

Reverse Engineer a Merge Tree from Topology Information

He Chen, Tart Patel

Merge Tree From Scalar Field

Topological Simplification

Input Simplified

Merge Tree

Merge tree

Segmentation

Critical Points: Local Maximum

Local Maximum

Corresponds to Leaf Node in the Merge Tree

Critical Points: Saddle point

Saddle point

Where two or more connected component join

Merge Tree to Induced Matrix

- Induced matrices are an intermediate form for interpolation
- Data Layout
 - Symmetric
 - The diagonal values M_{i,i} are the function value of node i
 - The value M_{i,j} is the function value where nodes i and j

0	0	0	0	0	5
	1	0	0	0	5
		2	2	2	5
			3	2	5
				4	5
					5

Induced Matrix to Merge Tree

- To construct a merge tree from an induced matrix, the nodes and edge of the tree must be sorted by the function value
- Then all of the function values are traversed in order and any nodes or edges are added to the graph
- The steps are represented by complete graphs that are fully connected by the last step

Induced Matrix to Merge Tree

- To construct a merge tree from an induced matrix, the nodes and edge of the tree must be sorted by the function value
- Then all of the function values are traversed in order and any nodes or edges are added to the graph
- The steps are represented by complete graphs that are fully connected by the last step

Induced Matrix to Merge Tree

- Adding edges to the graph in the order of steps left redundant connections
 - With entirely labeled nodes, the only case is when the connecting node appears in the middle of the steps
 - With unlabeled nodes, the edge that needs to be removed depends on its function value

Merge Tree Interpolation

- Interpolation can be done in the induced matrix form
- Merge tree interpolation methods
 - Linear interpolation
 - Simple and fast
 - Geodesic interpolation
 - More computationally expensive,
 - but produces better results

[Charles et al. 2017] [T. F. Banchoff. et al. 1970]

Local maximum

Local minimum

Saddle point: Inclining directions are separatedby declining directions Regular point: Inclining directions and declining directions are simply connected

Points with higher value

For local maximum/minimum:

$$x_{i,j} > x_{i+1,j}$$
 $x_{i,j} > x_{i,j+1}$
 $x_{i,j} > x_{i+1,j+1}$
 $x_{i,j} > x_{i,j-1}$

• • • • •

Local maximum 2 (leaf 2)

Local maximum 1 (leaf 1)

Saddle point's linear constraint:

$$x_{i,j} > x_{i+1,j+1}$$

$$x_{i,j} > x_{i-1,j-1}$$

$$x_{i,j} < x_{i-1,j+1}$$

$$x_{i,j} < x_{i-1,j+1}$$

 $x_{i,j} < x_{i+1,j-1}$

Local maximum 2 (leaf 2)

Local maximum 1 (leaf 1)

Saddle point's linear constraint:

$$x_{i,j} > x_{i+1,j+1}$$

$$x_{i,j} > x_{i-1,j-1}$$

$$x_{i,j} < x_{i-1,j+1}$$

$$x_{i,j} < x_{i-1,j+1}$$

 $x_{i,j} < x_{i+1,j-1}$

Local constraint is not sufficient for creating saddle points.

Contour Line Constraint

We have to use global constraint to make sure components join at a certain saddle point.

The solution is to add contour line to make sure the two component contacts exactly at the saddle point

Constraints:

Critical points constraints (local, inequality) + contour line constraints (global, equility)

Fill the Rest of the Points

Define scalar field on a 2D regular grid (image)

Contour Line Constraint

Fill the Rest of the Points

Sum of per-pixel Laplacian:

$$X = \operatorname{argmin}_{X} \sum_{\substack{1 \le i \le N, \\ 1 \le j \le N}} (2x_{i,j} - x_{i-1,j} - x_{i+1,j})^2 + (2x_{i,j} - x_{i,j-1} - x_{i,j+1})^2$$

s.t.:

For local maximum:

$$x_{i,j} > x_{i+1,j}$$

Saddle constraint:

$$x_{i,j} > x_{i+1,j+1}$$

Contour line constraint:

$$\lambda x_{i,j} + (1 - \lambda)x_{i,j+1} = h$$

$$x_{i,j} > x_{i,j-1}$$

All integral equality $\chi_{i,i}$ integrality constraint

$$x_{i,j} < x_{i+1,j-1}$$

Example

Example

