Name:	Centre/Index No:
School	Signature

P525/1 CHEMISTRY Paper 1 July/August 2024 2 3/4 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- · All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- · Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p = 22.4 dm³

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

© WAKISSHA Joint Mock Examinations 2024

Turn Over

SECTION A (46 MARKS)

Attempt all questions in this section.

>	
elov	
n b	
give	
are	
alf-cells	
e h	
тоѕ	
for	
potentials	
de.	
ctro	
Elec	֡

Half cell	$E^{\theta}(V)$
$\operatorname{Zn}^{2+}(\operatorname{aq})/\operatorname{Zn}(s)$	-0.76
Cr ₂ O ₂ ² -(aq), H ⁺ (aq), Cr ³⁺ (aq)/Pt	+1 33

(") The time the cell notation for the cell formed when the two half-cells are connected.	(01 mark	
---	----------	--

Write	Write an equation for the overall cell reaction. (11/2 marks)	
	Write an equ	

(c) (i) Calculate the free energy change of the cell. (1F = 96500C)	(02 marks)	
---	------------	--

	(01 mark)
	State whether the cell reaction is feasible or not. Give a reason for your answer.
	(ii)

2-phenylpropane when oxidized in air at 5 atm formed liquid Q which reacts with dilute sulphuric acid to form compounds X and Y. Compound Y forms a crystalline white precipitate on addition of a saturated solution of sodium hydrogensulphite.

 α i

tify;	×	
Iden	(<u>i</u>)	
(a)		

State what would be observed when the reagent named in (h) above is added as year	O and a added to A.	(01 mark)	
(c)			

3.	(a)	Red	lead oxide (Pb ₃ O ₄) was shaken with dilute nitric acid and the re	esultant
		mixt (i)	ure filtered. Identify the; cation in the filtrate.	(½ mark)
		(ii)	residue	(½ mark)
	(b)		e an equation for the reaction that took place.	(1½ mark)
	(b)	Pota	ssium iodide solution was added to the filtrate in (a) above;	
		(i)	State what was observed.	(01 mark)
		(ii)	Write an equation for the reaction that took place.	(1½ marks)
4.	(a)	Writ	e the;	
		(i)	equation for the hydrolysis of ammonium sulphate in water.	(01 mark)
		(ii)	expression for the hydrolysis constant, Kh for ammonium sulp	ohate.
				(01 mark)
	(b)	(i)	The pH of 20 cm ³ of 0.05M ammonium sulphate solution at 2	25 °C was
	. ,		found to be 5.125	
			Calculate the hydrolysis constant of ammonium sulphate.	(03 marks)
		(ii)	State the assumptions you have made in b(i) above.	(01 mark)
		(11)	Dane the term of	
				Turn Over

(b) (c)	what would be observed when the following pairs HO – CH ₂ COOH and Observation:	s of substance	es are mixed.	e reaction(s) tha	(½ mark)					
					(01 mark)					
	Equation:				5.50					
(b)	NHCH ₃ and an ich	e-cold mixtur oric acid.	e of sodium nit	rite and concen	trated					
	Observation:				(½ mark)					
	Equation:				(01 mark)					
(c)	Cobalt (II) sulphate sol									
	Observation:	(½ mark)								
	Equation:	(01 mark)								
The										
	melting points of some fluorides of period 3 elements of the Periodic Table are vn in table 2.									
Tab										
	Formula of fluoride	NaF	AlF ₃	SiF ₄						
	Melting point (°C)	993	1290	-90.2						
(b) (c) The m shown Tabl (a)	State the trend in the m	elting points	of the fluorides	3.	(01 mark)					
(b)	Explain your answer in	(a).			(04 marks)					
(b)	Explain your answer in	(a).			(04 marks)					
(b)	Explain your answer in	ı (a).			(04 marks)					
(b)	Explain your answer in	ı (a).			(04 marks)					
(b)	Explain your answer in	ı (a).			(04 marks)					
(b)	Explain your answer in	(a).			(04 marks)					
(b)	Explain your answer in	ı (a).			(04 marks)					
(b)	Explain your answer in	ı (a).			(04 marks)					
(b)					(04 marks					

			•••••	
7.		empirical formula of com tygen and the mixture exp on absorption by concentr	pound R is CHO. 20 cm ³ of R were mixed voloded. The residual gas was cooled to room rated potassium hydroxide, there was a contra	action of
	(a)	Calculate the molecular		(2½ marks)
		•••••		
	(b)	R decolourises bromine effervescence.	e water and reacts with sodium carbonate sol	ution with
		Write the structural for	mulae and IUPAC names of two geometric is	(03 marks)
3.	(a)	Define the term standa	ard enthalpy of combustion.	(01 mark)
	(b)	The enthalpies of comb	oustion of some substances are shown in tabl	e 3.
		Substance	Enthalpy of combustion (KJmol-1)	
		Carbondisulphide	-1108.8	
		Carbon	-393.5	
		Sulphur	-296.8	
		Calculate the enthalpy	of formation of carbon disulphide.	(03 marks)
		© WAKIS	SHA Joint Mock Examinations 2024	Turn Over
			THE PARTY OF THE P	

				•••••
	(c)	Con	nment on the stability of carbondisulphade. Give a reason for yo	(01 mark)
9.	Th	e moleci	ular structures of two polymers; Kevlar and Neoprene are shown	below.
	K	evlar		
	Ne	eoprene	CH_2 $C=C$ CH_2 CH_2	
	(a)	Nam	e the type of polymer.	
		(i)	Kevlar	(½ mark)
		(ii)	Neouprene	(½ mark)
	(b)	Write (i)	the structural formula(e) of the monomer(s) of; Kevlar	(01 mark)
		(ii)	Neouprene	(½ mark)
				(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
	(c)	State	one use of each of the polymers above.	
			SECTION B (54 MARKS)	
			Attempt any six questions from this section.	
			Any additional question(s) answered will not be marked.	
10.	(a)	Zinc is	extracted from zinc blende.	
	37.55	(i)	State one method by which the ore can be concentrated.	(1/ mayle)
			© WAKISSHA Joint Mock Examinations 2024	

(ii)	ore.	Section 19 Control of	w zinc is obtained		(02 marks)			
Zine								
(i)	State what w	a to an alkaline a	aqueous solution o	containing intrace	(01 mark)			
(***)								
(ii)	Write an ion	ic equation for the	he reaction that to	ok place.	(1½ marks)			
	•••••							
1.50	g of an ore of	zinc were dissolv	ved in excess cond	centrated ammon	ia and the			
in th and Calc	e aqueous laye 0.0025 moldm culate the perce	r and trichlorom ³ respectively at ntage by mass of	oromethane. The ethane layer at eq. 25 °C. f zinc in the ore. between water and	uilibrium were 0.	.08 moldm ⁻³			
					(04 marks)			
	•••••							
	•••••							
The the t	Hydrogen peroxide oxidises iodide ions according to the equation. H ₂ O ₂ (aq) + 2H ⁺ (aq) + 3I ⁻ (aq) \longrightarrow 2H ₂ O(s) + I ₃ ⁻ (aq) The rate of reaction is independent of the concentration of hydrogen ions and the reaction is first order with respect to hydrogen peroxide. Given the kinetic data in the table 1 below obtained at 25°C. Table 1:							
[H ₂	O_2]moldm ⁻³	[I ⁻] moldm ⁻³	[H ⁺] moldm ⁻³	Initial rate mo	$dm^{-3}S^{-1}$			
	0.025	0.02	0.50	5.20 x				
	0.05	0.04	1.00	2.08 x 1	0-2			
(i)	State two m	ethods by which	the rate of reacti	on above can be	determined. (02 marks)			

				 T	urn Over			
	© IVA	KISSHA Joint Mock	Examinations 2024		ain Over			

	(ii)	Determine th			(02 marks)
	(iii)	Calculate the	value of the rate of	constant and state its unit	ts. (1½ marks)
(of the experime entrations of all	nts in Table 1 was reactants.	repeated at 40 °C using	the same
					(01 mark
	(ii)				
	()	70 (20)			,
12. W) CH₃C⊦ 	One of the experiments in Table 1 was repeated at 40 °C using the same oncentrations of all reactants. i) State the effect on the value of the rate constant in a(iii) above. (01 mark) ii) Explain your answer in b(i) (2½ marks) nechanism to show how each of the following conversions can be effected. H ₃ CH CH ₃ to CH ₃ CH CH ₃ (03 marks) OH I (03 marks) OH (03 marks)			
					•••••
(b)			00	alue of the rate constant and state its units. (1½ marks) s in Table 1 was repeated at 40 °C using the same actants. on the value of the rate constant in a(iii) above. (01 marks) swer in b(i) (2½ marks) we each of the following conversions can be effected. CH ₃ CH CH ₃ (03 marks) I (03 marks)	
(c)	CH ₃ CH C I Br	CH ₂ Br to	$CH_3C \equiv CH$		(03 marks)
		© WAKISSH	A Joint Mock Examina	tions 2024	8

		••••		
13.	Exp (a)	W II	ch of the following observations. en anhydrous aluminium chloride is exposed to moist air, misty med.	fumes are (03 marks
		••••		
	(b)	Aqu Cop	eous solutions of Copper (I) salts are colourless while solutions per (II) salts are coloured.	
		•••••		
		•••••		
	(d)	Whe solut	n hydrogen sulphide gas is bubbled into acidified ammonium di ion, the orange solution turns green and a yellow precipitate is f	ormed.
		•••••		
14.	(a)		ine and Iodine belong to group VII of the Periodic Table. Expla Fluorine and Iodine have different physical states at room tem	in why; perature.
				••••••
				•••••
				•••••
		(ii)	Fluorine reacts directly with carbon while Iodine does not.	(02 marks)
				•••••
		70		air, misty fumes are (03 marks) e solutions of (03 marks) monium dichromate sipitate is formed. (03 marks) ble. Explain why; room temperature. (2½ marks)
				Turn Over

	(b)	Write (i)	e an equation for the reaction between; Fluorine and water.	(1½ marks)
		(ii)	Iodine and hot concentrated sodium hydroxide solution.	(1 ½ marks)
		(iii)	hydride of Iodine and excess concentrated sulphuric acid.	
15.			dide is sparingly soluble in water.	
	(a)	Write (i)	e the; equation for the solubility of Lead (II) iodide in water.	(01 mark)
		(.)	equation for the solubility of Beau (11) founds in	
		(ii)	expression for the solubility product, Ksp of Lead (II) iodide.	(01 mark)
		(11)		
	(b)		solubility product of Lead (II) iodide is $1.39 \times 10^{-8} \text{ mol}^3 \text{dm}^{-3}$ ulate the solubility of Lead (II) iodide in gdm ⁻³ .	(03 marks)
		•••••	••••••	
		•••••		
		•••••		
		•••••		
	(c)	Explain	how the solubility of lead (II) iodide would be affected if to its	saturate
		(i)	a few drops of potassium iodide are added.	(02 marks)
		(ii)	magnesium ribbon is added.	(02 marks)
				•••••

		© WAKISSHA Joint Mock Examinations 2024	11
			Turn Over
	(i)	Calculate the vapour pressure above the solution assuming it is ideal.	
17.	(a)	The vapour pressures of acetone and benzene are 30 Kpa and 12.68 kPa 25 °C respectively. A solution containing 20% acetone and 80% benzer exerted a vapour pressure of 18.00 Kpa.	a at ne at 25 °C
		(ii) Write an equation for the reaction that took place.	(01 mark)
		(i) State what was observed.	(01 mark)
	(-)	СООН	
	(c)	A mixture of and methanol was heated in the presence of sulphu	ric acid.
	(b)	Using equations only, show how can be synthesized from COOH	(04 marks)
		О́Н	СООН
	* *	reagent in a(i) above.	(02 marks)
	(ii)	State what would be observed when each compound is separately treate	d with the
	(.)	Name the reagent(s) that can be used to distinguish between the compound	inds. (01 mark)
	(i)	Name the recent () if	
		and	
		COOH	
16.	(a)	OH	

(ii)	State the type of deviation from ideal behaviour shown by the solution of acetone and benzene. Give a reason for your answer. (02 marks
(b)	Sketch a well labelled boiling point composition diagram for the mixture of acetone and benzene. (03 marks

(d) State **one** method by which an azeotropic mixture of acetone and benzene can be separated. (01 mark)

THE PERIODIC TABLE

1	2	1_										3	4	5	6	7	
1 1) 1.0																1 II	Ife 4.0
3 LI 63	4 Ba 9.0											178 B	6 C 11.0	7 N 140	8 0 16.0	9 F 19.0	10 No.
11 Na 23.0	12 ME 243											13 Al 27.0	14 51 21.1	15 P 3L0	16 5 32.1	17 Cl 35,4	18 Ar 40.0
19 K 19.1	20 C4 40 1	21 Sc 45.0	22 T1 47.9	23 V 50.9	24 Cr 22.0	25 Ma 54.9	26 Fe 558	27 Co 58.9	28 Ni 551.7	29 Ca 63.5	30 Za 65.7	31 Ga 69.7	31 Ge 71.6	33 As 749	34 Se 79.0	35 Br 79.9	36 Kr 83
37 Rb	38 Sr 87.6	39 Y 84.9	40 2r 91.2	41 Nb 92.9	41 Mo 15.9	43 Tc 9E.9	44 Ru 101	45 Rh IO)	46 Pd 106	47 Ag 108	48 C4 112	49 Ls 115	50 Su 119	51 56 122	52 To 125	53 I 127	54 Xi
13 C:	56 Ba 137	57 La 139	72 111 178	73 Ta 181	74 W 184	75 Ra 186	76 O4 190	77 Ir 192	78 Pt 195	79 Au 197	80 H ₂ 291	\$1 T1 204	82 Po 207	83 81 209	84 Po (209)	85 A1 (210)	86 Rn (22)
17 17 23)	8N Ra (276)	89 Ac (227)										_	-				
			139	! 1 C+ 140	59 F7 141	60 Nd 144	61 Pm (145)	62 Sm 152	6.3 Sm 150	64 Eu 152	65 Tb 159	66 Dy 163	67 165	68 Fr 167	61 Tm 162	70 Yb 173	71 1.1
			89 Ac (227)	95 Th 272	91 Pa 231	92 U 238	93 Np 237	94 Pa	95 Am	96 Cm	97 Bk (247)	98 Cf 251	99 Es	100 Fm	101 Mv	102 No (254)	1a L

1. Indicates atomic number.

2. II Indicates relative atomic mass.

END

© WAKISSHA Joint Mock Examinations 2024