SACO OLIVEROS SAPEIRON SISTEMA HELICOIDAL

Ciclo Verano UNI

ÁLGEBRA

Capítulo 2
DIVISIÓN ALGEBRAICA

DIVISIÓN POLINÓMICA

División de Polinomios

Sea la división de polinomios:

Pol. Dividendo
$$\longrightarrow D_{(x)}$$
 Genera Pol. Cociente: $q_{(x)}$ Pol. Residuo (Resto): $R_{(x)}$

Identidad Fundamental de la División:

$$D_{(x)} \equiv d_{(x)} \cdot q_{(x)} + R_{(x)}$$

Propiedades

$$[Q]^{\circ} = grado \ del \ cociente \ ; \ [D]^{\circ} = grado \ del \ dividendo \ ; \ [R]^{\circ} = grado \ del \ residuo \ ; \ [d]^{\circ} = grado \ del \ divisor$$

$$1. - [Q]^{\circ} = [D]^{\circ} - [d]^{\circ}$$

$$2.-[R]_{mas}^{\circ} = [d]^{\circ} - 1$$

TIPOS DE DIVISIÓN

1.- División Exacta

$$R_{(x)}=0$$

2.- División Inexacta

$$R_{(x)} \neq 0$$

Condición General

- Para efectuar la operación los polinomios a dividir se deben presentar completos y ordenados en forma decreciente.
- En el caso de la división exacta los polinomios a dividir se pueden ordenar también en forma creciente.

Métodos para Dividir

- 1. Método de Horner
- 2.- Método de Ruffini

A) MÉTODO DE HORNER

Para éste método los polinomios a dividir deben estar completos y ordenados en forma descendente; además, si faltase un término se le completa con ceros.

Esquema:

coeficientes con signo cambiado.

Ejemplo:

Calcule el cociente y residuo de dividir

$$\frac{4x^4 + 12x^3 + 5x^2 - 2x - 7}{2x^2 + 3x - 1}$$

B) MÉTODO DE RUFFINI

Se utiliza para calcular divisiones de la forma: $\frac{P(x)}{ax+b}$

$$ax + b = 0$$
 Coeficientes del Dividendo $x = -\frac{b}{a}$ Cociente Residuo

1er Caso: (a=1)

Calcule cociente y residuo

2do Caso: (a≠1)

Calcule el cociente de dividir:

$$\frac{6x^3 - x^2 + 7x + 3}{2x - 1}$$

$$q(x) = 3x^2 + x + 4$$
SACO OLIVEROS

C) TEOREMA DEL RESTO

$$\frac{D_{(x)}}{ax+b} \longrightarrow Resto: R = D_{\left(-\frac{b}{a}\right)}$$

Forma práctica

- **1**. El divisor se igual a cero (ax + b = 0)
- 2. Se despeja la variable $(x = -\frac{b}{a})$
- 3. Se reemplaza en el dividendo Obteniendo el resto $(R = D_{(-\frac{b}{a})})$

EJEMPLO

Calcule el resto de la siguiente división:

$$\frac{x^4 - 2x^3 + 2x + 6}{x - 2}$$

Resolución

1)
$$x - 2 = 0$$

2)
$$x = 2$$

3) Reemplazando en el numerador

$$R = (2)^{4} - 2(2)^{3} + 2(2) + 6$$

$$R = 10$$

Para calcular el residuo hacemos $d_{(x)}=0$ y despejamos equivalencias que nos permita reducir el grado del dividendo hasta lograr o bien cero o bien un polinomio de grado menor a la del divisor

Ejemplo

Hallar el residuo en :
$$\frac{(x^2+x-3)^3+x^2+3x+1}{x^2+x-4}$$

Hacemos:
$$x^2 + x - 4 = 0 \rightarrow x^2 = -x + 4$$

Reemplazando en el dividendo :
$$R_{(x)} = (4-3)^2 - x + 4 + 3x + 1$$

$$R_{(x)} = 2x + 6$$

COCIENTES NOTABLES (C.N.)

DEFINICIÓN

Son aquellos cocientes que se pueden obtener en forma directa, sin la necesidad de efectuar la operación de división.

Proviene de una División Notable de la forma:

$$\frac{x^a \pm y^b}{x^c \pm y^d}$$

EJEMPLOS

$$\frac{x^{12}-y^{16}}{x^3-y^4}$$
; $\frac{p^{30}-q^{24}}{p^5+q^4}$; $\frac{w^{99}+z^{77}}{w^9+z^7}$

TEOREMA

Sea la División:

$$\frac{x^a \pm y^b}{x^c \pm y^d}$$

Se cumple que:

$$N = \frac{a}{c} = \frac{b}{d}$$

Donde:

$$N = \# terminos$$

EJEMPLO

Halle la cantidad de términos del C.N. que genera la siguiente división:

$$\frac{x^{20}-y^{30}}{x^4-y^6}$$

Resolución:

$$N = \frac{20}{4} = \frac{30}{6} \longrightarrow N = 5$$

El C.N. tiene 5 términos

PROBLEMA

Halle la cantidad de términos del C.N. que genera la siguiente división:

$$\frac{x^{6p-2}-y^{3p+11}}{x^5-y^4}$$

Resolución:

Se cumple que:

$$N = \frac{6p-2}{5} = \frac{3p+11}{4}$$

$$4(6p-2) = 5(3p+11)$$

$$9p = 63 \longrightarrow p = 7 \longrightarrow \frac{x^{40} - y^{32}}{x^5 - y^4}$$

$$N = \frac{40}{5} = 8$$
 \longrightarrow El C.N. tiene 8 términos

CASOS

Son 3 casos:

CASO 1:

$$\frac{x^a - y^b}{x^c - y^d}$$

Todos son (+)

CASO 2:

N debe ser par

$$\frac{x^a - y^b}{x^c + y^d}$$

 $T_1, T_3, T_5, \dots son (+) : Lugar impar$

CASO 3:

N debe ser impar

$$\frac{x^a + y^b}{x^c + y^d}$$

$$T_2, T_4, T_6, \dots son(-): Lugar par$$

EJEMPLOS

CASO 1:

$$\frac{x^{15} - y^{10}}{x^3 - y^2}$$

$$x^{12} + x^9y^2 + x^6y^4 + x^3y^6 + y^8$$

Todos son (+)

CASO 2:

N debe ser par

$$\frac{x^{18}-y^{12}}{x^3+y^2}$$

$$x^{15} - x^{12}y^2 + x^9y^4 - x^6y^6 + x^3y^8 - y^{10}$$

 $T_1, T_3, T_5, ... son (+) : Lugar impar$

CASO 3:

N debe ser impar

$$\frac{x^{15} + y^{10}}{x^3 + y^2}$$

$T_2, T_4, T_6, \dots son(-): Lugar par$

$$x^{12} - x^9y^2 + x^6y^4 - x^3y^6 + y^8$$

FÓRMULA DEL TÉRMINO GENERAL

Sea la división:

$$\frac{x^a \pm y^b}{x^c \pm y^d}$$

El término de lugar k se halla con la siguiente fórmula:

$$T_k = (signo)(x^c)^{N-k}(y^d)^{k-1}$$

EJEMPLO

Halle el término de lugar 7 en:

$$\frac{x^{30}-y^{20}}{x^3-y^2}$$

Resolución:

$$N=\frac{30}{3}=\frac{20}{2}\longrightarrow N=10$$

Séptimo término $\longrightarrow k = 7$

$$T_7 = (+)(x^3)^{10-7}(y^2)^{7-1}$$

$$T_7 = (x^3)^3 (y^2)^6$$

$$T_7 = x^9 y^{12}$$

TÉRMINO CENTRAL (T_c)

Está dado por:

$$T_c = T_{\frac{N+1}{2}}$$

(N debe ser impar)

EJEMPLO

Halle el término central en:

$$\frac{x^{44} + y^{33}}{x^4 + y^3}$$

Resolución:

$$\frac{x^{44} + y^{33}}{x^4 + y^3} \quad | \quad N = \frac{44}{4} = 11$$

$$T_c = T_{\frac{11+1}{2}} \longrightarrow T_c = T_6$$

El T_c ocupa el lugar 6.

Calculamos el T_6 :

$$T_6 = (-)(x^4)^{11-6}(y^3)^{6-1}$$

$$T_6 = -(x^4)^5 (y^3)^5$$

$$T_6 = -x^{20}y^{15}$$

 Respecto a la división del polinomio, escriba verdadero (V) o falso (F) según corresponda, luego marque la alternativa correcta.

$$\frac{2x^6 + 3x^2 + mx + n}{x^2 - 2x + 1}$$

- ➤ El grado del divisor es 2. ()
- ➤ El grado del cociente es 4. ()
- El mayor grado del residuo es 1. ()

RESOLUCIÓN

$$[D] = 6; [d] = 2$$

$$II. - [q]^{\circ} = [D]^{\circ} - [d]^{\circ} \rightarrow [q]^{\circ} = 6 - 2 \rightarrow [q]^{\circ} = 4$$

III. -Por teoria:
$$[R]_{max}^{\circ} = [d]^{\circ} -1$$

$$[R]_{max}^{\circ} = 2 - 1$$
 $[R]_{max}^{\circ} = 1$

: VVV

2. Al dividir P(x) entre $(x^2 + 1)$ se obtiene como cociente $2x^3$ y como residuo x + 1. Evalúe P(1).

Resolución

Por el algoritmo de la división:

$$P_{(x)} = (x^2 + 1)(2x^3) + x + 1$$

evaluamos para x = 1

$$P_{(1)} = (1^2 + 1)(2(1)^3) + 1 + 1$$

:
$$P_{(1)} = 6$$

Halle el cociente de la siguiente división:

$$\frac{10x^5 + x^4 + 6x^2 + x + 3}{5x^2 - 2x + 1}$$

Resolución

el cociente sera :

$$\therefore q_{(x)} = 2x^3 + x^2 + 1$$

 Calcule la suma del cociente y resto de la siguiente división

$$\frac{9x^4 - x^2 + 6x + 4}{3x - 1}$$

Resolución

se obtiene:

$$q_{(x)} = 3x^3 + x^2 + 2$$

$$R_{(x)} = 6$$

$$\therefore q_{(x)} + R_{(x)} = 3x^3 + x^2 + 8$$

Si la siguiente división es exacta

$$\frac{x^5 + 2x^2 + mx + n}{x^2 + x - 1}$$

calcule mn.

Resolución

$$Por\ dato:\ R_{(x)}=0$$

$$\rightarrow m + 3 = 0 \land n - 1 = 0$$

$$m = -3 \wedge n = 1$$

$$m \cdot m \cdot n = -3$$

 Halle el resto de la siguiente división polinómica

$$\frac{3x^{2017} - 2x^2 + x + 3}{x - 1}$$

Resolución

aplicamos el teorema del resto : x - 1 = 0

$$\rightarrow x = 1$$

Reemplazando en el dividendo:

$$R_{(x)} = 3(1)^{2017} - 2(1)^2 + 1 + 3$$

$$\therefore R_{(x)} = 5$$

Halle el grado del cociente de

$$\frac{(x+1)(x-2)^2(x+3)^3...(x-8)^8}{x^8+x-1}$$

Resolución

Hallamos el grado del dividendo: $1 + 2 + 3 + \dots + 8 = \frac{8.9}{2}$

$$[D]^{\circ} = 36$$

$$\rightarrow [d]^{\circ} = 8$$

por lo tanto .el grado del cociente es :

$$\therefore [q]^{\circ} = 36 - 8 = 26$$

8. Al dividir P(x) entre $(x^4 + 2x + 2)$ se obtiene como cociente $(4x^2 + 3)$ y como resto ax + 6. Halle el término independiente del dividendo.

Resolución

Por el algoritmo de la división:

$$P_{(x)} = (x^4 + 2x + 2).(4x^2 + 3) + ax + 6$$

 $Piden P_{(0)}$; reemplazamos

$$P_{(0)} = (8^2 + 2.0 + 2)(4.0^2 + 3) + \alpha.0 + 6$$

$$\therefore P_{(0)} = 12$$

Si los polinomios

$$P(x) = x^4 + mx^2 + n \ y \ d(x) = x^2 - x + 1$$
son divisibles, calcule $m + n$.

Resolución

 $si\ P_{(x)}\ y\ d_{(x)}\ son\ divisibles\ o \ R_{(x)}=0$

Se cumple:

$$\rightarrow m - 1 = 0 \land n - m = 0$$

$$m = 1 \land n = m = 1$$

$$\therefore m+n=2$$

Si el resto de la siguiente división es un monomio mónico y lineal

$$\frac{4x^4 + ax^2 + (b+1)x + c}{2x^3 + 1}$$

calcule $b^a + b^b + b^c$.

Resolución

Por dato: Residuo monico y lineal

$$\rightarrow a = 0 \land b - 1 = 1 \land c = 0$$

$$a = 0 \land b = 2 \land c = 0$$

$$b^a + b^b + b^c = 6$$

Halle el resto de la división

$$\frac{x^4 - nx^3 + (1 - 2n)x^2 + (1 - n)x - 2n}{x^2 - nx - 2n}$$

Resolución

piden el resto:

$$\therefore R_{(x)} = x$$

De la división

$$\frac{x^5 + 3x^4 + 5x^3 + ax^2 + bx + 1}{x + 1}$$

se obtiene un cociente de coeficientes consecutivos. Calcule a + b.

Resolución

Por dato:

$$a-3=4 \wedge b+3-a=5$$

$$a = 7$$
 $b + 3 - 7 = 5$

$$b = 9$$

$$\therefore a+b=16$$

Halle el resto de la siguiente división

$$\frac{x^{13} - 625x^9 + x^2 - 4x + 1}{x - 5}$$

Resolución

Por el teorema del resto: $x - 5 = 0 \rightarrow x = 5$

$$R_{(x)} = (5)^{13} - 625.(5)^{9} + (5)^{2} - 4(5) + 1$$

$$R_{(x)} = (5)^{13} - (5)^{4}.(5)^{9} + (5)^{2} - 4(5) + 1$$

$$R_{(x)} = (5)^{13} - (5)^{13} + (5)^{2} - 4(5) + 1$$

 $\therefore R_{(x)} = 6$

Halle el resto de la división

$$\frac{(x^2-3)^8+x^3+1}{x^2-4}$$

Resolución

Por el teorema del resto: $x^2 - 4 = 0 \rightarrow x^2 = 4$

Reemplazando:

$$R_{(x)} = (4-3)^8 + x^2 \cdot x + 1$$
$$R_{(x)} = 1 + 4 \cdot x + 1$$

$$\therefore R_{(x)} = 4x + 2$$

15. Se tiene la siguiente división

$$\frac{x^{15} + 2x^{12} + x^3 - 2}{x^6 + x^3 + 1}$$

halle el término independiente del cociente.

Resolución

Por el teorema del resto:
$$x^6 + x^3 + 1 = 0$$
 $\rightarrow (x^6 + x^3 + 1)(x^3 - 1) = 0.(x^3 - 1)$

$$x^9 - 1 = 0 \rightarrow x^9 = 1$$
; Reemplazando en el dividendo:

$$R_{(x)} = x^9 \cdot x^6 + 2x^9 \cdot x^3 + x^3 - 2 \rightarrow R_{(x)} = (1)(-x^3 - 1) + 2(1)x^3 + x^3 - 2$$

$$\rightarrow R_{(x)} = 2x^3 - 3$$
; Por el algoritmo de la división:

$$x^{15} + 2x^{12} + x^3 - 2 \equiv (x^6 + x^3 + 1)q_{(x)} + 2x^3 - 3$$
; reemplazando $x = 0$

$$(0)^{15} + 2(0)^{12} + (0)^3 - 2 \equiv ((0)^6 + (0)^3 + 1)q_{(0)} + 2(0)^3 - 3$$

16. Halle el grado del dividendo en

$$\frac{x^n + x + 2}{x - 1}$$

si la suma de coeficientes del cociente es 39.

Resolución

Por dato:

$$1.(n-1) + 2 = 39$$

$$n = 38$$

$$\therefore [D]^{\circ} = 38$$

Halle el resto de la división

$$\frac{x^{2017}}{x^2 + x + 1}$$

Resolución

Por el teorema del resto: $x^2 + x + 1 = 0 \rightarrow (x^2 + x + 1)(x - 1) = 0.(x - 1)$

$$x^3 - 1 = 0 \quad \rightarrow x^3 = 1$$

Reemplazando en el dividendo: $R_{(x)} = (x^3)^{672}.x$

$$R_{(x)} = (1)^{672}.x$$

$$\therefore R_{(x)} = x$$

19. Sea
$$P(x) = x^3 + ax^2 + bx + c$$
, tal que $(x + 4)$ y $(x - 3)$ son factores de P, además $P(4) = 48$.

A)
$$P(0) = 24$$

A)
$$P(0) = 24$$
 B) $P(1) = -30$

C)
$$P(0) + P(1) = -6$$
 D) $P(1) = 30$

E)
$$P(4) = -48$$

Resolución

$$Sea\ P_{(x)} = (x+4)(x-3)(x+m)$$
; $Dato:\ P_{(4)} = 48$

Reemplazando:

$$48 = (8)(1)(m+4)$$

$$m = 2$$

$$P_{(x)} = (x+4)(x-3)(x+2)$$

$$para x = 1$$
:

$$P_{(1)} = (5)(-2)(3)$$

$$P_{(1)} = -30$$

20. Dado el polinomio

$$P(x) = x^4 + ax^3 + bx^2 + cx + 120$$

que es divisible separadamente por los polinomios (x + 2), (x + 3) y (x + 5). Calcule a + b + c.

Resolución

$$Sea P_{(x)} = (x+2)(x+3)(x+5)(x+m)$$

Se observa :
$$P_{(0)} = 120$$
 ; reemplazando :

$$120 = (2)(3)(5)(m)$$

$$m = 4$$

$$P_{(x)} = (x+2)(x+3)(x+5)(x+4)$$

$$P_{(x)} = x^4 + 14x^3 + 71x^2 + 154x + 120$$

$$\rightarrow a = 14$$
; $b = 71 y c = 154$

$$\therefore a + b + c = 239$$

