39 Strontium- 90 ($^{90}_{38}$ Sr) is radioactive and emits β -particles.

Which equation could represent this nuclear decay?

$$\textbf{A} \quad \substack{90\\38} \text{Sr} \rightarrow \substack{90\\39} \text{Sr} + \substack{0\\-1} \beta$$

B
$${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{39}\text{Y} + {}^{0}_{-1}\beta$$

C
$${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{37}\text{Rb} + {}^{0}_{1}\,\beta$$

D
$${}^{90}_{38}$$
Sr $\rightarrow {}^{90}_{37}$ Sr + ${}^{0}_{1}$ β

40 Protons and neutrons are thought to consist of smaller particles called quarks.

The 'up' quark has a charge of $\frac{2}{3}e$: a 'down' quark has a charge of $-\frac{1}{3}e$, where e is the elementary charge (+1.6 x 10⁻¹⁹ C).

How many up quarks and down quarks must a proton contain?

	up quarks	down quarks
Α	0	3
В	1	1
С	1	2
D	2	1