클라우드 컴퓨팅 공격 및 방어 플랫폼 개발

- YoYo Attack에 특화된 방어 플랫폼

소속 정보컴퓨터공학부

분과 C

팀명 DDALPI

참여학생 이강빈, 장진영, 강수민

지도교수 김태운

과제 목표

기존 DDoS의 방어법은 대규모 트래픽 공격을 막는 데 초점을 두고 있어, 클라우드 시스템을 대상으로 지속적인 트래픽을 발생해 경제적 손실을 유도하는 EDoS를 방어하기에는 적절하지 않다. 우리는 EDoS 중 하나인 YoYo Attack에 대해 연구한다.

- YoYo Attack에 대응하기 위한 **방어 매커니즘을 개발**하고, 이의 효과성을 검증하기 위한 YoYo Attack **공격 알고리즘을 개발**한다.
- 공격 현황과 공격 대상 서비스의 상태를 시각적으로 보여주는 **대시보드를 개발**한다.
- 구현한 YoYo Attack 공격 및 방어 알고리즘을 검증할 수 있는 실제 환경을 구축한다.

과제 구성

공격자 중요 지표: 요청에 대한 응답시간

요청 횟수에 비례한 방어 매커니즘 적용

매커니즘 이름	매커니즘 설명
특정 IP SLEEP	 IP의 요청 횟수에 비례하여 Thread Sleep Time을 설정 해당 시간 만큼 Thread Sleep을 적용
VM 방화벽 이용 확률적 패킷 드랍	• IP의 요청 횟수에 비례하는 확률 설정 • 확률에 따라 해당 IP의 패킷 드랍을 적용
더미 서버 기반의 확률적 리다이렉트	 IP의 요청 횟수에 비례하는 확률 설정 확률에 따라 응답을 지연하는 더미 서버로 리다이렉트
OpenWRT를 이용한 중개방어	• IP의 요청 횟수에 비례하여 지연 시간 설정 • 라우터에서 지연 시간 만큼 응답을 지연

과제 결과

방어 시스템이 없을 때 공격 결과

- 응답 시간 경향성이 뚜렷하게 우하향을 보임
- Pod가 최대 개수까지 증가하여 경제적 손실 발생

방어 시스템 적용

결론

- 응답 시간의 우하향 경향성이 사라짐 → 응답시간 교란 성공
- Pod 개수가 최대까지 증가하지 않음 → 경제적 손실 감소