Primeira Prova de Cálculo Infinitesimal II

Semestre 2016/2 - Prof. Ricardo M. S. Rosa

4 de novembro de 2016

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: (2 pontos) Um navio está em rota de colisão com um porto que está a $1000\,\mathrm{m}$ de distância, a uma velocidade de $9\,\mathrm{m/s}$, quando reverte as turbinas e começa a desacelerar segundo a equação diferencial

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{1/2},$$

onde $\alpha = (1/50) \, \mathrm{m}^{1/2}/\mathrm{s}^{3/2}$, t tem escala s de segundos, e x, m de metros. Sabendo que o navio não colide com o porto, determine quanto tempo decorre até o navio parar e a quantos metros do porto ele para.

2º Questão: (2,5 pontos) Considere uma fonte de luz em um ponto (x_0, y_0, z_0) , com $z_0 \ge 0$ e uma haste dada pelo segmento de reta que liga a origem a um ponto $\mathbf{H} = (0, 0, h)$, onde h > 0. A sombra da haste no plano z = 0, causada por essa fonte de luz, é um segmento de reta que liga a origem a um determinado ponto $(\xi, \eta, 0)$, com $-\infty \le \xi, \eta \le +\infty$. Encontre ξ e η em função de x_0, y_0, z_0 e h. Considerando, agora, que essa fonte de luz se move ao longo de um caminho definido por uma curva parametrizada $\gamma(t) = (x(t), y(t), z(t)), t \in I$, onde $I \subset \mathbb{R}$ é um intervalo, encontre condições em γ para que $\sigma(t) = (\xi(t), \eta(t), 0) \in \mathbb{R}^2 \times \{0\}$ seja uma curva parametrizada bem definida para todo $t \in I$ e seja continuamente diferenciável. Mostre, ainda, que o vetor velocidade de σ se anula em um determinado valor $t \in I$ se, e somente se, o vetor tangente de γ em t é um múltiplo do vetor que liga \mathbf{H} a $\gamma(t)$.

3ª Questão: (2,5 pontos) Considere uma curva γ no espaço \mathbb{R}^3 que pertence ao cilindro $\{(x,y,z)\in\mathbb{R}^3,\ x^2+y^2=a^2\}$, onde a>0, e com a seguinte propriedade: em cada ponto \mathbf{P} da curva, o ângulo entre o eixo y e o plano tangente ao cilindro em \mathbf{P} é igual ao ângulo entre o eixo z e a reta tangente à curva em \mathbf{P} . Mostre que essa curva pode ser parametrizada por

$$\gamma(\theta) = (a\cos\theta, a\sin\theta, c\pm a\ln(\sin\theta)),$$

onde $c \in \mathbb{R}$ é uma constante e θ é um parâmetro que varia em intervalo contido em $(0,\pi)$.

4º Questão: Seja $k: I \to \mathbb{R}$ uma função contínua e não-negativa definida em um intervalo $I \subset \mathbb{R}$. Fixe um $t_0 \in I$, considere uma primitiva $\theta: I \to \mathbb{R}$ qualquer de k e defina a curva $\gamma(t) = (x(t), y(t)), t \in I$, por

$$x(t) = \int_{t_0}^t \cos \theta(s) \, ds, \quad y(t) = \int_{t_0}^t \sin \theta(s) \, ds, \qquad \forall t \in I.$$

- (i) (1 ponto) Mostre que γ é uma curva duas vezes continuamente diferenciável e parametrizada pelo comprimento de arco.
- (ii) (1 ponto) Mostre que a curvatura de γ é exatamente k.
- (iii) (1 ponto) Dados um ponto qualquer $\mathbf{P}_0 = (x_0, y_0) \in \mathbb{R}^2$ do plano e um vetor unitário $\mathbf{T}_0 = (u_0, v_0) \in \mathbb{R}^2$, modifique a definição de γ de forma a ainda ter uma curva duas vezes continuamente diferenciável, parametrizada pelo comprimento de arco, com curvatura k e tal que $\gamma(t_0) = \mathbf{P}_0$ e $\gamma'(t_0) = \mathbf{T}_0$.