CSE 2500-01: Homework 9

Arturo Salinas-Aguayo

Spring 2025

Electrical and Computer Engineering Department

College of Engineering, University of Connecticut $_{\text{Coded in } \textsc{LAT}_{\textsc{EX}}}$

Problems

- 1. (10 points) Let $A = \{n \in \mathbb{Z} \mid n = 5r, \exists r \in \mathbb{Z}\}$ and $B = \{m \in \mathbb{Z} \mid m = 20s, \exists s \in \mathbb{Z}\}.$
 - (a) $A \subseteq B$ $A \not\subseteq B$. For example $5 \in A$ because 5 = 5(1), but $5 \neq 20k$ for any integer k. Therefore, $5 \notin B$.
 - (b) $B \subseteq A$ Yes, every element of B is in A. Suppose n is any element of B, then n = 20k for some integer k, and n = 5(4k). So, since 4k is an integer, $n \in A$.
- 2. (10 points) Let $A = \{a, b, c\}, B = \{b, c, d\}, \text{ and } C = \{b, c, e\}$
 - (a) Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?

i.
$$A \cap (B \cup C) = \{a, b, c\} \cap \{b, c, d, e\} = \{b, c\}$$

ii.
$$(A \cap B) \cup C = \{b, c\} \cup \{b, c, e\} = \{b, c, e\}$$

iii.
$$(A \cap B) \cup (A \cap C) = \{b, c\} \cup \{b, c\} = \{b, c\}$$

- iv. Hence, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (b) Find (A B) C and A (B C). Are these two sets equal?

i.
$$(A - B) - C = \{a\} - \{b, c, e\} = \{a\}$$

ii.
$$A - (B - C) = \{a, b, c\} - \{d\} = \{a, b, c\}$$

- iii. No, these sets are not equal.
- 3. Let $S_i = \{x \in \mathbb{R} \mid 1 < x < 1 + \frac{1}{i}\} = (1, 1 + \frac{1}{i})$ for all positive integers i.

(a)
$$\bigcup_{i=1}^{\infty} S_i = \bigcup_{i=1}^{\infty} (1, 1 + \frac{1}{i}) = (1, 2) = S_1$$

(b)
$$\bigcap_{i=1}^{\infty} S_i = \bigcup_{i=1}^{\infty} (1, 1 + \frac{1}{i}) = \emptyset$$

- 4. (a) Is $\{\{5,4\},\{7,2\},\{1,3,4\},\{6,8\}\}$ a partition of $A = \{1,2,3,4,5,6,7,8\}$? No, because 4 is in two sets, $\{5,4\}$ and $\{1,3,4\}$.
 - (b) Is $\{\{1,5\},\{4,7\},\{2,8,6,3\}\}$ a partition of $A=\{1,2,3,4,5,6,7,8\}$? Yes, every element in $\{1,2,3,4,5,6,7,8\}$ is in exactly one set and no element is in more than one set of the partition.
- 5. Find $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$. $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$
- 6. Let $A_1 = \{1, 2, 3\}$, $A_2 = \{u, v\}$, and $A_3 = \{m, n\}$. Find the following sets:

(a)
$$(A_1 \times A_2) \times A_3 = \{ ((1, u), m), ((1, u), n), ((1, v), m), ((1, v), n), \\ ((2, u), m), ((2, u), n), ((2, v), m), ((2, v), n), \\ ((3, u), m), ((3, u), n), ((3, v), m), ((3, v), n) \}$$

(b)
$$A_1 \times A_2 \times A_3 = \{(1, u, m), (1, u, n), (1, v, m), (1, v, n), (2, u, m), (2, u, n), (2, v, m), (2, v, n), (3, u, m), (3, u, n), (3, v, m), (3, v, n)\}$$

- (c) How are these sets different?
 - In part (a), each element is a **pair**, where the first component is itself a **pair**. The structure is ((x, y), z).
 - In part (b), each element is a **triple** (x, y, z).
 - Although the same elements are used (from A_1 , A_2 , and A_3), the organization and grouping differ.
- 7. (10 points) Use an elementary argument to prove the following statement using contrapositive. You may assume that all subsets are sets of a universal set U. It may be helpful to proceed by division into cases. For all sets A, B, C, if $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$.

Theorem 1: Contrapositive Proof

Proof by Contrapositive. By the contrapositive:

Suppose $(A \cup B) \nsubseteq C$.

Then, there exists an element $x \in A \cup B$ such that $x \notin C$.

By definition of union, $x \in A$ or $x \in B$.

We proceed by cases:

- Case 1: $x \in A$. Since $x \notin C$, it follows that $A \nsubseteq C$.
- Case 2: $x \in B$. Since $x \notin C$, it follows that $B \nsubseteq C$.

Thus, if $(A \cup B) \nsubseteq C$, then either $A \nsubseteq C$ or $B \nsubseteq C$.

Therefore, by contrapositive, we conclude: If $A \subseteq C$ and $B \subseteq C$, then $(A \cup B) \subseteq C$.

8. (10 points) Use the element method for proving a set equals the empty set to prove: For all sets A, B, C, if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Theorem 2: Proving a Set Equals \emptyset

Proof. Let A, B, C be sets such that $A \subseteq B$ and $B \cap C = \emptyset$. Suppose $A \cap C \neq \emptyset$. Then there is an element x such that $x \in A \cap C$.

By definition of intersection, this means $x \in A$ and $x \in C$.

Since $A \subseteq B$, it follows that $x \in B$. However, since $B \cap C = \emptyset$, we have $x \notin C$. This is a contradiction.

Therefore, our assumption that $A \cap C \neq \emptyset$ must be false. Thus, we conclude that

$$A \cap C = \emptyset$$
.

9. (10 points) Use the element method for proving a set equals the empty set to prove: For all sets A, B, C, if $B \cap C \subseteq A$, then $(C - A) \cap (B - A) = \emptyset$.

Theorem 3: Proving a Set Equals \emptyset

Let A, B, and C be any sets such that $B \cup C \subseteq A$.

Suppose $(C-A) \cap (B-A) \neq \emptyset$.

By definition of empty set, there is an element x such that $x \in (C-A) \cap (B-A_{=}\emptyset)$.

By definition of intersection, $x \in C - A$ and $x \in B - A$.

So, by definition of set difference, $x \in C$ and $x \notin A$ and $x \in B$ and $x \notin A$.

Since $x \in C$ and $x \in B$, $x \in B \cap C$ by the definition of intersection.

But $B \cap C \subseteq A$, so $x \in A$.

This is a contradiction, since we have shown that $x \in A$ and $x \notin A$.

Hence the supposition is false, and we conclude that $(C-A) \cap (B-A) = \emptyset$.

10. (10 points) Construct an algebraic proof for the following (cite a set identity to justify each step): For all sets A, B, C,

$$(A-B) - (B-C) = A - B$$

- (a) i. (1) (A-B)-(B-C) (2) = $(A\cap B^c)\cap (B\cap C^c)^c$ by definition of set difference
 - ii. $(1) = (A \cap B^c) \cap (B^c \cup C)$ by De Morgan's Law
 - iii. (1) = $(A \cap B^c \cap B^c) \cup (A \cap B^c \cap C)$ by Distributive Law
 - iv. $(1) = (A \cap B^c) \cup (A \cap B^c \cap C)$ by Idempotent Law
 - v. $(1) = A \cap B^c$ by Absorption Law
 - vi. (1) = A B by definition of set difference
- 11. (10 points) Simplify the expression, citing a set identity in each step:

$$((A\cap (B\cap C))\cap (A-B))\cap (B\cup C^c)$$

- (a) i. (1) $((A \cap (B \cap C)) \cap (A B)) \cap (B \cup C^c)$ (2) = $((A \cap B \cap C) \cap (A \cap B^c)) \cap (B \cup C^c)$ by definition of set difference
 - ii. $(1) = (A \cap (B \cap B^c) \cap C) \cap (B \cup C^c)$ by Associative and Commutative Laws
 - iii. (1) = $(A \cap \emptyset \cap C) \cap (B \cup C^c)$ because $B \cap B^c = \emptyset$
 - iv. (1) = $\emptyset \cap (B \cup C^c)$ because $A \cap \emptyset = \emptyset$
 - v. (1) = \emptyset by Identity Law (\emptyset intersect anything is \emptyset)