

Orthopaedics Hip Implant

Kishore Eswar (MT2021104)

Anatomy

- Hip is one of the largest's joints on human body.
 - It is a ball and socket joint.
 - The socket is formed by acetabulum, which is pelvis bone.
 - The ball is femoral head, which is the upper end of the femur.
 - A thin tissue called the synovial membrane surrounded the hip joint.

Anatomy

Anatomy

Cause of Replacement

Osteoarthritis:

An age-related "wear and tear."

Rheumatoid arthritis:

The synovial membrane becomes inflamed and thickened.

Post-traumatic arthritis:

Hip injury or fracture.

Osteonecrosis:

Limit the blood supply to the femoral head.

Childhood hip disease:

Infants and children have hip problems.

Idea Generation

Sample 1

Isometric view

Isometric view

Isometric view

Sample 5

Isometric view

Isometric view

Sample 8 (i.e. 12 degree bended)

Sample 11 (i.e. 12 degree bended)

Isometric view

Idea Screening- Design

Idea Screening- Design

Idea Screening- Design

Assembly in Creo

Idea Screening

Idea Screening

Stainless Steel

Titanium alloy

Cobalt Chromium alloy

Young's Modulus: 210 e +03 MPa

Poisson's Ratio: 0.29

Compressive Yield Strength: 800 MPa

Young's Modulus: 193 e+03 MPa

Poisson's Ratio: 0.31

Compressive Yield Strength: 207 MPa

Stainless Steel

Young's Modulus: 96 e+03 MPa

Poisson's Ratio: 0.30

Compressive Yield Strength: 930 MPa

Titanium Alloy

Idea Screening- Materials (Stem)

Polytetrafluoroethylene

Idea Screening- Materials (Cup)

Alumina ceramics (Aluminium oxide)

Fixed Support

Applied Force

Total deformation

Equivalent (Von-Mises) Stress

Factor of Safety

Fixed Support

Applied Force of 5300 N

Total Deformation

Total Deformation in 5 degree bended

Total Deformation in 12 degree bended

Equivalent (von-Mises) Stress

Equivalent (von-Mises) Stress in 5 degree bended

Equivalent (von-Mises) Stress in 12 degree bended

Factor of safety

Factor of safety with 5 degree bended

Factor of safety with 12 degree bended

Testing (Analysis)

Deformation of stem

Forging

Investment Casting

Finishing

Coating

Manufacturing of Ball

Turning

Manufacturing of Ball

Turning Reaming

Manufacturing of Liner

Injection Moulding

Manufacturing of Cup

Moulding Glazing

Anterior and Posterior Approach

HANA TABLE

Oscillating Saw

Reamer

Reamer tool

Failure	Mode	Effective	Analysis
Fixation of patient to the operation table.	Ignoring the preparation step.	Fall of patient from the operation table.	Inclusion of experienced consultant.
Fixation of operation theatre.	Ignoring the preparation step.	Challenging in assembly.	Frequent Maintenance of HVAC.

Failure	Mode	Effective	Analysis
Tools failure.	High carbon content present in the tool.	Leads to other problems or promoting another surgery.	Proper maintenance of tool life.
Excess removal of bone.	Misguiding or quarrel between surgeons.	Improper plantation and promoting another surgery.	Valid brainstorming before the surgery.

Failure	Mode	Effective	Analysis
Friction	Due to high working condition and elimination of adequate rest.	Deposition of powders in the liner(30 mg in 15 years) restrict the motion.	Coating MPC polymer in liner.
Dislocation of Implants.	Due to cross leg after posterior hip surgery.	Pain around the pelvis bone and femur bone.	Using chairs or cushion.

Failure	Mode	Effective	Analysis
Dislocation of implant.	Turning the toe inwards after anterior hip surgery.	Severe pain around the joints and muscles.	Move the leg without turning the toe.
Dislocation of implant.	Immediate turning after surgery.	High stress in the joint and severe muscle pain.	Avoid sudden turn and use tool to perform immediate works.

Failure	Mode	Effective	Analysis
Dislocation of implant.	Swimming or Fully submerged within 2-3 weeks of surgery.	Exposed of stiches and oozing of blood around the surgery area.	Wiping the body with hot water soaked towel.
Dislocation of implant.	Bending front after anterior hip surgery.	Severe acetabulum pain and muscle pain around the joint.	Splitting the leg and bend forward will minimise the pain.

Developing the stem part with frictional texture(i.e. using animal pattern).

Proposing the consummate design with DFM(i.e. Design For Manufacturing) using ProCast and SolidCast.

Imposing GD&T for the consummate design (applying basic dimension in neck angle).

Evolve new material using material designer in ANSYS 2020 R1.

Accomplish the consummate design with ISO 13485:2016 Quality management systems.

Impact of osteoarthritis: results of a nationwide survey of 10,000 patients consulting for OA

Finite Element Analysis of Orthopaedic Hip Implant with Functionally Graded Bioinspired Lattice Structures

Materials for Hip Prostheses: A Review of Wear and Loading Considerations

A Briefing on the Manufacture of Hip Joint Prostheses

Finite Element Analysis of Orthopaedic Hip Implant with Functionally Graded Bioinspired Lattice Structures

Challenges in Orthopaedic Implant Removal: Dr. B Shivashankar

DON'T Make This Mistake After Hip Replacement Surgery

Artificial Hip Joints - Highly Precise and Economical Production Solution

The Latest Procedure: Anterior Approach Total Hip Replacement Surgery

New Longer Lasting Artificial Hip Joint

THANK YOU

