

Powered by TeNet

SNMP - v3

Prof. T.A. Gonsalves
TeNeT Group
Dept of CSE, IIT-Madras

SNMP v3

Powered by TeNet

RFC 2271 Architecture for describing
SNMP mgmt framework
RFC 2272 Message Processing and
Dispatching for SNMP
RFC 2273 SNMP v3 applications
RFC 2274 User-based Security Model
RFC 2275 View based Access Control

Model for SNMP

SNMPv3

```
"SNMPv3 = SNMPv2 + security + admin"

Msg = MsgHeader + msgSecurityParms + msgData

MsgHeader =
  msgVersion (3)
  msgId
  msgMaxSize (484 — 2<sup>31</sup>-1)
  msgFlags (authFlag, privFlag, reportFlag)
  msgSecurityModel (1 (v1), 2 (v2), 3 (v3 - USM))
```


Powered by TeNet

Scope of

authentication

Scope of encryption

msgVersion
msgId
msgMaxSize
msgFlags
msgSecurityModel
msgSecurityParameters
ContextEngineId
ContextName

PDU

SNMPv3 engine

- An engine consists of
 - Dispatcher
 - Message processing subsystem
 - Security subsystem
 - Access control subsystem

SNMP architecture

- Managers and agents are 'entities'
- An entity consists of an SNMP engine and one or more SNMP applications

SNMPv3

- Dispatcher
 - Allows for multiple versions of SNMP in the engine
 - Transmits SNMP messages to other entities
 - Hands off PDUs to Message Processing subsystem
- Message processing subsystem
 - Prepares messages for sending
 - Extracts data from received messages

SNMPv3

- Security subsystem
 - Authentication and privacy services
 - Multiple security models
- Access control subsystem
 - Authorisation services that can be used to check access rights

SNMP applications

- Command generator to initiate get, getNext, getBulk and set requests
- Command responder
 - Receives requests and performs the appropriate operation
- Notification originator
 - Generates Trap and/or Inform messages
 - Needs to know where to send notification, ver of SNMP to use etc
- Notification receiver
 - Generates responses to Inform messages

Traditional manager

MIB instrumentation

Traditional agent

Cryptographic techniques Powered by TeNet

- SNMP v3 uses four algorithms
 - DES (encryption)
 - MD5, SHA-1, HMAC for authentiaction

Encryption

- Conventional or symmetric key encryption has five ingredients
 - Plaintext
 - Encryption algorithm
 - Secret key
 - Ciphertext
 - Decryption algorithm

Conventional encryption algorithm

Hash functions

- Used for verifying integrity of messages
- Accept an arbitrary length input, produce a fixed length output
 - Standard output lengths 16 byte, 20 byte

Message Authentication Code S by Tenet

- Allows communicating parties to verify that received messages are authentic
 - Source is authentic
 - Contents have not been altered
- Communicating parties share a key
- Key is used to generate a short block of data which is appended to message
- On getting the message, recipient generates the same block of data

User-based Security Model

Powered by TeNet

Provides

- timeliness: attacker cannot delay/replay a message
- authentication: verify sender's identity
- privacy: protect message contents
- key management: generation of keys

USM Definitions

Powered by TeNet

Defined by FRC 2274

Authoritative SNMP Engine: source of time for an SNMP transaction

- if request-response (eg. Get, getNext, getBulk, set, inform): receiver is authoritative, sender is non-authoritative
- if request-only (v2 trap, response): sender is authoritative

Engine ID: unique identifier for each SNMP entity (agent or manager)

... USM Definitions

Powered by TeNet

EngineBoots: number of times the authoritative engine has rebooted

A boot occurs when clock reaches 2³¹ - 1

EngineTime: time in seconds since the last reboot of the authoritative engine

• non-authoritative engine has an estimate only, updated whenever it receives a message from the authoritative engine

... USM Definitions

Powered by TeNet

AuthenticationParameters: uses HMAC to compute a signature of the message

PrivacyParameters: encrypts message data using cipher-block chaining mode of DES with 56-bit key

... USM Definitions

USM Timeliness

Powered by TeNet

Four aspects

- Management of authoritative clocks
- Synchronization
- Timeliness checking by receiver (Authoritative)
- Timeliness checking by receiver (nonauthoritative)

Authoritative clocks

- Authoritative engine maintains snmpEngineBoots, snmpEngineTime (both initialised to 0)
- Thereafter, snmpEngineTime is incremented once per second
- If snmpEngineTime reaches its max of 2^31 -1, it is reset to 0 as if the engine has rebooted
- snmpEngineReboot incremented by 1

Synchronization

- Synchronization between each nonauthoritative engine and each authoritative engine with which it communicates
- Following variables maintained for this
 - snmpEngineBoots
 - snmpEngineTime
 - latestReceivedEngineTime
- Appropriate field in message header are updated with these values
- Update occurs if boot value has increased since last update
- If boot value has not increased, incoming engine time should be greater than latest received engine time

Powered by TeNet

msgVersion
msgId
msgMaxSize
msgFlags
msgSecurityModel
msgSecurityParameters
ContextEngineId
ContextName

PDU

msgAuthoritativeEngineId
msgAuthoritativeEngineBoots
msgAuthoritativeEngineTime
msgUserName
msgAuthenticationParameters
msgPrivacyParameters

USM Timeliness

Powered by TeNet

Receiver accepts message only if within a time window

Else, may be replay attack or partner malfunctioning

Authoritative receiver accepts if:

msg.engineBoots = authEngineBoots AND msg.engineTime = authEngineTime ± 150 secs

Non-authoritative receiver accepts if:

engineBoots = authEngineBoots AND authEngineTime ≥ engineTime – 150 secs

Hash1:

- repeat password to get 2²⁰ octet string (digest0)
- take MD5 or SHA hash of digest0 to get 16- or 20-octet key *Hash2*:
- take MD5 or SHA hash of key+agent engine ID to get 16- or 20-octet localised key

... Key Management

Powered by TeNet

- cracking the password is difficult
- if one agent is compromised, other agents are not affected
- user can manage agent from anywhere, not only from an NMS

Key Update

- deliver localised key to agent (outside SNMP)
- $set(keyChange) \Rightarrow agent changes to next key$

View-based Access Control Wered by TeNet

- V1 and V2 use a single community string for many purposes
- V3 provides several variables for finer access control via VACM

... VACM

Powered by TeNet

Groups: set of <securityModel, principal> tuples (vacmSecurityToGroupTable) on whose behalf managed objects can be accessed

Security Level: noAuthNoPriv, authNoPriv, authPriv

- agent may allow greater access for more secure messages
- Contexts: named subsets of object instances in the local MIB (vacmContextTable)
- MIB Views: collection of MIB sub-trees, each included or excluded from the view (vacmMIBViews)
- each entry in vacmAccessTable has read, write, notify views

... VACM

Powered by TeNet

Access Policy:

- permit or deny access based on:
 - principal
 - security level
 - context
 - object instance
 - type of access

... VACM Example

Security To Group Table

Powered by TeNet

Sec.Model	Sec.Name	GroupName
V 1	"director"	"public"
USM (V3)	"director"	"admin"

ViewAccessTable

GroupName	Sec.Level	ReadView	WriteView
"admin"	authPriv	"internet"	"internet"
"admin"	noAuthNoPriv	"restricted"	44 >>
"public"	authPriv	"restricted"	66 22

ViewTreeFamilyTable

ViewName	SubTree
"internet"	1.3.6.1 (internet)
"restricted"	1.3.6.1.2.1.1 (system)
"restricted"	1.3.6.1.2.1.11 (snmp)

Summary

Powered by TeNet

SNMPv3

- Security: authentication and encryption
- Flexible view-based access control