2017-10-18

- Equality (=):
 - **Intensional**: two terms are syntactically equal.
 - Extensional: two terms denote the same object.
- Proof rules for equality and quantifiers:
 - Equality introduction: $\frac{1}{t=t} = i$
 - Equality elimination: $\frac{t_1=t_2 \phi[t_1/x]}{\phi[t_2/x]} = e$

- Universal quantification introduction: $\frac{\left|\vdots\right|}{\phi[x_0/x]}_{\forall x\phi} \ \forall x \, i$
- Universal quantification elimination: $\frac{\forall x \phi}{\phi[t/x]} \forall x \in$
- Existential quantification introduction: $\frac{\phi[t/x]}{\exists x\phi} \exists xi$

- Existential quantification elimination:
- Subformula property: an elimination rule that concludes with a subformula of the eliminated formula.
- The semantics of terms and atomic predicates are defined in *models*.
- Let F and P be a set of function and predicate symbols respectively. A **model** M of (F, P) consists of
 - A non-empty set A called the **universe**.
 - For function symbol $f \in F$ with arity $n \ge 0$, a function $f^M : A^n \to A$. Particularly, a constant symbol $c \in F$ is an element $c^M \in A$.
 - For predicate symbol $p \in P$ with arity n > 0, a set $p^M \subseteq A^n$.
- Environment: An environment for a universe A is a function l: var $\rightarrow A$. If l is an **environment**, $x \in \text{var}$, and $a \in A$, the environment $l[x \to a]$ is defined as $l[x \to a](y) = \begin{cases} a \text{ if } x = y\\ l(y) \text{ otherwise} \end{cases}.$