

1A LDO 稳压器电路

概述

AMS1117是一个正向低压降稳压器,在1A电流下压降为1.2V。

AMS1117有两个版本:固定输出版本和可调版本,固定输出电压为1.5V、1.8V、2.5V、2.85V、3.0V、3.3V、5.0V,具有1%的精度;固定输出电压为1.2V的精度为2%。

AMS1117内部集成过热保护和限流电路, 是电池供电和便携式计算机的最佳选择。

特点

- * 固定输出电压为 1.5V、1.8V、2.5V、2.85V、3.0V、3.3V、5.0V 和可调版本, 具有 1%的精度
- * 固定输出电压为 1.2V 的 精度为 2%
- * 低漏失电压: 1A 输出电流时仅为 1.2V
- * 限流功能
- * 过热切断
- * 温度范围: -40°C~ 125°C

应用

- * 膝上型电脑,掌上电脑和笔记本电脑
- * 电池充电器
- * SCSI-II主动终端
- * 移动电话
- * 无绳电话
- * 电池供电系统
- * 便携式设备
- *SMPS波斯特稳压器

产品规格分类 (温度范围: -40°C~ 125°C)

产品名称	封装	打印名称	产品名称	封装	打印名称
AMS1117-ADJ		AMS1117-ADJ	AMS1117-ADJ		SAJ
AMS1117-1.2		AMS1117-1.2	AMS1117-1.2		S12
AMS1117-1.5		AMS1117-1.5	AMS1117-1.5		S15
AMS1117-1.8	SOT-223	AMS1117-1.8	AMS1117-1.8	SOT-89-3	S18
AMS1117-2.5		AMS1117-2.5	AMS1117-2.5		S25
AMS1117-2.85		AMS1117-2.85	AMS1117-2.85		S28
AMS1117-3.0		AMS1117-3.0	AMS1117-3.0		S30
AMS1117-3.3		AMS1117-3.3	AMS1117-3.3		S33
AMS1117-5.0		AMS1117-5.0	AMS1117-5.0		S50

产品规格分类 (温度范围: -40°C~ 125°C)

产品名称	封装	打印名称	产品名称	封装	打印名称
AMS1117-ADJ		AMS1117-ADJ	AMS1117-ADJ		AMS1117-ADJ
AMS1117-1.2		AMS1117-1.2	AMS1117-1.2		AMS1117-1.2
AMS1117-1.5		AMS1117-1.5	AMS1117-1.5		AMS1117-1.5
AMS1117-1.8		AMS1117-1.8	AMS1117-1.8		AMS1117-1.8
AMS1117-2.5	TO-220-3L	AMS1117-2.5	AMS1117-2.5	TO-252-2L	AMS1117-2.5
AMS1117-2.85		AMS1117-2.85	AMS1117-2.85		AMS1117-2.85
AMS1117-3.0		AMS1117-3.0	AMS1117-3.0		AMS1117-3.0
AMS1117-3.3		AMS1117-3.3	AMS1117-3.3		AMS1117-3.3
AMS1117-5.0		AMS1117-5.0	AMS1117-5.0		AMS1117-5.0
AMS1117-ADJ		AMS1117-ADJ	AMS1117-2.85		AMS1117-2.85
AMS1117-1.2	TO-263-3L	AMS1117-1.2	AMS1117-3.0		AMS1117-3.0
AMS1117-1.5		AMS1117-1.5	AMS1117-3.3	TO-263-3L	AMS1117-3.3
AMS1117-1.8		AMS1117-1.8	AMS1117-5.0		AMS1117-5.0
AMS1117-2.5		AMS1117-2.5			

内部框图

极限参数

参数	符号	范 围	单位
输入工作电压	Vin	20	V
引脚温度 (焊接5秒)	TLead	260	°C
工作结温范围	TJ	150	°C
储存温度	TSTG	-65 ~ +150	°C
功耗	P_{D}	内部限制 (注1)	mW
ESD能力 (最小值)	ESD	2000	V

注1:最大允许功耗是最大工作结温TJ (max),结对空热阻θJA 和环境温度Tamb的函数。最大允许功耗在给定的环境温度下,PD (max) = (TJ (max) - Tamb)/θJA,超过最大允许功耗会导致芯片温度过高,调整器因此会进入到过热切断状态。不同封装类型的结对空热阻θJA 是不同的,由封装技术决定。

推荐工作条件

参数	符号	范 围	单位
输入电压	VIN	15	V
工作结温范围	TJ	-40 ~ +125	°C

电气特性(除非特别指定,否则黑色字体所示的参数,Tamb=25℃,正常工作结温范围-40℃~125℃。)

参数	符号	测试条件	最小值	典型值	最大值	单位
		AMS1117-ADJ,				
基准电压	VREF	IOUT=10mA, VIN-VOUT=2V, TJ=25°C	1.238	1.250	1.262	V
		10mA≤lout≤1A, 1.4V≤VIN-Vout≤10V	1.225	1.250	1.270	
		AMS1117-1.2,				
		IOUT=10mA, VIN=3.2V ,TJ=25°C	1.176	1.2	1.224	V
		10mA≤IouT≤1A, 3.0V≤VIN≤10V	1.152	1.2	1.248	
		AMS1117-1.5,				
		IOUT=10mA, VIN=3.5V ,TJ=25°C	1.485	1.500	1.515	V
		10mA≤IOUT≤1A, 3.0V≤VIN≤10V	1.470	1.500	1.530	
输出电压	Vout	AMS1117-1.8,				
		IOUT=10mA, VIN=3.8V, TJ=25°C ,	1.782	1.800	1.818	V
		0≤IOUT≤1A, 3.2V≤VIN≤10V	1.764	1.800	1.836	
		AMS1117-2.5,				
		IOUT=10mA, VIN=4.5V,TJ=25°C,	2.475	2.500	2.525	V
		0≤IOUT≤1A, 3.9V≤VIN ≤10V	2.450	2.500	2.550	

(见下页)

(接上页)

(接上页) 参 数	符号	测试多件	是小店	典型值	是土佔	苗心
参数	付写	测试条件	取小阻	典型阻	取人但	单位
		AMS1117-2.85,		0.050	000	
		IOUT=10mA, VIN=4.85V,TJ=25°C,	2.820 2.790	2.850	.880	V
		, ,		2.850	2.910	
		0≤IOUT≤500mA, VIN =4.10V	2.790	2.850	2.910	
		AMS1117-3.0,				
		IOUT=10mA, VIN=4.5V,TJ=25°C ,		3.000	3.030	V
输出电压	VOUT	0≤IOUT≤1A, 4.4V≤VIN≤10V	2.940	3.000	3.060	
		AMS1117-3.3,				
		IOUT=10mA, VIN=5V,TJ=25°C,	3.267	3.300	3.333	V
		0≤IOUT≤1A, 4.75V≤VIN≤10V	3.235	3.300	3.365	
		AMS1117-5.0,				
		IOUT=10mA, VIN=7V, TJ=25°C ,	4.950	5.000	5.05	V
		0≤ IOUT≤1A, 6.5V≤VIN≤12V	4.900	5.000	5.10	
输出电压温度稳定性	TSOUT			0.3		%
All let are let.	Rline	VINMIN ≤VIN≤ 12V, VOUT=Fixed/Adj,				
线性调整		IOUT=10mA		3	7	mV
负载调整	Rload	10mA≤louт≤ 1A,Vouт=Fixed/Adj		6	12	mV
		IOUT=100mA		1.00	1.20	
漏失电压	Vdrop	IOUT=500mA		1.05	1.25	V
		IOUT=1A		1.10	1.30	
静态电流	Ιq	4.25V≤VIN≤ 6.5V		5	10	mA
纹波抑制比	PSRR	fRIPPLE=120Hz, (VIN-VOUT)=3V, VRIPPLE=1VPP		75		dB
 可调管脚电流	ladj			60	120	μΑ
可调管脚电流变化		0≤ IOUT≤1A, 1.4V ≤VIN-VOUT≤10V		0.2	5	μΑ
温度稳定性				0.5		%
长期稳定性		Tamb=125°C, 1000Hrs		0. 3		%
RMS输出噪声		% of Vout, 10Hz≤f≤10kHz		0.003		%
		SOT-223-3		120		
	θЈΑ	TO-252-2		100		
热阻系数		TO-263-3		60		°C/W
(无散热片)		SOT-89-3		165		J/ V V
		TO-220-3		60		

管脚排列图

管脚描述

管脚号	管脚名称	I/O	功能
1	GND/ADJ	/O	地/ADJ。
2	Vout	0	输出电压。
3	VIN		输入工作电压。

功能描述

AMS1117是一个低漏失电压调整器,它的稳压调整管是由一个PNP驱动的NPN管组成的,漏失电压定义为: VDROP = VBE+ VSAT。

AMS1117有固定和可调两个版本可用,输出电压可以是: 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V, 和5.0V。片内过热切断电路提供了过载和过热保护, 以防环境温度造成过高的结温。

为了确保AMS1117的稳定性,对可调电压版本,输出需要连接一个至少22μF的钽电容。对于固定电压版本,可采用更小的电容,具体可以根据实际应用确定。通常,线性调整器的稳定性随着输出电流增加而降低。

典型应用电路图

图 1. 典型固定输出电压

图 2. 典型可调输出电压

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

典型电气特性曲线

典型电气特性曲线 (续)

纹波抑制 VS 电流

封装外形图

封装外形图 (续)

封装外形图 (续)

注:公司保留说明书的更改权,恕不另行通知!产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!