Функции.md 4/16/2022

Массивы + циклы

Исходя с варианта, выбрать указанный алгоритмы и реализовать его в виде программы.

Материалы

- Библиотека cmath
- Функции

Отправка результатов

Результаты работы скинуть в форму. Адрес формы для отправки

Задание

Первая часть

Взять задания с Первой лабораторной и конвертировать их решение в функцию

Вторая часть

С помощью таблиц и варианта реализовать математическую функцию с помощью языка программирования C++ и его стандартной библиотеки cmath.

Таблица вариантов и функций 1

Функции.md 4/16/2022

1	$Z = \frac{2t + y\cos t}{\sqrt{y + 4.831}}$	2	$D = y^2 + \frac{0.5n + 4.8}{\sin y}$	3	$Q = \frac{\sqrt{k + 2.6p\sin k}}{x - d^3}$
4	$F = \ln(d) + \frac{3.5d^2 + 1}{\cos(2y + 2.3)}$	5	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$	6	$L = \cos^2 c + \frac{3t^2 + 4}{\sqrt{c + t}}$
7	$U = \frac{\ln(k - y) + y^4}{e^y + 2.355k^2}$	8	$A = \frac{\sin(2y+h) + h^2}{e^h + y}$	9	$R = \frac{\sin^2 y + 0.3d}{e^y + \ln(d)}$
10	$G = \frac{9.33w^3 + \sqrt{w}}{\ln(y + 3.5) + \sqrt{y}}$	11	$P = \frac{e^{y+2.5} + 7.1h^3}{\ln\sqrt{y+0.04h}}$	12	$U = \frac{\ln(2k+4.3)}{e^{k+y} + \sqrt{y}}$
13	$D = \frac{7.8a^2 + 3.52t}{\ln(a+2y) + e^y}$	14	$F = \frac{2\sin(0.354y+1)}{\ln(y+2j)}$	15	$T = \frac{\sin(2+u)}{\ln(2y+u)}$
16	$L = \frac{0.81\cos i}{\ln(y) + 2i^3}$	17	$W = \frac{4t^3 + \ln(r)}{e^{y+r} + 7.2\sin r}$	18	$G = \frac{e^{2y} + \sin(f+3)}{\ln(3.8y+f)}$
19	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	20	$H = \frac{y^2 - 0.8y + \sqrt{y}}{23.1n^2 + \cos n}$	21	$Z = \frac{\sin(p+0.4)^2}{y^2 + 7.325p}$
22	$T = \frac{2.37\sin(t+1)}{\sqrt{4y^2 - 0.1y + 5}}$	23	$R = \frac{\sqrt{\sin^2 y + 6.835}}{\ln(y+k) + 3y^2}$	24	$W = \frac{0.004v + e^{2y}}{e^{\frac{y}{2}}}$
25	$V = \frac{(y+2w)^3}{\ln(y+0.75)}$	26	$E = \frac{\ln(0.7y + 2q)}{\sqrt{3y^2 + 0.5y + 4}}$	27	$T = \frac{0.355h^2 - 4.355}{e^{y+h} + \sqrt{2.7y}}$
28	$S = \frac{4.351y^3 + 2t\ln(t+x)}{\sqrt{\cos 2y + 4.351}}$	29	$K = \frac{2t^2 + 3l + 7.2}{\ln(y) + e^{2l}}$	30	$N = \frac{3y^2 + \sqrt{y+1}}{\ln(p+y) + e^p}$

Таблица вариантов и функций 2

Функции.md 4/16/2022

1	$y = a \sin^2 b + b \cos^2 a$; $a = \sqrt[3]{ b+c }$; $b = \sqrt{x}$	x, c
2	$y = a^2 + b^2$; $a = \ln x $; $b = e^k + a$	x, k
3	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x, b
4	$y = \sqrt[3]{ a-b }$; $a = \lg x$; $b = \sqrt{x^2 + t^2}$	x, t
5	$y = a^3 / b^2$; $a = e^{\sqrt{ x }}$; $b = (\sin p^2 + x^3)$	x, p
6	$y = p^2 + t^4$; $p = x^2 - \sqrt{ x }$; $t = \sqrt[3]{x + a^2}$	x, a
7	$y = c^3 / \cos c$; $c = a^2 + b^2$; $a = \sqrt{ x } + e^{\sqrt{b}}$	x, b
8	$y = \sin^3(a+b); a = t^3 + \sqrt{b}; \ b = \lg^2 x $	x, t
9	$y = \arctan^3 x^2$; $x = p + k$; $k = \sqrt{p + t^2}$	t, p
10	$y = \cos^2(a + \sin b); \ a = \sqrt{ x }; \ b = x^4 + m^2$	m, x
11	$y = \sin^3 a + \cos^2 x$; $a = c + k^2$; $c = \arctan x $	k, x
12	$y = e^{\sqrt{ x }} + \cos x; \ x = a + c^3; \ a = \sin^5 b$	b, c
13	$y = a\cos x - b\sin x; \ x = \sqrt[3]{a - b}; \ a = t^2b$	t, b
14	$y = \sqrt{x} \sin a + \sqrt{b} \cos x; \ a = \lg x ; \ b = x + p^3$	x, p
15	$y = \lg a / \lg b$; $a = \sqrt{x^2 + b^2}$; $x = e^b + n$	n, b
16	$y = \ln x + t ; \ x = t^2 + p; \ t = \sqrt{m}$	m, p
17	$y = e^{a+b}$; $a = \lg t + b^2 $; $t = b^2 + \sqrt{bx}$	b, x
18	$y = \sqrt[3]{x^2 + c^2}$; $x = e^{mk}$; $c = \cos^2 m + k^2$	k, m
19	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x, b
20	$y = x^3 / t^2$; $x = e^{\sqrt{p+a}}$; $t = p^3 + a^3$	a, p
21	$y = c^2 + \sqrt{ a }; \ c = \lg b ; \ a = (b+x)^3$	b, x
22	$y = \operatorname{arctg}^2 x ; \ x = t^3 + b^2; \ t = b^3 + e^{\sqrt{q}}$	q, b
23	$y = v^3 + \cos^2 w$; $v = \cos^2 a$; $w = \sqrt{a + x }$	x, a
24	$y = x^2 + \sqrt[3]{ x }$; $x = \cos^2 b + \sin^2 a$; $a = \sqrt{b + t^2}$	b, t
25	$y = \sin^3 x + \cos x^2$; $x = \lg ct $; $c = t^2 + \sqrt{a}$	t, a
26	$y = \lg^2 x + a ; \ x = \sqrt{a + b}; \ a = e^{t+b}$	t, b
27	$y = \arctan^3 p ; \ p = \sqrt{x^2 + a^2}; \ x = \sqrt{a} + \sqrt{b}$	a, b
28	$y = \sin^4(a^2 + b^2)$, $a = \sqrt{b+t}$; $t = b^2 + k^3$	b, k
29	$y = \cos^3 x + a ; \ x = e^b; \ b = a + \sqrt{a + p^2}$	a, p
30	$y = \sin^4(a^2 + b^2)$, $a = \sqrt{b+t}$; $t = b^2 + k^3$	b, k