МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: Исследование операций тема: Закрытая транспортная задача

Выполнил: ст. группы ПВ-223

Игнатьев Артур

Проверил:

Вирченко Юрий Петрович

Цель работы: изучить математическую модель транспортной задачи, овладеть методами решения этой задачи.

Задания

- 1. Изучить содержательную и математическую постановки закрытой транспортной задачи, методы нахождения первого опорного решения ее системы ограничений. Изучить понятие цикла пересчета в матрице перевозок. Овладеть распределительным методом и методом потенциалов, а также их алгоритмами.
- 2. Составить и отладить программы решения транспортной задачи распределительным методом и методом потенциалов.
- 3. Для подготовки тестовых данных решить вручную следующую задачу.

Вариант 3

3.
$$\vec{a} = (19, 19, 19, 19);$$

$$\vec{b} = (17, 17, 17, 17, 8);$$

$$C = \begin{pmatrix} 22 & 23 & 16 & 12 & 14 \\ 17 & 30 & 1 & 8 & 25 \\ 27 & 15 & 13 & 23 & 22 \\ 3 & 12 & 21 & 26 & 7 \end{pmatrix}$$

	B1	B2	В3	B4	В5	Запасы
A1	22	23	16	12	14	19
A2	17	30	1	8	25	19
A3	27	15	13	23	22	19
A4	3	12	21	26	7	19
Потребности	17	17	17	17	8	

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 19 + 19 + 19 + 19 = 76$$

$$\sum b = 17 + 17 + 17 + 17 + 8 = 76$$

Ручное решение:

Составляем опорный план

Искомый элемент равен $c_{23}=1$. Для этого элемента запасы равны 19, потребности 17. Поскольку минимальным является 17, то вычитаем его. $x_{23}=\min(19,17)=17$.

22	23	X	12	14	19
17	30	1	8	25	19 - 17 = 2
27	15	X	23	22	19
3	12	X	26	7	19
17	17	17 - 17 = 0	17	8	

Искомый элемент равен c_{41} =3. Для этого элемента запасы равны 19, потребности 17. Поскольку минимальным является 17, то вычитаем его. $x_{41} = \min(19,17) = 17$.

X	23	X	12	14	19
X	30	1	8	25	2
X	15	X	23	22	19
3	12	X	26	7	19 - 17 = 2
17 - 17 = 0	17	0	17	8	

Искомый элемент равен c_{45} =7. Для этого элемента запасы равны 2, потребности 8. Поскольку минимальным является 2, то вычитаем его. $x_{45} = \min(2,8) = 2$.

X	23	X	12	14	19
X	30	1	8	25	2
X	15	X	23	22	19
3	X	X	X	7	2 - 2 = 0
0	17	0	17	8 - 2 = 6	

Искомый элемент равен c_{24} =8. Для этого элемента запасы равны 2, потребности 17. Поскольку минимальным является 2, то вычитаем его. $x_{24} = \min(2,17) = 2$.

X	23	X	12	14	19
X	X	1	8	X	2 - 2 = 0
X	15	X	23	22	19
3	X	X	X	7	0
0	17	0	17 - 2 = 15	6	

Искомый элемент равен c_{14} =12. Для этого элемента запасы равны 19, потребности 15. Поскольку минимальным является 15, то вычитаем его. $x_{14} = \min(19,15) = 15$.

X	23	X	12	14	19 - 15 = 4
X	X	1	8	X	0
X	15	X	X	22	19
3	X	X	X	7	0
0	17	0	15 - 15 = 0	6	

Искомый элемент равен c_{15} =14. Для этого элемента запасы равны 4, потребности 6. Поскольку минимальным является 4, то вычитаем его. $x_{15} = \min(4,6) = 4$.

X	X	X	12	14	4 - 4 = 0
X	X	1	8	X	0
X	15	X	X	22	19
3	X	X	X	7	0
0	17	0	0	6 - 4 = 2	

Искомый элемент равен c_{32} =15. Для этого элемента запасы равны 19, потребности 17. Поскольку минимальным является 17, то вычитаем его. $x_{32} = \min(19,17) = 17$.

X	X	X	12	14	0
X	X	1	8	X	0
X	15	X	X	22	19 - 17 = 2
3	X	X	X	7	0
0	17 - 17 = 0	0	0	2	

Искомый элемент равен c_{35} =22. Для этого элемента запасы равны 2, потребности 2. Поскольку минимальным является 2, то вычитаем его. $x_{35} = \min(2,2) = 2$.

X	X	X	12	14	0
X	X	1	8	X	0
X	15	X	X	22	2 - 2 = 0
3	X	X	X	7	0
0	0	0	0	2 - 2 = 0	

	B1	B2	В3	B4	В5	Запасы
A1	22	23	16	12[15]	14[4]	19
A2	17	30	1[17]	8[2]	25	19
A3	27	15[17]	13	23	22[2]	19
A4	3[17]	12	21	26	7[2]	19
Потребности	17	17	17	17	8	5

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 8, а должно быть m+n-1=8. Следовательно, опорный план является *невырожденным*.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 12*15 + 14*4 + 1*17 + 8*2 + 15*17 + 22*2 + 3*17 + 7*2 = 633$$

Улучшение опорного палана

Проверим оптимальность опорного плана. Найдем *предварительные* nomenuuanu u_i , v_j . по занятым клеткам таблицы, в которых $u_i + v_j = c_{ij}$, полагая, что $u_1 = 0$.

$$u_1 + v_4 = 12$$
; $0 + v_4 = 12$; $v_4 = 12$

$$u_2 + v_4 = 8$$
; $12 + u_2 = 8$; $u_2 = -4$

$$u_2 + v_3 = 1$$
; $-4 + v_3 = 1$; $v_3 = 5$

$$u_1 + v_5 = 14$$
; $0 + v_5 = 14$; $v_5 = 14$

$$u_3 + v_5 = 22$$
; $14 + u_3 = 22$; $u_3 = 8$

$$u_3 + v_2 = 15$$
; $8 + v_2 = 15$; $v_2 = 7$

$$u_4 + v_5 = 7$$
; $14 + u_4 = 7$; $u_4 = -7$

$$u_4+v_1=3;\, \hbox{-}7+v_1=3;\, v_1=10$$

	v ₁ =10	v ₂ =7	v ₃ =5	v ₄ =12	v ₅ =14
u ₁ =0	22	23	16	12[15]	14[4]
u ₂ =-4	17	30	1[17]	8[2]	25
u ₃ =8	27	15[17]	13	23	22[2]
u ₄ =-7	3[17]	12	21	26	7[2]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_j \leq c_{ij}$.

Минимальные затраты составят: F(x) = 12*15 + 14*4 + 1*17 + 8*2 + 15*17 + 22*2 + 3*17 + 7*2 = 633

Анализ оптимального плана.

Из 1-го склада необходимо груз направить в 4-й магазин (15 ед.), в 5-й магазин (4 ед.)

Из 2-го склада необходимо груз направить в 3-й магазин (17 ед.), в 4-й магазин (2 ед.)

Из 3-го склада необходимо груз направить в 2-й магазин (17 ед.), в 5-й магазин (2 ед.)

Из 4-го склада необходимо груз направить в 1-й магазин (17 ед.), в 5-й магазин (2 ед.)

Блок схемы:

Код программы:

```
using System;
              Console.Write("\t\n", '|', '.');
          Console.Write("========
```

```
m, int n)
```

```
EXIT = 0;
```

Результат работы программы:

Опорное решение:

No	B1	B2	В3	B4	В5
1	22	23	16	12	14
2	17	30	1	8	25
3	27	15	13	23	22
4	3	12	21	26	7

Опорный план не вырожден

Результат

No	v ₁ =10	v ₂ =7	v ₃ =5	v ₄ =12	v ₅ =14
1	22	23	16	12[15]	14[4]
2	17	30	1[17]	8[2]	25
3	27	15[17]	13	23	22[2]
4	3[17]	12	21	26	7[2]

Вывод: Изучение математической модели транспортной задачи и методов её решения важно для логистики и оптимизации перевозок. Математическая модель помогает анализировать и оптимизировать распределение ресурсов в ограниченных условиях. В ходе исследования рассмотрены основные принципы создания модели, определены ключевые понятия и термины, связанные с транспортной задачей.

Методы решения транспортной задачи, такие как метод потенциалов, метод северо-западного угла, метод минимального элемента и метод пересчёта потенциалов, были изучены и использованы для нахождения оптимального решения. Применение разных методов помогло оценить их эффективность и пригодность для различных ситуаций.