磁性物理学 レポート No.1

82311971 佐々木良輔

$(3d)^2$ 電子が取りうる量子数の組は

$$(m_l, m_s) = {}^{(a)}(2, 1/2), {}^{(b)}(1, 1/2), {}^{(c)}(0, 1/2), {}^{(d)}(-1, 1/2), {}^{(e)}(-2, 1/2), {}^{(e)}(2, -1/2), {}^{(f)}(2, -1/2), {}^{(g)}(1, -1/2), {}^{(h)}(0, -1/2), {}^{(i)}(-1, -1/2), {}^{(j)}(-2, -1/2)$$

$$(1)$$

この内 M_L , M_S が共に非負となる場合を列挙すると

となる. したがって M_L - M_S 平面において各格子点の状態数は図 1(a) のようになり、これは図 1(b) から (f) のように分解される. 図 1(b) において L=4, S=0 から J=4 なので、多重項は 1G_4 である. 図 1(c) において L=3, S=1 から J=4, 3, 2 なので、多重項は 3F_4 , 3F_3 , 3F_2 である. 図 1(d) において L=2, S=0 から J=2 なので多重項は 1D_2 である. 図 1(c) において L=1, S=1 から J=2, 1, 10 なので、多重項は 11, 12 である。図 1(c) において

 $L=0,\;S=0$ から J=0 なので多重項は 1S_0 である. また各多重項の ${
m Lande}$ の ${
m g}$ 因子は

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(3)

より表1のように計算される.

図 1 M_L - M_S 平面における状態の分解, 及びその多重項

表 1 各多重項の Lande の g 因子

多重項	L	S	J	g
$\overline{^1G_4}$	4	0	4	1
${}^{3}F_{4}$	3	1	4	5/4
${}^{3}F_{3}$	3	1	3	13/12
${}^{3}F_{2}$	3	1	2	2/3
1D_2	2	0	2	1
${}^{3}P_{2}$	1	1	2	3/2
${}^{3}P_{1}$	1	1	1	3/2
${}^{3}P_{0}$	1	1	0	3/2
${}^{1}S_{0}$	0	0	0	3/2