Problem 7.12

Part b.

ClearAll["Global`*"] $exp = \frac{\omega p x}{1 - I \omega \tau} - I \omega == 0$ $-\,\dot{\mathbb{1}}\,\,\omega\,+\,\frac{x\,\omega p}{1-\,\dot{\mathbb{1}}\,\,\tau\,\omega}\,=\,0$ sol = Solve[exp, ω] // FullSimplify $\left\{\left\{\omega \rightarrow \frac{\mathbb{i}\left(-1+\sqrt{1-4\;x\;\tau\;\omega p}\;\right)}{2\;\tau}\right\}\text{, }\left\{\omega \rightarrow -\frac{\mathbb{i}\left(1+\sqrt{1-4\;x\;\tau\;\omega p}\;\right)}{2\;\tau}\right\}\right\}$ $\omega 1 = sol[[1, 1, 2]]$ $\omega 2 = sol[[2, 1, 2]]$ $\frac{\underline{i} \left(-1 + \sqrt{1 - 4 \times \tau \ \omega p}\right)}{2 \ \tau}$ $-\;\frac{\dot{\mathbb{1}}\;\left(1+\sqrt{1-4\;x\;\tau\;\omega p}\;\right)}{2\;\tau}$ $\omega 1 = Normal[FullSimplify[Series[<math>\omega 1, \{x, Infinity, 0\}],$ Assumptions $\rightarrow \tau \in \text{Reals \&\& } x \in \text{Reals \&\& } \omega p \in \text{Reals}$ $\omega^2 = Normal[FullSimplify[Series[<math>\omega^2$, {x, Infinity, 0}], Assumptions $\rightarrow \tau \in \text{Reals \&\& } x \in \text{Reals \&\& } \omega p \in \text{Reals}$ $-\frac{i}{2\tau} - \frac{i\omega p}{\sqrt{\frac{1}{x}\sqrt{-\tau\omega p}}}$ $-\frac{\dot{\mathbb{1}}}{2\tau} + \frac{\dot{\mathbb{1}}\omega p}{\sqrt{\frac{1}{x}\sqrt{-\tau\omega p}}}$ Eq1 = $\left(\frac{\omega p^2 \tau}{1 - I \omega \tau} - I \omega\right)$