Scenario 1: Deploying Virtual Machines (VMs) in Azure

Windows VM Setup

1. Log in to Azure Portal:

a. Go to Azure Portal and log in with your Azure credentials.

2. Create a Resource:

- a. Click on **Create a resource** on the left sidebar.
- b. Under Compute, select Virtual Machine.

3. Basic Configuration:

- a. **Subscription**: Choose the subscription you want to use.
- b. **Resource Group**: Select an existing resource group or create a new one.
- c. **VM Name**: Enter a name for your VM (e.g., "Blogs").
- d. **Region**: Select the region where the VM should be located.
- e. Image: Choose the appropriate Windows Server version.
- f. **Size**: Select a VM size. For testing, a smaller size like B1s can be sufficient.
- g. Authentication Type: Choose Password.
- h. **Username**: Enter a username (e.g., "user").
- i. **Password**: Set a strong password.

4. Disks:

 Select the OS disk type (Standard SSD, Premium SSD, or Standard HDD). Premium SSD is recommended for better performance.

5. Networking:

- a. Select a Virtual Network (VNet) and Subnet. If none exist, Azure will create them for you.
- b. Configure a public IP if needed for external access (or choose "None" if not required).

6. Review and Create:

a. Review the configuration and click **Create** to deploy the VM.

b. Once deployed, access the VM using Remote Desktop Protocol (RDP) with the public IP and credentials you set.

Linux VM Setup

1. Log in to Azure Portal and follow the same process to create a new VM.

2. Create Virtual Machine:

- a. Under Compute, select Virtual Machine.
- b. Choose a Linux distribution (e.g., Ubuntu) in the **Image** section.

3. Configure the VM:

- a. Set the VM name, Region, Size, and Authentication.
- b. For Linux, use **SSH public key** authentication. Enter or generate an SSH key pair.

4. Disk:

a. Select your preferred disk type (Standard SSD, Premium SSD, etc.).

5. Networking:

 a. Set up VNet, Subnet, and public IP configuration (as per your requirements).

6. Review and Create:

a. After reviewing the settings, click **Create** to deploy the VM.

Pricing and OS Licensing

1. Pricing Considerations:

- a. VM Size
- b. Storage options
- c. Operating System
- d. Networking costs
- e. Availability Zones

2. OS Licensing:

a. Windows VMs: Licensing is included in the price.

- b. **Linux VMs**: Free, but costs may apply if you use any premium services.
- c. **BYOL** (**Bring Your Own License**): If you have existing licenses, you can use them.

Scenario 2: Azure Storage Encryption

Understanding Azure Storage Encryption

Azure Storage uses encryption to protect your data both at rest and in transit.

- 1. **Encryption at Rest**: Protects data stored on Azure from unauthorized access.
- 2. **Encryption in Transit**: Ensures data is encrypted during transfer across the network.

Types of Encryption in Azure Storage

- Server-Side Encryption (SSE):
 - SSE with Microsoft-managed keys (default)
 - SSE with customer-managed keys (CMK)
 - SSE with customer-provided keys (CPK)
- Azure Storage Service Encryption for Data at Rest (SSE) applies to:
 - Azure Blob Storage
 - Azure File Storage
- Encryption in Transit: Uses TLS (Transport Layer Security).

Enable Encryption for Sensitive Data in Azure Storage

- 1. Create a Storage Account:
 - a. Log in to the Azure Portal.
 - b. Navigate to **Create a resource > Storage > Storage account**.

- c. Provide the necessary details (Subscription, Resource Group, Account Name, Region).
- d. Choose **StorageV2** (**general-purpose v2**) as the performance and redundancy option.
- e. Click **Create** to deploy the storage account.

2. Enable Server-Side Encryption (SSE):

- a. Go to your Storage Account and navigate to **Encryption Settings**.
- b. Choose your encryption option and save the settings.
- 3. Use Azure Key Vault for Key Management (for CMK):
 - a. Create a Key Vault and add an encryption key.
 - b. **Configure your storage account** to use CMK for enhanced security.

Scenario 3: Setting up Azure DevOps Pipeline

Prerequisites

- Azure DevOps account
- Azure Subscription
- Azure App Service
- Code repository

Set Up the Azure DevOps Pipeline

1. Create a Project in Azure DevOps:

- a. Log in to Azure DevOps at <u>dev.azure.com</u>.
- b. Create a new project (e.g., "MyApp CI/CD") with the desired visibility (Private or Public).

2. Create a Pipeline:

- a. Inside your project, go to **Pipelines** > **New Pipeline**.
- b. Select your repository (Azure Repos Git or GitHub).
- c. Configure the pipeline to build and deploy your code.

3. Configure Deployment to Azure App Service:

- a. Add a **Build Task** to build your application.
- b. Add a **Deploy Task** to deploy your code to Azure App Service.
- c. Set up necessary deployment settings (e.g., App Service name, Resource Group).
- d. Save and run the pipeline.

4. Set Up Failure Notifications:

a. Go to **Project Settings** and configure **Email Notifications** for pipeline events (success, failure, etc.).

Scenario 4: Azure Database Migration Service (DMS)

Overview of Azure DMS

The Azure Database Migration Service (DMS) helps migrate databases from on-premises (or other cloud environments) to Azure with minimal downtime.

Steps to Migrate an On-Premises SQL Database to Azure

1. Prepare Your Environment:

- a. Ensure your Azure Subscription is active.
- b. Verify that the **on-premises SQL Server database** is operational and accessible.
- c. Create an Azure SQL Database or Managed Instance as the target.

2. Set Up Azure Database Migration Service (DMS):

- a. Log in to the Azure Portal.
- b. Search for Azure Database Migration Service and click Create.
- c. Select your **Subscription**, **Resource Group**, and provide a **Migration Service Name**.

3. Create a Migration Project in DMS:

- a. After the DMS service is created, navigate to it and click New Migration Project.
- b. Name your project and select the **Source server type** (SQL Server).
- c. Select the **Target server type** (Azure SQL Database or Managed Instance).

4. Configure Source and Target Connections:

- a. **Source Server**: Enter connection details for your on-premises SQL Server (e.g., username, password).
- b. **Target Server**: Enter the connection details for your Azure SQL Database or Managed Instance.

5. Choose Migration Method:

- a. Offline Migration: The database will be offline during the migration.
- b. **Online Migration**: Continuous data replication allows minimal downtime.

6. Start the Migration:

- a. Perform the Initial Migration.
- b. Enable **Continuous Data Replication** if using online migration.

7. Switch Over to the Azure Database:

- a. Final Cutover: Once the data is synchronized, switch to the Azure database.
- b. **Verify Migration**: Ensure the data has migrated successfully.

Additional Considerations for Minimal Downtime Migration

- Test the Migration: Run tests to ensure application compatibility.
- Network Latency: Monitor latency and optimize for better performance.
- Backup and Restore: Always take a backup before initiating migration.
- Monitor Migration Progress: Use Azure DMS tools to track migration status.