Aufgabe 1 (3 Punkte): Aufgabe 2 (3 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (5 Punkte): Familienname: Aufgabe 5 (3 Punkte): Aufgabe 6 (1 Punkte): Aufgabe 7 (2 Punkte): Aufgabe 8 (4 Punkte): Vorname: Aufgabe 9 (1 Punkte): Aufgabe 10 (4 Punkte): Aufgabe 11 (3 Punkte): Aufgabe 12 (3 Punkte): Matrikelnummer: Aufgabe 13 (6 Punkte): Gesamtpunktzahl:

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM

01. März 2015

Aufgabe 1 (3 Punkte). Was sind die Bestandteile M, e_{\min} , e_{\max} des Gleitkommazahlsystems $\mathbb{F}(2, M, e_{\min}, e_{\max})$? Wie lässt sich jede Gleitkommazahl $x \in \mathbb{F}(2, M, e_{\min}, e_{\max})$ darstellen? Welchen Wert haben die größte und die kleinste positive normalisierte Gleitkommazahl im double-Gleitkommazahlsystem $\mathbb{F}(2, 53, -1021, 1024)$?

Lösung zu Aufgabe 1.

Aufgabe 2 (3 Punkte). Was ist der Output des folgenden Programms?

```
#include <stdio.h>
2
    int z = 10;
3
    void fct(int& x, int& y, int& z);
5
6
    int main() {
7
      int x = 20;
      int y = 30;
9
10
      printf("(1) %d,%d,%d\n",x,y,z);
12
        int x = 100;
13
        y = 3;
14
        fct(x,y,z);
15
        \mathbf{printf}("(2) \%d,\%d,\%d\backslash n",x,y,z);
16
        x = 1;
17
        printf("(3) \%d,\%d,\%d\n",x,y,z);
19
      printf("(4) \%d,\%d,\%d\n",x,y,z);
20
      return 0;
21
22
23
    void fct(int&x, int&y, int&z) {
24
      printf("(5) %d,%d,%d\n",x,y,z);
25
      if(x >= y) {
26
        z = x;
27
28
      else {
29
        z = y;
30
31
      printf("(6) %d,%d,%d\n",x,y,z);
32
      y = 40;
33
```

Lösung zu Aufgabe 2.

Aufgabe 3 (2 Punkte). Eine untere Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ ist eine Matrix mit der Eigenschaft $A_{jk} = 0$ für k > j. Für n = 5 hat A beispielsweise die Form

$$A = \begin{pmatrix} A_{11} & 0 & 0 & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 & 0 \\ A_{31} & A_{32} & A_{33} & 0 & 0 \\ A_{41} & A_{42} & A_{43} & A_{44} & 0 \\ A_{51} & A_{52} & A_{53} & A_{54} & A_{55} \end{pmatrix}.$$

Zur effizienten Speicherung wird $A \in \mathbb{R}^{n \times n}$ in Form eines Vektors $a \in \mathbb{R}^N$ mit $N = \sum_{j=1}^n j = \frac{n(n+1)}{2}$ abgelegt, d.h. $A_{jk} = a_\ell$ für einen geeigneten Index ℓ , der eindeutig von j und k abhängen muss. Leiten Sie eine Formel für ℓ her (in Abhängigkeit von j und k). Begründen Sie Ihre Formel.

Lösung zu Aufgabe 3.

Aufgabe 4 (5 Punkte). Schreiben Sie eine C++ Klasse TriMatrix zur Speicherung von unteren Dreiecksmatrizen $A \in \mathbb{R}^{n \times n}$. In der Klasse soll neben der Dimension n auch der (dynamische) Koeffizientenvektor $a \in \mathbb{R}^N$ mit $N = \frac{n(n+1)}{2}$ gespeichert werden. Ferner soll die Klasse über die folgenden Methoden verfügen:

- Destruktor,
- Konstruktor zum Allokieren einer unteren Dreiecksmatrix $A \in \mathbb{R}^{n \times n}$ mit Nulleinträgen,
- Kopierkonstruktor,
- Zuweisungsoperator,
- \bullet getDim-Methode, um die Dimension n auszulesen,
- Zugriff mittels (,) auf die Koeffizienten der Matrix, d.h. A(j,k) erlaubt es, den Koeffizienten A_{jk} zu lesen und/oder zu schreiben.

Hinweis. An dieser Stelle sollen nur die Signaturen implementiert werden, nicht die Funktionalität der Methoden. Beachten Sie, dass der Zugriff mittels (,) auch für const-Objekte erlaubt ist, d.h. Sie müssen diese Methode doppelt implementieren!

Aufgabe 5 (3 Punkte). Schreiben Sie den Konstruktor der Klasse TriMatrix.Lösung zu Aufgabe 5.

Aufgabe 6 (1 Punkt). Schreiben Sie den Destruktor der Klasse TriMatrix. Lösung zu Aufgabe 6. Aufgabe 7 (2 Punkte). Schreiben Sie den Koeffizientenzugriff der Klasse TriMatrix für const-Objekte. Stellen Sie mittels assert sicher, dass für $A \in \mathbb{R}^{n \times n}$ die Indizes $1 \le k \le j \le n$ erfüllen.

Lösung zu Aufgabe 7.

Aufgabe 8 (4 Punkte). Schreiben Sie den Kopierkonstruktor der Klasse TriMatrix. Lösung zu Aufgabe 8. Aufgabe 9 (1 Punkt). Schreiben Sie die Methode getDim der Klasse TriMatrix. Lösung zu Aufgabe 9. Aufgabe 10 (4 Punkte). Überladen Sie den + Operator so, dass er die Summe $C = A + B \in \mathbb{R}^{n \times n}$ zweier unterer Dreiecksmatrizen $A, B \in \mathbb{R}^{n \times n}$ berechnet. Stellen Sie mittels assert sicher, dass A und B dieselbe Dimension haben.

Hinweis. Beachten Sie, dass die Funktion nur Koeffizienten C_{jk} für $1 \le k \le j \le n$ berechnen soll und auch nur auf entsprechende Koeffizienten von A und B zugreifen darf.

Lösung zu Aufgabe 10.

Aufgabe 11 (3 Punkte). Bestimmen Sie den Aufwand Ihrer Funktion aus Aufgabe 10. Falls die Funktion für $n=10^3$ eine Laufzeit von 3 Sekunden hat, welche Laufzeit erwarten Sie aufgrund des Aufwands für $n=10^4$? Begründen Sie Ihre Antwort!

Lösung zu Aufgabe 11.

Aufgabe 12 (3 Punkte). Beweisen Sie mathematisch, dass das Produkt $C = AB \in \mathbb{R}^{n \times n}$ zweier unterer Dreiecksmatrizen $A, B \in \mathbb{R}^{n \times n}$ wieder eine untere Dreiecksmatrix ist, indem Sie die Laufindizes der Summe des allgemeinen Matrizenprodukts

$$C_{j\ell} = \sum_{k=1}^{n} A_{jk} B_{k\ell}$$
 für $j, \ell = 1, \dots, n$

mithilfe der Dreiecksstruktur von A und B vereinfachen.

Lösung zu Aufgabe 12.

Aufgabe 13 (6 Punkte). Überladen Sie den * Operator so, dass er das Produkt $C = AB \in \mathbb{R}^{n \times n}$ zweier unterer Dreiecksmatrizen $A, B \in \mathbb{R}^{n \times n}$ berechnet. Stellen Sie mittels assert sicher, dass A und B dieselbe Dimension haben.

Hinweis. Beachten Sie, dass die Funktion nur Koeffizienten C_{jk} für $1 \le k \le j \le n$ berechnen soll und auch nur auf entsprechende Koeffizienten von A und B zugreifen darf. Verwenden Sie dazu Ihre Erkenntnisse aus Aufgabe 12.

Lösung zu Aufgabe 13.