Aufgabe 1

Es gilt

$$\emptyset \neq Y$$
 ist AUR : $\Leftrightarrow U_Y := \{\overrightarrow{PQ} : Q \in Y\}$ ist UVR für ein $P \in Y$

Behauptung

$$U_Y = \{\overrightarrow{P'Q} : Q \in Y\} \quad \forall P' \in Y$$

$$Y = P' + U_Y \quad \forall P' \in Y$$

$$Y \in \mathbb{A}(V)$$
 ist AUR $\Rightarrow U_Y = \{\overrightarrow{PQ} : P, Q \in Y\} \subseteq V$ ist UVR

Die Umkehrung gilt nicht.

Beweis

1) i) Sei $P' \in Y$ beliebig. Dann gilt $\overrightarrow{PP'} \in U_Y$ und es gilt

$$\overrightarrow{PQ} = \overrightarrow{PP'} + \overrightarrow{P'Q}$$

$$\Leftrightarrow \underbrace{\overrightarrow{PQ} - \overrightarrow{PP'}}_{\in U_Y} = \overrightarrow{P'Q} \in U_Y.$$

Daraus folgt

$$\{\overrightarrow{P'Q}: Q \in Y\} \subseteq U_Y.$$
 (1)

Da $P\in Y$ gilt $\overrightarrow{P'P}\in \{\overrightarrow{P'Q}:Q\in Y\}.$ Damit gilt nun

$$\overrightarrow{P'Q} = \overrightarrow{P'P} + \overrightarrow{PQ}$$

$$\Leftrightarrow \overrightarrow{P'Q} - \overrightarrow{P'P} = \overrightarrow{PQ} \in \{\overrightarrow{P'Q} : Q \in Y\}.$$

Damit gilt

$$\{\overrightarrow{PQ}: Q \in Y\} = U_Y \subseteq \{\overrightarrow{P'Q}: Q \in Y\}.$$
 (2)

Mit (1) und (2) gilt nun

$$\{\overrightarrow{P'Q}:Q\in Y\}=U_Y$$

$$Y = P + U_{Y}$$

$$= \{\overrightarrow{OP} + u : u \in U_{Y}\}$$

$$= \{\overrightarrow{OP'} + \overrightarrow{P'P} + u : u \in U_{Y}\}$$

$$= \{\overrightarrow{OP'} + u : u \in U_{Y}\}$$

$$= P' + U_{Y}$$

Geometrie Blatt 5 P.Gepperth, S.Jung Gruppe 4

2) Es gilt

$$Y \in \mathbb{A}(V)$$
 ist AUR $\stackrel{\mathrm{Def}}{\Leftrightarrow} U_Y = \{\overrightarrow{PQ} : Q \in Y\}$ für ein $P \in Y$ ist UVR
$$\stackrel{1.i)}{\Rightarrow} U_Y = \{\overrightarrow{PQ} : Q \in Y\} \quad \forall P \in Y \text{ ist UVR}$$
 $\Leftrightarrow U_Y = \{\overrightarrow{PQ} : P, Q \in Y\} \text{ ist UVR}.$

Man betrachte nun einen Strahl $Y = \stackrel{\rightharpoonup}{AB} \in \mathbb{A}(V)$, so ist

$$U_Y = \{ \overrightarrow{PQ} : P, Q \in Y \}$$

ein UVR. Bekanntlich ist ein Strahl aber kein AUR.

Aufgabe 3

1) Es sei $L \subset \mathbb{R}^5$ gegeben als Lösungsmenge von

$$x_1 = 1$$
, $x_2 = x_5$, $x_3 = 1$, $x_4 = 0$, $x_1 + x_4 = 1$

und E als Bild der affinen Abbildung $\mathbb{R}^3 \to \mathbb{R}^5$

$$(t_1, t_2, t_3) \mapsto (1, 0, 0, 1, 0) + t_1(0, 2, 1, -1, 2) + t_2(1, 0, 0, 1, 0) + t_3(1, 2, 1, 0, 2)$$

Dann ist

$$L = (1, 0, 1, 0, 0) + t(0, 1, 0, 0, 1), \quad t \in \mathbb{R}$$

die Parameterform von L mit $\dim(L) = 1$. Für die implizite Form sind $\dim(\mathbb{R}^5) - \dim(L) = 4$ Gleichungen nötig. Hierfür wähle man

$$x_1 = 1$$
, $x_2 = x_5$, $x_3 = 1$, $x_4 = 0$,

da $x_1 + x_4 = 1$ hierdurch bereits erfüllt ist.

Nun ist

$$E = (1,0,0,1,0) + t_1(0,2,1,-1,2) + t_2(1,0,0,1,0) + t_3(1,2,1,0,2), t_1,t_2,t_3 \in \mathbb{R}$$

die Parameterform von E mit $\dim(E) = 3$. Es gilt damit

$$x_1 = 1 + t_2 + t_3$$

$$x_2 = 2(t_1 + t_3)$$

$$x_3 = t_1 + t_3$$

$$x_4 = 1 - t_1 + t_2$$

$$x_5 = 2(t_1 + x_3)$$

Offenbar gilt

$$x_2 = x_5 \tag{3}$$

und

$$x_1 - x_4 = x_3 \tag{4}$$

Die Gleichungen (3) und (4) sind $\dim(\mathbb{R}^5) - \dim(E) = 2$ Gleichungen und beinhalten alle x_i für $i = 1, \ldots, 5$ und sind damit die implizite Form.

2) Man betrachte nun die impliziten Formen von L

$$x_1 = 1$$
, $x_2 = x_5$, $x_3 = 1$, $x_4 = 0$

und E

$$x_2 = x_5, \quad x_1 - x_4 = x_3.$$

Eingesetzt ergibt sich

$$x_3 = x_1 - x_4 \\ = 1 - 0 = 1.$$

Geometrie Blatt 5 P.Gepperth, S.Jung Gruppe 4

 ${\cal E}$ schränkt ${\cal L}$ folglich nicht weiter ein. Damit gilt

$$E \cap L = L$$
,

Lliegt also in ${\cal E}.$ Ist dies der Fall, so gilt aber

$$E \cup L = E$$

mit Dimensionen wie oben.

MC

- 1. falsch
- 2. richtig
- 3. falsch
- 4. richtig
- 5. falsch