Основная информация

Провайдер: Финансовый Университет

Название программы: Реализация инженерных разработок в сфере инфраструктуры для БВС

Регион образовательной программы: Алтайский край

Название инженерной задачи: Разработка наземной станции для заправки агродрона

Название команды: Вихрь

vecheruk.99@gmail.com

Состав команды

- 1. Вечерук Илья Вадимович
- 2. Гаевский Денис Игоревич
- 3. Климов Артем Дмитриевич
- 4. Шиляев Алексей Дмитриевич
- 5. Алексеев Даниил Владимирович

Наставник: Сурова Надежда Юрьевна

Вечерук Илья Вадимович

- Компиляция и структурирование информации.
- Программная часть.
- Сборка установки.

Климов Артем Дмитриевич

- Сбор информации программной части.
- Разработка схем и абстракций.
- Разработка ПО.

Шиляев Алексей Дмитриевич

• Сборка установки.

Гаевский Денис Игоревич

- Сбор информации аппаратной части.
- Разработка схем и абстракций.
- Сборка установки.

Алексеев Даниил Владимирович

• Сборка установки.

Автоматизированная заправка агродронов

Описание задачи и технические требования

Проект автономной станции дозированной заправки химическими растворами для агродронов. Фокус на скорость, точность и синхронизацию с циклом замены аккумуляторов.

2-5 мин

цикл замены АКБ

40-50 л

ёмкость бака на заправку 5-10%

повышение эффективности

Краткое резюме

- Цель: быстро и точно заправлять дроны жидкими химрастворами.
- Проблема: несинхронные циклы АКБ и заправки создают простои персонала.
- Гипотеза: автоматизация снижает простои и ускоряет подготовку к вылету.
- Решение: интеграция станции дозированной заправки в зону возврата дронов с синхронизацией по событиям.

Описание решения инженерной задачи

Аппаратные технологии:

Насосные системы с контролем давления: помпы.

Двигатель: мотор - двигатель 12V.

Контроллеры и микроконтроллеры: плата для разработки с микроконтроллером.

Светодиодная подсветка для ночного режима: RGB светодиодная лента.

Прочные химически стойкие материалы: шланги на основе ПВХ, резервуар для жидкости на основе полиэтилена.

Датчики: аналоговые входы ADC1 (потенциометр, уровни жидкости), цифровые входы для NPN/PNP датчиков.

Периферия: реле для управления помпами, датчики уровня жидкости, помпы.

Программная часть:

Платформа: ESP32, программирование на C++ в Arduino IDE/PlatformIO.

Логика: неблокирующая машина состояний на millis(), без задержек.

Интерфейс: I2C-LCD дисплей для статуса, кнопки INPUT_PULLUP и потенциометр для задания объема воды.

Архитектура: объектная модель; класс станции (пины, объем, таймеры), массив объектов для масштабируемости.

Библиотеки: Wire.h (I2C), LiquidCrystal_I2C.h (дисплей), Math.h (математические операции), Arduino Core API (digital/analog I/O, map, millis).

Описание решения инженерной задачи

Результаты испытаний решения инженерной задачи

Дата: 04.09.2025.

Место: Лаборатория филиала Финансового Университета (пр.

Ленина, 54)

Контрольная точка №1.

Сборка и отладка основного стека аппаратной части, тестирование работоспособности оборудования.

Дата: 05.09.2025.

Место: Лаборатория филиала Финансового Университета (пр.

Ленина, 54)

Контрольная точка №2.

Сборка финального конструкта установки, тестирование работы аппаратной и программной части.

Результаты испытаний решения инженерной задачи

Дата: 06.09.2025.

Место: Лаборатория филиала Финансового Университета (пр. Ленина, 54)

Контрольная точка №3.

Демонстрация итоговой работы установки и запись видео испытаний.

Ключевые технические требования инженерной задачи

Условия эксплуатации

Температурный диапазон +5...+40 °C

Защита от внешних факторов

Портативность

Устойчивость к агрессивной химической среде

Есть

Конструктивные элементы

Контроль уровня заполнения

8..60 л

Подсветка для работы ночью

Есть

Взлётно-посадочная площадка

670x670 mm ± 20 mm

Функциональность

Работа в полевых условиях

Есть

Массогабаритные параметры

Оптимальные для транспортировки

Одновременное обслуживание

Более двух единиц

Время заправки бака

≤ 5 мин∨т

Бак станции

Объём

Есть

20 л ± 2 л, с функцией рециркуляции раствора

Материалы

Устойчивые к химическим и физическим воздействиям

Производительность

л/мин (значение уточняется)

Параметры и входные воздействия

Давление и расход раствора

Устанавливается

Тип используемых химикатов и условия их применения

Устанавливается

Эксплуатация

Простая настройка и запуск

Дā

Высокая точность дозирования

Да

Возможность проведения техобслуживания

la l

Расчёт заработной платы

Должность	Оклад / мес	Часовой тариф	Трудоёмк.	Основная з/п
программист	80 000	434,7	25	13 041
инженер	90 000	489,1	45	26 411,4
смета				13 627
итого всего		-		53 079,4

Рефлексия результата решения инженерной задачи

Проблемы которые удалось решить:

- Сложность в проектировании универсального крепления для баков агродронов
- проблема в заправки без вмешательства оператора между циклами

Как нам удалось это решить:

- Мы взяли за пример прообраз крепления в виде заправочного пистолета
- Мы реализовали циклическую заправку бака

Перспективы:

• Модульная архитектура проекта, добавление датчиков температуры для сохранности химикатов.

Техническая документация проекта

Автоматизированная станция заправки агродронов

- Задача: ускорить подготовку агродронов за счёт автоматизации дозированной заправки.
- Технологии: ESP32, насосы, датчики уровня, LCD-дисплей, RGB-индикация.
- Программная часть: C++ (VS Code + PlatformIO), двухфазный алгоритм (А наполнение, В заправка).
- Испытания: подтверждена точность дозирования, отработана защита от перелива.
- Итог: система соответствует ключевым требованиям, требует доработки калибровки и тестов с агрессивными растворами.
- **Экономика:** общие затраты 53 тыс. руб., экономия бюджета 24,2 %.
- Перспективы: улучшение материалов, модульная архитектура ПО, масштабирование до серийного производства.

Схема алгоритма работы программы

Описание этапов

loop() — основной цикл программы.

handleUnitSwitch() — переключение между станциями.

Режим ожидания — считывание потенциометра и вывод цели на дисплей.

Запуск цикла (START) — старт процесса заправки.

Фаза A (mix tank) — наполнение микс-бака до уровня/объёма.

Фаза В (to drone) — перекачка в бак дрона.

overflow → аварийная остановка; иначе счётчик литров ↑.

Пауза — короткая задержка; RGBиндикация показывает прогресс.