UNIT-IV

a. Verify whether the following two graphs are isomorphic or not.

8M

What is the chromatic number of the complete graph K_n, path P_n and cycle C_n?
7M

(or)

a. Explain Euler and Hamiltonian circuits in detail with an example.

8M

b. Draw K₄ and K₆ graphs. Are they planar? For which values of n do you think K_n is planar? 7M

* * *

CS/IT 3003

II/IV B.Tech. DEGREE EXAMINATION, JANUARY, 2014
Third Semester

DISCRETE MATHEMATICAL STRUCTURES

Time: 3 hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

PART-A

 $10 \times 1 = 10M$

- Write the inverse and converse of 'Students score good marks whenever they study'.
- b. Define Product-Of-Sums expansion.
- c. Define Contradiction. Give an example.
- d. What are the number of distinguishable permutations of the letters in the word BANANA?
- e. Write the generating function for the series $x + 2x^2 + 3x^3 + 4x^4 + ...$
- What is the explicit formula for Tn if the sequence defined by the following recurrence relation is $T_n = nT_{n-1}$ with initial condition $T_1 = 7$?
- g. When is a lattice called complete?
- h. How many edges are there in an undirected graph with two vertices of degree 6, four vertices of degree 5 and the remaining four vertices of degree 4?
- i. Define circuit and path with examples.
- j. State Euler's formula for connected planar graph.

PART-B

 $4 \times 15 = 60M$

UNIT-I

a. Without using truth tables, find the PDNF form for $(\neg p \rightarrow q) \Lambda (q \leftrightarrow p)$

7M

- b. Let Q(x, y) be the statement 'x has sent an e-mail to y', where the domain for x and y consists of all students in your class. Express each of these quantifications in English.
 8M
 - i) $\exists x \forall y Q(x, y)$
- ii) $\exists y \forall x Q(x, y)$
- iii) $\forall y \exists x Q(x, y)$
- iv) $\forall x \exists y Q(x, y)$

(or)

a. Using truth table show that

 $\neg (p \lor (q \land r) \leftrightarrow ((p \lor q) \land (p \rightarrow r))$

7M

- Translate each of the following statements into symbols, using Quantifiers, Variables and Predicate symbols
 8M
 - i) Not all birds can fly
 - ii) There is a student who likes mathematics but not history

UNIT-II

a. Find the coefficient of x^{10} in $(1 + x + x^2 +)^2$

7M

b. Using generating function, solve the recurrence relation $a_k = 3a_{k-1}$, k = 1, 2, 3, ... and the initial condition $a_0 = 2$

(or)

a. What is the solution of the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}$$
 with $a_0 = 1$ and $a_1 = 6$?

8M

b. Find the number of non-negative integral solutions to

$$x_1 + x_2 + x_3 + x_4 + x_5 = 50$$

7M

UNIT-III

a. Draw the Hasse diagram representing the partial ordering {(a, b) | a divides b} on {1, 2, 3, 4, 6, 8, 12}

8M

b. Obtain the incidence and adjacency matrix of the following graph

(or)

- a. Consider the poset ($\{1\}$, $\{2\}$, $\{4\}$, $\{1, 2\}$, $\{1, 4\}$, $\{2, 4\}$, $\{3, 4\}$, $\{1, 3, 4\}$, $\{2, 3, 4\}$, \leq)
 - i) Find the maximal elements
 - ii) Find the minimal elements
 - iii) Is there a least element?

8M

- b. Give an example of a relation on a set that is
 - i) both symmetric and anti-symmetric
 - ii) neither symmetric nor anti-symmetric

7M