Subject	
---------	--

Date:

Assignment &

And to the que no- 1

il knas,

Time dependent satradinger Equ.

assuming a seperate variable to be,

(Bp. (Ax) 4 = (+,x) F

Substituting, the egh,

=> it
$$\frac{1}{\varphi(t)} \frac{d}{dt} \varphi(t) = \frac{-t^{\vee}}{2m} \frac{d^{\vee}}{dx^{\vee}} \psi(x) + v(x) [both side from the sid$$

Legral if both are equal to a constant.

Here C is the constant?

Date:

Therefore we can write,

$$S_0$$
, $(x,t) = \psi(x) \cdot e^{ixt}$

(hx) & #1 =

ANDRAS SE SE CONPACE

(+3-x9) A = = = (1x) 4 = = C

Sub	ject:			
-----	-------	--	--	--

Date:

8E > 2= h

りをきめ

Ans to the que no-2

The wave for a free particle is.

differentiating with respect to x,

$$= -\frac{1}{4} \frac{\partial x}{\partial y} \psi(x,t) = \rho^* \psi(x,t)$$

Additionally differentiating with respect to \$ 1,

Subject:	Date:

Energy Consuration,

[from egn(i) and (i)]

This equation is Pine Dependentes Schrodinger Expusion.

Aro to the que no-3

De know

CTOSE,

1+ 2 4(x,1) = - 2m 3x 4(xx) + v(xx) 4(xx) 4(xx)

a particle residing in a position of at time t,

rit of white is a operation form of the total energy.

Subject:	Date:
> = 1 2m 3x 4(x,t) in the kindle	read werder.
This simple to Pr from doces	al Project , "
~ VC+) WCxt) " the operated E	
And to the que now	
De decitor Describer Marie	1 / h. /
We know,	
- to 300 4 (xx) + v(x) .46) = E (4(x)
here,	
4(x) is a spatial some sund	han
V(x) is the independent poten	
E is the total energy	
The equation describes particles	with elationary
state It also gives a probability of	I finding a porticl
at position & with respect to time	sette in the state
The equation describes particles of state It also gives a probability of at position & with respect to time	Wir an alday a
And bound with expense is 12.	in Air

Subject:	tha
----------	-----

Date: | | | | | | | | | | | | | | | |

And to the que no-5

We know,

Harc given, V=0.80,

particles depends only on its kindic energy

Ans to the que no-6

We know,

UZSE,

When V20,

$$-\frac{t^{\prime}}{2m} + \frac{1}{4(x)} + \frac{1}{4x^{\prime}} + (x) = 0$$

