Efficient PageRank Tracking in Evolving Networks

KDD'15

21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining

大坂 直人 (東京大学/プロジェクト RA) 前原 貴憲 (静岡大学) 河原林 健一 (NII)

PageRank Personalized PageRank

PageRank [Brin-Page.'98]Webページの重要度の指標 リンク構造だけから決まる

Personalized PageRank
[Jeh-Widom.'03]

<u>バイアス</u>付き ⇒ **関連度**

昨年の感謝祭…静的グラフ上の高速計算 [Maehara-Akiba-Iwata-Kawarabayashi. PVLDB'14]

Evolving Networks … 動的グラフ

- World Wide Web
 - 新しいページ・リンク 60万ページ/秒

http://www.internetlivestats.com/

- ソーシャルネットワーク 新しい友人関係
- マイクロブログ

ユーザ同士のやりとり 5000ツイート/秒

http://www.technologyreview.com/graphiti/522376/the-many-tongues-of-twitter/

グラフ全体を見ずに更新したい

関連度としての応用

スパム検知 スコアの時間変化を利用 [Chung-Toyoda-Kitsuregawa. '09, '10]

ユーザ推薦 友達の候補生成 [Gupta-Goel-Lin-Sharma-Wang-Zadeh. WWW'13]

Personalized PageRank追跡の既存手法

	m辺の無作為 挿入の時間	スケーラビリティ 0.1秒以下 / 辺 誤差約10 ⁻⁹
Aggregation/Disaggregation [Chien et al. '04]	$\mathcal{O}(m S \log 1/\epsilon)$	68M 辺
Monte-Carlo [Bahmani et al. '10]	$\mathcal{O}(m + \log m / \epsilon^2)$	68M 辺
Power method ナイーブな手法	$\mathcal{O}(m^2 \log 1/\epsilon)$	11M 辺

本研究の貢献

成長するグラフにおける **Personalized PageRank 追跡**のための **高速 & 高精度** な手法を提案

	加辺の無作為 挿入の時間	スケーラビリティ 0.1秒以下 / 辺 誤差約10 ⁻⁹
提案手法	平均 \mathbb{Q} 最大出次数 $\mathcal{O}(m + \Delta \log m / \epsilon)$	3,700M 辺
Aggregation/Disaggregation [Chien et al. '04]	$\mathcal{O}(m S \log 1/\epsilon)$	68M 辺
Monte-Carlo [Bahmani et al. '10]	$\mathcal{O}(m + \log m / \epsilon^2)$	68M 辺
Power method ナイーブな手法	$\mathcal{O}(m^2 \log 1/\epsilon)$	11M 辺

于作用知識

予備知識

Personalized PageRank の定義

[Brin-Page. Comput. Networks ISDN Syst.'98] [Jeh-Widom. WWW'03]

線形方程式次の解x =

Random walk による解釈

定常分布

 Random walkによるWeb閲覧のモデル化 無作為に隣接頂点に移動 w.p. α 無作為に任意頂点にジャンプ w.p. 1 – βπης κ κ κ κ κ κ

$$x_v = v$$
 を訪れる確率

予備知識

静的グラフ上のPageRankの計算

・線形方程式 $x = \alpha P x + (1 - \alpha)b$ を解く Power method $x^{(\nu)} = \alpha P x^{(\nu-1)} + (1 - \alpha)b$

v を訪れる割合 x_v を見積もる Monte-Carlo シミュレーション

動的グラフ上のPageRankの追跡

Aggregation/disaggregation

[Chien-Dwork-Kumar-Simon-Sivakumar. Internet Math.'04]

変化のあった近傍にPower methodを適用

■ Monte-Carlo ベース

[Bahmani-Chowdhury. VLDB'10]

Random walkの軌跡を保持・更新

提等手法

問題設定

時刻0の**入力**: G(0)

時刻0の問題:

G(0) の PageRank x(0) の近似計算

$$\|x(\mathbf{0}) - x^*(\mathbf{0})\|_{\infty} < \epsilon$$

G(t-1) の PageRank x(t-1) の近似計算

時刻tの**入力**:

時刻tの問題:

G(t) の PageRank x(t) の近似計算

そのアイデア

$$x(t) = \alpha P(t)x(t) + (1 - \alpha)b$$
を解く

- 1. x(t-1)はx(t)の良い初期近似解
- 2. 近似解を局所的に改善できないか?

■ Gauss-Southwell 法を採用 ② [Southwell. '40, '46]

別名 Local algorithm

[Spielman-Teng. SIAM J. Comput.'13]

Bookmark coloring algorithm

[Berkhin. Internet Math.'06]

Gauss-Southwell 法[Southwell. '40, '46]

- ν^{th} 近似解 $x^{(\nu)}$
- v^{th} **残差** $r^{(v)} = (1 \alpha)b (I \alpha P)x^{(v)}$ できるだけ**0**に近づける

$$u = 1,2,3,...$$
 $i \leftarrow \left| r_i^{(\nu-1)} \right|$ が最大の頂点

If $\left| r_i^{(\nu-1)} \right| < \epsilon$ terminate

 $r_i^{(\nu)} = 0$ となるよう $x^{(\nu-1)}$ と $r^{(\nu-1)}$ を局所的に<u>更新</u>

近似保証:
$$\|x^* - x^{(\nu)}\|_{\infty} \leq \frac{\epsilon}{1-\alpha}$$

Gauss-Southwell 法[Southwell. '40, '46]

- ν^{th} 近似解 $x^{(\nu)}$
- v^{th} **残差** $r^{(v)} = (1 \alpha)b (I \alpha P)x^{(v)}$ できるだけ**0**に近づける

$$v = 1,2,3,...$$
 $i \leftarrow \left| r_i^{(\nu-1)} \right|$ が最大の頂点

If $\left| r_i^{(\nu-1)} \right| < \epsilon$ terminate $x^{(\nu)} = x^{(\nu-1)} + r_i^{(\nu-1)} e_i$ $r^{(\nu)} = r^{(\nu-1)} - r_i^{(\nu-1)} e_i + \alpha r_i^{(\nu-1)} P e_i$

は
$$\|r^{(\nu-1)}\|_1$$
 を $(1-\alpha)\epsilon$ 以上減らす

提案手法 その概観

時刻 t:

$$x(t)^{(0)} = x(t-1)$$
 $r(t)^{(0)} = r(t-1) + \alpha (P(t) - P(t-1))x(t-1)$ Gauss-Southwell 法を適用

時刻 t:

$$x(t)^{(0)} = x(t-1)$$

 $r(t)^{(0)} = r(t-1) + \alpha (P(t) - P(t-1))x(t-1)$
Gauss-Southwell 法を適用

時刻 t:

$$x(t)^{(0)} = x(t-1)$$

 $ightharpoonup r(t)^{(0)} = r(t-1) + \alpha (P(t) - P(t-1))x(t-1)$ Gauss-Southwell 法を適用

挙動

時刻 t:

$$x(t)^{(0)} = x(t-1)$$

$$r(t)^{(0)} = r(t-1) + \alpha (P(t) - P(t-1))x(t-1)$$

→ Gauss-Southwell 法を適用

提案手法 **举動**

時刻 t:

$$x(t)^{(0)} = x(t-1)$$

$$r(t)^{(0)} = r(t-1) + \alpha (P(t) - P(t-1))x(t-1)$$

➡ Gauss-Southwell 法を適用

性能解析

時刻 t:

$$x(t)^{(0)} = x(t-1)$$
 $r(t)^{(0)} = r(t-1) + \alpha(P(t) - P(t-1))x(t-1)$
Gauss-Southwell 法を適用

は効率的に計算可

辺vw の追加/削除は $O(d_v)$ 時間

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & -1/6 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/6 & 0 \end{bmatrix}$$

$$P(t) - P(t-1)$$

提案手法 性能解析

時刻 t: $x(t)^{(0)} = x(t-1)$ $r(t)^{(0)} = r(t-1) + \alpha(P(t)-P(t-1))x(t-1)$ Gauss-Southwell 法を適用

各時刻で単一辺が無作為に挿入

 $\mathbf{E}[時刻t$ での残差の増分] $\leq 2\alpha/t$

^{提案手法} 性能解析

Gauss-Southwell 法を適用

- 定理 1.
 - 任意の変更に対する反復回数は ならし $o(1/\epsilon)$
 - ⇒ ならし時間は $\mathcal{O}(\Delta/\epsilon)$
- 定理 2.
 - **加辺を無作為・逐次的**に挿入
 - 期待総反復回数は $O(\log m/\epsilon)$
 - \Rightarrow 期待総時間は $\mathcal{O}(m + \Delta \log m / \epsilon)$

 $\Delta =$ 最大出次数

実験

設定: 単一辺挿入の性能評価

- パラメータ設定
 - $\alpha = 0.85$
 - b = 100要素が非ゼロのベクトル
 - $\epsilon = 10^{-9}$

実験

性能評価: 単一辺挿入の平均時間 & 反復回数

データセット [出典]	頂点数 V	辺数 <i>E</i>	最大 出次数∆	平均 時間	平均 反復回数
wiki-Talk [SNAP]	2M	5M	100,022	589.6 µs	2.3
web-Google [SNAP]	1M	5M	3,444	7.2 µs	22.6
as-Skitter [SNAP]	2M	11M	35,387	288.4 µs	0.8
Flickr ^{時刻} [KONECT]	2M	33M	26,367	95.3 µs	16.2
Wikipedia ^{時刻} [KONECT]	2M	40M	6,975	76.8 µs	46.0
soc-LiveJournal1 [SNAP]	5M	68M	20,292	17.9 µs	7.6
twitter-2010 [LAW]	42M	1,500M	2,997,469	29,382.8 µs	0.7
uk-2007-05 [LAW]	105M	3,700M	15,402	2.3 µs	0.0

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/
[LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php
[SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory

実験

性能評価: 辺数と反復回数の関係

実験

性能評価: 単一辺挿入の平均時間 & 反復回数

データセット [出典]	頂点数 V	辺数 <i>E</i>	最大 出次数∆	平均 時間	平均 反復回数
wiki-Talk [SNAP]	2M	5M	100,022	589.6 µs	2.3
web-Google [SNAP]	1M	5M	3,444	7.2 µs	22.6
as-Skitter [SNAP]	2M	11M	35,387	288.4 µs	0.8
Flickr ^{時刻} [KONECT]	2M	33M	26,367	95.3 µs	16.2
Wikipedia^{時刻}[KONECT]	2M	40M	6,975	76.8 µs	46.0
soc-LiveJournal1 [SNAP]	5M	68M	20,292	17.9 µs	7.6
twitter-2010 [LAW]	42M	1,500M	2,997,469	29,382.8 µs	0.7
uk-2007-05 [LAW]	105M	3,700M	15,402	2.3 µs	0.0

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/
[LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php
[SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory

実験

性能評価: 単一辺挿入の平均時間 & 反復回数

データセット [出典]	頂点数 V	辺数 <i>E</i>	最大 出次数∆	平均 時間	平均 反復回数
wiki-Talk [SNAP]	2M	5M	100,022	589.6 µs	2.3
web-Google [SNAP]	1M	5M	3,444	7.2 µs	22.6
as-Skitter [SNAP]	2M	11M	35,387	288.4 µs	0.8
Flickr ^{時刻} [KONECT]	2M	33M	26,367	95.3 µs	16.2
Wikipedia ^{時刻} [KONECT]	2M	40M	6,975	76.8 µs	46.0
soc-LiveJournal1 [SNAP]	5M	68M	20,292	17.9 µs	7.6
twitter-2010 [LAW]	42M	1,500M	2,997,469	29,382.8 µs	0.7
uk-2007-05 [LAW]	105M	3,700M	15,402	2.3 µs	0.0

[KONECT] The Koblenz Network Collection http://konect.uni-koblenz.de/networks/
[LAW] Laboratory for Web Algorithmics http://law.di.unimi.it/datasets.php
[SNAP] Stanford Large Network Dataset Collection http://snap.stanford.edu/data/

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory

実験

次数分布の違い

twitter-2010 (u,v) vがuをフォロー uk-2007-05 (u,v) ページuからvヘリンク 10⁸ 10⁷ 10⁶ 10⁵ 出次数 ≥ k10⁴ の頂点数 10³ 10² 10¹ 10⁰ 10⁵ 10⁶ 10² 10³ 10¹

k

実験

既存手法との比較: 単一辺挿入の平均時間

	web-Google [SNAP] $ V =1M$ $ E =5M$	Wikipedia [KONECT] $ V =2M$ $ E =40M$	uk-2007-05 [LAW] V =105M E = 3,700M
提案手法	7 µs	77 µs	2.3 µs
Aggregation/Disaggregation [Chien et al. '04]	320 µs	40,336 µs	>100,000 µs
Monte-Carlo [Bahmani et al. '10]	444 µs	9,196 µs	>100,000 µs
Warm start power method	80,994 µs	>100,000 µs	>100,000 µs
From scratch power method	>100,000 µs	>100,000 µs	>100,000 µs

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory

既存手法との比較: 精度

平均 L1 誤差の遷移

愚直な手法に匹敵(~10⁻⁹)

まとめ

成長するネットワークにおける Personalized PageRank追跡のための

高速 & 高精度な手法を提案

理論的

任意の変更にならし $O(\Delta/\epsilon)$ 時間 m辺の無作為挿入に期待 $O(m + \Delta \log m/\epsilon)$ 時間

$$\|x-x^*\|_{\infty} \leq \epsilon$$

実験的

37億辺をもつグラフへの単一辺挿入に3µs

10-9 *L*₁ 誤差

KDD'15は来週シドニー

KDD2015

CALL FOR

ATTENDING

PROGRAM

WORKSHOPS

TUTORIALS

KDD CHI

SPONSORSHI

ORGANISERS

Research Session RT17: Social and Graphs 3

Wednesday 1:00 pm-3:00 pm | Level 3 - Ballroom B

Chair: Tina Eliassi-Rad

Edge-Weighted Personalized PageRank: Breaking A Decade-Old Performance Barrier

Wenlei Xie, Cornell University; David Bindel, Cornell University; Alan Demers, Cornell University; Johannes Gehrke, Cornell University (Paper ID:117)

SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity

Qingyuan Zhao, Stanford University; Murat A., Erdogdu; Stanford University Hera, Y.; He Stanford University, Anand; Rajaraman Stanford University, Jure; Leskovec Stanford Universit
(Paper ID:819)

Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs

Ethan R., Elenberg; The University of Texas Karthikeyan, Shanmugam; The University of Texas Michael, Borokhovich; The University of Texas Alexandros, G.; Dimakis The University of Texas (Paper ID:896)

Scalable Large Near-Clique Detection in Large-Scale Networks via Sampling

Michael Mitzenmacher, Harvard University; Jakub Pachocki, Carnegie Mellon University; Richard Peng, MIT; Charalampos Tsourakakis, Harvard University; Shen Chen Xu, Carnegie Mellon University (Paper ID:720)

Efficient PageRank Tracking in Evolving Networks

Naoto Ohsaka, The University of Tokyo; Takanori Maehara, Shizuoka University; Ken-ichi Kawarabayashi, National Institute of Informatics (Paper ID: 228)

MASCOT: Memory-efficient and Accurate Sampling for Counting Local Triangles in Graph Streams

Yongsub Lim,KAIST; U Kang,KAIST

(Paper ID:163)