Outer measure on $\mathbb R$

Definition. The length of an open interval $I \subseteq \mathbb{R}$ is defined by

$$\ell(I) = \begin{cases} 0 & I = \emptyset \\ b - a & I = (a, b) \text{ with } a < b \\ \infty & I = (-\infty, a) \text{ or } (a, \infty) \text{ or } (-\infty, \infty) \end{cases}$$

Definition. Define the **Lebesgue outer measure** of $E \subseteq \mathbb{R}$, written |E| (Axler) or $m^*(E)$ (Bass) by $m^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) : A_i \text{ is an open interval } \forall i \text{ and } E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$

Outer measure is **not** a measure on
$$(\mathbb{R}, \mathcal{P}(\mathbb{R}))$$
. We will soon see that it is a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, and in fact there is a somewhat larger

 σ -algebra \mathcal{L} such that outer measure is a measure on $(\mathbb{R}, \mathcal{L})$. Measure Theory, EDGE 2020 Lecture 3

Outer measure on \mathbb{R}

Example. Each of the following subsets of $\mathbb R$ has Lebesgue outer measure zero.

- **1.** Ø
- **2.** $\{x\}$ for any real number x
- 3. Any countable subset of \mathbb{R} , for instance \mathbb{Q} (homework)
- **4.** The Cantor set (homework)

Special kinds of measures

Definition.

- μ is a *finite* measure if $\mu(X) < \infty$
- μ is a probability measure if $\mu(X) = 1$
- μ is called σ -finite if $X = \bigcup_{n=1}^{\infty} X_n$ where $\mu(X_n) < \infty$ for all n.

Null sets

Definition. If (X, \mathcal{M}, μ) is a measure space, a set $N \in \mathcal{M}$ such that $\mu(N) = 0$ is called a **null set**.

Trick question: If N is a null set of (X, \mathcal{M}, μ) , and $E \subseteq N$, is E necessarily a null set?

Null sets

Definition. If (X, \mathcal{M}, μ) is a measure space, a set $N \in \mathcal{M}$ such that $\mu(N) = 0$ is called a **null set**.

Trick question: If N is a null set of (X, \mathcal{M}, μ) , and $E \subseteq N$, is E necessarily a null set?

Definition. (X, \mathcal{M}, μ) is called a **complete measure space** if every subset of a μ -null set belongs to \mathcal{M} .

Theorem. If
$$(X,\mathcal{M},\mu)$$
 is a measure space, there exists a complete measure space $(X,\widehat{\mathcal{M}},\widehat{\mu})$ such that $\mathcal{M}\subseteq\widehat{\mathcal{M}}$ and $\mu(A)=\widehat{\mu}(A)$ for all $A\in\mathcal{M}$.

Proof: homework

Constructing Lebesgue measure

Definition. An **outer measure** on a set X is a function μ^* :

- $\mathcal{P}(X) \to [0, \infty]$ such that: **1.** $\mu^*(\emptyset) = 0$
- **2.** If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$
- **3.** If $A_1, A_2, ... \subseteq X$, then $\mu^*(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu^*(A_i)$

Proposition. Suppose
$$\{\emptyset, X\} \subseteq \mathcal{C} \subseteq \mathcal{P}(X)$$
. If $\ell : \mathcal{C} \to [0, \infty]$ and $\ell(\emptyset) = 0$, then

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) : A_i \in \mathcal{C} \text{ and } E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}$$

is an outer measure.

Proof: homework

Constructing Lebesgue measure

Definition. Let μ^* be an outer measure on X. Then $E \subseteq X$ is μ^* -measurable if

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$
 for all $A \subseteq X$.

Theorem. (Carathéodory) If μ^* is an outer measure on X, then the collection $\mathcal M$ of all μ^* -measurable sets forms a σ -algebra. If μ is the restriction of μ^* to $\mathcal M$, then μ is a complete measure.

Constructing Lebesgue measure

Theorem. Suppose $\{\emptyset, X\} \subseteq \mathcal{C} \subseteq \mathcal{P}(X), \ \ell : \mathcal{C} \to [0, \infty], \ \ell(\emptyset) = 0$. Then there exists a complete measure space (X, \mathcal{M}, μ) such that

 $\sigma(\mathcal{C})\subseteq\mathcal{M}$ and

$$\mu(E) = \inf \left\{ \sum_{i=1}^{\infty} I(A_i) : A_i \in \mathcal{C} \text{ and } E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

Now consider:

$$X = \mathbb{R}$$

$$\mathcal{C} = \{(a, b) : a < b\} \cup \{\emptyset\}$$

$$\ell$$
 is usual length of intervals, i.e. $\ell((a,b)) = b - a$, $\ell(\emptyset) = 0$.

Then the measure guaranteed by this theorem is what we call

Lebesgue measure on \mathbb{R} . (But what is the associated σ -algebra?)

Lebesgue measurable sets

That is, the only difference between m^* , outer measure on \mathbb{R} , and m, Lebesgue measure on \mathbb{R} , is their domains.

$$egin{aligned} m^*: \mathcal{P}(\mathbb{R}) & o [0,\infty] \ m: \mathcal{L} & o [0,\infty] \ m & = m^*|_{\mathcal{L}} \ ext{(that is, } m(E) = m^*(E) ext{ for all } E \in \mathcal{L}) \end{aligned}$$

Where $\mathcal L$ is the σ -algebra, as described by Carathéodory's Theorem, of all sets that are Lebesgue measurable.

Definition.
$$E \subseteq \mathbb{R}$$
 is Lebesgue measurable if for all $A \subseteq \mathbb{R}$,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C).$$

Approximation of measurable sets

Definition.

- **1.** A countable intersection of open sets is called a G_{δ} set.
- **2.** A countable union of closed sets is called an F_{σ} set.

Even though the class of Lebesgue measurable sets is very large, any measurable set can be approximated arbitrarily well from above by an open set, and from below by a closed one. Moreover, any measurable set differs by at most a set of measure 0 from both a G_{δ} set containing it and an F_{σ} set contained in it.

Proposition. For $E \subseteq \mathbb{R}$, the following are equivalent:

- 1. E is Lebesgue measurable.
- **2.** Given $\epsilon > 0, \exists$ open set $G \supset E$ such that $m^*(G \backslash E) < \epsilon$.
- **3.** Given $\epsilon > 0, \exists$ closed set, $F \subseteq E$ such that $m^*(E \setminus F) < \epsilon$.
- **4.** There is a G_{δ} set G with $E \subseteq G$, $m^*(G \setminus E) = 0$. **5.** There is an F_{σ} set F with $F \subseteq E$, $m^*(E \setminus F) = 0$.
-

Measure Theory, EDGE 2020