3/10/23, 11:34 AM Print Test

PRINTABLE VERSION

Ouiz 5

You scored 100 out of 100

Ouestion 1

Your answer is CORRECT.

An outline for a proof of an implication $P \Rightarrow Q$ is provided below:

Proposition. $P \Rightarrow Q$

Proof. Suppose $P \Rightarrow Q$ is false.

This means $\neg (P \Rightarrow Q) = P \land \neg Q$ is true.

Missing steps involving P, $\neg Q$, and any previously established facts

Therefore 0=1 (or some similarly weird conclusion) $\Rightarrow \Leftarrow$.

What type of proof was described in the outline?

- a) Wait a minute... The proof described in this outline isn't a valid proof technique!
- b) A proof by contradiction is described in this outline.
- c) A direct proof is described in this outline.
- d) A proof by contrapositive is described in this outline.
- e) A proof by introspection is described in this outline.

Question 2

Your answer is CORRECT.

Suppose a mathematician wants to prove a statement of the form $P \land Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?

- a) \bigcirc Suppose $\neg P$.
- **b)** \bigcirc Suppose $\neg P \land Q$.
- c) Suppose $\neg Q$
- d) \bigcirc Suppose $\neg P \land \neg Q$.
- e) \odot Suppose $\neg P \lor \neg Q$.

Question 3

Your answer is CORRECT.

Given two sets A and B one can prove $A \subseteq B$ by...

- a) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
- **b)** \odot First supposing $x \in A$, and then showing $x \in B$.
- c) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
- d) \bigcirc First supposing $x \in B$, and then showing $x \in A$.

3/10/23, 11:34 AM Print Test

e) \bigcirc First supposing $x \notin B$, and then showing $x \in A$. **Question 4** Your answer is CORRECT. Given two sets A and B one can prove $B \subseteq A$ by... a) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$. **b)** \odot First supposing $x \notin A$, and then showing $x \notin B$. c) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.

Question 5

Your answer is CORRECT.

A lovely little proof is presented below:

d) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.

e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.

Proposition. If 2 + x is odd, then x is odd.

Proof. Suppose 2 + x is even. (We will show x is even.)

By definition of even this means 2 + x = 2m for some $m \in \mathbb{Z}$.

By subtracting 2 from both sides it follows that x = 2m - 2 = 2(m - 1).

Because this expression is even the proof is complete. \square

Determine the type of proof used.

- a) A proof by indoctrination was used.
- **b)** A proof by contradiction was used.
- c) A proof by contrapositive was used.
- d) A direct proof was used.
- e) This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.

Question 6

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. If $A \subseteq X$ and $B \subseteq Y$ then $A \times B \subseteq X \times Y$.

Proof (Direct).

- (1) Suppose $A \subseteq X \land B \subseteq Y$.
- (2) In order to show $A \times B \subseteq X \times Y$ we will let $(a,b) \in A \times B$ and then conclude $(a,b) \in X \times Y$.
- (3) $(a,b) \in A \times B$ means $a \in A \land b \in B$.
- (4) Since $a \in A \subseteq X$ it follows that $a \in X$.
- (5) Since $b \in B \subseteq Y$ it follows that $b \in Y$.
- (6) By Definition of Cartesian Product $(a, b) \in X \times Y$. \square

Identify the mistake, if any, in this proof.

- a) \bigcirc There is an error in Line (2). One is not allowed to just "let" $(a, b) \in A \times B$.
- b) Hey, wait a second... this proof looks completely correct!
- c) \bigcirc There is an error in Line (3). The symbol \land should be \lor .
- d) There is an error in Line (4) where the definition of subset is misused.
- e) There is an error in Line (6) where the definition of Cartesian Product is misused.

Question 7

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. x is a multiple of $3 \iff (x+1)(x+2)-2$ is also a multiple of 3.

Proof. There are two parts or cases to prove.

- $(\Rightarrow Direct)$
- (1) Suppose x = 3m for some $m \in \mathbb{Z}$.
- (2) Since 3 is prime this means x is a multiple of a prime.
- (3) It follows that $(x+1)(x+2) 2 = (x^2 + 3x + 2) 2 = x^2 + 3x = (3m)^2 + 3 \cdot 3m = 9m^2 + 9m = 3(3m^2 + 3m)$, which is a multiple of 3.
- (← By Contradiction)
- (4) For a contradiction suppose (x+1)(x+2)-2 is multiple of 3, but that x is not a multiple of 3.
- (5) Multiplying out this expression and combining like terms tells us (x+1)(x+2)-2= $x^2+3x=3b$ for some $b\in\mathbb{Z}$.
- (6) From this equation we find $x^2 = 3b 3x = 3(b x)$ and so x^2 is a multiple of 3.
- (7) Since x is not a multiple of 3, it follows that x^2 is not a multiple of 3.
- (8) Therefore x^2 is a multiple of 3 and x^2 is not a multiple of 3. $\Rightarrow \Leftarrow$

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only line (3) is not needed. All other lines are needed.
- **b)** Only line (5) is not needed. All other lines are needed.
- c) Only line (4) is not needed. All other lines are needed.
- d) All lines are needed.
- e) Only line (2) is not needed. All other lines are needed.

Ouestion 8

Your answer is CORRECT.

Suppose we want to write a proof by contradiction of the proposition below:

$$\forall a, b, c \in [0, \infty), (ab = c) \Rightarrow (a \le \sqrt{c} \lor b \le \sqrt{c}).$$

3/10/23, 11:34 AM Print Test

Which of the following statements or properties do we need to use when composing this proof?

- a) Suppose ab = c and that either $a > \sqrt{c}$ or $b > \sqrt{c}$.
- **b)** Suppose ab = c and that both $a > \sqrt{c}$ and $b > \sqrt{c}$.
- c) The fact that for real numbers x, y, if x > y then $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$.
- d) The fact that for real numbers x, y, if x > y then $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true. The recursively defined sequence $a_n = a_{n-1} - 1$ with initial conditions $a_0 = \pi$ has negative terms for all $n \ge 4$. Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) This can only be proved by paying someone else to do it for me.
- b) We need only check that the claim is true for one, single natural number.
- c) \odot We need to show the claim is true for an abitrary natural larger than 3, saying something like "Let $n \ge 4$."