Using SVMs to Classify Activities

A Brief Study of Passive RFID sensors

Tom Stuckey

Agenda

- Background
- Method
- Analysis
- Discussion
- Conclusion

Background: the Challenge

• Can we use Support Vector Machines to accurately classify the movements of people based on imprecise readings of their bodies using three axis measures?

• Problem Space:

- 14 people, 2 different RFID configurations, 8 available features,
 75K observations
- Classes:
- 1. Sitting on Bed
- 2. Sitting on Chair
- o 3. Laying
- 4. Walking
- Multi-Dimensional and Multi-Classification problem

[1]

Background: the Challenge

Wearable
Sensor

Sensor Axes	Axes Relative to Person	Axes in Graphs			
$\overline{a_l}$	Left-to-Right Plane	x-axis			
a_f	Bending Plane	y-axis			
a_v^{\prime}	Head-to-Toe Plane	z-axis			

Method: pre-processing

- Transformations
 - o 94 separate data files
 - Features inferred from both directory structure and file names
- Leveraged One-vs.-All encoding for the activity encoding scheme
- Modified 5-fold cross-validation:
 - 5 stratified partitions
 - Best model per activity across 5 partitions

t_data <- revised_data %>% dplyr::filter(strat_group == strat_group, pos_activity == act)

strat_group =	pos_activity +	time ÷	bending *	head_to_toe	left_to_right	sensor_id ‡	signal_strength ‡	phase ‡	frequency = I	ocation [‡] g	jender ÷	activity_class ‡
1	1	138.680	0.2251300	1.03120	-0.0136840	1	-59.0	0.230100	0 922.75	one	male	1
1	1	253.750	0.3775600	0.95081	0.0547350	3	-65.0	5.422600	0 923.75	one	female	1
					•	•	•					
5	4	172.550	0.1078700	1.04270	0.1003500	4	-65.0	5.8077000	924.75	one	male	1
5	4	59.925	0.2603000	0.99674	-0.0706990	2	-47.5	6.0730000	924.75	one	female	1
5	4	195.700	0.5534400	0.93932	-0.0250870	4	-67.5	1.2349000	920.75	one	female	1

Method: Support Vector Machines

- SVM History
 - Lineage goes back to Ron Fisher with Linear Discriminant analysis
 - However, real roots are in *Theory of Pattern Recognition* [8] and A *Training Algorithm for Optimal Margin Classifiers* [3]

SVM Basics

- Main idea in 1 or 2 dimensions of **maximal margin classifier:** draw a line to separate the classes focusing the the closest points to the separating hyperplane; ignore the outliers
- Main idea in 1 or 2 dimension of support vector classifier: maximal margin classifier, but allow for some misclassification
- O Main idea of SVM [4]
 - 1. Start with data in a relatively low dimension
 - 2. Move the data into a higher dimension
 - 3. Find a Support Vector Classifier that separates the higher dimensional data into 2 groups

Method: Support Vector Machines

- Kernel Trick
 - Compute the projection of one vector onto another (aka dot product) in the original space and raise the scalar result to a power to functionally compute the dot product in a higher order space [9]
- Radial Basis Function (RBF) is a versatile choice of kernel: $e^{-\gamma ||u-v||_2}$
- Functionally, it enables infinite polynomial dimensions to be tried[4]:

The Actual Call

```
my_model <- e1071::svm(activity_class ~ bending + head_to_toe + left_to_right + signal_strength,
data = train_df, kernel = 'radial', gamma = 5, cost = 25, scale = FALSE)</pre>
```

Summary Results

Activity	Stratification Group	Accuracy
Sitting on Bed	1	94.532%
Sitting on Bed	2	94.426%
Sitting on Bed	3	94.142%
Sitting on Bed	4	94.568%
Sitting on Bed	<u>5</u>	94.71%
Laying	1	99.627%
Laying	<u>2</u>	99.73%
Laying	$\frac{2}{3}$	99.645%
Laying	4	99.663%
Laying	5	99.645%
Walking	1	98.296%
Walking	2	98.42%
Walking	3	98.242%
Walking	<u>4</u>	98.72%
Walking	4 5	98.385%
Sitting on Chair	1	96.023%
Sitting on Chair	2	96.059%
Sitting on Chair	3	95.651%
Sitting on Chair	4	95.899%
Sitting on Chair	<u>5</u>	$\underline{96.11\%}$

Results: Sitting on Bed

Predictions for positive class: Sitting on Bed

Results: Sitting on Chair

Predictions for positive class: Sitting on Chair

Accuracy was: 96.112% Best stratification group was: 5

Results: Laying

Predictions for positive class: Laying

Left-to-Right Acceleration

Results: Walking

Predictions for positive class: Walking

Accuracy was: 98.722% Best stratification group was: 4

Discussion

- Accuracy 94.71% to 99.73% looks great, but is it really?
- Potential Shortfalls:
 - Small sample effective sample size with 14 patients even though we we looking at 75,000+
 observations
 - No time series analysis even though the samples were in time intervals from 0.025 sec to 10 sec
 - Inductive Bias with RF signal strength; assumed it gave more weight to good results so added it in; does it?
- Future Analysis:
 - AB Tests between the two room configurations
 - Explicit outlier analysis (as SVMs exclude the outliers by design)

Wait...how would you even use it?

- 4 models were developed...so, how you choose the best one?
- Fundamentally, they are binary classifiers, so you can just nest them
- Example:

time	bending	$head_to_$	_tokeftto_	$_{ m right\ sensor}$	_id signal	$_$ strengt p hase	frequency	location	gender	$activity_class$
136.38	0.24858	0.33072	-1.0172	2	-49	2.4866	921.25	two	female	3

Running through all the models:

```
For actual: Laying:
    predicted WAS NOT Sitting on Bed
    predicted WAS Laying
    predicted WAS NOT Walking
    predicted WAS NOT Sitting on Chair
```

Conclusion

- Overview of problem space and methodology
- Overview of SVMs
- Verified SVMs do provide a robust solution for classification in this problem space
- Provided an overview of the analysis
- Identified potential shortcomings and future work
- Provided an operational example

References

- [1] Torres, R. L. S., Ranasinghe, D. C., Shi, Q., & Sample, A. P. (2013, April). Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In 2013 IEEE International Conference on RFID (RFID) (pp. 191-198). IEEE.
- [2] Torres, R. L. S. T., Ranasinghe, D. R., & Visvanathan, R. V. (2016). Activity recognition with healthy older people using a batteryless wearable sensor Data Set. UCI Machine Learning. https://archive.ics.uci.edu/ml/datasets/Activity+recognition+with+healthy+older+people+using+a+batteryless+wearable+sensor
- [3] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).
- [4] StatQuest with Josh Starmer. (2019, September 30). Support Vector Machines, Clearly Explained!!! YouTube. https://www.youtube.com/watch?v=efR1C6CvhmE
- [5] Rüping, S. (2001). SVM kernels for time series analysis (No. 2001, 43). Technical report.
- [6] STAT 88. (n.d.). A/B Testing: Fisher's Exact Test. STAT 88.Org. Retrieved November 14, 2020, from http://stat88.org/textbook/notebooks/Chapter 09/02 AB Testing Fishers Exact Test.html
- [7] Aggarwal, C. C. (2016). Outlier Analysis (2nd ed. 2017 ed.). Springer.
- [8] Hamilton, L. H. (2014, October 1). *The Inductive Biases of Various Machine Learning Algorithms*. Lauradhamilton.Com. http://www.lauradhamilton.com/inductive-biases-various-machine-learning-algorithms
- [8] Vapnik, V. N., & Chervonenkis, A. (1974). Theory of pattern recognition, 1974. Russian.
- [9] Ranjan, C. R. (2019, May 9). *Understanding the Kernel Trick with fundamentals*. Towards Data Science. https://towardsdatascience.com/truly-understanding-the-kernel-trick-1aeb11560769
- [10] e1071 (1.7-4). (2020). [Misc Functions of the Department of Statistics, Probability Theory Group]. CRAN. https://cran.r-project.org/web/packages/e1071/index.html
- [11] University of Wisconsin. (n.d.). *The Radial Basis Function Kernel*. Cs.Wisc.Edu. Retrieved November 14, 2020, from http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/syms/RBFKernel.pdf