

Licence 1

Sciences et Technologie

Mentions: Sciences pour l'Ingénieur – Mathématiques Informatique

ECO 113

MECANIQUE DU POINT MATERIEL

Session 3: CINEMATIQUE ET VITESSES

Cinématique : étude des mouvements sans se soucier des causes (forces).

Objet de la Cinématique : étude de trajectoires, calcul de vitesses, d'accélérations...

I. DEFINITIONS

I.1 Mouvement

Soient, dans un repère orthonormé $[R] = [O, \vec{i}, \vec{j}, \vec{k}]$, x, y et z les coordonnées cartésiennes du point M, défini par (Figure 1) :

$$\overrightarrow{OM} = x \vec{i} + y \vec{j} + z \vec{k}$$
.

Si au cours du temps, **l'une au moins des coordonnées** de *M* varie, on dit que :

- *M* est en **mouvement** par rapport au repère [*R*].
- *M* est un point mobile dans le repère [*R*].

I.2 Coordonnées paramétriques d'un point mobile

Si les coordonnées cartésiennes de M dépendent du temps t (varient au cours du temps), on peut noter :

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

Ces **équations paramétriques** (qui dépendent du paramètre t) définissent une **courbe** (\mathscr{C}) appelée **trajectoire du point** M par rapport au repère [R].

Et trouver une relation entre x, y et z indépendante de t, c'est établir l'équation de la trajectoire.

Exemple n°1:

Dans un repère orthonormé $[R] = [O, \vec{i}, \vec{j}]$, le mouvement d'un point matériel M est décrit par les équations paramétriques suivantes :

$$\begin{cases} x = 2t \\ y = t^2 \end{cases}$$
 (x et y en mètres, t en secondes).

- 1°) Trouver l'équation de la trajectoire.
- 2°) Préciser la nature de la trajectoire.

Résolution

$$\mathbf{1}^{\circ}) \quad x = 2t \qquad \Rightarrow \qquad t = \frac{x}{2}$$

$$y = t^2 = \left(\frac{x}{2}\right)^2 \qquad \Rightarrow \qquad \boxed{y = \frac{x^2}{4}}.$$

2°) Cette trajectoire est une parabole.

Exemple n°2:

Dans un repère orthonormé $[R] = [O, \vec{i}, \vec{j}]$, le mouvement d'un point matériel M est décrit par les équations paramétriques suivantes :

$$\begin{cases} x = t - 1 \\ y = 3t \end{cases}$$
 (x et y en mètres, t en secondes).

- 1°) Trouver l'équation de la trajectoire.
- 2°) Préciser la nature de la trajectoire.

Résolution

1°)
$$x=t-1$$
 $\Rightarrow t=x+1$.
 $y=3t=3(x+1)$ $\Rightarrow y=3(x+1)$.

2°) Cette trajectoire est une droite.

I.3 Loi horaire

Sur la trajectoire **(%)**, on définit :

- Un point, M_0 , origine des arcs.
- Un sens de parcours positif (+).

La grandeur $M_0M = s$ est appelée **abscisse** curviligne.

Figure 2

Est appelée équation du mouvement ou loi horaire, la relation :

$$s = s(t)$$
 (1).

I.4 Principaux mouvements d'un point matériel

I.4.1 Translation rectiligne (déplacement selon une droite)

L'abscisse curviligne s se confond alors avec l'abscisse rectiligne x.

La loi horaire s'écrit : x = x(t) (1-bis).

Translation **rectiligne uniforme** : cas d'un mouvement effectué suivant **une droite**, avec une **vitesse constante** (indépendante du temps *t*).

I.4.2 Rotation autour d'un axe fixe

Soit θ l'angle entre l'axe Ox et la direction de $O\vec{M}$.

x et y dépendent de θ qui dépend du temps t.

$$\begin{cases} x = R \cos \theta \\ y = R \sin \theta \end{cases}$$

Figure 4

Relation trigonométrique : $\cos^2 \theta + \sin^2 \theta = (\cos \theta)^2 + (\sin \theta)^2 = 1$, $\forall \theta$.

Soit,
$$\left(\frac{x}{R}\right)^2 + \left(\frac{y}{R}\right)^2 = 1$$

Alors, la loi horaire s'écrit : $x^2 + y^2 = R^2$ (1-ter).

Equation d'un **cercle** de centre *O* (0, 0) et de **rayon** *R*.

En effet, forme générale de l'équation d'un cercle de centre $C(x_c, y_c)$ dans le plan (O, x, y) : $(x-x_c)^2 + (y-y_c)^2 = R^2$ (Ici, $x_c = y_c = 0$, coordonnées du centre C).

Mouvement circulaire uniforme: mouvement autour d'un axe de rotation, avec une vitesse de rotation (ou vitesse angulaire) constante.

I.5 Vecteur position

C'est la grandeur vectorielle définie par la position du point mobile M :

$$O\vec{M} = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$
 (2)

(où x, y et z sont les coordonnées cartésiennes de M).

II. DIFFERENTES NOTIONS DE VITESSES D'UN POINT

Figure 5

II.2 Vitesse instantanée

Par définition, c'est la vitesse à un instant donné (par exemple, celle indiquée sur le tableau de bord d'un véhicule).

On la détermine grâce à la formule de la dérivée, par rapport au temps, de l'abscisse curviligne.

$$v = \frac{ds}{dt} = s'(t)$$
(4)

Dérivée, par rapport au temps, de l'abscisse curviligne.

AVERTISSEMENT: cette notation mathématique signifie qu'on calcule la dérivée de l'expression de s, mais pas qu'on divise un quelconque ds par un quelconque dt.

Exemple d'application.

Le déplacement d'un point mobile M sur l'axe horizontal x'Ox (de vecteur unitaire \vec{i}) est décrit par une équation :

$$x = t^3 - 12t + 3$$
.

x : position sur l'axe horizontal (en mètres).

t: temps (en secondes).

Figure 6

- 1°) Donner l'expression de la vitesse instantanée v.
- 2°) Calculer le temps nécessaire pour atteindre une vitesse de 36 m/s.

Résolution

1°) Expression de la vitesse instantanée v.

Remarque préliminaire : La formule $v = \frac{x}{t}$ n'est pas la bonne, car la vitesse n'est pas constante, donc inutile de l'utiliser ici.

Expression appropriée : $v = \frac{dx}{dt}$ (dérivée de x par rapport au temps).

$$v = \frac{dx}{dt} = \frac{d(t^3 - 12t + 3)}{dt} = 3t^2 - 12.$$

Remarque : si x est en m et t en s, la vitesse v est en m/s.

2°) Temps nécessaire pour atteindre une vitesse de 36 m/s.

Equation à résoudre : $3t^2 - 12 = 36$. Donc : $3t^2 = 36 + 12 = 48$.

Soit $t^2 = 16$. Donc: t = 4. Il faudra un temps de **4 secondes**.

II.3 Vecteur vitesse d'un point M par rapport à un repère

II.3.1. Définition

Le vecteur-vitesse est la dérivée, par rapport au temps, du vecteurposition. Son expression est donc obtenue en dérivant par rapport au temps le vecteur-position défini dans l'équation (2) :

$$\vec{V}_{\text{\tiny (M/R)}} = \frac{d \vec{OM}}{dt} = \frac{d (x \vec{i} + y \vec{j} + z \vec{k})}{dt} = \frac{d (x)}{dt} \vec{i} + \frac{d (y)}{dt} \vec{j} + \frac{d (z)}{dt} \vec{k}.$$

$$\vec{V}_{(M/R)} = \frac{d \overrightarrow{OM}}{dt} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$
 (5)

II.3.2. Composantes du vecteur-vitesse

$$\vec{V}_{_{(M/R)}} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

$$v_x = \frac{dx}{dt} = \dot{x} = x'$$
; $v_y = \frac{dy}{dt} = \dot{y} = y'$; $v_z = \frac{dz}{dt} = \dot{z} = z'$ (5-bis).

Toutes ces composantes sont des scalaires positifs ou négatifs, exprimés en mètre par seconde (m/s ou $m.s^{-1}$).

II.3.3. Norme du vecteur-vitesse

La norme (ou module) du vecteur-vitesse est définie par :

$$\|\vec{V}_{(M/R)}\| = v = \sqrt{v_x^2 + v_y^2 + v_z^2} .$$
 (6)

Cette norme du vecteur-vitesse est un scalaire positif qui s'exprime en mètre par seconde (m/s ou en $m.s^{-1}$) et est appelée la vitesse.

Remarques

*Le vecteur-vitesse est tangent au point M à la trajectoire.

- *Le vecteur unitaire tangent \hat{t} et la norme v sont des grandeurs variables au cours du temps :
 - le vecteur unitaire \vec{t} , tangent à tout instant à la trajectoire, change d'orientation ;
 - la norme v de ce vecteur-vitesse change de valeur (de grandeur).

II.4 Expression du vecteur-vitesse de rotation

Figure 8

Par analogie avec l'expression : $\vec{V}_{_{(M/R)}} = v \vec{t}$, on écrit : $\Omega = \omega \vec{u}$ (8)

ω: vitesse angulaire, exprimée en $rad.s^{-1}$ (pour rappel, la vitesse angulaire est la dérivée, par rapport au temps, de l'angle θ).

 \vec{u} : vecteur unitaire de l'axe de rotation (ici l'axe de rotation est perpendiculaire au plan de la feuille).

 $\vec{\Omega}$: vecteur vitesse de rotation.

III. COMPOSITIONS DE VECTEURS-VITESSES

III. 1 Définitions

 $[R_0]$: repère **absolu** (fixe); $[R_1]$: repère **mobile** dans $[R_0]$.

M est **un point en mouvement** par rapport à $[R_1]$ donc aussi (en général) par rapport à $[R_0]$.

 $\vec{V}_{(M/R_0)}$: vecteur vitesse de $m{M}$ par rapport au repère absolu (ou vitesse absolue, notée \vec{V}_a).

 $\vec{V}_{(M/R_1)}$: vecteur vitesse de M par rapport au repère mobile (ou vitesse relative, notée \vec{V}_r).

 $\vec{V}_{(M,R_1/R_0)}$: vecteur vitesse de M, supposé lié à $[R_1]$, dans le mouvement de $[R_1]$ par rapport à $[R_0]$ (ou vitesse d'entraînement, notée \vec{V}_e).

III. 2 Théorème de composition des vecteurs-vitesses

Ce théorème, qui rappelle une relation de Chasles, stipule que le vecteur vitesse absolue est la somme vectorielle du vecteur vitesse relative et du vecteur vitesse d'entrainement.

$$\vec{V}_{(M/R_0)} = \vec{V}_{(M/R_1)} + \vec{V}_{(M,R_1/R_0)}$$
(9)

$$|\vec{V}_a = \vec{V}_r + \vec{V}_e|$$
 (9-bis)

$$|\vec{V}_{M/0} = \vec{V}_{M/1} + \vec{V}_{M,1/0}|$$
 (9-ter)

Exemple d'illustration : Ballon dirigeable entrainé par le vent

On considère un ballon dirigeable **2**, en mouvement ascensionnel (de direction verticale) par rapport à une masse d'air **1** (Figure 9). Sous l'effet du vent, la masse d'air est en mouvement de direction horizontale par rapport au sol **0**. La vitesse d'ascension est de 4 m/s et la vitesse du vent a été mesurée à 10,8 km/h. Tous les points du ballon sont supposés avoir la même vitesse.

Question : Déterminer entièrement $V_{(A,2/0)}$, vecteur vitesse au point A, du ballon ${\bf 2}$ par rapport au sol ${\bf 0}$.

Figure 9

Résolution:

Analyse et interprétation des données :

 $\|\vec{V}_{(A,2/1)}\| = 4 \text{ m.s}^{-1}$. Direction verticale (sens, de bas en haut).

 $\|\vec{V}_{(A, 1/0)}\| = 10.8 \text{ kmh}^{-1} = 3 \text{ m.s}^{-1}$. Direction horizontale (sens, de gauche à droite).

Equation utilisée : $\vec{V}_{(A,2/0)} = \vec{V}_{(A,2/1)} + \vec{V}_{(A,1/0)}$. (somme de deux vecteurs orthogonaux).

 $\|\vec{V}_{(A,2/0)}\| = 5 \text{ m.s}^{-1}$ (hypoténuse du triangle rectangle, Figure 10).

Direction de $ec{V}_{(A,2/0)}$: inclinée d'un angle lpha par rapport à l'horizontale.

Calcul de cet angle (grâce à son sinus par exemple).

$$\sin \alpha = \frac{\|\vec{V}_{(A,2/1)}\|}{\|\vec{V}_{(A,2/0)}\|} = \frac{4}{5} = 0.8$$
. $\alpha \approx 53,20^{\circ}$.

Figure 10:
$$V_{(A, 2/0)} = V_{(A, 2/1)} + V_{(A, 1/0)}$$

MERCI POUR VOTRE ATTENTION!

Thank you for your attention!

Obrigado!

Danke schoen!

Grazie mille!

Aligato