Unit No. 4

Factorization and Algebraic Manipulation

Exercise No. 4.3

Question No. 1

Find HCF by factorization method.

(i). $21x^2y$, $35xy^2$

Solution:

Factors of
$$21x^2y = 3 \times 7$$
 x.x.y

Factors of
$$35xy^2 = 5 \times 7$$
 x.y.y

Common factor =
$$C.F = 7.x.y$$

$$H.C.F = 7xy$$

(ii).
$$4x^2 - 9y^2$$
, $2x^2 - 3xy$

Solution:

Factors of
$$4x^2 - 9y^2 = (2x)^2 - (3y)^2$$

$$=(2x+3y)(2x-3y)$$

Factors of
$$2x^2 - 3xy = 2x^2 - 3xy$$

$$= x (2x - 3y)$$

Common factor =
$$C.F = (2x - 3y)$$

$$H.C.F = (2x - 3y)$$

(iii).
$$x^3 - 1$$
, $x^2 + x + 1$

Solution:

Factors of
$$x^3 - 1 = x^3 - 1$$

$$= (x-1)(x^2 + x \cdot 1 + 1^2)$$
$$= (x-1)(x^2 + x + 1)$$

Factors of
$$x^2 + x + 1 = x^2 + x + 1$$

Common factor =
$$C.F = (x^2 + x + 1)$$

$$H.C.F = (x^2 + x + 1)$$

(iv).
$$a^3 + 2a^2 - 3a$$
, $2a^3 + 5a^2 - 3a$

Solution:

Factors of
$$a^3 + 2a^2 - 3a = a(a^2 + 2a - 3)$$

$$= a(a^2 + 3a - a - 3)$$

$$= a[a(a+3) - 1(a+3)]$$

$$= a(a + 3)(a - 1)$$

Factors of
$$2a^3 + 5a^2 - 3a = a(2a^2 + 5a - 3)$$

$$= a(2a^{2} + 6a - a - 3)$$

$$= a[2a(a+3) - 1(a+3)]$$

$$= a(a+3)(2a-1)$$

Common factor = C.F = a(a + 3)

H.C.F =
$$a(a + 3)$$
 or $(a^2 + 3a)$

(v).
$$t^2 - 3t - 4$$
, $t^2 + 5t + 4$, $t^2 - 1$ (Wrong value in book)

Solution:

Factors of
$$t^2 - 3t - 4 = t^2 - 3t - 4$$

$$= t^{2} + t - 4t - 4$$

$$= t(t+1) - 4(t+1)$$

$$= (t+1)(t-4)$$

Factors of $t^2 + 5t + 4 = t^2 + 5t + 4$

$$= t^{2} + t + 4t + 4$$

$$= t(t+1) + 4(t+1)$$

$$= (t+1)(t+4)$$

Factors of $t^2 - 1 = t^2 - 1^2$

$$= (t+1)(t-1)$$

Common factor = C.F = (t + 1)

$$H.C.F = (t + 1)$$

(vi).
$$x^2 + 15x + 56$$
, $x^2 + 5x - 24$, $x^2 + 8x$

Solution:

Factors of
$$x^2 + 15x + 56 = x^2 + 7x + 8x + 56$$

$$= x(x+7) + 8(x+7)$$
$$= (x+7)(x+8)$$

Factors of $x^2 + 5x - 24 = x^2 + 8x - 3x - 24$

$$= x(x+8) - 3(x+8)$$
$$= (x+8)(x-3)$$

Factors of $x^2 + 8x = x^2 + 8x$

$$= x(x + 8)$$

Common factor = C.F = (x + 8)

$$H.C.F = (x + 8)$$

Question No. 2

Find HCF of the following expressions by using division method:

(i).
$$27x^3 + 9x^2 - 3x - 10$$
, $3x - 2$ (Wrong value in book)

Solution:

$$\begin{array}{c|c}
3x-2 & 27x^3 + 9x^2 - 3x - 10 \\
 & \pm 27x^3 \mp 18x^2 \\
\hline
27x^2 - 3x - 10 \\
 & \pm 27x^2 \mp 18x \\
\hline
15x - 10 \\
 & \pm 15x \mp 10 \\
\hline
0
\end{array}$$

$$H.C.F = 3x - 2$$

(ii).
$$x^3 - 9x^2 + 21x - 9$$
, $x^2 - 4x + 3$ (Wrong value in book)

Solution:

$$\begin{array}{c|c}
x^3 - 9x^2 + 21x - 9 \\
 & \pm x^3 \mp 4x^2 \pm 3x \\
 & -5x^2 + 18x - 9 \\
 & \pm 5x^2 \pm 20x \mp 15 \\
 & -2x + 6
\end{array}$$
we may write it $-2(x - 3)$

Now

$$\begin{array}{c|c}
x-3 & x^2-4x+3 \\
 \pm x^2 \mp 3x & x-1 \\
 \hline
 -x+3 \\
 \hline
 \mp x \pm 3 \\
 \hline
 0
\end{array}$$

$$H.C.F = x - 3$$

(iii).
$$2x^3 + 2x^2 + 2x + 2$$
, $6x^3 + 12x^2 + 6x + 12$

Solution:

$$2x^3 + 2x^2 + 2x + 2$$
, $6x^3 + 12x^2 + 6x + 12$
= $2(x^3 + x^2 + x + 1)$, $6(x^3 + 2x^2 + x + 2)$

Ignore common number:

H.C.F =
$$x^2 + 1$$
 (Wrong answer in book)

(iv).
$$2x^3 - 4x^2 + 6x$$
, $x^3 - 2x$, $3x^2 - 6x$

Solution:

Now multiply $x^3 - 2x$ with 2 and simplify

$$2x^3 - 4x$$

$$2x^2 - 5x$$

$$\pm 2x^3 \mp 5x^2$$

$$5x^2 - 4x$$

Now multiply $5x^2 - 4x$ with 2 and simplify

Now

$$\begin{array}{c|cccc}
2x^2 - 5x \\
\pm 2x^2 \mp 5x \\
\end{array}$$

$$2x - 5$$

And

$$3x^2 - 6x$$

$$\pm 3x^2 \mp 6x$$

$$3x - 6$$

HCF = x wrong answer in book

Question No. 3

Find L.C.M of the following expressions by using prime factorization method.

(i) $2a^2b$, $4ab^2$, 6ab

Solution:

 $2a^{2}b, 4ab^{2}$

Factors of $2a^2b = 2.a.a.b$

Factors of $4ab^2 = 2.2.a.b.b$

Factors of 6ab = 2.3.a.b

$$C.F = 2.a.b$$

$$N.C.F = 2.3.a.b$$

$$L.C.M = C.F \times N.C.F$$

$$L.C.M = 2.a.b \times 2.3.a.b$$

$$L.C.M = 12a^2b^2$$

(ii)
$$x^2 + x$$
, $x^3 + x^2$

Solution:

$$x^2 + x$$
, $x^3 + x^2$

Factors of
$$x^2 + x = x(x + 1)$$

Factors of
$$x^3 + x^2 = x \cdot x (x + 1)$$

$$C.F = x(x+1)$$

$$N.C.F = x$$

$$L.C.M = C.F \times N.C.F$$

$$L.C.M = x(x + 1) \times x$$

L.C.M =
$$x^2(x + 1)$$

(iii) $a^2 - 4a + 4$, $a^2 - 2a$

Solution:

$$a^2 - 4a + 4$$
, $a^2 - 2a$

Factors of
$$a^2 - 4a + 4 = a^2 - 2a - 2a + 4$$

$$= a(a-2) - 2(a-2)$$

$$= (a-2)(a-2)$$

Factors of
$$a^2 - 2a = a (a - 2)$$

$$C.F = (a - 2)$$

$$N.C.F = a (a - 2)$$

$$L.C.M = C.F \times N.C.F$$

$$L.C.M = (a - 2) \times a. (a - 2)$$

$$L.C.M = a(a - 2)^2$$

(iv) $x^4 - 16$, $x^3 - 4x$

Solution:

$$x^4 - 16$$
, $x^3 - 4x$

Factors of
$$x^4 - 16 = (x^2)^2 - (4)^2$$

$$=(x^2-4)(x^2+4)$$

Factors of
$$x^3 - 4x = x(x^2 - 4)$$

$$C.F = (x^2 - 4)$$

$$N.C.F = x. (x^2 + 4)$$

$$L.C.M = C.F \times N.C.F$$

L.C.M =
$$(x^2 - 4) \times x$$
. $(x^2 + 4)$

L.C.M =
$$x(x^2 - 4) (x^2 + 4)$$

L.C.M = $x(x^4 - 16)$

(v)
$$16-4x^2$$
, x^2+x-6 , $4-x^2$

Solution:

$$16 - 4x^2$$
, $x^2 + x - 6$, $4 - x^2$

Factors of $16 - 4x^2 = 4(4 - x^2)$

$$= 2.2(2-x)(2+x)$$

Factors of $x^2 + x - 6 = x^2 + 3x - 2x - 6$

$$= x(x+3) - 2(x+3)$$

$$=(x+3)(x-2)$$

$$=(x+3)[-(-x+2)]$$

$$= (-x - 3) (2 - x)$$

Factors of $4 - x^2 = 2^2 - x^2$

$$= (2 + x) (2 - x)$$

$$C.F = (2 - x)$$

N.C.F =
$$2.2. (-x - 3)(x + 2)$$

$$=-4(x+3)(x+2)$$

$$L.C.M = C.F \times N.C.F$$

L.C.M =
$$(2 - x) \times [-4(x + 3)(x + 2)]$$

$$L.C.M = -4(4 - x^2)(x - 3)$$

$$L.C.M = 4(-4 + x^2)(x - 3)$$

L.C.M =
$$4(x^2-4)(x-3)$$
 (Wrong answer in book)

Question No. 4

The HCF of two polynomials is y-7 and their LCM is $y^3-10y^2+11y+70$. If one of the polynomials is $y^2-5y-14$, find the other.

Given:

$$H.C.F = y - 7$$

$$L.C.M = y^3 - 10y^2 + 11y + 70$$

$$P(x) = y^2 - 5y - 14$$

To Find:

$$Q(x) = ?$$

Solution:

Simplifying P(x):

$$P(x) = y^{2} - 5y - 14 = y^{2} - 7y + 2y - 14$$
$$= y(y - 7) + 2(y - 7)$$

$$=(y-7)(y+2)$$

Simplifying L.C.M:

$$= y^3 - 10y^2 + 11y + 70$$

Possible factors of constant term +70 are: $(\pm 1,\pm 2,\pm 5,\pm 7,\pm 10,\pm 14,\pm 35,\pm 70)$

We check for a root by substituting values:

Where possible factors are:

$$(y+2)(y-5)(y-7)$$
, So;

$$y^3 - 10y^2 + 11y + 70 = (y+2)(y-5)(y-7)$$

$$P(x) \times Q(x) = H.C.F \times L.C.M$$

By putting values:

$$(y-7)(y+2) \times Q(x) = (y-7) \times (y+2)(y-5)(y-7)$$

$$Q(x) = \frac{(y-7) \times (y+2)(y-5)(y-7)}{(y-7)(y+2)}$$

$$Q(x) = (y - 5)(y - 7)$$

$$Q(x) = y^2 - 5y - 7y + 35$$

$$Q(x) = y^2 - 12y + 35$$

Question No. 5

The LCM and HCF of two polynomials p(x) and q(x) are $36x^3(x+a)(x^3-a^3)$ and x^2 (x-a) respectively. If $p(x)=4x^2$ (x^2-a^2), find q(x).

Given:

$$L.C.M = 36x^3(x+a)(x^3-a^3)$$

$$H.C.F = x^2 (x - a)$$

$$P(x) = 4x^2(x^2 - a^2)$$

To Find:

$$Q(x) = ?$$

Solution:

Simplifying L.C.M =
$$36x^3(x + a)(x^3 - a^3)$$

$$= 2.2.3.3.x.x.x(x + a)(x - a)(x^2 - ax + a^2)$$

Simplifying H.C.F = x^2 (x - a)

$$= x.x (x-a)$$

Simplifying $P(x) = 4x^2 (x^2 - a^2)$

$$= 2.2.x.x (x + a) (x - a)$$

$$P(x) \times Q(x) = H.C.F \times L.C.M$$

By putting values:

$$2.2.x.x(x + a)(x - a) \times Q(x) = x.x(x - a) \times 2.2.3.3.x.x.x(x + a)(x - a)(x^2 - ax + a^2)$$

$$Q(x) = \frac{x \cdot x \cdot (x - a) \times 2 \cdot 2 \cdot 3 \cdot 3 \cdot x \cdot x \cdot (x + a)(x - a)(x^2 - ax + a^2)}{2 \cdot 2 \cdot 2 \cdot x \cdot x \cdot (x + a)(x - a)}$$

$$Q(x) = 3 \cdot 3 \cdot x \cdot x \cdot x \cdot (x - a)(x^2 - ax + a^2)$$

$$Q(x) = 9x^3(x^3 - a^3)$$

Question No. 6

The HCF and LCM of two polynomials is (x + a) and $12x^2$ $(x + a)(x^2 - a^2)$ respectively. Find the product of the two polynomials.

Given:

H.C.F =
$$(x + a)$$

L.C.M = $12x^2 (x + a)(x^2 - a^2)$
Simplifying L.C.M = $12x^2 (x + a)(x^2 - a^2)$
= $12x^2 (x + a)(x + a)(x - a)$
= $12x^2 (x + a)^2 (x - a)$

To Find:

$$P(x) \times Q(x) = ?$$

Solution:

$$P(x) \times Q(x) = H.C.F \times L.C.M$$

By putting values:

$$P(x) \times Q(x) = (x + a) \times 12x^{2} (x + a)^{2} (x - a)$$

$$P(x) \times Q(x) = 12x^{2} (x - a) (x + a)^{3}$$