Attention

2015年提出 为了解决RNN的遗忘问题

Shusen Wang

Revisiting Seq2Seq Model

Shortcoming: The final state is incapable of remembering a **long** sequence.

RNN缺点:最终状态无法记住一个长序列

最后的句子 翻译结果有丢失

Shortcoming: The final state is incapable of remembering a **long** sequence.

Shortcoming: The final state is incapable of remembering a **long** sequence.

Attention for Seq2Seq Model

Seq2Seq Model with Attention

- Attention tremendously improves Seq2Seq model. Attention 极大地改进了Seq2Seq模型
- With attention, Seq2Seq model does not forget source input. Attention使得Seq2Seq模型
- With attention, the decoder knows where to focus. 注意力Attention 使得 解码器知道 重点在哪。
- Downside: much more computation. 缺点: 更多的计算。

Original paper:

Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate.
In ICLR, 2015.

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

重点

SimpleRNN + Attention

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$. $\text{Neight: } \alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$

Option 1 (used in the original paper): 方法一:论文中最初始的计算方法

参数是固定的 tanh Trainable parameters

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Option 1 (used in the original paper):

$$\tilde{\alpha}_i = \frac{T}{\text{tanh}}$$

Then **normalize** $\tilde{\alpha}_1, \dots, \tilde{\alpha}_m$ (so that they sum to 1):

$$[\alpha_1, \cdots, \alpha_m] = \underbrace{\operatorname{Softmax}}_{\text{\tiny \#Emnhh}} ([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$$

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$. 重点:

Option 2 (more popular; the same to Transformer):

方法2 :目前更受欢迎

参数可学习

- 1. Linear maps: 用两个矩阵 对输入做线性变换 $\mathbf{k}_i = \mathbf{W}_K \cdot \mathbf{h}_i$, for i=1 to m. $\mathbf{q}_0 = \mathbf{W}_Q \cdot \mathbf{s}_0$.
- 2. Inner product:
 - $\tilde{\alpha}_i = \mathbf{k}_i^T \mathbf{q}_0$, for i = 1 to m.
- 3. Normalization: 标准化
 - $[\alpha_1, \cdots, \alpha_m] = \text{Softmax}([\tilde{\alpha}_1, \cdots, \tilde{\alpha}_m]).$

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

上下文向量 Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

SimpleRNN

concat

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$.

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$$
. $5 \operatorname{s10}$ MARY

$$\mathbf{s}_2 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_2' \\ \mathbf{s}_1 \\ \mathbf{c}_1 \end{bmatrix} + \mathbf{b}\right)$$

SimpleRNN + Attention

SimpleRNN + Attention

Time Complexity

Question: How many weights α_i have been computed?

Time Complexity

Question: How many weights α_i have been computed?

- To compute one vector \mathbf{c}_i , we compute m weights: $\alpha_1, \dots, \alpha_m$.
- The decode has t states, so there are totally mt weights.

Attention: Weights Visualization **Limit NATION** Weights Visualization **Limit NATION**

Decoder RNN (target language: French)

Encoder RNN (source language: English)

Attention: Weights Visualization

Decoder RNN (target language: French)

Encoder RNN (source language: English)

• Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

注意:解码器还将查看编码器的所有状态

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus.

- Downside: higher time complexity.
 - *m*: source sequence length
 - t: target sequence length
 - Standard Seq2Seq: O(m + t) time complexity
 - Seq2Seq + attention: O(mt) time complexity

attention 可以提升准确率 但是会引入大量的计算量 Thank you!