

5강 식물 병의 진단 / 발병과 환경

충남대 응용생물학과 유승헌 명예교수

교재:6장

식물 병의 진단

- 1 병징과 표징
- 2 병원체의 동정
- 3 식물 병의 진단방법
- 4 병원체의 분리 와 접종

🚺 병징과 표징

- 진단 (diagnosis)은 병의 원인을 밝혀 정확한 병명을 결정하는 것.
- 진단의 목적: 병해 종류의 판정, 그 병의 발생상황, 피해의 추정, 방제 여부 등 적절한 관리대책을 강구하기 위한 것.
- -진단이 잘못되면 병의 방제를 위한 어떤 처치도 효과를 기대하기 어렵다.
- 병징(symptom)은 발병에 의하여 육안으로 관찰되는 기주식물의 이상과 변화, 즉 기생자에 의한 기주식물의 병적인 변화를 말한다. 병징은 병을 진단하는 중요한 수단으로 이용된다.
- 표징(sign)이란 병든 식물체 표면에 병원균 자체가 나타나 육안으로 식별되는 것으로, 병의 진단에 있어서 매우 중요한 지표가 된다.

1. 균류병의 병징

(1) 전신병징

시들음(wilt): 토마토 시들음병, 바나나 시들음병

웃자람(elongation): 벼 키다리병

모잘록(damping-off): 채소류 모잘록병

토마토 시들음병

벼 키다리병

고추 모잘록병

바나나 시들음병

1. 균류병의 병징

(2) 국부병징

점무늬(leaf spot): 사과나무 점무늬낙엽병, 벼 도열병, 벼 깨씨무늬병

잎마름(leaf blight): 참깨 잎마름병

가지마름(dieback): 낙엽송 끝마름병, 뽕나무 가지마름병

줄기마름, 부란(canker): 사과나무 부란병

무름(soft rot): 고구마 무름병

탄저(anthracnose): 고추 탄저병, 사과 탄저병

미라(mummification): 복숭아 잿빛무늬병

뿌리혹(clubroot): 배추 뿌리혹병, 포도 뿌리혹병

1. 균류병의 병징

(2) 국부병징

혹 (gall): 소나무 혹병

빗자루 모양(witches' broom): 벛나무빗자루병

잎오갈(leaf curl): 복숭아나무잎오갈병,

녹병(rust): 배나무붉은별무늬병, 파녹병

깜부기병(smut): 보리겉깜부기병, 옥수수깜부기병

노균병(downy mildew): 오이노균병, 배추노균병

흰가루병(powdery mildew): 오이흰가루병, 장미흰가루병, 딸기흰가루병

1. 균류병의 병징

(2) 국부병징

벼 도열병

파 녹병

보리 겉깜부기병

벼 이삭누룩병

고추 탄저병

복숭아 잎오갈병

장미 흰가루병

소나무 혹병

벛나무 빗자루병

1. 균류병의 병징

(3) 내부병징

물관부 갈변: 토마토 시들음병

토마토 시들음병의 물관부 갈변

2. 균류병의 표징

표징: 병원균류의 포자, 균사, 균핵, 자실체 등과 같은 <mark>병원균 자체</mark>가 병든 식물체 위에 서 관찰되는 것

균핵: 오이 균핵병, 벼 잎짚무늬마름병

균사속: 오이 흰비단병

분생포자 및 분생포자경: 딸기 잿빛곰팡이병, 장미 흰가루병, 사과 푸른곰팡이병

포자퇴: 파 녹병, 밀 줄기녹병

분생포자층: 고추 탄저병, 사과 탄저병

2. 균류병의 표징

오이 균핵병

파 녹병

사과 푸른곰팡이병

딸기 잿빛곰팡이병

3. 세균병의 병징

시들음: 토마토 풋마름병

점무늬: 담배 들불병

잎마름: 벼 흰잎마름병, 담배 들불병

줄무늬: 옥수수 세균성줄무늬병

무름: 채소류 무름병

가지마름: 배나무 불마름병 (화상병)

기형: 뽕나무 위축병

이상비대: 포도 뿌리혹병

더댕이: 감자 더댕이병

토마토 풋마름병

4. 바이러스병의 병징

(1) 외부병징

모자이크, 잎맥투명, 퇴록 반문, 퇴록 줄무늬, 황화, 위축, 총생, 종양, 비대, 괴저, 겹무늬, 기형

(2) 내부병징

세포내 봉입체: 담배 TMV

체관부 괴저: 보리 황화위축병, 감자 잎말림병

벼오갈병

2 병원체의 동정

2 병원체의 동정

- 동정 (identification): 병원체의 정확한 종명(種名, species)을 결정하는 것
- 진단 (diagnosis): 정확한 병명을 결정하는 것
- 병원체를 동정하기 위해서는 코흐의 원칙(Koch's postulates)을 만족 시키는 실험이 필요하다.
- * 코흐의 원칙:
 - ① 동일한 병의 경우, 기주로부터 동일한 미생물이 검출되어야 한다.
 - ② 그 미생물은 기주로부터 분리되어 순수 배양되어야 한다.
 - ③ 순수 분리한 미생물을 건전한 기주에 접종하면 동일한 병징이 나타나야 한다.
 - ④ 실험적으로 감염시킨 기주로부터 다시 동일한 미생물이 분리되어야 한다.

🔼 병원체의 동정

코흐의 원칙에 의한 병원체 동정의 순서

1. 포장진단

- 병이 발생한 포장에 가서 병 발생실태를 파악하여 병의 종류를 종합적으로 판단.
- 상당한 경험과 숙련이 필요
- 정확한 진단을 위해서는 식물진단(개체진단)이 병행되어야 할 경우가 많음

한국방송통신데학교 Korea National Open University

2. 식물진단 (개체진단)

- 식물 개체를 대상으로 하는 진단, 포장진단과 병행하는 것이 원칙.
- 전염성 병인지 확인하고, 전염성 병이라면 균류병(?), 세균병(?), 바이러스병(?) 구분, 다음에 병원체의 종명과 병명을 결정한다.
- 병원체를 동정하기 위하여는 코흐의 원칙에 따라 실험하여야 함.

3

식물 병의 진단방법

2. 식물진단 (개체진단)

(1) 육안진단 (병징에 의한 진단)

벼 도열병

벼 깨씨무늬병

세균 누출

(일반형) (급성형 Kresek) **벼 흰잎마름병**

3

식물 병의 진단방법

2. 식물진단 (개체진단)

(1) 육안진단 (병징에 의한 진단)

감자 겹둥근무늬병(A)과 역병(B)

토마토 시들음병

토마토 풋마름병

2. 식물진단 (개체진단)

(2) 해부진단: 병든 식물의 내부 병징이나 조직 내의 병원체를 확인하기 위하여 육안이나 현미경 등으로 관찰하는 방법

토마토 시들음병

토마토 풋마름병

토마토 풋마름병 병든 줄기 조직의 세균 누출

도관조직 갈변

2. 식물진단 (개체진단)

(2) 해부진단

참깨 풋마름병 (A)과 Fusarium 시들음병(B)의 해부학적 진단

2. 식물진단 (개체진단)

(3) 혈청진단

- 항혈청(항체)을 시료와 반응시켜 침강반응이나 응집반응 등의 유무로 진단한다.
- 면역확산법, 형광항체법, 효소결합항체법 등이 있음
- 효소결합항체법(ELISA): 검출감도가 높고 많은 시료를 비교적 단시간내에 검정할 수 있으므로 병발생 조사나 종묘의 수출입 검사 등에 폭 넓게 사용되고 있음

- 2. 식물진단 (개체진단)
- (3) 혈청진단

ELISA용 plate

효소결합항체법 (ELISA)

- (a) 바이러스 항혈청(항체)을 ELISA용 plate에 결합시킴
- (b) 항원(바이러스)을 첨가함
- (c) 효소로 표지한 항체를 첨가하여 항원에 결합시킴
- (d) 효소의 기질(○)을 첨가하여 발색시킴(◆)

2. 식물진단 (개체진단)

- (4) 유전자진단 (분자생물학적 진단)
 - 병원체에 특이적인 핵산 단편을 검출, 분석하는 방법으로 진단법 중에서 가장 감도가 높은 방법이다.
- <mark>중합효소연쇄반응(PCR</mark>)를 이용하여 낮은 농도로 존재하는 DNA 일부분을 증폭시 킨 다음 증폭된 산물이 보여주는 염기서열의 다형성을 분석하여 동정.
- 균류의 종(species) 동정시 많이 사용하는 DNA영역: ITS영역, β-tublin, histone H3 등
- 다좌위서열 타이핑(multi-locus sequence typing, MLST): 다양한 유전자 사용.

Fusarium graminearum, Cercospora 의 종 동정에 사용

- 모든 생물적 병원체는 각각 고유의 핵산 (염기서열)을 가지고 있으며 이의 검출은 병원균의 직접적인 검출과 같다.

2. 식물진단 (개체진단)

(4) 유전자진단 (분자생물학적 진단)

장점

- 모든 생물적 병원체는 각각 고유의 핵산 (염기서열)을 가지고 있으며 이의 검출은 병원균의 직접적인 검출과 같다.
- 병원체의 모든 유전정보가 검토의 대상이 되며, 반응이 대단히 예민하기 때문에 병원체의 동정을 위하여 병원체를 순수 분리할 필요가 없다.
- 생장이 느린 균이나, 무병징 감염시료와 같이 균체의 양이 매우 적거나, 유성세대
 를 형성하지 않아 형태적 종 동정이 어려운 경우에도 사용할 수 있다.

단점

- 비용이 많이 소요되며, 고가의 장비가 필요.

2. 식물진단 (개체진단)

- (5) 생물진단: 어떤 병원체에 대하여 특히 감수성이 강하거나 특이한 반응을 보여 주는 생물 또는 그와 유사한 작용체를 이용하여 병을 진단하는 것
 - ① 지표식물법
 - -야생담배(*Nicotiana glutinosa*)에 TMV접종하면 접종부위에만 국부 괴사 병징, CMV 접종하면 전신병징
 - -천일홍에 감자바이러스X 접종하면 국부 병반
 - -감나무 묘목 식재: 과수뿌리혹병균 (Agrobacterium tumefaciens) 유무 조사
 - -토마토, 봉선화 식재: 뿌리혹 선충 유무 조사

2. 식물진단 (개체진단)

- ② 최아법 (괴경지표법): 감자바이러스병에 대한 무병종서 검출법
- ③ 박테리오파지 (bacteriophage) 이용:

박테리오파지: 세균에 기생하는 바이러스

박테리오파지는 대체로 기주특이성이 있어 혼재되어 있는 세균중에서

기주세균만 공격한다

4

병원체의 분리와 접종

- 1. 병원체의 분리
- (1) 균류의 분리

평판배지의 조제

1. 병원체의 분리

(1) 균류의 분리

사면배지의 조제

4

병원체의 분리와 접종

1. 병원체의 분리

(1) 균류의 분리

병원균류의 분리과정

분리 완성

1. 병원체의 분리

(2) 세균의 분리

세균의 분리과정

2. 병원체의 접종

- (1) 균류 (포자를 형성하는 균류)
 - ①순수배양한 병원체의 배지에 살균수를 주입하여 포자현탁액 (spore suspension)을 조제한다.
 - ②건전한 식물체에 포자현탁액을 분무접종한다.
 - ③접종한 식물체를 습도 100%의 접종상에 2-3일간 넣는다.
 - ④접종한 식물체를 온실이나 생육상으로 옮긴다.

2. 병원체의 접종

- (2) 세균 (또는 상처침입하는 일부 균류)
 - ①순수배양한 병원체의 배지에 살균수를 주입하여 세균현탁액을 조제한다.
 - ②침으로 식물체에 상처를 준 다음 접종원을 분무하거나, 접종원을 뭍힌 침으로 식물체를 찔러서 접종한다.
 - ③접종한 식물체를 습도 100%의 접종상에 2-3일간 넣는다.
 - ④접종한 식물체를 온실이나 생육상으로 옮긴다.

- 4 병원체의 분리와 접종
 - 2. 병원체의 접종
 - (3) 식물바이러스

식물바이러스의 즙액접종

교재: 7장

발병과 환경

- 1 온도
- 2 수분 및 강우
- 3 일조량
- 4 바람
- 5 토양산도 및 비옥도

한글방송통신데학교 Karea National Open University

1 온도

! <mark>온도</mark>는 병원체와 기주식물 양쪽에 작용하며 발병을 좌우하는 큰 요인이다

- 토마토 시들음병, 발병적온 27-28 ℃ (병원균 *Fusarium oxysporum* 생장적온) `
- 벼 도열병, 26-28 ℃ (병원균 *Pyricularia oryzae* 생장적온)에서 잠복기간 짧고 병반 수도 많다. <mark>냉도열병:</mark> 저온일 때 더 많이 발생 (이유는?)
- 저온성 병: 벼 모썩음병(수온 15 ℃ 이하), 상추 노균병(8-15 ℃), 감자 역병 (15-20 ℃ 전후), 포도 잿빛곰팡이병(15-20 ℃)
- 고온성 병: 벼 흰잎마름병(30 ℃ 전후), 벼 잎집무늬마름병(30 ℃ 전후),
 고추 탄저병 (25 ℃ 전후), 토마토 시들음병, 복숭아 잿빛무늬병
- · 감자 바이러스병: PVX, PVS (발병적온 14-18 ℃, 병징음폐 25 ℃)
- · 담배 바이러스병: PVX (발병적온 20-24 ℃, 병징음폐15 ℃)

2 수분 및 강우

- 많은 병원균류의 포자 형성에는 95%이상의 상대습도가, 기주 침입에는 물방울 또는 100%에 가까운 상대습도 필요: 벼도열병균의 포자발아와 기주체 침입, 고추탄저병균, 강남콩탄저병균의 기주체 침입.
- 비가 자주 오거나 습도 높을 때 많이 발생: 각 종 노균병, 역병, 잿빛곰팡이병, 탄저병, 벼 흰잎마름병 등.
- · 비교적 낮은 습도에서 많이 발생: 각 종 흰가루병.
- 토양수분 과습할 때 발병 촉진: 감자 역병, 고추 역병, Pythium모잘록병.
- 토양수분 비교적 건조할 때 발병 촉진: 오이 덩굴쪼김병 (Fusarium oxysporum)

- - · 강우: 병원균류 포자의 분산과 침입에 중요,
 - 식물체 표면에 수막을 형성하여 균류의 기주체 침입이 용이
 - 벼 출수 전후의 강우; 벼 이삭도열병 발생의 원인
 - 밀 출수 전후의 강우; 밀 붉은곰팡이병 발생의 원인.

맥류 출수기 (4-5월)의 강수량과 붉은곰 팡이병 발생과의 관계 (오, 2013)

3 일조량

3 일조량

• 일조부족은 식물의 광합성을 저하시키고, 유리당, 아미노산 및 아마이드를 증가 시키며, 일반적으로 식물의 병에 대한 저항력을 저하시킨다.

벼 도열병: 일조 부족할 때 많이 발생.

•도열병균 (*Pyricularia*), 잿빛곰팡이병균(*Botrytis*), 토마토겹무늬병균(*Alternaria*):

분생포자 형성에 광(근자외선광)이 필요

낙엽송 묘목에서 햇빛 (상대조도)과 병 발생과의 관계 (Sato, 1978)

4 바람

4 바람

- 바람은 균류의 포자전반에 영향을 주며, 식물체에 상처를 유발하여 각 종 병의 발병을 촉진시킨다.
 - 벼도열병균, 맥류깜부기병균, 맥류녹병균 등 공기전염 균류의 포자 전반
 - 벼 흰잎마름병, 수목 목재썩음병: 태풍에 의한 상처가 발병 유인
- 비닐하우스 재배에서 적당한 바람과 환기는 상대습도를 저하시켜 토마토잎곰 팡이병 발생을 억제.

5 토양산도 및 비옥도

1. 토양산도

- ·배추 무사마귀병: 산성토양 (pH 5근처)에서 발병이 심함.
- 토마토 Fusarium시들음병: 산성토양에서 발병이 심함.
- · 감자 더뎅이병: 토양 pH 5.2-8.0일 때 심하고, pH 5.2 이하에서 발병 감소.

2. 토양의 비옥도

- <mark>질소질비료의 과용</mark>: 벼 도열병, 맥류의 붉은곰팡이병, 녹병, 흰가루병, 각종 식물의 탄저병, 토마토 역병, 포도 잿빛곰팡이병을 유발
- · <mark>질소질비료의 부족</mark>: 토마토의 겹무늬병, 잎곰팡이병, 시들음병, 무 흰가루병, 가지과작물 풋마름병 등을 유발
- 규산질비료 시용: 벼 도열병 발생 억제.

6강

'병원체와 기주의 상호반응' (최재을 교수) 입니다.

