

Exam 1 Review Problem Set 1

Differential Equations Summer 2025

Instructions:

The set of questions serves as PILOT practices to Exam 1 for the Summer 2025 term of AS.110.302 Differential Equations and Applications at Johns Hopkins University.

- Questions marked with an asterisk are more challenging.
- The questions are designed to be done without notes and calculators.
- Solutions to selected questions will be discussed during the PILOT review session.
- 1. Solve the following initial value problem (IVP) on y = y(x), and specify the domain for your solution:

$$\begin{cases} y' = (x \log x)^{-1}, \\ y(e) = -6. \end{cases}$$

2. Suppose f(x) is non-zero, let an initial value problem be:

$$\begin{cases} \frac{1-y}{x} \cdot \frac{dy}{dx} = \frac{f(x)}{1+y}, \\ y(0) = 0. \end{cases}$$

(a) Show that the differential equation is **not** linear.

For the next two questions, suppose $f(x) = \tan x$.

- (b) State, without justification, the open interval(s) in which f(x) is continuous.
- (c)* Show that there exists some $\delta > 0$ such that there exists a unique solution y(x) for $x \in (-\delta, \delta)$.

Now, suppose that f(x) is some function, **not** necessarily continuous.

- (d)** Suppose that the condition in (c) does **not** hold, give three examples in which f(x) could be.
- 3. Draw the phase line and determine the stability of each equilibrium for the following autonomous differential equations:

(a)
$$y' = y^4 - 3y^3 + 2y^2.$$

(b)
$$y' = y^{2025} - 1.$$

4. Let a differential equation be defined as follows:

$$\frac{dy}{dx} = e^{2x} + y - 1.$$

- (a) What is the integrating factor $(\mu(x))$ for the equation? Solve for the general solution.
- (b) Is the equation exact? If not, make it exact, then find the general solution.
- (c) Do solutions from part (a) and (b) agree?
- 5.* This brief digression to "differential forms" aims for the following goals:
 - Legitimize $\frac{\partial y}{\partial x} = \frac{f(x)}{g(y)} \iff g(y)dy = f(x)dx$ via the differential operator d.
 - Get the foundation of *exactness* for certain differential equation relationship.

First, consider variables x_1, x_2, \dots, x_n , we may defined the wedge product (\land) to connect any two variables satisfying that:

$$x_i \wedge x_j = -x_j \wedge x_i$$
 for all $1 \le i, j \le n$.

(a) Show that $x_i \wedge x_i = 0$ for $1 \le i \le n$.

Now, given any smooth function f, we defined the differential operator (d) as:

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

- (b) Suppose $y(x) = e^x$, find dy.
- (c) Now, suppose that $\frac{\partial y}{\partial x} = \frac{f(x)}{g(y)}$, can you express dy in terms of the differential form of x. *Note:* Since we have just one variable, we have $dy/dx = \partial y/\partial x$, leading to our first goal.

Furthermore, we can apply the differential operator over differential forms with wedge products already. Suppose:

$$\omega = \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k},$$

we may have the differential of ω as:

$$d\omega = \sum_{i_1,\dots,i_k} (df_{i_1,\dots,i_k}) dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

(d) Suppose x, y are the variables, and $\omega = 2xy^2dx + 2x^2ydy$, show that $d\omega = 0$.

This then relates to a concept called *exactness* in differential equations. Consider the equation:

$$\frac{dy}{dx} + \frac{F(x,y)}{G(x,y)} = 0,$$

we can rewrite it as F(x,y)dx + G(x,y)dy = 0. Exactness enforces that:

$$\frac{\partial F}{\partial y} = \frac{\partial G}{\partial x}.$$

Similarly, exactness is considering finding a solution f(x,y)=c such that $F=\frac{\partial f}{\partial x}$ and $G=\frac{\partial f}{\partial y}$.

- (e) Show that df = F(x,y)dx + G(x,y)dy and exactness is equivalently d(df) = 0. *Note:* This implies that the differential equation in part (d) satisfies *exactness*.
- 6.* Determine if the following differential equation is exact. If not, find the integrating factor to make it exact. Then, solve for its general solution:,

$$y'(x) = e^{2x} + y(x) - 1.$$

7. For the first-order autonomous ODE:

$$\frac{dy}{dt} = \sin y + C,$$

where $C \in \mathbb{R}$ is a parameter. Determine any and all bifurcation values for the parameter C and sketch a bifurcation diagram.

8. Let a first order IVP on y := y(t) be defined as follows:

$$\begin{cases} y' = \frac{2}{t}y, \\ y(1) = 1. \end{cases}$$

- (a) Find the solution to the above initial value problem.
- (b) Recall the theorem on existence and uniqueness, as follows:

For an IVP in simple form:

$$\begin{cases} \frac{dy}{dt} = a(t)y + b(t), \\ y(t_0) = y_0. \end{cases}$$

For some $I = (\alpha, \beta) \ni t_0$, if a(t) and b(t) are continuous on the interval I. Then, there exists a unique solution to the IVP on the interval I.

Show that the IVP in this problem does not satisfy the condition for the existence and uniqueness theorem for \mathbb{R} .

- (c) Does the above example violates the existence and uniqueness theorem? Why?
- 9. Solve the following second order differential equations for y = y(x):

(a)
$$y'' + y' - 132y = 0.$$

(b)
$$y'' - 4y' = -4y$$
.

(c)
$$y'' - 2y' + 3y = 0.$$

10.* Given the following second order initial value problem:

$$\begin{cases} \frac{d^2y}{dx^2} + \cos(1-x)y = x^2 - 2x + 1, \\ y(1) = 1, \\ \frac{dy}{dx}(1) = 0. \end{cases}$$

Prove that the solution y(x) is symmetric about x = 1, *i.e.*, satisfying that y(x) = y(2 - x). *Hint:* Consider the interval in which the solution is unique.