第一次仿真实验报告

张蔚桐 2015011493 自 55 2017 年 2 月 26 日

1 用 IV 分析仪测量二极管的伏安特性和晶体管的 输出特性

1.1 二极管伏安特性的测量

由查阅数据手册得到,题目中要求选用的二极管 1N3064 具有如下基本 参数

具小土容由压 17 /17	最大反向漏电电流 I_R/nA	正向导通压降 $V_F/{ m V}$	
最小击穿电压 $V_{RRM}/{ m V}$	$@$ 反向偏压 $V_R/{ m V}$	$@$ 正向电流 I_F/mA	
75		0.575 @ 0.250	
	100 @ 50	0.650 @ 1.0	
	100 @ 50	0.710 @ 2.0	
		1.0 @ 10.0	

因此可以得到二极管的击穿电压为 75V 以上,反向漏电电流在 100nA 以下,两端加载 0.7V 正向偏压时通过的电流大约为 1mA。

下面使用 IV 分析仪测量上述几个基本参数,如图 1所示将二极管 1N3064 接入 IV 分析仪两端,将"Component"设置为"Dioxide",作为初步的仿真测试,将电压测试设定为-200V - +200V进行宽范围仿真,得到通过二极管的电流如图 2所示

从图 2可以看出,反向击穿的具体位置大约 应在-100V 附近,同时可以看出二极管截止和导 通区域的大致位置,方便进一步的测量。

图 1: 二极管的伏安特性测量电路图

图 2: 二极管伏安特性的宽范围测试图

图 3: 二极管反向击穿电压测试图

图 4: 二极管导通电流和反向电流测试图

图 5: 二极管反向电流测试图

将 IV 分析仪的两端电压的变化区间设置为-120V --90V 以便准确测量 反向击穿电压,根据实验情况不断缩小测试范围以提高测试精度,可以得到 IV 分析仪的输出如图 3所示。

根据图 3的曲线变化形势可得,反向电压变化的转折点可以估算为-100V,电压大小高于数据手册中的-75V,符合数据手册中的要求

同理,将测试电压范围设为-5V – 1V,测量题目中要求的反向电流和 0.7V 正向偏压是的导通电流,可以得到如图 4所示的结果

从图 4可以看到,二极管的反向电流在反向击穿前基本保持不变,在反向电压为-1V 的时候约为 3pA。另外,从图 5中可以看出,当反向电压上升到-50V 甚至-90V 时,反向电流仍为 150pA 和 270pA,和 1V 时的反向电流略有上升,但均在 1nA 以下。和数据手册相比,仿真得到的效果要好一些,考虑是因为仿真模型没有受实际封装的影响等原因导致的

1.2 晶体管输出特性的测试

通过查阅相关手册,可以得到 ZETEX 公司生产的晶体 管 2N2222A 的 $\beta_{min}=100, \beta_{max}=300 (@I_c=150 {\rm mA})$,采用如图 6的电路进行测试

将晶体管按照 IV 测试仪的指示接入 IV 测试仪,将 "Component"设置为"BJT NPN",将 I_b 设置为 $0A--10\mu A$, U_{ce} 设置为 0V 10V 进行宽范围测试,得到图 7所示的结果

1.2.1 β 变化情况的研究

在图 7中标识了在 $U_{ce}=2V$ 和 $U_{ce}=8V$ 下, I_c 随着 I_b 的变化情况,具体来说可以总结为下表

图 6: 晶体管输出特性的测试电路图

图 7: 晶体管输出特性

图 8: 晶体管指定工作点放大系数的测量

图 9: 图 8的指定工作点附近图像

$I_b/\mu { m A}$	$I_c/\text{mA@U}_{ce} = 2\text{V}$	$I_c/\mathrm{mA@U_{ce}} = 8\mathrm{V}$
0.00	0.0005	0.0007
1.11	0.2258	0.2389
2.22	0.4568	0.4834
3.33	0.6890	0.7291
4.44	0.9217	0.9754
5.56	1.1549	1.2220
6.67	1.3880	1.4689
7.78	1.6213	1.7158
8.89	1.8546	1.9627
10	2.0880	2.2097

于是可以对两种情况下的 I_c 和 I_b 做直线拟合得到

$$I_c = 209.06I_b - 5.2456(\mu A)@U_{ce} = 2V, R^2 = 1, \beta = 209.06$$

$$I_c = 221.24I_b - 5.5308(\mu A)@U_{ce} = 8V, R^2 = 1, \beta = 221.24$$

进而可以得到结论,即 U_{ce} 越大,晶体管的 β 值越大,式中 R 为线性相关系数,下同

利用同样的方法,可以对 $U_{ce}=5\mathrm{V},\mathrm{I_c}=2\mathrm{mA}$ 的情况进行测试,通过之前的测试结果可以得到,晶体管的 β 值应在 200 左右,因此调整 I_b 在

$I_b/\mu { m A}$	$I_c/\text{mA@U}_{ce} = 5\text{V}$	$I_b/\mu { m A}$	$I_c/\text{mA@U}_{ce} = 5\text{V}$
9.078	1.9327	9.156	1.9495
9.233	1.9663	9.311	1.9831
9.389	1.9999	9.467	2.0167
9.544	2.0336	9.622	2.0504
9.7	2.0672		

10μA 附近变化,得到图 8,对所求位置进行放大得到图 9,标出数据得到下表

利用同样的方法,可以得到在 $U_{ce}=5\mathrm{V}, \mathrm{I_c}=2\mathrm{mA}$ 时, $\beta=\frac{\Delta I_c}{\Delta I_b}=215.48, \bar{\beta}=\frac{I_c}{I_b}=213, \bar{\beta}\approx\beta$ 可以认为晶体管还是比较理想的,另外和数据手册中给出的 $100\leq\beta\leq300$ 也是符合的

1.2.2 Early Voltage V_A 的求取

Early Voltage 是一个用来描述晶体管工作特性的量。一般来说,作为理想情况,认为在晶体管处在放大区时 I_c 不随 U_{ce} 变化,然而实际情况下, I_c 可认为随 U_{ce} 线性变化。由半导体物理的理论分析可以得到, $I_c - U_{ce}$ 直线簇的延长线交于同一点 $(-V_A, I_0)$,其中 V_A 被定义为 Early Voltage,显然,Early Voltage 越大,直线簇的水平型越好。

设这些直线簇的斜率和截距为 k 和 b,于是根据上面表述,k-b 应满足线性关系,即 $I_0=-kV_A+b$,整理可得

$$b = kV_A + I_0 \tag{1}$$

即可以通过拟合来得到 V_A 参考图 7可以得到曲线簇中的点坐标和 k,b 关系 如下表所示

$I_c/\text{mA@U}_{\text{ce}} = 2\text{V}$	$I_c/\text{mA@U}_{ce} = 8\text{V}$	$k/(\mathrm{mA/V})$	b/mA
0.0005	0.0007	3.33×10^{-5}	4.33×10^{-4}
0.2258	0.2389	2.18×10^{-3}	2.21×10^{-1}
0.4568	0.4834	4.43×10^{-3}	4.48×10^{-1}
0.6890	0.7291	6.68×10^{-3}	6.76×10^{-1}
0.9217	0.9754	8.95×10^{-3}	9.04×10^{-1}
1.1549	1.2220	1.12×10^{-2}	1.13×10^{0}
1.3880	1.4689	1.35×10^{-2}	1.36×10^0
1.6213	1.7158	1.58×10^{-2}	1.59×10^0
1.8546	1.9627	1.80×10^{-2}	1.82×10^{0}
2.0880	2.2097	2.03×10^{-2}	2.05×10^{0}

拟合可以得到 $b = 100.99k - 9 \times 10^{-5}$ 根据 (1) 式可得, $V_A = 100.99V$ 符合查阅相关资料得到的经典值 100V

2 二极管微变等效电路直流电压和交流电流的研究

2.1 直流电压的研究

如图 10所示为分析直流电压的电路图,因为只考虑直流成分,因此可以直接将交流电压幅值将为 0。采用直流工作点分析对 R_1 进行扫描可以完成相关工作,如图 11所示,随着电阻值的增高,二极管上的直流电压逐渐减小,符合预期。最终随着 R_1 的逐渐增大,二极管两端的电压稳定在二极管的导通电压附近。从图中读出这个电压约为 0.6-0.7V,符合第一节进行测量得到的结论和常识。

图 10: 分析直流电压的电路图

2.2 交流电流的研究

如图 12所示是分析交流电流的电路图。由于没有找到能比较简单直接分析交流成分的方式,因此采用这种方法进行分析。其中 R_2 是可变电阻,XCP1 是电流探针,可以按照 1V/mA 的比例将电流转化为电压,XSC1 是示波器,因为关注交流成分,因此选择 AC 模式进行观测。逐个改变 R2 的阻值,可以得到点点对应的电压(即电流)值,利用数学软件进行作图可以得到图 13。从理论上分析,随着 R_2 的增大,通过 D_3 的直流电流逐渐减小。由二极管的微变等效电路模型可知,对应交流电流的动态电阻 $r_g = \frac{UT}{I_D}$ 因此动态电阻不断增大,通过 D_3 的交流电流逐渐减小,参考图 13可以验证其正确性。因为测量的数据点见下表。

R/Ω	i/mA	R/Ω	i/mA	R/Ω	i/mA	R/Ω	i/mA
1000	0.39295	950	0.4100	900	0.4306	850	0.4493
800	0.4721	750	0.4973	700	0.5251	650	0.5564
600	0.5918	550	0.6317	500	0.6774	450	0.7928
400	0.8777	350	0.9618	300	1.0467	250	1.1471
200	1.2694	150	1.4201	100	1.6089	50	1.8770

图 11: 直流电压随电阻变化曲线

图 12: 分析交流电压的电路图

图 13: 交流电压随电阻变化关系

3 晶体管工作状态的研究

图 14是分析晶体管工作状态的电路图。从理论上分析,随着 V_5 从 0 开始增大,首先使得 BE 间 PN 结导通,晶体管进入放大状态。之后随着 I_b,I_c 的增大, V_c 下降至 V_b 以下,晶体管进入饱和状态。图 15是其实际仿真得到的电路图,可以看出,在约 0.6V 时,晶体管进入放大状态,在 0.969V 附近,晶体管进入饱和状态。为了使得其中的效果更明显,将 V_{ce},V_{be},I_b,I_c 及 I_b 按照不同的比例

图 14: 晶体管工作状态分析电路

绘制在了一张图上,如图 16所示,其中黄色轨迹线为 $\frac{I_c}{I_b}$ 的变化趋势,可以看出,在 0.6V 左右, $\frac{I_c}{I_b}$ 迅速上升并在之后相当长的区域内保持稳定,此时, I_b , I_c 保持着相对稳定的上升状态标志晶体管进入放大状态;在 0.969V 附近, $\frac{I_c}{I_b}$ 迅速下降, I_c 继续升高而 I_b 基本不变,标志晶体管进入饱和状态。曲线的变化均和前文的理论分析相符。

图 15: V_{ce}, V_{be} 变化曲线

图 16: V_{ce}, V_{be}, I_b, I_c 及 $\frac{I_c}{I_b}$ 变化曲线