## Tut 9: k-Means Clustering

## May/June 2022

- 1. The first step of k-means clustering is to decide the number of clusters, k. After a series of iterations, can k-means ever give results which contain
  - (a) More than k clusters?

Solution. No. It can never give more than k clusters, since at every stage every point is assigned to one of k clusters.

(b) Less than k clusters?

Solution. To give fewer than k clusters, we would need there to be a cluster which contain no points at one of the re-assignment stages. This means that its centre would be farther from every point than one of the other cluster centres and results in an empty clusters.

2. You are given a small example with n=6 observations and p=2 variables. The observations are as follows:

| Obs | $X_1$ | $X_2$ |
|-----|-------|-------|
| 1   | 1     | 4     |
| 2   | 1     | 3     |
| 3   | 0     | 4     |
| 4   | 5     | 1     |
| 5   | 6     | 2     |
| 6   | 4     | 0     |



(a) Plot the observations.

(b) Rescale the observations to [0,1].

Solution. Scale with min-max normalisation in R using

d.f = data.frame(x1=c(1,1,0,5,6,4),x2=c(4,3,4,1,2,0))  $normdf = scale(df,center=c(0,0),scale=sapply(df,function(x){max(x)-min(x)})$ 

which gives

| Obs | $X_1$ | $X_2$ | Clust_Initial | Norm_X1 | Norm_X2 |
|-----|-------|-------|---------------|---------|---------|
| 1   | 1     | 4     | A             | 0.1667  | 1.0000  |
| 2   | 1     | 3     | A             | 0.1667  | 0.7500  |
| 3   | 0     | 4     | В             | 0.0000  | 1.0000  |
| 4   | 5     | 1     | В             | 0.8333  | 0.2500  |
| 5   | 6     | 2     | A             | 1.0000  | 0.5000  |
| 6   | 4     | 0     | В             | 0.6667  | 0.0000  |

(c) Perform k-means clustering to the observations with k = 2. The initial centroids are 2, 5.

Solution. t = 0:

$$C_1^{(0)} = (0.1667, 0.7500); \quad C_2^{(0)} = (1.0000, 0.5000)$$

and then find the Euclidean distance for all points to the cluster centres  $C_A^{(2)}$  and  $C_B^{(2)}$ :

| Obs | Dist_A    | Dist_B    | Cluster* |
|-----|-----------|-----------|----------|
| 1   | 0.2500000 | 0.9718253 | 1        |
| 2   | 0.0000000 | 0.8700255 | 1        |
| 3   | 0.3004626 | 1.1180340 | 1        |
| 4   | 0.8333333 | 0.3004626 | 2        |
| 5   | 0.8700255 | 0.0000000 | 2        |
| 6   | 0.9013878 | 0.6009252 | 2        |

t=1: Compute the cluster centres from the previous table:

$$C_A^{(3)} = (0.1111, 0.9167); \quad C_B^{(3)} = (0.8333, 0.2500)$$

and then find the Euclidean distance for all points to the cluster centres  $C_1^{(1)}$  and  $C_2^{(1)}$ :

| Obs | Dist_A | Dist_B | Cluster* |
|-----|--------|--------|----------|
| 1   | 0.1002 | 1.0035 | 1        |
| 2   | 0.1757 | 0.8333 | 1        |
| 3   | 0.1389 | 1.1211 | 1        |
| 4   | 0.9829 | 0.0000 | 2        |
| 5   | 0.9817 | 0.3005 | 2        |
| 6   | 1.0719 | 0.3005 | 2        |

We can see that the clusters do not change, so we have the final cluster centres  $C_1^{(1)},\ C_2^{(1)}$  and stop.  $\Box$ 

(d) In the plot from (a), colour the observations according to the cluster labels obtained.

```
Solution. A "command" for plotting "kmeans" can be found in practical2.R.

plot(normdf,col=km$cluster+1,pch=20,cex=4)
```

3. (Jan 2021 Final Q3(b). Need to use Excel/R to perform calculations) Given the unlabelled data in Table 3.2.

| rable 3.2. Ulliabelled data. |         |         |         |         |  |  |  |  |
|------------------------------|---------|---------|---------|---------|--|--|--|--|
|                              | V1      | V2      | V3      | V4      |  |  |  |  |
| 1                            | -0.3323 | 0.7264  | 2.4691  | 1.8429  |  |  |  |  |
| 2                            | 5.5783  | 5.7211  | -3.3731 | 3.9209  |  |  |  |  |
| 3                            | -1.5492 | 1.4777  | 5.1921  | 0.9621  |  |  |  |  |
| 4                            | 8.0669  | -1.1127 | 1.2409  | -0.1392 |  |  |  |  |
| 5                            | -0.294  | -0.5842 | 0.7708  | 1.6414  |  |  |  |  |
| 6                            | 5.5741  | 3.4215  | 0.9827  | 3.8443  |  |  |  |  |
| 7                            | -1.838  | 0.5629  | -3.898  | 4.483   |  |  |  |  |
| 8                            | 2.6957  | -0.2016 | 0.6947  | 0.6821  |  |  |  |  |
| 9                            | 10.7553 | 0.1658  | -0.8895 | 3.0359  |  |  |  |  |
| 10                           | 6.0329  | 2.3343  | 0.8758  | 2.8348  |  |  |  |  |

Table 3.2: Unlabelled data.

Use the k-means algorithm with k = 2 (unsupervised learning) to estimate the final cluster centres in **three steps** if the **first row** and **third row** are chosen as the **initial cluster centres**. Does the algorithm **converges** in three steps? (5 marks)

|                                      | V1      | V2     | V3     | V4     |
|--------------------------------------|---------|--------|--------|--------|
| Solution. Given the initial centres: | -0.3323 | 0.7264 | 2.4691 | 1.8429 |
|                                      | -1.5492 | 1.4777 | 5.1921 | 0.9621 |

**Step 1**: Update table based on distance to cluster centres

| V     | 1   | V2      | V3      | V4      | $\operatorname{dist.1}$ | dist.2  | clust.centre |
|-------|-----|---------|---------|---------|-------------------------|---------|--------------|
| -0.33 | 323 | 0.7264  | 2.4691  | 1.8429  | 0                       | 3.1993  | A            |
| 5.57  | 83  | 5.7211  | -3.3731 | 3.9209  | 9.9162                  | 12.2851 | A            |
| -1.54 | 492 | 1.4777  | 5.1921  | 0.9621  | 3.1993                  | 0       | В            |
| 8.06  | 69  | -1.1127 | 1.2409  | -0.1392 | 8.9088                  | 10.7705 | A            |
| -0.2  | 94  | -0.5842 | 0.7708  | 1.6414  | 2.155                   | 5.0829  | A            |
| 5.57  | 41  | 3.4215  | 0.9827  | 3.8443  | 6.9544                  | 8.9747  | A            |
| -1.8  | 38  | 0.5629  | -3.898  | 4.483   | 7.0572                  | 9.7952  | A            |
| 2.69  | 57  | -0.2016 | 0.6947  | 0.6821  | 3.8113                  | 6.4144  | A            |
| 10.7  | 553 | 0.1658  | -0.8895 | 3.0359  | 11.6599                 | 13.943  | A            |
| 6.03  | 329 | 2.3343  | 0.8758  | 2.8348  | 6.8281                  | 8.9643  | A            |

......[1.5 marks

|                             | V1      | V2     | V3      | V4     | -           |
|-----------------------------|---------|--------|---------|--------|-------------|
| The new cluster centres are | 4.0265  | 1.2259 | -0.1252 | 2.4607 | [0.5  mark] |
|                             | -1.5492 | 1.4777 | 5.1921  | 0.9621 |             |

Step 2: Update table based on distance to cluster centres

| V1      | V2      | V3      | V4      | dist.1 | dist.2  | clust.centre |
|---------|---------|---------|---------|--------|---------|--------------|
| -0.3323 | 0.7264  | 2.4691  | 1.8429  | 5.1343 | 3.1993  | В            |
| 5.5783  | 5.7211  | -3.3731 | 3.9209  | 5.941  | 12.2851 | A            |
| -1.5492 | 1.4777  | 5.1921  | 0.9621  | 7.8531 | 0       | В            |
| 8.0669  | -1.1127 | 1.2409  | -0.1392 | 5.5154 | 10.7705 | A            |
| -0.294  | -0.5842 | 0.7708  | 1.6414  | 4.8392 | 5.0829  | A            |
| 5.5741  | 3.4215  | 0.9827  | 3.8443  | 3.2183 | 8.9747  | A            |
| -1.838  | 0.5629  | -3.898  | 4.483   | 7.2908 | 9.7952  | A            |
| 2.6957  | -0.2016 | 0.6947  | 0.6821  | 2.7649 | 6.4144  | A            |
| 10.7553 | 0.1658  | -0.8895 | 3.0359  | 6.8786 | 13.943  | A            |
| 6.0329  | 2.3343  | 0.8758  | 2.8348  | 2.529  | 8.9643  | A            |

The new cluster centres are

| V1       | V2        | V3         | V4     |
|----------|-----------|------------|--------|
| 4.5714   | 1.2883875 | -0.4494625 | 2.5379 |
| -0.94075 | 1.10205   | 3.8306     | 1.4025 |

......[0.5 mark]

Step 3: Update table based on distance to cluster centres

| V1      | V2      | V3      | V4      | dist.1 | dist.2  | clust.centre |
|---------|---------|---------|---------|--------|---------|--------------|
| -0.3323 | 0.7264  | 2.4691  | 1.8429  | 5.7761 | 1.5997  | В            |
| 5.5783  | 5.7211  | -3.3731 | 3.9209  | 5.5788 | 11.0485 | A            |
| -1.5492 | 1.4777  | 5.1921  | 0.9621  | 8.474  | 1.5997  | В            |
| 8.0669  | -1.1127 | 1.2409  | -0.1392 | 5.2923 | 9.7533  | A            |
| -0.294  | -0.5842 | 0.7708  | 1.6414  | 5.4288 | 3.5611  | В            |
| 5.5741  | 3.4215  | 0.9827  | 3.8443  | 3.0518 | 7.8674  | A            |
| -1.838  | 0.5629  | -3.898  | 4.483   | 7.5685 | 8.3855  | A            |
| 2.6957  | -0.2016 | 0.6947  | 0.6821  | 3.239  | 5.0275  | A            |
| 10.7553 | 0.1658  | -0.8895 | 3.0359  | 6.32   | 12.7523 | A            |
| 6.0329  | 2.3343  | 0.8758  | 2.8348  | 2.2526 | 7.8059  | A            |

The new cluster centres are

| V1      | V2     | V3      | V4     |
|---------|--------|---------|--------|
| 5.2665  | 1.5559 | -0.6238 | 2.6660 |
| -0.7252 | 0.5400 | 2.8107  | 1.4821 |

......[1 mark]

Step 4 : Update table based on distance to cluster centres

| V1      | V2      | V3      | V4      | dist.1 | dist.2  | clust.centre |
|---------|---------|---------|---------|--------|---------|--------------|
| -0.3323 | 0.7264  | 2.4691  | 1.8429  | 6.5021 | 0.6602  | В            |
| 5.5783  | 5.7211  | -3.3731 | 3.9209  | 5.1556 | 10.5245 | A            |
| -1.5492 | 1.4777  | 5.1921  | 0.9621  | 9.1207 | 2.7386  | В            |
| 8.0669  | -1.1127 | 1.2409  | -0.1392 | 5.1293 | 9.2263  | A            |
| -0.294  | -0.5842 | 0.7708  | 1.6414  | 6.2043 | 2.374   | В            |
| 5.5741  | 3.4215  | 0.9827  | 3.8443  | 2.7467 | 7.5436  | A            |
| -1.838  | 0.5629  | -3.898  | 4.483   | 8.0921 | 7.4331  | В            |
| 2.6957  | -0.2016 | 0.6947  | 0.6821  | 3.9207 | 4.1677  | A            |
| 10.7553 | 0.1658  | -0.8895 | 3.0359  | 5.6804 | 12.1674 | A            |
| 6.0329  | 2.3343  | 0.8758  | 2.8348  | 1.863  | 7.38    | A            |

The new cluster centres are

| V1        | V2     | V3      | V4      |
|-----------|--------|---------|---------|
| 6.4505    | 1.7214 | -0.0781 | 2.3631  |
| -1.003375 | 0.5457 | 1.1335  | 2.23235 |