1 Schemata

§1 Garben

Definition 1.1.1 (Prägarbe)

Sei X ein topologischer Raum, $\mathrm{Off}(X)$ die Menge der offenenen Teilmengen von X und $\mathcal C$ eine Kategorie. Eine $Pr\ddot{a}qarbe$ auf X mit Werten in $\mathcal C$ ist ein kontravarianter Funktor

$$\mathcal{F} : \underline{\mathrm{Off}}(X) \to \mathcal{C}$$

wobei $\underline{\mathrm{Off}}(X)$ die Kategorie mit den Objekten $\mathrm{Off}(X)$ und den Morphismen

$$\operatorname{Mor}(U,U') = \begin{cases} i \colon U \hookrightarrow U' & \text{falls } U \subseteq U' \\ \varnothing & \text{sonst} \end{cases}$$

ist. Für $U \subseteq U'$ heißt $\rho_U^{U'} = \mathcal{F}(U \hookrightarrow U')$ Restriktionsmorphismus. Ist $U \subseteq U'$ und $f \in \mathcal{F}(U')$, so schreibt man statt $\rho_U^{U'}(f)$ auch $f \upharpoonright U$.

Definition 1.1.2 (Garbe)

Eine Prägarbe \mathcal{F} auf X heißt Garbe, falls folgende Bedingung erfüllt ist:

Ist $U \subseteq X$ offen, $(U_i)_{i \in I}$ eine offene Überdeckung von U und ist für jedes $i \in I$ ein $s_i \in \mathcal{F}(U_i)$ gegeben, so dass $s_i \upharpoonright U_i \cap U_j = s_j \upharpoonright U_i \cap U_j$ für alle $i, j \in I$, dann gibt es genau ein $s \in \mathcal{F}(U)$, so dass für alle $i \in I$ gilt: $s \upharpoonright U_i = s_i$.

Beispiele 1.1.3

- (a) Sei X quasi-projektive Varietät, $\mathcal{O}_X(U)$ der Ring der regulären Funktionen auf U, dann ist \mathcal{O}_X Garbe auf X.
- (b) Sei X ein topologischer Raum, $\mathcal{C}(U)$ die Menge der stetigen Funktionen $f: X \to \mathbb{R}$. \mathcal{C} ist Garbe von Ringen auf X. Ist X eine differenzierbare Mannigfaltigkeit, dann sind auch $\mathcal{C}^{\infty}(U)$ und $\mathcal{C}^k(U)$ Garben von Ringen auf X.
- (c) Sei X ein topologischer Raum, G eine (abelsche) Gruppe. Definiere $\mathcal{G}(U) = G$ für jedes offene $U \subseteq X$ und wähle als Restriktionsmorphismen $\rho_U^{U'} = \mathrm{id}_G$ für alle $U \subseteq U'$.
 - \mathcal{G} ist offenbar Prägarbe, muss aber nicht zwingend Garbe sein. Gibt es in X disjunkte offene Mengen U_1, U_2 , dann ist $U = U_1 \cup U_2$ offen und $\{U_1, U_2\}$ ist eine Überdeckung von U. Jedoch gibt es für $g_1 \in \mathcal{G}(U_1), g_2 \in \mathcal{G}(U_2)$ mit $g_1 \neq g_2$ kein $g \in \mathcal{G}(U)$, so dass $g \upharpoonright U_1 = g_1$ und $g \upharpoonright U_2 = g_2$.
 - $\mathcal G$ kann zur Garbe gemacht werden, indem man $\mathcal G(U)=G$ #Zsh.-komp. von U setzt.

Bemerkung 1.1.4

Ist \mathcal{F} Garbe von abelschen Gruppen auf X, so ist $\mathcal{F}(\emptyset) = 0$.

Beweis Sei $G = \mathcal{F}(\emptyset)$. Offenbar kann \emptyset durch eine leere Überdeckung von offenen Teilmengen überdeckt werden. Für jedes $g \in G$ und jedes $i \in I$ gilt also $g \upharpoonright U_i = g_i$. Da \mathcal{F} eine Garbe ist, kann es also nur ein $g \in G$ geben und somit ist G = 0.

Definition 1.1.5 (Morphismen von Prägarben)

Sei X ein topologischer Raum und \mathcal{F}, \mathcal{G} Prägarben auf X mit Werten in \mathcal{C} . Ein Morphismus $\varphi \colon \mathcal{F} \to \mathcal{G}$ ist eine natürliche Transformation von \mathcal{F} nach \mathcal{G} , d.h. für jedes offene $U \subseteq X$ ist ein Morphismus $\varphi_U \colon \mathcal{F}(U) \to \mathcal{G}(U)$ gegeben, so dass folgendes Diagramm für alle U, U' mit $U \subseteq U'$ kommutiert:

$$\mathcal{F}(U') \xrightarrow{\rho_U^{U'}} \mathcal{F}(U)$$

$$\downarrow^{\varphi_{U'}} \qquad \downarrow^{\varphi_U}$$

$$\mathcal{G}(U') \xrightarrow{\rho_U^{U'}} \mathcal{G}(U)$$

Im Folgenden ist mit einer Garbe auf X immer eine Garbe von abelschen Gruppen gemeint.

Definition 1.1.6 (Halm und Keim)

Sei X ein topologischer Raum, $x \in X$ und \mathcal{F} eine Prägarbe auf X.

(a)

$$\mathcal{F}_x = \varinjlim_{x \in U \in \mathrm{Off}(X)} \mathcal{F}(U)$$

heißt Halm von \mathcal{F} in x. Dabei ist

$$\varinjlim \mathcal{F}(U) = \left\{ (U, f) \mid U \in \mathrm{Off}(X), x \in U, f \in \mathcal{F}(U) \right\} / \sim$$

mit $(U, f) \sim (U', f')$: \Leftrightarrow es gibt eine offene Menge $U'' \subseteq U \cap U'$, so dass $x \in U''$ und $f \upharpoonright U'' = f' \upharpoonright U''$.

(b) Für eine offene Menge $U \subseteq X$ mit $x \in U$ sei

$$\mathcal{F}(U) \to \mathcal{F}_x, \ f \mapsto [(U, f)]_{\sim} =: f_x$$

der natürliche Morphismus. f_x heißt Keim von f in x.

Bemerkung 1.1.7

Sei \mathcal{F} eine Garbe auf $X, U \subseteq X$ eine offene Teilmenge und $f \in \mathcal{F}(U)$. Dann gilt:

$$f = 0 \Leftrightarrow f_x = 0$$
 für alle $x \in U$

Beweis " \Rightarrow ": Ist f = 0, dann ist offenbar $f_x = 0$ für alle $x \in U$.

" \Leftarrow ": Sei $f_x = 0$ für alle $x \in U$. Dann gibt es für jedes $x \in U$ eine offene Umgebung U_x von x, so dass $(U_x, 0) \in f_x$ und damit insbesondere $(U_x, 0) \sim (U, f)$. Die U_x überdecken U und daher gibt es genau ein $g \in \mathcal{F}(U)$ mit $g \upharpoonright U_x = 0$ für jedes $x \in X \Rightarrow 0 = g = f$.

Das folgende Beispiel zeigt, dass die Aussage aus Bemerkung 1.1.7 für Prägarben nicht unbedingt gilt.

Beispiele 1.1.8

Sei X ein topologischer Raum, so dass jedes $x \in X$ eine offene Umgebung $U \neq X$ besitzt.

$$\mathcal{F}(U) = \begin{cases} \mathbb{Z} & U = X \\ 0 & \text{sonst} \end{cases}$$

mit den natürlichen Restriktionsmorphismen ist eine Prägarbe von abelschen Gruppen auf X. Für alle $x \in X$ ist $\mathcal{F}_x = 0$, also ist auch für jedes $f \in \mathcal{F}(X)$ und jedes $x \in X$ $f_x = 0$ – auch wenn $f \neq 0$.

Bemerkung 1.1.9

Jeder Morphismus $\varphi \colon \mathcal{F} \to \mathcal{G}$ von Prägarben induziert für jedes $x \in X$ einen natürlichen Morphismus $\varphi_x \colon \mathcal{F}_x \to \mathcal{G}_x$.

Beweis Sei $x \in X$. Definiere

$$\varphi_x \colon \mathcal{F}_x \to \mathcal{G}_x, \ [(U,f)]_{\sim} \mapsto [(U,\varphi_U(f)]_{\sim}$$

Für $(U,f) \sim (U',f')$ ist $f \upharpoonright U'' = f' \upharpoonright U''$ für ein geeignetes U'' und daher

$$\varphi_{U'}(f') \upharpoonright U'' = \varphi_{U''}(f' \upharpoonright U'') = \varphi_{U''}(f \upharpoonright U'') = \varphi_U(f) \upharpoonright U''$$

Somit ist auch $(U, \varphi_U(f)) \sim (U', \varphi_{U'}(f'))$ und φ_x ist wohldefiniert.

Bemerkung 1.1.10

Seien \mathcal{F}, \mathcal{G} Garben abelscher Gruppen, $\varphi \colon \mathcal{F} \to \mathcal{G}$ ein Morphismus. Dann gilt:

- (a) $\forall U \in \text{Off}(X) : \varphi_U \text{ ist injektiv} \iff \forall x \in X : \varphi_x \text{ ist injektiv}.$
- (b) $\forall U \in \text{Off}(X) : \varphi_U \text{ ist surjektiv} \implies \forall x \in X : \varphi_x \text{ ist surjektiv.}$
- (c) $\forall U \in \text{Off}(X) : \varphi_U \text{ ist Isomorphismus} \iff \forall x \in X : \varphi_x \text{ ist Isomorphismus}.$

Beweis (a) " \Rightarrow ": Seien $x \in X$ und $f_x \in \mathcal{F}_x$ mit $\varphi_x(f_x) = 0$. Dann ist $[(U, \varphi_U(f))]_{\sim} = 0$ für einen Repräsentanten (U, f) von f_x . Ohne Einschränkung ist $\varphi_U(f) = 0$ und nach Vorraussetzung somit auch $f = 0 \Rightarrow f_x = 0$.

- " \Leftarrow ": Seien $U \in \text{Off}(X)$ und $f \in \mathcal{F}(U)$ mit $\varphi_U(f) = 0$. Für alle $x \in U$ ist dann $\varphi_x(f_x) = 0$ und somit auch $f_x = 0$. Nach Bemerkung 1.1.7 ist f = 0.
- (b) Sei $g_x \in \mathcal{G}_x$ für ein $x \in X$ und sei (U, g) ein Repräsentant von g_x . Nach Vorraussetzung gibt es ein $f \in \mathcal{F}(U)$, so dass $\varphi_U(f) = g$. Insgesamt ist dann $\varphi_x(f_x) = g_x$.
- (c) "⇒": Folgt aus (a) und (b).

" \Leftarrow ": Nach (a) ist φ_U injektiv und es bleibt nur zu zeigen, dass φ_U surjektiv ist. Sei also $g \in \mathcal{G}(U)$. Für jedes $x \in U$ sei $f_x = \varphi_x^{-1}(g_x)$ und $(U^{(x)}, f^{(x)})$ ein Repräsentant von f_x . Offenbar ist $\left(U^{(x)}\right)_{x \in U}$ eine offene Überdeckung von U. Weiterhin kann man die $U^{(x)}$ klein genug wählen, so dass $\varphi_{U^{(x)}}(f^{(x)}) = g \upharpoonright U^{(x)}$. Dann ist $f^{(x)} = \varphi_{U^{(x)}}^{-1}(g \upharpoonright U^{(x)})$ und für alle $x, x' \in U$ gilt:

$$f^{(x)} \upharpoonright U^{(x)} \cap U^{(x')} = \varphi_{U^{(x)} \cap U^{(x')}}^{-1} (g \upharpoonright U^{(x)} \cap U^{(x')}) = f^{(x')} \upharpoonright U^{(x)} \cap U^{(x')}$$

Da \mathcal{F} Garbe ist, gibt es genau ein $f \in \mathcal{F}(U)$ mit $f \upharpoonright U^{(x)} = f^{(x)}$ für alle $x \in U$. Offenbar ist dann $\varphi_U(f) \upharpoonright U^{(x)} = g \upharpoonright U^{(x)}$ für jedes $x \in U$ und somit auch $\varphi_U(f) = g$.

Das folgende Beispiel zeigt, dass die Aussage (b) aus Bemerkung 1.1.10 keine Äquivalenz ist.

Beispiele 1.1.11

Sei $X = \mathbb{C} \setminus \{0\}$ und \mathcal{F} die Garbe der invertierbaren, holomorphen Funktionen. Weiter sei $\varphi \colon \mathcal{F} \to \mathcal{F}$ durch $f \mapsto f^2$ gegeben. Dann ist φ_x für jedes $x \in X$ surjektiv, φ_X hingegen nicht.

Bemerkung + Definition 1.1.12 (Assoziierte Garbe)

Sei X ein topologischer Raum, \mathcal{F} eine Prägarbe von abelschen Gruppen auf X.

- (a) Es gibt genau eine Garbe \mathcal{F}^+ auf X und einen Morphismus $\vartheta \colon \mathcal{F} \to \mathcal{F}^+$, so dass $\vartheta_x \colon \mathcal{F}_x \to \mathcal{F}_x^+$ für jedes $x \in X$ ein Isomorphismus ist.
- (b) \mathcal{F}^+ heißt die zu \mathcal{F} assoziierte Garbe.
- (c) Zu jeder Garbe \mathcal{G} auf X und jedem Morphismus $\varphi \colon \mathcal{F} \to \mathcal{G}$ von Prägarben gibt es genau einen Morphismus $\varphi^+ \colon \mathcal{F}^+ \to \mathcal{G}$, so dass folgendes Diagramm kommutiert:

Abbildung 1.1: Überlagerung von S^1 durch U_1 (rot) und U_2 (blau)

Beweis (a) Für jede offene Menge $U \subseteq X$ sei

$$\mathcal{F}^+(U) = \left\{ s \colon U \to \bigcup_{x \in U} \mathcal{F}_x \mid \forall x \in U \text{ ist } s(x) \in \mathcal{F}_x \text{ und } \exists \text{ Umgebung } U_x \text{ von } x \right.$$

$$\text{und ein } f \in \mathcal{F}(U_x) \text{ mit } s(y) = f_y \text{ für jedes } y \in U_x$$

Dann ist \mathcal{F}^+ zusammen mit den offensichtlichen Restriktionen Garbe auf X. Weiter ist $\vartheta: \mathcal{F} \to \mathcal{F}^+$, $\vartheta_U(f) = (x \mapsto f_x)$ ein Morphismus und ϑ_x ist Isomorphismus für jedes $x \in X$. Die Eindeutigkeit von \mathcal{F}^+ und ϑ folgt aus (c).

(c) Sei $\varphi \colon \mathcal{F} \to \mathcal{G}$ ein Morphismus von Prägarben. Ist $s \in \mathcal{F}^+(U)$, dann ist $(U_x)_{x \in U}$ eine offene Überdeckung von U. Für $x, x' \in U$ gibt es $f^{(x)} \in \mathcal{F}(U_x)$ und $f^{(x')} \in \mathcal{F}(U_{x'})$, so dass $s(y) = f_y^{(z)}$ für jedes $y \in U_z$ und $z \in \{x, x'\}$. Daher ist $f_y^{(x)} = f_y^{(x')}$ für jedes $y \in U_x \cap U_{x'}$ und für jedes $y \in U_x \cap U_{x'}$ gibt es eine Umgebung U' von y, so dass $f^{(x)} \upharpoonright U' = f^{(x')} \upharpoonright U'$. Weil die U' eine Überdeckung von $U_x \cap U_{x'}$ sind, ist $f^{(x)} \upharpoonright U_x \cap U_{x'} = f^{(x')} \upharpoonright U_x \cap U_{x'}$ und insbesondere $\varphi_{U_x}(f^{(x)}) \upharpoonright U_x \cap U_{x'} = \varphi_{U_x}(f^{(x')}) \upharpoonright U_x \cap U_{x'}$. Da \mathcal{G} eine Garbe ist, gibt es ein eindeutig bestimmtes $g \in \mathcal{G}(U)$, so dass $g \upharpoonright U_x = \varphi_{U_x}(f^{(x)})$. Definiert man nun $\varphi^+(s) = g$, dann ist offenbar $\varphi = \varphi^+ \circ \vartheta$ und φ^+ ist eindeutig.

Bemerkung + Definition 1.1.13 (Kern, Bild, Mono- und Epimorphismen)

Sei $\varphi \colon \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben auf X.

- (a) $\operatorname{Kern}(\varphi)$ mit $\operatorname{Kern}(\varphi)(U) = \operatorname{Kern}(\varphi_U)$ ist Garbe.
- (b) Bild (φ) sei die zu $U \mapsto \text{Bild}(\varphi_U)$ assoziierte Garbe.
- (c) φ heißt Monomorphismus, falls $\operatorname{Kern}(\varphi) = 0$.
- (d) φ heißt *Epimorphismus*, falls Bild(φ) = \mathcal{G} .

Definition 1.1.14 (Quotientengarbe)

Seien $\mathcal{G} \hookrightarrow \mathcal{F}$ Garben von abelschen Gruppen auf X. Die zur Prägarbe $U \mapsto \mathcal{F}(U)/\mathcal{G}(U)$ assoziierte Garbe heißt Quotientengarbe von \mathcal{F} nach \mathcal{G} .

Beispiele 1.1.15

Sei $\mathcal{F} = \mathcal{C}_x$ die Garbe der stetigen Funktionen von S^1 nach \mathbb{R} und \mathcal{G} die konstante Garbe zu \mathbb{Z} auf S^1 . In Abbildung 1.1 ist eine Überlagerung von S^1 durch U_1, U_2 zu sehen, so dass $U_1 \cap U_2 = D_1 \dot{\cup} D_2$ für zwei offene Mengen D_1, D_2 .

Seien nun $0 = f_1 \in \mathcal{F}(U_1)$ und $f_2 \in \mathcal{F}(U_2)$ mit $f_2 \upharpoonright D_1 = 0$ und $f_2 \upharpoonright D_2 = 1$. Dann ist $f_2 - f_1 \in \mathcal{G}(U_1 \cap U_2)$ und daher $\bar{f}_1 = \bar{f}_2$ in $\mathcal{F}/\mathcal{G}(S^1)$.

TODO

Beweis l

Bemerkung + Definition 1.1.16 (Direkte und inverse Bildgarbe)

Sei $f: X \to Y$ stetig.

- (a) Sei \mathcal{F} Garbe auf X, dann ist die Prägarbe $U \mapsto \mathcal{F}(f^{-1}(U))$ auf Y eine Garbe. Sie heißt die direkte Bildgarbe und wird mit $f_*\mathcal{F}$ bezeichnet.
- (b) Sei \mathcal{G} Garbe auf Y, dann heißt die zur Prägarbe

$$U \mapsto \varinjlim_{\substack{V \subseteq Y \text{ offen} \\ f(U) \subseteq V}} \mathcal{G}(V)$$

assoziierte Garbe $f^{-1}\mathcal{G}$ inverse Bildgarbe zu \mathcal{G} .

- (c) f_* und f^{-1} sind kovariante Funktoren
- (d) f^{-1} ist linksadjungiert zu f_* , d.h. es gibt natürliche Bijektionen

$$\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}(\mathcal{G},f_*\mathcal{F})$$

Beweis (a) Da \mathcal{F} Garbe auf X und $f^{-1}(U)$ offen ist für jedes $U \subseteq Y$, ist $f_*\mathcal{F}$ Garbe auf Y.

- (c) Offensichtlich.
- (d) Es sollen natürliche Bijektionen $\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}(\mathcal{G},f_*\mathcal{F})$ konstruiert werden.

Der Weg von $\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F})$ nach $\operatorname{Hom}(\mathcal{G},f_*\mathcal{F})$

Jedes $\alpha \in \text{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$ induziert einen Morphismus $f_*(\alpha) \colon f_*f^{-1}\mathcal{G} \to f_*\mathcal{F}$.

 $f_*(\alpha)$ kann fortgesetzt werden zu einem Morphismus

$$\mathcal{G} \xrightarrow{\psi_{\mathcal{G}}} f_* f^{-1} \mathcal{G} \xrightarrow{f_*(\alpha)} f_* \mathcal{F}$$

Dazu ist folgende Konstruktion nötig: Die universelle Eigenschaft des direkten Limes liefert einen natürlichen Morphismus

$$\mathcal{G}(V) \to \varinjlim_{f(f^{-1}(V)) \subseteq W \subseteq V} \mathcal{G}(W) = \varinjlim_{f(f^{-1}(V)) \subseteq W} \mathcal{G}(W)$$

Dabei beruht die Gleichheit der direkten Limetes darauf, dass $f(f^{-1}(V)) \subseteq V$ und somit ohne Einschränkung jedes $W \supset f(f^{-1}(V))$ mit V geschnitten werden kann. Nun ist $f^{-1}\mathcal{G}$ die zu

$$V \mapsto \varinjlim_{f(V) \subseteq W} \mathcal{G}(W)$$

assoziierte Garbe und man erhält $\psi_{\mathcal{G}}(V)\colon \mathcal{G}(V)\to f^{-1}\mathcal{G}(f^{-1}(V))=f_*f^{-1}\mathcal{G}(V)$

Der Weg von $\operatorname{Hom}(\mathcal{G},f_*\mathcal{F})$ nach $\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F})$

Jedes $\beta \in \text{Hom}(\mathcal{G}, f_*\mathcal{F})$ induziert einen Morphismus $f^{-1}(\beta) \colon f^{-1}\mathcal{G} \to f^{-1}f_*\mathcal{F}$ Auch $f^{-1}(\beta)$ lässt sich fortsetzen zu

$$f^{-1}\mathcal{G} \xrightarrow{f^{-1}(\beta)} f^{-1}f_*\mathcal{F} \xrightarrow{\varphi_{\mathcal{F}}} \mathcal{F}$$

 $f^{-1}f_*\mathcal{F}$ ist die zu

$$U \mapsto \varinjlim_{f(U) \subseteq V} f_* \mathcal{F}(V) = \varinjlim_{f(U) \subseteq V} \mathcal{F}(f^{-1}(V))$$

assoziierte Garbe und daher reicht es für jedes U einen Morphismus

$$\chi_{\mathcal{F}}(U) : \underset{f(U) \subseteq V}{\varinjlim} \mathcal{F}(f^{-1}(V)) \to \mathcal{F}(U)$$

8

zu konstruieren. Für jedes V mit $f(U) \subseteq V$ ist $U \subseteq f^{-1}(V)$, also gibt es Restriktionsmorphismen $\mathcal{F}(f^{-1}(V)) \to \mathcal{F}(U)$. Die universelle Eigenschaft des direkten Limes liefert nun einen eindeutigen Morphismus $\chi_{\mathcal{F}}(U)$ der wiederum $\varphi_{\mathcal{F}}(U)$ induziert.

Die beiden Konstruktionen sind zueinander invers

Das ist so. \Box

TODC

Beweis l

Bemerkung 1.1.17

Sei X topologischer Raum, $U \subseteq X$ offen. Dann ist $\mathcal{F} \mapsto \mathcal{F}(U)$ linksexakter, kovarianter Funktor.

Beweis Ist $\varphi \colon \mathcal{F} \to \mathcal{G}$ Morphismus, so ist $\varphi_U \colon \mathcal{F}(U) \to \mathcal{G}(U)$ der zugehörige Morphismus. Sei nun

$$0 \to \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \to 0$$

eine kurze exakte Sequenz von Garben. Nach Definition ist $\mathcal{F} \mapsto \mathcal{F}(U)$ linksexakt, falls

$$0 \to \mathcal{F}'(U) \xrightarrow{\varphi_U} \mathcal{F}(U) \xrightarrow{\psi_U} \mathcal{F}''(U)$$

exakt ist.

Nach Definition 1.1.13 und Bemerkung 1.1.10 ist

$$0 \to \mathcal{F}'_x \to \mathcal{F}_x \to \mathcal{F}''_x \to 0$$

exakt für jedes $x \in X$. Wiederum nach Bemerkung 1.1.10 ist

$$0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U)$$

exakt.

§2 Affine Schemata

Bemerkung + Definition 1.2.1 (Spektrum, Zariski-Topologie und Verschwindungsideal) Sei R ein Ring.

- (a) Spec $R = \{ \mathfrak{p} \subseteq R \mid \mathfrak{p} \text{ Primideal} \}$ heißt Spektrum von R.
- (b) Für $I \subseteq R$ sei $V(I) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid I \subseteq \mathfrak{p} \}$. Es gilt V(I) = V((I)).
- (c) $\{V(I) \mid I \text{ ist Ideal in } R\}$ sind abgeschlossene Mengen einer Topologie auf Spec R, der Zariski-Topologie.
- (d) Für $Z \subseteq \operatorname{Spec} R$ sei $I(Z) = \bigcap_{\mathfrak{p} \in Z} \mathfrak{p}$ das $\operatorname{Verschwindungsideal}$ von Z.

Anmerkung 1

- (a) Ist $A \subseteq B \subseteq \operatorname{Spec} R$, dann ist $I(A) \supseteq I(B)$.
- (b) Ist $I \subseteq J \subseteq R$, dann ist $V(I) \supseteq V(J)$.

Beweis (a) Ist $A \subseteq B$, dann ist

$$I\left(A\right) = \bigcap_{\mathfrak{p} \in A} \mathfrak{p} \stackrel{A \subseteq B}{\supseteq} \bigcap_{\mathfrak{p} \in B} \mathfrak{p} = I\left(B\right)$$

(b) Ist $I \subseteq J$, dann ist

$$V\left(I\right)=\left\{\mathfrak{p}\mid I\subseteq\mathfrak{p}\right\}\overset{I\subseteq J}{\supseteq}\left\{\mathfrak{p}\mid J\subseteq\mathfrak{p}\right\}=V\left(J\right)$$

Bemerkung 1.2.2

(a) $V(I(Z)) = \overline{Z}$

(b)
$$I(V(I)) = \sqrt{I}$$

Beweis (a) ">": Nach Definition ist V(I(Z)) abgeschlossen und daher gilt $\overline{Z} \subseteq V(I(Z))$.

"⊆": Nach Definition ist

$$\overline{Z} = \bigcap_{\substack{I \text{ Ideal} \\ Z \subseteq V(I)}} V(I)$$

Aus $Z \subseteq V(I)$ folgt $I \subseteq \mathfrak{p}$ für alle $\mathfrak{p} \in Z$. Somit ist

$$I\subseteq\bigcap_{\mathfrak{p}\in Z}\mathfrak{p}=I\left(Z\right)$$

und deshalb $V(I) \supset V(I(Z))$.

(b)

$$I\left(V\left(I\right)\right) = \bigcap_{\mathfrak{p} \in V\left(I\right)} \mathfrak{p} = \bigcap_{\substack{\mathfrak{p} \text{ Primideal} \\ I \subseteq \mathfrak{p}}} \mathfrak{p} = \sqrt{I}$$

Anmerkung 2

(a) Sind $(I_j)_{j \in J}$ Ideale, dann ist

$$\bigcap_{j \in J} V(I_j) = V\left(\sum_{j \in J} I_j\right)$$

(b) Sind I_1, I_2 Ideale, dann ist

$$V(I_1) \cup V(I_2) = V(I_1 \cdot I_2) = V(I_1 \cap I_2)$$

Beweis (a) " \subseteq ": Ist $\mathfrak{p} \in \bigcap V(I_j)$, dann ist $I_j \subseteq \mathfrak{p}$ für jedes $j \in J$. Also ist auch $\sum I_j \subseteq \mathfrak{p}$ und somit $\mathfrak{p} \in V(\sum I_j)$.

"\(\)": Ist $\mathfrak{p} \in V\left(\sum I_{j}\right)$, dann ist $I_{j} \subseteq \sum I_{j} \subseteq \mathfrak{p}$ für jedes $j \in J$ und somit ist $\mathfrak{p} \in \bigcap V\left(I_{j}\right)$.

(b) " \subseteq ": Ist $\mathfrak{p} \in V(I_1) \cup V(I_2)$, dann ist $I_1 \subseteq \mathfrak{p}$ oder $I_2 \subseteq \mathfrak{p}$. Auf jeden Fall ist aber $I_1 \cdot I_2 \subseteq \mathfrak{p}$ und somit $V(I_1) \cup V(I_1) \subseteq V(I_1 \cdot I_2)$ und $V(I_1) \cup V(I_2) \subseteq V(I_1 \cap I_2)$.

"\(\text{\text{"}}:\) Es gilt: $I_1 \cdot I_2 \subseteq I_1 \cap I_2$ und somit $V(I_1 \cdot I_2) \supseteq V(I_1 \cap I_2)$. Also genügt es zu zeigen, dass $V(I_1 \cdot I_2) \subseteq V(I_1) \cup V(I_2)$.

Ist also $\mathfrak{p} \in V(I_1 \cdot I_2)$, dann ist $I_1 \cdot I_2 \subseteq \mathfrak{p}$. Angenommen $I_2 \nsubseteq \mathfrak{p}$. Dann gibt es ein $a \in I_2$, so dass $a \notin \mathfrak{p}$. Nach Vorraussetzung ist aber $aI_1 \subseteq \mathfrak{p}$ und somit ist auch $I_1 \subseteq \mathfrak{p}$, insbesondere also $\mathfrak{p} \in V(I_1)$. \square

Bemerkung 1.2.3

Sei $\emptyset \neq V \subseteq \operatorname{Spec} R$ abgeschlossen. I(V) ist ein Primideal, genau dann wenn V irreduzibel ist.

Beweis " \Leftarrow ": Sei $V \subseteq \operatorname{Spec} R$ abgeschlossen, dann gibt es ein Ideal $I \subseteq R$, so dass V = V(I). Seien nun $a, b \in R$ mit $ab \in I(V)$. Nach Definition ist

$$I\left(V\right) =\bigcap_{I\subset \mathfrak{p}}\mathfrak{p}$$

und daher ist für jedes Primideal \mathfrak{p} mit $I \subseteq \mathfrak{p}$ offenbar $a \in \mathfrak{p}$ oder $b \in \mathfrak{p}$. Definiere nun $V_a = \{\mathfrak{p} \mid \mathfrak{p} \text{ Primideal mit } I \subseteq \mathfrak{p} \text{ und } a \in \mathfrak{p} \}$ und V_b analog. Offenbar ist $V = V_a \cup V_b$ und V_a, V_b sind abgeschlossen. Da V irreduzibel ist, kann man ohne Einschränkung $V_a = V$ annehmen. Dann ist aber offenbar auch $a \in I(V)$.

"⇒": Sei $V \subseteq \operatorname{Spec} R$ abgeschlossen, so dass I(V) Primideal ist und seien $V_1 = V(I_1)$ und $V_2 = V(I_2)$ abgeschlossene Mengen mit $V = V_1 \cup V_2$. Ohne Einschränkung sind I_1, I_2 Radikalideale, da $V(\sqrt{I_i}) = V(I(V_i)) = \overline{V_i} = V_i$ für $i \in \{1, 2\}$

Dann ist $V = V(I_1) \cup V(I_2) = V(I_1 \cap I_2)$. Da I_1, I_2 Radikalideale sind, ist $I_1 \cap I_2$ Radikalideal und daher ist $I_1 \cap I_2 = \sqrt{I_1 \cap I_2} = I(V)$ ein Primideal.

Ist nun $I_2 \nsubseteq I_1$, dann gibt es ein $b \in I_2 \setminus I_1$. Für jedes $a \in I_1$ ist $ab \in I_1 \cap I_2$ und daher $a \in I_1 \cap I_2$ oder $b \in I_1 \cap I_2$. Da b aber aus $I_2 \setminus I_1$ gewählt war, muss $a \in I_1 \cap I_2$ und somit $I_1 \subseteq I_1 \cap I_2$ sein.

Somit ist aber
$$V_1 = V(I_1) \supseteq V(I_1 \cap I_2) = V \implies V_1 = V$$

Proposition 1.2.4

Jeder Morphismus $\alpha \colon R \to R'$ von Ringen induziert durch $f_{\alpha}(\mathfrak{p}) = \alpha^{-1}(\mathfrak{p})$ eine stetige Abbildung $f_{\alpha} \colon \operatorname{Spec} R' \to \operatorname{Spec} R$.

Beweis $\alpha^{-1}\left(\mathfrak{p}\right)$ ist Primideal. Ist $V(I)\subseteq\operatorname{Spec}R$ abgeschlossen, dann ist $f_{\alpha}^{-1}\left(V\left(I\right)\right)=V\left(\alpha\left(I\right)\right)$

Bemerkung 1.2.5

Sei k algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(k)$ affine Varietät. Dann ist

$$m: V \to \operatorname{Spec} k[V], \ x \mapsto m_x$$

stetig und injektiv.

Beweis Die maximalen Ideale in k[V] entsprechen bijektiv den Punkten in V. Also ist m injektiv. Sei nun $V(I) \subseteq \operatorname{Spec} k[V]$ abgeschlossen, dann ist

$$m^{-1}(V(I)) = \{x \in V \mid m_x \in V(I)\}$$

 $= \{x \in V \mid I \subseteq m_x\}$
 $= \{x \in V \mid f(x) = 0 \text{ für alle } x \in I\}$
 $= V(I) \text{ im Sinne von affinen Varietäten}$

Bemerkung + Definition 1.2.6 (Generischer Punkt)

- (a) Ein Punkt x in einem topologischen Raum X heißt generisch, falls $\overline{\{x\}} = X$.
- (b) Jede abgeschlossene, irreduzible Teilmenge von $\operatorname{Spec} R$ (R ein Ring) besitzt genau einen generischen Punkt.
- (c) Die maximalen, irreduziblen Teilmengen von SpecR entsprechen bijektiv den minimalen Primidealen in R.

Beweis (b) Sei $V = V(I) \subseteq \operatorname{Spec} R$ abgeschlossen und irreduzibel. Nach Bemerkung 1.2.3 ist $I(V) = \sqrt{I}$ ein Primideal. Es ist $I \subseteq \sqrt{I}$ und somit auch $\sqrt{I} \in V$. Ist W = V(J) eine abgeschlossene Menge mit $\sqrt{I} \in W$, dann ist $J \subseteq \sqrt{I}$ und für jedes Primideal $\mathfrak p$ mit $I \subseteq \mathfrak p$ ist $J \subseteq \sqrt{I} \subseteq \mathfrak p$ $\Rightarrow \overline{\left\{\sqrt{I}\right\}} = V$.

(c) Folgt aus Bemerkung 1.2.3.

Bemerkung + Definition 1.2.7

Für jedes $f \in R$ ist $D(f) = \operatorname{Spec} R \setminus V(f) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid f \notin \mathfrak{p} \}$ offen in $\operatorname{Spec} R$. $\{ D(f) \mid f \in R \}$ ist eine Basis der Zariski-Topologie auf $\operatorname{Spec} R$.

Beweis Sei $U \subseteq \operatorname{Spec} R$ offen und $\mathfrak{p} \in U$. $V = \operatorname{Spec} R \setminus U$ ist abgeschlossen, also V = V(I) für ein Ideal $I \subseteq R$. Für jedes $f \in I$ gilt $V(I) \subseteq V(f)$, also $D(f) \subseteq U$. Nun ist $\mathfrak{p} \in U = \{\mathfrak{q} \mid I \nsubseteq \mathfrak{q}\}$, also gibt es ein $f \in I$, so dass $f \notin \mathfrak{p}$ und somit ist $\mathfrak{p} \in D(f)$.

Anmerkung 3

Ist $(U_i)_{i\in I}$ eine offene Überdeckung von $A\subseteq X$, dann kann man ohne Einschränkung annehmen, dass $U_i=D\left(f_i\right)$ für geeignete $f_i\in R$.

Beweis Die D(f) mit $f \in R$ bilden eine Basis der Topologie, also ist jedes U_i Vereinigung von D(f)'s, woraus die Behauptung folgt.

Bemerkung 1.2.8

 $\operatorname{Spec} R$ ist quasi-kompakt.

Beweis Sei $(U_i)_{i\in I}$ offene Überdeckung von Spec R. Ohne Einschränkung sei $U_i = D(f_i)$ für geeignetes $f_i \in R$. Dann gilt:

$$\bigcup_{i \in I} D(f_i) = \operatorname{Spec} R \Leftrightarrow \bigcap_{i \in I} V(f_i) = \emptyset$$
$$\Leftrightarrow \left(\sum_{i \in I} (f_i)\right) = R$$

und daher gilt für geeignete a_j und eine endliche Menge $J \subseteq I$:

$$1 = \sum_{j \in J} a_j f_j$$

bzw.

$$\bigcup_{j\in J} D\left(f_{j}\right) = \operatorname{Spec} R$$

Bemerkung 1.2.9

Für jedes $f \in R$ ist $D(f) \subseteq \operatorname{Spec} R$ quasi-kompakt bzgl. der induzierten Topologie.

Beweis Sei $(U_i)_{i\in I}$ offene Überdeckung von Spec R. Ohne Einschränkung sei $U_i = D(f_i) \cap D(f)$ für geeignetes $f_i \in R$. Dann gilt:

$$\bigcup_{i \in I} (D(f_i) \cap D(f)) = D(f) \Leftrightarrow \bigcup_{i \in I} D(f_i) \supseteq D(f)$$

$$\Leftrightarrow \bigcap_{i \in I} V(f_i) \subseteq V(f)$$

$$\Leftrightarrow \sum_{i \in I} (f_i) \supseteq (f)$$

und daher gilt für geeignete a_i und eine endliche Menge $J \subseteq I$:

$$f = \sum_{j \in J} a_j f_j$$

bzw.

$$\bigcup_{j\in J} D\left(f_{j}\right) \supseteq D\left(f\right)$$

Beispiele 1.2.10

Dieses Beispiel soll zeigen, dass Spec R alleine nicht ausreichend ist und so die folgende Definition motivieren. Seien k ein Körper und $R = k[\varepsilon]/(\varepsilon^2)$. Dann ist Spec $R = \{(\varepsilon)\}$ und

$$\alpha \colon R \to k, \ \varepsilon \mapsto 0$$

ist ein k-Algebra-Homomorphismus. α induziert eine stetige Abbildung f_{α} . Aus offensichtlichen Gründen ist f_{α} : Spec $k \to \operatorname{Spec} R$ sogar ein Homöomorphismus.

Fazit: Spec R besitzt zu wenig Information über R.

Bemerkung + Definition 1.2.11 (Strukturgarbe und affines Schema)

Sei R ein Ring, $X = \operatorname{Spec} R$.

(a) Für $U \subseteq X$ offen sei

$$\mathcal{O}_{X}\left(U\right) = \left\{s \colon U \to \bigcup_{\mathfrak{p} \in U} R_{\mathfrak{p}} \;\middle|\; \text{Für alle } \mathfrak{p} \in U \text{ ist } s\left(\mathfrak{p}\right) \in R_{\mathfrak{p}} \right.$$
 und es gibt eine Umgebung $U_{\mathfrak{p}}$ von \mathfrak{p} sowie $f, g \in R$ so dass für alle $\mathfrak{q} \in U_{\mathfrak{p}} \colon g \notin \mathfrak{q} \text{ und } s\left(\mathfrak{q}\right) = \frac{f}{g}$

- (b) \mathcal{O}_X ist eine Garbe von Ringen auf X. Sie heißt Strukturgarbe von Spec R.
- (c) (X, \mathcal{O}_X) heißt affines Schema.

Proposition 1.2.12

Sei $(X = \operatorname{Spec} R, \mathcal{O}_X)$ ein affines Schema. Dann gilt:

- (a) Für jedes $\mathfrak{p} \in X$ ist $\mathcal{O}_{X,\mathfrak{p}} \cong R_{\mathfrak{p}}$
- (b) Für jedes $f \in R$ ist $\mathcal{O}_X(D(f)) \cong R_f$

Beweis (a) Definiere $\psi \colon \mathcal{O}_{X,\mathfrak{p}} \to R_{\mathfrak{p}}$ durch $[(U,s)]_{\sim} \mapsto s(\mathfrak{p})$.

ψ ist wohldefinierter Ringhomomorphismus

ψ ist surjektiv

Sei $\frac{a}{f} \in R_{\mathfrak{p}}$ mit $a \in R, f \in R \setminus \mathfrak{p}$. Es ist $\mathfrak{p} \in U$ für U = D(f). Für ein $\mathfrak{q} \in U$ definiere $s(\mathfrak{q}) = \frac{a}{f} \in R_{\mathfrak{q}}$. $\Rightarrow \psi([(U,s)]_{\sim}) = \frac{a}{f}$, wobei $[(U,s)]_{\sim} \in \mathcal{O}_{X,\mathfrak{p}}$.

ψ ist injektiv

Sei $[(U,s)]_{\sim} \in \mathcal{O}_{X,\mathfrak{p}}$ mit $\psi([(U,s)]_{\sim}) = 0$, also $s(\mathfrak{p}) = 0$ in $R_{\mathfrak{p}}$. Ohne Einschränkung gilt $s(\mathfrak{q}) = \frac{a}{f}$ für alle $\mathfrak{q} \in U$ und geeignete $a \in R, f \in R \setminus \bigcup_{\mathfrak{q} \in U} \mathfrak{q}$.

 $s(\mathfrak{p})=0$ in $R_{\mathfrak{p}}$ bedeutet, dass es ein $h\in R\setminus \mathfrak{p}$ mit ha=0 gibt. $U'=U\cap D(h)$ ist eine offene Umgebung von \mathfrak{p} mit $h\notin \mathfrak{q}$ für alle $\mathfrak{q}\in U'$. Also ist $\frac{a}{f}=0$ in $R_{\mathfrak{q}}$ für alle $\mathfrak{q}\in U'$.

$$\Rightarrow (U,s) \sim (U',s) \sim 0$$

(b) Definiere $\varphi \colon R_f \to \mathcal{O}_X (D(f))$ durch $\frac{a}{f^n} \mapsto (\mathfrak{p} \mapsto \frac{a}{f^n})$.

φ ist wohldefinierter Ringhomomorphismus

φ ist injektiv

Sei $\varphi\left(\frac{a}{f^n}\right) = 0$. Dann ist für jedes $\mathfrak{p} \in D(f)$ offenbar $\frac{a}{f^n} = 0$ in $R_{\mathfrak{p}}$. Also gibt es $h_{\mathfrak{p}} \in R \setminus \mathfrak{p}$, so dass $h_{\mathfrak{p}}a = 0$. Sei nun $\mathfrak{a} = \{r \in R \mid r \cdot a = 0\}$ der Annihilator von a. \mathfrak{a} ist ein Ideal und $\mathfrak{a} \nsubseteq \mathfrak{p}$ für alle $\mathfrak{p} \in D(f)$, da alle $h_{\mathfrak{p}} \in \mathfrak{a}$. Somit ist $V(\mathfrak{a}) \cap D(f) = \emptyset$, also $V(\mathfrak{a}) \subseteq V(f)$. Dann ist aber $f \in I(V(f)) \subseteq I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$. Also gibt es ein $n \in \mathbb{N}$, so dass $f^n \in \mathfrak{a}$, also ist $\frac{a}{f^n} = 0$ in R_f .

φ ist surjektiv

Sei $s \in \mathcal{O}_X(D(f))$. Für jedes $\mathfrak{p} \in D(f)$ gibt es eine Umgebung $U_{\mathfrak{p}}$ von \mathfrak{p} und $a, h \in R$, so dass für alle $\mathfrak{q} \in U_{\mathfrak{p}}$ gilt: $h \notin \mathfrak{q}$ und $s(\mathfrak{q}) = a/h$.

D(f) ist quasi-kompakt und die $U_{\mathfrak{p}}$ überdecken D(f), also muss es endlich viele $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ geben, so dass $U_i = U_{\mathfrak{p}_i}$ für $i \in \{1, \ldots, n\}$ eine Überdeckung von D(f) ist. Seien $a_1, \ldots, a_n, h_1, \ldots, h_n \in R$, so dass für alle $\mathfrak{q} \in U_i$ gilt: $h_i \notin \mathfrak{q}$ und $s(\mathfrak{q}) = a_i/h_i$. Ohne Einschränkung kann man $U_i = D(h_i)$ annehmen und erhält

$$V(f) \supseteq \operatorname{Spec} R \setminus \bigcup_{i=1}^{n} D(h_i) = \bigcap_{i=1}^{n} V(h_i)$$

13

Insbesondere gilt dann

$$f \in I(V(f)) \subseteq I\left(\bigcap_{i=1}^{n} V(h_i)\right) = I(V(h_1, \dots, h_n)) = \sqrt{(h_1, \dots, h_n)}$$

Somit gibt es ein $n \in \mathbb{N}$ und $b_i \in R$, so dass $f^n = \sum_{i=1}^n b_i h_i$. Wählt man nun $a = \sum_{i=1}^n b_i a_i$, dann gilt:

$$a_j f^m = \sum_{i=1}^n b_i a_j h_i \stackrel{\text{Einschub}}{=} \sum_{i=1}^n b_i a_i h_j = a h_j$$

und somit $a_j/h_j = a/f^m \Longrightarrow \varphi(a/f^m) = s$

Einschub

Ohne Einschränkung gilt $a_i h_j = a_j h_i$ in R Auf $U_i \cap U_j$ gilt $\frac{a_i}{h_i} = \frac{a_j}{h_j}$, also gibt es ein $y_{i,j} \in R$, so dass $y_{i,j} \notin \mathfrak{q}$ für jedes $\mathfrak{q} \in U_i \cup U_j$.

$$y_{i,j}a_ih_j = y_{i,j}a_jh_i$$

Wählt man nun

$$a'_i = a_i \prod_j y_{i,j} \text{ und } h'_i = h_i \prod_j y_{i,j}$$

dann ist offenbar $a'_i/h'_i = a_i/h_i$ und

$$a'_{i}h'_{j} = y_{i,j}a_{i}h_{j}\prod_{k\neq j}y_{i,k}\prod_{k}y_{j,k} = y_{i,j}a_{j}h_{i}\prod_{k\neq j}y_{i,k}\prod_{k}y_{j,k} = a'_{j}h'_{i}$$

Beispiele 1.2.13

Sei R ein diskreter Bewertungsring. Dann gilt:

- (a) Spec $R = \{(0), \mathfrak{m}\}\$
- (b) offene Mengen sind: \varnothing , Spec R, $\{(0)\}$
- (c) $\mathcal{O}_X(\{(0)\}) = R_{(0)} = Quot(R) =: K$
- (d) $\{(0)\}=D(f)$ für $0 \neq f \notin \mathfrak{m}$
- (e) $\mathcal{O}_{\operatorname{Spec} R}\left(\operatorname{Spec} R\right) = \mathcal{O}_{\operatorname{Spec} R,\mathfrak{m}} = R_{\mathfrak{m}} = R$
- (f) $\mathcal{O}_{\text{Spec } R}(\{(0)\}) = \mathcal{O}_{\text{Spec } R,(0)} = K$

§3 Die Kategorie der Schemata

Definition 1.3.1

- (a) Ein geringter Raum ist ein Paar (X, \mathcal{O}_X) mit einem topologischen Raum X und einer Garbe von Ringen \mathcal{O}_X auf X.
- (b) Ein geringter Raum (X, \mathcal{O}_X) heißt lokal geringt, wenn $\mathcal{O}_{X,x}$ für jedes $x \in X$ ein lokaler Ring ist.

Beispiele 1.3.2

Für $X = \operatorname{Spec} R$ und $\mathcal{O}_X = \mathcal{O}_{\operatorname{Spec} R}$ die Strukturgarbe aus 1.2.11 ist $(\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$ lokal geringter Raum.

Definition 1.3.3

(a) Ein Morphismus zwischen lokal geringten Räumen (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) ist ein Paar (f, f^{\sharp}) , wobei $f: X \to Y$ eine stetige Abbildung und $f^{\sharp}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ ein Homomorphismus von Garben auf X

(b) Sind (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) lokal geringte Räume, so ist ein Morphismus $(f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ ein Morphismus von lokal geringten Räumen, wenn für jedes $x \in X$ gilt: Die induzierte Abbildung $f_x^{\sharp} : \mathcal{O}_{Y, f(x)} \to \mathcal{O}_{X, x}$ ist ein lokaler Homomorphismus (das heißt $f_x^{\sharp} (\mathfrak{m}_{f(x)}) \subseteq \mathfrak{m}_x$).

Beispiele 1.3.4

Sei R ein lokaler nullteilerfreier Ring, K = Quot(R) und $i: R \hookrightarrow K$ sei kein lokaler Homomorphismus. Aber i induziert einen Morphismus lokal geringter Räume zwischen $X = \operatorname{Spec} K$ und $Y = \operatorname{Spec} R$ durch $f: X \to Y, (0) \mapsto (0)$ und $f^{\sharp}: \mathcal{O}_{\operatorname{Spec} R} \to f_*\mathcal{O}_{\operatorname{Spec} K}$ gegeben durch i. Es gilt für alle offenen $U \neq \emptyset$: $f_*\mathcal{O}_{\operatorname{Spec} K}(U) = \mathcal{O}_{\operatorname{Spec} K}(f^{-1}(U)) = \mathcal{O}_{\operatorname{Spec} K}((0)) = K$ und $\mathcal{O}_{\operatorname{Spec} R}(U) = R'$ für $R \subseteq R' \subseteq K$

Proposition 1.3.5

Die Kategorie der affinen Schemata ist äquivalent zur Kategorie der Ringe.

Beweis Für Objekte ist dies klar, denn $\mathcal{O}_{\operatorname{Spec} R}(\operatorname{Spec} R) = R$.

Ist (f, f^{\sharp}) : (Spec $R, \mathcal{O}_{\operatorname{Spec} R}) \to (\operatorname{Spec} R', \mathcal{O}_{\operatorname{Spec} R'})$ ein Morphismus affiner Schemata, so ist f^{\sharp} : $R' = \mathcal{O}_{\operatorname{Spec} R'}$ (Spec R') $\to f_*\mathcal{O}_{\operatorname{Spec} R}$ (Spec R') $= \mathcal{O}_{\operatorname{Spec} R}$ $(f^{-1}(\operatorname{Spec} R)) = R$ ein Ringhomomorphismus $R' \to R$.

Sei umgekehrt $\alpha: R' \to R$ ein Ringhomomorphismus. Dann wird durch α induziert:

- $f_{\alpha} : \operatorname{Spec} R' \to R, \mathfrak{p} \mapsto \alpha^{-1}(\mathfrak{p})$ (stetig)
- $f_{\alpha}^{\sharp}: \mathcal{O}_{\operatorname{Spec} R} \to (f_{\alpha})_{*}\mathcal{O}_{\operatorname{Spec} R'}$ induziert durch $\frac{a}{b} \mapsto \frac{\alpha(a)}{\alpha(b)}, a, b \in R, b \notin \dots$

Auf den Halmen induziert f_{α}^{\sharp} die Abbildung $\alpha' := (f_{\alpha}^{\sharp})_{\mathfrak{p}'} : R_{f^{-1}(\mathfrak{p})} = \mathcal{O}_{\operatorname{Spec} R, f_{\alpha}(\mathfrak{p}')} \to \mathcal{O}_{\operatorname{Spec} R', \mathfrak{p}'} = R'_{\mathfrak{p}'}$ Es ist $\alpha'(\alpha'^{-1}(\mathfrak{p}')) \subseteq \mathfrak{p}'$

Bemerkung 1.3.6

Ist (X, \mathcal{O}_X) Schema und $U \subseteq X$ offen, so ist $(U, \mathcal{O}_X \upharpoonright U)$ auch ein Schema, offenes Unterschema genannt.

Beweis Sei $(U_i)_{i\in I}$ Überdeckung von X durch affine Schemata. Dann ist $(U\cap U_i)_{i\in I}$ offene Überdeckung von U. (Achtung: i. A. ist $(U\cap U_i)$ kein affines Schema) Aber $(U\cap U_i)$ ist Vereinigung von $D(f_{ij})$ für geeignete $f_{ij} \in R_i$. Es gilt $D(f_{ij})$ ist affines Schema und $\mathcal{O}_{\operatorname{Spec} R} \upharpoonright D(f_{ij}) \cong \mathcal{O}_{\operatorname{Spec} R_{f_{i,i}}}$

Bemerkung 1.3.7

Aus zwei Schemata kann man durch Verkleben längs isomorpher Unterschemata ein neues Schema erhalten. Genauer: Seien X_1, X_2 Schemata $\varnothing \neq U_i \subseteq X_i$ offene Unterschemata und $\varphi: (U_1, \mathcal{O}_{X_1} \upharpoonright U_1) \to (U_2, \mathcal{O}_{X_2} \upharpoonright U_2)$ ein Isomorphismus von Schemata. Sei \sim die Äquivalenzrelation, die durch $x \sim \varphi(x)$ erzeugt wird. Dann ist $X = (U_1 \dot{\cup} U_2)_{\sim}$ topologischer Raum versehen mit der Quotiententopologie. Für $U \subseteq X$ offen sei $\mathcal{O}_X(U) := \left\{ (s_1, s_2) \in \mathcal{O}_X(U^1) \times \mathcal{O}_X(U^2) | s_1 \upharpoonright U^1 \cap \varphi^{-1}(U^2) = \varphi_{\varphi(U^1) \cap U^2}^{\sharp}(s_2 \upharpoonright \varphi(U^1) \cap U^2) \right\}$ wobei $U^1 = (U \cap X_1), U^2 = (U \cap X_2)$.

Beispiele 1.3.8

Sei $X_1 = X_2 = \mathbb{A}^1_k := \operatorname{Spec} k[T]$ und $U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} = \operatorname{Spec} k[T] \setminus \{(T)\}$ sowie $\varphi_1 : U_1 \to U_2, \varphi_1 = \operatorname{id} \operatorname{und} \varphi_1 : U_1 \to U_2, \varphi_2(T) = \frac{1}{T}$.

BILDER EINFÜGEN WENN DIE JEMAND MITGESCHRIEBEN HAT

Proposition 1.3.9

Sei (X, \mathcal{O}_X) ein Schema und R ein Ring. Dann ist die Zuordnung $Mor(X, \operatorname{Spec} R) \to Hom(R, \mathcal{O}_X(X)), (\varphi, \varphi^{\sharp}) \mapsto \varphi^{\sharp}_{\operatorname{Spec} R}$ bijektiv.

Beweis Definiere Umkehrabbildung: Sei $\alpha: R \to \mathcal{O}_X(X)$ ein Ringhomomorphismus. Für $x \in X$ sei $\mathcal{O}_{X,x}$ der Halm und \mathfrak{m}_x das maximale Ideal in $\mathcal{O}_{X,x}$. Weiter sei $\alpha_x: R \xrightarrow{\alpha} \mathcal{O}_X(X) \to \mathcal{O}_{X,x}$. Setze $\varphi_{\alpha}(x) := \alpha_x^{-1}(\mathfrak{m}_x)$. Es gilt $\varphi_{\alpha}: X \to \operatorname{Spec} R$ ist stetig (Übung). Der Garbenhomomorphismus $\varphi_{\alpha}^{\sharp}: \mathcal{O}_{\operatorname{Spec} R} \to \mathcal{O}_{X,x}$ wird definiert durch $\frac{a}{b} \mapsto \frac{\alpha(a)}{\alpha(b)}$.

Definition 1.3.10

Sei S ein Schema.

- (a) Ein S-Schema ist ein Schema (X, \mathcal{O}_X) zusammen mit einem Morphismus $\varphi : X \to S$.
- (b) Ein Morphismus von S-Schemata (X,φ) und (Y,ψ) ist ein Schema-Morphismus $f:X\to Y$ mit $\varphi=\psi\circ f.$

Proposition 1.3.11

Sei k algebraisch abgeschlossener Körper. Die Zuordnung $V \to \operatorname{Spec} k[V]$ (V affine Varietät über k) induziert einen volltreuen Funktor t von der Kategorie der k-Varietäten in die Kategorie der k-Schemata.

Beweis $V \mapsto k[V]$ ist Äquivalenz von Kategorien (Algebraische Geometrie I Satz???). $k[V] \mapsto$ Spec k[V] ist Äquivalenz von Kategorien. Das heißt, wie haben eine Äquivalenz von Kategorien k-Algebren \to affine k-Varietäten \to affine Schemata. Die Behauptung folgt durch Verkleben.

§4 Projektive Schemata

Definition + Bemerkung 1.4.1

Sei $S = \bigoplus_{d>0} S_d$ graduierter Ring, $S^+ := \bigoplus_{d>0} S_d$

- (a) $\operatorname{Proj} S := \{ \mathfrak{p} \subseteq \operatorname{Proj} S : \mathfrak{p} \text{ homogenes Primideal }, S^+ \not\subseteq \mathfrak{p} \} \text{ heißt homogenes Spektrum von } S.$
- (b) Für ein homogenes Ideal \mathfrak{a} in S sei $V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Proj} S : \mathfrak{a} \subseteq \mathfrak{p} \}$. Die $V(\mathfrak{a})$ bilden die abgeschlossenen Teilmengen einer Topologie auf Proj S.
- (c) Für homogenes $f \in S$ sei $D_+(f) := \{ \mathfrak{p} \in \operatorname{Proj} S : f \in \mathfrak{p} \} = \operatorname{Proj} S \setminus V(f)$. Die $D_+(f)$ bilden eine Basis der Zariski-Topologie auf Proj S.
- (d) Für $\mathfrak{p} \in \operatorname{Proj} S$ sei $S_{(\mathfrak{p})} := \left\{ \frac{a}{b} \in S_{\mathfrak{p}} : a, b \text{ homogen vom gleichen Grad} \right\}$. $S_{(\mathfrak{p})}$ ist lokaler Ring mit maximalem Ideal $\mathfrak{p}S_{(\mathfrak{p})} := \left\{ \frac{a}{b} \in S_{(\mathfrak{p})} : a \in \mathfrak{p} \right\}$
- (e) Für $U \subseteq \operatorname{Proj} S$ offen sei

$$\mathcal{O}_{\operatorname{Proj} S}\left(U\right) = \left\{s \colon U \to \bigcup_{\mathfrak{p} \in U} S_{\mathfrak{p}} \;\middle|\; \text{Für alle } \mathfrak{p} \in U \text{ ist } s\left(\mathfrak{p}\right) \in S_{\left(\mathfrak{p}\right)}\right.$$

und es gibt eine Umgebung $U_{(\mathfrak{p})}$ von \mathfrak{p} sowie $a,b\in S$ homogen vom gleichen Grad, so dass für alle $\mathfrak{q}\in U_{(\mathfrak{p})}\colon b\notin \mathfrak{q}$

$$\text{und } s\left(\mathfrak{q}\right) = \frac{a}{b}$$

(f) $(\operatorname{Proj} S, \mathcal{O}_{\operatorname{Proj} S})$ ist lokal geringter Raum mit $\mathcal{O}_{\operatorname{Proj} S, \mathfrak{p}} = S_{(\mathfrak{p})}$

(g)

$$(\operatorname{Proj} S, \mathcal{O}_{\operatorname{Proj} S}) \text{ ist Schema, wobei } \operatorname{Proj} S = \left\{ \bigcup_{f \in S, f \text{ homogen}}^{\boldsymbol{\cdot}} D_+(f) \right\} \text{ und } D_+(f) \cong \operatorname{Proj} S_{(f)}.$$

Beweis Sei S graduierter Ring. Proj $S = \{\mathfrak{p} \text{ homogenes Primideal}, S_+ \not\subset \mathfrak{p}\}$ und $S_{(\mathfrak{p})} = \{\frac{a}{b} : a, b \text{ homogen vom gleichen Grad}, b \notin \mathfrak{p}\}$ sowie $S_{(f)} = \{\frac{a}{f^n} : a \text{ homogen vom Grad } n \cdot deg(f)\}$

(g) $(\operatorname{Proj} S, \mathcal{O}_{\operatorname{Proj} S})$ ist Schema. Genauer $D_+(f) \cong \operatorname{Spec} \mathfrak{p} S_{(f)}$.

Definition + Bemerkung 1.4.2

- (a) Ein Schema (X, \mathcal{O}_X) heißt projektiv, wenn es einen graduierten Ring S gibt, so dass $(X, \mathcal{O}_X) \cong (\operatorname{Proj} S, \mathcal{O}_{\operatorname{Proj} S})$ gilt.
- (b) Ist R ein Ring, so heißt $\mathbb{P}^n_R = \operatorname{Proj} R[X_0, \dots X_n]$ der n-dimensionale projektive Raum über R.
- (c) Sei k ein Körper und $X = \mathbb{P}^1_k$. Dann ist $\mathcal{O}_X(X) = k$.

Beweis (c)

$$X = \bigcup_{i=1}^{n} D_{+}(X_i), \mathcal{O}_X(X_i) = k\left[\frac{X_0}{X_i}, \dots, \frac{X_{i-1}}{X_i}, \frac{X_{i+1}}{X_i}, \dots, \frac{X_n}{X_i}\right] \Rightarrow \mathcal{O}_X(X) = \bigcap_{i=1}^{n} \mathcal{O}_X(X_i) = k \quad \Box$$

Bemerkung 1.4.3

Sei k algebraisch abgeschlossener Körper, V/k eine projektive Varietät und S = k[V] ein homogener Koordinatenring von V. Dann ist $t(V) \cong \operatorname{Proj} S$ (t wie in 1.3.11).

Beweis Für homogenes $f \in S_+$ ist $D_+(f) \cong \operatorname{Spec} S_{(f)}$. Außerdem wissen wir aus der Algebraischen Geometrie 1, dass $\mathcal{O}_V(D(f)) = S_{(f)} \Rightarrow D_+(f) = t(D(f))$. Die Behauptung folgt durch Verkleben. \square

Definition + Bemerkung 1.4.4

Sei X ein Schema und $x \in X$:

- (a) $\kappa(x) := \mathcal{O}_{X,x}/m_x$ heißt Restklassenkörper von X in x.
- (b) Sei $f: X \to Y$ ein Morphismus von Schemata und y = f(x), dann induziert f einen Körperhomomorphismus $\kappa(y) \hookrightarrow \kappa(x)$.
- (c) Sei k ein Körper. Genau dann gibt es einen Morphismus $\iota : \operatorname{Spec} k \to X$ mit $\iota(0) = x$, wenn $\kappa(x)$ isomorph zu einem Teilkörper von k ist.
- (d) x (beziehungsweise genauer ι) heißt k-wertiger Punkt von X.

Beweis (b) f induziert $f_x^{\sharp}: \mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ mit $f_x^{\sharp}(m_y) \subseteq m_x$. Die Behauptung folgt aus dem Homomorphiesatz.

(c) Sei $U = \operatorname{Spec} R$ affine Umgebung von x: ι ist äquivalent zu dem Ringhomomorphismus $\alpha : R \to k$ mit $\alpha(m_x) = (0) \Leftrightarrow \alpha$ faktorisiert über $\kappa(x)$.

§5 Faserprodukte

Sei S ein Schema und X, Y S-Schemata. Dann heißt das Produkt über X und Y in der Kategorie der S-Schemata Faserprodukt von X und Y, geschrieben $X \times_S Y$.

Bemerkung 1.5.1

Das Faserprodukt $X \times_S Y$ ist ein S-Schema zusammen mit S-Morphismen $pr_X : X \times_S Y \to X$ und $pr_Y : X \times_S Y \to Y$, so dass für jedes S-Schema Z und alle S-Schemamorphismen $f : Z \to X, g : Z \to Y$ genau ein S-Schemamorphismus $h : Z \to X \times_S Y$ existiert mit $f = pr_X \circ h, g = pr_Y \circ h$.

Satz 1

Das Faserprodukt $X \times_S Y$ existiert für alle S-Schemata X, Y.

Beweis Seien zunächst X, Y und Z affin: $X = \operatorname{Spec} A, Y = \operatorname{Spec} B$ und $S = \operatorname{Spec} R$. Nach Voraussetzung sind A und B R-Algebran. Die UAE des Tensorprodukts $A \otimes_R B$ besagt: $\operatorname{Spec}(A \otimes_R B)$ erfüllt die UAE des Faserprodukts für jedes affine Schema Z.

Noch zu zeigen: die UAE ist auch für beliebige Z erfüllt. Nach Proposition 1.3.9 entspricht $f: Z \to X$ einem R-Algebrenhomomorphismus $\varphi_1: A \to \mathcal{O}_Z(Z)$, ebenso gehört zu g ein $\varphi_2: B \to \mathcal{O}_Z(Z)$. φ_1 und φ_2 induzieren einen R-Algebrenhomomorphismus $\varphi: A \otimes_R B \to \mathcal{O}_Z(Z)$. Nach Proposition 1.3.9 induziert φ einen Schemamorphismus $h: Z \to \operatorname{Spec}(A \otimes_R B)$.

Für den allgemeinen Fall sei S_i eine affine Überdeckung von S

$$S = \bigcup S_i$$
, mit $S_i = \operatorname{Spec} R_i$

Seien $X_i = p_X^{-1}(S_i), Y_i = p_Y^{-1}$ auch affin überdeckt:

$$X_i = \bigcup X_{ij}$$
, mit $X_{ij} = \operatorname{Spec} A_{ij}$
 $Y_i = \bigcup Y_{ik}$, mit $Y_{ij} = \operatorname{Spec} B_{ik}$

Nach dem affinen Fall oben existieren die Faserprodukte $X_{ij} \times_{S_i} Y_{ik}$ für alle i, j, k.

Behauptung (1)

Sei T ein Schema, V, W T-Schemata, (V_l) offene Überdeckung von V, dann gilt:

Existiert $V_l \times_T W$ für jedes l, so existiert auch $V \times_T W$

Wende diese Behauptung an auf

$$T = S_i, \ V = X_i, \ V_l = X_{il}, \ W = Y_{ik}$$

womit $X_i \times_{S_i} Y_{ik}$ für alle i, k existiert. Damit lässt sich die Behauptung auf

$$T = S_i, \ V_l = Y_{il}, \ V = Y_i, \ W = X_i$$

anwenden. Dies zeigt die Existenz von $X_i \times_{S_i} Y_i$ für alle i.

Behauptung (2)

Für jedes i gilt

$$X_i \times_{S_i} Y_i \cong X_i \times_S Y$$

Daraus folgt der Satz aus Behauptung (1) mit

$$T = S, V = X, V_l = X_l, W = Y$$

Beweis (Behauptung (1)) Idee: Verklebe die $V_l \times_T W!$

Für Indizes l, m seien

$$U_{lm} := pr_l^{-1}(V_l \cap V_m) \subseteq V_l \times_T W$$
 und
$$U_{ml} := pr_m^{-1}(V_l \cap V_m) \subseteq V_m \times_T W$$

Es gilt: $U_{lm} = (V_l \cap V_m) \times_T W$, weil in der Situation

gilt:

$$h(z) \subseteq pr_l^{-1}(f(z)) \subseteq pr_l^{-1}(V_l \cap V_m) = U_{lm}$$

Also ist U_{lm} Faserprodukt von $V_l \cap V_m$ und W. Genauso: U_{ml} ist Faserprodukt von $V_l \cap V_m$ und W. Die UAE liefert einen eindeutigen Isomorphismus $U_{lm} \to U_{ml}$. Verklebe die $V_l \times_T W$ längs der U_{lm} zu einem Schema \tilde{V} .

Noch zu zeigen: \tilde{V} erfüllt die UAE von $V \times_T W$. Seien Z ein T-Schema, $f: Z \to V$ und $g: Z \to W$ T-Morphismen. Sei $Z_l := f^{-1}(V_l)$.

Nach Voraussetzung existiert für jedes l genau ein $h_l: Z_l \to V_l \times_T W \hookrightarrow \tilde{V}$, mit ...

Die h_l bestimmen einen eindeutigen Morphismus $h: Z \to \tilde{V}$.

Beweis (Behauptung (2)) Der Beweis war Übungsaufgabe Zu zeigen:

 $X_i \times_{S_i} Y_i$ ist ein Faserprodukt von X_i und Y über S_i .

Sei Z ein S-Schema mit S-Morphismen $f:Z\to X_i$ und $g:Z\to Y.$ Weil

kommutiert, gilt:

$$p_i(X_i) \subseteq S_i \Rightarrow (p \circ g)(Y) \subseteq S_i \Rightarrow \text{Bild } g \subseteq Y_i$$

Damit faktorisiert das eindeutige h der UAE vom Faserprodukt $X_i \times_{S_i} Y_i$ f und g. Also ist $X_i \times_{S_i} Y_i$ Faserprodukt von X_i und Y über S.

Bemerkung 1.5.2

Seien X, Y S-Schemata. Dann ist die Abbildung

$$F: \begin{array}{ccc} X \times_S Y & \longrightarrow & \{(x,y) \in X \times Y : p_X(x) = p_Y(y)\} \\ z & \longmapsto & (pr_X(z), pr_Y(z)) \end{array}$$

stetig und surjektiv.

Beweis Stetig: Klar.

surjektiv:

Seien $x \in X, y \in Y$ mit $p_X(x) = p_Y(y) =: s \in S$. Seien weiter $\kappa := \kappa(s), \kappa(x), \kappa(y)$ die Restklassenkörper. Dann ist $\kappa \subseteq \kappa(x), \kappa \subseteq \kappa(y)$.

Sei K/k eine Körpererweiterung mit $\kappa(x) \subseteq K$, $\kappa(y) \subseteq K$ und $Z := \operatorname{Spec} K$. Nach 1.4.4 gibt es einen Morphismen $f: Z \to X$ und $g: Z \to Y$ mit f(0) = x, g(0) = y. f und g sind S-Morphismen. Also gibt es ein $h: Z \to X \times_S Y$ mit $pr_X(h(0)) = x$ und $pr_Y(h(0)) = y$. Daraus folgt: F(h(0)) = (x, y). \square

Definition + Bemerkung 1.5.3

- (a) Für $y \in Y$ heißt $X_y := f^{-1}(y) = X \times_Y \operatorname{Spec}(\kappa(y))$ Faser von f über y.
- (b) $pr_X: X_y \to X$ ist injektiv, das heißt

$$X_y \to \{x \in X : f(x) = y\}$$

ist bijektiv.

(c) Ist y ein abgeschlossener Punkt, so ist X_y abgeschlossen in X.

Beweis (c) Klar.

(b) Für $z_1, z_2 \in X_y$ mit $pr_X(z_1) = pr_X(z_2) =: x$ gilt f(x) = y. Seien $Z := \operatorname{Spec} \kappa(x)$ und $\varphi : Z \to X$ mit $\varphi(0) = x$. Sei weiter $\psi : Z \to \operatorname{Spec} \kappa(y)$ der von f induzierte Morphismus.

Nach 1.4.4 (b) gibt es Morphismen $h_i: Z \to X_y$ mit $h_i(0) = z_i$ für $i \in \{1, 2\}$.

Es ist $pr_X \circ h_i = \varphi$, woraus mit der UAE des Faserprodukts X_y folgt: $h_1 = h_2$, also $z_1 = z_2$. \square

Beispiele

Sei

$$f: \begin{array}{ccc} \mathbb{A}^1_k & \longrightarrow & \mathbb{A}^1_k \\ x & \longmapsto & x^2 \end{array}$$

Dann ist $f^{-1}(0) = \operatorname{Spec}(k[X] \otimes_{k[X]} k) \cong \operatorname{Spec}(k[X]/(X^2)).$

Definition + Bemerkung 1.5.4

Sei $g: S' \to S$ ein Morphismus.

(a) Ist $f: X \to S$ ein S-Schema, so ist $X' := X \times_S S'$ ein S'-Schema mit $f': X' \to S'$ und $f' = pr_{S'}$.

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad f \downarrow$$

$$S' \xrightarrow{g} S$$

X' heißt das durch $Basiswechsel\ g$ aus X hervorgegangene Schema.

- (b) Basiswechsel ist ein kovarianter Funktor $S Sch \rightarrow S Sch$.
- (c) Basiswechsel ist transitiv:

$$X'' = (X \times_S S') \times_{S'} S'' \cong X \times_S S''$$

Definition 1.5.5

Ein Schema (X, \mathcal{O}_X) heißt lokal noethersch, wenn es eine offene Überdeckung von X durch affine Schemata $U_i = \operatorname{Spec} R_i$ gibt, sodass jedes R_i noetherscher Ring ist.

 (X, \mathcal{O}_X) heißt noethersch, wenn es eine endliche solche Überdeckung gibt.

Proposition 1.5.6

- (a) Ein affines Schema $X = \operatorname{Spec} R$ ist genau dann noethersch, wenn R noethersch ist.
- (b) Ein Schema (X, \mathcal{O}_X) ist genau dann lokal noethersch, wenn für jedes offene affine $U = \operatorname{Spec} R$ gilt: R ist noethersch.

Beweis (a) " \Leftarrow " Klar. " \Rightarrow " folgt aus (b) " \Rightarrow ".

(b) "⇐" Klar. "⇒":

Sei $U = \operatorname{Spec} R \subseteq X$ offen und $(U_i)_{i \in \mathcal{I}}$ eine offene Überdeckung von X mit $U_i = \operatorname{Spec} R_i$, R_i noethersch. Dann folgt: $U_i \cap U$ ist offen in U_i , also $U_i \cap U = \bigcup D(f_{ij})$ für geeignete $f_{ij} \in R_i$. Nach Proposition 1.2.12 (b) ist $D(f_{ij}) = \operatorname{Spec} R_{ij}$ mit $R_{ij} = (R_i)_{f_{ij}}$. Damit sind die R_{ij} auch noethersch. $D(f_{ij})$ ist auch offen in U, wird also überdeckt von $D(g_{ijk})$ mit $g_{ijk} \in R$. $D(f_{ij}) \hookrightarrow U$ induziert, vermöge Einschränkungen, einen Schemamorphismus $\operatorname{Spec} R \to \operatorname{Spec} R_{ij}$ und damit auch einen Ringhomomorphismus $\varphi_{ij} : R \to R_{ij}$. Es gilt $R_{g_{ijk}} \cong (R_{ij})_{\varphi(g_{ijk})}$, weil die Einschränkung hier die Identität ist. $(R_{ij})_{\varphi(g_{ijk})}$ ist noethersch, also auch $R_{g_{ijk}}$.

Dies liefert eine Überdeckung $U = \bigcup_{i \in \mathcal{I}} D(h_i)$, wobei für jedes $i \in \mathcal{I}$ gilt: R_{h_i} ist noethersch. Wegen $\bigcup D(h_i) = U$, gilt $\sum_{i \in \mathcal{I}} (h_i) = R$ und damit

$$1 = \sum_{i=1}^{n} a_i h_i, \text{ mit } a_i \in R$$

Sei nun $I_1 \subseteq I_2 \subseteq \ldots$ eine aufsteigende Kette von Idealen in R. Für $i = 1, \ldots, n$ wird

$$\varphi_i(I_1) \cdot R_{h_i} \subseteq \varphi_i(I_2) \cdot R_{h_i} \subseteq \dots$$

stationär (wobei $\varphi_i: R \to R_{h_i}$ der natürliche Homomorphismus $a \mapsto \frac{a}{1}$ sei). Es genügt also zu zeigen:

Behauptung

Für jedes Ideal I in R gilt:

$$I = \bigcap_{i=1}^{n} \varphi_i^{-1}(\varphi_i(I) \cdot R_{h_i})$$

Beweis (der Behauptung) "⊆" Klar.

"⊇" Sei $b\in \bigcap_{i=1}^n \varphi_i^{-1}(\varphi_i(I)\cdot R_{h_i})$, dann gibt es für jedes i ein $b_i\in I$ und $k_i\in \mathbb{N}$ mit

$$\frac{b}{1} = \frac{b_i}{h_i^{k_i}} \text{ in } R_{h_i}$$

Also existiert $m_i \geq 0$ mit $h_i^{m_i}(bh_i^{k_i} - b_i) = 0$ in R

$$\Rightarrow h_i^{k_i + m_i} b = h_i^{m_i} b_i \in I$$

Die $h_i^{k_i+m_i}$ erzeugen R, denn: Sei $\mathfrak{J}=(h_1^{k_1+m_1},\ldots,h_n^{k_n+m_n})$, dann ist nach Definition der h_i $\sqrt{\mathfrak{J}}=R$, also $\mathfrak{J}=R$. \Rightarrow es existieren a_i , sodass $\sum a_i h_i^{k_i+m_i}=1$. $\Rightarrow b \in I$.