Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Límites

25 de Mayo MAT1106 - Introducción al Cálculo

$$\lim_{n\to\infty}\frac{n^2+1}{n^2-1}.$$

$$\lim_{n \to \infty} \frac{n^2 + 2n + 1}{n}.$$

$$\lim_{n \to \infty} \frac{\sin(n)}{n}.$$

$$\lim_{n \to \infty} \frac{\cos(n)}{n}.$$

$$\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n}.$$

$$\lim_{n\to\infty} \frac{a_j n^j + a_{j-1} x^{j-1} + \dots + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_0}, \text{ donde } k, j \in \mathbb{N} \text{ (TODOS los casos)}.$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

$$\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{2^k}.$$

$$\lim_{n \to \infty} \frac{2020^n}{n!}.$$

$$\lim_{n\to\infty}\frac{k^n}{n!}, \text{ con } k\in\mathbb{N} \text{ fijo.}$$

$$\lim_{n\to\infty}\frac{\pi(n-2)}{n}.$$

- Sea $x_n = \sum_{k=1}^n \frac{1}{k}$. Pruebe que $\lim_{n \to \infty} x_{n+p} x_n = 0$ para cualquier $p \in \mathbb{N}$ fijo.
- Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de enteros que converge a algún real L. Pruebe que la sucesión eventualmente se vuelve constante.
- (Convergencia de Cesàro) Sea $\{x_n\}$ una sucesión. Sea $c_n = \frac{x_1 + x_2 + \cdots + x_n}{n}$.
 - Encuentre una sucesión x_n tal que x_n no converja, pero $c_n \to L \in \mathbb{R}$.
 - Muestre que si $x_n \to 0$, entonces $c_n \to 0$.
 - Muestre que si $x_n \to L$ con $L \in \mathbb{R}$, entonces $c_n \to L$.
- Sea n natural. Sea la función $\sigma_0: \mathbb{N} \to \mathbb{N}$ que para cada natural entrega su cantidad de divisores (por ejemplo, $\sigma_0(1) = 1$, $\sigma_0(3) = 2$, $\sigma_0(6) = 4$ y $\sigma_0(2020) = 12$). También definimos $\sigma_1: \mathbb{N} \to \mathbb{N}$, que para cada natural entrega la suma de sus divisores (por ejemplo, $\sigma_1(1) = 1$, $\sigma_1(3) = 4$, $\sigma_1(6) = 12$ y $\sigma_1(2020) = 4284$).
 - Muestre que $\lim_{n\to\infty} \frac{\sigma_0(n)}{n^2} = 0.$
 - Muestre que $\lim_{n\to\infty} \frac{\sigma_1(n)}{n^3} = 0$.
 - Muestre que $\lim_{n\to\infty} \frac{\sigma_0(n)}{n} = 0$.