Bringing Old Photos Back to Life

<u>2020 CVPR Bringing-Old-Photos-Back-to-Life.pdf</u> <u>arxiv</u> 有CVPR, TPAMI 版本的pdf, <u>TPAMI</u> 版本的算法原理更多一些

github repo

博客参考

Background

介绍老照片修复背景

老照片修复相比于 image restoration 任务更加复杂,可以简单归纳为一下两点:

- 1. 没有 degradation model 来模拟老照片的瑕疵 (无法简单地模仿老照片的瑕疵,数据少)
- 2. 老照片为一些列 degradations 的组合,需要不同的方法去修复。并且老照片瑕疵可以归纳为 unstructured defects (墨水,褪色); structured defects (划痕)

并且老照片数据,**有对应的修复结果(clean image Ground Truth)的数据很少**,影响训练。以往的工作大多使用干净图像,对老照片进行合成来造数据,但会存在 domain gap 的问题(造的数据和真实老照片差距很大):

- Prior DL methods 修复功能有限
 对划痕类似的 localized defects 检测,再用 inpainting 方法修复。缺点是无法修复 墨水,褪色等 spatially-uniform defects。
- DL-based image restoration methods 修复效果不好
 在合成图像上处理,但无法处理涂色 & inpaint 混合的情况。存在 domain gap,导致图像修复结果看起来还是很旧。

文章方法核心思想

作者借鉴 image translation 任务思想,将 合成图 X、真实图 Y,老照片 R 都映射到 latent space 来进行修复。将合成图和真实老照片通过共享的 VAE 映射到同一个 latent space,通过对 VAE Encoder 进行限制(Gaussian Distribution & GAN Discriminator),让合成图和老照片的 latent code 尽可能接近。然后在 latent space 学习合成图 X 到真实图 Y latent code 的映射,最后将映射结果通过 Decoder 恢复出真实图。如果老照片和合成图的 latent code 分布接近,则可以借鉴前面学到到的 mapping (合成图->真实图的映射),得到修复结果的 latent code,再恢复出原图。

Contributions

- 映射到 latent space,使用合成图训练。降低 domain gap,避免使用老照片 GT (数据很少)进行训练
- 支持多种 degradation 混合的情况,能有效去除。

Related Work

\sqcup	2003	EUROCON	Towards-t	<u>he-automated</u>	<u>d-restora</u>	<u>tion-of</u>	<u>-old-p</u>	<u>shotograp</u>	<u>hic-prir</u>	<u>าtsa-</u>
	surve						·			
	<u>Jul vc</u>	<u>y.par</u>								

2022	master	report	DSTT-MARB-	<u>Multi-sca</u>	e-Attenti	<u>on-Based-</u>	<u>-Spatio-1</u>	<u>lemp</u>	<u>oral-</u>
<u>Transformers-for-Old-Film-Restoration.pdf</u>									

☐ VAE
☐ baseline
☐ Pix2Pix
☐ CycleGAN
☐ Deep image prior

• 矩阵乘法总结

- Hadamard Product >> 矩阵对应元素乘积
- o Kronecker product >> 两个任意大小的矩阵间的运算
 如果A是一个m×n的矩阵,而B是一个p×q的矩阵,克罗内克积则是一个mp×nq的分块矩阵

• Wasserstein Distance

衡量概率分布差异,能够很自然地度量离散分布和连续分布之间的距离 & 给出了距离的度量,而且给出如何把一个分布变换为另一分布的方案 & 能够连续地把一个分布变换为另一个分布,在此同时,能够保持分布自身的几何形态特征;

VAE

苏剑林老师 VAE 讲解

nonlocal-block

methods

Figure 2: Illustration of our translation method with three domains.

2 stage

Figure 3: Architecture of our restoration network. (I.) We first train two VAEs: VAE₁ for images in real photos $r \in \mathcal{R}$ and synthetic images $x \in \mathcal{X}$, with their domain gap closed by jointly training an adversarial discriminator; VAE₂ is trained for clean images $y \in \mathcal{Y}$. With VAEs, images are transformed to compact latent space. (II.) Then, we learn the mapping that restores the corrupted images to clean ones in the latent space.

图中的符号解释

R: 真实的老照片; y: 无损图像; x: 从 y 退化 (人工退化后)的合成老照片图, x 和 y 是合成得到的退化-真值图像对。 z_{-y} , z_{-x} , z_{-r} 为无损图 y, 对应合成图 x 和老照片 r 的 latent code

核心思想:映射到 latent space, 借鉴 x-> y 的映射来修复老照片 r 🏠

- 作者将**希望将 R,X 映射得到的 latent code 接近** >> Domain alignment in the VAE latent space 因此作者提出的方法为 2 stage 的,要先训好 x,r 的 VAE encoder;再去训 mapping 和 decoder
- 借鉴 z_y, z_x 之间的映射,作用于 z_r >> Restoration through latent mapping
- 提出 partial nonlocal block 在 mapping 修复的过程中 >> Multiple degradation restoration

Domain alignment

• 再从 GAN discriminator 角度使得 z_r z_x 接近

$$\mathcal{L}_{VAE_{1}}(r) = KL(E_{\mathcal{R},\mathcal{X}}(z_{r}|r)||\mathcal{N}(0,I)) \text{ in the first of }$$

$$+ \alpha \mathbb{E}_{z_{r} \sim E_{\mathcal{R},\mathcal{X}}(z_{r}|r)} \left[\|G_{\mathcal{R},\mathcal{X}}(r_{\mathcal{R} \to \mathcal{R}}|z_{r}) - r\|_{1} \right]$$

$$+ \mathcal{L}_{VAE_{1},GAN}(r) \text{ and part in the first of }$$

$$LSGAN \text{ bys.} \Rightarrow \text{ position}$$

$$(2)$$

differentiates $\mathcal{Z}_{\mathcal{R}}$ and $\mathcal{Z}_{\mathcal{X}}$, whose loss is defined as,

$$\mathcal{L}_{VAE_{1},GAN}^{latent}(r,x) = \mathbb{E}_{x \sim \mathcal{X}} [\underline{D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(x))^{2}}] + \mathbb{E}_{r \sim \mathcal{R}} [(1 - \underline{D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(r))})^{2}].$$
(3)

Meanwhile, the encoder $E_{\mathcal{R},\mathcal{X}}$ of VAE₁ tries to fool the discriminator with a contradictory loss to ensure that \mathcal{R} and \mathcal{X} are mapped to the same space. Combined with the latent adversarial loss, the total objective function for VAE₁ becomes

comes,
$$\lim_{\mathbb{R}^{+}} \lim_{\mathbb{R}^{+}} \lim_{\mathbb{R}^{$$

Restoration through latent mapping

在 latent space 通过映射的方式实现修复。老照片的退化有比较复杂,需要利用更大范围的信息进行填充以保证全局图像结构的一致性。因此作者**提出了一个全局分支,该分支包含一个partial nonlocal block和两个残差块**,如下图所示

- partial nonlocal block 作为 global branch 去修复待 inpainting 区域
 在 ECCV2018 提出的 nonlocal block 改造而来:借用完好区域(源区域)的信息来修补损坏的区域(目标区域)。
 - 。 $S_{i,j}$ 表示中间层输入的 Feature Map F 中**完好区域元素** i, j 的亲和度。文章中用 U-net 去分割出裂痕等 mask

最后模块输出 O 理解:对于受损元素 i,用亲和的完好区域 j 元素来加权修复 ☆

$$s_{i,j} = (1 - m_j) f_{i,j} / \sum_{\forall k} (1 - m_k) f_{i,k},$$
 (7)

where,

$$f_{i,j} = \exp(\theta(F_i)^T \cdot \phi(F_j)) \tag{8}$$

gives the pairwise affinity with embedded Gaussian. θ and ϕ project F to Gaussian space for affinity calculation. According to the affinity $s_{i,j}$ that considers the holes in the mask, the partial nonlocal finally outputs

$$O_i = \nu \left(\sum_{\forall j} s_{i,j} \mu(F_j) \right), \tag{9}$$

U-net mask 分割
 作者自己标注了 783 张有划痕的老照片,去 finetune U-net(现在合成的瑕疵上训)

优化

- 1. 优化 mapping 结果 T(z_x) 与 z_y 距离
- 2. LSGAN >> realism
- 3. perceptual loss

Let $r_{\mathcal{R} \to \mathcal{Y}}$, $x_{\mathcal{X} \to \mathcal{Y}}$ and $y_{\mathcal{Y} \to \mathcal{Y}}$ be the final translation outputs for r, x and y, respectively. At this stage, we solely train the parameters of the latent mapping network \mathcal{T} and fix the two VAEs. The loss function $\mathcal{L}_{\mathcal{T}}$, which is imposed at both the latent space and the end of generator $G_{\mathcal{Y}}$, consists of three terms,

three terms,
$$\mathcal{L}_{\mathcal{T}}(x,y) = \lambda_1 \mathcal{L}_{\mathcal{T},\ell_1}^{\uparrow} + \mathcal{L}_{\mathcal{T},GAN} + \lambda_2 \mathcal{L}_{FM}$$
(5)

where, the latent space loss, $\mathcal{L}_{\mathcal{T},\ell_1} = \mathbb{E} \| \mathcal{T}(z_{\mathcal{D}} - z_y) \|_1$, penalizes the ℓ_1 distance of the corresponding latent codes. We introduce the adversarial loss $\mathcal{L}_{\mathcal{T},GAN}$, still in the form of LSGAN [47], to encourage the ultimate translated synthetic image $x_{\mathcal{X} \to \mathcal{Y}}$ to look real. Besides, we introduce

• 融合一下全局操作修复 inpainting, 局部操作修复原本就完好的区域

$$F_{fuse} = (1 - m) \odot \rho_{local}(F) + m \odot \rho_{global}(O), \quad (10)$$

where operator \odot denotes Hadamard product, and ρ_{local} and ρ_{global} denote the nonlinear transformation of residual blocks in two branches. In this way, the two branches con-

? local 修复和 全局 inpaint 结果直接相加?

Experiment

- 数据
 - training set Pascal VOC
 - 。 在 DIV2K 上合成数据, 真实老照片数据 test
 - 。 自己收集了 5718 张老照片但没 release 出来

训练时随机 crop 256x256 区域

- 量化比较 PSNR, SSIM, FID
- 效果比较 由于无GT,直接看图
- User study >> 找人看,几个方法的结果排名

Summary ﷺ

learn what & how to apply to our task

Code

• install https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/248#issuecomment-1344901139

Train Domain_A

Data Preparation class UnPairOldPhotos_SR(BaseDataset): ## Synthetic + Real old 随机 50% 概率取 Pascal VOC 或真实老照片。对于合成噪声

- 1. cv2.GaussianBlur P=70%
- 2. 加噪声 [synthesize_gaussian, synthesize_speckle, synthesize_salt_pepper] 转化为 numpy 采样 gaussian
- 3. 降低分辨率 + 在还原原分辨率

```
new_w=random.randint(int(w/2),w)
new_h=random.randint(int(h/2),h)
img=img.resize((new_w,new_h),Image.BICUBIC)
img=img.resize((w,h),Image.NEAREST) # P=0.5
```

4. JPEG 压缩

```
def convertToJpeg(im,quality):
    with BytesIO() as f:
    im.save(f, format='JPEG',quality=quality)
    f.seek(0)
    return Image.open(f).convert('RGB')
```

- <10% 概率,转为灰度图,再转回 RGB
- resize 到 256
- flip & normalize

Domain alignment loss

input_dict['label'] 进入 Encoder 获取 hidden tensor, 加上噪声还原 >> 作为 fake 数据给判别器

```
hiddens = self.netG.forward(input_concat, 'enc')
noise = Variable(torch.randn(hiddens.size()).cuda(hiddens.data.get_device()))
# This is a reduced VAE implementation where we assume the outputs are
multivariate Gaussian distribution with mean = hiddens and std_dev = all ones.
# we follow the the VAE of MUNIT
(https://github.com/NVlabs/MUNIT/blob/master/networks.py)
fake_image = self.netG.forward(hiddens + noise, 'dec')
```

KL loss

```
hiddens = self.netG.forward(input_concat, 'enc')
loss_G_kl = torch.mean(torch.pow(hiddens, 2)) * self.opt.kl
```

Global/models/networks.py

class Pix2PixHDModel(BaseModel) 中定义了 Generator, Discriminator

self.netG >> generator
 netG = GlobalGenerator_DCDCv2(input_nc, output_nc, ngf, k_size, n_downsample_global, norm_layer, opt=opt)
 定义 Encoder Decoder >> U-Net 结构, 具体参考 TAPAMI 版本pdf Page6

• self.netD >> discriminator

netD = MultiscaleDiscriminator(input_nc: 3, opt, ndf: 64, n_layers_D: 3,
norm_layer, use_sigmoid, num_D, getIntermFeat)

三层 PatchGAN discriminator,每层之间加个 AveragePooling

```
class NLayerDiscriminator(nn.Module)
- Conv2d & LeakyReLU # side = side / 2
- [Conv2d & norm & LeakyReLU] * 2 # 下采样 side = side / 2
- [Conv2d & norm & LeakyReLU] # 不下采样
```

NonLocal Block

https://github.com/tea1528/Non-Local-NN-Pytorch

Figure 2. A spacetime **non-local block**. The feature maps are shown as the shape of their tensors, e.g., $T \times H \times W \times 1024$ for 1024 channels (proper reshaping is performed when noted). " \otimes " denotes matrix multiplication, and " \oplus " denotes element-wise sum. The softmax operation is performed on each row. The blue boxes denote $1 \times 1 \times 1$ convolutions. Here we show the embedded Gaussian version, with a bottleneck of 512 channels. The vanilla Gaussian version can be done by removing θ and ϕ , and the dot-product version can be done by replacing softmax with scaling by 1/N.

class NonLocalBlock2D_with_mask_Res(nn.Module)