Supplementary material: The state learner – a super learner for right-censored data

Anders $Munch^{1,*}$ and Thomas A. $Gerds^1$

¹Section of Biostatistics, University of Copenhagen

*Address for correspondence: a.munch@sund.ku.dk

December 29, 2024

This document contains proofs of the results stated in the main paper. Section S1 contains a proof of the consistency result from Section 5.1 of the main paper; Section S2 contains proofs of the oracle inequalities from Section 5.2 of the main paper; and Section S3 demonstrates transience of the second order remainder structure stated in Section 5.3 of the main paper.

We start by recalling some notation. We use F to denote a function that describes the conditional state occupation probabilities of the observed data, as defined in equation (5) of the main paper. We denote the integrated Brier score as $\bar{B}_{\tau}(F,O) = \int_0^{\tau} B_t(F,O) dt$, where B_t is defined

$$B_t(F,O) = \sum_{j=-1}^{2} (F(t,j,X) - \mathbb{1}\{\eta(t) = j\})^2.$$

Finally, recall that we let $\mathcal{H}_{\mathcal{P}}$ denote the function space consisting of all conditional state occupation probability functions for some measure $P \in \mathcal{P}$, and that we equipped this space

with the norm

$$||F||_{P_0} = \left\{ \sum_{j=-1}^2 \int_{\mathcal{X}} \int_0^{\tau} F(t,j,x)^2 dt H_0(dx) \right\}^{1/2}, \tag{1}$$

for some fixed measure $P_0 \in \mathcal{P}$. We use F_0 to denote the conditional state occupation probability function associated with the measure P_0 .

S1 Consistency

Define $\bar{B}_{\tau,0}(F,o) = \bar{B}_{\tau}(F,o) - \bar{B}_{\tau}(F_0,o)$ and $R_0(F) = P_0[\bar{B}_{\tau,0}(F,\cdot)].$

Lemma 1. $R_0(F) = ||F - F_0||_{P_0}^2$, where $||\cdot||_{P_0}$ is defined in equation (1).

Proof. For any $t \in [0, \tau]$ and $j \in \{-1, 0, 1, 2\}$ we have

$$\begin{split} &\mathbb{E}_{P_0} \left[(F(t,j,X) - \mathbb{1} \{ \eta(t) = j \})^2 \right] \\ &= \mathbb{E}_{P_0} \left[(F(t,j,X) - F_0(t,j,X) + F_0(t,j,X) - \mathbb{1} \{ \eta(t) = j \})^2 \right] \\ &= \mathbb{E}_{P_0} \left[(F(t,j,X) - F_0(t,j,X))^2 \right] + \mathbb{E}_{P_0} \left[(F_0(t,j,X) - \mathbb{1} \{ \eta(t) = j \})^2 \right] \\ &+ 2 \mathbb{E}_{P_0} \left[(F(t,j,X) - F_0(t,j,X)) (F_0(t,j,X) - \mathbb{1} \{ \eta(t) = j \}) \right] \\ &= \mathbb{E}_{P_0} \left[(F(t,j,X) - F_0(t,j,X))^2 \right] + \mathbb{E}_{P_0} \left[(F_0(t,j,X) - \mathbb{1} \{ \eta(t) = j \})^2 \right], \end{split}$$

where the last equality follows from the tower property. Hence, using Fubini, we have

$$P[\bar{B}_{\tau}(F,\cdot)] = ||F - F_0||_{P_0}^2 + P_0[\bar{B}_{\tau}(F_0,\cdot)].$$

Proof of Proposition 1 of the main paper. The result follows from Lemma 1. \Box

S2 Oracle inequalities

Recall that we use \mathcal{F}_n to denote a library of learners for the function F, and that $\hat{\varphi}$ and $\tilde{\varphi}$ denotes, respectively, the discrete super learner and the oracle learner for the library \mathcal{F}_n ,

c.f., Section 4 of the main paper.

Proof of Corollary 1 of the main paper. First note that minimising the loss \bar{B}_{τ} is equivalent to minimising the loss $\bar{B}_{\tau,0}$, so the discrete super learner and oracle according to \bar{B}_{τ} and $\bar{B}_{\tau,0}$ are identical. By Lemma 1, $R_0(F) \geq 0$ for any $F \in \mathcal{H}_{\mathcal{P}}$, and so using Theorem 2.3 from [van der Vaart et al., 2006] with p = 1, we have that for all $\delta > 0$,

$$\mathbb{E}_{P_0} \left[R_0(\hat{\varphi}_n(\mathcal{D}_n^{-k})) \right]$$

$$\leq (1 + 2\delta) \, \mathbb{E}_{P_0} \left[R_0(\tilde{\varphi}_n(\mathcal{D}_n^{-k})) \right]$$

$$+ (1 + \delta) \frac{16K}{n} \log(1 + |\mathcal{F}_n|) \sup_{F \in \mathcal{H}_{\mathcal{D}}} \left\{ M(F) + \frac{v(F)}{R_0(F)} \left(\frac{1}{\delta} + 1 \right) \right\}$$

where for each $F \in \mathcal{H}_{\mathcal{P}}$, (M(F), v(F)) is some Bernstein pair for the function $o \mapsto \bar{B}_{\tau,0}(F, o)$. As $\bar{B}_{\tau,0}(F, \cdot)$ is uniformly bounded by τ for any $F \in \mathcal{H}_{\mathcal{P}}$, it follows from section 8.1 in [van der Vaart et al., 2006] that $(\tau, 1.5P_0[\bar{B}_{\tau,0}(F, \cdot)^2])$ is a Bernstein pair for $\bar{B}_{\tau,0}(F, \cdot)$. Now, for any $a, b, c \in \mathbb{R}$ we have

$$(a-c)^{2} - (b-c)^{2} = (a-b+b-c)^{2} - (b-c)^{2}$$

$$= (a-b)^{2} + (b-c)^{2} + 2(b-c)(a-b) - (b-c)^{2}$$

$$= (a-b)\{(a-b) + 2(b-c)\}$$

$$= (a-b)\{a+b-2c\},$$

so using this with a = F(t, j, x), $b = F_0(t, j, x)$, and $c = \mathbb{1}\{\eta(t) = j\}$, we have by Jensen's

inequality

$$\begin{split} P_0[\bar{B}_{\tau,0}(F,\cdot)^2] \\ &\leq 2\tau \, \mathbb{E}_{P_0} \left[\sum_{j=-1}^2 \int_0^\tau \left\{ (F(t,j,X) - \mathbbm{1} \{ \eta(t) = j \})^2 - (F_0(t,j,X) - \mathbbm{1} \{ \eta(t) = j \})^2 \right\}^2 \mathrm{d}t \right] \\ &= 2\tau \, \mathbb{E}_{P_0} \left[\sum_{j=-1}^2 \int_0^\tau \left(F(t,j,X) - F_0(t,j,X) \right)^2 \right. \\ &\qquad \qquad \times \left\{ F(t,j,X) + F_0(t,j,X) - 2 \mathbbm{1} \{ \eta(t) = j \} \right\}^2 \mathrm{d}t \right] \\ &\leq 8\tau \, \mathbb{E}_{P_0} \left[\sum_{j=-1}^2 \int_0^\tau \left(F(t,j,X) - F_0(t,j,X) \right)^2 \mathrm{d}t \right]. \\ &= 8\tau \|F - F_0\|_{P_0}^2. \end{split}$$

Thus when $v(F) = 1.5P_0[\bar{B}_{\tau,0}(F,\cdot)^2]$ we have by Lemma 1

$$\frac{v(F)}{R_0(F)} = 1.5 \frac{P_0[\bar{B}_{\tau,0}(F,\cdot)^2]}{P_0[\bar{B}_{\tau,0}(F,\cdot)]} \le 12\tau,$$

and so using the Bernstein pairs $(\tau, 1.5P_0[\bar{B}_{\tau,0}(F,\cdot)^2])$ we have

$$\sup_{F \in \mathcal{H}_{\mathcal{P}}} \left\{ M(F) + \frac{v(F)}{R_0(F)} \left(\frac{1}{\delta} + 1 \right) \right\} \le \tau \left(13 + \frac{12}{\delta} \right),$$

For all $\delta > 0$ we thus have

$$\begin{split} \mathbb{E}_{P_0}\left[R_0(\hat{\varphi}_n(\mathcal{D}_n^{-k}))\right] \leq & (1+2\delta)\,\mathbb{E}_{P_0}\left[R_0(\tilde{\varphi}_n(\mathcal{D}_n^{-k}))\right] \\ & + (1+\delta)\log(1+|\mathcal{F}_n|)\tau\frac{16K}{n}\left(13+\frac{12}{\delta}\right), \end{split}$$

and then the final result follows from Lemma 1.

Proof of Corollary 2 of the main paper. By definition of the oracle and Lemma 1,

$$\mathbb{E}_{P_0} \left[\| \tilde{\varphi}_n(\mathcal{D}_n^{-k}) - F_0 \|_{P_0}^2 \right] \le \mathbb{E}_{P_0} \left[\| \varphi_n(\mathcal{D}_n^{-k}) - F_0 \|_{P_0}^2 \right]$$

for all $n \in \mathbb{N}$. The results then follows from Corollary 1 of the main paper.

S3 Transience of the second order remainder structure

Recall that we let Λ_1 denote the conditional cumulative hazard function for one of the event times of interest and Γ the conditional cumulative hazard function for censoring, c.f., Section 2 of the main paper.

Proof of Proposition 2 of the main paper. For notational convenience we suppress X in the following. The final result can be obtained by adding the argument X to all functions and averaging. We use the relations from equation (8) in the main paper to write

$$\begin{split} &\int_{0}^{\tau} w(s) \left\{ \Gamma(s) - \hat{\Gamma}_{n}(s) \right\} [\Lambda_{1} - \hat{\Lambda}_{1,n}] (\mathrm{d}s) \\ &= \int_{0}^{\tau} w(s) \left\{ \int_{0}^{s} \frac{F(\mathrm{d}u, -1)}{F(u - 0)} - \int_{0}^{s} \frac{\hat{F}_{n}(\mathrm{d}u, -1)}{\hat{F}_{n}(u - 0)} - \right\} \left[\frac{F(\mathrm{d}s, 1)}{F(s - 0)} - \frac{\hat{F}_{n}(\mathrm{d}s, 1)}{\hat{F}_{n}(s - 0)} \right] \\ &= \int_{0}^{\tau} w(s) \left\{ \int_{0}^{s} \left(\frac{1}{F(u - 0)} - \frac{1}{\hat{F}_{n}(u - 0)} \right) F(\mathrm{d}u, -1) \right. \\ &\quad \left. + \int_{0}^{s} \frac{1}{\hat{F}_{n}(u - 0)} \left[F(\mathrm{d}u, -1) - \hat{F}_{n}(\mathrm{d}u, -1) \right] \right\} \\ &\quad \times \left[\left(\frac{1}{F(s - 0)} - \frac{1}{\hat{F}_{n}(s - 0)} \right) F(\mathrm{d}s, 1) + \frac{1}{\hat{F}_{n}(s - 0)} \left(F(\mathrm{d}s, 1) - \hat{F}_{n}(\mathrm{d}s, 1) \right) \right] \\ &= \int_{0}^{\tau} \int_{0}^{s} w(s) \left(\frac{1}{F(u - 0)} - \frac{1}{\hat{F}_{n}(u - 0)} \right) \left(\frac{1}{F(s - 0)} - \frac{1}{\hat{F}_{n}(s - 0)} \right) F(\mathrm{d}u, -1) F(\mathrm{d}s, 1) \\ &\quad + \int_{0}^{\tau} \int_{0}^{s} w(s) \left(\frac{1}{F(u - 0)} - \frac{1}{\hat{F}_{n}(u - 0)} \right) \frac{F(\mathrm{d}u, -1)}{\hat{F}_{n}(u - 0)} \left(F(\mathrm{d}s, 1) - \hat{F}_{n}(\mathrm{d}s, 1) \right) \\ &\quad + \int_{0}^{\tau} \int_{0}^{s} \frac{w(s)}{\hat{F}_{n}(u - 0)} \left[F(\mathrm{d}u, -1) - \hat{F}_{n}(\mathrm{d}u, -1) \right] \left(\frac{1}{\hat{F}_{n}(s - 0)} \left(F(\mathrm{d}s, 1) - \hat{F}_{n}(\mathrm{d}s, 1) \right) . \end{split}$$

Consider the first term on the right hand side. By the mean value theorem,

$$\frac{1}{F(t-,0)} - \frac{1}{\hat{F}_n(t-,0)} = \frac{-1}{\tilde{r}_n(t)^2} \left[F(t-,0) - \hat{F}_n(t-,0) \right],$$

where $\tilde{r}_n(t)$ is some value between $\hat{F}(t-,0)$ and $\hat{F}_n(t-,0)$. Letting $w_n^*(t)=-\tilde{r}_n(t)^{-2}$, we

may write

$$\int_{0}^{\tau} \int_{0}^{s} w(s) \left(\frac{1}{F(u-,0)} - \frac{1}{\hat{F}_{n}(u-,0)} \right) \left(\frac{1}{F(s-,0)} - \frac{1}{\hat{F}_{n}(s-,0)} \right) F(du,-1) F(ds,1)
= \int_{0}^{\tau} \int_{0}^{s} w(s) w_{n}^{*}(u) \left(F(u-,0) - \hat{F}_{n}(u-,0) \right)
\times w_{n}^{*}(s) \left(F(s-,0) - \hat{F}_{n}(s-,0) \right) F(du,-1) F(ds,1)
= \int_{0}^{\tau} \int_{0}^{s} w_{n}^{a}(s,u) \left(F(u-,0) - \hat{F}_{n}(u-,0) \right) \left(F(s-,0) - \hat{F}_{n}(s-,0) \right) F(du,-1) F(ds,1),$$

where we have defined $w_n^a(s,u) = w(s)w_n^*(s)w_n^*(u)$. By the assumption that $F(\cdot,0)$ and $F_n(\cdot,0)$ are uniformly bounded away from zero on $[0,\tau]$, it follows that w_n^* is uniformly bounded, and hence $w_n^a(s,u)$ is also uniformly bounded, because w was assumed uniformly bounded. The same approach can be applied to the three remaining terms which gives the result.

References

A. W. van der Vaart, S. Dudoit, and M. J. van der Laan. Oracle inequalities for multi-fold cross validation. Statistics & Decisions, 24(3):351–371, 2006.