

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 231/20, 401/12, A01N 43/56		A1	(11) International Publication Number: WO 97/41106 (43) International Publication Date: 6 November 1997 (06.11.97)
(21) International Application Number: PCT/JP97/01457 (22) International Filing Date: 25 April 1997 (25.04.97)		(74) Agents: YAMAMOTO, Ryozo et al.; Torimoto Kogyo Building, 38, Kanda-Higashimatsushitacho, Chiyoda-ku, Tokyo 101 (JP).	
(30) Priority Data: 8/130879 26 April 1996 (26.04.96) 8/227767 9 August 1996 (09.08.96)		JP	(81) Designated States: BG, CA, CN, CZ, HU, KR, MX, PL, RO, RU, SI, SK, US, YU, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Applicant (for all designated States except US): ISHIHARA SANGYO KAISHA LTD. [JP/JP]; 3-15, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550 (JP).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(72) Inventors; and (75) Inventors/Applicants (for US only): MURAI, Shigeo [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). KIKUGAWA, Hiroshi [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). NAKAYAMA, Hitoshi [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). SANO, Makiko [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). ISOGAI, Akihiko [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP).			
(54) Title: PYRAZOLE COMPOUNDS, PROCESSES FOR THEIR PRODUCTION AND HERBICIDES CONTAINING THEM			
(57) Abstract			
<p>A pyrazole compound of formula (I) or its salt wherein R₁ is an alkyl group, R₂ is a hydrogen atom, a methyl group, -A-R₃, a phenyl group which may be substituted, a pyridyl group which may be substituted, or an allyl group which is substituted by a phenyl group, A is -SO₂, -CO-, -CH(R₆)- or -CH(R₇)CO-. R₃ is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)_qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, Z is an alkyl group, I is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when I is at least 2, a plurality of Z may be the same or different, and when n is at least 2, a plurality of X may be the same or different.</p>			
<p style="text-align: right;">(I)</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Mosoco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

DESCRIPTIONPYRAZOLE COMPOUNDS, PROCESSES FOR THEIR PRODUCTION AND
HERBICIDES CONTAINING THEM

5

TECHNICAL FIELD

The present invention relates to novel pyrazole compounds useful as active ingredients for herbicides.

BACKGROUND ART

UK 2002375A and EP 282944A disclose pyrazole derivatives having various substituents at the 3-position of a pyrazole ring. However, the pyrazole compounds of the present invention are clearly distinguished from such derivatives in that they have a cycloalkyl group substituted at the 3-position of a pyrazole ring.

Further, EP 638555A discloses pyrazole glycolic acid amide derivatives having various substituents at the 3- and 4-positions of a pyrazole ring. However, the pyrazole compounds of the present invention are clearly distinguished from such derivatives in that they have a substituted benzoyl group substituted at the 4-position of a pyrazole ring.

DISCLOSURE OF THE INVENTION

The present inventors have conducted various studies paying attention to pyrazole compounds to find out an excellent herbicide and as a result, have accomplished the present invention. Namely, the present invention provides novel pyrazole compounds of the formula (I) or

their salts:

wherein R₁ is an alkyl group, R₂ is a hydrogen atom, a methyl group, -A-R₃, a phenyl group which may be substituted, a pyridyl group which may be substituted, or an allyl group which is substituted by a phenyl group, A is -SO₂-, -CO-, -CH(R₆)- or -CH(R₇)CO-, R₃ is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)_qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when l is at least 2, a plurality of Z may be the same or different, and when n is at least 2, a

plurality of X may be the same or different; processes for their production; herbicides containing them; and novel intermediate compounds useful for producing them.

Now, the present invention will be described in 5 detail with reference to the preferred embodiments.

The alkyl group or the alkyl moiety for R₁ and R₃ may be a C₁₋₁₀, preferably C₁₋₅, linear or branched alkyl group, and the alkyl group for R₆ and R₇ may be a C₁₋₂ alkyl group. The alkyl group or the alkyl moiety for R₈, 10 R₉, R₁₀, R₁₁, R₁₂, R₁₃, X and Z may be a C₁₋₄ linear or branched alkyl group. Specific examples of such an alkyl group or moiety include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, octyl and decyl. The alkenyl group for R₃ may be a C₂₋₁₀ linear or branched alkenyl 15 group, such as vinyl, allyl, butadienyl or isopropenyl. The alkynyl group for R₃ may be a C₂₋₁₀ linear or branched alkynyl group, such as ethynyl, propynyl or 2-penten-4-ynyl.

The substituent for the phenyl group which may be 20 substituted or the pyridyl group which may be substituted, for R₂, may be halogen, C₁₋₄ haloalkyl or nitro. The number of substituents may be one or more, and when the number is at least 2, a plurality of such substituents may be the same or different.

25 The substituent for the alkyl which may be substituted, the alkenyl which may be substituted, the alkynyl which may be substituted, or the alkoxy group

which may be substituted, for R₃, may be halogen, C₁₋₄ alkoxy, C₁₋₆ alkoxy carbonyl or cyano. The number of substituents may be one or more, and if it is at least 2, a plurality of such substituents may be the same or
5 different.

The substituent for the phenyl group which may be substituted, for R₃, may be halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro or cyano. The number of substituents may be one or more,
10 and if it is at least 2, a plurality of such substituents may be the same or different.

The halogen atom for X and the halogen as the substituent contained in R₂, R₃ and X, may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
15 The number of halogen atoms as substituents, may be one or more, and if it is at least 2, a plurality of halogen atoms may be the same or different.

Among pyrazole compounds of the formula (I), a compound wherein R₂ is a hydrogen atom, is capable of forming a salt. The salt may be any salt so long as it is agriculturally acceptable, and it may, for example, be an alkali metal salt such as a sodium salt or a potassium salt, an alkaline earth metal salt such as a magnesium salt or a calcium salt, or an ammonium salt such as a
25 dimethylamine salt or a triethylamine salt.

The pyrazole compounds of the formula (I) or their salts (hereinafter referred to as the compounds of the

present invention) can be prepared in accordance with the following reactions (A) to (E) and conventional methods for producing salts.

(A) When R₂ is a hydrogen atom:

(B) When R_2 is a hydrogen atom:(C) When R_2 is a hydrogen atom:(D) When R_2 is a hydrogen atom:(E) When R_2 is other than a hydrogen atom:

Among the compounds of the present invention, those having certain predetermined substituents can be prepared in accordance with the following reactions (F) to (G) and conventional methods for preparing salts.

5 (F) When R_2 is a hydrogen atom, and $(X)_n$ contains at least one alkylsulfinyl or alkylsulfonyl group:

WO 97/41106

8

(G) When R₂ is other than a hydrogen atom, and (X)_n contains at least one alkylsulfinyl or alkylsulfonyl group:

Now, the above reaction (A) will be described. In the reaction (A), R₁, X, Z, l and n are as defined above, and Y is a halogen atom.

The condensation reaction in the reaction (A) can be carried out, if necessary, in the presence of a base. As such a base, one or more members may be suitably selected for use from carbonates such as potassium carbonate and sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate and sodium hydrogencarbonate; metal hydrides such as potassium hydride and sodium hydride;

amines such as monomethylamine, dimethylamine and triethylamine; and pyridines such as pyridine and 4-dimethylaminopyridine.

Further, the condensation reaction in the reaction
5 (A) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may be suitably selected for use from aromatic hydrocarbons such as benzene, toluene, xylene
10 and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such
15 as methyl acetate and ethyl acetate; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, pyridine and hexamethylphosphoric triamide; nitriles such as acetonitrile, propionitrile
20 and acrylonitrile; ketones such as acetone and methyl ethyl ketone; and water.

Further, the condensation reaction in the reaction (A) can be carried out, if necessary, in the presence of a phase transfer catalyst. As such a phase transfer catalyst, one or more members may be suitably selected for use from e.g. benzyltriethylammonium chloride, benzyltriethylammonium bromide, tetraethylammonium

chloride and tetraethylammonium bromide.

The reaction temperature of the condensation reaction in the reaction (A) is usually from 0 to 250°C, preferably from 15 to 150°C, and the reaction time is 5 usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

10 The compound of the formula (IV) which can be produced by the condensation reaction in this reaction (A), is a novel intermediate compound useful for producing the compounds of the present invention.

15 The rearrangement reaction in the reaction (A) comprises the following two steps i.e. (1) a rearrangement reaction step and (2) a pH adjusting reaction step. The rearrangement reaction step is carried out usually in the presence of a base. As such a base, one or more members may be suitably selected for use from carbonates such as potassium carbonate and sodium carbonate; and calcium hydroxide. The base is used usually in an amount of from 0.5 to 5 mols per mol 20 of the compound of the formula (IV).

Further, the rearrangement reaction step of the rearrangement reaction in the reaction (A) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a 25 solvent inert to the reaction, and one or more members may suitably be selected for use from aromatic hydrocarbons such as benzene, toluene, xylene and

chlorobenzene; ethers such as dioxane, tetrahydrofuran and diethyl ether; and polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, pyridine and 5 hexamethylphosphoric triamide.

The rearrangement reaction step of the rearrangement reaction in the reaction (A) is preferably carried out under an azeotropic dehydrating condition, whereby the rearrangement reaction will effectively proceed. This is 10 one of preferred embodiments of the present invention.

By the rearrangement reaction step, a salt of the compound of the formula (I) is produced, and a method for producing such a salt is also one of embodiments of the present invention. Further, a compound of the above- 15 mentioned formula (I-2) can be produced by reacting a salt of the compound of the above formula (I) or a reaction mixture containing such a salt, obtained by this rearrangement reaction step, with a compound of the above formula (VII), under the reaction conditions for the 20 reaction (D) which will be described hereinafter. This is also one of embodiments of the present invention.

The reaction temperature in the rearrangement reaction step is usually from 50 to 250°C, preferably from 50 to 150°C, and the reaction time is usually from 25 0.1 to 48 hours, preferably from 0.5 to 24 hours.

The pH adjusting reaction step of the rearrangement reaction in the reaction (A) is a reaction to adjust the

pH value to at most 7, which is carried out usually in the presence of an acidic substance and water. As such an acidic substance, one or more members may suitably be selected for use from inorganic acids such as 5 hydrochloric acid and sulfuric acid; and organic acids such as acetic acid.

The pH adjusting reaction step of the rearrangement reaction in the reaction (A) can be carried out, if necessary, in the presence of a solvent. As such a 10 solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may be suitably selected for use from those mentioned in the description of the rearrangement reaction step as the preceding step.

15 The pH adjusting reaction step of the rearrangement reaction in the reaction (A) may be carried out after isolating the reaction product obtained by the rearrangement reaction step as the preceding step, in accordance with a conventional method, or may be carried 20 out in one pot by using the reaction mixture obtained by the rearrangement reaction step, as it is. When it is carried out in one pot, it is carried out by adding and reacting an acidic substance and water to the reaction mixture obtained by the rearrangement reaction step as 25 the preceding step.

The reaction temperature for the pH adjusting reaction step is usually from 0 to 100°C, preferably from

0 to 60°C.

Now, the above-mentioned reaction (B) will be described. In the reaction (B), R₁, Z, l, n and (II) are as defined above, and X' is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, provided that when n is at least 2, a plurality of X' may be the same or different.

The condensation reaction in the reaction (B) is carried out usually in the presence of a Lewis acid. As such a Lewis acid, one or more members may suitably be selected for use from e.g. dry aluminum chloride and dry aluminum bromide.

Further, the condensation reaction in the reaction (B) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use from halogenated aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, and dichloroethane.

The reaction temperature for the condensation reaction in the reaction (B) is usually from 0 to 80°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.1 to 10 hours.

The hydrolytic reaction in the reaction (B) is carried out usually in the presence of an acidic

substance. As such an acidic substance, one or more members may suitably be selected for use from e.g. inorganic acids such as hydrochloric acid and sulfuric acid.

5 The hydrolytic reaction in the reaction (B) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use among those
10 exemplified in the description of the condensation reaction as the preceding reaction.

The hydrolytic reaction in the reaction (B) may be carried out after isolating the reaction product obtained by the condensation reaction as the preceding reaction,
15 in accordance with a conventional method, or may be carried out in one pot using the reaction mixture obtained by the condensation reaction as it is. In the case where it is carried out in one pot, post treatment such as removal of the Lewis acid may be applied, if
20 necessary, to the reaction mixture obtained by the condensation reaction as the preceding reaction, and the acidic substance and water are added thereto to carry out the reaction.

The reaction temperature for the hydrolytic reaction
25 in the reaction (B) is usually from 20 to 100°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.1 to 10 hours.

Now, the above-mentioned reaction (C) will be described. In the reaction (C), X, n, (II) and (I-1) are as defined above.

The condensation reaction in the reaction (C) is carried out usually in the presence of a condensing agent and a solvent. As such a condensing agent, N,N'-dicyclohexylcarbodiimide may, for example, be mentioned, and as such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use among alcohols such as tert-butyl alcohol and tert-amyl alcohol.

The condensation reaction in the reaction (C) can be carried out, if necessary, in the presence of a base. As such a base, one or more members may suitably be selected for use from e.g. carbonates such as potassium carbonate and sodium carbonate.

The reaction temperature for the condensation reaction in the reaction (C) is usually from 50 to 100°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.5 to 20 hours.

Now, the above-mentioned reaction (D) will be described. In the reaction (D), X, n, (II) and (I-1) are as defined above, and T is a chlorine atom, a bromine atom or an iodine atom.

The reaction (D) is carried out usually in the presence of a base and a metal catalyst. As a base, one or more members may suitably be selected for use from

e.g. alkali metals such as sodium and potassium; alkali metal alkoxides such as sodium methylate, sodium ethylate and potassium tert-butyrate; carbonates such as potassium carbonate and sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate and sodium hydrogencarbonate; metal hydroxides such as potassium hydroxide and sodium hydroxide; metal hydrides such as potassium hydride and sodium hydride; amines such as monomethylamine, dimethylamine and triethylamine; pyridines such as pyridine and 4-dimethylaminopyridine; and N,N-dimethylaniline. As the metal catalyst, a transition metal such as palladium, rhodium, ruthenium or platinum, may be mentioned. The ligand used against the metal of the metal catalyst is not particularly limited, but an organophosphine compound such as triphenylphosphine or tri-n-butylphosphine is preferred.

The reaction (D) may be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for use among aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such as methyl acetate and

ethyl acetate; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone and pyridine; nitriles such as acetonitrile, propionitrile and 5 acrylonitrile; ketones such as acetone and methyl ethyl ketone; amines such as monomethylamine, dimethylamine and triethylamine; alcohols such as methanol, ethanol, propanol, and tert-butanol; organic acids such as acetic acid and propionic acid; aqueous ammonia; and water.

10 The reaction temperature for the reaction (D) is usually from 30 to 300°C, preferably from 50 to 200°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 1 to 24 hours.

Now, the above-mentioned reaction (E) will be 15 described. In the reaction (E), R₁, X, Y, Z, l, n and (I-1) are as defined above, and R_{2'} is a methyl group, -A-R₃, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group (wherein A and R₃ are as 20 defined above).

The condensation reaction in the reaction (E) may be carried out, if necessary, in the presence of a base. As such a base, one or more members may suitably be selected for use from carbonates such as potassium carbonate and 25 sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate and sodium hydrogencarbonate; metal hydroxides such as potassium hydroxide and sodium

hydroxide; metal hydrides such as potassium hydride and sodium hydride; amines such as monomethylamine, dimethylamine and triethylamine; and pyridines such as pyridine and 4-dimethylaminopyridine.

5 The condensation reaction in the reaction (E) may be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is inert to the reaction. For example, one or more members may suitably be selected for use from aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such as methyl acetate and ethyl acetate; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, pyridine and hexamethylphosphoric 15 15 15 15 15 15 15
10 10 10 10 10 10 10
15 15 15 15 15 15 15
20 20 20 20 20 20 20
25 25 25 25 25 25 25
ethyldiamine; nitriles such as acetonitrile, propionitrile and acrylonitrile; ketones such as acetone and methyl ethyl ketone; and water.

The condensation reaction in the reaction (E) may be carried out, if necessary, in the presence of a phase transfer catalyst and/or potassium iodide. As such a phase transfer catalyst, one or more members may suitably be selected for use among those mentioned for the

condensation reaction in the above-mentioned reaction (A).

The reaction temperature for the condensation reaction in the reaction (E) is usually from 0 to 200°C, 5 preferably from 15 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

Now, the above-mentioned reaction (F) will be described. In the reaction (F), R₁, X, Z, l and n are as 10 defined above, R₅ is an alkyl group, preferably a C₁₋₄ alkyl group, X" is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, -SO₂N(R₈)R₉, 15 -N(R₁₀)SO₂R₁₁, -CH₂S(O)_{q'}R₁₂ or -OSO₂R₁₃, wherein R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ are as defined above, m is 1 or 2, and q' is 1 or 2. In the reaction (F), the oxidation reaction for producing (IV-2) from (IV-1) and the 20 oxidation reaction for producing (I-4) from (I-5) (hereinafter referred to simply as the oxidation reaction) are carried out usually in the presence of an oxidizing agent and a solvent. As such an oxidizing agent, one or more members may suitably be selected for use from e.g. m-chloroperbenzoic acid and hydrogen 25 peroxide. As the solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for

use among those mentioned for the condensation reaction in the above-mentioned reaction (B).

The reaction temperature for the oxidation reaction in the reaction (F) is usually from 0 to 80°C, and the 5 reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

The rearrangement reaction in the reaction (F) can be carried out in accordance with the rearrangement reaction in the above-mentioned reaction (A).

10 Now, the above-mentioned reaction (G) will be described. In the reaction (G), R₁, R_{2'}, R₅, X, X'', Z, 1, m and n are as defined above.

15 The oxidation reaction in the reaction (G) can be carried out in accordance with the oxidation reaction in the above-mentioned reaction (F).

16 The compound of the formula (II) in the above reactions (A), (B), (C) and (D) is a novel intermediate compound which is useful for producing the compounds of the present invention and may be produced, for example, 20 by a method such as the reaction (H).

(H)

Now, the reaction (H) will be described. In the reaction (H), R_1 , Y , Z and l are as defined above, and R_4 is a C_{1-6} alkyl group.

In the reaction (H), the cyclization reaction for producing (II) from (VIII) and the cyclization reaction for producing (IX) from (VIII) (hereinafter referred to simply as the cyclization reaction) may be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for use from aromatic

hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, 5 trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone pyridine and hexamethylphosphoric triamide; nitriles such 10 as acetonitrile, propionitrile and acrylonitrile; and water.

The cyclization reaction in the reaction (H) may be carried out, if necessary, under an azeotropic dehydration condition.

15 The reaction temperature for the cyclization reaction in the reaction (H) is usually from 0 to 200°C, preferably from 20 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

20 The condensation reaction in the reaction (H) is carried out usually in the presence of a base and a solvent. As the base, one or more members may suitably be selected for use from carbonates such as potassium carbonate and sodium carbonate; and metal hydrides such 25 as potassium hydride and sodium hydride. Particularly preferred is potassium carbonate.

As the solvent, any solvent may be used so long as it

is a solvent inert to the reaction. For example, one or more members may suitably be selected for use from ethers such as dioxane, tetrahydrofuran and diethyl ether; and polar aprotic solvents such as dimethylsulfoxide,
5 sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, pyridine and hexamethylphosphoric triamide. Particularly preferred is hexamethylphosphoric triamide.

The reaction temperature for the condensation
10 reaction in the reaction (H) is usually from -20 to +150°C, preferably from -15 to +60°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.1 to 10 hours.

The compound of the formula (IX) which can be
15 prepared by the cyclization reaction in this reaction (H), is a novel intermediate compound which is useful for producing the compounds of the present invention.

The compounds of the present invention and the intermediate compounds useful for the production thereof,
20 have the following isomers. Such various isomers (the respective isomers and mixtures of such isomers) are within the scope of the present invention.

(1) Among the compounds of the present invention represented by the above formula (I), compounds wherein
25 R₂ is a hydrogen atom, and intermediate compounds represented by the above formulas (II) and (IX), have the following tautomers, respectively.

24

wherein R₁, X, Z, l and n are as defined above.

(2) Among the compounds of the present invention represented by the above formula (I) and the intermediate compounds represented by the above formulas (II), (IV), (VIII) and (IX), compounds wherein l is at least 1, have 5 optical isomers. Some examples will be given below, but it should be understood that the optical isomers in the present invention are not limited to such specific examples.

wherein R_1 , R_2 , R_4 , X , Z and n are as defined above.

In the specification of this application, such optical isomers are meant for a mixture of isomers (racemic modification) unless otherwise specified.

(3) Among compounds of the present invention represented by the above formula (I), compounds wherein R₂ is a -A-R₃, and R₃ is an alkenyl group which may be substituted, have geometrical isomers (E-isomer and Z-isomer).

The compound of the present invention exhibits excellent herbicidal effects when used as an active ingredient of a herbicide. It finds a wide range of applications to crop lands such as paddy fields, upland farms, orchards and mulberry fields, and non-crop lands such as forests, farm roads, playgrounds, and factory sites. The application method may suitably be selected from soil treatment application and foliar application.

The herbicidal composition containing the compound of the present invention is capable of controlling noxious weeds including grasses (or gramineae) such as barnyardgrass (Echinochloa crus-galli L.), crabgrass (Digitaria sanguinalis L.), greenfoxtail (Setaria viridis L.), goosegrass (Eleusine indica L.), wild oat (Avena fatua L.), johnsongrass (Sorghum halepense L.), quackgrass (Agropyron repens L.), alexandergrass (Brachiaria plantaginea), paragrass (Panicum purpurascens), sprangletop (Leptochloa chinensis) and red sprangletop (Leptochloa panicea); sedges (or Cyperaceae) such as rice flatsedge (Cyperus iria L.), purple nutsedge (Cyperus rotundus L.), japanese bulrush (Scirpus juncoides), flatsedge (Cyperus serotinus), small-flower

27

umbrellaplant (Cyperus difformis), slender spikerush
(Eleocharis acicularis), and water chestnut (Eleocharis
kuroguwai); alismataceae such as Japanese ribbon wapato
(Sagittaria pygmaea), arrow-head (Sagittaria trifolia)
and narrowleaf waterplantain (Alisma canaliculatum);
pontederiaceae such as monochoria (Monochoria vaginalis)
and monochoria species (Monochoria korsakowii);
scrophulariaceae such as false pimpernel (Lindernia
pyxidaria) and abunome (Dopatrium junceum); lythraceae
such as toothcup (Rotala indica) and red stem (Ammannia
multiflora); and broadleaves such as velvetleaf (Abutilon
theophrasti MEDIC.), tall morningglory (Ipomoea purpurea
L.), common lambsquarters (Chenopodium album L.), prickly
sida (Sida spinosa L.), slender amaranth (Amaranthus viridis L.),
redroot pigweed (Amaranthus retroflexus L.), sicklepod
(Cassia obtusifolia L.), black nightshade (Solanum nigrum
L.), pale smartweed (Polygonum lapathifolium L.), common cocklebur
chickweed (Stellaria media L.), flexuous bittercress (Cardamine
flexuosa WITTH.), henbit (Lamium amplexicaule L.) and
threeseeded copperleaf (Acalypha australis L.).
Accordingly, it is useful for controlling noxious
weeds non-selectively or selectively in the cultivation
of a crop plant such as corn (Zea mays L.), soybean
(Glycine max Merr.), cotton (Gossypium spp.), wheat
(Triticum spp.), rice (Oryza sativa L.), barley (Hordeum

vulgare L.), oat (Avena sativa L.), sorgo (Sorghum bicolor Moench), rape (Brassica napus L.), sunflower (Helianthus annuus L.), sugar beet (Beta vulgaris L.), sugar cane (Saccharum officinarum L.), japanese lawngrass 5 (Zoysia japonica stend), peanut (Arachis hypogaea L.) or flax (Linum usitatissimum L.) The compound of the present invention is particularly effective for selectively controlling noxious weeds in the cultivation of corn, wheat or rice, especially in the cultivation of 10 corn.

The herbicidal composition containing the compound of the present invention is usually formulated by mixing the compound with various agricultural adjuvants and used in the form of a formulation such as a dust, granules, 15 water-dispersible granules, a wettable powder, an emulsifiable concentrate, a water-based suspension concentrate, an oil-based suspension concentrate, water soluble granules (or powder), tablets or capsules. However, so long as it is suitable for the purpose of the 20 present invention, it may be formulated into any type of formulation which is commonly used in this field.

Such agricultural adjuvants include solid carriers such as diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, a 25 mixture of kaolinite and sericite, clay, sodium carbonate, sodium bicarbonate, mirabilite, zeolite and starch; solvents such as water, toluene, xylene, solvent

naphtha, dioxane, acetone, isophorone, methyl isobutyl ketone, chlorobenzene, cyclohexane, dimethylsulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, and alcohol; anionic surfactants and spreaders such as a salt of fatty acid, a benzoate, an alkylsulfosuccinate, a dialkylsulfosuccinate, a polycarboxylate, a salt of alkylsulfuric acid ester, an alkyl sulfate, an alkylaryl sulfate, an alkyl diglycol ether sulfate, a salt of alcohol sulfuric acid ester, an alkyl sulfonate, an alkylaryl sulfonate, an aryl sulfonate, a lignin sulfonate, an alkylidiphenyl ether disulfonate, a polystyrene sulfonate, a salt of alkylphosphoric acid ester, an alkylaryl phosphate, a styrylaryl phosphate, a salt of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a salt of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a salt of polyoxyethylene alkyl aryl phosphoric acid ester, and a salt of a condensate of naphthalene sulfonate with formalin; nonionic surfactants and spreaders such as a sorbitan fatty acid ester, a glycerin fatty acid ester, a fatty acid polyglyceride, a fatty acid alcohol polyglycol ether, acetylene glycol, acetylene alcohol, an oxyalkylene block polymer, a polyoxyethylene alkyl ether, a polyoxyethylene alkylaryl ether, a polyoxyethylene styrylaryl ether, a polyoxyethylene glycol alkyl ether, a

polyoxyethylene fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene glycerin fatty acid ester, a polyoxyethylene hydrogenated castor oil, and a polyoxypropylene fatty acid ester; and
5 vegetable and mineral oils such as olive oil, kapok oil, castor oil, palm oil, camellia oil, coconut oil, sesame oil, corn oil, rice bran oil, peanut oil, cottonseed oil, soybean oil, rapeseed oil, linseed oil, tung oil, and liquid paraffins. Such adjuvants may be selected for use
10 among those known in this field, so long as the purpose of the present invention can thereby be accomplished. Further, various additives which are commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a
15 phytotoxicity reducing agent, and an anti-mold agent, may also be employed.

The weight ratio of the compound of the present invention to the various agricultural adjuvants is usually from 0.1 :99.9 to 95:5, preferably from 0.2:99.8
20 to 85:15.

The dose of the herbicidal composition of the present invention can not generally be defined, since it may vary depending upon the weather condition, the soil condition, the type of the formulation, the types of the weeds to be
25 controlled, the season for the application, etc. However, it is usually applied so that the compound of the present invention would be applied in an amount of

from 0.5 to 5000 g/ha, preferably from 1 to 1000 g/ha, more preferably from 5 to 500 g/ha. The present invention covers such a method for controlling noxious weeds by application of such a herbicidal composition.

5 The herbicidal compositions of the present invention may be used in admixture with or in combination with other agricultural chemicals, fertilizers or phytotoxicity-reducing agents. In such a case, they may exhibit even better effects or activities. As other
10 agricultural chemicals, herbicides, fungicides, antibiotics, plant hormones or insecticides may, for example, be mentioned. Especially with a mixed herbicidal composition having the compound of the present invention used in admixture with or in combination with
15 one or more active ingredients of other herbicides, it is possible to improve the herbicidal activities, the season for the application and the range of applicable weed types. Further, the compound of the present invention and an active ingredient of other herbicide may be
20 separately formulated, so that they may be mixed for use at the time of application, or both may be formulated together. The present invention covers such mixed herbicidal compositions.

25 The blend ratio of the compounds of the present invention with the active ingredients of other herbicides can not generally be defined, since it varies depending upon the weather condition, the soil condition, the type

of the formulation, the season for the application, the manner of the application, etc. However, one active ingredient of other herbicide may be incorporated usually in an amount of from 0.001 to 10000 parts by weight, 5 preferably from 0.01 to 1000 parts by weight, per part by weight of the compound of the present invention. Further, the total dose of all of the active ingredients is usually from 0.1 to 10000 g/ha, preferably from 0.2 to 5000 g/ha. The present invention covers a method for 10 controlling noxious weeds by application of such herbicidal compositions.

As the active ingredients of other herbicides, the following (common names) may be mentioned.

(1) Those which are believed to exhibit herbicidal 15 effects by disturbing auxin activities of plants, including a phenoxy acetic acid type such as 2,4-D, MCPA, MCPB or naproanilide, an aromatic carboxylic acid type such as 2,3,6-TBA, dicamba, picloram or clopyralid, and others such as benazolin, quinclorac, quinmerac or 20 diflufenzopyr.

(2) Those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, including a urea type such as diuron, linuron, isoproturon or metobenzuron, triazine type such as simazine, atrazine, 25 atratone, simetryn, prometryn, dimethametryn, metribuzin, terbutylazine, cyanazine or ametryn, an uracil type such as bromacil or lenacil, an anilide type such as propanil

or cypromid, a carbamate type such as swep or phenmedipham, a hydroxybenzonitrile type such as bromoxynil, bromoxynil-octanoate or ioxynil, and others such as pyridate or bentazon.

5 (3) A quaternary ammonium salt type such as paraquat or diquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant body and thus to exhibit quick herbicidal effects.

(4) Those which are believed to exhibit herbicidal effects by inhibiting chlorophyllbiosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, including a diphenyl ether type such as nitrofen, chlomethoxyfen, bifenox, acifluorfen-sodium, fomesafen or oxyfluorfen, a cyclic imide type such as chlorphthalim, flumioxadine, flumiclorac-pentyl, methyl [2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1-ylideneamino)phenylthio] acetate (compound disclosed at page 60 of proceedings of 19th Meeting of Pesticide Science Society of Japan), and others such as oxadiation, sulfentrazone, carfentrazone-ethyl, thidiazimin, ethyl 2-chloro-5-(4-chloro-5-difluoromethoxyl-1-methylpyrazol-3-yl)-4-fluorophenoxyacetate (compound disclosed at pages 70-71 of proceedings of 21th Meeting of Pesticide Science Society of Japan).

(5) Those which are believed to exhibit herbicidal

effects characterized by whitening activities by inhibiting chromogenesis of plants such as carotenoids, including a pyridazinone type such as norflurazon or metflurazon, a pyrazole type such as pyrazolate,

5 pyrazoxyfen or benzofenap, and others such as fluridone, flurtamone, diflufenican, methoxyphenone, clomazone, sulcotrione, 2-(2'-nitro-4'-methylsulfonyl-benzoyl)-1,3-cyclohexanedione (compound disclosed in US Patent 5,506,195), isoxaflutole or difenzoquat.

10 (6) Those which exhibit herbicidal effects specifically to gramineous plants, including an aryloxyphenoxypropionic acid type such as diclofop-methyl, pyriphenop-sodium, fluazifop-butyl, haloxyfop-methyl, quinalofop-ethyl or cyhalofop-butyl, and a

15 cyclohexanedione type such as aloxydim-sodium, clethodim, sethoxydim or tralkoxydim.

(7) Those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, including a sulfonylurea type such as

20 chlorimuron-ethyl, sulfometuron-methyl, primisulfuron-methyl, bensulfuron-methyl, chlorsulfuron, metsulfuron-methyl, cinosulfuron, pyrazosulfuron-ethyl, azimsulfuron, flazasulfuron, rimusulfuron, nicosulfuron, imazosulfuron, cyclosulfamuron, prosulfuron, flupyrifos, trisulfuron-methyl, halosulfuron-methyl or thifensulfuron-methyl, a triazolopyrimidinesulfoneamide type such as flumetsulam or metosulam, an imidazolinone

type such as imazapyr, imazethapyr, imazaquin, imazamox or imazameth or imazamethaben, a pyrimidinylsalicylic acid type such as pyrithiobac-sodium, bispyribac-sodium or pyriminobac-methyl, and others such as glyphosate-ammonium, 5 glyphosate-isopropylamine, glufosinate-ammonium or bialaphos.

(8) Those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, including a dinitroaniline type such as trifluralin, oryzalin, 10 nitralin or pendimethalin, an organic phosphorus type such as amiprofos-methyl, butamifos, anilofos or piperophos, a phenylcarbamate type such as chlorpropham or barban, a cumylamine type such as daimuron, cumyluron or bromobutide, and others such as asulam or dithiopyr.

(9) Those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid biosynthesis of plants, including a thiocarbamate type such as EPTC, butylate, molinate, dimepiperate, esprocarb, thiobencarb or pyributicarb, or 15 chloroacetamide type such as alachlor, butachlor, pretilachlor, metolachlor, thenylchlor, dimethenamid, acetochlor or propachlor, and other compounds such as a ethobenzanide, mefenacet, thiafluamide, tridiphane, cafenstrole, 4-(2-chlorophenyl)-N-cyclohexyl-4,5-dihydro-20 N-ethyl-5-oxo-1H-tetrazol-1-carboxyamide (compound disclosed in JP-A-6-306061), oxaziclofone, or 2-ethyl-2-25 [2-(3-chlorophenyl)-2,3-epoxypropyl]-indan-1,3-dione

(compound disclosed in JP-A-2-304043).

As is evident from Test Examples 1 and 2 given hereinafter, the compound of the present invention include those which show selectivity for effectively controlling weeds, while showing safety to crop plants such as rice, wheat and corn. When the compound of the present invention is to be used in the cultivation of such crop plants, synergistic effects may be obtained by using it in admixture with or in combination with one or more of the following compounds among the above-mentioned active compounds of other herbicides.

In the cultivation of rice:

2,4-D, MCPA, MCPB, naproanilide, quinchlorac, simetryn, prometryn, dimethametryn, propanil, swep, bentazon, nitrofene, chlomethoxyfen, bifenox, oxadiazon, pyrazolate, pyrazoxyfen, benzofenap, methoxyphenone, cyhalofop-butyl, bensulfuron-methyl, cinosulfuron, pyrazosulfuron-ethyl, azimsulfuron, imazosulfuron, cyclosulfamuron, bispyribac-sodium salt, pyriminobac-methyl, anilofos, piperophos, daimuron, cumyluron, bromobutide, dithiopyr, molinate, dimepiperate, esprocarb, thiobencarb, pyributicarb, thenylchlor, pretilachlor, butachlor, ethobenzanide, mefenacet, cafenstrole, 4-(2-chlorophenyl)-N-cyclohexyl-4,5-dihydro-N-ethyl-5-oxo-1H-tetrazole-1-carboxyamide, oxaziclomefon, and 2-ethyl-2-[2-(3-chlorophenyl)-2,3-epoxypropyl]-indane-1,3-dione.

In the cultivation of corn:

2,4-D, MCPA, dicamba, clopyralid, benazolin,
diflufenzopyr, diuron, linuron, metobenzuron, simazine,
atrazine, atratone, metribuzin, terbutylazine,
5 cyanazine, ametryn, cypromid, bromoxynil, bromoxynil-octanoate, pyridate, bentazon, paraquat, oxyfluorfen, flumiclorac-pentyl, methyl [2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1-ylideneamino)phenylthio] acetate,
10 fluridone, sulcotrione, 2-(2'-nitro-4'-methylsulfonylbenzoyl)-1,3-cyclohexanedione, isoxaflutole, carfentrazone ethyl, primisulfuron methyl, rimsulfuron, nicosulfuron, prosulfuron, halosulfuron-methyl, thifensulfuron-methyl, flumetsulam, metosulam,
15 imazethapyr, glyphosate-ammonium salt, glyphosate-isopropyl amine salt, glufosinate-ammonium salt, trifluralin, pendimethalin, EPTC, butylate, alachlor, metolachlor, acetochlor, propachlor, dimethenamid and tridiphane.

20 In the cultivation on wheat:

MCPB, quinmerac, linuron, isoproturon, prometryn, bromoxynil, bromoxynil-octanoate, pyridate, bifenox, carfentrazone-ethyl, thidiazimin, ethyl 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methylpyrazol-3-yl)-4-fluorophenoxy acetate, flurtamone, diflufenican, sulcotrione, diclofop-methyl, tralkoxydim, chlorsulfuron, metsulfuron-methyl, prosulfuron, halosulfuron-methyl,

flumetsulam, metosulam, pendimethalin, barban and imazamethabenz.

Now, preferred embodiments of the present invention will be described.

5 (1) The pyrazole compound of the above formula (I) or its salt.

(2) The pyrazole compound or its salt according to Item 1, wherein the formula (I) is represented by the formula (I'):

10

15

wherein R₁ is an alkyl group, R₂ is a hydrogen atom or -A-R₃, A is -SO₂-, -CO-, -CH₂- or -CH₂CO-, R₃ is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, a cyano group or a phenyl group which may be substituted, each of X¹, X² and X³ is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, and q is an integer of from 0 to 2.

(3) The pyrazole compound or its salt according to Item 2, wherein A is -SO_2- , -CH_2- or $\text{-CH}_2\text{CO}-$, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.

(4) The pyrazole compound or its salt according to Item 3, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.

(5) A herbicide containing the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4, as an active ingredient.

(6) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4.

(7) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to an upland field.

(8) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to a corn field.

(9) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole

compound or its salt as defined in Item 1, 2, 3, or 4 to a wheat field.

(10) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to a paddy field.

(11) A mixed herbicidal composition comprising at least one member selected from the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 and at least 10 one member selected from active ingredient compounds of other herbicides.

(12) The compound of the above formula (II).

(13) The compound according to Item 12, wherein 1 is 0.

15 (14) The compound of the above formula (IV).

(15) The compound according to Item 14, wherein 1 is 0.

(16) The compound according to Item 14, wherein the formula (IV) is represented by the formula (IV'):

wherein R_1 is an alkyl group, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, and q is an integer of from 0 to 2.

(17) The pyrazole compound or its salt according to Item 16, wherein each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.

(18) The pyrazole compound or its salt according to Item 17, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.

BEST MODE FOR CARRYING OF THE INVENTION

Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no means restricted to such specific Examples. Firstly, Preparation Examples for the compounds of the present invention will be described.

25 PREPARATION EXAMPLE 1

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-

mentioned Compound No. a-11) and 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) (First method)

5 1) 1.4 g of methylhydrazine was added at room temperature to a solution having 5.53 g of tert-butyl 3-cyclocopropyl-3-oxopropionate dissolved in 30 ml of tetrahydrofuran, and the mixture was reacted for about 2 hours under reflux.

10 After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure to obtain 4.14 g of crude 3-cyclopropyl-5-hydroxy-1-methylpyrazole (after-mentioned Intermediate No. 1a-1).

15 The melting point of this product was from 95 to 121°C, and the NMR spectrum data are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

0.76-0.8 (m,2H), 0.9-0.99 (m,2H), 1.74-1.81 (m,1H), 3.06 (s), 3.26 (s,3H), 4.6 (bs)

20 2) A solution having 0.41 g of sodium carbonate dissolved in 30 ml of water, was added to a solution having 1 g of 3-cyclopropyl-5-hydroxy-1-methylpyrazole obtained in the preceding step dissolved in 30 ml of toluene, followed by stirring for 5 minutes. Then, 4-trifluoromethyl-2-methylthiobenzoyl chloride preliminarily prepared by mixing and reacting under reflux for one hour, 1.52 g of 4-trifluoromethyl-2-methylthiobenzoic acid, 5 ml of thionyl chloride and a

catalytic amount of N,N-dimethylformamide, followed by removal of excess thionyl chloride, was added thereto, and the mixture was reacted at 50°C for one hour.

After completion of the reaction, the reaction 5 mixture was cooled and put into water, and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The 10 obtained residue was purified by silica gel column chromatography to obtain 0.8 g of oily 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylthiobenzoate (after-mentioned Intermediate No. 2a-16). The NMR spectrum data of the product are as follows.

15 $^1\text{H-NMR}$ δ ppm [Solvent: CDCl_3]
0.69-0.73 (m,2H), 0.86-0.91 (m,2H), 1.85-1.92 (m,1H),
2.53 (s,3H), 3.70 (s,3H), 5.94 (s,1H), 7.46 (d,1H), 7.53
(s,1H), 8.24 (d,1H)

3) 0.91 g of methachloroperbenzoic acid was dividedly 20 added at room temperature to a solution having 0.75 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylthiobenzoate obtained in the preceding step dissolved in 30 ml of methylene chloride, and the mixture was reacted for one hour within a range of from room 25 temperature to 40°C.

After completion of the reaction, the reaction mixture was put into water and extracted with methylene

chloride.

The obtained methylene chloride layer was washed with dilute alkali and then with water, and thereafter dried over anhydrous sodium sulfate, and methylene chloride was 5 distilled off. The obtained residue was purified by silica gel column chromatography to obtain 0.75 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylsulfonylbenzoate (after-mentioned Intermediate No. 2a-5) having a melting point of from 99 to 102°C. The 10 NMR spectrum data of the product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

0.73-0.77 (m, 2H), 0.86-0.94 (m, 2H), 1.87-1.93 (m, 1H), 2.05 (s, 3H), 3.74 (s, 3H), 5.95 (s, 1H), 8.0 (d, 1H), 8.06 (d, 1H), 8.47 (s, 1H)

15 4) A mixture comprising 0.7 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylsulfonylbenzoate obtained in the preceding step, 0.3 g of dry potassium carbonate, 25 ml of toluene and 5 ml of N,N-dimethylformamide, was reacted for one hour 20 under an azeotropic dehydration condition using a Dean-Stark azeotropic dehydration apparatus.

After completion of the reaction, the reaction mixture was cooled and put into water, and the aqueous layer was washed with ethyl acetate. The aqueous layer 25 was acidified with concentrated hydrochloric acid and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous

solution and dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure to obtain the desired product 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11) as a viscous crude product. The NMR spectrum data of this product are as follows.

1H-NMR δppm [Solvent: CDCl₃]
0.42-0.45 (m, 2H), 0.72-0.81 (m, 2H), 0.95-1.05 (m, 1H),
10 3.34 (s, 3H), 3.67 (s, 3H), 7.73 (d, 1H), 8.0 (d, 1H), 8.4
(s, 1H)

The melting point of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole as the above-mentioned viscous crude product, was from 83 to 93°C.

5) 0.155 g of p-toluene sulfonyl chloride was added to a mixture comprising 0.3 g of 3-cyloropropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole obtained in the preceding step, 0.118 g of dry potassium carbonate, 0.002 g of tetraethyl ammonium bromide, 20 ml of toluene and 5 ml of N,N-dimethylformamide, and the mixture was reacted for about one hour within a range of from 40 to 50°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with water and further with a saturated sodium chloride

aqueous solution and then dried over anhydrous sodium sulfate, and ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.3 g of 3-
5 cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) as a viscous desired product. The NMR spectrum data of this product are as follows.

10 $^1\text{H-NMR}$ δ ppm [Solvent: CDCl_3]
0.52-0.56 (m,2H), 0.8-0.84 (m,2H), 1.48-1.55 (m,1H), 2.47
(s,3H), 3.32 (s,3H), 3.65 (s,3H), 7.37 (d,2H), 7.58
(d,1H), 7.82 (d,2H), 7.89 (d,1H), 8.28 (s,1H)

15 The melting point of the above viscous 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate was from 67 to 70°C.

PREPARATION EXAMPLE 2

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11) and 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned compound No. a-12) (Second method)

1) A mixture comprising 3.88 g of 3-cyloropropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylsulfonylbenzoate (after-mentioned Intermediate No. 2a-5), 1.52 g of dry potassium carbonate, 100 ml of

toluene and 20 ml of N,N-dimethylformamide, was reacted for one hour under an azeotropic dehydration condition using a Dean-Stark azeotropic dehydration apparatus.

After completion of the reaction, the reaction mixture was cooled and put into water, followed by liquid separation. The obtained aqueous layer was acidified with concentrated hydrochloric acid and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with water and then with a saturated sodium chloride aqueous solution and dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure to obtain 3.88 g of viscous 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole as a crude product. This product was left to stand to sufficiently remove the solvent to obtain crystals of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11) as the desired product, having a melting point of from 153 to 157°C.

2) 0.36 g of p-toluene sulfonyl chloride was added to a mixture comprising 0.7 g of crystals of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole obtained in the preceding step, 0.27 g of dry potassium carbonate, 0.005 g of tetraethylammonium bromide, 20 ml of toluene and 4 ml of N,N-dimethylformamide, and the mixture was reacted for about

1.5 hours within a range of from 40 to 50°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.7 g of crystals of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) as the desired product, having a melting point of from 135 to 138°C.

15 PREPARATION EXAMPLE 3

Preparation of 3-cyclopropyl-4-(2,4-dichloro-3-methylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-8)

1) 2.76 g of 3-cyclopropyl-5-hydroxy-1-methylpyrazole (after-mentioned Intermediate No. 1a-1) and 3.9 g of 2,6-dichlorotoluene were charged into 30 ml of 1,2-dichloroethane, and 6.7 g of dry aluminum chloride was dividedly added thereto at a temperature of not higher than 50°C with stirring. After the addition, stirring was continued for from 10 to 15 minutes within a range of from 35 to 40°C. Then, a solution having 4.0 g of carbon tetrachloride dissolved in 4 ml of 1,2-dichloroethane,

was dropwise added thereto at the same temperature.

After completion of the dropwise addition, the mixture was reacted for 1.5 hours at a temperature of from 40 to 45°C.

5 After completion of the reaction, the reaction mixture was put into 150 ml of ice water to separate a 1,2-dichloroethane layer.

2) 0.5 ml of water was added thereto, and the mixture was heated to 50°C, whereupon 3.5 ml of concentrated 10 sulfuric acid was gradually dropwise added thereto.

After completion of the dropwise addition, the mixture was reacted for 1.5 hours under reflux.

After completion of the reaction, the reaction mixture was left to cool, and 150 ml of water was added 15 thereto, followed liquid separation. The obtained 1,2-dichloroethane layer was washed with water and then extracted with an alkaline solution having 3.5 g of sodium hydroxide dissolved in 100 ml of water. Then, 50% sulfuric acid was added thereto to make the liquid weakly 20 acidic and extracted with methylene chloride. The obtained methylene chloride layer was dried over anhydrous sodium sulfate, and methylene chloride was distilled off under reduced pressure to obtain 3.5 g of the desired product having a melting point of from 112 to 25 115°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

0.66-0.71 (m,2H), 0.93-0.99 (m,2H), 1.15-1.22 (m,1H),
2.72 (s,3H), 3.89 (s,3H), 7.34 (d,1H), 7.57 (d,1H)

Preparation Example 4

Preparation of 4-(2,4-dichlorobenzoyl)-3-cyclopropyl-1-
5 ethyl-5-hydroxypyrazole (after-mentioned Compound No. a-
18)

1) A solution having 0.87 g of dry hydrazine dissolved in 5 ml of dry tetrahydrofuran, was added to a solution having 5 g of tert-butyl 3-cyclopropyl-3-oxopropionate dissolved in 30 ml of dry tetrahydrofuran, and the mixture was reacted for one hour under reflux.

After completion of the reaction, tetrahydrofuran, etc. were distilled off under reduced pressure to obtain 3.3 g of 3-cyclopropyl-5-hydroxypyrazole (after-mentioned 15 Intermediate No. 3-1) having a melting point of from 213 to 217°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: heavy MDSO]
0.57-0.61 (m,2H), 0.81-0.86 (m,2H), 1.70-1.77 (m,1H), 5.1
20 (s,1H), 10.16 (bs,1H)

2) 1.61 g of 3-cyclopropyl-5-hydroxypyrazole obtained in the preceding step was mixed with a solution having 1.89 g of dry potassium carbonate dissolved in 20 ml of hexamethylphosphoric triamide, and the mixture was cooled 25 within a range of from 0 to 2°C. Then, iodoethane was dropwise added thereto within a range of from 0 to 5°C over a period of about 15 minutes. Then, the mixture was

reacted for one hour at the same temperature and then further reacted for one hour within a range of from room temperature to 40°C.

3) 2.72 g of 2,4-dichlorobenzoyl chloride was added thereto at room temperature, and the mixture was reacted for 0.5 hour at the same temperature and further reacted for 0.5 hour at 40°C.

After completion of the reaction, the reaction mixture was put into water and extracted with toluene. The obtained toluene layer was thoroughly washed with water and then with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, toluene was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography to obtain 1.2 g of 3-cyclopropyl-1-ethyl-5-pyrazolyl 2,4-dichlorobenzoate (after-mentioned Intermediate No. 2a-7) having a melting point of from 61 to 63°C. The NMR spectrum data of this product are as follows.

20 $^1\text{H-NMR}$ δ ppm [Solvent: CDCl_3]
0.69-0.73 (m, 2H), 0.87-0.9 (m, 2H), 1.4 (t, 3H), 1.85-1.92 (m, 1H), 4.02-4.08 (q, 2H), 5.92 (s, 1H), 7.39 (d, 1H), 7.55 (s, 1H), 7.94 (d, 1H)

4) Using 1.1 g of 3-cyclopropyl-1-ethyl-5-pyrazolyl 2,4-dichlorobenzoate obtained in the preceding step, 0.843 g of the desired product having a melting point of from 74 to 77°C was obtained in the same manner as Step

4) in Preparation Example 1.

PREPARATION EXAMPLE 5

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-
methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl benzene

5 sulfonate (after-mentioned Compound No. a-27)

1) 0.57 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylsulfonyl benzoate (after-mentioned Intermediate No. 2a-5), 20 ml of toluene and 1 ml of N,N-dimethylformamide were charged into an 10 Erlenmeyer flask, and 0.11 g of potassium carbonate was added thereto. The mixture was reacted for 15 hours under an azeotropic dehydration condition to obtain a reaction mixture containing a potassium salt of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole.

15 2) The reaction mixture obtained in the preceding step was left to cool, and 0.1 g of tetraethylammonium chloride and 0.1 g of potassium iodide were added thereto. Then, 0.27 g of benzene sulfonyl chloride was 20 added thereto. The mixture was reacted for 5.5 hours at 55°C with stirring.

25 After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. Then, the extract was washed with water. The obtained organic layer was dried over anhydrous sodium sulfate, then concentrated and thereafter purified by silica gel column chromatography to obtain 0.49 g of the

desired product having a melting point of from 175 to 178°C. The NMR spectrum data of this product are as follows.

$^1\text{H-NMR}$ δ ppm [Solvent: CDCl_3]

5 0.46-0.05 (m,2H), 0.73-0.81 (m,2H), 1.33-1.41 (m,1H),
3.27 (s,3H), 3.63 (s,3H), 7.53-7.58 (m,3H), 7.7 (t,1H),
7.85 (d,1H), 7.96 (d,2H), 8.27 (s,1H)

PREPARATION EXAMPLE 6

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl n-propanesulfonate (after-mentioned Compound No. a-89)

A mixture comprising 0.4 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11), 20 ml of toluene, 5 ml of N,N-dimethylformamide, 5 mg of tetraethylammonium bromide and 0.16 g of n-propanesulfonyl chloride, was reacted for about 12 hours at 40°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.34 g of the desired product having a melting point of from 128 to 131°C. The NMR

spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

0.43-0.51 (m,2H), 0.78-0.82 (m,2H), 1.12 (t,3H), 1.1-1.2
5 (m,1H), 2.0-2.1 (m,2H), 3.33 (s,3H), 3.53 (t,2H), 3.82
(s,3H), 7.70 (d,1H), 7.96 (d,1H), 8.38 (s,1H)

PREPARATION EXAMPLE 7

Preparation of 5-benzyloxy-3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methylpyrazole
(after-mentioned Compound No. a-94)

10 0.14 g of benzyl chloride was added to a mixture comprising 0.4 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11), 0.16 g of dry potassium carbonate, 5 mg of benzyltriethylammonium chloride, 5 mg of potassium iodide, 20 ml of toluene and 5 ml of N,N-dimethylformamide, and the mixture was reacted for 24 hours within a range of from 50 to 70°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.25 g of the desired product having a melting point of from 154 to 157°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

0.68-0.71 (m,2H), 0.85-0.88 (m,2H), 1.8-2.0 (m,1H), 3.35 (s,3H), 3.42 (s,3H), 5.00 (s,2H), 7.11-7.12 (m,2H), 7.26-7.30 (m,3H), 7.58-7.60 (d,1H), 7.58-7.88 (d,1H), 8.34

5 (s,1H)

PREPARATION EXAMPLE 8

Preparation of 5-(2-chloro-2-propenoxy)-3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methylpyrazole (after-mentioned Compound No. a-213)

10 A mixture comprising 0.776 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11), 30 ml of toluene, 4 ml of N,N-dimethylformamide, 5 mg of tetraethylammonium bromide and 0.245 g of 2,3-dichloropropene, was reacted for 1 hour at room temperature, then reacted for 4 hours at a temperature of from 60 to 80°C with stirring.

15 After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 20 0.65 g of the desired product having a melting point of from 180 to 181°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]
0.59-0.61 (m, 2H), 0.84-0.86 (m, 2H), 1.6-1.7 (m, 1H), 3.38
(s, 3H), 3.67 (s, 3H), 4.68 (s, 2H), 5.37-5.4 (d, 2H), 7.62
(d, 1H), 7.93 (d, 1H), 8.38 (s, 1H)

5 PREPARATION EXAMPLE 9

Preparation of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-hydroxypyrazole (after-mentioned Compound No. a-82), 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-72) and 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12)

10 1) Into a 200 ml autoclave, 1.59 g of 4-iodo-3-methylthiobenzotrifluoride prepared in accordance with the following Preparation Example 10, 1.38 g of 3-cyclopropyl-5-hydroxy-1-methylpyrazole (after-mentioned Intermediate No. 1a-1), 0.5 g of triethylamine, 3.1 g of potassium carbonate, 0.22 g of palladium (II) bis(triphenylphosphine) dichloride and 40 ml of dioxane were put and sealed, and the interior of the autoclave was flushed with carbon monoxide (pressure: 65 kg/cm²), followed by a reaction at 140°C for 8 hours. After completion of the reaction, the solvent was distilled off, and the residue was dissolved in water, and then insoluble matters were filtered off. The filtrate was washed with dichloromethane. The washed product was

acidified (pH=1) with concentrated hydrochloric acid and extracted with dichloromethane. The obtained extract solution was dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 1.59 g of 3-
5 cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-hydroxypyrazole (after-mentioned Compound No. a-82) as a reddish brown solid.

2) 1.59 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-hydroxypyrazole obtained in
10 the preceding step was mixed, without purification, with 20 ml of toluene, 4 ml of N,N-dimethylformamide, 0.94 g of p-toluene sulfonyl chloride and 0.34 g of potassium carbonate, and the mixture was reacted at 60°C for 3 hours. After completion of the reaction, water was added
15 to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract solution was dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/hexane=1/4) to obtain 0.53 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-72). The NMR spectrum data of this product are as follows.

25 $^1\text{H-NMR}$ δ ppm [Solvent: CDCl_3]
0.79 (m,2H), 0.90 (m,2H), 1.97 (m,1H), 2.39 (s,3H), 2.47 (s,3H), 7.23 (d,2H), 7.32 (d,1H), 7.48 (s,1H), 7.49

(d,1H), 7.53 (d,2H)

3). 0.46 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-pyrazolyl p-toluene sulfonate obtained in the preceding step was dissolved in 10 ml of dichloromethane, and 0.47 g of 85% methachloroperbenzoic acid was added thereto under cooling with ice. Then, the mixture was returned to room temperature and reacted over night with stirring. After completion of the reaction, an aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with dichloromethane. The extract layer was dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/hexane=3/7) to obtain 0.49 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12).

PREPARATION EXAMPLE 10

20 Preparation of 4-iodo-3-methylthiobenzotrifluoride

1) 123.85 g of sodium iodide was added to a solution having 42.23 g of 4-chloro-3-nitrobenzotrifluoride dissolved in 200 ml of N,N-dimethylformamide, and the mixture was reacted at 140°C for 17 hours.

25 After completion of the reaction, the reaction mixture was put into water and extracted with ethyl ether. The ethyl ether layer was washed with water and

then dried over anhydrous sodium sulfate. Then, ethyl ether was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 44.15 g of 4-iodo-3-nitrobenzotrifluoride. The NMR spectrum data of this product are as follows.

5 ¹H-NMR δppm [Solvent: CDCl₃]
7.52 (dd,1H), 8.11 (s,1H), 8.22 (d,1H)
10 2) A solution having 30 g of 4-iodo-3-nitrobenzotrifluoride obtained in the preceding step dissolved in 300 ml of acetic acid, was heated, and 26.43 g of reduced iron was added thereto over a period of 15 minutes at a temperature of from 85 to 95°C. Then, the mixture was reacted for further 5 minutes at the same temperature.

15 After completion of the reaction, the reaction mixture was cooled with ice, and insoluble matters were filtered off using celite. The filtration cake was thoroughly washed with ethyl acetate, and the washing liquid and the filtrate were mixed, followed by washing 20 with water for 5 times. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate, and ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 25.52 g of oily 3-amino-4-25 iodobenzotrifluoride. The NMR spectrum data of this product are as follows.

1¹H-NMR δppm [Solvent: CDCl₃]

60

6.70 (dd,1H), 6.93 (d,1H), 7.73 (d,1H)

3) To a solution containing a part (5.1 g) of 3-amino-4-iodobenzotrifluoride obtained in the preceding step, 16.75 g of dimethyldisulfide and 80 ml of chloroform, a solution having the rest (20.42 g) of 3-amino-4-iodobenzotrifluoride obtained in the preceding step dissolved in 20 ml of chloroform and 11.92 g of tert-butylnitrite, were simultaneously dropwise added at a temperature of from 25 to 30°C. After completion of the dropwise addition, the mixture was reacted at room temperature for 16 hours.

After completion of the reaction, 200 ml of methylene chloride was added to the reaction mixture, and the mixture was washed with an aqueous hydrochloric acid solution with pH 1 to 2. Then, the methylene chloride layer was washed with water and dried over anhydrous sodium sulfate. Then, methylene chloride and chloroform were distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 19.89 g of the desired product as an oily substance. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

2.51 (s,3H), 7.08 (dd,1H), 7.26 (d,1H), 7.90 (dd,1H)

25 Other compounds of the present invention can be prepared in accordance with the above described Preparation Examples or the above described various

processes for producing the compounds of the present invention. Typical examples of the intermediate compound represented by the above formula (II) will be shown in Table 1, typical examples of the intermediate compound 5 represented by the above formula (IV) will be presented in Tables 2a and 2b, typical examples of the intermediate compound represented by the above formula (IX) will be presented in Table 3, and typical examples of the compound of the present invention represented by the above formula (I) will be presented in Tables 4a and 4b.

Table 1

Inter- mediate No.	R ₁	(Z)	Physical properties
1 a - 1	CH ₃		m.p. 95 - 121 °C
1 a - 2	CH ₂ CH ₃		
1 a - 3	n-C ₃ H ₇		
1 a - 4	n-C ₄ H ₉		
1 a - 5	CH(CH ₃) ₂		
1 b - 1	CH ₃		
1 b - 2	CH ₂ CH ₃		
1 b - 3	n-C ₃ H ₇		
1 b - 4	n-C ₄ H ₉		
1 b - 5	CH(CH ₃) ₂		

63

Table 2a

Intermediate No.	R ₁	(X) _n	Physical properties
2a-1	CH ₃		
2a-2	CH ₃		m.p. 84-87°C
2a-3	CH ₃		m.p. 148-150°C
2a-4	CH ₃		
2a-5	CH ₃		m.p. 99-102°C
2a-6	CH ₃		
2a-7	CH ₂ CH ₃		m.p. 61-63°C
2a-8	CH ₃		

Table 2a (continued)

Inter- mediate No.	R ₁		Physical properties
2 a - 9	CH ₂ CH ₃		m.p. 96–99°C
2 a - 10	CH ₃		Viscous
2 a - 11	CH ₃		
2 a - 12	CH ₂ CH ₃		
2 a - 13	n-C ₃ H ₇		
2 a - 14	CH ₂ CH ₃		m.p. 94–97°C
2 a - 15	CH(CH ₃) ₂		
2 a - 16	CH ₃		Oily
2 a - 17	CH ₃		m.p. 136–140 °C

Table 2a (continued)

Intermediate	R ₁		Physical properties
2 a - 18	CH ₃		
2 a - 19	CH ₃		m.p. 90 - 93 °C
2 a - 20	CH ₂ CH ₃		
2 a - 21	CH ₃		Viscous
2 a - 22	CH ₃		Viscous
2 a - 23	CH ₃		Viscous
2 a - 24	CH ₃		m.p. 146 - 149 °C
2 a - 25	CH ₃		m.p. 125 - 130 °C
2 a - 26	CH ₃		

Table 2a (continued)

Inter- mediate No.	R ₁		Physical properties
2 a - 27	CH ₃		
2 a - 28	CH ₃		m.p. 134 - 136 °C
2 a - 29	CH ₃		
2 a - 30	CH ₃		
2 a - 31	CH ₃		
2 a - 32	CH ₃		
2 a - 33	CH ₃		
2 a - 34	CH ₃		

Table 2a (continued)

Inter- mediate No.	R ₁		Physical properties
2 a - 35	CH ₃		
2 a - 36	CH ₃		
2 a - 37	CH ₃		
2 a - 38	CH ₃		
2 a - 39	CH ₃		
2 a - 40	CH ₃		
2 a - 41	CH ₃		
2 a - 42	CH ₃		
2 a - 43	CH ₃		m.p. 118 - 122 °C

Table 2a (continued)

Inter- mediate No.	R ₁		Physical properties
2 a - 44	CH ₃		
2 a - 45	CH ₃		Viscous
2 a - 46	CH ₃		
2 a - 47	CH ₃		
2 a - 48	CH ₃		
2 a - 49	CH ₃		
2 a - 50	CH ₃		
2 a - 51	CH ₃		

Table 2a (continued)

Intermediate No.	R ₁		Physical properties
2 a - 52	CH ₃		
2 a - 53	CH ₃		
2 a - 54	CH ₃		
2 a - 55	CH ₃		
2 a - 56	CH ₃		
2 a - 57	CH ₃		
2 a - 58	CH ₃		
2 a - 59	CH ₃		
2 a - 60	CH ₃		

Table 2a (continued)

Inter- mediate No.	R ₁		Physical properties
2 a - 61	CH ₃		
2 a - 62	CH ₃		
2 a - 63	CH ₃		
2 a - 64	CH ₃		
2 a - 65	CH ₃		

Table 2b

Intermediate No.	R ₁	(Z) ,	(X) _n	Physical properties
2 b - 1	CH ₃	CH ₃ ~~~~		Viscous
2 b - 2	CH ₂ CH ₃	CH ₃ ~~~~		
2 b - 3	CH ₃	CH ₃ ~~~~		
2 b - 4	CH ₃	CH ₃ ~~~~		
2 b - 5	CH ₃	CH ₃ ~~~~		
2 b - 6	CH ₃	CH ₃ ~~~~		

(Z)

... (IX)

Table 3

Inter- mediate No.	(Z)	Physical properties
3 - 1		m.p. 213 - 217 °C
3 - 2	CH ₃ ~~~~	

Table 4a

Compound No.	R ₁	R ₂		Physical properties
a - 1	CH ₃	H		m.p. 131—133°C
a - 2	CH ₃	-SO ₂ --CH ₃		Refractive index n _D ²⁰ 1.5779
a - 3	CH ₃	H		m.p. 65—70°C
a - 4	CH ₃	-SO ₂ --CH ₃		m.p. 130—133°C
a - 5	CH ₃	H		m.p. 163—166°C
a - 6	CH ₃	-SO ₂ --CH ₃		m.p. 172—174°C
a - 7	CH ₃	-CH ₂ -C(=O)-		m.p. 145—147°C
a - 8	CH ₃	H		m.p. 112—115°C

74
Table 4a (continued)

Compound No.	R ₁	R ₂		(X) _n	Physical properties
a - 9	CH ₃	-SO ₂ -		Cl CH ₃ Cl	m.p. 115 - 118°C
a - 10	CH ₃	-CH ₂ C(=O)-		Cl CH ₃ Cl	m.p. 126 - 129°C
a - 11	CH ₃	H		SO ₂ CH ₃ CF ₃	m.p. 153 - 157°C
a - 12	CH ₃	-SO ₂ -		SO ₂ CH ₃ CF ₃	m.p. 135 - 138°C
a - 13	CH ₃	-CH ₂ C(=O)-		SO ₂ CH ₃ CF ₃	m.p. 124 - 127°C
a - 14	CH ₃	-C(=O)CH ₃		Cl CH ₃ Cl	m.p. 112 - 115°C
a - 15	CH ₃	H		NO ₂ SCH ₃	m.p. 115 - 122°C
a - 16	CH ₃	-SO ₂ -		NO ₂ SCH ₃	m.p. 146 - 148°C
a - 17	CH ₃	-CH ₂ C(=O)-		NO ₂ SCH ₃	Viscous
a - 18	CH ₂ CH ₃	H		Cl Cl	m.p. 74 - 77°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X)n	Physical properties
a - 19	CH ₂ CH ₃	-CH ₂ C(=O)-C ₆ H ₄ -	Cl-C ₆ H ₄ -Cl	Viscous
a - 20	CH ₃	-CH ₂ C(=O)-C ₆ H ₄ -	NO ₂ -C ₆ H ₄ -SO ₂ CH ₃	m.p. 181 - 183°C
a - 21	CH ₂ CH ₃	H	Cl-C ₆ H ₄ -SO ₂ CH ₃	m.p. 158 - 161°C
a - 22	CH ₂ CH ₃	-SO ₂ -C ₆ H ₄ -CH ₃	Cl-C ₆ H ₄ -SO ₂ CH ₃	m.p. 116 - 118°C
a - 23	CH ₂ CH ₃	-CH ₂ C(=O)-C ₆ H ₄ -	Cl-C ₆ H ₄ -SO ₂ CH ₃	m.p. 146 - 148°C
a - 24	CH ₃	H	Cl-C ₆ H ₄ -SCH ₃	m.p. 111 - 114°C
a - 25	CH ₃	-CH ₂ C(=O)-C ₆ H ₄ -	Cl-C ₆ H ₄ -SCH ₃	Refractive index n_{D}^{20} 1.6001
a - 26	CH ₃	H	NO ₂ -C ₆ H ₄ -SO ₂ CH ₃	m.p. 140 - 145°C
a - 27	CH ₃	-SO ₂ -C ₆ H ₄ -	SO ₂ CH ₃ -C ₆ H ₄ -CF ₃	m.p. 175 - 178°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 28	CH ₃	-SO ₂ -C ₆ H ₄ -CH ₃		
a - 29	CH ₃	-CH ₂ C(=O)-C ₆ H ₄		
a - 30	CH ₃	-CH ₂ C(=O)-C ₆ H ₄		
a - 31	CH ₂ CH ₃	-SO ₂ -C ₆ H ₄		
a - 32	CH ₂ CH ₃	-SO ₂ -C ₆ H ₄		
a - 33	CH ₃	-SO ₂ -C ₆ H ₄ -Cl		
a - 34	CH ₃	-SO ₂ -C ₆ H ₄ -Cl		
a - 35	CH ₃	-SO ₂ -C ₆ H ₄ -Cl		
a - 36	CH ₃	-SO ₂ -C ₆ H ₄ -OCH ₃		

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 37	CH ₃	-SO ₂ -		
a - 38	CH ₃	-SO ₂ -		
a - 39	CH ₃	-SO ₂ CH ₃		m.p. 143 - 146°C
a - 40	CH ₃	-SO ₂ CH ₂ CH ₃		m.p. 127 - 130.5°C
a - 41	CH ₃	-SO ₂ -		m.p. 117 - 120°C
a - 42	CH ₃	-SO ₂ -		m.p. 196 - 199°C
a - 43	CH ₃	-SO ₂ -		m.p. 157 - 160°C
a - 44	CH ₃	-SO ₂ -		m.p. 168 - 171°C
a - 45	CH ₃	-SO ₂ -		m.p. 157 - 160°C
a - 46	CH ₃	-SO ₂ -		

Table 4a (continued)

Compound No.	R ₁	R ₂		(X) _n	Physical properties
a - 47	CH ₃	-SO ₂ -		CF ₃	m.p. 185 - 188°C
a - 48	CH ₃	-SO ₂ -		CF ₃	m.p. 124 - 127°C
a - 49	CH ₃	-SO ₂ -		CF ₃	m.p. 152 - 155°C
a - 50	CH ₃	-SO ₂ -		CF ₃	
a - 51	CH ₃	-SO ₂ -		CF ₃	m.p. 166 - 169°C
a - 52	CH ₃	-SO ₂ -		CF ₃	m.p. 145 - 149°C
a - 53	CH ₃	-SO ₂ C ₄ H ₉ (n)		CF ₃	m.p. 142 - 145°C
a - 54	CH ₂ CH ₃	-SO ₂ -		CF ₃	
a - 55	CH ₂ CH ₃	-SO ₂ -		CF ₃	m.p. 156 - 159°C
a - 56	CH ₂ CH ₃	-SO ₂ -		CF ₃	

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 57	CH ₂ CH ₃	-SO ₂ -		
a - 58	CH ₂ CH ₃	-CH ₂ C(=O)-		m.p. 136 - 138°C
a - 59	CH ₃	-CH ₂ C(=O)-		Viscous
a - 60	CH ₃	-CH ₂ C(=O)-		Viscous
a - 61	CH(CH ₃) ₂	-SO ₂ -		
a - 62	CH(CH ₃) ₂	-SO ₂ -		
a - 63	n-C ₃ H ₇	-SO ₂ -		
a - 64	CH ₃	-SO ₂ CH ₃		
a - 65	CH ₃	-SO ₂ -		
a - 66	CH ₃	-SO ₂ -		

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical Properties
a - 67	CH ₃	-SO ₂ - -Cl		
a - 68	CH ₃	-SO ₂ - -NO ₂		
a - 69	CH ₃	-SO ₂ - -NO ₂		m.p. 208 - 211°C
a - 70	CH ₃	-SO ₂ - -NO ₂		
a - 71	n-C ₃ H ₇	-SO ₂ - -CH ₃		
a - 72	CH ₃	-SO ₂ - -CH ₃		m.p. 107 - 109°C
a - 73	CH ₃	-SO ₂ - -CH ₃		m.p. 158 - 164°C
a - 74	CH ₃	-SO ₂ - -CH ₃		
a - 75	CH ₃	-SO ₂ - -CH ₃		
a - 76	CH ₃	-SO ₂ - -CH ₂ CH ₃		viscous

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 77	CH ₃	H		m.p. 190 - 204°C
a - 78	CH ₃	-SO ₂ CH ₃		m.p. 134 - 138°C
a - 79	CH ₃	-CH ₂ C(=O)-		m.p. 137 - 139°C
a - 80	CH ₃	H		m.p. 177 - 180°C
a - 81	CH ₃	H		m.p. 141 - 143°C
a - 82	CH ₃	H		m.p. 107 - 110°C
a - 83	CH ₃	-CH ₂ C(=O)-CH ₃		Viscous
a - 84	CH ₃	-SO ₂ -		m.p. 189 - 193°C
a - 85	CH ₃	-CH ₂ C(=O)-		m.p. 113 - 115°C
a - 86	CH ₃	-CH ₂ C(=O)-		m.p. 146 - 148°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 87	CH ₃	-CH ₂ C(=O)-C ₆ H ₄ -		m.p. 148 - 151°C
a - 88	CH ₃	-C(=O)-C ₆ H ₄ -		m.p. 137 - 141°C
a - 89	CH ₃	-SO ₂ C ₃ H ₇ (n)		m.p. 128 - 131°C
a - 90	CH ₃	-SO ₂ -C ₆ H ₄ -		Viscous
a - 91	CH ₃	-SO ₂ -C ₆ H ₄ -CH ₃		m.p. 188 - 192°C
a - 92	CH ₃	-SO ₂ -C ₆ H ₄ -CH ₃		Viscous
a - 93	CH ₃	-SO ₂ -C ₆ H ₄ -CH ₃		m.p. 128 - 131°C
a - 94	CH ₃	-CH ₂ -C ₆ H ₄ -		m.p. 154 - 157°C
a - 95	CH ₃	-CH ₂ CN		m.p. 135 - 140°C
a - 96	CH ₃	-CH ₂ CH=CH ₂		Refractive index n _D ^{44.5} 1.5133

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 97	CH ₃	-CH ₂ — —CH ₃		m.p. 161 - 163°C
a - 98	CH ₃	-CH ₂ — —CH ₃		m.p. 163 - 166°C
a - 99	CH ₃	-CH ₂ C≡CH		m.p. 123 - 127°C
a - 100	CH ₃	-CH ₂ CH ₃		m.p. 125 - 128°C
a - 101	CH ₃	-CH ₂ — —CF ₃		m.p. 159 - 161°C
a - 102	CH ₃	-SO ₂ — —CH ₃		m.p. 63 - 70°C
a - 103	CH ₃	-SO ₂ C ₃ H ₇ (n)		m.p. 130 - 133°C
a - 104	CH ₃	-CH ₂ — —Cl		m.p. 151 - 154°C
a - 105	CH ₃	-CH ₂ — —Br		m.p. 160 - 163°C
a - 106	CH ₃	H		m.p. 140 - 143°C

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 107	CH ₂ CH ₃	H		m.p. 109 - 114°C
a - 108	CH ₃	-CH ₂ -		
a - 109	CH ₃	-CH ₂ -		
a - 110	CH ₃	-CH ₂ -		
a - 111	CH ₃	-CH ₂ OCH ₃		
a - 112	CH ₃	-CH ₂ OCH ₂ CH ₃		
a - 113	CH ₃			Viscous
a - 114	CH ₃			
a - 115	CH ₃	-CH ₃		
a - 116	CH ₃	-C _n H _n (n)		Viscous

Table 4a (continued)

Compound No.	R ₁	R ₂		(X) _n	Physical properties
a -117	CH ₃	-C ₄ H ₉ (n)			
a -118	CH ₃	O -CCH ₃			m.p. 156 - 158°C
a -119	CH ₃	O -CCH ₂ CH ₃			
a -120	CH ₃	O -C-C ₃ H ₇ (n)			m.p. 143 - 145°C
a -121	CH ₃	O -C-C ₄ H ₉ (n)			
a -122	CH ₃	O -C- -CH ₃			m.p. 179 - 182°C
a -123	CH ₃	O -C- -Cl			
a -124	CH ₃	-SO ₂ - -CH ₃			
a -125	CH ₃	-SO ₂ N(CH ₃) ₂			m.p. 116 - 118°C
a -126	CH ₃	-SO ₂ N(CH ₃) ₂			m.p. 154 - 158°C

Table 4a (continued)

Compound No.	R ₁	R ₂		(X)n	Physical properties
a - 127	CH ₃	-CON(CH ₃) ₂		Cl	m.p. 136 - 138°C
a - 128	CH ₃	-CON(CH ₃) ₂		SO ₂ CH ₃	
a - 129	CH ₃	-SO ₂ N(CH ₃) ₂		Cl	m.p. 50 - 60°C
a - 130	CH ₃	-CON(CH ₃) ₂		Cl	m.p. 200 - 203°C
a - 131	CH ₃	-SO ₂ - CH ₃		SO ₂ CH ₃	m.p. 57 - 60°C
a - 132	CH ₃	-SO ₂ - CH ₃		SCH ₃	Viscous
a - 133	CH ₃	-SO ₂ - CH ₃		F	m.p. 105 - 107°C
a - 134	CH ₃	-SO ₂ - CH ₃		SOCH ₃	m.p. 131 - 133°C
a - 135	CH ₃	-SO ₂ - CH ₃		SO ₂ CH ₃	m.p. 169 - 172°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a -136	CH ₃	-CH ₂ -		Oily
a -137	CH ₃	-CH ₂ -		Viscous
a -138	CH ₃	-CH ₂ -		m.p. 125 - 128°C
a -139	CH ₃	H		Oily
a -140	CH ₃	-CH(CH ₃)-		m.p. 139 - 142°C
a -141	CH ₃			m.p. 150 - 151°C
a -142	CH ₃	H		m.p. 95 - 103°C
a -143	CH ₃	-SO ₂ -		m.p. 92 - 96°C
a -144	CH ₃	H		m.p. 60 - 70°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 145	CH ₃	-SO ₂ — —CH ₃		m.p. 75 - 80°C
a - 146	CH ₃	H		m.p. 70 - 85°C
a - 147	CH ₃	-SO ₂ — —CH ₃		
a - 148	CH ₃	-CHCO— CH ₃		m.p. 152 - 153°C
a - 149	CH ₃	-CH ₂ CH=CH—		Viscous
a - 150	CH ₃	-CH ₂ —		Viscous
a - 151	CH ₃	-CH ₂ —		Viscous
a - 152	CH ₃	-CH ₂ —		m.p. 157 - 160°C
a - 153	CH ₃	-SO ₂ C ₆ H ₄ H ₂ (n)		m.p. 82 - 85°C

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 154	CH ₃	-SO ₂ C ₆ H ₄ (n)		Viscous
a - 155	CH ₃	-SO ₂ C ₆ H ₄ (n)		m.p. 165 - 169°C
a - 156	CH ₃	H		Viscous
a - 157	CH ₃	-NO ₂ -C ₆ H ₄ -NO ₂		Viscous
a - 158	CH ₃	-NO ₂ -C ₆ H ₄ -NO ₂		m.p. 120 - 130°C
a - 159	CH ₃	-CH ₂ -NO ₂		Viscous
a - 160	CH ₃	-CH ₂ -NO ₂		m.p. 177 - 178°C
a - 161	CH ₃	-CH ₂ -NO ₂		m.p. 173 - 175°C

Table 4a (continued)

Compound No.	R ₁	R ₂		(X) _n	Physical properties
a - 162	CH ₃	-CH ₂ -		SCH ₂ CH ₃ Cl Cl	Viscous
a - 163	CH ₃	-CH ₂ -		SOCH ₂ CH ₃ Cl Cl	Viscous
a - 164	CH ₃	-CH ₂ -		SO ₂ CH ₂ CH ₃ Cl Cl	m.p. 65 - 75°C
a - 165	CH ₃	H		Cl CO ₂ CH ₃ SO ₂ CH ₃	m.p. 208°C (decomposition)
a - 166	CH ₃	-SO ₂ - CH ₃		Cl CO ₂ CH ₃ SO ₂ CH ₃	m.p. 144 - 147°C
a - 167	CH ₃	-SO ₂ - CH ₃		NO ₂ CF ₃	m.p. 120 - 141°C
a - 168	CH ₃	-CH ₂ CO-C(CH ₃) ₃		SO ₂ CH ₃ CF ₃	m.p. 140 - 144°C
a - 169	CH ₃	-CH ₂ -		SO ₂ CH ₂ CH ₃ CF ₃	m.p. 119 - 122°C
a - 170	CH ₃	-CH ₂ C≡CH		SO ₂ CH ₂ CH ₃ CF ₃	Oily

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a - 171	CH ₃	-CH ₂ -		Viscous
a - 172	CH ₃	H		Oily
a - 173	CH ₃	-CH ₂ CN		Viscous
a - 174	CH ₃	-CH ₂ CN		Viscous
a - 175	CH ₃	-SO ₂ - -CH ₃		m.p. 153 - 156°C
a - 176	CH ₃	-SO ₂ - -CH ₃		Viscous
a - 177	CH ₃	-SO ₂ - -CH ₃		Viscous
a - 178	CH ₃	-SO ₂ - -CH ₃		Viscous
a - 179	CH ₃	-SO ₂ C ₃ H ₇ (n)		m.p. 140 - 144°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 180	CH ₃	-CH ₂ -		Viscous
a - 181	CH ₃	-CH ₂ -		Viscous
a - 182	CH ₃	-CH ₂ -		m.p. 55 - 62°C
a - 183	CH ₃	H		Viscous
a - 184	CH ₃	-CH ₂ -		Viscous
a - 185	CH ₃	-CH ₂ -		m.p. 154 - 155°C
a - 186	CH ₃	-CH ₂ -		m.p. 165 - 167°C
a - 187	CH ₃	H		m.p. 50 - 58°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 188	CH ₃	-SO ₂ C ₆ H ₄ (n)		m.p. 181 - 184°C
a - 189	CH ₃	-SO ₂ --CH ₃		m.p. 70 - 73°C
a - 190	CH ₃	-CH ₂ C≡CH		Viscous
a - 191	-	CH ₃		m.p. 40 - 50°C
a - 192	CH ₃	H		Viscous
a - 193	CH ₃	-CH ₂ -		m.p. 107 - 110°C
a - 194	CH ₃	-CH ₂ -		m.p. 48 - 52°C
a - 195	CH ₃	-CH ₂ -		m.p. 140 - 148°C
a - 196	CH ₃	H		m.p. 115 - 130°C

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a -197	CH ₃	-CH ₂ -		m.p. 79 - 93°C
a -198	CH ₃	-CH ₂ -		m.p. 114 - 125°C
a -199	CH ₃	-CH ₂ -		m.p. 143 - 146°C
a -200	CH ₃	-CH ₂ CO-		m.p. 173 - 178°C
a -201	CH ₃	H		m.p. 155 - 156°C
a -202	CH ₃	-SO ₂ - -CH ₃		m.p. 150 - 151°C
a -203	CH ₃	-SO ₂ CH ₂ CH(CH ₃) ₂		m.p. 183 - 188°C
a -204	CH ₃	-CH ₂ CO-		Viscous
a -205	CH ₃			m.p. 111 - 126°C

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a -206	CH ₃	-CH ₂ C≡CH		Oily
a -207	CH ₃	-SO ₂ C ₃ H ₇ (n)		Viscous
a -208	CH ₃	-SO ₂ C ₃ H ₇ (n)		m.p. 134 - 135°C
a -209	CH ₃	-CH ₂ C≡CH		Viscous
a -210	CH ₃	-CH ₂ -		Viscous
a -211	CH ₃	H		m.p. 122 - 138°C
a -212	CH ₃	-CH ₂ CN		Viscous
a -213	CH ₃	-CH ₂ C=CH ₂ Cl		m.p. 108 - 111°C
a -214	CH ₃	-SO ₂ (CH ₂) ₂ Cl		m.p. 113 - 118°C

Table 4a (continued)

Compound No.	R ₁	R ₂		(X) _n Physical properties
a -215	CH ₃	-CH ₂ -		m.p. 50 - 60°C
a -216	CH ₃	-CO(CH ₂) ₃ Cl		m.p. 133 - 135°C
a -217	CH ₃	-CH ₂ CH=CH ₂		Viscous
a -218	CH ₃	-CH ₂ CN		Viscous
a -219	CH ₃	-CH ₂ -		Viscous
a -220	CH ₃	-SO ₂ CH ₃		m.p. 125 - 130°C
a -221	CH ₃	-CO ₂ CH ₃		Viscous
a -222	CH ₃	H		m.p. 153 - 156°C
a -223	CH ₃	-CH ₂ CO ₂ CH ₂ CH ₃		Viscous

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a -224	CH ₃	H		
a -225	CH ₃	H		Viscous
a -226	CH ₃	-SO ₂ C ₃ H ₇ (n)		Viscous
a -227	CH ₃	H		Oily
a -228	CH ₃	-CH ₂ CH=CHCl		m.p. 100 - 103°C
a -229	CH ₃	-CH ₂ C(CH ₃)=CH ₂		m.p. 122 - 125°C
a -230	CH ₃	-CH ₂ C(CH ₃)=CH ₂		Oily
a -231	CH ₃	-CH ₂ CH=C(CH ₃) ₂		
a -232	CH ₃	-CH ₂ CH=C(Cl) ₂		m.p. 142 - 145°C
a -233	CH ₃	-CH ₂ CH=CHCH ₃		m.p. 101 - 106°C

Table 4a (continued)

Compound No.	R ₁	R ₂		(X)n	Physical properties
a - 234	CH ₃	-CHCH=CH ₂ CH ₃		SO ₂ CH ₃ — —CF ₃	Oily
a - 235	CH ₃	-CH ₂ CON(CH ₃) ₂		SO ₂ CH ₃ — —CF ₃	
a - 236	CH ₂ CH ₃	-CH ₂ C=CH ₂ Cl		SO ₂ CH ₃ — —CF ₃	
a - 237	CH ₂ CH ₃	-CH ₂ C=CH ₂ CH ₃		SO ₂ CH ₃ — —CF ₃	
a - 238	CH ₃	-CH ₂ C=CH ₂ CH ₃		SO ₂ CH ₂ CH ₃ — —CF ₃	
a - 239	CH ₃	-CH ₂ C=CH ₂ Br		SO ₂ CH ₂ CH ₃ — —CF ₃	m.p. 124 - 126°C
a - 240	CH ₃	-CH ₂ CH=C(CH ₃) ₂		SO ₂ CH ₂ CH ₃ — —CF ₃	
a - 241	CH ₃	-CHCH=CH ₂ CH ₃		SO ₂ CH ₂ CH ₃ — —CF ₃	Viscous
a - 242	CH ₃	-SO ₂ CH ₂ CH ₃		SO ₂ CH ₂ CH ₃ — —CF ₃	
a - 243	CH ₃	-SO ₂ C ₄ H ₉ (n)		SO ₂ CH ₂ CH ₃ — —CF ₃	

Table 4a (continued)

Compound No.	R ₁	R ₂	(X) _n	Physical properties
a - 244	CH ₃	H		m.p. 60 - 65°C
a - 245	CH ₃	-SO ₂ C ₃ H ₇ (n)		
a - 246	CH ₃	-CH ₂ C=CH ₂ Cl		
a - 247	CH ₃	-CH ₂ C=CH ₂ Cl		
a - 248	CH ₃	-CH ₂ C=C(CH ₃) ₂ CH ₃		
a - 249	CH ₃	-CH ₂ CH=CH ₂		Viscous
a - 250	CH ₃	-CH ₂ CN		Viscous
a - 251	CH ₃	-CH ₂ C=CH ₂ Cl		Viscous
a - 252	CH ₃	-CH ₂ CH=CHCl		Viscous
a - 253	CH ₃	-CH ₂ CH=CHCl		Viscous

100

Table 4a (continued)

Compound No.	R ₁	R ₂		Physical properties
a -254	CH ₃	-CH ₂ C=CH ₂ Cl		m.p. 120 - 125°C
a -255	CH ₃	-CH ₂ CH=CHCH ₃		m.p. 97 - 105°C
a -256	CH ₃	-CH ₂ CH=CHCH ₃		m.p. 116 - 117°C
a -257	CH ₃	-SO ₂ CH ₂ CH ₃		Viscous
a -258	CH ₃	-SO ₂ CH ₃		m.p. 164 - 165°C
a -259	CH ₃	-CH ₂ CO ₂ CH ₂ CH ₃		Viscous
a -260	CH ₃	-SO ₂ CH ₂ CH ₃		m.p. 112 - 115°C
a -261	CH ₃	-SO ₂ CH ₂ CH ₃		Viscous
a -262	CH ₃	-CH ₂ C(CH ₃) ₂ COCH ₂ CH ₃		Viscous
a -263	CH ₃	-CH ₂ CON(C ₂ H ₅) ₂		Viscous

Table 4 (continued)

Compound No.	R ₁	R ₂		Physical properties
a -264	CH ₃	-CH ₂ CH(CH ₂ Cl) CH ₃		m.p. 123~125°C
a -265	CH ₃	-SO ₂ C ₂ H ₅ (n)		
a -266	CH ₃	-SO ₂ C ₂ H ₅ (n)		
a -267	CH ₃	-CH ₂ CH ₂ Cl		
a -268	CH ₃	-CH ₂ CH ₂ Cl		
a -269	CH ₃	-COC=CH ₂ CH ₃		
a -270	CH ₃	-SO ₂ - CH ₃		m.p. 67~72°C
a -271	CH ₃	-CH ₂ CH=C(Cl) ₂		Viscous

Table 4b

Comp. No.	R ₁	(Z) 	R ₂	(X) _n 	Physical properties
b-1	CH ₃		-SO ₂ -C ₆ H ₄ -CH ₃		m.p. 46-56°C
b-2	CH ₃		-CH ₂ -C ₆ H ₄ -		Viscous
b-3	CH ₃		-C(=O)-C ₆ H ₄ -		
b-4	CH ₃		-SO ₂ C ₃ H ₇ (n)		
b-5	CH ₃		-CH ₂ C(=O)-C ₆ H ₄ -Cl		
b-6	CH ₃		H		

Now, the Test Examples of the present invention will be described.

TEST EXAMPLE 1

Upland field soil was put into a 1/150,000ha pot, and 5 seeds of various plants were sown. Then, when the plants reached predetermined leaf stages (① barnyardgrass (Echinochloa crus-galli L.), EC: 1.3-2.6 leaf stage, ② crabgrass (Digitaria sanguinalis L.), DS: 1.0-2.5 leaf stage, ③ redroot pigweed (Amaranthus retroflexus L.), 10 AR: 0.1-1.2 leaf stage, ④ prickly sida (Sida spinosa L.), SS: 0.1-1.2 leaf stage, ⑤ tall morningglory (Pharbitis purpurea L.), PP: 0.3-1.3 leaf stage, ⑥ common cocklebur (Xanthium strumarium L.), XS: 0.1-1.8 leaf stage, ⑦ rice (Oryza sativa L.), OS: 1.0-2.5 leaf 15 stage, ⑧ wheat (Triticum spp.), TR: 2.2-2.9 leaf stage, ⑨ corn (Zea mays L.), ZM: 1.8-3.5 leaf stage, ⑩ soybean (Glycine max Merr.), GM: primary leaf - 0.3 leaf stage), a wettable powder having the compound of the present invention formulated in accordance with a usual 20 formulation method, was weighed so that the active ingredient would be a predetermined amount, and diluted with water in an amount of 500 l/ha. To the diluted solution, 0.1 %(v/v) of an agricultural spreader was added. The herbicide thus adjusted was applied by a 25 small size spray for foliage treatment. On the 18th to 30th days after the application of the herbicide, the growth of the respective plants was visually observed,

104

and the herbicidal effects were evaluated by the growth-controlling degrees (%) ranging from 0 (equivalent to the non-treated area) to 100 (complete kill), whereby the results shown in Table 5, were obtained. Compound Nos. 5 in Table 5 correspond to Compound Nos. in Table 4a and 4b given hereinbefore.

105

Table 5

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalu- ation day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-3	500	0	0	70	60	60	70	40	0	0	0	23
a-5	500	30	40	70	0	60	60	50	10	0	10	18
a-11	63 125 500	40 70 90	20 40 50	90 90 100	20 20 50	80 80 100	80 80 100	50 80 100	0 0 0	0 0 0	50 70 80	22
a-12	63 125 500	80 80 90	40 70 80	90 80 90	30 20 60	80 90 90	95 80 80	80 90 100	0 0 0	20 0 0	70 70 80	18
a-13	500	80	60	90	60	80	100	90	0	0	60	18
a-24	500	40	50	80	10	60	80	50	-	10	30	18
a-25	500	70	90	80	10	70	90	50	-	30	60	18
a-27	500	60	20	100	20	80	80	50	0	0	40	20
a-39	63 125 500	70 80 90	30 60 80	80 90 90	20 30 30	60 60 70	80 100 100	50 70 70	0 0 10	10 10 20	60 60 80	20
a-40	63 125 500	90 90 100	30 40 90	90 90 100	10 30 60	90 90 90	80 90 100	90 100 100	-	30 50 70	50 70 70	18
a-41	63 125 500	90 90 100	20 40 90	90 90 100	20 20 40	90 90 100	70 80 100	90 90 100	-	0 0 20	50 70 90	18
a-42	500	60	40	100	30	70	80	50	10	20	50	20
a-43	125 500	50 70	30 80	90 100	20 30	60 80	80 100	40 70	0 20	20 20	50 70	20
a-44	63 125 500	80 90 90	50 70 90	80 80 90	20 20 30	60 70 90	80 90 100	60 80 80	-	0 20 20	60 70 80	18
a-45	125 500	40 70	30 50	80 90	20 20	80 80	60 100	10 20	10 20	40 20	50 50	20
a-47	125 500	40 80	40 50	90 100	30 60	60 80	80 80	20 70	-	0 30	0 40	18

Table 5. (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-48	63 125 500	80 90 100	40 60 80	90 90 100	10 30 60	40 70 90	70 100 100	50 60 80	- - -	0 20 40	50 60 70	18
a-49	125 500	80 80	40 70	100 100	30 30	70 80	90 90	60 80	10 20	20 20	60 60	20
a-51	125 500	90 90	60 90	80 100	10 30	80 90	80 90	70 80	- -	0 10	70 70	19
a-52	63 125 500	90 90 90	60 70 90	80 80 90	20 30 50	70 80 90	80 90 100	60 70 80	- - -	20 30 40	80 90 90	18
a-53	63 125 500	70 80 90	10 20 90	90 90 90	0 10 20	70 80 90	80 90 100	50 50 90	- - -	0 0 10	50 60 70	18
a-59	500	70	40	80	0	80	90	30	0	10	60	20
a-60	63 125 500	90 90 90	50 80 90	80 90 100	10 20 30	90 100 100	90 100 100	60 70 90	- - -	0 20 60	100 90 90	19
a-69	500	40	40	90	50	70	100	60	0	10	40	20
a-72	125 500	70 100	20 30	80 90	0 0	60 70	90 100	50 80	- -	0 0	40 60	19
a-73	500	60	30	90	40	70	80	10	-	30	50	18
a-76	63 125 500	70 80 90	30 60 90	90 90 100	0 20 40	80 80 100	90 90 100	70 70 70	0 10 20	10 20 40	70 70 80	20
a-77	125 500	90 90	30 60	80 90	10 30	70 70	70 90	50 90	- -	10 30	60 70	18
a-78	63 125 500	80 80 100	40 40 50	70 90 100	20 20 40	60 90 90	80 90 100	40 60 60	- - -	10 20 50	60 70 70	18
a-79	500	60	30	100	50	80	90	30	-	0	70	18
a-80	500	80	90	80	20	60	80	80	-	60	10	19

Table 5 (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-81	125 500	60 90	60 90	90 90	10 30	90 90	40 -	10 40	- -	0 10	30 50	19
a-82	125 500	40 80	30 30	80 90	20 20	60 90	100 100	60 80	- -	0 10	60 70	19
a-83	63 125 500	50 60 90	60 70 90	80 80 90	30 40 40	70 80 90	100 100 90	60 60 80	- - -	0 10 30	10 20 70	18
a-84	63 125 500	70 80 90	30 50 90	70 80 90	30 20 50	40 60 90	100 100 90	30 60 100	- - -	0 0 20	50 60 70	18
a-87	125 500	80 100	20 70	90 95	10 10	70 100	100 -	60 80	- -	10 0	60 95	19
a-88	63 125 500	90 90 100	60 80 90	80 90 90	30 60 60	80 80 90	90 90 100	70 70 80	- - -	10 20 60	70 80 90	18
a-89	63 125 500	90 90 100	90 90 100	90 90 100	30 30 60	90 90 100	100 100 100	100 90 100	- - -	10 20 80	90 100 100	19
a-90	125 500	80 90	90 100	70 80	0 10	60 70	80 100	60 80	- -	40 80	10 70	19
a-92	500	80	90	90	20	90	-	50	-	0	20	19
a-93	125 500	60 80	40 50	95 100	0 20	60 100	100 -	10 70	- -	0 0	70 100	19
a-94	63 125 500	90 100 90	90 90 90	80 90 90	10 - 20	90 100 100	80 100 100	70 90 90	- - -	0 10 20	60 70 70	19
a-95	63 125 500	100 100 100	70 90 100	100 100 100	10 10 40	80 95 100	90 100 -	90 100 100	- - -	20 35 70	95 95 100	19
a-96	125 500	80 100	70 100	80 100	20 30	80 100	90 100	60 70	10 20	40 60	80 90	20
a-97	63 125 500	90 80 90	30 40 90	90 80 90	0 10 20	40 50 70	50 70 80	10 30 50	- - -	0 0 20	20 30 60	18

Table 5 (continued)

Comp. No.	base of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-98	63 125 500	90 90 90	30 40 90	90 100 90	0 30 30	60 80 90	70 70 100	30 40 100	- - -	0 0 20	40 50 60	18
a-99	63 125 500	90 100 100	40 60 100	100 100 100	40 40 70	80 90 100	80 100 100	70 90 100	- - -	40 50 80	70 70 100	18
a-100	125 500	80 90	40 90	90 100	30 40	80 90	70 100	0 50	- -	0 10	50 60	18
a-101	125 500	90 90	30 40	90 90	0 30	30 30	20 60	0 0	- -	0 20	50 60	18
a-102	63 125 500	90 95 100	40 60 90	90 90 100	20 30 70	70 80 90	80 80 80	80 100 90	- - -	0 10 20	100 60 100	19
a-103	63 125 500	90 100 100	30 50 90	90 60 80	40 40 50	60 80 100	70 100 100	50 50 100	- - -	0 0 40	50 50 70	19
a-104	125 500	80 90	20 20	90 100	0 10	10 10	0 0	- 0	- -	0 0	10 20	19
a-105	63 125 500	90 90 100	30 40 80	100 100 80	30 0 30	40 60 90	20 80 -	10 30 50	- - -	10 0 80	40 50 90	19
a-106	63 125 500	10 70 90	30 70 70	80 100 70	50 50 -	60 90 100	- 90 50	20 90 100	- - -	0 20 50	30 40 80	21
a-116	125 500	50 50	10 50	100 90	30 20	70 90	- -	30 20	- -	10 0	30 40	24
a-118	63 125 500	70 80 90	30 50 80	100 80 100	30 30 -	70 80 100	90 - 100	100 100 100	- - -	10 40 60	70 100 100	21
a-120	63 125 500	90 100 90	50 50 90	100 100 -	20 50 100	50 80 60	80 100 100	90 100 100	- - -	0 0 70	70 80 100	21
a-122	63 125 500	70 80 90	50 90 90	100 100 -	40 50 -	60 70 50	90 90 100	60 90 100	- - -	10 30 40	50 60 70	21

Table 5 (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-131	500	80	40	60	30	80	100	50	-	30	20	19
a-132	125 500	80 90	70 90	60 60	20 20	90 90	50 50	10 40	-	30 70	0 10	19
a-133	500	10	30	90	40	70	10	0	-	40	30	21
a-136	125 500	20 100	30 100	90 80	50 30	70 70	- 50	0 0	-	40 100	40 50	21
a-137	125 500	20 90	30 60	90 100	0 10	100 100	- 80	0 40	-	40 80	30 50	21
a-138	500	100	80	90	70	100	20	0	-	90	50	21
a-139	500	10	50	90	50	70	70	0	-	80	50	21
a-140	63 125 500	90 90 100	10 30 90	100 100 -	10 20 30	40 80 100	70 80 80	0 20 90	-	0 10 0	30 40 50	21
a-141	125 500	80 90	60 90	100 -	30 60	90 100	90 100	90 90	-	20 30	70 80	21
a-143	500	90	30	50	20	80	100	20	-	20	60	18
a-144	500	50	90	30	40	60	100	50	-	0	20	18
a-146	125 500	20 60	30 80	80 80	40 40	80 90	50 100	40 60	-	20 30	40 70	19
a-148	125 500	60 90	10 80	100 100	50 50	70 80	10 20	20 20	-	10 40	10 40	21
a-149	63 125 500	60 90 100	20 30 80	90 80 100	40 50 70	80 80 100	- 100	0 100	-	10 20 60	60 70 90	21
a-150	125 500	90 100	70 90	50 70	20 20	80 100	- 70	40 70	-	100 100	60 70	25

110

Table 5 (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-151	125 500	100 100	90 90	40 100	30 30	80 100	30 80	20 20	- -	50 90	30 50	25
a-152	125 500	100 100	60 90	70 90	10 50	60 100	20 100	10 20	- -	60 50	10 40	25
a-153	125 500	60 90	20 60	50 60	10 30	40 50	80 -	10 20	- -	0 10	0 20	24
a-154	500	90	70	70	10	70	60	50	-	0	30	25
a-155	500	60	70	100	10	70	100	20	-	0	40	25
a-156	250	90	70	20	20	70	-	20	-	10	40	21
a-158	125 250	60 70	40 50	90 90	20 20	70 90	70 -	50 50	- -	40 60	50 50	21
a-162	500	60	20	0	10	80	-	10	0	10	0	21
a-164	500	70	70	20	10	90	-	10	0	40	50	21
a-165	63 125 500	100 100 100	95 95 100	100 100 100	40 100 100	100 100 100	50 - -	99 100 100	50 50 80	50 90 95	40 60 100	30
a-166	63 125 500	95 100 100	80 95 100	100 - 100	40 50 50	90 100 100	20 20 -	70 100 100	10 50 50	40 40 70	40 40 50	30
a-167	125 500	10 40	20 30	100 100	0 90	100 100	90 100	40 70	- -	0 30	40 100	21
a-168	63 125 500	90 100 100	60 70 100	100 100 100	50 60 60	90 100 100	90 - -	100 100 100	- - -	40 70 100	50 70 100	21
a-169	63 125	90 90	60 70	100 90	30 40	100 100	10 10	10 20	- -	10 10	30 60	21
a-170	63 125	90 90	60 80	80 100	20 50	100 100	70 70	90 100	- -	10 60	90 100	21

111

Table 5 (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Eval- uation day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-171	500	40	10	40	0	80	-	0	0	0	60	21
a-172	125 500	60 100	20 50	80 90	30 60	80 100	80 -	80 100	0 0	0 50	50 95	21
a-173	125 500	70 90	30 60	30 40	10 30	80 100	30 -	100 100	0 0	0 40	50 60	21
a-174	125 500	70 100	40 60	50 90	0 30	80 100	70 -	100 80	0 0	0 50	70 80	21
a-177	500	80	50	30	0	90	-	10	0	20	40	21
a-178	500	60	40	60	0	80	-	50	0	0	50	21
a-179	500	70	70	90	90	70	-	50	0	0	80	21
a-180	125 500	80 100	20 50	50 90	20 30	100 100	50 -	100 50	0 0	0 60	70 80	21
a-181	125 500	70 100	20 40	70 60	10 20	100 100	70 -	50 90	0 0	0 40	70 80	21
a-182	125 500	60 60	20 60	80 80	0 10	100 100	60 -	50 50	0 0	0 20	50 90	21
a-183	500	0	40	10	10	100	100	0	0	10	40	21
a-184	500	50	20	10	20	100	-	0	0	0	40	21
a-187	500	70	20	100	40	95	-	50	0	0	60	21
a-188	500	50	10	90	40	95	-	10	0	0	70	21
a-189	500	90	10	100	40	95	-	90	0	0	70	21
a-191	125 500	90 100	30 50	90 90	20 40	90 90	-	20 40	0 0	0 0	50 50	21

112

Table 5 (continued)

Comp. No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalu- ation day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-192	500	30	0	30	0	80	90	30	0	10	60	21
a-194	500	0	30	20	0	100	90	0	0	0	50	22
a-200	500	70	50	95	20	100	90	20	0	0	40	26
a-201	500	20	40	90	40	20	70	40	0	0	0	26
a-203	125 500	20 70	60 80	90 100	10 50	80 100	80 95	20 90	0 0	0 0	60 90	22
a-204	500	70	50	30	0	80	80	20	0	0	50	22
a-206	125 500	80 100	30 80	30 100	20 50	100 100	100 100	90 100	0 0	0 70	90 100	22
a-207	125 500	70 90	20 60	20 90	0 40	100 100	80 100	80 100	0 0	0 20	80 100	22
a-208	125 500	30 70	40 60	90 70	10 40	80 90	100 100	50 95	0 0	0 0	50 60	22
a-209	500	40	10	30	0	90	80	70	0	0	70	22
a-210	125 500	90 100	60 90	70 100	10 40	90 100	90 90	90 90	0 0	0 60	80 100	27
a-211	125 500	40 80	20 50	70 90	0 20	50 70	80 90	70 70	0 0	0 0	40 50	27
a-212	125 500	70 100	0 10	40 70	0 0	0 90	70 80	60 80	0 0	0 0	50 80	27
a-213	125 500	100 100	80 100	95 100	30 70	100 100	100 100	80 100	0 0	20 70	95 100	26
a-214	125 500	60 100	60 90	100 100	20 70	90 100	70 90	100 100	0 0	0 0	50 70	27
a-215	500	0	0	90	20	90	80	0	0	0	40	23

Table 5 (continued)

Comp No.	Dose of active ingre- dient (g/ha)	Growth-controlling degree (%)										Evalua- tion day
		EC	DS	AR	SS	PP	XS	OS	TR	ZM	GM	
a-216	125 500	50 90	70 90	90 100	10 60	70 80	70 100	50 100	0 0	0 0	40 70	23
a-217	125 500	60 80	30 60	50 80	10 20	100 100	80 100	70 100	0 0	0 70	70 100	20
a-218	125 500	70 90	20 60	10 50	10 20	90 100	70 80	70 90	0 0	0 40	80 100	20
a-219	125 500	70 100	30 70	10 60	0 30	100 100	80 100	50 80	0 0	0 70	80 100	20
a-220	125 500	10 70	10 30	10 30	0 20	70 90	80 80	10 60	0 0	0 0	40 40	20
a-221	125 500	60 80	0 60	0 40	0 30	80 100	80 100	50 50	0 0	0 0	70 90	20
a-222	125 500	30 80	10 50	30 80	10 50	80 90	70 90	20 70	0 0	0 10	40 60	20
a-257	125 500	70 90	10 60	10 10	0 10	90 100	70 100	20 30	0 0	0 30	50 100	28
a-258	125 500	50 90	10 70	30 80	0 30	90 100	70 100	10 50	0 0	0 0	40 70	28
a-259	125 500	70 90	70 100	0 20	0 0	80 90	90 100	10 40	0 0	0 0	60 80	28
b-1	500	80	50	80	20	90	-	60	-	20	60	19
b-2	500	90	20	70	20	90	60	60	-	0	60	18

TEST EXAMPLE 2

Paddy field soil was put into a 1/1,000,000ha pot, and seeds of barnyardgrass (Echinochloa crus-galli L.) and japanese bulrush (Scirpus juncoides) were sown and 5 slightly covered with soil. Then, the pot was left to stand still in a greenhouse in a state where the depth of flooding water was from 0.5 to 1 cm, and two days later, tubers of japanese ribbon wapato (Sagittaria pygmaea) were planted. Thereafter, the depth of flooding water 10 was maintained at a level of from 3 to 4 cm, and when barnyardgrass and japanese bulrush reached a 0.5 leaf stage and japanese ribbon wapato reached to a primary leaf stage, an aqueous diluted solution of a wettable powder having the compound of the present invention 15 formulated in accordance with a usual formulation method, was uniformly applied under submerged condition by a pipette so that the dose of the active ingredient would be at a predetermined level.

On the other hand, paddy field soil was put into a 20 1/1,000,000ha pot and puddled and leveled, and the depth of flooding water was from 3 to 4 cm. One day later, rice (Oryza sativa L. var. Nihonbare) of 2 leaf stage was transplanted in a depth of 3 cm. On the 4th day after the transplantation, the compound of the present 25 invention was applied in the same manner as described above.

On the 14th days after the application of the

herbicide, the growth of barnyard grass, japanese burlrush and japanese ribbon wapato was visually observed and on the 21st day after the application the herbicide, the growth of rice was visually observed, and the 5 herbicidal effects were evaluated by the growth-controlling degrees (%) ranging from 0 (equivalent to the non-treated area) to 100 (complete kill), whereby the results shown in Table 6 were obtained. Compound Nos. in Table 6 correspond to Compound Nos. in Table 4a and 4b given hereinbefore. The growth controlling degrees 10 against rice of compounds Nos. a-101 et seq (except for a-131, a-132, a-145, a-146 and b-1) are mean values of two test results.

Table 6

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a - 1	1 0 0 0	5 0	1 0 0	1 0 0	—
	5 0 0	4 0	1 0 0	—	—
a - 2	5 0 0	9 0	9 5	9 0	0
	2 5 0	8 5	8 5	8 5	0
a - 3	1 0 0 0	9 5	1 0 0	9 5	1 0
	5 0 0	9 5	1 0 0	8 5	0
a - 4	5 0 0	1 0 0	8 5	8 5	0
	2 5 0	1 0 0	5 0	6 0	0
a - 5	1 0 0 0	4 0	8 5	8 5	9 0
	5 0 0	0	8 5	7 0	3 0
a - 6	5 0 0	1 0 0	9 0	9 0	5 0
	2 5 0	1 0 0	8 5	8 5	3 0
a - 7	5 0 0	1 0 0	1 0 0	8 5	8 0
	2 5 0	9 9	9 5	8 5	7 0
a - 8	1 0 0 0	0	8 5	8 5	0
	5 0 0	0	5 0	8 5	0
a - 9	5 0 0	1 0	5 0	7 0	3 0
a - 10	5 0 0	8 0	5 0	8 5	0
	2 5 0	6 0	5 0	8 5	0
a - 11	2 5 0	1 0 0	9 5	9 0	1 0 0
	1 2 5	1 0 0	9 0	8 5	1 0 0
a - 12	5 0 0	1 0 0	1 0 0	9 0	1 0 0
	2 5 0	1 0 0	1 0 0	9 0	1 0 0
a - 13	5 0 0	1 0 0	1 0 0	9 0	1 0 0
	2 5 0	1 0 0	1 0 0	9 0	1 0 0
a - 14	5 0 0	4 0	8 5	9 0	1 0
	2 5 0	1 0	8 5	8 5	0
a - 15	5 0 0	1 0 0	8 5	7 0	0
	2 5 0	5 0	7 0	7 0	0
a - 16	5 0 0	1 0 0	5 0	3 0	3 0
	2 5 0	9 9	0	3 0	0
a - 17	5 0 0	1 0 0	8 5	5 0	2 0
	2 5 0	9 9	5 0	5 0	0

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a-18	500	0	90	95	0
	250	0	85	95	0
a-19	500	70	90	90	10
	250	40	90	85	0
a-20	500	90	85	30	60
	250	85	50	0	35
a-21	500	50	95	90	30
	250	30	90	50	30
a-22	500	95	95	90	30
	250	100	95	50	20
a-23	500	100	99	90	0
	250	50	99	50	0
a-24	250	40	85	90	10
	125	20	80	85	0
a-25	250	100	90	90	0
	125	85	85	85	0
a-26	1000	90	90	10	10
	500	50	90	10	0
a-27	250	100	95	90	100
	125	100	90	85	40
a-39	125	100	90	85	35
	63	100	85	50	30
a-40	125	100	100	90	80
	63	100	99	90	40
a-41	125	100	95	85	100
	63	100	90	85	70
a-42	250	100	90	90	90
	125	100	90	90	90
a-43	250	100	90	90	90
	125	100	85	50	99
a-44	250	100	95	90	95
	125	100	90	85	80
a-45	250	100	99	85	100
	125	100	90	50	90

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a-47	250	100	100	95	99
	125	100	85	60	70
a-48	250	100	95	90	95
	125	99	85	50	50
a-49	250	100	90	85	100
	125	100	90	50	100
a-51	250	100	99	85	90
	125	100	95	10	60
a-52	250	100	99	30	100
	125	100	90	30	95
a-53	125	100	95	90	80
	63	100	90	90	0
a-55	250	100	95	20	30
	125	100	50	0	30
a-58	250	100	85	50	40
	125	99	70	50	40
a-59	63	100	90	10	30
	31	100	50	-	30
a-60	250	100	100	70	95
	125	100	95	30	70
a-69	250	100	99	50	100
	125	100	85	50	35
a-72	125	90	85	20	40
	63	60	85	20	35
a-73	125	100	90	50	80
	63	100	70	50	30
a-76	125	100	90	30	0
	63	100	85	0	0
a-77	125	90	85	50	70
	63	70	50	30	40
a-78	250	100	85	85	80
	125	85	60	85	30
a-79	250	100	95	90	90
	125	100	85	50	40

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a - 80	5 0 0 2 5 0	1 0 0 9 9	1 0 0 1 0 0	9 5 9 5	9 0 9 0
a - 81	5 0 0 2 5 0	9 5 8 5	9 9 9 0	9 0 5 0	3 0 3 0
a - 82	1 2 5 6 3	4 0 2 0	8 5 1 0	5 0 0	3 5 2 0
a - 83	2 5 0 1 2 5	9 9 9 5	9 9 9 9	9 0 9 0	6 0 4 0
a - 84	2 5 0 1 2 5	1 0 0 1 0 0	9 9 9 5	5 0 5 0	9 0 5 0
a - 85	2 5 0 1 2 5	1 0 0 9 5	8 5 7 0	5 0 0	2 0 2 0
a - 86	1 2 5 6 3	1 0 1 0	7 0 6 0	1 0 1 0	0 0
a - 87	2 5 0 1 2 5	1 0 0 1 0 0	9 0 8 5	3 0 0	4 0 3 0
a - 88	2 5 0 1 2 5	1 0 0 1 0 0	9 0 9 0	5 0 2 0	1 0 0 9 5
a - 89	2 5 0 1 2 5	1 0 0 9 9	9 9 9 9	9 0 5 0	9 9 9 5
a - 90	2 5 0 1 2 5	9 9 9 9	9 5 9 0	9 0 8 5	8 0 7 0
a - 91	5 0 0 2 5 0	9 9 9 9	9 9 9 5	9 0 8 5	3 5 3 0
a - 92	2 5 0 1 2 5	9 9 8 5	9 0 8 5	1 0 0	3 5 1 0
a - 93	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 1 0 0	— 8 5	4 0 0
a - 94	2 5 0 1 2 5	1 0 0 1 0 0	9 9 9 5	9 0 1 0	9 9 9 9
a - 95	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 1 0 0	— 8 5	— —
a - 96	2 5 0 1 2 5	1 0 0 1 0 0	9 5 9 0	8 5 1 0	1 0 0 9 9

120

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a - 97	6 3 3 1	9 5 9 5	3 0 0	5 0 0	5 0 5 0
a - 98	6 3 3 1	1 0 0 1 0 0	8 0 6 0	7 0 0	6 0 3 0
a - 99	1 2 5 6 3	1 0 0 1 0 0	9 5 —	5 0 5 0	1 0 0 1 0 0
a - 100	1 2 5 6 3	5 0 1 0	7 0 1 0	1 0 0	3 0 0
a - 101	6 3 3 1	1 0 0 8 0	1 0 0	0 0	4 0 3 0
a - 102	6 3 3 1	9 5 8 5	8 5 5 0	5 0 0	4 0 2 5
a - 103	6 3 3 1	9 5 8 5	9 0 1 0	5 0 3 0	6 5 1 0
a - 104	6 3 3 1	9 9 9 9	0 0	0 0	3 0 3 0
a - 105	6 3 3 1	9 5 9 0	0 0	0 0	4 0 1 0
a - 106	2 5 0 1 2 5	1 0 0 9 9	7 0 3 0	7 0 5 0	5 0 1 5
a - 118	2 5 0 1 2 5	1 0 0 1 0 0	9 0 7 0	6 0 6 0	9 5 5 5
a - 120	2 5 0 1 2 5	1 0 0 1 0 0	9 9 9 0	5 0 4 0	9 8 9 0
a - 122	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 1 0 0	7 0 6 0	9 5 1 0 0
a - 127	1 0 0 0	2 0	6 0	7 0	—
a - 131	2 5 0 1 2 5	1 0 0 1 0 0	9 0 8 5	— 9 0	8 0 5 0
a - 132	2 5 0 1 2 5	1 0 0 1 0 0	8 5 5 0	— 5 0	— 3 0
a - 135	2 5 0 1 2 5	1 0 0 7 0	2 0 0	0 0	1 0 0
a - 138	1 2 5 6 3	1 0 0 8 0	2 0 —	0 0	5 1 5

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a -139	5 0 0 2 5 0	7 0 7 0	6 0 2 0	5 0 2 0	- -
a -140	2 5 0 1 2 5	1 0 0 1 0 0	9 0 9 0	3 0 -	9 8 3 5
a -141	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 1 0 0	3 0 0	1 0 0 9 5
a -143	5 0 0 2 5 0	1 0 0 1 0 0	1 0 0	3 0 1 0	- -
a -144	5 0 0 2 5 0	9 9 7 0	2 0 1 0	9 0 8 5	- -
a -145	2 5 0 - 1 2 5	1 0 0 1 0 0	6 0 5 0	5 0 4 0	0 1 0
a -146	5 0 0 2 5 0	9 0 6 0	9 0 7 0	9 0 7 0	3 0 0
a -148	1 2 5 6 3	1 0 0 1 0 0	7 0 7 0	0 0	0 0
a -149	1 2 5 6 3	9 0 8 5	3 0 1 0	0 0	0 0
a -150	2 5 0 1 2 5	1 0 0 9 5	5 0 0	6 0 3 0	0 5
a -151	2 5 0 1 2 5	1 0 0 1 0 0	0 0	0 -	3 0 5
a -152	2 5 0 1 2 5	1 0 0 1 0 0	6 0 3 0	0 0	1 0 0 1 0 0
a -153	2 5 0 1 2 5	9 9 1 0 0	9 0 3 0	7 0 3 0	1 0 2 0
a -154	2 5 0 1 2 5	1 0 0 9 9	2 0 0	4 0 0	6 0 2 0
a -155	2 5 0 1 2 5	1 0 0 1 0 0	7 0 6 0	0 0	8 5 5 0
a -157	2 5 0 1 2 5	9 0 9 0	9 5 0	7 0 0	0 0
a -158	2 5 0 1 2 5	1 0 0 1 0 0	8 0 5 0	3 0 6 0	9 0 9 0

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a-160	250 125	80 70	50 -	0 0	0 0
a-161	250 125	70 70	0 0	0 0	5 0
a-162	250 125	100 100	0 0	0 0	10 0
a-164	250 125	100 100	0 0	0 0	60 10
a-165	125 63	100 95	80 60	30 0	100 35
a-166	125 63	100 100	60 20	0 0	100 85
a-167	250 125	100 100	95 70	60 0	35 10
a-168	125 63	100 100	95 90	0 0	55 50
a-169	125 63	100 100	40 40	0 0	90 55
a-170	125 63	100 100	30 10	0 0	85 45
a-171	250	70	0	0	0
a-172	250	80	30	50	50
a-173	250 125	99 70	20 -	0 0	100 25
a-174	250 125	100 100	60 60	0 0	100 100
a-175	250 125	80 80	50 30	0 0	0 0
a-177	250 125	100 100	50 30	0 0	0 0
a-178	250 125	100 100	30 30	0 0	10 0
a-179	250 125	100 100	90 30	0 0	100 90

123

Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a-180	250	100	30	0	80
	125	100	0	0	60
a-181	250	100	0	20	50
a-182	250	100	70	0	45
	125	100	0	0	15
a-184	250	85	0	0	0
a-185	250	70	0	0	0
a-187	250	70	80	20	15
	125	30	80	0	0
a-188	250	100	50	20	95
	125	100	50	0	80
a-189	250	100	50	20	55
	125	100	50	0	50
a-191	250	100	20	20	35
	125	95	0	0	0
a-194	250	90	30	0	10
a-200	250	100	90	0	70
	125	100	90	0	80
a-202	250	100	70	0	10
	125	85	20	0	10
a-203	250	100	100	95	100
	125	100	95	95	100
a-204	250	100	30	30	10
	125	99	0	0	5
a-205	250	85	0	0	5
a-206	250	100	0	60	100
	125	95	0	70	90
a-207	250	95	0	60	50
	125	80	0	80	25
a-208	250	100	30	70	80
	125	100	0	60	50
a-210	250	100	40	70	100
	125	100	70	60	85

124
Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a-213	250 125	100 100	50 20	0 0	95 65
a-214	250 125	100 99	60 60	20 0	60 15
a-216	250 125	100 100	80 40	0 0	95 15
a-217	250 125	100 95	20 0	0 0	100 50
a-218	250 125	100 70	70 30	20 0	100 85
a-219	250 125	100 100	30 0	0 0	100 70
a-230	63 31	100 100	0 0	0 0	- -
a-232	63 31	100 100	30 0	- 0	- -
a-233	63 31	70 50	0 0	0 0	- -
a-239	63 31	100 80	0 0	0 0	0 0
a-249	250 125	100 100	0 0	0 0	95 40
a-250	63 31	100 100	40 0	0 0	80 45
a-253	63 31	100 100	0 0	0 0	35 30
a-254	63 31	100 100	0 0	- 0	5 0
a-256	63 31	100 80	0 0	0 0	0 0
a-257	250 125	100 100	20 0	0 0	0 0
a-258	250 125	60 70	0 0	20 0	5 0

125
Table 6 (continued)

Comp. No.	Dose of active ingredient (g/ha)	Growth-controlling degree (%)			
		EC	SJ	SP	OS
a -259	250	100	0	0	10
	125	100	0	0	0
a -260	250	100	0	20	10
	125	85	0	0	0
a -261	250	100	0	40	5
	125	70	0	40	0
a -262	250	100	10	0	10
	125	100	0	0	0
a -263	250	100	0	0	10
	125	95	0	0	0
a -264	250	85	0	0	30
	125	70	0	0	15
a -271	63	100	0	0	-
	31	95	0	0	-
b - 1	250	100	85	50	50
	125	100	50	50	20

Now, Formulation Examples of the present invention will be given. Compound Nos. in Formulation Examples correspond to Compound Nos. in Table 4a to 4b given hereinbefore.

5 FORMULATION EXAMPLE 1

(1)	Compound No. a-12	75 parts by weight
(2)	Sodium N-methyl-N-oleoyl taurate (Geropon T-77, tradename, manufactured by Rhone-Poulenc)	14.5 parts by weight
(3)	NaCl	10 parts by weight
10	(4) Dextrin	0.5 part by weight

The above components are placed in a high-speed mixing granulator, admixed with 20 wt% of water, granulated, and dried to form water-dispersible granules.

15 FORMULATION EXAMPLE 2

(1)	Kaolin	78 parts by weight
(2)	Condensate of sodium naphthalene sulfonate and formalin (Laveline FAN, tradename, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.)	2 parts by weight
20	(3) Sodium polyoxyethylene alkylaryl ether sulfate-premix with white carbon (Sorpel 5039, tradename, manufactured by Toho Chemical Industry Co., Ltd.)	5 parts by weight
	(4) White carbon (Carplex, tradename, manufactured by Shionogi Seiyaku Co., Ltd.)	15 parts by weight

25 The mixture of the above components (1) to (4) and Compound No. a-6 are mixed in a weight ratio of 9:1 to obtain a wettable powder.

127

FORMULATION EXAMPLE 3

(1) Talc micropowder (Hi-Filler No. 10,
tradename, manufactured by
Matsumura Sangyo Co., Ltd.) 33 parts by weight

(2) Dialkyl sulfosuccinate-premixed
with white carbon (Sorpol 5050,
tradename, manufactured by Toho
Chemical Industry Co., Ltd.) 5 3 parts by weight

(3) A mixture of polyoxyethylene
alkylaryl ether sulfate and a
polyoxyethylene monomethyl ether
carbonate, premixed with white
carbon (Sorpol 5073, tradename,
manufactured by Toho Chemical
Industry Co., Ltd.) 4 parts by weight

10 (4) Compound No. a-42 60 parts by weight

The above components (1) to (4) are mixed to obtain a
wettable powder.

FORMULATION EXAMPLE 4

(1) Compound No. a-27 15 4 parts by weight

(2) Bentonite 30 parts by weight

(3) Calcium carbonate 61.5 parts by weight

(4) Polycarboxylic acid type
surfactant (Toxanon GR-31A,
tradename, manufactured by
Sanyo Chemical Industries
Co., Ltd.) 20 3parts by weight

(5) Calcium lignin sulfonate 1.5 parts by weight

Pulverized component (1) and components (2) and (3)
are preliminarily mixed, and then components (4) and (5)
and water are mixed thereto. The mixture is extruded and
25 granulated, followed by drying and size-adjusting to
obtain granules.

FORMULATION EXAMPLE 5

128

(1) Compound No. a-22 30 parts by weight

(2) A pulverized product of a mixture of kaolinite and sericite (Zieclite, tradename, manufactured by Zieclite Co., Ltd.) 60 parts by weight

5 (3) Alkyl naphthalene sulfonate (New Kalgen WG-1, tradename, manufactured by Takemoto Oils and Fats Co., Ltd.) 5 parts by weight

(4) Polyoxyalkylene allyl phenyl ether sulfate (New Kalgen FS-7, tradename, manufactured by Takemoto Oils and Fats Co., Ltd.) 5 parts by weight

10 Components (1), (2) and (3) are mixed and passed through a pulverizer, and then component (4) is added thereto. The mixture is kneaded and then extruded and granulated, followed by drying and size-adjusting to obtain water-dispersible granules.

15 FORMULATION EXAMPLE 6

(1) Compound No. a-13 28 parts by weight

(2) Triethanolamine salts of oxyethylated polyarylphenol phosphate (Soprophor FL, tradename, manufactured by Rhone-Poulenc) 2 parts by weight

20 (3) A mixture of polyoxyethylene styryl phenyl ether and alkyl aryl sulfonate (Sorpol 355, tradename, manufactured by Toho Chemical Industry Co., Ltd.) 1 part by weight

(4) Isoparaffin hydrocarbon (IP solvent 1620, tradename, manufactured by Idemitsu Petrochemical Co., Ltd.) 32 parts by weight

25 (5) Ethylene glycol 6 parts by weight

(6) Water 31 parts by weight

129

The above components (1) to (6) are mixed and pulverized by a wet-grinding machine (Dyno-mill) to obtain a water-based suspension concentrate.

130

CLAIMS

1. A pyrazole compound of the formula (I) or its salt:

wherein R₁ is an alkyl group, R₂ is a hydrogen atom, a
 10 methyl group, -A-R₃, a phenyl group which may be substituted, a pyridyl group which may be substituted, or an allyl group which is substituted by a phenyl group, A is -SO₂-, -CO-, -CH(R₆)- or -CH(R₇)CO-, R₃ is an alkyl group which may be substituted, an alkenyl group which
 15 may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, X is a hydrogen atom, a halogen atom,
 20 an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)^qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when l is at least 2, a plurality of Z

may be the same or different, and when n is at least 2, a plurality of X may be the same or different.

2. The pyrazole compound or its salt according to Claim 1, wherein the formula (I) is represented by the formula 5 (I'):

10

wherein R₁ is an alkyl group, R₂ is a hydrogen atom or -A-R₃, A is -SO₂-, -CO-, -CH₂- or -CH₂CO-, R₃ is an alkyl group which may be substituted, an alkenyl group which 15 may be substituted, an alkynyl group which may be substituted, a cyano group or a phenyl group which may be substituted, each of X¹, X² and X³ is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, 20 an alkylsulfonyl group, a nitro group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, and q is an integer of from 0 to 2.

3. The pyrazole compound or its salt according to Claim 25 2, wherein A is -SO₂-, -CH₂- or -CH₂CO-, each of X¹, X² and X³ is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio

group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.

4. The pyrazole compound or its salt according to Claim 3, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is 5 a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.

5. A process for producing a pyrazole compound of the formula (I-1) or its salt:

10

15

wherein R_1 is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a 20 haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may be the same or different, which comprises reacting a

compound of the formula (II):

wherein R₁, Z and l are as defined above, with a compound of the formula (III):

wherein X and n are as defined above, and Y is a halogen atom, to obtain a compound of the formula (IV):

20 wherein R₁, X, Z, l and n are as defined above, and subjecting the compound of the formula (IV) to a rearrangement reaction.

6. A process for producing a pyrazole compound of the
25 formula (I-1') or its salt:

134

wherein R_1 is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X' is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X' may be the same or different, which comprises reacting a compound of the formula (II):

20 wherein R_1 , Z and l are as defined above, with a compound of the formula (V):

25 wherein X' and n are as defined above, and carbon tetrachloride, followed by a hydrolytic reaction.

7. A process for producing a pyrazole compound of the

formula (I-1) or its salt:

wherein R_1 is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$,
 15 $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may be the same or different, which comprises reacting a
 20 compound of the formula (II):

wherein R_1 , Z and l are as defined above, with a compound

of the formula (VI):

5

wherein X and n are as defined above.

8. A process for producing a pyrazole compound of the formula (I-1) or its salt:

15 wherein R₁ is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)_qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from 1 to 5,
20 provided that when n is at least 2, a plurality of X may be the same or different, which comprises reacting a
25 compound of the formula (II):

wherein R_1 , Z and l are as defined above, with a compound of the formula (X):

wherein X and n are as defined above, and T is a chlorine atom, a bromine atom or an iodine atom, and carbon monoxide.

15 9. A process for producing a pyrazole compound of the formula (I-2) or its salt:

wherein R_1 is an alkyl group, R_2' is a methyl group, $-A-R_3$, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group, A is $-SO_2-$, $-CO-$, $-CH(R_6)-$ or $-CH(R_7)CO-$, R_3 is an alkyl group which may be

substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)_qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may be the same or different, q is an integer of from 0 to 2, which comprises reacting a compound of the formula (I-1):

where R₁, X, Z, n and l are as defined above, with a compound of the formula (VII):

wherein R₂' is as defined above, and Y is a halogen atom.

139

10. A process for producing a pyrazole compound of the formula (I-4) or its salt:

wherein each of R_1 and R_5 is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X'' is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_{q'}R_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q' is 1 or 2, m is 1 or 2, and n is an integer of from 1 to 5, provided that when n is at least 3, a plurality of X'' may be the same or different, which comprises oxidizing a compound of the formula (VI-1):

140

where R_1 , R_5 , Z , l and n are as defined above and X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, provided that when n is at least 3, a plurality of X may be the same or different to obtain a compound of the formula (VI-2):

10

15

wherein R_1 , R_5 , Z , X'' , l , m and n are as defined above, and subjecting the compound of the formula (VI-2) to a rearrangement reaction.

20

A process for producing a pyrazole compound of the formula (I-7) or its salt:

25

wherein each of R_1 and R_5 is an alkyl group, R_2' is a methyl group, $-A-R_3$, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group, A 5 is $-SO_2-$, $-CO-$, $-CH(R_6)-$ or $-CH(R_7)CO-$, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which 10 may be substituted, each of R_6 and R_7 is a hydrogen atom or an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, m is 1 or 2, X" is a hydrogen atom, a halogen atom, an alkyl group, a 15 haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_{q'}R_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q' is 1 or 2, and n is an integer of from 1 to 5, 20 provided that when n is at least 3, a plurality of X" may be the same or different, which comprises oxidizing a compound of the formula (I-6):

where R_1 , R_2' , R_5 , Z , l and n are as defined above, and X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, provided that when n is at least 3, a plurality of X may be the same or different.

10 12. A herbicide containing the pyrazole compound or its salt as defined in Claim 1, as an active ingredient.

13. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1.

15 14. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to an upland field.

16. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to a corn field.

20 17. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to a wheat field.

25 18. A method for controlling noxious weeds, which

143

comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to a paddy field.

18. A mixed herbicidal composition comprising at least 5 one member selected from the pyrazole compound or its salt as defined in Claim 1 and at least one member selected from active ingredient compounds of other herbicides.

19. A compound of the formula (II):

10

15

wherein R₁ is an alkyl group, Z is an alkyl group and l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different.

20. The compound of the formula (IV):

20

25

wherein R₁ is an alkyl group, X is a hydrogen atom, a

WO 97/41106

144

halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxy carbonyl group, $-\text{SO}_2\text{N}(\text{R}_8)\text{R}_9$, $-\text{N}(\text{R}_{10})\text{SO}_2\text{R}_{11}$, $-\text{CH}_2\text{S(O)}_q\text{R}_{12}$ or
5 $-\text{OSO}_2\text{R}_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when l is at least 2, a plurality of Z may be the same or different, and when n
10 is at least 2, a plurality of X may be the same or different.

INTERNATIONAL SEARCH REPORT

Inten. and Application No.
PCT/JP 97/01457

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D231/20 C07D401/12 A01N43/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 114, no. 7, 18 February 1991 Columbus, Ohio, US; abstract no. 62091m, T. AONO ET AL.: "Preparation of pyrazolones and peroxylipid formation inhibitors, lipoxygenase inhibitors, and collagenase inhibitors containing them." page 690; column 2; XP002037186 see abstract; and Chemical Abstracts, CHEMICAL SUBSTANCES, 12th Collective Index, vol. 106-115, 1987-1991, page 78553CS, the compounds with the RN: [131645-10-8], [131645-56-2], and [131645-19-7] & JP 02 229 168 A (TAKEDA CHEMICAL INDUSTRIES, LTD.) 11 September 1990 ---</p> <p style="text-align: right;">-/-</p>	19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search

7 August 1997

Date of mailing of the international search report

26.08.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Fink, D

INTERNATIONAL SEARCH REPORT

Inten
nal Application No
PCT/JP 97/01457

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 4 063 925 A (KONOTSUNE TAKUO ET AL) 20 December 1977 see column 1, line 7 - column 2, line 10 see column 19; example 3 ---	1-4, 12-18
Y	EP 0 638 555 A (NISSAN CHEMICAL IND LTD) 15 February 1995 cited in the application see page 149 - page 150; claims ---	1-4, 12-18
A	GB 2 002 375 A (ISHIHARA MINING & CHEMICAL CO) 21 February 1979 cited in the application see the whole document -----	1-20

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No
PCT/JP 97/01457

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4063925 A	20-12-77	JP 1001829 C JP 50126830 A JP 54036648 B AU 7934175 A CA 1077944 A CA 1069329 A CA 1075030 A DE 2513750 A FR 2274219 A GB 1463473 A US 4414392 A US 4301293 A US 4508910 A US 4687858 A US 4146726 A US 4261729 A	19-06-80 06-10-75 10-11-79 23-09-76 20-05-80 08-01-80 08-04-80 09-10-75 09-01-76 02-02-77 08-11-83 17-11-81 02-04-85 18-08-87 27-03-79 14-04-81
EP 0638555 A	15-02-95	AU 673505 B AU 2933092 A BR 9206728 A US 5545608 A CA 2123499 A CN 1072177 A WO 9310099 A JP 6184115 A CN 1077450 A	14-11-96 15-06-93 21-11-95 13-08-96 27-05-93 19-05-93 27-05-93 05-07-94 20-10-93
GB 2002375 A	21-02-79	JP 1252061 C JP 54041872 A JP 56028885 B JP 1305551 C JP 54070269 A JP 60029388 B US 4230481 A	26-02-85 03-04-79 04-07-81 28-02-86 05-06-79 10-07-85 28-10-80