Random Vector Assignment

EE22BTECH11052 - Sujal Gupta

The randomly generated vectors are:

$$\mathbf{A} = \begin{pmatrix} -6\\0 \end{pmatrix} \tag{1}$$

$$\mathbf{A} = \begin{pmatrix} -6\\0 \end{pmatrix} \tag{1}$$

$$\mathbf{B} = \begin{pmatrix} -4\\3 \end{pmatrix} \tag{2}$$

$$\mathbf{C} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{3}$$

Fig. 0. Vectors

I. vectors

parameter	value	description
A	$\begin{pmatrix} -6 \\ 0 \end{pmatrix}$	vector A
В	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	vector B
С	$\begin{pmatrix} -2 \\ 0 \end{pmatrix}$	vector C
$\mathbf{m_1}$	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	AB
\mathbf{m}_2	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	ВС
m ₃	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	CA
B – C	(3.60)	length of BC
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ A & B & C \end{pmatrix}$	3	non-collinear
$\mathbf{n_1}^{\mathrm{T}}$	$\begin{pmatrix} -3\\2 \end{pmatrix}$	AB
c_1	18	
$\mathbf{n_2}^{\mathrm{T}}$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	ВС
c_2	-6	
$\mathbf{n_3}^{\mathrm{T}}$	$\begin{pmatrix} 0 \\ -4 \end{pmatrix}$	AC
c_3	-12	
Area	6	area of triangle
∠A	56.30°	
∠B	67.38	Angle
∠C	56.30	

TABLE 0 Vectors

Fig. 0. Medians

II. MEDIAN

parameter	value	description
D	$\begin{pmatrix} -3 \\ 1.5 \end{pmatrix}$	midpoint of AB
E	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	midpoint of BC
F	$\begin{pmatrix} -5 \\ 1.5 \end{pmatrix}$	midpoint of CA
n ₄ ^T	(-1.5 3)	normal eq of AD
c_4	15	normal eq of AD
n ₅ ^T	(3 0)	normal eq of BE
<i>c</i> ₅	-12	normal eq or <i>BE</i>
n ₆ ^T	(-1.5 -3)	normal eq of CF
c_6	-3	normal eq or er
G	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$	intersection of BE and CF
collinearity	collinear	A, G, D are collinear
G	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$	centroid

TABLE 0 MEDIAN

Fig. 0. Altitude

III. ALTITUDE

parameter	value	description
\mathbf{D}_1	$\begin{pmatrix} -3.23 \\ 1.84 \end{pmatrix}$	altitude foot from A
E ₁	$\begin{pmatrix} -4 \\ 0 \end{pmatrix}$	altitude foot from B
F ₁	$\begin{pmatrix} -4.79 \\ 1.84 \end{pmatrix}$	altitude foot from C
$\mathbf{n_7}^{\mathrm{T}}$	(-1.84 2.76)	AD_1
c_7	15.69	
$\mathbf{n_8}^{\mathrm{T}}$	(3 0)	BE_1
c_8	-12	
n ₉ ^T	(-1.84 -2.76)	CF_1
C9	-0.92	
Н	$\begin{pmatrix} -4 \\ 1.33 \end{pmatrix}$	Orthocentre

TABLE 0 ALTITUDE

Fig. 0. PERPENDICULAR BISECTORS

IV. PERPENDICULAR BISECTORS

parameter	value	description
$\mathbf{n_{10}}^{\mathrm{T}}$	(-2 -3)	Perpendicular bisector of AB
c_{10}	5.50	r espendicular bisector of AB
$\mathbf{n_{11}}^{\mathrm{T}}$	(-2 3)	Perpendicular bisector of <i>BC</i>
c_{11}	10.5	respendicular discetor of Be
n ₁₂ ^T	(4 0)	Perpendicular bisector of <i>CA</i>
c_{12}	-16	respendicular discetor of C/1
0	$\begin{pmatrix} -4 \\ 0.833 \end{pmatrix}$	Circumcentre
r_c	2.166	OA = OB = OC
∠BOC	112.6°	Angle BOC
∠BAC	56.3°	Angle BAC
TABLE 0		

PERPENDICULAR BISECTORS

Fig. 0. ANGLE BISECTORS

V. ANGLE BISECTORS

	V. ANGLE I	
parameter	value	description
n ₁₃ ^T	(0.83 -1.55)	Angular bisector of A
c_{13}	-4.99	
$\mathbf{n_{14}}^{\mathrm{T}}$	(0 -1.10)	Angular bisector of B
c_{14}	-3.32	7 mgalar obsector of B
$\mathbf{n_{15}}^{\mathrm{T}}$	(0.83 -0.44)	Angular bisector of C
c_{15}	-1.66	ringular bisector of C
I	$\left(\begin{array}{c} -4 \end{array} \right)$	Incentre
1	(1.07)	incentre
r_i	1.07	Inradius
$\angle BAI$	28.154°	Angle BAI
∠CAI	28.154°	Angle CAI
r_{AB}, r_{BC}, r_{CA}	1.070	$r_{AB} = r_{BC} = r_{CA}$
\mathbf{D}_3	$\left(-3.10\right)$	\mathbf{D}_3
	(1.66)	3
$\mathbf{E_3}$	(-4.89)	\mathbf{E}_3
(1.66)	(1.66)	23
\mathbf{F}_3	$\left \begin{pmatrix} -4 \end{pmatrix} \right $	$\mathbf{F_3}$
	(0)	F 3
length AE_3, AF_3	2	$AE_3 = AF_3$
length BD_3 , BF_3	1.606	$BD_3 = BF_3$
length CD_3, CE_3	2	$CD_3 = CE_3$
TABLE 0		

ANGLE BISECTORS