Rank-66763 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1432724889

General information

Number of lines	5
Number of points	25
Number of singular points	3
Number of Eckardt points	2
Number of double points	2
Number of single points	15
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3^2, 2^2, 1^{15}, 0^6$

Singular Points

The surface has 3 singular points:

0:
$$P_{15} = \mathbf{P}(0, \omega, 1, 0) = \mathbf{P}(0, 2, 1, 0)$$

1: $P_{19} = \mathbf{P}(0, \omega^2, 1, 0) = \mathbf{P}(0, 3, 1, 0)$
2: $P_{23} = \mathbf{P}(1, 0, 0, 1) = \mathbf{P}(1, 0, 0, 1)$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega & 0 \end{bmatrix}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}_2 = \mathbf{Pl}(3, 0, 1, 0, 0, 0)_5$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{3} = \mathbf{Pl}(2, 0, 1, 0, 0, 0)_{4}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{101}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{87} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{87} = \mathbf{Pl}(2, 3, 3, 1, 0, 0)_{23}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & \omega & 0 \end{bmatrix}_{86} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{86} = \mathbf{Pl}(3, 2, 2, 1, 0, 0)_{21}$$

Rank of lines: (2, 3, 336, 87, 86)

Rank of points on Klein quadric: (5, 4, 101, 23, 21)

Eckardt Points

The surface has 2 Eckardt points: $0: P_{15} = \mathbf{P}(0, \omega, 1, 0) = \mathbf{P}(0, 2, 1, 0),$ $1: P_{19} = \mathbf{P}(0, \omega^2, 1, 0) = \mathbf{P}(0, 3, 1, 0).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_{23} = (1, 0, 0, 1) = \ell_3 \cap \ell_4$$

Single Points

The surface has 15 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_2 \\ 1: \ P_2 = (0,0,1,0) \ \text{lies on line} \ \ell_2 \\ 2: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_2 \\ 3: \ P_{16} = (1,2,1,0) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{18} = (3,2,1,0) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{20} = (1,3,1,0) \ \text{lies on line} \ \ell_0 \\ 7: \ P_{21} = (2,3,1,0) \ \text{lies on line} \ \ell_0 \end{array}$

8: $P_{22} = (3, 3, 1, 0)$ lies on line ℓ_0 9: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_3 10: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_4 11: $P_{58} = (1, 1, 2, 1)$ lies on line ℓ_4 12: $P_{66} = (1, 3, 2, 1)$ lies on line ℓ_3 13: $P_{74} = (1, 1, 3, 1)$ lies on line ℓ_3 14: $P_{78} = (1, 2, 3, 1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are: $\begin{array}{ll} 0: \, P_{28} = (2,1,0,1) & 4: \, P_{43} = (2,1,1,1) \\ 1: \, P_{29} = (3,1,0,1) & 5: \, P_{44} = (3,1,1,1) \\ 2: \, P_{40} = (2,0,1,1) & \\ 3: \, P_{41} = (3,0,1,1) & \end{array}$

Line Intersection Graph

 $\begin{array}{c} 01234 \\ \hline 001101 \\ 110110 \\ 211011 \\ 301101 \\ 410110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_0	P_{19}	P_{19}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_0	P_{15}	P_{15}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_{19}	P_{15}	P_{15}	P_{19}

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_{15}	P_{15}	P_{23}

Line 4 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_{19}	P_{19}	P_{23}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{20} = (1, 3, 1, 0)$	$18: P_{44} = (3, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{21} = (2,3,1,0)$	19: $P_{46} = (1, 2, 1, 1)$
$2: P_2 = (0, 0, 1, 0)$	$11: P_{22} = (3, 3, 1, 0)$	$20: P_{50} = (1, 3, 1, 1)$
$3: P_{11} = (0, 1, 1, 0)$	$12: P_{23} = (1,0,0,1)$	$21: P_{58} = (1, 1, 2, 1)$
$4: P_{15} = (0, 2, 1, 0)$	13: $P_{28} = (2, 1, 0, 1)$	$22: P_{66} = (1, 3, 2, 1)$
$5: P_{16} = (1, 2, 1, 0)$	$14: P_{29} = (3, 1, 0, 1)$	$23: P_{74} = (1, 1, 3, 1)$
$6: P_{17} = (2, 2, 1, 0)$	15: $P_{40} = (2, 0, 1, 1)$	$24: P_{78} = (1, 2, 3, 1)$
$7: P_{18} = (3, 2, 1, 0)$	$16: P_{41} = (3,0,1,1)$	
$8: P_{19} = (0, 3, 1, 0)$	$17: P_{43} = (2, 1, 1, 1)$	