ECE111|Digital Circuits
Dr. Vish Visweswaran

Lab_6:

Student Name : Shivam Agarwal

Roll No. : 2020123 Date : 12/3/2021

AIM 1 : Decoder circuit for generating BCD code from encrypted code

Truth Table:

<u>INPUT</u>					<u>OUTPUT</u>				
<u>C3</u>	<u>C2</u>	<u>C1</u>	<u>C0</u>	<u>N</u>	<u>D</u>	<u>C</u>	<u>B</u>	<u>A</u>	
0	0	0	0	х	х	х	х	х	
0	0	0	1	x	x	x	x	x	
0	0	1	0	5	0	1	0	1	
0	0	1	1	6	0	1	1	0	
0	1	0	0	7	0	1	1	1	
0	1	0	1	8	1	0	0	0	
0	1	1	0	9	1	0	0	1	
0	1	1	1	x	x	x	x	x	
1	0	0	0	x	x	x	x	x	
1	0	0	1	4	0	1	0	0	
1	0	1	0	3	0	0	1	1	
1	0	1	1	2	0	0	1	0	
1	1	0	0	1	0	0	0	1	

1	1	0	1	0	0	0	0	0
1	1	1	0	x	x	x	x	х
1	1	1	1	х	х	х	х	х

K-Maps:

Screenshots:

Observations:

The given circuit converts the encrypted code into a decrypted BCD code based on the logic :

For $4 \ge N \ge 0$, C3C2C1C0 = 13 - N (in decimal), and for $9 \ge N \ge 5$, C3C2C1C0 = N - 3 (in decimal).

AIM 2 : Divider Circuit for 2-bit Binary Numbers

Truth Table:

<u>INPUT</u>				<u>OUTPUT</u>				
<u>N1</u>	<u>N0</u>	<u>D1</u>	<u>D0</u>	<u>Q1</u>	<u>Q0</u>	<u>R1</u>	<u>R0</u>	
0	0	0	0	x	x	x	х	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	0	х	х	х	x	
0	1	0	1	0	1	0	0	
0	1	1	0	0	0	0	1	
0	1	1	1	0	0	0	1	
1	0	0	0	х	х	x	х	
1	0	0	1	1	0	0	0	
1	0	1	0	0	1	0	0	
1	0	1	1	0	0	1	0	
1	1	0	0	х	х	x	х	
1	1	0	1	1	1	0	0	
1	1	1	0	0	1	0	1	
1	1	1	1	0	1	0	0	

K-Maps:

Screenshots:

Observations:

The above circuit returns the Quotient(Q1Q0) and the Remainder (R1R0) when a 2 bit number (N1N0) is divided by another 2 bit number (D1D0) using a pair of hex displays.