Intervals, Transformations, and Slope Solution (version 15)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -5) \cup (2, 4)$
Negative	$(-5,2) \cup (4,10)$
Increasing	$(0,3) \cup (7,10)$
Decreasing	$(-10,0) \cup (3,7)$
Domain	(-10, 10)
Range	(-9,6)

Intervals, Transformations, and Slope Solution (version 15)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=23$ and $x_2=65$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 23 & 61 \\ 61 & 65 \\ 65 & 67 \\ 67 & 23 \\ \hline \end{array}$$

$$\frac{f(65) - f(23)}{65 - 23} = \frac{67 - 61}{65 - 23} = \frac{6}{42}$$

The greatest common factor of 6 and 42 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{7}$$

2