

FIG. ~~4A~~^{2A}

23
FIG. 4B

FIG. 1

3
5
FIG.

Fig. 6.8. Frame transfer in a TDMA system with dual frame and dual cell

FIG. 6.8

CU MONITORS GAPS DURING PLURALITY OF SIGNATURE SEQUENCE FRAMES IN THE AUTHENTICATION INTERVAL AND PERFORMS CORRELATIONS DURING EACH GAP.

196 197
CU COUNTS THE NUMBER OF GAPS IN AUTHENTICATION INTERVAL THAT HAVE ACTIVITY AND COMPARES THAT NUMBER TO THE TOTAL NUMBER OF FRAMES IN THE AUTHENTICATION INTERVAL TO DETERMINE IF THE 50% ACTIVITY LEVEL LIMIT HAS BEEN EXCEEDED.

50% ACTIVITY DETECTED

199 198
CU IDENTIFIES RU FROM SIGNATURE AND BROADCASTS IDENTITY SO DETERMINED.

200
RU WITH IDENTITY BROADCAST BY CU RECOGNIZES ITS IDENTITY IN BROADCAST AND ENTERS FINE TUNING MODE.

202
CU INSTRUCTS RU ON HOW TO ADJUST ITS DELAY IN ORDER TO CENTER THE CORRELATION PEAK IN THE MIDDLE OF THE GAP/GUARDBAND.

GREATER THAN 50% ACTIVITY

204
CU BROADCASTS MESSAGE TO ALL RU'S INSTRUCTING ALL RU'S ATTEMPTING SYNCHRONIZATION TO EXECUTE THEIR COLLISION RESOLUTION PROTOCOLS.

206
EACH RU ATTEMPTING TO SYNCHRONIZE EXECUTES A RANDOM DECISION WHETHER TO CONTINUE ATTEMPTING TO SYNCHRONIZE OR TO STOP, WITH A 50% PROBABILITY OF EITHER OUTCOME.

208
RU'S THAT HAVE DECIDED TO CONTINUE RETRANSMIT THEIR SIGNATURE WITH THE SAME TIMING AS WAS USED ON THE LAST ITERATION

5B
FIG. 7B
TO FIG. 5C

FIG. 7C

CU CONCLUDES IT
MUST ALTER ITS
DELAY VECTOR TO
ALLOW THE FARthest
RU'S TO SYNCHRONIZE
TO THE SAME FRAME
AS THE NEAREST RU'S
AND BROADCASTS A
MESSAGE TO ALL RU'S
INDICATING WHEN AND
BY HOW MUCH IT WILL
ALTER ITS DELAY
VECTOR

248

EACH RU RECEIVES
BROADCAST AND
ALTERS ITS DELAY
VECTOR BY AMOUNT
INSTRUCTED AT TIME
CU ALTERS ITS DELAY
VECTOR

250

EACH RU REINITIATES
SYNCHRONIZATION
PROCESS

7
FIG. 9
PRECURSOR EMBODIMENT

DIGITAL MODEM BLOCK DIAGRAM

FIG. 1

FIG. 12

FIG. 13

15
FIG. ~~17~~

FIG. 18

FIG. 13

16
FIG. 20

PREFERRED TRELLIS ENCODER

FIG. 42

17

MAPPING FOR FALL-BACK MODE - LSB'S

21
FIG. 43

FIG. 21

CODE	INPHASE	QUADRATURE	
0000	111	111	= -1 -
0001	001	111	= 1 -
0010	001	001	= 1 +
0011	111	001	= -1 +
0100	011	111	= 3 -
0101	001	011	= 1 + 3*
0110	101	001	= -3 +
0111	111	101	= -1 - 3*
1000	011	011	= +3 + 3*
1001	101	011	= -3 + 3*
1010	101	101	= -3 - 3*
1011	011	101	= 3 - 3*
1100	111	011	= -1 + 3*
1101	101	111	= -3 -
1110	001	101	= 1 - 3*
1111	011	001	= 3 +

19
FIG. 22

INFORMATION
VECTOR [B]
FOR EACH
SYMBOL

ORTHOGONAL
CODE MATRIX

$$\begin{array}{l}
 483 \xrightarrow{\quad} \left[\begin{array}{l} 0110 \\ 1111 \\ 1101 \\ 0100 \\ \vdots \\ \vdots \end{array} \right] \\
 481 \xrightarrow{\quad} \left[\begin{array}{l} \end{array} \right] \times \left[\begin{array}{cccc} c_{1,1} & c_{1,2} & \cdots & c_{1,144} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,144} \\ \vdots & \vdots & & \vdots \end{array} \right]
 \end{array}$$

20 A

FIG. 20A

REAL
PART OF
INFO
VECTOR
[b] FOR
FIRST
SYMBOL

REAL
PART OF
RESULT
VECTOR

$$405 \xrightarrow{\quad} \left[\begin{array}{l} +3 \\ -1 \\ -1 \\ +3 \end{array} \right] \cdot \left[\begin{array}{l} 1 1 1 1 \\ -1 -1 1 1 \\ -1 1 -1 1 \\ -1 1 1 -1 \end{array} \right] = \left[\begin{array}{l} 4 \\ 0 \\ 0 \\ -8 \end{array} \right] \xrightarrow{\quad} 409$$

$$\left[b_{\text{REAL}} \right] \times \left[\text{CODE MATRIX} \right] = \left[R_{\text{REAL}} \right] = \text{"CHIPS OUT" ARRAY-REAL}$$

20 B

FIG. 20B

LSBS $y_1 y_0$	PHASE	$1+jQ$
00	0	$3-j$
01	90	$1+j3$
10	180	$-3+j$
11	-90	$-1-j3$

MSBs y3 y2	PHASE difference (2nd-1st symbol)	1+jQ WHEN LSB=00	1+jQ WHEN LSB=01	1+jQ WHEN LSB=10	1+jQ WHEN LSB=11
00	0	3-j	1+j3	-3+j	-1-j3
01	90	1+j3	-3+j	-1-j3	3-j
10	180	-3+j	-1-j3	3-j	1+j3
11	-90	-1-j3	3-j	1+j3	-3+j

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 42

FIG. 24

FIG. 25

FIG. 35

EMBODIMENT 2 CARRIER RECOVERY

FIG. 27

DIGITAL MODEM BLOCK DIAGRAM

29
FIG. 26


```

    graph TD
        FD[405 MHz FRAME DETECTOR] --> CPU[CPU]
        CPU --> FD
        CPU --> FD762[762 MHz FRAME DETECTOR]
        FD762 --> LOGIC[LOGIC]
        LOGIC --> CONTROL[CONTROL SECTION]
    
```


FIG. 84 31

FIG. 27 3³ RU / CU (LAT, HOP)
SEED, TSS, R1

FIG. 39 35

36
FIG. 40

37
FIG. 41

FINE TUNING
TO CENTER
BARRIER CODE

FIG. 27³⁸

FIG. 28B

39

FIG. 28C

40

FIG. 28D

41

RU RANGING

FIG. 29

CLUSTERING & CONTENTION RESOLUTION

RANGING AND CONTENTION RESOLUTION

COLLISION

FIG. 31 ~~48~~

CONTENTION RESOLUTION - RU
USING BINARY STACK

FIG. 33 49
112

RANGING - RU SIDE
BINARY TREE
ALGORITHM

FIG. 32

FIG. 31

50

FIG. 52

51

STATE MACHINE

FIG. 53

52

PREPARATIVE
EQUALIZATION
TRAINING ALGORITHM

UPSTREAM
EQUALIZATION

FIG. 45B

53B

DOWNSTREAM
EQUALIZATION

FROM FIG. 45B

54c
FIG. 45C

53c

FIG. 48

SIMPLE Cu SPREAD SPECTRUM RECEIVER

FIG. 50

56

SIMPLE RU SPREAD SPECTRUM TRANSMITTER

57 58 59

५६

RV

SYNCHRONOUS TDMA SYSTEM

FIG. 54

54
57

OFFSET	1B ASIC		2A ASIC	
(Chips)	RGSRH	RGSRL	RGSRH	RGSRL
0	0x0000	0x8000	0x0001	0x0000
1/2	0x0000	0xC000	0x0001	0x8000
1	0x0000	0x4000	0x0000	0x8000
-1	0x0001	0x0000	0x0002	0x0000

FIG. 58

Training Algorithm

FIG. 59

Initial 2-Step Training Algorithm

2-STEP INITIAL EQUALIZATION TRAINING

FIG. 60

EQ Stability Check

Note: $Thrld_{coeff} = 7F00H$ $Thrld_{stable} = 10^{-3}$

FIG. 61

Periodic 2-Step Training Algorithm

FIG. 62

RACM Correction

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

EQ Convergence Check

Note: $Thrlid_{converge} = 10^{-5}$

FIG. 64

Power Alignment Flow Chart

Note: $TH = 600H$
 $N = 12$

FIG. 65

FIG. 66

Total Turn Around (TTA) in frames = Offset

FIG. 67

FIG. 68

Figure 3.1: Frame start propagation along the channel

FIG. 69

~~CONFIDENTIAL~~ Control message (downstream) and function (upstream) propagation in a 3 frames TTA channel

FIG. 70

Center of gap no. 1

Figure 3.4. Overall view of the CU sensing windows in a "boundless ranging" algorithm

FIG. 71

Chip\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	...	0
2	1	0	0	1	1	1	1	...	
3	0	0	0	1	1	1			
4	0	0	0	1	0	0	0	...	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	...	

FIG. 72

UP
EQUALIZATION

CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1116

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1118

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT(COEFFICIENT) ADJUSTMENTS.

1120

TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO.

1122

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

1124

CONVOLVED SE CIRCUIT RECEIVES FINAL FFE & DFE WITH OLD COEFFICIENTS INTO PRECODE FFE/DFE FILTER IN COEFFICIENTS TRANSMITTER AND LOAD NEWLY

TRANSPARENCY
VALUES

CALCULATED COEFFICIENTS INTO RU XMTR PRECODE FILTER

CU SETS COEFFICIENTS OF PRE 765 AND DFE 820 TO ONE FOR RECEPTION OF UPSTREAM PAYLOAD DATA.

TO FIG. 45B

FIG. 45B

53B

FAXED TO
DI MUELLER
10/25/00
(909) 596-3733

DOWNSTREAM
EQUALIZATION

FROM FIG. 45B

1128

CU SENDS EQUALIZATION TRAINING DATA TO RU SIMULTANEOUSLY ON 8 CHANNELS SPREAD ON EACH CHANNEL BY ONE OF THE FIRST 8 ORTHOGONAL CYCLIC CODES MODULATED BY BPSK.

1130

RU RECEIVER RECEIVES EQUALIZATION TRAINING DATA IN MULTIPLE ITERATIONS AND USES LMS 830, FFE 765, DFE 820 AND DIFFERENCE CALCULATION CIRCUIT 832 TO CONVERGE ON PROPER FFE AND DFE TAP WEIGHT COEFFICIENTS.

1132

AFTER CONVERGENCE, CPU READS FINAL TAP WEIGHT COEFFICIENTS FOR FFE 765 AND DFE 820 AND LOADS THESE TAP WEIGHT COEFFICIENTS INTO FFE/DFE CIRCUIT 764; CPU SETS FFE 765 AND DFE 820 COEFFICIENTS TO INITIALIZATION VALUES.

CONVOLVES THESE SE FILTER TAP WEIGHTS WITH THE OLD FILTER TAP WEIGHTS OF THE FFE AND DFE FILTERS OF THE CE CIRCUIT 764 AND LOADS THE NEWLY CALCULATED TAP WEIGHTS INTO THE FFE AND DFE FILTERS OF THE CE CIRCUIT

FIG. 45C

530

Initial 2-Step Training Algorithm

2-STEP INITIAL EQUALIZATION TRAINING

FIG. 60