Содержание

1	Лекци	я5		2
	1.1	Интері	вальный статистический ряд	2
	1.2	Эмпирическая плотность		
	1.3	Полиго	он частот	٠
	1.4	Некоторые распределения, используемые в математической статистике		
		1.4.1	Гамма-функция Эйлера	٠
		1.4.2	Гамма-распределение	4
		1.4.3	Распределение Релея	٢
		1.4.4	Распределение хи-квадрат	٥
		1.4.5	Распределение Фишера	6

1 Лекция 5

1.1 Интервальный статистический ряд

Выше было понятие статистического ряда. Однако, если объем достаточно велик (n > 50), то элементы выборки группируют в так называемый интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}, x_{(n)}]$ разбивают на m равновеликих промежутков. Ширина каждого из них $\Delta = \frac{|J|}{m} = \frac{x_{(1)} - x_{(n)}}{n}$. Данные промежутки строятся по следующему правилу:

$$J_{i} = [x_{(1)} + (i-1)\Delta; x_{(i)} + i\Delta), i = \overline{1, m-1}$$

$$J_{m} = [x_{(1)} + (m-1)\Delta; x_{(n)}]$$

Определение интервального статистического ряда, отвечающего выборке x называется таблица следующего вида:

 n_i - число элементов выблоки \overrightarrow{x} , попавших в промежуток $J_i, i=\overline{1,m}$ Замечание:

$$1) \sum_{i=1}^{m} n_i = n$$

2) \H ля выбора m используют формулу:

$$m = [log_2 n] + 2$$

или

$$m = [log_2 n] + 1$$

1.2 Эмпирическая плотность

Пусть для данной выборки \overrightarrow{x} построен интервальный статистический ряд $(J_i, n_i), i = \overline{1, m}$ Определение:

Эмпирической плотностью распределения соответствующей выборки \overrightarrow{x} называется функция:

$$f_n(x) = \begin{cases} \frac{n_i}{n \cdot \Delta}, x \in J_i \\ 0 \end{cases} \tag{1.1}$$

Замечание: 1) Очевидно, что
$$\int_{-\infty}^{+\infty} f_n(x) dx = \int_{x_{(1)}}^{x_{(m)}} f_n(x) dx = \sum_{i=1}^m \frac{n_i}{n \cdot \Delta} \Delta = 1$$

Таким образом эмпирическая плотность распределения удовлетворяет условию нормировки. Легко показать, что она обладает всеми свойствами функции плотности распределения.

2) $f_n(x)$ является кусочно-постоянной функцией:

3) Функция $f_n(x)$ вяляется статистическим аналогом функции плотности распределения вероятности. Доказательство - аналогично доказанному выше результату для функции распределения. $\hat{F}_n(x) \overrightarrow{x} \to \overrightarrow{\infty} F(x)$ на Р

 $f_n(x)$ примерно равна f(x) при n » 1.

Опредениение - график эмпирической функции плотности называется гистограммой.

1.3 Полигон частот

Определение полигона частот - пусть для некоторой выборки \overrightarrow{x} построены гистограммы, по определению полигоном частот называется ломаная, звенья которой соединяют середины верних сторон соседних прямоугольников гистограммы.

1.4 Некоторые распределения, используемые в математической статистике

1.4.1 Гамма-функция Эйлера

По определению гамма-функцией Эйлера называется выражение $\Gamma: R^+ \to R$, определённое правилом:

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$$

Замечание:

1) Интерграл является несобственным первого рода при $x \geqslant 1$;

при $x \in (0;1)$ этот интеграл является несобственным и имеет следующие особенности: в t=0 - подинтегральная функция имеет разрыв второго рода, верхний предел равен бесконечности. Легко проверить, что данный интеграл сходится при x>0, при остальных вещественных x он расходится.

Некоторые свойства гамма-функции:

1. $\Gamma(x)$ - является бесконечное число раз дифференцируемой функцией, при этом её к-ая производная задаётся следующей формулой:

$$\Gamma^{k}(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} (\ln t)^{k} dt$$

2.
$$\Gamma(x+1) = x\Gamma(x), x > 0$$

3.
$$\Gamma(1) = 1$$

4. $\Gamma(n+1) = n!, n \in N$, по этой причине часто говорят, что гамма-функция является обобщением понятия факториала на вещественные числа.

5.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
, вывод через интеграл Пуассона. 6. $\Gamma(\frac{n+1}{2}) = \left|\text{по второму свойству}\right| = \frac{n-1}{2}\Gamma(\frac{n-1}{2}) = \dots = \frac{n-1}{2}\frac{n-2}{2}\dots\frac{1}{2}\Gamma(\frac{n-1}{2}) = \frac{1\cdot3\cdot5\dots\cdot(n-1)}{2^n}\sqrt{\pi}$

7. Эскиз графика $\Gamma(x)$

1.4.2 Гамма-распределение

Определение: говорят, что случайная величина ξ имеет гамма-распределение, ели её функция плотности распределения вероятности имеет вид:

$$f_{\xi}(x) = \left\{ \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x > 0 \right\}$$
 (1.2)

Обозначаеся как ξ $\Gamma(\lambda, \alpha)$

Замечание:

1) Экспоненциальное распределение:

$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0 \end{cases} \tag{1.3}$$

$$Exp(\lambda) = \Gamma(\lambda, 1)$$

Теорема:

Пусть случайная величина ξ_1 $\Gamma(\lambda,\alpha_1)$, а ξ_1 $\Gamma(\lambda,\alpha_1)$, ξ_1 и ξ_2 - независимы. Тогда: $\xi_1+\xi_2$ $\Gamma(\lambda,\alpha_1+\alpha_2)$

Следствие:

Если случайные величины $\xi_1, \xi_2, ..., \xi_n$ независимы, причём ξ_i $\Gamma(\lambda, \alpha_i), i = \overline{1, n}$, то: $\xi_1 + ... + \xi_n$ $\Gamma(\lambda, \alpha_1 + ... + \alpha_n)$

1.4.3 Распределение Релея

Пусть $\xi \mathcal{N}(0, \sigma^2)$

Говорят, что случайная величина ξ имеет распределения Релея с параметром σ .

Замечание:

1) Несложно показать, что:

$$f_y(x) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi x}} e^{\frac{-x}{2b^2}}, x > 0\\ 0 \end{cases}$$
 (1.4)

2) Распределение Релея является частным случаем гамма-распределения для $\lambda = \frac{1}{2\sigma^2}$ и $\lambda = \frac{1}{2}$, то есть ν $\Gamma(\frac{1}{2\sigma^2}, \frac{1}{2})$

1.4.4 Распределение хи-квадрат

Пусть:

Если случайные величины $\xi_1,\xi_2,...,\xi_n$ независимы, ξ_i $N(0,1),i=\overline{1,n},$ $\nu=\xi_1^2+...+\xi_n^2$

Определение: в этом случае говорят, что случайная величина ν имеет распределение хи-квадрат с n степенями свободы. Обозначается как ν $X^2(n)$

Замечание:

1) $\xi_i \ N(0,1) \Rightarrow \xi_i^2$ имеет распределение Релея с параметром $\sigma=1$, то есть $\xi_i^2 \ \Gamma(\frac{1}{2},\frac{1}{2})$. Так как случайные величины $\xi_1...\xi_n$ - независимы с учётом свойства гамма-распределения: $\nu=\xi_1^2+...+\xi_n^2 \ \Gamma(\frac{1}{2},\frac{n}{2})$, то $X^2=\Gamma(\frac{1}{2},\frac{n}{2})$

2) Очевидно, что если независимые случайные величины $\nu_1,...\nu_m$ имеют распределения $X^2(\nu_i\,X^2(k_i),i)$ $\overline{1,m}), \text{ TO } \nu_1 + ... + \nu_n \ X^2(k_1 + ... k_m)$

3) График функции плотности ν $X^2(n)$

Распределение Фишера

Пусть:

1) ξ_1,ξ_2 - независимы 2) $\xi_i~X^2(n_i),i=\overline{1,\!2}$

3)
$$\nu = \frac{n_1 \xi_1}{n_2 \xi_2}$$

Определение: в этом случае говорят, что случайная величина ν имеет распределение Фишера со степенями свободы n_1n_2 , ν $F(n_1,n_2)$

Замечания:

1) Можно показать, что:

$$f_{\nu}(x) = \begin{cases} C \frac{x^{\frac{n_1}{2} - 1}}{(1 + \frac{n_1 x}{n_2})^{\frac{n_1 + n_2}{2}}}, x > 0\\ 0 \end{cases}$$
 (1.5)

$$C = \frac{(\frac{n_1}{n_2})^{\frac{n_1}{2}}}{B(\frac{n_1}{2}, \frac{n_2}{2})}$$

 $B(x,y)=\int\limits_0^1 t^{x-1}(1-t)^{y-1}dt$ - бета-функция Эйлера. 2) Если u $F(n_1,n_2),$ то $\frac{1}{\nu}$ $F(n_2,n_1)$