问题求解(三)第10周作业

黄奕诚161220049

November 6, 2017

TJ Chapter 3

3

矩形的对称形所构成的群的Cayley表如下:

o	id	$ ho_1$	$ ho_2$	ρ_3	μ_1	μ_2	μ_3	μ_4
id	id	ρ_1	ρ_2	ρ_3	μ_1	μ_2	μ_3	μ_4
	ρ_1			id	μ_4	μ_1	μ_2	μ_3
$ ho_2$	ρ_2	$ ho_3$	id	$ ho_1$	μ_3	μ_4	μ_1	μ_2
ρ_3	ρ_3	id		$ ho_2$	μ_2	μ_3	μ_4	μ_1
μ_1	μ_1	μ_2	μ_3	μ_4	id	$ ho_1$	$ ho_2$	ρ_3
μ_2	μ_2	μ_3	μ_4	μ_1	$ ho_3$	id	$ ho_1$	$ ho_2$
μ_3	μ_3	μ_4	μ_1	μ_2	ρ_2	ρ_3	id	$ ho_1$
μ_2			μ_2	μ_3	ρ_1	ρ_2	ρ_3	id
有8个	`元素	0						

 $(Z_4,+)$ 群构成的Cayley表如下:

+	0	1	2	3	
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	
共有4个元素。					

由于这两个群含有不同数量的元素,故不同.

6

U(12)有4个元素,乘法表格如下:

~ (/ 1 3 -	1 / 4	٠, ٠,	-1-1-2
•	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

7

Proof. 1.首先证明(S,*)是一个群:

(1)首先证明封闭性: 因为 $S = R \setminus \{-1\}$, 对于 $a, b \in S$, 由于实数本身的封闭性, 只要 $a \cdot b \neq -1$ 即可满足封闭性.假设 $a \cdot b = -1$, 则可以得到(a + 1)(b + 1) = 0, 即有a = -1或b = -1,这与 $a, b \neq -1$ 矛盾.因此 $a \cdot b \neq -1$,由此满足封闭性;

(2)再证明满足结合律: 对任意 $a,b,c \in S$, 有 $(a \cdot b) \cdot c = (a+b+ab) \cdot c = a+b+c+ab+(a+b+ab)c =$ 共 $a+b+c+ab+ac+bc+abc = a \cdot (b+c+bc) = a \cdot (b \cdot c)$, 由此满足结合律;

(3)再证明有单位元: 假设存在 $e \in S$, 使得对任 意 $a \in S$, 有 $e \cdot a = a \cdot e = e + a + ea$, 取e = 0则 成立.因此存在单位元e;

(4)最后证明存在逆元: 对任意的 $a \in S$,若 $b \in S$,则 $a \cdot b = e$,有a + b + ab = 0,得 $b = -\frac{a}{a+1}$.由于 $a \neq -1$,故存在这样的逆元;

综上, (S,*)是一个群.

2.又因为对 $a,b \in S$,有 $a \cdot b = a + b + ab = b + a + ba = b \cdot a$,满足交换律,所以它是阿贝尔群.

17

以下三种都互为不同构的8阶群:

- $(1)\mathbb{Z}_8$
- $(2)\mathbb{Z}_4\times\mathbb{Z}_2$
- $(3)\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Proof. 第一个群为8阶循环群,每个子群包含一个元素;第二个群的每个子群包含两个元素;第三个群的每个子群包含三个元素.子群结构不同,因此它们互不同构.□

28

36

Proof. 除零有理数集 Q^* 的单位元为1,因为对于k ∈ Z, 有 $1 \cdot 2^k = 2^k$, 故1也是H的单位元, 满足条 件1.对于任意的 $k_1, k_2 \in \mathbb{Z}$,有 $2^{k_1} \cdot 2^{k_2} = 2^{k_1 + k_2} \in$ H,满足条件2.对于任意的 $k \in \mathbb{Z}$,有 $2^{-k} = \frac{1}{2^k}$,即 存在逆元,满足条件3.因此H是Q*的一个子集.

38

Proof. 不妨设 $z_1, z_2 \in T$,并且 $z_1 = \cos \theta_1 + \theta_2$ $i\sin\theta_1, z_2 = \cos\theta_2 + i\sin\theta_2$ 定义"乘法"运算为 z_1 + $z_2 = \cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)$.并定义"逆元"为 $z^{-1} =$ $\cos \theta - i \sin \theta$.

于是,对于任意的 $z_1,z_2\in T$,有 $z_1\cdot z_2=\cos(\theta_1+\mathbf{Disprove}\ 21$ 也是 Z_{60} 的一个生成元,但它不是质数.

 θ_2) + $i\sin(\theta_1 + \theta_2)$,有 $|z_1 \cdot z_2| = 1$,故 $z_1 \cdot z_2 \in T$.又对 于 z^{-1} , 有 $|z^{-1}| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$, 故 $z^{-1} \in T$. 因此, $T \in C^*$ 的一个子群.

41

Proof. 定义"乘法"运算为矩阵的加法运算, 定义矩 阵A的"逆元"为-A.于是,用Proposition 3.10可证: 首先,矩阵

$$A = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$

有 $A \in H$,故H非空.对于任意的 $h_1, h_2 \in H$,有 h_1 · $(d_1-d_2)=(a_1+d_1)-(a_2+d_2)=0$.因此有 $h_1h_2^{-1}\in$ H.由此可知H是G的一个子群.

48

Proof. 因为a,b是群G的两个元素,所以有ea = a.因 为 $a^3 = e$, 两边同时"乘以"一个a, 则有 $a^4 = ea =$ a.又因为 $a^4b = ba$,所以可得ab = ba,得证.

52

Proof. $(xy)^2 = xyxy = xy$ 在等式两边左"乘" $y^{-1}x^{-1}$,可得xy=e在等式两边先左"乘" x^{-1} , 再右"乘" y^{-1} , 可得yx =由此可得xy = yx, 因此G是一个阿贝尔群.

TJ Chapter 4

1

(a)

Disprove 易知 $U(8) = \{1,3,5,7\}$,若以1,3,5,7为生 成元,都不能得到U(8),故它不是循环的.

(b)

(c)

Disprove 假设g是有理数群Q的一个生成元,则设g = p/q(q,p)为非零整数),则对于ng和(n+1)g来说,Q中的一个元素,即 $\frac{2n+1}{2}g$ 无法用g生成,因此Q不是循环群.

(d)

Disprove 暂举不出反例......

(e)

Prove 假设A是一个无穷群,则它必有无穷多个子群,因此A是有穷群.

12

一个生成元的循环群: Z_1 , 生成元为1

两个生成元的循环群: Z_6 , 加法运算.生成元为1和5 四个生成元的循环群: Z_10 , 加法运算.生成元为1,3,7,9

n个生成元的循环群: Z_m , 其中满足大于等于0, 小于m, 并且与m互质的数有n个.

21

当n = 5时, $z = cis(\frac{2k\pi}{5})$.如下图所示: 设生成元是 ω ,则列举如下:

$$\begin{split} \omega &= \frac{\sqrt{5}-1}{4} + \frac{\sqrt{10+2\sqrt{5}}}{4}i\\ \omega^2 &= \frac{-1-\sqrt{5}}{4} + \frac{\sqrt{10-2\sqrt{5}}}{4}i\\ \omega^3 &= \frac{-1-\sqrt{5}}{4} - \frac{\sqrt{10-2\sqrt{5}}}{4}i \end{split}$$

$$\omega^4 = \frac{\sqrt{5} - 1}{4} - \frac{\sqrt{10 + 2\sqrt{5}}}{4}i$$

24

对于任意两个互异的质数p和q, Z_{pq} 中的生成元g只要满足以下两个条件即可:

 $(1)1 \le g \le pq - 1$

 $(2)gcd(g,p) = 1 \pm gcd(g,q) = 1$

考虑到p,q为质数,只要不存在正整数m,n,使得g=pn或者g=qm即可.又因为 $1 \le n \le q-1$ 且 $1 \le m \le p-1$,所以只要减去这些情况即可.

因此 Z_{pq} 的生成元个数为pq-1-(p-1)-(q-1)=pq-p-q+1.

32

Proof. 对于 y, y^2, y^3, \dots, y^n ,只要证明它们互不相同,则可推得其覆盖了 x^0 到 x^{n-1} 的所有值,即生成了G.假设存在 $y^i = y^j$,则知 $x^{ki} = x^{kj}$,即 $ki \equiv kj \pmod{n}$,也即 $k(i-j) \equiv 0 \pmod{n}$.又因为gcd(k,n) = 1,所以 $(i-j) \equiv 0 \pmod{n}$.于是i = nk + j,其中 $k \in Z$.由此可知在一个周期内, $y, y^2, y^3, \dots, y^{n-1}$ 的值互不相等,因此y是G的一个生成元.

TJ Chapter 5

3

(a)

(14356)=(16)(15)(13)(14)

(b)

(156)(234)=(16)(15)(24)(23)

(c)

(1426)(142)=(16)(12)(14)

(d)

(17254)(1423)(154632) = (14)(15)(12)(17)(13)(16)

(e)

(142637) = (17)(13)(16)(12)(14)

5

 S_4 的所有子群为 $\{1,2,3,4\}$ 的所有排列,共有24种.

(a)

穷举六种情况如下:

$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2	3 2	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2	3 4	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2 2	3 1	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2 2	3 4	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	
$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2 4	3 1	$\begin{bmatrix} 4\\2 \end{bmatrix}$	
[1	2	3	4]	

因此,该集合为 {(13),(13)(24),(132),(134),(1324),(1342)}

(b)

按(a)中 的 穷 举 法 , 可 以 得 到 集 合 为 $\{(1),(34),(13),(134),(143),(143)\}$

 $\begin{bmatrix} 3 & 4 & 2 & 1 \end{bmatrix}$

(c)

按(a)中的穷举法,可以得到集合为 $\{(13),(134)\}$ 它们都不是 S_4 的子群.

16

对于正四面体,首先,恒等变换即为 $\{(1)\}$; 其次,若以顶点与其对立面的面心之连 线为轴,每次旋转 $\{120$ 度,可以得到3种置 换: $\{(12)(34),(13)(24),(14)(23)\}$; 以 棱 心 与 对棱棱心为轴,进行轴对称置换,可以得 到8种: $\{(123),(132),(124),(142),(134),(143),(234),(243)\}$. 综上所述,正四面体的所有刚体运动群 为 $\{(1),(12)(34),(13)(24),(14)(23),(123),(132),(124),(142),(134),(143),(234),(234)\}$,与 $\{A_4$ 同构.

27

Proof. 设 $0 \le a < n, g \in Z$,欲证 λ_g 是G的一个排列,即证 λ_g 的所有元素都在G中,元素个数相同,并且没有重复的元素.对于前两点,由定义 $\lambda_g(a) = ga$ 可直接得出.对于第三点,假设 $\lambda_g(a) = \lambda_g(b)$,则有ga = gb,即a = b,实际上也即 $a \equiv b \pmod{n}$,说明元素互异.因此, λ_g 是G的一个排列.

29

 D_8 的 中 心 为 本 身 的 单 位 元id以 及 将 正 八 边 形 绕 中 心 旋 转180度 的 变 换{(28)(37)(46)},{(13),(48),(57)},{(24),(15),(68)},{(17),(26),(35)}.

 D_1 0的中心为单位元id以及将正十边形绕中心旋转180度的变换:

 $D)_n$ 的中心,首先都有id,若n是偶数,则还有将图形绕中心旋转180度的变换;

TJ Chapter 6

11

(e)推(d)

因为 $g_1^{-1}g_2 \in H$,所以存在 $h \in H$,使得 $g_1^{-1}g_2 = h$,即 $g_2 = g_1h$,由此可以推得 $g_2 \in g_1H$.

(d)推(c)

因为 $g_2 \in g_1H$,所以存在 $h \in H$,使得 $g_2 = g_1h$.设 $x \in g_1H$,则存在 $h_1 \in H$,使得 $g_1h_1 = x$,也即 $x = g_2h^{-1}h_1$,因为 $h^{-1}h_1 \in H$,故存在 $h_2 \in H$,使得 $x = g_2h_2$,所以 $x \in g_2H$,因此 $g_1H \subseteq g_2H$.

(c)推(a)

再证 $g_2H \subseteq g_1H$:设 $x \in g_2H$,则存在 $h_1 \in H$,使 得 $x = g_2h_1$,于是 $x = g_1hh_1$,又 $hh_1 \in H$,所以 $x \in g_1H$,因此 $g_2H \subseteq g_1H$,故 $g_1H = g_2H$.

(a)推(b)

设 $x \in Hg_1^{-1}$,则存在 $h_1 \in H$,使得 $x = h_1g_1^{-1}$,因为 $g_1h_1 = g_2h_1$,故有 $g_1 = g_2$,代入前式,得到 $x = h_1g_1^{-1} = h_1g_2^{-1}$,由此 $x \in Hg_2^{-1}$.故 $Hg_1^{-1} \subseteq Hg_2^{-1}$,同理可证 $Hg_2^{-1} \subseteq Hg_1^{-1}$.因此 $Hg_1^{-1} = Hg_2^{-1}$.

(b)推(e)

由 $Hg_1^{-1} = Hg_2^{-1}$ 知 $Hg_1^{-1}g_2 = H$,若 $x \in Hg_1^{-1}g_2$,则存在 $h_1, h_2 \in H$,使得 $h_1g_1^{-1}g_2 = h_2$,即 $g_1^{-1}g_2 = h_1^{-1}h_2$.因为 $h_1^{-1}h_2 \in H$,所以 $g_1^{-1}g_2 \in H$.

12

Proof. 设 $x \in gH$,则存在 $h \in H$,使得x = gh,有 $x = gh = ghg^{-1}g = hg$.由此 $x \in Hg$,所以 $gH \subseteq Hg$.同理可知 $Hg \subseteq gH$,因此gH = Hg.

16

Proof. 将G分 为 三 个 部 分: $\{e\}$,order为2的 元 素 集 S_1 , order大于2的元素集 S_2 .x与其逆元相等当且 仅当x的order为2或者x=1, 对于 $x\in S_2$, 有 $x\neq x^{-1}$.又因为 $x_1\neq x_2$,即order(x) = order(x^{-1}).所以 S_2 的元素个数为偶数.因此, S_1 的元素个数为偶数-1-偶数,为奇数个.

21

Proof. 设x是G中非单位元的元素,则由拉格朗日定理知,x的阶整除 $|G|=p^n$,又因为 p^n 的因数为 p,p^2,\cdots,p^n ,所以x的阶只能取其中一个,又因为当 $|x|=p^2,p^3,\cdots,p^n$ 时,可分解为p的乘积.因此G有一个p阶的真子群。当 $n\geq 3$ 时,G必有一个 p^2 阶真子群。

TJ Chapter 9

6

Proof. 设 从 Z_n 到unity第n个 根 的 映 射 为 $k \mapsto cis(\frac{2k\pi}{n})$.则有如下——对应关系:

 $\begin{array}{l}
1 \mapsto cis(\frac{2\pi}{n}) \\
2 \mapsto cis(\frac{4\pi}{n})
\end{array}$

 $k \mapsto cis(\frac{2k\pi}{n})$

如此可知它们同构.

7

Proof. 设循环群 $G = \{g^n | n \in Z\}$,设从 Z_n 到G的映射为 $k \mapsto g^k$,则有如下——对应关系:

 $\begin{array}{c}
1 \mapsto g^1 \\
2 \mapsto g^2 \\
\dots \\
k \mapsto g^k
\end{array}$

如此可知它们同构.

8

Proof. 在题目4.1(c)中已证知Q对于加法运算不是循环群,而Z对于加法运算是循环群,因此它们不同构.

9

Proof. 欲证明G是一个定义在*运算的群,这个证明过程与题3.7一摸一样,因此不再赘述.下面证明(G,*)与非零实数的乘法群同构.

考虑到a * b = a + b + ab = (a + 1)(b + 1) - 1,所以a * b + 1 = (a + 1)(b + 1),因此对于两个非零实数 $a \pi b$,它们的*运算可以与简单乘法一一对应,所以两群同构.