# Algoritmos e Programação (23-1) Introdução

Profs.: Andressa e Marina

#### **Noções Iniciais**

- Programar
  - Organizar uma coleção de instruções sequenciais que executam uma tarefa específica no computador
  - Esta coleção é chamada de programa
- Programa
  - Escrito em uma linguagem de computador escolhida pelo programador: C, Python, Java,
     Haskell, entre outras
- Linguagens
  - São descritas em alto nível para que sejam entendidas por humanos (na maioria das vezes em inglês)

- Algoritmo é um termo mais genérico para definir programação
  - A diferença que um algoritmo não precisa ser criado utilizando uma linguagem de programação
  - Assim, um algoritmo, dependendo da forma que foi escrito, pode ser executado por uma pessoa

- Exemplo: algoritmo para fritar um ovo
  - 1 Pegue uma frigideira coloque sobre a boca de um fogão
  - 2 Coloque óleo na frigideira
  - 3 Acenda a boca
  - 4 Pegue um ovo
  - o 5 Quebre-o
  - o 6 Coloque sal sobre o ovo
  - o 7 Espere fritar



- Exemplo: algoritmo para fritar um ovo
  - 1- Pegue uma frigideira coloque sobre a boca de um fogão
  - 2- Coloque óleo na frigideira e acenda a boca onde se encontra a frigideira
  - 3- Pegue um ovo
  - 4- Quebre-o de tal forma que o conteúdo caia dentro da frigideira (jogue as cascas fora)
  - 5- Pegue um pouco de sal e jogue sobre o ovo
  - o 6- Espere o ovo fritar conforme o seu gosto
  - o 7- Tire da frigideira e coloque em um prato
- Perceba que a ordem das instruções é importante. Não podemos trocar, por exemplo, o passo 4 com o 3

#### • Exercício 1:

- Oum homem precisa atravessar um rio com um barco que possui capacidade apenas para carregar ele mesmo e mais uma de suas três cargas: um lobo, um bode e um maço de alfafa. O que o homem deve fazer para conseguir atravessar o rio sem perder nenhuma das cargas?
- Escreva um algoritmo que garanta uma travessia segura, considerando que o lobo não pode ficar sozinho com o bode e que o bode não pode ficar sozinho com a alfafa.

#### • Exercício 2:

Elabore um algoritmo que mova três discos de uma Torre de Hanói, que consiste em três hastes (a-b-c), uma das quais serve de suporte para três discos de tamanhos diferentes (1-2-3), os menores sobre os maiores. Pode-se mover um disco de cada vez para qualquer haste, contanto que nunca seja colocado um disco maior sobre um menor. O objetivo é transferir os três discos para outra haste.



#### **Programas**

- Os primeiros programas eram implementados em linguagem de máquina
- Era muito difícil programar (décadas de 1940 e 1950)
- Por exemplo, um programa que fizesse os seguintes passos

Informe a sua idade: 20 Você pode votar

### **Programas**

• Em linguagem de baixo nível (máquina) ficaria assim:

Informe a sua idade: 20 Você pode votar



#### **Programas**

Utilizando uma linguagem de alto nível:

Informe a sua idade: 20
Você pode votar

```
//c
#include <stdio.h>
int main(void)
{
   int id;
   printf("Informe a sua idade: ");
   scanf("%d",&id);
   if (id>=16)
      printf("Você pode votar\n");
   else
      printf("Você não pode votar\n");
   return 0;
}
```

```
#python
id=input('Informe a sua idade: ')
id=int(id)
if id>=16:
    print('Você pode votar')
else:
    print('Você não pode votar')
```

```
{Pascal}
program vota;
var
  id : integer;
begin
  write('Informe a sua idade: ');
  readln(id);
  if id>=16
  then
      writeln('Você pode votar')
  else
      writeln('Você não pode votar')
end.
```

#### **Executando Programas**

- Como um programa escrito em linguagem de alto nível é entendível pelo computador?
  - Existe **um programa mestre** (sistema) que torna os computadores mais acessíveis pelos humanos
  - Faz as transformações de nossas requisições de entrada (teclado, voz, mouse, ...) para o computador
  - Transforma as respostas do computador para um formato entendível por nós (monitor, impressora, som, vídeo, ...)
- Sistema operacional (SO)
  - Gerenciar os recursos de hardware e software do computador, e oferece serviços comuns para os programas serem executados

#### Sistema Operacional (SO)









- Um algoritmo/programa é formado por 3 partes:
  - Entrada
  - Processamento
  - Saída



#### Entrada

- Informações (dados) que o programa precisa para resolver o problema
- No nosso exemplo: a idade do usuário

#### Processamento

- o Processar os dados de entrada para obter a saída
- No nosso exemplo: verificar se a idade informada é maior ou igual a 16 ou não (idade para votar)

#### Saída

- Apresentar o resultado do processamento. Este resultado deve ser condizente com o problema que o programa está resolvendo
- No nosso exemplo: imprimir uma mensagem informando se alguém com a idade digitada pode ou não votar.

#### **Entrada**

- Os dados informados pelo usuário durante a entrada devem ser armazenados em uma região da memória principal do computador (chamada RAM)
  - Variável
  - O programador deve criar as variáveis dando nomes as mesmas:
    - O nome deve começar com uma letra. Não pode ter espaços, caracteres especiais (por exemplo: #,  $\oplus$ , &, (, ), !, entre outros)
    - Nomes válidos: idade, tipo2, val\_hora, nomeCliente, minhaHora, salario, ...
    - Inválidos: nome cliente, #idade, salário, tempo(dia), eu&voce, ...
- As entradas geralmente são feitas pelo teclado, mouse, telas do tipo touch screen,
   leitores de códigos de barras, entre outros.

#### **Processamento**

- Os dados de entrada, representados pelas variáveis são utilizados para produzir a saída
  - Expressões matemáticas
  - Expressões lógicas
  - Comandos condicionais
  - Comandos de iteração (laços)
  - 0

### Saída

- Os resultados obtidos pelo processamento (que podem ser armazenados em variáveis) são apresentados para o usuário do aplicativo
  - Geralmente na tela do computador/celular através de comandos específicos (print)
  - Na impressora
  - Pelo alto falante (som)
  - Podem ser armazenadas diretamente no disco

### Exemplo

- Suponha um algoritmo para dado o ano do nascimento do usuário e outro ano qualquer, calcular a idade do usuário no ano qualquer
  - Entrada: devemos solicitar ao usuário que informe o ano de nascimento dele e também o ano para calcular a idade
    - Vamos armazenar o ano de nascimento na variável anonasc e o ano para calcular a idade de anoatual
  - Processamento: agora temos que encontrar a fórmula matemática para calcular a idade, pensando um pouco, sabemos que se subtrairmos o ano para calcular a idade (anoatual) pelo ano de nascimento (anonasc), encontraremos a idade do usuário. O resultado do cálculo deve ser armazenado em uma variável para ser utilizado na saída (idade)
    - idade = anoatual anonasc
  - Saída: agora basta apresentarmos o resultado do cálculo
    - Imprimir o conteúdo da variável idade

### Algoritmos - Ranking linguagens



https://pypl.github.io/PYPL.html