

Regression: Representation Space

Paper Reading by Yunyan Yan

- Background
- **□** Regression Metric Loss
- □ LARGE: Latent-Based Regression
- OrdinalCLIP
- Conclusion

Background

Regression

- ⊙ 任务场景:
 - 关键点、年龄/骨龄、单目深度
 - (有序回归)病情等级、审美/评价
- ⊙ 现有方法:
 - L1 & L2
 - ■特定先验(人脸关键点)
 - ■转化为分类任务
- ⊙ 问题:
 - 高维特征表示+全连接 ---> 过拟合、难解释
 - ■特定先验 ---> 难迁移
 - 分类 ---> 忽略序数关系

Background

- □ Metric Learning ---- 向量空间的映射
 - Proxy-based methods
 - ■基于分类标签
 - L2-Softmax、CosFace、ArcFace

- Pairwise-based methods
 - ■基于样本对
 - Contrastive loss、Triplet loss、N-pair loss

- Background
- Regression Metric Loss
 - Motivation
 - Methodology
 - Experimental results
- □ LARGE: Latent-Based Regression
- OrdinalCLIP
- Conclusion

Authors

Check for updates

Regression Metric Loss: Learning a Semantic Representation Space for Medical Images

Hanqing Chao, Jiajin Zhang, and Pingkun Yan^(⊠)

Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA {chaoh,zhangj41,yanp2}@rpi.edu

MICCAI 2022

伦斯勒理工学院 生物医学工程

Motivation

- □ 现有问题
 - 高维特征缺乏可解释性
 - 空间内在结构不明
- □本文目的
 - ⊙ 有语义的特征表示空间
 - 与标签空间等距的低维流形
- □具体实现
 - 表示空间的测地距离与标签空间的欧氏距离成正比
 - ⊙ 根据流形上NN计算回归结果, 代替全连接层

Riemannian Manifold

- ⊙ 微分流形+内积
- ⊙ 局部同胚于欧氏空间 ℝ"

Regression Metric Loss (RM-Loss)

⊙ 表示空间的测地距离 ∝ 标签空间的欧氏距离

$$D_{ij}^o = |s \times G(\mathbf{f}_i, \mathbf{f}_j) - ||\mathbf{y}_i - \mathbf{y}_j||_2|$$

● 局部同胚 ---> 相同拓扑结构 ---> 测地距离≈欧氏距离

$$G(\mathbf{f}_i, \mathbf{f}_j), \mathbf{f}_j \in \mathcal{N}(\mathbf{f}_i) \quad ||\mathbf{f}_i - \mathbf{f}_j||_2$$

$$D_{ij} = |s \times ||f_i - f_j||_2 - ||y_i - y_j||_2 |, \ w_{ij} = \exp\left(-\frac{||y_i - y_j||_2^2}{2\sigma^2}\right) + \alpha$$

$$l' = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} D_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij}},$$

$$\text{$\%$ixth \tilde{n}}$$

- Regression Metric Loss (RM-Loss)
 - ◎ 难样本挖掘(类似于ACSL)

$$m_{ij} = \begin{cases} 1, & \text{if } w_{ij} D_{ij} > \bar{l}^{(k)} \\ 0, & \text{if } w_{ij} D_{ij} <= \bar{l}^{(k)} \end{cases}, \quad \bar{l}^{(k)} = 0.9 \times \bar{l}^{(k-1)} + 0.1 \times \mathbb{E}^{(k)}(w_{ij} D_{ij})$$

$$\mathcal{L} = \frac{\sum_{p=1}^{N} \sum_{q=1}^{N} m_{ij} w_{ij} D_{ij}}{\sum_{p=1}^{N} \sum_{q=1}^{N} m_{ij} w_{ij}}$$

- ⊙ 推理阶段
 - 微分同胚: 邻域 $N^M(f_i) \subseteq M$ $N^Y(y_i) \subseteq Y$ ——映射
 - NN:测试样本的欧式邻域内,取训练样本加权

$$\hat{y}_t = \frac{\sum_{f_i \in \mathcal{N}_r(f_t)} a_i y_i}{\sum_{f_i \in \mathcal{N}_r(f_t)} a_i}, \quad a_i = \exp\left(-\frac{||\mathbf{f}_i - \mathbf{f}_t||_2^2}{2(r/3)^2}\right)$$

Performance comparison

Table 1. Regression performance and quality of the learned space on the full-size BAA and CAC datasets. The best results are in bold.

Method	Regression performance			Space of	Space quality			
	BAA		CAC		BAA 骨龄		CAC 冠脉钙化	
	$MAE \downarrow$	$\mathbb{R}^2 \uparrow$	MAE↓	$R^2 \uparrow$	$D5\downarrow$	RV↓	$D5\downarrow$	RV↓
MSE	7.021*	0.947	0.762*	0.930	8.872*	0.0690*	0.869*	0.1225*
L1	6.580*	0.952	0.668*	0.927	8.799*	0.0600	0.837*	0.1249*
OrdReg	7.061*	0.944	0.684*	0.937	9.368*	0.1450*	0.844*	0.1966*
ATrip+NN	6.799*	0.951	0.647*	0.939	9.022*	0.0617	0.834*	0.0874*
ATrip+L1	6.854*	0.949	0.660*	0.930	9.055*	0.0630*	0.855*	0.0813
RM-Loss (ours)	6.438	0.954	0.617	0.944	8.614	0.0588	0.769	0.0806

度量损失+NN 效果更好

 $1-\rho(G_M,D_Y)$ 评估流形M与标签Y是否等距

Backbone: Inception-v3

^{*} p < 0.05 in the one-tailed paired t-test. The significant test was not applied on R^2 .

Visualization on CAC

特征表示空间

Ablation Study

Table 2. Ablation study of σ , α , and m on BAA dataset. The best results are in bold.

171拟台> 火拟台> 线件名	讨拟合	-> 欠拟合	·> 线性空间
-----------------	-----	--------	---------

邻域大小 流形曲率 难例挖掘

			43 X H		VIII 3				
σ	0.25	0.5	1.0	1.5	$+\infty$	0.5			
α	0.1					0.0	0.2	0.3	0.1
m	w/								w/o
$\overline{\mathrm{MAE}}\downarrow$	6.555	6.438	6.642	6.759	6.823	6.496	6.591	6.741	6.520
$R^2 \uparrow$	0.953	0.954	0.952	0.951	0.950	0.954	0.953	0.951	0.953
$D5 \downarrow$	8.726	8.614	8.905	8.930	9.096	8.707	8.875	8.786	8.717
$\mathrm{RV}\!\!\downarrow$	0.0614	0.0588	0.0658	0.0659	0.0699	0.0650	0.0614	0.0677	0.0641

- σ的取值非常接近临床诊断边界: 骨龄(24 m; σ=0.5, 20.6 m); CAC(10; σ=1.5, 8)
- α全局控制曲率

□ Performance on 10%-size datasets

Table 3. The regression performance and the learned space quality on the 10%-size BAA and CAC dataset with the best results in bold.

Method	Regression performance			Space qu	pace quality				
	10% BA	10% BAA		10% CAC		10% BAA		10% CAC	
	MAE↓	$\mathbb{R}^2 \uparrow$	MAE↓	$\mathbb{R}^2 \uparrow$	D5↓	RV↓	$D5\downarrow$	RV↓	
MSE	8.721*	0.917	0.946*	0.895	11.204*	0.1054*	1.102*	0.1706*	
L1	9.173*	0.906	0.875*	0.894	11.682*	0.1133*	1.028*	0.1529*	
OrdReg	9.226*	0.908	0.849*	0.906	11.821*	0.2485*	1.010*	0.2189*	
ATrip+NN	8.733*	0.911	0.861*	0.907	10.990	0.1018*	1.056*	0.1547*	
ATrip+L1	9.017*	0.914	0.875*	0.908	11.208*	0.1016*	1.012*	0.1142	
RM-Loss (ours)	8.071	0.926	0.797	0.912	10.974	0.0878	0.971	0.1114	

^{*} p < 0.05 in the one-tailed paired t-test. The significant test was not applied on R^2 .

- Background
- **□** Regression Metric Loss
- **LARGE: Latent-Based Regression**
 - Motivation
 - Methodology
 - Visualization
- OrdinalCLIP
- Conclusion

Authors

LARGE: Latent-Based Regression through GAN Semantics

Yotam Nitzan* Tel-Aviv University Rinon Gal* Tel-Aviv University Ofir Brenner Tel-Aviv University Daniel Cohen-Or Tel-Aviv University

CVPR 2022

以色列特拉维夫大学

Motivation

- □ 特征表达空间
 - ⊙ GAN--图像编辑: 语义解耦
 - ⊙ GAN--潜在空间: 成功的语义信息编码

- □本文思路
 - ⊙ 微调预训练GAN模型,校准距离,沿属性方向回归

Latent-based Regression

- ⊙ 编码到超平面的距离
- StyleGAN的四个隐空间: 高斯先验, GAN映射, 每层分配, 仿射变换 Z, W, W+ and S
- ⊙ 不同层表达不同属性,对每层学习权重(不同层梯度平均幅度)

Visualization

5媒体内容计算实验室

- Background
- **□** Regression Metric Loss
- **□** LARGE: Latent-Based Regression
- OrdinalCLIP
 - Motivation
 - Methodology
- Conclusion

Authors

OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal Regression

Wanhua Li*,1, Xiaoke Huang*,1, Zheng Zhu2, Yansong Tang1, Xiu Li1, Jie Zhou1, Jiwen Lu†,1

¹Tsinghua University ²PhiGent Robotics wanhua016@gmail.com hxk21@mails.tsinghua.edu.cn zhengzhu@ieee.org {tang.yansong, li.xiu}@sz.tsinghua.edu.cn {jzhou, lujiwen}@tsinghua.edu.cn

清华大学 鲁继文

Motivation

- □任务
 - 有序分类
- □ 现有方法:
 - ◎ 连续 ---> 离散
 - 全连接层建模序数
- □本文思路
 - ⊙ 语言先验学习分级概念
 - ⊙ CLIP隐空间,图像-语言对齐,共同约束概念学习缓解过拟合

(a) Existing Methods for Ordinal Regression

(b) Language Powered Paradigm for Ordinal Regression (Ours)

OrdinalCLIP

- ⊙ 语言模型固定(推理时无需使用),图像编码可学习
- 内积计算相似度,KL散度约束接近单位阵
- ⊙ 上下文可学习,序数插值嵌入
- ⊙ CLIP直接用于序数回归的效果较差(人工prompt序数关系差)

- Background
- **□** Regression Metric Loss
- □ LARGE: Latent-Based Regression
- OrdinalCLIP
- Conclusion

Conclusion

- □特征表示空间
 - 度量学习约束
 - 具有优秀性质的预训练模型隐空间
 - GAN
 - CLIP

Thanks for Attention!