ORAUX HEC 2011

I. Annales 2011

Exercice 1 (Exercice avec préparation) Soit f la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{e^{-|x|}}{2}.$$

- 1. C'est une fonction positive, continue sauf en un nombre fini de points et telle que $\int_{-\infty}^{+\infty} f$ converge et vaut 1.
- 2. f est positive par positivité de l'exponentielle, continue comme composée de fonctions continues (la valeur absolue est bien continue!) et paire donc $\int_{-\infty}^{+\infty} f$ converge absolument et vaut 1 si et seulement si $\int_{0}^{+\infty} f$ converge et vaut $\frac{1}{2}$.

 Or pour x > 0, (à préciser pour pouvoir remplacer la valeur absolue!), $\int_{0}^{x} f(t) dt = \frac{1}{2} \int_{0}^{x} e^{-t} = \frac{1}{2}$ en primitivant ou en utilisant la loi exponentielle de paramètre $\lambda = 1$.

 Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) dont f est une densité de probabilité.
- 3. a) L'absolue convergence est équivalente à la convergence sur $[0; +\infty[$ par positivité de $t \to tf(t)$ et sur $]-\infty;0]$ par négativité de $t \to tf(t)$ donc sur $]-\infty;+\infty[$.

 De plus la fonction $t \to tf(t)$ est impaire donc si $\int_0^{+\infty} tf(t) \, dt$ converge, alors $\int_{-\infty}^{+\infty} tf(t) \, dt$ converge et vaut 0.

 Or on a $t^2 \times te^{-t} = t^3e^{-t} \xrightarrow[t \to +\infty]{} 0$ donc $te^{-t} = o\left(\frac{1}{t^2}\right)$ et par théorème de comparaison des intégrales de fonctions positives (on compare ici à une intégrale de Riemann convergente), $\int_0^{+\infty} tf(t) \, dt$ converge, donc X admet une espérance et $\mathbb{E}(X) = 0$.
 - b) Un peu de calcul ici : il faut calculer la fonction de répartition de f pour faire des calculs : En traitant bien à part les cas x < 0 et x > 0 on trouve :

$$F(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ 1 - \frac{1}{2}e^{-x} & \text{si } x \ge 0 \end{cases}$$

On peut alors calculer = $\mathbb{P}([X > t - s]) = \frac{1}{2}e^{s-t}$ et $P_{[X>s]}[X > t] = \frac{\mathbb{P}([X>s]\cap[X>t])}{P([X>s])} = \frac{\mathbb{P}([X>t])}{\mathbb{P}([X>s])} = \frac{\frac{1}{2}e^{-t}}{\frac{1}{2}e^{-s}} = e^{s-t}$ si $s \ge 0$ (car alors $t \ge 0$), ce qui contredit le résultat.

4. Il faut prouver que H_n est croissante, continue à droite et tend vers 0 en $-\infty$ et 1 en $+\infty$. Cependant comme cela ressemble à une variable à densité, on considère plutôt $h_n(t) = f(t)(1 + te^{-n|t|})$ et on prouver que c'est une densité de probabilité : H_n , fonction de répartition associée, sera bien une fonction de répartition.

La fonction est continue sur \mathbb{R} par théorèmes généraux sur les fonctions continues.

Pour tout $t \in \mathbb{R}$, $f(t) \ge 0$ donc il faut prouver que $1 + te^{-n|t|}$ sur \mathbb{R} ; sur \mathbb{R}_+ , c'est évident comme somme de deux quantités positives; sur \mathbb{R}_- , étudions la fonction $g_n(t) = 1 + te^{nt}$: elle est dérivable et on a $g_n'(t) = nte^{nt} + e^{nt} = (1+nt)e^{nt}$ qui s'annule en $t = -\frac{1}{n}$ qui est le minimum de la fonction (vérifier les signes éventuellement mais cela paraît évident). Enfin on a $g_n\left(-\frac{1}{n}\right)=1-\frac{1}{n}e^{-1}=1-\frac{1}{ne}\geqslant 0$

La fonction g_n est donc positive sur \mathbb{R}_- , et h_n est positive sur \mathbb{R} .

Ensuite on a $h_n(t) = f(t) + t f(t) e^{-n|t|}$.

La première fonction vérifie $\int_{-\infty}^{+\infty} f(t) dt$ converge absolument et vaut 1. La deuxième est impaire donc comme tout à l'heure si on obtient la convergence sur $[0; +\infty[$, $\int_{-\infty}^{+\infty} t f(t) e^{-n|t|}$ convergera absolument et vaudra 0.

Or on a $tf(t) = o\left(\frac{1}{t^2}\right)$ en $+\infty$ et $e^{-n|t|} \xrightarrow[t \to +\infty]{} 0$ donc est négligeable devant 1 donc le produit vérifie $tf(t)e^{-n|t|} = o\left(\frac{1}{t^2}\right)$ et par théorème de comparaison des intégrales de fonctions positives, l'intégrale est convergente.

finalement on obtient bien par somme que $\int_{-\infty}^{+\infty} h_n(t) dt$ converge absolument et vaut 1.

5. Ce sont des variables aléatoires à densité donc la fonction de répartition de X est continue sur \mathbb{R} ; il faut donc prouver que pour tout $x \in \mathbb{R}$, $\int_{-\infty}^{x} f(t) \left(1 + te^{-n|t|}\right) dt$ converge vers $\int_{-\infty}^{x} f(t) dt$, donc que $\int_{-\infty}^{x} tf(t)e^{-n|t|} dt \to 0$, et enfin cela équivaut à $\int_{-\infty}^{x} te^{-(n+1)|t|} \to 0$.

Ici il faut être précis dans les calculs : on le prouve pour $x \leq 0$ par intégration par parties et calcul de l'intégrale.

Ensuite pour $x \ge 0$ on a $\int_{-\infty}^{0} te^{-(n+1)|t|} \to 0$ donc il suffit de prouver $\int_{0}^{x} te^{-(n+1)|t|} \to 0$, qu'on prouve également avec une intégration par parties (pas la même, la fonction n'a pas la même expression!) et calcul de l'intégrale.

Exercice sans préparation

Soit n un entier supérieur ou égal à 2 et $(a_1, a_2, \ldots a_n) \in \mathbb{R}^n - \{0, \ldots 0\}$.

On considère la matrice colonne $X = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}).$

On pose B = X tX et A = tX X.

On désigne par u l'endomorphisme de \mathbb{R}^n canoniquement associé à B.

- 1. $A = \sum_{i=1}^{n} a_i 2$ est un réel et $B = (b_{i,j})_{1 \leq i,j \leq n}$ est une matrice de $\mathcal{M}_n(\mathbb{R})$ avec $b_{i,j} = a_i a_j$.
- 2. u est de rang 1 car les colonnes de B sont toutes multiples de X et au moins une est non nulle (car un au moins des a_i est non nul et le terme a_i 2 correspondant est alors non nul donc la colonne correspondante est non nulle).
- 3. B est diagonalisable car elle est symétrique $(b_{i,j} = b_{j,i} = a_i a_j)$.

4.
$$B^k = (XtX)(XtX)\dots(XtX) = X(tXX)\dots(tXX)tX = \left(\sum_{i=1}^n a_i 2\right)^{k-1} XtX = \left(\sum_{i=1}^n a_i 2\right)^{k-1} B.$$

Exercice 2 (Exercice avec préparation)

- 1. Toute suite croissante converge si et seulement si elle est majorée. Sinon elle diverge vers $+\infty$. Toute suite décroissante converge si et seulement si elle est minorée. Sinon elle diverge vers $-\infty$.
- 2. Dans cette question seulement, on suppose $\alpha = 1$ et $\beta = 2$.
 - a) $f'(x) = \frac{1+x}{1+2x} + x \frac{1+2x-2(1+x)}{(1+2x)^2} = \frac{(1+x)(1+2x)-x}{(1+2x)^2} = \frac{2x^2+2x+1}{(1+2x)^2} > 0$ (Au numérateur le discriminant est égal à -4 donc le trinôme est du signe de son coefficient dominant, donc positif et le dénominateur est un carré donc toujours positif.)

On ne déduit que f est strictement croissante sur \mathbb{R}_+ , avec f(0) = 0 et $\lim_{t \to \infty} f = +\infty$.

b) L'intervalle \mathbb{R}_+ est stable par f et $u_0 \in \mathbb{R}_+$ donc $u_n \in \mathbb{R}_+$ pour tout n.

Avec la croissance de f on peut regarder le signe de $u_0 - u_1$; mais comme u_0 est quelconque, autant regarder directement le signe de f(x) - x:

 $f(x) - x = x \left(\frac{1+x}{1+2x} - \frac{1+2x}{1+2x} \right) = x \frac{-x}{1+2x} = \frac{-x^2}{1+2x} < 0$ donc la suite est décroissante $(u_{n+1} - u_n) = x \frac{-x}{1+2x} = \frac{-x^2}{1+2x} = \frac{-x^$ $f(u_n) - u_n < 0$) et minorée par 0 donc converge.

De plus elle ne peut converger que vers un point fixe de f, vérifiant donc $f(x) = x \Leftrightarrow \frac{-x^2}{1+2x} =$ $0 \Leftrightarrow x = 0 \text{ donc } (u_n) \text{ converge vers } 0.$

- c) Question toute simple : je vous laisse faire ce programme vous-même.
- 3. On peut reprendre la structure des questions précédentes. Essayons de varier un peu :

Pour montrer que $u_n > 0$, on fait une récurrence immédiate avec en hérédité :

 $u_n > 0$ donc $1 + \alpha u_n > 0$ et $1 + \beta u_n > 0$ donc $\frac{1 + \alpha u_n}{1 + \beta u_n} > 0$ et enfin $u_{n+1} = u_n \frac{1 + \alpha u_n}{1 + \beta u_n} > 0$. Ensuite on étudie $u_{n+1} - u_n = u_n \frac{1 + \alpha u_n - 1 - \beta u_n}{1 + \beta u_n} = \frac{(\alpha - \beta)u_n 2}{1 + \beta u_n} < 0$ car $\alpha - \beta < 0$, $u_n 2 > 0$ et $1 + \beta u_n > 0$ donc (u_n) est strictement décroissante, et minorée par 0 donc convergente vers un point fixe donc l vérifie $\frac{(\alpha-\beta)l^2}{1+\beta l}=0$ et enfin l=0, donc (u_n) converge vers 0.

4.
$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1}{u_n} \left(\frac{1+\beta u_n}{1+\alpha u_n} - \frac{1+\alpha u_n}{1+\alpha u_n} \right) = \frac{(\beta-\alpha)u_n}{(1+\alpha u_n)u_n} = \frac{\beta-\alpha}{(1+\alpha u_n)} \xrightarrow[n \to +\infty]{} \frac{\beta-\alpha}{1+\alpha \times 0} = \beta-\alpha.$$

5. On en déduit (on pose $w_n=v_{n+1}-v_n$) que la suite $W_n=\frac{1}{n}\left(w_0+w_1+\cdots+u_{n-1}\right)$ converge vers

Or $W_n = \frac{1}{n} (v_n - v_0) = \frac{1}{n} \left(\frac{1}{u_n} - \frac{1}{u_0} \right)$.

Or on a $\frac{1}{u_n} \to +\infty$ et $\frac{1}{u_0}$ est une constante donc $\left(\frac{1}{u_n} - \frac{1}{u_0}\right) \sim \frac{1}{u_n}$ et enfin $W_n \sim \frac{1}{nu_n} \sim (\beta - \alpha)$ et enfin $u_n \sim \frac{1}{n(\beta-\alpha)}$.

Exercice sans préparation

n souris (minimum 3) sont lâchées en direction de 3 cages, chaque cage pouvant contenir les n souris et chaque souris allant dans une cage au hasard.

1. On pose Y_i le nombre de souris dans la cage i, on a $Y_i \hookrightarrow \mathcal{B}\left(n, \frac{1}{3}\right)$ donc $\mathbb{P}\left(\left[\left[Y_i = 0\right]\right]\right) = \left(\frac{2}{3}\right)^n$.

La probabilité cherchée vaut $\mathbb{P}([Y_1=0]\cup[Y_2=0]\cup[Y_3=0])=\mathbb{P}([[Y_1=0]])+\mathbb{P}([[Y_2=0]])+\mathbb{P}([[Y_2=0]])=\mathbb{P}([[Y_1=0]])=\mathbb$ $\mathbb{P}\left([[Y_3=0]]\right) - \mathbb{P}([Y_1=0] \cap [Y_2=0]) - \mathbb{P}([Y_1=0] \cap [Y_3=0]) - \mathbb{P}([Y_2=0] \cap [Y_3=0]) + \mathbb{P}([Y_1=0] \cap [Y_1=0]) - \mathbb{P}([Y_1=0] \cap [Y_1=0]$ $0] \cap [Y_2 = 0] \cap [Y_3 = 0]).$

Or on a $\mathbb{P}([Y_1=0] \cap [Y_2=0] \cap [Y_3=0]) = 0$ (les trois cages ne peuvent être vides en même temps, où seraient passé les souris?)

D'autre part pour calculer $P([Y_i=0]\cap [Y_j=0])$ on pose $Z_{i,j}$ le nombre de souris dans les cages i et $j, Z_{i,j} \hookrightarrow \mathcal{B}\left(n, \frac{2}{3}\right)$ donc $P([Y_i=0]\cap [Y_j=0]) = \mathbb{P}\left([Z_{i,j}=0]\right) = \left(\frac{1}{3}\right)^n$. Enfin on obtient $\mathbb{P}([Y_1=0]\cup [Y_2=0]\cup [Y_3=0]) = 3\frac{2^n-1}{3^n} = \frac{2^n-1}{3^{n-1}}$.

2. On pose X_i la variable aléatoire égale à 1 si la cage i reste vide, et 0 sinon, on a $X_i \hookrightarrow \mathcal{B}\left(\left(\frac{2}{3}\right)^n\right)$ et on a $X = X_1 + X_2 + X_3$ donc $\mathbb{E}(X) = 3\mathbb{E}(X_1)$ (les trois variables suivent la même loi et ont donc la même espérance). Enfin $\mathbb{E}(X) = \frac{2^n}{3^{n-1}}$.

Exercice 3 (Exercice avec préparation)

1. Une variable aléatoire X est à densité s'il existe une fonction f positive, continue sauf en un nombre finie de points, telle que pour tout $x \in \mathbb{R}$, $F_X(x) = \int_{-\infty}^x f(t) dt$.

Toute fonction de répartition est croissante, continue à droite en tout point et de limites 0 en $-\infty$ et 1 en $+\infty$.

La variable est à densité si et seulement si F_X est de plus continue sur \mathbb{R} , de classe C^1 sauf en un nombre fini de points.

2. F continue sur \mathbb{R} donc admet des primitives, et donc une unique primitive sur \mathbb{R} s'annulant en 0, notée H_f .

De plus H_f est dérivable sur \mathbb{R} , de dérivée F continue donc H_f est de classe C^1 sur \mathbb{R} .

- 3. Donner H_f dans les cas suivants :
 - a) On a alors F(x) = 0 si $x \leq 0$ et $F(x) = 1 e^{-x}$ si x > 0, puis $H_f(x) = 0$ si $x \leq 0$ et $H_f(x) = x + e^{-x} - 1$ si x > 0, d'asymptote oblique y = x - 1 en $+\infty$.
 - **b)** On a alors F(x) = 0 si $x \le 0$ et $F(x) = 1 \frac{1}{1+x}$ si x > 0, puis $H_f(x) = 0$ si $x \le 0$ et $H_f(x) = x - \ln(1+x)$ si x > 0, de direction asymptotique y = x en $+\infty$, mais qui n'a pas d'asymptote en $+\infty$.
 - c) On a alors F(x) = 0 si $x \leq 0$ et $F(x) = 1 \frac{1}{\sqrt{1+x}}$ si x > 0 puis $H_f(x) = 0$ si $x \leq 0$ et $H_f(x) = x - 2\sqrt{1+x} + 2$ si x > 0, de direction asymptotique y = x, mais qui n'a pas d'asymptote en $+\infty$.
- 4. On suppose que X admet une espérance l.
 - a) On intègre par parties avec u=t et v=F(t) de classe C^1 sur [0;x] et on a :

$$\int_0^x tf(t) dt = [tF(t)]_0 x - \int_0^x F(t) dt = xF(x) - H_f(x) + H_f(0) = xF(x) - H_f(x)$$

On integre par parties avec u=t or t=t (t=t) as shows t=t (t=t) as t=t (t=t)

$$x\left(F(x) - \frac{\int_0^x tf(t) dt}{x}\right) \sim xF(x) \sim x \operatorname{car} \lim_{t \to \infty} F(x) = 1.$$

On en déduit que $\frac{H_f(x)}{x} \sim 1 \xrightarrow[x \to +\infty]{} 1$ donc on a une direction asymptotique y = x.

- b) Difficile de répondre : les cas de la question 3 ne sont pas concluants (les deux cas où il n'y a pas d'asymptote proviennent de variables sans espérance). Il est probable qu'avec une rédaction similaire, on montrer que si X admet une variance, il y a bien une asymptote (en intégrant par parties l'intégrale menant au moment d'ordre 2).
 - Je ne vois pas comment répondre à la question posée intégralement (ce n'est peut-être pas le but recherché): il faudrait arriver à obtenir un développement asymptotique de x(F(x)-1).

Exercice sans préparation

Soit E l'ensemble des matrices $M_{a,b} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où (a,b) prend toute valeur de \mathbb{R}^2 .

- 1. Evident.
- 2. On peut calculer les premières puissances pour essayer de voir une relation simple : cela échoue. La matrice est symétrique donc diagonalisable, on va la diagonaliser.

Pour simplifier on utilise le fait que M(a,b)=aI+bA et comme $I=PIP^{-1}$ pour tout P, si on diagonalise A on aura $A=PDP^{-1}$ puis $M(a,b)=aPIP^{-1}+bPDP^{-1}=P\left([aI+bD]\right)P^{-1}$ et on aura la diagonalisation de M(a, b).

Enfin l'étude des valeurs propres et des sous-espaces propres de A donne $A = PDP^{-1}$ avec

Enfin l'etude des valeurs propres et des sous-espaces propres de
$$A$$
 donne $A = PDP^{-1}$ avec
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ donc } M(a,b) = P \begin{pmatrix} a-b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a+2b \end{pmatrix} \text{ donc } M(a,b)^n = P \begin{pmatrix} (a-b)^n & 0 & 0 \\ 0 & (a-b)^n & 0 \\ 0 & 0 & (a+2b)^n \end{pmatrix} P^{-1}.$$

Exercice 4 (Exercice avec préparation)

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit $p \in]0;1[$ et q=1-p.

- 1. n variables discrètes $(X_1, \ldots X_n)$ sont mutuellement indépendantes ou indépendantes dans leur ensemble si pour tout $(x_1, \ldots x_n) \in \mathbb{R}^n$, $P\left(\left[\bigcap_{i=1}^n nX_i = x_i\right]\right) = \prod_{i=1}^n n\mathbb{P}\left(\left[\left[X = x_i\right]\right]\right)$. Bien évidemment il suffit de le vérifier pour des x_i toujours dans $X_i(\Omega)$ pour tout i.
- 2. a) X_1 et X_2 suivent des lois géométriques de paramètre p donc on a $\mathbb{P}\left([[X_1=0]]\right) = \mathbb{P}\left([[X_2=0]]\right) = 0$.
 - b) Déjà fait ; l'indépendance des deux lois est obtenue par indépendance des lancers pairs et des lancers impairs.
 - c) $Y(\Omega) = \mathbb{N}$, $\mathbb{P}([[Y=0]]) = 0$ et pour tout $k \geqslant 0$: $\mathbb{P}([[Y>k]]) = \mathbb{P}([X_1>k] \cap [X_2>k]) = \mathbb{P}([[X_1>k]])^2$ par indépendance et même loi. D'où $\mathbb{P}([[Y>k]]) = (q^k)^2$ et $\mathbb{P}([[Y\leqslant k]]) = 1 (q^2)^k$. Enfin pour $k \geqslant 1$, $\mathbb{P}([[Y=k]]) = \mathbb{P}([[Y\leqslant k]]) \mathbb{P}([[Y\leqslant k-1]]) = (q^2)^{k-1} (q^2)^k = (q^2)^{k-1} (1-q^2)$ et Y suit la loi géométrique de paramètre $1-q^2$.
- 3. Soit X une variable aléatoire suivant une loi géométrique de paramètre p.
 - a) On a $Y(\Omega) = \mathbb{N}^*$: $Y \subset \mathbb{N}^*$ est évident et pour $k \neq 0$, Y = k est atteint pour X = 2k donc on a bien $\mathbb{N}^* \subset Y(\Omega)$. Ensuite on a plus précisément $[Y = k] = [X = 2k] \cup (X = 2k - 1)$ qui sont incompatibles donc $\mathbb{P}([[Y = k]]) = P[X = 2k] + \mathbb{P}([[X = 2k - 1]]) = p(q^{2k-1} + q^{2k-2}) = pq^{2k-2}(q+1) = [(1+q)(1-q)](q^2)^{k-1} = (1-q^2)(q^2)^{k-1}$ donc $Y \hookrightarrow \mathcal{G}(1-q^2)$.
 - b) L'étude de la partie entière montre que $(2Y-X)(\Omega)=\{0;1\}$ et on a : $\mathbb{P}\left([2Y-X=0]\right)=P\left([X\text{pair}]\right)=\sum_{k=1}^{+\infty}\mathbb{P}\left([[X=2k]]\right)=pq^{-1}\sum_{k=1}^{+\infty}\left(q^2\right)^k=\frac{pq^2}{q(1-q^2)}=\frac{q}{1+q}.$ $\mathbb{P}\left([2Y-X=1]\right)=P\left([X\text{impair}]\right)=\sum_{k=0}^{+\infty}\mathbb{P}\left([[X=2k+1]]\right)=p\sum_{k=0}^{+\infty}\left(q^2\right)^k=\frac{p}{1-q^2}=\frac{1}{1+q}.$ Enfin on a $P([Y=k]\cap(2Y-X=0))=\mathbb{P}\left([[X=2k]]\right)=pq^{2k-1}$ et $\mathbb{P}\left([[Y=k]]\right)\mathbb{P}\left([2Y-X=0]\right)=(1-q^2)(q^2)^{k-1}\frac{q}{1+q}=(1-q)q^{2k-1}=pq^{2k-1}.$ De même on a $P([Y=k]\cap(2Y-X=1))=\mathbb{P}\left([[X=2k-1]]\right)=pq^{2k-2}$ et $\mathbb{P}\left([[Y=k]]\right)\mathbb{P}\left([2Y-X=1]\right)=(1-q^2)(q^2)^{k-1}\frac{1}{1+q}=(1-q)q^{2k-2}=pq^{2k-2},$ et les variables sont indépendantes.

Exercice sans préparation

On note E_4 l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 4 et on considère l'application Δ qui à un polynôme P de E_4 associe le polynôme $Q = \Delta(P)$ défini par : Q(x) = P([x+2]) - P([x]).

1. La linéarité est évidente. De plus on a $\deg P([x+2]) = \deg P \times \deg(X+2) = \deg P$ donc $\deg \Delta(P) \leqslant \min(\deg P, \deg P) = \deg P \leqslant 4$ donc $\Delta(P) \in E_4$ et Δ est un endomorphisme.

Avec le binôme de Newton on trouve :
$$Mat_{\mathcal{B}}(\Delta) = \begin{pmatrix} 0 & 2 & 4 & 8 & 16 \\ 0 & 0 & 4 & 12 & 32 \\ 0 & 0 & 0 & 6 & 24 \\ 0 & 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
.

2. Il est beaucoup plus simple d'utiliser la matrice : on trouve $\ker \Delta = \operatorname{Vect}(e_0) = \mathbb{R}_0[X]$. Sinon avec l'indication on suppose que P([x+2]) = P([x]), alors on a P([2]) = P([0]), puis P([4]) = P([2]) = P([0]) et par une récurrence simple, pour tout n, P([2n]) = 0 donc P([x]) - P([0]) a une infinité de racines, donc P([x]) - P([0]) = 0 et enfin P([x]) = P([0]) est une constante. D'où $\ker \Delta \subset \mathbb{R}_0[X]$.

Enfin on trouve facilement que $\mathbb{R}_0[X] \subset \ker \Delta$ en prenant un polynôme constant, qui vérifie trivialement P([x+2]) = P([x]) et on obtient le résultat.

- 3. La matrice de Δ est triangulaire, on obtient que 0 est l'unique valeur propre. Si Δ était diagonalisable, il existerait P inversible telle que $M=P0P^{-1}=0$, ce qui est absurde.
- 4. Soit Q un polynôme admettant un antécédent, on a $\Delta(P) = Q$. Alors l'équation $\Delta(R) = Q$ est équivalente à $\Delta(R) - \Delta(P) = \Delta(R - P) = 0$ donc tout polynôme de la forme R = P + cste est solution, et la réponse à la question est non.

Exercice 5 (Exercice avec préparation)

Dans tout l'exercice, n désigne un entier naturel non nul et $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels, de degré inférieur ou égal à n. On note $M(m_{i,j})_{1 \leq i,j \leq n+1}$ la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ de terme général :

$$m_{i,j} = \begin{cases} i & \text{si } j = i+1\\ n+1-j & \text{si } i = j+1\\ 0 & \text{dans tous les autres cas} \end{cases}$$

et u l'endomorphisme de $\mathbb{R}_n[X]$ dont la matrice dans la base canonique $(1, X, \dots X^n)$ est égale à M.

1. Soit u un endomorphisme d'un espace vectoriel E, on appelle vecteur propre de u tout vecteur X non nul tel qu'il existe un réel λ vérifiant $u(X) = \lambda X$. On dit alors que λ est une valeur propre de u et X un vecteur propre de u associé à la valeur propre λ .

Une famille de vecteurs propres associés à des valeurs propres distinctes est libre.

- **2.** a) D'après la matrice, $u(X^k) = kX^{k-1} + (n+1-(k+1))X^{k+1} = kX^{k-1} + (n-k)X^{k+1}$ si $n-1 \ge k \ge 1$, u(1) = nX et $u(X^n) = nX^{n-1}$.
 - b) On voit qu'en posant $e_k = X^k$, on a $u(e_k) = (1 X^2)e'_k + nXe_k$. Comme c'est vrai sur une base de $\mathbb{R}_n[x]$ on a pour tout $P \in \mathbb{R}_n[X]$, $u(P) = (1 - X^2)P' + nXP$.
- 3. Pour $k \in [0; n]$, on pose $P_k(X) = (X 1)^k (X + 1)^{n-k}$. a) $u(P_k) = (1 - X^2) \left[k(X - 1)^{k-1} (X + 1)^{n-k} + (n - k)(X - 1)^k (X + 1)^{n-k-1} \right] + nX(X - 1)^k (X + 1)^{n-k} = (X - 1)^{k-1} (X + 1)^{n-k-1} \left[(1 - X^2) [k(X + 1) + (n - k)(X - 1)] + nX(X - 1)(X + 1) \right]$ $= (X - 1)^{k-1} (X + 1)^{n-k-1} \left[(1 - X^2) [nX + 2k - n] + nX(X - 1)(X + 1) \right]$ $= (X - 1)^{k-1} (X + 1)^{n-k-1} \left[nX + 2k - n - nX^3 + (n - 2k)X^2 + nX^3 - nX \right]$ $= (n - 2k)(X - 1)^{k-1} (X + 1)^{n-k-1} (X^2 - 1) = (n - 2k)(X - 1)^k (X + 1)^{n-k} = (n - 2k)P_k.$
 - b) C'est une famille de vecteurs propres de u associés à des valeurs propres distinctes donc elle est libre; de plus elle est de cardinal n+1 donc c'est une base.
 - c) Il existe une base de vecteurs propres de u donc u est diagonalisable.
- 4. Dans cette question, on suppose que n=3.

a)
$$M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 et la base de vecteur propres est :
$$(X+1)^3 = X^3 + 3X^2 + 3X + 1 \text{ associé à la valeur propre 3,}$$

$$(X-1)(X+1)^2 = X^3 + X^2 - X - 1 \text{ associé à la valeur propre 1,}$$

$$(X-1)^2(X+1) = X^3 - X^2 - X + 1 \text{ associé à la valeur propre -1,}$$

$$(X-1)^3 = X^3 - 3X^2 + 3X - 1 \text{ associé à la valeur propre -3,}$$

$$donc P = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 3 & -1 & -1 & 3 \\ 3 & 1 & -1 & -3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

$$b) \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} D = D \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3a & b & -c & -3d \\ 3e & f & -g & -3h \\ 3i & j & -k & -3l \\ 3m & n & -o & -3p \end{pmatrix} = \begin{pmatrix} 3a & 3b & 3c & 3d \\ e & f & g & h \\ -i & -j & -k & -l \\ -3m & -3n & -3o & -3p \end{pmatrix} \Leftrightarrow b = c$$

$$c = d = z = g = h = i = j = l = m = n = o = 0 \text{ donc les matrices commutant avec } D \text{ sont les matrices diagonales}.$$

c) On se place dans la base de vecteurs propres, on appelle N la matrice de v. Alors $v \circ v = u \Leftrightarrow N^2 = D$. On a alors $ND = NN^2 = N^3 = N^2N = DN$ donc N commute avec D, et elle est diagonale.

De plus
$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}^2 = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} \Leftrightarrow a^2 = 3, \ b^2 = 1, \ c^2 = -1 \text{ et } d^2 = -3 \text{ et les deux}$$

dernières équations sont impossibles donc il n'y a pas de solution.

Exercice sans préparation

Soient X et Y deux variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) à valeurs dans \mathbb{N}^* , indépendantes et telles que :

$$\forall i \in \mathbb{N}^*, \ \mathbb{P}\left(\left[\left[X=i\right]\right]\right) = \mathbb{P}\left(\left[\left[Y=i\right]\right]\right) = \frac{1}{2^i}$$

- 1. On reconnaît la loi géométrique de paramètre $\frac{1}{2}$.
- 2. $Z(\Omega) = [2; +\infty[$ et avec la formule des probabilités totales (système complet d'évènements $[X=i]_{i\in\mathbb{N}^*}$) on a pour tout $k\geqslant 2$:

$$\mathbb{P}\left([[Z=k]]\right) = \sum_{i=1}^{+\infty} P([X=i] \cap [Z=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [Y=k-i]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [Y=k-i]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [Y=k-i]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [Y=k-i]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [X+Y=k]) = \sum_{i=1}^{+\infty} P([X=i] \cap [$$

D'autre part pour tout $i \geqslant k$ on a $P_{[X+Y=k]}[X=i] = 0$ et pour 1 < i < k-1 on a : $P_{[X+Y=k]}[X=i] = \frac{\mathbb{P}([X+Y=k]\cap [X=i])}{P[X+Y=k]} = \frac{\mathbb{P}([X=i]\cap [Y=k-i])}{(k-1)\left(\frac{1}{2}\right)^k} = \frac{1}{k-1}$.

3. $\mathbb{P}([[X=Y]]) = \sum_{i=1}^{+\infty} \mathbb{P}([X=i] \cap [Y=i]) = \sum_{i=1}^{+\infty} \left(\frac{1}{4}\right)^i = \frac{1}{4} \times \frac{1}{1-\frac{1}{4}} = \frac{1}{3}.$

Par symétrie $\mathbb{P}\left([[X < Y]]\right) = P\left[X > Y\right]$ et $\mathbb{P}\left([[X < Y]]\right) + \mathbb{P}\left([[X > Y]]\right) + \mathbb{P}\left([[X = Y]]\right) = 1$ (somme des probabilités sur un système complet) donc $\mathbb{P}\left([[X < Y]]\right) = \mathbb{P}\left([[X > Y]]\right) = \frac{1 - \frac{1}{3}}{2} = \frac{1}{3}$.

 $\textbf{4.} \ \ \mathbb{P}\left([[X\geqslant 2Y]]\right) = \sum_{i=1}^{+\infty} \mathbb{P}([Y=i]\cap [X>2i-1]) = \sum_{i=1}^{+\infty} \frac{1}{2^i} \frac{1}{2^{2i-1}} = \sum_{i=1}^{+\infty} \frac{1}{2^{3i-1}} = 2\sum_{i=1}^{+\infty} \left(\frac{1}{8}\right)^i = 2\frac{1}{8} \frac{1}{1-\frac{1}{8}} = \frac{2}{7}.$ $\text{Enfin } P_{[X\geqslant Y]}\left[X\geqslant 2Y\right] = \frac{P([X\geqslant Y]\cap [X\geqslant 2Y])}{\mathbb{P}([X\geqslant Y]])} = \frac{\mathbb{P}([[X\geqslant Y]])}{P[X\geqslant Y]} = \frac{2}{\frac{2}{3}} = \frac{3}{7}.$

Exercice 6 (Exercice avec préparation)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes définie sur un espace probabilisé (Ω, \mathcal{A}, P) telles que, pour tout $n \in \mathbb{N}^*$, X_n suit la loi exponentielle de paramètre $\frac{1}{n}$ (d'espérance n).

Pour tout x réel on note |x| sa partie entière.

Pour $n \in \mathbb{N}^*$ soient :

$$Y_n = |X_n|$$
 et $Z_n = X_n - |X_n|$

- 1. Une suite (X_n) de variables aléatoires converge en loi vers X si pour tout x telle que F_X est continue en x, $\lim_{n\to+\infty} F_{X_n}(x) = F_X(x)$.
- 2. $Y_n(\Omega) = \lfloor \mathbb{R}_+ \rfloor = \mathbb{N}$. Pour tout $k \in \mathbb{N}$, $\mathbb{P}([[Y_n = k]]) = \mathbb{P}([k \leqslant X_n < k+1]) = F_{X_n}(k+1) - F_{X_n}(k) = 1 - e^{-\frac{k+1}{n}} - 1 + e^{-\frac{k}{n}} = \left(e^{-\frac{1}{n}}\right)^k (1 - e^{-\frac{1}{n}})$.

On remarque que pour $k \in \mathbb{N}^*$, $\mathbb{P}([[Y+1=k]]) = \mathbb{P}([[Y=k-1]]) = \left(e^{-\frac{1}{n}}\right)^{k-1} (1-e^{-\frac{1}{n}})$ et Y+1 suit la loi géométrique de paramètre $1-e^{-\frac{1}{n}}$, d'espérance $\frac{1}{1-e^{-\frac{1}{n}}}$ et enfin $\mathbb{E}(Y) = \mathbb{E}(Y+1-1) = \mathbb{E}(Y+1) - 1 = \frac{1}{1-e^{-\frac{1}{n}}} - 1 = \frac{1-(1-e^{-\frac{1}{n}})}{1-e^{-\frac{1}{n}}} = \frac{e^{-\frac{1}{n}}}{1-e^{-\frac{1}{n}}}.$

- 3. On $Y_n \leqslant X_n < Y_n + 1$ donc $0 \leqslant Z_n < 1$ et $Z_n(\Omega) = [0; 1[$. Avec le système complet $[Y_n = k]_{k \in \mathbb{N}}$ on a $\mathbb{P}([[Z_n \leqslant t]]) = \sum_{k=0}^{+\infty} P([Y_n = k] \cap [Z_n \leqslant t]) = \sum_{k=0}^{+\infty} P([k \leqslant X_n \leqslant k + t]) = \sum_{k=0}^{+\infty} F_{X_n}(k+t) - F_{X_n}(k) = \sum_{k=0}^{+\infty} e^{-\frac{k}{n}} - e^{-\frac{k+t}{n}} = (1 - e^{-\frac{t}{n}}) \sum_{k=0}^{+\infty} \left(e^{-\frac{1}{n}}\right)^k = \frac{1 - e^{-\frac{t}{n}}}{1 - e^{-\frac{1}{n}}}.$
- 4. Pour tout $t \in [0; 1]$, on obtient $F_{Z_n}(t) \sim \frac{\frac{-t}{n}}{\frac{-1}{n}} = t \xrightarrow[n \to +\infty]{} t$. De plus on a pour $t \leq 0$, $F_{Z_n}(t) = 0 \xrightarrow[n \to +\infty]{} 0$ et pour $t \geq 1$, $F_{Z_n}(t) = 1 \xrightarrow[n \to +\infty]{} 1$; donc (Z_n) converge en loi vers une variable aléatoire Z suivant la loi uniforme sur [0; 1].
- 5. Soit $n \in \mathbb{N}^*$ et N_n la variable aléatoire définie par :

$$N_n = \operatorname{Card}\left\{k \in [1; n] \text{ tel que } X_k \leqslant \frac{k}{n}\right\}$$

où Card(A) désigne le nombre d'éléments de l'ensemble fini A.

- a) On a $N_n(\Omega) = [0; n]$ et N_n compte le nombre de succès dans une succession de n épreuves de Bernouilli indépendantes de même paramètre $P\left(\left[X_n \leqslant \frac{k}{n}\right]\right) = 1 e^{-\frac{k}{n}} = 1 e^{-\frac{1}{n}}$ (qui est bien indépendant de k) donc $N_n \hookrightarrow \mathcal{B}\left(n, 1 e^{-\frac{1}{n}}\right)$.
- $b) \text{ Pour tout } i \in \mathbb{N}, \text{ dès que } n \geqslant i \text{ on a}: \\ \mathbb{P}\left([[N_n=i]]\right) = \binom{n}{i} \left(1 e^{-\frac{1}{n}}\right)^i \left(e^{-\frac{1}{n}}\right)^{n-i} \sim \binom{n}{i} \left(\frac{1}{n}\right)^i \left(e^{-\frac{1}{n}}\right)^{n-i} = \frac{n}{n} \times \cdots \times \frac{n-i+1}{n} \times \frac{1}{i!} \times e^{-\frac{n-i}{n}} \\ \mathbb{P}\left([[N_n=i]]\right) \sim \frac{e^{-1}}{i!} = \frac{1^i e^{-1}}{i!} \text{ et on reconnaît une loi de Poisson de paramètre 1.} \\ \text{D'où } (N_n) \text{ converge en loi vers une variable aléatoire } N \text{ qui suit la loi de Poisson de paramètre 1.}$

Exercice sans préparation

Soit E l'ensemble des matrices $M_{a,b} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ où (a,b) prend toute valeur de \mathbb{R}^2 .

- 1. Evident.
- ${\it 2.}$ Si $a=b,\,M_{a,b}$ a trois colonnes égales donc n'est pas inversible.

Si a = -2b on a $C_1 + C_2 + C_3 = 0$ donc M n'est pas inversible.

Sinon on a avec la méthode du pivot complet $M_{a,b}$ est inversible et :

$$M_{a,b}-1 = \frac{1}{(b-a)(a+2b)} \begin{pmatrix} -(a+b) & b & b \\ b & -(a+b) & b \\ b & b & -(a+b) \end{pmatrix} \in E.$$

3. On peut essayer les premières puissances; on n'obtient rien de probant.

Il faut alors diagonaliser; les valeurs propres peuvent être déduites de la deuxième question :

En effet $M_{a,b} - \lambda I = M_{a-\lambda,b}$ n'est pas inversible si et seulement si $a - \lambda = b \Leftrightarrow \lambda = a - b$ ou $a - \lambda = -2b \Leftrightarrow \lambda = a + 2b$.

Pour chacune de ces valeurs on cherche les sous-espaces propres :

$$(M_{a,b} - (a-b)I)X = 0 \Leftrightarrow \begin{pmatrix} b & b & b \\ b & b & b \\ b & b & b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow b(x+y+z) = 0 \Leftrightarrow b = 0 \text{ ou } x = -y - z.$$

1er cas : b = 0, alors on a en fait $M_{a,b} = aI$ donc $M_{a,b}n = a^nI$.

2er cas : $b \neq 0$, on obtient alors un sous-espace propre de dimension 2, engendré par [(-1,1,0),(-1,0,1)].

$$(M_{a,b} - (a+2b)I)X = 0 \Leftrightarrow \begin{pmatrix} -2b & b & b \\ b & -2b & b \\ b & b & -2b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Leftrightarrow \begin{cases} -2x + y + z = 0 \\ x - 2y + z = 0 \\ x + y - 2z = 0 \end{cases}$$
 (car $b \neq 0$)

$$\Leftrightarrow \begin{cases} x+y-2z=0 \\ -3y+3z=0 \\ -2x+y+z=0 \end{cases} \Leftrightarrow \begin{cases} x=y \\ y=z \\ 2y=2x \end{cases} \Leftrightarrow (x,y,z)=x(1,1,1) \text{ ce qui donne une base du sous-}$$
 espace propre.

On obtient avec
$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} a-b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a+2b \end{pmatrix}$ que $M_{a,b} = PDP^{-1}$ puis $M_{a,b} = PD^nP^{-1}$ avec $D^n = \begin{pmatrix} (a-b)^n & 0 & 0 \\ 0 & (a-b)^n & 0 \\ 0 & 0 & (a+2b)^n \end{pmatrix}$.

Exercice 7 (Exercice avec préparation)

1. Un estimateur d'un paramètre θ de la loi P_X d'une variable aléatoire X dont on dispose d'un échantillon (X_n) est une suite de variables aléatoires (T_n) où pour tout n, T_n est une fonction des variables $X_1, \ldots X_n$).

Soient a, b et c trois réels strictement positifs et soit f la fonction définie sur \mathbb{R} par :

$$f(x) = 0 \text{ si } x < 0, \quad f(x) = c \text{ si } x \in [0; a[, \quad f(x) = \frac{b}{x^4} \text{ si } x \in [a; +\infty[.$$

2. La fonction est continue sauf éventuellement en 0 et en a et positive, il reste à vérifier $\int_{-\infty}^{+\infty} f = 1$.

Or
$$\int_{-\infty}^{+\infty} f = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{a} c \, dx + \int_{a}^{+\infty} \frac{b}{x^4} \, dx = ac + b \int_{a}^{+\infty} \frac{1}{x^4} \, dx.$$

Cette dernière intégrale est convergente (intégrale de Riemann) et $\int_a^y \frac{1}{x^4} dx = \left[\frac{-1}{3x^3} \right]_a^y \xrightarrow[y \to +\infty]{}$

$$\frac{1}{3a^3}$$

Il faut donc avoir $ac + \frac{b}{3a^3} = 1$.

De plus pour la continuité sur \mathbb{R}_+ il faut la continuité en a, qui donne $c = \frac{b}{a^4}$.

On injecte dans la première égalité : $\frac{b}{a^3} + \frac{b}{3a^3} = 1$ donc $\frac{4b}{3a^3} = 1$, $b = \frac{3a^3}{4}$ et $c = \frac{3}{4a}$.

On prend a=1, la courbe est constante égale à 0 jusqu'à x=0, constante égale à $\frac{3}{4}$ sur [0;1[et décroissante et convexe de $\frac{3}{4}$ à 0 sur $[1;+\infty[$.

- 3. Toutes les autres intégrales étant clairement absolument convergentes (intégrale de 0 ou intégrale sur un segment), il reste à vérifier que $\frac{x^k}{x^4}$ est intégrable en $+\infty$, ce qui est vrai si et seulement si 4-k>1, donc si et seulement si k<3, c'est-à-dire $k\leqslant 2$.
- 4. $\mathbb{E}(X) = c\frac{a^2}{2} + \frac{b}{2a^2} = \frac{3a}{8} + \frac{3a}{8} = \frac{3a}{4}$. De même $\mathbb{E}(X^2) = c\frac{a^3}{3} + \frac{b}{a} = \frac{a^2}{4} + \frac{3a^2}{4} = a^2$. Enfin $\mathbb{V}(X) = a^2 - \frac{9}{16}a^2 = \frac{7}{16}a^2$.
- 5. Soit (X_n) une suite de variables aléatoires indépendantes de même loi que X. On pose

$$T_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- a) (X_i) est un échantillon de la loi de X dont a est un paramètre et pour tout n, T_n est une fonction de $X_1, \ldots X_n$ donc (T_n) est un estimateur de a.
- b) On a $\mathbb{E}(T_n) = \mathbb{E}(X) = \frac{3}{4}a$ par linéarité de l'espérance donc en posant $S_n = \frac{4}{3}T_n$, la suite (S_n) est un estimateur sans biais de a.
- c) $R_a(S_n) = \mathbb{V}(S_n) \operatorname{car}(S_n)$ est sans biais, donc $R_a(S_n) = \frac{16}{9} \mathbb{V}(T_n) = \frac{16}{9n^2} V\left(\sum_{i=1}^n X_i\right) = \frac{16}{9n^2} \sum_{i=1}^n \mathbb{V}(X_i)$ par indépendance des X_i , en enfin : $R_a(S_n) = \frac{16}{9n^2} \times n \mathbb{V}(X) = \frac{16}{9n} \times \frac{7}{16} a^2 = \frac{7a^2}{9n}$.

Exercice sans préparation

Soit
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$
.

- 1. $A^2 I = 0$.
- 2. $X^2 1 = (X 1)(X + 1)$ est annulateur de A donc $\operatorname{Sp} A \subset \{-1; 1\}$. $(A I)X = 0 \Leftrightarrow X \in \operatorname{Vect}([)(1, 1, 1)]$ et $(A + I)X = 0 \Leftrightarrow X \in \operatorname{Vect}([)(1, 0, 1), (1, -1, 0)]$ donc la somme des dimensions des sous-espaces propres vaut 3, et A est diagonalisable.

De plus on a
$$A = PDP^{-1}$$
 avec $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.