36-724 Spring 2006: Cross-Validation vs. Bootstrapping

Brian Junker

April 5a, 2006

- Quick Review of *K*-Fold Cross-Validation
- Simple Bootstrap Cross-Validation
- Leave-one-out Bootstrap Cross-Validation
- The .632 Bootstrap

Quick Review of *K***-Fold Cross-Validation**

- Divide up the data into *K* roughly-equal-sized parts.
- Let $\hat{f}(x)^{-k}$ be the fitted value (classification, prediction, etc.) for x with the k^{th} part of the data removed, and let k(i) be the part of the data containing x_i .
- Then the *K*-fold cross-validation criterion is

$$CV = \frac{1}{N} \sum_{i=1}^{N} L(y, \hat{f}^{-k(i)}(x_i))$$

where $L(y, \hat{y})$ is some appropriate loss function [e.g. $L(y, \hat{y}) = (y - \hat{y})^2$, if we are interested in (E)MSE].

- Bias-variance tradeoff in estimating error with CV:
 - K large: lower bias (large training sets), higher variance (training sets similar)
 - K small: higher bias (small training sets), lower variance (training sets less similar)

Simple Bootstrap Cross-Validation

A simple bootstrap prediction error could be constructed as follows:

• Let the original data set be

$$S = \begin{cases} y_1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ y_N & x_{N1} & \cdots & x_{Np} \end{cases}$$

• Draw bootstrap samples S_b , b = 1, ..., B, where

$$S_b = \begin{cases} y_1^{*b} & x_{11}^{*b} & \cdots & x_{1p}^{*b} \\ \vdots & \vdots & \ddots & \vdots \\ y_N^{*b} & x_{N1}^{*b} & \cdots & x_{Np}^{*b} \end{cases}$$

- From each bootstrap sample S_b train our model $\hat{f}^{*b}(x)$.
- Compute

$$\widehat{\text{Err}}_{boot} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

Problem: The "full data set" act like the test set (generates y_i 's), and the "bootstrap samples" act like training sets (generate $\hat{f}^{*b}(x_i)$'s).

- When $(y_i, x_i) \notin S_b$, the term $\sum_{i=1}^N L(y_i, \hat{f}^{*b}(x_i))$ looks like cross-validation error;
- When $(y_i, x_i) \in S_b$, the term $\sum_{i=1}^N L(y_i, \hat{f}^{*b}(x_i))$ looks like training-set error.

Since S_b 's are created by sampling with replacement from S

$$P[(y_i, x_i) \in S_b] = 1 - (1 - \frac{1}{N})^N \approx 1 - e^{-1} \approx 0.632$$
,

Err_{boot} can be considerably biased downward.

Leave-one-out Bootstrap Cross-Validation

A bootstrap error estimate that tries to fix the problem is the "leave-one-out" bootstrap,

$$\widehat{\text{Err}}^{(1)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \hat{f}^{*b}(x_i))$$

where $C^{-i} = \{b : (y_i, x_i) \notin S_b\}$. Note that

- The average number of *distinct* elements in the S_b 's retained in $\widehat{\text{Err}}^{(1)}$ is about $0.632 \cdot N$
- So, $\widehat{\text{Err}}^{(1)}$ tends to have low-variance/high-bias for estimating $\text{Err} = E[L(Y, \hat{f}(X))]$ like 2-fold cross-validation.

The .632 Bootstrap

A compromise bootstrap error estimate is

$$\widehat{\text{Err}}^{(0.632)} = (0.368) \cdot \overline{\text{err}} + (0.632) \cdot \widehat{\text{Err}}^{(1)}$$

- HTF observe that
 - Derivation is complicated but basically it tries to reduce the bias of $\widehat{\text{Err}}^{(1)}$ by pulling it toward the training-set error $\overline{\text{err}}$.
 - $-\widehat{\text{Err}}^{(0.632)}$ works well in light (under-) fitting situations, but can break down with overfit.
 - $\widehat{\text{Err}}^{(0.632)}$ can be improved by adjusting the coefficients 0.368 and 0.632 for the "no-information" error rate obtained by training on a data sets in which all possible combinations $(y_i, x_{i'})$ are considered.

Here is a comparison of these various prediction error estimates...

K-Fold CV and Several Approximations, for a Simple Linear Classifier

