1. Real Sequences

Takuma Habu* takumahabu@cornell.edu

26th August 2024

1 Real numbers

1.1 N, \mathbb{Z} , \mathbb{Q} , \mathbb{R}

Definition 1. $\mathbb{N} := \{1, 2, \ldots\}$ is the set of *natural* numbers (sometimes 0 is included in \mathbb{N}). $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ is the set of *integers*. $\mathbb{Q} := \{a/b : a \in \mathbb{Z}, b \in \mathbb{N}\}$ is the set of *rational* numbers. Finally, \mathbb{R} is the set of *real* numbers.

Remark 1. \mathbb{N} is closed under the operations of addition and multiplication; i.e., the sum and the product of any two natural numbers is a natural number. However, \mathbb{N} is not closed under subtraction and division. \mathbb{Z} (unlike the natural numbers) is closed under subtraction, but not division. Finally, the set of rational numbers, \mathbb{Q} is closed under all four operations. However, the set of rational numbers is not *complete*, that is, the rational number line, \mathbb{Q} , has a "gap" at each irrational value. We have the following relationships:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

We will skip the axioms that defines these sets of numbers and instead take the following characterising property of \mathbb{R} (completeness) as an axiom.

1.2 Completeness of \mathbb{R}

Definition 2. Let S be a subset of \mathbb{R} (i.e., $S \subseteq \mathbb{R}$). If $b \in \mathbb{R}$ is such that $b \geq s$ for every s in S ($\forall s \in S$), then b is an *upper bound* of S. If such an upper bound for S exists, then we say S is bounded (from) above. Lower bounds are defined analogously. S is bounded if it is bounded above and below.

Definition 3. Let $S \subseteq \mathbb{R}$ be bounded above. Suppose there exists β such that:

- (i) β is an upper bound of S
- (ii) if $\gamma < \beta$, then γ is *not* an upper bound of S

^{*}Thanks to Giorgio Martini, Nadia Kotova and Suraj Malladi for sharing their lecture notes, on which these notes are heavily based.

Then, β is called the *least upper bound* of S, or its supremum, written sup S.

Symmetrically, suppose $S \subseteq \mathbb{R}$ is bounded below. Then, α is the greatest lower bound or infimum of S, written inf S, if it is a lower bound of S and if every $\gamma > \alpha$ is not a lower bound of S.

Exercise 1. Requirement (ii) in the definition of $\sup S$ above can be written as: $\forall \epsilon > 0, \exists s \in S$ such that $s > \sup S - \epsilon$ (why?) What is the equivalent condition for the greatest lower bound?

Exercise 2. Why can we write "the" least upper bound? (Formally, prove that $\sup S$ is unique: if β and β' both satisfy the definition, then $\beta = \beta'$.)

Exercise 3. TFU (True, False, Uncertain): If $\sup S$ exists, then $\sup S \in S$.

Axiom 1 (Completeness Axiom). If S is a nonempty subset of \mathbb{R} which is bounded above, then $\sup S$ exists (in \mathbb{R}).

Remark 2. This is not true in, for example, \mathbb{Q} : the set $S = \{x \in \mathbb{Q} : x^2 < 2\}$ is bounded, but the only candidate for $\sup S$, $s = \sqrt{2}$, doesn't belong to \mathbb{Q} .

Exercise 4. Let $S \subset \mathbb{R}$ be nonempty and bounded. Prove that $\inf S \leq \sup S$. What can you say if $\inf S = \sup S$?

Exercise 5. Recall the formal definition of maximum and minimum of a set (don't look them up—model your definitions on those of supremum and infimum). TFU: Every set (in \mathbb{R}) has a maximum. Every *bounded* set has a maximum.

Exercise 6. TFU: If $S \subseteq \mathbb{R}$ has a maximum max S, then max $S = \sup S$.

Exercise 7 (PS1). Let S and T be nonempty and bounded subsets of \mathbb{R} . TFU: $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

1.3 Density of \mathbb{Q} in \mathbb{R}

Proposition 1 (Archimedean property). If a > 0 and $b \in \mathbb{R}$, then there exists an $n \in \mathbb{N}$ such that na > b.

Proof. Suppose instead that there exist a > 0 and $b \in \mathbb{R}$ such that $na \leq b$ for all $n \in \mathbb{N}$. In particular, this means that b is an upper bound for the set $S := \{na : n \in \mathbb{N}\}$. Since S is nonempty and $S \subseteq \mathbb{R}$, by the Completeness axiom, $s := \sup S$ exists. Since a > 0, s - a < s. Therefore s - a in not an upper bound for S, and so s - a < ma for some $m \in N$. Rearranging, s < (m+1)a: but this contradicts that s is an upper bound for s because (m+1)a is also in S (since $m+1 \in \mathbb{N}$).

Proposition 2 (Archimedean property). The set \mathbb{N} of natural numbers is unbounded from above in \mathbb{R} .

Exercise 8. Prove that Proposition 1 and Proposition 2 are equivalent: Proposition 1 follows from Proposition 2 and vice versa.

Exercise 9. TFU: If $\epsilon > 0$, then there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon < n$.

Proposition 3 (Density of \mathbb{Q} in \mathbb{R}). For any $x, y \in \mathbb{R}$ with y > x, there exists $q \in \mathbb{Q}$ such that x < q < y.

Proof. Fix $x, y \in \mathbb{R}$ such that y > x. By Proposition 1 (set n = y - x and b = 1), there exists an $n \in \mathbb{N}$ such that $n(y - x) > 1 \Leftrightarrow ny > nx + 1$. Let $m := \min\{k \in \mathbb{Z} : k > na\}$. By definition, na < m and $na \ge m - 1$ (why?) and so $na < m \le 1 + na < nb$. Letting $q := \frac{m}{n}$ and noting that q is rational completes the proof.

Exercise 10. TFU: If a < b, then there exist infinitely many rationals between a and b.

1.4 Extended real numbers

Definition 4. Let $+\infty$ (or just ∞) be a *symbol* that satisfies $a<+\infty$ for all $a\in\mathbb{R}$. Symmetrically, the symbol $-\infty$ satisfies $a>-\infty$, for all $a\in\mathbb{R}$. Finally, $-\infty<+\infty$. We call $\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}$ the *extended real line*.

Remark 3. $+\infty$ and $-\infty$ are not real numbers, so statements on real numbers do not (automatically) extend to them. Plausible facts like $a+\infty=\infty$, $(-\infty)+(-\infty)=-\infty$, etc. are true in $\overline{\mathbb{R}}$. However, expressions like $+\infty+(-\infty)$, $\infty\cdot 0$, etc. are left undefined (just like 1/0 is undefined in \mathbb{R}).

Definition 5. Let $S \subseteq \mathbb{R}$ be unbounded above. Then we define $\sup S := +\infty$. Analogously, if S is unbounded below, then $\inf S := -\infty$. (A strict reading of the definition of supremum and infimum, now in $\overline{\mathbb{R}}$, shows that these definitions are not new.)

Remark 4. With this last definition and the Completeness axiom, we can say that all subsets of \mathbb{R} have a supremum and an infimum (possibly in $\overline{\mathbb{R}}$).

Exercise 11. According to a strict interpretation of the definition of supremum and infimum, what are $\sup \emptyset$ and $\inf \emptyset$ (where \emptyset is the empty set)?

2 Sequences

Definition 6. A sequence (in \mathbb{R}) is a function $x : \mathbb{N} \to \mathbb{R}$. Instead of using the standard notation x(n) for functions we use x_n . Some (equivalent) notations for a sequence x are:

$$(x_1, x_2, \ldots) \equiv (x_n)_{n=1}^{\infty} \equiv (x_n)_{n \in \mathbb{N}} \equiv (x_n)_n \equiv (x_n).$$

For brevity, we will generally adopt the notation $(x_n)_n$ if no confusion arise.

Remark 5. You will often see sequences denoted as $\{x_n\}_{n=1}^{\infty}$. Braces exclusively for sets, which are unordered: $\{2,3\}$ is the same set as $\{3,2\}$, which are both the same as $\{2,3,2,2,2,3\}$ (with some abuse of notation), etc.

Example 1. Consider the sequence $(1, -1, 1, -1, ...) = ((-1)^n)_{n=1}^{\infty}$. (Make sure you understand the notation on the right hand side of the equality.) Its set of values is $\{(-1)^n : n \in \mathbb{N}\} = \{1, -1\}$. Seen as a function, $\{1, -1\}$ is the range and \mathbb{N} is the domain (like it is for all sequences).

¹One way to formally prove the existence of m is to prove that every nonempty subset of \mathbb{Z} that is bounded from below has a minimum.

2.1 Convergence of a sequence

Definition 7. A sequence $(x_n)_n$ converges to $x \in \mathbb{R}$ if: for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that n > N implies $|x_n - x| < \epsilon$. The point x is called the *limit* of $(x_n)_n$, and we write

$$\lim_{n \to \infty} x_n = x \text{ or } x_n \to x.$$

Exercise 12. TFU: If a sequence has a limit, then the limit is unique. **Hint:** recall the *triangle inequality*: $|a-b| \le |a-c| + |c-b|$, for all $a, b, c \in \mathbb{R}$.

Proposition 4 (Sandwich rule). Suppose that a sequence $(x_n)_n$ converges to x and that $a \le x_n \le b$ for all $n \in \mathbb{N}$ for some $a, b \in \mathbb{R}$, b > a. Then, $a \le x \le b$.

Proof. Suppose that $x_n \geq a$ for all $n \in \mathbb{N}$ but a > x. Define $\epsilon := a - x > 0$. Since $x_n \to x$, there exists $n \in \mathbb{N}$ sufficiently large such that

$$|x_n - x| \le |x_n - x| < \epsilon = a - x \Rightarrow a > x_n$$

which is a contradiction. Symmetric argument for $x_n \leq b$ for all $n \in \mathbb{N}$ shows that we must also have $x \leq b$.

Exercise 13. Find the limit (if they exist) of the following sequences, or show that they do not exist.

- (i) $(a_n)_n = (\frac{1}{n})_n$
- (ii) $(b_n)_n = ((-1)^n)_n$
- (iii) $(c_n)_n = ((-1)^{2n})_n$

Exercise 14 (PS2). TFU: Suppose (x_n) and (y_n) are Real sequences and that $x_n \to x$ and $y_n \to y$. Then, (i) $(x_n + y_n)_n \to x + y$, (ii) $x_n y_n \to xy$, (iii) $x_n - y_n \to x - y$, (iv) $\frac{1}{x_n} \to \frac{1}{x}$; (v) $\frac{x_n}{y_n} \to \frac{x}{y}$.

Exercise 15. TFU: a sequence $(x_n)_n$ converges to x if and only if there exists $\epsilon > 0$ such that all terms x_n are contained in $(x - \epsilon, x + \epsilon)$.

Exercise 16. TFU: a sequence $(x_n)_n$ converges to x if and only if for all $\epsilon > 0$ all but finitely many terms x_n 's are contained in $(x - \epsilon, x + \epsilon)$.

Exercise 17. TFU: a sequence $(x_n)_n$ converges to x if and only if for all $\epsilon > 0$ infinitely many terms are contained in $(x - \epsilon, x + \epsilon)$.

Exercise 18 (PS2). TFU: a sequence $(x_n)_n$ converges to x if and only if for all $\epsilon > 0$ infinitely many terms are contained in $(x - \epsilon, x + \epsilon)$, and x is the only number with this property.

2.1.1 Infinite limits

Definition 8. A sequence (x_n) diverges to (or converges to) $+\infty$ if for every $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $x_n \geq M$ for all $n \geq N$. We write $\lim x_n = +\infty$ or $x_n \to +\infty$ as before. Divergence to (convergence to) $-\infty$ is defined analogously.

Remark 6. Informally, a sequence diverges to $+\infty$ (resp. $-\infty$) if it has arbitrarily large (resp. small) elements in its tail.

Exercise 19. TFU: If a sequence does not converge, then it diverges to either $+\infty$ or $-\infty$.

Exercise 20. TFU: Let (x_n) diverge to $+\infty$ and $y_n \to y > 0$ (y can be finite or $+\infty$). Then, $\lim x_n y_n$ exists (and is ...?).

Exercise 21. TFU: Let (x_n) diverge to $+\infty$ and $y_n \to 0$. Then, $\lim x_n y_n$ exists (and is ...?).

2.1.2 Bounded sequences

Definition 9. A sequence (x_n) is bounded if its set of values $\{x_n : n \in \mathbb{N}\}$ is bounded. Bounded above and bounded below are defined in the same manner.

Exercise 22. TFU: Every bounded sequence is convergent.

Exercise 23 (PS2). TFU: Every convergent sequence (with a finite limit) is bounded.

Exercise 24. TFU: A sequence diverges to $+\infty$ if and only if the sequence if unbounded.

2.1.3 Monotone sequences

Definition 10. A sequence $(x_n)_n$ is nondecreasing if $x_n \leq x_{n+1}$, for every $n \in \mathbb{N}$. It is strictly increasing if $x_n < x_{n+1}$ for every $n \in \mathbb{N}$. To avoid ambiguity, I will try not to use the term "increasing". Definitions of nonincreasing and strictly decreasing sequences are analogous. Finally, a sequence is monotone if it is either nondecreasing or nonincreasing.

Exercise 25. Complete the following: A sequence is both nondecreasing and nonincreasing if and only if it is

Proposition 5. If $(x_n)_n$ is bounded and monotone, then it converges.

Proof. We will prove the statement for a nondecreasing sequence $(x_n)_n$. The statement for nonincreasing sequences follow from the fact that $(x_n)_n$ is nonincreasing if and only if $(-x_n)$ is non-decreasing. So suppose $(x_n)_n$ is bounded and nondecreasing. By the Completeness axiom, $u := \sup\{x_n : n \in \mathbb{N}\} < +\infty$ exists. We want to show that $x_n \to u$. Fix any $\epsilon > 0$. Since $u - \epsilon$ is not an upper bound for $(x_n)_n$ (why?), there exists $N \in \mathbb{N}$ such that $x_N > u - \epsilon$. Since $(x_n)_n$ is nondecreasing, for all n > N, we also have $x_n > u - \epsilon$. By definition of $u, x_n \le u$ for all $n \in \mathbb{N}$. Combining these, $u - \epsilon < x_n \le u$ for all n > N and hence $|x_n - u| < \epsilon$ for all n > N. This proves that $x_n \to u$.

Proposition 6. If $(x_n)_n$ is unbounded and nondecreasing, then it diverges to $+\infty$. Similarly, if $(x_n)_n$ is unbounded and nonincreasing, then it diverges to $-\infty$.

Proof. Let M > 0. Since $\{x_n : n \in \mathbb{N}\}$ is unbounded by hypothesis and it is bounded below by x_1 (why?), it must be unbounded above. Then, there exists $N \in \mathbb{N}$ such that $x_N > M$. Since $(x_n)_n$ is nondecreasing, $x_n \geq x_N > M$ for all n > N, which shows that $\lim x_n = +\infty$. The proof for the case in which $(x_n)_n$ is nonincreasing is analogous..

Remark 7. Combining these two propositions gives the Monotone Convergence Theorem for Real sequences; i.e., all monotone sequences either converge to a finite $x \in \mathbb{R}$ (either the supremum or the infimum of $\{x_n : n \in \mathbb{N}\}$) or diverge to $\pm \infty$. Thus, if $(x_n)_n$ is a monotone sequence, $\lim x_n$ is always a meaningful expression. This is particularly useful because we did not compute the limit value. A similar thing will happen with Cauchy sequences.

Corollary 1. A monotone sequence $(x_n)_n$ converges if and only if it is bounded.

2.2 Subsequences

Definition 11. Let (x_n) be a sequence. A *subsequence* of (x_n) is a sequence obtained by (only) deleting elements of (x_n) . More formally, a subsequence of (x_n) is any sequence $(x_{n_k})_k$ where $(n_k)_k$ is a strictly increasing sequence of non-negative integers.

Exercise 26 (PS2). TFU: If a sequence converges, then every subsequence converges (to the same limit).

Exercise 27 (PS2). TFU: If a sequence is bounded, then every subsequence is bounded.

Exercise 28 (PS2). TFU: If a sequence is unbounded, then every subsequence is unbounded.

Exercise 29 (PS2). TFU: If a sequence is unbounded, then it has a subsequence which is bounded.

2.3 The Bolzano-Weierstrass theorem

Proposition 7. Every sequence $(x_n)_n$ has a monotonic subsequence.

Proof. For each $n \in \mathbb{N}$ define the set $S_n := \{x_n, x_{n+1}, \ldots\}$.

If S_1 has no maximum element, then construct a subsequence $(x_{n_k})_k$ as follows.

```
n_1 := 1
n_2 := n_1 + \min \{ k' \in \mathbb{N} : x_{n_1 + k'} \ge x_{n_1} \}
:= :
n_k := n_{k-1} + \min \{ k' \in \mathbb{N} : x_{n_{k-1} + k'} \ge x_{n_{k-1}} \} \ \forall k = 3, 4 \dots
```

Observe that x_{n_2} is the first term in $(x_{n_1+1}, x_{n_1+2}, ...)$ that is greater than $x_{n_1} = x_1$. Moreover, x_{n_2} is well-defined because S_1 has no maximum—if there weren't such a term, then $x_{n_1} = x_1$ would be the maximum of S_1 . Similarly, x_{n_3} is well-defined as the first term in $(x_{n_2+1}, x_{n_2+2}, ...)$ that is greater than x_{n_2} . If there weren't such a term, then $x_{n_2} > x_m$ for all $m \ge n_2$; also, $x_{n_2} \ge x_m$ for all $m < n_2$ by construction; so x_{n_3} would be the maximum of S_1 . Observe that, by construction, $(x_{n_k})_k$ is nondecreasing.

Suppose that S_1 has the maximum element but there exists S_n (for some n > 1) that has no maximum element. Then, we could reapply the same argument from above to construct a nondecreasing subsequence by taking letting $x_{n_1} := x_n$.

²Since I only left this definition as an exercise, let me give it formally: $b \in \mathbb{R}$ is the maximum of set $S \subset \mathbb{R}$ if $b \in S$ and $b \geq s$ for all $s \in S$. The minimum is defined analogously. Note that unbounded sets do not have maximum or minimum.

The only remaining case is if $\max S_n$ exists for all $n \in \mathbb{N}$. Consider the following recursively defined sequence of indices:

$$n_1 = \min \{ m \in \mathbb{N} : x_m = \max S_1 \}$$

$$n_{k+1} = \min \{ m \in \mathbb{N} : x_m = \max S_{n_k+1} \} \ \forall k \in \mathbb{N}.$$

(Note that S_n is a set, hence max S_n is just a number, and not a set of maximisers.) The subsequence $(x_{n_k})_k$ is nonincreasing because the sets S_n are nested appropriately.

Exercise 30. TFU: Referring to the previous proof, if $\max S_1$ does not exist then neither do $\max S_n$, for all $n = 2, 3 \dots$

Exercise 31 (PS2). In the second part of the proof of Proposition 7, can you replace $\min\{m \in \mathbb{N} : x_m = \max S_{n_k+1}\}$ with $\max\{m \in \mathbb{N} : x_m = \max S_{n_k+1}\}$?

Theorem 1 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Let $(x_n)_n$ be a bounded sequence. By Proposition 7, it has a monotonic subsequence $(x_{n_k})_k$. By Exercise 27, $(x_{n_k})_k$ is bounded. By Proposition 5, monotone and bounded sequences converge.

2.4 lim sup and lim inf

Definition 12. The *limit superior* (read "lim sup") of a sequence (x_n) is

$$\lim_{n \to \infty} \sup x_n := \lim_{m \to \infty} \sup \left\{ x_n : n \ge m \right\}.$$

The *limit inferior* ("lim inf") is

$$\liminf_{n \to \infty} x_n := \lim_{m \to \infty} \inf \left\{ x_n : n \ge m \right\}.$$

Proposition 8. Limit superior and limit inferior of a sequence always exist.

Proof. We prove the case for \limsup Define $a_n := \sup\{x_k : k \ge n, k \in \mathbb{N}\}.$

Suppose first that $a_n < \infty$ for all $n \in \mathbb{N}$. Then, we must have $a_{n+1} \le a_n$ for all $n \in \mathbb{N}$ since a_{n+1} is a supremum over a smaller set than a_n . Thus, $(a_n)_n$ is monotone decreasing. If $(a_n)_n$ is unbounded, (a_n) diverges to $-\infty$ (Proposition 6); if, instead, $(a_n)_n$ is bounded, then (a_n) converges to a limit $a = \sup\{a_n : n \in \mathbb{N}\}$ (Proposition 5).

Suppose instead that $a_n = \infty$ for some $n \in \mathbb{N}$. If there are finitely many such n's, $a_n < \infty$ for all n > N for some sufficiently large N. Applying the previous argument implies that $\limsup_{n \to \infty} x_n$ is well-defined. If, instead, $a_n = \infty$ for all $n \in \mathbb{N}$, then the limit of a_n is $+\infty$.

Proposition 9. Let (x_n) be a sequence. If $\liminf x_n = \limsup x_n$, then $\lim x_n$ is well-defined and $\lim x_n = \liminf x_n = \lim \sup x_n$.

Proof. Suppose $\liminf x_n = \limsup x_n = x \in \mathbb{R}$. (The cases $\pm \infty$ are easier and left as an exercise.) Fix any $\epsilon > 0$. By definition of \limsup , there exists $N_0 \in \mathbb{N}$ such that $|x - \sup\{x_n : n \ge N_0\}| < \epsilon$ (why?). In particular, $\sup\{x_n : n \ge N_0\} < x + \epsilon$, so $x_n < x + \epsilon$ for all $n > N_0$. In the same fashion

(how?), we can prove that there exists N_1 such that $x_n > x - \epsilon$ for all $n > N_1$. Putting these together, for all $n > \max\{N_0, N_1\}$, $x - \epsilon < x_n < x + \epsilon$; equivalently, $|x_n - x| < \epsilon$, which is what we wanted to prove.

Exercise 32 (PS2). TFU: If $(x_n)_n$ is a sequence, there exists an $M \in \mathbb{N}$ such that $\limsup x_n = \sup\{x_n : n \geq M\}$.

Exercise 33 (PS2). Replace \star with an appropriate symbol, then prove: For any sequences (x_n) , (y_n) ,

$$\limsup_{n \to \infty} (x_n + y_n) \star \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$

provided the right hand side is not of the form $\infty + (-\infty)$ (which is undefined).

Exercise 34 (PS2). Consider the following non-theorem: Let $x_n \to x \ge 0$ and (y_n) be any sequence. Then $\limsup x_n y_n = x \limsup y_n$. Disprove this, then identify a tiny change to the assumptions that makes it true (but don't prove it).

2.5 Cauchy Sequences

Definition 13. A sequence $(x_n)_n$ is Cauchy if, for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < \epsilon$ for all n, m > N.

In words, a sequence $(x_n)_n$ is Cauchy if the distance between two elements in the tail of the sequence can be made arbitrarily small. The crucial distinction between Cauchy sequences and a convergent sequence is that the former does not refer to the limit point the sequence whereas the latter requires the limit point to exist.

Proposition 10. If $(x_n)_n$ converges to $x \in \mathbb{R}$, then $(x_n)_n$ is Cauchy.

Proof. Fix $\epsilon > 0$. Since $x_n \to x$, there exists $N \in \mathbb{N}$ such that $|x_n - x| < \frac{\epsilon}{2}$ for all n > N. Since it is just a change of labels, it is also the case that for all m > N, $|x_m - x| < \frac{\epsilon}{2}$. Next, by the triangle inequality

$$|x_n - x_m| = |x_n - x + x - x_m| \le |x_n - x| + |x - x_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence, $(x_n)_n$ is Cauchy.

Proposition 11. If $(x_n)_n$ is Cauchy, then it is bounded.

Proof. If $(x_n)_n$ is Cauchy, then, in particular, for $\epsilon = 1$, there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < 1$ for all n, m > N. In particular, this holds fixing m = N + 1. The "reverse" triangle inequality³ then gives $|x_n| < |x_{N+1}| + 1$, for all n > N. Now take $M = \max\{|x_{N+1}| + 1, |x_0|, \dots, |x_N|\} < +\infty$ and note that $|x_n| \le M$ for all $n \in \mathbb{N}$. Hence $(x_n)_n$ is bounded.

Proposition 12. If $(x_n)_n$ is a Cauchy sequence and there is a subsequence $(x_{n_k})_k$ that converges to $x \in \mathbb{R}$, then $(x_n)_n$ converges to x as well.

Exercise 35. Prove Proposition 12.

Theorem 2 (Cauchy criterion). A sequence $(x_n)_n$ is convergent if and only if it is Cauchy.

³That is, $|x - y| \ge ||x| - |y||$.

Proof. There are two implications to prove. The "only if" was Proposition 10. Let us prove the "if" part. Suppose that (x_n) is a Cauchy sequence. By Proposition 11, $(x_n)_n$ is bounded. Now since $(x_n)_n$ is a bounded sequence, by the Bolzano-Weierstrass Theorem there is a subsequence $(x_{n_k})_k$ which converges. Then, by Proposition 12, we know that $(x_n)_n$ must converge as well.

Remark 8. A (metric) space is called *complete* if every Cauchy sequence is convergent. Thus, the previous result establishes that \mathbb{R} is *complete*. Completeness is the idea that the set has no "holes". For example, \mathbb{Q} is not complete because there are Cauchy sequences that are not convergent (e.g., take a sequence that converges to $\sqrt{2} \notin \mathbb{Q}$). We like to work with complete spaces because it ensures that solutions exist; e.g., we want to be able to solve $x^2 = 2$!

2.6 Sequences in \mathbb{R}^d

So far, we have only considered sequences in \mathbb{R} ; i.e., $(x_n)_n$ such that $x_n \in \mathbb{R}$ for all $n \in \mathbb{N}$. All the results we discussed above can be extended to the case when $\mathbf{x}_n \in \mathbb{R}^d$ (i.e., a product space of \mathbb{R}) for all $n \in \mathbb{N}$ for any $d \in \mathbb{N}$. Recall that we measured "distance" between two real numbers using the absolute value of the different $(|\cdot|)$.

Definition 14. If $\mathbf{x} \in \mathbb{R}^d$, write $\mathbf{x} = (x_1, \dots, x_k)$. The *Euclidean distance* between $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ is given by

$$\|\mathbf{x} - \mathbf{y}\|_d = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}.$$

We often simply write $\|\cdot\|$ (without the subscript d).

We now define $\mathbf{x}_n \to \mathbf{x}$ if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\|\mathbf{x}_n - \mathbf{x}\| < \epsilon$ for all n > N. To extend the previous results, one can use the fact that a sequence (\mathbf{x}_n) in \mathbb{R}^d converging to a limit \mathbf{x} is equivalent to convergence in each coordinate. Let $x_{n,i}$ denote the *i*th element of $\mathbf{x}_n \in \mathbb{R}^d$.

Proposition 13. A sequence $(\mathbf{x}_n)_n$ in \mathbb{R}^d converges to a limit \mathbf{x} if and only if $x_{n,i} \to x_i$ for all $i \in \{1, \ldots, d\}$.

Proof. First, suppose that $\mathbf{x}_n \to \mathbf{x}$. We wish to show that $x_{n,i} \to x_i$ for all $i \in \{1, ..., d\}$; i.e., for each $i \in \{1, ..., d\}$, and for any $\epsilon_i > 0$, there exists $N_{\epsilon_i} \in \mathbb{N}$ such that $|x_{n,i} - x_i| < \epsilon_i$ for all $n > N_{\epsilon_i}$. Let $\epsilon_i = \epsilon > 0$ for all $i \in \{1, ..., d\}$. By definition of $\mathbf{x}_n \to \mathbf{x}$, we know that there exists $N_{\epsilon} \in \mathbb{N}$ such that, for all $n > N_{\epsilon}$,

$$\epsilon > \sqrt{\sum_{i=1}^{d} |x_{n,i} - x_i|^2} \ge \sqrt{|x_{n,j} - x_j|^2} = |x_{n,j} - x_j|,$$

for any $j \in \{1, ..., d\}$. For each $i \in \{1, ..., d\}$, by setting $N_{\epsilon_i} = N_{\epsilon}$, we have shown that $x_{n,i} \to x_i$. Next, suppose that $x_{n,i} \to x_i$ for all $i \in \{1, ..., d\}$. We wish to show that $\mathbf{x}_n \to \mathbf{x}$; i.e., for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that $\|\mathbf{x}_n - \mathbf{x}\| < \epsilon$ for all $n > N_{\epsilon}$. Define $\eta := \epsilon / \sqrt{d}$. For each $i \in \{1, ..., d\}$, by definition of $x_{n,i} \to x_i$, there exists $N_i^{\eta} \in \mathbb{N}$ such that $|x_{n,i} - x_i| < \eta$ for all $n > N_i^{\eta}$. Define $N_{\epsilon} := \max\{N_1^{\eta}, ..., N_d^{\eta}\}$ which is well defined since d is finite. Then, for any $n > N_e$, we have

$$|x_{n,i} - x_i| < \eta = \frac{\epsilon}{\sqrt{d}} \ \forall i \in \{1, \dots, d\}$$

$$\Leftrightarrow \|\mathbf{x}_n - \mathbf{x}\| = \sqrt{\sum_{i=1}^d |x_{n,i} - x_i|^2} < \sqrt{\sum_{i=1}^d \left(\frac{\epsilon}{\sqrt{d}}\right)^2} = \epsilon.$$