# Prediction of Chemical Carcinogenicity from Molecular Structure

Hongmao Sun\*

Discovery Chemistry, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey 07110

Received March 2, 2004

Carcinogens represent a serious threat to human health. In vivo determination of carcinogenicity is time-consuming and expensive, thus in silico models to predict chemical carcinogenicity are highly desirable for virtual screening of compound libraries of both pharmaceutically and other commercially interesting molecules. In the present study, a PLS-DA (partial least squares discriminant analysis) model was developed to predict carcinogenicities in each of four rodent models: male *mouse* (MM), female *mouse* (FM), male *rat* (MR), and female *rat* (FR). The data set that was used contained over 520 compounds from both the NTP and the FDA databases. All the models were built from the same molecular descriptor system, which is based on atom typing [Sun, H. *J. Chem. Inf. Comput. Sci.* **2004**, *44*, 748–757], enabling the comparison of atomic contributions to carcinogenicity with respect to species and gender. Using four components, the models were able to achieve excellent fitting and prediction, with  $r^2 = 0.987$  and  $q^2 = 0.944$  for MM,  $r^2 = 0.985$  and  $q^2 = 0.950$  for FM,  $r^2 = 0.989$  and  $q^2 = 0.962$  for MR, and  $r^2 = 0.990$  and  $q^2 = 0.965$  for FR. The models were further validated by response permutation testing and external validation, and the results indicated that the models were both statistically significant and predictive. Variable influence on projection (VIP) analysis identified the key atom types and fragments that contributed to carcinogenicities and response differences across species and gender.

## INTRODUCTION

Carcinogens represent a serious threat to human health. There are more than 80 000 chemicals registered for use in commerce in the United States, and an estimated 2000 new ones are introduced annually for use in everyday items such as foods, personal care products, prescription drugs, household cleaners, and lawn care products.2 It is desirable to carefully assess the carcinogenicity of all the chemical substances to which people may be exposed, but accurate measurements of this property are laborious, time-consuming, and costly. According to regulatory guidelines of the Food and Drug Administration (FDA), carcinogenicity is required to be evaluated against multiple biological models.<sup>3</sup> Various shorter-term, less costly screening methods<sup>4</sup> have been applied to predict chemical carcinogenicity. The most common of these is the Ames assay,5 an in vitro bacterial assay method using several strains of Salmonella typhimurium, which is based on the principle that mutation is an essential effect for cancer induction.<sup>6,7</sup> However, the concordance of Salmonella mutagenicity with rodent carcinogenicity has been found to be as low as 60%.8

Chemical carcinogenesis is an important subject not only for environmental hazard assessment but also for drug discovery. Drug discovery is an optimization process, during which a large number of compounds are synthesized and tested. Most of the compounds in this process are ultimately filtered out because of their undesirable properties. To quickly focus on the molecules most likely to succeed, compounds with adverse properties, such as carcinogenicity, should be removed from the pipeline at an early stage. New

technologies adopted by the pharmaceutical industry, such as high throughput screening (HTS) and combinatorial chemistry, have dramatically increased the number of compounds entering the drug discovery pipeline and significantly speeded up the preclinical drug discovery process. This has made it impractical to experimentally evaluate the carcinogenicity of every compound of interest. Thus, a reliable tool for predicting carcinogenicity would be highly desirable. Also, such a prediction would aid in prioritizing compounds for possible synthesis that have been proposed via design or virtual screening.

To date, toxicology modeling is mainly rule-based or structure-based. Rule-based approaches, such as the program DEREK (deductive estimate of risk from existing knowledge),<sup>9</sup> provide flags indicating whether a specific toxic response may occur, on the basis of rules derived by experts from the study of a large experimental data set. DEREK also gives alerts concerning the molecular substructures associated with toxic end points, implying an implicit relationship between molecular structure and toxicity. QSAR approaches, 10,11 on the other hand, quantify molecular descriptors that depict the electronic and topological properties of a molecule, attempting to directly construct a quantitative relationship between molecular structure and activity. Cariello and co-workers<sup>12</sup> compared the performance of the rulebased program DEREK and the QSAR program  $TOPKAT^{13}$ in their ability to predict of the Ames bacterial mutagenicity of 400 drug-like compounds. TOPKAT outperformed DEREK marginally, but the overall concordance of both predictions with the Ames assay results was around 70%.

Compared with the rule-based methods, QSAR approaches are easier to implement. QSAR models<sup>14,15</sup> have been built to predict Ames mutagenicity from data sets of different size

 $<sup>\</sup>ast$  Corresponding author phone: (973)562 3870; e-mail: hongmao.sun@roche.com.

and structural diversity. Alternatively, other approaches 16,17 have attempted to predict rodent carcinogenicity from shortterm mutagenicity assay results, despite the observation that not all cancers are due to DNA damaging events. Using an inductive learning program RL, Lee et al. 16 correctly predicted the carcinogenicity of 70-80% of nongenotoxic chemicals. Taningher and co-workers<sup>17</sup> did a molecular connectivity analysis on a data set of 145 chemicals with both rodent carcinogenicity and Ames test results, and they identified the most significant fragments, or biophores, responsible for carcinogenesis. Recently, Klopman et al. 18 developed a new "hybrid" method, Expert System Prediction (ESP), to predict the rodent carcinogenicity of 113 new chemicals with improved concordance and sensitivity. ESP is a machine learning program, using an artificial neural network employing genetic algorithms (GA-ANN), to learn the relationship between structure and carcinogenicity from a training set of around 1000 compounds.

An atom type classification approach using a universal molecular descriptor system has proven to be quite powerful in predicting ADME related properties. 1 In the current study, this approach has been extended to construct a simple predictive model for rodent carcinogenicity.

#### **DATA SETS**

The data sets used in the present study were the National Toxicology Program (NTP) data set and the Food and Drug Administration (FDA) data set, downloaded from the public domain. 19,20 Both the NTP and the FDA carried out rodent carcinogenicity studies on male and female rats and mice. The models were based on a single 2-year carcinogenicity study to identify trans-species tumorigens. Although the NTP and the FDA used different rodent strains, the relative proportion of positive response compounds and the overall concordance ratio between rats and mice were similar across both the NTP and the FDA databases.3 The data sets contain chemical carcinogenicities from experimental measurements on both mice and rats. The NTP data set contains 487 compounds, with the carcinogenic activity of each classified as CE (clear evidence of carcinogenic activity), SE (some evidence of carcinogenic activity), EE (equivocal evidence of carcinogenic activity), NE (no evidence of carcinogenic activity), IS (inadequate study of carcinogenic activity), P (positive), E (equivocal), or N (negative). Those data labeled as SE, EE, IS, or E were not included in the final training set, to avoid introducing less confident data. The FDA data set contains 223 pharmaceutically related compounds, with the carcinogenicity of each labeled "+" for positive or "-" for negative. The final combined data set contained 526 compounds, with 150 (28.5%) positives for MM (male mouse), 542 compounds (173, or 31.9% positives) for FM (female mouse), 520 compounds (172 or 33.1% positives) for MR (male rat), and 542 compounds (143, or 26.4% positives) for FR (female rat). Molecules in both data sets are structurally diverse, laying a solid foundation for a robust predictive model.

#### **METHOD**

**Atom Type Classification.** Atom types and correction factors were used as the general molecular descriptors. For each atom, the type was determined by its own chemical

properties and the neighboring atoms and bonds, reflecting its chemical environment. The primary classification tree, which was constructed on the basis of experience and chemical intuition, was trained by optimizing the logP predictions of the compounds in Starlist. Through analysis of the structures of the outliers, the "variable importance in projection" (VIP), and the standard errors of the coefficients, the atom type classification tree was optimized in terms of where to split and where to stop splitting the tree. Details on the method of atom type classification are described in

Partial Least Square Discriminant Analysis (PLS-DA). PLS-DA is an extension of PLS, also known as "projections to latent structures", a powerful multivariate analysis technique.<sup>21</sup> By projecting intercorrelated data of poor quality from high-dimensional space into low-dimensional orthogonal space, the newly formed variables, which are linear combinations of the original variables, become orthogonal to each other. Through finding the "discriminant plane" to effectively separate data into different classes, PLS-DA is capable of separating "tight" classes of observations on the basis of their X variables. The Y vector encoding the class membership is a set of "dummy" variables, denoted "positive" and "negative" in this study. X variables were meancentered and scaled to unit variance (UV) before the PLS discriminant analysis. The scaling weight employed in this study was  $1/S_k$ , where  $S_k$  represents the standard deviation of variable k. A default 7-fold cross-validation was used for all four models, where the data set was randomly split into seven even groups—while keeping one-seventh of the data out of model development, models were built on the basis of the rest of the data points, then the activities of the oneseventh compounds left-out were predicted and compared with the actual values. Each data point was left out only once. PLS-DA analysis was performed by using SIMCA- $P10.^{22}$ 

# RESULTS AND DISCUSSION

**Atom Type Classification.** The atom type classification tree, after being trained by logP, identified 218 atom types, including 88 types of carbon, 7 types of hydrogen, 55 types of nitrogen, 31 types of oxygen, 8 types of halides, 23 types of sulfur, and 6 types of phosphorus. Many atom types carried fragment information. For example, the 34th type of nitrogen, N34, is a nitrogen atom in a nitro group bonded to an aromatic ring, thus, atom type N34 was associated with the fragment of aromatic nitro group. In some cases, two or more atom types are needed to define a specific fragment. For example, C66, a carbon atom in an amide group bonded to aromatic ring, together with N22, a nitrogen atom in an amide group linked with a hydrogen and an aliphatic carbon, defined an amide, which was bonded to an aromatic ring on the carbonyl side and to an aliphatic carbon on the amine side. On the other hand, some atom types do not explicitly relate to any molecular fragments, but they indicate particular chemical features. C13, for example, is an aromatic carbon linked to other three aromatic carbon atoms, indicating a fused aromatic system in the molecule of interest.

The correction factors were slightly different from those used in ref 1. An additional factor was introduced, i.e. M27, the longest unbranched hydrocarbon chain in a molecule.



Figure 1. PLS-DA t1/t2 score plots for (a) MM, (b) FM, (c) MR, and (d) FR. Open triangles ( $\triangle$ ) are carcinogenic positives, and open diamonds ( $\diamondsuit$ ) are negatives.

Also, M9, total rotatable bonds in the molecule divided by four, replaced the number of fused atoms (Table 1).

PLS-DA Models for MM, FM, MR, and FR. Chemical toxicities, especially those from in vivo measurements, are often expressed qualitatively, such as those used in this study. In cases where the observations combined into discrete classes, regression methods that are commonly used for continuous numerical responses, such as multiple regression (MR) and PLS, are not the best choice for model construction. Instead, recursive partitioning (RP)<sup>23</sup> and PLS-DA are more effective in these situations. RP works very well on low-dimensional variable space,<sup>24</sup> while PLS-DA can handle high-dimensional variables with autocorrelation problems.

Using the same molecular descriptors, highly predictive PLS-DA models were built for MM, FM, MR, and FR. For MM, a 4-component PLS-DA model predicted carcinogenicity of the 526-compound data set with  $r^2=0.987$  and  $q^2=0.944$ . With 4 components, PLS-DA models were also deduced for FM with  $r^2=0.985$  and  $q^2=0.950$ , MR with  $r^2=0.989$  and  $q^2=0.962$ , and FR with  $r^2=0.990$  and  $q^2=0.965$ . Figure 1 illustrated the score plots t1/t2 for MM, FM, MR, and FR, where clear separations of carcinogenic positives and negatives were achieved on the first two principal components for all four models.

**Validation of the Models.** Judging from the values of  $q^2$ , the PLS-DA models were highly predictive. There is, however, one limitation of cross-validation, i.e. it only

Table 1. List of Correction Factors

| Table 1. List of Coll |                                |
|-----------------------|--------------------------------|
| CF ID                 | correction factor              |
| M1                    | (int) (molecular weight/100)   |
| M2                    | intramolecular HB              |
| M3                    | adjacent halides               |
| M4                    | (C15 > 4) ? (C15-4) / 2 : 0    |
| M5                    | (C43 > 5)? $(C43-5)/2: 0$      |
| M6                    | fraction of rotatable bonds    |
| M7                    | alpha amino acid               |
| M8                    | amide                          |
| M9                    | (int) (rotatable bonds / 4)    |
| M10                   | salic acid                     |
| M11                   | 1,4-dioxane                    |
| M12                   | acetyl urea                    |
| M13                   | number of aromatic rings       |
| M14                   | number of aliphatic rings      |
| M15                   | multiple oxygen atoms (> 8)    |
| M16                   | zwitter ions                   |
| M17                   | multiple hydroxyl groups       |
| M18                   | multiple acids                 |
| M19                   | linear zwitter ion             |
| M20                   | ring number $= 0$              |
| M21                   | number of fused bonds (fb)     |
| M22                   | 2 * fb - number of fused atoms |
| M23                   | pyrazine                       |
| M24                   | ortho functional groups        |
| M25                   | meta functional groups         |
| M26                   | para functional groups         |
| M27                   | longest chain                  |

assesses the predictive power of a model but does not address the question of statistical significance. To estimate the significance of  $q^2$  values, a permutation method, called



Figure 2. Validate plots of (a) MM, (b) FM, (c) MR, and (d) FR. The Y axis represents  $r^2$  (triangles) and  $q^2$  (squares) for every model, and the X axis designates the correlation coefficient between original and permuted response data.

validate, in SIMCA-P was employed.21 To run validate, the X matrix remains untouched, while the Y data are randomly shuffled. A PLS-DA model was then reconstructed with the permuted Y data, and  $r^2$  and  $q^2$  were computed. Comparing the two values of  $r^2$  and  $q^2$  of the "permuted" model with those of the "real" model gives an indication of the significance of the latter values. By repeating the permutation procedure many times, it is possible to achieve reference distributions of  $r^2$  and  $q^2$  based on random response data. As shown in Figure 2, the original  $r^2$  and  $q^2$  values of the four models were substantially higher than the corresponding "permuted" ones, indicating that all four models were statistically significant. Another read-out of the validate testing is the model complexity: the more scattered the distribution of the permuted  $r^2$  and  $q^2$  data points, the higher the complexity of the model. The overall complexities of the four PLS-DA models were low, which authenticate good predictivity of the models.

Predictive validation by means of cross-validation and the response permutation test provides a reasonable first approximation of the predictive ability of a PLS model, yet a more demanding and rigorous way of testing predictive performance is to predict an independent external data set.<sup>21</sup> In the current study, the original data sets were randomly split into training sets and testing sets, by placing every third compound into the testing set. For example, in the case of MR data set, the 347-compound training set had 118, or 34.0% positives, which was close to the ratio of the original set (33.1%). The 4-component PLS-DA model was built for the training set with  $r^2 = 0.984$  and  $q^2 = 0.927$ . The model was then used to predict the carcinogenicities of the 173

compounds in the test set, and the results were classified as the "probability" of a certain compound being "positive" or "negative". It turned out that the activities of all 173 compounds were correctly predicted (Table 2), among which 148 compounds were predicted with a high confidence of over 0.9, 23 compounds over 0.8, and only 2 compounds between 0.75 and 0.8. The results of all three validation methods-cross-validation, response permutation, and external validation-indicated the PLS-DA models were excellent in robustness and predictive power.

Carcinogenicities of the compounds not included in MR model development, which were labeled as "IS", "E", "EE", and "SE", were predicted (Table 3). The predicted values differed from external validation mainly in two ways: first, 22 out of 90 compounds were predicted with low confidence, whose probability was between 0.4 and 0.6; second, 46 out of 90 compounds were positive, a ratio significantly higher than the original data set (33.1%). Compounds labeled as "SE" had 20 out of 34 (58.8%) positives; compounds labeled "EE" or "E" had 19 out of 44 (43.2%) positives; compounds labeled "IS" had 7 out of 12 (58.3%) positives.

Analysis of the PLS-DA Models. Chemical carcinogenicity is related to molecular structure, and the relationship could potentially be extracted either by an expert system or through regression. As discussed earlier, atom typing is a method to depict the molecular structure by analyzing each atom in the context of its neighbors. The PLS-DA models in this study differed from previous rule-based or structure-based methods in that there were no fragments predefined, reducing the possibility of introducing bias at the beginning of the model construction. Since the atom types implicitly carried frag-

Table 2. Experimental and Predicted Carcinogenicities of the Test Set of MR, Containing Every Third Compound of the Original Data Set

|            | compd name     | carcinogenicity <sup>a</sup> | $\mathrm{DA1}^{b,c}$     | $\mathrm{DA}2^c$  | compd<br>ID | compd name                         | carcinogenicity <sup>a</sup> | DA1 <sup>b,c</sup>       | $\mathrm{DA2}^c$ |
|------------|----------------|------------------------------|--------------------------|-------------------|-------------|------------------------------------|------------------------------|--------------------------|------------------|
| 3          | TR002          | N                            | 0.9936                   | 0.0064            | 228         | TR351                              | P                            | 0.0604                   | 0.9396           |
| 6          | TR007          | N                            | 0.8470                   | 0.1530            | 231         | TR354                              | N                            | 0.9256                   | 0.0744           |
| 9          | TR010          | N                            | 0.9326                   | 0.0674            | 234         | TR359                              | P                            | -0.0358                  | 1.0358           |
| 12         | TR014          | N                            | 0.9621                   | 0.0379            | 237         | TR368                              | P                            | 0.0579                   | 0.9421           |
| 15         | TR019          | P                            | -0.0764                  | 1.0764            | 240         | TR372                              | P                            | -0.0090                  | 1.0090           |
| 18<br>21   | TR022<br>TR025 | N<br>N                       | 0.9880<br>1.0282         | 0.0120 $-0.0282$  | 243<br>246  | TR377<br>TR383                     | N<br>P                       | <b>1.1042</b> -0.3722    | -0.1042 $1.3722$ |
| 24         | TR025          | N                            | 1.0262                   | -0.0282 $-0.0557$ | 249         | TR387                              | N N                          | 0.3722<br>0.9968         | 0.0032           |
| 27         | TR030          | N                            | 0.9441                   | 0.0557            | 252         | TR390                              | P                            | 0.0002                   | 0.0032           |
| 30         | TR036          | N                            | 0.9691                   | 0.0309            | 255         | TR395                              | N                            | 0.9976                   | 0.0024           |
| 33         | TR041          | P                            | 0.0322                   | 0.9678            | 258         | TR398                              | P                            | -0.8412                  | 1.8412           |
| 36         | TR047          | P                            | 0.0218                   | 0.9782            | 261         | TR402                              | P                            | 0.1342                   | 0.8658           |
| 39         | TR050          | N                            | 0.9326                   | 0.0674            | 264         | TR406                              | N                            | 0.9001                   | 0.0999           |
| 42         | TR054          | P                            | 0.1084                   | 0.8916            | 267         | TR424                              | N                            | 0.9982                   | 0.0019           |
| 45         | TR058          | P                            | 0.0276                   | 0.9724            | 270         | TR431                              | N                            | 0.9785                   | 0.0215           |
| 48         | TR061          | N                            | 1.0821                   | -0.0821           | 273         | TR437                              | N                            | 1.1202                   | -0.1202          |
| 51         | TR066          | N                            | 0.9449                   | 0.0551            | 276         | TR442                              | N                            | 1.0329                   | -0.0329          |
| 54         | TR072          | P                            | 0.0528                   | 0.9472            | 279         | TR448                              | P                            | 0.0139                   | 0.9861           |
| 57         | TR076          | P                            | -0.4761                  | 1.4761            | 282         | TR455                              | N                            | 1.0581                   | -0.0581          |
| 60         | TR080          | P                            | -0.0130                  | 1.0130            | 285         | TR464                              | N                            | 0.9624                   | 0.0376           |
| 63         | TR083          | N                            | 0.9243                   | 0.0757            | 288         | TR467                              | P                            | 0.1241<br><b>0.9955</b>  | 0.8759           |
| 66<br>69   | TR086<br>TR091 | P<br>N                       | -0.0643<br><b>1.0702</b> | 1.0643 $-0.0702$  | 291<br>294  | TR477<br>TR481                     | N<br>N                       | 0.9955                   | 0.0045<br>0.0787 |
| 72         | TR091          | P                            | 0.1005                   | 0.8995            | 294         | TR490                              | N                            | 0.9213                   | 0.0787           |
| 75         | TR094<br>TR098 | N N                          | 0.1003                   | 0.0129            | 300         | TR490<br>TR496                     | P                            | 0.0034                   | 0.0181           |
| 78         | TR101          | N                            | 0.9371                   | 0.0129            | 303         | hydroxyquinoline, 8-               | N                            | 1.0005                   | -0.0005          |
| 81         | TR104          | N                            | 1.1922                   | -0.1922           | 306         | acetohexamide                      | N                            | 0.9326                   | 0.0674           |
| 84         | TR109          | N                            | 1.0036                   | -0.0036           | 309         | allopurinol                        | N                            | 0.9687                   | 0.0313           |
| 87         | TR112          | N                            | 0.9941                   | 0.0059            | 312         | amlodipine                         | N                            | 1.1463                   | -0.1463          |
| 90         | TR115          | P                            | 0.1179                   | 0.8821            | 315         | amrinone                           | N                            | 0.9992                   | 0.0008           |
| 93         | TR120          | N                            | 1.1031                   | -0.1031           | 318         | benazepril                         | N                            | 1.0995                   | -0.0995          |
| 96         | TR123          | N                            | 1.0817                   | -0.0817           | 321         | bisoprolol                         | N                            | 1.0329                   | -0.0329          |
| 99         | TR126          | N                            | 0.8927                   | 0.1073            | 324         | budesonide                         | P                            | -0.0337                  | 1.0337           |
| 102        | TR129          | N                            | 0.8879                   | 0.1121            | 327         | buspirone                          | N                            | 1.0391                   | -0.0391          |
| 105        | TR131b         | N                            | 1.0060                   | -0.0060           | 330         | carteolol                          | N                            | 0.9647                   | 0.0353           |
| 108        | TR134          | N                            | 0.8535                   | 0.1465            | 333         | chlorpheniramine                   | N                            | 1.1058                   | -0.1058          |
| 111        | TR137          | N                            | 1.0696                   | -0.0696           | 336         | ciprofloxacin                      | N                            | 0.8673                   | 0.1327           |
| 114        | TR141          | N                            | 0.8585                   | 0.1415            | 339         | clozapine                          | N                            | 1.0044                   | -0.0044          |
| 117<br>120 | TR144<br>TR147 | P<br>N                       | -0.0534<br><b>0.9349</b> | 1.0534<br>0.0651  | 342<br>345  | cyclobenzaprine<br>dantrolene      | N<br>N                       | 1.1416<br>0.9219         | -0.1416 $0.0781$ |
| 120        | TR147          | N<br>N                       | 1.0120                   | -0.0031 $-0.0120$ | 343         | dantroiene<br>dexfenfluramine      | N<br>N                       | 0.9219                   | 0.0781           |
| 126        | TR155          | P                            | 0.1644                   | 0.8356            | 351         | didanosine                         | N                            | 0.8965                   | 0.0340           |
| 129        | TR158          | N                            | 0.9660                   | 0.0340            | 354         | diphenhydramine                    | N                            | 0.9931                   | 0.0069           |
| 132        | TR161          | N                            | 0.8777                   | 0.1223            | 357         | doxylamine                         | P                            | 0.1454                   | 0.8546           |
| 135        | TR165          | N                            | 0.9326                   | 0.0674            | 360         | ephedrine                          | N                            | 0.9971                   | 0.0029           |
| 138        | TR169          | N                            | 0.9508                   | 0.0492            | 363         | estradiol mustard                  | N                            | 0.9651                   | 0.0349           |
| 141        | TR174          | N                            | 0.9173                   | 0.0827            | 366         | etretinate                         | N                            | 0.7840                   | 0.2160           |
| 144        | TR178          | N                            | 1.0081                   | -0.0081           | 369         | famotidine                         | N                            | 1.1897                   | -0.1897          |
| 147        | TR181          | P                            | -0.0128                  | 1.0128            | 372         | flecainide                         | N                            | 0.8268                   | 0.1732           |
| 150        | TR186          | P                            | 0.0401                   | 0.9599            | 375         | fluoxetine                         | N                            | 0.8955                   | 0.1045           |
| 153        | TR191          | N                            | 0.9796                   | 0.0204            | 378         | fluvastatin                        | P                            | 0.1871                   | 0.8129           |
| 156        | TR195          | N                            | 0.9148                   | 0.0852            | 381         | furazolidone                       | N                            | 0.8494                   | 0.1506           |
| 159<br>162 | TR203<br>TR206 | N<br>P                       | <b>0.9988</b><br>-0.0927 | 0.0012<br>1.0927  | 384<br>387  | gemfibrozil                        | P<br>P                       | 0.0614<br>0.0795         | 0.9386<br>0.9205 |
| 162        | TR206<br>TR209 | P<br>P                       | 0.2032                   | 0.7968            | 387<br>390  | granisetron<br>hydrochlorothiazide | N<br>N                       | 0.0795<br><b>0.9090</b>  | 0.9205           |
| 168        | TR209          | N N                          | 0.2032<br><b>0.9416</b>  | 0.7908            | 393         | iodinated glycerol                 | P                            | 0.9090                   | 0.0910           |
| 171        | TR212          | P                            | 0.0374                   | 0.0384            | 393         | isosorbide                         | N N                          | 0.0321                   | 0.9479           |
| 174        | TR222          | P                            | 0.0374                   | 0.9666            | 399         | ketoconazole                       | N                            | 0.7549                   | 0.0993           |
| 177        | TR226          | P                            | 0.0354                   | 0.9837            | 402         | labetalol                          | N                            | 0.9162                   | 0.0838           |
| 180        | TR234          | P                            | 0.0016                   | 0.9984            | 405         | levamisole                         | N                            | 0.9210                   | 0.0790           |
| 183        | TR245          | P                            | 0.2065                   | 0.7935            | 408         | lorazepam                          | N                            | 1.0671                   | -0.0671          |
| 186        | TR253          | P                            | 0.0978                   | 0.9022            | 411         | mebendazole                        | N                            | 1.0406                   | -0.0406          |
| 189        | TR259          | P                            | 0.1165                   | 0.8835            | 414         | metaproterenol                     | N                            | 1.0577                   | -0.0577          |
| 192        | TR269          | P                            | 0.0828                   | 0.9172            | 417         | metoprolol                         | N                            | 1.0113                   | -0.0113          |
| 195        | TR276          | N                            | 1.0005                   | -0.0005           | 420         | midazolam                          | P                            | 0.1428                   | 0.8572           |
| 198        | TR282          | N                            | 0.7816                   | 0.2184            | 423         | misoprostol                        | N                            | 0.9721                   | 0.0279           |
| 201        | TR287          | P                            | 0.0236                   | 0.9764            | 426         | nabumetone                         | N                            | 1.0262                   | -0.0262          |
| 204        | TR299          | P                            | -0.1686                  | 1.1686            | 429         | nalidixic acid                     | P                            | 0.0579                   | 0.9421           |
| 207        | TR305          | N                            | 0.8409                   | 0.1591            | 432         | netilmicin                         | N                            | 1.1067                   | -0.1067          |
| 210        | TR311          | P                            | 0.1264                   | 0.8737            | 435         | nisoldipine                        | N                            | 0.9124                   | 0.0876           |
| 213<br>216 | TR314<br>TR321 | N<br>P                       | <b>0.9386</b> -0.0337    | 0.0614<br>1.0337  | 438<br>441  | nitrofurazone                      | N<br>P                       | <b>0.9127</b><br>−0.1289 | 0.0873<br>1.1289 |
|            |                | P<br>P                       | 0.0459                   | 0.9541            | 441<br>444  | omeprazole<br>oxazepam             | P<br>P                       | 0.1289                   | 0.8414           |
| 219        |                |                              |                          |                   |             | VAULUDUII                          |                              |                          |                  |
| 219<br>222 | TR329<br>TR335 | N                            | 1.0071                   | -0.0071           | 447         | paroxetine                         | N                            | 0.9975                   | 0.0025           |

Table 2 (Continued)

| compd<br>ID | compd name     | carcinogenicity <sup>a</sup> | $\mathrm{DA1}^{b,c}$ | $DA2^c$ | compd<br>ID | compd name    | carcinogenicity <sup>a</sup> | $\mathrm{DA1}^{b,c}$ | $\mathrm{DA}2^c$ |
|-------------|----------------|------------------------------|----------------------|---------|-------------|---------------|------------------------------|----------------------|------------------|
| 453         | perindopril    | N                            | 1.0430               | -0.0430 | 489         | sotalol       | N                            | 1.0271               | -0.0271          |
| 456         | phenformin     | N                            | 0.8470               | 0.1530  | 492         | sulfisoxazole | N                            | 0.9081               | 0.0919           |
| 459         | phenylbutazone | N                            | 0.9130               | 0.0870  | 495         | temazepam     | N                            | 1.0557               | -0.0557          |
| 462         | pimozide       | N                            | 1.0700               | -0.0700 | 498         | terbutaline   | N                            | 1.0668               | -0.0668          |
| 465         | piroxicam      | N                            | 1.0838               | -0.0838 | 501         | theophylline  | N                            | 1.0587               | -0.0587          |
| 468         | probenecid     | N                            | 0.9976               | 0.0024  | 504         | timolol       | P                            | -0.0068              | 1.0068           |
| 471         | propafenone    | N                            | 0.9673               | 0.0327  | 507         | tolbutamide   | N                            | 0.9567               | 0.0433           |
| 474         | pyrilamine     | N                            | 0.9457               | 0.0543  | 510         | tramadol      | N                            | 0.9433               | 0.0567           |
| 477         | ramipril       | N                            | 1.0159               | -0.0159 | 513         | tryptophan    | N                            | 0.9297               | 0.0703           |
| 480         | resorcinol     | N                            | 1.0287               | -0.0287 | 516         | valproic acid | P                            | 0.0935               | 0.9065           |
| 483         | rifampin       | N                            | 0.9495               | 0.0505  | 519         | zolpidem      | P                            | 0.1021               | 0.8979           |
| 486         | scopolamine    | N                            | 1.0345               | -0.0345 |             | . r           |                              |                      |                  |

a "N" refers to carcinogenic negative; "P" is positive. b The compounds with a DA1 value of greater than 0.5, indicating carcinogenic negative as predicted, are shown in boldface in the column of DA1. DA1 is the possibility of a compound to be carcinogenic negative, and DA2 is the possibility of being positive. DA1 + DA2 = 1.0; DA1 > 0.5 means the compound is predicted negative, while DA2 > 0.5 is positive.

Table 3. Experimental and Predicted Carcinogenicities of the MR Data Set, Whose Activities Were Labeled as "IS", "E", "EE", and "SE"

| compd ID | compd name     | carcinogenicity | DA1 <sup>a</sup>        | DA2               | compd ID | compd name     | carcinogenicity | DA1 <sup>a</sup> | DA2              |
|----------|----------------|-----------------|-------------------------|-------------------|----------|----------------|-----------------|------------------|------------------|
| 1        | TR003          | MR=IS           | 0.4451                  | 0.5549            | 46       | TR337          | MR=EE           | 0.9856           | 0.0144           |
| 2        | TR005          | MR=E            | 0.0783                  | 0.9217            | 47       | TR339          | MR=SE           | 0.3794           | 0.620            |
| 3        | TR006b         | MR=E            | 0.5743                  | 0.4257            | 48       | TR341          | MR=SE           | 1.2733           | -0.273           |
| 4        | TR013          | MR=IS           | 0.3785                  | 0.6215            | 49       | TR342          | MR=SE           | 0.0864           | 0.913            |
| 5        | TR016          | MR=E            | 0.1778                  | 0.8222            | 50       | TR345          | MR=EE           | 0.5719           | 0.428            |
| 6        | TR018          | MR=E            | 1.3923                  | -0.3923           | 51       | TR346          | MR=EE           | 0.4625           | 0.537            |
| 7        | TR021a         | MR=E            | 0.4697                  | 0.5303            | 52       | TR350          | MR=SE           | -0.1552          | 1.1552           |
| 8        | TR026          | MR=IS           | 0.5684                  | 0.4316            | 53       | TR355          | MR=EE           | 0.8964           | 0.103            |
| 9        | TR027          | MR=E            | 0.4237                  | 0.5763            | 54       | TR356          | MR=EE           | 1.2616           | -0.2610          |
| 10       | TR042          | MR=IS           | 1.0495                  | -0.0495           | 55       | TR360          | MR=SE           | 0.4866           | 0.5134           |
| 11       | TR043          | MR=IS           | 0.3829                  | 0.6171            | 56       | TR363          | MR=SE           | 0.2747           | 0.7253           |
| 12       | TR052          | MR=E            | 0.3044                  | 0.6956            | 57       | TR364          | MR=EE           | 0.6262           | 0.3738           |
| 13       | TR057          | MR=E            | 0.4374                  | 0.5626            | 58<br>59 | TR365          | MR=EE           | 0.2284           | 0.7716           |
| 14       | TR062<br>TR065 | MR=IS<br>MR=IS  | 1.5800                  | -0.5800 $0.9183$  | 60       | TR366          | MR=SE           | 0.7078<br>1.0387 | 0.2922 $-0.0383$ |
| 15<br>16 | TR069          | MR=IS<br>MR=E   | 0.0817<br><b>1.4504</b> | -0.4504           | 61       | TR367<br>TR369 | MR=EE<br>MR=SE  | 0.6882           | 0.3118           |
| 17       | TR070          | MR=E<br>MR=E    | 1.4504                  | -0.4304 $-0.5027$ | 62       | TR376          | MR=EE           | 0.3809           | 0.619            |
| 18       | TR075          | MR=E<br>MR=E    | 0.7592                  | 0.2408            | 63       | TR380          | MR=IS           | 1.1730           | -0.019           |
| 19       | TR075          | MR=E<br>MR=E    | 0.7392                  | 0.2408            | 64       | TR382          | MR=SE           | 0.9265           | 0.173            |
| 20       | TR106          | MR=IS           | 0.1428                  | 0.6829            | 65       | TR404          | MR=EE           | 1.0163           | -0.016           |
| 21       | TR116          | MR=E            | 0.1861                  | 0.8139            | 66       | TR407          | MR=SE           | 0.2396           | 0.7604           |
| 22       | TR131c         | MR=E            | 0.4175                  | 0.5825            | 67       | TR409          | MR=SE           | 1.0775           | -0.0775          |
| 23       | TR152          | MR=E            | 2.6139                  | -1.6139           | 68       | TR411          | MR=EE           | 0.4027           | 0.5973           |
| 24       | TR189          | MR=E            | 0.3439                  | 0.6561            | 69       | TR414          | MR=SE           | 0.4051           | 0.5949           |
| 25       | TR213          | MR=IS           | 0.6236                  | 0.3764            | 70       | TR419          | MR=EE           | 1.0125           | -0.012           |
| 26       | TR215          | MR=E            | 0.9166                  | 0.0834            | 71       | TR420          | MR=EE           | 0.3767           | 0.6233           |
| 27       | TR232          | MR=E            | 0.4286                  | 0.5714            | 72       | TR422          | MR=SE           | 0.2322           | 0.7678           |
| 28       | TR237          | MR=E            | 0.4503                  | 0.5497            | 73       | TR423          | MR=SE           | 0.3367           | 0.6633           |
| 29       | TR240          | MR=E            | 1.0263                  | -0.0263           | 74       | TR430          | MR=SE           | -0.3677          | 1.367            |
| 30       | TR243          | MR=IS           | 0.4640                  | 0.5360            | 75       | TR436          | MR=SE           | 0.5254           | 0.4746           |
| 31       | TR261          | MR=E            | 0.4784                  | 0.5216            | 76       | TR447          | MR=EE           | 1.0193           | -0.0193          |
| 32       | TR267          | MR=SE           | 0.4330                  | 0.5670            | 77       | TR449          | MR=EE           | 0.9900           | 0.0100           |
| 33       | TR271          | MR=EE           | 1.0077                  | -0.0077           | 78       | TR456          | MR=SE           | -0.2147          | 1.2147           |
| 34       | TR274          | MR=EE           | 0.5879                  | 0.4121            | 79       | TR457          | MR=SE           | 0.8023           | 0.1977           |
| 35       | TR291          | MR=SE           | 0.6275                  | 0.3725            | 80       | TR458          | MR=SE           | 0.6236           | 0.3764           |
| 36       | TR298          | MR=SE           | -0.0186                 | 1.0186            | 81       | TR463          | MR=SE           | 0.5369           | 0.463            |
| 37       | TR303          | MR=IS           | 0.2345                  | 0.7655            | 82       | TR468          | MR=EE           | 1.2112           | -0.2112          |
| 38       | TR306          | MR=SE           | 0.7271                  | 0.2729            | 83       | TR470          | MR=SE           | 0.4995           | 0.5003           |
| 39       | TR309          | MR=SE           | -1.3934                 | 2.3934            | 84       | TR475          | MR=SE           | 0.5410           | 0.4590           |
| 40       | TR315          | MR=EE           | 1.1919                  | -0.1919           | 85       | TR476          | MR=EE           | 1.6505           | -0.6505          |
| 41       | TR318          | MR=EE           | 1.8655                  | -0.8655           | 86       | TR482          | MR=SE           | 0.6901           | 0.3099           |
| 42       | TR320          | MR=EE           | 0.2928                  | 0.7072            | 87       | TR483          | MR=SE           | 0.6629           | 0.337            |
| 43       | TR323          | MR=SE           | 0.2928                  | 0.7072            | 88       | TR485          | MR=EE           | 1.1150           | -0.1150          |
| 44       | TR332          | MR=SE           | 0.2392                  | 0.7608            | 89       | TR487          | MR=SE           | 0.0804           | 0.9196           |
| 45       | TR334          | MR=SE           | 0.3794                  | 0.6206            | 90       | TR494          | MR=SE           | -0.0081          | 1.0081           |

<sup>&</sup>lt;sup>a</sup> The compounds with a DA1 value of greater than 0.5, indicating carcinogenic negative as predicted, are shown in boldface in the column of DA1.

mental information, it was straightforward for PLS-DA models based on atom types to identify the chemical moieties that related to carcinogenicity. Variable influence on projection (VIP) analysis of PLS-DA model gives quantitative estimates of the discrimination power of each atom type or correction factor. The VIP plots of PLS-DA models, as



Figure 3. VIP plot of PLS-DA models for MM, FM, MR, and FR.

shown in Figure 3, described the atom types and correction factors with the strongest discrimination power. For the MM and FM models, molecular weight (M1), number of aromatic rings (M13), and molecule without any ring (M20) were important factors to separate positives from negatives. For the MM, oxygen atom in sulfone or phosphate group (O28) was the atom type with the highest discrimination power. The atom type O28 occurred in 56 molecules, and only 6 of them were positive, with a positive ratio of 10.7% (6/56), significantly lower than 28.5% of positives in the original data set. The positive ratio dropped to 5.0% (2/40) for those compounds containing more than one O28 atom. The same atom type, O28, also appeared less frequently in FM positives. For molecules containing O28 atom, only 9 out of 57 (15.8%) molecules were positives, and only 3 out of 39 (7.7%) were positives, when a molecule contained more than one O28 atom. The results implied that compounds with a sulfone or a phosphate group were less likely to be carcinogenic in both the male and female mouse. However, the conclusion was less solid for male or female rat, where the positive ratios of the molecules with the atom type O28 were 27.3% (15/55) and 21.1% (12/57) for MR and FR, respectively. Another interesting observation from analyzing VIPs across species and gender was that the differences across gender were less than those across species. Comparing the 12 variables with the highest discrimination power, male and female mice had 6 in common, male and female rats had 5 in common, while male mice and rats had only 2 in common, and female mice and rats had 4 in common. There was one atom type, S18, a sulfur atom double bonded to a

Figure 4. Structures of compounds (a) TR033 and (b) TR124.

non-carbon atom, that played an important role in all four models, suggesting that compounds containing sulfone, sulfonamide, or thiophosphate were least likely to be carcinogenic.

Atom types or correction factors that contributed the most to differentiating the carcinogenic activities across species and gender can be identified by coefficient analysis of the four PLS-DA models. As listed in Table 4, compounds with atom type C78, a carbon atom double bonded to another carbon and single bonded to an aromatic carbon and a noncarbon, tend to be carcinogenic positive for male mice and negative for male rats, such as in compound TR033. On the other hand, compounds with atom type S13, a sulfur atom double bonded to an oxygen and single bonded to two aliphatic atoms, are most likely to be positive for male mice and negative for female mice, such as in compound TR124 (Figure 4). Ultimately, it is desired to be able to predict carcinogenicity across a range of different animal species and across genders; therefore, it is necessary to build a global single model. To build such a global model, reliable submodels, such as those described herein, are a first, but

Table 4. Coefficients of the Molecular Descriptors in Four PLS-DA Models

|            |                  |                   |                    |                   | OIS III F  | our PLS-D         |                  |                   |                    |            |                  |                   |                    |                    |
|------------|------------------|-------------------|--------------------|-------------------|------------|-------------------|------------------|-------------------|--------------------|------------|------------------|-------------------|--------------------|--------------------|
| Var ID     | MM               | FM                | MR                 | FR                | Var ID     | MM                | FM               | MR                | FR                 | Var ID     | MM               | FM                | MR                 | FR                 |
| constant   | 0.5085           | 0.4953            | 0.5057             | 0.5040            | C79        | 0.0226            | -0.0945          | 0.0154            | 0.0275             | O11        | 0.0046           | 0.0205            | 0.0018             | 0.0035             |
| C1         | 0.0101           | 0.0158            | -0.0010            | 0.0057            | C80        | 0.0032            | 0.0051           | 0.0619            | 0.0301             | O12        | 0.0153           | 0.0179            | 0.0360             | 0.0412             |
| C2         | -0.0077          | -0.0183           | 0.0010             | 0.0064            | C81        | -0.0083           | 0.0130           | -0.0114           | 0.0069             | O13        | 0.0093           | 0.0168            | 0.0008             | 0.0220             |
| C3         | -0.0003          | -0.0003           | -0.0007            | 0.0003            | C82        | 0.0430            | 0.0151           | -0.0431           | -0.0192            | O15        | 0.0177           | -0.1058           | 0.0018             | 0.0003             |
| C4         | -0.0026          | 0.0070            | 0.0075             | 0.0052            | C83        | 0.0233            | -0.0107          | -0.0428           | -0.0432            | O16        | -0.1645          | 0.0078            | 0.0402             | -0.0591            |
| C5         | 0.0048           | -0.0121           | 0.0099             | -0.0003           | C84        | 0.0161            | 0.0328           | -0.0056           | -0.0341            | O17        | -0.0049          | 0.0158            | -0.0105            | -0.0029            |
| C6         | 0.0070           | 0.0134            | -0.0159            | 0.0069            | C85        | 0.0749            | -0.0913          | 0.1155            | 0.0478             | O18        | 0.0222           | 0.0127            | 0.0215             | 0.0211             |
| C7         | -0.0173          | 0.0380            | -0.0088            | -0.0195           | C87        | -0.0622           | -0.0973          | -0.0774           | -0.1314            | O19        | -0.0016          | -0.0021           | -0.0059            | -0.0042            |
| C8         | 0.0314           | 0.0472            | 0.0177             | 0.0302            | C88        | -0.0715           | 0.0003           | -0.0776           | 0.0295             | O21        | 0.0144           | -0.0213           | 0.0147             | 0.0019             |
| C9         | -0.0117          | -0.0214           | 0.0091             | -0.0197           | H1         | 0.0003            | -0.0004          | 0.0000            | -0.0002            | O22        | -0.0489          | 0.0154            | -0.0161            | -0.0351            |
| C10        | 0.0014           | 0.0024            | -0.0026            | -0.0015           | H2         | -0.0004           | -0.0054          | -0.0007           | 0.0004             | O23        | 0.0357           | 0.0097            | 0.0106             | 0.0273             |
| C11        | 0.0001           | 0.0020            | 0.0198             | 0.0192            | НЗ         | -0.0045           | 0.0100           | -0.0002           | 0.0017             | O24        | 0.0025           | 0.0028            | 0.0034             | 0.0106             |
| C12        | -0.0004          | -0.0043           | -0.0012            | -0.0020           | H4         | 0.0113            | 0.0073           | 0.0107            | 0.0077             | O26        | -0.0005          | 0.0019            | 0.0068             | 0.0028             |
| C13        | -0.0066          | 0.0016            | 0.0081             | 0.0083            | H5         | 0.0038            | -0.0051          | 0.0071            | 0.0072             | O27        | 0.0014           | 0.0047            | 0.0006             | -0.0017            |
| C14<br>C15 |                  | -0.0038           | -0.0102            | 0.0071<br>0.0003  | Н6<br>Н7   | -0.0048 $-0.0023$ | -0.0053          | 0.0378            | 0.0115 $-0.0020$   | O28<br>O29 | 0.0069<br>0.0049 | -0.0002 $0.0024$  | 0.0015<br>0.0071   | 0.0007<br>0.0048   |
| C15        | -0.0005          | -0.0018 $-0.0082$ | -0.0018 $-0.0117$  | -0.0383           | N2         | 0.0023            | 0.0063<br>0.0208 | -0.0014 $0.0148$  | 0.0020             | O30        | 0.0049           | 0.0024            | -0.0071            | -0.0048            |
| C10        |                  | -0.0082 $-0.0016$ | -0.0117<br>-0.0021 | -0.0383 $-0.0047$ | N3         | 0.0138            | 0.0208           | -0.0148           | -0.0034            | O30        | -0.0004          | -0.0142           | -0.0610            | -0.0070 $-0.0183$  |
| C17        | -0.0013          | -0.0016 $-0.0015$ | 0.0021             | 0.0025            | N4         | 0.0023            | 0.0130           | -0.0104 $-0.0310$ | -0.0184<br>-0.0276 | F1         | 0.0431           | -0.0191 $-0.0032$ | -0.0010 $-0.0073$  | 0.0220             |
| C19        | 0.0055           | -0.0013           | -0.0047            | 0.0025            | N5         | 0.0328            | -0.0125          | 0.0310            | 0.0270             | F2         | 0.0051           | 0.0032            | -0.0075            | -0.0173            |
| C20        | 0.0008           | 0.0004            | -0.0006            | -0.0004           | N6         | 0.0022            | -0.0983          | -0.0076           | 0.0028             | F3         | 0.0002           | -0.0100           | 0.0093             | 0.0086             |
| C21        | -0.0563          | -0.0598           | -0.0258            | -0.0674           | N7         | 0.0539            | 0.0287           | 0.0130            | -0.0521            | F4         | -0.0135          | 0.0023            | -0.0007            | -0.0009            |
| C22        | 0.0046           | 0.0218            | -0.0304            | -0.0098           | N8         |                   | -0.0005          | 0.0628            | 0.0610             | F5         | -0.0301          | -0.0307           | -0.0203            | -0.0314            |
| C23        | 0.0196           | 0.0059            | 0.0788             | 0.0627            | N10        | -0.0105           | -0.0690          | -0.0001           | 0.0028             | F6         | -0.0393          | 0.0539            | -0.0339            | -0.0475            |
| C24        | -0.0036          |                   | -0.0108            | -0.0126           | N11        | 0.0301            | 0.0117           | -0.0306           | -0.0507            | F8         | 0.0558           | -0.0521           | 0.0224             | 0.0218             |
| C25        | -0.0587          | -0.0631           | 0.0135             | 0.0526            | N12        | -0.0190           | -0.0608          | -0.0089           | 0.0196             | P1         | 0.0214           | 0.0374            | 0.0037             | -0.0224            |
| C26        | -0.0315          | -0.0374           | -0.0130            | -0.0296           | N13        | -0.0587           | 0.0657           | -0.0008           | 0.0330             | P3         | 0.0557           | 0.0775            | -0.0146            | 0.0326             |
| C28        | 0.0081           | 0.0256            | 0.0194             | 0.0022            | N14        | 0.0389            | 0.0030           | 0.0344            | 0.0562             | P4         | 0.0749           | -0.0239           | 0.0746             | 0.0629             |
| C29        | -0.0155          | -0.0297           | -0.0333            | -0.0175           | N15        | -0.0131           | 0.0129           | -0.0139           | 0.0019             | P6         | -0.0196          | 0.0582            | -0.0132            | -0.0151            |
| C30        | -0.0025          | 0.0126            | -0.0092            | -0.0177           | N16        | 0.0347            | 0.0229           | 0.0132            | -0.0070            | S2         | 0.0027           | -0.1118           | -0.0526            | -0.0243            |
| C31        | 0.0278           | 0.0445            | 0.0490             | 0.0460            | N17        | 0.0130            | 0.0049           | 0.0228            | 0.0164             | S3         | 0.0198           |                   | -0.0152            | -0.0455            |
| C32        | 0.0844           | 0.0397            | 0.1005             | -0.0003           | N18        | -0.0157           | 0.0204           | 0.0372            | 0.0161             | S4         | 0.0301           | -0.0283           | -0.0306            | 0.0036             |
| C34        | 0.1347           | 0.1000            | 0.1115             | 0.1000            | N20        | 0.0180            | -0.0055          | -0.0313           | 0.0251             | S5         | 0.0821           | 0.0367            | -0.0366            | -0.0205            |
| C35        | -0.0022          | -0.0098           | 0.0215             | 0.0172            | N21        | 0.0270            | 0.0235           | -0.0087           | -0.0048            | S6         | 0.0609           | 0.1190            | 0.0391             | 0.0700             |
| C36        | 0.0061           | -0.0078           | 0.0299             | -0.0231           | N22        | -0.0193           | 0.0151           | 0.0022            | 0.0015             | S7         | 0.1518           | 0.0785            | 0.0637             | -0.1353            |
| C37        | -0.2497          | -0.2286           | -0.1624            | -0.1813           | N23        | -0.0384           | -0.0146          | 0.0358            | 0.0250             | S8         | 0.0893           | -0.0713           | 0.0786             | 0.0665             |
| C38<br>C39 | 0.0048<br>0.0152 | 0.0051<br>0.0114  | 0.0014 $-0.0081$   | 0.0010 $-0.0154$  | N24        | 0.0071<br>0.0732  | 0.0640<br>0.0536 | 0.0107 $-0.0453$  | -0.0315 $0.0014$   | S9<br>S10  | 0.0878 $-0.0422$ | 0.0029<br>0.0172  | -0.0401 $0.0424$   | -0.1492 $-0.0503$  |
| C40        | 0.0132           | 0.0114            | 0.0012             | 0.0134            | N25<br>N27 | -0.0732           | -0.0536          | -0.0433 $-0.0274$ | 0.0014             | S10<br>S12 | 0.0129           | -0.0172 $-0.0874$ | -0.0424 $-0.0581$  | 0.0511             |
| C40<br>C41 | 0.0093           | 0.0073            | -0.0012            | -0.0076           | N28        | -0.0372 $0.0214$  | 0.0249           | -0.0274 $-0.0279$ | -0.0300            | S12        | -0.2070          | 0.1070            | -0.0381<br>-0.1391 | -0.0285            |
| C42        | 0.0855           | 0.0110            | 0.0294             | 0.0070            | N29        |                   | -0.0856          | 0.0275            | 0.0238             | S13        | -0.0716          |                   | -0.0375            | -0.2338            |
| C43        | 0.0004           | 0.0001            | 0.0005             | -0.0010           | N30        |                   | -0.0550          | 0.0232            | 0.0198             | S15        | 0.1028           | -0.0134           | 0.1193             | -0.0081            |
| C44        | 0.0172           | 0.0141            | 0.0231             | 0.0110            | N31        |                   | -0.0106          | 0.1092            | 0.0288             | S16        | 0.1238           | 0.0142            | 0.0004             | 0.0884             |
| C45        | -0.0711          | -0.0557           | 0.0742             | -0.0312           | N32        |                   | -0.0870          | -0.0322           | -0.0196            | S18        | -0.0016          | -0.0084           | 0.0104             | 0.0083             |
| C46        | -0.0073          | -0.0062           | 0.0028             | -0.0011           | N33        | -0.0579           | 0.0035           | -0.0520           | -0.0669            | S19        | 0.0039           | 0.0373            | -0.0011            | -0.0045            |
| C47        | 0.0036           | 0.0061            | 0.0003             | -0.0114           | N34        | 0.0079            | 0.0082           | 0.0011            | 0.0058             | S22        | 0.0068           | -0.0239           | -0.0307            | 0.0196             |
| C48        | -0.0151          | -0.0537           | -0.0122            | 0.0123            | N36        | 0.0023            | -0.0263          | 0.0183            | 0.0105             | S23        | 0.0467           | -0.0045           | -0.0132            | -0.0225            |
| C49        |                  |                   | -0.0034            |                   |            | -0.0297           |                  |                   |                    | S24        |                  | -0.0049           |                    |                    |
| C50        | -0.0006          |                   | -0.0303            |                   | N39        |                   | -0.0558          | 0.0181            | 0.0012             | M1         | -0.0043          | 0.0081            | -0.0066            | -0.0036            |
| C51        | -0.0024          |                   | -0.0206            | -0.0116           | N40        | -0.0347           | 0.0173           | -0.0130           | -0.0041            | M2         | -0.0055          | 0.0109            | 0.0024             | -0.0050            |
| C52        | 0.0528           | 0.0411            | 0.0529             | 0.0484            | N42        | 0.0854            | 0.0113           | 0.0502            | 0.0907             | M3         | 0.0065           | -0.0160           | 0.0253             | 0.0041             |
| C53        | 0.0424           | 0.0368            | -0.0111            | -0.0144           | N43        | 0.0156            | -0.0134          |                   | -0.0225            | M4         | 0.0065           | -0.0010           | 0.0210             | 0.0015             |
| C54        | -0.0127          | -0.0053           | 0.0035 $-0.0001$   | 0.0249            | N44        | 0.0090<br>0.0223  | 0.0136           |                   | -0.0150            | M5         | -0.0013          | 0.0554            | -0.0177            | 0.0229             |
| C55<br>C57 | 0.0489 $-0.0158$ | 0.0162<br>0.0170  | -0.0001 $-0.0069$  | 0.0180<br>0.0122  | N45<br>N46 | 0.0223            | -0.0521 $0.0205$ |                   | -0.0092 $-0.0224$  | M6<br>M7   | -0.0294          | -0.0175 $-0.0063$ | -0.0696 $0.0057$   | -0.0135 $-0.0801$  |
| C58        | 0.0138           | 0.0170            | 0.0223             | 0.0122            | N47        | 0.0214            | 0.0203           | -0.0037           | 0.0224             | M8         | -0.0074          | 0.0043            | 0.0037             | -0.0801<br>-0.0171 |
| C59        | -0.1509          | 0.0137            | 0.0223             | 0.0102            | N48        | 0.0237            | 0.0203           |                   | -0.0333            | M9         | -0.0024          |                   |                    | 0.0010             |
| C60        | 0.0711           | 0.0205            | 0.0211             | 0.0481            | N49        | 0.0534            | 0.0151           |                   | -0.0094            | M10        | -0.0434          | 0.0032            | -0.0041            | -0.0014            |
| C61        | 0.0454           | 0.0433            | 0.0327             | 0.0464            | N50        | 0.0233            | 0.0038           | -0.0428           |                    | M11        | -0.0041          | -0.0013           | 0.0238             | 0.0032             |
| C62        | 0.0430           | 0.0097            | 0.0061             | 0.0002            | N51        |                   | -0.0044          |                   | -0.0068            | M12        | -0.0125          | 0.0002            |                    | 0.0360             |
| C63        | 0.0025           | 0.0081            | 0.0034             | 0.0106            | N52        |                   |                  | -0.0073           | -0.0043            | M13        |                  | -0.0440           | -0.0041            | -0.0005            |
| C65        | 0.0023           | 0.0127            | 0.0063             | 0.0049            | N53        | -0.0070           | -0.0557          |                   | -0.0096            | M14        | -0.0015          | -0.0258           | -0.0171            | -0.0027            |
| C66        | 0.0029           | -0.0021           | 0.0029             | 0.0017            | N54        | -0.1658           | 0.0217           | -0.1477           | -0.1007            | M15        | -0.0259          | -0.0136           | 0.0138             | 0.0042             |
| C67        | -0.0015          | -0.0141           | 0.0055             | 0.0010            | N55        | 0.0160            | 0.0242           | 0.0480            | 0.0351             | M16        | 0.0071           | -0.0568           | -0.0252            | 0.0139             |
| C68        |                  | -0.0106           | 0.0029             | 0.0007            | N56        | 0.0074            |                  | 0.0023            | 0.0216             | M17        | -0.0037          | 0.0359            | -0.0352            | -0.0174            |
| C69        | -0.0047          | 0.0353            | -0.0147            | -0.0109           | O1         | -0.0492           | 0.0250           | -0.0718           | -0.0167            | M18        | -0.0761          | 0.0262            | -0.2116            | -0.0303            |
| C70        |                  | -0.0018           | 0.0207             | 0.0607            | O2         | 0.0214            | -0.0353          | 0.0037            | 0.0187             | M20        | 0.0266           | 0.0006            | 0.0113             | -0.0135            |
| C71        |                  | -0.0240           | 0.0074             | 0.0030            | O3         | -0.0204           | 0.0118           | -0.0278           | -0.0186            | M21        | 0.0019           | 0.0064            | -0.0011            | 0.0145             |
| C72        | -0.0284          | 0.0318            | 0.0263             | -0.0021           | 04         | 0.0156            | 0.0088           | 0.0196            | 0.0066             | M22        | 0.0093           | 0.0035            | 0.0012             | 0.0006             |
| C73        | -0.0003          | 0.0223            | -0.0238            | 0.0014            | O5         | 0.0077            | 0.0052           | 0.0239            | -0.0015            | M23        | 0.0062           | 0.0051            | 0.0396             | 0.0026             |
| C74        | 0.0186           |                   | 0.0107             | -0.0469           | O6         | 0.0269            | 0.0112           | 0.0313            | 0.0156             | M24        | 0.0049           | 0.0033            | -0.0045            | 0.0334             |
| C75        | -0.0288          | -0.0177           | -0.1333            | -0.0427           | 07         | 0.0053            | 0.0176           | -0.0018           | 0.0028             | M25        | 0.0014           | 0.0106            | 0.0060             | -0.0024            |
| C76        | -0.0142          | 0.0085            | 0.0058             | 0.0390 $-0.0179$  | 08         | 0.0127<br>0.0023  | 0.0052           | 0.0190<br>0.0029  | 0.0167             | M26<br>M27 | -0.0005          | 0.0045            | 0.0004<br>0.0025   | 0.0069             |
| C77        | -0.0017          |                   | -0.0081            |                   | O9<br>O10  |                   | -0.0102 $0.0022$ |                   | 0.0052 $-0.0191$   | IV12/      | 0.0011           | 0.4484            | 0.0025             | 0.0107             |
| C78        | -0.1966          | 0.0115            | 0.113/             | -0.2154           | 010        | -0.0094           | 0.0022           | 0.0129            | 0.0191             |            |                  |                   |                    |                    |

essential, step. More extensive data sets will be needed to bridge the gap between rodent carcinogenesis and human carcinogenesis.

#### **SUMMARY**

The application of a university molecular descriptor system has been extended to the field of toxicology modeling. Four PLS-DA models were built to predict carcinogenicities in each of four rodent models: MM, FM, MR, and FR. The models were highly predictive, with  $r^2 = 0.987$  and  $q^2 = 0.944$  for MM,  $r^2 = 0.985$  and  $q^2 = 0.950$  for FM,  $r^2 = 0.989$  and  $q^2 = 0.962$  for MR, and  $r^2 = 0.990$  and  $q^2 = 0.965$  for FR. Model validations were carried out by response permutation testing and external validation, and the results indicated that the models were both statistically significant and robust. Coefficient analysis and VIP analysis identified the specific atom types and fragments that contributed most significantly to carcinogenicity and response differences across species and gender.

# ACKNOWLEDGMENT

The author would like to acknowledge Drs. Sung-Sau So and David Fry for critical reading of the manuscript and insightful suggestions.

### REFERENCES AND NOTES

- Sun, H. A Universal Molecular Descriptor System for Prediction of logP, logS, logBB and Absorption. J. Chem. Inf. Comput. Sci. 2004, 44, 748-757.
- (2) National Toxicology Program. http://ntp-server.niehs.nih.gov/main\_pages/ about\_NTP.html.
- (3) Contrera, J. F.; Jacobs, A. C.; DeGorge, J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. *Regul. Toxicol. Pharmacol.* 1997, 25, 130–145.
- (4) Sato, S.; Tomita, I. Short-Term Screening Method for the Prediction of Carcinogenicity of Chemical Substances: Current Status and Problems of an in vivo Rodent Micronucleus Assay. J. Health Sci. 2001, 47, 1–8.
- (5) Ames, B. N.; Durston, W. E.; Yamasaki, E.; Lee, F. D. Carcinogens Are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection. *Proc. Natl. Acad. Sci. U.S.A.* 1973, 70, 2281–2285.
- (6) Maron, D. M.; Ames, B. N. Revised Methods for the Salmonella Mutagenicity Test. *Mutat. Res.* 1983, 113, 173–215.

- (7) Yuspa, S. H.; Poirier, M. C. Chemical Carcinogenesis: From Animal Models to Molecular Models in One Decade. Adv. Cancer Res. 1988, 50, 25-70.
- (8) Lee, Y.; Buchanan, B. G.; Klopman, G.; Dimayuga, M.; Rosenkranz, H. S. The Potential of Organ Specific Toxicity for Predicting Rodent Carcinogenicity. *Mutat. Res.* **1996**, *358*, 37–62.
- (9) Sanderson, D. M.; Earnshaw, C. G. Compuer Prediction of Possible Toxic Action from Chemical Structure; the DEREK System. *Human Exp. Toxicol.* 1991, 10, 261–273.
- (10) Franke, R.; Gruska, A.; Giuliani, A.; Benigni, R. Prediction of Rodent Carcinogenicity of Aromatic Amines: A Quantitative Structure— Activity Relationships Model. *Carcinogenisis* 2001, 22, 1561— 1571.
- (11) Benigni, R.; Passerini, L. Carcinogenicity of the Aromatic Amines: From Structure—Activity Relationships to Mechanisms of Action and Risk Assessment. *Mutat. Res.* 2002, 511, 191–206.
- (12) Cariello, N. F.; Wilson, J. D.; Britt, B. H.; Wedd, D. J. Burlinson, B.; Gombar, V. Comparison of the Computer Programs DEREK and TOPKAT to Predict Bacterial Mutagenicity. *Mutagenesis* 2002, 14, 321–329.
- (13) Enslein, K.; Gombar, V. K.; Blake, B. W. Use of SAR in Computer-Assisted Prediction of Carcinogenicity and Mutagenicity of Chemicals by the TOPKAT Program. *Mutat. Res.* **1994**, *305*, 47–61.
- (14) Debnath, A. K.; Lopez de Compadre, R. L.; Debnath, G.; Shusterman, A. J.; Hansch, C. Structure—Activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. J. Med. Chem. 1991, 34, 786-797.
- (15) Young, S. S.; Gombar, V. K.; Emptage, M. R.; Cariello, N. F.; Lambert, C. Mixture Deconvolution and Analysis of Ames Mutagenicity Data. *Chem. Intell. Lab. Sys.* 2002, 60, 5–11.
- (16) Lee, Y.; Buchanan, B. G.; Mattison, D. M.; Klopman, G.; Dimayuga, M.; Rosenkranz, H. S. Learning Rules to Predict Rodent Carcinogenicity of Non-Genotoxic Chemicals. *Mutat. Res.* 1995, 328, 127–149.
- (17) Taningher, M.; Malacarne, D.; Perrotta, A.; Parodi, S. Computer-Aided Analysis of Mutagenicity and Cell Transformation Data for Assessing Their Relationship With Carcinogenicity. *Environ. Mol. Mutagen.* 1999, 33, 226–239.
- (18) Klopman, G.; Chakravarti, S. K.; Zhu, H.; Ivanov, J. M.; Saiakhov, R. D. ESP: A Method To Predict Toxicity and Pharmacological Properties of Chemicals Using Multiple MCASE Databases. J. Chem. Inf. Comput. Sci. 2004, 41, 671–678.
- (19) http://www.predictive-toxicology.org/data/ntp/.
- (20) http://www.predictive-toxicology.org/data/fda/.
- (21) Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Multi- and Megavariate Data Analysis Principles and Applications; 2001; Umetrics Academy: Kinnelon, NJ.
- (22) SIMCA-P 10.0, Umetric Inc., Kinnelon, NJ. http://www.umetrics.com.
- (23) ChemTree, Golden Helix, Inc. Bozeman, MT. http://www.goldenhe-lix.com.
- (24) Rao, S. N.; Stockfisch, T. P. Partially Unified Multiple Property Recursive Partitioning (PUMP-RP) Analyses of Cyclooxygenase (COX) Inhibitors. J. Chem. Inf. Comput. Sci. 2003, 43, 1614-1622.

CI049917Y