Fonctions échelon et tranformées de Laplace : devoir maison pour le 20/11/2020

Calculer la transformée de Laplace de chacune des fonctions suivantes :

- 1. $2t\mathcal{U}(t)$.
- **2.** $t^3 \mathcal{U}(t)$.
- **3.** $\cos(4t)\mathcal{U}(t)$.
- **4.** $\sin(3t)\mathcal{U}(t)$.
- **5.** $e^{-2t}\cos(t)\mathcal{U}(t)$.
- **6.** $e^{-2t}\sin(3t)\mathcal{U}(t)$.
- 7. $(t-1)\mathcal{U}(t-1)$.
- **8.** $(t-3)^2 \mathcal{U}(t-3)$.
- **9.** $e^{-(t-2)}(t-2)\mathcal{U}(t-2)$.
- **10.** $e^{-t}(t-2)\mathcal{U}(t-2)$.
- **11.** $\mathcal{U}(t) \mathcal{U}(t-1)$.
- **12.** $\mathcal{U}(t) 0.8\mathcal{U}(t 0.9)$.
- **13.** $6\mathcal{U}(t) 6\mathcal{U}(t-2)$.
- **14.** $10\mathcal{U}(t) + 30\mathcal{U}(t-3) 20\mathcal{U}(t-7)$.
- **15.** $t\mathcal{U}(t) 2\mathcal{U}(t-1) (t-2)\mathcal{U}(t-2)$.
- **16.** $\int_0^t \sin(2x)U(x)dx$.
- 17. L'expression de la transformée de y(t), appelée Y(p), dans le cas où :

$$y''(t) + 4y(t) = 8\sin(3t)\mathcal{U}(t)$$
$$y(0^+) = 0 \text{ et } y'(0^+) = 0$$

18. L'expression de la transformée de y(t), appelée Y(p), dans le cas où :

$$y''(t) + 2y'(t) - 3y(t) = t\mathcal{U}(t)$$
$$y(0^+) = 1 \text{ et } y'(0^+) = 1$$

19. L'expression de la transformée de y(t), appelée Y(p), dans le cas où :

$$y''(t) + 4y'(t) + 4y(t) = 8(\mathcal{U}(t) - \mathcal{U}(t-1))$$

y(0⁺) = 0 et y'(0⁺) = 1

20. L'expression de la transformée de y(t), appelée Y(p), dans le cas où :

$$y'(t) + 4y(t) = \mathcal{U}(t)$$
$$y(0^+) = 0$$