Advanced Randomization

Haoqiang Fan IIIS, Tsinghua

Hello

More stories about Xiaoqiang and Ameba!

Recovering Linear Function

- ▶ mod 2
- $f(x_1, x_2, ..., x_n) = x_1 \oplus x_2 \oplus x_5$
- given access to a noisy version of f
- $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \oplus \mathbf{g}(\mathbf{x})$
- g is non-zero on only 30% inputs
- can you recover f?

Little Secret

- Familiar?
- If you only have random samples
- Last year's CTSC. Collision + FFT, time complexity is
- $O(n\gamma^{-2\frac{n}{\log m}-1})$
- where the noise ratio is 1/2-γ
- not polynomial
- let's forget about it

Little Secret

- If we can query arbitrary point
- $ightharpoonup \widetilde{f}(x)$
- can we do better?
- Polynomial?

Yes

- The answer is Goldreich-Levin
- One of the most amazing algorithm (at least in theory)

Another Application

- Given black box access to a function
- You want to decide whether it only depends on only a few parameters
- $f(x_{1..n})=h(x_3,x_5,x_8)$
- or, whether it is close to such a thing
- $f(x_{1..n})=h(x_3,x_5,x_8)\oplus g(x)$

When do we encounter Black Box?

complied binary

- 1. 本科及以上学历
- 2. 有软件破解、逆向工程经验
- 3. 有跨平台软件编写经验,精通C,熟悉
- 4. 熟悉x86/x64汇编, 熟悉ARM汇编优先

obfuscation v.s. reverse engineering

Goldreich-Levin

- Let's only talk about the science part
- Given black-box and noisy access to a function,

can you reverse-engineer it?

Fourier Analysis

- the linear attack
- any (boolean) function can be written as a weighted combination of linear (mod 2) functions
- a ^ b=0.5 a +0.5 b -0.5 a⊕b
- a ∨ b ∨ c= 0.25 a +0.25 b +0.25 c
 -0.25 a⊕b -0.25 a⊕c -0.25 b⊕c
 - +0.25 a⊕b⊕c

Know How

How do you find the coefficients?

```
-a ∨ (b ∧ c)
=-0.75 a + 0.25 b + 0.25 c
-0.25 a⊕b +0.25 b⊕c -0.25 a⊕c
+0.25 a⊕b⊕c
+1
```

Fourier Coefficients

Fourier Coefficients

- f(a,b,c)=... -0.25 a⊕b + ...
- There are totally 2ⁿ potential Fourier Coefficients, one for each frequency
- 2ⁿ equations and 2ⁿ unknowns
- more insightful explanation:
- correlation coefficient

$$2\left(\frac{1}{2^3}\sum_{a,b,c}[f(a,b,c)=a\oplus b]\right)-1$$

Check it

а	b	С	f(a,b,c)	a⊕b
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0
			a⊕b=0	a⊕b=1
f(a,b,c)=0		b,c)=0	1	2
f(a,b,c)=1			3	2
3/8*2-1= -0.25				

Fourier Transform

For each possible frequency (variable subset), compute

$$\hat{f}(S) = \frac{1}{2^n} \sum_{x} f(x)(-1)^{\sum_{i \in S} x_i}$$

▶e.g.

$$\hat{f}(\{1,2\}) = \frac{1}{2^3} \sum [f(x_1,x_2,x_3)\cdot (-1)^{x_1+x_2}]$$

Then 2 $f(\{1,2\})$ will be the coefficient behind $x_1 \oplus x_2$

Fourier Coefficients

- ▶ $a \land b = 0.5 a + 0.5 b 0.5 a \oplus b$
- The sum of square of the coefficients <=1 (Parseval's Inequality)
- If we want to find all coefficients >=0.25, there will be at most 16 of them
- If the function only depends on a few variables, the Fourier coefficients will be sparse.

Fourier Coefficients

```
int f(int x[]){
    if (x[5]) {
        if (x[7]) return 0;
        else return 1;
    }else{
        if (x[9]) return 1;
        else return 0;
    }
}
```


- Possible non-empty frequencies:
- $x_5, x_7, x_5 \oplus x_7, x_9, x_5 \oplus x_9$

So

Theoretically

- How to reverse-engineer a (simple) function
- S1: Somehow find the frequencies a, b, a⊕b
- S2: Compute correlations Pr[f(a,b,...)!=a⊕b]*2-1
- S3: Write the original function as a linear combination

Example

- ▶ Black box f(x[1..100]). We somehow know the non-empty frequencies are x₂, x₁⊕x₂, x₃, x₁⊕x₃.
- Randomly choose 10000 samples, compute the correlations
- Pr[f(x)= x_2]=0.675 Pr[f(x)= $x_1 \oplus x_2$]=0.675 Pr[f(x)= x_3]=0.675 Pr[f(x)= $x_1 \oplus x_3$]=0.375
- Now we know that the function is $x_1 \cdot x_2 \cdot x_3 = 0.25 x_1 + 0.$

Now comes the key part

- How to find the non-empty frequencies?
- Goldreich-Levin
- Polynomial time complexity
- (but does not directly work in practice)

The key

- Consider what is
- $g(x_2,x_3,...)=(f(0,x_2,x_3,...)+f(1,x_2,x_3,...))/2.0$
- ▶ For f's Fourier component $\alpha x_a \oplus x_b \oplus ...$
- ▶ If x₁ is inside the frequency, it disappears
- ► $(0 \oplus x_b \oplus x_c + 1 \oplus x_b \oplus x_c)/2 = 0.5 \leftarrow constant$
- Otherwise, it is untouched
- $(x_a \oplus x_b \oplus x_c + x_a \oplus x_b \oplus x_c)/2 = x_a \oplus x_b \oplus x_c$
- So, g retains a subset of all frequencies.

```
• g(x_4,...)=

+0.125 f(0,0,0,x_4,...) -0.125 f(0,0,1,x_4,...)

-0.125 f(0,1,0,x_4,...) +0.125 f(0,1,1,x_4,...)

+0.125 f(1,0,0,x_4,...) -0.125 f(1,0,1,x_4,...)

-0.125 f(1,1,0,x_4,...) +0.125 f(1,1,1,x_4,...)
```

```
• g(x_4,...)=
+0.125 f(0,0,0,x_4,...) -0.125 f(0,0,1,x_4,...)
-0.125 f(0,1,0,x_4,...) +0.125 f(0,1,1,x_4,...)
+0.125 f(1,0,0,x_4,...) -0.125 f(1,0,1,x_4,...)
-0.125 f(1,1,0,x_4,...) +0.125 f(1,1,1,x_4,...)
• x_4 \oplus x_5 \oplus x_6
```

```
► g(x_4,...) = 
+0.125 f(0,0,0,x_4,...) -0.125 f(0,0,1,x_4,...) -0.125 f(0,1,0,x_4,...) +0.125 f(0,1,1,x_4,...) +0.125 f(1,0,0,x_4,...) -0.125 f(1,0,1,x_4,...) -0.125 f(1,1,1,x_4,...) +0.125 f(1,1,1,x_4,...) ×<sub>1</sub>⊕x_2⊕x_3⊕x_4⊕x_5⊕x_6
```

```
• g(x_4,...)=

+0.125 f(0,0,0,x_4,...) -0.125 f(0,0,1,x_4,...)

-0.125 f(0,1,0,x_4,...) +0.125 f(0,1,1,x_4,...)

+0.125 f(1,0,0,x_4,...) -0.125 f(1,0,1,x_4,...)

-0.125 f(1,1,0,x_4,...) +0.125 f(1,1,1,x_4,...)

•x_4 \oplus x_2 \oplus x_3 \oplus ...
```

The Filter

- If we want to know whether f contains a (large) frequency with prefix $x_a \oplus x_b \oplus ... \oplus x_d$
- We just need to see if $g(x_k,...)=E_{x_1,x_2,...,x_{k-1}}[f(x)(-1)^{x_a\oplus x_b\oplus...\oplus x_d}]$ is (close to) constant
- The extremely clever reformulation
- $\vdash E_{x,x'_{1}k}[f(x)f(x'_{1..k}x_{k+1..n})\chi_{S}(x_{1..k})\chi_{S}(x'_{1..k})]$
- x_S is the "mask"

Goldreich-Levin

- Binary search
- see if there are frequencies beginning with 0
- see if there are frequencies beginning with 00
- see if there are frequencies beginning with 000
- **....**
- $E_{x,x'_{1:k}}[f(x)f(x'_{1..k}x_{k+1..n})\chi_{S}(x_{1..k})\chi_{S}(x'_{1..k})]$

GL

- Very good in theory. Used to prove Goldreich and Levin's Hard Core Predicate.
- Not useful in (OI) practice because of its huge constant factor.
- $O(n\epsilon^{-6}\log(n/\epsilon))$

However

- It can be optimized in practice.
- And we need randomization to do it.

Hashing

- Suppose the frequencies' first three digits are all different
- **000???**
- **•** 001???
- **110???**
- **111???**
- Then we can dig them out one by one

Isolating

```
define g(x_4,...)=(f(0,0,0,x_4,...)+f(0,0,1,x_4,...)+f(0,1,0,x_4,...)+f(0,1,1,x_4,...)+f(1,0,0,x_4,...)+f(1,0,1,x_4,...)+f(1,1,1,x_4,...)+f(1,1,1,x_4,...)+f(1,1,1,x_4,...)/8
```

If we are lucky, g will be (close to) linear

Isolating

- How to recover a linear function's coefficients
- at the presence of a tiny amount of noise?
- Influence
- Pr[g($x_1,...,x_{k-1},0,x_{k+1},...,x_n$) · g($x_1,...,x_{k-1},1,x_{k+1},...,x_n$)<0]
- So long as < 0.25 of all g's sign are reversed, we will be able to decide if the uncorrupted g depends on x_k

And

```
g(x_4,...)=(f(0,0,0,x_4,...)-f(0,0,1,x_4,...)+f(0,1,0,x_4,...)-f(0,1,1,x_4,...)-f(1,0,0,x_4,...)+f(1,0,1,x_4,...)-f(1,1,0,x_4,...)+f(1,1,1,x_4,...)/8
```

- selects the 101??? frequency out
- and so on

One Issue

- What if the frequencies only differ at the last digits?
- ???000???001???010

. . .

???111

We should somehow transform them to the "good cases"

Randomization

- Randomly choose a (reversible) linear substitution
- $y_1=x_2\oplus x_3$
- $y_2 = x_1$
- $y_3=x_1\oplus x_3$
- $f(x_1,x_2,x_3)=u(y_1,y_2,y_3)$
- Find the Fourier components of u, then do back substitution
- u will (probably) be good

Optimization?

- Works when the noise is small enough
- Now talk about implementation details

```
vector<vec> genFreq(){
    vec U[MMax],V[MMax];
    getOrthBasis(U,V);
    int pt=0;
    for (int i=0;i<N;i++){</pre>
         for (int j=0; j<RMax; j++) {</pre>
              vec u;
              for (int k=0; k<N; k++)u[k]=rand()&1;</pre>
              for (int z=0;z<=1;z++){</pre>
                   u[i]=z;
                   for (int l=0; l<(1<<M); l++) {</pre>
                       vec x=u;
                        for (int m=0; m<M; m++)if ((1<<m)&l)x=x^V[m];</pre>
                       int key=0;
                        for (int m=0; m<M; m++)</pre>
                            key | =dotproduct(U[m],x)<<m;</pre>
                       trials[pt+key]=x;
                   pt+=(1<<M);
    evaluatetrials(trials, trialresults, N*RMax*2*(1<<M));
```

```
vector<vec> found;
for (int i=0;i<(1<<M);i++){</pre>
    vec freq;
    for (int j=0,pt=0;j<N;j++){</pre>
         int s=0;
         for (int k=0; k<RMax; k++) {</pre>
             int t[2] = \{0,0\};
             for (int z=0; z<2; z++) {
                  for (int l=0; l<(1<<M); l++) {</pre>
                      if (__builtin_popcount(l&i)&1)
                           t[z]-=trialresults[pt++];
                      else t[z]+=trialresults[pt++];
                  }
             s+=((t[0]>0)!=(t[1]>0));
         freq[j]= s*2-RMax > 0;
    for (int j=0;j<M;j++)if ((1<<j)&i)freq^=U[j];</pre>
    int mcnt=0;
    for (int j=0; j<TMax; j++)</pre>
         mcnt+=(testresults[j]==dotproduct(testset[j],freq));
    if (abs(mcnt*2-TMax)>=TMax*0.040)
         found.push back(freq);
```

Implementation Detail

- How to generate orthogonal basis?
- Brute-force is OK

```
while (true) {
    for (int i=0;i<M;i++)for (int j=0;j<N;j++)U[i][j]=rand()&1;</pre>
    bitset<MMax> found;
    for (int i=0;i<3*M*(1<<M);i++){</pre>
         vec x;
         for (int j=0; j<N; j++)x[j]=rand()&1;</pre>
         int s0=0, s1=0;
         for (int j=0; j<M; j++)</pre>
             if (dotproduct(U[j],x))
                  s0++,s1+=j;
         if (s0==1 && !found[s1]){
             found[s1]=1;
             V[s1]=x;
             if (found.count()==M)break;
         }
    if (found.count()==M)break;
```

Implementation Detail

```
typedef bitset<NMax> vec;
int dotproduct(const vec & a,const vec & b){
    return (a&b).count()&1;
}
```

- Run multiple times until enough energy is collected
- How large should the test set be?
- $ightharpoonup O(\epsilon^{-2} \log n)$

Application

Reverse a depth 2 Parity Decision Tree

Application

- discovered frequencies
- $x_1 \oplus x_3 \oplus x_5$ $x_1 \oplus x_3 \oplus x_5 \oplus x_2 \oplus x_4$

$$x_2 \oplus x_4$$

$$x_1 \oplus x_3 \oplus x_5$$

$$x_1 \oplus x_5 \oplus x_7$$

$$x_3 \oplus x_7$$

Application

- Discovered a 3-dim subspace, totally 8 possible frequencies
- brute force search 8³ possible trees

Enough about it

Let's talk about something fun

Interactive Proof

How to prove that two graphs are isomorphic?

Interactive Proof

How to prove that two graphs are not isomorphic?

Interactive Proof

- Zero knowledge proofs
- Prove to someone (verifier) that you know something without revealing it

One Example

How to prove that you can cross a wall?

One Example

- The prover goes into the cave, chooses a direction and goes into it
- The verifier goes into the cave, requests the prover comes from one of the directions.

One Example

- Zero knowledge: The verifier cannot even prove to others that he knows the prover can do this.
- He can make the video record himself

Discrete Logarithm

how to prove that you know an x such that g^x mod p = C

Discrete Logarithm

- $price g^X \mod p = C$
- prover randomly chooses r, sends k=g^r mod p to verifier
- verifier either requests prover to send r or (x+r) mod p-1 and checks this
- $g^{(x+r) \bmod p-1} = kC$

Sudoku

How to prove that you have solved a Sudoku?

Sudoku

- write numbers on chess pieces and put them upside-down on a board
- the verifier chooses a row/column/block
- the prover picks those pieces up from the board, shuffle them and give them to the verifier
- repeat for many rounds

3 coloring

- How to prove that you know a 3-coloring of a graph?
- Of particular interest because graph coloring is NP-hard.

graph coloring

- randomly shuffle your coloring
- cover them with chess pieces
- verifier requests to reveal two adjacent pieces
- repeat

Bit Commitment

- How to do the choose-and-reveal step?
- prover sends hash(c_i,salt_i) for all i
- verifier requests c_u,c_v,salt_u,salt_v for adjacent u and v

NP-hard?

- The implication of NP-hardness
- Any NP problem can be reduced to it
- Especially, you can prove that you know a proof to a math theorem
- ▶ because MATH ∈ NP

More on cryptography

randomness + hardness assumption + interaction

Flip a coin through telephone

- How to flip a coin through a telephone line?
- "I guess your coin is head"
- ▶ "Let me see... Sorry, it is tail"

Quadratic Residual

- Alice chooses p,q, sends m=pq to Bob
- ▶ Bob chooses x_1 , sends $y=x_1^2 \mod m$
- y= x^2 mod m has two roots x_1 and x_2

How to compute square root

- How to compute square root of y mod pq?
- compute the square root of y mod p and mod q, then CRT
- How to compute square root of y mod p?
- Tonelli Shanks / Cipolla

$$\left(a + \sqrt{a^2 - y}\right)^{(p+1)/2} \mod p$$

All operations are mod p. a²-y is chosen so that it is not an quadratic residual.

Flip Coin

- Alice sends t=x₁² mod m to Bob
- Bob knows how to compute sqrt of t, but he does not know which root is Alice's
- He arbitrarily chooses one and sends it to Alice.
- If he happens to send x₂ to Alice, Alice now knows the factorization of m
- $x_1^2 x_2^2 = 0 \mod m$
- Otherwise, Alice still does not know how to factor m
- A fair coin flip

Do you want more cryptography?

- Perhaps not
- Then let's move back to proofs
- The PCP Theorem
- NP=PCP(O(log n),O(1))

PCP Theorem

- Any NP language admits polynomial length proof
- that can be checked probabilistically by looking at only constant number of bits
- "New Short Cut Found For Long Math Proofs"
- ▶ 1992 April 7, New York Times

How it works

- A certificate of an instance belonging to a language
- A randomized verifier only looks at constant number of bits in the proof
- and has constant probability of rejecting fake proofs

The PCP Theorem

- ▶ I'll cheat you a little bit
- Only prove that NP=PCP(poly(n),O(1))
 because it is much easier but still interesting
- Heavily relies on randomization

NP-Hard

- Solving quadratic boolean equations is NP-Hard
- $x_2x_3+x_1x_1=0 \mod 2$ $x_1x_2+x_1x_3+x_2x_3=1 \mod 2$
- Now I'll give a 2^{n²} length Probabilistically Checkable Proof to it.

The proof

- computes x_ix_j for all i,j
- writes all linear combinations of them in the proof
- ▶ totally 2^{n²} bits
- how should I check it?

Step 1

- check that the original equations are satisfied
- I cannot check the m equations one by one, because this requires reading more than O(1) bits
- randomly choose a subset of equations and check their sum
- $x_2x_3+x_1x_1=0 \mod 2$ $x_1x_2+x_1x_3+x_2x_3=1 \mod 2$
- $x_1x_1+x_1x_2+x_1x_3=1$?

Step 1

- because the chosen subset is random
- if there are at least one unsatisfied equations
- my chance to detect it is >= 0.5
- 001000000001100000 010100101010101101

Step 2

- Check that x_ix_j is really x_i times x_j
- The same trick
- randomly choose two subsets A,B
- checks if

$$\sum_{i \in A} x_i^2 \sum_{i \in B} x_i^2 = \sum_{i \in A, j \in B} x_i x_j$$

at least 1/4 prob. to reject wrong proofs

Step 3

- Check that the 2^{n²} bits encodes after all the linear combination of n² variables.
- Equal to testing whether a function is linear
- 0011001100110011

The linearity test

- Randomly choose a,b
- Checks if f(a+b)=f(a)+f(b) mod 2
- probability of passing is $\sum_{S} \hat{f}^{3}(S) \leq \max \hat{f}(S)$
- So the function is close to linear if it passes many random tests

Are we done?

- Wait, there is one issue
- Independence

Self Correcting

- Using the linearity test, we can use ?000 tests to ensure that the truth table is 0.999 close to some linear function (although we don't know which one it is)
- However, no guarantee is given on which bits are corrupted
- And the queries in Step 1,2 are not uniform

Self Correcting

- It is possible that although only a small portion of bits are corrupted in the linear function
- but they are the bits that are queried in Step 1 and 2
- Solution: self correcting
- f(x)=f(a)+f(x+a)
- query f(a), f(x+a) whenever we want to get f(x) in later steps
- the queries are uniform now

Putting everything together

- \rightarrow NP=PCP(O(n²),O(1))
- Can be optimized to PCP(O(log n),O(1)) by using more advanced techniques
- enough about proofs!

A New Page

- Let's talk about something interesting (and useful for OI)
- Advanced Randomization
- Sketching

Sketch

- A short summary (hash) of a large object that (probabilistically) preserves some of its properties
- Randomization */+ Approximation

Sketch of String Equality

- Suppose both you and your friend have a (long) 01 string
- You want to decide whether they are same
- by exchanging only 1 bit
- with accuracy requirement >= 2/3

Which bit to send?

- ▶ The first bit?
- ▶ The last bit?
- The xor of all bits?

1 bit sketch

- Assume you have shared randomness
- randomly choose a subset of bits (must be the same subset for both of you)
- send the xor sum
- ▶ If not the same, >=1/2 probability of detecting it

1 bit sketch

- same: 100% 0%
- not same: 50% 50%
- ▶ The trick: if the bits match, answer with 2/3 prob. that the strings are the same
- same: 67% 33%
- not same: 67% 33%

Better Accuracy

- Just increase the number of bits
- by repeating this process
- ▶ k bits $\rightarrow 2^{-k}$ failure prob.

Sketch of set size

- support union operation
- the MinHash algorithm
- f(X)=min((ax+b)%p for x in X)

Review of MinHash

- pairwise independence, Chernoff bound, ...
- improved version: multi-scale buffer
- store a buffer of k² items
- only store items whose hash values' last p digits are zero
- size=#elements in buffer * 2^p
- relative error <= O(1/k)</p>
- merge sort to merge two sets

BJOI

- maintain many sets
- each time, create a new set as the union of two previously created sets
- return the size of the newly created set
- probably (>=95%) approximately (±25%) correct

Sketch of set intersection

- decide whether two sets are close enough to each other
- close : intersection / union is large
- MinHash
- the k smallest distinct hash values

Sketch of set intersection

- k smallest hash values
- assume intersection >= p union
- prob. of equal : p^k

Thu Training 2014

- Ameba mutation
- find similar N-element set pairs in 2N² subsets of a N² universe
- randomly generated
- intersection of close pairs: N/2
- p=1/3 for close pairs, 1/N for irrelevant pairs
- ▶ choose k=2
- #subsets shrinks by 1/9 after each iteration
- O(N²) false positives

Implementation Detail

- do not explicitly choose k
- randomly relabel the elements
- sort alphabetically, check adjacent pairs
- using a reverted index, this can be done in sublinear time!
- Overall time complexity: linear

Sketch of Hamming Distance

- sketch used to estimate the Hamming Distance of two 01 strings
- ► $d(x,y)\approx f(h(x),h(y))$
- randomly choose p bits, compute xor sum
- enumerate p=1,2,4,...,n/2,n
- multiple runs
- multi-scale Equality sketch

Multi-scale Equality Sketch

- assume the real Hamming distance is qN
- ▶ p bits: equal prob. = (1-q)^p
- O(1) distortion

Nearest Neighbour Search

- In Hamming cube
- coarse-to-fine hashes based on sampling and Equality
- Efficient Search for Approximate Nearest Neighbour in High Dimensional Space
- Kushilevtz, Ostrovsky, Rabani

Sketch of Edit Distance?

- Sketch of string's edit distance?
- ▶ Possible! Distortion $2^{O(\sqrt{\log n \log \log n})}$
- patented, not very useful in OI (at least now)

Sketch of frequency

- Implement a multiset that supports count()
- for the most frequent elements
- naive idea: randomly sample a population
- works if the portion of the element is high

Sketch of frequency

- Improved idea
- Hash each element to a unit vector in k-dim sphere
- Record the sum, compute the dot product
- Works in expectation
- ► $1/\sqrt{N}$, 1/N, 1/N, ..., 1/N
- better than the naive idea!

Signal to Noise Ratio

- signal: x_i
- noise: $\sqrt{\sum_j x_j^2}$
- works if the portion of second-order moment is high
- always better for the most frequent element

sketch of most frequent element

- hash the elements to k bins
- inside each bin, map each element to a unit vector (or just ±1), compute the sum
- take the maximum absolute value
- linear sketch!

sketch of second order moment

$$x_1^2 + x_2^2 + ... + x_n^2$$

- The amazing AMS algorithm
- map each element to ±1
- compute the sum
- square it

How it works

$$1+1+...+1=E[(\pm 1\pm 1...\pm 1)^2]$$

Let me analyze it

- $X=x_1+...+x_n$
- $E[X^2]=x_1^2+x_2^2+...+x_n^2=F_2$
- $E[(X^2-F_2)^2] \le E[X^4+F_2^2] \le 2F_2^2$
- Chebyshev bound
- ε⁻² repetitions
- 4-wise independence

How to get 4-wise independence?

▶ ax³+bx²+cx+d mod p

Sketch endless

- verification
- database search

Best is Endless.