GATE Problems in Probability

Abstract-These problems have been selected from GATE question papers and can be used for conducting tutorials in courses related to a first course in probability.

1) An urn contains 5 red balls and 5 black balls.In the first draw, one ball is picked at random and discarded without noticing its colour. The probability to get a red ball in the second draw

a)
$$\frac{1}{2}$$

b)
$$\frac{4}{9}$$

c)
$$\frac{5}{6}$$

a)
$$\frac{1}{2}$$
 b) $\frac{4}{9}$ c) $\frac{5}{9}$ d) $\frac{6}{9}$

Solution: Let $X_i \in \{0, 1\}$ represent the i^{th} draw where 1 denotes a red ball is drawn.

TABLE I

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	4/18	5/18
$X_2 = 1$	5/18	4/18

Table I represents the probabilities of all possible cases when two balls are drawn one by one from the urn.

$$Pr(X_2 = 1) = Pr(X_2 = 1 | X_1 = 0) + Pr(X_2 = 1 | X_1 = B)$$
 The probability that a k-digit number does NOT contain the digits 0,5, or 9 is

$$=\frac{5}{18} + \frac{4}{18} \tag{2}$$

$$=\frac{1}{2}\tag{3}$$

The required option is (A).

2) There are 3 red socks, 4 green socks and 3 blue socks. You choose 2 socks. The probability that they are of the same colour is

a)
$$\frac{1}{5}$$

b)
$$\frac{7}{30}$$

c)
$$\frac{1}{4}$$

a)
$$\frac{1}{5}$$
 b) $\frac{7}{30}$ c) $\frac{1}{4}$ d) $\frac{4}{15}$

Solution: Let $X_i \in \{1,2,3\}$ represent the i^{th} draw, where 1, 2, 3 correspond to the colour of socks drawn as Red, Blue and Green respectively

TABLE II

	$X_1 = 1$	$X_1 = 2$	$X_1 = 3$
$X_2 = 1$	6/90	12/90	9/90
$X_2 = 2$	12/90	12/90	12/90
$X_2 = 3$	9/90	12/90	6/90

TABLE II represents all the possibilities of choosing socks one by one.

The probability that the two socks drawn are of the same colour(by substituting values from table II)

$$= \Pr\left(X_1 = X_2\right) \tag{4}$$

$$= \sum_{i=1}^{3} \Pr(X_2 = i | X_1 = i) \Pr(X_1 = i)$$
 (5)

$$=\frac{6}{90} + \frac{12}{90} + \frac{6}{90} \tag{6}$$

$$=\frac{4}{15}\tag{7}$$

So the correct option is (D)

NOT contain the digits 0,5, or 9 is

- a) 0.3^k

- b) 0.6^k c) 0.7^k d) 0.9^k

Solution: Let

$$X_i \in \{0, 1, 2, \dots, 9\}$$
 (8)

represent the digit at the i^{th} place.

$$\Pr(X_i \notin \{0, 5, 9\}) = \frac{7}{10} = 0.7 \tag{9}$$

If the k-digit number does not contain 0,5 or

$$\Pr(X_1 \notin \{0, 5, 9\}, X_2 \notin \{0, 5, 9\}, \dots, X_k \neq \{0, 5, 9\})$$
(10)

Since the events are independent,

$$\Pr(X_1 \notin \{0, 5, 9\}, X_2 \notin \{0, 5, 9\}, \dots, X_k \neq \{0, 5, 9\})$$

= $\Pr(X_1 \notin \{0, 5, 9\}) \dots \Pr(X_k \notin \{0, 5, 9\})$ (11)

$$= \prod_{i=1}^{k} 0.7$$
 (12)
= $(0.7)^{k}$ (13)

$$= (0.7)^k \tag{13}$$

Fig. 1: Plot

4) Three fair cubical dice are thrown simultaneously. The probability that all three dice have the same number of dots on the faces showing up is (up to third decimal place)..... **Solution:** Let

$$X_1, X_2, X_3 \in \{1, 2, 3, 4, 5, 6\}$$
 (14)

represent the three dice.

Since, all the three are fair dice, the probability of any dice showing a particular number is given by

$$\Pr(X = i) = \begin{cases} \frac{1}{6} & \text{i} = 1, 2, 3, 4, 5, 6\\ 0 & \text{otherwise} \end{cases}$$
 (15)

If all the dice show a particular number i,

$$\implies \Pr(X_1 = X_2 = X_3 = i)$$
 (16)

Since the events are independent,

$$Pr(X_1 = X_2 = X_3 = i)$$
= $Pr(X_1 = i) Pr(X_2 = i) Pr(X_3 = i)$ (17)

where i=1,2,3,4,5,6.

There are 6 faces on a cubical dice. Hence, there are six cases in which all the dice show the same number

$$\Pr(X_1 = X_2 = X_3) = \sum_{i=1}^{6} \Pr(X_1 = X_2 = X_3 = i)$$
(18)

From (17), we have

$$\Pr(X_1 = X_2 = X_3)$$

$$= \sum_{i=1}^{6} \Pr(X_1 = i) \Pr(X_2 = i) \Pr(X_3 = i) \quad (19)$$

$$= \sum_{i=1}^{6} \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) \left(\frac{1}{6}\right)$$

$$= \frac{1}{26}$$
(20)

- 5) Candidates were asked to come to an interview with 3 pens each. Black, blue, green and red were the permitted pen colours that the candidate could bring. The probability that a candidate comes with all 3 pens having the same colour is......
- 6) The probability of getting a "head" in a single toss of a biased coin is 0.3. The coin is tossed repeatedly till a "head" is obtained. If the tosses are independent, then the probability of getting "head" for the first time in the fifth toss is....... **Solution:** Let $X \in \mathbb{N}$ represent the number of times the experiment is performed.

X = k represents k - 1 failures were obtained before getting 1 success. p represents the probability of success

$$p_X(k) = \begin{cases} (1-p)^{k-1} \times p & k \in \mathbb{N} \\ 0 & otherwise \end{cases}$$
 (22)

Using (22) we get

$$Pr(X = 5) = (1 - p)^{k-1} \times p$$
$$= (0.7)^4 \times 0.3 = 0.07203$$
 (23)

7) Given Set A = [2,3,4,5] and Set B = [2,3,4,5]

[11,12,13,14,15], two numbers are randomly selected, one from each set. What is probability that the sum of the two numbers equals 16?

- a) 0.20
- b) 0.25
- c) 0.30
- d) 0.33

Solution: Given,

Set A = [2,3,4,5]

Set B = [11,12,13,14,15]

Total number of element in the sample space is 20.

Let us define a random variable $X \in \{0, 1\}$

X=0	the event when A+B=16
X=1	the event when $A+B \neq 16$

TABLE III: Random Variables

Now, probability of selecting an element from set A such that Pr(X = 0) is

$$Pr(X = 0) = Pr(A + B = 16) = 1$$
 (7.1)

So, the probability of selecting an element from set B after selecting an element from set A such that Pr(X = 0) is

$$Pr(X = 0) = Pr(A + B = 16) = \frac{1}{5}$$
 (7.2)

Therefore.

Overall probability of randomly choosing elements from set A and set B such that Pr(X = 0)is

$$Pr(X = 0) = Pr(A + B = 16)$$
 (7.3)

$$\Pr(X = 0) = 1 \times \frac{1}{5} \tag{7.4}$$

$$\Pr(X=0) = \frac{1}{5} = 0.2 \tag{7.5}$$

X	0	1
Pr(X)	$\frac{1}{5}$	$\frac{4}{5}$

TABLE IV: Probability distribution table

Therefore, the correct option is (a).

8) Consider a dice with the property that the probability of a face with n dots showing up is

proportional to n. The probability of the face with three dots showing up is..... Solution: Let X be random variable.

 $X \in \{1,2,3,4,5,6\}$

 $p_X(n) \rightarrow \text{Probability of showing up n.}$

As $p_X(n)$ is proportional to n. We have,

$$p_X(n) = \begin{cases} kn & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
 (8.1)

Where k is some real constant.

TABLE V

n	1	2	3	4	5	6
$p_X(n)$	k	2k	3k	4k	5k	6k

We know that,

$$\sum_{n=1}^{6} p_X(n) = 1 \tag{8.2}$$

By substituting the values in 8.2, we have

$$k + 2k + 3k + 4k + 5k + 6k = 1$$
 (8.3)

$$\implies k = \frac{1}{21} \tag{8.4}$$

Probability of the face with three dots showing up

$$\implies p_X(3) = 3k \tag{8.5}$$

Substituting the value of k from 8.4

$$\implies p_X(3) = \frac{1}{7} \tag{8.6}$$

9) **Step 1.** Flip a coin twice.

Step 2. If the outcomes are (TAILS, HEADS) then output Y and stop.

Step 3. If the outcomes are either (HEADS, HEADS) or (HEADS, TAILS), then output N and stop.

Step 4. If the outcomes are (TAILS, TAILS), then go to Step 1.

The probability that the output of the experiment is Y is (upto two decimal places)..... **Solution:** Given, a fair coin is tossed is tossed two times. Let's define a Markov chain $\{X_n, n = 1\}$ $0, 1, 2, \dots$, where $X_n \in S = \{1, 2, 3\}$, such that

TABLE VI: States and their notations

Notation	State
S=1	getting $\{TT\}$
S=2	getting output Y
S=3	getting output N

The state transition matrix for the Markov chain is

$$P = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0.25 & 0.25 & 0.5 \\ 2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$
 (24)

Clearly, the state 1 are transient, while 2,3 are absorbing. The standard form of a state transition matrix is

$$P = \begin{array}{cc} A & N \\ A & \begin{bmatrix} I & O \\ R & Q \end{bmatrix} \end{array}$$
 (25)

where, Converting (24) to standard form, we

TABLE VII: Notations and their meanings

Notation	Meaning		
A	All absorbing states		
N	All non-absorbing states		
I	Identity matrix		
0	Zero matrix		
R,Q	Other submatices		

get

$$P = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.25 & 0.5 & 0.25 \end{bmatrix}$$
 (26)

From (25),

$$R = \begin{bmatrix} 0.25 & 0.5 \end{bmatrix}, Q = \begin{bmatrix} 0.25 \end{bmatrix}$$
 (104.5)

The limiting matrix for absorbing Markov

chain is

$$\bar{P} = \begin{bmatrix} I & O \\ FR & O \end{bmatrix} \tag{27}$$

where,

$$F = (I - Q)^{-1} (28)$$

is called the fundamental matrix of *P*. On solving, we get

$$\bar{P} = \begin{array}{cccc} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.33 & 0.17 & 0 \end{array}$$
 (29)

A element \bar{p}_{ij} of \bar{P} denotes the absorption probability in state j, starting from state i. Then, the absorption probability in state 2 (i.e getting output Y) starting from state 1 is \bar{p}_{12} .

$$\therefore \bar{p}_{12} = 0.33 \text{ (correct upto 2 decimal places)}$$
(30)

Markov chain diagram

10) Let X and Y denote the sets containing 2 and

20 distinct objects respectively and F denote the set of all possible functions defined from X and Y. Let f be randomly chosen from F. The probability of f being one-to-one is......

11) The probability that a given positive integer lying between 1 and 100 (both inclusive) is NOT divisible by 2,3 or 5 is.....

Solution: Let $X \in \{1, 2, ..., 100\}$ be the random variable representing the outcome for random selection of a number in {1, ..., 100}.

Since X has a uniform distribution, the probability mass function (pmf) is represented as

$$\Pr(X = n) = \begin{cases} \frac{1}{100} & 1 \le n \le 100\\ 0 & otherwise \end{cases}$$
 (31)

Let A represent the event that the number is divisible by 2. Let B represent the event that the number is divisible by 3. Let C represent the event that the number is divisible by 5.

We need to find the probability that the number is not divisible by 2, 3 or 5. Thus we need to find $1 - \Pr(A + B + C)$

We know

$$Pr(A + B + C) = Pr(A) + Pr(B) + Pr(C)$$
$$-Pr(AB) - Pr(BC)$$
$$-Pr(AC) + Pr(ABC) \quad (32)$$

Event	Interpretation	Probability
A	n is divisible by 2	$\frac{50}{100}$
В	n is divisible by 3	$\frac{33}{100}$
C	n is divisible by 5	$\frac{20}{100}$
AB	n is divisible by 6	$\frac{16}{100}$
ВС	n is divisible by 15	$\frac{6}{100}$
AC	n is divisible by 10	$\frac{10}{100}$
ABC	n is divisible by 30	$\frac{3}{100}$

TABLE VIII

Substituting in (32), we get

$$\Pr(A+B+C) = \frac{50}{100} + \frac{33}{100} + \frac{20}{100} - \frac{16}{100} - \frac{6}{100} - \frac{10}{100} + \frac{3}{100}$$
(33)

Thus,

$$\Pr(A+B+C) = \frac{74}{100} \tag{34}$$

Thus required probability =

$$1 - \Pr(A + B + C) = \frac{26}{100}$$
 (35)

12) P and Q are considering to apply for a job. The probability that P applies for the job is $\frac{1}{4}$, the probability that P applies for the job given that Q applies for the job is $\frac{1}{2}$, and the probability that Q applies for the job given that P applies for the job is $\frac{1}{3}$. Then the probability that P does not apply for the job given that Q does not apply for the job is

a)
$$\frac{4}{5}$$
 b) $\frac{5}{6}$ c) $\frac{7}{8}$ d) $\frac{11}{12}$

Solution: Let A represent the event that P applies for the job. Let B represent the event that Q applies for the job.

According to the given information in the question.

$$\Pr(A) = \frac{1}{4} \tag{36}$$

$$Pr(A) = \frac{1}{4}$$
 (36)
 $Pr(A|B) = \frac{1}{2}$ (37)

$$\Pr(B|A) = \frac{1}{3} \tag{38}$$

According to the definition of Conditional Probability,

$$Pr(A|B) = \frac{Pr(AB)}{Pr(B)}$$
 (39)

$$Pr(B|A) = \frac{Pr(AB)}{Pr(A)}$$
 (40)

On substituting the values of Pr(A), Pr(B|A) in

(40), we get

$$\frac{1}{3} = \frac{\Pr\left(AB\right)}{\frac{1}{4}} \tag{41}$$

$$\Pr\left(AB\right) = \left(\frac{1}{3}\right)\left(\frac{1}{4}\right) \tag{42}$$

$$\therefore \Pr(AB) = \frac{1}{12} \tag{43}$$

Now substituting the values of Pr(A|B), Pr(AB) in (39), we get

$$\frac{1}{2} = \frac{\frac{1}{12}}{\Pr(B)} \tag{44}$$

$$\Pr(B) = \frac{\left(\frac{1}{12}\right)}{\left(\frac{1}{2}\right)} \tag{45}$$

$$\therefore \Pr(B) = \frac{1}{6} \tag{46}$$

The probability that P does not apply for the job given that Q does not apply for the job is given by Pr(A'|B'). Now,

$$A'B' = (A+B)'$$
 (47)

$$\Rightarrow \Pr(A'B') = \Pr((A+B)') \tag{48}$$

$$\therefore \Pr(A'B') = 1 - \Pr(A+B) \tag{49}$$

As we know that,

$$Pr(A + B) = Pr(A) + Pr(B) - Pr(AB)$$
 (50)

By substituting the values of Pr(A), Pr(B), Pr(AB) in (50), we get

$$\Pr(A+B) = \frac{1}{4} + \frac{1}{6} - \frac{1}{12} \tag{51}$$

$$=\frac{3+2-1}{12}\tag{52}$$

:.
$$Pr(A + B) = \frac{1}{3}$$
 (53)

:. Required Probability is

$$\Pr(A'|B') = \frac{\Pr(A'B')}{\Pr(B')}$$
 (54)

By substituting the values of Pr(B), Pr(A'B')

[from (49)] in (54), we get

$$\Pr(A'|B') = \frac{1 - \Pr(A+B)}{1 - \Pr(B)}$$
 (55)

$$\Pr\left(A'|B'\right) = \frac{1 - \left(\frac{1}{3}\right)}{1 - \left(\frac{1}{6}\right)} \tag{56}$$

$$\Rightarrow \Pr\left(A'|B'\right) = \frac{\left(\frac{2}{3}\right)}{\left(\frac{5}{6}\right)} = \frac{4}{5} \tag{57}$$

(58)

$$\therefore \Pr\left(A'|B'\right) = \frac{4}{5} = 0.8$$

Hence, the probability that P does not apply for the job given that Q does not apply for the job is equal to $\frac{4}{5}$

 \therefore The correct option is (A) $\frac{4}{5}$.

13) Two players, A and B, alternately keep rolling a fair dice. The person to get a six first wins the game. Given that player A starts the game, the probability that A wins the game is

a)
$$\frac{5}{11}$$
 b) $\frac{1}{2}$ c) $\frac{7}{13}$ d) $\frac{6}{11}$

Solution: Let $X \in \{1, 2, 3, 4, 5, 6\}$ be the random variable representing out come of a dice. Probability of getting a six on a fair dice

$$\Pr(X = 6) = \frac{1}{6} \tag{59}$$

Probability of not getting a six on a fair dice

$$\Pr(X \neq 6) = \frac{5}{6}$$
 (60)

The probability of some one wining in their n^{th} trail is

$$\Pr(X_n = 6 | X_k \neq 6, k = 1, 2, 3..., n - 1)$$

$$= \frac{1}{6} \left(\frac{5}{6}\right)^{n-1}$$
 (61)

Let the probability of a wining the game is Pr(A)

If A start's the game then A can win on odd numbered trail(n)

$$n = 2m + 1 \tag{62}$$

Inorder for A to win B must lose in all of it's

trails until A gets a six. Therefore,

$$Pr(A) = Pr(X_1 = 6) + Pr(X_3 = 6) + Pr(X_5 = 6) +$$

(63)

$$\Pr(A) = \left(\frac{1}{6}\right) + \left(\frac{1}{6}\left(\frac{5}{6}\right)^{2}\right) + \left(\frac{1}{6}\left(\frac{5}{6}\right)^{4}\right)...$$
(64)

$$= \frac{1}{6} \sum_{m=0}^{\infty} \left(\frac{5}{6}\right)^{2m} \tag{65}$$

$$=\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^2}\tag{66}$$

$$=\frac{6}{11}\tag{67}$$

$$\implies \Pr(A) = \frac{6}{11} \tag{68}$$

Therefore, The probability that A wins the game= $Pr(A) = \frac{6}{11}$

- 14) A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$. Then P(X > 1) is
 - a) 0.368 b) 0.5
- c) 0.632 d) 1.0

Solution:

Given,

$$f(x) = e^{-x}, 0 < x < \infty$$
 (69)

We have to find Pr(X > 1),

$$\Pr(X > 1) = \int_{1}^{\infty} f(x) dx \tag{70}$$

Using (69) in (70)

$$\Pr(X > 1) = \int_{1}^{\infty} e^{-x} dx$$
 (71)

$$= \left[-e^{-x} \right]_1^{\infty} \tag{72}$$

$$= (-e^{-\infty}) - (-e^{-1})$$
 (73)

$$=e^{-1}$$
 (74)

$$=\frac{1}{e}\tag{75}$$

$$\implies \Pr(X > 1) = 0.368 \tag{76}$$

Finding the probability using uniform distribution,

Let $F_X(x)$ be the cumulative distribution function of random variable X.

6) +
$$F_X(x) = \int_0^x f(x) \, dx \tag{77}$$

 $F_X(x)$ can be obtained from the uniform distribution of a random variable U on (0,1) and let $U=e^{-x}$.

$$0 < U < 1$$
 (78)

As for random variable X also,

$$0 < F_x(x) < 1 \tag{79}$$

This similarity between U and $F_X(x)$ is used to generate the random variable X from U.

$$F_X(x) = \Pr(X < x) \tag{80}$$

$$= \Pr\left(-\log_{e} U < x\right) \tag{81}$$

$$= \Pr\left(U < e^{-x}\right) \tag{82}$$

$$=F_U(e^{-x}) \tag{83}$$

From uniform distribution,

$$F_U(x) = x, 0 < x < 1$$
 (84)

In the figure 2,orange colour graph represents

Fig. 2: CDF of random variable X

the pdf of the random variable X and blue colour graph represents the cdf of the random variable X. Using (84) in (83), Cumulative distribution function (CDF) of random variable X is,

$$F_X(x) = \Pr(X < x) \tag{85}$$

$$= 1 - e^{-x}, 0 < x < \infty \tag{86}$$

Now we have to find Pr(X > 1),

$$Pr(X > 1) = 1 - Pr(X < 1)$$
 (87)

Using (86),

$$\Pr(X > 1) = 1 - (1 - e^{-1}) \tag{88}$$

$$Pr(X > 1) = e^{-1}$$
 (89)

$$\implies \Pr(X > 1) = 0.368$$
 (90)

15) A random variable X has probability density function f(x) as given below:

$$f(x) = \begin{cases} a + bx & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
 (91)

If the expected value $E[X] = \frac{2}{3}$, then Pr[X < 0.5] is......

Solution:

We know that the total probability is one,

$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \tag{92}$$

Using (91) in (92),

$$\int_0^1 (a+bx) \, dx = 1 \tag{93}$$

$$\left[ax + \frac{bx^2}{2} \right]_0^1 = 1 \tag{94}$$

$$\left(a + \frac{b}{2}\right) - 0 = 1\tag{95}$$

$$\implies a + \frac{b}{2} = 1 \tag{96}$$

We know that expectation value of X,

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (97)

Using $E(X) = \frac{2}{3}$ and (91) in (97), we get

$$\frac{2}{3} = \int_0^1 x(a+bx) \, dx \tag{98}$$

$$= \int_0^1 ax + bx^2 \, dx \tag{99}$$

$$= \left[\frac{ax^2}{2} + \frac{bx^3}{3} \right]_0^1 \tag{100}$$

$$= \frac{a}{2} + \frac{b}{3} - 0 \tag{101}$$

$$\implies \frac{a}{2} + \frac{b}{3} = \frac{2}{3} \tag{102}$$

By solving (96) and (102), we get

$$a = 0 \text{ and } b = 2.$$
 (103)

Using values of a and b in (91), we get

$$f(x) = \begin{cases} 2x & 0 < x < 1\\ 0 & otherwise \end{cases}$$
 (104)

The graph of PDF of X is 3

Fig. 3: Probability Density Function (PDF) of X

Let $F_X(x)$ be the cumulative distribution function of random variable X.

$$F_X(x) = \int_{-\infty}^x f(x) \, dx \tag{105}$$

 $F_X(x)$ can be obtained from the uniform distribution of a random variable U on (0,1) and let $U=X^2$.

$$0 < U < 1$$
 (106)

As for random variable X also,

$$0 < F_X(x) < 1 \tag{107}$$

This similarity between U and $F_X(x)$ is used to generate the random variable X from U.

$$F_X(x) = \Pr(X < x) \tag{108}$$

$$= \Pr\left(\sqrt{U} < x\right) \tag{109}$$

$$= \Pr\left(U < x^2\right) \tag{110}$$

$$=F_U(x^2) \tag{111}$$

From uniform distribution,

The graph of Probability Density Function (PDF) of U is 4

Fig. 4: Probability Density Function (PDF) of U

Using (112) in (111),

Cumulative distribution function (CDF) of random variable X is,

$$F_X(x) = \Pr(X < x) = \begin{cases} 0 & x \le 0 \\ x^2 & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$
 (113)

The graph of Cumulative distribution function (CDF) of random variable X is 5

Now we have to find Pr(X < 0.5), Using (113),

$$Pr(X < 0.5) = (0.5)^2$$
 (114)

$$\implies \Pr(X < 0.5) = 0.25$$
 (115)

Fig. 5: Cumulative Density Function (CDF)

16) Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that $\max[X, Y]$ is less than $\frac{1}{2}$ is

a)
$$\frac{3}{4}$$
 b) $\frac{9}{16}$ c) $\frac{1}{4}$ d) $\frac{2}{3}$

17) The input X to the binary Symmetric Channel (BSC) shown in Fig. 6 is '1' with probability 0.8. The cross-over probability is $\frac{1}{7}$. If the received bit Y=0, the conditional probability that '1' was transmitted is......

$$P[X = 0] = 0.2$$

$$P[X = 1] = 0.8$$
Fig. 6

Solution:

$$\Pr(X = 1 | Y = 0) = \frac{\Pr(\{X = 1\}\{Y = 0\})}{\Pr(Y = 0)}$$
 (116)

$$Pr(X = 1|Y = 0) = \frac{Pr(\{X = 1\}\{Y = 0\})}{Pr(Y = 0)}$$
(116)
$$Pr(Y = 0|X = 1) = \frac{Pr(\{X = 1\}\{Y = 0\})}{Pr(X = 1)}$$
(117)

From (117),

$$Pr({X = 1}{Y = 0}) = Pr(Y = 0|X = 1) Pr(X = 1)$$
(118)

Substituting (118) in (116),

$$\Pr(X = 1 | Y = 0) = \frac{\Pr(Y = 0 | X = 1) \Pr(X = 1)}{\Pr(Y = 0)}$$
(119)

Given data,

$$\Pr(Y = 0|X = 1) = \frac{1}{7}, \Pr(Y = 0|X = 0) = \frac{6}{7}$$
(120)

$$Pr(Y = 0) = Pr(Y = 0|X = 1) Pr(X = 1) +$$

 $Pr(Y = 0|X = 0) Pr(X = 0)$ (121)

Substituting the values from (120) and the data given in the question in (121),

$$\Pr(Y = 0) = \frac{2}{7} \tag{122}$$

Substituting (120), (122) and the data given in the question in (119),

$$\Pr(X = 1 | Y = 0) = 0.4 \tag{123}$$

- 18) A fair coin is tossed till a head appears for the first time. The probability that the number of requried tosses is odd,is
 - a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) $\frac{2}{3}$ d) $\frac{3}{4}$
- 19) A box contains 4 white balls and 3 red balls. In succession, two balls are randomly selected and removed from the box. Given that the first removed ball is white, the probability that the second removed ball is red is
 - a) $\frac{1}{3}$ b) $\frac{3}{7}$ c) $\frac{1}{2}$ d) $\frac{4}{7}$

ables Say X_1 and X_2 . Required probability is

$$Pr(X_2 = 0|X_1 = 1) = \frac{Pr(X_1 = 1, X_2 = 0)}{Pr(X_1 = 1)}$$

$$= \frac{\frac{2}{7}}{\frac{4}{7}} = \frac{1}{2} = \frac{1}{2}$$
(125)

Hence (C) is correct option.

20) Let X be a random variable with a probability density function

$$f(x) = \begin{cases} 0.2 & |x| \le 1\\ 0.1 & 1 \le |x| \le 4\\ 0 & otherwise \end{cases}$$
 (126)

Find $Pr(0.5 < X \le 5)$

Solution:

We know, if X is a continuous random variable, and its p.d.f is given by f(x), then we define the c.d.f F(x) as:

$$F(x) = \Pr(X \le x) \tag{127}$$

and is given by:

$$F(x) = \int_{-\infty}^{x} f(x) dx$$
 (128)

f(x) is a valid p.d.f because:

a) The area under the curve of the p.d.f is 1, i.e:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \tag{129}$$

b) $f(x) \ge 0$ for all $x \in \mathbb{R}$

Since f(x) is a valid p.d.f, from (128), we get the following c.d.f:

$$F(x) = \begin{cases} 0 & x \le -4 \\ 0.1(x+4) & -4 \le x \le -1 \\ 0.3 + 0.2(x+1) & -1 \le x \le 1 \\ 0.7 + 0.1(x-1) & 1 \le x \le 4 \\ 1 & 4 \le x \end{cases}$$
(130)

Solution: Consider, Bernoulli random vari-

Thus,

$$Pr (0.5 \le X \le 5)$$
= F(5) - F(0.5) = 0.4 (131)

Fig. 7: plot of f(x)- p.d.f

Fig. 8: plot of F(x)- c.d.f

- 21) Consider two identically distributed zero-mean random variables U and V. Let the cumulative distribution functions of U and 2V be F(x) and G(x) respectively. Then, for all values of x
 - a) $F(x) G(x) \le 0$
- c) $(F(x) G(x))x \le 0$
- b) $F(x) G(x) \ge 0$
- d) $(F(x) G(x))x \ge 0$

Solution: If *X* is a random variable, the cumulative distribution functions of U and 2V can be written in terms of X as

$$F(x) = \Pr(X \le x) \tag{132}$$

$$G(x) = \Pr(2X \le x) \tag{133}$$

Or.

$$G(x) = \Pr(X \le x/2) \tag{134}$$

Using 132 in 134, we can see that

$$G(x) = F(x/2) \tag{135}$$

So.

$$F(x) - G(x) = F(x) - F(x/2)$$
 (136)

As F is Cumulative Distribution Function, it is non-decreasing.

That means for $x \ge y$, $F(x) \ge F(y)$.

Using this, we can form the following table:

Case	F(x) - F(x/2)	(F(x) - F(x/2))x
$x \ge 0$	≥ 0	≥ 0
$x \le 0$	≤ 0	≥ 0

TABLE IX

From the table we can see that for any value of x,

$$(F(x) - F(x/2))x \ge 0$$
 (137)

Or, using 135,

$$(F(x) - G(x))x \ge x \tag{138}$$

- 22) Let U and V be two independent zero mean Gaussian random variables of variances $\frac{1}{4}$ and respectively. The probability $P(3V \ge 2U)$ is b) $\frac{1}{2}$ c) $\frac{2}{3}$ d) $\frac{5}{9}$

- 23) Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max [X, Y] is less than $\frac{1}{2}$ is

- a) $\frac{3}{4}$ b) $\frac{9}{16}$ c) $\frac{1}{4}$ d) $\frac{2}{3}$
- 24) A binary symmetric channel (BSC) has a transition probability of $\frac{1}{8}$. If the binary transmit

symbol X is such that $P(X = 0) = \frac{9}{10}$, then the probability of error for an optimum receiver will be

a)
$$\frac{7}{80}$$
 b) $\frac{63}{80}$ c) $\frac{9}{10}$ d) $\frac{1}{10}$

Solution:

Fig. 9: Binary symmetric channel

Let random variables, $X \in \{0, 1\}$ denote the bit transmitted and $Y \in \{0, 1\}$ denote the output bit received.

From the given information,

$$\Pr(X = 0) = \frac{9}{10} \qquad (139)$$

$$Pr(X = 1) = 1 - Pr(X = 0) = \frac{1}{10}$$
 (140)

Also given, transition probability = $\frac{1}{8}$. Transition probability is the probability with which the bit is transmitted correctly. That gives,

$$\Pr(Y = 1|X = 1) = \Pr(Y = 0|X = 0) = \frac{1}{8}$$
(141)

Probability that the bit is not transmitted correctly

= 1 – transition probability

$$=1-\frac{1}{8}=\frac{7}{8}$$
 (142)

That gives,

$$Pr(Y = 0|X = 1) = Pr(Y = 1|X = 0) = \frac{7}{8}$$
(143)

Let E denote the event that bit is transmitted

incorrectly. Probability of error, Pr(E)

$$Pr(E) = Pr(X = 0) Pr(Y = 1 | X = 0) + Pr(X = 1) Pr(Y = 0 | X = 1)$$
(144)

On substituting the values,

$$\Pr(E) = \frac{9}{10} \times \frac{7}{8} + \frac{1}{10} \times \frac{7}{8}$$
 (145)

$$=\frac{63}{80}+\frac{7}{80}\tag{146}$$

$$=\frac{7}{8}\tag{147}$$

Answer: No option matches

25) A fair coin is tossed till a head appears for the first time. The probability that the number of requried tosses is odd,is

a)
$$\frac{1}{3}$$
 b) $\frac{1}{2}$ c) $\frac{2}{3}$ d) $\frac{3}{4}$

Solution: Given that the coin is tossed until a head appears on an odd toss.

$$p = \frac{1}{2}, q = \frac{1}{2} \tag{148}$$

Let's define a Markov chain $\{X_n, n = 0, 1, 2, ...\}$, where $X_n \in S = \{1, 2, 3, 4\}$, such that:

TABLE X: States and their notations

Notation	State
S = 1	Odd try
S=2	Even try
S=3	Loss
S=4	Success

The state transition matrix for the Markov chain is:

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0.5 & 0 & 0.5 \\ 2 & 0.5 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.0.1)

The transient states are 1,2 and the absorbing states are 3 and 4. The standard form of the matrix is;

$$P = \begin{array}{cc} A & N \\ A & \begin{bmatrix} I & O \\ R & Q \end{bmatrix} \end{array}$$
 (2.0.2)

where,

TABLE XI: Notations and their meanings

Notation	Meaning
A	Absorbing states
N	Non-absorbing states
I	Identity matrix
0	Zero matrix
R,Q	Other sub-matrices

Now, we convert the transition matrix to this standard form.

$$P = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 3 & 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 2 & 0.5 & 0 & 0.5 & 0 \end{bmatrix}$$
(2.0.3)

From (2.0.3),

$$R = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}, Q = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$$
 (2.0.4)

The limiting matrix for absorbing Markov chain is,

$$\bar{P} = \begin{bmatrix} I & O \\ FR & O \end{bmatrix} \tag{2.0.5}$$

where,

$$F = (I - Q)^{-1} (2.0.6)$$

is called the fundamental matrix of P. On solving we get,

$$\bar{P} = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0.333 & 0.667 & 0 & 0 \\ 2 & 0.667 & 0.333 & 0 & 0 \end{bmatrix}$$
(2.0.7)

An element \bar{p}_{ij} of \bar{P} denotes the absorption probability to the state j, starting from the state i.

Let Pr(A) be the probability that the first head is obtained on an odd toss. Then,

$$\Pr(A) = p_{14} \tag{149}$$

$$= 0.667$$
 (150)

$$\therefore \Pr(A) = \frac{2}{3} \tag{151}$$

Markov chain diagram

26) A fair dice is tossed two times. The probability that the second toss result in a value that is higher than the first toss is

a)
$$\frac{2}{36}$$
 b) $\frac{2}{6}$ c) $\frac{5}{12}$ d) $\frac{1}{2}$

Solution: Given, a fair die, which is tossed twice. Let the random variable $X_i \in \{1, 2, 3, 4, 5, 6\}$, i = 1, 2, represent the outcome of the number on the die in the first, second toss respectively. The probability mass function (PMF) for a fair die is expressed as

$$p_{X_i}(n) = \Pr(X_i = n) = \begin{cases} \frac{1}{6}, & 1 \le n \le 6\\ 0, & otherwise \end{cases}$$
 (26.1)

Using (26.1), the cumulative distribution function (CDF) is obtained to be

$$F_{X_i}(r) = \Pr(X_i \le r) = \begin{cases} \frac{r}{6}, & 1 \le r \le 6\\ 1, & r \ge 7\\ 0, & otherwise \end{cases}$$
 (26.2)

$$X_1 < X_2 \Rightarrow X_2 = k, X_1 \le k - 1$$
 (26.3)

 X_1, X_2 are independent,

$$Pr(X_1 < X_2) = E[F_{X_1}(X_2 - 1)]$$
 (26.4)

After unconditioning (26.4), we get

$$Pr(X_1 < X_2) = \sum_{k=1}^{6} p_{X_2}(k) F_{X_1}(k-1)$$
 (26.5)

Substituting (26.1) and (26.2), we get

$$Pr(X_1 < X_2) = \sum_{k=1}^{6} \frac{1}{6} \left(\frac{k-1}{6} \right)$$
 (26.6)

On solving, we get

$$Pr(X_1 < X_2) = \frac{5}{12} (\text{option (C)})$$
 (26.7)

TABLE XII: Cases and their theoretical probabilities

Case	$X_1 < X_2$	$X_1 > X_2$	$X_1 = X_2$
Probability	5	5	1
	12	12	$\overline{6}$

- 27) A fair coin is tossed 10 times. What is the probability that ONLY the first two tosses will yield heads?
 - a) $\left(\frac{1}{2}\right)^2$
- c) $(\frac{1}{2})^{10}$
- b) ${}^{10}C_2\left(\frac{1}{2}\right)^2$
- d) ${}^{10}C_2\left(\frac{1}{2}\right)^{10}$

Solution: Let $M \sim B(n,h)$ be a random variable representing number of 'heads' in 10 tosses. So M has a binomial distribution:

$$\Pr(M = k) = {}^{n}C_{k} \times (h)^{n-k} \times (t)^{k}$$
 (152)

Where

- n = Total number of tosses = 10
- h = Probability that 'head' appears in a toss = $\frac{1}{2}$
- t = Probability that 'tail' appears in a toss = $\frac{1}{2}$

So.

$$\Pr(M = k) = {}^{10}C_k \times \left(\frac{1}{2}\right)^{10-k} \times \left(\frac{1}{2}\right)^k$$
 (153)

n	10
$\Pr\left(M=2\right)$	$^{10}C_2 \times \left(\frac{1}{2}\right)^{10-2} \times \left(\frac{1}{2}\right)^2$
Calculation	$^{10}C_2 \times \left(\frac{1}{2}\right)^{10}$
Value	0.043945

- Number of ways of choosing 2 positions from 10 tosses = ${}^{10}C_2$
- Number of favourable outcome = 1 (Choosing FIRST and SECOND tosses as heads)
- Probability that chosen 2 'heads' are from FIRST and SECOND tosses = $\frac{1}{^{10}C_2}$

Probability that ONLY the first 2 tosses yield heads

$$= \Pr(M = 2) \times \frac{1}{{}^{10}C_2}$$
 (154)

$$={}^{10}C_2 \times \left(\frac{1}{2}\right)^{10} \times \frac{1}{{}^{10}C_2} \tag{155}$$

$$= \left(\frac{1}{2}\right)^{10} \tag{156}$$

28) Consider two independent random variables X and Y with identical distributions. The variables X and Y take value 0, 1 and 2 with prob-

abilities $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$ rrespectively. What is the conditional probability P(X+Y=2|X-Y=0)?

- a) 0
- b) $\frac{1}{16}$ c) $\frac{1}{6}$

Solution: The values that the random variable X can take along with its probabilities are given by

X	0	1	2
Pr(X)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

The values that the random variable Y can take along with its probabilities are given by

Y	0	1	2
Pr(Y)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

$$Pr(X - Y = 0) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{6}{16}$$
(157)
$$Pr((X + Y = 2), (X - Y = 0)) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$
(158)

$$Pr(X + Y = 2 | X - Y = 0)$$

$$= \frac{Pr((X + Y = 2), (X - Y = 0))}{Pr(X - Y = 0)}$$

$$= \frac{\frac{1}{16}}{\frac{6}{16}} = \frac{1}{6}$$
 (159)

29) A discrete random variable X takes values from 1 to 5 with probabilities as shown in the table. A student calculates the mean of X as 3.5 and her teacher calculates the variance of X as 1.5. Which of the following statements is true?

		_			
k	1	2	3	4	5
P(X=k)	0.1	0.2	0.4	0.2	0.1

- a) Both the student and the teacher are right
- b) Both the student and the teacher are wrong
- c) The student is wrong but the teacher is right
- d) The student is right but the teacher is wrong

- 30) If E denotes expectation, the variance of a random variable X is given by
 - a) $E[X^2] E^2[X]$
- c) $E[X^2]$
- b) $E[X^2] + E^2[X]$
- d) $E^2[X]$

Solution: Before we start the proof we need to know 3 properties of expectation

$$E[f(x) + g(x)] = E[f(x)] + E[g(x)]$$
 (160)

If k is a constant value then

 $Var(X) = E[X^2 - 2u \cdot X + \mu^2]$

 $= E[X^2] - u^2$

$$E[k \cdot g(x)] = k \cdot E[g(x)] \tag{161}$$

$$E[k] = k \tag{162}$$

Now variance of random X is given by

$$Var(X) = E[(X - \mu)^2]$$
 where $\mu = E[X]$

$$= E[X^{2}] - E[2\mu \cdot X] + E[\mu^{2}] \text{ from (1)}$$

$$= E[X^{2}] - 2\mu \cdot E[X] + \mu^{2} \text{ from (2) and (3)}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2} \quad (\because E[X] = \mu)$$

$$= E[X^2] - E^2[X]$$
 (: $\mu = E[X]$)

- 31) An examination consists of two papers, Paper 1 and Paper 2. The probability of failing in Paper 1 is 0.3 and that in Paper 2 is 0.2. Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6. The probability of a student failing in both the papers is:
 - a) 0.5
- b) 0.18
- c) 0.12
- d) 0.06

Solution: Let A be the event that a student fails in Paper 1

Let B be the event that a student fails in Paper

2 Given

$$Pr(\mathbf{A}) = 0.3, Pr(\mathbf{B}) = 0.2, Pr(\mathbf{A}|\mathbf{B}) = 0.6$$

By definition

$$Pr(\mathbf{A}|\mathbf{B}) = \frac{Pr(\mathbf{A}\mathbf{B})}{Pr(\mathbf{B})}$$
(1)

$$Pr(\mathbf{AB}) = Pr(\mathbf{A}|\mathbf{B}) \times Pr(\mathbf{B})$$
 (2)

$$Pr(\mathbf{AB}) = 0.6 \times 0.2 \tag{3}$$

$$Pr(\mathbf{AB}) = 0.12 \tag{4}$$

32) A probability density function is of the form $p(x) = Ke^{-\alpha|x|}, x \in (-\infty, \infty)$

The value of K is

- a) 0.5
- b) 1
- c) 0.5α
- d) α
- 33) Consider a binary digital communication system with equally likely 0's and 1's. When binary 0 is transmitted the voltage at the detector input can lie between the level -0.25V and +0.25V with equal probability: when binary 1 is transmitted, the voltage at the detector can have any value between 0 and 1V with equal probability. If the detector has a threshold of 2.0V (i.e., if the received signal is greater than 0.2V, the bit is taken as 1), the average bit error probability is
 - a) 0.15
- b) 0.2
- c) 0.05
- d) 0.5
- 34) Let X and Y be two statistically independent random variables uniformly distributed in the range (-1,1) and (-2,1) respectively. Let Z =X + Y, then the probability that $[Z \le -2]$ is

- a) zero b) $\frac{1}{6}$ c) $\frac{1}{3}$ d) $\frac{1}{12}$

Solution:

1 Answer

Option (D) $\frac{1}{12}$

2 Solution

X and Y are two independent random variables. Let

$$p_X(x) = \Pr(X = x) \tag{163}$$

$$p_Y(y) = \Pr(Y = y) \tag{164}$$

$$p_Z(z) = \Pr(Z = z) \tag{165}$$

be the probability densities of random variables X,Y and Z.

X lies in range(-1,1), therefore,

$$\int_{-1}^{1} p_X(x) \ dx = 1 \tag{166}$$

$$2 \times p_X(x) = 1 \tag{167}$$

$$p_X(x) = 1/2 (168)$$

Similarly for Y we have,

$$\int_{-2}^{1} p_Y(y) \ dy = 1 \tag{169}$$

$$3 \times p_Y(y) = 1 \tag{170}$$

$$p_Y(y) = 1/3 (171)$$

The density for X is

$$p_X(x) = \begin{cases} \frac{1}{2} & -1 \le x \le 1\\ 0 & otherwise \end{cases}$$
 (172)

We have,

$$Z = X + Y \iff z = x + y \iff x = z - y$$
(173)

The density of X can also be represented as,

$$p_X(z-y) = \begin{cases} \frac{1}{2} & -1 \le z - y \le 1\\ 0 & otherwise \end{cases}$$
 (174)

and the density of Y is,

$$p_Y(y) = \begin{cases} \frac{1}{3} & -2 \le y \le 1\\ 0 & otherwise \end{cases}$$
 (175)

The density of Z i.e. Z = X + Y is given by the convolution of the densities of X and Y

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(z - y) p_Y(y) \, dy$$
 (176)

From 174 and 175 we have,

The integrand is $\frac{1}{6}$ when,

$$2 \le y \le 1 \tag{177}$$

$$-1 \le z - y \le 1 \tag{178}$$

$$z - 1 \le y \le z + 1 \tag{179}$$

and zero, otherwise.

Now when $-3 \le z \le -2$ them we have,

$$p_Z(z) = \int_{-2}^{z+1} \frac{1}{6} \, dy \tag{180}$$

$$= \frac{1}{6} \times (z + 1 - (-2)) \tag{181}$$

$$=\frac{1}{6}(z+3)\tag{182}$$

For $-2 < z \le -1$,

$$p_Z(z) = \int_{-2}^{z+1} \frac{1}{6} \, dy \tag{183}$$

$$= \frac{1}{6} \times (z + 1 - (-2)) \tag{184}$$

$$=\frac{1}{6}(z+3)\tag{185}$$

For $-1 < z \le 0$,

$$p_Z(z) = \int_{z-1}^{z+1} \frac{1}{6} \, dy \tag{186}$$

$$= \frac{1}{6} \times (z + 1 - (z - 1)) \tag{187}$$

$$=\frac{1}{3}\tag{188}$$

For $0 < z \le 2$,

$$p_Z(z) = \int_{z-1}^1 \frac{1}{6} \, dy \tag{189}$$

$$= \frac{1}{6} \times (1 - (z - 1)) \tag{190}$$

$$=\frac{1}{6}(2-z)\tag{191}$$

Therefore the density of Z is given by

$$p_{Z}(z) = \begin{cases} \frac{1}{6}(z+3) & -3 \le z \le -2\\ \frac{1}{6}(z+3) & -2 < z \le -1\\ \frac{1}{3} & -1 < z \le 0\\ \frac{1}{6}(2-z) & 0 < z \le 2\\ 0 & otherwise \end{cases}$$
(192)

The CDF of Z is defined as,

$$F_Z(z) = \Pr\left(Z \le z\right) \tag{193}$$

Now for $z \leq -1$,

$$\Pr\left(Z \le z\right) = \int_{-\infty}^{z} p_{Z}(z) \, dz \tag{194}$$

$$= \int_{-3}^{z} \frac{1}{6} (z+3) \, dz \tag{195}$$

$$= \frac{1}{6} \left(\frac{z^2}{2} + 3z \right) \Big|_{-3}^{z} \tag{196}$$

$$= \frac{1}{6} \times \left(\left(\frac{z^2}{2} + 3z \right) - \left(\frac{9}{2} - 9 \right) \right)$$
 (197)

$$=\frac{z^2+6z+9}{12}\tag{198}$$

Similarly for $z \le 0$,

$$\Pr(Z \le z) = \int_{-\infty}^{z} p_Z(z) dz \qquad (199)$$

$$= \frac{1}{3} + \int_{-1}^{z} \frac{1}{3} dz \qquad (200)$$

$$=\frac{z+2}{3}\tag{201}$$

finally for $z \le 2$,

$$\Pr\left(Z \le z\right) = \int_{-\infty}^{z} p_{Z}(z) \, dz \tag{202}$$

$$= \frac{2}{3} + \int_0^z \frac{1}{6} (2 - z) \, dz \qquad (203)$$

$$=\frac{2}{3}+\frac{4z-z^2}{12}\tag{204}$$

$$=\frac{8+4z-z^2}{12}$$
 (205)

The CDF is as below,

$$F_Z(z) = \begin{cases} 0 & z < 3\\ \frac{z^2 + 6z + 9}{12} & z \le -1\\ \frac{z + 2}{3} & z \le 0\\ \frac{8 + 4z - z^2}{12} & z \le 2\\ 1 & z > 2 \end{cases}$$
 (206)

So

$$\Pr(Z \le -2) = F_Z(2)$$
 (207)

$$=\frac{1}{12}$$
 (208)

i.e. option (D).

The plot for PDF of Z can be observed at figure

10 and the plot for CDF of Z is at figure 11.

Fig. 10: The PDF of Z

Fig. 11: The CDF of Z

35) Let X be the Gaussian random variable obtained by sampling the process at $t = t_i$ and let

$$Q(\alpha) = \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy$$

The probability that $[X \le 1]$ is ...

36) Let Y and Z be the random variables obtained by sampling X(t) at t = 2 and t = 4 respectively. Let W = Y-Z. The variance of W is

- a) 13.36
 - b) 9.36
- c) 2.64
- d) 8.00

37) Let the random variable X represent the number of times a fair coin needs to be tossed till two consecutive heads appear for the first time. The expectation of X is.....

38) Let $X \in [0,1]$ and $Y \in [0,1]$ be two independent binary random variables. If P(X = 0) = pand P(Y = 0) = q, then $P(X + Y \ge 1)$ is equal to

a)
$$pq + (1-p)(1-q)$$
 c) $p(1-q)$

c)
$$p(1-q)$$

d)
$$1 - pq$$

39) Suppose A and B are two independent events with probabilities $P(A) \neq 0$ and $P(B) \neq 0$. Let A and B be their complements. Which one of the following statements is FALSE?

a)
$$P(A \cap B) = P(A)P(B)$$

c)
$$P(A \cup B) = P(A) + P(B)$$

b)
$$P(A|B) = P(A)$$

d)
$$P(\widetilde{A} \cap \widetilde{B}) = P(\widetilde{A})P(\widetilde{B})$$

Solution:

a) As A, B are independent events, By definition.

$$Pr(A + B) = Pr(A) Pr(B)$$

Thus option 1 is true.

$$Pr(A|B) = \frac{Pr(A+B)}{Pr(B)}$$
$$= \frac{Pr(A) Pr(B)}{Pr(B)}$$
$$= Pr(A)$$

Thus option 2 is true.

c)

$$Pr(AB) = Pr(A) + Pr(B) - Pr(A + B)$$
$$= Pr(A) + Pr(B) - Pr(A) Pr(B)$$

Thus option 3 is false.

d)

$$Pr(A' + B') = Pr((AB)')$$

= 1 - Pr(AB)
= 1 - Pr(A) - Pr(B) + Pr(A + B)
= (1 - Pr(A))(1 - Pr(B))
= Pr(A') Pr(B')

Thus option 4 is true.

Hence, FALSE statement is option 3.

40) A digital communication system uses a repetition code for channel encoding/decoding. During transmission, each bit is repeated three times(0 is transmitted as 000, and 1 is transmitted as 111). It is assumed that the source puts out symbols independently and with equal probability. The decoder operates as follows: In a block of three received bits, if the number of zeros exceeds the number of ones, the decoder decides in favour of a 0, and if the number of ones exceeds the number of zeros, the decoder decides in favour of a 1. Assuming a binary symmetric channel with crossover probability p = 0.1, the average probability of error is **Solution:** Let Y be the bit sent by the sender and X be the number of 1's received by the receiver and p = 0.1 is the crossover probability Case 1: Y = 0

$$\Pr(X=i) = \binom{n}{i} \times p^i \times (1-p)^{n-i} \qquad (209)$$

When $X \ge 2$ the receiver interprets it as 1, which is an error. And by Total Probability theorem we have

$$P_1 = \frac{P(X=2) + P(X=3)}{\sum_{i=0}^{3} P(X=i)}$$
 (210)

where P_1 is the probability of error when Y = 0

Case 2: Y = 1

$$\Pr(X = i) = \binom{n}{i} \times p^{n-i} \times (1-p)^i \qquad (211)$$

When $X \le 1$ the receiver interprets it as 0, which is an error. And by Total Probability

theorem we have

$$P_2 = \frac{\Pr(X=0) + \Pr(X=1)}{\sum_{i=0}^{3} \Pr(X=i)}$$
 (212)

where P_2 is the probability of error when Y = 1

$$\sum_{i=0}^{3} \Pr(X = i) = 1 \times 0.9^{3} + 3 \times 0.1 \times 0.9^{2}$$
$$+ 3 \times 0.1^{2} \times 0.9 + 1 \times 0.1^{3} = 1 \quad (213)$$

$$P_1 = 0.028 \tag{214}$$

$$P_2 = 0.028 \tag{215}$$

The average probability is

$$P_{avg} = Pr(Y = 0) \times P_1 + Pr(Y = 1) \times P_2$$

= 0.028 (216)

	X	0	1	2	3
Y=0	Pr(X)	0.729	0.243	0.027	0.001
Y=1	Pr(X)	0.001	0.027	0.243	0.729

TABLE XIII: Probability of number of 1's recieved

41) Two random variables X and Y are distributed according to

$$f_{x,y}(x,y) = \begin{cases} (x+y) & 0 \le x \le 10 \le y \le 1\\ 0 & \text{otherwise.} \end{cases}$$

The probability $P(X + Y \le 1)$ is

- 42) Let X be a zero mean unit variance Gaussian random variable. E[|X|] is equal to
- 43) If calls arrive at a telephone exchange such that the time of arrival of any call is independent of the time of arrival of earlier or future calls, the probability distribution function of the toatl number of calls in a fixed time interval will be
 - a) Poisson
- c) Exponential
- b) Gaussian
- d) Gamma

Solution:

Symbol	Description	Property	Random
T	Total time period	$T = n\Delta t$	No
n	Total Number of		No
	intervals		
Δt	One time interval	$\Delta t = T/n$	No
k	Number of calls		Yes
	arrived during		
	the time interval		
	(0,T)		
t_i	Denotes the time		Yes
	of arrival of each		
	call in interval		
	(0,T)		
p	Probability of re-		No
	ceiving a call at		
	time t_i		
λ	Average number	$\lambda = np$	No
	of calls $(0, T)$		
e	Euler's number		No

Lets denote the fixed time interval by [0,T]. To find the probability of k number of calls during this time interval, lets divide the interval into n parts of equal length Δt . Let us denote the probability of receiving a call at a particular time t_i by p. Suppose the telephone exchange receives an average of λ calls in time interval of length T.

Hence, we have

$$np = \lambda \tag{217}$$

$$\implies p = \frac{\lambda}{n} \tag{218}$$

In Fig. 12, the interval (0,T) has been divided

Fig. 12: Figure showing division of time intervals

into n equal parts, where length of each interval is Δt and the number of calls in each interval is a random variable. t_i where

Fig. 13: Figure showing times of arrival of k calls

 $i = \{1, 2, 3 \cdots k\}$ are the time of arrival of k calls in the interval (0, T).

A call has probability p for arriving at t_i , $\forall i = \{1, 2, \dots k\}$ and the probability of 1-p for not arriving at that instant.

In Binomial distribution we have certain number of intervals, i.e. n, with probability of arrival of each call as p and for a binomial random variable $X = \{0, 1 \cdots n\}$, the probability of call arriving in any k intervals is

$$\Pr(X = k) = {}^{n}C_{k} \cdot p^{k} \cdot (1 - p)^{k}$$
 (219)

But in Poisson distribution, we essentially have infinite intervals, so $n \to \infty$. Thus, the probability expression changes to:

$$\lim_{n \to \infty} \Pr(X = k) = \lim_{n \to \infty} \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$
(220)

$$\lim_{n \to \infty} \Pr(X = k) = \left(\frac{\lambda^k}{k!}\right) \lim_{n \to \infty} \frac{n!}{(n-k)!} \left(\frac{1}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$
(221)

Now lets take the limit of right-hand side one term at a time. We'll do this in three steps. The first step is to find the limit of

$$\lim_{n \to \infty} \frac{n!}{(n-k)!n^k} = \lim_{n \to \infty} \frac{n(n-1)(n-2)..(n-k+1)}{n^k}$$

$$= \lim_{n \to \infty} \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \left(\frac{n-k+1}{n}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{k-1}{n}\right)$$

$$= 1 \cdot 1 \cdot 11$$

$$= 1$$
(222)

Now we have to find the limit of

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n \tag{223}$$

We know that the definition e is given as

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \tag{224}$$

So, lets replace the value of $-\frac{n}{4}$ by x in (223),

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x(-\lambda)} = e^{-\lambda} \quad (225)$$

And the third part is to find the limit of

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-k} \tag{226}$$

As n approaches infinity, this term becomes 1^{-k} which is equal to one. So,

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{-k} = 1 \tag{227}$$

Now on substituting (222), (225) and (227) in equation (221), we get

$$\left(\frac{\lambda^k}{k!}\right) \lim_{n \to \infty} \frac{n!}{(n-k)!} \left(\frac{1}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k} = \left(\frac{\lambda^k}{k!}\right) (1) \left(e^{-\lambda}\right) (1) \quad (228)$$

This just simplifies into

$$\Pr(X = k) = \left(\frac{\lambda^k e^{-\lambda}}{k!}\right) \tag{229}$$

(229) is equal to probability density function of Poisson distribution, which gives us probability of k successes per period, with given parameter of λ .

...The probability distribution function of the total number of calls in a fixed time interval will be **Poisson** distribution.

Answer: Option(A)

44) Consider a communication scheme where the binary valued signal X satisfies $P\{X = +1\} = 0.75$ and $P\{X = -1\} = 0.25$. The received signal Y = X + Z, where Z is a Gaussian random variable with zero mean and variance σ^2 . The received signal Y is fed to the threshold detector. The output of the threshold detector \hat{X} is:

$$\hat{X} = \begin{cases} +1 & Y > \tau \\ -1 & Y \leqslant \tau \end{cases}$$

To achieve minimum probability of error $P\{\hat{X} \neq X\}$, the threshols τ should be

- a) strictly positive
- d) strictly positive, zero or strictly negative depending on the nonzero value of σ^2
- b) zero
- c) strictly negative
- 45) Consider a discrete-time channel Y = X + Z, where the additive noise Z is signal-dependent. In particular, given the transmitted symbol $X \in \{-a, +a\}$ at any instant, the noise sample Z is chosen independently from a Gaussian distribution with mean βX and unit variance. Assume a threshold detector with zero threshold at the receiver.

When $\beta = 0$, the BER was found to be $Q(a) = 1 \times 10^{-8}$.

$$\left(Q(v) = \frac{1}{\sqrt{2\pi}} \int_{v}^{\infty} e^{\frac{-u^2}{2}} du\right)$$

, and for v > 1, use $Q(v) \approx e^{\frac{-v^2}{2}}$ When $\beta = -0.3$, the BER is closet to

- a) 10^{-7}
- c) 10^{-4}
- b) 10⁻6
- d) 10⁻2

Solution:

Given that the threshold of the detector is zero. Define a detector function g such that

$$g(Y) = \begin{cases} +a & Y > 0 \\ -a & Y < 0 \end{cases} \tag{230}$$

It is given that $X \in \{-a, a\}$ is a random variable.

:.
$$Pr(X = a) = Pr(X = -a) = \frac{1}{2}$$
 (231)

Since the noise in the signal, Z is chosen independently from a Gaussian distribution with mean $\mu = \beta X$ and unit variance, it follows that

$$F_Z(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(z - \beta X)^2}{2}\right) dz \quad (232)$$

$$= \int_{-\infty}^{z-\beta X} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right) dz \tag{233}$$

$$= \int_{\beta X - z}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right) dz \tag{234}$$

$$=Q(\beta X-z) \tag{235}$$

Also, it is easy to see that

$$Q(-v) = 1 - Q(v) \ \forall \ v \in \mathbb{R}$$
 (236)

The detector can record erroneous bits in the signal iff

$$X > 0$$
, $g(Y) = -a$ (Call this BER_{+a}) or (237)

$$X < 0$$
, $g(Y) = a$ (Call this BER_{-a}) (238)

$$\therefore BER_{+a} = \Pr(g(Y) = -a \mid X = a) \Pr(X = a)$$
(239)
$$= \Pr(Y < 0 \mid X = a) \Pr(X = a)$$
(240)
$$= \frac{1}{2} \times \Pr(X + Z < 0 \mid X = a) \quad (241)$$

$$= \frac{1}{2} \times F_Z(-a) \quad (242)$$

$$= \frac{1}{2} \times Q(\beta X + a) \quad (\text{From } (235))$$

$$= \frac{1}{2} \times Q(a(1+\beta)) \tag{244}$$

(243)

BER_{-a} =
$$\Pr(g(Y) = a \mid X = -a) \Pr(X = -a)$$
 (245)

$$= \Pr(Y > 0 \mid X = -a) \Pr(X = -a)$$
(246)

$$= \frac{1}{2} \times \Pr(X + Z > 0 \mid X = -a)$$
 (247)

$$= \frac{1}{2} \times (1 - F_Z(a)) \tag{248}$$

$$= \frac{1}{2} \times (1 - Q(\beta X - a)) \quad \text{(From (235))}$$
(249)

$$= \frac{1}{2} \times Q(a(1+\beta)) \text{ (From (236))}$$
(250)

$$\therefore BER = BER_{+a} + BER_{-a}$$
 (251)

$$= Q(a(1+\beta)) \tag{252}$$

When $\beta = 0$, it is given that

Fig. 14: Theory vs Simulated plot of BER

BER =
$$Q(a) = 10^{-8}$$
 (253)

On computing, $Q(1) \approx 0.16$. Since Q(a) < Q(1), it is easy to see that a > 1 (as Q(x) is a decreasing function)

$$\therefore e^{-a^2/2} = 10^{-8} \tag{254}$$

$$\Leftrightarrow a \approx 6.069 \tag{255}$$

When $\beta = -0.3$,

BER =
$$Q(a(1 + \beta)) = Q(6.069 \times (1 - 0.3))$$
 (256)
= $Q(6.069 \times 0.7)$ (257)
= $Q(4.249)$ (258)
 $\approx \exp(-\frac{4.249^2}{2})$ (259)

Therefore, when $\beta = -0.3$, BER is closest to 10^{-4} and option 45c is correct.

 $\approx 1.2 \times 10^{-4}$

(260)

46) Consider the random process

$$X(t) = U + Vt$$
,

where U is a zero-mean Gaussian random variable and V is a random variable distributed between 0 and 2. Assume that U and V are statistically independent. The mean value of the random process at t=2 is....... Solution: Here

U is a gaussian random variable of mean 0 and Let us consider V is uniformly distributed random variable in (0, 2).

Random Variable	U	V	X(t)
Expected Value	0	1	t

TABLE XIV: Random Variables and Expected Values

From Table XIV we can deduce that,

$$E[X(t)] = E[U + Vt] \tag{261}$$

$$E[X(t)] = E[U] + tE[V]$$
 (262)

$$E[X(t)] = 0 + t$$
 (263)

$$E[X(t)] = t (264)$$

$$E\left[X(2)\right] = 2\tag{265}$$

 \therefore mean of random process X(t) at 2 is 2.

47) Consider the Z-channel given in Fig. 15. The input is 0 or 1 with equal probability.

If the output is 0, the probability that the input is also 0 equals.....

- 48) If P and Q are two random events, then the following is TRUE:
 - a) Independence of P and Q implies that $Pr P \cap O = 0$
 - b) $Pr(P \cup Q) \ge Pr(P) + Pr(Q)$
 - c) If P and Q are mutually exclusive, then they must be independent

d) $Pr(P \cap Q) \leq Pr(P)$

Solution:

 a) Independence of P and Q means if P happens, then outcome of Q won't be affected by that. so

$$Pr(P/Q) = Pr(P) \tag{266}$$

$$\frac{\Pr(PQ)}{\Pr(Q)} = \Pr(P) \tag{267}$$

$$\implies \Pr(PQ) = \Pr(P) \cdot \Pr(Q)$$
 (268)

This is what we can say hence (A) is wrong

b) As

$$Pr(P+Q) = Pr(P) + Pr(Q) - Pr(PQ)$$
(269)

$$Pr(P+Q) + Pr(PQ) = Pr(P) + Pr(Q)$$
(270)

$$\Pr(PQ) \ge 0 \tag{271}$$

$$\implies \Pr(P) + \Pr(Q) \ge \Pr(P + Q)$$
 (272)

Hence (B) is also wrong

c) When P and Q are mutually exclusive, then either P occurs or Q occurs but not both simultaneously. So if P happens, chance of Q happening gets ruled out and vice-versa. Mutually exclusive refers

$$\Pr(PQ) = 0 \tag{273}$$

$$Pr(PQ) \neq Pr(P) \cdot Pr(Q)$$
 (274)

Hence, mutually exclusive events may not be independent.

Hence (C) is also wrong

d) As

$$Pr(Q/P) = \frac{Pr(PQ)}{Pr(P)}$$
 (275)

And

$$\Pr\left(Q/P\right) \le 1\tag{276}$$

$$\frac{\Pr(PQ)}{\Pr(P)} \le 1\tag{277}$$

$$\Pr(PO) \le \Pr(P) \tag{278}$$

Hence (D) is correct.

- 49) A fair coin is tossed three times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is:
 - a) $\frac{1}{8}$
- c) $\frac{3}{8}$
- b) $\frac{1}{2}$

- d) $\frac{3}{4}$
- 50) The probability density function (PDF) of a random variable X is as shown in Fig. 16.

The corresponding cumulative distribution function (CDF) has the form

- a) Fig. 17
- c) Fig. 19
- b) Fig. 18
- d) Fig. 20
- 51) The distribution function $f_x(x)$ of a random variable X is shown in Fig. 21. The probability that X=1 is
 - a) Zero
- c) 0.55
- b) 0.25
- d) 0.30

Fig. 17

- Fig. 18
- 52) Let the probability density function of a random variable *X* be
 - $f(x) = \begin{cases} x & 0 \le x < \frac{1}{2} \\ c(2x 1)^2 & \frac{1}{2} < x \le 1 \\ 0 & \text{otherwise.} \end{cases}$

Then, the value of c is equal to

Solution: For a probability density function

Fig. 19

of a continuous random variable,

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1 \tag{279}$$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{0}^{1/2} f_X(x) dx + \int_{1/2}^{1} f_X(x) dx$$

$$= \frac{1}{2} (x)(x) \Big|_{x=\frac{1}{2}} + \int_{1/2}^{1} c(2x-1)^2 dx$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + c \left(\frac{4x^3}{3} - 2x^2 + x \right) \Big|_{1/2}^{1}$$

$$= \frac{1}{8} + c \left(\frac{1}{3} - \frac{1}{6} \right)$$

$$= \frac{1}{8} + \frac{c}{6}$$
(284)

from (279) and (284) we get

$$1 = \frac{1}{8} + \frac{c}{6} \tag{285}$$

$$\therefore c = \frac{21}{4} \tag{286}$$

Fig. 22: Graph of $f_X(x)$

$$F_X(x) = f_X(X \le x) = \int_{-\infty}^{x} f_X(x) dx$$
 (287)

from $f_X(x)$ and equation (287),

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{2} & 0 \le x \le \frac{1}{2} \\ \frac{1}{8} + \frac{7}{8}(2x - 1)^3 & \frac{1}{2} \le x \le 1 \\ 1 & x > 1 \end{cases}$$

Fig. 23: Graph of $F_X(x)$

- 53) Suppose X and Y are two random variables such that aX + bY is a normal random variable for all $a, b \in \mathbb{R}$. Consider the following statements P,Q,R and S:
 - (P): X is a standard normal random variable.
 - (Q): The conditional distribution of X given Y is normal.
 - (R): The conditional distribution of X given X + Y is normal.
 - (S): X Y has mean 0.

Which of the above statements ALWAYS hold TRUE?

- a) both P and Q
- c) both Q and S
- b) both Q and R
- d) both P and S
- 54) Let X be a random variable with the following

cumulative distribution function:

$$F(x) = \begin{cases} 0 & x < 0 \\ x^2 & 0 \le x < \frac{1}{2} \\ \frac{3}{4} & \frac{1}{2} \le x < 1 \\ 1 & x \ge 1. \end{cases}$$

Then $P(\frac{1}{4} < X < 1)$ is equal to

Solution:

$$P(a < x < b) = F(b) - F(a)$$
 (288)

We want,

$$S = P(\frac{1}{4} < X < 1) \tag{289}$$

$$S = F(1) - F(\frac{1}{4}) \tag{290}$$

$$S = \frac{3}{4} - \frac{1^2}{4^2} \tag{291}$$

$$S = \frac{11}{16} \tag{292}$$

Hence, P($\frac{1}{4}$ < X < 1) is equal to $\frac{11}{16}$

55) Let X_1 be an exponential random variable with mean 1 and X_2 a gamma random variable with mean 2 and variance 2. If X_1 and X_2 are independently distributed, then $P(X_1 < X_2)$ is equal to

Solution:

a) Given that X_1 is an exponential random

variable. Let the P.D.F of X_1 be

$$p_{X_1}(x_1) = \begin{cases} \lambda e^{-\lambda x_1} & x_1 \ge 0\\ 0 & x_1 < 0 \end{cases}$$
 (293)

C.D.F of x_1 is :

$$F_{X_1}(x_1) = \int_{-\infty}^{x_1} p_{X_1}(x_1) dx_1$$

$$= \int_{-\infty}^{0} p_{X_1}(x_1) dx_1 + \int_{0}^{x_1} p_{X_1}(x_1) dx_1$$

$$= \int_{-\infty}^{0} 0 \times dx_1 + \int_{0}^{x_1} \lambda e^{-\lambda x_1} dx_1$$

$$= 1 - e^{-\lambda x_1}$$
(294)

As mean =
$$\lambda$$
 (295)

Given that
$$mean = 1$$
 (296)

so
$$\lambda = 1$$
 (297)

b) Given that X_2 is an gamma random variable.Let the P.D.F of X_2 be:

$$p_{X_2}(x_2) = \begin{cases} \frac{a^b x_2^{b-1} e^{-ax_2}}{\Gamma(b)} & x_2 \ge 0\\ 0 & x_2 < 0 \end{cases}$$
 (298)

Since mean =
$$\frac{b}{a}$$
 = 2 (299)

Also, variance =
$$\frac{b}{a^2}$$
 = 2 (300)

From (299) and (300)

$$b = 2, a = 1 \tag{301}$$

Since the total probability of X_2 is 1 so,

$$\int_{-\infty}^{\infty} p_{X_2}(x_2) dx_2 = 1 \tag{302}$$

$$\int_{-\infty}^{0} p_{X_2}(x_2)dx_2 + \int_{0}^{\infty} p_{X_2}(x_2)dx_2 = 1$$
(303)

$$\int_{-\infty}^{0} 0 \times dx_2 + \int_{0}^{\infty} \frac{a^b x_2^{b-1} e^{-ax_2}}{\Gamma(b)} dx_2 = 1$$
(304)

$$\frac{a^b}{\Gamma(b)} \int_0^\infty x_2^{b-1} e^{-ax_2} dx_2 = 1$$
 (305)

$$\int_0^\infty x_2^{b-1} e^{-ax_2} dx_2 = \frac{\Gamma(b)}{a^b}$$
 (306)

now substituting $a + \lambda$ for a in (306) gives

$$\int_0^\infty x_2^{b-1} e^{-(a+\lambda)x_2} dx_2 = \frac{\Gamma(b)}{(a+\lambda)^b}$$
 (307)

Now we have to find $P(X_1 < X_2)$

c) Given that X_1 and X_2 are independent random variables, so

$$P(X_1 < X_2 | X_2) = F_{X_1}(X_2) = 1 - e^{-\lambda X_2}$$
 (308)

Now,

$$P(X_1 < X_2) = \int_0^\infty F_{X_1}(X_2) \times p_{X_2}(x_2) dx_2$$
(309)

from (298),(308)

$$P(X_1 < X_2) = \int_0^\infty (1 - e^{-\lambda X_2}) \times \frac{a^b x_2^{b-1} e^{-ax_2}}{\Gamma(b)} dx_2$$
(310)

$$P(X_1 < X_2) = \frac{a^b}{\Gamma(b)} \int_0^\infty x_2^{b-1} (e^{-ax_2} - e^{-(a+\lambda)x_2}) dx_2$$
(311)

from (306) and (307)

$$P(X_1 < X_2) = \frac{a^b}{\Gamma(b)} \left(\frac{\Gamma(b)}{a^b} - \frac{\Gamma(b)}{(a+\lambda)^b} \right)$$
(312)

$$P(X_1 < X_2) = 1 - \frac{a^b}{(a+\lambda)^b}$$
 (313)

$$P(X_1 < X_2) = 1 - \left(\frac{a}{a+\lambda}\right)^b$$
 (314)

from (297) and (301)

$$P(X_1 < X_2) = 1 - \left(\frac{1}{1+1}\right)^2$$
 (315)

$$P(X_1 < X_2) = 1 - \frac{1}{4} = \frac{3}{4}$$
 (316)

Common Data for the next two Questions:

Let *X* and *Y* be jointly distributed random variables such that the conditional distribution of *Y*, given X = x, is uniform on the interval (x-1, x+1). Suppose E(X) = 1 and $Var(X) = \frac{5}{3}$.

56) The mean of the random variable Y is

a)
$$\frac{1}{2}$$
 c) $\frac{3}{2}$

Solution: We know that,

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$$
 (317)

Given that $f_{Y|X=x}(y)$ is uniform over the interval (x-1,x+1).

$$\Rightarrow f_{Y|X=x}(y) = \begin{cases} \frac{1}{2} & y \in (x-1, x+1) \\ 0 & \text{otherwise} \end{cases}$$
 (318)

Given E(X) = 1

$$\Rightarrow \int_{-\infty}^{\infty} x f_X(x) dx = 1 \tag{319}$$

Now consider E(Y|X = x),

$$E(Y|X = x) = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) dy$$
 (320)

From (318) it simplifies to,

$$\Rightarrow E(Y|X = x) = \int_{-\infty}^{x-1} y f_{Y|X=x}(y) dy + \int_{x-1}^{x+1} y f_{Y|X=x}(y) dy + \int_{x+1}^{\infty} y f_{Y|X=x}(y) dy \quad (321)$$

$$\Rightarrow E(Y|X=x) = \int_{x-1}^{x+1} y\left(\frac{1}{2}\right) dy \qquad (322)$$

$$=x\tag{323}$$

Now we can write,

$$E(Y) = \int_{-\infty}^{\infty} E(Y|X=x) f_X(x) dx \qquad (324)$$

$$= \int_{-\infty}^{\infty} x f_X(x) dx \tag{325}$$

$$= E(X) \tag{326}$$

From (319) we get

$$E(Y) = 1. (327)$$

57) The variance of the random variable Y is

a)
$$\frac{1}{2}$$
 c) 1

b)
$$\frac{2}{3}$$
 d) 2

Solution:

$$Var(Y|X = x) = \int_{-\infty}^{\infty} (y - E(Y))^2 f_{Y|X=x}(y) dy$$

$$= \int_{x=1}^{x+1} (y - 1)^2 \left(\frac{1}{2}\right) dy \quad (329)$$

$$Var(Y) = \int_{-\infty}^{\infty} Var(Y|X=x) f_X(x) dx$$
 (330)
= $\left(\frac{1}{2}\right) \int_{x-1}^{x+1} \left(y^2 - 2y + 1\right) dy$ (331)
= $\left(\frac{1}{2}\right) \left(\frac{6x^2 + 2}{3} + 2 - 4x\right)$ (332)

$$=x^2 - 2x + \frac{4}{3} \tag{333}$$

$$Var(Y) = \int_{-\infty}^{\infty} \left(x^2 - 2x + \frac{4}{3} \right) f_X(x) dx$$
 (334)

$$= \int_{-\infty}^{\infty} x^2 f_X(x) dx - 2 \int_{-\infty}^{\infty} x f_X(x) dx + (335)$$

$$\frac{4}{3} \int_{-\infty}^{\infty} f_X(x) dx \qquad (336)$$

$$f_X(x)dx = 1 (337)$$

$$Var(X) = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \frac{5}{3}$$
 (338)

$$E(x) = \int_{-\infty}^{\infty} x f_X(x) dx = 1$$
 (339)

(340)

From (336),(338),(339) and (340) we get

$$Var(Y) = \frac{5}{3} - 2 + \frac{4}{3} \tag{341}$$

(342)

.. Option C is true

58) Let the random variable X have the distribution function:

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{2} & 0 \le x < 1 \\ \frac{3}{5} & 1 \le x < 2 \\ \frac{1}{2} + \frac{x}{8} & 2 \le x < 3 \\ 1 & x \ge 3. \end{cases}$$

Then $P(2 \le X < 4)$ is equal to

Solution:

Given F(X) is the CDF of the random variable

 $P(2 \le X < 4)$ will be the sum of all the probabilities of values the random variable X can take in [2,4).

So it is the difference between CDF values of the random variable X at X=4- and at X=2-. Therefore,

$$P(2 \le X < 4) = \lim_{X \to 4-} F(X) - \lim_{X \to 2-} F(X)$$
 (343)

$$= \lim_{X \to 4^{-}} 1 - \lim_{X \to 2^{-}} \frac{3}{5}$$
 (344)
$$= 1 - \frac{3}{5}$$
 (345)

$$=1-\frac{3}{5} \tag{345}$$

$$=\frac{2}{5}=0.4\tag{346}$$

Hence, $P(2 \le X < 4) = 0.4$.

59) Let X be a random variable having the distribution function:

Fig. 24: CDF of X

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4} & 0 \le x < 1 \\ \frac{1}{3} & 1 \le x < 2 \\ \frac{1}{2} & 2 \le x < \frac{11}{3} \\ 1 & x \ge \frac{111}{3}. \end{cases}$$

Then E(X) is equal to

60) Let X and Y be two random variables having the joint probability density function

$$f(x,y) = \begin{cases} 2 & 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

 $f(x,y) = \begin{cases} 2 & 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$ Then the conditional probability $P\left(X \le \frac{2}{3}|Y = \frac{3}{4}\right)$ is equal to ______

- b) $\frac{2}{3}$ c) $\frac{7}{9}$ d) $\frac{8}{9}$ a) $\frac{5}{9}$
- 61) Let $\Omega = (0, 1]$ be the sample space and let $P(\cdot)$ be a probability function defined by

$$P((0,x]) = \begin{cases} \frac{x}{2} & 0 \le x < \frac{1}{2} \\ x & \frac{1}{2} \le x \le 1. \end{cases}$$

Then $P(\lbrace \frac{1}{2} \rbrace)$ is equal to ____

62) Suppose the random variable U has uniform distribution on [0, 1] and $X = -2 \log U$. The density of X is

a)
$$f(x) = \begin{cases} e^{-x} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

b)
$$f(x) = \begin{cases} 2e^{-2x} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}} & x > 0\\ 0 & \text{otherwise.} \end{cases}$$

d)
$$f(x) = \begin{cases} \frac{1}{2} & x \in [0, 2] \\ 0 & \text{otherwise.} \end{cases}$$

- 63) Suppose X is a real-valued random variable. Which of the following values **CANNOT** be attained by E[X] and $E[X^2]$, respectively?
 - a) 0 and 1
- c) $\frac{1}{2}$ and $\frac{1}{3}$
- b) 2 and 3
- d) 2 and 5

Solution: We know that

$$var(X) = E[(X - E[X])^{2}]$$
 (347)

$$var(X) = E[X^{2}] - (E[X])^{2}$$
 (348)

For uniform distribution in the interval [a, b]

$$var(X) = \frac{(b-a)^2}{12}$$
 (349)

For uniform distribution, $(b - a)^2 \ge 0$ By definition of variance, it is average value of $(X - E[X])^2$.

Since $(X - E[X])^2 \ge 0$, average $E[(X - E[X])^2] \ge 0$.

$$\therefore var(X) \ge 0 \tag{350}$$

$$\therefore E[X^2] - (E[X])^2 \ge 0 \tag{351}$$

a) E[X] = 0 and $E[X^2] = 1$

$$E[X^2] - (E[X])^2 = 1 - 0$$
 (352)

$$= 1 \tag{353}$$

$$\therefore E[X^2] - (E[X])^2 \ge 0 \tag{354}$$

E[X] = 0 and $E[X^2] = 1$ can be attained

b)
$$E[X] = \frac{1}{2}$$
 and $E[X^2] = \frac{1}{3}$

$$E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4}$$
 (355)

$$=\frac{1}{12}$$
 (356)

$$\therefore E[X^2] - (E[X])^2 \ge 0 \tag{357}$$

 $\therefore E[X] = \frac{1}{2}$ and $E[X^2] = \frac{1}{3}$ can be attained

c)
$$E[X] = 2$$
 and $E[X^2] = 3$

$$E[X^2] - (E[X])^2 = 3 - 4$$
 (358)

$$=-1$$
 (359)

$$\therefore E[X^2] - (E[X])^2 \le 0 \tag{360}$$

 $\therefore E[X] = 2$ and $E[X^2] = 3$ cannot be attained

d) E[X] = 2 and $E[X^2] = 5$

$$E[X^2] - (E[X])^2 = 5 - 4$$
 (361)

$$= 1$$
 (362)

$$\therefore E[X^2] - (E[X])^2 \ge 0 \tag{363}$$

$$E[X] = 2$$
 and $E[X^2] = 5$ can be attained

E[X] = 2 and $E[X^2] = 3$ cannot be attained

64) Let X_n denote the sum of points obtained when n fair dice are rolled together. The expectation and variance of X_n are

a)
$$\frac{7}{2}n$$
 and $\frac{35}{12}n^2$ respectively. c) $\left(\frac{7}{2}\right)^n$ and $\left(\frac{35}{12}\right)^n$ respectively.

b)
$$\frac{7}{2}n$$
 and $\frac{35}{12}n$ respectively. d) None of the above

Solution: We know, when one dice is rolled probability i.e $Pr(X_1 = r)$ for all r in $\{1,2,3,4,5,6\}$ is equal to p

$$p = \frac{1}{6} \tag{364}$$

Let Y_i denote the value obtained on ith dice

when n dices are rolled, therefore

$$X_n = \sum_{i=1}^n Y_i$$
 (365)

Now i will calculate expectation value of value obtained when one dice is rolled using below formula;

$$E(Y_i) = E(X_1) = \sum_{r=1}^{6} (r \times p)$$
 (366)

$$= \frac{1}{6} \times \sum_{r=1}^{6} r \tag{367}$$

$$=\frac{7}{2}.\tag{368}$$

 a) Since the Expectation value of a sum of independent events is the sum of their expectation. So,

$$E(X_n) = \sum_{i=1}^{n} E(Y_i)$$
 (369)

$$=\sum_{i=1}^{n} \frac{7}{2} = \frac{7}{2}n \tag{370}$$

b) By Using the following formula ,we can calculate variance of X_1 ,

$$V(X_1) = (E(X_1)^2) - (E(X_1))^2$$
 (371)

$$\sum_{k=1}^{k} r^2 = \frac{k \times (k+1) \times (2(k)+1)}{6}$$
 (372)

Now calculating $E(X_1^2)$, by using (372)

$$E(X_1^2) = \sum_{r=1}^{6} (r^2 \times p)$$
 (373)

$$= \frac{1}{6} \times \sum_{i=1}^{6} r^2$$
 (374)

$$=\frac{91}{6}$$
 (375)

By using (368),(371) and (375)

$$V(X_1) = V(Y_i) \tag{376}$$

$$=\frac{35}{12}$$
 (377)

Variance of sum can be calculated by using

following formula,

$$V(X_n) = V(\sum_{i=0}^n Y_i)$$
(378)

$$= \sum_{i=1}^{n} V(Y_i) + \sum_{1 \le i \ne j \le n} \text{Cov}(Y_i, Y_j)$$
(379)

Since Co-variance of independent random variables is zero. So,

$$V(X_n) = \sum_{i=1}^n V(Y_i) + 0$$
 (380)

$$=\frac{35}{12}n$$
 (381)

Hence option(B) is correct.

65) Let X and Y be jointly distributed random variables having the joint probability density function

$$f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}$$
Then $P(Y > max(X, -X)) = \frac{1}{\pi}$

a)
$$\frac{1}{2}$$
 c) $\frac{1}{4}$

b)
$$\frac{1}{3}$$
 d) $\frac{1}{3}$

Solution: pdf of *X* is :

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 (382)

$$= \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy \tag{383}$$

$$=\frac{2\sqrt{1-x^2}}{\pi}$$
 (384)

pdf of Y is:

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
 (385)

$$= \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx \tag{386}$$

$$=\frac{2\sqrt{1-y^2}}{\pi}$$
 (387)

cdf of Y is:

$$F_Y(y) = \int_{-\infty}^{y} f_Y(y) dy$$
 (388)

$$= \int_{-1}^{y} \frac{2\sqrt{1-y^2}}{\pi} dy \tag{389}$$

$$= \frac{2}{\pi} \left[\frac{\sin^{-1} y + y\sqrt{1 - y^2}}{2} + \frac{\pi}{4} \right]$$
 (390)

The value of Pr(-X < Y < X) is:

$$Pr(-X < Y < X) = F_Y(X) - F_Y(-X)$$
 (391)
= $\frac{2}{\pi} \left(\sin^{-1} X + X \sqrt{1 - X^2} \right)$ (392)

Integrating our probability over all of X we get the value of E[Pr(-x < Y < x)] as

$$= \int_{-\infty}^{\infty} f_X(x) \Pr(-x < Y < x) dx$$
 (393)
$$= \left(\frac{2}{\pi}\right)^2 \int_0^1 \sqrt{1 - x^2} \left(\sin^{-1} x + x\sqrt{1 - x^2}\right) dx$$
 (394)

Substituting

$$u = \sin^{-1} x + x \sqrt{1 - x^2}$$
 (395)

$$\frac{du}{dx} = 2\sqrt{1 - x^2}$$
 (396)

$$= \left(\frac{2}{\pi}\right)^2 \int_0^{\frac{\pi}{2}} \frac{u}{2} du \tag{397}$$

$$= \left(\frac{2}{\pi}\right)^2 \left(\frac{u^2}{4}\right) \Big|_0^{\frac{\pi}{2}} \tag{398}$$

$$= \left(\frac{2}{\pi}\right)^2 \left(\frac{\pi^2}{16} - 0\right) \tag{399}$$

$$= \frac{4 \cdot \pi^2}{\pi^2 \cdot 16} \tag{400}$$

$$=\frac{1}{4}\tag{401}$$

66) Consider two identical boxes B_1 and B_2 , where the box B(i = 1, 2) contains i+2 red and 5-i-1 white balls. A fair die is cast. Let the number of dots shown on the top face of the die be N. If N is even or 5, then two balls are drawn with replacement from the box B_1 , otherwise, two balls are drawn with replacement from the box B_2 . The probability that the two drawn balls

are of different colours is

a)
$$\frac{7}{25}$$
 c) $\frac{12}{25}$

b)
$$\frac{9}{25}$$
 d) $\frac{16}{25}$

Solution: Let $X \in \{1, 2, 3, 4, 5, 6\}$ be the random variables of a die,

$$\Pr\left(X=N\right) = \begin{cases} \frac{1}{6} & 1 \le N \le 6\\ 0 & otherwise \end{cases} \tag{402}$$

$$Pr(X = m) . Pr(X = n) = 0$$
 (403)

 $\forall m, n \in \{1, 2, 3, 4, 5, 6\}$ as a single die cannot show more than one outcome at a roll. Let $Y \in \{0, 1\}$ represent the die where, $1 \implies$ the die with outcome $N = \{2, 4, 5, 6\}$, $0 \implies N = \{1, 3\}$.

$$Pr(Y = 1) = Pr((X = 2) + (X = 4) + (X = 5) + (X = 6))$$
(404)

by using Boolean logic and (403),

$$\Pr(Y=1) = \frac{2}{3} \qquad (405)$$

$$Pr(Y = 0) = 1 - Pr(Y = 1) = \frac{1}{3}$$
 (406)

$$\implies \Pr(B_1) = \Pr(Y = 1) = \frac{2}{3}$$
 (407)

$$\implies \Pr(B_2) = \Pr(Y = 0) = \frac{1}{3}$$
 (408)

Let $C \in \{0, 1\}$ where, $0 \implies \text{red balls}$, $1 \implies \text{white balls}$.

TABLE XV: Table of number of balls

Box	No. of red balls $(i+2)$	No. of white balls $(5 - i - 1)$	Total balls
B_1	$n(C=0 B_1)=3$	$n(C=1 B_1)=3$	$n(C B_1) = 6$
B_2	$n(C=0 B_2)=4$	$n(C=1 B_2)=2$	$n(C B_2) = 6$

The probability of picking 2^{nd} ball is not effected by picking 1^{st} ball because the 2^{nd} ball is chose after replacement.

TABLE XVI: Table of probability of taking balls from each box

Box	Probability of taking red ball	Probability of taking white ball
B_1	$Pr(C = 0 B_1) = 1/2$	$Pr(C = 1 B_1) = 1/2$
B_2	$Pr(C = 0 B_2) = 2/3$	$Pr(C = 1 B_2) = 1/3$

Selecting two balls with replacement is a Bernoulli distribution of 2 trails,

TABLE XVII: Table of no. of ways of selecting two different coloured balls

Cases	Trail 1	Trail 2
$(B_1, C = 0, C = 1)$	$\Pr\left(C = 0 B_1\right)$	$\Pr\left(C=1 B_1\right)$
$(B_1, C = 1, C = 0)$	$\Pr\left(C=1 B_1\right)$	$\Pr\left(C=0 B_1\right)$
$(B_2, C = 0, C = 1)$	$\Pr\left(C = 0 B_2\right)$	$\Pr\left(C=1 B_2\right)$
$(B_2, C = 1, C = 0)$	$\Pr\left(C=1 B_2\right)$	$\Pr\left(C=0 B_2\right)$

$$\Rightarrow \Pr((C = 0, C = 1)|B_1) =$$

$$\Pr(C = 0|B_1) \cdot \Pr(C = 1|B_1)$$

$$+ \Pr(C = 1|B_1) \cdot \Pr(C = 0|B_1) \quad (409)$$

$$\Pr\left((C=0,C=1)|B_1\right) = \frac{1}{2} \tag{410}$$

$$\Rightarrow \Pr((C = 0, C = 1)|B_2) = \\ \Pr(C = 0|B_2) \cdot \Pr(C = 1|B_2) \\ + \Pr(C = 1|B_2) \cdot \Pr(C = 0|B_2) \quad (411)$$

$$\Pr\left((C=0,C=1)|B_1\right) = \frac{4}{9} \tag{412}$$

TABLE XVIII: Table of variables description

Variables	Description
$Pr((C = 0, C = 1) B_1)$	Probability of selecting two different coloured balls from
$Pr((C = 0, C = 1) B_2)$	box B_1 Probability of selecting two different coloured balls from box B_2
Pr (<i>T</i>)	Total probability of selecting two different coloured balls

by using Bayes theorem,

$$Pr(T) = Pr((C = 0, C = 1)|B_1) . Pr(B_1) + Pr((C = 0, C = 1)|B_2) . Pr(B_2) (413)$$

$$\Pr(T) = \left(\frac{1}{2}\right)\left(\frac{2}{3}\right) + \left(\frac{4}{9}\right)\left(\frac{1}{3}\right) \tag{414}$$

Hence, the probability of selecting two different coloured balls from the boxes is

$$\Pr(T) = \frac{13}{27} \tag{415}$$

Common Data for the next two Questions:

Let X and Y be random variables having the joining probability density function

$$f(x,y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{\frac{-1}{2y}(x-y)^2} & -\infty < x < \infty, \\ 0 & \text{otherwise} \end{cases}$$

67) The variance of the random variable X is

a)
$$\frac{1}{12}$$

c)
$$\frac{7}{12}$$

b)
$$\frac{1}{4}$$

d)
$$\frac{5}{12}$$

68) The covariance between the random variables X and Y

a)
$$\frac{1}{3}$$

c)
$$\frac{1}{6}$$

b)
$$\frac{1}{4}$$

d)
$$\frac{1}{12}$$

Common Data for the next two Questions:

Let X and Y be continuous random variables with the joint probability density function

$$f(x, y) = \begin{cases} ae^{-2y} & 0 < x < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

We know that,

$$P(p < X < q) = F(q^{-}) - F(p)$$
 (416)

$$P\left(\frac{1}{4} < X < 1\right) = F(1^{-}) - F\left(\frac{1}{4}\right)$$
 (417)

$$= \frac{3}{4} - \left(\frac{1}{4}\right)^2 \tag{418}$$

$$=\frac{11}{16}$$
 (419)

$$= 0.6875$$
 (420)

Fig. 25: The figure depicts the CDF of X

74) Let X_1 be an exponential random variable with mean 1 and X_2 a gamma random variable with mean 2 and variance 2. If X_1 and X_2 are independently distributed, then $P(X_1 < X_2)$ is equal to.....

Common Data for the next two Questions:

Let X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2 & 0 < x + y < 1, x > 0, y > 0 \\ 0 & \text{elsewhere.} \end{cases}$$

75)
$$P(X + Y < \frac{1}{2})$$
 is

a)
$$\frac{1}{4}$$

b)
$$\frac{1}{2}$$

- 69) The value of a is
 - a) 4

c) 1

b) 2

- d) 0.5
- 70) The value of E(X|Y=2) is
 - a) 4

c) 2

b) 3

- d) 1
- 71) Let X and Y be two random variables having the joint probability density function

$$f(x, y) = \begin{cases} 2 & 0 < x < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Then the conditional probability $P(X \le \frac{2}{3}|Y = \frac{3}{4})$ is equal to

a) $\frac{5}{9}$

c) $\frac{7}{9}$

b) $\frac{2}{3}$

- d) $\frac{8}{9}$
- 72) Let $\Omega = (0, 1]$ be the sample space and let P(.) be a probability function defined by

$$P((0,x]) = \begin{cases} \frac{x}{2} & 0 \le x < \frac{1}{2} \\ x & \frac{1}{2} \le x \le 1 \end{cases}$$

Then $P\left(\left\{\frac{1}{2}\right\}\right)$ is equal to.....

73) Let X be a random variable with the following cumulative distribution function:

$$F(x) = \begin{cases} 0 & x < 0 \\ x^2 & 0 \le x < \frac{1}{2} \\ \frac{3}{4} & \frac{1}{2} \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Then $P(\frac{1}{4} < x < 1)$ is equal to......

Solution:

c)
$$\frac{3}{4}$$
 d) 1

Solution: Given X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2 & 0 < x + y < 1, x > 0, y > 0 \\ 0 & \text{elsewhere} \end{cases}$$
 (421)

we know that

$$P((x,y) \in A) = \int \int_{A} f(x,y) \, dx dy \quad A \in \mathbb{R}^{2}$$
(422)

from given information for positive *x* and *y*

$$0 < x + y < \frac{1}{2} \Rightarrow 0 < x < \frac{1}{2} - y$$
 (423)

so using eq(0.0.3)

$$P\left(x+y<\frac{1}{2}\right) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}-y} f(x,y) dx dy$$
 (424)

$$= \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2} - y} 2 \quad dx dy = \int_0^{\frac{1}{2}} \left(2x \quad \Big|_0^{\frac{1}{2} - y} \right) dy \tag{425}$$

$$= \int_0^{\frac{1}{2}} 2\left(\frac{1}{2} - y\right) \quad dy = 2\left(\frac{1}{2}y - \frac{y^2}{2}\right)\Big|_0^{\frac{1}{2}}$$
(426)

$$= \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{1}{4}$$
(427)

Therefore

$$P\left(X + Y < \frac{1}{2}\right) = \frac{1}{4} \tag{428}$$

volume under the graph which contains the region

$$X + Y < \frac{1}{2}$$
 gives us $P\left(X + Y < \frac{1}{2}\right)$ (429)

$$P\left(X + Y < \frac{1}{2}\right)$$
 = Area of the base . height (430)

Area of the base triangle is

$$\frac{1}{2}.height.base = \frac{1}{2}.\frac{1}{2}.\frac{1}{2}$$
 (431)

volume = Area . height =
$$\frac{1}{8}.2 = \frac{1}{4}$$
 (432)

Fig. 26: $P\left(x + y < \frac{1}{2}\right)$

76) $E(X|Y = \frac{1}{2})$

a)
$$\frac{1}{4}$$

c) 1

b)
$$\frac{1}{2}$$

d) 2

Solution: Let X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2 & 0 < x + y < 1, x > 0, y > 0 \\ 0 & \text{elsewhere.} \end{cases}$$
 (433)

Then $E(X|Y = \frac{1}{2})$ is

3 Solution

Given X and Y are two continuous random variables with joint probability density function,

$$f(x,y) = \begin{cases} 2 & 0 < x + y < 1, x > 0, y > 0 \\ 0 & \text{elsewhere.} \end{cases}$$
 (434)

We know that,

 $0 < x + y < 1 \implies 0 < y < 1 - x \text{ for } 0 < x < 1.$ Then,

$$f_X(x) = \int f_{XY}(x, y) \, dy \tag{435}$$

$$= \int_0^{1-x} (2)dy \tag{436}$$

$$= 2(1 - x) \tag{437}$$

$$\implies f_X(x) = \begin{cases} 2(1-x) & 0 \le x < 1 \\ 0 & \text{otherwise.} \end{cases}$$
 (438)

Similarly,

 $0 < x + y < 1 \implies 0 < x < 1 - y \text{ for } 0 < y < 1$ Then,

$$f_{y}(y) = \int f_{XY}(x, y) dx$$
 (439)

$$= \int_0^{1-y} (2)dx \tag{440}$$

$$= 2(1 - y) \tag{441}$$

$$\implies f_Y(y) = \begin{cases} 2(1-y) & 0 \le y < 1\\ 0 & \text{otherwise.} \end{cases}$$
 (442)

Therefore,

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$
 (443)

$$= \begin{cases} \frac{2}{2(1-y)} & \text{if } 0 \le x + y < 1\\ 0 & \text{otherwise} \end{cases}$$
 (444)

Then,

$$E(X|Y = y) = \int_{-\infty}^{\infty} (x) \left(\frac{1}{1 - y}\right) dx \quad (445)$$
$$= \frac{1}{1 - y} \int_{0}^{1 - y} (x) dx \quad (446)$$

$$= \frac{1}{1 - y} \left[\frac{x^2}{2} \right]_0^{1 - y} \tag{447}$$

$$\therefore E(X|Y=y) = \frac{1-y}{2} \tag{448}$$

$$\implies E\left(X|Y=\frac{1}{2}\right) = \frac{1-\frac{1}{2}}{2} \tag{449}$$

$$\therefore E\left(X|Y=\frac{1}{2}\right) = \frac{1}{4} \tag{450}$$

77) If a random variable X assumes only positive integral values, with the probability $P(X = x) = \frac{2}{3}(\frac{1}{3})^{x-1}$, x = 1, 2, 3, ...,

then E(X) is

a)
$$\frac{2}{9}$$

b)
$$\frac{2}{3}$$

d)
$$\frac{3}{2}$$

Solution: Let $Y = \{0,1\}$ be a set of random variables of a Bernoulli's distribution with 0 representing a loss and 1 a win and let $Y_i \in Y$ for $i=1,2,3...,Y_i$ is the outcome of i^{th} try of choosing 0 or 1 from Y.

So the Random variable X is generated by assigning value of i to X where $Y_i = 1$ for the first time.

$$X = \{x : Y_{i=x} = 1, Y_{i < x} = 0\}$$

 $\implies X = \{Y_1 = 0, Y_2 = 0, Y_3 = 0, ..., Y_x = 1\}$

For given bernouli's trail $p = \frac{2}{3}$ and $q = 1 - p = \frac{1}{3}$. The given probability distribution is

$$P(X = x) = P(Y_{i=x} = 1)P(Y_{i < x} = 0)$$

$$\implies P(X = x) = p(1 - p)^{x - 1}$$

$$\implies P(X = x) = \frac{2}{3} \left(\frac{1}{3}\right)^{x - 1}$$

The expectation value of X represented by E(X) is given by

$$E(X) = \sum_{i=1}^{\infty} Pr(x = i) \times i$$

Let S=E(X),

$$\implies E(X) = S = \sum_{i=1}^{\infty} Pr(x = i) \times i \quad (451)$$

$$\implies S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{452}$$

$$\implies S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{453}$$

Multiplying (452) with $\frac{1}{3}$ on both sides gives

$$\frac{1}{3}S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i} \times i \tag{454}$$

In (453) $\sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^i \times i$ can be written as $\sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$

$$\implies \frac{1}{3}S = \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$$

(455)

(453)-(455) gives :
$$\frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i - (i - 1))$$

$$\implies \frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$

$$\implies S = 1 + \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i} \tag{458}$$

$$\implies S = 1 + \frac{1/3}{1 - \frac{1}{3}}$$
(459)

 $\implies S = \frac{3}{2} \tag{460}$

The Variance Var(X) is given by $\sum x^2 P(x) - E(X)$ for the given distribution,

$$Var(X) = \sum_{i=1}^{\infty} i^2 P(x=i) - E(X)$$
 (461)

let
$$S = \sum_{i=1}^{\infty} i^2 P(x=i) = \sum_{i=1}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$
 (462)

$$S/3 = \sum_{i=1}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^i = \sum_{i=0}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^i \quad (463)$$

$$=\sum_{i=1}^{\infty} (i-1)^2 \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \tag{464}$$

(462)-(464) gives us

$$\frac{2S}{3} = \sum_{i=1}^{\infty} (i^2 - (i-1)^2) \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$
 (465)

$$S = \sum_{i=1}^{\infty} (2i - 1) \left(\frac{1}{3}\right)^{i-1} \tag{466}$$

$$\implies S = 3 \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} i - \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1}$$
 (467)

$$\implies S = 3E(X) - \frac{1}{1 - 1/3} \tag{468}$$

$$\implies S = \frac{9}{2} - \frac{3}{2} = 3 \tag{469}$$

From (469) and (461) we can write

$$Var(X) = 3 - \frac{3}{2} = \frac{3}{2}$$

From (460) we can say that the expectation value of X given by $E(X)=S=\frac{3}{2}$ and Var(X)= $\frac{1}{2}$

78) The joint probability density function of two random variables X and Y is given as

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 10 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$$

E(X) and E(Y) are, respectively,

a)
$$\frac{2}{5}$$
 and $\frac{3}{5}$ c) $\frac{3}{5}$ and $\frac{6}{5}$

c)
$$\frac{3}{5}$$
 and $\frac{6}{5}$

b)
$$\frac{3}{5}$$
 and $\frac{3}{5}$

d)
$$\frac{4}{5}$$
 and $\frac{6}{5}$

Solution: For a continuous joint probability

distribution E(X)

and E(Y) are obtained using the following equations

(470) and (471)

$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) \, dx \, dy \qquad (470)$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) \, dx \, dy \qquad (471)$$

Using equation (470) E(X) is calculated as

$$E(X) = \int_{0}^{1} \int_{0}^{1} x \frac{6}{5} (x + y^{2}) dx dy + 0$$

$$= \int_{0}^{1} \frac{6}{5} \left(\int_{0}^{1} x^{2} dx \right) + \frac{6}{5} y^{2} \left(\int_{0}^{1} x dx \right) dy$$

$$= \int_{0}^{1} \frac{6}{5} \left(\frac{1}{3} \right) + \frac{6}{5} y^{2} \left(\frac{1}{2} \right) dy$$

$$= \frac{2}{5} \int_{0}^{1} dy + \frac{3}{5} \int_{0}^{1} y^{2} dy$$

$$= \frac{2}{5} + \frac{3}{5} \left(\frac{1}{3} \right)$$

$$E(X) = \frac{3}{5}$$

Using equation (471) E(Y) is calculated as

$$E(Y) = \int_{0}^{1} \int_{0}^{1} y \frac{6}{5} (x + y^{2}) dx dy + 0$$

$$= \int_{0}^{1} \frac{6}{5} x \left(\int_{0}^{1} y dy \right) + \frac{6}{5} \left(\int_{0}^{1} y^{3} dy \right) dx$$

$$= \int_{0}^{1} \frac{6}{5} x \left(\frac{1}{2} \right) + \frac{6}{5} \left(\frac{1}{4} \right) dx$$

$$= \frac{3}{5} \int_{0}^{1} x dx + \frac{3}{10} \int_{0}^{1} dx$$

$$= \frac{3}{5} \left(\frac{1}{2} \right) + \frac{3}{10}$$

$$E(Y) = \frac{3}{5}$$

$$\therefore E(X) = \frac{3}{5} \text{ and } E(Y) = \frac{3}{5}$$

Hence the answer is option b

79) Suppose the random variable U has uniform distribution on [0, 1] and $X = -2 \log U$. The density of X is

a)
$$f(x) = \begin{cases} e^{-x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

b)
$$f(x) = \begin{cases} 2e^{-2x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

d)
$$f(x) = \begin{cases} \frac{1}{2} & x \in [0, 2] \\ 0 & \text{otherwise} \end{cases}$$

Solution: U - uniformly distributed random variable on \in [0,1]. Probability density function of U is:

$$f_U(u) = \begin{cases} 1 & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
 (472)

X is given by:

$$X = -2\ln(U) \tag{473}$$

$$\implies 0 \le X \le \infty$$
 (474)

CDF of X is defined as

$$F_X(x) = \Pr\left(X \le x\right) \tag{475}$$

$$= \Pr\left(-2\ln(U) \le x\right) \tag{476}$$

$$= \Pr(\ln(U) \ge (-x)/2) \tag{477}$$

$$= \Pr\left(U \ge \exp(-x/2)\right) \tag{478}$$

$$= 1 - \Pr(U \le exp(-x/2)) \tag{479}$$

$$= 1 - exp(-x/2) \tag{480}$$

where $x \in [0, \infty]$

PDF of X:

$$f_X(x) = \frac{d(F_X(x))}{dx} \tag{481}$$

$$= \frac{1}{2} exp((-x)/2) \tag{482}$$

we have

$$0 \le X \le \infty \tag{483}$$

$$f_X(x) = \begin{cases} \frac{1}{2}exp(\frac{-x}{2}) & x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (484)

: answer will be option (3)

- 80) Suppose X is a real-valued random variable. Which of the following values CANNOT be attained by E[X] and $E[X^2]$, respectively?
 - a) 0 and 1
- c) $\frac{1}{2}$ and $\frac{1}{3}$
- b) 2 and 3
- d) 2 and 5

Solution: The variance of a distribution is given by

$$\sigma^2 = E[X^2] - E[X]^2 \tag{485}$$

As variance is always positive,

$$E[X^2] - E[X]^2 \ge 0 \tag{486}$$

is a necessary condition for any real valued random variable. Computing the value of $E[X^2] - E[X]^2$ for the options, we have

(A) 0 and 1

$$\implies E[X^2] - E[X]^2 = 1 - 0^2 = 1 \ge 0$$
(487)

(B) 2 and 3 $\implies E[X^2] - E[X]^2 = 3 - 2^2 = -1 \le 0$ (488)

(C)
$$\frac{1}{2}$$
 and $\frac{1}{3}$

$$\implies E[X^2] - E[X]^2 = \frac{1}{3} - \frac{1}{2}^2 = \frac{1}{12} \ge 0$$
(489)

(D) 2 and 5 $\implies E[X^2] - E[X]^2 = 5 - 2^2 = 1 \ge 0$ (490)

81) Probability density function p(x) of a random variable x is as shown below. The value of α is

a) $\frac{2}{c}$

c) $\frac{2}{(b+c)}$

b) $\frac{1}{c}$

- $d) \ \frac{1}{(b+c)}$
- 82) A player throws a ball at a basket kept at a distance. The probability that the ball falls into the basket in a single attempt is 0.1. The player attempts to throw the ball twice. Considering each attempt to be independent, the probability that this player puts the ball into the basket only in the second attempt is........

Solution: Let $X \in \mathbb{N}$ represent the number of times the experiment is performed.

X = k represents k - 1 failures were obtained before getting 1 success. p represents the probability of success

$$p_X(k) = \begin{cases} (1-p)^{k-1} \times p & k \in \mathbb{N} \\ 0 & otherwise \end{cases}$$
 (491)

Using (491) we get

$$Pr(X = 2) = (1 - p)^{k-1} \times p$$
$$= (0.9) \times 0.1 = 0.09$$
(492)

83) A screening test is carried out to detect a certain disease. It is found that 12% of the positive reports and 15% of the negative reports are incorrect. Assuming that the probability of a person getting positive report is 0.01,

the probability that a person tested gets an incorrect report is ...

Solution: Let $X \in \{0, 1\}$ represent the random variable, where 0 represents the case where a person gets a positive report while 1 represents the case where a person gets a negative report. From the question,

$$Pr(X = 0) = 0.01$$
 (493)

$$Pr(X = 0) + Pr(X = 1) = 1$$
 (494)

$$Pr(X = 1) = 1 - 0.01 = 0.99 \tag{495}$$

Let $Y \in \{0, 1\}$ represent the random variable, where 0 represents a correct report whereas 1 represents an incorrect report.

$$Pr(Y = 1|X = 0) = 12\% = 0.12$$
 (496)

$$Pr(Y = 1|X = 1) = 15\% = 0.15$$
 (497)

Then, from total probability theorem,

$$Pr(Y = 1) = Pr(Y = 1, X = 0)$$

+ $Pr(Y = 1, X = 1)$ (498)

Using Bayes theorem,

$$Pr(Y = 1) = Pr(Y = 1|X = 0) \times Pr(X = 0)$$

+ $Pr(Y = 1|X = 1) \times Pr(X = 1)$ (499)

$$Pr(Y = 1) = 0.12 \times 0.01 + 0.15 \times 0.99$$
 (500)

$$=0.0012 + 0.1485$$
 (501)

$$=0.1497$$
 (502)

- 84) Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts?
 - A) 0.2508
 - B) 0.2816
 - C) 0.2934
 - D) 0.6000

Solution: Let

$$X_i \in \{0, 1\} \tag{503}$$

represent the i^{th} free throw, where 1 represents a successful free throw attempt and 0 represents an unsuccessful attempt. Let

$$X = \sum_{i=1}^{n} X_i \tag{504}$$

where n is the total number of free throws. Then, X has a binomial distribution with

$$\Pr(X = k) = {}^{n}C_{k}p^{k}q^{n-k}$$
 (505)

Where,

$$p = \frac{6}{10} \tag{506}$$

$$q = 1 - p = \frac{4}{10} \tag{507}$$

$$n = 10 \tag{508}$$

from the given information. Then,

$$\Pr(X=6) = {}^{10}C_6 \left(\frac{6}{10}\right)^6 \left(\frac{4}{10}\right)^4 \tag{509}$$

On simplifying we get,

$$Pr(X = 6) = 0.2508$$
 (510)

Therefore, the probability that he will successfully make exactly 6 free throws in 10 attempts is 0.2508 and hence option (A) is correct.

- 85) Consider a sequence of tossing a fair coin where outcomes of tosses are independent. The probability of getting the head for the third time in the fifth toss is
 - (A) $\frac{5}{16}$
 - (B) $\frac{3}{16}$
 - (C) $\frac{3}{5}$
 - (D) $\frac{9}{16}$

Solution: Let the random variable $X \in \{0, 1\}$

denotes head and tail in a toss. As both are equally probable.

$$\Pr(X = 0) = \frac{1}{2} \tag{511}$$

$$\Pr(X=1) = \frac{1}{2} \tag{512}$$

Event	Description
A	nth toss is a head
В	Exactly k-1 heads in first four tosses
С	nth toss is the third head

TABLE XIX: Description of events used in problem

$$Pr(A) = Pr(X = 1) = \frac{1}{2}$$
 (513)

$$\Pr(B) = \frac{{}^{n-1}C_{k-1}}{2^{n-1}}$$
 (514)

$$C = AB \tag{515}$$

$$Pr(C) = Pr(AB) \tag{516}$$

As A and B are independent events.

$$Pr(C) = Pr(A) Pr(B)$$
 (517)

$$=\frac{1}{2}\times\frac{{}^{n-1}C_{k-1}}{2^{n-1}}\tag{518}$$

$$=\frac{^{n-1}C_{k-1}}{2^n}\tag{519}$$

Here n=5,k=3

$$\Pr(C|n=5, k=2) = \frac{{}^{4}C_{2}}{2^{5}}$$
 (520)

$$=\frac{6}{32}$$
 (521)

Therefore probability of getting the head for the third time in the fifth toss is $\frac{3}{16}$.

86) A random variable X takes values -1 and +1 with probabilities 0.2 and 0.8, respectively. It is transmitted across a channel which adds noise N, so that the random variable at the channel output is Y = X + N. The noise N is independent of X, and is uniformly distributed over the

interval [-2, 2]. The receiver makes a decision

$$\hat{X} = \begin{cases} -1, & \text{if} \quad Y \le \theta \\ +1, & \text{if} \quad Y \ge \theta \end{cases}$$

where the threshold $\theta \in [-1, 1]$ is chosen so as to minimize the probability of error $\Pr(\hat{X} \neq X)$. The minimum probability of error, rounded off to 1 decimal place, is ...

Solution:

We know that

$$X \in \{-1, +1\} \tag{522}$$

$$N \in [-2, 2]$$
 (523)

$$Y = X + N \tag{524}$$

$$Pr(X = -1) = 0.2$$
 (525)

$$Pr(X = +1) = 0.8$$
 (526)

Since *N* is uniformly distributed

 \therefore the probability distribution function of N is:

The cdf of this uniform probability distribution function is

$$F_X(x) = \int_{-\infty}^x f(N)dN$$
 (527)

$$= \int_{-2}^{x} \frac{1}{4} dN \tag{528}$$

$$=\frac{x+2}{4}\tag{529}$$

For $X \neq \hat{X}$ we need to check for each case.

Using equation (529)

:.
$$Pr(N > \theta + 1) = 1 - Pr(N < \theta + 1)$$
 (530)

$$= 1 - F_X(\theta + 1) \tag{531}$$

$$=1-\frac{\theta+3}{4}\tag{532}$$

$$= \frac{1}{4}(1 - \theta) \tag{533}$$

$$\therefore \Pr(N < \theta - 1) = F_X(\theta - 1) \tag{534}$$

$$= \frac{1}{4}(1+\theta)$$
 (535)

The probability of error:

$$\Pr(\hat{X} \neq X) = P(-1) \cdot P(\theta < -1 + N) + P(1) \cdot P(\theta > N + 1) \quad (536)$$

Substituting (533) and (535) in (536). We get:

$$\Pr(\hat{X} \neq X) = 0.2 \cdot \frac{1}{4} (1 - \theta) + 0.8 \cdot \frac{1}{4} (1 + \theta)$$
 (537)

On simplifying the equation we get

$$\Pr(\hat{X} \neq X) = \frac{1}{4} + \frac{3}{20}\theta$$
 (538)

Since this is a linear equation in θ , the minimum will occur at boundary points. Putting $\theta = +1$, we get

$$\Pr\left(\hat{X} \neq X\right) = 0.4\tag{539}$$

but on putting $\theta = -1$, we get

$$\Pr\left(\hat{X} \neq X\right) = 0.1\tag{540}$$

Hence the value of probability of error is:

$$\therefore \Pr(\hat{X} \neq X) = 0.1 \tag{541}$$

87) You have gone to a cyber-cafe with a friend. You found that the cyber-café has only three terminals. All terminals are unoccupied. You and your friend have to make a random choice of selecting a terminal. What is the probability that both of you will NOT select the same terminal?

Solution: There are three terminals, each with an equal

probability of $\frac{1}{3}$ to be picked.

Defining random variables $X_1, X_2 \in \{0, 1, 2\}$ Where,

 $X_i = 0$ when ith man picks first terminal.

 $X_i = 1$ when ith man picks second terminal.

 $X_i = 2$ when ith man picks third terminal.

$$Pr(X_1 \neq X_2) = 1 - Pr(X_1 = X_2)$$
. (542)

$$\implies \Pr(X_1 = X_2) = \sum_{j=1}^{3} \Pr(X_1 = X_2 = j)$$
(543)

$$\implies \Pr(X_1 = X_2) = \sum_{i=1}^{3} \left(\frac{1}{3} \times \frac{1}{3}\right) = \frac{1}{3} \quad (544)$$

$$\therefore \Pr(X_1 \neq X_2) = \frac{2}{3}.$$
 (545)

88) A sender(S) transmits a signal, which can be one of two kinds: H and L with probabilities 0.1 and 0.9 respectively, to a receiver (R). In the graph below, the weight of an edge(u,v) is the probability of receiving v when u is transmitted, where u,v ∈ {H,L}. For example the probability that the received signal is L given the transmitted signal is H is 0.7. If the received

signal is H, the probability that the transmitted signal was H is _____ ?

Solution:

In our problem we have a binary channel which is not symmetric as crossover probabilities differ

Let $A \in \{0, 1\}$ represent the random variable, where 0 represents H being transmitted, 1 represents L being transmitted.

Let $B \in \{0, 1\}$ represent the random variable, where 0 represents H being received, 1 represents L being received.

TABLE XX: Probability for random variables

Pr(A=0)	0.1	Pr(A=1)	0.9
$\Pr\left(B = 0 A = 0\right)$	0.3	$\Pr\left(B = 0 A = 1\right)$	0.8
$\Pr\left(B=1 A=0\right)$	0.7	$\Pr\left(B=1 A=1\right)$	0.2

Now we need to find Pr(A = 0|B = 0)Using Bayes theorem

$$\Pr(A = 0|B = 0) = \frac{\Pr(A = 0) \times \Pr(B = 0|A = 0)}{\sum_{i=0}^{1} \Pr(A = i) \times \Pr(B = 0|A = i)}$$
(546)

Putting in values given in question

$$\Pr(A = 0|B = 0) = \frac{1}{25} = 0.04 \tag{547}$$

The probability that transmitted signal was H is 0.04

89) A box has ten light bulbs out of which two are defective, Two light bulbs are drawn from this box one after the other without replacement. The probability that both light bulbs drawn are not defective is

A)
$$\frac{8}{45}$$
 B) $\frac{28}{45}$ C) $\frac{16}{25}$ D) $\frac{4}{5}$

Solution: Let $X_i \in \{0, 1\}$ represent the i^{th} draw, where 0 denotes a defective bulb and 1 denotes a non-defective bulb.

TABLE XXI

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	2/90	16/90
$X_2 = 1$	16/90	56/90

Table II represents the probabilities of all possible cases when two bulbs are drawn one by one without replacement. Probability that both of the bulbs are non-defective (by substituting values from table II)

$$= \Pr(X_2 = 1 | X_1 = 1) \Pr(X_1 = 1)$$
 (548)

$$=\frac{56}{90}$$
 (549)

$$=\frac{28}{45}$$
 (550)

So the correct option is (B)

- 90) Three fair dies are rolled simultaneously. The probability of getting a sum of 5 is
 - a) $\frac{1}{108}$
 - b) $\frac{1}{72}$
 - c) $\frac{1}{54}$

d) $\frac{1}{36}$

Solution:

Let $X_i \in \{1, 2, 3, 4, 5, 6\}$, i = 1, 2, 3, be the random variables representing the outcome for each die. As the dies are fair, the probability mass function (pmf) is expressed as

$$p_{X_i}(n) = \Pr\left(X_i = n\right) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
 (551)

Let X be a random variable denotes the desired outcome,

$$X = X_1 + X_2 + X_3 \tag{552}$$

$$\implies X \in \{3, 4, \dots, 18\}$$
 (553)

We have to find $P_X(n) = \Pr(X_1 + X_2 + X_3 = n)$

$$p_X(n) = \Pr(X_1 + X_2 + X_3 = n)$$

$$= \Pr(X_1 + X_2 = n - X_3)$$

$$= \sum_k \Pr(X_1 + X_2 = n - k | X_3 = k) p_{X_3}(k) \quad (554)$$

As X_1, X_2, X_3 are independent, After unconditioning

$$\Pr(X_1 + X_2 = n - k | X_3 = k) = \Pr(X_1 + X_2 = n - k)$$
(555)

Using (555) in (554)

$$p_{X}(n) = \sum_{k} \Pr(X_{1} + X_{2} = n - k | X_{3} = k) p_{X_{3}}(k)$$

$$= \sum_{k} \Pr(X_{1} + X_{2} = n - k) p_{X_{3}}(k)$$

$$= \sum_{k} (\sum_{a} \Pr(X_{1} = n - k - a | X_{2} = a) \Pr(X_{2} = a)) p_{X_{3}}(k)$$

$$= \sum_{k} (\sum_{a} \Pr(X_{1} = n - k - a) \Pr(X_{2} = a)) p_{X_{3}}(k)$$

$$= \sum_{k} (\sum_{a} p_{X_{1}}(n - k - a) p_{X_{2}}(a)) p_{X_{3}}(k)$$
 (556)

Equation (556) can be written as follows using convolution operation,

$$p_X(n) = \sum_k (\sum_a p_{X_1} (n - k - a) p_{X_2} (a)) p_{X_3}(k)$$

= $p_{X_1} (n) * p_{X_2} (n) * p_{X_3} (n)$ (557)

The Z-transform of $p_X(n)$ is defined as

$$P_X(z) = \sum_{n = -\infty}^{\infty} p_X(n) z^{-n}, \quad z \in \mathbb{C}$$
 (558)

From (551) and (558),

$$P_{X_1}(z) = P_{X_2}(z) = P_{X_3}(z)$$

$$= \frac{1}{6} \sum_{n=1}^{6} z^{-n}$$

$$= \frac{z^{-1} (1 - z^{-6})}{6 (1 - z^{-1})}, \quad |z| > 1$$
(560)

upon summing up the geometric progression. From (557),

$$\therefore p_X(n) = p_{X_1}(n) * p_{X_2}(n) * p_{X-3}(n), \quad (561)$$

$$P_X(z) = P_{X_1}(z)P_{X_2}(z)P_{X_3}(z)$$
 (562)

The above property follows from Fourier analysis and is fundamental to signal processing. From (560) and (562),

$$P_X(z) = \left\{ \frac{z^{-1} \left(1 - z^{-6} \right)}{6 \left(1 - z^{-1} \right)} \right\}^3$$

$$= \frac{1}{216} \frac{z^{-3} \left(1 - 3z^{-6} + 3z^{-12} - z^{-18} \right)}{\left(1 - z^{-1} \right)^3}$$
(564)

Using the fact that,

$$p_X(n-k) \stackrel{\mathcal{H}}{\longleftrightarrow} ZP_X(z)z^{-k},$$
 (565)

$$nu(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{z^{-1}}{(1 - z^{-1})^2} \tag{566}$$

$$n^2 u(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{z^{-1} \left(1 + z^{-1}\right)}{\left(1 - z^{-1}\right)^3}$$
 (567)

$$(n^2 + n)u(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{2z^{-1}}{(1 - z^{-1})^2}$$
 (568)

after some algebra, it can be shown that,

$$\frac{1}{216 \times 2} \left[\left((n-2)^2 + n - 2 \right) u(n-2) - 3 \left((n-8)^2 + n - 8 \right) u(n-8) + 3 \left((n-14)^2 + n - 14 \right) u(n-14) - \left((n-20)^2 + n - 20 \right) u(n-20) \right]$$

$$\stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{1}{216} \frac{z^{-3} \left(1 - 3z^{-6} + 3z^{-12} - z^{-18} \right)}{\left(1 - z^{-1} \right)^3} \tag{569}$$

where

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 (570)

From (558),(564) and (569),

$$p_X(n) = \frac{1}{216 \times 2} \left[\left((n-2)^2 + n - 2 \right) u(n-2) - 3 \left((n-8)^2 + n - 8 \right) u(n-8) + 3 \left((n-14)^2 + n - 14 \right) u(n-14) - \left((n-20)^2 + n - 20 \right) u(n-20) \right]$$
(571)

From (570) and (571),

$$p_X(n) = \begin{cases} 0 & n < 3\\ \frac{n^2 - 3n + 2}{432} & 3 \le n \le 8\\ \frac{42n - 2n^2 - 166}{432} & 8 < n \le 14\\ \frac{n^2 - 39n + 380}{432} & 14 < n \le 18\\ 0 & n > 18 \end{cases}$$
(572)

We need probability of getting sum of 5,

Fig. 28: Probability mass function of X (simulations are close to analysis)

$$\implies$$
 n=5

from (572) and using n=5,

$$p_X(5) = \frac{5^2 - 3(5) + 2}{432} \tag{573}$$

$$p_X(5) = \frac{12}{432} \tag{574}$$

$$p_X(5) = \frac{1}{36} \tag{575}$$

Therefore the probability of getting a sum of 5 when three fair dies are rolled is $\frac{1}{36}$.

Ans: Option (D)

- 91) What is the chance that a leap year, selected at random, will contain 53 Saturdays?
 - a) $\frac{2}{7}$
 - b) $\frac{3}{7}$
 - c) $\frac{1}{7}$
 - d) $\frac{5}{7}$

Solution:

92) Let \mathcal{R} be the set of all binary relations on the set $\{1, 2, 3\}$. Suppose a relation is chosen from \mathcal{R} at random. The probability that the chosen relation is reflexive is?

Solution: Let *A* be a set of n numbers. No. of pairs formed from elements of *A*:

$${}^{n}C_{1} \times {}^{n}C_{1} = n^{2}$$
 (576)

For each pair we have 2 choices, whether to include it in the relation or not.

 \therefore Number of binary relations on A:

$$2 \times 2 \times ... \ n^2 \ \text{times} = 2^{n^2}$$
 (577)

Definition 1. A reflexive relation is one in which every element maps to itself, i.e., a relation R on set A is reflexive if $(a, a) \in R \ \forall \ a \in A$.

For example, consider the set $A = \{1, 2, 3\}$. A possible reflexive relation on A is R_1

= $\{(1,1), (2,2), (3,3), (1,2), (2,3)\}$ as every element in A is related to itself in R_1 while relation $R_2 = \{(1,1), (2,2), (1,2)\}$ is not a reflexive relation on A as $3 \in A$ but $(3,3) \notin R_2$. In a reflexive relation, out of the n^2 pairs (17), n have to be included (n pairs of the form (a,a)) which means there is only 1 way to include them. For the remaining $n^2 - n$ pairs we have 2 choices, whether to include it in the relation or not.

:. Number of reflexive relations are:

$$1 \times 2^{n^2 - n} = 2^{n^2 - n} \tag{578}$$

Let $X \in \{0, 1\}$ be a random variable where 0 represents reflexive relation chosen from \mathcal{R} and 1 represents non-reflexive relation chosen from \mathcal{R} . In this case, n=3.

$$\Pr(X = 0) = \frac{2^{n^2 - n}}{2^{n^2}}$$
$$= \frac{2^6}{2^9}$$
 (579)

$$\therefore \text{ Answer } = \frac{1}{8} \tag{580}$$

- 93) If P and Q are two random events, then the following is true:
 - (a) Independence of P and Q implies that probability $(P \cap Q) = 0$
 - (b) Probability $(P \cup Q) \leq \text{Probability } (P) + \text{Probability}(Q)$
 - (c) If P and Q are mutually exclusive, then they must be independent
 - (d) Probability $(P \cap Q) \leq$ Probability (P) **Solution:** For two random events A and B that are independent, we know that,

$$Pr(AB) = Pr(A)Pr(B) \tag{581}$$

and for two mutually exclusive events C and

D,

$$Pr(CD) = 0 (582)$$

(a) Independence of P and Q implies that the occurrence of one is unaffected by the other.

$$\Rightarrow Pr(PQ) = Pr(P)Pr(Q)$$
 (583)

The given option will be true only when either Pr(P) or Pr(Q) will be zero, therefore, (a) is incorrect.

(b) From set theory,

$$A \cup B = A + B - A \cap B \tag{584}$$

$$\Rightarrow Pr(P+Q) = Pr(P) + Pr(Q) - Pr(PQ) \quad (585)$$

$$\Rightarrow Pr(P+Q) \le Pr(P) + Pr(Q)$$
 (586)

thus, (b) is incorrect.

- (c) Two events can be both mutually exclusive and independent only when one of them have a zero probability. Since it isn't necessary that Pr(P) = 0 or Pr(Q) = 0, (c) is incorrect.
- (d) The set P will have either have the same or more elements than the set $P \cap O$

$$Pr(PQ) \le Pr(P)$$
 (587)

(d) is correct.

Thus, the only correct option is (d).

94) A diagnostic test for a certain disease is 90% accurate. That is, the probability of a person having (respectively, not having) the disease tested positive (respectively, negative) is 0.9. Fifty percent of the population has the disease. What is the probability that a randomly chosen person has the disease given that the person tested negative?

Solution: Let X and Y be two Bernoulli random variables such that $X,Y \in \{0,1\}$ and as given fifty percent of the population has the disease, the probability mass function of X is

$$p_X(n) = \Pr(X = n) = \begin{cases} 0.5 & n = 1\\ 0.5 & n = 0\\ 0 & otherwise \end{cases}$$
 (588)

where X denotes the health status of a person(X=1 if person is healthy and X=0 if personis diseased) and Y denotes the diagnostic test result (Y=1 if it is positive and Y=0 if it is negative).

Given the probabilities of,

$$\Pr(Y = 1 | X = 0) = 0.9 \tag{589}$$

$$\Pr(Y = 0|X = 1) = 0.9 \tag{590}$$

we need to find Pr(X = 0|Y = 0),

$$Pr(X = 0|Y = 0) = \frac{Pr(X = 0 \cap Y = 0)}{Pr(Y = 0)} (591)$$

$$Pr(X = 0|Y = 0) = \frac{Pr(Y = 0|X = 0) Pr(X = 0)}{Pr(Y = 0)}$$

$$\Pr(X = 0|Y = 0) = \frac{\Pr(Y = 0|X = 0)\Pr(X = 0)}{\Pr(Y = 0)}$$
(592)

$$Pr(Y = 0) = Pr(Y = 0|X = 1) Pr(X = 1) + Pr(Y = 0|X = 0) Pr(X = 0) (593)$$

Using (588),(589) and (590) in (593),

$$Pr(Y = 0) = 0.9(0.5) + (1 - 0.9)0.5$$

$$Pr(Y = 0) = 0.5$$
(594)

Using (588),(589) and (594) in (592)

$$\Pr(X = 0|Y = 0) = \frac{(1 - 0.9)0.5}{0.5} \tag{595}$$

$$Pr(X = 0|Y = 0) = 0.1 (596)$$

95) Box-S has 2 white and 4 black balls and box-T has 5 white and 3 black balls. A ball is drawn at

from box-S and put in boxrandom T.Subsequently,the probability of drawing a white ball from box-T is? (rounding off to 2 decimal places)

Solution: Box-0 has 2 white and 4 black balls.

Box-1 has 5 white and 3 black balls.

Event	definition	
W	Event of transfering white	
	balls from box-0 to box-1	
В	Event of transfering black	
	balls from box-0 to box-1	
С	Event of drawing white	
	balls from box-1	
Pr(W=1)	Probability of transfering one	
	whiteball from box-0 to box-1	
Pr(B=1)	Probability of transfering one	
	blackball from box-0 to box-1	
$\Pr(C = 1 W = 1)$	Probability of drawing a	
	whiteball from box-1 after	
	transfering white ball to box-1.	
$\Pr(C=1 B=1)$	Probability of drawing a	
	whiteball from box-1 after	
	transfering black ball to box-1.	

TABLE XXII: Table 1

Probability	value
Pr(W=1)	$\frac{1}{3}$
Pr(B=1)	$\frac{2}{3}$
$\Pr\left(C = 1 W = 1\right)$	<u>6</u> 9
$\Pr\left(C = 1 B = 1\right)$	<u>5</u>

TABLE XXIII: Table 2

$$Pr(drawn ball is white) = Pr(C = 1) (597)$$
(598)

From Baye's theorem

$$Pr(C = 1) = Pr(C = 1|W = 1) \times Pr(W = 1)$$

+ $Pr(C = 1|B = 1) \times Pr(B = 1)$
(599)

Substiting values from table (XXIII) in (599)

$$Pr(C = 1) = \frac{6}{9} \times \frac{1}{3} + \frac{5}{9} \times \frac{2}{3}$$
 (600)
= $\frac{16}{27}$ (601)

96) A box contains 4 white balls and 3 red balls. In succession, two balls are randomly selected

and removed from the box. Given that the first removed ball is white, the probability that the second removed ball is red is

Solution: Let $X \in \{0, 1\}$ be the random variable where X=0 represents that the first removed ball is white. Let $Y \in \{0, 1\}$ be the random variable, where Y=1 represents that the second removed ball is red.

After the first ball is removed (given to be white which means X=0), number of white balls reduces to 3 and total number of balls reduces to 6.

Probability that the second removed ball is red when the first removed ball is white is

$$\Pr(Y = 1|X = 0) = \frac{3}{6} = \frac{1}{2}$$
 (602)

So,

$$Pr(Y = 1|X = 0) = 0.5 (603)$$

 \therefore The answer is option (C) $\frac{1}{2}$.

97) Two dice are thrown simultaneously. The probability that the product of the numbers appearing on the top faces of the dice is a perfect square is

(A)
$$\frac{1}{9}$$
 (B) $\frac{2}{9}$ (C) $\frac{1}{3}$ (D) $\frac{4}{9}$

Solution: Let X be a random variable which is equal to 1, when the product of the numbers appearing on the top faces of the dice is a perfect square and 0 when it is not a perfect square.

The total no. of possible outcomes is 36.

Outcomes corresponding to X = 1 are listed in table XXIV The total no. of favourable

Squares	Favourable outcomes
1	(1,1)
4	(1,4), $(2,2)$, $(4,1)$
9	(3,3)
16	(4,4)
25	(5,5)
36	(6,6)

TABLE XXIV: Outcomes for X=1

outcomes are 8. Therefore we have,

$$Pr(X = 1) = \frac{8}{36}$$

$$= \frac{2}{3}$$
(604)

Similarly we have that the probability of not getting a perfect square as a product i.e. X = 0

98) Consider that X and Y are independent continuous valued random variables with uniform PDF given by $X \sim U(2,3)$ and $Y \sim U(1,4)$. Then $Pr(Y \le X)$ is equal to

Solution:

Fig. 29: Probability Distribution of (X, Y)

In figure 29, rectangle ABCD represents sample space of (X, Y). $Y \le X$ for any point (X, Y)Y) if and only if the point lies on or below line EF. Therefore

$$Pr(Y \le X) = \frac{Area\ of\ AEFD}{Area\ of\ ABCD} \tag{609}$$

$$=\frac{1}{2}$$
 (610)

Alternately, we have PDF and CDF of X and Y given by

$$f_X(x) = \begin{cases} 1 & 2 \le x \le 3\\ 0 & otherwise \end{cases}$$
 (611)

$$F_X(x) = \begin{cases} 0 & x < 2 \\ x - 2 & 2 \le x \le 3 \\ 1 & x > 3 \end{cases}$$
 (612)

$$f_Y(x) = \begin{cases} 1 & 1 \le x \le 4 \\ 0 & otherwise \end{cases}$$
 (613)

$$F_Y(x) = \begin{cases} 0 & x < 1\\ \frac{x-1}{3} & 1 \le x \le 4\\ 1 & x > 4 \end{cases}$$
 (614)

Thus

(608)

$$\Pr(Y \le X) = \int_{-\infty}^{\infty} F_Y(x) f_X(x) dx \qquad (615)$$

$$= \int_{2}^{3} \frac{x - 1}{3} dx \tag{616}$$

$$=\frac{1}{2}\tag{617}$$

- 99) What is the chance that a leap year, selected at random, will contain 53 Saturdays?
 - a) $\frac{2}{7}$
 - b) $\frac{3}{7}$
 - c) $\frac{1}{7}$
 - d) $\frac{5}{7}$

Solution:

Let X be a random variable We Define, $X \in 0,1$

P(X=0)	denotes for 52 Saturday
P(X = 1)	denotes for 53 Saturdays

TABLE XXV: Pr(X = x)

$$\implies$$
 Remaining Days = $366 - 364 = 2$

$$\implies \Pr(X=1) = \frac{2}{7} \tag{619}$$

... The correct answer is **Option A**

100) Let X be the Poisson random variable with parameter $\lambda = 1$. Then, the probability $Pr(2 \le X \le 4)$ equals

Solution:

Let

$$X \in \{0, 1, 2, 3, 4, 5...\}$$
 (620)

We know that, for a poisson random variable X with a given parameter λ , probability of X = kis:

$$\Pr(X = k) = \left(\frac{\lambda^k e^{-\lambda}}{k!}\right) \tag{621}$$

CDF is:

$$F(X=k) = \sum_{x=0}^{k} \left(\frac{\lambda^x e^{-\lambda}}{x!} \right)$$
 (622)

And also,

$$\Pr(x < X \le y) = F(y) - F(x)$$
 (623)

Now by using (623),

$$Pr(2 \le X \le 4) = Pr(1 < X \le 4)$$
 (624)

$$= F(4) - F(1) \tag{625}$$

$$=\frac{65}{24e} - \frac{2}{e} \tag{626}$$

$$=\frac{17}{24e}$$
 (627)

101) Let the probability density function of random variable, X, be given as:

$$f_x(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)$$

where u(x) is the unit step function. Then the value of a and $Prob\{X \le 0\}$, respectively, are:

(A)
$$2,\frac{1}{2}$$

(B)
$$4,\frac{1}{2}$$

Fig. 30: Theoretical CDF vs Simulated CDF

(C) $2,\frac{1}{4}$

(D) $4,\frac{1}{4}$ **Solution:** We know that,

$$\int_{-\infty}^{\infty} f_x(x) \, dx = 1. \tag{628}$$

$$\int_{-\infty}^{0} f_x(x) \, dx + \int_{0}^{\infty} f_x(x) \, dx = 1 \qquad (629)$$

$$\int_{-\infty}^{0} ae^{4x} dx + \int_{0}^{\infty} \frac{3}{2} e^{-3x} dx = 1$$
 (630)

The expression (630) was written from (629) since,

$$u(x) = \begin{cases} 1, & \text{for } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Simplifying (630) we have:

$$\int_{-\infty}^{0} ae^{4x} dx + \int_{0}^{\infty} \frac{3}{2} e^{-3x} dx = 1$$

$$\implies a \left[\frac{e^{4x}}{4} \right]_{-\infty}^{0} + \frac{3}{2} \left[\frac{e^{-3x}}{-3} \right]_{0}^{\infty} = 1$$
 (631)

$$\implies a \left[\frac{1}{4} - 0 \right] - \frac{1}{2} [0 - 1] = 1 \qquad (632)$$

$$\implies \frac{a}{4} + \frac{1}{2} = 1 \implies a = 2 \tag{633}$$

Therefore,

$$f_x(x) = \begin{cases} \frac{3}{2}e^{-3x}, & \text{for } x \ge 0\\ 2e^{4x}, & \text{for } x < 0 \end{cases}$$
 (634)

The plot for PDF of X can be observed at figure

31

Fig. 31: The PDF of X

The CDF of X is defined as follows:

$$F_X(x) = \Pr\left(X \le x\right) \tag{635}$$

Now for x < 0,

$$\Pr(X \le x) = \int_{-\infty}^{x} f_x(x) dx \qquad (636)$$
$$= \int_{-\infty}^{x} 2e^{4x} dx \qquad (637)$$

$$=2\left[\frac{e^{4x}}{4}\right]_{-\infty}^{x}\tag{638}$$

$$=2\left[\frac{e^{4x}}{4} - 0\right] \tag{639}$$

$$=\frac{e^{4x}}{2}\tag{640}$$

Similarly for $x \ge 0$,

$$\Pr(X \le x) = \int_{-\infty}^{x} f_x(x) dx$$

$$= \int_{-\infty}^{0} 2e^{4x} dx + \int_{0}^{x} \frac{3}{2} e^{-3x} dx$$
(642)

$$= 2\left[\frac{e^{4x}}{4}\right]_{-\infty}^{0} + \left[\frac{-e^{-3x}}{2}\right]_{0}^{x}$$
 (643)

$$= 2\left[\frac{1}{4} - 0\right] - \frac{1}{2}\left[e^{-3x} - 1\right] \quad (644)$$

$$=1-\frac{e^{-3x}}{2} \tag{645}$$

The CDF of X is as below:

$$F_X(x) = \begin{cases} 1 - \frac{e^{-3x}}{2}, & \text{for } x \ge 0\\ \frac{e^{4x}}{2}, & \text{for } x < 0 \end{cases}$$
 (646)

The plot for CDF of X can be observed at figure 31.

Fig. 32: The CDF of X

$$\therefore \Pr(X \le 0) = F_X(0) = \frac{1}{2}$$
 (647)

- 102) Suppose *p* is the number of cars per minute passing through a certain road junction between 5 *PM* and 6 *PM*, and *p* has a Poisson distribution with mean 3. What is the probability of observing fewer than 3 cars during any given minute in this interval?
 - a) $8/(2e^3)$
 - b) $9/(2e^3)$
 - c) $17/(2e^3)$
 - d) $26/(2e^3)$

Solution:

Probability of Poison Distribution is,

$$\Pr(X = p) = \frac{e^{-\mu}\mu^p}{p!}$$
 (648)

Here, p refers to no. of cars per minute, $p \in \{0, 1, 2, ..., \infty\}$ Mean of poison distribution,

$$\mu = 3 \tag{649}$$

$$\Pr(X = p) = \frac{e^{-3}3^p}{p!} \tag{650}$$

by Boolean logic,

TABLE XXVI: Table of probability of no. of cars passing per minute

p	0	1	2	3	
Pr(X = p)	$1/e^{3}$	$3/e^{3}$	$9/(2e^3)$	$9/(2e^3)$	

$$Pr(X < 3) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)$$
(651)

$$\Pr(X < 3) = \frac{17}{2e^3} \tag{652}$$

Option (C) is correct

- a) 0.288
- b) 0.334
- c) 0.667
- d) 0.720

Solution: Let Consider, Bernoulli random variables say X, Y and R. Required probability is

	Refer to probability that product	Result
Pr(X=1)	from supplier X	0.6
Pr(Y=1)	from supplier X	0.4
Pr(R=1)	is reliable	
Pr(R=0)	is faulty	
Pr(R=1/X=1)	from supplier X is reliable	0.96
Pr(R=1/Y=1)	from supplier Y is reliable	0.72

TABLE XXVII: probability of random variables.

$$Pr(Y=1|R=1).So,$$

$$Pr(Y = 1|R = 1) = \frac{Pr(Y = 1, R = 1)}{Pr(R = 1)}$$

$$= \frac{Pr(Y = 1)Pr(R = 1/Y = 1)}{Pr(X = 1)Pr(R = 1/X = 1) + Pr(Y = 1)P(R = 1/Y =$$

$$=\frac{(0.4)(0.72)}{(0.6)(0.96) + (0.4)(0.72)} = 0.334 \tag{655}$$

104) The probability of a resistor being defective is 0.02. There are 50 such resistors in a circuit. The probability of two or more defective resistors in the circuit (round off to two decimal places) is — **Solution:** Consider, Probability of a defective resistor $= P = 0.02 = \frac{1}{50}$. Total number of resistors = n = 50.

Total number of resistors = n = 50. Let X be number of defective resistors. By Binomial distribution,

$$Pr(X = k) = \binom{n}{k} (P)^k (1 - P)^{n-k}$$
 (656)

$$Pr(X=0) = {50 \choose 0} \left(\frac{1}{50}\right)^0 \left(1 - \frac{1}{50}\right)^{50-0} \tag{657}$$

$$\implies Pr(X=0) = \left(\frac{49}{50}\right)^{50}$$
 (658)

$$Pr(X=1) = {50 \choose 1} \left(\frac{1}{50}\right)^1 \left(1 - \frac{1}{50}\right)^{50-1}$$
 (659)

$$\implies Pr(X=1) = \left(\frac{49}{50}\right)^{49}$$
 (660)

$$Pr(X \ge 2) = 1 - Pr(X < 2)$$

$$Pr(X \ge 2) = 1 - (Pr(X = 0) + Pr(X = 1))$$

$$Pr(X \ge 2) = 0.2642$$

105) A person who speaks truth 3 out of 4 times, throws a fair dice with six faces and informs the outcome is 5. The probability that the outcome is really 5 is

Solution: Let $X \in \{0, 1\}$ represent the random variable, where 0 represents person speaking false, 1 represents person speaking truth.

Let $Y \in \{1, 2, 3, 4, 5, 6\}$ represent random variable, where 1, 2, 3, 4, 5, 6 represents person informs outcome of dice is 1, 2, 3, 4, 5, 6, respectively.

From Baye's theorem

Event	definition	value
Pr(X=1)	Probability of person	$\frac{3}{4}$
	speaking truth	
Pr(X=0)	Probability of person	$\frac{1}{4}$
	speaking false	
$\Pr\left(Y = 5 X = 1\right)$	Probability of person	
	informing outcome is 5	$\frac{1}{6}$
	if person speaks truth	Ü
$\Pr\left(Y = 5 X = 0\right)$	Probability of person	
	informing outcome is 5	<u>5</u>
	if person speaks false	, ,

TABLE XXVIII: Table 1

$$Pr(Y = 5) = Pr(Y = 5|X = 1) \times Pr(X = 1) + Pr(Y = 5|X = 0) \times Pr(X = 0)$$
(661)

Substiting values from table (XXVIII) in (661)

$$Pr(Y = 5) = \frac{8}{24}$$
 (662)

$$Pr((X = 1)(Y = 5)) = Pr(Y = 5|X = 1)$$

$$\times Pr(X = 1)$$
 (663)

$$= \frac{3}{24}$$
 (664)

We need to find Pr(X = 1|Y = 5)

$$Pr(X = 1|Y = 5) = \frac{Pr((X = 1)(Y = 5))}{Pr(Y = 5)}$$
(665)
= $\frac{3}{8}$ (666)

106) The probabilities that a student passes in Mathematics, Physics and Chemistry are m,p, and c respectively. Of these subjects, the student has 75% chance of passing in at least one, a 50% chance of passing in at least two and a 40% chance of passing in exactly two. Following relations are drawn in m, p, c:

(I)
$$p + m + c = 27/20$$

(II)
$$p + m + c = 13/20$$

- (III) (p)× (m) × (c) =1/10
- (A) Only relation I is true
- (B) Only relation II is true
- (C) Relations II and III are true
- (D) Relations I and III are true

Solution:

Let M,P,C be the events representing student passes in Mathematics,Physics,Chemistry respectively.

$$\Pr(M) = m \tag{667}$$

$$\Pr(P) = p \tag{668}$$

$$\Pr(C) = c \tag{669}$$

The given information can be represented as

$$Pr(M+P+C) = 75\% = \frac{3}{4}$$
(670)
$$Pr(MP+PC+CA) = 50\% = \frac{1}{2}$$
(671)

$$Pr(MP + PC + CA - 3MPC) = 40\% = \frac{2}{5}$$
(672)

(671) and (672) can also be written as

$$Pr(MP) + Pr(PC) + Pr(CM)$$

$$-2 Pr(MPC) = \frac{1}{2} \qquad (673)$$

$$Pr(MP) + Pr(PC) + Pr(CM)$$

$$-3 Pr(MPC) = \frac{2}{5} \qquad (674)$$

Subtracting and solving the above two equations we get,

$$\Pr(MPC) = \frac{1}{10} \quad (675)$$

 $Pr(MP) + Pr(PC) + Pr(CM) = \frac{7}{10}$ (676)

Using inclusion-exclusion principle, We can express (670) as

$$Pr(M) + Pr(P) + Pr(C)$$

$$-[Pr(MP) + Pr(PC) + Pr(CM)]$$

$$+ Pr(MPC) = \frac{3}{4}$$
 (677)
$$p + m + c - \frac{7}{10} + \frac{1}{10} = \frac{3}{4}$$
 (678)
$$p + m + c = \frac{27}{10}$$
 (679)

There is no constant answer for the product of p,m,c which is shown in simulation.

... Only relation I is true.

107) **Solution:**

Let $F_X(t)$ denote the Cumulative Distribution Function for random variable X.

$$F_X(t) = \int_{-\infty}^t f(t) dt$$
 (680)

$$= \int_{-\infty}^{0} 0 \, dt + \int_{0}^{t} e^{-t} \, dt \tag{681}$$

$$= -e^{-t} \Big|_0^t \tag{682}$$

$$= 1 - e^{-t} (683)$$

$$P(X \le b | X \ge a) = \frac{P((X \le b), (X \ge a))}{P(X \ge a)}$$
 (684)

$$=\frac{P(a \le X \le b)}{P(X \ge a)} \tag{685}$$

$$= \frac{F_X(b) - F_X(a)}{\lim_{k \to \infty} F_X(k) - F_X(a)}$$
(686)
$$= \frac{e^{-a} - e^{-b}}{e^{-a}}$$
(687)

$$=\frac{e^{-a}-e^{-b}}{e^{-a}}\tag{687}$$

$$=1-e^{-(b-a)} (688)$$

Therefore the required probability depends on b-a

108) Let X and Y denote the sets consisting 2 and 20 distinct elements respectively and F denote the set of all possible functions defined from X and Y. Let f be randomly chosen from F. The probability of f being one to one is: **Solution:** We know, every $x \in X$ can be mapped to one of 20 elements in Y.

$$n(F) = 20 \times 20 = 400 \tag{689}$$

For one to one functions, the first element in X has 20 elements it can be mapped to, and second element in X has only 19 elements.(to avoid repetition).

$$n(f) = 20 \times 19 = 380$$
 (690)

Required probability:

$$\frac{n(f)}{n(F)} = \frac{380}{400} = \frac{19}{20} \tag{691}$$

109) Let S be a sample space and two mutually exclusive events A and B be such that A + B = S. If $P(\cdot)$ denotes the probability of the event, the maximum value of P(A)P(B) is

Solution:

$$Pr(A+B) = 1 \tag{692}$$

$$Pr(A) + Pr(B) = 1$$
 (693)

$$Pr(A) Pr(B) = Pr(A)(1 - Pr(A))$$
 (694)

$$= Pr(A) - (Pr(A))^2$$
 (695)

$$=\frac{1}{4}-\left(\Pr(A)-\frac{1}{2}\right)^2$$

$$\leq \frac{1}{4} \tag{697}$$

(696)

$$Pr(A) = Pr(B) = \frac{1}{2} \Rightarrow Pr(A) Pr(B) = \frac{1}{4} (698)$$

$$\therefore \max(\Pr(A)\Pr(B)) = \frac{1}{4}$$
 (699)

110) Given Set A = {2,3,4,5} and Set B = {11,12,13,14,15}, two numbers are randomly selected, one from each set. What is probability that the sum of the two numbers equals 16?

Solution:

Let $X_1 \in \{2, 3, 4, 5\}$ and $X_2 \in \{11, 12, 13, 14, 15\}$ be the random variables such that X_1 represents the number chosen from set A and X_2 the number chosen from set B. Then, the probability mass functions are

$$p_{X_1}(n) = \Pr(X_1 = n) = \begin{cases} \frac{1}{4} & 2 \le n \le 5\\ 0 & otherwise \end{cases}$$
 (700)

$$p_{X_2}(n) = \Pr(X_2 = n) = \begin{cases} \frac{1}{5} & 11 \le n \le 15\\ 0 & otherwise \end{cases}$$
(701)

Let X be the random variable denoting the sum $(X=X_1+X_2)$. Then, X can take the values $\{13, 14, 15, 16, 17, 18, 19, 20\}$.

$$p_X(n) = \Pr(X_1 + X_2 = n)$$
 (702)

$$= \Pr(X_1 = n - X_2) \tag{703}$$

$$= \sum_{k} \Pr(X_1 = n - k | X_2 = k) p_{X_2}(k)$$
 (704)

As X_1, X_2 are independent,

$$Pr(X_1 = n - k | X_2 = k) = Pr(X_1 = n - k)$$
(705)

$$p_X(n) = \sum_k p_{X_1}(n-k)p_{X_2}(n) = p_{X_1}(n) * p_{X_2}(n)$$
(706)

where * denotes the convolution operator.

As.

$$p_X(n) = \sum_k p_{X_1}(n-k)p_{X_2}(k) \tag{707}$$

$$=\frac{1}{5}\sum_{k=11}^{15}p_{X_1}(n-k) \tag{708}$$

$$=\frac{1}{5}\sum_{k=n-15}^{n-11}p_{X_1}(k) \tag{709}$$

Since $p_{X_1}(k) = 0$ for k < 2, k > 5Therefore, we get

$$p_{x}(n) = \begin{cases} 0 & n \le 12\\ \frac{1}{5} \sum_{k=2}^{n-11} p_{X_{1}}(k) & 2 \le n-11 \le 5\\ \frac{1}{5} \sum_{k=n-15}^{5} p_{X_{1}}(k) & 2 \le n-15 \le 5\\ 0 & n > 20 \end{cases}$$
(710)

Therefore, from (700) we get

Fig. 33: Probability mass function of X

$$p_x(n) = \begin{cases} 0 & n \le 12\\ \frac{n-12}{20} & 13 \le n \le 16\\ \frac{21-n}{20} & 17 \le n \le 20\\ 0 & n > 20 \end{cases}$$
(711)

Required probability is the probability of the sum of numbers selected from the sets, one from each set to be 16.

Therefore from (711),

$$p_X(16) = \left(\frac{16 - 12}{20}\right) \quad (712)$$

$$\implies p_X(16) = \frac{4}{20} \tag{713}$$

$$\implies \Pr(X_1 + X_2 = 16) = \frac{1}{5}$$
 (714)

$$\therefore \Pr(X_1 + X_2 = 16) = 0.2 \tag{715}$$

- 111) For each element in a set of size 2n, an unbiased coin is tossed. The 2n coin tosses are independent. An element is chosen if the corresponding coin toss were head. The probability that exactly n elements are chosen is:
 - a) $\frac{2nC_n}{4^n}$
 - b) $\frac{2^{n}C_{n}}{2^{n}}$
 - c) $\frac{1}{2nC_n}$
 - d) $\frac{1}{2}$

Solution: The number of elements chosen is equal to the number of heads obtained by 2n coin tosses. Let X be a random variable with value of X equal to the number of heads obtained.

Probability of getting a head, $p = \frac{1}{2}$ Probability of getting a tail, $q = \frac{1}{2}$ Probability that n elements are chosen out of 2n elements is Pr(X = n)

From binomial distribution we know that,

$$\Pr(X = r) = {}^{2n}C_r p^r q^{2n-r}$$
 (716)

$$\Pr(X = n) = {}^{2n}C_n \times \left(\frac{1}{2}\right)^n \times \left(\frac{1}{2}\right)^n \tag{717}$$

$$=\frac{^{2n}C_n}{^{4n}}\tag{718}$$

Hence option (A) is correct.

112) Players A and B take turns to throw a fair dice with six faces. If A is the first player to throw, then the probability of B being the first one to get a six is — (round of to two

decimal places).

Solution:

Let the random variable X represent which player gets six first. That is X = 0 when A gets a six first and X = 1 when B gets six first.

Let another random variable Y represent getting a six on the dice. Y = 1 for six and Y = 0 for any other number.

Let N be the number of turns until we get a six.

$$\Pr(Y = 0) = \frac{5}{6} \tag{719}$$

$$\Pr(Y=1) = \frac{1}{6} \tag{720}$$

The event success is when B gets a six for first time and failure is when neither A nor B gets six. Let p denote probability of success

$$p = \Pr(Y = 1) \tag{721}$$

$$\Pr(Y = 0) = 1 - p \tag{722}$$

$$p = \frac{1}{6} \tag{723}$$

To get X = 1 in N turns we have to get N - 1 failures for B and N failures for A and finally one success for B. Therefore the geometric distribution is,

$$f(N) = (1 - p)^{n-1} \times p \times (1 - p)^n \tag{724}$$

$$= (1 - p)^{2n - 1} \times p \tag{725}$$

$$= \left(\frac{5}{6}\right)^{2n-1} \times \frac{1}{6} \tag{726}$$

The result has been summarized in table XXIX.

No. of turns	Probability
1	$5^1/6^2$
2	$5^3/6^4$
:	:
n	$5^{2n-1}/6^{2n}$
:	:

TABLE XXIX: Summary of turns

Thus the total probability is sum of these

individual probabilities i.e.

$$\Pr(X = 1) = \sum_{N=1}^{\infty} f(N)$$

$$= \frac{5}{6^2} + \frac{5^3}{6^4} + \dots + \frac{5^{2n-1}}{6^{2n}} + \dots$$
(728)

$$= \frac{5}{6^2} \times \left(1 + \frac{5^2}{6^2} + \frac{5^4}{6^4} + \ldots\right) (729)$$

By Using sum of infinite GP we have,

$$\Pr(X=1) = \frac{5}{6^2} \times \left(\frac{1}{1 - \frac{25}{36}}\right) \tag{730}$$

$$=\frac{5}{36} \times \frac{36}{11} \tag{731}$$

$$=\frac{5}{11}=0.45\tag{732}$$

113) The probability that a number selected at random between 100 and 999 (both inclusive) will not contain digit 7 is. **Solution:**Let's assume a random 3-digit number be *xyz*.

Where x, y, z are 3 random single-digit integers such that

$$x \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 (733)

$$y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \tag{734}$$

$$z \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 (735)

a) Probability of selecting *x* without including 7

$$\Pr(x \neq 7) = \frac{8}{9} \tag{736}$$

b) Probability of selecting *y* without including 7

$$\Pr(y \neq 7) = \frac{9}{10} \tag{737}$$

c) Probability of selecting z without including 7

$$\Pr(z \neq 7) = \frac{9}{10} \tag{738}$$

So, the total probability of a random 3-digit number *xyz* will not contain 7

$$= \Pr(x \neq 7) \times \Pr(y \neq 7) \times \Pr(z \neq 7) \quad (739)$$

$$= \frac{8}{9} \times \frac{9}{10} \times \frac{9}{10} \tag{740}$$

$$=\frac{18}{25} \tag{741}$$

The probability of a number selected at random between 100 and 999 (both inclusive) will not contain digit 7 is $\frac{18}{25}$

- (730) 114) A class of twelve children has two more boys than girls. A group of three children are randomly picked from this class to accompany the teacher on the field trip. What is the probability that the group accompanying the teacher contains more girls than boys.
 - (a) 0
 - (b) $\frac{325}{864}$
 - (c) $\frac{525}{864}$
 - (d) $\frac{5}{12}$

Solution:

Let $X \in \{0, 3\}$ be a discrete random variable which denotes the number of girls in the group of 3.

Since, there are two more boys than girls:

Total number of boys(B) = 7

Total number of girls(G) = 5

$$\Pr(X = c) = \frac{{}^{5}C_{c} \times {}^{7}C_{3-k}}{{}^{12}C_{3}}$$
 (742)

For number of girls more than boys required probability = $Pr(2 \le X \le 3)$ and hence, following cases are possible.

a) X=3

$$Pr(X = 3) = \frac{{}^{5}C_{3}}{{}^{12}C_{2}}, using (742)$$

b)
$$X=2$$

$$\Pr(X = 2) = \frac{{}^{5}C_{2} \times {}^{7}C_{1}}{{}^{12}C_{3}}, \text{ using } (742)$$

So, required probability
$$=\frac{{}^{5}C_{2}\times{}^{7}C_{1}}{{}^{12}C_{3}}+\frac{{}^{5}C_{3}}{{}^{12}C_{3}}=\frac{4}{11}$$
 $Pr(Y=0|X_{3}=0)=\frac{Pr(Y=0,X_{3}=0)}{Pr(X_{3}=0)}$

115) Suppose that a shop has an equal number of LED bulbs of two different types. The probability of an LED bulb lasting more than 100 hours given that it is of Type 1 is 0.7, and given that it is of Type 2 is 0.4. The probability that an LED bulb chosen uniformly at random lasts more than 100 hours is

Solution:

Let the random variable $X \in \{1, 2\}$ represent the type of the chosen bulb. X = 1 denotes a Type 1 bulb, while X = 2 denotes a Type 2 bulb. Given.

$$n(X = 1) = n(X = 2) \tag{5.1}$$

$$\Rightarrow p_X(1) = p_X(2) = \frac{1}{2}$$
 (5.2)

Let the random variable $Y \in \{0, 1\}$ represent if a bulb lasts more than 100 hours. Y = 1denotes that it lasts, while Y = 0 denotes that it doesn't. Given,

$$p_{Y|X}(1|1) = 0.7 (5.3)$$

$$p_{Y|X}(1|2) = 0.4 (5.4)$$

To find : $p_Y(1)$

$$p_{Y}(1) = p_{Y|X}(1|1)p_{X}(1) + p_{Y|X}(1|2)p_{X}(2)$$
 (5.5)

$$p_Y(1) = (0.7)(0.5) + (0.4)(0.5)$$
 (5.6)

$$\therefore p_Y(1) = 0.55 \tag{5.7}$$

116) Suppose X_i for i = 1, 2, 3 are independent and identically distributed random variables whose probability mass functions are

$$Pr(X_i = 0) = Pr(X_i = 1) = \frac{1}{2} \text{ for } i = 1, 2, 3.$$

Define another random variable

 $Y = X_1 X_2 \oplus X_3$, where \oplus denotes XOR. Then

 $\Pr\left(Y=0|X_3=0\right) =$

Solution:

For

$$Y = (X_1 X_2) \oplus X_3 = 0 \tag{743}$$

$$\implies X_1 X_2 = X_3 \tag{744}$$

$$\Pr(Y = 0|X_3 = 0) = \frac{\Pr(Y = 0, X_3 = 0)}{\Pr(X_3 = 0)} \quad (745)$$
$$= \frac{\Pr(X_1 X_2 = X_3, X_3 = 0)}{\Pr(X_3 = 0)} \quad (746)$$

$$\Pr(X_3 = 0) = \frac{1}{2} \tag{747}$$

if $X_3 = 0$, from (744)

$$X_1 X_2 = 0 (748)$$

The random variables are independent of each other:

$Pr(X_1 = 0, X_2 = 0)$	$\Pr\left(X_1 = 0\right) \cdot \Pr\left(X_2 = 0\right)$	0.25
$Pr(X_1 = 1, X_2 = 0)$	$\Pr(X_1 = 1) \cdot \Pr(X_2 = 0)$	0.25
$Pr(X_1 = 0, X_2 = 1)$	$\Pr\left(X_1=0\right)\cdot\Pr\left(X_2=1\right)$	0.25

TABLE XXX: Probabilities

$$Pr(X_1X_2 = 0) = Pr(X_1 = 0, X_2 = 0)$$

$$+ Pr(X_1 = 0, X_2 = 1)$$

$$+ Pr(X_1 = 1, X_2 = 0) \quad (749)$$

$$= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4} \quad (750)$$

$$Pr(Y = 0, X_3 = 0) = Pr(X_1 X_2 = X_3 = 0)$$

$$= Pr(X_1 X_2 = 0) \cdot Pr(X_3 = 0)$$
(751)
(752)

$$= \frac{3}{4} \cdot \frac{1}{2}$$
 (753)
$$= \frac{3}{8}$$
 (754)

Upon substituting (754) and (747) in (745)

$$\Pr(Y = 0 | X_3 = 0) = \frac{3}{4} = 0.75 \tag{755}$$

117) The probability that a given positive integer lying between 1 and 100 (both inclusive) and is NOT divisible by 2 or 3 or 5 is ... **Solution:** Let A, B, C are events where a positive integer between 1 and 100 (both

inclusive) is divisible by 2, 3, 5 respectively.

$$\Pr(A) = \frac{1}{2} \tag{756}$$

$$\Pr(B) = \frac{33}{100} \tag{757}$$

$$\Pr(C) = \frac{1}{5} \tag{758}$$

$$\Pr(AB) = \frac{16}{100} \tag{759}$$

$$\Pr(BC) = \frac{6}{100}$$
 (760)

$$\Pr(AC) = \frac{1}{10} \tag{761}$$

$$\Pr(ABC) = \frac{3}{100} \tag{762}$$

Required probability : Pr(A + B + C)'

$$Pr(A + B + C)' = 1 - Pr(A + B + C)$$

= 1 - Pr(A) - Pr(B) - Pr(C) +
Pr(AB) + Pr(BC) + Pr(AC)
- Pr(ABC) = 0.26 (763)

occurring in a given month is $\frac{1}{100}$. Let Pr(n) denote the probability that there will be no accident over a period of 'n' months. Assume that the events of individual months are independent of each other. The smallest integer value of 'n' such that $Pr(n) \le \frac{1}{2}$ is(round off to the nearest integer). **Solution:** Let A be the event of an accident occurring in a given month. So,

118) In an industry, the probability of an accident

$$\Pr(A) = \frac{1}{100} \tag{764}$$

$$Pr(A') = 1 - Pr(A) \tag{765}$$

$$\Pr(A') = \frac{99}{100} \tag{766}$$

So, Pr(n) can be written as:

$$Pr(n) = Pr(A' \times A' \cdots A')_{A' \ n \ times}$$
 (767)

Its given that events of individual months are independent of each other, so

$$Pr(n) = Pr(A') \cdot Pr(A') \cdot \cdot \cdot \cdot Pr(A')_{A' \text{ n times}}$$
(768)

$$= (\Pr(A'))^n \tag{769}$$

Given:

$$\Pr\left(n\right) \le \frac{1}{2} \tag{770}$$

So, from (769),

$$(\Pr(A'))^n \le \frac{1}{2} \tag{771}$$

$$\implies \ln \left(\Pr \left(A' \right) \right)^n \le \ln \frac{1}{2} \tag{772}$$

$$\implies n \cdot \ln \frac{99}{100} \le \ln \frac{1}{2} \tag{773}$$

$$\implies n \ge \frac{\ln \frac{1}{2}}{\ln \frac{99}{100}} \tag{774}$$

$$\implies n \ge 68.9675 \tag{775}$$

... The smallest integer value of n is 69.

119) Let X_1 , X_2 , X_3 and X_4 be independent normal random variables with zero mean and unit variance. The probability that X_4 is the smallest among the four is.....

Solution: Required probability

=
$$Pr(X_4 = min(X_1, X_2, X_3, X_4))$$
 (776)

$$= \int_{-\infty}^{\infty} \Pr(X_1, X_2, X_3 > x | X_4 = x)$$
 (777)

Since X_1 , X_2 , X_3 and X_4 are independent, required probability

$$= \int_{-\infty}^{\infty} (1 - F_{X_1}(x))(1 - F_{X_2}(x))(1 - F_{X_3}(x))f_{X_4}(x)dx$$
(778)

$$= \int_{-\infty}^{\infty} (1 - \Phi(x))^3 \phi(x) dx \tag{779}$$

Substituting

$$u = 1 - \Phi(x) \tag{780}$$

$$du = -\phi(x)dx \tag{781}$$

we get required probability

$$= -\int_{1}^{0} u^{3} du \tag{782}$$

$$=\frac{1}{4}\tag{783}$$

Note that in eq. (782) the integral is from 1

to 0 because

$$1 - \Phi(-\infty) = 1 \tag{784}$$

$$1 - \Phi(\infty) = 0 \tag{785}$$

Here $\phi(x)$ and $\Phi(x)$ represent the pdf and cdf of standard normal random variable respectively.

- 120) Let X and Y be two statistically independent random variables uniformly distributed in the range (-1, 1) and (-2, 1) respectively. Let Z = X + Y, then the probability that $[Z \le -2]$
 - is
 (A) 0
 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) $\frac{1}{12}$
- 121) What is the probability that a divisor of 10^{99} is a multiple of 10^{96} ? (A) $\frac{1}{625}$ (B) $\frac{4}{625}$

(C)
$$\frac{12}{625}$$
 (D) $\frac{16}{625}$ Solution: Let

$$X = \{(x, y) : 0 \le x \le 99, 0 \le y \le 99\}$$

be a set of random variables, $N = 2^x 5^y$,

$$\implies \forall (x, y) \in X, \text{ N is a divisor of } 10^{99}$$
 (786)

$$\implies n(X) = 100 \times 100 = 10^4 \tag{787}$$

Let

$$Y = \{(x, y) : (x, y) \in X, x \ge 96, y \ge 96\}$$
$$N_1 = 2^x 5^y$$

⇒ $\forall (x, y) \in Y, N_1 | 10^{99}$ and is multiple of 10^{96} (788)

$$\implies n(Y) = 4 \times 4 = 16 \tag{789}$$

Let P denotes the probability that a divisor of 10^{99} is a multiple of 10^{96} then

$$P = \frac{n(Y)}{n(X)}$$

From 787 and 789 we can write

$$P = \frac{16}{10^4} = \frac{1}{625}$$

So the probability is $\frac{1}{625}$, option (A).

122) There are five bags each containing identical sets of ten distinct chocolates. One chocolate is picked from each bag.

The probability that atleast two chocolates are identical is?

Solution:

Let random variable $X \in \{0, 2, 3, 4, 5\}$ denote the maximum number of identical chocolates picked in an experiment.

$$P(X \ge 2) = 1 - P(X = 0) \tag{790}$$

$$= 1 - \frac{10 \times 9 \times 8 \times 7 \times 6}{10^5} \quad (791)$$

$$= 1 - 0.3024 \tag{792}$$

$$= 0.6976$$
 (793)

123) Raju has four fair coins and one fair dice. At first Raju tosses a coin. If the coin shows head then he rolls the dice and the number that dice shows is taken as his score. If the coin shows tail then he tosses three more coins and the total number of tails shown (including the first one) is taken as his score.

If Raju tells that his score is 2 then the probability that he rolled the dice is (up to two decimal places):

Solution: Let X_i denote the random variable function for the *i*th coin $i \in \{1, 2, 3, 4\}$.

 $X_i \in (0, 1)$ where 0 represents head and 1 represents tail $i \in \{1, 2, 3, 4\}$.

	Head	Tail	
$X_i = k$	0	1	
Pr(X	$G_i = k$) =	$\frac{1}{2}$	(794)

 $k \in \{0, 1\}$ and $i \in \{1, 2, 3, 4\}$.

Let *Y* denote the random variable function for the dice.

 $Y \in (1, 2, 3, 4, 5, 6)$ where 1 represents dice showing 1 and so on.

(805)

Dice number	1	2	3	4	5	6
Y = k	1	2	3	4	5	6

$$Pr(Y = k) = \frac{1}{6}$$
 (795)

$$k \in \{1, 2, 3, 4, 5, 6\}.$$

$$Pr(X_1 = 0|A) = \frac{Pr(A, (X_1 = 0))}{Pr(A)}$$

$$= \frac{Pr(X_1 = 0) \cdot Pr(Y = 2)}{Pr(A)}$$
 (804)

We have to find $Pr(X_1 = 0|A)$

Therefore, required probability = 0.31

= 0.31

Let B denote the event that out of last three coins, only one shows tail.

By Binomial Distribution,

$$Pr(B) = {}^{3}C_{1} \left(\frac{1}{2}\right)^{3}$$
 (796)
= $\frac{3}{2}$ (797)

Since tossing a coin and rolling a dice are independent events,

$$Pr((X_i = k), (Y = l)) = Pr(X_i = k) \cdot Pr(Y = l)$$
(798)

 $k \in \{0, 1\}$ and $l \in \{1, 2, 3, 4, 5, 6\}$.

Let A denote the event that the score is 2. Clearly,

$$Pr(A) = Pr(Y = 2|X_1 = 0) \cdot Pr(X_1 = 0)$$

$$+ Pr(B|X_1 = 1) \cdot Pr(X_1 = 1) \qquad (799)$$

$$= Pr((X_1 = 0), (Y = 2)) + Pr((X_1 = 1), B) \qquad (800)$$

$$= Pr(X_1 = 0) \cdot Pr(Y = 2) + Pr(X_1 = 1) \cdot Pr(B) \qquad (801)$$

$$= \frac{13}{48} \qquad (802) \quad 12$$

124) A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession. The probability that one of them is white and the other is black is.

Solution:

Let X denote the number of white balls in the first draw and Y be the number of white balls in second draw and let E be the event mentioned in question.

$$Pr(E) = Pr(X = 1) \times Pr(Y = 0/X = 1)$$

+ $Pr(X = 0) \times Pr(Y = 1/X = 0)$ (806)

Let m and n be the number of black and white balls in the box.

$$\Pr(X=0) = \frac{m}{m+n} \tag{807}$$

$$\Pr(X=1) = \frac{n}{m+n} \tag{808}$$

$$\Pr(Y = 0/X = 0) = \frac{m-1}{m+n-1}$$
 (809)

$$Pr(Y = 1/X = 0) = \frac{n}{m+n-1}$$
 (810)

$$\Pr(Y = 0/X = 1) = \frac{m}{m+n-1}$$
 (811)

$$\Pr(Y = 1/X = 1) = \frac{n-1}{m+n-1}$$
 (812)

$$Pr(E) = \frac{n}{m+n} \times \frac{m}{m+n-1} + \frac{m}{m+n} \times \frac{n}{m+n-1} = \frac{1}{2}$$
 (813)

(802) 125) X(t) is a random process with a constant mean value of 2 and the autocorrelation function:

$$R_x(\tau) = 4\left[e^{-0.2|\tau|} + 1\right]$$
 (814)

Let X be the Gaussian Random Variable obtained by sampling the process at $t = t_i$,

and let
$$Q(\alpha) = \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy \qquad (815)$$

Find Pr
$$(X \le 1)$$

(A) $1 - Q(0.5)$ (B) $Q(0.5)$
(C) $Q(\frac{1}{2\sqrt{2}})$ (D) $1 - Q(\frac{1}{2\sqrt{2}})$

X is a normal random variable defined by

$$X \sim N\left(2, \sigma_x^2\right) \tag{816}$$

Thus, from (814):

$$Var(X) = \sigma_x^2 = R_x(0)$$
 (817)

$$\sigma_x^2 = 8 \tag{818}$$

$$\sigma_x = 2\sqrt{2} \tag{819}$$

Converting X to a <u>standard normal</u> random variable using :

$$Z = \frac{X - \mu_x}{\sigma_x} \tag{820}$$

$$\Pr(X \le 1) \tag{821}$$

$$=\Pr\left(\frac{X-2}{2\sqrt{2}} \le \frac{1-2}{2\sqrt{2}}\right) \tag{822}$$

$$= \Pr\left(Z \le \frac{-1}{2\sqrt{2}}\right) \tag{823}$$

where Z is a standard normal random variable defined by $Z \sim N(0, 1)$

Due to symmetry of the bell curve graph:

$$\Pr\left(Z \le \frac{-1}{2\sqrt{2}}\right) = \Pr\left(Z \ge \frac{1}{2\sqrt{2}}\right)$$
 (824)

From (815),

$$Q(\alpha) = \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz = \Pr(Z \ge \alpha) \quad (825)$$

Thus

$$\Pr\left(Z \ge \frac{1}{2\sqrt{2}}\right) = Q\left(\frac{1}{2\sqrt{2}}\right) \tag{826}$$

126) P and Q are considering to apply for a job. The probability that P applies for the job is 1/4, the probability that P applies for the job given that Q applies for the job is 1/2, and the probability that Q applies for the job given that P applies for the job is 1/3. Then the probability that P does not apply for the

job given that Q does not apply for the job is (A) 4/5 (B)5/6 (C)7/8 (D)11/12 **Solution:**

Let A be the event that P is applying for the job.

Let B be the event that Q is applying for the job.

Using values given in question

$$Pr(B|A) = \frac{Pr(AB)}{Pr(A)}$$
 (827)

$$\implies \Pr(AB) = \frac{1}{12} \tag{828}$$

$$Pr(A|B) = \frac{Pr(AB)}{Pr(B)}$$
 (829)

$$\implies \Pr(B) = \frac{1}{6} \tag{830}$$

TABLE XXXI: Probability for random variables

Pr(A)	1/4	Pr (<i>B</i>)	1/6
Pr(A B)	1/2	Pr(B A)	1/3
Pr(AB)	1/12		

Now using above values and De Morgan's Laws

$$Pr(A'|B') = \frac{Pr(A'B')}{Pr(B')}$$
(831)

$$\Longrightarrow \frac{1 - \Pr(A + B)}{1 - \Pr(B)} \tag{832}$$

$$\Rightarrow \frac{1 - \Pr(A) - \Pr(B) + \Pr(AB)}{1 - \Pr(B)}$$
 (833)

$$\implies \Pr(A'|B') = \frac{4}{5} \tag{834}$$

The probability that P doesn't apply given Q doesn't apply is 0.8

- 127) A fair coin is tossed n times. The probability that the difference between number of heads and tails is (n-3) is
 - a) 2^{-n}
 - b) 0

c)
$${}^{n}C_{n-3}2^{-n}$$

d) 2^{-n+3}

Solution:

4 Solution

Let number of heads be k, then number of tails are n - k.

Given:
$$|k - (n - k)| = n - 3$$

Case(i)

$$2k - n = n - 3$$
$$k = n - \frac{3}{2}$$

As k cannot be fractional, it's impossible. Case(ii)

$$-(2k - n) = n - 3$$
$$k = \frac{3}{2}$$

As k cannot be fractional, it's impossible. Thus, probability that the difference between number of heads and tails is (n-3) is 0 Correct option is 2

128) A continuous random variable X has a probability density function

$$f(x) = e^{-x}$$
, where, $0 < x < \infty$. (835)

Then Pr(X > 1) is ? **Solution:** x is uniform with

$$0 < x < \infty. \tag{836}$$

 $f(x) = e^{-x}$ is uniform, with 0 < f(x) < 1. (837)

Let,

(838)

As,
$$0 < x < \infty$$
, $F_X(x) = 0$ for $x < 0$ (839)

$$F_X(x) = \Pr(X \le x) = \int_0^x f(x) dx = \int_0^x e^{-x} dx$$

$$= \left[-e^{-x} \right]_0^x = \left(-e^{-x} \right) - \left(-e^0 \right) = 1 - e^{-x}$$
(841)
$$\Pr(X > 1) = 1 - F_X(1)$$
(842)

 $= 1 - (1 - e^{-1}) = 0.368$ (843)

129) The box 1 contains chips numbered 3, 6, 9, 12 and 15. The box 2 contains chips numbered 6, 11, 16, 21 and 26. Two chips, one from each box are drawn at random. The numbers written on these chips are multiplied. The probability for the product to be an even number is

- a) $\frac{6}{25}$
- b) $\frac{2}{5}$
- c) $\frac{3}{5}$
- d) $\frac{19}{25}$

Solution: Consider two independent random variables X and Y which denotes the number on the chip drawn from box 1 and box 2 respectively.

X can take the values 3, 6, 9, 12, 15 X can take the values 6, 11, 16, 21, 26

$$Pr(X \times Y = even)$$
= $Pr(X = even, Y = odd)$
+ $Pr(X = odd, Y = even)$
+ $Pr(X = even, Y = even)$
(844)
$$= \frac{2}{5} \times \frac{2}{5} + \frac{3}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{3}{5}$$
(845)
$$= \frac{19}{25}$$
(846)

 $F_X(x)$ be the cumulative distribution function of X^{130} . A box contains 25 parts of which 10 are defective. Two parts are being drawn simultaenously in a random manner from the box. The probability of both parts being good is $(A)\frac{7}{20}$ $(B)\frac{42}{125}$ $(C)\frac{25}{29}$ $(D)\frac{5}{9}$ **Solution:** Let $X_1, X_2 \in \{0, 1\}$ represent the parts, where 0 represents good part, 1 represent defective part. From the given information

$$\Pr(X_1 = 0) = \frac{15}{25} = \frac{3}{5} \tag{847}$$

$$\Pr(X_2 = 0 | X_1 = 0) = \frac{14}{24} = \frac{7}{12}$$
 (848)

Then,

$$Pr(X_1 = 0, X_2 = 0)$$

$$= Pr(X_2 = 0 | X_1 = 0) \times Pr(X_1 = 0) = \frac{7}{20}$$
(849)

- 131) From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if the first card is NOT replaced?
 - a) $\frac{1}{26}$
 - b) $\frac{1}{52}$
 - c) $\frac{1}{169}$
 - d) $\frac{1}{221}$

Solution:

Let $A, B \in \{0, 1\}$, where 1 denotes that card is a King, and 0 denotes that card is not a King. A denotes the first card is picked, B denotes second card is picked.

$$\Pr(A=1) = \frac{4}{52} \tag{850}$$

$$\Pr(B = 1|A = 1) = \frac{3}{51}$$
 (851)

Applying Bayes Theorem, we need to find the value of Pr(A = 1, B = 1):

$$= \Pr(B = 1|A = 1) \cdot \Pr(A = 1)$$
 (852)

$$=\frac{4}{52} \cdot \frac{3}{51} \tag{853}$$

$$=\frac{1}{221}$$
 (854)

The Probability that both cards are king is

$\frac{1}{221}$, Hence **Option 4** is correct

132) A group consists of equal number of men and women. Of this group, 20% of the men and 50% of the women are unemployed. If a person is selected at random from this group, the probability of the selected person being employed is **Solution:**

Let the random variable $X \in \{0, 1\}$ represent the gender of the person. X = 0 denotes a female, while X = 1 denotes a male. Given,

$$n(X = 0) = n(X = 1) \tag{4.1}$$

$$\Rightarrow p_X(0) = p_X(1) = \frac{1}{2}$$
 (4.2)

Let the random variable $Y \in \{0, 1\}$ represent if the person is employed. Y = 0 denotes unemployed, while Y = 1 denotes employed. Given.

$$p_{Y|X}(0|0) = 0.5 \Rightarrow p_{Y|X}(1|0) = 0.5$$
 (4.3)

$$p_{Y|X}(0|1) = 0.2 \Rightarrow p_{Y|X}(1|1) = 0.8$$
 (4.4)

To find : $p_Y(1)$

$$p_Y(1) = p_{Y|X}(1|0)p_X(0) + p_{Y|X}(1|1)p_X(1)$$
 (4.5)

$$p_Y(1) = (0.5)(0.5) + (0.8)(0.5)$$
 (4.6)

$$p_{Y}(1) = 0.65$$
 (4.7)

133) A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is **Solution:**

Probability of selecting items follows binomial distribution with parameter for selecting defective items,

$$p = \frac{10}{100} = \frac{1}{10} \tag{855}$$

The probability of getting k defective items by selecting n items is,

$$\Pr(X = k) = \begin{cases} {}^{n}C_{k}p^{k}(1-p)^{n-k} & 0 \le k \le n \\ 0 & otherwise \end{cases}$$
(856)

Total no. of items chosen,

$$n = 10 \tag{857}$$

Probability of getting exactly 2 defective items.

$$\Pr(X=2) = {}^{10}C_2 \left(\frac{1}{10}\right)^2 \left(1 - \frac{1}{10}\right)^{10-2} \quad (858)$$

$$\Pr(X=2) = {}^{10}C_2 \left(\frac{1}{10}\right)^2 \left(\frac{9}{10}\right)^8 \tag{859}$$

$$Pr(X = 2) = 0.1937102445 \tag{860}$$

- 134) The probability that a student knows the correct answer to a multiple choice question is $\frac{2}{3}$. If the student does not know the answer, then the student guesses the answer. The probability of the guessed answer being correct is $\frac{1}{4}$. Given that the student has answered the question correctly, the conditional probability that the student knows the correct answer is
 - a) $\frac{2}{3}$
 - b) $\frac{3}{4}$
 - c) $\frac{5}{6}$
 - d) $\frac{8}{9}$

Solution:

Let the following random variables and their values denote:

A: Knows correct answer = 1

B: Marks correct answer = 1

$$\therefore \Pr(A=1) = \frac{2}{3}$$
 (861)

$$Pr(B = 1|A = 1) = 1$$
 (862)

$$Pr(B = 1|A = 0) = \frac{1}{4}$$
 (863)

Applying Bayes Theorem, the value of

$$Pr(B = 1)$$
 is:

$$Pr(B = 1) = Pr(B = 1|A = 1) Pr(A = 1)$$

+ $Pr(B = 1|A = 0) Pr(A = 0)$
(864)

$$=1\cdot\frac{2}{3}+\frac{1}{4}\cdot\frac{1}{3}=\frac{3}{4}$$
 (865)

Applying Bayes Theorem, calculating the value of Pr(B = 1, A = 1) is:

$$= \Pr(B = 1|A = 1) \Pr(A = 1)$$
 (866)

$$=1\cdot\frac{2}{3}\tag{867}$$

Applying Bayes Theorem, we need to find the value of Pr(A = 1|B = 1). Upon substituting from (867) and (865), we get

$$= \frac{\Pr(B=1, A=1)}{\Pr(B=1)}$$
 (868)

$$=\frac{8}{9}\tag{869}$$

The correct answer is **Option 4**.

135) Consider an unbiased cubic dice with opposite faces coloured identically and each face coloured red, blue or green such that each colour appears only two times on the dice. If the dice is thrown thrice, the probability of obtaining red colour on top face of the dice at

least twice is ______. Solution:

Let $X \in \{0, 1, 2, 3\}$ be the random variable representing the number of times a red face is obtained. Then X is a binomial distributions with parameter:

$$p = \frac{\text{number of red coloured faces}}{\text{total number of faces}}$$
 (870)

$$=\frac{2}{6} \tag{871}$$

$$=\frac{1}{3}\tag{872}$$

$$Pr(X \ge 2) = Pr(X = 2) + Pr(X = 3)$$
 (876)
= $\frac{6}{27} + \frac{1}{27}$ (877)
= $\frac{7}{27}$ (878)

136) A fair coin is tossed 20 times. The probability that 'head' will appear exactly 4 times in the first ten tosses, and 'tail' will appear exactly 4 times in the next ten tosses is....(round off to 3 decimal places)

Solution:

The probability of getting exactly 4 heads in the first 10 tosses can be calculated as

$$\Pr(H = 4, T = 6) = {}^{10}C_4 \times \left(\frac{1}{2}\right)^4 \times \left(\frac{1}{2}\right)^6 (879)$$

The probability of getting exactly 4 tails in the next 10 tosses can be calculated as

$$\Pr(T = 4, H = 6) = {}^{10}C_4 \times \left(\frac{1}{2}\right)^4 \times \left(\frac{1}{2}\right)^6 \tag{880}$$

Since these two probabilities are independent of each other, the required probability is the product of these two

$$= {}^{10}C_4 \times \left(\frac{1}{2}\right)^4 \times \left(\frac{1}{2}\right)^6 \times {}^{10}C_4 \times \left(\frac{1}{2}\right)^4 \times \left(\frac{1}{2}\right)^6 \tag{881}$$

$$=\frac{210^2}{2^{20}} = \frac{44100}{1048576} = 0.042 \tag{882}$$

So, the required probability is 0.042.

137) The chance of a student passing an exam is 20%. The chance of a student passing the exam and getting above 90% marks is 5%. GIVEN that a student passes the examination, the probability that the student gets above 90% marks is

Solution:

a).
$$\frac{1}{18}$$
 c). $\frac{1}{4}$ b). $\frac{2}{9}$ d). $\frac{5}{18}$

5 Solution

Let A be the event that the student passes the exam and B be the event that the student gets above 90% in the exam. Thus we need to find Pr(B|A). We are given

$$\Pr(A) = \frac{1}{5}$$
 (883)

$$\Pr\left(AB\right) = \frac{1}{20} \tag{884}$$

Thus required probability

$$= \Pr(B|A) \tag{885}$$

$$=\frac{\Pr\left(AB\right)}{\Pr\left(A\right)}\tag{886}$$

$$=\frac{1}{4} \tag{887}$$

Thus option B is the correct option.

138) Four red balls, four green balls and four blue balls are put in a box. Three balls are pulled out of the box at random one after another without replacement. The probability that all the three balls are red is

Solution:

Let $A, B, C \in \{0, 1\}$, where 0 denotes that pulled out ball is red, and 1 denotes that pulled out ball is not red. A denotes the first ball is pulled out of the box, B denotes the second ball is pulled out of the box, C denotes

the third ball is pulled out of the box.

$$\Pr(A=0) = \frac{4}{12} \tag{888}$$

$$\Pr(B = 0|A = 0) = \frac{3}{11}$$
 (889)

$$\Pr\left(C = 0 | (B = 0, A = 0)\right) = \frac{2}{10} \tag{890}$$

Applying Bayes Theorem to Pr(A = 0, B = 0),

$$Pr(A = 0, B = 0) = Pr(B = 0|A = 0) Pr(A = 0)$$
(891)

using (888) and (889),

$$= \frac{3}{11} \cdot \frac{4}{12} \tag{892}$$

$$=\frac{1}{11}$$
 (893)

similarly Pr(A = 0, B = 0, C = 0) can be written as,

$$= \Pr(C = 0 | (B = 0, A = 0)) \Pr(A = 0, B = 0)$$
(894)

using (890) and (893),

$$= \frac{2}{10} \cdot \frac{1}{11} \tag{895}$$

$$=\frac{1}{55}$$
 (896)

- 139) Consider a company that assembles computers. The probability of a faulty assembly of any computer is p. The company therefore subjects each computer to testing process. This testing process gives the correct result for any computer with a probability of q. What is the probability of a computer being declared faulty?
- a) pq+(1-p)(1-q)
- b) (1-q)p
- c) (1-p)q
- d) pq

Solution:

Let $X_i \in \{0, 1\}$ where $Pr(X_1 = 1)$ represents the computer is faulty before testing,

 $Pr(X_2 = 1)$ represents the testing process gives the correct result.

TABLE XXXII

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	(1-p)(1-q)	(1-q)p
$X_2 = 1$	(1-p)q	pq

Table XXXII represents the probabilities of all possible cases. The probability of a computer being declared as faulty is

$$= \Pr((X_2 = 1)(X_1 = 1)) + \Pr((X_2 = 0)(X_1 = 0))$$
(1.1)

$$= pq + (1-p)(1-q) \tag{1.2}$$

The required option is (A).

- 140) If three coins are tossed simultaneously, the probability of getting atleast one head is:
 - a) $\frac{1}{8}$
 - b) $\frac{3}{8}$
 - c) $\frac{1}{2}$
 - d) $\frac{7}{8}$

Solution:

Let *X* represent the number of heads obtained in a trial involving 3 tosses.

Then, X is a binomial random variable defined by: $X \sim B(n, p)$ where n = 3 and $p = \frac{1}{2}$ and:

$$\Pr(X = k) = {}^{n}C_{k}p^{k}(1 - p)^{n-k}$$
 (897)

To find:

$$\Pr\left(X \ge 1\right) \tag{898}$$

$$= 1 - \Pr(X < 1) \tag{899}$$

$$= 1 - \Pr(X = 0) \tag{900}$$

$$=1-{}^{3}C_{0}p^{0}(1-p)^{3} (901)$$

$$=\frac{7}{8}\tag{902}$$

- 141) Assume that the duration in minutes of a telephone conversation follows the exponential distribution $f(x) = \frac{1}{5}e^{-\frac{x}{5}}, x \ge 0.$ The probability that the conversation will exceed five minutes is...
 - a) $\frac{1}{a}$
 - b) $1 \frac{1}{a}$
 - c) $\frac{1}{e^2}$
 - d) 1 $\frac{1}{a^2}$

Solution:

Let X be a Random variable defined, that denotes the duration of a telephonic conversation in minutes.

So,
$$X \in [0,\infty)$$

Given, $f_X(x) = \frac{1}{5}e^{-\frac{x}{5}}$
Let CDF of X be $F_X(x)$

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$= \int_{-\infty}^0 f_X(t) dt + \int_0^x f_X(t) dt$$

$$F_X(x) = \int_0^x f_X(t) dt :: f_X(x) = 0 \forall x < 0$$

$$\therefore F_X(x) = \int_0^x \frac{1}{5} e^{-\frac{t}{5}} dt$$

$$\implies F_X(x) = 1 - e^{-\frac{x}{5}}$$
(1)

$$F_X(x) = \Pr(X \le x)$$

$$\Pr(X > 5) = 1 - \Pr(X \le 5)$$

$$\implies \Pr(X > 5) = 1 - F_X(5)$$

$$= 1 - (1 - e^{-\frac{5}{5}})$$

$$= e^{-\frac{5}{5}}$$

$$= e^{-1} = \frac{1}{e}$$

142) An array of 25 distinct elements is to be sorted using quicksort. Assume that the pivot element is chosen uniformly at random. The probability that the pivot element gets placed in the worst possible location in the first round of partitioning (rounded off to 2

decimal places) is — Solution:

The worst possible place, the pivot element can be placed is at extreme left or extreme right. So, there are only 2 worst possible locations.

$$Pr(X1 \text{ is compared to } Xn) = \frac{2}{n}.$$
 (903)

Total number of pivot elements = 25. Number of worst possible location of pivot element gets placed after first round of partitioning = 2.

Probability of placing pivot element in worst possible locations = $\frac{2}{25}$ = 0.08. Maximum,

Then you must sort this by quicksort

Minimum,

This is minimum

Then you must sort this by quicksor

143) E_1 , E_2 are independent events such that,

$$\Pr(E_1) = \frac{1}{4}, \Pr(E_2|E_1) = \frac{1}{2} \text{ and } \Pr(E_1|E_2) = \frac{1}{4}$$

Define random variables X and Y by

$$X = \begin{cases} 1, & \text{if } E_1 \text{ occurs} \\ 0, & \text{if } E_1 \text{ does not occur} \end{cases}$$

$$Y = \begin{cases} 1, & \text{if } E_2 \text{ occurs} \\ 0, & \text{if } E_2 \text{ does not occur} \end{cases}$$

$$(904)$$

$$Y = \begin{cases} 1, & \text{if } E_2 \text{ occurs} \\ 0, & \text{if } E_2 \text{ does not occur} \end{cases}$$
 (905)

Consider the following statements α : X is uniformly distributed on the set $\{0,1\}$ β : X and Y are identically distributed

$$\gamma$$
: $\Pr(X^2 + Y^2 = 1) = \frac{1}{2}$

$$\delta$$
: Pr $(XY = X^2Y^2) = 1$
Choose the correct combination

(a)
$$(\alpha, \beta)$$
 (c) (β, γ)

(b)
$$(\alpha, \gamma)$$
 (d) (γ, δ)

Solution: Since events E_1 and E_2 are independent,

$$Pr(E_1E_2) = Pr(E_1) \times Pr(E_2)$$

$$Pr(E_2|E_1) = \frac{Pr(E_1E_2)}{Pr(E_1)} = Pr(E_2)$$

$$\therefore \Pr\left(E_2\right) = \frac{1}{2} \tag{906}$$

From the given information we get,

	0	1
Pr(X)	$\frac{3}{4}$	$\frac{1}{4}$
Pr(Y)	$\frac{1}{2}$	$\frac{1}{2}$

TABLE XXXIII: Probability of $X \in \{0, 1\}$ and $Y \in \{0, 1\}$

$$F_X(x) = \begin{cases} 1, & x \ge 1 \\ \frac{3}{4}, & 0 \le x \le 1 \\ 0, & x < 0 \end{cases}$$
$$F_Y(y) = \begin{cases} 1, & y \ge 1 \\ \frac{1}{2}, & 0 \le y \le 1 \\ 0, & y < 0 \end{cases}$$

- (1) *X* is not uniformly distributed on the set {0, 1} as it is not continuous in {0, 1} (both *X* and *Y* are Bernoulli Distributions).
 - \therefore Statement α is incorrect.
- (2) Since $F_X(x) \neq F_Y(y)$, X and Y are not identically distributed.
 - \therefore Statement β is incorrect.

(3)
$$Pr(X^2 + Y^2 = 1)$$

= $Pr(X = 0, Y = 1) + Pr(X = 1, Y = 0)$
= $\frac{1}{2}$ (907)

 \therefore Statement γ is correct.

(4)
$$\Pr(XY = X^2Y^2)$$

= $\sum_{i=0}^{1} \sum_{j=0}^{1} \Pr(X = i, Y = j)$
= 1 (908)

- \therefore Statement δ is correct.
- (a) This option is incorrect as statement α is incorrect (1) and statement β is incorrect (2).
- (b) This option is incorrect as statement γ is correct (3) but statement α is incorrect (1).
- (c) This option is incorrect as statement γ is

correct (3) but statement β is incorrect (2).

- (d) This option is correct as statement γ is correct (3) and statement δ is correct (4). \therefore Option (d), (γ, δ) , is the answer.
- 144) Arrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between successive arrivals. The length of a phone call is distributed exponentially with mean 3 minutes. The probability that an arrival does not have to wait before service is
 - a) 0.3
 - b) 0.5
 - c) 0.7
 - d) 0.9

Solution:

Let X be a random variable with values equal to time between successive calls(in minutes) which is a Poisson distribution with mean of 10.

$$\implies \Pr(X = x) = \frac{e^{-10} \times 10^x}{x!} \quad (x = 1, 2, 3, ...)$$
(909)

Let Y be a random variable with values equal to length of a phone call which is an exponential distribution with mean 3.

$$\implies f_Y(y) = \begin{cases} \frac{e^{\frac{-y}{3}}}{3} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

$$\implies \Pr(Y \le y) = F_Y(y) = \int_{-\infty}^y f_Y(y) dy$$

$$= \int_0^y \frac{e^{\frac{-y}{3}}}{3}$$

$$= 1 - e^{\frac{-y}{3}}$$

$$(912)$$

Probability that an arrival does not have to wait is $Pr(Y \le X)$

$$\Pr(Y \le X) = \sum_{x=0}^{x=\infty} \Pr(Y \le x) \Pr(X = x) \quad (914)$$

$$= \sum_{x=0}^{x=\infty} (1 - e^{\frac{-x}{3}}) \times \left(\frac{e^{-10} \times 10^{x}}{x!}\right) \quad (915)$$

$$= e^{-10} \left(\sum_{x=0}^{x=\infty} \frac{10^{x}}{x!} - \sum_{x=0}^{x=\infty} \frac{10^{x} e^{\frac{-x}{3}}}{x!}\right) \quad (916)$$

$$= e^{-10} \left(e^{10} - \sum_{x=0}^{x=\infty} \frac{e^{\left(\log_{e} 10 - \frac{1}{3}\right)x}}{x!}\right) \quad (917)$$

$$= 1 - e^{-10} \left(e^{\left(\log_{e} 10 - \frac{1}{3}\right)}\right) \quad (918)$$

$$= 0.941 \quad (919)$$

Hence option (4) is correct.

145) Let Z be an exponential random variable with mean 1. That is, the cumulative distribution function of Z is given by

$$F_Z(x) = \begin{cases} 1 - e^{-x}, & if \ x \ge 0 \\ 0, & if \ x < 0. \end{cases}$$
 (920)

Then $Pr(Z_{\xi}2 - Z_{\xi}1)$, rounded off to two decimal places, is equal to **Solution**:

$$Pr(Z > 2|Z > 1) = \frac{Pr((Z > 2), (Z > 1))}{Pr(Z > 1)}$$
(921)

$$=\frac{Pr(Z>2)}{Pr(Z>1)}$$
 (922)

$$= \frac{1 - Pr(Z \le 2)}{1 - Pr(Z \le 1)}$$
 (923)

$$=\frac{e^{-2}}{e^{-1}}\tag{924}$$

$$= e^{-1} = 0.3679 (925)$$

146) A coin is tossed 4 times. What is the probability of getting heads exactly three times?

a)
$$\frac{1}{4}$$

- b) $\frac{3}{8}$
- c) $\frac{1}{2}$
- d) $\frac{3}{4}$

Solution:

In an experiment of tossing a coin n(=4) times, random variable $X \in \{0, 1, 2, 3\}$ follows binomial distribution.

The binomial distribution formula is:

$$Pr(X = k) = {}^{n}C_{k} \times p^{k} \times (1 - p)^{n-k}$$
 (926)

Where: Let *X* denote the number of heads

	k	total number of "successes"			
	p	probability of a success on an individual trial			
ĺ	n	number of trials $= 3$			

TABLE XXXIV: The binomial distribution formula

$$Pr(X = 3) = {}^{4}C_{3} \times \left(\frac{1}{2}\right)^{3} \times \left(1 - \frac{1}{2}\right)^{4-3}$$
 (927)
= $\frac{1}{4}$ (928)

Correct option is 1.

147) There are two identical locks, with two identical keys, and the keys are among the six different ones which a person carries in his pocket. In a hurry he drops one key somewhere. Then the probability that the locks can still be opened by drawing one key at random is equal to? **Solution:**

Let E_1 denote that he drops the needed key E_2 denote that he drops an unwanted key A denote the event of opening the locks

$$\Pr(E_1) = \frac{1}{3} \tag{929}$$

$$\Pr(E_2) = \frac{2}{3} \tag{930}$$

$$\Pr(A|E_1) = \frac{1}{5} \tag{931}$$

$$\Pr(A|E_2) = \frac{2}{5} \tag{932}$$

Hence by total probability rule,

$$Pr(A) = Pr(E_1) \times Pr(A|E_1) + Pr(E_2) \times Pr(A|E_2)$$
(933)

$$= \frac{1}{3} \times \frac{1}{5} + \frac{2}{3} \times \frac{2}{5} \tag{934}$$

Hence, the probability that the locks can be opened is $\frac{1}{3}$

- 148) An automobile plant contracted to buy shock absorbers from two suppliers X and Y. X supplies 60% and y supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable. Of X's shock absorbers are 96% are reliable. Of Y's shock absorbers 72% are reliable The probability that a randomly chosen shock absorber which is found to be reliable is made by Y is
 - a) 0.288
 - b) 0.334
 - c) 0.667
 - d) 0.720

Solution:

Let A and B be two random variables that take values from the set {0,1}.

A:

- $A=0 \rightarrow$ shock absorber is from X
- A=1 \rightarrow shock absorber is from Y
- $B=0 \rightarrow \text{shock absorber is not reliable}$
- $B=1 \rightarrow \text{shock absorber is reliable}$

x_i	Description	$P(A=x_i)$
0	Shock absorber is from X	0.6
1	Shock absorber is from Y	0.4

TABLE XXXV: Values taken by X

Given,

$$Pr(B = 1|A = 0) = 0.96$$
 (935)

$$Pr(B = 1|A = 1) = 0.72$$
 (936)

Using the fact that $Pr(E|F) = \frac{Pr(E+F)}{Pr(F)}$,

$$Pr((B = 1) + (A = 0)) = Pr(B = 1|A = 0) \times Pr(A = 0)$$
 (937)

$$Pr((B = 1) + (A = 0)) = 0.576$$
(938)

Similarly,
$$Pr((B = 1) + (A = 1)) = 0.288$$
 (939)

Since the events (A=0) and (A=1) are mutually independent and mutually exhaustive, we can say that

$$Pr(B = 1) = Pr((B = 1) + (A = 0)) +$$

 $Pr((B = 1) + (A = 1)).$ (940)

$$\implies \Pr(B=1) = 0.864$$
 (941)

We need to find Pr(A = 1|B = 1)

$$Pr(A = 1|B = 1) = \frac{Pr((A = 1) + (B = 1))}{Pr(B = 1)}$$
(942)

Substituting values from (939) (941), we get

$$\Pr(A = 1|B = 1) = \frac{0.288}{0.864} \tag{943}$$

$$\implies$$
 Pr $(A = 1|B = 1) = 0.33333333 (944)$

$$\implies$$
 Pr $(A = 1|B = 1) = 0.334$ (945)

- 149) A box contains 15 blue balls and 45 black balls. If two balls are selected randomly, without replacement, the probability of an outcome in which the first ball selected is a blue ball and the second ball selected is a black ball, is
 - 1. $\frac{3}{16}$
 - $2. \frac{45}{236}$
 - 3. $\frac{1}{4}$

4. $\frac{3}{4}$

Solution:

Let X_1 and $X_2 \in \{0, 1\}$ where 0 represents a black and 1 represents a blue ball.

a) Probability of picking a blue ball

$$\Pr\left(X_1 = 1\right) = \frac{15}{60} = \frac{1}{4} \tag{946}$$

b) Probability of picking a black ball given a blue ball is picked

$$\Pr\left(X_2 = 0 | X_1 = 1\right) = \frac{45}{59} \tag{947}$$

 Probability that first ball is blue and second ball is black

$$Pr(X_1 = 1, X_2 = 0) =$$

 $Pr(X_1 = 1) \times Pr(X_2 = 0 | X_1 = 1)$ (948)

$$= \frac{1}{4} \times \frac{45}{59} \tag{949}$$

$$=\frac{45}{236}$$
 (950)

∴ Option 2 is correct.

- 150) A single die is thrown twice. What is the probability that the sum is neither 8 or 9?
 - (a) $\frac{1}{9}$
- (b) $\frac{5}{36}$
- (c) $\frac{1}{4}$
- (d) $\frac{3}{4}$

Solution:

Let $X \in \{0, 1\}$ be the random variable, where X=0 represents that we get sum to be 8 or 9 and X=1 represents that we get sum between 2 and 12 except 8 and 9.

Total number of possible outcomes is:

$$N = {}^{6}C_{1} \times {}^{6}C_{1} = 36 \tag{951}$$

Probability that the sum is neither 8 or 9

$$Pr(X = 1) = 1 - Pr(X = 0)$$
 (952)

Only 9 outcomes are favourable to the occurrence of X=0.

Probability of getting sum 8 or 9 is:

$$\Pr(X=0) = \frac{9}{36} = \frac{1}{4} \tag{953}$$

Substituting value in (952), we get

$$\Pr(X=1) = 1 - \frac{1}{4} = \frac{3}{4} \tag{954}$$

Hence, the correct option is (d) $\frac{3}{4}$

- 151) A box contains 2 washers, 3 nuts and 4 bolts. Items are drawn from the box at random one at a time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently 4 bolts is
 - (A) $\frac{2}{315}$
 - (B) $\frac{1}{630}$
 - (C) $\frac{1}{1260}$
 - (D) $\frac{1}{2520}$

Solution:

Let $X \in \{0, 1, 2\}$ be the random variable such that X=0 represents that we draw 2 washers, X=1 represents that we draw 3 nuts and X=2 represents that we draw 4 bolts, continuously without replacement.

Total number of objects:

$$N = 2 + 3 + 4 = 9 \tag{955}$$

Probability of occurrence of X=0:

$$\Pr(X = 0) = \frac{{}^{2}C_{2}}{{}^{9}C_{2}}$$
 (956)
= $\frac{1}{2}$ (957)

Total number of objects after occurrence of X=0:

$$N = 3 + 4 = 7 \tag{958}$$

Probability of occurrence of X=1 given that X=0 has already occurred:

$$\Pr(X = 1 | X = 0) = \frac{{}^{3}C_{3}}{{}^{7}C_{3}}$$
 (959)
= $\frac{1}{35}$ (960)

Total number of objects after occurrence of X=0 and X=1:

$$N = 4$$
 (961)

Probability of occurrence of X=2 given that X=0 and X=1 has already occurred:

$$Pr(X = 2 | (X = 0, X = 1)) = \frac{{}^{4}C_{4}}{{}^{4}C_{4}}$$
 (962)
=1 (963)

Using Multiplication law of probability, Required probability is given by :

$$Pr(X = 0, X = 1, X = 2)$$

$$= Pr(X = 0) \times Pr(X = 1 | X = 0)$$

$$\times Pr(X = 2 | (X = 0, X = 1)) \quad (964)$$

$$\Rightarrow \Pr(X = 0, X = 1, X = 2) = \frac{1}{36} \times \frac{1}{35} \times 1$$

$$= \frac{1}{1260}$$
(966)

 \therefore The correct option is (C) $\frac{1}{1260}$.

152) Let U and V be two independent zero mean Gaussian random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability $\Pr(3V \ge 2U)$ is

- a) 4/9
- b) 1/2
- c) 2/3
- d) 5/9

Solution:

U and V are independent random variables, For V, $\mu_V = 0$, and $\sigma_V^2 = \frac{1}{9}$

$$V \sim N\left(0, \frac{1}{9}\right) \tag{967}$$

For U, $\mu_U = 0$, and $\sigma_U^2 = \frac{1}{4}$

$$U \sim N\left(0, \frac{1}{4}\right) \tag{968}$$

Let,

$$Z = 3V - 2U$$

(969)

$$Z \sim N\left((3\mu_V - 2\mu_U), \left((3)^2 \sigma_U^2 + (2)^2 \sigma_V^2 \right) \right)$$
(970)

$$Z \sim N\left(0, 9 \times \frac{1}{9} + 4 \times \frac{1}{4}\right) \tag{971}$$

$$Z \sim N(0, 2)$$
(972)

For Z, $\mu = 0$, and $\sigma^2 = 2$. By Gaussian Distribution, Let X is standard normal

variable,

$$X = \frac{Z - \mu}{\sigma} \tag{973}$$

$$Pr(Z \ge 0) = Pr(X\sigma + \mu \ge 0)$$
(974)

$$\Pr(Z \ge 0) = \Pr(X(\sqrt{2}) + 0 \ge 0)$$
(975)

$$Pr(Z \ge 0) = Pr(X \ge 0)$$
(976)

$$\Pr(Z \ge 0) = Q(0) \tag{977}$$

where Q(x) is the Q – function,

$$Q(0) = \frac{1}{2} \tag{978}$$

$$\Pr(Z \ge 0) = \frac{1}{2}$$
 (979)

$$\Pr(3V - 2U \ge 0) = \frac{1}{2} \tag{980}$$

$$\Pr(3V \ge 2U) = \frac{1}{2} \tag{981}$$

Option (B) is correct.

153) Two random variables X and Y are distributed according to

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 \le x \le 1, 0 \le y \le 1\\ 0 & otherwise \end{cases}$$
(982)

The probability $Pr(X + Y \le 1)$ is **Solution:**

$$Pr(X + Y \le 1) = \int_{0}^{1} \int_{0}^{1-y} f_{X,Y}(x,y) \, dx \, dy$$

$$= \int_{0}^{1} \int_{0}^{1-y} (x+y) \, dx \, dy$$

$$= \int_{0}^{1} \left(\left(\frac{x^{2}}{2} + xy \right) \Big|_{0}^{1-y} \right) \, dy$$

$$= \int_{0}^{1} \left(\frac{1-y^{2}}{2} \right) \, dy \quad (985)$$

$$= \left(\frac{y}{2} - \frac{y^{3}}{6} \right) \Big|_{0}^{1} \, dy \quad (987)$$

$$= \frac{1}{3} \quad (988)$$

Therefore, required probability is $=\frac{1}{3}$

154) A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. What is the probability that the selected set contains one red ball and two black balls?

a)
$$\frac{1}{20}$$

b)
$$\frac{1}{12}$$

c)
$$\frac{3}{10}$$

d) $\frac{1}{2}$

Solution:

This problem uses Hyper-Geometric distribution which involves selection of certain number of successes from a given sample without replacement.

- Number of Red balls = 4
- Number of Black balls = 6
 Let M be a variable representing the number of black balls in a selection of 3 balls. M has a
 Hyper-Geometric probability mass function:

$$p_M(k) = \Pr(M = k) = \frac{{}^{K}C_k \times {}^{N-K}C_{n-k}}{{}^{N}C_n}$$
 (989)

Here Success refers to selecting a black ball, Probability that the selected

K	Total successes in population	6
N	Population size	6 + 4 = 10
k	Total observed successes	2
n	Number of draws	3

set contains 2 black balls and 1 red ball = Pr(M = 2)

$$\Pr(M=2) = \frac{{}^{K}C_{2} \times {}^{N-K}C_{n-2}}{{}^{N}C_{n}} \quad (990)$$

$$=\frac{{}^{6}C_{2}\times{}^{10-6}C_{3-2}}{{}^{10}C_{3}} \qquad (991)$$

$$=\frac{{}^{6}C_{2}\times{}^{4}C_{1}}{{}^{10}C_{3}}\tag{992}$$

$$=\frac{15\times 4}{120}$$
 (993)

$$=\frac{1}{2}\tag{994}$$

So the probability that the selected set of 3 balls contain 2 black balls and 1

red ball is
$$\frac{1}{2}$$
.

- once. If the value on the die is 1,2, or 3, the die is rolled a second time. What is the probability that the sum total of values that turn up is at least 6?
 - a) 10/21
 - b) 5/12
 - c) 2/3
 - d) 1/6

Solution:

Let us define a random variable $X \in \{0, 1\}$

X=0	Getting 1,2, or 3 on first roll
X=1	Getting the sum total of values at least 6

TABLE XXXVI: Random Variables

Probability of getting 1,2, or 3 on first roll is given by,

$$\Pr(X = 0) = \frac{3}{6} = \frac{1}{2}$$
 (995)
(996)

Probability of getting sum total of 6 on first roll is given by,

$$\Pr(X = 1) = \frac{1}{6} \tag{997}$$

(998)

Probability of getting sum total of 6 after getting 1,2,or,3 in first roll is given by,

$$\Pr(X = 1 | X = 0) = \frac{9}{18} = \frac{1}{2}$$
 (999)

Now,probability of getting sum total of 6 and getting 1,2,or,3 in first roll is given by,

$$Pr(X = 1, X = 0) = Pr(X = 1|X = 0) \times Pr(X = 0)$$
(1000)

$$= \frac{1}{2} \times \frac{1}{2}$$
 (1001)

$$=\frac{1}{4}$$
 (1002)

X	X=0	X=1	X=1 X=0
D (II)	1	1	1
Pr(X)	$\overline{2}$	$\frac{\overline{6}}{}$	$\overline{2}$

TABLE XXXVII: Probability distribution table

The probability that the sum total of values that turn up is at least 6 is given by

$$Pr(X = 1, X = 0) + Pr(X = 1) = \frac{1}{4} + \frac{1}{6}$$

$$(1003)$$

$$= \frac{5}{12}$$

$$(1004)$$

(995) 156) The probability that the top and bottom (996) cards of a randomly shuffled deck are both aces is

$$(A) \ \frac{4}{52} \times \frac{4}{52}$$

$$(B) \ \frac{4}{52} \times \frac{3}{52}$$

$$(C) \ \frac{4}{52} \times \frac{3}{51}$$

$$(D) \ \frac{4}{52} \times \frac{4}{51}$$

Solution:

Let the following random variables and their values denote:

A: Top card is an ace = 1

B: Bottom card is an ace = 1

$$\Pr(A=1) = \frac{4}{52} \tag{1005}$$

$$\Pr(B = 1|A = 1) = \frac{3}{51}$$
 (1006)

Applying Bayes Theorem,

$$Pr(B = 1, A = 1) = Pr(B = 1|A = 1) Pr(A = 1)$$
(1007)

from (1005) and (1006),

$$\Pr(B = 1, A = 1) = \frac{4}{52} \times \frac{3}{51}$$
 (1008)

The correct option is **Option** (C).

- 157) A six-faced fair dice is rolled five times. The probability (in percentage) of obtaining "ONE" at least four times is
 - a) 33.3
 - b) 3.33
 - c) 0.33
 - d) 0.0033

Solution:

Let X be the random variable denoting the number the times "ONE" is obtained when a six-faced die is rolled n-times.X follows binomial distribution.

From binomial Distribution,

$$Pr(X = k) = {}^{n}C_{k}p^{k}(1-p)^{n-k}$$
 $k = 0, 1, ..., n$

For this given problem n = 5, $p = \frac{1}{6}$ for a six-faced die

The probability (in percentage) of obtaining "ONE" at least four times is $Pr(X \ge 4) \times 100$

$$Pr(X \ge 4) = \sum_{k=4}^{5} Pr(X = k)$$

$$= Pr(X = 4) + Pr(X = 5)$$

$$= {}^{5}C_{4}\frac{5}{6^{5}} + {}^{5}C_{5}\frac{1}{6^{5}}$$

$$= \frac{26}{6^{5}}$$

Probability in percentage is,

$$= \frac{26}{6^5} \times 100$$
$$= 0.334$$

Option c is correct.

- 158) Let X and Y be two statistically independent random variables uniformly distributed in the ranges (-1,1) and (-2,1) respectively. Let Z = X + Y. then the probability that $[Z \le -2]$ is
- a) zero
- b) $\frac{1}{6}$
- c) $\frac{1}{3}$
- d) $\frac{1}{12}$

Solution:

The pdf of Z(= X + Y) will be convolution of pdf of X and pdf of Y as shown below.

$$f_x(x) \times f_y(y) = f_z(z) \tag{1009}$$

$$\Pr(Z \le z) = \int_{-\infty}^{z} f_Z(z) dz \qquad (1010)$$

$$\Pr(Z \le -2) = \int_{-\infty}^{-2} f_Z(z) dz \qquad (1011)$$
= Area $[z \le -2] \qquad (1012)$

$$= \frac{1}{2} \times \frac{1}{6} \times 1 = \frac{1}{12} \quad (1013)$$

 $f_Z(z) = f_x(x) \times f_y y$

Hence (D) is correct option.

159) Let P(E) denote the probability of the event E. Given P(A)=1, P(B)= $\frac{1}{2}$, the values of P(A|B) and P(B|A) respectively are

a)
$$\frac{1}{4}, \frac{1}{2}$$

b)
$$\frac{1}{2}, \frac{1}{4}$$

c)
$$\frac{1}{2}$$
, 1

d) $1, \frac{1}{2}$

Solution: Applying Boolean Logic,

$$P(A) = 1 \implies A = 1 \tag{1014}$$

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{1015}$$

Using (1014),

$$P(A|B) = \frac{P(1 \times B)}{P(B)} \tag{1016}$$

$$=\frac{P(B)}{P(B)}=1$$
 (1017)

$$P(B|A) = \frac{P(AB)}{P(A)} \tag{1018}$$

$$= \frac{P(B)}{P(A)} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$
 (1019)

Hence the correct answer is option 4).

160) Probability density function p(x) of random variable x is as shown below.

The value of a is

A)
$$\frac{2}{c}$$

B)
$$\frac{1}{c}$$

C)
$$\frac{2}{(b+c)}$$

D)
$$\frac{1}{(b+c)}$$

Solution:

Let Y_1 and Y_2 be two independent and identically distributed (IID) uniform random variables.

Fig. 34: PDF

Let X be a random variable such that

$$X = Y_1 + Y_2 \tag{1020}$$

Let

$$p_{Y_1}(y) = \Pr(Y_1 = y)$$
 (1021)

$$p_{Y_2}(y) = \Pr(Y_2 = y)$$
 (1022)

$$p_X(x) = \Pr(X = x) \tag{1023}$$

be the probability densities of random variables Y_1, Y_2 and X.

 Y_1 and Y_2 lie in the range $\left(\frac{-c}{4}, \frac{c}{4}\right)$, therefore, the PDF for Y_1 and Y_2 ,

$$p_{Y_1}(y) = p_{Y_2}(y) = \begin{cases} \frac{2}{c} & \frac{-c}{4} \le y \le \frac{c}{4} \\ 0 & \text{otherwise} \end{cases}$$
(1024)

The density of X is obtained by convolution of Y_1 and Y_2

$$p_X(x) = p_{Y_1}(x) * p_{Y_2}(x)$$
 (1025)

where * denotes the convolution operation. Since convolution operation is time invariant,

$$p_X(x-t) = p_{Y_1}(x-t) * p_{Y_2}(x)$$

= $p_{Y_1}(x) * p_{Y_2}(x-t)$ (1026)

On time shifting Y_1 by shifting factor

$$t = a + \frac{c}{2},$$

$$p_X\left(x - \left(a + \frac{c}{2}\right)\right) = p_{Y_1}\left(x - \left(a + \frac{c}{2}\right)\right) * p_{Y_2}(x)$$
(1027)

Thus, the PDF of time shifted X obtained by convolution is,

$$p_{x} = \begin{cases} \frac{4}{c^{2}} (x - a) & a \le x \le a + \frac{c}{2} \\ \frac{4}{c^{2}} (a + c - x) & a + \frac{c}{2} \le x \le a + c \\ 0 & \text{otherwise} \end{cases}$$
(1028)

On comparing the parameters of PDF of time shifted X with that in the question, we have

$$b = \frac{c}{2}$$
 (1029)

 $a = \frac{2}{c} \tag{1030}$

Answer: Option A

Fig. 35: PDF of time shifted X

The following are some observations:

- a) The sum of two equally distributed random variables will lead to a triangular probability density
- b) The two uniformly distributed random variables lie in the range $\left(\frac{-c}{4}, \frac{c}{4}\right)$ and $\left(\frac{2}{c} + \frac{c}{4}, \frac{2}{c} + \frac{3c}{4}\right)$. $\therefore X = Y_1 + Y_2$ the range of X is thus $\left(\frac{2}{c}, \frac{2}{c} + c\right)$

c) On time shifting Y_1 to the right by a factor $a + \frac{c}{2}$, the convoluted PDF of X also shifts by the same factor without any change in it's width.

Fig 36 and Fig 37 are the plots of PDF and CDF obtained by taking c=2

Fig. 36: PDF of Y_1, Y_2 and X

Fig. 37: CDF of X

161) The PDF of a Gaussian random variable X is given by $-(x-4)^2$

variable X is given by
$$P_X(x) = \frac{1}{3\sqrt{2\pi}}e^{\frac{-(x-4)^2}{18}}.$$
 The probability of the event X = 4 is

a)
$$\frac{1}{2}$$

b)
$$\frac{1}{3\sqrt{2\pi}}$$

- c) 0
- d) $\frac{1}{4}$ Solution: Given PDF function is

$$P_X(x) = \frac{1}{3\sqrt{2\pi}}e^{\frac{-(x-4)^2}{18}}$$
 (1031)

Since continuous probability functions are defined for an infinite number of points over a continuous interval, the probability at a single point is always zero.

$$\Pr(x) = \lim_{\delta \to 0} \int_{x}^{x+\delta} \frac{1}{3\sqrt{2\pi}} e^{\frac{-(x-4)^2}{18}} dx$$

$$= 0 \qquad (1032)$$

Hence the probability is 0.

- 162) A coin is picked randomly from the box and tossed .Out of the two remaining coins in the box ,one coin is then picked randomly and tossed.If the first toss results in a head,Then the probability of getting head in second toss is:
 - a) $\frac{2}{5}$
 - b) $\frac{1}{3}$
 - c) $\frac{1}{2}$

- d) $\frac{2}{3}$
- 163) The probability that it will rain today is 0.5. The probability that it will rain tomorrow is 0.6. The probability that it will rain either today or tomorrow is 0.7 What is the probability that it will rain today and tomorrow? **Solution:** let X_0 be an event of raining today, X_1 be an event of raining tomorrow. Given that, Probability that it will rain today

$$Pr(X_0) = 0.5$$
 (1034)

Probability that it will rain tomorrow

$$\Pr(X_1) = 0.6 \tag{1035}$$

Probability that it will either today or tomorrow is

$$\Pr(X_0 + X_1) = 0.7 \tag{1036}$$

We have to find the probability that it will rain today and tomorrow which is

$$Pr(X_0X_1)$$
 (1037)

we know that

$$Pr(X_0X_1) = Pr(X_0) + Pr(X_1) - Pr(X_0 + X_1)$$
(1038)

On Substituting the values in (1038)

$$Pr(X_0X_1) = 0.5 + 0.6 - 0.7 = 0.4$$
(1039)

So, therefore the probability that it will rain today and tomorrow is 0.4.

164) Aishwarya studies either computer science or mathematics everyday. If she studies computer science on a day, then the probability she studies mathematics the next day is 0.6. If she

studies mathematics on a day, then the probability she studies computer science the next day is 0.4. Given that Aishwarya studies computer science on Monday, what is the probablity she studies computer science on Wednesday?

- (A) 0.24
- (B) 0.36
- (C) 0.4
- (D) 0.6

Solution: Consider the following parameters

Parameter	Definition	Value	
S	State space (i.e possible states she can be in.)	$S = \{1, 2\}$, where 1 and 2 represents her studying CS or maths respec- tively on that day.	
$\{X_0,X_1,\dots\}$	Random variables(which form a markov chain) where $X_i \in S$ represents her studying CS or maths on the i th day(i=0 for Monday)		
P	The one step state transi- tion matrix (The elements $p_{ij} = \Pr(X_{n+1} = j X_n = i)$)	$P = x_n \begin{cases} 1 & 2 \\ 2 & 0.6 \\ 0.4 & y \end{cases}$ (1040)	

As $X_n = 0$ and $X_n = 1$ are mutually exclusive, we can easily calculate x and y.

$$x = \Pr(X_{n+1} = 0 | X_n = 0) = 1 - \Pr(X_{n+1} = 1 | X_n$$

$$= 0.4 (1041)$$

$$y = \Pr(X_{n+1} = 1 | X_n = 1) = 1 - \Pr(X_{n+1} = 0 | X_n$$

$$= 0.6 (1042)$$

Markov Diagram

Given that her initial state is $X_0 = 1$ (: she studies CS on Monday(n=0)). The $Pr(X_{n+t} = j | X_n = i)$ is given by the (i, j)th position of P^t . Therefore $Pr(X_2 = 1 | X_0 = 1)$ (: n=2 for Wednesday) is the (1, 1)th position of P^2 .

$$P^{2} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} \times \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix}$$
(1043)

... The probability she studies computer science on Wednesday is $P_{11}^2 = 0.4$. (Ans: Option (C))

165) The lifetime of a component of a certain type is a random variable whose probability density function is exponentially distributed with parameter 2. For a randomly picked component of this type, what is the probability that its lifetime exceeds the expected lifetime (rounded to 2 decimal places)? Solution:
Given, The lifetime of a component X ~ exp(2). The probability density function (PDF) of random variable X is given by:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{for } 0 < x < \infty \\ 0, & \text{otherwise} \end{cases}$$
(1044)

where: the parameter $\lambda = 2$. Since, the

PDF of the random variable is exponentially distributed, Expected Lifetime = $E(X) = \frac{1}{\lambda} = \frac{1}{2} = 0.5$

$$\Pr(X > E(X)) = \int_{\frac{1}{\lambda}}^{\infty} \lambda e^{-\lambda x} dx \qquad (1045)$$

$$= -e^{-\lambda x} \Big|_{\frac{1}{\lambda}}^{\infty} \qquad (1046)$$

$$= \lim_{x \to \infty} (-e^{-\lambda x}) - (-e^{-\lambda x \frac{1}{\lambda}})$$

$$= \frac{1}{e} \qquad (1048)$$

$$= 0.36787944117 \qquad (1049)$$

166) A die is rolled three times The probability that exactly one odd number turns up among the three outcomes is? **Solution:**

Let **X** be the random variable such that it represents number of times an odd number appeared .

Let **Y** be the random variable such that it represents number of times an even number appeared .

Let **C** be the event that exactly one odd number appears in 3 outcomes. Pr $(X = m, Y = n) = {m+n \choose m} \times \left(\frac{1}{2}\right)^{m+n}$

$$Pr(\mathbf{C}) = Pr(X = 1, Y = 2)$$

$$\Pr(X = 1, Y = 2) = {1 + 2 \choose 1} \times \left(\frac{1}{2}\right)^{1+2}$$
(2)

$$\Pr(X = 1, Y = 2) = {3 \choose 1} \times \left(\frac{1}{2}\right)^3$$
 (3)

$$\Pr(X = 1, Y = 2) = \frac{3}{8} \tag{4}$$

$$Pr(\mathbf{C}) = Pr(X = 1, Y = 2)$$
 (5)

$$\Pr\left(\mathbf{C}\right) = \frac{3}{8} \tag{6}$$

167) Four fair six-sided dice are rolled. The probability that sum of results being 22 is $\frac{X}{1296}$ the value of X is **Solution:** Let $X_i \in \{1, 2, 3, 4, 5, 6\}$, i = 1, 2, 3, 4 be the random variables representing the outcome for each die. As the dies are fair, the probability mass function (pmf) is expressed as

$$p_{X_i}(n) = \Pr(X_i = n) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
(1050)

Let X be a random variable denotes the desired outcome,

$$X = X_1 + X_2 + X_3 + X_4 \tag{1051}$$

$$\implies X \in \{4, 5, \cdots, 24\} \tag{1052}$$

We have to find $P_X(n) =$ $Pr(X_1 + X_2 + X_3 + X_4 = n)$ The Z-transform of $p_X(n)$ is defined as

$$P_X(z) = \sum_{n=-\infty}^{\infty} p_X(n) z^{-n}, \quad z \in \mathbb{C} \quad (1053)$$

From (1050) and (1053),

$$P_{X_1}(z) = P_{X_2}(z) = P_{X_3}(z)$$

$$= \frac{1}{6} \sum_{n=1}^{6} z^{-n}$$

$$= \frac{z^{-1} (1 - z^{-6})}{6(1 - z^{-1})}, \quad |z| > 1$$

$$(1055)$$

upon summing up the geometric progression.From convolution

$$p_{X}(n) = p_{X_{1}}(n) * p_{X_{2}}(n) * p_{X_{3}}(n) * p_{X_{4}}(n),$$
(1056)

$$P_X(z) = P_{X_1}(z)P_{X_2}(z)P_{X_3}(z)p_{X_4}(z)$$
(1057)

The above property follows from Fourier analysis and is fundamental to signal processing.

From (1055) and (1057),

$$P_X(z) = \left\{ \frac{z^{-1} \left(1 - z^{-6} \right)}{6 \left(1 - z^{-1} \right)} \right\}^4$$

$$= \frac{1}{1296} \frac{z^{-4} \left(1 - 4z^{-6} + 6z^{-12} - 4z^{-24} + z^{-24} \right)}{\left(1 - z^{-1} \right)^4}$$
(1059)

Using the fact that,

$$p_X(n-k) \stackrel{\mathcal{H}}{\longleftrightarrow} ZP_X(z)z^{-k},$$

$$nu(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z\frac{z^{-1}}{(1-z^{-1})^2}$$

$$(1061)$$

$$n^2u(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$$

$$(1062)$$

$$(n^2+n)u(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z\frac{2z^{-1}}{(1-z^{-1})^2}$$

$$(1063)$$

$$(n^3+3n^2+2n)u(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z\frac{6z^{-1}}{(1-z^{-1})^4}$$

$$(1064)$$

after some algebra, it can be shown

Fig. 38: Probability of getting sum of 22

that,

$$\frac{1}{1296 \times 6} \left[\left((n-3)^3 + 3(n-3)^2 + 2(n-3) \right) u(n-4) \right] \\
-4 \left((n-9)^3 + 3(n-9)^2 + 2(n-9) \right) u(n-9) \\
+6 \left((n-15)^3 + 3(n-15)^2 + 2(n-15) \right) u(n-15) \\
-4 \left((n-21)^3 + 3(n-21)^2 + 2(n-21) \right) u(n-21) \\
+ \left((n-27)^3 + 3(n-27)^2 + 2(n-27) \right) u(n-27) \right] \\
\stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{1}{1296} \frac{z^{-4} \left(1 - 4z^{-6} + 6z^{-12} - 4z^{-24} + z^{-24} \right)}{\left(1 - z^{-1} \right)^4}$$
(1065)

where

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 (1066)

From (1053),(1059) and (1065),

$$p_X(n) = \frac{1}{1296 \times 6} \times \left[\left((n-3)^3 + 3(n-3)^2 + 2(n-3) \right) u(n-3) -4 \left((n-9)^3 + 3(n-9)^2 + 2(n-9) \right) u(n-9) +6 \left((n-15)^3 + 3(n-15)^2 + 2(n-15) \right) u(n-15) -4 \left((n-21)^3 + 3(n-21)^2 + 2(n-21) \right) u(n-21) + \left((n-27)^3 + 3(n-27)^2 + 2(n-27) \right) u(n-27) \right]$$

$$(1067)$$

From (1066) and (1067),

$$p_X(n) = \begin{cases} 0 & n < 4 \\ \frac{n^3 - 6n^2 + 11n - 6}{7776} & 4 \le n \le 9 \\ \frac{90n^2 - 3n^3 - 753n + 2010}{7776} & 9 < n \le 15 \\ \frac{3n^3 - 162n^2 + 2769n - 14370}{7776} & 15 < n \le 21 \\ \frac{-n^3 + 78n^2 - 2027n + 17550}{7776} & 21 < n \le 24 \\ 0 & 24 < n \end{cases}$$

$$(1068)$$

We need probability of getting sum of 22,

$$\implies n=22$$

from (1068) and using n=22,

$$p_X(22) = \frac{-(22)^3 + 78(22)^2 - 2027(22) + 17550}{7776}$$
 e) $L = \text{Average number in the system}$ (1069)

$$p_X(22) = \frac{60}{7776} \tag{1070}$$

$$p_X(22) = \frac{10}{1296} \tag{1071}$$

- 168) A box contains two coins, one of which is fair and the other is two headed. One coin is choosen at random and tossed twice. If two heads appear, then the probability that the choosen coin is two headed is? **Solution:**
 - 169) Cars arrive at a service station according to Poisson's distribution with a mean rate of 5 per hour. The service time per car is exponential with a mean of 10 minutes. At a steady state, the average waiting time in the queue is **Solution:** This problem can be solved using Queuing theory.But first we have to understand queuing theory.
 - In queuing theory we try to determine what happens when people join in queue.
 - Parameters for measuring Queuing performance
 - a) λ = Average arrival time
 - b) μ = Average service time
 - c) ρ = Utilization factor

- d) L_q = Average number in the queue
- f) W_q = Average waiting time
- g) W = Average time in the system
- h) P_n = Steady state probability of exactly n customers in the system
- Typically most of the times arrivals follow poisson distribution and services follow exponential distributions.
- The given question only has one queue so we can conclude that it is a single server model and there is no limit for number of cars in the queue so we can say that it is "M/M/1:/ ∞ / ∞ /FIFO" by kendall's notation (or) usually "M/M/1"
- Here 'M' indicates the memory less property of the model first M is for arrival and second one for service and 1 is the number of servers in the model and '∞' indicates the limit of the queue and second '∞' represent population and 'FIFO' represents First-In First-Out service.
- **NOTE:** In cases where there is no limit in the queue we only take the cases where $\frac{\hat{\lambda}}{\mu}$ < 1. Otherwise there could be customers who will not get their service.

The memory less property allows us to assume that one event can take place in a small interval of time. The event could be either a arrival or a service.

• **Deriving formulas :** For the time interval(t, t + h), where $h \rightarrow 0$

$$Pr(1 \text{ arrival}) = \lambda h$$
 (1072)

$$Pr(1 \text{ service}) = \mu h \tag{1073}$$

$$Pr (no arrival) = 1 - \lambda h \qquad (1074)$$

$$Pr (no service) = 1 - \mu h \qquad (1075)$$

Again, Neglecting higher order terms of h

$$\implies P_0(t+h) = P_1(t)(\mu h) + P_0(t)(1-\lambda h) \quad (1082)$$

$$\implies \frac{P_0(t+h) - P_0(t)}{h} = P_1(\mu) - P_0(\lambda) \tag{1083}$$

At steady state, $P_0(t + h) = P_0(t)$

$$\implies \mu P_1 = \lambda P_0 \tag{1084}$$

$$\implies P_1 = \left(\frac{\lambda}{\mu}\right) P_0 \tag{1085}$$

 $P_n(t+h) = P_{n-1}(t) \times \Pr(1 \text{ arrival}) \times \Pr(\text{no service})$ ng (1080) by substituting n = 1

 $+P_{n+1}(t)\times Pr$ (no arrival) $\times Pr$ (1 service)

$$+P_n(t)\times Pr$$
 (no arrival) $\times Pr$ (no service) (1076)

 $\implies P_n(t+h) = P_{n-1}(t)(\lambda h)(1-\mu h)$

 $+ P_n(t)(1 - \lambda h)(1 - \mu h)$ (1077)

$$\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1$$
 (1086)

$$\implies \lambda P_0 + \mu P_2 = \lambda P_1 + \mu P_1 \tag{1087}$$

from (1084) and (1085)

$$\implies \lambda P_0 + \mu P_2 = \lambda P_1 + \lambda P_0 \tag{1088}$$

$$\implies P_2 = \left(\frac{\lambda}{\mu}\right) P_1 \qquad (1089)$$

$$\implies P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0 \quad (1090)$$

Now, Neglecting higher order terms of *h*.

 $+P_{n+1}(t)(\mu h)(1-\lambda h)$

$$\implies P_n(t+h) = P_{n-1}\lambda h + P_{n+1}\mu h + P_n(t)(1-\lambda h - \mu h) \quad (1078)$$

$$\implies \frac{P_n(t+h) - P_n(t)}{h} = P_{n-1}(t)\lambda + P_{n+1}(t)\mu$$
$$-P_n(t)(\lambda + \mu) \quad (1079)$$

At steady state, $P_n(t + h) = P_n(t)$

$$\implies \lambda P_{n-1} + \mu P_{n+1} = (\lambda + \mu) P_n \tag{1080}$$

Now, calculating $P_0(t+h)$ using (1076)

$$P_0(t+h) = P_1(t)(1 - \lambda h)(\mu h) + P_0(t)(1 - \lambda h)$$
 (1081)

We assume $\frac{\lambda}{\mu} = \rho$ and generalize P_n by (1085) and (1090)

$$P_n = \left(\frac{\lambda}{\mu}\right)^n P_0 \tag{1091}$$

$$\implies P_n = \rho^n P_0 \tag{1092}$$

We know that sum of all probabilities equal to 1

$$\sum_{i=1}^{\infty} P_i = 1 \quad (1093)$$

$$\implies P_0 + P_1 + P_2 + \dots = 1 \quad (1094)$$

(1109)

Using (1092)

$$\Rightarrow P_0 + \rho P_0 + \rho^2 P_0 + \dots = 1$$

$$(1095)$$

$$\Rightarrow P_0 \left(1 + \rho + \rho^2 + \dots \right) = 1$$

$$(1096)$$

$$\Rightarrow P_0 \left(\frac{1}{1 - \rho} \right) = 1$$

$$(1097)$$

$$\Rightarrow P_0 = 1 - \rho$$

$$(1098)$$

The number of people in the system (L_s) is the expected value

 $\therefore P_n = \rho^n (1 - \rho)$

$$L_s = \sum_{i=0}^{\infty} i P_i \tag{1100}$$

(1099)

$$\implies L_s = \sum_{i=0}^{\infty} i \rho^i P_0 \tag{1101}$$

$$\implies L_s = \rho P_0 \sum_{i=0}^{\infty} i \rho^{i-1} \qquad (1102)$$

$$\implies L_s = \rho P_0 \sum_{i=0}^{\infty} \frac{d}{d\rho} \left(\rho^i \right) \quad (1103)$$

$$\implies L_s = \rho P_0 \frac{d}{d\rho} \sum_{i=0}^{\infty} \rho^i \qquad (1104)$$

$$\implies L_s = \rho P_0 \frac{d}{d\rho} \left(\frac{1}{1 - \rho} \right) \quad (1105)$$

$$\implies L_s = \rho P_0 \frac{1}{(1-\rho)^2}$$
 (1106)

By using (1098)

$$\implies L_s = \rho(1 - \rho) \frac{1}{(1 - \rho)^2}$$
 (1107)

$$\implies L_s = \frac{\rho}{1 - \rho} \tag{1108}$$

We can also say that the number of

people beign served is ρ

 $\therefore L_s = L_q + \text{people beign served}$

$$\implies L_s = L_a + \rho \tag{1110}$$

$$\implies L_a = L_s - \rho \tag{1111}$$

$$\implies L_q = \frac{\rho}{1 - \rho} - \rho \tag{1112}$$

$$\implies L_q = \frac{\rho^2}{1 - \rho} \tag{1113}$$

The relation between L_s and W_s and L_q and W_q are the Little's equation and they are related as

$$L_s = \lambda W_s \tag{1114}$$

$$L_q = \lambda W_q \tag{1115}$$

6 Solution

From the question given,

$$\lambda = 5 hr^{-1} \tag{1116}$$

$$\mu = \frac{1}{10} \text{min}^{-1} = 6 \text{hr}^{-1}$$
 (1117)

Therefore,

Utilization rate(
$$\rho$$
) = $\frac{\lambda}{\mu} = \frac{5}{6}$ (1118)

Average number (or) length in queue be L_q

$$L_q = \frac{\rho^2}{1 - \rho} \tag{1119}$$

$$=\frac{\left(\frac{5}{6}\right)^2}{1-\frac{5}{6}}\tag{1120}$$

$$=\frac{25}{6}$$
 (1121)

Let the Average waiting time in queue be W_a

$$W_{q} = \frac{L_{q}}{\lambda}$$

$$= \frac{\frac{25}{6}}{5}$$
(1122)

$$=\frac{\frac{25}{6}}{5} \tag{1123}$$

$$= \frac{5}{6} \text{hr} = 50 \text{min}$$
 (1124)

The average waiting time in the queue is 50 min.

Parameter	Value
λ	$5hr^{-1}$
μ	6hr ⁻¹
Utilization rate $(\rho) = \frac{\lambda}{\mu}$	<u>5</u>
Length in queue $(L_q) = \frac{\rho^2}{1-\rho}$	<u>25</u> 6
Waiting time in queue $(W_q) = \frac{L_q}{\lambda}$	$\frac{5}{6}$ hr

TABLE XXXVIII: Parameters of the given question and values.

- 170) Two dice are thrown simultaneously. The probability that at least one of them will have 6 facing up is
 - A) 1/36
 - B) 1/3
 - C) 25/36
 - D) 11/36

Solution: Probability of at least one

Number of dices	n = 2
The total no. of outcomes	36
Probability of 6 facing-up	p = 1/6
Probability of 6 'NOT' facing-up	q = 5/6
Number of sixes in the outcome	X

six facing up

$$= Pr(X = 1) + Pr(X = 2)$$
 (1125)

$$= {}^{2}C_{1}pq + {}^{2}C_{2}p^{2}q^{0} (1126)$$

$$= {}^{2}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + {}^{2}C_{2}\left(\frac{1}{6}\right)^{2}$$
 (1127)

$$=2\left(\frac{5}{36}\right) + \frac{1}{36} \tag{1128}$$

$$=\frac{11}{36}$$
 (1129)

- 171) Suppose we uniformly and randomly select a permutation from the 20! permutations of 1,2,3,...,20. What is the probability that 2 appears at an earlier position than any other even number in the selected permutation.
 - (A) $\frac{1}{2}$
 - (B) $\frac{1}{10}$
 - (C) $\frac{9!}{20!}$
 - (D) None of the above.

Solution: Probability of at least one

Number of dices	n = 2
The total no. of outcomes	36
Probability of 6 facing-up	p = 1/6
Probability of 6 'NOT' facing-up	q = 5/6
Number of sixes in the outcome	X

six facing up

$$= Pr(X = 1) + Pr(X = 2)$$
 (1130)

$$= {}^{2}C_{1}pq + {}^{2}C_{2}p^{2}q^{0} (1131)$$

$$= {}^{2}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + {}^{2}C_{2}\left(\frac{1}{6}\right)^{2}$$
 (1132)

$$=2\left(\frac{5}{36}\right) + \frac{1}{36}\tag{1133}$$

$$=\frac{11}{36}$$
 (1134)

172) Consider a single machine workstation to which jobs arrive according to a Poisson distribution with a mean arrival rate of 12 jobs/hour. The process time

of the workstation is exponentially distributed with a mean of 4 minutes.

The expected number of jobs at the workstation at any given point of time is ...(round off to the nearest integer).

Solution: In a Poisson process,

$$Pr(X = x) = e^{-\lambda \Delta t} \frac{(\lambda \Delta t)^x}{x!}$$
 (1135)

If $\Delta t \rightarrow 0$ then probability of having only one Poisson job is

$$\Pr(X=1) = \lambda \Delta t \tag{1136}$$

Some assumptions: In time interval Δt ,

- Exactly one job is arrived
- or Exactly one job is completed
- or Nothing happens

Assumptions seem quite reasonable as Δt is very small then the probability of occurrence of more than one poisson job is very low.

For job arrival,

- It is distributed according to Poisson distribution.
- Its Rate parameter λ =12 jobs/hour.
- Using (1136), Probability that a single job arrives in a small interval $\Delta t = \lambda \Delta t$.

For Job completions,

- Job completion time is distributed exponentially with mean of 4 minutes
- Then we can assume that no. of job completions are distributed as Poisson

distribution with rate parameter $\mu = 15$ jobs/hour

• Once again using (1136), Probability that a single job will be completed in a small interval $\Delta t = \mu \Delta t$

Some notations,

Parameter	Definition		
λ	Poisson rate parameter for the ar-		
	rival of jobs		
μ	Poisson rate parameter for the com-		
	pletion of jobs		
$\lambda \Delta t$	Probability that a single job arrives		
	in a small interval Δt		
$\mu \Delta t$	Probability that a single job will be		
	completed in a small interval Δt		
$P_j(t)$	probability of having j jobs at		
	workstation at time t		
π_j	steady probability of having j jobs		
	at workstation		

TABLE XXXIX: Parameters and their definitions used in the problem

- Initial no.of jobs at workstation is 0.
- Let $P_j(t)$ denote the probability of having j jobs waiting at the workstation at the time t for this initial case.
- After a long time, probability of having j jobs becomes steady.
- Let us denote steady state probability of having j jobs as π_j .

Condition which ensures that steady state is reached is

$$\lim_{\Delta t \to 0} \frac{\mathrm{d}P_j(t)}{\mathrm{d}t} = 0 \qquad (1137)$$

$$\lim_{\Delta t \to 0} \frac{P_j(t + \Delta t) - P_j(t)}{\Delta t} = 0 \qquad (1138)$$

We can reach a state of j jobs at time $t + \Delta t$ from

- A state of j-1 jobs at time t with a new job arriving in the next Δt
- A state of j + 1 jobs at time t with a job completing in the next Δt
- A state of j jobs at time t and nothing happening in the next Δt

Assuming time *t* is long enough for the occurrence of steady state. The above relations can be shown in probability equations as:

$$P_{j}(t + \Delta t) = P_{j-1}(t)\lambda \Delta t + P_{j+1}(t)\mu \Delta t + P_{j}(t)(1 - \lambda \Delta t - \mu \Delta t)$$

$$(1139)$$

$$\frac{P_{j}(t+\Delta t) - P_{j}(t)}{\Delta t} = P_{j-1}(t)\lambda + P_{j+1}(t)\mu$$
$$-P_{j}(t)\lambda - P_{j}(t)\mu$$
(1140)

Using (1138) we get,

$$\implies P_{j-1}(t)\lambda + P_{j+1}(t)\mu = P_j(t)\lambda + P_j(t)\mu$$

$$(1141)$$

$$\pi_{j-1}\lambda + \pi_{j+1}\mu = \pi_j\lambda + \pi_j\mu$$

$$(1142)$$

Note that the above equations are for $j \ge 1$.

For j=0 jobs at time $t + \Delta t$ we can reach it from j=1 job at time t with a job completion in the next Δt or else stay at j=0 at time t and do nothing the

next Δt

$$P_0(t + \Delta t) = P_1(t)\mu \Delta t +$$

$$P_0(t)(1 - \lambda \Delta t)$$
(1143)

$$\frac{P_0(t + \Delta t) - P_0(t)}{\Delta t} = P_1(t)\mu \Delta t - P_0(t)\lambda \Delta t$$
(1144)

Once again using (1138), we will get,

$$P_0(t)\lambda \Delta t = P_1(t)\mu \Delta t \qquad (1145)$$

$$P_0(t)\lambda = P_1(t)\mu \tag{1146}$$

$$\pi_0 \lambda = \pi_1 \mu \tag{1147}$$

Solving (1147) and (1142) with appropriate j one by one, we will get P_j in terms of P_0 as

$$P_j = \left(\frac{\lambda}{\mu}\right)^j P_0 \tag{1148}$$

consider
$$\rho = \frac{\lambda}{\mu}$$
.

Parameter	Definition
E(j)	Expected no. of jobs at workstation
O	$\frac{\lambda}{2}$
"	$\mid \mu \mid$

TABLE XL: Parameters and their definitions used in the problem

$$P_i = \rho^j P_0 \tag{1149}$$

We can prove that (1149) is indeed the solution of recursion equation (1142) by using mathematical induction. Assuming $\rho < 1$, let us calculate P_0 in

terms of ρ

$$\sum_{j=0}^{\infty} P_j = 1 \tag{1150}$$

$$\sum_{j=0}^{\infty} \rho^j P_0 = 1 \tag{1151}$$

$$\frac{P_0}{1 - \rho} = 1 \tag{1152}$$

$$P_0 = 1 - \rho \tag{1153}$$

This yields,

$$P_{i} = \rho^{j} (1 - \rho) \tag{1154}$$

Let us calculate expected value of jobs waiting at workstation.

$$E(j) = \sum_{j=0}^{\infty} jP_j \tag{1155}$$

$$E(j) = (1 - \rho) \sum_{i=0}^{\infty} j\rho^{j}$$
 (1156)

$$\rho E(j) = (1 - \rho) \sum_{j=0}^{\infty} j \rho^{j+1}$$
 (1157)

$$\rho E(j) = (1 - \rho) \sum_{j=1}^{\infty} (j - 1)\rho^{j} \quad (1158)$$

Subtracting (1158) from (1156).we get,

$$(1 - \rho)E(j) = (1 - \rho)\sum_{j=1}^{\infty} \rho^{j}$$
 (1159)

$$E(j) = \sum_{j=1}^{\infty} \rho^j \tag{1160}$$

$$E(j) = \frac{\rho}{1 - \rho} \tag{1161}$$

In our case $\rho = \frac{\lambda}{\mu} = \frac{12}{15} = \frac{4}{5}$. Substituting it in the (1161) we get,

$$E(j) = 4 \tag{1162}$$

∴ Expected no.of jobs at workstation is 4.

- 173) Consider a binomial random variable X. If $X_1, X_2, ..., X_n$ are independent and identically distributed samples from the distribution of **X** with sum $Y = \sum_{i=1}^{n} X_i$, then the distribution of **Y** as $n \to \infty$ can be approximated as
 - a) Exponential
 - b) Bernoulli
 - c) Binomial
 - d) Normal

Solution: Given a binomial random variable **X**

$$\Rightarrow X \sim B(r, p) \tag{1163}$$

also given that $X_1, X_2, ..., X_n$ are independent and identically distributed samples

$$\Rightarrow X_1 = X_2 = \dots = X_n = X \sim B(r, p)$$
 (1164)

also given that

$$Y = \sum_{i=1}^{n} X_i$$
 (1165)

We know that the characteristic equation of binomial trials with n elements is

$$\phi_X(t) = (1 - p + pe^{it})^n$$
 (1166)

consider two sets of Bernoulli trials

containing $r_1 \& r_2$ elements respectively where both trials have the same probability

'p'($X \sim B(r_1, p), Y \sim (r_2, p)$). Now considering both as a whole set

$$B(r_{1}, p) + B(r_{2}, p) = \Phi_{X+Y}(t)$$

$$= \Phi_{X}(t) \times \Phi_{Y}(t)$$

$$= (1 - p + pe^{it})^{r_{1}}$$

$$\times (1 - p + pe^{it})^{r_{2}}$$

$$(1168)$$

$$= (1 - p + pe^{it})^{r_{1}+r_{2}}$$

$$(1169)$$

$$= B(r_{1} + r_{2}, p)$$

$$\therefore B(r_{1}, p) + B(r_{2}, p) = B(r_{1} + r_{2}, p)$$

$$(1170)$$

using this recursively we get

$$Y = B(rn, p) \tag{1171}$$

⇒ using standard formulae

mean of Y $\mu_Y = nrp$ and variance $\sigma_Y^2 = nrp(1-p)$ (1172)

By central limit theorem(CLT)

$$Z_{n} = \sqrt{n} \left(\frac{\frac{Y}{n} - \mu_{Y}}{\sigma_{Y}} \right)$$

$$= \frac{Y - n\mu_{Y}}{\sqrt{n}\sigma_{Y}}$$
(1173)

 $\lim_{n\to\infty} Z_n \sim N(0,1)$

Which is a normal distribution
∴ the correct answer is option D

174) Let *X* be a continuous random variable denoting the temperature measured.

The range of temperature is [0,100] degree Celsius and let probability

density function of X be f(x)=0.01 for $0 \le X \le 100.$

The mean of X is ?

- (A) 2.5
- (B) 5.0
- (C) 25.0
- (D) 50.0

Solution: Given *X* is a continuous random variable. The probability density function of X is f(x)

$$f(x) = \begin{cases} 0.01 & 0 \le x \le 100 \\ 0 & \text{otherwise} \end{cases}$$
 (1174)

Mean of the random variable X is μ

$$\mu = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{100} x (0.01) dx$$
(1175)

$$= (0.01) \int_{0}^{100} x \, dx = (0.01) \left. \frac{x^2}{2} \right|_{0}^{100}$$
(1176)

= 50.0 degree Celsius (1177)

175) Two die are thrown. What is the probability that sum of numbers on the two dice is eight

(a) $\frac{5}{36}$

- (b) $\frac{5}{18}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{3}$

Solution: Let *X* be a discrete random variable which denotes the sum obtained on two dice and $X_1 \in \{1, 6\}$ be a discrete random variable denoting the outcome on a single die.

$$\Pr(X = n) = \begin{cases} 0, & \text{if } n < 1\\ \frac{n-1}{36}, & \text{if } 1 \le n - 1 \le 6\\ \frac{13-n}{26}, & \text{if } 1 < n - 6 \le 6\\ 0, & \text{if } n > 12 \end{cases}$$
(1178)

Required probability = Pr(X = 8)

So, from (1178),
$$Pr(X = 8) = \frac{5}{36}$$

176) A binary symmetric channel (BSC) has a transition probability of $\frac{1}{8}$. If the binary symbol X is such that P(X = 0) $=\frac{9}{10}$, then the probability of error for an optimum receiver will be

- a) $\frac{7}{80}$ b) $\frac{63}{80}$

- c) $\frac{63}{80}$ d) $\frac{1}{10}$

Solution: Probability of transition,p is given by

$$p = \frac{1}{8} \tag{1179}$$

$$\Pr(X=0) = \frac{9}{10} \tag{1180}$$

$$\Pr(X=1) = \frac{1}{10} \tag{1181}$$

(here m and X can be considered similar)

... Probability of error is defined as

$$P_e = \Pr\left(\hat{m} \neq m\right) \tag{1182}$$

Probability of being correct is defined

$$P_c = 1 - P_e (1183)$$

$$= 1 - \Pr\left(\hat{m} \neq m\right) \tag{1184}$$

$$= \Pr\left(\hat{m} = m\right) \tag{1185}$$

Optimum detector maxmize P_c or equivalently minimize P_e Probability of making correct decision, for a given received y

$$P_c = \Pr\left(\hat{m} = m\right) \tag{1186}$$

$$= p(m_i \mid y)p(y) \tag{1187}$$

$$= p(x_i \mid y)p(y) \tag{1188}$$

Using Bayes theorem,

$$P_c = p(y \mid x_i)p(x_i)$$
 (1189)

To maximize P_c we use **Maximum a** Posterior Detector (MAP) rule, for a given Y

$$\hat{m} \implies m_i \quad if \quad \frac{p(y \mid x_i)p(x_i)}{p(y \mid x_j)p(x_j)} \ge 1$$
(1190)

Now, when Y = 1 then $\hat{m} = 0$ if

$$\frac{p(y=1 \mid x=0)p(x=0)}{p(y=1 \mid x=1)p(x=1)} \ge 1 \quad (1191)$$

$$\Rightarrow \frac{p(y=1 \mid x=1)p(x=1)}{p(y=1 \mid x=1)p(x=1)}$$
 (1192)

$$= \frac{\frac{1}{8} \cdot \frac{9}{10}}{\frac{7}{8} \cdot \frac{1}{10}} \quad (1193)$$
$$= \frac{9}{7} \ge 1 \quad (1194)$$

$$=\frac{9}{7} \ge 1 \quad (1194)$$

when Y = 0 then $\hat{m} = 0$ if

$$\frac{p(y=0 \mid x=0)p(x=0)}{p(y=0 \mid x=1)p(x=1)} \ge 1 \quad (1195)$$

$$\frac{p(y=0 \mid x=0)p(x=0)}{p(y=0 \mid x=1)p(x=1)} \ge 1 \quad (1195)$$

$$\implies \frac{p(y=0 \mid x=0)p(x=0)}{p(y=0 \mid x=1)p(x=1)} \quad (1196)$$

$$=\frac{\frac{7}{8}\cdot\frac{9}{10}}{\frac{1}{8}\cdot\frac{1}{10}} \quad (1197)$$

$$= 63 \ge 1 \quad (1198)$$

In both cases MAP detector suggest that message will be $\hat{m} = 0$... probability of error

$$P_e = \Pr(\hat{m} \neq 0 \mid X = 0) \Pr(X = 0)$$

+ $\Pr(\hat{m} \neq 1 \mid X = 1) \Pr(X = 1)$ (1199)

$$= 0 + 1 \cdot \frac{1}{10} \tag{1200}$$

$$=\frac{1}{10}$$
 (1201)

So answer will be (D)

(1189) 177) If a fair coin is tossed four times, what is the probability that two tails and two heads will result? Solution: Given question is a binomial distribution in which no of trails n = 4. Let's assume a trail is succeeded if the

coin turns out to be head. Since it is a

fair coin probability of success is p = 0.5

Let *X* be the binomial random variable of this distribution. So

X ∈ {0, 1, 2, 3, 4}, 0 represents 0 heads,
1 represents 1 head, 2 represents 2
heads, 3 represents 3 heads and 4
represents 4 heads in 4 trails.
From binomial distribution,

$$\Pr(\mathbf{X}=\mathbf{r}) = {}^{n}C_{r}p^{r}q^{n-r}$$
 (1202)
= ${}^{n}C_{r}p^{r}(1-p)^{n-r}$ (1203)

Probability of getting two heads and two trails will be,

$$Pr(\mathbf{X=2}) = {}^{4}C_{2} \times (0.5)^{2} \times (1 - 0.5)^{2}$$
(1204)

$$= 6 \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \tag{1205}$$

$$=\frac{3}{8}$$
 (1206)

$$= 0.375$$
 (1207)

Hence, the required probability is 0.375.

with a mean of $\frac{t}{6}$ customers/t minutes,

$$\therefore \lambda = \frac{t}{6} \tag{1208}$$

Let *X* denotes the number of customers in first t minutes, *Y* denotes the number of customers in second t minutes. according to poisson distribution,

$$\Pr(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 (1209)

using (1208) in (1209),

$$\Pr(X = x) = e^{-\frac{t}{6}} \frac{\left(\frac{t}{6}\right)^x}{x!}$$
 (1210)

the probability that a customer arrives within the next t minutes given that no customer arrives for the first t minutes after the shop opens, which can also be written as,

$$\Pr(Y \neq 0 | X = 0) = \frac{\Pr(Y \neq 0, X = 0)}{\Pr(X = 0)}$$
(1211)

As the arrival of customers in second t

TABLE XLI: Probability distribution for values of X and Y

	P(X)	P(Y)	
0	$e^{-\frac{t}{6}}$	$e^{-\frac{t}{6}}$	
1	$\frac{te^{-\frac{t}{6}}}{6}$	$\frac{te^{-\frac{t}{6}}}{6}$	

minutes does not depend on the arrival of customers in first t minutes, X and Y are independent,

$$\Pr(Y \neq 0|X = 0) = \frac{\Pr(Y \neq 0)\Pr(X = 0)}{\Pr(X = 0)}$$

$$= \Pr(Y \neq 0) \qquad (1212)$$

$$= \Pr(Y \neq 0) \qquad (1213)$$

$$= 1 - \Pr(Y = 0) \qquad (1214)$$

using (1210),

$$\Pr(Y \neq 0 | X = 0) = 1 - e^{-\frac{t}{6}} \quad (1215)$$

we need to find the probability for t=3,the required probability is given by,

$$=1-e^{-\frac{1}{2}} \tag{1216}$$

$$= 0.3935$$
 (1217)

- 179) There are 3 red socks, 4 green socks and 3 blue socks. You choose 2 socks. The probability that they are of the same colour is
 - a) $\frac{1}{5}$
 - b) $\frac{7}{30}$
 - c) $\frac{1}{4}$
 - Solution: Let $X_1 \in \{0, 1, 2\}$ and $X_2 \in \{0, 1, 2\}$ be two Random Variables representing the colour of socks taken in 1^{st} draw and in 2^{nd} draw respectively. $X_1 = 0$, $X_1 = 1$, $X_1 = 2$ represent choosing Red, Green, Blue socks in the first draw respectively. Similarly, $X_2 = 0$, $X_2 = 1$, $X_2 = 2$

represent choosing Red, Green, Blue socks in the second draw respectively. Now, the probability that the socks drawn in 1st draw and 2nd draw are of

 $\Pr\left(X_1 = X_2\right)$

the same colour is given by

Now,

$$\Pr(X_1 = X_2) = \sum_{k=0}^{k=2} \Pr(X_1 = X_2 = k)$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k, X_2 = k)$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \sum_{k=0}^{k=2} \Pr(X_1 = k) \Pr((X_2 = k) | (X_1 = k))$$

$$= \Pr(X_1 = 0) \Pr((X_2 = 0) | (X_1 = 0))$$

$$(1221)$$

$$+ \Pr(X_1 = 1) \Pr((X_2 = 1) | (X_1 = 1))$$

$$+ \Pr(X_1 = 2) \Pr((X_2 = 2) | (X_1 = 2))$$

From the given information in the question,

$$\Pr(X_1 = X_2) = \left(\frac{3}{10}\right) \left(\frac{2}{9}\right) + \left(\frac{4}{10}\right) \left(\frac{3}{9}\right) + \left(\frac{3}{10}\right) \left(\frac{2}{9}\right)$$

$$= \left(\frac{6}{90}\right) + \left(\frac{12}{90}\right) + \left(\frac{6}{90}\right)$$

$$= \frac{24}{90} = \frac{4}{15}$$
(1224)

Therefore, the probability that the two socks are of same colour is $\frac{4}{15}$. Hence, the correct option is 4) $\frac{4}{15}$.

180) Two random variables *X* and *Y* are distributed according to

$$f_{XY}(x,y) = \begin{cases} x+y & 0 \le x \le 1, 0 \le y \le 1\\ 0 & otherwise \end{cases}$$
(1225)

The probability $P(X + Y \le 1) =$

Solution:

181) A company is hiring to fill four managerial positions. The candidates are five men and three women. If every candidate is equally likely to be chosen then the probability that at least one woman is chosen is **Solution:** Let $X \in \{0, 1, 2, 3\}$ denotes the number of woman candidates chosen.

$$\Pr(X = x) = \frac{{}^{3}C_{x} \times {}^{5}C_{4-x}}{{}^{8}C_{4}}$$
 (1226)

X	0	1	2	3
P(X)	$\frac{{}^{3}C_{0}\times {}^{5}C_{4}}{{}^{8}C_{4}}$	$\frac{{}^{3}C_{1}\times {}^{5}C_{3}}{{}^{8}C_{4}}$	$\frac{{}^{3}C_{2}^{5}C_{2}}{{}^{8}C_{4}}$	$\frac{{}^{3}C_{3}\times {}^{5}C_{1}}{{}^{8}C_{4}}$

The complement of the event "at least one woman candidate is chosen" is "no woman candidate being chosen"

$$Pr(X \ge 1) = 1 - Pr(X = 0)$$
 (1227)
= $1 - \frac{{}^{3}C_{0} \times {}^{5}C_{4-0}}{{}^{8}C_{4}}$ (1228)
= $\frac{13}{14}$ (1229)

- 182) The mean and variance, respectively of a binomial distribution for n independent trials with the probability of success as p, are
 - a) \sqrt{np} , np(1-2p)
 - b) \sqrt{np} , $\sqrt{np(1-p)}$
 - c) np, np
 - d) np, np(1-p)

Solution: Let $X_1, X_2, X_3,, X_n$ be the random variable for n independent

trials such that

$$X = X_1 + X_2 + X_2 + X_3 + \dots + X_n$$
$$X = \sum_{i=1}^{n} X_i$$

p = success (1) and 1 - p = failure (0) Expected Value for n trials :

$$E(X_i) = X_i \cdot p_i$$

$$E(X_i) = 1 \cdot p + 0 \cdot (1 - p)$$

$$E(X_i) = p$$
(1230)

We know that,

$$E(X) = \sum_{i=1}^{n} E(X_i)$$

$$E(X) = np$$
(1231)

Mean of a binomial distribution for n independent trials is **np**. Now,

$$E(X_i^2) = X_i^2 \cdot p_i$$

$$E(X_i^2) = 1^2 \cdot p + 0^2 \cdot (1 - p)$$

$$E(X_i^2) = p$$
(1232)

For variance,

$$Var(X_i) = E(X_i^2) - E(X_i)^2$$

 $Var(X_i) = p - p^2$ (1233)

We can add $Var(X_i)$ to get Var(X) as these are independent trials

$$Var(X) = \sum_{i=1}^{n} Var(X_i)$$

$$Var(X) = n(p - p^2)$$

$$Var(X) = np(1 - p)$$
(1234)

Variance of a binomial distribution for n independent trials is **np(1-p)**. Hence, (4) is correct option.

183) Suppose Y is distributed uniformly in

the open interval (1,6). The probability that the polynomial $3x^2+6xY+3Y+6$ has only real roots is (rounded off to 1 decimal place) **Solution:** Given, Y has a uniform distribution in the interval (1,6). This implies, the probability density function of Y,

$$f(y) = \begin{cases} \frac{1}{6-1} = \frac{1}{5} & (1 < y < 6) \\ 0 & \text{otherwise} \end{cases}$$
 (1235)

From this, cumulative distribution function of *Y*,

$$F_Y(y) = \begin{cases} \frac{y-1}{5} & (1 < y < 6) \\ 0 & y \le 1 \\ 1 & y \ge 6 \end{cases}$$
 (1236)

Given polynomial: $3x^2+(6Y)x+(3Y+6)$ Comparing it with the form: ax^2+bx+c Here, a=3; b=6Y; c=3Y+6 Condition for real roots,

$$b^{2} - 4ac \ge 0 \qquad (1237)$$

$$(6Y)^{2} - 4(3)(3Y + 6) \ge 0 \qquad (1238)$$

$$Y^{2} - Y - 2 \ge 0 \qquad (1239)$$

$$(Y - 2)(Y + 1) \ge 0 \qquad (1240)$$

$$\therefore Y \le -1, Y \ge 2 \tag{1241}$$

Probability that the given polynomial has real roots is,

$$P(Y \le -1) + P(Y \ge 2) = F_Y(-1) + 1 - F_Y(2^-)$$

$$= 0 + 1 - \left(\frac{2-1}{5}\right)$$

$$(1242)$$

$$= 0 + 1 - \left(\frac{2-1}{5}\right)$$

$$(1243)$$

$$= 0.8 \qquad (1244)$$