The University of Melbourne School of Engineering

Semester 2 Assessment 2011

ENGR30001 – Fluid Mechanics & Thermodynamics

Exam Duration:

3 hours

This paper has FOURTEEN (14) pages consisting of SEVEN (7) questions.

Authorized material:

Electronic calculators approved by the School of Engineering may be used. Three tables, one chart and a table of formulae are attached.

Instructions to Invigilators:

Script books to be provided.

Instructions to Students:

All questions are to be attempted.

Full marks will be awarded for obtaining 100 marks of a potential 110 marks

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

This paper is to be held by the Baillieu Library

Perform the following using the attached steam tables as required.

i) Sketch a T - v diagram for H_20 showing the liquid, saturation and superheated regions and at least one isobar passing through each of these regions. Also indicate the region where the steam is most likely to behave like a perfect gas.

(3 marks)

- ii) A sealed canister of strongly superheated $H_2\theta$ initially has a specific volume of 2.536 m³/kg and temperature of 600°C. The canister is then allowed to cool to 20°C. With reference to a T-v diagram, describe the changes in state that will take place (if any) during the cooling and determine the temperature the changes will occur at.

 (3 marks)
- iii) Determine the final specific internal energy of the H_20 in part ii).

(2 marks)

iv) A steam power plant has a boiler that produces superheated steam at 400°C and 1 MPa. Determine the specific enthalpy.

(1 mark)

v) The steam is then passed through a turbine that extracts 550 kJ/kg of energy from the $H_2\theta$ (note that this is an adiabatic process; ignore any velocity changes) and reduces the working fluid pressure to 0.1 MPa. In what state is the $H_2\theta$ after leaving the turbine?

(1 mark)

vi) Would your answer to part v) change if the H_20 exit pressure from the turbine were 0.5 MPa? If so, what would be the state of the H_20 ?

(1 mark)

(Total for Question 1 = 11 marks)

- i) Define the four types of systems considered in Thermodynamics. (2 marks)
- ii) Calculate the density of air at a gauge pressure of 100 kPa and temperature of 77.5° C. R = 287 J/kg K for air. (1 mark)

For the remaining questions, consider a cylinder of air capped by a leakproof, frictionless piston of mass, m = 1 kg, shown below. The cross-sectional area of the piston and cylinder is A = 0.005 m². The initial height of the piston above the internal base of the cylinder is H = 0.1 m.

iii) The internal pressure is initially p_i and the atmospheric pressure $p_{\text{atm}} = 101.3 \text{ kPa}$. Determine the gauge pressure p_{ig} required to keep the mass from falling.

(2 marks)

- The density of the air is initially $\rho = 1.2 \text{ kg/m}^3$. The temperature of the air is then raised by adding heat to the air. This causes the piston to rise by 0.01 m. The heat is added in such a way that the pressure rises linearly with volume. Sketch a graph of pressure versus volume and show a representation of the work done by the fluid, the work done on the atmosphere and the work done on the mass (it is recommended that you use three separate p- ν diagrams; assume that the pressure is atmospheric if the volume of gas is zero). (3 marks)
- v) Determine the work done by the fluid. (2 marks)
- vi) Determine the heat transfer required to raise the piston. $C_v = 717 \text{ J/kg K}$ for air.

(2 marks)

(Total for Question 2 = 12 marks)

i) Sketch a T - s property diagram illustrating the Carnot cycle using H_20 as the working fluid.

(1 mark)

ii) Sketch the Rankine cycle and explain why this cycle is used instead of the Carnot cycle for practical power generation.

(3 marks)

iii) Derive the thermal efficiency of an ideal steam power plant (i.e., using the Rankine cycle) in terms of the specific enthalpy changes. Neglect feed pump work.

(3 marks)

iv) Consider a steam power plant operating between maximum temperature of 773K and minimum temperature of 299K (dry saturated). If the maximum pressure is 4 MPa, calculate the specific work done by the isentropic turbine using the tables supplied. (Hint: the maximum and minimum temperatures are the turbine inlet and outlet temperatures, respectively).

(3 marks)

Proof of the specific work done by the turbine if the steam entering and exiting the turbine is assumed to be a perfect gas with $C_p = 4.46$ kJ/kg K (i.e., without reference to the steam tables). In one sentence explain why this calculation is inaccurate (compared with the more accurate calculation in part iv).

(2 marks)

(Total for Question 3 = 12 marks)

A vertical gate of width w (into the page) forms the sidewall of a tank of liquid of depth h_I and density ρ_I .

(a) Assume that the gate pivots at the bottom at a frictionless hinge. Integrate the distributed hydrostatic pressure force acting over the wetted surface of the gate to show that the net force acting on the gate is,

$$F_1 = \frac{\rho_1 gw h_1^2}{2} \tag{4 marks}$$

(b) Integrate the moment due to hydrostatic pressure forces at height z, to show that the total moment acting about the gate hinge is given by,

$$M_1 = \frac{\rho_1 gw h_1^3}{6}$$
 (4 marks)

(c) State the vertical location \hat{z} at which the resultant force F_I can be considered to act.

(2 marks)

(d) The other side of the gate is filled to depth h_2 with a liquid of density ρ_2 . Find an expression for the necessary ratio h_1/h_2 (in terms of ρ_1 and ρ_2) if the gate is to remain vertical. (3 marks)

(Total for Question 4 = 13 marks)

Properties for oil at 15°C
$$\rho = 850 \text{ kg/m}^3$$

Oil at 15°C having a density of 850 kg/m³ is pumped between two large reservoirs (both of which are open to atmosphere and filled to the same height) through a pipe that has a total length L =1 km and diameter 150 mm. The volume flow rate through the system is 1.2 m³/min. The mechanical brake power supplied to the pump is $P_B = 4kW$ and the mechanical efficiency of the pump is $\eta = 0.65$.

(a) Assume that the Fanning friction factor for this flow is given by the analytical relationship,

$$f = \frac{16}{\text{Re}}$$

Starting from the Steady Flow Energy Equation, and ignoring minor losses, show that the viscosity of the oil can be determined from the following relationship,

$$\mu = \frac{\eta P_B}{8\pi V^2 L}$$

(8 marks)

(b) Hence calculate the Reynolds number and comment on whether the assumed relationship for friction factor f is valid for this problem.

(4 marks)

(Question 5 continues on next page)

Question 5 (continued)

(c) For the system shown there would in fact be additional minor energy losses due to the sudden contraction at the inlet from reservoir 1, and the sudden expansion into reservoir 2. Estimate the percentage error in the calculated estimate of viscosity from part (a).

Minor Loss	Loss coefficient
Inlet loss	0.5
Exit loss	1.0

(5 marks)

(d) The actual pump head vs volume flow rate curves are provided by the manufacturer for a range of pumps as given in the figure below. Of the four pumps shown, which pump is being used in this system?

(5 marks)

(Total for Question = 22 marks)

Nitrogen gas flows isothermally at 50 °C through a straight pipe of length 20m and uniform diameter 100 mm. The inlet pressure is 700kPa and the pressure outside the pipe exit is 300kPa. The flow is assumed to be horizontal, isothermal, ideal, and compressible. The Fanning friction factor is f = 0.005

The mechanical energy equation for this flow is

$$\frac{P_2^2 - P_1^2}{2(RT / M)} + \left(\frac{G}{A}\right)^2 \ln\left(\frac{P_1}{P_2}\right) + \frac{2fL}{D}\left(\frac{G}{A}\right)^2 = 0$$

and the critical pressure P_w is given by

$$\left(\frac{P_1}{P_w}\right)^2 - \ln\left(\frac{P_1}{P_w}\right)^2 - 1 = \frac{4fL}{D}$$

where all symbols have their usual meaning.

(a) Determine whether the flow is choked or not. Give a reason for your conclusion.

(5 marks)

(b) Calculate the mass flow rate of nitrogen through the pipe (8 marks)

- (c) Calculate the gas velocity at the pipe entrance as a percentage of the sonic velocity

 (5 marks)
- (d) If the value of the inlet pressure is doubled, would the flow then be choked or not choked? Give a reason for your conclusion.

(3 marks)

Molecular weight of nitrogen

28 g/mol

Gas constant R

 $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

(Total for Question 6 = 21 marks)

An incompressible viscous Newtonian fluid is located in the space between two concentric cylinders having radii R_1 and R_2 as shown below. The inner cylinder is fixed but the outer cylinder is rotating with an angular velocity ω , thus imparting a swirling motion to the fluid. The fluid is also being driven in the z-direction due to a constant applied pressure gradient $\frac{\partial p}{\partial z} = -B$. The flow is steady, fully developed and axially symmetric.

(a) From the information provided, show that the velocity components v_z and v_θ in cylindrical polar coordinates are functions of r only. Also show that $v_r = 0$

(3 marks)

- (b) Find an expression for the axial velocity (v_z) profile. (8 marks)
- (c) Find an expression for the tangential velocity (v_{θ}) profile (8 marks)

(Total for Question 7 = 19 marks)

(Total for paper = 110 marks)

Table 2, Temperature Saturation

Saturated Water & Steam

Temperatures from 1 to 120 °C

^{o}C	kN/m^2	m³/kg	m³/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg K	kJ/kg K	kJ/kg K	°C
\overline{T}	p	ν_f	v _g	u_f	u_s	h_f	h _{fg}	h_{g}	87	S fg	8 7	T
1	0.657	0.001000	192.6	4.174	2376.9	4.174	2499.2	2503.4	0.0153	9.116	9.131	I
2	0.705	0.001000	179.9	8.386	2378.3	8.387	2496.8	2505.2	0.0306	9.074	9.105	2
4	0.813	0.001000	157.3	16.80	2381.1	16.80	2492.1	2508.9	0.0611	8.992	9.053	4
6	0.935	0.001000	137.8	25.21	2383.8	25.21	2487.4	2512.6	0.0913	8.910	9.001	6
8	1.072	0.001000	121.0	33.60	2386.6	33,60	2482.6	2516.2	0.1213	8.830	8.951	8
10	1.227	0.001000	106.4	41.99	2389.3	41.99	2477.9	2519.9	0.1510	8.751	8.902	10
12	1.401	0.001000	93.84	50.38	2392.1	50.38	2473.2	2523.6	0.1805	8.673	8.854	12
14	1.597	0.001001	82.90	58.75	2394.8	58.75	2468.5	2527.2	0.2098	8.596	8.806	14
16	1.817	0.001001	73.38	67.12	2397.6	67.13	2463.8	2530,9	0.2388	8.521	8.759	16
18	2.062	0.001001	65.09	75.49	2400.3	75.50	2459.0	2534.5	0.2677	8.446	8.713	18
20	2.337	0.001002	57.84	83.86	2403.0	83.86	2454.3	2538.2	0.2963	8.372	8.668	20
22	2.642	0.001002	51.49	92.22	2405.8	92.23	2449.6	2541.8		8.299	8.624	22
24	2.982	0.001003	45,93	100,6	2408.5	100.6	2444.9	2545.5	0.3530	8.228	8.581	24
26	3.360	0.001003	41.03	108.9	2411.2	108.9	2440.2	2549.1	0.3810	8.157	8.538	26
28	3.778	0.001004	36.73	117.3	2414.0	117.3	2435.4	2552.7	0.4088	8.087	8.496	28
		0.001004	32.93	125.7		125.7	2430.7	2556.4	0.4365			30
30 32	4.241 4.753	0.001004	32.93 29.57	125.7	2416.7 2419.4	125.7	2430.7 2425.9	2550.4 2560.0	0.4640	8.018 7.950	8.455 8.414	30 32
34 34	4.733 5.318	0.001003	29.57 26.60	134.0	2419.4 2422.1	134.0	2425.9	2563.6	0.4640	7.883	8.374	34
36	5.940	0.001008	23.97	150.7	2424.8	150.7	2416.4	2567.2	0.4913	7.816	8.335	36
38	6.624	0.001003			2424.8						8.296	38
			21.63	159.1		159.1	2411.7	2570.8	0.5453	7.751		
40	7.375	0.001008	19.55	167.4	2430.2	167.5	2406.9	2574.4	0.5721	7.686	8.258	40
42	8.198	0.001009	17.69	175.8	2432.9	175.8	2402.1	2577.9	0.5987	7.622	8.221	42
44	9.100	0.001009	16.04	184.2	2435.6	184.2	2397.3	2581.5	0.6252	7.559	8.184	44
16	10.09	0.001010	14.56	192.5	2438.3	192.5	2392.5	2585.1	0.6514	7.497	8.148	46
48	11.16	110100.0	13.23	200.9	2440.9	200.9	2387.7	2588.6	0.6776	7.435	8.113	48
50	12.34	0.001012	12.05	209.2	2443.6	209.3	2382.9	2592.2	0.7035	7.374	8.078	50
52	13.61	0.001013	10.98	217.6	2446.2	217.6	2378.1	2595.7	0.7293	7.314	8.043	52
54	15.00	0.001014	10.02	226.0	2448.9	226.0	2373.2	2599.2	0.7550	7.254	8.009	54
56	16.51	0.001015	9.159	234.3	2451.5	234.4	2368.4	2602.7	0.7804	7.195	7.976	56
58	18.15	0.001016	8.381	242.7	2454.1	242.7	2363.5	2606.2	0.8058	7.137	7.943	58
60	19.92	0.001017	7.679	251.1	2456.8	251.1	2358.6	2609.7	0.8310	7.080	7.911	60
62	21.84	0.001018	7.044	259.4	2459.4	259.5	2353.7	2613.2	0.8560	7.023	7.879	62
64	23.91	0.001019	6.469	267.8	2462.0	267.8	2348.8	2616.6	0.8809	6.967	7.848	64
66	26.15	0.001010	5.948	276.2	2464.5	276.2	2343.9	2620.1	0.9057	6.911	7.817	66
68	28.56	0.001020	5.476	284.6	2467.1	284.6	2338.9	2623.5	0.9303	6.856	7.786	68
70	31.16	0.001023	5.046	292.9	2469.7	293.0	2334.0	2626.9	0.9548	6.802	7.756	70
72	33.96	0.001024	4.656	301.3	2472.2	301.4	2329.0	2630.3	0.9792	6.748	7.727	72
74	36.96	0.001025	4.300	309.7	2474.8	309.7	2324.0	2633.7	1.003	6.695	7.698	74
76	40.19	0.001027	3.976	318.1	2477.3	318.1	2318.9	2637.1	1.027	6.642	7.669	76
78	43,65	0.001028	3.680	326.5	2479.8	326.5	2313.9	2640.4	1.051	6.590	7.641	78
80	47.36	0.001029	3.409	334.9	2482.3	334.9	2308.8	2643.8	1.075	6.538	7.613	80
82	51.33	0.001031	3.162	343.3	2484.8	343.3	2303.8	2647.1	1.099	6.487	7.586	82
84	55.57	0.001032	2.935	351.7	2487.3	351.7	2298.6	2650.4	1.123	6.436	7.559	84
86	60.11	0.001033	2.727	360.1	2489.7	360.1	2293.5	2653.6	1.146	6.386	7.532	86
88	64.95	0.001035	2.536	368.5	2492.2	368.5	2288.4	2656.9	1.169	6.336	7.506	88
90	70.11	0.001036	2.361	376.9	2494.6	376.9	2283.2	2660.1	1.193	6.287	7.480	90
92	75.61	0.001038	2.200	385.3	2497.0	385.4	2278.0	2663.4	1.216	6.239	7.454	92
94	81.46	0.001039	2.052	393.7	2499.4	393.8	2272.8	2666.6	1.239	6.190	7.429	94
96	87.69	0.001041	1.915	402.1	2501.8	402.2	2267.5	2669.7	1.261	6.143	7.404	96
98	94.30	0.001042	1.789	410.5	2504.1	410.6	2262.2	2672.9	1.284	6.095	7.380	98
100	101.3	0.001044	1.673	419.0	2506.5	419.1	2256.9	2676.0	1.307	6.049	7.355	100
105	120.8	0.001048	1.419	440.0	2512.3	440.2	2243.6	2683.7	1.363	5.933 5.930	7.296	105
110	143.3	0.001052	1.210	461.2	2518.0	461.3	2230.0	2691.3	1.418	5.820	7.239	110
115 120	169.1 198.5	0.001056	1.036	482.3	2523.5	482.5	2216.2	2698.7	1.473	5.710	7.183	115
2 268	1328.5	0.001061	0.892	503.5	2529.0	503.7	2202.2	2706.0	1.528	5.602	7.129	120

	M	N/m²																							
		$p \overline{0.001}$	0.01	0.02	0.05	0.1	0.5	1	2	4	6	8	10	15	20	25	30	35	40	45	50	60	80	100 p	
°C	T	C		***************************************			***********		***************************************	·····	***************************************														T
Ĭ	ô	0.043	0.052	0.063	0.093	0.144	0.554	1.065	2.086	4.124	6,156	8.183	10.20	15.23	20.22	25.17	30.09	34.97	39.82	44.64	49.43	58.91	77.58	95.97	0
	5	21.02	21.03	21.04	21.07	21.12	21.52	22.02	23.02	25.01	27.00	28.98	30.96	35.88	40.76	45.62	50.45	55.24	60.01	64.74	69.45	78.79	97.17	115.3	5
	10	2520	42.00	42.01	42.04	42,09	42.48	42.97	43.94	45.89	47.83	49.77	51.71	56.52	61.31	66.07	70.81	75.51	80.19	84.85	89.48	98.66	116.8	134.5	10
	20	2539	83.87	83.88	83.91	83.95	84.33	84.80	85.74	87.62	89.49	91.36	93.23	97.88	102.5	107.1	111.7	116.3	120.8	125.4	129.9	138.9	156.6	174.0	20
	25	2548	104.8	104.8	104.8	104.9	105.2	105.7	106.6	108.5	110.3	112.1	114.0	118.6	123.1	127.7	132.2	136.7	141.2	145.7	150.2	159.1	176.6	193.9	25
	30	2557	125.7	125.7	125.7	125.8	126.1	126.6	127.5	129.3	131.1	132.9	134.7	139.3	143.8	148.3	152.7	157.2	161.6	166.1	170.5	179.3	196.6	213.8	30
	40	2576	167.5	167.5	167.5	167.5	167.9	168.3	169.2	171.0	172.7	174.5	176.3	180.7	185.1	189.4	193.8	198.2	202.5	206.8	211.2	219.8	236.9	253.8	40
1	50	2595	2593	209.3	209.3	209.3	209.7	210.1	211.0	212.7	214.4	216.1	217.8	222.1	226.4	230.7	235.0	239.2	243.5	247.7	251.9 292.8	260.4 301.1	277.2 317.6	293.9 334.0	50 60
1	60	2613	2612	251.1	251.1	251.2	251.5	251.9	252.7	254.4	256.1	257.8	259.4 301.1	263.6 305.2	267.8 309.3	272.0 313.3	276.1 317.4	280.3 321.5	284.5 325.6	288.6 329.6	333.7	341.8	358.0	374.2	70
	70	2632	2631	2629	293.0	293.0	293.4	293.8	294.6	296.2	297.8	299.5										382.6	398.5		80
	80	2651	2650	2648	334.9	335.0	335.3	335.7	336.5	338.1	339.6	341.2	342.8	346.8	350.8	354.8	358.7 400.1	362.7 404.0	366.7 407.9	370.7 411.8	374.7 415.7	382.0 423.5	439.1	414.4 454.7	90
ı	90	2670	2669	2667	2663	377.0	377.3	377.7	378.4	380.0 422.0	381.5 423.5	383.1 425.0	384,6 426.5	388.5 430.3	392.4 434.0	396.2 437.8	441.6	445.4	449.2	453.0	456.8	464.S	479.7	495.1	100
1	100 125	2689 2736	2688 2735	2686 2734	2683 2731	2676 2726	419.4 525.2	419.7 525.5	420.5 526.2	527.6	529.0	530.4	531.8	535.3	538.8	542.3	545.8	549.4	552.9	556.5	560.1	567.3	581.7	596.3	125
1	150	2784	2783	2782	2780	2776	632.2	632.5	633.1	634.3	635.6	636.8	638.1	641.3	644.4	647.7	650.9	654.2	657.4	660.7	664.1	670.7	684.3	698.0	150
					2829	2826	2800	741.2	741.7	742.8	743.8	744.9	746.0	748.8	751.6	754.4	757.3	760.2	763.1	766.1	769.1	775.2	787.6	800.4	175
1	175 200	2832 2880	2831 2880	2831 2879	2878	2875	2855	2827	852.6	853.4	854.2	855.1	855.9	858.1	860.4	862.8	865.2	867.7	870.2	872.8	875.4	880.8	891.9	903.5	200
1 1	225	2929	2928	2928	2927	2925	2909	2886	2834	967.3	967.8	968.3	968.9	970.3	971.9	973.6	975.4	977.3	979.3	981.3	983.4	987.9	997.4	1008	225
	250	2978	2977	2977	2976	2975	2961	2943	2902	1086	1086	1086	1086	1086	1087	1087	1088	1090	1091	1092	1094	1097	1104	1113	250
7	275	3027	3027	3027	3026	3024	3013	2998	2965	2886	1211	1210	1209	1208	1207	1206	1206	1206	1206	1206	1207	1208	1213	1220	275
	300	3077	3077	3076	3076	3074	3065	3052	3025	2962	2885	2787	1343	1338	1334	1331	1329	1327	1325	1324	1324	1323	1325	1329	300
- 1	325	3127	3127	3127	3126	3125	3116	3106	3083	3031	2970	2899	2810	1487	1476	1468	1461	1456	1452	1449	1446	1442	1439	1439	325
	350	3177	3177	3177	3177	3176	3168	3159	3139	3095	3046	2990	2926	2695	1647	1625	1610	1599	1590	1582	1576	1567	1556	1550	350
	375	3228	3228	3228	3228	3227	3220	3211	3194	3156	3115	3069	3018	2861	2594	1865	1793	1763	1743	1728	1717	1700	1681	1672	375
	400	3280	3280	3279	3279	3278	3272	3264	3249	3216	3180	3142	3100	2979	2820	2582	2162	1993	1934	1901	1878	1847	1814	1798	400
	425	3331	3331	3331	3331	3330	3325	3317	3303	3274	3243	3209	3174	3075	2957	2808	2613	2374	2209	2121	2068	2009	1952	1924	425
ļ.,	450	3384	3384	3383	3383	3382	3377	3371	3358	3331	3303	3274	3244	3160	3064	2954	2826	2676	2516	2384	2293	2187	2094	2051	450
8	475	3436	3436	3436	3436	3435	3430	3424	3412	3388	3363	3337	3310	3237	3157	3068	2969	2859	2742 2907	2624 2814	2522 2723	2380 2571	2242 2397	2181 2316	475 500
	500	3489	3489	3489	3489	3488	3484	3478	3467	3445	3422	3399	3375 3500	3311	3241 3394	3166 3337	3085 3277	2998 3215	3152	3087	3021	2896	2708	2594	550
	550	3597	3596	3596	3596	3596	3592	3587	3578	3559	3539	3520		3448								3152	2980	2857	600
•	600	3706	3706	3705	3705	3705	3702	3697	3689	3673	3656	3640	3623	3580	3536	3490	3443 3595	3395 3556	3346 3517	3297 3478	3248 3439	3362	3220	3105	650
1	650	3816	3816	3816	3816	3816	3813	3809	3802	3788	3774 3892	3759 3879	3745 3867	3708 3835	3671 3804	3633 3772	3740	3707	3675	3642	3610	3547	3429	3324	700
1	700	3929	3929	3929	3929 4043	3928 4042	3926 4040	3923 4038	3916 4032	3904 4021	4011	4000	3989	3962	3935	3908	3880	3853	3825	3798	3771	3717	3617	3526	750
1	750 800	4043 4159	4043 4159	4043 4159	4159	4158	4156	4154	4149	4140	4131	4121	4112	4089	4065	4042	4018	3995	3972	3948	3925	3880	3793	3714	800
:		4137	7100	-F X J J		1,220	(200	r a white																	
2	sat	6.98	45.83	60.09	81.35	99.63	151.8	179.9	212.4	250.3	275.5	295.0	311.0	342.1	365.7										
	h_f	29.34	191.8	251.5	340.6	417.5	640.1	762.6	908.6	1087	1214	1317	1408	1611	1826										
	h_g	2514	2585	2610	2646	2675	2748	2776	2797	2800	2785	2760	2728	2615	2418										

Specific Enthalpy of Water & Steam kJ/kg

	M	N/m	ı ²																		· ·					
		p -	0.001	0.01	0.02	0.05	0.1	0.5	1	2	4	6	8	10	15	20	25	30	35	40	45	50	60	80	100	<u> </u>
°C	T																									T
1	0		999.8	999.8	999.8	999.8	999.8	1000	1000	1001	1002	1003	1004	1005	1007	1010	1012	1014	1017	1019	1022	1024	1028	1037	1046	0
	5	-	999.9	999.8	999.8	999.8	999.8	1000	1000 1000	1001	1002 1002	1003	1004 1004	1005	1007 1007	1009 1009	1012	1014 1014	1016 1016	1019 1018	1021	1023	1028	1036 1035	1044 1043	5 10
	10 20		0.00766 0.00739	999.8 998.3	999,8 998.3	999.8 998.3	999.8 998.3	1000 998.5	998.7	999.2	1002	1003	1004	1004	1007	1007	1009	7012	1014	1016	1018	1020	1024	1032	1040	20
	25		0.00727	997.0	997.0	997.0	997.0	997.2	997.4	997.9	998.8	999.7	1001	1001	1004	1006	1008	1010	1012	1014	1016	1018	1022	1030	1038	25
	30		0.00715	995.7	995.7	995.7	995.8	995.9	996.2	996.6	997.5	998.4	999.2	1000	1002	1004	1007	1009	1011	1013	1015	1017	1021	1029	1036	30
	40		0.00692	992.3	992.3	992.3	992.3	992.5	992.7	993.1	994.0	994.9	995.7	996.6	998.7	1001	1003	1005	1007	1009	1011	1013	1017	1025	1032	40
I	50		0.00671	0.0673	988.0	988.0	988.1	988.2	988.5	988.9	989.8	990.6	991.5	992.4	994.5	996.6	998.7	1001	1003	1005	1007	1009	1013 1008	1020 1015	1027 1023	50 60
- 1	60		0.00651	0.0652	981.9	983.2	983.2 977.7	983.4 977.9	983.6 978.1	984.0 978.5	984.9 979.4	985.8 980.3	986.6 981.2	987.5 982.1	989.6 984.2	991.8 986.4	993.8 988.5	995.9 990.6	997.9 992.6	999.9 994.7	1002 996.7	1004 998.6	1008	1010	1023	70
1	70		0.00632	0.0633	0.1269	977.7			972.1	972.5	973.4	974.3	975.2	976.1	978.3	980.5	982.7	984.8	986.9	988.9	990.9	993.0	996.9	1005	1012	80
	90 90		0.00614	0.0615	0.1232 0.1197	971.6	971.7 1 965.1	971.8 965.3	965.5	966.0	966.9	967.9	968.8	969.7	972.0	974.2	976.4	978.5	980.7	982.8	984.8	986.9	990.9	998.7	1006	90
	100		0.00581	0.0582	0.1165	0.293	0.590	958.3	958.6	959.0	960.0	960.9	961.9	962.8	965.1	967.4	969.7	971.9	974.1	976.2	978.3	980.4	984.5	992.5	1000	100
	125		0.00544	0.0545	0.1091	0.274	0.550	938.8	939.1	939.6	940.6	941.7	942.7	943.7	946.2	948.7	951.1	953.5	955.9	958.2	960.4	962.7	967.0	975.5	983.5	125
	150		0.00512	0.0512	0.1026	0.257	0.516	916.8	917.1	917.7	918.8	920.0	921.1	922.2	925.0	927.7	930.4	933.0	935.6	938.1	940.5	943.0	947.7	956.7	965.3	150
	175		0.00484	0.0484	0.0968	0.243	0.487	2.504	892.1	892.8	894.1	895.4	896.7	898.0	901.1	904.2	907.2	910.1	912.9	915.7	918.4	921.1	926.3	936.2	945.5	175 200
	200		0.00458	0.0458	0.0917	0.230	0.460	2.353	4.856	865.0	866.6	868.1	869.6	871.1 840.6	874.7 844.9	878.2 849.0	881.6 853.0	884.9 856.9	888.1 860.6	891.3 864.3	894.3 867.8	897.3 871.2	903.1 877.7	914.0 889.9	924.1 901.1	225
	225 250		0.00435	0.0435	0.0871	0.218 0.207	0.437 0.416	2.223 2.108	4.554 4.296	9.643 8.973	835.1 799.2	837.0 801.5	838.8 803.8	806.1	811.4	816.5	821.3	826.0	830.4	834.7	838.8	842.7	850.3	864.1	876.6	250
	275		0.00395	0.0395	0.0323	0.198	0.396	2.006	4.073	8.429	18.34	759.3	762.2	765.2	772.3	778.9	785.1	790.9	796.4	801.6	806.6	811.3	820.2	836.2	850.4	275
	300		0.00378	0.0378	0.0756	0.189	0.379	1.914	3.876	7.968	17.00	27.67	41.21	715,4	725.7	735.0	743.3	751.0	758.1	764.7	770.9	776.7	787.5	806.4	822.7	300
1	325		0.00362	0.0362	0.0725	0.181	0.363	1.830	3.700	7.569	15.94	25.42	36.54	50.40	663.6	679.0	691.8	703.0	712.9	721.8	729.9	737.5	751.0	773.9	792.9	325
	350		0.00348	0.0348	0.0696	0.174	0.348	1.754	3.541	7.217	15.05	23.68	33.39	44.60	87.24	600.1	625.0	643.5	658.6 586.5	671.4 608.5	682.6 625.9	692.6 640.4	710.0 664.2	738.1	760.6 726.5	350 375
	375		0.00334	0.0334	0.0669 0.0644	0.167	0.335 0.322	1.685 1.620	3.396 3.263	6.902 6.617	14.29 13.63	22.29	31.04 29.15	40.76 37.87	72.04 63.85	132.0 100.5	488.7 166.3	555.4 353.3	473.8	523.8	555.1	578.3	612.6	658.8	691.4	400
	400		0.00322	0.0322		0.155	0.311		3.141	6.357	13.04	20.09	27.57	35.55	58.37	87.21	127.0	189.3	292.3	390.6	455.0	497.2	551.1	613.6	653.9	425
- 1	425 450		0.00310	0.0310	0.0621 0.0599	0.150	0.311	1.561	3.028	6.119	12.51	19.19	26.22	33.62	54.20	78.70	109.0	148.5	201.8	272.1	343.2	401.3	479.9	564.3	613.9	450
	475		0.00290	0.0290	0.0579	0.145	0.290	1.455	2.923	5.900	12.02	18.39	25.03	31.97	50.87	72.54	97.92	128.3	165.4	210.5	262.9	315.9	403.9	510.8	571.2	475
	500		0.00280	0.0280	0.0561	0.140	0.280	1.407	2.825	5.696	11.58	17.67	23.98	30.53	48.09	67.70	89.86	115.2	144.4	178.1	216.2	257.6	338.8	457.0	528.2	500
	550		0.00263	0.0263	0.0527	0.132	0.263	1.320	2.649	5.331	10.80	16.41	22.17	28.09	43.65	60.43	78.61	98.37	119.9	143.2	168.5	195.6	253.3	361.8	445.3	550
- 1	600		0.00248	0.0248	0.0496	0.124	0.248	1.244	2.494	5.012	10.13	15.34	20.66	26.10	40.19	55.06	70.79	87.44	105.0	123.6	143.2	163.6	206.8 178.7	295.9 251.6	374.8 322.0	690 650
	650		0.00235	0.0235	0.0469	0.117	0.235	1.176	2.356	4.731	9.537	14.42 13.61	19.38 18.26	24.41 22.96	37.36 34.98	50.83 47.37	64.87 60.13	79.48 73.28	94.68 86.80	110.5	126.8 115.0	143.7 129.5	159.5	221.3	282.8	700
Ì	70 0 750		0.00223	0.0223 0.0212	0.0445 0.0424	0.111	0.223	1.115	2.233 2.123	4.481 4.256	9.017 8.555	12,89	17.28	21.70	32.94	44,45	56.21	68.24	80.52	93.04	105.8	118.8	145.2	199.3	253.0	750
I	800		0.00202	0.0202	0.0404	0.101	0.202	1.011	2.023	4.054	8.140	12.26	16.41	20.58	31.17	41.94	52.89	64.03	75.33	86.80	98.42	110.2	134.0	182.5	230.4	800
*	T_{sat}		6.98	45.83	60.09	81.35	99.63	151.8	179.9	212.4	250.3	275.5	295.0	311.0	342.1	365.7										
	ρ_f		999.9	989.9	983.1	970.8	958.4	915.0	887.0	849.9	798.7	758.3	722.4	688.4	603.2	490.9										
ŀ	ρ_{g}		0.00774	0.0681	0.1307	0.309	0.590	2.669	5.147	10.05	20.10	30.83	42.51	55.43	96.71	170.2										

Density of Water & Steam kg/m³

Moody Diagram

Page 13 of 14

Reynolds number
$$Re = \frac{\rho VD}{\mu}$$

adapted by NH from Metzger & Willard, Inc.

Continuity and Navier-Stokes equations for incompressible homogeneous fluids in Cartesian, cylindrical, and spherical coordinates

Spherical		$\frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (v_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} = 0$		$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\theta}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r}\right)$ $= -\frac{\partial p}{\partial r} + \mu\left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v_r}{\partial r}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi^2} - \frac{2v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{2v_\theta \cot \theta}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial v_r}{\partial \phi}\right]$	$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\theta}}{r\sin\theta}\frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta}}{r} - \frac{v_{\theta}^{2}\cot\theta}{r}\right)$ $= -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial v_{\theta}}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial v_{\theta}}{\partial \theta}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial v_{\theta}}{\partial \theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial v_{\theta}}{\partial \theta}\right)\right]$	$\rho\left(\frac{\partial v_{\phi}}{\partial t} + v_{r}\frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r}v_{\phi}}{r} + \frac{v_{\theta}v_{\phi}\cot\theta}{r}\right)$ $= -\frac{1}{r\sin\theta}\frac{\partial p}{\partial \phi} + \mu\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial v_{\phi}}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial \phi}\left(\sin\theta\frac{\partial v_{\phi}}{\partial \theta}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial \phi}\left(\sin\theta\frac{\partial v_{\phi}}{\partial \theta}\right)$
Cylindrical	Continuity equation	$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{1}{r}\left(\frac{\partial v_\theta}{\partial \theta}\right) + \frac{\partial v_z}{\partial z} = 0$	Navier-Stokes equation	$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_r}{\partial z}\right)$ $= -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2}\right]$	$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}v_{\theta}}{r} + v_{z}\frac{\partial v_{\theta}}{\partial z}\right)$ $= -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(rv_{\theta})\right) + \frac{1}{r^{2}}\frac{\partial^{2}v_{\theta}}{\partial \theta^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta} + \frac{\partial^{2}v_{\theta}}{\partial z^{2}}\right]$	$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial \rho}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$
Cartesian		$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$		$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right)$ $= -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right)$ $= -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right)$	$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right)$ $= -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right)$

Library Course Work Collections

Author/s:

Chemical and Biomolecular Engineering

Title:

Fluid Mechanics & Thermodynamics, 2011 Semester 2, ENGR30001

Date:

2011

Persistent Link:

http://hdl.handle.net/11343/6711

File Description:

Fluid Mechanics & Thermodynamics, 2011 Semester 2, ENGR30001