Distributed Clustering

Barnabás Póczos

Contents

☐ Clustering	
□K-means	
☐ Mixture of Gaussians	

Clustering

What is clustering?

Clustering:

The process of grouping a set of objects into classes of similar objects

- -high intra-class similarity
- -low inter-class similarity
- -It is the most common form of unsupervised learning

Clustering is Subjective

What is clustering?

Clustering:

The process of grouping a set of objects into classes of similar objects

- -high intra-class similarity
- -low inter-class similarity
- -It is the most common form of unsupervised learning

Clustering is subjective

Simpson's Family

School Employees

Females

Males

What is Similarity?

Hard to define! ...but we know it when we see it

The K- means Clustering Problem

K-means Clustering Problem

Given a set of observations (x_1, x_2, \dots, x_n) , where $x_i \in \mathbb{R}^d$

K-means clustering problem:

Partition the *n* observations into *K* sets $(K \le n)$ **S** = $\{S_1, S_2, ..., S_K\}$ such that the sets minimize the within-cluster sum of squares:

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in S_i} \left\| \mathbf{x}_j - \boldsymbol{\mu}_i \right\|^2$$

where μ_i is the mean of points in set S_i .

K-means Clustering Problem

Given a set of observations (x_1, x_2, \ldots, x_n) , where $x_i \in \mathbb{R}^d$

K-means clustering problem:

Partition the *n* observations into *K* sets $(K \le n)$ **S** = $\{S_1, S_2, ..., S_K\}$ such that the sets minimize the within-cluster sum of squares:

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in S_i} \left\| \mathbf{x}_j - \boldsymbol{\mu}_i \right\|^2$$

where μ_i is the mean of points in set S_i .

How hard is this problem?

The problem is NP hard, but there are good heuristic algorithms that seem to work well in practice:

- K–means algorithm
- mixture of Gaussians

- Given n objects.
- Guess the cluster centers $(k_1, k_2, k_3]$ They were μ_1, μ_2, μ_3 in the previous slide)

- Build a Voronoi diagram based on the cluster centers k₁, k₂, k_{3.}
- Decide the class memberships of the n objects by assigning them to the nearest cluster centers k_1 , k_2 , k_3 .

 Re-estimate the cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

- Build a new Voronoi diagram based on the new cluster centers.
- Decide the class memberships of the n objects based on this diagram

Re-estimate the cluster centers.

Stop when everything is settled.
 (The Voronoi diagrams don't change anymore)

K- means Clustering Algorithm

Algorithm

Input

Data + Desired number of clusters, K

Initialize

the K cluster centers (randomly if necessary)

Iterate

- 1. Decide the class memberships of the n objects by assigning them to the nearest cluster centers
- 2. Re-estimate the K cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

Termination

If none of the n objects changed membership in the last iteration, exit.

Otherwise go to 1.

Seed Choice

Seed Choice

Seed Choice

The results of the K- means Algorithm can vary based on random seed selection.

- □ Some seeds can result in **poor convergence rate**, or convergence to **sub-optimal** clustering.
- K-means algorithm can get stuck easily in local minima.
 - Select good seeds using a heuristic (e.g., object least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.

How to Scale it Up to Large Datasets?

Algorithm

Input: Data + Desired number of clusters, K

Initialize: the K cluster centers (randomly if necessary)

Preprocess: Partition the data and place them on the workers (e.g. worker₁ one will process n_1 , ..., worker_m will process n_m datapoints

Iterate

- 1. Server sends all the K cluster centers to the m workers
- 2. Decide the class memberships of the $n_1+...+n_m$ objects on the workers by assigning each object to the nearest cluster centers. Do this parallel on the m workers.
- 3. After step 2 is done on all workers, the server collects parallel some information from the m workers (new center vectors on each worker) and re-estimate the K cluster centers on the server as the weighted mean of these vectors

Termination

If none of the n objects changed membership in the last iteration, exit.

Otherwise go to 1.

Distribute the data to the M workers

The m^{th} worker stores n_m d-dimensional data points.

$$(n_1 + n_2 + \ldots + n_M = n)$$
 We have n_m training data on the m^{th} worker:

$$D_m = \{x_1^m, \dots, x_{n_m}^m\}$$
 where $x_j^m \in \mathbb{R}^d$ for all $1 \le j \le n_m$, $1 \le m \le M$

All training data: $D = \{D_1, \dots, D_M\}$

$$C^0 = [\mu_1^0, \dots, \mu_K^0] \in \mathbb{R}^{d \times K}$$

$$t = 0$$

The server sends $C^t \in \mathbb{R}^{d \times K}$ to the workers

Worker 1

Dataset D_1 Cluster centers C^0

Worker m

Dataset D_m Cluster centers C^0

Worker M

Dataset D_M Cluster centers C^0

Initial cluster centers: $C^0 = [\mu_1^0, \dots, \mu_K^0] \in \mathbb{R}^{d \times K}$ t = 0

E-step. Parallel on the M worker machines

for $j=1\dots n_m$: # For all data points on the m^{th} machine for $i=1\dots K$: # For all cluster centers $Dist^m(i)=\|x_j^m-\mu_i^t\|^2 \text{ # Distance between the } j^{th} \text{ data point } \# \text{ and the } i^{th} \text{cluster center.}$

 $x_j^m["label"] = \arg\min_i Dist^m(i)$ # Label of the j^{th} data point

M-step. Parallel on the M worker machines

```
for i=1...K:  # For all cluster centers points^i = [x_j^m \text{ for } j \text{ in } range(n_m) \text{ if } x_j^m[\text{"label"}] == i] sumPoints^m[i] = \sum_j points^i[j] \in \mathbb{R}^d numPoints^m[i] = len(points^i)
```

The m^{th} worker sends $numPoints^m \in \mathbb{R}^K$ and $sumPoints^m \in \mathbb{R}^{d \times K}$ to the server.

Data aggregation on the server.

for
$$i = 1 \dots K$$
:

$$\mu_i^{t+1} = \frac{\sum_{m=1}^{M} sumPoints^m[i]}{\sum_{m=1}^{M} numPoints^m[i]}$$

$$C^{t+1} = [\mu_1^{t+1}, \dots, \mu_K^{t+1}] \in \mathbb{R}^{d \times K}$$

The updated cluster centers

Set this to a random vector if we divide by zero

We will resend these updated cluster centers to the workers

t=t+1, Go back to the E-Step and Repeat.

Gaussian Mixture Model

Properties of Multivariate Gaussian Distributions

1-Dimensional Gaussian

Parameters

- Mean, μ
- Variance, σ²

Multivariate Gaussian

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left\{\frac{-1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Multivariate Gaussian

- ☐ A 2-dimensional Gaussian is defined by
 - a mean vector $\mu = [\mu_1, \mu_2]$
 - a covariance matrix: $\Sigma = \begin{bmatrix} \sigma_{1,1} & \sigma_{2,1} \\ \sigma_{1,2} & \sigma_{2,2} \end{bmatrix}$

```
where \sigma_{i,j} = E[(x_i - \mu_i)(x_j - \mu_j)] is the (co)variance
```

□ Note: \sum is symmetric, "positive semi-definite": $\forall x$: $x^T \sum x \ge 0$

Multivariate Gaussian examples

Useful Properties of Gaussians

☐ Marginal distributions of Gaussians are Gaussian

□Given:

$$x = (x_a, x_b), \mu = (\mu_a, \mu_b)$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$$

☐ Marginal Distribution:

$$p(X_a) = \mathcal{N}(x_a \mid \mu_a, \Sigma_{aa})$$

Marginal distributions of Gaussians are Gaussian

Goal: GMM for Density Estimation

GMM as a Generative Model

The Generative Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are K components
- Component *i* has an associated mean vector μ_i

Component *i* generates data from $N(\mu_i, \Sigma_i)$

Each data point is generated using this process:

- 1) Choose component i with probability $\pi_i = P(y = i)$
- 2) Datapoint $x \sim N(\mu_i, \Sigma_i)$

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

Hidden variable

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$

$$p(x) = \sum_{i=1}^K p(x|y=i)P(y=i)$$

$$\uparrow$$
 Observed Mixture Mixture data component proportion

Mixture of Gaussians Clustering

Assume that

$$\Sigma_i = \sigma^2 \mathbf{I}$$
, for simplicity.
$$p(x|y=i) = N(\mu_i, \sigma^2 \mathbf{I})$$

$$p(y=i) = \pi_i$$
 All prameters $\mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K$ are known.

For a given x we want to decide if it belongs to cluster i or cluster j

Cluster x based on the ratio of posteriors:

$$\begin{split} \log \frac{P(y=i|x)}{P(y=j|x)} \\ &= \log \frac{p(x|y=i)P(y=i)/p(x)}{p(x|y=j)P(y=j)/p(x)} \\ &= \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \exp(\frac{-1}{2\sigma^2}||x-\mu_i||^2)}{\pi_j \exp(\frac{-1}{2\sigma^2}||x-\mu_j||^2)} \end{split}$$

Mixture of Gaussians Clustering

Assume that

$$\Sigma_i = \sigma^2 \mathbf{I}$$
, for simplicity. $p(x|y=i) = N(\mu_i, \sigma^2 \mathbf{I})$ $p(y=i) = \pi_i \quad \mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K$ are known.

$$\log \frac{P(y=i|x)}{P(y=j|x)} = \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \exp(\frac{-1}{2\sigma^2}||x-\mu_i||^2)}{\pi_j \exp(\frac{-1}{2\sigma^2}||x-\mu_j||^2)}$$

$$= \log \frac{\pi_i}{\pi_j} - \frac{1}{2\sigma^2} ||x - \mu_i||^2 + \frac{1}{2\sigma^2} ||x - \mu_j||^2$$

$$\overbrace{x^T x + \mu_i^T \mu_i - 2x^T \mu_i}^{T} \underbrace{x^T x + \mu_j^T \mu_j - 2x^T \mu_j}^{T}$$

$$= \log \frac{\pi_i}{\pi_j} - \frac{1}{2\sigma^2} \left[\mu_i^T \mu_i - \mu_j^T \mu_j + 2x^T (\mu_j - \mu_i) \right]$$
$$= c + w^T x$$

 $c + w^T x > 0 \Rightarrow x$ belongs to cluster i $c + w^T x < 0 \Rightarrow x$ belongs to cluster j

Linear decision boundary

Piecewise linear decision boundary

MLE for GMM

What if we don't know the parameters? $\mu_1, \ldots, \mu_K, \sigma^2, \pi_1, \ldots, \pi_K$?

$$\mu_1, \ldots, \mu_K, \sigma^2, \pi_1, \ldots, \pi_K$$
?

Maximum Likelihood Estimate (MLE)

$$\theta = [\mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K]$$

$$\arg\max_{\theta} \prod_{j=1}^{n} P(x_{j}|\theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i, x_j | \theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_j = i | \theta) p(x_j | y_j = i, \theta)$$

$$= \arg \max_{\theta} \prod_{i=1}^{n} \sum_{i=1}^{K} \pi_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp(\frac{-1}{2\sigma^{2}} ||x_{j} - \mu_{i}||^{2})$$

General GMM

General GMM

General GMM – Gaussian Mixture Model

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i . Each data point is generated according to the following recipe:

- 1) Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $x \sim N(\mu_i, \Sigma_i)$

General GMM

GMM – Gaussian Mixture Model

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$

$$p(x) = \sum_{i=1}^K p(x|y=i)P(y=i)$$

$$\uparrow$$

$$\uparrow$$

$$\mathsf{Mixture}$$

$$\mathsf{component}$$

$$\mathsf{proportion}$$

Clustering with General GMM

Assume that

$$\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$$
 are known.

$$p(x|y=i) = N(\mu_i, \Sigma_i)$$

$$p(y=i)=\pi_i$$

Clustering based on ratios of posteriors:

$$\log \frac{P(y=i|x)}{P(y=j|x)}$$

$$= \log \frac{p(x|y=i)P(y=i)/p(x)}{p(x|y=j)P(y=j)/p(x)}$$

$$= \log \frac{p(x|y=i)\pi_i}{p(x|y=j)\pi_j} = \log \frac{\pi_i \frac{1}{\sqrt{|2\pi\Sigma_i|}} \exp\left[-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)\right]}{\pi_j \frac{1}{\sqrt{|2\pi\Sigma_j|}} \exp\left[-\frac{1}{2}(x-\mu_j)^T \Sigma_j^{-1}(x-\mu_j)\right]}$$

$$= x^T W x + w^T x + c$$

Depends on $\mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K, \pi_1, \ldots, \pi_K$

"Quadratic Decision boundary" — second-order terms don't cancel out 44

General GMM MLE Estimation

What if we don't know $\theta = [\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K]$?

Maximize marginal likelihood (MLE):

$$\arg\max_{\theta} \prod_{j=1}^{n} P(x_{j}|\theta) = \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i, x_{j}|\theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} P(y_{j} = i|\theta) p(x_{j}|y_{j} = i|\theta)$$

$$= \arg\max_{\theta} \prod_{j=1}^{n} \sum_{i=1}^{K} \pi_{i} \frac{1}{\sqrt{|2\pi\Sigma_{i}|}} \exp\left[-\frac{1}{2}(x_{j} - \mu_{i})^{T}\Sigma_{i}^{-1}(x_{j} - \mu_{i})\right]$$

* Set $\frac{\partial}{\partial \mu_i} \log \text{Prob}(...) = 0$, and solve for μ_i .

Non-linear, non-analytically solvable

- * Use gradient descent. Doable, but often slow
- * Use EM.

The EM Algorithm

The Training Goal

Notation

Observed data:
$$D = \{x_1, \ldots, x_n\}$$

Unknown variables: (Cluster assignments) $y = (y_1, \dots, y_n)$

Paramaters:
$$\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$$

Goal:
$$\widehat{\theta}_n = \arg\max_{\theta} \log P(D|\theta)$$

```
Goal: arg max log P(D|\theta)
E Step: Q(\theta|\theta^{t-1}) = \mathbb{E}_{y}[\log P(y, D|\theta)|D, \theta^{t-1}]
                                 = \int dy P(y|D, \theta^{t-1}) \log P(y, D|\theta)
                             \theta^t = \arg \max_{\theta} Q(\theta | \theta^{t-1})
```

M Step:

During the EM algorithm the marginal likelihood is not decreasing!

$$P(D|\theta^t) \le P(D|\theta^{t+1})$$

EM for general GMMs

The more general case:

- We have unlabeled data x₁, x₂, ..., x_m
- We know there are K classes
- We **don't** know $P(y=1)=\pi_1$, $P(y=2)=\pi_2$ P(y=3) ... $P(y=K)=\pi_K$
- We **don't** know $\Sigma_1,...$ Σ_K
- We don't know μ₁, μ₂, ... μ_K

We want to learn: $\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$

Our estimator at the end of iteration t-1:

$$\theta^{t-1} = [\mu_1^{t-1}, \dots, \mu_K^{t-1}, \pi_1^{t-1}, \dots, \pi_K^{t-1}, \Sigma_1^{t-1}, \dots, \Sigma_K^{t-1}]$$

The idea is the same:

At iteration t, construct function Q (E step) and maximize it in θ^t (M step)

$$Q(\theta^t | \theta^{t-1}) = \sum_{j=1}^n \sum_{i=1}^K P(y_j = i | x_j, \theta^{t-1}) \log P(x_j, y_j = i | \theta^t)$$

EM for general GMM

E-step

Compute "expected" classes of all datapoints for each class

$$R_{i,j}^{t-1} = P(y_j = i | x_j, \theta^{t-1}) = \frac{\exp\left\{-\frac{1}{2}(x_j - \mu_i^{t-1})^T (\boldsymbol{\Sigma}_i^{t-1})^{-1} (x_j - \mu_i^{t-1})\right\} \pi_i^{t-1}}{\sum_{i=1}^K \exp\left\{-\frac{1}{2}(x_j - \mu_i^{t-1})^T (\boldsymbol{\Sigma}_i^{t-1})^{-1} (x_j - \mu_i^{t-1})\right\} \pi_i^{t-1}}$$

M-step
$$\frac{\partial}{\partial \theta^t} Q(\theta^t | \theta^{t-1}) = 0$$

Compute MLEs given our data's class membership distributions (weights)

$$\begin{split} \mu_i^t &= \sum_{j=1}^n w_j x_j \quad \text{where } w_j = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^n R_{i,j}^{t-1}} \\ \Sigma_i^t &= \sum_{j=1}^n w_j (x_j - \mu_i^t)^T (x_j - \mu_i^t) \\ \pi_i^t &= \frac{1}{n} \sum_{j=1}^n R_{i,j}^{t-1} \end{split}$$

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Goal: GMM for Density Estimation

Standard (nondistributed) EM

E-step

Compute "expected" classes of all datapoints for each class

$$R_{i,j}^{t-1} = P(y_j = i | x_j, \theta^{t-1}) = \frac{\exp\left\{-\frac{1}{2}(x_j - \mu_i^{t-1})^T (\Sigma_i^{t-1})^{-1} (x_j - \mu_i^{t-1})\right\} \pi_i^{t-1}}{\sum_{i=1}^K \exp\left\{-\frac{1}{2}(x_j - \mu_i^{t-1})^T (\Sigma_i^{t-1})^{-1} (x_j - \mu_i^{t-1})\right\} \pi_i^{t-1}}$$

M-step
$$\frac{\partial}{\partial \theta^t} Q(\theta^t | \theta^{t-1}) = 0$$

Compute MLEs given our data's class membership distributions (weights)

$$\begin{split} \mu_i^t &= \sum_{j=1}^n w_j x_j \quad \text{where } w_j = \frac{R_{i,j}^{t-1}}{\sum_{j=1}^n R_{i,j}^{t-1}} \\ \Sigma_i^t &= \sum_{j=1}^n w_j (x_j - \mu_i^t)^T (x_j - \mu_i^t) \\ \pi_i^t &= \frac{1}{n} \sum_{j=1}^n R_{i,j}^{t-1} \end{split}$$

Distributed EM

Distributed the data to the M workers

$$D_m = \{x_1^m, \dots, x_{n_m}^m\} \quad D = \{D_1 \dots, D_M\}$$

E-step. Parallel on the M worker machines

On the m-th worker, calculate for all $i \in \{1, ..., K\}, j \in \{1, ..., n_m\}$:

$$R_{i,j,m}^{t-1} = P(y_j^m = i | x_j^m, \theta^{t-1})$$

$$= \frac{\exp\left\{-\frac{1}{2}(x_j^m - \mu_i^{t-1})^T (\Sigma_i^{t-1})^{-1} (x_j^m - \mu_i^{t-1})\right\} \pi_i^{t-1}}{\sum_{i=1}^K \exp\left\{-\frac{1}{2}(x_j^m - \mu_i^{t-1})^T (\Sigma_i^{t-1})^{-1} (x_j^m - \mu_i^{t-1})\right\} \pi_i^{t-1}}$$

After this is done, each worker can calculate and send the server:

$$s_i^m = \sum_{j=1}^{n_m} R_{i,j,m}^{t-1}$$

Then, the server can calculate $R = \sum_{m=1}^{M} s_i^m$ and send it to the workers.

The workers can calculate $w_{i,j}^m$:

$$w_{i,j}^{m} = \frac{R_{i,j,m}^{t-1}}{R} = \frac{R_{i,j,m}^{t-1}}{\sum_{m=1}^{M} \sum_{j=1}^{n} R_{i,j,m}^{t-1}}$$

Distributed EM

M-step 1. Calculate the updated means

Workers calculate and send to the server:

$$\tilde{\mu}_{i,m} = \sum_{j=1}^{n_m} w_{i,j}^m x_j^m$$

Server calculates and sends to the workers:

$$\mu_i^t = \sum_{m=1}^M \tilde{\mu}_{i,m} = \sum_{m=1}^M \sum_{j=1}^{n_m} w_{i,j}^m x_j^m$$

M-step 2. Calculate the updated π probability distribution

Server calculates and sends to the workers:

$$\pi_i^t = \frac{R}{\sum_{m=1}^{M} n_m} = \frac{1}{\sum_{m=1}^{M} n_m} \sum_{m=1}^{M} \sum_{j=1}^{n_m} R_{i,j,m}^{t-1}$$

Distributed EM

M-step 3. Calculate the updated covariance matrix

Workers calculate and send to the server:

$$\tilde{\Sigma}_{i,m} = \sum_{j=1}^{n_m} w_{i,j}^m (x_j^m - \mu_i^t)^T (x_j^m - \mu_i^t)$$

Server calculates and sends to the workers:

$$\Sigma_{i}^{t} = \sum_{m=1}^{M} \tilde{\Sigma}_{i,m} = \sum_{m=1}^{M} \sum_{j=1}^{n_{m}} w_{j}^{m} (x_{j}^{m} - \mu_{i}^{t})^{T} (x_{j}^{m} - \mu_{i}^{t})$$

t=t+1, Go back to the E-Step and Repeat.

Thanks for your attention! ©

Mathematical Motivation for EM

Expectation-Maximization (EM)

- A general algorithm to deal with hidden data, but we will study it in the context of unsupervised clustering with Gaussian mixture models.
- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data (e.g. cluster assignment).
- In the following examples EM is "simpler" than gradient methods: No need to choose step size.
- EM is an iterative algorithm with two linked steps:
 - o E-step: fill-in hidden values using inference
 - o M-step: apply standard MLE/MAP method to completed data
- We will prove that this procedure monotonically improves the likelihood (or leaves it unchanged).

Notation

```
Observed data: D = \{x_1, \dots, x_n\}
```

Unknown variables: y

For example in clustering: $y = (y_1, \dots, y_n)$

Parameters: θ

For example in MoG:
$$\theta = [\mu_1, \dots, \mu_K, \pi_1, \dots, \pi_K, \Sigma_1, \dots, \Sigma_K]$$

Goal:
$$\widehat{\theta}_n = \arg\max_{\theta} \log P(D|\theta)$$

Goal: $\underset{\theta}{\operatorname{arg max}} \log P(D|\theta)$ $\log P(D|\theta^t) = \int dy \, q(y) \log P(D|\theta^t)$ $= \int dy \, q(y) log \left| \frac{P(y, D|\theta^t)}{P(y|D, \theta^t)} \frac{q(y)}{q(y)} \right| \quad \text{since } P(y, D|\theta^t) = P(D|\theta^t) P(y|D, \theta^t)$ $= \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$ H(q) $KL(q(y)||P(y|D,\theta^t))$ Free energy: $F_{\theta^t}(q(\cdot), D)$

E Step:
$$Q(\theta^t | \theta^{t-1}) = \mathbb{E}_y[\log P(y, D | \theta^t) | D, \theta^{t-1}]$$

 $= \int dy P(y | D, \theta^{t-1}) \log P(y, D | \theta^t)$
M Step: $\theta^t = \arg \max_{\theta} Q(\theta | \theta^{t-1})$

We are going to discuss why this approach works

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$

Free energy: $F_{\theta^t}(q(\cdot), D)$

E Step:
$$Q(\theta|\theta^t) = \int dy P(y|D,\theta^t) \log P(y,D|\theta)$$

Let
$$q(y) = P(y|D, \theta^t)$$

$$\Rightarrow KL(q(y)||P(y|D,\theta^t)) = 0$$

$$\Rightarrow \log P(D|\theta^t) = F_{\theta^t}(P(y|D,\theta^t),D)$$

$$= \int dy P(y|D, \theta^t) log P(y, D|\theta^t) - \int dy P(y|D, \theta^t) log P(y|D, \theta^t)$$

 $Q(\theta^t|\theta^t)$

$$\leq \int dy P(y|D,\theta^t) log P(y,D|\theta^{t+1}) - \int dy P(y|D,\theta^t) log P(y|D,\theta^t)$$

$$\theta^{t+1} = \arg \max_{\theta} Q(\theta | \theta^t)$$

We maximize only here in θ !!!

$$\log P(D|\theta^t) = \int dy \, q(y) \log P(y, D|\theta^t) - \int dy \, q(y) \log q(y) + \int dy \, q(y) \log \frac{q(y)}{P(y|D, \theta^t)}$$

H(q) $KL(q(y)\|P(y|D, heta^t))$

Free energy: $F_{\theta^t}(q(\cdot), D)$

Theorem: During the EM algorithm the marginal likelihood is not decreasing!

$$P(D|\theta^t) \le P(D|\theta^{t+1})$$

Proof:

$$\begin{split} \log P(D|\theta^{t}) &= F_{\theta^{t}}(P(y|D,\theta^{t}),D) \\ &\leq \int dy \, P(y|D,\theta^{t}) log P(y,D|\theta^{t+1}) - \int dy \, P(y|D,\theta^{t}) \log P(y|D,\theta^{t}) \\ &= F_{\theta^{t+1}}(P(y|D,\theta^{t}),D) \\ &= \log P(D|\theta^{t+1}) - KL(P(y|D,\theta^{t}) \|P(y|D,\theta^{t+1})) \\ &\leq \log P(D|\theta^{t+1}) \end{split}$$

```
Goal: \arg\max_{\theta} \log P(D|\theta)

E Step: Q(\theta|\theta^{t-1}) = \mathbb{E}_y[\log P(y,D|\theta)|D,\theta^{t-1}]
= \int dy P(y|D,\theta^{t-1}) \log P(y,D|\theta)

M Step: \theta^t = \arg\max_{\theta} Q(\theta|\theta^{t-1})
```

During the EM algorithm the marginal likelihood is not decreasing!

$$P(D|\theta^t) \le P(D|\theta^{t+1})$$

Convergence of EM

EM: (E) In a given θ_t set q() such a way that the KL=0 and F touches $\log P(D|\theta^t)$. (M) Maximise the lower bound F to get θ_{t+1} .

EM monotonically converges to a local maximum of likelihood! 72

Convergence of EM

Different sequence of EM lower bound F-functions depending on initialization

Use multiple, randomized initializations in practice

EM for spherical, same variance GMMs

For simplicity, assume that $\theta = [\mu_1, \dots, \mu_K, \sigma^2, \pi_1, \dots, \pi_K]$, and σ^2 and π_1, \dots, π_K are known, so we don't need to estimate them. We only need to estimate μ_1, \dots, μ_K

E-step

Compute "expected" classes of all datapoints for each class

$$P(y_j = i | x_j, \theta^{t-1}) = \frac{\exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i}{\sum_{i=1}^K \exp(-\frac{1}{2\sigma^2} || x_j - \mu_i^{t-1} ||^2) \pi_i}$$

In K-means "E-step" we do hard assignment. EM does soft assignment

M-step

Update μ given our data's class membership distributions (weights)

$$\mu_i^t = \sum_{j=1}^n w_j x_j$$
 where $w_j = \frac{P(y_j = i | x_j, \theta^{t-1})}{\sum_{l=1}^n P(y_l = i | x_l, \theta^{t-1})}$

Iterate. 74

ATTIC

K- means Algorithm Computation Complexity

- ☐ At each iteration,
 - Computing distance between each of the n objects and the K cluster centers is O(Kn).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- \square Assume these two steps are each done once for ℓ iterations: $O(\ell Kn)$.