SIMD meets ES7

次世代ECMA ScriptでのSIMD演算

SIMDoT?

SIMD

Single Instruction Multiple Data

ーひとつの命令で複数のデータを処理

なにができるの?

映像処理 3Dグラフィック 物理シミュレーション 暗号化

超高速化!!

画像処理

最近のHD画像

1,920 × 1,080 ピクセル

RGB (三原色) + A (透明度) = 4チャンネル

各チャンネル8bit (256階調) = 32bit (約43億色)

最近のHD画像

1,920 × 1,080 ピクセル × 4チャンネル

= 8,294,400

つまり8bitの塊が約830万個

例

4ピクセルを1ピクセルに縮小

$$(黒100\% + 0 + 0 + 0)$$
 ÷ 4 = 25%

HDではこれを830万回計算

HDではこれを830万回計算

足し算4回と割り算1回 = 4150万回!

足し算1回、8bit

ちょっと昔のCPU、32bit

ちょっと昔のCPU、32bit

1回で32bitの計算ができる

32ビット中8ビット

=24ビット無駄!!

最近のCPU、64bit

64ビット中8ビット

-超無駄!!

CPUメーカーは考えた

同じ計算なら まとめればいいじゃない

32 bit	100	25	50	0
	+	+	+	+
32 bit	50	100	0	30
	+	+	+	+
32 bit	15	60	50	10

•

細かいデータを 一度にまとめて並列計算

= SIMD演算

ちなみに97年発売のPentiumから SIMDレジスタが入ってます

最近のCPUメーカーは もっと考えた

SIMD用のレジスタ もっとデカくしよう

最近のCPU 256 bit SIMDレジスタ

8bitの計算なら同時に32回!!

ただし、

普通の命令では SIMDが使えない SIMD専用の コードが必要

少なくとも Javascriptなんかじゃ無理

少なくとも Javascriptなんかじゃ無理

・・・でした!!

ES/

ES7で 驚きのSIMD対応(予定)

詳しくはこちら

SIMD.js Stage 2

https://goo.gl/PYB4Pv

なんとMicrosoftさん

EdgeでSIMD対応済み!

Firefox

Nightlyビルドで対応済み!

デモ

SIMD Demo: Mandelbrot Animation

http://goo.gl/akDvCv

速しり

Node.js

現時点では未対応

Node.js

対応お待ちしております

みんなもSIMDで

超速 Javascript!

ありがとうございました