Basic Matrix Algebra

MATLAB is an abbreviation for "matrix laboratory." While other programming languages mostly work with numbers one at a time, MATLAB® is designed to operate primarily on whole matrices and arrays.

All MATLAB variables are multidimensional *arrays*, no matter what type of data. A *matrix* is a two-dimensional array often used for linear algebra.

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma (,) or a space

```
x = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}
x = 1 \times 4
1 \quad 2 \quad 3 \quad 4
```

This type of array is a row vector.

To create the 3-by-3 matrix A=[1 2 -1;2 -1 2;3 2 -1] that has multiple rows, separate the rows with semicolons.

Another way to create a matrix is to use a function, such as ones, zeros, or rand. For each of these functions, create a 5-by-1 column vector.

```
a = ones(5,1)

a = 5×1
    1
    1
    1
    1
    1
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
   00
   00
   00
   00
   00
   00
   00
   00
   00
   00
   00
```

```
c = 5×1
0.2858
0.7572
0.7537
0.3804
0.5678
```

Next try the function eye() to create a 3-by-3 matrix.

eye(3,3)

ans =
$$3 \times 3$$

1 0 0
0 1 0
0 0 1

Matrix eye() is the unity element in matrix algebra and is known as the identity matrix.

Matrix and Array Operations

Addition: Create another 3-by-3 matrix, B=[1 0 1;0 1 1;1 1 0], and find the sum A + B.

Α

$$A = 3 \times 3$$

$$1 \quad 2 \quad -1$$

$$2 \quad -1 \quad 2$$

$$3 \quad 2 \quad -1$$

$$B = [1 \ 0 \ 1; 0 \ 1 \ 1; 1 \ 1 \ 0]$$

$$A + B$$

ans =
$$3 \times 3$$
2 2 0
2 0 3
4 3 -1

How is the sum calculated?

The sum was calculated by adding each component of one matrix to the same indexed component on the other matrix.

Now create the matrix A + 10*eye.

Α

ans =
$$3 \times 3$$

11 12 9
12 9 12
13 12 9

Multiplication: Create the matrix A*B.

A*B

ans =
$$3 \times 3$$
0 1 3
4 1 1
2 1 5

Using A², create the square of A.

A^2

ans =
$$3 \times 3$$
2 -2 4
6 9 -6
4 2 2

Verify that $A^2 = A^*A$

Find the matrix A*eye()

A*eye()

ans =
$$3 \times 3$$

1 2 -1

2 -1 2

3 2 -1

Α

Did this operation change the matrix A?

No. Multiplying a matrix by its idendity matrix will just return the same matrix back.

Matrix inversion:

Use inv(A) to create the matrix A^{-1}

inv(A)

```
ans = 3 \times 3

-0.5000 0 0.5000

1.3333 0.3333 -0.6667

1.1667 0.6667 -0.8333
```

Find the product inv(A)*A

```
ans = 3×3
1.0000 0.0000 -0.0000
0.0000 1.0000 0.0000
0 -0.0000 1.0000
```

Use the backslash \ to calculate the same quantity as A \ A. This operation is more accurate.

A \ A ans = 3×3 1.0000 0.0000 0 0 1.0000 0 0 -0.0000 1.0000

What is the result equal to?

This result is equal to its identity matrix.

Solving Systems of Linear Equations

These equations arise in many robotics and control applications as Ax = b. The unknown vector x can be solved as $x = A^{-1}b$. Create a 3-by-1 vector b and solve for the unknown vector x. Use b=[1; 0; 1].

```
b = [1;0;1]

b = 3×1

1

0

1

x = inv(A)*b

x = 3×1

0.0000

0.6667
```

Alternatively, x=A \ b

0.3333

0.3333

```
x = A \ b

x = 3×1

0.0000

0.6667
```

Eigenvalues and Eigenvectors are central in the analysis of linear equations. Use eig(A) to find the eigenvalues of A.

```
eig(A)

ans = 3×1
2.4495
-1.0000
-2.4495
```

Find the eigenvalues of the matrix [0 -1;1 0].

eig([0 -1;1 0])

ans = 2×1 complex 0.0000 + 1.0000i 0.0000 - 1.0000i

Are these eigenvalues real?

No. They are imaginary.

Prof Kiriakos Kiriakidis (Jan 10, 2024).