Data warehousing and Mining

-Kiran Bhowmick

Course structure

Program: Third Year B.Tech. in Computer Engineering Semester: V										
Course : Data Mining and Warehouse Course Code:DJ19CEC501							EC501			
Course: Data Mining and Warehouse Laboratory Course Code: DJ19CEL501										
Teaching Scheme				Evaluation Scheme						
(Hours / week)				Semester End Examination Marks (A)			Continuous Assessment Marks (B)			Total
Lectures	Practical	Tutorial	Total Credits		Theory		Term Test 1	Term Test 2	Avg.	marks (A+ B)
(hrs)	(hrs)	(hrs)			65		20	15	35	100
				Laboratory Examination			Term work			
3	2	5	4	Oral	Practical	Oral &Practical	Laboratory Work	Tutorial / Mini project / presentation/ Journal	Total Term work	50
				25	-	-	15	10	25	

Syllabus

Program: Computer Engineering	T.Y B.Tech.	Semester: V		
Course: Data Warehousing and Mining (DJS22CEC501)				
Course: Data Warehousing and Mining Laboratory (DJS22CEL501)				

Pre-requisite: Basic database concepts, Concepts of algorithm design and analysis

Course Objectives:

This course introduces data warehouse and data mining concepts.

- 1. To identify the need of and perform data modelling to provide strategic information for making business decisions.
- 2. To analyze data and identify and develop relevant mining models to discover knowledge from data in various applications.

Outcomes: On successful completion of course, learner will be able to:

- Design data warehouse models using dimension-modeling techniques.
- Analyse the data by applying Online Analytical Processing (OLAP) operations for strategic decisions.
- 3. Apply preprocessing techniques to the given raw data.
- 4. Apply appropriate data mining techniques on data sets to retrieve relevant information.

Data Warehousing and Mining (DJS22CEC501)				
Unit	Description			
1	Introduction to Data Warehouse and Dimensional modelling: Introduction to Strategic Information, Need for Strategic Information, Features of Data Warehouse, Data warehouse versus Data Marts, Data warehouse versus Data Lake, Top-down versus Bottom-up approach. Data warehouse architecture, E-R modelling versus Dimensional Modelling, Information Package Diagram, STAR schema, STAR schema keys, Snowflake Schema, Fact Constellation Schema, Factless Fact tables, Update to the dimension tables, Aggregate fact tables.	8		
2	ETL Process and OLAP: Major steps in ETL process, Data extraction: Techniques, Data transformation: Basic tasks, Major transformation types, Data Loading: Applying Data, OLTP Vs OLAP, OLAP definition, Dimensional Analysis, Hypercubes, OLAP operations: Drill down, Roll up, Slice, Dice and Rotation, OLAP models: MOLAP, ROLAP, HOLAP.	6		
3	Introduction to Data Mining, Data Exploration and Preprocessing: Data Mining Task and Techniques, KDD process, Issues in Data Mining, Applications of Data Mining, Data Exploration: Types of Attributes, Statistical	6		

	Description of Data, Data Visualization, Measuring data similarity and dissimilarity.	
	Data Preprocessing: Major tasks in preprocessing, Data Cleaning: Missing values, Noisy data; Data Integration: Entity Identification Problem, Redundancy and Correlation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data Transformation & Data Discretization: Data Transformation by Normalization, Discretization by Binning, Discretization by Histogram Analysis	
4	Classification and Clustering:	8
	Classification	
	Basic Concepts of classification, Decision Tree Induction, Attribute Selection Measures using Information Gain, Tree pruning	
	Bayes Classification Methods: Bayes' Theorem, Naïve Bayesian Classification	
	Model Evaluation: Metrics for Evaluating Classifier Performance, Holdout Method and Random Subsampling, Cross Validation, Bootstrap	
	Improving Classification Accuracy: Ensemble classification, Bagging, Boosting and AdaBoost, Random Forests	
	Clustering:	
	Cluster Analysis and Requirements of Cluster Analysis	
	Partitioning Methods: k-Means, k-Medoids	
	Hierarchical Methods: Agglomerative, Divisive	
	Evaluation of Clustering: Assessing Clustering Tendency, Determining Number of Clusters and Measuring cluster quality: Intrinsic and Extrinsic methods	
5	Mining Frequent Patterns and Association Rules:	5
	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rule	
	Frequent Item set Mining Methods: Apriori Algorithm, Association Rule Generation,	
	FP growth	
6	Spatial and Web Mining: Spatial Data, Spatial Vs. Classical Data Mining, Spatial	6
	ı	

Description of Data Data Vigualization Managing data similarity and

Data Structures, Mining Spatial Association and Co-location Patterns, Spatial

Clustering Techniques: CLARANS Extension

Web Mining: Web Content Mining, Web Structure Mining, Web Usage mining, Applications of Web Mining

Books Recommended:

- Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", 2nd Edition, Wiley India, 2013.
- 2. Theraja Reema, "Data Warehousing", 1st Edition, Oxford University Press, 2009.
- 3. Han, Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", 2nd Edition, Pearson Education, 2018.
- H. Dunham, "Data Mining: Introductory and Advanced Topics", 1st Edition, Pearson Education, 2006.

Chapter 1. Introduction

- Motivation: Why data mining?
- What is data mining?
- Data Mining: On what kind of data?
- Data mining functionality
- Classification of data mining systems
- Top-10 most popular data mining algorithms
- Major issues in data mining
- Overview of the course

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Why Not Traditional Data Analysis?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and potentially useful) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Query Examples

Database

- Find all credit applicants with last name of Smith.
- Identify customers who have purchased more than \$10,000 in the last month.
- Find all customers who have purchased IBM laptops

Data Mining

- Identify customers with similar buying habits. (Clustering)
- Find all items which are frequently purchased with milk. (association rules)
- Find all credit applicants who are poor credit risks. (classification)

Knowledge Discovery from Data (KDD)

Figure 1.4 Data mining as a step in the process of knowledge discovery.

Data Mining and Business Intelligence

Data Mining: Confluence of Multiple Disciplines

Dr. Kiran Bhowmick

Multi-Dimensional View of Data Mining

Data to be mined

 Relational, data warehouse, transactional, stream, object-oriented/relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW

Knowledge to be mined

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Multiple/integrated functions and mining at multiple levels

<u>Techniques utilized</u>

Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc.

Applications adapted

 Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Data Mining Definition

- Finding hidden information in a database
- Fit data to a model
- Similar terms
 - Exploratory data analysis
 - Data driven discovery
 - Deductive learning

Data Mining Algorithm

- Objective: Fit Data to a Model
 - Descriptive
 - Predictive
- Preference Technique to choose the best model
- Search Technique to search the data
 - "Query"

Data Mining Models and Tasks

Predictive Data Model:

 $\label{lem:makes} \mbox{ Makes prediction about values of data using known results found from different data.}$

Based on historical data. E.g. classification, regression, time series analysis, prediction

Descriptive data model:

Identifies patterns or relationships in data.

Offers a detailed description of the data, for example- it gives insight into what's going on inside the data without any prior idea. This serves as a way to explore the properties of data.

Does not predict new properties.

Basic Data Mining Tasks

- Classification maps data into predefined groups or classes
 - Supervised learning
 - Pattern recognition
 - Prediction
- Regression is used to map a data item to a real valued prediction variable.
 - Regression involves predicting continuous, real-value quantities
 - regression involves the learning of the function that does this mapping.
 - E.g. Predicting house prices
- *Time Series Analysis* the value of an attribute is examined as it varies over time. Values obtained as evenly spaced time points (daily, weekly, hourly) Three basic functions:
 - Distance measures: determine similarity
 - Structure of line
 - Historical time series plot to predict future values
 - E.g. forecast monthly sales for a retail store
- **Prediction** predicting future states
 - Weather forecasts, earthquakes, floods etc
 - E.g. medical diagnosis, fraud detection etc.

Dr. Kiran 18 howmick

Ex: Time Series Analysis

- Example: Stock Market
- Predict future values
- Determine similar patterns over time

Basic Data Mining Tasks

- Clustering groups similar data together into clusters.
 - Unsupervised learning
 - Segmentation
 - Partitioning
- Summarization maps data into subsets with associated simple descriptions.
 - Characterization or Generalization
 - It extracts or derives representative information about the database
 - E.g. Average CET score taking admission in an Engg college. Summarization will help estimate the type and intellect of student in the college
- Association rules uncovers relationships among data.
 - Also called link analysis, Affinity Analysis
 - An association rule is a model that identifies specific types of data associations.
 - E.g. Market-basket analysis

Basic Data Mining Tasks (cont'd)

- **Sequence Discovery** to determine sequential patterns in data.
 - Patterns are based on a time sequence of actions.
 - Similar to association data are found that are related.
 - Difference than association relationship is based on time. For AR items must be purchased at same time whereas for sequence discovery items can be purchased over a period of time.
 - E.g. Analyzing web logs of a website to understand what sequence of pages are frequently visited by users.
 - (A, B, C) or (A, D, B, C) or (A, E, B, C). Then add a link directly from page A to page C.