Note del corso di Geometria 1

Gabriel Antonio Videtta

22 marzo 2023

Decomposizione di Jordan, forma canonica di Jordan reale e prodotto scalare

Nota. Nel corso del documento, qualora non specificato, per f si intenderà un qualsiasi endomorfismo di V, dove V è uno spazio vettoriale di dimensione $n \in \mathbb{N}$. Inoltre per \mathbb{K} si intenderà, per semplicità, un campo algebricamente chiuso; altrimenti è sufficiente considerare un campo \mathbb{K} in cui i vari polinomi caratteristici esaminati si scompongono in fattori lineari.

Sia J la forma canonica di Jordan relativa a $f \in \text{End}(V)$ in una base \mathcal{B} . Allora è possibile decomporre tale matrice in una somma di due matrici D e N tali che:

- D è diagonale e in particolare contiene tutti gli autovalori di J;
- N è nilpotente ed è pari alla matrice ottenuta ignorando la diagonale di J;
- DN = ND, dacché le due matrici sono a blocchi diagonali.

Pertanto è possibile considerare gli endomorfismi $\delta = M_{\mathcal{B}}^{-1}(D)$ (diagonalizzabile) e $\nu = M_{\mathcal{B}}^{-1}(N)$ (nilpotente). Si osserva allora che questi endomorfismi sono tali che $f = \delta + \nu$ (**decomposizione di Jordan** di f).

Teorema. La decomposizione di Jordan di f è unica.

Dimostrazione. Per dimostrare che la decomposizione di Jordan è unica è sufficiente mostrare che, dati δ , δ' diagonalizzabili e ν , ν' nilpotenti tali che $f = \delta + \nu = \delta' + \nu'$, deve valere necessariamente che $\delta = \delta'$ e che $\nu = \nu'$. In particolare è sufficiente dimostrare che $\delta|_{\widetilde{V_{\lambda}}} = \delta'|_{\widetilde{V_{\lambda}}}$ per ogni autovalore λ di

f, dal momento che $V = \widetilde{V_{\lambda_1}} \oplus \cdots \oplus \widetilde{V_{\lambda_k}}$, dove k è il numero di autovalori distinti di f, e così le matrici associate dei due endomorfismi sarebbero uguali in una stessa base, da cui si concluderebbe che $\delta = \delta'$, e quindi che $\nu = \nu'$.

Si osserva innanzitutto che δ (e così tutti gli altri tre endomorfismi) commuta con f: $\delta \circ f = \delta \circ (\delta + \nu)$ = $(\delta + \nu) \circ \delta = f \circ \delta$. Da quest'ultimo

risultato consegue che $\widetilde{V_{\lambda}}$ è δ -invariante, dacché se f commuta con δ , anche $(f - \lambda \operatorname{Id})^n$ commuta con δ . Sia infatti $\underline{v} \in \widetilde{V_{\lambda}} = \operatorname{Ker}(f - \lambda \operatorname{Id})^n$, allora $(f - \lambda \operatorname{Id})^n(\delta(\underline{v})) = \delta((f - \lambda \operatorname{Id})^n(\underline{v})) = \delta(\underline{0}) = \underline{0} \implies \delta(\widetilde{V_{\lambda}}) \subseteq \widetilde{V_{\lambda}}$.

Si considerano allora gli endomorfismi $\delta|_{\widetilde{V_{\lambda}}}$, $\delta'|_{\widetilde{V_{\lambda}}}$, $\nu|_{\widetilde{V_{\lambda}}}$, $\nu'|_{\widetilde{V_{\lambda}}}$ \in $\operatorname{End}(\widetilde{V_{\lambda}})$. Dal momento che $\delta|_{\widetilde{V_{\lambda}}}$ e $\nu|_{\widetilde{V_{\lambda}}}$ commutano, esiste una base \mathcal{B}' di $\widetilde{V_{\lambda}}$ tale per cui i due endomorfismi sono triangolarizzabili simultaneamente. Inoltre, dal momento che $\delta|_{\widetilde{V_{\lambda}}}$ è una restrizione su δ , che è diagonalizzabile per ipotesi, anche quest'ultimo endomorfismo è diagonalizzabile; analogamente $\nu|_{\widetilde{V_{\lambda}}}$ è ancora nilpotente.

Si osserva dunque che $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}}) = M_{\mathcal{B}'}(\delta|_{\widetilde{V_{\lambda}}}) + M_{\mathcal{B}'}(\nu|_{\widetilde{V_{\lambda}}})$: la diagonale di $M'_{\mathcal{B}}(\nu|_{\widetilde{V_{\lambda}}})$ è nulla, e $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}})$, poiché somma di due matrici triangolari superiori, è una matrice triangolare superiore. Allora la diagonale di $M_{\mathcal{B}'}(f|_{\widetilde{V_{\lambda}}})$ raccoglie l'unico autovalore λ di $f|_{\widetilde{V_{\lambda}}}$, che dunque è l'unico autovalore anche di $\delta|_{\widetilde{V_{\lambda}}}$. In particolare, poiché $\delta|_{\widetilde{V_{\lambda}}}$ è diagonalizzabile, vale che $\delta|_{\widetilde{V_{\lambda}}} = \lambda \mathrm{Id}$. Analogamente $\delta'|_{\widetilde{V_{\lambda}}} = \lambda \mathrm{Id}$, e quindi $\delta|_{\widetilde{V_{\lambda}}} = \delta'|_{\widetilde{V_{\lambda}}}$, da cui anche $\nu|_{\widetilde{V_{\lambda}}} = \nu'|_{\widetilde{V_{\lambda}}}$. Si conclude dunque che le coppie di endomorfismi sono uguali su ogni restrizione, e quindi che $\delta = \delta'$ e $\nu = \nu'$.

Sia adesso $V = \mathbb{R}^n$. Si consideri allora la forma canonica di Jordan di f su \mathbb{C} (ossia estendendo, qualora necessario, il campo a \mathbb{C}) e sia \mathcal{B} una base di Jordan per f. Sia α un autovalore di f in $\mathbb{C} \setminus \mathbb{R}$. Allora, dacché $p_f \in \mathbb{R}[\lambda]$, anche $\overline{\alpha}$ è un autovalore di f. In particolare, vi è un isomorfismo tra $\widetilde{V_{\alpha}}$ e $\widetilde{V_{\alpha}}$ (rappresentato proprio dall'operazione di coniugio). Quindi i blocchi di Jordan relativi ad α e ad $\overline{\alpha}$ sono gli stessi, benché coniugati.

Sia ora \mathcal{B}' una base ordinata di Jordan per $f|_{\widetilde{V_{\alpha}}}$, allora $\overline{\mathcal{B}'}$ è anch'essa una base ordinata di Jordan per $f|_{\widetilde{V_{\alpha}}}$. Si consideri dunque $W=\widetilde{V_{\alpha}}\oplus\widetilde{V_{\alpha}}$ e la restrizione $\varphi=f|_W$. Si osserva che la forma canonica di φ si ottiene estraendo i singoli blocchi relativi ad α e $\overline{\alpha}$ dalla forma canonica di f. Se

 $\mathcal{B}'=\{\underline{v_1},...,\underline{v_k}\},$ si considera $\mathcal{B}''=\{\Re(\underline{v_1}),\Im(\underline{v_1}),...,\Re(\underline{v_k}),\Im(\underline{v_k})\},$ ossia i vettori tali che $\underline{v_i}=\Re(\underline{v_i})+i\Im(\underline{v_i}).$ Questi vettori soddisfano due particolari proprietà:

•
$$\Re(\underline{v_i}) = \frac{\underline{v_i} + \overline{v_i}}{2}$$
,

•
$$\Im(\underline{v_i}) = \frac{\underline{v_i} - \overline{v_i}}{2i} = -\frac{\underline{v_i} - \overline{v_i}}{2}i.$$

In particolare \mathcal{B}'' è un base di W, dal momento che gli elementi di \mathcal{B}'' generano W e sono tanti quanto la dimensione di W, ossia 2k. Si ponga $\alpha = a + bi$. Se $\underline{v_i}$ è autovettore si conclude che:

$$\bullet \ f(\Re(\underline{v_i})) = \frac{1}{2} \left(f(\underline{v_i}) + f(\underline{v_i}) \right) = \frac{1}{2} \left(\alpha \underline{v_i} + \overline{\alpha v_i} \right) = \frac{1}{2} \left(a\underline{v_i} + bi\underline{v_i} + a\overline{v_i} - bi\overline{v_i} \right) = a\frac{v_i + \overline{v_i}}{2} + b\frac{v_i - \overline{v_i}}{2} i = a\Re(\underline{v_i}) - b\Im(\underline{v_i}),$$

•
$$f(\Im(\underline{v_i})) = \frac{1}{2i} \left(f(\underline{v_i}) - f(\overline{v_i}) \right) = \frac{1}{2i} \left(\alpha \underline{v_i} - \overline{\alpha \underline{v_i}} \right) = \frac{1}{2i} \left(a\underline{v_i} + bi\underline{v_i} - a\overline{v_i} + bi\overline{v_i} \right) = b\frac{\underline{v_i} + \overline{v_i}}{2} + a\frac{\underline{v_i} - \overline{v_i}}{2i} = b\Re(\underline{v_i}) + a\Im(\underline{v_i}).$$

Altrimenti, se non lo è:

$$\begin{array}{lll} \bullet & f(\Re(\underline{v_i})) & = & \frac{1}{2}\left(f(\underline{v_i}) + f(\overline{v_i})\right) & = & \frac{1}{2}\left(\alpha\underline{v_i} + \underline{v_{i-1}} + \overline{\alpha}\underline{v_i} + \overline{v_{i-1}}\right) & = \\ & \frac{1}{2}\left(a\underline{v_i} + bi\underline{v_i} + a\overline{v_i} - bi\overline{v_i}\right) + \Re(\underline{v_{i-1}}) & = & a\frac{v_i + \overline{v_i}}{2} + b\frac{v_i - \overline{v_i}}{2}i + \Re(\underline{v_{i-1}}) & = \\ & a\Re(\underline{v_i}) - b\Im(\underline{v_i}) + \Re(\underline{v_{i-1}}), \end{array}$$

$$\bullet \ f(\Im(\underline{v_i})) \ = \ \tfrac{1}{2i} \left(f(\underline{v_i}) - f(\overline{v_i}) \right) \ = \ \tfrac{1}{2i} \left(\alpha \underline{v_i} + \underline{v_{i-1}} - \overline{\alpha} \underline{v_i} - \overline{v_{i-1}} \right) \ = \ \tfrac{1}{2i} \left(a\underline{v_i} + bi\underline{v_i} - a\overline{v_i} + bi\overline{v_i} \right) + \Im(\underline{v_{i-1}}) \ = \ b\Re(\underline{v_i}) + a\Im(\underline{v_i}) + \Im(\underline{v_{i-1}}).$$

Quindi la matrice associata nella base \mathcal{B}'' è la stessa di f relativa ad α dove si amplifica la matrice sostituendo ad α la matrice $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ e ad 1 la matrice

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Esempio. Si consideri la matrice
$$M=\begin{pmatrix}1+i&1&0&0\\0&1+i&0&0\\0&0&1-i&1\\0&0&0&1-i\end{pmatrix}$$
. Si osserva che M è composta da due blocchi che sono uno il blocco coniugato

dell'altro. Quindi
$$M$$
 è simile alla matrice reale
$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Definizione. Un prodotto scalare su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K})^2 \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $\varphi(A, B) + \varphi(A', B)$ (linearità nel primo argomento),
- $\blacktriangleright \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel secondo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A) \text{ (simmetria)},$
- \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione. Si definisce prodotto scalare *canonico* di \mathbb{K}^n la forma bilineare simmetrica φ con argomenti in \mathbb{K}^n tale che:

$$\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

- $\begin{array}{lll} & \varphi((x_1,...,x_n) + (x_1',...,x_n'),(y_1,...,y_n)) &= \sum_{i=1}^n (x_i + x_i')y_i &= \\ \sum_{i=1}^n [x_i y_i + x_i' y_i] &= \sum_{i=1}^n x_i y_i + \sum_{i=1}^n x_i' y_i &= \varphi((x_1,...,x_n),(y_1,...,y_n)) + \\ \varphi((x_1',...,x_n'),(y_1,...,y_n)) & (\text{linearità nel primo argomento}), \\ & \blacktriangleright & \varphi(\alpha(x_1,...,x_n),(y_1,...,y_n)) &= \sum_{i=1}^n \alpha x_i y_i &= \alpha \sum_{i=1}^n x_i y_i &= \\ \alpha \varphi((x_1,...,x_n),(y_1,...,y_n)) & (\text{omogeneità nel primo argomento}), \\ & \blacktriangleright & \varphi((x_1,...,x_n),(y_1,...,y_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n y_i x_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n x_i y_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \sum_{i=1}^n x_i y_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n)) &= \sum_{i=1}^n x_i y_i &= \\ \chi((x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n),(x_1,...,x_n) &$
- $\varphi((y_1,...,y_n),(x_1,...,x_n))$ (simmetria),

 \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \text{ per } M(n,\mathbb{K}),$
- $\blacktriangleright \varphi(p(x), q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- $\varphi(p(x), q(x))$ = $\sum_{i=1}^{n} p(x_i) q(x)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, $\varphi(p(x), q(x)) = \int_a^b p(x) q(x) dx$ per lo spazio delle funzioni integrabili su \mathbb{R} , con a, b in \mathbb{R} ,
- $\blacktriangleright \varphi(\underline{x},y) = \underline{x}^{\top}Ay \text{ per } \mathbb{K}^n, \text{ con } A \in M(n,\mathbb{K}) \text{ simmetrica.}$

Definizione. Sia³ $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ è **definito positivo** se $v \neq 0 \implies \varphi(v, v) > 0$.

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: infatti $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 = 0 \iff x_i = 0, \ \forall 1 \le i \le n$ \iff $(x_1,...,x_n)=0.$

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) =$ $x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2,$ ossia se y = x o y = -x.

Definizione. Dato un prodotto scalare φ di V, ad ogni vettore $\underline{v} \in V$ si associa una forma quadratica $q: V \to \mathbb{K}$ tale che $q(v) = \varphi(v, v)$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v} + \underline{w}) \neq$ $q(\underline{v}) + q(\underline{w})$ in \mathbb{R}^n .

Definizione. Un vettore $v \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(\underline{v}) = \varphi(\underline{v}, \underline{v}) = 0$.

Esempio. Rispetto al prodotto scalare $\varphi: \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_2 - x_3y_3$, i vettori isotropi (x, y, z) sono quelli tali che $x^2 + y^2 = z^2$, ossia i vettori stanti sul cono di eq. $x^2 + y^2 = z^2$.

Osservazione. Come già osservato in generale per le app. multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie v_i, v_j estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (v_1, ..., v_k), \underline{v} = \sum_{i=1}^k \alpha_i v_i$ e $\underline{w} = \sum_{i=1}^{k} \beta_i v_i$, allora:

³In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

$$\varphi(\underline{v},\underline{w}) = \sum_{1 \le i \le j \le k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Allora si denota con **matrice associata** a φ la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(v_i, v_j))_{i, j=1\cdots n} \in M(n, \mathbb{K}).$$

Osservazione. Si possono fare alcune osservazioni riguardo $M_{\mathcal{B}}(\varphi)$.

- ▶ $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(\underline{v_i}, \underline{v_j}) = \varphi(\underline{v_j}, \underline{v_i})$ per definizione di prodotto scalare,

Teorema. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

Dimostrazione. Siano $\mathcal{B} = (\underline{v_1},...,\underline{v_n})$ e $\mathcal{B}' = (\underline{w_1},...,\underline{w_n})$. Allora $A'_{ij} = \varphi(\underline{w_i},\underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^{\top}A[\underline{w_j}]_{\mathcal{B}} = (P^i)^{\top}AP^j = P_i^{\top}(AP)^j = (P^{\top}AP)_{ij}$, da cui la tesi.

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \iff \exists \, P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- $ightharpoonup A = I^{\top}AI \implies A \cong A \text{ (riflessione)},$
- $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A \text{ (simmetria)},$
- ▶ $A \cong B \implies A = P^{\top}BP, B \cong C \implies B = Q^{\top}CQ, \text{ quindi } A = P^{\top}Q^{\top}CQP = (QP)^{\top}C(QP) \implies A \cong C \text{ (transitività)}.$

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora è ben definito il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango di una sua qualsiasi matrice associata.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è invariante per congruenza.

Definizione. Si dice radicale di un prodotto scalare φ lo spazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0, \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale di \mathbb{R}^n con il prodotto scalare canonico ha dimensione nulla, dal momento che $\forall \underline{v} \in \mathbb{R}^n \setminus \{\underline{0}\}, \ q(\underline{v}) = \varphi(\underline{v},\underline{v}) > 0.$

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Si definisce l'applicazione lineare $\alpha_{\varphi}: V \to V^*$ in modo tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w})$.

Allora V^{\perp} altro non è che Ker α_{φ} . Se V ha dimensione finita, dim $V = \dim V^*$, e si può allora concludere che dim $V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi}$ non è invertibile (infatti lo spazio di partenza e di arrivo di α_{φ} hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su \mathcal{B} , ossia $\mathcal{B}^* = (\underline{v_1}^*, ..., \underline{v_n}^*)$. Allora

$$M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i = [\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*} = \begin{pmatrix} \varphi(\underline{v_i}, \underline{v_1}) \\ \vdots \\ \varphi(\underline{v_i}, \underline{v_n}) \end{pmatrix} \underbrace{=}_{\varphi \text{ è simmetrica}} \begin{pmatrix} \varphi(\underline{v_1}, \underline{v_i}) \\ \vdots \\ \varphi(\underline{v_n}, \underline{v_i}) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i.$$
Ouindi $M^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\alpha_{\varphi})$

Quindi $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi}) = M_{\mathcal{B}}(\varphi).$

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ con l'isomorfismo è il passaggio alle coordinate.