

iPDP: On Partial Dependence Plots in Dynamic Modeling **Scenarios**

Maximilian Muschalik^{1,2,*}, Fabian Fumagalli^{3,*}, Rohit Jagtani¹.

Barbara Hammer³, and Eyke Hüllermeier^{1,2}

Maximilian.muschalik@lmu.de

☐ ffumagalli@techfak.uni-bielefeld.de

¹ LMU Munich, ² MCML Munich, ³ Bielefeld University

* denotes equal contribution

Online Models are Learning Incrementally from Data Streams

Online Models are Learning Incrementally from Data Streams

Various applications: Bifet and Gavaldà 2007, Gama et al. 2014, Davari et al. 2021, etc.

Maximilian Muschalik

Still Changes Remain Unnoticed Despite Incremental XAI ...

hidden concept drift

$$P_{t_1}(Y|X) \neq P_{t_2}(Y|X)$$

Partial Dependence Plots (PDPs) Explain Feature Effects

Definition of PDP (Friedman 2001)

$$f_S^{\text{PD}}(\mathbf{x}^S) = \mathbb{E}_{X^{\bar{S}}}\left[f(\mathbf{x}^S, X^{\bar{S}})\right]$$
 in practice: $\hat{f}_S^{\text{PD}}(\mathbf{x}^S) = \frac{1}{n}\sum_{i=1}^n f(\mathbf{x}^S, \mathbf{x}_i^{\bar{S}})$

PDP on Virtual and Real Concept Drift

Incremental PDP (iPDP) for Moving Models and Data

Incremental PDP (iPDP) for Moving Models and Data

Maximilian Muschalik iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios

Incremental PDP (iPDP) for Moving Models and Data

Definition of iPDP $\overrightarrow{\hat{f}_S^{\text{PD}}(\mathbf{x}_{t,k}^S,t)} := (1-\alpha) \cdot \underbrace{\widehat{\hat{f}_S^{\text{PD}}(\mathbf{x}_{t-1,k}^S,t-1)}^{\text{old PDP}} + \alpha \cdot \underbrace{\widehat{f}_t(\tilde{\mathbf{x}}_{t,k}^S,\mathbf{x}_t^{\overline{S}})}^{\text{new ICE}}$

iPDP on Virtual and Real Concept Drift

iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios

Theoretical Guarantees

Theorem (Reactiveness)

iPDP reacts to real drift and favors recent PD values, as

$$\mathbb{E}[\hat{f}_{S}^{PD}(\mathbf{x}_{t,k}^{S},t)] = \alpha \sum_{i=1}^{t} (1-\alpha)^{t-i} \underbrace{\mathbb{E}_{X_{i}^{\bar{S}}}\left[f_{i}(\tilde{\mathbf{x}}_{i,k}^{S},X_{i}^{\bar{S}})\right]}_{PD \text{ function at time } i}, \text{ for } k=1,\ldots,m.$$

Theoretical Guarantees

Theorem (Reactiveness)

iPDP reacts to real drift and favors recent PD values, as

$$\mathbb{E}[\hat{f}_{S}^{PD}(\mathbf{x}_{t,k}^{S},t)] = \alpha \sum_{i=1}^{t} (1-\alpha)^{t-i} \underbrace{\mathbb{E}_{X_{i}^{\bar{S}}}\left[f_{i}(\tilde{\mathbf{x}}_{i,k}^{S},X_{i}^{\bar{S}})\right]}_{PD \text{ function at time } i}, \text{ for } k=1,\ldots,m.$$

Theorem (Batch PDP Approximation in Static Settings)

Let observations $(x_0, y_0), \ldots, (x_t, y_t)$ be iid from $\mathbb{P}(X, Y)$ and $f \equiv f_t$ be a static model. If f is locally linear in the range of temporary model evaluation points $\{\tilde{\mathbf{x}}_{i,k}^{S}\}_{i=1}^{t}$ for $k=1,\ldots,m$, then

$$\mathbb{E}\left[\hat{f}_{S}^{PD}(\mathbf{x}_{t,k}^{S},t)\right] = f_{S}^{PD}\left(\mathbf{x}_{t,k}^{S}\right) \text{ and } \mathbb{E}\left[\frac{\hat{f}_{S}^{PD}(\mathbf{x}_{t,k}^{S},t)}{1-(1-\alpha)^{t}}\right] = f_{S}^{PD}\left(\frac{\mathbf{x}_{t,k}^{S}}{1-(1-\alpha)^{t}}\right).$$

Experiment A - Synthetic Data

Experiment B - Concept Drift Detection

The Road Ahead and Open Source Implementation

Towards Explaining Change.

- iPDP is a **model-agnostic** XAI method to capture feature effects of models **in flux**.
- iSAGE and iPFI can be used to compute global feature importance incrementally.

References

Davari, Narjes et al. (2021). "Predictive Maintenance Based on Anomaly Detection Using Deep Learning for Air Production Unit in the Railway Industry". In: 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2021). IEEE, pp. 1–10. DOI: 10.1109/DSAA53316.2021.9564181.

Friedman, Jerome H. (2001). "Greedy Function Approximation: A Gradient Boosting Machine". In: *The Annals of Statistics* 29.5, pp. 1189–1232. ISSN: 00905364. URL: http://www.jstor.org/stable/2699986.

References

https://doi.org/10.48550/arXiv.2209.01939. Gama, João et al. (2014). "A Survey on Concept Drift Adaptation". In: ACM

Comput. Surv. 46.4, 44:1–44:37. DOI: 10.1145/2523813.

Muschalik, Maximilian et al. (2023). "iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams". In: CoRR abs/2303.01181. arXiv: 2303.01181. URL: https://doi.org/10.48550/arXiv.2303.01181.

Efficient Access to Feature Distribution over Time

Removal Stratgies

- Interventional removal (or categorical features) can be stored in Geometric Reservoirs (Fumagalli et al. 2022)
- Observational removal can be stored in Incremental Subgroups
 (Muschalik et al. 2023)

Experiment C - Static Model and Data

iPDP on Virtual and Real Concept Drift

Maximilian Muschalik

iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios

iPDP Algorithm

Algorithm 1 iPDP Explanation Procedure

Require: stream $\{\mathbf{x}_t, y_t\}_{t=1}^{\infty}$, model $f_t(.)$, feature set of interest S, smoothing parameter $0 < \alpha \leq 1$, number of grid points m, and storage object R_t

- 1: initialize $\hat{f}_S^{\text{PD}}(\mathbf{x}_{0,k}^S, 1) \leftarrow 0$
- 2: for all $(\mathbf{x}_t, y_t) \in \text{stream do}$
- 3: $\{\tilde{\mathbf{x}}_{t,k}^S\}_{k=1}^m \leftarrow \text{GetGridPoints}(R_t, m) \text{ {e.g., equidistant points, quantiles, etc.}}$ 4: $\mathbf{for} \ k = 1, \dots, m \ \mathbf{do}$
- 5: $\mathbf{x}_{t,k}^S \leftarrow (1-\alpha) \cdot \mathbf{x}_{t-1,k}^S + \alpha \cdot \tilde{\mathbf{x}}_{t,k}^S \text{ {update grid point}}$
- 6: $\hat{y}_k \leftarrow f_t\left(\tilde{\mathbf{x}}_{t,k}^S, \mathbf{x}_t^{\bar{S}}\right)$ {evaluate on model evaluation point}
- 7: $\hat{f}_S^{\text{PD}}(\mathbf{x}_{t,k}^S, t) \leftarrow (1-\alpha) \cdot \hat{f}_S^{\text{PD}}(\mathbf{x}_{t-1,k}^S, t-1) + \alpha \cdot \hat{y}_k \text{ {update point-wise estimates}}$
- 8: **end for**
- 9: $R_t \leftarrow \text{UPDATESTORAGE}(R_{t-1}, x_t^S) \text{ {add } } x_t^S \text{ to the storage object}$
- 10: **Output:** $\frac{\hat{f}_{S}^{\text{PD}}(\mathbf{x}_{t,k}^{S},t)}{1-(1-\alpha)^{t}}$, $\frac{\mathbf{x}_{t,k}^{S}}{1-(1-\alpha)^{t}}$ {debiasing of estimates and grid points}
- 11: end for

