Danmarks Tekniske Universitet

Danmarks Tekniske Universitet

Written examination date: 16/8/2024

Pages: 7 (including this front page)

Course title: Bayesian Machine Learning

Course number: 02477

Aids allowed: All aids except internet

Exam duration: 4 hours

Weighting: 100%

02477 Bayesian Machine Learning Exam 2024R

Technical University of Denmark

- **Duration**: 4 hours
- Aids: All aids except internet
- Student number: Make sure you student number is visible on all pages.
- Results: Report all numeric results with 2 digits after the decimal point.
- Explain how you arrived at your results, document intermediate results when possible.
- Hand-in: Your solution must be handed in digitally as a PDF.

Contents

- Part 1: Multi-class classification
- Part 2: Gaussian process regression
- $\bullet\,$ Part 3: A model with a mixture prior distribution model
- Part 4: A generalized linear model
- Part 5: A non-linear Gaussian model

Part 1: Multi-class classification

Consider the following linear model for multi-class classification with K=3 classes:

$$y_n | \mathbf{f}_n \sim \text{Categorical} \left[\text{softmax}(\mathbf{f}_n) \right],$$
 (1)

$$\mathbf{f}_n = \mathbf{W}\phi(x_n),\tag{2}$$

$$\mathbf{W}_{ij} \sim \mathcal{N}(0, \alpha^{-1}),\tag{3}$$

where $y_n \in \{1, 2, 3\}$, $x_n \in \mathbb{R}$, $\alpha > 0$ is a hyperparameter, and \boldsymbol{W} are the parameters of interest. The feature transformation $\phi(x)$ is given by $\phi(x) = \begin{bmatrix} 1 & x \end{bmatrix}^T$ such that $\boldsymbol{W} \in \mathbb{R}^{K \times D}$ for D = 2.

Question 1.1: Identify the prior and likelihood of the model.

Let

$$\hat{\boldsymbol{W}}_{\text{MAP}} = \begin{bmatrix} -0.5 & -2.0\\ 3.0 & 0.0\\ 1.0 & 1. \end{bmatrix} \tag{4}$$

be a MAP-estimator for the model given in eq. (1)-(3) for some dataset \mathcal{D} (not given).

Question 1.2: Use the plugin approximation with \hat{W}_{MAP} to compute the posterior predictive distribution for $x^* = -1$.

Let $W^{(i)} \sim q(W)$ for i = 1, 2, 3 be samples from a variational approximation of the posterior, i.e. $p(W|\mathcal{D}) \approx q(W)$:

$$\boldsymbol{W}^{(1)} = \begin{bmatrix} -0.15 & -1.92 \\ 3.2 & 0.45 \\ 1.37 & 0.8 \end{bmatrix}, \quad \boldsymbol{W}^{(2)} = \begin{bmatrix} -0.31 & -2.03 \\ 2.98 & 0.08 \\ 1.03 & 1.29 \end{bmatrix}, \quad \boldsymbol{W}^{(3)} = \begin{bmatrix} -0.35 & -1.98 \\ 3.09 & 0.07 \\ 1.3 & 0.96 \end{bmatrix}.$$
 (5)

Question 1.3: Compute a Monte Carlo estimate of the posterior predictive distribution for $x^* = -1$ using samples given above.

The predictive distribution $p(y^*|\mathcal{D}, x^* = 3)$ is given in the table below:

$$\begin{array}{c|c}
k & p(y^* = k | \boldsymbol{y}, x^*) \\
\hline
1 & 0.00 \\
2 & 0.27 \\
3 & 0.73
\end{array}$$

Question 1.4: Determine the entropy and confidence of the posterior predictive distribution for $x^* = 3$ given in the table above.

Question 1.5: Suppose the value of the hyperparameter α is increased by a factor of 10. Explain in your own words how you would expect the MAP-estimate to change and why.

Part 2: Gaussian process regression

Let $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ be a dataset for regression, where $x_n \in \mathbb{R}$ and $y_n \in \mathbb{R}$ are the input and output for the *n*'th observation, respectively:

$$x = \begin{bmatrix} -2.00 & 0.00 & 2.00 \end{bmatrix}$$

 $y = \begin{bmatrix} -2.01 & 1.41 & 0.23 \end{bmatrix}$,

such that x_n and y_n are the n'th elements in \boldsymbol{x} and \boldsymbol{y} , respectively, for N=3.

Assume a Gaussian process regression model of the form

$$y_n = f(x_n) + \epsilon_n, \tag{6}$$

where $f \sim \mathcal{GP}(0, k_1(x, x'))$ and $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is i.i.d additive Gaussian noise. Assume the following squared exponential kernel:

$$k_1(x, x') = 2 \exp\left(-\frac{1}{8}||x - x'||_2^2\right)$$
 (7)

and assume the standard deviation of the noise is given by $\sigma = \frac{1}{2}$.

Question 2.1: Determine the value of the magnitude and lengthscale hyperparameters for the kernel k_1 in eq. (7).

Let $\mathbf{f} \in \mathbb{R}^N$ denote a vector containing the values of the function f evaluated at the training points, i.e. $\mathbf{f} = \begin{bmatrix} f(x_1) & f(x_2) & \dots & f(x_N) \end{bmatrix}$.

Question 2.2: Determine the analytical prior distribution p(f|x).

Question 2.3: Determine the analytical posterior distribution p(f|y,x).

Now consider a different kernel:

$$k_2(x, x') = \exp\left(-\frac{1}{2}||x - x'||_2\right) + 2.$$
 (8)

Question 2.4: Determine the analytical prior variance of $f(x) \sim \mathcal{GP}(0, k_2(x, x'))$ for $x \in \mathbb{R}$ given by the kernel in eq. (8).

Part 3: A model with a mixture prior distribution model

Consider the following probabilistic model for an observed variable $y \in \mathbb{R}^2$ and parameters of interest $\theta \in \mathbb{R}^2$:

$$p(\boldsymbol{\theta}) = \frac{1}{2} \mathcal{N}(\boldsymbol{\theta} | -\boldsymbol{m}, \tau^2 \boldsymbol{I}) + \frac{1}{2} \mathcal{N}(\boldsymbol{\theta} | \boldsymbol{m}, \tau^2 \boldsymbol{I})$$
(9)

$$p(\mathbf{y}|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}), \tag{10}$$

where

$$X = \begin{bmatrix} 1 & 0.5 \\ -1 & 1 \end{bmatrix}, \quad m = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \tau^2 = \sigma^2 = 1,$$
 (11)

are constants and $\boldsymbol{I} \in \mathbb{R}^{2 \times 2}$ is the identity matrix.

Question 3.1: Compute the maximum likelihood estimate for θ .

Question 3.2: Compute the value of the prior density for $\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Question 3.3: Determine the analytical expression for the marginal likelihood.

If you did not solve Question 3.3, you can assume p(y) = 0.1 when solving the next question.

Question 3.4: Compute the value of the posterior density for $\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Part 4: A generalized linear model

Consider the generalized linear model

$$y_n|x_n, \boldsymbol{w} \sim \text{Poisson}(\mu(x_n)),$$

 $\mu(x_n) = \exp(3 + w_1 x_n + w_2 x_n^2)$
 $\mathbf{w}|\alpha \sim \mathcal{N}(0, \alpha^{-1}\mathbf{I}),$

where $x_n \in \mathbb{R}$ is an input with corresponding target $y_n \in \{0, 1, 2, \dots\}$, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ are the parameters of interest, $\alpha = 8$ is a fixed hyperparameter, and \boldsymbol{I} is the identity matrix.

The plots below show the prior, the likelihood and the posterior, respectively, for the following dataset with N=3 observations:

$$x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix},$$

 $y = \begin{bmatrix} 10 & 4 & 1 \end{bmatrix},$

such that x_n and y_n are the n'th elements in x and y, respectively.

Figure 1: Contour plots of the prior, likelihood, and posterior, respectively.

Question 4.1: Use Figure 1 to visually identify (approximately) and report the maximum likelihood estimator and the MAP estimator for w.

Question 4.2: Compute the prior mean of $\mu(x^*)$ for $x^* = 0$.

Question 4.3: Run a single MCMC chain using the Metropolis algorithm for 10^4 iterations using a standardized Gaussian as proposal distribution. Initialize the chain at $(w_1, w_2) = (0, 0)$. Discard 50% of the samples as warm up. Plot the resulting traces for both parameters.

Use the posterior samples of \boldsymbol{w} from Question 4.4 to answer the next two questions. If you did not solve the previous question, you can draw 10^4 samples of \boldsymbol{w} as

$$\boldsymbol{w} \sim \mathcal{N}\left(\begin{bmatrix} -1\\ -1 \end{bmatrix}, \begin{bmatrix} 1 & -0.1\\ -0.1 & 0.5 \end{bmatrix}\right)$$
 (12)

and assume these are samples from the correct posterior distribution when solving the next two questions.

Question 4.4: Estimate the posterior probability that w_1 is positive using the samples.

Consider now the test point $x^* = 1.5$.

Question 4.5: Estimate posterior probability that $\mu^* = \mu(x^*)$ is greater than 7 using the posterior samples.

Question 4.6: Compute an approximate 90% posterior credibility interval for $p(y^*|\mathbf{y}, x^*)$ using the posterior samples.

Part 5: A non-linear Gaussian model

Consider the following probabilistic model

$$y|w \sim \mathcal{N}(e^w, 1)$$
$$w \sim \mathcal{N}(0, 1)$$

for a single observation $y \in \mathbb{R}$ and parameter $w \in \mathbb{R}$. The mode of the posterior distribution is

$$\hat{w}_{\text{MAP}} = \arg\max_{w} p(w|y) \approx 1.293404$$

for y = 5.

Question 5.1: Use ancestral sampling with S = 1000 to estimate the prior mean of y.

Question 5.2: Evaluate the logarithm of the joint density for $w = \hat{w}_{MAP}$ and y = 5.

We will now introduce a Laplace approximation of the posterior, i.e. $p(w|y) \approx q(w)$.

Question 5.3: Determine the approximate posterior mean and variance of the Laplace approximation q for y=5.

Question 5.4: Use the Laplace approximation q to estimate the posterior probability of the event $w>w_{\rm MAP}$ for y=5.