FRA222 Microcontroller Interface

CLOCK AND TIMER

Time in microcontroller?

HAL_GetTick() – Return amount of time since Reset / start Program in ms

"Oscillator"

Oscillator in electronic

what clock (in MCU) does?

Higher Clock = Higher instruction/data transfer

= Faster work

CPU 100Mhz

ADC 25 Mhz

Communication 10 Mhz

external / Internal

Prescaler/Postscaler – Clock divider

PLL – Make new Clock From Ref Clock

"Clock Multiplier"

20 Mhz x 5 -> 100 MHz

8 Mhz x 20 -> 160 MHz

Clock system in microcontroller

IN STM32F411

https://www.st.com/resource/en/reference_man ual/dm00119316-stm32f411xce-advancedarmbased-32bit-mcus-stmicroelectronics.pdf

page 38

 The USB OTG FS clock (48 MHz) and the SDIO clock (≤48 MHz) which are coming from a specific output of PLL (PLL48CLK)

The I2S clock

To achieve high-quality audio performance, the I2S clock can be derived either from a specific PLL (PLLI2S) or from an external clock mapped on the I2S_CKIN pin. For more information about I2S clock frequency and precision, refer to Section 20.4.4: Clock generator.

Clock Frequency VS Time Period

์ 1 Mhz = 1 ล้าน pulse / วินาที

1 Pulse = 0.000001 วินาที = 1 microsecond

325 Pulses = 325 microsecond 1000 Pulse = 1000 microsecond = 1 millisecond

"Timer" in microcontroller

Ex Period = 1000, mean after 1000 pulse(or 1 ms) timer stop / reset

Table 4. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Advanced -control	TIM1	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	100	100
General	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	50	100
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	50	100
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	100	100
	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	100	100

Timer Use Example

- นับเวลาที่ผ่านไปหลังจากเกิดเหตุการบางอย่าง เช่น นับเวลาจาก เวลาที่ LED ดับ จนถึงเวลาที่ยกนิ้วขึ้น
- นับเวลา และทุกๆ 1 ms ให้เกิด interrupt ขึ้น
- นับเวลาและทำให้ ไฟกระพริบ ทุกๆ 1 S

Up / Down

Summary – Clock & Timer (in microcontroller)

Clock → สัญญาณไฟฟ้าที่มีความถี่คงที่ซึ่งใช้กำหนดจังหวะและความเร็วและความเร็วการทำงานของระบบ microcontroller

- MCU ใช้สัญญาณ จาก Oscillator จากภายใน หรือ ภายนอกในการสร้างเป็น clock source ที่ใช้ในการนับจังหวะเวลาใน MCU
- o ใน MCU มี PLL และ Prescaler ในการสร้าง clock source ใหม่จาก clock source ที่มีอยู่ ให้เป็นความถี่ที่ต้องการในแต่ละ Domain
- ความเร็วในการประมวลและเวลาต่างๆเช่นdelayที่ใช้ ขึ้นกับ clock ทั้งสิ้น

Timer → Peripheral ที่ใช้สัญญาณจาก clock source ภายใน CPU มาใช้ในการนับเวลา

- Timer นับเวลาโดยใช้ counter นับสัญญาณจาก Clock ใน Domain นั้นๆ ของ Timer
- Timer จะนับเวลาจนถึง period ที่กำหนดไว้ ใน auto reload ก่อนที่จะ วนกลับไปเริ่มนับใหม่แต่ต้น
- o เราสามารถใช้ timer Trigger software interrupt หรือ hardware อื่นๆ ที่เชื่อมต่อเอาไว้ได้