DISTRIBUIRANI ALGORITMI I SISTEMI

Autor izvorne prezentacije: Prof. Jennifer Welch

Otkazi procesora u slanju poruka

- Ispad (Crash): u nekoj tački procesor prestaje da izvodi korake
 - u poslednjem koraku, procesor može poslati neki podskup poruka koje bi trebao da pošalje
- Vizantijski (Byzantine): procesor proizvoljno menja stanje i šalje poruke sa proizvoljnim sadržajem

Problem konsenzusa

- Svaki procesor ima neku ulaznu vrednost
- Završetak: Konačno svaki ispravan procesor mora da se odluči za neku vrednost
 - odluka je neopoziva!
- Dogovor: Sve odluke od ispravnih procesora moraju biti iste
- Validnost: Ako su svi ulazi isti, onda odluka svakog ispravnog procesora mora biti jednaka zajedničkom ulazu

Primeri konsenzusa

- □ Binarni ulazi:
 - ulazni vektor 1,1,1,1,1
 - odluka mora biti 1
 - ulazni vektor 0,0,0,0,0
 - odluka mora biti 0
 - ulazni vektor 1,0,0,1,0
 - odluka mora biti ili 0 ili 1
- □ Ulazi sa više od 2 vrednosti:
 - ulazni vektor 1,2,3,2,1
 - odluka može biti 1 ili 2 ili 3

Pregled postojećih rezultata

- Sinhroni sistemi
- Najviše f procesora u otkazu
- Uske granice za slanje poruka:

	Otkazi ispada	Vizantijski otkazi
broj rundi	f + 1	f + 1
ukupan broj procesora	f + 1	3f + 1
veličina poruke	polinomijalna	polinomijalna

Pregled postojećih rezultata

- □ Nije moguć u asinhronom slučaju
- Čak i ako hoćemo da tolerišemo samo jedan otkaz tipa ispada
- Važi i za sisteme sa slanjem poruka i za deljenu memoriju

Modeliranje otkaza tipa ispada

- Menjamo definicije prihvatljivog izvršenja da bi obuhvatili otkaze tipa ispada:
- Svi osim skupa od najviše f procesora (oni u otkazu) izvode beskonačan broj koraka
 - U sinhronom slučaju: nakon što procesor ne izvede neki korak, on više ne izvodi ni jedan korak
- U poslednjem koraku, proizvoljan podskup odlaznih poruka uspeva da uđe u kanale

Modeliranje vizantijskih otkaza

- Menjamo definicije prihvatljivog izvršenja da bi obuhvatili vizantijske otkaze:
- Skup od najviše f procesora (onih u otkazu) može slati poruke proizvoljnog sadržaja i menjati stanje proizvoljno (tj., ne po svojim prelaznim funkcijama)

Algoritam konsenzusa za ispade

Kod za svaki procesor:

```
v := moj ulaz
u svakoj rundi od 1 do f+1:
ako još nije poslao v, onda šalji v svima
čekaj prijem poruka za ovu rundu
v := minimium od svih primljenih vrednosti i
tekuće vrednosti v
ako je ovo runda f+1, onda odluči v
```

Izvršenje algoritma

□ runda 1:

šalji svoj ulaz

primi poruke runde 1

računaj vrednost za v

🗆 runda 2:

šalji v (ako je ovo nova vred)

primi poruke runde 2

računaj vrednost za v

□ ...

 \square runda f+1:

šalji v (ako je ovo nova vred)

 \square primi poruke runde f+1

računaj vrednost za v

odluči v

Relacija sa formalnim modelom

inicijalno u kanalima

događaji isporuke

događaji računanja

zbog predhodnih događaja računanja

događaji isporuke

događaji računanja

zbog predhodnih događaja računanja događaji isporuke događaji računanja

deo događaja računanja

Korektnost algoritma konsenzusa za otkaze tipa ispada

Završetak: Po kodu, završava se u rundi f+1

Validnost: Važi jer procesori ne unose lažne poruke: ako su svi ulazi isti, onda je to jedina vrednost u opticaju

Korektnost algoritma konsenzusa za otkaze tipa ispada

Dogovor:

- \square Predpost. radi kontradikcije da se p_i odluči za manju vred, x, nego p_i
- Onda je x bio sakriven od p_i sa lancem procesora u otkazu:

 \square Postoji f+1 neispravnih procesora u ovom lancu, kontradikcija

Performansa algoritma konsenzusa za otkaze tipa ispada

- \square Broj procesora n > f
- $\Box f + 1$ rundi
- □ najviše n² | V | poruka, svaka veličina log | V | bita, gde je V ulazni skup

Donja granica za runde

Predpostavke:

- n > f + 1
- svaki procesor treba da pošalje poruku svakom drugom procesoru u svakoj rundi
- □ ulazni skup je {0,1}

Izvršenja sa retkim otkazima

- Loše ponašanje za predhodni algoritam je bilo kad je bio jedan ispad po rundi
- □ Ovo je loše generalno
- Izvršenja sa retkim otkazima imaju najviše jedan ispad po rundi
- U ovo dokazu bavićemo se isključivo sa izvršenjima sa retkim otkazima

Valenca konfiguracije

- Valenca konfiguracije C je skup svih vrednosti za koje su se odlučili ispravni procesori u nekoj konfiguraciji dostupnoj iz C putem prihvatljivog izvršenja (sa retkim otkazima)
- Bivalentan: skup sadrži 0 i 1
- Univalentan: skup sadrži samo jednu vrednost
 - O-valentan ili 1-valentan

Valenca konfiguracije

0/1: bivalentan

1:1-valentan

0:0-valentan

Iskaz o donjoj granici za runde

Teorema (10.3): Bilo koji f-elastičan algoritam konsenzusa zahteva bar f+1 rundi u najgorem slučaju

Strategija dokaza:

 Predpostavimo radi konradikcije da su sve početne konfiguracije univalentne

ulazi	valence	po uslovu validnosti
00000	0	7
00001	?	
00011	?	
00111	?	
01111	?	
11111	1	/

 Predpostavimo radi konradikcije da su sve početne konfiguracije univalentne

inputs	valency
00000	0
00001	?
00011	?
00111	? 0
01111	? 1
11111	1

po uslovu validnosti

<mark>Postoje 2susedne konfig.</mark> sa različitim valencama

- □ Neka je:
 - lacksquare I_0 neka 0-valentna početna konfiguracija
 - lacksquare I_1 neka 1-valentna početna konfiguracija
 - \blacksquare takve da se razlikuju samo u ulazu od p_i

σ

svi osim p_i odlučuju 0

- □ Neka je
 - $lacktriangleq I_0$ je neka 0-valentna početna konfiguracija
 - lacksquare I_1 je neka 1-valentna početna konfiguracija
 - \blacksquare takve da se razlikuju samo u ulazu od p_i

σ

svi osim *p_i* odlučuju 0

σ

 I_1 Ovo izvršenje izgleda isto kao ono gore svim procesorima osim p_i .

svi osim p_i odlučuju 0 **Kontradikcija!**

- □ Neka je $\alpha' k-1$ runda izvršenja (sa retkim otkazima = sro) koja se završava u bivalentnoj konfig
 - \square za k 1 < f 1
- \blacksquare Pokaži da postoji proširenje od jedne runde (sro) α od α' koje se završava u bivalentnoj konfig
 - \square znači α ima k < f rundi
- $\ \square$ Predpost. radi kontradikcije da je svako proširenje od jedne runde (sro) od α' univalentno

22

Održavanje bivalentnosti

Održavanje bivalentnosti

Održavanje bivalentnosti

1-val 23 runda k ispravni p_i u otkazu, ne šalje q_{i+1} otkaz. u odlučuje ka $q_1, ..., q_i$ rundi k+1; dalje nema otkaza α' samo q_{i+1} može da vidi razliku runde 1 do k-1Pošto je k-1 < f-1 i α ' je sa retkim otkazima, manje od 0-val f-1 proc. otkazuje u α'. Čak i σ ako p; otkaže u rundi k, manje od f proc. bi otkazalo. p_i u otkazu, ne šalje ispravni Tako možemo imati otkaz q_{i+1} odlučuje ka $q_1, ..., q_{j+1}$ u rundi *k*+1 bez prekoračenja našeg budžeta od f otkaza.

- Pokazali smo da postoji f 1 runda izvršenja (sa retkim otkazima), označimo je α, koja se završava u bivalentnoj konfiguraciji
- Proširenje ovog izvršenja do f rundi možda neće očuvati bivalentnost
- □ Ipak, možemo držati procesor bez eksplicitne odluke u rundi f, i time zahtevati bar još jednu rundu (f+1)

Sluč. 1: Postoji proširenje od jedne runde (sro) od α koje se završava u bivalentnoj konfig. Onda smo završili

Sluč. 2: Sva proširenje od jedne runde (sro) od α završavaju u univalentnoj konfig.

26

