Code Line # (Starting from #10)	A- register	D- register	M- Register	ALU	Data memory	Instruction Memory	Program Counter	Control/Address/Data bus
#10	The A-register is set to 17	NA	M - register points to the memory that stores the variable I, RAM [17]	NA	The data memory is accessed to read RAM [17] that stores the value of i	The instruction memory input is set to address of #11	The program counter is set to PC++-> address of #11 instruction	The control bits are sent to A register to load the value 17 The address of variable i is put into the address bus to access the memory location. The control bits are sent to the PC to increment its value by
#11	NA	The D - register is set to the value in RAM [17]	M - register points to the memory that stores the variable I, RAM [17]	NA	NA	The instruction input is set to the address of #12	The program counter is set to PC++-> address of #12 instruction	The control bits are sent to the D register to load the value of RAM [17] Control bits are sent to PC to increment its value.
#12	The A-register is set to 18	NA	M - register points to the memory that stores the variable i, RAM [18]	NA	The data memory is accessed to read RAM [18] that stores the value of i.	The instruction memory input is set to address of #13	The program counter is set to PC++ -> address of #13 instruction	The control bits are sent to the A-register to load the value 18 The address of sum is put into the address bus to access the memory location. The control bits are sent to the PC to
#13	NA	NA	M - register points to the memory that stores the variable i, RAM [18] is incremented by the value in the D register	ALU computes M+D as output.	The value of M + D is written to the data memory, at RAM [18]	The instruction n input set to address of #14	The program counter is set to PC++-> address of #14 instruction on	increment its value by 1 Control bits to send to ALU to load M and D register. ALU outputs M + D to M through data bus The control bits are sent to the PC to increment its value by 1.

		<u> </u>					<u> </u>	
#14	NA	D is used as the first input to the ALU. The output of the ALU is stored in D.	NA	The ALU Outputs the sum of the value in the D register and 1	NA	The Instruction input set to address of #15	The program counter is set to PC++ -> address of #15 instruction	Control bits sent To ALU to load D. The control bits Are sent to the ALU, To calculate and output D + 1. ALU output is sent via the data bus to A/D/M with control Bits making D commit to value. The control bits are sent to the PC to increment its value by 1.
#15	The A – register is set to 17	NA	M register Points to the memory that stores the variable I, RAM[17]	NA	The data memory is accessed to read RAM[17] that stores the value of i	Instruction input set to address of #16	The program counter is set to PC++ -> address of #16 instruction	Control bits are sent to the A register to load value 17. Data memory is accessed via address & data bus to read/load RAM[17].The control bits are sent to the PC to increment its value by 1.
#16	NA	NA	The output of the ALU is stored in M	The ALU outputs the value in the D register	The value in the D register is written to the data memory, at RAM[17].	The instruction input set to address of #17	The program counter is set to PC++-> address of #17 instruction	The control bits Are sent to the ALU, Which will output the Value of the D- register. The control bits are sent to the RAM to load the output of the ALU to the selected register, RAM[17]. The control bits are sent to the PC to increment its value by 1.
#17	The A register is set to 16	NA	M register points to the memory that stores the variable n, RAM[16]	NA	The data memory is accessed to read RAM[16] that stores the value of n	The instructio n input set to address of #18	The program counter is set to PC++-> address of #18 instructi on	Control bits are sent to the A register to load value 16. Data memory is accessed via address & data bus to read/load RAM[16]. The control bits are sent to the PC to increment its value by 1.

	T		1		1	1	7	
#18	NA	ALU output is loaded into D	The M register, RAM[16], is read	The ALU outputs the value of M – D	Data memory has already been accessed at RAM[16] and set as the M input previously	The instruction input set to address of #19	The program counter is set to PC++-> address of #19 instruction	Control bits sent via control bus to ALU to load D register and M input. The control bits are sent to the ALU, to output the value of M – D. Control bits are sent to the D register, to load the output of the ALU. The control bits are sent to the PC to increment its value by 1.
#19	The A register is set to 21 (#24 in the code)	NA	M register points to the uninitialized memory RAM[21]	NA	The data memory is accessed to read RAM[21] that stores an uninitialized value	The instruction input set to address of #20	The program counter is set to PC++-> address of #20 instruction	The control bits are sent to A register to load the value 21 The address of uninitialized memory is put into the address bus to access the memory location. RAM[21] is read using the data bus. The control bits are sent to the PC to increment its value by 1.
#20	NA	NA	NA	The ALU outputs the value of D	NA	The instruction input set to address of #21	The program counter is set to PC++ -> address of #21 instruction	The control bits are sent to the ALU, which will output the value of D (0). The control bits will be sent to the PC to increment its value by 1 (jump condition JLT is false, as 0 is not less than 0).