Complex Variables Based on lectures by Dr. Anandateertha Mangasuli

Notes taken by Rwik Dutta

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.¹

Contents

1	Algebra	4
2	Γ opology	2
3	Differential calculus	2
	3.1 Limits	2
	3.2 Continuity	3
	3.3 Derivative	3
	3.4 Cauchy-Riemann equations	3
4	Analytic Functions	4
	4.1 Analytic functions	4
	4.2 Harmonic conjugates	4
5	Important functions	5
	5.1 Exponential	Ę
	5.2 Logarithm	5
	5.3 Power	5
	5.4 Trigonometric	5
	5.5 Hyperbolic	6
6	Integral calculus	6
	5.1 Fundamental Theorem of Calculus	6
	3.2 Arcs and Contours	7
	3.3 Contour integral	7
	6.4 Antiderivative	8
7	Cauchy's Theorem	9
	7.1 Cauchy's Theorem	ç
	7.2 Cauchy's Integral Formula	ç
	7.3 Morera's Theorem	10
	7.4 Cauchy's Inequality	10
	7.5 Fundamental Theorem of Algebra	10
	7.6 Maximum modulus principle	10
	,,v 14100011111111111111111111111 p1111111111	1

¹This is how Dexter Chua describes his lecture notes from Cambridge. I could not have described mine in any better way.

1 Algebra

The set of complex numbers, \mathbb{C} forms a field with additive identity 0 and multiplicative identity 1.

Definition 1 (Multiplicative inverse). The multiplicative inverse of $z = x + iy \neq 0$ is given by

$$z^{-1} := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$$

Definition 2 (Roots). n^{th} roots of a complex number $z = re^{i\theta}$ is given by

$$z^{1/n} := r^{1/n} e^{i\frac{\theta + 2k\pi}{n}}, \qquad (k \in \langle n \rangle)$$

Definition 3 (Euler form).

$$e^{i\theta} := \cos \theta + i \sin \theta$$

where $\theta \in \mathbb{R}$.

2 Topology

Definition 4 (Open disk). An open disk centered at $z_0 \in \mathbb{C}$ and radius R > 0 is the set

$$B_R(z_0) = \{ z \mid |z - z_0| < R \}$$

Definition 5 (ϵ -neighbourhood). An ϵ -neighbourhood of z_0 is the set($\epsilon > 0$) $B_{\epsilon}(z_0)$.

Definition 6 (Deleted ϵ -neighbourhood). A deleted ϵ -neighbourhood of z_0 is the set $(\epsilon > 0)$ $B_{\epsilon}(z_0) \setminus \{z_0\}$.

Definition 7 (Interior, exterior and boundary points). Let $S \subset \mathbb{C}$ and $z_0 \in \mathbb{C}$.

 z_0 is an interior point of S if $\exists \epsilon > 0$ such that $B_{\epsilon}(z_0) \subset S$.

 z_0 is an exterior point of S if $\exists \epsilon > 0$ such that $B_{\epsilon}(z_0) \cap S = \emptyset$.

 z_0 is a boundary point of S if it is neither an interior point nor an exterior point.

Definition 8 (Open sets). A set is open if every element is an interior point of the set.

Definition 9 (Closed sets). A set is closed if it contains all its boundary points.

Definition 10 (Closure of a set). The union of the set and its boundary points.

Definition 11 (Connected set). $S \subset \mathbb{C}$ is connected if every $z_1, z_2 \in S$ can be joined by a finite sequence of line segments lying inside S.

Definition 12 (Domain). An open, connected set.

Definition 13 (Bounded set). $S \subset \mathbb{C}$ is bounded if $\exists R > 0$ such that

$$|z| < R, \forall z \in S$$

3 Differential calculus

3.1 Limits

Definition 14 (Limit). Let f be defined in some deleted ϵ -neighbourhood of z_0 . If $\forall \epsilon > 0, \exists \delta > 0$ such that

$$0 < |z - z_0| < \delta \implies |f(z) - w_0| < \epsilon$$

then we say

$$\lim_{z \to z_0} f(z) = w_0$$

Theorem 1 (Uniqueness of limit). Limit of a function at a point, if exists, is unique, i.e., if we find $w_1, w_2 \in \mathbb{C}$ that satisfy the condition for the limit of a function at some $z_0 \in \mathbb{C}$, then $w_1 = w_2$.

Theorem 2. $\lim_{z\to 0} \frac{\bar{z}}{z}$ does not exist.

Theorem 3 (Multivariable limits). Let f(z) = f(x+iy) = u(x,y) + iv(x,y) and $z_0 = x_0 + iy_0$. $\lim_{z\to z_0} f(z)$ exists iff the multivariable limits

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y), \ \lim_{(x,y)\to(x_0,y_0)} v(x,y)$$

exist. If they exist,

$$\lim_{z \to z_0} f(z) = \left(\lim_{(x,y) \to (x_0,y_0)} u(x,y)\right) + i \left(\lim_{(x,y) \to (x_0,y_0)} v(x,y)\right)$$

3.2 Continuity

Definition 15 (Continuity). Let f be defined in some ϵ -neighbourhood of $z_0 \in \mathbb{C}$. f is said to be continuous at z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0)$$

provided the limit exists.

Theorem 4. Composition of continuous functions(at a point) is continuous(at that point).

Theorem 5. Continuous functions are bounded in open, bounded domains. Let $R \subset \mathbb{C}$ be open and bounded. If f is continuous in R, then f is bounded in R.

Theorem 6. Let f be continuous at z_0 . If $f(z_0) \neq 0, \exists \epsilon > 0$ such that

$$f(z) \neq 0, \forall z \in B_{\epsilon}(z_0)$$

3.3 Derivative

From now onwards, Ω represents an open subset of \mathbb{C} unless stated otherwise.

Definition 16 (Differentiability). $f: \Omega \to \mathbb{C}$ is differentiable at z_0 if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists. This limit is denoted by $f'(z_0)$ and is called the derivative of f at z_0 . This is equivalent to

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

Example 1. Find the points where $f(z) = e^{\bar{z}}$ is differentiable.

Theorem 7. $f(z) = \bar{z}$ is not differentiable anywhere.

 $f(z) = |z|^2$ is only differentiable at z = 0.

Theorem 8. Differentiability(at a point) \Longrightarrow Continuity(at that point).

3.4 Cauchy-Riemann equations

Definition 17 (Cauchy-Riemann equations). Let $u: \mathbb{R}^2 \to \mathbb{R}, v: \mathbb{R}^2 \to \mathbb{R}$. The Cauchy-Riemann equations of u, v are given by

$$u_x = v_y$$

$$v_x = -u_y$$

provided the partial derivatives exist.

In polar coordinates, the equivalent set of equations are

$$ru_r = v_\theta$$

$$u_{\theta} = -rv_{r}$$

Theorem 9. If f = u + iv is differentiable at $z_0 = x_0 + iy_0$, then u, v satisfy the Cauchy-Riemann(CR) equations at (x_0, y_0) .

Theorem 10. If f is differentiable in an open and connected set Ω such that $f'(z) = 0, \forall z \in \Omega$, then

$$f(z) = \text{constant}, \forall z \in \Omega$$

Theorem 11. f = u + iv is differentiable at $z_0 = x_0 + iy_0$ if

- 1. The first-order partial derivatives of u(x,y), v(x,y) exist in some neighbourhood of (x_0,y_0) .
- 2. These partial derivatives are continuous at (x_0, y_0) .
- 3. u, v satisfy the CR equations at (x_0, y_0) .

If these conditions are satisfied, we have

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$$

Corollary 11.1. f = u + iv is differentiable at $z_0 = r_0 e^{i\theta_0}$ if

- 1. The first-order partial derivatives of $u(r,\theta), v(r,\theta)$ exist in some neighbourhood of (r_0,θ_0) .
- 2. These partial derivatives are continuous at (r_0, θ_0) .
- 3. u, v satisfy the CR equations at (r_0, θ_0) .

If these conditions are satisfied, we have

$$f'(z_0) = e^{-i\theta_0} (u_r(r_0, \theta_0) + iv_r(r_0, \theta_0))$$

4 Analytic Functions

4.1 Analytic functions

Definition 18 (Analytic function). f is analytic at z_0 if it is differentiable in some neighbourhood of z_0 .

Definition 19 (Entire function). A function is entire if it is analytic everywhere in \mathbb{C} .

Definition 20 (Singular point). z_0 is a singular point of f if

- 1. f is not analytic at z_0
- 2. f is analytic in some deleted neighbourhood of z_0 .

Theorem 12. If f is analytic in Ω , then it is continuous in Ω .

Theorem 13 (Rational functions). A polynomial is an entire function. A rational function is analytic everywhere in its domain.

Theorem 14. If f = u + iv is analytic at $z_0 = x_0 + iy_0$, then u, v have continuous, partial derivatives of all orders at (x_0, y_0) .

Theorem 15. f = u + iv is analytic in a domain \mathscr{D} iff

- 1. The first-order partial derivatives of u, v exist in \mathcal{D} .
- 2. These partial derivatives are continuous in \mathcal{D} .
- 3. u, v satisfy the CR equations in \mathscr{D} .

4.2 Harmonic conjugates

Definition 21 (Laplace equation). Let $f: \mathbb{R}^2 \to \mathbb{R}$. The Laplacian of f at (x_0, y_0) is defined as

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

evaluated at (x_0, y_0) and is denoted by $\nabla^2 f(x_0, y_0)$ or $\Delta f(x_0, y_0)$.

The Laplace equation of f is given by

$$\Delta f = 0$$

Definition 22 (Harmonic function). $H: \mathbb{R}^2 \to \mathbb{R}$ is harmonic in a domain \mathscr{D} if

- 1. First and second order partial derivative of H exist in \mathscr{D} .
- 2. H satisfies Laplace equation in \mathscr{D} .

Theorem 16. If f = u + iv is analytic in \mathcal{D} , then u, v are harmonic in \mathcal{D} .

Definition 23 (Harmonic conjugates). Let u, v be harmonic in \mathcal{D} . If they satisfy the CR equations in \mathcal{D} , v is called the harmonic conjugate of u in \mathcal{D} .

Theorem 17. Let v(x,y) be a harmonic conjugate of u(x,y). The set of all harmonic conjugates of u is given by

$$\{v(x,y)+k\mid k\in\mathbb{R}\}$$

Definition 24 (Level curve). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a multivariable function. $f(x,y) = c, c \in \mathbb{R}$ is called a level curve of f.

Example 2. Sketch the family of level curves of the real and imaginary parts of $f(z) = \frac{1}{z-1}$.

Theorem 18. If v is a harmonic conjugate of u, then their level curves always intersect orthogonally in the xy-plane.

Theorem 19. f = u + iv is analytic in \mathscr{D} iff v is a harmonic conjugate of u in \mathscr{D} .

Example 3. Let u(x,y) = 2x(1-y), $v(x,y) = x^2 - y^2 + 2y$. Show that v is a harmonic conjugate of u.

Example 4. Let $u(x,y) = \cos x \cosh y$, $v(x,y) = -\sin x \sinh y$. Show that v is a harmonic conjugate of u.(Hint: $\cos z$ is analytic, Definition 29Cosine functiondefn.29)

5 Important functions

5.1 Exponential

Definition 25 (Exponential function).

$$\exp(x+iy) := e^x e^{iy}$$

where e^x is the real exponential function.

Domain: \mathbb{C} Range: $\mathbb{C}\setminus\{0\}$ Analytic: \mathbb{C}

5.2 Logarithm

Definition 26 (Logarithm multi-valued function). Let $z = re^{i\theta}$.

$$\log(z) := \ln r + i\theta$$

where ln is the real logarithm function.

Domain: $\mathbb{C}\setminus\{0\}$ Range: \mathbb{C}

When we put in the restriction $-\pi < \theta \le \pi$, we get the principle logarithm Log(z).

Definition 27 (Branch of logarithm). As the complex logarithm is multi-valued, we often restrict θ to intervals of length 2π . These functions are called branches of the logarithm function. We have already defined the principle branch.

Theorem 20. A branch of the logarithm function is analytic in $\mathbb{C}\setminus\{x\in\mathbb{R}\mid x\leq 0\}$.

Corollary 20.1. Log(z) is analytic if $-\pi < \text{Arg}(z) < \pi$.

Theorem 21. $\frac{d}{dz} \text{Log}(z) = \frac{1}{z}, -\pi < \text{Arg}(z) < \pi$

5.3 Power

Definition 28 (Power function).

$$z^c := \exp(c \log z)$$

This is also a multi-valued function and its branches are defined by the branch of the logarithm in the function.

Domain: $\mathbb{C}\setminus\{0\}$ Range: $\mathbb{C}\setminus\{0\}$

Analytic: Any branch is analytic in its domain

Theorem 22. $\frac{\mathrm{d}}{\mathrm{d}z}z^c=cz^{c-1}$

5.4 Trigonometric

Definition 29 (Cosine function).

$$\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$$

Domain: \mathbb{C} Range: \mathbb{C} Analytic: \mathbb{C} **Definition 30** (Sine function).

$$\sin(z) := \frac{e^{iz} - e^{-iz}}{2}$$

Domain: \mathbb{C} Range: \mathbb{C} Analytic: \mathbb{C}

Using these, we may define tan, sec, cosec. These are analytic in their domains. The complex trigonometric functions satisfy most of the relations satisfied by the real trigonometric functions.

5.5 Hyperbolic

Definition 31 (Hyperbolic cosine function).

$$\cosh(z) := \frac{e^z + e^{-z}}{2}$$

Domain: \mathbb{C} Range: \mathbb{C} Analytic: \mathbb{C}

Definition 32 (Hyperbolic sine function).

$$\sinh(z) := \frac{e^z - e^{-z}}{2}$$

Domain: \mathbb{C} Range: \mathbb{C} Analytic: \mathbb{C}

Using these, we may define tanh, sech, cosech. These are analytic in their domains. The complex hyperbolic functions satisfy most of the relations satisfied by the real hyperbolic functions.

6 Integral calculus

6.1 Fundamental Theorem of Calculus

Definition 33. Let $f:[a,b]\to\mathbb{C}$ such that f(t)=u(t)+iv(t).

$$\int_{a}^{b} f(t) \ dt := \int_{a}^{b} u(t) \ dt + i \int_{a}^{b} v(t) \ dt$$

Theorem 23.

$$\left| \int_{a}^{b} f(t) \ dt \right| \leq \int_{a}^{b} |f(t)| \ dt$$

Example 5. Let $x \in [-1,1], \theta \in \mathbb{R}, n \in \mathbb{N} \cup \{0\}$. Show that

$$\left| \frac{1}{\pi} \int_0^{\pi} (x + i\sqrt{1 - x^2} \cos \theta)^n \ d\theta \right| \le 1$$

Theorem 24 (Fundamental Theorem of Calculus).

1. Let $f:[a,b]\to\mathbb{C}$ be a continuous function.

$$F(x) = \int_{a}^{x} f(t) dt \implies F'(x) = f(x), \forall x \in [a, b]$$

2. Let $f:[a,b]\to\mathbb{C}$ be a continuous function.

$$F'(t) = f(t), \forall t \in [a, b] \implies \int_a^b f(t) dt = F(b) - F(a)$$

Example 6. Evaluate(using a complex-valued function)

$$\int_0^{\pi} e^{2t} \cos t \ dt$$

6

6.2 Arcs and Contours

Definition 34 (Arc). Let $z:[a,b]\to\mathbb{C}$. The set

$$C = \{z(t) \mid a \le t \le b\}$$

is called an arc in \mathbb{C} .

C is a **simple arc** in [a,b] if $\forall t_1, t_2 \in [a,b]$,

$$t_1 \neq t_2 \implies z(t_1) \neq z(t_2)$$

C is a simple, closed arc or a **Jordan curve** in [a,b] if

1. C is simple in (a, b).

2. z(a) = z(b)

C is a differentiable arc if z is continuously differentiable in [a, b].

C is a smooth arc if it is differentiable and $z'(t) \neq 0, \forall t \in [a, b]$.

Definition 35 (Orientation of arc). Let C be an arc as defined earlier. If z(t) moves in the counter-clockwise direction in the complex plane as t increases, C is said to be positively oriented. Otherwise, it is negatively oriented.

Definition 36 (Reparameterization). Let C be the arc

$$C: z(t), t \in [a, b]$$

Let $\varphi:[c,d]\to[a,b]$ be a continuously differentiable, strictly increasing bijective mapping such that

$$t = \varphi(s)$$

We get a reparametrization of C

$$C: Z(s), s \in [c, d]$$

where $Z(s) = z(\varphi(s))$.

Definition 37 (Length of arc). Let $C: z(t), t \in [a, b]$ be a differentiable arc.

$$\operatorname{length}(C) := \int_a^b |z'(t)| dt$$

Definition 38 (Contour). A piecewise smooth curve.

Contours in \mathbb{C} are analogous to intervals in \mathbb{R} , in a sense that we will integrate functions along contours. The **negative of a contour** is defined as

$$C: z(t), t \in [a, b]$$

$$-C: z(-t), -t \in [-b, -a]$$

6.3 Contour integral

Definition 39 (Contour integral). Let

$$f:\Omega\to\mathbb{C}$$

$$C: z(t), t \in [a, b]$$

f(z(t)) be a piecewise continuous function of t.

$$\int_C f(z) \ dz := \int_a^b f(z(t))z'(t) \ dt$$

Theorem 25.

$$\int_{C_1 + C_2} f(z) \ dz = \int_{C_1} f(z) \ dz + \int_{C_2} f(z) \ dz$$
$$\int_{-C} f(z) \ dz = -\int_{C} f(z) \ dz$$

Example 7. Let C be the contour consisting of the semicircle $e^{i\theta}$, $\theta \in [0, \pi]$ along with the part of the treal axis $x, x \in [-1, 1]$. Let

$$f(z) = f(re^{i\theta}) = \sqrt{r}e^{i\frac{\theta}{2}} \qquad (r > 0, \frac{-\pi}{2} < \theta < \frac{3\pi}{2})$$

Find $\int_C f(z) dz$.(Hint: Set f(0) = 0)

Theorem 26 (Bound of a contour integral). Let

 $f:\Omega\to\mathbb{C}$

 $C: z(t), t \in [a, b]$ be a contour of length L

f(z(t)) be a piecewise continuous function of t, i.e. it has an upper bound (Theorem 5thm.5) M > 0 in [a, b]. We have.

$$\left| \int_C f(z) \ dz \right| \le ML$$

Example 8. Let C be the right-triangle formed by the two axes and the line segment joining -4 and 3i, oriented anticlockwise. Show that

$$\left| \int_C (e^z - \bar{z}) \ dz \right| \le 60$$

Example 9. Let C be the circle |z| = R, R > 1, oriented anticlockwise. Show that

$$\left| \int_C \frac{\log(z)}{z^2} \ dz \right| < 2\pi \left(\frac{\pi + \ln R}{R} \right)$$

6.4 Antiderivative

Definition 40 (Antiderivative). Let f and F be defined in Ω such that

$$F'(z) = f(z), \forall z \in \Omega$$

F is called the anti-derivative of f in Ω .

Theorem 27. Antiderivatives, if exist, are analytic.

Theorem 28. If F_1, F_2 are antiderivatives of f in Ω , $\exists k \in \mathbb{C}$ such that

$$F_2(z) = F_1(z) + k, \forall z \in \Omega$$

Theorem 29. Let f be a continuous function defined on Ω . The following statements are equivalent:

- f has an antiderivative F in Ω .
- Let C_1, C_2 be two contours in Ω with the same end-points z_1, z_2 and same orientation $z_1 \to z_2$.

$$\int_{C_1} f(z) \ dz = \int_{C_2} f(z) \ dz$$

In fact, this integral is equal to $F(z_2) - F(z_1)$.

• If C is a closed contour in Ω ,

$$\int_C f(z) \ dz = 0$$

Example 10. Let C be the unit circle centered at 0 and $f(z) = \frac{1}{z}$. Show that f does not have an antiderivative in its domain.

Can we find an antiderivative of f in some open subset of its domain? (Hint: Theorem 21thm.21)

Example 11. Let C be any simple contour with end-points -3,3 lying below the real axis, oriented $-3 \rightarrow 3$.

$$f(z) = \exp\left(\frac{1}{2}\log z\right) \tag{0 < \arg z < 2\pi}$$

Find $\int_C f(z) dz$.

7 Cauchy's Theorem

7.1 Cauchy's Theorem

Definition 41 (Simply-connected domain). A domain \mathcal{D} is simply-connected if every simple, closed contour within it encloses only points in \mathcal{D} .

Theorem 30. If C is a simple, closed contour, the set of points inside C form a simply-connected domain.

Theorem 31 (Cauchy). Let f be analytic in a simply-connected domain \mathscr{D} . For any simple, closed contour $C \subset D$,

$$\int_C f(z) = 0$$

Example 12. Let C be the unit circle. Find

$$\int_C z|z|^4 dz$$

Corollary 31.1. If f is analytic in a simply-connected domain \mathscr{D} , it has an antiderivative in \mathscr{D} .(Thoerem 29thm.29) Let F be the antiderivative of f in \mathscr{D} and C be any contour in \mathscr{D} with endpoints z_1, z_2 and orientation $z_1 \to z_2$.

$$\int_C f(z) \ dz = F(z_2) - F(z_1)$$

Corollary 31.2. If f is analytic on and inside a simple, closed contour C,

$$\int_C f(z) \ dz = 0$$

7.2 Cauchy's Integral Formula

Theorem 32 (Cauchy's integral formula). Let f be analytic inside and on a simple, closed, positive contour C. If z_0 is a point inside C,

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

Hence, the value of the function inside C is completely defined by its value on C.

Example 13. Let C be the square whose sides lie along $x = \pm 2$, $y = \pm 2$, oriented anticlockwise. Find

$$\int_C \frac{\cos z}{z(z^2+8)} \ dz$$

Example 14. Let C be the circle |z|=3, oriented anticlockwise.

$$g(z) = \int_C \frac{2s^2 - s - 2}{s - z} dz$$

Find g(2) and g(4).

Corollary 32.1 (Gauss' mean value theorem). Let f be analytic in $B_r(z_0)$.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

Lemma 32.1. Let f be analytic inside and on a simple, closed, positive contour C. If z_0 is a point inside C, f is infinitely differentiable at z_0 . The n^{th} derivative of f at z_0 is given by

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0})^{n+1}} dz \qquad (n = 1, 2, \dots)$$

Example 15. Let C be the circle |z-i|=2, oriented anticlockwise. Find

$$\int_C \frac{dz}{(z^2+4)^2}$$

(Hint: $z^2 + 4 = (z + 2i)(z - 2i)$)

Theorem 33. If f is analytic at z_0 then its derivatives of all orders exist and are analytic at z_0 .

Corollary 33.1. Theorem 14thm.14

7.3 Morera's Theorem

Theorem 34 (Morera). Let f be continuous in Ω and C be a closed contour in Ω .

$$\int_C f(z) dz = 0, \forall C \implies f \text{ is analytic in } \Omega$$

Theorem 35. Let \mathscr{D} be a simply-connected domain and f be continuous in \mathscr{D} . Let C represent a closed contour in \mathscr{D} .

$$\int_C f(z) \ dz = 0, \forall C \iff f \text{ is analytic in } \Omega$$

7.4 Cauchy's Inequality

Theorem 36 (Cauchy's inequality). Let

$$D_R(z_0) = \{ z \mid |z - z_0| \le R \}$$

$$C_R(z_0) = \{z \mid |z - z_0| = R\}$$

f is an analytic function in $D_R(z_0)$ such that M_R is the maximum value of |f(z)| on $C_R(z_0)$.

$$|f^n(z_0)| \le \frac{n! \ M_R}{R^n} \tag{n = 1, 2, \dots}$$

Example 16. f is an entire function such that

$$|f(z)| \le A|z|, \forall z \in \mathbb{C}$$
 $(A \in \mathbb{R})$

Show that $f(z) = az, a \in \mathbb{C}$.

Lemma 36.1 (Liouville). A bounded, entire function is a constant function.

7.5 Fundamental Theorem of Algebra

Theorem 37 (Fundamental theorem of algebra). Every non-constant polynomial has at least one zero.

7.6 Maximum modulus principle

Theorem 38 (Maximum modulus principle). If f is a non-constant, analytic function in \mathcal{D} , |f(z)| has no maximum value in \mathcal{D} .

Corollary 38.1. Let f be a non-constant, analytic function in a bounded domain Ω such that it is continuous on $\overline{\Omega}$ (closure of Ω , Definition 10Closure of a setdefn.10). The maximum value of |f(z)| in $\overline{\Omega}$ exists and lies on the boundary of Ω .