Halting in Random Walk Kernels

Mahito Sugiyama (Osaka University, JST PRESTO) Karsten Borgwardt (ETH Zürich)

Code: https://www.bsse.ethz.ch/mlcb/research/machine-learning/graph-kernels.html

Our Messages

- 1. As a baseline for graph kernels, a *fixed-length-k random walk kernel* is better than a *geometric random walk kernel*
- 2. Simple baseline kernels on label histograms should be employed

Random Walk Kernels

- Measure the similarity between graphs by counting matching walks
- The direct product $G_{\times} = (V_{\times}, E_{\times}, \varphi_{\times})$ of two graphs G and G': $V_{\times} = \{ (v, v') \in V \times V' \mid \varphi(v) = \varphi'(v') \},$

$$E_{\times} = \left\{ ((u, u'), (v, v')) \in V_{\times} \times V_{\times} \middle| \begin{array}{l} (u, v) \in E, \\ (u', v') \in E', \\ \varphi(u, v) = \varphi'(u', v') \end{array} \right\}$$

All labels are inherited

• The *k*-step (fixed-length-*k*) random walk kernel between *G* and *G*':

$$K_{\times}^{k}(G,G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda_{o} A_{\times}^{o} + \lambda_{1} A_{\times}^{1} + \lambda_{2} A_{\times}^{2} + \dots + \lambda_{k} A_{\times}^{k} \right]_{i,j} \quad (\lambda_{I} > o)$$

- A_{\times} : The adjacency matrix of the product graph
- K_{\times}^{∞} can be directly computed if $\lambda_{\ell} = \lambda^{\ell}$ for each $\ell \in \{0, ..., k\}$ (geometric series), resulting in the geometric random walk kernel:

$$K_{GR}(G, G') = \sum_{i,j=1}^{|V_{\times}|} \left[\lambda^{\circ} A_{\times}^{\circ} + \lambda^{1} A_{\times}^{1} + \lambda^{2} A_{\times}^{2} + \lambda^{3} A_{\times}^{3} + \cdots \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{\ell=0}^{\infty} \lambda^{\ell} A_{\times}^{\ell} \right]_{ij}$$
$$= \sum_{i,j=1}^{|V_{\times}|} \left[(\mathbb{I} - \lambda A_{\times})^{-1} \right]_{ij}$$

- Well-defined only if $\lambda < 1/\mu_{\times, max}$ ($\mu_{\times, max}$ is the max. eigenvalue of A_{\times})
- $-\delta_{\times}$ (min. degree) $\leq \overline{d_{\times}}$ (average degree) $\leq \mu_{\times, \max} \leq \Delta_{\times}$ (max. degree)

Main Theorem

• Since λ is relatively small, halting of random walks occurs:

$$K_{\mathrm{GR}}(G,G') = \sum_{i,j=1}^{|V_{\times}|} \left[\underbrace{\lambda^{\mathrm{o}} A_{\times}^{\mathrm{o}} + \lambda^{1} A_{\times}^{1}}_{K_{\times}^{1}(G,G')} + \underbrace{\lambda^{2} A_{\times}^{2} + \lambda^{3} A_{\times}^{3} + \cdots}_{\to 0} \right]_{i,j}$$

• Theorem: For a pair of graphs G and G',

$$K_{\times}^{1}(G,G') \leq K_{GR}(G,G') \leq K_{\times}^{1}(G,G') + \varepsilon, \qquad \varepsilon = |V_{\times}| \frac{(\lambda \Delta_{\times})^{2}}{1 - \lambda \Delta_{\times}}$$

- ε → o (monotonic) as λ → o
- $-\lambda_0 = 1$ and $\lambda_1 = \lambda$ in the random walk kernel
- Normalized version:

$$1 \leq \frac{K_{GR}(G,G')}{K_{\times}^{1}(G,G')} \leq 1 + \varepsilon', \qquad \varepsilon' = \frac{(\lambda \Delta_{\times})^{2}}{(1 - \lambda \Delta_{\times})(1 + \lambda \overline{d_{\times}})}$$

Relationships to Linear Kernels

• The lower bound $K_{\times}^{1}(G,G')$ is just a linear kernel on label histograms:

$$K_{\times}^{1}(G, G') = \underbrace{K_{\text{VH}}(G, G')}_{\text{Vertex labels}} + \lambda \underbrace{K_{\text{VEH}}(G, G')}_{\text{Vertex + edge labels}}$$

- Consequence

Geometric random walk kernels may degenerate to simple kernels between node and edge label histograms

Datasets

_										
_	Dataset	Size	#cls.	avg. V	avg. <i>E</i>	max V	max <i>E</i>	$ \Sigma_V $	$ \Sigma_E $	$max\Delta_{\times}$
	ENZYMES	600	6	32.63	62.14	126	149	3	1	65
	NCI1	4110	2	29.87	32.3	111	119	37	3	16
	NCI109	4127	2	29.68	32.13	111	119	38	3	17

Experimental Results_

References

- Borgwardt, K. M.: *Graph Kernels*. PhD thesis, 2007.
- Gärtner, T., Flach, P., and Wrobel, S.: **On graph kernels: Hardness results and efficient alternatives.** In *Learning Theory and Kernel Machines* (*LNCS* 2777), 129–143, 2003.
- Kashima, H., Tsuda, K., and Inokuchi, A.: Marginalized kernels between labeled graphs. *ICML*, 321–328, 2003.
- Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., and Borgwardt, K. M.: Weisfeiler-Lehman graph kernels. *JMLR*, 12:2359–2561, 2011.