复分析第五次习题课

彭子鱼

2024 年 5 月 26 日 上次更新: 2024 年 5 月 20 日

1 作业

题 1 (5.1.2). 求函数在给定域上的 Laurent 展开.

(1)
$$\frac{1}{z^2(z-1)}$$
, $D = B(1,1)\setminus\{1\}$;

(3)
$$\operatorname{Log}\left(\frac{z-1}{z-2}\right)$$
, $D = B(\infty, 2)$;

(5)
$$\frac{1}{(z-5)^n}$$
, $n \ge 0$, $D = B(\infty, 5)$.

解. (1) 由于 |z-1| < 1,

$$\frac{1}{z^2(z-1)} = \frac{1}{z-1} \cdot \frac{1}{(1+z-1)^2}$$
$$= \frac{1}{z-1} \cdot \sum_{n=0}^{\infty} (-1)^n (n+1)(z-1)^n$$
$$= \sum_{n=0}^{\infty} (-1)^n (n+1)(z-1)^{n-1}.$$

(3) 易验证在 $B(\infty,2)$ 上 $\operatorname{Log}\left(\frac{z-1}{z-2}\right)$ 可取出单值全纯分支,只需考虑主支.

$$\log\left(\frac{z-1}{z-2}\right) = \log\left(1 - \frac{1}{z}\right) - \log\left(1 - \frac{2}{z}\right)$$
$$= -\sum_{n=1}^{\infty} \frac{1}{nz^n} + \sum_{n=1}^{\infty} \frac{2^n}{nz^n}$$
$$= \sum_{n=1}^{\infty} \frac{2^n - 1}{n} z^{-n}.$$

故

$$Log\left(\frac{z-1}{z-2}\right) = \sum_{n=1}^{\infty} \frac{2^n - 1}{n} z^{-n} + 2k\pi i,$$

其中 $k \in \mathbb{Z}$.

(5) 由于 $|\frac{5}{z}| < 1$,

$$\frac{1}{(z-5)^n} = \frac{1}{z^n} \frac{1}{(1-\frac{5}{z})^n}
= \frac{1}{z^n} \sum_{k=0}^{\infty} \frac{1}{k!} n(n+1) \cdots (n+k-1) \left(\frac{5}{z}\right)^k
= \sum_{k=0}^{\infty} \binom{n+k-1}{n-1} 5^k z^{-n-k}.$$

注记. 求 Laurent 级数时, 须注意在何处展开.

题 2 (5.2.2). 求函数 f(z) 的奇点并判断其类型.

- (3) $\sin \frac{1}{z-1}$.
- (7) $\sin\left(\frac{1}{\cos\frac{1}{z}}\right)$.
- (8) $e^{\tan z}$.
- 解. (3) 可能的奇点为 $1, \infty$. 因为 $\lim_{z \to 1} f(z)$ 不存在, $\lim_{z \to 0} f\left(\frac{1}{z}\right) = \lim_{z \to 0} \sin \frac{z}{z-1} = 0$, 所以 1 是本性奇点, ∞ 是可去奇点.
- (7) 可能的奇点为 $0, \infty, \frac{2}{(2k+1)\pi}$, 其中 $k \in \mathbb{Z}$. 因为 $\lim_{z \to \frac{2}{(2k+1)\pi}} f(z)$ 不存在, 所以 $\frac{2}{(2k+1)\pi}$ $(k \in \mathbb{Z})$ 是本性 奇点. 从而 0 是非孤立奇点. 因为 $\lim_{z \to 0} f\left(\frac{1}{z}\right) = \lim_{z \to 0} \sin\left(\frac{1}{\cos z}\right) = \sin 1$, 所以 ∞ 是可去奇点.
- (8) 可能的奇点为 ∞ , $k\pi+\frac{\pi}{2}$, 其中 $k\in\mathbb{Z}$. 因为 $\lim_{z\to k\pi+\frac{\pi}{2}}f(z)$ 不存在, 所以 $k\pi+\frac{\pi}{2}$ $(k\in\mathbb{Z})$ 是本性奇点. 从而 ∞ 是非孤立奇点.

注记. 须讨论 ∞ 的类型. 注意非孤立奇点的概念.

题 3 (5.3.1). 求所有 \mathbb{C} 上亚纯函数 f, 使得 |f(z)| = 1 对任意 $z \in \partial B(0,1)$ 成立.

解. □