# R Lab. - Exercise 6

Michele Guadagnini - Mt. 1230663 May 27, 2020

### Exercise 1 - Radioactive source

The number of particles emitted by a radioactive source during a fixed interval of time ( $\Delta t = 10$  s) follows a Poisson distribution on the parameter  $\mu$ . The number of particles observed during consecutive time intervals is: 4, 1, 3, 1 and 3.

### A) suppose a uniform prior distribution for the parameter $\mu$ :

- determine and draw the posterior distribution for  $\mu$ , given the data
- evaluate mean, median and variance, both analytically and numerically in R

```
dt <- 10 #seconds
outcomes <- c(4, 1, 3, 1, 3)
## A ##
mu \leftarrow seq(0, 10, len=1000)
prior <- 1
likelihood <- function(lam) { # likelihood as product of 5 independent measures
    k <- dpois(outcomes[1], lam)</pre>
    for (i in 2:length(outcomes)) {
        k <- k*dpois(outcomes[i], lam)</pre>
    }
    return (k)
post.unif <- prior*likelihood(mu)</pre>
post.unif <- post.unif/sum(post.unif)</pre>
# numeric results
mean.num <- sum(mu*post.unif)</pre>
median.num <- mu[min( which(cumsum(post.unif) >= 0.5) )]
var.num <- sum(mu*mu*post.unif) - mean.num**2</pre>
# analytic results
# posterior can be calculated also as: dqamma(mu, shape=13, rate=5)
shape <- sum(outcomes)+1</pre>
rate <- length(outcomes)
mean.th <- shape/rate
var.th <- shape/(rate*rate)</pre>
# plotting the posterior distribution
plot(mu, post.unif/0.01, type='l', col='red', ylab="density",
     main="Posterior distribution with Uniform Prior")
```

### **Posterior distribution with Uniform Prior**



The numerical results obtained in R are:

• mean: 2.6

• variance: 0.52

• median: 2.533

The analytical results obtained considering the posterior as a gamma distribution with proper parameters shape and rate are:

• mean: 2.6

• variance: 0.52

### B) suppose a Jeffrey's prior for the parameter $\mu$ :

- determine and draw the posterior distribution for  $\mu$ , given the data
- evaluate mean, median and variance, both analytically and numerically in R

```
## B ##
mu <- seq(0.001, 10, len=1000)
prior <- function(x) { 1/sqrt(x) }
likelihood <- function(lam) { # likelihood as product of 5 independent measures
    k <- dpois(outcomes[1], lam)
    for (i in 2:length(outcomes)) {
        k <- k*dpois(outcomes[i], lam)
    }
    return (k)
}</pre>
```

# Posterior distribution with Jeffrey's Prior



The numerical results obtained in R are:

mean: 2.5variance: 0.5median: 2.433

The analytical results obtained considering the posterior as a gamma distribution with proper parameters shape and rate are:

mean: 2.5variance: 0.5

C) evaluate a 95% credibility interval for the results obtained with both priors. Compare the result with that obtained using a normal approximation for the posterior distribution, with the same mean and standard deviation

```
## C ##
low.unif <- mu[max(which(cumsum(post.unif)<=0.025))]
upp.unif <- mu[min(which(cumsum(post.unif)>=0.975))]
low.jeff <- mu[max(which(cumsum(post.jeff)<=0.025))]
upp.jeff <- mu[min(which(cumsum(post.jeff)>=0.975))]
normapprox <- pnorm(mu, mean.th, sqrt(var.th))
low.norm <- mu[max(which(normapprox<=0.025))]
upp.norm <- mu[min(which(normapprox>=0.975))]
```

The obtained 95% credibility intervals are:

- with uniform prior: [1.372, 4.195]
- with Jeffrey's prior: [1.302, 4.065]
- for the normal approximation: [1.112, 3.895]

## Exercise 2 - Lighthouse problem

Given the problem of the lighthouse discussed last week, study the case in which both the position along the shore  $(\alpha)$  and the distance out at sea  $(\beta)$  are unknown.

```
# Generation of the data (flashes)
rx <- function(n, a, b) {
    set.seed(13)
    x \leftarrow a + b*tan(runif(n,-pi/2,pi/2))
    return(x)
}
nsamples <- 100
alpha.true <- 1 #km
beta.true <- 1 #km
xflashes <- rx(nsamples, alpha.true, beta.true)
# log of the posterior distribution
log.post <- function(flashes,a,b){</pre>
 logL <- 0.0
 for(x in flashes){
      logL \leftarrow logL + log(b/(pi*((x-a)**2 + b**2)))
 }
 return(logL)
}
amin <-4; amax <-4; bmax <-3
np <- 200
alphas <- seq(amin,amax, len=np)</pre>
betas <- seq( 0,bmax, len=np)
ndata \leftarrow c(1,5,10,20,40,100)
par(mfrow=c(3,2))
for (i in ndata) {
    ff <- xflashes[1:i]</pre>
    func <- function(a,b) { log.post(ff, a, b) }</pre>
    log values <- outer(alphas, betas, Vectorize(func))</pre>
    values <- exp(log_values)/( ((amax-amin)/np)*(bmax/np)*sum(exp(log_values)) )</pre>
    grid_values <- matrix(values, nrow=length(alphas), ncol=length(betas))</pre>
    contour(alphas, betas, grid_values, xlab="Alpha [km]", ylab="Beta [km]",
            main=paste("Lighthouse position probability with",i,"samples"),
            col='darkorange', nlevels=5 )
    points(alpha.true, beta.true, pch=4, col="blue")
    max_ids <- c( which(grid_values==max(grid_values), arr.ind=TRUE) )</pre>
    points(alphas[max_ids[1]], betas[max_ids[2]], pch=4, col="red")
    legend("topleft", c("true position", "estimated pos."), col=c("blue", "red"), pch=4)
    abline(v=alpha.true, h=beta.true, col="blue", lty=2)
    abline(v=alphas[max_ids[1]], h=betas[max_ids[2]], col="red", lty=2)
    grid()
}
```



### Exercise 3 - Signal over Background

Given the Signal over Background discussed last week, analyze and discuss the following cases:

A) vary the sampling resolution used to generate the data, keeping the same sampling range

```
# signal function
signal <- function (x, a, b, x0, w, t) {
     t * (a*exp (-(x-x0)**2/(2*w**2)) + b)
}
# Log posterior
log.post <- function (d, x, a, b, x0, w, t) {</pre>
            if(a<0 || b <0) { return (-Inf )} # the effect of the prior
            sum( dpois(d, lambda = signal (x, a, b, x0, w, t), log=TRUE ))
}
# Parameters
x0 <- 0
dt <- 5 # exposure time in seconds
a.true <- 2
b.true <- 1
width <- 1
## A ##
ws \leftarrow c(0.1, 0.25, 1, 2, 3)
par(mfrow=c(1,2))
for (w in ws) {
    set.seed(241)
    xdat <- seq(from=-7*width, to=7*width, by=w*width)</pre>
    s.true <- signal(xdat, a.true, b.true, x0, width, dt)
    s.counts <- rpois(length(s.true), s.true)</pre>
    xps <- seq(min(xdat), max(xdat), len=1000)</pre>
    sps <- signal(xps, a.true, b.true, x0, width, dt)</pre>
    ymax <- max( c(max(sps), max(s.counts)) )</pre>
    plot(xps, sps, type='1', col='blue', ylim=c(0,ymax), xlab="x", ylab="counts",
         main=paste("Signal+Background with w =",w), xlim=c(-7,7), lwd=2)
    lines(xdat-w/2, s.counts, type='s', col='red')
    a \leftarrow seq(0,4,len=100)
    b < - seq(0,2,len=100)
    delta_a <- 4/100
    delta_b <- 2/100
    # Computing log unnormalized posterior on a regular grid
    z <- matrix(data=NA , nrow= length(a), ncol= length(b))</pre>
    for (j in 1: length(a)) {
        for (k in 1: length(b)) {
            z[j,k] <- log.post(s.counts, xdat, a[j], b[k], x0, width, dt)</pre>
    # Normalizing posterior
    z.norm <- exp(z)/(delta_a*delta_b*sum(exp(z)))</pre>
```

### Signal+Background with w = 0.1

# Signal+Background with w = 0.1



2D posterior with w = 0.1



Signal+Background with w = 0.25



2D posterior with w = 0.25





B) change the ratio A/B used to simulate the data (keeping both positive in accordance with the prior)

```
## B ##
# Parameters
x0 < -0
dt <- 5
            #exposure time in seconds
w <- 0.5
            #sampling resolution
width <-1
as.true <-c(1,2,10,20)
bs.true <- c(1,1,1,1)
par(mfrow=c(2,2))
for (i in 1:4) {
    set.seed(2381)
    xdat <- seq(from=-7*width, to=7*width, by=w*width)</pre>
    s.true <- signal(xdat, as.true[i], bs.true[i], x0, width, dt)</pre>
    s.counts <- rpois(length(s.true), s.true)</pre>
    xps <- seq(min(xdat), max(xdat), len=1000)</pre>
    sps <- signal(xps, as.true[i], bs.true[i], x0, width, dt)</pre>
    ymax <- max( c(max(sps), max(s.counts)) )</pre>
    plot(xps, sps, type='1', col='blue', ylim=c(0,ymax), xlab="x", ylab="counts",
         main=paste("Signal+Background with A/B =",as.true[i]/bs.true[i]),
         xlim=c(-7,7), lwd=2)
    lines(xdat-w/2, s.counts, type='s', col='red')
    max.a <- as.true[i]+as.true[i]/2; max.b <- bs.true[i]+bs.true[i]/2</pre>
    a \leftarrow seq(0, max.a, len=100)
    b < - seq(0, max.b, len=100)
    delta a \leftarrow max.a/100
    delta_b \leftarrow max.b/100
    # Computing log unnormalized posterior on a regular grid
    z <- matrix(data=NA , nrow= length(a), ncol= length(b))
    for (j in 1: length(a)) {
        for (k in 1: length(b)) {
            z[j,k] <- log.post(s.counts, xdat, a[j], b[k], x0, width, dt)
        }
    }
    # Normalizing posterior
    z.norm <- exp(z)/(delta_a*delta_b*sum(exp(z)))</pre>
    # Plot normalized 2D posterior as contours
    contour(a, b, z.norm, nlevels = 4, labcex = 0.5,, xlab="amplitude, A",
             ylab="background, B", col="darkorange",
             main=paste("2D posterior with A =",as.true[i],", B =",bs.true[i]))
    abline(v=as.true[i], h=bs.true[i], col="darkgreen", lty=2)
    max ids <- c( which(z.norm==max(z.norm), arr.ind=TRUE) )</pre>
    abline(v=a[max_ids[1]], h=b[max_ids[2]], col="red", lty=2)
    legend("topleft", c("true position", "estimated pos."),
           col=c("darkgreen","red"), lty=2)
```



