Нуклеотидам A, G, C і T ставляться у відповідність вектори: A (1,0.8), G (1,0.6), C (1,0.4), T (1,0.2). Послідовність отримуємо, сумуючи вектори, що відповідають нуклеотидам з послідовності.

Рис.: Графічне представлення послідовності ATGCTGCTGA

Спочатку використаємо попередній метод щоб отримати числову послідовність (x_i, y_i) . Далі використаємо наступну формулу для обчислення результуючої послідовності:

$$\frac{x_i - \overrightarrow{y_i}}{\frac{1}{2}n(n+1) - y_n},$$

де $\overrightarrow{y_i}$ це y-компонента вектора, що відповідає i-тому нуклеотиду при використанні методу $1,\ n$ це розмір ДНК послідовності.

Нуклеотидам A, G, C, T ставимо у відповідність вектори (-1,0), (1,0), (0,1), (0,-1). Починаємо з точки (0,0) і рухаємось по відповіднім векторам. Точки через які ми проходимо утворюють послідовність, причому точка стільки разів зустрічається у послідовності, скільки разів ми в неї потрапили.

Рис.: Графічне представлення послідовності АТССТСТСА

Розташовуємо нуклеотиди у вершинах квадрата зі стороною 1: $A=(0,0),\ G=(1,1),\ C=(0,1),\ T=(1,0).$ Координати послідовності рахуються ітеративно, рухаючись на половину відстані між попередньою позицією і точкою квадрата, якій відповідає наступний нуклеотид у напрямку цієї точки. Ітеративну процедуру можна задати наступним чином:

$$p_i = p_{i-1} - 0.5(p_{i-1} - g_i)$$

$$i = 1, ..., n; p_0 = (0.5, 0.5),$$

де g_i - координати, що відповідають i-тому нуклеотиду, n - довжина послідовності ДНК.

Рис.: Графічне представлення послідовності АТССТСТСА

Метод 5,6

Використовуємо попередній метод, щоб отримати послідовність p_i , отримуємо результуючу, як суму всіх попередніх:

$$z_i = \sum_{j=1}^i p_i$$

Отримуємо за допомогою методу 4 послідовність p_i і, щоб отримати результуючу послідовність, кожній точці ставимо у відповідність число:

$$z_i = x_i + y_i,$$

де
$$p_i = (x_i, y_i)$$
.

Нуклеотидам A,C ставимо у відповідність -1, а нуклеотидам T,C ставимо у відповідність 1. Починаючи з точки 0 рухаємось ітеративно:

$$p_i = p_{i-1} - \frac{(g_i - p_{i-1})}{2} sign(g_i)$$

де g_i число яке відвідає i-тому нуклеотиду. Тобто ми, подібно до методу 4, рухаємося на пів відстань до числа яке відповідає i-тому нуклеотиду.

Рис.: Графічне представлення послідовності ATGGTGCACC

p-статистика

G і G'-генеральні сукупності. $x=(x_1,...,x_n)\in G$ і $x'=(x'_1,...,x'_m)\in G',\,x_{(1)}<...< x_{(n)},\,x'_{(1)}<...< x'_{(n)}$ - порядкові статистики. Припустимо, що $F_G(u)=F_{G'}(u)$. $A_{ii}^{(k)}=\{x'_k\in (x_{(i)},x_{(i)})\}$. Якщо $F_G(u)=F_{G'}(u)$:

$$P(A_{ij}^{(k)}) = P(x_k' \in (x_{(i)}, x_{(j)})) = p_{ij}^{(n)} = \frac{j-i}{n+1} = \frac{q}{n+1}, q = j-i$$

$$p_{ij}^{(1)} = \frac{h_{ij}^{(n)}m + g^2/2 - g\sqrt{h_{ij}^{(n)}(1-h)m + g^2/4}}{m+g^2},$$
 (1)

$$p_{ij}^{(2)} = \frac{h_{ij}^{(n)} m + g^2/2 + g\sqrt{h_{ij}^{(n)} (1 - h)m + g^2/4}}{m + g^2},$$
 (2)

де $h_{ij}^{(n)}$ — частота події $A_{ij}^{(n)}$ в m випробуваннях. N кількість інтервалів $I_{ij}^{(n,m)}=\left(p_{ij}^{(1)},p_{ij}^{(2)}\right)$ (N=n(n-1)/2) і L - кількість інтервалів $I_{ij}^{(n,m)}$, які містять ймовірності $p_{ij}^{(n)}$. $h^{(n,m)}=\rho(x,x')=\frac{L}{N}$ будемо називати p-статистикою.

Модифікована р-статистика

Нехай $t(x_k)$ - кратість вибіркового значення x_k

$$p_{ij} = p(A_{ij}) = p(x^* \in (x_{(i)}, x_{(j)})) \approx \gamma_i + \gamma_{i+1} + \dots + \gamma_{j-1} + \frac{j-i}{n+1},$$
$$\gamma_l = \gamma(x_{(l)}) = \frac{t(x_{(l)}) - 1}{n+1},$$

При побудові p-статистики варіаційному ряду вибірок $\overrightarrow{x}_{(1)} \preceq \overrightarrow{x}_{(2)} \preceq ... \preceq \overrightarrow{x}_{(n)}$ поставимо у відповідність послідовність вкладених еліпсоїдів $E_{(1)} \subset E_{(2)} \subset ... \subset E_{(n)}$. Ймовірність того, що елемент \overrightarrow{x} із генеральної сукупності G задовольняє умові $\overrightarrow{x}_{(i)} \preceq \overrightarrow{x} \preceq \overrightarrow{x}_{(j)}$, рівна ймовірності потрапити між еліпсами $E_{(i)}$ і $E_{(j)}$, тобто $\frac{j-i}{n+1}$. Ця умова дозволяє побудувати p-статистику для багатовимірного випадку.

Таким чином будуємо p-статистику як завжди, тільки подія $A_{ij}^{(k)}$ буде полягати в тому, що x_k' попаде в область $E_{(j)} \setminus E_{(i)}$.

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.009	0.009	0.0045	0.01365	0.01811
rat	-	-	0.00869	0.00633	0.00797	0.0088
rabbit	-	-	-	0.00619	0.00996	0.011
human	-	-	-	-	0.00595	0.00441
duck	-	-	-	-	-	0.01754
gorilla	-	-	-	-	-	-

 ${\it Taбл.:}\ p$ -статистики при представленні ДНК методом 1

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.03221	0.03896	0.0177	0.07635	0.09232
rat	-	-	0.30299	0.07789	0.06678	0.05958
rabbit	-	-	-	0.05915	0.09386	0.08013
human	-	-	-	-	0.03564	0.03172
duck	-	_	-	_	-	0.72326
gorilla	-	_	-	_	-	-

 Табл.: p-статистики при представленні ДНК методом 2

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.01839	0.01839	0.00922	0.02752	0.04045
rat	-	-	0.03393	0.01004	0.02045	0.0182
rabbit	-	-	-	0.0105	0.02045	0.0182
human	-	-	-	-	0.00821	0.00912
duck	-	-	-	-	-	0.03174
gorilla	-	-	-	_	_	_

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.20654	0.20122	0.18473	0.28257	0.32461
rat	-	-	0.15438	0.12881	0.22096	0.20542
rabbit	-	-	-	0.1298	0.2198	0.21226
human	-	-	-	-	0.16495	0.16271
duck	-	-	-	_	_	0.22192
gorilla	-	-	-	-	_	-

 Табл.: p-статистики при представленні ДНК методом 4

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.009	0.00902	0.0045	0.01367	0.01821
rat	-	-	0.00877	0.00635	0.00801	0.00882
rabbit	-	-	-	0.0062	0.01	0.01101
human	-	-	-	-	0.00595	0.00446
duck	_	-	_	-	_	0.01759
gorilla	-	-	_	-	_	_

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.41829	0.46788	0.18442	0.35209	0.46493
rat	-	-	0.995	0.34451	0.50635	0.43534
rabbit	-	-	-	0.37162	0.52875	0.60944
human	-	-	-	-	0.8112	0.38868
duck	-	-	_	-	-	0.49541
gorilla	-	-	_	_	-	-

Табл.: p-статистики при представленні ДНК методом 6

-	gallus	rat	rabbit	human	duck	gorilla
gallus	-	0.59803	0.56986	0.90713	0.88857	0.94818
rat	-	-	0.99778	0.56047	0.39723	0.40133
rabbit	-	-	-	0.42243	0.38003	0.3786
human	-	-	-	-	0.59813	0.77453
duck	-	-	-	-	-	0.95202
gorilla	_	-	-	_	-	-

Табл.: р-статистики при представленні ДНК методом 7

Висновки

Алгоритм побудови *p*-статистик для послідовностей ДНК досить повільний. Тому не доцільно його застосовувати при послідовностях, довжина яких перевищує 10^3 . Результати суперечать інтуїтивному уявленню, про зв'язок близькості геномних послідовностей і міжвидової близькості.

Література

- Chenglong Yu, Mo Deng, Stephen S.-T. Yau, DNA sequence comparison by a novel probabilistic method, Information Sciences 181 (2011) 1484–1492
- Dorota Bielinska-Waz, Timothy Clark, Piotr Waz, Wiesław Nowak, Ashesh Nandy, 2D-dynamic representation of DNA sequences, Chemical Physics Letters 442 (2007) 140–144
- Wei Deng and Yihui Luan, Hindawi Publishing Corporation, Analysis of Similarity/Dissimilarity of DNA Sequences Based on Chaos Game Representation, Abstract and Applied Analysis, Volume 2013, Article ID 926519, 6 pages, http://dx.doi.org/10.1155/2013/926519

Література

- Jure Zupan and Milan Randic, Algorithm for Coding DNA Sequences into "Spectrum-like" and "Zigzag" Representations, J. Chem. Inf. Model. 2005, 45, 309-313
- Д. А. Клюшин, Ю. И. Петунин, Непараметрический Критерий Эквивалентности Генеральных Совокупностей, основанный На Мере Близости Между Выборками, ДК 519.21
- Д. А. Клюшин, М. В. Присяжная, Многомерное ранжирование с помощью эллипсов Петунина, Журнал обчисл. та прикл. матем. № 4(114) 2013, стор. 1-7, УДК 519.71
- Дмитро А. Клюшин, Міра близькості між виборками, що містять атоми, Вісник Київського університету, Серія: фізико-математичні науки, 2005, 3, УДК 519.9