Error Handling

Error

For most applications, a system must guarantee that the data received are identical to the data transmitted

Error

Error

Question

How one can know whether the received data is correct or not?

Question

• How one can know whether the received data is correct or not?

Error Toleran<u>ce</u>

 Relation between noise and data transmission

 Relation between noise and data transmission

Dr. Amrit Pal

 Relation between noise and data transmission

Effect of the noise and duration of

the noise

- Effect of the noise and duration of the noise
 - Single bit error
 - Multiple bit error
 - Burst Error

- Takeaway
 - The duration of noise is normally longer than the duration of 1 bit. which means that when noise affects data, it affects a set of bits.

Handling errors

By Detecting

By Correcting

To detect

 We need some extra information, to check whether the data is correct or not.

To detect

- We need some extra information, to check whether the data is correct or not.
- EXTRA → Redundant information

Detection Versus Correction

Which is difficult

- Which is difficult
- How to correct (broad categories)
 - Forward Error Correction
 - Retransmission

- Redundant Data
 - Code
 - Relationship between data and code

Modulo 2

$$0 + 0 = 0$$

$$1 \oplus 1 = 0$$

a. Two bits are the same, the result is 0.

$$0 + 1 = 1$$

$$1 \oplus 0 = 1$$

b. Two bits are different, the result is 1.

c. Result of XORing two patterns

- We divide our message into
 blocks, each of k bits
- Add r redundant bits to each block to make the length n = k + r

Process of error detection in block coding

Valid and Invalid code

Datawords	Codewords
00	000
01	011
10	101
11	110

Datawords	Codewords
00	000
01	011
10	101
11	110

- Consider the following cases:
 - Sender sends $01 \rightarrow 011$
 - What if receiver receives
 - 011
 - **111**
 - 000

Datawords	Codewords
00	000
01	011
10	101
11	110

- Consider the following cases:
 - Sender sends $01 \rightarrow 011$
 - What if receiver receives
 - -011
 - **111**
 - 000

Datawords	Codewords
00	000
01	011
10	101
11	110

- Consider the following cases:
 - Sender sends $01 \rightarrow 011$
 - What if receiver receives
 - * 011
 - * 111
 - 000

BLOCK CODING

Datawords	Codewords
00	000
01	011
10	101
11	110

- Consider the following cases:
 - Sender sends $01 \rightarrow 011$
 - What if receiver receives

Datawords Codewords 00 000 01 011 10 101 11 110

BLOCK CODING

- Consider the following cases:
 - Sender sends o1 → o11
 - What if receiver receives
 - 011
 - **111**
 - 000

An error-detecting code can detect only the types of errors for which it is designed; other types of errors may remain undetected.

- Error Correction
 - Where is the error
 - We requires more information to decide this.
 - More redundant data is required

BLOCK CODING

- Error Correction
 - Where is the error
 - We requires more information to decide this.
 - More redundant data is required

Hamming Distance

The Hamming distance between two words is the number of differences between corresponding bits.

The Hamming distance d(000, 011) is 2 because

000 ⊕ 011 is 011 (two 1s)

The Hamming distance d(10101, 11110) is 3 because

 $10101 \oplus 11110$ is 01011 (three 1s)

Hamming Distance

■ The minimum Hamming distance is the smallest Hamming distance between all possible pairs in a set of words.

```
d(00000, 01011) = 3 d(00000, 10101) = 3 d(00000, 11110) = 4 d(01011, 10101) = 4 d(01011, 11110) = 3 d(10101, 11110) = 3
```

The d_{min} in this case is 3.

Hamming Distance

Datawords	Codewords			
00	000			
01	011			
10	101			
11	110			

Datawords	Codewords			
00	000			
01	011			
10	101			
11	110			

Hamming Distance

■ To guarantee the detection of up to s errors in all the cases, the minimum Hamming distance in a block code must be $d_{min} = s + 1$.

Linear Block Codes

 A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords creates another valid codeword

■ The extra bit, called the parity bit, is selected to make the total number of

15 in the codeword even.

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

 The extra bit, called the parity bit, is selected to make the total number of
 in the codeword even.

$$ro = a3 + a2 + a1 + a0$$

So=
$$a3 + a2 + a1 + a0 + r0$$

- If the even number of bits get changed
- A simple parity-check code can detect an odd of number of errors.

- If the even number of bits get changed
- A simple parity-check code can detect an odd of number of errors.

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	1	1	1	0	1	1
0	1	1	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	1	1	1	1
1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	0	1	1	0	1	1
0	1	0	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	0	1	1	0	1	1
0	1	0	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	_ 1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1
1	0	0	0	1	0	1	1
0	1	0	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

1	1	0	0	_ 1	1	1	1	
1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

1	1	0	0	1	1	1	1	
1	0	0	0	1	0	1	1	
0	1	0	0	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	

Datawords	Codewords	Datawords	Codewords
0000	0000 <mark>000</mark>	1000	1000110
0001	0001101	1001	1001 <mark>011</mark>
0010	0010111	1010	1010 <mark>001</mark>
0011	0011 <mark>010</mark>	1011	1011100
0100	0100 <mark>011</mark>	1100	1100101
0101	0101110	1101	1101000
0110	0110100	1110	1110010
0111	0111 <mark>001</mark>	1111	1111 <mark>11</mark> 1

Hamming Codes

r2=a3+a2+a1 r1=a2+a1+a0 ro=a0+a3+a1

|Hamming Codes

Hamming Codes

		1						
Syndrome	000	001	010	011	100	101	110	111
Error	None	q_0	q_1	b_2	q_2	b_0	<i>b</i> ₃	b_1

s2=a3+a2+a1+r2

S1=a2+a1+a0+r1

so=ao+a3+a1+ro

Hamming Codes

Syndrome	000	001	010	011	100	101	110	111
Error	None	q_0	q_1	b_2	q_2	b_0	<i>b</i> ₃	b_1

s2=a3+a2+a1+r2

S1=a2+a1+a0+r1

so=ao+a3+a1+ro

Dr. Amrit Pal

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001 <mark>011</mark>	1001	1001 <mark>110</mark>
0010	0010 <mark>110</mark>	1010	1010 <mark>011</mark>
0011	0011101	1011	1011 <mark>000</mark>
0100	0100111	1100	1100 <mark>010</mark>
0101	0101100	1101	1101 <mark>001</mark>
0110	0110 <mark>001</mark>	1110	1110100
0111	0111010	1111	1111 <mark>111</mark>

Cyclic Redundancy Check

Cyclic Redundancy Check

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation

Cyclic Redundancy Check

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation

1011 1001000

Cyclic Redundancy Check

Dr. Amrit Pal

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation

1
1011 1001000
1011

Cyclic Redundancy Check

Dr. Amrit Pal

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation

1
1011 1001000

1011
010

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation
10
1011 1001000
1011
0100

Divisor=1011
Data=1001
Augmented Bits=000
Remember XOR operation
10
1011 1001000
1011
0100

A polynomial to represent a binary word

CRC division using polynomials

CRC division using polynomials

CHECKSUM

- Based on the concept of redundancy
- Example:
- If the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,0,6,36), where 36 is the sum of the original numbers.

CHECKSUM

- Based on the concept of redundancy
- Example:
- If the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12,0,6,36), where 36 is the sum of the original numbers.

 The receiver adds the five numbers and compares the result with the sum.

CHECKSUM Using One's Complement

CHECKSUM Using One's Complement

How can we represent the number 21 in one's complement arithmetic using only four bits?

CHECKSUM

Using One's Complement

- How can we represent the number 21 in one's complement arithmetic using only four bits?
 - The number 21 in binary is 10101.
 - Wrap the leftmost bit and add it to the four rightmost bits.
 - We have (0101 + 1) = 0110 or 6

- **Earne Lement** bits.
- All sections are added together using one's complement to get the sum.
- The sum is complemented and becomes the checksum.
- The checksum is sent with the data

- **Earne Lement** bits.
- All sections are added together using one's complement to get the sum.
- The sum is complemented.
- If the result is zero, the data are accepted: otherwise, they are rejected.

- Forouzan Behrouz, A. (2008). Data Communication and networking.
- Tanenbaum, A. S. (2011). Computer
 Networks, /Andrew S. Tanenbaum, David J.
 Wetherall. Cloth: Prentice Hall.