ORCS 4529: Reinforcement Learning

Shipra Agrawal

Columbia University Industrial Engineering and Operations Research

Contents I

MDP

Finite horizon MDPs: Dynamic Programming

Infinite horizon discounted reward

Bellman Optimality equations

Solving Bellman equations: finding an optimal policy

Linear Proramming

Value Iteration

Q-value iteration

Policy iteration

Infinite horizon average reward

Finding optimal policy

Reinforcement Learning

Markov Decision Process (MDP) definition

State space, Action space, Reward model, Transition model

Starting state s_1 or a distribution of starting state Finite horizon H or inifinte horizon

At t = 1, 2, ..., observe s_t , take action a_t , observe reward r_t and next state s_{t+1} .

Markov Property of MDP

- At t = 1, 2, ..., observe s_t , take action a_t , observe reward r_{t+1} and next state s_{t+1} .
- ► Markov Property:

Solution Concept: Policy

- Markovian Policy vs. History Dependent policy
- Deterministic Policy vs. Randomized Policy
- Stationary vs. Non-stationary policy

Stationary Policy π

$$\pi: \mathcal{S} \to \mathcal{A} \text{ or } \pi: \mathcal{S} \to \Delta^{\mathcal{A}}$$

- Markov reward process (compare to Markov chains)
- Stationary distribution d^{π} of a stationary policy π

Goal of an MDP: Finite Horizon

Find (possibly non-stationary) policy $\pi = (\pi_1, \dots, \pi_H)$ that maximizes 'Value' starting from state s_1 .

Episodic or finite horizon setting.

$$V^{\pi}(s_1) = \mathbb{E}[\sum_{t=1}^{H} \gamma^{t-1} r_t | s_1; a_t = \pi_t(s_t)]$$

Optimal policy and value depend critically on s_1 , H. $0 \le \gamma \le 1$.

Goal of an MDP: Infinite Horizon

Find (possibly non-stationary) policy $\pi = (\pi_1, \pi_2 \dots, \pi_t, \dots,)$ that maximizes 'Gain' or 'Value' starting from state s_1 .

Infinite horizon expected total reward (Value).

$$V^{\pi}(s_1) = \lim_{T \to \infty} \mathbb{E}[\sum_{t=1}^{I} \gamma^{t-1} r_t | s_1; a_t = \pi_t(s_t)]$$

Infinite horizon discounted sum of rewards (Value).

$$V^{\pi}(s_1) = \lim_{T o \infty} \mathbb{E}[\sum_{t=1}^{I} \gamma^{t-1} r_t | s_1; a_t = \pi_t(s_t)]$$

Infinite horizon average reward (gain):

$$\rho^{\pi}(s_1) = \lim_{T \to \infty} \mathbb{E}[\frac{1}{T} \sum_{t=1}^{T} r_t | s_1; a_t = \pi_t(s_t)]$$

Optimal Policy

A policy that maximizes the gain or value starting from the starting state.

Is optimal policy Markovian? Stationary?

Optimal Policy

A policy that maximizes the gain or value starting from the starting state.

Is optimal policy Markovian? Stationary?

Assume finite or countable states and actions.

- ▶ If an optimal policy exists, there always exists a Markovian policy that is optimal.
- ▶ In all three infinite horizon settings, if an optimal policy exists, there always exists a stationary policy that is optimal.

Reference to proofs available in lecture notes.

MDP formulation Example 1

Robot learning to move on a line

- Three actions: walk or run or stay.
- On walking: the robot to move one step without falling.
- ▶ On running: robot might move two steps forward (80% chance), or fall (20% chance). Once the robot falls, it cannot get up.
- Once a target position (say 5 steps away from the starting position) is reached, the robot stays there.
- Aim: move forward on the line, quickly and without falling, and reach the target position.

MDP formulation Example 1

Robot learning to walk

Reward model? Goal? Policies?

Example 2: Inventory control MDP

Figure: Timing of events in an inventory problem (Figure taken from Puterman:1994.)

MDP formulation

Example 3: Tabular MDP

Robot learning to walk

Figure: A simple MDP for the robot toy example

MDP formulation

Contents I

MDP

Finite horizon MDPs: Dynamic Programming

Infinite horizon discounted reward

Bellman Optimality equations

Solving Bellman equations: finding an optimal policy

Linear Proramming

Value Iteration

Q-value iteration

Policy iteration

Infinite horizon average reward

Finding optimal policy

Reinforcement Learning

Solving an MDP: Finite horizon

$$\max_{\pi} \mathbb{E}[\sum_{t=1}^{n} \gamma^{t-1} r_t | s_1; a_t = \pi_t(s_t)]$$

where maximum is taken over all (non-stationary) policies $\pi = (\pi_1, \dots, \pi_k)$

Solving an MDP: Finite horizon

Dynamic programming algorithm using optimal substructure property

Define for all $s \in \mathcal{S}$, $k = 1, \dots, H$,

$$V_k^*(s) = \max_{\pi = \{\pi_t\}} \mathbb{E}[\sum_{t=1}^{\kappa} \gamma^{t-1} r_t | s_1 = s]$$

Then, optimal substructure property:

$$V_k^*(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s, a, s') V_{k-1}^*(s')$$

Dynamic programming uses this property backwards starting from $V_1^*(\cdot)$ to finally compute $V_H^*(\cdot)$, the optimal value for horizon H.

Proof

Solve the Robot MDP

Let's optimize the expected sum of rewards $(\gamma = 1)$ for horizon H = 4.

$$R = \left[\begin{array}{rr} -0.2 & 0 \\ 1 & 0.8 \\ 1 & 1.4 \end{array} \right]$$

$$R = \left[\begin{array}{rrr} -0.2 & 0 \\ 1 & 0.8 \\ 1 & 1.4 \end{array} \right]$$

 $V_1^*(\cdot)$ is simply immediate reward maximization,

$$V_1^*(F) = 0$$
(fast action/do nothing)
 $V_1^*(S) = 1$ (slow action)
 $V_1^*(M) = 1.4$ (fast action)

$$R = \left[\begin{array}{rrr} -0.2 & 0 \\ 1 & 0.8 \\ 1 & 1.4 \end{array} \right]$$

$$V_2^*(F) = \max\{-0.2 + 0.4 \times 1 + 0.6 \times 0, 0 + 0\} = 0.2 \text{(slow action)}$$

$$V_2^*(S) = \max\{1 + 1.4, 0.8 + 0.6 \times 1.4 + 0.4 \times 0\} = 2.4 \text{(slow action)}$$

$$V_2^*(M) = \max\{1 + 1.4, 1.4 + 0.8 \times 1.4 + 0.2 \times 0\} = 2.56 \text{(fast action)}$$

$$R = \left[\begin{array}{rrr} -0.2 & 0 \\ 1 & 0.8 \\ 1 & 1.4 \end{array} \right]$$

$$\begin{array}{lcl} V_3^*(F) & = & \max\{-0.2+0.4\times 2.4+0.6\times 0.2,0+0.2\} = 0.88 (\text{slow action}) \\ V_3^*(S) & = & \max\{1+2.56,0.8+0.6\times 2.56+0.4\times 0.2\} = 3.56 (\text{slow action}) \\ V_3^*(M) & = & \max\{1+2.56,1.4+0.8\times 2.56+0.2\times 0.2\} = \max\{3.56,3.488\} = 3.56 (\text{slow}) \end{array}$$

$$R = \left[\begin{array}{rrr} -0.2 & 0 \\ 1 & 0.8 \\ 1 & 1.4 \end{array} \right]$$

$$\begin{array}{lcl} V_4^*(F) & = & \max\{-0.2+0.4\times3.56+0.6\times0.88,0+0.88\} = \max\{1.752,0.88\} = 1.752(\operatorname{slow}(F)) \\ V_4^*(S) & = & \max\{1+3.56,0.8+0.6\times3.56+0.4\times0.88\} = \max\{4.56,3.24\} = 4.56(\operatorname{slow}(F)) \\ V_4^*(M) & = & \max\{1+3.56,1.4+0.8\times3.56+0.2\times0.88\} = \max\{4.56,4.4\} = 4.56(\operatorname{slow}(F)) \\ \end{array}$$

Contents I

MDP

Finite horizon MDPs: Dynamic Programming

Infinite horizon discounted reward

Bellman Optimality equations

Solving Bellman equations: finding an optimal policy

Linear Proramming

Value Iteration

Q-value iteration

Policy iteration

Infinite horizon average reward

Finding optimal policy

Reinforcement Learning

Infinite horizon settings: Bellman optimality equations

We still use the memoization idea but fixed point equations instead of recursive equations.

- Memoization idea in finite horizon: Given remaining horizon k, the optimal value from a state s is fixed irrespective of how you arrived there.
- Memoization in infinite horizon: Given remaining horizon k, the optimal value from a state s is fixed irrespective of how you arrived there.

Bellman equations for value of a stationary policy

Infinite horizon discounted reward setting

Value of stationary policy π from state s (discount factor $\gamma < 1$):

$$V^\pi_\gamma(s) := \lim_{T o \infty} \mathbb{E}[\sum_{t=1}^I \gamma^{t-1} r_t | s_1 = s; a_t = \pi(s_t)]$$

Bellman equations for value of a stationary policy

Infinite horizon discounted reward setting

Value of stationary policy π from state s (discount factor $\gamma < 1$):

$$V^\pi_\gamma(s) := \lim_{T o \infty} \mathbb{E}[\sum_{t=1}^T \gamma^{t-1} r_t | s_1 = s; a_t = \pi(s_t)]$$

Bellman equations

$$V^{\pi}_{\gamma}(s) = \mathbb{E}_{a \sim \pi(s), s' \sim P(s, a)} \left[R(s, a, s') + \gamma V^{\pi}_{\gamma}(s')
ight]$$

Vector form for finite state space

$$V_{\gamma}^{\pi} = \mathbf{R}^{\pi} + \gamma P^{\pi} V_{\gamma}^{\pi}$$

Proof

Bellman Optimality Equations

Infinite horizon discounted reward setting

Define optimal value:

$$V_{\gamma}^{*}(s) = \sup_{\pi = \{\pi_{t}\}} \mathbb{E}[r_{1} + \gamma r_{2} + \gamma^{2} r_{3} + \gamma^{3} r_{4} + \dots | s_{1} = s]$$

Bellman optimality equations:

$$V_{\gamma}^*(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s, a, s') V_{\gamma}^*(s')$$

More generally,

$$V_{\gamma}^*(s) = \max_{a} R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V_{\gamma}^*(s')]$$

Proof

Optimal Policy

Infinite horizon discounted reward setting

$$\pi^*(s) := \arg\max_{a} R(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)}[V_{\gamma}^*(s')]$$

Value of optimal policy can also be computed as

$$V_{\gamma}^{*} = (I - \gamma P^{\pi^{*}})^{-1} R^{\pi^{*}}$$

Inverse exists for $\gamma < 1$

Finding an optimal policy

Solving the Bellman equations

Assume finite state space and action space (aka 'tabular' setting).

- ▶ Linear programming
- Iterative algorithms

LP for solving Bellman Equations

LP for solving Bellman Equations

The fixed point of Bellman optimality equations can be found by solving the following linear program.

$$\begin{aligned} \min_{\mathbf{v} \in \mathbb{R}^S} & \sum_s v_s \\ \text{subject to} & v_s \geq R(s,a) + \gamma P(s,a)^\top \mathbf{v} & \forall a,s \end{aligned}$$

Proof

Iterative algorithms

Finite state space and action space

- ▶ Value iteration: Iteratively improve estimate of optimal value vector $[V^*(1), ..., V^*(S)]$.
- ▶ Q-value iteration: Iteratively improve the estimate of Q-values $[Q^*(s, a), s \in \mathcal{S}, a \in \mathcal{A}]$. (to be defined)
- Policy iteration: Iteratively improve estimate of optimal policy $[\pi^*(1), \dots, \pi^*(S)]$.

Infinite horizon discounted reward setting

Estimate the optimal value vector

- 1. Start with an arbitrary initialization \mathbf{v}^0 . Specify $\epsilon > 0$
- 2. Repeat for $k = 1, 2, \ldots$ until
 - ▶ Update value vector estimate \mathbf{v}^k

Infinite horizon discounted reward setting

Estimate the optimal value vector

- 1. Start with an arbitrary initialization \mathbf{v}^0 . Specify $\epsilon > 0$
- 2. Repeat for $k = 1, 2, \ldots$ until
 - for every $s \in S$, improve the value vector as:

$$\mathbf{v}^{k}(s) = \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') \mathbf{v}^{k-1}(s'), \qquad (1)$$

Infinite horizon discounted reward setting

Estimate the optimal value vector

- 1. Start with an arbitrary initialization \mathbf{v}^0 . Specify $\epsilon > 0$
- 2. Repeat for $k=1,2,\ldots$ until $\|\mathbf{v}^k-\mathbf{v}^{k-1}\|_{\infty} \leq \epsilon \frac{(1-\gamma)}{2\gamma}$:
 - ▶ for every $s \in S$, improve the value vector as:

$$\mathbf{v}^{k}(s) = \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') \mathbf{v}^{k-1}(s'), \qquad (1)$$

Infinite horizon discounted reward setting

Estimate the optimal value vector

- 1. Start with an arbitrary initialization \mathbf{v}^0 . Specify $\epsilon > 0$
- 2. Repeat for $k=1,2,\ldots$ until $\|\mathbf{v}^k-\mathbf{v}^{k-1}\|_{\infty} \leq \epsilon \frac{(1-\gamma)}{2\gamma}$:
 - ▶ for every $s \in S$, improve the value vector as:

$$\mathbf{v}^{k}(s) = \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') \mathbf{v}^{k-1}(s'), \qquad (1)$$

$$\pi(s) \in \arg\max_{a} R(s, a) + \gamma P(s, a)^{\top} \mathbf{v}^{k}$$
 (2)

Bellman operator

 $L, L^{\pi}: \mathbb{R}^{S} \to \mathbb{R}^{S}$.

Bellman operator

$$L, L^{\pi} : \mathbb{R}^{S} \to \mathbb{R}^{S}.$$

$$[LV](s) := \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') V(s')$$

$$[L^{\pi}V](s) := \mathbb{E}_{a \in \pi(s)} [R(s, a) + \gamma \sum_{s'} P(s, a, s') V^{\pi}(s')]$$

Infinite horizon discounted reward setting

Estimate the optimal value vector

- 1. Start with an arbitrary initialization \mathbf{v}^0 . Specify $\epsilon > 0$
- 2. Repeat for $k=1,2,\ldots$ until $\|\mathbf{v}^k-\mathbf{v}^{k-1}\|_{\infty} \leq \epsilon \frac{(1-\gamma)}{2\gamma}$:

$$\mathbf{v}^k = L\mathbf{v}^{k-1}$$

$$\pi(s) \in \arg\max_{a} R(s, a) + \gamma P(s, a)^{\top} \mathbf{v}^{k}$$

Analysis

Theorem (Theorem 6.3.3, Section 6.3.2 in Puterman:1994)

The convergence rate of the above algorithm is linear at rate γ . Specifically,

$$\|\mathbf{v}^k - V^*\|_{\infty} \le \frac{\gamma^k}{1-\gamma} \|v^1 - v^0\|_{\infty}$$

Further, let π^k be the arg max policy defined by v^k . Then,

$$\|V^{\pi^k} - V^*\|_{\infty} \le \frac{2\gamma^k}{1-\gamma} \|v^1 - v^0\|_{\infty}$$

Contraction property of L-operator

$$||Lv - Lu||_{\infty} \le \gamma ||v - u||_{\infty}.$$

$$||L^{\pi}v - L^{\pi}u||_{\infty} \le \gamma ||v - u||_{\infty}.$$

Proof of the value iteration convergence theorem

Q-values and Q-value-iteration

Q-values are defined as values after fixing the first action

 $ightharpoonup Q^*(s, a)$ is defined the expected utility on taking action a in state s, and thereafter acting optimally.

$$Q^*(s, a) := R(s, a) + \sum_{s' \in S} P(s, a, s') V^*(s')$$
 $V^*(s) := \max_{a} Q^*(s, a)$

Bellman Optimality Equation

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s, a, s') \left(\max_{a'} Q^*(s', a') \right)$$

Q-values and Q-value-iteration

Q-values are defined as values after fixing the first action

 $Q^*(s, a)$ is defined the expected utility on taking action a in state s, and thereafter acting optimally.

$$Q^*(s, a) := R(s, a) + \sum_{s' \in S} P(s, a, s') V^*(s')$$
 $V^*(s) := \max_{a} Q^*(s, a)$

Bellman Optimality Equation

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s, a, s') \left(\max_{a'} Q^*(s', a') \right)$$

▶ $Q^{\pi}(s, a)$ is defined the expected utility on taking action a in state s, and thereafter playing policy π .

$$Q^{\pi}(s,a) := R(s,a) + \sum_{s' \in \mathcal{S}} P(s,a,s') V^{\pi}(s')$$

$$V^{\pi}(s) = \mathbb{E}_{a \in \pi(s)}[Q^{\pi}(s,a)]$$

Q-values and Q-value iteration

Q-value iteration estimates $Q^*(s, a)$ s for all s, a. (instead of $V^*(s)$ for all s in value iteration)

Why?

Q-values and Q-value iteration

Q-value iteration estimates $Q^*(s, a)$ s for all s, a. (instead of $V^*(s)$ for all s in value iteration)

Why?

No need to know the MDP model to compute optimal policy:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Important in the learning setting when we don't know the model.

Q-value iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. In every iteration k, improve the Q-value vector as:

$$\mathbf{Q}^{k}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \left(\max_{a'} Q^{k-1}(s',a') \right), \forall s, a$$

- 3. Stop if $||Q^k Q^{k-1}||_{\infty}$ is small.
- 4. Output policy π^k defined as $\pi^k(s) = \arg \max_a Q^k(s, a)$

Q-value iteration

- 1. Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- 2. In every iteration k, improve the Q-value vector as:

$$\mathbf{Q}^{k}(s,a) = R(s,a) + \gamma \sum_{s'} P(s,a,s') \left(\max_{a'} Q^{k-1}(s',a') \right), \forall s, a$$

- 3. Stop if $||Q^k Q^{k-1}||_{\infty}$ is small.
- 4. Output policy π^k defined as $\pi^k(s) = \arg \max_a Q^k(s, a)$

Convergence proof follows from value iteration convergence.

Policy iteration

Directly estimate the optimal policy π^* .

Use that at π^*

$$\pi^*(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} P(s, a, s') V^{\pi^*(s')}, \forall s$$

Greedy update should give back π^*

Policy iteration using values

- 1. Initialize policy π^0 .
- 2. In every iteration $k = 0, 1, \ldots,$
 - Policy evaluation) Compute value $V^{\pi^k}(s)$, the value of policy π^k for every state s.
 - ► (Greedy Policy improvement) Compute new policy

$$\pi^{k+1}(s) := \arg\max_{a} R(s,a) + \gamma \sum_{s'} P(s,a,s') V^{\pi^k}(s'), \forall s$$

3. Stop when $\pi^{k+1} = \pi^k$.

Relaxed stopping criteria: not much change in policy or its value.

Policy iteration using Q-values

- 1. Initialize policy π^0 .
- 2. In every iteration $k = 0, 1, 2, \ldots$,
 - Policy evaluation) Compute value $Q^{\pi^k}(s, a)$, the Q-values of policy π^k for all s, a.
 - ► (Greedy Policy improvement) Compute new policy

$$\pi^{k+1}(s) := \arg\max_{a} Q^{\pi_k}(s, a), \forall s$$

3. Stop when $\pi^{k+1} = \pi^k$.

Relaxed stopping criteria: not much change in policy or its value.

Policy-iteration vs. Value-iteration

- + separate the policy evaluation (learning) and the improvement (optimization) steps
- + can actually be faster if estimating the performance of a fixed policy is much easier than finding an optimal policy
- + can warm start if there is a known good initial policy to start from and improve upon
- + always maintains a good policy
 - parameterizing a policy (function) can be more difficult/complex than parameterizing a value (vector)
 - If policy evaluation is done by an iterative method like value iteration then policy iteration is slower.

Policy iteration convergence proof

Theorem

For the policy π^k computed in the k^{th} iteration of policy iteration, we have

$$\|V^{\pi^k} - V^*\|_{\infty} \le \gamma^k \|V^{\pi_0} - V^*\|_{\infty}$$

- Compare it to the value iteration convergence.
- Why does this look much better? Is it really much better?

Policy iteration converence

How much does the policy improve in one step?

Lemma

$$V^{\pi^{k+1}} \geq LV^{\pi^k}$$

Once we can prove the above, the proof is similar to value iteration.

Why is this not trivial (unlike value iteration)?

Contents I

MDP

Finite horizon MDPs: Dynamic Programming

Infinite horizon discounted reward

Bellman Optimality equations

Solving Bellman equations: finding an optimal policy

Linear Prorammin

Value Iteration

Q-value iteration

Policy iteration

Infinite horizon average reward

Finding optimal policy

Reinforcement Learning

Infinite horizon Average reward goal

Find a policy $\boldsymbol{\pi}$ that maximizes the average reward under that policy

$$ho^{\pi}(s_1) = \lim_{T o \infty} rac{1}{T} \mathbb{E}[\sum_{t=1}^T r_t | s_1 = s; a_t = \pi(s)]$$

Connections to finite horizon reward

$$ho^{\pi}(s) = \lim_{T o \infty} rac{1}{T} V_T^{\pi}(s)$$

Connections to discounted reward

$$ho^\pi(s) = \lim_{\gamma o 1} (1-\gamma) V_\gamma^\pi(s)$$

Bias of a policy

For average reward case, an important quantity is bias of a policy π from state s is defined as

$$h^{\pi}(s) = \lim_{T \to \infty} \mathbb{E}[\sum_{t=1}^{T} (r_t - \rho^{\pi}(s_t)) | s_1 = s; a_t = \pi(s_t)]$$

The limit in above is Cesaro limit which exists. More details in Section 8.2 of Puterman:1994.

Example

For each state, compute bias of the policy that plays slow action in all states.

Connection of Bias and value

Under a policy π , if two states s, s' are in the same irreducible class (i.e., can be reached from each other in finite expected time) then

Finite time value:

$$h^\pi(s) - h^\pi(s') = \lim_{T \to \infty} (V_T^\pi(s) - V_T^\pi(s'))$$

where
$$V_T^\pi(s) = \mathbb{E}[\sum_{t=1}^T r_t | s_1 = s]$$

Discounted value:

$$h^\pi(s)-h^\pi(s')=\lim_{\gamma o 1}(V^\pi_\gamma(s)-V^\pi_\gamma(s'))$$

When comparing outcomes from two different states, bias behaves like the value function in the other settings.

Bellman equations in average reward case

Given a policy π such that all s, s' are reachable from each other in finite time.

$$\rho^{\pi}(s) + h^{\pi}(s) = \mathbb{E}_{a \sim \pi(s), s' \sim P(s, a)} \left[R(s, a, s') + h^{\pi}(s') \right], \forall s$$

Or, in compact notation:

$$\mathbf{h}^{\pi} + \rho^{\pi} = \mathbf{R}^{\pi} + P^{\pi}\mathbf{h}^{\pi}$$

Example

Consider the robot example. Check that the bias and average reward (aka gain) of the policy that always plays slow actions satisfy the Bellman equations stated above.

$$R^{\pi} = \begin{bmatrix} -0.2\\1\\1 \end{bmatrix}, P^{\pi} = \begin{bmatrix} 0.6 & 0.4 & 0\\0 & 0 & 1\\0 & 0 & 1 \end{bmatrix}$$

Bellman optimality equations

Assume communicating MDP.

Definition

An MDP is called **communicating** if for any two states s, s', there exists a policy such that the expected number of steps to reach s' from s is finite.

Theorem

For communicating MDP, for optimal gain policy $\rho^*(s) = \rho^*(s') = \rho^*$, i.e., optimal average infinite horizon reward does not depend on the starting state.

Bellman Optimality Equations for average reward case

Assuming communicating MDP, gain and bias ρ, h of optimal policy satisfies the following equations:

$$\rho + h(s) = \max_{a} R(s, a) + \sum_{s' \in \mathcal{S}} P(s, a, s')h(s'), \forall s$$

Bellman Optimality Equations for average reward case

Assuming communicating MDP, gain and bias ρ , h of optimal policy satisfies the following equations:

$$\rho + h(s) = \max_{a} R(s, a) + \sum_{s' \in \mathcal{S}} P(s, a, s') h(s'), \forall s$$

Also, for any feasible solution (ρ,h) to the above equations, we can get an optimal policy π^* defined as

$$\pi^*(s) \in \arg\max_a R(s,a) + \sum_{s'} P(s,a,s')h(s'),$$

with $\rho = \rho^{\pi^*}$ and $h = h^{\pi^*} + c\mathbf{e}$ for some constant c.

▶ Note that to compute the optimal policy we need to just know the bias vector *h* that satisfies Bellman equations.

Solving Bellman equations: Linear Program

$$\begin{array}{ll} \min & \rho \\ \rho \in R, \mathbf{h} \in \mathbb{R}^S \end{array}$$
 subject to
$$\rho \geq R(s,a) + \sum_{s'} P(s,a,s') h_{s'} - h_s \quad \forall a,s$$

Solving Bellman equations: Linear Program

$$\begin{array}{ll} \min & \rho \\ \rho \in R, \mathbf{h} \in \mathbb{R}^S \end{array}$$
 subject to $\rho \geq R(s,a) + \sum_{s'} P(s,a,s') h_{s'} - h_s \quad \forall a,s$

Write the dual LP for better interpretation:

$$\max_{q} \qquad \sum_{s,a} q(s,a)R(s,a)$$

$$\sum_{s,a} P(s,a,s')q(s,a) - \sum_{a} q(s',a) = 0 \quad \forall s'$$

$$\sum_{s,a} q(s,a) = 1$$

$$q(s,a) \ge 0 \qquad \forall s,a$$

That is, find the stationary distribution q(s, a) that maximizes the expected reward.

Solving Bellman equations: value iteration/policy iteration

- ▶ Same algorithm but with $\gamma = 1$.
- Instead of estimating the value vector, we are updating and estimating bias.
- In linear convergence with rate γ is not guaranteed since $\gamma=1$. The convergence rate depends on the properties of the transition matrix.
- a sufficient condition for linear convergence is

$$\alpha := \max_{s,s',a,a'} \sum_{j \in S} \min\{P(s,a,j), P(s',a',j)\} > 0$$

then linear convergence with rate $1-\alpha$. .

Contents I

MDP

Finite horizon MDPs: Dynamic Programming

Infinite horizon discounted reward

Bellman Optimality equations

Solving Bellman equations: finding an optimal policy

Linear Proramming

Value Iteration

Q-value iteration

Policy iteration

Infinite horizon average reward

Finding optimal policy

Reinforcement Learning

Reinforcement Learning algorithms

```
 \begin{array}{ll} \mathsf{RL} == & \mathsf{MDP} + \mathsf{unknown} \; \mathsf{model} \\ == & \mathsf{Value/Policy} \; \mathsf{iteration} + \mathsf{sampling} \\ & \mathsf{OR} \\ & \mathsf{Direct} \; \mathsf{function} \; \mathsf{optimization} \; \mathsf{from} \; \mathsf{samples} \\ \end{array}
```


Figure: Algorithms for RL (Drawing taken from Pieter Abbeel's slides)