Linear Algebra Basis, EigenVectors

이 상 화

Basis (1/2)

- ☐ Set of vectors (or functions) to represent the space
 - Vector space basis vectors
 - Function space Basis functions
- ☐ Main features
 - Elements of the space
 - Linearly independent
 - Can not be represented by the linear combinations of other vectors (or functions)
 - Usually, orthogonal
 - > Projection

Basis (2/2)

- ☐ Example: 3D vector space
 - (1,0,0), (0,1,0), (0,0,1) orthogonal basis
 - (1,0,0), (1,1,0), (1,1,1) non-orthogonal
 - Basis is not unique for a space !!
- ☐ Example: Function space
 - Taylor series
 - ➤ Non-orthogonal polynomial functions are bases
 - Fourier series
 - > Orthogonal sine, cosine functions are bases

How to find Bases ? (1/2)

☐ Gram-Schmidt orthogonalization

- Find orthogonal bases from an initial vector iteratively
- Different bases w.r.t different initial vector

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1, & \mathbf{e}_1 &= \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 &= \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1} \left(\mathbf{v}_2 \right), & \mathbf{e}_2 &= \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_3 &= \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u}_1} \left(\mathbf{v}_3 \right) - \operatorname{proj}_{\mathbf{u}_2} \left(\mathbf{v}_3 \right), & \mathbf{e}_3 &= \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} \\ \mathbf{u}_4 &= \mathbf{v}_4 - \operatorname{proj}_{\mathbf{u}_1} \left(\mathbf{v}_4 \right) - \operatorname{proj}_{\mathbf{u}_2} \left(\mathbf{v}_4 \right) - \operatorname{proj}_{\mathbf{u}_3} \left(\mathbf{v}_4 \right), & \mathbf{e}_4 &= \frac{\mathbf{u}_4}{\|\mathbf{u}_4\|} \\ &\vdots & \vdots & & \vdots & \\ \mathbf{u}_k &= \mathbf{v}_k - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j} \left(\mathbf{v}_k \right), & \mathbf{e}_k &= \frac{\mathbf{u}_k}{\|\mathbf{v}_k\|}. \end{aligned}$$

How to find Bases ? (2/2)

☐ Eigenvectors

Find orthogonal bases w.r.t dominant components

Eigenvalues and Eigenvectors (1/2)

- ☐ Do not change the vector(or function) shapes for a transform (system input)
 - Just scalar multiplication
 - A: square matrix, system, transformation

Eigenvalues and Eigenvectors (2/2)

☐ For symmetric matrix, A^TA (covariance matrix)

- Eigenvalues are non-negative
 - > power of corresponding eigenvectors
- Eigenvectors are orthogonal bases of column space of A

KOCW 강의 수강

http://www.kocw.net/home/search/kemView.do?kem Id=977757

차시	강의 제목	관련 내용
5차시	벡터의 선형독립과 기저벡터	Basis
8차시	1차 연립 방정식 풀이와 직교벡터 구하기	Orthogonal Basis
	일반 최소 제곱법과 QR 분할	
11차시	고유값과 고유벡터 및 대각화	Eigen vectors

HW#4 (1/2)

- ☐ Summary of the OCW lectures
 - 1~2 pages in A4 size paper
 - Handwriting
- □ Submit to blackboard
 - Scanning and upload a pdf file
 - Taking pictures and upload a pdf file
 - Due: 9/30 (Wed), 22:00

HW#4 (/2)

- ☐ Curve fitting using Least squares
 - For the 2D points, find the 2nd-order curve using least squares
 - $y = ax^2 + bx + c$
- ☐ Sampling 6 2D points out of total 8 points
 - Randomly select 6 points
 - Twice curve fitting
 - Compare two curves
- □ A 행렬 직접 생성후 inverse 등의 최소 과정만 라이브러리 이용
 - Pseudo-inverse 사용

2D points (-2.9, 35.4) (-2.1, 19.7) (-0.9, 5.7) (1.1, 2.1) (0.1, 1.2) (1.9, 8.7) (3.1, 25.7) (4.0, 41.5)

5주차: 추석 연휴

- No Lecture, No Homeworks
- □ 맑고 깨끗한 가을의 정취, 휴식의 시간으로...
- □ 방역 수칙 철저!!

