维吉尼亚密码及其破译

Breaking Vigenère Cipher 刘卓

维吉尼亚密码(Breaking Vigenère Cipher)是使用一系列凯撒密码组成密码字母表的加密算法,即 多字母替代凯撒密码。属于多表密码的一种简单形式。

1 排列

排列 (Permutation), 是将相异对象或符号根据确定的顺序重排。每个顺序都称作一个排列。即:从 n 个对象取 k 个对象的有序排列,其中 $k \le n$ 。一共有

$$P(n,k) := n \cdot (n-1) \cdot (n-2) \cdots (n-k+2) \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

种方法.

2 组合

组合 (Combination),一个集的元素的组合是一个子集。若两个子集的元素完全相同并顺序相异,它仍视为同一个组合。即:从 n 个对象取 k 个对象的无序排列,其中 $k \le n$ 。读作 n 取 k。

$$C(n,k) = \frac{P(n,k)}{k!} = \begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!}$$

3 概率

对于一项实验,其中存在 n 种不同的可能性,然后以 k 种可能的方式出现结果的概率为 $\frac{k}{n}$ **例 1**

生日问题。一年有 365 天,在一个班级中,假设这个班有 n 个人,求这个班至少有两人在同一天生日的概率。

$$1 - \frac{P(365, n)}{365^n} = 1 - \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n}$$

	\overline{n}	1	2	3	10	20	30	40	50
Ì	p	0	0.0027	0.0082	0.117	0.411	0.706	0.891	0.97

即代表如果一个班有50个人,基本可以确定至少有两人在同一天生日。

例 2

假设甲板上有 45 张卡。在这些卡中,有 20 张标有 "X", 15 张标有 "Y",以及 10 张 "Z"。随机选择一张牌,放回去,然后随机洗牌并随机选择另一张牌。

(1) 找出第一张是 X 第二张是 Z 的概率。

$$P(X \ and \ Z) = \mathbb{P}(x) \cdot \mathbb{P}(z) = \frac{20}{45} \cdot \frac{10}{45} = \frac{8}{81}$$

(2) 两张卡分别是 X 和 Z

$$\mathbb{P}(X \text{ and } Z) = \mathbb{P}(X \text{ and } Z) + \mathbb{P}(Z \text{ and } X) = \frac{8}{81} + \frac{8}{81} = \frac{16}{81}$$

(3) 两张都是 Y

$$\mathbb{P}(Y \ and \ Y) = \mathbb{P}(Y) \cdot \mathbb{P}(Y) = \frac{15}{45} \cdot \frac{15}{15} = \frac{1}{9}$$

下表列出了 7834 个字母的英语写作样本中的字母的相对频率。

Letter	Relative frequency (%)	Letter	$\boxed{Relative frequency (\%)}$
A	8.399	N	6.778
B	1.442	0	7.493
C	2.527	P	1.991
D	4.800	Q	0.077
E	12.150	R	6.063
F	2.132	S	6.319
G	2.323	T	8.999
H	6.025	U	2.783
I	6.485	V	0.996
J	0.102	W	2.464
K	0.689	X	0.204
L	4.008	Y	2.157
M	2.566	Z	0.025

随机取两个字母,其两个字母相同的概率为 $\mathbb{P}(2Letter) = \mathbb{P}(2A) + \mathbb{P}(2B) + \cdots + \mathbb{P}(2Z) = 0.08399^2 + 0.01442^2 + \cdots + 0.00025^2 = 6.5\%$

例 3

1. 如果**凯撒密码**转化字符的方法为 $A \rightarrow D$, 密文中随机选择一个字母 A 的概率是多少?

$$\mathbb{P}(\text{密} \hat{\Sigma} + \hat{\Sigma} + \hat{\Sigma}) = \mathbb{P}(\mathbb{P}(X) = \mathbb{P}(X) = 0.204\%$$

2. 密文中随机选择一个字母 B 的概率是多少?

$$\mathbb{P}(\text{密文中的}B) = \mathbb{P}(\text{明文中的}Y) = \mathbb{P}(Y) = 2.157\%$$

例 4 假设使用维吉尼亚密码 (Vigenère Cipher),密钥 (Key)是 DN。

(1) 密文中 A 的概率?

$$\mathbb{P}(密文中的A) = \mathbb{P}(明文中奇数位是X) + \mathbb{P}(明文中偶数位是N) = \frac{\mathbb{P}(X)}{2} + \frac{\mathbb{P}(Y)}{2} = 3.491\%$$

(2) 密文中 B 的概率?

$$\mathbb{P}(密文中的B) = \mathbb{P}(明文中奇数位是Y) + \mathbb{P}(明文中偶数位是O) = \frac{\mathbb{P}(Y)}{2} + \frac{\mathbb{P}(O)}{2} = 4.825\%$$

以此列推,即使使用长密钥,在密文中看到任何字母的概率将收敛为 $\frac{1}{26}$ **条件概率**是指事件 A 已经发生了,发生事件 B 的概率。

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \not \exists \exists A)}{\mathbb{P}(A)}$$

4 重合因子

重合因子 (Index of Coincidence) 是密文中两个随机选择的字母相同的概率,记为 I。

- 如果 $I \approx 0.065$, 则表示密码很有可能是**单字母**代替
- 对于多字母代替, I 的范围是 $\frac{1}{26} = 0.0385 \le I \le 0.065$

$$I = \frac{1}{n(n-1)} \sum_{i=0}^{25} n_i(n_i - 1), 0 \le i \le 25$$

其中 n 为文本中所有字符总和。 n_i 为每个字母出现的个数。如 A 出现五次,记 $n_0 = 5$ 。

如果在拉丁字母表中使用维吉尼亚密码 (Vigenère Cipher),其密钥长度为 k,,为了估计密钥长度,则可以使用弗里德曼检验 (Friedman Test):

重合因子 =
$$I \approx \frac{0.0385 \times n(k-1) + 0.065(n-k)}{k(n-1)}$$

密钥长度 =
$$k \approx \frac{0.0265n}{(0.065 - I) + n(I - 0.0385)}$$

弗里德曼检验仅仅只能估计密钥长度 k, 但密文长度也**不能太短**。

例 5

已知密文使用维吉尼亚密码 (Vigenère Cipher) 加密,密文总长为 n=337,每个字母出现频率如表格所示。估计密钥长度 k 是多少。

解:

字母	数量	字母	数量	
A	13	N	11	
B	18	0	17	
C	12	P	21	
D	15	Q	9	
E	26	R	16	
F	4	S	7	
G	15	T	8	
H	9	U	7	
I	16	V	8	
J	8	W	14	
K	9	X	8	
L	18	Y	20	
M	22	Z	6	

$$I = \frac{1}{n(n-1)} = \sum_{i=0}^{25} n_i (n_i - 1) = \frac{1}{337 \times 336} [13 \times 12 + 18 \times 17 + \dots + 6 \times 5 = 0.0428]$$
$$k = \frac{0.0265 \times 337}{(0.065 - 0.0428) + 337 \times (0.0428 - 0.0385)} \approx 6.2 \approx 6$$

5 卡西斯基检验

卡西斯基检验 (Kasiski Test) 是另一种维吉尼亚密码 (Vigenère Cipher) 中估算密钥长度的方法。它 从密文中重复字母组之间的最大公约数 (gcd) 中获得可能的密钥长度。

例 6

估算密文 IVEVYGARMLMYIVEKFDIVEFRL 密钥长度解:

$$\underbrace{IVEVYGARMLMY}_{12}\underbrace{IVEKFD}_{6}\underbrace{IVEFRL}_{6}$$

$$k \approx gcd(12,6) = 6$$

6 密码分析

弗里德曼检验 (Friedman Test) 和卡西斯基检验 (Kasiski Test) 只能估计密钥长度,而不能直接猜出密钥本身。而且有一定局限性,通常少于 400 个字符时,检验的准确率不高。