Applied Econometric Time Series – Problem Set 4

Dominik R. Wehr Due: Mar 6th 3:15PM

February 12, 2024

1 Error correction

Preliminaries

Consider the bivariate error correction system

$$\Delta r_{St} = \alpha_S (r_{Lt-1} - \beta r_{St-1} - \mu) + a_{1,11} \Delta r_{St-1} + a_{1,12} \Delta r_{Lt-1} + \epsilon_{St}$$
(1.1)

$$\Delta r_{Lt} = \alpha_L (r_{Lt-1} - \beta r_{St-1} - \mu) + a_{1,21} \Delta r_{St-1} + a_{1,22} \Delta r_{Lt-1} + \epsilon_{Lt}$$
(1.2)

where $r_{St} \sim I(1)$ and $r_{Lt} \sim I(1)$, and ϵ_{St} and ϵ_{Lt} are white noise processes.

Question (1a) Argue why r_{St} and r_{Lt} must be co-integrated. What is the co-integrating vector? What is the long-run equilibrium? Why is an intercept μ included in the co-integrating relationship? In which case should the restrictions $\alpha_S \mu$? = 0 and $\alpha_L \mu$? = 0 be imposed?

Question (1b) Formulate the null hypothesis that r_{Lt} does not Granger cause r_{St} .

Question (1c) Describe the adjustment mechanisms towards the long-run equilibrium. Also, describe the adjustment mechanisms toward the long-run equilibrium assuming that r_{Lt} is weakly exogenous. What is the role of Δr_{St-1} and Δr_{Lt-1} terms?

Question (1d) Assume that $r_{St} \sim I(1)$ and $r_{Lt} \sim I(1)$ (as before) but not cointegrated. Why is it a problem to run the regression $r_{St} = \mu + \beta_1 r_{Lt} + \varepsilon_t$? Are there any cures for spurious regressions?

2 Empirical exercise

Do Exercise 4 (but not 4f) in the textbook (page 402).