# Lecture 29 TREES

November 18, 2021 Thursday

#### LIMITATION OF LINEAR STRUCTURE

 Linked lists usually provide greater flexibility than arrays, but they are linear structures and so it is difficult to use them to organize a hierarchical representation of objects.

 Stacks and Queues provide some hierarchy but are still flexible to one dimension.

#### TREE

- 1. An empty structure is an empty Tree.
- 2. If  $t_1, \ldots, t_k$  are disjointed trees, then the structure whose root has as its children the roots of  $t_1, \ldots, t_k$  is also a tree.
- 3. Only structures generated by rules 1 and 2 are trees.



- Unlike natural Trees, these trees are depicted upside down.
- Elements of Tree are called Nodes.
- The top most node is called the "root".
  - Root has no parents.
  - Can have only Childrens.
- Leaves on the other hand
  - Only have parents.
  - Have no children (their children are empty structure).

- Connection between two nodes, is known as Edge also called Arc.
- Parent Node: the converse notion of a child.
- Siblings: Nodes with the same parent.
- Path: Each node has to be reachable from the root through a unique sequence of edges.
- The number of edges in a path is called the length of the path.

- The level of a node is the length of the path from the root to the node plus 1, which is the number of nodes in the path.
- The height of a non- empty tree is the maximum level of a node in the tree.
  - An empty tree has height of 0.
  - A single node has height of 1.
    - i. This is the only case when a node is both **root** and a **leaf.**
- The level of a node must be between 1 (the level of the root) and the height of the tree

The definition of a tree does not impose any condition on the number of children of a given node. This number can vary from 0 to any integer. In hierarchical trees, this is a welcome property.

Linked list required Linear Search. Converting a list into Tree offers benefits



A binary tree is a tree whose nodes have two children (possibly empty), and each child is designated as either a left child or a right child.



- The root is at level 1.
  - Its children are at level 2.
  - Its grandchildren are at level 3 and so on.
- Generally there are 2<sup>i</sup> nodes at level i + 1. A tree satisfying this condition is referred to as Complete Tree.
- All nonterminal nodes have both their children, and all leaves are at the same level.



#### THE BST PROPERTY

#### A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node

Storing multiple copies of the same value in the same tree is avoided.

#### BINARY SEARCH TREE MOTIVATION

| OPERATION | SORTED ARRAY | UNSORTED<br>LINKED LIST |
|-----------|--------------|-------------------------|
| SEARCH    | O(log(n))    | O(n)                    |
| DELETE    | O(n)         | O(n)                    |
| INSERT    | O(n)         | O(1)                    |

(Balanced) Binary Search Trees can give us the best of both worlds!

#### BINARY SEARCH TREE MOTIVATION

| OPERATION | SORTED ARRAY | UNSORTED<br>LINKED LIST | BST<br>(WORST CASE) | BST<br>(BALANCED) |
|-----------|--------------|-------------------------|---------------------|-------------------|
| SEARCH    | O(log(n))    | O(n)                    | O(n)                | O(log(n))         |
| DELETE    | O(n)         | O(n)                    | O(n)                | O(log(n))         |
| INSERT    | O(n)         | O(1)                    | O(n)                | O(log(n))         |

(Balanced) Binary Search Trees can give us the best of both worlds!















#### BST WITH ARRAYS

- A node is declared as a structure with an information field and two "pointer" fields.
- These pointer fields contain the indexes of the array cells in which the left and right children are stored, if there are any.

| Index | Info | Left | Right |
|-------|------|------|-------|
| 0     | 13   | 4    | 2     |
| 1     | 31   | 6    | -1    |
| 2     | 25   | 7    | 1     |
| 3     | 12   | -1   | -1    |
| 4     | 10   | 5    | 3     |
| 5     | 2    | -1   | -1    |
| 6     | 29   | -1   | -1    |
| 7     | 20   | -1   | -1    |



#### NODE CLASS

```
template<class T> class BSTNode {
public:
    BSTNode() { left = right = 0; }
    BSTNode (const T& e, BSTNode<T> *I = 0, BSTNode<T> *r = 0) {
        el = e; left = l; right = r; }
        T el;
        BSTNode<T> *left, *right;
};
```

## BST CLASS

```
BST()
                       Constructor
 ~BST()
                       Destructor
 void Clear ()
                       Clears the Tree
 isEmpty()
                        Returns true for empty tree false otherwise
 void preorder ()
                       performs preorder traversal
 void inorder ( )
                        performs inorder traversal
 void postorder ()
                        performs postorder traversal
                            search the tree for given key
T* search ( const T& el)
                        performs breadth first traersal
 void bredthFirst ()
```

## BST CLASS

- void iterativePreorder ()
- void iterativeInorder ()
- void iterativePostorder ()
- void deleteByMerging (BSTNode<T> \*&)
- void deleteByCopying (BSTNode<T> \*&)
- void insert ()

performs preorder traversal performs inorder traversal performs postorder traversal

Adds new node to the tree

#### SEARCH IN BST

- Compare the element to be located with the value stored in the node currently pointed at.
- If the element is less than the value, go to the left subtree
- If it is greater than that value, try the right subtree.
- And Try Again
- We stop either if the element is found or we reach the end of the tree.

#### THE BST PROPERTY

#### A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node



#### THE BST PROPERTY

#### A Binary Search Tree (BST) is a binary tree such that:

Every LEFT descendant of a node has key less than that node Every RIGHT descendant of a node has key larger than that node







Compare **4** with **root**: 4 is smaller → go left!



Compare **4** with **root**: 4 is smaller → go left!

Compare **4** with **3**: 4 is larger → go right!







Compare **4.5** with **root**: 4.5 is smaller  $\rightarrow$  go left!

## SEARCH in BSTs



## SEARCH in BSTs



## SEARCH in BSTs

What happens if we search for a non-existent key? search for 4.5 6

Compare **4.5** with **root**: 4.5 is smaller  $\rightarrow$  go left!

Compare **4.5** with **3**: 4.5 is larger → go right!

Compare **4.5** with **4**: 4.5 is larger → go right!

Oops, we hit **NIL**!
We can just return the last node seen before we fell off the tree (4)



```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
      return
```

Example: Insert 4.5



```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
       return
```

Example: Insert 4.5



```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
       return
```

What's the runtime?



```
INSERT(root, key):
  x = SEARCH(root, key)
  node = new node with key
  if key < x.key:</pre>
      x.left = node
  if key > x.key:
      x.right = node
  if key = x.key:
      return
```

Runtime of INSERT = runtime of SEARCH = O(height)



```
DELETE(root, key):
    x = SEARCH(root, key)
    if key = x.key:
        ...delete x...
```

This is a bit more complicated... we need to consider 3 cases



```
DELETE(root, key):
    x = SEARCH(root, key)
    if key = x.key:
        CASE 1: x is a leaf
        CASE 2: x has 1 child
        CASE 3: x has 2 children
```

CASE 1: x is a leaf

CASE 2: x has 1 child

CASE 3: x has 2 children

CASE 1: x is a leaf

Just delete x!



CASE 2: x has 1 child

CASE 3: x has 2 children

## CASE 1: x is a leaf Just delete x!



#### CASE 2: x has 1 child Move its child up!



#### CASE 3: x has 2 children

## CASE 1: x is a leaf Just delete x!



# CASE 2: x has 1 child Move its child up! This triangle is a cartoon for a subtree



**INSERT** and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)** 

**INSERT** and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)** 



Sometimes SEARCH takes O(log n)

**INSERT** and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)** 



Sometimes SEARCH takes O(log n)



**INSERT** and **DELETE** both call **SEARCH** (and then do some O(1)-time operation)

Runtime of **SEARCH** = **O(height)** 

What do we do? We want fast SEARCH/INSERT/DELETE but sometimes the height might be big (O(n))!!!

We like balanced trees... introducing

SELF-BALANCING BINARY SEARCH TREE!

o a valid EARCH (**n)** here

2



6

8

7

Sometimes SEARCH takes O(log n)

## SEARCH

```
template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const
     while (p != 0)
         if (el == p->el) return &p->el;
         else if (el < p->el) p = p->left;
         else p = p - right;
    return 0;
```

## SEARCH IN BST

- If an element occurs more than once, then two approaches are possible.
- Locates the first occurrence of an element and disregards the others.
  - a. In this case, the tree contains redundant nodes that are never used for their own sake; they are accessed only for testing.
- All occurrences of an element may have to be located. Such a search always has to finish with a leaf.

## INSERT

- To insert a new node with key el, a tree node with a dead end has to be reached, and the new node has to be attached to it.
- The key el is compared to the key of a node currently being examined during a tree scan. If el is less than that key, the left child (if any) of p is tried; otherwise, the right child (if any) is tested.
- If the child of p to be tested is empty, the scanning is discontinued and the new node becomes this child.

## **INSERT**

```
template<class T> void BST<T>::insert(const T& el) {
BSTNode<T>*p = root, *prev = 0;
    while (p != 0) { // find a place for inserting new node;
         prev = p;
         if (el < p->el) p = p->left;
         else p = p->right;
    if (root == 0) // tree is empty;
         root = new BSTNode<T>(el);
    else if (el < prev->el) prev->left = new BSTNode<T>(el);
    else prev->right = new BSTNode<T>(el); }
```