Forecasting Currency Exchange Trend

My Case Study is United States Dollar (USD) vs Canadian Dollar (CAD)

Master's Thesis

By: Akubue Simon C

On: 18-Dec-2024

Motivation

Majority of the Forex traders lose their money due to inadequate knowledge on the dynamics of the market forces. Most of the times, market forces is determined by the Macroeconomics news from the countries around the world. Mitigating against this high rate of losses formed the basis of my research dream on "Forecasting Forex Exchange Trend"

Content

```
Pre-Amble
Data Sources
       Statistical
       Technical
       Macroeconomics
Algorithms
Flow Diagram
Models Comparison
Visualization
Result
Recommended Model
Future Plans
```

Pre-Amble

The foreign exchange (forex) market stands as one of the most dynamic and influential financial markets globally, facilitating the exchange of currencies and shaping international trade and investment. Among the myriad currency pairs traded in this market, the USD/CAD pair occupies a significant position due to its prominence in North American trade and its influence on the economies of the United States and Canada.

Last five years data on USD/CAD https://markets.ft.com/data/currencies/tearsheet/summary?s=USDCAD

Last fifty years data on USD/CAD https://tradingeconomics.com/canada/currency

Data Sources

Federal Reserve **FRED Economic Data** Macroeconomics data Split DataFrame **Forex Market** Scale Train/Test **Evaluate** Statistical data Forecast

Technical data

Data Source (Statistical)

My Data Set is taken from either of these two sources:

(a) Tick Data Suite (TDS) → From year 2003 to May-2024{with over 5,500 records}

(b) Investing.Com → From 1982 to May-2024 {with over 11,100 records}

The data in either of these two cases is maintained on a daily bases.

Raw data from TDS

The Train/Test data for USDCAD Forecasting

Raw data from Investing.Com

Data Source { Macroeconomics}

The following Macroeconomics data played a strong role in my model. They were sourced from the Federal Reserve Economic Data (FRED)'s(https://fred.stlouisfed.org/) database through an API that was exposed as XMLs.

Consumer Price Index (CPI) of USA

The Interest Rates of USA

Imports of USA

Exports of USA

Un-Employment Rates of USA

Consumer Price Index (CPI) of Canada

The Interest Rates of Canada

Imports of Canada

Exports of Canada

Un-Employment Rates of Canada

Data Source {Technical}

The following technical indicators were integrated:

(a) RSI – Relative Strength Index This is a momentum indicator that measures the magnitude of recent price changes to analyze overbought or oversold conditions

(b) SMA - Simple Moving Average This is the average price over the specified period. It is calculated by adding up the last "X" period's closing prices and then dividing that number by of Xs

Data Source {.....Technical}

- (c) EMA Exponential Moving Average

 This is a type of moving average that gives more weight to recent data points compared to older data points. It is calculated by applying a smoothing factor to the previous EMA value and the current price.
- (d) MACD Moving Average Convergence Divergence This is a popular technical analysis indicator used to identify trend reversals and momentum changes in financial markets, including stocks, currencies, and commodities. It consists of three components: the MACD line, the signal line, and the histogram.

Algorithms

I am comparing many models like:

I am considered the following models for my forecasting:

XGBoost model

Lasso Regression model

Ridge Regression model

Linear Regression model

AdaBoost Regression model

Random Forest Regressor model

Bayesian Ridge Regression model

Support Vector Regression (SVR) model

The Model's Flow Diagram

Statistical Data Open High Low Price

	w	

2024-11-22	1.3968	1.4020	1.3955	1.3980
2024-11-21	1.3975	1.3978	1.3928	1.3970
2024-11-20	1.3955	1.4014	1.3948	1.3972
2024-11-19	1.4012	1.4036	1.3952	1.3953
2024-11-18	1.4090	1.4102	1.4001	1.4014
2024-11-15	1.4054	1.4105	1.4031	1.4088
2024-11-14	1.3995	1.4064	1.3985	1.4057

Models Comparison (Data from Investing.Com) 90% Train – 10% Test Splitting, with FRED's Macroeconomics data

Comment	R ² _Test	R ² _Train	RMSE	MSE	MAE	ModelName
Good Model.	0.939845	0.994074	0.012171	0.000148	0.009694	Linear Regression
Good Model.	0.917730	0.999713	0.014234	0.000203	0.011429	Random Forest Regressor
Good Model.	0.940292	0.994891	0.012126	0.000147	0.009695	XGBoost Regression
Good Model.	0.940625	0.994068	0.012092	0.000146	0.009634	Ridge Regression
Good Model.	0.946768	0.993642	0.011449	0.000131	0.009127	Lasso Regression
Very Bad Model.	-1.854152	0.112613	0.083837	0.007029	0.072223	Support Vector Regression
Good Model.	0.940252	0.994073	0.012130	0.000147	0.009662	Bayesian Ridge Regression
Bad Model.	0.882256	0.990580	0.017028	0.000290	0.013612	AdaBoost Regression

Models Comparison (Data from TDS) 85% Train – 15% Test Splitting, with FRED's Macroeconomics data

ModelName	MAE	MSE	RMSE	R ² _Train	R ² _Test	Comment
Linear Regression	0.010249	0.000165	0.012847	0.988130	0.908703	Good Model.
Random Forest Regressor	0.015146	0.000338	0.018380	0.999406	0.813114	Bad Model.
XGBoost Regression	0.011689	0.000205	0.014317	0.990652	0.886613	Bad Model.
Ridge Regression	0.010196	0.000163	0.012766	0.988119	0.909844	Good Model.
Lasso Regression	0.009331	0.000134	0.011580	0.987471	0.925820	Good Model.
Support Vector Regression	0.149788	0.024304	0.155897	0.114638	-12.444989	Very Bad Model.
Bayesian Ridge Regression	0.010204	0.000163	0.012777	0.988122	0.909682	Good Model.
AdaBoost Regression	0.012066	0.000240	0.015481	0.986062	0.867426	Bad Model.

Models Comparison (Data from Investing.Com) 90% Train – 10% Test Splitting, with World Bank's Macroeconomics data

ModelName	MAE	MSE	RMSE	R ² _Train	R ² _Test	Comment
Linear Regression	0.010944	0.000185	0.013587	0.993928	0.922097	Good Model.
Random Forest Regressor	0.013020	0.000258	0.016058	0.999656	0.891178	Bad Model.
XGBoost Regression	0.009235	0.000137	0.011697	0.994549	0.942260	Good Model.
Ridge Regression	0.010756	0.000178	0.013357	0.993924	0.924707	Good Model.
Lasso Regression	0.009143	0.000131	0.011461	0.993451	0.944572	Good Model.
Support Vector Regression	0.061156	0.005408	0.073537	0.105346	-1.282029	Very Bad Model.
Bayesian Ridge Regression	0.010822	0.000181	0.013438	0.993926	0.923797	Good Model.
AdaBoost Regression	0.012639	0.000250	0.015819	0.990293	0.894394	Good Model.

Models Comparison (Data from Investing.Com) 90% Train – 10% Test Splitting, without FRED's Macroeconomics data

ModelName	MAE	MSE	RMSE	R ² _Train	R ² _Test	Comment
Linear Regression	0.008967	0.000128	0.011329	0.993736	0.945837	Good Model.
Random Forest Regressor	0.009715	0.000150	0.012264	0.999458	0.936531	Good Model.
XGBoost Regression	0.009235	0.000138	0.011731	0.994462	0.941927	Good Model.
Ridge Regression	0.008935	0.000127	0.011286	0.993732	0.946244	Good Model.
Lasso Regression	0.009040	0.000128	0.011334	0.993433	0.945792	Good Model.
Support Vector Regression	0.052410	0.004011	0.063332	0.135900	-0.692631	Very Bad Model.
Bayesian Ridge Regression	0.008958	0.000128	0.011318	0.993736	0.945946	Good Model.
AdaBoost Regression	0.011575	0.000216	0.014695	0.989649	0.908873	Good Model.

Visualization {Data from Investing.Com}

90% Train - 10% Test Splitting, with FRED's Macroeconomics data

Visualization {Data from TDS}

85% Train - 15% Test Splitting, with FRED's Macroeconomics data

Actual vs All Predicted & Good Models for USDCAD Forecasting

Visualization {Data from Investing.Com}

90% Train - 10% Test Splitting, with World Bank's Macroeconomics data

Visualization {Data from Investing.Com}

90% Train - 10% Test Splitting, without Macroeconomics data

Actual vs All Predicted & Good Models for USDCAD Forecasting

Calibration approach

Incremental Value = Diff/No of Business Days

Visualization {Data from Investing.Com}

90% Train – 10% Test Splitting, with FRED's Calibrated Macroeconomics data values

ModelName	MAE	MSE	RMSE	R ² _Train	R ² _Test	Comment
Linear Regression	0.010821	0.000182	0.013490	0.994165	0.926100	Good Model.
Random Forest Regressor	0.011777	0.000216	0.014706	0.999775	0.912174	Good Model.
XGBoost Regression	0.009628	0.000146	0.012080	0.994868	0.940739	Good Model.
Ridge Regression	0.010766	0.000180	0.013425	0.994159	0.926814	Good Model.
Lasso Regression	0.009147	0.000132	0.011471	0.993642	0.946566	Good Model.
Support Vector Regression	0.072229	0.007031	0.083849	0.112893	-1.854950	Very Bad Model.
Bayesian Ridge Regression	0.010794	0.000181	0.013459	0.994163	0.926442	Good Model.
AdaBoost Regression	0.011812	0.000228	0.015105	0.990925	0.907353	Good Model.

Visualization {Models with Data Comparism} Comparing the data from different sources.

Models	Metrics	Investing/FRED	TDS/FRED	Investing/WorldBank	Investing Only
	MAE	0.009694	0.010249	0.010944	0.008967
Linear Regression	RMSE	0.012171	0.012847	0.013587	0.011329
Lilleal Reglession	R ² _Train	0.994074	0.988130	0.993928	0.993736
	R ² _Test	0.939845	0.908703	0.922097	0.945837
	MAE	0.011429	0.015146	0.013020	0.009715
Random Forest Regressor	RMSE	0.014234	0.018380	0.016058	0.012264
Random Forest Regressor	R ² _Train	0.999713	0.999406	0.999656	0.999458
	R ² _Test	0.917730	0.813114	0.891178	0.936531
	MAE	0.009695	0.011689	0.009235	0.009235
XGBoost Regression	RMSE	0.012126	0.014317	0.011697	0.011731
Addoost Regression	R ² _Train	0.994891	0.990652	0.994549	0.994462
	R ² _Test	0.940292	0.886613	0.942260	0.941927
	MAE	0.009634	0.010196	0.010756	0.008935
Dides Deservios	RMSE	0.012092	0.012766	0.013357	0.011286
Ridge Regression	R ² _Train	0.994068	0.988119	0.993924	0.993732
	R ² _Test	0.940625	0.909844	0.924707	0.946244

Visualization {Models with Data Comparism} Comparing the data from different sources.

Models	Metrics	Investing/FRED	TDS/FRED	Investing/WorldBank	Investing Only
	MAE	0.009127	0.009331	0.009143	0.009040
Lacco Pograccion	RMSE	0.011449	0.011580	0.011461	0.011334
Lasso Regression	R ² _Train	0.993642	0.987471	0.993451	0.993433
	R ² _Test	0.946768	0.925820	0.944572	0.945792
	MAE	0.072223	0.149788	0.061156	0.052410
Support Voctor Pograssian	RMSE	0.083837	0.155897	0.073537	0.063332
Support Vector Regression	R ² _Train	0.112613	0.114638	0.105346	0.135900
	R ² _Test	-1.854152	-12.444989	-1.282029	-0.692631
	MAE	0.009662	0.010204	0.010822	0.008958
Bayesian Ridge Regression	RMSE	0.012130	0.012777	0.013438	0.011318
bayesian kluge kegression	R ² _Train	0.994073	0.988122	0.993926	0.993736
	R ² _Test	0.940252	0.909682	0.923797	0.945946
	MAE	0.013612	0.012066	0.012639	0.011575
AdaBoost Regression	RMSE	0.017028	0.015481	0.015819	0.014695
Adapoost regression	R ² _Train	0.990580	0.986062	0.990293	0.989649
	R ² _Test	0.882256	0.867426	0.894394	0.908873

Result

From the above analysis, on reviewing the MAE and MSE, RMSE, and R² values from all the models considered, it is apparently clear that "Linear Regression", "Random Forest Regressor (RFR)", "Ridge Regression" and "Bayesian Ridge **Regression**" displayed wonderful results. However, I will be relying more on "Random Forest Regressor (RFR)" due to its robustness about being exposed to many hyperparameters for tuning.

Random Forest Regressor (RFR)

Random Forest Regressor (RFR) is a supervised learning algorithm belonging to the ensemble learning family, specifically the random forest method, used for regression tasks. It's an extension of the Random Forest algorithm for classification.

Random Forest Regressor is known for its robustness, scalability, and ability to handle *high-dimensional data with a large number of features*. It often performs well across a wide range of regression problems and is less prone to overfitting compared to individual decision trees.

Future Plans

I will also explore alternative source where I can access the Macroeconomics indices maintained at more frequent basis; possibly weekly, or even daily levels.

I plan to improve on my model by adding more Technical features.

I will explore a way of automatically accessing the Statistical data from a sources like Investing.Com or Tick Data Suite(TDS) whose data is as close as the live data.

Thank you