1.3 Some Exceptional Objects.

Some classes of combinatorial/algebraic objects consist of a few infinite families plus a few sporadic/exceptional objects.

Examples:

- (Convex regular polytopes:
 - 2-dimensional regular polygons
 - n-dimensional tetrahednon
 - h-dimensional cube
 - n-dimensional octahedron
 - icosahedron, dode cahedron, 24-cell } exceptional 120-cell, 600-cell.
- 2 Automorphisms of Sn:

Aut (G: the set of all isomorphisms $G \rightarrow G$ (automorphisms) - for all $N \supset 3$, Aut (Sn) \cong Sn; except that Aut (S6) \cong S6× \mathbb{Z}_2 .

(3) Finite Simple Groups:

- Rp where p is prime.
- An n75.
- "Groups of Lie type" (infinite family, PSL(2,7))
- 26 Sporadic groups
- 4 Unimodular Lattices: Es lattice, Leech lattice.

Automorphisms of Sn:

Let G be a group.
$$\forall g \in G$$
, define $\emptyset_g : G \to G$ by
$$\alpha \emptyset_g = g^{-1} \alpha g \quad \text{for all } \alpha \in G \quad \text{(conjugation)}$$

Dg is an automorphism: ("inner automorphism")

Homomorphism:

Conjugation in Sn:

Example:
$$(35)(123456)(35) = (125436)$$

Let g, OESn and consider the image of the point org under the permutation of 0g.

$$(xg)(g^{-1}\theta g) = x \theta g$$
So if $\theta = (\dots x x\theta \dots)(\dots x x\theta$

The cycle representation of g-10g is obtained by "applying" the permutation of to the cycle representation of O.

Theorem: In Sn, conjugation preserves cycle structure.

Theorem: If G is a group, then TT: G -> Aut (G) given by g > pg is a homomorphism.

Proof: If DEG, then

$$\theta$$
 (gh) TT = θ $\phi_{gh} = (gh)^{-1}\theta$ gh = $h^{-1}(g^{-1}\theta)$ gh = $h^{-1}(\theta)$ h
$$= \theta \partial_{g} \partial_{h}$$

$$= \theta (gTT)(hTT)$$

Theorem: Aut (Sz) = {1}. For n=3 Sn < Aut (Sn)

Proof: Aut
$$(S_z) = \{13 \ / \ \text{Let } n \ge 3.$$
 $(S_z = \{(1), (12)\})$

Define $TT: S_n \longrightarrow Ant(S_n)$ by $g \mapsto Q_q$

ge ker Tiff
$$\phi_g$$
 is the identity of Aut (Sn)

iff
$$\theta \phi_g = \theta$$
 for all $\theta \in S_n$

iff
$$g'' \theta g = \theta$$
 for all $\theta \in S_n$
iff $\theta g = g\theta$ for all $\theta \in S_n$

ker IT is the centre of Sn.

For
$$n \ge 3$$
, $Z(S_n) = \{i\}$: Let $g \in S_n \setminus \{i\}$. Then

I distinct points x,y such that $xg = y$. Let $z \notin \{x,y\}$ be a point $(n \ge 3)$

Then $g(yz)$ maps $x + 0 \ge 3$ $\Rightarrow g(yz) \neq (yz)g$

but $(yz)g$ maps $x + 0 y$ $\Rightarrow g \notin Z(S_n)$.

→ for h≥3, ker TT = {1}.

Ist Isomorphism Thm \Longrightarrow Im $TT \leq Aut(Sn)$ $Im TT \cong Sn/ker TT \cong Sn$ $Sn \leq Aut(Sn).$

Theorem: Aut $(S_2) = \{i\}$. For $n \geqslant 3$, Aut $(S_n) \cong S_n$ except that Aut $(S_6) \cong S_6 \rtimes \mathbb{Z}_2$ (semi-direct product) $\left| \text{Aut } (S_6) \right| = 6! \times 2 = |4|40.$

So has "outer automorphisms".

Outer Automorphisms of S6 l-factorisations of K6 Any two 1-factors form a 6-cycle. leaving ____

Any two edge-disjoint 1-factors of K6 are in a unique 1-factorisation

How many 1-factorisations of K6.???

pair of 1-factors Let x be the number. Count "occurrences of 6-cycles" in 1-factorisations.

5 1-factors in each 1-factorisation -> (\$ = 0 pairs of 1-factors/6-cycles in each 1-factorisation.

So lose 6-cycles across all 1-factorisations.

This counts each 6-cycle exactly once.

There are $\frac{6!}{12} = 60$ 6-cycles in K6 (Aut(C6) \cong D6)

So 10x = 60 and x = 6.

Now count 1-factors of K6. The number is 10(F) | where F= {12,34,56} and O(F) denotes the orbit of F under S6. The order of the stabilizer of F in S6 equals the number of ways of labelling III to get F = 6x4x2.

So the number of 1-factors of K6 is $|O(F)| = |S_6|/6x4x2 = \frac{6!}{6x4x2} = 5x3 = 15$

The 6 1-factorisations of K6 collectively contain 5×6=30 1-factors. Each 1-factor must occur exactly twice because none can occur three times: 1 1 1 6 1-factors share an edge with any given 1-factor. >1X,1=, x, 1,=1 There are 15-b-1=8 1-factors that are edge-disjoint from any given 1-factor. F | F | Would require 12 distinct

1-factors that are

disjoint from F So we have Notice the symmetry: vertices <> 1-factorisations, edges <> 1-factors Now consider the induced action of So on {J, Jz,..., Jo}. y. FA (homomorphism Ø: So -> Sym ({J, Jz,..., Jo})) [- FB) - FB Suppose OØ fixes all 6 1-factorisations. Then Of fixes the individual 1-factors (because any two edge-disjoint 1-factors) are in a unique (-factorisation) It follows that 0 is the identity. (123456, 1235 46 -> 12 +> 34 edges are fixed)

So ker 0 = {13} and 0 is an isomorphism. (12, 13 -> vertices are)

fixed fixed Since Sym (87, 72, ..., 763) = So we have an automorphism of So.

112 36 45 34 56 35 46 34 56 12 35 46 16 24 35 16 25 34 24 35 45. [6 16 23 45 16 23 25 34 16 14 23 56 15 23 46 13 24 56 25 36 46 36 15 24 14 25 13 13 26 45 26 35 15 26 34 45 35 26 26 الو 13 25 46 13 24 56 14 23 56 14 25 36 36 23 46 15

Examples of the induced action of S6 on {J1, J2, J3, J4, J5, J6}.

$$(12) \longmapsto (3, 3)$$

How do we know this automorphism of Sc is not conjugation?

(It does not preserve cycle structure)

2-transitive action of Ss on 6 points.

In So, the stabilizer of a point is Ss.

Conjugation permates these Ss Subgroups amongst themselves.

The outer automorphism maps these Ss subgroups to a

different subgroup that is isomorphic to Ss but acts on 6 points.

This 2-transitive action of Ss on 6 points is given by the action of Ss on the 6 1-factors of the Petersen graph.

In fact As acts 2-transifively on 6 points

(13524) (BC DEF)

As acts 2-transitively on the 6 faces of the Petersen graph embedded on the projective plane.

(123)

(123)

(AEF)(BDC)

The Mathieu groups.

Simple Groups:

Simple groups play a fundamental role in group theory. In the second half of the twentieth century (and with some small corrections/omissions made later), a program to classify all the finite simple groups was successfully undertaken. Up to isomorphism, the finite simple groups are

- (a) \mathbb{Z}_p where p is prime.
- (b) A_n where $n \geq 5$.
- (c) The so-called "groups of Lie type", which form an infinite family.
- (d) 26 "sporadic groups". (exceptional objects)

Five of the ten smallest sporadic groups are the "Mathieu groups"

$$M_{11}, M_{12}, M_{22}, M_{23}$$
 and M_{24}

which have orders

respectively. The largest sporadic group, the "Monster group", has order

$$808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000. \\$$

Multiply Transitive Groups:

The only t-transitive group actions with $t \geq 4$ are as follows. The proof of this fact uses the classification of finite simple groups.

- ullet The symmetric group S_n is sharply n-transitive on n points.
- The alternating group A_n is sharply (n-2)-transitive on n points. (exercise)
- The Mathieu group M_{11} is sharply 4-transitive on 11 points.
- The Mathieu group M_{12} is sharply 5-transitive on 12 points.
- The Mathieu group M_{23} is 4-transitive on 23 points.
- The Mathieu group M_{24} is 5-transitive on 24 points.

Steiner Systems

S(5,6,12) Automorphism group M12

(132 6-subsets of 12-set, each S-subset occurs once.

S(5, 8, 24) Automorphism group May

759 8-subsets of 24-set, each 5-subset occurs once.

S(t,k,v) ~ None known with t>5.

2014

Theorem 1.3.2. (Keevash, [36]) For all $t \geq 1$, $k \geq t$ and $\lambda \geq 1$, there is a constant $C(t, k, \lambda)$ such that for all $v \geq C(t, k, \lambda)$, there exists a $t - (v, k, \lambda)$ -design if and only if $\binom{k-s}{t-s}$ divides $\lambda \binom{v-s}{t-s}$ for $0 \le s \le t$.