Математический анализ 1. Лекция 5. Эквивалентность и порядки малости функций

18 сентября 2023 г.

Эквивалентность функций Основные свойства эквивалентности

Порядки малости Основные свойства отношения o Применение к вычислению пределов

Напоминание: элементарная техника вычисления пределов

Элементарная техника полагается на удачное преобразование подпредельного выражения. Успех на этом пути зависит от случайной догадки и везения. Мы будем прокладывать путь к более систематическому вычислению пределов.

Эквивалентность функций

Определение. Пусть $b\in\mathbb{R}$ или $b=\pm\infty,\infty$ Пусть функции f и g определены в некоторой проколотой окрестности точки b, причем $g(x)\neq 0$ в ней. Функции f и g называются эквивалентными ($f\sim g$) при $x\to b$, если

$$\lim_{x \to b} \frac{f(x)}{g(x)} = 1.$$

Отсюда следует, что и $f(x) \neq 0$ в проколотой окрестности точки b и $\lim_{x \to b} \frac{g(x)}{f(x)} = 1.$ Т.е. и $g \sim f.$

Пример. $\sin x \sim x$ при $x \to 0$, т.к. $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Простейшие эквивалентности при x o 0 (их надо запомнить!)

- 1. $\sin x \sim x$,
- 2. $1 \cos x \sim \frac{x^2}{2}$,
- 3. $(1+x)^a 1 \sim ax$,
- 4. $a^x 1 \sim (\ln a)x$ при a > 0, $a \neq 1$
- 5. $\log_a(1+x) \sim \frac{x}{\ln a}$ при a > 0, $a \neq 1$,
- 6. $\arcsin x \sim x$, $\arctan x \sim x$.

Что это означает для графиков функций? 🛨

Основные свойства эквивалентности

Ниже предполагается, что функции f,g,\ldots определены в некоторой проколотой окрестности точки b.

1. Если $f\sim g$ при $x\to b$ и существует хотя бы один из пределов $\lim_{x\to b}f(x)$, $\lim_{x\to b}g(x)$, то существует и второй, и эти пределы равны.

Если дополнительно обе функции непрерывны в точке b, то f(b)=g(b).

Доказательство.
$$\lim_{x \to b} f(x) = \lim_{x \to b} \left(\frac{f(x)}{g(x)} g(x) \right) = 1 \cdot \lim_{x \to b} g(x).$$

2. Тривиальный случай: если существуют $\lim_{x \to b} f(x) = \lim_{x \to b} g(x) = c \neq 0$, то $f \sim g$ при $x \to b$.

В частности, если существует $\lim_{x\to b}f(x)=c\neq 0$, то $f\sim c$ при $x\to b$. Пример. $\cos x\sim 1$ при $x\to 0$.

- - 3.1 $f \sim f$ (рефлексивность),
 - 3.2 $f \sim g \ \Rightarrow \ g \sim f$ (симметричность) уже обсудили выше.
 - 3.3 $f \sim g$ и $g \sim h \Rightarrow f \sim h$ (транзитивность).

Доказательство. 1. $\lim_{x\to b} \frac{f(x)}{f(x)} = 1$.

3.
$$\lim_{x \to h} \frac{f(x)}{g(x)} = 1$$
, $\lim_{x \to h} \frac{g(x)}{h(x)} = 1 \implies \lim_{x \to h} \frac{f(x)}{h(x)} = 1$.

4. Произведение эквивалентных функций. Если $f_1\sim g_1$ и $f_2\sim g_2$ при $x\to b$, то $f_1f_2\sim g_1g_2$ при $x\to b$.

Пример. $\sin x \sim x$ при $x \to 0 \Rightarrow x \sin^2 x \sim x^3$ при $x \to 0$.

Доказательство: $\lim_{x \to b} \frac{f_1(x)f_2(x)}{g_1(x)g_2(x)} = \lim_{x \to b} \frac{f_1(x)}{g_1(x)} \cdot \lim_{x \to b} \frac{f_2x)}{g_2(x)} = 1.$

5. Частное эквивалентных функций. Если $f_1\sim g_1$ и $f_2\sim g_2$ при $x\to b$, то $\frac{f_1}{f_2}\sim \frac{g_1}{g_2}$ при $x\to b$.

Пример. $\sin x \sim x$ и $\cos x \sim 1$ при $x \to 0 \Rightarrow \ \, \mathrm{tg}\, x \sim x$ при $x \to 0.$

Доказательство: $\lim_{x \to b} \frac{f_1(x)}{f_2(x)} : \frac{g_1(x)}{g_2(x)} = \lim_{x \to b} \frac{f_1(x)}{g_1(x)} \cdot \lim_{x \to b} \frac{g_2(x)}{f_2(x)} = 1.$

Пример 1. При $x \to 0$ имеем

$$\frac{\sin(2x)(1-\cos(3x))}{\ln(1-5x)} \sim \frac{2x \cdot \frac{1}{2}(3x)^2}{-5x} = -\frac{9}{5}x^2.$$

Пример 2. При $x \to 2$ имеем

$$\ln\left(\frac{2x+3}{x+5}\right) = \ln\left(1 + \frac{x-2}{x+5}\right) \sim \frac{x-2}{x+5} \sim \frac{1}{7}(x-2).$$

Верно ли, что:

если $f_1 \sim g_1$ и $f_2 \sim g_2$ при $x \to b$, то $f_1 + f_2 \sim g_1 + g_2$ при $x \to b$?

Нет!

Контрпример. При $x \to 0$:

 $ightharpoonup x \sim x$

$$-x+x^2\sim -x+x^3$$
, т.к. $\lim_{x\to 0} \frac{-x+x^2}{-x+x^3}=1$

Замечание. Подобная ошибочная замена на эквивалентные в суммах и разностях может привести к неверному вычислению предела (!). Например:

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} \neq \lim_{x \to 0} \frac{x - x}{x^3} = 0.$$
 (!)

На самом деле $\lim_{x\to 0} \frac{x-\sin x}{x^3} = \frac{1}{6}$ (убедимся в этом в дальнейшем).

Замена на эквивалентные в пределах.

Следствие. Пусть при x o b

$$f_1 \sim g_1, \ldots, f_n \sim g_n,$$

 $u_1 \sim v_1, \ldots, u_m \sim v_m$

Тогда $f_1 \dots f_n \sim g_1 \dots g_n$, $u_1 \dots u_m \sim v_1 \dots v_m$ и

$$\lim_{x \to b} \frac{f_1(x) \dots f_n(x)}{u_1(x) \dots u_m(x)} = \lim_{x \to b} \frac{g_1(x) \dots g_n(x)}{v_1(x) \dots v_m(x)}.$$

Пример 1.

$$\lim_{x \to 0} \frac{\sin(x)\sin(3x)\sin(5x)}{\sin(2x)\sin(4x)\sin(6x)} = \lim_{x \to 0} \frac{x \cdot 3x \cdot 5x}{2x \cdot 4x \cdot 6x} = \frac{5}{16}.$$

Пример 2.

$$\lim_{x \to 0} \frac{(1 - \cos(3x))\ln^2(1 - \sin(x))}{(2^x - 1)(\sqrt{1 + x^3} - 1)} = \lim_{x \to 0} \frac{\frac{(3x)^2}{2} \cdot x^2}{(\ln 2)x \cdot \frac{x^3}{2}} = \frac{9}{\ln 2}.$$

6. Замена переменных (очень часто используется в примерах).

Пусть $f\sim g$ при $x\to b$. Пусть функция h определена в некоторой окрестности точки $d\in\mathbb{R}$ или $d=\pm\infty,\infty$, существует $\lim_{x\to d}h(x)=b$ и $h(x)\neq b$ в некоторой проколотой окрестности точки d. Тогда

$$|f(y)|_{y=h(x)} = f(h(x)) \sim g(y)|_{y=h(x)} = g(h(x))$$
 при $x o d.$

Пример 1. Т.к. $\sin x \sim x$ при $x \to 0$, то

$$\sin\left(\frac{x^2+3x-4}{x+\ln(x^2)}\right) \sim \frac{x^2+3x-4}{x+\ln(x^2)} \sim \frac{(x+4)(x-1)}{1} \sim 5(x-1) \text{ при } x \to 1.$$

Пример 2. При x o 0 имеем (также с учетом транзитивности \sim)

$$\sin(1-\cos x) \sim 1 - \cos x \sim \frac{x^2}{2} \quad \Rightarrow \quad \sin(1-\cos x) \sim \frac{x^2}{2}.$$

Пусть $f\sim g$ при $x\to b$, а функция h определена и непрерывна при всех $x\in\mathbb{R}.$ Верно ли, что

$$h(f(x)) \sim h(g(x))$$
 при $x \to b$?

Нет!

Контрпример. Поскольку $\lim_{x \to 0} (1+x) = \lim_{x \to 0} (1+x^2) = 1 \neq 0$, то имеем

$$1+x\sim 1+x^2$$
 при $x\to 0.$

Пусть h(x) = x - 1. Тогда

$$h(1+x) = x \nsim x^2 = h(1+x^2)$$
 при $x \to 0$.

Впрочем, для отдельных функций h это свойство может выполняться.

▶ Пусть $f \sim g$ при $x \to b$, и выражения f^{α} и g^{α} определены в некоторой проколотой окрестности точки b. Тогда $f^{\alpha} \sim g^{\alpha}$ при $x \to b$.

Порядки малости

Распространить на суммы и разности технику замены эквивалентных помогают порядки малости.

Определение. Пусть $b\in\mathbb{R}$ или $b=\pm\infty,\infty$ и функции f и g определены в некоторой проколотой окрестности точки b и $g(x)\neq 0$ в ней. Тогда f=o(g) при $x\to b$, если

$$\lim_{x \to b} \frac{f(x)}{g(x)} = 0.$$

В частности, запись f=o(1) при $x \to b$ означает, что функция f – бесконечно малая при $x \to b$.

 Π римеры. Если a < b, то

$$lackbr{b} |x|^b = o(|x|^a)$$
 при $x o 0 \Leftrightarrow \lim_{x o \infty} rac{|x|^b}{|x|^a} = \lim_{x o \infty} |x|^{b-a} = 0.$

$$lack |x|^a=o(|x|^b)$$
 при $x o\infty$ \Leftrightarrow $\lim_{x o\infty}rac{|x|^a}{|x|^b}=\lim_{x o\infty}rac{1}{|x|^{b-a}}=0.$ (наоборот!)

Пусть $k\in\mathbb{Z}$. На практике очень часто $g(x)=(x-b)^k$ при $x\to b,\ b\in\mathbb{R}$ или $g(x)=x^k$ при $b=0,\pm\infty,\infty.$

Замечание

Запись f=o(g) на самом деле не вполне корректна, она не является равенством в привычном смысле: в том числе из нее вовсе не следует, что o(g)=f (??).

Правильнее было бы писать $f \in o(g)$, ведь на самом деле o(g) – это **множество** всех функций f(x) таких, что

$$\lim_{x \to b} \frac{f(x)}{g(x)} = 0.$$

Тем не менее соотношение f=o(g) используют как равенство, упрощая в формулах f до o(g). Это очень удобно, но требует аккуратности.

Используя такую подстановку, необходимо помнить, что разные вхождения одного и того же символа o(g) обозначают, вообще говоря, разные функции.

Поэтому, например, также неверно, что o(g) - o(g) = 0 (??).

A как записать o(g) - o(g) = правильно?

Основные свойства отношения o

Пусть $f(x) \neq 0$ в некоторой проколотой окрестности точки b. При $x \rightarrow b$ имеем

$$1. \ \ o(Cg) = o(g)$$
 для любых $C \neq 0$, пример: $o(3x) = o(x)$ при $x \to 0$

2.
$$o(g) \pm o(g) = o(g)$$
, пример: $\sin^2 x \pm x^3 = o(x)$ при $x \to 0$

3.
$$o(o(g)) = o(g)$$
, пример: $o(x^2) = o(o(x)) = o(x)$ при $x \to 0$

4.
$$o(g+o(g))=o(g)$$
, пример: $o(x+x^2)=o(x)$ при $x\to 0$

5.
$$f \cdot o(g) = o(fg)$$
, пример: $xo(x) = o(x^2)$ при $x \to 0$

6.
$$o(f)o(g)=o(fg)$$
, пример: $o(x^2)o(x^3)=o(x^5)$ при $x \to 0$

7. если
$$f\sim g$$
 при $x\to b$, то $o(f)=o(g)$ при $x\to b$, пример: $o(\sin x)=o(x)$ при $x\to 0$.

Внимание: это, вообще говоря, «направленные» равенства.

Доказательство. Что именно в точности эти свойства означают:

2.
$$f_1 = o(g)$$
, $f_2 = o(g) \Leftrightarrow$

$$\lim_{x \to b} \frac{f_1(x)}{g(x)} = 0, \ \lim_{x \to b} \frac{f_2(x)}{g(x)} = 0 \ \Rightarrow \ \lim_{x \to b} \frac{f_1(x) \pm f_2(x)}{g(x)} = 0 \ \Leftrightarrow \ f_1 \pm f_2 = o(g).$$

3. Пусть
$$f = o(g)$$
, $h = o(f) \Leftrightarrow$

$$\lim_{x\to b}\frac{f(x)}{g(x)}=0,\ \lim_{x\to b}\frac{h(x)}{f(x)}=0\ \Rightarrow\ \lim_{x\to b}\Big(\frac{f(x)}{g(x)}\frac{h(x)}{f(x)}\Big)=0\ \Leftrightarrow\ \lim_{x\to b}\frac{h(x)}{g(x)}=0$$

$$\Leftrightarrow h = o(q).$$

5.
$$h = o(g) \Leftrightarrow \lim_{x \to b} \frac{h(x)}{g(x)} = 0 \Rightarrow \lim_{x \to b} \frac{f(x)h(x)}{f(x)g(x)} = 0 \Leftrightarrow fh = o(fg).$$

4.
$$f = o(g + o(g)) \Leftrightarrow \lim_{x \to b} \frac{f(x)}{g(x) + o(g(x))} = 0 \Leftrightarrow \lim_{x \to b} \frac{f(x)}{g(x)(1 + o(1))} = 0$$

$$\Rightarrow \lim_{x \to b} \frac{f(x)}{g(x)} = \lim_{x \to b} \frac{f(x)}{g(x)(1 + o(1))} (1 + o(1)) = 0 \Leftrightarrow f = o(g).$$

6.
$$u = o(f), v = o(g) \Leftrightarrow \lim_{x \to b} \frac{u(x)}{f(x)} = 0, \lim_{x \to b} \frac{v(x)}{g(x)} = 0 \Rightarrow \lim_{x \to b} \frac{u(x)v(x)}{f(x)g(x)} = 0 \Leftrightarrow uv = o(fg).$$

7. Пусть
$$f \sim g \iff \lim_{x \to b} \frac{f(x)}{g(x)} = 0.$$

$$u = o(f), \ v = o(g) \Leftrightarrow \lim_{x \to b} \frac{u(x)}{f(x)} = 0, \ \lim_{x \to b} \frac{v(x)}{g(x)} = 0 \Leftrightarrow$$

$$\Leftrightarrow \lim_{x \to b} \frac{u(x)}{g(x)} = 0, \ \lim_{x \to b} \frac{v(x)}{f(x)} = 0 \ \Leftrightarrow \ u = o(g), \ v = o(f)$$

Теорема

Пусть функции f и g определены и отличны от 0 в некоторой проколотой окрестности точки b. Тогда при $x \to b$

$$f \sim g \Leftrightarrow f = g + o(g).$$

Доказательство:

$$f \sim g \iff \lim_{x \to b} \frac{f(x)}{g(x)} = 1 \iff \frac{f}{g} - 1 = o(1) \iff f = g + g \cdot o(1) \iff f = g + o(g).$$

Пример. Почему o(g + o(g)) = o(g):

$$f = g + o(g) \iff f \sim g$$
, а тогда $o(f) = o(g)$.

Следствия. При $x \to 0$ имеем

- $1. \sin x = x + o(x),$
- 2. $\cos x = 1 \frac{x^2}{2} + o(x^2)$,
- 3. $(1+x)^a = 1 + ax + o(x)$,
- 4. $a^x = 1 + (\ln a)x + o(x)$ при a > 0,
- 5. $\log_a(1+x) = \frac{x}{\ln a} + o(x)$ при a > 0, $a \neq 1$,
- 6. $\arcsin x = x + o(x)$, $\arctan x = x + o(x)$.

Применение к вычислению пределов

Пример. Найдите предел $\lim_{x \to 0} \frac{\sin(2x) - \sin(x)}{\sin(3x) - \sin(x)}$.

ightharpoonup Поскольку при $a \neq 0$ выполнено

$$\sin(ax) \sim ax$$
 при $x \to 0$

(замена переменных y=ax в основной эквивалентности), при $a \neq 0$ имеем

$$\sin(ax) = ax + o(ax) = ax + o(x) \text{ при } x \to 0.$$

 $\blacksquare \text{ Поэтому } \lim_{x \to 0} \frac{\sin(2x) - \sin(x)}{\sin(3x) - \sin(x)} = \lim_{x \to 0} \frac{2x + o(x) - (x + o(x))}{3x + o(x) - (x + o(x))} = \\ = \lim_{x \to 0} \frac{x + o(x)}{2x + o(x)} = \lim_{x \to 0} \frac{x + o(x)}{2x + o(2x)} = \lim_{x \to 0} \frac{x}{2x} = \frac{1}{2}$

Замечание. Эта стратегия не всегда приводит к успеху.

Пример:

$$\lim_{x \to 0} \frac{x - \sin x}{x^2} = \lim_{x \to 0} \frac{o(x)}{x^2} = ?$$

Ответа не получено, т.к., например, и $x^2 = o(x)$, и $x^3 = o(x)$.

Пример. Найдите предел
$$\lim_{x \to 2} \frac{\sqrt[3]{3x-2} - \sqrt[3]{x+2}}{x-2}.$$

lacktriangle Делаем замену переменных y=x-2, чтобы получить предел при y o 0:

$$\lim_{x \to 2} \frac{\sqrt[3]{3x - 2} - \sqrt[3]{x + 2}}{x - 2} = \lim_{y \to 0} \frac{\sqrt[3]{4 + 3y} - \sqrt[3]{4 + y}}{y}$$

Преобразуем подпредельное выражение так, чтобы иметь под корнями термы вида 1+ay:

$$\lim_{y \to 0} \frac{\sqrt[3]{4+3y} - \sqrt[3]{4+y}}{y} = \lim_{y \to 0} \frac{\sqrt[3]{4} \left(\sqrt[3]{1+\frac{3y}{4}} - \sqrt[3]{1+\frac{y}{4}}\right)}{y}$$

▶ Используем равенство $\sqrt[3]{1+ay} = 1 + \frac{ay}{3} + o(y)$ при $y \to 0$ (снова использована простая замена переменных):

$$\lim_{y \to 0} \frac{\sqrt[3]{4} \left(\sqrt[3]{1 + \frac{3y}{4}} - \sqrt[3]{1 + \frac{y}{4}}\right)}{y} = \lim_{y \to 0} \frac{\sqrt[3]{4} \left[1 + \frac{3y}{12} + o(y) - \left(1 + \frac{y}{12} + o(y)\right)\right]}{y} = \frac{\sqrt[3]{4}}{6}.$$

Пример. Найдите предел

$$\lim_{x \to 0} \frac{3x + x^2 \ln|x| + \sin(x^2)}{x + 1 - \cos x}.$$

Заметим, что

- $ightharpoonup \lim_{x o 0} x \ln |x| = 0$, поэтому $x \ln |x| = o(1)$ и $x^2 \ln |x| = o(x)$ при x o 0,
- $ightharpoonup \sin(x^2) \sim x^2$ при $x \to 0$, поэтому $\sin(x^2) = o(x)$ при $x \to 0$,
- $ightharpoonup 1-\cos x\sim rac{x^2}{2}$ при x o 0, поэтому $1-\cos x=o(x)$ при x o 0.

Следовательно, при $x \to 0$

$$3x + x^{2} \ln x + \sin(x^{2}) = 3x + o(x) \text{ if } x + 1 - \cos x = x + o(x).$$

Значит,

$$\lim_{x \to 0} \frac{3x + x^2 \ln|x| + \sin(x^2)}{x + 1 - \cos x} = \lim_{x \to 0} \frac{3x + o(x)}{x + o(x)} = \lim_{x \to 0} \frac{3 + o(1)}{1 + o(1)} = 3.$$

Внимание. Нельзя путать эквивалентности при $x \to 0$ и при $x \to +\infty$. В данном случае при $x \to +\infty$ результат совсем иной

$$\lim_{x \to +\infty} \frac{3x + x^2 \ln x + \sin(x^2)}{x + 1 - \cos x} = \lim_{x \to +\infty} \frac{3 + x \ln x + \frac{\sin(x^2)}{x}}{1 + \frac{1 - \cos x}{x}} = \lim_{x \to +\infty} x \ln x = +\infty.$$

Пример. Найдите предел последовательности $\lim_{n \to \infty} n \sin \left(2\pi \sqrt{n^2 + 1} \right)$.

$$ightharpoonup$$
 Преобразуем: $\sin\left(2\pi\sqrt{n^2+1}\right) = \sin\left(2\pi n\sqrt{1+\frac{1}{n^2}}\right)$

lacktriangle Верно $\sqrt{1+x}=1+rac{x}{2}+o(x)$ при x o 0. Следовательно, при $t o \infty$

$$\sqrt{1+\frac{1}{t^2}} = 1 + \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right).$$

▶ Значит, при $n \to \infty$ (n натуральное!)

$$\begin{split} &\sin\left(2\pi n\sqrt{1+\frac{1}{n^2}}\right) = \sin\left(2\pi n\left(1+\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)\right) = \\ &= \sin\left(\frac{\pi}{n}+o\left(\frac{\pi}{n}\right)\right) = \frac{\pi}{n}+o\left(\frac{\pi}{n}\right)+o\left(\frac{\pi}{n}+o\left(\frac{\pi}{n}\right)\right) = \frac{\pi}{n}+o\left(\frac{\pi}{n}\right). \end{split}$$

Следовательно

$$\lim_{n \to \infty} n \sin\left(2\pi\sqrt{n^2 + 1}\right) = \lim_{n \to \infty} \frac{\frac{\pi}{n} + o\left(\frac{\pi}{n}\right)}{\frac{1}{n}} = \lim_{n \to \infty} (\pi + o(\pi)) = \pi.$$

Пример. Докажите, что $\lim_{x \to \infty} x \sin\left(2\pi\sqrt{x^2+1}\right)$ не существует.

ightharpoonup Если предел существует и равен c, то по определению предела по Гейне имеем

$$\lim_{n \to \infty} a_n = \infty \implies \lim_{n \to \infty} a_n \sin(2\pi \sqrt{a_n^2 + 1}) = c.$$

Мы уже нашли этот предел при $a_n=n$: он равен π . Достаточно найти другую бесконечно большую b_n , для которой

$$\lim_{n \to \infty} b_n \sin(2\pi \sqrt{b_n^2 + 1}) \neq \pi$$

▶ Положим $b_n = \frac{2n+1}{2}$.

Тогда, рассуждая совершенно аналогично, при $n \to \infty$ имеем:

$$\sin(2\pi\sqrt{b_n^2+1}) = \sin\left(2\pi\sqrt{\left(\frac{2n+1}{2}\right)^2+1}\right) =$$

$$= \sin\left(2\pi \cdot \frac{2n+1}{2}\sqrt{1+\frac{4}{(2n+1)^2}}\right) =$$

$$= \sin\left(\pi(2n+1)\left[1+\frac{2}{(2n+1)^2}+o\left(\frac{2}{(2n+1)^2}\right)\right]\right) =$$

$$= \sin\left(2\pi n + \pi + \frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right)\right) = -\sin\left(\frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right)\right) =$$

$$= -\frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right).$$

Значит,

$$\lim_{n \to \infty} b_n \sin(2\pi \sqrt{b_n^2 + 1}) = \lim_{n \to \infty} \frac{-\frac{2\pi}{2n+1} + o\left(\frac{2\pi}{2n+1}\right)}{\frac{2}{2n+1}} = \lim_{n \to \infty} (-\pi + o(\pi)) = -\pi$$

Тем самым результат доказан.