The All-or-Nothing Phenomenon in Sparse Linear Regression

Galen Reeves 1 & Jiaming Xu 1 & Ilias Zadik 2

¹Duke University & ²Massachusetts Institute of Technology

Fitting linear models in high dimensional data has been the focus on many applications, from genomics to MRI to economics.

The Sparse Linear Regression Model

Setup: Let sample size $n \in \mathbb{N}$, feature size $p \in \mathbb{N}$, sparsity $k \in \mathbb{N}$ with k = o(p) and $\sigma^2 > 0$. Assume:

- (unknown) vector $\beta \sim \text{Uniform}\{v \in \{0,1\}^p : ||v||_0 = k\}, ||v||_0 := |\{i \in [p] : v_i \neq 0\}|$
- (known) data matrix $X \in \mathbb{R}^{n \times p}$ with i.i.d. $\mathcal{N}(0,1)$ entries and
- (unknown) noise vector $W \in \mathbb{R}^n$ with i.i.d. $\mathcal{N}\left(0, \sigma^2\right)$ entries.

We make n noisy linear observations of β :

$$Y = X\beta + W$$

Task: Recover β from data (Y, X).

Performance Metric:

Focus on $\hat{\beta} = \hat{\beta}(Y, X)$, with small Mean Squared Error (MSE):

$$MSE\left(\hat{\beta}\right) := \mathbb{E}\left[\|\hat{\beta} - \beta\|_2^2\right].$$

Performance of Random Guess:

For $\hat{\beta} = \mathbb{E}[\beta] = \frac{k}{p}(1, 1, \dots, 1)^{\top}$, $MSE_0 = \mathbb{E}[\|\beta - \mathbb{E}[\beta]\|_2^2] = k(1 - \frac{k}{p})$.

Definition 1 (Strong and weak recovery) We say that $\hat{\beta} = \hat{\beta}(Y, X) \in \mathbb{R}^p$ achieves

- ullet strong recovery if $\limsup_{p o\infty} \mathrm{MSE}\left(\hat{eta}\right)/\mathrm{MSE}_0=0$;
- weak recovery if $\limsup_{p\to\infty} \mathrm{MSE}\left(\hat{\beta}\right)/\mathrm{MSE}_0 < 1$.

Asymptotics: $n=n_p, k=k_p, \sigma=\sigma_p$ and $p\to +\infty$. Also k=o(p) and $\mathrm{SNR}=k/\sigma^2=\Omega(1)$.

This Work

We identify a sample size $n^* = n^*(p, k, \sigma^2)$ for which: if $n < n^*$ weak recovery is **impossible**, but if $n > n^*$ strong recovery is **possible**! An All-or-Nothing phase transition!

Literature Review

$$n^* := \frac{2k \log(p/k)}{\log(1 + k/\sigma^2)}.$$

Positive Results:

- (Rad '11): Under $\sigma^2 = \Theta(1)$, $k \to +\infty$, if $n \ge Cn^*$ for sufficiently large C > 0: strong recovery possible (MLE).
- (Gamarnik, Zadik '17): Under $k/\sigma^2 \to +\infty$ and $k \le e^{\sqrt{\log p}}$, if $n \ge (1+\epsilon) \, n^*$ for any $\epsilon > 0$: strong recovery possible (MLE).

Negative Results: (Aeron, Saligrama, Zhao '10), (Scarlett, Cevher '17):

- If $n = o(n^*)$: weak recovery impossible.
- If $n \le (1 \epsilon) n^*$ for any $\epsilon > 0$: strong recovery impossible.

Information-theoretic Importance of n^*

 $n^* \approx \log \binom{p}{k}$ / $0.5 \log \left(k/\sigma^2 + 1 \right)$. (1) entropy of β Gaussian Channel Capacity

- *Encoding-decoding* scheme of $\beta \in \{0,1\}^p$ with $\|\beta\|_0 = k$ from $Y = X\beta + W \in \mathbb{R}^n$.
- Capacity *achieved*: $\log \binom{p}{k}/n$.

Capacity of the Gaussian Channel: $0.5 \log (\mathrm{SNR} + 1) = 0.5 \log (k/\sigma^2 + 1)$.

Hence, for strong recovery of β from (Y,X): $\log \binom{p}{k}/n \le 0.5 \log \left(k/\sigma^2+1\right)$ or $n^* \le n$.

Main Result

Theorem 1 (All-or-Nothing Phase Transition) Let $\delta \in (0, \frac{1}{2})$ and $\epsilon \in (0, 1)$ be two arbitrary but fixed constants. For constant $C(\delta, \epsilon) > 0$ if $k/\sigma^2 \ge C(\delta, \epsilon)$, then

• When $k \leq p^{\frac{1}{2} - \delta}$ and

$$n < (1 - \epsilon) n^*,$$

then for any $\hat{\beta} = \hat{\beta}(Y, X)$

$$\lim_{p \to \infty} MSE\left(\hat{\beta}\right) / MSE_0 = 1.$$

(weak recovery impossible!)

ullet When k=o(p) and

$$n > (1 + \epsilon) n^*,$$

then for $\hat{\beta}_{\mathrm{MLE}} = \arg\min_{v \in \{0,1\}^p, \|v\|_0 = k} \|Y - Xv\|_2$,

$$\lim_{p \to \infty} MSE \left(\hat{\beta}_{MLE} \right) / MSE_0 = 0.$$

(strong recovery possible!)

Coding Theory Interpretation: "Area Theorem"

Strong recovery at $n = n^*$ implies weak recovery is impossible with $n < n^*$!

- $I_n := I(Y_1^n; X, \beta)$, the mutual information (MI) between β and $(Y_1^n; X)$.
- Step 1: *MI-MMSE inequality:* $I_{n+1} I_n \le 0.5 \log(\mathrm{MMSE}_n/\sigma^2 + 1) \le 0.5 \log(k/\sigma^2 + 1)$, for MMSE_n the minimum MSE with n samples.
- Hence $\forall n, I_n \leq \frac{n}{2} \log(k/\sigma^2 + 1)$, equality if $\forall m < n$: $\mathrm{MMSE}_m = k$.

 Step 2: Strong recovery for some n: $I_n = H(\beta) H(\beta|Y_1^n; X) \approx H(\beta) = \log \binom{p}{k}$.
- Combining: Strong recovery for $n = n^*$, $I_{n^*} \approx \log\binom{p}{k} \approx \frac{n^*}{2} \log(k/\sigma^2 + 1)$ (from (1)) and therefore for $m < n^*$, $\text{MMSE}_m \approx k$, i.e. weak recovery impossible.

Step Behavior Interpretation when k/p a small constant

(Guo, Verdu '05), (Reeves, Pfister '16), (Barbier et al '16):

Tight (replica-predicted) results on asymptotic normalised MMSE when k/p is a constant. Plot MMSE vs n/n^* when $k/p = \epsilon \rightarrow 0$: a limiting step function jumping at $n/n^* = 1$!

Proof Ideas for the Impossibility of Weak Recovery

$$D_f(P||Q) := \mathbb{E}_Q\left[f\left(\frac{dP}{dQ}\right)\right].$$

Cases: TV(P,Q): f(x) = |x-1|/2, $D_{KL}(P||Q)$: $f(x) = x \log x$, $\chi^2(P||Q)$: $f(x) = (x-1)^2$.

Step 1: Impossibility of Testing: Data Look Like Pure Noise

Let P=P(Y,X) the distribution of $(Y=X\beta+W,X)$ of our data (planted distribution). Let Q=Q(Y,X) the distribution of $(Y=\lambda W,X)$ for $X\in\mathbb{R}^{n\times p}$ with i.i.d. $\mathcal{N}(0,1)$ entries, $W\in\mathbb{R}^{n\times 1}$ with i.i.d. $\mathcal{N}(0,\sigma^2)$ entries and $\lambda=\sqrt{k/\sigma^2+1}$ (null model).

We show that for any $n \leq (1 - \epsilon) n^*$,

$$\lim_{p \to +\infty} D_{\mathrm{KL}}(P||Q) = 0.$$

Proof uses conditional second moment method: unconditional gives wrong threshold! Proof Sketch for simpler $\lim_{p\to+\infty} TV(P,Q)=0$. It holds

$$TV(P,Q) \le \sqrt{2D_{\text{KL}}(P||Q)} \le \sqrt{\log(\chi^2(P||Q) + 1)}.$$

By straightforward calculations $\chi^2\left(P||Q\right) = \mathbb{E}_{S \sim \mathrm{Hyp}(p,k,k)}\left[\left(1 - \frac{S}{k + \sigma^2}\right)^{-n}\right] - 1$ and therefore

$$\lim_{p \to +\infty} \chi^2(P||Q) = \begin{cases} 0, & n < n^*/2 \\ +\infty, & n^*/2 < n \end{cases}$$

The case $n^*/2 < n < n^*$ is hard as **lottery effect** takes place: Low probability events cause χ^2 to explode.

- We condition on an *appropriate* high probability event $\mathcal{E} = \mathcal{E}(Y, X)$ with $P(\mathcal{E}) = 1 o(1)$.
- For the *conditional measure* $P_{\mathcal{E}}(\cdot) = P(\cdot \cap \mathcal{E})/P(\mathcal{E})$ we prove

$$\lim_{p \to +\infty} \chi^2(P_{\mathcal{E}}||Q) = 0, \forall n \le (1 - \epsilon)n^*.$$

Hence $TV(P_{\mathcal{E}}, Q) = 0$ or TV(P, Q) = 0.

Step 2: Impossibility of Testing implies Impossibility of Estimation

We prove that for any $\hat{\beta} = \hat{\beta}(Y, X)$,

$$MSE\left(\hat{\beta}\right)/k \ge 1 - 2\left(1 + \frac{\sigma^2}{k}\right)D_{KL}\left(P||Q\right).$$

- A simple quantitative relation connecting estimation and testing.
- Possible of **independent interest**, applies for any n, p, k and β with ℓ_2 norm equal to k.
- Proof based on the MI-MMSE inequality.