Homework 2

Yihui He

I. PROBLEM 1

(a)
$$1+8=9$$
, x_{13} , x_{15}
(b) $\frac{1+8}{20(20-12)}=0.05625$

(c)
$$1 - ErrRate = 0.94375$$

(d) Shown in figure 1

Fig. 1. problem 1(d)

II. PROBLEM 2

(a) Shown in figure 7

Fig. 2. problem 2(a)

(b) Shown in figure 3

Fig. 3. problem 2(b)

(c) C_0 have the lowest accuracy. C_2, C_3 both have the highest accuracy.

$$accuracy = \frac{TP + N - FP}{N + P} \tag{1}$$

1

All accuracy shown below:

- c00.4
- c1 0.56
- c20.8
- c3 0.8
- c4 0.76
- c5 0.6
- (d) C_2 have the highest average recall, C_0, C_5 have the lowest average recall

$$avg - rec = (tpr + tnr)/2 \tag{2}$$

All avg-rec shown below:

- c00.5
- c1 0.63
- c20.82
- c3 0.78
- c4 0.7
- c5 0.5
- (e) C_5 and C_4 are complete. A complete classifier has all positive examples in positive prediction.
- (f) C_0 and C_1 are consistent. A consistent classifier has no negative example in positive prediction.

III. PROBLEM 3

Note that, margin caculation is below(ncresult.append(laplace) ——w—— normlization is common pitfall). Fomu-nominator=(
las of loss are from textbook. inp.value_counts().

$$margin = c(X) \frac{W \cdot X - t}{\|W\|}$$

Code is as follow:

```
w=np.array([2,1,3])
t=12
inp=np.array(
[[2, 2, 3],[3, 3, 2],[1, 2, 3],[1, 4, 1],
[4, 4, 4],[2, 2, 2],[1, 1, 1],[0, 4, 2],
[4, 0, 0],[3, 3, 1],[3, 3, 3]])
label=np.array(
[1 if i <6 else -1 for i in range(len(inp))])
margin=label*(inp.dot(w.T)-t)/np.linalg.norm(w)
(margin<0).astype(int)#0-1
(np.maximum(1-margin,0)#hinge
(1-margin)**2#square</pre>
```

	margin	0 - 1	hinge	square
0	0.801784	0.0	0.198216	0.039290
1	0.801784	0.0	0.198216	0.039290
2	0.267261	0.0	0.732739	0.536906
3	-0.801784	1.0	1.801784	3.246425
4	3.207135	0.0	0.000000	4.871444
5	0.000000	0.0	1.000000	1.000000
6	1.603567	0.0	0.000000	0.364294
7	0.534522	0.0	0.465478	0.216669
8	1.069045	0.0	0.000000	0.004767
9	0.000000	0.0	1.000000	1.000000
10	-1.603567	1.0	2.603567	6.778563

(ncresult.append(laplace) mu·nominator=(inp.value_counts(). reindex(range(1,6), fill_value=0)+4) (3. m_est=nominator/sum(nominator) result.append(m_est) result=pd.DataFrame(result,index= ['relative','laplace','l-est','5-est']).T for i in result: result[i].plot() plt.xticks(range(1,6)) plt.title(i) plt.grid(True)

laplace=nominator/sum(nominator)

plt.savefig(i+'.eps')

plt.show()

Fig. 4. problem 4(a)

IV. PROBLEM 4

	relative	laplace	1-estimate	1-estimat
1	0.08	0.100000	0.100000	0.133333
2	0.16	0.166667	0.166667	0.177778
3	0.32	0.300000	0.300000	0.266667
4	0.00	0.033333	0.033333	0.088889
5	0.44	0.400000	0.400000	0.333333

My code of computing probability and generating figures is as follow:

```
inp=pd. Series (
[3,5,5,2,3,1,5,3,5,5,2,
3,5,5,1,2,3,3,5,5,5,2,5])
result = []
relative = inp. value_counts (
    normalize = True, sort = False)
    .reindex (range (1,6), fill_value = 0)
result.append (relative)
nominator =
    (inp. value_counts ()
    .reindex (range (1,6), fill_value = 0) + 1)
```


Fig. 5. problem 4(b)

From figures, we can see that increasing the number of pseudocounts makes the connected line softer. In general, it decrease the standard deviation of the

VI. PROBLEM 6

Fig. 6. problem 4(c)

Fig. 7. problem 4(d)

pdf, that is make lower probability higher, higher probability lower. It also shows that with small dataset like this one, higher m maybe better an more general.

V. PROBLEM 5

We have Cartesian product of all features

$$4 \times 2 \times 3 \times 4 \tag{4}$$

(a)

$$2^{4*2*3*4} = 2^{96} \tag{5}$$

(b)

$$5 \times 3 \times 4 \times 5 = 300 \tag{6}$$

(c)
$$(4^2 - 1) * (2^2 - 1) * (3^2 - 1) * (4^2 - 1) = 5400$$
 (7)