Pre-procesamiento

Angela López Kevin Rubiano Deivis Cárdenas

Proceso del análisis de datos

¿Qué es una característica?

Ingeniería de características

Ingeniería de características

- Estandarización
- Imputación de datos faltantes
- Normalización
- Transformaciones no lineales
- Codificación de características categóricas
- Discretización

Missing Data	Imputed Data
2 2 2	1
3 2 2 2	
	· — — — — — —
5 2 2 2 2	
7	7
: 7 7 8 8 8 8	
9 - 2	
:	:
зи 2 2	1M

Color		Red	Yellow	Green
Red	→	1	0	0
Red		1	0	0
Yellow		0	1	0
Green		0	0	1
Yellow		0	1	0

Imputación de datos faltantes

- Imputación simple: Media, mediana, por regresión, hot-deck
- Imputación múltiple

Estandarización de características

- Escalar características a un rango
- Escalar datos con valores atípicos
- Escalar datos dispersos

Transformación de los datos

 Cuando la presentación de una variable no es adecuada para el modelo, pero la información que contiene es necesaria para el mismo.

Mejorar las propiedades de una variable.

Normalización

MÍN-MÁX

$$v' = rac{v - min_A}{max_A - min_A}(nuevo_max_A - nuevo_min_A) + nuevo_min_A$$

Z-SCORE

$$v' = rac{v - media_A}{des_est_A} \hspace{1cm} s_A = rac{1}{n} \sum_{i=1}^n |v_i - media_A|$$

ESCALA DECIMAL

Transformaciones no lineales

- Buscar normalidad en la distribución de los datos.
- Estabilizar la varianza
- Minimizar la asimetría

Transformación de Box-cox

$$v' = egin{cases} rac{x_i-1}{\lambda} & \lambda
eq 0 \ ln(x_i) & \lambda = 0 \end{cases}$$

Transformación de Yeo - Johnson

$$egin{aligned} ig([(x_i+1)^\lambda-1]/\lambda & ext{if } \lambda
eq 0, x_i \geq 0, \ x_i^{(\lambda)} = ig\{egin{aligned} & \ln{(x_i+1)} & ext{if } \lambda = 0, x_i \geq 0 \ & -[(-x_i+1)^{2-\lambda}-1]/(2-\lambda) & ext{if } \lambda
eq 2, x_i < 0, \ & -\ln{(-x_i+1)} & ext{if } \lambda = 2, x_i < 0. \end{aligned}$$

Codificación de características categóricas

Los datos categóricos representan un reto para algunas técnicas de aprendizaje de máquina ya que estas están hechas para trabajar con valores numéricos, es por esta razón que tenemos que hacer una transformación de nuestros datos categóricos a valores numéricos.

Codificación de características categóricas

La codificación de etiquetas

Red	Yellow	Green
1	0	0
1	0	0
0	1	0
0	0	1
0	1	0

Variables Dummy

Discretización de datos

 Los datos son reemplazados por rangos o por datos con niveles conceptuales superiores.

 Reducir el número de valores de un atributo continuo, dividiendo el rango de atributos en intervalos.

Ejemplo

Clientes que compraron y clientes que no compraron

No	País	Edad	Salario	Compra
1	Francia	44	72000	No
2	España	27	48000	Si
3	Alemania	30	54000	No
4	España	38	61000	No
5	Alemania	40		Si
6	Francia	35	58000	Si
7	España		52000	No
8	Francia	48	79000	Si
9	Alemania	50	83000	No
10	Francia	37	67000	Si

110	1 dio	Luuu	Guidilo	Compia	
1	Francia	44	72000	No	
2	España	27	48000	Si	
3	Alemania	30	54000	No	
4	España	38	61000	No	
5	Alemania	40	63777.77	Si	
6	Francia	35	58000	Si	
7	España	38.77	52000	No	
8	Francia	48	79000	Si	
9	Alemania	50	83000	No	
10	Francia	37	67000	Si	

Salario

Compra

Edad

No

País

Imputación de datos faltantes

No	País	Edad	Salario	Compra
1	Francia	44.000000	72000.000000	0
2	España	27.000000	48000.000000	1
3	Alemania	30.000000	54000.000000	0
4	España	38.000000	61000.000000	0
5	Alemania	40.000000	63777.777778	1
6	Francia	35.000000	58000.000000	1
7	España	38.777778	52000.000000	0
8	Francia	48.000000	79000.000000	1
9	Alemania	50.000000	83000.000000	0
10	Francia	37.000000	67000.000000	1

Codificación de variables categóricas "binarias"

Codificación de variables categóricas "dummy"

No	Edad	Salario	Compra	País_Alemania	País_España	País_Francia
1	44.000000	72000.000000	0	0	0	1
2	27.000000	48000.000000	1	0	1	0
3	30.000000	54000.000000	0	1	0	0
4	38.000000	61000.000000	0	0	1	0
5	40.000000	63777.777778	1	1	0	0
6	35.000000	58000.000000	1	0	0	1
7	38.777778	52000.000000	0	0	1	0
8	48.000000	79000.000000	1	0	0	1
9	50.000000	83000.000000	0	1	0	0
10	37.000000	67000.000000	1	0	0	1

NO	Ludu	Jarai 10	Compra	rats_Atchanta	rais_Espana	rais_irancia
1	0.739130	0.685714	0	0	0	1
2	0.000000	0.000000	1	0	1	0
3	0.130435	0.171429	0	1	0	0
4	0.478261	0.371429	0	0	1	0
5	0.565217	0.450794	1	1	0	0
6	0.347826	0.285714	1	0	0	1
7	0.512077	0.114286	0	0	1	0
8	0.913043	0.885714	1	0	0	1
9	1.000000	1.000000	0	1	0	0
10	0.434783	0.542857	1	0	0	1

Edad Salario Compra País Alemania País España País Francia

Normalización de características

Paquetes

- Scikit-learn
- Feature-engine
- Pandas