

Reduction of ER Model to Relational Model

by

Dr. Pratik Roy

ER-to-Relational Mapping Algorithm

☐ Mapping of Regular Entity Types ■Mapping of Weak Entity Types ☐ Mapping of Binary 1:1 Relation Types ☐ Mapping of Binary 1:N Relationship Types ☐ Mapping of Binary M:N Relationship Types ☐ Mapping of Multivalued attributes ☐ Mapping of N-ary Relationship Types □Options for Mapping Specialization or Generalization ☐ Mapping of Aggregation

The ER conceptual schema diagram for the COMPANY database

Mapping of Regular Entity Types

\square For each regular (strong) entity type E in the ER schema, create a
relation R that includes all the simple attributes of E.
□Include only the simple component attributes of a composite attribute.
\square Choose one of the key attributes of E as the primary key for R .
\square If the chosen key of E is a composite, then the set of simple attributes that form it will together form the primary key of R .

Mapping of Regular Entity Types

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
-------	-------	-------	------------	-------	---------	-----	--------

DEPARTMENT

Dname <u>Dnumber</u>

PROJECT

Pname	<u>Pnumber</u>	Plocation
-------	----------------	-----------

- ■We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
- ■SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

Mapping of Weak Entity Types

- □ For each weak entity type W in the ER schema with owner entity type E, create a relation R and include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- \square Include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- □The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.
- \square If there is a weak entity type E_2 whose owner is also a weak entity type E_1 , then E_1 should be mapped before E_2 to determine its primary key first.

Mapping of Weak Entity Types

□Example

- Create the relation DEPENDENT correspond to the weak entity type DEPENDENT.
- Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
- The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

DEPENDENT

Mapping of Binary 1:1 Relationship Types

- □ For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- ☐ There are three possible approaches:
 - Foreign Key (2 relations) approach: Choose one of the relations, say S and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.

Example

- 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.
- Include the primary key of the EMPLOYEE relation as foreign key in the DEPARTMENT relation.
- Include simple attribute Start_date of MANAGES relationship type in DEPARTMENT relation.

DEPARTMENT

Mapping of Binary 1:1 Relationship Types

- Merged relation (1 relation) option: An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
- □Cross-reference or relationship relation (3 relations) option: The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

Mapping of Binary 1:N Relationship Types

- □ For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
 □ Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
 □ Include any simple attributes of the 1:N relation type as attributes of S.
 □ Example
 - 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION.
 - For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation.

Mapping of Binary M:N Relationship Types

■For each regular binary M:N relationship type R, create a new relation S to represent R. This is a relationship relation.
□Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
\square Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.

- M:N relationship type WORKS_ON is mapped by creating a relation WORKS_ON in relational database schema.
- The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON.
- Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is combination of foreign key attributes {ESSN, PNO}.

Mapping of Multivalued attributes

□ For each multivalued attribute A, create a new relation R.
□ R will include an attribute corresponding to A, plus the primary key attribute K as foreign key in R of the relation that represents the entity type or relationship type that has A as a multivalued attribute.
□ The primary key of R is the combination of A and K.
□ If the multivalued attribute is composite, we include its simple components.

- The relation DEPT_LOCATIONS is created.
- DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER as foreign key represents primary key of DEPARTMENT relation.
- Primary key of R is the combination of {DNUMBER, DLOCATION}.

Mapping of N-ary Relationship Types

\square For each n-ary relationship type R, where n>2, create a new relationship
S to represent R.
□Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
□Include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.

- The relationship type SUPPLY in next slide.
- This can be mapped to relation SUPPLY shown in the relational schema, whose primary key is combination of three foreign keys {SNAME, PARTNO, PROJNAME}.

Mapping of N-ary Relationship Types

Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Mapping of Specialization/Generalization

☐Method 1:

- Form a schema for higher-level entity
- Form a schema for each lower-level entity set, include primary key of higher-level entity set and local attributes

schema	attributes
person	ID, name, street, city
student	ID, tot_cred
employee	ID, salary

Drawback: getting information about, an employee requires accessing two relations, one corresponding to low-level schema and one corresponding to highlevel schema.

Mapping of Specialization/Generalization

☐Method 2

schema	attributes
person	ID, name, street, city
student	ID, name, street, city, tot_cred
employee	ID, name, street, city, salary
	2000

Drawback: name, street and city may be stored redundantly for people who are both students and employees.

Mapping of Aggregation

- ☐To represent aggregation, create a schema containing
 - Primary key of the aggregated relationship
 - Primary key of the associated entity set
 - Any descriptive attributes
- \square In our example:
 - Schema eval_for is:eval_for (s_ID, project_id, i_ID, evaluation_id)
 - The schema proj_guide is redundant.