Planche 1.

Question de cours. Donner un exemple de suite (u_n) telle que $u_{n+1} \sim u_n$. Est ce que toute les suites vérifient cette équivalence ?

Exercice 1. Soit (u_n) une suite qui converge vers l non nulle. On pose $S_n = \sum_{k=1}^n u_k$. Montrer que $S_n \sim nl$.

Exercice 2. Soit n un entier non nul. On pose :

$$I_n = \int_0^1 \frac{x^{2n}}{1+x^n} dx$$
 et $J_n = \int_0^1 \frac{x^{2n-1}}{1+x^n} dx$

- 1) Trouver la limite de I_n en l'infini.
- 2) Montrer que $|I_n J_n| \leq \frac{1}{2n(n+1)}$.
- 3) Calculer J_n .
- 4) En déduire un équivalent simple de I_n lorsque n tend vers l'infini.

Planche 2.

Question de cours. Soit (u_n) et (v_n) deux suites telles que $u_n - v_n \to 0$. Est ce que $u_n \sim v_n$?

Exercice 1. Pour tout $n \in \mathbb{N}$, on pose : $P_n(X) = X^3 - (n+2)X^2 + (2n+1)X - 1 \in \mathbb{R}[X]$

1) Montrer que pour tout n assez grand, P_n admet trois zéros notés a_n , b_n , c_n tels que :

$$0 < a_n < 1 < b_n < 3 < \frac{2n+1}{3} < c_n$$

2) Montrer successivement que : c_n tend vers $+\infty$, a_n tend vers 0, c_n est équivalent à n, b_n tend vers 2 et a_n est équivalent à $\frac{1}{2n}$.

Planche 3.

Question de cours. Soit (u_n) et (v_n) deux suites. Est ce que si $u_n = O(v_n)$ et $v_n = O(u_n)$ alors $u_n \sim v_n$? La réciproque est elle vraie?

Exercice 1. Soit P un polynôme à coefficients réels. Montrer que $P(n+1) \sim P(n)$ lorsque $n \to \infty$.

Exercice 2. Pour tout entier non nul n, on pose la fonction f_n de \mathbb{R} dans \mathbb{R} définie par :

$$f_n(x) = e^x + x^2 - nx$$

- 1) Montrer que pour tout entier n non nul, f_n admet un minimum μ_n atteint en un unique point noté x_n .
- 2) Déterminer des équivalents simples de x_n et μ_n en l'infini.

Solutions - Planche 1.

Question de cours. Testons avec les suites les plus faciles, genre u_n constante non nulle? Bah oui $u_{n+1}/u_n = 1$ pour tout n donc $u_{n+1}/u_n \to 1$. Donc $u_{n+1} \sim u_n$.

Pour trouver un contre-exemple cherchons parmis les suites usuelles. Les arithmétiques ça marche pas. Les géométriques ? Soit $u_n = q^n$. Alors $u_{n+1}/u_n = q$. Donc non u_{n+1}/u_n ne tend pas vers 1!

Exercice 1. Montrons que $S_n/n \to l$. Soit $\epsilon \ge 0$. Il existe un rang à partir duquel $|u_n - l| \le \epsilon$. On note ce rang N. On va l'utiliser pour S_n : formons $|S_n/n - l|$:

$$|S_n/n - l| = 1/n |\sum_{k=1}^n u_k - nl|$$

Là on veut insérer ce que l'on sait sur la suite. On utilise donc l'inégalité triangulaire pour faire appraître des $|u_n - l|$. On obtient :

$$|S_n/n - l| \le 1/n \sum_{k=1}^n |u_k - l|$$

Maintenant on scinde l'étude en deux car on gère les termes après N et ceux avant sont bornées (car la suite est convergente) par un M. Alors

$$|S_n/n - l| \le 1/n \sum_{k=1}^{N} (M+l) + 1/n \sum_{k=N+1}^{n} \epsilon \le N/n(M+l) + \epsilon$$

Or $N(M+l)/n \to 0$. Donc il existe un rang N' > N tel que $N(M+l)/n \le \epsilon$. Pour $n \ge N'$ on a donc $|S_n/n - l| \le 2\epsilon$. Donc $S_n/n \to l$. Donc $S_n \sim nl$.

Exercice 2.

1) On intègre sur [0,1]. Sur cet intervalle on a : $0 \le \frac{x^{2n}}{1+x^n} \le x^{2n}$. car $x^n \ge 0$. On en déduit :

$$0 \le I_n = \int_0^1 \frac{x^{2n}}{1 + x^n} dx \le \int_0^1 x^{2n} dx = \frac{1}{2n + 1}$$

Or $\frac{1}{2n+1}$ tend vers 0 en l'infini. Donc d'après le théorème des gendarmes $I_n \to 0$.

2) Soit $n \in \mathbb{N}^*$. Rappel: $|\int f| \le \int |f|$. Donc

$$|I_n - J_n| \le \int_0^1 \frac{|x^{2n} - x^{2n-1}|}{1 + x^n} dx$$

Or sur [0,1], on a : $x^{2n} \le x^{2n-1}$ et $\frac{1}{1+x^n} \le 1$. Donc

$$|I_n - J_n| \le \int_0^1 \frac{x^{2n-1} - x^{2n}}{1 + x^n} \le \int_0^1 x^{2n-1} - x^{2n} dx = \frac{1}{2n} - \frac{1}{2n+1} = \frac{1}{2n(2n+1)}$$

3) Pour calculer cette intégrale on va faire le changement de variable suivant : $t=x^n$. Donc $dt=nx^{n-1}dx$. Ce qui donne : $J_n=\int_0^1 \frac{t}{n(1+t)}dt$

Pour calculer cette intégrale on utilise le trick du t = t + 1 - 1:

$$J_n = \frac{1}{n} \int_0^1 \frac{t+1-1}{1+t} dt = \frac{1}{n} \left(\int_0^1 \frac{t+1}{t+1} dt + \int_0^1 \frac{-1}{1+t} dt \right) = \frac{1}{n} (1 - \ln(2))$$

4) D'après la question 2) : comme $n|I_n - J_n| \leq \frac{1}{2(2n+1)} \to 0$ donc

$$I_n - J_n = o(1/n)$$

Or d'après 3), $I_n - J_n = o(1/n) = o(J_n)$. Donc $I_n \sim J_n$ losque n tend vers l'infini.

Solutions - Planche 2.

Question de cours. Bah non, si les deux suites tendent vers 0 à une vitesse différente ce n'est pas vrai! Par exemple $u_n = 1/n$ et $v_n = 1/n^2$. On a bien $u_n - v_n \to 0$ car u_n et v_n tendent vers 0. Mais $u_n/v_n = n \not\to 1$. Donc u_n et v_n ne sont pas équivalentes.

Exercice 1. P_n est polynôme d'ordre 3. Le cours ne donne pas de formules pour avoir les racines d'un polynôme d'ordre 3. On doit donc étudier les variations de P_n pour utiliser le théorème des valeurs intermédiaires. Pour cela, on dérive et on regarde le signe de P'_n .

$$P'_n(X) = 3X^2 - 2(n+2)X + (2n+1)$$

On a maintenant un polynôme d'ordre 2 à coefficients réels. On calcule ses racines, 1 et $\frac{2n+1}{3}$ à l'aide du discriminant.

 P'_n est positif sur $]-\infty,1]$ et sur $[(2n+1)/3,+\infty[$ et est négatif sur [1,(2n+1)/3]. Donc P_n est croissante sur $]-\infty,1]$ et sur $[(2n+1)/3,+\infty[$ et est décroissante sur [1,(2n+1)/3].

Pour avoir un zéro a_n tel que $0 < a_n < 1$. Il suffit de vérifier que P(0) < 0 et P(1) > 0. Or $P_n(0) = -1$ et $P_n(1) = n - 1.$

Pour avoir un zéro b_n tel que $1 < b_n < 3$. Il suffit de vérifier que P(3) < 0. Or $P_n(3) = -3n + 11$ qui est bien négatif pour $n \geq 4$.

Pour avoir un zéro c_n tel que $(2n+1)/3 < c_n$. Il suffit de vérifier que $P_n((2n+1)/3) < 0$. Mais ici, c'est trop compliqué de calculer explicitement cette valeur. On dit simplement que comme P_n décroit entre 1 et (2n+1)/3 et comme P(3) est déjà négatif alors P((2n+1)/3) le sera aussi.

On a donc bien, pour n assez grands, trois zéros a_n , b_n et c_n tels que :

$$0 < a_n < 1 < b_n < 3 < \frac{2n+1}{3} < c_n$$

D'après les relations coefficients racines, on a :

$$a_n + b_n + c_n = n + 2$$
 et $a_n b_n + a_n c_n + b_n c_n = 2n + 1$ et $a_n b_n c_n = 1$

Puisque $c_n > \frac{2n+1}{3}$ alors $c_n \to +\infty$. Comme $0 < a_n = \frac{1}{b_n c_n} < \frac{1}{c_n} \to 0$. Donc $a_n \to 0$. On a $c_n = (n+2) - b_n - a_n$ et $0 < a_n < 1 < b_n < 3$. Donc $c_n = n + O(1)$ et donc $c_n \sim n$.

$$b_n = \frac{2n + 1 - a_n b_n - a_n c_n}{c_n}$$

Comme $a_n \to 0$ et que b_n bornée, et que $0 < a_n c_n = \frac{1}{b_n} < 1$ alors $2n + 1 - a_n b_n - a_n c_n \sim 2n$ et donc $b_n \sim \frac{2n}{c_n}$ qui tend vers 2.

Enfin,

$$a_n = \frac{1}{b_n c_n} \sim \frac{1}{2n}$$

Solutions - Planche 3.

Question de cours. Non c'est faux car les constantes ne précisent pas assez le lien entre les deux suites pour montrer qu'elles sont équivalentes. Par exemple : $u_n = 1$ et $v_n = 2$. Alors $u_n \le v_n$ et $v_n \le u_n/2$. Mais on a pas $u_n/v_n \to 1/2$ donc pas d'équivalence.

Exercice 1. On pose $P(X) = \sum_{k=0}^{d} a_k X^k$. Comme les racines sont en nombre fini, il existe un rang à partir duquel P(n) est non nul. On peut donc chercher à regarder si $P(n+1)/P(n) \to 1$?

Or $P(n) \sim a_d n^d$. En effet $P(n)/(a_d n^d) = 1 + \sum_{k=1}^d a_k/a_d n^{k-d}$. Or l'exposant des n dans la somme est strictement négatif donc chacun des termes tendent vers 0. Donc on a bien $P(n) \sim a_d n^d$. On en déduit que $P(n+1) \sim a_d (n+1)^d$. Or $(n+1)^d \sim n^d$ car $(n+1)^d/n^d = (1+1/n)^d \to 1$. Donc on a bien l'équivalence cherchée.

Exercice 2. Comme $t \leq e^t$ (ce qu'on peut montrer par une étude de fonction), alors $n = e^{x_n} + 2x_n \leq 3e^{x_n}$ d'où

$$x_n \ge \ln(n/3) \to +\infty$$

Donc x_n tend vers $+\infty$.

De plus, comme x_n est un minimum de f_n alors $f'_n(x_n) = 0$ alors :

$$n = e^{x_n} + 2x_n = e^{x_n}(1 + 2x_n e^{-x_n})$$

Or x_n tend vers $+\infty$ donc $x_n e^{-x_n} \to 0$ donc $n \sim e^{x_n}$ en l'infini.

Ainsi $e^{x_n} = n + o(n)$. D'où $x_n = \ln(n + o(n)) = \ln(n) + \ln(1 + o(1)) = \ln(n) + o(1)$.

On conclut:

$$x_n \sim \ln(n)$$

Achtung! De manière générale, on n'a pas le droit de composer un équivalent par une fonction. Par exemple, si $x_n \sim y_n$ alors on a pas forcément $\ln(x_n) \sim \ln(y_n)$.

équivalent de μ_n On a $\mu_n = f_n(x_n) = e^{x_n} + x_n^2 - nx_n$. et $e^{x_n} + 2x_n - n = 0$. Donc $e^{x_n} = -2x_n + n$. D'où

$$\mu_n = (-2x_n + n) + x_n^2 - nx_n = x_n(-n + x_n - 2) + n$$

Comme x_n est équivalent à $\ln(n)$ alors $-n + x_n - 2$ est équivalent à -n. donc $x_n(-n + x_n - 2)$ est équivalent à $-n \ln(n)$.

Donc on conclut que :

$$\mu_n \simeq -n \ln(n)$$