### Rappel du cours 6

Pour tout langage reconnaissable L et pour tout a.f.d.c.accessible

$$A = \langle X, Q, q_0, F, \delta \rangle$$
 reconnaissant L, on a  $Res(L) = \{L_q / q \in Q\}$ 

donc,

$$|\mathbf{Q}| \ge |\{ \mathbf{L}_{\mathbf{q}} / \mathbf{q} \in \mathbf{Q} \}| = |Res(\mathbf{L})|$$

L'automate des résiduels de L reconnaît L et c'est l'un des plus petits automates qui reconnaissent L.

## La relation "sépare"

• pour la suite du chapitre, on se place dans le cadre des automates finis déterministes complets et accessibles

• Soit A=< X, Q,  $q_o$ , F,  $\delta>$  un a.f.d.c.a. , on dit qu'un mot u de X\* sépare deux états q et q' si 1'un des deux état  $\delta(q,u)$  et  $\delta(q',u)$  est final alors que 1'autre ne l'est pas.

#### Exemple



Quiz 1 - a sépare 0 et 2 vrai faux

Quiz 2 - bbb sépare 1 et 3 vrai faux

Quiz 3 - E sépare 0 et 2 vrai faux

b sépare 0 et 1, b sépare 3 et 4,

bb sépare 0 et 3, c'est le plus petit mot (ordre lexico) les séparant.

## L'équivalence de Nérode

• Définition : on définit la relation de Nérode entre deux états par : q ~ q' ssi aucun mot ne les sépare

• Remarque :  $q \sim q' ssi L_q = L_{q'}$ 

donc ~ est une relation d'équivalence

pour un état q, notons  $\overline{q}$  sa classe d'équivalence  $\overline{q} = \{q' \in Q \mid L_q = L_{q'}\} = \{q' \in Q \mid q \text{ et } q' \text{ sont Nérode-équivalents}\}$ 

## Automate quotient

Soit  $A = \langle X, Q, q_0, F, \delta \rangle$  un a.f.d.c.a, posons  $\overline{A} = \langle X, \overline{Q}, \overline{q}_0, \overline{F}, \overline{\delta} \rangle$  avec :

• 
$$\overline{Q}$$
= {  $\overline{q} / q \in Q$ } =  $Q / \sim$ 

• l'état initial est la classe de  $q_o$ :  $\overline{q}_o$ 

• 
$$\overline{F} = \{ \overline{a} / a \in F \} = F / \sim$$

•  $\overline{\delta} = \{ (\overline{q}, x, \overline{q'}) / \text{il existe } q_1 \in \overline{q} \text{ et } q_2 \in \overline{q'} \text{ tels que } (q_1, x, q_2) \in \delta \}$ 

Quiz - l'automate  $\overline{A}$  possède plus d'états que A moins d'états que A

## Application à l'exemple

• Si on a l'intuition que 1 ~ 4 et 2 ~ 5 et que ce sont-là les seuls états Nérode-équivalents, alors on aura parmi les transitions de l'automate quotient :



#### Pertinence de cette définition

F est bien une union de classes

 $\overline{\delta}$  est bien une fonction totale :  $\overline{Q} \times X \to \overline{Q}$ 



$$\overline{q}_1 = \overline{q}_3, \overline{q}_2 \neq \overline{q}_4$$

$$\delta(q_1, x) = q_2, \delta(q_3, x) = q_4$$

cette situation ne peut pas se produire

Proposition : Les deux automates A et  $\overline{A}$  sont équivalents

### sens $L(A) \subset L(A)$

- Soit un mot  $u = x_1x_2...x_n$  dans L(A)
  - il existe un chemin de trace u dans A:  $(q_0, x_1, q_1) (q_1, x_2, q_2) ... (q_{n-1}, x_n, q_n)$  avec  $q_n$  final
  - et donc il existe un chemin similaire de trace u dans  $\overline{A}$ ,  $(\overline{q}_0, x_1, \overline{q}_1)$   $(\overline{q}_1, x_2, \overline{q}_2)$  ...  $(\overline{q}_{n-1}, x_n, \overline{q}_n)$  avec  $\overline{q}_n$  final; ainsi u est-il reconnu par  $\overline{A}$ .

## sens $L(A) \subset L(A)$

• On montre par récurrence sur |u| que, pour tous  $c \in \overline{Q}$  et  $c' \in \overline{Q}$ , s'il existe un chemin dans l'automate  $\overline{A}$ , de trace u, allant de c à c', avec  $c' \in \overline{F}$ 

alors il existe

- un état  $q \in c$  et un état  $q' \in F$  mais pas forcément  $q' \in c'$ ,
- et un chemin de trace u de q à q' dans A.
- Par la suite, on prend  $c = \overline{q_0}$

#### **Problème**

- pour l'instant cette construction n'est pas effective!
  - on se sait pas comment vérifier que deux états sont Nérode-équivalents.

#### Construction effective de ~

- on construit par induction une suite finie de relations d'équivalence de plus en plus fines
  - l'équivalence  $\equiv_0$  contient deux classes : F et  $Q\F$
  - l'équivalence  $\equiv_i$  est définie par :

$$q \equiv_i q$$
' ssi  $q \equiv_{i-1} q$ ' et, pour tout  $x \in X$ ,  $\delta(q, x) \equiv_{i-1} \delta(q', x)$ 

• Lorsque l'on a trouvé  $\equiv_i$  identique à  $\equiv_{i+1}$ , on a trouvé l'équivalence  $\sim$ 

### Application à notre exemple

équivalence 
$$\equiv_0$$
:  
les noirs  $\{0, 1, 3, 4\} = \mathbb{Q} \setminus \mathbb{F}$   
les rouges  $\{2, 5\} = \mathbb{F}$ 

| les noirs $\{0, 3\}$ |     |
|----------------------|-----|
| les verts {1, 4}     |     |
| les rouges {2, 5     | 5 } |

|               | a        | b                    |
|---------------|----------|----------------------|
| 0             | 1        | 3                    |
| 1             | 4        | <u>2</u><br><u>5</u> |
| <u>2</u><br>3 | 2        | <u>5</u>             |
| 3             | 4        | 1                    |
| 4             | 1        | <u>5</u>             |
| <u>5</u>      | <u>5</u> | <u>5</u>             |

|               | a        | b        |
|---------------|----------|----------|
| 0             | 1        | 3        |
| 1             | 4        | 2        |
| <u>2</u><br>3 | <u>2</u> | <u>5</u> |
| 3             | 4        | 1        |
| 4             | 1        | <u>5</u> |
| <u>5</u>      | <u>5</u> | <u>5</u> |

les noirs se divisent en noirs/verts équivalence  $\equiv_1$ :

les noirs forment noirs/bleus

```
équivalence \equiv_2:
les noirs \{0\}
les bleus \{3\}
les verts \{1, 4\}
les rouges \{2, 5\}
```

|               | a        | b        |
|---------------|----------|----------|
| 0             | 1        | 3        |
| 1             | 4        | <u>2</u> |
| <u>2</u><br>3 | <u>2</u> | <u>5</u> |
| 3             | 4        | 1        |
| 4             | 1        | <u>5</u> |
| <u>5</u>      | <u>5</u> | <u>5</u> |

plus rien ne se divise

| équivalence ≡ <sub>3</sub> : |
|------------------------------|
| les noirs {0}                |
| les bleus {3}                |
| les verts {1, 4}             |
| les rouges $\{2, 5\}$        |

|               | a        | b        |
|---------------|----------|----------|
| 0             | 1        | 3        |
| 1             | 4        | 2        |
| <u>2</u><br>3 | <u>2</u> | <u>5</u> |
| 3             | 4        | 1        |
| 4             | 1        | <u>5</u> |
| <u>5</u>      | <u>5</u> | <u>5</u> |

Terminé!

## Représentation de l'automate quotient



# soit, en clair,



#### **Automate minimal**

On sait déjà que pour tout a.f.d.c.a A reconnaissant L :

$$|Res(L)| = |\{\mathbf{L_q} / \mathbf{q} \in \mathbf{Q}\}|$$

l'automate des résiduels est le plus petit mais non constructible

#### **Automate minimal**



l'automate des résiduels est le plus petit mais non constructible

l'automate quotient est constructible

L'automate quotient est minimal, constructible et unique.

## Détection d'équivalence d'automates

• Soit deux automates finis, sont-ils équivalents?



## Détection d'équivalence d'expressions rationnelles

• Soit deux expressions rationnelles, sont-elles équivalentes?



