Alternative Cloud-Native Data Platform Architecture on Microsoft Azure

This guide details the implementation of a modern, cloud-native data platform architecture on Microsoft Azure, focusing on services such as **Azure Synapse Analytics**, **Snowflake**, **Azure Databricks**, and other Azure-native components for robust data processing, storage, transformation, and analytics capabilities.

Table of Contents

- 1. Core Architecture Overview
- 2. Recommended Architecture Components
- 3. <u>Detailed Step-by-Step Implementation</u>
- 4. Benefits of the Modernized Architecture

1. Core Architecture Overview

This architecture leverages Azure's managed, serverless, and scalable services to:

- Enable **real-time data processing** and **advanced analytics**.
- Minimize operational overhead and infrastructure management through cloud-native solutions.
- Utilize Snowflake as the data warehouse and Azure Databricks for big data processing and machine learning workflows, providing flexibility for both structured and unstructured data.

2. Recommended Architecture Components

2.1 OLTP Database (Transactional Layer)

• **Azure SQL Database**: Use Azure SQL Database as the main OLTP database, offering scalability and high availability.

2.2 NoSQL Database (Catalog Data)

• **Azure Cosmos DB**: Store catalog and product metadata in Cosmos DB, which supports low-latency, high-throughput operations for distributed data.

2.3 Staging Layer (Real-Time Stream Processing)

• Azure Event Hubs: Capture and process real-time streaming data with Azure Event Hubs.

2.4 Data Warehouse

• **Snowflake on Azure**: Use Snowflake for scalable, high-performance data warehousing, optimized for analytics and easy integration with Azure services.

2.5 Data Lake Storage

 Azure Data Lake Storage Gen2 (ADLS Gen2): Use ADLS Gen2 as the data lake to store raw and processed data, accessible by both Snowflake and Databricks for a unified data repository.

2.6 Big Data and Machine Learning Platform

• **Azure Databricks**: Employ Databricks for scalable data processing, analytics, and machine learning. Utilize Databricks' Delta Lake to provide lakehouse architecture features.

2.7 Data Orchestration

 Azure Data Factory: Use Azure Data Factory for orchestrating ETL processes and data workflows.

2.8 Business Intelligence

 Power BI: Utilize Power BI for data visualization, directly connecting it to Snowflake and Databricks for real-time analytics.

3. Detailed Step-by-Step Implementation

Module 1: Transactional Database Design and Real-Time Ingestion

- 1. Set Up Azure SQL Database for OLTP:
 - Create an **Azure SQL Database** instance to manage transactional data.
 - Configure firewall settings to allow access from necessary Azure resources and your local IP.
- 2. Enable Change Data Capture (CDC):
 - Enable CDC on the necessary tables in Azure SQL Database.
- 3. Stream Real-Time Changes with Azure Event Hubs:
 - Configure **Azure Data Factory** or **SQL Data Sync** to stream real-time data changes from Azure SQL Database to **Azure Event Hubs**.

Module 2: NoSQL Catalog Database Setup

- 1. Set Up Azure Cosmos DB for Metadata:
 - Create **Azure Cosmos DB** and configure it to support high-volume catalog data.
 - Select the **API** based on data access requirements (e.g., SQL API for JSON data, Cassandra API for key-value data).
- 2. Integrate Cosmos DB with Data Lake:
 - Use Azure Data Factory to export data periodically from Cosmos DB to ADLS
 Gen2 for historical analysis and integration with the data lake.

Module 3: Data Lake and Data Warehouse Architecture

- 1. Create an ADLS Gen2 Storage Account:
 - Set up an **Azure Data Lake Storage Gen2** account to serve as the data lake.
 - Organize the storage with appropriate folder structures (e.g., raw, curated, enriched).
- 2. Set Up Snowflake on Azure:
 - Provision a Snowflake account on Azure and connect it to ADLS Gen2 for seamless data access.
 - Use **Snowflake's External Tables** feature to directly query data stored in ADLS Gen2 without loading it into Snowflake.
- 3. Establish Lakehouse Architecture with Delta Lake:
 - Use **Azure Databricks Delta Lake** to enable ACID-compliant transactions and create a unified data layer for real-time and historical analytics.

Module 4: Data Transformation and Processing

- 1. Data Ingestion and Transformation with Azure Databricks:
 - Set up **Azure Databricks** workspaces for data engineering and machine learning.
 - Use **Databricks Delta Lake** to transform raw data into refined datasets.
- 2. Process and Enrich Data in Snowflake:
 - Leverage **Snowflake's SQL** capabilities for data transformation and analytics on structured data.
- 3. Implement Data Cleansing and Transformation in Azure Data Factory:
 - Configure **Azure Data Factory** pipelines for batch ETL processes, cleansing, and joining datasets before loading them into the data warehouse.

Module 5: Orchestration and Workflow Management

- 1. Orchestrate ETL Pipelines with Azure Data Factory:
 - Use **Azure Data Factory** for automating and scheduling ETL workflows.
 - Set up data pipelines that connect **Azure SQL Database**, **Cosmos DB**, **Event Hubs**, and **ADLS Gen2** for data movement and transformation.
- 2. Use Databricks Notebooks for Real-Time Data Processing:
 - Develop **Databricks Notebooks** to handle real-time data transformations and analytics on event-driven data from Event Hubs.

Module 6: Machine Learning Model Deployment

- 1. Setup Azure Databricks MLflow for Model Management:
 - Use **Databricks MLflow** within Azure Databricks for model experimentation, tracking, and management.
- 2. Deploy Models to Production with Azure Machine Learning:
 - Register models in **Azure Machine Learning** and deploy them as web services.
 - Configure these services to connect with Snowflake and Power BI for real-time model inference.

Module 7: Business Intelligence and Visualization

1. Create Dashboards in Power BI:

- Connect **Power BI** to Snowflake and Databricks for interactive data visualizations.
- Use **DirectQuery** mode in Power BI to enable near real-time reporting on Snowflake data.

2. Integrate Power BI with Azure Synapse Analytics:

 Connect **Power BI** with Synapse for additional analytical power and near real-time insights.

4. Benefits of the Modernized Architecture

- **Scalability and Cost Efficiency**: Azure's cloud-native services scale dynamically with demand, and Snowflake's pay-as-you-go pricing reduces costs for sporadic workloads.
- **Real-Time Processing**: Azure Event Hubs and Databricks Delta Lake support real-time streaming and processing, offering up-to-date analytics and insights.
- **Operational Simplification**: Managed services such as Azure Data Factory and Databricks reduce the need for manual infrastructure management and maintenance.
- **Unified Lakehouse Architecture**: Integrating Snowflake with Databricks Delta Lake provides a seamless platform for structured and unstructured data.
- Comprehensive ML and BI Capabilities: Combining Databricks, Azure Machine Learning, and Power BI allows for advanced analytics and machine learning model deployment at scale.

This architecture provides a robust, flexible, and scalable platform for end-to-end data management, analytics, and machine learning on Microsoft Azure.