4 Changes in states of matter

How to predict changes in states of matter?

Example: Temperature line for H₂O:

Temperature line (in general):

Worked example

Try-it-out (1)

Given the melting and boiling points of three substances. Complete the table by writing the state of each substance at room temperature and pressure (r.t.p = $25 \, ^{\circ}$ C, 101.3 kPa).

Substance	Melting point (°C)	Boiling point (°C)	State at r.t.p
Α	-24	10	Gas
В	-120	348	liquid
С	50	121	Solid

Try drawing the temperature line in the space proyided.

C 35 1

Try-it-out (2)

Given are melting and boiling points of three substances. Complete the table by writing the state of each substance at room temperature and pressure (r.t.p = 25 °C, 101.3 kPa).

Substance	Melting point (°C)	Boiling point (°C)	State at r.t.p
D	30	112	- Solid
E	-90	2	Gus
F	-8	77 /	lignid

Try drawing the temperature line in the space provided.

5 Using Particulate model of matter to *explain*: Changes in states of matter

01	Time (minutes)			
Stage	Description			
АВ	When solid is <i>heated</i> , particles heat energy and at its heat energy and . Heat			
	absorbed causes			
ВС	At of solid (change of state), heat energy is used to the strong forces of attraction between the particles. Temperature remains until the solid melts completely into a liquid at point C.			
CD	When the liquid is <i>heated</i> , particles heat energy and			
CD	temperature to rise. more vigorously. Heat absorbed causes			
	At of liquid (change of state), heat energy			
	is used to the strong forces of attraction			
DE	between the particles. Temperature remains until the liquid boils completely into gas at point E.			
EF	When the gas is further heated, particles gain heat energy and			

b) Cooling a gas

Stage	Description	
АВ	When the gas is <i>cooled</i> , particles heat energy and move freely in all directions at Heat energy released causes temperature to fall.	
ВС	At point (change of state), heat energy is due to stronger forces of attraction between particles. Temperature remains until the gas condenses completely into liquid at point C.	
CD	When the liquid is, particles heat energy and more slowly. Thermal energy released causes temperature to fall.	
DE	At point (change of state), heat energy is due to stronger forces of attraction between the particles. The stronger forces of attraction cause the particles to to their Temperature remains until liquid freezes completely into solid at point E.	
EF	When the solid is further cooled, particles heat energy and vibrate about their fixed positions. Thermal every released causes temperature to fall.	

6 Using Particulate model of matter to explain: Expansion and Contraction

When heated Matter expands when it is Heated ⇒ When heated, particles will ____ thermal energy, vibrate ____ Substance A Substance A vigorously and move ✓ Particles start to move faster ____ apart from one ✓ Particles start to move further apart another. SPACE = X4 Cunn ino mass When cooled Matter contracts when it is Cooled Cooled ⇒ When cooled, particles will thermal energy, vibrate about fixed position vigorously and move Substance $A = \Psi$ Substance A = closes to each other ✓ Particles start to move slower ✓ Particles start to move closer together When heated or cooled, ONLY \sqrt{p} we and site of matter changes: Only the dictorial between particles in ciesse when heated and decrease when cooled. - Mass of matter is <u>Conserved</u> as size and number of particles remain the same. Examples of expansion and contraction: are placed in between slabs of concrete to prevent cracking of concrete. _____is a permanent mechanical fastener. Metal rivet is heated When the rivet cools, it The other end of the contracts and tightens the and expands. rivet is capped. It is placed through 2 two metal plates together.

metal plates.

83

7 Matter vs Particles

	Matter	Particles	
Colour	Yes	No	
Change in Temperature	Can be felt	No; but is depicted by the of particles.	
Change in Size	Can be compressed or expanded	No; but is depicted by the between the particles.	

Challenge yourself!

Characteristics of Particles	Solid	Liquid	Gas
Forces of attraction			
Movement			
Arrangement			

8 Diffusion

A few drops of food dye is added to a beaker of water.

The dye spread throughout the beaker without stirring. Why?

- Essential Takeaways

 1. The Particulate Model of Matter is a si
 - 1. The Particulate Model of Matter is a simplified representation of matter composition.
 - 2. Particulate Model of Matter is constructed to explain phenomena e.g. Melting & Boiling.
- 3. Particulate Model of Matter can be used to make prediction about matter and its behaviour.

Key Terms

Very small discrete particles	Movement / arrangement / distance of particles
Density and compressibility	Forces of attraction
Change of state	Melting point / boiling point
Vibrations about a fixed position	Slide past one another
Diffusion	higher concentration
lower concentration	net movement