1º DOBLE GRADO INGENIERÍA INFORMÁTICA Y MATEMÁTICAS - UGR

Examen Ordinario Junio - 2017/2018

- 1. Teorema de Rolle. Teorema del valor medio. (2 puntos)
- 2. Justifica si las siguientes afirmaciones son verdaderas o falsas: (2 puntos)
 - (a) Toda función convexa es uniformemente continua.
 - (b) Si $A \subset \mathbb{R}$ es un conjunto tal que todos los puntos de A son de acumulación de A, $f: A \to \mathbb{R}$ es derivable y f' no se anula, entonces f es inyectiva.
 - (c) Sea I un intervalo no trivial y $f: I \to \mathbb{R}$ una función derivable tal que f' tiene un único cero en x_0 y f tiene un extremo relativo en x_0 , ¿tiene f un extremo absoluto en x_0 ?
 - (d) La función $f: \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$f(x) = \int_0^x \sqrt{t^5 + t^2 + 1} dt \quad (x \in \mathbb{R}^+)$$

tiene límite en $+\infty$.

- 3. Cada tangente a la circunferencia unidad en un punto del primer cuadrante corta a los dos ejes en dos puntos de la forma $(x_1,0)$ y $(0,y_1)$. Halla la ecuación de la recta tangente para $x_1 + y_1$ es mínimo. (2 puntos)
 - 4. Calcula los siguientes límites: (2 puntos)

a)
$$\lim_{x \to 0} \frac{\int_0^x \arcsin(t) \arctan(t) dt}{(\log(1+x))^3}$$

b)
$$\lim_{x \to 0} \left(\frac{2 + \sin(x)}{2 - \sin(x)} \right)^{1/x}$$

5. Sea $f: I \to \mathbb{R}$ de clase $C^{n+1}(I), n \in \mathbb{N}$ y $P_n(x)$ su polinomio de Taylor de grado n y centrado en el punto $a \in I$. Probar que entonces $x \neq a$ de I se cumple: (2 puntos)

$$f(x) - P_n(x) = \frac{1}{n!} \int_a^x f^{n+1}(t)(x-t)^n dt$$

(Indicación: Inducción e integración por partes)