Dérivabilité

Nombre dérivé, théorèmes opératoires. Sens de variation d'une fonction.

⊳ 1

- 1) Déterminer la limite de $\frac{\cos(\frac{\pi x}{2})}{x-1}$ quand x tend vers 1.
- 2) Même question pour $\frac{1-x}{1-\sqrt{1-\cos\left(\frac{\pi x}{2}\right)}}$.

▶ 2 Ultra classique

On considère l'application $f:]0, +\infty[\rightarrow \mathbb{R}$ définie par

$$\forall x > 0, \ f(x) = \frac{1 - \cos x}{x^2}$$

- 1) Démontrer que f est prolongeable par continuité en une fonction g définie sur \mathbb{R}_+ . On notera g ce prolongement.
- **2)** Justifier que g est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 3) Montrer que g est de classe \mathscr{C}^1 sur $[0, +\infty[$. Quelle est la valeur de g'(0)?

▶ 3

Soit f définie sur $]-1,0[\ \cup\]0,1[$ par

$$f(x) = \frac{|x|}{x} \ln(1 - |x|).$$

- 1) Montrer que f peut se prolonger par continuité en 0. On note g son prolongement par continuité.
- 2) g est-elle dérivable en 0?
- **3)** g est-elle de classe \mathscr{C}^1 sur]-1,1[?]
- 4) Traiter la question 3 sans utiliser la question 2.

▶ 4 Dérivation d'une bijection réciproque

Soit $f: x \mapsto x \mid x \mid$.

- 1) Montrer que f est dérivable sur IR et donner une expression de sa fonction dérivée f'.
- 2) Montrer que f est bijective et étudier la dérivabilité de sa bijection réciproque f^{-1} .

► 5 Étude de fonction

On considère la fonction $f: x \mapsto x^{\frac{1}{1+\ln(x)}}$.

- 1) Déterminer l'ensemble de définition de f.
- **2) a.** Étudier la continuité de f.
 - **b.** Montrer que $f \big|_{]0,1/e[}$ admet un prolongement par continuité en 0, que l'on notera f_0 . f_0 admet-elle un prolongement par continuité en 1/e?
 - **c.** Montrer que $f\Big|_{]1/e,+\infty[}$ admet un prolongement par continuité en 1/e, que l'on notera f_1 .
- 3) Étudier la dérivabilité de f ainsi que celle de f_0 en 0 et celle de f_1 en $1/\mathrm{e}$.

4) Étudier les variations de f et tracer son tableau de variations. Tracer la courbe représentative de f.

► 6 Plus simple qu'il n'y parait

Soit I un intervalle de IR contenant au moins deux points et $f:I\to {\rm IR}$ une application. On suppose qu'il existe $\alpha>1$ tel que

$$\forall (x,y) \in I^2, \quad |f(x)-f(y)| \leq |x-y|^{\alpha}.$$

Montrer que f est constante sur I.

► 7 • Une équation fonctionnelle classique

On cherche toutes les fonctions réelles dérivables sur IR vérifiant l'équation fonctionnelle

(E)
$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x+y) = f(x) \times f(y)$.

- 1) Soit f vérifiant (E). On considère temporairement x fixé et on introduit $g: t \mapsto f(x+t)$. En dérivant g de deux manières, montrer que f vérifie une équation différentielle du premier ordre que l'on précisera.
- 2) Résoudre cette équation.
- 3) En déduire que les fonctions satisfaisant (E) sont les fonctions $x \mapsto e^{\lambda x}$ où $\lambda \in \mathbb{R}$ ainsi que la fonction nulle.

Dérivées successives

► 8 Entraînement au calcul

Justifier que les fonctions suivantes sont de classe \mathscr{C}^{∞} sur leurs domaine de définition, puis calculer leur dérivée n-ième pour tout $n \in \mathbb{N}$:

- **1)** $f: x \mapsto x e^{-x}$;
- 2) $g: x \mapsto \ln(x)$;
- 3) $h: x \mapsto x^2 \ln(x)$;
- **4)** $\varphi: x \mapsto (x^2 + 1)e^{2x}$:

▶ 9

Étudier précisément la régularité de la fonction

$$h: x \mapsto \sqrt{-x^3 + 4x^2 - 5x + 2}$$

▶ 10 Utilisation d'une fonction complexe

Soit $f: x \longmapsto e^{\sqrt{3}x} \sin(x)$.

- 1) Justifier que la fonction f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- **2)** Écrire f comme la partie imaginaire d'une fonction $\varphi \colon \mathbb{R} \to \mathbb{C}$.
- 3) En déduire l'expression de la dérivée d'ordre n de f pour tout $n \in \mathbb{N}$.

▶ 11 Dérivées de fonctions paires, impaires, périodiques

Soit f une fonction n fois dérivable sur \mathbb{R} $(n \in \mathbb{N}^*)$.

- 1) Montrer que si f est paire, alors f' est impaire et viceversa.
- **2)** Montrer que si f est paire, alors pour tout $k \in [0, n]$, $f^{(k)}$ a la parité de k.
- 3) Montrer que si f est T-périodique, alors f' l'est également. Que penser de la réciproque?

▶ 12 Dérivées *n*-ièmes d'une fonction composée

On considère la fonction $f: [0, +\infty] \to \mathbb{R}$ définie par :

$$\forall x > 0, f(x) = e^{-1/x}$$
 et $f(0) = 0$.

- 1) Montrer que f est continue en 0.
- 2) Justifier sans calcul que f est de classe \mathscr{C}^{∞} sur $]0,+\infty[$.
- 3) En procédant par récurrence sur \mathbb{R} , démontrer que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que :

$$\forall x > 0, \quad f^{(n)}(x) = \frac{P_n(x)}{x^{2n}} e^{-1/x}.$$

On ne cherchera pas à déterminer P_n mais on constatera en cours de preuve que ces polynômes vérifient, pour tout $n \in \mathbb{N}$ et tout x > 0,

$$P_{n+1}(x) = x^2 P_n'(x) + (1 - 2n x) P_n(x).$$

- **4)** Montrer que f est dérivable en 0 et préciser f'(0).
- 5) \bullet Démontrer que, pour tout $n \in \mathbb{N}$, $f^{(n)}(x) \xrightarrow[x>0]{x \to 0} 0$.
- **6)** Montrer que f est de classe \mathscr{C}^{∞} sur $[0, +\infty[$ et que, pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$.

Théorème de Rolle, théorème des accroissements finis.

▶ 13 Prouver des inégalités

1) À l'aide du théorème des accroissements finis, établir que

$$\forall x \in \mathbb{R}_+^*, \quad 1 < \frac{\mathrm{e}^x - 1}{r} < \mathrm{e}^x.$$

2) Montrer que

$$\forall x \in]1, +\infty[, 0 \le \ln(\ln(x+1)) - \ln(\ln x) \le \frac{1}{x \ln x}.$$

▶ 14 Qualité d'une valeur approchée

En appliquant le théorème des accroissements finis à la fonction $x\mapsto \sqrt{x}$ entre $10\,000$ et $10\,001$, majorer sans calculatrice l'erreur que l'on commet en considérant que $\sqrt{10\,001}\simeq 100$. Vérifier ensuite sur une machine.

▶ 15

Soit f de classe \mathscr{C}^1 sur un segment [a,b], deux fois dérivable sur]a,b[. On suppose qu'il existe $c\in]a,b[$ tel que f(a)=f(c)=f(b).

Montrer que f'' s'annule en un point $d \in \]a,b[$.

► 16 Application à l'étude asymptotique de séries

- 1) Montrer: $\forall x \in \mathbb{R}_{+}^{*}, \frac{1}{x+1} \leq \ln(x+1) \ln(x) \leq \frac{1}{x}$.
- **2)** En déduire un **encadrement** de $\frac{1}{k}$ pour tout $k \ge 2$ faisant intervenir ln aux deux extrémités de l'encadrement.
- 3) En déduire un encadrement de $S_n = \sum_{k=1}^n \frac{1}{k}$ puis la limite de (S_n) .
- **4)** Déterminer un équivalent de S_n quand $n \to +\infty$.
- 5) Pour $p \in \mathbb{N} \setminus \{0,1\}$ fixé, justifier l'existence et donner la valeur de

$$\lim_{n \to +\infty} \sum_{k=n+1}^{pn} \frac{1}{k}.$$

► 17 Formule de Taylor-Lagrange à l'ordre 1

Soit f une fonction de classe \mathscr{C}^2 sur le segment [a,b]. Le théorème des accroissements finis permet d'affirmer que :

$$\exists c \in]a, b[, f(b) = f(a) + f'(c)(b-a).$$

Nous allons étendre cette formule à l'ordre 2 en montrant que

$$\exists c \in]a, b[, f(b) = f(a) + f'(a)(b-a) + f''(c)\frac{(b-a)^2}{2}.$$

Pour ce faire, on introduit l'application Φ définie sur [a, b] par

$$\Phi(x) = f(x) - f(a) - f'(a)(x - a) - K\frac{(x - a)^2}{2}$$

où K est une constante choisie pour que $\Phi(a) = \Phi(b)$.

- a. Justifier qu'une telle constante K existe. (il n'est pas nécessaire de la calculer)
 - **b.** Montrer que Φ' s'annule en un point de]a,b[puis que Φ'' s'annule en un point de]a,b[.
 - c. En déduire le résultat annoncé ci-dessus.
- 2) On suppose de plus que f'(a) = 0. On introduit également $M = \sup_{x \in [a,b]} |f''(x)|$.
 - a. Expliquer pourquoi M est bien définie.
 - **b.** Établir que $|f(b)-f(a)| \leq \frac{M}{2}(b-a)^2$.

⊳ 18

Soit f la fonction définie sur $]-3,+\infty[$ par $f(x)=\frac{1}{3+x}$.

- 1) Étudier les variations de f et montrer que f est contractante sur $[0,+\infty[$.
- **2)** Déterminer les éventuels points fixes de f.
- 3) Soit *u* une suite récurrente vérifiant

$$u_0 > -3$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Montrer que la suite u est bien définie et qu'elle converge vers une valeur ℓ que l'on précisera. Proposer un majorant de $|u_n-\ell|$.

4) Dans le cas où $u_0=-1$, déterminer un rang $n\in\mathbb{N}$ à partir duquel u_n est une valeur approchée de ℓ à 10^{-3} près.