Лекція 2. ЗПР з ціллю, що задана відношенням переваги

Нехай задана множина альтернатив Ω , числові оцінки альтернатив невідомі, але ОПР може їх порівняти попарно і вказати, яка з них краща за іншу. У цьому випадку можна задати бінарному відношення на множині альтернатив.

Бінарні відношення. *Бінарним відношенням* R на множині альтернатив Ω називається довільна підмножина R декартового добутку $\Omega \times \Omega$ (декартовим добутком двох множин A і B називається множина пар елементів (a,b), де $a \in A, b \in B$). Якщо пара елементів x і y знаходиться у бінарному відношенні R, то будемо позначати цей факт як xRy.

Крім безпосередньо завдання всіх пар, для котрих виконується відношення R, існує три основних способи завдання відношень: матрицею, графом, перерізами. Нехай множина Ω містить n елементів: $\Omega = \{x_1, ..., x_n\}$.

- 1. Матриця бінарного відношення A(R) задається елементами a_{ij} , $i, j = \overline{1,n}$: $a_{ij}(R) = 1$, якщо $x_i R x_j$; $a_{ij}(R) = 0$, якщо не виконується $x_i R x_j$.
- 2. Завдання бінарного відношення R графом. Елементам скінченої множини $\Omega = \{x_1, ..., x_n\}$ ставиться у взаємно-однозначну відповідність вершини графа G. Проведемо дугу від вершини x_i до вершини x_j тоді і лише тоді, коли виконується $x_i R x_j$.
- 3. Універсальним способом завдання відношень (зокрема, на нескінченних областях) ϵ завдання з допомогою перерізів.

Верхнім переріз $R^+(x)$ називається множина елементів $y \in \Omega$ таких, що $(y,x) \in R$: $R^+(x) = \{y \in \Omega : (y,x) \in R\}$. Аналогічно задається нижній переріз: $R^-(x) = \{y \in \Omega : (x,y) \in R\}$.

Завдання. Операції та властивості бінарних відношень вивчити по підручнику.

Відношення переваги, байдужності та домінування та їхні властивості. Нехай X - задана множина альтернатив. Відношенням нестрогої переваги на X будемо називати будь-яке задане на цій множині рефлексивне бінарне відношення.

Рефлексивність відношення нестрогої переваги R відбиває той природний факт, що будь-яка альтернатива $x \in X$ не гірше за себе.

За заданим на множині X відношенням переваги R можна однозначно визначити три відповідних йому відношення:

строгої переваги " \succ " $S = R \setminus R^{-1}$,де R^{-1} - обернене до відношення R ; еквівалентності (подібності) " \approx ", визначене як $Q = R \cap R^{-1}$;

байдужості(толерантності) " \sim " $P = [X \times X \setminus (R \cup R^{-1})] \cup Q$.

Байдужість може виникати декількома шляхами.

По-перше, ОПР може щиро вважати, що фактично немає жодної різниці між x і y, тобто бажано мати x в такій само мірі, як і y, і навпаки.

По-друге, байдужість може наступити, коли ОПР не впевнена у своїй перевазі між x і y. Вона може вважати факт порівняння x з y важким і може відмовлятися судити про строгу перевагу, не будучи впевненою, чи розглядає вона x і y як однаково бажані (або небажані).

По-третє, запис виду $x \sim y$ може виникнути у випадку, коли ОПР вважає x і y зовсім не порівнянними за перевагою.

Максимальні елементи та мажоранти за бінарним відношенням.

1) Елемент $x \in \Omega$ називається максимальним за відношенням нестрогої переваги R, якщо xRy для $\forall y \in \Omega$.

Максимальні елементи за відношенням R на заданій множині Ω можуть безперечно вважатися розв'язком ЗПР з ціллю що задана відношенням переваги.

Але вони можуть як існувати, так і не існувати, у випадку існування можуть бути не єдиними. Так, для відношення "більше або рівне" на множині дійсних чисел не існує максимуму.

Теорема. Відношення нестрогої переваги R має максимальний елемент на скінченій множині X, коли воно ϵ повним квазіпорядком (рефлексивним та транзитивним).

2) Якщо не існує максимального максимального елемента, то принаймні не треба вибирати ті, для яких існують строго кращі.

Нехай $S = R \setminus R^{-1}$ - це відповідне відношення строгої переваги для відношення нестрогої переваги R. Елемент $x \in \Omega$ називається мажорантою за відношенням строгої переваги S, якщо $y\overline{S}x$ для $\forall y \in \Omega$.

Теорема. Відношення строгої переваги S має мажоранту на скінченій множині X тоді й лише тоді, коли транзитивне замикання (перетин усіх транзитивних відношень, які містять S) є строгим порядком (транзитивним та асиметричним відношенням).

Множина мажорант грає важливу роль у теорії прийняття рішень. У цій теорії вона називається також множиною недомінованих за R елементів або множиною Парето.

Функції вибору та її властивості. Нехай задано скінчену множину альтернатив $\Omega = \{x_1, ..., x_n\}$ і ОПР, користуючись своїм особистим уявленням про кращі альтернативи, для кожної множини $X \subseteq \Omega$ вибирає підмножину кращих C(X). Єдина вимога, яка накладається на вибір: $C(X) \subseteq X$ — кращі альтернативи можна вибирати з того, що пропонують, зокрема, $C(\emptyset) = \emptyset$.

Уже на множині з двох альтернатив $\Omega = \{x_1, x_2\}$ можна зробити 16 виборів! На множині з 7 альтернатив виборів більше за 10^{120} .

Тобто описувати явно вибір, задаючи вибір кращих альтернатив C(X) на кожній підмножині X "універсальної" множини Ω , неможливо вже у найпростіших випадках! Що ж робити? Як здійснювати "розумний",

"логічний" і т.і. вибір? Один із шляхів цього — задавати "принципи логічності" і вивчати результуючий вибір (множини альтернатив, що задовольняють цим принципам).

Наприклад, нехай Ω — групи факультету кібернетики третього курсу. "Логічно" вважати, що краща група на курсі повинна бути кращою на своїй спеціальності (спеціальність "прикладна математика" — 4 групи, "інформатика" — 3, "соціальна інформатика" — 4).

Формально ця умова ("спадковості") записується наступним чином: $Y \subseteq X$, $x \in Y \cap C(X) \Rightarrow x \in C(Y)$.

Будемо називати функцією вибору C, що задана на Ω , відображення, яке зпівставляє кожній підмножині $X \subseteq \Omega$ її підмножину C(X), тобто $C \colon 2^{\Omega} \to 2^{\Omega}, C(X) \subseteq X$, для $\forall X \subseteq \Omega$.

Якщо на Ω задане деяке бінарне відношення R, то розглядаючи звуження цього бінарного відношення на будь-яку підмножину $X \subseteq \Omega$ можна задати множину мажорант на множині X, яка певним чином характеризує вибір ОПР. Ця ідея формалізації вибору приводить до такого означення.

Означення. Функція вибору $C^R(X)$, яка задана на Ω і породжена деяким бінарним відношенням R називається нормальною та визначається наступним чином: $C^R(X) = \left\{ x \in X : y\overline{R}x, \forall y \in X \right\}, \ \forall X \subseteq \Omega$.

Довільна функція вибору C не обов'язково ϵ нормальною.

Приклад. Розглянемо наступну функцію вибору на $\Omega = \{x, y\} : C(x) = x$, $C(y) = \emptyset$, $C(x, y) = \{x, y\}$ (3.1)

Нехай існує бінарне відношення R, яке породжує цю функцію вибору. Тоді із $C^R(y) = \emptyset$ випливає, що yRy вірно й невірно $y\overline{R}y$, тобто $y \notin C^R(x,y)$, що суперечить (3.1).

Цікаво відмітити, що не існує чисельної оцінки кількості нормальних функцій вибору при фіксованому n. Відмітимо також, що одну і ту ж нормальну функцію вибору можуть породжувати різні бінарні відношення. Доцільно у останньому випадку виділяти "мінімальне" відношення, граф якого має мінімальне число дуг.

Для формального описання класу нормальних функцій вибору визначимо для $X\subseteq \Omega$ покриваюче сімейство $\left\{X_i\right\},\ X_i\subseteq \Omega,\ i\in J$, таке, що $X\subseteq \bigcup_i X_i$.

Теорема. Функція вибору C є нормальною тоді і лише тоді, коли для будь-якої множини $X \subseteq \Omega$ і будь-якого покриваючого її сімейства $\left\{X_i\right\}_{i \in J}$ виконується відношення: $X \setminus C(X) \subseteq X \setminus \bigcap_{i \in J} C(X_i)$.

Отже, якщо функція вибору нормальна, то всякий об'єкт із X, що не є кращим у X, не є кращим хоча б для однієї множини з покриваючого

сімейства. Зокрема, якщо елемент не вибирається з деякої підмножини X, то він не повинен вибиратись з будь-якої множини, що її містить.

Теорема. $C^R(X) \neq \emptyset$, для $\forall X \subseteq \Omega$ тоді і лише тоді, коли відношення $R \in$ ациклічним.