Resolução de problemas usando Lógica Combinacional

Aula 11

Índice

- -Especificação e implementação de um projeto
- -Fluxograma para desenvolvimento de projetos digitais
- -Exemplo de projeto
- -Exercícios

Especificação e implementação de um projeto

Fluxograma para desenvolvimento de projetos digitais

Exemplo:

1) Instalação de um sistema automático para controle dos semáforos.

Projetar um circuito lógico para controlar as luzes verdes e vermelhas de um sistema de semáforos, para funcionarem da seguinte forma:

- -Carros na rua A, acende luz verde no semáforo 1 e vermelho no semáforo 2;
- -Carros na rua B, acende luz verde no semáforo 2 e vermelho no semáforo 1;
- -Carros nas ruas A e B, acende luz verde no semáforo 1, porque a rua A é preferencial;
- -Sem carros da rua A e B, funciona idem anterior.

Solução

Convenção: Rua A com carro = 1 Rua B com carro = 1

Rua A sem carro = 0 Rua B sem carro = 0

Semáforo com luz verde acessa = 1 Semáforo com luz verde apagada = 0

Semáforo com luz vermelha acessa = 1

Semáforo com luz vermelha apagada = 0

Legenda: Variável A – carros na rua A

Variável B - carros na rua B

Saída 1 (S1) – Luz verde semáforo 1

Saída 2 (S2) – Luz verde semáforo 2

Saída 1 (S3) – Luz vermelha semáforo 1

Saída 1 (S4) – Luz vermelha semáforo 2

Α	В	S_1	S ₂	S ₃	S ₄
0	0	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

Determinação das expressões minimizadas

Α	В	S_1	S_2	S_3	S_4
0	0	1	0	0	1
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

Verifica-se que neste problema não tem condição irrelevante.

Também pode ser visto que há saídas iguais, (S1=S4 e S2=S3) desta forma a expressão é a mesma e consequentemente o circuito também.

Também vê-se que S1 e S4 são complementares a S2 e S3, assim pode ser utilizado o mesmo circuito com a saída invertida.

Desta forma o problema se resume a determinar a expressão para as saídas S1 e S4 ou para as saídas S2 e S3.

Optar por S2 e S3 é mais interessante pois a expressão mínima é obtida diretamente da tabela da verdade, não precisando usar nenhum método de minimização.

Determinação das expressões minimizadas

Projetar o circuito lógico para acionar as chaves S1, S2 e S3 de modo a estabelecer a conexão de 3 aparelhos num amplificador, obedecendo às prioridades. Se nenhum aparelho é ligado, as chaves ficam desligadas.

Se apenas um aparelho é ligado por vez, apenas a chave deste aparelho é ligado. Se dois ou mais aparelhos estiverem ligados, a preferência de conexão é:

- 1<u>a</u>) USB
- 2<u>a</u>) CD
- 3a) Radio

Conexão de 4 setores, via intercomunicadores, a central da Secretária, obedecendo as prioridades:

- 1a) Presidente
- 2<u>a</u>) Vice Presidente
- 3<u>a</u>) Engenharia
- 4<u>a</u>) Chefes de Seção

Obs.: Este projeto é parecido ao anterior. Apenas tem 1 entrada e 1 saída a mais.

Projete o circuito lógico para colocar nível lógico 1 na saída sempre que tiver um número ímpar de chaves fechadas no desenho abaixo. Verificar no circuito que quando a chave está fechada, o nível lógico na entrada do circuito lógico é zero, e quando a chave está aberta o nível lógico na entrada do circuito lógico é 1.

Considerar que quando não tem nenhuma chave fechada o número de chaves fechadas é 0, e é considerado como par.

ABC	S
000	1
001	0
010	0
011	1
100	0
101	1
110	1
111	0

	Ē	3	В		
Ā	1	0	1	0	
Α	0	1	0	1	
'	C	C		Ē	

Percebe-se que neste mapa de Karnaugh não é possível fazer grupos, todos os 1's serão tratados como termos isolados.

$$S = \overline{A.B.C+A.B.C+A.B.C}$$

$$S = \overline{A}.(\overline{B}.\overline{C} + B.C) + A.(\overline{B}.C + B.\overline{C})$$

$$S = \overline{A}.(\overline{B \oplus C}) + A.(B \oplus C)$$

$$S = \overline{A}.(\overline{B + C}) + A.(B + C)$$
 Fazendo $(B + C) = Y$

Fazendo
$$(B \oplus C) = Y$$

$$S = \overline{A}. \overline{Y} + A.Y$$

$$S = \overline{A \oplus Y} = \overline{A \oplus B \oplus C}$$

$$S = \overline{A \oplus B \oplus C}$$

Num entroncamento de três ruas A, B e C deseja-se instalar um conjunto de semáforos para as seguintes funções:

- Quando o semáforo 1 abrir para a rua A, automaticamente os semáforos 2 e 3 devem fechar, para possibilitar ao motorista ambas as conversões;
- Analogamente, quando o semáforo 2 abrir, devem fechar os semáforos 1 e 3;
- -Pelo mesmo motivo, quando o semáforo 3 abrir, devem fechar os semáforos 1 e 2.

Deve-se seguir também, as seguintes prioridades:

- a)O motorista que está na rua A tem prioridade em relação ao motorista que está na rua B;
- b)O motorista que está na rua B tem prioridade em relação ao motorista que está na rua C;
- c)O motorista que está na rua C tem prioridade em relação ao motorista que está na rua A;
- d)Quando houver carros nas três ruas, a rua A é preferencial;
- e)Quando não houver nenhum carro nas ruas, deve-se abrir o sinal para a rua A.

Obtenha as expressões e os circuitos dos sinais verdes dos semáforos 1, 2 e 3.

ABC	S1	S2	S3
000	1	0	0
001	0	0	1
010	0	1	0
011	0	1	0
100	1	0	0
101	0	0	1
110	1	0	0
111	1	0	0

$$S1 = \overline{B}.\overline{C} + A.B$$

$$S3 = \overline{B}.C$$

$$S1 = \overline{B}.\overline{C} + A.B$$

$$S2 = \overline{A}.B$$

$$S3 = \overline{B}.C$$

Projete um circuito lógico para acender apenas 1 led de cada vez num conjunto de 3 leds, nas seguintes situações:

- Quando um número na entrada por um número par acende o led 1;
- Quando um número na entrada por um número ímpar acende o led 2;
- Quando um número na entrada por um número múltiplo de 3 acende o led 3.

Obs.:

Considerar na análise para ver se é par, ímpar ou múltiplo de 3, uma contagem de 0 a 7 decimal (mas que em binário tem 3 bits), e que quando ocorrer um múltiplo de 3, este tem prioridade.

Não considerar que 0 é múltiplo de 3, mas sim um número par.

Projetar um circuito lógico para comparar 2 números binários de 2 bits cada, tal que:

```
- A_1A_0 < B_1B_0 \Rightarrow acende led 1;

- A_1A_0 = B_1B_0 \Rightarrow acende led 2;

- A_1A_0 > B_1B_0 \Rightarrow acende led 3.
```

Obs. : O número A1A0 são os dois bits mais significativos de uma contagem binária, e B1B0 são os dois bits menos significativos de uma contagem binária de 4 bits.

A1 A0 B1 B0

$- A_1 A_0 < B_1 B_0$	\Rightarrow acende led 1
	\Rightarrow acende led 2
$- A_1 A_0 > B_1 B_0$	\Rightarrow acende led 3

A	В		C	D	S1	S2	S3
0	0	=	0	0	0	1	0
0	0	<	0	1	1	0	0
0	0	<	1	0	1	0	0
0	0	<	1	1	1	0	0
0	1	>	0	0	0	0	1
0	1	=	0	1	0	1	0
0	1	<	1	0	1	0	0
0	1	<	1	1	1	0	0
1	0	>	0	0	0	0	1
1	0	>	0	1	0	0	1
1	0	=	1	0	0	1	0
1	0	<	1	1	1	0	0
1	1	>	0	0	0	0	1
1	1	>	0	1	0	0	1
1	1	>	1	0	0	0	1
1	1	=	1	1	0	1	0

	_	0	1	1)	1	<u>B</u>
	Α	0	0	1	1	В
		0	0	0	0	
	Α	0	0	1	0	B
	•	D	ĺ		D	_
	S	$= \overline{A}.0$	C + Ā	. <mark>B</mark> .D	+ B.C	.D
	53		-		С	_
	_	0	0	0	0	<u>В</u>
	Α	1	0	\land	I _	
			U	0	0	l R
•		1	1	0	1	B
	A	1	Ě			В - В
•	Α	1 1 D	1 1	0	1	В - В

		0	1	0	0	B
	•	0	0	1	0	
	Α	0	0	0	1	I B
		D		D	D	•
	S =		С.Б - \.В.С.		_	_
	S =		.(B.D C.(B		-	
S	= 7	.C.(E	8 ⊗ D)	+ A.	C.(B (≫ D)
Ç	S =	(B⊗	D). (Ā.C +	- A.C)	
		S =	(B ⊗ [D). (A	(⊗C)	

19

- $A_1A_0 < B_1B_0 \Rightarrow$ acende led 1 - $A_1A_0 = B_1B_0 \Rightarrow$ acende led 2
- $-A_1A_0 > B_1B_0 \Rightarrow$ acende led 3

- $S = \overline{A.C} + \overline{A.B.D} + \overline{B.C.D}$
- S2 S = (B \otimes D). (A \otimes C)
- $S3 S = A.\overline{C} + A.B.\overline{D} + B.\overline{C}.\overline{D}$

05/07/2021

Desenhe um circuito com portas lógicas para detectar um número par de chaves ligadas, num conjunto de 5 chaves. Convencionar que chave fechada equivale a nível lógico 0.

Resolução do ex. 8

Dica: A resolução é idêntica da questão 4.

A resposta é: $S = A \oplus B \oplus C \oplus D \oplus E$