

. INGENIERÍA DE COMPUTACIÓN Y SISTEMAS . INGENIERÍA INDUSTRIAL . INGENIERÍA ELECTRÓNICA . INGENIERÍA CIVIL . INGENIERÍA EN INDUSTRIAS ALIMENTARIAS . ARQUITECTURA . CIENCIAS AERONAÚTICAS

SÍLABO ACTIVIDADES I: GUITARRA

ÁREA CURRICULAR: HUMANIDADES

CICLO: I SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : TR000501010

II. CRÉDITOS : 01

III. REQUISITOS : ninguno

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de guitarra tiene una base teórica y se desarrolla en forma práctica. Permitiendo al alumno, complementar sus estudios de Ingeniería y Arquitectura con las actividades culturales a fin de lograr una mejor formación académica. Así mismo lograr que los alumnos se identifiquen con nuestros valores culturales principalmente con la música folklórica.

El curso se desarrollará a través de las siguientes unidades de aprendizaje:

Unidad I: Partes de la guitarra, ejercicios de pulsación. Unidad II: Ejercicios prácticos de digitación. Unidad III: Índice acústico. Ejecución de una melodía.

VI. FUENTES DE CONSULTA

Bibliográficas

- · Cavour, E. (1,971) Aprenda a tocar guitarra Editorial Columbians Ltda.
- Ed. Mercurio (1,980) El arte de tocar la Guitarra sin maestro. Editorial el Mercurio.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PARTES DE LA GUITARRA, EJERCICIOS DE PULSACIÓN

OBJETIVOS DE APRENDIZAJE:

- Identificar las partes de la guitarra.
- Evaluar los ejercicios de pulsación

PRIMERA SEMANA

Introducción. Partes de la guitarra. Posición de la guitarra

SEGUNDA SEMANA

Definición de la música. Acción de la mano derecha

TERCERA SEMANA

Elementos de la pulsación inicial. Ejercicios de pulsación Nº 1

CUARTA SEMANA

El pentagrama. Ejercicio de pulsación N 2.

QUINTA SEMANA

La clave. Ejercicio de pulsación N° 3.

SEXTA SEMANA

Elementos de la música.

Ejercicios de pulsación Nº 4.utilizando los tiempos: redonda, blanca y negra marcados con el pie.

UNIDAD II: EJERCICIOS PRACTICOS DE DIGITACIÓN.

OBJETIVOS DE APRENDIZAJE:

- Demostrar el reconocimiento de las notas musicales.
- Evaluar los ejercicios de digitación.

SÉPTIMA SEMANA

Líneas adicionales. Ejercicio de digitación Nº 1.

OCTAVA SEMANA

Evaluación parcial.

NOVENA SEMANA

La sonoridad. Ejercicio de digitación N° 2

DÉCIMA SEMANA

Las notas musicales. Ejercicio de digitación N° 3

UNDÉCIMA SEMANA

Digitación invertida de las notas musicales. Ejercicio de digitación Nº 4

UNIDAD III: INDICE ACÚSTICO. EJECUCIÓN DE UNA MELODÍA

OBJETIVOS DE APRENDIZAJE:

- Demostrar el reconocimiento del índice acústico.
- Evaluar la interpretación de una melodía.

DUODÉCIMA SEMANA

El índice acústico. Ejercicio de digitación Nº 4

DECIMOTERCERA SEMANA

Ejecución de una melodía.

DECIMOCUARTA SEMANA

Acompañamiento de huayno.

DECIMOQUINTA SEMANA.

Punteo y acompañamiento de huayno en dúo

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA.

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Arquitectura
c. Educación General
1

IX. PROCEDIMIENTOS DIDÁCTICOS

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con qu se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Materiales: Guitarras y separatas del curso

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene con la siguiente fórmula:

PF= (PE+EP+EF)/3

PE= (P1+P2+P3) / 3

Donde:

PF = Promedio final

PE = Promedio de evaluaciones

EP = Examen parcial **EF** = Examen final

Donde:

P1=Evaluación 1 (práctica procedimental)

P2=Evaluación 2 (práctica procedimental)

P3=Evaluación 3 (práctica procedimental)

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil e Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K=clave **R**=relacionado **Recuadro vacío**= no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	R
(g)	Habilidad para comunicarse con efectividad	R
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K=clave R=relacionado Recuadro vacío= no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	R
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	R
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	

h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo	
	profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
0	2	0

b) Sesiones por semana: Una sesión.c) Duración: 2 horas académicas de 45 minutos

XIV. JEFE DE CURSO

XV. FECHA

La Molina, marzo de 2017.