Affine combination of two points

Suppose we are given two points \mathbf{p} and \mathbf{q} (assume these are represented by vectors in \mathbf{R}^n). Now a vector from \mathbf{p} to \mathbf{q} is given by $\mathbf{q} - \mathbf{p}$. Now a point \mathbf{z} on the line segment connecting the two points can be found by starting from \mathbf{p} and going some distance in the direction of $\mathbf{q} - \mathbf{p}$ vector (in other words adding a scalar multiple of $\mathbf{q} - \mathbf{p}$ to \mathbf{p}).

$$z = p + \alpha (q - p) = \alpha q + (1 - \alpha)p$$

Now is the scalar multiple α is between 0 and 1 we get any point in the line segment connecting **p** and **q**. In that case, α **q** + (1- α)**p** is called an Convex combination.

In case of convex combination, we can also write,

 $z = \lambda p + (1 - \lambda)q$ where $0 \le \lambda \le 1$, to represent the same point as $z = \alpha q + (1 - \alpha)p$ (just use, $\lambda = 1 - \alpha$)

For example,

Suppose $p = [2 4]^T$ and $q = [16 8]^T$. then

$$\mathbf{z} = 0.25 \; \mathbf{p} + 0.75 \; \mathbf{q} = [0.5 \; 1]^{\mathsf{T}} + [12 \; 6]^{\mathsf{T}} = [12.5 \; 7]^{\mathsf{T}} \; (assume, \; \alpha = 0.7 \; or \; as \; \lambda = 0.3)$$

Now, in case of general affine combination α does not have to be between 0 and 1. What point do we get if $\alpha > 1$ or $\alpha < 0$?