(19) World Intellectual Property Organization International Bureau

1 DE LA CONTRE LA CONTRE DE LA C

(43) International Publication Date 20 February 2003 (20.02.2003)

PCT

(10) International Publication Number WO 03/014377 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/CA02/01214

(22) International Filing Date: 5 August 2002 (05.08.2002)

(25) Filing Language:

English

C12Q 1/00

(26) Publication Language:

English

(30) Priority Data: 60/310,272

7 August 2001 (07.08.2001) US

- (71) Applicant (for all designated States except US):
 BOEHRINGER INGELHEIM (CANADA) LTD.
 [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5
 (CA).
- (72) Inventors; and
- (75) Inventors, And (75) Inventors/Applicants (for US only): KUKOLJ, George [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). BEAULIEU, Pierre, L. [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). MCKERCHER, Ginette [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).

- (74) Agent: BERNIER, Louise, G.; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: DIRECT BINDING ASSAY FOR IDENTIFYING INHIBITORS OF HCV POLYMERASE

Kd = 1.26E - 08 A = 6.01E - 02 A = 2.55E - 01 A = 0.78 A = 0.78 A = 0.78

(57) Abstract: A method for identifying compounds binding to HCV polymerase comprising the steps of:contacting said HCV polymerase or an analog thereof with a probe formula I:wherein A is O, S, N, NR1, or CR1, wherein R1 is defined herein;---- represents either a single or a double bond; R2 is selected from: H, halogen, R21, OR21, SR21, COOR21, SO2N(R22)2, NR22C(O)R22 or N(R22)2, CON(R22)2, NR22C(O)NR22 wherein R21 and each R22 is defined herein; B is NR3 or CR3, wherein R3 is defined herein; with the proviso that, when A is not N, then one of A or B is either CR1 or CR3, K is N or CR4, wherein R4 is defined herein;L is N or CR5, wherein R5 has the same definition as R4 defined above; M is N or CR7, wherein R7 has the same definition as R4 defined above; R5 is C(Y1)Z wherein Y1 is O or S; and Z is N(R6a)R6 or OR6, wherein R6a is H or alkyl or NR61R62 wherein R61 and R62 are defined herein; and R6 is H, alkyl, cycloalkyl, alkenyl, Het, alkyl-aryl, alkyl-Het; or R6 is wherein R7 and R8 and Q are as defined herein; Y2 is O or S;R9 is H, (C1-6 alkyl), (C3-7)cycloalkyl or

(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6)alkyl-aryl or (C1-6)alkyl-Het, all of which optionally substituted with R90; or R9 is covalently bonded to either of R7 or R8 to form a 5- or 6-membered heterocycle; or a salt thereof; where the probe comprises a detectable label attached to any suitable position, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

03/014377 A2

I DENNE HILLINGE DE EINEN EINER HILL IN DE EELEN HAN DE EELEN HELD HELD SKELRE EELE HAN DE E

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/014377 PCT/CA02/01214

DIRECT BINDING ASSAY FOR IDENTIFYING INHIBITORS OF HCV POLYMERASE

FIELD OF THE INVENTION

The present invention relates generally to a method for identifying inhibitors of the HCV RNA dependent RNA polymerase. Particularly, this method uses a novel probe in a competitive assay to identify HCV polymerase inhibitors and determine their potency. More particularly, this invention relates to the use of a probe which binds with specificity to the polymerase, and which is capable of being displaced by inhibitors of the enzyme.

BACKGROUND OF THE INVENTION

15

20

25

30

35

Hepatitis C virus (HCV) is the major etiological agent of post-transfusion and community-acquired non-A non-B hepatitis worldwide. It is estimated that over 200 million people worldwide are infected by the virus. A high percentage of carriers become chronically infected and many progress to chronic liver disease, so called chronic hepatitis C. This group is in turn at high risk for serious liver disease such as liver cirrhosis, hepatocellular carcinoma and terminal liver disease leading to death. The mechanism by which HCV establishes viral persistence and causes a high rate of chronic liver disease has not been thoroughly elucidated. It is not known how HCV interacts with and evades the host immune system.

HCV is an enveloped positive strand RNA virus in the *Flaviviridae* family. The single strand HCV RNA genome is of positive polarity and comprises one open reading frame (ORF) of approximately 9600 nucleotides in length, which encodes a linear polyprotein of approx. 3010 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce structural and non-structural (NS) proteins. The structural proteins (C, E1, E2 and E2-p7) comprise polypeptides that constitute the virus particle (Hijikata, M. *et al.*, 1991, Proc. Natl. Acad. Sci. USA. *88*, 5547-5551; Grakoui, A. *et al.*, 1993(a), J. Virol. *67*, 1385-1395). The non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, NS5B) encode for enzymes or accessory factors that catalyze and regulate the replication of the HCV RNA genome. Processing of the structural proteins is catalyzed by host cell proteases (Hijikata *et al.*, 1991, *supra*). The generation of the mature non-structural proteins is catalyzed by two virally encoded proteases. The first is the NS2/3 zinc-

10

dependent metalloprotease which auto-catalyses the release of the NS3 protein from the polyprotein. The released NS3 contains a N-terminal serine protease domain (Grakoui A, et al., 1993(b), Proc Natl Acad Sci USA, 90, 10583-7; Hijikata, M. et al., 1993, J. Virol. 67, 4665-4675.) and catalyzes the remaining cleavages from the polyprotein. The released NS4A protein has at least two roles. First, forming a stable complex with NS3 protein and assisting in the membrane localization of the NS3/NS4A complex (Kim et al., Arch Virol. 1999, 144: 329-343) and second, acting as a cofactor for NS3 protease activity. This membrane-associated complex, in turn catalyzes the cleavage of the remaining sites on the polyprotein, thus effecting the release of NS4B, NS5A and NS5B (Bartenschlager, R. et al., 1993, J. Virol., 67, 3835-3844; Grakoui et al., 1993(a) supra; Hijikata et al., 1993 supra; Love, R.A. et al., 1996, Cell, 87, 331-342; reviewed in Kwong AD. et al., 1998, Antiviral Res., 40, 1-18). The C-terminal segment of the NS3 protein also harbors nucleoside triphosphatase and RNA helicase activity (Kim, D.W. et al., 1995, Biochem. Biophys. Res. Comm., 215, 160-166). The function of the protein NS4B is unknown. NS5A, a highly phosphorylated protein, seems to be responsible for the Interferon resistance of various HCV genotypes (Gale Jr. et al. 1997 Virology 230, 217; Reed et al., 1997, J. Virol. 71, 7187). NS5B is an RNA-dependent RNA polymerase (RdRp) that is involved in the replication of HCV.

20

25

30

35

15

To better understand the mechanism of HCV RNA replication and to develop appropriate *in vitro* systems, biochemical analyses of the NS5B protein have been performed. Full-length NS5B has been produced and purified as a non-fusion protein from insect cells infected with recombinant baculovirus (S.-E. Behrens *et al.*, 1996, EMBO J., 15:12-22; R. de Francesco *et al.*, 1996, Methods Enzymol., 275:58-67) or as a tagged protein from both insect cells (V. Lohmann *et al.*, 1997, J. Virol., 71:8416-8428; V. Lohmann *et al.*, 1998, Virology 249:108-118) and E. coli (Z.-H. Yuan *et al.*, 1997, BBRC 232:231-235). *In vitro*, the RdRp activity of recombinant NS5B is dependent on an RNA template and requires RNA or DNA as a primer (S.-E. Behrens *et al.*, 1996, EMBO J. 15:12-22; V. Lohmann *et al.*, 1997, J. Virol., 71:8416-8428). On RNA templates of heteropolymeric sequences, the 3'-OH of the template is used as a primer and elongation proceeds via a "snap-back" mechanism, leading to a double-stranded molecule in which template and product RNA are covalently linked (S.-E. Behrens *et al.*, 1996, EMBO J., 15:12-22; V. Lohman *et al.*, 1998, Virology, 249:108-118; G. Luo *et al.*, 2000, J. Virol. 74:851-863). Recently,

several groups also demonstrated that the HCV NS5B protein is able to initiate RNA synthesis *de novo* (J. Oh *et al.*, **1999**, J. Virol. 73:7694-7702; X. Sun *et al.*, **2000**, BBRC 268:798-803; W. Zhong *et al.*, **2000**, J. Virol. 74:2017-2022).

The NS5B RdRp-has-been crystallized to reveal a structure reminiscent of other nucleic acid polymerases (S. Bressanelli *et al.*, **1999**, PNAS USA 96:13034-13039; H. Ago *et al.*, **1999**, Structure 7:1417-1426; C.A. Lesburg *et al.*, **1999**, Nature Struct. Biol., 6:937-943). A comprehensive understanding of the differences between HCV and cellular polymerases will facilitate the design of specific inhibitors of HCV replication. Detailed kinetic information will also help in understanding the molecular basis of HCV NS5B-catalyzed nucleotide incorporation and subsequently the mechanistic characterization of the inhibitors.

Previous studies (S.-E. Behrens *et al.*, **1996**, EMBO J. 15:12-22; R. de Francesco *et al.*, **1996**, Methods Enzymol. 275:58-67; V. Lohmann *et al.*, **1997**, J. Virol. 71:8416-8428; V. Lohmann *et al.*, **1998**, Virology 249:108-118) provided little information with regard to the proportion of the polymerase RNA complexes that are competent for catalysis. Some recent studies investigated the template and primer requirements for HCV NS5B-directed RNA replication. Templates with 3'-termini free of secondary structures and short primers 2 or 3 nucleotides (nt) long were preferred for efficient initiation of RNA synthesis (W. Zhong *et al.*, **2000**, J. Virol. 74:9134-9143). In *de novo* initiation of RNA synthesis, however, NS5B needs a template with a stable secondary structure and a single-stranded sequence that contains at least one 3'-cytidylate.

25

30

35

20

15

Viral polymerases represent attractive targets for therapeutic inhibition of viral replication. The discovery of new antiviral agents often involves screening of large numbers of samples for inhibition of the target activity using either *in vitro* or *in vivo* assays. In general, polymerases are assayed by monitoring the incorporation of either 3 H-, α - 32 P or α - 33 P-labeled mononucleotides into oligonucleotide products, or by the extension of 5'-end-labeled primers. Products incorporated into the extended primers are captured or separated using common filter assays, acid precipitation, or denaturing gel electrophoresis.

The HCV NS5B polymerase is a prime target in the search for inhibitors of HCV

15

20

25

30

replication. Different preparations of the HCV polymerase exhibit varying efficiencies of product formation with a variety of RNA substrates. Moreover, the activity of purified recombinant NS5B polymerase varies significantly with specific RNA substrates. In addition, the *in vitro* RNA polymerase activity of NS5B is extremely sensitive to ionic strength, and salt concentrations exceeding 100 mM inhibit the reaction. Hence the ability to determine the potency of inhibitors at various salt concentrations is restricted by this limitation of standard enzymatic reactions. Also, HCV polymerase enzymatic assays disclosed in the prior art provide IC50 values as representative measurements of inhibitor potencies. For inhibitors that are competitive with either RNA or NTP, the IC50 value is proportional to the concentration of substrates in the assay and will vary depending on the concentration of these components.

In an effort to overcome the limitations of HCV polymerase assays that use suboptimal and poorly characterized RNA substrates, the Applicants have developed an assay for identifying specific inhibitors of the HCV polymerase that is independent of RNA.

It is therefore an advantage of the present invention to provide an assay that permits a direct measurement of inhibitor potencies (reflected by Kd values as an unequivocal determination of inhibitor potency) under defined conditions, irrespective of the substrate concentration.

The direct binding assay of this invention is amenable to adjustments in salt concentration or pH levels beyond the restricted range required for RNA polymerization. This type of assay is amenable to a high sensitivity and a high throughput format.

It is a further advantage of the present invention to provide a probe that binds to the polymerase with a high affinity, and which is displaced by inhibitors of the enzyme.

It is a further advantage to provide an assay that is applicable to HCV polymerases of different genotypes.

10

15

25

SUMMARY OF THE INVENTION

In a first aspect of the invention, there is provided a method for identifying compounds binding to HCV polymerase comprising the steps of:

- a) contacting said HCV polymerase or an analog thereof with a probe being capable of binding to an HCV polymerase or an analog thereof, said probe being displaceable by an inhibitor thereof, so as to form a complex comprising said probe bound to said polymerase;
- b) measuring a signal emitted from said probe in said complex to establish a base line level;
- c) incubating the product of step a) with a test compound; and
- d) measuring the signal from said complex; and
- e) comparing the signal from step d) with the signal from step b); whereby a modulation in said signal is an indication that said test compound binds to said polymerase.

In a preferred aspect the first embodiment, the probe is selected from: an isomer, enantiomer, diastereoisomer, or tautomer of a probe represented by formula I:

$$R^2$$
 B
 K
 K
 K
 K
 K

wherein:

A is O, S, N, NR¹, or CR¹, wherein R¹ is selected from the group consisting of: H, (C₁₋₆)alkyl optionally substituted with:

-halogen, OR^{11} , SR^{11} or $N(R^{12})_2$, wherein R^{11} and each R^{12} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het, said aryl or Het optionally substituted with R^{10} ; or both R^{12} are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

---- represents either a single or a double bond;

30 R^2 is selected from: H, halogen, R^{21} , OR^{21} , SR^{21} , $COOR^{21}$, $SO_2N(R^{22})_2$, $N(R^{22})_2$, , $CON(R^{22})_2$, $NR^{22}C(O)R^{22}$ or $NR^{22}C(O)NR^{22}$ wherein R^{21} and each R^{22} is independently H, (C_{1-6}) alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkynyl, (C_{5-1})

₇)cycloalkenyl, 6 or 10-membered aryl or **Het**, said \mathbf{R}^{21} and \mathbf{R}^{22} being optionally substituted with \mathbf{R}^{20} ;

or both \mathbf{R}^{22} are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

5

B is NR³ or CR³, wherein R³ is selected from (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, 6- or 10-membered aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, said alkyl, cycloalkyl, bicycloalkyl, aryl, Het, alkyl-aryl and alkyl-Het being optionally substituted with from 1 to 4 substituents selected from: halogen, or

10

a) (C₁₋₆)alkyl optionally substituted with:

- OR^{31} or SR^{31} wherein R^{31} is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁.

6)alkyl-Het; or

saturated heterocycle;

15

- $N(R^{32})_2$ wherein each R^{32} is independently H, (C_{1-6}) alkyl, (C_3-7) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; or both R^{32} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

20

b) OR³³ wherein R³³ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or

(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het;

c) SR^{34} wherein R^{34} is H, $(C_{1\text{-}6})$ alkyl, $(C_{3\text{-}7})$ cycloalkyl, or

 (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; and

25

d) $N(R^{35})_2$ wherein each R^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; or both R^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered

with the proviso that, when A is not N, then one of A or B is either CR1 or CR3;

30

K is N or CR⁴, wherein R⁴ is H, halogen, (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or R⁴ is OR⁴¹ or SR⁴¹, COR⁴¹ or NR⁴¹COR⁴¹ wherein each R⁴¹ is independently H, (C₁₋₆)alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or R⁴ is NR⁴²R⁴³ wherein R⁴² and R⁴³ are each independently H, (C₁₋₆)alkyl, (C₃₋₇)

 $_{7}$)cycloalkyl, (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, or both $\mathbf{R^{42}}$ and $\mathbf{R^{43}}$ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5 L is N or CR⁵, wherein R⁵ has the same definition as R⁴ defined above;

M is N or CR⁷, wherein R⁷ has the same definition as R⁴ defined above;

 R^5 is $C(Y^1)$ -Z wherein Y^1 is O or S;

Z is N(R^{6a})R⁶ or OR⁶, wherein R^{6a} is H or (C₁₋₆)alkyl or NR⁶¹R⁶² wherein R⁶¹ and R⁶² are each independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, or both R⁶¹ and R⁶² are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle; or R⁶² is COOR⁶³ wherein R⁶³ is (C₁₋₆)alkyl,

 (C_{3-6}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with 6- or 10-membered aryl or \mathbf{Het} ; or $\mathbf{R^{62}}$ is $\mathbf{COR^{64}}$ wherein $\mathbf{R^{64}}$ is $\mathbf{C_{1-6}}$)alkyl, (C_{3-6}) cycloalkyl -6-or 10-membered aryl or \mathbf{Het} ; and

20 **R**⁶ is selected from the group consisting of: H, (C₁₋₆)alkyl, (C₃₋₆)cycloalkyl, (C₂₋₆)alkenyl, 6- or 10-membered aryl, **Het**, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-**Het**, wherein said alkyl, cycloalkyl, alkenyl, aryl, **Het**, alkyl-aryl, or alkyl-**Het**, are all optionally substituted with **R**⁶⁰;

25 or **R**⁶ is

30

wherein \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6-or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

R7 and R8 are covalently bonded together to form second (C3-7)cycloalkyl or a 4, 5- or

6-membered heterocycle having from 1 to 4 heteroatom selected from O, N, and S; or when Z is $N(R^{6a})R^6$, either of R^7 or R^8 is covalently bonded to R^{6a} to form a nitrogen-containing 5-or 6-membered heterocycle;

5 Y^2 is O or S;

 R^9 is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, all of which optionally substituted with R^{90} ; or R^9 is covalently bonded to either of R^7 or R^8 to form a 5- or 6-membered heterocycle;

Q is a 6- or 10-membered aryl, **Het**, (C_{1-6}) alkyl-CONH-aryl or (C_{1-6}) alkyl-CONH-**Het**, all of which being optionally substituted with:

or a salt or a derivative thereof;

15

25

30

10

wherein **Het** is defined as 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S; and

- 20 \mathbf{R}^{10} , \mathbf{R}^{20} , \mathbf{R}^{60} , \mathbf{R}^{70} , \mathbf{R}^{90} and \mathbf{R}^{100} is each defined as:
 - 1 to 4 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
 - 1 to 4 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :
 - c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl)aryl or $(C_{1-6}$ alkyl) (C_{1-6}) alkyl, cycloalkyl, aryl,

10

15

20

25

30

Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} ; d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})$ C(O) R^{108} wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het or heterocycle being optionally substituted with R^{150} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6}) alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1-6}) alkyl)Het being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H,

10

(C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆ ₆alkyl)aryl or (C_{1-6} alkyl)Het, or R^{124} is OH or O(C_{1-6} alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR 128 wherein R^{128} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇) $_{7}$)cycloalkyl, aryl, Het, (C $_{1\text{-6}}$ alkyl)aryl or (C $_{1\text{-6}}$ alkyl)Het, said (C $_{1\text{-6}}$)alkyl, (C $_{3\text{-}}$ $_{7}$)cycloalkyl, or(C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, aryl, Het, (C $_{1-6}$ alkyl)aryl and (C $_{1-6}$ 6alkyl)Het being optionally substituted with R150; k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C_{1-6}) alkyl, (C_{3-6}) 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het,** (C_{1-6} alkyl)aryl or (C_{1-6} 6alkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R150; and wherein R¹⁵⁰ is defined as: - 1 to 3 substituents selected from:

20

15

halogen, OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, C(=NH)NH(C₁₋ 6)alkyl or C(=NH)NHCO(C1-6)alkyl; or

- 1 to 3 substituents selected from:

25

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C2-6)alkenyl, (C2-8)alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with R^{160} ;

- b) OR^{104} wherein R^{104} is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het being optionally substituted with R160;
- c) OCOR¹⁰⁵ wherein R^{105} is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃. 7)cycloalkyl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted

with R160;

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-8}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-8}$ alkyl)aryl or $(C_{1-8}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-8}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_1$. $_{6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with \mathbf{R}^{160} ;

5

10

1

15

20

25

h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or $(C_{1-6}$ alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and

k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl) Het, or both R^{129} and R^{130} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR 161 , SO $_3$ H, SR 161 , SO $_2$ R 161 , OR 161 , N(R 162) $_2$, SO $_2$ N(R 162) $_2$, or CON(R 162) $_2$, wherein R 161 and each R 162 is independently H, (C $_{1-6}$)alkyl, (C $_{3-7}$)cycloalkyl or (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl; or both R 162 are covalently bonded together and to the nitrogen to which they

5

10

15

20

25

10

15

20

25

are attached to form a 5, 6 or 7-membered saturated heterocycle,

wherein said probe comprises a detectable label attached to any suitable position, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

According to an alternative of this first embodiment, the probe used for the assay does not comprise a detectable label, and the signal measured is the change in intrinsic fluorescence of the HCV polymerase in the presence and absence of said probe.

According to a second aspect of the invention, there is provided the use of a probe according to formula I in the development of an assay for identifying inhibitors of HCV polymerase.

According to a third aspect of the invention, there is provided a kit for testing compounds potentially binding to HCV polymerase, said kit comprising the probe of formula (I) and instructions on how to use said probe for identifying test compounds binding to said polymerase.

BRIEF DESCRIPTION OF THE FIGURES

Having thus generally described the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof, and in which:

Figure 1 illustrates the titration of probe (i) with the NS5B Δ 21-His polymerase. Standard conditions for the Fluorescence anisotropy analysis are described in Example 3. The determined K_d value of probe (i) for this polymerase is 12.6 nM.

Figure 2 illustrates Z' evaluation for the Fluorescence Polarization assay. A series of positive and negative controls were tested in the 96-well plate polarization assay, using the standard conditions, to determine the standard deviation (SD) of both controls. The Z' value was then obtained from the following calculation:

Z' = 1 - (3 SD of pos. ctrls + 3 SD of neg. ctrls) (mean pos. ctrl - mean neg. ctrl)

- Figure 3 illustrates K_d determination for Compounds A and B, using the
 Fluorescence Polarization assay. Standard conditions of the 96-well plate
 Polarization assay (see Example 4) were used to determine the K_d values of the
 compounds. K_d values obtained for compound A and B are 31 and 41 nM,
 respectively, with Q_b/Q_f values of 0.67 and 0.72.
- Figure 4 illustrates K_d determination for Compounds C and D, using the Fluorescence Polarization assay. Standard conditions of the 96-well plate Polarization assay (see Example 4) have been used to determine the K_d values of some of our compounds. K_d values obtained for compound C and D are 231 nM and 1.08 uM, respectively, with Q_b/Q_f values of 0.74 and 0.66.

Figures 5 to 8 illustrate the titration of probe (i) with the NS5BΔ21-His in the presence of increasing (from 30 mM to 200 mM) concentration of NaCl. Standard conditions of the Fluorescence anisotropy analysis are described in Example 3. K_d values obtained for this polymerase are 15.3 nM (30 mM NaCl), 39 nM (100 mM NaCl), 78 nM (150 mM NaCl) and finally 122 nM (200 mM NaCl).

Figure 9 illustrates the titration of probe (i) with the NS5B Δ 21-His in Phosphate buffer pH 6.5. Standard conditions of the Fluorescence anisotropy analysis are described in Example 3. The K_d of probe (i) for this polymerase under these conditions is 33 nM.

Figure 10 illustrates the titration of probe (i) with the His-NS5B Δ 21 polymerase. Standard conditions of the Fluorescence anisotropy analysis are described in Example 3. The K_d of probe (i) for this N-terminally tagged polymerase is 18.1 nM.

Figure 11 illustrates the titration of probe (ii) with the GBV-B Δ 23-His polymerase. Standard conditions of the Fluorescence anisotropy analysis are described in Example 3. The K_d of probe (ii) for this distantly related polymerase is 1.79 uM (estimated value with an incomplete curve).

15

20

25

WO 03/014377 PCT/CA02/01214

15

Figure 12 illustrates the titration of probe (ii) with the His-NS5B Δ 21(H77c, HCV genotype 1a) polymerase. Standard conditions of the Fluorescence anisotropy analysis are described in Example 3. The K_d of probe (ii) for this HCV genotype 1a polymerase is 18.2 nM.

5

20

25

DETAILED DESCRIPTION OF THE INVENTION

Definitions

The following definitions apply unless otherwise noted:

The term "affinity tag" means a moiety whose strong affinity for a ligand can be used to extract from a solution the entity to which the tag is attached. Examples of such tags include biotin or a derivative thereof, a histidine polypeptide, a polyarginine, an amylose sugar moiety or a defined epitope recognizable by a specific antibody. Such affinity tags are attached to the probe by well-known methods. The corresponding affinity ligands are also well known in the art.

An "analog" of the HCV NS5B polypeptide or a fragment thereof means a polypeptide modified by varying the amino acid sequence of the protein, e.g. by manipulation of the nucleic acid encoding the protein or by altering the protein itself. Such analogs of the natural amino acid sequence may involve insertion, addition, deletion or substitution of one or more amino acids, and may or may not alter the functional activity of the original HCV NS5B polypeptide. As mentioned above, the HCV NS5B polypeptide or protein used in the assay/method of the invention includes any fragment, derivative, variant or mutant which is derived from a HCV NS5B polypeptide and which retains at least one property or other characteristic of the HCV NS5B polypeptide.

The term "detectable label" refers to any group that is linked to a probe of the present invention such that when the probe is associated with the polymerase target, such label allows recognition either <u>directly or indirectly</u> of the probe such that it can be detected, measured and quantified. Examples of such "detectable labels" are intended to include, but are not limited to: photoreactive groups, fluorescent labels, chemiluminescent labels, colorimetric labels, enzymatic markers, radioactive isotopes. Such labels are attached to the probe by well known methods.

10

15

25'

As used herein, the term "linker" refers to a chain of between 1 and 20 atoms selected from the group consisting of C, N, O, and S that covalently connects the aforesaid label to a probe of the present invention. Examples of such a chain include, but are not limited to, the following:

These linkers can also comprise a pair of affinity-tag/affinity-ligand, which together, bind the compound to a detectable label.

The term "photoreactive group" means a group that is transformed, upon activation by light, from an inert group to a reactive species, such as a free radical. Examples of such groups include, but are not limited to, benzophenones, azides, and the like.

As used herein, the term "probe" refer to a compound of formula (I) that is capable of binding to an HCV polymerase in a covalent or non-covalent manner. When the probe is bound in a non-covalent manner, it can be displaced by a test compounds. When bound in a covalent manner, the probe can be used for cross-linking experiments wherein the HCV polymerase-probe adduct formation can be quantified and inhibited by test compounds.

As used herein, the terms "(C₁₋₃) alkyl", "(C₁₋₄) alkyl" or "(C₁₋₆) alkyl", either alone or in combination with another radical, are intended to mean acyclic straight or branched chain alkyl radicals containing up to three, four and six carbon atoms respectively. Examples of such radicals include methyl, ethyl, propyl, butyl, hexyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl.

As used herein, the term " (C_{2-6}) alkenyl", either alone or in combination with another radical, is intended to mean an unsaturated, acyclic straight chain radical containing two to six carbon atoms.

As used herein, the term (C_{2-6}) alkynyl" either alone or in combination with another group, is intended to mean an unsaturated, acyclic straight chain sp hybridized radical containing 2 to six carbon atoms.

As used herein, the term " (C_{3-7}) cycloalkyl", either alone or in combination with another radical, means a cycloalkyl radical containing from three to seven carbon atoms and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

- As used herein, the term (C_{5-7}) cycloalkenyl, either alone or in combination with another radical, means an unsaturated cyclic radical containing five to seven carbon atoms.
- As used herein, the term "aryl", or "6- or 10-membered aryl" either alone or in combination with another radical means aromatic radical containing six or ten carbon atoms, for example phenyl or naphthyl.

As used herein, the term "COOH" refers to a carboxylic acid group. It is well known to one skilled in the art that carboxylic acid groups may be substituted by functional group equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, esters, amides, or boronic acids.

As used herein, the term "functional group equivalent" is intended to mean an element or a substituted derivative thereof, that is replaceable by another element that has similar electronic, hybridization or bonding properties.

As used herein, the term "halo" means a halogen atom and includes fluorine, chlorine, bromine and iodine.

25

35

15

20

As used herein, the term "haloalkyl" is intended to mean an alkyl that is described above in which each hydrogen atom may be successively replaced by a halogen atom, for example CH₂Br or CF₃.

30 As used herein the term heteroatom means O, S or N.

As used herein, the term "heterocycle", either alone or in combination with another radical, means a monovalent radical derived by removal of a hydrogen from a five, six-, or seven-membered saturated or unsaturated (including aromatic) heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur.

15

20

25

Furthermore, "heterobicyclic" as used herein, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterocycles include, but are not limited to, pyrrolidine, tetrahydrofuran, thiazolidine, pyrrole, thiophene, coumarin, hydantoin, diazepine, 1H-imidazole, isoxazole, thiazole, tetrazole, piperidine, 1,4-dioxane, 4-morpholine, pyridine, pyridine-N-oxide, pyrimidine, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following heterocycles:

As used herein, the term "9- or 10-membered heterobicycle" or "heterobicycle" either alone or in combination with another radical, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterobicycles include, but are not limited to, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following:

As used herein, the term "Het" defines a 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S.

As used herein, the term "OH" refers to a hydroxyl group. It is well known to one skilled in the art that hydroxyl groups may be substituted by functional group equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, ethers, sulfhydryls, and primary, secondary or tertiary amines.

As used herein, the term "SH" refers to a sulfhydryl group. It is intended within the scope of the present invention that , whenever a "SH" or "SR" group is present, it can also be substituted by any other appropriate oxidation state such as SOR, SO₂R, or SO₃R.

5

It is intended that the term "substituted" when applied in conjunction with a radical having more than one moiety such as C_{1-6} alkyl-aryl, or C_{1-6} alkyl-Het, such substitution applies to both moieties i.e. both the alkyl and aryl or Het moieties can be substituted with the defined substituents.

10

Description of preferred embodiments

Preferably, according to the first aspect, the invention provide a method for identifying inhibitors of HCV polymerase comprising the steps of:

15

- a) contacting said HCV polymerase with a probe of formula I so as to form a complex comprising said probe bound to said polymerase;
- b) measuring a signal from said complex to establish a base line level;
- c) incubating the product of step a) with a test compound;
- d) measuring the signal from said complex; and

20

25

30

35

e) comparing the signal from step d) with the signal from step b); whereby a decrease in said signal is an indication that said test compound is an inhibitor of said polymerase.

As will be understood by a person skilled in the art, the association of a specific probe of the invention with the NS5B polymerase can be measured directly or indirectly in a variety of ways. The probe and NS5B polymerase need not be labeled and affinity tagged respectively. The association of a specific probe with the HCV NS5B polymerase can be monitored and quantified directly by a change in the intrinsic spectral properties of a tagged or un-tagged NS5B protein and/or by a change in the intrinsic spectral properties of a specific probe. A direct measurement of inhibitor-NS5B association can also be achieved by immobilizing one of these two components on a matrix and measuring association through plasma-resonance detection technology. An assay that quantifies probe-NS5B complex association may also incorporate a photo-reactive label (such as a phenyl-azide or benzophenone) on the probe (for example probes (v) and (vi) below) and measure the amount of

label irreversibly bound to the NS5B (adduct) following photo-activation of the probe.

Preferably, according to a first aspect of the present invention, there is provided a probe of formula:

$$R^2$$
 R^3
 R^3

wherein

5

10

15

25

30

R¹ is selected from the group consisting of: H or (C₁₋₆)alkyl;

R² is CON(R²²)₂, wherein each R²² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, 6 or 10-membered aryl or **Het**, or both R²² are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

or R^2 is selected from: H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het**; wherein each of said alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, aryl or **Het** is optionally substituted with R^{20} , wherein R^{20} is defined as:

- 1 to 4 substituents selected from: halogen, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
- 1 to 4 substituents selected from:

a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰;

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl$ - (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :

c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})$ C(O) R^{108} wherein each R^{108} is

independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl,

10

15

20

25

30

Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both \mathbf{R}^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with \mathbf{R}^{150} :

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰; h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C₁₋₆)alkyl, (C₃₋
- $_{7}$)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het being optionally substituted with \mathbf{R}^{150} ; or \mathbf{R}^{122} is $O\mathbf{R}^{123}$ or $N(\mathbf{R}^{124})_2$ wherein \mathbf{R}^{123} and each \mathbf{R}^{124} is independently H, (C_{1-6} alkyl), (C_{3-7})cycloalkyl, or (C_{1-6} alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or \mathbf{R}^{124} is OH or $O(C_{1-6}$ alkyl) or both \mathbf{R}^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated

heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃.

7)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆alkyl, (C₃₋₆alkyl), (C₃₋₆alkyl) aryl, C₃₋₆alkyl, (C₃₋₆alkyl) aryl, C₃₋₆alkyl, (C₃₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰; l) aryl, **Het**, (C1-6alkyl)aryl or (C1-6alkyl)**Het**, all of which being optionally

aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, all of which being optionally substituted with R¹⁵⁰;

wherein \mathbf{R}^{150} is preferably:

- 1 to 3 substituents selected from: halogen, NO₂, cyano or azido; or
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- b) OR^{104} wherein R^{104} is H, $(C_{1-8}$ alkyl) or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl optionally substituted with R^{160} ;
- d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- $(C_3$. $_7)$ cycloalkyl, aryl, Het, or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het and heterocycle being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, or (C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to

10

5

15

20

25

form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

- f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ;
- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

said alkyl, cycloalkyl, and heterocycle being optionally substituted with $\mathbf{R}^{\mathbf{160}}$;

- h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R^{160} ;
- i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ;
- j) $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and
- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁵⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is

5

10

15

20

25

independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both \mathbf{R}^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

 ${\bf R}^3$ is selected from (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, 6- or 10-membered aryl, or Het;

R⁵ is -C(O)-Z, wherein

10

Z is OR⁶ wherein R⁶ is C₁₋₆alkyl substituted with:

- 1 to 4 substituents selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
- 1 to 4 substituents selected from:

15

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7}) cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
b) $O\mathbf{R}^{104}$ wherein \mathbf{R}^{104} is $(C_{1-6}$ alkyl) substituted with \mathbf{R}^{150} , (C_{3-7}) cycloalkyl, or

20

 (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;

c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;

25

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} :

30

e) $NR^{111}R^{112}$ wherein R^{111} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, and R^{112} is CN, (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7})

10

15

20

25

7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl, (C1-6alkyl)Het, COOR or SO2R 115 wherein \mathbf{R}^{115} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R^{111} and R^{112} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with \mathbf{R}^{150} ; f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) ₆)alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} ; g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₈)alkyl, (C₃₋₈) $_{7}$)cycloalkyl, (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, aryl, **Het**, (C $_{1-6}$ alkyl)aryl or (C $_{1-6}$ ealkyl)Het, or R118 is covalently bonded to R119 and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or \mathbf{R}^{119} and \mathbf{R}^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) 6alkyl)Het or heterocycle being optionally substituted with R150; h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-1}) $_{7}$)cycloalkyl, (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, a 6- or 10-membered aryl, Het, (C $_{1-6}$) $_6$ alkyl)aryl or (C $_{1-6}$ alkyl)**Het,** said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁. ₆alkyl)aryl or (C₁₋₆alkyl)Het, or R^{124} is OH or O(C₁₋₆alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or $(C_{1-6}alkyl)$ **Het** and heterocycle being optionally substituted with R^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, 30 aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} ; j) COOR 128 wherein R^{128} is (C₁₋₆)alkyl substituted with R^{150} , (C₃₋₇)cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said

10

20

25

30

6alkyl)Het being optionally substituted with R150;

- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;
- I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with \mathbf{R}^{150} ;
- 1 to 3 substituents selected from: halogen, NO₂, cyano, azido or
 - 1 to 3 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰;
 - d) SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃. 7)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰;

g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl) Het, or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl) Het or heterocycle being optionally substituted with R^{160} :

h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl optionally substituted with R^{160} :

or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

j) tetrazole, COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰; and k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the

10

5

15

20

25

nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or Z is $N(R^{6a})R^6$, wherein R^{6a} is H or $(C_{1-6}alkyl)$; and

5

20

25

30

R⁶ is (C₁₋₆)alkyl optionally substituted with:

- 1 to 4 substituents selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl substituted with R^{150a}, haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰, wherein R^{150a} is the same as R¹⁵⁰ but is not halogen, OR^{150b}, COOR^{150b}, N(R^{150b})₂, wherein R^{150b} is H or C₁₋₆alkyl;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is (C₁₋₆alkyl) substituted with R¹⁵⁰, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
 - c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
 - d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} :
 - e) $NR^{111}R^{112}$ wherein R^{111} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R^{112} is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het or R^{111} is H and R^{112} is SO_2R^{115} wherein R^{115} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both

20

25

30

 R^{111} and R^{112} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (\dot{C}_{1-6} alkyl)Het, or heterocycle being optionally substituted with R^{150} ;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 - h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, $(C_3$. 7)cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6}) alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ;
 - i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; j) $COOR^{128}$ wherein R^{128} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl)Het being optionally substituted with R^{150} ;
 - k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋

7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both **R**¹²⁹ and **R**¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with **R**¹⁵⁰; l) aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, all of which being optionally substituted with **R**¹⁵⁰; and

wherein R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano, azido or
- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;
- d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, and R¹¹² is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl, (C_{1-6}) alkyl)Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

10

5

15

20

25

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;

h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl optionally substituted with R^{160} ;

or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from:

10

5

15

20

25

tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

or R⁶ is

$$R^7$$
 R^8 R^9 N Q

10

5

wherein, preferably, \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

15 R⁷ and R⁸ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when Z is N(R^{6a})R⁶, either of R⁷ or R⁸ is covalently bonded to R^{6a} to form a nitrogen-containing 5-or 6-membered heterocycle; wherein, preferably, R⁷⁰ is selected from:

20

- 1 to 4 substituents selected from: halogen, NO2, cyano, azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;

25

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :

30

d) $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to

the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} ;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl) Het, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl) Het or heterocycle being optionally substituted with (C_{1-6})
- h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ;

5

10

15

20

25

i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; l) aryl, Het, (C₁₋₆alkyl)aryl or (C1-6alkyl)Het, all of which being optionally substituted with R¹⁵⁰;

wherein, preferably, \mathbf{R}^{150} is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano, azido; or
- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, all of which optionally substituted with \mathbf{R}^{160} ;
- b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ;
- d) $SO_2N(R^{108})_2$ wherein R^{108} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, and R¹¹² is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁶ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

10

5

15

20

25

f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C₁₋₆)alkyl or (C₃. 7)cycloalkyl, said (C1-6)alkyl or (C3-7)cycloalkyl being optionally substituted with R160; g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋ ₆)alkyl or (C_{3-7})cycloalkyl; or R^{119} and R^{120} are covalently bonded 5 together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl or heterocycle being optionally substituted with $\mathbf{R}^{\mathbf{160}}$; h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with \mathbf{R}^{160} ; 10 or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C_{1-6} alkyl) or (C_{3-7})cycloalkyl, or R^{124} is OH or O(C_{1-6} ₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R160; 15 i) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R160; and k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. ₆)alkyl or (C_{3-7}) cycloalkyl, or both \mathbf{R}^{129} and \mathbf{R}^{130} are covalently bonded 20 together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰; wherein $\mathbf{R}^{\mathbf{160}}$ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, 25 $N(R^{162})_2$ or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H or (C₁₋₆)alkyl;

R⁹ is H; or R⁹ is covalently bonded to either of R⁷ or R⁸ to form a 5- or 6-membered heterocycle; and

Q is a 6- or 10-membered aryl, Het, all of which being optionally substituted with:

15

20

25

30

wherein R100 is:

- 1 to 4 substituents selected from: halogen, NO₂, cyano or azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{150} ;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
 - g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) alkyl)Het, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het or heterocycle being optionally substituted with R^{150} ;
 - h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-1})

10

15

 $_{7}$)cycloalkyl, (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, a 6- or 10-membered aryl, Het, (C $_{1-6}$) salkyl)aryl or (C1-salkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆ ₆alkyl)aryl or (C₁₋₆alkyl)Het, or \mathbf{R}^{124} is OH or O(C₁₋₆alkyl) or both \mathbf{R}^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋ $_{7}$)cycloalkyl, aryl, **Het,** (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het,** said (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1-6alkyl)Het being optionally substituted with R150; k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het,** (C_{1-6} alkyl)aryl or (C_{1-6} falkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl, $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ; I) aryl, Het, $(C_{1-6}alkyl)aryl$ or $(C_{1-6}alkyl)$ Het, all of which being optionally substituted with R150:

wherein R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;
- d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are

25

20

30

covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with R^{160} ;

5

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R¹¹² is H, CN, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6})alkyl, (C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

10

15

20

25

30

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with \mathbf{R}^{160} ;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl) **Het** or heterocycle being optionally substituted with \mathbf{R}^{160} :

h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl optionally substituted with R^{160} ;

or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)

7)cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR 161 , SO $_3$ H, SR 161 , SO $_2$ R 161 , OR 161 , N(R 162) $_2$, SO $_2$ N(R 162) $_2$, or CON(R 162) $_2$, wherein R 161 and each R 162 is independently H, (C $_{1-6}$)alkyl, (C $_{3-7}$)cycloalkyl or (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl; or both R 162 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or a salt thereof;

and

wherein said probe comprises a detectable label attached to any suitable position, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

More preferably, the probe of the invention is a compound of formula:

10

5

15

20

25

30

wherein R1 is (C5-6)cycloalkyl;

5

15

20

25

 ${\bf R^2}$ is phenyl, or ${\bf Het}$ both being optionally substituted with ${\bf R^{20}}$;

 $\mathbf{R^3}$, $\mathbf{R^7}$, $\mathbf{R^8}$, $\mathbf{R^9}$, $\mathbf{R^{100}}$, and $\mathbf{R^{150}}$ are as defined above;

- 10 R^{11} is OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, C(=NH)NH(C₁₋₆)alkyl or C(=NH)NHCO(C₁₋₆)alkyl; or
 - a) (C₁₋₆) alkyl substituted with R^{150a} , haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R^{150} , wherein R^{150a} is the same as R^{150} but is not halogen, OR^{150b} , $COOR^{150b}$, $N(R^{150b})_2$, wherein R^{150b} is H or C₁₋₆alkyl;
 - **b)** OR^{104} wherein R^{104} is $(C_{1-6}$ alkyl) substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with R^{150} ;
 - c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃. 7)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; d) SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl,

20

25

30

Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} :

- e) $NR^{111}R^{112}$ wherein R^{111} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R^{112} is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het or
- R¹¹¹ is H and R¹¹² is SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 - h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are

10

15

25

covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with \mathbf{R}^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}a|ky|)$ aryl or $(C_{1-6}a|ky|)$ Het being optionally substituted with R^{150} ; j) COOR¹²⁸ wherein R¹²⁸ is (C₁₋₆)alkyl substituted with R¹⁵⁰, (C₃₋₇)cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) ealkyl)Het being optionally substituted with R150; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋ $_{7}$)cycloalkyl, (C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, aryl, **Het,** (C $_{1-6}$ alkyl)aryl or (C $_{1}$. ₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated

heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, $(C_{1-6}alkyl)$ **Het** and heterocycle being optionally substituted with \mathbf{R}^{150} ; I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally

substituted with R150

wherein R¹⁵⁰ is as defined herein;

or a salt thereof; 20

wherein said compound is either:

- a) marked with a radioactive isotope at any suitable position;
- b) linked to a detectable moiety by a suitable linker at any suitable position, except R1 and R3; or
- c) linked to an affinity tag at any suitable position, except \mathbf{R}^1 and \mathbf{R}^3 .

Even more preferably, the probe of the invention is a compound of formula:

wherein

10

15

R1 is (C5-6)cycloalkyl;

 ${\bf R}^2$ is phenyl, or ${\bf Het}$ both being optionally substituted with ${\bf R}^{20}$;

5 R³ and R¹⁵⁰ are as defined above;

or a salt thereof;

wherein said compound is optionally:

- a) marked with a radioactive isotope at any suitable position;
- b) linked to a detectable moiety by a suitable linker at any suitable position, except R¹ and R³; or
- c) linked to an affinity tag at any suitable position, except \mathbf{R}^1 and \mathbf{R}^3 .

Specifically, according to a first aspect of the invention, the probe of the present invention is selected from the group consisting of:

10

15

45

According to an alternative aspect of this first embodiment, there is provided a method for identifying compounds that inhibit HCV polymerase comprising the steps of:

- a) contacting said HCV polymerase or an analog thereof with a probe of formula I, as defined herein, so as to form a complex having said probe bound to said polymerase;
- b) measuring the signal from said complex to establish a base line level;
- c) incubating the product of step a) with a test compound; and
- d) measuring the signal from said complex; and
- e) comparing the signal from step d) with the signal from step b); whereby a modulation in said signal is an indication that said test compound inhibits said polymerase.

Preferably, the method for identifying compounds capable of inhibiting HCV polymerase, comprises:

- f) repeating steps (a) to (e), as defined above in a high throughput screen.
- 20 Alternatively, there is provided a probe of formula I:

$$R^2$$
 A
 M
 R^5

1

A is O, S, NR³, or CR³;

B is NR¹ or CR¹; with the proviso that, when **A** is CR³, **B** is NR¹, and when **A** is O or S, **B** is CR¹;

10

15

20

30

from O, N and S;

---- represents either a single or a double bond;

 R^1 is selected from the group consisting of: (C_{4-7}) cycloalkyl optionally substituted with $(C_{1-6}$ alkyl); norbornane, 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, all of which optionally substituted with 1 to 4 substituent selected from the group consisting of:

halo, OH and C₁₋₆ alkyl optionally substituted with hydroxy;

R² is selected from the group consisting of: phenyl, pyridine-N-oxide, 5- or 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from O, N, and S, and 9- or 10-membered aromatic heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

said phenyl, pyridine-N-oxide, aromatic heterocycle and aromatic heterobicycle being optionally substituted with from 1 to 4 substituents selected from the group consisting of: halogen, C₁₋₆ haloalkyl, (C₁₋₆)alkyl, C₁₋₆ alkoxy, OH, amino optionally mono- or di-substituted with C₁₋₆ alkyl;

 $m R^3$ is selected from the group consisting of: H, (C₁₋₆)alkyl, (C₁₋₆ alkyl)-(C₆₋₁₀aryl), (C₁₋₆ alkyl)-5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, and 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S,

wherein said aryl and said heterocycle are optionally substituted with from 1 to 4 substituents selected from the group consisting of: COOH, COO(C_{1-6} alkyl), halogen, and (C_{1-6} alkyl);

M is N, CR^{4a} , or COR^{4b} , wherein R^{4a} is selected from the group consisting of: H, halogen, and (C_{1-6} alkyl); and R^{4b} is selected from the group consisting of: H and (C_{1-6} alkyl);

25 **K** and **L** is each independently N or CR⁶, wherein R⁶ is H, halo, C₁₋₆ alkyl, OH, or C₁₋₆ alkoxy;

R⁵ is -C(Y)-Z, wherein Y is O or S; and Z is NHR^{5a} or OR^{5a}; wherein:

 R^{5a} is selected from the group consisting of: H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{3-6}) cycloalkyl optionally substituted with C_{1-6} alkyl or C_{2-6} alkenyl, (C_{6-10}) aryl optionally substituted with C_{1-6} alkyl or C_{2-6} alkenyl, $N\{(C_{1-6})$ alkyl $\}_2$, $NHCOO(C_{1-6})$ alkyl $\{(C_{6-10})$ aryl, $NHCO(C_{6-10})$ aryl, -5- or 6-atom heterocycle, having 1 to 4 heteroatoms selected from O, O, O, and O, and O, and O- or 10-atom heterobicycle having 1 to 4 heteroatoms selected

wherein said alkyl, alkenyl, cycloalkyl, aryl, heterocycle or heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, (C₁₋₆)alkyl, (C₂₋₄)alkenyl, (C₁₋₆)alkyl-hydroxy, COO(C₁₋₆)alkyl, C₃₋₇ cycloalkyl, benzyloxy, halogen, (C₂₋₄)alkenyl-(C₁₋₆)alkyl-COOH, coumarin, (C₁₋₆)alkyl-amino, NH(C₁₋₆ alkyl), C(halogen)₃, -C(O)NH(C₁₋₄)alkyl, and -C(O)NH(C₆₋₁₀)aryl, 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S, and 6- or 10-membered aryl;

wherein said alkyl, alkenyl, cycloalkyl, aryl, heterocycle and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: halogen, OPO₃H, sulfonamido, SO₃H, SO₂CH₃, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂-4alkenyl)COOH, tetrazolyl, COOH, -CONH2, triazolyl, OH, NO2, NH₂, -O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C1-6)alkyl, NHCO-(C1-6alkyl), -NHCOCOOH, -NHCOCONHOH,-NHCOCONH₂,-NHCOCONHCH₃, -NHCO(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCO(C₃₋₇)cycloalkyl-COOH, -NHCONH(C₆₋₁₀)aryl-COOH, -NHCONH(C₆₋₁₀)aryl-COO(C₁₋₆)alkyl, - NHCONH(C₁₋₆)alkyl-COOH,- NHCONH(C1-6) alkyi-COO(C1-6)alkyi, - NHCONH(C1-6)alkyl-(C2-6)alkenyl-COOH, - NH(C1-6)alkyl-(C6-10)aryl-O(C1-6) alkyl COOH, - NH(C1-6) alkyl-(C6-10) aryl-COOH, -NHCH2COOH, -NHCONH2, -NHCO(C1-6)hydroxyalkyl COOH, -OCO(C₁₋₆)hydroxyalkyl COOH, (C₃₋₆)cycloalkyl COOH,

-NHSO₂CF₃; and -O(C₁₋₆alkyl)-tetrazol;

10

5

15

20

25

30 or \mathbf{R}^{5a} is

15

20

25

30

wherein \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C₁₋₆ alkyl), (C₃₋₇ cycloalkyl), (C₁₋₆ alkyl)-(C₃₋₇ cycloalkyl), (C₃₋₇ cycloalkyl)-(C₁₋₈ alkyl), (C₃₋₇ cycloalkyl)-(C₁₋₈ alkyl), (C₃₋₇ cycloalkyl)-(C₂₋₄ alkenyl), (C₁₋₈ alkyl)-OH, phenyl, CH₂biphenyl, 5- or 6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, (C₁₋₆ alkyl)-5- or 6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S, or (C₁₋₆ alkyl)-9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S,

or R^7 and R^8 are covalently bonded together to form (C_{3-7} cycloalkyl), 4-, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S; or one of R^7 or R^8 is covalently bonded to R^9 to form a pyrrolidine;

wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are optionally substituted with from 1 to 4 substituents selected from the group consisting of: OH, COOH, (C_{1-6} alkyl), (C_{2-4} alkenyl), CONH₂, NH₂, NH(C_{1-6} alkyl), N(C_{1-6} alkyl)₂, NHCOCOOH, NHCOCON(C_{1-6} alkyl)₂, NHCOCONH(C_{1-6} alkyl), SH, S(C_{1-6} alkyl), NHC(=NH)NH₂, halogen, and COO(C_{1-6} alkyl);

R9 is H or (C1-6 alkyl); and

Q is selected from the group consisting of: (C₁₋₃alkyl)CONHaryl, 6- or 10-membered aryl, biphenyl, 5- or 6-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

wherein said aryl, biphenyl, heterocycle and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered second heterocycle having 1 to 4 heteroatoms selected from O, N and S, NH-5- or 6- membered second heterocycle having 1 to 4 heteroatoms selected from O, N, and S,

wherein said second heterocycle and phenyl being optionally substituted with from 1 to 4 substituents selected from: (C_{1-6} alkyl), CF₃, OH, (C_{1-6} alkyl) COOH, O(C_{1-6} alkyl)COOH, (C_{1-6} alkyl) COO(C_{1-6}

10

15

20

25

30

 $_{6}$ alkyl), CH $_{2}$ phenyl, COO(C $_{1-6}$ alkyl), (C $_{1-6}$ alkyl)O(C $_{1-6}$ alkyl), COOH, NCH(C $_{1-6}$ alkyl) $_{2}$, NCO(C $_{1-6}$ alkyl), NH $_{2}$, NH(C $_{1-6}$ alkyl), halogen, N(C $_{1-6}$ alkyl) $_{2}$; and C $_{2-6}$ alkenyl-COOH

halogen, OPO₃H, benzyl, sulfonamido, SH, SOCH₃, SO₃H, SO₂CH₃, S(C₁₋₆ alkyl)COOH, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH wherein said alkenyl is optionally substituted with from 1 to 2 (C₁₋₆ alkyl) substituents,

(C₂₋₄alkenyl)COO(C₁₋₆alkyl), tetrazolyl, COOH, triazolyl, OH, NO₂, NH₂, , - O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, (C₁₋₄)alkoxy(C₁₋₆ alkyl)COOH, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C₁₋₆)alkyl, -NHCOCOOH, -NHCOCONHOH,-NHCOCONH₂, -NHCOCONHCH₃, -NHCO(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₆₋₁₀)aryl-COOH, - NHCONH(C₆₋₁₀)aryl-COOH, - NHCONH(C₁₋₆)alkyl-COOH, - NHCONH(C₁₋₆)alkyl-COO(C₁₋₆)alkyl, - NHCONH(C₁₋₆)alkyl-COOH, - NHCONH(C₁₋₆)alkyl-(C₆₋₁₀)aryl-O(C₁₋₆)alkyl COOH, - NHCO₁₋₆)alkyl-(C₆₋₁₀)aryl-O(C₁₋₆)alkyl COOH, - NHCO₁₋₆)alkyl-(C₆₋₁₀)aryl-O(C₁₋₆)alkyl COOH, - NHCO₁₋₆)alkyl-COOH, - NHCO₁₋₆)alkyl COOH, - NHCO₁₋₆)alkyl COOH, - OCO(C₁₋₆)hydroxyalkyl COOH, C₃₋₆)cycloalkyl COOH,

-NHSO $_2$ CF $_3$, coumarin, (C $_{1-6}$)alkyl-amino, NH(C $_{1-6}$ alkyl) $_2$, C(halogen) $_3$, -NH(C $_{2-4}$)acyl, -NH(C $_{6-10}$)aroyl, -CONH(C $_{1-6}$ alkyl), -CO(C $_{1-6}$)alkyl-COOH, -CONH(C $_{1-6}$)alkyl-COOH, -CONH(C $_{2-4}$)alkyl-COOH, -CONH(C $_{2-4}$) alkyl-Het, -CONH(C $_{2-4}$) alkyl-(COOH)-Het, -CONH(C $_{1-2}$ alkyl) (OH)(C $_{1-2}$ alkyl)OH, -CONH(C $_{1-6}$) alkyl-COOH, -CONH(C $_{6-10}$) aryl-COOH-Het, -CONH(C $_{6-10}$) aryl-COOH, -CONH(C $_{1-6}$) alkyl-COO(C $_{1-6}$) alkyl, -CONH(C $_{1-6}$) alkyl-COO(C $_{1-6}$) alkyl, -CONH(C $_{6-10}$) aryl-(C $_{2-6}$)alkenyl-COOH;

or a salt thereof;

said probe comprises a detectable label, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

10

15

20

25

30

35

Labels incorporated into the probe may be paired with appropriate labels attached to the tagged NS5B polymerase such that the close proximity of the two pairs of labels upon probe—polymerase association results in a measurable signal; examples of such detection techniques include, but are not limited to, fluorescence resonance energy transfer (FRET), and time resolved fluorescence (TRF).

Preferably, the detectable label is selected from the group consisting of: a fluorescent label (such as fluorescein, Oregon green, dansyl, rhodamine, Texas-red, phycoerythrin or Eu³⁼), a radioactive atom (such as ³H, ¹⁴C, ¹²⁵I), a chemiluminescent label (such as luciferase), colorimetric produced by an enzymatic marker (such as β-qalactosidase or horseradish peroxidase).

Alternatively, a fluorescent reporter and quencher may be used as pair of labels to monitor association of the probe with the HCV NS5B polymerase. Commonly known reporter/quencher pair may be selected from, for example: EDANS/DABCYL, tryptophan/2,4-dinitrophenyl, tryptophan/DANSYL, 7-methoxycoumarin/2,4-dinitrophenyl, 2-aminobenzoyl/2,4-dinitrophenyl and 2-aminobenzoyl/3-nitrotyrosine.

As will be readily understood by a person skilled in the art, a radioactive label can be incorporated within the probe of formula I at any suitable position. For example, a ³H, or ¹⁴C isotope can replace any hydrogen or carbon present in the molecule. Similarly, a ¹²⁵I isotope can be substituted on any aromatic ring.

In principle, these tracer methodologies can easily be adapted for the purpose of high-volume screening. Scintillation proximity assay (SPA) methods for radioactive detection have been developed which do not require a separation step and are easily adapted for robotics and microtiter plate format.

Preferably, the detectable label is a fluorescent label or a chemiluminescent label. More preferably, the label is a fluorescent label. Most preferably, the detectable label is a fluorescein.

Non-radioactive detection methods have become increasingly widespread in screening assay because of the costs associated with radiolabeled reagents and their disposal. Fluorescence spectroscopy is one of the most prevalent non-

10

radioactive detection methods. One type of assay in which fluorescence may be used is fluorescence polarization. Polarization is independent of total fluorescence intensity; therefore, this technique may not be as prone to interference as fluorescence amplitude measurements. As disclosed herein, the new type of assay developed uses a fluorescein-labeled inhibitor, though other fluorescent labels or non-fluorescent techniques can also be applied.

Preferably, the polymerase used in the assay may comprise an affinity tag by which the polymerase can be attached to a solid support, and the probe may be labeled so as to provide a detectable signal. An affinity tag incorporated into the probe maybe a biotin that is used to indirectly measure the association of this biotinylated probe to the NS5B polymerase through the secondary use of an avidin-coupled detection technique.

Preferably, the HCV polymerase used in the present assay is selected from the group consisting of: NS5B; NS5BΔ21; NS5BΔ57 or analogs thereof from a variety of genotypes including HCV-1a or 1b strains having optionally a histidine tag at either the N- or C-terminal. Particularly, as will be understood by a person skilled in the art, this binding assay does not require the polymerase activity of the NS5B to be optimal or functional for such a binding assay to perform according to the invention.

EXAMPLES

Example 1A)

probe (iii): (S)-3-(5-Carboxymethoxy-1H-indol-3-yl)-2-({1-[1-cyclohexyl-2-(4-{[2-(5-dimethylamino-naphthalene-1-sulfonylamino)-ethylcarbamoyl]-methoxy}-phenyl)-1H-benzimidazol-5-yl]-methanoyl}-amino)-propionic acid

a) 4-Chloro-3-nitrobenzoic acid (40.40 g, 0.20 mole) was suspended in DCM (100 5 mL) containing 3 drops of DMF. Oxalyl chloride (1.5 equivalents, 0.3 mole, 27 mL) was added in small portions and the mixture stirred overnight at room temperature. After refluxing for an additional hour to complete the reaction, volatiles were removed under reduced pressure and the residue was co-evaporated twice with hexane to give the title compound as a light yellow solid. 10 b) (S)-5-Hydroxytryptophan methyl ester hydrochloride (1.55 g, 5 mmol) was dissolved in 80% aqueous MeCN (25 mL) and the solution cooled in ice. Sodium bicarbonate (0.850 g, 10 mmol) was added followed by di-tert-butyldicarbonate (1.10 g, 5.1 mmol). The mixture was stirred for 2 h at room temperature, poured into water (200 mL) and extracted with EtOAc (3 X). The combined extracts were washed with 15 water and brine, dried (MgSO₄) and concentrated to give a beige solid (1.65 g). The crude product from above (1.50 g, 4.83 mmol) was dissolved in acetone (20 mL) and anhydrous potassium carbonate (1.5 g, 11 mmol) and methyl bromoacetate (0.76 g, 5 mmol) were added. The mixture was reflux for 4 h after which point additional methyl bromoacetate was added to complete the reaction (15 mg portions 20

15

20

25

30

35

•

until complete by HPLC). The reaction mixture was then cooled and filtered to remove solid. Evaporation of the filtrate gave the desired carbamate as an oil (2.0g). The crude carbamate from above (2.0 g) was deprotected by stirring with 4N HCl – dioxane for 1 h at room temperature. Removal of volatiles in vacuo gave the desired tryptophan ester derivative as a tan-colored solid (1.51 g).

- c) The tryptophan derivative from step b) (0.343 g, 1 mmol) was dissolved in 80% aqueous MeCN (10 mL) and sodium bicarbonate (3 equivalents, 0.260 g) was added. The solution was cooled in ice and 4-chloro-3-nitrobenzoyl chloride from step a) (0.220 g, 1 mmol) was added. The mixture was stirred for one hour at room temperature, concentrated under reduced pressure and the residue purified by flash chromatography (1:2 hexane / EtOAc as eluent) to give compound c) as a yellow foam (0.391 g).
- d) The 4-chlorobenzamide derivative from above (0.214 g, 0.45 mmol) was dissolved in DMSO (1 mL) and DIEA (0.2 mL) was added followed by cyclohexylamine (3 equivalents, 0.16 mL). The mixture was stirred at 60-65 °C for 4 h and subsequently diluted with water. The orange precipitate that formed was collected, washed with water and dried (0.200 g).
 - e) The crude material from above (0.200 g, 0.36 mmol) was hydrogenated (1 atm H_2) over 20% Pd(OH)₂ on charcoal (60 mg) in MeOH (15 mL). After 2 h, the suspension was filtered to remove the catalyst and concentrated *in vacuo* to give the title compound as a foam (0.16 g).
 - f) 4-Formylphenoxyacetic acid (0.306 g, 1.70 mmol) was dissolved in DCM (5 mL). DIEA (0.524 g, 4 mmol) and TBTU (0.550 g, 1.70 mmol) were added followed by tert-butyl N-(2-aminoethyl)carbamate (0.250 g, 1.56 mmol). The mixture was stirred 2 h at room temperature, dissolved in EtOAc and washed sequentially with 5% aqueous K_2CO_3 , KHSO₄, water and brine. The extract was dried (MgSO₄) and concentrated under reduced pressure to give a yellow solid (0.350 g).
 - g) The diamine derivative from step e) (0.026 g, 0.05 mmol) and aldehyde from step f) (0.020 g, 0.06 mmol) were dissolved in DMF (0.3 mL) and water (0.03 mL) was added followed by oxone® (0.024 g, 0.04 mmol). The mixture was stirred 1 h at room temperature and then diluted with water. The resulting precipitate was collected by filtration, washed with water and dried to give a beige solid (0.020 g).
 - h) The crude carbamate from above was stirred with TFA for 30 min at room temperature. Volatiles were removed under reduced pressure and the residue was purified by preparative C18 reversed-phase HPLC to give the bis TFA salt.

15

20

i) The amine salt (0.019 g, 0.02 mmol) was dissolved in DMSO (0.3 mL) and DIEA (0.06 mL) was added followed by dansyl chloride (0.065 g, 0.02 mmol). The mixture was stirred for 1 h at room temperature. 5N NaOH (0.12 mL) and water (0.05 mL) were added and the saponification was allowed to proceed for 1 h at room temperature. Following acidification with TFA, the probe (iii) was directly isolated from the reaction mixture by preparative C18 reversed-phase HPLC: MS (ES+) m/z 930 (MH+).

Example 1B)

probe (ii):5-(3-{2-[2-(4-{5-[(S)-1-Carboxy-2-(5-carboxymethoxy-1H-indol-3-yl)-ethylcarbamoyl]-1-cyclohexyl-1H-benzimidazol-2-yl}-phenoxy)-ethanoylamino]-ethyl}-thioureido)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid

The amine salt from step h) of Example **1A** (0.06 mmol) was dissolved in DMSO (0.6 mL) and DIEA (0.3 mL) was added followed by fluorescein isothiocyanate isomer 1 (0.026 g, 0.066 mmol). The mixture was stirred for 1 h at room temperature. 5N NaOH (0.3 mL) and water (0.15 mL) were added and stirring resumed for an additional 30 min. Following acidification with TFA, probe (ii) was isolated directly by preparative C18 reversed-phase HPLC: MS (ES+) m/z 1086 (MH+).

Example 1C)

probe (v): (S)-2-{[1-(2-{4-[(2-{[1-(4-Azido-phenyl)-methanoyl]-amino}-ethylcarbamoyl)-methoxy]-phenyl}-1-cyclohexyl-1H-benzoimidazol-5-yl)-methanoyl]-amino}-3-(5-carboxymethoxy-1H-indol-3-yl)-propionic acid

10

15

20

- a) 4-Azidobenzoic acid (0.160 g, 1 mmol) was dissolved in DCM (3 mL). DIEA (0.5 mL, 2.5 mmol) and TBTU (0.337 g, 1.05 mmol) were added followed by *tert*-butyl *N*-(2-aminoethyl)carbamate (0.165 g, 1.03 mmol). The mixture was stirred 2.5 h at room temperature, dissolved in EtOAc and washed sequentially with 5% aqueous K₂CO₃, KHSO₄, water and brine. The extract was dried (MgSO₄) and concentrated under reduced pressure to give a yellow solid (0.257 g). The crude carbamate (0.257 g, 0.84 mmol) was deprotected by stirring in 4N HCl dioxane (15 mL) for 2 h at room temperature. Volatiles were removed under reduced pressure to give a pinkish solid.
- b) 4-Formylphenoxyacetic acid (0.200 g, 1.1 mmol) was dissolved in DCM (3 mL) and DIEA (0.5 mL) was added followed by TBTU (0.350 g, 1,1 mmol) and the amine salt from above (0.240 g, 1 mmol). The mixture was stirred 4 h at room temperature, dissolved in EtOAc and washed sequentially with 5% aqueous K₂CO₃, KHSO₄, water and brine. The extract was dried (MgSO₄) and concentrated under reduced pressure to give an off-white solid (0.162 g).
- c) The benzaldehyde derivative from above (0.044 g, 0.12 mmol) and the diamine derivative from step e) of Example 1A (0.052 g, 0.1 mmol) were dissolved in DMF (0.6 mL) and water (0.1 mL). Oxone ® (0.050 g, 0.8 mmol) was added and the mixture stirred for 1 h at room temperature. 5N NaOH (0.2 mL) and water (0.1 mL) were added and saponification allowed to proceed for 1 h. Probe (v) was isolated

directly by preparative C18 reversed-phase HPLC (12.5 mg): MS (ES+) m/z 842 (MH+).

Example 1D)

Following the procedures described for probe (v) in Example **1C** but using 4-benzoylbenzoic acid instead of 4-azidobenzoic acid, probe (vi) was obtained: MS (ES+) m/z 905 (MH+).

Example 1E)

15

probe (iv) (S)-3-(5-Carboxymethoxy-1H-indol-3-yl)-2-{[1-(1-cyclohexyl-2-{4-[2-(5-dimethylamino-naphthalene-1-sulfonylamino)-ethylcarbamoyl]-phenyl}-1H-benzimidazol-5-yl)-methanoyl]-amino}-propionic acid

- a) Following the procedures described for step f) in Example 1A, 4-carboxybenzaldehyde was coupled to *tert*-butyl *N*-(2-aminoethyl)carbamate.
- b) Following benzimidazole ring formation with the diamine derivative of Example 1A step e) and the aldehyde from above using oxone® as described in Example 1A step g), the Boc protecting group was removed and the resulting amine condensed with dansyl chloride as described in Example 1A step i).

c) Probe (iv) was obtained following saponification of the ester groups under the usual conditions and isolation by preparative C18 reversed-phase HPLC: MS (ES+) m/z 900 (MH+).

5 Example 1F)

(probe (i):5-[3-(2-{[1-(4-{5-[(S)-1-Carboxy-2-(5-carboxymethoxy-1H-indol-3-yl)-ethylcarbamoyl]-1-cyclohexyl-1H-benzimidazol-2-yl}-phenyl)-methanoyl]-amino}-ethyl)-thioureido]-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid

The procedure described for Example **1E**) was used except that fluorescein isothiocyanate isomer 1 was used instead of dansyl chloride. Probe (i) was obtained after purification by preparative C18 reversed-phase HPLC: MS (ES+) m/z 1056 (MH+).

15 Example 2

20

25

30

Production and purification of HCV NS5B polymerase Δ21-His

The recombinant HCV NS5B polymerase can be produced in soluble form by expression of a variant that lacks the C-terminal 21 amino acids normally found on the mature NS5B (Yamashita *et al.* 1998, J. Biol. Chem. 273:15479-15486; Ferrari *et al.*, 1999, J. Virol. 73: 1649-1654). We have expressed this so called NS5B Δ 21 with a C-terminal hexa-histidine (termed NS5B Δ 21-His; SEQ ID. NO. 1) and with an N-terminal hexa-histidine tag (termed His-NS5B Δ 21; SEQ ID NO. 2) (either proteins being referred to as "his-tag NS5B"). Expression of these genes from pET vectors in E. coli strain JM109 (DE3) is induced with 0.4 mM IPTG for 3 hours at 22 °C. Cells are harvested and lysed in a microfluidizer in lysis buffer (Tris-HCl pH 7.5, 10 % glycerol, 1 mM EDTA, 2 mM 2-mercaptoethanol, 500 mM NaCl, 1 mM PMSF, 1 μ g/ml antipain, 1 μ g/ml pepstatin A and 1 μ g/ml leupeptin). The lysate is clarified by a 30 000 g centrifugation and then supplemented with imidazole to final concentration of 10 mM. The lysate is then loaded onto a metal-chelating resin (Ni-NTA; Qiagen) previously equilibrated with buffer A (Tris-HCl pH 7.5, 10 % glycerol,

10

500 mM NaCl, 10 mM imidazole), washed extensively and then the protein is eluted with gradient of buffer A containing 500 mM imidazole. Peak fractions containing the his-tag NS5BΔ21 are pooled and diluted with buffer C (20 mM Tris-HCl pH 7.5, 10 % glycerol, 5 mM DTT) to reduce the NaCl concentration to 300 mM and then applied to a DEAE-Sepharose column to remove any nucleic acid. The flow-through from the DEAE-Sepharose column is diluted with buffer C to reduce the NaCl to 200 mM and then applied to a heparin-Sepharose column. The his-tag NS5B is eluted from the heparin-Sepharose in buffer C with a 200 mM to 1 M NaCl gradient. Peak fractions containing the his-tag NS5B are pooled and diluted with buffer C to achieve a final NaCl of 200 mM and loaded onto a Resource S column. Concentrated His-tag NS5B is eluted from the resource S, loaded and size fractionated on a Superdex 200 column in buffer C containing 300 mM NaCl. Peak fractions contain highly pure his-tag NS5B and are stored at –80 °C until use.

15 Example 3

Fluorescence anisotropy analysis

Titration of the probe with the enzyme was performed as follows: The fluorescein labeled probe was diluted to the desired concentration in 20 mM Tris-HCl pH 7.5, 1mM EDTA, 5 mM MgCl₂, 1 mM DTT and 10% DMSO. The NS5BA21-His protein was serially diluted in 25 mM Tris-HCl pH 7.5, 300 mM NaCl, 5 20 mM DTT, 1 mM EDTA, 30% glycerol and 0.1% IGEPAL. Total volume of the reaction was 500 μL and final assay buffer was 20 mM Tris-HCl pH 7.5, 1 mM EDTA, 5 mM MgCl₂, 1 mM DTT, 30 mM NaCl, 3% glycerol, 0.01% IGEPAL and 5% DMSO. Anisotropy measurements were performed on a SLM Aminco 8100 Spectrofluorometer equipped with a 450-W xenon arc lamp and a T-optics 25 configuration. Excitation wavelength was at 493 nm and emission was monitored at 530 nm. In each anisotropy measurement, the parallel and perpendicular intensities of the background buffer solution was subtracted from the measured values of the sample and the anisotropy was calculated. Data were processed on SAS program (SAS Institute Inc., NC, USA) for a non linear regression to obtain the direct binding 30 equilibrium constant and other parameters, and the plot of the regressed fit over the experimental data. An example of a titration curve obtained with probe (i) is shown on Figure 1. K_d values for probes (i) and (ii) with the polymerase were respectively of

15 nM and 6 nM.

Example 4

5

10

15

20

25

30

96-well plate Polarization assay

To obtain K_d values of different compounds competing with these probes (test compounds), this assay was transformed to a more amenable format and a binding assay was made suitable for a 96-well microplate reader. The probe was diluted in order to obtain the desired final concentration (from 4 to 25 nM, depending on its Kd towards the enzyme and on the conditions of the assay). The tested compounds were serially diluted by a factor of 2 or 3-fold in 20 mM Tris-HCL pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM DTT and 15% DMSO. The NS5B Δ 21-His concentration in the assay was calculated to obtain 70% of binding of the probe; these conditions allowed for the displacement of the probe by test compounds. The assay reactions finally contained 50 μL of the serial dilutions of the tested compounds that were transferred in 96-well black plates (Packard); a complete row was however free of compound to obtain a positive control value and verify real percent of bound probe in the experiment. 50 µL of the probe were then added to each well, except in one column for blank subtraction. Lastly, 150 μL of enzyme were added to all wells, except in one row, which was used to determine the 0% and 100% bound values. In this row of 8 wells, enzyme buffer was added to the first 4 wells (to determine the anisotropy value of the free probe or r_f) and a 10-fold excess of the concentration of the enzyme used in the assay was added to the other 4 wells (to determine the anisotropy value when 100% of the probe is bound i.e. the r_{b} value). These values were required to calculate the $K_{\!d}$ values. The final buffer conditions of the assay were identical to the ones used for K_d determination of the probes, i.e. 20 mM Tris-HCl pH 7.5, 1 mM EDTA, 5 mM MgCl₂, 1 mM DTT, 30 mM NaCl, 3% glycerol, 0.01% IGEPAL and 5% DMSO. The reactions were incubated for 90 minutes at room temperature in the dark. Readings of polarization were then performed on a POLARstar Galaxy, equipped with a high-energy xenon flash lamp, using an excitation filter of 485 nm and an emission filter of 520 nm. Polarization values can be converted easily to anisotropy values with the following calculation (Owicki et al., 2000, J. Biomol. Screen. 5:297-306):

 $a = 2 \times P / (3 - P)$ where

a: anisotropy value

P: Polarization value

Anisotropy values can then be used to obtain two types of results fitted to SAS nonlinear regression analysis to obtain apparent K_d values, using for the calculations as positive control the anisotropy value at ~ 70% binding, and as negative control the anisotropy value of the free probe (r_f) ;

5 fitted to the Anisotropy equation:

$$a = \frac{(-K_d - I + E_o) + \sqrt{((K_d + I - E_o)^2 + 4 * K_d * E_o)}}{2[\frac{(a * Q * r_b + K_p * r_f)}{(K_p + a * Q)}]}$$

where a: anisotropy

K_d: dissociation constant for the inhibitor

I: Concentration of compound (or inhibitor) tested

E_o: NS5B concentration (E_o has to be >> [probe])

 $Q = Q_b/Q_f = \text{total fluorescence}$ for probe 100% bound/ total fluorescence

for free probe

r_b: anisotropy value when the probe is 100% bound

r_f: anisotropy value when the probe is free

K_o: dissociation constant for the probe

This high throughput assay was evaluated and validated by the determination of the statistical parameter *Z'* (J.-H. Zhang *et al.*, **1999**, J. of Biomol. Screening, **4**:67-73). Results of this experiment are illustrated on Figure 2. The anisotropy values for a series of positive and negative controls were very similar, resulting in very low standard deviations; 0.2186±0.0036 A units for the positive controls and 0.0738±0.0037 A units for the negative controls. The *Z'* value obtained for the assay was of 0.85, implying that we have excellent conditions to detect compounds that would compete with the probe.

25

30

10

15

20

Example 5

Inhibitor testing

We have identified potent compounds that can effectively displace the probe in this binding assay. Figures 3 and 4 show examples of some of them, with K_1 values ranging from 31 nM to 1 μ M. The anisotropy equation was defined in the Grafit Software (Erithacus Software Ltd., UK) and plotted such that inhibitor concentration was the X-variable and anisotropy was the Y variable; parameters calculated by the

15

20

25

30

software were the inhibitor Kd and Qb/Qf ratio. Supplied constants were the K_p , E_0 , r_b and r_f .

Example 6

Modified conditions for the Polarization assay

The usefulness of this polarization assay is evident when binding of compounds has to be studied under different conditions. For example, binding constants of the probes have been determined at different concentrations of salts and pH. Figures 5 to 8 show the binding curves of probe (i) in final NaCl concentrations ranging from 30 mM to 200 mM. All other reagents in the assay were as described in the standard protocol (Example 3). As shown on these Figures, K_{d} values gradually increase with salt concentration from Kd=15 nM (at 30 mM NaCl) to Kd=122 nM (at 200 mM NaCl). Studies at pH 6.5 were also performed to determine the K_{d} of the probe (i) at lower pH. For these assays, 20 mM Phosphate buffer pH 6.5 was used in place of Tris; all other reagents of the assay were as described in the 96-well Polarization assay (Example 4). An example of these types of experiments is shown in Figure 9. The K_{d} value obtained at pH 6.5 with probe (i) was of 33 nM. Having established these K_{d} values under different experimental conditions, it is then trivial to determine what concentrations of probe and enzyme should be used to obtain 70% of binding of the probe with the equilibrium equation. Once these values are obtained, compounds of interest can easily be studied under the new conditions to determine their $\ensuremath{\mathsf{K}}_d$ values.

Example 7

Fluorescence Polarization assay with a modified enzyme

The Fluorescence polarization assay was also used with other constructs of our HCV polymerase enzyme. In addition to the C-terminally tagged NS5B Δ 21-His polymerase, the NS5B enzyme with the His-tag at the N-terminal position was also used in the fluorescence polarization assay. Determination of the K_d for the probe (i) with this enzyme was performed, using the same conditions described in the standard 96-well format assay. Figure 10 shows that the K_d obtained with probe (i) was similar, i.e. 18 nM. A comparison was made between the IC50 and the K_d for three compounds, using these two different constructs of the enzymes (NS5B Δ 21-His and His-NS5B Δ 21).

10

15

20

25

IC₅₀'s are determined using the Scintillation Proximity Assay (SPA) according to the following assay:

The substrates are: (i) a 12 nucleotide RNA oligo-uridylate (or oligo-uridinemonophosphate) (oligo-U) primer modified with biotin at the free 5'C position; (ii) a complementary poly-adenylate (or adenosine monophospahte) (polyA) template of heterogeneous length (1000-10000 nucleotides); and (iii) UTP-[5,6 ³H]. Polymerase activity is measured as the incorporation of UMP-[5,6 3H] into the chain elongated from the oligo-U primer. The ³H-labelled reaction product is captured by SPA-beads coated with streptavidin and quantified on the TopCount (Packard). Inhibitors are tested at various concentrations in a reaction containing: 1 to 5 nM of the his-tagged NS5B, 1 µg/ml of biotinylated oligo U primer, 10 µg/ml of polyA template, 20 mM Tris-HCl pH 7.5, 5 mM MgCl₂, 25 mM KCl, 1 mM EDTA, 1 mM DTT, 0.33 % ndodecyl maltoside, 5% DMSO, 0.0083 μ Ci/ μ l [0.25 μ M] UTP-[5,6- 3 H], 0.75 μ M UTP, 1.67 U/ µI RNAsinTM. The reaction was incubated at room temperature for 1.5 hours. STOP solution (20 μ l; 0.5 M EDTA, 150 ng/ μ l tRNA) was added, followed by 30 μ l streptavidin coated PVT beads (8mg/ml in 20 mM Tris-HCl, pH 7.5, 25 mM KCl, $0.025\%\ NaN_3)$. The plate was then shaken for 30 minutes. A solution of CsCl was added (70 µl, 5 M), to bring the CsCl concentration to 1.95 M. The mixture was then allowed to stand for 1 hour. The beads were then counted on a Hewlett Packard TopCount[™] instrument. Based on the results at ten different concentrations of test compound, standard concentration-% inhibition curves were plotted and analysed to determine IC50's for the compounds.

Results of this experiment are illustrated in Table I. The K_d values were similar with both enzymes for the three compounds tested, whereas the IC_{50} values obtained with the two enzymes show significant differences and reflect the differences in substrate affinity.

Example 8

30 Specificity of the Fluorescence Polarization assay

The utility of the Fluorescence polarization assay was examined with another distantly related viral polymerase and with a closely related genotype (1a) HCV polymerase.

The GBV-B polymerase enzyme (termed GBV-BΔ23-His; SEQ ID NO. 3) (Simons,

10

15

20

25

30

35

J.N. et al., 1995, Proc. Natl. Acad. Sci. USA 92, 3401-3405; Bukh, J. et al., 1999, Virology 262, 470-478) was produced and purified as described in Example 2 with the following modifications:

Expression of the gene from pET vectors in E. coli strain JM109 (DE3) was induced with 0.5 mM IPTG for 3 hours at 22 °C. Cells were harvested and lysed in a microfluidizer in buffer A (Tris-HCl pH 7.5, 10 % glycerol, 1 mM EDTA, 2 mM 2mercaptoethanol, 500 mM NaCl, 1 mM PMSF, 1 ug/ml antipain, 1 ug/ml pepstatin A, 1 ug/ml leupeptin and 0.5% dodecyl- β -D-maltoside). The lysate was clarified by a 30 000 g centrifugation and then supplemented with imidazole to a final concentration of 10 mM. The lysate was then loaded onto a metal-chelating resin (Ni-NTA; Qiagen) previously equilibrated with buffer A containing 10 mM imidazole, washed extensively and then the protein was eluted with a gradient of buffer A containing 500 mM imidazole. Peak fractions containing the his-tag GBV-B∆23 were pooled and diluted with buffer C (20 mM Tris-HCl pH 7.5, 10 % glycerol, 5 mM DTT, 0.01% dodecyl-β-D-maltoside) to reduce the NaCl concentration to 300 mM and then applied to a DEAE-Speharose column to remove any nucleic acid. The flow-through from the DEAE-Speharose column was diluted with buffer C to reduce the NaCl to 200 mM and then applied to a heparin-Sepharose column. The his-tag GBV-B was eluted from the heparin-Sepharose in buffer C with a 200 mM to 1 M NaCl gradient. Peak fractions containing the pure his-tag GBV-B were then pooled and stored at -80 °C until use.

The HCV genotype 1a NS5B polymerase [termed His-NS5B∆21(H77c,1a); **SEQ ID NO.** 4] (Yanagi, M. *et al.*, **1997**, Proc. Natl. Acad. Sci. USA 94, 8738-8743) was produced and purified as described in Example 2 with the following modifications:

Expression of the gene from pET vectors in E. coli strain JM109 (DE3) was induced with 0.4 mM IPTG for 3 hours at 22 °C. Cells were harvested and lysed in a microfluidizer in buffer A (Tris-HCl pH 8.0, 10 % glycerol, 1 mM EDTA, 2 mM 2-mercaptoethanol, 500 mM NaCl, 1 mM PMSF, 1 ug/ml antipain, 1 ug/ml pepstatin A, 1 ug/ml leupeptin, 1% dodecyl-β-D-maltoside, 1% Triton X-100 and 0.1% CHAPS). The lysate was clarified by a 30 000 g centrifugation and then supplemented with imidazole to a final concentration of 10 mM. The lysate was then loaded onto a metal-chelating resin (Ni-NTA; Qiagen) previously equilibrated with buffer A containing 10 mM imidazole, 0.1% NP-40, without CHAPS, and with lower

30

concentrations of the other detergents (0.2% dodecyl-β-D-maltoside, 0.05% Triton X-100); after extensive washing, the protein was eluted with a gradient of buffer A containing 500 mM imidazole. Peak fractions containing the his-tag NS5B∆21(H77c,1a) were pooled and diluted with buffer C (20 mM Tris-HCl pH 8.0, 10 % glycerol, 5 mM DTT, 0.2% dodecyl-β-D-maltoside) to reduce the NaCl concentration to 300 mM and then applied to a DEAE-Sepharose column to remove any nucleic acid. The flow-through from the DEAE-Sepharose column was diluted with buffer C to reduce the NaCl to 200 mM and then applied to a heparin-Sepharose column. The his-tag NS5BA21(H77c,1a) was eluted from the heparin-Sepharose in buffer C with a 200 mM to 1 M NaCl gradient. Peak fractions 10 containing the polymerase were then pooled and diluted with buffer C to achieve a final NaCl of 200 mM and loaded onto a Resource S column. Peak fractions containing the his-tag NS5B(H77c,1a) were pooled, loaded and size fractionated on a Superose 12 column in buffer C containing 600 mM NaCl. Peak fractions contain highly pure his-tag NS5B were pooled and stored at -80 °C until use. 15

The GBV-B and the HCV 1a polymerases were used to titrate probe ii, using the protocol described in Example 3. Figures 11 and 12 show the titration curves observed with the GBV-B polymerase and the NS5B(H77c,1a) polymerase, respectively. The K_d value of probe ii for the GBV-B enzyme was 1.8 uM (estimated value with an incomplete curve and an r_b value of 0.21), illustrating the weak binding of the probe to this distantly related polymerase. In contrast, the K_d for the HCV 1a polymerase was 18 nM, revealing that the 1a genotype enzyme binds probe ii with the same affinity as the HCV 1b genotype polymerase.

25 K_d values for a series of compounds were determined with these two HCV (genotypes 1a and 1b) polymerases, using the assay format described in Example 4.

Results of this experiment are illustrated in Table 2. These results show that the $K_{\!\scriptscriptstyle d}$ values for this series of inhibitors are in the same range with the two genotypically related HCV enzymes.

TABLE 1 $\mbox{Comparison of compound K_d and IC_{50} values with two different HCV NS5B } \\ \mbox{polymerases}$

Cpd	K _d value (nM)		IC ₅₀ value (nM)	
	NS5BΔ21-His		NS5B∆21-His	His-NS5BΔ21
X	44	41	867	66
Υ	22	31	348	68
Z	92	88	735	34

5

TABLE 2 Comparison of compound K_d values with NS5B polymerases from two HCV genotypes

Cpd .	K _d values (nM)		
	His-NS5B∆21(1b)	His-NS5B∆21(H77c,1a)	
A	2.7	1.8	
В	12	8.0	
С	5.3	7.2	
D	3.5	7.1	
E	2.4	2.7	

20

25

15

DISCUSSION

The HCV NS5B polymerase is a prime target in the search for inhibitors of HCV replication. The HCV NS5B enzymatic activity has been studied *in vitro* with a variety of RNA substrates (Behrens et al., **1996**; and many references thereafter). Different preparations of the HCV polymerase exhibit varying efficiencies of product formation with a variety of RNA substrates. Estimations are that only a small fraction (i.e. < 1%) of the common preparations of purified recombinant HCV NS5B polymerase interact

10

15

20

25

30

35

with RNA substrate to reconstitute processive RNA product synthesis (Carroll SS, *et al.*, **2000**. Biochemistry, 39:8243-8249). Moreover, the activity of purified recombinant NS5B polymerase varies significantly with specific RNA substrates; a characteristic that presumably reflects the capability of the NS5B of forming productive replication-competent complexes with these substrates (Zhong W, et al., **2000**, J Virol, 74, 9134-9143).

In an effort to overcome the limitations of HCV polymerase assays that use suboptimal and poorly characterized RNA substrates, the Applicants have developed an assay for specific inhibitors of the HCV polymerase that is independent of the presence of RNA. The assay is based upon the use of a characterized inhibitor specific for the HCV polymerase. In the examples presented above, the inhibitor was labeled with a fluorescein moiety and the interaction of this probe with the NS5B was measured and quantified by fluorescence polarization. However, the interaction can also be measured by the use of a radiolabel, or other common labels placed on the inhibitor and applying common techniques for assessing the association of the labeled probe with an appropriately tagged target HCV polymerase. Binding equilibrium with the fluorescein labeled probe is clearly evident in Example 3, as the fraction of bound probe increased with the amount of HCV polymerase. An HCV polymerase assay with components at equilibrium is an advantage over previous assays with RNA substrates, as the active HCV polymerase that stably associates with RNA substrates in processive complexes does not readily dissociate (Carroll SS, et al., 2000 Biochemistry, 39:8243-8249; Zhong W, et al., 2000 J Virol, 74, 9134-9143; Tomei L, et al. 2000 J Gen. Virol. 81, 759-767.). Though these labeled probes readily dissociate from the HCV polymerase, they do so with low nM dissociation constants and provide the required sensitivity (in the low nM range) to detect potent and specific inhibitors. The assay format is adaptable to screening in 96-well (or higher density) plate format as demonstrated in Example 4. A particular advantage of this high throughput screening format is the extremely stable signal and minimal well-to-well variation that the assay provides, particularly in a convenient nonradioactive format. Specific inhibitors of the HCV polymerase were identified and potencies easily determined with this assay (Figures 3 and 4).

The direct binding assay described herein overcomes other limitations of the enzymatic HCV polymerase assay. The *in vitro* RNA polymerase activity of NS5B is

extremely sensitive to ionic strength, and KCl or NaCl concentrations exceeding 100 mM inhibit the reaction (Lohmann V, et al., 1998 Virology 249, 108-118; Luo G, et al., 2000, J Virol., 74, 851-63.) Hence the ability to determine the potency of inhibitors at various salt concentrations is restricted by this limitation of standard enzymatic reactions. The direct binding assay of this invention is amenable to adjustments in salt concentration or pH levels as demonstrated in Example 6. The potencies and interaction of specific inhibitors with the NS5B target can easily be determined under conditions not suitable for enzymatic RNA polymerization studies (such as the absence of divalent cation).

10

15

20

25

30

5

Established HCV polymerase enzymatic assays provide IC $_{50}$ values as representative measurements of inhibitor potencies. For inhibitors that are competitive with either RNA or NTP, the IC $_{50}$ value is proportional to the concentration of substrates in the assay and will vary depending on the concentration of these components. The assay described herein permits a direct measurement of inhibitor potencies (reflected by Kd values), under defined conditions, irrespective of the substrate concentration. In enzymatic reactions that use either the N-terminal tag His-NS5B $_{\Delta}$ 21 or the C-terminal tag NS5B $_{\Delta}$ 21-His, significantly disparate IC $_{50}$ values are obtained for identical compounds assayed under identical conditions. The His-NS5B $_{\Delta}$ 21 and NS5B $_{\Delta}$ 21-His polymerases have different affinities for the primer/template RNA substrate thereby resulting in the disparate IC $_{50}$ for the identical compounds (Example 7, Table 1). A major advantage that is exemplified by the direct binding assay described in this invention is that these differences are reconciled by the relatively similar Kd values that the individual inhibitors display with the two different HCV polymerases.

The direct binding assay described herein has also been shown to be specific for HCV polymerase enzymes. Example 8, in which a K_d at least 100-fold higher for the probe ii was obtained with the GBV-B polymerase, illustrates the weak binding of the probe to this polymerase and the specificity of binding to the HCV polymerases. Moreover, Example 8 also demonstrates that the polymerases from two distinct and clinically relevant HCV genotypes bind the probe with similar affinities.

The direct inhibitor-binding assay of this invention alleviates many restrictions of conventional HCV polymerase enzymatic assays described to date. The Applicants have exemplified how the use of a characterized inhibitor as a competitive probe provides a number of improvements and advancements in the search for specific inhibitors of the NS5B polymerase. This assay may accelerate the identification and characterization of candidate therapeutics for the treatment of HCV related diseases.

10

69

CLAIMS

- **1.** A method for identifying compounds binding to HCV polymerase comprising the steps of:
 - a) contacting said HCV polymerase or an analog thereof with a probe being capable of binding to an HCV polymerase or an analog thereof, said probe being displaceable by an inhibitor thereof, so as to form a complex comprising said probe bound to said polymerase;
 - b) measuring a signal emitted from said probe in said complex to establish a base line level;
 - c) incubating the product of step a) with a test compound; and
 - d) measuring the signal from said complex; and
- e) comparing the signal from step d) with the signal from step b); whereby a modulation in said signal is an indication that said test compound binds to said polymerase.
- 2. The method according to claim 1, wherein said probe is selected from; an isomer, enantiomer, diastereoisomer, or tautomer of a probe represented by formula I:

$$R^2$$
 B
 K
 K
 K
 K
 K
 K

15

20

wherein A is O, S, N, NR^1 , or CR^1 , wherein R^1 is selected from the group consisting of: H, (C_{1-6}) alkyl optionally substituted with:

-halogen, OR^{11} , SR^{11} or $N(R^{12})_2$, wherein R^{11} and each R^{12} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het, said aryl or Het optionally substituted with R^{10} ; or both R^{12} are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

---- represents either a single or a double bond;

25

 R^2 is selected from: H, halogen, R^{21} , OR^{21} , SR^{21} , $COOR^{21}$, $SO_2N(R^{22})_2$, $N(R^{22})_2$, $CON(R^{22})_2$, $NR^{22}C(O)R^{22}$ or $NR^{22}C(O)NR^{22}$ wherein R^{21} and each R^{22} is

15

20

25

independently H, (C_{1-6}) alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkynyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het**, said \mathbf{R}^{21} and \mathbf{R}^{22} being optionally substituted with \mathbf{R}^{20} ;

or both \mathbf{R}^{22} are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

B is NR³ or CR³, wherein R³ is selected from (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, 6- or 10-membered aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, said alkyl, cycloalkyl, bicycloalkyl, aryl, Het, alkyl-aryl and alkyl-Het being optionally substituted with from 1 to 4 substituents selected from: halogen, or a) (C₁₋₆)alkyl optionally substituted with:

- OR^{31} or SR^{31} wherein R^{31} is H, (C_{1-6} alkyl), (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6})alkyl-aryl or (C_{1-6})alkyl-**Het**; or
- $N(\mathbf{R}^{32})_2$ wherein each \mathbf{R}^{32} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het; or both \mathbf{R}^{32} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- b) OR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; c) SR^{34} wherein R^{34} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; and
- d) $N(R^{35})_2$ wherein each R^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het; or both R^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- with the proviso that when **A** is not **N**, then one of **A** or **B** is either CR¹ or CR³;

K is N or CR^4 , wherein R^4 is H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R^4 is OR^{41} or SR^{41} , COR^{41} or $NR^{41}COR^{41}$ wherein each R^{41} is independently H, (C_{1-6}) alkyl), (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;

or R^4 is $NR^{42}R^{43}$ wherein R^{42} and R^{43} are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or both R^{42} and R^{43} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

15

L is N or CR5, wherein R5 has the same definition as R4 defined above;

M is N or CR7, wherein R7 has the same definition as R4 defined above;

10 R⁵ is C(Y¹)Z wherein Y¹ is O or S;

Z is $N(R^{6a})R^6$ or OR^6 , wherein R^{6a} is H or (C_{1-6}) alkyl or $NR^{61}R^{62}$ wherein R^{61} and R^{62} are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, or both R^{61} and R^{62} are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle; or R^{62} is $COOR^{63}$ wherein R^{63} is (C_{1-6}) alkyl, (C_{3-6}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with 6- or 10-membered aryl or Het; or R^{62} is COR^{64} wherein R^{64} is C_{1-6} alkyl, (C_{3-6}) cycloalkyl -6-or 10-membered aryl or Het; and

20 \mathbf{R}^6 is selected from the group consisting of: H, (C_{1-6}) alkyl, (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, alkenyl, aryl, Het, alkyl-aryl, or alkyl-Het, are all optionally substituted with \mathbf{R}^{60} ;

25 or **R**⁶ is

30

$$R^7$$
 R^8 R^9 N Q

wherein \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6-or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

R7 and R8 are covalently bonded together to form second (C3-7)cycloalkyl or a 4, 5- or

6-membered heterocycle having from 1 to 4 heteroatom selected from O, N, and S; or when Z is $N(R^{6a})R^6$, either of R^7 or R^8 is covalently bonded to R^{6a} to form a nitrogen-containing 5-or 6-membered heterocycle;

5 Y² is O or S;

10

15

25

30

 R^9 is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, all of which optionally substituted with R^{90} ; or R^9 is covalently bonded to either of R^7 or R^8 to form a 5- or 6-membered heterocycle;

Q is a 6- or 10-membered aryl, **Het**, (C_{1-6}) alkyl-CONH-aryl or (C_{1-6}) alkyl-CONH-**Het**, all of which being optionally substituted with:

or a salt or a derivative thereof;

wherein **Het** is defined as 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S; and

- 20 R^{10} , R^{20} , R^{60} , R^{70} , R^{90} and R^{100} is each defined as:
 - 1 to 4 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
 - 1 to 4 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :
 - c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl,

Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)Aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H,

10

5

15

20

25

10

· 15

(C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆ salkyl)aryl or (C1.salkyl)Het, or R124 is OH or O(C1.salkyl) or both R124 are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- $(C_3$. 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR 128 wherein R^{128} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said (C1-6)alkyl, (C3-7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1-6alkyl)Het being optionally substituted with R150; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} 6alkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; I) aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, all of which being optionally substituted with R150; and

20

wherein R¹⁵⁰ is defined as:

- 1 to 3 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or

25

- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{160} :
- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl,

aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with \mathbf{R}^{160} ;

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R¹¹² is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het being optionally substituted with R¹⁶⁰;

g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted

10

٠5

15

20

25

with R160:

h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

- i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;
- j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are

5

10

15

20

25

15

20

25

covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

wherein said probe comprises a detectable label attached to any suitable position, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof;

3. The method according to claim 2, wherein said probe has the following formula:

$$R^2$$
 R^3
 R^3
 R^3
 R^3
 R^3
 R^4
 R^5
 R^5
 R^3
 R^3

wherein

10 R¹ is selected from the group consisting of: H or (C₁₋₆)alkyl;

 R^2 is $CON(R^{22})_2$, wherein each R^{22} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het**, or both R^{22} are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

or R^2 is selected from: H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het**; wherein each of said alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, aryl or **Het** is optionally substituted with R^{20} , wherein R^{20} is defined as:

- 1 to 4 substituents selected from: halogen, NO2, cyano, azido, C(=NH)NH2, C(=NH)NH(C1-6)alkyl or C(=NH)NHCO(C1-6)alkyl; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} :

10

15

20

25

30 °

c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; d) SR¹⁰⁸, SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃-

7)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;

h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6}) alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het,

10

(C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R122 is OR123 or N(R124)2 wherein R123 and each R124 is independently H, (C1-6alkyl), (C3-7)cycloalkyl, or (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6)alkyl- $_6$ alkyl)aryl or (C1- $_6$ alkyl)Het, or \mathbf{R}^{124} is OH or O(C1- $_6$ alkyl) or both \mathbf{R}^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or $(C_{1-6}alkyl)$ Het and heterocycle being optionally substituted with R^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} ; j) COOR 128 wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) ₇)cycloalkyl, aryl, **Het,** (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het,** said (C_{1-6})alkyl, (C_{3-6} 7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1salkyl)Het being optionally substituted with R150; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} salkyl)Het, or both R129 and R130 are covalently bonded together and to the

nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl,

I) aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, all of which being optionally

(C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

20

substituted with R¹⁵⁰;
wherein R¹⁵⁰ is preferably:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:

a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;

b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl optionally substituted with R^{160} ;

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het** and

15

25

heterocycle being optionally substituted with R160;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, or (C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl said (C₁₋₆)alkyl and (C₃₋₇)cycloalkyl being optionally substituted with R¹⁶⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- said alkyl, cycloalkyl, and heterocycle being optionally substituted with \mathbf{R}^{160} ;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R^{160} ;
- i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ;
- j) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and
- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6

5

10

15

20

25

or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

10

5

 ${\bf R}^3$ is selected from (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, 6- or 10-membered aryl, or Het;

R⁵ is -C(O)-Z, wherein

15

Z is OR⁶ wherein R⁶ is C₁₋₆alkyl substituted with:

- 1 to 4 substituents selected from: OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, C(=NH)NH(C₁-6)alkyl or C(=NH)NHCO(C₁-6)alkyl; or
 - 1 to 4 substituents selected from:

20

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;

25

b) OR^{104} wherein R^{104} is $(C_{1-6}$ alkyl) substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with R^{150} ;

c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁵⁰;

30

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6})

10

15

20

25

30

₆alkyl)aryl or (C_{1-6} alkyl)**Het** or heterocycle being optionally substituted with \mathbf{R}^{150} :

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is (C_{1-6}) alkyl substituted with R¹⁵⁰, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R¹¹² is CN, (C_{1-6}) alkyl substituted with R¹⁵⁰, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃

 $_{7}$)cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** being optionally substituted with R^{150} ; **j**) COOR¹²⁸ wherein R^{128} is (C_{1-6})alkyl substituted with R^{150} , (C_{3-7})cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said (C_{3-7})cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl and (C_{1-6} alkyl)**Het** being optionally substituted with R^{150} ; **k**) CONR¹²⁹R¹³⁰ wherein R^{129} and R^{130} are independently H, (C_{1-6})alkyl, (C_{3-6}

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R¹⁵⁰; wherein R¹⁵⁰ is:

- 1 to 3 substituents selected from: halogen, NO_2 , cyano, azido or

- 1 to 3 substituents selected from:

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{160} ;

d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with R^{160} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵

15

10

5

20

25

is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R^{111} and R^{112} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R^{160} ;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁶⁰:
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;
- **h)** NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁶⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;
- j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl and (C_{1-6}) het being optionally substituted with R^{160} ; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. $_6$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁.

5

10

15

20

25

₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both **R**¹²⁹ and **R**¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with **R**¹⁶⁰;

5

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

10

or **Z** is $N(\mathbf{R}^{6a})\mathbf{R}^{6}$, wherein \mathbf{R}^{6a} is H or $(C_{1-6}$ alkyl) and

 \mathbf{R}^6 is (C_{1-6}) alkyl optionally substituted with:

- 1 to 4 substituents selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or

20

- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl substituted with R^{150a}, haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰, wherein R^{150a} is the same as R¹⁵⁰ but is not halogen, OR^{150b}, COOR^{150b}, $N(R^{150b})_2$, wherein R^{150b} is H or C₁₋₆alkyl;

25

b) OR^{104} wherein R^{104} is $(C_{1-6}alkyl)$ substituted with R^{150} , (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :

30

c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; d) SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is

independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl,

20

25

30

Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} ;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is (C_{1-6}) alkyl substituted with R¹⁵⁰, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R¹¹² is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het or
- 10 R¹¹¹ is H and R¹¹² is SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁵⁰;
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰; h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C₁₋₆)alkyl, (C₃₋
 - $_{7}$)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, a 6- or 10-membered aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C_{1-6} alkyl), (C_{3-7})cycloalkyl, or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are

WO 03/014377 PCT/CA02/01214

covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with **R**¹⁵⁰;

- i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; j) $COOR^{128}$ wherein R^{128} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl)Het being optionally substituted with R^{150} ;
- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het,** $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;
- I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with R^{150} ; and

wherein R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano, azido or

- 1 to 3 substituents selected from:

- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} :
- d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-8}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or

10

5

15

20

25

heterocycle being optionally substituted with R160;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{160} ;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. $_6$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁. $_6$ alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁. $_6$)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;
- j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)**Het**.

5

10

15

20

25

, 5

10

15

25

said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het,** (C_{1-6} alkyl)aryl and (C_{1-6} alkyl)**Het** being optionally substituted with \mathbf{R}^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. 6)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁. 6alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, $(C_3$. $_7)$ cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

20 or \mathbb{R}^6 is

$$R^7$$
 R^8 R^9 N Q

wherein, preferably, \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

 \mathbf{R}^7 and \mathbf{R}^8 are covalently bonded together to form second (C_{3-7})cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when \mathbf{Z} is $N(\mathbf{R}^{6a})\mathbf{R}^6$, either of \mathbf{R}^7 or \mathbf{R}^8 is covalently bonded to \mathbf{R}^{6a} to form a nitrogen-containing 5-or 6-membered heterocycle;

30 wherein R⁷⁰ is selected from:

- 1 to 4 substituents selected from: halogen, NO2, cyano, azido; or

10

15

20

25

- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R^{150} ;
- b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- d) $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{150} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C

6alkyl)Het or heterocycle being optionally substituted with R150;

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁵⁰; and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)

and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ;

- i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- j) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl)Het being optionally substituted with R^{150} ;
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;
- I) aryl, **Het,** (C₁₋₆alkyl)aryl or (C1-6alkyl)**Het**, all of which being optionally substituted with **R**¹⁵⁰;

wherein R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano, azido; or
- 1 to 3 substituents selected from:
- **a)** (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, (C₁₋₆alkyl) or (C₃₋₇)cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R^{160} ;

10

5

15

20

25

- d) $SO_2N(R^{108})_2$ wherein R^{108} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO_2R^{115} wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;
- f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl or heterocycle being optionally substituted with R¹⁶⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with R¹⁶⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;
- j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and
- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁸ and R¹³⁰ are independently H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

10

15

20

25

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, $N(R^{162})_2$ or CON($R^{162})_2$, wherein R^{161} and each R^{162} is independently H or (C_{1-6})alkyl;

5

 \mathbf{R}^9 is H; or \mathbf{R}^9 is covalently bonded to either of \mathbf{R}^7 or \mathbf{R}^8 to form a 5- or 6-membered heterocycle; and

Q is a 6- or 10-membered aryl, Het, all of which being optionally substituted with:

heterocycle being optionally substituted with R¹⁵⁰;

10

wherein R100 is:

- 1 to 4 substituents selected from: halogen, NO₂, cyano or azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with R^{150} .

20

15

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or

30

25

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R^{150} ;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋ falkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle: or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which 5 they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁. salkyl) Het or heterocycle being optionally substituted with R¹⁵⁰; h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each is H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het. (C₁₋₈) 10 salkyl) aryl or (C1-salkyl) Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆) ealkyl)aryl or (C1-ealkyl)Het, or R124 is OH or O(C1-ealkyl) or both R124 are 15 covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said (C1-6)alkyl, (C3-20 7)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₈) 6alkyl)Het being optionally substituted with R150; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het,** (C_{1-6} alkyl)aryl or (C_{1-6} salkyl) Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the 25 nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C_{1.6}alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰; I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally

wherein R¹⁵⁰ is selected from:

substituted with R¹⁵⁰:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl

substituted with R¹⁶⁰;

optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ; **b**) $O\mathbf{R}^{104}$ wherein \mathbf{R}^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally

- d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het or SO_2R^{115} wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** being optionally substituted with R¹⁶⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- or R119 and R120 are covalently bonded together and to the nitrogen to

5

10

15

20

25

which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or $(C_{1-6}$ alkyl) Het or heterocycle being optionally substituted with \mathbf{R}^{160} :

h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl optionally substituted with R^{160} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

j) tetrazole, COOR¹²⁸ wherein \mathbf{R}^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl and (C_{1-6}) alkyl) Het being optionally substituted with \mathbf{R}^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. $_{6}$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁. $_{6}$ alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, $C_{1\text{-}6}$ alkyl, haloalkyl, COOR 161 , SO $_3$ H, SR 161 , SO $_2$ R 161 , OR 161 , N(R 162) $_2$, SO $_2$ N(R 162) $_2$, or CON(R 162) $_2$, wherein R 161 and each R 162 is independently H, (C $_{1\text{-}6}$)alkyl, (C $_3$ - $_7$)cycloalkyl or (C $_{1\text{-}6}$)alkyl-(C $_3$ - $_7$)cycloalkyl; or both R 162 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

10

15

20

25

15

20

or a salt thereof;

wherein said probe comprises a detectable label attached to any suitable position, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

4. The method according to claim 3, wherein said probe is a compound having the following formula:

10 wherein R¹ is (C₅₋₆)cycloalkyl;

 R^2 is phenyl, or **Het** both being optionally substituted with R^{20} ;

 \mathbf{R}^3 , \mathbf{R}^7 , \mathbf{R}^8 , \mathbf{R}^9 , \mathbf{R}^{100} , and \mathbf{R}^{150} are as defined according to claim 2;

 \mathbf{R}^{11} is OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, C(=NH)NH(C₁₋₆)alkyl or C(=NH)NHCO(C₁₋₆)alkyl; or

- a) (C₁₋₆) alkyl substituted with R^{150a} , haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R^{150} , wherein R^{150a} is the same as R^{150} but is not halogen, OR^{150b} , $COOR^{150b}$, $N(R^{150b})_2$, wherein R^{150b} is H or C₁₋₆alkyl;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is (C₁₋₆alkyl) substituted with R¹⁵⁰, (C₃₋₇)cycloalkyl, or

10

15

20

25

30

 (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with \mathbb{R}^{150} ;

- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; d) SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰:
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is (C_{1-6}) alkyl substituted with R¹⁵⁰, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R¹¹² is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het or R¹¹¹ is H and R¹¹² is SO_2R^{115} wherein R¹¹⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, $(C_3$. $_7)$ cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_1$. $_6$ alkyl)Het, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6})

6alkyl)Het or heterocycle being optionally substituted with R150: h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each is H, (C_{1-8}) alkyl, (C_{3-8}) 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, a 6- or 10-membered aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰: 5 or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₈) salkyl)aryl or (C_{1-s}alkyl)Het, or R¹²⁴ is OH or O(C_{1-s}alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or 10 (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰: i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰: i) COOR¹²⁸ wherein R¹²⁸ is H or (C₁₋₆)alkyl substituted with R¹⁵⁰, (C₃₋₁ 15 7)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁. 6alkyl)Het, said (C3-7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1- $_{6}$ alkyl)aryl and (C $_{1-6}$ alkyl)Het being optionally substituted with \mathbf{R}^{150} : k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-20 salkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C_{1.8}alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰; 1) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally 25 substituted with R150

wherein R¹⁵⁰ is as defined in claim 3; or a salt thereof; wherein said compound is optionally:

- a) marked with a radioactive isotope at any suitable position,
- b) linked to a detectable moiety by a suitable linker suitable position, except \mathbf{R}^1 and \mathbf{R}^3 ; or
- c) linked to an affinity tag at any suitable position, except R1 and R3.

WO 03/014377 PCT/CA02/01214

100

5. The method according to claim 4, wherein said probe is a compound having the following formula:

$$R^{2}$$
 R^{150}
 R^{150}

wherein R1 is (C5-6)cycloalkyl;

 R^2 is phenyl, or **Het** both being optionally substituted with R^{20} ;

5 R³ and R¹⁵⁰ are as defined in claim 4;

or a salt thereof;

10

15

wherein said compound is optionally:

- a) marked with a radioactive isotope at any suitable position;
- b) linked to a detectable moiety by a suitable linker at any suitable position, except \mathbf{R}^1 and \mathbf{R}^3 ; or
- c) linked to an affinity tag at any suitable position, except \mathbf{R}^1 and \mathbf{R}^3 .
- 6. The method according to claim 2 wherein the detectable label selected from the group consisting of: a fluorescent label a radioactive atom, a chemiluminescent label, and a colorimetric label.
- 7. The method according to claim 6 wherein the label is a fluorescent label or chemiluminescent label.
- 8. The method according to claim 7, wherein the fluorescent label is selected from the group consisting of: fluorescein, Oregon green, dansyl, rhodamine, Texasred, phycoerythrin and Eu³⁺.
- 9. The method according to claim 8, wherein the fluorescent label is fluorescein.

- **10.** The method according to claim 2, wherein the detectable label is a fluorescent reporter/quencher pair.
- 11. The method according to claim 10, wherein the reporter/quencher pair is selected from the group consisting of: EDANS/DABCYL, tryptophan/2,4-dinitrophenyl, tryptophan/DANSYL, 7-methoxycoumarin/2,4-dinitrophenyl, 2-aminobenzoyl/2,4-dinitrophenyl and 2-aminobenzoyl/3-nitrotyrosine.
- 12. The method according to claim 6, wherein the radioactive atom is selected from ³H, ¹⁴C and ¹²⁵I.
- 13. The method according to claim 2, wherein the probe is selected from::

- 14. Use of a probe of formula I, according to claim 2, in the development of an assay for identifying inhibitors of HCV polymerase.
- 15. A method for identifying compounds that inhibit HCV polymerase comprising the steps of:
 - a) contacting said HCV polymerase or an analog thereof with a probe of formula I, according to claim 2, so as to form a complex having said probe bound to said polymerase;
 - b) measuring the signal from said complex to establish a base line level;
 - c) incubating the product of step a) with a test compound; and
 - d) measuring the signal from said complex; and
 - e) comparing the signal from step d) with the signal from step b);
- whereby a modulation in said signal is an indication that said test compound inhibits said polymerase.
 - 16. A method for identifying compounds capable of inhibiting HCV polymerase,

15

20

comprising:

- f) repeating steps (a) to (e), according to claim 15, in a high throughput screen.
- 17. The method according to claim 15, wherein the HCV polymerase is selected from the group consisting of: NS5B; NS5BΔ21; and NS5BΔ57 or analogs thereof.
- 18. The method according to claim 15, wherein the HCV polymerase is obtained from genotype HCV-1a or HCV-1b strains optionally having a histidine tag at either the N- or C-terminal.
- 19. A kit for testing compounds potentially binding to HCV polymerase, said kit comprising the probe of formula (I) according to claim 2, and instructions on how to use said probe for identifying test compounds binding to said polymerase.
 - 20. A probe of formula i:

$$R^2$$
 A
 M
 R^5

١

A is O, S, NR³, or CR³;

B is NR¹ or CR¹; with the proviso that, when A is CR³, B is NR¹, and when A is O or S, B is CR¹;

---- represents either a single or a double bond;

 R^1 is selected from the group consisting of: (C_{4-7}) cycloalkyl optionally substituted with $(C_{1-6}$ alkyl); norbornane, 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, all of which optionally substituted with 1 to 4 substituent selected from the group consisting of:

halo, OH and C_{1-6} alkyl optionally substituted with hydroxy;

R² is selected from the group consisting of: phenyl, pyridine-N-oxide, 5 - or 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from O, N, and S, and 9- or 10-membered aromatic heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

10

said phenyl, pyridine-N-oxide, aromatic heterocycle and aromatic heterobicycle being optionally substituted with from 1 to 4 substituents selected from the group consisting of: halogen, C₁₋₆ haloalkyl, (C₁₋₆)alkyl, C₁₋₆ alkoxy, OH, amino optionally mono- or di-substituted with C₁₋₆ alkyl;

R³ is selected from the group consisting of: H, (C₁₋₆)alkyl, (C₁₋₆ alkyl)-(C₆₋₁₀aryl), (C₁₋₆ alkyl)-5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, and 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S,

wherein said anyl and said heterocycle are optionally substituted with from 1 to 4 substituents selected from the group consisting of: COOH, COO(C_{1-6} alkyl), halogen, and (C_{1-6} alkyl);

M is N, CR^{4a} , or COR^{4b} , wherein R^{4a} is selected from the group consisting of: H, halogen, and $(C_{1-6}$ alkyl); and R^{4b} is selected from the group consisting of: H and $(C_1$. $_6$ alkyl);

K and L is each independently N or CR⁶, wherein R⁶ is H, halo, C₁₋₆ alkyl, OH, or C₁₋₆ alkoxy;

R⁵ is -C(Y)-Z, wherein Y is O or S; and Z is NHR^{5a} or OR^{5a}; wherein:

R^{5a} is selected from the group consisting of: H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl,

 (C_{3-6}) cycloalkyl optionally substituted with C_{1-6} alkyl or C_{2-6} alkenyl, (C_{6-10}) aryl optionally substituted with C_{1-6} alkyl or C_{2-6} alkenyl, $N\{(C_{1-6})$ alkyl $\}_2$, $NHCOO(C_{1-6})$ alkyl $\}_2$, $NHCOO(C_{1-6})$ alkyl $\}_3$, $NHCOO(C_{6-10})$ aryl, -5- or 6-atom heterocycle, having 1 to 4 heteroatoms selected from O, N and S, and -9- or 10-atom heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

wherein said alkyl, alkenyl, cycloalkyl, aryl, heterocycle or heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, (C_{1-6}) alkyl, (C_{2-4}) alkenyl, (C_{1-6}) alkyl-hydroxy, COO (C_{1-6}) alkyl, C_{3-7} cycloalkyl, benzyloxy, halogen, (C_{2-4}) alkenyl- (C_{1-6}) alkyl-COOH, coumarin, (C_{1-6}) alkyl-amino, NH (C_{1-6}) alkyl), C(halogen)₃, -C(O)NH (C_{1-4}) alkyl, and -C(O)NH (C_{6-10}) aryl, 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S, and 6- or 10-membered aryl;

30

20

10

15

wherein said alkyl, alkenyl, cycloalkyl, aryl, heterocycle and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: halogen, OPO₃H, sulfonamido, SO₃H, SO₂CH₃, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋ 4alkenyl)COOH, tetrazolyl, COOH, -CONH2, triazolyl, OH, NO2, NH₂, -O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C1-6)alkyl, NHCO-(C1-6alkyl), -NHCOCOOH, -NHCOCONHOH,-NHCOCONH2, -NHCOCONHCH3, -NHCO(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCO(C₃₋₇)cycloalkyl-COOH, -NHCONH(C₆₋₁₀)aryl-COOH, -NHCONH(C₆₋₁₀)aryl-COO(C₁₋₆)alkyl, - NHCONH(C₁₋₆)alkyl-COOH,- NHCONH(C_{1-6}) alkyl-COO(C_{1-6})alkyl, - NHCONH(C_{1-6}) 6)alkyl-(C2-6)alkenyl-COOH, - NH(C1-6)alkyl-(C6-10)aryl-O(C1-6) alkyl COOH, - NH(C1-6) alkyl-(C6-10) aryl-COOH, -NHCH2COOH, -NHCONH2 -NHCO(C1-6)hydroxyalkyl COOH, -OCO(C₁₋₆)hydroxyalkyl COOH, (C₃₋₆)cycloalkyl COOH,

20 or R^{5a} is

25

30

wherein R^7 and R^8 are each independently H, (C_{1-6} alkyl), (C_{3-7} cycloalkyl), (C_{1-6} alkyl)phenyl, (C_{1-6} alkyl)-(C_{3-7} cycloalkyl), (C_{3-7} cycloalkyl)-(C_{1-6} alkyl), (C_{3-7} cycloalkyl)-(C_{2-4} alkenyl), (C_{1-6} alkyl)-OH, phenyl, CH₂biphenyl, 5- or 6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, (C_{1-6} alkyl)-5- or 6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S, or (C_{1-6} alkyl)-9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, or (C_{1-6} alkyl)-9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S,

or R7 and R8 are covalently bonded together to form (C3-7 cycloalkyl), 4-, 5- or

10

15

6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S; or one of R⁷ or R⁸ is covalently bonded to R⁹ to form a pyrrolidine;

wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are optionally substituted with from 1 to 4 substituents selected from the group consisting of: OH, COOH, (C₁₋₆ alkyl), (C₂₋₄ alkenyl), CONH₂, NH₂, NH(C₁₋₆ alkyl), N(C₁₋₆ alkyl)₂, NHCOCOOH, NHCOCON(C₁₋₆ alkyl)₂, NHCOCONH(C₁₋₆ alkyl), SH, S(C₁₋₆ alkyl), NHC(=NH)NH₂, halogen, and COO(C₁₋₆alkyl);

 \mathbf{R}^9 is H or (C₁₋₆ alkyl); and

Q is selected from the group consisting of: (C₁₋₃alkyl)CONHaryl, 6- or 10-membered aryl, biphenyl, 5- or 6-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

wherein said aryl, biphenyl, heterocycle and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered second heterocycle having 1 to 4 heteroatoms selected from O, N and S, NH-5- or 6- membered second heterocycle having 1 to 4 heteroatoms selected from O, N, and S,

wherein said second heterocycle and phenyl being optionally substituted with from 1 to 4 substituents selected from: (C₁₋₆ alkyl), CF₃, OH, (C₁₋₆alkyl) COOH, O(C₁₋₆alkyl)COOH, (C₁₋₆alkyl) COO(C₁₋₆alkyl), CH₂phenyl, COO(C₁₋₆ alkyl), (C₁₋₆alkyl)O(C₁₋₆alkyl), COOH, NCH(C₁₋₆alkyl)₂, NCO(C₁₋₆ alkyl), NH₂, NH(C₁₋₆ alkyl), halogen, N(C₁₋₆alkyl)₂; and C₂₋₆ alkenyl-COOH

halogen, OPO₃H, benzyl, sulfonamido, SH, SOCH₃, SO₃H, SO₂CH₃, S(C₁₋₆ alkyl)COOH, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH wherein said alkenyl is optionally substituted with from 1 to 2 (C₁₋₆ alkyl) substituents,

(C₂₋₄aikenyl)COO(C₁₋₆alkyl), tetrazolyl, COOH, triazolyl, OH, NO₂, NH₂, , - O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, (C₁₋₄)alkoxy(C₁₋₆ alkyl)COOH, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C₁₋₆)alkyl, -NHCOCOOH, -NHCOCONHOH,-NHCOCONH₂, -NHCOCONHCH₃, -NHCO(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCOCONH(C₆₋₁₀)aryl-COOH, -NHCONH(C₆₋₁₀)

20

25

30

10

 $\label{eq:cook} $$_{10}$ aryl-COO(C_{1-6})alkyl, - NHCONH(C_{1-6})alkyl-COOH,- NHCONH(C_{1-6})alkyl-COO(C_{1-6})alkyl, - NHCONH(C_{1-6})alkyl-(C_{2-6})alkenyl-COOH, - NH(C_{1-6})alkyl-(C_{6-10})aryl-COOH, - NHCH_2COOH, - NHCONH_2,-NHCO(C_{1-6})hydroxyalkyl COOH, - OCO(C_{1-6})hydroxyalkyl COOH, (C_{3-6})cycloalkyl COOH, \\$

-NHSO $_2$ CF $_3$, coumarin, (C $_{1-6}$)alkyl-amino, NH(C $_{1-6}$ alkyl) $_2$, C(halogen) $_3$, -NH(C $_{2-4}$)acyl, -NH(C $_{6-10}$)aroyl, -CONH(C $_{1-6}$ alkyl), -CO(C $_{1-6}$)alkyl-COOH, -CONH(C $_{1-6}$)alkyl-COOH, -CONH(C $_{2-4}$)alkyl-COOH, -CONH(C $_{2-4}$) alkyl-Het -CONH(C $_{2-4}$) alkyl-(COOH)-Het -CONH(C $_{1-2}$ alkyl) (OH)(C $_{1-2}$ alkyl)OH, -CONH(C $_{1-6}$) alkyl-COOH, -CONH(C $_{6-10}$) aryl-COOH(C $_{1-6}$) alkyl, -CONH(C $_{1-6}$) alkyl, -CONH(C $_{1-6}$) alkyl, -CONH(C $_{1-6}$) alkyl, -CONH(C $_{1-6}$) alkyl-COOH, and -CONH(C $_{6-10}$)

or a salt thereof;

aryl-(C₂₋₆)alkenyl-COOH;

said probe comprises a detectable label, whereby said probe binds to an HCV polymerase or an analog thereof and is capable of being displaced by an inhibitor thereof.

- **21.** A method for identifying compounds that inhibit HCV polymerase comprising the steps of:
 - a) contacting said HCV polymerase or an analog thereof with a probe of formula I according to claim 20, so as to form a complex having said probe bound to said polymerase;
 - b) measuring the signal from said complex to establish a base line level;
 - c) incubating the product of step a) with a test compound; and
 - d) measuring the signal from said complex; and
- e) comparing the signal from step d) with the signal from step b); whereby a modulation in said signal is an indication that said test compound inhibits said polymerase.

20

PCT/CA02/01214

1/7

WO 03/014377

FIGURE 1

Titration of Probe with HCV NS5B Polymerase d21—His *Fluorescence Anisotropy Analysis*

Kd = 1.26E - 08 rf = 6.01E - 02 rb = 2.55E - 01 Qb/Qf = 0.78 Bkg = 0

FIGURE 2

Z' value in the Polarization assay

2/7

FIGURE 3

A.

Variable	Value Std. Err.	
Kd of inhibitor	3.0971e-008 5.5429e-009	·
Qb/Qf	6.6898e-001 6.1946e-002	

В.

Kd for compound B with His-NS5Bd21

Value Std. Err.
98e-008 8.1777e-009 35e-001 8.0672e-002
•

WO 03/014377 PCT/CA02/01214

3/7

FIGURE 4

A.

Kd for compound C with NS5Bd21-His

Variable	Value Std. Err.
Kd of inhibitor	2.3067e-007 5.8224e-008
Qb/Qf	7.4124e-001 9.1773e-002

В.

Kd for compound D with NS5Bd21-His

Variable	Value Std. Err.
Kd of Inhibitor	1.0824e-006 2.3258e-007 6.5635e-001 8.2954e-002
	

FIGURE 5

Titration of probe i with NS5Bd21-His polymerase in Tris pH 7.5 and 30 mM NaCl Fluorescence Anisotropy Analysis

Bkg = 0Qb/Qf = 0.68rb = 3.23E - 01f = 7.86E - 02Kd = 1.53E - 08

FIGURE 6

Titration of probe i with NS5Bd21-His polymerase in Tris pH 7.5 and 100 mM NaCl Fluorescence Anisotropy Analysis

Qb/Qf = 0.7rb = 2.96E - 01rf = 8.79E - 02Kd = 3.89E - 08

5/7

FIGURE 7

Titration of probe i with NS5Bd21-His polymerase in Tris pH 7.5 and 150 mM NaCl Fluorescence Anisotropy Analysis

Qb/Qf = 0.7rb = 2.91E - 01rf = 8.91E - 02Kd = 7.83E - 08

FIGURE 8

Titration of probe i with NS5Bd21-His polymerase in Tris pH 7.5 and 200 mM NaCl **Fluorescence Anisotropy Analysis**

rf = 8.51E - 02 rb = 2.96E - 01Bkg = 0Qb/Qf = 0.73Kd = 1.22E - 07

PCT/CA02/01214

6/7

FIGURE 9

Titration of probe i with NS5Bd21-His polymerase in Phosphate buffer pH 6.5

Fluorescence Anisotropy Analysis

Kd = 3.33E - 08 rf = 8.55E - 02 rb = 2.88E - 01 Qb/Qf = 0.974 Bkg = 0

FIGURE 10

Titration of probe i with His-NS5Bd21

Fluorescence Anisotropy Analysis

Kd = 1.81E - 08 rf = 4.44E - 02 rb = 2.64E - 01 Qb/Qf = 0.7 Bkg = 0

WO 03/014377 PCT/CA02/01214

7/7

FIGURE 11

Titration of probe ii with GBV-B polymerase

[GBV-BA23-His] (M)

Fluorescence Anisotropy Analysis

Kd = 1.79E - 06 rf = 9.03E - 02 rb = 2.14E - 01 Qb/Qf = 1.29 Bkg = 0

FIGURE 12

Titration of probe ii with His-NS5B∆21 (H77c,1a) polymerase

[His-NS5BΔ21(H77c,1a)] (M)

Fluorescence Anisotropy Analysis

Kd = 1.82E - 08 rf = 9.22E - 02 rb = 2.97E - 01 Qb/Qf = 1.18 Bkg = 0

SEQUENCE LISTING

<110> Boehringer Ingelheim (Canada) Ltd.

5 <120> DIRECT BINDING ASSAY FOR IDENTIFYING INHIBITORS OF HCV POLYMERASE

<130> 13/088

10

<150> 60/310,272

<151> 2001-08-07

<160> 4

15

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 578

20 <212> PRT

<213> HCV

<400> 1

Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala

25 1 5 10 **15**

Glu Glu Ser Gln Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Val Arg 20 25 30

His Arg Asn Met Val Tyr Ser Thr Thr Ser Arg Ser Ala Ala Leu Arg

30 Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His Tyr

Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys Ala 65 70 75 80

Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His Ser 35 85 90 95

Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu Ser 100 105 110

Ser Lys Ala Val Asp His Ile Arg Ser Val Trp Lys Asp Leu Leu Glu 115 120 125

40 Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val 130 135 140

	Phe	Cys	Val	Gln	Pro	Glu	Lys	Gly	Gly	Arg	Lys	Pro	Ala	Arg	ьeu	TTE
	145					150					155					160
	Val	Phe	Pro	Asp	Leu	Gly	Val	Arg	Val	Cys	Glu	Lys	Met	Ala	Leu	Tyr
					165					170					175	
5	Asp	Val	Val	Ser	Thr	Leu	Pro	Gln	Ala	Val	Met	Gly	Ser	Ser	Tyr	Gly
				180					185					190		
	Phe	Gln	Tyr	Ser	Pro	Lys	Gln	Arg	Val	Glu	Phe	Leu	Val	Asn	Ala	Trp
			195	•				200					205			
	Lys	Ser	Lys	Lys	Cys	Pro	Met	Gly	Phe	Ser	Tyr	Asp	Thr	Arg	Cys	Phe
10		210					215					220				
	Asp	Ser	Thr	Val	Thr	Glu	Ser	Asp	Ile	Arg	Val	Glu	Glu	Ser	Ile	Tyr
	225					230					235					240
	Gln	Cys	Cys	Asp	Leu	Ala	Pro	Glu	Ala	Arg	Gln	Ala	Ile	Lys	Ser	Leu
					245				•	250					255	
15	Thr	Glu	Arg	Leu	Tyr	Ile	Gly	Gly	Pro	Leu	Thr	Asn	Ser	Lys	Gly	Gln
	,			260					265					270		
	Asn	Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Leu	Thr	Thr	Ser
			275					280					285			
•	Cys	Gly	Asn	Thr	Leu	Thr	Cys	Tyr	Leu	Lys	Ala	Ser	Ala	Ala	Cys	Arg
20		290			٠		295					300				
	Ala	Ala	Lys	Leu	Gln	Asp	Суз	Thr	Met	Leu	Val	Asn	Gly	Asp	Asp	Leu
	305					310					315					320
	Val	Val	Ile	Cys	Glu	Ser	Ala	Gly	Thr	Gln	Glu	Asp	Ala	Ala	Asn	Lev
					325					330	•				335	
25	Arg	Val	Phe	Thr	Glu	Ala	Met	Thr	Arg	Tyr	Ser	Ala	Pro	Pro	Gly	Asp
				340					345					350		
	Leu	Pro	Gln	Pro	Glu	Tyr	Asp	Leu	Glu	Leu	Ile	Thr	Ser	Cys	Ser	Ser
			355					360					365			
	Asn	Val	Ser	Val	Ala	His	Asp	Ala	Ser	Gly	Lys	Arg	Val	Tyr	Tyr	Leu
30		370					375					380				
:	Thr	Arg	Asp	Pro	Thr	Thr	Pro	Leu	Ala	Arg	Ala	Ala	Trp	Glu	Thr	
	385					390		•			395					400
	Arg	His	Thr	Pro	Ile	Asn	Ser	Trp	Leu	Gly	Asn	Ile	Ile	Met	Tyr	Ala
					405					410					415	
35	Pro	Thr	Leu	Trp	Ala	Arg	Met	. Val	Leu	Met	Thr	His	Phe	Phe	Ser	Il€
				420					425					430		•
	Leu	Leu	Ala	Gln	Glu	Gln	Leu	Glu	Lys	Ala	Leu	. Asp	Cys	Gln	Ile	Туз
			435					440					445			
	Gly	Ala	Суз	туг	Ser	Ile	Glu	Pro	Leu	Asp	Leu	Pro	Gln	Ile	Ile	Glı
40		450					455	j				460)		•	

		Leu	His	Gly	Leu		Ala	Phe	Ser	Leu		Ser	Tyr	Ser	Pro	
	465		_	_		470	_	_	_ `	_	475	-	61	**- 3	D	480
	Glu	TIE	Asn	Arg	val 485	Ala	Ser	Cys	Leu	Arg 490	гуѕ	ren	GIŢ	vaı	495	Pro
5	Leu	Arg	Val	Trp	Arg	His	Arg	Ala	Arg 505	Ser	Val	Arg	Ala	Lys 510	Leu	Leu
	Ser	Gln	Gly 515	Gly	Arg	Ala	Ala	Thr 520		Gly	Lys	Tyr	Leu 525		Asn	Trp
10	Ala	Val		Thr	Lys	Leu	Lys 535		Thr	Pro	Ile	Pro 540	Ala	Ala	Ser	Arg
10			T	C	03	Ш		T7-1	77-	~1	(T)= ====		~1	C111	7 an	т1 с
		Asp	ьeu	Ser	GIY		Pne	val	ALA	GTĀ		ASII	GTĀ	GIY	кар	560
	545	773 -	a	T	G	550	77-	7	Dono	7	555	~1	T7-i ~	uia	ni a	
	Tyr	HIS	ser	Leu	565	Arg	Ата	Arg	PLO	570	пеа	GIU	urs	urs	575	uis
15	His	His												•		
	<210	0> 2														
20	<21	1> 59	91				•									
	<212	2> PI	RT													-
	<21	3> HO	CV													
	<40	0> 2														
25	Met 1	Gly	Ser	Ser	His 5	His	His	His	His	His 10	Ser	Ser	Gly	Leu	Val 15	Pro
	Arg	Gly	Ser	His 20	Met	Ser	Met	Ser	Tyr 25	Thr	Trp	Thr	Gly	Ala 30	Leu	Ile
30	Thr	Pro	С у з 35	Ala	Ala	Glu	Glu	Ser 40	Gln	Leu	Pro	Ile	Asn 45	Ala	Leu	Ser
	Asn	Ser 50	Leu	Val	Arg	His	Arg 55	Asn	Met	Val	Tyr	Ser 60	Thr	Thr	Ser	Arg
	Ser 65	Ala	Ala	Leu	Arg	Gln 70	Lys	Lys	Val	Thr	Phe 75	Asp	Arg	Leu	Gln	Val 80
35	Leu	Asp	Asp	His	Tyr 85	Arg	Asp	Val	Leu	Lys	Glu	Met	Lys	Ala	Lys 95	Ala

Ser Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu 105 Thr Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp

125

120

115

	Val	Arg	Asn	Leu	Ser	Ser	Lys	Ala	Val	Asp	His	Ile	Arg	Ser	Va1	\mathtt{Trp}
		130					135					140				
	Lys	Asp	Leu	Leu	Glu	Asp	Thr	Glu	Thr	Pro	Ile	Asp	Thr	Thr	Ile	Met
	145					150					155					160
5	Ala	Lys	Asn	Glu	Val	Phe	Cys	Val	${\tt Gln}$	Pro	Glu	Lys	Gly	Gly	Arg	Lys
					165					170				'	175	
	Pro	Ala	Arg	Leu	Ile	Val	Phe	Pro	Asp	Leu	Gly	Val	Arg	Val	Cys	Glu
				180					185					190		
•	Lys	Met	Ala	Leu	Tyr	Asp	Val	Val	Ser	Thr	Leu	Pro	Gln	Ala	Val	Met
10			195					200					205			
•	Gly	Ser	Ser	Tyr	Gly	Phe	Gln	Tyr	Ser	Pro	Lys	Gln	Arg	Val	Glu	Phe
		210	-	•			215					220				
	Leu	Val	Asn	Ala	Trp	Lys	Ser	Lys	Lys	Cys	Pro	Met	Gly	Phe	Ser	
	225					230					235				_	240
15	Asp	Thr	Arg	Cys		Asp	Ser	Thr	Val		Glu	Ser	Asp	Ile		Val
					245	_			_	250		_	-23		255	a1
	Glu	Glu	Ser		Tyr	Gln	Cys	Cys		Leu	Ala	Pro	GIU		Arg	Gin
			_	260	_			•	265		~ 7 -	01. -	G1	270	T 011	mb ~
	Ala	Ile		Ser	Leu	Thr	GIu		ьeu	лУх	Ile	GIY	285	Pro	rea	THE
20	_	a	275	a 1	01	7	0	280	Ma roc	7 ~~	7 ~~~	Cve		Δla	Ser	Glv
	Asn		ьys	GIA	GTII	ASII	295	стх	TÄT	Arg	Arg	300	n.g	Alu	SCI	GLY
	77-7	290	Π'nν	Why	Sor	Care		Δen	Thr	Len	Thr		ጥህተ	Leu	Lvs	Ala
	305	пеа	1111	TIII	Der	310	Q ₂	11011			315	-1-	-4-			320
25		Δla	Δla	Cvs	Ara		Ala	Lvs	Leu	Gln	Asp	Cys	Thr	Met	Leu	
20	DCI	1114	1120	0,10	325					330		-			335	
	Asn	Glv	Asp	Asp		Val	Val	Ile	Cys	Glu	Ser	Ala	Gly	Thr	Gln	Glu
				340					345					350		
	Asp	Ala	Ala	Asn	Leu	Arg	Val	Phe	Thr	Glu	Ala	Met	Thr	Arg	Tyr	Ser
30	_		355					360					365			
	Ala	Pro	Pro	Gly	Asp	Leu	Pro	Gln	Pro	Glu	Tyr	Asp	Leu	G1u	Leu	Ile
		370					375					380				
	Thr	Ser	Cys	Ser	Ser	Asn	Val	Ser	Val	Ála	His	Asp	Ala	Ser	Gly	Lys
	385					390					395					400
35	Arg	Val	Tyr	Tyr	Leu	Thr	Arg	Asp	Pro	Thr	Thr	Pro	Leu	Ala	Arg	Ala
					405					410					415	
	Ala	Trp	Glu	Thr	Ala	Arg	His	Thr	Pro	Ile	Asn	Ser	Trp	Leu	Gly	Asn
				420					425					430		
	Ile	Ile	Met	Tyr	Ala	Pro	Thr	Leu	Trp	Ala	Arg	Met	Val	Leu	Met	Thr
40			435					440					445			

	His	Phe	Phe	Ser	Ile	Leu	Leu	Ala	Gln	Glu	Gln	Leu	Glu	Lys	Ala	Leu
		450					455					460				
	Asp	Cys	Gln	Ile	Tyr	Gly	Ala	Сув	Tyr	Ser		Glu	Pro	Leu	qaA	
_	465				_	470		_			475			_	_	480
5	Pro	Gln	Ile	Ile		Arg	Leu	His	Gly		Ser	Ala	Phe	Ser		His
	_	_	_	_	485	~1		_		490	.	a	G	.	495	.
•	Ser	Tyr	Ser		СТĀ	GIU	TTE	Asn		vaı	Ala	ser	суѕ	ьеи 510	Arg	гус
	T	a1	Val	500	Dwa	Lon	7~~	₹7 ~ 7	505	7 ~~	uic	724	בוג		Ser	₹7 ⇒ 1
10	ьeu	GTĀ	515	PIO	PIO	ьец	Arg	520	TTD	ALG	urs	Arg	525	ALG	per	val
10	Ara	λla	Lys	T.e.ii	T.e.	Ser	Gln		Glv	Ara	Ala	Ala		Cvs	Glv	Lvs
	Arg	530	цуб	Dea	Dea	501	535	رين	0-1			540		-7-	1	
	Tvr		Phe	Asn	Trp	Ala		Ara	Thr	Lvs	Leu		Leu	Thr	Pro	Ile
	545				-	550		_		_	555	_				560
15	Pro	Ala	Ala	Ser	Arg	Leu	Asp	Leu	Ser	Gly	Trp	Phe	Val	Ala	Gly	Tyr
					565					570					575	
	Asn	Gly	Gly	Asp	Ile	Tyr	His	Ser	Leu	Ser	Arg	Ala	Arg	Pro	Arg	
				580					585					590		
20																
	<210	0> 3														
		1> 5														
		2> P														
05	<21	3> H	CV													
25	-40	0. 2														
		0> 3	Met	Sor	Фил	ጥኬν	Фrn	ጥb v	Aen	17al	Tle	Ser	Phe	Laze	ሞክዮ	Δla
	мес 1	ser	Mec	Ser	5	TIIT	ııp	1111	дел	10		DCI	1110	2,5	15	1114
		Lvs	Val	Leu		Ala	Thr	Ara	Ala		Thr	Ser	Glv	Phe		Lys
30		_1 -		20				3	25				_	30		_
	Gln	Arg	Ser		Val	Tyr	Val	Thr	Glu	Pro	Arg	Asp	Ala	Glu	Leu	Arg
			35					40					45			
	Lys	Gln	Lys	Val	Thr	Ile	Asn	Arg	Gln	Pro	Leu	Phe	Pro	Pro	Ser	Tyr
		50					55					60				
35	His	Lys	Gln	Val	Arg	Leu	Ala	Lys	Glu	Lys	Ala	Ser	Lys	Val	Val	Gly
	65					70					75					80
	Val	Met	Trp	Asp	Tyr	Asp	Glu	Val	Ala	Ala	His	Thr	Pro	Ser	Lys	Ser
					85					90					95	
	Ala	Lys	Ser	His	Ile	Thr	Gly	Leu	Arg	Gly	Thr	Asp	Val		Ser	Gly
40				100					105					110		

	Ala	Ala	Arg 115	Lys	Ala	Val	Leu	Asp 120	Leu	Gln	Lys	Суз	Val 125	Glu	Ala	Gly
	Glu	Ile 130		Ser	His	Tyr	Arg 135	Gln	Thr	Val	Ile	Val 140	Pro	Lys	Glu	Glu
5			Val	Lys	Thr	Pro	Gln	Lys	Pro	Thr	Lys 155	Lys	Pro	Pro	Arg	Leu 160
	145 Ile	Ser	Tyr	Pro	His 165		Glu	Met	Arg	Cys 170		Glu	Lys	Met	Tyr 175	Tyr
10	Gly	Gln	Val			Asp	Val	Val	Lys 185		Val	Met	Gly	Asp		Tyr
10	Gly	Phe		180 Asp	Pro	Arg	Thr	Arg 200		Lys	Arg	Leu	Leu 205	Ser	Met	Trp
	Ser		195 Asp	Ala	Val	Gly	Ala 215		Cys	Asp	Thr	Val 220		Phe	Asp	Ser
15		210 Ile	Thr	Pro	Glu	Asp 230		Met	Val	Glu	Thr 235		Ile	Tyr	Ser	Ala 240
	225 Ala	Lys	Leu	Ser	Asp 245		His	Arg	Ala	Gly 250	Ile	His	Thr	Ile	Ala 255	Arg
	Gln	Leu	Туr	Ala 260	Gly	Gly	Pro	Met	Ile 265	Ala		Asp	Gly	Arg 270		
20	Gly	Туr	Arg 275	Arg		Arg	Ser	Ser 280	Gly		Tyr	Thr	Thr 285	Ser	Ser	Ser
	Asn	Ser 290	Leu		Cys	Trp	Leu 295	Lys		Asn	Ala	Ala 300		Glu	Gln	Ala
25	Gly 305	Met		Asn	Pro	Arg 310	Phe		Ile	Cys	Gly 315		Asp	Сув	Thr	Val
			Lys	Ser	Ala 325		Ala	Asp	Ala	Asp 330		Gln	Ala	Met	Arg	
30	Phe	. Ala	Ser	Trp	Met		Val	. Met	: Gly		Pro	Gln	Asp	Cys 350		. Pro
	Gln	Pro	Lys 355		Ser	Leu	. Glu	360		. Thr	Ser	Суз	Ser 365	: Ser	Asr	ı Val
	Thr	Ser 370	: Gl7		e Thr	Lys	Ser 375		, PÀs	s Pro	туг	Туг 380		e Leu	Thr	Arg
35	Asp	Pro		g Il∈	e Pro	Jeu 390		y Arg	у Суз	s Sei	Ala 395		ı Gly	, Leu	Gly	400
			Se:	c Ala	a Ala 409	a Trr		e Gly	у Туз	Le:		e His	s His	s Туг	Pro 415	
40	Lev	ı Trg	y Vai	1. Sei 420	c Arg		L Le	ı Ala	425		s Phe	e Met	: Glu	430		. Let

	Phe	Glu		Lys	Leu	Pro	Glu		Val	Thr	Pne	Asp	1rp 445	лĀх	GIĀ	гуз
	3	M	435	5703	Dwo	Val	Clu	440	T.011	Dro	Ser	Tle		Δla	G1v	Val
	Asn	450	THE	val	PLO	vai	455	Asp	рец	110	JCI	460			1	
5	His	Gly	Ile	Glu	Ala	Phe	Ser	Val	Val	Arg	Tyr	Thr	Asn	Ala	Glu	Ile
	465					470					475					480
	Leu	Arg	Va1	Ser	Gln	Ser	Leu	Thr	Asp	Met	Thr	Met	Pro	Pro	Leu	Arg
					485					490					495	
	Ala	Trp	Arg	Lys	Lys	Ala	Arg	Ala		Leu	Ala	Ser	Ala		Arg	Arg
10				500				_	505		_	_	_	510		m1
	Gly	Gly		His	Ala	Lys	Leu		Arg	Phe	Leu	Leu		HIS	Ата	Thr
			515	_	_	_	_	520	.	m1	C	77~ T	525	7	Ms 220	Whr
	Ser	Arg 530	Pro	Leu	Pro	Asp	ьец 535	Asp	гÃ2	THE	ser	540	ATG	Arg	TAT	1111
15	Thr	Phe	Asn	Tyr	Cys	Asp	Val	Tyr	Ser	Pro	Glu	Gly	Asp	Va1	Phe	Val
	545					550					555					560
	Thr	Pro	Gln	Arg	Arg	Leu	Gln	Lys	Leu	Glu	His	His	His	His		His
					565					570					575	
20																
	<21	0> 4														
	<21	1> 5	91													
	<21	2> P	RT													
	<21	3> H	CV													
25																
		0> 4												_		_
	Met	Gly	Ser	Ser		His	His	His	His		Ser	Ser	Gly	Leu		Pro
	1	•			5	_			_	10	m	ml	01	77-	15	710
	Arg	Gly	Ser		Met	Ser	Met	Ser		Thr	Trp	TOL	GIY	30	Leu	TTE
30		_	G	20	77-	Glu	01. .	Com	25	Lou	Pro	Tla	λαn		T.e.	Ser
	Thr	Pro		Ala	Ата	GIU	GIU	40	GIII	ьeu	. FIO	116	45	7114	200	
	7 00	. Cox	35	1721	Δra	His	Δra		Met	Val	ጥላን	Ser		Thr	Ser	Arq
	ASI	50	пец	val	nrg	11.1.0	55	11011		, , ,	-1-	60				
35	Ser		Ala	Leu	Ara	Gln		Lvs	Val	Thr	Phe		Arg	Leu	Gln	Val
	65	1120			3	70	_	_			75	_				80
		. Asp	Asp	His	Туг	Arg	Asp	Val	. Leu	Lys	Glu	Met	Lys	Ala	Lys	Ala
		-	-		85					90					95	
	Ser	Thr	val	. Lys	Ala	Lys	Leu	Leu	Ser	. Val	. Glu	Glu	Ala	Cys	Lys	Leu
40				100)				105					110		

	Thr	Pro	Pro 115	His	Ser	Ala	Lys	Ser 120	Lys	Phe	Gly	Tyr	Gly 125	Ala	Lys	Asp
		_		_	_	_	_			_				a	TT_ 7	m
	Val	130	Asn	Leu	Ser	Ser	Lys 135	Ala	Val	Asp	HIS	11e 140	Arg	ser	vaı	Trp
5	Lys	Asp	Leu	Leu	Glu	Asp	Thr	Glu	Thr	Pro	Ile	Asp	Thr	Thr	Ile	Met
	145					150					155					160
	Ala	Lys	Asn	Glu	Val	Phe	Cys	Val	Gln	Pro	Glu	Lys	Gly	Gly	Arg	Lys
					165					170					175	
	Pro	Ala	Arg	Leu	Ile	Val	Phe	Pro	Asp	Leu	Gly	Val	Arg	Val	Cys	Glu
10				180					185					190		
	Lys	Met	Ala	Leu	Tyr	Asp	Val	Val	Ser	Thr	Leu	Pro	Gln	Ala	Val	Met
			195					200					205			
	Gly	Ser	Ser	Tyr	Gly	Phe	Gln	Tyr	Ser	Pro	Lys	Gln	Arg	Va1	Glu	Phe
		210					215					220				
15	Leu	Val	Asn	Ala	Trp	Lys	Ser	Lys	Lys	Cys	Pro	Met	Gly	Phe	Ser	Tyr
	225					230					235					240
	Asp	Thr	Arg	Cys	Phe	Asp	Ser	Thr	Val	Thr	Glu	Ser	Asp	Ile	Arg	Val
					245					250					255	
	Glu	Glu	Ser	Ile	Tyr	Gln	Cys	Cys	Asp	Leu	Ala	Pro	Glu	Ala	Arg	Gln
20				260					265					270		
	Ala	Ile	_	Ser	Leu	Thr	GÌu		Leu	Tyr	Ile	Gly		Pro	Leu	Thr
			275					280				_	285		_	
	Asn		Lys	Gly	Gln	Asn		Gly	Tyr	Arg	Arg		Arg	Ala	Ser	Gly
		290					295					300	_	_	_	
25		Leu	Thr	Thr	Ser		Gly	Asn	Thr	Leu		Cys	Tyr	Leu	Lys	
•	305					310				12	31,5				_	320
	Ser	Ala	Ala	Суѕ		Ala	Ala	Lys	Leu		Asp	Cys	Thr	Met		Val
					325			_		330	_				335	
	Asn	Gly	Asp	Asp	Leu	Val	Val	Ile		Glu	Ser	Ala	GТĀ		Gin	GIu
30				340					345					350	_	_
	Asp	Ala		Asn	Leu	Arg	Val		Thr	Glu	Ala	Met		Arg	Tyr	Ser
		•	355		1			360					365			_=
	Ala		Pro	Gly	Asp	Leu		Gln	Pro	Glu	Tyr		Leu	Glu	Leu	Ile
		370					375					380				_
35	Thr	Ser	Суѕ	Ser	Ser	Asn	Val	Ser	Val	Ala		Asp	Ala	Ser	Gly	
	385					390					395			_		400
	Arg	Val	Tyr	Tyr		Thr	Arg	Asp	Pro		Thr	Pro	Leu	Ala		Ala
•					405					410				_	415	_
	Ala	Trp	Glu	Thr	Ala	Arg	His	Thr		Ile	Asn	Ser	Trp		Gly	Asn
40				420					425					430		

	Ile	Ile	Met	Tyr	Ala	Pro	Thr	Leu	Trp	Ala	Arg	Met	Val	Leu	Met	Thr
			435					440					445			
	His	Phe	Phe	Ser	Ile	Leu	Leu	Ala	${\tt Gln}$	Glu	Gln	Leu	Glu	Lys	Ala	Leu
		450					455					460				
5	Asp	Cys	Gln	Ile	Tyr	Gly	Ala	Cys	Tyr	Ser	Ile	Glu	Pro	Leu	Asp	Leu
	465				*	470					475					480
	Pro	Gln	Ile	Ile	Glu	Arg	Leu	His	Gly	Leu	Ser	Ala	Phe	Ser	Leu	His
					485					490					495	
	Ser	Tyr	Ser	Pro	Gly	Glu	Ile	Asn	Arg	Val	Ala	Ser	Cys	Leu	Arg	Lys
0				500					505					510		
	Leu	Gly	Val	Pro	Pro	Leu	Arg	Val	Trp	Arg	His	Arg	Ala	Arg	Ser	Val
			515					520					525			
	Arg	Ala	Lys	Leu	Leu	Ser	Gln	Gly	Gly	Arg	Ala	Ala	Thr	Cys	${\tt Gly}$	Lys
		530					535					540				
15	Tyr	Leu	Phe	Asn	Trp	Ala	Val	Arg	Thr	Lys	Leu	Lys	Leu	Thr	Pro	Ile
	545					550					555					560
	Pro	Ala	Ala	Ser	Arg	Leu	Asp	Leu	Ser	Gly	Trp	Phe	Val	Ala	Gly	Tyr
					565					570					575	
	Asn	Gly	Gly	Asp	Ile	Tyr	His	Ser	Leu	Ser	Arg	Ala	Arg	Pro	Arg	
20				580					585					590		