Business Modeling and Simulation

Lecture 2
Refresh on Probability, Statisitcs and Linear Algebra

Yi Ding

Faculty of Business Administration, University of Macau

Spring 2024

Outline

- Review of Probability and Statistics
 - Fundanmentals of Probability
 - Fundamentals of Statistics

Summary of Matrix Algebra

Summary

- Review of Probability and Statistics
 - Fundanmentals of Probability
 - Fundamentals of Statistics

- Summary of Matrix Algebra
- 3 Summary

Random variable

- random outcome: e.g., head/tail in coin tossing
- random variable: numerical function on random space: e.g., head → X = 1; tail → X = 0
- discrete random variable: takes on discrete number of values, e.g., 0, 1, ...,
- continuous random variable: takes on continuum of possible values

"The Merchant of Venice" by William Shakespeare:

This contract doesn't give you any blood at all. The words expressly specify "a pound of flesh." So take your penalty of a pound of flesh, but if you shed one drop of Christian blood when you cut it, the state of Venice will confiscate your land and property under Venetian law.—Portia

• Probability distribution of discrete variable: e.g., coin tossing P(X = 1) = 1/2, P(X = 0) = 1/2

- Probability distribution of discrete variable: e.g., coin tossing P(X = 1) = 1/2, P(X = 0) = 1/2
- Cumulative probability distribution (cdf): $F(x) = P(X \le x)$

- Probability distribution of discrete variable: e.g., coin tossing P(X = 1) = 1/2, P(X = 0) = 1/2
- Cumulative probability distribution (cdf): $F(x) = P(X \le x)$
- Probability density function (pdf) of continuous variable: $P(X \le x) = \int_{-\infty}^{x} f(x) dx$

- Probability distribution of discrete variable: e.g., coin tossing P(X = 1) = 1/2, P(X = 0) = 1/2
- Cumulative probability distribution (cdf): $F(x) = P(X \le x)$
- Probability density function (pdf) of continuous variable: $P(X < x) = \int_{-x}^{x} f(x) dx$

The probability of P(X = c) for continuous variable is ?

- Expected value (or mean/expectation) of a random variable X is weighted average of all possible values of X
 - Discrete variable:

$$E(X) = x_1 f(x_1) + x_2 f(x_2) ... + x_n f(x_n) = \sum_{i=1}^n x_i f(x_i)$$

• Continuous variable: $E(X) = \int x f(x) dx$

- Expected value (or mean/expectation) of a random variable X is weighted average of all possible values of X
 - Discrete variable:

$$E(X) = x_1 f(x_1) + x_2 f(x_2) ... + x_n f(x_n) = \sum_{i=1}^n x_i f(x_i)$$

- Continuous variable: $E(X) = \int x f(x) dx$
- Properties of expected value:

$$E(aY + bX) = aE(Y) + bE(X)$$

where a, b are constants; X, Y are two random variables.

- Expected value (or mean/expectation) of a random variable X is weighted average of all possible values of X
 - Discrete variable:

$$E(X) = x_1 f(x_1) + x_2 f(x_2) ... + x_n f(x_n) = \sum_{i=1}^n x_i f(x_i)$$

- Continuous variable: $E(X) = \int x f(x) dx$
- Properties of expected value:

$$E(aY + bX) = aE(Y) + bE(X)$$

where a, b are constants; X, Y are two random variables.

Variance: Measures of Variability

$$Var(X) = E((X - E(X))^2)$$

- Expected value (or mean/expectation) of a random variable *X* is weighted average of all possible values of *X*
 - Discrete variable:

$$E(X) = x_1 f(x_1) + x_2 f(x_2) ... + x_n f(x_n) = \sum_{i=1}^n x_i f(x_i)$$

- Continuous variable: $E(X) = \int x f(x) dx$
- Properties of expected value:

$$E(aY + bX) = aE(Y) + bE(X)$$

where a, b are constants; X, Y are two random variables.

Variance: Measures of Variability

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Moments of random variables

- Expected value (or mean/expectation) of a random variable X is weighted average of all possible values of X
 - Discrete variable:

$$E(X) = x_1 f(x_1) + x_2 f(x_2) ... + x_n f(x_n) = \sum_{i=1}^n x_i f(x_i)$$

- Continuous variable: $E(X) = \int x f(x) dx$
- Properties of expected value:

$$E(aY + bX) = aE(Y) + bE(X)$$

where a, b are constants; X, Y are two random variables.

Variance: Measures of Variability

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

• Standard deviation: $sd(X) = \sqrt{Var(X)}$.

Example: normal distribution

normal distribution
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

- bell shaped
- $E(X) = \mu$, $Var(X) = \sigma^2$

Example: normal distribution

normal distribution
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

- bell shaped
- $E(X) = \mu$, $Var(X) = \sigma^2$

• Guess which is which? $(\mu, \sigma^2) \in \{(0, 1), (0, 2^2), (2, 1)\}$

Example: normal distribution

normal distribution
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

bell shaped
 E(X) = μ, Var(X) = σ²

- Guess which is which? $(\mu, \sigma^2) \in \{(0, 1), (0, 2^2), (2, 1)\}$
 - BLUE: _____
 - RED: _____
 - GREEN: _____

For two variables *X* and *Y*;

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

• Covariance: measure of association

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

Covariance: measure of association.

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Property 1 $|Cov(X, Y)| \le sd(X) \cdot sd(Y)$

Property 2 if X and Y are independent, i.e.,

$$F(x,y) = F(x) \times F(y)$$
, then $Cov(X, Y) = 0$

Property 3 $Cov(a_1X + b_1, a_2Y + b_2) = a_1a_2Cov(X, Y)$

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

Covariance: measure of association

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Property 1
$$|\operatorname{Cov}(X, Y)| \le \operatorname{sd}(X) \cdot \operatorname{sd}(Y)$$

Property 2 if X and Y are independent, i.e.,
 $F(x, y) = F(x) \times F(y)$, then $\operatorname{Cov}(X, Y) = 0$
Property 3 $\operatorname{Cov}(a_1X + b_1, a_2Y + b_2) = a_1a_2\operatorname{Cov}(X, Y)$

- $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$
- Correlation

$$Corr(X, Y) = \frac{Cov(X, Y)}{sdX \cdot sdY}$$

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

Covariance: measure of association

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Property 1
$$|\operatorname{Cov}(X,Y)| \leq \operatorname{sd}(X) \cdot \operatorname{sd}(Y)$$

Property 2 if X and Y are independent, i.e., $F(x,y) = F(x) \times F(y)$, then $\operatorname{Cov}(X,Y) = 0$
Property 3 $\operatorname{Cov}(a_1X + b_1, a_2Y + b_2) = a_1a_2\operatorname{Cov}(X,Y)$

- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$
- Correlation

$$Corr(X, Y) = \frac{Cov(X, Y)}{sdX \cdot sdY}$$

Properties:

$$|Corr(X, Y)| \leq 1$$
;

For two variables X and Y; Joint cdf: F(x, y) = P(X < x, Y < y)

Covariance: measure of association

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Property 1
$$|\operatorname{Cov}(X,Y)| \le \operatorname{sd}(X) \cdot \operatorname{sd}(Y)$$

Property 2 if X and Y are independent, i.e., $F(x,y) = F(x) \times F(y)$, then $\operatorname{Cov}(X,Y) = 0$
Property 3 $\operatorname{Cov}(a_1X + b_1, a_2Y + b_2) = a_1a_2\operatorname{Cov}(X,Y)$

- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$
- Correlation

$$Corr(X, Y) = \frac{Cov(X, Y)}{sdX \cdot sdY}$$

Properties:

$$|Corr(X, Y)| \le 1$$
; $Corr(a_1X + b_1, a_2Y + b_2) = Sign(a_1a_2)Corr(X, Y)$

Illustration of different correlations

Conditional expectation

- Conditional expectation is the distribution of a random variable conditional on another random variable taking on a specific value; e.g.,
 - P(Grade in Statistics = A|Grade in Calculas = A)
 - P(child's height ≤ x|mother's height ≤ y)
- Bayesian formula

$$P(X \le x | Y \le y) = \frac{P(X \le x, Y \le y)}{P(Y \le y)}$$

- Conditional Expectation $E(Y|X=x) = \sum_i y_i P(Y=y_i|X=x)$
- Tower property (iterated law) of conditonal expectation:

$$E(Y) = E(E(Y|X))$$

Independence and Uncorrelatedness

- Two variables X and Y are independent when $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$ for all x, y.
- If X and Y are independent, $P(X \le x | Y \le y) = P(X \le x)$ and hence E(X|Y) = E(X).
- Uncorrelatedness: Corr(X, Y) = 0.
- Independence implies corelation zero.
- If X and Y are uncorrelated this does not necessarily imply independence!

Normal and related distributions

- standard normal Z, pdf $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$
- Chi-Square distribution(χ_m^2): $X = Z_1^2 + Z_2^2 + Z_m^2$, $(Z_i)_{i=1}^m$ are independent standard normal distributed, m is the degree of freedom.
- T distribution (t_m): $T = \frac{Z}{\sqrt{X/m}}$, where Z and X are independent.
- F distribution (F_{m_1,m_2}) : $F = \frac{X_1/m_1}{X_2/m_2}$, where X_1 and X_2 are independent Chi-square with df m_1 and m_2 resp.

Simple random sampling

- If $Y_1, ... Y_n$ are independent random variables with the common probability density $f(y; \theta)$, then $\{Y_1, ..., Y_n\}$ is said to ba a random sample from $f(y; \theta)$
- When $\{Y_1, ..., Y_n\}$ is a random sample from $f(y; \theta)$, we also say they are independent, identically distributed (i.i.d.) random variables. e.g.,
 - repeated experiment of coin tossing.

Given a set of data $(x_i)_{i=1}^n$

• sample mean (sample average): $\overline{x} = \sum_{i=1}^{n} x_i/n$

Given a set of data $(x_i)_{i=1}^n$

- sample mean (sample average): $\overline{x} = \sum_{i=1}^{n} x_i/n$
- Let $d_i = x_i \overline{x}$; d_i is deviation from average.

Given a set of data $(x_i)_{i=1}^n$

- sample mean (sample average): $\overline{x} = \sum_{i=1}^{n} x_i/n$
- Let $d_i = x_i \overline{x}$; d_i is deviation from average. Important properties:

$$\sum_{i=1}^n d_i = \sum_{i=1}^n (x_i - \overline{x}) = 0$$

Given a set of data $(x_i)_{i=1}^n$

- sample mean (sample average): $\overline{x} = \sum_{i=1}^{n} x_i/n$
- Let $d_i = x_i \overline{x}$; d_i is deviation from average. Important properties:

$$\sum_{i=1}^n d_i = \sum_{i=1}^n (x_i - \overline{x}) = 0$$

•

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

Given a set of data $(x_i)_{i=1}^n$

- sample mean (sample average): $\overline{x} = \sum_{i=1}^{n} x_i/n$
- Let $d_i = x_i \overline{x}$; d_i is deviation from average. Important properties:

$$\sum_{i=1}^n d_i = \sum_{i=1}^n (x_i - \overline{x}) = 0$$

•

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

• Given two data sets $(x_i)_{i=1}^n$ and $(y_i)_{i=1}^n$

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - n \overline{x} \, \overline{y}$$

Estimator and statistical properties

- an estimator W of parameter θ can be written as $W = h(Y_1, ..., Y_n)$.
- *W* is also a random variable (sample dependent).

Estimator and statistical properties

- an estimator W of parameter θ can be written as $W = h(Y_1, ..., Y_n)$.
- *W* is also a random variable (sample dependent).
- Unbiasness:

$$E(W) = \theta$$

e.g.,

Estimator and statistical properties

- an estimator W of parameter θ can be written as $W = h(Y_1, ..., Y_n)$.
- W is also a random variable (sample dependent).
- Unbiasness:

$$E(W) = \theta$$

e.g.,

- sample mean \overline{Y} is an unbiased estimator of E(Y).
- For i.i.d. variables, an unbiased estimator of Var(Y) is

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2.$$

Estimator and statistical properties

- an estimator W of parameter θ can be written as $W = h(Y_1, ..., Y_n)$.
- W is also a random variable (sample dependent).
- Unbiasness:

$$E(W) = \theta$$

e.g.,

- sample mean \overline{Y} is an unbiased estimator of E(Y).
- For i.i.d. variables, an unbiased estimator of Var(Y) is

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2.$$

• Bias of an Estimator: Bias(W) = $E(W) - \theta$

Efficiency of unbiased estimator and MSE

- an unbiased estimator W_1 is efficient relative to an unbiased estimator W_2 if $Var(W_1) \leq Var(W_2)$ for all θ with strict inequality for at least one θ .
- e.g., for i.i.d. variables with $Var(Y) = \sigma^2$:

$$\operatorname{Var}(\overline{Y}) = \frac{\sigma^2}{n}$$

 \overline{Y} is efficient relative to Y_1 , because $Var(\overline{Y}) < Var(Y_1) = \sigma^2$.

 Mean squared error (MSE): If we do not restrict our attention to unbiased estimators, then comparing variances is meaningless. Instead, we can look at mean squared error (MSE)

$$E((W - \theta)^2) = Var(W) + (bias(W))^2$$

16/27 Yi Ding Lect 2: Math Review

Consistency

• W_n depends on a sample $Y_1, ..., Y_n$. W_n is consistent estimator of θ if

$$P(|W_n - \theta| \ge \varepsilon) \to 0$$
, as $n \to \infty$,

write $plim(W_n) = \theta$ (convergence in probability).

Consistency

 W_n depends on a sample Y₁,..., Y_n. W_n is consistent estimator of θ if

$$P(|W_n - \theta| \ge \varepsilon) \to 0$$
, as $n \to \infty$,

write $plim(W_n) = \theta$ (convergence in probability).

 Law of large numbers (LNN): for i.i.d. sample Y₁, ..., Y_n with expectation μ

$$\operatorname{plim}(\overline{\mathbf{Y}}) = \mu$$

· Slustky' Theorem

$$\begin{split} \textit{If} \, \mathsf{plim}(T_n) &= T, \, \textit{and} \, \mathsf{plim}(\overline{U}_n) = \beta, \, \textit{where} \, T \, \textit{is a random variable} \\ \textit{and} \, \beta \, \textit{is a constant, then} \, \mathsf{plim}(T_n + U_n) &= T + \beta; \\ \mathsf{plim}(T_n \cdot U_n) &= T\beta; \\ \mathsf{plim}(T_n/U_n) &= T/\beta \, \textit{provided that} \, \beta \neq 0 \end{split}$$

- What direct statement can we make about the true value θ ?
- Confidence interval: e.g.
- $(Y_i)_{i=1}^n$ are i.i.d. normal $\mathcal{N}(\mu, 1)$.

Confidence interval

- What direct statement can we make about the true value θ ?
- Confidence interval: e.g.
- $(Y_i)_{i=1}^n$ are i.i.d. normal $\mathcal{N}(\mu, 1)$. Then $\overline{Y} \sim \mathcal{N}(\mu, 1/n)$,

Confidence interval

- What direct statement can we make about the true value θ?
- Confidence interval: e.g.
- $(Y_i)_{i=1}^n$ are i.i.d. normal $\mathcal{N}(\mu, 1)$. Then $\overline{Y} \sim \mathcal{N}(\mu, 1/n)$,

$$P(-1.96/\sqrt{n} < (\overline{Y} - \mu) < 1.96/\sqrt{n}) = 0.95$$

Confidence interval

- What direct statement can we make about the true value θ ?
- Confidence interval: e.g.
- $(Y_i)_{i=1}^n$ are i.i.d. normal $\mathcal{N}(\mu, 1)$. Then $\overline{Y} \sim \mathcal{N}(\mu, 1/n)$,

$$P(-1.96/\sqrt{n} < (\overline{Y} - \mu) < 1.96/\sqrt{n}) = 0.95$$

The 95% confidence interval of μ is $[\overline{Y} - 1.96/\sqrt{n}, \overline{Y} + 1.96/\sqrt{n}]$.

- What direct statement can we make about the true value θ ?
- Confidence interval: e.g.
- $(Y_i)_{i=1}^n$ are i.i.d. normal $\mathcal{N}(\mu, 1)$. Then $\overline{Y} \sim \mathcal{N}(\mu, 1/n)$,

$$P(-1.96/\sqrt{n} < (\overline{Y} - \mu) < 1.96/\sqrt{n}) = 0.95$$

The 95% confidence interval of μ is $[\overline{Y} - 1.96/\sqrt{n}, \overline{Y} + 1.96/\sqrt{n}]$. It means the **random interval** contains μ with probability 0.95. In other words, **before the random sample** is drawn, there is a 95% chance that the CI contains μ .

Hypothesis test

- Election example:
 - Two candidates A and B got election votes 42% v.s. 58%, resp.
 - Candidate A, however, think that he/she is more popular.

Hypothesis test

- Election example:
 - Two candidates A and B got election votes 42% v.s. 58%, resp.
 - Candidate A, however, think that he/she is more popular.
 - Question: Is the election rigged?

19/27 Yi Ding Lect 2: Math Review

Hypothesis test

- Election example:
 - Two candidates A and B got election votes 42% v.s. 58%, resp.
 - Candidate A, however, think that he/she is more popular.
 - **Question**: Is the election rigged?
 - Candidate A hires a consulting agency to randomly sample 100 voters to record whether or not each person voted for him. For the sample collected, 53 people voted for Candidate A.
 - Should Candidate A conclude that the election was indeed a fraud?
- Let θ denote the true proportion of population voting.

Lect 2: Math Review 19/27 Yi Ding

- Election example:
 - Two candidates A and B got election votes 42% v.s. 58%, resp.
 - Candidate A, however, think that he/she is more popular.
 - **Question**: Is the election rigged?
 - Candidate A hires a consulting agency to randomly sample 100 voters to record whether or not each person voted for him. For the sample collected, 53 people voted for Candidate A.
 - Should Candidate A conclude that the election was indeed a fraud?
- Let θ denote the true proportion of population voting. Hypothesis test: H_0 : $\theta < 0.42$ v.s. H_1 : $\theta > 0.42$
- In order to conclude that H_0 is false and that H_1 is true, we must have strong evidence.

Lect 2: Math Review 19/27 Yi Ding

Election example:

- Two candidates A and B got election votes 42% v.s. 58%, resp.
- Candidate A, however, think that he/she is more popular.
- Question: Is the election rigged?
- Candidate A hires a consulting agency to randomly sample 100
 voters to record whether or not each person voted for him. For the
 sample collected, 53 people voted for Candidate A.
- Should Candidate A conclude that the election was indeed a fraud?
- Let θ denote the true proportion of population voting. Hypothesis test: $H_0: \theta \le 0.42$ v.s. $H_1: \theta > 0.42$
- In order to conclude that H₀ is false and that H₁ is true, we must have strong evidence.
- How "strong" is strong? Is 100 sample sufficient?

19/27 Yi Ding Lect 2: Math Review

Hypothesis test, cont'd

- Type I error: Reject H_0 when it is in fact true
- Type II error: failing to reject H_0 when it is actually false

Hypothesis test, cont'd

- Type I error: Reject H_0 when it is in fact true
- Type II error: failing to reject H₀ when it is actually false
- Want to get small Type I error
- Significance level: α is probability of a Type I error.

$$\alpha = P(\text{Reject } H_0 | H_0)$$

• Commonly used levels $\alpha = 0.01, 0.05, 0.1$

Construct test statistic:

$$T = \frac{Y - \theta_0}{s / \sqrt{n}}$$

For the **election example**:

- $\theta_0 = 42\%$, n = 100, $\overline{Y} = 53\%$,
- s is estimated standard deviation of Y_i where Y_i is binary variable (indicator of voting for candidate A), $s = \sqrt{\overline{Y}(1 \overline{Y})}$.
- observed value of *T* is $t = \frac{0.53 0.42}{\sqrt{100 \times 0.42 \times 0.58}} \approx 2.229$

• Central Limit Theorem (CLT): Under *H*₀,

 $T \to \mathcal{N}(0,1)$ in distribution.

Central Limit Theorem (CLT): Under H₀,

 $T \to \mathcal{N}(0,1)$ in distribution.

For the **election example**:

• Will reject H_0 for large T value

Central Limit Theorem (CLT): Under H₀,

 $T \to \mathcal{N}(0,1)$ in distribution.

For the **election example**:

- Will reject H₀ for large T value
- p-value= $P(T>2.229|H_0)=1-\Phi(2.229)=0.013,$ where $\Phi(\cdot)$ is cdf of standard normal.
- Given significance level $\alpha = 0.05$,
- p-value=0.013<α;

22/27 Yi Ding Lect 2: Math Review

Central Limit Theorem (CLT): Under H₀,

 $T \to \mathcal{N}(0,1)$ in distribution.

For the **election example**:

- Will reject H₀ for large T value
- p-value= $P(T > 2.229 | H_0) = 1 \Phi(2.229) = 0.013$, where $\Phi(\cdot)$ is cdf of standard normal.
- Given significance level $\alpha = 0.05$,
- p-value=0.013< α ; reject H_0 .

22/27 Yi Ding Lect 2: Math Review

Outline

- - Fundanmentals of Probability
 - Fundamentals of Statistics

Summary of Matrix Algebra

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}$$

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}$$

• Multiplication: $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ have dimension $m \times n$ and $n \times p$, resp.

$$\mathbf{AB} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right] = \left[a_{i1} b_{1j} + a_{21} b_{2j} + ..., + a_{in} b_{nj}\right]$$

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \left[a_{ij} + b_{ij} \right]$$

• Multiplication: $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ have dimension $m \times n$ and $n \times p$, resp.

$$\mathbf{AB} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right] = \left[a_{i1} b_{1j} + a_{21} b_{2j} + ..., + a_{in} b_{nj}\right]$$

e.g.

$$\begin{bmatrix} 2 & -1 & 0 \\ -4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 6 & 0 \\ -1 & 2 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 12 & -1 \\ -1 & -2 & -24 & 1 \end{bmatrix}$$

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \left[a_{ij} + b_{ij} \right]$$

• Multiplication: $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ have dimension $m \times n$ and $n \times p$, resp.

$$\mathbf{AB} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right] = \left[a_{i1} b_{1j} + a_{21} b_{2j} + ..., + a_{in} b_{nj}\right]$$

e.g.

$$\begin{bmatrix} 2 & -1 & 0 \\ -4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 6 & 0 \\ -1 & 2 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 12 & -1 \\ -1 & -2 & -24 & 1 \end{bmatrix}$$

• Transpose: for matrix $\mathbf{A} = \left[a_{ij}\right]$, $\mathbf{A}^t = \left[a_{ji}\right]$

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \left[a_{ij} + b_{ij} \right]$$

• Multiplication: $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ have dimension $m \times n$ and $n \times p$, resp.

$$\mathbf{AB} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right] = \left[a_{i1} b_{1j} + a_{21} b_{2j} + ..., + a_{in} b_{nj}\right]$$

e.g.

$$\begin{bmatrix} 2 & -1 & 0 \\ -4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 6 & 0 \\ -1 & 2 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 12 & -1 \\ -1 & -2 & -24 & 1 \end{bmatrix}$$

- Transpose: for matrix $\mathbf{A} = [a_{ij}]$, $\mathbf{A}^t = [a_{ji}]$
- Trace: for square matrix **A**, $tr(\mathbf{A}) = a_{11} + a_{22} + ..., +a_{nn}$.

• Addition: two matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ that have same dimension $m \times n$,

$$\mathbf{A} + \mathbf{B} = \left[a_{ij} + b_{ij} \right]$$

• Multiplication: $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ have dimension $m \times n$ and $n \times p$, resp.

$$\mathbf{AB} = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right] = \left[a_{i1} b_{1j} + a_{21} b_{2j} + ..., + a_{in} b_{nj}\right]$$

e.g.

$$\begin{bmatrix} 2 & -1 & 0 \\ -4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 6 & 0 \\ -1 & 2 & 0 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 12 & -1 \\ -1 & -2 & -24 & 1 \end{bmatrix}$$

- Transpose: for matrix $\mathbf{A} = [a_{ij}], \mathbf{A}^t = [a_{ji}]$
- Trace: for square matrix **A**, $tr(\mathbf{A}) = a_{11} + a_{22} + ..., +a_{nn}$.
- Inverse: $AA^{-1} = A^{-1}A = I$, where I = diag(1, ..., 1).

quadratic form

$$\mathbf{x}^{t}\mathbf{A}\mathbf{x} = \sum_{ij} x_{i}x_{j}a_{ij} = \sum_{i} x_{i}^{2}a_{ii}^{2} + 2\sum_{i< j} a_{ij}x_{i}x_{j},$$

where **x** is $n \times 1$ vector, and **A** is $n \times n$ symetric matrix, $a_{ij} = a_{ji}$.

Positive Definite and Positive Semi-Definite: symetric matrix A is called positive definite (or semi-positive definite) when

$$\mathbf{x}^t \mathbf{A} \mathbf{x} > 0 (\text{or} \geq 0)$$

quadratic form

$$\mathbf{x}^{t}\mathbf{A}\mathbf{x} = \sum_{ij} x_{i}x_{j}a_{ij} = \sum_{i} x_{i}^{2}a_{ii}^{2} + 2\sum_{i< j} a_{ij}x_{i}x_{j},$$

where **x** is $n \times 1$ vector, and **A** is $n \times n$ symetric matrix, $a_{ii} = a_{ii}$.

Positive Definite and Positive Semi-Definite: symetric matrix **A** is called positive definite (or semi-positive definite) when

$$\mathbf{x}^t \mathbf{A} \mathbf{x} > 0 (\text{or} \geq 0)$$

e.g. $\mathbf{X}^t \mathbf{X}$ is (semi-) positive definite for any $n \times k$ matrix \mathbf{X}

Idempotent: If AA = A, A is called idempotent.

quadratic form

$$\mathbf{x}^{t}\mathbf{A}\mathbf{x} = \sum_{ij} x_{i}x_{j}a_{ij} = \sum_{i} x_{i}^{2}a_{ii}^{2} + 2\sum_{i< j} a_{ij}x_{i}x_{j},$$

where **x** is $n \times 1$ vector, and **A** is $n \times n$ symetric matrix, $a_{ii} = a_{ii}$.

 Positive Definite and Positive Semi-Definite: symetric matrix **A** is called positive definite (or semi-positive definite) when

$$\mathbf{x}^t \mathbf{A} \mathbf{x} > 0 (\text{or} \geq 0)$$

e.g. $\mathbf{X}^t \mathbf{X}$ is (semi-) positive definite for any $n \times k$ matrix \mathbf{X}

• Idempotent: If AA = A, A is called idempotent, e.g., if $X^{t}X$ is positive definite, then

$$\mathbf{P} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t, \quad \mathbf{M} = \mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$$

are both idempotent.

quadratic form

$$\mathbf{x}^{t}\mathbf{A}\mathbf{x} = \sum_{ij} x_{i}x_{j}a_{ij} = \sum_{i} x_{i}^{2}a_{ii}^{2} + 2\sum_{i < j} a_{ij}x_{i}x_{j},$$

where **x** is $n \times 1$ vector, and **A** is $n \times n$ symetric matrix, $a_{ii} = a_{ii}$.

 Positive Definite and Positive Semi-Definite: symetric matrix **A** is called positive definite (or semi-positive definite) when

$$\mathbf{x}^t \mathbf{A} \mathbf{x} > 0 (\text{or} \geq 0)$$

e.g. $\mathbf{X}^t \mathbf{X}$ is (semi-) positive definite for any $n \times k$ matrix \mathbf{X}

• Idempotent: If AA = A, A is called idempotent, e.g., if $X^{t}X$ is positive definite, then

$$\mathbf{P} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t, \quad \mathbf{M} = \mathbf{I} - \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t$$

are both idempotent.

property of idempotent matrix: $tr(\mathbf{A}) = rank(\mathbf{A})$.

25/27 Lect 2: Math Review Yi Ding

- Review of Probability and Statistics
 - Fundanmentals of Probability
 - Fundamentals of Statistics

Summary of Matrix Algebra

3 Summary

Summary

Summary

Reference:

GC Chapter 3; LP Chapter 4–7

Come next:

- Refresh on Python
- Random number generator

Survey and Q&A time