Naïve Bayesians

Back to Basics Series

09 Jan 2021

Developing the Bayesian muscle to solve a wide range of problems

Naïve Bayesian Philosophy

Intuitive (Visual)
Understanding of the
Bayesian Reasoning

Ability to model real world problems in a Bayesian Setting

Starting from Simple Probabilistic modelling

Adapting it in a a Bayesian setting
And moving towards ML models

Fluency in the Calculus of Bayesian Stats & ML model

Season 2: Back to Basics

Back to Basics

		Canonical Problem	Applications
Ep 1	Bayes Theorem	There are 2 boxes from which cookies can be taken from. Box A and Box B. Box A contains 10 chocolate cookies, Box B contains 5 ginger cookies. Given that you get a chocolate cookie which box was it taken from?	The Shy Librarian Problem Naive Bayes algorithm
Ep 2	Problems with Binomial Likelihoods	You have 2 coins C1 and C2. p(heads for C1) = .7 & P(heads for C2) = 0.6 You flip the coin 10 times. What is the probability that the given coin you picked is C1 given you have 7 heads and 3 tails?	A/B Testing
Ep 4	Disease Detection	A particular disease affects 1% of the population. There is an imperfect test for this disease: The test gives a positive result for 90% of people who have the disease, and 5% of the people who are disease-free. Given a positive test result – what is the probability of having the disease?	COVID Tests (PCR & Antibody)! Fraud Detection
Ep 5	Naive Bayes Classification	Given these words occur in this text what's the probability it's spam?	
Ep 6	Gaussian Naive Bayes Classification	Given the weights and heights of basketball players, what's the probability that person a is a basketball player given weight = w and height = h?	Any Classification Problem

Back to Basics

Canonical Problem **Applications** Ep 7 Suppose tanks were given a serial number based on the order in which they were German Tank manufactured. Given that you've observed a tank with serial number "10", how Problem many tanks were actually manufactured in total? Waiting Times Suppose you need to gather 10 patients for a trial. Each signup happens at time Planning Trials t_i (i=1, 10). How long do you have to wait after it took you 3 weeks to accrue 2 (Continuous Estimating Queues Distributions) signups?

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$P(D)$$

$$P(D)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Canonical Problem

You have 2 coins C_1 and C_2 . p(heads for C_1) = 0.7 p(heads for C_2) = 0.6

You flip one of the coins 10 times and get 7 heads and 3 tails

What is the probability that the given coin you picked is C_1 ?

What is the probability that the given coin you picked is C₁?

- X ~ Binomial(n, p)
 - $0 \le X \le n$
 - n > 0
 - 0

$$P(X = k | p) = {n \choose k} p^k (1 - p)^{n-k}$$

What is the probability that the given coin you picked is C₁?

- X ~ Binomial(n, p)
 - $0 \le X \le n$
 - n > 0
 - 0

$$P(X = k \mid p) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$
Likelihood

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

$$P(\theta_{i} \mid D) = P(D \mid \theta_{i}) P(\theta_{i})$$

$$\sum_{all j} P(D \mid \theta_{j}) P(\theta_{j})$$

$$P(C_{1} | X=7)$$

$$= \frac{P(X=7| C_{1}) P(C_{1})}{P(X=7| C_{1}) P(C_{1}) + P(X=7| C_{2}) P(C_{2})}$$

$$P(C_1 | X=7)$$
=
$$P(X=7| C_1) P(C_1)$$
=
$$P(X=7| C_1) P(C_1) + P(X=7| C_2) P(C_2)$$

$$P(C_{1} | X=7)$$

$$= \frac{P(X=7| C_{1}) P(C_{1})}{P(X=7| C_{1}) P(C_{1}) + P(X=7| C_{2}) P(C_{2})}$$

$$= \frac{0.267 P(C_{1})}{0.267 P(C_{1}) + 0.215 P(C_{2})}$$

$$P(C_{1} | X=7)$$
= $P(X=7| C_{1}) P(C_{1})$
= $P(X=7| C_{1}) P(C_{1}) + P(X=7| C_{2}) P(C_{2})$
= $P(X=7| C_{1}) P(C_{1}) P(C_{1})$
= $P(X=7| C_{1}) P(C_{1}) P(C_{2})$
= $P(X=7| C_{1}) P(C_{2})$
= $P(X=7| C_{1}) P(C_{2})$
= $P(X=7| C_{1}) P(C_{2})$

Canonical Problem v2

You randomly draw a coin from 100 coins $C_{u:}$ 1 unfair coin (head-head) $p(heads for C_u) = 1$ $C_{f:}$ 99 fair coins (head-tail) $p(heads for C_f) = 0.5$

You flip it 10 times and the result is 10 heads

$$P(C_u) = 1/100$$
 $P(C_f) = 99/100$

$$P(C_u \mid X=10)$$
= $P(X=10 \mid C_1) P(C_u)$
= $P(X=10 \mid C_1) P(C_u) + P(X=10 \mid C_f) P(C_f)$

$$P(C_u) = 1/100 \quad P(C_f) = 99/100$$

Bernoulli Distribution

- Y ~ Bernoulli(p)
 - X = 0, 1
 - 0
- Events with 1 Trial & 2 Possible Outcomes
- Examples
 - 1 coin flip
 - Answers to True/False Quiz
 - Voting in a 2-Candidate Election
 - Result of a COVID-19 Test

Probability Mass Function (PMF)

