The instructor plan is provided in the README file. If you do not have a markdown viewer please use the included README.html for proper gif rendering. The slides are in the Slides directory.

Time - minutes	Topic	Instructor Do	Student Do	Learning Goal
6:50 – 7:05	Introduction	Question of the day, Pre-Class Temperature Check, TA takes attendance	Think of a response to a real world interview question, Vote in poll	Present the topics of the class and engage students to think about the material.
7:05 – 7:25	AWS Walkthrough	Have students pull data files from git. Create and ppload data files to s3 and help any students who have configuration issues. Create a jupyter notebook in SageMaker.	Once the data file has been pulled follow along with instructor and create s3 buckets for the data. Create a jupyter notebook.	Familiarize students with the AWS environment.
7:25 – 7:40	Present statistical Topics	Present the slides on Label Encoding, One- hot encoding, Imputation, RandomForest	Follow along with the slides.	Students will learn about label encoding, One- hot encoding, Imputation and Random Forests
7:40 – 8:00	Exploratory Analysis on mtcars	Instructor codes the provided analysis on mtcars and demonstrates the topics presented in the slides.	Students code with the instructor on their own jupyter notebook in SageMaker.	Immediate application of the topics presented. Gain insights on how an exploratory analysis on mtcars can be used on other datasets.
8:00 – 8:30	Breakout Room – students try creditDefault	Instructor and TA's provide guidance	Following the instructions and starter script, students try their own EDA.	Students quickly apply the topics they just learned. The dataset is different and requires more preparation before a classifier can be trained on it.

8:30 – 8:55	Train model credit default	Instructor demonstrates handling missing values and trains a classifier on the creditDefault dataset.	Class discusses breakout room results and then codes along with the instructor.	Students learn that EDA is a must before training a classifier. Without EDA the classifier will likely be worse than a coin flip if it doesn't throw an error.
8:55 – 9:00	Questions	Instructor clarifies points of confusion.	Students are encourage to try their model on the testing data set.	Closing