Solutions to A Course in Enumeration

Yunwei Ren

Contents

1	Fundamental Coefficients		
	1.1	Elementary Counting Principles	2
	1.2	Subsets and Binomial Coefficients	3

1 Fundamental Coefficients

1.1 Elementary Counting Principles

2.

Solution. We compute $N = \#\{(i, j, k) \in \mathbb{N}^3 \mid i+j+k=151, \max\{i, j, k\} \le 75\}$. For fixed $1 \le i \le 75$, j can be chosen between 76 - i and 75. Thus,

$$N = \sum_{i=1}^{75} \sum_{j=76-i}^{75} 1 = \sum_{i=1}^{75} i = 2850.$$

3.

Proof. The number of subsets of $\{1, \ldots, n+1\}$ is 2^{n+1} . Classify these subsets according the biggest elements in them. The number of subsets whose biggest elements are k equals to the number of subsets of $\{1, \ldots, k\}$ containing k, that is, 2^{k-1} . Thus,

$$2^{n+1} = 1 + \sum_{k=1}^{n+1} 2^{k-1} \quad \Rightarrow \quad 2^{n+1} - 1 = \sum_{k=0}^{n} 2^k.$$

Similarly, we may classify these subsets according to the biggest two elements. Then

$$2^{n+1} - 1 - (n+1) = \sum_{i=1}^{n} \sum_{j=i+1}^{n+1} 2^{i-1} = \sum_{i=1}^{n} 2^{i-1} (n-i+1) = \sum_{i=1}^{n} 2^{i-1} (n-i) + 2^{n} - 1.$$

Thus,
$$\sum_{k=1}^{n} (n-k)2^{k-1} = 2^n - n - 1$$
.

5.

Proof. We count the number N of triples in $\{1, \ldots, n+1\}$. By definition, $N = \binom{n+1}{3}$. Let S_k be the collection of triples the last elements of which are k. Then $|S_k| = \binom{k-1}{2}$. Thus

$$\binom{n+1}{3} = \sum_{k=3}^{n+1} \binom{k-1}{2} = \sum_{k=2}^{n} \binom{k}{2} = \sum_{k=1}^{n} \binom{k}{2}.$$

8.

Proof. Let E be valid k-subset. If $1 \in E$, then we need to choose k-1 numbers from $3, \ldots, n$ so that no pair of consecutive integers exists. The number of possible choices is f(n-2,k-1). If $1 \notin E$, then we need to choose k numbers from $2, \ldots, n$ such that no pair of consecutive integers exists. The number of possible choices is f(n-1,k). Hence, we obtain the recurrence relation

$$f(n,k) = f(n-2, k-1) + f(n-1, k).$$

Now we argue by induction on n. Clear that f(n,0)=1 for all n, f(2,1)=2 and f(n,k)=0 for all n<2k-1, all satisfying $f(n,k)=\binom{n-k+1}{k}$. Assume that for all m< n, $f(m,k)=\binom{m-k+1}{k}$ holds. Thus,

$$f(n,k) = f(n-2,k-1) + f(n-1,k) = \binom{n-k}{k-1} + \binom{n-k}{k} = \binom{n-k+1}{k}.$$

Let s(n) denote $\sum_{k=0}^{n} f(n,k)$. Then

$$s(n-1) + s(n-2) = f(n-1,0) + \sum_{k=1}^{n-1} f(n-1,k) + \sum_{k=1}^{n-1} f(n-2,k-1)$$

$$= 1 + \sum_{k=1}^{n-1} \{ f(n-1,k) + f(n-2,k-1) \}$$

$$= f(n,0) + \sum_{k=1}^{n-1} f(n,k) = \sum_{k=0}^{n-1} f(n,k) = s(n).$$

This recurrence relation, together with the fact s(1) = 2 and s(2) = 3, imply that $s(n) = F_{n+2}$.

11.

Proof. We argue by contradiction. Let $S_p = \{p + 9k \mid p + 9k \leq 100, p = 0, 1, \dots\}$, $p = 1, \dots, 9$. Clear that $\{S_p\}$ partitions $\{1, \dots, 100\}$; $|S_1| = 12$ and $|S_p| = 11$ for $p = 2, \dots, 9$. If A does not contain two numbers with difference P. Then for each P, no consecutive elements of P can belong to P0, which implies that $|S_p \cap A| \leq 6$. Hence, $|P| = \sum_{p=1}^9 |S_p \cap A| \leq 54$. Contradiction. Thus, P1 must contain two numbers with difference P2.

For the case |A| = 54, this is not true. For a counterexample, put

$$A = \bigcup_{p=1}^{9} \{ p + 9k \mid p + 9k \le 100, k = 1, 3, 5, \dots \}.$$

1.2 Subsets and Binomial Coefficients

12.

Proof. We count the pairs (A, B) of subsets of N with |A| = k and |B| = m - k and $A \cap B = \emptyset$. We may choose $A \cup B$ first and, then, the elements of A from $A \cup B$. This way yields the left-hand side. Or, we may choose the elements of A from N first and then the elements of B from $N \setminus A$, which yields the right-hand side. Thus, $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$.

If we let |A| = k range over 0 to m, then we count all subsets of $A \cup B$. Thus, $\sum_{k=0}^{m} \binom{n}{k} \binom{n-k}{m-k} = 2^m \binom{n}{m}$.

3

13.

Proof.

L.H.S =
$$\left\{ \begin{pmatrix} 2n \\ 2n-2k \end{pmatrix} \begin{pmatrix} 2n-2k \\ n-k \end{pmatrix} \right\} \begin{pmatrix} 2k \\ k \end{pmatrix}$$
=
$$\begin{pmatrix} 2n \\ n-k \end{pmatrix} \begin{pmatrix} n+k \\ n-k \end{pmatrix} \begin{pmatrix} 2k \\ k \end{pmatrix}$$
=
$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} \begin{pmatrix} n+k \\ 2k \end{pmatrix} \begin{pmatrix} 2k \\ k \end{pmatrix} \right\}$$
=
$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} \begin{pmatrix} n+k \\ k \end{pmatrix} \begin{pmatrix} n \\ k \end{pmatrix}$$
=
$$\left\{ \begin{pmatrix} 2n \\ n+k \end{pmatrix} \begin{pmatrix} n+k \\ n \end{pmatrix} \right\} \begin{pmatrix} n \\ k \end{pmatrix}$$
=
$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} \begin{pmatrix} n+k \\ n \end{pmatrix} \right\} \begin{pmatrix} n \\ k \end{pmatrix}$$
=
$$\begin{pmatrix} 2n \\ n+k \end{pmatrix} \begin{pmatrix} n \\ n+k \end{pmatrix} = R.H.S.$$

17.

Proof. If there exists i and j such that $n_i - n_j \ge 2$, then we may increase the coefficient by replace n_i with $n_i - 1$ and n_j with $n_j + 1$. Since the choices of n_1, \ldots, n_k are finite, this implies that the coefficient must attain its maximum at some n_1, \ldots, n_k with $|n_i - n_j| \le 1$ for all i and j. Meanwhile, since $\max n_i - \min n_i \le 1$ and $\sum n_i = n$, a fixed number, the choice of n_1, \ldots, n_k is unique up to permutation. Thus, the coefficient attains its maximum at every n_1, \ldots, n_k with $|n_i - n_j| \le 1$.

maximum at every n_1, \ldots, n_k with $|n_i - n_j| \le 1$. We show that $\binom{n}{n_1 n_2 n_3} \le \frac{3^n}{n+1}$ by induction on n. Some computation shows that the inequality holds for n=1. Assume that the inequality holds for all cases less than n. And suppose that the coefficient attains its maximum at $m_1 \le m_2 \le m_3$. Then

$$\binom{n}{n_1 n_2 n_3} \le \frac{n!}{m_1! m_2! m_3!} = \frac{(n-1)!}{m_1! m_2! (m_3 - 1)!} \frac{n}{m_3} \le \frac{3^{n-1}}{n} \frac{n}{(n+1)/3}$$

18.

Proof. Consider the $(k+1) \times (n-k)$ -lattice. The number of paths is $\binom{n+1}{k+1}$. Classify the paths according to the height j right before the last (1,0)-step. For each $j=0,\ldots,n-k$, the number equals the number of paths of the $k \times j$ -lattice, which is $\binom{k+j}{k}$. Thus,

$$\binom{n+1}{k+1} = \sum_{j=0}^{n-k} \binom{k+j}{k} = \sum_{i=k}^{n} \binom{i}{k} = \sum_{i=0}^{n} \binom{i}{k}.$$

This argument, $mutatis\ mutandis$, also gives (9).