Estimating mutual information for high-dimensional sparse relationships

Charles Zheng

Stanford University

January 24, 2017

(Joint work with Yuval Benjamini, Hebrew University.)

Introduction

- Much of my work has been inspired by use of machine learning in encoding/decoding models in fMRI (Kay et al. 2008, Nishimoto et al. 2011)
- E.g.: Extrapolating classification accuracy curves (Z., Achanta, and Benjamini 2016)

This talk

A $R^2 = 0.487 \pm 0.019$ $I = 0.72 \pm 0.08$

B $R^2 = 0.001 \pm 0.002$ I = 0.70 ± 0.09

Mutual information $I(\vec{X}; \vec{Y})$

- measures dependence between two random vectors, \vec{X} and \vec{Y}
- applies to nonlinear and multidimensional relationships (unlike correlation)
- is difficult to estimate in high dimensions

We combine machine learning (sparse estimation) with information theory to obtain better estimates of $I(\vec{X}; \vec{Y})$

Mutual information I(X; Y)

Introduced in Shannon's 1948 paper, "A mathematical theory of communication"

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

Image credit Kinney et al. 2014.

Applications of I(X; Y)

Mutual information has since been applied to many areas outside of information theory

Applications [edit]

In many applications, one wants to maximize mutual information (thus

- In search engine technology, mutual information between phrases
- In telecommunications, the channel capacity is equal to the mutua
- Discriminative training procedures for hidden Markov models have
- RNA secondary structure prediction from a multiple sequence alig
- Phylogenetic profiling prediction from pairwise present and disapp
- Mutual information has been used as a criterion for feature selectithe minimum redundancy feature selection.
- Mutual information is used in determining the similarity of two diffe
- Mutual information of words is often used as a significance functio words; rather, one counts instances where 2 words occur adjacen another, goes up with N.
- Mutual information is used in medical imaging for image registratic reference image, this image is deformed until the mutual information
- · Detection of phase synchronization in time series analysis
- . In the infomax method for neural-net and other machine learning,

Engineering, biology, computer science, physics, medicine

Comparing I(X; Y) with Pearson correlation

- In many applications scientists are interested in dependence, not correlation (Reshef et al. 2011, Speed 2011).
- Only mutual information (and derived quantities) measures dependence directly.

Problems with mutual information

- Hard to interpret (compared to R^2)
 - Define the "informational correlation" (Linfoot 1957)

$$Cor_{Info}(X,Y) = \sqrt{1 - e^{-2I(X;Y)}}$$

- Then $Cor_{Info}(X, Y) \in [0, 1]$.
- For (X, Y) bivariate normal,

$$|\mathsf{Cor}_{\mathsf{Pearson}}(X,Y)| = \mathsf{Cor}_{\mathsf{Info}}(X,Y)$$

• Hard to estimate (compared to R^2)

How to estimate I(X; Y)

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y)

Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

- Kernel density estimate approaches estimate p(x, y) (Beirlant et al. 2001, Ivanov and Rozhkova 1981)
- Nearest neighbor estimators rely on distance-based computations (Mnatsakanov et al. 2008, Goria et al. 2005, Singh et. al. 2003)

How to estimate I(X; Y)

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y)

• Plug-in estimate:

$$\hat{I}(X;Y) = \int \log \left(\frac{\hat{p}(x,y)}{\hat{p}(x)\hat{p}(y)}\right) \hat{p}(x,y) dx dy$$

- Kernel density estimate approaches estimate p(x, y) (Beirlant et al. 2001, Ivanov and Rozhkova 1981)
- Nearest neighbor estimators rely on distance-based computations (Mnatsakanov et al. 2008, Goria et al. 2005, Singh et. al. 2003)

Problems in high dimensions

- Density estimation is known to have exponential complexity with respect to dimensionality.
 - E.g. to get the same precision, you need 10 observations for univariate X, Y but 1000 for trivariate \vec{X}, \vec{Y} .
- Many applications with high-dimensional X, Y.
 - Gene expression time series
 - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.
- Other approaches: binning (Bialek et al. 1991, Paninski 2003), confusion matrix of a classifier (Treves 1997, Quiroga et al. 2009)

New idea: Use sparsity!

- Sparsity refers to existence of low-dimensional structure hidden in high-dimensional data.
- E.g. suppose X is 100-dimensional but Y is only a function of (X_5, X_9) .
- Can we exploit sparsity to obtain a good estimate of I(X; Y) even under low sample sizes?

Charles Zheng (Stanford) Mutual information

Our proposal

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y).

- Estimate a (sparse) regression model for $\mathbf{E}[\vec{Y}|\vec{X}]$.
- Assess the prediction accuracy of the model using identification loss (Kay et al. 2008)
- ① Use the identification loss to obtain a lower bound for the mutual information I(X; Y)

Multiple-response regression

- Pairs $(x_i, y_i)_{i=1}^n$, where X is p-dimensional and Y is q-dimensional.
- Data matrices $\boldsymbol{X}_{n \times p}$, $\boldsymbol{Y}_{n \times q}$.
- For each column of Y, fit sparse model $Y^{(i)} \approx X^T \beta^{(i)} + \epsilon$, e.g. by using elastic net (Zou 2008),

$$\hat{\beta}^{(i)} = \mathsf{argmin}_{\beta} || \boldsymbol{X}^T \beta^{(i)} - Y^{(i)} ||^2 + \lambda_2 ||\beta^{(i)}||_2^2 + \lambda_1 ||\beta^{(i)}||_1$$

• Or, fit a random forest model for each column of Y (Breiman 2001)

Regression vs Identification loss

Mean-squared error

Identification loss

- First used by Kay et al. (2008) to compare accuracy of center-surround model of V1 versus Gabor filter model of V1.
- We are the first to explore theoretical properties of the loss (e.g. connection to mutual information)

Identification loss and mutual information

• Define the identification risk as the expected identification loss $IdRisk_k = \mathbf{E}[IdLoss_k]$

• **Theorem.** (Z., Benjamini 2017) There exists a function g_k such that $I(X;Y) > g_k(\operatorname{IdRisk}_k)$.

Proof details

- Variational calculus allows optimization of functionals.
- Mutual information is a functional of p(x, y).

$$I[p(x,y)] = \mathbf{E}\left[\log \frac{p(X,Y)}{p(X)p(Y)}\right].$$

 Identification risk is lower-bounded by another functional—the Bayes Risk.

$$\mathsf{BayesRisk}_k[p(x,y)] = 1 - \mathbf{E}[\max_{i=1}^k p(Y|X_i)].$$

• $g_k(u)$ obtained by minimizing I[p(x, y)] subject to BayesRisk $_k[p(x, y)] \le u$.

Result

Theorem. (Z., Benjamini 2017) For any $\iota > 0$ and $k = 2, 3, \ldots$, there exists $\beta_{\iota} \geq 0$ such that defining

$$q_{eta}(t) = rac{\exp[eta t^{k-1}]}{\int_0^1 \exp[eta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then, there exists a function g_k such that

$$I(X; Y) \ge g_k(IdRisk_k),$$

defined by

$$g_k^{-1}(\iota) = \sup_{I(X;Y)=\iota} \mathsf{BayesAcc}_k = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt.$$

Our proposal

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y).

- Estimate a (sparse) regression model for $\mathbf{E}[\vec{Y}|\vec{X}]$.
- ② Compute identification loss, $IdLoss_k$, using leave-k-out.

Stimate mutual information using

$$\hat{I}_{IdLoss}(X; Y) = g_k(IdLoss_k).$$

Section 2

Applications

Simulation

- Generate data: $(Y_1, Y_2) = (X_1, X_2)^T B + \epsilon$ where B is a randomly generated coefficient matrix.
- Add extra noise dimensions X_3, X_4, \ldots
- n = 1000.
- Compare Nearest-Neighbor estimator (Mnatsakov et al, 2008, implemented in FNN) with our method using OLS and elastic net (sparse).

Simulation Results - I. low dimension

Simulation Results - III. high dimension

Application to gene expression time series

- Suppose we have *groups* of genes, $\vec{X}^{(1)}, \dots, \vec{X}^{(m)}$.
- Each group may consist of a different number of genes, p_i .
- Goal: estimate the informational correlation

$$\mathsf{Cor}_{\mathit{Info}}(\vec{X}^{(i)}, \vec{X}^{(j)})$$

between each pair, $i \neq j$.

- Conclusion: find groups which are high predictive of each other—this
 may have biological significance.
- Also: we will show that our method is robust to rotations.

Application to gene expression time series

- Data from Spellman et al. 1998
- Expression levels of 6178 yeast genes during cell cycle
- Total 73 measurements per gene

Groups of genes

Group	No. genes
unknown	396
cell cycle	27
DNA replication	27
transport	19
cytoskeleton	17
chromatin structure	16
<u>:</u>	:

Total 145 different categories (only top 6 shown).

Correlations between time series

Cor_{Info} (using OLS)

	DR	Tr	Су	CS
CC	0.93	0.78	0.98	0.83
DR		0.85	0.91	0.92
Tr			0.72	0.71
Су				0.93

Using sparse CCA*

	DR	Tr	Су	CS
CC	0.96	0.87	0.92	0.94
DR		0.83	0.88	0.95
Tr			0.83	0.78
Су				0.90

 $CC = cell\ cycle,\ DR = DNA\ replication,\ Tr = transport,$

 $Cy = cytoskeleton, \ CS = chromatin \ structure$

^{*}Witten and Tibshirani 2009, PMA::CCApermute

Invariance properties

Transform data from each group with random rotation...

$$\tilde{\mathbf{X}} = \mathbf{X} E$$

$$\tilde{\textbf{Y}} = \textbf{X} F$$

with $E^TE = I$, $F^TF = I$.

Invariance properties

Cor_{Info} (using OLS)

Using sparse CCA*

Conclusions

- Mutual information, and derived Cor_{Info} are useful measures of correlation, but hard to estimate.
- Our method targets high-dimensional data with sparsity.
- How to use: choose a regression model suited to the model assumptions. Our method allows you to convert the prediction accuracy of the model, $IdLoss_k$ into an estimate of $I(\vec{X}; \vec{Y})$.
- Example application: measure of joint information between two tables which is robust to transformations.

Related work and future directions

- What if data is high-dimensional, but not sparse? We have another method based on high-dimensional asymptotics (ZB 2016).
- Estimating quantities related to mutual information, such as transfer information, stimulus-specific information and redundancy (Borst and Theunissen 1999)
- Inferring resting-state brain networks.

Image credit Simons Foundation

Section 3

The End

References

- Reshef et al, 2011. "Detecting Novel Associations in Large Datasets." Science.
- Speed, 2011. "A correlation for the 21st century." Science.
- Linfoot, 1957. "An informational measure of correlation." Information and Control.
- Kay, 2008. "Identifying natural images from human brain activity." Nature.
- Mnatsakanov, et al, (2008). "K-nearest neighbor estimators of entropy." Mathematical Methods of Statistics
- Spellman et al., (1998). "Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization." Molecular Biology of the Cell.
- Hotelling, H. (1936). "Relations Between Two Sets of Variates". Biometrika.
- Witten, Daniela M., and Robert J. Tibshirani. (2009). "Extensions of sparse canonical correlation analysis with applications to genomic data." Statistical applications in genetics and molecular biology

Intuition behind identity

BayesRisk_k
$$[p(x,y)] = 1 - BA_k[p(x,y)] = 1 - \mathbf{E}[\max_{i=1}^k p(Y|X_i)].$$

