CS 228 : Logic in Computer Science

Krishna, S

Recap and now

- ▶ LTL modelchecking
- ► Complexity of LTL modelchecking : later
- ► Satisfiability of LTL : start today

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- GNBA and NBA are equivalent in expressive power.

▶ Given φ , consider all possible subformulae of φ , their negations

- Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae

- ▶ Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- \blacktriangleright The initial states give guarantees about the truth of φ

- ▶ Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- ightharpoonup The initial states give guarantees about the truth of φ
 - ▶ Identify states of A_{φ} with various sets of subformulae of φ
 - Think of this as some labelling of the states
 - If *B* is a label for state *s*, and if $B = \{\varphi_1, \psi_1, \neg a\}$, then every infinite accepted string *w* starting at state *s* is such that $w \models \varphi_1, \psi_1, \neg a$.
 - ▶ The initial state(s) of A_{φ} must be such that all accepting paths beginning from them satisfy φ

- ▶ Let $\varphi = \bigcirc a$.
- ▶ Subformulae of φ : $\{a, \bigcirc a\}$. Let $B = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - ► {*a*, ∩*a*}

 - \triangleright { $a, \neg \bigcirc a$ }
 - $\blacktriangleright \{ \neg a, \neg \bigcirc a \}$
- ▶ Our initial state(s) must guarantee truth of $\bigcirc a$. Thus, initial states: $\{a, \bigcirc a\}$ and $\{\neg a, \bigcirc a\}$

{*a*, ○*a*}

{ *a*, ¬ ○ *a*}

{¬a, ○a}

 $[\neg a, \neg \bigcirc a]$

$$\rightarrow$$
 $\{a, \bigcirc a\}$

$$\rightarrow \{ \neg a, \bigcirc a \}$$

- Claim: Runs from a state labelled set B indeed satisfy B
- ▶ No good states. All strings accepted.

- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : { $a, b, a \cup b$ }. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- Possibilities at each state : some consistent subset of B holds
 - {a, ¬b, a Ub}
 - $\blacktriangleright \{ \neg a, b, a \cup b \}$
 - ► {*a*, *b*, *a* U*b*}
 - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
- Our initial state(s) must guarantee truth of a Ub. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 $\rightarrow \{a, b, a \cup b\}$

LTL to GNBA : Accepting States

$$\rightarrow \overline{\{a,b,a\,\mathsf{U}b\}}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

Do It Yourself

- ▶ Construct GNBA for $\neg(a \cup b)$.
- ► Construct GNBA for ∩a Ub
- Construct GNBA for ○(a U b)
- ▶ Construct GNBA for $\bigcirc(\bigcirc \neg a \cup \bigcirc (\neg \bigcirc b))$

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - \blacktriangleright { a, c, ψ, φ }
 - $\{\neg a, c, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\{\neg a, \neg c, \psi, \varphi\}$
 - $\{\neg a, \neg c, \neg \psi, \neg \varphi\}$

$$\rightarrow \left| \left\{ \mathbf{a}, \mathbf{c}, \psi, \varphi \right\} \right|$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\{a, \neg c, \neg \psi, \neg \varphi\}$$

$$\longrightarrow \left| \left\{ \neg \mathbf{a}, \mathbf{c}, \psi, \varphi \right\} \right|$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\longrightarrow \{a, \neg c, \neg \psi, \varphi\}$$

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = a U \psi$
- ▶ $F_1 = \{B \mid \psi \in B \to c \in B\}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\rightarrow$$
 $\{a, c, \psi, \varphi\} \in F_1, F_2$

$$|\{\neg a, \neg c, \psi, \varphi\} \in F_1|$$
 \longleftarrow

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{\neg a, c, \psi, \varphi\} \in F_1, F_2$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\longrightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_2$

Putting Together

▶ Given φ , build $Cl(\varphi)$, the set of all subformulae of φ and their negations

Putting Together

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B \text{ and } \psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \cup \psi_2 \in B$
 - $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - ▶ If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - ▶ If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in \mathit{Cl}(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$
- ▶ Prove that $L(\varphi) = L(A_{\varphi})$

• States of A_{φ} are subsets of $CI(\varphi)$

22/2

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim$ NBA A_{φ} : Number of states in $A_{\varphi} \leqslant |\varphi|.2^{|\varphi|}$
- ▶ Lower Bound : Find a family of LTL formulae φ_n such that the state space of $A_{\varphi_n} \geqslant |\varphi|.2^{|\varphi|}$

Complexity of LTL model checking

The hamiltonian path problem is polynomially reducible to the complement of the LTL modelchecking problem.

- Given graph G = (V, E) synthesize in polynomial time a TS and an LTL formula φ
- ▶ Show that *G* has a HP iff $TS \nvDash \varphi$.
- G does not have a HP iff $TS \models \varphi$.
- co-NP hardness of the model-checking problem.
 - Class co-NP=complement of NP.
 - Example: φ in DNF is valid iff $\neg \varphi$ in CNF is unsat.
 - ▶ Since CNF SAT is NP-complete, DNF valid is co-NP complete

Complexity of LTL model checking

- ➤ *TS* is the graph itself, with one new node added, say *b* s.t. all vertices of *G* have an edge to *b*, and *b* has a self loop. Let the label of a node in the TS be the name of the vertex.
- ▶ Write an LTL formula to capture absence of a HP in G. Assume $V = \{v_1, \dots, v_n\}$.
- ▶ The formula $\varphi = \neg \psi$ where ψ is

$$(\lozenge v_1 \wedge \Box (v_1 \to \bigcirc \Box \neg v_1)) \wedge \ldots (\lozenge v_n \wedge \Box (v_n \to \bigcirc \Box \neg v_n))$$

▶ Show that *G* has a HP iff $TS \nvDash \varphi$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

▶ Let π be the path in *TS* such that $\pi \models \psi$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.

- ▶ Let π be the path in TS such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_{i_1}v_{i_2}\ldots v_{i_n}b^{\omega}$, $i_1,\ldots,i_n\in\{1,2,\ldots,n\}$, $i_i\neq i_k$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_{i_1}v_{i_2}\ldots v_{i_n}b^{\omega}$, $i_1,\ldots,i_n\in\{1,2,\ldots,n\}$, $i_i\neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ► The converse is similar : a HP in G extends to a path $\pi = v_{i_1} v_{i_2} \dots v_{i_n} b^{\omega}$ in TS. Clearly, $\pi \models \psi$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ► The converse is similar : a HP in G extends to a path $\pi = v_i, v_i, \dots, v_i, b^{\omega}$ in TS. Clearly, $\pi \models \psi$.
- ▶ So LTL model checking is co-NP hard as HP is NP-complete.
- ▶ Actual complexity of LTL model checking : PSPACE-complete. For this, show that given a LBTM M and a word w, construct in poly time a TS and an LTL formula φ such that M accepts w iff $TS \models \varphi$.