Übungen zu Analysis 2, 9. Übung 21. 5. 2019

81. Zeigen Sie, dass auf der Nullstellenmenge der Funktion

$$f(x,y) = e^y + y^3 + x^3 + x^2 - 1$$

lokal y als Funktion g(x) dargestellt werden kann und berechnen Sie g'(x) als Funktion von (x, y), (x, y) in der Nullstellenmenge von f.

82. Zeigen Sie dass sich das Gleichungssyst.

$$xu + yvu^2 = 2$$
$$xu^3 + y^2v^4 = 2$$

lokal um (1,1,1,1) nach u,v lösen lässt und berechnen Sie $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$

83. Zeigen Sie, dass durch

$$f(x,y) = \begin{pmatrix} \frac{x^4 + y^4}{x} \\ \sin x + \cos y \end{pmatrix}$$

lokal um $(\pi/2, \pi/2)$ ein Diffeomorphismus definiert wird.

Berechnen Sie die Extremalstellen und Extremalwerte der Funktion f unter der (den) gegebenen Nebenbedingung(en) mithilfe Lagrange'scher Multiplikatoren:

84. $f(x,y) = x^2 y; \quad \text{NB.: } x^2 + 2y^2 = 6.$

85. $f(x, y, z) = x^2 + y^2 + z^2; \quad \text{NB.: } x^4 + y^4 + z^4 = 1$

86. $f(x,y) = \sqrt{6 - x^2 - y^2}; \quad \text{NB.: } x + y - 2 = 0.$

87. $f(x,y) = x^2 - y^2; \quad \text{NB.: } y - x^2 = 0, \ x > 0, \ y > 0.$

88. Welcher Kontainer mit Volumen $36m^3$ ist am billigsten, wenn die Oberfläche sowie die Seitenflächen $3{\rm EU}/m^2$ und die Unterseite $5{\rm EU}/m^2$ kosten?

$$f(x, y, z) = xy + yz;$$
 NB.: $xy = 1, y^2 + z^2 = 1.$

Auf Nullstellenmeng der 2. NB ist yz stetig hat dort Min, Max. Also Min $\frac{1}{2}$ in $(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}), (-\sqrt{2}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ Max $\frac{3}{2}$ in $(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\sqrt{2}, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$.

90. Sei R der Ring aller reellwertigen Folgen mit Addition und Multiplikation von Folgen als Ringoperation. Ein linearer Teilraum I von R heißt Ideal, wenn aus $i \in I$ und $x \in R$ folgt $ix \in I$. Ein Ideal heißt maximal, wenn es in keinem anderen nichttrivialen ($\neq R$) Ideal enthalten ist.

Zeigen Sie für $k \in \mathbb{N}$ ist $I_k := \{(x_i) : x_k = 0\}$ ein maximales Ideal.

Zeigen Sie, dass die Folge $(1, 1, 1, \ldots)$ in keinem nichttrv. Ideal enthalten ist und jedes nichttriviale Ideal in einem maximalen Ideal enthalten ist.

Zeigen Sie, dass die Menge aller Folgen, die nur für endlich viele Indizes ungleich 0 sind ein nicht maximales Ideal I_e ist, das in einem maximalen Ideal enthalten ist und diese nicht gleich I_k für ein $k \in \mathbb{N}$ ist.

Bemerkung: Die maximalen Ideale, die I_e enthalten existieren zwar, man kann aber kein einziges explizit angeben.