

Soal

1 Let m be measure on σ -algebra \mathcal{M} and suppose A is a fixed in \mathcal{M} . The function λ is defined on \mathcal{M} for $E \in \mathcal{M}$ by

$$\lambda(E) = m(A \cap E).$$

Prove that λ is a measure on \mathcal{M} .

- **2** Misalkan $X = \{1, 2, 3, 4\}$. Buatlah dua macam aljabar- σ dengan memberikan alasannya, selain $\mathcal{P}(X)$ dan $\{X, \emptyset\}$.

Let m be measure on σ -algebra \mathcal{M} and suppose A is a fixed in \mathcal{M} . The function λ is defined on \mathcal{M} for $E \in \mathcal{M}$ by

$$\lambda(E) = m(A \cap E).$$

Prove that λ is a measure on \mathcal{M} .

Solusi:

Perhatikan bahwa untuk setiap $E \in \mathcal{M}$ berlaku $\lambda(E) = m(A \cap E) \geq 0$ dan $\lambda(\emptyset) = m(A \cap \emptyset) = m(\emptyset) = 0$. Misalkan $\{A_n\}_n$ barisan himpunan disjoin di \mathcal{M} , ini berarti $\bigcup_n A_n \in \mathcal{M}$. Selain itu, $\{A \cap A_n\}_n$ juga barisan himpunan disjoin di \mathcal{M} sehingga

$$\lambda\left(\bigcup_n A_n\right) = m\left(A\cap\bigcup_n A_n\right) = m\left(\bigcup_n A\cap A_n\right) = \sum_n m(A\cap A_n) = \sum_N \lambda(A_n).$$

Terbukti λ measure di \mathcal{M} .

Misalkan $X = \{1, 2, 3, 4\}$. Buatlah dua macam aljabar- σ dengan memberikan alasannya, selain $\mathcal{P}(X)$ dan $\{X, \varnothing\}$.

Solusi:

Misalkan A merupakan σ -algebra. Jika $\{1\} \in A$, maka $\{2,3,4\} = \{1\}^c \in A$. Ini berarti $X = \{1\} \cup \{2,3,4\} \in A$ dan $\varnothing = \{1\} \cap \{2,3,4\} \in A$. Jadi, $A = \boxed{\{\varnothing,\{1\},\{2,3,4\},X\}}$ merupakan σ -algebra.

Misalkan B merupakan σ -algebra. Jika $\{1,2\} \in B$, maka $\{3,4\} = \{1,2\}^c \in B$ sehingga $\{1,2,3,4\} = \{1,2\} \cup \{3,4\} \in B$ dan $\varnothing = \{1,2\} \cap \{3,4\} \in B$. Jadi, $B = \{\varnothing,\{1,2\},\{3,4\},\{1,2,3,4\}\}$ merupakan σ -algebra.

Misalkan $\mathbb Q$ himpunan semua bilangan rasional. Buktikan bahwa ukuran luar, $m^*(\mathbb Q)=0.$

Solusi:

Karena $\mathbb Q$ terbilang, maka $m^*(\mathbb Q)=0.$