Proof of Individual Agent Opinion Convergence in a Clique Using Classic Update Function

Bernardo Teixeira de Amorim Neto

bernardoamorim@dcc.ufmg.br

March 2020

1 Introduction

Given the original article's unproven conjectures about the polarization model, this article proves a smaller conjecture: the convergence of individual agent belief in cliques with constant influence using the classic update measure.

2 Definitions

In the classic update function, $Bel_p^{t+1}(a_i|a_j)$ can be written in the following form:

Definition 1
$$Bel_p^{t+1}(a_i|a_j) = Bel_p^t(a_i) + In(a_j, a_i)(Bel_p^t(a_j) - Bel_p^t(a_i)).$$

And the classic update function, $Bel_p^{t+1}(a_i)$ is written as:

Definition 2
$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} \sum_{a_j \in A} Bel_p^t(a_i|a_j).$$

And let's define a clique as:

Definition 3 A clique influence graph In^{clique} representing an idealized totally connected social network in which every agent exerts considerable influence on every other agent: $In(a_i,a_j) = c$, (0 < c < 1), for every i, j.

3 Proofs

3.1 Some simplifications

Since in a clique the influence is constant (we called this constant c), we can write:

$$Bel_p^{t+1}(a_i|a_j) = Bel_p^t(a_i) + c \ (Bel_p^t(a_j) - Bel_p^t(a_i)).$$

Thus:

$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} \sum_{a_i \in A} \left(Bel_p^t(a_i) + c \left(Bel_p^t(a_j) - Bel_p^t(a_i) \right) \right).$$

We can then separate the summation and write it as:

$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_i) + \sum_{a_j \in A} c \left(Bel_p^t(a_j) - Bel_p^t(a_i) \right) \right).$$

In the first summation, a_i is independent of a_j . Since there are |A| a_j 's:

$$Bel_p^{t+1}(a_i) = \frac{1}{|A|} |A| \times Bel_p^t(a_i) + \frac{1}{|A|} \sum_{a_j \in A} c \ (Bel_p^t(a_j) - Bel_p^t(a_i)).$$

$$= Bel_p^t(a_i) + \frac{1}{|A|} \sum_{a_j \in A} c \ (Bel_p^t(a_j) - Bel_p^t(a_i)).$$

$$= Bel_p^t(a_i) + \frac{c}{|A|} \sum_{a_i \in A} (Bel_p^t(a_j) - Bel_p^t(a_i)).$$

Separating the summation again:

$$Bel_p^{t+1}(a_i) = Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_i \in A} Bel_p^t(a_i) - \sum_{a_i \in A} Bel_p^t(a_i) \right).$$

From this we can see in the second summation that the terms are independent of the indices, thus:

$$Bel_p^{t+1}(a_i) = Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_j) - |A| \times Bel_p^t(a_i) \right)$$

$$= Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_j) \right) - \frac{c}{|A|} \left(|A| \times Bel_p^t(a_i) \right)$$

$$= Bel_p^t(a_i) - c \times Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_j) \right)$$

$$= (1 - c) \times Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_j) \right)$$

Now that we simplified $Bel_p^{t+1}(a_i)$, we will show that the summation of all beliefs keeps constant throughout all t's:

$$\sum_{a_i \in A} Bel_p^{t+1}(a_i) = \sum_{a_i \in A} \left((1-c) \times Bel_p^t(a_i) + \frac{c}{|A|} \left(\sum_{a_j \in A} Bel_p^t(a_j) \right) \right)$$

It is clear that the summation of all beliefs keeps constant in a time stamp t, thus let's call this summation S_t :

Lemma 1 Given a clique influence graph with S_t as the sum of the beliefs in the "t'th moment.

$$S_{t+1} = S_t$$

3.2 Proof of Lemma 1

$$\sum_{a_i \in A} Bel_p^{t+1}(a_i) = \sum_{a_i \in A} \left((1-c) \times Bel_p^t(a_i) + \frac{c}{|A|} S_t \right)$$

$$= \sum_{a_i \in A} \left((1-c) \times Bel_p^t(a_i) \right) + \sum_{a_i \in A} \left(\frac{c}{|A|} S_t \right)$$

$$= (1-c) \times \sum_{a_i \in A} Bel_p^t(a_i) + \sum_{a_i \in A} \left(\frac{c}{|A|} S_t \right)$$

By definition of S_t , the we can write:

$$\sum_{a_i \in A} Bel_p^{t+1}(a_i) = (1 - c) S_t + \sum_{a_i \in A} \left(\frac{c}{|A|} S_t \right)$$

Since the second summation is independent of a_i :

$$\sum_{a_i \in A} Bel_p^{t+1}(a_i) = (1 - c) |S_t + A| \frac{c}{|A|} |S_t|$$

$$= (1 - c) |S_t + c| |S_t|$$

$$\sum_{a_i \in A} Bel_p^{t+1}(a_i) = S_t$$

Now we showed that, for every t, $S_{t+1} = S_t$, by induction it shows that all S_t have the same value.

Theorem 1 In a clique with constant influence c, (0 < c < 1), all agents believes converge to the same value: $\frac{S_t}{|A|}$

3.3 Proof of theorem 1

As we showed before $Bel_p^{t+1}(a_i)$ can be written as:

$$Bel_p^{t+1}(a_i) = (1-c) \times Bel_p^t(a_i) + \frac{c}{|A|} S_t$$

To simplify the notation, we will call k=1-c and $C=\frac{c}{|A|}\times S_t$ and $x_t=Bel_p^t(a_i)$, we can do this w.l.o.g. because we proved that S_t is constant throughout the time, thus both k and C are constant:

$$Bel_p^{t+1}(a_i) = k \times Bel_p^t(a_i) + C$$

If we expand this, we can see a pattern:

$$Bel_p^{t+2}(a_i) = k \ x_{t+1} + C$$

= $k \ (k \ x_t + C) + C$
= $k^2 \ x_t + k \ C + C$

$$Bel_p^{t+3}(a_i) = k \ x_{t+2} + C$$

= $k (k^2 x_t + k C + C) + C$
= $k^3 x_t + k^2 C + k C + C$

Generically we can write $Bel_p^{t+n}(a_i)$ as:

$$Bel_p^{t+n}(a_i) = k^n \ x_t + \sum_{i=0}^{i=n-1} (k^i \ C)$$
$$= k^n \ x_t + C \times \sum_{i=0}^{i=n-1} k^i$$

Plugging t = 0 we get a formula for the value of $Bel_p^n(a_i)$ through time:

$$Bel_p^n(a_i) = k^n \ x_0 + \sum_{i=0}^{i=n-1} (k^i \ C)$$
$$= k^n \ x_0 + C \times \sum_{i=0}^{i=n-1} k^i$$

As $n \to \infty$, k^n clearly goes to 0, since k = 1 - c and 0 < c < 1. Thus:

$$\lim_{n \to \infty} Bel_p^n(a_i) = \lim_{n \to \infty} \left(C \times \sum_{i=0}^{i=n-1} k^i \right)$$
$$= C \times \lim_{n \to \infty} \sum_{i=0}^{i=n-1} k^i$$

This summation is a very known series, the geometric series, since 0 < k < 1, and we know this result equals:

$$\lim_{n \to \infty} Bel_p^n(a_i) = C \ \frac{1}{1 - k}$$

Which by the definition of C and k equals:

$$\lim_{n \to \infty} Bel_p^n(a_i) = \left(\frac{c}{|A|} S\right) \left(\frac{1}{c}\right)$$
$$= \frac{S}{|A|}$$

Since a_i is arbitrary, all a_i 's converge for the same value, as we wanted to prove.

4 Conclusion

With this we complete out proofs, and they make a lot of sense intuitively. In a totally connected society and a classic update, the opinions converge to their averages.