Mohd Zain 22MT0214 Logistic Regression

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from google.colab import files
al=files.upload()

Choose files Iris.csv

• Iris.csv(text/csv) - 5107 bytes, last modified: 19/09/2019 - 100% done Saving Iris.csv to Iris.csv

import io
df=pd.read_csv(io.BytesIO(al['Iris.csv']))

df.head(3)

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa

df.tail(3)

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
147	148	6.5	3.0	5.2	2.0	Iris- virginica
148	149	6.2	3.4	5.4	2.3	Iris- virginica

df = df.drop(columns = ['Id'])
df.head(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
df['Species'].value_counts()
```

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50

Name: Species, dtype: int64

df.corr()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	1
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954	
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544	
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757	
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000	

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Species'] = le.fit_transform(df['Species'])
df.head(100)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	•
(5.1	3.5	1.4	0.2	0	
1	L 4.9	3.0	1.4	0.2	0	
2	2 4.7	3.2	1.3	0.2	0	
3	4.6	3.1	1.5	0.2	0	
4	5.0	3.6	1.4	0.2	0	
9	5 5.7	3.0	4.2	1.2	1	
9	6 5.7	2.9	4.2	1.3	1	
9	7 6.2	2.9	4.3	1.3	1	
9	8 5.1	2.5	3.0	1.1	1	
9	9 5.7	2.8	4.1	1.3	1	

100 rows × 5 columns

```
from sklearn.model_selection import train_test_split
X = df.drop(columns = ['Species'])
Y = df['Species']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3)
```

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
```

```
model.fit(X_train, Y_train)
```

LogisticRegression()

```
Y_pred=model.predict(X_test)
Y_pred
```

```
array([0, 1, 2, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 2, 1, 2, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 2, 1, 1, 1])
```

from sklearn.metrics import r2_score

```
acc=r2_score(Y_test,Y_pred)
acc*100
```

92.53731343283582

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test, Y_pred)
print(cm)

```
[[15 0 0]
[ 0 18 0]
[ 0 2 10]]
```

```
import seaborn as sns
ax=plt.axes()
df_cm=cm
sns.heatmap(df_cm, annot=True, annot_kws={"size": 30}, fmt='d',cmap="Blues", ax =
ax.set_title('Confusion Matrix')
plt.show()
```

