Wybrane zagadnienia

Metoda reprezentacyjna

Stanisław Jaworski

Katedra Ekonometrii i Statystyki Zakład Statystyki

Przedmiotem rozważań metody reprezentacyjnej są metody wyboru prób z populacji skończonych oraz metody szacowania nieznanych carakterystyk populacji.

Definicja (populacja)

Populacją generalną będziemy nazywać zbiór wszystkich jednostek badania. Populacja generalna będzie zapisywana w postaci:

$$\mathcal{U} = \{\textbf{u}_1, \textbf{u}_2, \dots, \textbf{u}_N\} \text{ lub } \mathcal{U} = \{1, 2, \dots, N\}.$$

Liczbę $N \in \mathbb{N}$ nazywamy liczebnością populacji.

Przykłady

- Zbiór studentów, którz zdali egamin
- ▶ Zbiór gospodarstw domowych w Polsce w dniu 1 stycznia bieżącego roku
- Zbiór wyborców

Definicja (cecha statystyczna)

Cechą statystyczną nazywamy funkcję \mathcal{Y} :

$$\mathcal{Y}:\mathcal{U}\to\mathbb{R}$$

Wartość cechy dla j-tej jednostki badania, tzn. $\mathcal{Y}(u_j)$, oznaczamy przez Y_j

Przykłady

- lacktriangle ocena z egzaminu: $\mathcal{Y}(\mathsf{student}) = \mathsf{ocena}$ z egzaminu
- lacktriangledown dochody gospodarstwa domowego: $\mathcal{Y}(\mathsf{gospodarstwo}\;\mathsf{domowe}) = \mathsf{dochod}$

Definicja (parametr populacji)

Parametrem populacji \mathcal{U} nazywamy wektor $\mathbf{Y} = [Y_1, Y_2, \dots, Y_N]$

Definicja (przestrzeń parametrów)

Zbiór możliwych parametrów populacji $\mathcal U$ nazywamy przestrzenią parametrów i oznaczamy przez Ω

Definicja (Funkcja parametryczna)

Funkcją parametryczną nazywamy funkcję $T:\Omega \to \mathbb{R}$

Przykład

Populacja={student1, student2, student3}

Cecha=ocena z egzaminu

 $Parametr{=}[2,4,5]$

Przestrzeń parametrów

$$\Omega = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$$

Zauważmy, że

$$[2,4,5]\in\Omega$$

Przykład funkcji parametrycznej $T:\Omega \to \mathbb{R}$:

$$T(Y_1, Y_2, Y_3) = \frac{1}{3} \sum_{i=1}^{3} Y_i$$

Przykłady

- Wartość globalna cechy \mathcal{Y} : $Y = \sum_{i=1}^{N} Y_i$
- Średnia cechy \mathcal{Y} : $\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$
- ▶ Wariancja cechy \mathcal{Y} : $S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i \bar{Y})^2$
- lacktriangle Minimalna wartość cechy \mathcal{Y} : $Y_{min} = \min\{Y_1, \dots, Y_N\}$
- $lackbox{ Maksymalna wartość cechy \mathcal{Y}: $Y_{max} = \max\{Y_1,\ldots,Y_N\}$}$
- ▶ Iloraz wartości globalnych cech \mathcal{X}, \mathcal{Y} : $R = \frac{Y}{X}$
- ▶ Kowariancja cech \mathcal{X},\mathcal{Y} : $S_{xy} = \frac{1}{N-1} \sum_{j=1}^{N} (X_j \bar{X})(Y_j \bar{Y})$

Definicja (próba uporządkowana)

Próbą uporządkowaną s o liczebności n z populacji $\mathcal U$ nazywamy wektor

$$s = [j_1, j_2, \dots, j_n] \in \mathcal{U}^n$$

Dla podkreślenia, że liczebność n dotyczy próby s będziemy ją oznaczać przez n(s). Zbiór wszystkich uporządkowanych prób będziemy oznaczać przez $\mathscr S$

Definicja (próba nieuporządkowana)

Próbą nieuporządkowaną s' o liczebności ν z populacji $\mathcal U$ nazywamy zbiór

$$s' \subset \mathcal{U}$$

Dla podkreślenia, że liczebność ν dotyczy próby s będziemy ją oznaczać przez $\nu(s)$. Zbiór wszystkich nieuporządkowanych prób będziemy oznaczać przez \mathscr{S}'

Plan losowania, schemat losowania, operat losowania

Definicja (plan losowania)

Planem losowania nazywamy miarę prawdopodobieństwa p określoną na zbiorze ${\mathscr S}$:

$$p(s) \ge 0 \quad (\forall s \in \mathscr{S})$$
 $\sum_{s \in \mathscr{S}} p(s) = 1$

Uwaga: Zapis $\sum_{s\ni j,k}$ będzie oznaczać, że sumowanie odbywa się potakich $s\in\mathscr{S}$, które zawierają jednostki j,k. Na przykład s=(1,2,5), s=(1,2) oraz s=(6,3,1,2) spełniają zapis $s\ni 1,2$, a s=(1,3) już nie.

Definicja

- ightharpoonup Prawdopodobieństwo pierwszego rzędu: $\pi_j = \sum\limits_{s \ni j} p(s)$
- Prawdopodobieństwo drugiego rzędu: $\pi_{j,k} = \sum_{s \ni j,k} p(s)$
- Prawdopodobieństwo k-tego rzędu: $\pi_{j_1,...,j_k} = \sum_{s \ni j_1,...,j_k} p(s)$

Wybrane zagadnienia

Plan losowania, schemat losowania, operat losowania

Definicja

- lacktriangledown Oczekiwana efektywna liczebność próby: $m{
 u} = E[
 u(S)] = \sum_{s \in \mathscr{S}}
 u(s) p(s)$
- Wariancja efektywnej liczebności próby: $D^2[\nu(S)] = \sum_{s \in \mathscr{S}} (\nu(s) \nu)^2 p(s)$

Uwaga: $\nu(S)$ –zmienna losowa, która przyjmuje wartość $\nu(s)$ z prawdopodobieństwem p(s)

Definicja (schemat losowania)

Schematem losowania próby nazywamy proces wyboru (jedna po drugiej) jednostek z populacji $\mathcal U$ ze zgóry ustalonym prawdopodobieństwem wyboru dla poszczególnych jednostek w każdym ciągnieniu.

Plan losowania, schemat losowania, operat losowania

Losowanie proste ze zwracaniem (lpzz)

Niech $u, u_1, u_2, \ldots, u_{i-1} \in \mathcal{U}$ oraz \mathcal{U} ma rozmiar N

 A_u -zdarzenie oznaczające, że w i-tym ciągnięciu wylosowaliśmy element u

 $A_{u_1,\dots,u_{i-1}}$ –zdarzenie oznaczające, że w poprzednich ciągnięciach (od 1 do i-1) wyciągnęliśmy elementy u_1,\dots,u_{i-1}

W losowaniu ze zwracaniem zachodzi $P(A_u|A_{u_1,...,u_{i-1}})=\frac{1}{N}$ dla dowolnych u, oraz $u_1,\ldots,u_{i-1}.$

Losowanie proste bez zwracania (lpbz)

W losowaniu bez zwracania zachodzi

$$P(A_u|A_{u_1,...,u_{i-1}}) = \frac{1}{N-(i-1)}$$

dla $u \notin \{u_1, \dots, u_{i-1}\}$ oraz

$$P(A_u|A_{u_1,...,u_{i-1}})=0$$

w przeciwnym przypadku.

Wybrane zagadnienia

Plan losowania, schemat losowania, operat losowania

Prawdopodobieństwa pierwszego rzędu w losowaniach prostych π_j – prawdopodobieństwo wylosowania j–tego elementu w próbie $1-\pi_j$ – prawdopodobieństwo niewylosowania j–tego elementu w próbie

Pobieramy próbę n – elementową. Losujemy ze zwracaniem.

$$1-\pi_j=(1-\frac{1}{N})^n$$

Pobieramy próbę n – elementową. Losujemy bez zwracania.

$$\pi_j = \frac{\binom{N-1}{n-1}}{\binom{N}{n}} = \frac{n}{N}$$

Plan losowania, schemat losowania, operat losowania

Losowanie z prawdopodobieństwami proporcjonalnymi do wartości cechu $\mathcal X$ i ze zwracaniem (Ippxzz)

Niech składowe parametru $[X_1,\ldots,X_N]$ będą większe od zera. Określamy prawdopodobieństwo $p_j,\ j=1,\ldots,N,$ wylosowania j–tego elementu populacji następująco:

$$p_j = \frac{X_j}{X}$$

Zgodnie z zadanym rozkładem prawdopdobieństwa losujemy próbę n-elementową. A_i- zdarzenie polegające na tym, że i-ty elment nie pojawi się w próbie. Stąd

$$\pi_{ij} = 1 - P(A_i \cup A_j) = 1 - P(A_i) - P(A_j) + P(A_i \cap A_j) =$$

$$= 1 - (1 - p_i)^n - (1 - p_j)^n + (1 - p_i - p_j)^n$$

Zauważmy: $A_i\cap A_j-$ zdarzenie polegające na tym, że i-ty oraz j-ty elment nie pojawi się w próbie.

Plan losowania, schemat losowania, operat losowania

Definicja (operat Iosowania)

Operatem losowania nazywamy wykaz jednostek badania lub ich zespołów, zwanych jednostkami losowania. Każdej jednostce jest przyporządkowany identyfikator. Jeżeli losujemy jednostki badania, mówimy o losowaniu indywidualnym, jeżeli zespoły, o zespołowym.

Definicja (przestrzeń prób)

Niech $\mathcal{U}=\{1,2,\ldots,N\}$. Możemy wówczas przyjąć, że $\Omega=\Omega_1\times\ldots\Omega_N$. Niech $\Omega_s=\Omega_{j_1}\times\ldots\times\Omega_{j_n}$ dla $s=(j_1,\ldots,j_n)\in\mathscr{S}$. Zbiór

$$\mathcal{P} = \bigcup_{s \in \mathscr{S}} \Omega_s$$

nazywamy przestrzenią prób.

Wybrane zagadnienia

Statystyka, estymator

Definicja (statystyka, estymator)

Funkcję $t: \mathcal{P} \to \mathbb{R}$ nazywamy statystyką.

Definicja (estymator)

Niech $T:\Omega\to\mathbb{R}$ oznacza funkcję parametryczną oraz $\Theta=T(\Omega)$. Statystykę $t:\mathcal{P}\to\Theta$ nazywamy estymatorem funkcji parametrycznej T. Jeśli $Y\in\mathcal{P}$, to t(Y) nazywamy oceną funkcji parametrycznej T.

Estymatory

Estymator liniowy jednorodny

$$t(Y_s) = \sum_{i=1}^s w_i Y_{ji}$$

dla $s=(j_1,j_2,\ldots,j_n),\; Y_s=(Y_{j_1},\ldots,Y_{j_n})$ oraz ustalonych $w_1,w_2,\ldots,w_n\in\mathbb{R}$

Estymator Horvitza–Thompsona: \bar{y}_{HT} (plan lppbz)

$$t(Y_{s'}) = \frac{1}{N} \sum_{i=1}^{n} \frac{Y_{j_i}}{\pi_{j_i}}$$

dla $s' = \{j_1, j_2, \dots, j_n\}, \ Y_{s'} = (Y_{j_1}, \dots, Y_{j_n}).$

Oznaczenie: $\pi_i = \sum_{s' \ni i} p(s')$

Estymator Hansena–Hurwitza: \bar{y}_{HH} (plan lppxzz)

$$t(Y_s) = \frac{1}{N} \sum_{i=1}^{n} \frac{Y_{ji}}{n p_{ji}} = \frac{\bar{X}}{n} \sum_{i=1}^{n} \frac{Y_{ji}}{X_{ji}}$$

dla
$$s = (j_1, j_2, \dots, j_n), Y_s = (Y_{j_1}, \dots, Y_{j_n})$$

Definicja (estymator nieobciążony)

Niech $\mathbf Y$ oznacza parametr populacji oraz $\mathbf S$ zmienną losową, która przyjmuje wartość $s\in \mathscr S$ z prawdopodobieństwem p(s), gdzie p jest planem losowania. Estymator t nazywamy nieobciążonym dla funkcji parametrycznej T, jeżeli

$$E_p(t(Y_S)) = \sum_{s \in \mathscr{S}} t(Y_s) p(s) = T(Y)$$

Wartość oczekiwaną $E_p(t(Y_S))$ będziemy dla uproszczenia oznaczać przez $E_p(t)$ lub przez E(t).

Jeżeli estymator jest obciążony, to różnica $E_p(t(Y_S)) - T(Y)$ nazywa się obciążeniem estymatora. Różnicę tę będziemy oznaczać przez B(t).

Definicja (wariancja estymatora)

Niech $\mathbf Y$ oznacza parametr populacji oraz $\mathbf S$ zmienną losową, która przyjmuje wartość $s\in \mathscr S$ z prawdopodobieństwem p(s), gdzie p jest planem losowania. Wariancją estymatora t nazywamy wyrażenie

$$D_{p}^{2}(t(Y_{S})) = \sum_{s \in \mathscr{S}} [t(Y_{s}) - E_{p}(t(Y_{S}))]^{2} p(s)$$
$$= \sum_{s \in \mathscr{S}} t(Y_{s})^{2} p(s) - [E_{p}(t(Y_{S}))]^{2}$$

Wariancję $D_p^2(t(Y_S))$ będziemy oznaczać przez $D_p^2(t)$ lub $D^2(t)$.

Definicja (błąd średniokwadratowy)

Przy oznaczeniach, jak w powyższych definicjach, średnim błędem średniokwadratowym estymatora t jest wyrażenie

$$\begin{aligned} \mathit{MSE}_p(t) &= \sum_{s \in \mathscr{S}} (t(Y_s) - T(\mathbf{Y}))^2 p(s) \\ &= D_p^2(t(Y_S)) + [B(t)]^2 \end{aligned}$$

Wartość oczekiwana estymatora Horvitza-Thompsona

$$E_{p}(\bar{y}_{HT}) = \sum_{s' \in \mathscr{S}'} \left[\left(\frac{1}{N} \sum_{j \in s'} \frac{Y_{j}}{\pi_{j}} \right) p(s') \right]$$
$$= \sum_{j=1}^{N} \sum_{s' \ni j} \frac{1}{N} \frac{Y_{j}}{\pi_{j}} p(s')$$
$$= \sum_{j=1}^{N} \frac{1}{N} \frac{Y_{j}}{\pi_{j}} \sum_{s' \ni j} p(s') = \bar{Y}$$

Wariancja estymatora Horvitza-Thompsona

$$D_{p}^{2}(\bar{y}_{HT}) = E_{p}[(y_{HT})^{2}] - [E_{p}(y_{HT})]^{2} = E_{p} \left[\frac{1}{N} \sum_{j \in S'} \frac{Y_{j}}{\pi_{j}} \right]^{2} - [\bar{Y}]^{2}$$

$$= \frac{1}{N^{2}} E \left[\sum_{j \in S'} \left(\frac{Y_{j}}{\pi_{j}} \right)^{2} + \sum_{\substack{j,k \in S' \\ j \neq k}} \frac{Y_{j}Y_{k}}{\pi_{i}\pi_{j}} \right] - [\bar{Y}]^{2}$$

$$= \frac{1}{N^{2}} \left[\sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}^{2}} \sum_{s' \ni j} p(s') + \sum_{\substack{1 \le j,k \le N \\ j \neq k}} \frac{Y_{j}Y_{k}}{\pi_{j}\pi_{k}} \sum_{s' \ni j,k} p(s') \right] - [\bar{Y}]^{2}$$

$$= \frac{1}{N^{2}} \left[\sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}} + \sum_{\substack{1 \le j,k \le N \\ j \neq k}} \frac{\pi_{jk}}{\pi_{j}\pi_{k}} Y_{j}Y_{k} \right] - [\bar{Y}]^{2}$$

$$= \frac{1}{N^{2}} \left[\sum_{i=1}^{N} Y_{j}^{2} \left(\frac{1}{\pi_{j}} - 1 \right) + \sum_{\substack{1 \le i,k \le N \\ j \neq k}} \left(\frac{\pi_{jk}}{\pi_{j}\pi_{k}} - 1 \right) Y_{j}Y_{k} \right]$$

Pewne przekształcenia

Dla zmiennej losowej ${\bf S}$ o wartościach z ${\mathscr S}$ lub ${\mathscr S}'$ i rozkładzie p zachodzi:

$$\nu(s) = \sum_{j=1}^{N} \mathcal{I}_{s}(j)$$

$$E_{p}\nu(S) = \sum_{j=1}^{N} E_{p}(\mathcal{I}_{S}(j)) = \sum_{j=1}^{N} \sum_{s \ni j} p(s) = \sum_{j=1}^{N} \pi_{j}$$

$$\sum_{\substack{1 \le j,k \le N \\ j \ne k}} \pi_{ij} = \sum_{\substack{1 \le j,k \le N \\ j \ne k}} E_{p}(\mathcal{I}_{S}(j)\mathcal{I}_{S}(k)) = E_{p}\left(\sum_{\substack{1 \le j,k \le N \\ j \ne k}} \mathcal{I}_{S}(j)\mathcal{I}_{S}(k)\right) =$$

$$= E_{p}\left(\left(\sum_{j=1}^{N} \mathcal{I}_{S}(j)\right)^{2} - \sum_{j=1}^{N} \mathcal{I}_{S}^{2}(j)\right) = E_{p}\left(\nu^{2}(S) - \sum_{j=1}^{N} \mathcal{I}_{S}(j)\right) =$$

$$= E_{p}\left(\nu^{2}(S) - \nu(S)\right) = E_{p}(\nu^{2}(S)) - E_{p}(\nu(S)) =$$

$$= D_{p}^{2}(\nu(S)) + [E_{p}(\nu(S))]^{2} - E_{p}(\nu(S))$$

Uwaga: Wartość $E_p(\nu(S))$ nazywamy oczekiwanym efektywnym rozmiarem próby. Oznaczmy $\nu = E_p(\nu(S))$. Dla $\nu(S) \equiv \nu$ mamy zatem tożsamości:

$$u = \sum_{j=1}^{N} \pi_j, \quad \sum_{\substack{1 \le j,k \le N \\ j \ne k}} \pi_{ij} = \nu^2 - \nu$$

dodatkowo

$$\sum_{\substack{j=1\\j\neq k}}^{N} \pi_{jk} = \sum_{\substack{j=1\\j\neq k}}^{N} E_{p}(\mathcal{I}_{S}(j)\mathcal{I}_{S}(k)) = E_{p}(\mathcal{I}_{S}(k)\sum_{\substack{j=1\\j\neq k}}^{N} \mathcal{I}_{S}(j)) =$$

$$= E_{p}(\mathcal{I}_{S}(k)[\nu(S) - \mathcal{I}_{S}(k)]) = (\nu - 1)\pi_{k}$$

$$\begin{split} &\frac{1}{N^2} \sum_{\substack{1 \leq j,k \leq N \\ j \neq k}} (\pi_i \pi_j - \pi_{ij}) \left(\frac{Y_j}{\pi_j} - \frac{Y_k}{\pi_k} \right)^2 = \\ &= \frac{1}{N^2} \sum_{\substack{1 \leq j,k \leq N \\ j \neq k}} \left(\pi_k \frac{Y_j^2}{\pi_j} + \pi_j \frac{Y_k^2}{\pi_k} - \pi_{jk} \frac{Y_j^2}{\pi_j^2} - \pi_{jk} \frac{Y_k^2}{\pi_k^2} - 2Y_j Y_k + 2\pi_{ij} \frac{Y_j Y_k}{\pi_j \pi_k} \right) \\ &= \frac{2}{N^2} \sum_{\substack{1 \leq j,k \leq N \\ i \neq k}} \left(\pi_k \frac{Y_j^2}{\pi_j} - \pi_{jk} \frac{Y_k^2}{\pi_k^2} - Y_j Y_k + \pi_{ij} \frac{Y_j Y_k}{\pi_j \pi_k} \right) =^* \end{split}$$

Ponieważ

$$\begin{split} \sum_{1 \leq j, k \leq N} \pi_k \frac{Y_j^2}{\pi_j} &= \sum_{j=1}^N \frac{Y_j^2}{\pi_j} \sum_{k=1 \atop k \neq j}^N \pi_k = \sum_{j=1}^N \frac{Y_j^2}{\pi_j} (\nu - \pi_j) = \\ &= \nu \sum_{j=1}^N \frac{Y_j^2}{\pi_j} - \sum_{j=1}^N Y_j^2 \\ \sum_{1 \leq j, k \leq N} \pi_{jk} \frac{Y_j^2}{\pi_j^2} &= \sum_{j=1}^N \frac{Y_j^2}{\pi_j^2} \sum_{k=1 \atop k \neq j}^N \pi_{jk} = \sum_{j=1}^N \frac{Y_j^2}{\pi_j^2} \pi_j (\nu - 1) = \\ &= (\nu - 1) \sum_{j=1}^N \frac{Y_j^2}{\pi_j} \\ \sum_{1 \leq j, k \leq N} Y_j Y_k &= Y^2 - \sum_{j=1}^N Y_j^2 \end{split}$$

mamy

$$=^{\star} \frac{2}{N^{2}} \left(\nu \sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}} - \sum_{j=1}^{N} Y_{j}^{2} - (\nu - 1) \sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}} - Y^{2} + \sum_{j=1}^{N} Y_{j}^{2} + \sum_{1 \leq j,k \leq N} \pi_{ij} \frac{Y_{j}Y_{k}}{\pi_{j}\pi_{k}} \right)$$

$$= \frac{2}{N^{2}} \left[\sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}} + \sum_{1 \leq j,k \leq N} \frac{\pi_{jk}}{\pi_{j}\pi_{k}} Y_{j} Y_{k} - Y^{2} \right]$$

$$= \frac{2}{N^{2}} \left[\sum_{j=1}^{N} \frac{Y_{j}^{2}}{\pi_{j}} + \sum_{1 \leq j,k \leq N} \frac{\pi_{jk}}{\pi_{j}\pi_{k}} Y_{j} Y_{k} \right] - 2[\bar{Y}]^{2} = 2D^{2}(y_{HT})$$

Z powyższych rachunków wynika, że dla $\nu(S) \equiv \nu$ wariancja estymatora Hurwitza–Thompsona wynosi

$$D^2(y_{HT}) = \frac{1}{2N^2} \sum_{\substack{1 \leq j,k \leq N \\ i \neq k}} (\pi_i \pi_j - \pi_{ij}) \left(\frac{Y_j}{\pi_j} - \frac{Y_k}{\pi_k}\right)^2$$

Twierdzenie

Jeżeli $\pi_j>0$ dla $j=1,\ldots,N$ oraz $_{ij}>0$ dla $i,j=1,\ldots,N, j
eq k$, to statystyka

$$\hat{D^2}(\bar{y}_{HT}) = \frac{1}{N^2} \left[\sum_{j \in \mathbf{S}'} \frac{Y_j^2}{\pi_j} \left(\frac{1}{\pi_j} - 1 \right) + \sum_{\substack{1 \le j,k \in \mathbf{S}' \\ j \ne k}} \left(\frac{\pi_{jk}}{\pi_j \pi_k} - 1 \right) \frac{Y_j Y_k}{\pi_{j,k}} \right]$$

jest nieobciążonym estymatorem wariancji $D^2(\bar{y}_{HT})$. Dla $\nu(\mathbf{S}') \equiv \nu$ ma on postać

$$\hat{D^2}(\bar{y}_{HT}) = \frac{1}{2N^2} \sum_{j,k \in S'} \frac{\pi_i \pi_j - \pi_{ij}}{\pi_{jk}} \left(\frac{Y_j}{\pi_j} - \frac{Y_k}{\pi_k}\right)^2$$

Wniosek

Dla n-elementowej próby wylosowanej według planu lpbz (losowanie proste bez zwracania)

$$\hat{D^2}(\bar{y}_{HT}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n},$$

gdzie

$$s^2 = \frac{1}{n-1} \sum_{i \in S'} (Y_i - \bar{Y}_{S'})^2, \quad \bar{Y}_{S'} = \frac{1}{n} \sum_{i \in S'} Y_i$$

Uwaga. Jeżeli zmienna **S**′ zrealizuje się jako $s'=\{j_1,\ldots,j_n\}$, to dla uproszczenia będziemy oznaczać (Y_{j_1},\ldots,Y_{j_n}) przez (y_1,\ldots,y_n) . Wtedy możemy zapisać

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

Wartość oczekiwana estymatora Hansena–Hurwitza (plan lppxzz, $n(s) \equiv n$)

Ze względu na sposób losowania estymator ten można zapisać w postaci

$$\bar{y}_{HH} = \frac{1}{N} \sum_{i=1}^{n} \frac{Y_{J_i}}{n p_{J_i}}$$

gdzie J_1, J_2, \dots, J_n są niezależnymi zmiennymi losowymi o tym samym rozkładzie

$$p: \begin{array}{c|cccc} 1 & 2 & \cdots & N \\ \hline p_1 & p_2 & \cdots & p_N \end{array}$$

Wtedy
$$E_p(\bar{y}_{HH}) = \frac{1}{Nn} \sum_{i=1}^{n} E_p\left(\frac{Y_{J_i}}{p_{J_i}}\right) = \frac{1}{Nn} \sum_{i=1}^{n} \sum_{j=1}^{N} \frac{Y_j}{p_j} p_j = \bar{Y}$$

Wariancja estymatora Hansena–Hurwitza (plan Ippxzz, $n(s) \equiv n$)

$$D^{2}(\bar{y}_{HH}) = E_{p}(y_{HH})^{2} - (E_{p}(y_{HH}))^{2} = E_{p}\left(\sum_{i=1}^{n} \frac{Y_{J_{i}}}{p_{J_{i}}}\right)^{2} - (\bar{Y})^{2} =$$

$$= \frac{1}{(Nn)^{2}} E_{p}\left(\sum_{i=1}^{n} \frac{Y_{J_{i}}^{2}}{p_{J_{i}}^{2}} + \sum_{\substack{1 \leq j,k \leq n \\ j \neq k}} \frac{Y_{J_{i}}Y_{J_{k}}}{p_{J_{i}}p_{J_{k}}}\right) - (\bar{y})^{2} =$$

$$= \frac{1}{(Nn)^{2}}\left(\sum_{i=1}^{n} \sum_{k=1}^{N} p_{k} \frac{Y_{k}^{2}}{p_{k}^{2}} + \sum_{\substack{1 \leq j,k \leq n \\ j \neq k}} E\left(\frac{Y_{J_{i}}}{p_{J_{i}}}\right) E\left(\frac{Y_{J_{k}}}{p_{J_{k}}}\right)\right) - (\bar{y})^{2} =$$

$$= \frac{1}{(Nn)^{2}}\left(n \sum_{k=1}^{N} \frac{Y_{k}^{2}}{p_{k}} + n(n-1)N^{2}(\bar{Y})^{2}\right) - (\bar{Y})^{2} =$$

$$= \frac{1}{n} \sum_{k=1}^{N} p_{k}\left(\frac{Y_{k}}{Np_{k}} - \bar{Y}\right)^{2}$$

- ▶ Zauważmy, że dla $p_k = \frac{Y_k}{Y} = \frac{Y_k}{\sum_k Y_k}$ zachodzi $D^2(\bar{y}_{HH}) = 0$.
- ▶ Jeżeli dla k = 1, 2, ..., N mamy $p_k = 1/N$, to

$$\bar{y}_{HH} = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

oraz

$$D^2(\bar{y}_{HH}) = D^2(\bar{y}) = \frac{1}{n} \cdot \frac{1}{N} \sum_{k=1}^{N} (Y_k - \bar{Y})^2$$

Uogólniony estymator różnicy dla średniej

$$\bar{y}_{GD} = \frac{1}{N} \sum_{i \in S'} \frac{Y_i - E_i}{\pi_i} + \bar{E}$$

gdzie E_1, \ldots, E_N są dowolnymi stałymi. W szczegółności dla $E_i = cX_i, \ i = 1, \ldots, N$, gdzie X_i są wartościami cechy dodatkowej $\mathcal X$ oraz c jest stałą, estymator ten przyjmuje postać:

$$\bar{y}_{GD} = \frac{1}{N} \sum_{i \in S'} \frac{Y_i}{p_i} + c\bar{X} - \frac{1}{N} \sum_{i \in S'} \frac{X_i}{\pi_i} = \bar{y}_{HT} + c(\bar{X} - \bar{x}_{HT})$$

Zatem $E(\bar{y}_{GD}) = \bar{Y}$ oraz

$$D^{2}(\bar{y}_{GD}) = D^{2}(\bar{y}_{HT}) + c^{2}D^{2}(\bar{x}_{HT}) - 2cCov(\bar{x}_{HT}, \bar{y}_{HT}),$$

która jest minimalizowana dla $c=rac{\mathit{Cov}(\bar{\mathbf{x}}_{HT},\bar{\mathbf{y}}_{HT})}{\mathit{D}^2(\bar{\mathbf{x}}_{HT})}.$

Zatem najmniejsza wariancja wynosi:

$$D(\bar{y}_{GD}) = D^2(\bar{y}_{HT})[1 - \varrho^2(\bar{x}_{HT}, \bar{y}_{HT})]$$

Estymator Khamisa \bar{y}_K (Iosowanie zgodnie ze schematem Ipzz) Niech s'=r(s), gdzie r jest funkcją redukcyjną

$$\bar{y}_{\mathcal{K}} = \frac{1}{\nu(\mathbf{S}')} \sum_{j \in \mathbf{S}'} Y_j$$

Estymator Khamisa jest nieobciążony: $E(\bar{y}_K) = E(E(\bar{y}_K|\nu(\mathbf{S}'))) = E(\bar{Y}) = \bar{Y}$

Wariancja

$$\begin{split} D^2(\bar{\mathbf{y}}_{K}) &= D^2 \left(\frac{1}{\nu(\mathbf{S}')} \sum_{j \in \mathbf{S}'} Y_j \right) = \\ &= D^2 \left(E \left[\frac{1}{\nu(\mathbf{S}')} \sum_{j \in \mathbf{S}'} Y_j \middle| \nu(\mathbf{S}') \right] \right) + E \left(D^2 \left[\frac{1}{\nu(\mathbf{S}')} \sum_{j \in \mathbf{S}'} Y_j \middle| \nu(\mathbf{S}') \right] \right) = \\ &= D^2(\bar{Y}) + E \left[\left(\frac{1}{\nu(\mathbf{S}')} - \frac{1}{N} \right) \frac{N\sigma^2}{N-1} \right] \\ &= \operatorname{gdzie} \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2 \\ D^2(\bar{\mathbf{y}}_{K}) &= \left(E \left[\frac{1}{\nu(\mathbf{S}')} \right] - \frac{1}{N} \right) \frac{N\sigma^2}{N-1} > \left(\frac{1}{n} - \frac{1}{N} \right) S^2 = D^2(\bar{\mathbf{y}}_{HT}) \\ &= \operatorname{gdzie} D^2(\bar{\mathbf{y}}_{HT}) \text{ wyznaczone w przypadku: lpbz, } \nu \equiv n \end{split}$$

W przypadku lpzz i rozmiaru próby n mamy $D^2(\bar{y}_{HH}) = \sigma^2/n$ Zauważmy:

$$\left(E\left[\frac{1}{\nu(\mathbf{S}')}\right] - \frac{1}{N}\right)\frac{N}{N-1} < \frac{1}{n} \iff \frac{NE\left[\frac{n}{\nu(\mathbf{S}')}\right] - n}{N-1} < 1$$

Zatem

$$D^2(\bar{y}_{HH}) > D^2(\bar{y}_K) > D^2(\bar{y}_{HT})$$

Definicja (strategia losowania)

Strategią losowania nazywamy parę (p,t), gdzie p jest planem losowania, natomiast t jest estymatorem funkcji parametrycznej T. Strategię losowania będziemy oznaczać przez H(p,t). Jeśli estymator t jest nieobciążony, powiemy o strategii, że jest nieobciążona.

Definicja (porównanie strategii)

Powiemy, że startegia $H_1(p_1, t_1)$ jest co najmniej tak dobra jak strategia $H_2(p_2, t_2)$, jeżeli

$$MSE_{p_1}(t_1) \leq MSE_{p_2}(t_2)$$

dla wszystkich $\mathbf{Y} \in \Omega$. Jeżeli dodatkowo

$$MSE_{p_1}(t_1) < MSE_{p_2}(t_2)$$

dla pewnego $\mathbf{Y} \in \Omega$, to mówimy, że strategia $H_1(p_1,t_1)$ jest lpesza od strategii $H_2(p_2,t_2)$

Przypomnienie:
$$MSE_p(t) = \sum_{s \in \mathscr{S}} (t(Y_s) - T(\mathbf{Y}))^2 \rho(s)$$

Strategia Iosowania

Przykład

Rozmiar próby: n

$$MSE_{lpzz}(\bar{y}_{HH}) > MSE_{lpzz}(\bar{y}_{K}) > MSE_{lpbz}(\bar{y}_{HT})$$

Przedział ufności dla średniej, minimalna liczebność próby

Problem

Jak ustalić liczebność próby n, aby błąd szacunku nie przekroczył zadanej wielkości d ze z góry ustalonym prawdopodobieństwem $1-\alpha$?

$$P(|t_n - T| < d) = 1 - \alpha$$

Definicja (minimalna liczebność próby)

Wielkość d nazywana jest maksymalnym dopuszczalnym błędem szacunku, natomiast $\delta=d/T$ maksymalnym dopuszaczalnym względnym błędem szacunku

Przykład

W przypadku szacowania $ar{Y}$ na podstawie próby wylosowanej według schematu lpbz mamy

$$P(|\bar{y} - \bar{Y}| < d) = P(\bar{y} - d < \bar{Y} < \bar{y} + d) = 1 - \alpha$$

$$P(\bar{y} - u_{1-\alpha/2}D(\bar{y}) < \bar{Y} < \bar{y} + u_{1-\alpha/2}D(\bar{y})) \approx 1 - \alpha$$

gdzie $u_{1-\alpha/2}$ jest kwantylem rozkładu normalnego rzędu $(1-\alpha/2)$ oraz

$$D^2(\bar{y}) = \left(\frac{1}{n} - \frac{1}{N}\right) S^2$$

Przedział ufności dla średniej, minimalna liczebność próby

Zatem

$$d = u_{1-\alpha/2}D(\bar{y})$$

$$\delta = u_{1-\alpha/2} \frac{D(\bar{y})}{\bar{Y}}$$

oraz minimalna liczebność próby $n = [n^*] + 1$

$$n^* = \frac{Nu_{1-\alpha/2}^2 S^2}{Nd^2 + u_{1-\alpha/2}^2 S^2} = \frac{Nu_{1-\alpha/2}^2 V^2}{N\delta^2 + u_{1-\alpha/2}^2 V^2}$$

gdzie $V=S/ar{Y}$ – współczynnik zmienności

Przy wyznaczaniu minimalnej próby parametry, których nie znamy zastępujemy ich oszacowaniami

Definicja (estymator produktowy (iloczynowy))

Statystykę

$$\bar{y}_p = rac{ar{x}ar{y}}{ar{X}}, \quad ar{X} > 0$$

nazywamy estymatorem produktowym (iloczynowym) średniej $ar{Y}$

Twierdzenie

Jeżeli n-elementowa próba wylosowana została według schematu lpbz z N-elementowej populacji, to

$$E(\bar{y}_p) = \bar{Y} + (1 - n/N) \frac{S_{xy}^2}{n\bar{X}} + O(n^{-2})$$

$$MSE(\bar{y}_p) = \left(1 - \frac{n}{N}\right) \frac{S_y^2 + 2RS_{xy} + R^2S_x^2}{n^2} + O(n^{-2})$$

gdzie

$$S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (X_j - \bar{X})(Y_j - \bar{Y})$$

$$R = rac{ar{Y}}{ar{X}}$$

Estymatory złożone

Definicja (estymator ilorazowy)

Statystykę

$$\bar{y}_q = \frac{\bar{y}}{\bar{x}}\bar{X} = r\bar{X}$$

gdzie

$$r=rac{ar{y}}{ar{x}}$$

nazywamy estymatorem ilorazowym średniej Y.

Twierdzenie

Jeżeli n-elementowa próba wylosowana została według schematu lpbz z N-elementowej populacji, to

$$E(\bar{y}_q) = \bar{Y} + (1 - n/N) \frac{RS_x^2 - S_{xy}}{n\bar{X}} + O(n^{-2})$$

$$MSE(\bar{y}_q) = \left(1 - \frac{n}{N}\right) \frac{S_y^2 - 2RS_{xy} + R^2 S_x^2}{n} + O(n^{-2})$$

Estymatory złożone

Definicja (estymator liniowy)

Statystykę

$$\bar{y}_{lr} = \bar{y} + b(\bar{X} - \bar{x})$$

gdzie

$$b = \frac{s_{xy}^2}{s_x^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

nazwywamy estymatorem liniowym regresyjnym

Twierdzenie

Jeżeli n-elementowa próba wylosowana została według schematu lpbz z N-elementowej populacji, to

$$E(\bar{y}_{lr}) = \bar{Y} + \left(1 - \frac{n}{N}\right)C + O(n^{-2})$$

gdzie

$$C = \frac{B\sum_{j=1}^{N} (Y_j - \bar{Y})^3 - \sum_{j=1}^{N} (X_j - \bar{X})^2 (Y_j - \bar{Y})}{(n-1)(N-1)S_x^2}$$

Estymatory złożone

$$B = \frac{\sum_{j=1}^{N} (X_j - \bar{X})(Y_j - \bar{Y})}{\sum_{j=1}^{N} (X_j - \bar{X})^2}$$

oraz

$$\textit{MSE}(\bar{y}_{lr}) = \left(1 - \frac{n}{N}\right) \frac{S_y^2(1 - \rho_{xy}^2)}{n} + O(n^{-2})$$

gdzie

$$\rho_{xy} = \frac{S_{xy}}{S_x S_y} = B \frac{S_x}{S_y}$$

Zagadnienie (estymacja wartości średniej w losowaniu warstwowym)

Badamy cechę mierzalną Y. Populacja generalna o liczności N podzielona jest na L warstw o licznościach N_h , $h=1,2,\ldots,L$, przy czym

$$\sum_{h=1}^{L} N_h = N.$$

Frakcja elementów w warstwie h wynosi $W_h=N_h/N$. Z każdej warstwy oddzielnie losujemy n_h elementów do próby. Dla próby n elementowej spełnione jest

$$n_h = \frac{N_h}{N} n = W_h n, \quad h = 1, 2, \dots, L.$$

Z próby otrzymujemy wyniki

$$y_{ih}, i = 1, 2, \ldots, n_h, h = 1, 2, \ldots, L.$$

Na podstawie próby szacujemy średnią wartość \bar{Y} populacji w następujący sposób:

$$\bar{y}_w = \frac{1}{N} \sum_{h=1}^{L} N_h \bar{y}_h = \sum_{h=1}^{L} W_h \bar{y}_h,$$

gdzie

$$\bar{y}_h = \frac{1}{n_h} \sum_{i=1}^{n_h} y_{ih}$$

Wariancja tego estymatora wynosi:

$$D^2(\bar{y}_w) = \left(\frac{1}{n} - \frac{1}{N}\right) \sum_{h=1}^{L} W_h S_h^2,$$

gdzie S_h^2 jest wariancją w h-tej warstwie (jeżeli jej nie znamy, to z dużej próby można ją oszacować za pomocą s_h^2).

Jeżeli badana cecha w populacji ma rozkład zbliżony do normalnego lub gdy przy innym rozkładzie próba jest duża, to przybliżony przedział ufności dla średniej ma postać

$$\left(\bar{y}_w - u_{1-\alpha/2}D(\bar{y}_w), \bar{y}_w + u_{1-\alpha/2}D(\bar{y}_w)\right)$$

Minimalna liczebność próby potrzebna do oszacowania średniej z maksymalnym dopuszczalnym błędem szacunku d wynosi

$$n = \frac{\sum\limits_{h=1}^{L} W_h S_h^2}{\frac{d^2}{u_{1-\alpha/2}^2} + \frac{1}{N} \sum\limits_{h=1}^{L} W_h S_h^2}$$

Zagadnienie ("optymalna" estymacja wartości średniej w losowaniu warstwowym)

Założenia są identyczne, jak w poprzednim zagadnieniu, z tą różnicą, że

liczba wylosowanych elementów z h-tej warstwy wynosi

$$n_h = \frac{W_h S_h}{\sum\limits_{h=1}^L W_h S_h} n, \quad h = 1, 2, \dots, L$$

• wariancja estymatora wynosi

$$D^{2}(\bar{y}_{w}) = \frac{1}{n} \left(\sum_{h=1}^{L} W_{h} S_{h} \right)^{2} - \frac{1}{N} \sum_{h=1}^{L} W_{h} S_{h}^{2}$$

minimalna liczebność próby wynosi

$$n = \frac{(\sum_{h=1}^{L} W_h S_h)^2}{\frac{d^2}{u_{1-\alpha/2}^2} + \frac{1}{N} \sum_{h=1}^{L} W_h S_h^2}$$

Losowanie w zagadnieniu pierwszym nazywamy proporcjonalnym (do wielkości warstwy), a w zagadnieniu drugim optymalnym (zapewnia najmniejszą wariancję estymatora)