

Model Development Phase Template

Date	5th July 2024	
Team ID	739687	
Project Title	Workforce Retention System.	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
RandomForest Classifier::

Model Building With Random Forest Classifier

from sklearn.ensemble import Random ForestClassifier

ran = Random ForestClassifier (criterion = 'entropy', random_state = 0)

ran

V

Random ForestClassifier

RandomForestClassifier (criterion='entropy', random_state=0)

ran.fit(X_train,y_train)

Random ForestClassifier

RandomForestClassifier (criterion='entropy', random_state=0)

y_train_pred ran.predict(X_train)

DecisionTree Classifier:
```



```
Model Building With Decision Tree
from sklearn.tree import DecisionTreeClassifier
deci = DecisionTreeClassifier (criterion = 'entropy', random_state = 0)
deci.fit(X_train, y_train)
DecisionTreeClassifier
DecisionTreeClassifier (criterion='entropy', random_state=0)
y_train_pred deci.predict(X_train)
y_test_pred deci.predict(X_test)
#Confusion Matrix For Training Data With Decision Tree
confusion_matrix(y_train, y_train_pred)
array([[9134, 0],
[ 0, 2865]], dtype=int64)
Model Building with Support Vector Machine::
from sklearn.svm import SVC
svm = SVC(kernel = 'linear', random_state = 0)
svm.fit(X_train, y train)
SVC
SVC(kernel='linear', random state=0)
y train pred deci.predict(X train)
y_test_pred deci.predict(X_test)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Random Forest Regressor	Model Building With Random Forest Classifier from sklearn.ensemble import RandomforestClassifier ran = RandomforestClassifier(criterion = 'entropy', random_state = ran RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier RandomforestClassifier(randomforestClassifier) 2	98%	-
Decision Tree Regressor	Model Building With Decision Tree from sklearn.tree import DecisionTreeClassifier deci = DecisionTreeClassifier(criterion = 'entropy', random_state = 0) deci.fit(X_train,y_train) DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreeClassifier DecisionTreed = deci.predict(X_train) y_test_pred = deci.predict(X_train) y_test_pred = deci.predict(X_test) ### Sconfusion Matrix For Training Data With Decision Tree 3. Decision Tree >Traing Accuracy = 100.0 >Test Accuracy = 97.7333333333333333333333	97%	-
Gradient Boosting Regressor	Model Building with Support Vector Machine from sklearn.swm import SVC svm = SVC(kernel = 'linear', random_state = 0) svm.fit(x_train, y_train) - SVC SVC(kernel = 'linear', random_state.do) y_train_pred = decl.predict(x_train) y_test_pred = decl.predict(x_test) 4. Support Vector Machine >Training Accuracy = 100.0 >Testing Accuracy = 97.73333333333333	97%	-