```
In [4]: ;ls
```

Correlation.G5.G.C.txt

Correlation.G5.G.J.txt

Correlation.G5.G.JC.txt

Correlation.G5.G.PBLUP.txt

G0.Genotype.ID

G0.ID

G0.noGenotype.ID

G1.Genotype.ID

G1.ID

G1.noGenotype.ID

G2.Genotype.ID

G2.ID

G2.noGenotype.ID

G3.Genotype.ID

G3.ID

G3.noGenotype.ID

G4.Genotype.ID

G4.ID

G4.noGenotype.ID

G5.Genotype.ID

G5.ID

G5.noGenotype.ID

GenNF.txt

PedAll.txt

Phe.txt

PheAll.txt

Regression.G5.G.C.txt

Regression.G5.G.J.txt

Regression.G5.G.JC.txt

Regression.G5.G.PBLUP.txt

all.ID

alphaEstimates

genotype.ID

meanOfSNPGAll

meanOfSNPGG0

meanOfSNPGG1

meanOfSNPGG2

meanOfSNPGG3

meanOfSNPGG4

meanOfSNPGG5

noGenotype.ID

sim.bv
sim.phenotype

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
 In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: |;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: | ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: ;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: | ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]: | ;join G4.ID genotype.ID > G4.Genotype.ID
```

```
In [21]: |;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
        ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
               7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
```

```
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
         nothing
         df
                = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                  # without centering
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no J
         nothing
In [31]:
                = 0.634
         vG
         vRes
                = 1.480
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2580.030368 seconds (23.05 G allocations: 723.743 GB, 7.44% gc time)
        betaHat
In [32]:
Out[32]: 1-element Array{Float64,1}:
          10.6593
         using DataFrames
In [33]:
```

```
In [34]:
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.877
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.986
Out[35]: 0.8766321838922274
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: 1.3387600445298786
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.960
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.047
Out[37]: 0.959604230051365
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 2.4060933478148394
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.816
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.970
Out[39]: 0.8163771651277755
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.092452359156426
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.674
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.086
Out[41]: 0.673886123328301
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: 0.11045789065488662
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.685
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 1.004
Out[43]: 0.6849660444564086
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: 0.7380820796621935
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.683
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.038
Out[45]: 0.6829141707797675
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: 1.1694391926114132
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.690
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.013
Out[47]: 0.6900192176519535
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 1.5642082090990148
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.737
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.047
Out[49]: 0.7372573891424339
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 1.9998933273620119
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.956
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.042
Out[51]: 0.9564444676982903
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 2.450479567789751
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.948
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.052
Out[53]: 0.9482053498513708
In [54]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: 1.3823693996390471
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         #reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.948
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.059
Out[55]: 0.9477603278721538
         GEBV = aHat1[posAi]
In [56]:
         mean(GEBV)
Out[56]: 1.6222596982818025
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.944
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.005
Out[57]: 0.9438045585828196
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 1.9501289068789154
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.949
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.009
Out[59]: 0.949274678505026
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: 2.4409382504628936
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.944
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.023
Out[61]: 0.9442010875170488
In [62]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: 2.859321684815088
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.956
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.042
Out[63]: 0.9564444676982903
In [64]: writedlm("Correlation.G5.G.N.txt",cor13)
In [65]: writedlm("Regression.G5.G.N.txt",reg13)
In [66]: | TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 13.113090249999999
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 2.450479567789751
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.654
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 1.147
Out[68]: 0.6544256966212897
```

```
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: 0.07784477503990817
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.667
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 1.010
Out[70]: 0.6671570677727097
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: 0.7154108586719471
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.666
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.041
Out[72]: 0.6661332579117903
In [73]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: 1.1494215076301952
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.668
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.011
Out[74]: 0.6684968193256278
In [75]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: 1.5417279516281461
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.720
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 1.045
Out[76]: 0.7203698253080825
In [77]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[77]: 1.9778567028119327
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54904,45904,9000,40000,39000,1000,200)
```