Math 856 Problem Set 4

Starred (*) problems to be handed in any time. Target date: Thursday, December 1

- **21.** [Lee, p.101, problem 5-8] Let $p: E \to M$ be a smooth n-dimensional vector bundle and X_1, \ldots, X_k be linearly independent smooth sections of E defined over an open subset $U \subseteq M$. Show that for every $a \in U$ there is a neighborhood V of a and smooth sections Y_{k+1}, \ldots, Y_n defined over V so that $(X_1, \ldots, X_k, Y_{k+1}, \ldots, Y_n)$ forms a local frame for E over $U \cap V$.
 - (Hint: if v_1, \ldots, v_n form a basis for \mathbb{R}^n , then why is it that if you wiggle the first k vectors a little bit, you still have a basis?)
- (*) 22. Show that if M is a smooth manifold with boundary, then $\partial M \subseteq M$ is an embedded submanifold. [So it has a unique smooth structure making the inclusion $\iota : \partial M \to M$ a smooth embedding.]
 - (a) Show that an immersion from one n-manifold to another is an open map.
 (b) Show that if M and N are n-manifolds, M is compact, N is connected, and F: M → N is an immersion, then F is onto.
- (*) 24. If $S \subseteq M$ is a **closed**, embedded submanifold, $U \supseteq S$ is an open neighborhood of S, and $f: S \to \mathbb{R}$ is a smooth function, show that there is a smooth function $F: M \to \mathbb{R}$ with $F|_S = f$ and $\text{supp}(F) \subseteq U$.
 - **25.** Let X_1, \ldots, X_k be linearly independent vector fields on a manifold M with Riemannian metric $\langle \cdot, \cdot \rangle$. Show that the Gram-Schmidt procedure can be applied to the vector fields all at once, to give a collection of orthonormal vector fields Y_1, \ldots, Y_k .
 - **26.** [Lee, p.289, problem 11-17] We defined the metric induced by a Riemannian metric $\langle \cdot, \cdot \rangle_a$ to be the infimum of lengths of piecewise smooth curves from p to q. Show that this cannot be a minimum: For $M = \mathbb{R}^2 \setminus (0,0)$ with the usual Riemannian metric from \mathbb{R}^2 , show that no curve in M from (-1,0) to (1,0) has length equal to the distance between the two points.
- (*) 27. [Lee, p.286, problem 11-3] Let V and W be finite-dimensional vector spaces over \mathbb{R} . Show that there is a canonical (i.e., basis-independent) isomorphism between $V^* \otimes W$ and the space Hom(V,W) of linear maps from V to W.