**CMPE 330** 

Spring 2017

Problem Set #7

NOTE: You must show complete work for full credit. Report numerical solutions to two significant figures unless otherwise specified.

1. A charged particle with charge q and mass m moves in a constant magnetic flux and electric field,  $\mathbf{B} = \hat{\mathbf{z}}B$  and  $\mathbf{E} = \hat{\mathbf{x}}E$ , that are directed respectively in the z- and x-directions. If the initial velocity in the z-direction is zero, show that there is no motion in the z-direction and that the velocities in x- and y-directions,  $u_x(t)$  and  $u_y(t)$  are equal to

$$u_x(t) = u_{x0} \cos \omega_L t + u_{y0} \sin \omega_L t + \frac{E}{B} \sin \omega_L t,$$
  
$$u_y(t) = -u_{x0} \sin \omega_L t + u_{x0} \cos \omega_L t + \frac{E}{B} (\cos \omega_L t - 1),$$

where  $u_{x0}$  and  $u_{y0}$  are the initial velocities in the x- and y-directions and  $\omega_{\rm L} = qB/m$  is the Larmor frequency. Find the motion of the charged particle x(t) and y(t).

- 2. The loop in the figure shown to the right [Ulaby and Ravaioli Fig. P6.2] is in the x-y plane and  $\mathbf{B} = \hat{\mathbf{z}}B_0\cos\omega t$  with  $B_0$  positive. What is the direction of I ( $\hat{\boldsymbol{\phi}}$  or  $-\hat{\boldsymbol{\phi}}$ ) at (a) t = 0, (b)  $\omega t = \pi/2$ , (c)  $\omega t = 3\pi/4$ . [modified from Ulaby and Ravaioli 6.2, p. 308.]
- 3. The rectangular conducting loop shown to the right [Ulaby and Ravaioli Fig. P6.7] rotates at 3,000 revolutions per minute in a uniform magnetic flux density given by  $\mathbf{B} = \hat{\mathbf{y}}50$  mT. Determine the current induced in the loop if its internal resistance is 1.0  $\Omega$ . How accurately must we calculate  $\omega t$  in order to obtain two significant figures in the final result? [modified from Ulaby and Ravaioli 6.7, p. 309.]
- 4. The circular disk shown to the right [Ulaby and Ravaioli Fig. P6.13] lies in the x-y plane and rotates with uniform angular velocity  $\omega$  about the z-axis. The disk is of radius a and is present in a uniform flux density  $\mathbf{B} = \hat{\mathbf{z}}B_0$ . Obtain an expression for the emf induced at the rim relative to the center of the disk. [Ulaby and Ravaioli 6.13, p. 310.]





Problem Set Page 7.2

5. An electromagnetic wave propagating in seawater has an electric field with a time variation given by  $\mathbf{E} = \hat{\mathbf{z}} E_0 \cos \omega t$ . If the permittivity of water is  $81\epsilon_0$  and its conductivity is 4 S/m, find the ratio of the magnitudes of the conduction current density to the displacement current density at each of the following frequencies: (a) 5 kHz, (b) 1 MHz, (c) 5 GHz, (d) 100 GHz [modified from Ulaby and Ravaioli 6.18, p. 311.]

6. If the current density in a conducting medium is given by

$$\mathbf{J}(x, y, z; t) = (\hat{\mathbf{x}}2z - \hat{\mathbf{y}}3y^3 + \hat{\mathbf{z}}x)\cos\omega t$$

determine the corresponding charge distribution  $\rho(x,y,z;t)$ . [modified from Ulaby and Ravaioli 6.20, p. 311.]

7. Given an electric field  $\mathbf{E} = \hat{\mathbf{x}} E_0 \sin ay \cos(\omega t - kz)$ , where  $E_0$ , a,  $\omega$ , and k are constants, find  $\mathbf{H}$ . [Ulaby and Ravaioli 6.25, p. 311.]