Классификация текстов комментариев по классам токсичности

A Preprint

Макаров Александр Владиленович студент НГТУ АВТФ, 3 курс makarov.alxr@yandex.ru

22 февраля 2019 г.

Abstract

1 Введение

Анализ эмоциональной окраски текстов на естественном языке - одна из классических задач NLP. В этой статье будет произведен обзорный анализ существующих методов её решения разной сложности. Комментарии собраны из интернет ресурса "Википедия"и содержат специфические особенности, о которых поговорим в разделе "Анализ датасета".

2 Анализ датасета

Данная задача является классической задачей multi-label классификации. Для успешного обучения требуется сбалансированный набор данных.

K сожалению, большая часть датасета содержит в себе примеры, не относящиеся ни κ одному классу - всего их 0.898%

При этом, чем к большему количеству классов относится пример, тем меньшее количество таких примеров:

Количество примеров		
Количество клас-	Количество приме-	
COB	ров	
0 классов	143346	
1 класс	6360	
2 класса	3480	
3 класса	4209	
4 класса	1760	
5 классов	385	
6 классов	31	

А некоторые сочетания классов не встречаются вовсе, некоторые же - только один раз.

Средняя длина сообщения - 394 символа.

Кроме того, тексты содержат большое количество опечаток и нестандартных обозначений. В текстах встречаются общеупотребимые сокращения, URL, даты и числа.

Самые популярные слова с яркой негативной окраской: fuck, nigger, suck, shit, hate, fat, die.

3 Линейная регрессия на TF-IDF и n-gram'ы

Наиболее часто встречающимся маркером оскорбительных комментариев являются табуированные слова: ругательства, оскорбления, уничижительные выражения, слова с яркой негативной окраской и τ и

Появляется возможность выделения текстов в группы на основе только знаковых слов, с чем должна неплохо справляться линейная регрессия. В качестве входных значений выделяются n-gram'ы по словам и символам с окном, равным трём.

Для оценки эффективности работы алгоритма возмём AUC-ROC (о причинах этого решения - пункт 4.3.2)

Результаты на тестовой выборке:

1 coysibilatisi na recrobon bisoopike.			
AUC-ROC	micro f1 score	macro f1 score	
0.89	0.92	0.63	
0.96	0.98	0.63	
0.91	0.95	0.66	
0.92	0.98	0.54	
0.92	0.96	0.68	
1	0.99	0.81	
	AUC-ROC 0.89 0.96 0.91 0.92	AUC-ROC micro f1 score 0.89 0.92 0.96 0.98 0.91 0.95 0.92 0.98 0.92 0.98 0.92 0.96	

4 Нейросетевй подход

Поскольку данные сырые, pipeline состоит из трёх главных частей:

- 1. Препроцессинг исходного текста
- 2. Получение эмбеддингов
- 3. Нейросеть

4.1 Препроцессинг

Для исправления опечаток используется перебор по словарю с заменой слова на ближайшее по расстоянию Левенштейна. Помимо явных ошибок, тексты изобилуют сокращениями и нестандарными написаниями слов, распространённых в интернете. Для того, чтобы привести их к одной форме, проще всего использвать кастомные фильтры, например, на основе регулярных выражений.

4.2 Эмбеддинг

Для представления текстов в векторной форме используется некий эмбеддинг. Задача довольно локальна, и его можно получить в процессе обучения, используя Embedding layer, изначально инициализированный случайными значениями. Однако, лучше использовать предобученный эмбеддинг, дообучая его вместе с моделью. Это ускоряет сходимость модели и, в среднем, улучшает итоговый результат.

Такие глубокие модели как BERT (и любые другие transformer-like модели) для получения эмбеддингов не рассматривались, отчасти потому, что в рассматриваемом в данной работе случае это overhead метод. Таким образом, для английского языка остаются ещё как минимум три проверенные модели:

- 1. Word2Vec
- 2. GloVe
- 3. Fasttext

Первые два обладают существенным недостатком - в качестве атомарного элемента они используют слово. В случае с комментариями из интернета, даже после предобработки текстов остается очень много артефактов и нестандартных написаний. Это приводит к искусственному увеличению количества векторных представлений одних и тех же слов.

Fasttext использует n-gram'ы, что обеспечивает ему большую устойчивость. Даже при нескольких вариантах написания одного и того же слова их векторные представления будут находится очень близко в общем пространстве признаков. Именно поэтому далее в качестве инициализатора для эмбеддинг слоёв используется fasttext [1]

4.3 Выбор модели нейросети

Условия датасета приводят к тому, что

1. Классическое решение - использование Text-RNN. Для суммирования результатов применяются pooling слои. Кроме того, для выделения ключевых фич уместно использовать Attention слой, а для увеличения связности - последнее скрытое состояние реккурентного блока.

2. Исследования последних лет показывают эффективность применения свёрточных сетей для классификации текстов. Опираясь на работу Ye Zhang и Byron C. Wallace [3], было выдвинуто предположение, что обобщающей способности большого количества карт различного размера окажется достаточно для получения высокоуровневых признаков:

3. Попытка объеденить вышеназванные модели - реккурентная нейросеть со свёртками и пулингом:

Все эти модели достаточно просты, чтобы не сильно переобучаться на данных. Реккурентные сети, свёртки и пулинг - классические инструменты для классификации текстов.

4.3.1 Выбор функции потерь

Определим функцию ошибки, с помощью которой будем обучать модели. Для этого формализуем задачу, которую должна решить нейросеть. Для каждого комментария модель выдвигает шесть (число классов) гипотез - принадлежит ли пример к каждому классу. Таким образом, мы можем считать, что нейросеть генерирует некое распределение вероятностей. В этом случае лучший результат будет означать увеличение правдоподобия, из чего выводится функция ошибки - известная нам как logloss или кросс энтропия.

4.3.2 Выбор метрики

Выбор метрики - одно их самых важных условий, поскольку на этом основании определяется, какая модель лучше справляется с задачей. Т.к. метрика должна адекватно отражать качество решения конкретной задачи, при выборе следует учесть следующее:

- 1. Классы сильно несбалансированны.
- 2. Для конвертации вещественного значения, предсказанного нейросетью, в бинарную метку необходимо выбрать границу, разделяющую два класса (например, 0.5).
- 3. Для двух разных моделей на одной стадии обучения это пороговое значение будет различаться.

Опираясь на эти условия, была выбрана метрика AUC-ROC. Её рассчет не привязан к пороговому значению, кривая хорошо показывает себя в задачах с несбалансированными классами и AUC-ROC гораздо меньше подвержена завышению качества на маленьких датасетах, чем AUC-PR[2]

5 Результаты тестов

Модели проверялись на тестовом датасете и обучались, пока ошибка не переставала уменьшаться быстрее 5е-4 (т.н. механизм ранней остановки).

Модель	AUC-ROC
Average RNN	0.9852
Text CNN	0.9843
Average RCNN	0.9847

Список литературы

- [1] English word vectors trained using fastText. https://fasttext.cc/docs/en/english-vectors.html
- [2] Jesse Davis, Mark Goadric, The Relationship Between Precision-Recall and ROC Curves
- [3] Ye Zhang, Byron C. Wallace. A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification https://arxiv.org/pdf/1510.03820.pdf