1

Random Numbers

SADINENI ABHINAY - CS21BTECH11055

6

Contents

1	Uniform Random Numbers	1
2	Central Limit Theorem	2
3	From Uniform to Other	3
4	Triangular Distribution	4
5	Maximum Likelihood	5

Abstract—This manual provides a simple introduction to the generation of random numbers

Gaussian to Other

6

1.0 Numerical Theory 0.8 0.6 0.7 0.9 0.

Fig. 1.2: The CDF of U

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/1.1.c

Now compile and exceute

1.2 Load the uni.dat file into python and plot the empirical CDF of U using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The following code plots Fig. 1.2

\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/1.2.py
\$ python3 1.2.py

1.3 Find a theoretical expression for $F_U(x)$. **Solution:** Since it is uniform distribution then pdf is given by:

$$p_U(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$
 (1.2)

for 0 < x < 1:

$$F_U(x) = \int_{-\infty}^x p_U(x) dx \tag{1.3}$$

$$= \int_0^x 1.dx \tag{1.4}$$

$$=x\tag{1.5}$$

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & 1 < x \end{cases}$$
 (1.6)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.7)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.8)

Write a C program to find the mean and variance of U.

Solution: Download and excecute the code

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/1.3-1.4.c

Now compile and excecute

Experimental values:

$$Mean = 0.499772 (1.9)$$

Variance =
$$0.083368$$
 (1.10)

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.11}$$

Solution: Mean and variance are given by :

$$E[U] = \int_0^1 x.dx = 0.5 \tag{1.12}$$

$$Var[U] = E[U^2] - E[U]^2 = \int_0^1 x^2 dx - 0 \quad (1.13)$$

$$=\frac{1}{3}-\frac{1}{4}\tag{1.14}$$

$$=\frac{1}{12}$$
 (1.15)

By comparing these values obtained with results (1.9) and (1.10) we can conclude that simulation varies with theoritical analysis.

2 Central Limit Theorem

2.1 Generate 10^6 samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Soltion: Download

\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/2.1.c
\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/2.1.py

Now compile the c-code to generate the data

Fig. 2.2: The CDF of X

\$ gcc -o 2.1 2.1.c \$./2.1

Now excecute the python code which take the data from output of c code:

\$ python3 2.1.py

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: The CDF of *X* is plotted in Fig. 2.2 Properties:

- a) it is symmetric about (0, 0.5)
- b) its tends to one as we approach x = 6

\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/2.2.py
\$ python3 2.2.py

 $Q(x) = \int_{x}^{\infty} exp\left(\frac{-x^{2}}{2}\right) dx \qquad (2.2)$

$$erf(x) = \int_0^x exp\left(\frac{-x^2}{2}\right) dx \qquad (2.3)$$

$$F_X(x) = \int_{-\infty}^x exp\left(\frac{-x^2}{2}\right) dx \qquad (2.4)$$

$$F_X(x) = 1 - Q(x)$$
 (2.5)

$$Q(x) = \frac{1}{2} \left(1 - erf\left(\frac{x}{\sqrt{2}}\right) \right) \tag{2.6}$$

2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The

Fig. 2.3: The PDF of X

PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.7}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.3 using the code below

Properties:

- a) it is symmetric about x = 0
- b) its tends to zero as we approach x = 6

\$ wget https://github.com/karna-rash/A11110
 -Assignment/blob/master/codes/2.3.py
\$ python3 2.3.py

2.4 Find the mean and variance of *X* by writing a C program.

Solution:

wget https://github.com/karna-rash/A11110-Assignment/blob/master/codes/gau_mean.

compile and execute:

Experimental values

$$Mean = -0.000354 \tag{2.8}$$

Variance =
$$1.001179$$
 (2.9)

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty,$$
(2.10)

repeat the above exercise theoretically.

Solution:

a) Mean:

$$E(X) = \int_{-\infty}^{\infty} x p_X(x) dx$$
 (2.11)

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x exp\left(-\frac{x^2}{2}\right) dx$$
 (2.12)

$$= -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\left(exp\left(-\frac{x^2}{2}\right)\right)$$
 (2.13)

$$= 0$$
 (2.14)

b) variance:

$$E\left(X^{2}\right) = \int_{-\infty}^{\infty} x^{2} p_{X}(x) dx \qquad (2.15)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^{2} exp\left(-\frac{x^{2}}{2}\right) dx \quad (2.16)$$

$$= \frac{1}{\sqrt{2\pi}} \left(x \int x exp\left(-\frac{x^{2}}{2}\right) dx\right) \qquad (2.17)$$

$$-\frac{1}{\sqrt{2\pi}} \int \int \left(x exp\left(-\frac{x^{2}}{2}\right)\right) dx . dx \qquad (2.18)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} exp\left(-\frac{x^{2}}{2}\right) dx \qquad (2.19)$$

$$= \frac{\sqrt{2\pi}}{\sqrt{2\pi}} \qquad (2.20)$$

$$= 1 \qquad (2.21)$$

By comparing these values obatined with results (2.8) and (2.9) we can conclude that simulation varies with theoritical analysis.

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Solution: Download the codes 3.1

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/3.1.c

Fig. 3.1: The PDF of V

\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/3.1.py

Compile and execute:

3.2 Find a theoretical expression for $F_V(x)$. Soltion: Let V = G(U) then

$$F_V(x) = F_U(G^{-1}(x))$$
 (3.2)

$$= F_U(1 - e^{-\frac{x}{2}}) \tag{3.3}$$

(3.4)

$$F_V(x) = \begin{cases} G^{-1}(x) & 0 \le 1 - e^{-\frac{x}{2}} \le 1\\ 0 & 1 - e^{-\frac{x}{2}} < 0 \end{cases}$$
 (3.5)

$$F_V(x) = \begin{cases} 1 - e^{-\frac{x}{2}} & 0 \le x \le \infty \\ 0 & x < 0 \end{cases}$$
 (3.6)

4 Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 (4.1)$$

Solution: Download and excecute the code

\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/4.1.c
\$ wget https://github.com/karna-rash/A11110
-Assignment/blob/master/codes/functions.
h
\$ gcc 4.1.c -lm

Fig. 4.2: The PDF verify of T

\$./a.out

4.2 Find the CDF of T.

Solution: Download and excecute the code .it gives the following plot Fig.4.3

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/4.2.py \$ python 4.2.py

$$F_T(t) = \begin{cases} 0 & t \le 0\\ \frac{t^2}{2} & 0 \le t < 1\\ \frac{(2-t)^2}{2} & 1 \le t \le 2\\ 1 & 2 \le t \end{cases}$$
(4.2)

4.3 Find the PDF of T.

Solution: Download and excecute the code. It gives the following plot Fig.4.2

\$ wget https://github.com/karna-rash/A11110
 -Assignment/blob/master/codes/4.3.py
\$ python 4.3.py

$$p_T(t) = \begin{cases} t & 0 \le t < 1\\ 2 - t & 1 \le t \le 2\\ 0 & otherwise \end{cases}$$
 (4.3)

Solution: Download and excecute the code. It gives the following plot Fig.4.3

4.4 Find the theoretical expressions for the PDF and CDF of *T*.

Solution: Let us use convulsion of

Fig. 4.3: The CDF Verify of T

 $p_{U_1}(x)$ and $p_{U_2}(x)$

$$p_T(t) = \int_{-\infty}^{\infty} p_{U_1}(T - \alpha) p_{U_2}(\alpha) d\alpha \qquad (4.4)$$

$$p_{T}(t) = \begin{cases} \int_{0}^{t} 1.d\alpha & 0 \le t < 1\\ \int_{t-1}^{1} 1.d\alpha & 1 \le t \le 2\\ 0 & otherwise \end{cases}$$
 (4.5)

$$= \begin{cases} t & 0 \le t < 1 \\ 2 - t & 1 \le t \le 2 \\ 0 & otherwise \end{cases}$$
 (4.6)

Now we can get CDF from PDF

$$F_T(t) = \Pr(T \le t) \tag{4.7}$$

$$= \int_{-\infty}^{t} p_T(x) dx \tag{4.8}$$

$$F_{T}(t) = \begin{cases} 0 & t \leq 0 \\ \int_{0}^{t} x.dx & 0 \leq t < 1 \\ \int_{1}^{t} 2 - x.dx + \frac{1}{2} & 1 \leq t \leq 2 \\ 1 & 2 \leq t \end{cases}$$
(4.9) 5.6 Find P_{e} assuming that X has equiprobable symbols. 5.7 Verify by plotting the theoretical P_{e} with respect to A from $0 \leq t \leq 10$.

$$= \begin{cases} 0 & t \le 0\\ \frac{t^2}{2} & 0 \le t < 1\\ \frac{(2-t)^2}{2} & 1 \le t \le 2\\ 1 & 2 \le t \end{cases}$$
 (4.10)

4.5 Verify your results through a plot.

theorical plots in 4.3 and 4.2

5 Maximum Likelihood

5.1 Generate equiprobable $X \in \{1, -1\}$. Solution: Download and excecute the code

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/5.1.c

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/functions.

\$ gcc 5.1.c -lm

\$./a.out

5.2 Generate

$$Y = AX + N, (5.1)$$

where A = 5 dB, and $N \sim \mathcal{N}(0, 1)$. Solution: Download and excecute the code

\$ wget https://github.com/karna-rash/A11110

-Assignment/blob/master/codes/5.2.c

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/functions.

\$ gcc 5.2.c -lm

\$./a.out

5.3 Plot Y using a scatter plot. Download and execute the code

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/5.3.py \$ python 5.3.py

- 5.4 Guess how to estimate X from Y.
- 5.5 Find

$$P_{e|0} = \Pr(\hat{X} = -1|X = 1)$$
 (5.2)

and

$$P_{e|1} = \Pr(\hat{X} = 1|X = -1)$$
 (5.3)

- spect to A from 0 to 10 dB.
- 5.8 Now, consider a threshold δ while estimating X from Y. Find the value of δ that maximizes the theoretical P_e .
- 5.9 Repeat the above exercise when

$$p_X(0) = p \tag{5.4}$$

Solution: After Compare the empirical and 5.10 Repeat the above exercise using the MAP criterion.

6 Gaussian to Other

6.1 Let $X_1 \sim \mathcal{N}(0,1)$ and $X_2 \sim \mathcal{N}(0,1)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 \tag{6.1}$$

Solution: Download and excecute the code

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/5.1.c

\$ wget https://github.com/karna-rash/A11110 -Assignment/blob/master/codes/functions. h

\$ gcc 6.1.c -lm

\$./a.out

6.2 If

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (6.2)

find α . Solution: Since X1 and X2 are independent normal distribution:

For $x \ge 0$ Let $X1 = R\cos(\theta)$ and $X2 = R\sin(\theta)$ and And the jacobian matrix J:

$$\mathbf{J} = \begin{pmatrix} \frac{\partial X_1}{\partial R} & \frac{\partial X_1}{\partial \theta} \\ \frac{\partial X_2}{\partial R} & \frac{\partial X_2}{\partial \theta} \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta & -R \sin \theta \\ \sin \theta & R \cos \theta \end{pmatrix}$$
(6.3)

$$= \begin{pmatrix} \cos \theta & -R \sin \theta \\ \sin \theta & R \cos \theta \end{pmatrix} \tag{6.4}$$

Now let us find the

$$p_{R,\theta}(r,\theta) = p_{X1,X2}(x1,x2)|J|$$
 (6.5)

$$= p_{X1}(x1) p_{X2}(x2) \times r \qquad (6.6)$$

$$=\frac{r}{2\pi}e^{-\frac{x_1^2}{2}}e^{-\frac{x_2^2}{2}}\tag{6.7}$$

$$=\frac{r}{2\pi}e^{-\frac{r^2}{2}}\tag{6.8}$$

Remove θ and get in R:

$$P_R(r) = \int_0^{2\pi} p_{R,\theta}(r,\theta) . d\theta \qquad (6.9)$$

$$= \int_{0}^{2\pi} \frac{r}{2\pi} e^{-\frac{r^2}{2}} d.\theta \tag{6.10}$$

$$=2\pi.\frac{r}{2\pi}e^{-\frac{r^2}{2}} \tag{6.11}$$

$$= re^{-\frac{r^2}{2}} \tag{6.12}$$

Now transform into Y:

$$p_Y(y) = p_R(r) \cdot \frac{dr}{dy}$$
 (6.13)

$$= \sqrt{y}e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} \tag{6.14}$$

$$=\frac{e^{-\frac{y}{2}}}{2} \tag{6.15}$$

from pdf we can get cdf:

For $0 \le x \le 1$

$$F_V(x) = \int_0^x \frac{e^{-\frac{u}{2}}}{2} du \tag{6.16}$$

$$=1-e^{-\frac{x}{2}} \tag{6.17}$$

(6.18)

$$F_V(x) = \begin{cases} 1 - e^{-\frac{x}{2}} & 0 \le x \le 1\\ 0 & x < 0 \end{cases}$$
 (6.19)

So Thus confirmed that $\alpha = \frac{1}{2}$

6.3 Plot the CDF and PDf of

$$A = \sqrt{V} \tag{6.20}$$