

1-1高数基础过关 2022年12月23日17:13

(1) $y = x^2(1-x^2)$;

(2) $y = 3x^2 - x^3$; # = # 13

(3)
$$y = \frac{1-x^2}{1+x^2}$$
; (4) $y = x(x-1)(x+1)$;

(5) $y = \sin x - \cos x + 1$; $\sin (-x) + \cos (-x) + 1$

(6)
$$y = \frac{a^x + a^{-x}}{2}$$
.

4.下列各函数中哪些是周期函数?对于周期函数,指出其周期:

- (1) $y = \cos(x-2)$; **27** \Rightarrow \Rightarrow \Rightarrow
- (2) $y = \cos 4x$; $\frac{\pi V}{2}$
- (3) $y = 1 + \sin \pi x$; 2
- (4) y=xcosx; 非月期
- -2Sin'X

(1)
$$y = \sqrt[3]{x+1}$$
; $x = y^3$
 $x = y^3 + 1$
 x

(3)
$$y = \frac{ax+b}{cx+d}(ad-bc \neq 0);$$

(2)
$$y = \frac{1-x}{1+x}$$
; $q = \frac{1-x}{1+x}$

(4)
$$y = 2\sin 3x(-\frac{\pi}{6} \le x \le \frac{\pi}{6}).$$

$$cyx - ax = b - dy$$

$$x = \frac{b - dy}{cy}$$

$$\frac{4}{3}$$
 = $\sin 3x$
 $3x = \arcsin \frac{4}{2}$
 $x = \frac{1}{3} \arcsin \frac{4}{2}$ 1-2=9

6.设
$$f(x) = \begin{cases} 1, & |x| < 1, \\ 0, & |x| = 1, & g(x) = e^x, 求 f[g(x)] \end{cases}$$

6.设
$$f(x) = \begin{cases} 1, & |x| < 1, \\ 0, & |x| = 1, & g(x) = e^x, 求 f[g(x)] 和 g[f(x)], \\ -1, & |x| > 1, \chi < o \text{ off } 19 \text{ which } P[g(x)] = 1 \end{cases}$$

7.设函数
$$f(x) = x \cdot \arctan x \cdot e^{\cos x}$$
 ,则 $f(x)$ 是

$$|x| \le 1, |x| > 1, \quad \text{If } |f(x)| =$$

e (05/-x) = e (05)

$$\begin{cases} (x) = \{ 1, |x| > 1, \\ (x) = \{ 1, |x| > 1$$

$$|x| \le 0$$

9.设 $f(x) = \arcsin x$, $f[\varphi(x)] = \frac{\pi}{2} - x^2$, 则 $\varphi(x) = \frac{\sin(\frac{\pi}{2} - x^2)}{2}$; 其定义域为 [一杌, [元]]

arc
$$\sin \varphi(x) = \frac{n}{2} - x^2$$
 $\chi \in [-1,1]$

$$\varphi(x) = \sin(\frac{\pi}{2} - x^2)$$

10. (1) 幂函数: $y = x, y = x^2, y = \sqrt{x}, y = x^3, y = \sqrt[3]{x}, y = \frac{1}{x}$

- (3) 对数函数: $y = \log_a x (a > 0 且 a \neq 1)$.
- (4) 三角函数: $y = \sin x, y = \cos x$, $y = \tan x, y = \cot x$.
- (5) 反三角函数: $y = \arcsin x, y = \arccos x$, $y = \arctan x, y = \operatorname{arc} \cot x$.