

(1 Without PCA

Accuracy: 0.746666666666667

Homogeneity score: 0.7514854021988338 Completeness score: 0.7649861514489815

V-Measure: 0.7581756800057784

(2 With PCA

Accuracy: 0.74

Homogeneity score: 0.736419288125285 Completeness score: 0.7474865805095325

V-Measure: 0.7419116631817838

DIMENSIONALITY REDUCTION – PROS AND CONS

- Pros
 - Removes correlated features
 - Improves model efficiency
 - Reduces overfitting
 - Improves visualization
- Cons
 - PCA is a linear algorithm and does not work well for polynomial or other complex functions
 - Can lead to inefficiencies after reduction if we don't choose the right number of dimensions to eliminate
 - Less interpretability
 - Preserves global shapes rather than local shapes

(Chaitanya Narava, 2020, "A Complete Guide on Dimensionality Reduction", <u>A Complete Guide On Dimensionality Reduction</u> by Chaitanyanarava | Analytics Vidhya | Medium)

CURSE OF DIMENSIONALITY

- As it relates to Copy-Move Forgery project
 - (Anuja Dixit and R. K. Gupta, 2016, "Copy-Move Image Forgery Detection a Review", <u>areviewIJIGSP.pdf</u>)
- Has anyone else run into the curse of dimensionality in other types of projects?

Author	Method	Advantage	Disadvantage
Popescu 2004[5]	PCA	Small variations due to	For low quality image,
		noise and lossy	as size of block
		compression can be	decreases so does
		detected accurately.	efficiency.
Ting	SVD	Less computation	Cannot deal with JPEG
2009[6]		complexity and robust	compression.
		against post processing	
		operations.	
Bashar	KPCA	Forgeries with additive	Average accuracy is
2010[8]		noise and JPEG	less than other methods
		compression can be	which are based on
		detected.	wavelet.
Zimba	PCA-EVD	False matches are less and	Unable to detect
2011[9]		duplication with varying	forgeries with scaling
		degree of rotations can be	and heavy JPEG
		detected.	compression.

MAIN APPROACHES FOR DIMENSIONALITY REDUCTION

 Projection – this approach works well when many features are almost constant with many highly correlated

- Manifold Learning the Swiss Roll dataset
 - Assumptions
 - Most real-world, high-dimensional datasets lie close to a much lower-dimensional manifold
 - Task will be simpler if expressed in this lowerdimensional space

PRINCIPAL COMPONENT ANALYSIS HYPERPARAMETERS

- Randomized PCA Faster way to tune your model than using "full" when d is much smaller than n
- Incremental PCA does not require the full training set to fit in memory for the algorithm to run
- Kernel PCA (kPCA) allows you to perform nonlinear projections

61.6 %: 99.19

DIFFERENT TYPES OF DIMENSIONALITY REDUCTION TECHNIQUES

- Principal Component Analysis (or PCA) the most popular
 - Hyperparameters allow you to alter the PCA to:
 - Randomized PCA
 - Incremental PCA
 - Kernel PCA (or kPCA)
- Locally Linear Embedding (or LLE) an unsupervised Manifold Learning method that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional data (NON-LINEAR?)
- Random Projections projects the data to a lower-dimensional space using a random linear projection
- Multidimensional Scaling (or MDS) a linear method that transforms the given matrix into a lowdimensional matrix based on the distance each element
- Isomap Manifold Learning method that is non-linear and is better than linear methods when dealing with all types of real image and motion tracking
- T-Distributed Stochastic Neighbor Embedding (t-SNE) non-linear and more robust towards outlier
- Linear Discriminant Analysis (LDA) linear technique similar to ANOVA which builds the feature combinations based on differences rather than similarities

