

Score-based Causal Representation Learning

Burak Varıcı¹ Emre Acartürk¹

Karthikeyan Shanmugam²

²Google Research India

Ali Tajer¹

¹Rensselaer Polytechnic Institute

CRL from Interventions

".. learn a representation (partially) exposing the unknown causal structure, e.g., which variables describe the system, and their relations .. " Schölkopf et al., 2021

Generic goal: Invert the unknown transformation to recover

1) latent representation and 2) the latent causal structure

- **1. Identifiability**: Conditions for uniquely recovering Z and G_Z
- **2. Achievability**: Provably correct algorithms to recover Z and \mathcal{G}_Z

Our contributions

Interv. / node **Main results Transform Latent model**

perfect ID + 1 hard (soft) = (ID up to ancestors) Linear Nonparametric +

provably correct algorithms for all settings

Algorithm Overview

Sufficient Interventional Diversity:

2 different hard interventions per node in the latent space

Observed space

Provably correct algorithm for unsupervised learning (small variations for different settings)

Experiments

Non-linear latent model: $Z_i = \sqrt{Z_{\mathrm{pa}(i)}^{ op} A_{p,i} Z_{\mathrm{pa}(i)} + N_{p,i}}$ n=8 latent variables

Input score differences $(s_X - s_X^m)$: Perfect score oracle or Sliced Score Matching

Non-linear transform: $X = \tanh(T \cdot Z)$

and Inada

score oracle

I wo hard / node									
Obs. dim	Norm. Z error	DAG error (SHD)	Norm. Z error	DAG error (SHD)					
8	0.16	1.56	0.70	11.9					
25	0.20	1.55	0.68	10.5					
40	0.21	1.14	0.71	11.8					

noisy scores

Linear transform: X = T . Z

One hard / node								
	Obs. dim	Norm. Z error	DAG error (SHD)	Norm. Z error	DAG error (SHD)			
	8	0.50	5.4	0.75	10.3			
	25	0.51	6.0	0.78	8.9			
	40	0.50	5.3	0.61	11.9			
	40	0.50	5.3	0.61	11.9			

score oracle

noisy scores

Why score functions?

$$p(z) = p_i(z_i \mid z_{\text{pa}(i)}) \prod_{j \neq i} p_j(z_j \mid z_{\text{pa}(j)})$$

$$p^{m}(z) = q_{i}(z_{i}) \prod_{j \neq i} p_{j}(z_{j} \mid z_{\operatorname{pa}(j)})$$

$$s(z) \triangleq \nabla_z \log p(z)$$

$$s^m(z) \triangleq \nabla_z \log p^m(z)$$

$$s(z) - s^{m}(z) = \nabla_{z} \log p_{i}(z_{i} \mid z_{\operatorname{pa}(i)}) - \nabla_{z} \log q_{i}(z_{i})$$

Score functions contain all information about latent DAGs

node
$$i$$
 intervened: $s(z) - s^m(z)$ becomes a function of only $z_{\overline{\mathrm{pa}}(i)}$

$$s(z) - s^{m}(z) = \begin{bmatrix} 0 & 0 \times 0 \times 0 \end{bmatrix}^{\top}$$

coordinates of parents of node i

Methodology

incorrect encoder $\rightarrow s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z})$ not a function of only $z_{\overline{\mathrm{pa}}(i)}$

estimated score differences cannot be sparser than true score differences

Min. score variations over environment pairs = correct encoder

$$s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z}) = [J_{\mathsf{decoder}}(\hat{z})]^\top (s_X(x) - s_X^m(x))$$

Results

Nonparametric transform

Interventional discrepancy: $\frac{\partial}{\partial z_i} \frac{q_i(z_i)}{\tilde{q}_i(z_i)} \neq 0$ almost everywhere

$$\frac{\partial}{\partial z_i} \frac{q_i(z_i)}{\tilde{q}_i(z_i)} \neq 0$$

Theorem: Observational data and two hard interventions/node **Perfect ID**

von Kügelgen et al.(2023): Coupled two hard + faithfulness = Perfect ID

Linear transform + nonlinear latents

A1 (nonlinearity): $\operatorname{rank}(\operatorname{im}(s-s^m)) = |\overline{\operatorname{pa}}(i)|$ e.g., 2-layer NN with additive noise

Theorem: Linear transform + **one** intervention/node + **A1**

hard: Perfect ID; soft: Perfect DAG + Markov Property

Going beyond 'ID ancestors' for soft (nonlinearity = up to ancestors in Zhang'23)

Linear transform + any latents

A2 (mild): $\forall j \in \text{pa}(I^m), \quad \frac{[s-s^m]_j}{[s-s^m]_{I^m}} \neq \text{constant e.g., weights change in linear model}$

Theorem : Linear transform + **one** intervention/node + **A2**

hard: Perfect ID; soft: ID up to ancestors

No parametric restrictions on latents (linear models on Squires'23, Buchholz'23)

reach out at: burakvarici@gmail.com