LECTURE 4

CEIC6789 NOTES

LINEARITY

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

$$x_2 \rightarrow (x_2)^2$$

$$\hat{y} = b_0 + b_2(x_2)^2$$

If the relationship is nonlinear, you should not use the data directly. You should transform it appropriately and then proceed with linear regression models.

 X_2

HOMOSCEDASTICITY

To have equal variance

$$(\sigma_{\varepsilon_1})^2 = (\sigma_{\varepsilon_2})^2 = \dots = (\sigma_{\varepsilon_k})^2$$

Homoscedastic

Heteroscedastic

Look for outliers and try to remove them

Look for outliers and try to remove them

Log transformation

Look for outliers and try to remove them

Log transformation

NO AUTOCORRELATION

Error terms (individual terms part of SSE) are assumed to be uncorrelated

$$\sigma_{\varepsilon_i \varepsilon_j} = 0 : \forall i \neq j$$

TIME SERIES DATA

Higher productivity

Average productivity

Lower productivity

FIXES

- Avoid linear regression
- Apply other regressions
 - Auto regressive model
 - Moving average model
 - Auto regressive moving average model

NO MULTICOLLINEARITY

Two or more variables have a high degree of correlation

$$\rho_{x_i x_j} \approx 1 : \forall i, j; i \neq j$$

INFANT HEALTH

Health	Age	Weight

NO MULTICOLLINEARITY

Two or more variables have a high degree of correlation

$$\rho_{x_i x_j} \approx 1 : \forall i, j; i \neq j$$

INFANT HEALTH

Messed-up coefficients; wrong p values in F regression etc.

HOW TO CHECK FOR MULTICOLLINEARITY?

VARIANCE INFLATION FACTOR (VIF)

Use VIF method from statsmodels library

VIF ranges from I to +infinity

- VIF : I − 5 is OK
- VIF > 5 unacceptable

HOW TO CHECK FOR MULTICOLLINEARITY?

VARIANCE INFLATION FACTOR (VIF)

Use VIF method from statsmodels library

VIF ranges from I to +infinity

- VIF : I − 5 is OK
- VIF > 6 unacceptable

HOW TO CHECK FOR MULTICOLLINEARITY?

VARIANCE INFLATION FACTOR (VIF)

Use VIF method from statsmodels library

VIF ranges from I to +infinity

- VIF : I − 5 is OK
- VIF > 10 unacceptable

FIXES

Here is a nice article about multicollinearity: https://statisticsbyjim.com/regression-analysis/

DUMMY VARIABLES

DUMMY

A variable used to include categorical data into a regression model

Numerical

Efficiency

- Size of the catalyst
- Price of a car
- Mileage
- Engine volume
- Year

DUMMY

Categorical

- Shape of a catalyst
- Metal used in the catalyst
- Gender
- Brand

Gender	Gender_dummy
Male	0
Female	

Metal

Platinum

Gold

Silver

Copper

Gender	Gender_dummy
Male	0
Female	

Metal

Platinum

Gold

Silver

Copper

How many dummies to create?

Gender	Gender_dummy
Male	0
Female	ĺ

How many dummies to create?

Platinum
Gold
Silver

Metal

Copper

If we have N categories, we have to create N-1 dummies

Gender	Gender_dummy
Male	0
Female	

Metal	Platinum_dummy	Gold_dummy	Silver_dummy	Copper_dummy
Platinum		0	0	0
Gold	0	l	0	0
Silver	5	0	1	0
Copper	0	0	0	I

Gender	Gender_dummy
Male	0
Female	l

Metal	Platinum_dummy	Gold_dummy	Silver_dummy	Copper_dummy
Platinum	Redundant	0	0	0
Gold	• Redundant		0	0
Silver	 Multicollinearity 	0	I	0
Copper	U	0	0	1

FEATURE SCALING

FEATURE SCALING

Transforming the data into a standard scale

$$x' = \frac{x - \mu}{\sigma}$$
Standard deviation

Mean = 0

$$x'$$
:

Standard deviation = 1

ACTIVITY

Given the following (simple) dataset, obtain the transformed dataset by subtracting the mean and dividing by standard deviation values for each of the columns.

Note that we will use sklearn to carry out feature scaling in practical cases, where sklearn uses the population standard deviation. Therefore, you can use the formula for the population standard deviation in your activity.

TRAIN TEST SPLIT

ACTIVITY

Please go ahead and build a regression model using x_train as inputs and y_train as targets. You can then use a scatter plot to graph the predicted y values vs. the observed y values (contained in y_train). Visually inspect if your model did a good job.