Section 9.1.

Exercise 9.1.13.

Solution.

Let (R,Θ) be the representation of (X,Y) in polar coordinates. Let $L:\mathbb{R}^+\times [0,2\pi)\to \mathbb{R}^2$ be the map defined by $L(r,\theta)=(r\cos(\theta),r\sin(\theta))$. For any $A\in\mathcal{B}_{\mathbb{R}^+\times [0,2\pi)}$,

$$\begin{split} \mathbb{P}\big((R,\Theta) \in A\big) &= \mathbb{P}\big(L(R,\Theta) \in L(A)\big) = \mathbb{P}\big((X,Y) \in L(A)\big) \\ &= \int_{L(A)} \frac{1}{\pi} \mathbb{1}_{\{x^2 + y^2 \le 1\}} d\lambda(x,y) = \int_A \frac{1}{\pi} \mathbb{1}_{\{r^2 \le 1\}} \left|\frac{\partial(x,y)}{\partial(r,\theta)}\right| d\lambda(r,\theta) \\ &= \int_A \frac{r}{\pi} \mathbb{1}_{\{r \le 1\}} d\lambda(r,\theta). \end{split}$$

So the density of (R, Θ) is $\frac{r}{\pi} \mathbb{1}_{\{r \leq 1\}}$. Now define $Z = \mathbb{1}_{\{Y \in A\}}$. Let $B \in \mathcal{B}_{[0,2\pi)}$, then by definition we have

$$\begin{split} \mathbb{E}\big(\mathbb{E}(Z|\Theta);\Theta \in B\big) &= \mathbb{P}(Y \in A,\Theta \in B) \\ &= \mathbb{P}(R\sin(\Theta) \in A,\Theta \in B) \\ &= \int_B \int_{[0,1)} \frac{r}{\pi} \mathbb{1}_A(r\sin(\theta)) dr d\theta \\ &= \int_B p(1,\theta) d\theta, \end{split}$$

where $p(z, \theta)$ is the density of (Z, Θ) . Then by **Exercise 9.1.10.**, the conditional expectation is computed as $g(\Theta)$, where

$$g(\theta) = \frac{p(1,\theta)}{p(1,\theta) + p(0,\theta)} = 2 \int_{[0,1)} r \mathbb{1}_A(r\sin(\theta)) dr.$$

Hence $\mathbb{P}(Y \in A|\Theta) = 2\int_0^1 r \mathbb{1}_A(r\sin(\Theta)) dr$.

Section 9.2.

Exercise 9.2.2.

If it's almost sure convergence in the statement, then it's not true in general.

Clarify. (Not converge almost surely) An example is sufficient. Let $([0,1], \mathcal{B}_{[0,1]}, \mathbb{P})$ be the probability space. Define random variables X_n as follows:

$$X_n = \mathbb{1}_{\left[\frac{k}{2^m}, \frac{k+1}{2^m}\right]}$$
 if $n = 2^m + k, k = 0, \dots, 2^m - 1$.

Let X=0. Then $\|X_n-X\|_{L^1}=\|X_n\|_{L^1}=2^{-\lfloor\log_2(n)\rfloor}\to 0$ as $n\to\infty$, but $\{\omega\in[0,1]:\lim_{n\to\infty}X_n(\omega)=0\}=\emptyset$. Now take $\mathcal{G}=\mathcal{B}_{[0,1]}$. Of course X_n is \mathcal{G} -measurable and thus $\mathbb{E}(X_n|\mathcal{G})=X_n$ a.s. Hence we've shown that $X_n\to X$ in L^1 but $\mathbb{E}(X_n|\mathcal{G})$ doesn't converge to $\mathbb{E}(X|\mathcal{G})$ almost surely.

Solution. (Convergence in L^1) Suppose $X_n \to X$ in L^1 . Then

$$\lim_{n \to \infty} \int_{\Omega} |X_n - X| d\mathbb{P} = \lim_{n \to \infty} \int_{\Omega} \mathbb{E} (|X_n - X||\mathcal{G}) d\mathbb{P} = 0.$$

By Jenson's inequality for conditional expectation, $\mathbb{E}(|X_n - X||\mathcal{G}) \geq |\mathbb{E}(X_n - X|\mathcal{G})|$ a.e. for all $n \in \mathbb{N}$. Hence

$$\int_{\Omega} \mathbb{E}\left(|X_n - X||\mathcal{G}\right) d\mathbb{P} \ge \int_{\Omega} \left| \mathbb{E}\left(X_n - X|\mathcal{G}\right) \right| d\mathbb{P} \text{ for all } n \in \mathbb{N}.$$

Therefore,

$$0 = \lim_{n \to \infty} \int_{\Omega} \mathbb{E}\left(|X_n - X||\mathcal{G}\right) d\mathbb{P} \ge \limsup_{n \to \infty} \int_{\Omega} \left| \mathbb{E}\left(X_n - X|\mathcal{G}\right) \right| d\mathbb{P}.$$

Also, since $\liminf_{n\to\infty} \int_{\Omega} |\mathbb{E}(X_n - X|\mathcal{G})| d\mathbb{P} \geq 0$, we have

$$0 = \lim_{n \to \infty} \int_{\Omega} \left| \mathbb{E} \left(X_n - X | \mathcal{G} \right) \right| d\mathbb{P} = \lim_{n \to \infty} \int_{\Omega} \left| \mathbb{E} \left(X_n | \mathcal{G} \right) - \mathbb{E} \left(X | \mathcal{G} \right) \right| d\mathbb{P}$$
$$= \lim_{n \to \infty} \left\| \mathbb{E} \left(X_n | \mathcal{G} \right) - \mathbb{E} \left(X | \mathcal{G} \right) \right\|_{L^1},$$

by the linearity of the conditional expectation. Hence $\mathbb{E}(X_n|\mathcal{G}) \to \mathbb{E}(X|\mathcal{G})$ in L^1 .

Exercise 9.2.3.

Solution. Let $\Omega = [0, 1]$. Define a collection of subsets \mathcal{E} as

$$\mathcal{E} = \big\{ \{ Y \in O \} : O \text{ is open interval in } \Omega \big\}.$$

Claim. Let h be a measurable function such that $\mathbb{E}(\mathbb{E}(X|Y);A) = \mathbb{E}(h(Y);A)$ for all $A \in \mathcal{E}$, then $\mathbb{E}(X|Y) = h(Y)$ a.s.

Proof of claim. First note that \mathcal{E} is a π -system since it is closed under finite intersections, and $\sigma(\mathcal{E}) = \sigma(Y)$. (Check: The collection $\mathcal{G} = \{B \subset \Omega : \{Y \in B\} \in \sigma(\mathcal{E})\}$ forms a sigma algebra. Clearly $\{O : O \text{ is open interval in } \Omega\} \subset \mathcal{G}$, hence $\mathcal{B}_{[0,1]} \subset \mathcal{G}$. Therefore $\sigma(Y) \subset \sigma(\mathcal{E})$.)

Suppose h is a measurable function that satisfies the condition. Since $\mathbb{E}(X|Y)$ and h(Y) are nonnegative measurable functions, $\mathbb{E}\big(\mathbb{E}(X|Y);\cdot\big)$ and $\mathbb{E}\big(h(Y);\cdot\big)$ induce two measures on Ω . Moreover, these two measures agree on a π -system \mathcal{E} . Now by a result of Dynkin's π - λ theorem (**Theorem 1.3.6.**), we can know that $\mathbb{E}\big(\mathbb{E}(X|Y);\cdot\big)$ and $\mathbb{E}\big(h(Y);\cdot\big)$ agree on $\sigma(\mathcal{E})$, hence agree on $\sigma(Y)$. Therefore $h(Y) = \mathbb{E}(X|Y)$ a.s.

Given any open interval $(a, b) \in [0, 1]$. Fix $n \in \mathbb{N}$, then

$$\mathbb{E}\big(X;Y\in(a,b)\big) = \sum_{k=0}^{n-1} \int_{\frac{a+k}{n}}^{\frac{b+k}{n}} \omega d\omega = \sum_{k=0}^{n-1} \frac{(b+k)^2 - (a+k)^2}{2n^2}.$$

Now by the definition of Y, one can see that $\mathbb{P}(Y \leq y) = \sum_{k=0}^{n-1} \frac{y}{n} = y$ for $y \in [0,1]$, hence

 $Y \sim \text{Unif}([0,1])$. Now define $h: \Omega \rightarrow [0,1]$ as

$$h(y) = \sum_{k=0}^{n-1} \frac{y+k}{n^2}.$$

Then

$$\mathbb{E}(h(Y); Y \in (a, b)) = \int_{a}^{b} h(y) d\mu_{Y}(y) = \int_{a}^{b} \sum_{k=0}^{n-1} \frac{y+k}{n^{2}} dy = \sum_{k=0}^{n-1} \frac{(y+k)^{2}}{2n^{2}} \Big|_{a}^{b},$$

which agrees on $\mathbb{E}(X; Y \in (a, b))$. Hence by the claim we have $\mathbb{E}(X|Y) = h(Y)$ a.s.

Exercise 9.2.4.

Solution. Since $\mathbb{E}(X_1; A) \leq \mathbb{E}(X_2; A)$ for all $A \in \mathcal{F}$, $\mathbb{E}(X_1; X_1 > X_2) \leq \mathbb{E}(X_2; X_1 > X_2)$. Then

$$\mathbb{E}(X_2; X_1 > X_2) - \mathbb{E}(X_1; X_1 > X_2) = \mathbb{E}(X_2 - X_1; X_1 - X_2 > 0) \ge 0.$$

This implies $\mathbb{P}(X_1 > X_2) = 0$. Hence $\mathbb{P}(X_1 \leq X_2) = 1$,

Exercise 9.2.5. (TBD)

Solution. $\mathbb{E}\left[\left(X - \mathbb{E}(X|\mathcal{G})\right)\mathbb{E}(Y|\mathcal{G})\right] = 0; \mathbb{E}\left[\left(Y - \mathbb{E}(Y|\mathcal{G})\right)\mathbb{E}(X|\mathcal{G})\right] = 0.$

Exercise 9.2.6. (TBD)

Solution.

Exercise 9.2.7.

Solution. Fix $a \in \mathbb{N}$. Define $A = \{|X| \le a\}$. Then the random variables $X1_AY1_{\{|Y| \le b\}}$ is bounded by a|Y| for all $b \in \mathbb{N}$. Since $\mathbb{E}(a|Y|) = a\mathbb{E}|Y| < \infty$ and $X1_AY1_{\{|Y| \le b\}} \to X1_AY$ as $b \to \infty$, by dominated convergence theorem we have

$$\lim_{b \to \infty} \mathbb{E}(X \mathbb{1}_A Y \mathbb{1}_{\{|Y| \le b\}}) = \mathbb{E}(X \mathbb{1}_A Y)$$

$$= \mathbb{E}(\mathbb{E}(X \mathbb{1}_A Y | X))$$

$$= \mathbb{E}(X \mathbb{1}_A \mathbb{E}(Y | X))$$

$$= \mathbb{E}(X^2 \mathbb{1}_A).$$

Since $\mathbb{E}(X\mathbb{1}_AY) \leq a\mathbb{E}|Y| < \infty$, $\mathbb{E}(X(X-Y);A) = 0$. Therefore,

$$\begin{split} \mathbb{E}\big(X(X-Y);|X|<\infty\big) &= \mathbb{E}\Big(X(X-Y);\bigcup_{a\geq 1}\{|X|\leq a\}\Big) \\ &= \sum_{a\geq 1}\mathbb{E}\big(X(X-Y);a<|X|\leq a+1\big) \\ &+ \mathbb{E}\big(X(X-Y);|X|\leq 1\big) \\ &= 0, \end{split}$$

since $\mathbb{E}(X(X-Y);A)=0$. Also note that $|X|<\infty$ a.s. since $\mathbb{E}|X|<\infty$, hence we have $\mathbb{E}(X(X-Y))=0$ a.s. Similarly one can prove $\mathbb{E}(Y(Y-X))=0$. Combine them together then we get $\mathbb{E}(X-Y)^2=0$, so X-Y=0 a.s.

Exercise 9.2.8.

Solution. Let $U_t = \max\{S, t\}$. Then $\{U_t = t\} = \{S \le t\}$; $\{U_t > t\} = \{S > t\}$. Define

$$g(U_t) = \frac{\mathbb{E}(S; S \le t)}{\mathbb{P}(S \le t)} \mathbb{1}_{\{U_t = t\}} + U_t \mathbb{1}_{\{U_t > t\}}.$$

Then
$$\mathbb{E}(g(U_t); U_t = t) = \mathbb{E}(S; S \le t) = \mathbb{E}(S; U_t = t)$$
, and $\mathbb{E}(g(U_t); t < U_t < a) = \mathbb{E}(U_t; t < U_t < a) = \mathbb{E}(S; t < U_t < a)$. Hence $g(U_t) = \mathbb{E}(S|U_t)$ a.s.

Exercise 9.2.9.

Solution. (X,Y) can be wrote as a function of (Θ,Z) :

$$Z = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} \Theta & 1 - \Theta \\ 1 - \Theta & \Theta \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} \Rightarrow \begin{pmatrix} X \\ Y \end{pmatrix} = \frac{1}{2\Theta - 1} \begin{pmatrix} \Theta & \Theta - 1 \\ \Theta - 1 & \Theta \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$
$$= L(\Theta, Z).$$

Moreover, $Z \perp \!\!\!\perp \Theta$: Let μ be the law of (Z_1, Z_2) . Let $C, D \in \mathcal{B}_{\mathbb{R}}$. Then

$$\mathbb{P}(Z \in C \times D) = \{\Theta = 1, X \in C, Y \in D\} \cup \{\Theta = 0, X \in D, Y \in C\},\$$

hence by X, Y, Θ are independent and X, Y have identical distribution,

$$\begin{split} \mathbb{P}(Z \in C \times D, \Theta = 1) &= p\mu(C)\mu(D) \\ &= p\Big(p\mu(C)\mu(D) + (1-p)\mu(D)\mu(C)\Big) \\ &= \mathbb{P}(\Theta = 1)\mathbb{P}(Z \in C \times D). \end{split}$$

 $\{\Theta = 0\}$ case is similar. Thus $Z \perp \!\!\!\perp \Theta$.

Now let $A \in \mathcal{B}_{\mathbb{R}^2}$. Then

$$\mathbb{E}(g(X,Y); Z \in A) = \int_{\Omega} g(L(\Theta, Z)) \mathbb{1}_{\{Z \in A\}} d\mathbb{P}$$
$$= \int_{\mathbb{R}^2} \sum_{\theta = 0, 1} g(L(\theta, \mathbf{z})) \nu(\theta) \mathbb{1}_A(\mathbf{z}) \mu(\mathbf{z}) d\mathbf{z}, \quad (Z \perp \!\!\! \perp \Theta)$$

where ν is the law of Θ . Define h as follows,

$$h(\mathbf{z}) = \sum_{\theta=0,1} g(L(\theta, \mathbf{z})) \nu(\theta) = \mathbb{E}_{\Theta}((g \circ L)(\Theta, \mathbf{z})),$$

then $\mathbb{E}(g(X,Y); Z \in A) = \int_A h(\mathbf{z})\mu(\mathbf{z})d\mathbf{z}$. Hence

$$\mathbb{E}_{\Theta}\big((g \circ L)(\Theta, \mathbf{z})\big)\big|_{\mathbf{z}=Z} = \mathbb{E}(g(X, Y)|Z) \text{ a.s.}$$

Exercise 9.2.10.

Solution. Consider $B = {\mathbb{E}(X_1|\mathcal{G}) \ge -b}$. Then $\mathbb{E}(X_1|\mathcal{G})\mathbb{1}_B = \mathbb{E}(X_1\mathbb{1}_B|\mathcal{G}) \ge -b$. Since $X_n \uparrow X$, for any $A \in \mathcal{G}$,

$$\mathbb{E}(\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G});A) = \mathbb{E}(X_1\mathbb{1}_B;A) \le \mathbb{E}(X_2\mathbb{1}_B;A) = \mathbb{E}(\mathbb{E}(X_2\mathbb{1}_B|\mathcal{G});A).$$

But if $A = \{\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G}) > \mathbb{E}(X_2\mathbb{1}_B|\mathcal{G})\}$ then $\mathbb{E}\big(\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G});A\big) \geq \mathbb{E}\big(\mathbb{E}(X_2\mathbb{1}_B|\mathcal{G});A\big)$. Hence $\mathbb{E}\big(\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G});A\big) = \mathbb{E}\big(\mathbb{E}(X_2\mathbb{1}_B|\mathcal{G});A\big)$ a.s. This implies $A = \emptyset$, therefore $\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G}) \leq \mathbb{E}(X_2\mathbb{1}_B|\mathcal{G})$. Thus $\{\mathbb{E}(X_n\mathbb{1}_B|\mathcal{G})\}_{n\in\mathbb{N}}$ is monotonically increasing. Now use monotone convergence theorem of the nonnegative functions (since $b + \mathbb{E}(X_n\mathbb{1}_B|\mathcal{G}) \geq 0$), for any $A \in \mathcal{G}$,

$$\int_{A} \lim_{n \to \infty} \mathbb{E}(X_{n} \mathbb{1}_{B} | \mathcal{G}) d\mathbb{P} = \lim_{n \to \infty} \int_{A} \mathbb{E}(X_{n} \mathbb{1}_{B} | \mathcal{G}) d\mathbb{P} = \lim_{n \to \infty} \int_{A} X_{n} \mathbb{1}_{B} d\mathbb{P}.$$

Now we need to compute the last term. Since $0 \le (X_n - X_1) \mathbb{1}_B \uparrow (X - X_1) \mathbb{1}_B$ a.s., by MCT again,

$$\lim_{n \to \infty} \int_A (X_n - X_1) \mathbb{1}_B d\mathbb{P} = \int_A (X - X_1) \mathbb{1}_B d\mathbb{P}.$$

Since $\mathbb{E}(X_1\mathbb{1}_B; A) = \mathbb{E}(\mathbb{E}(X_1\mathbb{1}_B|\mathcal{G}); A) \ge -b$, one can add this term in both sides. Then by the first equation,

$$\lim_{n\to\infty} \int_A X_n \mathbb{1}_B d\mathbb{P} = \int_A \lim_{n\to\infty} \mathbb{E}(X_n \mathbb{1}_B | \mathcal{G}) d\mathbb{P} = \int_A X \mathbb{1}_B d\mathbb{P},$$

which is $\mathbb{E}(\mathbb{E}(X|\mathcal{G})\mathbb{1}_B;A)$. Since $A \in \mathcal{G}$ is arbitrary, by the first equation again, we get

$$\lim_{n\to\infty} \mathbb{E}(X_n|\mathcal{G})\mathbb{1}_B = \mathbb{E}(X|\mathcal{G})\mathbb{1}_B \text{ a.s.}$$

Since $B = \{\mathbb{E}(X_1|\mathcal{G}) \ge -b\}$ increases to $\cup_{b \ge 1} \{\mathbb{E}(X_1|\mathcal{G}) \ge -b\} = \{\mathbb{E}(X_1|\mathcal{G}) > -\infty\},$

$$\lim_{n\to\infty} \mathbb{E}(X_n|\mathcal{G}) \mathbb{1}_{\{\mathbb{E}(X_1|\mathcal{G})>-\infty\}} = \mathbb{E}(X|\mathcal{G}) \mathbb{1}_{\{\mathbb{E}(X_1|\mathcal{G})>-\infty\}} \text{ a.s.}$$

Exercise 9.2.11.

Solution. Fix $\epsilon > 0$. For each $n \in \mathbb{N}$, define X_n as

$$X_n = \sum_{k=0}^{n2^{n+1}-1} \left(-n + \frac{k}{2^n}\right) \mathbb{1}_{\{X \in [-n + \frac{k}{2^n}, -n + \frac{k+1}{2^n})\}}.$$

Then $\mathbb{E}|X - X_n|$ can be computed as:

$$\mathbb{E}|X - X_{n}| = \mathbb{E}\left|\sum_{k=0}^{n2^{n+1}-1} \left(X + n - \frac{k}{2^{n}}\right) \mathbb{1}_{\{X \in [-n + \frac{k}{2^{n}}, -n + \frac{k+1}{2^{n}})\}} + X \mathbb{1}_{\{X < -n, X \ge n\}}\right|$$

$$\leq \mathbb{E}\left|\sum_{k=0}^{n2^{n+1}-1} \left(X + n - \frac{k}{2^{n}}\right) \mathbb{1}_{\{X \in [-n + \frac{k}{2^{n}}, -n + \frac{k+1}{2^{n}})\}}\right| + \mathbb{E}\left|X \mathbb{1}_{\{X < -n, X \ge n\}}\right|$$

$$\leq \sum_{k=0}^{n2^{n+1}-1} \mathbb{E}\left|\left(X + n - \frac{k}{2^{n}}\right)\right| \mathbb{1}_{\{X \in [-n + \frac{k}{2^{n}}, -n + \frac{k+1}{2^{n}})\}} + \mathbb{E}\left(|X|; X < -n, X \ge n\right)$$

$$\leq \sum_{k=0}^{n2^{n+1}-1} \frac{1}{2^{n}} \mathbb{P}\left(X \in \left[-n + \frac{k}{2^{n}}, -n + \frac{k+1}{2^{n}}\right)\right) + \mathbb{E}\left(|X|; |X| \ge n\right)$$

$$\leq \frac{1}{2^{n}} + \mathbb{E}\left(|X|; |X| \ge n\right).$$

One can verify that the second term in the RHS goes to 0 as $n \to \infty$: Since $\mathbb{E}|X| < \infty$, $|X| < \infty$ a.e., therefore $|X|\mathbb{1}_{\{|X| \ge n\}} \downarrow 0$ as $n \to \infty$ a.e. Also, since $|X|\mathbb{1}_{\{|X| \ge n\}} \le |X|$ for all n, then by dominated convergence theorem we have $\lim_{n \to \infty} \mathbb{E}(|X|; |X| \ge n) = 0$.

So there exists $N \in \mathbb{N}$ such that $\mathbb{E}|X - X_n| < \epsilon$ whenever n > N. Now suppose n > N. Since $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is the algebra that generates \mathcal{F} , there exists $A_{k+1} \in \bigcup_{i=1}^{\infty} \mathcal{F}_i$, $k = 0, \dots, n2^{n+1} - 1$, such that

$$\mathbb{P}\left(A_{k+1}\Delta\left\{X\in\left[-n+\frac{k}{2^n},-n+\frac{k+1}{2^n}\right)\right\}\right)<\frac{\epsilon}{n2^{k+1}}.$$

(See Theorem 1.2.6.)

Then define the simple function Y_n as

$$Y_n = \sum_{k=0}^{n2^{n+1}-1} \left(-n + \frac{k}{2^n}\right) \mathbb{1}_{A_{k+1}}.$$

Then

$$\mathbb{E}|X_n - Y_n| \leq \sum_{k=0}^{n2^{n+1}-1} \mathbb{E}\left|\left(-n + \frac{k}{2^n}\right) \left(\mathbb{1}_{A_{k+1}} - \mathbb{1}_{\{X \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)\}}\right)\right| \\
\leq \sum_{k=0}^{n2^{n+1}-1} n \mathbb{P}\left(A_{k+1} \Delta\left\{X \in \left[-n + \frac{k}{2^n}, -n + \frac{k+1}{2^n}\right)\right\}\right) < \epsilon.$$

Therefore $\mathbb{E}|X - Y_n| \leq \mathbb{E}|X - X_n| + \mathbb{E}|X_n - Y_n| < 2\epsilon$.

Fix any $\epsilon>0$ again. There exists a \mathcal{F} -simple function Y_n , with sufficiently large n, such that $\mathbb{E}|X-Y_n|<\epsilon$. Since Y_n takes on finitely many sets in \mathcal{F} , there exists $N\in\mathbb{N}$ such that $A_1,\cdots,A_{n2^{n+1}}\in\mathcal{F}_m$ for any m>N. Clearly Y_n is \mathcal{F}_m -measurable. Therefore, if m>N,

$$\mathbb{E} \big| \mathbb{E}(X|\mathcal{F}_m) - X \big| \le \mathbb{E} \big| \mathbb{E}(X|\mathcal{F}_m) - Y_n \big| + \mathbb{E} \big| Y_n - X \big|$$

$$\le \mathbb{E} \big(\mathbb{E}(|X - Y_n||\mathcal{F}_m) \big) + \mathbb{E} |Y_n - X|$$

$$= 2\mathbb{E} |X - Y_n| < 2\epsilon.$$

Hence $\|\mathbb{E}(X|\mathcal{F}_m) - X\|_{L^1} \to 0$ as $m \to \infty$.

Exercise 9.2.12.

Solution. Since $\mathbb{E}(Y) < \infty$, $Y < \infty$ a.s. Hence $Y \mathbb{1}_{\{Y \geq a\}} \downarrow 0$ as $a \to \infty$ a.s. Also, $|Y \mathbb{1}_{\{Y \geq a\}}| \leq |Y|$ for all $a \in \mathbb{N}$. Then $\lim_{a \to \infty} \mathbb{E}(Y; Y \geq a) = 0$ by dominated convergence theorem.

Fix $\epsilon, \delta > 0$. Set $a \in \mathbb{N}$ to be the integer such that $\mathbb{E}(Y; Y \geq a) < \frac{\epsilon \delta}{3}$.

Since $0 \le X_n \to 0$ in probability, we can take $N \in \mathbb{N}$ s.t. $\mathbb{P}(X_n > \frac{\epsilon \delta}{3}) < \frac{\epsilon \delta}{3a}$ whenever n > N. Suppose n > N. Since $X_n \ge 0$ a.s., $\mathbb{E}(X_n | \mathcal{G}) \ge 0$ a.s. Then by Markov's inequality,

$$\mathbb{P}(\mathbb{E}(X_n|\mathcal{G}) > \epsilon) < \frac{\mathbb{E}(\mathbb{E}(X_n|\mathcal{G}))}{\epsilon} = \frac{\mathbb{E}(X_n)}{\epsilon}$$

$$= \frac{1}{\epsilon} \Big(\mathbb{E}\Big(X_n; X_n \le \frac{\epsilon\delta}{3}\Big) + \mathbb{E}\Big(X_n; \frac{\epsilon\delta}{3} < X_n < a\Big) + \mathbb{E}(X_n; X_n \ge a) \Big)$$

$$\le \frac{1}{\epsilon} \Big(\frac{\epsilon\delta}{3} + a\mathbb{P}\Big(X_n > \frac{\epsilon\delta}{3}\Big) + \mathbb{E}(X_n; X_n \ge a) \Big)$$

$$< \frac{1}{\epsilon} \Big(\frac{\epsilon\delta}{3} + \frac{\epsilon\delta}{3} + \mathbb{E}(X_n; X_n \ge a) \Big).$$

Since $0 \le X_n \le Y$ a.s. for all $n \in \mathbb{N}$, $\mathbb{E}(X_n; X_n \ge a) \le \mathbb{E}(Y; X_n \ge a) \le \mathbb{E}(Y; Y \ge a)$. Therefore

$$\mathbb{P}(\mathbb{E}(X_n|\mathcal{G}) > \epsilon) < \frac{1}{\epsilon} \left(\frac{\epsilon \delta}{3} + \frac{\epsilon \delta}{3} + \mathbb{E}(Y; Y \ge a) \right) < \delta.$$

Hence $\mathbb{P}(\mathbb{E}(X_n|\mathcal{G}) > \epsilon) \to 0$ as $n \to \infty$.

Exercise 9.2.13.

Solution. Let $\mathcal{P} = \{A \cap B : A \in \mathcal{G}_1, B \in \mathcal{G}_2\}$. Then \mathcal{P} is a π -system: Pick $E_1, E_2 \in \mathcal{P}$, then $E_1 = A_1 \cap B_1$ and $E_2 = A_2 \cap B_2$ for some $A_1, A_2 \in \mathcal{G}_1$ and $B_1, B_2 \in \mathcal{G}_2$. Clearly $E_1 \cap E_2 \in \mathcal{P}$. Moreover, $\mathcal{G}_1 \cup \mathcal{G}_2 \subset \mathcal{P} \subset \sigma(\mathcal{G}_1 \cup \mathcal{G}_2) = \mathcal{G} \subset \sigma(\mathcal{P})$. Now let $A \cap B \in \mathcal{P}$. Then

$$\begin{split} \mathbb{E}\big(\mathbb{E}(X|\mathcal{G}_1);A\cap B\big) &= \mathbb{E}\big(\mathbb{E}(X|\mathcal{G}_1)\mathbb{1}_A\mathbb{1}_B\big) \\ &= \mathbb{E}\big(\mathbb{E}(X|\mathcal{G}_1)\mathbb{1}_A\big)\mathbb{E}(\mathbb{1}_B) \quad (\mathcal{G}_1,\mathcal{G}_2 \text{ are independent}) \\ &= \mathbb{E}(X\mathbb{1}_A)\mathbb{P}(B) \qquad \text{(conditional expectation on } \mathcal{G}_1) \\ &= \mathbb{E}(X\mathbb{1}_A\mathbb{1}_B) \qquad (\sigma(\sigma(X)\cup\mathcal{G}_1),\mathcal{G}_2 \text{ are independent}) \\ &= \mathbb{E}\big(\mathbb{E}(X|\mathcal{G});A\cap B\big). \qquad (A\cap B\in\mathcal{G}) \end{split}$$

Hence $\mathbb{E}(\mathbb{E}(X|\mathcal{G}_1);\cdot) = \mathbb{E}(\mathbb{E}(X|\mathcal{G});\cdot)$ agrees on \mathcal{P} . By a result of Dynkin's π - λ system, **Theorem 1.3.6.**, they agree on $\sigma(\mathcal{P})$ and hence on \mathcal{G} . Since $\mathbb{E}(X|\mathcal{G}_1)$ is of course a \mathcal{G} -measurable function, by definition $\mathbb{E}(X|\mathcal{G}_1) = \mathbb{E}(X|\mathcal{G})$ a.s.

Section 9.5.

Exercise 9.5.1.

Solution. $\{T_{a,b} = n\} = \bigcap_{i=1}^{n-1} \{a < S_i < b\} \cap \{S_n \in \{a,b\}\} \in \sigma(S_0, S_1, \dots, S_n) = \mathcal{F}_n.$

Exercise 9.5.2.

Solution. Define $T = \min\{n : S_k - S_{k-1} = 1 \text{ for all } k = n - (a+b) + 1, \dots, n\}$. Then $T_{a,b} < T$ a.s. And $\mathbb{E}T$ follows the following equation:

$$\mathbb{E}T = \sum_{k=0}^{a+b-1} p^k (1-p)(1+k+\mathbb{E}T) + p^{a+b}(a+b)$$

Exercise 9.5.3.

Solution. $(T < \infty \text{ a.s.})$ One can check that $\max\{n: S_n \geq n\} \leq N$ if and only if $S_k < k$ for all k > N. Hence $\{T \leq N\} = \bigcap_{k > N} \{S_k < k\}$. Since X_n are i.i.d. and $\mathbb{E}X_n = 0$, by SLLN we know that $S_n/n \to 0$ almost surely. Therefore, $\Omega = \bigcup_{N \geq 1} \bigcap_{k > N} \{|S_k|/k < 1\}$ a.s. Since $\bigcap_{k > N} \{|S_k|/k < 1\} \subset \{T \leq N\}, \Omega = \bigcup_{N \geq 1} \{T \leq N\} = \{T < \infty\}$ a.s.

 $(T ext{ is not a stopping time})$ Note that $\{T=0\}=\bigcap_{k\geq 1}\{S_k< k\}$. Clearly $\{T=0\}\neq\emptyset$, since the path $\omega=(0,-1,-2,-3,\cdots)\in\bigcap_{k\geq 1}\{S_k< k\}$. Suppose $\{T=0\}=\Omega$. Then $\{S_1<1\}=\{X_1<1\}=\Omega$. But $\mathbb{P}(X_1<1)=1/2\neq 1$, a contradiction. So $\{T=0\}\notin\{\emptyset,\Omega\}=\mathcal{F}_0$, therefore T is not a stopping time.

Exercise 9.5.4.

Solution. Suppose T is a stopping time. Then $\{T \leq n\} = \{T > n\}^c \in \bigcup_{i=0}^n \mathcal{F}_i = \mathcal{F}_n$, so $\{T > n\} \in \mathcal{F}_n$. Suppose $\{T > n\} \in \mathcal{F}_n$ for all $n \geq 0$. Then $\{T \leq n+1\} \in \mathcal{F}_{n+1}$ and $\{T \geq n+1\} = \{T > n\} \in \mathcal{F}_n \subset \mathcal{F}_{n+1}$, hence $\{T = n+1\} = \{T \leq n+1\} \cap \{T \geq n+1\} \in \mathcal{F}_{n+1}$. On the other hand, $\{T = 0\} = \{T \leq 0\} = \{T > 0\}^c \in \mathcal{F}_0$. So $\{T = n\} \in \mathcal{F}_n$ for all $n \geq 0$.

Exercise 9.5.5.

Solution. Let $k \in \mathbb{N}$. Then $\{T = k\} \cap \{T = n\} = \emptyset \in \mathcal{F}_n \text{ if } k \neq n, \text{ and } \{T = k\} \cap \{T = n\} = \{T = n\} \in \mathcal{F}_n \text{ if } k = n.$ Hence $\{T = k\} \in \mathcal{F}_T$. So T is \mathcal{F}_T -measurable.

Exercise 9.5.6.

Solution. Consider a filtration $\mathcal{F}_n = \sigma(S_0, S_1, \dots, S_n)$ as in **Exercise 9.5.1.** Define $T = \min\{n : S_n = 2\}$. Let $A = \{S_1 = 1, S_2 = 0, S_3 = 1, S_4 = 2\}$. Clearly A is a proper subset of $\{T = 4\}$, and hence $A \notin \sigma(T)$. But $A \cap \{T = j\} = \emptyset \in \mathcal{F}_n$ for all $j \neq 4$, and $A \cap \{T = 4\} = A \in \mathcal{F}_4$. Thus

 $A \in \mathcal{F}_T \setminus \sigma(T)$. By the previous exercise we then know that $\sigma(T)$ is a proper subset of \mathcal{F}_T .

Exercise 9.5.7.

Solution. Let $n \ge 0$. Then $A \cap \{T_{a,b} = n\} = \{\text{visits } 0 \text{ exactly } k \text{ times by time } n\} \cap \{T_{a,b} = n\} \in \mathcal{F}_n$, since the first set is in $\sigma(S_0, \dots, S_n) = \mathcal{F}_n$. So by definition $A \in \mathcal{F}_T$.

Exercise 9.5.8.

Solution. Let $E \in \mathcal{B}_{\mathbb{R}}$. $X_T(\omega) \in E$ if and only if $T(\omega) = n$ for some n and $X_n(\omega) \in E$. Hence $\{X_T \in E\} = \bigcup_{n \geq 0} \{X_n \in E, T = n\}$. Therefore for any $k \geq 0$,

$${X_T \in E} \cap {T = k} = {X_k \in E, T = k} \in \mathcal{F}_k.$$

So $\{X_T \in E\} \in \mathcal{F}_T$, i.e. X_T is \mathcal{F}_T -measurable.

9.6.

Exercise 9.6.2.

Solution. Since $T \wedge n$ is a bounded stopping time, by optional stopping theorem we have $\mathbb{E}(S^2_{T \wedge n} - T \wedge n) = \mathbb{E}(S^2_0 - 0) = 0$. So $\mathbb{E}(S^2_{T \wedge n}) = \mathbb{E}(T \wedge n)$. By DCT and MCT, $\lim_{n \to \infty} \mathbb{E}(S^2_{T \wedge n}) = \mathbb{E}(S^2_T) = \mathbb{E}(T) = \lim_{n \to \infty} \mathbb{E}(T \wedge n)$. Hence

$$\mathbb{E}(T) = \mathbb{E}(S_T^2) = a^2 \mathbb{P}(S_T = a) + b^2 \mathbb{P}(S_T = b) = \frac{a^2 b}{b - a} - \frac{b^2 a}{b - a}.$$

Exercise 9.6.7.

Solution. Since $\mathbb{E}(S_n - \mu n \mid \mathcal{F}_{n-1}) = \mathbb{E}X_n + S_{n-1} - \mu n = S_{n-1} - \mu(n-1)$, $S_n - \mu n$ is a martingale adapted to $\{\mathcal{F}_n\}$. Then by optional stopping theorem and $T \wedge n$ is a bounded stopping time, $\mathbb{E}(S_{T \wedge n} - \mu(T \wedge n)) = \mathbb{E}(S_0 - \mu \cdot 0) = 0$. Now by DCT and MCT we have $\mathbb{E}(S_T) = \mu \mathbb{E}(T)$.

9.7.

Exercise 9.7.4.

Solution. For each point in $\{T>n\}$, X_n is an odd number which is not a prime. And $X_n \leq p_{n-1}+2$

where p_{n-1} is the largest prime divisor of X_{n-1} . That is,

$$X_n \le \frac{X_{n-1}}{3} + 2 \le \frac{X_{n-1}}{\sqrt{2}}$$
 a.s. on $\{T > n\}$.

By monotonicity of conditional expectation and $\{T > n\} \in \mathcal{F}_{n-1}$,

$$\mathbb{E}(X_n \mathbb{1}_{\{T>n\}} | \mathcal{F}_{n-1}) \le \mathbb{E}\left(\frac{X_{n-1}}{\sqrt{2}} \mathbb{1}_{\{T>n\}} | \mathcal{F}_{n-1}\right) \le \frac{X_{n-1}}{\sqrt{2}} \mathbb{1}_{\{T>n\}}.$$

Hence on $\{T > n\}$ a.s., by Jenson's inequality for concave function,

$$\mathbb{E}(\log(X_n)|\mathcal{F}_n) \le \log(X_{n-1}) - \frac{1}{2}\log(2).$$

Since $\log(X_{T \wedge n}) \ge 0$, by the conclusion in (9.7.2) we have

$$\mathbb{E}(T) \le \frac{\log(x) - 0}{\frac{1}{2}\log(2)} = C\log(x).$$

Solution. Write $S_n = X_1 + \cdots + X_n$. For any w_m (they're measurable),

$$\mathbb{E}w_m(x+X)\big|_{x=S_n} = \mathbb{E}_{X_{n+1}}w_m(S_n + X_{n+1}) = \mathbb{E}(w_m(S_{n+1})|\mathcal{F}_n),$$

by the independence of S_n and X_{n+1} . So

$$w_{N-n}(S_n) = (S_n - K)^+ \vee \mathbb{E}w_{N-n-1}(x+X)\big|_{x=S_n}$$

= $(S_n - K)^+ \vee \mathbb{E}_{X_{n+1}}w_{N-(n+1)}(S_{n+1})$
= $(S_n - K)^+ \vee \mathbb{E}(w_{N-(n+1)}(S_{n+1})|\mathcal{F}_n),$

which means $w_{N-n}(S_n) \geq (S_n - K)^+$ and $\mathbb{E} \left(w_{N-(n+1)}(S_{n+1}) | \mathcal{F}_n \right) \leq w_{N-n}(S_n)$, therefore $w_{N-n}(S_n)$ is a Snell envelope. Hence the optimal τ would be

$$\tau = \min\{n : (S_n - K)^+ = w_{N-n}(S_n)\}.$$

 $w_{N-n}(S_n)$ represents the optimal payoff estimated at time n. At time n-1, to estimate the optimal payoff, we compare the current payoff and the average of optimal payoff estimated at time n.

For non-negative supermartingale,

$$(a-b)\mathbb{E}(U_m) \ge \sum_{n=1}^m \mathbb{E}(Z_n(Y_n - Y_{n-1})) \ge \sum_{n=1}^m \mathbb{E}(Y_n - Y_{n-1})$$

9.9

 $\{n-1,n\}$ -in-upcrossing indicator Z_n :

- 1. $Z_n = 1$: n-1 is in an upcrossing and $Y_{n-1} < b$.
- 2. $Z_n=0$: Either (a) n-1 is in an upcrossing and $Y_{n-1}\geq b$, or (b) n-1 is not in an upcrossing.

So Z_n is \mathcal{F}_{n-1} -measurable.

9.11

Exercise 9.11.1. Let $A \in \mathcal{E}$. Then since $A \in \mathcal{G} = \sigma(X_1, X_2, \cdots)$, there exists some $B \subset \mathbb{R}^{\mathbb{N}}$ such that $A = \{(X_i)_{i \geq 1} \in B\}$. Given $\epsilon > 0$, since the algebra $\bigcup_{i \geq 1} \sigma(X_1, \cdots, X_i)$ generates \mathcal{G} , by the **approximation lemma** we know that there exists some $n \in \mathbb{N}$ and $A_n \in \sigma(X_1, \cdots, X_n)$ such that $\mathbb{P}(A\Delta A_n) < \epsilon$. Note that we can also find some $B_n \subset \mathbb{R}^n$ such that $A_n = \{(X_1, \cdots, X_n) \in B_n\}$.

Next, define random vector $(Y_i)_{i\geq 1} = h_n((X_i)_{i\geq 1})$, where

$$h_n: (x_1, x_2, \cdots) \mapsto (x_{n+1}, \cdots, x_{2n}, x_1, \cdots, x_n, x_{2n+1}, \cdots).$$

Then by the i.i.d. assumption of r.v.s $\{X_i\}_{i\geq 1}$, $(Y_i)_{i\geq 1}$ and $(X_i)_{i\geq 1}$ have the same law, hence

$$\mathbb{P}(A\Delta A_n) = \mathbb{P}\left(\{(X_i)_{i\geq 1} \in B\} \Delta \{(X_i)_{i=1}^n \in B_n\}\right)$$

$$= \mathbb{P}\left(\{(Y_i)_{i\geq 1} \in B\} \Delta \{(Y_i)_{i=1}^n \in B_n\}\right)$$

$$(A'_n := \{(Y_i)_{i=1}^n \in B_n\}) = \mathbb{P}(A\Delta A'_n) < \epsilon.$$

The last equality holds because $A \in \mathcal{E}$ and h_n is a 2n-permutation,

$$\{(Y_i)_{i>1} \in B\} = \{(X_i)_{i>1} \in B\} = A.$$

So we now have both $\mathbb{P}(A_n) \to \mathbb{P}(A)$ and $\mathbb{P}(A'_n) \to \mathbb{P}(A)$, and hence

$$\mathbb{P}(A_n)\mathbb{P}(A'_n) \to \mathbb{P}(A)^2$$
.

Moreover,

$$\mathbb{P}(A_n \Delta A'_n) = \mathbb{E} \left| \mathbb{1}_{A_n} - \mathbb{1}_{A'_n} \right| \le \mathbb{E} \left| \mathbb{1}_{A_n} - \mathbb{1}_A \right| + \mathbb{E} \left| \mathbb{1}_A - \mathbb{1}_{A'_n} \right|$$
$$= \mathbb{P}(A_n \Delta A) + \mathbb{P}(A \Delta A'_n) < 2\epsilon,$$

which implies $\mathbb{P}(A_n) - \mathbb{P}(A_n \cap A_n') < 2\epsilon$ and hence, $|\mathbb{P}(A) - \mathbb{P}(A_n \cap A_n')| < 3\epsilon$. So we have

$$\mathbb{P}(A_n \cap A'_n) \to \mathbb{P}(A).$$

But $\{X_i\}_{i\geq 1}$ are independent, hence the events $A_n\in\sigma\left((X_i)_{i=1}^n\right)$ and $A_n'\in\sigma\left((Y_i)_{i=1}^n\right)=\sigma\left((X_i)_{i=n+1}^{2n}\right)$ are independent,

$$\mathbb{P}(A_n \cap A'_n) = \mathbb{P}(A_n)\mathbb{P}(A'_n) \to \mathbb{P}(A).$$

Therefore $\mathbb{P}(A)^2 = \mathbb{P}(A)$, implies $\mathbb{P}(A) = 0$ or 1.

Recall. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For any $A \in \mathcal{G} = \sigma(X_1, X_2, \cdots)$ and any $\epsilon > 0$, show that there is some $n \geq 1$ and some $A_n \in \sigma(X_1, \cdots, X_n)$ such that $\mathbb{P}(A \Delta A_n) < \epsilon$.

Proof. We set $\mathcal{F} = \bigcup_{n \geq 1} \sigma(X_1, \dots, X_n)$, and therefore $\mathcal{G} = \sigma(\mathcal{F})$. Next we check that \mathcal{F} is an algebra.

- 1. Clearly $\Omega \in \mathcal{L}$.
- 2. Suppose $C \in \mathcal{F}$. Then $A \in \sigma(X_1, \dots, X_n)$ for some $n \geq 1$, therefore $C^c \in \sigma(X_1, \dots, X_n) \subset \mathcal{F}$.
- 3. Take any finite collection $A_1, \cdots, A_m \in \mathcal{F}$, then $A_1, \cdots, A_m \in \sigma(X_1, \cdots, X_M)$ for some $M \geq 1$ and therefore $\bigcup_{i \geq 1}^m A_i \in \mathcal{F}$.

Hence by **approximation lemma**, there exists $A_{\epsilon} \in \mathcal{F}$ such that $\mathbb{P}(A_{\epsilon}\Delta A) < \epsilon$.

Now since $\mathcal{F} \subseteq \mathcal{L}$, $\mathcal{G} = \sigma(\mathcal{F}) \subseteq \sigma(\mathcal{L})$. Therefore for any set $B \in \sigma(\mathcal{L})$ (also for any set in \mathcal{G} , of course), there exists $A \in \mathcal{L}$ such that $\mathbb{P}(A\Delta B) < \epsilon$.

9.13.

Exercise 9.13.4. Suppose $\{X_n\}_{n\geq 0}$ is a martingale that is uniformly bounded by some M>0 in L^2 . Then for any $0\leq n\leq m$, $\|X_m-X_n\|_2\leq 2M$ and

$$\mathbb{E}(X_m - X_n)^2 = \mathbb{E}\left[\mathbb{E}\left((X_m - X_n)^2 | \mathcal{F}_n\right)\right]$$
$$= \mathbb{E}X_m^2 - \mathbb{E}\left[2X_n\mathbb{E}(X_m | \mathcal{F}_n) - X_n^2\right]$$
$$= \mathbb{E}X_m^2 - \mathbb{E}X_n^2.$$

From this, we can write

$$\mathbb{E}(X_m - X_n)^2 = \sum_{i=n}^{m-1} (\mathbb{E}X_{i+1}^2 - \mathbb{E}X_i^2) = \sum_{i=n}^{m-1} \mathbb{E}(X_{i+1} - X_i)^2,$$

which shows that $||X_n - X_0||_2$ is a non-decreasing sequence of n. Therefore together with the uniformly bounded condition,

$$\lim_{n \to \infty} ||X_n - X_0||_2^2 = \sum_{i=0}^{\infty} \mathbb{E}(X_{i+1} - X_i)^2 < \infty.$$

This means $\|X_m - X_n\|_2^2 = \sum_{i=n}^{m-1} \mathbb{E}(X_{i+1} - X_i)^2 < \epsilon$ for any sufficiently large n, m, and hence X_n is Cauchy in L^2 . Then by the completeness of $\|\cdot\|_2$ in L^2 space, $X_n \to X$ in L^2 for some $X \in L^2$.

Exercise 9.13.6. Suppose p > 1. Since X_n is a martingale or a nonnegative submartingale, $|X_n|^p$ is a nonnegative submartingale. Suppose X_n is uniformly bounded in L^p . Then by *Theorem 9.13.3*, we have $\mathbb{E}|X_n - X|^p \to 0$ for some $X \in L_p$. Since $t \mapsto |t|^p$ is a convex function, for any $\lambda \in (0, 1)$,

$$|X_n|^p = \left| (1 - \lambda) \frac{X_n - X}{1 - \lambda} + \lambda \frac{X}{\lambda} \right|^p \le (1 - \lambda)^{1 - p} |X_n - X|^p + \lambda^{1 - p} |X|^p. \tag{1}$$

Given any $\epsilon>0$, take $\lambda=\left(1+\frac{\epsilon}{\|X\|_p^p}\right)^{1/(1-p)}\in(0,1)$, then by (1) we have

$$||X_n|^p - |X|^p| \le \epsilon \cdot \frac{|X|^p}{\|X\|_p^p} + \left[1 - \left(\frac{\|X\|_p^p}{\|X\|_p^p + \epsilon}\right)^{\frac{1}{p-1}}\right] |X_n - X|^p$$

$$< \epsilon \cdot \frac{|X|^p}{\|X\|_p^p} + |X_n - X|^p.$$

Take expectation on both sides,

$$\mathbb{E}||X_n|^p - |X|^p| \le \epsilon + ||X_n - X||_p^p$$

By the L^p convergence of X_n , $||X_n - X||_p^p \to 0$ as $n \to \infty$. Thus

$$\lim_{n \to \infty} |||X_n|^p - |X|^p||_1 \le \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have shown that $|X_n|^p$ converges in L^1 to $|X|^p$. Then it follows by *Proposition 8.3.5* that $|X_n|^p$ is uniformly integrable.

Exercise 9.13.7. Write the process $\{X_n^2\}$ as

$$X_n^2 = X_n^2 - \langle X \rangle_n + \langle X \rangle_n$$

where $\{X_n^2 - \langle X \rangle_n\}_{n \ge 0}$ is a martingale, since

...

Then by Doob's inequality for non-negative sub-martingale,

$$\mathbb{E} \max_{i \le n} (X_i^2) \le 4\mathbb{E} X_n^2 = 4\mathbb{E} \langle X \rangle_n.$$

Apply MCT on both sides, then we obtained

$$\mathbb{E}\sup_{n\geq 0} X_n^2 \leq 4\mathbb{E}\lim_{n\to\infty} \langle X \rangle_n = 4\mathbb{E}\langle X \rangle_{\infty}. \tag{2}$$

To discuss the property on the set $\{\langle X \rangle_{\infty} < \infty\}$, we start it by looking at $\{\langle X \rangle_{\infty} \leq k\}$, where $k \in \mathbb{N}$. Consider a random time

$$T_k := \max\{n : \langle X \rangle_n \le k\}.$$

Then T_k is a stopping time, since $\langle X \rangle_n$ is non-decreasing and predictable:

$$\{T_k = n\} = \{\langle X \rangle_n \le k\} \cap \{\langle X \rangle_{n+1} > k\} \in \mathcal{F}_n.$$

Therefore $X_{n \wedge T_k}$ is also a submartingale. By (2),

$$\sup_{n\geq 0} \mathbb{E} X_{n\wedge T_k}^2 \leq \mathbb{E} \sup_{n\geq 0} X_{n\wedge T_k}^2 \leq 4k.$$

Hence, by the submartingale convergence theorem (Theorem 9.13.3), $\{X_{n \wedge T_k}\}$ converges a.s. and in L^2 to some r.v. Notice that $X_{n \wedge T_k} = X_n$ on $\{T_k = \infty\}$. But $\{\langle X \rangle_\infty \leq k\} = \{T_k = \infty\}$, so X_n converges a.s. on $\{\langle X \rangle_\infty \leq k\}$. Since $k \in \mathbb{N}$ is arbitrary, we have X_n converges a.s. on $\{\langle X \rangle_\infty \leq k\}$.

Exercise 9.13.8 (Galton-Watson branching process).

- (2) Since M_n is a martingale, $\mathbb{E}M_n = \mathbb{E}M_1 = \mathbb{E}X_{0,1} < \infty$ for all $n \geq 1$, therefore by the submartingale convergence theorem (*Theorem 9.9.2*), $M_n \to M$ a.s. and $\mathbb{E}|M| < \infty$. In particular, if $\mu < 1$, then $Z_n/\mu^n \to 0$ implies $Z_n \to 0$ as $n \to \infty$.
- (3) Suppose $\mu=1$. Then $Z_n=M_n$, and hence Z_n converges a.s. by (2). Also, we set $p_0=1$

 $\mathbb{P}(X_{n,i}=0)$. Let $k,N\in\mathbb{N}$. Then by the definition of Z_n , we can write

$$\mathbb{P}\left(\bigcap_{n\geq N} \{Z_n = k\}\right) = \mathbb{P}\left(\{Z_N = k\} \cap \bigcap_{n>N} \left\{\sum_{i=1}^k X_{n-1,i} = k\right\}\right). \tag{3}$$

Note that Z_N is $\sigma(X_{0,1},X_{1,1},X_{1,2},\cdots,X_{N-1,1},X_{N-1,2},\cdots)$ -measurable, and the n-th summation set is $\sigma(X_{n-1,1},X_{n-1,2},\cdots)$ -measurable. So by the i.i.d. assumption of $X_{n,i}$, the RHS is

$$\mathbb{P}\left(\left\{Z_{N}=k\right\} \cap \bigcap_{n>N} \left\{\sum_{i=1}^{k} X_{n-1,i} = k\right\}\right) = \mathbb{P}(Z_{N}=k) \cdot \prod_{n>N} \mathbb{P}\left(\sum_{i=1}^{k} X_{n-1,i} = k\right)$$
$$= \mathbb{P}(Z_{n}=k) \cdot \prod_{n>N} \mathbb{P}\left(\sum_{i=1}^{k} X_{1,i} = k\right).$$

But since

$$\mathbb{P}\left(\sum_{i=1}^{k} X_{1,i} = k\right) \le 1 - \mathbb{P}(X_{1,1} = 0, X_{1,2} = 0, \dots, X_{1,k} = 0)$$
$$= 1 - \prod_{i=1}^{k} \mathbb{P}(X_{1,1} = 0) = 1 - p_0^k < 1,$$

we find that the RHS of (3) is zero, therefore $\mathbb{P}\left(\bigcap_{n\geq N}\{Z_n=k\}\right)=0$. Taking the union bounds, we then see that

$$\mathbb{P}\left(\lim_{n\to\infty}Z_n=k\right)=\mathbb{P}\left(\bigcup_{N\geq 1}\bigcap_{n\geq N}\{Z_n=k\}\right)\leq \sum_{N\geq 1}\mathbb{P}\left(\bigcap_{n\geq N}\{Z_n=k\}\right)=0.$$

Since $k \in \mathbb{N}$ is arbitrary, we've proven that $\mathbb{P}\left(\lim_{n \to \infty} Z_n = 0\right) = 1$.

(4)

(5)

(6) By Theorem 9.13.3, $M_n \to M$ a.s. and in L^2 , thus $M_n \to M$ in L^1 by Jenson's inequality. By Fatou's lemma,

$$\mathbb{E}M \le \liminf_{n \to \infty} \mathbb{E}M_n \le \limsup_{n \to \infty} \mathbb{E}M_n \le \mathbb{E}M + \limsup_{n \to \infty} \mathbb{E}|M_n - M| = \mathbb{E}M.$$

Therefore $\mathbb{E}M = \lim_{n\to\infty} \mathbb{E}M_n = \mathbb{E}M_1 > 0$, so $\mathbb{P}(M > 0) > 0$.

Exercise 9.13.9. Suppose $X \in L^p$ for some $p \geq 1$. Recall the setting in **Exercise 9.12.2** that with the filtration $\mathcal{F}_n = \sigma\left(\bigcup_{i=0}^{2^n-1}\left[\frac{i}{2^n},\frac{i+1}{2^n}\right)\right)$, the process $X_n := \mathbb{E}(X|\mathcal{F}_n)$ is a martingale. Since $\mathbb{E}|X_n|^p = \mathbb{E}|X|^p < \infty$ for all $n \geq 1$, by the martingale L^p convergence theorem (*Theorem 9.13.3*) we can know that $X_n \to X$ in L^p .

Exercise 9.13.11.

(2) (Uniformly bounded) Let $\phi_N(x) := \sqrt{N}(\cos \pi x)^{2N}$ for $N \ge 1$. Then for 0 < a < b < 1, $x \in [0,1]$,

$$f_N(x) = \int_{a-x}^{b-x} \phi_N(t)dt.$$

Claim 1. For any $N \ge 1$ and $x \in [0, 1]$,

$$f_N(x) \le \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} \phi_N(t)dt = f_N\left(\frac{a+b}{2}\right).$$

Proof. Since $\phi_n(t) = \sqrt{n}(\cos \pi t)^{2n}$ is 1-periodic, $f_n(x) := \int_{a-x}^{b-x} \phi_n(t) dt$ is also 1-periodic. The derivative of f_n is

$$\frac{d}{dx}f_n(x) = -\phi_n(b-x) + \phi_n(a-x),$$

and we can easily see that

$$f'_n(x) = 0 \Leftrightarrow \frac{b+a}{2} - x = \frac{k}{2}, \ k \in \mathbb{Z}$$

by the property of ϕ_n . Also, by the 1-periodicity, the global maxima must be $f(\frac{b+a}{2}+k)$ or $f(\frac{b+a+1}{2}+k)$, $k\in\mathbb{Z}$. If $\Delta:=b-a\leq\frac{1}{2}$, since $\phi_n(s)\geq\phi_n(t)$ for all $|s|\leq\frac{\Delta}{2}$ and $|t-\frac{1}{2}|\leq\frac{\Delta}{2}$,

$$f\left(\frac{b+a-1}{2}\right) = \int_{\frac{1}{2}-\frac{\Delta}{2}}^{\frac{1}{2}+\frac{\Delta}{2}} \phi_n \le \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} \phi_n = f\left(\frac{b+a}{2}\right).$$

If $\Delta > \frac{1}{2}$,

$$f\left(\frac{b+a}{2}\right) = 2\int_0^{\frac{\Delta}{2}} \phi_n = 2\left(\int_{\frac{1}{2} - \frac{\Delta}{2}}^{\frac{\Delta}{2}} \phi_n + \int_0^{\frac{1}{2} - \frac{\Delta}{2}} \phi_n\right)$$
$$\geq 2\left(\int_{\frac{1}{2} - \frac{\Delta}{2}}^{\frac{\Delta}{2}} \phi_n + \int_{\frac{\Delta}{2}}^{\frac{1}{2}} \phi_n\right) = f\left(\frac{b+a-1}{2}\right).$$

Therefore, $f(\frac{b+a}{2}+k)$, $k \in \mathbb{Z}$ is the maximum. Hence the claim follows.

We keep using the notation $\Delta = b - a$ in the following, and abbreviate $f_n\left(\frac{a+b}{2}\right)$ as f_n . First,

write

$$\int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} (\cos \pi t)^{2n} dt = \frac{1}{\pi} (\cos \pi t)^{2n-1} \sin \pi t \Big|_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} + (2n-1) \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} (\cos \pi t)^{2n-2} (\sin \pi t)^{2} dt$$

$$\Rightarrow 2n \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} (\cos \pi t)^{2n} dt = \frac{2}{\pi} \left(\cos \frac{\pi \Delta}{2} \right)^{2n-1} \sin \frac{\pi \Delta}{2} + (2n-1) \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} (\cos \pi t)^{2n-2} dt$$

$$\Rightarrow f_{n} = \underbrace{\frac{1}{\pi \sqrt{n}} \left(\cos \frac{\pi \Delta}{2} \right)^{2n-1} \sin \frac{\pi \Delta}{2}}_{b_{n}} + \underbrace{\frac{2n-1}{2\sqrt{n(n-1)}}}_{c_{n}} f_{n-1} = b_{n} + c_{n} f_{n-1}.$$

Since $c_n > 1$ and $b_n > 0$ for all $n \ge 1$ (since $0 < \Delta < 1$), we can see that $\{f_n\}$ is a nonnegative monotonically increasing sequence. Moreover,

$$f_n = b_n + c_n b_{n-1} + c_n c_{n-1} b_{n-2} + \dots + (c_n c_{n-1} \dots c_3) b_2 + (c_n c_{n-1} \dots c_2) f_1. \tag{4}$$

Claim 2. The product $\prod_{k=n}^{m} c_k$ is bounded above and below by some constants for all $2 \le n \le m$.

Proof. Clearly 1 is an lower bound since $c_n > 1$ for all $n \ge 1$. For the upper bound, we evaluate

$$\prod_{i=2}^{n} c_i = \prod_{i=2}^{n} \frac{2i-1}{2\sqrt{i(i-1)}} = \prod_{i=2}^{n} \sqrt{\frac{i}{i-1}} \frac{2i-1}{2i} = \sqrt{n} \prod_{i=2}^{n} \frac{2i-1}{2i}.$$

Note that the sequence $(1-\frac{1}{2n}) \uparrow 1$ as $n \to \infty$, so we have the following bound:

$$\log \prod_{i=2}^{n} \left(1 - \frac{1}{2i} \right) = \sum_{i=2}^{n} \log \left(1 - \frac{1}{2i} \right) \le \int_{1}^{n+1} \log \left(1 - \frac{1}{2x} \right) dx.$$

The right hand side is calculated as

$$\int_{1}^{n+1} \log\left(1 - \frac{1}{2x}\right) dx = \int_{1}^{n+1} \log(2x - 1) - \log(2x) dx$$

$$= \frac{1}{2} \left[\left(u \log u - u \right) \Big|_{1}^{2n+1} - \left(u \log u - u \right) \Big|_{2}^{2n+2} \right]$$

$$= \frac{1}{2} \left(\log \frac{(2n+1)^{2n+1}}{(2n+2)^{2n+2}} + 2 \log 2 \right)$$

$$= \log \sqrt{\frac{4(2n+1)^{2n+1}}{(2n+2)^{2n+2}}}.$$

Therefore,

$$\sqrt{n} \prod_{i=2}^{n} \frac{2i-1}{2i} \le \sqrt{\frac{4n(2n+1)^{2n+1}}{(2n+2)^{2n+2}}} = \sqrt{\frac{4n}{2n+1}} \sqrt{\left(1 - \frac{1}{2n+2}\right)^{2n+2}}$$

$$= \sqrt{2\left(1 - \frac{1}{2n+1}\right)} \sqrt{\left(1 - \frac{1}{2n+2}\right)^{2n+2}} \uparrow \frac{2}{\sqrt{e}}$$
(5)

as $n \to \infty$. Hence $\frac{2}{\sqrt{e}}$ is an upper bound.

Now by (4) and (5) we have

$$f_n \le \frac{2}{\sqrt{e}} \left(\sum_{i=2}^n b_i + f_1 \right),$$

where

$$\sum_{i=2}^{n} b_i = \sum_{i=2}^{n} \frac{1}{\pi \sqrt{i}} \left(\cos \frac{\pi \Delta}{2} \right)^{2i-1} \sin \frac{\pi \Delta}{2} = \frac{1}{\pi} \tan \frac{\pi \Delta}{2} \sum_{i=2}^{n} \frac{1}{\sqrt{i}} \left(\cos \frac{\pi \Delta}{2} \right)^{2i}.$$

Notice that the sequence $\frac{1}{\sqrt{n}} \left(\cos \frac{\pi \Delta}{2}\right)^{2n} \downarrow 0$ as $n \to \infty$, hence we can write

$$\sum_{i=2}^{n} \frac{1}{\sqrt{i}} \left(\cos \frac{\pi \Delta}{2} \right)^{2i} \le \int_{1}^{n} \frac{1}{\sqrt{x}} \left(\cos \frac{\pi \Delta}{2} \right)^{2x} dx$$

$$= \int_{1}^{n} x^{-\frac{1}{2}} \exp \left[2x \log \left(\cos \frac{\pi \Delta}{2} \right) \right] dx$$

$$\le \frac{\Gamma\left(\frac{1}{2}\right)}{\sqrt{2 \log \left(\frac{1}{\cos \frac{\pi \Delta}{2}}\right)}}.$$

Where the last inequality is obtained by bounding via integrating on $(0, \infty)$. Finally, the upper bound of f_n is

$$f_n\left(\frac{a+b}{2}\right) \le \frac{2}{\sqrt{e}} \left[\frac{\Gamma\left(\frac{1}{2}\right) \tan\frac{\pi\Delta}{2}}{\pi\sqrt{2\log\left(\frac{1}{\cos\frac{\pi\Delta}{2}}\right)}} + \frac{1}{2}\left(\Delta + \frac{1}{\pi}\sin\pi\Delta\right) \right] < \infty$$

for all $n \geq 1$. Since we've already know that $f_n(\frac{a+b}{2})$ is increasing, $f_n\left(\frac{a+b}{2}\right) \uparrow L$ for some $L < \infty$. Therefore, together with *Claim 1*, $f_n(x)$ is bounded by L for all $n \geq 1$ on $x \in [0,1]$.

(Convergence)

(3) By (2) we can see that $|g(x)f_N(x)| \le c|g(x)|$ for all $N \ge 1$ on [0,1], hence by dominated convergence theorem,

$$\lim_{N \to \infty} \int g(x) f_N(x) dx = \int cg(x) \mathbb{1}_{(a,b)} dx = c \int_a^b g(x) dx.$$
 (6)

Where $c\mathbb{1}_{(a,b)}(x)=\lim_{N\to\infty}f_N(x)$ a.e. on $x\in[0,1].$ Now fix a $N\geq 1,$

$$\int_{0}^{1} g(x)f_{N}(x)dx = \int_{0}^{1} \int_{a}^{b} g(x)\sqrt{N} \left(\frac{1+\cos 2\pi(u-x)}{2}\right)^{N} dudx
= \int_{0}^{1} \int_{a}^{b} g(x)\sqrt{N} \left(\cos \pi(u-x)\right)^{2N} dudx
= \int_{a}^{b} \sqrt{N} \int_{0}^{1} g(x)(\cos \pi(u-x))^{2N} dxdu,$$
(7)

where we expand $(\cos \pi (u-x))^{2N}$ as

$$(\cos \pi (u - x))^{2N} = \left(\frac{e^{i\pi(u - x)} + e^{-i\pi(u - x)}}{2}\right)^{2N}$$

$$= \frac{e^{-i2\pi N(u - x)}}{4^N} (e^{i2\pi(u - x)} + 1)^{2N}$$

$$= \frac{e^{-i2\pi N(u - x)}}{4^N} \sum_{k=0}^{2N} {2N \choose k} e^{i2\pi k(u - x)}$$

$$= \frac{1}{4^N} \sum_{k=-N}^{N} {2N \choose k+N} e^{i2\pi k(u - x)}$$

$$= \frac{1}{4^N} \left[{2N \choose N} + 2 \sum_{k=1}^{N} {2N \choose k+N} \cos 2\pi k(u - x) \right].$$

Also note that $\cos 2\pi k(u-x) = \cos 2\pi ku \cos 2\pi kx + \sin 2\pi ku \sin 2\pi kx$. This implies that the integral

$$\int_0^1 g(x)(\cos \pi (u-x))^{2N} dx = 0,$$

since $(\cos \pi (u-x))^{2N}$ is a linear combination of $\{1,\cos 2\pi nx,\sin 2\pi nx\}_{n\geq 1}$ and g is orthogonal to them. Therefore by (7), $\int_0^1 g(x)f_N(x)dx=0$. Thus by (6),

$$\int_{a}^{b} g(x)dx = 0.$$

Since 0 < a < b < 1 is arbitrary, we can know that if g_n is defined on [0,1) as

$$g_n(x) = \sum_{i=0}^{2^n - 1} 2^n \left[\int_{\frac{i}{2^n}}^{\frac{i+1}{2^n}} g(u) du \right] \mathbb{1}_{\left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)}(x),$$

then we have $g_n(x) = 0$ on [0, 1). Also, **Exercise 9.12.2** has shown that $g_n \to g$ a.e. as $n \to \infty$. Therefore, g = 0 a.e. on [0, 1].

9.14

Exercise 9.14.3.

(2) It's clear that for any $n \ge 0$,

$$\int_{a_n}^{a_{n+1}} \frac{1}{x^2} dx \ge \int_{a_n}^{a_{n+1}} \frac{1}{a_{n+1}^2} dx.$$

Therefore

$$\sum_{n>0} \frac{a_{n+1} - a_n}{a_{n+1}^2} \le \sum_{n>0} \int_{a_n}^{a_{n+1}} \frac{1}{x^2} dx = \lim_{n \to \infty} \int_{a_0}^{a_n} \frac{1}{x^2} dx \le \frac{1}{a_0} < \infty.$$

(1) First of all, if $a_n \uparrow A < \infty$, then similar to the above,

$$\sum_{n>0} \frac{a_{n+1} - a_n}{a_n} \le \lim_{n \to \infty} \int_{a_0}^{a_n} \frac{1}{x} dx = A - \log(a_0) < \infty.$$

If $a_n \uparrow \infty$, we discuss under two cases. Suppose $\liminf a_n/a_{n+1} = 0$. Then there is a subsequence $\{a_{n_k}\}_{k \geq 1}$ such that $a_{n_k}/a_{n_k+1} \to 0$ as $k \to \infty$. Hence for an $\epsilon \in (0,1)$, there exists an $N \geq 1$ such that

$$\sum_{n>0} \left(1 - \frac{a_n}{a_{n+1}} \right) \ge \sum_{k>N} \left(1 - \frac{a_{n_k}}{a_{n_k+1}} \right) \ge \sum_{k>N} (1 - \epsilon) = \infty.$$

Suppose $\liminf a_n/a_{n+1}=c>0$. Then we can take an $N\geq 1$ such that

$$\frac{c}{2} < \inf_{n > N} \left(\frac{a_n}{a_{n+1}} \right) \le c.$$

Define a number M as

$$M:=\min_{0\leq n\leq N}\left(\frac{a_n}{a_{n+1}}\right)\wedge\frac{c}{2},$$

then $0 < M \le \frac{a_n}{a_{n+1}}$ for all $n \ge 0$. Therefore

$$\sum_{n\geq 0} \frac{a_{n+1} - a_n}{a_{n+1}} \ge M \sum_{n\geq 0} \frac{a_{n+1} - a_n}{a_n}$$

$$\ge M \sum_{n\geq 0} \int_{a_n}^{a_{n+1}} \frac{1}{x} dx = M \left[\lim_{n\to\infty} \log(a_n) - \log(a_0) \right] = \infty.$$

Exercise 9.14.4. Let $Z_n = S_n^2/c_n^2$. Since c_n is \mathcal{F}_{n-1} -measurable, and S_n is square-integrable mar-

tingale,

$$\mathbb{E}(Z_n|\mathcal{F}_{n-1}) = \frac{1}{c_n^2} \mathbb{E}\left(S_{n-1}^2 + S_n^2 - S_{n-1}^2|\mathcal{F}_{n-1}\right)$$

$$= \frac{S_{n-1}^2}{c_{n-1}^2} + \frac{\mathbb{E}\left((S_n - S_{n-1})^2|\mathcal{F}_{n-1}\right)}{c_n^2} - \left(1 - \frac{c_{n-1}^2}{c_n^2}\right) \frac{S_{n-1}^2}{c_{n-1}^2}$$

$$= Z_{n-1} + \frac{\sigma_n^2}{c_n^2} - \left(1 - \frac{c_{n-1}^2}{c_n^2}\right) \frac{S_{n-1}^2}{c_{n-1}^2}.$$

Also, since $c_{n-1} \le c_n$ for all $n \ge 1$, the last two terms are nonnegative and \mathcal{F}_{n-1} -measurable. Hence Z_n is a nonnegative almost supermartingale. By Robbins-Siegmund's theorem, we know that $Z_n \to Z$ a.s. for some Z that is finite a.s. and

$$\sum_{n=1}^{\infty} \left(\frac{c_n^2 - c_{n-1}^2}{c_n^2} \right) \frac{S_{n-1}^2}{c_{n-1}^2} < \infty$$

on the set $\{\sum_{n=1}^{\infty} \sigma_n^2/c_n^2 < \infty\}$. Moreover, since c_n^2 is positive and increasing, by **Exercise 9.14.3** we know that

$$\sum_{n=1}^{\infty} \frac{c_n^2 - c_{n-1}^2}{c_n^2} = \infty.$$

Hence if $\sum_{n=1}^{\infty} \sigma_n^2/c_n^2 < \infty$, we must have $S_n^2/c_n^2 \to 0$, and thus $S_n/c_n \to 0$ as $n \to \infty$.

Exercise 9.14.5. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ be the filtration. Suppose $S_n = \sum_{i=1}^n X_i X_{i-1}$. Then S_n is a \mathcal{F}_n -adapted martingale, since by the i.i.d. and zero-mean condition of X_n ,

$$\mathbb{E}(S_n|\mathcal{F}_{n-1}) = S_{n-1} + \mathbb{E}(X_n)X_{n-1} = S_{n-1}.$$

Also,

$$\sigma_n^2 = Var(S_n | \mathcal{F}_{n-1}) = \mathbb{E}\left((S_n - S_{n-1})^2 | \mathcal{F}_{n-1}\right) = \mathbb{E}(X_n^2 X_{n-1}^2 | \mathcal{F}_{n-1}) = \sigma^2 X_{n-1}^2.$$

Here $\sigma^2 = \mathbb{E} X_0^2$ is a fixed constant. Then, by MCT,

$$\mathbb{E} \sum_{n \ge 1} \frac{\sigma_n^2}{n^2} = \sigma^2 \mathbb{E} \sum_{n \ge 1} \frac{X_{n-1}^2}{n^2} = \sigma^2 \sum_{n \ge 1} \frac{\mathbb{E} X_{n-1}^2}{n^2} = \sum_{n \ge 1} \frac{\sigma^4}{n^2} < \infty,$$

then we have $\sum_{n\geq 1}\sigma_n^2/n^2<\infty$ a.s. Hence by the previous exercise, we know that $S_n/n\to 0$ a.s.

Exercise 9.14.6. Define the random variable $P_n := \sum_{k=0}^n p_k = \sum_{k=0}^n \mathbb{P}(X_k = 1 | \mathcal{F}_{k-1})$. We also define a sequence of nonnegative random variables $Z_n := (S_n - P_n)^2$. Then we consider the conditional expectation,

$$\mathbb{E}\left(\frac{Z_n}{P_n^2}\middle|\mathcal{F}_{n-1}\right) = \frac{1}{P_n^2}\mathbb{E}(Z_n - Z_{n-1}|\mathcal{F}_{n-1}) + \frac{Z_{n-1}}{P_{n-1}^2} - \left(1 - \frac{P_{n-1}^2}{P_n^2}\right)\frac{Z_{n-1}}{P_{n-1}^2}.$$

Rewrite the first term as

$$\mathbb{E}(Z_n - Z_{n-1}|\mathcal{F}_{n-1}) = \mathbb{E}\left((S_n - P_n)^2|\mathcal{F}_{n-1}\right) - (S_{n-1} - P_{n-1})^2$$
$$= \mathbb{E}(S_n^2|\mathcal{F}_{n-1}) - 2P_n\mathbb{E}(S_n|\mathcal{F}_{n-1}) + P_n^2 - (S_{n-1} - P_{n-1})^2$$

Notice that since $X_n = \mathbb{1}_{\{X_n = 1\}} = (\mathbb{1}_{\{X_n = 1\}})^2 = X_n^2$,

$$p_n = \mathbb{P}(X_n = 1 | \mathcal{F}_{n-1}) = \mathbb{E}(X_n | \mathcal{F}_{n-1}) = \mathbb{E}(X_n^2 | \mathcal{F}_{n-1}),$$

so we have

$$\mathbb{E}(S_n^2|\mathcal{F}_{n-1}) = S_{n-1}^2 + 2p_n S_{n-1} + p_n$$

$$2P_n \mathbb{E}(S_n|\mathcal{F}_{n-1}) = 2P_n (S_{n-1} + p_n)$$

$$\mathbb{E}\left(P_n^2 - (S_{n-1} - P_{n-1})^2 | \mathcal{F}_{n-1}\right) = -S_{n-1}^2 + 2P_{n-1} S_{n-1} + 2P_{n-1} p_n + p_n^2$$

Combine them together, we then get

$$\mathbb{E}(Z_n - Z_{n-1}|\mathcal{F}_{n-1}) = p_n - p_n^2 = p_n(1 - p_n) \le p_n.$$

The last inequality holds since $0 \leq \mathbb{E}(\mathbb{1}_{\{X_n=1\}}|\mathcal{F}_{n-1}) \leq 1$. Therefore,

$$\mathbb{E}\left(\frac{Z_n}{P_n^2}\middle|\mathcal{F}_{n-1}\right) \le \frac{Z_{n-1}}{P_{n-1}^2} + \frac{p_n}{P_n^2} - \left(1 - \frac{P_{n-1}^2}{P_n^2}\right) \frac{Z_{n-1}}{P_{n-1}^2}.$$

Since Z_{n-1}/P_{n-1}^2 , p_n/P_n^2 are nonnegative and \mathcal{F}_{n-1} -measurable, and $0 \le P_{n-1} \le P_n$, by Robbins-Siegmund's almost supermartingale theorem, we have $\left(\frac{S_n}{P_n}-1\right)^2 \to L < \infty$ a.s. on $\left\{\sum_{n\ge 0} \frac{p_n}{P_n^2} < \infty\right\}$. Notice that by the first result of **Exercise 9.14.3**,

$$\sum_{n>0} \frac{p_n}{P_n^2} = \sum_{n>0} \frac{P_n - P_{n-1}}{P_n^2} < \infty \text{ a.s.}$$

And the second result,

$$\sum_{n>0} \left(\frac{P_n^2 - P_{n-1}^2}{P_n^2} \right) = \infty,$$

We have $\left(\frac{S_n}{P_n}-1\right)^2 \to 0$ a.s.

10.2

10.2.5. $\varphi(x) := \sqrt{x}$ on [0, 1] with Lebesgue measure λ .

Exercise 10.2.6. (Measure preserving) Let $\omega = (\omega_e)_{e \in E} \in \{0,1\}^E$. Since μ is the law of the i.i.d. Bernoulli(p) random variables attached to each $e \in E$, the law of $(\omega_e)_{e \in E}$ and $(\omega_e)_{e \in x+E}$ are the same, i.e. for all $A \subseteq \{0,1\}^E$,

$$\mu((\omega_e)_{e \in E} \in A) = \mu((\omega_{x+e})_{e \in E} \in A).$$

Hence

$$\mu(T_x(\omega) \in A) = \mu((\omega_{x+e})_{e \in E} \in A) = \mu((\omega_e)_{e \in E} \in A).$$

(Ergodicity) Let $x \neq 0$. Let $(X_e)_{e \in E}$ be the random variables such that $X_e(\omega) = \omega_e$ for all $e \in E$. Then for any $k \ge 1$,

$$\{T_x^k \in A\} = \{(\omega_{kx+e})_{e \in E} \in A\} = \{(X_{kx+e}(\omega))_{e \in E} \in A\} \in \sigma((X_{kx+e})_{e \in E}).$$

Therefore

$$A \in \bigcap_{k>1} \sigma((X_{kx+e})_{e \in E}) = \mathcal{T}.$$

Since $(X_e)_{e \in E}$ is i.i.d. Bernoulli(p) random variables under μ , by Kolmogorov's 0-1 law we have $\mu(A) \in \{0,1\}$. Therefore T_x is an ergodic transformation.

Exercise 10.2.7. Let $k \in \{0, 1, \dots\} \cup \{\infty\}$. Then for $\omega \in \Omega$, $N(\omega) = k$ if and only if $N(T_x(\omega)) = k$, i.e.

$${N = k} = {T_k \in {N = k}}.$$

Hence $\{N = k\} \in \mathcal{I}$. Since T_k is ergodic, \mathcal{I} is trivial. So N is a constant a.s.

Exercise 10.2.8. Suppose N=k almost surely for some k>1. Consider a d dimensional cube $B_N = \{(x_1, \dots, x_d) \in \mathbb{Z}^d : -N \le x_i \le N\}.$ Define

 $A_N := \{B_N \text{ intersects more than one } \infty \text{ cluster}\}.$

Then

- (1) $A_N \subseteq A_{N+1}$ for all $N \ge 1$.
- (2) There exists some $N \ge 1$ s.t. $\omega \in A_N$ if and only if ω has more than one ∞ cluster.

Therefore

$$\lim_{N\to\infty}\mathbb{P}(A_N)=\mathbb{P}\left(\bigcup_{N\geq 1}A_N\right)=1.$$

Hence there is some $N \geq 1$ such that $\mathbb{P}(A_N) > 0$. However, since A_N depends only on the edges

24

outside B_N , A_N is independent of $\sigma((X_e)_{e \in E(B_N)})$, so

$$\mathbb{P}(N_{\infty} = 1) \ge \mathbb{P}(A_N) p^{2(2N)(2N+1)} > 0,$$

which leads to a contradiction.

Exercise 10.2.9. Define $u: \left[0, \frac{1}{2}\right] \to [0, 1]$ as u(x) = 4x(1-x) for all $0 \le x \le \frac{1}{2}$. Then u is a bijection defined on $\left[0, \frac{1}{2}\right]$, and its inverse is $u^{-1}(t) = \frac{1-\sqrt{1-t}}{2}$ for all $t \in [0, 1]$.

$$\mathbb{P}(\varphi(x) \le t) = \mathbb{P}\left(-4x(1-x) \ge -t\right) = \mathbb{P}\left(\left(x - \frac{1}{2}\right)^2 \ge \frac{1-t}{4}\right).$$

Since the density $\frac{1}{\pi\sqrt{x(1-x)}}$ is symmetric about 1/2,

$$\mathbb{P}\left(\left(x - \frac{1}{2}\right)^2 \ge \frac{1 - t}{4}\right) = 2\mathbb{P}\left(x \le \frac{1}{2} - \sqrt{\frac{1 - t}{4}}\right) = 2\mathbb{P}\left(x \le u^{-1}(t)\right).$$

So

$$\frac{1}{2}\mathbb{P}\left(\varphi(x) \le t\right) = \int_0^{u^{-1}(t)} \frac{1}{\pi\sqrt{x(1-x)}} dx.$$

Apply the change of variable v = u(x) on the RHS, then it becomes

$$\int_0^{u(u^{-1}(t))} \frac{2}{\pi} \sqrt{\frac{1}{v}} \left| \frac{du^{-1}}{dv} \right| dv = \frac{1}{2\pi} \int_0^t \frac{1}{\sqrt{v(1-v)}} dv = \frac{1}{2} \mathbb{P}(x \le t).$$

Therefore φ is a measure-preserving transform w.r.t. this \mathbb{P} . Since $\{[0,t): 0 \leq t \leq 1\}$ generates $\mathcal{B}([0,1]), \ldots$ So $\mathbb{P}(\varphi(x) \in A) = \mathbb{P}(x \in A)$ for all $A \in \mathcal{B}([0,1])$.

Exercise 12.1.4.

Sol. (Separable) We claim that for any $f \in C[0, \infty)$, there is a sequence of functions of the following form,

$$p(x) = \sum_{j=0}^{\infty} p^{(j)}(x) \mathbb{1}_{[j,j+1]}(x),$$

where $p^{(j)}$ is the polynomial with rational coefficients, converge to f in ρ . Clearly, the set of functions of this form is countable since the cardinality is the same as \mathbb{N}^2 and \mathbb{N} .

Let $f \in C[0,\infty)$. By Weierstrass approximation theorem, for each $j \in \mathbb{Z}_{\geq 0}$, there is a sequence of polynomials with rational coefficients $(P_n^{(j)})_{n\geq 1}$ such that $\sup_{x\in [j,j+1]}|f(x)-P_n^{(j)}(x)|\to 0$ as $n\to\infty$. Define a sequence of functions

$$P_n(x) := \sum_{j=0}^{\infty} P_n^{(j)}(x) \mathbb{1}_{[j,j+1]}(x).$$

Then

$$\rho(f, P_n) = \sum_{j=0}^{\infty} 2^{-j} \frac{\|f - P_n\|_{[j,j+1]}}{1 + \|f - P_n\|_{[j,j+1]}} = \sum_{j=0}^{\infty} 2^{-j} \frac{\|f - P_n^{(j)}\|_{[j,j+1]}}{1 + \|f - P_n^{(j)}\|_{[j,j+1]}}.$$

Let $g_n: j\mapsto g_n(j)=\frac{\|f-P_n^{(j)}\|_{[j,j+1]}}{1+\|f-P_n^{(j)}\|_{[j,j+1]}}$ be a sequence of function on $\mathbb{Z}_{\geq 0}$. Then $|g_n|\leq 1$, and $g_n(j)\to 0$ as $n\to\infty$ since $\|f-P_n^{(j)}\|_{[j,j+1]}\to 0$ as $n\to\infty$. By the dominated convergence theorem,

$$\lim_{n \to \infty} \rho(f, P_n) = \lim_{n \to \infty} \sum_{j=0}^{\infty} 2^{-j} g_n(j) = \sum_{j=0}^{\infty} 2^{-j} \lim_{n \to \infty} g_n(j) = 0.$$

Therefore $(C[0,\infty),\rho)$ is separable.

(Complete) Let $(f_n)_{n\geq 0}$ be a Cauchy sequence in $(C[0,\infty),\rho)$. Fix $k\in\mathbb{Z}_{\geq 0}$. Choose n,m sufficiently large so that $\rho(f_n,f_m)<2^{-k}\frac{\varepsilon}{1+\varepsilon}$, then

$$2^{-k} \frac{\|f_n - f_m\|_{[k,k+1]}}{1 + \|f_n - f_m\|_{[k,k+1]}} \le \rho(f_n, f_m) < 2^{-k} \frac{\varepsilon}{1 + \varepsilon},$$

and we get

$$||f_n - f_m||_{[k,k+1]} \le \varepsilon.$$

Therefore $(f_n|_{[k,k+1]})_{n\geq 1}$ is a Cauchy sequence in C[k,k+1] equipped with the sup-metric, which is a complete metric space by **Exercise 12.1.3**. Moreover, the sup-metric limit of $f_n|_{[k,k+1]}$ is its pointwise limit $\lim_{n\to\infty} f_n|_{[k,k+1]}(x)$. This ensures that $f_n(x)$ converges for all $x\in\mathbb{R}_{\geq 0}$. By setting $f:x\mapsto f(x):=\lim_{n\to\infty} f_n(x)$, we know that f_n converges to f uniformly on any interval of the type [j,j+1]. It follows that f_n converges uniformly to f on any compact sets in $\mathbb{R}_{\geq 0}$.

Also, f is indeed the ρ -limit of f_n : By dominated convergence,

$$\rho(f_n, f) \to \sum_{j \ge 0} 2^{-j} \lim_{n \to \infty} \frac{\|f - f_n\|_{[j,j+1]}}{1 + \|f - f_n\|_{[j,j+1]}} = 0.$$

Finally, since for any $n \in \mathbb{N}$, $\delta > 0$,

$$|f(x+\delta) - f(x)| \le |f(x+\delta) - f_n(x+\delta)| + |f_n(x+\delta) - f_n(x)| + |f_n(x) - f(x)|.$$

Then, we bound the RHS by choosing a n to bound $|f_n(x+s)-f(x+s)|$ for any $s\in [-\Delta,\Delta]$ by the truth of uniform convergence, and then choose $\delta<\Delta$ to bound $|f_n(x)-f_n(x+\delta)|$. This proves that $f\in C[0,\infty)$, and therefore the space $(C[0,\infty),\rho)$ is complete.

Doob's optional stopping theorem:

- 1. The stopping time $\tau < \infty$ a.s.
- 2. $M_{t\wedge au}$ behaves regularly enough, e.g. $M_{t\wedge au}$ is uniformly bounded.

Then $\lim_{t\to\infty} M_{t\wedge au} = M_{ au}$ a.s., and note that $M_{t\wedge au}$ is a martingale,

$$\mathbb{E}\lim_{t\to\infty}M_{t\wedge\tau}=\lim_{t\to\infty}\mathbb{E}M_{t\wedge\tau}=\lim_{t\to\infty}\mathbb{E}M_0=\mathbb{E}M_0.$$

That is, $\mathbb{E}M_{\tau} = \mathbb{E}M_0$.