КИНЕМАТИКА

Задача 1

Трамвай движется прямолинейно от остановки A до следующей остановки B с ускорением, меняющимся по закону $a = a_0 - bS$, где a_0 и b - положительные постоянные, S - расстояние от остановки A до трамвая. Найти расстояние между этими остановками и максимальную скорость трамвая.

Задача 2

Частица движется равномерно со скоростью v по параболической траектории $y=kx^2$, где k - положительная постоянная. Найти ускорение a частицы в точке x=0.

Задача 3

Точка движется замедленно по окружности радиуса r так, что ее тангенциальное и нормальное ускорения в каждый момент равны друг другу по модулю. В начальный момент точке была сообщена скорость v_0 . Найти скорость v и модуль полного ускорения a точки в зависимости от пройденного пути S.

Трамвай движется прямолинейно от остановки A до следующей остановки B с ускорением, меняющимся по закону $a=a_0-bS$, где a_0 и b - положительные постоянные, S - расстояние от остановки A до трамвая. Найти расстояние между этими остановками и максимальную скорость трамвая.

$$S_0 = 2a_0/b; \ v_{max} = a_0/\sqrt{b}$$

Частица движется равномерно со скоростью v по параболической траектории $y=kx^2$, где k - положительная постоянная. Найти ускорение a частицы в точке x=0.

Точка движется замедленно по окружности радиуса r так, что ее тангенциальное и нормальное ускорения в каждый момент равны друг другу по модулю. В начальный момент точке была сообщена скорость v_0 . Найти скорость v и модуль полного ускорения a точки в зависимости от пройденного пути S.

$$v = v_0 e^{-S/r}; \ a = \sqrt{2}(v_0^2/r)e^{-2S/r}$$

ЗАКОНЫ НЬЮТОНА

Задача 1

Через блок перекинута нерастяжимая нить, на концах которой висят грузы 1 и 2 с массами m_1 и m_2 , соответственно. Блок начали поднимать вверх с ускорением \mathbf{a}_0 относительно Земли (Рисунок 1). Полагая, что нить скользит по блоку без трения, найти ускорение \mathbf{a}_1 груза 1 относительно Земли.

Рисунок 1

Задача 2

Брусок массы m_1 находится на доске массы m_2 , которая лежит на гладкой горизонтальной плоскости. Коэффициент трения между бруском и доской равен μ . К доске приложили горизонтальную силу F, зависящую от времени t по закону $F = \alpha t$, где α - постоянная. Найти момент времени t_0 , когда доска начнет выскальзывать из-под бруска.

В установке наклонная плоскость составляет угол $\alpha = 30^{\circ}$ с горизонтом (Рисунок 2). Отношение масс тел $m_1/m_2 = 2/3$. Коэффициент трения между телом m_2 и плоскостью $\mu = 0.10$. Массы блока и нити пренебрежимо малы. Найти модуль и направление ускорения тела m_1 , если система пришла в движение из состояния покоя.

Рисунок 2

Через блок перекинута нерастяжимая нить, на концах которой висят грузы 1 и 2 с массами m_1 и m_2 , соответственно. Блок начали поднимать вверх с ускорением \mathbf{a}_0 относительно Земли (Рисунок 1). Полагая, что нить скользит по блоку без трения, найти ускорение \mathbf{a}_1 груза 1 относительно Земли.

Рисунок 1

$$\mathbf{a}_1 = (2m_2\mathbf{a}_0 + (m_1 - m_2)\mathbf{g})/(m_1 + m_2)$$

Брусок массы m_1 находится на доске массы m_2 , которая лежит на гладкой горизонтальной плоскости. Коэффициент трения между бруском и доской равен μ . К доске приложили горизонтальную силу F, зависящую от времени t по закону $F = \alpha t$, где α - постоянная. Найти момент времени t_0 , когда доска начнет выскальзывать из-под бруска.

$$t_0 = (m_1 + m_2)\mu g/\alpha$$

В установке наклонная плоскость составляет угол $\alpha=30^\circ$ с горизонтом (Рисунок 2). Отношение масс тел $m_1/m_2=2/3$. Коэффициент трения между телом m_2 и плоскостью $\mu=0.10$. Массы блока и нити пренебрежимо малы. Найти модуль и направление ускорения тела m_1 , если система пришла в движение из состояния покоя.

$$a' = (m_1/m_2 - \sin \alpha - \mu \cos \alpha)g/(m_1/m_2 + 1) = 0.05g$$

ЗАКОНЫ СОХРАНЕНИЯ, ДВИЖЕНИЕ ЦЕНТРА МАСС

Задача 1

Две тележки, каждая массы M, движутся друг за другом по инерции (без трения) с одинаковой скоростью \mathbf{v}_0 . На задней тележке находится человек массы m. В некоторый момент человек прыгнул в переднюю тележку со скоростью \mathbf{u} относительно своей тележки. Какой стала скорость передней тележки?

Задача 2

На краю покоящейся тележки массы M стоят два человека, каждый массы m. Пренебрегая трением, найти скорость тележки после того, как оба человека спрыгнут с одной и той же горизонтальной скоростью \mathbf{u} относительно тележки друг за другом.

Задача 3

Две небольшие шайбы, массы которых m_1 и m_2 , связаны между собой нитью длины l и движутся по гладкой горизонтальной плоскости. В некоторый момент скорость одной шайбы равна нулю, а другой - v, причем ее направление перпендикулярно нити (Рисунок 3). Найти силу натяжения нити в процессе движения.

Рисунок 3

Две тележки, каждая массы M, движутся друг за другом по инерции (без трения) с одинаковой скоростью \mathbf{v}_0 . На задней тележке находится человек массы m. В некоторый момент человек прыгнул в переднюю тележку со скоростью \mathbf{u} относительно своей тележки. Какой стала скорость передней тележки?

$$\mathbf{v}' = \mathbf{v}_0 + mM\mathbf{u}/(m+M)^2$$

На краю покоящейся тележки массы M стоят два человека, каждый массы m. Пренебрегая трением, найти скорость тележки после того, как оба человека спрыгнут с одной и той же горизонтальной скоростью \mathbf{u} относительно тележки друг за другом.

$$\mathbf{v}' = -(2M + 3m)m\mathbf{u}/(M + m)(M + 2m)$$

Две небольшие шайбы, массы которых m_1 и m_2 , связаны между собой нитью длины l и движутся по гладкой горизонтальной плоскости. В некоторый момент скорость одной шайбы равна нулю, а другой - v, причем ее направление перпендикулярно нити (Рисунок 3). Найти силу натяжения нити в процессе движения.

Рисунок 3

$$F = \mu v^2/l$$
, где $\mu = m_1 m_2/(m_1 + m_2)$

ДВИЖЕНИЕ ТЕЛ С ПЕРЕМЕННОЙ МАССОЙ

Задача 1

Космический корабль массы m_0 движется в отсутствие внешнего силового поля с постоянной скоростью \mathbf{v}_0 . Для изменения направления движения был включен реактивный двигатель, который стал выбрасывать струю газа с постоянной относительно корабля скоростью \mathbf{u} , причем вектор \mathbf{u} все время перпендикулярен направлению движения корабля. В конце работы двигателя масса корабля стала равной m. На какой угол изменилось направление движения корабля за время работы двигателя?

Задача 2

Железнодорожная платформа в момент t = 0 начинает двигаться под действием постоянной силы тяги **F**. Пренебрегая трением в осях, найти зависимость от времени скорости платформы $\mathbf{v}(t)$, если на платформу, масса которой m_0 , в момент времени t = 0 начинает высыпаться песок из неподвижного бункера так, что скорость погрузки постоянна и равна $\mu(\kappa r/c)$.

Задача 3

Железнодорожная платформа в момент t=0 начинает двигаться под действием постоянной силы тяги **F**. Пренебрегая трением в осях, найти зависимость от времени скорости платформы $\mathbf{v}(t)$, если платформа нагружена песком, который высыпается через отверстие в ее дне с постоянной скоростью μ (кг/с), а в момент t=0 масса платформы с песком равна m_0 .

Космический корабль массы m_0 движется в отсутствие внешнего силового поля с постоянной скоростью \mathbf{v}_0 . Для изменения направления движения был включен реактивный двигатель, который стал выбрасывать струю газа с постоянной относительно корабля скоростью \mathbf{u} , причем вектор \mathbf{u} все время перпендикулярен направлению движения корабля. В конце работы двигателя масса корабля стала равной m. На какой угол изменилось направление движения корабля за время работы двигателя?

$$\alpha = u \ln(m_0/m)/v_0$$

Железнодорожная платформа в момент t = 0 начинает двигаться под действием постоянной силы тяги **F**. Пренебрегая трением в осях, найти зависимость от времени скорости платформы $\mathbf{v}(t)$, если на платформу, масса которой m_0 , в момент времени t = 0 начинает высыпаться песок из неподвижного бункера так, что скорость погрузки постоянна и равна $\mu(\kappa r/c)$.

$$\mathbf{v} = \mathbf{F}t/(m_0 + \mu t)$$

Железнодорожная платформа в момент t=0 начинает двигаться под действием постоянной силы тяги **F**. Пренебрегая трением в осях, найти зависимость от времени скорости платформы $\mathbf{v}(t)$, если платформа нагружена песком, который высыпается через отверстие в ее дне с постоянной скоростью μ (кг/с), а в момент t=0 масса платформы с песком равна m_0 .

$$\mathbf{v} = \mathbf{F}/\mu \ln(m_0/(m_0 - \mu t))$$

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

Задача 1

Шарик массы m подвесили на упругой невесомой нити, жесткость которой k. Затем шарик подняли так, чтобы нить оказалась в недеформированном состоянии, и без толчка отпустили. Найти максимальное удлинение нити x_{max} в процессе движения шарика.

Задача 2

Небольшое тело массы m поднимается без начальной скорости с поверхности Земли под действием двух сил: силы \mathbf{F} , меняющейся с высотой подъема y по закону $\mathbf{F} = -2m\mathbf{g}(1-ay)$, где a - положительная постоянная, и силы тяжести $m\mathbf{g}$. Найти работу силы \mathbf{F} на первой половине пути подъема и соответствующее приращение потенциальной энергии тела в поле тяжести Земли (поле тяжести предполагается однородным).

Задача 3

Три одинаковые заряженные частицы, каждая массы m и с зарядом q, поместили в вершины углов равностороннего треугольника со стороной a. Затем частицы одновременно освободили, и они стали симметрично разлетаться под действием кулоновских сил отталкивания. Сил тяжести нет, найти:

- 1) скорость каждой частицы в зависимости от расстояния r между ними;
- 2) работу A_K , которую совершили кулоновские силы, действующие на каждую частицу при разлете их на очень большое расстояние друг от друга.

Шарик массы m подвесили на упругой невесомой нити, жесткость которой k. Затем шарик подняли так, чтобы нить оказалась в недеформированном состоянии, и без толчка отпустили. Найти максимальное удлинение нити x_{max} в процессе движения шарика.

Небольшое тело массы m поднимается без начальной скорости с поверхности Земли под действием двух сил: силы \mathbf{F} , меняющейся с высотой подъема y по закону $\mathbf{F} = -2m\mathbf{g}(1-ay)$, где a - положительная постоянная, и силы тяжести mg. Найти работу силы \mathbf{F} на первой половине пути подъема и соответствующее приращение потенциальной энергии тела в поле тяжести Земли (поле тяжести предполагается однородным).

$$A_F = \frac{3mg}{4a}$$

Три одинаковые заряженные частицы, каждая массы m и с зарядом q, поместили в вершины углов равностороннего треугольника со стороной a. Затем частицы одновременно освободили, и они стали симметрично разлетаться под действием кулоновских сил отталкивания. Сил тяжести нет, найти:

- 1) скорость каждой частицы в зависимости от расстояния r между ними;
- 2) работу A_K , которую совершили кулоновские силы, действующие на каждую частицу при разлете их на очень большое расстояние друг от друга.

$$v = \sqrt{\frac{2kq^2(r-a)}{ra}}, \ A_K = \frac{kq^2}{a}$$