Pondichéry. 2017. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

1) D'après la formule des probabilités totales

$$p(C) = p(A) \times p_A(C) + p(\overline{A}) \times p_{\overline{A}}(C) = 0,98x + 0,95(1-x) = 0,03x + 0,95.$$

2) Si de plus P(C) = 0.96, alors 0.03x + 0.95 = 0.96 puis 0.03x = 0.01 ou encore $x = \frac{1}{3}$. Dans ce cas, $p(A) = \frac{1}{3}$ et $p(\overline{A}) = 1 - \frac{1}{3} = \frac{2}{3} = 2 \times p(A)$.

Si 96% des tablettes sont commercialisables, la probabilité que la tablette provienne de la chaîne B est deux fois supérieure à la probabilité que la tablette provienne de la chaîne A.

Partie B

- 1) On sait que l'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Ici, $\frac{1}{\lambda} = 5$ ou encore $\lambda = \frac{1}{5} = 0, 2$.
- 2) Pour $t \geqslant 0$

$$P(Z \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = 1 - e^{-\lambda t} = 1 - e^{-0.2t},$$

puis

$$P(Z > t) = 1 - P(Z \le t) = e^{-0.2t}$$
.

En particulier, $P(Z > 2) = e^{-0.2 \times 2} = e^{-0.4} = 0.670$ arrondie au millième.

3) On sait que la loi exponentielle de paramètre λ est une loi sans vieillissement ou encore

$$P_{Z>3}(Z>5) = P_{Z>3-3}(Z>5-3) = P(Z>2) = e^{-0.4} = 0.670$$
 arrondie au millième.

Partie C

1) La calculatrice (ou le cours) fournit $P(83 \le X \le 87) = P(\mu - \sigma \le X \le \mu + \sigma) = 0,683$ arrondie au millième.

La teneur en cacao annoncée sur l'emballage est de 85%. La probabilité demandée est $1-P(83 \le X \le 87)=0,317$ arrondie au millième.

2) Pour des raisons de symétrie,

$$P(85 - a \le X \le 85 + a) = 1 - P(X \le 85 - a) - P(X \ge 85 + a) = 1 - 2P(X \ge 85 - a)$$

et donc

$$P(85 - a \le X \le 85 + a) = 0.9 \Leftrightarrow 1 - 2P(X \le 85 - a) = 0.9 \Leftrightarrow P(X \le 85 - a) = 0.05.$$

La calculatrice fournit $85 - \alpha = 81,7102...$ puis $\alpha = 3,290$ arrondi au millième. Ceci signifie que la probabilité que la teneur en cacao soit différente d'au plus 3,3% de la valeur affichée est d'environ 0,95.

3) Ici, n=550 et on suppose que p=0,9. On note que $n\geqslant 30$, $np=495\geqslant 5$ et $n(1-p)=55\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95% est

$$\left\lceil p-1,96\sqrt{\frac{p(1-p)}{n}};p+1,96\sqrt{\frac{p(1-p)}{n}}\right\rceil = \left\lceil 0,9-1,96\sqrt{\frac{0,9\times0,1}{550}};0,9-1,96\sqrt{\frac{0,9\times0,1}{550}}\right\rceil = \left[0,874;0,926\right]$$

en arrondissant de manière à élargir légèrement l'intervalle. La fréquence observée sur l'échantillon est $f=1-\frac{80}{550}=\frac{470}{550}=0,8545\dots$

La fréquence f n'appartient pas à l'intervalle de fluctuation et on peut donc affirmer que la chocolaterie ment au risque de se tromper de 5%.

EXERCICE 2

1) a) Le discriminant de l'équation (E) est

$$\Delta = (-6)^2 - 4c = 36 - 4c = 4(9 - c).$$

Puisque c > 9, on a $\Delta < 0$ et donc l'équation (E) admet deux solutions complexes non réelles conjuguées z_A et z_B .

$$\mathbf{b)} \text{ Puisque } \Delta = -4(c-9) \text{ avec } c-9 > 0, \text{ on a } z_A = \frac{6+i\sqrt{4(c-9)}}{2\times 1} = \frac{6+2i\sqrt{c-9}}{2} = 3+i\sqrt{c-9} \text{ et } z_B = 3-i\sqrt{c-9}.$$

2) OA =
$$|z_A| = |3 + i\sqrt{c - 9}| = \sqrt{3^2 + (\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$$

2)
$$OA = |z_A| = |3 + i\sqrt{c - 9}| = \sqrt{3^2 + (\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$$
.
De même, $OB = |3 - i\sqrt{c - 9}| = \sqrt{3^2 + (-\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$ (on peut aussi écrire $OB = |z_B| = |\overline{z_A}| = |z_A| = OA$).

Puisque OA = OB, le triangle OAB est isocèle en O.

3) BA =
$$|z_A - z_B| = |2i\sqrt{c-9}| = 2\sqrt{c-9}|i| = 2\sqrt{c-9}$$
. Puis

$$BA^{2} = OA^{2} + OB^{2} \Leftrightarrow \left(2\sqrt{c-9}\right)^{2} = \left(\sqrt{c}\right)^{2} + \left(\sqrt{c}\right)^{2}$$
$$\Leftrightarrow 4(c-9) = 2c \Leftrightarrow 4c - 36 = 2c \Leftrightarrow 2c = 36$$
$$\Leftrightarrow c = 18.$$

De plus, on a effectivement 18 > 9. D'après la réciproque du théorème de Pythagore, si c = 18, le triangle OAB est rectangle en O.

1) Si $x \in [-2,5;2,5]$, $0 \le x^2 \le 2,5^2$ ou encore $0 \le x^2 \le 6,25$ puis $-12,5 \le -2x^2 \le 0$ et enfin $1 \le -2x^2 + 13,5 \le 13,5$. En particulier, si $x \in [-2,5;2,5]$, alors $-2x^2 + 13,5 > 0$.

f est de la forme $x \mapsto \ln(u(x))$ avec $u(x) = -2x^2 + 13, 5$. D'après ce qui précède, pour tout x de [-2,5;2,5], u(x) > 0. Donc, f est dérivable sur [-2,5;2,5] et pour tout x de [-2,5;2,5],

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{-4x}{-2x^2 + 13, 5}.$$

2) Pour $x \in [-2,5;2,5], -2x^2 + 13,5 > 0$. Donc, pour $x \in [-2,5;2,5], f'(x)$ est du signe de -4x ou encore du signe de -x. Donc, la fonction f' est strictement positive sur [-2,5;0] et strictement négative sur [0;2,5] puis la fonction f' est strictement croissante sur [-2,5;0] et strictement décroissante sur [0,;2,5]. De plus, $f(-2,5) = \ln(-2 \times 2,5^2 + 13,5) = \ln(1) = 0$. On en déduit le tableau de variations de f:

χ	-2,5		0		2,5
f'(x)		+	0	_	
f	0]	$\ln(13,5)$		

Puisque f est croissante sur [-2,5;0], si $-2,5 \le x \le 0$, alors $f(x) \ge f(-2,5)$ ou encore $f(x) \ge 0$. Ainsi, la fonction f est positive sur [-2,5;0]. De même, la fonction f est positive sur [0;2,5] et finalement sur [-2,5;2,5].

Partie B

- 1) Soient A et B les points de la courbe $\mathscr C$ d'abscisses respectives 2,5 et 0. A a donc pour coordonnées (2,5;0) et B a pour coordonnées $(0; \ln(13,5))$. Donc, OA = 2,5 et $OB = \ln(13,5)$ avec $\ln(13,5) = 2,6...$ On a $OA \neq OB$ et donc, la courbe $\mathscr C$ n'est pas un arc de cercle de centre O.
- 2) On note \mathscr{D} l'ensemble des points du plan situés entre l'axe des abscisses et la courbe \mathscr{C} . Puisque la courbe \mathscr{C} est symétrique par rapport à l'axe des ordonnées, l'aire de \mathscr{D} , exprimée en unités d'aire est le double de celle de la partie de \mathscr{D} située à droite de l'axe (Oy).

Puisque la fonction f est positive sur [0;2,5], cette aire exprimée en unités d'aire est égale à $2\int_0^{2,5} f(x) dx$. Enfin, l'unité de longueur est de 2m et donc l'unité d'aire est égale à $4m^2$. Finalement, l'aire de \mathcal{D} , exprimée en m^2 , notée \mathcal{D} est

$$\mathscr{A} = 4 \times 2 \int_0^{2,5} f(x) dx = 8 \int_0^{2,5} f(x) dx.$$

3) a) Tableau complété

La case située ligne k=1, colonne R, est $R=\frac{2,5}{50}f\left(\frac{2,5}{50}\right)=0,130$ 115 puis en colonne S, S=0+R=0,130 115. En ligne k=4, la colonne R contient $\frac{2,5}{50}f\left(\frac{2,5}{50}\times 4\right)=0,129$ 837. En colonne S, on écrit le résultat de 0,390 144 + 0,129 837 soit 0,518 981.

k	R	S		
1	0, 130 115	0, 130 115		
2	0, 130 060	0, 260 176		
3	0, 129 968	0,390 144		
4	0, 129 837	0,518 981		
:		•••		
24	0, 118 137	3,025 705		
25	0, 129 837	3, 142 675		
:		:		
49	0,020 106	5, 197 538		
50	0	5, 197 538		

L'algorithme affiche S = 5,197538.

b) On prend donc
$$a = 5,197538$$
. On a $\frac{f(0) - f(2,5)}{n} = \frac{\ln(13,5)}{50}$. D'après l'énoncé,

$$5,197\ 538\leqslant I\leqslant 5,197\ 538+\frac{\ln(13,5)}{50},$$

et donc, puisque $\mathcal{A} = 8I$,

$$8 \times 5,197538 \leqslant \mathscr{A} \leqslant 8 \times \left(5,197538 + \frac{\ln(13,5)}{50}\right),$$

et donc

$$41,580\ 304 \leqslant \mathcal{A} \leqslant 41,996\ 735.$$

L'aire de la zone de creusement est donc 42m^2 au m^2 près.

EXERCICE 4.

Partie A

- 1) Dans la case B3, on a entré =2*B2+3*C2 et dans la case C3, on a entré =2*B2+C2.
- 2) PGCD(1,1) = 1, PGCD(5,3) = 1, PGCD(19,13) = 1 (car 13 et 19 sont des nombres premiers distincts). Ensuite, PGCD(77,51) = PGCD(77-51,51) = PGCD(26,51) = PGCD(26,25) = 1.

Il semble qu'en général PGCD $(u_n, v_n) = 1$.

3)
$$\frac{u_{10}}{v_{10}} = \frac{1258291}{838861} = 1,49...$$
 $\frac{u_{11}}{v_{11}} = \frac{5033165}{3355443} = 1,50...$ $\frac{u_{12}}{v_{12}} = \frac{20132659}{13421773} = 1,49...$ et $\frac{u_{13}}{v_{13}} = \frac{80530637}{53687091} = 1,50...$

Il semble que Flore ait raison et que la suite $\left(\frac{u_n}{v_n}\right)$ converge vers un nombre environ égal à 1,5.

Partie B

- 1) Montrons par récurrence que pour tout entier naturel n, $2u_n 3v_n = (-1)^{n+1}$.
 - $2u_0 3v_0 = 2 \times 1 3 \times 1 = -1 = (-1)^{0+1}$. L'égalité est donc vraie quand n = 0.
 - Soit $n \ge 0$. Supposons que $2u_n 3v_n = (-1)^{n+1}$.

$$\begin{split} 2u_{n+1} - 3\nu_{n+1} &= 2\left(2u_n + 3\nu_n\right) - 3\left(2u_n + \nu_n\right) = -2u_n + 3\nu_n = -\left(2u_n - 3\nu_n\right) \\ &= -(-1)^{n+1} \text{ (par hypothèse de récurrence)} \\ &= (-1)^{(n+1)+1}. \end{split}$$

On a montré par récurrence que pour tout entier naturel n, $2u_n - 3v_n = (-1)^{n+1}$.

2) Soit n un entier naturel. En multipliant les deux membres de l'égalité précédente par $(-1)^{n+1}$, on obtient

$$(2(-1)^{n+1})u_n + (-3(-1)^{n+1})v_n = ((-1)^{n+1})^2 = ((-1)^2)^{n+1} = 1^{n+1} = 1.$$

D'après le théorème de Bézout, on peut affirmer que les entiers u_n et v_n sont premiers entre eux ou encore que PGCD $(u_n, v_n) = 1$.

Partie C

$$\begin{array}{l} \textbf{1) a)} \left(\begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right) \times \frac{1}{5} \left(\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array} \right) = \frac{1}{5} \left(\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = I_2 \ \mathrm{et} \\ \frac{1}{5} \left(\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 3 \\ -1 & 2 \end{array} \right) = \frac{1}{5} \left(\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) = I_2. \end{array}$$

Donc, la matrice P est inversible et $P^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}$.

b) Soit n un entier naturel.

$$\begin{pmatrix} u_n \\ \nu_n \end{pmatrix} = X_n = Q_n P^{-1} X_0$$

$$= \frac{1}{5} \begin{pmatrix} (-1)^n & 3 \times 2^{2n} \\ (-1)^{n+1} & 2^{2n+1} \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_0 \\ \nu_0 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 2(-1)^n + 3 \times 2^{2n} & -3(-1)^n + 3 \times 2^{2n} \\ 2(-1)^{n+1} + 2^{2n+1} & -3(-1)^{n+1} + 2^{2n+1} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 2(-1)^n + 3 \times 2^{2n} - 3(-1)^n + 3 \times 2^{2n} \\ 2(-1)^{n+1} + 2^{2n+1} - 3(-1)^{n+1} + 2^{2n+1} \end{pmatrix} = \begin{pmatrix} \frac{-(-1)^n + 6 \times 2^{2n}}{5} \\ \frac{-(-1)^{n+1} + 2 \times 2^{2n+1}}{5} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{(-1)^{n+1} + 3 \times 2^{2n+1}}{5} \\ \frac{(-1)^n + 2^{2n+2}}{5} \end{pmatrix} .$$

Donc, pour tout entier naturel n, $u_n = \frac{(-1)^{n+1} + 3 \times 2^{2n+1}}{5}$ et $v_n = \frac{(-1)^n + 2^{2n+2}}{5}$.

2) a) Soit n un entier naturel.

$$\begin{split} \frac{u_n}{v_n} &= \frac{\frac{(-1)^{n+1} + 3 \times 2^{2n+1}}{5}}{\frac{(-1)^n + 2^{2n+2}}{5}} = \frac{(-1)^{n+1} + 3 \times 2^{2n+1}}{(-1)^n + 2^{2n+2}} = \frac{2^{2n+1} \left(\frac{(-1)^{n+1}}{2^{2n+1}} + 3\right)}{2^{2n+1} \left(\frac{(-1)^n}{2^{2n+1}} + 2\right)} \\ &= \frac{\frac{(-1)^{n+1}}{2^{2n+1}} + 3}{\frac{(-1)^n}{2^{2n+1}} + 2}. \end{split}$$

$$\begin{aligned} \mathbf{b}) \ \left| \frac{(-1)^{n+1}}{2^{2n+1}} \right| &= \frac{1}{2^{2n+1}} = \frac{1}{2} \times \frac{1}{\left(2^2\right)^n} = \frac{1}{2} \times \frac{1}{4^n}. \text{ Puis que } 4 > 1, \\ \lim_{n \to +\infty} 4^n &= +\infty \text{ puis } \lim_{n \to +\infty} \frac{1}{2} \times \frac{1}{4^n} = 0. \end{aligned}$$
 On en déduit que
$$\lim_{n \to +\infty} \frac{(-1)^{n+1}}{2^{2n+1}} = 0. \text{ De même, } \lim_{n \to +\infty} \frac{(-1)^n}{2^{2n+1}} = 0 \text{ et finalement, } \lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{3+0}{2+0} = \frac{3}{2}.$$

EXERCICE 5.

Le plan \mathscr{P} n'est parallèle à aucune des faces du cube car un vecteur normal à \mathscr{P} est le vecteur $\overrightarrow{n}\left(1,\frac{1}{2},\frac{1}{3}\right)$ qui n'est orthogonal à aucun des vecteurs \overrightarrow{AB} , \overrightarrow{AD} ou \overrightarrow{AE} .

1 ère solution. (on obtient les coordonnées exactes des différents sommets de la section)

- Intersection de \mathscr{P} avec (AB). Les points de (AB) sont les points de coordonnées $(\lambda, 0, 0)$. Un tel point appartient à \mathscr{P} si et seulement si $\lambda = 1$. Donc, $\mathscr{P} \cap (AB) = \{B\}$.
- Intersection de \mathscr{P} avec (EF). Le point E a pour coordonnées (0,0,1) et le point F a pour coordonnées (1,0,1). Le vecteur $\overrightarrow{\mathsf{EF}}$ a pour coordonnées (1,0,0). La droite (EF) admet pour représentation paramétrique $\begin{cases} x = \lambda \\ y = 0 \\ z = 1 \end{cases}, \ \lambda \in \mathbb{R}.$ Soit $M(\lambda,0,1)$ un point de (EF). $M \in \mathscr{P} \Leftrightarrow \lambda + \frac{1}{3} 1 = 0 \Leftrightarrow \lambda = \frac{2}{3}$. Donc $\mathscr{P} \cap (\mathsf{EF}) = \{\mathsf{I}\}$ où $\mathsf{I}\left(\frac{2}{3},0,1\right)$.

Mais alors, la section de la face ABFE par le plan $\mathscr P$ est le segment [BI].

• Intersection de \mathscr{P} avec (GH). Le point G a pour coordonnées (1,1,1) et le point H a pour coordonnées (0,1,1). Le vecteur \overrightarrow{GH} a pour coordonnées (-1,0,0). La droite (GH) admet pour représentation paramétrique $\begin{cases} x=1-\lambda \\ y=1 \\ z=1 \end{cases},$ $\lambda \in \mathbb{R}$. Soit $M(1-\lambda,1,1)$ un point de (GH). $M \in \mathscr{P} \Leftrightarrow (1-\lambda)\frac{1}{2}+\frac{1}{3}-1=0 \Leftrightarrow \lambda=\frac{5}{6}$. Donc $\mathscr{P} \cap (GH)=\{J\}$ où $J\left(\frac{1}{6},1,1\right)$.

La section de la face EFGH par le plan \mathscr{P} est le segment [IJ].

 $\begin{array}{l} \bullet \ \textbf{Intersection de} \ \mathscr{P} \ \textbf{avec} \ (CD). \ \textbf{Le point D a pour coordonnées} \ (0,1,0) \ et \ \textbf{le point C a pour coordonnées} \ (1,1,0). \\ \textbf{Le vecteur } \overrightarrow{DC} \ \textbf{a pour coordonnées} \ (1,0,0). \ \textbf{La droite} \ (DC) \ \textbf{admet pour représentation paramétrique} \left\{ \begin{array}{l} x = \lambda \\ y = 1 \\ z = 0 \end{array} \right., \ \lambda \in \mathbb{R}. \\ \textbf{Soit } \ M(\lambda,1,0) \ \textbf{un point de} \ (GH). \ M \in \mathscr{P} \Leftrightarrow \lambda + \frac{1}{2} - 1 = 0 \Leftrightarrow \lambda = \frac{1}{2}. \ \textbf{Donc} \ \mathscr{P} \cap (DC) = \{K\} \ \textbf{où} \ K\left(\frac{1}{2},1,0\right). \\ \end{array}$

La section de la face GHCD par le plan $\mathcal P$ est le segment [JK] puis la section de la face ABCD par le plan $\mathcal P$ est le segment [KB].

On peut alors tracer la section du cube par le plan \mathscr{P} .

2 ème solution. (On se contente de construire les sommets de la section en cherchant d'abord les intersections avec les axes qui sont bien plus simples à déterminer. C'est très certainement cette solution qui était attendue.)

Soit M(x,y,z) un point du plan \mathscr{P} . Si x=y=0, alors z=3, si x=z=0, alors y=2 et si y=z=0, alors x=1. Les points d'intersection du plan \mathscr{P} avec les droites (AB), (AD) et (AE) sont les points B, M et N de coordonnées respectives (1,0,0), (0,2,0) et (0,0,3). En traçant les droites (MB) et (NB), on obtient la trace [BK] du plan \mathscr{P} sur la face ABCD et la trace [BI] du plan \mathscr{P} sur la face ABFE.

La trace [KJ] du plan $\mathcal P$ sur la face CDGH est alors obtenue en traçant la parallèle à (BI) passant par K et enfin la trace du plan $\mathcal P$ sur la face EFGH est le segment [IJ].

