Circuit haute vitesse : $t_r < 2\tau$ avec t_r le temps de montée / descente et τ le temps de propagation

$$\tau = \frac{L}{\nu_{ph}}$$

Avec ν_{ph} la vitesse de propagation (typiquement 0.5...0.6c)

A -	
Ana	logique
	2024

opamp adc

numérique

1 Circuits

1.1 Amplificateurs opérationnels

1.1.1 GBW

Produit constant sur la droite du GBW

$$A_0 \cdot \omega_0 = \text{GBW}$$

Si on a une application avec $\omega_a,$ alors le gain maximal est donné par

$$A_a = \frac{\text{GBW}}{\omega_a}$$

1.1.2 Single supply, non inverting

La valeur d'entrée U_{in} est autour de 0. Le gain de tension est

$$G = \frac{R_2}{R_1}$$

Il n'y a pas de 1+, c'est normal. La valeur de sortie est autour de U_{ref}

1.1.3 Single supply, inverting

La tension d'entrée est autour de 0 et la tension de sortie est autour de U_{ref}

$$G = -\frac{R_1}{R_2}$$

1.1.4 Single supply, differential

2 Autres

2.1 Statistiques

2.2 Bruit

Si un bruit est **aléatoire** (gaussienne), on peut estimer que le 99.9 % est compris entre $\pm 3.3\sigma$, il est donc possible de passer de pic-pic à rms en multipliant par $2 \cdot 3.3$. La valeur rms est 1σ

$$U_{\text{noise}_{pk-pk}} = 6.6U_{\text{noise}_{rms}}$$