

MATH 186

CLIFTON

RANDOM VARIABLES

MATH 186

Ann Clifton 1

¹Lafayette College

Applied Statistics

OUTLINE

MATH 186

CLIFTO

8.1-8.4: Random Variable

MATH 186

CLIFTO

MATH 186

8.1-8.4: Random Variable

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

MATH 186

8.1-8.4: Random Variable

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

 A discrete random variable can take on only a finite number of values or a countable number of values.

MATH 186

8.1-8.4: Random Variable

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 2

State whether the random variable is discrete or continuous.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 2

State whether the random variable is discrete or continuous.

• Measure the time it takes a randomly selected student to register for the fall term.

MATH 186
CLIFTON

8.1-8.4: RANDOM VARIABLE

DEFINITION 1

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 2

State whether the random variable is discrete or continuous.

• Measure the time it takes a randomly selected student to register for the fall term.

Answer: This variable is continuous.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 3

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 4

State whether the random variable is discrete or continuous.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 3

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 4

State whether the random variable is discrete or continuous.

• Count the number of bad checks drawn on Upright Bank on a day selected at random.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 3

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 4

State whether the random variable is discrete or continuous.

• Count the number of bad checks drawn on Upright Bank on a day selected at random.

Answer: This variable is discrete.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 5

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 6

State whether the random variable is discrete or continuous.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 5

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 6

State whether the random variable is discrete or continuous.

• Pick a random sample of 50 registered voters in a district and find the number who voted in the last county election.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 5

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 6

State whether the random variable is discrete or continuous.

• Pick a random sample of 50 registered voters in a district and find the number who voted in the last county election.

Answer: This variable is discrete.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 7

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 8

State whether the random variable is discrete or continuous.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 7

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 8

State whether the random variable is discrete or continuous.

 Measure the amount of gasoline needed to drive your car 200 miles.

MATH 186
CLIFTON

8.1-8.4: Random Variable

DEFINITION 7

A quantitative variable *x* is called a **random variable** if the value that *x* takes on in a given experiment or observation is a chance or random outcome.

- A discrete random variable can take on only a finite number of values or a countable number of values.e
- A **continuous random variable** can take on any of the countless number of values in a line interval.

EXAMPLE 8

State whether the random variable is discrete or continuous.

 Measure the amount of gasoline needed to drive your car 200 miles.

Answer: This variable is continuous.

Матн 186

CLIFTON

Матн 186

8.1-8.4: Random Variable

DEFINITION 9

A **probability distribution** is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

MATH 186

8.1-8.4: Random Variable

DEFINITION 9

A **probability distribution** is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

EXAMPLE 10

Two dice are rolled and the sum is noted. Find the probability distribution for the variable.

MATH 186

8.1-8.4: Random Variable

DEFINITION 9

A **probability distribution** is an assignment of probabilities to each distinct value of a discrete random variable or to each interval of values of a continuous random variable.

EXAMPLE 10

Two dice are rolled and the sum is noted. Find the probability distribution for the variable.

Sum of												
the $dice(X)$	2	3	4	5	6	7	8	9	10	11	12	
$\Pr(X)$	<u>1</u> 36	<u>1</u> 18	<u>1</u> 12	<u>1</u> 9	<u>5</u> 36	<u>1</u>	<u>5</u> 36	19	<u>1</u> 12	<u>1</u> 18	<u>1</u> 36	

Матн 186

CLIFTON

Матн 186

8.1-8.4: Random Variable

EXAMPLE 11

Dr. Mendoza developed a test to measure boredom tolerance. He administered it to a group of 20,000 adults between the ages of 25 and 35. The possible scores were 0,1,2,3,4,5, and 6, with 6 indicating the highest tolerance for boredom. The test results for this group are shown below. Find the probability distribution for this data.

	Score	0	1	2	3	4	5	6
ſ	# of	1400	2600	3600	6000	4400	1600	400
	subjects							

Матн 186

8.1-8.4: Random Variabli

EXAMPLE 11

Dr. Mendoza developed a test to measure boredom tolerance. He administered it to a group of 20,000 adults between the ages of 25 and 35. The possible scores were 0,1,2,3,4,5, and 6, with 6 indicating the highest tolerance for boredom. The test results for this group are shown below. Find the probability distribution for this data.

Score	0	1	2	3	4	5	6
# of	1400	2600	3600	6000	4400	1600	400
subjects							

Score (X)	0	1	2	3	4	5	6
Pr(X)	0.07	0.13	0.18	0.30	0.22	0.08	0.02

Матн 186

CLIFTON

Матн 186

STATISTICS AND PROBABILITY DISTRIBUTIONS

MATH 186

CLIFTO

STATISTICS AND PROBABILITY DISTRIBUTIONS

Матн 186

8.1-8.4: RANDOM VARIABLE The mean of a discrete population probability distribution is found by the formula

$$\mu = \sum X \cdot \Pr(X)$$

STATISTICS AND PROBABILITY DISTRIBUTIONS

MATH 186
CLIFTON

8.1-8.4: Random Variable The mean of a discrete population probability distribution is found by the formula

$$\mu = \sum X \cdot \Pr(X)$$

 The standard deviation of a discrete population distribution is found by the formula

$$\sigma = \sqrt{\sum (X - \mu)^2 \Pr(X)}$$

DEFINITION 12

The mean of a probability distribution is often called the **expected value** of the distribution.

MATH 186

CLIFTON

Матн 186

8.1-8.4: Random Variable

EXAMPLE 13

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

MATH 186

8.1-8.4: Random Variable

EXAMPLE 13

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 We begin by constructing the probability distribution for the number of heads.

MATH 186

8.1-8.4: Random Variable:

EXAMPLE 13

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	1 8	<u>3</u>	3 8	1 8

Матн 186

8.1-8.4: Random Variable

EXAMPLE 13

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	1	<u>3</u>	<u>3</u>	1
	8	8	8	8

• We now compute $X \cdot Pr(X)$ for each value of X.

MATH 186

8.1-8.4: RANDOM VARIABLE

EXAMPLE 13

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 We begin by constructing the probability distribution for the number of heads.

# of heads (X)	0	1	2	3
Pr(X)	1	<u>3</u>	<u>3</u>	1
	8	8	8	8

• We now compute $X \cdot Pr(X)$ for each value of X.

$$0 \cdot \Pr(0) = 0$$
 $1 \cdot \Pr(1) = \frac{3}{8}$

$$2 \cdot \Pr(2) = \frac{3}{4}$$
 $3 \cdot \Pr(3) = \frac{3}{8}$

Матн 186

8.1-8.4: RANDOM VARIABLE

EXAMPLE 14

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We now compute $X \cdot Pr(X)$ for each value of X.

$$0 \cdot Pr(0) = 0$$

$$1 \cdot \Pr(1) = \frac{3}{8}$$

$$2\cdot \text{Pr}(2)=\frac{3}{4}$$

$$3\cdot \text{Pr}(3)=\frac{3}{8}$$

MATH 186

8.1-8.4: RANDOM VARIABLES

EXAMPLE 14

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

• We now compute $X \cdot Pr(X)$ for each value of X.

$$0 \cdot Pr(0) = 0$$
 $1 \cdot Pr(1) = \frac{3}{8}$

$$2 \cdot \Pr(2) = \frac{3}{4}$$
 $3 \cdot \Pr(3) = \frac{3}{8}$

 Using the formula for the mean of a probability distribution gives the expected value of

$$0+\frac{3}{8}+\frac{3}{4}+\frac{3}{8}=\frac{3}{2}$$

Матн 186

8.1-8.4: Random Variable

EXAMPLE 15

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 Using the formula for the mean of a probability distribution gives the expected value of

$$0+\frac{3}{8}+\frac{3}{4}+\frac{3}{8}=\frac{3}{2}$$

Матн 186

8.1-8.4: Random Variable

EXAMPLE 15

At a carnival, you pay \$2.00 to play a coin-flipping game with three fair coins. You flip three coins at one time and you win \$1.00 for every head that appears. Should your expect to win more money than you pay to play?

 Using the formula for the mean of a probability distribution gives the expected value of

$$0+\frac{3}{8}+\frac{3}{4}+\frac{3}{8}=\frac{3}{2}$$

 Since you earn \$1.00 for each heads, you should expect to win an average of \$1.50 per game. Since the game costs \$2.00 to play, you should expect a net loss of \$0.50 per game.

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLES

Матн 186

8.1-8.4: RANDOM VARIABLE

DEFINITION 16

A **binomial experiment** is an experiment satisfying the following four conditions:

• There is a fixed number of trials, denoted *n*.

Матн 186

8.1-8.4: Random Variable

DEFINITION 16

A **binomial experiment** is an experiment satisfying the following four conditions:

- There is a fixed number of trials, denoted *n*.
- The n trials are independent and repeated under identical conditions.

MATH 186

8.1-8.4: Random Variable

DEFINITION 16

A **binomial experiment** is an experiment satisfying the following four conditions:

- There is a fixed number of trials, denoted *n*.
- The n trials are independent and repeated under identical conditions.
- There are exactly two possible outcomes for each trial.
 These outcomes can be considered <u>success</u> and failure.

MATH 186

8.1-8.4: Random Variable

DEFINITION 16

A **binomial experiment** is an experiment satisfying the following four conditions:

- There is a fixed number of trials, denoted *n*.
- The n trials are independent and repeated under identical conditions.
- There are exactly two possible outcomes for each trial.
 These outcomes can be considered <u>success</u> and failure.
- For each trial, the probability of success is the same. We denote the probability of success by p and the probability of failure by q. Because each trial results in either success or failure, p + q = 1.

MATH 186

8.1-8.4: Random Variable

DEFINITION 16

A **binomial experiment** is an experiment satisfying the following four conditions:

- There is a fixed number of trials, denoted *n*.
- The *n* trials are independent and repeated under identical conditions.
- There are exactly two possible outcomes for each trial.
 These outcomes can be considered <u>success</u> and failure.
- For each trial, the probability of success is the same. We denote the probability of success by p and the probability of failure by q. Because each trial results in either success or failure, p + q = 1.

The central problem of a binomial experiment is to find the probability of *r* successes out of *n* trials.

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLES

Матн 186

8.1-8.4: Random Variable

EXAMPLE 17

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Selecting 20 university students and recording their class rank.

Матн 186

8.1-8.4: Random Variable

EXAMPLE 17

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Selecting 20 university students and recording their class rank.

This is not a binomial experiment because there are more than two outcomes for the variable.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 18

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Selecting 20 university students and recording whether they are on the Dean's list.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 18

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Selecting 20 university students and recording whether they are on the Dean's list.

This is a binomial experiment.

Матн 186

8.1-8.4: Random Variable

EXAMPLE 19

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Drawing five cards from a standard deck of cards without replacement and recording whether they are red or black.

Матн 186

8.1-8.4: Random Variable

EXAMPLE 19

Determine if the following experiment is a binomial experiment. If it is not a binomial experiment, explain why.

 Drawing five cards from a standard deck of cards without replacement and recording whether they are red or black.

This is not a binomial experiment because the probability of success will change with each draw.

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLES

Матн 186

8.1-8.4: Random Variable

EXAMPLE 20

Матн 186

8.1-8.4: Random Variable

EXAMPLE 20

A survey from Teenage Research Unlimited found that 30% of teenage consumers receive their spending money from part-time jobs. We select 10 teenagers at random to determine the probability that exactly 4 of them will have part-time jobs. Find the values p, q, n, and r.

• We will consider having a part-time job a success.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 20

- We will consider having a part-time job a success.
- Since p is the probability of success, the example states that p = 0.3.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 20

- We will consider having a part-time job a success.
- Since p is the probability of success, the example states that p = 0.3.
- We can compute q = 1 p = 0.7. Recall that q is the probability of failure.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 20

- We will consider having a part-time job a success.
- Since p is the probability of success, the example states that p = 0.3.
- We can compute q = 1 p = 0.7. Recall that q is the probability of failure.
- We consider each selected teenager a trial. So n = 10.

MATH 186

8.1-8.4:

EXAMPLE 20

- We will consider having a part-time job a success.
- Since p is the probability of success, the example states that p = 0.3.
- We can compute q = 1 p = 0.7. Recall that q is the probability of failure.
- We consider each selected teenager a trial. So n = 10.
- Since we want to consider the probability that exactly 4 of the selected teenagers will have a part-time job, r=4.

MATH 186

8.1-8.4: RANDOM VARIABLES

MATH 186

8.1-8.4: RANDOM VARIABLE

In a binomial experiment, the probability of *r* successes out of *n* trials is given by the formula

$$\Pr(r) = \frac{n!}{r!(n-r)!} p^r \cdot q^{n-r} = (C_{n,r}) \cdot p^r \cdot q^{n-r}$$

where p is the probability of success in each trial and q is the probability of failure in each trial.

MATH 186

8.1-8.4: RANDOM VARIABLES

Матн 186

8.1-8.4: Random Variable

EXAMPLE 21

A survey from Teenage Research Unlimited found that 30% of teenage consumers receive their spending money from part-time jobs. If we select 10 teenagers at random, what is the probability that exactly 4 of them will have part-time jobs?

• In the previous example we found the following values

$$p = 0.3$$

$$q = 0.7$$

$$n = 10$$

$$r = 4$$

MATH 186

8.1-8.4: RANDOM VARIABLE

EXAMPLE 21

A survey from Teenage Research Unlimited found that 30% of teenage consumers receive their spending money from part-time jobs. If we select 10 teenagers at random, what is the probability that exactly 4 of them will have part-time jobs?

• In the previous example we found the following values

$$p = 0.3$$
 $q = 0.7$
 $n = 10$ $r = 4$

Using the binomial probability distribution formula

$$Pr(4) = \frac{10!}{4!(10-4)!}(0.3)^4(0.7)^{10-4}$$

MATH 186

8.1-8.4: RANDOM VARIABLES

Матн 186

8.1-8.4: Random Variable

EXAMPLE 22

MATH 186

8.1-8.4: Random Variable

EXAMPLE 22

If a die is rolled 20 times, what is the probability that exactly half of the rolls will land on 3?

We begin by noticing that this is a binomial experiment.
 Although there are six possible values on the die, we consider landing on a 3 a success and anything else a failure.

MATH 186

8.1-8.4: Random Variable

EXAMPLE 22

- We begin by noticing that this is a binomial experiment.
 Although there are six possible values on the die, we consider landing on a 3 a success and anything else a failure.
- Next we identify n = 20, r = 10, p = 1/6 and q = 5/6.

MATH 186

8.1-8.4: RANDOM VARIABLE

EXAMPLE 22

- We begin by noticing that this is a binomial experiment.
 Although there are six possible values on the die, we consider landing on a 3 a success and anything else a failure.
- Next we identify n = 20, r = 10, p = 1/6 and q = 5/6.
- Using the binomial probability distribution formula

$$\mathsf{Pr}(\mathsf{Ten\ 3s}) \ = \ \frac{20!}{10!(20-10)!} \left(\frac{1}{6}\right)^{10} \cdot \left(\frac{5}{6}\right)^{20-10}$$

MATH 186
CLIFTON

8.1-8.4: Random Variable

EXAMPLE 22

- We begin by noticing that this is a binomial experiment.
 Although there are six possible values on the die, we consider landing on a 3 a success and anything else a failure.
- Next we identify n = 20, r = 10, p = 1/6 and q = 5/6.
- Using the binomial probability distribution formula

Pr(Ten 3s) =
$$\frac{20!}{10!(20-10)!} \left(\frac{1}{6}\right)^{10} \cdot \left(\frac{5}{6}\right)^{20-10}$$

 ≈ 0.00049

MATH 186

CLIFTO

8.1-8.4: RANDOM VARIABLES

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLES

In a binomial experiment

•
$$\mu = np$$

•
$$\sigma = \sqrt{npq}$$
.

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLE In a binomial experiment

- $\mu = np$
- $\sigma = \sqrt{npq}$.

The mean value μ can be thought of as the **expected** number of successes in the experiment.

EXAMPLE 23

If we roll a single die 20 times, how many times can we expect 3 to roll?

MATH 186

8.1-8.4: Random Variable In a binomial experiment

- $\mu = np$
- $\sigma = \sqrt{npq}$.

The mean value μ can be thought of as the **expected** number of successes in the experiment.

EXAMPLE 23

If we roll a single die 20 times, how many times can we expect 3 to roll?

• Using the binomial experiment formula for μ , we can expect the number of 3s rolled to be

$$\mu = 20 \cdot \left(\frac{1}{6}\right) = 3.\overline{3}$$

MATH 186

CLIFTON

8.1-8.4: RANDOM VARIABLE In a binomial experiment

- $\mu = np$
- $\sigma = \sqrt{npq}$.

The mean value μ can be thought of as the **expected** number of successes in the experiment.

EXAMPLE 24

If we roll a single die 20 times, how many times can we expect 3 to roll? Find the standard deviation for the number of 3s rolled.

MATH 186

CLIFTON

8.1-8.4: Random Variable In a binomial experiment

- $\mu = np$
- $\sigma = \sqrt{npq}$.

The mean value μ can be thought of as the **expected** number of successes in the experiment.

EXAMPLE 24

If we roll a single die 20 times, how many times can we expect 3 to roll? Find the standard deviation for the number of 3s rolled.

• Using the binomial experiment formula for σ , find the standard deviation for the number of 3s rolled to be

$$\sigma = \sqrt{20 \cdot \left(\frac{1}{6}\right) \cdot \left(\frac{5}{6}\right)} = 1.\overline{6}$$