Quiz# 1: E1 277: Reinforcement Learning

Name: Aman Singh S.R.No.: 22027

Department: RBCCPS PHD. Programme:

1. Consider a multi-armed bandit with three arms A, B, and C. The decision maker pulls these arms in the order A, B, C, B, A, C, B and gets the rewards 5, 4, 1, 6, 3, 7, 2, respectively. Assuming initial Q-values for each arm as zero, find the final values of Q(A), Q(B) and Q(C)? (2 marks)

				0				
		,	1	JB	1	>		
Actions	0	me ->	2	3	4	5	6	7
A	0	5	5	5	5	4	4	4
В	0	0	4	4	544	5	5	4
C	0	0	0	1	1	1	4	4.
Action	A	В	C	B	A	C	В	
Action done Reward	5	4	11	6	3	17	12	ل

$$Q_6(A)=4$$
.
 $Q(A)=4$.
 $Q(B)=4$.

$$Q_{7}(3) = \frac{5x_{2} + 2}{3} = \frac{12}{3} = 4.$$

$$Q_0(c) = Q_1(c) = Q_2(c) = 0, Q_3(c) = \frac{1}{3} = 1., Q_4(c) = Q_5(c) = 1.$$

2. Consider a finite horizon MDP for which the single stage costs at each of the times $0, 1, \ldots, N-$ 1 are the same, i.e., the functions $g_0 = g_1 = \cdots = g_{N-1} \stackrel{\triangle}{=} g$. Let the terminal cost be g_N and it only depends on the terminal state as before. Assume now that $J_{N-1}(x) \geq g_N(x)$, $\forall x \in S$ (where S denotes the state space). Show that this implies $J_k(x) \geq J_{k+1}(x)$, for all k = 0, 1, ..., N - 1 and all $x \in S$.

JN-1(X) > gN(X), > JN-1(X) > JN(X). -(1).

$$@ K=N^{-1}.$$

$$J_{N-1}(X_{N-1}) = J_{N}(X_{N}) + g(X_{N})$$

$$\Rightarrow J_{N-1}(MN) - J_N(MN) = g(MN)$$

$$\Rightarrow J_{N-1}(MN) - J_N(MN) = g(MN)$$

$$\Rightarrow g(M) \geq 0.$$

$$J_{K}(MK) = J_{KH}(MKH) + g(MK).$$

$$J_{K}(x_{K}) = J_{K+1}(x_{K+1}) + g(x_{K}).$$

$$J_{K}(x_{K}) = J_{K+1}(x_{K+1}) + g(x_{K}).$$

$$J_{K}(x_{K}) \geq J_{K+1}(x_{K}) + J_{K}(x_{K}).$$

$$J_{K}(x_{K}) \geq J_{K+1}(x_{K}) + J_{K}(x_{K}).$$

$$J_{K}(x_{K}) \geq J_{K+1}(x_{K}) + J_{K}(x_{K}).$$

$$J_{K}(x_{K}) = J_{K}(x_{K}) + J_{K}(x_{K}).$$

$$J_$$