OPOSICIONES SECUNDARIA ESPECIALIDAD MATEMÁTICAS PRIMERA PRUEBA -- PARTE PRÁCTICA MELILLA 23-06-2018 09:30 horas

Problema 1.

Siendo
$$\tan z = \frac{\sin z}{\cos z}$$
, probar que para $z = x + yi$, se tiene $\tan z = \frac{\sin 2x + i \sin 2y}{\cos 2x + \cosh 2y}$

Problema 2.

Dada la parábola de ecuación $y^2 = 2x$, la tangente en un punto P corta al eje de ordenadas en A y la normal, también en P, corta a dicho eje en un punto B. Determinar la ecuación del lugar geométrico que describe el baricentro del triángulo PAB cuando el punto P describe la parábola.

Problema 3.

Considere la elipse de la figura.

Determine, en función de las longitudes de sus semiejes, un punto P de dicha cónica, situado en el primer cuadrante, tal que la superficie del cuadrilátero definido por las rectas tangentes a la cónica en P y en A, y los semiejes coordenados positivos, sea mínima.

OPOSICIONES SECUNDARIA ESPECIALIDAD MATEMÁTICAS PRIMERA PRUEBA -- PARTE PRÁCTICA MELILLA 23-06-2018 09:30 horas

Problema 4.

En una circunferencia se escogen al azar tres puntos.

Calcular la probabilidad de que los tres puntos estén situados en un mismo arco de 90º

Problema 5.

Calcula el valor del determinante:

$\left \frac{1}{1!}\right $	1	0	0		0
$ \begin{vmatrix} \frac{1}{1!} \\ \frac{1}{2!} \\ \frac{1}{3!} \\ \frac{1}{4!} \\ \vdots \\ \frac{1}{n!} $	$\frac{1}{1!}$	1	0		0
$\frac{1}{3!}$	$\frac{1}{2!}$	$\frac{1}{1!}$	1		0
$\frac{1}{4!}$	$\frac{1}{2!}$ $\frac{1}{3!}$	$\frac{1}{2!}$	$\frac{1}{1!}$		0
	: 1	: 1	: 1	:	: 1
$\frac{1}{n!}$	$\overline{(n-1)!}$	$\overline{(n-2)!}$	(n-3)!	•••	1!

Problema 6.

Sea (X,Y) una variable aleatoria bidimensional continua. Sea $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ la función definida como

$$f(x,y) = \begin{cases} k \cdot (y-x) & 0 \le x \le y \le 2\\ 0 & en \ otro \ caso \end{cases}$$

- a. Determine el valor de k para que f(x, y) sea función de densidad.
- b. Halle la función de distribución asociada.