#### Statistics Live

An Introduction to Incorporating Simulation in Undergraduate Psychology Courses

Dr. Matthew Sigal
Simon Fraser University
Slides available at: www.matthewsigal.com/#talks

Presented at AMOM, June 2020



#### Statistics Live!

#### Primary Goals

- ► Briefly discuss "Simulation"
  - ► What? Why? How?
  - Simulations in undergraduate courses?
- ► The How and the How To
  - ► What are *shiny* apps?
  - ► An interactive example
  - ► Future dashboards



## Simulation

Simulation: The process of using statistical models and distributional parameters to generate random (but plausible) data.

#### **Monte Carlo Simulation Studies**

MCSS are **experiments** that use simulation to **generate** random data and estimate or **analyse** the behavior of other statistics across many *conditions*.

This is repeated over many *iterations* and results are **summarized** for dissemination.

## Putting the Central Limit Theorem to Work

Given a population parameter  $\psi$ , let  $\hat{\psi}=f(D)$  be the associated sample estimate, which is a function of data input D.

**Theoretical CLT**: given an *infinite number* of randomly sampled datasets  $D_i$  of size  $n, \psi$  can be recovered as the mean of all  $f(D_i)$ s.

## Putting the Central Limit Theorem to Work

Given a population parameter  $\psi$ , let  $\hat{\psi}=f(D)$  be the associated sample estimate, which is a function of data input D.

**Theoretical CLT**: given an *infinite number* of randomly sampled datasets  $D_i$  of size n,  $\psi$  can be recovered as the mean of all  $f(D_i)$ s.

**MCSS**: Generate a large (but finite!) number of datasets ("replications", R) to obtain a sample approximation of the population parameter  $(\tilde{\psi})$ :

$$\tilde{\psi} = \frac{f(D_1) + f(D_2) + \dots + f(D_R)}{R}$$

#### Further...

Further, the sampling error of  $\psi$  can be approximated by finding the standard deviation of all  $f(D_i)$  sets:

$$SE(\tilde{\psi}) = \sqrt{\frac{[f(D_1) - \tilde{\psi}]^2 + \dots + [f(D_R) - \tilde{\psi}]^2}{R}},$$

... which is interpreted as the standard deviation of a statistic under a large number of random samples — an empirically obtained estimate of the standard error that does not require or assume an infinite number of samples.

▶ While this seems reasonable for explaining concepts like the standard error of the mean, this holds for virtually *any* statistic and data generating mechanism (Mooney, 1997).

### The General Structure

- 1. **Generate** a dataset with n values according to some probability density function (e.g., normal, log-normal, binomial,  $\chi^2$ , etc.).
- 2. **Analyse** the generated data by finding the statistic of interest and store this value for later use.
- 3. Repeat steps 1 and 2 R times. Once complete, **summarise** the set of stored values with an appropriate statistic (e.g. mean, standard deviation).

## Manipulate!

Once this structure is built, all sorts of things can be manipulated: generating distribution, sample size, number of replications, degree of heterogeneity of variance, and so on.

## Conducting MCSS: An Introduction

Let's say Georgie is interested in the ability of a sample mean  $(\overline{x})$  to recover  $\mu$  and if the CLT approximation for the standard error is reasonable, given three different sample sizes. How can this be run?

#### Simulation Design

- ► Choice of generating distribution: normal
- ▶ Values of interest: the mean, the standard error
- ► Manipulation of interest: *sample size* (e.g., 5, 30, 60)

# Georgie's First Simulation: Setup

## [1,] 0 0 0 ## [2,] 0 0 0

```
# Design
R <- 5000 # set 5,000 replications
mu <- 10 # set mu to 10
sigma <- 2 # set standard deviation to 2
N \leftarrow c(5, 30, 60) # set 3 sample size conditions
# Results
res <- matrix(0, R, 3) # create a null matrix
                       # (with R rows. and 3 columns)
                       # to store output.
colnames(res) <- N # name columns (5, 30, 60)</pre>
head(res, n = 2)
## 5 30 60
```

## Georgie's First Simulation: Replications

```
set.seed(77) # Set seed to make analysis replicable
for(i in N){ \# i = 5/30/60, across the 3 iterations
  for(r in 1:R){  # 1:R creates a vector 1,2,3,...,R
     dat \leftarrow rnorm(n = i, mean = mu, sd = sigma)
        # generate random data from a normal
        # distribution with set mean and sd
     res[r, as.character(i)] <- mean(dat)
        # return mean of dat and put it in res on row
        # r and in either column 5, 30, or 60.
```

```
## 5 30 60
## [1,] 10.957 10.112 10.075
## [2,] 10.649 10.010 9.903
```

## Georgie's First Simulation: Summarise

```
# summarise by calculating mean for each column
apply(res, 2, mean)
```

```
## 5 30 60
## 10.002 10.001 10.002
```

```
# summarise by calculating s for each column
apply(res, 2, sd)
```

```
## 5 30 60
## 0.889 0.368 0.258
```

## Georgie's Observations

- $\blacktriangleright$   $\mu$  was recovered well regardless of n.
- ightharpoonup Sampling variability of the estimates decreased as n increased.
- ► Empirical SEs can be compared against CLT  $(\sigma/\sqrt{n})$ : ► 0.894, 0.365, and 0.258

## Conducting MCSS: A WARNING

#### **ABORT**

While "for loops" are useful for introducing simulation designs they **should not** be used if at all possible:

- Setup mixes generate and summarise steps
- ► For loops become increasingly complex as the design expands (nested loops)
- ► Objects can be easily overwritten accidentally
- ▶ Design change might require overhaul of entire loop structure
- Deciphering and debugging for loops is hell

## Conducting MCSS: What to look for in Software

#### What we want...

- ► An overarching philosophy for structuring MCSS that clearly delineates the **generate**, **analyse**, and **summarise** steps.
- ► A structure that can be expanded as needed for various designs.
- ► Convenience features, e.g.:
  - ► Resample non-convergent results
  - ► Support parallel computation
  - ► Save/restore results in case of power failures
  - Explicit tools for debugging

## Conducting MCSS: My Recommendation



Highly recommended: SimDesign in R (Chalmers, 2018):

```
install.packages("SimDesign")
library(SimDesign)
```

## What does SimDesign provide?

SimDesign makes explicit reference to G.A.S.:



This structure can be applied to any simulation study!

## It is... by Design

The "design" of a simulation study is typically a (fully-crossed) set of factors. SimDesign uses a tibble to store this:

```
Design <- createDesign(sample_size = c(5, 30, 60))
Design</pre>
```

#### Benefits:

- ▶ Design will be accessed sequentially (top to bottom), so it is easy to see what parameters are being passed and when.
- ► Rows of Design can be filtered, just as you would subset any other data.
- ► Columns can be added to incorporate other factors!

## createDesign()

Add another variable to create fully-crossed design object:

```
## # A tibble: 6 \times 2
##
     sample size distribution
##
            <dbl> <chr>
## 1
               30 norm
## 2
               60 norm
## 3
              120 norm
## 4
               30 chi
## 5
              60 chi
              120 chi
## 6
```

#### Generate This!

Generate() is a function that has only 1 required input: condition (a single row from Design) and uses parameters from that row to prepare a single dataset:

```
Generate <- function(condition, fixed_objects = NULL) {
  dat <- rnorm(n = condition$sample_size, mean = 10, sd = 2)
  dat
}</pre>
```

- ▶ Note the use of condition\$ to access variables from Design.
- Use if() statements if needed (e.g., for generating distribution).

## Analyse That!

The purpose of Analyse() is to calculate and store all statistics of interest from each iteration.

For example, if we are only interested in the mean:

```
Analyse <- function(condition, dat, fixed_objects = NULL) {
  ret <- mean(dat)
  ret
}</pre>
```

This code will be called R times for each row of the Design matrix and can be used to return multiple values, if needed.

## Then Summarise!

Summarise() is where we compute meta-statistics such as means, standard deviations, degree of bias, root mean-square error (RMSE), detection rates, and so on.

```
Summarise <- function(condition, results, fixed_objects = NULL) {
   c_mean <- mean(results)
   c_se <- sd(results)
   ret <- c(mu = c_mean, se = c_se) # create a named vector
   ret
}</pre>
```

For each row of the design matrix, SimDesign will return the mean and standard error of the R replications as well as the number of replications, computation time, and a summary of any warnings that occurred.

runSimulation()

The final step is to pass the objects to runSimulation():

- ► Useful optional arguments:
  - seed: Set a random value seed for reproducability.
  - ► save: Save results to an external file.
  - ▶ parallel/ncores: Use parallel processing.
  - debug: Set to jump inside a running simulation (via browser()). Options include: error, all, generate, analyse, summarise.

See Sigal and Chalmers (2016) for more details.

## How to make it interactive?

- ► Shiny (Chang et al., 2020) is an R package for coding interactive applets.
- Applets can be made to be incredibly user-friendly!
- ► Variety of **inputs**: action buttons, checkboxes, text fields, sliders.
- Can render a variety of outputs: plots, text, tables, user interface elements.



## Shiny Apps

Traditionally, two files:

#### ui.R

► Script that defines the *user interface* of your app

#### server.R

► Code to process everything displayed in your app

Possible to put everything in one file:

```
app.R
```

```
library(shiny)
```

```
server <- ...
```

 $\mathsf{shinyApp}(\mathsf{ui}=\mathsf{ui},\,\mathsf{server}=\mathsf{server})$ 

## Hosting Shiny apps

- ► On your own computer:
  - ▶ Put your app's ui.R and server.R files in the same folder
  - ► Start R and load package with library(shiny)
  - ► Run your app with runApp() or RStudio's button
- ► Online:
  - ► shinyapps.io
  - ► Host on a Shiny server, like the one provided through the SFU Research Computing Group at www.rcg.sfu.ca/services/shiny/

## Shiny + Simulation

- 1. For **teaching demonstrations**, I recommend coding a shiny app from scratch.
- ▶ Use a template and create a new app for each topic.
- ▶ Inputs should highlight primary pedagogical goals.
- For teaching Monte Carlo simulation studies, I recommend using the SimShiny() function from SimDesign to create an app template based upon working MCSS code then edit as needed.

Teaching: The Central Limit Theorem... Before

|               | n    | mean   | S     |
|---------------|------|--------|-------|
| n1.sample1    | 1    | 99.74  | _     |
| n1.sample2    | 1    | 88.24  | _     |
| n1.sample3    | 1    | 119.90 | _     |
| n2.sample1    | 2    | 85.78  | 15.19 |
| n2.sample2    | 2    | 115.30 | 20.73 |
| n2.sample3    | 2    | 96.36  | 4.88  |
| n10.sample1   | 10   | 99.31  | 13.89 |
| n10.sample2   | 10   | 93.53  | 16.07 |
| n10.sample3   | 10   | 111.12 | 10.37 |
| n25.sample1   | 25   | 101.13 | 15.16 |
| n25.sample2   | 25   | 97.91  | 15.18 |
| n25.sample3   | 25   | 105.70 | 12.37 |
| n1000.sample1 | 1000 | 100.45 | 14.87 |
| n1000.sample2 | 1000 | 99.90  | 15.29 |
| n1000.sample3 | 1000 | 100.04 | 15.52 |
|               |      |        |       |

## Teaching: The Central Limit Theorem... After



https://shiny.rcg.sfu.ca/u/msigal/CLT/

## Teaching: Monte Carlo Simulation Studies



https://shiny.rcg.sfu.ca/u/msigal/SIM/

#### Future Dashboards

Many topics in the undergraduate psychology curriculum could benefit from interactive applets. For example:

- Demonstrate the properties of statistical distributions using different sample sizes
- ▶ Demonstrate the influence of sample size/heterogeneity of variance on type I error rates and power
- ► Evaluate the bias and efficiency of estimators

#### Future Dashboards

Many topics in the undergraduate psychology curriculum could benefit from interactive applets. For example:

- ► Demonstrate the properties of statistical distributions using different sample sizes
- ► Demonstrate the influence of sample size/heterogeneity of variance on type I error rates and power
- ► Evaluate the bias and efficiency of estimators

### But why?

- ► Allows students to "see it for themselves". They can play with various parameters and see the impact on results
- ► Provides a foundational understanding of simulation and simulation-based research than can be expanded on during a QM related degree
- ► Underlying code can be shared (e.g., via a GitHub repo) so keen students can also learn some R at the same time!

#### References I

- Chalmers, P. (2018). SimDesign: Structure for Organizing Monte Carlo Simulation Designs. R package version 1.11, https://CRAN.R-project.org/package=SimDesign.
- Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2020). *shiny: Web Application Framework for R*. R package version 1.4.0.2.
- Mooney, C. Z. (1997). *Monte Carlo Simulations*. Sage, Thousand Oaks, CA.
- Sigal, M. J. and Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simulation. *Journal of Statistics Education*, 24(3):136–156.