(1). 设 $A \subset X$,则A的示性函数定义为

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1, & \omega \in A; \\ 0, & \omega \notin A. \end{cases}$$

定义集合 $A, B \subset X$ 的对称差为

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

(I). 请证明

$$\mathbb{1}_{A \wedge B} = |\mathbb{1}_A - \mathbb{1}_B| = (\mathbb{1}_A - \mathbb{1}_B)^2 = (\mathbb{1}_A + \mathbb{1}_B) \mod 2.$$

- (II). 设 $A, B, C \subset X$, 请证明
 - (i) $A\Delta \emptyset = A$, $A\Delta A = \emptyset$, $A\Delta A^{C} = X$, $A\Delta X = A^{C}$.
 - (ii) $A\Delta B = B\Delta A$.
 - (iii) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.
 - (iv) $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.
- (2). 设 A_n , $n = 1, 2, 3, \dots$, 是如下定义的集合:

$$A_{2n+1} = \left[0, 2 - \frac{1}{2n+1}\right], \quad n = 0, 1, 2, 3, \dots,$$

$$A_{2n} = \left[0, 1 + \frac{1}{2n}\right], \quad n = 1, 2, 3, \dots.$$

求 $\{A_n\}_{n\geq 1}$ 的上限集与下限集.

(3). 设 f 是定义在 X 上的实值函数,证明对任意 $c \in \mathbb{R}$ 有

$$\{f > c\} = \bigcup_{n=1}^{\infty} \{f \ge c + \frac{1}{n}\},$$

其中

$$\{f > c\} := \{x \in X : f(x) > c\},\$$
$$\{f \ge c + \frac{1}{n}\} := \{x \in X : f(x) \ge c + \frac{1}{n}\}.$$

- (4). 设 X 为一个集合, \mathscr{A} \subset 2^{X} 是 X 上的一个集类. 我们称 \mathscr{A} 为一个集代数,如果它满足
 - (I). $X \in \mathcal{A}$;
 - (II). 对余运算封闭: 对任意 $A \in \mathcal{A}$, $A^{C} \in \mathcal{A}$.
 - (III). 对有限并运算封闭: 对任意 $A, B \in \mathcal{A}$, $A \cup B \in \mathcal{A}$. 请证明 \mathcal{A} 对有限交运算封闭: 对任意 $A, B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$.
- (5). 设 $f: X \to Y$ 为一个映射. 证明
 - (I). f 是单射, 当且仅当对任意 $A \subset X$, $f(X) \setminus f(A) = f(X \setminus A)$;
 - (II). 设 A, B 为集合 X 的子集, 举例说明 $f(A \cap B) \neq f(A) \cap f(B)$.
- (6). 设 f 为 X 到 Y 的映射, $B \subset Y$, $B_i \subset Y$, i = 1, 2, 3, ...,则

$$\left(f^{-1}(B)\right)^{\mathsf{C}} = f^{-1}(B^{\mathsf{C}})$$

且

$$f^{-1}\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\bigcup_{i=1}^{\infty}f^{-1}\left(B_{i}\right),\quad f^{-1}\left(\bigcap_{i=1}^{\infty}B_{i}\right)=\bigcap_{i=1}^{\infty}f^{-1}\left(B_{i}\right).$$

- (7). 构造 (0,1] 与 (0,1) 之间的一一映射以说明它们有相同的基数.
- (8). 证明增函数的不连续点集至多可数.
- (9). 设 A 由直线上一些互不相交的开区间组成,证明 A 是由至多可数个开区间构成.
- (10). 试用 Cantor-Bernstein 定理证明 $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$,其中 $\mathbb{N} = \{1, 2, 3, \cdots\}$.
- (11). 设 $\mathscr{A} = \{A: A \subset \mathbb{N} \}$ 有限集 $\}$,请证明 \mathscr{A} 是可数集.
- (12). 证明 $(0,1)^{\mathbb{N}}$ 具有连续统基数. $((0,1)^{\mathbb{N}}$ 表示所有序列 $(x_j)_{j\in\mathbb{N}}$ 组成的集合,其中 $x_i \in (0,1)$.)
- (13). 证明 $\mathbb{N}^{\mathbb{N}}$ 具有连续统基数. $(\mathbb{N}^{\mathbb{N}}$ 表示所有序列 $(a_j)_{j\in\mathbb{N}}$ 组成的集合,其中 $a_j\in\mathbb{N}$.)
- (14). 记 \mathbb{R}^n 上全体开集组成的集合为 \mathcal{O}^n . 请证明

- (i) \emptyset , $\mathbb{R}^n \in \mathcal{O}^n$;
- (ii) \mathcal{O}^n 对任意并封闭: 设 A 为指标集,对任何 $\alpha \in A$, $U_{\alpha} \in \mathcal{O}^n$,则 $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{O}^n$;
- (iii) O^n 对有限交封闭: 对任意 $1 \le j \le n$, $U_j \in O^n$, 则 $\bigcap_{i=1}^n U_j \in O^n$.
- (15). 设 f 为 \mathbb{R}^n 上的实值连续函数. 证明 f 的零集,即 $f^{-1}(\{0\}) = \{x \in X : f(x) = 0\}$ 是闭集.
- (16). 设 $f \in \mathbb{R}$ 上的连续函数,对任意 $a \in \mathbb{R}$,求证 $E_1 = \{f > a\}$ 是开集, $E_2 = \{f \le a\}$ 是闭集,其中

$$\{f > a\} := \{x \in \mathbb{R}: f(x) > a\}, \quad \{f \ge a\} := \{x \in \mathbb{R}: f(x) \ge a\}.$$

- (17). 设 f 为 \mathbb{R}^n 上实值函数,则 $f \in C(\mathbb{R}^n)$ 当且仅当对任意开集 $G \subset \mathbb{R}$, $f^{-1}(G)$ 为 \mathbb{R}^n 中的开集. 这也等价于对任意闭集 $F \subset \mathbb{R}$, $f^{-1}(F)$ 为 \mathbb{R}^n 中的闭集.
- (18). 设 $E \subset \mathbb{R}, a \in \mathbb{R}$,求证 $\lambda^*(aE) = |a|\lambda^*(E)$,其中 $aE = \{ax : x \in E\}$.
- (19). 设 $A \subset \mathbb{R} \perp \lambda^*(A) = 0$, 试证明对任意 $B \subset \mathbb{R}$,

$$\lambda^*(A \cup B) = \lambda^*(B) = \lambda^*(B \setminus A).$$

- (20). 设 $E_n \subset \mathbb{R}, n \ge 1$ 为可测集,求证 $\{E_n\}_{n \ge 1}$ 的上极限集和下极限集都是可测的.
- (21). 设 $E_1 \subset E_2 \subset \mathbb{R}$,且 E_1 是可测集, $\lambda(E_1) < \infty$. 如果 $m(E_1) = \lambda^*(E_2)$,求证 E_2 是可测集.
- (22). 设 $E \subset \mathbb{R}$, $\lambda^*(E) < \infty$, 定义E 的内测度为

$$\lambda_*(E) = \sup\{\lambda^*(K): K \subset E, K$$
为紧集}.

(I). 设 $I \subset \mathbb{R}$ 为区间,请证明 $\lambda_*(I) = l(I)$,其中 l(I) 表示 I 的长度. (II). 如果 $\lambda_*(E) = \lambda^*(E)$,请证明 E 是可测集.

(23). 设 $\{E_n\}_{n\geq 1}$ 为一列勒贝格可测集, $\sum_{n\geq 1}\lambda(E_n)<\infty$,请证明

$$\lambda(\limsup_{n\to\infty}E_n)=0.$$

(24). 设 $\{E_n\}_{n\geq 1}$ 为一列 [0,1] 中的勒贝格可测集, $\lambda(E_n)=1$,求证

$$\lambda(\cap_{n\geq 1} E_n) = 1.$$

- (25). 设 $f \in \mathbb{R}$ 上的严格增连续函数,求证对任意 $B \in \mathcal{B}(\mathbb{R})$, $f(B) \in \mathcal{B}(R)$. (提示:可以用良集原则(good set principle).)
- (26). 设 $E \subset \mathbb{R}$ 为可测集, 求证存在 F_{σ} 集 F 以及零测集 N 使得 $E = F \cup N$.
- (27). 设 $E \subset \mathbb{R}$,求证存在 G_{δ} 集 $G \supset E$,使得 $m(G) = m^*(E)$ (此时称 G 为 E 的等测包).
- (28). 设 $E \subset \mathbb{R}$ 为可测集且 $m(E) < \infty$,求证对任意 $\varepsilon > 0$,存在有限个开 区间的并集 U,使得

$$m(E\Delta U) < \varepsilon$$
.

- (29). 设 $f: \mathbb{R} \to \mathbb{R}$ 为可导函数,证明 f 及 f' 是 \mathbb{R} 上可测函数. (尝试尽量考虑不利用如下性质来证明:可测函数的和与积是可测函数)
- (30). 设 $f \neq E$ 上 a.e. 有限的可测函数, $\mu(E) < \infty$,证明对任意 $\delta > 0$,存在 $E_{\delta} \subset E$ 以及 M > 0 使 $\mu(E \setminus E_{\delta}) < \delta$,且对任意 $x \in E_{\delta}$, $|f(x)| \leq M$.
- (31). 设 $\{f_n\}$ 为一列可测函数,且对任何 $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mu(f_n > \varepsilon) < \infty.$$

证明 f_n 几乎处处收敛到 0.

(32). 设 $\lambda(E) < \infty$, $\{f_n\}_{n\geq 1}$, $\{g_n\}_{n\geq 1}$ 为 E 上几乎处处有限的可测函数列,且分别依测度收敛于可测函数 f,g. 求证 $f_n + g_n$ 依测度 μ 收敛于 f+g.