

Ensimag 2^e année - Filière Ingénierie pour la finance

Exercices de Gestion de Portefeuille

Exercice n° 1 : Allocation de porte feuille quand les taux prêteur et emprunteur sont différents

Il n'y a aucun problème d'optimisation sous contrainte à résoudre dans cet exercice.

On considère un marché contenant $N \ge 1$ titres risqués (actions). On note $(R_i, i = 1, ..., N)$ les rentabilités de ces N titres et R le vecteur de ces N rentabilités.

Les investisseurs sur ce marché sont insatiables et riscophobes, ils cherchent des portefeuilles moyenne-variance efficients. En plus des N titres risqués, les investisseurs peuvent emprunter au taux r_e et prêter au taux r_p . On suppose (ce qui est toujours le cas dans la réalité) que $r_e > r_p$. On suppose aussi que r_e est strictement inférieur à la rentabilité espérée m_0 du portefeuille d'actifs risqués de variance minimale.

Les investisseurs peuvent donc acheter au comptant une obligation zéro-coupon B_p de taux de rendement actuariel r_p et vendre à découvert une obligation zéro-coupon B_e de taux de rendement actuariel r_e . Ils ne peuvent pas vendre à découvert le zéro-coupon B_p ou acheter au comptant le zéro-coupon B_e .

- 1. Expliquer pourquoi un investisseur ne détiendra au plus qu'un seul des deux zéro-coupons.
- 2. Monter que la rentabilité $R_p(x,\alpha,\beta)$ d'un portefeuille détenu par un investisseur peut s'écrire:

$$R_p(x, \alpha, \beta) = \alpha R_a(x) + (1 - \alpha) \left[\beta r_e + (1 - \beta) r_p\right]$$

οù

- $-\alpha,\beta\in\mathbb{R}$
- $-x \in \mathbb{R}^N, R_a(x) = {}^tRx$ est la rentabilité d'un portefeuille A ne contenant que des titres risqués.
- 3. Quelles sont les contraintes auxquelles sont soumis les paramètres x, α et β ?
- 4. Écrire les deux problèmes d'optimisation équivalents qui donnent la composition optimale du portefeuille de chaque investisseur.
- 5. On note (x^*, α^*, β^*) les paramètres donnant la composition optimale d'un portefeuille pour un investisseur. Démontrer que si $\alpha^* \neq 1$, alors $\beta^* = 0$ ou $\beta^* = 1$.
- 6. Démontrer que dans les trois cas $(\alpha^* = 1, \alpha^* \neq 1 \text{ et } \beta^* = 0, \alpha^* \neq 1 \text{ et } \beta^* = 1)$ le portefeuille A est sur la frontière efficiente des actifs risqués.
- 7. On note T_e le portefeuille de la frontière efficiente des actifs risqués (dans l'espace écarttype moyenne) dont la tangente coupe l'axe des ordonnée en r_e . On note de même T_p , le portefeuille de la frontière efficiente des actifs risqués dont la tangente coupe l'axe
 des ordonnées en r_p . On note m_e et m_p les espérances des rentabilités respectives de ces
 deux portefeuilles et σ_e et σ_p leurs écarts-type respectifs (Fig. ??). Démontrer que si
 l'investisseur cherche à obtenir une rentabilité $m \leq m_p$ ou un écart-type $\sigma \leq \sigma_p$ alors le
 portefeuille A est le portefeuille T_p . Démontrer de même que si l'investisseur cherche à
 obtenir une rentabilité espérée $m \geq m_e$ ou un écart-type $\sigma \geq \sigma_e$ alors le portefeuille A est
 le portefeuille T_e .

- 8. Démontrer que si l'investisseur cherche à obtenir une rentabilité espérée $m \in]m_p, m_e[$ ou un écart-type $\sigma \in]\sigma_p, \sigma_e[$ alors il ne détiendra aucun des deux zéro-coupons.
- 9. Dessiner dans l'espace écart-type moyenne, l'ensemble des portefeuilles choisis par les investisseurs. Indiquer dans chaque partie du graphique, quel(s) fond(s) détient (détiennent) les investisseurs.

Exercice n° 2: Gestion de portefeuille

On considère un marché contenant $N \geq 1$ titres risqués (actions). On note $(R_i, i = 1, ..., N)$ les rentabilités de ces N titres, \mathcal{R} le vecteur de ces N rentabilités, \mathcal{E} le vecteur des espérances de \mathcal{R} et Λ sa matrice de covariance.

Tout investisseur k sur ce marché est caractérisé par sa fonction d'utilité pour la richesse

$$U_k(W) = E(u_k(W)) = E(W) - \pi_k Var(W), \quad \pi_k \in \mathbb{R}.$$

- 1. Expliquez, avec les hypothèses classiques de la théorie financière, pourquoi il faut que $\pi_k > 0$
- 2. On note x_k^* la composition optimale (pourcentage de sa fortune initiale investie dans chacun des N titres) du portefeuille de l'investisseur k. Écrire le programme d'optimisation (P) dont x_k^* est solution. On rappelle que si
 - $-W_k(0)$ est la fortune initiale de l'investisseur k,
 - $W_k(1)$ sa fortune finale,
 - $-R_{p,k}$ la rentabilité du portefeuille dans lequel il investit.

alors
$$E(W_k(1)) = W_k(0) E(1 + R_{p,k})$$
 et $Var(W_k(1)) = W_k(0)^2 Var(R_{p,k})$

- alors $E(W_k(1)) = W_k(0) E(1 + R_{p,k})$ et $Var(W_k(1)) = W_k(0)^2 Var(R_{p,k})$ 3. Résoudre (P). On écrira la solution x_k^* en fonction de π_k , $W_k(0)$, $b = {}^t \mathcal{E} \Lambda^{-1} \mathbb{1}$, $u = \frac{1}{b} \Lambda^{-1} \mathcal{E}$ et $v = \frac{\Lambda^{-1} \mathbb{1}}{t \mathbb{1} \Lambda^{-1} \mathbb{1}} = \frac{1}{a} \Lambda^{-1} \mathbb{1}$ 4. Le portefeuille de l'investisseur k est-il moyenne-variance efficient?
- 5. Donnez la valeur de l'espérance $\mu_k^* \equiv \mu^*(\pi_k)$ et de la variance $\sigma_k^{*^2} \equiv \sigma^{*^2}(\pi_k)$ de la rentabilité du portefeuille optimal de l'investisseur k.
- 6. Calculez $\frac{d\mu_k^*}{d(\sigma_k^{*2})}$ en fonction de π_k . Commentez le résultat.
- 7. Il y a maintenant sur ce marché un zéro-coupon dont le taux de rendement actuariel est noté r_f . Montrez que le portefeuille détenu par tous les investisseurs est une combinaison linéaire (convexe) du zéro-coupon et d'un unique portefeuille T ne comprenant que des actifs risqués.
- 8. Déterminez T à l'équilibre.
- 9. On appelle investisseur moyen, un investisseur dont la richesse initiale $\overline{W}(0)$ est égale à la richesse initiale moyenne de tous les investisseurs et qui ne détient que du portefeuille T. Calculer la valeur $\overline{\pi}$ du paramètre π_k de l'investisseur moyen en fonction de r_f , $\overline{W}(0)$ et de l'espérance et de la variance du portefeuille de variance minimale.

Exercice n° 3: Questions autour de la frontière efficiente

On considère un marché contenant $N \geq 1$ titres risqués (actions). On note $(R_i, i = 1, ..., N)$ les rentabilités de ces N titres et R le vecteur de ces N rentabilités.

Les investisseurs sur ce marché sont insatiables et riscophobes, ils cherchent des portefeuilles moyenne-variance efficients. En plus des N titres risqués, les investisseurs peuvent emprunter

$$\begin{array}{l} E_{\text{XPICICE}} \ 2: \\ 1) \text{Tr} \ x \ E_{\text{(Wf)}} \ - \text{Tr} \ \text{Var} \ \text{(wf)} \\ \text{wf} \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{Var} \ \text{(wf)} \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{Var} \ \text{(wf)} \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{Wa} \ \text{(wf)} \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{E} \ (\text{u} \ \text{(wf)} \) \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{E} \ (\text{u} \ \text{(wf)} \) \ = \ \text{W}_0 \ (1 + \text{E}(\text{Rp})) \\ \text{mec} \ \text{Vim}_{[n]} \ = \ \text{W}_0 \ (1 + \text{Max} \ \text{Rp}) \\ \text{Tr} \ \text{doit} \ \text{2bie} \ \text{70} \ \text{can} \ \text{Res} \ \text{agents} \ \text{sont} \ \text{rescophobe} \ . \\ 2) \ - 3) \\ \text{Max} \ \text{Wo} \ (1 + \text{E}(\text{Rp}(\text{w})) \ - \ \text{Tr} \ \text{War} \ (\text{Rp}(\text{w})) \\ \text{3c} \ \text{tim} = 1 \\ \text{Ray} \ \text{E} \ \text{Rp} \ \text{(w}) \ - \ \text{Tr} \ \text{War} \ (\text{Rp}(\text{w})) \\ \text{3c} \ \text{tim} = 1 \\ \text{Angrangein} \ \text{E} \ \text{Rp} \ \text{(w}) \ - \ \text{Tr} \ \text{War} \ (\text{Rp}(\text{w})) \\ \text{3c} \ \text{tim} = 1 \\ \text{Angrangein} \ \text{E} \ \text{W} \ - \ \text{Tr} \ \text{War} \ (\text{Rp}(\text{w})) \\ \text{3c} \ \text{tim} = 1 \\ \text{3c} \ \text{(w} \ \text{*} \$$

et prêter au taux R_f . Les ventes à découvert sont permises sans frais sur ce marché. On note \mathcal{E} l'espérance du vecteur R et Λ sa matrice de covariance. On note aussi a, b, c les quantités suivantes (on suppose donc que ces quantités existent):

$$a = {}^{t}\mathbb{1} \Lambda^{-1} \mathbb{1}$$
$$b = {}^{t}\mathbb{1} \Lambda^{-1} \mathcal{E}$$
$$c = {}^{t}E \Lambda^{-1} \mathcal{E}$$

1. Démontrez que tous les investisseurs vont combiner un unique porte feuille T dont l'espérance et la variance de la rentabilité sont données par

$$\mu_T = \frac{b R_f - c}{a R_f - b}$$

$$\sigma_T^2 = \frac{a \mu_T^2 - 2b \mu_T + c}{a c - b^2} = \frac{a R_f^2 - 2b R_f + c}{(a R_f - b)^2}$$

- 2. Démontrez que si l'investisseur cherche à obtenir une rentabilité espérée égale à $\mu^* > R_f$, alors il détiendra une proportion $\alpha^* = \frac{\mu^* R_f}{\mu_T R_f}$ d'actif(s) risqué(s).
- 3. Démontrez qu'alors, l'écart-type de la rentabilité de son porte feuille est $\sigma^* = \frac{\sigma_T}{\mu_T - R_f} \left[\mu^* - R_f \right]$
- 4. Démontrez que la prime de risque par unité de risque maximale vaut $\lambda_T = \sqrt{a R_f^2 2 b R_f + c}$
- 5. Démontrez l'égalité suivante : $c = \frac{(\mu_T \mu_0)^2}{\sigma_T^2 \sigma_0^2} + \frac{\mu_0^2}{\sigma_0^2}$ où μ_0 et σ_0^2 sont respectivement l'espérance et la variance du portefeuille de variance minimale.
- 6. Démontrez que l'espérance μ et la variance σ^2 de la rentabilité d'un portefeuille détenu par un investisseur sont reliés par la relation: $\sigma^2 = \sigma_0^2 + \left(\sigma_T^2 \sigma_0^2\right) \left(\frac{\mu \mu_0}{\mu_T \mu_0}\right)^2$

Exercice nº 4 : Questions autour de la frontière efficiente et du MEDAF

Dans tout cet exercice, les hypothèses conduisant à l'établissement de la frontière efficiente de Markovitz et/ou au MEDAF sont supposées vérifiées.

- 1. Calculez la covariance entre la rentabilité du portefeuille (0) de variance minimale (dans le modèle de Markovitz) et la rentabilité d'un portefeuille quelconque (de la frontière ou pas).
- 2. On considère le portefeuille (P) moyenne-variance efficient dont la variance de la rentabilité σ_P^2 vaut deux fois celle du portefeuille (0) de variance minimale σ_0^2 , soit $\sigma_P^2 = 2 \sigma_0^2$. Donnez la composition du portefeuille (P') moyenne-variance efficient, dont la rentabilité est non corrélée avec celle du portefeuille (P) en fonction de la composition du portefeuille (P) et de celle du portefeuille (0).
- 3. Considérons un marché en équilibre selon le MEDAF. Le taux sans risque R_f est de 5%. Le portefeuille de marché à une espérance de rentabilité $E(R_m)$ de 15% et un écart-type de rentabilités σ_m de 20%. Soit (P) un portefeuille moyenne-variance efficient d'espérance de rentabilité 20%.
 - (a) Quel est le bêta (du MEDAF) du portefeuille efficient (P)?
 - (b) On suppose de plus $Var(R_p) = 0.58$. Quelle est la part du risque spécifique du portefeuille (P) dans son risque total?

- (c) Calculez la covariance entre la rentabilité du marché et celle du portefeuille (P)
- (d) Donnez l'équation de la frontière des portefeuilles moyenne-variance efficients.
- 4. Dans la théorie de Markowitz (frontière efficiente), si on considère 3 investisseurs A, B et C et si on note $x_A(i)$ (respectivement $x_B(i)$, respectivement $x_C(i)$) la proportion de la fortune de l'investisseur A (respectivement de B, respectivement de C) investie dans le titre i, doit-on avoir:

$$\frac{x_A(i) - x_B(i)}{x_A(j) - x_B(j)} = \frac{x_A(i) - x_C(i)}{x_A(j) - x_C(j)}$$

si i et j sont deux titres différents?

5. Deux titres risqués sont négociés sur un marché financier. Le vecteur de la rentabilité de ces deux titres est caractérisé par :

$${\rm son~esp\'erance}\colon E=\left(\begin{array}{c}10\%\\15\%\end{array}\right)$$
 sa matrice de covariance : $\Lambda=\left(\begin{array}{cc}0.09&-0.06\\-0.06&0.16\end{array}\right)$

Le taux sans risque sur ce marché peut-il être égal à 11% à l'équilibre?

Exercice nº 5 : Équilibre

On se place dans l'économie à une période (deux dates) et deux états (cf. Fig. ??).

Il y a $K \in \mathbb{N}^*$ investisseurs dans cette économie. Chaque investisseur est doté d'une fortune initiale $W_0^{(k)}$. Il cherche à maximiser l'espérance d'utilité de sa richesse finale (c'est à dire de sa richesse en t=1). La fonction d'utilité de l'individu $k \in \{1,\ldots,K\}$ est $U_k(W) = -\frac{1}{2} (b_k - a W)^2$. Le paramètre a et les K paramètres b_k sont tels que tous les investisseurs sont insatiables et riscophobes.

Dans cette économie ("fermée"), l'actif risqué S comme le zéro-coupon B ne peuvent être détenus que par les K investisseurs.

On note:

$$W_0 = \sum_{k=1}^K W_0^{(k)}$$

$$N > 0 \text{ le nombre total de titres risqués } S.$$

$$\overline{W}_0 = \frac{W_0}{K}$$

$$\overline{b} = \frac{1}{K} \sum_{k=1}^K b_k$$

1. On note α_k la proportion de sa richesse initiale que va investir l'individu k dans l'actif S. Montrer que

$$\alpha_k = \frac{b_k - a \, r \, W_0^{(k)}}{a \, W_0^{(k)}} \, \frac{p(u - r) + (1 - p) \, (d - r)}{p(u - r)^2 + (1 - p) \, (d - r)^2}$$

2. On considère que les paramètres p, u, d sont exogènes. On cherche donc à déterminer les prix d'équilibre en t = 0 de l'action et du zéro-coupon, ce qui revient à déterminer S_0 et r. Montrer qu'à l'équilibre, on a :

$$S_{0} = \frac{W_{0}}{N}$$

$$r = \frac{\overline{b} (p u + (1 - p) d) - a \overline{W}_{0} (p u^{2} + (1 - p) d^{2})}{\overline{b} - a \overline{W}_{0} (p u + (1 - p) d)}$$

3. on appelle "investisseur moyen", l'investisseur dont la richesse initiale est \overline{W}_0 et la fonction d'utilité est $\overline{U}(W) = -\frac{1}{2} \left(\overline{b} - a W\right)^2$. Quelle est la composition du portefeuille détenu par l'investisseur moyen si le marché est à l'équilibre? Commentez ce résultat.

Exercice nº 6: Changement de numéraire

On considère un marché financier sur lequel sont cotés $N \ge 1$ actifs risqués. On note \mathcal{R} le vecteur des rentabilités, \mathcal{E} le vecteur des espérances de \mathcal{R} et Λ , sa matrice de covariance. On suppose que Λ est inversible (il existe un risque de marché incompressible) et que les espérances de rentabilité des titres ne sont pas toutes égales.

Les investisseurs sur ce marché sont insatiables et riscophobes, ils cherchent des portefeuilles moyenne-variance efficients.

On note P_{min} le portefeuille dans lequel on a investit $1 \in ent = 0$ et dont la variance est minimale.

On effectue le changement de numéraire suivant: au lieu d'évaluer le prix d'un titre ou d'un portefeuille en euros (à la date t=0 ou à la date t=1), on évalue le prix de ce même portefeuille en nombre de P_{min} (toujours en t=0 ou en t=1). Par exemple, si une action vaut $10 \in \mathbb{C}$ en t=0, elle vaut 10 dans le numéraire P_{min} en t=0.

On note alors \mathcal{R}_{min} le vecteur des rentabilités des titres dans le numéraire P_{min} ; \mathcal{E}_{min} son vecteur des espérances et Λ_{min} sa matrice de covariance.

Il n'est pas utile (et très difficile) de calculer \mathcal{E}_{min} et Λ_{min}

- 1. Maths: Expliquez pourquoi la matrice Λ_{min} est non inversible (elle est de rang N-1).
- 2. Finance: Quel est l'actif sans risque dans le numéraire P_{min} ? Quel est le "taux sans risque" dans ce numéraire?
- 3. Montrez que dans ce numéraire, tous les investisseurs vont composer leur portefeuille en mélangeant:
 - L'actif sans risque du numéraire P_{min} .
 - Un unique portefeuille T_{min} d'actifs "risqués" dans ce numéraire.
- 4. Montrez que la composition de T_{min} s'obtient par la résolution de la maximisation d'une certaine prime de risque.
- 5. Dessinez la frontière efficiente dans l'espace (Écart-type des rentabilités Espérance des rentabilités); ces rentabilités étant calculées dans le numéraire P_{min} .
- 6. Montrez que lorsqu'on ajoute à ce marché un actif sans risque (en euros) de rendement r_f , cette approche permet de retrouver immédiatement les résultats du cours.

Exercice no 7: Value at Risk

La Value at Risk ou VaR est une mesure de risque universellement utilisée sur les marchés financiers.

Elle se définit comme étant la perte maximale qu'il est possible de faire avec une probabilité α donnée. Mathématiquement, elle se calcule par:

$$P(W_f - W_0 < -VaR(\alpha)) = \alpha \tag{1}$$

où W_0 est la richesse initiale, W_f est la richesse future.

Si $W_f - W_0 \rightsquigarrow \mathcal{N}(m_W, \sigma_W^2)$ on obtient immédiatement :

$$-VaR(\alpha) = m_W + \sigma_W F_{\mathcal{N}(0,1)}^{-1}(\alpha)$$
 (2)

où $F_{\mathcal{N}(0,1)}$ est la fonction de répartition de la loi $\mathcal{N}(0,1)$. Par exemple, si $\alpha=2.5\%$ alors $VaR(\alpha)=-m_W+1.96\,\sigma_W$.

- 1. Expliquez pour quoi la $VaR(\alpha)$ est en général calculée pour des niveaux $\alpha=0,1\%,1\%$ ou 5%, jamais pour des niveaux $\alpha\geq 50\%$.
- 2. On considère un marché financier sur lequel sont cotés $N \geq 1$ actifs risqués. On note, comme dans l'exercice précédent, \mathcal{R} le vecteur des rentabilités, \mathcal{E} le vecteur des espérances de \mathcal{R} et Λ sa matrice de covariance. Un investisseur sur ce marché vous demande de déterminer le portefeuille dans lequel il va devoir investir, sachant qu'il est insatiable, riscophobe, qu'il souhaite une espérance de sa richesse finale égale à m_W et qu'il mesure le risque avec la VaR(2,5%) de sa richesse finale. Quel problème d'optimisation allez-vous résoudre?
- 3. Donnez la composition du portefeuille de l'investisseur.
- 4. Le portefeuille que vous lui proposez est-il *moyenne-variance* efficient au sens de Markowitz?
- 5. Étudiez la monotonicité de la mesure de risque "VaR" par rapport à la mesure de risque "variance". Le résultat précédent était-il alors prévisible?

Fig. 2 – Figure de l'exercice 5