Some Properties

Let
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$

$$Av = \lambda v$$

Hermitian transpose

$$\mathbf{v}^H \mathbf{A}^H = \lambda^* \mathbf{v}^H$$
 * conjugate

 $\mathbf{A}^T \mathbf{v}^H \mathbf{A}^H = \mathbf{A}^T$

 $\mathbf{A}\mathbf{v}^* = \lambda^*\mathbf{v}^*$

- \mathbf{v}^* is an eigenvector associated with eigenvalue λ^*
- Complex eigenvalues appear in conjugate pairs

 $\mathbf{A}^{H}\mathbf{w}^{H} = \lambda^{*}\mathbf{w}^{H}$ $\mathbf{A}^{T}\mathbf{w}^{H} = \lambda^{*}\mathbf{w}^{H}$ $\mathbf{A}^{T}\mathbf{w}^{H} = \lambda^{*}\mathbf{w}^{H}$

 $wA = \lambda w$

- \mathbf{w}^H is an eigenvector associated with eigenvalue λ^* of \mathbf{A}^T
 - \mathbf{w}^{T} is an eigenvector associated with eigenvalue λ of \mathbf{A}^{T}
- A and A^T have the same set of eigenvalues because $\det(\lambda \mathbf{I} \mathbf{A}) = \det(\lambda \mathbf{I} \mathbf{A})^T = \det(\lambda \mathbf{I} \mathbf{A}^T)$
- The set of eigenvalues corresponding to (right) eigenvectors is the set of eigenvalues corresponding to left eigenvectors

Some Properties (cont'd)

Fact: The eigenvalues of any triangular matrix are its diagonal entries

$$A = \begin{bmatrix} a_{11} & \times \\ O & a_{nn} \end{bmatrix}, \quad \lambda I - A = \begin{bmatrix} \lambda - a_{11} \\ O & \lambda - a_{nn} \end{bmatrix} = \begin{bmatrix} \lambda - a_{11} \\ O & \lambda - a_{nn} \end{bmatrix} = \begin{bmatrix} \lambda - a_{11} \\ O & \lambda - a_{nn} \end{bmatrix}$$

Fact: $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular if and only if all its eigenvalues are nonzero

Fact: Suppose (\mathbf{v}, λ) is an eigen-pair of **A**, then (\mathbf{v}, λ^k) is an eigen-pair of \mathbf{A}^k for any positive integer k

At
$$V = A^{k-1}(Av) = \lambda A^{k-1}v = \lambda A^{k-2}(Av)$$

$$\lambda V = \lambda A^{k-1}(Av) = \lambda A^{k-1}v = \lambda A^{k-2}(Av)$$

Repeated Eigenvalues

- Let $\lambda_1, \ldots, \lambda_n$ be the *n* eigenvalues of $\mathbf{A} \in \mathbb{R}^{n \times n}$
- WLOG, order $\lambda_1, \ldots, \lambda_n$ so that $\{\lambda_1, \ldots, \lambda_k\}$, $k \leq n$ is the set of all **distinct** eigenvalues of **A**: $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, k\}$, $i \neq j$ and $\lambda_i \in \{\lambda_1, \ldots, \lambda_k\}$ for all $i \in \{1, \ldots, n\}$
- Define the algebraic multiplicity of eigenvalue λ_i as the multiplicity of λ_i as root of $p(\lambda)$, denoted by μ_i
- Every λ_i may have multiple eigenvectors (scaling not counted)
- If dim $\mathcal{N}(\lambda_i \mathbf{I} \mathbf{A}) = r$, we can find r linearly independent \mathbf{v}_i 's
- Define the geometric multiplicity of eigenvalue λ_i as the maximum number of linearly independent eigenvectors associated with λ_i , denoted by γ_i

enoted by
$$\gamma_i$$

• $\gamma_i = \dim \mathcal{N}(\lambda_i \mathbf{I} - \mathbf{A}) = n - \operatorname{rank}(\lambda_i \mathbf{I} - \mathbf{A})$
 $\mathcal{N}(\lambda_i \mathbf{I} - \mathbf{A}) = n - \operatorname{rank}(\lambda_i \mathbf{I} - \mathbf{A})$
 $\mathcal{N}(\lambda_i \mathbf{I} - \mathbf{A}) = n - \operatorname{rank}(\lambda_i \mathbf{I} - \mathbf{A})$

Repeated Eigenvalues (cont'd)

Fact: For every eigenvalue λ_i of **A**, $\mu_i \geq \gamma_i \nearrow$ Proof: Let B1, ..., Zo, be an orthonormal basis of N(A:J-A) and let 8,+1, ..., 8, be st. Q=[8,...8, 80; +1...8n] and let $g_{r,+1}$, ..., g_n by ... with g_1 g_2 g_1 g_2 g_3 g_4 g_4 g_4 g_5 g_6 g_7 g_8 g_8 For $i=1,..., r_i$, $A_{i}:=n_i q_i \Rightarrow A_{0}:=n_i Q_i$ $A|so, Q_i^HQ_i=I$, $Q_2^HQ_1=I$ $A|so, Q_i^HQ_i=I$, $Q_2^HQ_2=I$ $A|so, Q_i^HQ_1=I$, $Q_2^HQ_2=I$ $A|so, Q_i^HQ_1=I$, $Q_2^HQ_2=I$ $A|so, Q_i^HQ_1=I$, $Q_2^HQ_2=I$ $A|so, Q_i^HQ_1=I$, $Q_2^HQ_2=I$ $det(\Lambda I - A) = det(QH(\Lambda I - A)Q) = det(\Lambda I - QHAQ)$ det (a-xi) Iri) del(x In-ri - or 40) = (a-xi) i det(...

=) det (N)-A) has at least f; roots at λ ;

Repeated Eigenvalues (cont'd)

Example:
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$Av = 2v \iff \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$Av = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 2v_1 \\ 2v_2 \\ 2v_3 \end{bmatrix} \iff \begin{bmatrix} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \\ 2v_3 = 2v_3 \end{bmatrix}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_2 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \\ 2v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \\ 2v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_2 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \\ 2v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_2 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 = 2v_1 \\ 2v_2 + v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{cases} v_1 \\ v_2 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases}$$

$$Av = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases} 3v_1 \\ v_3 \\ v_3 = 2v_3 \end{cases} \implies \begin{cases}$$

Repeated Eigenvalues (cont'd)

Example:
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 $\lambda_1 = 3$ $M_1 = 1$ $\lambda_1 = 1$

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\lambda_2 = 2$$

$$A_2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$2 = 2$$

$$3 = 2$$

$$2 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

Similarity Transformation

- Let $\mathbf{Q} = [\mathbf{q}_1 \cdots \mathbf{q}_n] \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) be a nonsingular matrix
 - The columns of Q form a basis of \mathbb{R}^n (or \mathbb{C}^n)
- Let $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$). We call $\tilde{\mathbf{A}} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}$ a similarity transformation
- A and \tilde{A} are said to be similar
- Similar matrices represent the same linear map under two (possibly) different bases, with Q being the change of basis matrix
- Interpretation: Consider a linear system $\mathbf{A}\mathbf{x} = \mathbf{y}$ and let $\mathbf{x} = \mathbf{Q}\tilde{\mathbf{x}}$, $\mathbf{y} = \mathbf{Q}\tilde{\mathbf{y}}$ $\mathbf{x} = \mathbf{x} = \mathbf{y}$

$$\mathbf{A}\mathbf{x} = \mathbf{y} \Leftrightarrow \mathbf{A}\mathbf{Q}\tilde{\mathbf{x}} = \mathbf{Q}\tilde{\mathbf{y}} \Leftrightarrow \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}\tilde{\mathbf{x}} = \tilde{\mathbf{y}} \Leftrightarrow \tilde{\mathbf{A}}\tilde{\mathbf{x}} = \tilde{\mathbf{y}} = \chi_{[\ell_1 + \cdots + \chi_{n} \ell_{n}]}$$

Similarity Transformation (cont'd)

- Every **square** matrix is similar to itself $I^{-1}AL = A$
- If **A** is similar to **B** and **B** is similar to **C**, then **A** is similar to **C**

From singular Q, P s.t.
$$B=Q^{-1}AQ$$
, $C=P^{-1}BP$
 $C=P^{-1}(Q^{-1}AQ)P=(QP)^{-1}A(QP)$, QP Many injury

• If A, B are invertible and similar, then A^{-1} and B^{-1} are also similar

 Similar matrices have the same characteristic polynomial, determinant, rank, nullity, trace, eigenvalues, algebraic multiplicity, geometric multiplicity, etc.

$$A = Q^{-1}AQ$$
 $det (\Lambda I - A) = det (\Lambda I - QAQ) = det (Q^{-1}(\Lambda I - A)Q)$
 $= det (Q^{-1}) det (\Lambda I - A) del (Q) = det (\Lambda I - A)$

Eigendecomposition

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to be diagonalizable, or admit an eigendecomposition, if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ s.t.

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$$

where $\Lambda = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$, or, **A** is similar to a diagonal matrix

 In this definition, we didn't say that (v_i, λ_i) is an eigen-pair of A, but it indeed has to be

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1} \iff \mathbf{A}\mathbf{V} = \mathbf{V}\Lambda, \ \mathbf{V} \ \text{nonsingular} \ \iff \mathbf{A}\mathbf{v}_i = \lambda_i\mathbf{v}_i, \ i = 1, \dots, n, \ \mathbf{v}_1, \dots, \mathbf{v}_n \ \text{linearly independent}$$

• The key lies in finding n linearly independent eigenvectors to form \mathbf{V}

Eigendecomposition (cont'd)

A=VAV-1 A and A similar

Facts: Suppose **A** admits an eigendecomposition

Facts: Suppose A admits an eigendecomposition
$$\det(A) = \prod_{i=1}^{n} \lambda_{i}$$
1. $\det(A) = \prod_{i=1}^{n} \lambda_{i}$ including repeated expensely us.

1.
$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

$$-\sum_{n=1}^{\infty} \lambda_{n}$$

2.
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

3. $rank(\mathbf{A}) = number of nonzero eigenvalues of \mathbf{A}$

4. Suppose **A** is also nonsingular. Then,
$$\mathbf{A}^{-1} = \mathbf{V}\Lambda^{-1}\mathbf{V}^{-1}$$

Note: Facts 1–2 are indeed true for any **A**; Facts 3–4 may not hold when A does not admit an eigendecomposition