## Artificial astrocyte networks

Erik J Peterson

CoAxLab Carnegie Mellon University

#### Table of contents.

- 1. Goal.
- 2. What are artificial neural networks?
- 3. Defining artificial astrocyte networks.
- 4. Theory.
- 5. Practice.
- 6. Conclusions.



#### Goal

• Use models and proof methods from artificial intelligence to try and set an upper bound on astrocyte computation.

### **ANNs**

- By example.
- · Sparse networks.

### Classic example: visual digit recognition.







$$\sum x_{ij} = 9$$



$$\sum \mathbf{w}_{ij} x_{ij} = 9$$

$$\sum w_{ij} x_{ij} + \mathbf{b_i} = 9$$

$$\phi(\sum w_{ij}x_{ij}+b_i)=9$$



FI-curve (left)  $pprox \phi$  nonlinearity (right)



A deep ANN network. Each box is a *layer*:  $\phi(\sum w_{ij}x_{ij} + b_i)$ 

### **AANs**

### Basic astrocyte properties

- [Ca<sup>2+</sup>] dynamics
- Gliotransmission

## Assumption 1 ( $\phi$ ).

• [ $Ca^{2+}$ ] dynamics  $\leftrightarrow$  firing rate

## Basic astrocyte limits.

- · No synapses
- · No axons

## Basic astrocyte limits.

- · No w<sub>i</sub>
- · No  $\sum$

## Assumption 2 ( $W_i$ ).

 $\cdot$  Directional [ $Ca^{2+}$ ]-dependent gliotransmission.

.

## Assumption 3 $\overline{(\sum)}$ .

• Directional  $[Ca^{2+}]$  waves, driven by gliotransmission.

In theory.

### Computational calcium waves.

- Let's treat neurons only as a source of input; glia do all the computation!
- Let's study a forward moving  $[Ca^{2+}]$  wave.
- Prove: it is a universal function approximator.
- (With Assumptions 1-3)

$$|F(x) - f(x)| < \epsilon$$

$$|F(x) - f(x)| < \epsilon$$

F(x): any target function (whose domain is bounded)

$$|F(x) - f(x)| < \epsilon$$

F(x): visual recognition system in cat (target)

$$|F(x) - \underline{f}(x)| < \epsilon$$

F(x): visual recognition system in cat (target)

f(x): an ANN (approximator)

```
|F(x)-f(x)|<\epsilon
```

F(x): visual recognition system in cat (target)

f(x): an ANN (approximator)

 $\epsilon$  : the max error boundary

$$|F(x) - f(x)| < \epsilon$$

It is possible the target F and learned function f can be made arbitrarily close to  $\epsilon$ .

#### Proof sketch.



- Bölcskei et al (2019) F can be approximated by f in M < N connections.
- $f: \phi(\sum w_{ij}x_{ij} + b_i)$

#### Proof sketch.





• 
$$f: \phi(\sum^{M} w_{ij}x_{ij} + b_i)$$



- Approximation of the universal approximator
- $W_{1,1}^o = \sum W_{i,j}^o$
- Astrocyte Sudoku

In practice.

### Three astrocyte layers.

- 1. Gather
- 2. Slide
- 3. Spread



#### A fundamental limit?

• For astrocyte computation width requires depth.



### Methods.

- · Task: MINST digits
  - 1. VAE, N = (784, 20)
  - 2. Perceptron, N = (20, 30, 10)
- Loss: Cross-entropy
- · Optimizer: ADAM

### Results.





# Conclusions.

#### Conclusions.

- AANs  $\rightarrow$  universal function approximator.
- · AANs can solve hard vision problems.
- · An upper bound for the performance of real astrocytes?

#### Future work.

- Upper bound  $\rightarrow$  biological upper bound (help)
- Recurrent waves (in collaboration)
- Better motivated tasks (help)

### Open science.

```
Code github.com/CoAxLab/glia_playing_atari
Talk github.com/parenthetical-e/glia-talk-sfn-2019
```

Thank you!