Higher-Order Masking in Practice: A Vector Implementation of Masked AES for ARM NEON

Junwei Wang, Praveen Kumar Vadnala,

Johann Großschädl, Qiuliang Xu

Shandong University, University of Luxemborg
CT-RSA 2015, April 20 - 24, 2015

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis Implementation of Secure Field Multiplication

Results and Comparison

Conclusion

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis
Implementation of Secure Field Multiplication

Results and Comparisor

Conclusion

Workstation

Oscilloscope

Side-Channel Attacks

Side-Channel Attacks

_____ 3/21 _____

• Suppose x is a sensitive intermediate variable in a block cipher.

- Suppose x is a sensitive intermediate variable in a block cipher.
- Generate a random r, and process r and masked value

$$x'=x\oplus r$$

separately instead of x.

- Suppose x is a sensitive intermediate variable in a block cipher.
- Generate a random r, and process r and masked value

$$x' = x \oplus r$$

separately instead of x.

- r is random
 - $\Rightarrow x'$ is random
 - \Rightarrow Power consumption of r or x' alone does not leak any information on x.

- Second-order attacks
 - Two intermediate variables are probed.

More power traces and more complicated statistical techniques required but still practical.

- Second-order attacks
 - Two intermediate variables are probed.

- More power traces and more complicated statistical techniques required but still practical.
- High-order attacks
 - order is the number of probed intermediate values.
 - ▶ The complexity grows exponentially as the order increases.

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis Implementation of Secure Field Multiplication

Results and Comparisor

Conclusion

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths

5/21 _____

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:

5/21 _____

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey

Advanced Encryption Standard (AES)

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey
 - ShiftRows

Published by National Institute of Standards and Technology (NIST) in

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey
 - ShiftRows
 - ► MixColumns

- Published by National Institute of Standards and Technology (NIST) in 2001
- Substitution-permutation network based block cipher
- 128-bit (4*4 bytes) state block with three different key lengths
- 10 rounds are performed on the state block for 128-bit keys, each round contains:
 - AddRoundKey
 - ► ShiftRows
 - ► MixColumns
 - SubBytes, also known as S-box, non-linear transformation

Advanced Encryption Standard (AES)

- ► AddRoundKey
- ► Stooktive multiplicative inversion over F₂₈
- MixCollumns by an affine transformation substress also known as 5-box, non-linear transformation
- Inversion: typically implemented via table look-up, but in our case: $x^{-1} = x^{254}$.

_____ 6/21 _____

• Intermediate value x is split into n shares: $x = x_1 \oplus \cdots \oplus x_n$ and these shares are manipulated separately.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ x_n and these shares are manipulated separately.
- ullet Any subset of at most n-1 shares is independent of x
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.

- Intermediate value x is split into n shares: $x = x_1 \oplus \cdots \oplus x_n$ and these shares are manipulated separately.
- ullet Any subset of at most n-1 shares is independent of χ
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.
- ullet Any subset of at most n-1 shares is independent of χ
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot)$ $f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ x_n and these shares are manipulated separately.
- ullet Any subset of at most n-1 shares is independent of χ
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot)$ $f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.
- Masking S-Boxes ?

- Intermediate value x is split into n shares: x = x₁ ⊕ · · · ⊕ xn and these shares are manipulated separately.
- Any subset of at most n-1 shares is independent of χ
 - \Rightarrow Any joint leakage of at most n-1 shares leaks nothing about x
 - \Rightarrow Resistant against (n-1)-th order DPA attacks.
- High-order masking countermeasures are practically sufficient for a certain order.
- Masking linear operation $f(\cdot)$ $f(x) = f(x_1) \oplus \cdots \oplus f(x_n)$.
- Masking S-Boxes ? Not easy!!!

- Ishai-Sahai-Wagner Scheme [ISW03]
 - Describe how to transform a boolean circuit into a new circuit resistant against any t probes.
- Rivain-Prouff countermeasure [RP10]
 - Secure the inversion of S-box through exponentiation.
 - Secure the inversion of S-box over composite field [KHL11].
- Carlet et al. countermeasure (FSE12)
 - Extend [RP10] to arbitrary S-box

$$S(x) = \sum_{i=0}^{2^k-1} \alpha_i x^i$$

over \mathbb{F}_{2^k} .

- Coron countermeasure (EUROCRYPT14)
 - Generalize the classic randomized table countermeasure.

Rivain-Prouff Countermeasure [1]

/21 .

AES inversion (power function) $x \mapsto x^{254}$

 Secure exponentiation (inversion) consists of several secure multiplications and squarings.

Rivain-Prouff Countermeasure [1]

3/21

AES inversion (power function) $x \mapsto x^{254}$

- Secure exponentiation (inversion) consists of several secure multiplications and squarings.
- Secure squaring is easy.

/21 ___

AES inversion (power function) $x \mapsto x^{254}$

- Secure exponentiation (inversion) consists of several secure multiplications and squarings.
- Secure squaring is easy.
- Secure multiplication z = xy is extended from [ISW03], i.e., recomputing

$$\bigoplus_{i=1}^n z_i = \left(\bigoplus_{i=1}^n x_i\right) \left(\bigoplus_{i=1}^n y_i\right) = \bigoplus_{1\leqslant i,j\leqslant n} x_i y_j$$

as

$$\bigoplus_{i} z_{i} = \bigoplus_{i} \left(x_{i} y_{i} \oplus \bigoplus_{j < i} (x_{i} y_{j} \oplus x_{j} y_{i}) \right)
= \bigoplus_{i} \left(\left(\bigoplus_{j > i} \mathbf{r}_{i,j} \right) \oplus x_{i} y_{i} \oplus \bigoplus_{j < i} ((\mathbf{r}_{j,i} \oplus x_{i} y_{j}) \oplus x_{j} y_{i}) \right).$$
(1)

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$

Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$

Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

$$\triangleright \bigoplus_{i} z_{i} = x^{2}$$

2: RefreshMasks $((z_i)_i)$

$$\text{3: } (y_{\mathfrak{i}})_{\mathfrak{i}} \leftarrow \mathsf{SecMult}((z_{\mathfrak{i}})_{\mathfrak{i}}, (x_{\mathfrak{i}})_{\mathfrak{i}})$$

$$\triangleright \bigoplus_i y_i = x^3$$

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$

Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

2: RefreshMasks
$$((z_i)_i)$$

3:
$$(y_i)_i \leftarrow SecMult((z_i)_i, (x_i)_i)$$

4:
$$(w_i)_i \leftarrow (y_i^4)_i$$

5: RefreshMasks
$$((w_i)_i)$$

6:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

$$\triangleright \bigoplus_{i} z_{i} = x^{2}$$

$$\triangleright \bigoplus_i y_i = x^3$$

$$\triangleright \bigoplus_{i} w_{i} = x^{12}$$

$$\triangleright \bigoplus_i y_i = x^{15}$$

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$

Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

2: RefreshMasks
$$((z_{i})_{i})$$

3:
$$(y_i)_i \leftarrow SecMult((z_i)_i, (x_i)_i)$$

4:
$$(w_i)_i \leftarrow (y_i^4)_i$$

5: RefreshMasks
$$((w_i)_i)$$

6:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

7:
$$(y_i)_i \leftarrow (y_i^{16})_i$$

$$\triangleright \bigoplus_i z_i = x^2$$

$$\triangleright \bigoplus_{i} y_{i} = x^{3}$$

$$\triangleright \bigoplus_{i} w_{i} = x^{12}$$

$$\triangleright \bigoplus_{i} y_{i} = \chi^{15}$$

$$\triangleright \bigoplus_{i} y_{i} = x^{240}$$

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

2: RefreshMasks
$$((z_i)_i)$$

3:
$$(y_i)_i \leftarrow SecMult((z_i)_i, (x_i)_i)$$

4:
$$(w_i)_i \leftarrow (y_i^4)_i$$

5: RefreshMasks
$$((w_i)_i)$$

6:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

7:
$$(y_i)_i \leftarrow (y_i^{16})_i$$

8:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

$$\triangleright \bigoplus_i z_i = x^2$$

$$\triangleright \bigoplus_{i} y_{i} = x^{3}$$

$$\triangleright \bigoplus_{i} w_{i} = x^{12}$$

$$\triangleright \bigoplus_i y_i = x^{15}$$

$$\triangleright \bigoplus_{i} y_i = x^{240}$$

$$\triangleright \bigoplus_i y_i = x^{252}$$

SecExp254 - masked exponentiation in \mathbb{F}_{2^8} with n shares [RP10]

Input: shares $x_{\mathfrak{i}}$ satisfying $x_{1}\oplus\cdots\oplus x_{n}=x$

Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{254}$

1:
$$(z_i)_i \leftarrow (x_i^2)_i$$

2: RefreshMasks
$$((z_{i})_{i})$$

3:
$$(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$$

4:
$$(w_i)_i \leftarrow (y_i^4)_i$$

5: RefreshMasks
$$((w_i)_i)$$

6:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

7:
$$(y_i)_i \leftarrow (y_i^{16})_i$$

8:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$$

9:
$$(y_i)_i \leftarrow SecMult((y_i)_i, (z_i)_i)$$

$$\triangleright \bigoplus_{i} z_{i} = x^{2}$$

$$\triangleright \bigoplus_{i} y_{i} = x^{3}$$

$$\triangleright \bigoplus_{i} w_{i} = x^{12}$$

$$\triangleright \bigoplus_{i} y_{i} = x^{15}$$

$$\triangleright \bigoplus_{i} y_{i} = x^{240}$$

$$\triangleright \bigoplus_{i} y_{i} = x^{252}$$

$$\triangleright \bigoplus_{i} y_i = x^{254}$$

A Flaw in RP Countermeasure (FSE13)

```
 \begin{array}{l} \text{1. } (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ \text{2. RefreshMasks}((z_{i})_{i}) \\ \text{3. } (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ \text{4. } (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ \text{5. RefreshMasks}((w_{i})_{i}) \\ \text{6. } (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ \text{7. } (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ \text{8. } (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ \text{9. } (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i}, (z_{i})_{i}) \\ \end{array}
```

A Flaw in RP Countermeasure (FSE13)

```
1. (z_i)_i \leftarrow (x_i^2)_i

2. RefreshMasks((z_i)_i)

3. (y_i)_i \leftarrow \text{SecMult}((x_i)_i, (z_i)_i)

4. (w_i)_i \leftarrow (y_i^4)_i

5. RefreshMasks((w_i)_i)

6. (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)

7. (y_i)_i \leftarrow (y_i^{16})_i

8. (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)

9. (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i)
```

A Flaw in RP Countermeasure (FSE13)

10/21 .

```
 \begin{array}{l} \text{1. } (z_{\mathbf{i}})_{\mathbf{i}} \leftarrow (x_{\mathbf{i}}^2)_{\mathbf{i}} \\ \text{2. RefreshMasks}((z_{\mathbf{i}})_{\mathbf{i}}) \\ \text{3. } (y_{\mathbf{i}})_{\mathbf{i}} \leftarrow \text{SecMult}((x_{\mathbf{i}})_{\mathbf{i}}, (z_{\mathbf{i}})_{\mathbf{i}}) \\ \text{4. } (w_{\mathbf{i}})_{\mathbf{i}} \leftarrow (y_{\mathbf{i}}^4)_{\mathbf{i}} \\ \text{5. RefreshMasks}((w_{\mathbf{i}})_{\mathbf{i}}) \\ \text{6. } (y_{\mathbf{i}})_{\mathbf{i}} \leftarrow \text{SecMult}((y_{\mathbf{i}})_{\mathbf{i}}, (w_{\mathbf{i}})_{\mathbf{i}}) \\ \text{7. } (y_{\mathbf{i}})_{\mathbf{i}} \leftarrow (y_{\mathbf{i}}^{16})_{\mathbf{i}} \\ \text{8. } (y_{\mathbf{i}})_{\mathbf{i}} \leftarrow \text{SecMult}((y_{\mathbf{i}})_{\mathbf{i}}, (w_{\mathbf{i}})_{\mathbf{i}}) \\ \end{array}
```

9. $(y_i)_i \leftarrow SecMult((y_i)_i, (z_i)_i)$

```
\begin{split} &1.\ (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ &2.\ \text{RefreshMasks}((z_{i})_{i}) \\ &3.\ (y_{i})_{i} \leftarrow \text{SecMult}((x_{i})_{i},(z_{i})_{i}) \\ &4.\ (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ &5.\ \text{RefreshMasks}((w_{i})_{i}) \\ &6.\ (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i},(w_{i})_{i}) \\ &7.\ (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ &8.\ (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i},(w_{i})_{i}) \\ &9.\ (y_{i})_{i} \leftarrow \text{SecMult}((y_{i})_{i},(z_{i})_{i}) \end{split}
```

• Vulnerable to $(\lfloor n/2 \rfloor + 1)$ -th order attacks due to the integration with RefreshMasks

10/21 ____

```
 \begin{split} &1. & (z_{i})_{i} \leftarrow (x_{i}^{2})_{i} \\ &2. \; \mathsf{RefreshMasks}((z_{i})_{i}) \\ &3. & (y_{i})_{i} \leftarrow \mathsf{SecMult}((x_{i})_{i}, (z_{i})_{i}) \\ &4. & (w_{i})_{i} \leftarrow (y_{i}^{4})_{i} \\ &5. \; \mathsf{RefreshMasks}((w_{i})_{i}) \\ &6. & (y_{i})_{i} \leftarrow \mathsf{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ &7. & (y_{i})_{i} \leftarrow (y_{i}^{16})_{i} \\ &8. & (y_{i})_{i} \leftarrow \mathsf{SecMult}((y_{i})_{i}, (w_{i})_{i}) \\ &9. & (y_{i})_{i} \leftarrow \mathsf{SecMult}((y_{i})_{i}, (z_{i})_{i}) \end{split}
```

• Vulnerable to $(\lfloor n/2 \rfloor + 1)$ -th order attacks due to the integration with RefreshMasks

• Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2k}$.

A Flaw in RP Countermeasure (FSE13)

10/21 ____

```
 \begin{array}{l} \text{1.} \quad (z_i)_i \leftarrow (x_i^2)_i \\ \text{2.} \quad & \text{RefreshMasks}((z_i)_i) \\ \text{3.} \quad (y_i)_i \leftarrow \underbrace{\text{SecH}}_{}(x_i)_i, (z_i)_i) \\ \text{4.} \quad (w_i)_i \leftarrow (y_i^4)_i \\ \text{5.} \quad & \text{RefreshMasks}((w_i)_i) \\ \text{6.} \quad (y_i)_i \leftarrow \underbrace{\text{SecH}}_{}(y_i)_i, (w_i)_i) \\ \text{7.} \quad (y_i)_i \leftarrow (y_i^{16})_i \\ \text{8.} \quad (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i) \\ \text{9.} \quad (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (z_i)_i) \\ \end{array}
```

 Vulnerable to (\[\ln/2 \] + 1)-th order attacks due to the integration with RefreshMasks • Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2k}$.

10/21 ____

```
1. (z_{i})_{i} \leftarrow (x_{i}^{2})_{i}

2. RefreshMasks((z_{i})_{i})

3. (y_{i})_{i} \leftarrow \text{SecH}((x_{i})_{i}, (z_{i})_{i})

4. (w_{i})_{i} \leftarrow (y_{i}^{4})_{i}

5. RefreshMasks((w_{i})_{i})

6. (y_{i})_{i} \leftarrow \text{SecH}((y_{i})_{i}, (w_{i})_{i})

7. (y_{i})_{i} \leftarrow (y_{i}^{16})_{i}
```

8. $(y_i)_i \leftarrow SecMult((y_i)_i, (w_i)_i)$ 9. $(y_i)_i \leftarrow SecMult((y_i)_i, (z_i)_i)$

• Vulnerable to $(\lfloor n/2 \rfloor + 1)$ -th order attacks due to the integration with RefreshMasks

• Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2k}$.

• Suppose $f(x_i, x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$

10/21 ____

```
1. (z_i)_i \leftarrow (x_i^2)_i

2. RefreshMasks((z_i)_i)

3. (y_i)_i \leftarrow \text{SecH}((x_i)_i, (z_i)_i)

4. (w_i)_i \leftarrow (y_i^4)_i

5. RefreshMasks((w_i)_i)

6. (y_i)_i \leftarrow \text{SecH}((y_i)_i, (w_i)_i)

7. (y_i)_i \leftarrow (y_i^{16})_i

8. (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)
```

• Vulnerable to $(\lfloor n/2 \rfloor + 1)$ -th order attacks due to the integration with RefreshMasks.

9. $(y_i)_i \leftarrow SecMult((y_i)_i, (z_i)_i)$

• Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2k}$.

- Suppose $f(x_i,x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$
- By the property of $f(\cdot,\cdot)$ that $f(x_i,x_j)=f(x_i,r)\oplus f(x_i,x_j\oplus r)$

10/21 __

```
1. (z_i)_i \leftarrow (x_i^2)_i

2. RefreshMasks((z_i)_i)

3. (y_i)_i \leftarrow \text{SecH}((x_i)_i, (z_i)_i)

4. (w_i)_i \leftarrow (y_i^4)_i

5. RefreshMasks((w_i)_i)

6. (y_i)_i \leftarrow \text{SecH}((y_i)_i, (w_i)_i)

7. (y_i)_i \leftarrow (y_i^{16})_i

8. (y_i)_i \leftarrow \text{SecMult}((y_i)_i, (w_i)_i)
```

9. $(y_i)_i \leftarrow SecMult((y_i)_i, (z_i)_i)$

 Vulnerable to ([n/2] + 1)-th order attacks due to the integration with RefreshMasks. • Solution: secure the multiplication: $h(x) = x \cdot g(x)$, where $g(x) = x^{2k}$.

- Suppose $f(x_i,x_j) = x_i \cdot g(x_j) \oplus x_j \cdot g(x_i)$
- By the property of $f(\cdot, \cdot)$ that $f(x_i, x_j) = f(x_i, r) \oplus f(x_i, x_j \oplus r)$
- Equation 1 equals to

$$\bigoplus_{i} z_{i} = \bigoplus_{i} \left(\left(\bigoplus_{j>i} \mathbf{r}_{i,j} \right) \oplus x_{i} y_{i} \oplus \bigoplus_{j>i} \left(\left(\mathbf{r}_{j,i} \oplus \mathbf{f}(\mathbf{x}_{i}, \mathbf{x}_{j}) \right) \right) \\
= \bigoplus_{i} \left(\left(\bigoplus_{j>i} \mathbf{r}_{i,j} \right) \oplus x_{i} y_{i} \oplus \bigoplus_{j>i} \left(\mathbf{r}_{j,i} \oplus \mathbf{f}(\mathbf{x}_{i}, \mathbf{r}'_{j,i}) \oplus \mathbf{f}(\mathbf{x}_{i}, \mathbf{r}'_{j,i}) \right) \right),$$

if
$$y_i = g(x_i)$$
.

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis Implementation of Secure Field Multiplication

Results and Comparisor

Conclusion

arm ne	EON
--------	-----

11/21 .

- ARM is a family of embedded processors
 - ► Low-cost, high-performance and energy-efficiency
 - ► Applications: smartphones, tablets, digital camera, etc.

ARI	M	N	EO	N
-----	---	---	----	---

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficiency
 - ► Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors

Implem

- ARM is
 - Lo
 - Ap
- NEON

Figure: SIMD Example

1 load, 1 multiply, and 1 save

- ARM is a family of embedded processors
 - ► Low-cost, high-performance and energy-efficiency
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficiency
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficiency
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial

- ARM is a family of embedded processors
 - Low-cost, high-performance and energy-efficiency
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial
 - Arithmetic operations, boolean operations and others

- ARM is a family of embedded processors
 - ► Low-cost, high-performance and energy-efficiency
 - Applications: smartphones, tablets, digital camera, etc.
- NEON is an advanced SIMD extension on modern ARM processors
 - Accelerate multimedia and signal processing
 - Registers: thirty-two 64-bit registers (can also be viewed as sixteen 128-bit register)
 - Data Type: 8-, 16-, 32- and 64-bit (signed/unsigned) integers and 8and 16-bit polynomial
 - Arithmetic operations, boolean operations and others
 - Featured instruction:
 - ▶ VMULL.P8
 - VTBL.8

Operations	Field Multiplication	Random Bits	XOR	Momeory
SecSqur	n	0	0	2n
SecPow4	2n	0	0	2n
SecPow16	4n	0	0	2n
SecMult	n^2	$(n^2 - n)/2$	$2(n^2 - n)$	2n + O(1)
SecH	$(n^2 - n)(m+2) + n$	$n^2 - n$	$7(n^2 - n)/2$	3n + O(1)
SecExp254'	$9n^{2} + 2n$	$3(n^2-n)$	$11(n^2-n)$	4n + O(1)

Table: Compleixty of masked algorithms for S-box with n shares, where m is the number of field multiplication in $h(\cdot)$.

12/21 _____

Operations	Field Multiplication	Random Bits	XOR	Momeory
SecSqur	n	0	0	2n
SecPow4	2n	0	0	2n
SecPow16	4n	0	0	2n
SecMult	n^2	$(n^2 - n)/2$	$2(n^2 - n)$	2n + O(1)
SecH	$(n^2 - n)(m+2) + n$	$n^2 - n$	$7(n^2 - n)/2$	3n + O(1)
SecExp254'	$9n^2 + 2n$	$3(n^2-n)$	$11(\mathfrak{n}^2-\mathfrak{n})$	4n + O(1)

Table: Compleixty of masked algorithms for S-box with n shares, where m is the number of field multiplication in $h(\cdot)$.

- Performance-critical parts:
 - ► Field Multiplication
 - Random bits generation

13/21 _____

• Designed to optimize the modular reduction $r=a \mod n$, where a, n are integers and $a< n^2$.

- Designed to optimize the modular reduction $r = a \mod n$, where a, n are integers and $a < n^2$.
- Adapted to polynomials [Dhe03]
 - Suppose U(x), Q(x), N(x) and Z(x) are polynomial over \mathbb{F}_q , and U(x) = Q(x)N(x) + Z(x)
 - ▶ $\lfloor A(x)/B(x) \rfloor$ stands for the quotient of A(x)/B(x), ignoring the reminder
 - Quotient evaluation

$$Q(x) = \left\lfloor \frac{U(x)}{N(x)} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{U(x)}{x^p} \right\rfloor \left\lfloor \frac{x^{p+\beta}}{N(x)} \right\rfloor}{x^{\beta}} \right\rfloor = \left\lfloor \frac{T(x)R(x)}{x^{\beta}} \right\rfloor,$$

where p = deg(N(x)), $\beta \ge deg(U(x)/x^p)$

▶ The reminder Z(x) = U(x) - Q(x)N(x).

Field Multiplication in \mathbb{F}_{2^8}

_____ 14/21 _____

 $\triangleright p = 8$

 $\triangleright \alpha = 14$

Input: polynomials A(x), B(x) and N(x) in \mathbb{F}_{2^8} , where $N(x)=x^8+x^4+x^3+x+1$ Output: polynomial $Z(x)=A(x)\cdot B(x)$ mod N(x)

Pre-computation:

1:
$$p \leftarrow deg(N(x))$$

2: $\alpha \leftarrow 2 * (p-1)$

3:
$$\beta \geqslant \alpha - p$$

4: $R(x) \leftarrow \lfloor \frac{x^{p+\beta}}{N(x)} \rfloor$ $\triangleright R(x) = x^6 + x^2 + x$ if $\beta = 6$

14/21 _____

Input: polynomials A(x), B(x) and N(x) in \mathbb{F}_{2^8} , where $N(x)=x^8+x^4+x^3+x+1$ Output: polynomial $Z(x)=A(x)\cdot B(x)$ mod N(x)

Pre-computation:

1:
$$p \leftarrow deg(N(x))$$

2:
$$\alpha \leftarrow 2 * (p-1)$$

3:
$$\beta \geqslant \alpha - p$$

4:
$$R(x) \leftarrow \lfloor \frac{x^{p+\beta}}{N(x)} \rfloor$$

$$\triangleright p = 8$$

$$\triangleright \alpha = 14$$

$$\triangleright \beta \geqslant 6$$

$$ho R(x) = x^6 + x^2 + x \text{ if } \beta = 6$$

Multiplication with Barrett modular reduction:

1:
$$U(x) \leftarrow A(x) \cdot B(x)$$

2:
$$T(x) \leftarrow \lfloor \frac{U(x)}{x^p} \rfloor$$

3:
$$S(x) \leftarrow T(x) \cdot R(x)$$

4:
$$Q(x) \leftarrow \lfloor \frac{S(x)}{x^{\beta}} \rfloor$$

5:
$$V(x) \leftarrow Q(x) \cdot N(x)$$

6:
$$Z(x) \leftarrow U(x) + V(x)$$

$$b deg(U(x)) \leqslant 14$$

$$ightharpoonup deg(\mathsf{T}(x)) \leqslant 6$$

$$\triangleright deg(S(x)) \leqslant \beta + 6$$

$$\triangleright \deg(Q(x)) \leq 6$$

$$\triangleright \deg(V(x)) \leqslant 14$$

fmult:

/*uint8x16_t fmult(uint8x16_t a, uint8x16_t b)*/

Vector Implementation of Field Multiplication

_____ 15/21 _____

Implementation Vector Implementation of Field Multiplication

_____ 15/21 _____

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,Q1 VMOVN.I16 D1,Q2 VSHRN.U16 D2,Q1,#+8 VSHRN.U16 D3,Q2,#+8

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^8$$

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,Q1 VMOVN.I16 D1,Q2 VSHRN.U16 D2,Q1,#+8 VSHRN.U16 D3,Q2,#+8 VMOV.U8 D7,#+70 VMULL.P8 02,D2,D7 VSHRN.U16 D2,Q2,#+6 VMULL.P8 02,D3,D7 VSHRN.U16 D3,Q2,#+6

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^8$$

3.
$$S(x) = T(x) * R(x)$$

4. $O(x) = S(x) / x^6$

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,Q1 VMOVN.I16 D1,Q2 VSHRN.U16 D2,01,#+8 VSHRN.U16 D3,02,#+8 VMOV.U8 D7,#+70 VMULL.P8 02,D2,D7 VSHRN.U16 D2,Q2,#+6 VMULL.P8 Q2,D3,D7 VSHRN.U16 D3,Q2,#+6

VMOV.U8 D2,#0x1B

VMULL.P8 Q1,Q2,Q1

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^8$$

3.
$$S(x) = T(x) * R(x)$$

4.
$$Q(x) = S(x) / x^6$$

$$5. \ V(x) = Q(x) * N(x)$$

fmult:

VMULL.P8 Q2,D1,D3 VMULL.P8 Q1,D0,D2 VMOVN.I16 D0,Q1 VMOVN.I16 D1,Q2 VSHRN.U16 D2,01,#+8 VSHRN.U16 D3,Q2,#+8 VMOV.U8 D7,#+70 VMULL.P8 02,D2,D7 VSHRN.U16 D2,Q2,#+6 VMULL.P8 Q2,D3,D7 VSHRN.U16 D3,Q2,#+6 VMOV.U8 D2,#0x1B

VMULL.P8 Q1,Q2,Q1

LR

00,01,00

VEOR

BX

1.
$$U(x) = A(x) * B(x)$$

2.
$$T(x) = U(x) / x^8$$

3.
$$S(x) = T(x) * R(x)$$

4.
$$Q(x) = S(x) / x^6$$

5.
$$V(x) = Q(x) * N(x)$$

$$6. Z(x) = U(x) + V(x)$$

```
16/21
```

```
void sec_fmult(uint8x16_t c□,
uint8x16_t a \Box, uint8x16_t b \Box,
int n) {
 int i, j;
  uint8x16 t s. t:
  for (i = 0; i < n; i++)
   c[i] = fmult(a[i], b[i]);
  for (i = 0; i < n; i++)
    for (j = i+1; j < n; j++) {
       s = rand_uint8x16();
       c[i] = veorq_u8(c[i], s);
       t = fmult(a[i], b[j]);
       s = veorq_u8(s, t);
       t = fmult(a[j], b[i]);
       s = veorq_u8(s, t);
       c[j] = veorq_u8(c[j], s);
```

```
void sec_h(uint8x16_t y□,
uint8x16_t x\square, uint8x16_t gx\square,
uint8x16_t (q_call)(uint8x16_t),int n) {
   for (...)
    for (...) {
      t = q_call(r01);
      t = fmult(x[i], t);
       r1 = veora_u8(r00, t);
       t = fmult(r01, qx[i]);
       r1 = veorq_u8(r1, t);
       s = veora_u8(x[i], r01);
       t = q_call(s);
       t = fmult(x[i], t);
       r1 = veorq_u8(t, r1);
       t = fmult(qx[i], s);
       r1 = veorq_u8(t, r1);
       y[j] = veorq_u8(y[j], r1);
```

```
void sec_fmult(uint8x16_t c☐,
uint8x16_t a \Box, uint8x16_t b \Box,
int n) {
 int i, j;
  uint8x16 t s. t:
  for (i = 0; i < n; i++)
   c[i] = fmult(a[i], b[i]);
  for (i = 0; i < n; i++)
    for (j = i+1; j < n; j++) {
       s = rand uint8x16():
       c[i] = veorq_u8(c[i], s);
       t = fmult(a[i], b[j]);
       s = veorq_u8(s, t);
       t = fmult(a[j], b[i]);
       s = veorq_u8(s, t);
       c[j] = veorq_u8(c[j], s);
```

```
void sec_h(uint8x16_t y□,
uint8x16_t x\square, uint8x16_t gx\square,
 uint8x16_t (q_call)(uint8x16_t),int n) {
   for (...)
     for (...) {
       t = g_call(r01);
       t = fmult(x[i], t);
       r1 = veora_u8(r00, t);
       t = fmult(r01, qx[i]);
       r1 = veorq_u8(r1, t);
       s = veora_u8(x[i], r01);
       t = q_call(s);
       t = fmult(x[i], t);
       r1 = veorq_u8(t, r1);
       t = fmult(qx[i], s);
       r1 = veorq_u8(t, r1);
       y[j] = veorq_u8(y[j], r1);
```

```
void sec_fmult(uint8x16_t c□,
                                       void sec_h(uint8x16_t y□,
                                        uint8x16_t x\square, uint8x16_t gx\square,
uint8x16_t a \Box, uint8x16_t b \Box,
                                        uint8x16_t (q_call)(uint8x16_t),int n) {
int n) {
 int i, j;
  uint8x16 t s. t:
                                          for (...)
                                            for (...) {
  for (i = 0; i < n; i++)
    c[i] = fmult(a[i], b[i]);
                                              t = g_call(r01);
  for (i = 0; i < n; i++)
                                              t = fmult(x[i], t);
                                              r1 = veorq_u8(r00, t);
    for (j = i+1; j < n; j++) {
                                              t = fmult(r01, qx[i]);
       s = rand uint8x16():
                                              r1 = veorq_u8(r1, t);
       c[i] = veorq_u8(c[i], s);
                                              s = veora_u8(x[i], r01);
       t = fmult(a[i], b[j]);
                                              t = q_call(s);
       s = veorq_u8(s, t);
                                              t = fmult(x[i], t);
       t = fmult(a[j], b[i]);
                                              r1 = veorq_u8(t, r1);
       s = veorq_u8(s, t);
                                              t = fmult(qx[i], s);
       c[j] = veorq_u8(c[j], s);
                                              r1 = veorq_u8(t, r1);
                                              y[j] = veorq_u8(y[j], r1);
```

17/21 _____

- [KHL11] is vulnerable to the same attack on [RP10]
- We propose a new secure inversion algorithm

SecInv4 - masked exponentiation in \mathbb{F}_{2^4} with n shares

Input: shares x_i satisfying $x_1 \oplus \cdots \oplus x_n = x$ Output: shares y_i satisfying $y_1 \oplus \cdots \oplus y_n = x^{14}$

1:
$$(w_i)_i \leftarrow (x_i^2)_i$$

2: $(z_i)_i \leftarrow \text{SecH}((x_i)_i, (w_i)_i)$

$$3: (z_i)_i \leftarrow (z_i^4)_i$$

4:
$$(y_i)_i \leftarrow SecMult((z_i)_i, (w_i)_i)$$

$$\triangleright \bigoplus_{i} w_{i} = x^{2}$$

$$\triangleright \bigoplus_{i} z_{i} = x^{3}$$

$$\triangleright \bigoplus_{i} z_{i} = x^{12}$$

$$\triangleright \bigoplus_{i} z_{i} = x^{12}$$

$$\triangleright \bigoplus_{i} z_{i} = x^{12}$$

$$\triangleright \bigoplus_{i} y_i = x^{14}$$

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis Implementation of Secure Field Multiplication

Results and Comparison

_____ 18/21 _____

Peformance Metrics	#instructions
Field Multiplication	15
Random Bits Generation - xorshift96	15
XOR	1
Secure AddRoundKey	n
Secure ShiftRows	4n
Secure MixColumns	13n
Secure Affine Transformation	18n
Secure Exp254	191n ² – 26n

Table: The number of instructions comsumed by vector implementation of each elements, where \boldsymbol{n} is the number of shares

19/21

Figure: Comparison with baseline implementation

Comparison

Related Work

____ 20/21 _____

Method	Platform	First-order	Second-order	Third-order	Fourth-order
CHES'10 [RP10]	8-bit 8051	65	132	235	-
CHES'11 [KHL11]	8-bit AVR	-	22	39	-
Coron [Cor14]	1.86 GHz Intel	439	1205	2411	4003
Ours (Section 3)	32-bit ARM	9	19	32	60
Ours (Section 4)	32-bit ARM	4	8	13	31

Table: Penalty factor in different implementations

Outline

Introduction

Differential Power Analysis Masking Countermeasures High-Order DPA Attacks

Background

Advanced Encryption Standard High-Order Masking Rivain-Prouff Countermeasure

Implementation

ARM NEON

Performance-Critical Analysis Implementation of Secure Field Multiplication

Results and Comparison

_____ 21/21 _____

• The performance-critical parts are field multiplication and random bits generation.

21	/21	

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.p8 instruction and Barrett Reduction to optimize field multiplication, which only takes 15 instructions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.
- Our implementation achieve a not bad penalty factor, hence, they are deployable in practice.

0	1	10	п
	1/	' _	н

- The performance-critical parts are field multiplication and random bits generation.
- We utilize vmull.paristruction and carrett Reduction to optimize field multiplication, which all takes in instructions.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.
- Our implementation achieve a not bad penalty factor, hence, they are deployable in practice.

0	1 .	10	٦
	1/	1	н

- The performance-critical parts are field multiplication and random bits generation.
- We further improve our performance by using composite field $GF(2^8) \triangleq GF((2^4)^2)$.
- Our implementation achieve a not bad penalty factor, hence, they are deployable in practice.