Concepts of model-based quantitative decision making

ECP 8506 Clinical Trial Simulation Sep 13, 2024

Ya-Feng (Jay) Wen, PharmD, PhD

wenxx164@umn.edu | jay.wen3@gilead.com

Clinical Pharmacologist, Gilead Sciences

Adjunct of Assistant Professor, ECP, UMN

Learning Objectives

- Review drug development processes and reasons for drug attrition
- Understand different quantitative medicine approaches
- Utilize credibility assessment framework in model-informed drug development
- Examples of model-informed drug development

About 90% of clinical drug development fails

Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18(7):495-496

Figure 3 | Reasons for attrition (1991–2000). PK, pharmacokinetics.

Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004;3(8):711-715.

Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov. 3 2016;15(12):817-818.

Various tools can be used to support drug development

CE, comparative effectiveness; CTS, clinical trial simulation; E-R, exposure-response; IVIVC, in vitro-in vivo correlation; MBMA, model-based meta-analysis; PBPK, Physiologically based pharmacokinetic; PKPD, pharmacokinetic—pharmacodynamic; PV, pharmacovigilance; QSP, quantitative system pharmacology; RWE, real-world evidence; SAR, structure–activity relationship; STR, structure–tissue exposure/selectivity relationship

Adapted from Dr. Mark Gastonguay. Model-Informed Decision Making in Drug Development. C-Path MIDD Training Course.

Using Quantitative Medicine approach has the potential to maximize patient and societal benefit

- On 03/25/2024, FDA's Center for Drug Evaluation and Research (CDER) launched the new CDER Quantitative Medicine (QM) Center of Excellence (CoE)
 - The development and application of exposure-based, biological, and quantitative modeling and simulation approaches derived from nonclinical, clinical, and real-world sources to inform drug development, regulatory decision-making, and patient care
 - Model-informed drug development (MIDD)
 - Complex innovative trial design (CID)
 - Fit-for-purpose initiative (FFP)
 - Model integrated evidence (MIE)
 - Physiology based biopharmaceutics modeling (PBBM)

Scope of CDER QM CoE

Integrative models encompassing the whole mechanistic processes of drug action

Increasing numbers of MIDD meeting requests with FDA

Examples of MIDD to support drug development

Disease Area	Modeling Approach	Application					
Schizophrenia (13)	Item Response Theory Method and Concordance Analysis	Support the use of a modifie trials for demonstration of	d alternative endpoint and shorter efficacy	clinical			
Non-Small Cell Lung Cancer (14)	Disease Progression Model	Use early biomarker change survival)	s to predict long-term clinical ben	efit (overall			
Duchenne Muscular Dystrophy (15)	Disease Progression Model		nutation for patient enrichment, st t matching strategy for clinical effi				
Pediatrics (16)	Exposure-matching with popPK or PBPK modeling	Identify dose(s) to be tested	in pediatric clinical efficacy and s	afety trials			
Various Disease Areas (17)	Exposure-Response Modeling	Dose selection for clinical tr	ials				
Pediatrics (18)	Pharmacokinetic Modeling	Sample size determination					
Various Disease Areas (19)	Machine Learning Modeling	Patient enrichment	Drug Name (Brand Name)	Modeling App	roach	Regulatory Action	
Various Disease Areas (20)	QSP Modeling	Predict safety risks	-				
				Aripiprazole Lauroxil (21) (Aristada ®)	Exposure-resp simulation	onse and popPK modeling and	Support the approval of a new strength and a new dosing regimen without additional clinical trial
		Adalimumab (22) (Humira ®)	popPK modeli	ng and simulation	Support the pediatric extrapolation and dose deter- mination in patients with Hidradenitis Suppurativa.		
			Hydroxychloroquine (23)	PBPK modelin namics evalu	ng in combination with pharmacody- tation	Assess the potential effectiveness of a compound.	
			Paliperidone Palmitate (24) (Invega Sustena®)	popPK modeli	ng and simulation	Support approval of a loading dose, dosing window, re-initiation strategy and dosage adjustment in patient subgroups without clinical trials.	
			Pembrolizumab (25) (Keytruda®)	popPK modeli	ng and simulation	Support the approval of patient-friendly dosing (less frequent dosing) regimen.	
			Sotalol injection (26)	popPK and exp	posure-response modeling and	Support the approval of loading doses for treatment initiation and up-titration.	
			Remdesivir (Veklury®) Baricitinib (Olumiant ®) Bamlanivimab and etesevimab (27)	popPK modeli	ng and simulation	Support the use of the drugs in pediatric patients.	

Madabushi R, et al. Review: Role of Model-Informed Drug Development Approaches in the Lifecycle of Drug Development and Regulatory Decision-Making. *Pharm Res.* 2022;39(8):1669-1680.

Examples of disease models to support drug development

No	Disease Model	Use
1	Non-small cell lung cancer model	Late phase clinical trial design
2	Parkinson's disease model	Endpoint selection and clinical trial design
3	Alzheimer's disease model	Endpoint selection and clinical trial design
4	Diabetes disease model	Clinical trial design
5	Huntington's disease model	Patient enrichment and clinical trial design
6	Duchenne muscular dystrophy disease model	Patient enrichment and clinical trial design
7	Human immunodeficiency virus model	Clinical trial design
8	Schizophrenia model	Pediatric extrapolation
9	Bipolar I disorder model	Pediatric extrapolation
10	Weight loss model	Clinical trial design
11	Bone density model	Clinical trial design
12	Idiopathic pulmonary fibrosis model	Patient enrichment and clinical trial design
13	Rheumatoid arthritis model	Endpoint selection and clinical trial design
14	Pulmonary arterial hypertension model	Endpoint selection and clinical trial design

Examples of fit-for-purpose initiative

Disease Area	Submitter	Tool	Trial Component	Issuance Date and Supporting Information
Alzheimer's disease	The Coalition Against Major Diseases (CAMD)	Disease Model: Placebo/Disease Progression	Demographics, Drop-out	Issued June 12, 2013 • Determination Letter
Multiple	Janssen Pharmaceuticals and Novartis Pharmaceuticals	Statistical Method: MCP-Mod	Dose-Finding	Issued May 26, 2016 • Determination Letter • Statistical Review • Pharmacometric Review
Multiple	Ying Yuan, PhD The University of Texas MD Anderson Cancer Center Department of Biostatistics	Statistical Method: Bayesian Optimal Interval (BOIN) design	Dose-Finding	Issued: December 10, 2021 • Determination Letter • Statistical Review • Publication Erratum
Multiple	Pfizer	Statistical Method: Empirically Based Bayesian Emax Models	Dose-Finding	Issued: August 5, 2022 • Determination Letter • Multidisciplinary Review

Credibility assessment framework in MIDD

Model influence	Description	Decision consequence	Description
Low	Model provides minor evidence; substantial nonclinical and clinical data are available to inform the decision	Low	Incorrect decision would not result in adverse outcomes in patient safety or efficacy
Medium	Model provides supportive evidence; some clinical trial data are available to inform the decision	Medium	Incorrect decision could result in minor to moderate adverse outcomes in patient safety or efficacy
High	Model provides substantial evidence; no clini- cal trial data relevant to the context of use or limited clinical trial data from similar sce-	High	Incorrect decision could result in severe adverse outcomes in patient safety or efficacy
	narios are available to inform the decision		

Pecision Conseduence Tow Medium High Tow Medium High Toward Toward

Low

Model Risk

Model Influence

Medium

High

Kuemmel C, et al. Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to Physiologically-Based Pharmacokinetic Modeling and Simulation. *CPT Pharmacometrics Syst Pharmacol*. 2020;9(1):21-28.

Example of credibility assessment framework

Category	Context of use
Question of interest	How should the investigational drug be dosed when coadministered with CYP3A4 modulators?
Context of use	 Simulation to predict effects of weak and moderate CYP3A4 modulators on investigational drug PK Predictions will be used for dosing recommendations in label No DDI studies proposed with weak and moderate CYP3A4 modulators; have clinical data with strong CYP3A4 modulators
Model risk	High
Model influence	 High Model provides substantial evidence Limited clinical data from similar scenarios to support the decision
Decision consequence	 Medium Incorrect decision could result in minor to moderate adverse patient outcomes
Validation plan	 Ensure model reproduces clinical PK data at different doses from healthy volunteers Reproduce clinical PK data when dosed with strong CYP3A4 modulators Reproduce effects observed for other CYP3A4 substrates with weak and moderate modulators

Kuemmel C, et al. Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to Physiologically-Based Pharmacokinetic Modeling and Simulation. *CPT Pharmacometrics Syst Pharmacol*. 2020;9(1):21-28.

Interpret covariate effects using PopPK modeling

Question: Sacituzumab govitecan (Trodelvy) is approved for locally advanced and metastatic breast cancer. Does sacituzumab govitecan dose need to be adjusted for intrinsic or extrinsic factors?

Context of use: Use PopPK to examine the impact of covariates.

Hepatotoxicity according to NCI common toxicity criteria

Grade	1	2	3	4
AST, ALT (IU/L)	≤2.5xULN	>2.5-5xULN	>5-20xULN	>20xULN
Total bilirubin (mg/dL)		<1.5xULN	>1.5-3xULN	>3xULN

USPI: No adjustment to the starting dosage is required when administering TRODELVY to patients with mild hepatic impairment [see Clinical Pharmacology (12.3)].

Predicting survival using tumor growth model

Question: Tumor size-based end points, such objective response rates (ORRs) or even progression-free survival (PFS), often demonstrated a weak correlation with overall survival (OS). Is there a better surrogate endpoints that can better forecast OS and to quantify drug effect in patients with cancer?

Context of use: Use the tumor growth inhibition (TGI) – OS model to predict OS and then to bridge the gap between early and late phase drug development.

TGI model

Wang's Model

$$\mathrm{TS}_i(t) = \mathrm{TS}_i(0) \bullet e^{-\mathrm{SR}_i \bullet t} + \mathrm{PR}_i \bullet t$$

TS, tumor size (sum of the longest diameters) SR, tumor shrinkage rate PR, tumor progression rate

Chan's Model

$$\mathrm{TS}_i(t) = \mathrm{TS}_i(0) \bullet \left(e^{-\mathrm{KS}_i \bullet t} + e^{\mathrm{KG}_i \bullet t} - 1 \right)$$

KS, tumor shrinkage rate KG, tumor growth rate

Survival model

Cox regression model with:

- TGI metrics
- Baseline characteristics
 - Wang's model: ECOG, baseline tumor size, % tumor reduction from baseline at wk 8
- Chan's model: log (KG), CRP, #
 metastatic sties, race, Alb, LDH, IC or TC
 > 0 vs. IC and TC = 0, Neutrophil-toLymphocyte ratio, lines of therapy, liver
 metastasis, time-to-tumor growth

OS prediction

Support a lower fractionated dose of Mylotarg using ER analysis

Question: Gemtuzumab ozogamicin (Mylotarg) received accelerated approval in 2000, but a Phase 3 study (SWOGS106) failed to confirm benefit with higher rate of hepatic veno-occlusive disease (VOD) which has substantial morbidity and mortality. Does changing induction dose from 9 mg/m² on Day 1/15 to 3 mg/m² on Day 1/4/7 maintain the same efficacy but reduce safety?

Context of use: Use ER analyses to support lower fractionated dose.

Increased use of PBPK to support NDA/BLA

Areas of Application in IND/NDA/BLA N=368, NDA=137 (2018- 2022)

- DDI applications constitute 60%
- Many analyses were submitted as INDs

Predicting OAT3 mediated DDI using PBPK

Question: Baricitinib is a JAK inhibitor to treat adults with severe alopecia areata and with moderately to severely active rheumatoid arthritis after treatment with 1 or more TNF inhibitors. Baricitinib is a substrate for OAT3 MATE2-K, P-gp, and BCRP. What is the effect of ibuprofen (OAT3 inhibitor) on baricitinib PK?

Context of use: Use PBPK models based on probenecid (OAT3 inhibitor) and baricitinib to predict the effect of

ibuprofen on baricitinib.

Impact of probenecid on baricitinib

PBPK prediction (geo ratio and 90% CI):

(geo ratio and 90% CI): Cmax: 1.03 (0.94, 1.13) AUC0-inf: 2.03 (1.91, 2.16) Cmax: 1.17 (1.15–1.7) AUCo-inf: 1.95 (1.84–2.07)

Presence of baricitinib
Absence of baricitinib

Compound	Parameter	Observed Mean (CV)	Predicted Geometric Mean (5-95% CI)	Observed/ Predicted
Baricitinib	C _{max} (ng/mL)	36.2 (22)	34.9 (33.3 – 36.7)	1.0
	AUC(0-∞) (ng·h/mL)	236 (22)	230 (215 – 247)	1.0
Probenecid (1,000 mg BID)	C _{max} (μg/mL)	145	160 (150 – 169)	0.9
	C _{ss,ave} (μg/mL)	115	116 (94 – 139)	1.0
Ibuprofen (800 mg QID)	C _{max} (μg/mL)	55.6 (24) ^a	52.8 (50.1 – 55.6)	1.1
	AUC (μg·h /mL)	218 (23) ^a	183 (170 – 196)	1.2
Diclofenac(100 mg BID)	C _{max} (μg/mL)	1.2 - 3.6 ^b	2.7	-
	AUC (μg·h/mL)	2.7 – 4.4 ^b	3.0	-
Baricitinib (+/- Probenecid)	AUC ratio(90% CI) ^c	2.03(1.91-2.16)	1.95 (1.84-2.07)	1.0
Baricitinib (+/- Probenecid))	C _{max} ratio(90% CI) ^d	1.03 (0.940, 1.13)	1.17 (1.15-1.7)	0.9
Baricitinib (+/- Ibuprofen)	AUC ratio(90% CI)c	NA	1.24 (1.22-1.26)	NA
Baricitinib (+/- Ibuprofen)	C _{max} ratio(90% CI) ^d	NA	1.07 (1.06-1.08)	NA
Baricitinib (+/-Diclofenac)	AUC ratio (90% CI)c	NA	1.00 (1.00-1.00)	NA
Baricitinib (+/- Diclofenac)	C _{max} ratio(90% CI) ^d	NA	1.00 (1.00-1.00)	NA

Table 4 Observed and predicted AUC and C_{max} for baricitinib, probenecid, ibuprofen and diclofenac

USPI: "...ibuprofen (OAT3 inhibitors with less inhibition potential) predicted minimal effect on the PK of baricitinb"

AI/ML submissions by development stage (2016-2022)

Regulatory submissions to the CDER that included AI/ML by stage of the drug development life cycle and therapeutic area in which it was proposed or applied, US FDA from 2016 to 2021.

Common analysis types

- Outcome prediction
- Covariate selection/confounding adjustment
- Pharmacometric modeling
- Dose selection/optimization
- Anomaly detection
- Imaging, video, and voice analysis
- RWD, NLP
- Drug discovery/repurposing
- Drug toxicity prediction
- Enrichment design
- Pt risk stratification
- Adherence
- Synthetic control
- Endpoint/biomarker assessment
- Postmarking surveillance

ML-based Patient Population Selection

Question: Patients in the Anakinra Phase 3 trial (SAVE-MORE) were selected based on a biomarker cut-off, soluble urokinase plasminogen activator receptor (suPAR) \geq 6 ng/mL, intending to enrich the trial with patients at risk for progression to severe respiratory failure. SuPAR test is not commercially available in the United States at the time.

Context of use: Use ML to explore clinical characteristics and/or laboratory tests that could reliably identify the patients

with baseline suPAR \geq 6 ng/mL.

Table 1 Eight criteria in the scoring rule to identify patients with suPAR levels of 6 ng/mL or higher

with suPAR levels of 6 ng/mL or higher
Age≥75 years
Severe pneumonia by WHO criteria
Current/previous smoking status
Sequential Organ Failure Assessment (SOFA) score≥3
Neutrophil-to-lymphocyte ratio (NLR) ≥ 7
Hemoglobin ≤ 10.5 g/dL
Medical history of ischemic stroke
Blood urea ≥50 mg/dL and/or medical history of renal disease
suPAR, soluble urokinase plasminogen activator receptor; WHO, World Health Organization.

The elastic net regression was used to select contributing feature(s) and a neural network-based model was applied to independently select feature(s) and the related cutoff value(s).

Table 2 Performance of the scoring rule to identify patients with suPAR levels of 6 ng/mL or higher in both the training dataset (SAVEMORE trial) and the external validation dataset (SAVE trial)

Training dataset (SAVEMORE trial)			External validation dataset (SAVE trial)				
	suPAR≥6	suPAR<6	Total		suPAR≥6	suPAR<6	Total
SCORE (+)	231	12	243	SCORE (+)	95	6	101
	(PPV=0.95, sensitivity=0.41)	(FPR=0.04)			(PPV=0.94, sensitivity=0.37)	(FPR=0.07)	
SCORE (-)	338	256	594	SCORE (-)	159	76	235
		(NPV=0.43, specificity=0.96)				(NPV=0.32, specificity=0.93)	
Total	569	268	837	Total	254	82	336

FPR, false positive rate; NPV, negative predictive value; PPV, positive predictive value; suPAR, soluble urokinase plasminogen activator receptor.

Clinical scoring rule had high positive predictive value, high specificity, reasonable sensitivity, and biological relevance. It is expected to identify patients who are likely to have an elevated $\sup AR |eve| \ge 6 \ ng/mL$ at baseline.

Concepts of model-based quantitative decision making

ECP 8506 Clinical Trial Simulation Sep 13, 2024

Ya-Feng (Jay) Wen, PharmD, PhD

wenxx164@umn.edu | jay.wen3@gilead.com

Clinical Pharmacologist, Gilead Sciences

Adjunct of Assistant Professor, ECP, UMN