Dynamics 4

$$N_1 = m_1 q + N650 + (1)$$
 $N_2 = N Sino (1)$
 $S = N Sino (1)$

How to get 5th equation Using other torck. if two acceleration blody one in contact then accelentar 1 to Surface in constat Should be Sans a, = a, + $\begin{cases} \alpha_{11} = q_1 \text{ Sing} \\ \alpha_{21} = q_2 \text{ 650} \end{cases}$ 9, S'm = 92 600 (tax) = 92 =

"All Smooth Constrain mall acceleration

diff. is w. a. t line (12) Diff it twice $2\frac{dx}{dt} - \frac{dx}{dt} = 0$ to convert position in diff it again w. n t o fine accelest $2\frac{d^2x}{dt^2} - \frac{d^2x}{dt^2} = 0$ { in digection A it.

x 1 then A = +Ve 2(+A) - (+a) = 0{ in directio A x l the A = -ve (2A = 9) - 0) (

& blacks

occeluation of each 61 ade? 111111111 A Mig $T - m_1 g = m_1 a_1$ $T_2 - m_2 g$ $m_3 g - T_2$ $= m_2 a_2 = m_3 a_3$ a_{2} a_{1} a_{1} a_{2} a_{3} a_{2} a_{3} a_{2} a_{3} a_{4} a_{5} a_{7} a_{1} a_{2} a_{2} a_{3} a_{2} a_{3} a_{4} a_{5} a_{5

$$\chi + \chi r = L$$

$$\frac{d^{2}\chi}{dt} + \frac{d^{2}\chi}{dt} = 0$$

$$-A + ar = 0$$

$$(x = 4) - (y)$$

4 Now we can solve it."

ention 0 and m? M 11 Smooth Cserdo