Artin: Linear Algebra in a Ring

James Pagan

February 2024

Contents

	0.1	Definition	2
	0.2	Examples of Modules	2
	0.3	Homomorphisms of Modules	2
1 Submodules and Quotient Modules		3	
	1.1	Definition	3

0.1 Definition

An **R-module** over a commutative ring R is an abelian group M (with operation written additively) endowed with a mapping $\mu: R \times M \to M$ (written multiplicatively) such that the following axioms are satisfied for all $x, y \in M$ and $a, b \in R$:

- 1. 1x = x;
- 2. (ab)x = a(bx);
- $3. \ a(x+y) = ax + ay;$
- 4. (a + b)x = ax + bx.

0.2 Examples of Modules

- If R is a ring, R[x] is a module.
- All ideals a of R are R-modules using the same additive and multiplicative operations as R — in particular R itself is an R-module.
- If R is a field, R-modules are R-vector spaces. In fact, the axioms above are identical to the vector axioms, defined over commutative rings instead of fields.
- Abelian groups G are precisely the modules over \mathbb{Z} .

0.3 Homomorphisms of Modules

A map $f: M \to N$ between two R-modules M and N is an R-module homomorphism (or is R-linear) if for all $a \in R$ and $x, y \in M$,

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = af(x).$$

Thus, an R-module homomorphism f is a homomorphism of abelian groups that commutes with the action of each $a \in R$. If R is a field, an R-module homomorphism is a linear transformation. A bijective R-homomorphism is called an R-isomorphism.

The set $\operatorname{Hom}_R(M, N)$ denotes the set of all R-module homomorphisms from M to N, and is a module if we define the following operations for $a \in R$ and $f, g \in \operatorname{Hom}_R(M, N)$:

$$(f+g)(x) = f(x) + g(x)$$
$$(rf)(x) = rf(x).$$

We denote $\operatorname{Hom}_R(M,N)$ by $\operatorname{Hom}(M,N)$ if there is no ambiguity about the commutative ring R.

1 Submodules and Quotient Modules

1.1 Definition

A submodule M' of M is an abelian subgroup of M closed under multiplication by elements of the commutative ring R. The following proof outlines a construction of **quotient** modules:

Theorem 1. The abelian quotient group M/M' is an R-module under the operation r(x + M') = rx + M'.

Proof. We must perform four rather routine calculations:

- 1. For all $x \in M$, we have that 1(x + M') = 1x + M' = x + M'.
- 2. For all $r, s \in R$ and $x \in M$, we have that r(s(x+M')) = r(sx+M') = rsx+M' = (rs)(x+M').
- 3. For all $r, s \in R$ and $x \in M$, we have that (r+s)(x+M') = (r+s)x + M' = (rx+sx) + M' = (rx+M') + (sx+M') = r(x+M') + s(x+M').
- 4. For all $r \in R$ and $x, y \in M$, we have that r((x + M') + (y + M')) = r((x + y) + M') = r(x + y) + M' = (rx + M') + (ry + M') = r(x + M') + r(y + M)'.

Therefore, M/M' is an R-module.