# AgaogluC 30112024-105943

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ( $\epsilon=2$ ) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 3.1 ГГц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: 0.69-0.73i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 22.3 cm
- 2) 392.7 см
- 3) 41.5 cm
- 4) 342 cm

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте  $f_{\rm B}$ .

**Дано** значение коэффициента отражения  $s_{11}$  от входа этой цепи коррекции на частоте  $f_{\rm H}=0.71f_{\rm B}$ :

```
s_{11}=0.164-0.123i. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 120 O<sub>M</sub>
- 2) 73 O<sub>M</sub>
- 3) 38 O<sub>M</sub>
- 4) 65 O<sub>M</sub>

Даны значения s-параметров:

| -   | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |       |
|-----|----------|-------|----------|------|----------|------|----------|-------|
| GHz | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG   |
| 2.6 | 0.355    | 170.0 | 5.114    | 67.8 | 0.084    | 62.7 | 0.181    | -89.0 |

**Выбрать** Г-образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 2 на частоте 2.6 ГГц при наложении следующих ограничений:

- 1  $W_T$  меньше 57 Ом;
- 2  $\theta_{\Pi}$  меньше  $\frac{\pi}{2}$ .



Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

**Дана** частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём  $\theta_{\Pi} < \frac{\pi}{2}$ . (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).



Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d



Рисунок 3 – Различные реализаци и Г-образной цепи согласования

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой R=17 Ом. Известно, что:

- 1 в полосе, ограниченной частотами  $f_{\rm H}=2.2~\Gamma\Gamma$ ц и  $f_{\rm B}=4~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах  $f_{\rm H}$  и  $f_{\rm B}$  равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.26+j0;
- 3 использован *наикратчайший* отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе  $[f_{\text{\tiny H}}, f_{\text{\tiny B}}]$  ?

Варианты ОТВЕТА:

- 1) 1.4 дБ
- 2) 0.5 дБ
- 3) 1 дБ
- 4) 0.2 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ( $\epsilon = 3, 55$ ):

- 1 толщиной 0.508 мм и с волновым сопротивлением 85 Ом;
- 2 толщиной 0.406 мм и с волновым сопротивлением 59 Ом;
- 3 толщиной 0.203 мм и с волновым сопротивлением 43 Ом;
- 4 толщиной 0.305 мм и с волновым сопротивлением 41 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4