1.
$$f(x) = (x^{2.3} + x \ln x^5) (1.1^{x+1} + 1.2^x) + (x^2 + 1.2^x) (x^3 + .92^x)$$

 $\rightarrow O(x^{2.3} + 5x \ln x) = O(x^{2.3})$
 $\rightarrow O(1.1^{x+1} + 1.2^x) = O(1.2^x)$
 $\rightarrow O(x^2 + 1.2^x) = O(1.2^x)$
 $\rightarrow O(x^3 + .92^x) = O(x^3)$
 $O(x^{2.3}) * O(1.2^x) + O(1.2^x) * O(.92^x)$
 $O(x^{2.3} * 1.2^x) = g(x)$

2. No.

Consider x = 6:

 $\frac{x^2 6^x}{6^x} = x^2$, which cannot be upper bound by any constant k. Therefore $x^2 6^x$ is not O(6^x) Now consider x > 6:

 $\lim_{x \to \infty} \left(\frac{x^2 6^x}{a^x} \right) = 0$, which shows there is an upper bound by some constant k. Therefore $x^2 6^x$ is in O(6^x).

However, There are infinite real numbers such that a > 6, therefore there is no smallest real number that places $x^2 6^x$ in $O(6^x)$.

3. $CA10_{16} + 4F57_{16}$:

$$7 + 0 = 7$$

$$5 + 1 = 6$$

$$A + F = 19$$
 Carry the 1 to the next line

$$1 + C + 4 = 11$$

$$CA10_{16} + 4F57_{16} = 11967_{16}$$

4. 11011₂ * 1001₂: (x is placeholder)

xxx11011

xx000000

x0000000

11011000

11110011 ANSWER

5.
$$621 = 82 * 7 + 47$$

 $82 = 47 * 1 + 35$
 $47 = 35 * 1 + 12$
 $35 = 12 * 2 + 11$
 $12 = 11 * 1 + 1$
 $11 = 1 * 11 + 0$

The last nonzero remainder is 1, so by the Euclidean Algorithm, the integers 621 and 82 are relatively prime.

6.
$$n * 35 = 32n + 3n$$

 $= 2^{5}n + 3n$
 $= 2^{5}n + 2n + n$
Mem $= 2^{5}n + 2n$
Result = Mem + n

7. Just like multiplying a decimal number by 10_{10} , when multiplying an octal number by 10_8 (8_{10}) you simply add a zero to the right side of the number like a bit-shift. In the instance of $n = 741_8$,

$$n * 108 = 74108$$

8. The division in this case is the opposite direction of shift of multiplication, perform the "bit-shift" when dividing with powers of 10_b . The cut bit becomes the remainder. In the instance of $n = 741_8$,

$$\frac{741_8}{10_8} = 74 \text{ with a remainder of 1.}$$

9.
$$n = 0: 3^{2^0} = 3^1 = 3 \mod(13)$$

 $n = 1: 3^{2^1} = 3^2 = 9 \mod(13)$
 $n = 2: 3^{2^2} = 3^4 = 81 \mod(13)$

If n is odd then: $3^{2^n} = 9 \mod(13)$ If n is even then: $3^{2^n} = 3 \mod(13)$ 10. Calculating hex numbers A...A requires a geometric summation. This can be defined by:

In Hex:

$$\sum_{0}^{n} 0xA * 0x10^{n} = 0xA \sum_{0}^{n} 0x10^{n}$$

In Decimal:

$$\sum_{0}^{n} 10 * 16^{n} = 10 \sum_{0}^{n} 16^{n}$$

This simplifies by the Geometric Sum Formula to:
$$10\frac{16^{n}-1}{16-1} = 10\frac{16^{n}-1}{15} = 2\frac{16^{n}-1}{3}$$

11. EXTRA CREDIT:

