第5章 平面向量及其应用

§ 5.1 平面向量基本概念

5.1.1 相关概念

学习目标

- 1、理解平面向量的相关概念
- 2、掌握平面向量的加、减法法则
- 3、掌握平面向量的数量积,并能进行基本的运算

1. 向量的有关概念

(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的长度或模。初期可这样理解:

向量是指有长度和方向的线段,线段的长度叫向量的模

(2)零向量:长度等于0的向量,其方向是任意的.

(3)单位向量:长度等于1个单位的向量.

(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:零向量与任一向量平行.

(5)相等向量:长度相等且方向相同的向量.

(6)相反向量:长度相等且方向相反的向量.

(7) 两个向量的夹角: 已知两个非零向量 \vec{a} , 作 $\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$,则 $\angle AOB = \theta(0^\circ \le \theta \le 180^\circ)$ 叫做向量 \vec{a} 与 \vec{b} 的夹角,当 $\theta = 0^\circ$ 时, \vec{a} 与 \vec{b} <u>同向</u>;当 $\theta = 180^\circ$ 时, \vec{a} 与 \vec{b} <u>反向</u>;如果 \vec{a} 与 \vec{b} 的夹角是 90° ,我们说 \vec{a} 与 \vec{b} 垂直,记作 \vec{a} \bot \vec{b}

2. 向量的加法法则

向量运算	定 义	法则(或几何意义)	运算律
加法	求两个向量的和	a+b a 三角形法则 b a+b a 平行四边形法则	(1) 交换律: a+b=b+a . (2)结合律: (a+b) + c = a + (b + c)

 或法
 【注意】减法可

 以转化为加法
 <u>三角形</u>法则

 a-b

 a-b=a+(-b)

3.向量的数乘运算及其几何意义

(1)定义: 实数 λ 与向量 \vec{a} 的积是一个向量,这种运算叫向量的数乘,记作 $\lambda \vec{a}$,它的长度与方向规定如下:

- $(1) |\lambda \vec{a}| = |\lambda| |\vec{a}|;$
- ② $\lambda > 0$ 时, $\lambda \vec{a} = \vec{a}$ 方向相同; $\lambda < 0$ 时, $\lambda \vec{a} = \vec{a}$ 方向相反; 当 $\lambda = 0$ 时, $\lambda \vec{a} = \vec{0}$

(2)运算律: $\partial \lambda, \mu$ 是两个实数,则

① $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$; ② $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$; ③ $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

4. 共线向量定理

向量 $\vec{a}(\vec{a} \neq \vec{0})$ 与 \vec{b} 共线的充要条件是存在唯一一个实数 λ , 使得 $\vec{b} = \lambda \vec{a}$

一般地,首尾依次相连的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.

注意: 向量共线的充要条件中规定 " $\vec{a} \neq \vec{0}$ ", 否则 λ 可能不存在, 也可能有无数个.

5. 关于三点共线问题

设 A,B,C,O 为空间中 4 个不同的点,且该 4 个点不同时在一条直线上,如图,则 A,B,C 三点共线 \Leftrightarrow 存在唯一的实数 λ ,使得 $\overrightarrow{OB} = \lambda \overrightarrow{OA} + (1-\lambda) \overrightarrow{OC}$ 。

注意: 也可描述成: 存在实数 λ, μ ,使得 $\overrightarrow{OB} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OC}$,其中 $\lambda + \mu = 1$,反之亦然。

6. 两个向量的数量积

已知两个非零向量 \vec{a} 与 \vec{b} ,它们的夹角为 θ ,则数量 $|\vec{a}| \cdot |\vec{b}| \cos \theta$ 叫做 \vec{a} 与 \vec{b} 的数量积(或内积),记作 $\vec{a} \cdot \vec{b}$,即 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \theta$,规定零向量与任一向量的数量积为 0,即 $\vec{0} \cdot \vec{a} = 0$

7. 向量数量积的几何意义

数量积 $\vec{a} \cdot \vec{b}$ 等于 \vec{a} 的长度 $|\vec{a}| = \vec{b}$ 在 \vec{a} 上的**投影** $|\vec{b}| \cos \theta$ 之积

8. 向量数量积的性质

设 \vec{a} 、 \vec{b} 都是非零向量, θ 为 \vec{a} 与 \vec{b} 的夹角.则

- (1) $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$;
- (2)当 \vec{a} 与 \vec{b} 同向时, $\vec{a}\cdot\vec{b}$ =| \vec{a} |·| \vec{b} |;当 \vec{a} 与 \vec{b} 反向时, $\vec{a}\cdot\vec{b}$ =-| \vec{a} |·| \vec{b} |,特别的, $\vec{a}\cdot\vec{a}$ =| \vec{a} | 2 或者| \vec{a} |= $\sqrt{\vec{a}\cdot\vec{a}}$;

(3)
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|};$$
 (4) $\vec{a} \cdot \vec{b} \le |\vec{a}| \cdot |\vec{b}|$

9. 向量数量积的运算律

(1) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$; (2) $\lambda \vec{a} \cdot \vec{b} = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b})$; (3) $(\vec{a} + \vec{b})\vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$.

10.投影向量

对于向量设 \vec{a} 、 \vec{b} (\vec{b} 为非零向量),我们称向量 $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b}$ 为 \vec{a} 在 \vec{b} 上的投影向量。

5.1.2 典型例题

例1. 判断下列命题, 哪些是正确的?

- (1) $\overrightarrow{AB} + \overrightarrow{BA} = 0$ (2) $\overrightarrow{AB} \overrightarrow{AC} = \overrightarrow{BC}$ (3) $0 \cdot \overrightarrow{AB} = 0$
- (4) 对任意向量 \vec{a} , \vec{b} ,都有 $|\vec{a}+\vec{b}| \le |\vec{a}|+|\vec{b}|$
- (5) 对任意向量 \vec{a} , \vec{b} , 都有 $|\vec{a}-\vec{b}| \le |\vec{a}| |\vec{b}|$

【解析】(1) 错,应为 \overrightarrow{AB} + \overrightarrow{BA} = $\overrightarrow{0}$

- (2) 错,应为 \overrightarrow{CB}
- (3) 错,应为 $0 \cdot \overrightarrow{AB} = \overrightarrow{0}$
- (4) 对,三角不等式。"三角形"两边之和大于第三边;
- (5) 错,三角不等式。"三角形"两边之差小于第三边;

例 2.下列命题中正确的是().

A. \vec{a} 与 \vec{b} 共线, \vec{b} 与 \vec{c} 共线,则 \vec{a} 与 \vec{c} 也共线

- B. 任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点
- C. 向量 \vec{a} 与 \vec{b} 不共线,则 \vec{a} 与 \vec{b} 都是非零向量
- D. 有相同起点的两个非零向量不平行

【解析】

- (A) 错,比如 $\vec{b} = \vec{0}$,由于零向量与任一向量都共线
- (B) 两个相等的非零向量可以在同一直线上,而此时就构不成四边形,所以B不正确;
- (C) 对。因为, 零向量与任何向量共线。
- (D) 显然错。

例 3. 给出下列命题:

- ① \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} , \overrightarrow{AB} = \overrightarrow{DC} 是四边形 \overrightarrow{ABCD} 为平行四边形的充要条件;
- ② 若 $\vec{a} = \vec{b}, \vec{b} = \vec{c}$,则 $\vec{a} = \vec{c}$;
- ③ $\vec{a} = \vec{b}$ 的充要条件是 $|\vec{a}| = |\vec{b}|$ 且 $\vec{a}/|\vec{b}|$;
- ④ 若 \vec{a} 与 \vec{b} 均为非零向量,则 \vec{a} + \vec{b} |与 \vec{a} |+ $|\vec{b}$ |一定相等.

其中正确命题的序号是_____.

【解析】 ①②正确, ③错,比如 $\vec{a} = -\vec{b}$ ④错,比如 $\vec{a} = -\vec{b}$

例 4 (1). 已知 \vec{a} , \vec{b} 是两个不共线的向量, $\overrightarrow{AB} = \vec{a} + 5\vec{b}$, $\overrightarrow{BC} = -2\vec{a} + 8\vec{b}$, $\overrightarrow{CD} = 3(\vec{a} - \vec{b})$,则

(A) A,B,D 三点共线

(B) *A*, *B*, *C* 三点共线

(C) *B,C,D* 三点共线

- (D) *A,C,D* 三点共线
- (2) 设 \vec{a} 与 \vec{b} 是两个不共线向量,且向量 $\vec{a}+\lambda\vec{b}$ 与 $2\vec{a}-\vec{b}$ 共线,则 $\lambda=$ _____.

【解析】(1) 易知 \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD} = \overrightarrow{a} +5 \overrightarrow{b} = \overrightarrow{AB} , 即 \overrightarrow{BD} =- \overrightarrow{BA} , 故 A, B, D 三点共线, 选

(2) 由题意知:存在实数k,使得 $\vec{a}+\lambda\vec{b}=k(2\vec{a}-\vec{b})$,所以有 $\begin{cases} 1=2k\\ \lambda=-k \end{cases}$,解得

$$k=\frac{1}{2}, \lambda=-\frac{1}{2}$$

 A_{\circ}

例 5.已知 \vec{a} , \vec{b} 是不共线的向量, $\vec{AB} = \lambda \vec{a} + \vec{b}$, $\vec{AC} = \vec{a} + \mu \vec{b} (\lambda, \mu \in R)$,那么A,B,C 三点共 线的充要条件是().

A.
$$\lambda + \mu = 2$$
 B. $\lambda - \mu = 1$ C. $\lambda \mu = -1$ D. $\lambda \mu = 1$

B.
$$\lambda - \mu = 1$$

C.
$$\lambda \mu = -1$$

D.
$$\lambda \mu = 1$$

【解析】 由 A, B, C 三点共线 \Leftrightarrow 存在实数 t , 使得 $\overrightarrow{AB} = t\overrightarrow{AC}$,

$$\mathbb{P}(\vec{\lambda a} + \vec{b} = t(\vec{a} + \mu \vec{b}) = t\vec{a} + t\mu \vec{b}, \quad \mathbb{P}(\lambda - t)\vec{a} + (1 - t\mu)\vec{b} = \vec{0}$$

因
$$\vec{a}$$
, \vec{b} 不共线,故 $\begin{cases} \lambda - t = 0 \\ 1 - t\mu = 0 \end{cases}$,所以 $\lambda \mu = 1$,选 D.

例 6 (1) (全国 I) 在 $\triangle ABC$ 中,AD为 BC边上的中线,E为 AD 的中点,则 \overrightarrow{EB} =

A.
$$\frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$$

B.
$$\frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{AC}$$

C.
$$\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$$

C.
$$\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$$
 D. $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$

(2) 在 $\triangle ABC$ 中,M 是 BC 的中点, $|\overrightarrow{AM}|=1$, $\overrightarrow{AP}=2\overrightarrow{PM}$,则 $\overrightarrow{PA}\cdot(\overrightarrow{PB}+\overrightarrow{PC})=$ ______.

【解析】(1) 由题意知:

(2)
$$\forall \exists \exists$$
, $\overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC}) = 2\overrightarrow{PA} \cdot \overrightarrow{PM} = 2 \times (-\frac{2}{3}\overrightarrow{AM}) \cdot (\frac{1}{3}\overrightarrow{AM}) = -\frac{4}{9}\overrightarrow{AM}^2 = -\frac{4}{9}$.

 \mathbf{M} 7.若 $\odot O$ 的弦 AB = 2 , 求 $\overline{AO} \cdot \overline{AB}$ 的值。

【解析】如图,设 $M \in AB$ 的中点,则 $OM \perp AB$,于是 $\overrightarrow{OM} \cdot \overrightarrow{AB} = 0$,

所以,
$$\overrightarrow{AO} \bullet \overrightarrow{AB} = \left(\overrightarrow{AM} + \overrightarrow{MO}\right) \bullet \overrightarrow{AB} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{MO}\right) \bullet \overrightarrow{AB} = \frac{1}{2} \overrightarrow{AB}^2 + \overrightarrow{MO} \bullet \overrightarrow{AB} = 2$$

【法二】
$$\overrightarrow{AO} \cdot \overrightarrow{AB} = |\overrightarrow{AO}| \cdot |\overrightarrow{AB}| \cos \angle A = \frac{1}{2} |\overrightarrow{AB}|^2 = \frac{1}{2} \times 2^2 = 2$$
。

例 8.若 $\triangle ABC$ 是半径为 1 的圆 O 的内接三角形,且 $\overrightarrow{3OA} + 4\overrightarrow{OB} + 5\overrightarrow{OC} = \vec{0}$,求 $\overrightarrow{OC} \cdot \overrightarrow{AB}$ 的值。

【解析】变形得 $3\overrightarrow{OA} + 4\overrightarrow{OB} = -5\overrightarrow{OC}$,平方得 $9\overrightarrow{OA}^2 + 24\overrightarrow{OA} \cdot \overrightarrow{OB} + 16\overrightarrow{OB}^2 = 25\overrightarrow{OC}^2$;圆O的半径为 1,则 $|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| = 1$,故 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$,

所以
$$\overrightarrow{OC} \bullet \overrightarrow{AB} = -\frac{1}{5} \Big(3\overrightarrow{OA} + 4\overrightarrow{OB} \Big) \Big(\overrightarrow{OB} - \overrightarrow{OA} \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA}^2 - \overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB}^2 \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB} + 4\overrightarrow{OB} \Big) = -\frac{1}{5} \Big(-3\overrightarrow{OA} \bullet \overrightarrow{OB} + 4\overrightarrow{OB} +$$

【法二】 易知
$$|AB| = \sqrt{2}$$
 , $\overrightarrow{OC} = -\frac{3}{5}\overrightarrow{OA} - \frac{4}{5}\overrightarrow{OB} = \frac{3}{5}\overrightarrow{AO} + \frac{4}{5}\overrightarrow{BO}$,

故,
$$\overrightarrow{OC} \cdot \overrightarrow{AB} = \frac{3}{5} \overrightarrow{AO} \cdot \overrightarrow{AB} - \frac{4}{5} \overrightarrow{BO} \cdot \overrightarrow{BA}$$

$$= \frac{3}{5} |\overrightarrow{AO}| \cdot |\overrightarrow{AB}| \cos \angle OAB - \frac{4}{5} |\overrightarrow{BO}| \cdot |\overrightarrow{BA}| \cos \angle OBA$$

$$= \frac{3}{5} \cdot \frac{1}{2} |\overrightarrow{AB}|^2 - \frac{4}{5} \cdot \frac{1}{2} |\overrightarrow{BA}|^2 = \frac{6}{10} - \frac{8}{10} = -\frac{1}{5}$$

例 9.在四边形 ABCD 中,设 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, $\overrightarrow{DA} = \overrightarrow{d}$, 若 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{d} = \overrightarrow{d} \cdot \overrightarrow{a}$, 判断四边形形状。

【解析】: 由题意 $\vec{a} + \vec{b} + \vec{c} + \vec{d} = \vec{0}$,则 $\vec{a} + \vec{b} = -\vec{c} - \vec{d}$,平方得

$$\vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 = \vec{c}^2 + 2\vec{c} \cdot \vec{d} + \vec{d}^2$$
, $\text{RP} \vec{a}^2 + \vec{b}^2 = \vec{c}^2 + \vec{d}^2$,

同理得
$$\vec{a}^2 + \vec{c}^2 = \vec{b}^2 + \vec{d}^2$$
,

代换得
$$\vec{a}^2 = \vec{d}^2$$
即 $|\vec{a}| = |\vec{d}|$,

同理得 $|\vec{a}| = |\vec{c}| = |\vec{b}| = |\vec{d}|$, 即四边形是菱形;

四边形对角线 $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{BD} = \overrightarrow{b} + \overrightarrow{c}$,则

$$\overrightarrow{AC}^2 = \overrightarrow{a}^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b^2}, \overrightarrow{BD}^2 = \overrightarrow{b}^2 + 2\overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c}^2$$
,故 $\overrightarrow{AC}^2 = \overrightarrow{BD}^2$,所以四边形是矩形;
综上,四边形是正方形。

例 10 (1) .如图一:在
$$\triangle ABC$$
中,若 $AB = AC = 3$, $\cos \angle BAC = \frac{1}{2}$, $\overrightarrow{DC} = 2\overrightarrow{BD}$,则 $\overrightarrow{AD} \cdot \overrightarrow{BC} =$

(2) 如图二,在菱形 ABCD中,若 AC=4,则 $\overrightarrow{CA} \cdot \overrightarrow{AB} = _____$.

图二

【解析】(1):
$$\overrightarrow{AD} \cdot \overrightarrow{BC} = (\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC})(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AC}^2 - \frac{2}{3}\overrightarrow{AB}^2 + \frac{1}{3}\overrightarrow{AB} \cdot \overrightarrow{AC}$$
$$= -3 + \frac{1}{3} \times |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cos \angle BAC = -3 + \frac{3}{2} = \frac{3}{2}$$

(2) 易知, $\angle AOB = 90^{\circ}$,

$$th \overrightarrow{CA} \bullet \overrightarrow{AB} = -\overrightarrow{AC} \bullet \overrightarrow{AB} = -|\overrightarrow{AC}| |\overrightarrow{AB}| \cos \angle BAC = -|\overrightarrow{AC}| |AO| = -\frac{1}{2} |\overrightarrow{AC}|^2 = -8$$

注意: $|\overrightarrow{AB}|\cos\angle BAC$ 事实上就是 $|\overrightarrow{AB}|$ 在 $|\overrightarrow{AC}|$ 上的投影,这里等于|AO|(要注意,投影也可能是负的)

例 11 (1) 已知 A,M,B 三点共线, $\overrightarrow{mOA}-3\overrightarrow{OM}+\overrightarrow{OB}=\overrightarrow{0}$,若 $\overrightarrow{AM}=t\overrightarrow{BA}$,则实数t 的值为_____

(2) 平面上的向量 \overrightarrow{PA} , \overrightarrow{PB} 满足 $\overrightarrow{PA}^2 + \overrightarrow{PB}^2 = 4$,且 $\overrightarrow{PA} \cdot \overrightarrow{PB} = 0$,若向量 $\overrightarrow{PC} = \frac{1}{3}\overrightarrow{PA} + \frac{2}{3}\overrightarrow{PB}$,则 $|\overrightarrow{PC}|$ 的最大值为_____

【解析】(1)由题设知: $\overrightarrow{OM} = \frac{m}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB}$, 因 A, M, B =点共线, 故 $\frac{m}{3} + \frac{1}{3} = 1$,解得 m = 2,

从而知M为线段AB上靠近A的一个三等分点,故 $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} = -\frac{1}{3}\overrightarrow{BA}$,从而 $t = -\frac{1}{3}$

(2)
$$\overrightarrow{PC} = \frac{1}{3}\overrightarrow{PA} + \frac{2}{3}\overrightarrow{PB} \Rightarrow |\overrightarrow{PC}|^2 = \frac{1}{9}|\overrightarrow{PA}|^2 + \frac{4}{9}|\overrightarrow{PB}|^2 = \frac{1}{9}(4-|\overrightarrow{PB}|^2) + \frac{4}{9}|\overrightarrow{PB}|^2$$
$$= \frac{4}{9} + \frac{3}{9}|\overrightarrow{PB}|^2 \le \frac{16}{9}$$

故 $|\overrightarrow{PC}| \le \frac{4}{3}$; 易知等号可取,故 $|\overrightarrow{PC}|$ 的最大值为 $\frac{4}{3}$ 。

例 12. 如非零向量
$$\overrightarrow{AB}$$
与 \overrightarrow{AC} 满足: $(\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}) \cdot \overrightarrow{BC} = 0$,且 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \frac{1}{2}$,则三角形

ABC 为 ()

A.三边均不相等的三角形

B.直角三角形

C.底边和腰不相等的等腰三角形

D.等边三角形

【解析】显然 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$, $\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 分别是 \overrightarrow{AB} , \overrightarrow{AC} 上的两个单位向量,

如图,不妨令
$$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \overrightarrow{AE}, \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \overrightarrow{AF}, \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{AG},$$

易知AG为 $\angle A$ 的平分线。

由 $\overrightarrow{AG} \cdot \overrightarrow{BC} = 0$ 知 $\overrightarrow{AG} \perp \overrightarrow{BC}$,故 $\triangle ABC$ 为等腰三角形,

由
$$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \cdot \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \frac{1}{2}$$
知 $\angle A = 60^{\circ}$ 。故 $\triangle ABC$ 为等边三角形,选 D.

例 13.已知 O, N, P 在 $\triangle ABC$ 所在平面内,满足 $|\overrightarrow{OA}| = \overrightarrow{OB}| = \overrightarrow{OC}|, \overrightarrow{NA} + \overrightarrow{NB} + \overrightarrow{NC} = \overrightarrow{0}$,

且
$$\overrightarrow{PA} \cdot \overrightarrow{PB} = \overrightarrow{PB} \cdot \overrightarrow{PC} = \overrightarrow{PC} \cdot \overrightarrow{PA}$$
 , 则 O, N, P 依次是 $\triangle ABC$ 的 (

- A. 重心、外心、垂心
- B. 重心、外心、内心
- C. 外心、重心、垂心
- D. 外心、重心、内心

【解析】: .由 |OA| = OB = OC | 知: $O 为 \triangle ABC$ 的外心;

由 $\overrightarrow{NA} + \overrightarrow{NB} + \overrightarrow{NC} = \overrightarrow{0}$ 知: $N 为 \triangle ABC$ 的重心;

 $\pm \overrightarrow{PA} \cdot \overrightarrow{PB} = \overrightarrow{PB} \cdot \overrightarrow{PC} \Longrightarrow \overrightarrow{PB} (\overrightarrow{PA} - \overrightarrow{PC}) = 0 \Longrightarrow \overrightarrow{PB} \cdot \overrightarrow{CA} = 0,$

同理: $\overrightarrow{PA} \cdot \overrightarrow{BC} = 0$, $\overrightarrow{PC} \cdot \overrightarrow{AB} = 0$, 故, $P \rightarrow \triangle ABC$ 的垂心;

综上,选C。

例 14.用向量法证明:直径所对的圆周角是直角。

【证明】:如图,点P是 $\odot O$ 上一点,连接OP,设 $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OP} = \overrightarrow{b}$,则 $\overrightarrow{OB} = -\overrightarrow{a}$,且 $\overrightarrow{PA} = \overrightarrow{OA} - \overrightarrow{OP} = \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = -\overrightarrow{a} - \overrightarrow{b}$,

所以 $\overrightarrow{PA} \cdot \overrightarrow{PB} = |\vec{b}|^2 - |\vec{a}|^2 = 0$,因此 $\overrightarrow{PA} \perp \overrightarrow{PB}$,即 $\angle APB = 90^\circ$ 。

例 15. $\triangle ABC$ 的三条边分别为 a,b,c ,边 BC,CA,AB 上的中线分别记为 m_a,m_b,m_c ,利用余弦定理证明:

$$m_a = \frac{1}{2} \sqrt{2(b^2 + c^2) - a^2}, \ m_b = \frac{1}{2} \sqrt{2(a^2 + c^2) - b^2}, \ m_c = \frac{1}{2} \sqrt{2(a^2 + b^2) - c^2}$$

【证明】: 由余弦定理的推论得: $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$,

所以
$$m_a^2 = (\frac{a}{2})^2 + c^2 - 2 \times \frac{a}{2} \times c \times \cos B$$

$$= (\frac{a}{2})^2 + c^2 - 2 \times \frac{a}{2} \times c \times \frac{a^2 + c^2 - b^2}{2ac} = (\frac{1}{2})^2 [2(b^2 + c^2) - a^2],$$
故, $m_a = \frac{1}{2} \sqrt{2(b^2 + c^2) - a^2}$,

同理,
$$m_b = \frac{1}{2}\sqrt{2(a^2+c^2)-b^2}$$
, $m_c = \frac{1}{2}\sqrt{2(a^2+b^2)-c^2}$

例 16.已知 $\triangle ABC$ 的三个角 A,B,C 的对边分别为 a,b,c ,设 $p=\frac{1}{2}(a+b+c)$,求证:

(1)
$$\triangle ABC$$
的面积 $S = \sqrt{p(p-a)(p-b)(p-c)}$;

(2) 若
$$r$$
为三角形的内切圆半径,则 $r=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$;

(3) 把
$$BC$$
, CA , AB 上的高分别记为 h_a , h_b , h_c ,则 $h_a = \frac{2}{a} \sqrt{p(p-a)(p-b)(p-c)}$,

$$h_b = \frac{2}{b} \sqrt{p(p-a)(p-b)(p-c)}, \quad h_c = \frac{2}{c} \sqrt{p(p-a)(p-b)(p-c)}$$

【证明】(1) 由余弦定理的推论得: $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$,

所以
$$\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - (\frac{a^2 + c^2 - b^2}{2ac})^2}$$

所以,
$$S = \frac{1}{2}ac\sin B = \frac{1}{2}ac\sqrt{1 - (\frac{a^2 + c^2 - b^2}{2ac})^2}$$

$$= \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$$

$$= \frac{1}{4}\sqrt{2p(2p-2c)(2p-2b)(2p-2a)}$$

$$= \sqrt{p(p-c)(p-b)(p-a)}$$

(2) 由于
$$S = \frac{1}{2}r(a+b+c) = \frac{1}{2}r \times 2p = pr$$
,所以

$$r = \frac{S}{p} = \frac{\sqrt{p(p-a)(p-b)(p-c)}}{p} = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

(3) 由于
$$S = \frac{1}{2}ah_a$$
,所以 $h_a = \frac{2S}{a} = \frac{2}{a}\sqrt{p(p-a)(p-b)(p-c)}$,
同理, $h_b = \frac{2}{b}\sqrt{p(p-a)(p-b)(p-c)}$, $h_c = \frac{2}{c}\sqrt{p(p-a)(p-b)(p-c)}$
例 17. 非零向量 \vec{a} 、 \vec{b} 满足 $|\vec{b}| = 2$,且对 $\forall \lambda > 0$,且 $|\vec{a} - \lambda \vec{b}| \ge |\vec{a} - \vec{b}|$ 恒成立,则 $\vec{a} \cdot \vec{b} = ($
A、 4 B、 $2\sqrt{3}$ C、 2 D、 $\sqrt{3}$

【解析】 $|\vec{a} - \lambda \vec{b}| \ge |\vec{a} - \vec{b}| \Rightarrow \vec{a}^2 - 2\vec{a}\vec{b}\lambda + \lambda^2 \vec{b}^2 \ge \vec{a}^2 - 2\vec{a}\vec{b} + \vec{b}^2$
 $\Rightarrow 2\lambda^2 - \vec{a}\vec{b}\lambda + \vec{a}\vec{b} - 2 \ge 0 \Rightarrow (\vec{a}\vec{b})^2 - 8(\vec{a}\vec{b} - 2) \le 0$

例 18. 已知向量 \vec{a} , \vec{b} , $|\vec{a}|=1$, $|\vec{b}|=2$,若对任意单位向量 \vec{e} ,均有 $|\vec{a}\cdot\vec{e}|+|\vec{b}\cdot\vec{e}| \leq \sqrt{6}$,则 $\vec{a}\cdot\vec{b}$ 的最大值是_____.

【解析】由已知可得: $\sqrt{6} \ge \vec{a} \cdot \vec{e} + |\vec{b} \cdot \vec{e}| \ge |\vec{a} \cdot \vec{e} + \vec{b} \cdot \vec{e}| = |\vec{a} + \vec{b} \cdot \vec{e}|$ 恒成立,

故,
$$\sqrt{6} \ge |\vec{a} + \vec{b}) \cdot \vec{e}|_{\text{max}}$$
;

 $\Rightarrow (\vec{a}\vec{b}-4)^2 \le 0 \Rightarrow \vec{a}\vec{b} = 4$

又,
$$|(\vec{a}+\vec{b})\cdot\vec{e}|$$
= $|(\vec{a}+\vec{b})|\cdot|\vec{e}|\cos\alpha$ $\leq |\vec{a}+\vec{b}|$,故 $|(\vec{a}+\vec{b})\cdot\vec{e}|_{\max}$ = $|\vec{a}+\vec{b}|$

$$\therefore \sqrt{6} \ge |\vec{a} + \vec{b}|, \quad \therefore 6 \ge (\vec{a} + \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 5 + 2\vec{a} \cdot \vec{b}$$

所以,
$$\vec{a} \cdot \vec{b} \leq \frac{1}{2}$$
。

例 19.已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}-\vec{b}|=3$, $|\vec{a}+2\vec{b}|=6$, $|\vec{a}|=6$, $|\vec{a}|$

【解析】由条件,知
$$\vec{a}^2 + \vec{a} \cdot \vec{b} - 2\vec{b}^2 = (\vec{a} - \vec{b})(\vec{a} + 2\vec{b}) = -9$$
,

所以
$$|3\vec{b}| = |(\vec{a} + 2\vec{b}) - (\vec{a} - \vec{b})| = \sqrt{[(\vec{a} + 2\vec{b}) - (\vec{a} - \vec{b})]^2}$$
$$= \sqrt{(\vec{a} + 2\vec{b})^2 + (\vec{a} - \vec{b})^2 - 2(\vec{a} + 2\vec{b})(\vec{a} - \vec{b})} = \sqrt{63} = 3\sqrt{7}$$

所以 $|\vec{b}| = \sqrt{7}$

例 20(全国 I)设向量 a , b , c 满足 |a|=|b|=1 , $a\cdot b=-\frac{1}{2}$, $\langle a-c,b-c\rangle=60^\circ$,则 |c| 的最大值等于()

(B)
$$\sqrt{3}$$

(C)
$$\sqrt{2}$$

(D) 1

【解析】不妨令向量a,b,c 就是图中的 \overrightarrow{OA} 、 \overrightarrow{OB} 、 \overrightarrow{OC} 。由题意知O、A、B、C四点共圆($\triangle OAB$ 的外接圆),因此|c|为该圆的直径时取得最大值,此时 $|c|=2R=\frac{|a|}{\sin 30^\circ}=2$,选A。

例 21.用向量法证明: △ABC的三条高交于一点(这一点称为三角形的垂心)

【证明】如图,设BE,CD分别为 $\triangle ABC$ 的两条高,其交点为F,只需证明 $AF \perp BC$;

$$\pm \overrightarrow{AB} \perp \overrightarrow{CF} \Rightarrow (\overrightarrow{FB} - \overrightarrow{FA}) \bullet \overrightarrow{CF} = 0 \Rightarrow \overrightarrow{FB} \bullet \overrightarrow{CF} - \overrightarrow{FA} \bullet \overrightarrow{CF} = 0$$

同理, 由
$$AC \perp BF \Rightarrow (\overrightarrow{FC} - \overrightarrow{FA}) \cdot \overrightarrow{BF} = 0 \Rightarrow \overrightarrow{FC} \cdot \overrightarrow{BF} - \overrightarrow{FA} \cdot \overrightarrow{BF} = 0$$
;

故,
$$\overrightarrow{FB} \bullet \overrightarrow{CF} - \overrightarrow{FA} \bullet \overrightarrow{CF} = \overrightarrow{FC} \bullet \overrightarrow{BF} - \overrightarrow{FA} \bullet \overrightarrow{BF}$$
, 即 $\overrightarrow{FA} \bullet \overrightarrow{CF} = \overrightarrow{FA} \bullet \overrightarrow{BF}$,

