Mathématiques I

Ensembles & vocabulaire de base

Dr. Mucyo Karemera

Ce document a été préparé avec l'aide de Prof. Stéphane Guerrier

Assistants: G. Blanc, B. Poilane & H. Voegeli

Les mathématiques modernes sont basées sur la théorie des ensembles. Le vocabulaire de base en est naturellement issu.

Un ensemble est constitué d'**éléments** et on dit qu'ils "appartiennent à" l'ensemble.

A partir d'éléments d'un ensemble, on peut construire des **sous-ensembles** et on dit qu'ils sont "**inclus** " dans l'ensemble.

En mathématiques, on distingue donc "appartenir " et " être inclus ".

La première notion se réfère strictement une relation entre un élément et un ensemble.

La deuxième se réfère strictement une relation entre deux ensembles.

Symboles de base

```
  \{ \dots \} \quad \text{se lit/dit} \quad \text{"ensemble de "} \quad \text{ou} \quad \text{"ensemble constitu\'e de "} \\ \in \quad \text{se lit/dit} \quad \text{"appartient \`a" ou} \quad \text{"est \'el\'ement de "} \\ \subset \quad \text{se lit/dit} \quad \text{"inclus dans "ou} \quad \text{"est sous-ensemble de "}
```

- $x \in \mathbb{E}$, i.e., x appartient à \mathbb{E}
- $t \notin \mathbb{E}$, i.e., t n'appartient pas à \mathbb{E}
- \bullet $\mathbb{F} \subset \mathbb{E}$, i.e., \mathbb{F} est un sous-ensemble de \mathbb{E}
- $\bullet \ \mathbb{G} \not\subset \mathbb{E}$, i.e., \mathbb{G} n'est pas un sous-ensemble de \mathbb{E}
- $\{x\} \subset \mathbb{E}$, i.e., $\{x\}$ est un sous-ensemble de \mathbb{E}
- \bullet $\mathbb{F} \notin \mathbb{E}$, i.e., \mathbb{F} n'appartient pas à \mathbb{E}

Un ensemble peut être décrit en listant ses éléments.

Exemple

$$\mathbb{E} = \{x, y, z\} \quad \text{se lit/dit} \quad \text{``E est l'ensemble constitu\'e de } x, y, z \text{''} \\ \{x, y, z\} \quad \text{se lit/dit} \quad \text{``ensemble constitu\'e de } x, y, z \text{''} \\ \\ & z \bullet y \\ \\ z \bullet y \\ \\$$

Il n'est pas toujours possible/souhaitable de caractériser un ensemble par une liste. Un ensemble peut cependant aussi être caractérisé par une propriété.

Les ensembles numériques

Les ensembles considérés dans ce cours seront principalement numériques.

• Ensemble des nombres entiers naturels:

$$\mathbb{N} = \{0,1,2,\dots\}$$

Ensemble des nombres entiers (relatifs):

$$\mathbb{Z} = \{\ldots, -1, -2, 0, 1, 2, \ldots\}$$

Ensemble des nombres rationnels:

$$\mathbb{Q}=\left\{x=rac{p}{q}\,\middle|\, p\in\mathbb{Z}, q\in\mathbb{Z}, ext{ tel que } q
eq 0
ight\}$$

Ensemble des nombres réels:

$$\mathbb{R} = \{ \text{tous les nombres à virgules} \}$$

(La "faute" à Cantor!!!)

Les ensembles numériques

Revenons sur la définition de l'ensemble des nombres rationnels

$$\mathbb{Q} = \left\{ x = \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ avec } q \neq 0 \right\},$$

qui se lit littéralement comme suit:

- 1) $\{...\}$ se lit/dit "ensemble des ...",
- 2) $x = \frac{p}{q}$ se lit/dit "x égal à p divisé par q...",
- 3) se lit/dit "tel que ...",
- 4) $p \in \mathbb{Z}$ se lit/dit "p appartient à \mathbb{Z} ",
- 5) $q \in \mathbb{Z}$ se lit/dit "q appartient à \mathbb{Z} ",
- 6) $q \neq 0$ se lit/dit "q différent de 0".

Les ensembles numériques

Clairement, on a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Ces inclusions sont stricts: en effet,

- ullet $-1
 ot\in \mathbb{N}$ mais $-1 \in \mathbb{Z}$
- $\bullet \ \ \frac{1}{2} \not \in \mathbb{Z} \ \mathsf{mais} \ \frac{1}{2} \in \mathbb{Q}$

- $\sqrt{2} \notin \mathbb{Q}$ mais $\sqrt{2} \in \mathbb{R}$
- $\quad \bullet \ \, \pi \not\in \mathbb{Q} \,\, \mathsf{mais} \,\, \pi \in \mathbb{R}$

Ce qui implique les relations suivantes entre ensembles :

- $\bullet \ \{-1\} \not\subset \mathbb{N} \ \mathsf{mais} \ \{-1\} \subset \mathbb{Z}$
- $\bullet \ \left\{\frac{1}{2}\right\} \not\subset \mathbb{Z} \ \mathsf{mais} \ \left\{\frac{1}{2}\right\} \subset \mathbb{Q}$

- $\quad \bullet \ \left\{ \sqrt{2} \right\} \not\subset \mathbb{Q} \ \mathsf{mais} \ \left\{ \sqrt{2} \right\} \subset \mathbb{R}$
- ullet $\{\pi\} \not\subset \mathbb{Q} \text{ mais } \{\pi\} \subset \mathbb{R}$

Autres ensembles numériques usuels

Soient a, b des nombres réels tels que a < b. On distingue les sous-ensembles réels suivants:

- intervalle fermé: $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$
- intervalle ouvert: $]a, b[= \{x \in \mathbb{R} | a < x < b\}]$
- intervalle semi-ouverts:]a, b] ou [a, b[

Bien que de nature différente, ces intervalles sont tous bornés.

Définition

On dit qu'un ensemble est compact s'il est fermé et borné.

Autres ensembles numériques usuels

On considérera aussi des intervalles non-bornés.

- à droite: $[a, \infty[=\{x \in \mathbb{R} | a \le x\} \text{ ou }]a, \infty[=\{x \in \mathbb{R} | a < x\}]$
- à gauche: $]-\infty,a]=\{x\in\mathbb{R}|x\leq a\}$ ou $]-\infty,a[=\{x\in\mathbb{R}|x< a\}$

où le symbole ∞ désigne l'infini.

Notations

$$\begin{array}{l} \mathbb{R}^* = \mathbb{R} \backslash \{0\} =] - \infty, 0[\; \cup \;]0, + \infty[\\ \mathbb{R}_+ = [0, + \infty[\;, \quad \mathbb{R}_+^* =]0, + \infty[\\ \mathbb{R}_- =] - \infty, 0] \,, \quad \mathbb{R}_-^* =] - \infty, [\; 0 \end{array}$$

Similairement, on note

$$\mathbb{N}^* = \mathbb{N} \setminus \{0\}$$

$$\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$$

$$\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$

Question: ∞ est-il un nombre réel?

∞ n'est pas un nombre réel!!

L'infini n'est pas un nombre réel, autrement dit $\infty \notin {\rm I\!R}.$

Mais pourquoi???

 $\operatorname{\mathsf{Car}} \infty + 1 = \infty.$ Or, on aimerait pouvoir dire que

"pour tout
$$x \in {\rm I\!R}$$
, $x+1>x$ "

c'est-à-dire, en français,

" pour tout nombre réel x, x+1 est strictement plus grand que x".

Vocabulaire

- \forall se lit/dit "pour tout"
- \exists se lit/dit " il existe"

Traduire en français: $\exists x \in \mathbb{R}, x + 1 > x$.

∞ n'est pas un nombre réel!!

De façon plus générale, **une expression arithmétique ne correspond pas nécessairement à un nombre réel**. Par exemple, l'expression infinie suivante ne correspond à aucune nombre réel:

$$1-1+1-1+1-1+...$$

Ceci veut dire que l'on ne peut pas écrire

$$1-1+1-1+1-1+... = x \in \mathbb{R}.$$

Mais pourquoi??

Le faire mènerait aux résultats suivants:

①
$$1-1+1-1+1-1+...=\frac{1}{2}$$
 (exo)

∞ n'est pas un nombre réel!!

De façon plus générale, **une expression arithmétique ne correspond pas nécessairement à un nombre réel**. Par exemple, l'expression infinie suivante ne correspond à aucune nombre réel:

$$1-1+1-1+1-1+...$$

Ceci veut dire que l'on ne peut pas écrire

$$1-1+1-1+1-1+... = x \in \mathbb{R}.$$

Mais pourquoi??

Le faire mènerait aux résultats suivants:

$$21+2+3+4+5+6+...=$$

$$\infty$$
 n'est pas un nombre réel!!

De façon plus générale, **une expression arithmétique ne correspond pas nécessairement à un nombre réel**. Par exemple, l'expression infinie suivante ne correspond à aucune nombre réel:

$$1-1+1-1+1-1+...$$

Ceci veut dire que l'on ne peut pas écrire

$$1-1+1-1+1-1+... = x \in \mathbb{R}.$$

Mais pourquoi??

Le faire mènerait aux résultats suivants:

①
$$1-1+1-1+1-1+...=\frac{1}{2}$$
 (exo)

2
$$1+2+3+4+5+6+... = -\frac{1}{12}!!!!$$