Caleb Logemann

Introduction

Convection

Numerical Result

Conclusion

References

Discontinuous Galerkin Method for Solving Thin Film Equations

Caleb Logemann

December 13, 2018

Overview

1 Introduction

- 2 Method
 - Convection
 - Diffusion
- 3 Numerical Results
- 4 Conclusion

Motivation

Caleb Logema

Introduction

Method

Convection

Diffusion

Numerical Resultance
Conclusion

- Aircraft Icing
- Runback

■ Industrial Coating

Model Equations

Caleb Logema

Introduction

Method Convection Diffusion

Numerical Resul

Conclusion

References

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \sigma + \mathbf{g}$$

$$\partial_t h_s + (u, v)^T \cdot \nabla h_s = w$$

$$\partial_t h_b + (u, v)^T \cdot \nabla h_b = w$$

- Lubrication or reduced Reynolds number approximation
- Thin-Film Equation 1D with q as fluid height.

$$q_t + (f(x,t)q^2 - g(x,t)q^3)_x = -(h(x,t)q^3q_{xxx})_x$$

Operator Splitting

Caleb Logemann

Introduct

Method Convection

Conclusion

Simplified Model

$$q_t + (q^2 - q^3)_{\scriptscriptstyle X} = -(q^3 q_{\scriptscriptstyle XXX})_{\scriptscriptstyle X} \qquad (0, T) \times \Omega$$

Operator Splitting

$$q_t + (q^2 - q^3)_x = 0$$
$$q_t + (q^3 u_{xxx})_x = 0$$

Strang Splitting $\frac{1}{2}\Delta t$ step of Convection

$$q_t + (q^2 - q^3)_{\downarrow} = 0$$

 Δt step of Diffusion

$$q_t + \left(q^3 u_{xxx}\right)_x = 0$$

 $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

Convection

Caleb Logema

Introduction

Convection

Numerical Resul

Conclusion

References

Convection Equation

$$q_t + f(q)_x = 0$$
 $(0, T) \times \Omega$
$$f(q) = q^2 - q^3$$

Weak Form Find q such that

$$\int_{\Omega} (q_t v - f(q) v_x) \, \mathrm{d}x = 0$$

for all test functions v

Notation

Convection

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \dots < x_{j-1/2} < x_{j+1/2} < \dots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_i = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logeman

Method

Convection

Numerical Resul

Conclusion

Find
$$Q(t,x)$$
 such that for each time $t\in (0,T)$, $Q(t,\cdot)\in V_h=\left\{v\in L^1(\Omega): \left.v\right|_{I_i}\in P^k(I_j)\right\}$

$$\int_{I_j} Q_t v \, \mathrm{d}x = \int_{I_j} f(Q) v_x \, \mathrm{d}x$$
$$- \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right)$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = rac{1}{2}ig(fig(Q_{j+1/2}^-ig) + fig(Q_{j+1/2}^+ig)ig) + \max_qig\{ig|f'(q)ig|ig\}ig(Q_{j+1/2}^- - Q_{j+1/2}^+ig)$$

 Solve this system of ODEs with any Explicit Strong Stability Preserving (SSP) Runge-Kutta Method.

Explicit SSP Runge Kutta Methods

Caleb Logemar

Introduction

Convection

Numerical Result

Conclusion

References

Forward Euler

$$q^{n+1} = q^n + \Delta t L(q^n)$$

Second Order

$$egin{aligned} q^\star &= q^n + \Delta t \mathcal{L}(q^n) \ q^{n+1} &= rac{1}{2}(q^n + q^\star) + rac{1}{2}\Delta t \mathcal{L}(q^\star) \end{aligned}$$

Diffusion

Caleb Logema

Introduction

Method

Convection

Diffusion

Numerical Resul

Conclusion

References

■ Diffusion Equation

$$q_t + (q^3 u_{xxx})_x = 0$$
 $(0, T) \times \Omega$

Local Discontinuous Galerkin

$$r = q_{x}$$

$$s = r_{x}$$

$$u = q^{3}s_{x}$$

$$q_{t} = -u_{x}$$

Local Discontinuous Galerkin

Find
$$Q(t,x), R(x), S(x), U(x)$$
 such that for all $t \in (0,T)$ $Q(t,\cdot), R, S, U \in V_h = V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$
$$\eta = Q^3$$

$$\int_{I_j} Rv \, dx = -\int_{I_j} Qv_x \, dx + \left(\hat{Q}_{j+1/2} v_{j+1/2}^- - \hat{Q}_{j-1/2} v_{j-1/2}^+ \right)$$

$$\int_{I_j} Sw \, dx = -\int_{I_j} Rw_x \, dx + \left(\hat{R}_{j+1/2} w_{j+1/2}^- - \hat{R}_{j-1/2} w_{j-1/2}^+ \right)$$

$$\int_{I_j} Uy \, dx = \int_{I_j} S_x \eta y \, dx - \left(S_{j+1/2}^- \eta_{j+1/2}^- y_{j+1/2}^- - S_{j-1/2}^+ \eta_{j-1/2}^+ y_{j-1/2}^+ \right)$$

$$+ \left(\hat{S}_{j+1/2} \hat{\eta}_{j+1/2} y_{j+1/2}^- - \hat{S}_{j-1/2} \hat{\eta}_{j-1/2} y_{j-1/2}^+ \right)$$

$$\int_{I_j} Q_t z \, dx = -\int_{I_j} Uz_x \, dx + \left(\hat{U}_{j+1/2} z_{j+1/2}^- - \hat{U}_{j-1/2} z_{j-1/2}^+ \right)$$
 for all $I_i \in \Omega$ and all v_i w_i v_i $z \in V_b$

for all $I_i \in \Omega$ and all $v, w, y, z \in V_h$.

Numerical Fluxes

Caleb Logemani

Introduct

Convectio Diffusion

.

Conclusion

Deferences

$$\begin{split} \hat{\eta}_{j+1/2} &= \frac{1}{2} \Big(\eta_{j+1/2}^+ + \eta_{j+1/2}^- \Big) \\ \hat{Q}_{j+1/2} &= Q_{j+1/2}^+ \\ \hat{R}_{j+1/2} &= R_{j+1/2}^- \\ \hat{S}_{j+1/2} &= S_{j+1/2}^+ \\ \hat{U}_{j+1/2} &= U_{j+1/2}^- \end{split}$$

Implicit L-Stable Runge Kutta

Caleb Logeman

Introduc

Method

Convection

Diffusion

Numerical Result

Conclusion

References

Backward Euler

$$q^{n+1} = q^n + \Delta t L(q^{n+1})$$

■ 2nd Order

$$q^* = q^n + \frac{1}{4}\Delta t(L(q^n) + L(q^*))$$

 $3q^{n+1} = 4q^* - q^n + \Delta t L(q^{n+1})$

Linear Solver

ŭ

Introduction

Method

Convection

Diffusion

Numerical Result

Conclusion

Conclusion

■ Generalized Minimal Residual (GMRES)

$$\begin{split} \min_{\mathbf{x} \in \mathcal{K}_n} \{\|A\mathbf{x} - \mathbf{b}\|\} \\ \mathcal{K}_n = \text{span} \big(\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{n-1}\mathbf{b}\big) \end{split}$$

Preconditioned

$$P = A_0^{-1}$$

$$PAx = Pb$$

Riemann Problem

leb Logemanr

ntroduct

Convection

Numerical Results

Conclusion

Riemann Problem

eb Logemann

Introduct

Method Convection

Numerical Results

Conclusion

Square Wave

aleb Logemani

ntroduct

Convection

Diffusion

Numerical Results

Conclusion

References

Square Wave

aleb Logemanr

ntroducti

Method

Convection

Diffusion

Numerical Results

Conclusion

References

Future Work

Caleb Logemann

Introduction

Convectio

Numerical Result

Conclusion

- Show second order convergence
- Runge Kutta IMEX
- Space and time dependent coefficients

Bibliography

Caleb Logeman

ntroductio Method

Diffusion

Numerical Resul

- [1] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: *J. Comp. Phys.* 227.15 (2008), pp. 7246–7263.
- [2] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [3] NASA. URL: http://icebox.grc.nasa.gov/gallery/images/C95_03918.html.
- [4] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.