ЛАБОРАТОРНА РОБОТА №1

Тема: Вибір форми і розрахунок поперечного перерізу гірничої виробки

- **Мета:** 1. Закріплення теоретичних знань по темі: «Форми та розміри поперечного перерізу гірничих виробок».
 - 2. Засвоєння навиків визначення розмірів поперечного перерізу гірничої виробки для конкретних умов.
 - 3. Виховання професійної самостійності.

Матеріальне забезпечення: калькулятор, схеми, плакати.

Література: 1. Правила безпеки у вугільних шахтах. Київ, 2010

- 2. Унифицированные типовые сечения горных выработок. Т.1 К.: Будівельник, 1971
- 3. Шахтное и подземное строительство: Учеб. Для вузов 2-е изд., перераб. и доп.: В 2т. /
- Б.А.Картозия, Б.И.Федунец, М.Н.Шуплик и др. М.: Изд-во Академии горных наук, 2001

Зміст роботи

- 1. Відповідно варіанту вибрати вихідні дані (див. табл. 1.1).
- 2. Визначити ширину виробки.
- 3. Зробити вибір типового перерізу гірничої виробки (див. додаток А).
- 4. Прийняту типову площу перерізу виробки перевірити по швидкості руху повітря.
- 5. Відповісти на контрольні питання (див. табл. 1.2).

Основні теоретичні відомості

Форму поперечного перерізу виробки вибирають залежно від властивостей гірських порід, гірського тиску, типу та конструкції кріплення, призначення та строку служби виробки, а також способу її виконання. При виборі форми поперечного перерізу гірничої виробки необхідно керуватися такими основними техніко-економічними вимогами: висока стійкість форми під час дії на неї гірського тиску, максимум корисної площі перерізу, економічність і зручність в експлуатації. В залежності від вказаних факторів гірничі виробки мають різні форми поперечного перерізу (рис. 1.1).

Форма поперечного перерізу (рис. 1.1) може бути прямокутна (a), трапецієвидна (δ), полігональна (ϵ), несиметрична (ϵ , δ), склепінчаста з прямими та похилими боками (ϵ , δ), склепінчаста з оберненим склепінням (ϵ), кругла (ϵ), еліптична (ϵ) та ін.

Рис. 1.1 – Форми поперечного перерізу гірничих виробок

Прямокутна і полігональна форми застосовуються при гірському тиску тільки з боку покрівлі.

Трапецієвидна форма застосовується при незначному вертикальному і переважаючому бічному тиску гірських порід для виробок з незначним терміном служби.

Несиметричні форми дозволяють якнайкраще вписатися у вугільний пласт, проводити виробки без підривання або з мінімальним підриванням бокових порід, а також забезпечити велику їх стійкість.

Склепінчаста форма раціональна при значному тиску з боку покрівлі. Така форма характерна для виробок приствольного двору і пройдених в нестійких породах з великим терміном служби.

Підковоподібну форму поперечного перерізу раціонально застосовувати за наявності значного гірського тиску з покрівлі і з боків. Найчастіше застосовується з тюбінгом і блоковим кріпленням в капітальних виробках, які проходяться в слабких породах.

При всебічному тиску бокових порід доцільною стає підковоподібна форма із зворотним склепінням або ж кругла форма; остання найбільш раціональна при рівномірному тиску з усіх боків, наприклад, у вертикальних виробках. При неоднаковому усебічному, але симетричному тиску, доцільним стає еліптичний переріз з великою віссю у напрямі більшого тиску.

Значною мірою форма поперечного перерізу залежить від матеріалу кріплення. Так, при металевому або анкерному кріпленні форма поперечного перерізу може бути яка завгодно, при збірному залізобетонному кріпленні - прямокутна, полігональна, трапецієвидна, несиметрична, при бетонному або кам'яному - арочна із зворотним склепінням, еліптична, кругла. У разі застосування в якості кріпильного матеріалу дерева кріплення криволінійного контуру зробити складно, тому раціональною формою стає трапецієвидна - за відсутності здимання і замкнутий чотирикутник - за наявності тиску порід з боку підошви.

На вугільних шахтах в основному застосовується трапецієвидна і склепінчаста форми перерізу виробок. Проте, як показує вітчизняний і зарубіжний досвід, зі збільшенням глибини розробки сфера можливого застосування трапецієвидної або прямокутної форми скорочується і на великих глибинах раціональнішої, а частіше за все і єдиною, є склепінчаста або кільцева форма виробок.

Корисна площа поперечного перерізу виробки залежить від її форми (рис. 1.2). У виробках прямокутної форми вся площа корисна (по габаритних розмірах устаткування або транспортних засобів), а всі інші форми хоча і забезпечують стійкість, але призводять до завищення площі перерізу. Наприклад, у виробках круглої форми це перевищення досягає 30%.

Рис. 1.2 – Форми поперечного перерізу гірничих виробок в порівнянні з корисною площею поперечного перерізу: а – прямокутна; б – трапецієвидна; в – склепінчаста, г – підковоподібна; д – підковоподібна із зворотним склепінням; е – кругла. Пунктиром зазначено мінімально необхідний прямокутний переріз, стрілками - напрям дії гірського тиску

Розміри поперечного перерізу гірничої виробки залежать від її призначення й визначаються за габаритами рухомого складу та розміщуваного у виробці обладнання, забезпеченням пропуску потрібної кількості повітря, зазорами між виступаючими частинами рухомого складу та кріпленням, передбаченими Правилами безпеки, а також кількості прокладених у виробці рейкових колій і способом пересування людей.

Розміри поперечного перерізу виробок розрізняють *у світлу, у чорні* та *у проходці*.

Розміри *у світлу* визначають у відповідності з Правилами безпеки, а розміри *у проходці* складаються з розмірів в просвіті, товщини кріплення, міжрамних огороджень і переборів порід при проведенні виробки. Перебори порід при проведенні виробок складають за СНіП 5-7% проектної площі їх поперечного перерізу.

Площа поперечного перерізу у світлу — це площа по внутрішньому контуру встановленого у виробці кріплення та верху баластового шару; **у чорні** — по зовнішньому контуру кріплення та підошві виробки (з урахуванням товщини кріплення та баластового шару). Висоту виробки у чорні визначають додаванням висоти в просвіті (від головки рейок до кріплення), товщини кріплення і розмірів рейкової колії. Товщина баластного шару під шпалами повинна бути не менше 100 мм, товщина шпал 130-160 мм. Площа перерізу **у проходці** - площа по контуру порід, яку приймають на 5-7% більше площі у чорні.

При проектуванні поперечного перерізу виробки в просвіті необхідно враховувати запас на можливі осадки порід, залежний від типу виробки, умов її підтримки і потужності пласта (m). Наприклад, величина запасу на осідання по висоті у відкаточних штреках і інших виробках, що знаходяться в зоні впливу очисних робіт, приймається рівною (0,5...0,6)m, у виробках, що проводяться широким забоєм, - (0,4...0,5)m.

Мінімальна висота виробки вимірюється від рівня голівки рейок до внутрішньої поверхні кріплення і має дорівнювати 1,9 м в головних відкаточних та вентиляційних виробках; 1,8 м - в дільничних підготовчих виробках.

Мінімальна ширина виробки складається з габаритних розмірів розміщуваного в ній устаткування або рухомого складу з урахуванням зазорів, передбачених ПБ: між кріпленням і елементами устаткування або рухомого складу, що найбільш виступають, при бетонному кріпленні - 0,2 м, при рамному кріпленні - 0,25 м; між частинами зустрічних складів, що виступають, - 0,2 м; між кріпленням та конвеєром — 0,4 м; між конвеєром та рухомим складом — 0,4 м; прохід для людей - 0,7 м на рівні 1,8 м від підошви виробки, а в місцях посадки людей в потяги - 1м.

На основі встановлених мінімальної ширини і висоти виробки розраховують площу її поперечного перерізу в просвіті при первинній прямокутній формі. Потім виробці надають форму, що відповідає гірничо-геологічним умовам, "вписують" в неї прямокутний переріз, не порушуючи прийнятих розмірів, повторно розраховують площу поперечного перерізу в просвіті і підбирають найближчий більший типовий переріз.

Згідно з Правилами безпеки мінімальні площі поперечних перерізів гірничих виробок у просвіті повинні складати: для головних відкаточних і вентиляційних виробок, людських хідників для механізованого перевезення - не менше 9,0 м² при висоті не менше 1,9 м від голівки рейок; для дільничних вентиляційних, проміжних, конвеєрних і збірних штреків, дільничних бремсбергів і уклонів - не менше 6,0 м² при висоті не менше 1,8м; для вентиляційних просіків, печей, косовиків та ін. - не менше 1,5 м² при висоті не менше 0,7м; для дільничних виробок, що знаходяться в зоні впливу очисних робіт, людських хідників, не призначених для механізованого перевезення людей - не менше 4,5 м² при висоті не менше 1,8м.

Рис. 1.3 – Приклад типового перерізу гірничої виробки

3 метою зменшення затрат часу на проектування гірничих виробок для основних видів кріплення і транспортних засобів розроблені типові перерізи гірничих виробок (рис. 1.3).

Всі перерізи гірничих виробок залежно від умов підтримки поділені на групи:

- ті, що знаходяться в зоні впливу очисних робіт;
- ті, що знаходяться в зоні встановленого гірського тиску.

Для збереження необхідних зазорів впродовж усього терміну служби виробки розміри її перерізу при проведенні пластових виробок, що знаходяться в зоні впливу очисних робіт, рекомендується приймати із запасом (вертикальна податливість до 50-60% потужності пласта і горизонтальна - 0,23-0,29 м на висоті 1,8 м від підошви виробки).

У типових перерізах вказані розміри виробки, зазори для проходу людей залежно від транспортних засобів, розміщення рейкових колій і конвеєрів, водовідливних канавок і комунікацій - трубопроводів різного призначення, силового кабелю, освітлювального, телефонного, сигнального кабелів і так далі. На кресленнях типових перерізів гірничих виробок проставляють необхідні будівельні розміри. Усі вони є розрахунковими, окрім розмірів, які прийняті по габаритах рухомого складу, і необхідних зазорів, які передбачені Правилами безпеки. У дужках проставлені розміри до осадки покрівлі і зміщення боків виробки.

Для вибору необхідного типового поперечного перерізу виробки в просвіті достатньо визначити її ширину $\mathbf{\textit{B}}$ на рівні верхньої кромки рухомого складу по формулам (рис. 1.4):

Рис. 1.4 – Розрахункові схеми до визначення мінімальної ширини виробки

а) при двох рейкових коліях (див. рис. 1.4, а):

$$B = m + kA + p + n, M \tag{1.1}$$

де m – зазор між кріпленням і рухомим складом, м;

k – кількість рейкових колій;

A — ширина рухомого складу, м;

p — зазор між складами, м;

n – вільний прохід для людей, м.

б) при одній рейковій колії (див. рис. 1.4, δ):

$$B = m + A + n, M \tag{1.1"}$$

де m – зазор між кріпленням і рухомим складом, м;

A — ширина рухомого складу, м;

n – вільний прохід для людей, м.

в) при одній рейковій колії та стрічковому конвеєрі (див. рис. 1.4, в):

$$B = m + A_1 + p + A_2 + n, M (1.1''')$$

де m – зазор між кріпленням і стрічковим конвеєром, м;

 A_I – ширина конвеєра, м;

p – зазор між конвеєром та рухомим складом, м;

 A_2 – ширина рухомого складу, м;

n – вільний прохід для людей, м.

<u>г</u>) при стрічковому конвеєрі (див. рис. 1.4, 2):

$$\mathbf{B} = \mathbf{m} + \mathbf{A} + \mathbf{n}, \mathbf{m} \tag{1.1'''}$$

де m – зазор між кріпленням і стрічковим конвеєром, м;

A — ширина стрічкового конвеєра, м;

n – вільний прохід для людей, м.

Основні транспортні засоби стандартизовані, тому їх розміри приймають по довідниках (див. додаток А).

Вибрана типова площа поперечного перерізу виробки у просвіті повинна бути перевірена за швидкістю руху струменя повітря, необхідного для провітрювання. У відповідності з Правилами безпеки швидкість струменя повітря у квершлагах, головних відкатник і вентиляційних штреках, капітальних бремсбергах і уклонах не повинна перевищувати 8 м/с, а в збірних та бортових штреках -6 M/c.

Перевірку поперечного перерізу виробки за швидкістю повітряного струменя виконують за формулою:

$$V = \frac{Q}{g_{\text{CB.п.о.}}} \le V$$
доп., M/C (1.2) де V — швидкість струменя повітря при даних розмірах поперечного перерізу виробки, M/C ;

Q – кількість повітря, що проходить по виробці, м³/с;

 $S_{cs.n.o}$ -площа поперечного перерізу виробки в світлу після осадки, м²;

 $V_{\partial on}$ — допустима швидкість струменя повітря за Правилами безпеки для даної виробки, м/с.

Кількість повітря визначається за формулою:

$$Q = \frac{q \cdot A_{\text{I}} \cdot k_{\text{3}\text{a}\Pi}}{60}, \text{M}^3/\text{C}$$
 (1.3)

 $Q = \frac{q \cdot A_{d} \cdot k_{3an}}{60}$, м³/_C (1.3) де q — норма повітря на 1 т добового видобутку вугілля відповідно категорії шахти, м³/хв: І кат. — $1,0 \text{ м}^3/\text{x}$ в.; II кат. $-1,25 \text{ м}^3/\text{x}$ в.; III кат. та надкатегорійні $-1,5 \text{ м}^3/\text{x}$ в

A o – добове видобування, яке транспортується по виробці, т;

 k_{3an} . – коефіцієнт запасу повітря, 1,45-1,5.

Вихідні дані для виконання лабораторної роботи №1 наведені в таблиці 1.1. Номер варіанту відповідає порядковому номеру студента в навчальному журналі групи.

Таблиця 1.1 – Вихідні данні

№ вар.	Назва виробки	Категорія шахти по газу	Кількість рейкових колій	Тип вагонетки	Назва конвеєру	Добовий видобуток, т/добу	
1	Квершлаг	II	2	ВГ-3,3	-	2100	
2	Панельний бремсберг	I	-	-	ЛБ 120	1700	
3	Панельний уклон	III	1	ВГ-3,3	2ЛУ 120	1500	
4	Штрек	надкат.	1	ВГ-2,5	-	800	
5	Квершлаг	II	2	ВГ-2,5	-	1300	
6	Вантажний хідник	III	2	ВДК-2,5	-	-	
7	Магістральний штрек	II	2	ВДК-2,5	-	1900	
8	Уклон	надкат.	1	ВДК-2,5	-	620	
9	Бремсберг	III	-	-	1ЛТ 100	800	
10	Штрек	I	-	-	1Л 80	2200	
11	Квершлаг	II	2	ВДК-2,5	-	1000	
12	Збійка	I	1	ВГ-3,3	-	-	
13	Людський хідник	I	1	ВЛГ-18	-	-	
14	Відкотний штрек	надкат.	2	ВГ-3,3	-	2100	
15	Панельний бремсберг	II	1	ВГ-3,3	2ЛУ 1000Д	1500	
16	Уклон	I	-	-	1Л 1000	1200	
17	Квершлаг	надкат.	2	ВГ-3,3	-	1000	
18	Штрек	III	1	ВГ-1,6	1ЛТ 800	1200	
19	Збійка	II	1	ВДК-2,5	-	900	
20	Бремсберг	III	-	-	1Л 1000	1000	
21	Уклон	I	-	-	2ЛУ 1000Д	1200	
22	Відкотний штрек	надкат.	2	ВГ-3,3	-	900	
23	Квершлаг	II	2	ВГ-3,3	-	1500	
24	Людський хідник	III	1	ВЛ-50/15	-	-	
25	Уклон	I	-	-	2ЛУ 1000Д	2200	
26	Бремсберг	не газова	-	-	1Л 1000	1000	
27	Штрек	надкат.	1	ВГ-3,3	-	800	
28	Квершлаг	I	2	ВГ-3,3	-	1000	
29	Збійка	II	1	ВГ-3,3	-	-	
30	Людський хідник	I	1	ВП-18	-	-	

Контрольні питання

- 1. Назвіть фактори, що визначають форму поперечного перерізу виробки.
- 2. Перелічіть основні форми поперечного перерізу гірничих виробок.
- 3. Дайте визначення площі поперечного перерізу виробки «в просвіті»
- 4. Дайте визначення площі поперечного перерізу виробки «в чорні».
- 5. Дайте визначення площі поперечного перерізу виробки «в прохідці».
- 6. Поясніть, з яких міркувань надають виробці несиметричну форму поперечного перерізу?
- 7. Назвіть, яку форму надають гірничій виробці при прояві всебічного тиску гірничих порід?
- 8. Перелікуйте, що необхідно передбачити, щоб експлуатація виробки проводилась без перекріплення?
- 9. Поясніть, на які групи поділені перерізи гірничих виробок за умовами їх підтримання?
- 10. Назвіть, які розміри на кресленнях типових перерізів гірничих виробок не ϵ розрахунковими?
- 11. Поясніть, які розміри на кресленнях типових перерізів виробок проставляються в дужках?
- 12. Назвіть, за яким параметром виконують перевірку поперечного перерізу гірничої виробки?
- 13. Назвіть, яка максимальна швидкість повітря у головних та допоміжних виробках?

Таблиця 1.2 – Таблиця варіантів до контрольних запитань

1 :	1 1	F 1								
№№ варіантів	1,21	2,22	3,23	4,24	5,25	6,26	7,27	8,28	9,29	10,30
№№ питань	1,8	2, 9	3, 10	4, 11	5, 12	6, 13	1, 7	2, 8	3, 9	4, 10
№№ варіантів	11,31	12,32	13,33	14,34	15,35	16,36	17,37	18,38	19,39	20,40
№№ питань	5, 11	6, 12	7, 13	8, 12	2, 11	3, 10	4, 9	5, 8	1, 6	2, 7