Error Mitigation with Mitiq

Part 1: Zero-Noise Extrapolation & Calibration

Nate Stemen & Misty Wahl Sep 18, 2023

Mitiq

Mitiq

import cirq + import mitig qubit = cirq.LineQubit(1) mitig circuit = cirq.Circuit(cirq.X(qubit) for in range(100)) - expval = execute(circuit) + expval = mitig.zne.execute with zne(circuit, execute) build passing docs passing codecov 98% Technique Supported By Unitary Fund Discord 212 online. print(f"Error: {1 - expval:.3}") Mitig is a Python toolkit for implementing Zero-noise extrapolation - # Error: 0.244 Current quantum computers are noisy due + # Error: 0.058 state preparation and measurement error: level by compiling quantum programs in c Probabilistic error cancellation PEC mitia.pec 1712.09271 Want to know more? Check out our docur 1905.10135 2005.10189 (Variable-noise) Clifford data regression CDR mitiq.cdr 2011.01157 9803057 Digital dynamical decoupling mitig.ddd 1807.08768 1907.08518 Readout-error mitigation REM mitig.rem 2006.14044

+ import mitig qubit = cirq.LineQubit(1) mitig circuit = cirq.Circuit(cirq.X(qubit) for in range/196 - expval = execute(circuit) + expval = mitiq.zne.execute_with_zne(circuit, execute) build passing docs passing codecov 98% Technique Supported By Unitary Fund Discord 212 online. print(f"Error: {1 - expval:.3}") Mitig is a Python toolkit for implementing Zero-noise extrapolation - # Error: 0.244 Current quantum computers are noisy due + # Error: 0.058 state preparation and measurement error: level by compiling quantum programs in c Probabilistic error cancellation **PFC** mitig.pec 1712.09271 Want to know more? Check out our docur 1905.10135 2005.10189 (Variable-noise) Clifford data regression CDR mitiq.cdr 2011.01157 9803057 Digital dynamical decoupling mitig.ddd 1807.08768 1907.08518 Readout-error mitigation REM mitig.rem 2006.14044

import cira

Follow along!

https://github.com/unitaryfund/mitiq-tutorial

1. Who has written a quantum program before?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?
- 3. Who has used error mitigation?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?
- 3. Who has used error mitigation?
- 4. Who has used Mitiq?

Tutorial goals

- 1. Understand context, and general ideas of quantum error mitigation (QEM).
- 2. Understand main ideas of ZNE, PEC, and DDD along with pros and cons of each technique.
- 3. Ability to use Mitiq to apply these techniques in a quantum pipeline.

Quantum Error Mitigation

The acceptance that available quantum devices are noisy. . . maybe very much so.

But we still want to use them!

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

QEM Methods

Zero-Noise Extrapolation

$$\partial_t \rho = -i[H, \rho] + \frac{\lambda}{\lambda} \mathcal{L}(\rho)$$

Symmetry-based techniques

$$\rho = \frac{M\rho M}{\operatorname{tr}(M\rho)}$$

Dynamical Decoupling

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest has since been growing in the area of quantum computation. One of the main difficulties of quantum computation is that decoherence destroys the information in a superposition of states contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts independently on each of the bits stored in memory. This involves the use of a quantum analog of error-correcting codes.

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest has since been growing in the area of quantum computation. One of the main difficulties of quantum computation is that decoherence destroys the information in a superposition of states contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts independently on each of the bits stored in memory. This involves the use of a quantum analog of error-correcting codes.

Error Correction

- Encode logical qubits into many physical qubits
- Intermediate measurements produce syndromes
- Use syndromes to correct errors

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest has since been growing in the area of quantum computation. One of the main difficulties of quantum computation is that decoherence destroys the information in a superposition of states contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts independently on each of the bits stored in memory. This involves the use of a quantum analog of error-correcting codes.

Error Correction

- Encode logical qubits into many physical qubits
- Intermediate measurements produce syndromes
- Use syndromes to correct errors

Error Mitigation

- Perform multiple and different noisy computations
- Collect results
- Infer ideal expectation values

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest has since been growing in the area of quantum computation. One of the main difficulties of quantum computation is that decoherence destroys the information in a superposition of states contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts independently on each of the bits stored in memory. This involves the use of a quantum analog of errorcorrecting codes.

Error Correction

- Encode logical qubits int
- Interest and serious physical qubits unfeasible
 Interest and serious physical qubits unfeasible
 Scalable, but unfeasible
 Scalable, but unfeasible
 - Use syndromes to correct errors

Error Mitigation

- Perform multiple and different noisy computations
- Collect results
- Infer ideal expectation values

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

Recently, it was realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest has since been growing in the area of quantum computation. One of the main difficulties of quantum computation is that decoherence destroys the information in a superposition of states contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts independently on each of the bits stored in memory. This involves the use of a quantum analog of errorcorrecting codes.

Error Correction

- Encode logical qubits int
- Into Scalable, but unfeasible

 Into Scalable, but unfeasible

 surface surf
- Use syndromes to correct errors

Error Mitigation

- Perform multiple and diff noisy • Coll Unscalable*, but feasible
- ar expectation values

Key Idea

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

Scale noise up, extrapolate back to zero-noise value.

How do we scale the noise **up**?

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

Scale noise up, extrapolate back to zero-noise value.

How do we scale the noise **up**?

Key Idea

Scale noise up, extrapolate back to zero-noise value.

How do we scale the noise **up**?

Running quantum programs in practice

Running quantum programs in practice with Mitiq

Let's try Mitiq!

https://github.com/unitaryfund/mitiq-tutorial/

Sneak Preview of Part II

Probabilistic Error Cancellation

Key Idea: Use noisy operations to build up noiseless ones by selective cancellation and sampling.

Sneak Preview of Part II

Digital Dynamical Decoupling

Key Idea: The devil finds work for idle [qubits].

Interested in this work?

https://unitary.fund/careers/