ナレッジグラフ推論チャレンジ 本部門応募フォーム

グラフ畳み込みネットワークを用いた推理小説の犯人推定

東京都市大学大学院 総合理工学研究科情報専攻 | 産業技術総合研究所:

勝島修平

東京都市大学大学院 総合理工学研究科情報専攻: 穴田一

産業技術総合研究所: 江上周作

産業技術総合研究所: 福田賢一郎

目次

- ●問題の概要
- アプローチの特徴と結論
- 既存研究
- 提案手法
- 結果
- 課題
- まとめ

問題の概要

人工知能の発展に伴った説明性を持つAIの開発の必要性

ナレッジグラフ推論チャレンジの開催

小説の内容を構造化した大規模ナレッジグラフを利用し、

推理小説の犯人を説明付きで推定

アプローチの特徴と結論

特徴

- グラフ畳み込みネットワークによる小説の学習
- Layer-wise relevance propagationによるノード分析

結論

小説に必要な知識を追加した場合、犯人を推定可能

既存研究の問題点

黒川ら TransEによる埋め込み手法

場面	主語	述語	対 象	場 所	起点	終点	時間	何	理由
1	Helen	come				House of Holmes			
2	Helen	beScared							
•••									
6	Helen	obtain					Within 2 months	money	

SVO形式に分解

場面	主語	述語	目的語
1	Helen	come	house of Holmes
2	Helen	beScared	
6	Helen	obtain	within 2 months
6	Helen	obtain	money

提案手法

提案手法のフロー

提案手法 graph convolutional network

概要

- ノード同士の隣接関係: 隣接行列 A
- ノードの特徴ベクトル: 特徴行列 H

$$\mathbf{H}^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{D}^{-\frac{1}{2}} \mathbf{H}^{(l)} W^{(l)} \right)$$

 σ : 活性化関数 $W^{(l)}$: 重み

損失関数 Reconstruction error

テストデータとなる隣接行列との誤差が小さくなるように学習

$$\mathbf{A}' = Sigmoid(\mathbf{H}\mathbf{H}^T)$$

$$L = ||y - \mathbf{A}'||_2^2 \qquad y = \widetilde{D}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{D}^{-\frac{1}{2}}$$

提案手法 layer-wise relevance propagation

概要

- 深層学習における説明手法
- 層のユニットごとの関係性を逆伝播、入力データの出力データへの関係性を計算

$$R_{i \leftarrow j}^{(l,l+1)} = \frac{z_{ij}}{z_i} R_j^{(l+1)}$$

$$R_i^{(l)} = \sum_{i} R_{i \leftarrow j}^{(l,l+1)}$$

- $R_i^{(l)}$ は層IのユニットIの出力値に対する貢献度,
- $R_{i\leftarrow j}^{(l,l+1)}$ は層l+1のユニットjから層lユニットiへ逆伝播する貢献度,
- z_i は層H1ユニットの出力値,
- z_{ij} は層Iのユニットiから層I+1ユニットへ順伝播する値

提案手法 独自オントロジー(僧坊荘園用)

独自オントロジー (鵜飼さん作成 犯罪方法オントロジー参考)

GCNの形式に合わせて、述語もノードとして僧坊荘園用のネットワークを構築

- 殺害犯は動機・凶器・機会を有する
- 正当防衛で愛する人(lady_brackenstall)守る→殺害動機
- 船員は紐の結び方(特殊知識)を知っている→殺害機会

実験設定

変更前	変更後		
追加知識であるConceptNetに対して施した処理			
冠詞	無		
複数形	単数形		
2語以上の空白	_ (アンダーバー)		
antonym	含めない		
大文字	小文字		
小説データに対して施した処理			
場面番号	場面番号_小説名		
大文字	小文字		

Antoynumは反意語を示すため、学習には含めず _小説名はConceptNet上の数字と差別化するため

犯人推定

犯人Roylottの順位				
まだらの紐	+ConceptNet[murder]	+ConceptNet[murder] +ConceptNet[kill]	+ConceptNet[murder] +ConceptNet[kill] +ConceptNet[snake]	
10%欠損	2	2	1	
25%欠損	2	2	2	

ConceptNetのデータを段階的に追加 ConceptNetのmurder, 実際の事件のデータを加えた場合は犯人推定一位

25%欠損で犯人推定が出来ていない →snakeの知識が十分でない

犯人推定

犯人Roylottの順位			
まだらの紐	+ConceptNet[murder] +ConceptNet[kill] +悪魔の足	+ConceptNet[murder] +ConceptNet[kill] +僧坊荘園	
10%欠損	2	2	
25%欠損	2	2	

犯人Jack Crockerの順位			
僧坊荘園	+独自オントロジー		
10%	1		

他小説のデータを加えただけでは,犯人推定はできず.構築した独自オントロジーを加えた場合は順位が一位

LRP

	LRPによる貢献度のRoylottから見た重要ノード上位5つ
1	130_speckledband
2	Dog_whip_of_roylott
3	22_speckledband
4	23_speckledband
5	42_speckledband

Dog_whip_of_roylottは、実際の小説のまだらの紐にて殺害に用いられる犯行手段

→グラフ構造から関係性を学習

LRP

	LRPによる貢献度のjack crockerから見た重要ノード5つ
1	thought_of_jack_crocker
2	308_abbey_grange
3	283_abbey_grange
4	332_abbey_grange
5	Sincerity_of_jack_ crocker

犯人推定方法オントロジーにおける愛人lady brackenstall をbrackenstallから守る(正当防衛による)殺害

→thout_of _jack_crockerを近く学習

課題

● ConcepetNet上の語義の曖昧性

似たような意味、品詞の違う単語を考慮できていない. WSD(Word Sense Disambiguation)により密なグラフを作成

● 嘘の考慮

ナレッジグラフの情報をそのまま学習しているため、 嘘の考慮が出来ない

LRP

隣接しているノードの貢献度しか示すことが出来ない

推論チャレンジ(評価項目)

- 1. ホームズの推理を再現
 - 小説と同じ知識で推論
- 2. 説明の納得性
 - グラフが学習した内容を数的に可視化可能
- 3. 技術的工夫
 - · 推論方法:GCN+LRP(機械学習)
 - 拡張知識:僧坊荘園用 独自オントロジー
 - ConceptNetとナレッジグラフとの整合性処理
- 4. ポイント
 - GCNは推論チャレンジのどのデータに適用可能
 - 必要最低限の知識があれば推論
 - ・ 独自オントロジー 職業専門知識の導入

まとめ

- GCNとLRPを組み合わせることで、必要な知識があった場合犯人推定を行うことができた
- 追加知識にConceptNetと独自オントロジーを定義
- 追加知識の準備や定義方法に関して課題が残る
- より説明性の高いシステムの構築を目指す

ACKNOWLEDGEMENTS

This study is based on results obtained from projects, JPNP20006 and JPNP180013, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).