Chapter 7: Linear Regression

March 16

- Lecture
 - Chapter 7 Linear Regression, part 1
- Practical tomorrow
- Homework due next week
- Final Exam to be held during last lecture time slot
 - May 15, 13:45 16:30
- Outliers in covariance

Aims for today

- Understand what linear regression is
 - understand linear regression with one predictor
- Understand how we assess the fit of a regression model
 - Least squares and sum of squares
 - F and t test statistics
 - $-R^2$
- Know how to do regression using R
- Understand assumptions of regression and how to evaluate them

What is Regression?

- A statistical technique that is closely related to correlation
 - with correlation, we were interested in measuring the relationship between existing data points that have values along two variables
- With regression, we go beyond the existing data

What is Regression?

- A way of predicting the value of an outcome variable from the value of one (simple regression) or multiple (multiple regression) predictor variables.
 - It is a hypothetical model of the relationship between variables
 - It is a <u>linear model</u>
 - based on a straight line drawn through the data

What is Regression?

Describing a Straight Line

$$Y_i = b_0 + b_1 X_i$$

- "Betas"
 - $-b_1$
 - Gradient (slope) of the regression line
 - Direction/strength of relationship
 - $-b_0$
 - Intercept (value of Y when X = 0)
 - Point at which the regression line crosses the Y-axis

Intercepts and Gradients

The Method of Least Squares

How do I fit a straight line to my data?

$$\sum (b_0 + b_1 x_i - y_i)^2$$

Varying the slope changes residual sum of squares

Sums of Squares

Summary

- SS_T
 - Total variability (variability between scores and the mean).
- \bullet SS_R
 - Residual/error variability (variability between the regression model and the actual data).
- SS_M
 - Model variability (difference in variability between the model and the mean).

Back to R²

- $SSm/SSt = R^2$
 - amount of variance explained by the model relative to the amount of variance there was to explain in the first place
 - tells us how good of a fit our regression is
- Which means that the square root is the Pearson correlation coefficient for the data

Two ways of testing the model

- How likely is it that we would see the pattern/ model fit in our sample data if there's no such pattern in the population?
- F statistic
 - Testing the overall model
- t statistic
 - Testing the betas

Testing the Overall Model

- Mean squared error
 - Sums of squares are total values.
 - They can be expressed as averages.
 - These are called mean squares, MS.
- Explained variance over unexplained variance

$$F = \frac{MS_M}{MS_R}$$

Testing the betas

- null hypothesis: betas = 0
- Standard Errors of the betas
 - standard deviations of the sampling distributions

Testing the betas

- Calculate t test statistic for each beta
 - ratio explained to unexplained variance

$$t = b_{observed} - b_{expected} = b_{observed} - 0$$

$$SE_b$$

Regression: An Example

- A record company boss was interested in predicting record sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and downloads) in the week after release
- Predictor variable:
 - The amount (in units of £1000) spent promoting the record before release.

Regression in R

We run a regression analysis using the *lm()*function – lm stands for 'linear model'. This
function takes the general form:

newModel<-Im(outcome ~ predictor(s), data =
dataFrame)</pre>

Regression in R

albumSales.1 <- lm(sales ~ adverts, data = album1)

 or we can specify the columns directly: albumSales.1 <- lm(album1\$sales ~ album1\$adverts)

Output of a Simple Regression

 We have created an object called albumSales.1 that contains the results of our analysis. We can show the object by executing: summary(albumSales.1)

>Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 *** adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 65.99 on 198 degrees of freedom

Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313

F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

Using the Model

```
Record Sales<sub>i</sub> = b_0 + b_1Advertising Budget<sub>i</sub>
= 134.14 + (0.09612 \times \text{Advertising Budget}_i)
```

```
Record Sales<sub>i</sub> = 134.14 + (0.09612 \times \text{Advertising Budget}_i)
= 134.14 + (0.09612 \times 100)
= 143.75
```

Assumptions

- Variable types
- Independence
- Linearity
- Assumptions regarding residuals
 - No autocorrelation
 - Homoscedasticity
 - Normally distributed

Assumption of no autocorrelation

Also called "independent errors"

- durbinWatsonTest(name_of_model)
 - D-W statistic > 2: residuals negatively correlated
 - D-W statistic < 2: residuals positively correlated
 - returns a p-value!

Model Diagnostic Plots in RStudio

```
plot(name_of_model)
```

-or to visualize all 4 graphs at once-

```
par(mfrow = c(2,2))
par(mar = c(4.25,4.25,4.25,4.25))
plot(name_of_model)
```

Model Diagnostic Plots

Assumption of Normally Distributed Errors

Do your residuals form a normal distribution?

Assumption of Normally Distributed Errors

Model Diagnostic Plots

Assumption of Homoscedasticity

 Are the size of the residuals consistent across the values of your predictor(s)?

Assumption of Homoscedasticity

Model Diagnostic Plots

Outliers vs. Influential Points vs. High-Leverage Points

- Outliers
 - extreme points that don't fit the general pattern of the data
- Influential point
 - an outlier that greatly affects the slope of the regression line
- High-leverage point
 - a data point with an extreme x value

What is this?

What is this?

What is this?

Detecting Outliers

- standardized residuals
 - residuals divided by their standard deviation
 - these are z-scores!
 - remember that 99.9% of data should be between +/3.29
 - rstandard(name_of_model)

Assessing Influential Cases & Leverage

- Influential cases: Cook's distance
 - values greater than 1 ☺
 - cooks.distance(name_of_model)
- Leverage: Hat values
 - -(k+1)/n = ave. hat value for a data set
 - k: number of predictors
 - n: number of participants
 - 2 or 3 times ave. value ⊗
 - hatvalues(name_of_model)

Leverage/Influential Point examples

High Leverage Point/No (highly) influential point (and not an outlier)

High Leverage Point/Highly influential point (and an outlier)

Leverage/Influential Point examples

No high leverage/No influential points

No high leverage/No (highly) influential points (but yes outlier!)

