Kapittel 4: Utsagnslogiske begreper

Nettkurs

Boka

Logisk konsekvens

- ullet La M være en mengde av utsagnslogiske formler, og la F være en utsagnslogisk formel.
 - Hvis F er sann for alle valuasjoner som gjør alle formlene i M sanne samtidig, er F en \log isk konsekvens (\log ical consequence), eller bare en konsekvens, av formlene i M.
- ullet $M \vDash F$ F er en logisk konsekvens av M. M er en <u>mengde</u>.
- Sannhetsverditabeller hjelper å sjekke for logiske konsekvenser. Her er et eksempel på den:

 men hvis du vil begrunne at noe er en logisk konsekvens av noe annet, så må du bruke ord

Gyldig argument

- Et resonnement eller argument er **gyldig** (*valid*) eller **holdbart** hvis konklusjonen er en logisk konsekvens av mengden av premisser.
- **Viktig!** Om et argument er gyldig, har bare med <u>formler</u> å gjøre ikke med innholdet!

Oppfyllbarhet

- Hvis en valuasjon v gjør en utsagnslogisk formel F sann, så sier vi at valuasjonen **oppfyller** (satisfies) formelen og skriver $v \models F$.
- ullet v er en valuasjon.
- En utsagnslogisk formel er **oppfyllbar** (*satisfiable*) hvis det finnes en valuasjon som oppfyller den.
- ullet (P o Q) er oppfyllbar; den oppfylles av enhver valuasjon som gjør P usann eller Q sann.
- $(P \land \neg P)$ er *ikke* oppfyllbar; den finnes ingen valuasjon som gjør både P og $\neg P$ sanne samtidig.

Falsifiserbarhet

- Hvis en valuasjon v gjør en utsagnslogisk formel F usann, sier vi at valuasjonen falsifiserer (falsifies) formelen og skriver $v \nvDash F$.
- En utsagnslogisk formel er **falsifiserbar** (*falsifiable*) hvis det finnes en valuasjon som falsifiserer den.
- ullet (P o Q) er falsifiserbar, men (Pee
 eg P) er *ikke* falsifiserbar.

Tautologi/gyldighet

• Hvis en utsagnslogisk formel F er sann for alle valuasjoner, sier vi at formelen er en **tautologi** (*tautology*), eller **gyldig** (*valid*), og skriver $\models F$ (eller $\emptyset \models F$).

Motsigelse/kontradiksjon

- Hvis en utsagnslogisk formel F er usann for alle valuasjoner, sier vi at formelen er kontradiktorisk (contradictory), eller en kontradiksjon (contradiction), eller en motsigelse.
- Ikke noe symbol for det.

Symboler for sannhetsverdiene

- ⊤ sann (*true*), eller topp (*top*)
- \perp usann (false), eller bunn (bottom)
- Enhver valuasjon må gjøre \top sann og \bot usann. Med andre ord, er \top en tautologi, og \bot en motsigelse.

Uavhengighet av formler

- En formel F er **uavhengig** (independent) av en mengde formler M hvis hverken F eller $\neg F$ er en logisk konsekvens av M.
- En mengde formler er **uavhengig** hvis enhver formel er uavhengig av mengden av de andre formlene.
- Formelen P er uavhengig av mengden $\{P \lor Q, R\}$, fordi hverken P eller $\neg P$ er en logisk konsekvens av den.