One model to learn them all

Can we create a unified deep learning model to solve tasks across multiple domains?

Overview

Overview

- (1) WSJ speech corpus [7]
- (2) ImageNet dataset [23]
- (3) COCO image captioning dataset [14]
- (4) WSJ parsing dataset [17]
- (5) WMT English-German translation corpus
- (6) The reverse of the above: German-English translation.
- (7) WMT English-French translation corpus
- (8) The reverse of the above: German-French translation.

Overview

Convolution Blocks

Depthwise separable convolutions

Each channel handles separately

parameter- and computationally-efficient variant of the traditional convolution

Convolution Blocks

 $SepConv_{d,s,f}(W,x)$

 $ConvStep_{d,s,f}(W,x) = LN(SepConv_{d,s,f}(W,ReLU(x)))$

ConvBlock

Mixture-of-Experts Blocks

240 experts when training on 8 problems jointly

60 experts when training on each problem separately

4 experts out of the whole expert pool

Mixture-of-Experts Blocks

$$G(x) = Softmax(KeepTopK(H(x), k))$$

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$

$$KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$

Mixture-of-Experts Blocks

$$P(x,i) = Pr\Big((x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i) \\ > kth_excluding(H(x), k, i)\Big)$$

$$Load(X)_i = \sum_{x \in X} P(x, i)$$

$$L_{load}(X) = w_{load} \cdot CV(Load(X))^2$$

Attention blocks

$$\Delta(2d) = 1e4^{-\frac{2d}{depth}}$$
$$timing(t, [2d, 2d+1]) = [\sin(t\Delta(2d)) \parallel_2 \cos(t\Delta(2d))]$$

Architecture of the MultiModel

Language modality nets

$$LanguageModality_{in}(x, W_E) = W_E \cdot x$$

 $LanguageModality_{out}(x, W_S) = Softmax(W_S \cdot x)$

Categorical modality nets

Image modality net

Audio modality net

We accept audio input in the form of a 1-dimensional waveform over time or as a 2-dimensional spectrogram. Both the waveform and spectral input modalities use a stack of 8 ConvRes blocks from the ImageInputModality (Section [2.5.2]). The i^{th} block has the form: $l_i = ConvRes(l_{i-1}, 2^i)$. The spectral modality does not perform any striding along the frequency bin dimension, preserving full resolution in the spectral domain.

Experiments

Problem	MultiModel (joint 8-problem)	State of the art
ImageNet (top-5 accuracy)	86%	95%
WMT EN \rightarrow DE (BLEU)	21.2	26.0
WMT EN \rightarrow FR (BLEU)	30.5	40.5

Table 1: Comparing MultiModel to state-of-the-art from [28] and [21].

Problem	Joint 8-pro	blem	Single problem		
Fioblem	log(perpexity)	accuracy	log(perplexity)	accuracy	
ImageNet	1.7	66%	1.6	67%	
WMT EN→DE	1.4	72%	1.4	71%	
WSJ speech	4.4	41%	5.7	23%	
Parsing	0.15	98%	0.2	97%	

Table 2: Comparison of the MultiModel trained jointly on 8 tasks and separately on each task.

Experiments

Duchlam		Alone		W	W/ ImageNet			W/8 Problems		
Problem -	log(ppl)	acc.	full	log(ppl)	acc.	full	log(ppl)	acc.	full	
Parsing	0.20	97.1%	11.7%	0.16	97.5%	12.7%	0.15	97.9%	14.5%	

Table 3: Results on training parsing alone, with ImageNet, and with 8 other tasks. We report log-perplexity, per-token accuracy, and the percentage of fully correct parse trees.

Problem	All Blocks		Without MoE		Without Attention	
	log(perpexity)	accuracy	log(perplexity)	accuracy	log(perplexity)	accuracy
ImageNet	1.6	67%	1.6	66%	1.6	67%
WMT EN→FR	1.2	76%	1.3	74%	1.4	72%

Table 4: Ablating mixture-of-experts and attention from MultiModel training.

https://arxiv.org/abs/1706.05137