GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

OMBRE DE LA ASIGNATUR	A	
	Simulación y optimización	
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	190508	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante el conocimiento sobre la naturaleza de los sistemas reales, el aprendizaje de técnicas de modelado y herramientas para sistemas discretos y estocásticos aplicados a la industria, así como la habilidad para usar software de simulación para modelar un sistema y estimar las medidas de rendimiento del sistema y sus resultados.

TEMAS Y SUBTEMAS

1. Principios básicos de la simulación

- 1.1 Introducción a la simulación
- 1.2 Definiciones de simulación
- 1.3 Ventajas y desventajas de la simulación
- 1.4 Pasos para realizar un estudio de simulación

2. Números pseudo aleatorios

- 2.1 Generación de números pseudoaleatorios
- 2.2 Propiedades de los números pseudoaleatorios
- 2.3 Pruebas estadísticas para los números pseudoaleatorios

3. Variables aleatorias

- 3.1 Definición de variable aleatoria
- 3.2 Tipos de variables aleatorias
- 3.3 Determinación del tipo de distribución de un conjunto de datos
- 3.4 Generación de variables aleatorias

4. Simulación de variables aleatorias

- 4.1 Verificación y validación de los modelos de simulación
- 4.2 Simulaciones no terminales o de estado estable
- 4.3 Modelos de simulación
- 4.4 Selección de lenguajes de simulación

5. Simulación de Sistemas de Manufactura

- 5.1 Introducción
- 5.2 Objetivos de la simulación en Manufactura
- 5.3 Software de simulación para aplicaciones de Manufactura
- 5.4 Elementos básicos
- 5.5 Estructura de programación
- 5.6 Construcción de un modelo
- 5.7 Casos de estudio

6. Diseño y Análisis de experimentos y Optimización

- 6.1 Introducción
- 6.2 Diseño factorial 2k
- 6.3 Metodología de superficie de respuesta
- 6.4 Optimización

GENERAL DE EDUCACIÓN
MEDIA SUPERIOR Y SUPERIO

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollaran utilizando medios de apoyo didáctico (laptop, cañón).

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Tres exámenes parciales y un examen final.

BIBLIOGRAFÍA

Libros Básicos:

Handbook of simulation: principles, methodology, advances, applications, and practice, Banks J., John Wiley & Sons, 1998.

Análisis y simulación de sistemas industriales, Schmidt J.W. Trillas, 1979.

Simulación, Ross, Sheldon M., Prentice-Hall/Pearson, 1999, Segunda Edición.

Diseño y análisis de experimentos, Montgomery, Douglas C., Limusa Wiley, 2008, Segunda Edición.

Libros de Consulta:

Simulation Fundamentals. Bennett B. S. Prentice-Hall, 1995.

Modeling and Simulation Fundamentals, John A. Sokolowski, Catherine M. Banks, Wiley, 2010.

Continuum scale simulation of engineering materials. Dierk Raabe, Wiley-VCH, 2004.

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales mínimo de maestría y de preferencia doctorado completados en ingeniería industrial o un área relacionada.

