- 1. Vérifier que : $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$.
- 2. En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ $\sin\left(\frac{5\pi}{12}\right)$

- 1. Calculer $\frac{\pi}{4} \frac{\pi}{6}$.
- 2. En déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

a désigne un réel. Simplifier l'expression suivantes :

$$A = (e^{ia} - e^{-ia})^2 + (e^{ia} + e^{-ia})^2.$$

- 1. Exprimer, pour tout réel a, le nombre $\cos^2(a)$ en fonction de $\cos(2a)$.
- 2. En déduire la valeur exacte de $\cos\left(\frac{\pi}{9}\right)$.

- 1. Exprimer, pour tout réel a, le nombre $\sin^2(a)$ en fonction de $\cos(2a)$.
- **2.** En déduire la valeur exacte de sin $\left(\frac{5\pi}{12}\right)$.
- 3. À l'aide de la question 1., déterminer la valeur exacte de $\sin\left(\frac{11\pi}{8}\right)$.

Écrire sous forme algébrique les nombres complexes suivants:

- 1. $e^{-i\pi}$
- 2. $e^{i\frac{\pi}{3}}$

Démontrer que les nombres suivants peuvent s'écrire sous la forme $e^{i\theta}$:

- 1. a = i
- **2.** b = -1

- 4. $d = \frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}$
- 3. $c = \frac{1}{2} + i \frac{\sqrt{3}}{2}$

Soit x un réel.

- 1. Démontrer que $\cos(3x) = 4\cos^3(x) 3\cos(x)$.
- **a.** En déduire que $\cos\left(\frac{\pi}{9}\right)$ est solution de l'équation $4x^3 - 3x - \frac{1}{2} = 0.$
 - b. Démontrer que cette équation a exactement trois solutions dans \mathbb{R} .
 - c. À la calculatrice, trouver une valeur approchée à 10^{-3} près de $\cos\left(\frac{\pi}{9}\right)$.

Soit x un nombre réel.

- 1. Écrire sous forme algébrique $z = e^{i(x + \frac{\pi}{3})}$.
- 2. En écrivant $e^{i(x+\frac{\pi}{3})}$ comme un produit d'exponentielles complexes, trouver une autre expression du nombre z.
- 3. En déduire les solutions sur \mathbb{R} de :
 - **a.** $\cos(x) \sqrt{3}\sin(x) = \sqrt{2}$
 - **b.** $\sqrt{3}\cos(x) + \sin(x) = \sqrt{2}$.

Écrire sous forme exponentielle les nombres complexes suivants:

1. $a = -\frac{2}{7}i$ 2. b = -10

3. c = 4i

4. d = 1 + i

Écrire sous forme exponentielle les nombres complexes suivants:

- 1. $a = 1 + i\sqrt{3}$
- 3. c = 2 2i
- 2. $b = -\frac{5}{2} + \frac{5i}{2}$
- 4. $d = -\sqrt{2} i\sqrt{2}$

Écrire sous forme algébrique les nombres complexes suivants:

1. $a = 3e^{-i\frac{\pi}{3}}$

3. $c = 6e^{i\frac{3\pi}{4}}$

- 2. $b = 5e^{-i\frac{\pi}{4}}$
- 4. $d = 7e^{-i\frac{\pi}{2}}$

Écrire sous forme exponentielle les nombres complexes suivants:

- 1. $a = 3e^{i\frac{\pi}{4}} \times e^{-i\frac{5\pi}{6}}$
- 2. $b = (e^{i\frac{\pi}{4}})^5$
- 3. $c = \frac{1}{e^{i\frac{\pi}{5}}}$
- 4. $d = -e^{i\frac{\pi}{3}}$

Placer l'image des nombres complexes suivants dans le plan complexe muni d'un repère :

1. $a = 3e^{-i\frac{\pi}{2}}$

- 3. $c = 4e^{i\frac{\pi}{3}}$
- **2.** $b = \sqrt{2}e^{-i\frac{3\pi}{4}}$
- **4.** $d = e^{-i\frac{\pi}{6}}$

185

Écrire sous forme exponentielle les nombres complexes suivants :

1.
$$a = \frac{8i}{e^{-i\frac{\pi}{4}}}$$

2.
$$b = -5e^{-i\frac{\pi}{3}}$$

3.
$$c = 2 \frac{e^{i\frac{\pi}{3}}}{e^{-i\frac{\pi}{7}}}$$

4.
$$d = \frac{\left(e^{i\frac{\pi}{3}}\right)^5}{\left(e^{-i\frac{\pi}{4}}\right)^2}$$

186

Écrire sous forme exponentielle les nombres complexes suivants :

1.
$$a = \sqrt{3} - i$$

2.
$$b = \frac{2 - 2i}{1 + i}$$

3.
$$c = \left(\frac{i}{2}\right)^{18}$$

4.
$$d = (1 + i)^{13}$$

187

Soit
$$z = 3 - i\sqrt{3}$$
.

- 1. Déterminer la forme exponentielle de z.
- **2.** En déduire la forme exponentielle des nombres complexes suivants :

$$\mathbf{c} \cdot \overline{\mathrm{i}z}$$

$$\mathbf{d.} -5z$$

Soit α un nombre réel. Déterminer la forme exponentielle des nombres suivants :

1.
$$\cos(\alpha) + i\sin(\alpha)$$

3.
$$-\cos(\alpha) + i\sin(\alpha)$$

2.
$$\cos(\alpha) - i\sin(\alpha)$$

4.
$$-\cos(\alpha) - i\sin(\alpha)$$

189

Soit le nombre complexe z = -1 + i.

- 1. Écrire z sous forme exponentielle.
- **2.** En déduire la forme algébrique de z^{10} .

190

On considère les nombres complexes z_1 et z_2 définis par :

$$z_1 = 2\sqrt{3} - 2i$$
 et $z_2 = 1 - i$.

- 1. Écrire z_1 et z_2 sous forme exponentielle.
- 2. En déduire celles de :

a.
$$z_1 z_2$$

b.
$$\frac{z_1}{z_2}$$

c.
$$\frac{z_1^3}{z_2^2}$$

191

- 1. Déterminer l'écriture exponentielle du nombre complexe u = 1 i.
- 2. Déterminer, pour tout réel θ , la forme algébrique et exponentielle du nombre complexe $e^{i\theta}(1-i)$.
- 3. Déduire des questions précédentes que, pour tout réel θ ,

$$\cos(\theta) + i\sin(\theta) = \sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right).$$

192

Soit x un nombre réel appartenant à l'intervalle]0;, $2\pi[$.

- 1. En factorisant par $e^{i\frac{x}{2}}$, déterminer le module et un argument de $a = 1 + e^{ix}$ et de $b = 1 e^{ix}$.
- 2. Montrer que $\frac{a}{b}$ est un nombre imaginaire pur.

193

Déterminer tous les entiers naturels n tels que $\cos\left(\frac{n\pi}{20}\right) + i\sin\left(\frac{n\pi}{20}\right)$ est un imaginaire pur.

194

Soit x un nombre réel. On pose $z = \cos(x) + i\sin(x)$.

1. Démontrer que pour tout entier naturel n,

$$z^n - \frac{1}{z^n} = 2i\sin(nx).$$

2. Trouver une expression analogue pour $z^n + \frac{1}{z^n}$

195

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. Pour tout entier naturel n supérieur ou égal à 2, on note A_n le point d'affixe $\frac{1}{2}(1+\mathrm{i})$ et M_n le point qui a pour affixe le complexe $\left(\frac{1}{2}(1+\mathrm{i})^n\right)^n$.

- 1. À l'aide de la forme exponentielle du nombre $\frac{1}{2}(1+i)$, placer les points M_2 , M_3 et M_4 .
- **2.** Prouver que si n-1 est multiple de 4, alors les points O, A et M_n sont alignés.
- **3.** Déterminer la limite de OM_n quand n tend vers $+\infty$.

196

Soit x un nombre réel. Écrire sous forme algébrique les nombres complexes suivants :

- 1. $a = e^{ix} + e^{-ix}$
- 3. $c = e^{4ix} + e^{-4ix}$
- 2. $b = e^{ix} e^{-ix}$
- 4. $d = e^{-5ix} e^{5ix}$

197

- 1. Développer $(a+b)^4$.
- 2. En utilisant une formule d'Euler, prouver que :

$$\sin^4(x) = \frac{1}{8}(\cos(4x) - 4\cos(2x) + 3).$$