Table A-1. Instruction Set Summary (Sheet 1 of 14)

Source Form	Operation	Addr.	Machine	Acc	cess Detail	SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	эхпі	NZVC
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00	00	Δ-	ΔΔΔΔ
ABX	$(B) + (X) \Rightarrow X$ Translates to LEAX B,X	IDX	1A E5	Pf	PP ¹		
ABY	(B) + (Y) ⇒ Y Translates to LEAY B,Y	IDX	19 ED	Pf	PP^1		
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysp ADCA oprx9,xysp ADCA oprx16,xysp ADCA [D,xysp] ADCA [oprx16,xysp]	$ (A) + (M) + C \Rightarrow A $ Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	89 ii 99 dd B9 hh ll A9 xb A9 xb ff A9 xb ee ff A9 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP	Δ-	ΔΔΔΔ
ADCB #opr8i ADCB opr8a ADCB opr16a ADCB oprx0_xysp ADCB oprx9,xysp ADCB oprx16,xysp ADCB [D,xysp] ADCB [oprx16,xysp]	$ (B) + (M) + C \Rightarrow B $ Add with Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C9 ii D9 dd F9 hh l1 E9 xb E9 xb ff E9 xb ee ff E9 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP	Δ-	ΔΔΔΔ
ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0_xysp ADDA oprx9,xysp ADDA oprx16,xysp ADDA [D,xysp] ADDA [oprx16,xysp]	$(A) + (M) \Rightarrow A$ Add without Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8B ii 9B dd BB hh ll AB xb AB xb ff AB xb ee ff AB xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP	Δ-	ΔΔΔΔ
ADDB #opr8i ADDB opr8a ADDB opr16a ADDB oprx0_xysp ADDB oprx16,xysp ADDB [D,xysp] ADDB [0,xysp] ADDB [0,xysp]	$ (B) + (M) \Rightarrow B $ Add without Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CB ii DB dd FB hh 11 EB xb EB xb ff EB xb ee ff EB xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP fIPrfP	Δ-	ΔΔΔΔ
ADDD #opr16i ADDD opr8a ADDD opr16a ADDD oprx0_xysp ADDD oprx9,xysp ADDD oprx16,xysp ADDD [D,xysp] ADDD [D,xysp] ADDD [oprx16,xysp]	$ \begin{array}{l} \text{(A:B)} + \text{(M:M+1)} \Rightarrow \text{A:B} \\ \text{Add 16-Bit to D (A:B)} \end{array} $	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C3 jj kk D3 dd F3 hh l1 E3 xb E3 xb ff E3 xb ee ff E3 xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPF fIPRPF	OP RfP ROP RFP RPO fRPP fIfRfP		ΔΔΔΔ
ANDA #opr8i ANDA opr8a ANDA opr16a ANDA oprx0_xysp ANDA oprx9,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]	(A) • (M) ⇒ A Logical AND A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd 84 hh 11 A4 xb A4 xb ff A4 xb ee ff A4 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	p rfP rOP rfP rPO frPP fIfrfP		ΔΔ0-
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysp ANDB oprx16,xysp ANDB [D,xysp]	(B) • (M) ⇒ B Logical AND B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	C4 ii D4 dd F4 hh ll E4 xb E4 xb ff E4 xb ee ff E4 xb	P rPf rPO rPf rPO frPP fIfrPf	p rfP rOP rFP rPO frPP fIfrfP		ΔΔ0-

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 2 of 14)

Source Form	Operation	Addr.	Machine	Access Detail		SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC1	C12 `	3 X П І	NZVC
ASL opr16a ASL oprx0_xysp ASL oprx16,xysp ASL [D,xysp] ASL [oprx16,xysp] ASL [oprx16,xysp]	C b7 b0 Arithmetic Shift Left	IDX IDX1 IDX2 [D,IDX] [IDX2]	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff	rPwO rOP rPw rP rPwO rPo frPwP frPp fIfrPw fIfrP fIPrPw fIPrP	PW POW PPW PW PW		ΔΔΔΔ
ASLA ASLB	Arithmetic Shift Left Accumulator A Arithmetic Shift Left Accumulator B	INH INH	48 58	1	0		
ASLD	C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH	59	0	0 -		ΔΔΔΔ
ASR opr16a ASR oprx0_xysp ASR oprx9.xysp ASR oprx16,xysp ASR [D,xysp] ASR [oprx16,xysp] ASRA ASRB	Arithmetic Shift Right Arithmetic Shift Right Accumulator A Arithmetic Shift Right Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	77 hh 11 67 xb 67 xb ff 67 xb ee ff 67 xb ee ff 67 xb ee ff 47 57		PW POW PPW PW		ΔΔΔΔ
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹ PPP/P	/P ¹ -		
BCLR opr8a, msk8 BCLR opr16a, msk8 BCLR oprx0_xysp, msk8 BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8	(M) • (mm) ⇒ M Clear Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4D dd mm 1D hh 11 mm 0D xb mm 0D xb ff mm 0D xb ee ff mm	rPwO rPo rPwP rPm rPwO rPo rPwP rPw frPwPO frPwO	PPW POW PWP		ΔΔ0-
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹ PPP/P	/P ¹ -		
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹ PPP/P	/P ¹ -		
BGE rel8	Branch if Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	2C rr	PPP/P PPP/P	/P ¹ -		
BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP VfPP.	PPP -		
BGT rel8	Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P PPP/P	/P ¹ -		
BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P PPP/P	/P ¹ -		
BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹ PPP/P	/P ¹ -		
BITA #opr8i BITA opr8a BITA opr16a BITA opr16a BITA oprx0_xysp BITA oprx9_xysp BITA oprx16,xysp BITA [D,xysp] BITA [oprx16,xysp]	(A) ● (M) Logical AND A with Memory Does not change Accumulator or Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	85 ii 95 dd B5 hh 11 A5 xb A5 xb ff A5 xb ee ff A5 xb ee ff A5 xb ee ff	rPf rf rP0 rO rPf rf rPo rP frPP frP fifrpf fifrf fiPrpf fiPrf	fP fP rPO rPP		ΔΔ0-
BITB #opr8i BITB opr8a BITB opr16a BITB oprx0_xysp BITB oprx9_xysp BITB oprx16,xysp BITB [D,xysp] BITB [oprx16,xysp]	(B) ● (M) Logical AND B with Memory Does not change Accumulator or Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C5 ii D5 dd F5 hh l1 E5 xb E5 xb ff E5 xb ee ff E5 xb ee ff E5 xb ee ff	rPf rf rP0 r0 rPf rf rPo rP frPP frP fifrPf fifrf fIPrpf fiprf	rfP rOP rfP rPO rPP rfP		ΔΔ0-
BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P PPP/P	/P ¹		
BLO rel8	Branch if Lower (if C = 1) (unsigned) same function as BCS	REL	25 rr	PPP/P ¹ PPP/P	/P ¹ -		

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
	·	Mode	Coding (hex)	HCS12 M68HC12	O X III	11210
BLS rel8	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	PPP/P ¹ PPP/P ¹		
BLT rel8	Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	2D rr	PPP/P ¹ PPP/P ¹		
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹ PPP/P ¹		
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹ PPP/P ¹		
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹ PPP/P ¹		
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP PPP		
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX	4F dd mm rr 1F hh ll mm rr 0F xb mm rr	rppp rppp rfppp rfppp rppp rppp		
BRCLR oprx9,xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8		IDX1 IDX2	OF xb ff mm rr OF xb ee ff mm rr	rfPPP rffPPP		
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P P		
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8	Branch if (M) ● (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX	4E dd mm rr 1E hh ll mm rr 0E xb mm rr	rPPP rPPP rfPPP rfPPP rPPP rPPP		
BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8		IDX1 IDX2	OE xb ff mm rr OE xb ee ff mm rr	rfPPP rffPPP rrfPPP		
BSET opr8, msk8 BSET opr16a, msk8	$(M) + (mm) \Rightarrow M$ Set Bit(s) in Memory	DIR EXT	4C dd mm 1C hh 11 mm	rPwO rPOw rPwP rPPw		ΔΔ0-
BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8		IDX IDX1 IDX2	0C xb mm 0C xb ff mm	rPwO rPOW rPwP		
BSET oprx16,xysp, msk8 BSR rel8	$(SP) - 2 \Rightarrow SP; RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}$	REL	0C xb ee ff mm 07 rr	frPwPO frPwOP SPPP PPPS		
BSR Tello	$Subroutine address \Rightarrow PC$ Branch to Subroutine	NEL	07 rr	SPPP PPPS		
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹ PPP/P ¹		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹ PPP/P ¹		
CALL opr16a, page CALL oprx0_xysp, page CALL oprx16,xysp, page CALL oprx16,xysp, page CALL [D.xysp] CALL [oprx16, xysp]	$\begin{split} (SP) - 2 &\Rightarrow SP; RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)} \\ (SP) - 1 &\Rightarrow SP; (PPG) \Rightarrow M_{(SP)}; \\ pg &\Rightarrow PPAGE \ register; Program \ address \Rightarrow PC \\ Call \ subroutine \ in \ extended \ memory \\ (Program \ may \ be \ located \ on \ another \\ expansion \ memory \ page.) \\ Indirect \ modes \ get \ program \ address \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb ee ff	gnSsPPP gnfSsPPP gnSsPPP gnfSsPPP gnSsPPP gnfSsPPP fgnSsPPP fgnSsPPP flignSsPPP flignSsPPP flignSsPPP flignSsPPP		
СВА	and new pg value based on pointer. (A) – (B)	INH	18 17	00 00		ΔΔΔΔ
CLC	Compare 8-Bit Accumulators 0 ⇒ C	IMM	10 FE	P P		0
	Translates to ANDCC #\$FE					
CLI	0 ⇒ I **Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	P P	0	
CLR opr16a CLR oprx0_xysp CLR oprx9,xysp CLR oprx16,xysp CLR [D,xysp]	0 ⇒ M Clear Memory Location	EXT IDX IDX1 IDX2 [D,IDX]	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb	PwO wOP Pw Pw PwO PwO PwP PwP PIfw PIfPw		0100
CLR [oprx16,xysp] CLRA	0 ⇒ A Clear Accumulator A	[IDX2] INH	69 xb ee ff 87	PIPW PIPPW O O		
CLRB	0 ⇒ B Clear Accumulator B	INH	C7	0 0		
CLV	0 ⇒ V Translates to ANDCC #\$FD	IMM	10 FD	P P		0-
	uction takes three cycles to refill the instruction queue if the bra			1		
CMPA #opr8i CMPA opr16a CMPA opr16a CMPA oprx0_xysp CMPA oprx16,xysp CMPA oprx16,xysp CMPA [D,xysp]	(A) – (M) Compare Accumulator A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	81 ii 91 dd B1 hh 11 A1 xb A1 xb ff A1 xb ee ff A1 xb	P P rPf rfP rPO rOP rPf rfP rPO rPO frPP frPP fIfrPf fIfrfPf		ΔΔΔΔ
CMPA [oprx16,xysp]		[IDX2]	A1 xb ee ff	fIPrPf fIPrfP		

S12CPUV2 Reference Manual, Rev. 4.0

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC	S X H I	NZVC
CMPB #opr8i CMPB opr8a CMPB opr16a CMPB oprx0_xysp CMPB oprx16,xysp CMPB oprx16,xysp CMPB [D,xysp] CMPB [oprx16,xysp]	(B) – (M) Compare Accumulator B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C1 ii D1 dd F1 hh l1 E1 xb E1 xb ff E1 xb ee ff E1 xb E1 xb ee ff	rPO r	ΕP	ΔΔΔΔ
COM opr16a COM oprx0_xysp COM oprx3,xysp COM oprx16,xysp COM [D,xysp] COM [oprx16,xysp] COMA COMB	$\begin{array}{c} (\overline{M}) \Rightarrow M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	71 hh 11 61 xb 61 xb ff 61 xb ee ff 61 xb ee ff 61 xb ee ff 41 51	rPwO	Pw Ow Pw Pw	ΔΔ01
CPD #opr16i CPD opr8a CPD opr16a CPD oprx0_xysp CPD oprx9,xysp CPD oprx16,xysp CPD [D,xysp] CPD [oprx16,xysp]	(A:B) – (M:M+1) Compare D to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jj kk 9C dd BC hh 11 AC xb AC xb ff AC xb ee ff AC xb	RPf RPO RRPf R	£Ρ	ΔΔΔΔ
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysp CPS oprx0_xysp CPS oprx16,xysp CPS [D,xysp] CPS [D,xysp] CPS [oprx16,xysp]	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh 11 AF xb AF xb ff AF xb ee ff AF xb	RPf RPO RRPf R	ΕP	ΔΔΔΔ
CPX #opr16i CPX opr8a CPX opr16a CPX oprx0_xysp CPX oprx9_xysp CPX oprx16,xysp CPX [D,xysp] CPX [D,xysp] CPX [Oprx16,xysp]	(X) – (M:M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jj kk 9E dd BE hh 11 AE xb AE xb ff AE xb ee ff AE xb	RPf RPO RRPf R	ΕP	ΔΔΔΔ
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysp CPY oprx0_xysp CPY oprx16,xysp CPY [D,xysp] CPY [D,rx16,xysp] DAA	(Y) – (M:M+1) Compare Y to Memory (16-Bit) Adjust Sum to BCD	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jj kk 9D dd BD hh 11 AD xb AD xb ff AD xb ee ff AD xb ee ff AD xb ee ff	RPf R RPO R RPf R RPO R fRPP fR fifRPf fifR fIPRPf fIPR	ΕP	ΔΔΔΔ
DBEQ abdxys, rel9	Adjust Sum to BCD Decimal Adjust Accumulator A (cntr) = 1 ⇒ cntr if (cntr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr		PP	
DBNE abdxys, rel9	$\begin{split} &(cntr)-1\Rightarrow cntr\\ &ff\ (cntr)\ not=0,\ then\ Branch;\\ &else\ Continue\ to\ next\ instruction\\ &Decrement\ Counter\ and\ Branch\ if\ \neq 0\\ &(cntr=A,B,D,X,Y,or\ SP) \end{split}$	REL (9-bit)	04 lb rr	PPP (branch) P PPO (no branch)	PP	

Table A-1. Instruction Set Summary (Sheet 5 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	SXHI	NZVC
DEC opr16a DEC oprx0_xysp DEC oprx9,xysp DEC oprx16,xysp DEC [D,xysp] DEC [oprx16,xysp] DEC [oprx16,xysp] DECA DECB	(M) – $\$01 \Rightarrow M$ Decrement Memory Location $(A) - \$01 \Rightarrow A$ (B) – $\$01 \Rightarrow B$ Decrement A (B) – $\$01 \Rightarrow B$ Decrement B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb ee ff 63 xb ee ff 43 53	rPwO	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ΔΔΔ-
DES	(SP) – \$0001 ⇒ SP Translates to LEAS –1,SP	IDX	1B 9F	Pf PP ¹		
DEX	(X) – \$0001 ⇒ X Decrement Index Register X	INH	09	0 (-Δ
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0 0		-Δ
EDIV	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11	fffffffff fffffffff)	ΔΔΔΔ
EDIVS	$(Y:D) \div (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffff Offffffffff)	ΔΔΔΔ
EMACS opr16a ²	$\begin{split} &(M_{(X)}:M_{(X+1)})\times (M_{(Y)}:M_{(Y+1)})+(M-M+3)\Rightarrow M-M+3\\ &16\text{ by 16 Bit}\Rightarrow 32\text{ Bit}\\ &\text{Multiply and Accumulate (signed)} \end{split}$	Special	18 12 hh 11	ORROFFFRREWUP ORROFFFRREWUE		ΔΔΔΔ
EMAXD oprx0_xysp EMAXD oprx9,xysp EMAXD oprx16,xysp EMAXD [D,xysp] EMAXD [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ D MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) − (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1A xb 18 1A xb ff 18 1A xb ee ff 18 1A xb 18 1A xb	ORPF ORFI ORPO ORPO OFRPP OFRPP OFIFRPF OFIFRFF OFIPRPF OFIPRFF		ΔΔΔΔ
EMAXM oprx0_xysp EMAXM oprx9,xysp EMAXM oprx16,xysp EMAXM [D,xysp] EMAXM [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ M:M+1 MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1E xb 18 1E xb ff 18 1E xb ee ff 18 1E xb 18 1E xb ee ff	ORPW ORPV ORPWO ORPWO OfRPWB OfRPWB OfIFRPW OfIFRPW OfIFRPW OfIFRPW		ΔΔΔΔ
EMIND oprx0_xysp EMIND oprx9,xysp EMIND oprx16,xysp EMIND [D,xysp] EMIND [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ D MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1B xb 18 1B xb ff 18 1B xb ee ff 18 1B xb 18 1B xb	ORPF ORFF ORPO ORPO OFRPP OFFRF OFIFRPF OFIFRFF OFIPRPF OFIPRFF		ΔΔΔΔ
EMINM oprx0_xysp EMINM oprx9,xysp EMINM oprx16,xysp EMINM [D,xysp] EMINM [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ M:M+1 MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1F xb 18 1F xb ff 18 1F xb ee ff 18 1F xb 18 1F xb ee ff	ORPW ORPW ORPWO ORPWO OFRPWP OFFPWP OFIFRPW OFIFRPW OFIPRPW		ΔΔΔΔ
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13	ff0 ff0		ΔΔ-Δ
EMULS	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (signed)	INH	18 13	OfO OfC (if followed by page 2 instruction) OffO OfC	1	ΔΔ-Δ
EORA #opr8i EORA opr8a EORA opr16a EORA oprx0_xysp EORA oprx16,xysp EORA [D,xysp] EORA [oprx16,xysp]	$(A) \oplus (M) \Rightarrow A$ Exclusive-OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	88 ii 98 dd B8 hh ll A8 xb A8 xb ff A8 xb ee ff A8 xb ee ff	P I rPf rff rP0 rO rPf rff rP0 rFF frPP frPF fIfrPf fIfrff fIPrPf fIPrfF		ΔΔΟ-

- Notes:

 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

 2. opr16a is an extended address specification. Both X and Y point to source operands.

EORB #opr8i	$(B) \oplus (M) \Rightarrow B$	IMM	C8 ii	P	P	 ΔΔ0-
EORB opr8a	Exclusive-OR B with Memory	DIR	D8 dd	rPf	rfP	
EORB opr16a		EXT	F8 hh 11	rPO	rOP	
EORB oprx0_xysp		IDX	E8 xb	rPf	rfP	
EORB oprx9,xysp		IDX1	E8 xb ff	rPO	rPO	
EORB oprx16,xysp		IDX2	E8 xb ee ff	frPP	frPP	
EORB [D,xysp]		[D,IDX]	E8 xb	fIfrPf	fIfrfP	
EORB [oprx16,xysp]		[IDX2]	E8 xb ee ff	fIPrPf	fIPrfP	

Table A-1. Instruction Set Summary (Sheet 6 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Acces	s Detail M68HC12	ѕхні	NZVC
ETBL oprx0_xysp	(M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D 16-Bit Table Lookup and Interpolate	IDX	18 3F xb	ORREFEEF	ORREFEEE		$\Delta \Delta - \Delta$
	Initialize B, and index before ETBL. <ea> points at first table entry (M:M+1) and B is fractional part of lookup value</ea>						I indefined IC12
	(no indirect addr. modes or extensions allowed)						
EXG abcdxys,abcdxys	$(r1) \Leftrightarrow (r2)$ (if r1 and r2 same size) or \$00:(r1) \Rightarrow r2 (if r1=8-bit; r2=16-bit) or $(r1_{low}) \Leftrightarrow (r2)$ (if r1=16-bit; r2=8-bit)	INH	B7 eb	P	Р		
	r1 and r2 may be A, B, CCR, D, X, Y, or SP						
FDIV	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$ 16 by 16 Bit Fractional Divide	INH	18 11	Offffffffff	Offfffffffo		-ΔΔΔ
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr If (cntr) = 0, then Branch else Continue to next instruction Increment Counter and Branch if = 0	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
	(cntr = A, B, D, X, Y, or SP)						
IBNE abdxys, rel9	(cntr) + 1⇒ cntr if (cntr) not = 0, then Branch; else Continue to next instruction	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
	Increment Counter and Branch if $\neq 0$ (cntr = A, B, D, X, Y, or SP)						
IDIV	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$ 16 by 16 Bit Integer Divide (unsigned)	INH	18 10	Offfffffffo	Offfffffffo		-Δ0Δ
IDIVS	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$ 16 by 16 Bit Integer Divide (signed)	INH	18 15	Offfffffffo	Offfffffffo		ΔΔΔΔ
INC opr16a INC oprx0_xysp INC oprx3,xysp INC oprx16,xysp INC [D,xysp] INC [D,xysp] INC [oprx16,xysp] INCA	$\begin{array}{ll} \text{(M)} + \$01 \Rightarrow \text{M} \\ \text{Increment Memory Byte} \\ \\ \text{(A)} + \$01 \Rightarrow \text{A} \\ \\ \text{(A)} \Rightarrow \text{A} \\ \text{Increment Acc. A} \\ \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	72 hh 11 62 xb 62 xb ff 62 xb ee ff 62 xb ee ff 62 xb ee ff 42	rPwO rPw rPwO frPwP fIfrPw fIPrPw	rOPw rPw rPOw frPPw fIfrPw fIPrPw		ΔΔΔ-
INS	(B) + \$01 ⇒ B Increment Acc. B (SP) + \$0001 ⇒ SP <i>Translates to</i> LEAS 1,SP	INH	52 1B 81	O Pf	O PP ¹		
INX	(X) + \$0001 ⇒ X Increment Index Register X	INH	08	0	0		-Δ
INY	(Y) + \$0001 ⇒ Y Increment Index Register Y	INH	02	0	0		-Δ
JMP opr16a JMP oprx0_xysp JMP oprx9.xysp JMP oprx16,xysp JMP [D,xysp] JMP [oprx16,xysp]	Routine address ⇒ PC Jump	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	06 hh 11 05 xb 05 xb ff 05 xb ee ff 05 xb ee ff	PPP PPP PPP fPPP fIfPPP fIfPPP	PPP PPP PPP fPPP fIfPPP fIfPPP		
	uirements, the program word fetch is performed twice to th						
JSR opr8a JSR opr16a JSR oprx0_xysp JSR oprx9_xysp JSR oprx16,xysp JSR [D,xysp] JSR [Oprx16,xysp]	$ \begin{aligned} &(SP) - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &Subroutine \ address \Rightarrow PC \end{aligned} $ Jump to Subroutine	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	17 dd 16 hh 11 15 xb 15 xb ff 15 xb ee ff 15 xb ee ff 15 xb ee ff	SPPP SPPP PPPS PPPS fPPPS fIfPPPS fIfPPPS	PPPS PPPS PPPS PPPS fPPPS fIfPPPS fIfPPPS		
LBCC rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGE rel16	Long Branch Greater Than or Equal (if N \oplus V = 0) (signed)	REL	18 2C qq rr	OPPP/OPO ¹	OPPP/OPO ¹		

Table A-1. Instruction Set Summary (Sheet 7 of 14)

		Addr.	Machine	Access	s Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLT rel16	Long Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	18 2D qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LDAA #opr8i	$(M) \Rightarrow A$	IMM	86 ii	P	P		ΔΔ0-
LDAA opr8a LDAA opr16a LDAA oprx0_xysp LDAA oprx9.xysp LDAA oprx16,xysp LDAA [0,xysp] LDAA [0,xysp]	Load Accumulator A	DIR EXT IDX IDX1 IDX2 [D,IDX]	96 dd B6 hh 11 A6 xb A6 xb ff A6 xb ee ff A6 xb A6 xb ee ff	rPf rPO rPf rPO frPP fIfrPf fIPrPf	rfP rOP rfP rPO frPP fIfrfP		
LDAB #opr8i LDAB opr8a LDAB opr16a LDAB oprx0_xysp LDAB oprx9,xysp LDAB oprx16,xysp LDAB [0,xysp] LDAB [0,xysp]	(M) ⇒ B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 ii D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb ee ff E6 xb E6 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIFrPf	P rfP rOP rfP rPO fIfrfP fIPrfP		ΔΔ0-
LDD #opr16i LDD opr8a LDD opr16a LDD oprx9_xysp LDD oprx9_xysp LDD oprx16_xysp LDD [D,xysp] LDD [oprx16_xysp]	(M:M+1) ⇒ A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CC jj kk DC dd FC hh 11 EC xb EC xb ff EC xb ee ff EC xb EC xb ee ff	PO RPf RPO RPf RPO fRPP fIFRPF fIPRPF	OP RfP ROP RFP RPO fRPP FIFRFP		ΔΔ0-
	s instruction takes four cycles to refill the instruction queue if the		_				
LDS #opr16i LDS opr8a LDS opr16a LDS oprx0_xysp LDS oprx16,xysp LDS [D,xysp] LDS [oprx16,xysp]	(M:M+1) ⇒ SP Load Stack Pointer	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CF jj kk DF dd FF hh 11 EF xb EF xb ff EF xb ee ff EF xb EF xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	OP RfP ROP RfP RPO fRPP fIfRfP		ΔΔΟ-
LDX #opr16i LDX opr8a LDX opr16a LDX oprx0_xysp LDX oprx16,xysp LDX [D,xysp] LDX [oprx16,xysp]	$(M:M+1) \Rightarrow X$ Load Index Register X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CE jj kk DE dd FE hh 11 EE xb EE xb ff EE xb ee ff EE xb EE xb ee ff	PO RPf RPO RPf RPO frpp fifrpf fifrpf	OP RfP ROP RFD RPO fRPP FIFRFP		ΔΔΟ-

Table A-1. Instruction Set Summary (Sheet 8 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	1171/0
	Operation	Mode	Coding (hex)	HCS12 M68HC12	SXHI	NZVC
LDY #opr16i	$(M:M+1) \Rightarrow Y$	IMM	CD jj kk	PO OF	1	ΔΔ0-
LDY opr8a	Load Index Register Y	DIR	DD dd	RPf Rff	1	
LDY opr16a		EXT IDX	FD hh 11	RPO ROF	1	
LDY oprx0_xysp		IDX IDX1	ED xb ED xb ff	RPf RfF	1	
LDY oprx9,xysp LDY oprx16,xysp		IDX1	ED xb II ED xb ee ff	fRPP fRPF	1	
LDY [D,xysp]		[D,IDX]	ED xb ee 11	fifRPf fifRff	1	
LDY [oprx16,xysp]		[IDX2]	ED xb ee ff	fipref fipref	1	
LEAS oprx0_xysp	Effective Address ⇒ SP	IDX	1B xb	Pf PP ¹		
LEAS oprx9,xysp	Load Effective Address into SP	IDX1	1B xb ff	PO PO		
LEAS oprx16,xysp		IDX2	1B xb ee ff	PP PF	1	
LEAX oprx0_xysp	Effective Address ⇒ X	IDX	1A xb	Pf PP ¹		
LEAX oprx9,xysp	Load Effective Address into X	IDX1	1A xb ff	PO PC		
LEAX oprx16,xysp		IDX2	1A xb ee ff	PP PF		
LEAY oprx0_xysp	Effective Address \Rightarrow Y	IDX	19 xb	Pf PP ¹	1	
LEAY oprx9,xysp	Load Effective Address into Y	IDX1	19 xb ff	PO PO	1	
LEAY oprx16,xysp		IDX2	19 xb ee ff	PP PF	'	
LSL opr16a		EXT	78 hh 11	rPwO rOPw	1	ΔΔΔΔ
LSL oprx0_xysp	─	IDX	68 xb	rPw rPw	1	
LSL oprx9,xysp	C b7 b0	IDX1	68 xb ff	rPwO rPOw		
LSL oprx16,xysp	Logical Shift Left	IDX2	68 xb ee ff	frPPw frPPw	1	
LSL [D,xysp]	same function as ASL	[D,IDX] [IDX2]	68 xb 68 xb ee ff	fIfrPw fIfrPw fIPrPw	1	
LSL [oprx16,xysp] LSLA	Logical Shift Accumulator A to Left	INH	48 xb ee II	O C	1	
LSLB	Logical Shift Accumulator B to Left	INH	58	0	1	
LSLD	· •	INH	59	0 0		
-0-2						
	C b7 A b0 b7 B b0					
	Logical Shift Left D Accumulator					
	same function as ASLD					
LSR opr16a		EXT	74 hh 11	rPwO rOPw		0 Δ Δ Δ
LSR oprx0_xysp		IDX	64 xb	rPw rPw	·	
LSR oprx9,xysp	b7 b0 C	IDX1	64 xb ff	rPwO rPOw	1	
LSR oprx16,xysp	Logical Shift Right	IDX2	64 xb ee ff	frPwP frPPw	1	
LSR [D,xysp]		[D,IDX]	64 xb	fIfrPw fIfrPw	1	
LSR [oprx16,xysp] LSRA	Logical Shift Accumulator A to Right	[IDX2] INH	64 xb ee ff 44	fIPrPw fIPrPw 0	1	
LSRB	Logical Shift Accumulator B to Right	INH	54	0	1	
LSRD		INH	49	0 0		0 Δ Δ Δ
LOND	0 → 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IINIII	49	ľ		
	b7 A b0 b7 B b0 C					
	Logical Shift Right D Accumulator					
MAXA oprx0_xysp	$MAX((A), (M)) \Rightarrow A$	IDX	18 18 xb	OrPf OrfF		ΔΔΔΔ
MAXA oprx9,xysp	MAX of 2 Unsigned 8-Bit Values	IDX1	18 18 xb ff	OrPO OrPO		
MAXA oprx16,xysp		IDX2	18 18 xb ee ff	OfrPP OfrPF	1	
MAXA [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 18 xb	OfIfrPf OfIfrFF		
MAXA [oprx16,xysp]	internal compare ((A) – (M)).	[IDX2]	18 18 xb ee ff	OfIPrPf OfIPrfF		
· ·	irements, the program word fetch is performed twice to the sam	ne address	during this instruction.			
MAXM oprx0_xysp	$MAX((A), (M)) \Rightarrow M$	IDX	18 1C xb	OrPw OrPw		ΔΔΔΔ
MAXM oprx9,xysp	MAX of 2 Unsigned 8-Bit Values	IDX1	18 1C xb ff	OrPwO OrPwO		
MAXM oprx16,xysp		IDX2	18 1C xb ee ff	OfrPwP OfrPwP	1	
MAXM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1C xb	OfIfrPw OfIfrPw		
MAXM [oprx16,xysp]	internal compare ((A) – (M)).	[IDX2]	18 1C xb ee ff	OfIPrPw OfIPrPw		
MEM	$\mu \text{ (grade)} \Rightarrow M_{(Y)};$	Special	01	RRfOw RRfOw	?-	????
	$(X) + 4 \Rightarrow X; (Y) + 1 \Rightarrow Y; A unchanged$					
	if (A) < P1 or (A) > P2 then μ = 0, else					
	$\mu = MIN[((A) - P1) \times S1, (P2 - (A)) \times S2, \$FF]$					
	where:					
	A = current crisp input value;					
	X points at 4-byte data structure that describes a trapezoidal					
	membership function (P1, P2, S1, S2);					
	Y points at fuzzy input (RAM location).					
	See CPU12 Reference Manual for special cases.					

Table A-1. Instruction Set Summary (Sheet 9 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
	·	Mode	Coding (hex)	HCS12 M68HC	12	NZVC
MINA oprx0_xysp MINA oprx9,xysp	MIN((A), (M)) ⇒ A MIN of 2 Unsigned 8-Bit Values	IDX IDX1	18 19 xb 18 19 xb ff	OrPf Or OrPO Or		
MINA oprx16,xysp	I willy of 2 offsigned 6-bit values	IDX1	18 19 xb 11 18 19 xb ee ff	OfrPP Ofr		
MINA [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 19 xb	OfIfrPf OfIfr		
MINA [oprx16,xysp]	internal compare ((A) – (M)).	[IDX2]	18 19 xb ee ff	OfIPrPf OfIPr	fP	
MINM oprx0_xysp	$MIN((A), (M)) \Rightarrow M$	IDX	18 1D xb	OrPw Or		
MINM oprx9,xysp	MIN of 2 Unsigned 8-Bit Values	IDX1 IDX2	18 1D xb ff	OrPwO OrF OfrPwP OfrF		
MINM oprx16,xysp MINM [D,xysp]	N. Z. V and C status bits reflect result of	[D,IDX]	18 1D xb ee ff 18 1D xb	OfrPwP OfrF OfIfrPw OfIfr		
MINM [oprx16,xysp]	internal compare ((A) – (M)).	[IDX2]	18 1D xb ee ff	OfIPrPw OfIPr		
MOVB #opr8, opr16a1	$(M_1) \Rightarrow M_2$	IMM-EXT	18 OB ii hh ll	OPwP OF	wP	
MOVB #opr8i, oprx0_xysp1	Memory to Memory Byte-Move (8-Bit)	IMM-IDX	18 08 xb ii	OPwO OF	wO	
MOVB opr16a, opr16a ¹		EXT-EXT		OrPwPO OrPw		
MOVB opr16a, oprx0_xysp1		1	18 09 xb hh 11	OPrPw OPr	1	
MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹		IDX-EXT	18 0D xb hh 11 18 0A xb xb	OrPwP OrF OrPwO OrF		
MOVW #oprx16, opr16a ¹	(MANA . 4 .) . MANA . 4	ļ				+
MOVW #oprx16, oprx0_xysp1	(M:M+1₁) ⇒ M:M+1₂ Memory to Memory Word-Move (16-Bit)	IMM-EXT	18 03 jj kk hh 11 18 00 xb jj kk	OPWPO OPW		
MOVW opr16a, opr16a ¹	Internety to memory Word move (10 Bit)	EXT-EXT	18 04 hh 11 hh 11			
MOVW opr16a, oprx0_xysp1		1		OPRPW OPR		
MOVW oprx0_xysp, opr16a1		IDX-EXT	18 05 xb hh 11	ORPWP ORF		
MOVW oprx0_xysp, oprx0_xysp1	(4) (2) 4.2		18 02 xb xb	ORPWO ORF		<u> </u>
MUL	$(A) \times (B) \Rightarrow A:B$ 8 by 8 Unsigned Multiply	INH	12	O f	f0	Δ
NEG opr16a	$0 - (M) \Rightarrow M$ equivalent to $(\overline{M}) + 1 \Rightarrow M$	EXT	70 hh 11	rPwO rC	Pw	ΔΔΔΔ
NEG oprx0_xysp	Two's Complement Negate	IDX	60 xb		Pw	
NEG oprx9,xysp		IDX1 IDX2	60 xb ff 60 xb ee ff	rPwO rF frPwP frF	Ow	
NEG oprx16,xysp NEG [D,xysp]		[D,IDX]	60 xb ee II	fifrPw fifr		
NEG [oprx16,xysp]		[IDX2]	60 xb ee ff	fIPrPw fIPr		
NEGA	$0 - (A) \Rightarrow A \text{ equivalent to } (\overline{A}) + 1 \Rightarrow A$	'INH'	40	О	0	
	Negate Accumulator A					
NEGB	$0 - (B) \Rightarrow B$ equivalent to $(\overline{B}) + 1 \Rightarrow B$	INH	50	0	0	
	Negate Accumulator B					
NOP	No Operation	INH	A7	0	0	
ORAA #opr8i	$(A) + (M) \Rightarrow A$	IMM DIR	8A ii	P	P	ΔΔ0-
ORAA opr8a ORAA opr16a	Logical OR A with Memory	EXT	9A dd BA hh 11		fP OP	
ORAA oprx0_xysp		IDX	AA xb		fP	
ORAA oprx9,xysp		IDX1	AA xb ff	rPO r	PO	
ORAA oprx16,xysp		IDX2	AA xb ee ff	frPP fr		
ORAA [D,xysp] ORAA [oprx16,xysp]		[D,IDX] [IDX2]	AA xb AA xb ee ff	fIfrPf fIfr fIPrPf fIPr	1	
	ource code statement specifies the source for the move.	[IDX2]	AA AD EE II			
ORAB #opr8i	$(B) + (M) \Rightarrow B$	IMM	CA ii	P	Р	ΔΔ0-
ORAB opr8a	Logical OR B with Memory	DIR	DA dd		fP	
ORAB opr16a		EXT	FA hh 11		OP	
ORAB oprx0_xysp		IDX	EA xb	rPf r	fP	
ORAB oprx9,xysp		IDX1	EA xb ff		PO	
ORAB oprx16,xysp ORAB [D,xysp]		IDX2 [D,IDX]	EA xb ee ff EA xb	frPP fr fIfrPf fIfr	PP fp	
ORAB [oprx16,xysp]		[IDX2]	EA xb ee ff	fIPrPf fIPr		
ORCC #opr8i	(CCR) + M ⇒ CCR Logical OR CCR with Memory	IMM	14 ii	P	₽ 11 – 11 11	11111
PSHA	$(SP) - 1 \Rightarrow SP: (A) \Rightarrow M_{(SP)}$	INH	36	Os	Os	
PSHB	Push Accumulator A onto Stack	INH	37	Os	Os	
РОПВ	$(SP) - 1 \Rightarrow SP; (B) \Rightarrow M_{(SP)}$ Push Accumulator B onto Stack	IINIT	37	OS	JS	
PSHC	$(SP) - 1 \Rightarrow SP$; $(CCR) \Rightarrow M_{(SP)}$ Push CCR onto Stack	INH	39	Os	Os	
PSHD	$(SP) - 2 \Rightarrow SP; (A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push D Accumulator onto Stack	INH	3B	os	os	
PSHX	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register X onto Stack	INH	34	os	os	
PSHY	$(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$	INH	35	OS	os	†
	Push Index Register Y onto Stack					

Table A-1. Instruction Set Summary (Sheet 10 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
	·	Mode	Coding (hex)	HCS12 M68HC12	3 7 11	NZVC
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	ufO ufO		
PULB	$(M_{(SP)}) \Rightarrow B; (SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	ufO ufO		
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	ufO ufO	ΔΨΔΔ	ΔΔΔΔ
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO UfO		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO UfO		
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L; (SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO UfO		
REV	MIN-MAX rule evaluation Find smallest rule input (MIN). Store to rule outputs unless fuzzy output is already larger (MAX). For rule weights see REVW. Each rule input is an 8-bit offset from the base address in Y.	Special	18 3A	Orf(t,tx)O Orf(t,tx)O (exit + re-entry replaces comma above if interrupted) ff + Orf(t, ff + Orf(t,	?-	??Δ?
	Each rule output is an 8-bit offset from the base address in Y. \$FE separates rule inputs from rule outputs. \$FF terminates the rule list. REV may be interrupted.					
REVW	MIN-MAX rule evaluation Find smallest rule input (MIN), Store to rule outputs unless fuzzy output is already larger (MAX). Rule weights supported, optional.	Special	18 3B	ORf (t,Tx) O ORf (t,Tx) O (loop to read weight if enabled) (r,RfRf) (r,RfRf) (exit + re-entry replaces comma above if interrupted)	?-	??∆!
	Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list. REVW may be interrupted.			<pre>ffff + ORf(t, fff + ORf(t,</pre>		
ROL opr16a ROL oprx0_xysp ROL oprx9.xysp ROL [D,xysp] ROL [D,xysp] ROL [D,xx16,xysp] ROLA ROLB	Rotate A Left through Carry Rotate B Left through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	75 hh 11 65 xb 65 xb ff 65 xb ee ff 65 xb ee ff 45 55	rPwO rOPw rPw rPwO rPow frPwP frPwP frFrPw fffrPw fIfrPw fO O O O		ΔΔΔΔ
ROR opr16a ROR oprx0_xysp ROR oprx9,xysp ROR oprx16,xysp ROR [D,xysp] ROR [oprx16,xysp] RORA RORB	b7 b0 C Rotate Memory Right through Carry Rotate A Right through Carry Rotate B Right through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	76 hh 11 66 xb 66 xb ff 66 xb ee ff 66 xb 66 xb ee ff 46 56	rPwO rOPw rPw rPw rPwO rPow frPwP frPPw fifrPw fifrPw fiPrPw 0 0 0 0 0		ΔΔΔΔ
RTC	$\begin{array}{l} (M_{(SP)}) \Rightarrow \text{PPAGE}; (SP) + 1 \Rightarrow \text{SP}; \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow \text{PC}_{\text{H}}: \text{PC}_{\text{L}}; \\ (SP) + 2 \Rightarrow \text{SP} \\ \text{Return from Call} \end{array}$	INH	0A	uUnfPPP uUnPPP		
RTI	$\begin{array}{l} (M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 4 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L; (SP) - 2 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L; (SP) + 4 \Rightarrow SP \\ Return from Interrupt \end{array}$	INH	0B	uUUUUPPP (with interrupt pending) uUUUUVfPPP uUUUUVfPPP	-	ΔΔΔΔ
RTS	$\begin{array}{l} (M_{(SP)};M_{(SP+1)}) \Rightarrow PC_H;PC_L;\\ (SP) + 2 \Rightarrow SP\\ \text{Return from Subroutine} \end{array}$	INH	3D	UfPPP UfPPP		

Table A-1. Instruction Set Summary (Sheet 11 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
SBA	$(A) - (B) \Rightarrow A$ Subtract B from A	INH	18 16	00 00		ΔΔΔΔ
SBCA #opr8i SBCA opr8a SBCA opr16a SBCA oprx0_xysp SBCA oprx9,xysp SBCA oprx16,xysp SBCA [D,xysp] SBCA [oprx16,xysp]	$(A) - (M) - C \Rightarrow A$ Subtract with Borrow from A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	82 ii 92 dd B2 hh 11 A2 xb A2 xb ff A2 xb ee ff A2 xb ee ff	P P rPf rfP rP0 rOP rPf rfP rPO rPO frPP frPP fifrPf fifrfP fIPrPf fIPrfP		ΔΔΔΔ
SBCB #opr8i SBCB opr8a SBCB opr16a SBCB opr0_xysp SBCB oprx9,xysp SBCB oprx16,xysp SBCB [D,xysp] SBCB [oprx16,xysp]		IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C2 ii D2 dd F2 hh 11 E2 xb E2 xb ff E2 xb ee ff E2 xb E2 xb ee ff	P P rPf rfP rP0 rOP rPf rfP rPO rPO frPP frPP fIfrPf fIfrfP fIPrPf fIPrfP		ΔΔΔΔ
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P P		1
SEI	1 ⇒ I; (inhibit I interrupts) Translates to ORCC #\$10	IMM	14 10	P P	1	
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	P P		1-
SEX abc,dxys	\$00:(r1) ⇒ r2 if r1, bit 7 is 0 or \$FF:(r1) ⇒ r2 if r1, bit 7 is 1 Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP	INH	B7 eb	P P		
STAA opr8a STAA opr16a STAA oprx0_xysp STAA oprx9,xysp STAA oprx16,xysp STAA [D,xysp] STAA [oprx16,xysp]	Alternate mnemonic for TFR r1, r2 (A) ⇒ M Store Accumulator A to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5A dd 7A hh 11 6A xb 6A xb ff 6A xb ee ff 6A xb 6A xb ee ff	Pw Pw PwO wOP Pw Pw PwO PwO PwP PwP PIfw PIfPw PIPw PIPPw		ΔΔΟ-
STAB opr8a STAB opr16a STAB oprx0_xysp STAB oprx16,xysp STAB oprx16,xysp STAB [D.xysp] STAB [oprx16,xysp]	(B) ⇒ M Store Accumulator B to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5B dd 7B hh 11 6B xb 6B xb ff 6B xb ee ff 6B xb 6B xb ee ff	Pw Pw PwO wOP Pw Pw PwO PwO PwP PwP Pifw PIfPw PIPw PIPPw		ΔΔ0-
STD opr8a STD opr16a STD oprx0_xysp STD oprx9,xysp STD oprx16,xysp STD [D,xysp] STD [oprx16,xysp]	$(A) \Rightarrow M, (B) \Rightarrow M+1$ Store Double Accumulator	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5C dd 7C hh 11 6C xb 6C xb ff 6C xb ee ff 6C xb ee ff 6C xb ee ff	PW PW PWO WOP PW PW PWO PWO PWP PWP PIFW PIFPW PIPW PIPPW		ΔΔ0-
STOP	$\begin{split} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP;\;(CCR)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &STOP\;All\;Clocks\\ &Registers\;stacked\;to\;allow\;quicker\;recovery\;by\;interrupt.\\ &If\;S\;control\;bit=1,\;the\;STOP\;instruction\;is\;disabled\;and\;acts\;like\;a\;two-cycle\;NOP. \end{split}$	INH	18 3E	(entering STOP) OOSSSSsf OOSSSfss (exiting STOP) fVfPPP fVfPPP (continue) ff ff f0 (if STOP disabled) 00		

Table A-1. Instruction Set Summary (Sheet 12 of 14)

				T			
Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access D HCS12	etail M68HC12	ѕхні	NZVC
STS opr8a	$(SP_H:SP_L) \Rightarrow M:M+1$	DIR	5F dd	PW	PW		ΔΔ0-
STS opr16a	Store Stack Pointer	EXT	7F hh 11	PWO	WOP		
STS oprx0_xysp		IDX	6F xb	PW	PW		
STS oprx9,xysp		IDX1	6F xb ff	PWO	PWO		
STS oprx16,xysp		IDX2	6F xb ee ff	PWP	PWP		
STS [D,xysp]		[D,IDX]	6F xb	PIfW	PIfPW		
STS [oprx16,xysp]		[IDX2]	6F xb ee ff	PIPW	PIPPW		
STX opr8a STX opr16a	(X _H :X _L) ⇒ M:M+1 Store Index Register X	DIR EXT	5E dd 7E hh 11	PW PWO	PW WOP		ΔΔ0-
STX oprx0_xysp	Cities mack riogistor A	IDX	6E xb	PW	PW		
STX oprx9,xysp		IDX1	6E xb ff	PWO	PWO		
STX oprx16,xysp		IDX2	6E xb ee ff	PWP	PWP		
STX [D,xysp]		[D,IDX]	6E xb	PIfW	PIfPW		
STX [oprx16,xysp]		[IDX2]	6E xb ee ff	PIPW	PIPPW		
STY opr8a	$(Y_H:Y_L) \Rightarrow M:M+1$	DIR	5D dd	PW	PW		ΔΔ0-
STY opr16a	Store Index Register Y	EXT	7D hh 11	PWO	WOP		
STY oprx0_xysp		IDX	6D xb	PW	PW		
STY oprx9,xysp		IDX1 IDX2	6D xb ff 6D xb ee ff	PWO PWP	PWO PWP		
STY oprx16,xysp		[D,IDX]	6D xb ee II	PIfW	PWP		
STY [D, <i>xysp</i>] STY [<i>oprx16,xysp</i>]		[IDX2]	6D xb ee ff	PIPW	PITPW		
SUBA #opr8i	$(A) - (M) \Rightarrow A$	IMM	80 ii	P	P		ΔΔΔΔ
SUBA opr8a	Subtract Memory from Accumulator A	DIR	90 dd	rPf	rfP		
SUBA opr16a		EXT	B0 hh 11	rPO	rOP		
SUBA oprx0_xysp		IDX	A0 xb	rPf	rfP		
SUBA oprx9,xysp		IDX1	A0 xb ff	rPO	rPO		
SUBA oprx16,xysp		IDX2	A0 xb ee ff	frPP	frPP		
SUBA [D,xysp]		[D,IDX]	A0 xb	fIfrPf	fIfrfP		
SUBA [oprx16,xysp]		[IDX2]	A0 xb ee ff	fIPrPf	fIPrfP		
SUBB #opr8i	$(B) - (M) \Rightarrow B$	IMM	C0 ii	P	P		ΔΔΔΔ
SUBB opr8a	Subtract Memory from Accumulator B	DIR	D0 dd	rPf	rfP		
SUBB opr16a		EXT	F0 hh 11	rPO	rOP		
SUBB oprx0_xysp		IDX	E0 xb	rPf	rfP		
SUBB oprx9,xysp		IDX1	E0 xb ff	rPO	rPO		
SUBB oprx16,xysp		IDX2	E0 xb ee ff E0 xb	frPP fIfrPf	frPP fIfrfP		
SUBB [D,xysp] SUBB [oprx16,xysp]		[D,IDX] [IDX2]	E0 xb ee ff	fIPrPf	fIPrfP		
SUBD #opr16i	(D) − (M:M+1) ⇒ D	IMM	83 jj kk	PO	OP		ΔΔΔΔ
SUBD opr8a	Subtract Memory from D (A:B)	DIR	93 dd	RPf	RfP		
SUBD opr16a	,	EXT	B3 hh 11	RPO	ROP		
SUBD oprx0_xysp		IDX	A3 xb	RPf	RfP		
SUBD oprx9,xysp		IDX1	A3 xb ff	RPO	RPO		
SUBD oprx16,xysp		IDX2	A3 xb ee ff	fRPP	fRPP		
SUBD [D,xysp]		[D,IDX]	A3 xb	fIfRPf	fIfRfP		
SUBD [oprx16,xysp]		[IDX2]	A3 xb ee ff	fIPRPf	fIPRfP		
SWI	(SP) - 2 ⇒ SP;	INH	3F	VSPSSPSsP*	VSPSSPSsP*	1	
	$\begin{array}{l} RTN_H : RTN_L \Rightarrow M_{(SP)} : M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (Y_H : Y_L) \Rightarrow M_{(SP)} : M_{(SP+1)}; \end{array}$			(for Res	set)		
	$(SP) - 2 \Rightarrow SP; (Y_H: T_L) \Rightarrow M_{(SP)}: M_{(SP+1)};$ $(SP) - 2 \Rightarrow SP; (X_H: X_L) \Rightarrow M_{(SP)}: M_{(SP+1)};$			VfPPP	VfPPP	11-1	
	$(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M(SP):M(SP+1);$					' ' '	
	$(SP) - 2 \Rightarrow SP, (B.A) \Rightarrow M(SP).W(SP+1),$ $(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$						
	$1 \Rightarrow 1$; (SWI Vector) $\Rightarrow PC$						
	Software Interrupt						
*The CPU also uses the SWI	microcode sequence for hardware interrupts and unimplen	ו nented opcode trap:	I s. Reset uses the VfPI	। ?₽ variation of this sequen	ce.	ı	I
TAB	$(A) \Rightarrow B$	INH	18 OE	00	00		ΔΔ0-
	Transfer A to B						
TAP	$(A) \Rightarrow CCR$ Translates to TFR A , CCR	INH	в7 02	P	Р	$\Delta \downarrow \Delta \Delta$	ΔΔΔΔ
TBA	$ \begin{array}{c} \text{(B)} \Longrightarrow \text{A} \\ \text{Transfer B to A} \end{array} $	INH	18 OF	00	00		ΔΔ0-
TBEQ abdxys,rel9	If (cntr) = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
	else Continue to next instruction	(9-bit)		PPO (no			
				branch)			
	Test Counter and Branch if Zero	1	I	I		I	1
	(cntr = A, B, D, X,Y, or SP)					l	1

Table A-1. Instruction Set Summary (Sheet 13 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68H0	S X H I	NZVC
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$ 8-Bit Table Lookup and Interpolate	IDX	18 3D xb	ORfffP Orrfff		$\Delta \Delta - \Delta$?
	Initialize B, and index before TBL. <ea> points at first 8-bit table entry (M) and B is fractional part of lookup value.</ea>					undefined HC12
	(no indirect addressing modes or extensions allowed)					
TBNE abdxys,rel9	If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero	REL (9-bit)	04 lb rr	PPP (branch) F PPO (no branch)	PP	
	(cntr = A, B, D, X,Y, or SP)					
TFR abcdxys,abcdxys	$(r1) \Rightarrow r2 \text{ or}$ $\$00:(r1) \Rightarrow r2 \text{ or}$ $(r1[7:0]) \Rightarrow r2$	INH	B7 eb	P	P	or
	Transfer Register to Register r1 and r2 may be A, B, CCR, D, X, Y, or SP				$\Delta \Downarrow \Delta \angle$	
TPA	(CCR) ⇒ A Translates to TFR CCR ,A	INH	B7 20	P	Р	
TRAP trapnum	$ \begin{aligned} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\ (Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\ (X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\ (B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP;\ (CCR)\Rightarrow M_{(SP)}\\ &1\Rightarrow l;\ (TRAP\ Vector)\Rightarrow PC \end{aligned} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSSP OfVSPSSPS	sP1	
	Unimplemented opcode trap					
TST opr16a TST oprx0_xysp TST oprx9,xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TST [STA TSTB	(M) – 0 Test Memory for Zero or Minus (A) – 0 Test A for Zero or Minus (B) – 0 Test B for Zero or Minus	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff E7 xb ee ff 97 D7	rPf rPO r		ΔΔ00
TSX	$(SP) \Rightarrow X$ Translates to TFR SP,X	INH	В7 75	P	Р	
TSY	(SP) ⇒ Y Translates to TFR SP,Y	INH	B7 76	P	Р	
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	P	Р	
TYS	(Y) ⇒ SP Translates to TFR Y,SP	INH	B7 67	P	Р	
WAI	$ \begin{split} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\; (Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\; (X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\; (B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\; (B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP;\; (CSP)\Rightarrow M_{(SP)};\\ &WAIT\; for\; interrupt \end{split} $	INH	3E	OSSSSS OSSSSS (after interrupt) fVfPPP VfF		or or

Table A-1. Instruction Set Summary (Sheet 14 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
WAV	$\begin{split} & \sum_{i \ = \ 1}^B S_i F_i \Rightarrow \textit{Y:D} \qquad \text{and} \qquad \sum_{i \ = \ 1}^B F_i \Rightarrow X \\ & \text{Calculate Sum of Products and Sum of Weights for Weighted} \\ & \text{Average Calculation} \\ & \text{Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. \\ & \text{All } S_i \text{ and } F_i \text{ elements are 8-bits.} \\ & \text{If interrupted, six extra bytes of stack used for intermediate values} \end{split}$	Special	18 3C	Of(frr,fffff)O Off(frr,ffffff)O (add if interrupt) SSS + UUUrr, SSSf + UUUrr	?-	? \(\lambda ? ? \)
wavr pseudo- instruction	see WAV Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)	Special	3C	UUUrr,fffff UUUrrffffff (frr,ffff) (frr,fffff) ((exit + re-entry replaces comma above if interrupted) SSS + UUUrr, SSSf + UUUrr		?Δ??
XGDX	$(D) \Leftrightarrow (X)$ Translates to EXG D, X	INH	B7 C5	P P		
XGDY	$(D) \Leftrightarrow (Y)$ Translates to EXG D, Y	INH	B7 C6	P P		