Heterogeneity Aware Federated Learning and Demand-Specific Inference

Jianming Tong, Alind Khare, Alexey Tumanov, Tushar Krishna

School of Computer Science [1], School of Electrical and Computer Engineering

Introduction

Application: Health-care

Demand:

- highly sensitive data with different distributions geographically distributed clients.
- heterogeneous computational power
- mobile phones may range from GPU (dis)abled or 4-12GB RAM etc.

Problem Statement

- Privacy-aware ML training for highly sensitive heterogeneous data.
- Serving various accuracy and latency demand.

Overall System High-level Overview

State-of-the-Art

- Federated Learning: Federated Algorithm [1]
 Homogeneous clients assumption
- Once-For-All [2] requires centralized data
- Xilinx Vitis AI needs minutes to switch models [3]

Proposal System

- Subnet Distribution
- 2 Local Training
- Shared-Weight Federated Average
- Pretrained Weight-sharingNetwork Deployed on clients
- Streaming input of quereis
- NAS on Latency-Accuracy
 Pareto-Frontier for input query
- Inference the NAS model on Accel.
- PB stores subnet's weights (green) unchanged across queries
- DB stores the weights of model requested by query not stored in PB
- **O**SB store input feature map
- 1 Input will shift in LB in the row order

Plug-in-and-play PE Array Design

Federated Learning Evaluation

Results

- Model Family for different Accuracy-Latency
- Same level accuracy as SOTA

Quick Subnet Switching Inference

Xilinx Vitis AI with Xilinx Deep Processing Unit (DPU)

Components	Utilization
CLB LUT	49%
CLB Regs	86%
CLB Logic	92%
DSP	87%
MMCM	33%
BRAM	59%
	CLB LUT CLB Regs CLB Logic DSP MMCM

Results

- 12 FPS for ResNet-50
- Model Switching needs several minutes

