

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	тформатика и енетем	ы управления»	
КАФЕДРА «Прог	раммное обеспечение	е ЭВМ и информационны	е технологии»
		Отиот	
		Отчёт	
	по лабора	горной работе №	17
		- • P • - • • • • • • • • •	
Название: <u>Ф</u>	ормирование эфф	рективных программ	на Prolog
Цисциплина:	Функционально	е и логическое програ	аммирование
Студент	ИУ7-65Б		Д.В. Сусликов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
	(1 p)a)	(, , , , , , , , , , , , , , , , , ,	(======================================

(Подпись, дата)

(И.О. Фамилия)

Задание

- 1. Максимум из двух чисел
 - (а) без использования отсечения,
 - (b) с использованием отсечения;
- 2. Максимум из трех чисел
 - (а) без использования отсечения,
 - (b) с использованием отсечения;

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела.

Для одного из вариантов вопроса и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы

Листинг:

```
domains

num = integer.

predicates

max(num, num, num).

max_cut(num, num, num).

clauses

max_cut(X1, X2, X1):- X1 >= X2, !.

max_cut(_, X2, X2).

max(X1, X2, X1):- X1 >= X2.

max(X1, X2, X1):- X2 > X1.
```

Листинг:

```
domains
            num = integer.
       predicates
            max3(num, num, num, num).
            max3_cut(num,num, num, num).
       clauses
            \max 3(X1, X2, X3, X1):-X1 >= X2, X1 >= X3.
            \max 3(X1, X2, X3, X2):-X2 > X1, X2 >= X3.
10
            \max 3(X1, X2, X3, X3):-X3 > X1, X3 > X2.
11
12
            \max_{x \in \mathbb{R}} 3_{\text{cut}}(X1, X2, X3, X1) := X1 > X2, X1 > X3, !.
13
            \max_{3} \text{cut}(\_, X2, X3, X2) :- X2 > X3, !.
14
            max3_cut(_, _, X3, X3).
15
```

Таблица.2a) max3(2, 3, 1, Res)

№ шага	Состояние резольвенты и вывод	Для каких термов запускается алгоритм унификации и каков результат	Дальнейшие действия
0	max3(2, 3, 1, Res)		
1	max3(2, 3, 1, Res)	T1 = max3(2, 3, 1, Res) T2 = max3(X1, X2, X3, X1) Успех. Унифицируемы. Подстановка:	Замена на тело предложения
		$\{X1 = 2, X2 = 3, X3 = 1, X1 = Res\}$	
2	2 >= 3, 2 >= 1	2 >= 3 Ложь.	Откат
3	max3(2, 3, 1, Res)	T1 = max3(2, 3, 1, Res) T2 = max3(X1, X2, X3, X2) Успех. Унифицируемы. Подстановка: {X1 = 2, X2 = 3, X3 = 1, X2 = Res}	Замена на тело предложения
4	3 >2, 3 >= 1	3 >2 Верно.	Замена на тело предложения (пустое)
5	3 >= 1	3 >1 Верно	Замена на тело предложения (пустое)
6	Резольвента пуста Вывод Res = 3		Откат.

7	max3(2, 3, 1, Res)	T1 = max3(2, 3, 1, Res) T2 = max3(X1, X2, X3, X3) Успех. Унифицируемы. Подстановка: {X1 = 2, X2 = 3, X3 = 1, X3 = Res}	Замена на тело предложения
8	1 >2, 1 >3	1 >2 Неверно. T1 = max3(2, 3, 1, Res)	Откат. Переход к следующему
9 max	max3(2, 3, 1, Res)	T2 = max3_cut() Неудача. Не унифицируемы.	заголовку БЗ.
	•••		
10	max3(2, 3, 1, Res)	T1 = max3(2, 3, 1, Res) T2 = max3_cut() Неудача. Не унифицируемы.	Все предложения БЗ пройдены.
11	Резольвента.		Завершение работы программы.

Таблица.2b) max3_cut(2, 3, 1, Res)

№ шага	Состояние резольвенты и вывод max3_cut(2, 3, 1, Res)	Для каких термов запускается алгоритм унификации и каков результат	Дальнейшие действия
1	max3_cut(2, 3, 1, Res)	T1 = max3_cut(2, 3, 1, Res) T2 = max3() Неудача. Не унифицируемы.	Переход к следующему заголовку БЗ.
2	max3_cut(2, 3, 1, Res)	T1 = max3_cut(2, 3, 1, Res) T2 = max3_cut(X1, X2, X3, X1) Успех. Унифицируемы. Подстановка: {X1 = 2, X2 = 3, X3 = 1, X1 = Res}	Замена на тело предложения
3	2 >3, 2 >1, !	2 >3 Ложь.	Откат
4	max3_cut(2, 3, 1, Res)	T1 = max3_cut(2, 3, 1, Res) T2 = max3_cut(_, X2, X3, X2) Успех. Унифицируемы. Подстановка: {X1 = 2, X2 = 3, X3 = 1, X2 = Res}	Замена на тело предложения
5	3 > 1, !	3 >1 Верно.	Замена на тело предложения (пустое)
6	!	! Истина.	Замена на тело предложения (пустое)
7	Резольвента пуста Вывод Res = 3		Откат.

8	!	!	Замена на тело
		Завершение процедуры	предложения
			(пустое)
9	Резольвента пуста.		Завершения работы
			программы

Ответы на вопросы

1) В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?)

Система запускает алгоритм унификации, когда резольвента не пуста.

2) Каковы назначение и результат использования алгоритма унификации?

Алгоритм унификации необходим для того, чтобы подобрать знание, чтобы ответить на поставленный вопрос. Результатом работы алгоритма является значение переменной «неудача». Если неудача = 1, то унификация невозможна; если неудача = 0, то унификация прошла успешно, а побочным действием работы алгоритма является содержимое результирующей ячейки – результирующая подстановка.

Какое первое состояние резольвенты?
 Вопрос.

4) Как меняется резольвента?

Резольвента меняется в 2 этапа:

- Редукция (замена вопроса на тело правила, заголовок которого был успешно унифицирован);
- Применение подстановки.
- 5) В каких пределах программы уникальны переменные?

Именованные переменные уникальны в рамках предложения, анонимные – везде.

6) Как применяется подстановка, полученная с помощью алгоритма унификации?
В результате подстановки связываются переменные, которые еще не были связаны. После связывания всех утверждений, будет напечатано значение связанных переменных. 7) В каких случаях запускается механизм отката?

В случае, когда унификация на текущем шаге завершается тупиковой ситуацией, или был получен ответ «да».