

Tesi in Metodi per il Ritrovamento dell'informazione ANALISI DELLA SOSTENIBILITÀ DEI SISTEMI DI RACCOMANDAZIONE A STATO DELL'ARTE E PROPOSTA DI UN ADDESTRAMENTO SOSTENIBILE

Relatore: Prof. Pasquale Lops Relatore: Prof. Cataldo Musto Correlatore: Dott. Giuseppe Spillo Laureando: Emanuele Fontana

Università degli Studi di Bari Aldo Moro

Sostenibilità e Al

- Sostenibilità: Soddisfare bisogni senza compromettere il futuro
- Agenda 2030 con 17 obiettivi
- Sostenibilità ambientale: mantenimento del capitale naturale
- Green Al: considera l'impatto ambientale.
- Red Al: non considerara le risorse impiegate.

RecSys - Introduzione

- Software che suggerisce all'utente elementi di interesse basandosi sulle preferenze e i comportamenti passati.
- Migliorano l'esperienza utente
- Basati su tecniche di Machine Learning

Figura: Alcuni famose piattaforme che utilizzano sistemi di raccomandazione

RecSys - Tipologie

- Collaborative Filtering: basato sulle preferenze degli utenti (user-user, item-item)
- Content-based Filtering: basato sul contenuto degli item.
- Knowledge-aware: utilizzano conoscenza esterna (es. knowledge graph)
- **Hybrid**: combinazione delle precedenti.

Reserch Questions

- RQ1: Qual è il trade-off tra emissioni e performance dei modelli di raccomandazione a stato dell'arte¹?
- RQ2: E' possibile usare un criterio di early-stopping basato sulle emissioni per migliorare il trade-off tra emissioni e performance dei modelli di raccomandazione a stato dell'arte?
- RQ3: Quali parametri possono essere utilizzati in questi criteri per migliorare il trade-off?

¹Modelli classici a cui fare riferimento

Lavoro svolto

Per rispondere alle domande di ricerca sono state svolte le seguenti attività:

- Benchmarking: Addestramento di modelli di raccomandazione e misurazione delle emissioni
- Addestramento sostenibile: Studio del criterio di early-stopping
- Parametri di miglioramento: Studio di parametri per migliorare il trade-off
 Sono state utilizzate le librerie RecRole e CodeCarbon

$$\mathit{CI} = \sum \mathsf{e}_{s} \cdot \mathsf{p}_{s}$$

 $emission = Cl \cdot PC$

Dataset Utilizzati

- MovieLens: dataset di recensioni di film (1M,10M)
- Amazon-Books: dataset di recensioni di libri
- LastFM: dataset di ascolti musicali

Modelli a stato dell'arte utilizzati

- Modelli di raccomandazione Collaborative Filtering: BPR,CFKG, DMF, KGNNLS, LINE, MultiDAE, LightGCN, ItemKNN
- Modelli di raccomandazione Knowledge Aware: CKE, KGCN, NFCF, DGCF

Benchmarking - Risultati emissioni

Tabella: Emissioni di CO2 per i vari modelli

Benchmarking - Trade Off

Figura: Esempio di trade-off tra emissioni e performance

Addestramento sostenibile - Introduzione

Approssimazione della derivata della curva:

$$\frac{f(x_{i+1})-f(x_i)}{x_{i+1}-x_i}$$

Addestramento sostenibile - Esplorazione

 Scopo: capire se è possibile addestrare un modello di raccomandazione in modo sostenibile

Esperimento	Dataset	Soglia	Epoche
Esperimento 1	MovieLens1M	50	5
Esperimento 2 LastFM		30	7
Esperimento 3	Amazon_Books	40	6

Tabella: Parametri degli Esperimenti

• Conclusioni: Alcuni modelli (es. DGCF) sono molto sensibili al nuovo criterio, altri (es. DMF) meno

Addestramento sostenibile - Confronto criteri

 Scopo: confrontare i criteri di addestramento sostenibile (dataset MovieLens1M)

Esperimento	Soglia	Epoche
Esperimento 1	40	5
Esperimento 2	30	5
Esperimento 3	40	6
Esperimento 4	30	6
Esperimento 5	40	7
Esperimento 6	30	7

Tabella: Parametri degli Esperimenti

Addestramento sostenibile - Esempio sensibilità

Figura: Sensibilità dei parametri con metrica Recall@10

Addestramento sostenibile - Risultati confronto criteri

Modello	Parametro più impattante	Migliori risultati
BPR	Soglia	Soglia 40 e 6 epoche
CFKG	Soglia	Soglia 40 e 6 epoche
CKE	Epoche consecutive	Soglia 40 e 6 epoche
DMF	Nessuno predominante	Soglia 40 e 7 epoche
KGCN	Epoche consecutive	Soglia 40 e 5 epoche
KGNNLS	Soglia	Soglia 40 e 5 epoche
LINE	Soglia	Soglia 40 e 7 epoche
MultiDAE	Soglia	Soglia 40 e 7 epoche
LightGCN	Soglia	Soglia 40 e 6 epoche
NGCF	Epoche consecutive	Soglia 40 e 5 epoche
DGCF	Epoche consecutive	Soglia 40 e 6 epoche

Tabella: Parametri più impattanti e migliori risultati per ciascun modello

Addestramento sostenibile - Risultati confronto criteri

Tipo di Modello	Parametro predominante	Numero di Modelli	Modelli
Collaborative Filtering	Soglia	5	BPR, DMF, LightGCN, MultiDAE, LINE
Collaborative Filtering	Epoche	2	NGCF, DGCF
Knowledge Aware	Soglia	2	CFKG, KGNNLS
Knowledge Aware	Epoche	2	CKE, KGCN

Tabella: Riassunto dei parametri dominanti per tipo di modello

Conclusioni

Benchmarking

Si dimostra come pesso i modelli più complessi hanno emissioni maggiori non giustificate da un miglioramento delle performance elevato.

Addestramento sostenibile

E' possibile ridurre le emissioni di un modello di raccomandazione senza perdere in modo significativo di performance

Sviluppi futuri

Benchmarking

E' necessario effettuare più esperimenti variando dataset, modelli e hardware per avere una visione più completa del problema.

Addestramento sostenibile

Eseguire più esperimenti con altri dataset e altri hardware per confermare o meno i risultati ottenuti.

Iperparametri

Tutti gli esperimenti sono stati effettuati con iperparametri di default. Dunque tutta la fase di benchmarking e di addestramento sostenibile potrebbe essere rivista anche in termini di ricerca degli iperparametri migliori.

Grazie per l'attenzione!

Relatore: Prof. Pasquale Lops Relatore: Prof. Cataldo Musto Correlatore: Dott. Giuseppe Spillo Laureando: Emanuele Fontana

Università degli Studi di Bari Aldo Moro