HW1 Propositional Equivalence

Truth Table

1. Construct the truth table for each of the following formulae:

a.
$$(q \wedge r) \vee (\neg q \vee \neg r)$$

q	r	q∧r	¬q	⊸r	(¬q∨¬r)	$(q \wedge r) \vee (\neg q \vee \neg r)$
Т	Т	T	F	F	F	T
Т	F	F	F	T	T	T
F	Т	F	T	F	T	T
F	F	F	T	T	T	T

b.
$$(p \lor \neg p) \land (\neg q \land r)$$

р	q	r	¬р	$p \lor \neg p$	$\neg q$	¬q∧r	$(p \lor \neg p) \land (\neg q \land r)$
Т	Т	T	F	T	F	F	F
Т	Т	F	F	T	F	F	F
Т	F	T	F	T	T	T	T
Т	F	F	F	T	T	F	F
F	T	T	T	T	F	F	F
F	T	F	T	T	F	F	F
F	F	T	T	T	T	T	T
F	F	F	T	T	T	F	F

c.
$$q \rightarrow (r \rightarrow (\neg q \land p))$$

р	q	r	$\neg q$	$\neg q \land p$	$r \rightarrow (\neg q \land p)$	$q \rightarrow (r \rightarrow (\neg q \land p))$
Т	T	T	F	F	F	F
Т	T	F	F	F	T	T
Т	F	T	T	T	T	T
Т	F	F	T	T	T	T
F	Т	T	F	F	F	F
F	Т	F	F	F	T	F
F	F	T	T	F	F	T
F	F	F	T	F	T	F

$$d. \ r \wedge ((p \rightarrow \neg r) \wedge (\neg p \rightarrow \neg r))$$

р	r	⊸r	$p \rightarrow \neg r$	¬р	$\neg p \rightarrow \neg r$	$((p \rightarrow \neg r) \land (\neg p \rightarrow \neg r))$	$r \wedge ((p \rightarrow \neg r) \wedge (\neg p \rightarrow \neg r))$
Т	Т	F	F	F	T	F	F
Т	F	T	T	F	T	T	F
F	Т	F	T	T	F	F	F
F	F	Т	T	T	T	T	F

Tautology

1. Show that each of these conditional statement is a tautology by using truth table and by

	a. $(p \land q) \rightarrow p$						
р	q	(p ∧ q)	(p ∧ q)→p				
Т	Т	T	T				
Т	F	F	T				
F	T	F	T				

$$(p \land q) \rightarrow p$$

- 1. $\neg (p \land q) \lor p$
- 2. $(\neg p \lor \neg q) \lor p$
- 3. (¬p∨p) ∨¬q
- 4. T∨¬q
- 5. T

	b	. $(p \wedge q) \rightarrow$	$(p \rightarrow q)$	
р	q	(p ∧ q)	$(p \rightarrow q)$	$(p \land q) \to (p \to q)$
Т	Т	T	T	T
Т	F	F	F	T
F	Т	F	T	T
F	F	F	T	T

$$(p \land q) \rightarrow (p \rightarrow q)$$

- 1. $\neg(p \land q) \lor (\neg p \lor q)$
- 2. $(\neg p \lor \neg q) \lor (\neg p \lor q)$
- 3. $(\neg p \lor \neg p) \lor (\neg q \lor q)$
- $4. \ \neg p \lor T$
- 5. T

Logically equivalent

1. Show that each of these conditional statements are logically equivalent **by using truth table** and **by Proof**

a)
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

р	q	$(p \rightarrow q)$	$\neg(p \rightarrow q)$	¬ q	p ∧ ¬ q
Т	Т	T	F	F	F
Т	F	F	T	T	T
F	Т	Т	F	F	F
F	F	T	F	T	F

$$\neg (p \to q)$$

1.
$$\neg(\neg p \lor q)$$

b)
$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

р	q	¬р	¬ q	(¬p ∧ q)	$(p \lor (\neg p \land q))$	$\neg (p \lor (\neg p \land q)$	$\neg p \land \neg q$
Т	Т	F	F	F	T	F	F
Т	F	F	T	F	T	F	F
F	Т	T	F	T	T	F	F
F	F	T	T	F	F	T	T

$$\neg (p \lor (\neg p \land q))$$

1.
$$\neg p \land \neg (\neg p \land q)$$

$$2. \neg p \wedge (\neg \neg p \vee \neg q)$$

3.
$$\neg p \land (p \lor \neg q)$$

4.
$$(\neg p \land p) \lor (\neg p \land \neg q)$$

5.
$$F \vee (\neg p \wedge \neg q)$$

6.
$$\neg p \land \neg q$$

63106033

- 1. "If I am sick, there will be no lecture today;" "either there will be a lecture today, or all the students will be happy;" "the students are not happy."
 - Translate into logic as: $p \rightarrow \neg q, r \rightarrow q, p, r \lor s, t \rightarrow u$

Step	Reason
1. p → ¬q	Hypothesis
2. ¬p∨	Conditional using (1)
3. q∨r	Hypothesis
4. ¬p∨r	Resolution using (2) and (3)
5. ¬r	Hypothesis
6. ¬р	Disjunctive syllogism using (4) and (5)

The answer is I'm not sick today

- 2. In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humor and love of logical puzzles. In the note he wrote that he had hidden treasure somewhere on the property. He listed 5 true statement and challenged the reader to use them to figure out the location of the treasure
 - a) If this house is next to the lake, then the treasure is not in the kitchen
 - b) If the tree in the front yard is an elm, then the treasure is in the kitchen
 - c) This house is next to a lake
 - d) The tree in the front yard is an elm or the treasure is buried under the flagpole
 - e) If the tree in the back yard is an oak, then the treasure is in the garage

Where is the treasure hidden?

• Translate into logic as: $p \rightarrow \neg q$, $r \rightarrow q$, p, $r \lor s$, $t \rightarrow u$

Step	Reason
1. p	Hypothesis
2. p→ ¬q	Hypothesis
3. ¬q	Modus ponens using (1) and (2)
4. r→ q	Hypothesis
5. ¬r	Modus tollens using (3) and (4)
6. r∨s	Hypothesis
7. s	Disjunctive syllogism using (5) and (6)
8. s∨t	Addition (7)
9. ¬s → t	Conditional using (8)
10. t → u	Hypothesis
11. ¬s → u	Hypothetical syllogism using (9) and (10)

Where is the treasure ? <u>if the treasure is not buried under the flagpole then the treasure is in</u> the garage.

Proof by using Inference rule

1. $\neg p \rightarrow t$, $q \rightarrow s$, $r \rightarrow q$, $\neg (q \lor t) : p$

Step	Reason
1. ¬(q∨t)	Hypothesis
2. ¬q ∧¬ t	De morgen's laws using (1)
3. ¬t	Simplification using (2)
4. ¬p → t	Hypothesis
5. ¬(¬p)	Modus tollens using (3) and (4)
6. p	Double negation law using (5)

2. p. s $\rightarrow \neg r$, $a \lor r$, $a \rightarrow \neg p$, $\therefore \neg s$

Step	Reason
1. q → p	Hypothesis
2. p → ¬q	Conditional statement using (1)
3. p	Hypothesis
4. ¬q	Modus ponens using (2) and (3)
5. q∨r	Hypothesis
6. r	Disjunctive using (4) and (5)
7. s → ¬r	Hypothesis
3. ¬r → ¬s	Conditional statement using (7)
9. ¬s	Modus ponens using (6) and (8)

3. $(p \lor q) \rightarrow r, \neg r \lor s, p \rightarrow \neg s :. \neg p$

Step	Reason
1. p → ¬s	Hypothesis
2. ¬p → ¬s	Conditional statement using (1)
3. ¬r∨s	Hypothesis
4. ¬p∨¬r	Resolution using (2) and (3)
5. (p ∨ q)→r	Hypothesis
6. ¬(p∨q)∨r	Conditional statement using (5)
7. (¬p ∧¬q) ∨ r	De morgen's laws using (6)
8. ¬p ∨(¬p ∧¬q)	Resolution using (4) and (7)
9. ¬p	Absorption laws using (8)