Mass-Manufacturing Domain and Loops —

- CELL-ASSEMBLY = Gripper + Woodworking + Logistics
 - Assemble and paint products while moving them with arms between tables or special purpose machines
 - also a *temporal* problem (actions run in parallel)

The **Goal**: solving problems with **OVER 1000 identical products.** For that we used **Loops.** Everythings but indices are the same after a cycle.

Each Loop path is identified by Steady State (SS) \equiv a state in the beginning of one cycle, indexed with i.

ex. S_i : (at p_{i+1} table), (at p_i painter), (painted p_i).

However, two difficulties remain.

Which states are Steady States?

- Search all states from Init and test them \rightarrow impractical.
- Labelling some objects (table, machine) and predicates (at)? → Possible, but domain-dependent

Of all steady states, which one yields the best cyclic plan?

- Brute force search → impractical
- : testing each SS invokes a standard STRIPS planner each time

Pruning SSs

Infeasible

Deadlock

Duplicated*

also *prune* them when:

(* They are the same loop)

Domain Independent Analysys

Main contribution: Owner / Lock predicates detection for STRIPS

- $o = (P X_1 X_2...)$ a place?
- find a lock predicate l that satisfies some condition with o. If l exists, o is a place. Condition: for all action a,
- 1. If a occupies a place, a should check if the place is not in use, and a should acquire the lock.
- 2. If a leaves the place, release the lock.

Based on the owner/lock predicates, extract processes from a plan to enumerate SSs, States Action Single product Plan Extract Processes By seeing the change of lockedness of a place table1 table1 Process lProcess . = 101 Assign a product to each (b3) (bl) (b1) = 011process Enumerate All Bit vector 000,001,010,011...

=Enumerate All SSs

Plan each cycle from S_i to S_{i+1}

Now we not only enumerate SSs but

Arm

0

0

Table1

1

0

0

0

Table1

1

0

Get the least-makespan cyclic plan

Generate N instance plan by unrolling i. With no additional computation st!

A unit capacity resource \approx a place.

• use table $1 \in Attatch @ table 1$.

Place or not? **Easy** for human, **Difficult** for machines. Syntactically they are the same (pred ?p X).

predicate place? (for human) (color ?p red) no,maybe (at ?p table1) yes,maybe

Results Compared ACP vs 5 planners on 5 CELL-ASSEMBLY and modified IPC Temporal Woodworking, unmodified IPC Barman

	J							
Problem	# of products	run- time	ACP makespan	FD/LM _{cut} scheduler	FD/LAMA scheduler	yahsp	DAE	CPT4
	N	[sec]	c_{ACP}					
CA1	4	1048	331	fail	892	807	774	fail
	16	1049	1255	fail	fail	fail	fail	fail
	1024	1050	78871	fail	fail	fail	fail	fail
CA2	4	34	246	249	256	607	332	fail
	16	33	978	fail	fail	fail	fail	fail
	1024	35	62466	fail	fail	fail	fail	fail
CA3	4	1893	660	fail	1080	fail	fail	fail
	16	1953	2352	fail	fail	fail	fail	fail
	1024	1973	144480	fail	fail	fail	fail	fail
CA4	4	1163	318	fail	540	715	fail	fail
	16	1162	1074	fail	fail	fail	fail	fail
	1024	1165	64578	fail	fail	fail	fail	fail
CA5	4	1968	804	fail	947	fail	fail	fail
	16	1856	2508	fail	fail	fail	fail	fail
	1024	1894	145644	fail	fail	fail	fail	fail
Woodworking	4	11	80	80	80	150	80	80
	16	11	260	260	330	590	270	fail
	1024	15	15380	fail	fail	fail	fail	fail
Barman	4	331	35	fail	23	81	31	fail
	16	332	179	fail	fail	fail	fail	fail
	1024	332	12275	fail	fail	fail	fail	fail