机器学习工程师纳米学位

毕业项目提议-Distracted Driver Detection

Yuxiang Jiang May 8th, 2017

题目

Distracted Driver Detection (分心司机检测)

背景

我们都有过类似的经历:绿灯亮的时候,在你前面的车辆在前面不让步导致你不能快速通过; 或者一个不起眼的车辆突然在你前面减速并且左右摇摆。

当你从这些令你厌恶的车辆旁经过时,你能想到你会看到什么吗?当你看到车里的司机正在 发短信,或者似乎沉浸在社交媒体中,又或者正在拿着手机通话时,你一定不会感觉到太惊 讶

根据 CDC 机动车安全部的数据显示,20%的车祸是由司机分心所致。这意味着每年因此导致425000 人受伤,3000 人死于分心驾驶。

State Farm 保险公司改善这些令人震惊的统计数据,通过仪表盘上的摄像头自动检测司机是 否从事了分心驾驶的行为,保证客户安全。 State Farm 保险公司提供了 2D 仪表盘相机记录下来的数据集,希望能够对驾驶员的行为进行分类。

问题陈述

我们拥有驾驶员的图像信息,这些图像信息记录的驾驶员在车中正在做的动作(发短信、吃东西、打电话、化妆、转身谈话等等)。我们的目标是预测每一个图片的司机在做什么的概率。

10 种预测结果:

- c0: safe driving
- c1: texting right
- c2: talking on the phone right
- c3: texting left
- c4: talking on the phone left
- c5: operating the radio
- c6: drinking
- c7: reaching behind
- c8: hair and makeup
- c9: talking to passenger

我将会采用深度神经网络的方法,使用 ResNet (微软的深度神经网络模型) 的结构,解决这个分类问题。

数据集和输入

数据集来源于 State Farm 保险公司,并发布于 kaggle 数据分析比赛网。数据可以从如下网址下载: https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

文件描述:

- imgs.zip zipped folder of all (train/test) images
- sample_submission.csv a sample submission file in the correct format

● driver_imgs_list.csv - a list of training images, their subject (driver) id, and class id 其中训练集有 22424 张,测试集有 79729 张图,每张照片都是 640x480x3。其中收集了 26个司机的不同的驾驶状态。

解决方法概述

深度神经网络是一种潜在的解决方法。通过大量多层的卷积提取图像中抽象的结构,从而进行识别。VGG16 是一种深度卷积神经网络,我们可以利用它在 imagenet 上预训练的参数,对模型进行更快的训练。然后根据这个模型的表现进行调参,减小过拟合。

Benchmark Model (基准模型)

使用 VGG16 即有 16 层的深度卷积神经网络,并使用 imagenet 预训练初始化权重。 VGG16 的结构如下:

Keras VGG-16 Model (None, 224, 224, 3) Conv Block #1 (0, 'input_6', (None, 224, 224, 3)) (None, 112, 112, 64) (1, 'block1_conv1', (None, 224, 224, 64)) (2, 'block1_conv2', (None, 224, 224, 64)) Conv Block #2 (3, 'block1_pool', (None, 112, 112, 64)) (4, 'block2_conv1', (None, 112, 112, 128)) (None, 56, 56, 128) (5, 'block2_conv2', (None, 112, 112, 128)) (6, 'block2_pool', (None, 56, 56, 128)) Conv Block #3 (7, 'block3_conv1', (None, 56, 56, 256)) (8, 'block3_conv2', (None, 56, 56, 256)) (None, 28, 28, 256) (9, 'block3_conv3', (None, 56, 56, 256)) (10, 'block3_pool', (None, 28, 28, 256)) Conv Block #4 (11, 'block4_conv1', (None, 28, 28, 512)) (12, 'block4_conv2', (None, 28, 28, 512)) (None, 14, 14, 512) (13, 'block4_conv3', (None, 28, 28, 512)) (14, 'block4_pool', (None, 14, 14, 512)) Conv Block #5 (15, 'block5_conv1', (None, 14, 14, 512)) (16, 'block5_conv2', (None, 14, 14, 512)) (None, 25088) (17, 'block5_conv3', (None, 14, 14, 512)) (18, 'block5_pool', (None, 7, 7, 512)) Fully (19, 'flatten', (None, 25088)) Connected Classifier (20, 'fc1', (None, 4896)) (21, 'fc2', (None, 4896)) (None, 1000) (22, 'predictions', (None, 1888))

这个模型在使用预训练权重训练 20 次时只有训练集 98%/验证集 60%的准确率。

评价标准

结果使用"multi-class logarithmic loss"来评估。每一个图片已经被分为其中一个类。 对于每一个图片,将会有每一种类别的预测概率。 评估公式如下:

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{ij}\log(p_{ij}),$$

其中 N 是测试集中的图片数量,M 是图片的分类标签的数量, \log 是自然对数,如果观测到的 i 属于类别 j, y_{ij} 是 1,否则为 0。 p_{ij} 是观测到的 i 属于 j 的概论。

其中一个给定的图片的概率和不需要等于 **1**, 因为它们在评分前被重新调整过(每一行被除以行的和)。

项目设计

工作流程:

- 导入数据
- 数据样例显示
- 数据预处理
- 设计训练模型
- 模型可视化
- 训练模型
- 计算准确率
- 预测样本和测试集
- 保存模型