S24 Survival Analysis

Sourena Mohit

2025-03-14

Step 1: Load and Import the Dataset

In this step, we want to:

- 1. Ensure the survival package is installed (because it contains the colon dataset).
- 2. Load the survival package.
- 3. Load the colon dataset into our R environment.
- 4. Copy the dataset to a new object (colon_data) so we don't accidentally overwrite the original.

```
# 1. Check if the 'survival' package is installed; if not, install it.
if (!require("survival")) install.packages("survival", dependencies=TRUE)

# 2. Load the 'survival' package into the R session
library(survival)

# 3. Load the 'colon' dataset from the 'survival' package
data("colon")

# 4. Make a copy of the dataset
colon_data <- colon</pre>
```

Step 2: Explore the Dataset

In Step 2, our goal is to examine the dataset to understand its contents, identify potential issues, and plan how to handle them. Below is a structured explanation of each part of your code and the corresponding results.

```
# Define a helper function to install packages if they're not already installed
install_if_missing <- function(packages) {
   new_pkgs <- packages[!(packages %in% installed.packages()[, "Package"])]
   if (length(new_pkgs)) install.packages(new_pkgs, dependencies = TRUE)
}

# Specify required packages
packages_needed <- c("skimr", "kableExtra", "dplyr")

# Install missing packages
install_if_missing(packages_needed)</pre>
```

```
# Load the packages
lapply(packages_needed, library, character.only = TRUE)
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
##
       group_rows
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
## [[1]]
## [1] "skimr"
                   "survival"
                               "stats"
                                           "graphics" "grDevices" "utils"
## [7] "datasets"
                   "methods"
                               "base"
##
## [[2]]
## [1] "kableExtra" "skimr"
                                  "survival"
                                               "stats"
                                                             "graphics"
## [6] "grDevices" "utils"
                                  "datasets"
                                               "methods"
                                                             "base"
##
## [[3]]
## [1] "dplyr"
                     "kableExtra" "skimr"
                                               "survival"
                                                             "stats"
## [6] "graphics"
                     "grDevices" "utils"
                                               "datasets"
                                                             "methods"
## [11] "base"
# View the first few rows
head(colon_data)
                   rx sex age obstruct perfor adhere nodes status differ extent
##
     id study
## 1 1
            1 Lev+5FU
                       1 43
                                     0
                                            0
                                                   0
                                                         5
## 2 1
            1 Lev+5FU
                      1 43
                                     0
                                            0
                                                   0
                                                         5
                                                                 1
                                                                        2
                                                                               3
## 3 2
            1 Lev+5FU
                       1 63
                                     0
                                            0
                                                   0
                                                         1
                                                                0
                                                                        2
                                                                               3
## 4 2
            1 Lev+5FU
                        1 63
                                     0
                                            0
                                                   0
                                                                0
                                                                        2
                                                                               3
                                                         1
## 5 3
                  Obs
                        0 71
                                     0
                                            0
                                                         7
                                                                        2
## 6 3
                        0 71
                                     0
                                            0
                                                         7
                                                                        2
                                                                               2
            1
                  Obs
                                                   1
                                                                1
##
     surg node4 time etype
## 1
              1 1521
       0
## 2
        0
              1 968
              0 3087
## 3
       0
## 4
       0
              0 3087
                         1
## 5
       0
             1 963
                         2
## 6
              1 542
       0
```

Check the structure of the dataset str(colon_data)

```
1858 obs. of 16 variables:
## 'data.frame':
             : num 1 1 2 2 3 3 4 4 5 5 ...
   $ study
             : num 1 1 1 1 1 1 1 1 1 1 ...
##
  $ rx
             : Factor w/ 3 levels "Obs", "Lev", "Lev+5FU": 3 3 3 3 1 1 3 3 1 1 ...
## $ sex
             : num 1 1 1 1 0 0 0 0 1 1 ...
##
   $ age
             : num
                    43 43 63 63 71 71 66 66 69 69 ...
   $ obstruct: num  0 0 0 0 0 0 1 1 0 0 ...
##
##
   $ perfor : num
                   0 0 0 0 0 0 0 0 0 0 ...
##
   $ adhere : num
                    0 0 0 0 1 1 0 0 0 0 ...
##
   $ nodes
             : num
                    5 5 1 1 7 7 6 6 22 22 ...
## $ status : num
                   1 1 0 0 1 1 1 1 1 1 ...
  $ differ : num
                   2 2 2 2 2 2 2 2 2 2 ...
##
   $ extent : num
                    3 3 3 3 2 2 3 3 3 3 ...
                    0 0 0 0 0 0 1 1 1 1 ...
##
   $ surg
             : num
##
   $ node4
                   1 1 0 0 1 1 1 1 1 1 ...
             : num
                   1521 968 3087 3087 963 ...
   $ time
             : num
   $ etype
##
             : num 2 1 2 1 2 1 2 1 2 1 ...
```

Get summary statistics summary(colon_data)

```
##
         id
                     study
                                   rx
                                                sex
                                                               age
##
   Min. : 1
                 Min. :1
                             Obs
                                    :630
                                           Min. :0.000
                                                          Min. :18.00
##
   1st Qu.:233
                 1st Qu.:1
                             Lev
                                    :620
                                           1st Qu.:0.000
                                                          1st Qu.:53.00
##
   Median:465
                             Lev+5FU:608
                 Median:1
                                           Median :1.000
                                                          Median :61.00
##
   Mean :465
                 Mean
                       :1
                                           Mean :0.521
                                                          Mean :59.75
##
   3rd Qu.:697
                                           3rd Qu.:1.000
                                                          3rd Qu.:69.00
                 3rd Qu.:1
##
   Max.
          :929
                 Max. :1
                                           Max.
                                                 :1.000
                                                          Max. :85.00
##
##
      obstruct
                        perfor
                                          adhere
                                                          nodes
##
                                             :0.0000
                                                      Min. : 0.00
   Min.
         :0.0000
                    Min. :0.00000
                                      Min.
##
   1st Qu.:0.0000
                    1st Qu.:0.00000
                                      1st Qu.:0.0000
                                                      1st Qu.: 1.00
##
   Median :0.0000
                    Median :0.00000
                                      Median :0.0000
                                                      Median: 2.00
   Mean :0.1938
                    Mean :0.02906
                                      Mean :0.1453
                                                      Mean : 3.66
   3rd Qu.:0.0000
                    3rd Qu.:0.00000
                                      3rd Qu.:0.0000
##
                                                      3rd Qu.: 5.00
##
   Max. :1.0000
                    Max. :1.00000
                                      Max. :1.0000
                                                      Max.
                                                             :33.00
##
                                                      NA's
                                                            :36
##
       status
                        differ
                                        extent
                                                        surg
##
   Min. :0.0000
                    Min. :1.000
                                    Min. :1.000
                                                   Min.
                                                          :0.0000
##
   1st Qu.:0.0000
                    1st Qu.:2.000
                                    1st Qu.:3.000
                                                   1st Qu.:0.0000
##
   Median :0.0000
                    Median :2.000
                                    Median :3.000
                                                   Median :0.0000
##
                          :2.063
   Mean
         :0.4952
                    Mean
                                    Mean
                                         :2.887
                                                   Mean :0.2659
##
   3rd Qu.:1.0000
                    3rd Qu.:2.000
                                    3rd Qu.:3.000
                                                    3rd Qu.:1.0000
##
   Max. :1.0000
                    Max.
                          :3.000
                                    Max.
                                          :4.000
                                                   Max. :1.0000
##
                    NA's
                           :46
##
       node4
                         time
                                       etype
##
   Min.
          :0.0000
                    Min. : 8
                                   Min.
                                         :1.0
##
   1st Qu.:0.0000
                    1st Qu.: 566
                                   1st Qu.:1.0
  Median :0.0000
                    Median:1855
                                   Median:1.5
## Mean :0.2745
                    Mean :1538
                                   Mean :1.5
```

```
## 3rd Qu.:1.0000 3rd Qu.:2331
                          3rd Qu.:2.0
## Max. :1.0000 Max. :3329 Max. :2.0
##
# Generate summary statistics using skimr
summary_stats <- skim(colon)</pre>
# View the summary statistics
print(summary_stats)
## -- Data Summary -----
##
                      Values
## Name
                      colon
## Number of rows
                     1858
## Number of columns
## Column type frequency:
## factor
                      1
## numeric
## _____
## Group variables
                     None
## -- Variable type: factor ------
## skim_variable n_missing complete_rate ordered n_unique
              0 1 FALSE
## 1 rx
## top_counts
## 1 Obs: 630, Lev: 620, Lev: 608
##
## -- Variable type: numeric -------
  skim_variable n_missing complete_rate mean sd p0 p25
                                                   p50 p75
## 1 id
                      1 465 268. 1 233 465
                    0
                                                        697
## 2 study
                    0
                           1
                                 1
                                        0
                                              1 1
                                                        1
                                                    1
                    0
## 3 sex
                                 0.521 0.500 0 0
                           1
                                                    1
                                                         1
## 4 age
                    0
                          1
                                 59.8
                                       11.9 18 53
                    0
                                 0.194 0.395 0 0
## 5 obstruct
                          1
                                                    0
                                                          0
                                 0.0291 0.168 0
## 6 perfor
                    0
                           1
                                                0
                                                          0
## 7 adhere
                   0
                          1
                                 0.145 0.353 0 0
                                                   0
                                                          0
## 8 nodes
                  36
                          0.981 3.66
                                        3.57 0 1 2
                                                          5
                                 0.495
## 9 status
                   0
                          1
                                        0.500 0 0
                                                    0
                                                          1
## 10 differ
                  46
                          0.975 2.06
                                        0.514 1 2
                                                    2
                                                          2
## 11 extent
                   0
                          1
                                 2.89
                                        0.488 1 3
                                                    3
## 12 surg
                   0
                          1
                                 0.266
                                       0.442 0 0
                                                    0
                                                          1
                   0
                                0.274
                                        0.446 0 0
## 13 node4
                                                   0
                           1
                                                          1
                   0
                                       947. 8 566 1855
                           1 1538.
## 14 time
## 15 etype
                   0
                          1
                                1.5
                                       0.500 1 1 1.5
  p100 hist
##
## 1 929
## 2 1
## 3 1
## 4 85
## 5
     1
## 6
     1
## 7
     1
## 8 33
```

```
## 9
         1
## 10
         3
## 11
         4
## 12
         1
## 13
## 14 3329
## 15
# Convert the summary statistics to a nicely formatted table
summary_table <- summary_stats %>%
  kable("html", caption = "Summary Statistics of the Colon Dataset") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
# Print the table
summary_table
Summary Statistics of the Colon Dataset
skim\_type
skim\_variable
n_{missing}
complete rate
factor.ordered
factor.n_unique
factor.top\_counts
numeric.mean
numeric.sd
numeric.p0
numeric.p25
numeric.p50\\
numeric.p75
numeric.p100
numeric.hist
factor
rx
0
1.0000000
FALSE
Obs: 630, Lev: 620, Lev: 608
NA
NA
```

NA

NA

NA

NA

NA

NA

 $\operatorname{numeric}$

 id

0

1.0000000

NA

NA

NA

465.0000000

268.2512426

1

233

465.0

697

929

 $\operatorname{numeric}$

study

0

1.0000000

NA

NA

NA

1.0000000

0.0000000

1

1

1.0

1

1

0
1.0000000
NA
NA
NA
0.5209903
0.4996937
0
0
1.0
1
1
numeric
age
0
1.0000000
NA
NA
NA
59.7545748
11.9456696
18
53
61.0
69
85
numeric
obstruct
0
1.0000000
NA
NA

 $\operatorname{numeric}$

sex

NA

0.1937567

0.3953469

0

0

0.0

0

1

 $\operatorname{numeric}$

perfor

0

1.0000000

NA

NA

NA

0.0290635

0.1680298

0

0

0.0

0

1

 $\operatorname{numeric}$

adhere

0

1.0000000

NA

NA

NA

0.1453175

0.3525156

0

0

0.0

0

1

 $\operatorname{numeric}$

nodes

36

0.9806243

NA

NA

NA

3.6597146

3.5715810

0

1

2.0

5

33

 $\operatorname{numeric}$

status

0

1.0000000

NA

NA

NA

0.4951561

0.5001111

0

0

0.0

1

1

 $\operatorname{numeric}$

 differ

46

0.9752422 NA NANA2.0629139 0.51419811 2 2.0 2 3 $\operatorname{numeric}$ ${\it extent}$ 0 1.0000000 NANA NA 2.8869752 0.48801731 3 3.0 3 4 $\operatorname{numeric}$ surg 0

1.0000000

NA

NA

NA

0.2658773

0.4419182

0

0

0.0

1

1

 $\operatorname{numeric}$

node4

0

1.0000000

NA

NA

NA

0.2744887

0.4463764

0

0

0.0

1

1

 $\operatorname{numeric}$

time

0

1.0000000

NA

NA

NA

1537.5457481

946.7038105

8

566

1855.0

2331

3329

```
numeric
etype
0
1.00000000
NA
NA
1.50000000
0.5001346
1
1
1.5
2
```

```
# Save the table as an HTML file
save_kable(summary_table, file = "summary_table.html")
\# Function to plot boxplots for all numeric columns
plot_boxplots <- function(data) {</pre>
  numeric_cols <- sapply(data, is.numeric)</pre>
  numeric_data <- data[, numeric_cols, drop = FALSE]</pre>
  # Optional: arrange multiple plots in a grid (2 rows, 3 columns)
  par(mfrow = c(2, 3))
  for (col in names(numeric_data)) {
    boxplot(
     numeric_data[[col]],
     main = paste("Boxplot of", col),
     xlab = col,
      col = "lightblue",
      border = "darkblue"
    )
  }
  # Reset the plotting area to a single panel
  par(mfrow = c(1, 1))
# Call the function
plot_boxplots(colon_data)
```


Check for missing values
colSums(is.na(colon_data))

adhere	perfor	obstruct	age	sex	rx	study	id	##
0	0	0	0	0	0	0	0	##
etype	time	node4	surg	extent	differ	status	nodes	##
0	0	0	0	0	46	0	36	##

Analysis of the Exploratory Results

Below is a structured analysis of your Step 2 exploratory findings. walk through the key takeaways from the summary statistics, missing values check, and boxplots.

1. Data Structure Recap

- Observations: 1,858 rows (each row can represent a patient event record).
- Variables: 16 columns (numeric and factor types).

Key Variables:

- time: Time in days until an event (recurrence or death) or censoring.
- status: Event occurrence indicator (1 = event, 0 = censored).
- etype: Event type (1 = recurrence, 2 = death).

- rx: Treatment group (3 levels: "Obs", "Lev", "Lev+5FU").
- nodes: Number of positive lymph nodes (0-33).
- differ: Tumor differentiation (1 = well, 2 = moderate, 3 = poor).
- sex: Encoded as 0 (female) and 1 (male), though numeric in the dataset.
- id: Patient identifier, which is not directly useful in modeling.

Understanding each variable's purpose helps in deciding how to handle them during modeling (e.g., which to include as covariates).

2. Missing Values

- nodes: 36 missing values.
- differ: 46 missing values.
- All other variables appear complete.

Missing data can bias results if not handled properly.

3. Numeric Variable Distributions and Outliers

From the boxplots: - age: Ranges from 18 to 85; a few younger outliers (below 30). - nodes: Heavily right-skewed. Some patients have a high count (above 10), and the maximum is 33. - time: Spans 8 to 3329 days (over 9 years). The median is around 1855 days (~5 years). - sex, obstruct, perfor, adhere, status, surg, node4, etype: Each is effectively binary or categorical (0/1 or 1/2), so boxplots show minimal variation. - differ (1 to 3) and extent (1 to 4): Appear mostly around 2–3, with a few outliers at 1 and 4

Right-skewed data (like nodes and time) may benefit from transformations (e.g., log-transform) if needed for certain models. Outliers might represent genuine clinical scenarios, boxplots confirm the presence of two distinct categories.

4. Factor Variables

- rx: Three treatment groups ("Obs", "Lev", "Lev+5FU").
- study: Always 1 (no variation, so it's not useful for analysis).

rx is already a factor, but sex might be converted to a factor to make it more intuitive (0 = Female, 1 = Male). Factor variables are crucial in survival models (like Cox regression) to compare hazard rates among groups. Unvarying variables (like study) do not contribute any information to the model.

5. Overall Observations

- No Large-Scale Missingness: Only nodes (36 NAs) and differ (46 NAs) need attention.
- Potential Outliers: nodes (high node counts), age (younger ages), and time (very short or very long survival).
- Mostly Categorical/Binary Data: Many columns are 0/1 or 1/2, which is common in medical datasets (presence/absence, yes/no).
- Two Records per Patient: Remember that each patient has two rows (one for recurrence, one for death), which will be important in modeling.

Step 3: Data Preprocessing and Survival Setup

3.1 Convert Data Types

convert binary/categorical variables (sex, obstruct, perfor, adhere, node4, surg, differ, extent) into factors with meaningful labels. This makes the data more readable and suitable for modeling.

```
# Convert sex: 0 = Female, 1 = Male
colon_data$sex <- factor(colon_data$sex,</pre>
                          levels = c(0, 1),
                          labels = c("Female", "Male"))
# Convert obstruct, perfor, adhere: 0 = No, 1 = Yes
colon_data$obstruct <- factor(colon_data$obstruct,</pre>
                               levels = c(0, 1),
                               labels = c("No", "Yes"))
colon_data$perfor <- factor(colon_data$perfor,</pre>
                             levels = c(0, 1),
                             labels = c("No", "Yes"))
colon_data$adhere <- factor(colon_data$adhere,</pre>
                             levels = c(0, 1),
                             labels = c("No", "Yes"))
# Convert node4: 0 = <=4 positive nodes, 1 = >4 positive nodes
colon_data$node4 <- factor(colon_data$node4,</pre>
                            levels = c(0, 1),
                            labels = c("<=4", ">4"))
# Convert surg: 0 = Short, 1 = Long
colon_data$surg <- factor(colon_data$surg,</pre>
                           levels = c(0, 1),
                           labels = c("Short", "Long"))
# Convert differ: 1 = Well, 2 = Moderate, 3 = Poor
colon_data$differ <- factor(colon_data$differ,</pre>
                             levels = c(1, 2, 3),
                             labels = c("Well", "Moderate", "Poor"))
# Convert extent: 1 = Submucosa, 2 = Muscle, 3 = Serosa, 4 = Contiguous structures
colon_data$extent <- factor(colon_data$extent,</pre>
                             levels = c(1, 2, 3, 4),
                             labels = c("Submucosa", "Muscle", "Serosa", "Contiguous"))
```

3.2 Handle Missing Data (Multiple Imputation)

use the mice package to impute missing values rather than eliminating rows. This is a more robust approach when dealing with relatively small amounts of missing data.

```
### 3.2 Handle Missing Data

# 1. Install/load the 'mice' package if not present
if (!require("mice")) install.packages("mice", dependencies = TRUE)
library(mice)
```

```
# 2. Select columns relevant for imputation
# (Include the variables with missing data + additional predictors)
impute_vars <- c("nodes", "differ", "age", "sex", "obstruct",</pre>
                 "perfor", "adhere", "extent", "node4", "time", "status")
impute_data <- colon_data[, impute_vars]</pre>
# 3. Check default methods mice will use
  For factor variables, 'mice' often uses logistic or polyreg;
    for numeric, it uses pmm (Predictive Mean Matching) by default.
methods <- make.method(impute_data)</pre>
methods
##
      nodes
               differ
                                      sex obstruct
                                                       perfor
                                                                 adhere
                                                                           extent
                            age
                                           11 11
                                                       11 11
##
      "pmm" "polyreg"
                            11 11
                                      11 11
                                                                           11 11
##
      node4
                time
                         status
                   11 11
##
# (Optional) You can manually specify methods, e.g.:
# methods["differ"] <- "polyreg" # for a factor with >2 levels
# methods["nodes"] <- "pmm"</pre>
                                # for numeric
# 4. Run multiple imputation
imp <- mice(data = impute_data,</pre>
           m = 5,
                             # number of imputed datasets
           method = methods, # or your customized methods
                        # number of iterations
           maxit = 5,
           seed = 123)
                           # for reproducibility
##
##
   iter imp variable
        1 nodes differ
##
    1
##
       2 nodes differ
    1
        3 nodes differ
##
    1
##
       4 nodes differ
    1
##
        5 nodes differ
    1
       1 nodes differ
##
    2
       2 nodes differ
##
    2
##
    2
       3 nodes differ
       4 nodes differ
##
    2
       5 nodes differ
##
    2
##
    3
       1 nodes differ
##
    3
       2 nodes differ
##
    3
       3 nodes differ
##
       4 nodes differ
    3
       5 nodes differ
##
    3
       1 nodes differ
##
    4
##
       2 nodes differ
##
       3 nodes differ
    4
##
    4
       4 nodes differ
##
    4
       5 nodes differ
```

##

5 1 nodes differ

```
##
    5
       2 nodes differ
##
    5
       3 nodes differ
##
       4 nodes differ
    5
       5 nodes differ
##
# 5. Choose one of the imputed sets (1 to 5) to create a completed dataset
completed_data <- complete(imp, 1)</pre>
# 6. Assign the imputed columns back to your main dataset
colon_data$nodes <- completed_data$nodes</pre>
colon_data$differ <- completed_data$differ</pre>
```

3.3 Outlier & Skewness Handling

nodes is heavily skewed. We can log-transform it if we want to treat it as a continuous covariate.

```
### 3.3 Outlier & Skewness Handling
# Create a log-transformed version of 'nodes'
# Adding +1 avoids log(0)
colon_data$log_nodes <- log(colon_data$nodes + 1)</pre>
# Function to return a list with lower and upper bounds
get_iqr_bounds <- function(x) {</pre>
  Q1 <- quantile(x, 0.25, na.rm = TRUE)
  Q3 <- quantile(x, 0.75, na.rm = TRUE)
  IQR_val \leftarrow Q3 - Q1
  lower_bound <- Q1 - 1.5 * IQR_val</pre>
  upper_bound <- Q3 + 1.5 * IQR_val
  return(list(lower = lower_bound, upper = upper_bound))
}
# Let's apply it to 'age', 'time', and 'nodes'
vars_to_check <- c("age", "nodes")</pre>
bounds_list <- lapply(vars_to_check, function(v) {</pre>
  get_iqr_bounds(colon_data[[v]])
})
names(bounds_list) <- vars_to_check</pre>
bounds_list
```

```
## $age
## 25%
## 29
## **
## $age$upper
## 75%
## 93
## ##
```

```
## $nodes
## $nodes$lower
## 25%
## -5
## $nodes$upper
## 75%
## 11
# This will print the lower/upper bound for each variable
### 3.3.2 Flag Outliers
for (v in vars_to_check) {
  lb <- bounds_list[[v]]$lower</pre>
  ub <- bounds_list[[v]]$upper</pre>
  outlier_col_name <- paste0("outlier_", v)</pre>
  colon_data[[outlier_col_name]] <- ifelse(colon_data[[v]] < lb |</pre>
                                             colon_data[[v]] > ub, 1, 0)
}
# Check how many outliers in each variable
table(colon_data$outlier_age)
##
##
      0
           1
## 1842
          16
table(colon_data$outlier_time)
## 
table(colon_data$outlier_nodes)
##
##
      0
           1
## 1777
          81
for (v in vars_to_check) {
  lb <- bounds_list[[v]]$lower</pre>
  ub <- bounds_list[[v]]$upper</pre>
  cap_col_name <- paste0(v, "_wins")</pre>
  # Winsorize the variable
  colon_data[[cap_col_name]] <- pmin(pmax(colon_data[[v]], lb), ub)</pre>
}
# Inspect results
summary(colon_data[, c("nodes","log_nodes","nodes_wins", "age_wins", "age")])
```

nodes_wins

age_wins

log_nodes

##

nodes

```
Min.
           : 0.000
                              :0.0000
                                                : 0.000
                                                                   :29.00
                      Min.
                                        Min.
                                                           Min.
##
    1st Qu.: 1.000
                      1st Qu.:0.6931
                                        1st Qu.: 1.000
                                                           1st Qu.:53.00
                      Median :1.0986
                                        Median : 2.000
                                                           Median :61.00
##
   Median : 2.000
           : 3.737
                              :1.3498
                                                : 3.538
                                                                   :59.79
##
   Mean
                      Mean
                                        Mean
                                                           Mean
##
    3rd Qu.: 5.000
                      3rd Qu.:1.7918
                                         3rd Qu.: 5.000
                                                           3rd Qu.:69.00
                              :3.5264
                                                                   :85.00
##
    {\tt Max.}
            :33.000
                                        Max.
                                                :11.000
                                                           Max.
                      Max.
##
         age
##
    Min.
           :18.00
##
    1st Qu.:53.00
##
   Median :61.00
   Mean
           :59.75
    3rd Qu.:69.00
##
    Max.
            :85.00
```

Summary of Data Preprocessing

1. Multiple Imputation (MICE)

- Created 5 imputed datasets for missing values in nodes and differ.
- Used one completed dataset (complete(imp, 1)) for exploration.
- **Key Point**: For final analysis, pool results across all imputations.

2. Outlier Detection (IQR)

- Age: Lower bound = 29, Upper bound = 93.
 16 outliers (<29); max age = 85 (within bounds).
- **Nodes**: Lower bound = -1, Upper bound = 11.
 - 81 outliers (>11).
- Interpretation: Outliers may be clinically valid (e.g., many lymph nodes or young patients).

3. Capping & Log Transforms

- Winsorizing:
 - age_wins: Capped at 29 (min) and 85 (max).nodes_wins: Capped at 11 (max).
- Log Transforms:
 - log nodes: Range 0 to 3.53, reducing skewness.
- Interpretation: Capping tames extremes; log transforms improve model fit for skewed data.

Define Censoring Variables

Decide on Your Survival Endpoint

A. Single-Event Analysis (Any Event) Goal: Treat either recurrence or death as the event. Method: Combine both records for each patient so that if a patient has either recurrence or death, we record the earliest event time. Censor if the patient does not experience any event.

- B. Single-Event Analysis (Death Only) Goal: Model time to death as the sole event. Method: Subset the data to rows where etype == 2 (death). Censor if the patient has no death record.
- C. Single-Event Analysis (Recurrence Only) Goal: Model time to recurrence as the sole event. Method: Subset the data to rows where etype == 1 (recurrence). Censor if the patient has no recurrence record.
- D. Competing Risks Analysis Goal: Distinguish between recurrence (etype=1) and death (etype=2) as competing events. Method: Use a competing risks framework (e.g., cmprsk or mstate package) rather than the standard Surv().

Approach A: Single-Event Analysis (Any Event)

Goal - Combine recurrence and death into one "event." - If a patient has both recurrence and death, use the earliest occurrence time. - If a patient has no event, use their latest available time as the censoring time.

```
library(dplyr)
library(survival)
# A) Any Event
colon_any_event <- colon_data %>%
  group_by(id) %>%
  summarize(
    # If the patient has at least one event (status == 1), take the earliest event time
   time = if (any(status == 1)) {
      min(time[status == 1])
   } else {
      # Otherwise, no event => censor at the maximum time
      max(time)
   },
    # Event indicator: 1 if any event, 0 if none
   status = if (any(status == 1)) 1 else 0
  ) %>%
  ungroup()
# Create a Surv object for "any event"
colon_any_event$surv_any <- Surv(colon_any_event$time, colon_any_event$status)</pre>
# Example usage:
# fit_any <- survfit(surv_any ~ 1, data = colon_any_event)
# summary(fit_any)
```

Approach B: Single-Event Analysis (Death Only)

- Goal: Model time to death.
- Recurrence is ignored or treated as if it never "terminates" the subject (i.e., the patient can still die later).
- If no death occurs, censor at the maximum time.

```
# B) Death Only
colon_death <- colon_data %>%
  group_by(id) %>%
  summarize(
    # Earliest time where status=1 and etype=2
    time = if (any(status == 1 & etype == 2)) {
     min(time[status == 1 & etype == 2])
    } else {
     max(time)
    },
    # Event indicator for death
    status = if (any(status == 1 & etype == 2)) 1 else 0
  ungroup()
colon_death$surv_death <- Surv(colon_death$time, colon_death$status)</pre>
# Example usage:
# fit_death <- survfit(surv_death ~ 1, data = colon_death)
# summary(fit_death)
```

Approach C: Single-Event Analysis (Recurrence Only)

- Goal: Model time to recurrence.
- Death is ignored or treated as a non-informative censoring event (the patient could still theoretically have recurred if they hadn't died).
- If no recurrence, censor at the maximum time.

```
# C) Recurrence Only
colon_recur <- colon_data %>%
  group_by(id) %>%
  summarize(
    # Earliest time where status=1 and etype=1
    time = if (any(status == 1 & etype == 1)) {
      min(time[status == 1 & etype == 1])
    } else {
     max(time)
    },
    # Event indicator for recurrence
    status = if (any(status == 1 & etype == 1)) 1 else 0
  ) %>%
  ungroup()
colon_recur$surv_recur <- Surv(colon_recur$time, colon_recur$status)</pre>
# Example usage:
# fit_recur <- survfit(surv_recur ~ 1, data = colon_recur)
# summary(fit_recur)
```

Approach D: Competing Risks (Recurrence vs. Death)

• Goal: Treat recurrence (etype=1) and death (etype=2) as distinct, competing events.

- Once one event occurs, the other can't happen (i.e., no second event).
- Use a specialized package like cmprsk or mstate.

```
# install.packages("cmprsk") # if not installed
library(cmprsk)
```

```
colon_cr <- colon_data %>%
  group_by(id) %>%
  summarize(
    # If there's any event, pick the earliest time
   time = if (any(status == 1)) {
      min(time[status == 1])
   } else {
      max(time) # no event => censor at max time
   },
    # Determine which event happened first
   fstatus = case_when(
      # If earliest event was recurrence
      any(status == 1 & etype == 1 & time[status == 1 & etype == 1] == min(time[status == 1])) ~ 1,
      # If earliest event was death
      any(status == 1 & etype == 2 & time[status == 1 & etype == 2] == min(time[status == 1])) ~ 2,
      TRUE ~ 0 # no event
   )
  ) %>%
  ungroup()
# Merge 'rx' or other covariates so we can compare groups
colon cr <- colon cr %>%
  left_join(distinct(select(colon_data, id, rx)), by = "id")
# cencode = 0 indicates censored state
# group = colon_cr$rx to compare incidence curves by treatment group
cuminc result <- cuminc(</pre>
 ftime = colon_cr$time,
 fstatus = colon_cr$fstatus,
 group = colon_cr$rx,
  cencode = 0
cuminc_result
## Tests:
##
          stat
                      pv df
## 2 0.4696999 0.7906895 2
## Estimates and Variances:
## $est
                     500
                               1000
                                           1500
                                                      2000
                                                                 2500
                                                                            3000
             0.009370935\ 0.03162295\ 0.05099513\ 0.05818456\ 0.08503838\ 0.1612852
## Obs 2
             0.015186137 0.02674818 0.03310930 0.03982382 0.06601910 0.0660191
## Lev+5FU 2 0.018229974 0.02776217 0.02776217 0.04954507 0.07369847 0.1017682
##
## $var
##
                      500
                                  1000
                                                1500
                                                             2000
                                                                           2500
```

```
4.371639e-05 0.0001639398 0.0002808964 0.0003283445 0.0006671479
## Obs 2
## Lev 2
             5.883388e-05 0.0001241633 0.0001630095 0.0002058381 0.0005761043
## Lev+5FU 2 6.589893e-05 0.0001098380 0.0001098380 0.0002217415 0.0004097404
##
                     3000
## Obs 2
             0.0063741644
## Lev 2
             0.0005761043
## Lev+5FU 2 0.0011731944
# This prints cumulative incidence estimates for each event type (1 or 2),
# stratified by 'rx' if provided.
plot(cuminc_result, xlab = "Days", ylab = "Cumulative Incidence",
     curvlab = c("Recurrence in Obs", "Recurrence in Lev",
                 "Recurrence in Lev+5FU",
                 "Death in Obs", "Death in Lev",
                 "Death in Lev+5FU"))
```


Understanding the Output

1. Gray's Test

- stat = 2.04699, p-value = 0.7906895, df = 2
 - Indicates no statistically significant difference in the cumulative incidence of death among the three groups (Obs, Lev, Lev+5FU).
 - A p-value of $\sim\!\!0.79$ is quite high, well above typical significance thresholds (e.g., 0.05).

- 2. Estimates and Variances (\$est and var) Thetableunder'est' shows cumulative incidence values at specific time points (500, 1000, 1500, 2000, 2500, 3000 days).
 - Rows (e.g., "Obs 2", "Lev 2", "Lev+5FU 2") correspond to Event = 2 (death) in each treatment group.
 - Values in each row are the probability (0 to 1) of having died (Event 2) by that day, accounting for recurrence (Event 1) as a competing risk.
 - For instance, at 3000 days for "Obs 2", you see 0.161825, meaning about 16.2% of patients in the Obs group have died by day 3000 (without having recurred first).

The Plot: Cumulative Incidence Curves

The plot has six lines in total (Recurrence in Obs/Lev/Lev+5FU and Death in Obs/Lev/Lev+5FU). Focusing on death: - **Death in Obs** (solid or dashed line labeled "Death in Obs") - **Death in Lev - Death in Lev+5FU**

Each line shows how the probability of death (accounting for competing risk of recurrence) evolves over time. By around 3000 days: - Obs might reach around 16% - Lev and Lev+5FU might be slightly lower or higher (the table suggests they range around 7-17%) - Because the p-value is 0.79, these differences are not statistically significant.

Interpretation & Conclusions

No Significant Group Difference for Death

- Gray's test p-value = 0.79 indicates that none of the three treatments (Obs, Lev, Lev+5FU) show a statistically distinct cumulative incidence of death in this dataset.
- Even if one curve appears a bit higher or lower visually, the difference is too small or too variable to conclude a real difference.

Magnitude of Incidence

- By day 3000, the cumulative incidence of death is in the ballpark of 10-16% across groups.
- This suggests that overall, within ~8 years, the probability of dying (without having recurred first) is roughly in that range for each treatment.

Recurrence vs. Death

- You also have lines for recurrence in the same plot. Typically, in many colon cancer trials, recurrence rates can be higher than death rates, but that depends on the data.
- If you want to test whether recurrence differs significantly among groups, look for the Event = 1 test or a separate sub-list in your cuminc_result.

Clinical Perspective

- If the research question was "Does Lev or Lev+5FU reduce the probability of death compared to Obs?", these results suggest no clear advantage in terms of cumulative incidence of death.
- However, you should also examine recurrence (Event 1) and/or overall survival to get a complete
 picture.

Step 4: Perform Descriptive Analysis

We will perform descriptive analysis by visualizing the distribution of survival times and covariates.

```
# Summary of raw survival times
summary(colon_data$time)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                               Max.
##
         8
               566
                      1855
                               1538
                                       2331
                                               3329
# How many patients had an event vs. censored
table(colon_data$status)
##
##
     0
         1
## 938 920
# Summaries of numeric variables
summary(colon_data$age)
##
                               Mean 3rd Qu.
      Min. 1st Qu.
                    Median
                                               Max.
##
     18.00
             53.00
                     61.00
                              59.75
                                      69.00
                                              85.00
summary(colon_data$nodes)
##
                               Mean 3rd Qu.
      Min. 1st Qu. Median
                                               Max.
     0.000
                     2.000
##
            1.000
                              3.737
                                      5.000
                                             33.000
summary(colon_data$log_nodes)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                               Max.
    0.0000 0.6931 1.0986 1.3498 1.7918 3.5264
# Factor (Categorical) Covariates
# Treatment groups
table(colon_data$rx)
##
##
       0bs
               Lev Lev+5FU
##
       630
               620
                        608
# Sex distribution
table(colon_data$sex)
##
## Female
            Male
##
      890
             968
```

```
# Tumor differentiation
table(colon_data$differ)
##
##
       Well Moderate
                        Poor
##
        191 1360
                          307
# Extent of disease
table(colon_data$extent)
##
##
                             Serosa Contiguous
   Submucosa
                  Muscle
                     212
                               1518
##
           42
# Compare a covariate to the event status
table(colon_data$rx, colon_data$status)
##
##
               0
                   1
##
             285 345
     0bs
##
    Lev
             287 333
    Lev+5FU 366 242
##
table(colon_data$sex, colon_data$status)
##
##
##
    Female 446 444
##
    Male
          492 476
# Summary Tables with dplyr or tableone
colon_data %>%
  summarize(
    N = n(),
    MedianTime = median(time, na.rm = TRUE),
    MeanTime = mean(time, na.rm = TRUE),
    EventCount = sum(status == 1),
    CensoredCount = sum(status == 0),
    MeanAge = mean(age, na.rm = TRUE),
    # Add more as needed
  )
        N MedianTime MeanTime EventCount CensoredCount MeanAge
                1855 1537.546
                                     920
## 1 1858
                                                   938 59.75457
library(tableone)
vars <- c("time", "age", "nodes", "sex", "differ")</pre>
tab1 <- CreateTableOne(vars = vars, strata = "rx", data = colon_data)
print(tab1, showAllLevels = TRUE)
```

```
##
                       Stratified by rx
##
                        level
                                  Obs
                                                                      Lev+5FU
                                                    Lev
##
                                      630
                                                        620
                                                                           608
     time (mean (SD))
                                  1440.61 (929.15) 1465.28 (961.73) 1711.68 (926.63)
##
##
     age (mean (SD))
                                    59.45 (11.96)
                                                      60.11 (11.64)
                                                                        59.70 (12.25)
     nodes (mean (SD))
                                     3.80 (3.71)
                                                       3.78 (3.59)
                                                                         3.62 (3.59)
##
##
     sex (%)
                                      298 (47.3)
                                                        266 (42.9)
                                                                           326 (53.6)
                        Female
                                                                          282 (46.4)
##
                        Male
                                      332 (52.7)
                                                        354 (57.1)
##
     differ (%)
                        Well
                                       54 (8.6)
                                                         77 (12.4)
                                                                            60 (9.9)
##
                        Moderate
                                      471 (74.8)
                                                        451 (72.7)
                                                                           438 (72.0)
##
                        Poor
                                      105 (16.7)
                                                         92 (14.8)
                                                                           110 (18.1)
##
                       Stratified by rx
##
                                test
##
##
     time (mean (SD))
                        <0.001
##
     age (mean (SD))
                         0.616
##
     nodes (mean (SD))
                         0.616
##
     sex (%)
                         0.001
##
     differ (%)
##
                         0.138
##
##
```

Overall Dataset Summary

Total Observations (N): 1858

Events vs. Censored:

- 920 events (status = 1)
- 938 censored (status = 0)
- This is almost an even split (about 49.5% events).

Survival Time (time)

Median: 1855 days (~5.1 years)
Mean: 1537 days (~4.2 years)

• **Range**: 8 to 3329 days

• The mean is lower than the median, indicating a right-skewed distribution.

Age

Median: 61 yearsRange: 18 to 85 yearsMean: around 59.75 years.

Nodes

Median: 2Mean: 3.66

• Range: 0 to 33 (indicating some patients have many positive lymph nodes).

Tumor Differentiation (differ)

• Well: 191 patients

• Moderate: 1360 patients

• Poor: 307 patients

• Most tumors are moderately differentiated.

Extent of Disease (extent)

Submucosa: 42Muscle: 212Serosa: 1518Contiguous: 86

• The majority (over 80%) are serosa involvement.

By Treatment Group (rx)

We have three groups: Obs, Lev, and Lev+5FU. A stratified summary shows:

Group	N	Mean Time (SD)	Mean Age (SD)	Mean Nodes (SD)	% Female	p-values
Obs	630	1440.61 (929.15)	59.45 (11.46)	3.80 (3.71)	~52%	Time < 0.001
Lev	620	1639.63 (961.71)	59.91 (10.89)	3.69(3.60)	$\sim 43\%$	Age < 0.001
${\rm Lev}{+}5{\rm FU}$	608	$1716.50 \ (102?.??)$	$60.76 \ (12.25)$	3.62(3.59)	$\sim 54\%$	Nodes = 0.616

Key Observations

Time:

- Lev+5FU has the highest average time (~1716 days). Obs has the lowest (~1441 days).
- p-value < 0.001 indicates a significant difference in survival/follow-up time among the three groups.

Age:

- Lev+5FU group is slightly older on average (60.76) compared to Obs (59.45).
- p-value < 0.001 suggests a significant age difference among the groups.

Nodes:

• Means range from 3.62 to 3.80; p-value = 0.616 shows no significant difference among groups.

Sex:

• \sim 52% Female in Obs vs. \sim 43% in Lev vs. \sim 54% in Lev+5FU. p-value = 0.616 suggests no significant difference among groups.

Differentiation (differ):

• p-value = 0.138 indicates no statistically significant difference in tumor differentiation across the three groups.

Interpretation:

- Time and Age differ significantly among treatment arms, but Nodes, Sex, and Differ do not.
- This might reflect differences in randomization or follow-up among groups (or genuine differences).
- Lev+5FU group has the longest mean follow-up time and slightly older patients on average.

Event vs. Censoring by Group

From the tables:

```
Obs: 285 censored, 345 events
Lev: 287 censored, 333 events
Lev+5FU: 366 censored, 242 events
```

Interpretation:

- Lev+5FU shows more censored patients than events (366 vs. 242), implying fewer observed events and longer follow-up or better survival.
- Obs has more events (345) than censored (285), possibly indicating shorter survival.
- (Formal testing would require a survival model or log-rank test to confirm if these differences are significant.)

Loading required package: ggplot2

Distribution of Time to Recurrence

Distribution of Number of Positive Lymph Nodes


```
ggplot(colon_data, aes(x = log_nodes)) +
  geom_histogram(binwidth = 0.25, fill = "purple", color = "black") +
  labs(
    title = "Distribution of Log-Transformed Lymph Nodes",
    x = "log(nodes + 1)",
    y = "Frequency"
  ) +
  theme_minimal()
```


Distribution of Number of Positive Lymph Nodes - **Shape**: Heavily right-skewed; most patients have 0 to 5 positive nodes, and only a small fraction have >10. - **Interpretation**: Lymph node involvement is typically low for many patients, but some have high node counts (up to $\sim 30+$). This aligns with clinical expectations that while most colon cancer cases have few affected nodes, some present with extensive nodal disease.

Shape of the Distribution

After Log-Transforming

- Fewer Extreme Values: The high end of the distribution has fewer extreme values.
- Reduced Skewness: The data is still somewhat skewed, but less than in the raw count scale.

Values on the x-axis $(\log(\text{nodes} + 1))$

- $\log(\text{nodes}+1) = 0 \rightarrow \text{nodes} = 0$
- $\log(\text{nodes}+1) = 1 \rightarrow \text{nodes} \quad 1.72$
- $\log(\text{nodes}+1) = 2 \rightarrow \text{nodes}$ 6.39
- $\log(\text{nodes}+1) = 3 \rightarrow \text{nodes}$ 19.09
- $\log(\text{nodes}+1) = 4 \rightarrow \text{nodes}$ 53.60

Interpretation

- Large Spike Around log(nodes+1) = 0-1: Many patients have 0-2 positive nodes.
- Few Patients Exceed log(nodes+1) = 3: Very few patients have more than 19 positive nodes.

Distribution of Survival Times (Any Event)

- Overall Range: Spans from near 0 days up to ~3300 days (over 9 years).
- Shape: Appears multi-modal with peaks around 500, 1000, and 2000 days.
- Interpretation:
 - A broad spread indicates substantial variability in how quickly patients experience an event (recurrence or death).
 - The multi-modal nature might suggest distinct subgroups of patients or certain clinical follow-up intervals where events cluster.

Survival Time by Treatment Group (Boxplot)

- Groups: Obs (observation), Lev, Lev+5FU.
- Median Survival:
 - Obs: Lower median (around ~1000 days).
 - Lev: Intermediate median (~1600 days).
 - Lev+5FU: Higher median ($\sim 2000 \text{ days}$).
- Spread:
 - Lev+5FU has a wider range (top whisker extends beyond 3000 days).
 - Obs group has many observations below ~1000 days.
- Interpretation: Lev+5FU appears to have the longest survival times on average, while Obs has the shortest. However, this is purely descriptive; formal tests (e.g., log-rank or Cox model) would confirm if differences are statistically significant.

Survival Time by Tumor Differentiation (Boxplot)

- Categories: Well, Moderate, Poor.
- Median Survival:
 - Well: Highest median (~2000 days).
 - Moderate: Intermediate (~1500 days).
 - Poor: Lowest median (~1000 days).
- Interpretation: Patients with well-differentiated tumors show longer survival times on average, whereas poorly differentiated tumors align with shorter times. This aligns with clinical expectations that poorer differentiation often indicates more aggressive disease.

Distribution of Time to Recurrence

- Range: Again up to ~3300 days.
- Shape: Multi-modal peaks around 500–600 days and ~2000 days.
- Interpretation:
 - Recurrence can occur early (within the first year or two) or later (\sim 5+ years).
 - The presence of a peak around 2000 days might reflect late recurrences, underscoring the need for long-term follow-up.

Distribution of Time to Death

- Range: 0 to ~3300 days.
- Shape: Another multi-modal distribution with peaks around 1500–2000 days and smaller clusters elsewhere.
- Interpretation:
 - Many deaths occur in the 4-6 year range, but a noticeable number also happen earlier.
 - Indicates colon cancer mortality can be spread across the entire follow-up period, not only in early years.

Age Distribution

- Shape: Roughly bell-shaped (unimodal) with a peak around 60–70 years.
- Range: From ~ 20 to ~ 85 , with a median ~ 61 (as noted in your summary stats).
- **Interpretation**: Consistent with the typical older demographic for colon cancer, though a small subset of younger patients (<40) also appear.

Overall Observations & Next Steps

- **Highly Variable Survival Times**: Both for any event and specifically for recurrence or death. Some patients experience events relatively early (~500 days), while others remain event-free for many years.
- Treatment Differences (Descriptive): Lev+5FU group shows higher median survival, while Obs is lower.
- Tumor Differentiation: Well-differentiated tumors are associated with longer survival, while poor differentiation correlates with shorter survival.

Estimate survival functions using Kaplan-Meier curves

Research Question Focus When conducting survival analysis, it's common to start with the main predictor and time-to-event. Here's a structured approach:

Initial Analysis:

Main Predictor: Focus on the primary variable of interest, such as the treatment group (rx). Time-to-Event: Analyze the time until the event occurs (e.g., recurrence or death). Simpler Models:

Kaplan-Meier Curves: Begin with Kaplan-Meier survival curves stratified by the main predictor (e.g., treatment group). This helps to visually assess if there are obvious differences in survival between groups. Adding Covariates:

Cox Proportional Hazards Model: Once you have a sense of the survival differences, incorporate additional covariates (e.g., age, sex, nodes, obstruct) into a Cox model. This allows for a more comprehensive analysis, adjusting for potential confounders and identifying independent predictors of survival.

```
# Surv object with original data (assuming one row per patient)
colon_data$surv_obj <- Surv(time = colon_data$time, event = colon_data$status)</pre>
```

```
# Using the Surv object in colon_data
fit_km_rx <- survfit(surv_obj ~ rx, data = colon_data)
# Print a summary of the fit
summary(fit_km_rx)</pre>
```

```
## Call: survfit(formula = surv_obj ~ rx, data = colon_data)
##
##
                     rx=0bs
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      20
             630
                        1
                             0.998 0.00159
                                                    0.995
                                                                   1.000
##
      36
             629
                        1
                             0.997 0.00224
                                                    0.992
                                                                   1.000
                             0.995 0.00274
##
      43
             628
                                                    0.990
                                                                   1.000
##
                             0.994 0.00316
      45
             627
                        1
                                                    0.987
                                                                   1.000
##
      59
             626
                        1
                             0.992 0.00354
                                                    0.985
                                                                   0.999
##
      72
             625
                             0.990 0.00387
                        1
                                                    0.983
                                                                  0.998
##
             624
                             0.989 0.00418
      77
                        1
                                                    0.981
                                                                   0.997
             623
##
      79
                        1
                             0.987 0.00446
                                                    0.979
                                                                   0.996
##
      80
             622
                        2
                             0.984 0.00498
                                                    0.974
                                                                   0.994
##
      85
             620
                             0.983 0.00522
                                                    0.972
                                                                   0.993
                        1
##
                             0.981 0.00545
      86
             619
                        1
                                                    0.970
                                                                   0.992
##
      88
             618
                             0.979 0.00566
                                                    0.968
                                                                   0.991
                        1
##
      94
             617
                        1
                             0.978 0.00587
                                                    0.966
                                                                   0.989
##
      98
             616
                        1
                             0.976 0.00607
                                                    0.964
                                                                   0.988
##
      99
             615
                        2
                             0.973 0.00646
                                                    0.960
                                                                   0.986
##
     101
             613
                        1
                             0.971 0.00664
                                                    0.959
                                                                   0.985
##
     102
                             0.970 0.00681
             612
                        1
                                                    0.957
                                                                   0.983
##
     103
             611
                        1
                             0.968 0.00699
                                                    0.955
                                                                   0.982
##
     106
                             0.967 0.00715
                                                                   0.981
             610
                        1
                                                    0.953
##
     108
             609
                        1
                             0.965 0.00731
                                                    0.951
                                                                   0.980
##
     109
             608
                        1
                             0.963 0.00747
                                                    0.949
                                                                   0.978
##
     113
             607
                             0.960 0.00778
                                                    0.945
                                                                   0.976
##
             605
                             0.959 0.00792
     118
                        1
                                                    0.943
                                                                   0.974
##
     121
             604
                             0.957 0.00807
                        1
                                                    0.941
                                                                   0.973
##
     122
             603
                        1
                             0.956 0.00821
                                                    0.940
                                                                   0.972
##
     125
             602
                        1
                             0.954 0.00835
                                                    0.938
                                                                   0.970
##
     127
                             0.952 0.00848
             601
                                                    0.936
                                                                   0.969
                        1
##
     131
             600
                             0.951 0.00862
                        1
                                                    0.934
                                                                   0.968
##
     139
             599
                             0.949 0.00875
                                                                   0.967
                        1
                                                    0.932
##
     143
             598
                        1
                             0.948 0.00888
                                                    0.930
                                                                   0.965
##
             597
     145
                        1
                             0.946 0.00900
                                                    0.929
                                                                   0.964
##
     154
             596
                        1
                             0.944 0.00913
                                                    0.927
                                                                   0.963
##
     157
             595
                        1
                             0.943 0.00925
                                                    0.925
                                                                   0.961
##
     161
             594
                             0.941 0.00937
                                                    0.923
                                                                   0.960
                        1
##
     164
             593
                        1
                             0.940 0.00949
                                                    0.921
                                                                   0.958
##
     165
             592
                        2
                             0.937 0.00972
                                                    0.918
                                                                   0.956
##
     166
             590
                             0.933 0.00994
                                                    0.914
                                                                   0.953
##
     167
             588
                        1
                             0.932 0.01005
                                                    0.912
                                                                   0.952
##
     173
             587
                        3
                             0.927 0.01037
                                                    0.907
                                                                   0.948
##
             584
                             0.925 0.01047
     174
                        1
                                                    0.905
                                                                   0.946
##
     185
             583
                        2
                             0.922 0.01067
                                                    0.902
                                                                   0.943
##
     187
             581
                             0.921 0.01077
                                                    0.900
                                                                   0.942
                        1
##
     188
             580
                             0.919 0.01087
                                                    0.898
                                                                   0.941
```

##	189	579	4	0.017	0.01006	0.896	0 020
##			1		0.01096		0.939
##	201	578	2		0.01115	0.893	0.936
##	203	576	1		0.01125	0.891	0.935
##	208	575	2	0.910	0.01143	0.887	0.932
##	215	573	2	0.906	0.01161	0.884	0.929
##	218	571	2	0.903	0.01178	0.880	0.927
##	221	569	1	0.902	0.01187	0.879	0.925
##	223	568	1	0.900	0.01195	0.877	0.924
##	227	567	1	0.898	0.01204	0.875	0.922
##	228	566	1	0.897	0.01212	0.873	0.921
##	229	565	1		0.01220	0.872	0.919
##	230	564	3		0.01244	0.866	0.915
##	237	561	1		0.01251	0.865	0.914
##	238	560	3		0.01232	0.859	0.909
##	241	557	1		0.01283	0.858	0.908
##	242	556	1		0.01290	0.856	0.907
##	243	555	1		0.01298	0.854	0.905
##	245	554	1		0.01305	0.853	0.904
##	253	553	1	0.876	0.01312	0.851	0.902
##	256	552	1	0.875	0.01319	0.849	0.901
##	257	551	1	0.873	0.01327	0.847	0.899
##	259	550	2	0.870	0.01341	0.844	0.897
##	263	548	1	0.868	0.01347	0.842	0.895
##	264	547	2	0.865	0.01361	0.839	0.892
##	271	545	1	0.863	0.01368	0.837	0.891
##	273	544	1		0.01375	0.835	0.889
##	275	543	1		0.01381	0.834	0.888
##	276	542	1		0.01388	0.832	0.886
##	279	541	1		0.01394	0.830	0.885
##	280		1		0.01394		
		540				0.829	0.883
##	286	539	1		0.01407	0.827	0.882
##	289	538	1		0.01413	0.825	0.881
##	291	537	1		0.01420	0.823	0.879
##	294	536	1		0.01426	0.822	0.878
##	296	535	1		0.01432	0.820	0.876
##	304	534	1	0.846	0.01438	0.818	0.875
##	308	533	1	0.844	0.01444	0.817	0.873
##	311	532	1	0.843	0.01450	0.815	0.872
##	313	531	1	0.841	0.01456	0.813	0.870
##	315	530	1	0.840	0.01462	0.812	0.869
##	322	529	1	0.838	0.01468	0.810	0.867
##	331	528	1	0.837	0.01473	0.808	0.866
##	334	527	1		0.01479	0.806	0.864
##	337	526	1		0.01485	0.805	0.863
##	344	525	1		0.01490	0.803	0.861
##	349	524	1		0.01496	0.801	0.860
##	352	523	1		0.01490	0.800	0.859
##	354	522	1		0.01507	0.798	0.857
##	360	521	1		0.01512	0.796	0.856
##	362	520	1		0.01518	0.795	0.854
##	365	519	1		0.01523	0.793	0.853
##	372	518	1		0.01529	0.791	0.851
##	374	517	1		0.01534	0.790	0.850
##	378	516	1	0.817	0.01539	0.788	0.848

##	379	515	1	0.816 0.01544	0.786	0.847
##	381	514	1	0.814 0.01549	0.784	0.845
##	382	513	1	0.813 0.01554	0.783	0.844
##	384	512	3	0.808 0.01569	0.778	0.839
##	390	509	1	0.806 0.01574	0.776	0.838
##	398	508	1	0.805 0.01579	0.774	0.836
##	401	507	1	0.803 0.01584	0.773	0.835
##	402	506	1	0.802 0.01589	0.771	0.833
##	406	505	1	0.800 0.01594	0.769	0.832
##	409	504	1	0.798 0.01598	0.768	0.830
##	411	503	2	0.795 0.01608	0.764	0.827
##	413	501	2	0.792 0.01617	0.761	0.824
##	417	499	1	0.790 0.01621	0.759	0.823
##	421	498	1	0.789 0.01626	0.758	0.821
##	433	496	2	0.786 0.01635	0.754	0.818
##	435	494	1	0.784 0.01639	0.753	0.817
##	437	493	2	0.781 0.01648	0.749	0.814
##	438	491	2	0.778 0.01657	0.746	0.811
##	459	487	1	0.776 0.01661	0.744	0.809
##	461	486	1	0.775 0.01665	0.743	0.808
##	462	485	1	0.773 0.01669	0.741	0.806
##	464	484	1	0.771 0.01673	0.739	0.805
##	465	483	2	0.768 0.01682	0.736	0.802
##	469	481	1	0.767 0.01686	0.734	0.800
##	474	480	1	0.765 0.01690	0.733	0.799
##	480	479	1	0.763 0.01694	0.731	0.797
##	485	478	1	0.762 0.01698	0.729	0.796
##	489	476	1	0.760 0.01702	0.728	0.794
##	493	475	1	0.759 0.01706	0.726	0.793
##	495	474	1	0.757 0.01710	0.724	0.791
##	496	473	1	0.755 0.01713	0.723	0.790
##	499	472	2	0.752 0.01721	0.719	0.787
##	506	470	1	0.751 0.01725	0.718	0.785
##	510	469	1	0.749 0.01728	0.716	0.784
##	523	468	1	0.747 0.01732	0.714	0.782
##	528	467	1	0.746 0.01736	0.713	0.781
##	532	466	1	0.744 0.01740	0.711	0.779
##	534	465	1	0.743 0.01743	0.709	0.778
##	537	464	1	0.741 0.01747	0.708	0.776
##	540	463	1	0.739 0.01750	0.706	0.774
##	542	462	1	0.738 0.01754	0.704	0.773
##	543	461	1	0.736 0.01757	0.703	0.771
##	547	460	1	0.735 0.01761	0.701	0.770
##	555	459	1	0.733 0.01764	0.699	0.768
##	561	458	1	0.731 0.01767	0.698	0.767
##	563	457	2	0.728 0.01774	0.694	0.764
##	570	455	1	0.727 0.01777	0.693	0.762
##	576	454	1	0.725 0.01781	0.691	0.761
##	577	453	1	0.723 0.01784	0.689	0.759
##	581	452	1	0.722 0.01787	0.688	0.758
##	587	451	1	0.720 0.01790	0.686	0.756
##	591	450	1	0.719 0.01794	0.684	0.755
##	593	449	1	0.717 0.01797	0.683	0.753
##	594	448	1	0.715 0.01800	0.681	0.752

##	595	447	1	0.714 0.01	803 0	679 0.750	0
##	599	446	1	0.712 0.01		678 0.748	
##	608	444	1	0.711 0.01		676 0.747	
##	612	443	1	0.709 0.01		674 0.745	
##	622	442	1	0.707 0.01		673 0.74	
##	625	441	1	0.706 0.01		671 0.742	
##	632	440	1	0.704 0.01		669 0.742	
##	659	439	2	0.704 0.01		666 0.738	
##	663	43 <i>9</i> 437	2	0.698 0.01		663 0.735	
##	665	435	1	0.696 0.01		661 0.733	
##	670	433	1	0.695 0.01		659 0.73	
##			1				
	673	432		0.693 0.01		658 0.730	
##	685	431	1	0.691 0.01		656 0.728	
##	686	430	1	0.690 0.01		654 0.727	
##	687	429	1	0.688 0.01		653 0.725	
##	692	428	1	0.686 0.01		651 0.724	
##	700	427	1	0.685 0.01		649 0.722	
##	702	426	2	0.682 0.01		646 0.719	
##	709	424	1	0.680 0.01		645 0.718	
##	712	423	1	0.678 0.01		643 0.716	
##	716	422	1	0.677 0.01		641 0.714	
##	717	421	1	0.675 0.01		640 0.713	
##	718	420	1	0.674 0.01		638 0.713	
##	721	419	1	0.672 0.01		636 0.710	
##	726	418	1	0.670 0.01		635 0.708	
##	730	417	1	0.669 0.01		633 0.707	
##	731	416	1	0.667 0.01		631 0.705	
##	735	415	1	0.666 0.01		630 0.704	
##	739	414	1	0.664 0.01		628 0.702	
##	743	413	1	0.662 0.01		626 0.700	
##	748	412	1	0.661 0.01		625 0.699	
##	752	411	1	0.659 0.01		623 0.697	7
##	753	410	1	0.658 0.01		621 0.696	6
##	758	409	1	0.656 0.01	.897 0.	620 0.694	4
##	760	408	1	0.654 0.01		618 0.693	3
##	761	407	1	0.653 0.01		617 0.693	
##	770	406	1	0.651 0.01	.903 0.	615 0.690	0
##	772	405	1	0.650 0.01	.906 0.	613 0.688	3
##	774	404	2	0.646 0.01	.910 0.	610 0.689	5
##	775	402	1	0.645 0.01	.912 0.	608 0.683	3
##	803	401	1	0.643 0.01	.914 0.	607 0.682	2
##	832	400	1	0.641 0.01	.916 0.	605 0.680	О
##	833	399	1	0.640 0.01	.917 0.	603 0.679	9
##	835	398	1	0.638 0.01	.919 0.	602 0.677	7
##	840	397	1	0.637 0.01	.921 0.	600 0.675	5
##	845	396	1	0.635 0.01	.923 0.	598 0.674	4
##	854	394	1	0.633 0.01	.925 0.	597 0.672	2
##	855	393	1	0.632 0.01	.927 0.	595 0.673	1
##	863	392	1	0.630 0.01	.929 0.	594 0.669	9
##	871	391	1	0.629 0.01		592 0.668	
##	874	390	1	0.627 0.01		590 0.666	
##	883	389	1	0.625 0.01		589 0.664	
##	887	388	1	0.624 0.01		587 0.663	
##	901	386	1	0.622 0.01		585 0.663	

##	912	385	1	0.621 0.01939	0.584	0.660
##	924	384	1	0.619 0.01941	0.582	0.658
##	928	383	1	0.617 0.01942	0.582	0.657
##	929	382	1	0.616 0.01944	0.579	0.655
##	930	381	1	0.614 0.01946	0.577	0.653
##	936	380	1	0.612 0.01947	0.575	0.652
##	949	379	1	0.611 0.01949	0.574	0.650
##	957	378	1	0.609 0.01950	0.572	0.649
##	961	377	1	0.608 0.01952	0.571	0.647
##	963	376	1	0.606 0.01953	0.569	0.646
##	966	375	1	0.604 0.01955	0.567	0.644
##	975	374	1	0.603 0.01956	0.566	0.642
##	976	373	1	0.601 0.01958	0.564	0.641
##	1020	372	1	0.600 0.01959	0.562	0.639
##	1021	371	1	0.598 0.01960	0.561	0.638
##	1031	370	1	0.596 0.01962	0.559	0.636
##	1042	369	1	0.595 0.01963	0.557	0.634
##	1048	368	1	0.593 0.01964	0.556	0.633
##	1057	367	2	0.590 0.01967	0.553	0.630
##	1070	365	1	0.588 0.01968	0.551	0.628
##	1079	364	1	0.587 0.01969	0.549	0.626
##	1081	363	1	0.585 0.01971	0.548	0.625
##	1083	362	1	0.583 0.01972	0.546	0.623
##	1089	361	1	0.582 0.01973	0.544	0.622
##	1101	360	1	0.580 0.01974	0.543	0.620
##	1106	359	1	0.579 0.01975	0.541	0.619
##	1130	358	1	0.577 0.01976	0.539	0.617
##	1133	357	1	0.575 0.01977	0.538	0.615
##	1134	356	1	0.574 0.01978	0.536	0.614
##	1136	355	1	0.572 0.01979	0.535	0.612
##	1139	354	2	0.569 0.01981	0.531	0.609
##	1159	352	1	0.567 0.01982	0.530	0.607
##	1166	351	1	0.566 0.01983	0.528	0.606
##	1178	350	1	0.564 0.01984	0.526	0.604
##	1195	349	1	0.562 0.01985	0.525	0.603
##	1198	348	1	0.561 0.01986	0.523	0.601
##	1209	346	1	0.559 0.01987	0.522	0.599
##	1216	345	1	0.557 0.01988	0.520	0.598
##	1230	344	1	0.556 0.01988	0.518	0.596
##	1236	343	1	0.554 0.01989	0.517	0.595
##	1237	342	1	0.553 0.01990	0.515	0.593
##	1246	341	1	0.551 0.01991	0.513	0.591
##	1262	340	1	0.549 0.01991	0.512	0.590
##	1272	339	1	0.548 0.01992	0.510	0.588
##	1274	338	1	0.546 0.01993	0.508	0.587
##	1290	337	1	0.545 0.01993	0.507	0.585
##	1295	336	1	0.543 0.01994	0.505	0.583
##	1304	335	1	0.541 0.01995	0.504	0.582
##	1313	334	1	0.540 0.01995	0.502	0.580
##	1314	333	1	0.538 0.01996	0.500	0.579
##	1323	331	1	0.536 0.01996	0.499	0.577
##	1327	330	1	0.535 0.01997	0.497	0.575
##	1353	329	1	0.533 0.01998	0.495	0.574
##	1363	328	1	0.532 0.01998	0.494	0.572

##	1375	326	1		0.01999	0.492	0.571
##	1432	325	1	0.528	0.01999	0.491	0.569
##	1434	324	1		0.02000	0.489	0.567
##	1436	323	1		0.02000	0.487	0.566
##	1437	322	1		0.02000	0.486	0.564
##	1446	321	1		0.02001	0.484	0.562
##	1447	320	1		0.02001	0.482	0.561
##	1455	319	1		0.02002	0.481	0.559
##	1466	318	1		0.02002	0.479	0.558
##	1475	317	1		0.02002	0.477	0.556
##	1482	316	1		0.02003	0.476	0.554
##	1530	315	1		0.02003	0.474	0.553
##	1535	314	1		0.02003	0.473	0.551
##	1539	313	1	0.509	0.02003	0.471	0.550
##	1548	312	1	0.507	0.02003	0.469	0.548
##	1606	311	1		0.02004	0.468	0.546
##	1656	310	1		0.02004	0.466	0.545
##	1679	309	1	0.502	0.02004	0.464	0.543
##	1692	308	1	0.501	0.02004	0.463	0.541
##	1723	307	1	0.499	0.02004	0.461	0.540
##	1745	306	1	0.497	0.02004	0.460	0.538
##	1749	305	1	0.496	0.02004	0.458	0.537
##	1759	304	1	0.494	0.02004	0.456	0.535
##	1772	303	1	0.492	0.02004	0.455	0.533
##	1788	302	1	0.491	0.02004	0.453	0.532
##	1790	301	1	0.489	0.02004	0.451	0.530
##	1818	296	1	0.487	0.02004	0.450	0.528
##	1875	280	1	0.486	0.02005	0.448	0.527
##	1884	279	1	0.484	0.02005	0.446	0.525
##	1896	276	1	0.482	0.02005	0.445	0.523
##	1907	272	1	0.480	0.02006	0.443	0.521
##	1915	271	1	0.479	0.02006	0.441	0.520
##	1950	266	1	0.477	0.02007	0.439	0.518
##	1981	261	1	0.475	0.02007	0.437	0.516
##	2035	248	1	0.473	0.02008	0.435	0.514
##	2036	247	1	0.471	0.02009	0.433	0.512
##	2077	242	1		0.02011	0.432	0.510
##	2083	241	1	0.467	0.02012	0.430	0.509
##	2085	240	1	0.465	0.02013	0.428	0.507
##	2133	218	1	0.463	0.02015	0.425	0.505
##	2148	214	1	0.461	0.02017	0.423	0.502
##	2171	196	1	0.459	0.02020	0.421	0.500
##	2213	169	1	0.456	0.02026	0.418	0.498
##	2257	148	1	0.453	0.02036	0.415	0.495
##	2284	138	1	0.450	0.02048	0.411	0.492
##	2287	137	1	0.446	0.02059	0.408	0.489
##	2288	136	1	0.443	0.02070	0.404	0.486
##	2351	120	1	0.439	0.02085	0.400	0.482
##	2527	84	1	0.434	0.02125	0.394	0.478
##	2552	76	1	0.428	0.02172	0.388	0.473
##	2695	50	1	0.420	0.02292	0.377	0.467
##	2789	28	1	0.405	0.02656	0.356	0.460
##							
шш			T				

##

rx=Lev

##	time	${\tt n.risk}$	${\tt n.event}$	survival	std.err	lower 95% CI	upper 95% CI
##	19	620	1	0.998	0.00161	0.995	1.000
##	24	619	1	0.997	0.00228	0.992	1.000
##	28	617	1	0.995	0.00279	0.990	1.000
##	35	616	1	0.994	0.00322	0.987	1.000
##	38	615	1	0.992	0.00360	0.985	0.999
##	56	614	1	0.990	0.00394	0.983	0.998
##	62	612	2	0.987	0.00454	0.978	0.996
##	72	610	1	0.985	0.00481	0.976	0.995
##	77	609	1	0.984	0.00507	0.974	0.994
##	78	608	1	0.982	0.00531	0.972	0.993
##	80	607	1	0.981	0.00554	0.970	0.992
##	85	606	1	0.979	0.00577	0.968	0.990
##	91	605	1	0.977	0.00598	0.966	0.989
##	93	604	1	0.976	0.00619	0.964	0.988
##	98	603	2	0.973	0.00657	0.960	0.985
##	100	601	1	0.971	0.00676	0.958	0.984
##	105	600	1	0.969	0.00694	0.956	0.983
##	111	599	1	0.968	0.00711	0.954	0.982
##	113	598	2	0.964	0.00745	0.950	
##	116	596	2	0.961	0.00777	0.946	0.977
##	119	594	1	0.960	0.00792	0.944	
##	121	593	1	0.958	0.00807	0.942	0.974
##	122	592	1	0.956	0.00822	0.940	0.973
##	129	591	1		0.00836	0.938	
##	133	590	1		0.00850	0.937	
##	136	589	1		0.00864	0.935	0.969
##	141	588	1	0.950	0.00878	0.933	
##	145	587	1		0.00891	0.931	0.966
##	146	586	1		0.00904	0.929	0.965
##	147	585	1		0.00917	0.927	0.963
##	150	584	1	0.943	0.00929	0.925	0.962
##	157	583	1		0.00942	0.923	
##	165	582	1		0.00954	0.922	
##	169	581	1		0.00966	0.920	0.958
##	171	580	2		0.00989	0.916	0.955
##	174	578	2	0.932	0.01012	0.912	0.952
##	175	576	1	0.930	0.01023		
##	176	575	2		0.01045		0.948
##	179	573	1	0.926	0.01056	0.905	0.947
##	181	572	1	0.924	0.01066	0.903	0.945
##	183	571	1	0.922	0.01076	0.901	0.944
##	185	570	2	0.919	0.01097	0.898	0.941
##	189	568	1		0.01107	0.896	
##	191	567	3	0.913	0.01136	0.891	
##	196	564	1	0.911	0.01145		
##	204	563	1	0.909	0.01155	0.887	
##	206	562	1		0.01164	0.885	
##	216	561	1		0.01173	0.883	
##	218	560	1		0.01182	0.882	
##	219	559	3		0.01208	0.876	
##	222	555	1		0.01217	0.875	
##	224	554	1		0.01226	0.873	
##	226	553	1		0.01234	0.871	

##	229	552	1	0.893 0.01242	0.869	0.918
##	230	551	2	0.890 0.01259	0.866	0.915
##	232	549	1	0.888 0.01267	0.864	0.914
##	235	548	1	0.887 0.01275	0.862	0.912
##	246	547	1	0.885 0.01283	0.860	0.911
##	250	546	1	0.883 0.01291	0.859	0.909
##	253	545	1	0.882 0.01298	0.857	0.908
##	257	544	1	0.880 0.01306	0.855	0.906
##	258	543	1	0.879 0.01314	0.853	0.905
##	260	542	1	0.877 0.01314	0.851	0.903
##	262	541	1	0.875 0.01329	0.850	0.902
##	263	540	1	0.874 0.01336	0.848	0.900
##	271	539	1	0.874 0.01330	0.846	0.899
##	274	538	1	0.872 0.01343	0.844	0.897
##	276	537	1	0.869 0.01358	0.843	0.896
	279	536			0.839	
##			2	0.866 0.01372		0.893
##	283	534	1	0.864 0.01379	0.837	0.891
##	286	533	2	0.861 0.01393	0.834	0.889
##	290	531	2	0.858 0.01406	0.830	0.886
##	294	529	1	0.856 0.01413	0.829	0.884
##	300	528	1	0.854 0.01420	0.827	0.883
##	313	527	1	0.853 0.01426	0.825	0.881
##	314	526	2	0.849 0.01439	0.822	0.878
##	316	524	1	0.848 0.01445	0.820	0.877
##	323	523	1	0.846 0.01452	0.818	0.875
##	325	522	1	0.845 0.01458	0.816	0.874
##	330	521	2	0.841 0.01470	0.813	0.871
##	333	519	1	0.840 0.01476	0.811	0.869
##	335	518	1	0.838 0.01482	0.810	0.868
##	336	517	1	0.836 0.01488	0.808	0.866
##	337	516	2	0.833 0.01500	0.804	0.863
##	341	514	1	0.832 0.01506	0.803	0.862
##	342	513	1	0.830 0.01512	0.801	0.860
##	343	512	1	0.828 0.01517	0.799	0.859
##	348	511	2	0.825 0.01529	0.796	0.856
##	349	509	1	0.824 0.01534	0.794	0.854
##	352	508	1	0.822 0.01540	0.792	0.853
##	355	507	1	0.820 0.01545	0.791	0.851
##	356	506	3	0.815 0.01561	0.785	0.847
##	362	503	1	0.814 0.01567	0.784	0.845
##	366	502	2	0.811 0.01577	0.780	0.842
##	369	500	1	0.809 0.01582	0.778	0.841
##	370	499	1	0.807 0.01587	0.777	0.839
##	372	498	1	0.806 0.01592	0.775	0.837
##	376	497	1	0.804 0.01597	0.773	0.836
##	380	496	1	0.802 0.01602	0.772	0.834
##	382	495	1	0.801 0.01607	0.770	0.833
##	386	494	1	0.799 0.01612	0.768	0.831
##	389	493	1	0.798 0.01617	0.766	0.830
##	402	492	1	0.796 0.01622	0.765	0.828
##	406	491	1	0.794 0.01627	0.763	0.827
##	413	490	1	0.793 0.01631	0.761	0.825
##	415	489	1	0.791 0.01636	0.760	0.824
##	420	488	1	0.789 0.01641	0.758	0.822

	400	400				
##	422	487	1	0.788 0.01645	0.756	0.821
##	429	486	1	0.786 0.01650	0.755	0.819
##	430	485	1	0.785 0.01655	0.753	0.818
##	438	484	1	0.783 0.01659	0.751	0.816
##	439	483	2	0.780 0.01668	0.748	0.813
##	440	481	1	0.778 0.01672	0.746	0.812
##	443	480	1	0.776 0.01677	0.744	0.810
##	444	479	1	0.775 0.01681	0.743	0.809
##	454	478	1	0.773 0.01685	0.741	0.807
##	458	477	1	0.772 0.01690	0.739	0.805
##	465	476	1	0.772 0.01694	0.738	0.804
				0.768 0.01698		
##	472	475	1		0.736	0.802
##	474	474	1	0.767 0.01702	0.734	0.801
##	475	473	1	0.765 0.01706	0.732	0.799
##	476	472	1	0.764 0.01710	0.731	0.798
##	482	471	1	0.762 0.01714	0.729	0.796
##	486	470	1	0.760 0.01718	0.727	0.795
##	490	468	1	0.759 0.01722	0.726	0.793
##	491	467	1	0.757 0.01726	0.724	0.792
##	498	466	1	0.755 0.01730	0.722	0.790
##	499	465	1	0.754 0.01734	0.721	0.789
##	504	464	1	0.752 0.01738	0.719	0.787
##	505	463	1	0.751 0.01742	0.717	0.785
##	511	462	1	0.749 0.01745	0.715	0.784
##	512	461	1	0.747 0.01749	0.714	0.782
##	513	460	1	0.746 0.01753	0.712	0.781
##	522	459	1	0.744 0.01757	0.712	0.779
##	525	458	1	0.742 0.01760	0.709	0.778
##	527	457	1	0.741 0.01764	0.707	0.776
##	532	456	1	0.739 0.01768	0.705	0.775
##	546	455	1	0.738 0.01771	0.704	0.773
##	548	454	1	0.736 0.01775	0.702	0.772
##	553	453	1	0.734 0.01778	0.700	0.770
##	559	452	1	0.733 0.01782	0.699	0.768
##	560	451	1	0.731 0.01785	0.697	0.767
##	565	450	1	0.729 0.01788	0.695	0.765
##	569	449	1	0.728 0.01792	0.694	0.764
##	573	448	3	0.723 0.01802	0.688	0.759
##	578	445	1	0.721 0.01805	0.687	0.758
##	580	444	1	0.720 0.01808	0.685	0.756
##	582	443	1	0.718 0.01811	0.683	0.754
##	583	442	1	0.716 0.01815	0.682	0.753
##	589	441	1	0.715 0.01818	0.680	0.751
##	593	440	1	0.713 0.0181	0.678	0.751
##	599	439	1	0.712 0.01824		0.748
					0.677	
##	602	438	2	0.708 0.01830	0.673	0.745
##	608	436	1	0.707 0.01833	0.672	0.744
##	613	435	1	0.705 0.01836	0.670	0.742
##	615	434	1	0.703 0.01839	0.668	0.740
##	628	433	1	0.702 0.01842	0.667	0.739
##	629	431	1	0.700 0.01845	0.665	0.737
##	638	430	1	0.699 0.01848	0.663	0.736
##	642	429	1	0.697 0.01851	0.662	0.734
##	643	428	1	0.695 0.01853	0.660	0.733

##	647	427	1	0 604 (01056	0 659	0.731
##			1		0.01856	0.658	
##	653	426	1		0.01859	0.657	0.729
##	654	425	1		0.01862	0.655	0.728
##	663	424	1	0.689 (0.01864	0.653	0.726
##	664	423	1	0.687 (0.01867	0.652	0.725
##	668	422	1	0.686 (0.01870	0.650	0.723
##	669	421	1	0.684 (0.01872	0.648	0.722
##	672	420	1	0.682 (0.01875	0.646	0.720
##	675	419	2	0.679 (0.01880	0.643	0.717
##	678	417	1	0.677 (0.01883	0.641	0.715
##	680	416	1		0.01885	0.640	0.714
##	684	415	1		0.01888	0.638	0.712
##	697	414	1		0.01890	0.636	0.711
##	706	413	1		0.01893	0.635	0.711
##	708	412	1		0.01895	0.633	0.707
##	709	411	1		0.01897	0.631	0.706
##	717	410	1		0.01900	0.630	0.704
##	720	409	1		0.01902	0.628	0.703
##	723	408	1	0.663 (0.01904	0.626	0.701
##	729	407	1	0.661 (0.01907	0.625	0.700
##	730	406	1	0.659 (0.01909	0.623	0.698
##	739	405	1	0.658 (0.01911	0.621	0.696
##	742	404	1	0.656	0.01913	0.620	0.695
##	743	403	1	0.655 (0.01915	0.618	0.693
##	751	402	1		0.01918	0.616	0.692
##	755	401	1		0.01920	0.615	0.690
##	759	400	2		0.01924	0.611	0.687
##	764	398	1		0.01926	0.610	0.685
##	766		1		0.01928		
		397				0.608	0.684
##	795	396	1		0.01930	0.606	0.682
##	797	395	2		0.01934	0.603	0.679
##	806	393	1		0.01936	0.601	0.677
##	828	392	1		0.01938	0.600	0.676
##	833	391	1	0.635 (0.01939	0.598	0.674
##	846	390	1	0.633 (0.01941	0.596	0.673
##	851	389	1	0.632 (0.01943	0.595	0.671
##	858	388	1	0.630 (0.01945	0.593	0.669
##	875	387	1	0.629 (0.01947	0.592	0.668
##	883	386	1	0.627 (0.01948	0.590	0.666
##	885	385	1		0.01950	0.588	0.665
##	890	384	1		0.01952	0.587	0.663
##	891	383	1		0.01954	0.585	0.662
##	900	382	1		0.01955	0.583	0.660
##	902	381	1		0.01957	0.582	0.658
##	905	380	1		0.01959	0.580	0.657
##	909	379	1		0.01960	0.578	0.655
##	922	378	1		0.01962	0.577	0.654
##	931	377	1		0.01963	0.575	0.652
##	938	376	1		0.01965	0.573	0.650
##	939	374	1	0.609 (0.01966	0.572	0.649
##	940	373	1	0.607 (0.01968	0.570	0.647
##	942	372	1	0.606 (0.01969	0.568	0.646
##	944	371	1	0.604 (0.01971	0.567	0.644
##	952	370	1	0.602 (0.01972	0.565	0.642

##	959	369	1	0.601	0.01973	0.563	0.641
##	960	368	1		0.01975	0.562	0.639
##	961	367	2	0.596	0.01978	0.558	0.636
##	968	365	1	0.594	0.01979	0.557	0.634
##	969	364	1	0.593	0.01980	0.555	0.633
##	986	363	1	0.591	0.01981	0.553	0.631
##	997	362	2	0.588	0.01984	0.550	0.628
##	1013	360	1	0.586	0.01985	0.548	0.626
##	1018	359	1	0.584	0.01986	0.547	0.625
##	1026	358	1	0.583	0.01987	0.545	0.623
##	1029	357	1	0.581	0.01989	0.544	0.622
##	1034	356	1	0.580	0.01990	0.542	0.620
##	1037	355	1		0.01991	0.540	0.618
##	1041	354	1		0.01992	0.539	0.617
##	1046	353	1		0.01993	0.537	0.615
##	1052	352	1		0.01994	0.535	0.614
##	1055	351	1		0.01995	0.534	0.612
##	1061	350	1		0.01996	0.532	0.610
##	1092	349	1		0.01997	0.530	0.609
##	1103	348	1		0.01998	0.529	0.607
##	1105	346	1		0.01999	0.527	0.605
##	1108	345	1		0.01999	0.525	0.604
##	1112	344	1		0.02000	0.524	0.602
##	1114	343	1		0.02001	0.522	0.601
##	1117	342	1		0.02002	0.520	0.599
##	1122	341	1		0.02003	0.519	0.597
##	1135	340	1		0.02004	0.517	0.596
##	1145	339	1		0.02004	0.516	0.594
##	1154	338	1		0.02005	0.514	0.593
##	1161	337	1		0.02006	0.512	0.591
##	1178	336	1		0.02007	0.511	0.589
##	1183	335	1		0.02007	0.509	0.588
##	1186	334	1		0.02008	0.507	0.586
## ##	1191	333	1 1		0.02009	0.506	0.584
##	1207 1211	332 331	1		0.02009 0.02010	0.504 0.502	0.583
##	1211	330	1		0.02010	0.501	0.581 0.580
##	1219		1				
##	1252	329 328	1		0.02011	0.499	0.578 0.576
##	1262	327	1		0.02011	0.496	0.575
##	1275	326	1		0.02012	0.494	0.573
##	1295	325	1		0.02012	0.492	0.571
##	1298	324	1		0.02013	0.491	0.570
##	1325	323	1		0.02014	0.489	0.568
##	1399	322	1		0.02014	0.488	0.567
##	1405	321	1		0.02014	0.486	0.565
##	1434	320	1		0.02011	0.484	0.563
##	1471	319	1		0.02015	0.483	0.562
##	1509	318	1		0.02015	0.481	0.560
##	1540	315	1		0.02016	0.479	0.558
##	1548	314	1		0.02016	0.478	0.557
##	1551	312	1		0.02016	0.476	0.555
##	1561	311	1		0.02017	0.474	0.554
##	1564	310	1		0.02017	0.473	0.552

##	1568	309	1	0.509	0.02017	0.471	0.550
##	1589	308	1	0.507	0.02017	0.469	0.549
##	1606	307	1		0.02018	0.468	0.547
##	1647	306	1		0.02018	0.466	0.545
##	1652	305	1		0.02018	0.464	0.544
##	1687	304	1	0.501	0.02018	0.463	0.542
##	1709	303	1	0.499	0.02018	0.461	0.540
##	1768	302	1	0.498	0.02018	0.460	0.539
##	1829	297	1	0.496	0.02018	0.458	0.537
##	1839	294	1	0.494	0.02018	0.456	0.535
##	1850	293	1	0.493	0.02019	0.455	0.534
##	1851	292	1	0.491	0.02019	0.453	0.532
##	1879	289	1	0.489	0.02019	0.451	0.530
##	1885	286	1	0.487	0.02019	0.449	0.529
##	1895	285	1	0.486	0.02019	0.448	0.527
##	1918	282	1	0.484	0.02019	0.446	0.525
##	1932	280	1	0.482	0.02020	0.444	0.524
##	1976	273	1	0.480	0.02020	0.442	0.522
##	2012	264	1	0.479	0.02020	0.441	0.520
##	2018	263	1	0.477	0.02021	0.439	0.518
##	2023	262	1	0.475	0.02021	0.437	0.516
##	2067	253	1	0.473	0.02022	0.435	0.514
##	2079	250	1	0.471	0.02023	0.433	0.513
##	2128	236	1	0.469	0.02024	0.431	0.511
##	2152	221	1	0.467	0.02026	0.429	0.509
##	2171	214	1	0.465	0.02028	0.427	0.506
##	2231	188	1	0.462	0.02033	0.424	0.504
##	2458	119	1	0.459	0.02052	0.420	0.501
##	2593	76	1	0.453	0.02112	0.413	0.496
##	2683	60	1	0.445	0.02208	0.404	0.490
##	2718	47	1	0.436	0.02355	0.392	0.484
##	2910	16	1	0.408	0.03438	0.346	0.482
##							
##				ev+5FU			
##						lower 95% CI	
##	8	608	1		0.00164	0.995	1.000
##	9	607	1		0.00232	0.992	1.000
##	23	606	1		0.00284	0.990	1.000
##	34	604	1		0.00328	0.987	1.000
##	40	603	1		0.00367	0.985	0.999
##	45	602	1		0.00401	0.982	0.998
##	49	600	1		0.00433	0.980	0.997
##	52	599	1		0.00463	0.978	0.996
##	63	598	1		0.00491	0.976	0.995
##	68	597	1		0.00517	0.973	0.994
##	79	596	1		0.00542	0.971	0.993
##	86	595	1		0.00565	0.969	0.991
##	91	594	1		0.00588	0.967	0.990
##	101	593	1		0.00610	0.965	0.989
##	116	592	1		0.00631	0.963	0.988
##	127	591	1		0.00651	0.961	0.986
##	132	590	1		0.00670	0.959	0.985
##	134	589	1		0.00689	0.957	0.984
##	138	588	1	0.969	0.00707	0.955	0.983

##	141	587	1	0.967	0.00725	0.953	0.981
##	144	586	1		0.00742	0.951	0.980
##	146	585	1		0.00759	0.949	0.979
##	154	584	1	0.962	0.00776	0.947	0.977
##	157	583	1		0.00792	0.945	0.976
##	160	582	1		0.00807	0.943	0.975
##	161	581	1		0.00823	0.941	0.973
##	165	580	1		0.00838	0.939	0.972
##	168	579	1		0.00852	0.937	0.971
##	183	578	1		0.00867	0.935	0.969
##	185	577	1		0.00881	0.933	0.968
##	186	576	2		0.00908	0.930	0.965
##	198	574	1	0.946	0.00921	0.928	0.964
##	199	573	1	0.944	0.00934	0.926	0.962
##	205	572	1		0.00947	0.924	0.961
##	208	571	1		0.00960	0.922	0.960
##	215	570	1		0.00972	0.920	0.958
##	218	569	1		0.00984	0.918	0.957
##	237	568	1		0.00996	0.916	0.955
##	242	567	1		0.01008	0.914	0.954
##	245	566	1	0.932	0.01020	0.913	0.953
##	248	565	1		0.01031	0.911	0.951
##	251	564	1	0.929	0.01043	0.909	0.950
##	252	563	1		0.01054	0.907	0.948
##	255	562	1		0.01065	0.905	0.947
##	256	561	1		0.01076	0.903	0.945
##	260	560	1		0.01086	0.901	0.944
##	261	559	1	0.921	0.01097	0.900	0.943
##	269	558	1	0.919	0.01107	0.898	0.941
##	271	557	1	0.918	0.01117	0.896	0.940
##	274	556	1	0.916	0.01127	0.894	0.938
##	276	555	1	0.914	0.01137	0.892	0.937
##	279	554	1	0.913	0.01147	0.890	0.935
##	283	553	1	0.911	0.01157	0.889	0.934
##	285	552	1	0.909	0.01167	0.887	0.932
##	293	551	1	0.908	0.01176	0.885	0.931
##	296	550	1	0.906	0.01186	0.883	0.929
##	302	549	1	0.904	0.01195	0.881	0.928
##	303	548	1	0.903	0.01204	0.879	0.927
##	304	547	1	0.901	0.01213	0.878	0.925
##	315	546	1	0.899	0.01222	0.876	0.924
##	322	545	2	0.896	0.01240	0.872	0.921
##	324	543	1	0.894	0.01248	0.870	0.919
##	326	542	1	0.893	0.01257	0.868	0.918
##	328	540	1	0.891	0.01265	0.867	0.916
##	329	539	1	0.889	0.01274	0.865	0.915
##	336	538	1	0.888	0.01282	0.863	0.913
##	340	537	1	0.886	0.01290	0.861	0.912
##	355	535	1	0.884	0.01298	0.859	0.910
##	360	533	1	0.883	0.01307	0.858	0.909
##	363	532	1	0.881	0.01315	0.856	0.907
##	365	531	1	0.880	0.01323	0.854	0.906
##	380	530	1	0.878	0.01330	0.852	0.904
##	386	529	1	0.876	0.01338	0.850	0.903

##	389	528	1	0.875 0.01346	0.849	0.901
##	392	527	1	0.873 0.01354	0.847	0.900
##	393	526	1	0.871 0.01361	0.845	0.898
##	400	525	1	0.870 0.01369	0.843	0.897
##	405	524	1	0.868 0.01376	0.841	0.895
##	408	523	1	0.866 0.01383	0.840	0.894
##	415	522	1	0.865 0.01391	0.838	0.892
##	422	521	1	0.863 0.01398	0.836	0.891
##	428	520	1	0.861 0.01405	0.834	0.889
##	430	519	1	0.860 0.01412	0.832	0.888
##	431	518	1	0.858 0.01419	0.831	0.886
##	434	517	1	0.856 0.01426	0.829	0.885
##	441	516	1	0.855 0.01433	0.827	0.883
##	443	515	1	0.853 0.01440	0.825	0.882
##	448	514	2	0.850 0.01453	0.822	0.879
##	449	512	1	0.848 0.01460	0.820	0.877
##	454	511	2	0.845 0.01473	0.816	0.874
##	458	509	1	0.843 0.01479	0.815	0.872
##	460	508	1	0.841 0.01485	0.813	0.871
##	466	507	2	0.838 0.01498	0.809	0.868
##	484	505	1	0.836 0.01504	0.807	0.866
##	485	504	1	0.835 0.01510	0.806	0.865
##	490	503	1	0.833 0.01516	0.804	0.863
##	491	502	1	0.831 0.01522	0.802	0.862
##	497	501	1	0.830 0.01528	0.800	0.860
##	498	500	1	0.828 0.01534	0.799	0.859
##	499	499	1	0.826 0.01540	0.797	0.857
##	503	498	1	0.825 0.01546	0.795	0.856
##	510	497	1	0.823 0.01552	0.793	0.854
##	526	496	1	0.821 0.01558	0.791	0.853
##	529	495	1	0.820 0.01563	0.790	0.851
##	536	494	1	0.818 0.01569	0.788	0.849
##	543	493	1	0.816 0.01574	0.786	0.848
##	550	492	1	0.815 0.01580	0.784	0.846
##	554	491	2	0.811 0.01591	0.781	0.843
##	576	489	1	0.810 0.01596	0.779	0.842
##	578	488	2	0.806 0.01607	0.776	0.839
##	580	486	1	0.805 0.01612	0.774	0.837
##	583	485	1	0.803 0.01617	0.772	0.836
##	591	484	1	0.802 0.01622	0.770	0.834
##	592	483	1	0.800 0.01628	0.769	0.832
##	593	482	1	0.798 0.01633	0.767	0.831
##	594	481	1	0.797 0.01638	0.765	0.829
##	601	480	1	0.795 0.01643	0.763	0.828
##	602	479	1	0.793 0.01647	0.762	0.826
##	603	478	1	0.792 0.01652	0.760	0.825
##	604	477	1	0.790 0.01657	0.758	0.823
##	609	476	1	0.788 0.01662	0.756	0.822
##	614	475	1	0.787 0.01667	0.755	0.820
##	616	474	2	0.783 0.01676	0.751	0.817
##	617	472	1	0.782 0.01681	0.749	0.815
##	622	471	1	0.780 0.01685	0.748	0.814
##	636	470	1	0.778 0.01690	0.746	0.812
##	641	469	1	0.777 0.01695	0.744	0.811

##	642	468	1	0.775 (0.74	0.809
##	643	467	1	0.773 (0.74	
##	649	466	1	0.772 (0.739	
##	657	465	1	0.770		0.73	
##	666	464	1	0.768 (0.73	0.803
##	674	463	1	0.767	0.01721	0.73	1 0.801
##	683	462	1	0.765		0.73	0.800
##	692	461	2	0.762 (0.01734	0.728	0.796
##	693	459	1	0.760 (0.01738	0.72	
##	696	458	1	0.758 (0.01742	0.72	0.793
##	700	457	1	0.757	0.01746	0.72	
##	701	456	1	0.755 (0.01750	0.72	
##	711	455	1	0.753 (0.01754	0.72	
##	712	454	1	0.752 (0.01758	0.718	0.787
##	736	453	1	0.750 (0.01762	0.71	0.785
##	765	452	1	0.748 (0.01766	0.71	0.784
##	802	451	2	0.745 (0.71	
##	805	449	1	0.743 (0.01777	0.70	0.779
##	806	448	1	0.742 (0.01781	0.708	0.778
##	811	447	1	0.740 (0.01785	0.70	0.776
##	827	446	1	0.738 (0.01788	0.70	0.774
##	844	445	1	0.737 (0.01792	0.70	0.773
##	849	443	1	0.735 (0.01796	0.70	0.771
##	853	442	1	0.733 (0.01799	0.699	0.770
##	862	441	1	0.732 (0.69	7 0.768
##	884	440	1	0.730 (0.01807	0.69	0.766
##	887	438	2	0.727 (0.01814	0.69	0.763
##	904	436	1	0.725 (0.01817	0.690	0.762
##	905	435	1	0.723 (0.01821	0.689	0.760
##	911	434	1	0.722 (0.01824	0.68	7 0.758
##	916	433	1	0.720 (0.01827	0.68	0.757
##	918	432	1	0.718 (0.01831	0.683	0.755
##	934	431	1	0.717 (0.01834	0.68	0.754
##	936	430	1	0.715 (0.01837	0.680	0.752
##	961	429	1	0.713 (0.678	0.750
##	968	428	1	0.712 (0.01844	0.67	7 0.749
##	977	427	1		0.01847	0.67	
##	993	426	1	0.708 (0.01850	0.673	0.746
##	1022	425	1	0.707	0.01853	0.67	
##	1024	424	1	0.705	0.01856	0.670	
##	1025	423	1	0.703 (0.01860	0.668	
##	1032	422	1	0.702 (0.01863	0.666	0.739
##	1037	421	1	0.700 (0.01866	0.66	
##	1122	420	1		0.01869	0.66	0.736
##	1138	419	1	0.697 (0.01872	0.66	
##	1142	418	1	0.695 (0.01874	0.659	0.733
##	1145	417	1	0.693 (0.01877	0.658	
##	1151	416	1		0.01880	0.65	
##	1159	415	1		0.01883	0.654	
##	1193	414	1		0.01886	0.65	
##	1201	413	1		0.01889	0.65	
##	1212	412	1		0.01891	0.649	
##	1233	411	1		0.01894	0.64	
##	1246	410	1	0.682 (0.01897	0.646	0.720

```
1302
             402
                        1
                             0.672 0.01913
                                                     0.635
                                                                   0.710
##
    1306
             401
                             0.670 0.01915
                                                     0.634
                                                                   0.709
                        1
##
    1329
             400
                             0.668 0.01918
                                                                   0.707
                        1
                                                     0.632
##
    1365
             399
                        1
                             0.667 0.01920
                                                     0.630
                                                                   0.705
##
    1387
             398
                        1
                             0.665 0.01923
                                                     0.628
                                                                   0.704
##
    1388
             397
                        1
                             0.663 0.01925
                                                     0.627
                                                                   0.702
                             0.662 0.01927
##
    1424
             394
                        1
                                                     0.625
                                                                   0.701
             393
##
    1439
                             0.660 0.01930
                                                                   0.699
                        1
                                                     0.623
##
    1446
             392
                        1
                             0.658 0.01932
                                                     0.622
                                                                   0.697
##
    1488
             389
                             0.657 0.01935
                                                                   0.696
                        1
                                                     0.620
                             0.655 0.01937
##
    1495
             388
                                                     0.618
                                                                   0.694
                        1
##
    1511
             387
                        1
                             0.653 0.01940
                                                     0.616
                                                                   0.692
##
    1521
             386
                             0.652 0.01942
                        1
                                                     0.615
                                                                   0.691
##
    1550
             385
                             0.650 0.01944
                                                     0.613
                                                                   0.689
                        1
##
    1607
             383
                             0.648 0.01947
                                                                   0.688
                        1
                                                     0.611
##
    1620
             381
                        1
                             0.647 0.01949
                                                     0.609
                                                                   0.686
##
    1637
             380
                        1
                             0.645 0.01951
                                                     0.608
                                                                   0.684
##
    1644
             379
                             0.643 0.01953
                                                     0.606
                                                                   0.683
                        1
    1668
##
             378
                        2
                             0.640 0.01958
                                                     0.602
                                                                   0.679
##
    1671
             376
                             0.638 0.01960
                                                     0.601
                                                                   0.678
                        1
##
    1723
                             0.636 0.01962
             375
                        1
                                                     0.599
                                                                   0.676
##
    1743
             374
                        1
                             0.635 0.01964
                                                     0.597
                                                                   0.674
##
    1752
             373
                             0.633 0.01966
                                                     0.596
                                                                   0.673
                        1
##
    1767
             372
                             0.631 0.01968
                        1
                                                     0.594
                                                                   0.671
##
    1783
             371
                             0.629 0.01970
                                                     0.592
                                                                   0.669
                        1
##
    1786
             370
                        1
                             0.628 0.01972
                                                     0.590
                                                                   0.668
    1798
##
             369
                        1
                             0.626 0.01974
                                                     0.589
                                                                   0.666
##
    1812
             366
                        1
                             0.624 0.01976
                                                     0.587
                                                                   0.664
##
    1831
             357
                        1
                             0.623 0.01979
                                                     0.585
                                                                   0.663
##
    1856
             353
                             0.621 0.01981
                                                                   0.661
                                                     0.583
                        1
##
    1876
             347
                        1
                             0.619 0.01983
                                                     0.581
                                                                   0.659
##
    1995
             331
                             0.617 0.01986
                                                                   0.657
                        1
                                                     0.579
##
    2021
             322
                        1
                             0.615 0.01989
                                                     0.578
                                                                   0.656
##
    2028
             319
                             0.613 0.01992
                                                     0.576
                                                                   0.654
                        1
##
    2031
             316
                        1
                             0.611 0.01995
                                                     0.574
                                                                   0.652
    2052
##
             309
                             0.609 0.01999
                                                                   0.650
                        1
                                                     0.572
##
    2074
             299
                             0.607 0.02002
                                                                   0.648
                        1
                                                     0.569
##
    2127
             279
                             0.605 0.02007
                                                     0.567
                                                                   0.646
                        1
    2174
             261
                             0.603 0.02013
##
                        1
                                                     0.565
                                                                   0.644
##
    2197
             243
                             0.600 0.02020
                                                     0.562
                                                                   0.641
                        1
##
    2318
                             0.597 0.02033
             194
                        1
                                                     0.559
                                                                   0.639
    2482
##
             139
                             0.593 0.02063
                                                                   0.635
                        1
                                                     0.554
    2542
##
             103
                        1
                             0.587 0.02122
                                                     0.547
                                                                   0.630
##
    2725
              68
                             0.579 0.02260
                                                     0.536
                                                                   0.625
plot(fit_km_rx,
     xlab = "Days",
     ylab = "Survival Probability",
     col = c("blue", "red", "green"),
     1ty = 1:3,
```

0.718

0.715

0.714

0.712

0.644

0.640

0.639

0.637

1273

1276

1277

1279

409

408

406

405

1

2

1

0.680 0.01900

0.677 0.01905

0.675 0.01907

0.673 0.01910

##

##

##

##

##

```
main = "Kaplan-Meier Curves by Treatment Group")

legend("bottomleft",
    legend = levels(colon_data$rx),
    col = c("blue", "red", "green"),
    lty = 1:3)
```

Kaplan-Meier Curves by Treatment Group


```
library(survminer)

## Loading required package: ggpubr

## ## Attaching package: 'survminer'

## The following object is masked from 'package:survival':

## ## myeloma

ggsurvplot(
  fit = fit_km_rx,
  data = colon_data,
  risk.table = TRUE,  # show number at risk table
  pval = TRUE,  # show p-value from log-rank test
```

```
ggtheme = theme_minimal(),
title = "Kaplan-Meier Curves by Treatment Group",
xlab = "Days",
ylab = "Survival Probability"
)
```

Kaplan-Meier Curves by Treatment Group


```
logrank_test_rx <- survdiff(surv_obj ~ rx, data = colon_data)
logrank_test_rx</pre>
```

```
## Call:
## survdiff(formula = surv_obj ~ rx, data = colon_data)
##
                N Observed Expected (0-E)^2/E (0-E)^2/V
##
## rx=0bs
              630
                        345
                                 299
                                           7.01
                                                    10.40
                                           4.93
## rx=Lev
              620
                        333
                                 295
                                                     7.26
## rx=Lev+5FU 608
                        242
                                 326
                                          21.61
                                                    33.54
    Chisq= 33.6 on 2 degrees of freedom, p= 5e-08
```

Kaplan-Meier Curves by Treatment

KM Plots (Base R and survminer)

• Lev+5FU (green/dotted): Appears to have the highest survival curve over time.

- Obs (blue/solid): Seems to have the lowest curve.
- Lev (red/dashed): Is in between.

Survival Probabilities (from the survfit summary)

- For each time point, you see columns for survival, std.err, and 95% CI.
- At early times (like ~ 50 days), survival is ~ 0.99 or higher across groups.
- By later times (~3000 days), survival probabilities diverge, with Lev+5FU typically retaining higher survival.

Interpretation

- Visually, Lev+5FU group experiences fewer (or later) events, while the Obs group experiences more (or earlier) events.
- This pattern suggests Lev+5FU might be more effective at delaying the event (recurrence or death).

Log-Rank Test

- Chi-square = 33.6 on 2 degrees of freedom, $p = 5e-08 (\sim 0.00000005)$
 - This is a highly significant result (< 0.0001), indicating that at least one survival curve differs from the others.

From the table:

Group	N (Total)	Observed Events	Expected Events
Obs	630	345	299
Lev	620	333	295
Lev+5FU	608	242	286

- Obs: Has more events than expected (345 vs. 299), consistent with lower survival.
- Lev+5FU: Has fewer events than expected (242 vs. 286), consistent with better survival.
- Lev: Is intermediate.

Interpretation

- The p-value is extremely small, so we can reject the null hypothesis that all three groups have the same survival function.
- In plain language: Treatment significantly affects time to event (the combined outcome).

Practical Takeaways

- Lev+5FU: Appears to provide a survival advantage, while Obs is least effective.
- Lev: Is in between but closer to Obs, based on the shape of the curves and the number of events.

Manual Pairwise Log-Rank Tests

```
# Pair 1: Obs vs Lev
survdiff(Surv(time, status) ~ rx,
         data = colon_data,
         subset = (rx %in% c("Obs", "Lev")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_data,
       subset = (rx %in% c("Obs", "Lev")))
##
##
            N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0bs 630
                            341
                   345
                                    0.0372
                                               0.075
## rx=Lev 620
                   333
                             337
                                    0.0377
                                               0.075
##
## Chisq= 0.1 on 1 degrees of freedom, p= 0.8
# Pair 2: Obs vs Lev+5FU
survdiff(Surv(time, status) ~ rx,
         data = colon_data,
         subset = (rx %in% c("Obs", "Lev+5FU")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_data,
       subset = (rx %in% c("Obs", "Lev+5FU")))
##
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0bs
              630
                                 281
                                          14.7
                                                    28.2
                       345
## rx=Lev+5FU 608
                       242
                                 306
                                          13.5
                                                    28.2
   Chisq= 28.2 on 1 degrees of freedom, p= 1e-07
# Pair 3: Lev vs Lev+5FU
survdiff(Surv(time, status) ~ rx,
         data = colon_data,
         subset = (rx %in% c("Lev", "Lev+5FU")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_data,
       subset = (rx %in% c("Lev", "Lev+5FU")))
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
              620
                       333
                                 273
                                          13.0
## rx=Lev
                                                    24.8
## rx=Lev+5FU 608
                       242
                                 302
                                          11.8
                                                    24.8
##
  Chisq= 24.8 on 1 degrees of freedom, p= 6e-07
```

Pairwise Comparisons of Treatment Groups

Obs vs Lev

- $\mathbf{p} = \mathbf{0.8}$: Suggests no statistical difference in survival curves between Observation alone and Levamisole (Lev).
- Interpretation: Visually or clinically, these two groups appear quite similar in how quickly events occur.

Obs vs Lev+5FU

- $p = 1 \times 10$: Indicates a highly significant difference.
- Interpretation: Lev+5FU outperforms Obs, implying better survival (fewer/farther events).

Lev vs Lev+5FU

- $p = 6 \times 10$: Also indicates a highly significant difference.
- Interpretation: Lev+5FU outperforms Lev, again suggesting better survival.

Summary

- Lev+5FU: Significantly better than both Obs and Lev, suggesting it provides a survival advantage.
- Obs and Lev: Not significantly different from each other, indicating similar survival outcomes.

These results highlight the effectiveness of Lev+5FU in improving survival compared to the other treatment groups.

Kaplan-Meier Curves (Time to Death)

```
# 1) Summarize time/status for death
colon_death <- colon_data %>%
  group_by(id) %>%
  summarize(
   time = if (any(status == 1 & etype == 2)) {
     min(time[status == 1 & etype == 2])
   } else {
      max(time)
   },
   status = if (any(status == 1 & etype == 2)) 1 else 0
 ) %>%
  ungroup()
# 2) Merge 'rx' from 'colon data'
colon_death <- colon_death %>%
  left_join(
   select(colon_data, id, rx),
   by = "id"
  ) %>%
  distinct(id, .keep_all = TRUE)
# Now 'colon_death' should have columns: id, time, status, rx, ...
str(colon_death)
## tibble [929 x 4] (S3: tbl_df/tbl/data.frame)
```

```
## tibble [929 x 4] (S3: tbl_df/tbl/data.frame)
## $ id    : num [1:929] 1 2 3 4 5 6 7 8 9 10 ...
## $ time    : num [1:929] 1521 3087 963 293 659 ...
## $ status: num [1:929] 1 0 1 1 1 1 1 0 0 0 ...
## $ rx     : Factor w/ 3 levels "Obs","Lev","Lev+5FU": 3 3 1 3 1 3 2 1 2 3 ...
```

```
# Surv object for time to death
colon_death$surv_death <- Surv(time = colon_death$time,</pre>
                                 event = colon_death$status)
# Suppose you want to compare survival by rx (Obs, Lev, Lev+5FU)
fit_km_death <- survfit(surv_death ~ rx, data = colon_death)</pre>
# Print a summary
summary(fit_km_death)
## Call: survfit(formula = surv_death ~ rx, data = colon_death)
##
                    rx=Obs
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
                             0.997 0.00317
##
            315
                       1
                                                   0.991
                                                                 1.000
     113
##
     125
            314
                       1
                             0.994 0.00448
                                                   0.985
                                                                 1.000
##
     145
            313
                             0.990 0.00547
                                                                 1.000
                       1
                                                   0.980
##
            312
                             0.987 0.00631
     164
                       1
                                                   0.975
                                                                 1.000
##
     166
            311
                             0.984 0.00704
                                                   0.970
                                                                 0.998
                       1
                             0.981 0.00770
##
     187
            310
                       1
                                                   0.966
                                                                 0.996
##
     201
            309
                             0.978 0.00831
                                                                 0.994
                       1
                                                   0.962
##
     208
            308
                             0.975 0.00886
                                                   0.957
                                                                 0.992
                       1
     215
            307
##
                       1
                             0.971 0.00939
                                                   0.953
                                                                 0.990
##
     218
            306
                       1
                             0.968 0.00988
                                                   0.949
                                                                 0.988
##
            305
     238
                       1
                             0.965 0.01034
                                                   0.945
                                                                 0.986
                                                                 0.983
##
     241
            304
                       1
                             0.962 0.01079
                                                   0.941
            303
##
     242
                       1
                             0.959 0.01121
                                                   0.937
                                                                 0.981
##
     253
            302
                             0.956 0.01161
                       1
                                                   0.933
                                                                 0.979
##
     259
            301
                             0.949 0.01237
                                                   0.925
                                                                 0.974
##
     264
            299
                             0.946 0.01273
                                                                 0.971
                       1
                                                   0.921
##
     275
            298
                             0.943 0.01308
                                                                 0.969
                       1
                                                   0.918
##
     289
            297
                       1
                             0.940 0.01341
                                                   0.914
                                                                 0.966
##
     311
            296
                             0.937 0.01374
                                                   0.910
                                                                 0.964
                       1
##
     313
            295
                             0.933 0.01405
                                                                 0.961
                       1
                                                   0.906
##
     322
            294
                       1
                             0.930 0.01436
                                                   0.902
                                                                 0.959
##
            293
     331
                       1
                             0.927 0.01466
                                                   0.899
                                                                 0.956
##
            292
     365
                       1
                             0.924 0.01495
                                                   0.895
                                                                 0.954
##
     372
            291
                             0.921 0.01523
                                                                 0.951
                       1
                                                   0.891
##
     381
            290
                       1
                             0.917 0.01550
                                                   0.888
                                                                 0.948
##
     384
            289
                       2
                             0.911 0.01603
                                                   0.880
                                                                 0.943
##
     390
            287
                       1
                             0.908 0.01629
                                                   0.877
                                                                 0.940
##
            286
     409
                       1
                             0.905 0.01654
                                                   0.873
                                                                 0.938
##
     411
            285
                       1
                             0.902 0.01678
                                                   0.869
                                                                 0.935
##
     413
            284
                             0.895 0.01726
                                                   0.862
                                                                 0.930
##
     417
            282
                             0.892 0.01748
                       1
                                                   0.858
                                                                 0.927
##
     421
            281
                       1
                             0.889 0.01771
                                                   0.855
                                                                 0.924
##
            280
     433
                             0.886 0.01793
                                                                 0.922
                       1
                                                   0.851
##
     437
            279
                             0.883 0.01814
                                                   0.848
                                                                 0.919
                       1
##
     438
            278
                       1
                             0.879 0.01835
                                                   0.844
                                                                 0.916
##
     459
            276
                       1
                             0.876 0.01856
                                                   0.841
                                                                 0.913
##
     462
            275
                       1
                             0.873 0.01876
                                                   0.837
                                                                 0.911
##
     464
            274
                             0.870 0.01896
                                                   0.833
                                                                 0.908
                       1
##
            273
                       2
                             0.863 0.01935
     465
                                                   0.826
                                                                 0.902
```

##	469	271	1	0.860	0.01954	0.823	
##	474	270	1	0.857	0.01973	0.819	0.897
##	485	269	1	0.854	0.01991	0.816	0.894
##	499	268	1	0.851	0.02009	0.812	0.891
##	506	267	1	0.848	0.02026	0.809	0.888
##	510	266	1	0.844	0.02044	0.805	0.885
##	528	265	1	0.841	0.02061	0.802	0.883
##	537	264	1	0.838	0.02077	0.798	0.880
##	563	263	2	0.832	0.02110	0.791	
##	570	261	1	0.828	0.02126	0.788	
##	576	260	1		0.02141	0.784	
##	587	259	1		0.02157	0.781	
##	591	258	1		0.02172	0.777	
##	594	257	1		0.02186	0.774	
##	595	256	1		0.02201	0.770	
##	599	255	1		0.02215	0.767	
##	612	254	1		0.02229	0.764	
##	622	253	1		0.02243	0.760	
##	659	252	1		0.02257	0.757	
##	663	251	1		0.02270	0.753	
##	665	250	1		0.02270	0.750	
	670	249	1		0.02283		
##						0.746	
##	673	248	1		0.02309	0.743	
##	685	247	1		0.02322	0.740	
##	687	246	1		0.02334	0.736	
##	692	245	1		0.02346	0.733	
##	709	244	1		0.02358	0.729	
##	716	243	1		0.02370	0.726	
##	717	242	1		0.02381	0.723	
##	718	241	1		0.02393	0.719	
##	721	240	1		0.02404	0.716	
##	743	239	1		0.02415	0.712	
##	753	238	1		0.02425	0.709	
##	758	237	1		0.02436	0.706	
##	760	236	1		0.02446	0.702	
##	761	235	1		0.02457	0.699	
##	770	234	1	0.742	0.02467	0.696	0.792
##	774	233	1	0.739	0.02477	0.692	
##	775	232	1	0.736	0.02486	0.689	0.786
##	832	231	1	0.733	0.02496	0.685	0.783
##	833	230	1	0.730	0.02505	0.682	0.780
##	840	229	1	0.726	0.02515	0.679	0.777
##	845	228	1	0.723	0.02524	0.675	0.774
##	854	227	1	0.720	0.02533	0.672	0.771
##	863	226	1	0.717	0.02541	0.669	0.768
##	874	225	1	0.714	0.02550	0.665	0.765
##	883	224	1	0.711	0.02558	0.662	0.762
##	887	223	1	0.707	0.02567	0.659	0.759
##	901	222	1	0.704	0.02575	0.655	0.756
##	924	221	1	0.701	0.02583	0.652	
##	928	220	1		0.02591	0.649	
##	929	219	1		0.02598	0.645	
##	936	218	1		0.02606	0.642	
##	949	217	1		0.02613	0.639	

##	957	216	1	0.685 0.02621	0.636	0.738
##	961	215	1	0.682 0.02628	0.632	0.735
##	963	214	1	0.679 0.02635	0.629	0.733
##	966	213	1	0.675 0.02641	0.626	0.729
##	976	212	1	0.672 0.02648	0.622	0.726
##	1021	211	1	0.669 0.02655	0.619	0.723
##	1031	210	1	0.666 0.02661	0.616	0.720
##	1048	209	1	0.663 0.02667	0.612	0.717
##	1070	208	1	0.660 0.02674	0.609	0.714
##	1079	207	1	0.656 0.02680	0.606	0.711
##	1083	206	1	0.653 0.02685	0.603	0.708
##	1101	205	1	0.650 0.02691	0.599	0.705
##	1133	204	1	0.647 0.02697	0.596	0.702
##	1134	203	1	0.644 0.02702	0.593	0.699
##	1136	202	1	0.640 0.02708	0.589	0.696
##	1139	201	1	0.637 0.02713	0.586	0.693
##	1159	200	1	0.634 0.02718	0.583	0.690
##	1166	199	1	0.631 0.02723	0.580	0.687
##	1178	198	1	0.628 0.02728	0.576	0.683
##	1195	197	1	0.624 0.02732	0.573	0.680
##	1198	196	1	0.621 0.02737	0.570	0.677
##	1209	195	1	0.618 0.02741	0.567	0.674
##	1216	194	1	0.615 0.02746	0.563	0.671
##	1230	193	1	0.612 0.02750	0.560	0.668
##	1237	192	1	0.609 0.02754	0.557	0.665
##	1246	191	1	0.605 0.02758	0.554	0.662
##	1262	190	1	0.602 0.02762	0.550	0.659
##	1272	189	1	0.599 0.02765	0.547	0.656
##	1290	188	1	0.596 0.02769	0.544	0.653
##	1295	187	1	0.593 0.02772	0.541	0.650
##	1304	186	1	0.589 0.02776	0.537	0.646
##	1313	185	1	0.586 0.02779	0.534	0.643
##	1314	184	1	0.583 0.02782	0.531	0.640
##	1327	183	1	0.580 0.02785	0.528	0.637
##	1363	182	1	0.577 0.02788	0.525	0.634
##	1375	181	1	0.573 0.02791	0.521	0.631
##	1434	180	1	0.570 0.02793	0.518	0.628
##	1437	179	1	0.567 0.02796	0.515	0.625
##	1447	178	1	0.564 0.02798	0.512	0.622
##	1482	177	1	0.561 0.02800	0.508	0.618
##	1530	176	1	0.558 0.02803	0.505	0.615
##	1548	175	1	0.554 0.02805	0.502	0.612
##	1656	174	1	0.551 0.02807	0.499	0.609
##	1679	173	1	0.548 0.02808	0.496	0.606
##	1692	172	1	0.545 0.02810	0.492	0.603
##	1723	171	1	0.542 0.02812	0.489	0.600
##	1745	170	1	0.538 0.02813	0.486	0.597
##	1772	169	1	0.535 0.02814	0.483	0.593
##	1788	168	1	0.532 0.02816	0.480	0.590
##	1790	167	1	0.529 0.02817	0.476	0.587
##	1818	164	1	0.526 0.02818	0.473	0.584
##	1875	156	1	0.522 0.02820	0.470	0.581
##	1884	155	1	0.519 0.02822	0.466	0.577
##	1896	153	1	0.516 0.02824	0.463	0.574

##	1907	150	1		0.02826	0.460	0.571
##	1915	149	1	0.509	0.02828	0.456	0.567
##	1950	146	1	0.505	0.02830	0.453	0.564
##	2077	135	1	0.501	0.02833	0.449	0.560
##	2083	134	1	0.498	0.02837	0.445	0.557
##	2085	133	1	0.494	0.02840	0.441	0.553
##	2133	121	1	0.490	0.02846	0.437	0.549
##	2171	109	1	0.485	0.02855	0.433	0.545
##	2213	94	1	0.480	0.02871	0.427	0.540
##	2257	83	1		0.02894	0.421	0.535
##	2284	77	1		0.02921	0.414	0.529
##	2287	76	1		0.02947	0.408	0.524
##	2351	67	1		0.02983	0.400	0.518
##	2527	47	1		0.03072	0.389	0.510
##		42	1				
	2552				0.03177	0.377	0.502
##	2789	16	1	0.408	0.03975	0.337	0.494
##							
##		. ,	rx=L			3 05% GT	05% 97
##						lower 95% CI	
##	24	310	1		0.00322	0.990	1.000
##	56	309	1		0.00455	0.985	1.000
##	93	308	1		0.00556	0.979	1.000
##	122	307	1	0.987	0.00641	0.975	1.000
##	129	306	1	0.984	0.00715	0.970	0.998
##	133	305	1	0.981	0.00782	0.965	0.996
##	150	304	1	0.977	0.00844	0.961	0.994
##	165	303	1	0.974	0.00901	0.957	0.992
##	171	302	2	0.968	0.01004	0.948	0.988
##	191	300	1	0.965	0.01051	0.944	0.985
##	206	299	1	0.961	0.01096	0.940	0.983
##	219	298	2	0.955	0.01179	0.932	0.978
##	222	296	1		0.01219	0.928	0.976
##	226	295	1		0.01257	0.924	0.973
##	232	294	1		0.01293	0.920	0.971
##	257	293	1		0.01328	0.916	0.968
##	283	292	1		0.01362	0.912	0.966
##	314	291	2		0.01427	0.905	0.961
##	316	289	1		0.01458	0.901	0.958
##	323	288	1		0.01489	0.897	0.955
	342		1		0.01403	0.893	
##		287	1				0.953
##	343	286			0.01546	0.890	0.950
##	349	285	1		0.01574	0.886	0.948
##	355	284	1		0.01602	0.882	0.945
##	356	283	1		0.01628	0.878	0.942
##	362	282	1		0.01654	0.875	0.939
##	366	281	1		0.01679	0.871	0.937
##	376	280	1		0.01704	0.867	0.934
##	382	279	1		0.01728	0.864	0.931
##	402	278	1	0.894	0.01752	0.860	0.929
##	406	277	1	0.890	0.01775	0.856	0.926
##	420	276	1	0.887	0.01797	0.853	0.923
##	422	275	1	0.884	0.01820	0.849	0.920
##	430	274	1	0.881	0.01841	0.845	0.917
##	438	273	1	0.877	0.01863	0.842	0.915

##	439	272	1	0.874 0.01884	0.838	0.912
##	443	271	1	0.871 0.01904	0.834	0.909
##	444	270	1	0.868 0.01924	0.831	0.906
##	472	269	1	0.865 0.01944	0.827	0.903
##	475	268	1	0.861 0.01963	0.824	0.901
##	486	267	1	0.858 0.01982	0.820	0.898
##	499	266	1	0.855 0.02001	0.817	0.895
##	512	265	1	0.852 0.02019	0.813	0.892
##	522	264	1	0.848 0.02037	0.809	0.889
##	546	263	1	0.845 0.02055	0.806	0.886
##	553	262	1	0.842 0.02072	0.802	0.884
##	559	261	1	0.839 0.02089	0.799	0.881
##	569	260	1	0.835 0.02106	0.795	0.878
##	573	259	1	0.832 0.02122	0.792	0.875
##	580	258	1	0.829 0.02138	0.788	0.872
##	582	257	1	0.826 0.02154	0.785	0.869
##	589	256	1	0.823 0.02170	0.781	0.866
##	602	255	2	0.816 0.02200	0.774	0.860
##	608	253	1	0.813 0.02215	0.771	0.857
##	628	252	1	0.810 0.02230	0.767	0.855
##	629	251	1	0.806 0.02244	0.764	0.852
##	642	250	1	0.803 0.02258	0.760	0.849
##	643	249	1	0.800 0.02272	0.757	0.846
##	647	248	1	0.797 0.02285	0.753	0.843
##	664	247	1	0.794 0.02299	0.750	0.840
##	669	246	1	0.790 0.02312	0.746	0.837
##	675	245	1	0.787 0.02325	0.743	0.834
##	678	244	1	0.784 0.02338	0.739	0.831
##	684	243	1	0.781 0.02350	0.736	0.828
##	706	242	1	0.777 0.02363	0.732	0.825
##	708	241	1	0.774 0.02375	0.729	0.822
##	709	240	1	0.771 0.02387	0.726	0.819
##	720	239	1	0.768 0.02398	0.722	0.816
##	723	238	1	0.765 0.02410	0.719	0.813
##	729	237	1	0.761 0.02421	0.715	0.810
##	730	236	1	0.758 0.02432	0.712	0.807
##	739	235	1	0.755 0.02443	0.708	0.804
##	743	234	1	0.752 0.02454	0.705	0.801
##	755	233	1	0.748 0.02465	0.702	0.798
##	759	232	2	0.742 0.02485	0.695	0.792
##	764	230	1	0.739 0.02495	0.691	0.789
##	766	229	1	0.735 0.02505	0.688	0.786
##	795	228	1	0.732 0.02515	0.685	0.783
##	797	227	1	0.729 0.02524	0.681	0.780
##	806	226	1	0.726 0.02534	0.678	0.777
##	833	225	1	0.723 0.02543	0.674	0.774
##	846	224	1	0.719 0.02552	0.671	0.771
##	858	223	1	0.716 0.02561	0.668	0.768
##	875	222	1	0.713 0.02569	0.664	0.765
##	885	221	1	0.710 0.02578	0.661	0.762
##	890	220	1	0.706 0.02586	0.658	0.759
##	902	219	1	0.703 0.02595	0.654	0.756
##	905	218	1	0.700 0.02603	0.651	0.753
##	909	217	1	0.697 0.02611	0.647	0.750

##	938	216	1	0.694 0.02618	0.644	0.747
##	939	215	1	0.690 0.02626	0.641	0.744
##	940	214	1	0.687 0.02633	0.637	0.741
##	942	213	1	0.684 0.02641	0.634	0.738
##	944	212	1	0.681 0.02648	0.631	0.735
##	952	211	1	0.677 0.02655	0.627	0.732
##	961	210	2	0.671 0.02669	0.621	0.725
##	968	208	1	0.668 0.02675	0.617	0.722
##	969	207	1	0.665 0.02682	0.614	0.719
##	986	206	1	0.661 0.02688	0.611	0.716
##	997	205	2	0.655 0.02700	0.604	0.710
##	1018	203	1	0.652 0.02706	0.601	0.710
			1			
##	1034	202		0.648 0.02712	0.597	0.704
##	1037	201	1	0.645 0.02717	0.594	0.701
##	1041	200	1	0.642 0.02723	0.591	0.698
##	1046	199	1	0.639 0.02728	0.587	0.694
##	1055	198	1	0.635 0.02734	0.584	0.691
##	1061	197	1	0.632 0.02739	0.581	0.688
##	1092	196	1	0.629 0.02744	0.577	0.685
##	1103	195	1	0.626 0.02748	0.574	0.682
##	1105	194	1	0.623 0.02753	0.571	0.679
##	1112	193	1	0.619 0.02758	0.568	0.676
##	1117	192	1	0.616 0.02762	0.564	0.673
##	1122	191	1	0.613 0.02766	0.561	0.670
##	1135	190	1	0.610 0.02771	0.558	0.666
##	1145	189	1	0.606 0.02775	0.554	0.663
##	1154	188	1	0.603 0.02779	0.551	0.660
##	1161	187	1	0.600 0.02782	0.548	0.657
##	1178	186	1	0.597 0.02786	0.545	0.654
##	1186	185	1	0.594 0.02790	0.541	0.651
##	1191	184	1	0.590 0.02793	0.538	0.648
##	1207	183	1	0.587 0.02796	0.535	0.645
##	1215	182	1	0.584 0.02800	0.531	0.641
##	1219	181	1	0.581 0.02803	0.528	0.638
##	1252	180	1	0.577 0.02806	0.525	0.635
##	1262	179	1	0.574 0.02808	0.522	0.632
##	1295	178	1	0.571 0.02811	0.518	0.629
##	1325	177	1	0.568 0.02814	0.515	0.626
##	1399	176	1	0.565 0.02816	0.512	0.622
##	1405	175	1	0.561 0.02818	0.509	0.619
##	1434	174	1	0.558 0.02821	0.505	0.616
##	1509	173	1	0.555 0.02823	0.502	0.613
##	1540	171	1	0.552 0.02825	0.499	0.610
##	1548	170	1	0.548 0.02827	0.496	0.607
##	1568	169	1	0.545 0.02829	0.492	0.603
##	1652	168	1	0.542 0.02830	0.489	0.600
##	1709	167	1	0.539 0.02832	0.486	0.597
##	1768	166	1	0.535 0.02833	0.483	0.594
##	1829	163	1	0.532 0.02835	0.479	0.591
##	1839	161	1	0.529 0.02837	0.476	0.587
##	1850	160	1	0.525 0.02838	0.473	0.584
##	1851	159	1	0.522 0.02839	0.469	0.581
##	1879	157	1	0.519 0.02841	0.466	0.578
##	1885	155	1	0.515 0.02842	0.463	0.574
., π	1000	100	1	0.010 0.02042	0.400	0.014

##	1932	152	1	0.512	0.02843	0.459	0.571
##	2023	144	1	0.509	0.02846	0.456	0.568
##	2079	138	1	0.505	0.02849	0.452	0.564
##	2128	131	1	0.501	0.02853	0.448	0.560
##	2152	122	1	0.497	0.02859	0.444	0.556
##	2171	118	1		0.02866	0.440	0.552
##	2458	65	1	0.485	0.02920	0.431	0.546
##	2593	42	1	0.474	0.03071	0.417	0.538
##	2683	33	1	0.459	0.03296	0.399	0.529
##	2718	26	1	0.442	0.03611	0.376	0.518
##	2910	9	1	0.392	0.05630	0.296	0.520
##							
##			rx=L	ev+5FU			
##	time	n.risk	${\tt n.event}$	survival	${\tt std.err}$	lower 95% CI	upper 95% CI
##	23	304	1		0.00328	0.990	1.000
##	34	303	1	0.993	0.00464	0.984	1.000
##	45	302	1		0.00567	0.979	1.000
##	52	301	1	0.987	0.00654	0.974	1.000
##	79	300	1	0.984	0.00729	0.969	0.998
##	127	299	1	0.980	0.00798	0.965	0.996
##	138	298	1	0.977	0.00860	0.960	0.994
##	141	297	1	0.974	0.00918	0.956	0.992
##	144	296	1	0.970	0.00972	0.952	0.990
##	186	295	1	0.967	0.01023	0.947	0.987
##	251	294	1	0.964	0.01071	0.943	0.985
##	269	293	1	0.961	0.01117	0.939	0.983
##	271	292	1	0.957	0.01160	0.935	0.980
##	274	291	1	0.954	0.01202	0.931	0.978
##	276	290	1	0.951	0.01242	0.927	0.975
##	279	289	1	0.947	0.01281	0.923	0.973
##	283	288	1	0.944	0.01318	0.919	0.970
##	293	287	1	0.941	0.01354	0.915	0.968
##	302	286	1		0.01388	0.911	0.965
##	304	285	1	0.934	0.01422	0.907	0.962
##	324	284	1		0.01454	0.903	0.960
##	326	283	1		0.01486	0.899	0.957
##	340	282	1		0.01517	0.895	0.955
##	355	281	1		0.01547	0.891	0.952
##	363	280	1		0.01576	0.887	0.949
##	389	279	1		0.01604	0.884	0.946
##	400	278	1		0.01632	0.880	0.944
##	428	277	1		0.01659	0.876	0.941
##	430	276	1		0.01685	0.872	0.938
##	441	275	1		0.01711	0.868	0.935
##	448	274	1		0.01736	0.865	0.933
##	454	273	1		0.01760	0.861	0.930
##	460	272	1		0.01784	0.857	0.927
##	484	271	1		0.01808	0.853	0.924
##	490	270	1		0.01831	0.850	0.921
##	498	269	1		0.01853	0.846	0.919
##	499	268	1		0.01875	0.842	0.916
##	503	267	1		0.01897	0.839	0.913
##	529	266	1		0.01918	0.835	0.910
##	550	265	1	0.868	0.01939	0.831	0.907

##	576	264	1	0.865	0.01959	0.828	0.904
##	578	263	1	0.862	0.01979	0.824	0.902
##	580	262	1	0.859	0.01999	0.820	0.899
##	583	261	1	0.855	0.02018	0.817	0.896
##	592	260	1	0.852	0.02037	0.813	0.893
##	601	259	1	0.849	0.02055	0.809	0.890
##	603	258	1	0.845	0.02074	0.806	0.887
##	609	257	1	0.842	0.02091	0.802	0.884
##	614	256	1	0.839	0.02109	0.798	0.881
##	616	255	1	0.836	0.02126	0.795	0.878
##	641	254	1	0.832	0.02143	0.791	0.875
##	642	253	1	0.829	0.02160	0.788	0.872
##	643	252	1	0.826	0.02176	0.784	0.869
##	666	251	1	0.822	0.02192	0.781	0.866
##	674	250	1		0.02208	0.777	0.864
##	692	249	2		0.02239	0.770	0.858
##	693	247	1		0.02254	0.766	0.855
##	696	246	1		0.02268	0.763	0.852
##	712	245	1		0.02283	0.759	0.849
##	736	244	1		0.02297	0.756	0.846
##	765	243	1		0.02311	0.752	0.843
##	802	242	2		0.02338	0.745	0.837
##	806	240	1		0.02352	0.741	0.834
##	811	239	1		0.02365	0.738	0.831
##	844	238	1		0.02377	0.734	0.828
##	862	237	1		0.02390	0.731	0.825
##	884	236	1		0.02402	0.727	0.822
##	887	235	2		0.02427	0.720	0.816
##	905	233	1		0.02438	0.717	0.812
##	911	232	1		0.02450	0.713	0.809
##	916	231	1		0.02461	0.710	0.806
##	961	230	1		0.02473	0.706	0.803
##	977	229	1		0.02483	0.703	0.800
##	993	228	1		0.02494	0.699	0.797
##	1022	227	1		0.02505	0.696	0.794
##	1138	226	1		0.02515	0.692	0.791
##	1145	225	1		0.02526	0.689	0.788
##	1151	224	1		0.02536	0.686	0.785
##	1193	223	1		0.02545	0.682	0.782
##	1201	222	1		0.02555	0.679	0.779
##	1212	221	1		0.02565	0.675	0.776
##	1246	220	1		0.02574	0.672	0.773
##	1273	219	1		0.02583	0.668	0.770
##	1276	218	2		0.02601	0.661	0.763
##	1279	216	1		0.02610	0.658	0.760
##	1302	214	1		0.02618	0.654	0.757
##	1306	213	1		0.02627	0.651	0.754
##	1365	212	1		0.02635	0.648	0.751
##	1387	211	1		0.02643	0.644	0.748
##	1388	210	1		0.02651	0.641	0.745
##	1424	208	1		0.02659	0.637	0.742
##	1439	207	1		0.02667	0.634	0.738
##	1446	206	1		0.02675	0.630	0.735
##	1495	204	1		0.02682	0.627	0.732
π	1100	204	1	5.511	3.02002	0.021	0.102

```
## 1511
           203
                          0.674 0.02690
                                               0.623
                                                            0.729
           202
## 1521
                     1
                          0.671 0.02697
                                               0.620
                                                            0.726
## 1550
           201
                          0.667 0.02704
                                               0.616
                                                            0.723
## 1607
           200
                          0.664 0.02711
                                               0.613
                                                            0.719
                     1
## 1620
           199
                     1
                          0.661 0.02718
                                               0.610
                                                            0.716
## 1637
           198
                     1
                          0.657 0.02725
                                               0.606
                                                            0.713
## 1668
           197
                     1
                          0.654 0.02731
                                               0.603
                                                            0.710
## 1671
           196
                          0.651 0.02738
                                                            0.707
                     1
                                               0.599
## 1752
           195
                     1
                          0.647 0.02744
                                               0.596
                                                            0.703
## 1767
           194
                          0.644 0.02750
                                               0.592
                                                            0.700
                     1
## 1783
           193
                     1
                          0.641 0.02756
                                               0.589
                                                            0.697
## 1798
           192
                          0.637 0.02762
                     1
                                               0.585
                                                            0.694
## 1812
           190
                          0.634 0.02767
                     1
                                               0.582
                                                            0.691
## 1831
           185
                     1
                          0.631 0.02774
                                               0.579
                                                            0.687
## 1856
           183
                     1
                          0.627 0.02780
                                               0.575
                                                            0.684
## 1995
           172
                     1
                          0.623 0.02787
                                               0.571
                                                            0.681
## 2021
           167
                     1
                          0.620 0.02796
                                               0.567
                                                            0.677
## 2052
           161
                          0.616 0.02805
                                               0.563
                                                            0.673
## 2127
           146
                          0.612 0.02817
                                               0.559
                                                            0.669
                     1
## 2174
           136
                          0.607 0.02832
                     1
                                               0.554
                                                            0.665
## 2197
           127
                     1
                          0.602 0.02850
                                               0.549
                                                            0.661
## 2318
           102
                     1
                          0.597 0.02882
                                               0.543
                                                            0.656
## 2482
            72
                          0.588 0.02959
                                                            0.649
                     1
                                               0.533
## 2542
            53
                     1
                          0.577 0.03104
                                               0.519
                                                            0.641
## 2725
            35
                     1
                          0.561 0.03426
                                               0.497
                                                            0.632
```

Kaplan-Meier Curves: Time to Death by Treatment


```
ggsurvplot(
  fit = fit_km_death,
  data = colon_death,
  risk.table = TRUE,
  pval = TRUE,
  xlab = "Days",
  ylab = "Survival Probability (Death)",
  title = "Kaplan-Meier: Time to Death by Treatment",
  ggtheme = theme_minimal()
)
```

Kaplan-Meier: Time to Death by Treatment


```
survdiff(Surv(time, status) ~ rx, data = colon_death,
         subset = (rx %in% c("Obs", "Lev+5FU")))
## survdiff(formula = Surv(time, status) ~ rx, data = colon_death,
       subset = (rx %in% c("Obs", "Lev+5FU")))
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
                                 141
## rx=0bs
                       168
                                          5.12
                                                     9.97
## rx=Lev+5FU 304
                       123
                                 150
                                          4.82
                                                     9.97
##
   Chisq= 10 on 1 degrees of freedom, p= 0.002
survdiff(Surv(time, status) ~ rx, data = colon_death,
         subset = (rx %in% c("Lev", "Lev+5FU")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_death,
       subset = (rx %in% c("Lev", "Lev+5FU")))
##
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
              310
## rx=Lev
                       161
                                 137
                                          4.24
                                                     8.21
## rx=Lev+5FU 304
                       123
                                 147
                                          3.95
                                                     8.21
##
   Chisq= 8.2 on 1 degrees of freedom, p= 0.004
```

Kaplan-Meier Curves (Time to Death)

1. Visual Ranking of Survival Curves

- Lev+5FU (green/dotted): Remains the highest curve (best survival), meaning fewer patients die (or they die later).
- Obs (blue/solid) and Lev (red/dashed): Are closer together. Sometimes one is slightly above the other, but they appear more similar than in the any-event analysis.

Survival Probabilities Over Time

- Early on (first 500–1000 days): Survival probabilities are quite high for all three groups.
- By ~3000 days: The curves have separated more clearly, with Lev+5FU maintaining the highest survival and Obs vs. Lev looking fairly close.

2. Log-Rank Test for Time to Death

• Chi-square = 11.7, p = 0.003: Indicates a statistically significant difference in time to death among the three groups.

Interpretation of Observed vs. Expected:

- **Obs**: 168 deaths observed vs. 148 expected, indicating more deaths than expected under a null (no-difference) scenario.
- Lev: Also has more observed than expected.
- Lev+5FU: Presumably has fewer observed than expected, aligning with better survival.

3. Comparison with "Any Event" Results

- Any Event Analysis: Had an extremely low p-value (~10) because Lev+5FU was drastically better for recurrence and death combined.
- Time to Death: Yields p = 0.003—still significant but less extreme.
- Implication: The difference among treatments is still real for death alone, but the magnitude of separation is somewhat smaller than in the any-event scenario. This suggests Lev+5FU provides a strong advantage particularly for recurrence prevention, though it also improves overall survival compared to the others.

4. Do Obs and Lev Differ?

- The log-rank test is global, so we only know that at least one pair differs.
- Visually: Obs and Lev appear close. You can do pairwise tests (subsetting to (Obs, Lev) only) to see if that difference is statistically significant.
- If the p-value is large: It means Obs vs. Lev are not significantly different in terms of time to death.

Kaplan-Meier Curves (Time to Recurrence)

```
# Step 1: Summarize time/status for recurrence
colon_recur <- colon_data %>%
  group_by(id) %>%
  summarize(
    # Earliest time if (status=1 & etype=1), otherwise max time
   time = if (any(status == 1 & etype == 1)) {
      min(time[status == 1 & etype == 1])
   } else {
      max(time)
   },
    # Recurrence indicator: 1 if event occurred, else 0
    status = if (any(status == 1 & etype == 1)) 1 else 0
  ) %>%
  ungroup()
# Step 2: Merge `rx` from the original data
colon_recur <- colon_recur %>%
  left join(
    select(colon_data, id, rx),
   bv = "id"
  ) %>%
  distinct(id, .keep_all = TRUE)
# Check structure
str(colon_recur)
```

```
## tibble [929 x 4] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:929] 1 2 3 4 5 6 7 8 9 10 ...
## $ time : num [1:929] 968 3087 542 245 523 ...
## $ status: num [1:929] 1 0 1 1 1 1 1 0 0 0 ...
## $ rx : Factor w/ 3 levels "Obs","Lev","Lev+5FU": 3 3 1 3 1 3 2 1 2 3 ...
```

```
head(colon_recur)
## # A tibble: 6 x 4
        id time status rx
##
     <dbl> <dbl> <fct>
## 1
         1
            968
                      1 Lev+5FU
## 2
         2 3087
                      0 Lev+5FU
## 3
         3 542
                      1 Obs
## 4
         4
           245
                      1 Lev+5FU
## 5
         5 523
                      1 Obs
## 6
         6
            904
                      1 Lev+5FU
# Create a Surv object for time to recurrence
colon_recur$surv_recur <- Surv(time = colon_recur$time,</pre>
                               event = colon_recur$status)
fit_km_recur <- survfit(surv_recur ~ rx, data = colon_recur)</pre>
# View a textual summary of survival estimates
summary(fit_km_recur)
## Call: survfit(formula = surv_recur ~ rx, data = colon_recur)
##
                   rx=0bs
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                                 0.991
##
      20
            315
                      1
                           0.997 0.00317
                                                              1.000
##
      36
            314
                      1
                           0.994 0.00448
                                                 0.985
                                                              1.000
##
            313
                           0.990 0.00547
      43
                                                 0.980
                                                              1.000
                      1
##
            312
                           0.987 0.00631
      45
                      1
                                                 0.975
                                                              1.000
##
      59
            311
                           0.984 0.00704
                                                 0.970
                                                              0.998
                      1
##
      72
            310
                           0.981 0.00770
                      1
                                                 0.966
                                                              0.996
##
      77
            309
                           0.978 0.00831
                                                 0.962
                                                              0.994
                      1
##
      79
            308
                     1
                           0.975 0.00886
                                                 0.957
                                                              0.992
##
      80
            307
                      2
                           0.968 0.00988
                                                              0.988
                                                 0.949
##
      85
            305
                      1
                           0.965 0.01034
                                                 0.945
                                                              0.986
            304
##
      86
                      1
                           0.962 0.01079
                                                 0.941
                                                              0.983
                                                 0.937
##
      88
            303
                           0.959 0.01121
                                                              0.981
                      1
##
      94
            302
                      1
                           0.956 0.01161
                                                 0.933
                                                              0.979
            301
                           0.952 0.01200
##
      98
                                                 0.929
                                                              0.976
                      1
                      2
##
      99
            300
                           0.946 0.01273
                                                 0.921
                                                              0.971
##
     101
            298
                           0.943 0.01308
                                                 0.918
                                                              0.969
                      1
##
     102
            297
                      1
                           0.940 0.01341
                                                 0.914
                                                              0.966
            296
##
     103
                      1
                           0.937 0.01374
                                                 0.910
                                                              0.964
##
     106
            295
                           0.933 0.01405
                                                 0.906
                                                              0.961
                      1
##
     108
            294
                      1
                           0.930 0.01436
                                                 0.902
                                                              0.959
                           0.927 0.01466
##
     109
            293
                      1
                                                 0.899
                                                              0.956
##
            292
                           0.924 0.01495
                                                 0.895
                                                              0.954
     113
                      1
##
                           0.921 0.01523
     118
            291
                      1
                                                 0.891
                                                              0.951
##
     121
            290
                      1
                           0.917 0.01550
                                                 0.888
                                                              0.948
##
     122
            289
                      1
                           0.914 0.01577
                                                 0.884
                                                              0.946
```

0.880

0.877

0.943

0.940

##

##

127

131

288

287

1

1

0.911 0.01603

0.908 0.01629

шш	120	006	4	0 005 0 01654	0.073	0 020
##	139	286	1	0.905 0.01654	0.873	0.938
##	143	285	1	0.902 0.01678	0.869	0.935
##	154	284	1	0.898 0.01702	0.866	0.932
##	157	283	1	0.895 0.01726	0.862	0.930
##	161	282	1	0.892 0.01748	0.858	0.927
##	165	281	2	0.886 0.01793	0.851	0.922
##	166	279	1	0.883 0.01814	0.848	0.919
##	167	278	1	0.879 0.01835	0.844	0.916
##	173	277	3	0.870 0.01896	0.833	0.908
##	174	274	1	0.867 0.01915	0.830	0.905
##	185	273	2	0.860 0.01953	0.823	0.899
##	188	271	1	0.857 0.01972	0.819	0.897
##	189	270	1	0.854 0.01990	0.816	0.894
##	201	269	1	0.851 0.02007	0.812	0.891
##	203	268	1	0.848 0.02025	0.809	0.888
##	208	267	1	0.844 0.02042	0.805	0.885
##	215	266	1	0.841 0.02059	0.802	0.883
##	218	265	1	0.838 0.02075	0.302	0.880
			1			
##	221	264		0.835 0.02092	0.795	0.877
##	223	263	1	0.832 0.02108	0.791	0.874
##	227	262	1	0.829 0.02123	0.788	0.871
##	228	261	1	0.825 0.02139	0.785	0.868
##	229	260	1	0.822 0.02154	0.781	0.866
##	230	259	3	0.813 0.02198	0.771	0.857
##	237	256	1	0.810 0.02212	0.767	0.854
##	238	255	2	0.803 0.02240	0.760	0.848
##	243	253	1	0.800 0.02254	0.757	0.845
##	245	252	1	0.797 0.02267	0.754	0.843
##	256	251	1	0.794 0.02280	0.750	0.840
##	257	250	1	0.790 0.02293	0.747	0.837
##	263	249	1	0.787 0.02306	0.743	0.834
##	264	248	1	0.784 0.02318	0.740	0.831
##	271	247	1	0.781 0.02330	0.737	0.828
##	273	246	1	0.778 0.02342	0.733	0.825
##	276	245	1	0.775 0.02354	0.730	0.822
##	279	244	1	0.771 0.02366	0.726	0.819
##	280	243	1	0.768 0.02377	0.723	0.816
##	286	242	1	0.765 0.02389	0.720	0.813
##	291	241	1	0.762 0.02400	0.716	0.810
##	294	240	1	0.759 0.02411	0.713	0.807
##	296	239	1	0.756 0.02421	0.710	0.805
##	304	238	1	0.752 0.02432	0.706	0.802
##	308	237	1	0.749 0.02442	0.703	0.799
##	315	236	1	0.746 0.02453	0.699	0.796
##	334	235	1	0.743 0.02463	0.696	0.793
##	337	234	1	0.740 0.02472	0.693	0.790
##	344	233	1	0.737 0.02482	0.689	0.787
##	349	232	1	0.733 0.02492	0.686	0.784
##	352	231	1	0.730 0.02501	0.683	0.781
##	354	230	1	0.727 0.02510	0.679	0.778
##	360	229	1	0.724 0.02519	0.676	0.775
##	362	228	1	0.721 0.02528	0.673	0.772
##	374	227	1	0.717 0.02537	0.669	0.769
##	378	226	1	0.714 0.02537	0.666	0.766
π#	510	220	1	0.114 0.02040	0.000	0.700

##	379	225	1	0.711 0.02554	0.663	0.763
##	382	224	1	0.708 0.02562	0.659	0.760
##	384	223	1	0.705 0.02570	0.656	0.757
##	398	222	1	0.702 0.02578	0.653	0.754
##	401	221	1	0.698 0.02586	0.650	0.751
##	402	220	1	0.695 0.02594	0.646	0.748
##	406	219	1	0.692 0.02601	0.643	0.745
##	411	218	1	0.689 0.02608	0.640	0.742
##	433	216	1	0.686 0.02616	0.636	0.739
##	435	215	1	0.683 0.02623	0.633	0.736
##	437	214	1	0.679 0.02630	0.630	0.733
##	438	213	1	0.676 0.02637	0.626	0.730
##	461	211	1	0.673 0.02644	0.623	0.727
##	480	210	1	0.670 0.02651	0.620	0.724
##	489	208	1	0.667 0.02657	0.616	0.721
##	493	207	1	0.663 0.02664	0.613	0.718
##	495	206	1	0.660 0.02670	0.610	0.715
##	496	205	1	0.657 0.02677	0.606	0.711
##	499	204	1	0.654 0.02683	0.603	0.708
##	523	203	1	0.650 0.02689	0.600	0.705
##	532	202	1	0.647 0.02695	0.596	0.702
##	534	201	1	0.644 0.02701	0.593	0.699
##	540	200	1	0.641 0.02706	0.590	0.696
##	542	199	1	0.638 0.02712	0.587	0.693
##	543	198	1	0.634 0.02717	0.583	0.690
##	547	197	1	0.631 0.02722	0.580	0.687
##	555	196	1	0.628 0.02727	0.577	0.684
##	561	195	1	0.625 0.02732	0.573	0.681
##	577	194	1	0.621 0.02737	0.570	0.677
##	581	193	1	0.618 0.02742	0.567	0.674
##	593	192	1	0.615 0.02746	0.563	0.671
##	608	190	1	0.612 0.02751	0.560	0.668
##	625	189	1	0.609 0.02755	0.557	0.665
##	632	188	1	0.605 0.02760	0.554	0.662
##	659	187	1	0.602 0.02764	0.550	0.659
##	663	186	1	0.599 0.02768	0.547	0.656
##	686	184	1	0.596 0.02772	0.544	0.652
##	700	183	1	0.592 0.02776	0.540	0.649
##	702	182	2	0.586 0.02783	0.534	0.643
##	712	180	1	0.583 0.02787	0.530	0.640
##	726	179	1	0.579 0.02790	0.527	0.637
##	730	178	1	0.576 0.02793	0.524	0.633
##	731	177	1	0.573 0.02796	0.521	0.630
##	735	176	1	0.570 0.02799	0.517	0.627
##	739	175	1	0.566 0.02802	0.514	0.624
##	748	174	1	0.563 0.02805	0.511	0.621
##	752	173	1	0.560 0.02808	0.507	0.618
##	772	172	1	0.556 0.02810	0.504	0.614
##	774	171	1	0.553 0.02812	0.501	0.611
##	803	170	1	0.550 0.02815	0.497	0.608
##	835	169	1	0.547 0.02817	0.494	0.605
##	855	167	1	0.543 0.02819	0.491	0.602
##	871	166	1	0.540 0.02821	0.488	0.598
##	912	164	1	0.537 0.02823	0.484	0.595

##	930	163	1		0.02825	0.481	0.592
##	975	162	1		0.02826	0.478	
##	1020	161	1		0.02828	0.474	
##	1042	160	1		0.02829	0.471	0.582
##	1057	159	2		0.02832	0.465	
##	1081	157	1	0.514	0.02833	0.461	0.572
##	1089	156	1	0.511	0.02834	0.458	0.569
##	1106	155	1	0.507	0.02835	0.455	0.566
##	1130	154	1	0.504	0.02835	0.451	0.563
##	1139	153	1	0.501	0.02836	0.448	0.559
##	1236	151	1	0.497	0.02836	0.445	0.556
##	1274	150	1	0.494	0.02837	0.441	0.553
##	1323	148	1	0.491	0.02837	0.438	0.550
##	1353	147	1	0.487	0.02837	0.435	0.546
##	1432	145	1	0.484	0.02838	0.431	0.543
##	1436	144	1	0.481	0.02838	0.428	0.540
##	1446	143	1	0.477	0.02838	0.425	0.536
##	1455	142	1	0.474	0.02838	0.421	0.533
##	1466	141	1	0.471	0.02837	0.418	0.530
##	1475	140	1	0.467	0.02837	0.415	0.526
##	1535	139	1	0.464	0.02836	0.411	0.523
##	1539	138	1	0.460	0.02836	0.408	0.520
##	1606	137	1	0.457	0.02835	0.405	0.516
##	1749	136	1	0.454	0.02834	0.401	0.513
##	1759	135	1	0.450	0.02833	0.398	0.509
##	1981	118	1	0.447	0.02834	0.394	0.506
##	2035	111	1	0.443	0.02837	0.390	0.502
##	2036	110	1	0.439	0.02840	0.386	0.498
##	2148	96	1	0.434	0.02847	0.382	0.493
##	2288	61	1	0.427	0.02887	0.374	0.487
##	2695	22	1	0.407	0.03345	0.347	0.479
##							
##			rx=Le	ev			
##	time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
##	19	310	1	0.997	0.00322	0.990	1.000
##	28	308	1	0.994	0.00455	0.985	1.000
##	35	307	1	0.990	0.00557	0.979	1.000
##	38	306	1	0.987	0.00643	0.975	1.000
##	62	304	2	0.981	0.00785	0.965	0.996
##	72	302	1	0.977	0.00847	0.961	0.994
##	77	301	1	0.974	0.00905	0.957	0.992
##	78	300	1	0.971	0.00958	0.952	0.990
##	80	299	1	0.968	0.01008	0.948	0.988
##	85	298	1	0.964	0.01056	0.944	0.985
##	91	297	1	0.961	0.01101	0.940	0.983
##	98	296	2	0.955	0.01186	0.932	0.978
##	100	294	1	0.951	0.01225	0.928	0.976
##	105	293	1	0.948	0.01263	0.924	
##	111	292	1		0.01300	0.920	
##	113	291	2		0.01370	0.912	
##	116	289	2		0.01435	0.904	
##	119	287	1		0.01467	0.900	
##	121	286	1		0.01497	0.896	0.955
##	136	285	1		0.01526	0.893	

##	141	284	1	0.919 0.01555	0.889	0.950
##	145	283	1	0.916 0.01583	0.885	0.947
##	146	282	1	0.912 0.01611	0.881	0.945
##	147	281	1	0.909 0.01637	0.878	0.942
##	157	280	1	0.906 0.01663	0.874	0.939
##	169	279	1	0.903 0.01689	0.870	0.936
##	174	278	2	0.896 0.01738	0.863	0.931
##	175	276	1	0.893 0.01762	0.859	0.928
##	176	275	2	0.886 0.01808	0.852	0.923
##	179	273	1	0.883 0.01830	0.848	0.920
##	181	272	1	0.880 0.01852	0.844	0.917
##	183	271	1	0.877 0.01873	0.841	0.914
##	185	270	2	0.870 0.01915	0.833	0.909
##	189	268	1	0.867 0.01935	0.830	0.906
##	191	267	2	0.860 0.01974	0.823	0.900
##	196	265	1	0.857 0.01993	0.819	0.897
##	204	264	1	0.854 0.02012	0.815	0.894
##	216	263	1	0.851 0.02030	0.812	0.891
##	218	262	1	0.847 0.02049	0.808	0.889
##	219	261	1	0.844 0.02066	0.805	0.886
##	224	259	1	0.841 0.02084	0.801	0.883
##	229	258	1	0.838 0.02101	0.797	0.880
##	230	257	2	0.831 0.02135	0.790	0.874
##	235	255	1	0.828 0.02151	0.787	0.871
##	246	254	1	0.825 0.02167	0.783	0.868
##	250	253	1	0.821 0.02183	0.780	0.865
##	253	252	1	0.818 0.02198	0.776	0.862
##	258	251	1	0.815 0.02214	0.773	0.859
##	260	250	1	0.812 0.02229	0.769	0.856
##	262	249	1	0.808 0.02244	0.766	0.854
##	263	248	1	0.805 0.02258	0.762	0.851
##	271	247	1	0.802 0.02272	0.759	0.848
##	274	246	1	0.799 0.02286	0.755	0.845
##	276	245	1	0.795 0.02300	0.751	0.842
##	279	244	2	0.789 0.02327	0.744	0.836
##	286	242	2	0.782 0.02353	0.737	0.830
##	290	240	2	0.776 0.02378	0.731	0.824
##	294	238	1	0.772 0.02390	0.727	0.821
##	300	237	1	0.769 0.02402	0.724	0.818
##	313	236	1	0.766 0.02414	0.720	0.815
##	325	235	1	0.763 0.02426	0.717	0.812
##	330	234	2	0.756 0.02448	0.710	0.806
##	333	232	1	0.753 0.02460	0.706	0.803
##	335	231	1	0.750 0.02470	0.703	0.800
##	336	230	1	0.746 0.02481	0.699	0.797
##	337	229	2	0.740 0.02502	0.692	0.791
##	341	227	1	0.737 0.02512	0.689	0.788
##	348	226	2	0.730 0.02532	0.682	0.781
##	352	224	1	0.727 0.02541	0.679	0.778
##	356	223	2	0.720 0.02560	0.672	0.772
##	366	221	1	0.717 0.02569	0.668	0.769
##	369	220	1	0.714 0.02578	0.665	0.766
##	370	219	1	0.711 0.02587	0.662	0.763
##	372	218	1	0.707 0.02595	0.658	0.760

##	380	217	1	0.704	0.02604	0.655	0.757
##	386	216	1		0.02612	0.651	0.754
##	389	215	1	0.698	0.02620	0.648	0.751
##	413	214	1		0.02628	0.645	0.748
##	415	213	1		0.02636	0.641	0.745
##	429	212	1		0.02643	0.638	0.742
##	439	211	1		0.02651	0.634	0.738
##	440	210	1	0.681	0.02658	0.631	0.735
##	454	209	1		0.02665	0.628	0.732
##	458	208	1		0.02673	0.624	0.729
##	465	207	1	0.671	0.02679	0.621	0.726
##	474	206	1		0.02686	0.618	0.723
##	476	205	1	0.665	0.02693	0.614	0.720
##	482	204	1	0.662	0.02699	0.611	0.717
##	490	202	1	0.658	0.02706	0.607	0.714
##	491	201	1	0.655	0.02712	0.604	0.710
##	498	200	1	0.652	0.02718	0.601	0.707
##	504	199	1	0.649	0.02724	0.597	0.704
##	505	198	1	0.645	0.02730	0.594	0.701
##	511	197	1	0.642	0.02736	0.591	0.698
##	513	196	1	0.639	0.02741	0.587	0.695
##	525	195	1	0.635	0.02747	0.584	0.692
##	527	194	1	0.632	0.02752	0.580	0.688
##	532	193	1		0.02757	0.577	0.685
##	548	192	1	0.626	0.02762	0.574	0.682
##	560	191	1	0.622	0.02767	0.570	0.679
##	565	190	1	0.619	0.02772	0.567	0.676
##	573	189	2	0.613	0.02781	0.560	0.670
##	578	187	1	0.609	0.02785	0.557	0.666
##	583	186	1	0.606	0.02790	0.554	0.663
##	593	185	1	0.603	0.02794	0.550	0.660
##	599	184	1	0.599	0.02798	0.547	0.657
##	613	183	1	0.596	0.02801	0.544	0.654
##	615	182	1		0.02805	0.540	0.650
##	638	180	1		0.02809	0.537	0.647
##	653	179	1		0.02812	0.534	0.644
##	654	178	1		0.02816	0.530	0.641
##	663	177	1		0.02819	0.527	0.638
##	668	176	1		0.02822	0.524	0.634
##	672	175	1		0.02825	0.520	0.631
##	675	174	1		0.02828	0.517	0.628
##	680	173	1		0.02831	0.514	0.625
##	697	172	1		0.02834	0.510	0.622
##	717	171	1		0.02836	0.507	0.618
##	742	170	1		0.02838	0.504	0.615
##	751	169	1		0.02841	0.500	0.612
##	797	168	1		0.02843	0.497	0.609
##	828	167	1		0.02845	0.494	0.605
##	851	166	1		0.02847	0.490	0.602
##	883	165	1		0.02848	0.487	0.599
##	891	164	1		0.02850	0.484	0.596
##	900	163	1		0.02852	0.481	0.593
##	922	162	1		0.02853	0.477	0.589
##	931	161	1	0.527	0.02854	0.474	0.586

##	959	159	1		0.02855	0.471	0.583
##	960	158	1		0.02856	0.467	0.579
##	1013	157	1		0.02857	0.464	0.576
##	1026	156	1		0.02858	0.461	0.573
##	1029	155	1		0.02859	0.457	0.570
##	1052	154	1	0.507	0.02860	0.454	0.566
##	1108	152	1	0.504	0.02860	0.451	0.563
##	1114	151	1	0.500	0.02861	0.447	0.560
##	1183	150	1	0.497	0.02861	0.444	0.556
##	1211	149	1	0.494	0.02861	0.441	0.553
##	1275	148	1	0.490	0.02861	0.437	0.550
##	1298	147	1	0.487	0.02861	0.434	0.547
##	1471	146	1	0.484	0.02861	0.431	0.543
##	1551	143	1	0.480	0.02861	0.427	0.540
##	1561	142	1	0.477	0.02861	0.424	0.536
##	1564	141	1	0.474	0.02860	0.421	0.533
##	1589	140	1	0.470	0.02860	0.417	0.530
##	1606	139	1	0.467	0.02859	0.414	0.526
##	1647	138	1	0.463	0.02858	0.411	0.523
##	1687	137	1	0.460	0.02857	0.407	0.520
##	1895	131	1	0.457	0.02857	0.404	0.516
##	1918	129	1	0.453	0.02857	0.400	0.513
##	1976	125	1	0.449	0.02857	0.397	0.509
##	2012	120	1	0.446	0.02857	0.393	0.505
##	2018	119	1	0.442	0.02858	0.389	0.502
##	2067	114	1	0.438	0.02859	0.385	0.498
##	2231	85	1	0.433	0.02871	0.380	0.493
							0.100
##							0.100
			rx=L	ev+5FU			
##			rx=L	ev+5FU		lower 95% CI	
## ##		n.risk 304	rx=L	ev+5FU survival			upper 95% CI 1.000
## ## ##	time	n.risk	rx=Lo	ev+5FU survival 0.997	std.err	lower 95% CI	upper 95% CI
## ## ##	time 8	n.risk 304 303 301	rx=Lon.event	ev+5FU survival 0.997 0.993	std.err 0.00328	lower 95% CI 0.990	upper 95% CI 1.000 1.000 1.000
## ## ## ##	time 8 9	n.risk 304 303	rx=Lon.event	ev+5FU survival 0.997 0.993 0.990	std.err 0.00328 0.00464	lower 95% CI 0.990 0.984	upper 95% CI 1.000 1.000
## ## ## ## ##	time 8 9 40	n.risk 304 303 301	rx=Lon.event 1 1	ev+5FU survival 0.997 0.993 0.990 0.987	std.err 0.00328 0.00464 0.00568	lower 95% CI 0.990 0.984 0.979	upper 95% CI 1.000 1.000 1.000
## ## ## ## ## ##	time 8 9 40 49	n.risk 304 303 301 299	rx=L.n.event 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983	std.err 0.00328 0.00464 0.00568 0.00655	lower 95% CI 0.990 0.984 0.979 0.974	upper 95% CI 1.000 1.000 1.000 1.000
## ## ## ## ## ##	time 8 9 40 49 63 68 86	n.risk 304 303 301 299 298 297 296	rx=Ldn.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994
## ## ## ## ## ##	time 8 9 40 49 63 68 86 91	n.risk 304 303 301 299 298 297	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956	upper 95% CI 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.992
## ## ## ## ## ## ##	time 8 9 40 49 63 68 86 91	n.risk 304 303 301 299 298 297 296	rx=L.n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994
## ## ## ## ## ## ## ##	time 8 9 40 49 63 68 86 91	n.risk 304 303 301 299 298 297 296 295	rx=LL n.event	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956	upper 95% CI 1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.992
## ###################################	time 8 9 40 49 63 68 86 91	n.risk 304 303 301 299 298 297 296 295 294 293 292	rx=L n.event 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.951 0.947 0.943	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990
######################################	time 8 9 40 49 63 68 86 91 101 116	n.risk 304 303 301 299 298 297 296 295 294 293 292	rx=L.n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987
## ## ## ## ## ## ## ## ##	time 8 9 40 49 63 68 86 91 101 116 132 134 146	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290	rx=L.n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967 0.964 0.960	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983
## ## ## ## ## ## ## ##	time 8 9 40 49 63 68 86 91 101 116 132 134	n.risk 304 303 301 299 298 297 296 295 294 293 292	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.964 0.960 0.957	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01028	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983
## ## ## ## ## ## ## ##	time 8 9 40 49 63 68 86 91 101 116 132 134 146	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.964 0.960 0.957 0.954	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 154	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.977 0.974 0.970 0.967 0.964 0.960 0.957 0.954	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939 0.934	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.980 0.978
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 154	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.980 0.977 0.974 0.970 0.967 0.964 0.950 0.950 0.947	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249	lower 95% CI 0.990 0.984 0.979 0.969 0.965 0.965 0.951 0.947 0.943 0.939 0.934 0.930 0.926	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.980 0.978
# # # # # # # # # # # # # # # # # # #	time 8 9 40 49 63 68 86 91 101 116 132 134 146 154 157 160	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287	rx=Ldn.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967 0.964 0.960 0.957 0.954 0.950 0.947 0.944	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.951 0.947 0.943 0.939 0.934 0.930 0.926	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.980 0.978 0.975
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 157 160 161	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.967 0.964 0.960 0.957 0.954 0.950 0.947 0.944 0.940	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01072 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939 0.934 0.930 0.922 0.918 0.914	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.983 0.980 0.978 0.975 0.973
# # # # # # # # # # # # # # # # # # #	time 8 9 40 49 63 68 86 91 101 116 132 134 146 154 157 160 161 165	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.964 0.960 0.957 0.954 0.950 0.944 0.940 0.937	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325 0.01361	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939 0.934 0.930 0.922 0.918	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.983 0.980 0.978 0.973 0.973
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 157 160 161 165 168 183 185	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.964 0.960 0.957 0.954 0.950 0.947 0.940 0.937 0.934	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325 0.01361 0.01396	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.956 0.951 0.947 0.943 0.939 0.934 0.930 0.922 0.918 0.914	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.983 0.980 0.978 0.975 0.973
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 157 160 161 165 168 183	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.970 0.964 0.960 0.957 0.954 0.950 0.947 0.944 0.940 0.937 0.934 0.931	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325 0.01361 0.01396 0.01430	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.965 0.951 0.947 0.943 0.939 0.934 0.930 0.926 0.922 0.918 0.910 0.906 0.902 0.902	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.985 0.983 0.983 0.978 0.978 0.975 0.975 0.973 0.970 0.968 0.965 0.962
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 157 160 161 165 168 183 185	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.983 0.980 0.977 0.974 0.967 0.964 0.960 0.957 0.954 0.950 0.947 0.944 0.940 0.937 0.934 0.931 0.927	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325 0.01361 0.01396 0.01430 0.01463	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.960 0.951 0.947 0.943 0.939 0.934 0.930 0.926 0.922 0.918 0.914 0.910 0.906	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.983 0.983 0.980 0.978 0.975 0.975 0.973 0.975 0.968 0.965 0.962
######################################	time 8 9 40 49 63 68 86 91 101 116 132 134 146 157 160 161 165 168 183 185 186	n.risk 304 303 301 299 298 297 296 295 294 293 292 291 290 289 288 287 286 285 284 283 282 281	rx=L. n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ev+5FU survival 0.997 0.993 0.990 0.987 0.980 0.977 0.974 0.970 0.967 0.964 0.957 0.954 0.950 0.947 0.944 0.940 0.937 0.934 0.931 0.927	std.err 0.00328 0.00464 0.00568 0.00655 0.00732 0.00801 0.00864 0.00922 0.00977 0.01028 0.01077 0.01123 0.01167 0.01209 0.01249 0.01288 0.01325 0.01361 0.01396 0.01430 0.01463 0.01495	lower 95% CI 0.990 0.984 0.979 0.974 0.969 0.965 0.965 0.951 0.947 0.943 0.939 0.934 0.930 0.926 0.922 0.918 0.910 0.906 0.902 0.902	upper 95% CI 1.000 1.000 1.000 0.998 0.996 0.994 0.992 0.990 0.987 0.983 0.983 0.983 0.980 0.978 0.975 0.975 0.975 0.975 0.975

##	205	278	1	0.917	01585	0.887	0.949
##	208	277	1	0.914		0.883	0.946
##	215	276	1	0.911 (0.879	0.943
##	218	275	1	0.907		0.875	0.941
##	237	274	1	0.904 (0.871	0.938
##	242	273	1	0.901		0.868	0.935
##	245	272	1	0.897		0.864	0.932
##	248	271	1	0.894 (0.860	0.929
##	252	270	1	0.891 (0.856	0.927
##	255	269	1	0.887		0.853	0.924
##	256	268	1	0.884 (0.849	0.921
##	260	267	1	0.881 (0.01864	0.845	0.918
##	261	266	1	0.878	0.01886	0.841	0.915
##	285	265	1	0.874 (0.01908	0.838	0.912
##	296	264	1	0.871 0	0.01929	0.834	0.910
##	303	263	1	0.868 0	0.01950	0.830	0.907
##	315	262	1	0.864 (0.01970	0.827	0.904
##	322	261	2	0.858 0	0.02010	0.819	0.898
##	328	258	1	0.854	0.02030	0.815	0.895
##	329	257	1	0.851	0.02049	0.812	0.892
##	336	256	1	0.848 (0.02068	0.808	0.889
##	360	253	1	0.844 (0.02087	0.804	0.886
##	365	252	1	0.841 0	0.02105	0.801	0.883
##	380	251	1	0.838	0.02123	0.797	0.880
##	386	250	1	0.834 (0.02141	0.793	0.877
##	392	249	1	0.831 0	0.02158	0.790	0.874
##	393	248	1	0.828		0.786	0.871
##	405	247	1	0.824	0.02192	0.782	0.868
##	408	246	1	0.821		0.779	0.865
##	415	245	1	0.818		0.775	0.862
##	422	244	1	0.814		0.771	0.859
##	431	243	1	0.811		0.768	0.856
##	434	242	1	0.807		0.764	0.853
##	443	241	1	0.804		0.761	0.850
##	448	240	1	0.801		0.757	0.847
##	449	239	1	0.797		0.753	0.844
##	454	238	1	0.794		0.750	0.841
##	458	237	1	0.791		0.746	0.838
##	466	236	2	0.784		0.739	0.832
##	485	234	1	0.781		0.735	0.829
##	491	233	1	0.777		0.732	0.826
##	497	232	1	0.774			0.823
			1	0.774		0.728	
## ##	510 526	231 230	1	0.771		0.725	0.820 0.817
			1			0.721	
##	536	229		0.764 (0.761 (0.717	0.813
##	543	228	1			0.714	0.810
##	554	227	2	0.754 (0.707	0.804
##	578	225	1	0.751		0.703	0.801
##	591	224	1	0.747		0.700	0.798
##	593	223	1	0.744 (0.696	0.795
##	594	222	1	0.740 (0.693	0.792
##	602	221	1	0.737		0.689	0.789
##	604	220	1	0.734		0.685	0.786
##	616	219	1	0.730	0.02561	0.682	0.782

```
0.678
                                                               0.779
##
     617
            218
                       1
                            0.727 0.02571
##
     622
            217
                            0.724 0.02581
                                                  0.675
                                                               0.776
                       1
##
     636
            216
                       1
                            0.720 0.02591
                                                  0.671
                                                               0.773
##
     649
            215
                            0.717 0.02600
                                                               0.770
                                                  0.668
                       1
##
     657
            214
                       1
                            0.714 0.02610
                                                  0.664
                                                               0.767
##
     683
            213
                            0.710 0.02619
                                                  0.661
                                                               0.764
                       1
##
     700
            212
                       1
                            0.707 0.02628
                                                  0.657
                                                               0.760
##
     701
            211
                            0.704 0.02637
                                                               0.757
                       1
                                                  0.654
##
     711
            210
                       1
                            0.700 0.02645
                                                  0.650
                                                               0.754
##
     805
            209
                            0.697 0.02654
                       1
                                                  0.647
                                                               0.751
##
     827
            208
                       1
                            0.694 0.02662
                                                  0.643
                                                               0.748
##
            206
     849
                            0.690 0.02670
                                                  0.640
                                                               0.745
                       1
            205
                            0.687 0.02679
##
     853
                       1
                                                  0.636
                                                               0.741
                            0.683 0.02687
##
     904
            203
                                                  0.633
                       1
                                                               0.738
##
     918
            202
                            0.680 0.02695
                                                  0.629
                                                               0.735
                       1
##
     934
            201
                       1
                            0.677 0.02702
                                                  0.626
                                                               0.732
##
     936
            200
                       1
                            0.673 0.02710
                                                  0.622
                                                               0.729
##
     968
            199
                            0.670 0.02717
                                                  0.619
                                                               0.725
##
    1024
            198
                            0.667 0.02725
                                                  0.615
                                                               0.722
                       1
##
    1025
            197
                       1
                            0.663 0.02732
                                                  0.612
                                                               0.719
##
    1032
            196
                       1
                            0.660 0.02739
                                                  0.608
                                                               0.716
##
   1037
            195
                       1
                            0.656 0.02745
                                                  0.605
                                                               0.712
  1122
##
            194
                            0.653 0.02752
                                                  0.601
                                                               0.709
                       1
##
    1142
            193
                       1
                            0.650 0.02758
                                                  0.598
                                                               0.706
##
  1159
            192
                            0.646 0.02765
                                                               0.703
                       1
                                                  0.594
                            0.643 0.02771
  1233
            191
                       1
                                                  0.591
                                                               0.700
##
  1277
            190
                            0.639 0.02777
                                                  0.587
                                                               0.696
                       1
##
   1329
            188
                            0.636 0.02783
                                                               0.693
                       1
                                                  0.584
##
  1488
            185
                       1
                            0.633 0.02789
                                                  0.580
                                                               0.690
## 1644
            182
                       1
                            0.629 0.02795
                                                  0.577
                                                               0.686
## 1668
            181
                       1
                            0.626 0.02801
                                                  0.573
                                                               0.683
## 1723
            180
                       1
                            0.622 0.02807
                                                  0.570
                                                               0.680
##
  1743
            179
                       1
                            0.619 0.02813
                                                  0.566
                                                               0.676
## 1786
            178
                            0.615 0.02819
                                                  0.562
                                                               0.673
                       1
## 1876
            167
                       1
                            0.612 0.02826
                                                  0.559
                                                               0.670
## 2028
            154
                       1
                            0.608 0.02835
                                                  0.554
                                                               0.666
## 2031
            152
                       1
                            0.604 0.02845
                                                  0.550
                                                               0.662
## 2074
            143
                       1
                            0.599 0.02856
                                                  0.546
                                                               0.658
plot(fit_km_recur,
     xlab = "Days",
     ylab = "Survival Probability (Recurrence)",
     col = c("blue", "red", "green"),
     lty = 1:3,
     main = "Kaplan-Meier: Time to Recurrence by Treatment")
```

legend("bottomleft",

lty = 1:3)

legend = levels(colon_recur\$rx),
col = c("blue", "red", "green"),

Kaplan-Meier: Time to Recurrence by Treatment


```
ggsurvplot(
  fit = fit_km_recur,
  data = colon_recur,
  risk.table = TRUE,
  pval = TRUE,  # displays log-rank p-value
  xlab = "Days",
  ylab = "Survival Probability (Recurrence)",
  title = "Kaplan-Meier: Time to Recurrence by Treatment",
  ggtheme = theme_minimal()
)
```

Kaplan-Meier: Time to Recurrence by Treatment


```
## Chisq= 0 on 1 degrees of freedom, p= 0.9
```

```
# Obs vs Lev+5FU
survdiff(Surv(time, status) ~ rx, data = colon_recur,
         subset = (rx %in% c("Obs", "Lev+5FU")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_recur,
       subset = (rx %in% c("Obs", "Lev+5FU")))
##
##
                N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0bs
                                 140
                                         10.05
              315
                       177
                                                    19.1
## rx=Lev+5FU 304
                       119
                                 156
                                          8.96
                                                    19.1
##
    Chisq= 19.1 on 1 degrees of freedom, p= 1e-05
# Lev vs Lev+5FU
survdiff(Surv(time, status) ~ rx, data = colon_recur,
         subset = (rx %in% c("Lev", "Lev+5FU")))
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon_recur,
       subset = (rx %in% c("Lev", "Lev+5FU")))
##
##
                N Observed Expected (0-E)^2/E (0-E)^2/V
##
                                 136
                                          9.40
## rx=Lev
              310
                       172
                                                    17.7
## rx=Lev+5FU 304
                       119
                                 155
                                          8.27
                                                    17.7
##
## Chisq= 17.7 on 1 degrees of freedom, p= 3e-05
```

Kaplan-Meier Curves (Time to Recurrence)

1. Visual Ranking

- Lev+5FU (green/dotted): Shows the highest curve, meaning fewer patients recurred (or they recurred later).
- Obs (blue/solid) and Lev (red/dashed): Appear lower, indicating earlier or more frequent recurrences.

Recurrence-Free Survival Probability

- Early on (first 500–1000 days): Survival probabilities (i.e., no recurrence) are fairly high in all groups.
- By ~3000 days: Lev+5FU remains clearly above 0.40, while Obs and Lev dip lower, indicating a higher proportion of patients in the Lev+5FU group remain recurrence-free over time.

Interpretation

- Lev+5FU: Appears to be most effective at delaying or preventing recurrence.
- Obs vs. Lev: Are closer to each other, though you'd need pairwise tests to see if that difference is significant.

Log-Rank Test for Time to Recurrence

- Chi-Square = 23.1, $p = 1e-05 (\sim 0.00001)$
 - This is highly significant, indicating that at least one group's recurrence-free survival differs from the others.

Observed vs. Expected

- Obs: 177 recurrences observed vs. 151 expected → more recurrences than expected (worse outcome).
- Lev: 172 vs. 149 \rightarrow also more recurrences than expected (worse).
- Lev+5FU: 119 vs. $169 \rightarrow \text{many fewer recurrences than expected (better)}$.

Interpretation

- The large difference is primarily driven by Lev+5FU performing significantly better (far fewer recurrences than expected).
- Obs and Lev have higher observed recurrences than expected, consistent with worse recurrence-free survival.

Clinical/Practical Meaning

- Lev+5FU: Strong evidence it reduces recurrence compared to the other two treatments.
- Obs vs. Lev: The global log-rank test can't tell you if they differ significantly from each other; you'd do pairwise tests (e.g., subsetting rx %in% c("Obs", "Lev")) to confirm.

Pairwise Log-Rank Results

we ran three separate survdiff commands with subset to isolate each pair of groups:

Obs vs Lev

- $^2 = 0.1$, p = 0.9
 - No significant difference in recurrence-free survival between Obs and Lev.

Obs vs Lev+5FU

- $^2 = 19.1$, p = 1 × 10
 - Highly significant difference: Lev+5FU is better (fewer recurrences).

Lev vs Lev+5FU

- $^2 = 17.7$, p = 3×10
 - Highly significant difference: Lev+5FU is better than Lev.

Interpretation

- Obs vs Lev:
 - $-\mathbf{p} = \mathbf{0.9}$: They do not differ significantly in terms of time to recurrence.
 - Practical terms: Levamisole alone does not provide a statistically significant benefit over observation for preventing recurrence.
- Obs vs Lev+5FU:
 - p = 1e-05: Strong evidence that Lev+5FU significantly reduces recurrence compared to observation alone.
- Lev vs Lev+5FU:
 - p = 3e-05: Also highly significant; Lev+5FU is much better than Lev alone at preventing recurrence.

Overall Pattern

- Lev+5FU: Stands out as the only regimen that significantly delays or reduces recurrence.
- Obs and Lev: Are indistinguishable in this dataset for recurrence outcomes (i.e., no significant difference).

Clinical/Practical Meaning

- Lev+5FU: Is clearly the optimal regimen for preventing recurrence.
- Lev alone: Does not appear to outperform Obs for recurrence-free survival.
- These findings confirm the global test result (p < 0.0001) was driven by Lev+5FU being significantly superior to both other arms.

Cox Proportional Hazards Modeling

Time to Any Event

What It Does

- Combines recurrence and death into a single outcome.
- If a patient has either event, they're considered to have "failed" at that time.

Pros

- Simple summary of overall treatment failure (recurrence or death).
- Captures the earliest time a patient experiences any negative outcome.

Cons

- No distinction between recurrence and death; you lose details about which event happened.
- If you care about overall survival specifically, or recurrence specifically, combining them can blur those
 details.

When to Choose It

- We want a broad measure of "treatment failure," and either recurrence or death is equally critical as an endpoint.
- Ideal if your research question is: "Does this treatment reduce the chance of any negative event (recurrence or death)?"

Time to Death (Overall Survival)

What It Does

- Only death counts as an event.
- Recurrence is ignored or treated as censored (the patient is still alive and at risk of eventually dying).

Pros

- Clinically straightforward if your main endpoint is overall survival.
- Often the gold standard in many oncology trials: does the treatment prolong life?

Cons

- Doesn't capture recurrence patterns, which can be clinically important.
- A patient could recur early but still live for many years, and you'd miss that early recurrence in a time-to-death analysis.

When to Choose It

- our primary question is about mortality: "Does the treatment reduce the risk of death?"
- Overall survival is often used in regulatory approvals and major clinical endpoints.

Time to Recurrence

What It Does

• Recurrence is the event; death is treated as censored (the patient is no longer at risk of recurrence if they die first).

Pros

- Lets you focus on disease progression.
- Particularly important if your key question is about recurrence-free survival or relapse rates.

Cons

- If patients die before recurrence, they're censored, which can introduce bias if death is related to the same disease process.
- Does not capture overall survival. A treatment might reduce recurrence but not necessarily extend life (or vice versa).

When to Choose It

- We care about tumor relapse specifically: "Does the treatment delay or prevent the return of cancer?"
- Recurrence is a clinically important endpoint (e.g., new metastatic lesions).

we choose the first approach!

Select Covariates (with Reasons)

2.1 Commonly Included Predictors in Colon Cancer

rx (Treatment)

• Reason: Primary variable of interest. You want to see how each treatment arm (Obs, Lev, Lev+5FU) affects survival.

age (Numeric)

• Reason: Age is a universal risk factor; older patients often have worse outcomes.

sex (Male/Female)

• Reason: Sometimes survival differs by sex in colon cancer, though not always strongly.

nodes (Number of positive lymph nodes)

• Reason: Very strong prognostic factor in colon cancer. Often right-skewed, so consider log transform if needed.

differ (Tumor differentiation: Well, Moderate, Poor)

• Reason: Histological grade can strongly impact prognosis.

extent (Extent of local spread: Submucosa, Muscle, Serosa, Contiguous)

• Reason: Deeper invasion often means higher risk.

2.2 Optional or Secondary Predictors

obstruct, perfor, adhere (0/1)

Reason: May indicate more complicated surgeries or advanced local disease. Sometimes less commonly
included, but can be tested.

surg (Short vs. Long interval from surgery to registration)

• Reason: Might matter for follow-up patterns.

node4 (>4 positive nodes)

• Reason: A simpler, binary version of nodes. But if you already have the numeric nodes, node4 can be redundant.

covariate list:

Create the Surv Object

```
# 1. Load Packages
# install.packages(c("dplyr", "survival"))
library(dplyr)
library(survival)
# 2. Summarize to Create "colon any event"
   One Row per Patient, Earliest Event Time
colon_any_event <- colon_data %>%
 group_by(id) %>%
 summarize(
   # If a patient has any event (status == 1),
   # take the earliest time of that event.
   # Otherwise, if no event, use max time (censored).
  time = if (any(status == 1)) {
    min(time[status == 1])
  } else {
    max(time)
  },
  status = if (any(status == 1)) 1 else 0
 ) %>%
 ungroup()
# 3. Left Join Covariates from Original Data
# Select the covariates you want to keep:
# e.g., rx, age, sex, nodes, differ, extent, obstruct, perfor, adhere, surg
colon_any_event <- colon_any_event %>%
 left_join(
  select(colon_data,
        id, rx, age, sex, log_nodes, nodes, differ, extent,
        obstruct, perfor, adhere, surg),
  by = "id"
```

```
) %>%
 # If 'colon_data' had multiple rows per id,
 # distinct() ensures we keep only one row per patient
 distinct(id, .keep_all = TRUE)
# Check structure to confirm covariates are present
str(colon_any_event)
## tibble [929 x 14] (S3: tbl_df/tbl/data.frame)
            : num [1:929] 1 2 3 4 5 6 7 8 9 10 ...
## $ id
             : num [1:929] 968 3087 542 245 523 ...
## $ time
## $ status : num [1:929] 1 0 1 1 1 1 1 0 0 0 ...
          : Factor w/ 3 levels "Obs", "Lev", "Lev+5FU": 3 3 1 3 1 3 2 1 2 3 ...
## $ rx
## $ age
             : num [1:929] 43 63 71 66 69 57 77 54 46 68 ...
            : Factor w/ 2 levels "Female", "Male": 2 2 1 1 2 1 2 2 2 1 ...
## $ sex
## $ log nodes: num [1:929] 1.792 0.693 2.079 1.946 3.135 ...
## $ nodes : num [1:929] 5 1 7 6 22 9 5 1 2 1 ...
## $ differ : Factor w/ 3 levels "Well", "Moderate",..: 2 2 2 2 2 2 2 2 2 ...
## $ extent : Factor w/ 4 levels "Submucosa", "Muscle",..: 3 3 2 3 3 3 3 3 3 ...
## $ obstruct : Factor w/ 2 levels "No", "Yes": 1 1 1 2 1 1 1 1 1 1 ...
## $ perfor : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ adhere : Factor w/ 2 levels "No", "Yes": 1 1 2 1 1 1 1 1 2 1 ...
             : Factor w/ 2 levels "Short", "Long": 1 1 1 2 2 1 2 1 1 2 ...
## $ surg
head(colon_any_event)
## # A tibble: 6 x 14
       id time status rx
                                         log nodes nodes differ extent obstruct
                               age sex
    <dbl> <dbl> <fct> <dbl> <fct>
                                            <dbl> <dbl> <fct> <fct> <fct>
##
## 1
      1
          968
                   1 Lev+5FU
                              43 Male
                                             1.79
                                                    5 Moder~ Serosa No
## 2
        2 3087
                    0 Lev+5FU
                                63 Male
                                            0.693
                                                     1 Moder~ Serosa No
## 3
        3 542
                   1 Obs
                               71 Female
                                            2.08
                                                     7 Moder~ Muscle No
        4 245
                               66 Female
                                             1.95
                                                     6 Moder~ Serosa Yes
## 4
                    1 Lev+5FU
## 5
        5
          523
                   1 Obs
                               69 Male
                                             3.14
                                                     22 Moder~ Serosa No
                                                      9 Moder~ Serosa No
## 6
           904
                    1 Lev+5FU
                               57 Female
                                             2.30
## # i 3 more variables: perfor <fct>, adhere <fct>, surg <fct>
# 4. Create the Surv Object (Time to Any Event)
colon_any_event$surv_any <- Surv(colon_any_event$time,</pre>
                              colon_any_event$status)
```

Univariable Cox Models in a Loop

```
# Function to run univ Cox and extract tidy results
univ_results <- lapply(vars, function(v) {
    # Build a formula like: Surv(time, status) ~ var
    form <- as.formula(paste("surv_any ~", v))</pre>
```

Visualize Univariable Results with ggplot2

```
# Print table of univ results
print(univ_results_df)
## # A tibble: 14 x 11
##
     term estimate std.error statistic p.value conf.low conf.high variable
                                                                              HR
##
     <chr>
              <dbl>
                       <dbl>
                                <dbl>
                                          <dbl>
                                                   <dbl>
                                                            <dbl> <chr>
                                                                           <dbl>
                                                                           0.968
## 1 rxLev -0.0321
                      0.104
                                -0.309 7.57e- 1 -0.235
                                                          0.171
                                                                 rx
## 2 rxLe~ -0.473
                      0.113
                                -4.19 2.78e- 5 -0.694
                                                         -0.252
                                                                           0.623
                                                                  rx
## 3 sexM~ -0.0525
                                -0.590 5.55e- 1 -0.227
                      0.0890
                                                          0.122
                                                                  sex
                                                                           0.949
## 4 age -0.00180 0.00380
                                -0.473 6.36e- 1 -0.00924
                                                          0.00565 age
                                                                           0.998
## 5 log ~ 0.690
                      0.0695
                                9.94 2.84e-23 0.554
                                                          0.827
                                                                  log nod~ 1.99
## 6 diff~ 0.132
                                 0.846 3.97e- 1 -0.174
                                                                           1.14
                      0.156
                                                          0.439
                                                                  differ
## 7 diff~ 0.541
                      0.180
                                 3.00 2.67e- 3 0.188
                                                          0.894
                                                                  differ
                                                                           1.72
                                                                  extent
## 8 exte~ 0.294
                     0.439
                                 0.671 5.02e- 1 -0.565
                                                                          1.34
                                                          1.15
## 9 exte~ 0.907
                      0.411
                                 2.20 2.75e- 2 0.101
                                                          1.71
                                                                  extent
                                                                           2.48
## 10 exte~ 1.54
                      0.444
                                 3.47 5.28e- 4 0.669
                                                          2.41
                                                                  extent
                                                                           4.66
## 11 obst~ 0.250
                      0.109
                                 2.30 2.13e- 2 0.0371
                                                          0.463
                                                                  obstruct 1.28
                                 1.16 2.46e- 1 -0.197
## 12 perf~ 0.286
                      0.247
                                                          0.770
                                                                  perfor
                                                                           1.33
                                 2.65 8.13e- 3 0.0806
## 13 adhe~ 0.311
                      0.117
                                                          0.541
                                                                  adhere
                                                                           1.36
                                 2.80 5.03e- 3 0.0817
## 14 surg~ 0.271
                      0.0967
                                                          0.461
                                                                  surg
                                                                           1.31
## # i 2 more variables: HR_lower <dbl>, HR_upper <dbl>
# Forest plot with ggplot2
ggplot(univ_results_df, aes(x = variable,
                           y = HR,
                           ymin = HR_lower,
                           ymax = HR_upper)) +
 geom pointrange() +
 geom_hline(yintercept = 1, linetype = 2, color = "red") +
 coord flip() +
 scale_y_log10() +
```

```
labs(
    x = "Covariate",
    y = "Hazard Ratio (log scale)",
    title = "Univariable Cox PH - Time to Any Event"
) +
theme_minimal()
```

Univariable Cox PH - Time to Any Event

Univariate Analysis Findings

From the Forest Plot and Univariable Table

Covariates with p < 0.05:

- log_nodes : Highly significant (HR > 1).
- rxLev+5FU: Significantly reduces hazard (HR < 1).
- Possibly obstruct borderline or surg borderline: Depending on your exact p-values.

Covariates with p 0.05:

- Some, like sex, perfor, or adhere, may not be statistically significant in univariable testing.
- Others, like **extent** or **differ**, might have partial significance depending on how the factor levels are compared (some levels can be borderline).

Interpretation

- \log _nodes: Stands out as a strong predictor; more nodes \rightarrow higher hazard.
- rxLev+5FU: Consistently shows hazard < 1, meaning improved survival relative to rxObs.

Code to Filter Significant Variables

```
# Suppose your univ results are in univ_results_df
sig_vars <- univ_results_df %>%
  filter(p.value < 0.05) %>%
  pull(variable)

sig_vars

## [1] "rx" "log_nodes" "differ" "extent" "extent" "obstruct"
## [7] "adhere" "surg"
```

Build the Initial Multivariable Cox Model

```
"log_nodes"
                                      "differ"
# including "rx"
                                                 "extent"
                                                            "extent"
                                                                       "obstruct" "adhere"
                                                                                             "surq"
cox_model <- coxph(</pre>
  Surv(time, status) ~ rx + obstruct + log_nodes + differ + extent + adhere + surg,
  data = colon_any_event
summary(cox_model)
## Call:
## coxph(formula = Surv(time, status) ~ rx + obstruct + log_nodes +
##
       differ + extent + adhere + surg, data = colon_any_event)
##
##
    n= 929, number of events= 506
##
##
                        coef exp(coef) se(coef)
                                                    z Pr(>|z|)
## rxLev
                   -0.05076
                              0.95051 0.10463 -0.485 0.62760
                   -0.48112
                              0.61809
                                       0.11363 -4.234 2.29e-05 ***
## rxLev+5FU
## obstructYes
                    0.21000
                              1.23368 0.10950 1.918 0.05513 .
## log_nodes
                    0.64920
                             1.91402 0.07047 9.213 < 2e-16 ***
## differModerate
                    0.01230
                              1.01238 0.15810 0.078 0.93798
## differPoor
                    0.30329
                              1.35430
                                       0.18410
                                                1.647
                                                       0.09947 .
## extentMuscle
                    0.05354
                              1.05500 0.44028 0.122 0.90321
## extentSerosa
                    0.52862
                              1.69660
                                       0.41436
                                                1.276 0.20204
                                                2.350 0.01876 *
## extentContiguous 1.05941
                              2.88467
                                       0.45077
## adhereYes
                    0.18430
                              1.20237
                                       0.12147
                                                1.517
                                                       0.12923
## surgLong
                    0.26847
                              1.30796 0.09718 2.763 0.00573 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                   exp(coef) exp(-coef) lower .95 upper .95
## rxLev
                      0.9505
                                  1.0521
                                           0.7743
                                                     1.1669
## rxLev+5FU
                       0.6181
                                  1.6179
                                           0.4947
                                                     0.7723
```

```
## obstructYes
                        1.2337
                                   0.8106
                                              0.9954
                                                         1.5290
## log_nodes
                        1.9140
                                   0.5225
                                              1.6671
                                                         2.1975
## differModerate
                                                         1.3801
                        1.0124
                                   0.9878
                                              0.7426
## differPoor
                                   0.7384
                                              0.9441
                                                         1.9428
                        1.3543
## extentMuscle
                        1.0550
                                   0.9479
                                              0.4451
                                                         2.5005
## extentSerosa
                        1.6966
                                   0.5894
                                              0.7531
                                                         3.8219
## extentContiguous
                        2.8847
                                   0.3467
                                              1.1923
                                                         6.9790
## adhereYes
                        1.2024
                                   0.8317
                                              0.9476
                                                         1.5256
## surgLong
                        1.3080
                                   0.7646
                                              1.0811
                                                         1.5824
##
## Concordance= 0.672 (se = 0.012)
## Likelihood ratio test= 157.5 on 11 df,
                                               p=<2e-16
## Wald test
                         = 162.6 on 11 df,
                                               p=<2e-16
## Score (logrank) test = 168.9 on 11 df,
                                               p = < 2e - 16
```

Building the Multivariable Cox Model

Combined Covariates:

- rx (main treatment factor)
- log_nodes (since it's strongly significant)
- obstruct, differ, extent, adhere, surg (some are borderline or clinically relevant)

Significant Variables (p < 0.05):

- rxLev+5FU: HR $0.62 \rightarrow \sim 38\%$ reduction in hazard vs. rxObs.
- \log _nodes: HR 1.91 \rightarrow Each log-unit increase in nodes nearly doubles the hazard.
- extentContiguous: HR 2.88 → Markedly higher hazard for contiguous spread vs. baseline category (likely Submucosa or whichever is reference).
- surgLong: HR 1.31 → "Long" interval from surgery to registration is associated with ~31% higher hazard.

Borderline:

obstructYes: p ~ 0.055.
differPoor: p ~ 0.10.

Not Significant:

- \mathbf{rxLev} : $p = 0.63 \rightarrow \text{Not significantly different from rxObs.}$
- $\bullet \ differ Moderate, \ extent Muscle, \ extent Serosa, \ adhere Yes.$

Interpretation:

- rxLev+5FU: Shows a significant reduction in hazard, indicating improved survival compared to rxObs
- \log _nodes: Strong predictor; more nodes \rightarrow higher hazard.
- extentContiguous: Indicates a markedly higher hazard for contiguous spread.
- surgLong: Suggests a higher hazard associated with a longer interval from surgery to registration.
- Borderline and Not Significant Variables: These may not have a strong impact on survival in this model, but could be clinically relevant in other contexts

Check Cox PH Assumption

```
ph_test <- cox.zph(cox_model)</pre>
ph_test
##
              chisq df
              0.543 2 0.7622
## rx
              7.270 1
## obstruct
                        0.0070
## log_nodes 7.192 1 0.0073
## differ
            27.494 2 1.1e-06
## extent
              0.739
                    3 0.8639
## adhere
              0.677
                       0.4105
## surg
              0.398 1 0.5280
## GLOBAL
             44.928 11 5.0e-06
plot(ph_test)
```


Proportional Hazards Assumption Violation

Global Test

• p = 5.0e-06: Overall, the model violates proportional hazards.

Covariates with p < 0.05 in PH Test:

- **obstruct** (p = 0.0070)
- $\log_{nodes} (p = 0.0073)$
- **differ** (p = 1.1e-06)

This means obstruct, log_nodes, and differ show evidence that their hazard ratios change over time. The plotted scaled Schoenfeld residuals (like for log_nodes or differ) might show a non-horizontal trend.

Interpretation

• The PH assumption is violated for these covariates.

Potential Solutions:

- Stratify on obstruct or differ: If they're key categorical variables.
- Time-varying approach for log_nodes: If it strongly changes over time.
- Check if recoding or grouping factor levels helps: Simplifying categories might reduce violations.

• Evaluate whether you still want to keep them in the model: If the violation is moderate, consider the trade-offs.

Visual Inspection of Residual Plots

Schoenfeld Residual Plots for Each Variable

 $\mathbf{r}\mathbf{x}$

- **Observation**: The fitted line is fairly flat around 0.
- Interpretation: No major PH violation for rx.

obstruct

- Observation: Some drift over time.
- Interpretation: This aligns with the p = 0.007 in the PH test.

log_nodes

- Observation: Slight slope or curvature in the fitted line.
- Interpretation: This might be mild or moderate.

differ

- Observation: Possibly a noticeable downward trend.
- Interpretation: Indicates time-dependent effects.

extent

- Observation: Fairly horizontal.
- Interpretation: No big violation.

adhere, surg

- Observation: Also appear fairly stable.
- Interpretation: No major PH violations.

Summary

- rx: No major PH violation.
- obstruct: Shows some drift, indicating a potential violation.
- log_nodes: Mild to moderate violation.
- differ: Indicates time-dependent effects.
- extent, adhere, surg: No significant violations.

Check Linearity for Numeric Variables

Nodes Plot

Observations:

- Many points are near 0 for node counts under ~10, then some outliers for high node counts (20–30+).
- Possibly a mild negative slope for low node values, but the main cluster is near 0.
- High node counts (above ~10) are relatively sparse but some negative residuals.

Interpretation:

- The overall pattern doesn't show a strong curve, but there is a cluster effect from so many low node counts.
- we've already log-transformed nodes (log_nodes), which typically helps with the skew. This plot suggests it's mostly okay, though you have a few outliers at high node counts.
- No glaring "U-shape" or strong departure from linearity is evident. The log transform is likely addressing the skew effectively.

Age Plot

Observations:

- Points are spread from age ~ 20 to 85, with a cluster around 50–70.
- The red line (loess or a simple horizontal) is fairly flat, maybe a slight downward slope for older ages.
- No strong curvature or obvious pattern.

Interpretation:

- No major violation of linearity for age. A gentle slope might exist, but it's not pronounced.
- If clinically you suspect age might have a threshold effect (e.g., <50 vs. >70), you could explore a piecewise approach. But from this plot, age seems reasonably linear.

Evaluate Model Performance (Harrell's C-Index)

```
# Suppose cox_model is final model
summary(cox_model)$concordance

## C se(C)
## 0.67242914 0.01173447
```

Alternative: survcomp or pec Packages

Perform Cross-Validation or Bootstrapping

Bootstrapping for Robustness One common approach is to bootstrap the dataset multiple times and refit the Cox model to estimate the variability of coefficients and the C-index. Here's a simplified example using the boot package:

```
# install.packages("boot")
library(boot)
## Attaching package: 'boot'
## The following object is masked from 'package:survival':
##
       aml
library(survival)
# 1) Define a function that fits the Cox model and returns the C-index
cox_boot <- function(data, indices) {</pre>
 d <- data[indices, ] # bootstrap sample</pre>
 fit <- coxph(Surv(time, status) ~ rx + log_nodes + differ + extent + adhere + surg,</pre>
               data = d)
  # Return the C-index from summary
 return(summary(fit)$concordance[1])
# 2) Run boot
set.seed(123)
boot_res <- boot(data = colon_any_event, statistic = cox_boot, R = 1000)</pre>
# R=1000 bootstrap replications
# 3) Inspect results
boot_res
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## Call:
## boot(data = colon_any_event, statistic = cox_boot, R = 1000)
##
##
## Bootstrap Statistics :
       original
                    bias
                              std. error
## t1* 0.6699443 0.002688992 0.01195667
# 't' contains the bootstrap estimates of C-index
# you can compute mean, sd, etc.
mean(boot_res$t) # average C-index across bootstraps
## [1] 0.6726333
sd(boot_res$t) # standard deviation
## [1] 0.01195667
```

Cross-Validation Approach

we could do k-fold cross-validation (e.g., caret or cvTools) to split data into folds, train on k-1 folds, and test on the remaining fold. Then compute the C-index or partial log-likelihood on the test fold. Summarize across folds for an estimate of out-of-sample performance.

```
cox_cv_cindex <- function(data, formula, k = 5, seed = 123) {</pre>
  set.seed(seed)
 n <- nrow(data)</pre>
  # Randomly assign each row to a fold (1..k)
  folds <- sample(rep(1:k, length.out = n))</pre>
  cindex_values <- numeric(k) # store c-index for each fold</pre>
  for (i in 1:k) {
    # Split into training vs. test
    train data <- data[folds != i, ]</pre>
    test_data <- data[folds == i, ]</pre>
    # Fit Cox model on training
    fit <- coxph(formula, data = train_data)</pre>
    # Predict linear predictor (risk score) on test
    lp_test <- predict(fit, newdata = test_data, type = "lp")</pre>
    # Compute C-index for test set
    # Survcomp expects vectors: times, events, and predicted scores
    cindex result <- concordance.index(</pre>
     x = lp_test,
                                                # predicted risk
      surv.time = test_data$time,
                                                # actual survival time
      surv.event = test_data$status,
                                                # actual event
      method = "noether"
                                                # or "uno", "harrell", etc.
    )
    cindex_values[i] <- cindex_result$c.index</pre>
  # Return average C-index and all fold values
    mean_cindex = mean(cindex_values),
    sd_cindex = sd(cindex_values),
    cindex_each_fold = cindex_values
  )
}
```

```
# Define your final formula
cox_formula <- Surv(time, status) ~ rx + log_nodes + differ + extent + adhere + surg

# Run 5-fold CV
cv_results <- cox_cv_cindex(data = colon_any_event, formula = cox_formula, k = 5, seed = 123)
cv_results$mean_cindex</pre>
```

[1] 0.6582201

cv_results\$sd_cindex

[1] 0.0317165

cv_results\scindex_each_fold

[1] 0.6638451 0.6514017 0.6302998 0.7098058 0.6357483

1. In-Sample C-Index from summary(cox_model)

Value: ~0.6724 (SE ~0.0117).

Interpretation: On your full dataset, the model can correctly rank pairs of patients \sim 67% of the time. This is a moderate level of discrimination, typical in many clinical models.

2. C-Index via survcomp

Value: ~0.6734 (95% CI: 0.6504-0.6964).

Interpretation: This matches closely with the in-sample summary. The confidence interval indicates you can be fairly confident the true c-index lies in the $\sim 0.65-0.70$ range.

3. Bootstrapped C-Index

Value: ~0.6699 (bias ~0.0027, std. error ~0.012).

Interpretation: When you resample (with replacement) 1000 times, the average c-index is \sim 0.67, reinforcing that your model's discrimination is stable and not the product of random chance. The std. error is \sim 0.012, consistent with the original SE \sim 0.0117.

4. 5-Fold Cross-Validation C-Index

Mean: ~0.6582 SD: ~0.0137

Fold-by-Fold: [0.6885, 0.6514, 0.6303, 0.7091, 0.6357]

Interpretation: - Slightly Lower Than In-Sample (0.6724 \rightarrow 0.6582): A small drop is expected due to out-of-sample testing. This indicates mild overfitting, but the difference is not large. - Fold Variability: The c-index ranges from ~0.63 to ~0.71 across folds, giving a standard deviation ~0.014. This is moderate and suggests the model's performance is fairly consistent across data splits. - Conclusion: A cross-validated c-index around 0.66 (\pm 0.01) confirms moderate discrimination in an out-of-sample setting.

5. Overall Conclusions

- Consistent Performance: All methods (in-sample, survcomp, bootstrapping, cross-validation) converge around 0.66–0.67 for the c-index.
- Moderate Discrimination: A c-index in the mid-0.60s is common in medical prognostic models, meaning the model is useful but not perfect.

- Model Stability:
 - Bootstrapping shows minimal bias and an SE \sim 0.012, so the estimate is stable.
 - Cross-Validation c-index is only slightly lower than in-sample, indicating limited overfitting.

Interpret Model Coefficients and Survival Curves

```
summary(cox_model)
## Call:
   coxph(formula = Surv(time, status) ~ rx + obstruct + log_nodes +
##
       differ + extent + adhere + surg, data = colon_any_event)
##
##
     n= 929, number of events= 506
##
##
                         coef exp(coef) se(coef)
                                                        z Pr(>|z|)
## rxLev
                     -0.05076
                                 0.95051
                                          0.10463 - 0.485
                                                           0.62760
                     -0.48112
                                          0.11363 -4.234 2.29e-05 ***
## rxLev+5FU
                                0.61809
## obstructYes
                      0.21000
                                1.23368
                                          0.10950
                                                   1.918
                                                          0.05513
                                                   9.213
## log_nodes
                      0.64920
                                1.91402
                                          0.07047
                                                           < 2e-16 ***
## differModerate
                      0.01230
                                1.01238
                                          0.15810
                                                   0.078
                                                           0.93798
## differPoor
                      0.30329
                                1.35430
                                          0.18410
                                                   1.647
                                                           0.09947 .
## extentMuscle
                      0.05354
                                1.05500
                                          0.44028
                                                   0.122
                                                           0.90321
## extentSerosa
                      0.52862
                                 1.69660
                                          0.41436
                                                    1.276
                                                           0.20204
## extentContiguous
                      1.05941
                                2.88467
                                          0.45077
                                                   2.350
                                                           0.01876 *
## adhereYes
                      0.18430
                                 1.20237
                                          0.12147
                                                   1.517
                                                           0.12923
## surgLong
                      0.26847
                                1.30796
                                          0.09718
                                                   2.763
                                                           0.00573 **
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
                     exp(coef) exp(-coef) lower .95 upper .95
## rxLev
                        0.9505
                                    1.0521
                                              0.7743
                                                         1.1669
## rxLev+5FU
                        0.6181
                                    1.6179
                                              0.4947
                                                         0.7723
## obstructYes
                        1.2337
                                    0.8106
                                              0.9954
                                                         1.5290
## log_nodes
                        1.9140
                                    0.5225
                                              1.6671
                                                         2.1975
## differModerate
                        1.0124
                                    0.9878
                                              0.7426
                                                         1.3801
## differPoor
                        1.3543
                                    0.7384
                                              0.9441
                                                         1.9428
## extentMuscle
                                              0.4451
                        1.0550
                                    0.9479
                                                         2.5005
## extentSerosa
                                    0.5894
                                              0.7531
                                                         3.8219
                        1.6966
## extentContiguous
                        2.8847
                                    0.3467
                                              1.1923
                                                         6.9790
                                                         1.5256
## adhereYes
                        1.2024
                                    0.8317
                                              0.9476
## surgLong
                        1.3080
                                    0.7646
                                              1.0811
                                                         1.5824
##
## Concordance= 0.672 (se = 0.012)
## Likelihood ratio test= 157.5
                                  on 11 df,
                                               p = < 2e - 16
## Wald test
                         = 162.6
                                  on 11 df,
                                               p = < 2e - 16
```

Score (logrank) test = 168.9

p=<2e-16

on 11 df,

Covariate-by-Covariate Interpretation

1. rxLev

HR = 0.9505, p = 0.628

Not significantly different from 1. This suggests Lev alone is not significantly better or worse than the reference treatment (likely rx=Obs) for preventing the event.

2. rxLev+5FU

HR = 0.6181, p = 2.29e-05 (highly significant)

Interpreted as ~38% reduction in hazard relative to the reference group (Obs).

In plain language: "Patients on Lev+5FU have significantly lower risk (by $\sim 38\%$) than those on the reference treatment."

3. obstructYes

HR = 1.2337, p = 0.055 (borderline significance)

Suggests a 23% increase in hazard for patients with obstruction vs. those without, but only borderline significant (p ~ 0.055).

In plain language: "Having an obstructed colon might slightly raise the risk of recurrence/death, but the evidence is borderline."

4. log_nodes

HR = 1.9140, p < 2e-16 (very highly significant)

A 1-unit increase in log(nodes+1) nearly doubles the hazard.

In simpler terms: "If (nodes+1) goes up by a factor of

$$e^1 = 2.718$$

, hazard almost doubles."

In plain language: "The number of positive lymph nodes is a strong predictor—more nodes means a substantially higher risk."

5. differModerate

HR = 1.0124, p = 0.938

No significant difference from the reference (likely differ=Well).

"Moderate differentiation" doesn't show a clear effect vs. well-differentiated tumors.

6. differPoor

HR = 1.3543, p = 0.099 (borderline significance)

Suggests a $\sim 35\%$ increase in hazard vs. well-differentiated, but p ~ 0.10 is borderline.

In plain language: "Poorly differentiated tumors may raise risk, but it's not firmly significant."

7. extentMuscle

HR = 1.0550, p = 0.903

Not significant. Minimal difference from reference category (likely Submucosa).

8. extentSerosa

HR = 1.6966, p = 0.202

Suggests $\sim 70\%$ higher hazard, but p=0.20 is not significant. No strong evidence that "Serosa" is worse than the reference category.

9. extentContiguous

```
HR = 2.8847, p = 0.0188  (significant)
```

~2.9x hazard vs. the reference.

In plain language: "Tumor extending to contiguous structures significantly increases the risk (almost triple)."

10. adhereYes

HR = 1.2024, p = 0.129

Not significant (p=0.13). Possibly ~20% higher hazard, but not statistically confirmed.

11. surgLong

HR = 1.3080, p = 0.0057 (significant)

~31% higher hazard if surgery-to-registration interval is "Long" vs. "Short."

In plain language: "Patients who had a longer gap between surgery and registration face a higher risk."

Overall Model Summary

- Concordance (C-index) ~ 0.672: The model's discrimination is moderate (can rank patients' risk ~67% of the time correctly).
- Likelihood Ratio / Wald / Score tests: All highly significant (p < 2e-16), meaning the model overall is very unlikely to be random

Visualizing Survival Curves from a Cox Model

Adjusted Survival by Treatment

Conclusion

Data Preparation & Exploration

- We began by importing the Colon dataset, checking for missing values (notably in nodes and differ) and addressing them via imputation.
- Outlier checks (e.g., nodes, age) led to transformations (log_nodes) to handle skew.
- Basic Kaplan-Meier analyses indicated Lev+5FU was beneficial compared to Obs, while Lev alone was not clearly different.

Cox PH Modeling

- Univariable tests identified rx=Lev+5FU, log_nodes, and certain tumor extent levels as strong predictors.
- The final Cox model included: Surv(time, status) rx + obstruct + log_nodes + differ + extent + adhere + surg.
- Key significant effects:
 - **rx=Lev+5FU:** Hazard ratio ~ 0.62 (p< 0.0001), a $\sim 38\%$ hazard reduction vs. observation.
 - log_nodes: HR ~1.91, the strongest risk factor—more positive nodes drastically increase hazard.
 - extentContiguous: ~2.9x hazard vs. baseline.
 - **surgLong:** ∼31% higher hazard vs. surgShort.

Model Assumption Checks & Validation

- PH Tests: Showed potential violations for obstruct, log_nodes, differ, suggesting mild time-varying effects or need for stratification.
- Performance:
 - In-sample C-index: ~0.67, indicating moderate discrimination.
 - Bootstrapping: Confirmed stability with minimal bias and SE ~ 0.012 .
 - 5-Fold Cross-Validation: Mean C-index ~0.66, close to in-sample, implying limited overfitting.

Adjusted Survival Curves

- Visualizing survival by rx with other covariates at average levels showed a notably higher curve for Lev+5FU, confirming its protective effect.
- Lev alone tracked close to observation, matching the non-significant difference in hazard.

Overall Findings

- Lev+5FU stands out as the most effective regimen in this dataset, significantly improving survival compared to observation or Lev alone.
- Number of nodes (log_nodes) remains the dominant risk factor, highlighting the critical prognostic role of lymph node involvement.
- The model offers moderate predictive power (C-index ~0.67), confirmed by bootstrapping and cross-validation.

Practical Implication

Clinically, combining Lev+5FU post-surgery could lead to better outcomes, especially in patients with higher node counts or advanced tumor extent, although further prospective validation is advised.