

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра «Комп'ютерної інженерії та програмування»

ФОРМАЛЬНІ МОВИ, ГРАМАТИКИ І АВТОМАТИ

Лекція 8

Побудова магазинного автомата для LL(1)-граматик

Гавриленко Світлана Юріївна +380664088551 (Viber) +380632864663 (Telegram) Gavrilenko08@gmail.com 306BK

Побудова магазинного автомата

Для граматик, що задовольняють умовам LL(1) граматик, справедливе наступне твердження: для кожної LL(1) граматики можна побудувати детермінований магазинний автомат M, що допускає мову, породжувану даною граматикою:

$$L(\Gamma) = L(M).$$

Задача побудови магазинного автомата для заданої LL(1)—граматики сформулюється в такий спосіб.

Задано граматику $\Gamma = \{V_T, V_A, I, R\}$, і потрібно визначити об'єкти, що визначають автомат $\mathbf{M} = \{P, S, s_0, F, H, h_0, \mathbf{f}\}$.

Побудову функції переходів виконаємо з використанням множин **ВИБІР** правил заданої граматики.

Побудова функцій переходів ƒ МА

1) Для кожного правила граматики, що починається термінальним символом вигляду $A \rightarrow a\alpha$, будуємо команду автомата:

$$f(s, \mathbf{a}, \mathbf{A}) = (s, \mathbf{\alpha}')$$
, де $\mathbf{\alpha}' \in \mathbf{\alpha}$ дзеркальним відображенням ланцюжка $\mathbf{\alpha}$.

2) Для кожного правила граматики, що починається з нетермінальним символом вигляду $A \rightarrow B\alpha$ будуємо команди автомата:

$$f^*(s, \mathbf{x}, A) = (s, \alpha'B)$$

де f^* — команда автомата без зсуву вхідної голівки, а α' є дзеркальним відображенням ланцюжка α , x — елемент множини **ВИБІР**($A \rightarrow B\alpha$). Кількість команд, які необхідно побудувати для заданого правила, визначається числом елементів множини **ВИБІР** для даного правила .

3) Для кожного правила граматики, що анулює, вигляду А→\$ побудуємо команди автомата без зсуву вхідної голівки:

$$f^*(s, x, A) = (s, \$)$$

де x — елемент множини **ВИБІР**. Кількість команд, які необхідно побудувати для заданого правила, визначається числом елементів множини **ВИБІР** для даного правила.

4) Для кожного термінального символу, наприклад b, розташованого в середині або на кінці правих частин правил граматики, побудуємо команду:

$$f(s, b, b) = (s, \$).$$

5) Для переходу в заключний стан побудуємо команду:

$$f^*(s, \$, h_0) = (s, \$, \$).$$

Побудувати команди МА для граматики Г8.1, заданої наступними правилами граматики:

1.
$$I \rightarrow \{SR\}$$
. 2. $R \rightarrow SR \mid \$$ 3. $S \rightarrow AB$; $\mid BA$; 4. $A \rightarrow a \mid b \mid 5.B \rightarrow ++\mid --$.

ВИБІР($\frac{1}{2}$)=ПЕРШ($\frac{1}{2}$), ВИБІР (2.1)= Перш(S)={+, -, a, b}, ВИБІР (2.2)= СЛІД(R)={}}, ВИБІР (3.1)= Перш(A)= $\{a, b\}$, ВИБІР (3.2)= Перш(B)= $\{+, -\}$, ВИБІР (4.1)= $\{a\}$, ВИБІР (4.2)= $\{b\}$, ВИБІР $(5.1)=\{+\}$,ВИБІР $(5.2)=\{-\}$. Даңа граматика є LL(1) — граматикою, так як множина ВИБІР для правил, що починаються з однакових терміналів, не містить однакових символів.

1.
$$f(s, \{1, 1\}) = (s, \} RS$$

2. $f(s, \{1, 1\}) = (s, \$)$

2.
$$f(s, \}, \}) = (s, \$)$$

Побудувати команди МА для граматики Г6.1, заданої наступними правилами граматики:

1.
$$I \rightarrow \{SR\}$$
. 2. $R \rightarrow SR \mid S \rightarrow AB; \mid BA; 4. A \rightarrow a \mid b \mid 5.B \rightarrow ++\mid$ --.

ВИБІР (2.1)= Перш(S)=Перш(A) U Перш(B)={a, b, b, b, b, b, ВИБІР (2.2)= СЛІД(R)={a},

$$\begin{vmatrix}
1. f(s, \{, I) = (s, \}RS) \\
2. f(s, \}, \} = (s, \$)
\end{vmatrix}$$

2.
$$f(s, \}, \}) = /(s, \$)$$

3.
$$f^*(s, \frac{1}{2}, R) = (s, RS)$$

4.
$$f *(s, -1) = (s, RS)$$

5.
$$f^*(s, \frac{\alpha}{r}, R) = (s, RS)$$

6.
$$f^*(s, \frac{b}{b}, R) = (s, RS)$$

$$7. f^*(s, \mathbf{R}) = (s, \$)$$

Побудувати команди МА для граматики Г6.1, заданої наступними правилами граматики:

1.
$$I \rightarrow \{SR\}$$
. 2. $R \rightarrow SR \mid S$ 3. $S \rightarrow AB \mid BA$ 4. $A \rightarrow a \mid b$ 5. $B \rightarrow ++\mid$ --.

ВИБІР($\mathbf{1}$)={{}}, ВИБІР (2.1)= Перш(S)={+, -, a, b}, ВИБІР (2.2)= СЛІД(\mathbf{R})={{}}, ВИБІР (3.1)= Перш(A)={a, b}, ВИБІР (3.2)= Перш(B)={+, - }, ВИБІР (4.1)={a}, ВИБІР (4.2)={b}, ВИБІР (5.1)={+},ВИБІР (5.2)={-}. Дана граматика є $\mathbf{LL}(\mathbf{1})$ — граматикою, так як множина ВИБІР для правил, що починаються з однакових терміналів, не містить однакових символів.

$$1. f(s, \{, I) = (s, \}RS)$$

$$2. f(s, \frac{1}{2}, \frac{1}{3}) = (s, \frac{1}{3})$$

$$3.f*(s, +, R) = (s, RS)$$

4.
$$f *(s, -, R) = (s, R/S)$$

5.
$$f^*(s, a, \mathbf{R}) = (s, \mathbf{RS})$$

6.
$$f^*(s, b, R) = (s, RS)$$

7.
$$f^*(s,)$$
, $R) = (s, s)$

$$8. f^*(s, b, S) = (s, BA)$$

9.
$$f^*(s, \mathbf{u}, \mathbf{S}) = (s, ;BA)$$

10.
$$f(s, \frac{1}{2}, \frac{1}{2}) = (s, \frac{s}{2})$$

$$11. f *(s, -, S) = (s, ;AB)$$

$$12. f *(s, +, S) = (s, ;AB)$$

13.
$$f(s, a, A) = (s, \$)$$

14.
$$f(s, b, A) = (s, \$)$$

$$| 15. f(s, +, B) = (s, +)$$

$$16. f(s, +, +) = (s, \$)$$

17.
$$f(s, -, B) = (s, -)$$

$$|18. f(s, -, -)| = (s, \$)$$

19.
$$f^*(s, \$, h_0) = (s, \$)$$
.

ПРИКЛАД 4. ПРОДОВЖЕННЯ

Команди магазинного автомата		Приклад розпізнавання ланцюжка		
1. $f(s, \{, I) = (s, \}RS)$	11.f*(s, -, S) = (s, ;AB)	$(s, \{a++;b;\}, h_0I) - 1$	$(s,b; \}, h_0 \} R; AB) \mid 17$	
$2. \ f(s, \}, \}) = (s, \$)$	12. f *(s, +, S) = (s, ;AB)	$(s, a++;b;), h_0(RS) - 9$	$(s, -b;), h_0 R; A-) \vdash 18$	
3. f*(s, +, R) = (s, RS)	13. $f(s, a, A) = (s, \$)$	$(s, a++;b;), h_0)R;BA) - 13$	$(s, b; \}, h0\}R;A) \vdash 14$	
4. f *(s, -, R) = (s, RS)	14. $f(s, b, A) = (s, \$)$	$(s, ++;b;), h_0)R;B) - 15$	$(s, ;), h_0 R;) \vdash 10$	
$\int 5. f^*(s, a, R) = (s, RS)$	$15. \ f(s, +, B) = (s, +)$	$(s, +;b; \}, h0\}R; +) - 16$	$(s, \}, h_0 \} R) \mid 7$	
$6. f^*(s, b, R) = (s, RS)$	16. f(s, +, +) = (s, \$)	$(s, ;b;), h_0)R;) \vdash 10$	$(s, \}, h_0\}) \mid 2$	
$7. f^*(s,), R) = (s, 3)$	$17. \ f(s, -, B) = (s, -)$	$(s, -b; h_0)R + 4$	$(s, \$, h_0) \mid 19$	
8. f*(s, b, S) = (s, ;BA)	18. f(s, -, -) = (s, \$)		_ ·	
$9. f^*(s, a, S) = (s, ;BA)$	$19. f^*(s, \$, h_0) = (s, \$).$	$(s,b;), h_0)RS) - 11$	(s, \$, \$)	
10. f(s, ; , ;) = (s, \$)			Заключна конфігурація,	
			рядок належить граматиці	

Побудувати команди МА для граматики Г8.2, заданої наступними правилами граматики:

1)
$$I \rightarrow i=S;$$
 2) $S \rightarrow iR \mid S \rightarrow (S)R$ 3) $R \rightarrow +S \mid R \rightarrow S.$

$$(x) S \rightarrow i R \mid S$$

$$\rightarrow (S)R$$

$$S \mid R \rightarrow$$

Побудувати команди розпізнавача та виконати перевірку на прикладі розпізнавання ланцюжка:

- ВИБІР $(I \to i = S; f) = \{i\}, 2.1 \text{ ВИБІР}(S \to iR) = \{i\}, 2.2 \text{ ВИБІР}(S \to (S)R) = \{(i\}, 2.2$
- 3.1 ВИБІР $(R \to +S) = \{+\}, 3.2.$ ВИБІР $(R \to \$) = \text{СЛІД}(R) = \text{СЛІД}(S) = \{:,)\}.$

Дана граматика É LL(1) граматикою.

Команди магазинного автомата

7)
$$f(s : : :) = (s, \$)$$

2)
$$f(s, i, S) = (s, R)$$

$$(S) \quad f(s \mid (S) = (s \mid R)S)$$

4)
$$f(s + R) = (s + S)$$

5)
$$f^*(s, R) = (s, 8)$$

6)
$$f^*(s,), R = (s, \$)$$

Приклад розпізнавання ланцюжка

1)
$$f(s, i, I) = (s, ; S = I)$$
7) $f(s; ; ;) = (s, $)$
(s, $i = i + (i + i); $, h_0 I$) $\vdash 1$
(s, $i; $, h_0; R$) $\vdash 2$
2) $f(s, i, S) = (s, R)$
8) $f(s, I) = (s, S)$
(s, $i = i + (i + i); $, h_0; S = I$) $\vdash 9$
(s, $i; $, h_0; R$) $\vdash 6$
3) $f(s, I, S) = (s, R)S$
9) $f(s, I, S) = (s, S)$
(s, $i + (i + i); $, h_0; S = I$) $\vdash 9$
(s, $i; $, h_0; R$) $\vdash 8$
4) $f(s, I, R) = (s, S)$
10) $f(s, I, S) = (s, S)$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); $, h_0; R = I$) $\vdash 1$
(s, $i + (i + i); R = I$) $\vdash 1$
(s, i

Заключна конфігурація, рядок належить граматиці

Побудувати команди МА для граматики Г8.4, заданої наступними правилами граматики:

1)
$$I \rightarrow write A$$
; writeln A ; 2) $A \rightarrow (B)$ 3) $A \rightarrow \$$ 4) $B \rightarrow `t`C$ 5) $B \rightarrow tC$ 6) $C \rightarrow B$ 7 $C \rightarrow \$$.

Визначимо належність даної граматики до LL(1) – граматики.

- 1) BUSIP $(I \rightarrow write A) = \{write\}$
- 2) BMbIP $(I \rightarrow writeln A;) = \{writeln \}$
- 3) ВИБІР $(A \rightarrow (B)) = \{ (\} \}$
- 4) ВИБІР $(A \rightarrow \$) = \text{Слід}(A) = \{;\}$
- 5) BUBIP $(B \rightarrow 't' C) = \{ ' \}$
- 6) BUBIP $(B \rightarrow iC) = \{ i \}$
- 7) ВИБІР($C \rightarrow B$)= $\{A, B\}$
- 8) ВИБІР $(C \rightarrow \$) = \text{Слід}(C) = \text{Слід}(B) = \{\}$

Дана граматика $\epsilon LL(1)$ — граматикою, так як множина ВИБІР для правил, що починаються з однакових терміналів, не містить однакових символів.

ПРИКЛАД 6. ПРОДОВЖЕННЯ

Команди магазинного автомата		Приклад розпізнавання ланцюжка			
1) $f(s, write, I) = (s, A)$	8) f (s,), C)=(s, \$)	$(s, writeln('t',i,i); h_0I)$	-2	$(s, i); h_0; C)$	- 7
2) $f(s, writeln, I) = (s, ;A)$	9) f(s, ; , ;)=(s, \$)	$(s, ('t',i,i); h_0; A)$	-3	$(s, b); , h_0;)B)$	 -6
3) $f(s, (, A) = (s,)B)$	10) $f(s,),)=(s, \$)$	$(s, 't',i,i); h_0;)B)$	- 5	$(s,);, h_0;)C)$	 -8
4) $f'(s, ; , A) = (s, \$)$	11) f(s, ', ')=(s, \$)	$(s, t',i,i); h_0;)$ C' t	- 12	$(s,);, h_0;))$	- 10
$5) f(s, \ \ B) = (s, \ C't)$	12) $f(s, t, t)=(s, \$)$	(s, ', <i>i</i> , <i>i</i>); h ₀ ;)C')	- 11	$(s, ; , h_0;) -9$	
$6) f(s, \mathbf{I}, \mathbf{B}) = (s, \mathbf{C})$	13) $f^*(s, \$, h_0) = (\$, \$)$	$(s, i, i); h_0;)C)$	- 7	$(s, \$, h_0)$	-13
7) $f(s, \cdot, C) = (s, B)$		$(s, i, i); h_0;)B)$	 - 6	(s,\$,\$)	
				Заключна конфігурація, рядо належить грамати	

- 1) BYISIP($I \rightarrow write A;$)={write}
- 2) BUGIP($I \rightarrow writeln A;) = \{writeln \}$
- 3) BUBIP $(A \rightarrow (B)) = \{ (\} \}$
- 4) ВИБІР($A \rightarrow $$)=Слід(A)= $\{;\}$
- 5) BUGIP($B \rightarrow 't'C$)={ }
- 6) ВИБІР $(B \to i \bigcirc) = \{i\}$
- 7) ВИБІР($C \rightarrow B = \{ \}$
- 8) ВИБІР $(C \rightarrow \$) = \text{Слід}(C) = \text{Слід}(B) = \{\}$

Побудувати команди МА для граматики Г6.5, заданої наступними:

```
1.I → class N{Sk}

2. S → AB;

3.A → CD;

4.C→int

5.D → day |month |year

6. B → public: VZ(CE)

7.E → d |m | y

8.R → SR |$

9.N → MyDate

10.V → void

11.Z → SetDate
```

```
\PiЕРШ(1)={class}
\PiЕРШ(2)= {int}
\PiЕРШ(3)={int}
\PiЕРШ(4)= {int}
                           year}
ПЕРШ(5.1)= {day}
\PiЕРШ(5.2)={month}
ПЕРШ(5.3)=\{year\}
\PiЕРШ(6)={public}
ПЕРШ(7.1) = \{d\}
ПЕРШ(7.2)=\{m\}
ПЕРШ(7.3)=\{y\}
ПЕРШ(8.1) = \{int\}
\Pi EP \coprod (8.2) = \{\$\}
\PiЕРШ(9)={CMyDate}
ПЕРШ(10)=\{void\}
\PiЕРШ(11)={SetDate}
```

```
CЛІД(S)=\{\{\}, int \}
                           ВИБІР(1)=\{class\}
CЛІД(A)=\{ public \}
                           ВИБІР (2)= ВИБІР (3)=
                           BИБІР (4)=\{int\}
СЛІД(B)=\{ ; \}
                           ВИБІР (5.1)= {day}
                   month,
CЛІД(C)=\{day,
                           BИБІР (5.2)= {month}
CЛІД(D)=\{;\}
                           ВИБІР (5.3)= {year}
CЛІД(E)=\{\}
                           BИБIP (6)={public}
                           ВИБІР (7.1)=\{d\}
CЛІД(R)=\{\}\}
CЛІД(N)=\{\{\}\}
                           ВИБІР (7.2)=\{m\}
CЛІД(V)={SetDate}
                           ВИБІР (7.3)=\{y\}
СЛІД(Z)=\{(\}
                           ВИБІР (8.1) = \{ int \}
                           ВИБІР (8.2)=\{\}\}
                           BИБІР (9)=\{MyDate\}
                           ВИБІР (10)={void}
                           BИБІР (11)={SetDate}
```

ПРИКЛАД 7. ПРОДОВЖЕННЯ

 $1.I \rightarrow class \ N\{SR\} \ 2. \ S \rightarrow AB; \ 3.A \rightarrow CD; \ 4.C \rightarrow int \ 5.D \rightarrow day \ |month| \ |year| \ 6. \ B \rightarrow AB;$

```
BMBIP(1) = \{class\}
BИБІР (4)=\{int\}
BИБІР (5.1) = {day}
ВИБІР (5.2) = \{month\}
BИБІР (5.3) = {year}
BMSIP(6) = \{public\}
ВИБІР (7.1) = \{d\}
ВИБІР (7.2) = \{m\}
ВИБІР (7.3) = \{y\}
ВИБІР (8.1) = \{int\}
ВИБІР (8.2) = \{ \} \}
BИБІР (9)={CMyDate}
BИБІР (10)=\{void\}
ВИБІР (11)={SetDate}
```

```
1. f(s, class, I) = (s, RS(N))
ВИБІР (2)= ВИБІР (3)=|2. f*(s, int, S)=(s, ;BA)
                          3. f*(s, int, A)=(s, DC)
                          |4. f(s, int, C) = (s, \$)
                          |5. f(s, day, D) = (s, \$)|
                          |6. \ f(s, month, D) = (s, \$)|
                          |7. f(s, year, D) = (s, \$)|
                          |8.f(s, public, B)| = (s,) EC(ZV:)
                          |9. f(s, d, E) = (s, \$)
                          |10. f(s, m, E) = (s, \$)|
                          11. f(s, y, E) = (s, \$)
```

```
12. f^*(s, \}, R) = (s, \$)
13.f(s, MyDate, N) = (s, \$)
14. f(s, void, v) = (s, \$)
15.f(s, SetDate, Z) = (s, \$)
16. f(s,(,()=(s,\$))
17.f(s,),) = (s,\$)
18.f(s,:,:) = (s,\$)
19.f(s, \}, \}) = (s, \$)
20.f(s, \{, \}) = (s, \$)
21.f(s,;;)=(s,\$)
22. f^*(s, \$, h_0) = (s,\$)
23. f*(s, int, R) = (s, \$)
```

ПРИКЛАД 7. ПРОДОВЖЕННЯ

```
1.f(s, class, I) = (s, RS(N))
                                |12. f*(s,),R| = (s, \$)
                                                               1.(s, class CMyDate{int day; public: void setDate(int d);}, h_0 I) \vdash 1
2. f^*(s, int, S) = (s, BA)
                               |13.f(s,CMyDate,N)|=
                                                               2.(s, CMyDate{int day;public:void setDate(int d);}, h_0 R}S{N} \ \ 13
3. f *(s, int, A) = (s, DC)
                                                                     {int day; public: void SetDate(int d);}, h_0}RS{) | 20
                               (s,\$)
                                                               3.(s,
                                                               4.(s, int day; public: void SetDate(int d); h_0 RS = 2
                               |14. f(s, void, v) = (s, \$)|
4. f(s, int, C) = (s, \$)
                                15. f(s,SetMyDate,z)=
                                                                     int day; public: void SetDate(int d); h_0 R; BA = 3
5. f(s, day, D) = (s, \$)
                                                               5.(s,
                                                               6.(s, int day; public: void SetDate(int d); h_0 R; B; DC) -4
|6. f(s,month,D) = (s,\$)
                               (s,\$)
                                                               7.(s, day; public: void SetDate(int d);}, h_0}R;B;D) - 5
7. f(s, year, D) = (s, \$)
                          16. f(s, (, () = (s, \$))
                                                               8.(s, ;public: void SetDate(int d); h_0 R; B; -21
8.f(s,public,B) = (s,)EC(ZV:) | 17.f(s,),) = (s,\$)
                                                               9.(s, public: void SetDate(int d);}, h_0}R;B) | 8
9. f(s,d,E) = (s,\$)
                             18.f(s,:,:)=(s,\$)
10. f(s,m,E) = (s,\$)
                               19.f(s, \}, \}) = (s, \$)
                                                               10.(s, :void SetDate(int d); h_0 R; EC(ZV) = 18
11. f(s,y,E) = (s,\$)
                               |20.f(s, \{, \})| = (s, \$)
                                                               11.(s, void SetDate(int d);}, h_0}R;)EC(ZV) \vdash 14
                                                              12.(s, SetDate(int d);}, h_0}R;EC(Z) - 15
                               |21.f(s,;;)| = (s,\$)
                                                               13.(s, (int d);}, h_0}R;)EC() | 16
                                |22. f*(s, \$, h_0)=(s,\$)|
                                                               14.(s, int d); h_0 R; EC + 4
                                                               15.(s, d);, h_0}R;)E) | 9
                                                               16.(s, ); \}, h_0 \} R; )) \vdash 17
                                                               17.(s, ;), h_0 R;) \vdash 21
                                                               18.(s, \}, h_0 \}R) \vdash 12
                                                               19.(s, \}, h_0\}) - 19
                                                               20. (s, $, h_0) | 22
                                                               21. (s, $)
```

ДЯКУЮ ЗА УВАГУ