CS 202: Mathematics for Computer Science II: An Introduction to Mathematical Logic Lecture 18-19

Sandeep K. Shukla

Outline

- Relevance Lemma
- Satisfiability and Validity
- Semantic Entailment
- Proof Methods
 - Natural Deduction
- Discussion on Godel's Completeness Theorem
- Discussion on FOL with Equality
- Discussion on FOL with Peano arithmetic
- Discussion on Incompleteness Theorem
- Final words

Relevance Lemma

Relevance Lemma formalizes the intuitive fact that satisfiability of a formula depends only on the values assigned to the variables which are free in the formula but not on the values assigned to other variables in the environment.

Lemma: Let α be a first order formula, I be an interpretation, and E_1, E_2 two environments such that $E_1(x) = E_2(x)$ for all $x \in FV(\alpha)$. Then $I \models_{E_1} \alpha$ iff $I \models_{E_2} \alpha$.

Proof: By induction on the structure of α .

Some examples of Satisfiability and Validity

Example 1

```
Let L be a language consisting of
                                    variables x, y, z;
                              function symbols f^2, g^1; predicate symbol P^2
Let \alpha \stackrel{\text{def}}{=} P(f(g(x), g(y)), g(z))
      I:dom(I)=N; f is addition, g is squaring, and P is equality
Then for E: E(x) = 3, E(y) = 4, E(z) = 5, \alpha \stackrel{\text{def}}{=} x^2 + y^2 = z^2 and
I \vDash_{F} \alpha If fact, with the same I, for any environment
               where x, y, z are pythagorian triplets, \alpha is satisfied.
    But a is not a valid formula.
```

Another Example

- Example 2:
- Let L be a language consisting of variables x, y; predicate symbol Q^2

$$I: D = \{1,2\}; Q^I = \emptyset$$

 $E: E(x) = 1, E(y) = 2$

Consider
$$\alpha \stackrel{\text{def}}{=} (\exists x (\forall y Q(x, y)))$$

Clearly $I \not\models_E \alpha$

Consider *J*1:

$$D = \{1.2\}; Q^I = \{(1,2)\}$$

$$G: G(x) = 1, G(y) = 2$$

$$J1 \vDash_G (\exists x (\exists y Q(x,y)))$$

Consider J2:

$$D = \{1,2\}; Q^{I}$$

$$= \{(1,2), (2,2)\}$$

$$G: G(x) = 1, G(y) = 2$$

$$J2 \vDash_{G} (\forall x (\exists y Q(x,y)))$$

Semantic Entailment

Let Σ be a wff and α is a wff. The interpretation I and environment E, if $I \models_E \Sigma$ implies $I \models_E \alpha$, then we write $\Sigma \models \alpha$ (Σ entails α).

If $\emptyset \models \alpha$ then we say α is valid. This means α is satisfied by all The interpretation I and environment E.

If
$$\Sigma = \{\alpha_1, \alpha_2, ..., \alpha_n\}$$
 and $\Sigma \vDash \beta$, then we can also say $\emptyset \vDash (\alpha_1 \land (\alpha_2 \land (\alpha 3 \land (\dots \land (\alpha_{n-1} \land \alpha_n)) \dots) \Rightarrow \beta$

In other words $(\alpha_1 \land (\alpha_2 \land (\alpha_3 \land (\dots \land (\alpha_{n-1} \land \alpha_n)) \dots) \Rightarrow \beta$ is a valid wff.

How do you prove semantic entailments?

- In propositional logic it was straight forward albeit exponential complexity if there were n propositional variables in the formulas, try out 2^n possible models and check if those satisfying $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ also satisfy β .
- In the first order logic, there are immense number of possible interpretations, and environments it is not possible that way.
- However, we can reason about the models (Interpretations and environments) that would satisfy the formulas using our high school level proof techniques such as proof by contradiction.
- Let's try some examples.

Semantic Entailment Proofs

Example 1:

```
Show that \emptyset \models ((\forall x (\alpha \Rightarrow \beta)) \Rightarrow ((\forall x \alpha) \Rightarrow (\forall x \beta)))
```

Proof by contraction: Suppose the above formula is not valid. That would mean there is a model (an interpretation I, and environment E) such that $I \not\models_E ((\forall x (\alpha \Rightarrow \beta)) \Rightarrow ((\forall x \alpha) \Rightarrow (\forall x \beta))).$

That means $I \vDash_E ((\forall x (\alpha \Rightarrow \beta)) but I \not\vDash_E ((\forall x \alpha) \Rightarrow (\forall x \beta))$

Now $I \not\models_E ((\forall x \alpha) \Rightarrow (\forall x \beta))$ means $I \models_E (\forall x \alpha) \ but \ I \not\models_E (\forall x \beta)$

Now by definition of $\forall x, I \vDash_{E[x \mapsto a]} (\alpha \Rightarrow \beta)$ for all $a \in dom(I)$

And $\forall x, I \vDash_{E[x \mapsto a]} \alpha$ for all $a \in dom(I)$. This apply modus ponens on all $a \in dom(I)$, we get $I \vDash_{E[x \mapsto a]} \beta$ but that means $I \vDash_{E} (\forall x \beta) \leftarrow$ contradiction. QED.

Semantic Entailment Proofs

Example 2:

```
Show that \{(\forall x (\neg \gamma))\} \vDash (\neg (\exists x \gamma))
```

Proof by contradiction. Suppose by way of contradiction that there is a model (an interpretation I, and environment E) such that $I \models_E (\forall x (\neg \gamma)) but I \not\models_E (\neg (\exists x \gamma))$ which means $I \models_E (\exists x \gamma)$

Now from $I \vDash_E (\forall x (\neg \gamma))$ we can say that for all $a \in dom(I)$, $I \vDash_{E[x \mapsto a]} \neg \gamma$ which means for no $a \in dom(I)$, $I \vDash_{E[x \mapsto a]} \gamma$ and that contradicts $I \vDash_E (\exists x \gamma)$. Thus contradiction achieved. QED.

Semantic Entailment Proofs

Example 3:

Find $wffs \alpha \ and \beta \ such that$ $\{((\forall x \ \alpha) \Rightarrow (\forall x \ \beta))\} \not\models (\forall x \ (\alpha \Rightarrow \beta))$

- Consider $I: dom(I) = \{a, b\}, predicate symbol P^I = \{a\}$
- Suppose $\alpha \stackrel{\text{def}}{=} P(x)$ and $\beta \stackrel{\text{def}}{=} (\neg P(x))$
- Then P(a) = T; P(b) = F; $\neg P(a) = F$, and $\neg P(b) = T$.
- So P(a) cannot imply $\neg P(a)$
- P(b) being false, it can imply $\neg P(b)$ but
- we cannot say $(\forall x \ (P(x) \Rightarrow (\neg P(x))))$

Semantic Entailment Examples

Example 4:

For any formula α , and term t, show that:

$$\emptyset \vDash ((\forall x \; \alpha) \Rightarrow \left(\alpha \left[\frac{t}{x}\right]\right)))$$

Proof by contradiction: Suppose $(\forall x \ \alpha)$ is true, but $\alpha \left[\frac{t}{x}\right]$ is false under an interpretation I, and environment E.

Then $I \vDash_{E[x \mapsto a]} \alpha$ for all $a \in dom(I)$.

We also know that $t^{I,E} \in dom(I)$.

So
$$\left(\alpha\left[\frac{t}{x}\right]\right)^{I,E} = \alpha^{I,E}\left[\frac{t^{I,E}}{x}\right]$$
 cannot be false. Contradiction. QED.

Semantic Entailment Examples

Example 5: Let α be any wff without a free occurrence of x. Let I be an interpretation, and E be an environment. Then $\alpha^{I,E} = (\forall x \ \alpha)^{I,E}$.

Proof: (Note that this is intuitive – because if α does not have free occurrence of x, then quantifying over x will not make any difference).

Let D = dom(I), $x \notin FV(\alpha)$, so $E(y) = E[x \mapsto a](y)$ for all $y \in FV(\alpha)$, for all $a \in D$. Then by **the Relevance lemma**, we can say that

$$I \vDash_{E} \alpha \ iff$$

$$I \vDash_{E[x \mapsto a]} \alpha \text{ for all } a \in D \ iff$$

$$I \vDash_{E} (\forall x \ \alpha)$$

QED.

Discussion on Proving semantic entailment

- Unlike in propositional logic, where an exponential number of models can be tried to check validity or satisfiability, here the choices are too many.
- Therefore, we need a proof technique like resolution refutation in proposition logic, but for first order logic.
- One can design multiple proof systems each of which must be separately proven to be sound and complete.
- We focus on Natural Deduction Proof System.
- Natural Deduction proof system is sound and complete but we will not get time to prove that.

Rules of Natural Deduction

Name	Proof Notation (⊢)	Deduction Notation
\land introduction (\land_i)	If $\Sigma \vdash \alpha$ and $\Sigma \vdash \beta$ then $\Sigma \vdash (\alpha \land \beta)$	$\frac{\alpha \beta}{(\alpha \land \beta)}$
\land elimination (\land_e)	if $\Sigma \vdash (\alpha \land \beta)$ then $\Sigma \vdash \alpha$ and $\Sigma \vdash \beta$	$\frac{(\alpha \wedge \beta)}{\alpha} \frac{(\alpha \wedge \beta)}{\beta}$
\lor introduction (\lor_i)	If $\Sigma \vdash \alpha$ then $\Sigma \vdash (\alpha \lor \beta)$	$\frac{\alpha}{(\alpha \vee \beta)} \qquad \frac{\alpha}{(\beta \vee \alpha)}$
V elimination (V _e)	If $\Sigma, \alpha \vdash \gamma \text{ and } \Sigma, \beta \vdash \gamma \text{ then}$ $\Sigma, (\alpha \lor \beta) \vdash \gamma$	$ \begin{array}{c c} \alpha & \beta \\ \vdots & \vdots \\ \gamma & \gamma \end{array} $
\Rightarrow introduction (\Rightarrow_i)	If Σ , $\alpha \vdash \beta$ then $\Sigma \vdash (\alpha \Rightarrow \beta)$	$\frac{\alpha}{\vdots \\ \beta}$ $(\alpha \Rightarrow \beta)$

Name	Proof notation (⊢)	Deduction Notation
\Rightarrow elimination (\Rightarrow_e)	$if \ \Sigma \vdash (\alpha \Rightarrow \beta) \ and \ \Sigma \vdash \alpha$ $then \ \Sigma \vdash \beta$	$\frac{(\alpha \Rightarrow \beta) \alpha}{\beta}$
Reflexivity or Premise	Σ , $\alpha \vdash \alpha$	$\frac{\alpha}{\alpha}$
\bot introduction (\bot_i) \neg elimination (\lnot_e)	$\Sigma, \alpha, (\neg \alpha) \vdash \bot$	$\frac{\alpha \qquad (\neg \alpha)}{\bot}$
\neg introduction (\neg_i)	If $\Sigma, \alpha \vdash \bot$ then $\Sigma \vdash (\neg \alpha)$	$\frac{\alpha}{\vdots}$ $\frac{\bot}{(\neg \alpha)}$
$\neg \neg elimination (\neg \neg_e)$	$\Sigma \vdash (\neg (\neg \alpha)) then$ $\Sigma \vdash \alpha$	$\frac{(\neg(\neg \alpha))}{\alpha}$
Contradiction elimination (\perp_e)	$\Sigma \vdash \bot \ then \ \Sigma \vdash \alpha$ for any α	$\frac{\perp}{\alpha}$

Name	Proof notation (⊢)	Deduction Notation
\forall elimination (\forall_e)	If $\Sigma \vdash (\forall x \ \alpha)$ then $\Sigma \vdash \alpha[\frac{t}{x}]$	$\frac{(\forall x \ \alpha)}{\alpha \left[\frac{t}{x}\right]}$
\exists introduction (\exists_e)	If $\Sigma \vdash \alpha \left[\frac{t}{x} \right]$ then $\Sigma \vdash (\exists x \ \alpha)$	$\frac{\alpha \left[\frac{t}{x}\right]}{(\exists x \ \alpha)}$
\forall introduction (\forall_i)	if $\Sigma \vdash \alpha \left[\frac{y}{x} \right]$ where y is a fresh varial and y not free in Σ , α then $\Sigma \vdash (\forall x \ \alpha)$	$rac{y extit{fresh}}{\vdots } \ rac{lpha[y/x]}{(orall xlpha)}$
\exists elimination (\exists_e)	If $\alpha \left[\frac{u}{x} \right] \vdash \beta$ with fresh u , then Σ , $(\exists x \ \alpha) \vdash \beta$	$ \begin{array}{c c} \alpha[u/x] \\ \vdots \\ \beta \end{array} $

Example Proofs using Natural Deduction

Example 1:

Prove $\{p, q\} \vdash p$

- 1. p premise
- 2. q premise
- 3. p reflexivity 1.

QED

Example 2:

Prove $\{(p \land q)\} \vdash (q \land p)$

- 1. $(p \land q)$ premise
- 2. $q \wedge_e on 1$.
- 3. $p \wedge_e on 1$.
- 4. $(q \land p) \land_i on 2, 3$

QED

Example Proofs using Natural Deduction

Example 3: Prove

$$\{(p \Rightarrow q), (q \Rightarrow r)\} \vdash (p \Rightarrow r)$$
1. $(p \Rightarrow q)$ Premise
2. $(q \Rightarrow r)$ Premise
3. p Assumption
4. q $\Rightarrow_e 1,3 \pmod{ponens}$
5. r $\Rightarrow_e 2,4 \pmod{ponens}$
 $\Rightarrow_i 3-5$

Example Proofs using Natural Deduction

• Example 4: Prove

•
$$\{(p \lor q)\} \vdash ((p \Rightarrow q) \lor (q \Rightarrow p))$$

1.
$$(p \lor q)$$
 Premise

2.	p	Asssumption
3.	\overline{q}	Assumption
4.	p	Reflexivity 2
<i>5.</i>	$(q \Rightarrow p)$	\Rightarrow_i 3,4
6.	$(p \Rightarrow q)$	$V(q \Rightarrow p)$ $V_i = 5$.

7. q Assumption	
8. p Assumption	
9. q Reflexivity 7	
$ 10.(p \Rightarrow q) \Rightarrow_i 8-9$	
$11. ((p \Rightarrow q) \lor (q \Rightarrow p)) \lor_i 10$	
12. $((p \Rightarrow q) \lor (q \Rightarrow p))$ $\lor_e 1, 2-6, 7$	_
11	

Example 5: Prove

$$\{(\alpha \Rightarrow (\neg \alpha))\} \vdash (\neg \alpha)$$

1.
$$(\alpha \Rightarrow (\neg \alpha))$$
 Premise

2. α Assumption

3. $(\neg \alpha)$ $\Rightarrow_e 1, 2$

4. \bot $\neg_e 2, 3$

5. $(\neg \alpha)$ $\neg_i 2 -$

Natural Deduction for Predicate Logic Examples

• Example 1: Prove

1. $(\forall x P(x))$

3. $(\exists x P(x))$

2. P(u)

$$\{(\forall x P(x))\} \vdash (\exists x P(x))$$

$$Premise$$

$$\forall_e \ 1$$

$$\exists_i \ 2$$

More Examples

Example 2: Prove

5. QED

Additiple 2. Prove
$$\left\{ P(t), \left(\forall x \left(P(x) \Rightarrow (\neg Q(x)) \right) \right) \right\} \vdash (\neg Q(t))$$
1. $P(t)$ Premise
2. $\left(\forall x \left(P(x) \Rightarrow (\neg Q(x)) \right) \right)$ Premise
3. $\left(P(t) \Rightarrow (\neg Q(t)) \right)$ $\forall_e 2$
4. $\left(\neg Q(t) \right)$ $\Rightarrow_e 1 - 3$

Examples

Example 3: Show that

$$\{(\neg P(y))\} \vdash (\exists x (P(x) \Rightarrow Q(y)))$$

$$1.(\neg P(y))$$
 premise

$$2. P(y)$$
 Assumption

$$\exists$$
. \perp \neg_e 2,1

$$4. Q(y) \qquad \qquad \bot_e \quad 3$$

$$5. (P(y) \Rightarrow Q(y)) \Rightarrow_i 2 - 4$$

6.
$$(\exists x (P(x) \Rightarrow Q(y)) \exists_i 5$$