Simplex Method

Solve the following LPP by using Simplex Method:

Maximize
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to

$$\begin{aligned}
 x_1 + x_2 + x_3 & \leq 9 \\
 2x_1 + 3x_2 + 5x_3 & \leq 30 \\
 2x_1 - x_2 - x_3 & \leq 8 \\
 x_1, x_2, x_3 & \geq 0
 \end{aligned}$$

Solution:

We write the given LPP in the standard form:

Maximize
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to

$$x_1 + x_2 + x_3 + s_1 = 9$$

$$2x_1 + 3x_2 + 5x_3 + s_2 = 30$$

$$2x_1 - x_2 - x_3 + s_3 = 8$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0.$$

We assume that the initial non-basic variables are x_1, x_2, x_3 that is we set $x_1 = x_2 = x_3 = 0$. Therefore the initial basic feasible solution is given by $s_1 = 9, s_2 = 30, s_3 = 8$.

We prepare the simplex table as follows:

	c_{j}	3	2	5	0	0	0		
e_i	CSV	x_1	x_2	x_3	s_1	s_2	s_3	b	θ
0 0	$s_1 \\ s_2$	1 2	1 3		1 0	1		9 30	$\begin{array}{c} 9 \\ 6 \rightarrow \end{array}$
0	s_3	2	-1	-1	0	0	1	8	-8
$E_j = \sum_{i=1}^3 a_{ij} e_i$		0	0	0	0	0	0		
$c_j - E_j$		3	2	5 ↑	0	0	0		

The first row c_j represents coefficients of decision variables in the objective function. Column CSV represents Current Solution Variables or the Basis Variables. Column of e_i contains coefficients of Basis Variables in the objective function. We then write the equality constraints in the matrix form AX = B. Column b contains the R.H.S. constants. Row E_j is calculated using formula mentioned in the table. These entries are dot products of column e_i with respective columns of decision variables. Next we calculate $c_j - E_j$ row.

Optimality Conditions for Maximization Type Problem:

- (1) If all $c_j E_j$ entries are ≤ 0 , solution is optimal.
- (2) If there exists j such that $c_j E_j > 0$, we can improve upon the solution as follows:

Select maximum among positive $c_j - E_j$. In our case, it is 5 belonging to the column of variable x_3 . This column is called *Key Column* or *Pivotal Column*. The variable; namely x_3 , in this column is an *incoming variable* for the next iteration. As the number of variables in the basis remains the same; so one variable has to go out of the basis. We do this by computing the column of θ .

 θ column entries are ratios of b column entries to the *key column* entries. Next we select the *least positive* (> 0) θ entry. In our case, it is 6; that belongs to the row of s_2 . This row is called *Key Row* or *Pivotal Row*; and the variable in this row is an *incoming variable* for the next iteration.

Intersection of key row and key column is called *Pivotal element* or simply *Pivot*. This number is highlighted.

Change of Basis:

Make the pivotal entry as 1 and the other entries in that column (pivotal column) as zeros by using the following elementary row operations:

$R_2 \to R_2/5, R_1 \to R_1 - R_2, R_3 \to R_3 + R_2$										
c_j	3	2	5	0	0	0				
CSV	x_1	x_2	x_3	s_1	s_2	s_3	b	θ		
s_1	3/5	2/5	0	1	-1/5	0	3	$5 \rightarrow$		
	,									
s_3	12/5	-2/5	0	0	1/5	1	14	35/6		
	2	3	5	0	1	0				
	1	-1	0	0	-1	0				
	c_j CSV s_1	c_{j} 3 CSV x_{1} s_{1} 3/5 x_{3} 2/5 s_{3} 12/5 2 1	c_j 3 2 CSV x_1 x_2 s_1 $3/5$ $2/5$ x_3 $2/5$ $3/5$ s_3 $12/5$ $-2/5$ 2 3 1 -1	c_j 3 2 5 CSV x_1 x_2 x_3 s_1 3/5 2/5 0 x_3 2/5 3/5 1 s_3 12/5 -2/5 0 2 3 5	c_j 3 2 5 0 CSV x_1 x_2 x_3 x_1 x_3 x_2 x_3 x_4 x_3 x_4 x_5 $x_$	c_j 3 2 5 0 0 CSV x_1 x_2 x_3 s_1 s_2 s_1 3/5 2/5 0 1 -1/5 x_3 2/5 3/5 1 0 1/5 s_3 12/5 -2/5 0 0 1/5 2 3 5 0 1 1 -1 0 0 -1	c_j 3 2 5 0 0 0 CSV x_1 x_2 x_3 s_1 s_2 s_3 s_1 3/5 2/5 0 1 -1/5 0 x_3 2/5 3/5 1 0 1/5 0 s_3 12/5 -2/5 0 0 1/5 1 2 3 5 0 1 0 1 -1 0 0 -1 0	c_j 3 2 5 0 0 0 CSV x_1 x_2 x_3 s_1 s_2 s_3 b s_1 3/5 2/5 0 1 -1/5 0 3 x_3 2/5 3/5 1 0 1/5 0 6 s_3 12/5 -2/5 0 0 1/5 1 14 2 3 5 0 1 0 1 -1 0 0 -1 0		

From the optimality condition, it is clear that we can further improve upon the existing solution. We change the basis as follows:

$$R_1 \rightarrow \frac{5}{3}R_1, R_2 \rightarrow R_2 - \frac{2}{5}R_1, R_3 \rightarrow R_3 - \frac{12}{5}R_1$$

$$c_j \quad 3 \quad 2 \quad 5 \quad 0 \quad 0 \quad 0$$

$$e_i \quad CSV \quad x_1 \quad x_2 \quad x_3 \quad s_1 \quad s_2 \quad s_3 \quad b \quad \theta$$

$$3 \quad x_1 \quad 1 \quad 2/3 \quad 0 \quad 5/3 \quad -1/3 \quad 0 \quad 5$$

$$5 \quad x_3 \quad 0 \quad 1/3 \quad 1 \quad -2/3 \quad 1/3 \quad 0 \quad 4$$

$$0 \quad s_3 \quad 0 \quad -2 \quad 0 \quad -4 \quad 1 \quad 1 \quad 2$$

$$E_j = \sum_{i=1}^3 a_{ij} e_i \quad 3 \quad 11/3 \quad 5 \quad 5/3 \quad 2/3 \quad 0$$

$$c_j - E_j \quad 0 \quad -5/3 \quad 0 \quad -5/3 \quad -2/3 \quad 0$$

Since all $c_j - E_j$ are ≤ 0 , optimal solution is

$$x_1 = 5, x_2 = 0, x_3 = 4, Z_{max} = 35$$

Note that x_2 is non-basic variable, therefore $x_2 = 0$. Also note that the matrix of basis variables is identity matrix in each simplex table.

Optimality Conditions for Minimization Type Problem:

- (1) If all $c_j E_j$ entries are ≥ 0 , solution is optimal.
- (2) If there exists j such that $c_j E_j < 0$, we can improve upon the solution as follows:

Select the minimum among negative $c_j - E_j$. The corresponding column is the pivotal column.