## aws re: Invent

#### CON413-R

# Move your Machine Learning workloads on Amazon Elastic Kubernetes Service (EKS)

**Jiaxin Shan** 

Software Engineer AWS

Mike Stefaniak

Product Manager AWS **Arun Gupta** 

Open Source Technologist AWS





ML Frameworks + Infrastructure



| INFRASTRUCTURE   |              |       |             |     |            |  |  |  |  |
|------------------|--------------|-------|-------------|-----|------------|--|--|--|--|
| EC2 P3<br>& P3dn | EC2<br>G4 C5 | FPGAS | FSX, Lustre | EFA | Inferentia |  |  |  |  |





ML Frameworks - Infrastructure















ML Frameworks H





**ML Platform** 





Container Platform



ML Frameworks + Infrastructure





## Infrastructure







#### ML Infrastructure supported by EKS









#### Elastic Fabric Adapter

Use MPI or NCCL to interface with Libfabric API (bypass OS kernel)
Reduce overhead and enable HPC applications to run more efficiently



## Distributed Storage



Amazon Elastic File System





Cloud-native, shared NFS storage solution

Mount shared filesystem into pods

Share datasets or models across teams

File system optimized for ML and HPC workloads

Native integration with S3 for stored training data

Read/write data up to hundreds of GB/sec of throughput and millions of IOPS

## AWS Inferentia (EKS support coming soon)







Each chip provides hundreds of TOPS (tera operations per second) of inference throughput to allow complex models to make fast predictions.

For even more performance, multiple Inferentia chips can be used together to drive thousands of TOPS of throughput

Supports all major frameworks used in the deep learning community including TensorFlow, Apache MXNet, and PyTorch, as well as models that use the ONNX format

## Kubernetes













ML Frameworks +





## Why Machine Learning on Kubernetes?









Composability

Portability

Scalability



#### Amazon EKS-Optimized GPU AMI

Built on top of the standard Amazon EKS-Optimized AMI



Includes packages to support Amazon P2/P3/G3/G4 instances

- NVIDIA drivers
- nvidia-docker2 package
- nvidia-container-runtime (as default runtime)

**GPU Clock Optimization** 

## AWS Deep Learning Containers

Optimized and customizable containers for deep learning environments



Pre-packaged
Docker container
images
fully configured
and validated



Best performance and scalability without tuning



Works with Amazon EKS, Amazon ECS, and Amazon EC2

KEY FEATURES

Customizable container images



Single and multi-node training and inference

#### Cluster Autoscaler Improvements

- Add GPU Support
  - <u>autoscaler#1584</u> Move GPULabel and GPUTypes to cloud provider –> GPU autoscaling supported for AWS
  - <u>autoscaler#1589</u> Consider GPU utilization in scaling down –> GPU scale down performance optimization
- Prevent CA from removing a node with ML training job running
  - Annotate job "cluster-autoscaler.kubernetes.io/safe-to-evict": "false"
- Recommended to create GPU node group per AZ
  - Improve network communication performance
  - Prevent ASG rebalancing

# Kubeflow







#### What is Kubeflow

Containerized machine learning platform



Makes it easy to develop, deploy, and manage portable, scalable end-to-end ML workflows on k8s

"Toolkit" – loosely coupled tools and blueprints for ML



End to End ML workflow – ML code is only a small component

## Kubeflow Components



## Jupyter Notebook

Jupyter

**Kubeflow Core** 

User Created Profile

Notebook Created by

Create and share docs that contain live code, equations, visualizations, and narrative text

- UI to manage notebooks
- Integrate with RBAC/IAM
- Ingress/Service Mesh



#### Fairing

Python SDK to build, train and deploy ML models

- Easily package ML training jobs
   Kaniko
- Train ML models from notebook to k8s
- Streamline the model development process

#### Setup Kubeflow Fairing for training and prediction

```
from kubeflow import fairing
from kubeflow.fairing import TrainJob
from kubeflow.fairing.backends import KubeflowAWSBackend
from kubeflow import fairing
FAIRING BACKEND = 'KubeflowAWSBackend'
AWS ACCOUNT ID = fairing.cloud.aws.guess account id()
AWS REGION = 'us-west-2'
DOCKER REGISTRY = '{}.dkr.ecr.{}.amazonaws.com'.format(AWS ACCOUNT ID, AWS REGION)
S3 BUCKET = 'kubeflow-pipeline-data'
import importlib
if FAIRING BACKEND == 'KubeflowAWSBackend':
    from kubeflow.fairing.builders.cluster.s3 context import S3ContextSource
   BuildContext = S3ContextSource(
        aws_account=AWS_ACCOUNT_ID, region=AWS_REGION,
        bucket name=S3 BUCKET
BackendClass = getattr(importlib.import module('kubeflow.fairing.backends'), FAIRING BACKEND)
```

#### Train an XGBoost model remotely on Kubeflow

#### Deploy the trained model to Kubeflow for prediction

https://github.com/aws-samples/eks-kubeflow-workshop/blob/master/notebooks/02\_Fairing/02\_06\_fairing\_e2e.ipynb

## Katib – Hyperparameter Tuning

Hyperparameter are parameters external to the model to control the training, e.g. learning rate, batch size, epochs

Tuning finds a set of hyperparameters that optimizes an objective function, e.g. find the optimal batch size and learning rate to maximize prediction accuracy

| Hyperparameters |                              |  |  |  |  |  |  |
|-----------------|------------------------------|--|--|--|--|--|--|
| 19              | parameters:                  |  |  |  |  |  |  |
| 20              | - name:lr                    |  |  |  |  |  |  |
| 21              | parameterType: double        |  |  |  |  |  |  |
| 22              | <pre>feasibleSpace:</pre>    |  |  |  |  |  |  |
| 23              | min: "0.01"                  |  |  |  |  |  |  |
| 24              | max: "0.03"                  |  |  |  |  |  |  |
| 25              | <pre>- name:num-layers</pre> |  |  |  |  |  |  |
| 26              | parameterType: int           |  |  |  |  |  |  |
| 27              | <pre>feasibleSpace:</pre>    |  |  |  |  |  |  |
| 28              | min: "2"                     |  |  |  |  |  |  |
| 29              | max: "5"                     |  |  |  |  |  |  |
| 30              | <pre>- name:optimizer</pre>  |  |  |  |  |  |  |
| 31              | parameterType: categorical   |  |  |  |  |  |  |
| 32              | <pre>feasibleSpace:</pre>    |  |  |  |  |  |  |
| 33              | list:                        |  |  |  |  |  |  |
| 34              | - sgd                        |  |  |  |  |  |  |
| 35              | - adam                       |  |  |  |  |  |  |
| 36              | - ftrl                       |  |  |  |  |  |  |

| trialName                      | Validation-accuracy | accuracy | lr                   | num-layers | optimizer |
|--------------------------------|---------------------|----------|----------------------|------------|-----------|
| random-experiment-<br>rfwwbnsd | 0.974920            | 0.984844 | 0.013831565266960293 | 4          | sgd       |
| random-experiment-<br>vxgwlgqq | 0.113854            | 0.116646 | 0.024225789898529138 | 4          | ftrl      |
| random-experiment-<br>wclrwlcq | 0.979697            | 0.998437 | 0.021916171239020756 | 4          | sgd       |
| random-experiment-<br>7lsc4pwb | 0.113854            | 0.115312 | 0.024163810384272653 | 5          | ftrl      |
| random-experiment-<br>86vv9vgv | 0.963475            | 0.971562 | 0.02943228249244735  | 3          | adam      |
| random-experiment-<br>jh884cxz | 0.981091            | 0.999219 | 0.022372025623908262 | 2          | sgd       |
| random-experiment-<br>sgtwhrgz | 0.980693            | 0.997969 | 0.016641686851083654 | 4          | sgd       |
| random-experiment-<br>c6vvz6dv | 0.980792            | 0.998906 | 0.0264125850165842   | 3          | sgd       |
| random-experiment-<br>vqs2xmfj | 0.113854            | 0.105313 | 0.026629394628228185 | 4          | ftrl      |
| random-experiment-<br>bv8lsh2m | 0.980195            | 0.999375 | 0.021769570793012488 | 2          | sgd       |
| random-experiment-<br>7vbnqc7z | 0.113854            | 0.102188 | 0.025079750575740783 | 4          | ftrl      |
| random-experiment-<br>kwj9drmg | 0.979498            | 0.995469 | 0.014985919312945063 | 4          | sgd       |

#### KFServing: Model serving and management

- Provides a Kubernetes CRD for serving ML models on arbitrary frameworks
- Encapsulates the complexity of autoscaling, networking and server configuration to bring features like scale to zero, transformations, and canary rollouts to your deployments
- Enables a simple, pluggable, and complete story for your production ML inference server by providing prediction, pre-processing, post-processing and explainability



#### Metadata – Model Tracking

- Metadata schema to track artifacts related to execution contexts
- Metadata API for storing and retrieving metadata
- Client libraries for end-users to interact with the Metadata service from their Notebooks or Pipelines code







## Distributed Training



## Best Practices for Optimizing Distributed Deep Learning Performance on Amazon EKS



## Pipelines – Machine Learning Job Orchestrator

- Compose, deploy, and manage end-to-end ML workflows
  - End-to-end orchestration
  - Easy, rapid, and reliable experimentation
  - Easy re-use
- Built using Pipelines SDK
  - kfp.compiler, kfp.components, kfp.Client
- Uses Argo under the hood to orchestrate resources



#### Creating Kubeflow Pipeline Components Pipeline decorator



```
@dsl.pipeline(
                                      Pipeline function
 name='Sample Trainer',
 description="
                                              Pipeline component
def sample_train_pipeline(...):
  create_cluster_op = CreateClusterOp('create-cluster', ...)
  analyze_op = AnalyzeOp('analyze', ...)
  transform_op = TransformOp('transform', ...)
  train_op = TrainerOp('train', ...)
  predict_op = PredictOp('predict', ...)
  confusion_matrix_op = ConfusionMatrixOp('confusion-matrix', ...)
                                              Compile pipeline
  roc_op = RocOp('roc', ...)
kfp.compiler.Compiler().compile(sample_train_pipeline, 'my-
pipeline.zip')
```

#### Making Kubeflow a first class citizen on AWS

- Centralized and unified Kubernetes cluster logs in Amazon CloudWatch
- External traffic and authentication management with ALB Ingress Controller
- TLS and authentication with AWS Certificate Manager and AWS Cognito
- In-built FSx CSI driver w/S3 data repository integration to optimize training performance
- Elastic File System integration for common data sharing in JupyterHub
- Easier and customizable Kubeflow installation with kfctl and Kustomize support
- Kubeflow Pipeline integration with AWS Services Amazon EMR, Athena, SageMaker
- Add ECR integration to Kubeflow Fairing
- Jupyter Notebook images with AWS CLI installed and ECR support
- Auto detect GPU worker nodes and install NVIDIA device plugin

#### **Kubeflow 1.0 Arriving January 2020**







#### AWS Kubeflow Roadmap

#### **Kubeflow v1.0** - Theme: Enterprise Readiness

- E2E examples and increased documentation on Kubeflow site
- Upstream testing for Kubeflow on AWS
- Support DIY K8S on AWS
- IAM Roles for Service Accounts integration with Jupyter notebooks
- Support for managed contributors

#### Feature store - Feast



Discoverability and reuse of features

Access to features for training and serving

Standardization of features

Consistency between training and serving

# Enterprise







#### Future Ideas

- Elastic Training
- Virtual GPU Device Plugin
- GPU Monitoring
- MLOps

#### Elastic Training

#### Fault Tolerant

- Enable Job Priority & Preemption
- Unlock SLA Critical Jobs to run on Spot instances

#### Elastic Scheduling

Improve the GPU utilization rate

#### Virtual GPU for ML inference



- Map physical GPU to virtual GPUs in vGPU Device Plugin
   e.g. Physical GPU = 100 vGPUs
- vGPU Device Plugin reports discovered extended resources to API Server
- Kubernetes Scheduler schedule pods request Custom Resource e.g eks.amazonaws.com/vgpu
- vGPU Device Plugin allocate Physical GPU

## GPU Monitoring

#### Monitoring Stack

- Nvidia Management Library (NVML)
- Data Center GPU Manager (DCGM)
- CAdvisor accelerator metrics (CAdvisor)



#### Today



#### **Device Management**

#### Board-level GPU Configuration & Monitoring

- Device Identification
- Configuration & Monitoring
- Clock Management

All GPUs Supported

#### O.

#### Data Center GPU Manager (DCGM)



#### Health & Governance

#### Proactive Health, Policy & Power Mgmt.

- Real-time Monitoring & Analysis
- Governance Policies
- Power & Clock Management

Tesla GPUs Only

Diagnostics, Recovery &

**System Validation** 

**GPU Recovery & Isolation** 

Comprehensive Diagnostics

System Validation

Tesla GPUs Only



#### MLOps

#### **Data Scientists**

Hybrid, integrated, cloud-based dev env

Version control (scripts & artifacts)



#### DevOps

Seamless deployment of hybrid pipelines

Trigger-based scheduling & orchestration of runs

Monitoring & dashboard

Version control (runs & pipelines)



#### Business Analyst

**Ensure Compliance** 

**Explain-ability** 



Goal: Graduate ML into a first class citizen of software development

# Thank you!

Jiaxin Shan
Software Engineer
AWS

Mike Stefaniak
Product Manager
AWS

**Arun Gupta**Open Source Technologist
AWS







# Please complete the session survey in the mobile app.



