	0000 0000 0000 0111	386a0007	\$10 = 13
0x00000074	lui \$5, 10	001111	00000	00101	0000 0000 0000 1010	3c05000a	\$5=0xA0000
0x00000078	sh \$3, 8(\$1)	101001	00001	00011	0000 0000 0000 1000	a4230008	mem[16:17]=10
0x0000007C	sb \$3, 10(\$1)	101000	00001	00011	0000 0000 0000 1010	a023000a	mem[18]=10
0x00000080	lh \$10, 9(\$1)	100001	00001	01010	0000 0000 0000 1001	842a0009	\$10=0×10101010
0x00000084	lb \$10, 4(\$1)	100000	00001	01010	0000 0000 0000 0100	802a0004	\$10 = 0

address	instruction	ор	address	code	result
0x00000088	jal 0000008C	000011	0000008c	0c000023	

address	instruction	ор	rs	rt	immediate	code	result
0x0000008C	ori \$1,\$0,0x00000098	001101	00000	00001	0000 0000 0110 0010	34010098	\$1=0x00000098

address	instruction	ор	rs	rt	rd	shamt	funct	code	result
0x00000090	jr \$1	000000	00001	00000	00000	00000	001000	00200008	
0x00000094	add \$10,\$1,\$2	000000	00001	00010	01010	00000	000010	00225020	
0x00000098	slt \$10,\$5,\$6	000000	00101	00110	01010	00000	101010	00a6502a	\$10 = 0

address	instruction	ор	rs	rt	rd	shamt	funct	code	result
0x0000009C	mult \$9,\$2	000000	01001	00010	00000	00000	011000	01220018	hi = 0 lo = 4
0x000000A0	mfhi \$10	000000	00000	00000	01010	00000	010000	00005010	\$10 = 0
0x000000A4	mflo \$10	000000	00000	00000	01010	00000	010010	00005012	\$10 = 4
0x000000A8	div \$9, \$2	000000	01001	00010	00000	00000	011010	0122001a	1
0x000000AC	mfhi \$10	000000	00000	00000	01010	00000	010000	00005010	\$10 = 1
0x000000B0	mflo \$10	000000	00000	00000	01010	00000	010010	00005012	\$10 = 0

address	instruction	ор	address	code	result
0x000000B4	j 0x000000B8	000010	000000b8	0800002e	

address	instruction	ор	rs	rt	immediate	code	result
0x000000B8	haul	111111	00000	00000	0000000000000000	fc000000	haul

2. 机器码

Bkpt	Address	Code	Basic	Source	4
	0x00000000	0x24010008	addiu \$1,\$0,0x00000	3: addiu \$1,\$0,8	<u> </u>
	0x00000004	0x34020002	ori \$2,\$0,0x00000002	4: ori \$2,\$0,2	
	0x00000008	0x00411820	add \$3,\$2,\$1	5: add \$3,\$2,\$1	
	0x0000000c	0x00622822	sub \$5,\$3,\$2	6: sub \$5,\$3,\$2	
	0x00000010	0x00a22024	and \$4,\$5,\$2	7: and \$4,\$5,\$2	
	0x00000014	0x00824025	or \$8,\$4,\$2	8: or \$8,\$4,\$2	
	0x00000018	0x00084040	sll \$8,\$8,0x00000001	9: bnelabel : sll \$8,\$8,1	
	0x0000001c	0x1501fffe	bne \$8,\$1,0xfffffffe	10: bne \$8,\$1,bnelabel#-2	
	0x00000020	0x28460004	slti \$6,\$2,0x00000004	11: slti \$6,\$2,4	
	0x00000024	0x2cc70000	sltiu \$7,\$6,0x00000	12: sltiu \$7,\$6,0	
	0x00000028	0x24e70008	addiu \$7,\$7,0x00000	13: beqlabel : addiu \$7,\$7,8	
	0x0000002c	0x10e1fffe	beq \$7,\$1,0xfffffffe	14: beq \$7,\$1,beqlabel #-2	

由于寄存器数据宽度为 8 位,则 coe 文件的格式为:

MEMORY_INITIALIZATION_RADIX=16;

MEMORY_INITIALIZATION_VECTOR=

24,01,00,08,

34,02,00,02,

00,41,18,20,

00,62,28,22,

00,a2,20,24,

00,82,40,25,

00,08,40,40,

15,01,ff,fe,

28,46,00,04,

2c,c7,00,00,

24,e7,00,08,

10,e1,ff,fe,

ac,22,00,04,

8c,29,00,04,

24,0a,ff,fe,

25,4a,00,01,

30,4b,00,02,

00,02,50,21,

01,42,50,23,

01,02,50,26,

01,02,50,27,

01,02,50,2b,

00,08,50,42,

00,c8,50,04,

00,c8,50,06,

20,0a,ff,ff,

00,0a,58,43,

00,ca,58,07,

38,6a,00,07,

3c,05,00,0a,

a4,23,00,08,

```
a0,23,00,0a,
84,2a,00,09,
80,2a,00,04,
0c,00,00,23,
34,01,00,98,
00,20,00,08,
00,22,50,20,
00,a6,50,2a,
01,22,00,18,
00,00,50,10,
00,00,50,12,
01,22,00,1a,
00,00,50,10,
00,00,50,12,
08,00,00,2e,
fc,00,00,00;
```

3. 仿真模块

仿真代码及注释如下:

```
`timescale 1ns / 1ps
module top_sim;
// Inputs
reg clkin;
reg reset;
wire[31:0] inst, pc, pcAdd4;
// Instantiate the Unit Under Test (UUT)
top uut (
   .clkin(clkin),
   .reset(reset),
   .inst(inst),
    .pc(pc),
    .pcAdd4(pcAdd4)
);
initial
begin
    // Initialize Inputs
    clkin = 0;
    reset = 1;
    // Wait 20 ns for global reset to finish
    #20;
    reset = 0;
end
parameter PERIOD = 20;
always
```

```
begin
    clkin = 1'b0;
    #(PERIOD / 2);
    clkin = 1'b1;
    #(PERIOD / 2);
end
endmodule
```