

Designing a Minimal Digital Clock for Students

This presentation outlines the design and development of a distraction-free digital clock tailored specifically for students. Our goal is to enhance focus and productivity.

The Importance of a Distraction-Free Clock

Enhanced Focus

Minimizing extraneous features helps students concentrate.

- Removes notifications
- Reduces visual clutter

Improved Productivity

A clear time display supports effective time management.

- Facilitates Pomodoro technique
- Aids in task allocation

Key Design Principles for a Minimal Clock

Simplicity

Focus on essential timetelling functions only.

Readability

Large, clear digits for quick glances.

Efficiency

Low power consumption for extended use.

Hardware Components and Cost Breakdown

Microcontroller (ESP32)	\$5.00	Brain of the clock
LED Display (7- segment) RTC Module	\$3.00	Time display
(DS3231) Battery (LiPo)	\$2.00	Accurate timekeeping
Casing (3D Printed)	\$4.00	Portable power
Miscellaneous	\$1.50	Protective enclosure
	\$2.00	Wires, resistors, etc.

Software Architecture and Development Process

Initialization

Set up hardware and time module.

Time Sync

Read time from RTC module.

Processing

Format time for display.

Display Update

Send data to LED segments.

User Interface and Interaction Design

Single Button Control

A multi-function button for settings access.

- Short press: Toggle display
- Long press: Enter settings mode

Clear Time Display

Only shows hours and minutes.

- Optional AM/PM indicator
- No seconds for minimal distraction

Adjustable Brightness

Allows customization for different lighting conditions.

- Preserves battery life
- Reduces eye strain

Usability Testing and User Feedback

1 — Pilot Group
Distribute prototypes to 20 students.

2 — Feedback Collection

Conduct surveys and interviews.

3 — Iteration

Implement improvements based on input.

4 — Final Review

Validate changes with key users.

Deployment and Scaling for Student Use

Open Source Design

Share hardware and software plans for community building.

Par tnerships

Collaborate with educational institutions for distribution.

Student Workshops

Teach assembly and customization for DIY enthusiasm.

Future Enhancements

Temperature Sensor

Integrate ambient room temperature display.

Subtle Alarm

Add a gentle, non-disruptive alarm feature.

Wireless Sync

Enable time synchronization via Wi-Fi.

Key Takeaways and Next Steps

Our next steps involve refining the prototype, expanding testing, and exploring manufacturing options to bring this valuable tool to students globally.