[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre de 2020

Cálculo de disipador

¿Cómo modelamos el calor en los dispositivos?

 \rightarrow En un dispositivo por el cual circula una corriente I a una tensión V, se genera calor debido al efecto Joule. ¿Cómo se transfiere ese calor?

¿Cómo modelamos el calor en los dispositivos?

The En un dispositivo por el cual circula una corriente I a una tensión V, se genera calor debido al efecto Joule. ¿Cómo se transfiere ese calor?

- Juntura (silicio): Conducción.
- Carcasa (o capsula o case): Conducción.
- Disipador: Conducción → Previene que se eleve mucho la temperatura de juntura.
- Ambiente: Convección y radiación → Queremos que sea un sumidero térmico.

¿Cómo modelamos el calor en los dispositivos?

- En un dispositivo por el cual circula una corriente I a una tensión V, se genera calor debido al efecto Joule. ¿Cómo se transfiere ese calor?
 - Juntura (silicio): Conducción.
 - Carcasa (o capsula o case): Conducción.
 - Disipador: Conducción → Previene que se eleve mucho la temperatura de juntura.
 - Ambiente: Convección y radiación → Queremos que sea un sumidero térmico.

Resolviendo el problema de la conducción

Si modelamos como el caso simple de conducción 1D en un solido.

Resolviendo el problema de la conducción

Si modelamos como el caso simple de conducción 1D en un solido.

Ley de Fourier
$$q = k \cdot A \frac{dT}{dX}$$

$$q = k \cdot A \cdot \frac{T_C - T_F}{L}$$

Resolviendo el problema de la conducción

Si modelamos como el caso simple de conducción 1D en un solido.

Ley de Fourier
$$q = k \cdot A \frac{dT}{dX}$$

$$q = k \cdot A \cdot \frac{T_C - T_F}{L}$$

 \longrightarrow Defino la resistencia térmica: $\theta = \frac{L}{A \cdot k}$

Si modelamos como el caso simple de conducción 1D en un solido.

Ley de Fourier
$$q = k \cdot A \frac{dT}{dX}$$

$$q = k \cdot A \cdot \frac{T_C - T_F}{L}$$

- \longrightarrow Defino la resistencia térmica: $\theta = \frac{L}{A \cdot k}$
- → Obtenemos una "Ley de Ohm" térmica:

$$T_C - T_F = \theta \cdot q$$

Nota: Para la convección se obtiene un resultado similar

Nos permite hacer un circuito térmico, análogo a un circuito eléctrico:

Ley de Ohm equivalente: $T_C - T_F = \theta \cdot P$

Nos permite hacer un circuito térmico, análogo a un circuito eléctrico:

Ley de Ohm equivalente: $T_C - T_F = \theta \cdot P$

→ Equivalencias:

$$T_C - T_F \equiv \frac{}{}$$

$$P \equiv \bigcirc$$

$$\theta \equiv \begin{cases} \\ \\ \\ \end{cases}$$

$$[T] = {}^{\circ}C$$

$$[P] = W$$

$$[\theta] = \frac{c}{W}$$

Para un dispositivo tomaremos el siguiente modelo...

Sin disipador...

Para un dispositivo tomaremos el siguiente modelo...

El disipador...

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{^{\prime}W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{_W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

$$\rightarrow \theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{_W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

$$\theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

$$P_{Dis} = ?$$

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{_W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

$$\theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

$$P_{Dis} = 30 W$$

$$\theta_{ca} = ?$$

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{_{W}}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

$$\rightarrow \theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

$$\rightarrow P_{Dis} = 30 W$$

$$\rightarrow \theta_{ca} = ? \rightarrow P_{max} (@T_A = 25^{\circ}C) = 20W$$

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{W}$ y $P_{max}(@T_A=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

(Final 16/07/19) Un transistor MOSFET de potencia es utilizado en un circuito regulador de tensión. En funcionamiento continuo, la corriente sobre el transistor es 3 A y las tensión es $V_{DS}=10~V$. La temperatura en el ambiente donde debe funcionar es $50^{\circ}C$. Las características térmicas del dispositivo son $T_{j,max}=125^{\circ}C$, $\theta_{jc}=1,5\frac{^{\circ}C}{_{W}}$ y $P_{max}(@T_{A}=25^{\circ}C)=20W$.

Determinar si es necesario el uso de un disipador y en caso afirmativo dar el valor de la resistencia térmica.

$$P_{max}(@T_A = 25^{\circ}C) = 20W$$

$$T_{J,max} \qquad T_C$$

$$T_{C}$$

 θ_{ca}

 $T_A = 25^{\circ}C$

 \longrightarrow Defino: $\theta_{ja} = \theta_{jc} + \theta_{ca}$

 \rightarrow Aplico Ley de Ohm: $T_c - T_f = \theta \cdot P$

 \longrightarrow Defino: $\theta_{ja} = \theta_{jc} + \theta_{ca}$

 \rightarrow Aplico Ley de Ohm: $T_c - T_f = \theta \cdot P$

$$\longrightarrow T_{J,max} - T_A = \theta_{ja} \cdot P_{max}$$

 \longrightarrow Defino: $\theta_{ja} = \theta_{jc} + \theta_{ca}$

 \longrightarrow Aplico Ley de Ohm: $T_c - T_f = \theta \cdot P$

$$\longrightarrow T_{J,max} - T_A = \theta_{ja} \cdot P_{max}$$

$$\longrightarrow 125^{\circ}C - 25^{\circ}C = \theta_{ja} \cdot 20 W$$

$$P_{max}(@T_A = 25^{\circ}C) = 20W$$

$$\longrightarrow$$
 Defino: $\theta_{ja} = \theta_{jc} + \theta_{ca}$

$$\longrightarrow$$
 Aplico Ley de Ohm: $T_c - T_f = \theta \cdot P$

$$\longrightarrow T_{J,max} - T_A = \theta_{ja} \cdot P_{max}$$

$$\longrightarrow 125^{\circ}C - 25^{\circ}C = \theta_{ja} \cdot 20 W$$

$$\longrightarrow \theta_{ja} = 5 \frac{^{\circ}C}{W} = \theta_{jc} + \theta_{ca}$$

$$\longrightarrow \theta_{ca} = 3.5 \frac{^{\circ}C}{W}$$

$$\theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

$$\theta_{ca} = 3.5 \frac{^{\circ}C}{W}$$

$$P_{Dis} = 30 W$$

$$T_{A} = 50 ^{\circ}C$$

→ ¿Cómo se si necesito un disipador?

$$\rightarrow$$
 Si $T_J > T_{J,max}$

→ ¿Cómo se si necesito un disipador?

$$\rightarrow$$
 Si $T_J > T_{J,max}$

Busco
$$T_J$$
: $T_J - T_A = (\theta_{ja} + \theta_{ca}) \cdot P_D$

$$T_J = 200^{\circ}C > T_{J,max} = 125^{\circ}C$$

$$\theta_{jc} = 1.5 \frac{^{\circ}C}{W}$$

$$P_{Dis} = 30 W$$

$$\theta_{ca} = 3.5 \frac{^{\circ}C}{W}$$

$$T_{A} = 50 ^{\circ}C$$

→ ¿Cómo se si necesito un disipador?

$$\rightarrow$$
 Si $T_J > T_{J,max}$

Busco
$$T_J$$
: $T_J - T_A = (\theta_{ja} + \theta_{ca}) \cdot P_D$

$$T_J = 200^{\circ}C > T_{J,max} = 125^{\circ}C$$

 \longrightarrow Queremos que $T_J < T_{J,max}$

 \longrightarrow Queremos que $T_J < T_{J,max}$

 \longrightarrow En el caso límite si $T_J = T_{J,max}$

$$P_D \cdot \theta_{jc} = T_{J,max} - T_C \rightarrow T_C = 80 \frac{{}^{\circ}C}{W}$$

 \longrightarrow Queremos que $T_J < T_{J,max}$

 \longrightarrow En el caso límite si $T_J = T_{J,max}$

$$P_D \cdot \theta_{jc} = T_{J,max} - T_C \rightarrow T_C = 80 \frac{^{\circ}C}{W}$$

→ Entre la carcasa y el ambiente

$$T_C - T_A = (\theta_{ca} / / \theta_{dis}) \cdot P_D$$

 \longrightarrow Queremos que $T_J < T_{J,max}$

 \longrightarrow En el caso límite si $T_J = T_{J,max}$

$$P_D \cdot \theta_{jc} = T_{J,max} - T_C \rightarrow T_C = 80 \frac{{}^{\circ}C}{W}$$

→ Entre la carcasa y el ambiente

$$T_C - T_A = (\theta_{ca} / / \theta_{dis}) \cdot P_D$$

$$(\theta_{ca} / / \theta_{dis}) = 1 \frac{{}^{\circ}C}{W}$$

$$\frac{1}{\theta_{ca}} + \frac{1}{\theta_{dis}} = \frac{1}{1 \frac{{}^{\circ}C}{W}} \rightarrow \theta_{dis} = 1,4 \frac{{}^{\circ}C}{W}$$

 \longrightarrow Queremos que $T_J < T_{J,max}$

 \longrightarrow En el caso límite si $T_J = T_{J,max}$

$$P_D \cdot \theta_{jc} = T_{J,max} - T_C \rightarrow T_C = 80 \frac{{}^{\circ}C}{W}$$

Entre la carcasa y el ambiente

$$T_C - T_A = (\theta_{ca} / / \theta_{dis}) \cdot P_D$$

$$\theta_{ca} / / \theta_{dis}) = 1 \frac{{}^{\circ}C}{W}$$

$$\frac{1}{\theta_{ca}} + \frac{1}{\theta_{dis}} = \frac{1}{1 \frac{{}^{\circ}C}{W}} \rightarrow \theta_{dis} = 1,4 \frac{{}^{\circ}C}{W}$$

$$\longrightarrow \theta_{dis} \le 1.4 \frac{^{\circ}C}{W}$$

Como mejoro la conducción/convección?

Como mejoro la conducción/convección?

- Smooth interfaces
- Clean interfaces
- Thermal grease
- Increased surface area
- Pick a different material
- Shorten conduction paths
- Decrease ambient temperature

- Como mejoro la conducción/convección?
- El rol de la pasta térmica...

• Como mejoro la

• El rol de la pasta

- Como mejoro la conducción/convección?
- El rol de la pasta térmica...
- ¿Donde obtengo parámetros térmicos del dispositivo?

2N6338, 2N6341

High-Power NPN Silicon Transistors

*MAXIMUM RATINGS

Rating	Symbol	2N6338	2N6341	Unit
Collector-Base Voltage	V _{CB}	120	180	Vdc
Collector-Emitter Voltage	V _{CEO}	100	150	Vdc
Emitter-Base Voltage	V _{EB}	6.0		Vdc
Collector Current Continuous Peak	Ic	25 50		Adc
Base Current	I _B	10		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14		W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θ_{JC}	0.875	°C/W

TO-204AA CASE 1-07

- Como mejoro la conducción/convección?
- El rol de la pasta térmica...
- ¿Donde obtengo parámetros térmicos del dispositivo?
- ¿Y de disipadores?

Cancidaracianas practicas

Artículo 6925 ZD-33

Dimensiones: Base 64mm - Altura 69mm - Espesor núcleo central 12mm

Resistencia térmica: 1.80° C/W para 75mm

Superficie: 1730 mm²/mm Peso por Metro: 4,860 Kg.

Artículo 6725 ZD-34

Dimensiones: Base 150mm - Altura 35mm - Espesor núcleo central 6mm

Resistencia térmica: 1.40° C/W para 75mm

Superficie: 1860 mm²/mm Peso por Metro: 4,660 Kg.

Artículo 5055 ZD-20

Dimensiones: Base 122mm - Altura 69mm - Espesor núcleo central 9mm

Resistencia térmica: 0.90° C/W para 100mm

Superficie: 2850,75 mm²/mm Peso por Metro: 7,80 Kg.

Artículo 7325 ZD-21

Dimensiones: Base 136.50mm - Altura 33mm - Espesor núcleo central 8mm

Resistencia térmica: 1.5º C/W para 75mm

Superficie: 2141 mm²/mm Peso por Metro: 5,780 Kg. ositivo?