Методическая комиссия по физике при центральном оргкомитете Всероссийских олимпиад школьников

XLV Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Оренбург, 2011 г.

Комплект задач подготовлен методической комиссией по физике при центральном оргкомитете Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 8(498)744-66-43.

E-mail: physolymp@gmail.com

Авторы задач

9 класс	10 класс	11 класс
1. Воробьёв И.	1. Чивилёв В.	1. Ко́зел С.
2. Шеронов А.	2. Прут Э.	2. Ко́зел С.
3. Ко́зел С.	3. Аполонский А.	3. Кармазин С.
4. Замятнин М.	4. Проскурин М.	4. Проскурин М.
5. Варламов С.	5. Ко́зел С.	5. Ко́зел С.

Общая редакция — Ко́зел С., Слободянин В.

Оформление и вёрстка — Старков Γ ., Алексеев B., Казеев H., Кузнецов M.

При подготовке оригинал-макета использовалась издательская система \LaTeX 2ε . © Авторский коллектив Подписано в печать 3 мая 2011 г. в 23:08.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

9 класс

Задача 1. Спуск по желобу

Небольшое тело отпустили без начальной скорости в некоторой точке M гладкого изогнутого желоба. Оторвавшись от желоба в точке O, оно упало на пол в точке A (рис. 1). С помощью построений и расчётов, покажите на рисунке положение точки M желоба, в которой тело было отпущено. Каково расстояние (в условных единицах) от пола до точки M?

Масштабы по осям рисунка даны в некоторых условных единицах.

Задача 2. Шайба и горка

Небольшая шайба, скользящая по гладкой горизонтальной поверхности, наезжает на гладкую горку, покоящуюся на той же поверхности (рис. 2). После того, как шайба соскользнула с горки, оказалось, что шайба и горка движутся по гладкой горизонтальной поверхности с одинаковыми по модулю скоростями.

- 1. Определите, при каком соотношении масс шайбы и горки это возможно.
- 2. Найдите отношение максимальной потенциальной энергии, которая была у шайбы во время подъёма на горку, к начальной кинетической энергии шайбы.

Примечание. Во время подъёма и спуска шайба не отрывается от горки.

Задача 3. Циклический теплообмен

Имеется два теплоизолированных сосуда с водой. Теплоёмкость всей массы воды в первом сосуде c_1 , её температура t_1 . Теплоёмкость и температура воды во втором сосуде равны соответственно c_2 и t_2 . Во втором сосуде кроме воды находится брусок, теплоёмкость которого равна c (рис. 3).

Брусок вынимают из второго сосуда и погружают в первый сосуд. После установления теплового равновесия брусок возвращают во второй сосуд.

Соотношение между теплоёмкостями: $c_1:c_2:c=4:5:1$. Пренебрегая теплообменом с окружающими телами, определите:

- 1. Какое минимальное количество n таких циклов нужно сделать, чтобы разность температур $(t_2 t_1)_n$ уменьшилась не менее, чем в N = 25 раз?
- 2. Какая температура воды установится в сосудах после очень большого числа пиклов?

Задача 4. Проволочный куб

- В семь рёбер проволочного куба впаяны одинаковые резисторы с сопротивлением R (рис. 4). Сопротивление проводников в остальных рёбрах пренебрежимо малы. Между клеммами A и B приложено напряжение U.
- 1. Найдите силу тока I_{AB} и сопротивление куба R_{AB} между клеммами A и B.
- 2. Определите, в каком из рёбер куба сила тока максимальна и чему она равна.
- 3. Укажите, в каких резисторах выделяется максимальная тепловая мощ-

ность и чему она равна.

4. Пусть теперь напряжение U приложено между клеммами A и C. Определите силу тока I_{AC} и сопротивление R_{AC} .

Задача 5. Составной цилиндр

Цилиндр составлен из двух сочленённых отрезков труб и закреплён так, что его ось симметрии — вертикальна. Снизу к цилиндру прижата заслонка, которая полностью закрывает первую трубу. Чтобы удерживать заслонку в прижатом состоянии, к ней снизу нужно прикладывать силу $F\geqslant F_0$. После того, как в цилиндр налили V_0 литров воды, минимальная сила, необходимая для удержания заслонки в прижатом состоянии, возросла в два раза. Когда в цилиндр налили ещё V_0 литров воды, минимальная сила возросла ещё в два раза. Наконец, когда в цилиндр добавили $V_0/3$ литров воды, минимальная сила возросла ещё на F_0 , а цилиндр оказался полностью заполнен.

- 1. Вычислите отношение $S_1: S_2$ площадей нижней и верхней труб.
- 2. Вычислите отношение $L_1:L_2$ длин нижней и верхней труб.

10 класс

Задача 1. Шарик в сосуде с водой

Деревянный и металлический шарики связаны нитью и прикреплены одной нитью ко дну сосуда с водой. Сосуд вращается с постоянной угловой скоростью вокруг вертикальной оси OO' (рис. 5).

В результате шарики, оставаясь полностью в воде, расположились так, как показано на рисунке. Деревянный шарик (1) находится от оси вращения на расстоянии втрое меньшем, чем металлический (2). Верхняя нить составляет угол α ($\sin \alpha = 4/5$) с вертикалью. Угол между нитями равен 90°. Размеры шариков малы по сравнению с их расстояниями до оси вращения.

- 3. Под каким углом к вертикали направлена сила Архимеда, действующая на деревянный шарик? Пайте объяснение.
- 4. Найдите отношение сил натяжения верхней и нижней нитей.

Задача 2. Тепловая машина

Гигантский айсберг массой $m=9\cdot 10^8$ кг (куб $100\times 100\times 100$ м³), имеющий температуру $T_2=273$ K, дрейфует в течении Гольфстрим, температура воды которого $T_1=295$ K.

1. Пренебрегая прямым теплообменом между айсбергом и теплой водой, найдите максимальную работу тепловой машины, использующей Гольфстрим в качестве нагревателя и айсберг в качестве холодильника, за то время, пока весь айсберг не растает (рис. 6).

2. Определите, сколько воды можно испарить в котле за счёт работы, количество которой найдено в первом пункте, если использовать её в тепловом

насосе для "перекачки" тепловой энергии из течения Гольфстрим в котёл с температурой $T_0 = 373 \text{ K (рис. 7)}.$

Теплота плавления льда $q=3{,}35\cdot 10^5~\rm{Дж/кг},$ теплота испарения воды $\lambda=2.26\cdot 10^6~\rm{Дж/кг}.$

Задача 3. Адиабатический процесс

В цилиндрическом сосуде объёма $2V_0$ под тяжёлым поршнем находится одноатомный идеальный газ при температуре T_0 и давлении $P_0/2$, занимающий объём V_0 (рис. 8). Над поршнем вакуум. Внизу в сосуде имеется небольшое отверстие перекрытое краном. Снаружи пространство заполнено тем же газом при давлении P_0 , температуре T_0 . Сосуд теплоизолирован.

Кран приоткрывают так, что поршень медленно поднимается вверх, и после того, как давление внутри и снаружи выравнивается, кран закрывают. Определите темпе

ружи выравнивается, кран закрывают. Определите температуру газа после закрытия крана.

Задача 4. Слоистый диэлектрик

Плоский конденсатор с расстоянием между обкладками d подсоединён к источнику постоянного тока с ЭДС, равной \mathscr{E} (рис. 9).

Конденсатор заполнен двумя слоями слабо- d/2 проводящих сред с разными значениями проводимости λ_1 и λ_2 . Оба слоя находятся в электрическом контакте между собой и с пласти-

нами конденсатора. Толщина каждого слоя d/2, диэлектрическая проницаемость обоих слоёв $\varepsilon_1 = \varepsilon_2 = 1$. Найдите:

- 1. Поверхностные плотности σ_1 и σ_2 зарядов на пластинах конденсатора.
- 2. Поверхностную плотность σ заряда в плоскости контакта слоёв.

XLV Всероссийская олимпиада школьников по физике

Примечание: Уделньная проводимость — это, величина, обратная удельному сопротивлению: $\lambda = 1/\rho$.

Задача 5. Перезарядка конденсаторов

Имеются два заряженных конденсатора с ёмкостями $C_1=18$ мк Φ и $C_2=19$ мк Φ . Напряжения на конденсаторах равны соответственно $U_1=76$ В и $U_2=190$ В. Третий конденсатор с неизвестной ёмкостью C подсоединён к конденсатору C_2 (рис. 10). Ключ K перекидывают из правого положения в левое, а после перезарядки конденсаторов возвращают в исходное положение.

Известно, что после выполнения 44 таких циклов разность напряжений $(U_2-U_1)_{44}$ составила 1% от первоначальной $(U_2-U_1)_{0}$.

- 1. Чему равна ёмкость конденсатора C?
- 2. Какое напряжение U_{∞} утсановится на конденсаторах после большого числа циклов?
- 3. Какая тепловая энергия выделится на резисторе R после большого числа циклов?

11 класс

Задача 1. Трифилярный маятник

Массивное кольцо подвешено на трёх тонких вертикальных нитях длиной L (рис. 11).

- 1. Определите период малых крутильных колебаний кольца относительно оси OO'.
- 2. Насколько изменится период крутильных колебаний, если в центре кольца (точка О) при помощи лёгких спиц расположить тело малых размеров (материальную точку), масса которого равна массе кольна?

 $Указание: При \ \alpha \ll 1$ можно использовать приближённое выражение

$$\cos \alpha \approx 1 - \alpha^2/2$$
.

Задача 2. Заряженная частица в соленоиде

На рисунке 12 изображено сечение длинной прямой катушки (соленоида), радиус витков которой r=10 см. Число витков катушки на 1 метр длины $n = 500 \,\mathrm{m}^{-1}$. По виткам катушки протекает постоянный ток I== 0.1 A (по часовой стрелке).

Через зазор между витками в точке A в катушку влетает заряженная частица, ускоренная разностью потенциалов $U = 10^3 \,\mathrm{B}$. Скорость частицы в точке A направлена вдоль радиуса соленоида. Частица движется внутри соленоида в плоскости, перпендикулярной его оси, и вылетает из соленоида в точке C, расположенной

Рис. 12

под углом $\alpha = 60^{\circ}$ к первоначальному направлению. Определите:

- 1. знак заряда частицы;
- 2. радиус кривизны траектории частицы внутри соленоида;
- 3. удельный заряд частицы (то есть отношение модуля заряда частицы к её массе).

Магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7}$ (единиц СИ).

Задача 3. Устойчивость поршня

Закрытый снизу тонкостенный цилиндр длиной L=1.50 м установлен вертикально. В верхней части он соединён с другим цилиндром, значительно большего диаметра (рис. 13). В нижнем цилиндре на расстоянии $h_1 = 380$ мм от верхнего края расположен тонкий лёгкий поршень. Над поршнем находится слой ртути высотой $h + \Delta h$, где $\Delta h \ll h$, ниже поршня — гелий под давлением $p_1 = p_0 + \rho_D g h_1$, где $p_0 = 760$ мм.рт.ст. — атмосферное давление, $\rho_{\rm p}=13.6~{\rm г/cm^3}~-$ плотность ртути. Из-за большой разницы диаметров

цилиндров изменением Δh можно пренебречь при смещениях поршня по всей длине нижнего цилиндра.

Из условия задачи следует, что поршень находится в равновесии. Является ли это положение равновесия устойчивым? Существуют ли другие положения равновесия? Если есть, то при каких расстояниях h_i от поршня до верхнего края? Являются ли эти положения равновесия устойчивыми? Можно считать, что при малых изменениях объёма под поршнем температура гелия остаётся постоянной.

Задача 4. Конденсатор с утечкой

Плоский конденсатор ёмкостью C_0 заполнен слабопроводящей слоистой средой с $\varepsilon = 1$, удельное сопротивление которой зависит от расстояния x до одной из пластин по закону $\rho = \rho_0 (1 +$ $+\frac{2x}{d}$), где d — расстояние между пластинами конденсатора. Конденсатор подключен к батарее с напряжением U_0 (рис. 14).

Найлите:

- 1. силу тока, протекающего через конденсатор;
- 2. заряды нижней (q_1) и верхней (q_2) пластин конденсатора;
- 3. заряд q внутри конденсатора (т. е. в среде между пластинами);
- 4. электрическую энергию W_3 , запасённую в конденсаторе.

Задача 5. Плоский световод

Вблизи левого торца хорошо отполированной прозрачной пластины, показатель преломления которой n, расположен точечный источник света S (рис. 15). Толщина пластины H=1 см, её длина L=100 см. Свет от источника падает на левый торец пластины под всевозможными углами падения $(0-90^{\circ})$. В глаз наблюдателя попадают как прямые лучи от источника, так и лучи, многократно испытавшие полное отражение на боковых гранях пластины.

- 1. Какое максимальное число отражений может испытать луч от источника, выходящий через правый торец пластины? Решите задачу для двух значений коэффициента преломления: $n_1 = 1.73$, $n_2 = 1.3$.
- 2. Укажите, в каком из этих двух случаев свет частично выходит из пластины через боковые грани.

Рис. 15

Возможные решения 9 класс

Задача 1. Спуск по желобу

Проведём касательную в нижней точке желоба O, а также горизонтальную линию через ту же точку. Из точки A проведём вертикальную линию, пересекающую касательную в точке B и горизонтальную линию — в точке C (рис. 16).

Движение тела по вертикали после отрыва от желоба описывается уравнением

$$y = v_{oy}t + \frac{gt^2}{2},$$

где v_{oy} — проекция скорости тела на вертикальную ось в момент отрыва от желоба, начало координат находится в точке O, ось Y направлена вниз.

На рисунке отрезок CB равен расстоянию, которое тело прошло бы по вертикали за время падения t_0 , если бы не было ускорения свободного падения, а отрезок BA равен расстоянию, которое тело пролетело бы за то же время t_0 при свободном падении без начальной скорости. Кроме того, отрезок OB равен пути, которое тело, двигаясь с постоянной скоростью v_0 , прошло бы за время t_0 . Таким образом,

$$AB = h = \frac{gt_0^2}{2}; \quad OB = l = v_0t_0.$$

Исключив из этих соотношений время падения t_0 , получим:

$$v_0^2 = \frac{gl^2}{2h}.$$

Высоту H начальной точки над точкой O найдём из закона сохранения энергии:

$$\frac{mv_0^2}{2} = mgH.$$

Отсюда:

$$H = \frac{l^2}{4h}.$$

По рисунку находим:

$$h = 1$$
, $l^2 = (CB)^2 + (OC)^2 = (1.5)^2 + (3)^2 = 11.25$;

$$H = \frac{11,25}{4} \approx 2,8.$$

Расстояние от точки M до пола равно $L=5,\!3$ условных единиц.

Критерии оценивания

Задача 2. Шайба и горка

1. Пусть m и M — массы шайбы и горки соответственно, v_0 — начальная скорость шайбы, v_1 и v_2 — проекции скоростей шайбы и горки на направление \vec{v}_0 после соскальзывания шайбы. Запишем законы сохранения импулься и энергии:

$$mv_0 = mv_1 + Mv_2, (1)$$

$$\frac{mv_0^2}{2} = \frac{mv_1^2}{2} + \frac{Mv_2^2}{2}. (2)$$

Из этих уравнений следует:

$$v_1 = \frac{m - M}{m + M} v_0, \quad v_2 = \frac{2m}{m + M} v_0.$$
 (3)

Шайба и горка после соскальзывания шайбы движутся с одинаковыми по модулю скоростями в противоположных направлениях $(v_2 = -v_1)$, следовательно, должно выполняться условие: (m - M) = -2m, откуда следует: M = 3m.

2. Рассмотрим теперь момент времени, когда шайба достигла максимальной высоты H. В этот момент скорости шайбы и горки одинаковы и равны v. Запишем для этого момента законы сохранения импульса и энергии:

$$mv_0 = (m+M)v,$$

$$\frac{mv_0^2}{2} = mgH + \frac{m+M}{2}v^2. (4)$$

Решая совметсно эти уравнения, получим:

$$\frac{mv_0^2}{2}\left(1 - \frac{m}{m+M}\right) = mgH,\tag{5}$$

откуда

$$\frac{mgH}{mv_0^2/2} = \frac{M}{m+M} = \frac{3}{4}. (6)$$

Критерии оценивания

T ······ T ·····
Записан закон сохранения импульса
для момента после соскальзывания шайбы1
Записан закон сохранения энергии
для момента после соскальзывания шайбы1
Найдены скорости горки и шайбы после соскальзывания шайбы с горки $\dots 2$
Записано соотношение между скоростями горки и шайбы
после соскальзывания шайбы с горки1
Найдено соотношение масс шайбы и горки1
Записан закон сохранения
импульса для момента максимального подъёма шайбы1
Записан закон сохранения энергии
для момента максимального подъёма шайбы
Найдено отношение максимальной потенциальной энергии шайбы
к её начальной кинетической энергии

Задача 3. Циклический теплообмен

1. Рассмотрим процессы теплообмена в первом цикле:

$$c_1t_1+ct_2=(c_1+c)t_1',$$
 откуда $t_1'=rac{c_1t_1+ct_2}{c_1+c},$

$$c_2t_2+ct_1'=(c_2+c)t_2'$$
, откуда $t_2'=rac{c_2t_2+ct_1'}{c_2+c}$.

$$\Delta t' = t_2' - t_1' = \frac{(c_2 t_2 + c t_1') - (c_2 + c)t_1'}{c_2 + c} = \frac{c_2 (t_2 - t_1')}{c_2 + c} =$$

$$= \frac{c_2 [(c_1 + c)t_2 - (c_1 t_1 + c t_2)]}{(c_1 + c)(c_2 + c)} = \frac{c_1 c_2 (t_2 - t_1)}{(c_1 + c)(c_2 + c)}.$$

$$\Delta t' = A(t_2 - t_1), \quad A = \frac{c_1 c_2}{(c_1 + c)(c_2 + c)} < 1.$$

Таким образом, за каждый цикл разность температур в сосудах уменьшается в 1/A раз. При $c_1:c_2:c=4:5:1$

$$A = \frac{2}{3}, \quad \frac{1}{A} = \frac{3}{2}, \quad \left(\frac{1}{A}\right)^n \ge N.$$

Подбором (на калькуляторе) легко получить: $n_{min} = 8$.

2. После большого числа циклов температуры бруска и воды в сосудах будут одинаковыми. Установившуюся температуру можно найти из условия теплового баланса:

$$c_1t_1+c_2t_2+ct_2=(c_1+c_2+c)t_0$$
, откуда $t_0=\frac{2t_1+3t_2}{5}$.

Критерии оценивания

Записано выражение для t_1'
Записано выражение для t_2'
Получено выражение, связывающее величину $\Delta t'$ с Δt
Найдено выражение, связывающее разность температур на $n-$ ом шаге
с начальной разностью температур
Определено минимальное количество шагов n_{min}
Записано уравнение теплового баланса для установившейся температуры 2
Определена величина установившейся температуры1

Задача 4. Проволочный куб

1. Обратим внимание на то, что резистор R_{48} замкнут накоротко. Следовательно, по нему ток не течёт, и его можно удалить из схемы без нарушения распределения токов и напряжений во всех других рёбрах. При этом схема сильно упрощается и её можно изобразить в виде комбинации парал-

лельно и последовательно соединённых резисторов (рис. 17). Из приведённой

эквивалентной схемы видно, что резисторы $R_{87},\ R_{56}$ и R_{43} включены между узлами 1 и 7 параллельно. Также параллельно этим резисторам включена цепочка, состоящая из резисторов $R_{12},\ R_{26}$ и R_{23} . Сопротивление этой цепочки R' равно:

$$R' = R + \frac{R \cdot R}{R + R} = \frac{3}{2}R.$$

Таким образом, полное сопротивление R_{AB} определим из соотношения:

$$\frac{1}{R_{AB}} = \frac{3}{R} + \frac{2}{3R} = \frac{11}{3R},$$

откуда следует, что

$$R_{AB} = \frac{3}{11} R; \quad I_{AB} = \frac{U}{R_{AB}} = \frac{11}{3} \frac{U}{R}.$$

2. Из эквивалентной схемы видно, что сила тока будет максимальна в ребре 1-5.

$$I_{max} = I_{15} = I_{587} + I_{56} = \frac{U}{R} + \frac{U}{R} = 2\frac{U}{R}.$$

3. Максимальная тепловая мощность будет выделяться на тех резисторах, в которых сила тока максимальна. Таких резисторов три: R_{87} , R_{56} и R_{43} .

В каждом из них сила тока составляет $I=\frac{U}{R}$, а мощность $P_{max}=\frac{U^2}{R}$.

4. При переносе контакта из узла 7 в узел 2 изменяются токи во всех резисторах. С помощью новой эквивалентной схемы можно получить:

$$R_{AC} = \frac{5}{11} R; \quad I_{AC} = \frac{11 U}{5 R}.$$

Критерии оценивания

Задача 5. Составной цилиндр

1. (Графический способ) Допустим, что после того, как в составной цилиндр налили V литров воды, высота столба воды оказалась равной h. Минимальная сила, необходимая для удержания заслонки в прижатом состоянии, равна:

$$F = F_0 + (\rho g S_1) \cdot h,$$

где ρ — плотность воды, g — ускорение свободного падения.

Зависимость h(V) и F(V) для каждого из отрезков труб линейна. Для первой (нижней) трубы справедливо соотношение:

$$\left(\frac{\Delta F}{\Delta V}\right)_1 = \rho g.$$

Для второй (верхней) трубы справедливо соотношение:

$$\left(\frac{\Delta F}{\Delta V}\right)_2 = \frac{\rho g S_1 \Delta h}{S_2 \Delta h} = \rho g \frac{S_1}{S_2}.$$

Построим график зависимости F(V) (рис. 18):

Из него находим, что отношение угловых коэффициентов

$$\left(\frac{\Delta F}{\Delta V}\right)_2: \left(\frac{\Delta F}{\Delta V}\right)_1 = \frac{S_1}{S_2} = 3,$$

а отношение

$$\frac{\Delta F_1}{\Delta F_2} = \frac{\rho g H_1}{\rho q H_2} = \frac{H_1}{H_2} = \frac{1.5}{2.5} = \frac{3}{5}.$$

2. (Аналитический способ) Рассмотрим ситуацию после наливания первой порции воды. По условию задачи

$$S_1 h_1 = V_0. (7)$$

Воспользуемся законом Паскаля:

$$F_0 + \rho g h_1 S_1 = 2F_0.$$

Отсюда:

$$F_0 = \rho g h_1 S_1. \tag{8}$$

XLV Всероссийская олимпиада школьников по физике

Теперь рассмотрим ситуацию после наливания второй порции воды. Судя по изменению давления на заслонку, можно предположить, что вода полностью заполнила нижнюю трубу и частично – верхнюю:

$$H_1S_1 + h_2S_2 = 2V_0. (9)$$

Согласно закону Паскаля: $F_0 + \rho g(H_1 + h_2)S_1 = 4F_0$. Отсюда:

$$3F_0 = \rho g(H_1 + h_2)S_1. \tag{10}$$

Наконец, рассмотрим ситуацию после наливания третьей порции воды:

$$2V_0 + V_0/3 = H_1 S_1 + H_2 S_2. (11)$$

Согласно закону Паскаля: $F_0 + \rho g(H_1 + H_2)S_1 = 5F_0$. Отсюда:

$$4F_0 = \rho g(H_1 + H_2)S_1. \tag{12}$$

Решая полученную систему уравнений, найдём:

$$S_1: S_2 = 3:1, \quad H_1: H_2 = 3:5.$$

Критерии оценивания

Графическое решение:
Найдена зависимость $F(h)$
Построен график с проведёнными прямыми
Аналитическое решение:
Записаны уравнения $(1) - (6)$ (по балу за каждое уравнение)
Ответы:
Найдено отношение S_1 к S_2
Найдено отношение H_1 к H_2

10 класс

Задача 1. Шарик в сосуде с водой

Пусть плотности воды, деревянного и металлического шариков равны ρ , ρ_1 и ρ_2 соответственно, объёмы шариков — V_1 и V_2 , расстояние от оси вращения до деревянного шарика R, силы натяжения верхней и нижней нитей T_1 и T_2 , угловая скорость вращения ω .

1. Рассмотрим мысленно вместо деревянного шарика шарик из воды. На эти шарики действует одинаковая сила Архимеда (рис. 19).

Водяной шарик \vec{F}_A γ $\rho V_1 \vec{g}$

Рис. 19

Ускорение шариков $a=\omega^2 R$. По второму закону Ньютона в проекциях на горизонтальное и вертикальное направления:

$$F_A \sin \gamma = \rho V_1 \omega^2 R$$
, $F_A \sin \gamma - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R$,
 $F_A \cos \gamma = \rho V_1 g$, $F_A \cos \gamma - T_1 \cos \alpha = \rho_1 V_1 g$.

Отсюда:

$$\operatorname{tg} \gamma = \frac{\omega^2 R}{g}, \qquad \operatorname{tg} \alpha = \frac{\omega^2 R}{g}.$$

Итак, $\gamma=\alpha$, то есть получаем ответ на первый вопрос: сила Архимеда направлена под углом α к вертикали, то есть, вдоль нити.

2. Найдём горизонтальные и вертикальные составляющие сил Архимеда, действующих на шарики (рис. 20):

$$F_{A_1x} = \rho V_1 \omega^2 R, \quad F_{A_1y} = \rho V_1 g,$$

 $F_{A_2x} = \rho V_2 \omega^2 \cdot 3R, \quad F_{A_2y} = \rho V_2 g.$

По второму закону Ньютона:

$$\begin{cases} F_{A_1x} - T_1 \sin \alpha = \rho_1 V_1 \omega^2 R, \\ F_{A_1y} - \rho_1 V_1 g - T_1 \cos \alpha = 0, \\ F_{A_2x} + T_1 \sin \alpha + T_2 \cos \alpha = \rho_2 V_2 \omega^2 \cdot 3R, \\ F_{A_2y} - \rho_2 V_2 g + T_1 \cos \alpha - T_2 \sin \alpha = 0. \end{cases}$$

Из записанных уравнений находим:

$$\begin{cases} (\rho - \rho_1)V_1\omega^2 R = T_1\sin\alpha, \\ (\rho - \rho_1)V_1g = T_1\cos\alpha, \\ (\rho_2 - \rho)V_2\omega^2 \cdot 3R = T_1\sin\alpha + T_2\cos\alpha, \\ (\rho_2 - \rho)V_2g = T_1\cos\alpha - T_2\sin\alpha. \end{cases}$$

Отсюда:

$$3 \lg \alpha = \frac{x \sin \alpha + \cos \alpha}{x \cos \alpha - \sin \alpha}$$
, где $x = \frac{T_1}{T_2}$.

Зная α , находим:

$$x = \frac{T_1}{T_2} = \frac{19}{8}.$$

Критерии оценивания

 Направление силы Архимеда, действующей на деревянный шарик:

 Приведено объяснение
 2

 Найдено направление
 1

 Записана система уравнений Ньютона, описывающая движение системы
 4

 Найдено отношение сил натяжения
 3

Задача 2. Тепловая машина

1. По теореме Карно

$$\frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}; \qquad \frac{Q_1}{T_1} = \frac{Q_2}{T_2}.$$

Здесь Q_1 и Q_2 — количество теплоты, забираемое от нагревателя и передаваемое холодильнику соответственно.

$$Q_2 = mq$$
, $Q_1 = mq + A_{max}$.

Следовательно:

$$A_{max} = mq \left(\frac{T_1}{T_2} - 1 \right) = 2,45 \cdot 10^{13} \text{ Дж.}$$

2. Пусть в этом случае Q_2 — количество теплоты, перекаченное тепловым насосом в котёл, Q_1 — количество теплоты, забираемое от Гольфстрима.

$$\frac{Q_2}{T_0} = \frac{Q_1}{T_1}, \qquad Q_2 = \lambda m_{\rm B}, \qquad Q_1 = Q_2 - A_{max}.$$

Отсюда:

Следовательно:

$$m_{\mathrm{B}} = \frac{A_{max}}{\lambda \left(1 - \frac{T_1}{T_0}\right)} = 5.12 \cdot 10^7 \ \mathrm{K}\mathrm{\Gamma}.$$

Критерии оценивания

Записана теорема Карно для первого случая	. 3
Найдена максимальная работа в первом случае	.2
Записана теорема Карно для второго случая	. 3
Определена максимальная масса испарённой воды во втором случае	.2

Задача 3. Адиабатический процесс

Пусть при заполнении сосуда газом снаружи в сосуд перешёл газ, ранее занимавший объём V (рис. 21). Внешнее давление при "продавливании" внутрь этого объёма совершает работу $A_{\rm внеш}=P_0V$.

Закон сохранения энергии для системы газ в сосуде — "внешний" газ объёма V — поршень выглядит так:

$$U_1 + U_2 + A_{\text{внеш}} = U + \Delta E_{\pi},$$
 (13)

где U_1 — внутренняя энергия исходного газа в сосуде, U_2 — энергия "внешнего" газа из объёма V, U — энергия газа в сосуде после заполнения, $\Delta E_{\rm n}$ — изменение потенциальной энергии поршня.

$$U_1 = \frac{3P_0}{2}V_0; \quad U_2 = \frac{3}{2}P_0V; \quad U = \frac{3}{2}P_02V_0;$$
 (14)

$$\Delta E_{\pi} = mg\Delta h = \frac{P_0}{2}S\Delta h = \frac{P_0}{2}V_0. \tag{15}$$

Подставляя (14) и (15) в уравнение (13), после преобразований получим:

$$\frac{5}{2}P_0V = \frac{11}{4}P_0V_0,\tag{16}$$

$$V = \frac{11}{10}V_0. (17)$$

Исходное число молей газа в сосуде $\nu_1=\frac{P_0V_0}{2RT_0}$, число молей "внешнего"

газа в сосуде $\nu_2=\frac{11\,P_0V_0}{10\,RT_0}$. Итого $\nu=\nu_1+\nu_2=\frac{8\,P_0V_0}{5\,RT_0}$. Из уравнения состояния:

$$\frac{P_0 \cdot 2V_0}{RT} = \frac{8P_0V_0}{5RT_0},\tag{18}$$

откуда:

$$T = \frac{5}{4}T_0. (19)$$

Критерии оценивания

P	
Записан закон сохранения энергии	. 2
Получены выражения для U_1,U_2,U и ΔE_{Π}	
(по баллу за каждую из формул)	. 4
Найден объём V закачанного газа	. 1
Записано уравнение состояния для газа,	
находящегося в сосуде после установления равновесия	. 2
Определена конечная температура T газа	. 1

Задача 4. Слоистый диэлектрик

1. Пусть E_1 и E_2 — напряжённости однородных электрических полей в верхней и нижней пластинах соответственно. Тогда:

$$E_1 \frac{d}{2} + E_2 \frac{d}{2} = \mathscr{E}. \tag{20}$$

Здесь $E_1d/2$ и $E_2d/2$ — падения напряжений на слоях. По закону Ома:

$$E_1 \frac{d}{2} = I_1 \frac{1}{\lambda_1} \frac{d/2}{S}, \quad E_2 \frac{d}{2} = I_2 \frac{1}{\lambda_2} \frac{d/2}{S},$$
 (21)

где $I_1 = I_2$ — силы токов, текущих в 1-ом и 2-ом слоях, S - площадь пластин конденсатора. Поделив почленно эти соотношения, получим:

$$\frac{E_1}{E_2} = \frac{\lambda_1}{\lambda_2}. (22)$$

Решая систему из двух уравнений (20) и (22), найдём:

$$E_1 = \frac{2\mathscr{E}}{d(1+\lambda_1/\lambda_2)}, \quad E_2 = \frac{2\mathscr{E}}{d(1+\lambda_2/\lambda_1)}. \tag{23}$$

Найдём теперь поверхностные плотности зарядов на пластинах конденсатора

$$\sigma_1 = \varepsilon_0 E_1 = \frac{2\varepsilon_0 \mathscr{E}}{d(1 + \lambda_1/\lambda_2)}; \quad \sigma_2 = -\varepsilon_0 E_2 = -\frac{2\varepsilon_0 \mathscr{E}}{d(1 + \lambda_2/\lambda_1)}.$$
 (24)

2. Полный заряд конденсатора, включающий заряды на пластинах и заряд в плоскости контакта слоёв, равен нулю. Пусть σ — поверхностная плотность заряда в плоскости контакта. Условие равенства нулю полного заряда:

$$\sigma_1 + \sigma_2 + \sigma = 0. \tag{25}$$

Отсюда:

$$\sigma = -\sigma_1 - \sigma_2 = -\frac{2\varepsilon_0 \mathscr{E}}{d} \left(\frac{1}{1 + \lambda_1/\lambda_2} - \frac{1}{1 + \lambda_2/\lambda_1} \right) = -\frac{2\varepsilon_0 \mathscr{E}}{d} \frac{\lambda_2 - \lambda_1}{\lambda_1 + \lambda_2} \,. \tag{26}$$

Или, если выразить σ через удельные сопротивления:

$$\sigma = -\frac{2\varepsilon_0 \mathscr{E}}{d} \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}.$$
 (27)

Критерии оценивания

Задача 5. Перезарядка конденсаторов

1. Рассмотрим процессы перезарядки конденсаторов в первом цикле.

$$C_1U_1 + CU_2 = (C_1 + C)U_1'; \qquad U_1' = \frac{C_1U_1 + CU_2}{C_1 + C}.$$

$$C_2U_2 + CU_1' = (C_2 + C)U_2';$$

$$U_2' = \frac{C_2 U_2 + C \frac{C_1 U_1 + C U_2}{C_1 + C}}{C_2 + C} = \frac{C_2 C_1 U_2 + C C_2 U_2 + C_1 C U_1 + C^2 U_2}{(C_1 + C)(C_2 + C)}.$$

$$\Delta U' = U_2' - U_1' =$$

$$=\frac{C_{1}C_{2}U_{2}+CC_{2}U_{2}+CC_{1}U_{1}+C^{2}U_{2}-C_{1}C_{2}U_{1}-CC_{2}U_{2}-CC_{1}U_{1}-C^{2}U_{2}}{\left(C_{1}+C\right)\left(C_{2}+C\right)}=$$

$$=\frac{C_1C_2}{(C_1+C)(C_2+C)}(U_2-U_1);$$

$$\frac{\Delta U'}{(\Delta U)_0} = \frac{C_1 C_2}{(C_1 + C)(C_2 + C)} = A < 1$$

Таким образом, после каждого цикла разность напряжений на конденсаторах уменьшается в $\left(\frac{1}{A}\right)$ раз. После n циклов разность напряжений уменьшится в $\left(\frac{1}{A}\right)^n$ раз. По условию задачи

$$\left(\frac{1}{A}\right)^{44} = 100 \Rightarrow \frac{1}{A} = \left(1 + \frac{C}{C_1}\right) \left(1 + \frac{C}{C_2}\right) = \sqrt[44]{100} \approx 1,11.$$

Как видим, должны выполняться неравенства: $C \ll C_1$, $C \ll C_2$. Пренебрегая членами второго порядка малости относительно C/C_1 и C/C_2 , можем записать:

$$\frac{1}{A} - 1 \approx C \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right) = 0.11.$$

Подставляя значения величин C_1 и C_2 , получим:

$$C=1\,\mathrm{mk}\Phi$$
.

2. После большого числа циклов напряжения на всех конденсаторах окажутся одинаковыми (U_{∞}) и их можно соединить параллельно. При этом заряд батареи конденсаторов равен первоначальному заряду конденсаторов:

$$C_1U_1 + C_2U_2 + CU_2 = (C_1 + C_2 + C)U_{\infty}$$

$$U_{\infty} = \frac{C_1 U_1 + C_2 U_2 + C U_2}{C_1 + C_2 + C} = \frac{9U_1 + 10U_2}{19} = 136 \text{ B}.$$

$$3. (W_{\mathfrak{d}})_0 = \frac{C_1 U_1^2}{2} + \frac{(C_2 + C) U_2^2}{2} = \frac{18 \cdot (76)^2}{2} \cdot 10^{-6} + \frac{20 \cdot (190)^2}{2} \cdot 10^{-6} = 0.413 \ Дж.$$

$$(W_{\mathfrak{d}})_{\infty} = \frac{(C_1 + C_2 + C)U_{\infty}^2}{2} = \frac{38 \cdot (136)^2}{2} \cdot 10^{-6} = 0,351 \,\text{Дж.}$$

На резисторе выделится тепловая энергия $Q = \Delta W_{\rm s}$.

$$Q = \Delta W_{\text{\tiny 3}} = (W_{\text{\tiny 3}})_0 - (W_{\text{\tiny 3}})_{\infty} = 0.062 \text{Дж}.$$

Заключительный этап. Теоретический тур

Критерии оценивания	
Ваписано выражение для U_1'	-
Ваписано выражение для U_2'	
Получено выражение, связывающее $\Delta U'$ с ΔU	
Определена ёмкость конденсатора $C\ldots$	6
Ваписан закон сохранения заряда для установившегося напряжения	6
Найдено установившееся напряжение	
Эпределена тепловая энергия, выделившаяся на резисторе $R\ldots$	

XLV Всероссийская олимпиада школьников по физике

11 класс

Задача 1. Трифилярный маятник

Рис. 22

1. Повернём кольцо относительно оси OO' на малый угол φ (рис. 22). Тогда все нити отклонятся на некоторый малый угол α . Из рисунка следует:

$$L \cdot \alpha = R \cdot \varphi$$
, где R — радиус кольца.

При этом кольцо поднимется на

$$x = L(1 - \cos \alpha) \approx L \frac{\alpha^2}{2} = \frac{R^2}{2L} \varphi^2.$$

Допустим, что в этом положении все точки кольца имеют скорость $v=R\dot{\varphi}$. Тогда полная энергия кольца запишется в виде

$$E = Mgx + \frac{Mv^2}{2} = M\left(\frac{R^2g}{2L}\varphi^2 + \frac{R^2\dot{\varphi}^2}{2}\right).$$
 (28)

При колебаниях без трения полная энергия сохраняется. Продифференцировав (28) по времени, получим:

$$\ddot{\varphi} + \frac{g}{L} \cdot \varphi = 0.$$

Это уравнение свободных колбаний. По аналогии с математическим маятником можно записать $\omega_0=\sqrt{g/L}$ — эта формула в точности совпадает с выражением для круговой частоты математического маятника длины L.

Окончательно находим:

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{L}{g}}.$$

2. При наличии точечной массы в центре кольца выражение для кинетической энергии системы не изменяется, а в выражение для потенциальной энергии должна теперь входить сумма масс (M+m). Уравнение для крутильных колебаний примет вид:

$$\ddot{\varphi} + \frac{(M+m)}{m} \frac{g}{L} \cdot \varphi = 0,$$
 следовательно $\omega_0' = \sqrt{\frac{(M+m)}{M} \frac{g}{L}}.$

При m=M частота колебаний возрастёт в $\sqrt{2}$ раз, и, соответственно, период уменьшится в том же отношении.

Критерии оценивания

Записано соотношение между углом поворота кольца φ
и углом отклонения нитей α от вертикали
Записано соотношение между высотой x подъёма кольца
и углом φ его поворота1
Записан закон сохранения энергии
Получено дифференциальное уравнение малых колебаний кольца
Найден период малых колебаний кольца1
Указано, каким образом изменяются уравнения движения
при добавлении точечной массы в центр кольца1
Найдена циклическая частота колебаний для этого случая
Определено, во сколько раз изменился период колебаний

Задача 2. Заряженная частица в соленоиде

1. Магнитная индукция B в соленоиде определяется соотношением

$$B = \mu_0 I \cdot n = 4\pi \cdot 10^{-7} \cdot 1 \cdot 500 = 6.28 \cdot 10^{-4} \,\mathrm{Ta}.$$

Направление вектора индукции можно найти по правилу буравчика. В данном случае вектор \vec{B} направлен перпендикулярно плоскости рисунка от читателя.

На движущуюся заряженную частицу в магнитном поле действует сила Лоренца, направление которой можно найти по правилу левой руки. Так как частица отклоняется вправо, её заряд q<0.

2. В однородном магнитном поле заряженная частица движется по дуге окружности (рис. 23). При этом модуль вектора скорости остаётся неизменным:

$$\frac{mv^2}{R} = |q|Bv,$$
 или $R = R_{\text{кривизны}} = \frac{mv}{|q|B}.$

Радиус кривизны можно определить из геометрических соображений. Точки A и C находятся на пересечении двух окружностей радиусов r и R. Из соображений симметрии следует, что в точке C, также как и в точке A, вектор скорости частицы будет направлен вдоль радиуса витков катушки. Отсюда следует, что центр окружности, по которой движется частица (центр кривизны траектории), лежит на пересечении касательных в точках A и C.

Из рисунка следует:

$$R = r \frac{1 + \cos \alpha}{\sin \alpha} = \sqrt{3}r = 17.3 \text{ cm}.$$

3. Модуль скорости частицы v определим из закона сохранения энергии:

$$\frac{mv^2}{2} = |q|U;$$
 $v^2 = \frac{2|q|U}{m} = \left(\frac{|q|}{m}\right)^2 R^2 B^2.$

Отсюда:

$$\frac{|q|}{m} = \frac{2U}{R^2 B^2} = \frac{2 \cdot 10^3}{(17.3)^2 \cdot 10^{-4} \cdot (6.28)^2 \cdot 10^{-8}} \approx 1.7 \cdot 10^{11} \frac{\text{K}_{\pi}}{\text{Kr}}.$$

Примечание: Для электрона $\frac{e}{m}=1{,}76\cdot10^{11}\,\frac{{\rm K}\pi}{{\rm \kappa}\Gamma}.$ Критерии оценивания

Задача 3. Устойчивость поршня

1. Пусть площадь сечения нижнего цилиндра -S. Тогда объём, занимаемый гелием, равен $V=(L-h)\,S$. Запишем уравнение Менделеева-Клапейрона:

$$pV = \nu RT \Rightarrow p(L - h) S = \nu RT. \tag{29}$$

Так как температура T=const и площадь S=const, то $p\left(L-h\right)=const$. Отсюда следует, что другие положения равновесия можно найти из уравнения:

$$p_1(L-h_1) = p_2(L-h_2),$$

где $p_1 = p_0 + \rho_p g h_1$, а $p_2 = p_0 + \rho_p g h_2$.

$$(p_0 + \rho_p g h_1) (L - h_1) = (p_0 + \rho_p g h_2) (L - h_2).$$
(30)

Решая это квадратное уравнение, найдём $h_2 = 360$ мм.

$$\frac{dp_{\text{снизу}}}{dh} > \frac{dp_{\text{сверху}}}{dh}.$$
(31)

 $p_{
m cверху} = p_0 +
ho_{
m p} g h$, следовательно: $\dfrac{dp_{
m cверхy}}{dh} =
ho_{
m p} g$. $p_{
m chизу} \left(L - h
ight) = const$, следовательно: $\dfrac{dp_{
m chизy}}{dh} (L - h) - p_{
m chизy} = 0$. Следовательно:

$$\frac{dp_{\text{снизу}}}{dh} = \frac{p_{\text{снизу}}}{(L-h)}.$$

Подставим полученные производные в формулу (31):

$$rac{p_{ ext{снизу}}}{(L-h)} >
ho_{ ext{p}} g.$$

$$\frac{p_0 + \rho_p gh}{(L - h)} > \rho_p g. \tag{32}$$

Тогда устойчивое равновесие будет наблюдаться при:

$$L < \frac{p_0}{\rho_{\rm p} g} + 2h. \tag{33}$$

Для $h_1=380$ мм получаем: L<1.52 м, то есть равновесие устойчивое, а для $h_2=360$ мм — L<1.48 м, то есть равновесие неустойчивое.

Критерии оценивания

Получена связь между давлением под поршнем и высотой $h\ldots$. 2
Найдено второе положение равновесия h_2	.2
Получен критерий устойчивости положения равновесия (формула (5))	. 4
Указана устойчивость верхнего положения равновесия	. 1
Указана устойчивость нижнего положения равновесия	. 1

Задача 4. Конденсатор с утечкой

1. В установившемся режиме сила тока I=const при любом значении x. Выделим в среде слой x,dx. По закону Ома

$$dU = \rho \frac{dx}{S} I = I \rho_0 \left(1 + \frac{2x}{d} \right) \frac{dx}{S}. \tag{34}$$

3десь S — площадь пластин конденсатора.

$$U_0 = \int dU = \frac{2I\rho_0 d}{S} = \frac{2I\rho_0 \varepsilon_0}{C_0}, \text{ так как } C_0 = \frac{\varepsilon_0 S}{d}.$$

Отсюда следует:

$$I = \frac{U_0 C_0}{2\rho_0 \varepsilon_0}. (35)$$

2. Определим напряжённость электрического поля вблизи нижней (E_1) и верхней (E_2) пластин. Из (34) и (35) следует:

$$E(x) = \frac{dU}{dx} = \frac{I\rho_0}{S} \left(1 + \frac{2x}{d} \right) = \frac{C_0 U_0}{2\varepsilon_0 S} \left(1 + \frac{2x}{d} \right). \tag{36}$$

При x = 0, $E_1 = \frac{C_0 U_0}{2\varepsilon_0 S}$,

$$q_1 = S\sigma_1 = SE_1\varepsilon_0 = \frac{C_0U_0}{2}. (37)$$

При x = d, $E_2 = \frac{3C_0U_0}{2\varepsilon_0S}$,

$$q_2 = -S\sigma_2 = -SE_2\varepsilon_0 = -\frac{3C_0U_0}{2}.$$
 (38)

3. Полный заряд конденсатора, включающий заряды обеих пластин и заряд в среде между пластинами, равен нулю:

$$q_1 + q_2 + q = 0.$$

Из этого соотношения следует:

$$q = C_0 U_0. (39)$$

4. Электрическую энергию, запасённую в конденсаторе, найдём через объёмную плотность энергии $w_3 = \varepsilon_0 E^2/2$:

$$W_{\ni} = \int w_{\ni} dV = \int_{0}^{d} \frac{\varepsilon_{0} E^{2}(x)}{2} S dx = \frac{C_{0} U_{0}^{2}}{8d} \int_{0}^{d} \left(1 + \frac{2x}{d}\right)^{2} dx = \frac{13}{24} C_{0} U_{0}^{2}.$$

Критерии оценивания

Записано выражение для падения напряжения dU в слое толщиной $dx \dots 1$
Записано выражение для полного напряжения на конденсаторе
Записано выражение для силы тока
Найдена зависимость напряжённости электрического поля
от координаты $E(x)$
Выведено выражение для заряда нижней плсатины
Выведено выражение для заряда верхней пластины
Найдено выражение для суммы зарядов1
Выведено выражение для заряда между обкладками конденсатора1
Получено выражение для энергии конденсатора
через объёмную плотность энергии
Определена величина энергии конденсатора1

Задача 5. Плоский световод

Рассмотрим преломление лучей от источника на левом торце пластинки (рис. 24). Максимальный угол β_{max} преломления на левом торце соответствует углу падения $\alpha = 90^{\circ}$:

$$\sin \beta_{max} = \frac{1}{n} \,.$$

Минимальный угол падения на боковую грань

$$\varphi_{min} = 90^{\circ} - \beta_{max}$$
.

Ход лучей в пластине будет зависеть от соотношения между φ_{min} и φ_{npeg} (предельный угол полного отражения).

Случай 1 $\varphi_{min} \geqslant \varphi_{пред}$, или $\sin \varphi_{min} \geqslant \sin \varphi_{пред} = \frac{1}{n}$.

В этом случае все лучи, падающие на боковые грани пластины, будут испытывать полное отражение и, следовательно, ни один луч не выйдет из пластины.

$$\sin \varphi_{min} = \cos \beta_{max} = \frac{\sqrt{n^2 - 1}}{n} \geqslant \frac{1}{n} \Rightarrow \sqrt{n^2 - 1} \geqslant 1 \Rightarrow n \geqslant \sqrt{2}.$$

Минимальное расстояние (Δl) между соседними отражениями лучей на противоположных гранях:

$$(\Delta l)_{min} = H \operatorname{tg} \varphi_{min} = H \frac{\cos \beta_{max}}{\sin \beta_{max}} = H \frac{1/n\sqrt{n^2 - 1}}{1/n} = H\sqrt{n^2 - 1}.$$

Максимальное число отражений $N_1 = (N_1)_{max}$:

$$N_1 = \left[\frac{L}{(\Delta l)_{min}} + \frac{1}{2}\right] = \left[\frac{L}{H} \frac{1}{\sqrt{n^2 - 1}} + \frac{1}{2}\right].$$

Слагаемое 1/2 возникает из-за того, что перед первым отражением луч проходит вдоль трубы расстояние $\Delta l/2$.

При $n = n_1 = 1.73 N_1 = 71.$

Случай 2 $\varphi_{min}\leqslant \varphi_{\rm пред},$ или $\sin\varphi_{min}\leqslant\sin\varphi_{\rm пред}=rac{1}{n};\ rac{1}{n}\sqrt{n^2-1}\leqslantrac{1}{n}.$

В этом случае

$$(\Delta l)_{min} = H \operatorname{tg} \varphi_{\text{пред}} = \frac{H}{\sqrt{n^2 - 1}}.$$

Часть лучей, падающих на боковую грань под углами от φ_{min} до $\varphi_{\text{пред}}$, будут испытывать только частичное отражение и не дойдут до правого торца пластины.

Максимальное число отражений $N_2 = (N_2)_{max}$:

$$N_2 = \left[\frac{L}{(\Delta l)_{min}} + \frac{1}{2}\right] = \left[\frac{L}{H}\sqrt{n^2 - 1} + \frac{1}{2}\right],$$

при $n = n_2 = 1.3$, $N_2 = 100 \cdot 0.83 = 83$.

Критерии оценивания

Записано выражение для угла полного отражения	. 1
Указано, в каком из случаев свет частично выходит	
из пластины через боковые грани	2
Определено, какой луч отразится максимальное количество раз	
в первом случае	1
Определено, какой луч отразится максимальное количество раз	
во втором случае	1
Получена формула для $(\Delta l)_{min}$ в первом случае	. 1
Получена формула для $(\Delta l)_{min}$ во втором случае	1
Найден ответ для N_{max} в первом случае	. 2
Найден ответ для N_{max} во втором случае	. 1

Магазин «Физтех-книга»

Заключительный этап. Теоретический тур

Предлагает широкий ассортимент учебной и методической литературы по различным разделам математики, физики и информатики.

Мы рады предложить Вам также научно-популярные очерки, воспоминания о великих ученых и многое другое.

Список всех книг «Физтех-книга» можно найти на сайте:

 $\frac{\rm http://potential.org.ru/Books/BooksFizteh}{\rm Телефон для справок: }8(495)787-24-95$

Электронный адрес: fizteh-kniga@potential.org.ru potential@potential.org.ru