

Sistemas Operativos 2021-2022

TEMA 4 (segunda parte) Gestión de memoria virtual

- 4.1. Introducción
- 4.2. Implementaciones de la memoria virtual
- 4.3. Políticas de gestión de la memoria virtual

Introducción

- El proceso tenía que estar completamente cargado en memoria principal para su ejecución
 - No sería posible ejecutar programas con tamaño mayor que aquella
- Es fácilmente comprobable que no se necesita todo el proceso en memoria principal constantemente
 - Presencia de bucles en el código
 - El código de gestión de errores se ejecuta poco
 - Estructuras de datos sobredimensionadas
 - Ciertas opciones de los programas se usan rara vez

Introducción

- La posibilidad de ejecutar un programa parcialmente cargado, tiene varias ventajas:
 - El programa puede ser mayor que la memoria física
 |L| > |R|
 - Podrá haber más programas en memoria simultáneamente
 - Aumenta el grado de multiprogramación
 - La operación de intercambio de un proceso (suspender procesos) consume menos tiempo de E/S
 - Al estar ya la mayor parte del proceso en memoria secundaria.

Introducción Memoria virtual

- Solución: memoria virtual (Fotheringham, 1961)
 - Se mantienen en memoria principal sólo las partes en uso de cada proceso
 - El proceso completo reside además en memoria secundaria
 - Es transparente al programador
 - Sólo se tiene que concentrar en el problema que resuelve su programa
 - Algo/alguien tiene que conseguir dicha transparencia
 - El sistema operativo y el hardware

Introducción Memoria virtual

- Dificultades de la memoria virtual
 - El SO y el hardware tienen que gestionar la carga y descarga de partes del proceso (páginas)
 - Necesidad de soporte hardware
 - MMU específica y más compleja
 - Reinicio de la ejecución de una instrucción ante una falta de página del proceso ☺ ☺

Implementaciones de la memoria virtual Índice

- 4.2.1. Introducción
- 4.2.2. Paginación

Implementaciones de la memoria virtual Introducción

- Dependiendo del hardware disponible, se dispone de diferentes modos de implantar una gestión de memoria virtual
 - Paginación (solo será visto éste en detalle)
 - Segmentación
 - Segmentación paginada

- Los procesos se dividen en bloques de tamaño fijo
 - Páginas
- La memoria física se divide en bloques de tamaño fijo
 - Marcos de página
 - Igual tamaño que el de una página
- Deben estar en memoria
 - Páginas que contienen la instrucción en curso
 - Páginas que contienen los datos que maneja ésta

- Organización de procesos y de la memoria principal
 - Igual que en paginación simple.
- Organización de las direcciones virtuales y de las direcciones físicas
 - Igual que en paginación simple.
 - Nótese que las direcciones de los procesos reciben ahora el nombre de direcciones virtuales.

- Estructuras de datos (se amplían las estructuras de datos de paginación simple)
 - Tabla de marcos de página
 - Igual que en la paginación simple
 - Tabla de páginas por proceso
 - Nº de marco de página
 - Bits de protección
 - Bit de modificación (a 1 si la página se ha modificado)
 - Bit de presencia (a 1 si la página está en memoria principal)
 - Bit de referencia (a 1 si la página se ha referenciado)
 - Tabla del mapa del archivo por proceso (NUEVA)
 - Direcciones en almacenamiento secundario de las páginas del proceso

Protección

Igual que paginación simple

Traducción de direcciones virtuales a físicas

- Aparece el concepto de "fallo de página"
 - Cuando la CPU genera una dirección virtual ésta se divide en página (p) y desplazamiento (d) dentro de la página
 - A diferencia de paginación simple ahora la página puede o no estar en memoria principal.
 - Si no está en memoria principal se genera una excepción de fallo de página y el SO debe arreglar la situación

- Traducción de direcciones virtuales a físicas (continuación)
 - Hay dos casos posibles
 - 1. Que NO haya fallo de página (bit de presencia a 1)
 - 2. Que haya fallo de página (bit de presencia a 0)
 - En el caso 1 la traducción es igual que la de la paginación simple
 - El caso 2 es más complicado (se verá con detalle más adelante)
 - Tiene que participar el SO, además de la MMU, para completar la traducción.

Caso 1: Traducción de direcciones SIN fallo de página

Pasos en la gestión de un fallo de página

- Responsabilidades de la rutina de gestión de la excepción de fallo de página (forma parte del S.O.)
 - Obtener un marco de página libre (varias políticas)
 - Pasar al proceso al estado "Bloqueado"
 - Durante la operación de E/S correspondiente a la lectura de la página que produjo la falta
 - Permite dejar libre el procesador para la ejecución de otro(s) proceso(s) → Multiprogramación
 - Tomar de nuevo el control cuando finalice la E/S
 - Actualizar estructuras de datos
 - Pasar al proceso al estado "Listo para ejecución"

- Estructuras modificadas en el esquema de la transparencia 15
 - En (5) el SO modifica:
 - La tabla de páginas del proceso que produjo el fallo de página
 - Se indica en la entrada de la tabla de páginas asociada a la página solicitada que dicha página está cargada en el marco elegido, y además:
 - Bit de presencia de la página solicitada a 1
 - Bit de modificación de la página solicitada a 0
 - Bit de referencia de la página solicitada a 0
 - La tabla de marcos del sistema para marcar que el marco donde se cargo la página está ahora ocupado

Políticas de gestión de la memoria virtual Índice

- 4.3.1. Introducción
- 4.3.2. Políticas de lectura
- 4.3.3. Políticas de ubicación
- 4.3.4. Gestión del conjunto residente
 - 4.3.4.1 Políticas de asignación
 - 4.3.4.2 Políticas de reemplazo

Políticas de gestión de la memoria virtual Introducción

- Aparte de la técnica de memoria virtual a utilizar (paginación, segmentación, segmentación paginada), necesitamos software de gestión de memoria virtual
 - Forma parte del sistema operativo
- Existe una serie de algoritmos empleados para diferentes aspectos de la gestión de memoria virtual
 - La elección de unos u otros va encaminada a maximizar el rendimiento
 - Los estudios de los algoritmos se aplican, de manera general (en toda la literatura), a la memoria virtual con paginación

Políticas de gestión de la memoria virtual Políticas de lectura

- Determinan cuándo se tiene que cargar una página en memoria
 - Paginación por demanda
 - Sólo se carga una página cuando se referencia
 - El principio de localidad reduce los fallos de página
 - Paginación por demanda pura
 - Los procesos inician su ejecución sin páginas en memoria
 - Paginación previa
 - Cuando se produce un fallo de página se carga la página que lo produce y alguna más
 - Mayor eficiencia de carga a costa de más espacio.
 - Difícil precisar qué paginas adicionales cargar
 - Su utilidad no ha sido demostrada

Políticas de gestión de la memoria virtual Políticas de ubicación

- Ya las conocemos de los otros modelos de memoria vistos anteriormente
- Determinan dónde va a residir en memoria principal la parte del proceso que esté cargada
 - Para paginación
 - La ubicación carece de importancia

- Conjunto residente de un proceso
 - Conjunto (identidad) de páginas del mismo cargadas en memoria principal
- El SO tiene que decidir no solo qué paginas mantener en MP sino también cuántas → Tamaño del conjunto residente de cada proceso

- Políticas de asignación
 - Determinan el número de marcos de página asignados a cada proceso → Máximo número de paginas del proceso en MP
 - Por el principio de localidad, en cada instante existe un número de marcos asignados ideal
 - Si la asignación real es menor que la ideal, se incrementa la tasa de fallos de página
 - Peligro de hiperpaginación
 - Si la asignación real es muy superior a la ideal se reduce esta tasa pero también se reduce el grado de multiprogramación

- Políticas de asignación (continuación)
 - Número mínimo de marcos asignados
 - Número máximo de referencias a páginas de una instrucción máquina + 1
 - Definido por la arquitectura hardware
 - Si no se asignara este mínimo habría instrucciones máquina reiniciándose continuamente

- Políticas de asignación (continuación)
 - Tipos de políticas de asignación
 - Asignación fija
 - El nº de marcos asignados a cada proceso se decide cuando se crea y no varía en toda su ejecución
 - Poco eficiente
 - Asignación variable
 - El nº de marcos asignados varía dinámicamente
 - Dicho nº debería poder deducirse dinámicamente en base al comportamiento del proceso
 - Más eficiente porque es una asignación adaptativa ⊕ → Si el proceso tiene asignados demasiados marcos se le quitan y al contrarrio.

- Políticas de reemplazo
 - Determinan qué página (víctima) es elegida para ser reemplazada por otra que se va a cargar
 - Esta política solo interviene si hay fallo de página
 - La página víctima elegida puede ser O NO del mismo proceso que provocó el fallo de página
 - Ante la ocurrencia de un fallo de página, se elige página víctima cuando
 - No hay marcos de página libres
 - Hay marcos de página libres, pero el proceso que produjo la falta no tiene ninguno libre → Alcanzó el máximo determinado por la política de asignación vista anteriormente

- Políticas de reemplazo
 - Alcance del reemplazo
 - Local
 - La página víctima se elige SIEMPRE de entre las que forman parte del conjunto residente del proceso que produjo el fallo de página
 - Global
 - La página víctima elegida puede ser O NO del mismo proceso que provocó el fallo de página

 Esquema de funcionamiento global de la paginación virtual (Solo se refleja la traducción)

- Estructuras modificadas en el esquema anterior:
 - En (1) se modifican
 - Tabla de páginas del proceso al que pertenece la página víctima
 - Bit de presencia de la página víctima a 0
 - En (2) se modifican
 - Tabla de páginas del proceso que produjo la falta de página
 - Se indica en la entrada de la tabla de páginas asociada a la página solicitada que dicha página está cargada en el marco elegido, y además:
 - Bit de presencia de la página solicitada a 1
 - Bit de modificación de la página solicitada a 0
 - Bit de referencia de la página solicitada a 0
 - La tabla de marcos del sistema para marcar que el marco donde estaba la página víctima tiene ahora otra página

- Estructuras modificadas en el esquema anterior (continuación):
 - El bit de refencia de una página es puesta a 1 por la propia MMU cada vez que se tiene éxito en la correspondencia y se accede a la MP (no se produce una falta de página) y se pone a 0 por el S.O. cada cierto tiempo y siempre que se carga la página a MP.

- Políticas de reemplazo
 - Se basan en el principio de localidad de referencias.
 - Algoritmo FIFO (Asignación fija y alcance local)
 - Página víctima: la que lleva más tiempo en memoria
 - Trata los marcos de página asignados al proceso como un buffer circular
 - Ventajas
 - Fácil de entender e implementar
 - Inconvenientes
 - Rendimiento pobre

- Políticas de reemplazo (continuación)
 - Algoritmo óptimo (Asignación fija y alcance local)
 - Página víctima: la que se va a tardar más tiempo en utilizar
 - Requiere conocer acontecimientos futuros
 - Ventajas
 - Genera el menor número de fallos de página → Solución óptima
 - Inconvenientes
 - No es posible implementarlo
 - Por ello, se utiliza habitualmente como herramienta de comparación

- Políticas de reemplazo (continuación)
 - Algoritmo de la página menos recientemente usada (LRU) (Asignación fija y alcance local)
 - Página víctima: la que lleva más tiempo sin referenciar
 - Aproximación del algoritmo óptimo
 - Ventajas
 - Se aproxima al óptimo
 - Inconvenientes
 - Implementación costosa (sobrecarga)
 - Porque es necesario recordar la edad de cada página
 - Necesita soporte hardware (bit de referencia)

- Políticas de reemplazo (continuación)
 - Estrategia del conjunto de trabajo (Asignación variable y alcance local)
 - El conjunto de trabajo con parámetro ∆ (tamaño de ventana) de un proceso en el instante de tiempo virtual t es el conjunto de páginas referenciadas por el proceso en las últimas ∆ unidades de tiempo virtual
 - Aproximaciones del tiempo virtual
 - 1 unidad de tiempo virtual = 1 ciclo de instrucción
 - 1 unidad de tiempo virtual = 1 referencia
 - El conjunto de trabajo es una aproximación de la localidad del proceso
 - A medida que se ejecuta un proceso
 - Varía el tamaño de su conjunto de trabajo
 - Varía el conjunto de páginas que lo forman

Lecturas recomendadas

- Stallings, "Sistemas Operativos", 5^a edición
 - Capítulo 8, "Memoria virtual"
- Silberschatz, "Fundamentos de Sistemas Operativos",
 7^a edición
 - Capítulo 9, "Memoria virtual"