1.14. Exercises

EXERCISE 1.1. – Conversions

- 1) Convert the following numbers to binary:
 - a) 37_{10} b) 15_{10} c) 187_{10} d) 2014_{10} e) 2016_{10} f) 2.75_{10}
 - g) 25.25₁₀ h) 243.3125₁₀ i) 0.0625₁₀ j) 62₈ k) 277₈ l) 12.6₈
 - m) 476.35_8 n) 92_{16} o) $37FD_{16}$ p) $7FF_{16}$ q) $1A6_{16}$ r) $2C0_{16}$
 - s) $1F.C_{16}$ t) $9.F_{16}$ u) $A7.EC_{16}$
- 2) Convert the following numbers to decimal:
 - a) 10110₂ b) 10001₂ c) 10001101₂ d) 100100001001₂ e) 1111010111₂
 - f) 1011.101₂ g) 10011011001.10110₂ h) 30₈ i) 115₈ j) 55.4₈
 - k) 270.54_8 l) 356_{16} m) $2AF_{16}$ n) $2C1_{16}$ o) $10FF_{16}$
 - p) $1FCFA_{16}$ q) $DADA.C_{16}$ r) $F.4_{16}$ s) $EBA.C_{16}$
- 3) Convert the following numbers to hexadecimal:
 - a) 320_{10} b) $6\ 861_{10}$ c) $65\ 535_{10}$ d) 100_8 e) 62.4_8 f) 500.25_8
 - g) 10001101₂ h) 1001000110100011110₂ i) 10000.1₂
 - j) 1000000.0000111₂ k) 1000111001.01₂
- 4) Convert the following BCD numbers to decimal:
 - a) $0001\ 1000\ 0100_{BCD}$ b) $0100\ 1001\ 0010_{BCD}$
 - c) $1001\ 0111\ 0101\ 0010_{BCD}$ d) $0111\ 0111\ 0111\ 0101_{BCD}$
- 5) How many bits are required for the binary representation of the decimal numbers from 0 to 511?
- 6) What is the largest number that can be represented in 16-bit binary numeration system?

1.15. Solutions

SOLUTION 1.1.— Conversions

- 1) Conversions to binary representation
 - a) $37_{10} = 100101_2$
 - b) $15_{10} = 1111_2$
 - c) $187_{10} = 10111011_2$
 - d) $2\ 014_{10} = 111110111110_2$
 - e) $2\ 016_{10} = 2^{11} 2^5 = 111111100000_2$
 - f) $2.75_{10} = 10.11_2$
 - g) $25.25_{10} = 11001.01$
 - h) $243.3125_{10} = 11110011.0101_2$
 - i) $0.0625_{10} = 0.0001_2$
 - j) $62_8 = 110010_2$
 - k) $277_8 = 101111111_2$
 - 1) $12.6_8 = 1010.11_2$
 - m) $476.35_8 = 1001111110.011101_2$
 - n) $92_{16} = 10010010_2$
 - o) $37FD_{16} = 1101111111111101_2$
 - p) $7FF_{16} = 111111111111_2$
 - q) $1A6_{16} = 110100110_2$
 - r) $2C0_{16} = 1111000000_2$
 - s) $1F.C_{16} = 11111.11_2$
 - t) $9.F_{16} = 1001.1111_2$
 - u) $A7, EC_{16} = 10100111.111011_2$
- 2) Conversion to decimal representation
 - a) $10110_2 = 22_{10}$
 - b) $10001_2 = 17_{10}$
 - c) $10001101_2 = 141_{10}$
 - d) $100100001001_2 = 2313_{10}$

- e) $11110101111_2 = 983_{10}$
- f) $1011.101_2 = 11.625_{10}$
- g) $10011011001.10110_2 = 1241.6875_{10}$
- h) $30_8 = 36_{10}$
- i) $115_8 = 77_{10}$
- j) $55.4_8 = 45.5_{10}$
- k) $270.54_8 = 184.6875_{10}$
- 1) $356_{16} = 854_{10}$
- m) $2AF_{16} = 687_{10}$
- n) $2C1_{16} = 705_{10}$
- o) $10FF_{16} = 4351_{10}$
- p) $1FCFA_{16} = 130298_{10}$
- q) $DADA.C_{16} = 56026.75_{10}$
- r) $F.4_{16} = 15.25_{10}$
- s) $EBA.C_{16} = 3770.75_{10}$
- 3) Conversion to hexadecimal representation
 - a) $320_{10} = 140_{16}$
 - b) $6.861_{10} = 1ACD_{16}$
 - c) $65\ 535_{10} = 16^4 1 = FFFF_{16}$
 - d) $100_8 = 40_{16}$
 - e) $62.4_8 = 32.8_{16}$
 - f) $500.25_8 = 140.54_{16}$
 - g) $10001101_2 = 8D_{16}$
 - h) $10010001101000111110_2 = 48D1E_{16}$
 - i) $10000.1_2 = 10.8_{16}$
 - j) $1000000.0000111_2 = 40.0E_{16}$
 - k) $1000111001.01_2 = 239.4_{16}$

- 4) BCD Decimal conversion
 - a) $0001\ 1000\ 0100_{BCD} = 184_{10}$
 - b) $0100\ 1001\ 0010_{BCD} = 492_{10}$
 - c) $1001\ 0111\ 0101\ 0010_{BCD} = 9\ 752_{10}$
 - d) 0111 0111 0111 0101 $_{BCD} = 7775_{10}$
- 5) How many bits are required for the binary representations of the decimal numbers from 0 to 511?

With k bits, only the decimal numbers from 0 to $2^k - 1$ can be represented. Thus:

$$2^k - 1 = 511$$
 and $k = \log(512)/\log(2) = 9$

6) What is the largest number that can be represented in 16 bit binary numeration?

The largest number that can be represented in 16 bits binary numeration system is $2^{16} - 1 = 65.535$.