Espace vectoriel normé

Espace vectoriel normé

Norme

Exercice 1 (Normes sur \mathbb{K}^n) Pour $\vec{x} = (x_1, \dots, x_n) \in \mathbb{K}^n$, on pose

- 1. $\|\vec{x}\|_1 = \sum_{k=1}^n |x_k|$
- 2. $\|\vec{x}\|_2 = \sqrt{\sum_{k=1}^n |x_k|^2}$
- 3. $\|\vec{x}\|_{\infty} = \max(|x_1|, \dots, |x_n|)$

Démontrer que $\| \|_{\infty}$, $\| \|_{1}$ et $\| \|_{2}$ sont trois normes de \mathbb{K}^{n} .

Exercice 2 (Normes sur des espaces de fonctions) 1. Soit $\mathcal{B}(I, \mathbb{K})$ l'espace des fonctions bornées sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in \mathcal{B}(I, \mathbb{K})$, on pose :

$$||f||_{\infty} = \sup_{x \in I} |f(x)|.$$

Démontrer que $\| \|_{\infty}$ est une norme sur $\mathcal{B}(I, \mathbb{K})$.

2. Soit $L_1(I, \mathbb{K})$ l'espace des fonctions continues et intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_1(I, \mathbb{K})$, on pose :

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_1$ est une norme sur $L_1(I, \mathbb{K})$.

3. Soit $L_2(I, \mathbb{K})$ l'espace des fonctions continues de carré intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_2(I, \mathbb{K})$, on pose :

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_2$ est une norme sur $L_2(I, \mathbb{K})$.

Exercice 3 (Normes sur des espaces de suites) 1. Soit $\mathcal{B}(I, \mathbb{K})$ l'espace des fonctions bornées sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in \mathcal{B}(I, \mathbb{K})$, on pose :

$$||f||_{\infty} = \sup_{x \in I} |f(x)|.$$

Démontrer que $\| \|_{\infty}$ est une norme sur $\mathcal{B}(I, \mathbb{K})$.

2. Soit $L_1(I, \mathbb{K})$ l'espace des fonctions continues et intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_1(I, \mathbb{K})$, on pose :

1

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_1$ est une norme sur $L_1(I, \mathbb{K})$.

3. Soit $L_2(I,\mathbb{K})$ l'espace des fonctions continues de carré intégrables sur l'intervalle I de \mathbb{R} à valeurs dans \mathbb{K} . Pour $f \in L_2(I, \mathbb{K})$, on pose :

$$||f||_1 = \int_I |f(x)| \, \mathrm{dx}.$$

Démontrer que $\| \|_2$ est une norme sur $L_2(I, \mathbb{K})$.

Exercice 4 (normes sur les matrices) Pour $A \in \mathcal{M}_n(\mathbb{K})$, $A = \left(a_{i,j}\right)_{1 \leq i,j \leq n}$, on pose :

- -- $||A||_1 = \sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|;$ -- $||A||_2 = \sqrt{\operatorname{tr}(\bar{A}^{\mathsf{T}}A)};$

- $\|A\|_{\infty}^{2} = \max_{1 \leq i, j \leq n} |a_{i,j}|;$ $N(A) = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{i,j}|.$
- 1. Montrer qu'il s'agit de normes sur $\mathcal{M}_n(\mathbb{K})$.
- 2. Montrer que la norme $\mathcal{M}_n(\mathbb{K})$ est une norme d'algèbre, c.-à-d. que

$$\forall A, B \in E, \quad N(AB) \leqslant N(A)N(B).$$

Exercice 5 (Normes de polynômes) Pour $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$, on pose :

- $-N_1(P) = \sum_{k=0}^{d} |a_k|;$ $-N_2(P) = \sqrt{\sum_{k=0}^{d} |a_k|^2};$ $-N_{\infty}(P) = \max_{0 \le k \le d} |a_k|;$
- $-N(P) = \sup_{x \in [0,1]} |a_k|.$

Démontrer qu'il s'agit de normes sur E.

Exercice 6 (Normes d'applications linéaires) Soient E,F deux \mathbb{K} -espaces vectoriels normés et $\mathcal{L}_c(E,F)$ l'espace des applications linéaires continues de E dans F. Démontrer

$$||u|| = \sup_{x \neq 0} \frac{||u(x)||_F}{||x||_E}$$

est une norme sur $\mathcal{L}_c(E,F)$