

IN THE SPECIFICATION

Please replace the paragraph beginning at line 8 on page 10 with the following rewritten paragraph:

B1 The "update flags" field 214 is used to identify whether or not to modify the condition flags associated with the processing system when this instruction is executed. Copending U.S. patent application "Branch Instructions with Decoupled Condition and Address", serial number 09/466,405, filed December 17, 1999 for Farrell Ostler and Antoine Dagher, Attorney Docket A23891 (Disclosure 701046), incorporated by reference herein, discloses the decoupling of condition evaluations from branch instructions, and other conditional instructions, including the express identification of when condition flags should be saved for subsequent use in a conditional instruction. When the field 214 contains an affirmative value, the conventional system flags 118 of FIG. 1, such as carry, zero, and even, and other condition flags, discussed below, are saved, and not updated until another instruction contains an affirmative value in field 214.

Please replace the paragraph beginning at line 4 on page 11 with the following rewritten paragraph:

B2

The "address select" field 240 determines which input to the selector 180 is used to address the memory 120. The selected address may be an indirect address location IDA 185, the output 111 of the AU 110, an external address extA 188, or one of the address registers 130. As noted above, by providing the field 240 within all instructions, a memory select operation can be effected in parallel with any other instruction. It is also significant to note that there is no register element between the memory 120 and the AU 110, as would typically be found in a conventional processing system, thereby allowing the AU 110 to access memory items directly, without an intermediate "load register" instruction. The "addressed register change" field 242 operates in conjunction with the address select field 240, and allows for incrementing or decrementing the addressed register during the same instruction cycle that the memory contents at the incremented or decremented address is provided to the AU 110. Copending U.S. patent application "Circular Address Register", serial number 09/466,404, filed December 17, 1999 for Farrell Ostler and Antoine Dagher, Attorney Docket A23887 (Disclosure 701047), incorporated by reference herein, discloses a circular address register that is configured to allow for "circular increment" and "circular decrement" instructions that automatically adjust the pointer to the register to provide a circular addressing function. The addressed register change field 242 in a preferred embodiment of this invention includes states that effect the circular increment and decrement functions for each of the address registers 130, as determined by the address select field 240. As will be evident to one of ordinary skill in the art, the ability to circularly increment an address, provide the contents of the circularly incremented address to an AU, perform an arithmetic operation on the contents, store the result in a destination register (discussed below), and circularly increment another register (discussed below), all within a single instruction cycle, is particularly well suited for cryptographic and other applications involving multi-word data items.