Theorem in algorithm RecConcave¹ for privacy parameters ϵ, δ , promise r database X, domain R and sensetivity-1 utility function u: if we use Exponential-Mechanism instead of A_{dist} (at step 9) it will return the highest scored value $OPT_u(x)$, in probability at least $1-\beta$ if $r > \frac{16}{3\epsilon\alpha}ln\left(\frac{log_2(|\mathcal{R}|)}{\beta}\right)$

proof by The Algorithmic Foundations of Differential Privacy² Theorem 3.11

$$Pr\left[u(M_E(x,u,R)) \leq OPT_u(x) - \frac{2\Delta u}{\epsilon} \left(ln\left(\frac{|R|}{|R_{OPT}|}\right) + t\right)\right] \leq e^{-t}$$

if we set $e^{-t}=\beta\Rightarrow t=\ln\left(\frac{1}{\beta}\right)$, $\Delta u=1,$ $|R|=\log\left(\mathcal{R}\right)$ and $|R_{OPT}|=1$ we get:

$$Pr\left[u(M_E(x, u, R)) \le OPT_u(x) - \frac{2}{\epsilon} \left(ln\left(log\left(|\mathcal{R}|\right)\right) + ln\left(\frac{1}{\beta}\right)\right)\right] =$$

$$Pr\left[u(M_E(x, u, R)) \le OPT_u(x) - \frac{2}{\epsilon}ln\left(\frac{log_2(|\mathcal{R}|)}{\beta}\right)\right] \le \beta$$

we want the gap to be at least $\frac{2}{\epsilon} ln\left(\frac{log_2(|\mathcal{R}|)}{\beta}\right)$

from the other hand in RecConcave we know that the gap is at least $\frac{3\alpha}{8}r$ if we combine the two we get

$$\frac{2}{\epsilon} ln\left(\frac{log_{2}\left(|\mathcal{R}|\right)}{\beta}\right) < \frac{3\alpha}{8}r \Rightarrow r > \frac{16}{3\epsilon\alpha} ln\left(\frac{log_{2}\left(|\mathcal{R}|\right)}{\beta}\right)$$

and in the case of median $r = \frac{|s|}{2}$ so the bound on the sample size is

$$|s| > \frac{32}{3\epsilon\alpha} ln\left(\frac{log_2(|\mathcal{R}|)}{\beta}\right)$$

alternatively if we want to bound |R|

$$\begin{split} \frac{3\epsilon\alpha r}{16} &> \ln\left(\frac{\log_2\left(|\mathcal{R}|\right)}{\beta}\right) \Rightarrow e^{\frac{3\epsilon\alpha r}{16}} > \frac{\log_2\left(|\mathcal{R}|\right)}{\beta} \\ &\Rightarrow \log_2\left(|\mathcal{R}|\right) < \beta e^{\frac{3\epsilon\alpha r}{16}} = \beta e^{\frac{3\epsilon\alpha |s|}{32}} \\ &\Rightarrow |\mathcal{R}| < 2^{\beta e^{\frac{3\epsilon\alpha |s|}{32}}} \end{split}$$

 $^{^1\}mathrm{A.}$ Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization- Pure vs. Approximate Differential Privacy

²C.Dwork , A.roth