Manual for Package: sediment-transport Revision 1:5M

Karl Kästner

January 27, 2020

Contents

1	@Herr	nite_profile	1			
	1.1	Hermite_profile	1			
	1.2	fit	1			
	1.3	predict	1			
	1.4	regmtx	1			
	1.5	transform	1			
2	@Nodal_Point 2					
	2.1	Adot	2			
	2.2	Nodal_Point	2			
	2.3	Qs_in	2			
	2.4	Qs_out	2			
	2.5	derive_jacobian	2			
	2.6	discharge	2			
	2.7	geometry	2			
	2.8	jacobian	2			
	2.9	phase_diagram	3			
	2.10	phase_diagram_wang	3			
	2.11	solve	3			
	2.12	$stability_analysis \dots $	3			
3	@Parabolic_Constant_Profile 3					
	3.1	Parabolic_Constant_Profile	3			
	3.2	fit	3			
	3.3	predict	3			
	3.4	regmtx	3			
	3.5	transform	4			
4	@Rous	se Profile	4			

	4.1	Rouse_Profile				
	4.2	fit				
	4.3	mean_concentration				
	4.4	predict				
	4.5	regmtx				
	4.6	rouse_number				
	4.7	rouse_number_to_grain_diameter				
	4.8	set_parameters				
	4.9	transform				
5	sediment-transport 5					
	5.1	Exponential_SSC_Profile				
	5.2	adaptation_length_bed				
	5.3	adaptation_length_flow				
	5.4	bar_mode_crosato				
	5.5	bed_layer_thickness				
	5.6	bed_load_einstein				
	5.7	bed_load_engelund_fredsoe 6				
	5.8	bed_load_transport_mpm 6				
	5.9	bed_load_transport_rijn 6				
	5.10	bed_load_transport_wu 6				
	5.11	bedform_dimension_rijn 6				
	5.12	bedform_roughness_rijn 6				
	5.13	bedload_direction				
	5.14	bedload_layer_thickness_mclean				
	5.15	bifurcation_critical_aspect_ratio				
	5.16	chezy_einstein				
	5.17	chezy_roughness_engelund_fredsoe				
	5.18	chezy_to_manning				
	5.19	critical_grain_size				
	5.20	critical_shear_stress				
	5.21	critical_shear_stress_ratio				
	5.22	critical_shear_stress_wu				
	5.23	critical_shear_velocity				
	5.24	derive_mpm_foramtive_discharge				
	5.25	dimensionless_grain_size				
	5.26	dune_celerity				
	5.27	dynamic_shear_stress				
	5.28	fractional_transport_engelund_hansen 8				
	5.29	grain_roughness_mpm				
	5.30	grain_roughness_rijn				
	5.31	hiding_exposure_wu				
	5.32	hydraulic_radius				
	5 33	manning to chezy				

	5.34	mpm2diameter
	5.35	mpm_solve_for_dm
	5.36	reference_concentration_rijn
	5.37	reference_concentration_smith_lean
	5.38	saltation_layer_thickness
	5.39	sediment_transport_directed
	5.40	sediment_transport_engelund_hansen_2 10
	5.41	sediment_transport_relation_fit
	5.42	sediment_transport_relation_predict
	5.43	sediment_transport_scale
	5.44	sediment_transport_waves
	5.45	sensitivity_sediment_transport_to_width 10
	5.46	settling_velocity
	5.47	settling_velocity_cheng
	5.48	settling_velocity_gravel
	5.49	settling_velocity_stokes
	5.50	settling_velocity_to_diameter
	5.51	shields_number
	5.52	skin_2_total_friction_eh
	5.53	suspended_grain_size
	5.54	suspended_grain_size_non_linear
	5.55	suspended_grain_size_rijn
	5.56	suspended_transport_mclean
	5.57	suspended_transport_rijn
	5.58	suspended_transport_wu 13
6	test	13
	6.1	test_adaptation_length_bed
	6.2	test_critical_shear_stress
	6.3	test_settling_velocity_to_diameter
7	sedime	ent-transport 13
	7.1	test_sediment_transport_relation
	7.2	total_roughness_engelund_fredsoe
	7.3	total_roughness_rijn
	7.4	total_transport_bagnold
	7.5	total_transport_eh_distribution
	7.6	total_transport_engelund_hansen
	7.7	total_transport_rijn
	7.8	transport_stage_mclean
	7.9	transport_stage_rijn
	7.10	vertical_ssc_profile_mclean

$1 \quad @Hermite_profile$

1.1 Hermite_profile

suspended sedimen profile in form of a hermite polynomial

1.2 fit

fit suspended sediment profile

1.3 predict

predict suspended sediment concentration

1.4 regmtx

regression matrix

1.5 transform

hermite profile

2 @Nodal_Point

2.1 Adot

ODE of the nodal point relation (time-derivative of branch cs-area)

2.2 Nodal_Point

Nodal point relation for bifurcations, according to Wang

2.3 Qs_in

sediment entering branches

2.4 Qs_out

sediment leaving branches

2.5 derive_jacobian

derive Jacobian of the nodal point relation

2.6 discharge

discharge through branches

2.7 geometry

cross section geometry of branches

2.8 jacobian

jacobian of the nodal point relation ${\tt semi-autogenerated}$

2.9 phase_diagram

phase diagram

2.10 phase_diagram_wang

phase diagram of Nodal point relation

2.11 solve

solve the nodal point relation for critical points

$2.12 \quad stability_analysis$

staility analysis for a given configuration

3 @Parabolic_Constant_Profile

3.1 Parabolic_Constant_Profile

parabolic-constant profile

3.2 fit

fit the suspended sediment concentration profile

3.3 predict

predict suspended sediment concentration

3.4 regmtx

regression matrix

3.5 transform

transformation of vertical coordinate

4 @Rouse_Profile

4.1 Rouse_Profile

suspended sediment concentration profile

4.2 fit

fit the suspended sediment concentration profile

4.3 mean_concentration

4.4 predict

predict the suspended sediment concentration

4.5 regmtx

regression matrix

4.6 rouse_number

rouse number (suspension number) for given grain siye and shear velocity

4.7 rouse_number_to_grain_diameter

convert known rous number (suspension parameter) to grain size $\mbox{\tt diameter}$

4.8 set_parameters

4.9 transform

transform the vertical coordinate

5 sediment-transport

analysis and prediction of fluvial sediment transport and $\tt morphodynamics$

5.1 Exponential_SSC_Profile

5.2 adaptation_length_bed

adaptatoion lenght of bed morphology

5.3 adaptation_length_flow

adaption length of the flow

5.4 bar_mode_crosato

bar mode of a river according to crosato

5.5 bed_layer_thickness

5.6 bed_load_einstein

bed load transport according to einstein jr.

$5.7 \quad bed_load_engelund_fredsoe$

bed load transport according to engelund and fredsoe

5.8 bed_load_transport_mpm

bed load transport rate according to meyer-peter-mueller

5.9 bed_load_transport_rijn

```
bed load transport
method of van Rijn (1984)

function [Q_b q_b Phi_b] = bed_load_transport_rijn(C,d50,d90,U,d,b)

d50 [mm] (converted to m)
d90 [mm] (converted to m)

d : depth
b : width
```

5.10 bed_load_transport_wu

bed load transport according to Wu

5.11 bedform_dimension_rijn

```
bed form dimensions cf. rijn 1984 iii
```

5.12 bedform_roughness_rijn

form drag according to van Rijn

5.13 bedload_direction

bedload transport direction

5.14 bedload_layer_thickness_mclean

5.15 bifurcation_critical_aspect_ratio

critical aspect ratio of a bifurcation
c.f. redolfi and pittaluga

5.16 chezy_einstein

chezey coefficient according to Einstein

5.17 chezy_roughness_engelund_fredsoe

chezy rougness according to engelund and fredsoe

5.18 chezy_to_manning

convert chezy to manning

5.19 critical_grain_size

critical grain size for a given shear velocity

5.20 critical_shear_stress

critical shear Stress

5.21 critical_shear_stress_ratio

critical shields parameter aka critical shear stress ratio aka shields curve

5.22 critical_shear_stress_wu

critical shear stress, according to wu

5.23 critical_shear_velocity

critical shear velocity

${\bf 5.24}\quad {\bf derive_mpm_foramtive_discharge}$

5.25 dimensionless_grain_size

dimensionless grain size

5.26 dune_celerity

5.27 dynamic_shear_stress

dynamic shear stress

5.28 fractional_transport_engelund_hansen

fractional sediment transport according to engelund and hansen

5.29 grain_roughness_mpm

5.30 grain_roughness_rijn

grain roughness (skin friction) according to van Rijn

5.31 hiding_exposure_wu

5.32	$hydraulic_radius$		
5.33	$manning_to_chezy$		
manning to chezy conversion			
5.34	mpm2diameter		
5.35	$mpm_solve_for_dm$		
5.36	$reference_concentration_rijn$		
5.37	$reference_concentration_smith_lean$		
refer	ence concentration according to smith and mclean		
5.38	saltation_layer_thickness		
5.39	$sediment_transport_directed$		
directed sediment transport			
5.40	$sediment_transport_engelund_hansen_2$		

sediment transport according to engelund and hansen

5.41	$sediment_transport_relation_fit$
5.42	${\bf sediment_transport_relation_predict}$
5.43	${\bf sediment_transport_scale}$
5.44	$sediment_transport_waves$
sedim	ent transport by waves
5.45	$sensitivity_sediment_transport_to_width$
5.46	$\operatorname{settling_velocity}$
	ing velocity in julien-2010
5.47	${\bf settling_velocity_cheng}$
settl	ing velocity according to cheng
5.48	${\bf settling_velocity_gravel}$
settl	ing velocity in water

5.49 settling_velocity_stokes

5.50 settling_velocity_to_diameter

invert settling velocity to diameter

5.51 shields_number

normalized shear stress, shear stress ratio

5.52 skin_2_total_friction_eh

skin friction to total friction conversion according to engelund and hansen

5.53 suspended_grain_size

suspended grain size distribution based on bed material grain size distribution

assumes that probability of suspension is inverse proportional to grain diameter

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

5.54 suspended_grain_size_non_linear

```
suspended grain size distribution based on bed material grain size
    distribution

assumes that probability of suspension is inverse proportional to
    grain diameter
as in Engelund-Hansen transport relation
- no hiding effects considered
- no threshold for large grains applied
- no flocking considered
note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)
h_bed : [nsxnd] fractions of sediment of size d
```

5.55 suspended_grain_size_rijn

grain size of the suspended sediment according to van rijn, empirical

5.56 suspended_transport_mclean

```
u := us/kappa*log(z/z0);
C := Ca*(a/z*(h-z)/(h-a)).^p;
```

5.57 suspended_transport_rijn

suspended load transport according to van Rijn

5.58 suspended_transport_wu

suspended sediment transport according to Wu

6 test

6.1 test_adaptation_length_bed

6.2 test_critical_shear_stress

6.3 test_settling_velocity_to_diameter

7 sediment-transport

analysis and prediction of fluvial sediment transport and morphodynamics

7.1 test_sediment_transport_relation

$7.2 \quad total_roughness_engelund_fredsoe$

roughness lenght according to engelund and fredsoe

7.3 total_roughness_rijn

total roughness according to van rijn

7.4 total_transport_bagnold

total sediment transport accoding to bagnold

7.5 total_transport_eh_distribution

total sediment transport according to engelund hansen for a given graqin size distribution $\,$

7.6 total_transport_engelund_hansen

total sediment transport according to Engelund and Hansen

$7.7 \quad total_transport_rijn$

total sediment transport according to van rijn

7.8 transport_stage_mclean

transport stage according to McLean

7.9 transport_stage_rijn

transport stage as defined by van Rijn

$7.10 \quad vertical_ssc_profile_mclean$

vertical profile of the suspended sediment according to McLean