CMSC 678 Project 3

Paul Hudgins

Department of Computer Science Virginia Commonwealth University Richmond, VA, USA

Abstract—This report details the author's methods and results for CMSC 678 Project 3. A two-layer neural network was evaluated using a single split of a cancer data set. Performance comparisons were made for the number of iterations and number of hidden layer neurons.

Keywords-Neural network, Matlab,

I. RUNNING THE PROJECT

Code for Part 1 can be executed by running hudgins_project3.m. A total of 28 training periods will be executed, so execution may take several minutes.

II. METHODS

A. Neural Network Design

A two-layer neural network was developed in Matlab based on the methods described in [1]. Hyperbolic tangent was used as the activation function for hidden layer neurons. After experimentation, a learning rate of 0.02 was used.

Figure 1. Training data on two dimensions.

Figure 2. Errors for training and epochs.

B. Dataset and Experimental Setup

Training data consisted 198 examples of two-dimensional cancer-related data, divided into two classes. Training data is not linearly separable. A two-dimensional projection of this data is shown in Figure 2. Neural networks were evaluated on a 75-25 split of this data. Evaluation was performed for four different numbers of iterations: 100, 250, 500, and 1000. For each of these, evaluations were performed for the following numbers of hidden neurons: 5, 10, 15, 25, 50, 75, 100.

III. RESULTS

Comparison of performance for numbers of hidden neurons and iterations is provided in Figure 2. The lowest error percentage achieved was E=22.45% for N=15 and I=100. The lowest error achieved for class 1 was 2.86% and the lowest error achieved for class 2 was 35.71%.

REFERENCES

[1] V. Kecman, 'Multilayer Perceptron ie Neural Network', Virginia Commonwealth University, 2018