Final Project

Making a Line Follower Vehicle

Goal

- Make the vehicle follow a dashed line
- Stop for 3 sec every 10 pairs of black+white stripes
- As fast as possible
- => Control **Speed** & **Direction**

Example

(You can design your own)

IR Sensor

Rules

- The chassis should be built from acrylic boards & 3D print(30g at most)
- The components described above (IR sensor, DC motor × 1, servo motor × 1, and Arduino Nano) will be provided
- We will also provide motor driver, tapped rod, nuts, bearings, rubber bands, zip ties, etc.
- You cannot use other components without our permission

Material List

- Acrylic board (3 mm thick) Size limit: A2
- Arduino Nano
- Servo motor (SG-90) Limit: 1
- DC motor (RF-370CA-15370) Limit: 1
- Motor driver (L298N)
- IR sensors (IRS-90)Limit: 4
- DuPont / single-core wires
- Threaded rod (M3*)
- Screws, nuts, & washers (M3*)
- Bearings $(3\times8^{\dagger})$
- Rubber bands
- Zip ties
- 9V battery and case
- Electric tape
- Super glue
- Putty

Materials are unlimited

(but please try to save resources & only 2 dc/servo motors are allowed)

^{*} nominal diameter: 3 mm, actual diameter is slightly smaller (~2.9)

[†] inner diameter: 3 mm, outer diameter: 8 mm

Motor Datasheet

MODEL	VOLTAGE		NO LOAD		AT MAXIMUM EFFICIENCY					STALL		
	OPERATING RANGE	NOMINAL	SPEED	CURRENT	SPEED	CURRENT	TORQUE		OUTPUT	TORQUE		CURRENT
			r/min	Α	r/min	Α	$mN \cdot m$	g∙cm	W	mN⋅m	g∙cm	Α
RF-370CA-15370	3 ~ 12	12V CONSTANT	5600	0.026	4840	0.17	2.48	25.3	1.25	18.3	187	1.06

UNIT: MILLIMETERS

ø1.2 HOLE **DIRECTION OF ROTATION** 43.0 REF. 10.5 30.8 1.7 _1.7 **RED MARK** ø6.45 ø2.0 SHAFT LENGTH 42.0 ISO M3.0×0.5 TAPPED HOLE

Specifications

- Stop for 3 seconds every 10 pairs of black+white stripes
- Each stripe is around 30 mm wide and 20 mm long

Get started with the sample code

```
2 /* Sample code for CSL final project
 3 /* Demonstrating 1) IR sensor, 2) Servo motor, and 3) DC Motor */
 6 // All grounds (GND) should be connected
7 // After finishing prototyping, you can power Nano by connecting a 9V battery to Vin pin
9 /**** TR Sensor ****/
10 #define ir sensor A2 // A0 pin on the sensor
11 // Vcc -> 5V
12 // GND -> GND
13
14
15 /**** Servo Motor ****/
16 #define servo pin 11 // PWM pin (orange)
17 // Red -> 5V
18 // Brown -> GND
19
20 #include <Servo.h>
21 Servo myservo;
22 int servo output = 0;
22
```

NTU COOL > 文件 > Lab > Final project > final_sample_code > final_sample_code.ino

Check your hardware as well when debugging!

Make Reality Space

- Administrators present, classroom & tool space available
 Administrators absent, only classroom space available
- No shifts on public holiday and make-up days
- Remember to book if you want to cut & print
- Check booking record & material weight

Booking form

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
10:00 - 13:00	O	Δ	O		Δ	Δ	Δ
14:00 - 17:00	O	O	Δ	CSL	O	Δ	Δ
18:00 - 21:00	Δ	Δ	O		Δ	Δ	Δ

Notes for Laser cutting

- Remove construction lines (dashed lines)
- Make sure the units are set properly (mm)
- Removing duplicated segments (lines) is preferable
- Beware of your material usage; try to remain under A2 (420 x 594 mm).

Notes for 3D printing

- Export files to .3mf or .stl
- Make sure the units are set properly (mm)
- Beware of your material usage; you should not use above 30g.
- Try to avoid using 3D printing if possible; most components can be laser cut.

Schedule

- Nov. 23 Final Project Chassis
- Nov. 30 Final Project Transmission and Steering
- Dec. 07 Final Project Control and Sensing
- Dec. 14 Final Race
- Dec. 21 Final Exam

Final Race

We will record your total lap time, your completeness, and check your stops

Rules:

- Penalty for not stopping: 10s each
- Interfere with the vehicle: 30s each

Awards:

- Fastest racer(Track 1 & 2)
- Smallest kart(need to pass track 1 & 2)
- Best completion rate
- Most innovative