9.3.3 טורי ומשפט לייבניץ

5202 בפברואר 82

הגדרות

1. טור לייבניץ

. אט איז אי $\sum\limits_n \left(-1
ight)^{n+1}a_n=a_1-a_2+a_3-a_4$ אם הטור המתחלף אי שלילית אי שלילית אי שלילית ואפסה, אי הטור המתחלף (a_n)

הטרות

- גם הטור לייבניץ הוא $\sum\limits_{n}\left(-1
 ight)^{n}a_{n}$ גם הטור הטור
- יא רק אי משום ש a_n לכן נתמקד בסדרות חיוביות ולא רק אז היא ס כמעט משום ש $a_N=0$ עבור אם משום ש $a_N=0$ עבור אם משום שליליות.

משפטים

1. משפט לייבניץ לטורים מתחלפים

יהי אזי:
$$\sum\limits_{n}\left(-1\right)^{n+1}a_{n}$$
 טור לייבניץ. אזי:

מתכנס
$$\sum\limits_{n}\left(-1
ight)^{n+1}a_{n}$$
 מתכנס .1

$$0\leq a_1-a_2\leq L\leq a_1$$
 אזי $\sum\limits_{n=1}^{\infty}\left(-1
ight)^{n+1}a_n=L\in\mathbb{R}$ נסמן. 2

$$|r_N| \leq a_{N+1}$$
 אזי $\sum\limits_n {(-1)}^{n+1} \, a_n$ זינב של N זינב איז $N = \sum\limits_{n=N+1}^\infty {(-1)}^{n+1} \, a_n$ אזי $N \in \mathbb{N}$ זיה $N \in \mathbb{N}$ זיה $N \in \mathbb{N}$ אזי

ลควาล

 S_{2k-1},S_{2k} ונסתכל על תתי הסדרות ($S_k)_{n=1}^\infty$, ונגדיר את הסס"ח, ונגדיר את אחרות אחרות אונגדיר את הסס"ח, ונגדיר את הסס"ח ונגדיר את הסס"ח. 1

$$S_{2(k+1)} - S_{2k} = (-1)^{2k+2} a_{2k+2} + (-1)^{2k+1} a_{2k+1} + \sum_{n=1}^{2k} (-1)^{n+1} a_n - \sum_{n=1}^{2k} (-1)^{n+1} a_n = a_{2k+2} - a_{2k+1} \underset{decreaseing}{\overset{monotonic}{\geq}} 0$$

$$S_{2(k+1)-1} - S_{2k-1} = (-1)^{2k+1} a_{2k+1} + (-1)^{2k} a_{2k} + \sum_{i=1}^{2k} (-1)^{n+1} a_n - \sum_{i=1}^{2k} (-1)^{n+1} a_n = a_{2k} - a_{2k+1} \xrightarrow{\substack{monotonic \\ \leq \\ decreasing}} 0$$

יורדת יורדת אונוטונית עולה אונוטונית מונוטונית כלומר S_{2k-1}

$$\forall k \in \mathbb{N} \, S_{2k} = S_{2k-1} + b_{2k} = S_{2k-1} + (-1)^{2k+1} \, a_{2k} \stackrel{(a_{2k} \ge 0)}{\le} S_{2k-1}$$

ולכן סדרת הקטעים ובנוסף מכך מקיימת את הלמה של ($[S_{2k},S_{2k-1}])_{k=1}^\infty$ ולכן סדרת הקטעים

$$\forall k \in \mathbb{N} \, S_{2k-1} - S_{2k} = S_{2k-1} - (S_{2k-1} + b_{2k}) = a_{2k} \iff \lim_{k \to \infty} (S_{2k-1} - S_{2k}) = 0$$

, $\{S_{2k-1}\mid k\in\mathbb{N}\}\cup\{S_{2k}\mid k\in\mathbb{N}\}=\{S_k\mid k\in\mathbb{N}\}$ ומשום ש $\sum_{k\to\infty}^n S_{2k-1}=L=\lim_{k\to\infty}S_{2k}$ אזי מהלמה של קנטור נקבל שמתקיים. $\sum_{n=1}^\infty (-1)^{n+1}\,a_n=L$ מתקיים

- $L \geq S_2 = a_1 a_2 \geq 0$ אזי ממשפט החסם העליון, נקבל שמתקיים ($L \leq S_2 = a_1 a_2 \geq 0$ אזי ממשפט החסם העליון באותו $L \leq S_1 = a_1$ אולכן ממשפט החסם התחתון הופן ($L \leq S_1 = a_1 + a_2 \leq L \leq a_1$ באותו אופן (כנדרש. באותר קיבלנו $0 \leq a_1 a_2 \leq L \leq a_1$
 - ומתקיים מתכנס הוא, ומתקיים מתכנס אנב אנב N- ומתקיים מתכנס מתכנס מתכנס ממשפט שטור ממשפט.

$$r_N = \sum_{n=N+1}^{\infty} (-1)^{n+1} a_n = (-1)^N \sum_{n=1}^{\infty} (-1)^{n+1} a_{n+N}$$

. טור לייבניץ $\sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_{n+N}$ לכן היא ממשפט הירושה. אי שלילית ומונוטונית יורדת גם היא ממשפט הירושה a_{n+N} אפסה, אי שלילית ומונוטונית יורדת גם היא ממשפט הירושה.

$$.(*) \quad 0 \leq \sum\limits_{n=1}^{\infty} \, \left(-1\right)^{n+1} a_{n+N} \leq a_{N+1}$$
 שמתקיים 2 נקבל מסעיף אזי מסעיף 2 נקבל

$$0 \leq r_N \leq a_{N+1}$$
 ולכן אם $r_N = \sum\limits_{n=1}^{\infty} \left(-1
ight)^{n+1} a_{n+N}$ ולכן אם א זוגי, מתקיים ווגי, מתקיים

$$0 \leq -r_N \leq a_{N+1}$$
 ולכן $r_N = -\sum\limits_{n=1}^\infty \left(-1
ight)^{n+1} a_{n+N}$ ולכן מתקיים N אי זוגי, מתקיים ובכל מקרה נקבל $|r_N| \leq a_{N+1}$ כנדרש.