

4-BIT MAGNITUDE COMPARATOR

The SN54/74LS85 is a 4-Bit Magnitude Camparator which compares two 4-bit words (A, B), each word having four Parallel Inputs (A0-A3, B0-B3); A3, B3 being the most significant inputs. Operation is not restricted to binary codes, the device will work with any monotonic code. Three Outputs are provided: "A greater than B" (OA>B), "A less than B" (OA<B), "A equal to B" (OA=B). Three Expander Inputs, IA>B, IA<B, IA=B, allow cascading without external gates. For proper compare operation, the Expander Inputs to the least significant position must be connected as follows: IA<B=IA>B=L, IA=B=H. For serial (ripple) expansion, the OA>B, OA<B and OA=B Outputs are connected respectively to the IA>B, IA<B, and IA=B Inputs of the next most significant comparator, as shown in Figure 1. Refer to Applications section of data sheet for high speed method of comparing large words.

The Truth Table on the following page describes the operation of the SN54/74LS85 under all possible logic conditions. The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a series expansion scheme. The lower five lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

- Easily Expandable
- Binary or BCD Comparison
- O_{A>B}, O_{A<B}, and O_{A=B} Outputs Available

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

PIN NAMES

		HIGH	LOW
$A_0 - A_3$, $B_0 - B_3$	Parallel Inputs	1.5 U.L.	0.75 U.L.
$I_{A=B}$	A = B Expander Inputs	1.5 U.L.	0.75 U.L.
IA <b, ia="">B</b,>	A < B, A > B, Expander Inputs	0.5 U.L.	0.25 U.L.
$O_{A>B}$	A Greater Than B Output (Note b)	10 U.L.	5 (2.5) U.L.
O _{A<b< sub=""></b<>}	B Greater Than A Output (Note b)	10 U.L.	5 (2.5) U.L.
$O_{A=B}$	A Equal to B Output (Note b)	10 U.L.	5 (2.5) U.L.
IOTES:			

a) 1 TTL Unit Load (U.L.) = $40 \mu A HIGH/1.6 mA LOW$.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS85

4-BIT MAGNITUDE COMPARATOR

LOW POWER SCHOTTKY

SN54/74LS85

LOGIC DIAGRAM

TRUTH TABLE

COMPARING INPUTS			CASCADING INPUTS			OUTPUTS			
A3,B3	A ₂ ,B ₂	A ₁ ,B ₁	A_0,B_0	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	O _{A<b< sub=""></b<>}	O _{A=B}
A3>B3	Х	Х	Х	Х	Х	Х	Н	L	L
A ₃ <b<sub>3</b<sub>	Χ	Χ	Χ	Х	Χ	Χ	L	Н	L
A ₃ =B ₃	$A_2>B_2$	Χ	Χ	Х	Χ	X	Н	L	L
A3=B3	$A_2 < B_2$	Χ	Χ	Х	Χ	Χ	L	Н	L
A3=B3	$A_2=B_2$	A ₁ >B ₁	Χ	Х	Χ	X	Н	L	L
A3=B3	$A_2=B_2$	A ₁ <b<sub>1</b<sub>	Χ	Х	Χ	X	L	Н	L
A3=B3	$A_2=B_2$	A ₁ =B1	$A_0 > B_0$	Х	Χ	X	Н	L	L
A3=B3	$A_2=B_2$	$A_1 = B_1$	$A_0 < B_0$	Х	Χ	X	L	Н	L
A3=B3	$A_2=B_2$	A ₁ =B ₁	$A_0 = B_0$	Н	L	L	Н	L	L
A3=B3	$A_2=B_2$	A ₁ =B ₁	$A_0 = B_0$	L	Н	L	L	Н	L
A3=B3	$A_2 = B_2$	A ₁ =B ₁	$A_0 = B_0$	Х	Χ	Н	L	L	Н
A3=B3	$A_2 = B_2$	A ₁ =B ₁	$A_0 = B_0$	Н	Н	L	L	L	L
A ₃ =B ₃	$A_2=B_2$	A ₁ =B ₁	$A_0 = B_0$	L	L	L	Н	Н	L

H = HIGH Level L = LOW Level X = IMMATERIAL

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loh	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS85

Figure 1. Comparing Two n-Bit Words

APPLICATIONS

Figure 2 shows a high speed method of comparing two 24-bit words with only two levels of device delay. With the technique shown in Figure 1, six levels of device delay result when comparing two 24-bit words. The parallel technique can be expanded to any number of bits, see Table 1.

Figure 2. Comparison of Two 24-Bit Words

SN54/74LS85

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	ol Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	H Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V Laurel OW Value		54			0.7	V	Guaranteed Input LOW Voltage for	
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage	_		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
\/a	Output HIGH Voltage	54	2.5	3.5	o	٧	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}	
VOH Output HIGH Voltage		74	2.7	3.5		V	or V _{IL} per Truth T	āble
Va	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN,
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table
Iн	Input HIGH Current A < B, A > B Other Inputs				20 60	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$	
	A < B, A > B Other Inputs				0.1 0.3	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
ημ	Input LOW Current A < B, A > B Other Inputs				-0.4 -1.2	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
los	Output Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current				20	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25° C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Any A or B to A < B, A > B		24 20	36 30	ns	
^t PLH ^t PHL	Any A or B to A = B		27 23	45 45	ns	
^t PLH ^t PHL	A < B or A = B to A > B		14 11	22 17	ns	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$
^t PLH ^t PHL	A = B to A = B		13 13	20 26	ns	
^t PLH ^t PHL	A > B or A = B to A < B		14 11	22 17	ns	

AC WAVEFORMS

