TOPMed Analysis Pipeline on the Cloud

Analysis Pipeline on Google Cloud Platform (GCP)

Presentation

- ☐ Analysis Pipeline background
 - Design
 - Delivery
- Cluster in the cloud
 - Requirements
 - Creating a cluster in the cloud
- Analysis Pipeline on GCP
 - Preliminaries
 - Analysis Pipeline support of Slurm on GCP
 - Issues encountered
 - Benchmarks, tests, and results
 - Closing remarks

Analysis Pipeline Background - Design Objectives

- ☐ Support multiple workflows
- Extensible framework supporting multiple clusters for parallelization
 - Local UW Cluster
 - Cloud vendors
- ☐ Pipeline execution examples:

```
# single variant pipeline on local cluster
$ analysis pipeline/assoc.py single assoc single.config
```

```
# single variant pipeline on aws batch cluster
$ analysis pipeline/assoc.py single assoc single.config --cluster type AWS Batc
```

```
# single variant pipeline on gcp slurm
$ analysis pipeline/assoc.py single assoc single.config --cluster type Slurm Cluster
```

Analysis Pipeline Background - Design

- ☐ Two major components
 - Workflow system (Python code)
 - Analyses (R code)

Analysis Pipeline Background - Design (cont)

- ☐ Workflow system (Python code)
 - Provides multi-step analyses' workflows
 - computing GRM
 - fitting a null model
 - association tests (single, aggregate, window)
 - Framework to parallelize workflows on local and cloud clusters
 - ☐ Base class providing attributes and methods common to all clusters
 - Unique cluster classes derived from the base class and providing cluster specific attributes and methods

Analysis Pipeline Background - Design (cont)

- ☐ Analyses (R code)
 - Provides internal R code to execute each analysis
 - Requires various R packages (mostly via Bioconductor) in executing analyses
 - Executed on the cluster

Analysis Pipeline Background - Delivery

- ☐ Github
 - Pipeline code repository
 - Python workflows
 - ☐ Pipeline R code
 - Installation scripts
 - Required software tools not in repository
 - **□** R
 - SAMtools
 - □ PLINK
 - ☐ KING
 - LocusZoom
- Docker images containing
 - Analysis Pipeline (based on github branches)
 - Required software tools

Clusters in the Cloud

- ☐ Cluster requirements
- ☐ Cloud requirements
- ☐ Creating a cluster in the cloud

Clusters in the Cloud - Cluster Requirements

- A shared file system to share data on the cluster master and compute nodes
- Support of docker
- Heterogeneous compute environment (based on cores and memory)
- Optimized job scheduling based on a job's required max memory and number of cores
- ☐ Support dependent job synchronization
- ☐ Support array jobs

Clusters in the Cloud - Cloud Requirements

- ☐ Discount pricing options (e.g., Spot pricing or Preemptible VMs)
- Autoscaling
- Creating custom compute configurations
 - ☐ Preloading docker images
 - ☐ Access to shared file system

Clusters in the Cloud - Creating a Cluster

- ☐ Create and configure the cloud environment
 - ☐ IAM accounts
 - Permissions
 - □ Security
 - VPC (networks)
 - ☐ Shared data means (NFS or other)

Clusters in the Cloud - Creating a Cluster (cont)

- ☐ Install and configure the cluster
 - ☐ Controller/Login VM instance(s)
 - Queues ("partitions" in Slurm)
 - ☐ Resource (memory, cpu) settings
 - ☐ Shared storage
 - ☐ Compute node VM images
 - Customization installations
 - Python and appropriate packages
 - Docker
 - ☐ Preload pipeline docker image

Analysis Pipeline on GCP

- Preliminaries
- Create GCP Slurm cluster
- Extend Analysis Pipeline for Slurm
- Issues encountered
- ☐ Benchmarks and tests
- ☐ Concluding Remarks

Analysis Pipeline on GCP - Preliminaries

- Review GCP technology and architecture
- ☐ Integrate UW accounts/G Suite into the NIH STRIDES account
- ☐ Learn Slurm technology especially juxtaposed to SGE
- ☐ Install Slurm on our local cluster
- Understand impact of specific Slurm features on GCP
 - Support for multiple clusters
 - Multiple queues per cluster
 - One machine type per queue (partition)
- ☐ Established naming convention of clusters and queues

Analysis Pipeline on GCP - Create Slurm Cluster

- Create the GCP environment
- ☐ Deploy and configure various Slurm clusters
 - I/O Performance
 - Self-deployed NFS shared data
 - ☐ Googles Filestore
 - Qumulo File system
 - Cost Optimization
 - ☐ GCS Fuse / Google Storage
 - Standard (Non-Preemptible) VMs
 - ☐ Preemptible VMs

Analysis Pipeline on GCP - Extend Analysis Pipeline

- Python code to support Slurm
 - Define a Python class (Slurm_Cluster) derived in the cluster class hierarchy implementing the cluster specific command to submit a job
 - Provide a Slurm configuration file to dynamically specify submit options
 - Provide a Slurm partitions configuration file

Analysis Pipeline on GCP - Issues Encountered

- ☐ Early adopters of Slurm on GCP
- Docker performance
- Mounting NFS problems
- Operating system updates during job executions (causing jobs to fail)
- Lack of GCP resource quotas
- Dependent jobs not starting for job arrays
- ☐ Cannot run multiple jobs on the same compute node (when there are sufficient resources on the compute node)
- ☐ Idiosyncrasies submitting a Python script to Slurm (script copied to /var/...)

Note: all of these issues were resolved with bug fixes or work-arounds

Analysis Pipeline on GCP - Benchmarks and Tests

- ☐ Compared performance for different shared data systems (Slurm only)
 - Self-deployed NFS
 - Filestore (Google's managed NFS service)
 - Qumulo File System (Third-party NFS service)
 - GCS Fuse / Google Storage (file system access to object stored data)
- ☐ Compared performance and cost of standard vs. preemptible VMs
- Compared performance association analyses
 - UW
 - AWS Batch
 - Slurm

Analysis Pipeline on GCP - Benchmarks Results

- Compared performance for different shared data systems (Slurm only)
 - No performance difference between self-deployed NFS and:
 - Google's Filestore
 - Qumulo File System
 - For read-only GCS Fuse / Google Storage and self-deployed NFS performance may have been slightly faster on GCS Fuse (see next slide)
 - Read-write GCS Fuse / Google Storage was not workable for saving results of analysis

Analysis Pipeline on GCP - Benchmark Results (Fuse/NFS)

Analysis Pipeline on GCP - Benchmark Results: Preemptible vs Non-preemptible

		Elapse Time		
Analysis	Data	Condition	(hr)	Cost
Association - Single	Freeze 8	Non-Preemptible	5	\$80
Association - Single	Freeze 8	Preemptible	7.5	\$23
Association -				
Aggregate	Freeze 8	Non-Preemptible	7.4	\$240
Association -				
Aggregate	Freeze 8	Preemptible	16.6	\$63

Note: Cost is for compute engine only and does not include NFS storage cost

Analysis Pipeline on GCP - Benchmarks Results for Different Clusters

		UW Cluster		AWS Batch		Slurm	
Analysis	Data	Elapse Time (day:hr:min)	Cost	Elapse Time (hr:min)	Cost	Elapse Time (hr:min)	Cost
Assoc single sparse	Freeze 8	21:24	n/a	4:43	\$169.63	4:55	\$196.65
Assoc smmat sparse	Freeze 8	1:10:43	n/a	6:00	\$287.88	6:53	\$212.19
Assoc smmat nocoding sparse	Freeze 8	5:10:00	n/a	7:00	\$975.00	7:45	\$2,084.00
Assoc smmat var6 sparse	Freeze 8	not done	not done	not done	not done	6:45	\$3,238.00

Closing Remarks

- Porting Analysis Pipeline to GCP went very well and was relatively easy
- □ Slurm is a very good job scheduler with more useful features than SGE
 - ☐ Various options to specify how dependents jobs should proceed if parent job fails
 - ☐ More robust way to specify job arrays (e.g., 1-4, 9, 11)
- GCS Fuse / Google Storage is a cost effective alternative to NFS in sharing read-only data (but we only had < 400GB of read-only data)
- Our self-deployed NFS performs as well as other similar Google services (that are more expensive)
- Access to Google support was critical (\$)

Questions