TD4

Exercice 1. Convergence en probabilité et Borel-Cantelli

Soit (X_n) une suite de v.a.r. sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- **1.** Montrer que $X_n \to X$ p.s. dès lors que pour tout $\varepsilon > 0$, $\sum \mathbb{P}(|X_n X| > \varepsilon) < \infty$.
- 2. Montrer que c'est une équivalence si les $(X_n X)$ sont indépendantes.
- 3. Montrer que l'équivalence est fausse avec des (X_n-X) non indépendantes. (On pourra considérer $X_n=\frac{1}{n}Y$ où Y suit la loi de Cauchy de densité $\frac{1}{\pi(1+y^2)}$ sur \mathbb{R} .)

Exercice 2. Des exemples et contre-exemples

- **1.** Donner une suite (X_n) qui converge p.s. mais pas dans L^1 .
- **2.** Donner une suite (X_n) qui converge dans L^1 , mais pas p.s. (On pourra considérer une suite X_n de v.a. indépendantes de lois respectives $\mathcal{B}(\frac{1}{n})$.)
- **3.** Donner une suite (X_n) qui converge en probabilité, mais pas p.s.
- **4.** Donner une suite (X_n) qui converge en loi, mais pas en probabilité.
- **5.** Donner deux suites (X_n) , (Y_n) qui convergent en loi vers X, Y respectivement, mais telles que $X_n + Y_n$ ne converge pas en loi vers X + Y. Qu'en déduire sur la convergence en loi de (X_n, Y_n) ?

Exercice 3.

Soient (X_n) , (Y_n) deux suites de v.a. à valeurs dans \mathbb{R}^m , \mathbb{R}^n respectivement. On suppose que (X_n) et (Y_n) convergent respectivement vers X, Y en probabilité.

- **1.** Soit $f: \mathbb{R}^m \to \mathbb{R}^d$ continue. Montrer que $f(X_n) \to f(X)$ en probabilité.
- **2.** Montrer que (X_n, Y_n) converge en probabilité vers (X, Y).
- **3.** En déduire que $X_n + Y_n \rightarrow X + Y$ en probabilité.

Exercice 4.

Soit (X_n) une suite de v.a. de densités respectives $f_n(x) = \frac{n}{\sqrt{\pi}} \exp(-(nx-n-1)^2)$.

- **1.** Quelle est la loi de X_n ? En déduire $\mathbb{E}[X_n]$ et $\mathrm{Var}(X_n)$.
- **2.** Que peut-on dire de la convergence de la suite (X_n) ?

Exercice 5.

Soit X_n de loi géométrique $\mathcal{G}(\frac{\lambda}{n})$. Étudier la limite en loi de $\frac{X_n}{n}$.

Exercice 6.

Soit (X_n) une suite de v.a. i.i.d. de loi $\mathcal{E}(\lambda)$. On pose

$$Y_n = \frac{n}{\sum_{k=1}^n X_k} \ .$$

- **1.** Quelle est la limite de (Y_n) ?
- **2.** Montrer que $\sqrt{n}(Y_n \lambda) \to \mathcal{N}(0, \lambda)$ en loi.

Exercice 7.

Soit (U_n) une suite de v.a. i.i.d. de loi uniforme sur [0,1].

- **1.** Montrer que $S_n = \frac{1}{n} \sum_{k=1}^n \log(U_k)$ converge p.s. et donner sa limite.
- **2.** Que peut-on en déduire pour $X_n = \left(\prod_{k=1}^n U_k\right)^{\frac{\alpha}{n}}$ où $\alpha \in \mathbb{R}$?
- 3. Montrer que $Z_n=e^{\alpha\sqrt{n}}\left(\prod_{k=1}^n U_k\right)^{\frac{\alpha}{\sqrt{n}}}$ converge en loi et donner sa limite.

Exercice 8.

Soit $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ et \mathcal{F} une sous-tribu.

On définit la variance conditionnelle de X sachant \mathcal{F} par $Var(X|\mathcal{F}) = \mathbb{E}[(X - \mathbb{E}[X|\mathcal{F}])^2]$.

1. Montrer que

$$Var(X|\mathcal{F}) = \mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F}])^2$$
.

- **2.** Comparer à la variance de $\mathbb{E}[X|\mathcal{F}]$.
- 3. En déduire que

$$Var(X) = \mathbb{E}[Var(X|\mathcal{F})] + Var(\mathbb{E}[X|\mathcal{F}]).$$

Exercice 9.

Soit (X_n) une suite de v.a. i.i.d. intégrables, et $S_n = X_1 + \ldots + X_n$. Notons

$$\mathcal{F}_n = \sigma(S_n, S_{n+1}, \ldots)$$
.

- **1.** Expliquer pourquoi $\mathcal{F}_n = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$. Est-ce que $\mathcal{F}_n = \sigma(X_n, X_{n+1}, \ldots)$?
- **2.** Montrer que $\mathbb{E}[X_1|\mathcal{F}_n] = \mathbb{E}[X_1|S_n]$.
- **3.** Montrer que $\mathbb{E}[X_1|S_n] = \ldots = \mathbb{E}[X_n|S_n]$.
- **4.** En déduire que $\mathbb{E}[X_1|S_n] = \frac{S_n}{n}$.

Exercice 10.

Soient a, b > 0 et (X, Y) une v.a. à valeurs dans $\mathbb{N} \times \mathbb{R}_+$ dont la loi est caractérisée par

$$\forall n \in \mathbb{N}, \quad \forall t > 0, \quad \mathbb{P}(X = n, Y \leq t) = b \int_0^t \frac{(ay)^n}{n!} e^{-(a+b)y} dy$$
.

- **1.** Soit $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ mesurable. Calculer $\mathbb{E}[\psi(Y)|X]$.
- **2.** Calculer $\mathbb{E}[\frac{Y}{X+1}]$.
- **3.** Calculer pour tout $n \in \mathbb{N}$, $\mathbb{P}(X = n|Y)$ puis $\mathbb{E}[X|Y]$.

Exercice 11.

Soient X, Y des v.a.r. telles que (X, Y) admette une densité sur \mathbb{R}^2 . On suppose que Y suit la loi Gamma $G(2, \lambda)$ et que la loi conditionnelle de X sachant Y est la loi uniforme sur [0, Y].

Montrer que X et Y - X sont des v.a. indépendantes de loi $\mathcal{E}(\lambda)$.