Cálculo Numérico

Ecuaciones no lineales

Nazareno Faillace 03/06

Departamento de Matemática - FCEyN - UBA

Ecuaciones no lineales

En esta parte de la materia veremos métodos para resolver problemas del tipo:

Dada
$$f:\mathbb{R} \to \mathbb{R}$$
, hallar $r \in \mathbb{R}$ tal que $f(r) = 0$

Al tratarse de métodos iterativos, uno tiene que elegir al menos uno de los siguientes criterios de parada:

- · Tolerancia de error: para un ε dado, el programa para cuando $f(x_n)<\varepsilon$.
- · Número de iteraciones

ı

Calcular $\frac{1}{\sqrt{x}}$ es utilizado para normalizar vectores. Esto es muy común, por ejemplo en el sombreado 3D en videojuegos: la normalización de vectores juega un rol muy importante en calcular cómo incide la luz y cómo se refleja.

 \cdot Mientras uno corre un videojuego, por segundo el CPU debe hacer miles de millones de cálculos \to una pequeña mejora en la eficiencia tiene un gran impacto

Calcular $\frac{1}{\sqrt{x}}$ es utilizado para normalizar vectores. Esto es muy común, por ejemplo en el sombreado 3D en videojuegos: la normalización de vectores juega un rol muy importante en calcular cómo incide la luz y cómo se refleja.

- Mientras uno corre un videojuego, por segundo el CPU debe hacer miles de millones de cálculos \to una pequeña mejora en la eficiencia tiene un gran impacto

1999:

.

· Se implementó una rutina para calcular $\frac{1}{\sqrt{x}}$ que resultó ser cuatro veces más rápida que ejecutar simplemente 1/sqrt(x)

- Se implementó una rutina para calcular $\frac{1}{\sqrt{x}}$ que resultó ser cuatro veces más rápida que ejecutar simplemente 1/sqrt(x)
- Básicamente la idea es aprovechar la representación binaria en la mantisa para hallar un muy buen punto inicial para el método de Newton-Raphson.Luego se realiza una sola iteración y se obtiene una muy buena apoximación de $\frac{1}{\sqrt{x}}$

- Se implementó una rutina para calcular $\frac{1}{\sqrt{x}}$ que resultó ser cuatro veces más rápida que ejecutar simplemente 1/sqrt(x)
- Básicamente la idea es aprovechar la representación binaria en la mantisa para hallar un muy buen punto inicial para el método de Newton-Raphson.Luego se realiza una sola iteración y se obtiene una muy buena apoximación de $\frac{1}{\sqrt{x}}$
- La idea y la implementación se le atribuyen principalmente a Gary Tarolli (aunque él mismo no está seguro de haber sido quien la ideó)

- Se implementó una rutina para calcular $\frac{1}{\sqrt{x}}$ que resultó ser cuatro veces más rápida que ejecutar simplemente 1/sqrt(x)
- Básicamente la idea es aprovechar la representación binaria en la mantisa para hallar un muy buen punto inicial para el método de Newton-Raphson.Luego se realiza una sola iteración y se obtiene una muy buena apoximación de $\frac{1}{\sqrt{T}}$
- La idea y la implementación se le atribuyen principalmente a Gary Tarolli (aunque él mismo no está seguro de haber sido quien la ideó)
- Para quien le interese leer más al respecto: http://www.lomont.org/papers/2003/InvSqrt.pdf

Bisección

Se apoya fuertemente en el Teorema de Bolzano. La idea es la siguiente:

- 1. elegir un intervalo [a,b] tal que f(a) y f(b) tengan distinto signo
- 2. mientras no se cumpla el criterio de parada:
 - 2.1 calcular $x = \frac{b+a}{2}$
 - 2.2 Si f(x) == 0, terminar.
 - 2.3 Si sg(f(x)) == sg(f(a)): tomar a = x
 - 2.4 Si sg(f(x)) == sg(f(b)): tomar b = x
- 3. devolver x

Es decir, para cada $n \in \mathbb{N}$, $x_n = \frac{b_n + a_n}{2}$.

Así, generamos una sucesión de intervalos $[a_n,b_n]$ tal que $b_n-a_n=\left(\frac{b-a}{2^n}\right)$. Notar que $b_n-a_n\xrightarrow{n\to +\infty} 0$, por lo que el método eventualmente siempre converge.

Bisección - Convergencia

Teorema

Sea $f:[a,b] \to \mathbb{R}$ continua, f(a)f(b) < 0. Entonces el método de bisección genera una sucesión $\{x_n\}_{n \geq 0}$ que converge a una raíz r de f y el error es $e_n = |x_n - r| \leq \frac{b-a}{2n+1}$

Ejemplo: sea $f(x) = xe^{-x}$, determinar el número de iteraciones que debe realizar el método de bisección en el intervalo [-2,1] para garantizar que el error sea menor que 10^{-6} .

Por el teorema, tenemos que $e_n \leq \frac{b-a}{2^{n+1}} = \frac{3}{2^{n+1}}$, luego basta hallar n tal que $\frac{3}{2^{n+1}} < 10^{-6}$.

$$\frac{3}{2^{n+1}} < 10^{-6} \iff 2^{n+1} > 3 \cdot 10^{6} \iff n+1 > log_2\left(3 \cdot 10^{6}\right) \approx 21,51653107$$

Entonces, se requieren 21 iteraciones para garantizar que el error sea menor que 10^{-6} .

Para un intervalo [a,b] cualquiera, necesitaríamos n iteraciones, con n tal que $n>\log_2\left((b-a)10^6\right)-1$

Bisección

Ventajas:

- · Si arranco con un intervalo [a,b] tal que f(a)f(b)<0, me garantiza la convergencia.
- \cdot No usa valores de f', entonces lo podemos usar para funciones continuas que no sean derivables en todos los puntos.

Desventajas:

- La convergencia está garantizada, pero puede ser muy lenta (esto se debe, en parte, a que no utiliza información sobre f').
- · Falla cuando hay raíces múltiples: por ejemplo, si $f(x)=x^2$, no existen $a,b\in\mathbb{R}$ tales que f(a)f(b)<0

Comparte ideas del método de bisección (Bolzano) y del método de Newton-Raphson (usar información de la curvatura de f). La idea de este método es la siguiente:

- 1. elegir un intervalo [a, b] tal que f(a) y f(b) tengan distinto signo
- 2. mientras no se cumpla el criterio de parada:

2.1 calcular
$$x=\frac{a\cdot f(b)-b\cdot f(a)}{f(b)-f(a)}$$

2.2 Si $f(x)==0$, terminar
2.3 Si $sg(f(x))==sg(f(a))$: tomar $a==x$
2.4 Si $sq(f(x))==sq(f(b))$: tomar $b==x$

3. devolver x

Es decir, para cada
$$n\in\mathbb{N}$$
, $x_n=\dfrac{a_nf(b_n)-b_nf(a_n)}{f(b_n)-f(a_n)}.$

En este caso también estamos generando una sucesión de intervalos $[a_n,b_n]$ y se puede demostrar que el método converge siempre.

Ventajas:

- Igual que el método de bisección, si elijo un intervalo inicial [a,b] tal que f(a)f(b) < 0, está asegurada la convergencia.
- Al no usar información sobre f', lo podemos usar para funciones continuas que no sean derivables en todos los puntos.
- · Suele ser más rápido que bisección.

Desventajas: similares a las de bisección.

Este método utiliza información sobre f' para hallar una raíz. Consiste en elegir x_{n+1} como la raíz de la recta tangente a f en x_n . La idea del método es la siguiente:

- 1. Elegir x_0 un punto inicial
- 2. Mientras no se cumpla el criterio de parada:

2.1 Calcular el siguiente término de la sucesión:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

3. Devolver el último término calculado de la sucesión.

En síntesis, la sucesión viene definida por
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Ventajas:

- \cdot Generalmente, más rápido que bisección y que regula falsi, pues utiliza información sobre f'
- Generalizable a sistemas de ecuaciones no lineales y a la búsqueda de raíces complejas
- Puede aplicarse a funciones con raíces múltiples (como $f(x)=x^2$)

Desventajas:

- La convergencia depende de la elección de x_0 y encontrar un x_0 adecuado no siempre es trivial.
- Es preferible que $f'(r) \neq 0$
- \cdot No lo podemos utilizar si f no es derivable en todo punto.

Teorema 1

Sea $f\in C^1(\mathbb{R})$ y $\{x_n\}_{n\geq 1}$ una sucesión construida con el método de Newton-Raphson, si $x_n\to r$, entonces f(r)=0

Teorema 2

Sea $f\in C^2([a,b])$ y r un cero simple de f. Sean $I=[r-\alpha,r+\alpha]$ y δ,M positivos tales que:

- $|f'(x)| \ge \delta \quad \forall \ x \in I$
- $|f''(x)| \le M \quad \forall \ x \in I$

Sea $\{x_n\}_{n\geq 1}$ una sucesión construida con este método y $e_n=x_n-r$. Entonces existe $\varepsilon>0$ tal que $I_\varepsilon=[r-\varepsilon,r+\varepsilon]\subset I$ y $|e_n|\to 0$ si $x_0\in I_\varepsilon$. Más aún:

$$|e_{n+1}| \le \frac{1}{2} \frac{M}{\delta} |e_n|^2$$

Teorema 3

Si $f\in C^2(\mathbb{R})$ con f''>0, cambia de signo y f no alcanza su mínimo en x_0 , entonces el método de Newton-Raphson comenzando en x_0 converge.

Teorema 3

Si $f\in C^2(\mathbb{R})$ con f''>0, cambia de signo y f no alcanza su mínimo en x_0 , entonces el método de Newton-Raphson comenzando en x_0 converge.

Ejemplo: mostrar que, para calcular ln(2), Newton-Raphson aplicado a $f(x)=e^x-2$ converge para todo punto inicial $x_0\in\mathbb{R}$

$$f(x) = e^x - 2$$

$$f'(x) = e^x$$

$$f''(x) = e^x > 0 \quad \forall x \in \mathbb{R}$$

Además, f(0)=-1 y $\lim_{x\to+\infty}f(x)=+\infty$, entonces f cambia de signo. Por otro lado, como f no alcanza mínimo, en particular no alcanza mínimo para $x_0\in\mathbb{R}$. Entonces, por el tercer teorema, tenemos que Newton-Raphson converge para cualquier $x_0\in\mathbb{R}$

Observación:

$$e_{n+1} = x_{n+1} - r = \underbrace{x_n - r}_{e_n} - \frac{f(x_n)}{f'(x_n)} = e_n - \frac{f(x_n)}{f'(x_n)}$$
(1)

Si hacemos Taylor en r centrado en x_n :

$$0 = f(r) = f(x_n) + f'(x_n) \underbrace{(r - x_n)}_{-e_n} + \frac{1}{2} (x_n - r)^2 f''(\xi_n)$$

Luego:

$$e_n f'(x_n) - f(x_n) = \frac{1}{2} e_n^2 f''(\xi_n) \xrightarrow{f'(x_n) \neq 0} e_n - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2} \frac{f''(\xi_n)}{f'(x_n)} e_n^2$$

$$\stackrel{(1)}{\Longrightarrow} e_{n+1} = \frac{1}{2} \frac{f''(\xi_n)}{f'(x_n)} e_n^2$$

Donde ξ_n es un punto entre r y x_n .

Ejemplo: sea $f(x) = x^7 + 2x - 1$, probar que el método de Newton-Raphson converge $\forall x_0 > 0$.

Como f es continua, f(0)=-1<0 y $\lim_{x\to+\infty}f(x)=+\infty$ entonces, por Bolzano, f tiene al menos una raíz $r\in(0,+\infty)$.

Como $f'(x)=7x^6+2>0 \quad \forall \ x\in \mathbb{R}$, entonces f es estrictamente monótona creciente y r es única.

Observar también que $f''(x)=42x^5$, entonces $f''(x)>0 \quad \forall \ x\in (0,+\infty)$.

Escribamos la iteración de Newton-Raphson:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Hay dos posibilidades:

$$\cdot x_n < r \xrightarrow{\text{f creciente}} f(x_n) < f(r) = 0 \xrightarrow{f' > 0} \frac{f(x_n)}{f'(x_n)} < 0 \Rightarrow x_{n+1} > x_n$$

$$\cdot x_n > r \xrightarrow{\text{f creciente}} f(x_n) > f(r) = 0 \xrightarrow{f' > 0} \frac{f(x_n)}{f'(x_n)} > 0 \Rightarrow x_{n+1} < x_n$$

Luego, $\{x_n\}_n$ es monótona. Por otro lado, tenemos que:

$$x_{n+1} - r = e_{n+1} = \frac{1}{2} \frac{f''(\xi_n)}{f'(x_n)} e_n^2 > 0 \Rightarrow x_{n+1} > r$$

Entonces, a partir de x_1 , $\{x_n\}_n$ es una sucesión decreciente y acotada inferiormente. Luego $\exists \ \ell \geq r$ tal que $x_n \to \ell$. Por el primer teorema, se tiene que $f(\ell) = 0$. Como vimos que r es la única raíz de f, entonces $\ell = r$.

Resumiendo:

- 1. Chequeamos que f tiene raíz en $(0, +\infty)$.
- 2. Analizamos f y sus derivadas
- 3. Vimos que $\{x_n\}_n$ es monótona decreciente y acotada inferiormente (entonces converge)
- 4. Usamos Teorema 1 para concluir que $\{x_n\}_n$ converge a r

Básicamente es el método de Newton-Raphson, pero usamos diferencias divididas backward en vez de f'. Esto implica que para calcular x_{n+1} usemos x_n y x_{n-1} . La iteración viene dada por:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Para este método necesitamos dos puntos iniciales: x_0 y x_1

Ventajas:

- Generalmente mas rápido que bisección y regula falsi, no tan rápido como Newton-Raphson.
- \cdot No necesitamos evaluar en f'

Desventajas:

· Podría no converger

Comparación de los métodos

