Measure and Integration II (MAA5617), Spring 2021 Homework 5, due Thursday, Apr 1

Below $T: \mathcal{X} \to \mathcal{Y}$ is a linear map between normed vector spaces; \mathcal{Z} is also a normed vector space.

1. Prove that

$$\rho(x,y) = \frac{\|x - y\|}{1 + \|x - y\|}$$

defines a metric on \mathcal{X} that does not correspond to any norm.

2. Prove the equivalence of different ways to define operator norm:

$$||T|| = \sup \{||Tx|| : ||x|| = 1\}$$

$$= \sup \left\{ \frac{||Tx||}{||x||} : x \neq \overrightarrow{0} \right\}$$

$$= \inf \{C > 0 : ||Tx|| \le C||x|| \ \forall x \in \mathcal{X} \}.$$

- **3.** Prove that operator norm is a norm on $L(\mathcal{X}, \mathcal{Y})$.
- **4.** Let $B \in L(\mathcal{Y}, \mathcal{Z})$. Show that

$$\phi_B: L(\mathcal{X}, \mathcal{Y}) \to L(\mathcal{X}, \mathcal{Z}),$$

 $\phi_B(A) = B \circ A,$

satisfies $\|\phi_B\| \leq \|B\|$ (these are operator norms in different spaces!).

5. Prove that $T = \frac{d}{dt} : \mathbb{R}[t] \to \mathbb{R}[t]$ is an unbounded linear operator. Here $\mathbb{R}[t]$ are polynomials in t over [a, b], equipped with uniform norm.

Constructing an unbounded operator on a complete space is more tricky, and is usually done using the axiom of choice, see Folland p. 179.

- **6.** Suppose A is a symmetric $n \times n$ matrix over \mathbb{R} . Prove that its operator norm ||A|| is equal to the absolute value of its largest eigenvalue. (Use Lagrange's method to diagonalize A.)
- **7.** Prove that any two norms on \mathbb{R}^n are equivalent.

Show that any given norm $\|\cdot\|$ is continuous with respect to the Euclidean norm $\|\cdot\|_2$. This will imply that it achieves its maximum and minimum on the unit sphere $\{x: \|x\|_2 = 1\}$, and they must both be finite and positive, implying equivalence.

Continuity can be obtained like so: given an x with $||x||_2 = 1$ and the standard basis $\{e_i\}_1^n$, there holds

$$||x|| = \left|\left|\sum_{i} \alpha_{i} e_{i}\right|\right| \le \sum_{i} ||e_{i}|| = ||x||_{2} \cdot \sum_{i} ||e_{i}|| = :C||x||_{2}.$$

Rescaling x gives for any vector in \mathbb{R}^n

$$||x|| \le C||x||_2,$$

which is Lipschitz continuity:

$$||v_1 - v_2|| \le C||v_1 - v_2||_2,$$

for any pair of vectors $v_1, v_2 \in \mathbb{R}^n$.

8. Give a counterexample to the parallelogram law in C([0,1]) with the uniform norm.

Recall that a set is called *convex* if it contains every line segment [x, y] connecting a pair of its points x, y.

- **9.** Prove that any closed convex set in a Hilbert space has a unique element of smallest norm. (Argue as in the first part of Theorem 5.24.)
- 10. For any subset E of a Hilbert space \mathcal{H} , prove that $(E^{\perp})^{\perp}$ is the smallest closed vector subspace of \mathcal{H} , containing E.
- 11. Let $\mathcal{H} = l^2(\mathbb{N})$, the space of square-summable sequences $x = (x_1, x_2...)$ with elements from \mathbb{R} , with the norm

$$||x||^2 = \sum_{1}^{\infty} x_i^2,$$

as defined in class.

- Construct a bounded (=of bounded norm) sequence $\{x_i\}$ of elements from \mathcal{H} , such that $||x_i x_j|| \ge 1$.
- \bullet Prove that the unit ball in ${\mathcal H}$ is not compact.