- **24.** En \mathbb{P}_3 exprese el polinomio $4x^2 x + 5$ en términos de la base polinomial 1, 1 x, $(1 x)^2$, $(1 x)^3$.
- **25.** En \mathbb{R}^3 suponga que $(\mathbf{x})_{B_1} = \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix}$, donde $B_1 = \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}, \begin{pmatrix} -5 \\ -2 \\ -3 \end{pmatrix} \right\}$. Escriba \mathbf{x} en términos de la base $B_2 = \left\{ \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} \right\}$.
- **26.** En \mathbb{R}^3 , $(\mathbf{x})_{B_1} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ donde $B_2 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$. Escriba \mathbf{x} en términos de la base $B_2 = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 2 \end{pmatrix} \right\}$.
- **27.** En \mathbb{R}^3 suponga que $(\mathbf{x})_{B_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, donde $B_1 = \left\{ \begin{pmatrix} 1 \\ 4 \\ -5 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix} \right\}$. Escriba \mathbf{x} en términos de la base $B_2 = \left\{ \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \right\}$.
- **28.** En \mathbb{R}^3 suponga que $(\mathbf{x})_{B_1} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}$, donde $B_1 = \left\{ \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}, \begin{pmatrix} -3 \\ 2 \\ -5 \end{pmatrix} \right\}$. Escriba \mathbf{x} en términos de la base $B_2 = \left\{ \begin{pmatrix} -4 \\ -2 \\ -4 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \\ -5 \end{pmatrix} \right\}$.
- **29.** En \mathbb{P}_2 , $(\mathbf{x})_{B_1} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ donde $B_1 = \{1 x, 3x, x^2 x 1\}$. Escriba \mathbf{x} en términos de la base $B_2 = \{x, 1 + x, 1 + x^2\}$.

De los problemas 30 al 39 utilice el teorema 5.6.2 para determinar si el conjunto de vectores dado es linealmente dependiente o independiente.

30. En
$$\mathbb{P}_2$$
: $2 + 3x + 5x^2$, $1 - 2x + x^2$, $-1 + 6x^2$

31. En
$$\mathbb{P}_2$$
: $5 - x + 3x^2$, $1 + 4x + x^2$, $2 - 4x - x^2$

32. En
$$\mathbb{P}_2$$
: $2 + x$, $x^2 + x + 1$

33. En
$$\mathbb{P}_2$$
: $x + 4x^2$, $-2 + 2x$, $2 + x + 12x^2$

34. En
$$\mathbb{P}_2$$
: $2-4x-x^2$, $-4+4x^2$, $-5+3x+x^2$

35. En
$$\mathbb{P}_2$$
: $x^2 + 1$, $x + 1$, $x + 2$, $x^2 + 4$

36. En
$$\mathbb{P}_3$$
: $1 + x^2$, $-1 - 3x + 4x^2 + 5x^3$, $2 + 5x - 6x^3$, $4 + 6x + 3x^2 + 7x^3$

37. En
$$\mathbb{P}_2$$
: $-2 + x^2 + x^3$, $-x + x^2 - x^3$, $x - x^2$, $-2 - 2x + x^3$