Import libraries

!pip install catboost

Requirement already satisfied: catboost in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-pack Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-pa Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.10/dis Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-package Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-package Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dis Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/c Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10, Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10, Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/di Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dis Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/c Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/d

```
import pandas as pd
from sklearn.metrics import accuracy_score
from catboost import CatBoostClassifier
import numpy as np
from catboost import Pool
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
```

Exploratory Analysis

2

```
df = pd.read_csv('train.csv', index_col=0)
```

The first 10 rows of the dataset to understand its structure

-	-	-
3	1	3
4	1	1
5	0	3
6	0	3
7	0	1
8	0	3
9	1	3
10	1	2

	Name	Sex	Age
PassengerId			
1	Braund, Mr. Owen Harris	male	22.0
2	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0
3	Heikkinen, Miss. Laina	female	26.0
4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0
5	Allen, Mr. William Henry	male	35.0
6	Moran, Mr. James	male	NaN
7	McCarthy, Mr. Timothy J	male	54.0
8	Palsson, Master. Gosta Leonard	male	2.0
9	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0
10	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0

	SibSp	Parch	Ticket	Fare	Cabin	Embarked
PassengerId						
1	1	0	A/5 21171	7.2500	NaN	S
2	1	0	PC 17599	71.2833	C85	C
3	0	0	STON/02. 3101282	7.9250	NaN	S
4	1	0	113803	53.1000	C123	S
5	0	0	373450	8.0500	NaN	S
6	0	0	330877	8.4583	NaN	Q
7	0	0	17463	51.8625	E46	S
8	3	1	349909	21.0750	NaN	S
9	0	2	347742	11.1333	NaN	S
10	1	0	237736	30.0708	NaN	С

Stats for numerical variables

print(df.describe())

7		Survived	Pclass	٨٥٥	CibCn	Parch	Fare
		Survived	PCLass	Age	SibSp	Parcii	rare
	count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Missing values in each column

```
print(df.isnull().sum())
     Survived
     Pclass
                   0
    Name
                   0
    Sex
    Age
                 177
     SibSp
    Parch
                   0
    Ticket
     Fare
    Cabin
                 687
     Embarked
     dtype: int64
```

Distribution of the variable: 'Survived'

```
sns.countplot(x='Survived', data=df)
plt.title('Survival Distribution (0 = No, 1 = Yes)')
plt.show()
```


Distribution of varieble: 'Pclass'

sns.countplot(x='Pclass'. data=df)

plt.title('Passenger Class Distribution')
plt.show()

Age distribution

```
sns.histplot(df['Age'].dropna(), kde=True, bins=30)
plt.title('Age Distribution')
plt.show()
```


Survival comparison by gender

```
custom_palette = ['darkcyan', 'aquamarine']
sns.countplot(x='Survived', hue='Sex', data=df, palette=custom_palette)
plt.title('Survival by Gender')
plt.show()
```


Survival comparison by class

```
custom_palette = ['darkcyan', 'aquamarine', 'lightslategrey']
sns.countplot(x='Survived', hue='Pclass', data=df, palette=custom palette)
```

plt.title('Survival by Class')
plt.show()

Analysis of the fare paid

```
sns.histplot(df['Fare'], kde=True, bins=30)
plt.title('Fare Distribution')
plt.show()
```


Survival comparison by embarkation port

```
custom_palette = ['darkcyan', 'aquamarine', 'lightslategrey']
sns.countplot(x='Survived', hue='Embarked', data=df, palette=custom_palette)
plt.title('Survival by Embarkation Port')
plt.show()
```


Correlation matrix between numerical variables

```
plt.figure(figsize=(10, 8))
numeric cols = df.select dtypes(include=['float64', 'int64']).columns
```

```
sns.heatmap(df[numeric_cols].corr(), annot=True, cmap='Blues')
plt.title('Correlation Matrix')
plt.show()
```


Cleaning the data

```
df.info()
      <class 'pandas.core.frame.DataFrame'>
        Index: 891 entries, 1 to 891
        Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
 0	 Survived	891 non-null	 int64
-			
1	Pclass	891 non-null	int64
2	Name	891 non-null	object
3	Sex	891 non-null	object
4	Age	714 non-null	float64
5	SibSp	891 non-null	int64
6	Parch	891 non-null	int64
7	Ticket	891 non-null	object
8	Fare	891 non-null	float64
9	Cabin	204 non-null	object
10	Embarked	889 non-null	object
dtyp	es: float6	4(2), int64(4),	object(5)
memo	ry usage:	83.5+ KB	

Get the amount of null values in percentage

df.isnull().sum() / len(df) * 100

	0
Survived	0.000000
Pclass	0.000000
Name	0.000000
Sex	0.000000
Age	19.865320
SibSp	0.000000
Parch	0.000000
Ticket	0.000000
Fare	0.000000
Cabin	77.104377
Embarked	0.224467

dtype: float64

Look at the distributions of the features to decide with wich method we will fill the null values

```
df["Age"].hist(bins=50)
     <Axes: >
```


We will use the median to fill the null values in Age

We will use the median to fill the null values in Fare

df["Embarked"].hist(bins=50)

We will use mode to fill the null values in Embarked

Sabemos que hay un 77.1% de datos faltantes en la columna de 'cabin', intentamos rellenarlo usando un modelo de knn pero no tuvimos un accuracy bueno, despues decidimos probar con random forest, y despues de varios intentos más decidimos eliminar la columna de 'cabin' ya que no obtuvimos los resultados esperados para rellenar esta columna y no aportaba algo bueno a nuestros resultados por lo que lo mejor es mejor no usar la columna.

✓ Feature engineering

We are going to do the analysis based on the idea that women and children were given priority to board the lifeboats.

We will deduce the passengers gender based on the title in their names.

```
# Extract titles from the 'Name' column
df['Title'] = df['Name'].apply(lambda x: x.split(",")[1].split(".")[0].strip())
df.value_counts("Title")
```

count

Title		
Mr	517	
Miss	182	
Mrs	125	
Master	40	
Dr	7	
Rev	6	
Major	2	
Col	2	
MIIe	2	
Sir	1	
Ms	1	
Capt	1	
Mme	1	
Lady	1	
Jonkheer	1	
Don	1	
the Countess	1	

dtype: int64

Replace titles with general categories

```
df['Title'] = df['Title'].replace({
    "Capt": "man", "Don": "man", "Major": "man", "Col": "man",
    "Rev": "man", "Dr": "man", "Sir": "man", "Mr": "man", "Jonkheer": "man",
    "Dona": "woman", "the Countess": "woman", "Mme": "woman",
    "Mlle": "woman" "Ms": "woman" "Miss": "woman" "Ladv": "woman" "Mrs": "woman"
```

```
"Master": "boy"
})
df.value_counts("Title")

count
```

Title	
man	538
woman	313
boy	40

dtype: int64

We will group people by families

```
# Extract surnames from the 'Name' column
df['Surname'] = df['Name'].apply(lambda x: x.split(",")[0])

# Group 'man' titles under 'noGroup'
df.loc[df['Title'] == 'man', 'Surname'] = 'noGroup'

# Calculate the frequency of surnames
df['SurnameFreq'] = df.groupby('Surname')['Surname'].transform('count')

# Group surnames that appear only once under 'noGroup'
df.loc[df['SurnameFreq'] <= 1, 'Surname'] = 'noGroup'

df['SurnameSurvival'] = df.groupby('Surname')['Survived'].transform('mean')</pre>
```

The SurnameSurvival feature is calculated by grouping the data by Surname and taking the mean of the Survived column for each group. This gives the overall survival rate for each surname.

```
df['AdjustedSurvival'] = (df['SurnameSurvival'] * df['SurnameFreq'] - df['Survive
```

AdjustedSurvival adjusts the SurnameSurvival rate to provide a better estimate of the survival rate for each passenger, taking into account the number of people with the same surname (SurnameFreq) and the actual survival of the individual passenger (Survived).

This feature is intended to provide a more reliable estimate of the survival probability for each passenger based on their surname.

→ Data Preprocessing Function

```
def preprocess_data(data):
    # Extract titles from the 'Name' column
    data['Title'] = data['Name'].apply(lambda x: x.split(",")[1].split(".")[0].st
   # Replace titles with general categories
    data['Title'] = data['Title'].replace({
        "Capt": "man", "Don": "man", "Major": "man", "Col": "man",
        "Rev": "man", "Dr": "man", "Sir": "man", "Mr": "man", "Jonkheer": "man",
        "Dona": "woman", "the Countess": "woman", "Mme": "woman",
        "Mlle": "woman", "Ms": "woman", "Miss": "woman", "Lady": "woman", "Mrs":
        "Master": "boy"
    })
   # Extract surnames from the 'Name' column
    data['Surname'] = data['Name'].apply(lambda x: x.split(",")[0])
   # Group 'man' titles under 'noGroup'
    data.loc[data['Title'] == 'man', 'Surname'] = 'noGroup'
   # Calculate the frequency of surnames
    data['SurnameFreq'] = data.groupby('Surname')['Surname'].transform('count')
   # Group surnames that appear only once under 'noGroup'
    data.loc[data['SurnameFreq'] <= 1, 'Surname'] = 'noGroup'</pre>
   # Calculate the survival rates for 'woman-child-groups'
    data['SurnameSurvival'] = data.groupby('Surname')['Survived'].transform('mean
   # Adjust survival rates for use on the training set
    data['AdjustedSurvival'] = (data['SurnameSurvival'] * data['SurnameFreq'] - d
   # if the adjust survival rate is -inf or inf
    data['AdjustedSurvival'] = data['AdjustedSurvival'].replace(np.inf, 1) # this
    data['AdjustedSurvival'] = data['AdjustedSurvival'].replace(-np.inf, 0) # thi
    data.drop(['Name', 'Ticket', 'Cabin', 'Surname', 'SurnameFreq', 'Title'], axi
    data['Age'].fillna(data['Age'].median(), inplace=True)
    data['Embarked'].fillna(data['Embarked'].mode()[0], inplace=True)
    data['Fare'].fillna(data['Fare'].median(), inplace=True)
    data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
    data = pd.get_dummies(data, columns=['Embarked'])
    return data
```

Prepare the Data

Model

We will use catboost, therefore we need to indicate the categorical features.

```
cat_features = np.where(X_train.dtypes != float)[0]
cat_features
    array([ 0,  1,  3,  4,  8,  9, 10])
```

Create the Model

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0 1	0.86 1.00	1.00 0.72	0.92 0.84	260 158
accuracy macro avg weighted avg	0.93 0.91	0.86 0.89	0.89 0.88 0.89	418 418 418

```
plt.figure(figsize = (4,4))
cm = sns.heatmap(confusion_matrix(y_test, y_pred), fmt='g', annot=True)
cm.set(title='Confusion Matrix')
cm.set(xlabel='Predicted', ylabel='Actual')
plt.show()
```


get the feature importance
feature_importance = model.get_feature_importance(prettified=True)
feature_importance

	Feature Id	Importances	\blacksquare
0	AdjustedSurvival	65.674739	11.
1	SurnameSurvival	33.395220	+/
2	Sex	0.930041	_

3	Pclass	0.000000
4	Age	0.000000
5	SibSp	0.000000
6	Parch	0.000000
7	Fare	0.000000
8	Embarked_C	0.000000
9	Embarked_Q	0.000000
10	Embarked_S	0.000000

```
Next steps:

Generate code with feature_importance recommended sheet

New interactive sheet
```

Hyperparameter Tuning

We are going to find the best parameters for the model using GridSearchCV. Also, we are going to use Cross Validation to avoid overfitting.

```
111
cat_for_search = CatBoostClassifier(loss_function='Logloss',
                                     eval_metric='Accuracy',
                                     verbose=False,
                                     random_state=42)
params = {
    'depth': [4, 6, 8, 10],
    'learning_rate': [0.01, 0.05, 0.1, 0.2],
    'iterations': [100, 200, 300, 500],
    'l2_leaf_reg': [1, 3, 5, 7],
}
grid = cat_for_search.grid_search(params, Pool(X_train, y_train, cat_features=cat_
best_model = CatBoostClassifier(depth=grid['params']['depth'],
                                 loss_function='Logloss',
                                eval_metric='Accuracy',
                                use_best_model=True,
                                 random_seed=42,
                                verbose=False)
best_model.fit(X_train, y_train, cat_features=cat_features, eval_set = (X_test, y_
```

```
accuracy_score(y_test, best_model.predict(X_test))
```