ד"ר יעקובזון פיאנה, המחלקה למתמטיקה, מכללת אורט בראודה

דף תרגילים: קבוצות של ממשיים

חלק 1 - קבוצות של מספרים ממשיים

לחלק זה מצורפים פתרונות בודדים לדוגמה, אפשר לפנות לשאלות נוספות לסגל בשעות ייעוץ ובשעות תמיכה

$$N=\{1,2,3,\cdots\}$$
 טבעיים .i $Z=\{0,\pm 1,\pm 2,\cdots\}$.ii $Q=\left\{rac{m}{n}
ight/$ שלמים m,n אי-רציונאליים כל המספרים הממשיים שאינם ב- .iv .iv

. הערה: בהרצאה ראינו כי $\sqrt{2}$ אינו רציונאלי

תרגיל**1:** נתונה קבוצה n מספר שלם n מספר שלם . $A = \{2n :$ מספר שלם המספרים נתונה קבוצה ליים. הראה כי

- A סכום/הפרש של כל שני איברים מתוך A גם הוא איבר בקבוצה (1)
 - A-ם מכפלת שני מספרים של A גם היא איבר ב (2)
 - A -בעי ואיבר a^n גם A איבר בa טבעי ואיבר a
 - A שהמנה שלהם אינה איבר ב- A

יכח כי הוכח אי-רציונאלי. הוכח מספר ממשי אי-רציונאלי. הוכח כי r,q כתון כי r,q

- מספר רציונאלי $r\pm q$ (1)
- מספר רציונאלי $r \cdot q$ (2)
- אם $q \neq 0$ אם מספר רציונאלי (3)
 - מספר אי-רציונאלי $a\pm q$ (4)
- אם $a \cdot q$ אז $a \cdot q$ מספר אי-רציונאלי (5)
 - אם $q \neq 0$ אם (6) אם (6)

תרגיל $A=\left\{\,n\sqrt{2}\,:\,$ מספר טבעי $A=\left\{\,n\sqrt{2}\,:\,$ הראה כי

- אין מספרים רציונאליים A אין בקבוצה (1)
- A גם הוא איבר בקבוצה Ocia שני מספרים מתוך אובר בקבוצה (2)
- A הינה מספר אינה שני מספרים של A הינה מספר אינה שני מספרים של (3)

תרגיל**4:** נתונה קבוצה $\{p,q\}$ מספים רציונאליים $\{p,q\}$ הראה כי

- A סכום/הפרש של כל שני מספרים מתוך A גם איבר בקבוצה (1)
 - A גם איבר בקבוצה A מכפלת שני מספרים של

$$A$$
 איבר של $\frac{1}{p+q\sqrt{2}}$ איבר של $p^2+q^2 \neq 0$ אם (3)

ד"ר יעקובזון פיאנה, המחלקה למתמטיקה, מכללת אורט בראודה

דף תרגילים: קבוצות של ממשיים

פתרונות נבחרים של חלק א:

: תרגיל 3 (1)

נתונה קבוצה A אין מספרים רציונאליים. $A=\left\{\,n\sqrt{2}\,:\,n
ight\}$ מספר טבעי הספרים רציונאליים. פתרון:

נניח בשלילה כי קיים ב-A איבר $n\in N$ שהוא $n\in N$ שהוא קיימים שני $a=n\sqrt{2}$ מספרים שלמים m,k כך שm,k כך ש

מסקנה: $n\sqrt{2}=rac{m}{k}$, כלומר, $\frac{m}{kn}=\sqrt{2}=rac{m}{kn}$. כיוון שבמכנה המספר $n\sqrt{2}=rac{m}{k}$ שלם , יוצא שלפי הגדרה $\sqrt{2}$ הוא מספר רציונאלי (מנה של שני שלמים), בסתירה למשפט שהוכחנו (בכיתה). לכן הנחת השלילה אינה נכונה, מה שאומר שאין בקבוצה A מספרים רציונאליים.

:(3) 4 תרגיל

נתונה קבוצה $p^2+q^2
eq 0$ מספים רציונאליים $A=\left\{p+q\sqrt{2}: p,q\right\}$ הראה כי אם p,q אז A איבר של a

פתרון:

כך a,b בריך מצוא שני מספרים רציונאליים , a איבר של $\frac{1}{p+q\sqrt{2}}$ -כדי להראות ש

. נפתור את המשוואה הזו. $\frac{1}{p+q\sqrt{2}}=a+b\sqrt{2}$ שתתקיים המשוואה

$$(a+b\sqrt{2})(p+q\sqrt{2})=1$$

$$ap + 2bq + (aq + bp)\sqrt{2} = 1$$

כיוון ש- 1 הוא מספר רציונאלי, המשוואה מתקיימת אם ורק אם

$$\begin{cases} ap + 2bq = 1 \\ aq + bp = 0 \end{cases} \Leftrightarrow \begin{cases} apq + 2bq^2 = q \\ aqp + bp^2 = 0 \end{cases} \Leftrightarrow \begin{cases} 2bq^2 - bp^2 = q \\ aq + bp = 0 \end{cases} \Leftrightarrow$$

<u>ד"ר יעקובזון פיאנה, המחלקה למתמטיקה, מכללת אורט בראודה</u>

דף תרגילים: קבוצות של ממשיים

$$\begin{cases} b = \frac{q}{2q^2 - p^2} \\ a = -\frac{p}{q} \cdot b = -\frac{p}{q} \cdot \frac{q}{2q^2 - p^2} = \frac{-p}{2q^2 - p^2} \end{cases}$$

- נתון שq=q מספים רציונאליים, כדי שגם a,b יהיו כדי שגם p,q=q מספים רציונאליים, מספים כדי שגם $2q^2-p^2=0$ זה קורה בשני מקרים: $p^2+q^2\neq 0 = 2q^2-p^2$ בסתירה לנתון ש $q^2=q^2=q^2=0$

או

מה (לפי תרגיל 2 (3) למעלה), מה $\sqrt{2}=\frac{p}{q}$.2 שאינו נכון (הוכחנו בכיתה).

 $\frac{1}{p+q\sqrt{2}}$ אז $p^2+q^2 \neq 0$ אז , $\frac{1}{p+q\sqrt{2}}=a+b\sqrt{2}$ איבר של a,b איבר של a.