Phenotype Prediction from Human Whole Genome Profile

CSE847 COURSE PROJECT SUN, MENGYING; TONG, XIAORAN

Intro: Problem

Genomic Prediction

- ☐ Many phenotypes are highly heritable, e.g., height, IQ, and diseases, which can be well predicted by pedigree trees.
- ☐ Yet, the prediction from genomic profile are not optimal.
- ☐ Assumption: sub-optimal performance was due to neglected nonlinear association.
- Our goal: build non-linear predictive models for a typical phenotype body height, that uses markers across the whole genome.

Genomic Profile

- SNP takes value from {0, 1, 2}
- Dimensionality (million)
- UK biobank, Height
 - 589,028 SNPs (~600K)
 - 102,221 Observations (~100K)
- Training Testing Splitting
 - **TRN: 80000**
 - TST: 22221

Strategy: Two Stage Modeling

- Final Goal: Y = f(G)
- Variable Selection
 - Whole genome --> LD Blocks
 - Select SNPs
- Prediction
 - Generative models
 - Neural Networks

Methods

LD Blocks

Linkage Disequilibrium (LD)

Variations at close by locations are not independent, due to the molecule bounds.

LD Blocks

- LD blocks identified by PLINK
- End up with 157K LD blocks

Statistics	Value	
Min	1	
Max	107	
Mean	3.097	
SD	3.686	

Variable Selection

- Stepwise selection (BIC/AIC)
- LASSO

Variable Selection

BIC

- Only keep selected SNPs in a LD-block
- Completely discard blocks with no selected SNPs
- A total of 6K features selected by BIC

LASSO

- Merge consecutive LD blocks to form superblocks (300 per block, ~2k blocks)
- Split training into sub-training & sub-validation, calculate solution path for b w.r.t. Lambda (>200k features left)
- Calculate one risk score for every superblock, a total of 2k scores

Control

- Random 6K
- Top p-value 6K from GWAS study

Prediction

- BGLM (BGLR)
- NN (Keras)

Results

Prediction

BGLM

• Bayes B, nlter = 5000, Burnin = 1000

NN

- Activation Function
- Learning Rate
- Regularization Parameters

PA

Correlation (y_test_true, y_test_pred)

Activation Function

Overfit quickly

- Large sample size
- Small batch
- Simple mechanism of linear association

Linear vs nonlinear

- Linear outperform
- Nonlinear activations fails to capture the assumed nonlinear association

Learning rate

Slow down the speed of overfitting

Regularization

- Large lambda
 - More penalize
 - offer protection from overfitting
- Large sample
 - Prediction accuracy is maintained after overfitting

Sample Size

- Large Sample Size
 - Obviously increase performance

Prediction Accuracy

- Selected SNPs >> Random SNPs
- BGLM >> NN
- NN: Linear >> Other Activations

	NN (linear)	NN (relu)	BGLM
Random, 6K	0.137	0.140	0.161
Top P value, 6K	0.452	0.442	0.459
Block BIC, 6K	0.449	0.440	0.457

Experience

Experience

- Variable Selection
 - Adjusted for age and sex; not adjusted for PCs
 - Unexpected: stepwise selection didn't outperform top p-value selection for our case
- Prediction
 - For height, or Gaussian trait (highly additive), linear activation works well.
 - Large sample size + appropriate regularization is robust against overfitting
 - So far, generative linear model works better than neural networks

Thank you!