Algorithmen & Datenstrukturen

Dynamische Programmierung

Literaturangaben

Diese Lerneinheit basiert größtenteils auf dem Buch "The Design and Analysis of Algorithms" von Anany Levitin.

In dieser Einheit behandelte Kapitel:

- 8 Dynamic Programming
- 8.1 Three Basic Examples
- 8.2 The Knapsack Problem (ohne Memory Functions)

Dynamische Programmierung: Übersicht

- Design-Technik für rekursiv definierte Algorithmen mit überlappenden Teilproblemen
- Entwickelt in den 50er Jahren vom amerikanischen Mathematiker Richard Bellman
- Ursprüngliches Anwendungsgebiet: Optimierungsprobleme
- "Programmierung" wird hier in der Bedeutung "Planung" verwendet

Dynamische Programmierung: Grundprinzip

- Definiere Rekursionsgleichung für das Problem
 - Größere Problemexemplare werden mit Hilfe der Lösungen überlappender kleinerer Exemplare gelöst
- Löse die kleineren Problemexemplare nur ein einziges Mal
- Speichere Lösungen in einer Tabelle
- Ermittle die Lösung des Ausgangsproblems mit Hilfe der Tabelle

Optimale Gesamtlösung aus optimalen Teillösungen ermittelbar

DP nur bei Überlappung sinnvoll

> Vermeide redundante Arbeit

Space/Time-Tradeoff

Beispiel 1: Fibonacci-Zahlen (I)

- Bekannte Definition:
 - F(n) = F(n-1) + F(n-2)
 - F(0) = 0
 - F(1) = 1
- Rekursive Top–Down–Berechnung

UWE NEUHAUS

ALGORITHMEN & DATENSTRUKTUREN

Beispiel 1: Fibonacci-Zahlen (II)

- Iterative Bottom-Up-Berechnung mit Speicherung der Ergebnisse
 - F(0) = 0
 - F(1) = 1
 - F(2) = 0 + 1 = 1
 - •
 - F(n-2) = ...
 - F(n-1) = ...
 - F(n) = F(n-1) + F(n-2)
 - 0 1 1 ... F(n-2) F(n-1) F(n)
- Zeiteffizienz?
- Speicherplatzeffizienz?

Beispiel 2: Coin-row problem

Gegeben:

Eine Reihe von n Münzen mit positiven, ganzzahligen, aber nicht notwendigerweise unterschiedlichen Werten $c_1, c_2, ..., c_n$

- Ziel:
 Wähle möglichst wertvolle Teilmenge von Münzen aus
- Randbedingung:
 Es dürfen nicht zwei (ursprünglich) benachbarte Münzen gewählt werden
- Beispiel: 5 1 2 9 6 2 Was ist die beste Auswahl?

DP-Lösung des Coin-row problems (I)

- Definiere: F(n) ist das Maximum aus der Reihe der ersten n Münzen
- Betrachte Auswahlen ohne und mit der letzten Münze:
 - Wertvollste Auswahl, die Münze n nicht enthält
 - Wertvollste Auswahl, die Münze n enthält
- Rekursionsgleichung:

$$F(n) = max{F(n-1), c_n + F(n-2)} für n > 1$$

 $F(0) = 0, F(1) = c_1$

DP-Lösung des Coin-row Problems (II)

$$F(n) = max{F(n-1), c_n + F(n-2)} für n > 1$$

 $F(0) = 0, F(1) = c_1$

index	0	1	2	3	4	5	6
coins	_	5	1	2	9	6	2
F()							

- Welche Münzen werden gewählt?
- Zeit-Effizienz?
- Speicherplatz-Effizienz?

Ergebnisse für alle kürzeren Münzreihen wurden ebenfalls ermittelt

Beispiel 3: Münzwechselproblem

Gegeben:

Münzen (in unbegrenzter Anzahl) mit den ganzzahligen Nennwerten $d_1 < d_2 < ... < d_m$ und $d_1 = 1$

Ziel:

Wechsele einen nicht-negativen, ganzzahligen Betrag n in eine **äquivalente Menge Münzen**

Randbedingung:
 Es sollen möglichst wenige Münzen verwendet werden

Beispiel:

- Nennwerte der Münzen: 1, 3, 4
- Zu wechselnder Betrag: 6

Minimale Anzahl von Münzen?

DP-Lösung des Münzwechselproblems (I)

- Definiere: F(n) ist die minimale Anzahl von Münzen, die in der Summe n ergeben
- Betrachte Münzwechsel mit einer Münze weniger, also für die Werte n − d_j für j = 1, 2, ..., m so dass n ≥ d_j
- Rekursionsgleichung:

$$F(n) = \min_{j : n \ge d_j} \{F(n-d_j)\} + 1 \text{ für } n > 0$$

$$F(0) = 0$$

DP-Lösung des Münzwechselproblems (II)

$$F(n) = min \{F(n-d_j)\} + 1 f ur n > 0$$

 $j : n \ge d_j$
 $F(0) = 0$

n	0	1	2	3	4	5	6
F()							
Münze							

- Welche Münzen werden gewählt?
- Zeit-Effizienz?
- Speicherplatz-Effizienz?

Ergebnisse für alle kleineren Beträge wurden ebenfalls ermittelt

Dynamische Programmierung: Weitere Beispiele

- Berechnung von Binomialkoeffizienten
- Warshall-Algorithmus (Berechnung der transitiven Hülle)

- Konstruktion des optimalen binären Suchbaums
- Floyd-Algorithmus (Berechnung der kürzesten Pfade zwischen allen Knoten)

- Einige Varianten schwieriger Optimierungsprobleme
 - Problem des Handelsreisenden
 - Rucksackproblem

Rucksackproblem mit Dynamischer Programmierung (I)

Rekapitulation des Problems:

Gegeben:

n Gegenstände mit

Achtung: Beschränkung auf ganzzahlige Gewichte vereinfacht Problem erheblich!

- ganzzahligen Gewichten: w₁ w₂ ... w_n
- Wertangaben: $v_1 v_2 \dots v_n$
- Rucksack mit Kapazität W
- Aufgabe: Finde wertvollste Teilmenge, die noch in den Rucksack passt

Rucksackproblem mit Dynamischer Programmierung (II)

- Betrachte kleinere Problemexemplare definiert für die ersten i Gegenstände und die Kapazität j (j ≤ W)
- Sei V[i,j] der optimale Wert für solch ein Exemplar
- Dann gilt

$$V[i,j] = \begin{cases} V[i-1,j] & \text{falls } j-w_i < 0 \\ \max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{falls } j-w_i \geq 0 \end{cases}$$

- Startbedingungen:
 - V[0,j] = 0
 - V[i,0] = 0

Rucksackproblem mit DP: Beispiel

Rucksack mit Kapazität W = 5 kg

Gegenstand	Gewicht	Wert
1	2 kg	12€
2	1 kg	10€
3	3 kg	20€
4	2 kg	15€

Welche Gegenstände wurden eingepackt?

epackt?		Kapazität j						
		0	1	2	3	4	5	
	0							
Gegenstand 1	1							
Gegenstand 1-2	2							
Gegenstand 1-3	3							
Gegenstand 1-4	4						0	• 7