Pet Adoption Outcome Prediction and Data Analysis

Agenda

- Motivation
- Methodology
- Data extraction
- EDA and visualization
- Regression models and analysis
- Impact of Project

Motivation

- Animal shelters are at maximum capacity and are lacking resources they need to expand
- We want to perform data analysis to understand the outcomes of animals that are taken into the shelter to figure out how shelters could increase adoption rates of all types of animals

Methodology

- Filtered and pre-processed the dataset to retrieve relevant information
- Used a specific shelter's data and used exploratory data analysis on animal data
 - Analyzed different animal species, types of animal outcomes, and animal characteristics
- Performed linear and nonlinear regression to identify significant features in adoption likelihood for the two most frequently adopted animal species

Dataset

- Austin Animal Center Shelter Intakes and Outcomes
- 79000 outcomes of animals starting from 2013
- Features include age, date, outcome type, animal type, location, etc.
- Data cleaning involved importing csv to polars, removing null outcomes, removing redundant data

Exploratory Data Analysis

Overall outcome trends

- High adoption rates indicate strong community engagement.
- High return-to-owner rate reflects effective reunification.
- Frequent transfers suggest limited capacity.

Outcome trends by animal type

- Dogs have the highest adoption rates, followed closely by cats.
- Dogs are much more likely to be returned to their owners compared to other animals.
 - a. Most dogs are microchipped and licensed
- Cats are more likely to be transferred than dogs.
 - Trap-Neuter-Return programs to reduce the number of transfers and the risks of exhausting shelter capacity

Euthanasia analysis

- Suffering and rabies risk are two main reasons that cause shelter to euthanize animals
- Animals with rabies risk were in the shelter for a period of 0 days, indicating that they were euthanized immediately
- Time for animals that are suffering to be euthanized is also short which could indicate limited resources

Analysing trends for dog and cat adoption

- We analyze four factors that may influence animals' adoption results: breeds, age, color and sex
- Age distribution over adopted dogs and cats
 - as dogs and cats getting older, their chances of being adopted decrease
 - compared to dog adoption trend, the results of cat adoption based on age factor shows a huger disparity
 - kittens aged 0-8 months are about 10 times more likely to be adopted than other age groups
 - help shelter make better promotion adoption plan: focus on posting updates about cats over one year old on social media to draw the attention of potential adopters, helping them get adopted more effectively.

Sex Analysis for dog and cat

- Male and female dogs have nearly equal adoption rates
- Spayed dogs are 30 times more likely to be adopted compared to intact dogs
- Sex analysis of cat has nearly the same pattern as dog's
- Implication for shelter: have the animals neutered to increase their chances of adoption

Seasonal effect on cat adoptions

Interestingly, this shelter observes more adoptions in the later half of the year.

Regression Models and Analysis

Significant Features Impacting Dogs' Adoption Likelihood

- Given that dogs have the highest adoption rates, we wanted to see which features are more statistically significant in impacting adoption rates
- Features observed: Age, Sex, Color
- Used only a few colors for an exploratory regression model, to expand on this, can use all the other colors
- Performed linear regression with adoption likelihood as the dependent variable

Dep. Variable: Model:	enco	ded_adop	tion OLS			ared: R-squared:		0.001 0.001	
Method:	L	east Squa				tistic:		16.70	
Date:	Sun,	01 Dec 2	2024		Prob	(F-statistic):		4.40e-05	
Time:		19:13				ikelihood:		-6246.4	
No. Observations:			3768		AIC:			1.250e+04	
Df Residuals:		1.	3766		BIC:			1.251e+04	
Df Model: Covariance Type:		nonrol	oust						
		coef	st	td	err	t	P> t	[0.025	0.975
Intercept		0.1871			004	44.830	0.000	0.179	0.19
age_upon_intake_year:	5 -	-0.0042		0.	001	-4.087	0.000	-0.006	-0.00
 Omnibus:		3568	966		Durbi	n-Watson:		1.491	
Prob(Omnibus):		0	.000		Jarqu	ie-Bera (JB):		7043.745	
Skew:		_	696		Prob(0.00	
Kurtosis:		3	883		Cond.	No.		5.32	

results_age.pvalues[1]

4.395518899237089e-05

Significant Features Impacting Dogs' Adoption Likelihood

020 11091 001		
coded adoption	R-squared:	0.0
OLS	Adj. R-squared:	0.0
Least Squares	F-statistic:	2.3
- 01 D 2024	Door L. C.	0.00

Model: Method: Date: Sun, 01 Dec 2024 Prob (F-statistic): 0.0270 19:13:58 Log-Likelihood: -6247.61.251e+04 No. Observations: AIC: Df Residuals: 13761 BIC: 1.256e+04 Df Model: Covariance Type: nonrobust

OLS Regression Results

Dep. Variable:

	coef	std err	t	P> t	[0.025	0.975]
Intercept color_Apricot[T.True] color_Black[T.True]	0.1783 -0.1783 -0.0101	0.004 0.092 0.014	50.158 -1.928 -0.736	0.000 0.054 0.462	0.171 -0.360 -0.037	0.185 0.003 0.017
<pre>color_Blue[T.True] color_Brown[T.True] color_Gray[T.True]</pre>	-0.0886 -0.0297 -0.0487	0.043 0.016 0.052	-2.047 -1.890 -0.937	0.041 0.059 0.349	-0.173 -0.061 -0.151	-0.004 0.001 0.053
color_Tan[T.True]	0.0176	0.015	1.172	0.241	-0.012	0.047

Omnibus:	3567.728	Durbin-Watson:	1.489
Prob(Omnibus):	0.000	Jarque-Bera (JB):	7040.148
Skew:	1.695	Prob(JB):	0.00
Kurtosis:	3.880	Cond. No.	28.6
=======================================			

Apricot: 0.053827495708603394

Black: 0.46184628233347846 Blue: 0.040720637438249316

Brown: 0.05882841232278112

Gray: 0.34869685739200995 Tan: 0.24132890356203648

	OLS Regress	ion Results				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	encoded_adoption OLS Least Squares Sun, 01 Dec 2024 19:13:58 13768 13765 2 nonrobust	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	:: itistic):	1.2	0.002 0.002 11.95 56e-06 6242.8 49e+04 51e+04	
	coef	std err	t	P> t	[0.025	0.975]
Intercept gender_classified_F[gender_classified_M[T.True] -1.133e+11				1.38e+10 -2.13e+11 -2.13e+11	-1.38e+10
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3544.272 0.000 1.686 3.876	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.			1.488 65.254 0.00 32e+13	

results gender.pvalues[1]

0.025636496988339808

results gender.pvalues[2]

0.02563649698828926

Conclusions

- Age of the dog upon intake was the statistically significant feature in comparison to gender and color
- Therefore, it had more of an impact on adoption likelihood
- Given the positive correlation value, this means that the younger the dog is the more likely they are to be adopted than an older dog

Non-linear Regression Analysis for Cats

- Coming to cats, we want to:
- Predict the likelihood of a cat being adopted.
- Estimate how long a cat will stay in the shelter.
- Utilize features like age, sex, breed, color, and intake condition.

Classification

- Used logistic regression with features: age, sex, breed, color, intake condition
- Significantly better than random guess

	precision	recall
negative	0.62	0.55
positive	0.54	0.61

Predicting Time in Shelter

- Initial Random Forest model performed poorly (negative R²).
- Improved by:
 - Performing OLS to select significant features (p < 0.05).
 - Removing low variance features (variance < 0.01).
 - Removing multicollinearity (VIF < 10).
- Gradient Boosting Regressor showed better performance ($R^2 = 0.05$).

Dep. Variable:	time_in_shelter_days	R-squared:		0.023		
Model: Method: Date:	0LS	Adj. R-squared:		0.011		
	Least Squares	F-statistic:		1.972 6.91e-22 -1.3796e+05 2.766e+05		
	Tue, 03 Dec 2024	Prob (F-statistic):			
Γime:	01:08:33	Log-Likelihood:				
No. Observations:	26958	AIC:				
Df Residuals: Df Model:	26642	BIC:		2.792e+05		
	315					
Covariance Type:	nonrobust					
		coef	std err	t	P> t	
const		25.2796	31.842	0.794	0.427	
age_upon_intake_(y	ears)	0.7849	0.116	6.756	0.000	

sex upon intake Spayed Female 1.546945

Feature Importance

- Most important features: Age, sex, and month of birth.
- Insights:
 - Older cats are less likely to be adopted.
 - Spayed female cats are preferred.
 - Month of birth indicates potential seasonal effects or dataset biases.

- Created scenarios with varied features.
- Observations:
 - Older and sick cats stay longer and are less likely to be adopted.
 - Spayed females are more adoptable among young, healthy cats.

Chartreux

Cvmric

Pixiebob Shorthair

Conclusions

- Shelters should promote the importance of microchipping and licensing amongst pet owners
- Raise awareness about the specific needs and care requirements of less common pets (birds, reptiles, etc.)
- In order to increase adoption among older animals, shelters can advertise older animals for older owners, since older animals tend to be calmer and less maintenance than younger animals