Produced By:

Commodore International Spare Parts GmbH Braunschweig, West Germany

SERVICE MANUAL

1084S-P1
PAL VERSION

SEPTEMBER, 1990

PN-314688-01

1059

INTERNATIONAL EDITION

COMMODORE "INTERNATIONAL EDITION" SERVICE MANUALS CONTAIN PART NUMBER INFORMATION WHICH MAY VARY ACCORDING TO COUNTRY. SOME PARTS MAY NOT BE AVAILABLE IN ALL COUNTRIES.

TECHNICAL DATA

General

mains voltage 220-240 V (10%)mains frequency 50 Hz

• power consumption 75 W

Picturetube

• size 14"
• deflection angle 90°

EHT 25KVslot triplet pitch 0.42 mm

• type M34EAQ10X

Video

vertical frequency
 horizontal frequency
 50 Hz (47-62,5 Hz)
 15625 Hz (±60 Hz)

bandwidthcharacters8 Mz2000

Audio

• loudspeaker 16Ω/1 W/3"

• output power 1 W

REMARKS

1) The direct voltages indicated in the circuit diagram are average voltages. They have been measured under the following conditions:

Contrast and brightness to minimum.

2) The oscillograms have been measured under the following conditions:

Signal from a RGB pattern generator (SBC 522) on colour bar pattern.

Adjust brightness and contrast for mechanical mid-position (click position).

WARNING

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD). Careless handling during repair can reduce life drastically.

When repairing, make sure that you are connected with the same potential as the mass of the set via a wrist wrap with resistance. Keep conponents and tools also at this potential.

- Headphones connection
- "GREEN" switch 2.
- Mains voltage connector 3.
- RGB ANALOG/TTL switch
- 5. "D" SHELL connector
- RGB/CVBS, LCA switch
- 7. LCA/CVBS switch
- 8. Luminance/CVBS input
- Chrominance input
 AUDIO-L input
- 11. AUDIO-R input

INPUT AND OUTPUT SOCKETS

۵ ۸	SIGNAL IGAN	SENSIT VITY	MPEDANCE
П	<u> </u>		
2	√ 0		
3	PED	_ near 0.7V	150
4	38FEN	VE 0 0 30 3V	*5.3
5	BLUE		150
ō	NTENSITY	To levês	*fa
•	1 MP SKNC	1 7 = 2	
3	म्मृत्व दुरश्रा	1	154
1	.£₽ 5 *% ∂	FAME PRABLE	

80	SIGNAL	SENSITIVITY	MPEDANCE
1901	CHROMINANCE	0.35V :ms	750
902	JUNINANCE CVBS	3 35V rms	?5a
a.,4	AUDIO 4	t "my rms	10ka
4.5	AUDIC L	ms ۷۳۳۲ ا	10kg

212	SIGNAL	SENSITIV TY	MPEDANCE
1	<u></u>		
2	LEFT CHANNEL	2 17 ms	325
3	RIGHT CHANNEL	217.75	325

CABINET

CONNECTION PART

Cabinet parts

100	3138 107 70460	Back cover
101	3138 107 70440	Front
102	3138 104 12540	Foot
103	3138 104 12500	Stand
104	4822 417 50231	Lock
105	3138 107 70450	Lid
106	3138 104 12520	Knob (5x)
107	3138 104 12620	Push button
108	4822 535 91695	Adjust rod (3x)
105	4822 410 60444	Push button (3x)

General electrical parts

150	4822 131 20279	Picture tube (type M34EAQ01X+AT1460)
151	4822 157 60478	Degaussing coil
152	4822 240 30296	Loudspeaker

Accessories

4822 321 10657 4822 154 50148	mains cable Interface cable (9 pole "D" SHELL - 9 pole "D" SHELL)
4822 154 50149	Interface cable (8 DIN-3RCA)
4822 321 60297	Interface cable (1 RCA-2RCA)
4822 154 50147	interface cable (9 pole "D" SHELL-23 pole "D" SHELL)

Mechnical parts

200	4822 212 23316	CRT panel complete
201	4822 265 30784	Socket (5 pins)
202	4822 265 30783	Socket (4 pins)
203	4822 255 70216	Socket for CRT

CAUTION

- Safety requirements stipulate that, during repair, the set should be restored in its original state and that parts, indentical to the specified ones, should be applied.
- To avoid damages to ICs and transistors, flash-over of the high-tension should be avoided.
- 4) Be careful when performing measurements in the high-tension section and on the picture tube.
- 5) Never change parts when the set is still switched on.
- 6) Safety goggles must be worn during replacement of the picture tube.

ELECTRICAL SETTINGS

1. SETTINGS ON THE CHASSIS

1.1 +128V supply voltage(3414)

- Apply video signal to the monitor.
- Set volume control 3295, brightness control 3662 and contrast control 3658 to minimum.
- Set trimming potentiometer 3414 in mid-position. (This is a presetting).
- Connect DC voltmeter to junction of resistor 3520 and diode 6453.
- Switch on monitor.
- With trimming potentiometer 3414 set the DC voltage at junction 3524/6453 to 128V.

1.2 Horizontalsynchronisation (3257)

- Apply video signal (cross-hatch pattern) to the monitor.
- Short capacitor 2270. (This capacitor is connected to pin 5 of IC 7270.)
- With trimming potentiometer 3257 adjust the picture so that it is straight.
- Remove the short-circuit on 2270.

1.3 Picture positionsettings

General: For the following settings apply a video signal (cross-hatch pattern) to the monitor.

1.3.1 East-west correction (3537)

 With potentiometer 3537 make the vertical lines on the left and right-hand side of the screen as straight as possible.

1.3.2 Picture width (3534)

 With potentiometer 3534 set the picture width for 14 blocks to 260 mm.

1.3.3 Horizontal picture centering (3264)

With potentiometer 3264 set the correct horizontal centering.

1.3.4 Vertical picture centering (3583)

 With potentiometer 3583 set the correct vertical picture centering.

1.3.5 Picture height (3550)

 With potentiometer 3550 set the picture height for 10 blocks to 186 mm.

1.3.6. Vertical linearity (3573)

 Adjust the correct vertical linearity with Pre-set potentiometer 3573 IF necessary repeat 1.3.5 and 1.3.6.

1.4 Setting of:

- VG2 (bottom knob on the line output transformer)
- cut-off points of the picture tube (3107, 3117 and 3127)
- white "D" (3671, 3680)
- Set the brightness to 1/4 of its range and set the contrast to minimum.
- Set the potentiometers 3107, 3117, 3127, 3671 and 3680 in mechanical mid-position.
- Set VG2 potentiometer to minimum.
- Set the signal generator in "pur" position and introduce the respective colours red, green and blue.
- Using potentiometers 3107, 3117 and 3127 with the corresponding colour pattern, set the voltage on the picture tube pins 8, 6 and 11 to 100V.
- Apply a white frame and adjust the VG2 potentiometer so that any colour among red, green or blue becomes visible.
- Set the pattern generator to purity with the colour that was first visible.
- Reset VG2 potentiometer to just visible light.
- Adjust the two remaining colours with their corresponding purity colour to the same light output using potentiometers 3107, 3117 or 3127.
- Return the signal generator to white frame and adjust the potentiometers 3107, 3117 and 3127 so that an optimum background colour is obtained.
- Using potentiometers 3671 and 3680 (with white frame) adjust the background colour so that at minimum brightness and maximum brightness the background colour is the same.

1.5 Focusing (top knob on line outputtransformer)

- Apply white pattern to monitor.
- Adjust focusing so that the picture at 2/3 of the diagonal lines (counting from center to four corners) of the displayed screen is as sharp as possible.

1.6 Subcarrier oscillator(2613)

- Apply colour bar pattern to monitor.
- Connect 470Ω resistor between point 11 of IC 7610 and earth.
- Adjust 2613 so that the colour picture on the screen is stationary.
- Remove the 470Ω resistor.

1.7 PAL delay line (3619, 5632)

- Apply DEM pattern from a pattern generator to the monitor.
- Set brightness control 3662, contrast control 3658 and colour saturation control 3654 to 3/4 of the range.
- Adjust 3619 so that the "venetian blinds" in the third bar disappear.
- Then adjust 5632 until the "venetian blinds" in the first and fourth bar disappear.
- Readjust 3619 as described above.

1.8 Chrominance suppression(5605)

- Apply colour bar pattern to the monitor.
- Connect oscilloscope to pin 15 of IC 7640.
- Set 5605 so that the chrominance signal is minimum.
 (The chrominance signal is superimposed on the grey steps of the luminance signal).

1.9 Audio balance (3298)

- Apply sinusoidal signal of 177mVrms (1KHz) to both audio inputs L/R.
- Set volume control in mid-position.
- Replace the two loudspeakers with a 16Ω resistor.
- Set 3298 so that the output level on both 16Ω resistors is the same.

LOCATION OF ADJUSTING COMPONENTS

2. PICTURE SETTINGS

Remarks:

- The following adjustments only apply to monitors which are fitted with a replaceable deflection unit.
- In case of combitube replacement, no picture settings is required because it has been done by factory already
- The colour purity and convergence adjustments described hereafter need only to be carried out if a completely new setting is required or if a new picture tube has been fitted. In other cases, for example after replacing the deflection unit, it will not usually be necessary to remove the rubber wedges (G in figure 3). Corrections by means of the multi-pole unit will then suffice.
- Focusing adjustment described in item 1.5 must be done prior to picture settings.

2.1 Colourpurity, see figure 3

- Unscrew the fixing screw "F" on the deflection unit.
- Move the deflection unit and remove the three rubber wedges "G".
- Move the deflection unit forward as far as possible against the glass of the picture tube cone and tighten fixing screw "F" so that the deflection unit can only be shifted slightly.
- Place the multi-pole unit in the position drawn: tighten screw "A" and turn locking ring "B" anticlockwise.
- Position the monitor to face east or west and switch it on. Apply a cross-hatch pattern and set the brightness control to maximum. Allow the monitor to warm up for ten minutes.
- Adjust the static convergence using tags "C" and "D" (if necessary, refer to point 2.2.).
- Turn 3583 for the vertical centering to its mid-position. Switch off the green and blue gun by disconnecting resistors 3122 and 3112.

- By turning the colour purity rings with the "E" tags, the vertical red bar is brought as close as possible to the centre of the screen, whilst the central horizontal line should be as straight as possible.
- Apply a white pattern signal and check that the red bar is in fact in the centre of the screen. If not, switch on the cross-hatch pattern again and move the red bar in the right direction, ensuring that the picture does not move too much in the vertical direction.
- Apply the white pattern signal and move the deflection unit until the whole picture surface is uniformly red.
- Switch on the green and the blue gun. There may be no colour patches in the white picture now obtained. If there are, a minor correction can be made by turning the colour purity rings "E" slightly and/or moving the deflection unit slightly.
- Tighten screw "F" securely.
- Adjust the vertical centering with 3583.
- Proceed to the static and then the dynamic convergence setting.

2.2 Staticconvergence, see figure 3

- Apply a cross-hatch pattern and allow the monitor to warm up for ten minutes.
- Switch off the green gun by disconnecting resistor 3122 and turn locking ring "B" anticlockwise.
- By turning the four-pole rings with the "C" tags the red and blue cross-hatch patterns are placed on top of each other in the centre of the screen.
- Switch on the green gun by connecting resistor 3122 back to its orginal position and switch off the blue gun by disconnecting 3112.
- By turning the six-pole rings with the "D" tags the red and green patterns are placed on top of each other in the centre of the screen.
- Switch on the blue gun by connecting resistor 3112 back to its orginal position and tighten ring "B".

Fig. 3

2.3 Dynamicconvergence

Remark:

The dynamic convergence is achieved by tilting the deflection unit vertically and horizontally. In order to fix the deflection unit in the right position, three rubber wedges are fitted between the glass of the picture tube cone and the deflection unit, as shown in fig. 4d or 5d. Two wedge thicknesses are available, one 7 mm thick, code number 4822 462 40356 and the other 11 mm thick, code number 4822 462 40357.

- First check the colour purity and the static convergence.
- Apply a cross-hatch pattern and switch off the green gun by disconnecting resistor 3122.
- Eliminate the crossing of the central horizontal blue and red line and the crossing of the central vertical blue and red line by vertically tilting the deflection unit. If the deflection unit is in the correct position, then place rubber wedge 1, without removing the paper strip, at the top (figure 4a) or at the bottom (figure 5a).

Figure 4a applies when the unit is tilted upwards and figure 5a applies when the unit is tilted downwards.

- Through the horizontal tilting of the deflection unit, both the horizontal blue and red lines in the upper and lower halves of the picture and the vertical blue and red lines on the left and right-hand side of the picture are placed on top of each other.
 If the deflection unit is in the correct position, then place the wedges 2 and 3, remove the paper strips and formly press the adhesive side of these wedges against the glass of the picture tubes as shown in figure 4b or 5b.
- shown in figure 4b or 5b.

 Now place wedge 4 as shown in figure 4c or 5c,remove the paper strip and firmly press the adhesive side of this wedge against the glass of the picture tube cone.
- Remove wedge 1 so that the situation according to figure 4d or 5d arises.
- Switch on the green gun by connecting resistor 3122 back to its original position.

WIRING DIAGRAM

MAIN CHASSIS PANEL

Mechanical parts

300 301 302 303 304	4822 390 20011 4822 265 30375 4822 492 62076 4822 255 40893 4822 390 20011	Silicon grease Connector Spring Insulation plate Silicon grease
305 306 307 308 309	4822 390 20011 4822 492 60063 4822 267 40646 4822 276 12445 4822 256 91564	
310 311 312 313 314	4822 410 60456 4822 265 30752 4822 276 12677 4822 267 40893 4822 276 15505	Power push button Mains socket Switch (TTL/analog, SK4) "D" SHELL socket (BU3) Switch (RGB/CVBS, SK2)
315 316 317	4822 276 11505 4822 267 40894 4822 390 20011	Switch (LCA/CVBS, SK5) Socket (BU1, BU2, BU4, BU5) Silicon grease
318	4822 265 20235	Connector
319 320 321	4822 276 11505 4822 265 30408 4822 390 20011 4822 535 30095 4822 535 30096	Switch (SK3) Connector Silicon grease EYE LET (1,89x0,18x2,29) EYE LET (1,52x0,18x2,23)

LED PANEL

	4822 212 23302	LED panel complete
3460	4822 116 52391	1K 0,5W 5%
6460	4822 130 81701	LED GREEN

HEADPHONE PANEL

4822 212 23312	Headphone panel complete
4822 267 31144	Socket for headphone
4822 265 30778	Connector assy
4822 124 22681	ELCO 47μF 16V 20%
4822 116 52389 4822 116 52389	100Ω 0,5W 5% 100Ω 0,5W 5%
	4822 267 31144 4822 265 30778 4822 124 22681 4822 116 52389

Safety regulations require that the set be restored to its original condition and that parts which are identical with those specified be used.

CRT PANEL

ELECTRICAL PARTS CRT PANEL

_ ⊣⊢						
2134 2135 2136 2138 2139	4822 122 33646 4822 121 41677 4822 124 22023 4822 122 33966 4822 121 41926	470pF 10% 500V 10nF 10% 400V 4,7μF 200V 10nF 10% 50V 33nF 5% 630V	3130 3131 3132 3138 3139	4822 116 52391 4822 116 82126 4822 116 53423 4822 116 80547 4822 116 80547	1k 5% 0,5W 3k9 3W 470Ω 1% 0.6W 1k5 5% 0,5W 1k5 5% 0,5W	
2140 2141 2142	4822 122 33966 4822 124 23129 5322 122 32332	10nF 10% 50V 22µF 20% 50V 1.5nF 10% 100V		4822 157 60485		
3107 3108	5322 100 11542 4822 116 52391	4k7 TRIM LINEAR 1k 5% 0.5W 47Ω 5% 0.5W	5121 5131 5133 5134	4822 157 60485 4822 157 60485 4822 157 60485 4822 152 20587 4822 152 20587 4822 157 60483	7.5µH 7,5µH	
3109 3110 3111 3112	4822 116 52367 4822 116 52391 4822 116 82126 4822 116 53423	1k 5% 0.5W 3k9 3W 470Ω 1% 0.6W	5135 5140	4822 157 60483		
3117 3118 3119 3120	5322 100 11542 4822 116 52391 4822 116 52367 4822 116 52391	4k7 TRIM LINEAR 1k 5% 0.5W 47Ω 5% 0.5W 1k 5% 0.5W	6112 6122 6132	4822 130 30842 4822 130 30842 4822 130 30842	BAV21 BAV21 BAV21	
3121 3122 3127 3128 3129	4822 116 82126 4822 116 53423 5322 100 11542 4822 116 52391 4822 116 52367	3k9 3W 470Ω 1% 0.6W 4k7 TRIM LINEAR 1k 5% 0.5W 47Ω 5% 0.5W	7110 7120 7130	4822 130 41773 4822 130 41773 4822 130 41773	BF869 BF869 BF869	

			⊣⊢		
1401	4822 253 30025	T2A	2441	4822 122 33645	220pF 500V
			2442 2443	4822 122 33645 4822 122 33645	220pF 500V 220pF 500V
⊣ 0⊢		•	2444	4822 122 33645	220pF 500V
1627	4822 242 70304	8,867 238 MHz	2445	4822 124 41865	470µF 20% 35V
			2446	4822 124 22357	470μF 25V
⊣⊢			2447	4822 124 22357	470μF 25V 10μF 20% 50V
2251	4822 121 50994	100 nF 100V	2450 2451	4822 124 23131 4822 124 41281	47 uF 200V
2258	4822 121 51258	2,7nF 500V	2452	4822 124 23129	22μF 50V
2261	4822 121 42636	150nF 10% 63V	2510	4822 122 33969	27pF 5% 500V
2262	4822 121 50994	100 nF 100V 4,7nF 80% 63V	2511	4822 124 22672	2.2µF 20% 63V
2264	4822 122 31125	4.7µF 20% 25V	2512 2514	4822 124 23129 4822 122 40427	22µF 20% 50V 2kV 470pF
2266 2267	4822 124 41659 4822 121 50994	100 nF 100V	2515	4822 124 41867	1µF 20% 250V
2268	4822 124 22669	1µF 20% 50V	2517	4822 121 43061	8,2nF 5% 1,6kV
2269	4822 124 23129	22µF 20% 50V	2518	4822 121 43392	22nF 10%
2270	5322 122 32343	47pF 2% 100V	2519	4822 121 43511	560nF 10% 250V
2272 2273	4822 124 23129 4822 122 30103	22µF 20% 50V 22nF 80% 63V	2520 2524	4822 124 22499 4822 124 90034	10µF 160V 4MU7 50V
2273	4822 124 22678	100μF 20% 16V	2526	4822 124 22669	1µF 20% 50V
2275	4822 122 33966	10nF 10% 50V	2531	4822 121 41879	120nF 10% 100V
2289	4822 121 50994	100 nF 100V	2532	4822 122 33966	10nF 10% 50V
2290	4822 122 30027 5322 124 10623	1nF 10% 100V 1000µF 20% 16V	2536 2537	4822 124 22669 4822 124 23129	1μF 20% 50V 22μF 20% 50V
2291 2292	4822 121 50994	100 nF 100V	2540	4822 124 23123	220pF 500V
2294	4822 121 50994	100 nF 100V	2541	4822 124 23129	22μF 20% 50V
2295	4822 122 30027	1nF 10% 100V	2543	4822 121 41925	15nF 10% 100V
2301	4822 124 23129	22µF 20% 50V	2544	4822 121 40336	47nF 10% 250V 2,2µF 20% 63V
2302	4822 122 30103 5322 122 32143	22nF 80% 63V 22pF 100V	2547	4822 124 22672	· •
2303	4822 121 42637	220nF 20% 63V	2554 2555	4822 122 31125 4822 122 31125	4,7nF 80% 63V 4,7nF 80% 63V
2305	4822 122 30057	2,7nF 10% 100V	2556	5322 122 32052	680pF 10% 100V
2307	4822 122 32185	10pF 2% 100V	2560	5322 124 41431	22µF 20% 35V
2319	4822 122 33966	10nF 10% 50V 22nF 80% 63V	2561	5322 124 41431	22μF 20% 35V
2320	4822 122 30103 4822 124 23129	22µF 20% 50V	2563 2571	4822 124 41865 4822 124 41866	470μF 20% 35V 680μF 20% 35V
2328	4822 124 23129	22µF 20% 50V	2573	4822 124 41975	1.5µF 63V
2350	4822 122 33643	100pF 10% 50V	2575	4822 121 50994	100nF 100V
2360	4822 122 31353	330pF 2% 100V	2601	4822 124 22678	100μF 20% 16V
2361	4822 124 23131 4822 122 30103	10µF 20% 50V 22nF 80% 63V	2602	4822 122 30103	22nF 80% 63V 1nF 10% 100V
2363	4822 122 30103	22nF 80% 63V	2603 2604	4822 122 30027 4822 124 22669	1µF 20% 50V
2368	4822 122 33645	220pF 500V	2605	4822 121 41681	470nF 10% 40V
2369	4822 126 10453	3,3,nF 50V	2606	4822 121 41676	47nF 10% 250V
2370	4822 122 30103 5322 121 44212	22nF 80% 63V 1µF 10% 275B	2607	4822 121 50994	100nF 100V
2402	4822 121 44212 4822 122 33652	2,2nF 20% 400V	260 8 260 9	4822 121 50994 4822 122 31823	100nF 100V 15pF 2% 100V
2404	4822 122 33652	2,2nF 20% 400V	2610	4822 122 31025	12pF 2% 100V
2405	4822 121 43385	47nF 20% 250V	2611	4822 122 33966	10nF 10% 50V
2406	4822 121 41984	47nF 10% 400V	2612	4822 121 41681	470nF_10% 40V
2407	4822 122 40348 4822 122 32154	2,2µF 1kV 2,2nF 10% 1kV	2613	4822 125 50088	27pF Trimmer 10nF 10% 50V
2408	4822 122 32134	2,2µF 1kV	2614 2616	4822 122 33966 4822 122 30103	22nF 80% 63V
2409 2410	4822 122 40348	2,2µF 1KV	2617	4822 122 30103	22nF 80% 63V
2412	4822 124 21722	100µF 50% 400V	2618	4822 121 42637	220nF 20% 63V
2416	4822 124 23131	10µF 20% 50V	2640	4822 124 22678	100µF 20% 16V
2417	4822 122 33966	10nF 10% 50V	2641	4822 122 30103	22nF 80% 63V 22nF 80% 63V
2422	4822 124 22669 4822 121 50994	1μF 20% 50V 100nF 100V	2642 2643	4822 122 30103 4822 122 30103	22nF 80% 63V
2423	4822 121 41925	15nF 10% 100V	2644	4822 122 30103	22nF 80% 63V
2429	4822 121 42637	220nF 20% 63V	2645	4822 121 50992	330nF 10% 63V
2431	5322 122 32818	2,2nF 10% 100V	2646	4822 121 50992	330nF 10% 63V
2432	4822 121 50966	2,2nF 20% 1kV	2647	4822 124 41659	4,7µF 20% 25V 22nF 80% 63V
2433	4822 121 41984	47nF 10% 400V	2648	4822 122 30103 4822 121 50992	330nF 10% 63V
			2649	+UZZ 1Z1 JUJJZ	550iii 10 0 554
			L		

	-				
⊣⊩					41. 50/ 0 514/
2651	4822 122 30103	22nF 80% 63V	3341	4822 116 52391	1k 5% 0,5W 1k 5% 0,5W
2652	4822 121 50994	100nF 100V	3342 3344	4822 116 52391 4822 116 52846	150Ω 1% 0.6W
2653	4822 121 50994 4822 121 509 9 4	100nF 100V 100nF 100V	3345	4822 116 52416	330Ω 5% 0.5W
2654 2669	4822 124 23131	10µF 20% 50V	3346	4822 116 52416	330Ω 5% 0,5W
2673	5322 122 34148	330pF 2% 100V	3347	4822 116 52389	100Ω 5% 0.5W
2682	5322 122 34148	330pF 2% 100V	3350	4822 116 52465	27k 5% 0.5W
2688	5322 122 34148	330pF 2% 100V	3351	4822 116 52452	10k 5% 0,5W
2695	4822 122 30103	22nF 80% 63V	3352	4822 116 52425	470Ω 5% 0.5W
2696	4822 124 22681	47μF 20% 16V	3353	4822 116 52389	100Ω 5% 0,5W
2697	4822 124 22681	47µF 20% 16V	3360	4822 116 52391	1k 5% 0,5W 1k 5% 0,5W
			3361 3362	4822 116 52391 4822 116 52509	220k 5% 0,5W
			3363	4822 116 52417	3k3 5% 0,5W
3257	4822 100 11319	4k7 pot.m.	3364	4822 116 53025	2k2 1% 0,6W
3258	4822 116 52467	33k 5% 0.5W	3365	4822 116 52509	220k 5% 0,5W
3261	4822 116 53083	15k 1% 0,6W	3368	4822 116 52456	12k 5% 0.5W
3262	4822 116 52426	4k7 5% 0,5W	3369	4822 116 52472	47k 5% 0,5W
3263	4822 116 52463	22k 5% 0.5W	3370	4822 116 52441 4822 116 40161	6k8 5% 0,5W DUAL PTC
3264	4822 100 90079	10k pot.m.	3404		4Ω7 10% 7W
3266	4822 116 52399 4822 116 52441	1k5 5% 0,5W 6k8 5% 0,5W	3410	4822 113 80466 4822 116 52463	22k 5% 0,5W
3268 3269	4822 116 52389	100Ω 5% 0.5W	3412	4822 116 52467	33k 5% 0.5W
3271	4822 116 52502	1M5 5% 0.5W	3413	4822 116 52413	2k7 5% 0,5W
3272	4822 116 52425	470Ω 5% 0.5W	3414	4822 100 11348	1k 30% LIN
3273	4822 111 30499	4Ω7 5% 0,33W	3415	4822 116 52413	2k7 5% 0,5W
3274	4822 116 52452	10k 5% 0,5W	3416	4822 116 52426	4k7 5% 0.5W
3288	4822 116 52463	22k 5% 0,5W	3417	4822 116 52416	330Ω 5% 0,5W
3289	4822 116 52463	22k 5% 0,5W	3420 3421	4822 116 52302 4822 116 52302	750k 5% 0,5W 750k 5% 0,5W
3293	4822 116 52463	22k 5% 0,5W			
3294	4822 116 52463	22k 5% 0,5W	3422	4822 116 52846 4822 116 52412	150Ω 1% 0.6W 270Ω 5% 0.5W
3295 3298	4822 100 90082 4822 100 11392	20k pot.m. 47k LIN, pot.m.	3425 3426	5322 116 53734	24Ω 5% 0,5W
3301	4822 116 52463	22k 5% 0,5W	3427	4822 116 52417	3k3 5% 0,5W
3302	4822 116 52452	10k 5% 0,5W	3428	4822 116 52422	3k9 5% 0,5W
3303	5322 116 53339	75Ω 1% 0,6W	3429	4822 116 82128	100Ω 5% 1W
3304	4822 116 52425	470Ω 5% 0,5W	3430	4822 116 82128	100Ω 5% 1W
3306	4822 116 52391	1k 5% 0.5W	3431	4822 116 82128	100Ω 5% 1W
3307	4822 116 52428	560Ω 5% 0.5W	3432	4822 116 80388 4822 116 52184	22k 5W 18Ω 5% 0,5W
3308	4822 116 53025	2k2 1% 0.6W	3436		1Ω5 5% 0,3 3 W
3309	4822 116 53025	2k2 1% 0.6W 75Ω 1% 0.6W	3443 3451	4822 111 30487 4822 111 30499	4Ω7 5% 0,33W
3311	5322 116 53339 4822 116 53025	2k2 1% 0,6W	3451	4822 116 52391	1k 5% 0,5W
3316	4822 116 53025	2k2 1% 0.6W	3460	4822 116 52391	1K 5% 0.5W
3317	4822 116 53025	2k2 1% 0.6W	3470	4822 116 52389	100Ω 5% 0,5W
3318	4822 116 53025	2k2 1% 0,6W	3509	4822 116 52849	220Ω 1% 0,6W
3319	4822 116 52391	1k 5% 0,5W	3510	4822 116 53025	2k2 1% 0.6W
3320	4822 111 30487	1Ω5 5% 0.33W	3511	4822 116 60239	1k 2W
3321	4822 116 52416	330Ω 5% 0,5W	3512	4822 111 30499	4Ω7 5% 0.33W
3322	4822 116 52416	330Ω 5% 0.5W	3513	4822 113 60185	2,2Ω 2W
3323	4822 116 52425	470Ω 5% 0.5W	3514	4822 116 52375	68Ω 5% 0.5W
3324	4822 116 52416 4822 116 52416	330Ω 5% 0.5W 330Ω 5% 0.5W	3515 3520	4822 116 52467 4822 113 80465	33k 5% 0,5W 10Ω 5% 5W
3325 3326	4822 116 52416	330Ω 5% 0,5W	3520	4822 116 52253	2k 5% 0.5W
3327	4822 116 52425	470Ω 5% 0,5W	3523	4822 116 52253	2k 5% 0,5W
3327	4822 116 52849	220Ω 1% 0.6W	3526	4822 111 30499	4Ω7 5% 0,33W
3329	4822 116 52452	10k 5% 0,5W	3530	4822 116 53025	2k2 1% 0.6W
3330	4822 111 30499	4Ω7 5% 0,33W	3531	4822 116 52472	47k 5% 0,5W
3331	4822 116 52941	430Ω 1% 0,6W	3533	4822 116 52453	100k 5% 0.5W
3332	4822 116 52941	430Ω 1% 0.6W	3534	4822 101 10547	10k 20% 0,25W
3333	4822 116 52941	430Ω 1% 0,6W	3536	4822 116 52472	47k 5% 0.5W
3334	4822 116 52941	430Ω 1% 0,6W	3537	4822 100 11585	22k LIN,
3335	4822 116 52425	470Ω 5% 0,5W 100Ω 5% 0,5W	3540	4822 111 30487	1Ω5 5% 0,33W 47Ω 5% 0,5W
3336	4822 116 52389		3541 3543	4822 116 52367 4822 116 52527	470k 5% 0,5W
3337	5322 116 53339	75Ω 1% 0,6W 1k 5% 0,5W	5545	7022 110 02021	
3340	4822 116 52391	IN 370 U,311			
L					

					
		151 10/ 0 014	3666	4822 116 53025	2k2 1% 0,6W
3544	4822 116 53083	15k 1% 0,6W	3667	4822 116 52426	4k7 5% 0,5W
3545	4822 116-52527	470k 5% 0.5W	3668	4822 116 52467	33k 5% 0,5W
3546	4822 116 52453	100k 5% 0,5W 1Ω5 5% 0,33W	3669	4822 111 30499	4Ω7 5% 0,33W
3548	4822 111 30487		3670	4822 116 52389	100Ω 5% 0.5W
3550	4822 100 10915	220k pot.m.			1k 30% 0,1W
3551	4822 116 53798	270k 1% 0,6W	3671	4822 105 11023 4822 116 52399	1k5 5% 0,5W
3553	4822 116 52389	100Ω 5% 0.5W	3672 3673	4822 116 52375	68Ω 5% 0.5W
3554	4822 116 52426	4k7 5% 0,5W	3674	4822 116 52441	6k8 5% 0.5W
3555	4822 116 52426	4k7 5% 0,5W 18k 1% 0.6W	3675	4822 116 52846	150Ω 1% 0,6W
3556	4822 116 52461				100Ω 5% 0,5W
3560	4822 116 52215	220Ω 5% 0.5W	3679	4822 116 52389 4822 105 11023	1k 30% 0,1W
3563	4822 111 30499	4Ω7 5% 0.33W	3680 3681	4822 116 52399	1k5 5% 0,5W
3570	4822 116 52416	330Ω 5% 0,5W 180k 1% 0,6W	3682	4822 116 52375	68Ω 5% 0,5W
3571	5322 116 53729 4822 116 53083	15k 1% 0.6W	3683	4822 116 52441	6k8 5% 0,5W
3572			3685	4822 116 52846	150Ω 1% 0,6W
3573	4822 100 11141	10k pot.m.	3686	4822 116 52425	470Ω 5% 0,5W
3574	5322 116 53283	1Ω2 1% 0,6W 560k 5% 0,5W	3687	4822 116 53025	2k2 1% 0.6W
3575	4822 116 52532 4822 116 52416	330Ω 5% 0,5W	3688	4822 116 52375	68Ω 5% 0.5W
3580	4822 116 53025	2k2 1% 0,6W	3689	4822 116 52441	6k8 5% 0,5W
3581			3691	4822 116 52846	150Ω 1% 0.6W
3583	4822 101 10547	10k 20% 0.25W	3692	4822 116 52417	3k3 5% 0.5W
3585	4822 116 52412	270Ω 5% 0,5W	3694	4822 116 52417	2k7 5% 0.5W
3586	4822 116 52422	3k9 5% 0,5W	3695	4822 116 52399	1k5 5% 0,5W
3601	4822 111 30499 5322 116 53339	4Ω7 5% 0,33W 75Ω 1% 0,6W	3696	4822 116 52416	330Ω 5% 0,5W
3602			3697	4822 116 52196	51Ω 5% 0,5W
3603	4822 116 52463	22k 5% 0.5W	3698	4822 116 52196	51Ω 5% 0,5W
3604	4822 116 52452 4822 116 52433	10k 5% 0,5W 820Ω 5% 0.5W	3030	4022 110 02100	0112 070 0,011
3605	4822 116 52403	180Ω 5% 0,5W	1		
3606 3607	4822 116 52405	470Ω 5% 0,5W	~~_		
			5301	4822 158 10837	
3608	4822 116 52416	330Ω 5% 0,5W	5401	4822 148 60218	
3609	4822 116 53025	2k2 1% 0,6W 4k7 5% 0,5W	5402	4822 157 60489	
3612	4822 116 52426 4822 116 52395	1k2 5% 0,5W	5431	4822 157 52233	10μH
3614 3615	4822 116 52421	390Ω 5% 0.5W	5436	4822 242 71344	2μH
		220Ω 1% 0.6W	5510	4822 140 10381	
3616	4822 116 52849 4822 116 52849	220Ω 1% 0.6W	5512	4822 142 40322	
3617	4822 116 52443	180Ω 5% 0,5W	5513	4822 152 20587	7,5µH
3618 3619	4822 110 32403	220Ω 30%	5522	4822 157 60488	
3620	4822 116 52452	10k 5% 0,5W	5523	4822 157 53122	
	-	3M3 1% 0.6W	5524	4822 157 60486	
3621	5322 116 53737 5322 116 53737	3M3 1% 0,6W	5541	4822 157 60483	
3622 3640	4822 111 30499	4Ω7 5% 0,33W	5605	4822 157 60487	
3641	4822 116 52426	4k7 5% 0.5W	5606	4822 157 51056	DL330
3642	4822 116 52426	4k7 5% 0,5W	5608	4822 157 52697	27μΗ
	4822 116 52426	4k7 5% 0,5W	5631	4822 320 40096	DL 701
3643 3644	4822 116 52426	5k1 5% 0,5W	5632	4822 157 60484	
3645	4822 116 52391	1k 5% 0,5W	5637	4822 157 52494	6μН
3646	4822 116 52452	10k 5% 0,5W	5661	4822 152 20626	
3647	4822 116 52454	11k 5% 0.5W	5662	4822 152 20626	
	4822 116 52416	330Ω 5% 0.5W	5663	4822 152 20626	
3648	5322 116 53479	22Ω 1% 0.6W			
3649 3651	4822 116 53479	68k 5% 0.5W			
3652	4822 116 53083	15k 1% 0,6W	→	-	
3653	4822 116 53083	15k 1% 0.6W	6304	4822 130 30621	1N4148
	4822 100 90079	10k pot.m.	6315	4822 130 30621	1N4148
3654 3655	4822 100 90079 4822 116 52848	200k 1% 0,6W	6316	4822 130 30621	1N4148
3656	4822 116 52923	56k 1% 0.6W	6317	4822 130 30621	1N4148
3657	4822 116 53547	150k 1% 0.6W	6318	4822 130 30621	1N4148
3658	4822 100 90081	10k pot.m.	6320	4822 130 30621	1N4148
5555		150k 1% 0.6W	6321	4822 130 30621	1N4148
2000	4822 116 53547	150K 1% 0,6W	6322	4822 130 30621	1N4148
3659	4000 116 50000			4000 100 20601	1N4148
3660	4822 116 53083		6323	4822 130 30621	1147170
3660 3661	4822 116 52455	110k 5% 0.5W	6323	4822 130 30621	1N4148
3660 3661 3662	4822 116 52455 4822 100 90081	110k 5% 0.5W 10k pot.m.	6324	4822 130 30621	
3660 3661	4822 116 52455	110k 5% 0.5W			1N4148

→	€==
3361 4822 130 30621 1N4148 3407 4822 130 31933 1N5061 3408 4822 130 31933 1N5061 3409 4822 130 31933 1N5061 3410 4822 130 31933 1N5061 3415 4822 130 34167 BZX79-B6V2 3421 4822 130 30621 1N4148 3425 4822 130 30621 1N4148 3426 4822 130 30621 1N4148 3427 4822 130 30621 1N4148	7270 4822 209 72363 TDA2579A/N8 7290 4822 209 60956 TDA7052/N1 7295 4822 209 60956 TDA7052/N1 7304 4822 130 40938 BC548 7306 4822 130 44197 BC558B 7320 4822 209 80916 N74LS37N 7321 5322 209 86327 N7406N 7327 4822 130 40938 BC548 7328 4822 130 41344 BC337-40 7350 4822 130 40938 BC548
6428 4822 130 80227 BZX79-C9V1 6429 4822 130 30621 1N4148 6430 4822 130 30621 1N4148 6431 4822 130 30621 1N4148 6432 4822 130 30621 1N4148	7361 4822 130 44196 BC548C 7366 4822 209 10223 HEF4077BP 7401 4822 209 71634 TCDT1101G 7417 4822 130 40937 BC548B 7421 4822 130 41344 BC337-40
6433 4822 130 34174 BZX79-C4V7 6434 4822 130 80216 1N5062 6435 4822 130 80216 1N5062 6440 4822 130 32833 RGP15k 6441 4822 130 32833 RGP15k	7432 4822 130 42679 BUT11AF 7450 4822 209 81726 MC7812CT 7452 5322 130 24081 BT151-500R 7470 4822 130 44197 BC558B 7510 4822 130 41053 BC639 7512 4822 130 61265 BU508AF
8442 4822 130 42606 BYD33J 8443 5322 130 31971 RGP15D 8444 5322 130 31971 RGP15D 8452 4822 130 34281 BZX79-F15 8453 4822 130 42606 BYD33J	7526 4822 130 41774 BD826 7530 4822 130 40937 BC548B 7560 4822 209 60955 TDA3653B/N1 7580 4822 130 44197 BC558B
3470 4822 130 34167 BZX79-B6V2 5510 4822 130 42606 BYD33J 5513 4822 130 42606 BYD33J 5514 4822 130 42606 BYD33J	7603 4822 130 40937 BC548B 7610 4822 209 70019 TDA4510/V2 7640 4822 209 71971 TDA3505/V4 7671 4822 130 40937 BC548B
5517 4822 130 41275 BY228 5518 4822 130 41487 BYV95C 5540 4822 130 42606 BYD33J 5546 4822 130 30621 1N4148	7687 4822 130 40937 BC548B 7695 4822 130 44197 BC558B 7696 4822 130 40937 BC548B
5548 4822 130 80239 BZX79-F8V2 5560 4822 130 30842 BAV21 5646 4822 130 30621 1N4148 5647 4822 130 30621 1N4148	
3661 4822 130 30621 1N4148 3662 4822 130 30621 1N4148 3663 4822 130 30621 1N4148 3664 4822 130 30621 1N4148	
3666 4822 130 30621 1N4148 3667 4822 130 30621 1N4148 3674 4822 130 30621 1N4148 3675 4822 130 30621 1N4148	
3452 4822 130 34281 BZX79-F15 3453 4822 130 42606 BYD33J 3454 4822 130 34281 BZX79-F15 3470 4822 130 34167 BZX79-B6V2 3510 4822 130 42606 BYD33J 3514 4822 130 42606 BYD33J 3515 4822 130 42606 BYD33J 3517 4822 130 42606 BYD33J 3518 4822 130 42606 BYD33J 3518 4822 130 42606 BYD33J 3540 4822 130 30621 1N4148 3544 4822 130 34281 BZX79-F15 3548 4822 130 30823 BZX79-F8V2 3560 4822 130 30621 1N4148 3664 4822 130 30621 1N4148 3665 4822 130 30621 1N4148 3666 4822 130 306	7560 4822 209 60955 TDA3653B/ 7580 4822 130 44197 BC558B 7585 4822 130 40937 BC548B 7603 4822 130 40937 BC548B 7610 4822 209 7019 TDA4510/V 7640 4822 209 71971 TDA3505/V 7671 4822 130 40937 BC548B 7680 4822 130 40937 BC548B 7687 4822 130 40937 BC548B 7687 4822 130 40937 BC548B 7695 4822 130 44197 BC558B

(GB) REMARKS

1) The direct voltages indicated in the circuit diagram are average voltages. They have been measured under the following conditions:

Contrast and bringhtness to minimum.

2) The oscillograms have been measured under the following conditions:

Signal from a RGB pattern generator (SBC 522) on colour bar pattern.

Adjust brightness and contrast for mechanical mid-position (click position).

D) ANMERKUNGEN

1) Die Gleichspannungen im Prinzipschaltbild sind Durchschnittsspannungen. Sie wurden unter folgenden Bedingungen gemessen:

Konstrast und Helligkeit auf Mindestwert.

2) Die Oszillogramme wurden unter folgenden bedingungen gemessen:

Signal von einem RGB generator (SBC 522) an Farbbalkenmuster.

Helligkeit und Kontrast in mechanischer Mittelstellung (Einschnappstellung).

NL) OPMERKINGEN

1) De gelijkspanningen, die in het principe schema zijn aangegeven, zijn gemiddelde spanningen. Ze zijn gemeten onder de volgende kondities:

Contrast en helderheid op minimum.

2) De oscillogrammen zijn onder de volgende kondities gemeten:

Signaal van een RGB generator (SBC522) op kleurenbalk patroon.

Helderheid en contrast op mechanische middenstand (click positie)

F REMARQUES

1) Les tensions continues données au schéma de principe sont des tensions moyennes, elles ont été prélevées dans les conditions suivantes:

Contraste et luminosité, au minimum.

2) Les oscillogrammes ont été prélevés dans les conditions suivantes:

Signal d'un génerateur SBC522 sur mire de barres de couleur.

Luminosité et contraste en position médiane (position à déclic).

1) Le tensioni continue date nello schema di principio sono tensioni medie, sono state prelevate nelle condizioni seguenti:

Contrastor e luminosità, al minimo.

2) Gli oscillogrammi sono stati prelevati nelle condizioni sequenti:

Segnale di un generatore RVB (SBC522) su un segnale di barre colori. Luminosità e contrasto in posizione media (posizione a scatto).

(GB) WARNING

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD). Careless handling during repair can reduce life drastically.

When repairing, make sure that you are connected with the same potential as the mass of the set via a wrist wrap with resistance. Keep components and tools also at this

ATTENTION

Tous les IC et beaucoup d'autres semi-conducteurs sont sensibles aux décharges statiques (ESD).

Leur longévité pourrait être considérablement égourtée par le fait qu'aucune précaution n'est prise à leur manipulation.

Lors de réparations, s'assurer de bien être relié au même potentiel que la masse de l'appareil et enfiler le bracelet serti d'une résistance de sécurité.

Veiller à ce que les composants ainsi que les outils que l'on utilise soient également à ce potentiel.

WARNUNG

Alle ICs und viele andere Halbleiter sind empfindlich gegen elektrostatische Entladungen

Unsorgfältige Behandlung bei der Reparatur kann die Lebensdauer drastisch vermindern. Sorgen sie dafür, dass Sie im Reparaturfall über ein Pulsarmband mit Widerstand mit dem Massepotential des Gerätes verbunden sind. halten Sie Bauteile und Hilfsmittel ebenfalls auf diesem Potential.

WAARSCHUWING

Alle IC's en vele andere halfgeleiders zijn gevoelig voor electrostatische ontladingen

Onzorgvuldig behandelen tijdens reparatie kan de levensduur drastisch doen verminderen. Zorg ervoor dat u tiidens reparatie via een polsband met weerstand verbonden bent met hetzelfde potentiaal als de massa van het apparaat.

Houd componenten en hulpmiddelen ook op ditzelfde potentiaal

AVVERTIMENTO

Tutti IC e parecchi semi-conduttori sono sensibili alle scariche statiche (ESD). La loro longevità potrebbe essere fortemente ridatta in caso di non osservazione della più grande cauzione alla loro manipolazione. Durante le riparazioni occorre quindi essere collegato allo stesso potenziale che quello della massa dell'apparecchio tramite un braccialetto a resistenza.

Assicurarsi che i componenti e anche gli utensili con quali si lavora siano anche a questo potenziale

115 d**5d** 02C 171 000 12 171 000

MAIN PANEL (viewed from the component side) MAIN 5 4 3 2 1 **CHASSIS** GREEN SWITCH TV

CRT PANEL

PCB 01828 T06-9012

HEADTELEPHONE PANEL

LED PANEL

PCB.01829 T27/945

NOTES:	network of the control of the contro	GA oscalogrammi samo sta seculanti:
		Segnale di un generatore :
		Lundroetta e porteneta in
	20-	
A STATE OF THE STA	34	
	(S) wymae	ES
	AN CONTRACTOR OF THE PROPERTY OF THE PARTY O	B
	Security was one has you ha	Alt i
	Consideration and a series programs of the con- of-the set with a series system with zeros strong,	
	sales de la companya	
	(T) arrence	(B) w Busin
2	South Res #7 St. Contract to the Service of the Ser	Alle FOs and their eachers (
	Andreages statistics (Line) Early staggades populate for a resolution, and as	ampholism usuar esteam jathy Imeo philoga Balliendusa
	print and resident	ERANTET SER BETREA, CEBAS QUE ESTAN CON PRESIDENTIAL ESTAN DEL
	EL PERMI GIVE MELLON DE VICTOR DE L'ESTADO. EL TIPE DE L'ESTADO BRIS ESTADO DE L'ESTADO DE	
	Market & the copy left invalidables some open line common at the copy left in the copy of	

Fig. 3

WIRING DIAGRAM

LOCATION OF ADJUSTING COMPONENTS

LOCATION OF ADJUSTING COMPONENTS

