

HWT905-CAN 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: HWT905-CAN

描 述: 9 轴姿态角度传感器

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

传感器生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期: 2019.09.02

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	陈恒钊	20190408
V1.1	修改参数	李钟焕	20190902

目录

1	产品村	既述	5	, -
2	性能	参数		; -
3	产品/	尺寸	(单位 mm)) -
4	线色耳	功能	6) -
5	轴向证	说明	-	
6	硬件证	き 接フ	方法 7	7 _
	6.1	CAN	N 接口连接线路图	7 _
7	软件值	使用フ	方法 7	7 _
	7.1	基本	·使用方法	7 _
	7.2	恢复	〔出厂设置 10) -
	7.3	模块	-校准11	
	7	.3.1	加计校准11	
	7	.3.2	磁场校准 13	; -
	7	.3.3	Z 轴归 0	5 -
	7	.3.4	高度置零 15	5 -
	7	.3.5	陀螺仪自动校准15	; -
	7.4	设置	· 回传内容 16	•
	7.5	设置	· 回传速率 16	<u>,</u>
	7.6	记录	数据17	7 _
	7.7	系统	6设置 18	} -
	7.8	安装	方向 19) _
	7.9	睡眠	· B. D. A. P. B.) _
	7.10	测量	世带宽设置 20) -
	7.11	九轴	1算法与六轴算法20) -
	7.12	固件	-升级21	
8	CAN	通信	协议 22	! -
	8.1	模块	·至上位机: 22	! -
	8	.1.1	时间输出:22	<u> </u>

		8.1.2	加速度输出:	22 -
		8.1.3	角速度输出:	22 -
		8.1.4	角度输出:	23 -
		8.1.5	磁场输出:	23 -
	8.2	上位	机至模块	23 -
		8.2.1	寄存器地址表	24 -
		8.2.2	保持配置	25 -
		8.2.3	设置校准	25 -
		8.2.4	设置安装方向	25 -
		8.2.5	休眠与解休眠	25 -
		8.2.6	算法转换	26 -
		8.2.7	陀螺仪自动校准	26 -
		8.2.8	设置回传内容	26 -
		8.2.9	设置回传速率	27 -
		8.2.10	设置 X 轴加速度零偏	27 -
		8.2.11	设置 Y 轴加速度零偏	28 -
		8.2.12	设置 Z 轴加速度零偏	28 -
		8.2.13	设置 X 轴角速度零偏	28 -
		8.2.14	设置 Y 轴角速度零偏	28 -
		8.2.15	设置 Z 轴角速度零偏	28 -
		8.2.16	设置 X 轴磁场零偏	29 -
		8.2.17	设置 Y 轴磁场零偏	29 -
		8.2.18	设置 Z 轴磁场零偏	29 -
		8.2.19	设置 LED 指示灯	29 -
9	应月	月领域		30 -

1 产品概述

- ◆ 模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进的动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度静态 0.05 度,动态 0.1 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 高抗震性能: >3500g, IP67 防护等级
- ◆ 宽温工作: -40~+85℃

2 性能参数

- 1、电压: 9V~36V
- 2、电流: <40mA
- 3、体积: 55mm X 36.8mm X 24mm
- 4、测量维度: 加速度: 3维, 角速度: 3维, 磁场: 3维, 角度: 3维
- 5、量程:加速度:±6 g (可选),角速度:±250/500/1000/2000°/s (可选), x/z 轴角度±180°, y 轴角度±90°。
- 6、稳定性:加速度: 0.01g,角速度 0.05°/s。
- 7、姿态测量稳定度: 0.01°。
- 8、数据输出内容:时间、加速度、角速度、角度、磁场
- 9、数据输出频率 0.1Hz~200Hz。
- 10、数据接口: CAN 接口(波特率 250K)

3 产品尺寸(单位 mm)

4 线色功能

线色	红色	黄色	绿色	黑色
	RED	YELLOW	GREEN	BLACK
功能	VCC 9-36V 供电电源正极	CANH	CANL	GND 电源负极

5 轴向说明

如上图所示,模块的轴向在上图标示出来,向右为 X 轴,向上为 Y 轴,垂直于纸面

向外为 Z 轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。X 轴角度即为绕 X 轴旋转的角度,Y 轴角度即为绕 Y 轴旋转的角度,Z 轴角度即为绕 Z 轴旋转的角度。

6 硬件连接方法

6.1 CAN 接口连接线路图

7 软件使用方法

7.1 基本使用方法

注意,上位机无法运行的用户请下载安装.net framework4.0:

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

通过 USB 转 CAN 模块连接上电脑,打开上位机,安装好串口模块对应的 CH340 驱动以后,可以在设备管理器中查询到对应的端口号, 如图所示:

串口驱动程序为 CH340, 如下:

https://pan.baidu.com/s/1NO0Ahv7DQPr-XljNgKYiUA (提取码: lkjr)

设备连接好后,打开 CANComputerProgram. exe 软件(在【资料包/上位机】中); 点击"设置波特率",波特率选择 230400(出厂默认值),模块类型选择 Can,点击 "设置"。如下图所示:

设置完成后,点击"确定",如下图:

在上位机界面左侧,勾选对应的端口和设备,软件上即可出现数据。

如下图所示,点击选择设备,然后点击"数据图表":

弹出数据图表窗口,如下图所示:

选中设备后,点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。如下图 所示:

7.2 恢复出厂设置

先选中设备, 然后点击"配置", 在弹出的窗体中点击"恢复设置", 如下图所示:

7.3 模块校准

注意:模块校准和配置要在上位机配置栏右下角显示在线(online)状态下进行,如下图所示,离线说明上位机没有控制到模块。

模块使用前,需要对模块进行校准。HWT901B-CAN 模块的校准包括加计校准、磁场校准。 六轴模式校准包括 Z 轴归 0、加计校准。

7.3.1 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

加计校准方法如下:

- 1.首先使模块保持水平静止,点击"配置"栏里的加速度,会弹出一个校准界面。
- 2.把自动计算选项勾上,上位机会自动计算加速度零偏值,再点击写入参数。

点击上位机左侧"数据"可以看到角度数据如下图所示:

 $1\sim2$ 秒后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0 ° 左右。校准后 XY 轴角度就更精确了。

注意: Z轴水平静止的时候是有1个G的重力加速度的。

7.3.2 磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角 Z 轴角度测量的准确性。

磁场校准方法如下:

1.校准时,先连接好模块和电脑,将模块放置于远离干扰磁场的地方(**即远离磁和铁等物质 20CM 以上**),再打开上位机软件。

2. 在"配置"页面中,点击校准栏下的"磁场"按钮,就可以进入磁场校准模式。

3. 这时弹出磁场校准窗口,在此窗口下勾选"开始校验"。

4. 然后**缓慢绕三个轴转动**模块,让数据点在三个平面内画点,可以多转几圈,等画出 比较规则的椭圆以后,就可以停止校准了。校准完成后点击"写入参数"。

注意:数据点尽量在椭圆以内,不能在椭圆外面,如果不能画出椭圆,请远离磁场干扰,再参考校准视频,把模块放在地球磁场南北轴线上缓慢转圈。

校准视频: https://pan.baidu.com/s/1kVN0EZP

7.3.3 Z轴归0

注意: Z 轴归 0 只对 JY61P 有效。

HWT901B-CAN 的 Z 轴角度是绝对角度,以东北天为坐标系,不能相对归 0。

Z 轴归 0 是使模块 Z 轴角度初始状态为相对 0 度角,模块使用前和 Z 轴漂移较大的情况下可以进行 Z 轴归 0 校准,模块上电时 Z 轴会自动归 0。

上位机 Z 轴归 0 方法如下: 首先模块静止放置,点击配置打开配置栏,在配置栏里面的"Z 轴角度置零"选项,模块数据栏里面可以看到 Z 轴角度回到 0° 。

7.3.4 高度置零

高度置零是对模块输出的高度进行归0的操作。模块的高度输出是根据气压计算出来的,高度归0操作就是将当前气压值作为零高度位置进行计算。操作方法是点击配置栏里的"高度"选项即可。只有带气压模块(JY901B、JY61PB)才有高度输出。

7.3.5 陀螺仪自动校准

陀螺仪校准是校准角速度, 传感器默认是有进行校准的。 只有当模块是匀速旋转的情况下,可以把陀螺仪自动校准去掉。

7.4 设置回传内容

设置方法:数据回传的内容可以根据用户需要进行定制,点击配置选项栏,在需要输出的数据内容前面打钩即可。以 HWT901B-CAN 为例,模块默认输出为加速度、角速度、角度、磁场。

7.5 设置回传速率

设置方法:点击上位机配置选项,在配置栏里选择回传速率 0.1~200HZ 可选。模块默认的回传速率是 10Hz,回传的速率最高支持 200Hz。

10HZ 指的是 1S 回传 10 个数据包,按默认回传 1 个数据包是 11 个字节。

- 16 -

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

7.6 记录数据

传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。

使用方法:点"记录数据"按钮开始记录(将数据保存为文件),点"保存数据"结束记录,并弹出选择保存路径的窗口。

保存的文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴向上的加速度, wx wy wz 分别表示 x y z 三个轴向上的角速度,Anglex Angley Anglez 分别表示 x y z 三个轴向的角度,T 代表时间,hx hy hz 分别表示 x y z 三个轴向上的磁场。

7.7 系统设置

点击菜单栏中的"系统设置",如下图:

弹出的窗口如下所示:

例如:若"数据库类型"选择的是 Excel,则"记录数据"功能会生成对应的 Excel 文件, Excel 文件保存在 CANComputerProgram 文件夹里的 Data 文件夹中。如下图所示: (注:"记录数据"功能请参考 7.6 章。)

7.8 安装方向

模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。 垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面 "安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。

7.9 睡眠及解睡眠

睡眠:模块暂停工作,进入待机状态。睡眠后可以降低功耗。

解睡眠:模块从待机状态进入工作状态。

使用方法:模块默认为工作状态,在上位机配置栏里面点击"睡眠"选项,进入睡眠状态,再点击"睡眠"选项,模块解除睡眠。

7.10 测量带宽设置

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。 使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为20HZ。

7.11 九轴算法与六轴算法

JY61P 用的是 6 轴算法, Z 轴角度主要是根据角速度积分解算的。

HWT901B-CAN 用的是 9 轴算法, Z 轴角度主要是根据磁场解算的, 不会有漂移现象。 当 901 使用环境有磁场干扰时,可以尝试用 6 轴算法检测角度。

九轴算法转 6 轴算法使用方法:在上位机配置栏里吧算法改成"Axis6",再进行加计校准和 Z 轴归零校准。校准完成后就可以正常使用了。

注意: 这里只能是 HWT901B-CAN 可以进行算法转换,系统默认为 9 轴算法。JY61P 是不能进行算法转换的。

7.12 固件升级

点击"帮助"栏下的"固件升级",如下图所示:

在弹出的窗口中选择固件,然后点击"升级":

弹出系统提示,点击确定,完成后提示"升级完成!",如下图:

注意: 若升级失败则多试几次,升级完成后重新上电即可使用。

8 CAN 通信协议

电平: CAN 电平 (波特率: 250K)

8.1 模块至上位机:

8.1.1 时间输出:

0x55 0x50 YY MM DD HH MM SS

YY:年,20YY年

MM: 月

DD: 日

HH: 时

MM:分

SS: 秒

8.1.2 加速度输出:

0x55 0x51 AxL AxH AyL AyH AzL A	AzH	AzL	AyH	AyL	AxH	AxL	0x51	0x55	
---------------------------------	-----	-----	-----	-----	-----	-----	------	------	--

计算方法:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

 a_z =((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、 每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下:假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:Data=(short)(DataH<<8|DataL)。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

 $\underline{\text{http://www.openedv.com/forum.php?mod=viewthread\&tid=79352\&page=1\&extra=\#pid450195}$

8.1.3 角速度输出:

计算方法:

 $w_x = ((wxH \le 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_v = ((wyH \le 8)|wyL)/32768*2000(°/s)$

 $w_z = ((wzH \le 8)|wzL)/32768*2000(^{\circ}/s)$

8.1.4 角度输出:

|--|

计算方法:

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y轴)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块,如下图所示向左为 X 轴,向前为 Y 轴,向上为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为为 z-y-x,即先绕 z 轴转,再绕 y 轴转,再绕 x 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X, 在表示姿态的时候,俯仰角(Y轴)的范围只有±90度,超过90度后会变换到小于90度,同时让 X轴的角度大于180度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动, X 轴的角度 也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

8.1.5 磁场输出:

$\begin{vmatrix} 0x55 & 0x54 & HxL & HxH & HyL & HyH & HzL & HzH \end{vmatrix}$

计算方法:

磁场 (x 轴) Hx=((HxH<<8)|HxL)

磁场 (y 轴) Hy=((HyH <<8)| HyL)

磁场 (z 轴) Hz =((HzH<<8)| HzL)

8.2 上位机至模块

协议格式: AT+ID(模块本身 ID)+Length+DATA+<LF>

(〈LF〉是回车符,即 OXOD OXOA, DATA 为要发送的数据,Length 为 DATA 的长度)

例如: 传感器 CAN 的 ID 是 0x50 的标准帧,要对此模块设置 ID 为 0x51 的标准值,则 发送的内容为:

0x41 0x54	0x0A 0x00 0x00 0x00	0x05	0xFF 0xAA 0x1A 0x51 0x00	0x0D 0x0A
AT	ID	Length	DATA	<lf></lf>

1、其中 ID 的说明: 4Byte 组成 32 位的数据, 高位在前

Bit31-Bit21	Bit20-Bit3	Bit2	Bit1	Bit0
标准帧 id,扩展	扩展帧后 18 位	1表示扩展帧	1表示远程帧	固定是 0
帧 id 前 11 位		0表示标准帧	0表示数据帧	

(注:远程帧数据长度应为0位)

2、其中 DATA 的格式为:

0xFF	0xAA	Adress	DataL	DataH	
UALL	UALLI	7101033	Datab	Datair	

说明:

出厂默认设置使用 CAN 接口,波特率 250K,帧率 10Hz。配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。

8.2.1 寄存器地址表

地址	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	RSW	回传数据内容
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X轴加速度零偏
0x06	AYOFFSET	Y轴加速度零偏
0x07	AZOFFSET	Z轴加速度零偏
0x08	GXOFFSET	X轴角速度零偏
0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏
0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x1a	CANADDR	CAN 地址
0x1b	LEDOFF	关闭 LED 指示灯
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	HY	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度

0x40	TEMP	模块温度
0x45	PressureL	气压低字
0x46	PressureH	气压高字
0x47	HeightL	高度低字
0x48	HeightH	高度高字
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3

8.2.2 保持配置

0xFF	0xAA	0x00	SAVE	0x00

SAVE: 设置

0: 保持当前配置

1: 恢复默认(出厂)配置并保存

8.2.3 设置校准

0xFF	0xAA	0x01	CALSW	0x00
0.11	0.11 11 1	0.101	01120	0.1200

CALSW: 设置校准模式

0: 退出校准模式

1: 进入加速度计校准模式

2: 进入磁场校准模式

3: 高度置 0

8.2.4 设置安装方向

	0xFF	0xAA	0x23	DIRECTION	0x00
ı	V.111 1	V	U.I.	DITE OF TOTAL	0.1.00

DIRECTION:设置安装方向 0:设置为水平安装

1: 设置为垂直安装

8.2.5 休眠与解休眠

0xFF	0xAA	0x22	0x01	0x00
------	------	------	------	------

发送该指令模块进入休眠(待机)状态,再发送一次,模块从待机状态进入工作状态。

8.2.6 算法转换

0xFF	0xAA	0x24	ALG	0x00

ALG: 九轴算法与六轴算法设置

0: 设置成 9 轴算法1: 设置成 6 轴算法

8.2.7 陀螺仪自动校准

0xFF	0xAA	0x63	GYRO	0x00

GYRO: 陀螺仪校准设置

0: 选择陀螺仪自动校准

1: 去掉陀螺仪自动校准

8.2.8 设置回传内容

0xFF	0xAA	0x02	RSWL	RSWH

RSWL 位定义

位	7	6	5	4	3	2	1	0
名称	0x57 包	0x56 包	0x55 包	0x54 包	0x53 包	0x52 包	0x51 包	0x50 包
默认值	0	0	0	1	1	1	1	0

RSWH 位定义

位	7	6	5	4	3	2	1	0
名称	X	X	X	X	X	0x5A 包	0x59 包	0x58 包
默认值	0	0	0	0	0	0	0	0

X为未定义名称。

0x50 包: 时间信息包

0: 不输出 0x50 数据包

1: 输出 0x50 数据包

0x51包:加速度信息包

0: 不输出 0x51 数据包

1: 输出 0x51 数据包

0x52 包: 角速度信息包

0: 不输出 0x52 数据包

1: 输出 0x52 数据包

0x53 包:角度信息包

0: 不输出 0x53 数据包

1: 输出 0x53 数据包

0x54包:磁场信息包

0: 不输出 0x54 数据包

1: 输出 0x54 数据包

0x55 包:端口状态

0: 不输出 0x55 数据包

1: 输出 0x55 数据包

0x56 包: 气压&高度包

0: 不输出 0x56 数据包

1: 输出 0x56 数据包

0x57 包: 经纬度包

0: 不输出 0x57 数据包

1: 输出 0x57 数据包

0x58 包: 地速数据包

0: 不输出 0x58 数据包

1: 输出 0x58 数据包

0x59包:四元素输出包

0: 不输出 0x59 数据包

1: 输出 0x59 数据包

0x5A:卫星定位精度

0: 不输出 0x5A 数据包

1: 输出 0x5A 数据包

8.2.9 设置回传速率

RATE: 回传速率

0x01: 0.1Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz (默认)

0x07: 20Hz

0x08: 50Hz

0x09: 100Hz

0x0a: 125Hz

0x0b: 200Hz

0x0c: 单次输出

设置完成以后需要点保存配置按钮,再给模块重新上电后生效

8.2.10 设置 X 轴加速度零偏

	0xFF	0xAA	0x05	AXOFFSETL	AXOFFSETH
--	------	------	------	-----------	-----------

AXOFFSETL: X 轴加速度零偏低字节 AXOFFSETH: X 轴加速度零偏高字节

AXOFFSET= (AXOFFSETH <<8) | AXOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

8.2.11 设置 Y 轴加速度零偏

0xFF 0xAA 0x06 AYOFFSETL AYOFFSETH

AYOFFSETL: Y 轴加速度零偏低字节 AYOFFSETH: Y 轴加速度零偏高字节

AYOFFSET= (AYOFFSETH <<8) | AYOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

8.2.12 设置 Z 轴加速度零偏

0xFF 0xAA 0x07 AZOFFSETL AZOFFSETH

AZOFFSETL: Z 轴加速度零偏低字节 AZOFFSETH: Z 轴加速度零偏高字节

AZOFFSET= (AZOFFSETH <<8) | AZOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

8.2.13 设置 X 轴角速度零偏

0xFF 0xAA 0x08 GXOFFSETL GXOFFSETH

GXOFFSETL: X 轴角速度零偏低字节

GXOFFSETH: X 轴角速度零偏高字节

GXOFFSET= (GXOFFSETH <<8) | GXOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

8.2.14 设置 Y 轴角速度零偏

0xFF 0xAA 0x09 GYOFFSETL GYOFFSETH

GYOFFSETL: Y轴角速度零偏低字节 GYOFFSETH: Y轴角速度零偏高字节

GYOFFSET= (GYOFFSETH <<8) | GYOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

8.2.15 设置 Z 轴角速度零偏

0xFF | 0xAA | 0x0A | GXOFFSETL | GXOFFSETH

GZOFFSETL: Z 轴角速度零偏低字节 GZOFFSETH: Z 轴角速度零偏高字节

GZOFFSET= (GZOFFSETH <<8) | GZOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

8.2.16 设置 X 轴磁场零偏

0xFF 0xAA 0x0b HXOFFSETL HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

8.2.17 设置 Y 轴磁场零偏

0xFF 0xAA 0x0c HXOFFSETL HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

8.2.18 设置 Z 轴磁场零偏

0xFF 0xAA 0x0d HXOFFSETL HXOFFSETH

HXOFFSETL: Z 轴磁场零偏低字节 HXOFFSETH: Z 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,磁场的输出值为传感器测量值减去零偏值。

8.2.19 设置 LED 指示灯

0xFF 0xAA 0x1b LEDOFF 0x00

LEDOFF: 关闭 LED 指示灯

0x01: 关闭 LED 指示灯 0x00: 开启 LED 指示灯

设置完成以后需要点保存配置按钮,再给模块重新上电后生效。

9 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

HWT901B-CAN 姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦