1) A reação de decomposição do iodeto de hidrogénio HI \rightarrow ½ H₂+ ½ I₂ foi a primeira reação em fase gasosa cuja cinética foi estudada sistematicamente. É uma reação de 2ª ordem. A constante de velocidade k₂ desta reação aumenta rapidamente com a temperatura, tomando valores de k₂= 10^{-6} mol⁻¹dm³s⁻¹ à temperatura de 558 K , k₂= 10^{-2} mol⁻¹dm³s⁻¹ a 723 K e k₂= 10^{-1} mol⁻¹dm³s⁻¹ a 781 K

a) Calcule a energia de ativação Ea daquela reação.

b) A pressão parcial do reagente iodeto de hidrogénio foi seguida ao longo do tempo, à temperatura de 645 K, tendo-se obtido a seguinte tabela:

t/h	0	48	96	144
p/bar	0,100	0,093	0,087	0,082

Demonstre que a reação é realmente de 2ª ordem (escreva na sua resposta a equação da reta que obteve). Calcule o valor da constante de velocidade k₂ a esta temperatura de 645 K?

c) Demonstre que o valor da constante de velocidade k_2 que acabou de calcular [na alínea b)] é consistente com os valores de k_2 apresentados na alínea a). [Para este efeito, vai ter que calcular k_2 a 645 K, usando a equação de Arrhenius obtida na alínea a), e comparar com o valor da constante da alínea b) <u>nas mesmas unidades</u>, para o que poderá ser útil saber que talvez tenha que usar a constante dos gases perfeitos R=0,0831 bar dm³ K^{-1} mol $^{-1}$]

d) Calcule a entropia de ativação da reação, a 298 K, utilizando a fórmula $\Delta S^{\dagger}=R$ [ln(A/B) - 2], em que B= 1,732x10 9 T 2 mol $^{-1}$ dm 3 s $^{-1}$ e A é o fator pré exponencial da equação de Arrhenius. Relacione o valor de entropia obtido com a estrutura e organização do complexo ativado da reação.

2) Um dos mecanismos propostos em catálise ácida homogénea é o mecanismo prototrópico, que inclui as seguintes reações:

$$\begin{array}{c} k_1 \\ S + HA & \rightleftharpoons SH^+ + A^- \\ k_{-1} \\ SH^+ + A^- \rightarrow P + HA \\ k_2 \end{array}$$

a) Deduza uma expressão para a velocidade de formação do produto d[P]/dt, aplicando a aproximação do estado estacionário a um dos produtos intermediários SH⁺ ou A⁻.

b) Se a última reação for lenta, a energia de ativação da reação global é uma soma algébrica de energias de ativação de reações elementares. Quais são as parcelas dessa soma? Poderá a energia de ativação ser negativa?

3) A forma da batata frita da Pringles aqui ao lado sugere-lhe alguma coisa que tenha que ver com Dinâmica Reacional e complexo ativado?

Se sim, escreva num máximo de 10 linhas, se não, não escreva nada.

Resolução

1 a) Representando In k₂ em função de 1/T

b) Reação de 2ª ordem – o inverso da pressão parcial do reagente deve variar linearmente com o tempo

t/h	0	48	96	144
p/bar	0.1	0.093	0.087	0.082
1/p	10	10.75269	11.49425	12.19512

k₂= 0.0153 bar⁻¹ h⁻¹.

c) Utilizando a equação de Arrhenius na forma apresentada em a),

$$ln k_2 = -22505 / T + 26.517$$

substituindo T = 645 K, obtém-se k_2 (645 K) = 2,307 x10⁻⁴ mol⁻¹ dm³ s⁻¹.

Calculando agora k com base no gráfico da alínea b) $\frac{1}{p_{HI}} = (\frac{1}{p_{HI}})_0 + kt$

$$\rightarrow$$
 k = 1,5264x10⁻² bar⁻¹h⁻¹= 1,5264x10⁻² x 53.625/3600 = **2,27** x **10**⁻⁴ mol⁻¹ dm³ s⁻¹

(Para transformar unidades

 h^{-1} para s-1, dividimos por 3600; bar-1 para dm³mol-1, utilizamos a equação dos gases perfeitos na forma (V/n) =RTx(1/p), em que R = 8,314 J K-1 mol-1 = 0,08314 bar dm³ K-1 mol-1 [1 J = 1 Pa m³ = 10^{-2} bar dm³] e T=645 K, logo multiplicamos por 0,08314x645 = 53,625)

Podemos também representar a tabela acima em unidades t/s e [HI]/ mol dm⁻³, com o mesmo resultado:

d)

Em geral, numa reação bimolecular, a formação dum complexo ativado a partir de duas moléculas reagentes resulta em entropias de ativação negativas. Quanto mais negativa a entropia de ativação, mais "ordenados" têm que ser os complexos ativados que conduzem aos produtos, e maior o nº de choques não efetivos, por não terem a ordem adequada.

O valor de – 67 J K⁻¹ mol⁻¹ é um valor intermédio (foram dados exemplos nas aulas de valores de ΔS^{\dagger} = – 150 J K⁻¹ mol⁻¹), pelo que podemos considerar o complexo ativado de duas moléculas de HI como moderadamente ordenado.

2) a) Aplicação da hipótese do estado estacionário a A-:

$$\frac{d[A^-]}{dt} = k_1[S][HA] - k_{-1}[A^-][SH^+] - k_2[A^-][SH^+] = 0$$

Por outro lado, a velocidade de formação de produto é dada por

$$\frac{d[P]}{dt} = k_2[A^-][SH^+] = k_2 \frac{k_1[S][HA]}{k_{-1} + k_2}$$

b) Se a reação final é lenta, a sua constante de velocidade é pequena $k_2 << k_{-1}$:

$$\frac{d[P]}{dt} = k[HA][S] = k_2 \frac{k_1}{k_{-1}}[HA][S]$$

O logaritmo da constante de velocidade global k:

$$\ln k = \ln k_2 + \ln k_1 - \ln k_{-1}$$

A Energia de ativação da reação ´+e então a soma algébrica das energias de ativação de três reações elementares:

$$E_a = E_{a2} + E_{a1} - E_{a-1}$$

Como todas as energias de ativação de reações elementares têm que ser positivas, energia de ativação global seria negativa se $E_{a-1} > E_{a2} + E_{a1}$.

3) A batata Pringles tem uma forma com semelhanças às das superfícies de energia potencial calculadas para reações entre um átomo e uma molécula diatómica. Apresenta um "ponto de sela" (tal como a sela dum cavalo), em que a passagem de reagentes a produtos se pode dar através duma "passagem entre dois montes", que é simultaneamente um ponto de máxima energia na direção da trajetória da reação e um mínimo de energia potencial, se realizarmos um corte perpendicular a esta trajetória.