Outline

Abstract

QUESTION:

3 ANSWERS:

Abstract

• This document contains the explanation of question 9.12 of Papoulis Pillai Probability book of chapter sequence of random variables.

ASSIGNMENT-7

MUSKAN JAISWAL -cs21btech11037

May 2022

Show that :- If x(t) is a process with zero mean and auto correlation $f(t_1)f(t_2)w(t_1-t_2)$, then the process $y(t)=\frac{x(t)}{f(t)}$ is WSS with auto correlation $w(t_1-t_2)$. If x(t) is white noise with auto correlation $q(t_1)\times\delta(t_1-t_2)$ then the process $z(t)=\frac{x(t)}{q(t)}$ is WSS white noise with auto correlation $\delta(t_1-t_2)$.

1st part:-

According to question , x(t) is a zero mean process. So, E(x(T))=0 and $u_y = u_x \int_{-\infty}^{\infty} f(\alpha) d\alpha$ $y(t) = \frac{x(t)}{f(t)}$ $R_{yy}(t_1, t_2) = \frac{R_{xx}(t_1, T_2)}{f(t_1)f(t_2)}$ $= f(t_1)f(t_2)w(t_1 - t_2)\frac{f(t_1)f(t_2)}{f(t_1)f(t_2)}$ $= w(t_1 - t_2)$

2nd part:-

x(t) is a white noise process which means
$$R_x(t_1-t_2)=F^{-1}(N_0/2)=N_0\delta(t_1-t_2)/2$$
 $\delta(x)=\{\infty \quad x=0 \ 0 \quad \text{$x\neq 0$}\}$

This shows that $X(t_1)$ and $x(t_2)$ are correlated only when $t_1=t_2$ and uncorrelated when $t_1\neq t_2$. Therefore, $R_{xx}(t_1,t_2)=0$, when t_1 is not equal to t_2

$$R_{xx}(t_1,t_2) = q(t_1) \times \delta(t_1-t_2), whent_1 = t_2$$
 Hence, we can write $R_{xx}(t_1,t_2)$ as $(q(t_1))^{1/2}(q(t_2))^{1/2} \times \delta(t_1-t_2) \quad (q(t_1)=q(t_2))$ $z(t) = x(t) \frac{1}{q(t)}$ $R_{zz} = \frac{q(t_1)q(t_2)\delta(t_1-t_2)}{q(t_1)q(t_2)}$ $R_{zz} = \delta(t_1-t_2)$

Hence, proved