Pure Mathematics 2

Solution Bank

Chapter review 3

2 **a**
$$\log_a(p^2q) = \log_a(p^2) + \log_a q$$

= $2\log_a p + \log_a q$

b
$$\log_a (pq) = \log_a p + \log_a q$$

So
 $\log_a p + \log_a q = 5$ (1)
 $2\log_a p + \log_a q = 9$ (2)
Subtract (1) from (2):
 $\log_a p = 4$
So $\log_a q = 1$

3 a
$$p = \log_q 16$$

$$= \log_q (2^4)$$

$$= 4 \log_q 2$$

$$\log_q 2 = \frac{p}{4}$$

$$\mathbf{b} \quad \log_q (8q) = \log_q 8 + \log_q q$$

$$= \log_q (2^3) + \log_q q$$

$$= 3\log_q 2 + \log_q q$$

$$= 3 \times \frac{p}{4} + 1$$

$$= \frac{3p}{4} + 1$$

4 a
$$4^x = 23$$

 $\log_4 23 = x$
 $x = 2.26$

4 **b**
$$7^{(2x+1)} = 1000$$

 $\log_7 1000 = 2x + 1$
 $2x = \log_7 1000 - 1$
 $x = \frac{1}{2}\log_7 1000 - \frac{1}{2}$
 $= 1.27$

c
$$10^x = 6^{x+2}$$

 $\log(10^x) = \log(6^{x+2})$
 $x \log 10 = (x+2) \log 6$
 $x \log 10 - x \log 6 = 2 \log 6$
 $x (\log 10 - \log 6) = 2 \log 6$
 $x = \frac{2 \log 6}{\log 10 - \log 6}$
 $= 7.02$

5 a
$$4^{x} - 2^{x+1} - 15 = 0$$

 $2^{2x} - 2 \times 2^{x} - 15 = 0$
 $(2^{x})^{2} - 2 \times 2^{x} - 15 = 0$
Let $u = 2^{x}$
 $u^{2} - 2u - 15 = 0$

b
$$(u+3)(u-5) = 0$$

So $u = -3$ or $u = 5$
If $u = -3$, $2^x = -3$. No solution.
If $u = 5$, $2^x = 5$
 $\log 2^x = \log 5$
 $x \log 2 = \log 5$
 $x = \frac{\log 5}{\log 2}$
 $= 2.32(2 \text{ d.p.})$

6
$$\log_2(x+10) - \log_2(x-5) = 4$$
$$\log_2\left(\frac{x+10}{x-5}\right) = 4$$
$$\frac{x+10}{x-5} = 2^4$$
$$16x - 80 = x+10$$
$$15x = 90$$
$$x = 6$$

1

Pure Mathematics 2

Solution Bank

7 **a**
$$y = 3x^2$$

Take logarithms of both sides and simplify. $log_3 y = log_3 3x^2$

$$= \log_3 3 + \log_3 x^2$$
$$= 1 + 2\log_3 x$$

As required.

b
$$1+2\log_3 x = \log_3 (28x-9)$$

 $\log_3 3x^2 = \log_3 (28x-9)$
 $3x^2 = 28x-9$
 $3x^2 - 28x+9 = 0$
 $(3x-1)(x-9) = 0$
 $x = \frac{1}{2}$ or $x = 9$

8
$$2\log_3 x - \log_3 (x-2) = 2$$

Rearrange the equation and solve for x.

$$\log_3 \frac{x^2}{x-2} = 2$$

$$\frac{x^2}{x-2} = 3^2$$

$$x^2 = 9x - 18$$

$$x^2 - 9x + 18 = 0$$

$$(x-3)(x-6) = 0$$

$$x = 3 \text{ or } x = 6$$

9 **a**
$$5^x = 10$$

Take the logarithms of both sides and solve for x.

$$x \log 5 = \log 10$$
$$x = \frac{\log 10}{\log 5}$$
$$= 1.43 (3 \text{ s.f.})$$

b
$$\log_9(x-2) = -1$$

 $x-2 = 9^{-1}$
 $x = \frac{1}{9} + 2$
 $= \frac{19}{9}$

10
$$\log_5(4-x)-2\log_5 x=1$$

Rearrange the equation and solve for x.

$$\log_5(4-x) - \log_5 x^2 = 1$$

$$(4-x)$$

$$\log_5 \frac{\left(4-x\right)}{x^2} = 1$$

$$\frac{\left(4-x\right)}{x^2} = 5^1$$

$$4 - x = 5x^2$$

$$5x^2 + x - 4 = 0$$

$$(5x-4)(x+1)=0$$

$$x = \frac{4}{5}$$
 or $x = -1$

Since
$$0 < x < 4$$
, $x = \frac{4}{5}$.

11 a
$$\log_x 64 = 2$$

$$2^x = 64$$

$$x = 6$$

b
$$\log_2(11-6x) = 2\log_2(x-1)+3$$

Rearrange the equation and solve for x.

$$\log_2(11-6x) - \log_2(x-1)^2 = 3$$

$$\log_2 \frac{(11-6x)}{(x-1)^2} = 3$$

$$\frac{(11-6x)}{(x-1)^2} = 2^3$$

$$11-6x = 8(x-1)^2$$

$$11 - 6x = 8\left(x^2 - 2x + 1\right)$$

$$8x^2 - 10x - 3 = 0$$

$$(2x-3)(4x+1) = 0$$

$$x = \frac{3}{2}$$
 or $x = -\frac{1}{4}$

Since $x = -\frac{1}{4}$ is not valid for the original

equation, $x = \frac{3}{2}$ is the only solution.

12 a
$$\log_2 y = -3$$

 $y = 2^{-3}$

$$=\frac{1}{8}$$

Pure Mathematics 2

Solution Bank

12 b
$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$
$$\log_2 32 + \log_2 16 = (\log_2 x)^2$$
$$5 + 4 = (\log_2 x)^2$$
$$(\log_2 x)^2 = 9$$
$$\log_2 x = 3 \text{ or } \log_2 x = -3$$
$$x = 2^3 = 8 \text{ or } x = 2^{-3} = \frac{1}{8}$$

13 a
$$2\log_3(x-5) - \log_3(2x-13) = 1$$

Rearrange the equation and simplify.
 $\log_3(x-5)^2 - \log_3(2x-13) = 1$
 $\log_3 \frac{(x-5)^2}{(2x-13)} = 1$
 $\frac{(x-5)^2}{(2x-13)} = 3^1$
 $(x-5)^2 = 3(2x-13)$
 $x^2 - 10x + 25 = 6x - 39$

b
$$x^2 - 16x + 64 = 0$$

 $(x-8)^2 = 0$
 $x = 8$

 $x^2 - 16x + 64 = 0$ As required.

$$x = 8$$
14 a $\log_2(2x) = \log_2(5x + 4) - 3$
Rearrange the equation and simplify.
$$\log_2(2x) - \log_2(5x + 4) = -3$$

$$\log_2\left(\frac{2x}{5x + 4}\right) = -3$$

$$\frac{2x}{5x + 4} = 2^{-3}$$

$$\frac{2x}{5x + 4} = \frac{1}{8}$$

$$16x = 5x + 4$$

$$11x = 4$$

$$x = \frac{4}{11}$$

14 b	$\log_a y + 3\log_a 2 = 5$
	Rearrange the equation and simplify.
	$\log_a y + \log_a 2^3 = 5$
	$\log_a y + \log_a 8 = 5$
	$\log_a 8y = 5$
	$8y = a^5$
	$y = \frac{a^5}{8}$