TRaitement des Images pour la Vision Artificielle

Vincent Lepetit

slides in part based on material from Mathieu Aubry, Andrew Zisserman, David Lowe

Bayesian Theory for Computer Vision

In the previous lecture

In this lecture

$$\operatorname{arg\,max}_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{z})$$

x: state [in our case, for example R, T]

z: observations [in our case, for example feature points m_i]

 $p(\mathbf{x} \mid \mathbf{z})$: probability density function of \mathbf{x} given \mathbf{z}

probability density function

 $p(\mathbf{x})$: probability density function (pdf) of \mathbf{x}

Intuitively:

- $p(\mathbf{x}) \sim \text{how likely the random variable for } \mathbf{x} \text{ is close to } \mathbf{x}$
- $p(\mathbf{x}_1) > p(\mathbf{x}_2)$: the correct value is more likely to be \mathbf{x}_1 than \mathbf{x}_2

probability density function (2)

-0.75

-0.50

For a univariate random variable *X*:

$$Pr(a \le X \le b) = \int_a^b p(x)dx$$

$$p(x) = N(x; 0, 0.2)$$

$$150$$

$$100$$

$$0.75$$

$$0.50$$

$$0.25$$

$$0.00$$

-0.25

0.00

0.25

0.50

0.75

1.00

probability density function (2)

For a 2D random variable:

Bayes' theorem

$$\operatorname{arg\,max}_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{z})$$

x: state [in our case, for example R, T]

z: observations [in our case, for example feature points m_i]

 $p(\mathbf{x} \mid \mathbf{z})$: probability density function of \mathbf{x} given \mathbf{z}

$$p(\mathbf{x}\mid\mathbf{z}) = \frac{1}{p(\mathbf{z})}p(\mathbf{z}\mid\mathbf{x})p(\mathbf{x})$$
 posterior likelihood prior

Likelihood - example

$$p(\mathbf{z} \mid \mathbf{x}) = p(\mathbf{z}_1, ..., \mathbf{z}_n \mid \mathbf{x})$$

= $\prod_i p(\mathbf{z}_i \mid \mathbf{x})$

if we assume the observations z_i are independent given x

if we assume the noise on the observations is Gaussian, with covariance $\boldsymbol{\Sigma}$

Prior

If we have no idea what the state can be:

$$p(\mathbf{x}) = \mu$$

If we believe the camera center is close to Point (0,0,0):

$$p(\mathbf{x}) = N(\mathbf{C}(\mathbf{x}); \mathbf{0}, \Sigma_{\mathbf{x}})$$

etc.

Link (1)

$$\arg \max_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{z})$$

$$= \arg \max_{\mathbf{x}} \frac{1}{p(\mathbf{z})} p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})$$

$$= \arg \max_{\mathbf{R}, \mathbf{T}} \prod_{i} N(\mathbf{m}_{i}; \mathsf{proj}(\mathbf{M}_{i}; \mathbf{R}, \mathbf{T}), \Sigma)$$

$$= \arg \min_{\mathbf{R}, \mathbf{T}} - \log \prod_{i} N(\mathbf{m}_{i}; \mathsf{proj}(\mathbf{M}_{i}; \mathbf{R}, \mathbf{T}), \Sigma)$$

$$= \arg \min_{\mathbf{R}, \mathbf{T}} - \sum_{i} \log N(\mathbf{m}_{i}; \mathsf{proj}(\mathbf{M}_{i}; \mathbf{R}, \mathbf{T}), \Sigma)$$

$$= \arg \min_{\mathbf{R}, \mathbf{T}} \sum_{i} ||\mathbf{m}_{i} - \mathsf{proj}(\mathbf{M}_{i}; \mathbf{R}, \mathbf{T})||^{2}$$

Link (2)

```
\arg\max_{\mathbf{x}} \ p(\mathbf{x} \mid \mathbf{z})

\operatorname{arg\,max}_{\mathbf{x}} \frac{1}{p(\mathbf{z})} p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})

\operatorname{arg} \max_{\mathbf{R}, \mathbf{T}} \prod_{i} N(\mathbf{m}_{i}; \mathsf{proj}(\mathbf{M}_{i}; \mathbf{R}, \mathbf{T}), \Sigma) \ N(\mathbf{C}(\mathbf{R}, \mathbf{T}); \mathbf{0}, \Sigma_{\mathbf{x}})

     rg \min_{\mathbf{R}, \mathbf{T}} \ -\sum_{i} \log N(\mathbf{m}_i; \mathsf{proj}(\mathbf{M}_i; \mathbf{R}, \mathbf{T}), \Sigma) + \log N(\mathbf{C}(\mathbf{R}, \mathbf{T}); \mathbf{0}, \Sigma_{\mathbf{x}})
  rg \min_{\mathbf{R}, \mathbf{T}} \; \sum_i \|\mathbf{m}_i - \mathsf{proj}(\mathbf{M}_i; \mathbf{R}, \mathbf{T})\|^2 + \lambda \|\mathbf{C}(\mathbf{R}, \mathbf{T})\|^2
                                      log-likelihood
                                                                                                                                     regularization term
```


Robust estimators

If we assume the noise on the observations is Gaussian:

$$p(\mathbf{z}_i \mid \mathbf{x}) = N(\mathbf{m}_i; \mathsf{proj}(\mathbf{M}_i; \mathbf{R}, \mathbf{T}), \Sigma)$$

If we consider that \mathbf{m}_i can be either an inlier with Gaussian noise or an outlier, we can take:

$$p(\mathbf{z}_i \mid \mathbf{x}) \sim N(\mathbf{m}_i; \mathsf{proj}(\mathbf{M}_i; \mathbf{R}, \mathbf{T}), \Sigma) + \mu$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

How can we estimate the density $p(\mathbf{x}_t \mid \mathbf{Z}_t)$?

ie What is the density on the object state at time t given the images captured up to time t?

Example

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

How can we estimate the density $p(\mathbf{x}_t \mid \mathbf{Z}_t)$?

ie What is the density on the object state at time t given the images captured up to time t?

We will see that:

Density estimated at time *t*-1

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_t, \mathbf{Z}_t) = p(\mathbf{x}_t, \mathbf{z}_t, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$
 [definition]

=
$$p(\mathbf{x}_{t}, \mathbf{z}_{t} | \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$
 [conditional probability: $p(A, B) = p(A | B) p(B)$]

=
$$p(\mathbf{z}_t | \mathbf{x}_t, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_t | \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$
 [conditional probability]

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

We just saw:

$$p(\mathbf{X}_t, \mathbf{Z}_t) = p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_t \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$

We also have:

$$p(\mathbf{X}_t, \mathbf{Z}_t) = p(\mathbf{X}_t \mid \mathbf{Z}_t) \, p(\mathbf{Z}_t)$$

SO

$$p(\mathbf{X}_t \mid \mathbf{Z}_t) p(\mathbf{Z}_t) = p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_t \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) p(\mathbf{Z}_{t}) = p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1})$$

We also have:

$$p(\mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) = p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1}) p(\mathbf{Z}_{t-1})$$

SO

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) p(\mathbf{Z}_{t}) = p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1}) p(\mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) p(\mathbf{Z}_{t}) = p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1}) p(\mathbf{Z}_{t-1})$$

 $p(\mathbf{Z}_t)$ is constant with respect to \mathbf{x}_t , so

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

We want to get to:

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

We assume the observations \mathbf{z}_0 , \mathbf{z}_1 , ..., \mathbf{z}_t are independent both

(1) mutually and (2) with respect to the dynamical process:

$$p(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) = p(\mathbf{z}_t \mid \mathbf{x}_t)$$

We now have:

$$p(\mathbf{X}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{X}_t) p(\mathbf{X}_t \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) p(\mathbf{x}_t \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

We want to get to:

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}) p(\mathbf{x}_{t} \mid \mathbf{X}_{t-1}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

We can make \mathbf{x}_{t-1} appear:

$$p(\mathbf{X}_{t} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}) p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{X}_{t-2}, \mathbf{Z}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

We assume the states form a Markov chain: $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{X}_{t-2}, \mathbf{Z}_{t-1}) = p(\mathbf{x}_t \mid \mathbf{x}_{t-1})$ So:

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

We had:

$$p(\mathbf{X}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{X}_{t-1} \mid \mathbf{Z}_{t-1})$$

Making X_{t-2} appear:

$$p(\mathbf{x}_{t}, \mathbf{x}_{t-1}, \mathbf{X}_{t-2} | \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} | \mathbf{x}_{t}) p(\mathbf{x}_{t} | \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}, \mathbf{X}_{t-2} | \mathbf{Z}_{t-1})$$

$$\int_{B} p(A, B) = p(A)$$

Integrating over X_{t-2} :

$$p(\mathbf{x}_t, \mathbf{x}_{t-1} \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

 \mathbf{x}_t : State at time t

 $\mathbf{X}_t = \mathbf{x}_t$, \mathbf{x}_{t-1} , ... \mathbf{x}_0 : States from time 0 to time t

 \mathbf{z}_t : Observations performed at time t.

 $\mathbf{Z}_t = \mathbf{z}_t$, \mathbf{z}_{t-1} , ... \mathbf{z}_0 : Observations up to time t

$$p(\mathbf{x}_{t}, \mathbf{x}_{t-1} \mid \mathbf{Z}_{t}) \sim p(\mathbf{z}_{t} \mid \mathbf{x}_{t}) p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

Integrating over \mathbf{x}_{t-1} :

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

Kalman Filter

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) = N(\mathbf{x}_t; \mu_t, \Sigma_t)$$

Time update or Prediction

The states \mathbf{x}_t are assumed to evolve according to a dynamics model of the form:

$$\mathbf{x}_t = \mathbf{A} \ \mathbf{x}_{t-1} + \mathbf{w}_t$$

where:

- matrix A is a state transition matrix;
- vector \mathbf{w}_t is the process noise.

State transition matrix A

Example:

If we assume the motion model is a constant velocity model, with no rotation:

$$\mathbf{x}_t = egin{bmatrix} \mathbf{T}_t \ \dot{\mathbf{T}}_t \end{bmatrix} \qquad \mathbf{A} = egin{bmatrix} \mathbf{I} & \mathbf{I} \ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

$$egin{bmatrix} \mathbf{T}_{t+1} \ \dot{\mathbf{T}}_{t+1} \end{bmatrix} = egin{bmatrix} \mathbf{I} & \mathbf{I} \ \mathbf{0} & \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{T}_t \ \dot{\mathbf{T}}_t \end{bmatrix} + \mathbf{w}_t$$

The measurement update or Correction

Linear case:

The measurements \mathbf{z}_t are assumed to be related to the state \mathbf{x}_t by a linear measurement model:

$$\mathbf{z}_t = \mathbf{C} \ \mathbf{x}_t + \mathbf{v}_t$$

where

the vector \mathbf{v}_t represents the measurement noise.

This is not linear but it is always possible to linearize it.

Kalman filter

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) \sim p(\mathbf{z}_t \mid \mathbf{x}_t) \int_{\mathbf{x}_{t-1}} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}) p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1})$$

Under the assumptions that: $\mathbf{z}_t = \mathbf{C} \mathbf{x}_t + \mathbf{v}_t$ and $\mathbf{x}_t = \mathbf{A} \mathbf{x}_{t-1} + \mathbf{w}_t$

If we know $p(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}) = N(\mathbf{T}_{t-1}; \mu_{t-1}, \Sigma_{t-1})$, can we compute $p(\mathbf{x}_t \mid \mathbf{Z}_t)$?

The Kalman filter

1. Time update or Prediction

Time t-1

→ Uses a motion model

Time *t*

2. Measurement update or Correction

$$\begin{cases} \mu_t = \mu_t^- + \mathbf{G}_t(\mathbf{z}_t - \mathbf{C}\mu_t^-) \\ \Sigma_t = \Sigma_t^- - \mathbf{G}_t \mathbf{C}\Sigma_t^- \end{cases}$$

where G_t is the Kalman gain computed as:

$$\mathbf{G}_t = \Sigma_t^{-} \mathbf{C}^{\top} (\mathbf{C} \Sigma_t^{-} \mathbf{C} + \Sigma_{\mathbf{v}})^{-1}$$

Kalman filter

Kalman filter

$$p(\mathbf{x}_t \mid \mathbf{Z}_t) \equiv \{(\mu_{t,i}, w_{t,i})\}_i$$

Time *t-1*

Time *t*

Time t

2. Measurement: Weights are computed according to the likelihood:

Normalize the weights.

Efficient resampling of particles

