PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C07H 21/04, C12N 15/12, 15/63, 15/85, C07K 14/435, C12Q 1/68, C12P 21/02, A61K 49/00, G01N 33/50, 33/68

(11) International Publication Number:

WO 96/24605

(43) International Publication Date:

15 August 1996 (15.08.96)

(21) International Application Number:

PCT/US96/02331

(22) International Filing Date:

9 February 1996 (09.02.96)

(30) Priority Data:

08/386,495

10 February 1995 (10.02.95)

us

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

08/386,495 (CIP) 10 February 1995 (10.02.95)

(71) Applicants (for all designated States except US): THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY [US/US]; Stanford, CA 94305 (US). BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM [US/US]; 201 West 7th Street, Austin, TX 78701 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RYNER, Lisa, C. [US/US]; 227 Old La Honda Road, Woodside, CA 94062 (US). BAKER, Bruce, S. [US/US]; 522 Campus Drive, Stanford, CA 94305 (US). WASSERMAN, Steven, A.

[US/US]; 11021 Edgemere Road, Dallas, TX 75230 (US). CASTRILLON, Diego, H. [US/US]; 4859 Cedar Springs Road #247, Dallas, TX 75219 (US).

(74) Agent: SHOLTZ, Charles, K.; Dehlinger & Associates, P.O. Box 60850, Palo Alto, CA 94306-1546 (US).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHODS AND COMPOSITIONS FOR ALTERING SEXUAL BEHAVIOR

(57) Abstract

Methods and compositions effective to alter the sexual or reproductive behavior of an insect are disclosed. The compositions include polynucleotides and polypeptides corresponding to the *fru* gene in *Drosophila* and its homologs in other species. Methods of identifying a compound effective to alter the reproductive behavior of an insect are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Armenia	GB	United Kingdom	MW	Malawi
AM AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
		HU	Hungary	NO	Norway
BE	Belgium	IE	Ireland	NZ	New Zealand
BF	Burkina Faso	IT	Italy	PL	Poland
BG	Bulgaria	JP	Japan	PT	Portugal
ВJ	Benin	KE	Kenya	RO	Romania
BR	Brazil	KG	Kyrgystan	RU	Russian Federation
BY	Belarus	KP	Democratic People's Republic	SD	Sudan
CA	Canada	Kr	of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SG	Singapore
CG	Congo	KZ	Kazakhstan	SI	Slovenia
CH	Switzerland		Liechtenstein	SK	Slovakia
CI	Côte d'Ivoire	LI		SN	Senegal
CM	Cameroon	LK	Sri Lanka	SZ	Swaziland
CN	China	LR	Liberia	TD	Chad
CS	Czechoslovakia	LT	Lithuania	TG	Togo
CZ	Czech Republic	LU	Luxembourg		Tajikistan
DE	Germany	LV	Latvia	TJ	•
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
JA					

METHODS AND COMPOSITIONS FOR ALTERING SEXUAL BEHAVIOR

TECHNICAL FIELD

This invention relates to methods and compositions for altering sexual behavior,

particularly sexual behavior affected by the *fruitless* gene of *Drosophila* and its homologues in other species. More specifically, the invention relates to methods and compositions employing the *fruitless* gene and its products and phenotypes, for insect pest control.

REFERENCES

Ashburner, M., <u>Drosophila: A Laboratory Manual</u>, Cold Spring Harbor Laboratory (Cold Spring Harbor, NY) (1989).

Ausubel, F.M., et al., <u>CURRENT PROTOCOLS IN MOLECULAR BIOLOGY</u>, John Wiley and Sons, Inc., Media PA.

Baker, B.S., Nature 340:521-524 (1989).

15 Bartel, P., et al., BioTechniques 14:920-924 (1993).

Belote, J.M., and Baker, B.S., Proc. Nat. Acad. Sci. USA 84:8026-8030 (1987).

Boggs, R.T., et al., Cell 50:739-747 (1987).

Brent, R., et al., Cell, 43:729-736 (1985).

Bridges, C.B., Science 54:252-254 (1921).

20 Burtis, K.C., and Baker, B.S., Cell <u>56</u>:997-1010 (1989).

Burtis, K.C., et al., EMBO J. 10:2577-2582 (1991).

Calkins, C.O., et al., Florida Entomologist 71:346 (1988).

Chien, C.-t, et al., Proc. Natl. Acad. Sci. U.S.A., 88:9578 (1991).

Cline, T.W., in EVOLUTIONARY MECHANISMS IN SEX DETERMINATION, (Wachtel, S.S.,

25 Ed.), CRC Press, Cleveland, OH, pp. 23-36 (1988).

DiAntonio, et al., J. Neuroscience 13:4924 (1993).

Durfee, T., et al., Genes & Development 7:555 (1993).

Fields, S., et al., Nature 340:245 (1989).

Frohman, M.A., et al., Proc. Natl. Acad. Sci. USA 85:8998 (1988).

Frohman, M.A., in <u>PCR PROTOCOLS</u> (Innis, M.A., et al., Eds.) Academic Press, San Diego, CA, pp. 28-38 (1990).

Giebultowicz, J.M., and Truman, J.W., J. Comp. Neurol. 226:87-95 (1984).

Gyuris J., et al., Cell, 75:791-803 (1993).

Harlow, E., et al., ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor Press

35 (1988).

Harry, J.L., et al., Genetica 87:1-6 (1992).

Hedley, M.L., and Maniatis, T., Cell 65:579586 (1992).

Hodgkin, J., Nature 344:721-728 (1990).

Hoshijima, K., et al., Science 252:833-836 (1991).

Lawrence, P.A., and Johnston, P., Cell 45:505-513 (1986).

5 Lucchesi, J.C., and Manning, J.E., Adv. Genet. 24:371-429 (1987).

Maniatis, T., et al., Cell 19:687-701 (1978).

Matsumoto, S.G., and Hildebrand, J.G., Proc. Roy. Soc. Lond. B 213:249-277 (1981).

McKeown, M., and Madigan, S.J., Curr. Opin. Cell Biol. 4:948-954 (1992).

Miller, et al., Science 237:775 (1987).

10 Moses, et al., Nature <u>340</u>:531 (1989).

Mullis, K.B., et al., U.S. Patent No. 4,683,195, issued 28 July 1987.

Mullis, K.B., U.S. Patent No. 4,683,202, issued July 28, 1987.

Nagoshi, R.N., et al., Cell 53:229-236 (1988).

Possidente, D.R., and Murphey, R.K., Devel. Biol. 132:448-457 (1989).

15 Ryner, L.C., and Baker, B.S., Genes Devel. 5:2071-2085 (1991).

Sambrook, J., et al., MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition,

Cold Spring Harbor Laboratory (Cold Spring Harbor, NY) (1989).

Sanger, F., et al., PNAS 74:5463-67 (1977).

Schneider, I., J. Embryol. Exp. Morphol. 27:353 (1972).

20 Siegel, R.W., et al., Behav. Genet. 14:383-410 (1984).

Slee, R., and Bownes, M., Quart. Rev. Biol. 65:175-204 (1990).

Smith, D.B., et al., Gene 67:31 (1988).

Speith, H.T., Ann. Rev. Entomol. 19:385 (1974).

Stocker, R.F., and Gendre, N., Devel. Biol. 127:12-24 (1988).

25 Taylor, B.J., Genetics <u>132</u>:179-191 (1992).

Taylor, B.J., J. Neurogenet. 5:173-192 (1989a).

Taylor, B.J., J. Neurogenet. 5:193-213 (1989b).

Taylor, B.J., J. Neurogenet. 8:251 (abstract) (1993).

Taylor, B.J., and Truman, J.W., Development 114:625-642 (1992).

30 Technau, G.M., J. Neurogenet. 1:113-126 (1984).

Thorn, R.S., and Truman, J.W., J. Comp. Neurol. 184:489-503 (1989).

Wolfner, M.F., Trends Genet. 4:333-337 (1988).

Wong, T.T.Y., et al., J. Econ. Entomol. 85:1671 (1992).

Yang, X., et al., Science 257:680 (1992).

35 Zollman, S., et al., PNAS 91:10717 (1994).

10

15

20

25

30

35

BACKGROUND OF THE INVENTION

Insect pests account for massive economic losses in agriculture and pose health risks to millions of individuals. Traditional strategies for control of insects include chemical and biological approaches. Chemical approaches typically employ any of a variety of pesticides, each with varying degrees of toxicity to non-insect animals. Biological approaches typically utilize naturally-occurring organisms pathogenic to insects or the development of crops that are more resistant to insects.

With an increased understanding of the mechanisms underlying insect behavior, and how these mechanisms relate to similar processes in other animals, it has become possible to develop hybrid approaches to insect pest control. One type of hybrid approach involves the release of sterile individuals into the environment. Such sterile release programs have been successful at significantly reducing insect populations (see, for example, Wong, et al., and Calkins, et al.).

SUMMARY OF THE INVENTION

In one aspect, the invention includes a substantially isolated FRU polynucleotide. In one embodiment, the polynucleotide is highly homologous to a polynucleotide derived from an insect belonging to the phylum Arthropoda. In another embodiment, the polynucleotide is highly homologous to a polynucleotide derived from an insect belonging the order Diptera. In a related embodiment, the polynucleotide is highly homologous to a polynucleotide derived from an insect selected from the group consisting of medfly, fruit fly (e.g., Drosophila), tsetse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub. In other embodiments, the polynucleotide contains the sequence represented as SEQ ID NO:9 or SEQ ID NO:14. In related embodiments, the polynucleotide encodes a FRU polypeptide having the sequence represented as SEQ ID NO:10 or SEQ ID NO:15.

In a related aspect, the invention includes a substantially isolated FRU polypeptide. In one embodiment, the polypeptide is highly homologous to a polypeptide derived from an insect belonging to the phylum Arthropoda. In another embodiment, the polypeptide is highly homologous to a polypeptide derived from an insect belonging the order Diptera. In a related embodiment, the polypeptide is highly homologous to a polypeptide derived from an insect selected from the group consisting of medfly, fruit fly (e.g., Drosophila), tse-tse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub. In other embodiments, the polypeptide contains the sequence represented as SEQ ID NO:10 or SEQ ID NO:15.

WO 96/24605

5

10

15

20

25

30

In another aspect, the present invention includes an expression system and a method of producing a FRU polypeptide. The method includes introducing into a suitable host a recombinant expression system containing a FRU polynucleotide having an open reading frame (ORF), where the ORF has a polynucleotide sequence which encodes a FRU polypeptide, and wherein the ORF is operably linked to a control sequence which is compatible with a desired host. The vector is designed to express the FRU polypeptide in the selected host when the host is cultured under conditions resulting in the expression of the ORF sequence. A number of expression systems can be employed, including insect expression vectors such as baclovirus vectors, a lambda gt11 expression system with an *Escherichia coli* host, and other yeast, mammalian cell and bacterial expression vectors.

PCT/US96/02331

The expressed FRU protein may be isolated by a variety of known methods, depending on the expression system employed. For example, a beta-gal-FRU fusion protein may be isolated by standard affinity methods employing an anti-beta-gal antibody. The FRU polynucleotide sequence may be modified so as to result in the expression of a mutant polypeptide (fru) which may give rise to a dominant mutant phenotype when expressed in an insect host. Mutants generated as described above may be used to generate transgenic insects with altered sexual or reproductive behavior (e.g., sterile insects useful for insect control).

In yet another aspect, the present invention includes both polyclonal and monoclonal antibodies directed against FRU epitopes, or against epitopes encoded by a portion of the sequence presented as SEQ ID NO:9 or SEQ ID NO:14. Such antibodies may be used in co-immuneprecipitation methods to identify proteins and/or nucleic acids that interact with the FRU protein and are involved in controlling sexual behavior. The antibodies may also be used to identify target genes whose transcription is regulated by FRU polypeptide. Once identified, the regulatory regions of the genes may be incorporated into reporter constructs and used to screen for compounds which inhibit the interaction of the FRU polypeptide with the regulatory sequences. Such compounds may be useful as insect control agents.

Also included in the invention is a method of identifying a compound effective to alter the reproductive behavior of a target insect. The method includes (i) treating an insect cell, obtained from a target insect and carrying an expression vector containing FRU regulatory sequences operably linked to a reporter gene, with a test compound, (ii) evaluating the level of expression of the reporter gene in the treated cell, and (iii) identifying the compound as effective if the compound significantly decreases the expression of the reporter gene in the treated cell relative to the expression of the reporter gene in untreated cells carrying the expression vector.

20

25

30

In one embodiment, the target insect belongs to the phylum Arthropoda. In another embodiment, the target insect belongs to the order Diptera. In a related embodiment, the target insect is selected from the group consisting of medfly, fruit fly (e.g., Drosophila), tsetse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub. In another embodiment, the insect is a Drosophila species, and the cells are selected from the group consisting of Schneider's Line 2 and Drosophila Kc cells. In one embodiment, the reporter gene encodes a protein selected from the group consisting of chloramphenicol acetyl-transferase (CAT), β -galactosidase (β -gal) and luciferase.

These and other objects and features of the invention will become more fully apparent when the following detailed description is read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 presents a schematic of a possible sexual differentiation hierarchy in *Drosophila*. Figures 2A and 2B show images of a Southern (*Drosophila* DNA) blot probed with a 3× dsx repeats probe. The blot in Fig. 2A was washed at 47°C, while the blot in Fig. 2B was washed at 51°C.

Figures 3A and 3B show images of a Southern blot containing DNA from a set of Drosophila genomic clones probed with a $3 \times dsx$ repeats probe (Fig. 3A) or with a second probe containing 5 dsx repeats (Fig. 3B).

Figure 4 presents the partial nucleotide sequence of a ~ 600 bp EcoRI DNA fragment isolated from clone $\lambda Ch4A-11$.

Figures 5A and 5B present images of Northern (sex-specific *Drosophila* poly(A)+ RNA) blots probed with the ~ 600 kb *Eco*RI DNA fragment shown in Fig. 4, and washed at 40° C (Fig. 5A) or 65° C (Fig. 5B).

Figure 6A shows a schematic of the \sim 600 bp EcoRI genomic DNA fragment shown in Fig. 4, indicating the positions of primers fru-1 (1) and fru-2 (2).

Figure 6B shows a schematic of a male-specific 3' RACE product, indicating the positions of primers fru-2 (2) and fru-5-rev.

Figure 6C shows a schematic of a female-specific 3' RACE product, indicating the positions of primers fru-2 (2) and fru-4-rev.

Figure 7A shows a schematic of the DNA fragments (f10A, f9A, f3A, f2A, f1D, f1H, f4B, f5C and f7A) isolated as part of a genomic walk spanning the *fru* locus at *position 91B*

of the third chromosome, as well as a schematic of the location of the HX1 cosmid, relative to the map of the 91B region shown in Fig. 7B.

Figure 7B shows a schematic of the 91B region of chromosome 3, indicating the positions of know fru lesions (mutants fru-2, fru-4, fru-3 and fru-1).

Figure 7C shows a schematic of two *fru* deficiencies, Df(3R)P14 and Df(3R)ChaM5, relative to the map of the 91B region shown in Fig. 7B.

Figures 7D, 7E, 7F, 7G and 7H show schematic diagrams of the location of sequences comprising five *fru* cDNA transcripts relative to the map of the 91B region shown in Fig. 7B. Exons are indicated as boxes and introns as lines.

Figure 8 shows a schematic of the polypeptide predicted from the sequence (SEQ ID NO:9) of the transcript (Fru#1) schematized in Fig. 7D.

Figure 9 shows the DNA sequence (SEQ ID NO:9) of the transcript (Fru#1) schematized in Fig. 7D.

15 Brief Description of the Sequences

SEQ ID NO:1 is the nucleotide sequence of the 3x dsx repeat DNA probe.

SEQ ID NO:2 is the nucleotide sequence of the sense dsx repeat 21-mer oligonucleotide.

SEQ ID NO:3 is the nucleotide sequence of the antisense dsx repeat 21-mer oligonucleotide.

SEQ ID NO:4 is the nucleotide sequence of the -20 sequencing primer.

SEQ ID NO:5 is the nucleotide sequence of the fru-1 primer.

SEQ ID NO:6 is the nucleotide sequence of the fru-2 primer.

SEO ID NO:7 is the nucleotide sequence of the fru-5-rev primer.

SEO ID NO:8 is the nucleotide sequence of the fru-4-rev primer.

SEQ ID NO:9 is the nucleotide sequence of the Fru#1 cDNA transcript.

SEQ ID NO:10 is the translated amino acid sequence of SEQ ID NO:9.

SEQ ID NO:11 is the nucleotide sequence of the ~ 600 bp EcoRI fru genomic clone insert containing 3 dsx repeats.

SEQ ID NO:12 is the nucleotide sequence of the 3' end of the fruitless transcript schematized in Fig. 7E.

SEQ ID NO:13 is the translated amino acid sequence of SEQ ID NO:12.

SEQ ID NO:14 is the expected nucleotide sequence of the fruitless transcript schematized in Fig. 7E.

SEQ ID NO:15 is the translated amino acid sequence of SEQ ID NO:15.

30

25

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

Definitions

A FRU polynucleotide is defined herein as a polynucleotide that selectively hybridizes with a probe directed to unique sequences in the *fru* polynucleotides presented herein (e.g., SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:14). Such unique sequences are sequences that do not overlap common regions of other transcription factors, such as the BTB region and zinc (Zn) finger domains. For example, a probe containing the sequence between positions 1870 and 2080 of SEQ ID NO:9 is directed to unique sequences in the *fru* polynucleotides presented herein.

A FRU polypeptide is defined herein as a polypeptide encoded by the open reading frame of a FRU polynucleotide.

Regulatory sequences, or control sequences, refer to specific sequences at the 5' and 3' ends of eukaryotic genes which may be involved in the control of transcription. For example, most eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription initiation site. Similarly, most eukaryotic genes have a CXCAAT region (X may be any nucleotide) 70 to 80 bases upstream from the start of transcription.

The term "operably linked", as used herein, denotes a relationship between a regulatory region (typically a promoter element, but may include an enhancer element) and the coding region of a gene, whereby the transcription of the coding region is under the control of the regulatory region.

A polunucleotide or polypeptide is "derived from" a particular organism if that polunucleotide or polypeptide was originally isolated from that organism. For example, a polynucleotide in a plasmid propagated in *E. coli* is derived from *Drosophila* if that polynucleotide was originally isolated from *Drosophila* mRNA, genomic DNA or cDNA. Alternatively, a polunucleotide or polypeptide is "derived from" a particular organism if the sequence of that polynucleotide or polypeptide is based on the sequence of the corresponding sequence from that organism. For example, a polypeptide is derived from *Drosophila* if the sequence of the polypeptide is the same as the sequence of the corresponding native *Drosophila* polypeptide.

I. Overview of the Invention

In the fruit fly *Drosophila melanogaster*, as in other animals, one of the most obvious differences between adults of different sexes are the sex-specific behaviors involved in

5

10

15

20

25

30

35

8

reproduction. In flies, reproductive behaviors for males include the detection of females. precopulatory courtship, and finally copulation (for review: Speith, 1974).

Many aspects of reproductive behavior are controlled by the central nervous system (CNS), and may accordingly have a neuronal cell basis. Sexually dimorphic neurons in the CNS are intimately associated with the performance of sex-specific behaviors. In the nervous system, neuronal differences may be manifested in a variety of ways. Neurons may be unique to one sex, or neurons may be present in both sexes but differ in size, shape, anatomical connections, or physiology.

In insects, a variety of sex-specific differences in the CNS have been described both in the sensory integration and in motor output systems. For example, sexually dimorphic sensory input from the moth's male-specific antennal sensory neurons, which detect the air-borne female pheromone, has been shown to form specialized connections only with male-specific interneurons in the antennal lobe (Matsumoto and Hildebrand, 1981). Effector organs, such as genital muscles or internal reproductive organs, are often sex-limited, leading to the establishment of segment specific cohorts of motorneurons, as found for example in the abdominal ganglia of moths (Giebultowicz and Truman, 1984; Thorn and Truman, 1989).

In *Drosophila* certain elements of this species' central and peripheral nervous system, as well as some genital and abdominal muscles, are known to be different in developing or adult males vs. females (Technau, 1984; Lawrence and Johnston, 1986; Stocker and Gendre, 1988; Taylor 1989a,b; Possidente and Murphey, 1989; Taylor and Truman, 1992, Taylor, 1993). However, information regarding the neuronal basis for adult sexually dimorphic behaviors has lagged behind the descriptions of such behaviors and their modification by experience or various mutant genotypes.

Somatic sexual differentiation in the fruit fly *Drosophila melanogaster* is controlled by a genetic regulatory hierarchy that involves the interactions of a number of genes including *Sexlethal (Sxl) transformer (tra), transformer-2 (tra-2)* and *doublesex (dsx)*. Each of these genes has been cloned and characterized at the molecular level. Results of these analyses have revealed that the genes function in a cascade of alternative message RNA (mRNA) processing decisions. An effect of this cascade is the production of sex-specific *dsx* proteins that function as transcriptional regulators that control expression of genes involved in sexual differentiation.

Experiments performed in support of the present invention and described below suggest that fru is a member of the Drosophila sex-determination regulatory hierarchy and is the first gene unique to a previously unrecognized branch of this hierarchy that governs many aspects of male sexual behavior. These experiments have resulted in the elucidation of the nucleotide

10

15

20

25

30

35

sequence of portions of the *fru* locus in *Drosophila* and cDNA transcripts derived therefrom. According to the teachings presented below, this locus may be an important point in the regulatory hierarchy controlling sexual differentiation in *Drosophila*. Homologous genes in other organisms may play corresponding roles in the sexual differentiation of those organisms.

As is described more fully below, methods and compositions of the present invention may be used in a variety of ways by one of skill in the art having the benefit of the present disclosure. For example, methods of the present invention may be used to alter the sexual or reproductive behavior of an organism, and/or to identify compounds effective to alter such behavior. One application of such an alteration in sexual or reproductive behavior is pest control, e.g., insect control.

II. Role of fru in Drosophila Sexual Differentiation

In D. melanogaster, all aspects of sexual differentiation are controlled by a single regulatory hierarchy (reviewed by, for example, Wolfner, 1988; Baker, 1989; Cline, 1988; Hodgkin; 1990; Slee and Bownes, 1990; McKeown and Madigan, 1992). The reference of Harry, et al., (1992), discusses these studies against a background of sex-determination genetics in vertebrates. The hierarchy is comprised of an initial series of steps that are concerned with the determination and establishment of sex. After this point, according to the teachings presented herein, the hierarchy splits into two branches, as is illustrated in Figure 1. The dsx branch is established in the literature, while the fru branch is based on the results of experiments performed in support of the present invention. The diagram is provided herein as a reference for discussions relating to the possible interactions of other genes and gene products with the methods and compositions of the present invention. The diagram does not necessarily constitute a mechanistic basis for the functioning of the present invention.

A line in the diagram extending from a gene indicates that it is expressed and has an effect on a downstream gene. If the line ends in an arrow the effect is positive; if it ends in a bar the effect is negative. The activity of genes necessary for female development is on the left and for males is on the right. Results of experiments performed in support of the present invention suggest that the action of tra and tra-2 may be to cause the fru pre-mRNA to be spliced into a non-functional product in females. In the absence of these activities in males, the fru pre-mRNA may be spliced into a functional product that is important for the expression of male-specific structures and behaviors.

The initial series of steps in the sex determination hierarchy act to assess the X chromosome to Autosome ratio (X:A ratio), which is the primary determinant of sex

10

15

20

25

30

35

(Bridges, 1921), and to set the activity of Sex-lethal (Sxl), a master regulatory gene at the top of the hierarchy, to "on" in females and "off" in males (reviewed by, for example, Wolfner, 1988; Baker, 1989; Cline, 1988 Hodgkin; 1990; Slee and Bownes, 1990; McKeown and Madigan, 1992). Once expression of Sxl is initiated in females it is maintained "on" by a positive autoregulatory feedback loop in which SXL protein directs the processing of its own pre-mRNA so as to generate a mRNA that encodes SXL protein (see, e.g., the reviews cited above). In males, Sxl pre-mRNA is spliced in the default mode which results in the inclusion of a male-specific exon containing stop codons, and hence the male-specific mRNA has no open reading frame.

In addition to regulating the processing of its own pre-mRNA the SXL protein also functions in females to control the activity of two subservient branches to the sexual differentiation hierarchy. One of these branches governs somatic sexual differentiation (see above reviews) and the other dosage compensation (review: Lucchesi and Manning, 1987). To regulate somatic sexual differentiation SXL directs the processing of the pre-mRNA of the transformer (tra) gene in females so as generate an mRNA with an open reading frame that encodes the TRA protein (Boggs, et al., 1987; Nagoshi et al., 1988). In males, where SXL protein is absent, the tra pre-mRNA is spliced by a default pathway, which results in the inclusion of exonic sequences that contain stop codons and hence prevent the synthesis of TRA protein.

In females, the TRA protein (which is female-specific), together with the TRA-2 protein (which is made in both sexes), function to regulate the splicing of the pre-mRNA of the dsx gene to generate a female-specific dsx mRNA (Burtis and Baker, 1989: Nagoshi, et al., 1988; Hedley and Maniatis, 1991; Hoshijima, et al., 1991; Ryner and Baker, 1991). In males, where tra protein is absent, the housekeeping splicing machinery carries out the default pattern of dsx pre-mRNA processing to generate the male-specific dsx pre-mRNA. Both the male- and female-specific dsx mRNAs encode Zn-finger transcription factors, which have identical DNA binding domains, but different carboxy termini. The dsx gene appears to be the last sex-determination regulatory gene in this branch of the hierarchy, since its proteins have been shown to directly interact with the enhancer sequences of at least one of the genes encoding a terminal sexual differentiation function (Burtis, et al., 1991).

One aspect of sexual differentiation, the formation of the Muscle of Lawrence (MOL), does not appear to be controlled by dsx, but is regulated by tra and tra-2 (Taylor, 1992). Results of experiments performed in support of the present invention suggest that the gene immediately below tra and tra-2 in this branch of the hierarchy may be the fruitless gene. In particular, the results suggest that the fru gene may be negatively controlled by tra and tra-2

10

15

25

30

35

in females (i.e., the TRA and TRA-2 proteins direct the processing of fru pre-mRNA into an mRNA that does not encode a functional product in females); whereas the default pattern of fru pre-mRNA processing (which occurs in males) may produce an mRNA encoding functional fru product.

Based on the phenotypes of extant fru alleles, the fru branch of the somatic sex determination hierarchy is responsible for the differentiation of the MOL and for expression of normal male courtship behavior. Since both of these phenotypes are determined by the genotype of the nervous system (cf. Siegel et al., 1984, Lawrence and Johnston, 1986), the function of the fru branch may be to control at least some aspects of the differentiation of the CNS, including those responsible for male sexual behavior, and may control other aspects of sexual differentiation. The proposed fru branch may also be required to maintain aspects of sexual differentiation in adult organisms, since normal sexual behavior requires continuous wild type tra-2 function in the adult (Belote and Baker, 1987).

Mutations in the *fruitless* locus have striking effects on male courtship behavior: *fru* mutant males initiate courtship of males and females indiscriminately, and are sterile because they are unable to carry out later steps in courtship. Mutations in the *fruitless* gene affect only males, where their most salient phenotype is that they cause males to initiate courtship with both males and females with equal likelihood.

20 III. <u>FRU Polynucleotides</u>

A. Molecular Cloning of the Drosophila fru Locus

DNA sequences corresponding to the *fru* locus in *Drosophila* were isolated in the course of experiments conducted in support of the present invention. A hybridization probe was designed to isolate *fru* sequences based on the discovery, disclosed herein, that the *dsx* and *fru* genes are regulated by a common factor. The probe, which contains three copies of a 13 nucleotide (nt) regulatory sequence repeated six times in the *dsx* transcript, was used to screen a *Drosophila* genomic library as detailed in Example 1. The design and synthesis of the probe are described below in Example 1A - "Generation of Hybridization Probe".

Selective hybridization conditions for the probe were determined (Example 1B - "Selective Hybridization Conditions"), and the probe was used to screen a *Drosophila* genomic library (Example 1C - "Genomic DNA Library Screen"). Four clones that were good candidates for DNAs containing multiple copies of the 13 nucleotide *dsx* repeat were isolated (Example 1D - "Southern Blot Analysis of Positive Clones"). The hybridizing fragment from one of these was subcloned into a "BLUESCRIPT SK" phagemid (Stratagene, La Jolla, CA) and the clone (pSK(+)11-R) was sequenced. The sequence is presented herein

as SEQ ID NO:9, and reveals that the insert contained three copies of the 13 nucleotide repeat.

The clone was further characterized as described in Example 2, and was found to: (i) produce sex-specific transcripts, (ii) reside at cytological location 91B, and (iii) fall within a genomic walk that spans over 100 kbp of the *fruitless* (*fru*) gene.

B. Isolation of fru cDNAs

5

10

15

20

25

30

35

Example 3, below, details an application of the polymerase chain reaction (PCR; Mullis, Mullis, et al.) to obtain the 3' ends of fru cDNA transcripts from male and female mRNA (Example 3A - "RACE PCR"). The isolated RACE products were used to design additional PCR primers, which were employed in nested PCR reactions of cDNA to assay for the presence of fru transcripts. The primers used to detect these transcript were used in a preliminary screen to identify a Drosophila cDNA library containing fru transcripts (Example 3B - "Sex-Specific PCR"). A cDNA library thus identified (a λZAP adult heads cDNA library) was then screened for cDNA clones (Example 3C - "cDNA Library Screen"). Nineteen different fru cDNAs falling into at least 5 different classes (differing through alternative RNA processing) were isolated from this library, and were characterized to determine how they related to each other and to genomic DNA from the region. The results of this characterization are schematized in Figs. 7D, 7E, 7F, 7G and 7H. The full consensus sequence of one of the transcripts (Fru#1) was determined (SEQ ID NO:9), and is shown in Fig. 9. The consensus sequence of the 3' end of the transcript shown in Fig. 7E (Fru#2) was also determined, and is presented herein as SEQ ID NO:12. Based on extensive Southern mapping, PCR and restriction enzyme analyses, the 5' end of Fru#2 appears identical to that of Fru#1. The sequences diverge at nucleotide number 3012 of Fru#1 (SEQ ID NO:9), corresponding to amino acid residue 503 of the Fru#1 polypeptide (SEQ ID NO:10). The expected full-length nucleotide sequence of Fru#2 is presented herein as SEQ ID NO:14; the corresponding amino acid sequence is presented as SEQ ID NO:15.

C. <u>Isolation of Homologous Sequences from Other Organisms</u>

FRU polynucleotide sequences of the present invention may be used to isolate homologous sequences from other species, including other insects and mammals. In particular, the FRU polynucleotide sequences may be used to isolate corresponding sequences from insects belonging to the phylum Arthropoda (Arthropods), and more particularly, the order Diptera (flies). Examples of Arthropods from which corresponding sequences may be isolated include fruit flies, such as medflies and mexican, mediterranean, oriental, and olive

WO 96/24605

5

10

15

20

25

30

fruit flies (for example, other *Drosophila* species (sp.), *Rhagoletis* sp., *Ceratitis* sp. (e.g., *Ceratitis capitata*) and *Dasus* sp. (e.g., *Dasus oleae*)), tse-tse flies, such as *Glossina* sp. (e.g., *Glossina palpalis*), sand flies, such as *Phlebo* sp. (e.g., *Phlebo tomus*)), blowflies, flesh flies, face flies, houseflies, screw worm-flies, stable flies, mosquitos, northern cattle grub and the like.

Several strategies may be pursued to this end. For example, Southern blots containing DNAs from target species may be probed with a portion of the fru sequence disclosed herein using a series of hybridization conditions to identify those conditions resulting in selective hybridization. An example of how selective hybridization conditions may be experimentally determined is provided in Example 1B. The screen may be conducted with a series of probes $(e.g., \sim 8 \text{ probes}, \text{ each about 250 bp in length})$ that span the known Drosophila fru sequences.

Effective probes preferably correspond to sequences that are conserved between different species (i.e., coding sequences), and that are not homologous to a large number of non-FRU polypeptides, such as other transcription factors. To this end, portions of the fru coding sequence may be used to search DNA databases, and those regions resulting in a minimal number of homologous "hits" to undesired sequences, such as other transcription factors, may be used as cross-species probes. For example, the sequence between positions 1870 and 2080 of the Fru#1 cDNA (SEQ ID NO:9) is not highly homologous to other sequences present in the DNA databases. Probes derived from this region may be effective at isolating fru homologs from other species.

Alternatively, Northern blots may be screened with a cDNA probe as described above to identify species which may contain *fru* homolog transcripts. Conditions for selective hybridization may be determined experimentally (e.g., as described in Example 2).

Once selective hybridization conditions are determined, genomic DNA and/or cDNA libraries from the target species are screened to isolate fru homolog DNA fragments. The fragments may be sequenced and the sequences arranged into a consensus sequence spanning the fru homolog region. Alternatively, the sequences may be used as probes for additional screening, extended using RACE PCR approaches (e.g., as in Example 1), and/or used, in combination with sequences disclosed herein, to design degenerate PCR primers for finding fru cognates in yet more distantly related species.

Sequences identified in other species can likewise be used as probes, for example, against genomic and cDNA libraries from that species, to identify the entire genetic locus in that species.

WO 96/24605

14

PCT/US96/02331

D. Use of FRU Polynucleotides

5

10

15

20

25

30

35

Polynucleotides of the present invention may be used in a screen for compounds effective to alter the sexual or reproductive behavior of an animal, such as a pest insect. Such a screen may include a reporter gene construct in an expression vector. An expression vector bearing a selectable marker can be constructed with a reporter gene (such as chloramphenicol acetyl-transferase acetyl transferase (CAT), β -galactosidase or luciferase) under the control of, for example, a *fru* promoter element, and transfected into a selected host cell (for example, Schneider's Line 2 cells or *Drosophila* Kc cells (Schneider, Ryner and Baker, Hoshijima, K., *et al.*)). After transfection, effects of test compounds on transcription may be measured by the activity of the reporter gene (*e.g.* CAT) in, for example, crude cell extracts.

Using FRU probes, non-coding regulatory regions adjacent the FRU coding sequences can be derived from genomic DNA samples, for example, from the λCharon 4A *Drosophila* genomic library. Using FRU specific primers, both the three and five prime ends of the gene are isolated using the PCR rapid amplification of cDNA ends (PCR-RACE) reaction (Frohman, 1988, 1990). Such 5' non-coding regulatory regions contiguous to 5' FRU coding sequences can be fused to reporter genes such that the reporter gene is in-frame with respect to the location of FRU coding sequences. These reporter constructs can then be transformed into a selected host cell.

Reporter gene systems are well known in the art (see, for example, Ausubel, et al.). Cell lines and vectors used in reporter gene assays are commercially available (for example, Stratagene, La Jolla, CA; Clontech Laboratories, Palo Alto, CA; Promega Corporation, Madison, WI; American Type Culture Collection, 12301 Parklawn Dr., Rockville MD 20852). One example of a family of commercially-available reporter plasmids are the "pCAT" plasmid (Promega Corp., Madison, WI), that contain a CAT transcription unit and an ampicillin resistance gene.

Candidate compounds can be obtained from a number of sources, including but not limited to, the following. Many pharmaceutical and agrichemical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, that would be desirable to screen with the assay of the present invention. Such compounds, or molecules, may be either biological or synthetic organic compounds, or even inorganic compounds.

Transfected cells are treated with a selected compound, and the levels of reporter gene product present in treated and untreated cells is determined and compared. Compounds that result in decreased expression of the reporter gene in treated cells are identified as potentially useful sexual behavior-altering compounds. Alternatively, in the case of reporter systems that

10

15

20

25

30

35

do not kill or substantially alter the cells, the level of reporter expression may be assayed in the same batch of cells both before (basal level) and after treatment. Levels of expression are compared, and a compound is identified as effective if it significantly depresses the level of expression (relative to the basal level) following treatment.

It will be appreciated that compounds identified as effective in the cells from one species of a group (e.g., insects) may also be effective in other species of that group. In particular, compounds identified as effective in a model system using cells from one species may be tested as described below for effects on other, related species.

Compounds identified by the above screen(s) as potentially effective may be further tested for their ability to alter the sexual or reproductive behavior of a selected organism. For example, a compound identified by the above method may be administered to an insect population to determine if the compound is effective at reducing the reproductive rate of the population.

A variety of insects may be targeted by methods of the present invention. For example, insects belonging to the phylum Arthropoda (Arthropods), and more particularly, the order Diptera (flies) are particularly suitable for targeting by the methods of the present invention. Specific examples of Arthropods which may be targeted include fruit flies, such as medflies and mexican, mediterranean, oriental, and olive fruit flies (for example, *Drosophila* species (sp.), *Rhagoletis* sp., *Ceratitis* sp. (e.g., *Ceratitis capitata*) and *Dasus* sp. (e.g., *Dasus oleae*)), tse-tse flies, such as *Glossina* sp. (e.g., *Glossina palpalis*), sand flies, such as *Phlebo* sp. (e.g., *Phlebo tomus*)), blowflies, flesh flies, face flies, houseflies, screw worm-flies, stable flies, mosquitos, northern cattle grubs and the like.

IV. FRU Polypeptides

A. Production of Recombinant Polypeptides

Polynucleotide sequences of the present invention may be cloned into an expression plasmid, such as p-GEX, to produce corresponding polypeptides. The plasmid pGEX (Smith, et al., 1988) and its derivatives express the polypeptide sequences of a cloned insert fused inframe with glutathione-S-transferase. Recombinant pGEX plasmids can be transformed into appropriate strains of E. coli and fusion protein production can be induced by the addition of IPTG (isopropyl-thio galactopyranoside). Solubilized recombinant fusion protein can then be purified from cell lysates of the induced cultures using glutathione agarose affinity chromatography according to standard methods (Ausubel, et al.).

Affinity chromatography may also be employed for isolating β -galactosidase fusion proteins (such as those produced by lambda gt11 clones). The fused protein is isolated by

16

passing cell lysis material over a solid support having surface-bound anti- β -galactosidase antibody.

Isolated recombinant polypeptides produced as described above may be purified by standard protein purification procedures. These procedures may include differential precipitation, molecular sieve chromatography, ion-exchange chromatography, isoelectric focusing, gel electrophoresis and affinity chromatography.

In addition to recombinant methods, FRU proteins or polypeptides can be isolated from selected cells by affinity-based methods, such as by using anti-FRU antibodies (described below). Further, FRU peptides may be chemically synthesized using methods known to these skilled in the art.

B. Use of FRU Polypeptides

5

10

15

20

25

30

35

Polypeptides of the present invention may be used in a number of ways, including the generation of antibodies. The polypeptides may be used in unmodified form, or they may be coupled to appropriate carrier molecules, such as bovine serum albumin (BSA) or Keyhole Lympet Hemocyanin (KLH) (available from, for example, Pierce, Rockford, IL).

To prepare antibodies, a host animal, such as a rabbit, is typically immunized with the purified polypeptide or fusion protein (generated using, for example glutathione-S-transferase as described above). The host serum or plasma is collected following an appropriate time interval, and the serum is tested for antibodies specific against the polypeptide.

The gamma globulin fraction or the IgG antibodies of immunized animals can be obtained, for example, by use of saturated ammonium sulfate precipitation or DEAE Sephadex chromatography, affinity chromatography, or other techniques known to those skilled in the art for producing polyclonal antibodies.

Alternatively, purified antigenic polypeptide or fused antigen protein may be used for producing monoclonal antibodies. In this case, the spleen or lymphocytes from an immunized animal are removed and immortalized or used to prepare hybridomas by methods known to those skilled in the art (see, e.g., Harlow, et al.). Antibodies secreted by the immortalized cells are screened (see, e.g., using enzyme linked immunesorbent assay (ELISA) or a Western blot) to determine the clones that secrete antibodies of the desired specificity (see, e.g., Ausubel, et al.).

Antibodies generated as described above may be used in a variety of ways. For example, antibodies generated against FRU polypeptides may be used in salivary glands to identify the chromosomal locations to which the FRU protein binds on the giant polytene chromosomes of these cells. The resolution available with this technique is such that it is typically possible to

10

15

20

25

30

35

ascertain within a few tens of kb where the protein is binding. This enables a relatively rapid identification of the gene in question by determining which genes in the region are expressed in a spatial and temporal pattern consistent with present knowledge of *fru* expression and male courtship behavior. This approach may also be used in screens of other insects with polytene chromosomes to identify FRU polypeptide targets in those species.

Alternatively, DNA sequences to which the FRU polypeptide binds may be identified, for example, by employing anti-FRU antibodies in DNA/protein interaction assays. Restriction enzyme-digested DNA may be combined with purified FRU protein (and optionally, nuclear extracts from the cells of interest) and size fractionated in duplicate (one preparatory, one analytical) lanes on a polyacrylamide gel. Material from the analytical lane may be blotted and probed with an anti-FRU antibody to determine the location of a FRU-DNA complex in the gel. The complex may then be excised from the corresponding preparatory lane of the gel, and the DNA contained therein may be isolated and cloned for further analysis.

DNA sequences to which the FRU polypeptide binds may be used to identify targets for pest control screens. For example, the approach may be used to identify gene products involved in sexual recognition (distinguishing males from females). This process is thought to involve the reception of pheromone cues by receptors. Genes for such receptors may be targets of regulation by FRU gene products. Identification of pheromone receptors in insects may be used to screen for compounds which affect the functioning of those receptors. Such compounds may find wide application in the area of insect control.

Alternatively, recombinant FRU polypeptides may be labeled (e.g., with ¹²⁵I) and used in a screen such as is outlined above to identify DNA fragment that bind the polypeptides. The location of the labeled protein in the blot is determined directly, without the use of an anti-FRU antibody, and corresponding DNA sequences are similarly isolated. DNA sequences identified by any of the methods described above may be used to screen for compounds that interfere with the binding of FRU protein to its target DNA, using screens similar to that described above for the screening of compounds that interfere with the transcriptional activation of fru.

Antibodies generated as described above may also be used to co-immunoprecipitate proteins which interact with FRU polypeptides (partners of FRU). Partners of FRU may be involved in sex-specific or non-sex-specific functions, but the identification of such partners may result in the isolation of new genes involved in sex behavior and/or viability of flies and other insects.

Partners of FRU may also be isolated using, for example, the yeast two-hybrid system. The presence of a BTB domain in FRU polypeptides suggests that the polypeptides are

5

10

15

20

25

30

35

18

involved in protein-protein interactions. The two hybrid system may be used to isolate polypeptides that interact with FRU polypeptides.

Two hybrid protein interaction assay methods (two hybrid protein-protein interaction screens) provide a simple and sensitive means to detect the interaction between two proteins in living cells. The assays are based on the finding that most eukaryotic transcription activators are modular (e.g, Brent, et al.), i.e., that the activators typically contain activation domains that activate transcription, and DNA binding domains that localize the activator to the appropriate region of a DNA molecule.

In a two hybrid system, a first fusion protein contains one of a pair of interacting proteins fused to a DNA binding domain, and a second fusion protein contains the other of a pair of interacting proteins fused to a transcription activation domain. The two fusion proteins are independently expressed in the same cell, and interaction between the "interacting protein" portions of the fusions reconstitute the function of the transcription activation factor, which is detected by activation of transcription of a reporter gene.

At least two different cell-based two hybrid protein-protein interaction assay systems have been used to assess binding interactions and/or to identify interacting proteins. Both employ a pair of fusion hybrid proteins, where one of the pair contains a first of two "interacting" proteins fused to a transcription activation domain of a transcription activating factor, and the other of the pair contains a second of two "interacting" proteins fused to a DNA binding domain of a transcription activating factor.

The yeast GAL4 two hybrid system (Fields, et al.; Chien, et al.; Durfee, et al.; Bartel, et al.) was developed to detect protein-protein interaction based on the reconstitution of function of GAL4, a transcriptional activator from yeast, by activation of a GAL1-lacZ reporter gene. Like several other transcription activating factors, the GAL4 protein contains two distinct domains, a DNA binding domain and a transcription activation domain. Each domain can be independently expressed as a portion of a fusion protein composed of the domain, and a second, "bait" interacting protein. The two fusion proteins are then independently expressed together in a cell. When the two GAL4 domains are brought together by a binding interaction between the two "interacting" proteins, transcription of a reporter gene under the transcriptional control of GAL4 is initiated. The reporter gene typically has a promoter containing GAL4 protein binding sites (GAL upstream activating sequences, UAS_G).

In one example of the use of a two hybrid system to isolate partner(s) of FRU, a FRU polypeptide is fused to the GAL4 DNA binding domain (G4BD) in a yeast expression vector (pG4AD-FRU). The vector is used to generate yeast cells harboring pG4AD-FRU and a

10

15

GAL4-activated reporter gene (e.g., LacZ), which are then transformed with one of three fusion libraries. Each library carries fusions between the transcription activating domain of yeast GAL4 (G4AD) and insect (e.g., Drosophila) genomic DNA restriction enzyme fragments (e.g., Sau3Al fragments) in one of the three reading frames.

The yeast cells containing the libraries are screened (e.g., using a β -galactosidase (β -gal) assay on plates containing the chromogenic substrate X-gal) for expression of the reporter. Reporter-expressing cells are identified as possibly containing Sau3Al DNA fragments encoding polypeptides capable of interacting with the FRU polypeptide.

A second two hybrid system, described in detail in Ausubel, $et\ al.$, utilizes a native E. coli LexA repressor protein, which binds tightly to appropriate operators. A plasmid is used to express one of a pair of interacting proteins (the "bait" protein) as a fusion to LexA.

The plasmid expressing the LexA-fused bait protein is used to transform a reporter strain of yeast, such as EGY48. In this strain, binding sites for LexA are located upstream of two reporter genes. In the first reporter system, the upstream activation sequences of the chromosomal LEU2 gene--required in the biosynthetic pathway for leucine (Leu)--are replaced in EGY48 with lexA operators, permitting selection for viability when cells are plated on medium lacking Leu. In the second reporter system, EGY48 harbors a plasmid, pSH18-34, that contains a lexA operator-lacZ fusion gene, permitting discrimination based on color when the yeast is grown on medium containing Xgal (Ausubel, et al.).

LexA and GAL4 each have different properties that should be considered when selecting a system. LexA is derived from a heterologous organism, has no known effect on the growth of yeast, possesses no residual transcriptional activity, can be used in GAL4⁺ yeast, and can be used with a Gal-inducible promoter. Because GAL4 is an important yeast transcriptional activator, experiments must be performed in gal4⁻ yeast strains to avoid background from endogenous GAL4 activating the reporter system. Both two hybrid systems have been successfully used for isolating genes encoding proteins that bind a target protein and as simple protein binding assays (see, e.g., Yang, et al., Gyuris, et al.), and both can be applied to the identification of polypeptides that interact with the FRU polypeptide.

30 V. Generation of New Fru Phenotypes

Modified fru constructs may be reintroduced into flies to generate Fru alleles with dominant behavioral and/or sterility phenotypes. Such constructs include those in which either the DNA binding domain or the N-terminal BTB domain are truncated, as well as constructs that ectopically express fru cDNAs under a ubiquitous (e.g., hsp70) promoter.

10

15

20

30

35

While the presently-known alleles of fru are recessive, many loci in Drosophila have both dominant and recessive alleles. One such locus, doublesex (Baker and Ridge, 1980), is also involved in the regulatory hierarchy controlling sexual differentiation and is a Zn finger-containing transcription factor (Burtis and Baker, 1989).

Constructs effective at conferring dominant sterile phenotypes may be engineered into vectors suitable for transforming other types of insects, such as insects belonging to the phylum Arthropoda (Arthropods), and more particularly, the order Diptera (flies). Specific examples of Arthropods which may be transformed include flies, such as medflies and mexican, mediterranean, oriental, and olive fruit flies (for example, *Drosophila* species (sp.), *Rhagoletis* sp., *Ceratitis* sp. (e.g., *Ceratitis capitata*) and *Dasus* sp. (e.g., *Dasus oleae*)), tsetse flies, such as *Glossina* sp. (e.g., *Glosisna palpalis*), sand flies, such as *Phlebo* sp. (e.g., *Phlebo tomus*)), blowflies, flesh flies, face flies, houseflies, screw worm-flies, stable flies, mosquitos, northern cattle grub and other pests.

Such transgenic insects have been made by injecting a vector containing cloned DNA and a selectable marker into embryos and selecting transgenic progeny (Miller, et al.). Mutant insects produced in this manner may be grown and used in sterile-release programs to aid in controlling pest insect populations. Such programs have been demonstrated to be successful in controlling insect pest populations (see, for example, Wong, et al., Calkins, et al.).

Specimens made sterile by the introduction of a dominant mutation of *Fru* or its homologs offer an advantage in that the sterility gene is propagated through a series of generations by females carrying the mutation mating with wild-type males. Of course, the sterile males also aid in reducing the population by (fruitlessly) courting both wild-type males and females.

The following examples illustrate but in no way are intended to limit the present invention.

MATERIALS AND METHODS

Unless indicated otherwise, chemicals and reagents were obtained from Sigma Chemical Company (St. Louis, MO) or Mallinckrodt Specialty Chemicals (Chesterfield, MO), restriction endonucleases were obtained from New England BioLabs (Beverly, MA), and other modifying enzymes and biochemicals were obtained from Pharmacia Biotech (Piscataway, NJ), Boehringer Mannheim (Indianapolis, IN) or Promega Corporation (Madison, WI). Materials for media for cell culture were obtained from Gibco/BRL (Gaithersburg, MD) or DIFCO (Detroit, MI). Unless otherwise indicated, manipulations of

Drosophila, cells, bacteria and nucleic acids were performed using standard methods and protocols (see, e.g., Ashburner; Sambrook, et al.; Ausubel, et al.).

EXAMPLE 1

5

10

15

20

25

30

35

Molecular Cloning of the fru Gene Locus

A. Generation of Hybridization Probe

A DNA probe (SEQ ID NO:1) containing 3 copies of the dsx 13 nucleotide (nt) repeated sequence was generated as follows. Two 21 nucleotide complementary single-stranded (ss) oligonucleotides (SEQ ID NO:2, SEQ ID NO:3) were synthesized by the Pan Facility (Beckman Center B065, Stanford University Medical Center, Stanford, CA).

The oligonucleotides were hybridized to each other by heating a solution containing equimolar amounts of the two oligonucleotides (130 μ g of each) to 95°C in a heater block, and then removing the block from the heater and allowing it to cool to room temperature over approximately 30 minutes.

The resulting double-stranded (ds) DNA fragment contained complementary four base 5' protruding ends. The 5' ends were phosphorylated with 2 mM ATP and 20 units of polynucleotide kinase (New England BioLabs, Beverly, MA) for 2 hours at 37°C. The DNA was then ethanol precipitated and resuspended in 40 μ l of water.

The phosphorylated dsDNA fragment was multimerized using T4 DNA ligase (New England BioLabs) by incubating the whole DNA sample (260 μ g) in ligation buffer (New England BioLabs) containing 30 units of T4 DNA ligase for 1 hour at 20°C. The reaction mixture was then digested with 100 units of restriction endonucleases *Bam*HI and *BgI*II (New England BioLabs) for 1 hour under conditions recommended by the manufacturer. This procedure digested molecules ligated together in opposite orientations. Multimers comprised of repeat fragments having the same orientation remained intact. The reaction mixture was then cooled on ice, mixed with gel loading buffer, and the DNA fragment multimers contained therein were size fractionated by agarose gel electrophoresis on a 1.5% gel.

Multimers ranging from about 63 bases to about 126 bases in length were excised from the gel, partially purified by electroelution (Sambrook, et al.), and subcloned into the unique BamHI restriction endonuclease site of the phagemid "BLUESCRIPT SK(+)" (Stratagene, La Jolla, CA). The inserts of several clones were sequenced, and an isolate (pSK(+)3XR) containing 3 copies (3× repeats) of the synthetic dsDNA fragment was identified. This plasmid was further modified by deleting the region between the KpnI and PstI restriction sites to facilitate a higher level of incorporation of radioactive nucleotides into hybridization probes made from the plasmid.

10

15

20

25

30

A single stranded (ss) radioactive probe was generated as follows: ssDNA was obtained from the f1 *ori*-containing pBSK(+)3×R upon co-infection of the host cells with helper phage following manufacturer's instructions (Stratagene). One μ g of the ssDNA was combined with 2.5 ng of -20 primer (SEQ ID NO:4), 5 units of Klenow fragment (GIBCO BRL Research Products/Life Technologies, Gaithersburg, MD), 70 μ Ci each of α -32P-dCTP and α -32P-dATP, and 30 μ M each dGTP and dTTP cold nucleotides in 30 μ l of 20 mM Tris-HCl, pH 8.5, 10 mM MgCl₂ buffer to make a labeled complementary copy of the single stranded template (Burtis and Baker, 1989).

The radioactively-labeled insert portion of the plasmid was excised by digestion with Xbal and BamHI and was gel purified using low melting-point agarose ("NUSIEVE GTG"; FMC BioProducts, Rockland, Maine). The gel slice containing the probe was melted and added directly to hybridization reactions described below.

B. <u>Selective Hybridization Conditions</u>

Selective hybridization conditions for library screening were determined as follows. 4 μ g of total genomic *Drosophila* DNA was digested with *EcoRI* or *BamHI*, size fractionated by 0.9% agarose gel electrophoresis and transferred to a nylon membrane (Schleicher & Schuell, Keene, NH).

The membrane was hybridized overnight with the $3 \times$ repeats probe under standard conditions (Sambrook, et al.), using $6 \times$ SSC, $5 \times$ Denhardt's reagent, 0.5% Sodium dodecyl sulfate (SDS), and $100 \,\mu\text{g/ml}$ denatured and sheered salmon sperm DNA (no formamide) at $42\,^{\circ}\text{C}$. Following hybridization, the filter was washed under the same salt conditions but at increasing temperatures. The results are shown in Figures 2A (47 $^{\circ}\text{C}$ final wash) and 2B (51 $^{\circ}\text{C}$ final wash). The 47 $^{\circ}\text{C}$ wash resulted in detection of several bands in both the BamHI and EcoRI digests. Only two prominent fragments were observed in both digests following the 51 $^{\circ}\text{C}$ wash. In both digests, one of the fragments is of the size expected for the dsx-containing fragment (indicated with arrows), and the other, having a smaller size (~ 600 bp in the EcoRI digest and ~ 5 kb in the BamHI digest), is indicated by a "?".

These results suggest that the hybridization probe is detecting sequences from two genes the dsx gene from which it was designed, and a second, unidentified gene.

C. Genomic DNA Library Screen

The labeled 3× repeats probe described above was used to screen a lambda Charon 4A (Maniatis, et al., 1978) Drosophila genomic library for homologous sequences. As

23

equivalent of eight genomes' worth of DNA were screened using the conditions described above with a 40°C final wash.

Forty two positive plaques were detected. Eight of these were determined to be from dsx. The remaining 34 were isolated and compared with each other using cross-hybridization analysis, which indicated that the 34 non-dsx clones represented 12 different sets of clones.

D. Southern Blot Analysis of Positive Clones

5

10

15

20

25

30

35

The clones were further characterized by Southern analysis. One clone from each set was digested with EcoRI, size-fractionated on a gel, and blotted onto a nitrocellulose filter. The filter was hybridized with the $3 \times$ repeat probe and washed at $40^{\circ}C$ as above. Hybridizing bands were detected by autoradiography (Fig. 3A). The same filter was then hybridized again with a second probe containing 5 copies of the 13 nt repeat sequence (but no other sequence in common with the first probe). The second probe was generated from a 260 base-pair (bp) fragment of dsx (positions 2793 to 3053; Burtis and Baker, 1989). The filter was washed and subjected to autoradiography as above, and is imaged in Figure 3B.

Four of the clones, indicated in Fig. 3B by "*", hybridized with both probes and were thus considered to be the best candidates for non-dsx DNA containing multiple copies of the 13 nt repeat sequence. One of these (Figs. 3A and 3B, lanes labelled 11), representing eight of the 34 originally-identified non-dsx clones, had a particularly strong hybridization signal. This lambda phage clone, termed λ Ch4A-11, was characterized further as described below.

E. Sequence Analysis of a Candidate Clone

Clone λ Ch4A-11 contained a ~ 600 bp EcoRI insert which hybridized to the $3\times$ repeat probe. This fragment was isolated and subcloned into the EcoRI site of pBluescript SK(+), generating pSK(+)11-R. Approximately 550 bp of the ~ 600 bp insert of pSK(+)11-R were sequenced using standard dideoxy termination sequencing reactions (Sanger, et al.) with a "SEQUENASE 2.0" sequencing kit (United States Biochemical, Cleveland, OH). The sequence (presented in Fig. 4 and as SEQ ID NO:11) revealed that the clone contained 3 copies of the 13 nt dsx repeat sequence (indicated by boxes in Fig. 4). Also indicated in Figure 4 is the location of the two EcoRI sites. Bases whose sequence was not precisely determined are indicated by "N". The seven remaining clones in the set represented by λ Ch4A-11 also contained the ~ 600 bp EcoRI fragment (SEQ ID NO:11) that hybridized strongly to the $3\times$ repeats probe.

24

EXAMPLE 2

Characterization of pSK(+)11-R

A. Northern Blot Analysis

To test whether the genomic fragment insert was from a transcription unit, an anti-sense radioactive riboprobe was synthesized from the ~ 600 bp insert of pSK(+)11-R using standard techniques (Sambrook, et al.) and used to probe a blot containing poly(A+) male and female RNA from whole adult flies (Figure 5). The sense/antisense orientation of the insert was deduced from a comparison of the 13nt repeat sequence in the clones with the same repeat sequences in dsx. The blot was hybridized at 65°C using standard RNA blot hybridization techniques (Sambrook, et al.), washed at 40°C, imaged (Fig. 5A), washed at 65°C, and imaged again (Fig. 5B). Imaging was done using autoradiography.

The RNA was isolated using standard methods. Briefly, adult flies were homogenized in 4M guanidium isothiocyanate, 10 mM EDTA, 100 mM Tris pH 7.5 and 1% β -mercaptoethanol, then layered onto a 5.7 M CsCl, 0.1 M EDTA cushion and centrifuged at 150,000 × g for 12 hours. The RNA pellet was then resuspended in 10 mM Tris-HCl pH 7.5, 5 mM EDTA and 0.1% sodium dodecyl sulfate (SDS). After phenol extraction and ethanol precipitation the RNA was selected on oligo d(T) cellulose type 7 (Pharmacia, Piscataway, NJ) as described in Sambrook, *et al*.

The images, shown in Figures 5A and 5B, detected the presence of at least 4 transcripts, 2 of which (arrows in Figs. 5A and 5B) appeared to be expressed in a sex-specific manner (one in each sex). A \sim 5 kilobase (kbp transcript was expressed in males ("m") and a \sim 6 kbp transcript was detected in females ("f").

B. <u>Chromosomal Localization</u>

In situ hybridization on squashes of salivary gland polytene chromosomes (Ashburner) was carried out to determine where on the *Drosophila* chromosomes the set of clones represented by clone pSK(+)11-R resides. DNA from 2 of the 8 overlapping lambda phage clones (clones λ Ch4A-11 and λ Ch4A-19) was used to generate biotinylated probes (Ashburner), which were used to probe polytene chromosome squashes using standard methods (Ashburner). The probes hybridized to cytological location 91B, suggesting that the sequences isolated herein may correspond to the *fru* gene, whose locus also resides at 91B. Further evidence linking the clones to the *fru* locus was obtained from results showing specific hybridization of the clones to DNAs obtained during a genomic walk spanning the *fru*-containing region of chromosome 3.

30

5

10

15

20

25

EXAMPLE 3

Isolation of fru cDNAs

Three different cDNA libraries from *Drosophila melanogaster*, including λ nvx male larval and female larval cDNA libraries (obtained from Dr. S. Elledge, Baylor College of Medicine, Houston, TX) and a λ gt10 larval disc cDNA library (obtained from Drs. A. Cowman and G. Rubin, University of California, Berkeley, CA), were screened by conventional methods using a probe generated from the insert of clone pSK(+)11-R. However, no *fru* cDNAs were detected in these screens, presumably due to low levels of *fru* expression.

10

15

5

A. <u>RACE PCR</u>

Due to the apparent rarity of fru mRNA, a 3' end anchored (Frohman, et al.) polymerase chain reaction (PCR; Mullis, Mullis, et al.) approach was employed to isolate fru transcript(s). Two nested primers (fru-1 - SEQ ID NO:5; fru-2 - SEQ ID NO:6) were synthesized as above. The sequences of the primers corresponded to sequences near the 5' end of the pSK9(+)11-R insert. The locations corresponding to the primer sequences are indicated by arrows, labeled as "1" (fru-1) and "2" (fru-2), in Fig. 6A, which shows a schematic of the ~600 bp insert of pSK9(+)11-R. The positions of the 13 nt repeat sequences are shown as black boxes in Fig. 6A.

20

25

A 3' RACE kit (GIBCO BRL Research Products/LIFE TECHNOLOGIES, Inc., Gaithersburg, MD) was used to generate PCR products from poly (A+) RNA, isolated as described above, from either adult males or adult females. Specific amplification products (~400 bp from male RNA and ~450 bp from female RNA) were detected and determined to contain sequences having homology to the pSK(+)11-R insert by Southern analysis. The PCR products were subcloned and partially sequenced. The sequences corresponded to the sequence near the 5' end of the pSK(+)11-R insert, which appeared to be spliced at a site just downstream of the repeats to different downstream exons. The male- and female-specific 3'RACE products are shown schematically in Figs. 6B and 6C, respectively, in relation to the pSK(+)11-R insert shown in Fig. 6A.

30

35

B. <u>Sex-Specific PCR</u>

To confirm that the isolated 3' RACE products reflected the structure of authentic fru transcripts, new primer sets were synthesized from sequence of the putative male and female PCR products. The positions of these primers are indicated in Figs. 6B and 6C by arrows. The male primer, fru-5-rev, had the sequence represented by SEQ ID NO:7 and the female

10

15

20

25

30

PCT/US96/02331

primer, fru-4-rev, had the sequence represented as SEQ ID NO:8. These sex-specific primers were paired with fru-1 and fru-2 primers to generate nested primer sets for two rounds of the PCR. The first round was performed with fru-1 and either fru-4-rev or fru-5-rev, and the second round with fru-2 and again with either fru-4-rev or fru-5-rev.

These primer sets were used to amplify cDNA generated from several different batches of male- and female-specific poly (A+) RNA. The "female" 3' RACE product, amplified by primers fru-2 (SEQ ID NO:6) and fru-4-rev (SEQ ID NO:8) was subsequently consistently detected in different batches of RNA from both sexes, suggesting that it corresponded to a portion of an authentic fru mRNA. Due to the relatively small size of this fragment (450 bp) as compared to the fru transcripts detected in Northerns (~5-6 kbp; see above), this fragment most likely did not contain a full-length fru transcript. To isolate full-length cDNA transcripts, the same primer set (primer fru-2 (SEQ ID NO:6) and fru-4-rev (SEQ ID NO:8) was used in a preliminary screen of a series of Drosophila cDNA libraries to identify those libraries which contained fru transcripts.

Libraries screened included the three listed above plus a λ gt10 adult heads cDNA library (obtained from Dr. A. Cowman) and a λ ZAP (Stratagene, LaJolla, CA) adult heads cDNA library (obtained from Dr. T. Schwarz, Stanford University, Stanford, CA; DiAntonio, et al.). The only consistent positive results obtained with the preliminary screen were with the lambda ZAP head cDNA library. Accordingly, this library was screened to isolate fru cDNA clones, as described below.

C. <u>cDNA Library Screen</u>

Two-thirds of the complexity of the lambda ZAP head cDNA library described above were screened using conventional methods with labeled "female" 3'RACE product as a probe.

Nine different overlapping cDNAs were isolated. They were characterized by restriction mapping and Southern analysis, including hybridization to the DNAs from the genomic walk, and by cross hybridization to each other. These cDNAs represented at least 3 different classes of transcripts. However, none had the exact structure of the 3' RACE product that was used as the probe to detect them, suggesting that these cDNAs represented only a subset of *fru* transcripts.

Accordingly, the library was rescreened with various portions of the 9 cDNAs. This screen resulted in the identification of 10 new cDNAs that overlapped each other as well as the 9 previously identified cDNAs. Molecular analysis of the new cDNAs revealed two

10

15

20

25

30

35

additional classes of transcripts, including one that contained the sequence found in the "female" 3' RACE product.

A member of each of the five classes was mapped to the DNAs from the genomic walk described above. Fragments from the 5' parts of the cDNA clones mapped to two regions in the distal half of the walk. The 3' end portions of the cDNAs did not hybridize to the walk. The walk was therefore extended in the proximal direction using the cosmid HX1 (obtained from Dr. K. Moses, University of Southern California, Pasadena, CA; Moses, et al.), which overlaps the proximal end of the walk. This cosmid was restriction mapped, digested, and blotted for Southern analysis with probes from the 3' end portions of the cDNAs.

Results from the above analyses are shown schematically in Figures 7A, 7B, 7C, 7D, 7E, 7F, 7G and 7H. 5' to 3' is from right to left. Figure 7A shows a schematic of the DNA fragments isolated (f10A, f9A, f3A, f2A, f1D, f1H, f4B, f5C and f7A) as part of a genomic walk spanning the *fru* locus, as well as a schematic of the location of the HX1 cosmid, relative to the map of the *fru* region shown in Fig. 7B. Figure 7B shows a schematic of the *fru* region of chromosome 3, indicating the positions of know *fru* lesions (mutants *fru-2*, *fru-4*, *fru-3* and *fru-1*). The numbers on the scale correspond to kilobases. *fru-1* is depicted by a zig-zag line to indicate an inversion breakpoint, while *fru-2*, *fru-3* and *fru-4* are shown as boxes to indicate insertion of P-element sequences. Figure 7C shows a schematic of two *fru* deficiencies, Df(3R)P14 and Df(3R)ChaM5, relative to the map of the *fru* region shown in Fig. 7B.

Figures 7D, 7E, 7F, 7G and 7H show schematic diagrams of the location of sequences comprising five *fru* cDNA transcripts relative to the map of the *fru* region shown in Fig. 7B. Exons are indicated as boxes and introns as lines. The dark boxes near the 3' ends of the transcripts correspond to exons that contain potential Zn finger sequences, discussed below. The locations of the 13 nt *dsx* repeats are indicated by "*".

The results indicate that the 3' ends of the cDNAs correspond to the genomic region spanned by HX1, and demonstrated that *fru* transcripts can contain alternative 3' end exons.

D. Sequence Analyses of cDNA Clone Fru#1

One of the isolated cDNAs (shown schematically in Fig. 7D) was sequenced in its entirety. The consensus sequence of this transcript (Fig. 9; SEQ ID NO:9), termed Fru#1, contains one long open reading frame that encodes a 675 amino acid polypeptide (SEQ ID NO:10). The sequence was used to search the Swiss-prot 30 and PIR 42 data bases for homologous sequences (using software from IntelliGenetics Inc., Mt. View, CA). Further, SEQ ID NO:10 was scanned for protein motifs using IntelliGenetics "QUEST" software and

WO 96/24605

28

PCT/US96/02331

the "PROSITE 12" data bank. These analyses revealed the presence of a highly conserved N-terminal domain, termed BTB domain, found in a number of known transcriptional factors (Zollman, et al.), and a single zinc (Zn) finger at the C-terminal of the Fru#1 cDNA (suggesting the presence of a DNA binding domain).

A schematic of the Fru#1 polypeptide is shown in Fig. 8. Three copies of the 13 nt repeat sequence are found in the 5' untranslated region just upstream of the ATG initiation codon. The polypeptide contains a BTB domain adjacent the repeats and a Zn finger domain near the C-terminus. The nucleotide sequence of Fru#1 is shown in Fig. 9. The 13 nt repeat regions are underlined, the coding sequence is capitalized, and the ATG initiation codon and TAA termination codon are in bold.

E. Sequence Analyses of cDNA Clone Fru#2

5

10

15

20

25

The 3' portion of the cDNAs shown schematically in Fig. 7E was sequenced as described above. The consensus sequence of the 3' end of this transcript (Fru#2) is presented as SEQ ID NO:12. The 5' end of Fru#2 was analyzed extensively using Southern mapping, PCR and restriction enzyme analyses. The results of these analyses strongly suggest that the sequence of the 5' end of Fru#2 is identical to that of Fru#1. The sequences diverge at nucleotide number 3012 of Fru#1 (SEQ ID NO:9), corresponding to amino acid residue 503 of the Fru#1 polypeptide (SEQ ID NO:10). The expected full-length nucleotide sequence of Fru#2 is presented herein as SEQ ID NO:14; the corresponding amino acid sequence is presented as SEQ ID NO:15.

While the invention has been described with reference to specific methods and embodiments, it is appreciated that various modifications and changes may be made without departing from the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: The Board of Trustees of the Leland Stanford Junior University

Board of Reagents, The University of Texas System

- (ii) TITLE OF INVENTION: Methods and Compositions for Altering Sexual Behavior
- (iii) NUMBER OF SEQUENCES: 15
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dehlinger & Associates
 - (B) STREET: 350 Cambridge Avenue, Suite 250
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94306
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT
 - (B) FILING DATE: 09-FEB-1996
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/386,495
 - (B) FILING DATE: 10-FEB-1995
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Sholtz, Charles K.
 - (B) REGISTRATION NUMBER: 38,615
 - (C) REFERENCE/DOCKET NUMBER: 8600-0153.41
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 324-0880
 - (B) TELEFAX: (415) 324-0960
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 3x repeat probe
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATCCATCTT CAATCAACAT AGATCCATCT TCAATCAACA TAGATCCATC TTCAATCAAC

60

ATA

30

(2)	INFO	RMATION FOR SEQ ID NO:2:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
((iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: sense dsx repeat 21-mer	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:2:	
GATO	CATC	IT CAATCAACAT A	2:
(2)	INFO	RMATION FOR SEQ ID NO:3:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
((iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: antisense dsx repeat 21-mer	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GATC	TATG	TT GATTGAAGAT G	21
(2)	INFO	RMATION FOR SEQ ID NO:4:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
((iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: NO	
	(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: -20 sequencing primer	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GTAA	AACG	AC GGCCAGT	17
(2)	INFO	RMATION FOR SEQ ID NO:5:	
	(i)	SEQUENCE CHARACTERISTICS:	

WO 96/24605

	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: fru-1 primer	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
GACGTGTG	AC GATGGAGCAA C	21
(2) INFO	RMATION FOR SEQ ID NO:6:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: fru-2 primer	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CGATCCAG.	AT CGAAAGAGAA TATCATC	27
(2) INFO	RMATION FOR SEQ ID NO:7:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: fru-5 rev primer	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GCTGTCGA	CA TGCCATAGGT GAATAGGC	28
(2) INFO	RMATION FOR SEQ ID NO:8:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

32

(ii) MOLECULE TYPE: DNA													
(iii) HYPOTHETICAL: NO													
(iv) ANTI-SENSE: NO													
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: fru-4 rev primer</pre>													
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:													
AGGCGTGATC ATTATGATAT TGTAGCAA													
(2) INFORMATION FOR SEQ ID NO:9:													
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4835 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown 													
(ii) MOLECULE TYPE: cDNA to mRNA													
(iii) HYPOTHETICAL: NO													
(iv) ANTI-SENSE: NO													
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: Fru#1 cDNA</pre>													
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 15073534													
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:													
GAATTCGGCA CGAGATTCAC CTATGGCATA TCATCAGCAA CACACATCAA CGCACTTCTC	60												
TGCTATGTCT GCAATCAACC AAAATATCAA AAAAAAAAAG AAAAACAAAA AGAGTCAACA	120												
TCAATTTTAA AGTTTTTACG TTGGTTCGAA AGAGTTTAAA ATGCCCTTAA CTATTAACGC	180												
CCAAAAGTAA ACGTAGATTA AAGTAATATT AGCCAATCAA TCGTAAAATA TCAGCTTTCG	240												
TTTTTTAAAA CTTACCAATG GACTTTGATC CCATCAATTG CAAATCTAAA GTAGAGAAAT	300												
AGAGAGAGAT AAGAGATATA ATATCACTAA CCAAAAGTGT TTGCCACGAG TATTAAAATG	360												
TTAACTACTA CAATAGAATA CGTATTCTTG TTTCCTTCGC TAGTATGTAT AAGCAAACTA	420												
ACTGCAAGAA ACAACACCAA CTAATTAATA TTTAATAGCA TAATGGTAAT ATCGTAAGAA	480												
TATCATAGAT TTAAGGCAGA GCATTTCAGA CAGCACTTGT ACCGTTCTAG ACTTAAGTAT	540												
TCGAAGTATA CGTAACTCAA GCAATCCAAT AACAATAACT AAGTAGAAGT TCTTTTCAAA	600												
ATAATACTAT ACACGAATCC TTCAGTCAAA CCCCCTACAA TATTACTTAG ATAAACATAT	660												
AGTATTATAT AGCCAAAGCC AGGAAAGGAG TTGTAAGCCA TTGCATATAT ATATTTGGTA	720												
GATAAAGAAC AGCTAACGAA AGGGTCCACA AGCTACCCAT AACTTACTTA GAATAACTAA	780												
ACACAACTAG CCAAGAAGTA GATATCTATA TATATATCGA GTTTTGCTAA CATCAAAGTA	840												
TACGTAAATT GAAAACCAAG AATTTTGCCT AGCTTAAATA ACACTCTTTC AAAGCAATAC	900												

CATAAACAAT AATTACAAGT TAACGCAACT AAACACATAT TGTATACCAG ATAGTTTATG

960

CC	PAAA	CACT	ACT	AGTA	GCC (CTAAC	TCC:	ra go	GCAT	AAAC	GA	GCAC	CACG	GCG.	AGATATG	1020
CAC	CCA	IGTA	AAA	rgca(GAA A	ATTA	ATTA	CC A	AGAG'	TACA	A AC'	TGTA	AAGG	AAA	CCCCTAT	1080
TG	AAGC:	rcaa	TTG	GCCA	GCC (CATCI	CAGTO	T A	GCGC:	raag:	' AG'	TTCG'	TAAT	CGT	AAGCAAT	1140
TGT	raago	GCAA	ACA	CTTT	rca A	GTG	AGCGZ	A A	ratc <i>i</i>	AAGCA	AA	CTGT	GAGA	ATT	CGAGGAC	1200
GTO	TGAC	CGAT	GGA	GCAA	CCC 1	TCCC	cccc	CA GA	ATCGA	AAAGA	GA/	TATA	CATC	AAT	CAACATT	1260
															CAAAAGC	1320
CCG	GCAA	ACCT	AAA	TTAC	TC C	TTTC	ATTA	G CC	CTCTT	CTAI	CA	ATTA	STTA	GTC	AGCCAAC	1380
															ACTTCAA	1440
															GACCAA	1500
GGA	.GCG	ATG Met 1	GAC Asp	CAG Gln	CAA Gln	TTC Phe 5	TGC Cys	TTG Leu	CGC Arg	TGG Trp	AAC Asn 10	AAT Asn	CAT His	CCC Pro	ACA Thr	1548
AAT Asn 15	neu	ACC Thr	GGC Gly	GTG Val	CTA Leu 20	Thr	TCA Ser	CTG Leu	CTG Leu	CAG Gln 25	CGG Arg	GAC Glu	GCG Ala	CTA Leu	TGC Cys 30	1596
GAC Asp	GTC Val	ACG Thr	CTC Leu	GCC Ala 35	Cys	GAG Glu	GGC Gly	GAA Glu	ACA Thr	Val	AAG Lys	GCT Ala	CAC His	CAG Gln 45	ACC	1644
ATC Ile	CTG Leu	TCA Ser	GCC Ala 50	Cys	AGT Ser	CCG Pro	TAC Tyr	TTC Phe 55	GAG Glu	ACG Thr	ATT Ile	TTC Phe	CTA Leu 60	Gln	AAC Asn	1692
CAG Gln	CAT His	CCA Pro 65	CAT His	CCC Pro	ATC Ile	ATC Ile	TAC Tyr 70	TTG Leu	AAA Lys	GAT Asp	GTC Val	AGA Arg 75	TAC Tyr	TCA Ser	GAG Glu	1740
ATG Met	CGA Arg 80	TCT Ser	CTG Leu	CTC Leu	GAC Asp	TTC Phe 85	ATG Met	TAC Tyr	AAG Lys	GGC Gly	GAG Glu 90	GTC Val	AAC Asn	GTG Val	GGC Gly	1788
CAG Gln 95	AGT Ser	TCG Ser	CTG Leu	CCC Pro	ATG Met 100	TTT Phe	CTC Leu	AAG Lys	ACG Thr	GCC Ala 105	GAG Glu	AGC Ser	CTG Leu	CAG Gln	GTG Val 110	1836
CGT Arg	GGT Gly	CTC Leu	ACA Thr	GAT Asp 115	AAC Asn	AAC Asn	AAT Asn	CTG Leu	AAC Asn 120	TAC Tyr	CGC Arg	TCC Ser	GAC Asp	TGC Cys 125	GAC Asp	1884
AAG Lys	CTG Leu	CGC Arg	GAT Asp 130	TCG Ser	GCG Ala	GCC Ala	AGT Ser	TCG Ser 135	CCG Pro	ACC Thr	GGA Gly	CGT Arg	GGG Gly 140	CCG Pro	AGT Ser	1932
AAT Asn	TAC Tyr	ACT Thr 145	GGC Gly	GGC Gly	CTG Leu	GGC Gly	GGC Gly 150	GCT Ala	GGG Gly	GGC Gly	GTG Val	GCC Ala 155	GAT Asp	GCG Ala	ATG Met	1980
CGC Arg	GAA Glu 160	TCC Ser	CGC Arg	GAC Asp	TCC Ser	CTG Leu 165	CGC Arg	TCC Ser	CGC Arg	TGC Cys	GAA Glu 170	CGG Arg	GAT Asp	CTG Leu	CGC Arg	2028
GAC Asp 175	GAG Glu	CTG Leu	ACG Thr	CAG Gln	CGC Arg 180	AGC Ser	AGC Ser	AGC Ser	AGC Ser	ATG Met 185	AGC Ser	GAA Glu	CGC Arg	AGC Ser	TCG Ser 190	2076

GCG Ala	GCA Ala	GCA Ala	GCG Ala	GCG Ala 195	GCG Ala	GCG Ala	GCA Ala	GCA Ala	GCA Ala 200	GCG Ala	GTA Val	GCG Ala	GCC Ala	GCC Ala 205	GGC Gly	2124
GGC Gly	AAT Asn	GTG Val	AAT Asn 210	GCG Ala	GCT Ala	GCC Ala	GTC Val	GCC Ala 215	CTG Leu	GGC Gly	CTG Leu	ACC Thr	ACG Thr 220	CCC Pro	ACC Thr	2172
GCG Ala	GCG Ala	GCA Ala 225	GCT Ala	GCG Ala	GCG Ala	GTA Val	GCA Ala 230	GCT Ala	GCG Ala	GTG Val	GCA Ala	GCG Ala 235	GCC Ala	GCC Ala	AAT Asn	2220
CGA Arg	AGT Ser 240	GCC Ala	AGC Ser	GCC Ala	GAT Asp	GGA Gly 245	TGC Cys	AGC Ser	GAT Asp	CGG Arg	GGA Gly 250	AGC Ser	GAA Glu	CGC Arg	GGT Gly	2268
ACG Thr 255	CTC Leu	GAG Glu	CGG Arg	ACG Thr	GAT Asp 260	AGT Ser	CGC Arg	GAT Asp	GAT Asp	CTA Leu 265	TTG Leu	CAG Gln	CTG Leu	GAT Asp	TAT Tyr 270	2316
AGC Ser	AAC Asn	AAG Lys	GAT Asp	AAC Asn 275	AAC Asn	AAT Asn	AGC Ser	AAC Asn	AGC Ser 280	AGT Ser	AGT Ser	ACC Thr	GGC Gly	GGC Gly 285	AAC Asn	2364
Asn	Asn	Asn	AAT Asn 290	Asn	Asn	Asn	Asn	Asn 295	Asn	Ser	Ser	Ser	Asn 300	Asn	Asn	2412
Asn	Ser	Ser 305	AGC Ser	Asn	Arg	Glu	Arg 310	Asn	Asn	Ser	Gly	Glu 315	Arg	Glu	Arg	2460
Glu	Arg 320	Glu	AGA Arg	Glu	Arg	Glu 325	Arg	Asp	Arg	Asp	Arg 330	Glu	Leu	Ser	Thr	2508
Thr 335	Pro	Val	Glu	Gln	Leu 340	Ser	Ser	Ser	Lys	Arg 345	Arg	Arg	Lys	Asn	350	2556
Ser	Ser	Asn	TGT Cys	Asp 355	Asn	Ser	Leu	Ser	Ser 360	Ser	His	Gln	Asp	Arg 365	His	2604
Tyr	Pro	Gln	370	Ser	Gln	Ala	Asn	375	Lys	Ser	Ser	Pro	Val 380	Pro	AAA Lys	2652
Thr	Gly	385 385	ser	Thr	Ser	Glu	390	Glu	Asp	Ala	Gly	395	Arg	Hls	GAC Asp	2700
Ser	400	Let	ı Ser	Met	Thr	Thr 405	Ser	. Val	. His	: Leu	410	Gly	, GIÀ	GIY	GGC Gly	2748
Asr 415	val	. Gly	/ Ala	a Ala	420	Ala	ı Lev	ı Ser	: Gly	425	s Ser	Glr	ı Ser	Leu	AGC Ser 430	2796
Ile	e Lys	s Glr	n Glu	1 Let 43!	ı Met	. Asp	Ala	a Glr	1 Glr 440	ı Glr	ı Glr	n Glr	ı Hıs	445		2844
CAC His	CAC His	GTO Val	G GC0 l Ala 450	a Lev	g CCC	C CCA	A GAT	TAC Ty: 455	: Lev	G CCC	AGC Sei	C GCC r Ala	G GCT a Ala 460	a Lei	A AAG 1 Lys	2892

CTG CAC GCG GAG GAT ATG TCA ACG CTG CTC ACG CAG CAT GCT TTG CAA Leu His Ala Glu Asp Met Ser Thr Leu Leu Thr Gln His Ala Leu Gln 465 470 475	2940
GCA GCA GAT GCG CGG GAC GAG CAC AAC GAC GCC AAA CAA C	2988
GAC CAG ACG GAC AAT ATC GAC GGC AGC AGC GCC CGC CAC CAC CTG TCG Asp Gln Thr Asp Asn Ile Asp Gly Ser Ser Ala Arg His His Leu Ser 500 505 510	3036
ACC CCC CTG TCG ACC TCG TCG TCG GCC TCG CCC CCG CCC CCT TTC Thr Pro Leu Ser Thr Ser Ser Ser Ala Ser Pro Pro Pro Pro Pro Phe 515 520 525	3084
GGG ATG CAC CTG TCG GCG GCC CTG AAA CGC GAG TAC CAT CCT CTG CAC Gly Met His Leu Ser Ala Ala Leu Lys Arg Glu Tyr His Pro Leu His 530 535 540	3132
TAT ATG GCC GCC GGC AAC GGT CAC AAC GGC CCA TCG GCG CTT GGT TAT Tyr Met Ala Ala Gly Asn Gly His Asn Gly Pro Ser Ala Leu Gly Tyr 545 550 555	3180
GGC AAT CAG GGA TCG GGC AAT GCG CCG AAT AGT GCC GGA GGA GCT GGA Gly Asn Gln Gly Ser Gly Asn Ala Pro Asn Ser Ala Gly Gly Ala Gly 560 565 570	3228
TCG GTT GCG GGC GGA GTG GGA GCC GGC GGA GCA ACT Ser Val Ala Gly Gly Val Gly Ala Gly Gly Gly Ala Gly Gly Ala Thr 575 580 585 590	3276
GGA GCA GCT GGC CAT AAT TCG CAT CAC ACC ATG TCG TAC CAC AAC ATG Gly Ala Ala Gly His Asn Ser His His Thr Met Ser Tyr His Asn Met 595 600 605	3324
TTC ACG CCG TCC CGC GAT CCG GGC ACC ATG TGG CGG TGC CGC TCC TGC Phe Thr Pro Ser Arg Asp Pro Gly Thr Met Trp Arg Cys Arg Ser Cys 610 615 620	3372
GGC AAG GAG GTG ACC AAT CGC TGG CAC CAC TTT CAC TCC CAC ACC GCC Gly Lys Glu Val Thr Asn Arg Trp His His Phe His Ser His Thr Ala 625 630 635	3420
CAG CGG TCC ATG TGT CCC TAC TGC CCG GCC ACC TAC AGC AGG ATC GAT Gln Arg Ser Met Cys Pro Tyr Cys Pro Ala Thr Tyr Ser Arg Ile Asp 640 645	3468
ACG CTG CGC TCC CAT TTG CGG GTG AAG CAT CCG GAT CGC CTG CTC AAG Thr Leu Arg Ser His Leu Arg Val Lys His Pro Asp Arg Leu Leu Lys 655 660 665 670	3516
CTG AAC TCG TCC ATT TAAGGGCGTG GCCGGGGCCC AAGTGCAGCC CATCACCGCC Leu Asn Ser Ser Ile 675	3571
AGCTTTACCA GCAGCAACAA CAGCCGCATC ATAAGCAGAA GCAGAAGCAG CAACAGCAGC	3631
AGCAGCAACA GCAGCAGCAT CAGCCGCATC AGCAGCAACA GCAACCAGCT TACTACGTCA	3691
GCAACTATAG CAACTACAGC AATAATAGAT ACAGCTACAG CGATAGTTTA TTGTAAATCG	3751
CTGCAGTTCT AGGTGGATTT TTCTTGCATT TAGTCGTCGT CCAGTCGTGT ACATTACCCA	3811
CTAGCTATCC AAGCAATAAC CATAACCCAA ACTAGTAGAA AACCGAAGAT GCTATGCTAT	3871
GGCAAAACGT AAAGCGTTAA ACACAAGTAT ATTGATAATC TTAACTAAAC TTATTGATAA	3931

WO 96/24605 PCT/US96/02331

36

ACTTTGACAC	AATCGTCCCA	TCAATTTATA	AATGTGTATA	ACTAAGGAAG	ATTAGGAAAA	3991
GGTTTCAGTT	GCGAGTCGAG	GAGAAGGATA	TGCCCAGCAT	AGAGGCCAG	TGGAGGCGGA	4051
AAAAAAGTTT	TCCAAAGCCA	CAACAAACCG	TTTCGAAGGT	TTCTAAATGT	TGTTTCCTAA	4111
AAACTATAAA	GTAATAACTA	CACTAATACT	AGAGAGAGAA	AGTCGAGGAG	AATCGTTTTG	4171
AGCCGATTCA	GCAAATTGGG	GTCACTACCA	CATCACGCGG	GGTCACCAGC	AGCAGCAGCA	4231
GCAGCAGCAA	ATGGAGGATG	CGGATGCGAA	TGCGGATGCG	GATGAGGATC	AGGATGAGGA	4291
TCAGCCAGCA	CAGCAACAGT	CACCCACAAA	TACTACTCAT	ACGAAGGTCA	CATTAGGTTT	4351
TAGTTTACTT	TAATTTGTAA	TGTCTAGATT	TTAGTGTTAA	CCGATATGTT	CTGCGGAGTA	4411
GGAAACGGAT	GAGGGCTACT	CAACCAACTA	CAAAGAAATT	TTCATATACC	TCAAATGCAT	4471
TTCAGTTTTA	TTGTTGATTG	CTTTAATTTT	AGTCTACGTA	GTCAGTTAGC	ACTTATACAT	4531
AAAGTACCAC	ATACATATAT	GTTATTTTT	AATCGGTTCC	AATTTGAATC	GGCGAGATAG	4591
CCAATAGTTT	ACCAATGTTT	TCCTCTGTTT	TTTAGTGTGT	GTGGTGTGTT	CCCTATCACT	4651
ATCACACTTT	TGATTTTGTC	CTATGCGTTA	AGTTGAAGAT	TTTAGGATTA	GCTCGAACCA	4711
CTTGAACCAC	CTCACTTTTT	TTTGTTAAGC	TTGTTTATAT	TTTATATTTA	TGGTCACACG	4771
TTTATTTAGT	TAAAGTACAC	TAAACACATA	TGAAATCACG	CGGAAGAAAG	TTAGTTGATA	4831
TGAG						4835

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 675 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Asp Gln Gln Phe Cys Leu Arg Trp Asn Asn His Pro Thr Asn Leu Thr Gly Val Leu Thr Ser Leu Leu Gln Arg Glu Ala Leu Cys Asp Val Asn Leu Ala Cys Glu Gly Glu Thr Val Lys Ala His Gln Thr Ile Leu Ala Cys Ser Pro Tyr Phe Glu Thr Ile Phe Leu Gln Asn Gln His Fro His Pro Ile Ile Tyr Leu Lys Asp Val Arg Tyr Ser Glu Met Arg 65

Ser Leu Leu Asp Phe Met Tyr Lys Gly Glu Ser Leu Gln Val Arg Gly Ser Leu Pro Met Phe Leu Lys Thr Ala Glu Ser Leu Gln Val Arg Gly

Leu Thr Asp Asn Asn Leu Asn Tyr Arg Ser Asp Cys Asp Lys Leu

125

120

Ar	g Asj	p Se O	r Ala	a Al	a Sei	13!	r Pro	Th:	r Gl	y Ar	g Gly 140	/ Pro	Se:	r As	n Tyr
Th:	r Gly	y Gl	y Lei	u Gl	y Gly 150	/ Ala	a Gly	/ Gly	y Va	l Ala 15	a Asp	Ala	a Mei	t Arg	g Glu 160
Se	r Arg	J As	p Se	r Le:	ı Arg	g Sei	Arg	J Cys	5 Gl	u Arg	y Asp	Let	ı Arç	y Ası 179	Glu
Let	ı Thi	Gli	n Arg	g Se	Ser	Ser	Ser	Met 185	Ser	r Glı	ı Arg	Ser	Ser 190		a Ala
Ala	a Ala	19!	a Ala	a Ala	a Ala	Ala	Ala 200	Ala	val	l Ala	a Ala	Ala 205		/ Gly	/ Asn
Val	Asr 210	ı Ala	a Ala	a Ala	val	Ala 215	Leu	Gly	Leu	ı Thr	Thr 220	Pro	Thr	Ala	Ala
Ala 225	Ala	Ala	a Ala	Val	Ala 230	Ala	Ala	Val	Ala	Ala 235	Ala	Ala	Asn	Arg	Ser 240
Ala	Ser	Ala	a Asp	Gly 245	Cys	Ser	Asp	Arg	Gly 250	Ser	Glu	Arg	Gly	Thr 255	Leu
Glu	Arg	Thr	260	Ser	Arg	Asp	Asp	Leu 265	Leu	Gln	Leu	Asp	Tyr 270		Asn
Lys	Asp	Asn 275	Asn	Asn	Ser	Asn	Ser 280	Ser	Ser	Thr	Gly	Gly 285	Asn	Asn	Asn
Asn	Asn 290	Asn	Asn	Asn	Asn	Asn 295	Asn	Ser	Ser	Ser	Asn 300	Asn	Asn	Asn	Ser
Ser 305	Ser	Asn	Arg	Glu	Arg 310	Asn	Asn	Ser	Gly	Glu 315	Arg	Glu	Arg	Glu	Arg 320
Glu	Arg	Glu	Arg	Glu 325	Arg	Asp	Arg	Asp	Arg 330	Glu	Leu	Ser	Thr	Thr 335	Pro
Val	Glu	Gln	Leu 340	Ser	Ser	Ser	Lys	Arg 345	Arg	Arg	Lys	Asn	Ser 350	Ser	Ser
Asn	Cys	Asp 355	Asn	Ser	Leu	Ser	Ser 360	Ser	His	Gln	Asp	Arg 365	His	Tyr	Pro
	3,0					3/5					Val 380				
Gly 385	Ser	Thr	Ser	Glu	Ser 390	Glu	Asp	Ala	Gly	Gly 395	Arg	His	Asp	Ser	Pro 400
Leu	Ser	Met	Thr	Thr 405	Ser	Val	His	Leu	Gly 410	Gly	Gly	Gly	Gly	Asn 415	Val
Gly	Ala	Ala	Ser 420	Ala	Leu	Ser	Gly	Leu 425	Ser	Gln	Ser	Leu	Ser 430	Ile	Lys
Gln	Glu	Leu 435	Met	Asp	Ala	Gln	Gln 440	Gln	Gln	Gln	His	Arg 445	Glu	His	His
Val	Ala 450	Leu	Pro	Pro	Asp	Tyr 455	Leu	Pro	Ser	Ala	Ala 460	Leu	Lys	Leu	His
Ala 465	Glu	Asp	Met	Ser	Thr 470	Leu	Leu	Thr	Gln	His 475	Ala :	Leu	Gln		Ala 480

Asp Ala Arg Asp Glu His Asn Asp Ala Lys Gln Leu Gln Leu Asp Gln

Thr Asp Asn Ile Asp Gly Ser Ser Ala Arg His His Leu Ser Thr Pro

Leu Ser Thr Ser Ser Ser Ala Ser Pro Pro Pro Pro Pro Phe Gly Met

His Leu Ser Ala Ala Leu Lys Arg Glu Tyr His Pro Leu His Tyr Met

Ala Ala Gly Asn Gly His Asn Gly Pro Ser Ala Leu Gly Tyr Gly Asn

Gln Gly Ser Gly Asn Ala Pro Asn Ser Ala Gly Gly Ala Gly Ser Val

Ala Gly Gly Val Gly Ala Gly Gly Ala Gly Gly Ala Thr Gly Ala

Ala Gly His Asn Ser His His Thr Met Ser Tyr His Asn Met Phe Thr 600

Pro Ser Arg Asp Pro Gly Thr Met Trp Arg Cys Arg Ser Cys Gly Lys

Glu Val Thr Asn Arg Trp His His Phe His Ser His Thr Ala Gln Arg

Ser Met Cys Pro Tyr Cys Pro Ala Thr Tyr Ser Arg Ile Asp Thr Leu

Arg Ser His Leu Arg Val Lys His Pro Asp Arg Leu Leu Lys Leu Asn 665

Ser Ser Ile 675

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 608 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: EcoRI genomic clone containing 3 dsx repeats
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 324..420
 - (D) OTHER INFORMATION: /note= "where N has not been precisely determined"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 (B) LOCATION: 483..485

 - (D) OTHER INFORMATION: /note= "where N has not been precisely determined"

<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 509509 (D) OTHER INFORMATION: /note= "where N has not been precisely determined"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GAATTCGAGG ACGTGTGACG ATGGAGCAAC CCTTCCCCCC CAGATCGAAA GAGAATATCA	60
TCAATCAACA TTCCCGTGCC CGGAGGAGCG GCTCTTCAAT CAACACTCAA CCCGAACTGG	120
GCCCTCAAAA GCCCGGCAAC CTAAAGTTAG TCTTTCATTA GCCTCTTCTA TCAATTAGGT	180
AGTCAGCCAA CGTTTCTCTC TCTCTCATAA TTCTAACCGA AAGTAAGCAT AGAAAAGAAC	240
CAATACTTCA ATCAACATAC CCACAAAAA AAACAAATCC CCACCAACTG GCGTCGGTAA	300
GTGAAGAGCC ATTTTAATTA TAGNNNNNNN NNNNNNNNN NNNNNNNNN NNNNNNNNN	360
имимимим имимимими имимимими имимимими имимимими им	420
TGATCGCCGA TGATGCATGT GATAAGCAAG TGATGAACAA TCCGTAGCAA TCAGGCAGTA	480
GGNNNCTTGA ACAAATTTAA CTTAGCTGNA TTTTGCGCAT GCCAAATGAA AAATAACAAA	540
CCGTAAATTC CAATGGTAAC TAAAACTAGC AATACTAACT CTAGCCGATG GAACATGCAA	600
CCGAATTC	608
(2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1244 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: CDNA to mRNA (iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: alternative 3' end</pre>	
T CGC GTC AAG TGT TTT AAC ATT AAG CAC GAC CGT CAT CCG GAT CGG Arg Val Lys Cys Phe Asn Ile Lys His Asp Arg His Pro Asp Arg 1 5 10	46
GAA CTG GAT CGA AAT CAT CGG GAG CAC GAC GAC GAT CCA GGC GTT ATC Glu Leu Asp Arg Asn His Arg Glu His Asp Asp Asp Pro Gly Val Ile 20 25 30	94
GAG GAG GTC GTT GTG GAT CAC GTT CGT GAG ATG GAA GCG GGG AAT GAG Glu Glu Val Val Asp His Val Arg Glu Met Glu Ala Gly Asn Glu 35 40 45	142

CAC His	GAT Asp	CCG Pro 50	GAG Glu	GAG Glu	ATG Met	AAG Lys	GAG Glu 55	GCA Ala	GCC Ala	TAC Tyr	CAT His	GCC Ala 60	ACA Thr	CCG Pro	CCC Pro	190
AAG Lys	TAC Tyr 65	AGA Arg	CGG Arg	GCT Ala	GTG Val	GTT Val 70	TAT Tyr	GCT Ala	CCT Pro	CCG Pro	CAT His 75	CCG Pro	GAT Asp	GAA Glu	GAG Glu	238
GCG Ala 80	GCC Ala	TCC Ser	GGA Gly	TCG Ser	GGA Gly 85	TCG Ser	GAT Asp	ATC Ile	TAT Tyr	GTG Val 90	GAT Asp	GGC Gly	GGC Gly	TAC Tyr	AAT Asn 95	286
TGC Cys	GAG Glu	TAC Tyr	AAG Lys	TGC Cys 100	AAG Lys	GAG Glu	CTC Leu	AAC Asn	ATG Met 105	CAG Gln	CGC Arg	AAC Asn	ATA Ile	CGA Arg 110	TGC Cys	334
AGT Ser	CGC Arg	CAG Gln	CAG Gln 115	CAC His	ATG Met	ATG Met	TCC Ser	CAC His 120	TAT Tyr	TCG Ser	CCG Pro	CAT His	CAT His 125	CCG Pro	CAC His	382
CAT His	CGA Arg	TCC Ser 130	CTC Leu	ATA Ile	GAT Asp	TGC Cys	CCC Pro 135	GCC Ala	GAG Glu	GCG Ala	GCT Ala	TAC Tyr 140	TCA Ser	CCG Pro	CCG Pro	430
GTG Val	GCC Ala 145	AAC Asn	AAT Asn	CAG Gln	GCC Ala	TAC Tyr 150	CTG Leu	GCC Ala	AGC Ser	AAT Asn	GGA Gly 155	GCG Ala	GTG Val	CAG Gln	CAG Gln	478
TTG Leu 160	GAT Asp	TTG Leu	AGC Ser	ACT Thr	TAC Tyr 165	CAT His	GGC Gly	CAC His	GCA Ala	AAC Asn 170	CAC His	CAA Gln	CTC Leu	CAC His	CAG Gln 175	526
CAT His	CCG Pro	CCA Pro	TCA Ser	GCC Ala 180	ACA Thr	CAT His	CCC Pro	AGT Ser	CAC His 185	TCG Ser	CAG Gln	AGC Ser	TCA Ser	CCC Pro 190	CAT His	574
TAT Tyr	CCA Pro	AGC Ser	GCC Ala 195	TCT Ser	GGT Gly	GCA Ala	GGT Gly	GCT Ala 200	GGC Gly	GCG Ala	GGT Gly	TCA Ser	GTC Val 205	TCG Ser	GTT Val	622
TCA Ser	ATA Ile	GCA Ala 210	GGA Gly	TCT Ser	GCA Ala	TCG Ser	GGA Gly 215	TCA Ser	GCC Ala	ACA Thr	TCT Ser	GCA Ala 220	CCA Pro	GCT Ala	TCG Ser	670
GTG Val	GCC Ala 225	Thr	Ser	Ala	GTC Val	Ser	Pro	Gln	Pro	Ser	Ser	Ser	TCC Ser	ACT Thr	GGA Gly	718
TCC Ser 240	Thr	TCG Ser	TCG Ser	GCG Ala	GCG Ala 245	Ala	GTT Val	GCA Ala	GCG Ala	GCA Ala 250	Ala	GCT Ala	GCG Ala	GCT Ala	GCC Ala 255	766
AAT Asn	CGG Arg	CGG Arg	GAT Asp	CAC His	Asn	ATT	GAC Asp	TAC Tyr	TCC Ser 265	Thr	CTG Leu	TTT Phe	GTC Val	CAG Gln 270	CTA Leu	814
TCG Ser	GGC Gly	ACG Thr	TTG Leu 275	Pro	ACT Thr	CTA Leu	TAC Tyr	CGA Arg 280	Cys	GTT Val	AGT Ser	TGC Cys	AAC Asn 285	Lys	ATC Ile	862
GTG Val	TCC Ser	AAT Asn 290	Arg	TGG	CAC His	CAT His	GCC Ala 295	Asn	ATC	CAT His	CGA Arg	CCG Pro 300	Gln	AGT Ser	CAT	910
GA0	TGC Cys	Pro	GTT Val	TGC Cys	GGG Gly	CAG Gln 310	Lys	TTC Phe	ACT Thr	CGC Arg	AGG Arg 315	, Asp	AAT Asn	ATG Met	AAG Lys	958

GCG CAC TGT AAG ATC AAG CAT GCG GAC ATC AAG GAT CGA TTC TTT AGC Ala His Cys Lys Ile Lys His Ala Asp Ile Lys Asp Arg Phe Phe Ser 320	1006
CAC TAT GTA CAT ATG TGATCACTTC TCTAGGCAGG CAGCAAAACA AATCAAATCA	1061
AAAAATCAGT AACAGATCGA ATGGTTTTCA CAGCTAAGTA ACCAAGAATC AAGCAAACG	T 1121
ATACGTAATC CAGAGTGAGG AGCCAACAGC CATCAGTTGG ATGTACATCT ATATCTATA	T 1181
CTATACATTT ATAAACCCTA TCAGAAAACA GACTCGTGCC GAATTCATAT CAAGCTTAT	C 1241
CAT	1244

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

Asp Leu Ser Thr Tyr His Gly His Ala Asn His Gln Leu His Gln His 175

Pro Pro Ser Ala Thr His Pro Ser His Ser Gln Ser Ser Pro His Tyr 180

Pro Ser Ala Ser Gly Ala Gly Ala Gly Ala Gly Ser Val Ser Val Ser 195 200 205

WO 96/24605 PCT/US96/02331

42

Ile Ala Gly Ser Ala Ser Gly Ser Ala Thr Ser Ala Pro Ala Ser Val 210 Ala Thr Ser Ala Val Ser Pro Gln Pro Ser Ser Ser Ser Thr Gly Ser Thr Ser Ser Ala Ala Ala Val Ala Ala Ala Ala Ala Ala Ala Asn Arg Arg Asp His Asn Ile Asp Tyr Ser Thr Leu Phe Val Gln Leu Ser Gly Thr Leu Pro Thr Leu Tyr Arg Cys Val Ser Cys Asn Lys Ile Val Ser Asn Arg Trp His His Ala Asn Ile His Arg Pro Gln Ser His Glu 290 295 Cys Pro Val Cys Gly Gln Lys Phe Thr Arg Arg Asp Asn Met Lys Ala His Cys Lys Ile Lys His Ala Asp Ile Lys Asp Arg Phe Phe Ser His Tyr Val His Met

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4255 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: fruitless transcript in Fig. 7E
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1507..4032

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GAATTCGGCA CGAGATTCAC CTATGGCATA TCATCAGCAA CACACATCAA CGCACTTCTC 60 TGCTATGTCT GCAATCAACC AAAATATCAA AAAAAAAAG AAAAACAAAA AGAGTCAACA 120 TCAATTTTAA AGTTTTTACG TTGGTTCGAA AGAGTTTAAA ATGCCCTTAA CTATTAACGC 180 CCAAAAGTAA ACGTAGATTA AAGTAATATT AGCCAATCAA TCGTAAAATA TCAGCTTTCG 240 300 TTTTTTAAAA CTTACCAATG GACTTTGATC CCATCAATTG CAAATCTAAA GTAGAGAAAT AGAGAGAT AAGAGATATA ATATCACTAA CCAAAAGTGT TTGCCACGAG TATTAAAATG 360 TTAACTACTA CAATAGAATA CGTATTCTTG TTTCCTTCGC TAGTATGTAT AAGCAAACTA 420 480 ACTGCAAGAA ACAACACCAA CTAATTAATA TTTAATAGCA TAATGGTAAT ATCGTAAGAA

TATCATA	GAT TT	AAGGCAGA	GCATTTCA	GA CA	AGCACTI	GT AC	CGTTCTAG	ACTI	CAAGTAT	540
TCGAAGT	TATA CG	TAACTCAA	GCAATCCA	AT A	CAATAA	CT AA	STAGAAGT	TCTI	TTCAAA	600
ATAATAC	TAT AC	ACGAATCC	TTCAGTCA	AA CC	CCCTAC	AA TA	TTACTTAG	ATAA	ACATAT	660
AGTATTA	TAT AG	CCAAAGCC	AGGAAAGG	AG TI	GTAAGC	CA TT	SCATATAT	TATA	TTGGTA	720
GATAAAG	SAAC AGO	TAACGAA	AGGGTCCA	CA AG	CTACCC	AT AA	CTTACTTA	GAAT	'AACTAA	780
ACACAAC	TAG CC	AGAAGTA	GATATCTA	TA TA	TATATC	GA GT	TTTGCTAA	CATO	AAAGTA	840
TACGTAA	ATT GAA	AACCAAG	AATTTTGC	CT AG	CTTAAA	TA ACA	CTCTTTC	AAAG	CAATAC	900
CATAAAC	CAA TAA	TACAAGT	TAACGCAA	CT AA	ACACAT	AT TG	TATACCAG	ATAG	TTTATG	960
CCTAAAC	ACT ACT	AGTAGCC	CTAAGTCC	TA GG	CATAAA	CC GAC	CACCACG	GCGA	GATATG	1020
CACCCAT	GTA AAA	TGCAGAA	ATTAATTA	CC AA	GAGTAC	AA ACI	GTAAAGG	AAAC	CCCTAT	1080
TGAAGCT	CAA TTO	GCCAGCC	CATCTAGT	GT AG	CGCTAA	GT AGI	TCGTAAT	CGTA	AGCAAT	1140
TGTAAGG	CAA ACA	CTTTTCA	AGTGAGCG.	TA AA	ATCAAG	CA AAC	TGTGAGA	ATTC	GAGGAC	1200
			TTCCCCCC							1260
			TCTTCAAT							1320
			CTTTCATT							1380
			TCTAACCG							1440
			AACAAATC							1500
GGAGCG .	ATG GAC Met Asp 1	CAG CAA Gln Gln	TTC TGC Phe Cys 5	TTG	CGC TGO Arg Tr	AAC Asn 10	AAT CAT Asn His	CCC / Pro :	ACA Thr	1548
AAT TTG Asn Leu 15	ACC GG Thr Gl	y Val Le	A ACC TCA u Thr Sei 0	A CTG Leu	Leu G	AG CGG .n Arg	GAG GCG Glu Ala	CTA Leu	TGC Cys 30	1596
GAC GTC Asp Val	ACG CT Thr Le	C GCC TG u Ala Cy 35	C GAG GGG s Glu Gly	GAA Glu	ACA GT Thr Va 40	C AAG	GCT CAC Ala His	CAG Gln 45	ACC Thr	1644
ATC CTG Ile Leu	TCA GC Ser Al	a Cys Se	T CCG TAC r Pro Tyr	TTC Phe 55	GAG AC Glu Th	G ATT	TTC CTA Phe Leu 60	CAG Gln	AAC Asn	1692
CAG CAT Gln His	CCA CA Pro Hi 65	T CCC AT s Pro Il	C ATC TAC e Ile Tyr 70	· Leu	AAA GA Lys As	T GTC p Val	AGA TAC Arg Tyr 75	TCA Ser	GAG Glu	1740
ATG CGA Met Arg 80	TCT CT	G CTC GA u Leu As	C TTC ATO p Phe Met 85	TAC Tyr	AAG GG Lys Gl	C GAG y Glu 90	GTC AAC Val Asn	GTG Val	GGC Gly	1788
CAG AGT Gln Ser 95	TCG CTG Ser Le	G CCC AT 1 Pro Me 10	G TTT CTC t Phe Leu O	AAG Lys	ACG GC Thr Al	a Glu	AGC CTG Ser Leu	CAG Gln	GTG Val 110	1836
CGT GGT Arg Gly	CTC AC	A GAT AA ASP AS: 115	C AAC AAT n Asn Asn	CTG Leu	AAC TA Asn Ty 120	C CGC r Arg	TCC GAC Ser Asp	TGC Cys 125	GAC Asp	1884

44

WO 96/24605

									• •							
AAG Lys	CTG Leu	CGC Arg	GAT Asp 130	TCG Ser	GCG Ala	GCC Ala	AGT Ser	TCG Ser 135	CCG Pro	ACC Thr	GGA Gly	CGT Arg	GGG Gly 140	CCG Pro	AGT Ser	1932
AAT Asn	TAC Tyr	ACT Thr 145	GGC Gly	GGC Gly	CTG Leu	GGC Gly	GGC Gly 150	GCT Ala	GGG Gly	GGC Gly	GTG Val	GCC Ala 155	GAT Asp	GCG Ala	ATG Met	1980
CGC Arg	GAA Glu 160	TCC Ser	CGC Arg	GAC Asp	TCC Ser	CTG Leu 165	CGC Arg	TCC Ser	CGC Arg	TGC Cys	GAA Glu 170	CGG Arg	GAT Asp	CTG Leu	CGC Arg	2028
			ACG Thr													2076
			GCG Ala													2124
			AAT Asn 210													2172
			GCT Ala													2220
			AGC Ser													2268
			CGG Arg													2316
AGC Ser	AAC Asn	AAG Lys	GAT Asp	AAC Asn 275	AAC Asn	AAT Asn	AGC Ser	AAC Asn	AGC Ser 280	AGT Ser	AGT Ser	ACC Thr	GGC Gly	GGC Gly 285	AAC Asn	2364
AAC Asn	AAC Asn	AAC Asn	AAT Asn 290	AAT Asn	AAT Asn	AAC Asn	AAC Asn	AAC Asn 295	AAT Asn	AGC Ser	AGC Ser	AGC Ser	AAC Asn 300	AAC Asn	AAC Asn	2412
AAC Asn	AGC Ser	AGC Ser 305	AGC Ser	AAT Asn	AGG Arg	GAG Glu	CGC Arg 310	AAC Asn	AAT Asn	AGC Ser	GGC Gly	GAA Glu 315	CGT Arg	GAG Glu	CGG Arg	2460
GAG Glu	CGA Arg 320	GAA Glu	AGA Arg	GAG Glu	CGT Arg	GAG Glu 325	CGG Arg	GAC Asp	AGG Arg	GAC Asp	AGG Arg 330	GAG Glu	CTG Leu	TCC Ser	ACC Thr	2508
ACG Thr 335	CCG Pro	GTG Val	GAG Glu	CAG Gln	CTG Leu 340	Ser	AGT Ser	AGT Ser	AAG Lys	CGC Arg 345	AGA Arg	CGT Arg	AAG Lys	AAC Asn	TCA Ser 350	2556
TCA Ser	TCC Ser	AAC Asn	TGT Cys	GAT Asp 355	Asn	TCG Ser	CTG Leu	TCC Ser	TCG Ser 360	Ser	CAC His	CAG Gln	GAC Asp	AGG Arg 365	CAC His	2604
TAC Tyr	CCG Pro	CAG Gln	GAC Asp 370	Ser	CÁG Gln	GCC Ala	AAC Asn	TTC Phe 375	Lys	TCG Ser	AGT Ser	CCC	GTG Val 380	CCC Pro	AAA Lys	2652
ACG Thr	GGC Gly	GGC Gly 385	Ser	ACA Thr	TCG Ser	GAA Glu	TCG Ser 390	Glu	GAC Asp	GCC Ala	GGC	GGT Gly 395	Arg	CAC His	GAC Asp	2700

TCG Ser	CCG Pro 400	Leu	TCG Ser	ATC Met	ACC Thr	ACA Thr 405	Ser	GTI Val	CAT His	CTG Leu	GGC Gly 410	gly	GGT Gly	GGT Gly	GGC Gly	2748
AAT Asn 415	Val	GGC Gly	GCG Ala	GCC	AGC Ser 420	GCC Ala	CTT Leu	AGC Ser	GGT Gly	CTG Leu 425	Ser	CAG Gln	TCG Ser	CTC Lev	AGC Ser 430	2796
ATC Ile	AAG Lys	CAG Gln	GAG Glu	CTG Leu 435	Met	GAC Asp	GCC Ala	CAG Gln	CAG Gln 440	Gln	CAG Gln	CAG Gln	CAT His	CGG Arg 445	GAA Glu	2844
CAC His	CAC His	GTG Val	GCC Ala 450	Leu	CCC Pro	CCA Pro	GAT Asp	TAC Tyr 455	Leu	CCG Pro	AGC Ser	GCC Ala	GCT Ala 460	Leu	AAG Lys	2892
CTG Leu	CAC His	GCG Ala 465	GAG Glu	GAT Asp	ATG Met	TCA Ser	ACG Thr 470	CTG Leu	CTC Leu	ACG Thr	CAG Gln	CAT His 475	GCT Ala	TTG Leu	CAA Gln	2940
GCA Ala	GCA Ala 480	GAT Asp	GCG Ala	CGG Arg	GAC Asp	GAG Glu 485	CAC His	AAC Asn	GAC Asp	GCC Ala	AAA Lys 490	CAA Gln	CTG Leu	CAG Gln	CTG Leu	2988
GAC Asp 495	CAG Gln	ACG Thr	GAC Asp	AAT Asn	ATC Ile 500	GAC Asp	GGT Gly	CGC Arg	GTC Val	AAG Lys 505	TGT Cys	TTT Phe	AAC Asn	ATT Ile	AAG Lys 510	3036
CAC His	GAC Asp	CGT Arg	CAT His	CCG Pro 515	GAT Asp	CGG Arg	GAA Glu	CTG Leu	GAT Asp 520	CGA Arg	AAT Asn	CAT His	CGG Arg	GAG Glu 525	CAC His	3084
GAC Asp	GAC Asp	GAT Asp	CCA Pro 530	GGC Gly	GTT Val	ATC Ile	GAG Glu	GAG Glu 535	GTC Val	GTT Val	GTG Val	GAT Asp	CAC His 540	GTT Val	CGT Arg	3132
GAG Glu	ATG Met	GAA Glu 545	GCG Ala	GGG Gly	AAT Asn	GAG Glu	CAC His 550	GAT Asp	CCG Pro	GAG Glu	GAG Glu	ATG Met 555	AAG Lys	GAG Glu	GCA Ala	3180
GCC Ala	TAC Tyr 560	CAT His	GCC Ala	ACA Thr	CCG Pro	CCC Pro 565	AAG Lys	TAC Tyr	AGA Arg	CGG Arg	GCT Ala 570	GTG Val	GTT Val	TAT Tyr	GCT Ala	3228
CCT Pro 575	CCG Pro	CAT His	CCG Pro	GAT Asp	GAA Glu 580	Glu	Ala	Ala	TCC Ser	Gly	Ser	GGA Gly	TCG Ser	GAT Asp	ATC Ile 590	3276
TAT Tyr	GTG Val	GAT Asp	GGC Gly	GGC Gly 595	TAC Tyr	AAT Asn	TGC Cys	GAG Glu	TAC Tyr 600	AAG Lys	TGC Cys	AAG Lys	GAG Glu	CTC Leu 605	AAC Asn	3324
ATG Met	CAG Gln	CGC Arg	AAC Asn 610	ATA Ile	CGA Arg	TGC Cys	AGT Ser	CGC Arg 615	CAG Gln	CAG Gln	CAC His	ATG Met	ATG Met 620	TCC Ser	CAC His	3372
TAT Tyr	TCG Ser	CCG Pro 625	CAT His	CAT His	CCG Pro	CAC His	CAT His 630	CGA Arg	TCC Ser	CTC Leu	ATA Ile	GAT Asp 635	TGC Cys	CCC Pro	GCC Ala	3420
GAG Glu	GCG Ala 640	GCT Ala	TAC Tyr	TCA Ser	CCG Pro	CCG Pro 645	GTG Val	GCC Ala	AAC Asn	AAT Asn	CAG Gln 650	GCC Ala	TAC Tyr	CTG Leu	GCC Ala	3468
AGC Ser 655	AAT Asn	GGA Gly	GCG Ala	GTG Val	CAG Gln 660	CAG Gln	TTG Leu	GAT Asp	Leu	AGC Ser 665	ACT Thr	TAC Tyr	CAT His	GGC Gly	CAC His 670	3516

46

			CAA Gln													3564
			AGC Ser 690													3612
			TCA Ser													3660
			GCA Ala													3708
			AGT Ser													3756
			GCT Ala													3804
			TTT Phe 770													3852
			TGC Cys													3900
			CCG Pro													3948
			GAC Asp													3996
			CGA Arg									TGA:	rcac'	rtc		4042
TCT	AGGC	AGG (CAGC	AAAA	CA A	ATCA	AATC	AA A	TAA	CAGT	AAC	AGAT	CGA A	ATGGT	TTTTCA	4102
CAG	CAATO	GTA A	ACCA	AGAA!	rc A	AGCA	AACG:	r atz	ACGT	AATC	CAG	AGTG!	AGG 1	AGCC	AACAGC	4162
CAT	CAGT	rgg 2	ATGT	ACAT	CT A	TATC'	TATA:	r cti	ATAC	ATTT	ATA	AACC	CTA :	rcag?	AAAACA	4222
GAC:	rcgr	GCC (GAAT:	CAT	AT C	AAGC'	TAT	CA	Г							4255

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Asp Gln Gln Phe Cys Leu Arg Trp Asn Asn His Pro Thr Asn Leu 5 10

Thr Gly Val Leu Thr Ser Leu Leu Gln Arg Glu Ala Leu Cys Asp Val Thr Leu Ala Cys Glu Gly Glu Thr Val Lys Ala His Gln Thr Ile Leu Ser Ala Cys Ser Pro Tyr Phe Glu Thr Ile Phe Leu Gln Asn Gln His Pro His Pro Ile Ile Tyr Leu Lys Asp Val Arg Tyr Ser Glu Met Arg Ser Leu Leu Asp Phe Met Tyr Lys Gly Glu Val Asn Val Gly Gln Ser Ser Leu Pro Met Phe Leu Lys Thr Ala Glu Ser Leu Gln Val Arg Gly Leu Thr Asp Asn Asn Asn Leu Asn Tyr Arg Ser Asp Cys Asp Lys Leu 120 Arg Asp Ser Ala Ala Ser Ser Pro Thr Gly Arg Gly Pro Ser Asn Tyr 135 Thr Gly Gly Leu Gly Gly Ala Gly Gly Val Ala Asp Ala Met Arg Glu 150 Ser Arg Asp Ser Leu Arg Ser Arg Cys Glu Arg Asp Leu Arg Asp Glu Leu Thr Gln Arg Ser Ser Ser Ser Met Ser Glu Arg Ser Ser Ala Ala 185 Ala Ala Ala Ala Ala Ala Ala Ala Val Ala Ala Gly Gly Asn 195 Val Asn Ala Ala Ala Val Ala Leu Gly Leu Thr Thr Pro Thr Ala Ala 215 Ala Ala Ala Val Ala Ala Ala Val Ala Ala Ala Asn Arg Ser Ala Ser Ala Asp Gly Cys Ser Asp Arg Gly Ser Glu Arg Gly Thr Leu Glu Arg Thr Asp Ser Arg Asp Asp Leu Leu Gln Leu Asp Tyr Ser Asn 265 Lys Asp Asn Asn Asn Ser Asn Ser Ser Ser Thr Gly Gly Asn Asn Asn 280 Asn Asn Asn Asn Asn Asn Asn Ser Ser Ser Asn Asn Asn Ser Ser Ser Asn Arg Glu Arg Asn Asn Ser Gly Glu Arg Glu Arg 315 Glu Arg Glu Arg Glu Arg Asp Arg Asp Glu Leu Ser Thr Thr Pro 325 Val Glu Gln Leu Ser Ser Ser Lys Arg Arg Lys Asn Ser Ser Ser Asn Cys Asp Asn Ser Leu Ser Ser Ser His Gln Asp Arg His Tyr Pro 355 360 365

Gln Asp Ser Gln Ala Asn Phe Lys Ser Ser Pro Val Pro Lys Thr Gly 375 Gly Ser Thr Ser Glu Ser Glu Asp Ala Gly Gly Arg His Asp Ser Pro Leu Ser Met Thr Thr Ser Val His Leu Gly Gly Gly Gly Asn Val Gly Ala Ala Ser Ala Leu Ser Gly Leu Ser Gln Ser Leu Ser Ile Lys 425 Gln Glu Leu Met Asp Ala Gln Gln Gln Gln His Arg Glu His His Val Ala Leu Pro Pro Asp Tyr Leu Pro Ser Ala Ala Leu Lys Leu His 455 Ala Glu Asp Met Ser Thr Leu Leu Thr Gln His Ala Leu Gln Ala Ala Asp Ala Arg Asp Glu His Asn Asp Ala Lys Gln Leu Gln Leu Asp Gln 485 490 Thr Asp Asn Ile Asp Gly Arg Val Lys Cys Phe Asn Ile Lys His Asp 500 505 Arg His Pro Asp Arg Glu Leu Asp Arg Asn His Arg Glu His Asp Asp Asp Pro Gly Val Ile Glu Val Val Val Asp His Val Arg Glu Met 535 Glu Ala Gly Asn Glu His Asp Pro Glu Glu Met Lys Glu Ala Ala Tyr 550 555 His Ala Thr Pro Pro Lys Tyr Arg Arg Ala Val Val Tyr Ala Pro Pro His Pro Asp Glu Glu Ala Ala Ser Gly Ser Gly Ser Asp Ile Tyr Val Asp Gly Gly Tyr Asn Cys Glu Tyr Lys Cys Lys Glu Leu Asn Met Gln 600 Arg Asn Ile Arg Cys Ser Arg Gln Gln His Met Met Ser His Tyr Ser 615 Pro His His Pro His His Arg Ser Leu Ile Asp Cys Pro Ala Glu Ala Ala Tyr Ser Pro Pro Val Ala Asn Asn Gln Ala Tyr Leu Ala Ser Asn 645 650 Gly Ala Val Gln Gln Leu Asp Leu Ser Thr Tyr His Gly His Ala Asn 665 His Gln Leu His Gln His Pro Pro Ser Ala Thr His Pro Ser His Ser 680 Gln Ser Ser Pro His Tyr Pro Ser Ala Ser Gly Ala Gly Ala Gly Ala Gly Ser Val Ser Val Ser Ile Ala Gly Ser Ala Ser Gly Ser Ala Thr 710 715

Ser Ala Pro Ala Ser Val Ala Thr Ser Ala Val Ser Pro Gln Pro Ser 725 730 735

Ser Ser Ser Thr Gly Ser Thr Ser Ser Ala Ala Ala Val Ala Ala Ala 740 745 750

Ala Ala Ala Ala Asn Arg Arg Asp His Asn Ile Asp Tyr Ser Thr 755 760 765

Leu Phe Val Gln Leu Ser Gly Thr Leu Pro Thr Leu Tyr Arg Cys Val 770 780

Ser Cys Asn Lys Ile Val Ser Asn Arg Trp His His Ala Asn Ile His 785 790 795 800

Arg Pro Gln Ser His Glu Cys Pro Val Cys Gly Gln Lys Phe Thr Arg 805 810 815

Arg Asp Asn Met Lys Ala His Cys Lys Ile Lys His Ala Asp Ile Lys 820 825 830

Asp Arg Phe Phe Ser His Tyr Val His Met 835

WO 96/24605 PCT/US96/02331

IT IS CLAIMED:

10

20

25

35

- 1. A substantially isolated FRU polynucleotide.
- 5 2. The polynucleotide of claim 1, wherein the polynucleotide is selected from the group consisting of RNA, cDNA and genomic DNA.
 - 3. The polynucleotide of claim 1, wherein the polynucleotide is derived from an insect that is a member of the phylum Arthropoda.
 - 4. The polynucleotide of claim 3, wherein the polynucleotide is derived from an insect selected from the group consisting of medfly, fruit fly, tse-tse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub.
- 5. The polynucleotide of claim 3, wherein the polynucleotide is derived from an insect that is a member of the order Diptera.
 - 6. The polynucleotide of claim 5, wherein the polynucleotide is derived from a *Drosophila* polynucleotide.
 - 7. The polynucleotide of claim 6, wherein the polynucleotide contains a sequence selected from the group consisting of SEQ ID NO:9 and SEQ ID NO:14.
 - 8. A substantially isolated FRU polypeptide.
 - 9. The polypeptide of claim 8, wherein the polypeptide is derived from an insect that is a member of the phylum Arthropoda.
- 10. The polypeptide of claim 9, wherein the polypeptide is derived from an insect selected from the group consisting of medfly, fruit fly, tse-tse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub.
 - 11. The polypeptide of claim 9, wherein the polypeptide is derived from an insect that is a member of the order Diptera.

15

20

25

30

- 12. The polypeptide of claim 11, wherein the polypeptide is derived from a *Drosophila* polypeptide.
- 13. The polypeptide of claim 12, wherein the polypeptide contains a sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:15.
 - 14. A method of identifying a compound effective to alter the reproductive behavior of a target insect, comprising

treating an insect cell with a test compound, where said cell is obtained from the target insect and carries an expression vector containing FRU regulatory sequences operably linked to a reporter gene,

evaluating the level of expression of the reporter gene in the treated cell, and identifying the compound as effective if said compound significantly decreases the expression of the reporter gene in the treated cell relative to the expression of the reporter gene in untreated cells carrying said expression vector.

- 15. The method of claim 14, wherein the reporter gene encodes a protein selected from the group consisting of chloramphenical acetyl-transferase (CAT), β -galactosidase (β -gal) and luciferase.
- 16. The method of claim 14, wherein the target insect is a *Drosophila* species, and the cells are selected from the group consisting of Schneider's Line 2 and *Drosophila* Kc cells.
 - 17. The method of claim 14, wherein the regulatory sequences are from Drosophila.
- 18. The method of claim 14, wherein the target insect is a member of the phylum Arthropoda.
 - 19. The method of claim 18, wherein the target insect is a member of the order Diptera.
- 20. The method of claim 18, wherein the target insect is selected from the group consisting of medfly, fruit fly, tse-tse fly, sand fly, blowfly, flesh fly, face fly, housefly, screw worm-fly, stable fly, mosquito, and northern cattle grub.

Fig. 1

Fig. 2A Fig. 2B

3/11

2 6 8 11 12 16 17 21 22 23 24 25 30 31 32 35 36 38 39 40 41 42

600 bp —

Fig. 3A

600 bp **-**

Fig. 3B

4/11

EcoRI

EcoRI

Fig. 4

5/11

Fig. 5A Fig. 5B

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

gaatteggeaegagatteaeetatggeatateateageaaeacaeateaaegeaettetetgetatgtetgeateaaee aaaatatcaaaaaaaaaaaaaaaaaaaaaaaaaaagagtcaacatcaattttaaagtttttacgttggttcgaaagagtttaaa atatcactaaccaaaagtgtttgccacgagtattaaaaatgttaactactacaatagaatacgtattcttgtttccttcgc tatcatagatttaaggcagagcatttcagacagcacttgtaccgttctagacttaagtattcgaagtatacgtaactcaa gcaatccaataacaataactaagtagaagttettttcaaaataatactatacacgaatecttcagtcaaaccccctacaa gatatctatatatatatcgagttttgctaacatcaaagtatacgtaaattgaaaaccaagaattttgcctagcttaaata acactettteaaageaataeeataaaaaataattaeaagttaaegeaaetaaaegeaactaaaeacatattgtataeeagatagtttatg cctaaacactactagtagccctaagtcctaggcataaaccgagcaccacggcgagatatgcacccatgtaaaatgcagaa agttegtaategtaageaattgtaaggeaaacaetttteaagtgagegaaatateaageaaaetgtgagaattegaggae attaattaccaagagtacaaactgtaaaggaaacccctattgaagctcaattggccagcccatctagtgtagcgctaagt gtgtgacgatggagcaaccettcccccccagatcgaaagagaata<u>tcatcaatcaaca</u>ttcccgtgcccggaggagetgc <u>tettcaatcaaca</u>ctcaaccegaactgggccetcaaaagce<mark>cggca</mark>acetaaagttagteettteattagcetettetat CTGCTTGCGCTGGAACAATCATCCCACAAATTTGACCGGCGTGCTAACCTCACTGCTGCAGCGGGAGGCGCTATGCGACG

Fig. 9A

TTCCTACAGAACCAGCATCCACATCCCATCATCTACTTGAAAGATGTCAGATACTCAGAGATGCGATCTCTGCTCGACTT CATGTACAAGGGCGAGGTCAACGTGGGCCAGAGTTCGCTGCCCATGTTTCTCAAGACGGCCGAGAGCTGCTGCAGGTGCGTG GTCTCACAGATAACAACAATCTGAACTACCGCTCCGACTGCGACAAGCTGCGCGATTCGGCGGCCAGTTCGCCGACTGCGGA CGTGGGCCGAGTAATTACACTGGCGGCCTGGGCGGCGCTGGGGGCGTGGCCGATGCGATGCGCAATCCCGCGACTCCCT GCGCTCCCGCTGCGAACGGGATCTGCGCGACGAGCTGACGCAGCAGCAGCAGCAGCATGAGCGAACGCAGCTCGGCGG CAGCAGCGGCGGCGGCGGCAGCAGCAGCGGTAGCGGCCGCCGGCGGCAATGTGAATGCGGCTGCCGTCGCCTTGGGCCTG ACCACGCCCACCGCGGCGGCAGCTGCGGCGGTAGCAGCTGCGGTGGCAGCGGCCGCCAATCGAAGTGCCAGCGCCGATGG acaaggataacaacaatagcaacagcagtagtaccggcggcaacaacaacaacaataataataacaacaatagcagc TCACGCTCGCCTGCGAGGGCGAAACAGTCAAGGCTCACCAGACCATCCTGTCAGCCTGCAGTCCGTACTTCGAGACGATT AGCAACAACAACAACAGCAGCAGCAATAGGGAGCGCAATAGCGGCGAACGTGAGCGGGAGCGAGAAAAAAGAGCGTGA GCGGGACAGGGACAGGGAGCTGTCCACCACGCCGGTGGAGCAGCTGAGTAGTAGTAAGCGCCAGACGTAAGAACTCATCAT AAGCGTTCATCTGGGCGGCGGTGGTGGCAATGTGGGCGCGGCCAGCGCCCTTAGCGGTCTGAGCCAGTCGCTGAGCATCA CCAACTGTGATAACTCGCTGTCCTCGAGCCACCAGGACAGGCACTACCCGCAGGACTCTCAGGCCAACTTCAAGTCGAGT CCCGTGCCCAAAACGGGCGGCAGCACATCGGAATCGGAGGACGCGGGGGGGTCGCCACGACTCGCCGCTGTCGATGACCAC AGCAGGAGCTGATGGACGCCCAGCAGCAGCAGCATCGGGAACACCCAGTGGCCCTGCCCCCAGATTACTTGCCGAG GCCGCTCTAAAGCTGCACGCGGAGGATATGTCAACGCTGCTCACGCAGCATGCTTTGCAAGCAGCAGAAGCAGCAGAGGGGGGACGA CCCTGTCGACCTCGTCGGCCTCGCCCCCCGCCGCCCCTTTCGGGATGCACCTGTCGGCGGCGCCTGAAACGCGAGTAC CATCCTCTGCACTATATGGCCGCCGGCAACGGTCACAACGGCCCATCGGCGCTTGGTTATGGCAATCAGGGATCGGGCAA CAGCTGGCCATAATTCGCATCACACCATGTCGTACCACACATGTTCACGCCGTCCCGCGATCCGGGCACCATGTGGCGG TGCCGCTCCTGCGGCAAGGAGGTGACCAATCGCTGGCACCACTTTCACTCCCACACCGCCCAAGCGGTCCATGTGTCCCTA CTGCCCGGCCACCTACAGCAGGATCGATACGCTGCGCTCCCATTTGCGGGTGAAGCATCCGGATCGCCTGCTCAAGCTGA

Fig. 9B

ACTCGTCCATT**TAA**gggcgtggccggggcccaagtgcagcccatcaccgccagctttaccagcagcaacaacaacgccgcat ttactacgtcagcaactatagcaactacagcaataatagatacagctacagcgatagtttattgtaaatcgctgcagttc taggtggattttttttgcatttagtcgtcgtccagtcgtgtacattacccactagctatccaagcaataaccataacca aactagtagaaaaccgaagatgctatgctatggcaaaacgtaaagcgttaaacacaagtatattgataatcttaactaaa cttattgataaactttgacacaatcgtcccatcaatttataaatgtgtataaactaaggaagattaggaaaaggtttcagt aatggaggatgcggatgcgaatgcggatgcggatgaggatcaggatgaggatcaggccagcacagcacagtcacccacaa tocotatoactatoacacttttgattttgtoctatgcgttaagttgaagtttlaggatttaggattagotogaaccacttgaacca atactactcatacgaaggtcacattaggttttagttttactttaatttgtaatgtctagattttagtgttaaccgatatgt tctgcggagtaggaaacggatgagggctactcaaccaactacaagaaattttcatatacctcaaatgcatttcagtttt atgaaatcacgcggaagaaagttagttgatatgag

Fig. 9C

INTERNATIONAL SEARCH REPORT

Intenational application No. PCT/US96/02331

r	· · · · · · · · · · · · · · · · · · ·		
	ASSIFICATION OF SUBJECT MATTER		
IPC(6)	:Please See Extra Sheet.	. 500,050	
	:536/23.5, 24.1, 24.31; 435/6, 70.3, 172.3; 424/9, to International Patent Classification (IPC) or to both		
	LDS SEARCHED	in national classification and if C	
	documentation searched (classification system follows	ad has alongid asian markets	
		•	
U.S. :	536/23.5, 24.1, 24.31; 435/6, 70.3, 172.3; 424/9.2	; 530/350; 436/501	
Documenta	tion searched other than minimum documentation to th	and any the state of the state	1
D. Comena	don searched other than minimum documentation to tr	te extent that such documents are included	in the fields searched
Electronic o	data base consulted during the international search (n	ame of data base and subsequentially	and the second second
		ame of data base and, where practicable	, search terms used)
	OSIS, DERWENT WORLD PATENT INDEX erms: fru, fruitless, gene cdna, locus		
EMBL, G	ENBANK, EST/STS, GENESEQ DNA & PROTEI	IN DATABASES: SEQ ID NO.S 9, 10).
	CUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
Υ	RYNER et al., fruitless Lies at	t a Branch to the Sex-	1-20
	Differentiation Regulatory Hiera	rchy. In Program and	
	Abstracts Volume, 35th Annu	ual Drosophila Research	
	Conference. Chicago, Illinois. 20-	·24 April 1994, page 32.	
Α	TAYLOR et al. Behavioral and Neu		1-20
	Sex-Determining Factors in Di		
	Genetics. 1994, Vol. 15, pages	275-296, especially 281,	
	282, and 293.		İ
		•	j
			ľ
j			
		•	
			į
X Furth	er documents are listed in the continuation of Box C	See patent family annex.	
• Spe	ccial categories of cited documents:	"T" later document published after the inte	mational filing date or priority
	nument defining the general state of the art which is not considered on of particular relevance	date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the ntion
	lier document published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be
L doc	cument which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider when the document is taken alone	ed to involve an inventive step
cite	ed to establish the publication date of another citation or other cital reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be
O doc	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	step when the document is documents, such combination
"P" doc	ans tument published prior to the international filing date but later than	being obvious to a person skilled in the "&" document member of the same patent	e art
····	priority date claimed	patent	
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report
23 MAY	1996	12 JUN 1996	
	nailing address of the ISA/US	Authorized officer	NELLUS
Commission Box PCT	ner of Patents and Trademarks		
Washington	, D.C. 20231	CHARLES C. P. RORIES	
Facsimile No	o. (703) 305-3230	Telephone No. (703) 308-0196	i

INTERNATIONAL SEARCH REPORT

Int. ational application No.
PCT/US96/02331

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
Α	ZOLLMAN et al. The BTB Domain, Found Primarily Finger Proteins, Defines an Evolutionarily Conserved Includes Several Developmentally Regulated Genes in Proceedings of the National Academy of Sciences. Octovol. 91, pages 10717-10721, see entire document.	Family That Drosophila.	1-20
Α	GAILEY et al. Behavior and Cytogenetics of fruitless in Drosophila melanogaster: Different Courtship Defects of Separate, Closely Linked Lesions. Genetics. April 1989 pages 773-785, see entire document.	Caused by	1-20
A	GAILEY et al. Elements of the fruitless Locus Regulat Development of the Muscle of Lawrence, a Male-Spec Structure in the Abdomen of Drosophila melanogaster Development. 1991, Vol. L13, pages 879-890, see entidocument.	ific Adults.	1-20

INTERNATIONAL SEARCH REPORT

Int. ..ational application No. PCT/US96/02331

ı	
	A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
	C07H 21/04; C12N 15/12, 15/63, 15/85; C07K 14/435; C12Q 1/68; C12P 21/02; A61K 49/00; G01N 33/50, 33/68
	•