开课学院
 理学院
 课程名称
 高等数学【(2) 机电】
 考核方式
 闭卷

 考试时间
 120
 分钟
 A
 卷
 第 1 页 共 3 页

 考生姓名
 考生好级
 考生学号

一、选择题(本大题共10小题,每小题3分,总计30分)

- 1. 下列函数为微分方程 y"+y=0的解的是()
 - (A) $y = e^{-x}$ (B) $y = e^x + e^{-x}$ (C) $y = \sin x + \cos x$ (D) $y = x(\sin x + \cos x)$
- 2. 微分方程 $y'' 4y' + 8y = xe^{2x}$ 的特解可设为y'' = ()
 - (A) Axe^{2x} (B) $(Ax+B)e^{2x}$ (C) $(Ax+B)xe^{2x}$ (D) Ax^2e^{2x}
- 3. 过点(1,-2,3) 且与 yoz 面平行的平面方程为()
- (A) x-2y+3z=0 (B) x=1 (C) y=-2 (D) z=3
- 4. 直线 L_1 : $\begin{cases} 2x+y=1 \\ x-z=-2 \end{cases} = L_2$: $\begin{cases} x-y=6 \\ 2x+z=3 \end{cases}$ 的夹角为()
- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$
- 5. 函数 $u = x^2 y^2 z^3$ 在点(-1,1,2)处沿从点(-1,1,2)到点(3,2,6)的方向的方向导数为()
 - (A) $-\frac{8}{\sqrt{33}}$ (B) $-\frac{4}{\sqrt{33}}$ (C) 0 (D) $\frac{4}{\sqrt{33}}$
- 6. 设Ω由 $z = \sqrt{x^2 + y^2}$ 与z = 1所围的闭区域,则 $\iint_{\Omega} (x^2 + y^2) dx dy dz = ($)
- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{10}$
- 7. 设L为连接(1,0)和(0,1)两点的直线段,则 $\int_L (x+y)ds = ($)
- (A) 0 (B) 1 (C) $\sqrt{2}$ (D) $\sqrt{2}\pi$
- 8. 设 Σ 是平面x-y+z=4被柱面 $x^2+y^2=2x$ 截出的有限部分,则 $\iint xydS=($
 - (A) 4π (B) 2π (C) π (D) 0

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院_	理学院	课程名称_高等数学【(2) 机电】	
考试时间_	120 分钟		第2页共3页
考生姓名_		考生班级	考生学号

- 9. 下列级数中绝对收敛的是()
 - (A) $\sum_{n=1}^{\infty} n \ln(1+\frac{1}{n})$ (B) $\sum_{n=1}^{\infty} (-1)^n (1-\cos\frac{1}{n})$ (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (D) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$
- 10. 设函数 f(x) 是以 2π 为周期的周期函数,在 $[-\pi,\pi]$ 上 $f(x)=x^2$,则函数 f(x) 展开成

傅里叶级数,其系数b,=(

(A)
$$\frac{4}{n^2}$$
 (B) 0 (C) $\frac{2}{n^2}$ (D) $(-1)^n \frac{4}{n^2}$

- 二、填空题(本大题共5小题,每小题2分,总计10分)
- 11. 微分方程 $y'' = 2 + \sin x$ 满足初始条件 $y'_{|x=0} = 0$, $y_{|x=0} = 1$ 的特解为______.
- 12. 极限 $\lim_{(x,y)\to(0,2)}\frac{\tan(xy)}{x}=$ ______.
- 13. 设函数 $z = xy + (x^2 x + 1)e^{\sqrt{x}}$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______
- 14. 交换二次积分的积分次序 $\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx = ______.$
- 15. 函数 $\frac{1}{x}$ 展开成x-3的幂级数为 $\frac{1}{x}=$ ______(0<x<6).
- 三、解答题(本大题共6小题,每小题10分,总计60分)
- 16. 设函数 z = f(x, y) 由方程 $2xy xe^z = 3$ 确定,
 - (1) 求 dz |(-1,-1);
 - (2) 求曲面 $2xy-xe^z=3$ 在点(-1,-1,0)处的切平面及法线方程.

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 2 学期

开课学院	课程名称_ 高等数学【(2) 机电】	考核方式_闭卷
考试时间120分钟	A 卷	第3页共3页
考生姓名	考生班级	考生学号

17. 设函数 f(u) 具有一阶连续导数,函数 $z = f(e^{2x+y})$ 满足方程

$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2x+y}(z+1),$$

若 f(0) = 0, 求函数 f(u) 的表达式.

- 18. 计算曲线积分 $I = \oint_L (e^x \sin y y^2) dx + (e^x \cos y x^3) dy$, 其中 L 为圆周 $x^2 + y^2 = 2$ 沿逆时针方向.
- 19. 计算曲面积分 $I = \iint_{\Sigma} (z^2 + x) dy dz z dx dy$, 其中 Σ 是曲面 $z = \frac{1}{2} (x^2 + y^2)$ 介于平面 z = 0 及z = 2 之间的部分的下侧.
- 20. 给定幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n$.

求: (1) 该幂级数的收敛域; (2) 该幂级数在收敛域内的和函数.

21. 求二元函数 $f(x,y) = e^{2y}(x^2 + 2x + y)$ 的极值.