The Dirac spectra of spheres

Stanley Li

November 17, 2023

Abstract

We give the computation of the Dirac spectrum of S^n for $n \geq 2$, with its canonical metric and spin structure. We describe the trivialisations of the spinor bundle of S^n by Killing spinors, the spectrum of the scalar Laplacian on S^n , and how these fit into the final computation of the Dirac spectrum.

1. Background

For a compact Riemannian spin manifold (M^n, g) , we have seen that the (fundamental) Dirac operator $D: L^2(M, \mathcal{S}_M) \to L^2(M, \mathcal{S}_M)$ admits a complete orthonormal basis of eigenspinors, where \mathcal{S}_M denotes the spinor bundle of M. A natural extension of this question is to explicitly compute what the associated Dirac spectrum is, that is, the eigenvalues of D and their multiplicities. We look to compute this for the sphere S^n , with constant sectional curvature 1 from its usual metric induced by the inclusion $S^n \subseteq \mathbb{R}^{n+1}$. We will restrict to the case where $n \geq 2$, where we have $H^1(S^n; \mathbb{Z}/2\mathbb{Z}) = 0$, so that we have a (unique) canonical spin structure.

For notation, if (M^n, g) is a Riemannian spin manifold, we write $\operatorname{Fr}_{SO}(TM)$ for the principal SO(n)-bundle over M (i.e. the frame bundle over M), D for the Dirac operator, and $\mathcal{S}_M = \operatorname{Fr}_{SO}(TM) \times_{\kappa} \Delta_n$ for the associated spinor bundle. We also write \cdot for Clifford multiplication defined by

Definition 1. Let M^n be a Riemannian spin manifold, and ∇ its Levi-Civita connection. We say a connection ∇^S on S_M is compatible if $\nabla^S_X(Y \cdot \varphi) = (\nabla_X Y) \cdot \varphi + Y \cdot \nabla^S_X \varphi$ for all $\varphi \in S_M$ and $X, Y \in TM$.

As in $Cl(\mathbb{R}^n)$, every Riemannian spin manifold admits a metric and compatible connection, and a Hermitian inner product which is compatible in the following sense (and unique up to scale):

Proposition 1. Let M be a Riemannian spin manifold. Then

- 1. There is a Hermitian inner product $\langle -, \rangle$ on S_M , such that $\langle X \cdot \varphi, \psi \rangle = \langle \varphi, X \cdot \psi \rangle$ for all $X \in TM$ and $\varphi, \psi \in S_M$, and this is pointwise unique up to scale; and
- 2. There is a compatible connection $\nabla^{\mathcal{S}}$ on \mathcal{S}_M .

We obtain this Hermitian inner product by averaging a Hermitian inner product over the subgroup on Δ_n , and such a connection by lifting locally the connection 1-form given by the Levi-Civita connection on M. A proof of this can be found as Proposition 1.2.3.(c), (d) in [3].

Fixing a positively-oriented local orthonormal frame $\{e_j\}_{j=1}^n$, for a basis $\{\sigma_\alpha\}_{\alpha=1}^{2^{\lfloor n/2\rfloor}}$ for Δ_n , we get a corresponding local spinorial frame $\varphi_\alpha = [(\tilde{s}, \sigma_\alpha)]$ on \mathcal{S}_M , for \tilde{s} the preimage of (e_1, \ldots, e_n) under $\mathrm{Spin}(TM) \to \mathrm{SO}(TM)$. This gives the following explicit local expression for this connection:

Proposition 2. Let (M^n, g) be a Riemannian spin manifold, $\{e_j\}_{j=1}^n$ be a positively-oriented local orthonormal frame for TM, and $\{\varphi_\alpha\}_{\alpha=1}^{2\lfloor n/2\rfloor}$ be a corresponding spinorial frame. Then

$$\nabla^{S} \varphi_{\alpha} = \frac{1}{4} \sum_{j,k=1}^{n} g(\nabla e_{j}, e_{k}) e_{j} \cdot e_{k} \cdot \varphi_{\alpha}$$

The proof of this is a direct computation using the local description of the spin connection as a lift of the connection 1-form given by the Levi-Civita connection, and can be found as Proposition 4.3(2) in [5].

2. Killing spinors

Definition 2. Let (M^n, g) be a Riemannian spin manifold, and $\alpha \in \mathbb{C}$. An α -Killing spinor is a section $\psi \in \Gamma(S_M)$ such that $\nabla_X \psi = \alpha X \cdot \psi$ for all $X \in TM$.

Note that an α -Killing spinor ψ is an $(-n\alpha)$ -eigenvector of any Dirac operator D, as in local coordinates we have

$$D\psi = \sum_{j=1}^{n} e_j \cdot \nabla_{e_j} \psi = \sum_{j=1}^{n} e_j \cdot \alpha e_j \cdot \psi = -n\alpha \psi$$

We look to compute the Killing spinors on S^n , since this will give a convenient collection of spinors to work with. We compute this using the inclusion $S^n \hookrightarrow \mathbb{R}^{n+1}$, and for this we will need the following.

Proposition 3. Let \tilde{M}^{n+1} be a Riemannian spin manifold with connection $\tilde{\nabla}$, and $\iota: M^n \to \tilde{M}^{n+1}$ be an immersed oriented Riemannian hypersurface, with connection ∇ and unit normal $\nu \in \Gamma(T^{\perp}M)$, so that $\{v_1, \ldots, v_n, \nu\}$ is a positively-oriented orthonormal frame whenever $\{v_1, \ldots, v_n\}$ is. Then M is spin with induced spin structure so that there is a unitary isomorphism

$$\mathcal{S}_{ ilde{M}}|_{M}\cong egin{cases} \mathcal{S}_{M} & n \; even \ \mathcal{S}_{M}\oplus\mathcal{S}_{M} & n \; odd \end{cases}$$

given by $\varphi \mapsto \varphi$, where the copies of \mathcal{S}_M correspond to the splitting $\mathcal{S}_{\tilde{M}}|_M \cong \mathcal{S}_{\tilde{M}}^+|_M \oplus \mathcal{S}_{\tilde{M}}^-|_M$ for n odd. We further have

$$X \cdot \nu \cdot \varphi = \begin{cases} X \cdot_M \varphi & n \ even \\ X \cdot_M \varphi^+ - X \cdot_M \varphi^- & n \ odd \end{cases}$$

and

$$\tilde{\nabla}_X \varphi = \nabla_X \varphi - \frac{1}{2} \tilde{\nabla}_X \nu \cdot \nu \cdot \varphi$$

for all $X \in TM$ and $\varphi \in \mathcal{S}_{\tilde{M}}|_{M}$, where \cdot_{M} and \cdot denote Clifford multiplication on M and \tilde{M} respectively.

Proof. We note that under the map

$$i: \operatorname{Fr}_{SO}(M) \to \operatorname{Fr}_{SO}(\tilde{M})|_{M}$$

 $(e_1, \dots, e_n) \mapsto (e_1, \dots, e_n, \nu)$

the pullback of $\mathcal{S}_{\tilde{M}}|_{M}$ to $\operatorname{Fr}_{SO}(M)$ gives a 2-covering of $\operatorname{Fr}_{SO}(M)$, and this is a principal $\operatorname{Spin}(n)$ -bundle as the image of i is closed under the action of $\operatorname{SO}(n) \subseteq \operatorname{SO}(n+1)$ on frames, hence so is $i^*(\mathcal{S}_{\tilde{M}})|_{M}$) under the action of $\operatorname{Spin}(n) \subseteq \operatorname{Spin}(n+1)$. The isomorphism and the formula relating Clifford multiplication on \tilde{M} to M comes from the usual embedding of $\operatorname{Cl}_{n}(\mathbb{R})$ into $\operatorname{Cl}_{n+1}^{0}(\mathbb{R})$ by $e_i \mapsto e_i \cdot e_{n+1}$.

For the final identity, fixing a positively-oriented local orthonormal frame $\{e_j\}_{j=1}^n$, for the spinorial frame $\{\varphi_\alpha\}$ corresponding to $\{e_1,\ldots,e_n,\nu\}$, in local coordinates we have

$$\tilde{\nabla}_X \varphi_\alpha = \frac{1}{4} \left(\sum_{j,k=1}^n g(\tilde{\nabla}_X e_j, e_k) e_j \cdot e_k + \sum_{j=1}^n g(\tilde{\nabla}_X e_j, \nu) e_k \cdot \nu + \sum_{k=1}^n g(\tilde{\nabla}_X \nu, e_k) \nu \cdot e_k + g(\tilde{\nabla}_X \nu, \nu) \nu \cdot \nu \right) \cdot \varphi_\alpha$$

We note that $W(X) = -\nabla_X \nu \in TM$ is the Weingarten map of M, and so $\tilde{\nabla}_X Y = \nabla_X Y - g(\nabla_X \nu, Y)\nu$ and $g(\nabla_X \nu, \nu) = 0$. For the first term we get $g(\tilde{\nabla}_X e_j, e_k) = g(\nabla_X e_j, e_k) - g(\nabla_X \nu, e_j)g(\nu, e_k) = g(\nabla_X e_j, e_k)$, so

$$\frac{1}{4} \sum_{i,k=1}^{n} g(\nabla_X e_j, e_k) e_j \cdot e_k \cdot \varphi_\alpha = \nabla_X \varphi_\alpha$$

using our previous formula on M. We have $g(\tilde{\nabla}_X e_j, \nu) = g(\nabla_X e_j, \nu) - g(\tilde{\nabla}_X \nu, e_j)g(\nu, \nu) = -g(\tilde{\nabla}_X \nu, e_j)$, so

$$\sum_{j=1}^{n} g(\tilde{\nabla}_X e_j, \nu) e_j = \sum_{j=1}^{n} g(\tilde{\nabla}_X \nu, e_j) e_j = \tilde{\nabla}_X \nu - g(\tilde{\nabla}_X \nu, \nu) \nu = \tilde{\nabla}_X \nu$$

For the third term we note $\nu \cdot e_k = -e_k \cdot \nu$ as ν and e_k are orthogonal, and so the third term in the brackets evaluates to $\tilde{\nabla}_X \nu \cdot \nu$. The last term vanishes, and putting this together gives

$$\tilde{\nabla}_X \varphi_\alpha = \nabla_X \varphi_\alpha + \frac{1}{4} \left(-\nabla_X \nu \cdot \nu \cdot \varphi_\alpha - \nabla_X \nu \cdot \nu \cdot \varphi_\alpha + 0 \right) = \nabla_X \varphi_\alpha - \frac{1}{2} \tilde{\nabla}_X \nu \cdot \nu \cdot \varphi_\alpha$$

Applying this to the case of $S^n \subseteq \mathbb{R}^{n+1}$ for $n \geq 2$, S^n has Weingarten map $\mathcal{W} = -\operatorname{id}_{TS^n}$ with respect to the normal $\nu(x) = x$. We note that when n is odd, the positive and negative parts of Δ_{n+1} are $2^{\lfloor n/2 \rfloor}$ -dimensional, and so for any constant section $\psi \in \Gamma(\mathbb{R}^{n+1}, S_{\mathbb{R}^{n+1}})$ (positive if n is odd) and $X \in TS^n$ we have

$$0 = \tilde{\nabla}_X \psi = \nabla_X \psi + \frac{1}{2} \mathcal{W}(X) \cdot \nu \cdot \psi = \nabla_X \psi - \frac{1}{2} X \cdot_{S^n} \psi$$

so $\nabla_X \psi = \frac{1}{2} X \cdot_{S^n} \psi$, and ψ is a $\frac{1}{2}$ -Killing spinor, and we get $2^{\lfloor n/2 \rfloor}$ pointwise linearly independent $\frac{1}{2}$ -Killing spinors $\{\psi_i\}$. For constant sections ψ (negative if n is odd), the corresponding sections $\nu \cdot \psi$ are positive at each point if n is odd, and satisfy

$$-X \cdot_{S^n} (\nu \cdot \psi) = -X \cdot \nu \cdot \psi = X \cdot \psi = \tilde{\nabla}_X(\nu \cdot \psi) = \nabla_X(\nu \cdot \psi) - \frac{1}{2}X \cdot_{S^n} (\nu \cdot \psi)$$

so $\nu \cdot \psi$ is a $-\frac{1}{2}$ -Killing spinor, and we also get $2^{\lfloor n/2 \rfloor}$ pointwise linearly independent $-\frac{1}{2}$ -Killing spinors $\eta_i = \nu \cdot \psi_i$. Thus as $\operatorname{rank}_{\mathbb{C}}(\mathcal{S}_{S^n}) = 2^{\lfloor n/2 \rfloor}$, this yields trivialisations of \mathcal{S}_{S^n} by both $\frac{1}{2}$ and $-\frac{1}{2}$ -Killing spinors.

3. The Dirac spectrum of the sphere

We compute the Dirac spectrum of the sphere by first relating it to the spectrum of the Laplacian on S^n . We note that $\mathrm{Cl}(\mathbb{R}^n) \cong \Lambda^*\mathbb{R}^n$, and that under this linear isomorphism, Clifford multiplication by $x \in \mathbb{R}^n$ is given by $x \cdot y \simeq x \wedge y - x \, \lrcorner \, y$. Let d and δ denote the exterior differential and codifferential on M, so that $\Delta = \delta d$ is the scalar Laplace operator on $C^{\infty}(M)$. We also write $\mathrm{grad}(f)$ for the gradient vector field of $f \in C^{\infty}(M)$, given by $\mathrm{grad}(f) = \sum_{j=1}^n e_j(f)e_j = (df)^{\sharp}$ for a local orthonormal basis of TM. We will require the following formulae in the computation:

Lemma 1. Let (M,g) be a Riemannian spin manifold, $\varphi \in \Gamma(M,\mathcal{S}_M)$ and $f \in C^{\infty}(M)$. Then

1.
$$D(f\varphi) = \operatorname{grad}(f) \cdot \varphi + fD\varphi$$
; and

2.
$$D^2(f\varphi) = fD^2\varphi - 2\nabla_{\operatorname{grad}(f)}\varphi + (\Delta f)\varphi$$

Proof. Fixing a local orthonormal frame $\{e_j\}_{j=1}^n$ for TM, we find

$$D(f\varphi) = \sum_{j=1}^{n} e_j \cdot \nabla_{e_j}(f\varphi) = \sum_{j=1}^{n} e_j \cdot (e_j(f)\varphi + f\nabla_{e_j}\varphi) = \operatorname{grad}(f) \cdot \varphi + fD\varphi$$

In computing $D^2(f\varphi)$, we first have that

$$D(\operatorname{grad}(f) \cdot \varphi) = \sum_{j=1}^{n} e_j \cdot \nabla_{e_j}(\operatorname{grad}(f) \cdot \varphi) = \sum_{j=1}^{n} e_j \cdot (\nabla_{e_j} \operatorname{grad}(f)) \cdot \varphi + \sum_{j=1}^{n} e_j \cdot \operatorname{grad}(f) \cdot \nabla_{e_j} \varphi$$

For the first term, identifying vector fields with 1-forms through the metric g gives

$$\sum_{j=1}^{n} e_j \cdot \nabla_{e_j} \operatorname{grad}(f) = \sum_{j=1}^{n} e_j \wedge \nabla_{e_j} df - \sum_{j=1}^{n} e_j \, | \nabla_{e_j} df = (d+\delta) df = \delta df = \Delta f$$

and for the second term, using the Clifford multiplication we find

$$\sum_{j=1}^{n} e_{j} \cdot \operatorname{grad}(f) \cdot \nabla_{e_{j}} \varphi = -\operatorname{grad}(f) \cdot \left(\sum_{j=1}^{n} e_{j} \cdot \nabla_{e_{j}} \varphi\right) - \sum_{j=1}^{n} 2g(\operatorname{grad}(f), e_{j}) \nabla_{e_{j}} \varphi = -\operatorname{grad}(f) \cdot D\varphi - 2\nabla_{\operatorname{grad}(f)} \varphi$$

We thus have

$$D^{2}(f\varphi) = D(\operatorname{grad}(f) \cdot \varphi + fD\varphi) = \left(\Delta f \cdot \varphi - \operatorname{grad}(f) \cdot D\varphi - 2\nabla_{\operatorname{grad}(f)}\varphi\right) + \operatorname{grad}(f) \cdot D\varphi + fD^{2}\varphi$$
$$= fD^{2}\varphi - 2\nabla_{\operatorname{grad}(f)}\varphi + (\Delta f)\varphi$$

3.1 The spectrum of the Laplacian

We recall the spectrum of the scalar Laplacian on the sphere:

Theorem 1. For $n \ge 1$, the Laplacian Δ_{S^n} on $L^2(S^n)$ admits an complete orthonormal basis of eigenvectors, with eigenvalues $\lambda_k = k(n+k-1)$ for $k \in \mathbb{Z}_{\ge 0}$, with multiplicity $\frac{n+2k-1}{n+k-1} \binom{n+k-1}{k} = \binom{n+k-1}{k} + \binom{n+k-2}{k-1}$.

Before invoking this result, we give a sketch of why each of these values appears as an eigenvalue of the Laplacian.

For $x \in S^n$, we can compute the Laplacian in local orthonormal coordinates around x. In local coordinates $\{y_1, \ldots, y_n\}$ for TS^n around x, as in G.II. of [2], the Laplacian of some $f \in C^{\infty}(S^n)$ is given by

$$\nabla f = -\frac{1}{\sqrt{\det(G)}} \sum_{i,j} \frac{\partial}{\partial y_i} \left(\sqrt{\det(G)} g^{ij} \frac{\partial f}{\partial x_j} \right)$$

where g_{ij} and g^{ij} are the components of the metric and the dual metric in y_i coordinates, and G is the $n \times n$ matrix with i, j component (g_{ij}) . Extending x to an orthonormal basis $\{x_1, x_2, \ldots, x_{n+1}\}$ for \mathbb{R}^{n+1} (with $x = x_1$), and taking the corresponding geodesics $\gamma_j(s) = \cos(s)x_1 + \sin(s)x_{j+1}$ for $1 \le j \le n$ with $\gamma'_j(0) = x_{j+1}$. For $f \in C^{\infty}(\mathbb{R}^{n+1})$, in this case the Laplacian of the restriction $f|_{S^n}$ is just

$$\Delta_{S^n}(f|_{S^n})(x) = -\sum_{j=2}^{n+1} \frac{d^2(f \circ \gamma_j)}{ds^2}(0)$$

The chain rule gives $\frac{d(f \circ \gamma_j)}{ds}(s) = -\sin(s)\frac{\partial f}{\partial x_1}(\gamma_j(s)) + \cos(s)\frac{\partial f}{\partial x_{j+1}}(\gamma_j(s))$. On taking the second partial derivative and evaluating at zero, we find

$$\frac{d^2(f \circ \gamma_j)}{ds^2}(0) = -\cos(0)\frac{\partial f}{\partial x_1}(\gamma_j(0)) + \cos^2(0)\frac{\partial^2 f}{\partial x_{j+1}^2}(\gamma_j(0)) = -\frac{\partial f}{\partial x_1}(x) + \frac{\partial^2 f}{\partial x_j^2}(x)$$

and in particular noting that x_1 is the radial direction r, we see

$$\Delta_{\mathbb{R}^{n+1}}(f)|_{S^n}(x) = -\sum_{j=1}^{n+1} \frac{\partial^2}{\partial x_j^2}(x) = -\sum_{j=2}^{n+1} \left(\frac{\partial^2 f}{\partial x_j^2}(x) - \frac{\partial f}{\partial x_1}(x)\right) - \frac{\partial^2 f}{\partial x_1^2}(x) - n\frac{\partial f}{\partial x_1}(x)$$
$$= \Delta_{S^n}(f|_{S^n})(x) - \frac{\partial^2 f}{\partial r^2}(x) - n\frac{\partial f}{\partial r}(x)$$

so that $\Delta_{\mathbb{R}^{n+1}}(f)|_{S^n} = \Delta_{S^n}(f|_{S^n})(x) - \frac{\partial^2 f}{\partial r^2} - n\frac{\partial f}{\partial r}$ Now for a homogeneous polynomial f of degree k we have $r\frac{\partial f}{\partial r} = kf$ and $r^2\frac{\partial^2 f}{\partial r^2} = k(k-1)$, so on restricting to S^n (where r=1) we find

$$\Delta_{\mathbb{R}^{n+1}}(f)|_{S^n} = \Delta_{S^n}(f|_{S^n}) - k(n+k-1)f$$

and in particular if we choose f to be harmonic (i.e. such that $\Delta_{\mathbb{R}^{n+1}}(f)=0$), we get

$$\Delta_{S^n}(f|_{S^n}) = k(n+k-1)f|_{S^n}$$

so that $f|_{S^n}$ is a k(n+k-1)-eigenvector of Δ_{S^n} . Some more work is needed to determine the multiplicities with which each eigenvalue appears, and the exact details of these can be found as in [2] or [4].

3.2 Putting it all together

We are now ready to compute the Dirac spectrum of S^n , which we will split into a few small steps. In the following results, μ is understood to be either 1/2 or -1/2. We first need to relate the spectra of Dirac operators to the spectrum of the Laplacian, which the following result allows us to do nicely.

Lemma 2. Let $n \geq 2$, and D be a Dirac operator on S^n . Then for any μ -Killing spinor φ and $f \in C^{\infty}(S^n)$, we have

$$(D + \mu I)^{2}(f\varphi) = \left(\Delta f + \left(\frac{n-1}{2}\right)^{2} f\right) \varphi$$

Proof. Recall that $D\varphi = -n\mu\varphi$ as φ is a μ -Killing spinor, so using the formulas in **Lemma 2** we compute

$$\begin{split} D^2(f\varphi) &= fD^2\varphi - 2\nabla_{\mathrm{grad}(f)}\varphi + (\Delta f)\varphi \\ &= \frac{n^2}{4}f\varphi - 2\mu\,\mathrm{grad}(f)\cdot\varphi + (\Delta f)\varphi \\ &= \frac{n^2}{4}f\varphi - 2\mu(D(f\varphi) - fD\varphi) + (\Delta f)\varphi \\ &= \left(\frac{n^2}{4} - \frac{n}{2}\right)f\varphi - 2\mu D(f\varphi) + (\Delta f)\varphi \end{split}$$

and thus

$$(D+\mu I)^2(f\varphi) = D^2(f\varphi) + 2\mu D(f\varphi) + \frac{1}{4}f\varphi = \left((\Delta f) + \left(\frac{n-1}{2}\right)^2\right)\varphi$$

Combining this with the spectrum of the Laplacian, we have the following for the Dirac spectrum of the sphere.

Theorem 2. Let $n \geq 2$, and S^n have its canonical metric and spin structure. Then the spectrum of the Dirac operator D on S^n is $\{\pm \left(\frac{n}{2} + k\right) \mid k \in \mathbb{Z}_{\geq 0}\}$, with the eigenvalues $\lambda_k^{\pm} = \pm \left(\frac{n}{2} + k\right)$ having multiplicity $2^{\lfloor n/2 \rfloor} \binom{n+k-1}{k}$.

Proof. Fix an orthonormal basis of eigenfunctions $\{f_m\}_{m\in\mathbb{N}}$ for Δ on S^n , and a trivialisation $\{\varphi_j\}_{j=1}^{2\lfloor n/2\rfloor}$ of \mathcal{S}_{S^n} by μ -Killing spinors which is pointwise an orthonormal basis. Then by our previous lemma, it follows that $\{f_m\varphi_j\mid m\in\mathbb{N}, 1\leq j\leq 2^{\lfloor n/2\rfloor}\}$ is an orthonormal basis of $L^2(\mathcal{S}_{S^n})$ consisting of eigenvectors of $(D+\mu I)^2$, of eigenvalues $k(n+k-1)+\left(\frac{n-1}{2}\right)^2=\left(\frac{n-1}{2}+k\right)^2$, and multiplicity $2^{\lfloor n/2\rfloor}\frac{n+2k-1}{n+k-1}\binom{n+k-1}{k}$. Thus any eigenvalue λ of D is of the form $-\mu\pm\left(\frac{n-1}{2}+k\right)$ for some $k\in\mathbb{Z}_{\geq 0}$ and both $\mu=1/2$ and $\mu=-1/2$, so $\lambda\in\{\pm\left(\frac{n}{2}+k\right)\mid k\in\mathbb{Z}_{\geq 0}\}$.

To show the claimed eigenvalues all appear with the claimed multiplicities, we use induction. Writing $\lambda_k^{\pm} = \pm \left(\frac{n}{2} + k\right)$, since we know D admits an orthonormal basis of eigenvectors, by the factorisation $(D + \mu I)^2 - \left(\frac{n-1}{2} + k\right)^2 I = \left(D + \left(\mu + \frac{n-1}{2} + k\right)I\right) \left(D + \left(\mu - \frac{n-1}{2} - k\right)I\right)$ we have

$$\ker\left((D+\mu I)^2 - \left(\frac{n-1}{2} + k\right)^2 I\right) = \ker\left(D + \left(\left(\mu + \frac{1}{2}\right) - \frac{n}{2} - k\right) I\right) \oplus \ker\left(D + \left(\left(\mu - \frac{1}{2}\right) + \frac{n}{2} + k\right) I\right)$$

Letting $m(\lambda_k^{\pm})$ be the multiplicity of λ_k^{\pm} , taking dimensions in the above equation for $\mu = +\frac{1}{2}$ and $\mu = -\frac{1}{2}$ respectively gives

$$2^{\lfloor n/2 \rfloor} \left(\binom{n+k-2}{k-1} + \binom{n+k-1}{k} \right) = m(\lambda_{k-1}^{\mp}) + m(\lambda_k^{\pm})$$

Now when k=0, the left-hand side of the above is $2^{\lfloor n/2\rfloor}$. The μ -Killing spinors yield a $2^{\lfloor n/2\rfloor}$ -dimensional space of $n\mu$ -eigenvectors, so the space of $\pm \frac{n}{2}$ -eigenvectors has the claimed dimension. For k>0, the above formula immediately gives us this result, since we have $m(\lambda_{k-1}^{\mp}) = 2^{\lfloor n/2\rfloor} \binom{n+k-2}{k-1}$ if and only if $m(\lambda_k^{\pm}) = 2^{\lfloor n/2\rfloor} \binom{n+k-1}{k}$.

4. References

- 1. BÄR, C., (1994), The Dirac operator on space forms of positive curvature, online at https://www.math.uni-potsdam.de/fileadmin/user_upload/Prof-Geometrie/Dokumente/Publikationen/sphere.pdf
- 2. Berger, M., Gauduchon, P., Mazet, E., (1971), Le spectre d'une Variété Riemannienne, Lecture Notes in Mathematics., Springer-Verlag, Berlin-Heidelberg
- 3. GINOUX, N., (2009), *The Dirac Spectrum*, Lecture Notes in Mathematics., Springer-Verlag, Berlin-Heidelberg
- 4. HAJLASZ, P., n.d., Functional Analysis, online at https://sites.pitt.edu/~hajlasz/Notatki/Functional%20Analysis2.pdf
- 5. HIJAZI, O., (2001), Spectral Properties of the Dirac Operator and Geometrical Structures, online at https://www.researchgate.net/publication/253302380_Spectral_Properties_of_the_Dirac_Operator_and_Geometrical_Structures