1 环面簇 (Toric Varieties)

1.1 基本定义

在欧式空间 \mathbb{R}^n 中一个锥形 σ 如果是有限个闭半平面 的交, 我们谈论的都是顶点在原点的锥形. 我们说 σ 是严格的锥形如果 σ 不包含任何直线 (只包含射线).

考虑 $(\mathbb{R}^n)^* \cong \mathbb{R}^n$. 对于锥形 σ , 定义

$$\sigma^{\vee} = \{ f \in (\mathbb{R}^n)^* : \forall x \in \sigma, f(x) \ge 0 \}.$$

记 $N = \mathbb{Z}^n \subseteq \mathbb{R}^n$, $M = \operatorname{Hom}(N, \mathbb{Z}) \cong \mathbb{Z}^n \subseteq (\mathbb{R}^n)^*$. 我们说 σ 是有理的如果存在 $v_1, \ldots, v_k \in N = \mathbb{Z}^n$ 使得

$$\sigma = \mathbb{R}_{\geq 0} v_1 + \dots + \mathbb{R}_{\geq 0} v_k$$

我们下面说的锥形都是有理的.

此时定义对应的半群

$$S_{\sigma} = \sigma^{\vee} \cap M = \{ f \in \operatorname{Hom}(N, \mathbb{Z}) : \forall \sigma, f(x) \geq 0 \}$$

对应的仿射环面簇

$$U_{\sigma} = \operatorname{Hom}_{\not \leq \#}(S_{\sigma}, \mathbb{C}).$$

其中 \mathbb{C} 视作乘法幺半群. 上面自然地有一个代数簇的结构. 或者说, 等价地,

$$\mathcal{O}(U_{\sigma}) = \mathbb{C}[X^{S_{\sigma}}]$$

这里表示群环 $X^a X^b = X^{a+b}$.

考虑 n=1, 锥形是 $\mathbb{R}_{\geq 0}$, 那么 $S_{\sigma}=\mathbb{Z}_{\geq 0}$. 对任何半 群 X 都有

$$\operatorname{Hom}_{\not \preceq \#}(\mathbb{Z}_{>0}, X) = X$$

即, $\mathbb{Z}_{>0}$ 出发的同态只由 1 的像决定. 因此

$$U_{\sigma} = \mathbb{C} \quad \mathbb{P} \quad \mathcal{O}(U_{\sigma}) = \mathbb{C}[X].$$

考虑 n=1, 锥形是 $\{0\}$, 那么 $S_{\sigma}=\mathbb{Z}$. 对任何半群 X都有

$$\operatorname{Hom}_{\text{女} \to \mathbb{H}}(\mathbb{Z}, X) = X$$
 中可逆元

因此

$$U_{\sigma} = \mathbb{C}^{\times}. \quad \mathbb{P} \quad \mathcal{O}(U_{\sigma}) = \mathbb{C}[X, \frac{1}{X}].$$

如果锥形 σ 有一个面 τ (差一维的面). 我们可以假设 $\tau = \{\lambda = 0\}$ 对某个 $\lambda \in S_{\sigma}$. 那么可以直接验证

$$S_{\sigma} = S_{\sigma} + \mathbb{Z}_{>0} \lambda \subseteq S_{\sigma} + \mathbb{Z} \cdot \lambda = S_{\tau}.$$

所以 S_{τ} 出发的同态由其限制到 S_{σ} 上的同态唯一决定, 换句话说, 可以说

$$\operatorname{Hom}_{\not\preceq \# \sharp}(S_{\tau}, \mathbb{C}) = U_{\tau} \subseteq U_{\sigma} = \operatorname{Hom}_{\not\preceq \# \sharp}(S_{\sigma}, \mathbb{C})$$

实际上, 这是一个开浸入.

|注意 1 | 但是反之, S_{σ} 上的同态并不总能延拓到 S_{τ} 上.

我们说一把**扇子**(fan) 是一组严格 (有理) 锥形, 数量有限, 使得每个面都是组内的锥形, 两个组内的锥形的交还是组内的锥形. 对于一把扇子 Δ , 可以定义其**环面簇**

$$X(\Delta) = \bigcup_{\sigma \in \Delta} U_{\sigma}$$

其中包含是上段所说的. 这有 (Hausdorff 的) 代数簇的结构.

考虑下列扇子

{负半轴, {0}, 正半轴}

所以取并实际上是把 $\mathbb C$ 的无穷远点添上, 所以我们得到 $\mathbb CP^1$.

习题 1. 考虑平面上分出的三块区域. 证明得到的环面簇是 $\mathbb{C}P^2$.

[提示: 会算出

但是这个里面的映射得好好算一下.]

1.2 几何性质

1. 环面作用.

对于一个锥形 σ , 对应 $S_{\sigma} \subseteq \mathbb{Z}^{n}$. 在

$$U_{\sigma} = \operatorname{Hom}_{\triangleright}(S_{\sigma}, \mathbb{C})$$

上有 $\operatorname{Hom}_{\triangleright}(\mathbb{Z}^n,\mathbb{C}) \cong (\mathbb{C}^{\times})^n$ 显然的群作用

$$a \in \operatorname{Hom}_{\mathbb{D}}(\mathbb{Z}^n, \mathbb{C}),$$

 $\varphi \in \operatorname{Hom}_{\mathbb{D}}(S_{\sigma}, \mathbb{C})$ $(a \cdot \varphi)(x) = a(x)\varphi(x).$

例如当 $\sigma = \{0\}$ 时

$$\sigma_0 = \{0\}$$
 $S_{\sigma} = \mathbb{Z}^n$

$$U_{\sigma} = \operatorname{Hom}_{\mathbb{O}}(\mathbb{Z}^n, \mathbb{C}) = (\mathbb{C}^{\times})^n$$

上面的作用就是自然的左乘作用.

一般地,在一把扇子 Δ 上,对应的环面簇 $X(\Delta)$ 也有 $(\mathbb{C}^{\times})^n$ 的群作用.且此时 $U_{\{0\}} \cong (\mathbb{C}^{\times})^n$ 是一个稠密开集,在上面的作用恰好是左乘作用.

2. 不动点

考虑一把扇子 Δ . 对于一个锥形 $\sigma \in \Delta$, 如果 σ 是满维数的, 那么记

$$x_{\sigma}(p) = \begin{cases} 1 & p = 0 \\ 0 & p \neq 0 \end{cases} \in U_{\sigma} = \operatorname{Hom}_{\mathbb{D}}(S_{\sigma}, \mathbb{C})$$

因为此时 S_{σ} 没有元素可逆 (严格性).

全体

$$\{x_{\sigma}: \sigma \in \Delta \text{ 满维数}\}$$

就是所有 T 的不动点.

3. 极限点

一般地, 对于锥形 $\tau \in \Delta$, 我们定义

$$x_{\tau}(p) = \begin{cases} 1 & p \in \tau^{\perp} \\ 0 & p \in S_{\tau} \setminus \tau^{\perp} \end{cases} \in \operatorname{Hom}_{\mathbb{D}}(S_{\tau}, \mathbb{C})$$

这里 $\tau^{\perp} = \{ p \in \mathbb{R}^n : \langle \tau, p \rangle = 0 \}$. 这是一个半群同态因为 S_{τ} 在 τ^{\perp} 一侧,

x+y	(7 上)	(τ [⊥] 一侧)	+	1	0
$(\tau^{\perp} \perp)$	$(\tau^{\perp} \perp)$	(τ [⊥] 一侧)	1	1	0
$(au^{\perp}$ 一侧)	(τ [⊥] 一侧)	(τ [⊥] 一侧)	0	0	0

对于 $v\in\mathbb{Z}^n\subseteq\mathbb{R}^n$,我们定义 $\lambda_v(z)\in U_{\{0\}}\subseteq X(\Delta)$ 为

$$(\lambda_v(z))(p) = z^{\langle v, p \rangle}.$$

那么此时

$$\lim_{z \to 0} \lambda_v(z) = x_\tau$$

其中 τ 表示 v 所在的最小的锥形 (即, 在这个锥形的相对内部).

这是因为在 U_{τ} 上, 点 λ_v 享有相同的表达式. 回忆,

$$\lim_{z \to 0} z^n = \begin{cases} 0 & n > 0 \\ 1 & n = 0 \\ \text{ π 存在} & n < 0 \end{cases}$$

v 落在 τ 相对内部的条件是说 $p \in S_{\tau}$ 和 v 垂直就和整个 τ 垂直.

4. 轨道

对于一把扇子 $\Delta \subseteq \mathbb{R}^n$, 其每条 $T = (\mathbb{C}^{\times})^n$ 轨道都经过唯一的一个上面定义的 x_{τ} . 轨道可以直接写出来

$$T \cdot x_{\tau} = \left\{ \lambda \in U_{\tau} : \begin{array}{l} \lambda(\tau^{\perp}) \in \mathbb{C}^{\times} \\ \lambda(S_{\tau} \setminus \tau^{\perp}) = 0 \end{array} \right\} \cong \operatorname{Hom}_{\mathbb{H}}(\tau^{\perp} \cap S_{\tau}, \mathbb{C}^{\times}).$$

这里 $\tau^{\perp} = \{ p \in \mathbb{R}^n : \langle \tau, p \rangle = 0 \}.$

因此轨道的维数

 $\dim T \cdot x_{\tau} = \tau$ 的余维数.

且

$$\overline{T \cdot x_{\sigma}} = \bigcup_{\tau \ge \sigma} T \cdot x_{\tau} \qquad U_{\sigma} = \bigcup_{\tau \le \sigma} T \cdot x_{\tau}.$$

注意 1 Morse 理论的类比. 每个点 $x \in X(\Delta)$, 考虑往一个"方向" $v \in \mathbb{Z}^n$ 处作用 $\lambda_v(z) \cdot x$. 假设下列极限存在

$$\lim_{z \to 0} \lambda_v(z)x \qquad \lim_{z \to \infty} \lambda_v(z)x.$$

那么他们都是不动点, 但是其中一个稳定, 一个不稳定.

5. 紧致性

对于一把扇子 Δ , 对应的环面簇 $X(\Delta)$. 那么

$$X(\Delta)$$
 紧致 \iff Δ 铺满了整个 \mathbb{R}^n .

注意 1 一般地, 假如有 \mathbb{Z}^n 和 \mathbb{Z}^m 中的两把扇子 Δ_1 和 Δ_2 . 且 $\varphi: \mathbb{Z}^n \to \mathbb{Z}^m$ 把任何 Δ_1 中锥形的像映到 Δ_2 的某

个锥形里,

$$\begin{array}{c}
\sigma_1 \xrightarrow{\varphi} \sigma_2 \\
\downarrow \\
S_{\sigma_1} \xleftarrow{\varphi^*} S_{\sigma_2} \\
\downarrow \downarrow
\end{array}$$

习题 1. 证明曲面环面簇 (即二维的环面簇), 一定可以

是 Eulid 算法, 通过一个 $GL_2(\mathbb{Z})$ 可以假设其中一个向量是 (0,1), 另一个是 (n,-d), 其中 n>d>0. 这时用 (1,0) 分割. 假设 n=kd+r, 其中 0<r<d, 那么通过 $GL_2(\mathbb{Z})$

 $\begin{pmatrix} 1 & n \\ 0 & -d \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & r \\ 0 & -d \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & r \\ 1 & r-d \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & r \\ 1 & r-d \end{pmatrix}. \quad]$

[提示: 只需要考虑一个锥形. 这

通过爆破变成光滑的.

 $U_{\sigma_1} = \operatorname{Hom}_{\mathfrak{D}}(S_{\sigma_1}, \mathbb{C}) \xrightarrow{\varphi} \operatorname{Hom}_{\mathfrak{D}}(S_{\sigma_2}, \mathbb{C}) = U_{\sigma_2}$

这诱导了 $X(\Delta_1) \to X(\Delta_2)$, 此时

$$X(\Delta_1) \to X(\Delta_2)$$
 逆紧 $\iff \Delta_2$ 在 φ 下的原像被 Δ_1 铺满.

6. 光滑性

对于一个锥形 σ , 对应的仿射环面簇 U_{σ} . 那么

$$U_{\sigma}$$
 光滑 \iff 存在 $v_1, \ldots, v_k \in \mathbb{Z}^n$ 使得
$$\sigma = \mathbb{R}_{\geq 0} v_1 + \cdots + \mathbb{R}_{\geq 0} v_k,$$
 且 v_1, \ldots, v_k 可以延拓为 \mathbb{Z}^n 的一组基.

在此时,

$$S_{\sigma} \cong \mathbb{Z}_{\geq 0}^k \oplus \mathbb{Z}^{n-k}.$$

所以

$$U_{\sigma} = \mathbb{C}^k \times (\mathbb{C}^{\times})^{n-k}.$$

注意 1 很多情况都不是光滑的.

- 1. 考虑四个向量 $(\pm 1, \pm 1, 1)$ 的非负线性组合, 这是三维却必须用四个向量生成.
- 2. 平面上考虑 (1,2) 和 (1,5) 的非负线性组合, 因为 $\det \binom{12}{15} \neq \pm 1$, 所以也不是光滑的.

7. 爆破

考虑一个满维数的锥形 σ , 在内部选择一条射线, 这把 σ 分成 n 份满维数的锥形 $\sigma_1, \ldots, \sigma_n$.

σ	$\sigma = \sigma_1 \cup \dots \cup \sigma_n$	$\sigma_1, \cdots, \sigma_n, \sigma_1 \cap \sigma_2, \cdots$
S_{σ}	$S_{\sigma} = S_{\sigma_1} \cap \dots \cap S_{\sigma_n}$	$S_{\sigma_1}, \cdots, S_{\sigma_n}, S_{\sigma_1 \cap \sigma_2}, \cdots$
U_{σ}	?	$U_{\sigma_1}, \cdots, U_{\sigma_n}, U_{\sigma_1 \cap \sigma_2}, \cdots$

此时有映射

$$\bigcup U_{\sigma_i} \longrightarrow U_{\sigma}.$$

这是 T 等变的, 所以我们可以主要分析轨道 (上的代表点 x_{τ}).

不难发现

轨道	原像
$x_{\sigma} = T \cdot x_{\sigma}$	$\bigcup_{\sigma' \le \sigma} Tx_{\sigma'}$
$T \cdot x_{\tau}$	$T \cdot x_{\tau} (\tau < \sigma)$

所以除了 x_{σ} 原像比较大, 其他点原像都是一个点.

如果 $\sigma_1, \ldots, \sigma_n$ 都光滑, 那么 $\bigcup_{\sigma' \leq \sigma} Tx_{\sigma'} \cong \mathbb{C}P^{n-1}$, 且上面的

$$\bigcup U_{\sigma_i} \longrightarrow U_{\sigma}$$

恰是在 x_{σ} 处的爆破.