A Brief Outline of Discrete Mathematics for the Undergraduate Computer Science Student

Dale Fletter

February 21, 2019

Contents

1	The	Found	dations: Logic and Proofs	1
	1.1	Propo	sitional Logic	2
		1.1.1	Introduction	2
		1.1.2	Propositions	2
		1.1.3	Conditional Statements	2
		1.1.4	Truth Tables of Compound Propositions	2
		1.1.5	Precedence of Logical Operations	2
		1.1.6	Logic and Bit Operations	2
	1.2	Applio	cations of Propositional Logic	2
		1.2.1	Introduction	2
		1.2.2	Translating English Sentences	2
		1.2.3	System Specifications	2
		1.2.4	Boolean Searches	2
		1.2.5	Logic Puzzles	2
		1.2.6	Logic Circuits	2
	1.3	Propo	sitional Equivalences	2
		1.3.1	Introduction	2
		1.3.2	Logical Equivalneces	2
		1.3.3	Using De Morgan's Laws	2
		1.3.4	Constructing New Logical Equivalences	2
		1.3.5	Propositional Satisfiability	2
		1.3.6	Applications of Satisfiability	2
		1.3.7	Solving Satisfiability Problems	2
	1.4	Predic	cates and Quantifiers	2
		1.4.1	Introduction	2
		1.4.2	Predicates	2
		1.4.3	Quantifiers	2
		1.4.4	Quantifiers with Restricted Domains	$\overline{2}$
		1.4.5	Precedence of Quantifiers	$\overline{2}$
		1.4.6	Binding Variables	$\overline{2}$

	1.4.7	Logical Equivalences Involving Quantifiers	2
	1.4.8	Negating Quantified Expressions	2
	1.4.9	Translating from English into Logical Expressions	2
	1.4.10	Using Quantifiers in System Specifications	2
	1.4.11	Examples from Lewis Carroll	2
	1.4.12	Logic Programming	2
1.5		d Quantifiers	2
	1.5.1	Introduction	2
	1.5.2	Understanding Statements Involving Nested Quantifiers	2
	1.5.3	The Order of Quantifiers	2
	1.5.4	Translating Mathematical Statements into Statements Involving Nested	
		Quantifiers	2
	1.5.5	Translating from Nested Quantifiers into English	2
	1.5.6	Translating English Sentences into Logical Expressions	2
	1.5.7	Negating Nested Quantifiers	2
1.6	Rules	of Inference	2
	1.6.1	Introduction	2
	1.6.2	Valid Arguments in Propositional Logic	2
	1.6.3	Rules of Inference for Propositional Logic	2
	1.6.4	Using Rules of Inference to Build Arguments	2
	1.6.5	Resolution	2
	1.6.6	Fallacies	2
	1.6.7	Rules of Inference for Qualtified Statements	2
	1.6.8	Combining Rules of Inference for Propositions and Quantified State-	
		ments	2
1.7	Introd	uction to Proofs	2
	1.7.1	Introduction	2
	1.7.2	Some Terminology	2
	1.7.3	Understanding How Theorems Are Stated	2
	1.7.4	Methods of Proving Theorems	2
	1.7.5	Direct Proofs	2
	1.7.6	Proof by Contraposition	2
	1.7.7	Proofs by Contradiction	2
	1.7.8	Mistakes in Proofs	2
	1.7.9	Just a Beginning	2
1.8	Proof	Methods and Strategy	2
	1.8.1	Introduction	2
	1.8.2	Exhaustive Proof and Proof by Cases	2
	1.8.3	Existence Proofs	2
	1.8.4	Uniqueness Proofs	2
	185	Proof Strategies	2

An Outline of Discrete Mathematics

		1.8.6	Looking for Counterexamples
		1.8.7	Proof Strategy in Action
		1.8.8	Tilings
		1.8.9	The Role of Open Problems
		1.8.10	Additional Proof Methods
2	Bas	ic Stru	actures: Sets, Functions, Sequences, Sums, and Matrices 3
	2.1		
		2.1.1	Introduction
		2.1.2	Venn Diagrams
		2.1.3	Subsets
		2.1.4	The Size of a Set
		2.1.5	Power Sets
		2.1.6	Cartesian Products
		2.1.7	Using Set Notation with Quantifiers
		2.1.8	Truth Sets and Quantifiers
	2.2	Set Op	perations
		2.2.1	Introduction
		2.2.2	Set Identities
		2.2.3	Generalized Unions and Intersections
		2.2.4	Computer Representation of Sets
	2.3	Functi	ons
		2.3.1	Introduction
		2.3.2	One-to-One and Onto Functions
		2.3.3	Inverse Functions and Compositions of Functions
		2.3.4	The Graphs of Functions
		2.3.5	Partial Functions
	2.4	Sequer	nces and Summations
		2.4.1	Introduction
		2.4.2	Sequences
		2.4.3	Recurrence Relations
		2.4.4	Special Integer Sequences
		2.4.5	Summations
	2.5	Cardin	nality of Sets
		2.5.1	Introduction
		2.5.2	Countable Sets
		2.5.3	An Uncountable Set
	2.6		es
		2.6.1	Introduction
		2.6.2	Matrix Arithmetic
		2.6.3	Transposes and Powers of Matrices

		2.6.4	Zero-One Matrices
3	\mathbf{Alg}	orithm	ıs
	3.1	Algori	ithms
		3.1.1	Introduction
		3.1.2	Searching Algorithms
		3.1.3	Sorting
		3.1.4	Greedy Algorithms
		3.1.5	The Halting Problem
	3.2	The G	Frowth of Functions
		3.2.1	Introduction
		3.2.2	Big-O Notation
		3.2.3	Big-O Estimates for Some Important Functions
		3.2.4	The Growth of Cobinations of Functions
		3.2.5	Big-Omega and Big-Theta Notation
	3.3	Comp	lexity of Algorithms
		3.3.1	Introduction
		3.3.2	Time Complexity
		3.3.3	Complexity of Matrix Multiplication
		3.3.4	Algorithmic Paradigms
		3.3.5	Understanding the Complexity of Algorithms
4	N T	ash an 7	Γheory and Cryptography
±	4.1		bility and Modular Arithmetic
	4.1	4.1.1	Introduction
		4.1.1	
		4.1.2	Division
		4.1.3	Modular Arithmetic
	4.2	4.1.5	Arithmetic Modulo m
	4.2	4.2.1	er Representation and Algorithms
		4.2.1	
		4.2.2	Representations of Integers
		4.2.3	
	4.9		Modular Exponentiation
	4.3		s and Greates Common Divisors
		4.3.1	Introduction
		4.3.2	Primes
		4.3.3	Trial Division
		4.3.4	The Sieve of Eratosthenes
		4.3.5	Conjectures and Open Problems About Primes
		4.3.6	Greatest Common Divisors and Least Common Multiples

An Outline of Discrete Mathematics

		4.3.7	The Euclidean Algorithm
	4.4	Solving	g Congruences
		4.4.1	Introduction
		4.4.2	Linear Congruences
		4.4.3	The Chinese Remainder Theorem
		4.4.4	Computer Arithmetic with Large Integers
		4.4.5	Fermat's Little Theorem
		4.4.6	Pseudoprimes
		4.4.7	Primitive Roots and Discrete Logarithms
	4.5	Applic	ations of Congruences
		4.5.1	Hashing Functions
		4.5.2	Pseudorandom Numbers
		4.5.3	Check Digits
	4.6	Crypto	graphy
		4.6.1	Introduction
		4.6.2	Classical Cryptography
		4.6.3	PublicKey Cryptography
		4.6.4	The RSA Cryptosystem
		4.6.5	RSA Encryption
		4.6.6	RSA Deryption
		4.6.7	RSA as a Public Key System
		4.6.8	Cryptographic Protocols
5	Indi	uction	and Recursion 9
_	5.1		matical Induction
		5.1.1	Introduction
		5.1.2	Mathematical Induction
		5.1.3	Why Mathematical Induction is Valid
		5.1.4	The Good and the Bad of Mathematical Induction
		5.1.5	Examples of Proofs by Mathematical Induction
		5.1.6	Mistaken Proofs By Mathematical Induction
		5.1.7	Guidelines for Proofs by Mathematical Induction
	5.2	Strong	Induction and Well-Ordering
		_	Introduction
		5.2.2	Strong Induction
		5.2.3	Examples of Proofs Using Strong Induction
		5.2.4	Using Strong Induction in Computation Geometry
		5.2.5	Proofs Using the Well-Ordered Property
	5.3		sive Definitions and Structural Induction
		5.3.1	Introduction
		5.3.2	Recursively Defined Functions

		5.3.3	Recursively Defined Sets and Structures	10
		5.3.4	Structural Induction	10
		5.3.5	Generalized Induction	10
	5.4	Recurs	sive Algorithms	10
		5.4.1	Induction	10
		5.4.2	Proving Recursive Algorithms Correct	10
		5.4.3	Recursion and Iteration	10
		5.4.4	The Merge Sort	10
	5.5	Progra	am Correctness	10
		5.5.1	Introduction	10
		5.5.2	Program Verification	10
		5.5.3	Rules of Inference	10
		5.5.4	Conditional Statements	10
		5.5.5	Loop Invariants	10
c	C	4		11
6	6.1	inting	toping of Counting	11
	0.1	6.1.1	Basics of Counting	12
		6.1.1		$\frac{12}{12}$
		6.1.2	Basic Counting Principles	
		6.1.3	More Complex Counting Problems	$\frac{12}{12}$
		6.1.4	The Subtraction Rule (Inclusion-Exclusion for Two Sets) The Division Rule	12
		6.1.6	Tree Diagrams	12
	6.2		rigeonhole Principle	12
	0.2	6.2.1	Introduction	12
		6.2.1	The Generalized Pigeonhole Principle	12
		6.2.2	Some Elegant Applications of the Pigeonhold Principle	12
	6.3		ntations and Combinations	12
	0.5	6.3.1	Introduction	12
		6.3.2	Permutations	12
		6.3.3	Combinations	12
	6.4		nial Coefficients and Indentities	12
	0.1	6.4.1	The Binomial Theorem	12
		6.4.2	Pascal's Identify and Triangle	12
		6.4.3	Other Identities Involving Binomial Coefficients	12
	6.5		alized Permutations and Combinations	12
	0.0	6.5.1	Introduction	12
		6.5.2	Permutations with Repetition	12
		6.5.2	Combinations with Repetition	12
		6.5.4	Permutations with Indistinguishable Objects	12
		6.5.4	Distribuing Objects into Boyes	12

	6.6	Genera	ating Permutations and Combinations
		6.6.1	Introduction
		6.6.2	Generating Permutations
		6.6.3	Generating Combinations
7	Disc	crete P	robability 13
	7.1	An Int	roduction to Discrete Probability
		7.1.1	Introduction
		7.1.2	Finite Probability
		7.1.3	Probabilities of Complements and Unions of Events
		7.1.4	Probabilistic Reasoning
	7.2	Probab	pility Theory
		7.2.1	Introduction
		7.2.2	Assigning Probabilities
		7.2.3	Probabilities of Complements and Unions of Events
		7.2.4	Conditional Probability
		7.2.5	Independence
		7.2.6	Bernoulli Trials and the Binomial Distribution
		7.2.7	Random Variables
		7.2.8	The Birthday Problem
		7.2.9	Monte Carlo Algorithms
		7.2.10	The Probabilistic Method
	7.3	Bayes'	Theorem
		7.3.1	Introduction
		7.3.2	Bayes' Theorem
		7.3.3	Bayesian Spam Filters
	7.4	Expect	ted Value and Variance
		7.4.1	Introduction
		7.4.2	Expected Values
		7.4.3	Linearity of Expectations
		7.4.4	Average-Case Computational Complexity
		7.4.5	The Geometric Distribution
		7.4.6	Independent Random Variables
		7.4.7	Variance
8	Adv	anced	Counting Techniques 15
	8.1	Applic	ation of Recurrence Relations
		8.1.1	Introduction
		8.1.2	Modeling With Recurrence Relations
		8.1.3	Algorithms and Recurrence Relations
	8.2		g Linear Recurrence Relations

		8.2.1	Introduction
		8.2.2	Solving Linear Homogeneous Recurrence Relations with Constant
			Coefficients
		8.2.3	Linear Nonhomogeneous Recurrence Relations with Constant Coef-
			ficients
	8.3	Divide	e-and-Conquer Algorithms and Recurrence Relations
		8.3.1	Introduction
		8.3.2	Divide-and-Conquer Recurrence Relations
	8.4	Gener	rating Functions
		8.4.1	Introduction
		8.4.2	Useful Facts About Power Series
		8.4.3	Counting Problems and Generating Functions
		8.4.4	Using Generating Functions to Solve Recurrence Relations 16
		8.4.5	Proving Indentities via Generating Functions
	8.5	Inclus	ion-Exclusion
		8.5.1	Introduction
		8.5.2	The Principle of Inclusion-Exclusion
	8.6	Applie	cations of Inclusion-Exclusion
		8.6.1	Introduction
		8.6.2	An Alternative Form of Inclusion-Exclusion
		8.6.3	The Sieve of Eratosthenes
		8.6.4	The Number of Onto Functions
		8.6.5	Derangements
9	Rel	ations	17
	9.1	Relati	ons and Their Properties
		9.1.1	Introduction
		9.1.2	Functions as Relations
		9.1.3	Relations on a Set
		9.1.4	Combining Relations
	9.2	n-ary	Relations and Their Applications
		9.2.1	Introduction
		9.2.2	<i>n</i> -ary Relations
		9.2.3	Databases and Relations
		9.2.4	Operations on <i>n</i> -ary Relations
		9.2.5	$\widehat{\mathrm{SQL}}$
	9.3	Repre	senting Relations
		9.3.1	Introduction
		9.3.2	Representing Relations Using Matrices
		9.3.3	Representing Relations Using Digraphs
	9.4		re of Relations

An Outline of Discrete Mathematics

		9.4.1	Introduction	18
		9.4.2	Closures	18
		9.4.3	Paths in Directed Graphs	18
		9.4.4	Transitive Closures	18
		9.4.5	Warshall's Algorithm	18
	9.5	Equiva	alence Relations	18
		9.5.1	Introduction	18
		9.5.2	Equivalence Relations	18
		9.5.3	Equivalence Classes	18
		9.5.4	Equivalence Classes and Partitions	18
	9.6	Partial	l Orderings	18
		9.6.1	Introduction	18
		9.6.2	Lexicographic Order	18
		9.6.3	Hasse Diagrams	18
		9.6.4	Maximal and Minimal Elements	18
		9.6.5	Lattices	18
		9.6.6	Topological Sorting	18
1 0		. 1		10
ΙU	Gra	-	a and Charle Madala	19 20
	10.1	-	s and Graph Models	20
	10.9		Graph Models	20
	10.2	_	Terminology and Special Types of Graphs	
			Introduction	20
			Basic Terminology	20
			Bipartite Graphs	20
			Bipartite Graphs and Matchings	20
			Some Applications of Special Types of Graphs	20
	10.9		New Graphs from Old	20
	10.3	_	senting Graphs and Graph Isomorphism	20
			Introduction	20
			Representing Graphs	20
			Adjacency Matrices	20
			Incidence Matrices	20
	10.4		Determing whether Two Simple Graphs are Isomorphic	20
	10.4	Conne	U	20
			Introduction	20
			Paths	20
			Connectedness in Unidirected Graphs	20
			How Connected is a Graph?	20
			Connectedness in Directed Graphs	20
		10.4.6	Paths and Isomorphism	20

		10.4.7 Counting Paths Between Vertices	0
	10.5	Euler and Hamilton Paths	0
		10.5.1 Introduction	0
		10.5.2 Euler Paths and Circuits	0
		10.5.3 Hamilton Paths and Circuits	0
		10.5.4 Applications of Hamilton Circuits	0
	10.6	Shortest-Path Problems	0
		10.6.1 Introduction	0
		10.6.2 A Shortest-Path Algorithm	0
		10.6.3 The Traveling Salesperson Problem	0
	10.7	Planar Graphs	0
		10.7.1 Introduction	0
		10.7.2 Kuratowski's Theorem	0
	10.8	Graph Coloring	0
		10.8.1 Introduction	0
		10.8.2 Applications of Graph Colorings	0
11	Tree	-	
	11.1	Introduction to Trees	
		11.1.1 Rooted Trees	
		11.1.2 Trees as Models	
		11.1.3 Properties of Trees	
	11.2	Applications of Trees	
		11.2.1 Introduction	
		11.2.2 Binary Search Trees	
		11.2.3 Decision Trees	
		11.2.4 Game Trees	
	11.3	Tree Traversal	
		11.3.1 Introduction	
		11.3.2 Universal Address Systems	
		11.3.3 Traversal Algorithms	
		11.3.4 Infix, Prefix, and Postfix Notation	
	11.4	Spanning Trees	
		11.4.1 Introduction	
		11.4.2 Depth-First Search	
		11.4.3 Breadth-First Search	
		11.4.4 Backtracking Applications	
		11.4.5 Depth-First Search in Directed Graphs	
	11.5	Minimum Spanning Trees	
		11.5.1 Introduction	
		11.5.2 Algorithms for Minimum Spanning Trees	2

12	Boo	lean A	lgebra 23
	12.1	Boolea	n Functions
		12.1.1	Introduction
		12.1.2	Boolean Expressions and Boolean Functions
		12.1.3	Identities of Boolean Algebra
		12.1.4	Duality
		12.1.5	The Abstract Definition of a Boolean Algebra
	12.2	Repres	enting Boolean Functions
		12.2.1	Sum-of-Products Expansions
		12.2.2	Functional Completeness
	12.3	Logic (Gates $\ldots \ldots \ldots$
		12.3.1	Introduction
		12.3.2	Combinations of Gates
		12.3.3	Examples of Circuits
		12.3.4	Adders
	12.4		ization of Circuits
		12.4.1	Introduction
		12.4.2	Karnaugh Maps
		12.4.3	Don't Care Conditions
		12.4.4	The Quine-McCluskey Method
12	Mod	loling	Computation 25
10		_	ages and Grammars
	13.1	_	Introduction
			Phrase-Structure Grammars
			Types of Phrase-Structure Grammars
			Derivation Trees
			Backus-Naur Form
	199		State Machines with Output
	13.2		Introduction
			Finite-State Machines with Outputs
	122		State Machines with No Output
	13.3		Introduction
			Set of Strings
			Finite-State Automata
			Language Recognition by Finite-State Machines
			Nondeterministic Finite-State Automata
	19 /		
	10.4	_	age Recognition
		12/11	
			Kleene's Theorem

	13.4.4	More Powerful Types of Machines	26
13.5	Turing	Machines	26
	13.5.1	Introduction	26
	13.5.2	Definition of Turing Machines	26
	13.5.3	Using Turing Machines to Recognize Sets	26
	13.5.4	Computing Functions with Turing Machines	26
	13.5.5	Different Types of Turing Machines	26
	13.5.6	The Church-Turing Thesis	26
	13.5.7	Computational Complexity, Computability, and Decidability	26

The Foundations: Logic and Proofs

1.1	Prop	ositional	Logic
т.т	TIOP	obitional	Logic

- 1.1.1 Introduction
- 1.1.2 Propositions
- 1.1.3 Conditional Statements
- 1.1.4 Truth Tables of Compound Propositions
- 1.1.5 Precedence of Logical Operations
- 1.1.6 Logic and Bit Operations

1.2 Applications of Propositional Logic

- 1.2.1 Introduction
- 1.2.2 Translating English Sentences
- 1.2.3 System Specifications
- 1.2.4 Boolean Searches
- 1.2.5 Logic Puzzles
- 1.2.6 Logic Circuits

1.3 Propositional Equivalences

- 1.3.1 Introduction
- 1.3.2 Logical Equivalneces
- 1.3.3 Using De Morgan's Laws
- 1.3.4 Constructing New Logical Equivalences
- 1.3.5 Propositional Satisfiability
- 1.3.6 Applications of Satisfiability
- 1.3.7 Solving Satisfiability Problems

1.4 Predicates and Quantifiers

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

0 1	α
2.1	Sets

2.1.1 Introduction

Definition of Set

Notation for Common Sets

Definition of Set Equality

The Empty Set

- 2.1.2 Venn Diagrams
- 2.1.3 Subsets

Definition of Subset

2.1.4 The Size of a Set

Definition of Set Cardinality

- 2.1.5 Power Sets
- 2.1.6 Cartesian Products
- 2.1.7 Using Set Notation with Quantifiers
- 2.1.8 Truth Sets and Quantifiers

2.2 Set Operations

- 2.2.1 Introduction
- 4 2.2.2 Set Identities
- 2.2.3 Generalized Unions and Intersections
- 2.2.4 Computer Representation of Sets
- 2.3 Functions
- 2.3.1 Introduction

Algorithms

3.1	Algorithms
3.1.1	Introduction
3.1.2	Searching Algorithms
3.1.3	Sorting
3.1.4	Greedy Algorithms
3.1.5	The Halting Problem
3.2	The Growth of Functions
3.2.1	Introduction
3.2.2	Big-O Notation
3.2.3	Big-O Estimates for Some Important Functions
3.2.4	The Growth of Cobinations of Functions
3.2.5	Big-Omega and Big-Theta Notation
3.3	Complexity of Algorithms
3.3.1	Introduction
3.3.2	Time Complexity
3.3.3	Complexity of Matrix Multiplication
3.3.4	Algorithmic Paradigms
3.3.5	Understanding the Complexity of Algorithms

Number Theory and Cryptography

4.1 Divisibility and Modular Arithme

- 4.1.1 Introduction
- 4.1.2 Division
- 4.1.3 The Division Algorithm
- 4.1.4 Modular Arithmetic
- 4.1.5 Arithmetic Modulo m

4.2 Integer Representation and Algorithms

- 4.2.1 Introduction
- 4.2.2 Representations of Integers
- 4.2.3 Algorithms for Integer Operations
- 4.2.4 Modular Exponentiation

4.3 Primes and Greates Common Divisors

- 4.3.1 Introduction
- 4.3.2 **Primes**
- 4.3.3 Trial Division
- 4.3.4 The Sieve of Eratosthenes
- 4.3.5 Conjectures and Open Problems About Primes
- 4.3.6 Greatest Common Divisors and Least Common Multiples
- $\overset{8}{4.3.7}$ The Euclidean Algorithm

4.4 Solving Congruences

- 4.4.1 Introduction
- 4.4.2 Linear Congruences
- 4.4.3 The Chinese Remainder Theorem

Induction

5.4.1

Induction and Recursion

5.1	Mathematical Induction
5.1.1	Introduction
5.1.2	Mathematical Induction
5.1.3	Why Mathematical Induction is Valid
5.1.4	The Good and the Bad of Mathematical Induction
5.1.5	Examples of Proofs by Mathematical Induction
5.1.6	Mistaken Proofs By Mathematical Induction
5.1.7	Guidelines for Proofs by Mathematical Induction
5.2	Strong Induction and Well-Ordering
5.2.1	Introduction
5.2.2	Strong Induction
5.2.3	Examples of Proofs Using Strong Induction
5.2.4	Using Strong Induction in Computation Geometry
5.2.5	Proofs Using the Well-Ordered Property
5.3	Recursive Definitions and Structural Induction
5.3.1	Introduction
5.3.2	Recursively Defined Functions
5.3.3	Recursively Defined Sets and Structures
${f 5.3.4}$	Structural Induction
5.3.5	Generalized Induction
5 1	Recursive Algorithms

Proving Recursive Algorithms Correct

Counting

6.1	The Basics of Counting
6.1.1	Introduction
6.1.2	Basic Counting Principles
6.1.3	More Complex Counting Problems
6.1.4	The Subtraction Rule (Inclusion-Exclusion for Two Sets)
6.1.5	The Division Rule
6.1.6	Tree Diagrams
6.2	The Pigeonhole Principle
6.2.1	Introduction
6.2.2	The Generalized Pigeonhole Principle
6.2.3	Some Elegant Applications of the Pigeonhold Principle
6.3	Permutations and Combinations
6.3.1	Introduction

- 6.3.2 Permutations
- 6.3.3 Combinations
- 6.4 Binomial Coefficients and Indentities
- 6.4.1 The Binomial Theorem
- 6,4.2 Pascal's Identify and Triangle
- 6.4.3 Other Identities Involving Binomial Coefficients
- 6.5 Generalized Permutations and Combinations
- 6.5.1 Introduction
- 6.5.2 Permutations with Repetition
- 6.5.3 Combinations with Repetition

Discrete Probability

7.1 An Introduction to Discrete Probabili	7.1	An Introduction	n to Discrete	Probability
---	-----	-----------------	---------------	-------------

- 7.1.1 Introduction
- 7.1.2 Finite Probability
- 7.1.3 Probabilities of Complements and Unions of Events
- 7.1.4 Probabilistic Reasoning

7.2 Probability Theory

- 7.2.1 Introduction
- 7.2.2 Assigning Probabilities
- 7.2.3 Probabilities of Complements and Unions of Events
- 7.2.4 Conditional Probability
- 7.2.5 Independence
- 7.2.6 Bernoulli Trials and the Binomial Distribution
- 7.2.7 Random Variables
- 7.2.8 The Birthday Problem
- 7.2.9 Monte Carlo Algorithms
- 7.2.10 The Probabilistic Method

7.3 Bayes' Theorem

- 7.3.1 Introduction
- 14 7.3.2 Bayes' Theorem
- 7.3.3 Bayesian Spam Filters

7.4 Expected Value and Variance

- 7.4.1 Introduction
- 7.4.2 Expected Values

Advanced Counting Techniques

8.1 Application of Recurrence Relat

- 8.1.1 Introduction
- 8.1.2 Modeling With Recurrence Relations
- 8.1.3 Algorithms and Recurrence Relations
- 8.2 Solving Linear Recurrence Relations
- 8.2.1 Introduction
- 8.2.2 Solving Linear Homogeneous Recurrence Relations with Constant Coefficients
- 8.2.3 Linear Nonhomogeneous Recurrence Relations with Constant Coefficients
- 8.3 Divide-and-Conquer Algorithms and Recurrence Relations
- 8.3.1 Introduction
- 8.3.2 Divide-and-Conquer Recurrence Relations
- 8.4 Generating Functions
- 8.4.1 Introduction
- 8.4.2 Useful Facts About Power Series
- 8.4.3 Counting Problems and Generating Functions
- 864.4 Using Generating Functions to Solve Recurrence Relations
- 8.4.5 Proving Indentities via Generating Functions
- 8.5 Inclusion-Exclusion
- 8.5.1 Introduction
- 8.5.2 The Principle of Inclusion-Exclusion
- 8.6 Applications of Inclusion-Exclusion

Relations

9.1	Relations and Their Properties
9.1.1	Introduction
9.1.2	Functions as Relations
9.1.3	Relations on a Set
9.1.4	Combining Relations
9.2	n-ary Relations and Their Applications
9.2.1	Introduction
9.2.2	n-ary Relations
9.2.3	Databases and Relations
9.2.4	Operations on <i>n</i> -ary Relations
9.2.5	SQL

9.3 Representing Relations

- 9.3.1 Introduction
- $9.3.2 \quad \text{Representing Relations Using Matrices}$
- 9.3.3 Representing Relations Using Digraphs

9.4 Closure of Relations

- 9.4.1 Introduction
- 984.2 Closures
- 9.4.3 Paths in Directed Graphs
- 9.4.4 Transitive Closures
- 9.4.5 Warshall's Algorithm
- 9.5 Equivalence Relations
- 9.5.1 Introduction

Graphs

10.4.6

10.4.7

Paths and Isomorphism

Counting Paths Between Vertices

10.1	Graphs and Graph Models
10.1.1	Graph Models
10.2	Graph Terminology and Special Types of Graphs
10.2.1	Introduction
10.2.2	Basic Terminology
10.2.3	Bipartite Graphs
10.2.4	Bipartite Graphs and Matchings
10.2.5	Some Applications of Special Types of Graphs
10.2.6	New Graphs from Old
10.3	Representing Graphs and Graph Isomorphism
10.3.1	Introduction
10.3.2	Representing Graphs
10.3.3	Adjacency Matrices
10.3.4	Incidence Matrices
10.3.5	Determing whether Two Simple Graphs are Isomorphic
10.4	Connectivity
10.4.1	Introduction
10.4.2	Paths
10.4.3	Connectedness in Unidirected Graphs
10.4.4	How Connected is a Graph?
10.4.5	Connectedness in Directed Graphs

Trees

11.5.1

11.5.2

Introduction

11.1	Introduction to Trees
11.1.1	Rooted Trees
11.1.2	Trees as Models
11.1.3	Properties of Trees
11.2	Applications of Trees
11.2.1	Introduction
11.2.2	Binary Search Trees
11.2.3	Decision Trees
11.2.4	Game Trees
11.3	Tree Traversal
11.3.1	Introduction
11.3.2	Universal Address Systems
11.3.3	Traversal Algorithms
11.3.4	Infix, Prefix, and Postfix Notation
11.4	Spanning Trees
11.4.1	Introduction
11.4.2	Depth-First Search
11.4.3	Breadth-First Search
11.4.4	Backtracking Applications
11.4.5	Depth-First Search in Directed Graphs
11.5	Minimum Spanning Trees

Algorithms for Minimum Spanning Trees

Boolean Algebra

 $\frac{1}{24}$.4.3 Don't Care Conditions

The Quine-McCluskey Method

12.4.4

12.1	Boolean Functions
12.1.1	Introduction
12.1.2	Boolean Expressions and Boolean Functions
12.1.3	Identities of Boolean Algebra
12.1.4	Duality
12.1.5	The Abstract Definition of a Boolean Algebra
12.2	Representing Boolean Functions
12.2.1	Sum-of-Products Expansions
12.2.2	Functional Completeness
12.3	Logic Gates
12.3.1	Introduction
12.3.2	Combinations of Gates
12.3.3	Examples of Circuits
12.3.4	Adders
12.4	Minimization of Circuits
12.4.1	Introduction
12.4.2	Karnaugh Maps

13.5.1 Introduction

13.5.2 Definition of Turing Machines

Modeling Computation

13.1	Languages and Grammars
13.1.1	Introduction
13.1.2	Phrase-Structure Grammars
13.1.3	Types of Phrase-Structure Grammars
13.1.4	Derivation Trees
13.1.5	Backus-Naur Form
13.2	Finite-State Machines with Output
13.2.1	Introduction
13.2.2	Finite-State Machines with Outputs
13.3	Finite-State Machines with No Output
13.3.1	Introduction
13.3.2	Set of Strings
13.3.3	Finite-State Automata
13.3.4	Language Recognition by Finite-State Machines
13.3.5	Nondeterministic Finite-State Automata
13.4	Language Recognition
13.4.1	Introduction
$\frac{1}{2}$ 3.4.2	Kleene's Theorem
13.4.3	Regular Sets and Regular Grammars
13.4.4	More Powerful Types of Machines
13.5	Turing Machines