Ideation Phase

Date	31 January 2025
Team Id	LTVIP2025TMID41819
Project Name	Pattern Sense: Classifying fabric patterns using deep learning
Maximum Marks	4 Marks
Project Members	5

Patterns Sense: Classifying Fabric Patterns Using Deep Learning

Step 1: Team Collaboration & Problem Statement Problem Statement:

How can deep learning be applied to accurately classify fabric **patterns** (e.g., floral, geometric, striped, paisley, abstract) to support design, manufacturing, and digital applications?

Team Roles:

- Machine Learning Engineer model architecture and training
- Computer Vision Specialist preprocessing and pattern detection
- Textile Pattern Expert taxonomy of pattern types
- Data Curator dataset creation and annotation
- UI/UX Designer interface for classification tool
- Product Manager coordination and goal tracking

Step 2: Pattern-Centric Idea Listing & Grouping

Raw Ideas (Only Patterns):

- Use CNN models (ResNet, EfficientNet) for pattern recognition
- Train with labeled dataset of specific pattern types (floral, striped, etc.)
- Apply data augmentation focused on rotation, symmetry, and scale
- Add synthetic patterns using GANs to balance classes
- Use Vision Transformers (ViT) for complex, repetitive motifs
- Implement segmentation of multi-pattern fabrics before classification
- Develop a pattern similarity tool (using Siamese networks)
- Unsupervised clustering to discover hidden pattern styles
- Create a user-upload interface for instant pattern prediction
- Integrate classifier with digital fabric catalogs (search/filter by pattern)
- Extract symmetry and repetition metrics as pattern descriptors

Grouped Ideas by Category:

Category	Ideas			
Model Approaches	CNNs, ViTs, Siamese Networks			
Dataset Strategy	Labeled datasets, GANs for synthetic data, augmentation for symmetry			
Pattern Features	Symmetry detection, pattern segmentation			
Applications	Web classifier, search/filter by pattern, visual similarity tool			
Exploratory Methods	Clustering hidden pattern types, motif- based grouping			

Step 3: Pattern-Focused Idea Prioritization

High Feasibility / High Value High Value / Low Feasibility

CNN-based pattern classifier
Rotational & symmetry-aware
augmentation
Web upload tool for pattern
classification

Vision Transformers for detailed motif learning
Synthetic pattern generation with GANs
Pattern segmentation from mixed designs

Low Feasibility / Low Value

Real-time edge deployment in textiles

Mixed-reality pattern exploration

Low Value / High Feasibility

Simple K-means clustering
Off-the-shelf model without domain
tuning

Next Steps

Phase 1:

- Build and train CNN-based classifier
- Use curated labeled pattern dataset
- Launch web tool to upload and detect patterns

Phase 2:

- Integrate attention mechanisms (ViTs)
- Develop pattern segmentation pipeline
- Introduce pattern similarity search

Phase 3:

- Expand dataset with synthetic patterns
- Explore unsupervised pattern taxonomy
- Connect classifier to industry design platforms