

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA DE SISTEMAS COMPUTACIONALES

DEPARTAMENTO DE COMUNICACIÓN Y SIMULACIÓN DE SISTEMAS

CARRERA LICENCIATURA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

ESTRUCTURAS DISCRETAS PARA COMPUTACIÓN

Tarea #1

Módulo 1: Lógica y Teoría de Conjuntos

Integrantes:

Acuña, Javier	8-1032-2295
Aji, Neo	8-969-172
Li, Elvis	8-1028-139
Sánchez, Karen	8-1032-432
Zheng, Calvin	8-1026-132

Profesor:

Ing. Samuel Jiménez

SEMESTRE I, 2025

Resuelva los siguientes problemas:

1. Identifique si las siguientes oraciones son proposiciones, si cumplen con las características aprendidas en clase, mencionen cuales son simples y compuestas.

Observación:

Proposiciones Simples

Son aquellas que no tienen oraciones componentes afectadas por negaciones ("no") o términos de enlace como conjunciones ("y"), disyunciones ("o") o implicaciones ("si . . . entonces"). Pueden aparecer términos de enlace en el sujeto o en el predicado, pero no entre oraciones componentes.

Proposiciones Compuestas

Una proposición será compuesta si no es simple. Es decir, si está afectada por negaciones o términos de enlace entre oraciones componentes.

Proposición	Respuesta	Justificación
Las medianas de un	Simple	Es una sola idea completa,
triángulo se intersecan.		sin conectores lógicos ni
		negaciones que unan
		varias proposiciones.
El 14 y el 7 son factores	Simple	Aunque usa "y", no une
del 42.		dos proposiciones
		completas, sino que
		enumera dos objetos como

		parte de una sola
		afirmación.
El 14 es factor del 42 y el	Compuesta	Se compone de dos
7 también es factor del 42.		proposiciones simples
		unidas por el conector
		lógico "y".
El 2 o el 5 son divisores de	Simple	Debido a que el valor 5 no
48.		corresponde al divisor de
		48.
El 2 es divisor de 48 o el 5	Compuesta	Claramente está formada
es divisor de 48.		por dos proposiciones
		simple unidas por "o".
No todos los números	Compuesta	Contiene una negación y
primos son impares.		una afirmación general, lo
		cual implica más de una
		proposición.
Un entero no primo mayor	Compuesta	Implica una condición (ser
de 1, es divisible por un		no primo) y una
primo.		afirmación, por lo que se
		trata de más de una
		proposición conectada.
Si sumamos dos primos,	Compuesta	Usa el conector lógico
entonces la suma es un		"si entonces", lo cual
primo.		indica una proposición
		condicional, compuesta

		por dos proposiciones simples.
La suma de dos primos es	Simple	Es una sola afirmación sin
un primo.		conectores lógicos entre distintas proposiciones.

Problema 2

De acuerdo con el siguiente enunciado, encuentre los:

- Datos
- Simbología lógica
- Si es cierto que Aristóteles nació en Estagira y que fue tutor de Alejandro Magno y, además, que si nació en Estagira era macedonio por su nacimiento, entonces era efectivamente macedonio.

Datos	Respuesta	Justificación
A: Es cierto que Aristóteles	$(A \land B \land C) \rightarrow D$	En el problema tenemos 3
nació en Estagira.		condiciones que están unidas por
B: Fue tutor de Alejandro		la conjunción "y", en donde
Magno.		deben de cumplirse para poder
C: Si nació en Estagira era		que sea verdadero el problema,
macedonio por su nacimiento.		en caso de no cumplirse,
D: Era efectivamente		entonces el problema es falso.
macedonio.		Si las condiciones A, B, C son
		ciertas, entonces el dato D se
		cumple.

2. Siempre que los herbívoros corren o el frío en los polos es intenso, los planetas giran en torno al sol.

Datos	Respuesta	Justificación
A: Siempre que los	$(A \lor B) \to C$	En este problema tenemos los datos A
herbívoros corren.		y B unidos por la disyunción "o", si
B: El frío en los polos es		ambos se cumplen, el dato C también
intenso.		se cumplirá, en caso de que uno de
C: Los planetas giran en		ellos se cumpla y el otro no, el dato C
torno al sol.		seguirá cumpliéndose. Y si ambos
		datos (A y B) son falsos, entonces la
		respuesta es falsa.

Problema 3: Dadas las siguientes oraciones, encuentre la simbología lógica adecuada

✓ Si el sol brilla hoy, entonces no brillara mañana

Respuesta	Justificación
P → ~ Q	Primero vemos una
	afirmación, luego un
	conector, que, si esta se
	cumple, entonces se niega.
	•

✓ Roberto tiene celos de Chiari o no está de buen humor hoy

Datos	Respuesta	Justificación
P: Roberto tiene celos de	P V ~ Q	El primer dato es Roberto
Chiari		tiene celos, seguido del
Q: No está de buen humor		conector "o" unión el
		segundo en este caso No
		está de buen humor.

✓ Cuando la presión atmosférica baja, entonces llueve o nieva

Datos	Respuesta	Justificación
P: La presión atmosférica	$P \to (Q \lor T)$	En este caso se usa el
baja		paréntesis ya que tiene dos
Q: Llueve		respuestas, estos se usan
T: Nieva		para que no haya
		malentendidos en la
		simbología lógica.

✓ Si has leído los apuntes y has hecho los ejercicios, estás preparado para el examen. En caso contrario, tienes un problema.

Datos	Respuesta	Justificación
P: Si has leído los apuntes	$(P \land Q) \rightarrow T \lor (\tilde{P} \land \tilde{Q} \land Q)$	Para que nos de la
Q: Has hecho los	$^{\sim}T) \rightarrow O$	proposición O todas las
ejercicios		proposiciones anteriores

T: Estas preparado para el	deben estar negadas, a
examen	diferencia de la primera
O: Tienes un problema	que solo se necesitan dos
	proposiciones afirmativas
	para llegar a al resultado
	de T.

✓ No habrá cura para el cáncer salvo que se determine su causa y se encuentre un nuevo medicamento.

Datos	Respuesta	Justificación
~ P: No habrá cura para el	$^{\sim} P \leftrightarrow (T \land Q)$	En este caso se usa el
cáncer		paréntesis ya que la T y la
T: que se determine su		Q están conectadas con la
causa		"y", en este caso ambas se
Q: Se encuentre un nuevo		deben cumplir para que
medicamento		sea una afirmación.

✓ Si pablo se encontró con Chiari ayer, entonces tomaron café junto o pasearon por el parque.

Datos	Respuesta	Justificación
P: Pablo se encontró con	$P \rightarrow (Q \lor T)$	P no es negada, esto está
Chiari		conectado por "entonces"
Q: Tomaron café		y, el uso de paréntesis es

T: Pasearon por el parque	porque hay dos respuestas
	que no necesariamente
	ambas deben ser
	afirmativas ya que están
	conectadas por el conector
	"o".

✓ Juan duerme muchas horas y muy profundamente.

Datos	Respuesta	Justificación
P: Juan duerme muchas	P ∧ T	Esto se debe a que
horas		tenemos dos datos que son
T: Muy profundamente		afirmativos por ende no se
		usa negación.

✓ Mi hermana tiene un gato blanco y negro.

Datos	Respuesta	Justificación
P: Mi hermana tiene un	PΛQ	Esta es su simbología
gato blanco		lógica ya que está unida
Q: Y negro		por un conector "y",
		además que, si se analiza
		bien la proposición, se da a
		entender que ésta cuenta
		con un gato blanco y uno

	negro, no con un gato
	blanco con negro.

Problema 4

¿Cuál de las siguientes fórmulas representa la proposición "Llegará en el tren de las 8:15 o en el de las 9:15, si llega en el primero, entonces tendrá tiempo de visitarnos":

Donde:

- p expresa "llegara en el tren de las 8:15"
- q expresa "llegara en el tren de las 9:15"
- r Expresa "tendrá tiempo para visitarnos"

1.
$$\neg p \rightarrow q \lor r$$

2.
$$p \lor q \rightarrow r$$

3.
$$(p \rightarrow q) \land (p \land r)$$

4.
$$p \lor \neg q \rightarrow r$$

5.
$$(p \lor q) \land (p \rightarrow r)$$

"Llegará en el tren de las 8:15 o en el de las 9:15"

Esto se traduce como una disyunción: p V q

"Si llega en el primero, entonces tendrá tiempo de visitarnos"

Esta es una condicional: $p \rightarrow r$

Como ambas partes forman una sola proposición completa, y **ambas deben cumplirse**, se conectan mediante una conjunción lógica (una "y"): $(p \lor q) \land (p \to r)$