<u>#10.</u>

- a) $R \rightarrow P$
- b) $Q \leftrightarrow (R \lor \sim P)$
- c) \sim (Q \wedge R)

#11. $(p \lor \sim q) \lor (\sim p \land \sim q)$

- $(^p \lor q) \lor (^p \land ^q)$ Double Negative Law
- $(p \lor q) \lor \sim (p \lor q)$ De Morgan's Laws
- (~p∨q)∨~q Associative
- ~p∨(q∨~q) Negation Law
- ~p v T Domination Law

<u>#12.</u>

р	q	r	$p \rightarrow q$	$(p \rightarrow q) \vee r$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	Т	Т
F	F	Т	Т	T
F	F	F	Т	Т

р	q	r	p ∧ ~q	\sim ((p $\land \sim$ q) $\land \sim$ r)
Т	Т	Т	F	T
Т	Т	F	F	Т
Т	F	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	Т	T
F	Т	F	Т	T
F	F	Т	Т	T
F	F	F	Т	T

Yes they are equivalent