AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

1. An interactive system for local intervention inside a region of a non-homogeneous structure to which is connected a reference structure containing a plurality of base points, the interactive system comprising:

means for dynamically displaying a three-dimensional image of a representation of the non-homogeneous structure and of the reference structure connected to the non-homogeneous structure, wherein the three-dimensional image also includes a plurality of images of the plurality of base points;

means for determining a set of coordinates of the plurality of images of the plurality of base points in a first reference frame;

means for fixing a position of the non-homogeneous structure and of the reference structure with respect to a second reference frame;

means for determining a set of coordinates of the plurality of base points in the second reference frame:

means of intervention comprising an active member whose position is determined with respect to the second reference frame;

means for generating a plurality of reference frame translation tools for translating a plurality of reference frames from the first reference frame to the second reference frame and vice versa, based on the set of coordinates of the plurality of images of the plurality of base points in the first reference frame and of the set of coordinates of the plurality of base points in the second reference frame, in such a way as to reduce to a minimum at least one of a set of deviations between the set of coordinates of the plurality of images of the plurality of base points in the first reference frame and the set of coordinates of the base points, expressed in the first reference frame using the plurality of reference frame translation tools;

means for defining, with respect to the first reference frame, a simulated origin of intervention and a simulated direction of intervention; and,

means for transferring the plurality of reference frames using the plurality of reference frame translation tools to establish a bidirectional coupling between the simulated origin of intervention and the simulated direction of intervention and the position of the active member.

2. The interactive system according to claim 1, wherein the plurality of reference frame translation tools comprise:

means for creating a matrix (M) for transferring between the first reference frame and a first intermediate reference frame based on a set of coordinates of a set of three images of a set of three base points of the reference structure;

means for creating a matrix (N) for transferring between the second reference frame and a second intermediate reference frame based on the set of coordinates of the set of three images of the set of three base points of the reference structure; and,

means for validating matrix (M) and matrix (N) based on the set of three base points and the set of three images, such that at least one deviation between an expression for at least one additional base point in the second intermediate reference frame and an expression for at least one image point of the additional base point in the first intermediate reference frame is reduced to a minimum.

3. The interactive system according to plurality of claim 2, wherein the means for transferring the reference frames using the plurality of reference frame translation tools further comprises:

a first transfer sub-module for transferring a set of representation/non-homogeneous structure coordinates, and

a second transfer sub-module for transferring a set of non-homogeneous structure/representation coordinates.

4. The interactive system according to claim 3, wherein the first transfer sub-module comprises:

means for acquiring a set of coordinates (XM, YM, ZM), expressed in the first reference frame, of a point of the representation of the non-homogeneous structure to be transferred, by selection on the representation;

means for calculating a set of corresponding coordinates (XP, YP, ZP), expressed in the second reference frame, on the non-homogeneous structure through a transformation:

{YP,YP, ZP}=M*N.sup.-1 *{XM,YM,ZM} where M * N.sup.-1 represents a product of the matrix (M) and an inverse of the matrix (N), and

means for processing, with the aid of the corresponding coordinates (YP, YP, ZP), to display a corresponding point on a surface of the non-homogeneous structure and to secure the intervention.

5. The interactive system according to claim 3, wherein the second transfer sub-module comprises:

means for acquiring a set of coordinates (XP, YP, ZP), expressed in the second reference frame, of a point of the non-homogeneous structure to be transferred;

means for calculating a set of corresponding coordinates (XM YM, ZM), expressed in the first reference frame, of the representation through a transformation:

{YM, YM, ZM}=N*M.sup.-1 *{XP,ZP,ZP} where N*M.sup.-1 represents the product of the matrix (N) and an inverse of the matrix (M); and,

means for displaying the representation using the set of corresponding coordinates (YM, YM, ZM).

6. The interactive system according to claim 1, wherein the means for generating the plurality of reference frame translation tools also generate, in association with the reference frame translation tools, tools for taking into account a residual uncertainty which is based on the set of deviations between the set of coordinates of the plurality of images of the plurality of base points in the first reference frame and the set of coordinates of the base points, the tools for taking into account the residual uncertainty usable for displaying a set of contours in the representation whilst taking into account the residual uncertainties.

- 7. The interactive system according to claim 1, wherein the means of dynamic displaying the three-dimensional image comprises:
- a file containing digitized data from a set of two-dimensional images constituted by successive non-invasive tomographic sections of the non-homogeneous structure;

means for calculating and reconstructing the three-dimensional image from the set of two-dimensional images; and

a high-resolution display screen.

- 8. The interactive system according to claim 7, wherein the means for calculating and reconstructing the three-dimensional image from the set of two-dimensional images comprises a program consisting of computer-aided design type software.
- 9. The interactive system according to claim 1, wherein the means for determining the set of coordinates of the plurality of base points in the second reference frame comprises a three-dimensional probe equipped with a tactile tip for delivering a set of coordinates of the tactile tip in the said second reference frame.

- 10. The interactive system according to claim 1, wherein the means for determining the set of coordinates of the plurality of base points is the second reference frame comprises at least one of a set of optical sensors and a set of electromagnetic sensors.
- 11. The interactive system according to claim 1, wherein a portion of the set of the plurality of base points of the reference structure comprises a plurality of marks positioned on a lateral surface of the non-homogeneous structure.
- 12. The interactive system according to claim 11, wherein the plurality of marks are four in number and are distributed over the lateral surface so as to define a substantially symmetrical tetrahedron.
- 13. The interactive system according to claim 1, wherein the means of intervention comprises:

a guide arm to secure intervention in the region of the non-homogeneous structure, the guide arm having a position marked with respect to the second reference frame; and,

an active intervention member whose position is marked with respect to the second reference frame.

14. The interactive system according to claim 13, wherein the active intervention member is removable and selected from the group consisting of:

tools for trephining;

needles and implants;

laser and radioisotope emission heads; and, sighting and viewing systems.

- 15. The interactive system according to claim 1, wherein the means for transferring the plurality of reference frames establishes a coupling between a direction of visualization of the representation of the non-homogeneous structure on the display means and a direction of observation of the non-homogeneous structure and of the reference structure by the active intervention member.
- 16. The interactive system according to claim 15, further comprising:

 a first module for visualizing a representation in a direction given by two points;

a second module for visualizing a representation in a direction given by an angle of elevation and an angle of azimuth.

- 17. (Canceled)
- 18. (Canceled)
- 19. (Currently Amended) An interactive system for intervention inside a region of a patient, said interactive system comprising:

a device operable to receive image data of the region of the patient
wherein the image data includes image data of a first reference structure to establish ar
image reference frame for the region of the patient;
a second reference structure positioned relative to the patient to establish
a patient reference frame for the region of the patient;
a controller operable to correlate the position of the first reference
structure in the image reference frame with the position of the second reference
structure in the patient reference frame;
an active member operable to perform the intervention; and
a tracking system operable to determine a position of at least the second
reference structure and the active member.
20. (previously presented) The interactive system as defined in Claim 19
wherein the first reference structure includes a plurality of base points.
21. (previously presented) The interactive system as defined in Claim 20
wherein the second reference structure includes a plurality of tracking markers.
22. (previously presented) The interactive system as defined in Claim 19
wherein the second reference structure includes a plurality of tracking markers.
23. (previously presented) The interactive system as defined in Claim 22
wherein the plurality of tracking markers are attached to the patient.

24.	(previously presented)	The interactive system as defined in Claim 19
wherein the	second reference structure	is attached to the patient.
		
05	/	
25.	(previously presented)	The interactive system as defined in Claim 19
wherein the	first reference structure is a	ttached to the patient.
26.	(previously presented)	The interactive system as defined in Claim 21
wherein the	plurality of base points are	generated from the plurality of tracking markers.
27.	(previously presented)	The interactive system as defined in Claim 20
wherein the	plurality of base points are	at least one of a plurality of notable points on the
patient and r	marks fixed to the patient.	
28.	(previously presented)	The interactive system as defined in Claim 27
wherein the	notable points are selecte	ed from a group comprising a head, eyebrows,
temples, fro	ntal medial point, an apex	of a skull, a center of gravity of an orbits of the
eves and a o	combination thereof.	
29.	(previously presented)	The interactive system as defined in Claim 19
wherein the	tracking system includes a	marker device operable to determine a position
of the secon	d reference structure in rela	ation to the patient reference frame.

30.	(previously presented)	The interactive system as defined in Claim 29
wherein the	marker device is a teleme	try system operable to determine the position of
the second i	reference structure in the pa	atient reference frame.
31	(previously presented)	The interactive system as defined in Claim 30
wherein the	telemetry system is an elec	ctromagnetic telemetry system.
<u>32.</u>	(previously presented)	The interactive system as defined in Claim 31
wherein the	second reference structi	ure includes electromagnetic tracking markers,
wherein the	electromagnetic telemetry	system is operable to determine the position of
the electrom	nagnetic tracking markers o	of the second reference structure in relation to the
patient refer	ence frame.	
33.	(previously presented)	The interactive system as defined in Claim 32,
wherein the	electromagnetic tracking n	narkers are transmitters and the electromagnetic
telemetry sy	stem is an electromagnetic	sensor.
34.	(previously presented)	The interactive system as defined in Claim 30
wherein the	telemetry system is an opti	ical telemetry system.
35.	(previously presented)	The interactive system as defined in Claim 34
wherein the	optical telemetry system ut	tilizes video and infrared cameras.

	<u>36.</u>	(previously presented)	The interactive system as defined in Claim 34
where	in the	second reference structure	includes optical tracking markers, wherein the
<u>optica</u>	l telen	netry system is operable to	determine the position of the optical tracking
<u>marke</u>	ers of th	ne second reference structu	re in relation to the patient reference frame.
	37.	(previously presented)	The interactive system as defined in Claim 34
where	in the	optical telemetry system ut	ilizes position and shape recognition to identify
the se	econd r	eference structure.	
	38.	(previously presented)	The interactive system as defined in Claim 29
<u>where</u>	in the	marker device includes a th	ree-dimensional probe.
	<u>39.</u>	(previously presented)	The interactive system as defined in Claim 38
<u>where</u>	in the	three-dimensional probe	includes a tactile tip operable to engage the
<u>secon</u>	ıd refer	ence structure.	
•	40.	(previously presented)	The interactive system as defined in Claim 38
<u>where</u>	in the	e three-dimensional probe	e is robotically manipulated, such that the
<u>instan</u>	ıtaneoı	us position of the three-dime	ensional probe is known.
	41.	(previously presented)	The interactive system as defined in Claim 29
where	in the	marker device includes a se	et of cameras operable to determine the position
of the	secon	d reference structure in rela	tion to the patient reference frame.

	42.	(previously presented)	The interactive system as defined in Claim 41
<u>wherei</u>	n the se	et of cameras are selected	from video and infrared cameras.
	43.	(previously presented)	The interactive system as defined in Claim 29
<u>wherei</u>	n the n	narker device is a laser b	eam emission system operable to illuminate the
secono	d refere	nce structure to determin	e a position of the second reference structure in
relation	n to the	patient reference frame.	
	44.	(previously presented)	The interactive system as defined in Claim 20
wherei	n the co	ontroller further includes a	graphical tool operable to identify the plurality of
base p	oints of	f the first reference structu	re in the image data of the image data reference
<u>frame.</u>			
	<u>45.</u>	(previously presented)	The interactive system as defined in Claim 44
<u>wherei</u>	n the g	raphical tool is a mouse in	communication with the controller.
	46.	(previously presented)	The interactive system as defined in Claim 19
<u>wherei</u>	n the fi	rst reference structure is g	enerated from the second reference structure.
	47.	(canceled)	

(previously presented) The interactive system as defined in Claim 47 wherein the active member is selected from a group comprising a trephining tool, a needle, a laser, a radioscope emission head, an endoscopic viewing system, a tool used in the intervention, an implant, a sighting system, a microscope, and combinations thereof. (previously presented) The interactive system as defined in Claim 47 49. further comprising a telemetry system operable to determine the position of the active member in the patient reference frame, said telemetry system in communication with the controller. 50. (previously presented) The interactive system as defined in Claim 49 wherein the position information of the active member is six degree of freedom information in relation to the patient reference frame. (previously presented) The interactive system as defined in Claim 47 51. wherein the device includes a display operable to display the image data of the region of the patient in relation to the image reference frame. 52. (previously presented) The interactive system as defined in Claim 51 wherein the controller is further operable to determine a reference origin of intervention and a direction of intervention and said display is further operable to display the reference origin of intervention and direction of intervention.

53.	(previously presented)	The interactive system as defined in Claim 51
wherein the	controller is further operable	le to model a reference origin of intervention and
a direction o	f intervention and said dis	splay is further operable to display the modeled
reference ori	gin of intervention and dire	ction of intervention.
54.	(previously presented)	The interactive system as defined in Claim 51
wherein the	display is further operable	e to display the real-time position of the active
member in th	ne image reference frame.	
55.	(previously presented)	The interactive system as defined in Claim 51
wherein the	display is further operable	e to display image data relative to a direction of
intervention o	of the active member.	
56.	(previously presented)	The interactive system as defined in Claim 55
wherein the	image data is displayed p	erpendicular to a direction of intervention of the
active memb	er.	
57.	(previously presented)	The interactive system as defined in Claim 51
wherein the	controller is further operab	le to simulate an optimal trajectory of advance of
the active m	ember and said display is	operable to display the optimal trajectory in the
<u>image data r</u>	<u>elative to the image referer</u>	nce frame.

58.	(previously presented)	The interactive system as defined in Claim 57
wherein mov	ement of the active memb	er is steered to the optimal trajectory to carry ou
a programme	ed intervention.	
59.	(previously presented)	The interactive system as defined in Claim 47
wherein the a	active member is robotically	y controlled.
60.	(previously presented)	The interactive system as defined in Claim 19
wherein the	image data is at least	one of a magnetic resonance image data, a
tomographic	image data, a radiogi	raphic image data, x-ray image data, and
combinations	s thereof.	
61.	(previously presented)	The interactive system as defined in Claim 19
wherein the	device is operable to cor	nstruct three-dimensional images from captured
two-dimensio	onal images.	

62.	(previously presented) An interactive system for intervention inside a
region of a p	patient, said interactive system comprising:
	a device operable to receive image data of the region of the patient,
wherein the	image data includes image data of a first reference structure to establish an
image refere	ence frame for the region of the patient;
	a second reference structure positioned relative to the patient to establish
a patient ref	erence frame for the region of the patient; and
	a controller operable to correlate the position of the first reference
structure in	the image reference frame with the position of the second reference
structure in	the patient reference frame;
	wherein the device is operable to construct three-dimensional images from
captured two	o-dimensional images;
	wherein the controller is operable to superimpose two-dimensional image
data on the	three-dimensional images wherein any change in soft external parts of the
patient can l	be visualized as compared with the image captured by the imaging device.

63.	(previously presented) An interactive system for intervention inside a
region of a pa	atient, said interactive system comprising:
	a device operable to receive image data of the region of the patient,
wherein the i	mage data includes image data of a first reference structure to establish an
image refere	nce frame for the region of the patient;
	a second reference structure positioned relative to the patient to establish
a patient refe	erence frame for the region of the patient;
	a controller operable to correlate the position of the first reference
structure in	the image reference frame with the position of the second reference
structure in the	he patient reference frame; and
	an active member operable to perform the intervention;
	wherein the device includes a display operable to display the image data
of the region	of the patient in relation to the image reference frame;
	wherein the controller is further operable to determine residual uncertainty
which is use	ed to represent a contour with dimensions larger than those which would
normally be	represented and the display is operable to display the residual uncertainty
of the contou	<u>ır.</u>
64.	(previously presented) The interactive system as defined in Claim 63
wherein the	contour is a display of an active member and a representation of residual
uncertainty ir	n order to reduce the chance of traversing undesired structures.

6	5.	(previously presented)	The interactive system as defined in Claim 19
wherein	the	controller is further opera	ble to correlate map data in a map reference
<u>frame wi</u>	th th	ne patient reference frame.	
66	3	(previously presented)	The interactive system as defined in Claim 47
wherein	the	intervention is at least one	e of a neurosurgery, orthopedic surgery, cranial
surgery,	and	combinations thereof.	
6	7	(previously presented)	The interactive system as defined in Claim 19
wherein	the	second reference structure	is fixed to a head set.
68	8	(previously presented)	The interactive system as defined in Claim 60
wherein	the	head set is further fixed to a	an operating table.
69	9.	(previously presented)	The interactive system as defined in Claim 19
wherein	the	device further includes mer	nory operable to store the image data.
7	0.	(previously presented)	The interactive system as defined in Claim 19
wherein	the	device is a first computer.	
7	1.	(previously presented)	The interactive system as defined in Claim 70
wherein	the	controller is a second comp	outer.

72. (previously presented) The interactive system as defined in Claim 71 wherein the first computer and the second computer is a single work station.

73. (Currently Amended) An interactive system for intervention inside	<u>a</u>
region of a patient, said interactive system comprising:	
a device operable to receive image data of the region of the patie	nt,
wherein the image data includes image data of a first reference structure to establish	<u>an</u>
image reference frame for the region of the patient;	
a second reference structure positioned relative to the patient to estable	<u>ish</u>
a patient reference frame for the region of the patient;	
a controller operable to correlate the position of the first referen	<u>ice</u>
structure in the image reference frame with the position of the second referen	<u>ice</u>
structure in the patient reference frame;	
an active member operable to perform the intervention inside the region	of
the patient:	
a tracking system operable to track the position of the active member	<u> in</u>
relation to the patient reference frame, the tracking system being in communication w	<u>/ith</u>
the controller; and	
a display operable to display the real-time position of the active member	r in
the image reference frame based on the tracked position of the active member from	the
tracking system.	
74. (previously presented) The interactive system as defined in Claim	<u>73</u>
wherein the active member is selected from a group comprising a trephining tool	<u>, a</u>
needle, a laser, a radioscope emission head, an endoscopic viewing system, a t	വ

used in the intervention, an implant, a sighting system, a microscope, and combinations
thereof.
75. (previously presented) The interactive system as defined in Claim 73
wherein the position information of the active member is six degree of freedom
information in relation to the patient reference frame.
76. (previously presented) The interactive system as defined in Claim
73 wherein the tracking system that tracks the position of the active member is a
telemetry system in communication with the controller.
77. (previously presented) The interactive system as defined in Claim 73
wherein the active member is robotically controlled.
78. (previously presented) The interactive system as defined in Claim 73
wherein the image data is at least one of a magnetic resonance image data, a
tomographic image data, a radiographic image data, x-ray image data, and
combinations thereof.
79. (previously presented) The interactive system as defined in Claim 73
wherein the controller is further operable to determine a reference origin of intervention
and a direction of intervention and said display is further operable to display the
reference origin of intervention and direction of intervention.

80.	(previously presented)	The interactive system as defined in Claim 73
wherein the	first reference structure inc	sludes a plurality of base points.
81.	(previously presented)	The interactive system as defined in Claim 80
wherein the	second reference structure	e includes a plurality of tracking markers.
<u>82.</u>	(previously presented)	The interactive system as defined in Claim 81
wherein the	plurality of base points are	generated by the plurality of tracking markers.
83.	(previously presented)	The interactive system as defined in Claim 73
wherein the	second reference structure	e is attached to the patient.
84.	(previously presented)	The interactive system as defined in Claim 73
wherein int	ervention is at least one	of a neurosurgery, orthopedic surgery, cranial
surgery inte	ervention, and combinations	thereof.
85	(previously presented)	The interactive system as defined in Claim 73
wherein the	second reference structure	e is fixed to a head set.
86.	(previously presented)	The interactive system as defined in Claim 73
wherein the	e display forms part of the de	evice.

87.	(Currently Amended) A method for performing an image guided
intervention	inside a region of a patient, said method comprising:
	capturing a first image data of the region of the patient where the first
image data	includes image data of a first reference structure;
	identifying the first reference structure in the first image data to establish
an image re	ference frame;
	identifying a second reference structure relative to the patient to establish
a patient ref	erence frame;
	correlating the position of the first reference structure in the image
reference fr	rame in the first image data with the position of the second reference
structure in	the patient reference frame; and
	tracking an active member in the patient reference frame for display
relative to th	ne image reference frame of the first image data.
88.	(previously presented) The method as defined in Claim 87 further
comprising	attaching a plurality of tracking markers to the patient where the tracking
markers form	m the second reference structure.
89.	(previously presented) The method as defined in Claim 88 further
comprising i	dentifying the position of the tracking markers in the patient reference frame
using a tele	metry system.

90.	(previously presented)	The method as defined in C	Claim 89 further
comprising t	transmitting from the tracki	ng markers and receiving the tra	ansmissions with
an electrom	agnetic sensor to identify	he position of the second refere	ence structure in
the patient r	eference frame.		
91.	(previously presented)	The method as defined in CI	aim 87 wherein
identifying t	he first reference structure	e includes identifying a plurality	of base points
visible in the	e image data.		
92.	(previously presented)	The method as defined in Cl	aim 91 wherein
identifying th	ne plurality of base points i	ncludes identifying at least one o	of notable points
on the patie	nt as marks fixed to the pat	ent representing the plurality of t	oase points.
93.	(previously presented)	The method as defined in Clain	n 92 wherein the
notable poir	its are selected from a gro	up comprising a head, eyebrows	, temporal point,
frontal medi	al point, an apex of a skull,	a center of gravity of an orbits o	f the eyes and a
combination	thereof.		
94.	(previously presented)	The method as defined in Clain	n 91 wherein the
plurality of	base points visible in the	image data are generated from	the plurality of
tracking ma	rkers attached to the patien	<u>t.</u>	

	95.	(previously presented)	The	method	as	defined in	Claim 8	37 f	<u>further</u>
comp	rising a	attaching the second referer	nce st	ructure to	the	patient.			
	96.	(previously presented)	The	method	as	defined in	Claim 8	37 f	<u>further</u>
comp	rising o	displaying the image data	of the	region c	of th	e patient, in	cluding (disp	laying
the fi	st refer	rence structure.							
	97.	(previously presented)	The	method	as	defined in	Claim 8	37 f	<u>urther</u>
comp	rising p	performing an intervention o	n the	patient w	ith a	an active me	mber.		
	98.	(Canceled)							
	99.	(previously presented)	Tł	ne metho	d a	s defined in	Claim 8	<u>87 f</u>	<u>further</u>
comp	rising c	lisplaying the position of the	e activ	ve memb	<u>er ir</u>	the capture	d image	dat	a with
the p	osition	of the active member being	g corre	elated be	twe	en the patier	nt refere	<u> 1се</u>	<u>frame</u>
and t	ne imag	ge reference frame.							
	100.	(previously presented)	The	method	as	defined in	Claim 9	<u>99</u> f	<u>further</u>
comp	rising i	dentifying the position of the	e activ	<u>re membe</u>	er w	<u>ith a telemet</u>	ry syster	<u>n.</u>	
	101.	(previously presented)	The	method	as	defined in	Claim 9)9 f	<u>further</u>
comp	rising c	displaying a reference origin	n of in	terventio	n ar	nd a direction	of inter	ven	tion in
the in	nage da	ata.							

102.	(previously presented)	The method as defined in Claim 101 furth
comprising t	tracking the position of the	active member relative to the reference origin
intervention	and the direction of interve	ntion.
102	(proviously properted)	The method on defined in Claim 97 furth
103.	(previously presented)	The method as defined in Claim 87 furth image data to three-dimensional image data.
<u>oomprong</u>	<u> </u>	mago data to amoo dimonolonal imago data.
104.	(previously presented)	The method as defined in Claim 97 wherein the
intervention	is selected from at least o	ne of a neurosurgery, orthopedic surgery, cran
surgery, and	combinations thereof.	
105.	(previously presented)	The method as defined in Claim 95 furth
comprising a	attaching the second refere	nce structure to a head set.