Лабораторная работа № 9

Использование протокола STP. Агрегирование каналов

Замбалова Дина Владимировна

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы	6
Выводы	16
Контрольные вопросы	17

Список иллюстраций

1	Логическая схема локальнои сети с резервным соединением	6
2	Настройка trunk-порта на интерфейсе Gig0/2 коммутатора msk-	
	donskaya-sw-3	7
3	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-1	7
4	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-4	7
5	Пингование сервера mail и web	8
6	Режим симуляции движения пакетов ICMP	8
7	Режим симуляции движения пакетов ICMP	9
8	Просмотр состояния протокола STP для vlan 3	9
9	Настройка коммутатора msk-donskaya-sw-1 корневым	10
10	Режим симуляции движения пакетов ICMP к серверу web	10
11	Режим симуляции движения пакетов ICMP к серверу mail	11
12	Настройка режима Portfast	11
13	Настройка режима Portfast	11
14	Пингование mail.donskaya.rudn.ru	12
15	Разрыв соединения	12
16	Время восстановления соединения	12
17	Режим работы по протоколу Rapid PVST+	13
18	Пингование mail.donskaya.rudn.ru, разрыв соединения. Время вос-	10
10	становления соединения	13
19	Логическая схема локальной сети с агрегированным соединением	14
20	Настройка агрегирования каналов на msk-donskaya-dvzambalova-	- 1
20	SW-1	14
21	Настройка агрегирования каналов на msk-donskaya-dvzambalova-	1-1
41	sw-1	14
22	Настройка агрегирования каналов на msk-donskaya-dvzambalova-	14
44	, T	15
27		13
23	Настройка агрегирования каналов на msk-donskaya-dvzambalova-	1 5
	sw- $4\ldots\ldots$	15

Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

Задание

- 1. Сформировать резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3.
- 2. Настроить балансировку нагрузки между резервными соединениями.
- 3. Настроить режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.
- 4. Изучить отказоустойчивость резервного соединения.
- 5. Сформировать и настроить агрегированное соединение интерфейсов Fa0/20 Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.
- 6. При выполнении работы необходимо учитывать соглашение об именовании.

Выполнение лабораторной работы

Сформируем резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3 (рис. [-@fig:001]). Для этого:

- заменим соединение между коммутаторами msk-donskaya-sw-1(Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2);
- сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым (рис. [-@fig:002]);
- соединение между коммутаторами msk-donskaya-sw-1 и msk-donskayasw-4 сделаем через интерфейсы Fa0/23, не забыв активировать их в транковом режиме (рис. [-@fig:003,-@fig:004]).

Рис. 1: Логическая схема локальной сети с резервным соединением

```
msk-donskaya-dvzambalova-sw-3>en
Password:
msk-donskaya-dvzambalova-sw-3‡conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-3 (config) ‡int g0/2
msk-donskaya-dvzambalova-sw-3 (config-if) ‡switchport mode trunk
msk-donskaya-dvzambalova-sw-3 (config-if) ‡^2
msk-donskaya-dvzambalova-sw-3‡wr m
Building configuration...
```

Рис. 2: Настройка trunk-порта на интерфейсе Gig0/2 коммутатора msk-donskayasw-3

```
msk-donskaya-dvzambalova-sw-1>en
Password:
msk-donskaya-dvzambalova-sw-1#conf t
msk-donskaya-dvzambalova-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-1(config)#int f0/23
msk-donskaya-dvzambalova-sw-1(config-if)#switchport mode trunk
msk-donskaya-dvzambalova-sw-1(config-if)#^Z
msk-donskaya-dvzambalova-sw-1#wr m
Building configuration...
[OK]
```

Рис. 3: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатоpa msk-donskaya-sw-1

```
msk-donskaya-dvzambalova-sw-4>en
Password:
msk-donskaya-dvzambalova-sw-4$conf t
Enter configuration commands, one per line. End with CNTL/2.
msk-donskaya-dvzambalova-sw-4 (config) $int f0/23
msk-donskaya-dvzambalova-sw-4 (config-if) $switchport mode trunk
msk-donskaya-dvzambalova-sw-4 (config-if) $^2
msk-donskaya-dvzambalova-sw-4 (config-if) $^2
msk-donskaya-dvzambalova-sw-4$wr m
Building configuration...
[OK]
```

Рис. 4: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатоpa msk-donskaya-sw-4

С оконечного устройства dk-donskaya-1 пропингуем серверы mail и web (рис. [-@fig:005]).

```
C:\Pping mail.donskaya.rudn.ru

Pinging 10.128.0.4 with 32 bytes of data:

Request timed out.

Reply from 10.128.0.4: bytes=32 time<lms TTL=127

Reply from 10.128.0.4: bytes=32 time<lms TTL=127

Reply from 10.128.0.4: bytes=32 time=24ms TTL=127

Ping statistics for 10.128.0.4:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 24ms, Average = 8ms

C:\Pping www.donskaya.rudn.ru

Pinging 10.128.0.2 with 32 bytes of data:

Request timed out.

Reply from 10.128.0.2: bytes=32 time<lms TTL=127

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Рис. 5: Пингование сервера mail и web

В режиме симуляции проследим движение пакетов ICMP. Убедимся, что движение пакетов происходит через коммутатор msk-donskaya-sw-2 (рис. [-@fig:006,-@fig:007]).

Рис. 6: Режим симуляции движения пакетов ІСМР

Рис. 7: Режим симуляции движения пакетов ІСМР

На коммутаторе msk-donskaya-sw-2 посмотрим состояние протокола STP для vlan 3 (рис. [-@fig:008]):

```
VLAN0003
  Spanning tree enabled protocol ieee
Root ID Priority 32771
                                  0001.9698.29B8
                  Address
                 This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
                                 32771 (priority 32768 sys-id-ext 3)
0001.9698.29B8
2 sec Max Age 20 sec Forward Delay 15 sec
20
  Bridge ID
                 Priority
                 Address
Hello Time
Aging Time
                                                 Prio.Nbr Type
Interface
                       Role Sts Cost
Fa0/1
                       Desg FWD 19
                                                 128.1
                                                             P2p
GiO/1
                       Desg FWD 4
                                                 128.25
                                                             P2p
Fa0/2
                       Desg FWD 19
                                                 128.2
                                                             P2p
Gi0/2
                       Desg FWD 4
                                                 128.26
```

Рис. 8: Просмотр состояния протокола STP для vlan 3

В качестве корневого коммутатора STP настроем коммутатор msk-donskayasw-1 (рис. [-@fig:009]):

Рис. 9: Настройка коммутатора msk-donskaya-sw-1 корневым

Используя режим симуляции, убедимся, что пакеты ICMP пойдут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и mskdonskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2 (рис. [-@fig:010,-@fig:011]).

Рис. 10: Режим симуляции движения пакетов ICMP к серверу web

Рис. 11: Режим симуляции движения пакетов ICMP к серверу mail

Настроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы (рис. [-@fig:012,-@fig:013]):

```
msk-donskaya-dvzambalova-sw-2$conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-2(config; $int f0/1
msk-donskaya-dvzambalova-sw-2(config; $jspanning-tree portfast
$Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION

$Portfast has been configured on FastEthernet0/1 but will only
have effect when the interface is in a non-trunking mode.
msk-donskaya-dvzambalova-sw-2(config; $jspanning-tree portfast
$Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION

$Portfast has been configured on FastEthernet0/2 but will only
have effect when the interface is in a non-trunking mode.
msk-donskaya-dvzambalova-sw-2(config; $jspanning-tree portfast
sinterface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
```

Рис. 12: Настройка режима Portfast

```
msk-donskaya-dvzambalova-sw-3*en
Password:
msk-donskaya-dvzambalova-sw-3*conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-3*(config) $\frac{1}{2}\text{int} \text{ fU/T}
msk-donskaya-dvzambalova-sw-3*(config) $\frac{1}{2}\text{ fint} \text{ fU/T}
msk-donskaya-dvzambalova-sw-3*(config) $\frac{1}{2}\text{ fint} \text{ fU/T}
msk-donskaya-dvzambalova-sw-3*(config-if) $\frac{1}{2}\text{ spanning-tree} \text{ portfast}
$\text{ Warning: portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION

$\text{ Portfast has been configured on FastEthernetO/1 but will only have effect when the interface is in a non-trunking mode.
msk-donskaya-dvzambalova-sw-3*(config-if)*spanning-tree portfast
$\text{ Warning: portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION

$\text{ Portfast has been configured on FastEthernetO/2 but will only have effect when the interface is in a non-trunking mode.
msk-donskaya-dvzambalova-sw-3*(config-if) $\frac{1}{2}\text{ will only have effect when the interface is in a non-trunking mode.}
```

Рис. 13: Настройка режима Portfast

Изучим отказоустойчивость протокола STP и время восстановления соеди-

нения при переключении на резервное соединение. Для этого используем команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1 (рис. [-@fig:014]), а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown (рис. [-@fig:015]).

Рис. 14: Пингование mail.donskaya.rudn.ru

```
msk-donskaya-dvzambalova-sw-3>en
Password:
msk-donskaya-dvzambalova-sw-3‡conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-3(config)‡int g0/2
msk-donskaya-dvzambalova-sw-3(config-if)‡shutdown
msk-donskaya-dvzambalova-sw-3(config-if)‡
```

Рис. 15: Разрыв соединения

Видно, что на время восстановления соединения потребовалось 4 пинга, что достаточно долго (рис. [-@fig:016]). После восстановление пингование продолжило работать, как и в начале.

```
Reply from 10.128.0.4: bytes=32 time<Ims TTL=127
Request timed out.
Reply from 10.128.0.4: bytes=32 time<Ims TTL=127
```

Рис. 16: Время восстановления соединения

Переключим коммутаторы в режим работы по протоколу Rapid PVST+ (рис. [-@fig:017]):

```
msk-donskaya-dvzambalova-sw-1(config) #spanning-tree mode rapid-pvst
msk-donskaya-dvzambalova-sw-1(config) #^2
msk-donskaya-dvzambalova-sw-1#
$$YS-5-CONFIG_I: Configured from console by console

msk-donskaya-dvzambalova-sw-1#wr m
Building configuration...
[OK]
```

Рис. 17: Режим работы по протоколу Rapid PVST+

Изучим теперь отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение (рис. [-@fig:022]).

Рис. 18: Пингование mail.donskaya.rudn.ru, разрыв соединения. Время восстановления соединения

Сразу после разрыва соединения задержки по времени вообще не было, сесть моментально перестроилась.

А вот, когда обратно вернули старое соединение потребовался 1 пинг, что достаточно быстро. После восстановление пингование продолжило работать, как и в начале.

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4 (рис. [-@fig:025]).

Рис. 19: Логическая схема локальной сети с агрегированным соединением

Настроим агрегирование каналов (режим EtherChannel) (рис. [-@fig:026--@fig:029]):

```
msk-donskaya-dvzambalova-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-dvzambalova-sw-1(config) #int f0/23
msk-donskaya-dvzambalova-sw-1(config-if) #no switchport mode trunk
msk-donskaya-dvzambalova-sw-1(config-if) #$SPANTREE-2-RECV_PVID_ERR: Received 802.1Q BPDU on non
trunk FastEthernet0/23 VLAN1.

$SFANTREE-2-BLOCK_FVID_LOCAL: Blocking FastEthernet0/23 on VLAN0001. Inconsistent port type.
```

Рис. 20: Настройка агрегирования каналов на msk-donskaya-dvzambalova-sw-1

```
msk-donskaya-dvzambalova-sw-1(config) interface range f0/20 - 23
msk-donskaya-dvzambalova-sw-1(config-if-range) fchannel group 1 mode on
% Ambiguous command: "channel group 1 mode on"
msk-donskaya-dvzambalova-sw-1(config-if-range) fchannel-group 1 mode on
% LINEFROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/20, changed state to up
% LINEFROTO-5-UPDOWN: Line protocol on Interface Fort-channel1, changed state to up
% EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/20 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/20is off)
% EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/21 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/22is off)
% EC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/22 and will be suspended (dtp mode of
Fa0/23 is on, Fa0/22is off)
% LINEFROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/23, changed state to down
msk-donskaya-dvzambalova-sw-1(config-if-range) finterface port-channel 1
% Invalid input detected at '^' marker.
msk-donskaya-dvzambalova-sw-1(config-if-range) finterface port-channel 1
```

Рис. 21: Настройка агрегирования каналов на msk-donskaya-dvzambalova-sw-1

```
msk-donskaya-dvzambalova-sw-4(config)#int f0/23
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/20 (104), with msk-
donskaya-dvzambalova-sw-1 FastEthernet0/20 (1).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/21 (104), with msk-donskaya-dvzambalova-sw-1 FastEthernet0/21 (1).
$CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/22 (104), with msk-donskaya-dvzambalova-sw-1 FastEthernet0/22 (1).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/20 (104), with msk-donskaya-dvzambalova-sw-1 Port-channel1 (1).
msk-donskaya-dvzambalova-sw-4(config-if)#no switchport mode trunk
msk-donskaya-dvzambalova-sw-4(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2, changed state to down
msk-donskaya-dvzambalova-sw-4(config-if)#^Z
msk-donskaya-dvzambalova-sw-4#
%SYS-5-CONFIG I: Configured from console by console
msk-donskava-dvzambalova-sw-4#wr m
Building configuration...
 nsk-donskava-dvzambalova-sw-4#
ACDP-4-NATUS_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/20 (104), with msk-donskaya-dvzambalova-sw-1 FastEthernet0/20 (1).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/21 (104), with msk-donskaya-dvzambalova-sw-1 FastEthernet0/21 (1).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/22 (104), with msk-donskaya-dvzambalova-sw-1 FastEthernet0/22 (1).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/20 (104), with msk-donskaya-dvzambalova-sw-1 Port-channel1 (1).
msk-donskaya-dvzambalova-sw-4‡conf t
Enter configuration commands, one per line. End with CNTL/2.
msk-donskaya-dvzambalova-sw-4(config)‡int range f0/20 23
% Invalid input detected at '^' marker.
msk-donskaya-dvzambalova-sw-4(config)#int range f0/20 - 23
msk-donskaya-dvzambalova-sw-4(config-if-range)#no switchport access vlan 104
```

Рис. 22: Настройка агрегирования каналов на msk-donskaya-dvzambalova-sw-4

```
msk-donskaya-dvzambalova-sw-4 (config-if-range) #channel-group 1 mode on
msk-donskaya-dvzambalova-sw-4 (config-if) #spantree-2-unblock_consistency restored.

msk-donskaya-dvzambalova-sw-4 (config-if) #spantree-2-unblock_consistency restored.
```

Рис. 23: Настройка агрегирования каналов на msk-donskaya-dvzambalova-sw-4

Выводы

В результате выполнения лабораторной работы я изучила возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

Контрольные вопросы

1. Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах.

С помощью этой команды вы можете просмотреть общую информацию о протоколе ST на коммутаторе. Вы можете просмотреть идентификатор Root, корневой мост и интерфейсные порты коммутатора, а также просмотреть состояния портов интерфейсов коммутатора.

Кроме того, если корневой мост настроен вручную, вы можете проверить значение приоритета коммутатора с помощью этой команды.

2. При помощи какой команды можно узнать, в каком режиме, STP или Rapid PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах.

При помощи команды show ru просмотр текущей конфигурации.

3. Для чего и в каких случаях нужно настраивать режим Portfast?

Portfast – функция, которая позволяет порту пропустить состояния listening и learning и сразу же перейти в состояние forwarding. Настраивается на портах уровня доступа, к которым подключены пользователи или сервера. Цель функции PortFast минимизировать время, которое необходимо для того чтобы порт перешел в состояние forward. Поэтому она эффективна только когда применена к портам, к которым подключены хосты.

4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется?

Агрегирование каналов — это технология объединения нескольких параллельных каналов передачи данных в сетях Ethernet в один логический. Она позволяет увеличить пропускную способность и повысить надёжность.

Основное применение технологии агрегации — объединение каналов в сетевых коммутаторах. Также можно настроить агрегирование для компьютерных сетевых адаптеров.

5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов?

LACP и PAgP - динамические протоколы, управляющие созданием и управлением агрегированных соединений. Статическое агрегирование настраивается вручную без использования протоколов.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel?

Команды show etherchannel summary и show etherchannel port-channel.