Algebra Lineare 14 Marzo 2022

Numero di matricola:
IMPORTANTE: Scrivere il nome su ogni foglio. Mettere TASSATIVAMENTE nei riquadri le risposte, e nel resto del foglio lo svolgimento. Ogni esercizio vale 8 punti. Per alcuni esercizi potrà eventualmente essere attribuito un punto in più per valorizzare la qualità, la chiarezza, la precisione.
Esercizio 1. Si consideri un'applicazione lineare $A: \mathbb{R}^2 \to \mathbb{R}^2$ tale che
$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathrm{e} A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
(1) Si scriva la matrice di A rispetto alla base standard di \mathbb{R}^2 (stessa base in partenza e in arrivo).
(2) Si scriva la matrice di A rispetto alla base $\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix}$ (stessa base in
partenza e in arrivo).
(3) Si scriva la matrice di A rispetto alla base $\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ in partenza e alla
base $\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix}$ in arrivo.
Risposta (1) Risposta (2) Risposta (3)

Esercizio 2. Trovare per quali valori di $k \in \mathbb{R}$ si ha che

$$w = \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 4 \\ k \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} .$$

Valori d	$\operatorname{di} k$	
----------	-----------------------	--

Esercizio 3. Sia
$$V = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\} \subseteq \mathbb{R}^3$$
 e sia $W \subseteq \mathbb{R}^3$ il kernel dell'applicazione lineare $A : \mathbb{R}^3 \to \mathbb{R}$ definita da $A((x,y,z)) = 2x + 4y + 2z$. De-

dell'applicazione lineare $A: \mathbb{R}^3 \to \mathbb{R}$ definita da A((x,y,z)) = 2x + 4y + 2z. Determinare: (a) la dimensione dello spazio vettoriale V+W; (b) la dimensione dello spazio vettoriale $V\cap W$; (c) una base di $V\cap W$.

Risposta (a)	Risposta (b)	Risposta (c)

Esercizio 4. Sia $\mathbb{R}[x]_{\leq 3}$ lo spazio vettoriale dei polinomi su \mathbb{R} di grado minore o uguale a 3 e sia $V \subseteq \mathbb{R}[x]_{\leq 3}$ il sottospazio dei polinomi $p(x) = ax^3 + bx^2 + cx + d$ tali che p'(-2) = 0, dove p'(x) è la derivata di p(x).

- i) Trovare la dimensione di V.
- ii) Trovare una base di V.

Dimensione	_	Base