

Machine learning classique

Representation learning

On peut augmenter la complexité du modèle à l'infini...

On considère un problème de classification binaire avec le réseau ci-dessus optimisé avec une très bonne performance.

On définit la transformation des données en s'arrêtant à l'avant dernier layer: $g: \mathbf{x} \in \mathbb{R}^d \mapsto \mathbf{v} \in \mathbb{R}^k$

Apprendre à classifier les $g(\mathbf{x}_i)$ est-il plus facile ou plus difficile que classifier les \mathbf{x}_i ?

Plus facile: car un seul neurone (output) a suffit pour les classifier: ils sont **forcément** linéairement séparables

 $g(\mathbf{x}_i)$ est un embedding ou une représentation vectorielle de \mathbf{x}_i

On peut augmenter la complexité du modèle à l'infini...

Input layer

Hidden layer 1

Hidden layer 2

Hidden layer L

Output layer

On considère un problème de classification binaire avec le réseau ci-dessus optimisé avec une très bonne performance.

On définit la transformation des données en s'arrêtant à l'avant dernier layer: $g: \mathbf{x} \in \mathbb{R}^d \mapsto \mathbf{v} \in \mathbb{R}^k$

Apprendre à classifier les $g(\mathbf{x}_i)$ est-il plus facile ou plus difficile que classifier les \mathbf{x}_i ?

Plus facile: car un seul neurone (output) a suffit pour les classifier: ils sont **forcément** linéairement séparables $g(\mathbf{x}_i)$ est un *embedding* ou une *représentation vectorielle* de \mathbf{x}_i

Chapitre 3. Applications et thématiques avancées

- 1. Modèles Bayésiens hiérarchiques (Assurance / Biostats)
- 2. Classical Machine learning: zero to hero
- 3. Bayesian Machine learning

