EIGSI OSCO

PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: <u>prepas.internationales@yahoo.com</u>
Site: <u>www.prepas-internationales.org</u>

CONTROLE DU 28/11/2020 Niveau : 1 Durée : 1H30

EXERCICE1 /10 points

On considère le circuit suivant. On donne :

$$E_2 = 12.5 \ V$$
; $I_1 = 2 \ A$; $I_2 = 1.6 \ A$; $R_1 = R_3 = 10 \ \Omega$; $R_2 = 5 \ \Omega$

 $\underline{\text{NB}}: R_X = R_{AB}$ est la résistance du reste du circuit lorsqu'on déconnecte la branche $(E_X; R_X)$ entre les points A et B.

A partir des données ci-dessus, calculer : E_1 ; I_3 ; I_X ; E_X et R_X . (5×2pts)

EXERCICE2 /10 points

On considère le circuit électrique ci-dessous.

Par une étude rigoureuse, établir les expressions :

- 1. de la résistance équivalente $R_{AB} = R_{Th} = R_N$ entre les bornes A et B;
- **2.** de la tension de Thevenin E_{Th} ;
- **3.** du courant de Norton I_N .

 $\underline{\mathrm{NB}}$: On rappelle que $(E_{Th}; R_{Th})$ et $(I_N; R_N)$ sont les caractéristiques respectives des circuits de Thevenin et de Norton à associer à la charge R_X entre les bornes A et B et qui seraient équivalents au reste du circuit à gauche de A et B.

4. En déduire l'expression du courant I traversant R_X .