Modelos Discretos

Introdução aos modelos matriciais

- A Matriz de Leslie -

Populações estruturadas em estádios fisiológicos

Estádios:

idades, tamanhos corporais, estádios desenvolvimento ...

Duas escalas de tempo

Tempo biológico

Tempo ao longo do ciclo de vida (nascimento até à morte) - idades

Tempo absoluto (ou de "projecção")

Tempo ao longo do qual a população é recenseada

Tipos de modelos para populações estruturadas

Tempo biológico

Tempo discreto
Tempo contínuo

Estádios fisiol. discretos

Modelos matriciais

Estádios fisiol. contínuos

Egs Integro-diferenciais

	•
Eqs diferenciais com atrasos	Eqs às derivadas parciais

História

C. Elton
Bureau of Animal
Populations, Oxford

Hal Caswell

Caswell, H. 2001. *Matrix Population Models. Construction, Analysis and Interpretation*. Sinauer

Estádios vs. idades

A população tem estrutura etária:

Demografia

 $\begin{bmatrix} N_0 \\ N_1 \\ N_3 \\ \dots \end{bmatrix}$

Tempo absoluto

O intervalo de projecção é sempre constante

Intervalo projecção \le duração da unidade de idade

1 estádio de cada vez

Um indivíduo não pode saltar 2 ou mais estádios em 1 intervalo projecção

estádios

Pi Probabilidade de que 1 indivíduo no estádio i, no instante t, sobreviva e esteja no estádio i+1 no census de t+1

Fi Número filhos viáveis dum indivíduo no estádio i, produzidos durante o intervalo de projecção (t, t+1).

"viáveis" = ainda estão vivos no instante t+1

Intervalo de aplicação

Projecção com P_i e F_i

$$N_{1,t+1} = F_1 N_{1,t} + F_2 N_{2,t} + F_3 N_{3,t} + \dots + F_k N_{k,t}$$

$$N_{2,t+1} = P_1 N_{1,t}$$

$$N_{3,t+1} = P_2 N_{2,t}$$
...

Representação matricial

$$\mathbf{A} = \begin{bmatrix} F_1 & F_2 & F_3 & \dots & F_K \\ P_1 & 0 & 0 & \dots & 0 \\ 0 & P_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & P_{K-1} & 0 \end{bmatrix} \qquad \begin{matrix} \textit{Matriz quadrada} \\ \textit{(K, K)} \\ \textit{K} = \textit{n°} \text{ estádios} \end{matrix}$$

Matriz quadrada

$N_{t+1} = A N_t$

$$\begin{bmatrix} \sum_{i=1}^{i=K} F_i N_i \\ P_1 N_1 \\ P_2 N_2 \\ \dots \\ P_3 N_3 \end{bmatrix} = \begin{bmatrix} F_1 & F_2 & F_3 & \dots & F_K \\ P_1 & 0 & 0 & \dots & 0 \\ 0 & P_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & P_{K-1} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ \dots \\ N_K \end{bmatrix}$$

$$\mathbf{N}_{t+1} = \mathbf{A} \ \mathbf{N}_{t}$$
(K, 1) (K, K) (K, 1)

Aⁿ determina o futuro

$$N_{t+1} = A N_t$$
 equação de recorrência

Assumindo A constante

$$\mathbf{N}_{\mathbf{t}+2} = \mathbf{A} \, \mathbf{N}_{\mathbf{t}+1} = \mathbf{A} \, \mathbf{A} \, \mathbf{N}_{\mathbf{t}} = \mathbf{A}^2 \mathbf{N}_{\mathbf{t}}$$

$$\mathbf{N_{t+n}} = \mathbf{A^n N_t}$$
 após n intervalos projecção

Determina o futuro após n intervalos

Aplicação sucessiva da ML

$$\begin{bmatrix} 320 \\ 36 \\ 15 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.8 & 2.7 & 0.2 & 0.1 \\ 0.36 & 0 & 0 & 0 \\ 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \end{bmatrix} \begin{bmatrix} 100 \\ 50 \\ 20 \\ 10 \end{bmatrix}$$

Variação dos números

	t	t+1	t+2	<i>t</i> +3	t+4	<i>t</i> +5	t+6
Estadio 1	100	320	676	1531	3420	7659	17144
Estadio 2	50	36	115	244	551	1231	2757
Estadio 3	20	15	11	35	73	165	369
Estadio 4	10	2	2	1	4	7	17
TOTAL	180	373	804	1811	4048	9062	20287
λ		2.07	2.16	2.25	2.24	2.24	2.24

$$N_{x,t+1} = N_{x,t} \lambda$$

$$N_{t+1} = AN_t = \lambda N_t$$

Transição das proporções para DEE

	t	t+1	t+2	<i>t</i> +3	t+4	<i>t</i> +5	t+6
Estadio 1	0.556	0.858	0.841	0.845	0.845	0.845	0.845
Estadio 2	0.278	0.097	0.143	0.135	0.136	0.136	0.136
Estadio 3	0.111	0.040	0.014	0.019	0.018	0.018	0.018
Estadio 4	0.056	0.005	0.002	0.001	0.001	0.001	0.001

