朴素贝叶斯分类器的应用

作者: 阮一峰

日期: 2013年12月16日

生活中很多场合需要用到分类,比如新闻分类、病人分类等等。

本文介绍<u>朴素贝叶斯分类器</u>(Naive Bayes classifier),它是一种简单有效的常用分类 算法。

一、病人分类的例子

让我从一个例子开始讲起, 你会看到贝叶斯分类器很好懂, 一点都不难。

某个医院早上收了六个门诊病人,如下表。

症状 职业 疾病

打喷嚏 护士 感冒

打喷嚏 农夫 过敏

头痛 建筑工人 脑震荡

头痛 建筑工人 感冒

打喷嚏 教师 感冒

头痛 教师 脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?根据贝叶斯定理:

$$P(A|B) = P(B|A) P(A) / P(B)$$

可得

P(感冒|打喷嚏x建筑工人)

= P(打喷嚏x建筑工人|感冒) x P(感冒)

/ P(打喷嚏x建筑工人)

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

P(感冒|打喷嚏x建筑工人)

= P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒)

/ P(打喷嚏) x P(建筑工人)

这是可以计算的。

P(感冒|打喷嚏x建筑工人)

 $= 0.66 \times 0.33 \times 0.5 / 0.5 \times 0.33$

= 0.66

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

这就是贝叶斯分类器的基本方法: 在统计资料的基础上, 依据某些特征, 计算各个类别的概率, 从而实现分类。

二、朴素贝叶斯分类器的公式

假设某个体有n项特征(Feature),分别为 F_1 、 F_2 、…、 F_n 。现有m个类别(Category),分别为 C_1 、 C_2 、…、 C_m 。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:

由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求

的最大值。

朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此

```
P(F1F2...Fn|C)P(C)
= P(F1|C)P(F2|C) ... P(Fn|C)P(C)
```

上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。

虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。

下面再通过两个例子,来看如何使用朴素贝叶斯分类器。

三、账号分类的例子

本例摘自张洋的《算法杂货铺----分类算法之朴素贝叶斯分类》。

根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为 C_0),11% 为虚假账号(设为 C_1)。

接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:

F1: 日志数量/注册天数

F2: 好友数量/注册天数

F3: 是否使用真实头像(真实头像为1, 非真实头像为0)

F1 = 0.1

F2 = 0.2

F3 = 0

请问该账号是真实账号还是虚假账号?

方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。

P(F1|C)P(F2|C)P(F3|C)P(C)

虽然上面这些值可以从统计资料得到,但是这里有一个问题: F1和F2是连续变量,不适宜按照某个特定值计算概率。

一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[o, o.o5]、(o.o5, o.2)、[o.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。

根据统计资料,可得:

$$P(F1|C0) = 0.5, P(F1|C1) = 0.1$$

$$P(F2|C0) = 0.7, P(F2|C1) = 0.2$$

$$P(F3|C0) = 0.2, P(F3|C1) = 0.9$$

因此,

$$P(F1|C0) P(F2|C0) P(F3|C0) P(C0)$$

= 0.5 x 0.7 x 0.2 x 0.89
= 0.0623

P(F1|C1) P(F2|C1) P(F3|C1) P(C1)

- $= 0.1 \times 0.2 \times 0.9 \times 0.11$
- = 0.00198

可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。

四、性别分类的例子

本例摘自维基百科,关于处理连续变量的另一种方法。

下面是一组人类身体特征的统计资料。

性别	身高 (英尺)	体重 (磅)	脚掌 (英寸)	
男	6	180	12	
男	5.92	190	11	
男	5.58	170	12	
男	5.92	165	10	
女	5	100	6	
女	5.5	150	8	
女	5.42	130	7	
女	5.75	150	9	

已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

根据朴素贝叶斯分类器, 计算下面这个式子的值。

P(身高|性别) x P(体重|性别) x P(脚掌|性别) x P(性别)

这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

比如,男性的身高是均值5.855、方差o.o35的正态分布。所以,男性的身高为6英尺的

概率的相对值等于1.5789(大于1并没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。

有了这些数据以后,就可以计算性别的分类了。

可以看到,女性的概率比男性要高出将近10000倍,所以判断该人为女性。

(完)

文档信息

- 版权声明: 自由转载-非商用-非衍生-保持署名(创意共享3.o许可证)
- 发表日期: 2013年12月16日
- 更多内容: 档案 » 算法与数学
- 购买文集: " 《如何变得有思想》
- 社交媒体: **V** twitter, **Ø** weibo
- Feed订阅: 🔕

相关文章

■ 2015.09.01: 理解矩阵乘法

大多数人在高中,或者大学低年级,都上过一门课《线性代数》。这门课其实是教矩阵。

■ **2015.07.27:** 蒙特卡罗方法入门

本文通过五个例子,介绍蒙特卡罗方法(Monte Carlo Method)。

■ 2015.06.10: <u>泊松分布和指数分布: 10分钟教程</u>

大学时,我一直觉得统计学很难,还差点挂科。

■ **2013.03.31:** 相似图片搜索的原理(二)

二年前,我写了《相似图片搜索的原理》,介绍了一种最简单的实现方法。

联系方式 | ruanyifeng.com 2003 - 2015