Esercitazione N. 6

Determinare la formula di struttura, la geometria e l'ibridizzazione dell'atomo centrale dei seguenti composti:

- 1) Acido solfidrico, H₂S
- 2) Acido bromico, HBrO3

Acido solfidrico H₂S

Formula di struttura

a) Consideriamo la configurazione elettronica esterna di H ed S

b) Calcoliamo il numero totale di elettroni

$$e^{-} = 6 + 1 \times 2 = 8$$
 elettroni

c) Si individua l'atomo centrale considerando che gli idrogeni sono sempre terminali

- d) Al numero di elettroni totali si tolgono gli elettroni di legame che sono 4 quindi restano 4 elettroni
- e) Distribuiamo gli elettroni rimasti in modo da completare l'ottetto dell'atomo centrale (lo zolfo) poiché i due atomi di idrogeno hanno già raggiunto una configurazione elettronica stabile che è quella dell'elio.

f) Si considerino ora le cariche formali di ciascun elemento

$$CF(H): 1-0-1 = 0$$

$$CF(S)$$
: 6-4-2 = 0

Il valore nullo delle cariche formali conferma che la formula di struttura più stabile che rappresenta l'acido solfidrico è quella disegnata.

Geometria della molecola:

Si calcola il numero sterico (ns), cioè il numero di gruppi di elettroni del guscio di valenza attorno all'atomo centrale

ns = 4 (due coppie solitarie e due coppie di legame)

ad ns = 4 corrisponde la disposizione tetraedrica

Alla geometria tetraedrica corrisponde l'ibridizzazione dell'atomo centrale sp³

Acido bromico, HBrO3

Formula di struttura

a) Consideriamo la configurazione elettronica esterna di H, Br ed O.

b) Si calcola il numero totale di elettroni

$$e^{-} = 1 + 7 + 3x6 = 26$$
 elettroni

c) Si individua l'atomo meno elettronegativo fra Br, O considerando che l'idrogeno è sempre terminale, quindi il Br sarà l'atomo centrale.

- d) Al numero di elettroni totali si tolgono gli elettroni di legame che sono 8 quindi restano 18 elettroni
- e) Si distribuiscono gli elettroni rimasti in modo da completare l'ottetto degli atomi intorno all'atomo centrale e poi eventualmente dell'atomo centrale.

- f) Sono stati utilizzati così tutti gli elettroni rimasti.
- g) Si considerino ora le cariche formali di ciascun elemento

$$CF(H): 1-0-1 = 0$$

$$CF(0): 6-4-2 = 0$$

$$CF(0)$$
: 6-6-1 = -1

$$CF(Br)$$
: 7-2-3 = +2

Per rendere minime le cariche formali, visto che il Br è un elemento del 4 periodo e può dare espansione dell'ottetto, si forma un doppio legame tra ogni atomo di ossigeno rosso e l'atomo di bromo in modo da ottenere la seguente struttura in cui tutti gli atomi hanno carica formale pari a zero.

Tale struttura sarà quella più stabile che quindi rappresenta la molecola di acido bromico.

Geometria della molecola

Si calcola il numero sterico (ns), cioè il numero di gruppi di elettroni del guscio di valenza attorno all'atomo centrale

ns = 4 (1 coppie solitaria e tre coppie di legame, i doppi legami sono considerati come gruppo unico)

ad ns = 4 corrisponde la disposizione tetraedrica

Alla geometria tetraedrica corrisponde l'ibridizzazione dell'atomo centrale sp³

Determinare la formula di struttura, la geometria e l'ibridizzazione dell'atomo centrale dei seguenti composti:

SO₃, HNO₂, Na₂CO₃, PCl₅, BeF₂.