Exercice 1 Soient a et b des entiers supérieurs ou égaux à 2 et soient d leur pgcd et m leur ppcm. Notons a = da', b = db' et d = au + bv. Soit $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ définie par

$$f(x,y) := (ux + vy, -b'x + a'y)$$
.

Soient $p: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ et $q: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ les applications données par le produit des surjections canoniques.

- 1. Montrer que f est un morphisme de groupes.
- 2. Montrer que f est un isomorphisme (on calculera son inverse g).
- 3. Montrer qu'il existe un unique morphisme de groupes

$$f': \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z},$$

tel que $p \circ f = f' \circ q$ (respectivement $q \circ g = g' \circ p$).

4. Montrer que f' et g' sont inverses l'un de l'autre.

Exercice 2 Soient a et b des entiers supérieurs ou égaux à 2. On note d (resp. m) leur pgcd (resp. ppcm). On notera a = da' et b = db' et l'on fixera de plus un couple d'entiers (u, v) tel que au + bv = d.

1. Montrer que les formules :

$$x \mod m \mapsto (x \mod a, x \mod b)$$
$$(x \mod a, y \mod b) \mapsto (y - x) \mod d$$

définissent bien respectivement des applications

$$\iota : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$$

$$\pi : \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}.$$

- 2. Les applications π et ι sont-elles des morphismes de groupes? d'anneaux?
- 3. Montrer que $\text{Im}\iota \subset \text{Ker}\pi$.
- 4. Montrer que π est surjective.
- 5. Montrer que ι est injectif.
- 6. Montrer finalement que $\text{Im}\iota = \text{Ker}\pi$.
- 7. Comment interpréter le résultat précédent en termes de résolution de système de congruence?

Exercice 3 Soit $n \ge 1$ un entier. On notera $\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ la projection canonique.

- 1. Soit $f: (\mathbb{Z}n\mathbb{Z}, +) \to (\mathbb{Z}/n\mathbb{Z}, +)$ un morphisme de groupes.
 - (a) Montrer que pour tout entiers $x, y \in \mathbb{Z}$ on a $f[\pi(x) \cdot \pi(y)] = \pi(x) f[\pi(y)]$.
 - (b) En déduire que

$$\forall (\alpha, \beta) \in (\mathbb{Z}/n\mathbb{Z})^2$$
, on a $f(\alpha \cdot \beta) = \alpha f(\beta)$.

- 2. Soit f un automorphisme du groupe additif $\mathbb{Z}/n\mathbb{Z}$.
 - (a) Montrer que f(1) est un générateur de $\mathbb{Z}/n\mathbb{Z}$.
 - (b) En déduire que η définie par $\eta(f) := f(1)$ est une application de l'ensemble $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ dans l'ensemble $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (c) Montrer que l'application η st un morphisme de groupes.
- 3. À tout $\alpha \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ on associe $\theta(\alpha)$ l'application de $\mathbb{Z}/n\mathbb{Z}$ dans lui-même définie par

$$\forall \beta \in \mathbb{Z}/n\mathbb{Z}, \ \theta(\alpha)(\beta) = \alpha\beta.$$

- (a) Montrer que $\forall \alpha(\mathbb{Z}/n\mathbb{Z})^{\times}$ on a $\theta(\alpha) \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$.
- (b) Montrer que l'application θ ainsi définie est un morphisme.
- (c) Si η désigne l'application définie précédemment, montrer que θ et η sont inverses l'un de l'autre.
- 4. Déduire des questions précédentes que, pour tout $n \in \mathbb{N}^*$ le groupe symétrique \mathcal{S}_n possède un sous-groupe abélien de cardinal $\phi(n+1)$ où ϕ désigne l'indicatrice d'Euler.