1 Grundbegriffe aus Logik und Mengenlehre

Definition (Aussage)

Aussage ist ein Schverhalt, dem man entweder den Warheitswert wahr (w) oder falsch (f) zuordnen kann (und nichts anderes).

Definition (Menge)

<u>Menge</u> ist (nach Cantor 1877) eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten der Anschauung oder des Denkens, welche die <u>Elemente</u> der Menge genannt werden, zu einem Ganzen.

Definition

- M = N, falls dieselben Elemente enthalten sind
- $N \subset M$ (Teilmenge), falls $n \in M$ für jedes $n \in \mathbb{N}$
- $N \subsetneq M$ (echte Teilmenge), falls zusätzlich $N \neq M$.
- Aussageform : Sachverhalt mit Variablen, der durch geeignete Ersetzung der Variablen zur Aussage führt

Definition (Quantoren)

Quantoren

- $\forall x \in M : A(x)$ wahr genau dann wenn (gdw.) A(x) wahr für jedes $x \in M$
- $\exists x \in M : A(x)$ wahr gdw. A(x) wahr für mindestens ein $x \in M$

Definition

<u>Tautologie</u> bzw. <u>Kontradiktion</u> / <u>Widerspruch</u> (*) ist zusätzlich gesetzte Aussage, die unabhängig vom Wahrheitswert der Teilaussagen stets wahr bzw. falsch ist.

Satz 1.4 (de Morgan'sche Regeln)

Folgende Aussagen sind stets Tautologien

a)
$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

b)
$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

c)
$$\neg(\forall x \in M : A(x)) \Leftrightarrow \exists x \in M : \neg A(x)$$

d)
$$\neg(\exists x \in M : A(x)) \Leftrightarrow \forall x \in M : \neg A(x)$$

Definition

- ullet leere Menge \emptyset =: Menge, die kein Element enthält
- M, N sind disjunkt , falls $M \cap N = \emptyset$
- \bullet Sei ${\mathcal M}\,$ Mengensystem , d.h. Mengen von Mengen, dann

$$-\bigcup_{M\in\mathcal{M}}M:=\{x\mid \exists M\in\mathcal{M}:x\in M\}$$

$$-\bigcap_{M\in\mathcal{M}}M:=\{x\mid\forall M\in\mathcal{M}:x\in M\}$$

- Potenzmenge : $\mathcal{P}(XM) := \{\tilde{M} | \tilde{M} \in M\}$
- DE MORGAN'sche Regeln (für $\mathcal{N} \subset \mathcal{P}(M)$)

$$- \left(\bigcup_{N \in \mathcal{N}} N \right)^C = \bigcap_{N \in \mathcal{N}} N^C$$

$$- \left(\bigcap_{N \in \mathcal{N}} N \right)^C = \bigcup_{N \in \mathcal{N}} N^C$$

- kartesisches Produkt $M \times N := \{(m, n) | m \in M \text{ und } n \in N\}$
- (m_1, \ldots, m_n) ist <u>n-Tupel</u>
- Auswahlaxiom (AC / axiom of choice)

Sei \mathcal{M} Menge nichtleerer, paarweise disjunkter Mengen M

 \Rightarrow es gibt immer (Auswahl-) Menge M, die mit jedem $M \in \mathcal{M}$ genau ein Element gemein hat.

Beispiel 1.5

- Für Aussagen $A, B, C: A \land C \Rightarrow B$
 - -B ist notwendig für A
 - -A ist hinreichend für B

Mathematische Beweise

Definition

- 1. direkt er Beweis: $(A \Rightarrow A_1) \land (A_1 \Rightarrow A_2) \land \ldots \land (A_n \Rightarrow B)$ wahr für $A \Rightarrow B$
- 2. indirekt er Beweis durch Tautologie $(A \Rightarrow B) \Leftrightarrow (\neg B \rightarrow \neg A)$

Relation und Funktion

Definition (Relation)

- Relation ist Teilmenge $R \subset M \times N$. $(x,y) \in R$ heißt: x und y stehen in Relation zueinander.
- Relation $R \subset M \times N$ heißt Ordnungsrelation (kurz Ordnung) auf M, falls $\forall a, b, c \in M$:
 - a) $(a, a) \in R$ (reflexiv)
 - b) $(a,b),(b,a) \in R \to a = b$ (antisymmetrisch)
 - c) $(a,b),(b,c) \in R \to (a,c) \in R$ (transitiv)
- Ordnungs
relation R auf M heißt Totalordnung , falls
 $\forall a,b \in M: (a,b) \in R \vee (b,a) \in R$
- Relation auf M heißt Äquivalenz relation , falls $\forall a,b,c\in M$:
 - a) $(a, a) \in R$ (reflexiv)
 - b) $(a, b) \in R \Rightarrow (b, a) \in R$ (symmetrisch)
 - c) $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)
- $[a] := \{b \in M \mid (a, b) \in R\}$ heißt Äquivalenzklasse von $a \in M$ bzgl. R Jedes $b \in [a]$ ist ein Repräsentant von [a]

Definition (Abbildung)

Abbildung / Funktion von M nach N, kurz: $F: M \to N$ ist Vorschrift, die jedem Argument / Urbild $m \in M$ genau einen Wert / Bild $F(m) \in N$ zuordnet.

- $\mathcal{D}(F) := M$ heißt Definitionsbereich / Urbildmenge
- \bullet N heißt Zielbereich
- $F(M') := \{ n \in N \mid n = F(m) \text{ für ein } m \in M' \} \text{ ist Bild von } M' \subset M$
- $F^{-1}(N') := \{ m \in M \mid n = F(m) \text{ für ein } N' \} \text{ ist Urbild von } N' \subset N$
- $\mathcal{R}(F) := F(M)$ heißt Wertebereich / Bildmenge
- graph $(F) := \{(mn,) \in M \times N | n = F(m) \}$ heißt Graph von F
- $F|_{M'}$ ist Einschränkung der Funktion von F auf $M' \subset M$
- Komposition von $F: M \to N$ und $G: N \to P$ ist Abbildung $G \circ F: M \to P$ mit $(G \circ F)(m) := G(F(m))$
- $AbbildungF: M \rightarrow N$ heißt
 - injektiv, falls eineindeutig (d.h. $F(m_1) = F(m_2) \Rightarrow m_1 = m_2$)
 - surjektiv , falls F(M)=N, d.h. $\forall n\in N\,\exists m\in M: F(m)=n$
 - bijektiv , falls injektiv und surjektiv
- Für bijektive Abb. $F: M \to N$ ist <u>Umkehrabbildung</u> / <u>inverse Abbildung</u> $F^{-1}: N \to M$ definiert durch $F^{-1}(n) = m \Leftrightarrow F(m) = n$

Satz 1.7

Sei $F: M \to N$ surjektiv. Dann existiert Abbildung $G: N \to M$, sodass $F \circ G = \mathrm{id}_N$ (d.h. $F(G(n)) = n \, \forall n \in N$)

Definition (Verknüpfung)

Eine Rechenoperation / Verknüpfung auf M ist Abb. $*: M \times M \to M$, d.h. $m, n \in M$ wird Ergebnis $m * n \in M$ Rechenoperation

- hat neutrales Element $e \in M$, falls $m * e = e * m = m \forall m \in M$
- ist kommutativ, falls m * n = n * m

- ist assoziativ, falls $k*(m*n) = (k*m)*n \forall k, m, n \in M$
- hat inverses Element $m' \in M$ zu $m \in M$, falls m * m' = m' * m = e

Beispiel

- a) Addition: $(m, n) \mapsto m + n$ Summe,
 - neutrales Element heißt Null / Nullelement
 - Inverses Element: -m
- b) Multiplikation $\cdot : (m, n) \mapsto : m \cdot n$ Produkt
 - neutrales Element heißt Eins / Einselement
 - Inverses Element: m^{-1}

Definition

Addition und Multiplikation heißen distributiv, falls $k \cdot (m+n) = k \cdot m + k \cdot n \, \forall k, m, n \in M$

Definition (Körper)

Menge K heißt Körper , falls auf K eine Addition und Multiplikation existiert mit

- a es existieren neutrale Elemente $0 \in K$ und $1 \in K_{\neg 0}$
- b Addition und Multiplikation sind distributiv
- c Es gibt Inverse

Definition

Menge M habe Ordnung " \leq ", sowie Addition und Multiplikation.

Ordnung ist verträglich mit Addition und Multiplikation, wenn $\forall a, b, c \in M$

- (a) $a \le b \Leftrightarrow a + c \le b + c$
- (b) $a \le b \Leftrightarrow a \cdot c \le b \cdot c \text{ mit } c > 0$

Definition

Körper K heißt angeordnet , falls mit Addition und Multiplikation verträgliche Totalordnung existert.

Definition (Isomorphismus)

<u>Isomorphismus</u> bezüglich einer Struktur ist bijektive Abbildung $I: M_1 \to M_2$, die auf M_1 und M_2 vorhandene Struktur erhält.

Mengen M_1 und M_2 heißen <u>isomorph</u>.

I Zahlenbereiche

1 Natürliche Zahlen

Definition

 \mathbb{N} sei Menge, die die Peano-Axiome erfüllen, d.h.

- P1) N sei indutkiv, d.h. es ex.
 - Nullelement $0 \in \mathbb{N}$ und
 - injektive (Nachfolger-) Abb. $\nu : \mathbb{N} \to \mathbb{N}$ mit $\nu(n) \neq 0 \, \forall n \in \mathbb{N}$
- P2) (Induktionsaxiom)

Falls $N \subset \mathbb{N}$ induktiv in \mathbb{N} (d.h. $0, \nu(n) \in \mathbb{N}$ falls $n \in \mathbb{N}$) $\Rightarrow N = \mathbb{N}$ (N ist die kleinste induktive Menge)

Nach Mengenlehre ZF existiert eine Solche Menge der natürliche Zahlen mit üblichen Symbolen.

Theorem 1.1

Falls \mathbb{N} und $\mathbb{N}*$ PEANO-Axiome erfüllen, dann sind sie isomorph bezüglich Nachfolger-Abbildung und Nullelement (Anfangselement).

Satz 1.2 (Prinzip der vollständigen Induktion)

Sei $\{A_n | n \in \mathbb{N}\}$ Aussagenmenge mit d. Eigenschaften

- (IA) A_0 ist wahr (Induktionsanfang)
- (IS) $\forall n \in \mathbb{N} \text{ gilt: } A_n \text{ (wahr)} \Rightarrow A_{n+1}$
- $\Rightarrow A_n$ ist wahr $\forall n \in \mathbb{N}$

Lemma 1.3

Es gilt:

- a) $\nu(\mathbb{N}) \cup \{0\} = \mathbb{N}$
- b) $\nu(n) \neq n \, \forall n \in \mathbb{N}$

Satz 1.4 (Rekusrive Definition / Rekursion)

Sei b
B Menge, $b \in B$ u. $F: B \times \mathbb{N} \to B$ Abbildung. Dann liefert die Vorschrift

$$f(0) := b,$$

$$f(n+1) := F(f(n), n) \quad \forall n \in \mathbb{N}$$

genau eine Abbildung für $f: \mathbb{N} \to B$ (d.h. solche Abbildung ist eindeutig)

Rechenoperationen

Definition

 $\begin{array}{ll} \text{Definiere} & \underline{\text{Addition}} & +: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \text{ auf } \mathbb{N} \text{ durch } n+0 := n, n+\nu(m) := \nu(n+m) \, \forall n, m \in \mathbb{N} \\ \text{Definiere} & \underline{\text{Multiplikation}} & \cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \text{ auf } \mathbb{N} \text{ durch } n \cdot 0 = 0, n \cdot \nu(m) = n \cdot m + n \, \forall m, n \in \mathbb{N} \\ \end{array}$

Satz 1.5 Addition und Multiplikation haben folgende Eigenschaften, d.h. $\forall k, m, n \in \mathbb{N}$ gilt:

		Addition	Multiplikation
a)	\exists neutrales Element	n+0=n	$n \cdot 1 = n$
b)	kommutativ	m+n=n+m	$m \cdot n = n \cdot m$
c)	assoziativ	(k+m) + n = k + (m+n)	$(k \cdot m) \cdot n = k \cdot (m \cdot n)$
d)	distributiv	k(m+n) = k	$m + k \cdot n$

Folgerung 1.6

Es gilt $\forall k, m, n \in \mathbb{N}$:

- a) $m \neg 0 \Rightarrow m + n \neg 0$
- b) $m \cdot n = 0 \Leftrightarrow m = 0 \lor n = 0$
- c) $m + k = n + k \Leftrightarrow m = n$ (Kürzungsregel Addition)
- d) $k \neg 0 : m \cdot k = n \cdot k \Leftrightarrow m = n$ (Kürzungsregel Multiplikation)

Ordnung auf \mathbb{N}

Definition

Betr. Relation $R := \{(m, n) \in \mathbb{N} \times \mathbb{N} | m < n \}$

Satz 1.7

Es gilt auf \mathbb{N} :

- 1) $m \le n \implies \exists ! k \in \mathbb{N} : n = m + k$, nenne n m =: k Differenz
- 2) Relation R (bzw. ", \leq ") ist Totalordnung auf \mathbb{N}
- 3) Ordnung "<" ist verträglich mit Addition und Multiplikation

2 Ganze und rationale Zahlen

Definition

Definiere Äquivalenzrelation $Q := \{((n_1, n_1'), (n_2, n_2')) \in ((\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})) | n_1 + n_2' = n_1' + n_2 \}$

Satz 2.1

Q ist Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$.

Satz 2.2

Sei $[(n, n')] \in \overline{\mathbb{Z}}$. Dann ex. eindeutige $n^* \in \mathbb{N} : (n^*, 0) \in [(n, n')]$ falls $n \ge n'$ bzw. $(0, n^*) \in [(n, n')]$ falls $n \le n'$.

Rechenoperationen

Definition

 $\underline{\text{Addition}} : \overline{m} + \overline{n} = [(m, n')] + [(n, n')] := [(m + n, m' + n')]$

 $\underline{\text{Multiplikation}}: \overline{m} \cdot \overline{n} = \overline{mn} = [(m,m')] \cdot [(n,n')] := [(mn+m'n',mn'+m'n)]$

Satz 2.3

Addition und Multiplikation sind eindeutig definiert, d.h. unabhängig vom Repräsentanten bzgl. Q.

Satz 2.4

Für Addition und Multiplikation auf Z gilt $\forall \overline{m}, \overline{n} \in \overline{\mathbb{Z}}$:

- 1) Es ex. neutrales Element 0 := [(0,0)] (Add.), 1 := [(1,0)] (Mult., = [(k,k)])
- 2) Jeweils kommutativ, assoziativ und gemeinsam distributiv
- 3) $-\overline{n} := [(n', n)] \in \overline{\mathbb{Z}}$ ist Inverses bzgl. Addition von $[(n, n')] = \overline{n}$
- 4) $(-1) \cdot \overline{n} = -\overline{n}$
- 5) $\overline{m} \cdot \overline{n} = 0 \Leftrightarrow \overline{m} = 0 \lor \overline{n} = 0$

Satz 2.5

Für $\overline{m}, \overline{n} \in \overline{\mathbb{Z}}$ hat Gleichung $\overline{m} = \overline{n} + \overline{x}$ eindeutige Lösung $\overline{x} = \overline{m} + (-\overline{n}) = [(m+n'), (m'+n)].$

Ordnung auf $\overline{\mathbb{Z}}$

Definition

Betr. Relation $R := \{(\overline{m}, \overline{n}) \in \overline{\mathbb{Z}} \times \overline{\mathbb{Z}} | \overline{m} \leq \overline{n} \}$, wobei $\overline{m} = [(m, m')] \leq [(n, n')]$ gdw. $(m + n' \leq m' + n)$

Satz 2.6

R ist Totalordnung auf $\overline{\mathbb{Z}}$, die verträglich ist mit Addition und Multiplikation.

Definition

Betr. $\mathbb{Z} = \mathbb{Z} \cup \{(-k)|k \in \mathbb{N}_{>0}\}$ mit üblicher Addition, Multiplikation und Ordnung " \geq ".

Satz 2.7

 $\mathbb{Z}, \overline{\mathbb{Z}}$ sind isomorph bzgl. Addition, Multiplikation, Ordnung.

Rationale Zahlen

Definition

Betr. Relation
$$Q := \left\{ \left(\frac{n_1}{n_1'}, \frac{n_2}{n_2'} \right) \in (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \times (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \middle| n_1 n_2' = n_1' n_2 \right\}$$

Setzte
$$\mathbb{Q} := \left\{ \left\lceil \frac{n}{n'} \right\rceil \middle| (n, n') \in \mathbb{Z} \times \mathbb{Z}_{\neq 0} \right\}$$
 Menge der rationale Zahlen.

Offenbar gilt Kürzungsregel
$$\left[\frac{n}{n'}\right] = \left[\frac{k \cdot n}{k \cdot n'}\right] \quad \forall k \in \mathbb{Z}_{\neq 0}.$$

Rechenoperationen auf \mathbb{Q}

Definition

$$\underline{\text{Addition}}: \left[\frac{m}{m'}\right] + \left[\frac{n}{n'}\right] := \left[\frac{mn' + m'n}{m' + n'}\right]$$

Multiplikation :
$$\left\lceil \frac{m}{m'} \right\rceil \cdot \left\lceil \frac{n}{n'} \right\rceil := \left\lceil \frac{m \cdot n}{m' \cdot n'} \right\rceil$$

Addition und Multiplikation sind unabhängig vom Repräsentanten bzgl. $Q \Rightarrow$ Operationen auf Q eindeutig definiert.

6

Satz 2.8

Mit Addition und Multiplikation ist Q Körper mit

- neutralem Element $0 := \left\lceil \frac{0_{\mathbb{Z}}}{1_{\mathbb{Z}}} \right\rceil = \left\lceil \frac{0_{\mathbb{Z}}}{n} \right\rceil, 1 := \left\lceil \frac{1_{\mathbb{Z}}}{1_{\mathbb{Z}}} \right\rceil = \left\lceil \frac{n}{n} \right\rceil \neq 0 \; n \neq 0$
- Inverse Elemente $-\left[\frac{n}{n'}\right]=\left[\frac{-n}{n'}\right],\left[\frac{n}{n'}\right]^{-1}=\left[\frac{n'}{n}\right]$

Ordnung auf \mathbb{Q}

Definition

Relation
$$R := \left\{ \left(\left[\frac{m}{m'} \right], \left[\frac{n}{n'} \right] \right) \in \mathbb{Q} \times \mathbb{Q} \middle| mn' \leq m'n'; m', n' > 0 \right\}$$
 gibt Ordnung " \leq ".

Satz 2.9

ℚ ist angeordneter Körper ("≤") ist Totalordnung verträglich mit Addition und Multiplikation).

Folgerung 2.10

Körper $\mathbb Q$ ist archimedisch angeordnet , d.h. $\forall q \in \mathbb Q \, \exists n \in \mathbb N : q < n$.

3 Reelle Zahlen

Struktur von archimedisch angeordneten Körpern

Satz 3.2

Sei K Körper. Dann gilt $\forall a, b \in K$:

- 1) $0, 1, (-a), b^{-1}(b \neq 0)$ sind eindeutig bestimmt
- 2) $(-0) = 0, 1^{-1} = 1$
- 3) $-(-a) = a, (b^{-1})^{-1} = b(b \neq 0)$
- 4) $-(a+b) = (-a) + (-b), (ab)^{-1} = a^{-1}b^{-1}(a, b \neq 0)$
- 5) $-a = (-1)a, (-a)(-b) = ab, a \cdot 0 = 0$
- 6) $ab = 0 \Leftrightarrow a = 0 \lor b = 0$

7) a + x = b hat eindeutige Lösung x = b + (-a) =: b - a Differenz $ax = b(a \neq 0)$ hat eindeutige Lösung $x = a^{-1}b =: \frac{b}{a} \; \; \underline{\text{Quotient}}$

Definition

• $\underline{\text{Vielfache}} : na := \sum_{k=1}^{n} a$

$$-(-n)a := n(-a), 0_{\mathbb{N}}a := a_K \text{ für } n \in \mathbb{N}_{\geq 1}$$

$$- ma + na = (m+n)a, na + nb = n(a+b)$$

$$-(ma) \cdot (na) = (mn)a^2, (-n)a = -(na)$$

• Potenz : a^n von $a \in K, n \in \mathbb{Z} := \prod_{k=1}^n a$

$$-a^{-n} := (a^{-1})^n, a^{0_K} := 1_K \text{ für } n \in \mathbb{N}_{\geq 1}, a \neq 0$$

$$-a^m a^n = a^{m+n}, (a^m)^n = a^{mn}, a^n b^n = (ab)^n, a^{-n} = (a^n)^{-1}$$

- Fakkultät für $n \in \mathbb{N} : n! := \prod_{k=1}^{n} k, 0! = 1$
- Binomialkoeffizient $\binom{n}{k}:=\frac{n!}{k!(n-k)!}\in\mathbb{N}\ \forall k,n\in\mathbb{N},0\leq k\leq n$

$$- \binom{k+1}{n+1} = \binom{n}{k} + \binom{n}{k+1}$$

- Rechenregel führt auf Pascal'sches Dreieck

Satz 3.3 (Binomischer Satz) In Körper K gilt: $(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^nb^{n-k}, b\in K, n\in\mathbb{N}$

Satz 3.4

Sei K angeordneter Körper. Dann gilt $\forall a, b, c, d \in K$:

a)
$$a < b \Leftrightarrow 0 < b - a$$

b)
$$a < b, c < d \Leftrightarrow a + c < b + d$$

$$0 \le a < b, 0 \le c < d \Leftrightarrow a \cdot c < b \cdot d$$

c)
$$a < b \Leftrightarrow -b < -a$$
 (insbes. $a > 0 \Leftrightarrow -a < 0$)

$$a < b, c < 0 \Leftrightarrow a \cdot c > b \cdot c$$

d)
$$a \neq 0 \Leftrightarrow a^2 > 0$$
 (insbes. 1; 0)

e)
$$a > 0 \Leftrightarrow a^{-1} > 0$$

f)
$$0 < a < b \Leftrightarrow b^{-1} < a^{-1}$$

Definition

Absolutbetrag $|\cdot|:K\to K$ (auf angeordneten Körper K)

$$|a| := \begin{cases} a & \text{für } a \ge 0 \\ -a & \text{für } a < 0 \end{cases}$$

Satz 3.5

Sei K angeordneter Körper. Dann gilt $\forall a, b \in K$:

1)
$$|a| \ge 0, |a| \ge a$$

2)
$$|a| = 0$$
 gdw. $a = 0$

3)
$$|a| = |-a|$$

$$4) |a| \cdot |b| = |a \cdot b|$$

5)
$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|} (b \neq 0)$$

$$|a+b| \le |a| + |b| (|a-b| = |a+(-b)| \le |a| + |b|)$$

7)
$$|a| - |b| \le |a + b|$$

8) Bernoulli-Ungleichung

$$(1+a)^n \ge 1 + n \cdot a \, \forall a \ge -1, n \in \mathbb{N} (a \ne -1 \text{ bei } n=0)$$

(Gleichheit gdw. $n=0,1$ oder $a=0$)

Definition

Betr.
$$f: \mathbb{Q} \to K$$
 mit $f\left(\frac{m}{n}\right) := \frac{m \cdot 1_K}{n \cdot 1_K} = (m1_k)(n1_K)^{-1} \, \forall m \in \mathbb{Z}, k \in \mathbb{Z}_{\neq 0}$

Satz 3.6

Sei K angeordneter Körper

 $\Rightarrow f: \mathbb{Q} \to K$ ist injektiv und f erhält die Körperstruktur und Ordnung, d.h. $\forall p, q \in \mathbb{Q}$:

- $f(p+q) = f(p) + f(q), f(0) = 0_K, f(-p) = -f(p)$
- $f(p \cdot q) = f(p) \cdot f(q), f(1) = 1_K, f(p^{-1}) = f(p)^{-1} (p \neq 0)$
- $p \leq_{\mathbb{Q}} q \Leftrightarrow f(p) \leq_K f(q)$

Folgerung 3.7

Es gilt im angeordneten Körper:

- 1) $\mathbb{Q}_K = f(\mathbb{Q})$ ist mit Addition, Multiplikation und Ordnung von K selbst angeordneter Körper
- 2) \mathbb{Q}_K ist isomorph zu \mathbb{Q} bzgl. Körperstruktur und Ordnung.

Definition

Angeordneter Körper heißt archimedisch, falls $\forall a \in K \exists n \in \mathbb{N} \subset K : a < n$.

Satz 3.8

Sei K archimedisch angeordneter Körper. Dann

- 1) $\forall a, b \in K \text{ mit } a, b > 0 \exists n \in \mathbb{N} : n \cdot a > b$
- 2) $\forall a \in K \exists ! [a] \in \mathbb{Z} : [a] \leq a \leq [a] + 1, [a]$ heißt ganzer Anteil von a
- 3) $\forall \varepsilon \in K \text{ mit } \varepsilon > 0 \,\exists n \in \mathbb{N}_{\neq 0} : \frac{1}{n} < \varepsilon \text{ (beachte: } 0 < \frac{1}{n})$
- 4) $\forall a, b \in K \text{ mit } a > 1 \,\exists n \in \mathbb{N} : a^n > b$
- 5) $\forall a, \varepsilon > 0 \, \exists p, q \in \mathbb{Q} : p \leq aq \text{ und } q p < \varepsilon$

(d.h. $a \in K$ kann auch rationale Zahlen beliebig genau approximiert werden, \mathbb{Q} "dicht" in K)

6) $\forall a, b \in K, a < b \exists q \in \mathbb{Q} : a < q < b.$

Definition (Intervall)

Intervall für angeordneten Körper K: Sei $a, b \in K$:

- beschränktes Intervall
 - $-[a,b] := \{x \in K | a \le x \le b\}$ abgeschlossen
 - $-(a,b) := \{a < x < b\}$ offen
 - $[a, b) := \{a \le x < b\}, (a, b] := \{a < x \le b\}$ halboffen
- unbeschränktes Intervall
 - $-\ [a,\infty]:=\{x\in K\mid a\leq x\}$
 - $(a, \infty) := \{ x \in K \mid a > x \}$
 - $-(-\infty, b] := \{x \in K \mid x < a\}$
 - $-(-\infty, b) := \{x \in K \mid x \le b\}$

Definition (Folge)

Eine Folge in Menge M ist eine Abbildung $\alpha: \mathbb{N} \to M$ (evtl. $\alpha: \mathbb{N}_{\geq n} \to M$), $\alpha_n := \alpha(n)$ heißen Folgenglieder, und Folgenindex.

Notation: $\{a_n\}_{n\in\mathbb{N}}, \{\alpha_n\}_{k=1}^{\infty} \text{ bzw. } \alpha_0, \alpha_1, \dots$

kurz: $\{\alpha_n\}_n, \{\alpha_n\}$

Hinweis: $\{x\}_n$ ist konstante Folge , d.h. $\alpha_n = \alpha \,\forall n$

Aussage gilt für fast alle (fa.) $n \in \mathbb{N}$, wenn höchstens für endlich viele n falsch.

Definition (Intervallschachtelung)

Folge $\{x_n\}_{n\in\mathbb{N}}=:\mathcal{X}$ von abgeschlossenen Intervallen $X_n=[x_n,x_n']\subset K$ $(x_n,x_n'\in K)$ heißt Intervallschachtelung (im angeordneten Körper K), falls

- a) $X_n \neq \emptyset$ und $X_{n+1} \subset X_n \, \forall n \in \mathbb{N}$
- b) $\forall \varepsilon > 0$ in K existiert $n \in \mathbb{N} : l(X_n) := x'_n x_n < \varepsilon$, mit l Intervalllänge

Lemma 3.9

Sei $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ Intervallschachtelung im angeordneten Körper $K \Rightarrow \bigcap_{n \in \mathbb{N}} X_n$ enthält höchstens ein Element.

Definition

Archimedisch angeordneter Körper heißt vollständig, falls $\bigcap_{n\in\mathbb{N}}X_n\neq\emptyset$ für jede Intervallschachtelung $\mathcal{X}=\{x_n\}$ in K.

Definition

 $Q := \{(\{x_n\}, \{y_n\}) \in I_{\mathbb{Q}} \times I_{\mathbb{Q}}\}\$ ist Relation auf $I_{\mathbb{Q}}, I_{\mathbb{Q}} :=$ Menge aller Intervallschachtelungen $\mathcal{X} = \{x_n\} \in \mathbb{Q}.$

Satz 3.10

Q ist Äquivalenzrelation auf $I_{\mathbb{Q}}$.

Definition

setze $\mathbb{R} := \{ [\mathcal{X}] \mid \mathcal{X} \in I_{\mathbb{Q}} \}$ Menge der reellen Zahlen .

• $\bigcap_{n\in\mathbb{N}} X_n \neq 0 \rightarrow [\mathcal{X}]$ ist "neue" sog. irrationale Zahl

Rechenoperationen

Definition

Für Intervalle X = [x, x'], Y = [y, y'] in \mathbb{Q} defineren wir Intervall in \mathbb{Q} :

- $X + Y := \{ \xi + \eta \mid \xi \in X, \eta \in Y \} = [x + y, x' + y']$
- $X \cdot Y := \{ \xi \cdot \eta \mid \xi \in X, \eta \in Y \} = [\tilde{x}\tilde{y}, \tilde{x}'\tilde{y}'], \text{ wobei } \tilde{x}, \tilde{x}' \in \{x, x'\}, \tilde{y}, \tilde{y}' \in \{y, y'\} \}$
- $-X := [-x, -x'], X^{-1} := [\frac{1}{x'}, \frac{1}{x}] \text{ falls } 0 \in X$

Für relle Zahl $[\mathcal{X}] = [\{x_n\}], [\mathcal{Y}] = [\{y_n\}]$ sei

- $[X] + Y := [\{x_n + y_n\}]$
- $[\mathcal{X}] \cdot [\mathcal{Y}] := [\{x_n \cdot y_n\}]$
- $-[\mathcal{X}] := [\{-x_n\}]$ $[\mathcal{X}]^{-1} := [\{x_n^{-1}\}] \text{ falls } [\mathcal{X}] \neq 0_{\mathbb{R}}$

Satz 3.11

- 1) Addition, Multiplikation und Inverse sind in \mathbb{R} eindeutig definiert
- 2) $\mathbb R$ ist damit und neutralen Elementen ein Körper.

Ordnung auf \mathbb{R}

Definition

Betr. Relation $\mathscr{A} := \{([\{x_n\}], [\{y_n\}]) \in \mathbb{R} \times \mathbb{R} | x_n \leq y_n \, \forall n \in \mathbb{N}\}$

Satz 3.12

 \mathbb{R} ist mit " \leq " angeordneter Körper.

Satz 3.13

 \mathbb{R} ist archimedisch angeordneter Körper.

Theorem 3.14

 $\mathbb R$ ist vollständiger, archimedisch angeordneter Körper.

Theorem 3.15

Sei K vollständiger, archimedisch angeordneter Körper $\Rightarrow K$ ist isomorph zu \mathbb{R} bzgl. Körperstruktur und Ordnung.

Definition

Sei $M \subset K$, K angeordneter Körper.

- $s \in K$ ist obere / untere Schranke von M, falls $x \le s(x \ge s) \forall x \in M$ M ist nach oben / untere beschränkt, falls obere (untere) Schranke existiert.
- $\bullet \ M \$ beschränkt , falls M nach oben und unten beschränkt.
- kleinste obere (größte untere) Schranke \tilde{s} von M ist Supremum (Infimum) von M, d.h. sup $M := \tilde{s} \leq s$ (inf $M = s \geq \tilde{s}$) obere (untere) Schranken $s \in M$.
- Falls $\sup M \in M(\inf M \in M)$ nennt man dies auch <u>Maximum</u> (<u>Minimum</u>) von M. kurz: $\max M = \sup M(\min M = \inf M)$
- falls M nach oben (unten) unbeschränkt, d.h. nicht beschränkt, schreibt man auch sup $M=\infty (\inf M=-\infty)$

Man hat

$$\sup M = \min\{s \mid s \text{ obere Schranke von } M\}$$
$$\inf M = \max\{s \mid s \text{ untere Schranke von } M\}$$

Satz 3.17

Sei K angeordneter Körper, $M \subset K$. Falls $\sup M$ (inf M) existiert, dann

- 1) $\sup M$ (inf M) eindeutig
- 2) $\forall \varepsilon > 0 \,\exists y \in M : \sup M < y + \varepsilon \, (\inf M > y \varepsilon)$

Theorem 3.18

Sei K archimedisch angeordneter Körper. Dann

K vollständig $\Leftrightarrow \sup M/\inf M$ ex. $\forall M \in K, M \neq \emptyset$ nach oben /unten beschränkt

Anwendung: Wurzeln, Potenzen, Logarithmen in \mathbb{R}

Satz 3.19 (Wurzeln)

Sei
$$a \in \mathbb{R}_{>0}, k \in \mathbb{N}_{>0} \Rightarrow \exists ! x \in \mathbb{R}_{>0} : x^k = a, \sqrt[k]{a} := a^{\frac{1}{k}} = x$$
 heißt k-te Wurzel von a .

Definition (Potenz)

n-te Potenz von $a \in \mathbb{R}_{>0}, r \in \mathbb{R}$:

Zunächst $r = \frac{m}{n} \in \mathbb{Q}$ (ohne Beschränkung der Allgemeinheit (oBdA)) $n \in \mathbb{N}_{>0}$): $a^{\frac{m}{n}} := (a^m)^{\frac{1}{n}}$ Allgemein für $a \geq 0, a >$: $a^r := \sup\{a^q \mid 0 \leq q \leq r, q \in \mathbb{Q}\}$ offenbar eindeutig definiert und allgemeine Definition konsistent mit Definition für $\frac{m}{n} \in \mathbb{Q}$. Damit: Exponentialfunktion

Satz 3.20

Seien $a, b \in \mathbb{R}_{>0}, r, s \in \mathbb{R}.Dann$

- 1) $a^r b^r = (ab)^r, (a^r)^s = a^{rs}, a^r a^s = a^{r+s}$
- 2) f. r > 0: $a < b \Leftrightarrow a^r < b^r$
- 3) für $a > 1 : r < s \Leftrightarrow a^r < a^s$

Definition (Logarithmus)

Sei $a, b \in \mathbb{R}_{\leq 0}, a \neq 1$: Logarithmus von b zur Basis a ist

$$\log_a b := \begin{cases} \sup\{r \in \mathbb{R} \mid a^r \le b\} & a > 1\\ \sup\{r \in \mathbb{R} \mid a^r \ge b\} & 0 < a < 1 \end{cases}$$

Satz 3.21

Se $a, b, c \in \mathbb{R}_{>0}, a \neq 1$. Dann

1) $log_a b$ ist eindeutige Lösung von $a^x = b$, d.h. $a^{log_a b} = b$

- 2) $\log_a a = 1, \log_a 1 = 0$
- 3) $\log_a b^{\gamma} = \gamma \log_a b \, \forall \gamma \in \mathbb{R}$
- 4) $\log_a(bc) = \log_a b + \log_a c, \log_a \frac{b}{c} = \log_a b \log_a c$
- 5) $\log_a b = \frac{\log_\alpha b}{\log_\alpha a} \, \forall \alpha \in \mathbb{R}_{>0}, \alpha \neq 1$

Mächtigkeit von Mengen

Definition

M endlich , falls M endlich viele Elemente hat, sonst unendlich .

Unendliches M ist abzählbar, falls bijektive Abbildung $f: \mathbb{N} \to M$ existiert, sonst ist M überabzählbar.

Satz 3.22

Es gilt:

- Z, Q abzählbar
- 2) M abzählbar, $n \in \mathbb{N}_{>0} \Rightarrow M^n$ abzählbar ($\Rightarrow \mathbb{Z}^n, \mathbb{Q}^n$ abzählbar)
- 3) Ein offenes Intervall $I \in \mathbb{R} \neq \emptyset$ ist überabzählbar
- 4) $\mathcal{P}(\mathbb{N})$ ist überabzählbar.

4 Komplexe Zahlen

Definition

Betr. Menge der komplexen Zahlen $\mathbb{C}:=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2$ mit Addition und Multiplikation:

$$\begin{array}{l} (x,x') + (y,y') := (x+y,x'+y') \\ (x,x') \cdot (y,y') := (xy-x'y',xy'+x'y) \end{array}$$

 \mathbb{C} ist ein Körper mit $0_{\mathbb{C}} = (0,0), 1_{\mathbb{C}} = (1,0), -(x,y) = (-x,-y), (x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$ mit <u>imaginäre Einheit</u> i := (0,1) schreibt man auch z = x + iy statt z = (x,y)

Nenne $x:=\mathfrak{Re}(z)$ Realteil , $y:=\mathfrak{Im}(z)$ Imaginärteil von z. $\overline{z}:=x-iy$ zu z konjungiert komplexe Zahl

Komplexe Zahl Z=x+i0=x wird mit reellen Zahl $x\in\mathbb{R}$ identifiziert. Offenbar ist $i^2=(0,1)^2=-1$, d.h. $z=i\in\mathbb{C}$ löst Gleichung $z^2=-1$.

Betrag $|\cdot|:\mathbb{C}\to\mathbb{R}_{>0}$ mit $|z|:=\sqrt{x^2+y^2}$ ist Beträg / Länge des Vektors.

Es gilt:

- a) $\Re z = \frac{z+\overline{z}}{z}, \operatorname{Im} z = \frac{z-\overline{z}}{z}$
- b) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- c) $|z| = 0 \Leftrightarrow z = 0$
- d) $|z| = |\overline{z}|$
- e) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Metrische Räume und Konvergenz

7 Grundlegende Ungleichungen

Satz 7.1 (geoemtrisches / arithemtisches Mittel)

Seien $x_1, \ldots, x_n \in \mathbb{R}_{>0}$.

$$\Rightarrow \underbrace{\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}}_{\text{geometrisches Mittel}} \leq \underbrace{\frac{x_1 + \ldots + x_n}{n}}_{\text{arithmetisches Mittel}}$$

Satz 7.2 (allgemeine Bernoulli-Ungleichung)

Seien $\alpha, x \in \mathbb{R}$. Dann

1)
$$(1+x)^{\alpha} \ge 1 + \alpha x \, \forall x \ge -1, \alpha > 1$$

2)
$$(1+x)^{\alpha} \le 1 + \alpha x \, \forall x \ge -1, 0 < \alpha < 1$$

Satz 7.3 (Young-sche Ungleichung)

Seien
$$p, q \in \mathbb{R}, p, q > 1$$
 mit $\frac{1}{p} + \frac{1}{q} = 1$.
 $\Rightarrow a \cdot b \leq \frac{a^p}{p} + \frac{b^q}{q} \forall a, b \geq 0$

$$q = q + q$$

$$q^{2} + h^{2}$$

Spezialfall: p = q = 2: $ab \le \frac{a^2 + b^2}{2} \, \forall a, b \in \mathbb{R}$

Satz 7.4 (Hölder'sche Ungleichung)

Sei
$$p, q \in \mathbb{R}, p, q > 1$$
 mit $\frac{1}{p} + \frac{1}{q} = 1$

$$\Rightarrow \sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}} \ \forall x, y \in \mathbb{R}$$

Für p=q=2 heißt die Ungleichung Cauchy-Schwarz'sche Ungleichung

Satz 7.5 (Minkowski-Ungleichung)

Sei $p \in \mathbb{R}, p > 1$

$$\Rightarrow \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}} \, \forall x, y \in \mathbb{R}$$

Bemerkung 7.6

- 1) Ungleichung gilt auch für $x_i, y_i \in \mathbb{C}$
- 2) ist Δ -Ungleichung für p-Normen

8 Metrische Räume

Definition (Metrik)

Sei X Menge, Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik auf X, falls $\forall x, y, z \in X$:

a)
$$d(x,y) = 0 \Leftrightarrow x = y$$

b)
$$d(x,y) = d(y,x)$$
 Symmetrie

c)
$$d(x,z) \le d(x,y) + d(y,z)$$
 Dreiecksungleichung

(X,d) heißt metrischer Raum.

Beispiel 8.2

Diskrete Metrik auf bel. Menge X ist

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

ist offenbar Metrik.

Beispiel 8.3

Sei (X,d) metrischer Raum, $Y \subset X$

 $\Rightarrow (Y, \tilde{d})$ ist metrischer Raum mit induzierte Metrik $\tilde{d}(x, y) := d(x, y) \, \forall x, y \in X$.

Definition (Norm)

Sei X Vektorraum über $K = \mathbb{R}$ bzw. $K = \mathbb{C}$.

Abbildung $\|.\|: X \to \mathbb{R}$ heißt Norm auf X, falls $\forall x, y \in X$

- a) ||x|| = 0 gdw. x = 0
- b) $\|\lambda \cdot x\| = |\lambda| \cdot \|x\| \, \forall \lambda \in K$ (Homogenität)
- c) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

 $(X, \|.\|)$ heißt normierter Raum

Definition (Halbnorm)

 $\|.\|: X \to \mathbb{R}_{>0}$ heißt Halbnorm , falls nur b) und c) gelten.

Satz 8.4

Sei $(X, \|.\|)$ normierter Raum.

 $\Rightarrow X$ ist metrischer Raum mit Metrik $d(x,y) := ||x-y|| \, \forall x,y \in X.$

Beispiel 8.5

Man hat u.a. folgende Normen auf \mathbb{R}^n :

$$p$$
-Norm $|x|_p := (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}} (1 \le p < \infty)$

Maximum-Norm
$$|x|_{\infty} := \max\{|x_i| \mid i = 1, \dots, n\}$$

Standardnorm im $\mathbb{R}^n: |\cdot|:=|\cdot|_{p=2}$ heißt euklidische Norm

Definition (Skalarprodukt)

 $\langle x,y\rangle:=\sum_{i=1}^n x_iy_i$ heißt Skalarprodukt (inneres Produkt) von $x,y\in\mathbb{R}^n$.

Offenbar ist $\langle x, x \rangle = |x|^2 \, \forall x \in \mathbb{R}^n$ (ausschließlich für Euklidische Norm)

Man hat $|\langle x,y\rangle| \leq |x| \cdot |y| \, \forall x,y \in \mathbb{R}^n$ (Cauchy-Schwarz'sche Ungleichung)

Beispiel 8.6

 $X = \mathbb{C}^n$ ist Vektorraum über $\mathbb{C}, x = (x_1, \dots, x_n) \in \mathbb{C}^n, x_i \in \mathbb{C}.$

Analog zu 8.5 sind $|\cdot|_p$ und $|\cdot|_\infty$ Normen auf \mathbb{C}^n

 $\langle x, y \rangle := \sum_{i=1}^{n} \overline{x_i} y_i \, \forall x, y \in \mathbb{C} \text{ heißt } \underline{\text{Skalarprodukt}} \text{ von } x, y \in \mathbb{C}^n.$

 $x, y \in \mathbb{R}^n(\mathbb{C}^n)$ heißen orthogonal, falls $\langle x, y \rangle = 0$.

Beispiel 8.7

Sei M beliebige Menge, $f: M \to \mathbb{R}$.

- $||f|| := \sup\{|f(x)| \mid x \in M\}$ Supremumsnorm
- $B(M) := \{f: M \to \mathbb{R} \mid \|f\| < \infty\}$ Menge der beschränkten Funktionen

Definition

Normen $\|.\|_1, \|.\|_2$ auf X heißen äquivalent, falls $\exists \alpha, \beta > 0 : \alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1 \, \forall x \in X$

Folgerung 8.10

 $|\cdot|_p, |\cdot|_q$ sind äquivalent auf $\mathbb{R}^n \, \forall p, q \geq 1$.

Definition

- $B_r(a) := \{x \in X \mid d(a,x) < r\}$ heißt (offene) Kugel um a mit Radius r > 0
- $B_r[a] := \bar{B}_r(a) := \{x \in X \mid d(a,x) \le r\}$ heißt (abgeschlossene) <u>Kugel</u> um a mit Radius r > 0

Hinweis: muss keine "übliche" Kugel sein, zum Beispiel $\{x \in \mathbb{R}^n \mid d(0,x) = \|x\|_{\infty} < 1\}$ hat die Form eines "üblichen" Quadrats.

- Menge $M \subset X$ heißt offen, falls $\forall x \in M \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset M$
- Menge $M \subset X$ ist abgeschlossen , falls $X \setminus M$ offen
- $U \subset X$ Umgebung von M, falls $\exists V \subset X$ offen mit $M \subset V \subset U$
- $x \in M$ innerer Punkt , von M, falls $\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset M$

- $x \in X \setminus M$ äußerer Punkt von M, falls $\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset X \setminus M$
- $x \in X$ heißt Randpunkt , von M, wenn x weder innerer noch äußerer Punkt
- \bullet int M:= Menge aller inneren Punkte von M, heißt Inneres von M
- \bullet ext M:= Menge aller äußeren Punkte von M, heißt Äußeres von M.
- $\partial M := \text{Menge der Randpunkte von } M$, heißt Rand von M
- cl := \overline{M} = int $M \cup \partial M$ heißt Abschluss von M
- $M \subset X$ heißt beschränkt, falls $\exists a \in X, r > 0 : M \subset B_r(a)$
- $x \in X$ heißt Häufungspunkt (HP) von M, falls $\forall \varepsilon > 0$ enthält $B_{\varepsilon}(x)$ unendlich viele Elemente aus M
- $\bullet \ x \in M$ heißt isolierter Punkt von M, falls xkein Häufungspunkt

Lemma 8.12

Sei (X, d) metrischer Raum. Dann

- 1) $B_r(a)$ offene Menge $\forall r > 0, a \in X$
- 2) $M \subset X$ beschränkt $\Rightarrow \forall a \in X \exists r > 0 : M \subset B_r(a)$

Satz 8.13

Sei (X, d) metrischer Raum, $\tau := \{U \subset X \mid U \text{ offen}\}$. Dann

- 1) $X, \emptyset \in \tau$ offen
- 2) $\bigcap_{i=1}^{n} U_i \subset \tau$ falls $U_i \in \tau$ für $i = 1, \ldots, n$
- 3) $\bigcup_{U \in \tau'} U \in \tau$ falls $\tau' \in \tau$

Folgerung 8.14

Sei (X,d) metrischer Raum, $\sigma := \{V \subset X \mid V \text{ abgeschlossen}\}.$ Dann

- 1) $X, \emptyset \in \sigma$ abgeschlossen
- 2) $\bigcup_{i=1}^{n} V_i \subset \sigma$ falls $V_i \in \sigma_i$ für $i = 1, \dots, n$
- 3) $\bigcap_{V \in \sigma'} V \in \sigma$ falls $\sigma' \subset \sigma$

Definition (Topologie)

Sei X Menge, und τ Menge von Teilmengen von X, d.h. $\tau \subset \mathcal{P}(X)$. τ ist Topologie und (X, τ) topologischer Raum, falls 1), 2), 3) aus 8.13 gelten.

Satz 8.15

Seien $\|.\|_1, \|.\|_2$ äquivalente Normen in X und $U \subset X$. Dann

Uoffen bezüglich $\|.\|_1 \iff U$ offen b
zgl. $\|.\|_2$

Satz 8.16

Sei (X, d) metrischer Raum und $M \subset X$: Dann

- 1) int M, ext M offen
- 2) ∂M , cl M abgeschlossen
- 3) M = int M, falls M offen, M = cl M falls M abgeschlossen

9 Konvergenz

Definition (konvergent)

Sei (X,d) metrischer Raum. Folge $\{x_n\}_{n\in\mathbb{N}}$ in X, $(d.h.\ x_n\in X\ \forall n)$ heißt konvergent, falls $x\in X$ existiert mit

$$\forall \varepsilon > 0 \,\exists n_0 = n_0(\varepsilon) \in \mathbb{N} : d(x_n, x) < \varepsilon \quad \forall n > n_0$$

x heißt dann Grenzwert (auch Limes) der Folge.

Notation:
$$x = \lim_{n \to \infty} , x_n \to x \text{ für } n \to \infty, x_n \stackrel{n \to \infty}{\longrightarrow} x$$

Folge heißt divergent, falls nicht konvergent.

Folgerung 9.1

Für Folge $\{x_n\}$ gilt:

$$x = \lim_{n \to \infty} x_n \, \Leftrightarrow \text{Jede Kugel } B_{\varepsilon}(x)$$
enthält fast alle x_n

Satz 9.6 (Eindeutigkeit des Grenzwertes)

Sei (X, d) metr. Raum, $\{x_n\}$ Folge in X. Dann

$$x, x'$$
 Grenzwert von $\{x_n\} \Rightarrow x = x'$

Satz 9.7

Sei (X, d) metrischer Raum, $\{x_n\}$ konvergente Folge in $X \Rightarrow \{x_n\}$ ist beschränkt.

Definition

Sei $\{x_n\}$ beliebige Folge in X, $\{n_k\}_{k\in\mathbb{N}}$ Folge in \mathbb{N} mit $n_{k+1} > n_k \, \forall k \in \mathbb{N}$. Dann heißt $\{x_{n_k}\}_{k\in\mathbb{N}}$ Teilfolge (TF) von $\{x_n\}_{n\in\mathbb{N}}$. $\gamma \in X$ heißt Häufungswert (Hw) (auch Häufungspunkt) der Folge $\{x_n\}$, falls $\forall \varepsilon > 0$ enthält $B_{\varepsilon}(\gamma)$ unendlich viele x_n .

Satz 9.12

Sei $\{x_n\}$ Folge im metrischen Raum (X, d). Dann

- 1) $x_n \to x \implies x_{n_k} \stackrel{n \to \infty}{\longrightarrow} x$ für jede TF $\{x_{n_k}\}_k$
- 2) γ ist Hw der Folge $\{x_n\} \Leftrightarrow \exists \text{TF } \{x_{n_k}\} : x_{n_k} \stackrel{n \to \infty}{\longrightarrow} \gamma$
- 3) Teilfolgenprinzip : Jede TF $\{x_{k'}\}$ von $\{x_n\}$ hat TF $\{x_{k''}\}$ mit $x_{n''} \to x \Rightarrow x_n \to x$

Satz 9.13

Sei (X, d) metrischer Raum, $M \subset X$ Teilmenge. Dann

$$M$$
 abgeschlossen \Leftrightarrow für jede konv. Folge $\{x_n\}$ in M gilt: $\lim_{n\to\infty} x_n \in M$

Konvergenz im normierten Raum X

Satz 9.14

Sei X normierter Raum, $\{x_n\}, \{y_n\}$ in $X, \{\lambda_n\}$ in K mit $\lim x_n = x, \lim y_n = y$. Dann

- 1) $\{x_n \pm y_n\}$ konvergiert und $\lim_{n \to \infty} x_n \pm y_n = \lim_{n \to \infty} x_n \pm \lim_{n \to \infty} y_n$
- 2) $\{\lambda_n x_n\}$ konvergiert und $\lim_{n\to\infty} \lambda_n x_n = \lim_{n\to\infty} \lambda_n \cdot \lim_{n\to\infty} x_n$
- 3) $\lambda \neq 0 \Rightarrow \lim_{n \to \infty} \frac{1}{\lambda_n} = \frac{1}{\lambda} \text{ (in } K \text{) für } \{\frac{1}{\lambda_n}\}_{n \geq \tilde{n}} \ (\lambda_n \neq 0 \, \forall n \geq \tilde{n})$

Folgerung 9.15

Seien $\{\lambda_n\}, \{\mu_n\}$ Folgen in K mit $\lambda_n \to \lambda, \mu_n \to \mu$. Dann

- 1) $\lambda_n + \mu_n \to \lambda + \mu, \lambda_n \mu_n \to \lambda \mu$
- 2) falls $\lambda \neq 0$ (oBdA $\lambda_n \neq 0$): $\frac{\mu_n}{\lambda_n} \to \frac{\mu}{\lambda}$

Lemma 9.17

- 1) Im metrischen Raum X gilt: $x_n \to x$ in $X \Leftrightarrow d(x_n, x) \to 0$ in $\mathbb R$
- 2) Sei $0 \le \alpha_n \le \beta_n \, \forall n \in \mathbb{N}, \alpha_n, \beta_n \in \mathbb{R}, \beta_n \to 0$ $\Rightarrow \alpha_n \to 0$ Sandwich-Prinzip

Satz 9.18

Sei
$$X$$
 normierter Raum, $\{x_n\}$ in X . Dann $x_n \to x$ in $X \Rightarrow ||x_n|| \to ||x||$ in \mathbb{R}

Satz 9.19

Seien $(X, \|.\|_1)$, $(X, \|.\|_2)$ normierte Räume mit äquivalenten Normen. Dann $x_n \to x$ in $(X, \|.\|_1) \Leftrightarrow x_n \to x$ in $(X, \|.\|_2)$

Satz 9.21 (Konvergenz in $\mathbb{R}^n/\mathbb{C}^n$ bzgl. Norm)

Sei
$$\{x_n\}$$
 Folge mit $x_n = (x_n^1, \dots, x_n^n) \in \mathbb{R}(\mathbb{C}^n), x = (x^1, \dots, x^n) \in \mathbb{R}^n(\mathbb{C}^n).$

$$\lim_{n\to\infty} x_n = x \text{ in } \mathbb{R}^n(\mathbb{C}^n) \Leftrightarrow \lim_{n\to\infty} x_k^j = xj \text{ in } \mathbb{R} \text{ bzw. } \mathbb{C} \, \forall j=1,\ldots,n$$

Konvergenz in \mathbb{R}

Satz 9.25

Seien $\{x_n\}, \{y_n\}, \{z_n\}$ Folgen in \mathbb{R} . Dann

- 1) $x_n \le y_n \, \forall n \ge n_0, x_n \to x, y_n \to y \implies x \le y$
- 2) $x_n \le y_n \le z_n \, \forall n \ge n_0, x_n \to c, z_n \to c \Rightarrow y_n \to c$ (Sandwich-Prinzip)

Definition (monoton)

Folge $\{x_n\}$ heißt wachsend / fallend, falls gilt:

 $x_n \leq x_{n-1} \ (x_n \geq x_{n+1}) \ \forall n \in \mathbb{N}$ (in beiden Fällen heißt Folge monoton).

Falls stets ",<" (",>") ist $\{x_n\}$ strikt

Satz 9.26

Sei $\{x_n\}$ in \mathbb{R} monoton und beschränkt.

$$\{x_n\}$$
 konvergiert gegen $x := \begin{cases} \sup\{x_n \mid n \in \mathbb{N}\}, \\ \inf\{x_n \mid n \in \mathbb{N}\}, \end{cases}$ falls monoton wachsend fallend

Theorem 9.29 (Bolzano-Weierstraß)

 $\{x_n\}$ beschränkte Folge in $\mathbb{R} \Rightarrow \{x_n\}$ hat konvergente TF.

Oberer /Unterer Limes

Definition

Seien $\{x_n\}$ beschränkte Folgen in \mathbb{R} .

 $H := \{ \gamma \in \mathbb{R} \mid \gamma \text{ ist } \mathbf{Hw} \text{ von } \{x_n\} \} \ (\neq \emptyset \text{ nach } 9.29)$

 $\limsup_{n \to \infty} x_n := \overline{\lim}_{n \to \infty} x_n =: \sup H \quad \underline{\text{Limes superior}} \text{ von } \{x_n\}$

 $\liminf_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n := \inf H \qquad \underline{\text{Limes inferior}} \text{ von } \{x_n\}$

Satz 9.31

Sei $\{x_n\}$ beschränkte Folge in \mathbb{R} . Dann

- 1) Sei $\{x_{n'}\}$ TF mit $x_{n'} \to \gamma \Rightarrow \liminf_{n \to \infty} x_n \le \gamma \le \limsup_{n \to \infty} x_n$
- 2) $\gamma' := \liminf_{n \to \infty} x_n \text{ und } \gamma'' := \limsup_{n \to \infty} x_n \text{ sind } Hw \text{ von } \{x_n\}$

(folglich) inf $H = \min H$, $\sup H = \max H$ und $\exists \text{ TF } \{x_{n'}\}, \{x_{n''}\}, x_{n'} \to \gamma', x_{n''} \to \gamma''$

3) $x_n \to \alpha \Leftrightarrow \alpha = \liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n$

Uneigentliche Konvergenz

Definition (Uneigentliche Konvergenz)

Folge $\{x_n\}$ in \mathbb{R} konvergiert <u>uneigentlich</u> gegen $+\infty(-\infty)$, falls $\forall R > 0 \exists n_0 \in \mathbb{N} : x_n \geq R(x_n \leq -R) \forall n \geq n_0$ (heißt auch bestimmt divergent) gegen ∞ , "uneigentlich" wird meist weggelassen.

Notation: $\lim_{n\to\infty} x_n = \pm \infty$ bzw. $\xi_n \to \pm \infty$

Satz 9.34 (Satz von Stolz)

Sei $\{x_n\}, \{y_n\}$ Folgen in $\mathbb{R}, \{y_n\}$ sei stren monoton wachsend, $\{y_n\} \to \infty$

 $\Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n}, \text{ falls rechter Grenzwert existiert (endlich oder unendlich)}$

Satz 9.36

Sei $\{x_n\}$ mit $x_n \to x$ im normierten Raum X.

$$\Rightarrow \frac{1}{n} \sum_{j=1}^{n} x_j \stackrel{n \to \infty}{\longrightarrow} x$$

Vollständigkeit 10

Definition (Cauchy-Folge)

Folge $\{x_n\}$ im metrischen Raum (X, d) heißt CAUCHY-Folge (CF) (Fundamentalfolge), falls

$$\forall \varepsilon > 0 \,\exists n_0 \in \mathbb{N} : d(x_n, x_m) < \varepsilon \quad \forall n, m \ge n_0.$$

Satz 10.1

Sei $\{x_n\}$ Folge im metrischen Raum (X,d). Dann

- 1) $x_n \to x \Rightarrow \{x_n\}$ ist CAUCHY-Folge
- 2) $\{x_n\}$ CF \Rightarrow $\{x_n\}$ ist beschränkt und hat maximal einen Hw.

Definition (Durchmesser)

Durchmesser von $M \subset X$ beschränkt, $\neq 0$, (X, d) metrischer Raum ist diam $M := \sup\{d(x, y) | x, y \in M\}$

Folge $\{A_n\}$ von abgeschlossenen Mengen heißt Schachtelung falls $A_n \neq \emptyset, A_{n+1} \subset A_n \, \forall n \in \mathbb{N}$ und diam $A_n \stackrel{n \to \infty}{\longrightarrow} 0$.

Lemma 10.2

Sei $M \subset X$ beschränkt, $\neq 0 \Rightarrow \operatorname{diam} M = \operatorname{diam}(\operatorname{cl} M)$.

Theorem 10.3

Sei (X,d) metrischer Raum. Dann: für jede Schachtelung A_n in X gilt:

$$\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset \iff \text{jede CF in } \{x_n\} \text{ in } X \text{ ist konvergent}$$

Lemma 10.4

In \mathbb{R} gilt:

$$\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset \qquad \Leftrightarrow \quad \bigcap_{n\in\mathbb{N}} X_n \neq \emptyset$$

$$\forall \text{ Schachtelungen } \{A_n\} \qquad \forall \text{ Intervallschachtelungen } \{x_n\}$$

Definition (Vollständigkeit)

Metrischer Raum (X, d) heißt Vollständig, falls jede Cauchy-Folge $\{x_n\}$ in X konvergiert.

Vollständiger, normierter Raum (X, ||.||) heißt Banach-Raum.

Folgerung 10.5

Sei $\{x_n\}$ Folge im vollständigen metrischen Raum (X, d). Dann:

$$\{x_n\}$$
 konvergent $\Leftrightarrow \{x_n\}$ CAUCHY-Folge

Theorem 10.6

 \mathbb{R}^n und \mathbb{C}^n mit $|.|_p$ $(1 \le p \le \infty)$ sind vollständige, normierte Räume (d.h. BANACH-Räume).

Kompaktheit 11

Sei (X,d) metrischer Raum, Mengensystem $\mathcal{U} \subset \{U \subset X | U \text{ offen }\}$ heißt offene Überdeckung von $M \subset X$, falls $M \subset X$ $\bigcup_{U\in\mathcal{U}}U.$

Überdeckung \mathcal{U} heißt endlich, falls \mathcal{U} endlich (d.h. $\mathcal{U} = \{U_1, \dots, U_n\}$).

Menge $M \subset X$ heißt (überdeckungs-) kompakt, falls jede Überdeckung \mathcal{U} eine endliche Überdeckung $\tilde{\mathcal{U}} \subset \mathcal{U}$ endhält (d.h. $\exists U_1, \dots, U_n \subset \mathcal{U} \text{ mit } \overline{M \subset \bigcup_{i=1}^n U_n)}.$

Menge $M \subset X$ heißt folgenkompakt, falls jede Folge $\{x_n\}$ aus M (d.h. $x_n \in M \forall M$) eine konvergente Teilfolge $\{x_{n'}\}$ mit Grenzwert in M bessitzt (d.h. $\{x_n\}$ hat Hw in M nach 9.12).

Theorem 11.1

Sei (X, d) metrischer Raum, $M \subset X$. Dann:

M kompakt $\Leftrightarrow M$ folgenkompakt

Satz 11.2

Sei (X,d) metrischer Raum, $M \subset X$. Dann

- 1) M folgenkompakt $\Rightarrow M$ beschränkt und abgeschlossen
- 2) M folgenkompakt, $A \subset M$ abgeschlossen $\Rightarrow A$ folgenkompakt.

Theorem 11.3 (Heine-Borell kompakt, Bolzano-Weierstraß folgenkompakt)

Sei $X = \mathbb{R}^n$ (bzw. \mathbb{C}^n) mit beliebiger Norm, $M \subset X$. Dann

M kompakt $\Leftrightarrow M$ abgeschlossen und beschränkt

Folgerung 11.4

Sei $\{x_n\}$ Folge in $X = \mathbb{R}^n$ (bzw. \mathbb{C}^n). Dann

 $\{x_n\}$ beschränkt $\Rightarrow \{x_n\}$ hat konvergente TF

Satz 11.5

Je 2 Normen aus \mathbb{R}^n bzw. \mathbb{C}^n sind äquivalent.

12 Reihen

Definition (Partialsumme)

Sei X normierter Raum. $\{x_n\}$ Folge im normierten Raum.

$$s_n := \sum_{k=1}^n x_k = x_0 + \ldots + x_n$$
 heißt Partialsumme.

Folge $\{s_n\}$ der Partialsumme heißt <u>(unendliche)</u> Reihe mit Gliedern x_k . Notation: durch Symbol $\sum_{k=0}^{\infty} x_k = x_0 + \ldots = \sum_k x_k = \{s_k\}_{k \in \mathbb{N}}$

Notation: durch Symbol
$$\sum_{k=0}^{\infty} x_k = x_0 + \ldots = \sum_k x_k = \{s_k\}_{k \in \mathbb{N}}$$

Existiert der Grenzwert $s=\lim_{n\to\infty}s_n,$ so heißt der <u>Summe</u> der Reihe.

Notation: $s = \sum_{k=0}^{\infty} x_n$.

Satz 12.1 (Cauchy-Kriterium)

Sei X normierter Raum, $\{x_k\}$ Folge in X. Dann

- 1) $\sum_{k} x_k$ konvergiert $\Rightarrow \forall \varepsilon > 0 \exists n_0 : ||\sum_{k=n}^m x_k|| < \varepsilon \forall m \ge n \ge n_0$
- 2) falls x vollständiger, normierter Raum, gilt auch \Leftarrow oben.

Folgerung 12.2

Sei X normierter Raum, $\{x_n\}$ Folge in X. Dann:

$$\sum_{k} x_k$$
 konvergiert $\Rightarrow x_k \stackrel{k \to \infty}{\longrightarrow} 0$

Beispiel 12.3

geometrische Reihe $X = \mathbb{C}, a_k := z^k, z \in \mathbb{C}$ fest.

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z} \, \forall z \in \mathbb{C} \text{ mit } |z| < 1 \, \sum_{k=0}^{\infty} z^k \text{ divergent, falls } |z| > 1$$

<u>harmonische Reihe</u> $X = \mathbb{R}, x_k := \frac{1}{k} (k > 1)$. Reihe divergiert.

Beispiel 12.6

 $X = \mathbb{R}$:

$$\sum_{k=1}^{\infty} \frac{1}{k^s} \begin{cases} \text{konvergiert,} & \text{für } s > 1 \\ \text{divergiert,} & \text{für } s \leq 1 \end{cases}$$

Summe heißt RIEMANN'sche Zetafunktion $\zeta(s)$ (für s>1). Diese ist beschränkt und konvergent.

Satz 12.7

Sei X normierter Raum, $\{x_n\}$, $\{y_n\}$ in X, λ , $\mu \in K$ (\mathbb{R} oder \mathbb{C}). Dann: $\sum_k x_k, \sum_k y_k$ konvergernt $\Rightarrow \sum_{k=0}^{\infty} \lambda x_k + \mu x_k$ konvergent gegen $\lambda \sum_k x_k + \mu \sum_k y_k$.

Definition

Reihe $\sum_k x_k$ heißt absolut konvergent , falls $\sum_k \|x_k\|$ konvergiert.

Satz 12.8

Sei X vollständiger, normierter Raum. Dann: $\sum_k x_k$ absolut konvergent $\Rightarrow \sum_k x_k$ konvergent

Satz 12.9 (Konvergenzkriterien für Reihen)

Sei X normierter Raum, $\{x_k\}$ in $X, k_0 \in \mathbb{N}$

a) Sei $\{x_k\}$ Folge in \mathbb{R}

 $\underline{\rm Majorantenkriterium}$

a) $||x_k|| \le \alpha_k \, \forall k \ge k_0, \sum_k \alpha_k$ konvergent $\Rightarrow \sum_k ||x_k||$ konvergent

b) $0 \le \alpha_k \le ||x_k|| \, \forall k \ge k_0, \sum_k \alpha_k \text{ divergent } \Rightarrow \sum_k ||x_k|| \text{ divergent.}$

b) Sei $x_k \neq 0 \,\forall k \geq k_0$

Quotientenkriterium

Wurzelkriterium

a) $\frac{\|x_{k+1}\|}{\|x_k\|} \le q < 1 \,\forall k \ge k_0 \implies \sum_k \|x_k\|$ konvergiert

a) $\sqrt[k]{\|x_k\|} \le q < 1 \,\forall k \ge k_0 \implies \sum_k \|x_k\|$ konvergiert

b) $\frac{\|x_{k+1}\|}{\|x_k\|} \forall k \geq k_0 \Rightarrow \sum_k \|x_k\|$ divergiert.

c)

b) $\sqrt[k]{\|x_k\|} \ge 1 \,\forall k \ge k_0 \Rightarrow \sum_k \|x_k\|$ divergent.

Beispiel 12.10

Exponentialreihe $\exp z := \sum_{k=0}^{\infty} \frac{z^k}{k!}$ absolut konvergent $\forall z \in \mathbb{C}$.

 $e := \exp(1)$ Euler'sche Zahl

Beispiel 12.11

Potenzreihe: $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ für $z \in \mathbb{C}, a_k \in \mathbb{C}, z_0 \in \mathbb{C}$.

Sei

 $L := \begin{cases} \limsup_{n \to \infty} \sqrt[k]{|a_k|}, & \text{falls existiert} \\ \infty, & \text{sonst} \end{cases} \qquad R := \frac{1}{L} \text{ (mit } 0 = \frac{1}{\infty}, \frac{1}{0} = \infty)$

 $|z-z_0| < R$: absolute Konvergenz,

 $|z-z_0|>R$: Divergenz,

 $|z-z_0|=R$: i.A. keine Aussage möglich.

 $B_R(z_0)$ heißt Konvergenzkreis, R Konvergenzradius

Beispiel 12.12

<u>p-adische Brüche</u>. Sei $p \in \mathbb{N}_{\geq 2}$: betrachte $0, x_1 x_2 x_3 \ldots := \sum_{k=1}^{\infty} x_k \cdot p^{-k}$ für $x_k \in \{0, 1, \ldots, p-1\} \ \forall k \in \mathbb{N}$.

Satz 12.13 (Leibnitz-Kriterium für alternierende Reihen in \mathbb{R})

Sei $\{x_n\}$ monoton fallende Nullfolge in \mathbb{R} . Dann:

alternierende Reihe $\sum_{k=0}^{\infty} (-1)^k x_k = x_0 - x_1 + x_2 - \dots$ ist konvergent.

Definition (Umordnung)

Sei $\beta: \mathbb{N} \to \mathbb{N}$ bijektive Abbildung: $\sum_{k=0}^{\infty} x_{\beta(k)}$ heißt <u>Umordnung</u> der Reihe $\sum_{k} x_{k}$.

Satz 12.15

Sei X normierter Raum. Dann:

 $\sum_{k=0}^{\infty} x_k = x$ absolut konvergent $\Rightarrow \sum_{k=0}^{\infty} \infty x_{\beta(k)}$ absolut konvergent für jede Umordnung.

Satz 12.16

Sei $\sum_{k=0}^{\infty} x_k$ konvergierende Reihe in \mathbb{R} , die nicht absolut konvergent ist. Dann: $\forall s \in \mathbb{R} \cup \{\pm \infty\}$ existiert $\beta : \mathbb{N} \to \mathbb{N}$ bijektiv mit $s = \sum_{k=0}^{\infty} x_{\beta_k}$

Satz 12.17 (Cauchy-Produkt)

Sei X normierter Raum über $\mathbb{K}, \sum_j x_j$ und $\sum_i \lambda_i$ absolut konvergent in X bzw. $\mathbb{K}. \beta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ bijektiv, $Y_{\beta(i,j)} = \lambda_i x_i \, \forall i,j \in \mathbb{N}$

$$\Rightarrow \sum_{l=0}^{\infty} Y_l = \sum_{i=0}^{\infty} \lambda_i \sum_{j=0}^{\infty} x_j$$
, wobei linke Reihe absolut konvergiert in X .

Satz 12.19 (Doppelreihensatz)

Sei $\{x_{k,l}\}_{k,l\in\mathbb{N}}$ Doppelfolge im BANACH-Raum X und mögen $\sum_{l=0}^{\infty}\|x_{k,l}\|=:\alpha_k\,\forall k$ und $\sum_{k=0}^{\infty}x_k=:\alpha$ existieren.

$$\Rightarrow \sum_{k=0}^{\infty} (\sum_{l=0}^{\infty} x_{k,l}) = \sum_{l=0}^{\infty} (\sum_{k=0}^{\infty} x_{k,l})$$
, wobei alle Reihen absolut konvergent sind.

III Funktionen und Stetigkeit

13 Funktionen

Definition

 $f: \mathbb{R} \to \mathbb{R} \ \ \underline{\text{monoton}} \ \ \underline{\text{falled}} \ / \ \underline{\text{wachsend}} \ , \ \text{falls} \ x < y, x, y \in M \ \Rightarrow \ f(x) \leq f(y) \ \text{bzw.} \ f(x) \geq f(y)$

Falls rechts stets < bzw. >, sagt man auch streng monoton.

Satz 13.1

Sei $f: \mathbb{R} \to \mathbb{R}$ streng monoton fallend / wachsend.

 \Rightarrow inverse Funktion $f^{-1}: \mathcal{R} \to M$ existiert und ist streng monoton wachsend / fallend.

Beispiel 13.2

Allgemeine Potenzfunktion in \mathbb{R} :

 $\overline{f: \mathbb{R}_{>0} \to \mathbb{R} \text{ mit } f(x) = x^r} \text{ für } r \in \mathbb{R} \text{ fest.}$

- r > 0: Satz 3.20 $\Rightarrow f$ streng monoton wachsend
- r < 0: $x^r = \frac{1}{x^{-r}} \Rightarrow f$ streng monoton fallend

 $\overset{\text{Satz }}{\Rightarrow} f^{-1}$ existiert für $r \neq 0$ auf $(0, \infty)$, wegen $y = (r^{\frac{1}{r}})^r$ ist $f^{-1}(y) = y^{\frac{1}{r}}$

Beispiel 13.3

Allgemeine Exponentialfunktion in \mathbb{R} :

 $f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = a^x \text{ für } a \in \mathbb{R}_{>0} \text{ fest.}$

 $3.20 \Rightarrow$ streng monoton wachsend für a > 1 bzw. fallend für a < 1 (benutze $\frac{1}{a} > 1$)

 $\stackrel{\text{Satz 1}}{\Rightarrow} f^{-1}$ existiert auf $(0,\infty)$ für $a \neq 1$. Wegen $y = a^{\log_a y}$ (3.21) ist $f^{-1}(y) = \log_a y$.

Beispiel 13.4

Polynom in \mathbb{C} :

Abbidlung $f: \mathbb{C} \to \mathbb{C}$ heißt Polynom, falls $f(z) = a_n z^n + \ldots + a_1 z + a_0$ für $a_0, \ldots, a_n \in \mathbb{C}$ fest.

- $grad f = n \text{ falls } a_n \neq 0$
- f ist Nullpolynom, falls $f(z) = 0 \,\forall z \in \mathbb{C}$

Notation: f = 0

(Menge der Polynome in \mathbb{C} ist ein Vektorraum über \mathbb{C})

Satz 13.5

Seien f, g Polynome mit $f(z) = \sum_{k=0}^{n} a_k z^k, g(z) = \sum_{k=0}^{m} a_k z^k$. Dann:

- 1) $f, g \neq 0$, grad $f \geq \text{grad } g$ \Rightarrow existieren eindeutig bestimmte Polynome q, r mit $f = q \cdot g + r$, wobei $r \neq 0$ oder grad r < grad g
- 2) $z_0 \in \mathbb{C}$ Nullstelle von $f \neq 0 \Leftrightarrow f(z) = (z-z_0)q(z)$ für ein Plynom $q \neq 0$ mit grad $q = \operatorname{grad} f 1$
- 3) f hat höchstens grad f Nullstellen falls $f \neq 0$
- 4) $f(z_i) = g(z_j)$ für n+1 paarweise verschiedene Punkte $z_0, \ldots, z_n \in \mathbb{C}, n = \operatorname{grad} f \geq \operatorname{grad} g$ $\Rightarrow f(z) = g(z) \, \forall z \in \mathbb{C} \, (d.hz. \, a_k = b_k \, \forall k)$

Definition

Abbildung $f: X \to Y, Y$ metrischer Raum heißt beschränkt auf $M \subset X$, falls Menge f(M) beschränkt in Y ist, sonst unbeschränkt.

Definition

 $f: X \to Y$ heißt konstante Funktion, falls $f(x) = a \, \forall x \in X$ und $a \in Y$ fest.

Definition

 $M \subset X, X$ normierter Raum heißt konvex, falls $x, y \in M \Rightarrow tx + (1-t)y \in M \ \forall t \in (0,1)$

 $f: D \subset X \to \mathbb{R} \text{ heißt} \ \underline{\text{strikt}} \ \underline{\text{konvex}} \ , \ \text{falls} \ f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \\ \forall x, y \in D, t \in (0,1)$

f heißt konkav (bzw. strikt), falls -f (strikt) konvex.

Lineare Funktionen

Definition

Seien X, Y normierte Räume über K.

 $f: X \to Y$ heißt linear, falls

- f additiv, d.h. $f(a+b) = f(a) + f(b) \forall a, b \in X$ und
- f homogen, d.h. $f(\lambda a) = \lambda f(a) \, \forall a \in X, \lambda \in K$

 $f:X\to Y$ heißt affin linear, falls $f+f_0$ linear für eine konstante Funktion f_0

Offenbar f linear $\Rightarrow f(0) = 0$

Definition

Lineare Abbildung $f: X \to Y$ heißt beschränkt, falls f beschränkt auf $\overline{B_1(0)}$, d.h.

$$\exists \text{ konstante } c > 0 : ||f(x)|| < c \forall x : ||x|| < 1$$

Wegen $||f\left(\frac{x}{||x||}\right) = \frac{1}{||x||}||f(x)||$ ist (1) äquivalent zu

$$||f(x)|| = \sup\{||f(x)|||x \in \overline{B_1(0)}\}\tag{1'}$$

Satz 13.9

Seien X, Y normierte Räume über K, dann:

 $L(X,Y) := \{f: X \to Y \mid f \text{ linear und beschränkt}\}\ \text{ist normierter Raum "uber } K \text{ mit } ||f|| = \sup\{||f(x)|||x \in \overline{B_1(0)}\}\}$

Exponentialfunktion

Definition

 $\exp: \mathbb{C} \to \mathbb{C} \text{ mit } \exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$

Satz 13.10

Sei $\{z_n\}$ Folge in \mathbb{C} mit $z_n \to z$. Dann: $\lim_{n \to \infty} \left(1 + \frac{z_n}{n}\right)^n = \exp(z)$

Lemma 13.11

Sei $z_n \to 0$ in $\mathbb{C} \implies \lim \frac{\exp(z_n) - 1}{z^n} = 1$

Sei
$$f: \mathbb{C} \to \mathbb{C}$$
 mit $f(z_1 + z_2) = f(z_1) \cdot f(z_2) \, \forall z_1, z_2 \in \mathbb{C}$ und $\lim_{n \to \infty} \frac{f\left(\frac{z}{n}\right) - 1}{\frac{z}{n}} = \gamma \in \mathbb{C} \, \forall z \in \mathbb{C}$
 $\Rightarrow f(z) = \exp(\gamma z) \, \forall z \in \mathbb{C}$

Folgerung 13.13

Funktion exp ist durch obiges Lemma und Satz eindeutig definiert.

Satz 13.14

Es gilt: $e^x = \exp(x) \, \forall x \in \mathbb{R}$

Definiert (!) in \mathbb{C} : $e^z := \exp(z) \, \forall z \in \mathbb{C}$ (als Potenz nicht erklärt)

Definition

natürlicher Logarithmus : $\ln x = \log_e x \, \forall x \in \mathbb{R}_{>0}$

Trigonometrische Funktion:

- $\sin z := \frac{e^{iz} e^{-iz}}{2i} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = z \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \, \forall z \in \mathbb{C}$
- $\cos z := \frac{e^{iz} + e^{-iz}}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} = 1 \frac{z^2}{4} + \frac{z^4}{24} + \dots \, \forall z \in \mathbb{C}$

Satz 13.15

Es gilt:

- 1) Euler'sche Formel : $e^{iz} = \cos z + i \sin z$
- 2) $\sin^2 z + \cos^2 z = 1 \,\forall z \in \mathbb{C}$ (beachte: $\not\prec |\sin z| < 1, |\cos z| < 1, \sin, \cos$ unbeschränkt auf \mathbb{C})
- 3) $\sin(-z) = -\sin z, \cos z = \cos(-z)$
- 4) (Additions theoreme)
 - $\sin(z+w) = \sin z \cos w + \sin w \cos z \, \forall z, w \in \mathbb{C}$
 - $\cos(z+w) = \cos z \cos w \sin z \sin w \, \forall z, w \in \mathbb{C}$
- 5) $\sin(2z) = 2\sin z \cos z$, $\cos(2z) = \cos^2 z \sin^2 z \,\forall z \in \mathbb{C}$
- 6) $\sin z \sin w = 2\cos\frac{z+w}{2} \sin\frac{z+w}{2}$ $\cos z - \cos w = -2\sin\frac{z+z}{2}\sin\frac{z-w}{2}$

Satz 13.16

Es gilt $\forall x \in \mathbb{R}$:

 $|e^{ix}| = 1$, $\sin x = \Im e^{ix}$, $\cos = \Re e^{ix}$ (insbesondere $\sin x$, $\cos x \in \mathbb{R}$), somit $e^{ix} = \cos x + i \sin x$

Lemma 13.17

Es gilt in \mathbb{R} :

- 1) \cos streng fallend auf [0,2]
- 2) $\cos 2 < 0 \text{ und } \sin x > 0 \,\forall x \in (0, 2]$
- 3) $\phi(x) = \phi(1) \forall x \in [0, 2]$ und $45 < \phi(x) < 90$ (d.h. $\phi(x)$ proportional zu x)
- 4) $\cos \frac{\pi}{2} = 0$ für $\pi := \frac{180}{\phi(1)}$ (= 3, 1415...), $\frac{\pi}{2}$ einzige NulsItelle in [0, 2]

Satz 13.19

Für alle $z \in \mathbb{C}, k \in \mathbb{Z}$ gilt:

- 1) $e^{z+2k\pi i}=e^z$, d.h. Periode $2\pi i$ $\sin(z+2k\pi)=\sin z$ (d.h. Periode 2π) $\cos(z+2k\pi)=\cos z$ (d.h. Periode 2π)
- 2) $e^{z+i\pi/2} = ie^z, e^{z+i\pi} = -e^z$
- 3) $\sin(z+\pi) = -\sin z, \cos(z+\pi) = -\cos z$ $\sin(z+\frac{\pi}{2}) = \cos z, \cos(z+\frac{\pi}{2}) = -\sin z$

Satz 13.20

Auf \mathbb{C} gilt:

- $e^z = 1 \Leftrightarrow z = 2k\pi i, k \in \mathbb{Z}$
- $\sin z = 0 \Leftrightarrow z = k\pi, \ k \in \mathbb{Z}$
- $\cos z = 0 \Leftrightarrow z = k\pi + \frac{\pi}{2}, \ k \in \mathbb{Z}$

 $\sin / \cos in \mathbb{R}$

\overline{x}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Definition

 $\sin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ streng monoton und surjektiv, $\cos[0, \pi] \to [-1, 1]$ streng monoton und surjektiv

- \Rightarrow Umkehrfunktion existiert: Arcussinus , Arcuscosinus :
 - $\arcsin := \sin^{-1} : [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
 - $arccos := cos^{-1} : [-1, 1] \to [0, \pi]$

Tangens und Cotangents

Definition

$$\begin{array}{l} \tan zz := \frac{\sin z}{\cos z} \, \forall z \in \mathbb{C} \setminus \left\{ \left. \frac{\pi}{2} + k\pi \right| k \in \mathbb{Z} \right\} \\ \cot z := \frac{\cos z}{\sin z} \, \forall z \in \mathbb{C} \setminus \left\{ k\pi | k \in \mathbb{Z} \right\} \end{array}$$

Offenbar
$$\tan(z+\pi) = \frac{\sin(z+\pi)}{\cos(z+\pi)} = \frac{-\sin z}{-\cos z} = \tan z$$

$$\cot(z+\pi) = \cot(z)$$
 $\forall z \in \mathbb{C}, \text{ d.h. Periode } \pi$

Tangens auf \mathbb{R}

Definition

$$\begin{split} 0 &\leq x_1 < x_2 < \pi/2 \Rightarrow \tan x_1 = \frac{\sin x_1}{\cos x_1} < \frac{\sin x_2}{\cos x_2} = \tan x_2 \\ &\Rightarrow \tan(-x) = -\tan(x) \Rightarrow \text{streng wachsend auf } \left(\frac{\pi}{2}, \frac{\pi}{2}\right) \\ &\Rightarrow \arctan = \tan^{-1} : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ existiert.} \end{split}$$

Satz 13.21

Es gilt:

- 1) $\Re(exp) = \mathbb{C} \setminus \{0\}$
- 2) (Polarkoordinaten auf \mathbb{C})

Für
$$z \in \mathbb{C} \setminus \{0\}$$
 existiert eindeutiges $\gamma \in [0, 2\pi] mitz = |z| e^{i\gamma} = |z| (\cos \gamma + i \sin \gamma)$ (auch $[-\pi, \pi]$)

3) (Wurzeln)

Für
$$Z=|z|e^{i\gamma}\in\mathbb{C}\setminus\{0\}, n\geq 2$$
 gilt:
$$w^n=z\Leftrightarrow w\in\left\{\sqrt[n]{z}e^{i\frac{k}{n}+\frac{2k\pi}{n}}=:w_k\Big|\,k=1,\ldots,n\right\}$$
 (Lösungen bilden ein regelmäßiges N -Eck auf dem Kreis mit dem Radius $\sqrt[n]{|z|}$)

Logarithmen in \mathbb{C}

(sog. Hauptzweig)

Definition

$$\begin{split} & \exp\left(\{z\in\mathbb{C}\,|\,\Im z<\pi\}\right)\to\mathbb{C}\,\,\backslash\,(\infty,0] \text{ ist bijektiv}\\ &\Rightarrow \text{Umkehrabbildung ln}:\mathbb{C}\,\,\backslash\,(-\infty,0] \text{ gilt: } e^{\ln|z|+i\gamma}=|z|e^{i\gamma}=z\\ &\Rightarrow \ln z=\ln|z|+i\gamma\,\forall z=|z|e^{i\gamma}\in\mathbb{C}\,\,\backslash\,(-\infty,0) \end{split}$$

 \Rightarrow ln z stimmt auf $\mathbb{R}_{>0}$ mit rellen ln überein.

Hyperbolische Funktionen

Definition

•
$$\sinh(z) = \frac{e^z - e^{-z}}{2} = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!} \, \forall z \in \mathbb{C} \, \left(\, \underline{\text{Sinus Hyperbolicus}} \, \right)$$

•
$$\cosh(z) = \frac{e^z + e^{-z}}{2} = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k+1)!} \, \forall z \in \mathbb{C} \, \left(\, \underline{\text{Cosinus Hyperbolicus}} \, \right)$$

•
$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} \, \forall z \in \mathbb{C} \setminus \left\{ \frac{\pi}{2} + k\pi \middle| k \in \mathbb{Z} \right\}$$
 (Tangens Hyperbolicus)

•
$$\coth(z) = \frac{\cosh(z)}{\sinh(z)} \, \forall z \in \mathbb{C} \setminus \{k\pi | k \in \mathbb{Z}\} \ (\underline{\text{Cotangens Hyperbolicus}} \)$$

Satz 13.22

Es gilt $\forall z, w \in \mathbb{C}$

1)
$$\sin h = -i\sin(z), \cos(z) = \cosh(iz), \sinh(-z) = -\sinh(z), \cosh(-z) = \cosh(x)$$
 (gibt auch Nullstellen vom \sinh/\cosh)

- 2) sinh, cosh haben Periode $2\pi i$, tanh, coth haben Periode πi
- $3) \cosh^2 z \sin^2 z = 1$
- 4) $\sinh(z+w) = \sinh z \cosh w + \sinh w \cosh z$ $\cosh(z+w) = \cosh z \cosh w + \sinh z \sin w$

Definition

Sei $f_nX \to Y$, Y metrischer Raum (X beliebige Menge), $n \in \mathbb{N}$. $\{f_n\}_{n \in \mathbb{N}}$ heißt Funktionenfolge.

Funktionenfolge $\{f_n\}$ konvergiert punktweise gegen $f: X \to Y$ auf $M \subset X$, falls $f_n(x) \stackrel{n \to \infty}{\longrightarrow} f(x) \, \forall x \in M$

Funktionenfolge $\{f_n\}$ konvergiert gleichmäßig gegen $f: X \to Y$ auf $M \subset X$, falls

$$\forall \varepsilon > 0 \,\exists n_0 \in \mathbb{N} : d(f_n(x), f(x)) < \varepsilon \quad \forall n \geq n_0 \,\forall x \in M$$

Notation: $f_n(x) \stackrel{n \to \infty}{\Rightarrow} f(x)$ bzw. $f_n \stackrel{n \to \infty}{\longrightarrow} f$ gleichmäßig auf M.

Lemma 13.23

 $f_n \to f$ gleichmäßig auf $M \Rightarrow f_n(x) \to f(x) \, \forall x \in M$ (d.h. punktweise auf M)

Satz 13.24

Seien $f_n, f \in B(X, Y)$. Dann (X metrischer Raum):

$$f_n \to f$$
 gleichmäßig auf $X \Leftrightarrow f_n \to f$ in $(B(X,Y), \|.\|_1 \infty)$

Definition

Sei $f_n: X \to Y$, Y normierter Raum (X beliebige Menge), $n \in \mathbb{N}$: $\sum_{n=0}^{\infty} f_n$ heißt <u>Funktionenreihe</u>

Reihe $\sum_n f_n$ heißt punktweise (gleichmäßig) konvergent gegen $f: X \to Y$ auf $M \subset X$, falls dies für die zugehörige Folge (Partialsumme!) $\{s_n\}$ gilt.

Satz 13.25

Sei $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ Potenzreihe in \mathbb{C} mit Konvergenzradius $R \in (0,\infty]$ und sei $M \subset B_R(z_0)$ kompakt \Rightarrow Potenzreihe konvergiert gleichmäßig auf M.

14 Stetigkeit

Definition

Sei stets $f: D \subset X \to Y, X, Y$ metrischer Raum, $D = \mathcal{D}(f) \neq \emptyset, y_0 \in Y$ heißt Grenzwert der Funktion f im Punkt $x_0 \in \overline{D}$, falls gilt:

$$\{x_n\}$$
 Folge in D mit $x_n \to x_0 \Rightarrow f(x_n) \to y_0$

Notaton: $\lim_{x \to x_0} = y_0, f(x) \stackrel{x \to x_0}{\longrightarrow} y_0$

Bemerkung 14.2

Falls $x_0 \in D$ isolierter Punkt von D, d.h. kein HP von D, dann ist stets $\lim_{x \to \infty} f(x) = f(x_0)$.

Satz 14.3 ($\varepsilon\delta$ -Kriterium)

Sei $f: D \subset X \to Y, x_0 \in \overline{D}$. Dann

$$\lim_{x \to x_0} f(x) = y_0 \iff \forall \varepsilon > 0 \,\exists \delta > 0 : f(B_{\delta}(x_0) \cap D) \subset B_{\varepsilon}(y_0)$$

Satz 14.4 (Rechenregeln)

- 1) Sei Y normierter Raum über $\mathbb{R}, f, g: D \subset X \to Y, \lambda: D \to K, x_0 \in \overline{D}, f(x) \xrightarrow{x \to x_0} y, g(x) \xrightarrow{x \to x_0} \tilde{y}, \lambda(x) \xrightarrow{x \to x_0} \alpha$. Dann:
 - $(f+g)(x) \stackrel{x \to x_0}{\longrightarrow} y + \tilde{y}$
 - $\bullet \ (\lambda \cdot f)(x) \stackrel{x \to x_0}{\longrightarrow} \alpha \cdot y$
 - $\left(\frac{1}{\lambda}\right)(x) \stackrel{x \to x_0}{\longrightarrow} \frac{1}{\alpha}$ falls $\alpha \neq 0$
- 2) Sei $f: D \subset X \to Y, g: \tilde{D} \subset Y \to Z, \Re(f) \subset \tilde{D}, X, Y, Z$ metrische Räume, $x \in \overline{D}, f(x) \xrightarrow{x \to x_0} y, g(y) \xrightarrow{y \to y_0} z_0$. Dann: $g(f(x)) \xrightarrow{x \to x_0} z_0$

Definition

Für $f: D \subset X \to Y$ mit $X = \mathbb{R}$ definieren wir einen einseitiger Grenzwert $y_0 \in Y$ heißt linksseitig bzw. rechtsseitig von f im HP x_0 von $D \cap (-\infty, x_0)$ bzw. $D \cap (x_0, \infty)$, falls gilt: $x_n \in D \cap (-\infty, x_0)$ bzw. $x_n \in D \cap (x_0, \infty)$ mit $x_n \to x_0 \Rightarrow f(x_n) \to y_0$

Notation:
$$\lim_{x \uparrow x_0} f(x) = y_0 =: f(x_0^-) \quad f(x) \xrightarrow{x \uparrow x_0} y_0$$

$$\lim_{x \downarrow x_0} f(x) = y_0 =: f(x_0^+) \quad f(x) \xrightarrow{x \downarrow x_0} y_0$$

Bemerkung 14.5

Satz 14.4 gilt sinngemäß auch für einseitige Grenzwerte.

Für $f:D\subset X\to Y$ mit $X=\mathbb{R}$ bzw. $Y=\mathbb{R}$ heißt der Grenzwert uneigentlich :

$$\lim_{x \to +\infty} f(x) = y_0, \lim_{x \to x_0} f(x) = \pm \infty, \lim_{x \to +\infty} f(x) = \pm \infty,$$

indem wir einen Grenzwert definiert als $x_0 = \pm \infty$ bzw. $y_0 = \pm \infty$ wählen und bestimmte divergenzte Folgen $x_n \to \pm \infty$ mit $x_n \in D$) bzw. $f(x_n) \to \pm \infty$ betrachten.

Landau-Symbole

(Vgl. von "Konvergenzgeschwindigkeiten")

Definition

Sei $f: D \subset X \to Y, X$ metrischer Raum, Y normierter Raum, $g: D \subset X \to \mathbb{R}, x_0 \in \overline{D}$.

• f(x) ist "klein o" von g(x) für $x \to x_0$, falls

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{\|f(x)\|}{g(x)} = 0$$

Notation: f(x) = o(g(x)) (meist $x \neq x_0$ im "lim" weggelassen)

• f(x) ist "groß O "von g(x) für $x \to x_0$, falls

$$\exists \delta > 0, c \ge 0 : \frac{\|f(x)\|}{|g(x)|} \le c \quad \forall x \in (B_{\delta}(x_0) \setminus \{x_0\}) \cap D$$

Notation: $f(x) = \mathcal{O}(g(x))$ für $x \to x_0$

Relativtopologie

Definition

Sei (X,d) metrischer Raum, für $D \subset X$ ist (D,d) ein metrischer Raum mit der induzierten Metrik.

- $M \subset D$ heißt offen bzw. abgeschlossen relativ zu D, falls M offen bzw. abgeschlossen im metrischen Raum (D,d).
- $M \subset D$ heißt Umgebung von $x \in D$ relativ zu D, falls M Umgebung von x im metrischen Raum (D,d).

Definition

Sei $f: D \subset X \to Y$ metrischer Raum, $D = \mathcal{D}(f)$, Fkt. f heißt folgenstetig im Punkt $x_0 \in D$, falls

$$f(x_n) \to f(x_0) \forall$$
 Folgen $x_n \to x_0$ in D

Definition

Funktion f heißt stetig im Punkt $x_0 \in D$, falls \forall Umgebungen V von $f(x_0) \exists$ Umgebung U von x_0 in $D: f(U) \subset V$.

Interpretation: Input / Output Steuerung besteht Forderung, dass beliebig kleine Output-Toleranzen ε stets durch hinreichend kleine Input-Toleranzen δ erreicht werden können.

Satz 14.11

Sei $f: D \subset X \to Y, X, Y$ metrischer Raum, $x_0 \in D$. Dann:

$$f$$
 stetig in $x_0 \Leftrightarrow f \in \delta$ -Stetig in $x_0 \Leftrightarrow f$ folgenstetig in x_0

Definition

Funktion f heißt stetig (folgen- / $\varepsilon\delta$ -stetig) auf $M \subset D$, falls f stetig (folgen-/ $\varepsilon\delta$ -stetig) in jedem Punkt $x_0 \in M$.

Satz 14.13

Sei $f: D \subset X \to Y, X, Y$ metrische Räume, dann sind folgende Aussagen äquivalent:

- 1) f stetig auf D
- 2) $f^{-1}(V)$ offen in $D \ \forall V \subset Y$ offen
- 3) $f^{-1}(A)$ abgeschlossen in $D \ \forall A \subset Y$ abgeschlossen

Satz 14.14 (Rechenregeln)

- 1) Sei Y normierter Raum über $K, f, g: D \subset X \to Y, \lambda: D \to U, f, g, y$ stetig in $x_0 \in D$ $\Rightarrow f + g, \lambda \cdot f$ stetig in $x_0, \frac{1}{\lambda}$ stetig in x_0 falls $\lambda(x_0) \neq 0$
- 2) Sei $f: D \subset X \to Y, y: \tilde{D} \subset Y \to Z, X, Y, Z$ metrischer Raum, f stetig in x_0, g stetig in $f(x_0) \in \tilde{D}$ $\Rightarrow g \circ f$ stetig in x_0

Beispiel 14.18 (Dirichlet-Funktion)

 $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & \text{sonst} \end{cases}$$

in keinem $x_0 \in \mathbb{R}$ stetig.

Satz 14.19

Sei $f_n, f: D \subset X \to X, f_n$ stetig in $x_0 \in D, \forall n \in \mathbb{N}, f_n \to f$ gleichmäßig $\Rightarrow f$ stetig in x_0

Folgerung 14.20

Falls alle f_n stetig auf $M \subset D$ und $f_n \to f$ gleichmäßig auf $M \Rightarrow f$ stetig auf M.

Satz 14.21

Sei $f(z) := \sum_{k=0}^{\infty} a_k (z - z_0)^k \, \forall z \in B_r(z_0), R \in (0, \infty]$ Konvergrenzkreis, $a_k \in \mathbb{Z} \, \forall k \in \mathbb{N}$ $\Rightarrow f: B_r(z_0) \to \mathbb{C}$ stetig auf $B_R(z_0)$

Definition

Bijektive Abbildung $f:D\subset X\to R\subset Y,X,Y$ metrische Räume, $D=\mathcal{D}(f),R=\mathcal{R}(f)$ heißt <u>Homöomorphismus</u>, falls f und f^{-1} stetig.

Mengen D und R heißen <u>homöomorph</u> zueinander, falls es einen Homöomorphismus $f:D\to R$ mit $D=\mathcal{D}(f), R=\mathcal{R}(f)$ gibt.

beachte: Homöomorphismus bildet offene (abgeschlossene) Mengen auf offene (abgeschlossene) Mengen ab.

Beispiel 14.25

 ${\it stereographische\ Projektion}$

 $X = \mathbb{R}^{n+1}, X_0 := \{(x_0, \dots, x_n n + 1) \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\}, N = (0, \dots, 0, 1) \text{ (Nordpol)}, S_n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\} \text{ n-dimensionale Einheitsspäre.}$

Betrachte $\sigma: \mathbb{R}^{n+1} \setminus \{N\} \to \mathbb{R}^{n+1}$ mit $\sigma(x) = N \frac{2}{(x-N)^2} \langle x-N \rangle$ stetig. σ ist Homöomorphismus mit $\sigma^{-1}(y) = N - \frac{2}{(y-N)^2} \langle Y-N \rangle$

Satz 14.26

Sei $f: D \subset \mathbb{R} \to \mathbb{R}$ streng monoton und stetig, D Intervall $\Rightarrow f^{-1}$ existiert und ist stetig auf $\mathcal{R}(f)$.

Satz 14.28

Sei $f: X \to Y$ linear, X, Y normierte Räume, $X = \mathcal{D}(f)$. Dann sind folgende Aussagen äquivalent:

- 1) f stetig in x_0
- 2) f ist stetig auf X
- 3) f ist beschränkt

Definition

Funktion $f:D\subset X\to Y,X,Y$ metrische Räume, heißt gleichmäßig stetig auf $M\subset D$, falls

$$\forall \varepsilon > 0 \,\exists \delta > 0 : d(f(x), f(\tilde{x})) < \varepsilon \quad \forall x, \tilde{x} \in M \text{ mit } d(x, \tilde{x}) < \delta,$$

d.h. f ist $\varepsilon\delta$ -stetig in jedem $\tilde{x}\in M$ und $\delta>0$ kann unabhängig von $x\in M$ gewählt werden.

Satz 14.29

Sei $f:D\subset X\to Y,X,Y$ metrischer Raum, fstetig auf kompakten $M\subset D\Rightarrow f$ gleichmäßig stetig auf M

Definition

Funktion $f:D\subset X\to Y,X,Y$ metrischer Raum, heißt <u>LIPSCHITZ-stetig</u> auf $M\subset D$, falls <u>LIPSCHITZ-Konstante</u> L>0 existiert mit

$$d(f(x), f(\tilde{x})) \le Ld(x, \tilde{x}) \tag{L}$$

Spezialfall: X,Y normierte Räume, dann hat L die Form

$$||f(x) - f(\tilde{x})|| \le L||x - \tilde{x}|| \quad \forall x, \tilde{x} \in M$$
 (L')

Interpretation: für $X=Y=\mathbb{R}$ fixiere \tilde{x}

- \bullet Graph von f liegt im schraffierten Kegel
- muss $\forall \tilde{x} \in M$ gelten mit gleichem L

Satz 14.30

Sei $f:D\subset X\to Y$ LIPSCHITZ-stetig auf M,X,Y metrische Räume $\Rightarrow f$ gleichmäßig stetig auf M (und damit auch stetig)

Definition (Fortsetzung, Einschränkung)

Funktion $\tilde{f}: D(\tilde{f}) \to Y$ heißt Fortsetzung (bzw. Einschränkung) von $f\mathcal{D}(f) \to Y$ auf $\mathcal{D}(f)$ falls $\mathcal{D} \subset \mathcal{D}(\tilde{f})$ (bzw. $\mathcal{D}(\tilde{f}) \subset \mathcal{D}(f)$) und $\tilde{f}(x) = f(x) \, \forall x \in \mathcal{D}$ (bzw. $\forall x \in \mathcal{D}(\tilde{f})$. Für eine eingeschränkte Funktion f auf $\mathcal{D}(\tilde{f})$, schreibe $\tilde{f} = f_{|\mathcal{D}(\tilde{f})}$.

Satz 14.33

Sei $f: D \subset X \to Y$ gleichmäßig stetig auf D, wobei X, Y sind metrische Räume, Y ist vollständig \Rightarrow es existiert eindeutige stetige Fortsetzung \tilde{f} von f auf D und \tilde{f} ist auf gleichmäßige stetige auf D.

Bemerkung

Falls x_0 kein Häufungspukt von D ist, so kann man stets stetig auf $D \cup \{x_0\}$ fortsetzen (aber nicht eindeutig).

Folgerung 14.40

Sei $f: D \subset X \to Y$ linear, stetig, Y vollständig \Rightarrow es existiert eindeutig stetige Fortsetzung von f auf \bar{D} .

15 Anwendung

Sei stets $f: D \subset X \to Y, X, Y$ metrische Räume, $D = \mathcal{D}(f)$.

Satz 15.1

Sei $f: D \subset Y \to Y$ stetig, $M \subset D$ kompakt $\Rightarrow f(M)$ ist kompakt.

Satz 15.2

Sei $f; D \subset X \to Y$ stetig, injektiv, D kompakt $\Rightarrow f^{-1}: f(D) \to D$ ist stetig.

Theorem 15.3 (Weierstraß)

Sei $f: D \subset X \to Y$ stetig, X metrischer Raum, $M \subset D$ kompakt, $M \neq \emptyset$

$$\Rightarrow \exists x_{min}, x_{max} : \begin{cases} f(x_{min}) = \min \{ f(x) \mid x \in M \} = \min_{x \in M} f(x), \\ f(x_{max}) = \max \{ f(x) \mid x \in M \} = \max_{x \in M} f(x) \end{cases}$$
(III.1)

Bemerkung 15.4

Theorem 15.3 ist wichtiger Satz für Existenz von Optimallösungen (stetige Funktion beseitzt auf kompakter Menge eine Minimum und Maximum). Folglich sind stetige Funktionen auf kompakten Mengen.

Satz 15.5

Sei $f: \mathbb{R}^n \to Y$ linear, Y normierter Raum $\Rightarrow f$ ist stetig auf \mathbb{R}^n .

Hinweis: Etwas allgemeiner hat man sogar $f: X \to Y$ linear, X, Y normierte Räume, dim $X < \infty \Rightarrow f$ ist stetig. (Ist i.a nicht richtig für dim $X = \infty$.)

Definition (Kurve)

Eine stetige Abbildung $f: I \subset X \to Y$, wobei I Intervall und Y metrischer Raum ist heißt Kurve in Y (gelegentlich wird auch Mange f(I) als Kurve und f also zugehörige Parametrisierung bezeichnet).

Definition (bogenzusammenhängende Menge)

Menge $M \subset X$, wobei X ist metrische Raum, heißt bogenzusammenhängend (bogenweise zusammenhängend) falls $\forall a, b \in M \exists \text{ Kurve } f : [a, b] \to M \text{ mit } f(\alpha) = a, f(\beta) = b.$

Bemerkung: Eigentlich ist das die Definition für Wegzusammenhängend, leider ist das in der Literatur nicht eindeutig und manchmal wird zwischen Wegzusammenhängend und zusammenhängend noch das "echt" bogenzusammenhängend unterschieden.

Definition (zusammenhängende Menge)

Menge $M \subset X$ heißt zusammenhängend, falls

$$A, B \subset M$$
 sind offen in M , disjunkt, $\emptyset \Rightarrow M \neq A \cup B$. (III.2)

Beispiel 15.6

- 1) $x \in [0, 2\pi] \to (x, \sin x) \in \mathbb{R}^2$ ist Kurve in \mathbb{R}^2
- 2) $x \in [0,1] \to e^{i\pi x} \in \mathbb{C}$ oder $x \in [0,\pi] \to e^{i\pi} \in \mathbb{C}$ sind Kurven in \mathbb{C}
- 3) Sei Y normierter Raum, $a,b \in Y, f:[0,1] \to Y$ mit $f(t)=(1-t)\cdot a+t\cdot b$ ist Kurve (Strecke von a nach b)

Beispiel 15.7

Sei $X = \mathbb{R}^2$, $M = \{(x, \sin x) \mid x \in (0, 1]\} \cup \{(0, 0)\}$. Dann ist M zusammenhängend aber nicht bogenzusammenhängend.

Satz 15.9

Sei X metrischer Raum, $M \subset X$. Dann

- 1) $X = \mathbb{R} : M$ ist zusammenhängend $\Leftrightarrow M$ ist Intervall (offen, abgeschlossen, halboffen, beschränkt, unbeschränkt).
- 2) M ist bogenzusammenhängend $\Rightarrow M$ ist zusammenhängend.
- 3) Sei X normierter Raum, dann: M ist offen, zusammenhängend $\Rightarrow M$ ist bogenzusammenhängend.

Definition (Gebiet)

Sei X metrischer Raum, $M \subset X$ heißt Gebiet falls M offen und zusammenhängend ist.

Beachte: Gebiet in einem normiertem Raum ist sogar bogenzusammenhängend.

Offenbar: $M \subset X$ ist konvex $\Rightarrow M$ ist bogenzusammenhängend.

Satz 15.10

Sei $f:D\subset X\to Y$ stetig, wobei X,Y metrische Räume sind, dann gilt: $M\subset D$ ist zusammenhängend $\Rightarrow f(M)$ ist zusammenhängend.

Theorem 15.11 (Zwischenwertsatz)

Sei $f: D \subset X \to \mathbb{R}, M \subset D$ zusammenhängend, $a, b \in M \Rightarrow f$ nimmt auf M jeden Wert zwischen f(a) und f(b) an.

Beispiel 15.13

 $f:[a,b]\to\mathbb{R}$ sei stetig mit $f([a,b])\subset[a,b]\Rightarrow$ besitzt Fixpunkt, d.h. $\exists x\in[a,b]\colon f(x)=x$.

Theorem 15.14 (Fundamentalsatz der Algebra)

Sei $f: \mathbb{C} \to \mathbb{C}$ Polynom vom Grad $n \geq 1$ (d.h $f(z) = a_n z^n + \cdots + a_1 z + a_0, a_j \in \mathbb{C}, a_n \neq 0, n \geq 1$) $\Rightarrow f$ besitzt (mindestens eine) Nullstelle $z_0 \in \mathbb{C}$ (d.h. $f(z_0) = 0$).

Folgerung 15.15

Jedes Polynom $f: \mathbb{C} \to \mathbb{C}$ von Grad $n, f \neq 0$ besitzt genau n Nullstellen in \mathbb{C} gezählt mit Vielfachen, d.h. $\exists z_1, \ldots, z_l \in \mathbb{C}$, paarweise verschieden (=verschieden) $k_1, \ldots, k_l \in \mathbb{N}_{\geq 0}$, $a_n \in \mathbb{C} \setminus \{0\}$ mit $k_1 + \cdots + k_l = n$ und $f(z) = a_n \cdot (z - z_1)^{k_1} \cdot \cdots \cdot (z - z_l)^l \, \forall z \in \mathbb{C}$. Hier heißt k_j Vielfachheit der Nullstelle z_j .

Hinweis: In dem Satz 13.5 wurde gezeigt, das f höchstens n Nullstellen besitzt.

Definition (analytische Funktion)

Abbildung $f:\mathbb{C}\to\mathbb{C}$ heißt analytisch auf $B_R(z_0)\subset\mathbb{C}$ falls f auf $B_R(z_0)$ durch Potenzreihe in z_0 darstellbar ist, d.h.

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \quad \forall z \in B_R(z_0).$$

Satz 15.16

Sei $f: \mathbb{C} \to \mathbb{C}$ analytisch auf $B_R(z_0)$ und sei $B_r(z_1) \subset B_R(z_0)$ für $z_1 \in B_R(z_0), r > 0 \Rightarrow f$ ist analytisch auf $B_r(z_1)$.

Satz 15.17 (Identitätssatz)

Seien $f, g : \mathbb{C} \to \mathbb{C}$ analytisch auf $B_R(z_0)$, sei $z_n \to \tilde{z}, z_n \in B_R(z_0) \setminus \{\tilde{z}\}\$ und $f(z_n) = g(z_n) \ \forall n \in \mathbb{N} \Rightarrow f(f) = g(z) \ \forall z \in B_R(z_0)$.

Bemerkung 15.18

Analytische Funktionen sind durch Werte auf "sehr kleinen" Mengen bereits festgelegt (z.B exp, sin cos sind auf \mathbb{C} eindeutig durch Werte auf \mathbb{R} festgelegt).

Überblick 15.19

Sei X metrischer Raum, Y normierter Raum.

- $B(X,Y) := \{f : X \to Y \mid ||f||_{\infty} < \infty\}$ ist normierter Raum der beschränkten Funktionen mit $||f||_{\infty} = \sup\{||f||_{Y} \mid x \in X\}$.
- $C_b(X,Y) := \{f : X \to Y \mid ||f||_{\infty} < \infty, f \text{ ist stetig}\}$ ist Menge der beschränkten stetigen Funktionen und offenbar eine linearer Unterraum von B(X,Y) und damit auch Kern von R mit $||\cdot||_{\infty}$.
- $C(X,Y) := \{f : X \to Y \mid f \text{ ist steig}\}$, Menge der stetigen Funktionen ist offenbar ein Vektorraum (enthält unbeschränkte Funktionen, z.B. $f(x) = \frac{1}{x}$ mit $x \in X = (0,1)$).

Bemerkung 15.20

Falls X kompakt ist, dann kann man den Ausdruck $||f||_{\infty} < \infty$ in der Definition von $C_b(X,Y)$ weglassen (vgl. Theorem 15.3), d.h. $C_b(X,Y) = C(X,Y)$, f stetig $\Rightarrow X \to ||f(x)||$ ist stetig $\stackrel{\text{Theorem 15.3}}{\Rightarrow} f$ ist beschränkt auf X. In diesem Fall ist auch C(X,Y) mit $||\cdot||_{\infty}$ normierter Raum und $||f||_{\infty} = \max_{x \in M} ||f(x)||_{Y}$.

Satz 15.21

Sei X metrischer Raum, Y Banachraum $\Rightarrow B(X,Y)$ und $C_b(X,Y)$ und Banachräume (mit $\|\cdot\|_{\infty}$).

Definition (Kontraktion)

Funktion $f:D\subset X\to X$, wobei X metrischer Raum ist, heißt Kontraktion (bzw. kontraktiv) auf $M\subset D$ falls

$$\exists L, 0 \le L < 1 \colon d(f(x), f(y)) \le L \cdot d(x, y) \quad \forall x, y \in M.$$

D.h. f ist Lipschitz-stetig mit Lipschitzkonstante L < 1, folglich ist f auch stetig.

Theorem 15.22 (Banacherscher Fixpunktsatz)

Sei $f:D\subset X\to Y$ Kontraktion auf $M\subset D,X$ vollständiger metrischer Raum (z.B. Banachraum), M abgeschlossen und $f(M)\subset M$. Dann

- (1) f besitzt genau einen Fixpunkt \tilde{x} auf M (d.h. \exists genau ein $\tilde{x} \in M$: $f(\tilde{x}) = \tilde{x}$).
- (2) Für $\{x_n\}$ in M mit $x_{n+1} = f(x_n), x_0 \in M$ (beliebig) gilt:

$$x_n \to x \text{ und } d(x_n, \tilde{x}) \le \frac{L^n}{1 - L} \cdot d(x_0, x_1) \quad \forall n \in \mathbb{N}.$$

Hinweis: Theorem 15.22 ist eine wichtige Grundlage für Iterationsverfahren in der Numerik.

Partialbruchzerlegung

Definition (Pol der Ordnung k)

Sei $R: \mathbb{C} \to \mathbb{C}$ rationale Funktion, d.h. $R(z) = \frac{f(z)}{g(z)}$ für Polynome f, g existieren mit

$$R(z) = \frac{\tilde{f}(z)}{(z - z_0)^k \cdot \tilde{g}} \text{ und } \tilde{f}(z_0) \neq 0, \tilde{g}(z_0) \neq 0.$$

30

Motivation: Gelgentlich ist gewisse additive Zerlegung von rationalen Funktionen wichtig (Integration) z.B.

$$\frac{2x}{x^2 - 1} = \frac{2x}{(x - 1)(x + 1)} = \frac{1}{x + 1} + \frac{1}{x - 1}.$$

Lemma 15.23

Sei $R:\mathbb{C}\to\mathbb{C}$ rationale Funktion, $z_0\in\mathbb{C}$ Pol der Ordnung $k\geq 1 \Rightarrow \exists ! a_1,\dots,a_k\in\mathbb{C}, a_k\neq 0$ und $\exists !$ Polynom \tilde{p} mit

$$R(z) = \sum_{i=1}^{k} \frac{a_i}{(z - z_0)^i} + \frac{\tilde{p}(z)}{\tilde{g}(z)} = H(z) + \frac{\tilde{p}(z)}{\tilde{g}(z)}$$

H(z) heißt Hauptteil von R in z_0 . Beachte das $\frac{\tilde{p}}{\tilde{a}}$ keine Pole in z_0 hat.

Satz 15.24 (Partialbruchzerlegung)

Sei $R: \mathbb{C} \to \mathbb{C}$ rationale Funktion, $R(z) = \frac{f(z)}{g(z)}$ für Polynome f, g. Sei $g(z) = \prod_{i=1}^{l} (z - z_i)^{k_i}$ gemäß Fundamentalsatz der Algebra(Theorem 15.14). Seien z_1, \ldots, z_l keine Nullstellen von f und seien H_1, \ldots, H_l Hauptteile von R in $z_1, \ldots, z_l \Rightarrow$

$$\exists$$
 Polynom $p: R(z) = H_1(z) + \cdots + H_l(z) + p(z) \quad \forall z \neq z_i \ \forall j = 1, \dots, l$

wobei $f(z) = p(z) \cdot g(z) + r(z) \forall z$ für Polynom r. p = 0 falls grad(f) < grad(g) (vgl Satz 13.5 Polynomdivision)

Liste der Theoreme

Theorem 1.1	4
Theorem 3.14	9
Theorem 3.15	10
Theorem 3.18	10
Theorem 9.29 Bolzano-Weierstrass	16
Theorem 10.3	17
Theorem 10.6	
Theorem 11.1	18
Theorem 11.3 Heine-Borell kompakt, Bolzano-Weierstrass folgenkompakt	18
Theorem 15.3 Weierstraß	
Theorem 15.11Zwischenwertsatz	29
Theorem 15.14Fundamentalsatz der Algebra	29
Theorem 15.22 Banacherscher Fixpunktsatz	30

Liste der benannten Sätze

Satz 1.4	DE MORGAN'sche Regeln	1
Satz 1.2	Prinzip der vollständigen Induktion	4
Satz 1.4	Rekusrive Definition / Rekursion	4
Satz 3.3	Binomischer Satz	7
Satz 3.19	Wurzeln	10
Satz 7.1	geoemtrisches / arithemtisches Mittel	12
Satz 7.2	allgemeine Bernoulli-Ungleichung	12
Satz 7.3	Young-sche Ungleichung	12
Satz 7.4	HÖLDER'sche Ungleichung	12
Satz 7.5	Minkowski-Ungleichung	12
Satz 9.6	Eindeutigkeit des Grenzwertes	15
Satz 9.21	Konvergenz in $\mathbb{R}^n/\mathbb{C}^n$ bzgl. Norm	16
Satz 9.34	Satz von Stolz	16
Satz 12.1	Cauchy-Kriterium	18
Satz 12.9	Konvergenzkriterien für Reihen	19
Satz 12.13	3Leibnitz-Kriterium für alternierende Reihen in $\mathbb R$	19
Satz 12.1	7Cauchy-Produkt	20
Satz 12.19	9Doppelreihensatz	20
Satz 14.3	$arepsilon \delta$ -Kriterium	25
Satz 14.4	Rechenregeln	25
Satz 14.14	4Rechenregeln	27
Satz 15.1	7Identitätssatz	30
Satz 15.2	4Partialbruchzerlegung	31