Name: GAO MENGQI Personal code: 10721987

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wetbulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019												
	13:00	14:00	16:00	18:00	20:00	21:00	22:00					
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud					
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C					
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %					
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa					

According to the data on the website, it' 13:00, 02 December.

Umidità(Relative humidity): 79%, Pressione atmosferica(Air total pressure): 101.6 kPa, Temperatura effettiva(temperature to be utilized): 10°C (233K).

Through the chart: $\omega = 0.0055$

$$\omega = \frac{0.622 P_v}{P_a} = \frac{0.622 P_v}{P - P_v} = 0.0055$$
, P=101.6 kPa

$$\rightarrow P_v = 0.89 \text{ kPa}$$

$$\varphi = \frac{m_v}{m_g} = 79\%$$

$$m = \frac{P_v}{R_{sp}.T}$$
, $R_{sp} = 0.4615$

$$\rightarrow m_{\rm v} = \frac{0.89}{0.4615*233} = 0.00828 \,\rm V$$

And according to the formula, $m_g = \frac{m_v}{79\%} = 0.01048 \text{ V}$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

		BRINDISI, Italy													WMO#:	163200	
	Lat:	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone: 1.00 (EUW) Period:			86-10	WBAN:	99999		
	Annual He	ating and H	lumidificat	ion Design C	onditions												l .
					Hum	idification D	P/MCDB and	HR		Coldest month WS/MCDB MCWS/F						1	
	Coldest Heating DB			99.6%			99%						1% to 99.6		6% DB		
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oling, Dehu	ımidificatio	on, and Enth	alpy Desigr	Condition:	\$										l i
	Hottest	Hottest				OB/MCWB					Evaporation WB/MCDB				MCWS/PCWD		1
	Month 0.4%			1% 2%		0.4% 1%			2%		to 0.4% DB		i				
		DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	į.
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific		CDB and HF	₹			Enthalpy/MCDB					Hours	l .	
		0.4%	1%				2%			0.4%		1%			2% 8 to		i .
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	į.
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	innual Desig	gn Conditio	ons													1
	Euto	Extreme Annual WS Extreme Extreme Annual DB							n-Year Return Period Values of Extreme DB								1
			Max Mean		Standard deviation		n=5 years		n=10 years		n=20 years			years	i		
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	i
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

$$q_{ig,s} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 \text{ W}$$

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

$$A_{ul} = 1.4 \text{ cm}^2/\text{m}^2$$

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

$$A_L = A_{es} * A_{ul} = 344 + 1.4 = 481.6 \text{ cm}^2$$

$$T_{cooling} = 24 \, ^{\circ}\text{C}, T_{heating} = 20 \, ^{\circ}\text{C}$$

In Brindisi, Italy,

$$\Delta T_{cooling}\,=31.1-24=7.1~^{\circ}\text{C},~\Delta T_{heating}=20-(-4.1)=24.1~^{\circ}\text{C}$$

DR=7.1°C

$$IDF_{heating} = 0.073 \frac{L}{s \cdot cm^2}$$

$$IDF_{cooling} = 0.033 \frac{L}{s \cdot cm^2}$$

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.16 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.89 \frac{L}{s}$$

$$Q_v = 0.05A_{cf} * 3.5(N_{br} + 1) = 0.05 * 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v,heating} = Q_{i,heating} + Q_v = 15.16 + 17 = 52.16 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v = 15.89 + 17 = 32.89 \frac{L}{s}$$

$$C_{sensible} = 1.23, C_{latent} = 3010, \Delta\omega_{cooling} = 1.23 * 32.89 * 7.1 = 287.25 \text{ W}$$

$$\dot{q}_{inf-ventilation_{coolingsensible}} \, = C_{sensible} \, * \, Q_{i-v,cooling} \, * \, \Delta T_{cooling}$$

$$= 1.23 * 32.89 * 7.1 = 287.25 W$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} = C_{latent} * Q_{i-v,cooling} * \Delta \omega_{cooling}$$

$$= 3010 * 32.89 * 0.0039 = 386.13 W$$

$$\dot{q}_{inf-ventilation_{coolinglatent}} = C_{sensible} * Q_{i-v,heating} * \Delta T_{heating}$$

$$= 1.23 * 52.16 * 24.1 = 1546.09 W$$