

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА **09.04.01/12 Интеллектуальный анализ больших** данных в системах поддержки принятия решений.

ОТЧЕТ

по лабораторной работе № 3

Вариант № 5

Название: Построение модуля экспертной системы

Дисциплина: Интеллектуальные технологии и системы

Студент	ИУ6-13М			С.П. Пантелеев	
	(Группа)	(Подпись	, дата)	(И.О. Фамилия)	
Преподаватель				Е.К. Пугачев	
		(Полпись	пата)	(ИО Фамилия)	

Цель: изучение способов представления знаний и методов обработки знаний, этапов проектирования экспертной системы и её компонентов, проведение логической декомпозиции, построение модели базы знаний и механизма логического вывода.

Задание: диагностическая интерактивная экспертная система проверки работоспособности однокаскадного усилителя в статике (показан на рисунке 1). Основными входными фактами (данными) являются величины напряжений в контрольных точках.

Рисунок 1 – Однокаскадный усилитель в статике Использовать функцию механизма логического вывода.

1 Декомпозиция предметной области

Проведём логическую декомпозицию предметной области.

Напряжение контрольной точки зависит не только от исправности самих элементов, но и от исправности контактов и соединений. Кроме того, некоторые участки цепи могут пересекаться — один участок включает другой, и если больший участок исправен, то нет необходимости проверять включенный участок отдельно. В данной схеме можно выделить 7 участков цепи, они показаны на рисунке 2.

Рисунок 2 – Участки цепи

На основании рисунка 2, а также номинальных параметров схемы, указанных в таблице 1, возможно построить схему иерархии результатов логической декомпозиции предметной области экспертной системы. Она представлена на рисунке 3.

Таблица 1 – номиналы элементов

Резисторы	Конденсаторы	Узлы (контрольные
		точки)
R1 = 8,2 кОм	$C1 = 220 \text{ мк}\Phi$	KT1 = 11 B
R2 = 4,7 кОм	$C2 = 470 \text{ MK}\Phi$	KT2 = 7,5 B
$R\kappa = 1,2 кОм$	$C_{9} = 6800 \text{ мк}\Phi$	KT3 = 18 B
$R_{\mathfrak{I}}=1$ κO_{M}		KT4 = 15 B
		KT5 = 7 B
		KT6 = 0 B
		KT7 = 11 B

Рисунок 3. Логическая декомпозиция предметной области

Из схемы можно сделать вывод, что выявление некоторых фактов может влиять на выявление последующих фактов. Например, если выявится, что напряжение на КТ 2 равно номинальному, а на КТ 3 — нет, то не все аспекты исправности КТ 3 попадают под подозрение, ведь согласно исправности КТ 2 исправны 1-ый и 3-ий участки цепи и резистор R2. Соответственно, они вычеркиваются из списка возможных причин неисправностей, оставляя там только 7-ой участок цепи — резисторы Rэ, Rк и R1. Учитывая эти особенности, была построена модель базы знаний, которая обеспечивает более быстрый поиск неисправности, чем вариант с перебором всех возможных КТ, которая, по сути, учитывает опыт предыдущих итераций. Схема показана на рисунке 4. Как видно, база знаний содержит 5 уровней.

Рисунок 4. Модель базы знаний

Для разработки базы знаний была использована продукционная модель, из чего следует, что факты объединены в группы с помощью правил вида: ЕСЛИ...,ТО... Пример из разрабатываемой экспертной системы: ЕСЛИ <Усилитель исправен в статическом режиме >, ТО < Напряжение на КТ1 равно +11 В, Напряжение на КТ1 равно +18 В, Напряжение на КТ7 равно +11 В>.

2 Проектирование механизма логического вывода

Механизм вывода можно представить в виде четырех последовательных процессов:

• выбор активных правил и фактов;

- сопоставление (определяется какие правила выполнять в первую очередь);
 - разрешение конфликтов;
 - выполнение выбранного означенного правила (действие).

МЛВ в общем виде представляется как:

$$S = (F, R, I),$$

где F – множество фактов,

R – множество правил,

I – интерпретатор.

В рассматриваемом примере фактами (F) будут являться резисторы, конденсаторы и узлы, а правилами (R) исправность работы цепей:

 $R_0: F_{d0} \leftarrow F_{01} \wedge F_{02} \wedge F_{03}$, где F_{01} – исправность КТ1, F_{02} – исправность 6-го участка, F_{03} – исправность КТ3, а F_{d0} – исправность усилителя.

 $R_1: F_{d1} \leftarrow F_{11} \wedge F_{12} \wedge F_{13}$, где F_{11} – исправность конденсатора Сэ, F_{12} – исправность конденсатора С2, F_{13} – исправность КТ4, а F_{d1} – исправность КТ7.

 $R_2: F_{d2} \leftarrow F_{21} \wedge F_{22} \wedge F_{23} \wedge F_{24} \wedge F_{25}$, где F_{21} – исправность 7-го участка, F_{22} – исправность резистора R_{1} , F_{23} – исправность K_{23} – исправность F_{24} – исправность резистора F_{23} – исправность F_{24} – исправность F_{23} – исправность F_{2

 $R_3: F_{d3} \leftarrow F_{31} \wedge F_{32} \wedge F_{33}$, где F_{31} – исправность 4-го участка, F_{32} – исправность конденсатора C1, F_{33} – исправность КТ2, а F_{d3} – исправность КТ1.

 $R_4: F_{d4} \leftarrow F_{41} \wedge F_{42} \wedge F_{43}$, где F_{41} – исправность 5-го участка, F_{42} – исправность КТ2, F_{43} – исправность КТ5, а F_{d4} – исправность КТ4.

 $R_5: F_{d5} \leftarrow F_{51} \wedge F_{52} \wedge F_{53}$, где F_{51} – исправность 3-го участка, F_{52} – исправность резистора R_2, F_{53} – исправность КТ6, а F_{d5} – исправность КТ2.

 $R_6: F_{d6} \leftarrow F_{61} \wedge F_{62} \wedge F_{63} \wedge F_{64} \wedge F_{65}$, где F_{61} – исправность 2-го участка, F_{62} – исправность 3-го участка, F_{63} – исправность конденсатора Сэ, F_{64} – исправность резистора R_{9}, F_{65} – исправность KT_{6} , а F_{d6} – исправность KT_{5} .

 $R_7: F_{d7} \leftarrow F_{71}$, где F_{71} – исправность 1-го участка, а F_{d7} – исправность КТ6.

Итератор в свою очередь имеет следующий вид:

$$I = (V, M, C, W),$$

где V – процесс выбора активных фактов и правил (Fa, Ra),

М – процесс сопоставления,

С – процесс разрешения конфликтов,

W – процесс выполнения выбранного означенного правила.

В разрабатываемой ЭС процесс V — это диалог с системой. Она задаёт вопросы о неисправностях в устройстве. Вопросы могут быть типа «Введите напряжение в контрольной точке 1»

Процесс М представляет собой сравнение введённых числовых значений напряжения, емкостей и сопротивления с уже имеющимися в базе программы, которые являются нормой для каждого конкретного элемента устройства с учётом погрешности.

В реализации процесса С данная система не нуждается, поскольку сама контролирует диалог с пользователем, не давая ему ввести неверные данные.

Процесс W запускается после задания входного напряжения в программу и проверка контрольных точек. Если в какой-то из КТ будет найдена ошибка, программа сообщит об этом.

В данной системе использован обратный порядок вывода, который двигается от заключения к активным фактам.

Стратегией в данной ЭС является Альфа-бета алгоритм. Задача сводится к удалению ветвей, не перспективных для поиска успешного решения. Поэтому просматриваются только те вершины, в которые можно попасть в результате следующего шага, после чего неперспективные направления исключаются из дальнейшего рассмотрения. Например, несоответствие напряжения номинальному на КТ2 может рассматриваться только в случае, если напряжение ни на одной из КТ 1, 3 или 7 не соответствует номинальному.

Схема МЛВ показа ЭС показана на рисунке 5.

Рисунок 5 – Схема МЛВ для ЭС однокаскадного усилителя в статике где F, Fa , F¬а – исходные, активные и неактивные факты;

Fs , F¬s – факты, которые сработали и не сработали;

Fz, Fd – факты заключения и дополнительные факты;

Fda – активные дополнительные факты;

Ra – активные правила;

Rs, R¬s – правила, которые сработали и не сработали;

Р1 – процесс определения активных фактов;

P2 – процесс определения активных правил и формирование заключений 1-го уровня;

P3 — процесс формирования заключений 2-го уровня с возможностью дополнительных итераций;

P4 – процесс формирования активных правил и заключений 3-го уровня с возможностью уточнений;

P5 – процесс формирования активных правил и заключений 4-го уровня с возможностью уточнений.

Вывод: были изучены способы представления знаний и методов обработки знаний, этапы проектирования экспертной системы и её компоненты, была проведена логическая декомпозиция и построена модель механизм логического вывода.