Computational Systems Biology

UniShare

Davide Cozzi @dlcgold

Indice

1	Introduzione	2
2	Introduzione alla modellistica	3

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Capitolo 2

Introduzione alla modellistica

Per descrivere sistemi biologici complessi si hanno vari tipi di modelli.

Kitano (il "padre" di quest'ambito), nel 2002, disse che per capire i sistemi biologici complessi bisogna integrare risultati sperimentali e metodi computazionali, ottenendo quindi la vera e propria **Systems Biology**. Tramite l'interazione di vari componenti si ottengono tali sistemi.

Weston, nel 2004, ha aggiunto l'importanza dello studio delle interazioni e delle regolazioni tra i vari componenti del sistema, studiando le risposte alla genetica o alle perturbazioni ambientali, al fine di capire nuove proprietà del sistema.

Ideker (altro "padre" di quest'ambito), già nel 2001, aveva definito la System Biology come l'integrazione dei dati sperimentali con i modelli matematici che descrivono componenti e interazioni, al fine di simulare il comportamento complessivo "in silico".

Ai meotdi standard della biologia quindi si aggiungono le teorie informatiche/matematiche/fisiche/chimiche.