Feuille de TE 1 : Rappel de terminal

Exercice 1. Vrai ou Faux

- Une fonction dont la dérivée s'annule en un point a admet un extremum en a
- La fonction $x \mapsto \sqrt{x}$ est définie et dérivable sur \mathbb{R}_+
- La fonction exponentielle ne s'annule jamais
- Si f est croissante et strictement positive, alors $\frac{1}{f}$ est décroissante
- L'expression $x^4 + x^2 + 1$ est strictement positive pour tout x.
- Si une fonction est paire, sa dérivée l'est aussi

Exercice 2. Ensembles de définitions

Donner les ensembles de définition des fonctions suivantes :

1.
$$f_1(x) = \sin \frac{1}{x^2}$$

2.
$$f_2(x) = \frac{\ln(x-1)^2}{x^2+2x+1}$$

3.
$$f_3(x) = \tan(\pi x - \frac{\pi}{4})$$

4.
$$f_4(x) = \sqrt{x^2 + 2x - 8}$$

5.
$$f_5(x) = \frac{1}{|(x-3)(6-\pi x)|}$$

Exercice 3. Calcul de dérivées

Calculer les dérivées des fonctions suivantes, après avoir précisé sur quel ensemble celles-ci sont dérivables.

1.
$$g_1(x) = \sqrt{6-x}$$

2.
$$g_2(x) = (1+4x)^4$$

3.
$$q_3(x) = \sin x^2$$

4.
$$g_4(x) = \ln x^2 + 8x - 9$$

Exercice 4. Etude de fonctions

Soit la fonction f définie par :

$$f(x) = e^{-x}(\cos x + \sin x)$$

- 1. Exprimer $\sin{(x + \frac{\pi}{4})}$ en fonction de \sin{x} et \cos{x} . En déduire l'ensemble des solutions, dans \mathbb{R} de l'équation f(x) = 0. Déterminer ensuite la limite de f en $+\infty$
- 2. On désigne par f' la dérivée de f. La calculer, puis résoudre l'équation f'(x) = 0 dans \mathbb{R} .
- 3. Faire l'étude de la fonction f sur l'intervalle $I=[-\frac{\pi}{4};\frac{7\pi}{4}]$

Exercice 5. Résolution d'équations

Résoudre les équations suivantes dans $\mathbb R$:

1.
$$6x^2 - 5x + 18 = (6 - x)(7 - x)$$

2.
$$(3x-1)^2 = -2$$

3.
$$\sin x = 1.5$$

4.
$$\sin^2 x + 4\sin x = -4$$