The waveguide eigenvalue problem and Tensor infinite Arnoldi

Giampaolo Mele

KTH Royal Institute of technology Dept. Math, Numerical analysis group

21 September 2015

Joint work with Elias Jarlebring and Olof Runborg

Workshop on Matrix Equations and Tensor Techniques Bologna University The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

imulations

Outline

► WEP: Waveguide Eigenvalue Problem

► TIAR: Tensor infinite Arnoldi

► Specialization of TIAR to WEP and numerical simulations

The waveguide eigenvalue problem and Tensor infinite Arnoldi

Giampaolo Mele

WEP

TIAR

ombination

imulations

WEP: the waveguide

eigenvalue problem

Helmholtz equation (single-periodic coefficients):

$$\Delta u(x,z) + \kappa(x,z)^2 u(x,z) = 0 \text{ when } (x,z) \in \mathbb{R} \times \mathbb{R}$$

 $u(x,\cdot) \to 0 \text{ as } x \to \pm \infty$

- $\blacktriangleright \kappa(x,z)$ periodic z-direction.
- $\blacktriangleright \ \kappa(x,z)$ constant for $(x,z) \not\in [x_-,x_+] \times \mathbb{R}$.

Some related computational works: [Tausch, Butler '02], [Engström, Hafner, Schmidt '09, Engström '10], [Schmidt, Hiptmair '13], [Spence, Poulton '05], [Cox, Stevens '99], ...

and Tensor infinite Arnoldi Giampaolo Mele

The waveguide eigenvalue problem

WEF

Cimulatiana

Conclusi

We look for normal modes (Bloch solutions)

$$u(x,z) = e^{\lambda z}v(x,z)$$

 $v(x,z) = v(x,z+1) \Rightarrow$

Periodic PDE-eigenvalue problem on a strip

Find $v \in \mathcal{C}^1(\mathbb{R} \times [0,1],\mathbb{R})$ and λ such that:

$$\Delta v + 2\lambda v_z + (\lambda^2 + \kappa(x, z)^2)v = 0$$

$$v(\cdot, z) \rightarrow 0 \text{ as } x \rightarrow \pm \infty$$

$$v(x, z) = v(x, z + 1)$$

Solutions of most interest: $\lambda \in \mathbb{C}_{-}$ close to imaginary axis.

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

imulations

Absorbing boundary conditions

DtN equivalence

Under generic conditions, equivalent in a weak sense

- (i) A solution to PDE-eigenvalue problem on strip.
- (ii) A solution to

$$\begin{array}{lcl} \Delta v + 2\lambda v_z + (\lambda^2 + \kappa(x,z)^2)v & = & 0, \ (x,z) \in [x_-,x_+] \times [0,1] \\ & v(x,z) & = & v(x,z+1) \\ & v_x(x_-,\cdot) & = & \mathcal{T}_{-,\lambda}(v(x_-,\cdot)) \\ & v_x(x_+,\cdot) & = & \mathcal{T}_{+,\lambda}(v(x_+,\cdot)) \end{array}$$
 For formalized weak-sense formulation in preprint

Dirichlet-to-Neumann maps in Fourier space:

$$\mathcal{T}_{\pm,\lambda}\left(\sum_{k=-\infty}^{\infty}a_{\pm,k}e^{i2\pi kz}\right)=\sum_{k=-\infty}^{\infty}s_{\pm,k}(\lambda)a_{\pm,k}e^{i2\pi kz}.$$

where
$$s_{\pm,k} = \rho_k \sqrt{((\lambda + 2i\pi k) + i\kappa_{\pm})((\lambda + 2i\pi k) - i\kappa_{\pm})}$$

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

ombination

nulations

Discretization in the interior with FEM and truncation of DtN

A particular type of FEM discretization leads to

$$M(\lambda)v = \begin{pmatrix} Q(\lambda) & C_1(\lambda) \\ C_2^T & R^H P(\lambda)R \end{pmatrix} v = 0$$

$$ightharpoonup Q(\lambda) = A_0 + A_1 \lambda + A_2 \lambda^2$$

 A_i sparse

•
$$C_1(\lambda) = C_{1,0} + C_{1,1}\lambda + C_{1,2}\lambda^2$$

 $C_{1,i}$ sparse

► R corresponds to FFT

$$P(\lambda) = \operatorname{diag}(s_{-,-p}(\lambda), \dots, s_{-,p}(\lambda), s_{+,-p}(\lambda), \dots, s_{+,p}(\lambda))$$

•
$$s_{\pm,k}(\lambda) = \rho_k \sqrt{((\lambda + 2i\pi k) + i\kappa_{\pm})((\lambda + 2i\pi k) - i\kappa_{\pm})}$$
.

$$ightharpoonup Q(\lambda) \in \mathbb{C}^{n \times n}$$
 and $P(\lambda) \in \mathbb{R}^{\sqrt{n} \times \sqrt{n}}$

n =discretization parameter

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

mulations

The nonlinear eigenvalue problem

Find $\lambda \in \mathbb{C}$, $v \neq 0$ such that

$$M(\lambda)v=0$$

where M analytic in a disk $\Omega \subset \mathbb{C}$.

Selection of interesting works

[Ruhe '73], [Mehrmann, Voss '04], [Lancaster '02],

[Tisseur, et al. '01], [Voss '05], [Unger '50], [Mackey, et al. '09],

[Kressner '09], [Bai, et al. '05], [Meerbergen '09], [Breda, et al.

'06], [Betcke, et al. '04, '10], [Asakura, et a. '10], [Beyn '12],

. . .

[Szyld, Xue '13], [Hochstenbach, et al. '08], [Neumaier '85],

[Gohberg, et al. '82], [Effenberger '13], [Van Beeumen, et al '15]

The waveguide eigenvalue problem and Tensor infinite Arnoldi

Giampaolo Mele

TIAR

TIAR: tensor infinite Arnoldi

Properties / features of infinite Arnoldi method

- ▶ Equivalent to Arnoldi's method on a companion matrix, for any truncation parameter N with N > k
- lacktriangleright Equivalent to Arnoldi's method on an operator ${\cal B}$
- ► Reliability
- ► Convergence theory
- ▶ Requires adaption of computation of y_0 . For Taylor version:

$$y_0 = M(\hat{\lambda})^{-1}(M'(\hat{\lambda})x_1 + \cdots + M^{(k)}(\hat{\lambda})x_k)$$

► Complexity of orthogonalization at step k: $O(k^2n)$

Described in: [Jarlebring, et al. '11, '12, '15]

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

ombination

mulations

Observation: The basis matrix has a structure

The waveguide eigenvalue problem and Tensor infinite

Theorem (Implicit representation of the basis matrix [Jarlebring, M., Runborg '15])

There exists $Z = [z_1, \ldots, z_k] \in \mathbb{C}^{n \times k}$ and tensor $[a_{i,j,\ell}]_{i,j,\ell=1}^k$, such that the blocks in the basis matrix generated by k steps of infinite Arnoldi method can factorized as

$$v_{i,j} = \sum_{\ell=1}^k a_{i,j,k} z_k.$$

WEP

ΓIAR

Combination

Simulations

Observation: The basis matrix has a structure

There exists $Z = [z_1, \ldots, z_k] \in \mathbb{C}^{n \times k}$ and tensor $[a_{i,j,\ell}]_{i,j,\ell=1}^k$, such that the blocks in the basis matrix generated by k steps of infinite Arnoldi method can factorized as

$$v_{i,j} = \sum_{\ell=1}^{\kappa} a_{i,j,k} z_k.$$

eigenvalue problem and Tensor infinite Arnoldi Giampaolo

Giampaolo Mele

The waveguide

WEP

TIAR

Combination

Simulations

Observation: The basis matrix has a structure

There exists $Z = [z_1, \ldots, z_k] \in \mathbb{C}^{n \times k}$ and tensor $[a_{i,j,\ell}]_{i,j,\ell=1}^k$, such that the blocks in the basis matrix generated by k steps of infinite Arnoldi method can factorized as

$$v_{i,j} = \sum_{\ell=1}^{K} a_{i,j,k} z_k.$$

eigenvalue problem and Tensor infinite Arnoldi

The waveguide

Giampaolo Mele

WEP

TIAR

Combination

Simulations

Key ideas of TIAR

- ▶ Rephrase IAR using implicit representation of basis matrix as a $Z \in \mathbb{C}^{n \times k}$ and $[a_{i,j,\ell}]_{i,j,\ell=1}^k$.
- ightharpoonup Maintain orthogonality of Z for numerical stability

TIAR vs IAR

- ► TIAR involves less memory $\mathcal{O}(nm^2)$ vs. $\mathcal{O}(nm)$,
- ► Complexity for m steps: $\mathcal{O}(nm^3)$ for both,
- ► TIAR involves less data and is much faster due to modern CPU-caching issues

The waveguide eigenvalue problem and Tensor infinite Arnoldi

Giampaolo Mele

WEP

TIAR

Combination

Simulations

Other literature with compact representations

➤ **TOAR**: [Zhang, Su, '13] Quadratic eigenvalue problem

$$M(\lambda) = A_0 + \lambda A_1 + \lambda^2 A_2$$

generalization of TOAR [Kressner, Roman '14]
 Polynomial eigenvalue problem

$$M(\lambda) = A_0 + \lambda A_1 + \lambda^2 A_2 + \dots + \lambda^d A_d$$

► CORK: [V. Beeumen, et al '15]
Rational Krylov applied to (eventually growing)
linearization of the NEP

TIAR is different in many ways: algorithm, derivation, application focus, extension to infinity, applicability to the WEP, . . .

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

imulations

Specialization of TIAR to

WEP and numerical

simulations

Recall WFP:

$$M(\lambda) = \begin{pmatrix} Q(\lambda) & C_1(\lambda) \\ C_2^T & R^H P(\lambda) R \end{pmatrix}$$

and $Q(\lambda) = A_0 + A_1\lambda + A_2\lambda^2$ and $C_1(\lambda) = C_{1,0} + C_{1,1}\lambda + C_{1,2}\lambda^2$

 $P(\lambda) = \operatorname{diag}(s_{-1-p}(\lambda), \dots, s_{-p}(\lambda), s_{+1-p}(\lambda), \dots, s_{+p}(\lambda))$

$$s_{\pm,k}(\lambda) = \rho_k \sqrt{((\lambda + 2i\pi k) + i\kappa_{\pm})((\lambda + 2i\pi k) - i\kappa_{\pm})}.$$

Bad news: $\mathcal{O}(\sqrt{n})$ branch-point singularities **Good news:** All singularities are on $i\mathbb{R}$

Solution

Cayley transformation brings all singularities to unit circle. Apply algorithm to Cayley transformed problem.

and Tensor infinite Arnoldi Giampaolo Mele

The waveguide eigenvalue problem

Combination

In order to implement IAR or TIAR: We need an efficient way to compute

$$y_0 = M(0)^{-1}(M'(0)x_1 + \cdots + M^{(k)}(0)x_k)$$

Compute by exploiting structure

- ▶ Derivatives of $\sqrt{a\lambda^2 + b\lambda + c}$ after Cayley transformation computable with Gegenbauer polynomials (inspired by [Tausch, Butler 02'])
- ▶ Use FFT-for dense (2,2)-block
- ► Higher order derivatives have $\mathcal{O}(\sqrt{n})$ non-zero elements (reduces dominant $\mathcal{O}(n)$ -term to $\mathcal{O}(\sqrt{n})$)
- ► Use Schur complement and LU-factorization of (1, 1)-block

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

imulations

Numerical experiments

Simulations for a (more difficult) variant of the waveguide in [Tausch, Butler '02]

One of the eigenfunctions of interest

Largest problem with our approach: $n \approx 10^7$.

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

Simulations

			CPU time		storage of Q_m	
n	n _×	nz	IAR	WTIAR	IAR	TIAR
462	20	21	8.35 secs	2.58 secs	35.24 MB	7.98 MB
1,722	40	41	28.90 secs	2.83 secs	131.38 MB	8.94 MB
6,642	80	81	1 min and 59 secs	4.81 secs	506.74 MB	12.70 MB
26,082	160	161	8 mins and 13.37 secs	13.9 secs	1.94 GB	27.52 MB
103,362	320	321	out of memory	45.50 secs	out of memory	86.48 MB
411,522	640	641	out of memory	3 mins and 30.29 secs	out of memory	321.60 MB
1,642,242	1280	1281	out of memory	15 mins and 20.61 secs	out of memory	1.23 GB

Using different computer: n = 9,009,002, several hours CPU-time.

CONCLUSIONS

New contributions

- A structured discretization of a waveguide eigenvalue problem (WEP)
- ► A new algorithm: TIAR
- Specialization of TIAR to WEP

Online material:

► Preprint:

http://arxiv.org/abs/1503.02096

► Software:

http://www.math.kth.se/~gmele/waveguide

The waveguide eigenvalue problem and Tensor infinite Arnoldi

> Giampaolo Mele

WEP

TIAR

Combination

imulations