Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ diverge, converge absolutely, or converge conditionally?

• Solution. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is alternating.

Let $a_n = \frac{(-1)^n}{n}$. Then $b_n = |a_n| = \frac{1}{n}$. The sequence b_n is decreasing and

$$\lim_{n\to\infty}b_n=0.$$

By the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.

Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge absolutely or conditionally? We study $\sum |a_n|$,

namely $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right|$, which is the series $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges by the p-

series test, so $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges conditionally.