Insulation Co-ordination Studies and Selection of Surge Arrester in EHV/UHV Substations

D. Maheswaran, K. K. Jembu Kailas, W. Adithya Kumar, Vijaylakshmi Padshetty

W. Adithya Kumar 29. 04. 16

INTRODUCTION

Increased Voltage levels

Selection of insulation dictates the cost and safety

Growing at a rapid pace

INSULATION COORDINATION

INEVITABLE

INTRODUCTION

Why Insulation Co-ordination Study is required?

- To understand the behaviour of equipment during transient conditions.
- To verify whether the LA provided is sufficient enough to arrest the surges.

OVERVOLTAGES

Causes of Overvoltages

CAUSES OF OVERVOLTAGES

-In view of above, a detailed system analysis for switching over voltages is very important especially at EHV & UHV. From such an analysis, the energy through the surge arresters also should be estimated. This will help select proper Long Duration class of the Surge Arresters.

SYSTEM OVER VOLTAGES-WAVE SHAPE

OVERVOLTAGES

Table 8 IEC 71.1: BILs are Tied to Max. System Voltages for Max. System Voltage from 1 to 245 kV

Max system voltage, kV	BILs, kV	Max system voltage, kV	BILs, kV		
3.6	20 or 40	52	250		
7.2	40 or 60	72.5	325		
12	60, 75 or 95	123	450 or 550		
17.7	75 or 95	145	450, 550, or 650		
24	95, 125 or 145	170	550, 650, or 750		
36	145 or 170	245	650, 750, 850, 950, or 1050		

Source: Ref. 3.

Table 9 IEC BIL/BSLs, from IEC Publication 71.1

Max. system voltage, kV	Phase-ground BSL, BSL _g , kV	Ratio BSL_p/BSL_g	BIL, kV 850 or 950 950 or 1050		
300	750 850	1.50 1.50			
162	850	1.50	950 or 1050		
	950	1.50	1050 or 1175		
120	850	1.60	1050 or 1175		
	950	1.50	1175 or 1300		
	1050	1.50	1300 or 1425		
550	950	1.70	1175 or 1300		
	1050	1.60	1300 or 1425		
	1175	1.50	1425 or 1550		
800 .	1300	1.70	1675 or 1800		
	1425	1.70	1800 or 1950		
	1550	1.60	1950 or 2100		

Insulation

Levels

EFFECTS OF OVERVOLTAGES

Breakdown in the insulating dielectric of equipment

Degradation of equipment through ageing

OF Loss of power supply
OVERVOLTAGES

SURGE ARRESTOR

SURGE ARRESTOR

A device used in electrical power to protect the insulation & conductors of the system from the damaging effects

Used to clip or limit the peak values of the over voltages or their durations or both

Open switch for system voltages Closed switch for Over voltages

TYPES OF SURGE ARRESTORS

As per IEC 60099-4, 2014

Class	Туре	Nominal discharge current
	SH - Station High	20kA
STATION CLASS	SM – Station Medium	10kA
	SL – Station Low	10kA
	DH - Distribution High	10kA
DISTRIBUTION CLASS	DM – Distribution Medium	5kA
	DL – Distribution Low	2.5kA

GROUND FAULT FACTOR

(As per IEC 60099-5 & IEEE C62.22)

Type of System	Ground Fault Factor
Solidly Grounded 4 wire systems	1.25
Uni-grounded 3 wire systems	1.4
Impedance grounded systems	1.732
Isolated Ground Systems and Delta Systems	1.732

SELECTION OF SURGE ARRESTOR

- Continuous operating voltage with respect to the highest system operating voltage
- Rated voltage of the arrester with respect to the temporary overvoltages
- BIL & BSL of the arrester during lightning, switching based on the V-I characteristics
- Location of Arrester
- Pressure relief class of the arrester with respect to the expected fault current
- Risk of lightning strikes in the region
- Type of electrical supply network feeding the site (overhead or underground)
- The network's earthing system
- Substation BIL, BSL

TYPICAL 400KV MULTI CIRCUIT TOWER STRIKE DISTANCES

To calculate the Velocity of Travelling Wave

CASE STUDY - DESCRIPTION OF THE SYSTEM

The system taken for case study is the 400kV Air Insulated Substation (AIS) of a 2x600MW Thermal Power Plant

your link to electricity

SYSTEM MODELLING

SYSTEM MODELLING

The system taken for case study is the 400kV Air Insulated Substation (AIS) of a 2x600MW Thermal Power Plant

System Voltage	Insulation Level (kVp)	Type of insulation	Margin	Maximum allowable voltage (kVp)
400kV	BIL= 1425	External	1.0815	1317.61
	DIL= 1425	Internal	1.15	1239.13
	BSL=1050	External	1.0694	981.85
		Internal	1.15	913.04

SYSTEM MODELLING

Modelling with 2 Generators

OVERVOLTAGE STUDY

System voltage

= 400 kV

Surge Arresters are single phase devices, hence Phase to neutral voltage

 $\frac{1}{\sqrt{3}} = 230kV$

Insulation Coordination study

During single phase to earth fault, voltage on healthy phase will go up to 1.4 to 1.5 times.

$$= 230 \times 1.4 \ or \ 1.5 = 323 \ or \ 346 kV$$

LA V-I CHARACTERISTICS

SI.No	Discharge Current in	Approximate Discharge		
	(A)	voltage in (kVp)		
1	0.00001	567		
2	0.0001	781		
3	0.001	890		
4	0.01	948		
5	0.1	960		
6	1	970		
7	10	1020		
8	100	1126		
9	1000	1179		
10	2500	1227		
11	10000	1385		
12	20000	1480		

LIGHTNING OVER VOLTAGE STUDY

LIGHTNING OVER VOLTAGE STUDY

Lightning surge enter into the substation in the form

of a travelling wave

Current Surge (20kAp, 8/20µs)

Voltage across Line end and Transformer bay

your link to electricity

SWITCHING OVER VOLTAGE STUDY

SWITCHING OVER VOLTAGE STUDY

Line Energization & Re-Energization:

- A three-phase line energization or re-energization produces switching overvoltages on all three phases of the line.
- Closing time plays an important role on the value of overvoltage during energization.

Voltage across Line-1 Bay with Surge Arrester during Line-Energization

Voltage across Transformer Bay with Surge Arrester during Line-Re-Energization

your link to electricity

SWITCHING OVER VOLTAGE STUDY

Switching overvoltages due to faults and fault clearing

Switching overvoltages can arise at the initiation of a fault and also during fault clearing

Trafo Phase A Trafo Phase C Tr

Voltage across Transformer Bay with Surge Arrester – Switching during Fault

Voltage across Transformer Bay with Surge Arrester – Switching during Fault clearing

RESULTS - LIGHTNING

Voltage at	Maximum Allowable Voltage	With Surge Arrestors		W/O Surge Arrestor in Transformer Bay		Arrestor in Line			
		1	2	1	2	1	2	1	2
		Gen	Generators	Gen	Generators	Gen	Generators	Gen	Generators
Line End		2.52	2.45	2.9	2.9	5.5	5.63	5.5	5.7
Transfor		1.9	1.67	2.1	1.89	2.58	2.37	5.4	5.6
mer Bay	1239.1								
Load	kVp	1.56	1.47	1.6	1.47	2.09	2.01	5.6	5.8
End	,								
Breaker	(3.09 p.u)	-	-	-	-	-	-	-	-
Terminal									
S									

RESULTS - SWITCHING

Voltage at	Maximum	Switching Study Case	itching Study Case W/O Surge Arrestor				
	Allowable				in Line End		
	Voltage		1 Gen	2 Generators	1 Gen	2 Generators	
Line End		Line Energization	2.05	2.4	1.17	1.39	
		Line Re-Energization	2.03	3.2	1.92	2.3	
Transformer		Line Energization	12.26	13.1	1.97	1.65	
Bay		Line Re-Energization	12.33	13.4	1.92	2.3	
	913.04	Switching during Fault	14.88	-	2.02	-	
	kVp	Switching During Fault	18.47	-	2.02	-	
	•	Clearing					
Breaker	(2.28 p.u)	Line Energization	12.14	12.96	1.97	1.65	
Terminals		Line Re-Energization	12.08	12.42	1.88	2.6	
		Switching during Fault	14.88	-	2.19	-	
		Switching During Fault Clearing	18.27	-	2.07	-	

RESULTS

Maximum
overvoltage due to
lightning is 1068
kVp, which is well
within the limits of
the protective level
of the offered
Surge Arrestor
(1425kVp).

Maximum overvoltages due to switching of Breaker is 848 kVp, which is well within the limits of the protective level of the offered Surge Arrestor (1050 kVp).

Voltage is within the limits in both Lightning and Switching studies, but the important parameter that needs to be evaluated is energy capability of Surge Arrestor

RESULTS

The minimum energy rating of 360kV LA:

1286.3/360 = 3.6 kJ/kV

This is sufficient for one generator feeding one line.

390 KV LA
SELECTED

The minimum energy rating of 390kV LA:

This Arrester has passed all worst conditions

CONCLUSIONS

360kV and 390kV Surge **Arrestors were analyzed** based on the manufacturing data sheets available at that point. The voltage rating and energy handling capability of Surge arresters provide sufficient protection for the switchyard equipment.

The selection of Surge Arrestor can be done considering minimum rating of Surge Arrestors with high energy discharge capability available in the present manufacturing industry, but a detailed Insulation Co-ordination study is necessary to check the voltage profile of the EHV Substation.

Thank You

