# Bases formelles du TAL Correction du partiel

Pierre-Léo Bégay 13 mars 2020

Dans tout ce partiel, on utilise l'alphabet  $\Sigma = \{a, b\}$ . Vous devrez justifier vos réponses, à moins qu'on puisse reconnaître les algorithmes utilisés (via par exemple le nom des états de vos automates).

#### Exercice 1 [6 points]

Soient  $L_1 = \{ w \in \Sigma^* \mid |w|_a > 0 \text{ et } |w|_b > 1 \} \text{ et } L_2 = \{ w \in \Sigma^* \mid |w|_a > 1 \text{ et } |w|_b > 0 \}.$ 

Question 1 [1] Donnez un automate fini reconnaissant  $L_1$ .

**Correction** On compte les a et les b jusqu'à 1 et 2 avec les états, disposés en matrice (les a horizontalement, les b verticalement).



Question 2 [0,5] Donnez un automate fini reconnaissant  $L_2$ .

Correction Même astuce, en inversant les limites :



Question 3 [0,5] Donnez un automate fini reconnaissant  $\overline{L_1}$ .

**Correction** L'automate de la question 1 étant déjà déterministe et complet, il suffit d'intervertir ses états terminaux et non-terminaux :



Question 4 [2] Donnez un automate fini reconnaissant  $L_1 \cap L_2$ .

 ${\bf Correction} \quad {\bf En \ appliquant \ l'algorithme \ vu \ en \ cours:}$ 



Soient  $L_3 = \{ w \in \Sigma^* \mid |w|_a > 0 \text{ ou } |w|_b > 1 \}$  et  $L_4 = \{ w \in \Sigma^* \mid |w|_a > 1 \text{ ou } |w|_b > 0 \}$ .

Question 5 [2] Donnez un automate fini, complet, déterministe et minimal reconnaissant  $\overline{L_3 \cup L_4}$ .

**Correction** Les informations qu'on veut retenir pour  $L_3 \cup L_4$  sont les mêmes que dans la question 4, tout ce qui change est l'ensemble des états terminaux. Il fallait en effet les rendre tous terminaux, sauf l'initial, puis inverser et de minimiser. On pouvait également se compte que, pour tous ensembles  $E_1$  et  $E_2$ ,  $\overline{E_1 \cup E_2} = \overline{E_1} \cap \overline{E_2}$ . De plus, par un raisonnement similaire :

$$\overline{L_3} = \{ w \in \Sigma^* \mid |w|_a \le 0 \text{ et } |w|_b \le 1 \}$$

et

$$\overline{L_4} = \{ w \in \Sigma^* \mid |w|_a \le 1 \text{ et } |w|_b \le 0 \}$$

On a donc

$$\overline{L_3} \cap \overline{L_4} = \{ w \in \Sigma^* \mid |w|_a \leq 1 \text{ et } |w|_b \leq 0 \text{ et } |w|_a \leq 0 \text{ et } |w|_b \leq 1 \}$$

En élimant les chevauchements :

$$\overline{L_3} \cap \overline{L_4} = \{ w \in \Sigma^* \mid |w|_a \le 0 \text{ et } |w|_b \le 0 \} = \{ \epsilon \}$$

Le plus petit automate déterministe et complet reconnaissant ce langage est bien sûr

### Exercice 2 [3 points]

Déterminisez l'automate suivant :



 ${\bf Correction} \quad {\bf En \ appliquant \ l'algorithme \ vu \ en \ cours:}$ 



**Remarque** L'automate initial et sa version déterminisée ont autant d'états l'un que l'autre, et même autant de transitions !

### Exercice 3 [3 points]

Minimisez l'automate ci-dessous. Si vous présentez votre réponse sous forme d'arbre, indiquez l'ordre dans lequel vous avez traité les classes.



**Correction** On pose  $C_1 = \{0, 2, 3, 5, 7\}$  et  $C_2 = \{1, 4, 6, 8, 9, 10\}$ . On peut immédiatement séparer  $C_2$  en  $C_3 = \{1, 4, 6, 10\}$  et  $C_4 = \{8, 9\}$ .  $C_4$  peut alors être séparé en  $\{8\}$  et  $\{9\}$ .

On sépare maintenant  $C_1$  en  $\{2\}$ ,  $\{7\}$  et  $C_5 = \{0, 3, 5\}$ .  $C_3$  peut donc maintenant être séparé en  $\{1\}$ ,  $\{6\}$ ,  $C_6 = \{4, 10\}$ .  $C_5$  peut maintenant être totalement éclaté en  $\{0\}$ ,  $\{3\}$  et  $\{5\}$ , ce qui permet ensuite de casser  $C_6$  en  $\{4\}$  et  $\{10\}$ .

L'automate était donc déjà minimal!

## Exercice 4 [3 points]

Donnez un automate fini reconnaissant le langage dénoté par l'expression  $((aa)^*b(ab)^*)^*ab$ .

Correction Un exemple parmi d'autres :



#### Exercice 5 [5 points]

Question 1 [1,5] Comment s'assurer qu'un automate représente le langage vide ? Dit autrement, proposez un critère simple, et si possible visuel, permettant de vérifier qu'un automate ne reconnaît aucun mot.

**Correction** Il est sans doute tentant de répondre "Quand il n'y a pas d'état terminal dans l'automate", mais ce n'est pas suffisant. En effet, même l'automate suivant ne reconnaît aucun mot :



Un automate ne reconnaît aucun si et seulement si il n'existe aucun chemin allant d'un état initial à un état terminal.

Question 2 [2,5] Soient  $L_1$  et  $L_2$  deux langages reconnus, respectivement, par les automates  $A_1$  et  $A_2$ . Comment construire un automate reconnaissant le langage  $L_1 \setminus L_2$ ? Vous pourrez illustrer votre réponse avec des schémas et / ou vous appuyer sur le cours.

**Correction**  $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ . On peut donc simplement calculer  $A'_2$  le complémentaire de  $A_2$ , puis faire l'intersection de  $A_1$  et  $A'_2$ . On a vu en cours comment faire les deux.

On pouvait cependant retrouver la transformation sans se rendre compte de l'égalité rappelée ci-dessus, et proposer de reprendre la construction de l'intersection de  $A_1$  et  $A_2$  pour simuler les deux automates, mais changer les états terminaux en "terminal à gauche, pas terminal à droite". Il fallait cependant dans ce cas penser à rappeler de compléter et déterminiser  $A_2$ .

Question 3 [1] Soient  $e_1$  et  $e_2$  deux expressions rationnelles quelconques. Proposez une méthode pour vérifier que  $e_1$  représente un sous-ensemble d' $e_2$ , cad. que tout mot appartenant au langage dénoté par  $e_1$  appartient également à celui dénoté par  $e_2$ .

Soit  $L_1$  et  $L_2$  les langages reconnus par  $e_1$  et  $e_2$ , respectivement. On utilise par exemple l'algorithme de Glushkov pour construire  $A_1$  et  $A_2$ , les automates qui reconnaissent  $L_1$  et  $L_2$ , puis la question 1 pour construire  $A_3$  l'automate de  $L_1 \setminus L_2$ .  $L_1$  est un sous-ensemble de  $L_2$  ssi.  $A_3$  n'accepte aucun mot, ce qu'on peut vérifier avec la méthode de la question 2.