KSD Aggregated Goodness-of-fit Tests

KSDAgg: KSD Aggregated Goodness-of-fit Test

KSDAggInc: Efficient Aggregated Kernel Tests using Incomplete U-statistics

Contributions

- Aggregate KSD tests with different kernels or bandwidths
- Quantiles estimated via wild or parametric bootstraps
- No data splitting (known to result in a loss in power)
- Uniform separation rate upper bound for general kernels
- Propose efficient tests based on incomplete *U*-statistics
- Quantify trade-off efficiency versus rate of convergence

Goodness-of-fit problem

Are samples drawn from the model?

- model density p (or score function $\nabla \log p(z)$)
- samples $\mathbb{Z}_N \coloneqq (Z_1, \ldots, Z_N)$ drawn $Z_i \overset{\text{iid}}{\sim} q$

Hypothesis testing:

 \mathcal{H}_0 : p = q

against

 \mathcal{H}_a : $p \neq q$

Kernel Stein Discrepancy

Stein kernel: $h_{p,k}(x,y)$ in terms of $\nabla \log p(z)$ with kernel k

Stein identity: $\mathbb{E}_{p}[h_{p,k}(Z,\cdot)]=0$

Kernel Stein Discrepancy: $KSD_{p,k}^2(q) := \mathbb{E}_{q,q}[h_{p,k}(Z,Z')]$

Estimator: $\widehat{\mathsf{KSD}}^2_{p,k}(\mathbb{Z}_N) \coloneqq \frac{1}{N(N-1)} \sum_{1 \le i \ne j \le N} h_{p,k}(Z_i, Z_j)$

KSD test for fixed kernel k

Test: reject \mathcal{H}_0 if $\widehat{\mathsf{KSD}}^2_{p,k}(\mathbb{Z}_N) > \widehat{q}^k_{1-q}$

Quantile: $\widehat{q}_{1-\alpha}^{k}$ is $B(1-\alpha)$ -th largest bootstrapped value

Wild bootstrap: $\frac{1}{N(N-1)} \sum_{\mathbf{z} \in \mathcal{S}_i} \varepsilon_i \varepsilon_j h_{p,k}(\mathbf{Z}_i, \mathbf{Z}_j), \ \varepsilon_i \stackrel{\text{iid}}{\sim} \{\pm 1\}$

Parametric bootstrap: $\frac{1}{N(N-1)} \sum_{1 \le j \ne i \le N} h_{p,k}(\widetilde{Z}_i, \widetilde{Z}_j), \ \widetilde{Z}_i \stackrel{\text{iid}}{\sim} p$

KSDAgg for collection of kernels /

Test: reject \mathcal{H}_0 if $\widehat{\mathsf{KSD}}^2_{p,k}(\mathbb{Z}_N) > \widehat{q}^k_{1-u_q w_k}$ for some $k \in \mathcal{K}$

Weights (prior): $(w_k)_{k \in \mathcal{K}}$ satisfying $\sum_{k \in \mathcal{K}} w_k \leq 1$

Correction: u_a maximum value such that the level estimated via Monte-Carlo is well-calibrated at α

More powerful than conservative Bonferroni correction

KSDAgg Uniform separation rate

Integral transform: $(T_{\kappa}f)(y) := \int \kappa(x,y)f(x) dx$

Kernel assumption: $A_k := \mathbb{E}_{q,q}[h_{p,k}(Z,Z')^2] < \infty$

If $\|\mathbf{p} - \mathbf{q}\|_2^2$ is greater than

$$\min_{\mathbf{k} \in \mathcal{K}} \left(\left\| (\mathbf{p} - \mathbf{q}) - T_{h_{\mathbf{p},\mathbf{k}}}(\mathbf{p} - \mathbf{q}) \right\|_{2}^{2} + C N^{-1} \ln \left(\frac{1}{\alpha w_{\mathbf{k}}} \right) \frac{\sqrt{A_{\mathbf{k}}}}{\beta} \right)$$

then **KSDAgg** has power at least $1 - \beta$.

Incomplete U-statistic

Estimator: $\overline{\text{KSD}}_{p,k}^2(\mathbb{Z}_N) := \frac{1}{N(N-1)} \sum_{(i,j) \in \mathcal{D}} h_{p,k}(Z_i, Z_j)$

Design: \mathcal{D}_N random / deterministic subset of $\{(i,j)\}_{1 < i \neq j \leq N}$

Linear time: $|\mathcal{D}_N| = cN$ for some fixed integer $c \in \mathbb{N}$

KSDAggInc Uniform separation rate

KSDAggInc: use $\overline{\text{KSD}}_{p,k}^2(\mathbb{Z}_N)$ instead of $\widehat{\text{KSD}}_{p,k}^2(\mathbb{Z}_N)$

Uniform separation rate: same condition as for KSDAgg with N multiplied by an extra cost factor $|\mathcal{D}_N|/N^2$

- $|\mathcal{D}_N| \simeq N^2$: recover **KSDAgg** rate
- $N \leq |\mathcal{D}_N| \leq N^2$: cost $|\mathcal{D}_N|/N^2$ incurred in KSDAgg rate Trade-off: computational efficiency / rate convergence
- $|\mathcal{D}_N| \lesssim N$: no guarantee that rate converges to 0

Antonin Schrab I. Kim B. Guedj A. Gretton

Experiments

Gaussian-Bernoulli Restricted Boltzmann Machine:

graphical model with binary hidden variable $h \in \{\pm 1\}^{d_h}$ & continuous observable variable $x \in \mathbb{R}^{d_x}$ with joint density

$$p(x, h) = \frac{1}{Z} \exp\left(\frac{1}{2}x^{T}Bh + b^{T}x + c^{T}h - \frac{1}{2}||x||_{2}^{2}\right)$$

- ullet model: GBRBM with $B\in\{\pm 1\}^{d_{\scriptscriptstyle X} imes d_{\scriptscriptstyle h}}$, $b\in\mathbb{R}^{d_{\scriptscriptstyle X}}$, $c\in\mathbb{R}^{d_{\scriptscriptstyle h}}$
- ullet samples: GBRBM with noise $\mathcal{N}(\mathbf{0}, \sigma)$ injected into B

Collection: Gaussian kernels with scaled median bandwidth

Parameter R: number of subdiagonals of the kernel matrix

LSD: Grathwohl et al. 2020 FSSD: Jitkrittum et al. 2017 L1 IQM & Cauchy RFF: Huggins and Mackey 2018

KSDAgg

AggInc

