AS.110.420 Homework 4

LJ Gonzales, Jed's Section

March 2023

Problem 1 Writing the event $X = X_i \le x$ in shorthand, by law of total probability $P(X) = P(X \cap A_1) + P(X \cap A_2) = P(A_1)P(X|A_1) + P(A_2)P(X|A_2)$. However, notice that $P(X|A_1)$ is exactly how we defined $P(X_1)$, and likewise with 2. We then have $F(x) = aF_1(x) + (1-a)F_2(x)$. In other words the "weighted percentage" rule we used to compute direct probability will also apply for distributions

- **Problem 2** 1. $g_1(x)$ is positive on its entire support if c_1 is chosen positive: check. We also need $\int_{-1}^{1} c_1(x-1)^2 = 1$ for the function to qualify as a pdf. By u-substitution on x-1 we find that $c_1(0+\frac{8}{3})=1$, in other words $c_1=\frac{3}{8}$. This makes g_1 valid as a pdf.
 - 2. $\operatorname{sign}(c_2(-1)) \neq \operatorname{sign}(c_2(1))$ for any choice of c_2 . Because we cannot allow negative density values inside the pdf, g_2 cannot be valid.
 - 3. For choice of negative c_3 , g_3 has the potential to be a pdf. We need $\int_{-1}^{1} c_3(x-1)dx = 1$. Meaning, $c_3(0-2) = 1$, or $c_3 = \frac{-1}{2}$. With this choice g_3 is a valid pdf.
- **Problem 3** 1. Because $\alpha>0, \ x>0$, the fraction is greater than 0 for all x in the support. This satisfies our first condition for a pdf. The second is we need $\alpha \int_1^\infty \frac{1}{x^{\alpha+1}} = 1$. We can safely include 1 in the integral because the variable is continuous, so the probability at any particular point is irrelevant. We then $\int_1^\infty x^{-\alpha-1} dx = \alpha \left[\frac{-1}{\alpha} x^{-\alpha} \right]_1^\infty = \alpha \left(\frac{1}{\alpha} \right) = 1$. The claim checks out.
 - 2. The CDF $P(X \le x)$ can be computed directly from the integral $\int_1^x \frac{\alpha}{x^{\alpha+1}} dx = \frac{-\alpha}{\alpha} \left[x^{-\alpha} \Big|_1^x = -x^{\alpha} + 1. \right]$
 - 3. We can compute E(X) directly by $\int_0^\infty x \frac{\alpha}{x^{\alpha+1}} dx = \int_0^\infty \alpha x^{-\alpha} = \frac{\alpha}{-\alpha+1} \left[x^{-\alpha+1} \right]_0^\infty = \frac{\alpha}{-\alpha+1} (0-1) = \frac{\alpha}{\alpha-1}$. This expression will only evaluate to a finite value if $\alpha > 1$, (because for alpha less than or equal to 1 the integrand will be a positive power or a natural log, both of which do not converge).
 - 4. We can first compute $E(X^2) = \alpha \int_0^\infty x^2 x^{-\alpha-1} dx = \alpha \int_0^\infty x^{-\alpha+1} dx = \alpha \left[\frac{1}{-\alpha+2} x^{-\alpha+2}\right]_0^\infty = \frac{\alpha}{\alpha-2}$. For this to be true we also need to ask that

 $-\alpha+1<-1,$ or $\alpha>2.$ If this is true, then $Var(X)=E(X^2)-E(X)^2=\frac{\alpha}{\alpha-2}-(\frac{\alpha}{\alpha-1})^2=$

- **Problem 4** 1. We note that the Bernoulli distribution has a distribution $p^x(1-p)^{1-x}$ for x=0,1. It follows that $E((\frac{X-\mu}{\sigma})^3)=\frac{1}{\sigma^3}E((X-\mu)^3)=\frac{1}{\sigma^3}[E(X^3)-3E(X^2)E(X)+3E(X)E(X)^2-E(X)^3]$. However the kth moment of a Bernoulli distribution is given by $\sum_{x=0}^1 x^k p^x (1-p)^{1-x}$, which is p for all k. From this, it follows that σ^2 is given by $E(X^2)-E(X)^2=p-p^2=p(1-p)$. We can then simplify our expression to $\frac{p-3p^2+3p^3-p^3}{p(1-p)(p(1-p))^{1/2}}=\frac{2p^3-3p^2+p}{p(1-p)(p(1-p))^{1/2}}=\frac{p(2p-1)(p-1)}{(p(1-p))^{1/2}}=\frac{(2p-1)}{(p(1-p))^{1/2}}$. The denominator is always positive for any choice of p between 0 and 1. We note that for $p>\frac{1}{2}$ this is positive (and the distribution is negatively skewed) and negative for $p<\frac{1}{2}$, where it is positively skewed. at $p=\frac{1}{2}$, the distribution has no skewness.
 - 2. By a similar method as above, $E((\frac{X-\mu}{\sigma})^4) = \frac{1}{p^2(1-p)^2}(E(X^4)-4E(X^3)E(X)+6E(X^2)E(X)^2) 4E(X)E(X)^3 + E(X)^4) = \frac{p-4p^2+6p^3-4p^4+p^4}{(p^2(1-p)^2)}$. We note that numerator(0)=numerator(1)=0 by inspection so we can reduce to $\frac{-p(p-1)(3p^2-3p+1)}{p^2(1-p)^2} = \frac{3p^2-3p+1}{p(1-p)}.$ We want this ≥ 3 so $3p^2-3p+1 \geq 3p(1-p)$. Completing the square on $6p^2-6p+1\geq 0$, we get $6(p-\frac{1}{2})^2\geq \frac{1}{2}$, or $(p-\frac{1}{2})^2\geq \frac{1}{12}$. The square root function is monotonically increasing on its domain so we can write $|p-\frac{1}{2}|\geq \sqrt{\frac{1}{12}}$ for our condition. This is equivalent to $p-\frac{1}{2}\geq \sqrt{\frac{1}{12}}, p-\frac{1}{2}\leq -\sqrt{\frac{1}{12}}.$ It follows that $p\geq \frac{1}{2}+\sqrt{\frac{1}{12}}, p\leq \frac{1}{2}-\sqrt{\frac{1}{12}}$ are the two bounds which satisfy this.
- **Problem 5** 1. We write $P(X > t) = 1 P(X \le t)$. $exp(\lambda)$ has distribution $\lambda e^{-\lambda x}$, so it follows that the CDF is $\int_0^x \lambda e^{-\lambda y} dy = -e^{-\lambda y} \Big|_0^x = -e^{-\lambda x} + 1$. It follows that $P(X > t) = 1 (1 e^{-\lambda x}) = e^{-lambdax}$, as sought.
 - 2. By direct application of the conditional probability expression $P(X > s + t | X > s) = \frac{P(X > s + t \cap X > s)}{P(X > s)}$. Notice that for t > 0, $X > s + t \subset X > s$, thus $= \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t}$. Of course this is identically P(X > t), as we sought to prove.

Problem 6 We just have to make sure that the expected value of Prof. Torcaso's loss is equal to the expected value of his gain. We know that a binomial distribution has expected value np, so the average amount of throws made is 10*0.25=2.5. The expected value of throws missed must then be 7.5. We impose 7.5*5=2.5*c, such that c must be 15\$ for the game to be fair.

Problem 7 $\int_0^\infty \frac{e^{-x/2}}{\sqrt{x}} dx = \int_0^\infty x^{-1/2} e^{-x/2} dx$. We apply a change of bases with $u = \frac{x}{2}$ such that dx = 2du, $x^{-1/2} = 2 * 2^{-1/2} u^{-1/2} = \sqrt{2} u^{-1/2}$ and the integral is $\sqrt{2} \int_0^\infty u^{-1/2} e^{-u}$. At this point we notice that the integrand is in the form of the gamma function, specifically, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. We then have $\sqrt{2\pi}$.

- **Problem 8** 1. I would expect $E(X^4) = \alpha(\alpha + 1)(\alpha + 2)(\alpha + 3)\beta^4$, and by the same token $E(X^k) = \frac{(\alpha + k 1)!}{(\alpha 1)!}\beta^k$.
 - 2. $\frac{1}{X} = X^{-1}$ so by blind application of the formula above, E(Y) would equal $\frac{(\alpha-2)!}{(\alpha-1)}\beta^{-1} = \frac{1}{\beta(\alpha-1)}$. To do this however, we need to have $\alpha \geq 2$, since we have not defined the factorial operation for negative numbers, and also $\beta \neq 0$, because we don't like division by 0.

Problem 9 As suggested, we can write $E(X) = \sum_{0}^{\infty} x P(X = x) = \sum_{\sigma=0}^{x} \sum_{x=0}^{\infty}) P(X = x)$. We can now apply a change of bounds in the calculus sense, where if x goes from 0 to infinity, and sigma goes from x to infinity, this is the same as sigma going from 0 to infinity, and x going from sigma to infinity. $\sum_{\sigma=0}^{\infty} \sum_{x=\sigma}^{\infty} P(X = x)$. We notice that the inner integrand is identically $P(X > \sigma)$. Simplifying to $\sum_{\sigma=0}^{\infty} P(X > \sigma)$. Keeping in mind that $P(X > n) = P(X \ge n)$ for continuous variable, we have shown the result.