中国海洋大学全日制本科课程期末考试试卷

_____年____季学期 考试科目: 概率统计 学院: 数学科学学院

试卷类型: ____卷 命题人: 概率统计教研组 ___ 审核人: ________

考试说明:	本课程为闭卷	考试,共_	3_页。			
	题号	_	=	=	总分	
	得分					
一、选择题(共	6 题, 每是	返 3 分,	共 18 分,	答案写在	原题括号里	<u>1</u>)
 下列说法正确 概率为 1 						
B. 经过大量3 C. 若 B ⊂ A D. 设 B ⊂ A	,则 P{ B	$\mid A \mid \geq P(A)$	A) 。		必然发生的	•
 下列说法错误 A. 连续型随 B. 设二维随标 F(x₂, y₂) - C. 相关系数 	的是(机变量的分 几变量(X,Y)的 - F(x ₂ ,y ₁) -	市函数一定。 内分布函数是 $F(x_1, y_2) +$ 个随机变量门	是连续的。 $\exists F(x,y)$ 。 $\cdot F(x_1,y_1) \geq$ 间的线性相刻	若 $x_1 < x_2, y$	√ ₁ < y ₂ ,则不	有
3. 设 X_1 , X_2 , 律, $n \rightarrow +\infty$					ī分布 b(4,	1/2),则根据大数定
4. 设随机变量 <i>X</i> 定正确的是()。 独立 B .	同分布且方 <i>差</i>	差存在,记 2	$Z_1 = X + Y,$		Y ,则下列说法一 $oldsymbol{\mathcal{L}}$, $oldsymbol{D}$. $oldsymbol{Z}_1$
5. 为总体 <i>X ~ N</i> (0,1+	$\mathbf{B.} \ \sqrt{n}.$	$\bar{X} \sim N(0,1)$) C. \overline{X}	$/S \sim t(n-1)$	D. <i>p</i>	$nS^2 \sim \chi^2(n-1)$

	概率为 β , 则 $P\{$ 拒绝 $H_0 \mid H_1 \} = ($)。 A . α B. $1-\alpha$ C . β D . $1-\beta$
	、填空题(共 6 题,每题 3 分,共 18 分,答案写在原题空格处) 四个独立工作的原件组成右图串并联系统。若每个元件正常工作的概率为 ½,则系统能正常工作的概率为。
2.	修理某机器所需的时间 (单位:小时) 服从期望为 2 的指数分布。若已持续修理了 8 小时,根据无记忆性,总共需要 10 小时以上才能修好的概率是。
3.	随机变量 X_1, X_2, X_3 相互独立,且都服从区间 [0,3] 上的均匀分布则 $ P\{\max(\ X_1, X_2, X_3) \geq 1\} $
4.	设随机变量 X 与 Y 相互独立,且 X 服从区间 $[0,3]$ 上的均匀分布, Y 服从泊松分布 $\pi(2)$,则由 Chebyshev 不等式得 $P\{ 2X-Y-1 \geq 5\}$ \leq 。
	设 X_1 , X_2 ,, X_5 是来自标准正态总体 $N(0, 1)$ 的简单随机样本, 若 统计量 C · $\left(\frac{X_1 + X_2 + X_3}{X_4 - X_5}\right)^2$ 服从 F 分布,则常数 C 的值为。
	设 <i>X</i> ₁ , <i>X</i> ₂ ,, <i>X</i> _n 是来自正态总体 <i>N</i> (μ, σ ²) 的简单随机样本,σ ² 未知,则 μ 的置信度为 95% 的置信区间为 。 <
	(10分)保险公司将投保人分为两类,一类易出事故,另一类不易出事故。统计表明,一个易出事故者在一年内发生事故的概率为 0.4;而对不易出事故者,这个概率则减少到 0.2。假定易出事故者占人口的比例为 30%。 (1)现有一个新人来投保,那么该人在购买保单后一年内将出事故的概率有多大? (2)假设某人在购买保单后一年内未出事故,那么他是易出事故者的概率是多大?
2.	(16 分) 设随机变量 (X,Y) 的密度函数为 $ f(x,y) = \begin{cases} x e^{-(x+y)}, & x > 0, y > 0; \\ 0, & \text{其它}. \end{cases} $
ı	求 : (1) 边缘密度函数; (2) 判断 X 与 Y 是否独立,并说明理由; (3) $Y = y$ 时 X 的条件密度函数 $f_{X Y}(x y)$; (4) 概率 $P\{X \le Y\}$
+-	概率统计 第2页 共3页 +

6. 设假设检验中 H_0 为原假设, H_1 为备择假设,犯第 I 类错误的概率为 α ,犯第 II 类错误的

3. (14 分) 设二维随机变量 (*X,Y*) 服从平面矩形 $G = \{(x,y) \mid 0 \le x, y \le 1\}$ 上的均匀分 布定义离散型随机变量

$$Z_1 = \left\{ \begin{array}{ccc} & 1 \ , & & X > Y, \\ & & & \\ 0 \ , & & & X \leq Y; \end{array} \right. \qquad Z_2 = \left\{ \begin{array}{ccc} 1 \ , & & X > 2Y \ ; \\ & & \\ 0 \ , & & X \leq 2Y. \end{array} \right.$$

求: (1) Z_1 和 Z_2 的分布律;

- (2) Z₁ 与 Z₂ 的联合分布律;
- (3) Z_1 与 Z_2 的相关系数。
- **4.** (6分)设顾客在某银行的窗口等待服务的时间 X (以 min 计) 服从期望为 20 的指数分布。某顾客在窗口等待服务,若时间超过 20 min,他就离开。他一个月要到银行 10 次办理业务。利用中心极限定理近似计算:该顾客一月内未等到服务而离开窗口的次数不超过 3 次的概率. (计算结果请用标准正态分布函数 $\Phi(x)$ 表示即可.)
- **5.** (12 分) 设总体 *X* 的密度函数为

$$f(x) = \begin{cases} \theta x^{-\theta - 1}, & x > 1; \\ 0, & x \le 1, \end{cases}$$

其中未知参数 $\theta > 1$ 。设 X_1 , X_2 , ..., X_n 是来自总体 X 的简单随机样本, **求**:

- (1) θ 的矩估计 $\hat{\theta}_1$;
- (2) θ 的极大似然估计 $\hat{\theta}_2$;
- (3) $T = [\hat{\theta}_2]^{-1}$ 是否为 θ^{-1} 的无偏估计? 试给出证明。
- 6. $(6\, eta)$ 某自动车床生产的零件高度服从正态分布 $X \sim N(\mu, \sigma^2)$ (单位: mm). 按规定零件高度的方差为 $0.1~\mathrm{mm}^2$ 。现随机抽取 $25\, \uparrow$ 零件,测得样本方差为 $s^2 = 0.125~\mathrm{mm}^2$ 。试以 $\alpha = 0.05$ 的显著性水平,检验零件总体方差 σ^2 是否符合规定。(注:分位数 $\chi^2_{0.025}(24) \approx 39.364$, $\chi^2_{0.025}(25) \approx 40.646$, $\chi^2_{0.975}(24) \approx 12.401$, $\chi^2_{0.975}(25) \approx 13.120$ 。)

十------ 概率统计 ------ 第 3 页 共 3 页 十