Linearised Polycrystals from a 2D System of Edge Dislocations

Silvio Fanzon

in collaboration with M. Palombaro and M. Ponsiglione

Graz, 31st January 2018

Reference configuration: $\Omega\subset\mathbb{R}^3$ open bounded

Reference configuration: $\Omega\subset\mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v \colon \Omega \to \mathbb{M}^{3 \times 3}$

Displacement: map $u: \Omega \to \mathbb{R}^3$ s.t. v = x + u

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Displacement: map $u: \Omega \to \mathbb{R}^3$ s.t. v = x + u

Nonlinear Elasticity: the energy associated to a deformation strain β is

$$E(\beta) := \int_{\Omega} W(\beta) dx$$

where $W(F) \sim \operatorname{dist}(F, SO(3))^2$ (so W(I) = 0).

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Displacement: map $u: \Omega \to \mathbb{R}^3$ s.t. v = x + u

Nonlinear Elasticity: the energy associated to a deformation strain β is

$$E(\beta) := \int_{\Omega} W(\beta) \, dx \,,$$

where $W(F) \sim \operatorname{dist}(F, SO(3))^2$ (so W(I) = 0).

Linear Elasticity: let $v = x + \varepsilon u$ with $\varepsilon \approx 0$. Then

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \int_{\Omega} W(\beta) \, \mathrm{d} x = \frac{1}{2} \int_{\Omega} \mathbb{C} \nabla^{\mathrm{sym}} u : \nabla^{\mathrm{sym}} u \, \mathrm{d} x \,,$$

where $\mathbb{C} = \partial^2 W(I)$ and $\nabla^{\text{sym}} u := (\nabla u + \nabla u^T)/2$.

Dislocations: topological defects in the otherwise periodic structure of a crystal.

Dislocations: topological defects in the otherwise periodic structure of a crystal.

Dislocations: topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Dislocations: topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Dislocations: topological defects in the otherwise periodic structure of a crystal. **Edge dislocation:** pair (γ, ξ) of dislocation line and Burgers vector, with $\xi \perp \gamma$.

Adding dislocations: the semi-discrete model

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \setminus \alpha$ is not simply connected

that $\Omega \setminus \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions

Adding dislocations: the semi-discrete model

Dislocation lines: Lipschitz curves $\gamma\subset\Omega$ such that $\Omega\setminus\gamma$ is not simply connected

Burgers vector: $\xi \in S$ set of slip directions

Strain generating (γ, ξ) : map $\beta \colon \Omega \to \mathbb{M}^{3\times 3}$ s.t.

$$\operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \, \mathcal{H}^1 \, \bot \, \gamma \implies \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \, .$$

Adding dislocations: the semi-discrete model

Dislocation lines: Lipschitz curves $\gamma\subset\Omega$ such that $\Omega\setminus\gamma$ is not simply connected

Burgers vector: $\xi \in S$ set of slip directions

Strain generating (γ, ξ) : map $\beta \colon \Omega \to \mathbb{M}^{3 \times 3}$ s.t.

$$\operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \, \mathcal{H}^1 \, \Box \, \gamma \implies \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \, .$$

Geometric interpretation: if D encloses γ , there exists a deformation $v \in SBV(\Omega; \mathbb{R}^3)$ s.t.

$$Dv = \nabla v \, dx + \xi \otimes n \, \mathcal{H}^2 \, \square \, D, \quad \beta = \nabla v.$$

In particular:

- \triangleright D = slip region,
- \triangleright v has constant jump ξ across D,
- ▶ the absolutely continuous part of Dv is β .

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \ \text{in} \ I_{\varepsilon}(\gamma) \implies \beta \notin L^2(I_{\varepsilon}(\gamma)).$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \ \ \text{in} \ \ I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma)).$$

CRA: new ref. conf. $\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma)$.

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma)).$$

CRA: new ref. conf. $\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma)$.

New Strains: maps $\beta \in L^2(\Omega_{\varepsilon}(\gamma); \mathbb{M}^{3\times 3})$ s.t.

Curl
$$\beta \sqcup \Omega_{\varepsilon}(\gamma) = 0$$
, $\int_{C} \beta \cdot t \, d\mathcal{H}^{1} = \xi$.

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma)).$$

CRA: new ref. conf. $\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma)$.

New Strains: maps $\beta \in L^2(\Omega_{\varepsilon}(\gamma); \mathbb{M}^{3\times 3})$ s.t.

$$\operatorname{\mathsf{Curl}} \beta \, \llcorner \, \Omega_\varepsilon(\gamma) = 0 \,, \quad \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \,.$$

Elastic energy associated to β is

$${\it E}_{arepsilon}(eta) := \int_{\Omega_{arepsilon}(\gamma)} W(eta) \, {\it d} x \, .$$

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

▶ (Γ-liminf inequality) for every x ∈ X and every $\{x_n\}$ such that $x_n \to x$,

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n)$$
,

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

▶ (Γ-liminf inequality) for every x ∈ X and every $\{x_n\}$ such that $x_n \to x$,

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n)$$
,

▶ (Γ -limsup inequality) for every $x \in \mathcal{X}$ there exists a recovery sequence $\{x_n\}$ such that $x_n \to x$ and

$$F(x) = \lim_{n \to \infty} F_n(x_n).$$

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

▶ (Γ-liminf inequality) for every $x ∈ \mathcal{X}$ and every $\{x_n\}$ such that $x_n \to x$,

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n)$$
,

▶ (Γ -limsup inequality) for every $x \in \mathcal{X}$ there exists a recovery sequence $\{x_n\}$ such that $x_n \to x$ and

$$F(x) = \lim_{n \to \infty} F_n(x_n).$$

Theorem (Fundamental Theorem of Γ -convergence)

If $F_n \xrightarrow{\Gamma} F$ and $\{x_n\}$ are (almost) minimisers of F_n at each fixed n,

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

▶ (Γ-liminf inequality) for every $x ∈ \mathcal{X}$ and every $\{x_n\}$ such that $x_n \to x$,

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n)$$
,

▶ (Γ -limsup inequality) for every $x \in \mathcal{X}$ there exists a recovery sequence $\{x_n\}$ such that $x_n \to x$ and

$$F(x) = \lim_{n \to \infty} F_n(x_n).$$

Theorem (Fundamental Theorem of Γ-convergence)

If $F_n \stackrel{\Gamma}{\to} F$ and $\{x_n\}$ are (almost) minimisers of F_n at each fixed n,

▶ F admits minimum in X and $\inf_{X} F_n \to \min_{X} F$

Let \mathcal{X} be a metric space and $F_n \colon \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$.

Definition (Γ-convergence)

We say that F_n Γ -converges to $F: \mathcal{X} \to \mathbb{R} \cup \{\pm \infty\}$ as $n \to \infty$ if:

▶ (Γ-liminf inequality) for every x ∈ X and every $\{x_n\}$ such that $x_n \to x$,

$$F(x) \leq \liminf_{n \to \infty} F_n(x_n)$$
,

▶ (Γ -limsup inequality) for every $x \in \mathcal{X}$ there exists a recovery sequence $\{x_n\}$ such that $x_n \to x$ and

$$F(x) = \lim_{n \to \infty} F_n(x_n).$$

Theorem (Fundamental Theorem of Γ-convergence)

If $F_n \xrightarrow{\Gamma} F$ and $\{x_n\}$ are (almost) minimisers of F_n at each fixed n,

- ▶ F admits minimum in X and $\inf_{X} F_n \to \min_{X} F$
- ▶ if $x_n \to x$ then $F(x) = \min_{\mathcal{X}} F$.

Γ-convergence: basic example

Let $\mathcal{X} = \mathbb{R}$ and define $F_n(x) := x^2 + \cos(nx)$.

Γ-convergence: basic example

Let $\mathcal{X} = \mathbb{R}$ and define $F_n(x) := x^2 + \cos(nx)$.

Γ-convergence: basic example

Let $\mathcal{X} = \mathbb{R}$ and define $F_n(x) := x^2 + \cos(nx)$.

We have that $F_n \stackrel{\Gamma}{\to} F := x^2 - 1$ as $n \to \infty$.

Motivation: polycrystals

Polycrystal: formed by many grains, having the **same** lattice structure, mutually rotated ⇒ interface misfit at **grain boundaries**.

Motivation: polycrystals

Polycrystal: formed by many grains, having the **same** lattice structure, mutually rotated ⇒ interface misfit at **grain boundaries**.

Goal: to obtain polycrystalline structures as minimisers of some energy functional.

F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations. Preprint (2017)

Structure of Tilt Grain Boundaries

Tilt boundary: small angle rotation θ between grains \implies edge dislocations. Boundary structure: periodic array of edge dislocations with spacing $\delta = \varepsilon/\theta$.

Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad ext{ as } \quad arepsilon
ightarrow 0 \, .$$

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon>0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad \text{as} \quad arepsilon
ightarrow 0 \, .$$

Plan: let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

▶ We compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad \text{as} \quad arepsilon
ightarrow 0 \, .$$

Plan: let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

- ▶ We compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,
- ightharpoonup we show that under suitable boundary conditions ${\cal F}$ is minimised by polycrystals.

Plan of the paper

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad \text{ as } \quad arepsilon
ightarrow 0 \, .$$

Plan: let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

- ▶ We compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,
- we show that under suitable boundary conditions F is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$N_{arepsilon} \ll rac{1}{arepsilon}$$

 \implies we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle $\theta \approx 0$.

Reference configuration: $\Omega\subset\mathbb{R}^2$ open bounded.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Strains: inducing μ are maps $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2\times 2}$ s.t. $\beta = 0$ in $\bigcup B_{\varepsilon}(x_i)$ and

$$\operatorname{\mathsf{Curl}} \beta \, \bot \, \Omega_\varepsilon(\mu) = 0 \,, \quad \int_{\partial B_\varepsilon(x_i)} \beta \cdot t \, \mathit{d} s = \xi_i \,.$$

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Strains: inducing μ are maps $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2\times 2}$ s.t. $\beta = 0$ in $\bigcup B_{\varepsilon}(x_i)$ and

Curl
$$\beta \sqcup \Omega_{\varepsilon}(\mu) = 0$$
, $\int_{\partial B_{\varepsilon}(x_i)} \beta \cdot t \, ds = \xi_i$.

Linear Energy: $\mathbb{C}F:F\sim |F^{\mathrm{sym}}|^2$, then

$$\mathsf{E}_{arepsilon}(\mu,eta) := \int_{\Omega} \mathbb{C}eta : eta \, \mathsf{d}\mathsf{x} = \int_{\Omega} \mathbb{C}eta^{\mathrm{sym}} : eta^{\mathrm{sym}} \, \mathsf{d}\mathsf{x} \, .$$

Let β generate $\xi \delta_0$, that is "Curl $\beta = \xi \delta_0$ "

Let β generate $\xi \delta_0$, that is "Curl $\beta = \xi \delta_0$ "

$$\int_{B_1 \backslash B_2} |\beta|^2 \, dx$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 dx \ge \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 ds d\rho$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{\mathcal{B}_1 \setminus \mathcal{B}_{\varepsilon}} |\beta|^2 \, d\mathbf{x} &\geq \int_{\varepsilon}^1 \int_{\partial \mathcal{B}_{\rho}} |\beta \cdot \mathbf{t}|^2 \, d\mathbf{s} \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial \mathcal{B}_{\rho}} \beta \cdot \mathbf{t} \, d\mathbf{s} \bigg|^2 \, d\rho \end{split}$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathbf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathbf{t}|^2 \, d\mathbf{s} \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot \mathbf{t} \, d\mathbf{s} \right|^2 d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

Let β generate $\xi \delta_0$, that is "Curl $\beta = \xi \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathbf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathbf{t}|^2 \, ds \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot \mathbf{t} \, ds \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of} \quad \frac{\pi}{2} \,.$$

Let β generate $\xi \delta_0$, that is "Curl $\beta = \xi \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathsf{t}|^2 \, d\mathsf{s} \, d\rho \geq \mathsf{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot \mathsf{t} \, d\mathsf{s} \right|^2 d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of} \ \ \frac{\pi}{2} \,.$$

Remark: let $s \in (0,1)$, then

$$\int_{B_{\varepsilon^s}\setminus B_{\varepsilon}} |\beta|^2 dx \ge \frac{(1-s)}{2\pi} \frac{|\xi|^2}{2\pi} |\log \varepsilon|.$$

Let β generate $\xi \delta_0$, that is "Curl $\beta = \xi \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathbf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathbf{t}|^2 \, ds \, d\rho \geq \text{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot \mathbf{t} \, ds \right|^2 d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of} \ \ \frac{\pi}{2} \,.$$

Remark: let $s \in (0,1)$, then

$$\int_{B_{s^s}\setminus B_{\varepsilon}} |\beta|^2 dx \ge \frac{(1-s)}{2\pi} \frac{|\xi|^2}{2\pi} |\log \varepsilon|.$$

Self-energy: is of order $|\log \varepsilon|$ and concentrated in a small region around B_{ε} .

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \to 0$.

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $S := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $S := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Note: dislocations separation is a technical assumption for energy estimates.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$ with $\rho_{\varepsilon} \to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single multiple dislocation.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{x_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $S := \operatorname{\mathsf{Span}}_{\mathbb{Z}} S$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Hypothesis on HC Radius: as $\varepsilon \to 0$

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $S := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Note: dislocations separation is a technical assumption for energy estimates.

Hypothesis on HC Radius: as $\varepsilon \to 0$

 $ightharpoonup
ho_arepsilon/arepsilon^s o\infty$, $orall s\in(0,1)$, (HC region contains almost all the self-energy)

HC Radius: fixed scale $\rho_{\varepsilon}\gg \varepsilon$ with $\rho_{\varepsilon}\to 0$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $S := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Note: dislocations separation is a technical assumption for energy estimates.

Hypothesis on HC Radius: as $\varepsilon \to 0$

- $ho_{\varepsilon}/\varepsilon^{s} o \infty$, $\forall s \in (0,1)$, (HC region contains almost all the self-energy)
- $ightharpoonup N_{\varepsilon}
 ho_{\varepsilon}^2
 ightarrow 0$.

(Measure of HC region vanishes)

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
.

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
.

Rescaled energy functionals:

$$\mathcal{F}_arepsilon(\mu,eta) := rac{1}{ extstyle N_arepsilon |\logarepsilon|} \int_{\Omega_arepsilon(\mu)} \mathbb{C}eta^{ ext{sym}} : eta^{ ext{sym}} \, extstyle dx \, .$$

Energy scaling: each dislocation accounts for $|\log arepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
.

Rescaled energy functionals:

$$\mathcal{F}_{arepsilon}(\mu,eta) := rac{1}{ extstyle N_{arepsilon} |\log arepsilon|} \int_{\Omega_{arepsilon}(\mu)} \mathbb{C}eta^{ ext{sym}} : eta^{ ext{sym}} \, extstyle dx \, .$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

▶ $N_{\varepsilon} \ll |\log \varepsilon| \sim \text{Dilute dislocations}$

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
.

Rescaled energy functionals:

$$\mathcal{F}_{arepsilon}(\mu,eta) := rac{1}{ extstyle N_{arepsilon} |\log arepsilon|} \int_{\Omega_{arepsilon}(\mu)} \mathbb{C}eta^{ ext{sym}} : eta^{ ext{sym}} \, extstyle dx \, .$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- ▶ $N_{\varepsilon} \ll |\log \varepsilon| \sim$ Dilute dislocations
- ▶ $N_{\varepsilon} \approx |\log \varepsilon| \sim \text{Critical regime}$

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.

J. Eur. Math. Soc. (JEMS) (2010)

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
.

Rescaled energy functionals:

$$\mathcal{F}_{arepsilon}(\mu,eta) := rac{1}{\mathsf{N}_{arepsilon}|\logarepsilon|} \int_{\Omega_{arepsilon}(\mu)} \mathbb{C}eta^{ ext{sym}} : eta^{ ext{sym}} \, \mathit{dx} \, .$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- ▶ $N_{\varepsilon} \ll |\log \varepsilon| \sim \text{Dilute dislocations}$
- $N_{\varepsilon} \approx |\log \varepsilon| \sim \text{Critical regime}$ Garroni, Leoni, Ponsiglione. *Gradient theory for plasticity via homogenization of discrete dislocations.*J. Eur. Math. Soc. (JEMS) (2010)
- ▶ $N_{\varepsilon} \gg |\log \varepsilon| \sim \text{Super-critical regime}$ F., Palombaro, Ponsiglione. *Linearised Polycrystals from a 2D System of Edge Dislocations*. Preprint (2017)

Behaviour of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$ (Heuristic)

Let (μ, β) with $\mu = \sum_{i=1}^{N_{\varepsilon}} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Behaviour of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$ (Heuristic)

Let (μ, β) with $\mu = \sum_{i=1}^{N_{\varepsilon}} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu) := \bigcup_{i=1}^{N_{\varepsilon}} B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx = E_{\varepsilon}^{\mathrm{interaction}} + E_{\varepsilon}^{\mathrm{self}}.$$

Behaviour of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$ (Heuristic)

Let (μ, β) with $\mu = \sum_{i=1}^{N_{\varepsilon}} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu) := \bigcup_{i=1}^{N_{\varepsilon}} B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx = E_{\varepsilon}^{\mathrm{interaction}} + E_{\varepsilon}^{\mathrm{self}}.$$

Idea: rescaling by $N_{\varepsilon}|\log \varepsilon|$, we have $E_{\varepsilon}^{\mathrm{interaction}} o E^{\mathrm{elastic}}$ and $E_{\varepsilon}^{\mathrm{self}} o E^{\mathrm{plastic}}$.

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

$$\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$$

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

$$\blacktriangleright \frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$$

 $\blacktriangleright \ \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \ \ \text{in} \ \ \mathcal{M}(\Omega; \mathbb{R}^2),$

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \quad \text{in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$
- $\blacktriangleright \frac{\mu_{\varepsilon}}{\mathsf{N}_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- ► Curl $A = \mu$ and $\mu \in H^{-1}(\Omega; \mathbb{R}^2)$ ($\implies A \in BV(\Omega; \mathbb{M}^{2 \times 2}_{skew})$).

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$
- $\blacktriangleright \frac{\mu_{\varepsilon}}{\mathsf{N}_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- ► Curl $A = \mu$ and $\mu \in H^{-1}(\Omega; \mathbb{R}^2)$ ($\implies A \in BV(\Omega; \mathbb{M}^{2 \times 2}_{skew})$).

 Γ -convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|}\right) \, d|\mu|, \quad \text{with } \operatorname{Curl} A = \mu.$$

Γ -convergence result for $N_{\varepsilon}\gg |\log arepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$
- $\blacktriangleright \frac{\mu_{\varepsilon}}{\mathsf{N}_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- ► Curl $A = \mu$ and $\mu \in H^{-1}(\Omega; \mathbb{R}^2)$ ($\Longrightarrow A \in BV(\Omega; \mathbb{M}^{2 \times 2}_{skew})$).

 Γ -convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,, \quad \text{with } \operatorname{Curl} A = \mu \,.$$

Remark:

▶ S and A live on two different scales with $S \ll A \implies$ terms in \mathcal{F} decoupled.

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$
- $\blacktriangleright \frac{\mu_{\varepsilon}}{\mathsf{N}_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- ► Curl $A = \mu$ and $\mu \in H^{-1}(\Omega; \mathbb{R}^2)$ ($\implies A \in BV(\Omega; \mathbb{M}^{2 \times 2}_{skew})$).

 Γ -convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,, \quad \textit{with} \quad \mathsf{Curl} \, A = \mu \,.$$

Remark:

- ▶ S and A live on two different scales with $S \ll A \implies$ terms in $\mathcal F$ decoupled.
- ▶ In the critical regime $N_{\varepsilon} \approx |\log \varepsilon|$ we have $S \approx A$ and $\text{Curl}(S + A) = \mu$.

Self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{\varepsilon \to 0} \, \min_{\beta} \left\{ \frac{1}{|\log \varepsilon|} \int_{B_1 \setminus B_\varepsilon} \mathbb{C}\beta : \beta \, \mathit{dx} : \text{ ``Curl } \beta = \xi \delta_0 \text{''} \right\} \, .$$

Self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{\varepsilon \to 0} \, \min_{\beta} \left\{ \frac{1}{|\log \varepsilon|} \int_{B_1 \setminus B_\varepsilon} \mathbb{C}\beta : \beta \, \operatorname{d}\!x : \text{ ``Curl } \beta = \xi \delta_0 \text{'`} \right\} \, .$$

Plastic density: the map $\varphi \colon \mathbb{R}^2 \to [0,\infty)$ defined as the relaxation of ψ

$$\varphi(\xi) := \min \left\{ \sum_{i=1}^{M} \lambda_i \psi(\xi_i) : \ \xi = \sum_{i=1}^{M} \lambda_i \xi_i, \ M \in \mathbb{N}, \ \lambda_i \geq 0, \ \xi_i \in \mathbb{S} \right\}.$$

Self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{\varepsilon \to 0} \, \min_{\beta} \left\{ \frac{1}{|\log \varepsilon|} \int_{B_1 \backslash B_\varepsilon} \mathbb{C}\beta : \beta \, \mathrm{d} \mathrm{x} : \text{ ``Curl } \beta = \xi \delta_0 \text{''} \right\} \, .$$

Plastic density: the map $\varphi \colon \mathbb{R}^2 \to [0,\infty)$ defined as the relaxation of ψ

$$\varphi(\xi) := \min \left\{ \sum_{i=1}^{M} \lambda_i \psi(\xi_i) : \ \xi = \sum_{i=1}^{M} \lambda_i \xi_i, \ M \in \mathbb{N}, \ \lambda_i \geq 0, \ \xi_i \in \mathbb{S} \right\}.$$

Note: since the energy is quadratic, in the Γ -limit we have φ instead of ψ .

Self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{\varepsilon \to 0} \, \min_{\beta} \left\{ \frac{1}{|\log \varepsilon|} \int_{B_1 \setminus B_\varepsilon} \mathbb{C}\beta : \beta \, \operatorname{d}\!x : \text{ ``Curl } \beta = \xi \delta_0 \text{''} \right\} \, .$$

Plastic density: the map $\varphi \colon \mathbb{R}^2 \to [0,\infty)$ defined as the relaxation of ψ

$$\varphi(\xi) := \min \left\{ \sum_{i=1}^{M} \lambda_i \psi(\xi_i) : \ \xi = \sum_{i=1}^{M} \lambda_i \xi_i, \ M \in \mathbb{N}, \ \lambda_i \geq 0, \ \xi_i \in \mathbb{S} \right\}.$$

Note: since the energy is quadratic, in the Γ -limit we have φ instead of ψ .

Properties: φ is convex and positively 1-homogeneous. Moreover $\exists c > 0$ s.t.

$$c^{-1}|\xi| \le \varphi(\xi) \le c|\xi|, \quad \forall \xi \in \mathbb{R}^2.$$

Let
$$(\mu_{\varepsilon}, \beta_{\varepsilon})$$
 with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that
$$\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \; .$$

Let
$$(\mu_{\varepsilon}, \beta_{\varepsilon})$$
 with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that
$$\sup \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \,.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

Let
$$(\mu_{\varepsilon}, \beta_{\varepsilon})$$
 with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that
$$\sup \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \,.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$

Let
$$(\mu_{\varepsilon}, \beta_{\varepsilon})$$
 with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that
$$\sup \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \,.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$

Let
$$(\mu_{\varepsilon}, \beta_{\varepsilon})$$
 with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that
$$\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \ .$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$
$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \psi(\xi_{\varepsilon,i})$$

Let $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that $\sup \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \,.$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$
$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \psi(\xi_{\varepsilon,i}) \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i})$$

Let $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{x_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that

$$\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(\mathbf{x}_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$
$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{\psi(\xi_{\varepsilon,i})}{\sum_{i=1}^{M_{\varepsilon}} \psi(\xi_{\varepsilon,i})} \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i}) = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \varphi\left(\frac{\xi_{\varepsilon,i}}{|\xi_{\varepsilon,i}|}\right)$$

Let $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathbf{x}_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that

$$\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$

$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{\psi(\xi_{\varepsilon,i})}{|X_{\varepsilon}|} \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i}) = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \varphi\left(\frac{\xi_{\varepsilon,i}}{|\xi_{\varepsilon,i}|}\right)$$

$$\left(c := \min_{|\xi|=1} \varphi(\xi) > 0\right) \geq \frac{c}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}|$$

Let $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{x_{\varepsilon,i}}$ and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ". Assume that

$$\sup_{\varepsilon} \mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C.$$

$$\frac{|\mu_{\varepsilon}|(\Omega)}{N_{\varepsilon}} = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{N_{\varepsilon}} |\xi_{\varepsilon,i}| \le C \implies \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu. \tag{1}$$

$$C \geq \frac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx$$

$$(\rho_{\varepsilon} \gg \varepsilon) \gtrsim \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{\psi(\xi_{\varepsilon,i})}{|\xi_{\varepsilon,i}|} \geq \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \varphi(\xi_{\varepsilon,i}) = \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| \varphi\left(\frac{\xi_{\varepsilon,i}}{|\xi_{\varepsilon,i}|}\right)$$

$$\left(c := \min_{|\xi|=1} \varphi(\xi) > 0\right) \geq \frac{c}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} |\xi_{\varepsilon,i}| = \frac{c}{N_{\varepsilon}} |\mu_{\varepsilon}|(\Omega) \implies (1)$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\mathrm{sym}}|^2$, we have

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\text{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^2 dx$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\text{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^2 dx \implies \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S.$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\text{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^2 dx \implies \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S.$$

Skew Part: we use a Generalised Korn inequality: there exists C > 0 s.t. for every $\beta \in L^1(\Omega; \mathbb{M}^{2\times 2})$ with Curl $\beta \in \mathcal{M}(\Omega; \mathbb{R}^2)$,

$$\int_{\Omega} |\beta^{\text{skew}}|^2 dx \le C \left(\int_{\Omega} |\beta^{\text{sym}}|^2 dx + |\operatorname{Curl} \beta|(\Omega)^2 \right). \tag{2}$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\mathrm{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^2 dx \implies \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S.$$

Skew Part: we use a Generalised Korn inequality: there exists C>0 s.t. for every $\beta\in L^1(\Omega;\mathbb{M}^{2\times 2})$ with Curl $\beta\in\mathcal{M}(\Omega;\mathbb{R}^2)$,

$$\int_{\Omega} |\beta^{\text{skew}}|^2 dx \le C \left(\int_{\Omega} |\beta^{\text{sym}}|^2 dx + |\operatorname{Curl} \beta|(\Omega)^2 \right). \tag{2}$$

Since "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ", by (2) and assumption $N_{\varepsilon} \gg |\log \varepsilon|$ we get

$$\int_{\Omega} |\beta_{\varepsilon}^{\text{skew}}|^2 dx \le C \left(\int_{\Omega} |\beta_{\varepsilon}^{\text{sym}}|^2 dx + |\mu_{\varepsilon}| (\Omega)^2 \right)$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\mathrm{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^{2} dx \implies \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S.$$

Skew Part: we use a Generalised Korn inequality: there exists C>0 s.t. for every $\beta\in L^1(\Omega;\mathbb{M}^{2\times 2})$ with Curl $\beta\in\mathcal{M}(\Omega;\mathbb{R}^2)$,

$$\int_{\Omega} |\beta^{\text{skew}}|^2 dx \le C \left(\int_{\Omega} |\beta^{\text{sym}}|^2 dx + |\operatorname{Curl} \beta|(\Omega)^2 \right). \tag{2}$$

Since "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ", by (2) and assumption $N_{\varepsilon} \gg |\log \varepsilon|$ we get

$$\int_{\Omega} |\beta_{\varepsilon}^{\text{skew}}|^{2} dx \le C \left(\int_{\Omega} |\beta_{\varepsilon}^{\text{sym}}|^{2} dx + |\mu_{\varepsilon}|(\Omega)^{2} \right)$$

$$\le C \left(|N_{\varepsilon}| \log \varepsilon| + |N_{\varepsilon}|^{2} \right) \le C N_{\varepsilon}^{2}$$

Symmetric Part: recalling that $\mathbb{C}F : F \geq C|F^{\mathrm{sym}}|^2$, we have

$$|N_{\varepsilon}|\log \varepsilon| \geq C \int_{\Omega} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \geq C \int_{\Omega} |\beta_{\varepsilon}^{\mathrm{sym}}|^{2} dx \implies \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S.$$

Skew Part: we use a Generalised Korn inequality: there exists C>0 s.t. for every $\beta\in L^1(\Omega;\mathbb{M}^{2\times 2})$ with Curl $\beta\in\mathcal{M}(\Omega;\mathbb{R}^2)$,

$$\int_{\Omega} |\beta^{\text{skew}}|^2 dx \le C \left(\int_{\Omega} |\beta^{\text{sym}}|^2 dx + |\operatorname{Curl} \beta|(\Omega)^2 \right). \tag{2}$$

Since "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ", by (2) and assumption $N_{\varepsilon} \gg |\log \varepsilon|$ we get

$$\begin{split} \int_{\Omega} |\beta_{\varepsilon}^{\text{skew}}|^2 \, dx &\leq C \left(\int_{\Omega} |\beta_{\varepsilon}^{\text{sym}}|^2 \, dx + |\mu_{\varepsilon}|(\Omega)^2 \right) \\ &\leq C \left(N_{\varepsilon} |\log \varepsilon| + N_{\varepsilon}^2 \right) \leq C N_{\varepsilon}^2 \implies \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A. \end{split}$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\longrightarrow} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S \,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \,, \quad \text{with } \mathrm{Curl}\, A = \mu \,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{\mathit{N}_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \; dx \geq \int_{\Omega} \mathbb{C} \mathit{S} : \mathit{S} \; dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \; d|\mu| \, .$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} dx \ge \int_{\Omega} \mathbb{C}S : S dx \quad (N_{\varepsilon} \rho_{\varepsilon}^{2} \to 0 \implies |HC_{\varepsilon}| \to 0)$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C}S : S \, dx \quad (N_{\varepsilon} \rho_{\varepsilon}^{2} \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\liminf_{\varepsilon \to 0} \frac{1}{\mathit{N}_{\varepsilon} |\log \varepsilon|} \int_{\mathit{HC}_{\varepsilon}} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, \mathit{dx}$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{x_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_\varepsilon |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_\varepsilon : \beta_\varepsilon \, dx \ge \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C}S : S \, dx \quad (N_{\varepsilon} \rho_{\varepsilon}^{2} \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{HC_{\varepsilon}} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx$$

Ideas for Γ-liminf

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_\varepsilon |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_\varepsilon : \beta_\varepsilon \ dx \ge \int_{\Omega} \mathbb{C} S : S \ dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \ d|\mu| \,.$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C} S : S \, dx \quad (N_{\varepsilon} \rho_{\varepsilon}^2 \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_\varepsilon |\log \varepsilon|} \int_{HC_\varepsilon} \mathbb{C} \beta_\varepsilon : \beta_\varepsilon \, dx = \liminf_{\varepsilon \to 0} \frac{1}{N_\varepsilon} \sum_{i=1}^{M_\varepsilon} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_\varepsilon}(x_{\varepsilon,i})} \mathbb{C} \beta_\varepsilon : \beta_\varepsilon \, dx$$

$$\gtrsim \liminf_{arepsilon o 0} rac{1}{N_arepsilon} \sum_{i=1}^{M_arepsilon} arphi(\xi_{arepsilon,i})$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{\mathsf{x}_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \ dx \geq \int_{\Omega} \mathbb{C} S : S \ dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \ d|\mu| \,.$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C}S : S \, dx \quad (N_{\varepsilon} \rho_{\varepsilon}^{2} \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{HC_{\varepsilon}} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx$$

$$0 \gtrsim \liminf_{arepsilon o 0} rac{1}{N_arepsilon} \sum_{i=1}^{M_arepsilon} arphi(\xi_{arepsilon,i}) = \liminf_{arepsilon o 0} rac{1}{N_arepsilon} \int_\Omega arphi\left(rac{d\mu_arepsilon}{d|\mu_arepsilon|}
ight) \, d|\mu_arepsilon|$$

Assume that $(\mu_{\varepsilon}, \beta_{\varepsilon})$ is such that $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi_{\varepsilon,i} \delta_{x_{\varepsilon,i}}$, "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and

$$\frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S\,, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A\,, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu\,, \quad \text{with } \mathrm{Curl}\, A = \mu\,.$$

We have to show

$$\liminf_{\varepsilon \to 0} \frac{1}{\mathit{N}_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx \geq \int_{\Omega} \mathbb{C} \mathit{S} : \mathit{S} \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

Idea: split the energy $E_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) = E_{\varepsilon}^{\mathrm{interaction}} + E_{\varepsilon}^{\mathsf{self}}$ and use lower semicontinuity:

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega \setminus HC_{\varepsilon}} \mathbb{C}\beta_{\varepsilon} : \beta_{\varepsilon} \, dx \ge \int_{\Omega} \mathbb{C}S : S \, dx \quad (N_{\varepsilon} \rho_{\varepsilon}^{2} \to 0 \implies |HC_{\varepsilon}| \to 0)$$

$$\liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{HC_{\varepsilon}} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \liminf_{\varepsilon \to 0} \frac{1}{N_{\varepsilon}} \sum_{i=1}^{M_{\varepsilon}} \frac{1}{|\log \varepsilon|} \int_{B_{\rho_{\varepsilon}}(x_{\varepsilon,i})} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx$$

$$0 \gtrsim \liminf_{arepsilon o 0} rac{1}{N_arepsilon} \sum_{i=1}^{M_arepsilon} arphi(\xi_{arepsilon,i}) = \liminf_{arepsilon o 0} rac{1}{N_arepsilon} \int_\Omega arphi\left(rac{d\mu_arepsilon}{d|\mu_arepsilon|}
ight) \, d|\mu_arepsilon| \geq \int_\Omega arphi\left(rac{d\mu}{d|\mu|}
ight) \, d|\mu|$$

by Reshetnyak's lower semicontinuity Theorem, since φ is 1-homogeneous.

Ideas for Γ-limsup

Consider (μ, S, A) with S symmetric, A skew and $Curl A = \mu$.

Ideas for Γ-limsup

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

Ideas for Γ-limsup

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

▶ divide Ω in ≈ $N_ε$ squares of side $2r_ε = C/\sqrt{N_ε}$

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

- ▶ divide Ω in ≈ $N_ε$ squares of side $2r_ε = C/\sqrt{N_ε}$
- the recovery sequence is $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon,i}$.

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu, \tag{3}$$

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

- ▶ divide Ω in ≈ $N_ε$ squares of side $2r_ε = C/\sqrt{N_ε}$
- the recovery sequence is $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon,i}$.

Recovery strains: let K_{ε} be the solution to the cell-problem about each $x_{\varepsilon,i}$.

Consider (μ, S, A) with S symmetric, A skew and $\operatorname{Curl} A = \mu$. We have to construct a recovery sequence $(\mu_{\varepsilon}, \beta_{\varepsilon})$ with " $\operatorname{Curl} \beta_{\varepsilon} = \mu_{\varepsilon}$ " s.t.

$$\frac{\beta_{\varepsilon}^{\text{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\text{skew}}}{N_{\varepsilon}} \rightharpoonup A, \quad \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\longrightarrow} \mu,$$
 (3)

$$\lim_{\varepsilon \to 0} \frac{1}{N_{\varepsilon} |\log \varepsilon|} \int_{\Omega} \mathbb{C} \beta_{\varepsilon} : \beta_{\varepsilon} \, dx = \int_{\Omega} \mathbb{C} S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \,. \tag{4}$$

For simplicity assume $\mu = \xi \, dx$ with $\varphi(\xi) = \psi(\xi)$. The general is more technical.

Recovery measures:

- divide Ω in ≈ N_ε squares of side $2r_ε = C/\sqrt{N_ε}$
- the recovery sequence is $\mu_{\varepsilon} = \sum_{i=1}^{M_{\varepsilon}} \xi \delta_{\varepsilon,i}$.

Recovery strains: let K_{ε} be the solution to the cell-problem about each $x_{\varepsilon,i}$. Then $K_{\varepsilon}/\sqrt{N_{\varepsilon}|\log \varepsilon|} \rightharpoonup 0$ and

$$\beta_{\varepsilon} = \sqrt{N_{\varepsilon} |\log \varepsilon|} S + N_{\varepsilon} A + \frac{K_{\varepsilon}}{N_{\varepsilon}} + O(\sqrt{N_{\varepsilon} |\log \varepsilon|})$$

satisfies (3), (4) and "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ ".

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} : \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{\mathcal{S}}, \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{\mathcal{A}}.$$

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$rac{g_{arepsilon}^{
m sym}}{\sqrt{N_{arepsilon}|\log arepsilon|}}
ightharpoonup g_{\mathcal{S}}\,, \qquad rac{g_{arepsilon}^{
m skew}}{N_{arepsilon}}
ightharpoonup g_{\mathcal{A}}\,.$$

Dislocations and strains: (μ, β) such that "Curl $\beta = \mu$ " and

$$\mu(\Omega) = \int_{\partial\Omega} g_{arepsilon} \cdot t \; ds \,, \qquad eta \cdot t = g_{arepsilon} \cdot t \quad ext{on} \quad \partial\Omega \,.$$

Adding boundary conditions

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S} \,, \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{A} \,.$$

Dislocations and strains: (μ, β) such that "Curl $\beta = \mu$ " and

$$\mu(\Omega) = \int_{\partial\Omega} g_arepsilon \cdot t \; ds \,, \qquad eta \cdot t = g_arepsilon \cdot t \quad ext{on} \quad \partial\Omega \,.$$

Theorem (F., Palombaro, Ponsiglione '17)

The energy functionals $\mathcal{F}_{arepsilon}$ are equi-coercive and they Γ -converge to

$$\mathcal{F}_{\mathrm{BC}}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) \, ds \,,$$

with Curl $A = \mu$ and $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Remark: $\beta^{\text{sym}} \ll \beta^{\text{skew}} \implies \text{BC}$ pass to the limit only for A.

Minimising \mathcal{F}_{BC} with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Minimising \mathcal{F}_{BC} with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Piecewise constant BC: Fix a piecewise constant BC

$$g_A := \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \chi_{U_k},$$

with $m_k < m_{k+1}$ and $\{U_k\}_{k=1}^M$ Caccioppoli partition of Ω .

Minimising \mathcal{F}_{BC} with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Piecewise constant BC: Fix a piecewise constant BC

$$g_A := \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \chi_{U_k},$$

with $m_k < m_{k+1}$ and $\{U_k\}_{k=1}^M$ Caccioppoli partition of Ω .

Problem

Minimise

$$\mathcal{F}_{\mathrm{BC}}(\operatorname{Curl} A, 0, A) = \int_{\Omega} \varphi\left(\frac{d \operatorname{Curl} A}{d | \operatorname{Curl} A|}\right) d|\operatorname{Curl} A| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) ds,$$

with Curl $A \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mathsf{Curl}\,A,0,A)$

$$A=\sum_{k=1}^M A_k \chi_{E_k}\,,$$

with $A_k \in \mathbb{M}^{2 \times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mathsf{Curl}\,A,0,A)$

$$A=\sum_{k=1}^M A_k \chi_{E_k}\,,$$

with $A_k \in \mathbb{M}^{2\times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Proof Strategy: We are minimising an anisotropic total variation functional. By Coarea formula we select the levels with minimal perimeter, definying the Caccioppoli partition.

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mathsf{Curl}\,A,0,A)$

$$A=\sum_{k=1}^M A_k \chi_{E_k}\,,$$

with $A_k \in \mathbb{M}^{2\times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Proof Strategy: We are minimising an anisotropic total variation functional. By Coarea formula we select the levels with minimal perimeter, definying the Caccioppoli partition.

Open Question: Are all minimisers piecewise constant? Uniqueness?

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mathsf{Curl}\,A,0,A)$

$$A=\sum_{k=1}^M A_k \chi_{E_k}\,,$$

with $A_k \in \mathbb{M}^{2 \times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Proof Strategy: We are minimising an anisotropic total variation functional. By Coarea formula we select the levels with minimal perimeter, definying the Caccioppoli partition.

Open Question: Are all minimisers piecewise constant? Uniqueness?

Essential: that the boundary condition is piecewise affine on the whole $\partial\Omega$.

Conclusions:

A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Open Questions:

► Uniqueness of piecewise constant minimisers?

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Open Questions:

- Uniqueness of piecewise constant minimisers?
- Dynamics for linearised polycrystals?

```
Taylor. Bull. Amer. Math. Soc. (1978).
```

Chambolle, Morini, Ponsiglione. Comm. Pure Appl. Math (2017).

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Open Questions:

- ▶ Uniqueness of piecewise constant minimisers?
- Dynamics for linearised polycrystals?
 Taylor. Bull. Amer. Math. Soc. (1978).
 Chambolle, Morini, Ponsiglione. Comm. Pure Appl. Math (2017).
- ► Γ-convergence analysis starting from a non-linear energy? Namely, considering small deformations $v = x + \varepsilon u$. Now the Burgers vectors are $\varepsilon \xi$ and the equivalent rescaling is $\varepsilon^2 N_\varepsilon |\log \varepsilon|$.
 - Müller, Scardia, Zeppieri. Indiana University Mathematics Journal (2014).

Thank You!