

Comodulation of h- and Na+/K+ Pump Currents Expands the Range of Functional Temporal Bursting Properties in a Central Pattern Generator

Parker J. Ellingson¹, William Barnett¹, Daniel Kueh², Alex Vargas¹, Ronald L. Calabrese², Gennady Cymbalyuk¹

¹Neuroscience Institute, Georgia State University, Atlanta GA 30303 USA

²Department of Biology, Emory University, Atlanta GA 30322 USA

Neuromatch Conference 2020 5/25 – 5/27

Leech Heart Interneuron Pacing CPG is a Half-Center Oscillator Circuit

- The timing control circuit in the heartbeat CPG of medicinal leeches is well characterized, and ideal for studying questions about rhythm generation from an ion channel level
- Leech heart interneuron (HN) pairs in ganglia 3 and 4 form inhibitory synapses with their contralateral counterparts, assembling a Half Center Oscillator (HCO), and pace activity in the CPG circuit

Comodulation of h-current and Na/K Pump by Myomodulin

3/18

- The Na/K pump is comodulated with h-current under application of 1uM Myomodulin
 - ► H-current increases
 - Pump current decreases
- Burst period/duration decreases, and spike frequency increases

5/24/2020

Tobin A-E, Calabrese RL (2005) Myomodulin Increases Ih and Inhibits the Na/K Pump to Modulate Bursting in Leech Heart Interneurons. J Neurophysiol 94:3938–3950.

Tuned Model to experimental data from Leech Heart Interneurons in Myomodulin

- Started with a model from Kueh et. al 2016 (eLife 5:e19322) which was developed for studying the effect of monensin in HN bursting characteristics
- Tuned to more closely align with Tobin/Calabrese 2005 framework using new experimental datasets
- Investigated \bar{g}_h and
 Investigated \bar{g}_h and
- Extracted temporal burst characteristics at the steady state for each parameter pair to produce a dimensionally reduced map of activity patterns for analysis

Half Center Oscillator Model Parameter Sweeps 5/18

$$Asymmetry = \frac{2|BD_1 - BD_2|}{BD_1 + BD_2}$$

5/24/2020

Regime Classification of HCO model

Comodulation Avoids Asymmetric and Highly Variable Regimes

5/24/2020

Comodulation Expands the Range of Functional Temporal Burst Characteristics

Experimental Data Display a Dose-Response to Myomodulin

Simulation Along the Axis of Comodulation Compares Well to Experimental Results

17/18

- We developed a model of the Leech heartbeat central pattern generator pacing circuit.
- Investigation of the parameter space associated with the action of the neuropeptide myomodulin and subsequent regime classification revealed a channel of functional activity within parameter space which corresponds to the action of myomodulin.
- Comodulation in this system allows the CPG to retain functional activity, while expanding the range of possible shifts in temporal bursting characteristics by 75% compared to modulation of I_{PumpMax} alone or by nearly 90% compared to modulation of \bar{g}_h alone
- We validated the model by fitting experimental conditions within the model parameter space.

Acknowledgements

- GSU Brains and Behavior Fellowship
 - Funding me
- NIH Grant 1 R21 NS111355 issued to GC and RC
 - Project funding, and funding for me for Fall 2020

- Please feel free to contact me at pellingson3@gmail.com
- Thank you for listening