

ANALYSIS OF ALGORITHM & RESEARCHING COMPUTING

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
 - Of course: every algorithm we've studied provides polynomial-time solution to some problem
 - We define P to be the class of problems solvable in polynomial time
- Are all problems solvable in polynomial time?
 - No: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given
 - Such problems are clearly intractable, not in P

NP-Completeness

- So far we've seen a lot of good news!
 - Such-and-such a problem can be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
 - Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!

Optimization & Decision Problems

Decision problems

- Given an input and a question regarding a problem, determine if the answer is yes or no
- Optimization problems
 - Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
 - E.g.: Shortest path: G = unweighted directed graph
 - Find a path between u and v that uses the fewest edges
 - Does a path exist from u to v consisting of at most k edges?

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
 - Worst-case running time is O(nk), for some constant k
- Examples of polynomial time:
 - $O(n^2)$, $O(n^3)$, O(1), $O(n \log n)$
- Examples of non-polynomial time:
 - $O(2^n), O(n^n), O(n!)$

Tractable/Intractable Problems

- Problems in P are also called tractable OR easy
- Problems not in P are intractable or unsolvable or hard
 - Can be solved in reasonable time only for small inputs
 - Or, can not be solved at all

Example of Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable by any algorithm.
- The most famous of them is the **halting problem**
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"

Nondeterministic and NP Algorithms

Nondeterministic algorithm = two stage procedure:

- 1) Nondeterministic ("guessing") stage:
 - generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
- 2) / Deterministic ("verification") stage:

take the certificate and the instance to the problem and returns YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial)

verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by NP algorithms
 - i.e., verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

E.g.: Hamiltonian Cycle

- Given: a directed graph G = (V, E), determine a simple cycle that contains each vertex in V
 - Each vertex can only be visited once
- Certificate:
 - Sequence: (v₁, v₂, v₃, ..., v_{|V|})

Is P = NP?

Any problem in P is also in NP:

$$P \subseteq NP$$

- ▶ The big (and open question) is whether $NP \subseteq P$ or P = NP
 - i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

Reductions

Suppose that there is a different decision problem, say B, that we already know how to solve in polynomial time. Finally, suppose that we have a procedure that transforms any instance α of A into some instance β of B with the following characteristics:

- 1. The transformation takes polynomial time.
- 2. The answer are the same. That is, the answer for α is "yes" if and only if the answer for β is also "yes."

We can call such a procedure a polynomial-time reduction algorithm and, it provides us a way to solve problem A in polynomial time:

- 1. Given an instance α of problem A, use a polynomial-time reduction algorithm to transform it to an instance β of problem B.
- 2. Run the polynomial-time decision algorithm for B on the instance β .
- 3. Use the answer for β as the answer for α .

34.1 Polynomial time

Polynomial time solvable problem are regarded as tractable.

- Even if the current best algorithm for a problem has a running time of $\Theta(n^{100})$, it is likely that an algorithm with a much better running time will soon be discovered.
- Problems for many reasonable models of computation, can be solved in one model can be solved in polynomial in another.
- Polynomial-time solvable problems has a nice closure property.

```
f,g are polynomial \Rightarrow f(g) is also polynomial
```

We say that a function $f:\{0,1\}^* \to \{0,1\}^*$ is **polynomial-time computable** if there exists a polynomial-time algorithm A that given any $x \in \{0,1\}^*$, produces as output f(x).

Figure 34.3 Four possibilities for relationships among complexity classes. In each diagram, one region enclosing another indicates a proper-subset relation. (a) P = NP = co-NP. Most researchers regard this possibility as the most unlikely. (b) If NP is closed under complement, then NP = co-NP, but it need not be the case that P = NP. (c) $P = NP \cap \text{co-NP}$, but NP is not closed under complement. (d) $NP \neq \text{co-NP}$ and $P \neq NP \cap \text{co-NP}$. Most researchers regard this possibility as the most likely.