School of Computing and Information Systems COMP90038 Algorithms and Complexity Tutorial Week 11

Sample Answers

The exercises

74. Use the dynamic-programming algorithm developed in Lecture 18 to solve this instance of the coin-row problem: 20, 50, 20, 5, 10, 20, 5.

Answer: We build the table S of optimal values as follows:

$$i:$$
 0 1 2 3 4 5 6 7 $C[i]:$ - 20 50 20 5 10 20 5 $S[i]:$ 0 20 50 50 55 60 75 75

The optimal selection uses the coins at indices 2, 4, and 6.

75. In Week 12 we will meet the concept of *problem reduction*. This question prepares you for that. First, when we talk about the length of a path in an un-weighted directed acyclic graph (dag), we mean the number of edges in the path. (You could also consider the un-weighted graph weighted, will all edges having weight 1.)

Show how to reduce the coin-row problem to the problem of finding a longest path in a dag. That is, give an algorithm that transforms any coin-row instance into a longest-path-in-dag instance in such as way that a solution to the latter provides a solution to the former.

Hint: If there are n coins, use n+1 nodes; let an edge with weight i correspond to picking a coin with value i.

Answer: Assume we have n coins c_1, \ldots, c_n . We generate a weighted dag with n+1 nodes C_0, C_1, \ldots, C_n . The dag has edges as follows:

- n-1 edges $(C_0, C_n), (C_1, C_n), \ldots, (C_{n-2}, C_n)$, each with weight c_n .
- n-2 edges $(C_0, C_{n-1}), (C_1, C_{n-1}), \ldots, (C_{n-3}, C_{n-1}),$ each with weight c_{n-1} .
- and so on, down to two edges (C_0, C_3) and (C_1, C_3) , each with weight c_3 .
- one edge (C_0, C_2) with weight c_2 , and
- one edge (C_0, C_1) with weight c_1 .

Any path in the generated dag corresponds to a legal selection of coins, and the sum of the weights along a given path is exactly the sum of the coins chosen.

76. Consider the problem of finding the length of a "longest" path in a weighted, not necessarily connected, dag. We assume that all weights are positive, and that a "longest" path is a path whose edge weights add up to the maximal possible value. For example, for the following graph, the longest path is of length 15:

Use a dynamic programming approach to the problem of finding longest path in a weighted dag.

Answer: This is easy if we process the nodes in topologically sorted order. For each node t we want to find its longest distance from a source, and to store these distances in an array L. That is, for each t we want to calculate

$$\max(\{0\} \cup \{L[u] + weight[u,t] \mid (u,t) \in E\})$$

So:

$$T \leftarrow ext{TopSort}(\langle V, E \rangle)$$
 — List of nodes sorted topologically for each $t \in T$ (in topological order) do $L[t] \leftarrow 0$ for each $u \in V$ do if $(u,t) \in E$ then if $L[u] + weight[u,t] > L[t]$ then $L[t] \leftarrow L[u] + weight[u,t]$ $max \leftarrow 0$ for each $u \in V$ do if $L[u] > max$ then $max \leftarrow L[u]$ return max

For the sample graph, DFS-based topsort yields the sequence g, h, a, c, b, d, e, f. The "longest path" table L gets filled as follows:

15

77. Design a dynamic programming algorithm for the version of the knapsack problem in which there are unlimited numbers of copies of each item. That is, we are given items I_1, \ldots, I_n that have values v_1, \ldots, v_n and weights w_1, \ldots, w_n as usual, but each item I_i can be selected several times. Hint: This actually makes the knapsack problem a bit easier, as there is only one parameter (namely the remaining capacity w) in the recurrence relation.

Answer: Assume the items I_1, \ldots, I_n have values v_1, \ldots, v_n and weights w_1, \ldots, w_n . Let V(w) denote the optimal value we can achieve given capacity w. With capacity w we are in a position to select any item I_i which weighs no more than w. And if we pick item I_i then the best value we can achieve is $v_i + V(w - w_i)$. As we want to maximise the value for capacity w, we have the recurrence

$$V(w) = \max\{v_i + V(w - w_i) \mid 1 \le i \le n \land w_i \le w\}$$

That leads to this table-filling approach:

for
$$w \leftarrow 1$$
 to W do
$$V[w] \leftarrow max(\{0\} \cup \{v_i + V(w - w_i) \mid 1 \le i \le n \land w_i \le w\})$$
 return $V[W]$

As an example, consider the case W = 10, and three items I_1 , I_2 , and I_3 , with weights 4, 5 and 3, respectively, and values 11, 12, and 7, respectively. The table V is filled from left to right, as follows:

$$w: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$
 $V[w]: \quad 0 \quad 0 \quad 7 \quad 11 \quad 12 \quad 14 \quad 18 \quad 22 \quad 23 \quad 25$

Hence the optimal bag is $[I_1, I_3, I_3]$ for a total value of 25.

78. Work through Warshall's algorithm to find the transitive closure of the binary relation given by this table (or directed graph):

Answer: We run down the columns from left to right, stopping when we meet a 1. This first happens when we are in row 3, column 1. At that point, 'or' row 1 onto row 3 (and so on):