

Week 5

- 3.1 Homogeneous Equations with Constant Coefficients
- 3.2 Fundamental Sets of Solutions
- 3.3 Complex Roots of the Characteristic Equation

Second and Higher Order Linear ODEs

In this chapter we will consider equations of the form

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$P(t)y'' + Q(t)y' + R(t)y = G(t).$$

Such equations are *linear* second order ODEs.

In this chapter we will consider equations of the form

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$P(t)y'' + Q(t)y' + R(t)y = G(t).$$

Such equations are *linear* second order ODEs.

If g(t) (or G(t)) is always zero, then the ODE is called homogeneous. Otherwise it is nonhomogeneous.

First we will consider the equation

$$ay'' + by' + cy = 0 \tag{1}$$

where $a, b, c \in \mathbb{R}$ are constants.

Example

Solve y'' - y = 0.

Example

Solve
$$y'' - y = 0$$
.

$$\frac{d^2y}{dt^2} = y$$

Example

Solve
$$y'' - y = 0$$
.

We want to find a function y(t) which satisfies

$$\frac{d^2y}{dt^2} = y$$

■ What about e^t ?

Example

Solve
$$y'' - y = 0$$
.

We want to find a function y(t) which satisfies

$$\frac{d^2y}{dt^2} = y.$$

■ What about e^t ? Yes!

Example

Solve
$$y'' - y = 0$$
.

$$\frac{d^2y}{dt^2} = y.$$

- What about e^t ? Yes!
- What about e^{-t} ?

Example

Solve
$$y'' - y = 0$$
.

$$\frac{d^2y}{dt^2} = y.$$

- What about e^t ? Yes!
- What about e^{-t} ? Yes!

Example

Solve
$$y'' - y = 0$$
.

$$\frac{d^2y}{dt^2} = y.$$

- What about e^t ? Yes!
- What about e^{-t} ? Yes!
- And what about $c_1e^t + c_2e^{-t}$?

Example

Solve
$$y'' - y = 0$$
.

$$\frac{d^2y}{dt^2} = y.$$

- What about e^t ? Yes!
- What about e^{-t} ? Yes!
- And what about $c_1e^t + c_2e^{-t}$? Yes! In fact, this is the general solution to y'' y = 0.

Example

Solve

$$\begin{cases} y'' - y = 0 \\ y(0) = 2 \\ y'(0) = -1. \end{cases}$$

First note that this IVP has one 2nd order ODE and two initial conditions.

Example

Solve

$$\begin{cases} y'' - y = 0 \\ y(0) = 2 \\ y'(0) = -1. \end{cases}$$

First note that this IVP has one 2nd order ODE and two initial conditions.

We know that $y(t) = c_1 e^t + c_2 e^{-t}$. We are looking for the solution which passes through the point (0,2) and has slope -1 at this point.

Example

Solve

$$\begin{cases} y'' - y = 0 \\ y(0) = 2 \\ y'(0) = -1. \end{cases}$$

First note that this IVP has one 2nd order ODE and two initial conditions.

We know that $y(t) = c_1 e^t + c_2 e^{-t}$. We are looking for the solution which passes through the point (0,2) and has slope -1 at this point. Using the first initial condition we get that

$$2 = y(0) = c_1 + c_2 \implies c_1 + c_2 = 2.$$

Next we need to differentiate y(t):

$$y'(t) = \frac{d}{dt} (c_1 e^t + c_2 e^{-t}) = c_1 e^t - c_2 e^{-t}.$$

Next we need to differentiate y(t):

$$y'(t) = \frac{d}{dt} (c_1 e^t + c_2 e^{-t}) = c_1 e^t - c_2 e^{-t}.$$

Thus

$$-1 = y'(0) = c_1 - c_2 \implies c_1 - c_2 = -1.$$

Next we need to differentiate y(t):

$$y'(t) = \frac{d}{dt} (c_1 e^t + c_2 e^{-t}) = c_1 e^t - c_2 e^{-t}.$$

Thus

$$-1 = y'(0) = c_1 - c_2 \implies c_1 - c_2 = -1.$$

To satisfy these two conditions we must have $c_1 = \frac{1}{2}$ and $c_2 = \frac{3}{2}$.

Next we need to differentiate y(t):

$$y'(t) = \frac{d}{dt} (c_1 e^t + c_2 e^{-t}) = c_1 e^t - c_2 e^{-t}.$$

Thus

$$-1 = y'(0) = c_1 - c_2 \implies c_1 - c_2 = -1.$$

To satisfy these two conditions we must have $c_1 = \frac{1}{2}$ and $c_2 = \frac{3}{2}$. Therefore the solution to the IVP is

$$y(t) = \frac{1}{2}e^t + \frac{3}{2}e^{-t}.$$

Now let's go back to

$$ay'' + by' + cy = 0. (1)$$

In the previous example, we used exponential functions in our solution. Maybe we always want exponential solutions?

We guess that $y(t) = e^{rt}$ might be the solution to (1) for some number r that we don't know yet.

We guess that $y(t) = e^{rt}$ might be the solution to (1) for some number r that we don't know yet.

Then we calculate that

$$y = e^{rt}$$
$$y' = re^{rt}$$
$$y'' = r^2 e^{rt}$$

and

We guess that $y(t) = e^{rt}$ might be the solution to (1) for some number r that we don't know yet.

Then we calculate that

$$y = e^{rt}$$
$$y' = re^{rt}$$
$$y'' = r^2 e^{rt}$$

and

$$0 = ay'' + by' + cy = (ar^2 + br + c)e^{rt}.$$

We guess that $y(t) = e^{rt}$ might be the solution to (1) for some number r that we don't know yet.

Then we calculate that

$$y = e^{rt}$$
$$y' = re^{rt}$$
$$y'' = r^2 e^{rt}$$

and

$$0 = ay'' + by' + cy = (ar^2 + br + c)e^{rt}.$$

Since $e^{rt} \neq 0$ for all t, we must have that

$$ar^2 + br + c = 0. (2)$$

$$ay'' + by' + cy = 0 \tag{1}$$

$$ar^2 + br + c = 0 \tag{2}$$

Definition

(2) is called the *characteristic equation* of (1).

$$ay'' + by' + cy = 0 \tag{1}$$

$$ar^2 + br + c = 0 (2)$$

Definition

(2) is called the *characteristic equation* of (1).

Theorem

$$e^{rt}$$
 solves (1) \iff r solves (2).

 $ar^2 + br + c = 0$ has two roots, r_1 and r_2 :

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

These roots might be

- **1** real numbers and different $(r_1, r_2 \in \mathbb{R} \text{ and } r_1 \neq r_2)$;
- **2** complex conjugates $(r_1, r_2 \in \mathbb{C} \setminus \mathbb{R}, \overline{r}_1 = r_2)$; or
- 3 real numbers but repeated $(r_1, r_2 \in \mathbb{R} \text{ and } r_1 = r_2)$.

We will study these three cases separately. First we study case 1.

Suppose that $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$. In other words, suppose that $b^2 - 4ac > 0$.

Suppose that $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$. In other words, suppose that $b^2 - 4ac > 0$. Then $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are both solutions to (1).

Suppose that $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$. In other words, suppose that $b^2 - 4ac > 0$. Then $y_1(t) = e^{r_1t}$ and $y_2(t) = e^{r_2t}$ are both solutions to (1). So

$$y(t) = c_1 y_1(t) + c_2 y_2(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

will also be a solution for any constants $c_1, c_2 \in \mathbb{R}$. This is called the *general solution* to (1).

Example

Solve y'' + 5y' + 6y = 0.

Example

Solve
$$y'' + 5y' + 6y = 0$$
.

The first thing that we must do is to write down the characteristic equation.

Example

Solve
$$y'' + 5y' + 6y = 0$$
.

The first thing that we must do is to write down the characteristic equation. The characteristic equation for this ODE is

$$0 = r^2 + 5r + 6$$

Example

Solve
$$y'' + 5y' + 6y = 0$$
.

The first thing that we must do is to write down the characteristic equation. The characteristic equation for this ODE is

$$0 = r^2 + 5r + 6 = (r+2)(r+3).$$

Example

Solve
$$y'' + 5y' + 6y = 0$$
.

The first thing that we must do is to write down the characteristic equation. The characteristic equation for this ODE is

$$0 = r^2 + 5r + 6 = (r+2)(r+3).$$

The two roots are $r_1 = -2$ and $r_2 = -3$.

Example

Solve
$$y'' + 5y' + 6y = 0$$
.

The first thing that we must do is to write down the characteristic equation. The characteristic equation for this ODE is

$$0 = r^2 + 5r + 6 = (r+2)(r+3).$$

The two roots are $r_1 = -2$ and $r_2 = -3$. Therefore the general solution is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

Example

Solve

$$\begin{cases} y'' + 5y' + 6y = 0 \\ y(0) = 2 \\ y'(0) = 3. \end{cases}$$

We already found that $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$ is the general solution to the ODE. We just need to find c_1 and c_2 .

We already found that $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$ is the general solution to the ODE. We just need to find c_1 and c_2 . Since $y'(t) = -2c_1e^{-2t} - 3c_2e^{-3t}$ we have that

$$2 = y(0) = c_1 + c_2 \qquad \Longrightarrow \qquad c_1 = 2 - c_2$$

and

We already found that $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$ is the general solution to the ODE. We just need to find c_1 and c_2 . Since $y'(t) = -2c_1e^{-2t} - 3c_2e^{-3t}$ we have that

$$2 = y(0) = c_1 + c_2 \qquad \Longrightarrow \qquad c_1 = 2 - c_2$$

and

$$3 = y'(0) = -2c_1 - 3c_2 = -2(2 - c_2) - 3c_2 = -4 - c_2$$

$$\implies c_2 = -7$$

$$\implies c_1 = 9.$$

We already found that $y(t) = c_1 e^{-2t} + c_2 e^{-3t}$ is the general solution to the ODE. We just need to find c_1 and c_2 . Since $y'(t) = -2c_1e^{-2t} - 3c_2e^{-3t}$ we have that

$$2 = y(0) = c_1 + c_2 \qquad \Longrightarrow \qquad c_1 = 2 - c_2$$

and

$$3 = y'(0) = -2c_1 - 3c_2 = -2(2 - c_2) - 3c_2 = -4 - c_2$$

$$\implies c_2 = -7$$

$$\implies c_1 = 9.$$

Therefore the solution to the IVP is

$$y(t) = 9e^{-2t} - 7e^{-3t}.$$

Example

Solve

$$\begin{cases} 4y'' - 8y' + 3y = 0 \\ y(0) = 2 \\ y'(0) = \frac{1}{2}. \end{cases}$$

$$4y'' - 8y' + 3y = 0$$

Since the characteristic equation

$$4r^2 - 8r + 3 = 0$$

has roots,

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{8 \pm \sqrt{64 - 48}}{8} = 1 \pm \frac{1}{2} = \frac{3}{2} \text{ or } \frac{1}{2},$$

it follows that the general solution to the ODE is

$$y(t) = c_1 e^{\frac{3t}{2}} + c_2 e^{\frac{t}{2}}.$$

$$y(t) = c_1 e^{\frac{3t}{2}} + c_2 e^{\frac{t}{2}}$$

Using the initial conditions, we calculate that

$$2 = y(0) = c_1 + c_2$$

$$\frac{1}{2} = y'(0) = \frac{3}{2}c_1 + \frac{1}{2}c_2$$

$$\implies c_1 = -\frac{1}{2} \text{ and } c_2 = \frac{5}{2}.$$

$$y(t) = c_1 e^{\frac{3t}{2}} + c_2 e^{\frac{t}{2}}$$

Using the initial conditions, we calculate that

$$2 = y(0) = c_1 + c_2$$

 $\frac{1}{2} = y'(0) = \frac{3}{2}c_1 + \frac{1}{2}c_2$ \implies $c_1 = -\frac{1}{2}$ and $c_2 = \frac{5}{2}$.

Therefore the solution to the IVP is

$$y = -\frac{1}{2}e^{\frac{3t}{2}} + \frac{5}{2}e^{\frac{t}{2}}.$$

Summary

To solve

$$ay'' + by' + cy = 0$$

we need to find two linearly independent solutions.

If $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$, then

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$;

- 2 If the roots are complex numbers, then ?????????????
- 3 If the roots are repeated, then ?????????????

$$y'' + p(t)y' + q(t)y = 0$$

Definition

Let
$$L = \frac{d^2}{dt^2} + p(t)\frac{d}{dt} + q(t)$$
.

So

$$L[y] = \frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = y'' + p(t)y' + q(t)y$$

and we can write the ODE above as just L[y] = 0.

Theorem

If y_1 and y_2 are both solutions of L[y] = 0, then $c_1y_1 + c_2y_2$ is also a solution to L[y] = 0 for all constants c_1, c_2 .

Theorem

If y_1 and y_2 are both solutions of L[y] = 0, then $c_1y_1 + c_2y_2$ is also a solution to L[y] = 0 for all constants c_1, c_2 .

Proof.

Since $L[y_1] = 0$ and $L[y_2] = 0$, we have that

$$L[y] = L[c_1y_1 + c_2y_2]$$

$$= \frac{d^2}{dt^2} (c_1y_1 + c_2y_2) + p(t) \frac{d}{dt} (c_1y_1 + c_2y_2) + q(t) (c_1y_1 + c_2y_2)$$

$$= c_1 (y_1'' + p(t)y_1' + q(t)y_1) + c_2 (y_2'' + p(t)y_2' + q(t)y_2)$$

$$= c_1 L[y_1] + c_2 L[y_2]$$

$$= 0 + 0 = 0.$$

Jósef Maria Hoëné-Wronkski POL, 1776-1853

Definition

The Wronskian of $y_1(t)$ and $y_2(t)$ is

$$W = W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}$$

Theorem

 $Suppose\ that$

- y_1 and y_2 both solve L[y] = 0; and
- $\blacksquare \exists t \text{ s.t. } W(t) \neq 0.$

Then $\{c_1y_1 + c_2y_2 : c_1, c_2 \in \mathbb{R}\}$ contains every solution of L[y] = 0.

Definition

Since $y(t) = c_1 y_1(t) + c_2 y_2(t)$ contains every solution to L[y] = 0, y(t) is called the *general solution* to L[y] = 0.

Definition

Since $y(t) = c_1y_1(t) + c_2y_2(t)$ contains every solution to L[y] = 0, y(t) is called the *general solution* to L[y] = 0.

Definition

In this case, we say that y_1 and y_2 form a fundamental set of solutions to L[y] = 0.

Example

Show that $y_1(t) = t^{\frac{1}{2}}$ and $y_2(t) = t^{-1}$ form a fundamental set of solutions to

$$2t^2y'' + 3ty' - y = 0$$

for t > 0

Example

Show that $y_1(t) = t^{\frac{1}{2}}$ and $y_2(t) = t^{-1}$ form a fundamental set of solutions to

$$2t^2y'' + 3ty' - y = 0$$

for t > 0

We must show three things:

- 1 that $y_1 = t^{\frac{1}{2}}$ is a solution to the ODE;
- 2 that $y_2 = t^{-1}$ is also a solution to the ODE; and
- 3 that y_1 and y_2 are linearly independent $(W \neq 0$ somewhere).

Since

$$2t^{2}y_{1}'' + 3ty_{1}' - y_{1} = 2t^{2} \left(t^{\frac{1}{2}}\right)'' + 3t \left(t^{\frac{1}{2}}\right)' - t^{\frac{1}{2}}$$

$$= 2t^{2} \left(-\frac{1}{4}t^{-\frac{3}{2}}\right) + 3t \left(\frac{1}{2}t^{-\frac{1}{2}}\right) - t^{\frac{1}{2}}$$

$$= -\frac{1}{2}t^{\frac{1}{2}} + \frac{3}{2}t^{\frac{1}{2}} - t^{\frac{1}{2}} = 0$$

Since

$$2t^{2}y_{1}'' + 3ty_{1}' - y_{1} = 2t^{2} \left(t^{\frac{1}{2}}\right)'' + 3t \left(t^{\frac{1}{2}}\right)' - t^{\frac{1}{2}}$$

$$= 2t^{2} \left(-\frac{1}{4}t^{-\frac{3}{2}}\right) + 3t \left(\frac{1}{2}t^{-\frac{1}{2}}\right) - t^{\frac{1}{2}}$$

$$= -\frac{1}{2}t^{\frac{1}{2}} + \frac{3}{2}t^{\frac{1}{2}} - t^{\frac{1}{2}} = 0$$

and

$$2t^{2}y_{2}'' + 3ty_{2}' - y_{2} = 2t^{2}(t^{-1})'' + 3t(t^{-1})' - t^{-1}$$
$$= 2t^{2}(2t^{-3}) + 3t(-t^{-2}) - t^{-1}$$
$$= 4t^{-1} - 3t^{-1} - t^{-1} = 0,$$

 y_1 and y_2 both solve the ODE.

Moreover since

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{\frac{1}{2}} & t^{-1} \\ \frac{1}{2}t^{-\frac{1}{2}} & -t^{-2} \end{vmatrix} = -t^{-\frac{3}{2}} - \frac{1}{2}t^{-\frac{3}{2}} = -\frac{3}{2}t^{-\frac{3}{2}} \neq 0$$

for all t > 0, we have that y_1 and y_2 are linearly independent.

Moreover since

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^{\frac{1}{2}} & t^{-1} \\ \frac{1}{2}t^{-\frac{1}{2}} & -t^{-2} \end{vmatrix} = -t^{-\frac{3}{2}} - \frac{1}{2}t^{-\frac{3}{2}} = -\frac{3}{2}t^{-\frac{3}{2}} \neq 0$$

for all t > 0, we have that y_1 and y_2 are linearly independent.

Therefore $y_1 = t^{\frac{1}{2}}$ and $y_2 = t^{-1}$ form a fundamental set of solutions to this ODE.

Now consider

$$ay'' + by' + cy = 0 \tag{1}$$

where $b^2 - 4ac < 0$.

Now consider

$$ay'' + by' + cy = 0 \tag{1}$$

where $b^2 - 4ac < 0$. The two roots of the characteristic equation are complex conjugates. We denote them by

$$r_1 = \lambda + i\mu$$
 and $r_2 = \lambda - i\mu$

where $\lambda, \mu \in \mathbb{R}$.

Now consider

$$ay'' + by' + cy = 0 \tag{1}$$

where $b^2 - 4ac < 0$. The two roots of the characteristic equation are complex conjugates. We denote them by

$$r_1 = \lambda + i\mu$$
 and $r_2 = \lambda - i\mu$

where $\lambda, \mu \in \mathbb{R}$. The corresponding solutions are

$$y_1(t) = e^{r_1 t} = e^{(\lambda + i\mu)t}$$
 and $y_2(t) = e^{r_2 t} = e^{(\lambda - i\mu)t}$.

But what does e to the power of a complex number mean?

Definition

$$e^{(\lambda+i\mu)t} = e^{\lambda t}\cos\mu t + ie^{\lambda t}\sin\mu t.$$

Remark

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

Remark

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t + i \lambda e^{\lambda t} \sin \mu t + i \mu e^{\lambda t} \cos \mu t
=
=
=
=
=
-$$

Remark

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t + i \lambda e^{\lambda t} \sin \mu t + i \mu e^{\lambda t} \cos \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + (i \lambda - \mu) e^{\lambda t} \sin \mu t
=
=
=
=
-$$

Remark

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t + i \lambda e^{\lambda t} \sin \mu t + i \mu e^{\lambda t} \cos \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + (i \lambda - \mu) e^{\lambda t} \sin \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + i (\lambda + i \mu) e^{\lambda t} \sin \mu t
=
=
=
=$$

Remark

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t + i \lambda e^{\lambda t} \sin \mu t + i \mu e^{\lambda t} \cos \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + (i \lambda - \mu) e^{\lambda t} \sin \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + i (\lambda + i \mu) e^{\lambda t} \sin \mu t
= (\lambda + i \mu) \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= (\lambda + i \mu) \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= (\lambda + i \mu) \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)$$

Remark

Please note that

$$\frac{d}{dt} \left(e^{r_1 t} \right) = \frac{d}{dt} \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t + i \lambda e^{\lambda t} \sin \mu t + i \mu e^{\lambda t} \cos \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + (i \lambda - \mu) e^{\lambda t} \sin \mu t
= (\lambda + i \mu) e^{\lambda t} \cos \mu t + i (\lambda + i \mu) e^{\lambda t} \sin \mu t
= (\lambda + i \mu) \left(e^{\lambda t} \cos \mu t + i e^{\lambda t} \sin \mu t \right)
= r_1 e^{r_1 t}.$$

Real Valued Solutions

The solutions $y_1(t) = e^{(\lambda + i\mu)t}$ and $y_2(t) = e^{(\lambda - i\mu)t}$ are functions $y_1, y_2 : \mathbb{R} \to \mathbb{C}$. But we want solutions $\mathbb{R} \to \mathbb{R}$.

Consider

$$u(t) = \frac{1}{2} (y_1(t) + y_2(t))$$

and

$$v(t) = \frac{1}{2i} (y_1(t) - y_2(t))$$

Consider

$$u(t) = \frac{1}{2} (y_1(t) + y_2(t))$$

$$= \frac{1}{2} e^{\lambda t} (\cos \mu t + i \sin \mu t) + \frac{1}{2} e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

$$= e^{\lambda t} \cos \mu t$$

and

$$v(t) = \frac{1}{2i} (y_1(t) - y_2(t))$$

$$= \frac{1}{2i} e^{\lambda t} (\cos \mu t + i \sin \mu t) - \frac{1}{2i} e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

$$= \frac{1}{2i} 2i e^{\lambda t} \sin \mu t = e^{\lambda t} \sin \mu t.$$

3.3 Complex Roots of the Characteristic

Consider

Equation

$$u(t) = \frac{1}{2} (y_1(t) + y_2(t))$$

$$= \frac{1}{2} e^{\lambda t} (\cos \mu t + i \sin \mu t) + \frac{1}{2} e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

$$= e^{\lambda t} \cos \mu t$$

and

$$v(t) = \frac{1}{2i} (y_1(t) - y_2(t))$$

$$= \frac{1}{2i} e^{\lambda t} (\cos \mu t + i \sin \mu t) - \frac{1}{2i} e^{\lambda t} (\cos \mu t - i \sin \mu t)$$

$$= \frac{1}{2i} 2i e^{\lambda t} \sin \mu t = e^{\lambda t} \sin \mu t.$$

Note that $u, v : \mathbb{R} \to \mathbb{R}$ both solve (1). But are they linearly independent?

Since

$$W(u,v)(t) = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$$

$$= \begin{vmatrix} e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\ \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t & \lambda e^{\lambda t} \sin \mu t + \mu e^{\lambda t} \cos \mu t \end{vmatrix}$$

$$= e^{2\lambda t} \left(\lambda \cos \mu t \sin \mu t + \mu \cos^2 \mu t - \lambda \cos \mu t \sin \mu t + \mu \sin^2 \mu t\right)$$

$$= \mu e^{2\lambda t} \neq 0$$

(because $\mu \neq 0$), the answer is YES.

Since

$$W(u,v)(t) = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$$

$$= \begin{vmatrix} e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\ \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t & \lambda e^{\lambda t} \sin \mu t + \mu e^{\lambda t} \cos \mu t \end{vmatrix}$$

$$= e^{2\lambda t} \left(\lambda \cos \mu t \sin \mu t + \mu \cos^2 \mu t - \lambda \cos \mu t \sin \mu t + \mu \sin^2 \mu t\right)$$

$$= \mu e^{2\lambda t} \neq 0$$

(because $\mu \neq 0$), the answer is YES. Therefore u(t) and v(t) form a fundamental set of solutions to (1).

Since

$$W(u,v)(t) = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix}$$

$$= \begin{vmatrix} e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\ \lambda e^{\lambda t} \cos \mu t - \mu e^{\lambda t} \sin \mu t & \lambda e^{\lambda t} \sin \mu t + \mu e^{\lambda t} \cos \mu t \end{vmatrix}$$

$$= e^{2\lambda t} \left(\lambda \cos \mu t \sin \mu t + \mu \cos^2 \mu t - \lambda \cos \mu t \sin \mu t + \mu \sin^2 \mu t\right)$$

$$= \mu e^{2\lambda t} \neq 0$$

(because $\mu \neq 0$), the answer is YES. Therefore u(t) and v(t) form a fundamental set of solutions to (1). The general solution to (1) is therefore

$$y(t) = c_1 u(t) + c_2 v(t) = c_1 e^{\lambda t} \cos \mu t + c_2 e^{\lambda t} \sin \mu t.$$

Example

Solve y'' + y' + y = 0.

Example

Solve
$$y'' + y' + y = 0$$
.

The characteristic equation

$$r^2 + r + 1 = 0$$

has roots

$$r = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{(-1)(3)}}{2} = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}.$$

Example

Solve
$$y'' + y' + y = 0$$
.

The characteristic equation

$$r^2 + r + 1 = 0$$

has roots

$$r = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{(-1)(3)}}{2} = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}.$$

So
$$\lambda = -\frac{1}{2}$$
 and $\mu = \frac{\sqrt{3}}{2}$.

Example

Solve
$$y'' + y' + y = 0$$
.

The characteristic equation

$$r^2 + r + 1 = 0$$

has roots

$$r = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{(-1)(3)}}{2} = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}.$$

So $\lambda = -\frac{1}{2}$ and $\mu = \frac{\sqrt{3}}{2}$.

Therefore the general solution is

$$y(t) = c_1 e^{-\frac{t}{2}} \cos \frac{\sqrt{3}}{2} t + c_2 e^{-\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t.$$

Example

Solve y'' + 9y = 0.

Example

Solve y'' + 9y = 0.

Since $0=r^2+9=(r-3i)(r+3i)$ we have $r=\pm 3i$ (i.e. $\lambda=0$ and $\mu=3$). Therefore the general solution is

$$y(t) = c_1 \cos 3t + c_2 \sin 3t.$$

Example

Solve

$$\begin{cases} 16y'' - 8y' + 145y = 0\\ y(0) = -2\\ y'(0) = 1. \end{cases}$$

Example

Solve

$$\begin{cases} 16y'' - 8y' + 145y = 0\\ y(0) = -2\\ y'(0) = 1. \end{cases}$$

The characteristic equation $16r^2 - 8r + 145 = 0$ has roots

$$r = \frac{8 \pm \sqrt{64 - 4(16)(145)}}{32} = \frac{8 \pm \sqrt{(64)(1 - 145)}}{32}$$
$$= \frac{8 \pm \sqrt{(-1)(64)(144)}}{32} = \frac{1}{4} \pm 3i.$$

Example

Solve

$$\begin{cases}
16y'' - 8y' + 145y = 0 \\
y(0) = -2 \\
y'(0) = 1.
\end{cases}$$

The characteristic equation $16r^2 - 8r + 145 = 0$ has roots

$$r = \frac{8 \pm \sqrt{64 - 4(16)(145)}}{32} = \frac{8 \pm \sqrt{(64)(1 - 145)}}{32}$$
$$= \frac{8 \pm \sqrt{(-1)(64)(144)}}{32} = \frac{1}{4} \pm 3i.$$

Therefore the general solution to the ODE is

$$y(t) = c_1 e^{\frac{t}{4}} \cos 3t + c_2 e^{\frac{t}{4}} \sin 3t.$$

$$y(t) = c_1 e^{\frac{t}{4}} \cos 3t + c_2 e^{\frac{t}{4}} \sin 3t$$

Finally we calculate that

$$y'(t) = \frac{1}{4}c_1e^{\frac{t}{4}}\cos 3t - 3c_1e^{\frac{t}{4}}\sin 3t + \frac{1}{4}c_2e^{\frac{t}{4}}\sin 3t + 3c_2e^{\frac{t}{4}}\cos 3t$$

$$y(t) = c_1 e^{\frac{t}{4}} \cos 3t + c_2 e^{\frac{t}{4}} \sin 3t$$

Finally we calculate that

$$y'(t) = \frac{1}{4}c_1e^{\frac{t}{4}}\cos 3t - 3c_1e^{\frac{t}{4}}\sin 3t + \frac{1}{4}c_2e^{\frac{t}{4}}\sin 3t + 3c_2e^{\frac{t}{4}}\cos 3t$$

and

$$-2 = y(0) = c_1 + 0 \implies c_1 = -2$$
$$1 = y'(0) = \frac{1}{4}c_1 + 3c_2 = -\frac{1}{2} + 3c_2 \implies c_2 = \frac{1}{2}.$$

$$y(t) = c_1 e^{\frac{t}{4}} \cos 3t + c_2 e^{\frac{t}{4}} \sin 3t$$

Finally we calculate that

$$y'(t) = \frac{1}{4}c_1e^{\frac{t}{4}}\cos 3t - 3c_1e^{\frac{t}{4}}\sin 3t + \frac{1}{4}c_2e^{\frac{t}{4}}\sin 3t + 3c_2e^{\frac{t}{4}}\cos 3t$$
 and

$$-2 = y(0) = c_1 + 0 \implies c_1 = -2$$
$$1 = y'(0) = \frac{1}{4}c_1 + 3c_2 = -\frac{1}{2} + 3c_2 \implies c_2 = \frac{1}{2}.$$

Therefore the solution to the IVP is

$$y = -2e^{\frac{t}{4}}\cos 3t + \frac{1}{2}e^{\frac{t}{4}}\sin 3t.$$

Summary

To solve

$$ay'' + by' + cy = 0$$

we need to find two linearly independent solutions.

If $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$, then

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$;

2 If $r_{1,2} = \lambda \pm i\mu \ (\lambda, \mu \in \mathbb{R})$, then

$$y_1(t) = e^{\lambda t} \cos \mu t$$
 and $y_2(t) = e^{\lambda t} \sin \mu t;$

3 If the roots are repeated, then ??????????????

Next Week

- 3.4 Repeated Roots of the Characteristic Equation
- 3.5 Reduction of Order
- 3.6 Nonhomogeneous Equations
- 3.7 The Method of Undetermined Coefficients