8 Asymptotik von Schätzfehlern

8.1 Problemstellung

Seien $X_1, X_2, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}$, mit $\vartheta \in \Theta \subset \mathbb{R}^k$. Die Schätzfolge $\hat{\vartheta}_n = \hat{\vartheta}_n(X_1, \ldots, X_n)$ sei konsistent, es gilt also

$$\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta \text{ für } n \to \infty \quad \forall \vartheta \in \Theta$$

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \text{ und } a_n \to \infty \text{ für } n \to \infty$. Die Folge $(\hat{\vartheta}_n)_{n > 1}$ heißt a_n — **konsistent**, wenn

$$a_n(\hat{\vartheta}_n - \vartheta) = O_{P_{\vartheta}}(1) \quad \forall \vartheta \in \Theta.$$

Hierbei bedeutet $Y_n = O_P(1)$ für eine Folge (Y_n) , dass für jedes $\varepsilon > 0$ eine kompakte Menge $K \subset \mathbb{R}^d$ existiert, so dass $P(Y_n \in K) \geq 1 - \varepsilon$ für alle $n \in \mathbb{N}$.

Typischerweise liegt \sqrt{n} -Konsistenz vor, d.h. es gilt

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) = O_{P_{\vartheta}}(1) \quad \forall \vartheta \in \Theta.$$

Zusätzlich kann man oftmals Aussagen über Konvergenz in Verteilung machen, insbesondere

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, \Sigma(\vartheta)), \quad \vartheta \in \Theta.$$

8.2 Multivariater Zentraler-Grenzwert-Satz (ZGWS)

Seien $Y_1, Y_2 \dots \stackrel{uiv}{\sim} Y$ mit einer \mathbb{R}^d —wertigen Zufallsvariablen Y mit $E\|Y\|^2 < \infty$. Mit a := EY und $\Sigma := E(Y-a)(Y-a)^T$, gilt

$$\frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n} Y_j - na \right) \stackrel{D}{\to} \mathcal{N}_d(0, \Sigma).$$

²²vergleiche Stochastik II: Straffheit

8.3 δ -Methode

Seien Z_1, Z_2, \ldots d-dimensionale Zufallsvariablen mit

$$\sqrt{n}(Z_n-a) \stackrel{D}{\to} \mathcal{N}_d(0,\Sigma),$$

mit $a := (a_1, \ldots, a_d) \in \mathbb{R}^d$ und $\Sigma \in \mathbb{R}^{d \times d}$.

Sei $g:=(g_1,\ldots,g_s)^T:\ \mathbb{R}^d\to\mathbb{R}^s$ differenzierbar und

$$\frac{dg}{da} := \left(\frac{\partial g_j}{\partial a_k}\right)_{\substack{1 \le j \le s, \\ 1 \le k \le d}}$$

dann gilt

$$\sqrt{n} \left(g(Z_n) - g(a) \right) \stackrel{D}{\to} \mathcal{N}_s \left(0, \frac{dg}{da} \Sigma \left(\frac{dg}{da} \right)^T \right).$$

Beweis:

Nach der Definition der Differenzierbarkeit gilt

$$\sqrt{n}\left(g(Z_n) - g(a)\right) = \underbrace{\frac{dg}{da}\sqrt{n}(Z_n - a)}_{=:U_n} + \underbrace{\|\sqrt{n}(Z_n - a)\| \cdot r(Z_n - a)}_{=:V_n},$$

mit $r(Z_n - a) \to 0$ für $Z_n \to a$. Beachte, dass $\|\sqrt{n}(Z_n - a)\| \in O_p(1)$.

Aus $Z_n \stackrel{P}{\to} a$ folgt, dass $r(Z_n - a) \stackrel{P}{\to} 0$, und somit

$$V_n \stackrel{P}{\rightarrow} 0.$$

Aus der Voraussetzung folgt mit dem Abbildungssatz weiter

$$U_n \stackrel{D}{\to} \frac{dg}{da} \cdot T$$

mit $T \sim \mathcal{N}_d(0, \Sigma)$ und somit

$$U_n \stackrel{D}{\to} \mathcal{N}_s \left(0, \frac{dg}{da} \Sigma \left(\frac{dg}{da} \right)^T \right).$$

Die Behauptung folgt schließlich aus dem Lemma von Slutzky.

8.4 Asymptotik des Momentenschätzers (vgl. 4.8)

$$X_1, \ldots, X_n \stackrel{uiv}{\sim} X, \ X \mathbb{R}^1$$
 -wertig, $P^X \in \{P_{\vartheta} : \vartheta \in \Theta\}, \ \Theta \subset \mathbb{R}^k, \ \vartheta = (\vartheta_1, \ldots, \vartheta_n)$

Sei
$$m_l := EX^l$$
, $\hat{m}_l = \frac{1}{n} \sum_{i=1}^n X_i^l$ ($\hat{=} \bar{X}_n^l$ aus 4.8)

Voraussetzung:

 $\overline{\vartheta} = g(m_1, \dots, m_k) \text{ mit } g: \mathbb{R}^k \to \mathbb{R}^k$ Momentschätzer: $\hat{\vartheta} = g(\hat{\vartheta}_1, \dots, \hat{\vartheta}_k)$

Sei

$$Y_j := \begin{pmatrix} X_j \\ \vdots \\ X_j^k \end{pmatrix} Y := \begin{pmatrix} X \\ \vdots \\ X^k \end{pmatrix}, \ a := EY = \begin{pmatrix} m_1 \\ \vdots \\ m_k \end{pmatrix}$$

 $E \|Y\|^2 < \infty \Leftrightarrow EX^{2k} < \infty$

$$\Sigma := E[(Y - a)(Y - a)^T] = (E[(X^i - m_i)(X^j - m_j)^T])_{i,j=(1,...,k)}$$
$$= (EX^{i+j} - m_i m_j)_{i,j}$$
$$= (m_{i+j} - m_i m_j)_{i,j}$$

 $8.2 \Rightarrow$

$$\frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n} Y_{j} - na \right) = \frac{1}{\sqrt{n}} \left(\begin{pmatrix} \sum_{j} X_{j} \\ \vdots \\ \sum_{j} X_{j}^{k} \end{pmatrix} - n \cdot \begin{pmatrix} m_{1} \\ \vdots \\ m_{k} \end{pmatrix} \right)$$

$$= \sqrt{n} \cdot \begin{pmatrix} \hat{m}_{1} - m_{1} \\ \vdots \\ \hat{m}_{k} - m_{k} \end{pmatrix} \xrightarrow{D_{\vartheta}} \mathcal{N}(0, \Sigma(\vartheta))$$

Aus 8.3 folgt: Falls $EX^{2k} < \infty$ und g differenzierbar, so gilt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, \frac{dg}{da} \sum (\vartheta)(\frac{dg}{da})T)$$

Achtung: Σ hängt von m_1, \ldots, m_{2k} und somit von unbekanntem ϑ ab.

(Schreibweise "asymptotisch normalverteilt":)

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \approx \mathcal{N}_k(0, T) \Leftrightarrow \hat{\vartheta}_n \approx \mathcal{N}_k(\vartheta, \frac{T}{n}), \ \hat{\vartheta}_n \sim AN(\vartheta, \frac{\hat{T}}{n}), \ \hat{T} = T(\hat{\vartheta}_n)$$

8.5 Asymptotik des ML-Schätzers

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta)$ (Dichte bezüglich dominierendem Maß μ) $\vartheta \in \Theta \subset \mathbb{R}^k$, Θ offen

Regularitätsvoraussetzungen: (a)-(e) aus 5.7- 5.9 seien erfüllt.

Zusätzlich gelte:

 $\{\xi: f_1(\xi,\vartheta)>0\}$ ist unabhängig von $\vartheta!$

$$\forall i, j, l \in \{1, \dots, k\}$$
 existiert $\frac{\partial^3 \log f_1(\xi, \vartheta)}{\partial \vartheta_i \partial \vartheta_j \partial \vartheta_j \partial \vartheta_j} = L_{ijl}(\xi, \vartheta)$

 $\forall i, j, l \in \{1, \dots, k\} \text{ existiert } \frac{\partial^3 \log f_1(\xi, \vartheta)}{\partial \vartheta_i \partial \vartheta_j \partial \vartheta_l} = L_{ijl}(\xi, \vartheta)$ $\forall \vartheta \in \Theta \ \forall \delta > 0 \ \forall i, j, l \in \{1, \dots, k\} \text{ existiert eine Funktion } M_{i,j,l}(\xi) \geq 0 \text{ mit}$

$$|L_{i,j,l}(\xi,\eta)| \le M_{i,j,l}(\xi), \|\eta - \vartheta\| \le \delta$$

und $E_{\vartheta}M_{i,j,l}(X_1) < \infty$

Sei

$$\mathcal{U}_n(\vartheta) := \sum_{j=1}^n \frac{d}{d\vartheta} \log f_1(X_j, \vartheta), \ E_{\vartheta} \mathcal{U}_n(\vartheta) = 0$$
$$I_n(\vartheta) = E[\mathcal{U}_n(\vartheta)\mathcal{U}_n(\vartheta)^T] = nI_1(\vartheta)$$
$$W_n(\vartheta) = \frac{d}{d\vartheta^T} \mathcal{U}_n(\vartheta), \ E_{\vartheta}[W_n(\vartheta)] = -I_n(\vartheta)$$

8.5.1Satz

Es gelte $\mathcal{U}_n(\hat{\vartheta}_n) = 0$ (d.h. $\hat{\vartheta}_n$ ist Lösung der Likelihood-Gleichung $\mathcal{U}_n(\vartheta) = 0$) und $\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta$, $\vartheta \in \Theta$ (d.h. $(\hat{\vartheta}_n)_n$ ist konsistent). Dann folgt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, I_1(\vartheta)^{-1})$$

$$\Leftrightarrow \hat{\vartheta}_n \sim AN(\vartheta, \frac{I_n^{-1}}{n})$$

Beweisskizze:

$$0 = \frac{1}{\sqrt{n}} \mathcal{U}_n(\hat{\vartheta}_n)$$

$$\stackrel{\text{Taylor}}{=} \frac{1}{\sqrt{n}} \mathcal{U}_n(\vartheta) + \frac{1}{\sqrt{n}} W_n(\vartheta)(\hat{\vartheta}_n - \vartheta) + \underbrace{\frac{1}{\sqrt{n}} R_n(\vartheta, \hat{\vartheta}_n - \vartheta)}_{z.z.. = o_{P_{\vartheta}}(1)}$$

$$\Rightarrow \underbrace{\frac{1}{n}W_{n}(\vartheta)}_{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)} \sqrt{n}(\hat{\vartheta}_{n}-\vartheta) = \underbrace{-\frac{1}{\sqrt{n}}\mathcal{U}_{n}(\vartheta)}_{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)} + o_{P_{\vartheta}}(1) \ (*)$$

$$\xrightarrow{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)}$$

$$\xrightarrow{\frac{D_{\vartheta}}{\rightarrow}\mathcal{N}_{k}(0,I_{1}(\vartheta))} (ZGWS 8.2)$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, -I_1(\vartheta)^{-1}I_1(\vartheta)(-I_1(\vartheta)^{-1}))$$

(z.B. Knight, 249 oder Lehmann/Casella, 443-468)²³

Bemerkung: (asymptotische Linearisierbarkeit des Schätzfehlers)

$$(*) \Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) = I_1(\vartheta)^{-1} \frac{1}{\sqrt{n}} \mathcal{U}_n(\vartheta) + o_{P_{\vartheta}}(1)$$
$$= \frac{1}{\sqrt{n}} \sum_{j=1}^n \underbrace{I_1(\vartheta)^{-1} \frac{d}{d\vartheta} \log f_1(X_j, \vartheta)}_{=:\widetilde{I}(X_j, \vartheta)} + o_{P_{\vartheta}}(1)$$

 $\min E_{\vartheta}\widetilde{l}(X_1,\vartheta) = 0$

8.5.2 Satz

Unter den obigen Voraussetzungen existiert eine Folge $\hat{\vartheta}_n = \hat{\vartheta}_n(X_1, \dots, X_n)$ mit:

Ist ϑ_0 der wahre Parameter, so gilt:

$$\lim P_{\vartheta_0}(\mathcal{U}_n(\hat{\vartheta}_n) = 0, \ \left| \hat{\vartheta}_n - \vartheta_0 \right| \le \varepsilon) = 1 \ \forall \varepsilon > 0$$

Korollar

Besitzt die Likelihood-Gleichung $\mathcal{U}_n(\vartheta) = 0$ für jedes n eine eindeutige Lösung $\hat{\vartheta}_n$, so gilt:

$$\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta, \ \vartheta \in \Theta$$

Anmerkung:

(1) $\{P_{\vartheta}: \vartheta \in \Theta\}$ mit Dichte $f(x,\vartheta)$ bzgl. dem Maß μ . Dann $\forall \vartheta \neq \vartheta_0$:

$$E_{\vartheta_0} \left[\log \frac{f(X, \vartheta)}{f(X, \vartheta_0)} \right] \overset{\text{Jensensche Ungl.}}{<} \log \underbrace{E_{\vartheta_0} \left[\frac{f(X, \vartheta)}{f(X, \vartheta_0)} \right]}_{\int f(x, \vartheta) dx = 1} = 0$$

$$\Leftrightarrow E_{\vartheta_0}[\log f(X, \vartheta_0)] > E_{\vartheta_0}[\log f(X, \vartheta)] \quad \forall \vartheta \neq \vartheta_0$$

d.h.
$$\theta_0$$
 maximiert $E_{\vartheta_0}[\log f(X,\vartheta)]$ bezüglich $\vartheta!$

 $^{^{23}}o_{P_{\vartheta}}(1)$ bedeutet stochastische Konvergenz gegen 0

(2) Funktional in (*) ist nicht auswertbar, da ϑ_0 unbekannt! Aber:

$$\frac{1}{n} \underbrace{\sum_{i=1}^{n} \log f(X_i, \vartheta)}_{l(X, \vartheta), \text{ "Log-Likelihood Funktion"}} \overset{P_{\vartheta} - f.s.}{\to} E_{\vartheta_0}[\log f(X, \vartheta)] \forall \vartheta \in \Theta$$

Maximierung von $l(X, \vartheta)$ als "Ersatz" für (*).

(3) f,g μ -Dichten:

$$E_f \left[\log \frac{f(X)}{g(X)} \right] \ge 0$$
"=" $\Leftrightarrow f = g$

"Entropie" zwischen f und g, Kullbach-Leibler-Information von g bezüglich f, Kullbach-Leibler-Abstand zwischen f und g

- (4) Was tun, falls Lösung von $U_n(\vartheta) = 0$ nicht eindeutig?
 - (i) Oft ist die Folge von globalen Maxima konsistent. (Theorie von Wald 1949, Le Cam 1953)
 - (ii) Sei (δ_n) konsistent. Wähle Folge ϑ_n^* , die am nächsten zu δ_n liegt $\Rightarrow (\vartheta_n^*)$ konsistent, 8.5.1 anwendbar.
 - (iii) 1-Schritt-MLE verwenden: $(\vartheta_n^{(0)})$ sei \sqrt{n} -konsistent. Mache einen Newton-Schritt zur Lösung von $\mathcal{U}_n(\vartheta)=0$:

$$\vartheta_n^{(1)} = \vartheta_n^{(0)} - \frac{\mathcal{U}_n'(\vartheta_n^{(0)})}{\mathcal{U}_n'(\vartheta_n^{(0)})}$$

Dann hat $(\vartheta_n^{(1)})_{n\geq 1}$ dasselbe asymptotische Verhalten wie in 8.5.1.