Учреждение образования Республики Беларусь

«Гомельский государственный технический университет им П. О. Сухого»

Кафедра «Физика и электротехника»

Лабораторная работа № 2-10

Определение величины гиромагнитного отношения $\left(\frac{e}{m}\right)$ электрона

Выполнил:

студент группы РТ-11

Васильев И. С.

Принял преподаватель

Ревенок М. А.

Цель работы:

- Изучить законы движения заряженной частицы в электрическом и магнитном полях.
- 4) Определить величину гиромагнитного отношения $\left(\frac{e}{m}\right)$ для электрона.

Приборы и принадлежности: панель с лампой «коаксиальный диод», короткий соленоид, два источника питания УИП-2, соединительные провода и кабель.

Порядок выполнения работы

1. Подключить панель с лампой и короткий соленоид к универсальным источникам напряжения УИП-2, как показано на рис.10

- 2. Включить оба источника питания, предварительно установив все ручки регулировки напряжения в крайнее левое положение.
- 3. Ручками ступенчатой и плавной регулировки напряжения УИП-2-1 установить заданное преподавателем анодное напряжение на лампе U_a , а затем переключить измерительный прибор на измерение анодного тока I_a .
- 4. Изменяя ток соленоида I_c от 0 до 250 мА (УИП-2-2) измерить анодный ток лампы. Результаты измерений занести в таблицу 1.

Таблица 1

№ п/п	1	2	3	4	5	6	7	8	9	10
$I_{\rm c}$, MA										
I _a , MA								1		

- 5. Построить график зависимости анодного тока лампы от силы тока в соленоиде ($I_a = f(I_c)$). Найти на графике точку перегиба и определить по ней значение критического тока в соленоиде $I_{\rm c\ \kappa p}$ (рис. 9).
- 6. По градуировочному графику $B=f(I_c)$ найти критическое значение индукции магнитного поля $B_{\rm кp}$. По формуле (17) вычислить величину удельного заряда электрона, приняв $r_{\rm k}$ =0,95мм, $R_{\rm a}$ =9,5 мм.
- 7. Рассчитать погрешности определения удельного заряда электрона $\left(\frac{e}{m}\right)$.

Таблица 1

№ п/п	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I_c , мА	0	40	80	120	140	130	150	160	170	180	190	200	210	220
I_a , мА	60	60	60	60	56	56	56	54	41	29	25	20	20	20

1 дел.=10 мА.

U=230 Вольт.

Согласно графику $B = f(I_c)$: $B_{\rm kp} = 7.80 \cdot 10^{-3} {\rm Tm}$

$$B_{\rm Kp} = 7.80 \cdot 10^{-3}$$
 Тл

Удельный заряд электрона:
$$\frac{|e|}{m} = \frac{8U_a}{R_a^2 \cdot B_{\mathrm{Kp}}^2 \left(1 - \frac{r_k^2}{R_a^2}\right)} = \frac{8 \cdot 230}{0.0095^2 \cdot 7.80 \cdot 10^{-6} \left(1 - \frac{0.00095^2}{0.0095^2}\right)} = 3.28 \cdot 10^{11} \frac{\mathrm{K}}{\mathrm{Kr}}$$