Recovery Management

- 1. Device characteristics and failure types
- 2. Recovery tools
 - transaction log, checkpointing
- 3. Recovery processes

Storage Device Basics

- 🔷 แบบไม่ถาวร: RAM
 - ข้อมูลสูญหายเมื่อมี failures
- 🌵 แบบถาวร:
 - Disk, tape, optical media
 - ข้อมูลคงสภาพเมื่อปิดเครื่อง
 - แต่ก็เชื่อถือไม่ได้ 100%

วิธีรักษาสภาพข้อมูล

- Redundant levels:
 - เก็บข้อมูลไว้หลายชุดในหลายดิสก์
 - Read/Write in parallel
- Multiple levels:
 - ใช้สื่อที่ราคาถูกในการจัดเก็บข้อมูลสำรอง

Failure Types

- Local
 - Program detected and abnormal termination(% by zero)
 - Affects only a single transaction
- Operating System
 - Affects all active transactions
 - Less common than local failures
- Device (disk failure)
 - Affects all active and past transactions
 - Least common

Transaction Log

- 🔷 ตารางเก็บประวัติการแก้ไข/เปลี่ยนแปลงข้อมูลในฐาน
- 🔷ใช้พื้นที่เยอะในการเก็บ log records
- 🔷 มีไว้เพื่อฟื้นสภาพฐานข้อมูล กรณีมีข้อขัดข้อง
 - ♥Undo T: ย้อนกลับไปสถานะก่อนหน้าที่จะรัน T
 - Redo T: กระทำกับฐานข้อมูลอีกครั้ง ตาม log ของ T

Transaction Log Example

Log Sequence Number (LSN): unique id for each log row

LSN	TransNo	Action	Time	Table	Row	Column	Old	New
1	101001	START	10:29					
2	101001	UPDATE	10:30	Acct	10001	AcctBal	100	200
3	101001	UPDATE	10:30	Acct	15147	AcctBal	500	400
4	101001	INSERT	10:32	Hist	25045			<1002,
						columns		500,
								>
5	101001	COMMIT	10:33					

ถ้าเป็นการ Select data ไม่เก็บใน log นี้

Transaction Log Example

LSN	TransNo	Action	Time	Table	Row	Column	Old	New
1	101001 1	START	10:29					
2	101001/	UPDATE	10:30	Acct	10001	AcctBal	100	200
3	10100/1/	UPDATE	10:30	Acct	15147	AcctBal	500	400
4	1010/01/	INSERT	10:32	Hist	25045	* all		<1002,
		7				columns		500, >
5	10/1001	COMMIT	10:33					

Redo T: กระทำกับฐานข้อมูลอีกครั้ง ตาม log records ของ T จะไม่ได้ไปรัน T ใหม่ทุกคำสั่ง

Checkpointing

Main Memory

Transaction log

Database buffer

สั่งให้บันทึก ลงดิสก์

Database

Disk

- 🕨 ปกติระบบจะ write buffer to disk ในเวลาที่เหมาะสม
- 🛊 แต่เราสามารถตั้งเวลาให้ write to disk ได้ (Checkpointing)
 - 💜 ปกติ 5 to 10 minutes in high volume environments
- 🄷 เมื่อถึงเวลา checkpoint สิ่งที่ DBMS กระทำคือ
 - Stop all transaction processing
 - 🗪 บันทึก Checkpoint record ลงในทุกๆ working transaction
 - Write log buffers and database buffers (to disk)

Other Recovery Tools

- Force writing to disk when
 - 1. Checkpoint time
 - 2. End of transaction
- Database backup

- 💜 เป็นการสำรองทั้งฐานข้อมูล
- 🗪 สะสมมากขึ้นเรื่อยๆ

Recovery from a Media Failure

ถ้าระบบขัดข้องจาก media เสียจะกระทบทุก T ที่ ทำงานในขณะนั้น

- Restore database from the most recent backup
- Redo ทำซ้ำทุก transactions ที่เสร็จสิ้นไปแล้ว ตามที่บันทึกไว้ใน log ตั้งแต่ที่ backup ครั้งสุดท้าย
- Restart สำหรับ transactions ที่ยังทำงานไม่เสร็จ
 - 🗪 แต่ต้อง Rollback เพื่อย้อนผลกระทบที่ทำค้างคาอยู่
 - 🗬 จึงไปตั้งต้น restart คือรัน T ใหม่

Assumes not log failure: media failure affects the database only, not the log

Recovery from a Media Failure

- Restore database from the most recent backup
- Redo all committed transactions since the most recent backup
- **Restart** active transactions
 - Rollback and then restart

•Assumes not log failure: media failure affects the database only, not the log.

Force writing to disk when

- 1. Checkpoint time
- 2. End of transaction

Recovery Processes

การ recovery ขึ้นกับ timing of database writes:

- Immediate update approach:
 - 🌺 คำสั่ง update database ในทรานแซคชั่น T จะมีผลทันทีต่อ ฐานข้อมูล <u>แม้ยังไม่จบ T</u>
 - Need both Redo & undo
- Deferred update approach
 - 🌺 คำสั่ง update database ในทรานแซคชั่น T จะมีผลต่อฐานข้อมูล ก็ ต่อเมื่อ T committed แล้ว
 - ดังนั้น no database writes of uncommitted transactions at checkpoint
 - Undo operations not needed

Recovery process

Redo process

read log file and redo operations recorded in log file

Undo process

- send failure message to the computer that running the transaction
- rollback

Immediate Update Recovery

ข้อมูลใน log file ที่กู้มาได้หลัง failure

ระบบจะฟื้นสภาพหลังจุด checkpoint โดยจะ redo T2&T3 เพราะ committed แล้ว.

Undo T4 & T5 เพราะยังรันไม่เสร็จสิ้นเมื่อระบบ fail, ต้องเริ่มต้นใหม่

การ undo หรือ rollback อาจมีผลกระทบเช่น dirty read จึงอาจเกิด cascading rollback ได้

Immediate Update Recovery

Class	Description	Restart Work	
T1	Finished before CP	None	
Т2	Started before CP; finished before failure	Redo forward from checkpoint	do
Т3	Started after CP; finished before failure	Redo forward from checkpoint	do
T4	Started before CP; not yet finished	Undo backwards from most recent log record	undo
T5	Started after CP; not yet finished	Undo backwards from most recent log record	undo

Deferred Update Recovery

ข้อมูลใน log file

- •Restart T4 ,T5 (ไม่ต้องundo) เพราะยังไม่มีการ update ข้อมูลลงในฐานข้อมูล
- •Redo T2 ตั้งแต่ต้นเพราะ<u>ก่อน checkpoint</u> ผลของคำสั่งยังไม่ได้บันทึกลง database ถูก บันทึกลง log เท่านั้น

Deferred Update Recovery

Class	Description	Restart Work	
T 1	Finished before CP	None	
T2	Started before CP; finished before failure	Redo forward from first log record	edo
T3	Started after CP; finished before failure	Redo forward from first log record	edo
T4	Started before CP; not yet finished	None	
T5	Started after CP; not yet finished	None	

Transaction Design Issues

- Transaction boundary
- Isolation levels
- Deferred constraint checking
- Savepoints

Transaction Boundary Decisions

- Division of work into transactions
- Objective: minimize transaction duration
- Constraint: enforcement of important integrity constraints
- Transaction boundary decision can affect hot spots

Registration Form Example

Transaction Boundary Choices

- One transaction for
 - the entire form
 - the main form and
 - one transaction for all subform records
 - the main form and
 - separate transactions for each subform record

Avoiding User Interaction Time

- Avoid to increase throughput
- Possible side effects: user confusion due to database changes
- ♣Balance increase in throughput with occurrences of side effects
- Most situations increase in throughput more important than possible user confusion

Isolation Levels

- ♠Degree to which a transaction is separated from the actions of other transactions
- Balance concurrency control overhead with interference problems
- Some transactions can tolerate uncommitted dependency and inconsistent retrieval problems
- Specify using the SET TRANSACTION statement

Integrity Constraint Timing

- **♠**Most constraints checked immediately
- Can defer constraint checking to EOT
- **♣**SQL
 - Constraint timing clause for constraints in a CREATE TABLE statement
 - **SET CONSTRAINTS statement**

Example:

- Primary key
- Data type
- Foreign key

Save Points

- Some transactions have tentative actions
- **❖SAVEPOINT** statement determines intermediate points
- ROLLBACK to specified save points

Summary

- Transaction: user-defined collection of work
- DBMSs support ACID properties
- Knowledge of concurrency control and recovery important for managing databases
- Transaction design issues are important
- Transaction processing is an important part of workflow management