Práctica 5 de álgebra 1

Comunidad algebraica

Última compilación: 29/06/2024 a las 22:02

- Sea aX + bY = c con $a, b, c \in \mathbb{Z}, a \neq 0 \land b \neq 0$ y sea $S = \{(x, y) \in \mathbb{Z}^2 : aX + bY = C\}$. Entonces $S \neq \emptyset \iff (a : b) \mid c$
- Las soluciones al sistema: $S = \left\{ (x, y) \in \mathbb{Z}^2 \text{ con } \left\{ \begin{array}{l} x = x_0 + kb' \\ y = y_0 + kb' \end{array} \right\}, k \in \mathbb{Z} \right\}$
- $aX \equiv c$ (b) con $a, b \neq 0$ tiene solución \iff $(a:b) \mid c$ tiene solución \iff $(a:b) \mid c$. En ese caso, coprimizando:

Ecuaciones de congruencia

- Algoritmo de solución:
 - 1) reducir a, c módulo m. Podemos suponer $0 \le a, c < m$
 - 2) tiene solución \iff $(a:m) \mid c$. Y en ese caso coprimizo:

$$aX \equiv c \ (m) \iff a'X \equiv c' \ (m), \ \ \operatorname{con} \ a' = \frac{a}{(a:m)}, \ m' = \frac{m}{(a:m)} \ \operatorname{y} \ c' = \frac{c}{(a:m)}$$

3) Ahora que $a' \perp m'$, puedo limpiar los factores comunes entre a' y c' (los puedo simplificar)

$$a'X \equiv c' \ (m') \iff a''X \equiv c'' \ (m') \ \text{con} \ a'' = \frac{a'}{(a':c')} \ \text{y} \ c'' = \frac{c'}{(a':c')}$$

4) Encuentro una solución particular X_0 con $0 \le X_0 < m'$ y tenemos

$$aX \equiv c \ (m) \iff X \equiv X_0 \ (m')$$

Ecuaciones de congruencia Sean $m_1, \ldots m_n \in \mathbb{Z}$ coprimos dos a dos $(\forall i \neq j, \text{ se tiene } m_i \perp m_j)$. Entonces, dados $c_1, \ldots, c_n \in \mathbb{Z}$ cualesquiera, el sistema de ecuaciones de congruencia.

$$\begin{cases} X \equiv c_1 \ (m_1) \\ X \equiv c_2 \ (m_2) \\ \vdots \\ X \equiv c_n \ (m_n) \end{cases}$$

es equivalente al sistema (tienen misma soluciones)

$$X \equiv x_0 \ (m_1 \cdot m_2 \cdots m_n)$$

para algún x_0 con $0 \le x_0 < m_1 \cdot m_2 \cdots m_n$ Pequeño teorema de Fermat

- Sea p primo, y sea $a \in \mathbb{Z}$. Entonces:
 - 1.) $a^p \equiv a \ (p)$
 - 2.) $p \nmid a \Rightarrow a^{p-1} \equiv 1 \ (p)$
- Sea p primo, entonces $\forall a \in \mathbb{Z}$ tal que $p \not\mid a$ se tiene:

$$a^n \equiv a^{r_{p-1}(n)}(p), \ \forall n \in \mathbb{N}$$

• Sea $a \in \mathbb{Z}$ y p > 0 primo tal que $\underbrace{(a:p) = 1}_{a \perp p}$, y sea $d \in \mathbb{N}$ con $d \leq p-1$ el mínimo tal que:

$$a^d \equiv 1 \ (p) \Rightarrow d \mid (p-1)$$

Aritmética modular:

• Sea
$$n \in \mathbb{N}, n \ge 2$$

 $\mathbb{Z}/_{n\mathbb{Z}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$
 $\overline{a}, \overline{b} \in \mathbb{Z}/_{n\mathbb{Z}} : \{ \overline{a} + \overline{b} := \overline{r_n(a+b)}$
 $\overline{a} \cdot \overline{b} := \overline{r_n(a \cdot b)}$

- Sea p primo, en $\mathbb{Z}/_{p\mathbb{Z}}$ todo elemento no nulo tiene inverso multiplicativo, análogamente a \mathbb{Z} . Si $m \in \mathbb{N}$ es compuesto,
 - No todo $\overline{a} \in \mathbb{Z}/_{m\mathbb{Z}}$ con $\overline{a} \neq \overline{0}$ es inversible.
 - $\ \exists \, \overline{a}, \overline{b} \in \mathbb{Z}/_{m\mathbb{Z}} \text{ con } \overline{a}, \overline{b} \neq 0 \text{ tal que } \overline{a} \cdot \overline{b} = \overline{0}$
 - $-\operatorname{Inv}(\mathbb{Z}/_{m\mathbb{Z}}) = \left\{ \overline{a} \in \left\{ \overline{0}, \overline{1}, \dots, \overline{m-1} \right\} \right\} \text{ tales que } a \perp m$
- $\bullet\,$ Si m=p, con p primo, todo elemento no nulo de $\mathbb{Z}/_{p\mathbb{Z}}$ tiene inverso:
 - $-\operatorname{Inv}(\mathbb{Z}/_{p\mathbb{Z}}) = \{\overline{1}, \dots, \overline{p-1}\}.$
 - -p primo $\Rightarrow \mathbb{Z}/p\mathbb{Z}$ es un cuerpo.
 - $\text{ en } \mathbb{Z}/_{p\mathbb{Z}}: (\overline{a} + \overline{b})^p = \overline{a}^p + \overline{b}^p$

Ejercicios extras:

Hallar los posibles restos de dividir a a por 70, sabiendo que $(a^{1081} + 3a + 17 : 105) = 35$

Debido a la dicinna condicion
$$f$$
, el problema se familica en 2 sistemas:
$$\begin{cases} a \equiv 2 \ (5) \\ a \equiv 1 \ (7) \\ a \equiv 0 \ (3) \end{cases} \qquad \begin{cases} a \equiv 2 \ (5) \\ a \equiv 1 \ (7) \\ a \equiv 2 \ (3) \end{cases} \rightarrow \boxed{a \equiv 92 \ (105)}$$
Veo que para el conjunto de posibles $a \begin{cases} a = 105k_1 + 22 \\ o \\ a = 105k_2 + 92 \end{cases} \end{cases} \xrightarrow[\equiv]{\text{calculo}} a \equiv 22 \ (35) \xrightarrow[\text{pedidos del enunciado}]{\text{quiero los restos}} r_{70}(a) = \{22, 57\}, \text{ valores de } a \text{ que cumplan condición de } r_{70}(a)$

Sea $a \in \mathbb{Z}$ tal que $(a^{197} - 26:15) = 1$. Hallar los posibles valores de $(a^{97} - 36:135)$

Nota: No perder foco en que no hay que encontrar "para que a el mcd vale tanto", sino se pone más complicado en el final.

$$(a^{97} - 36: \overbrace{135}^{3^{3} \cdot 5}) = 3^{\alpha} \cdot 5^{\beta} \text{ con } \bigstar^{1} \left\{ \begin{array}{l} 0 \leq \alpha \leq 3 \\ 0 \leq \beta \leq 1 \end{array} \right\}.$$
 Luego $(a^{197} - 26: \underbrace{15}_{3 \cdot 5}) = 1$ se debe cumplir que: $\left\{ \begin{array}{l} 5 \not\mid a^{197} - 26 \\ 3 \not\mid a^{197} - 26 \end{array} \right.$ $\underbrace{Análisis\ de\ (a^{197} - 26: 15) = 1:}_{Estudio\ la\ divisibilidad\ 5:}$

$$5 \text{ // } a^{197} - 26 \iff a^{197} - 26 \not\equiv 0 (5) \iff a^{197} - 1 \not\equiv 0 (5) \xrightarrow{\text{analizo casos}} 5 \not\mid a = 5 \mid a = 5$$

$$a^{197} \not\equiv 1 \ (5) \Leftrightarrow \begin{cases} (\operatorname{rama} 5 \not\mid a) \xrightarrow{5 \text{ es primo}} a \cdot (\overbrace{a^4})^{49} \not\equiv 1 \ (5) \Leftrightarrow a \not\equiv 1 \ (5) \end{cases} \checkmark$$

$$(\operatorname{rama} 5 \mid a) \xrightarrow{5 \text{ es primo}} 0 \not\equiv 1 \ (5) \to a \equiv 0 \ (5)$$

Conclusión divisilidad 5:

Para que
$$5 \not\mid a^{197} - 26 \iff a \not\equiv 1 (5) \bigstar^2$$

Estudio la divisibilidad 3:

$$3 \not\mid a^{197} - 26 \iff a^{197} - 2 \not\equiv 0 \ (3) \iff a^{197} - 2 \not\equiv 0 \ (3) \xrightarrow{\text{analizo casos} \atop 3 \mid a \circ 3 \mid a}$$

$$a^{197} \not\equiv 2 \ (3) \Leftrightarrow \begin{cases} (\operatorname{rama} \ 3 \not\mid a) \xrightarrow{3 \text{ es primo}} a \cdot (a^2)^{98} \not\equiv 2 \ (3) \Leftrightarrow a \not\equiv 2 \ (3) \end{cases} \checkmark$$
$$(\operatorname{rama} \ 3 \mid a) \xrightarrow{3 \text{ es primo}} 0 \not\equiv 2 \ (3) \to a \equiv 0 \ (3)$$

Conclusión divisilidad 3:

Para que
$$3 \nmid a^{197} - 26 \iff a \not\equiv 2 \ (3) \stackrel{\bigstar}{}^3$$

Necesito que
$$\left\{ \begin{array}{l} 3 \mid a^{97} - 36 : 135) : \\ 0 \text{ bien,} \\ 5 \mid a^{97} - 36 \end{array} \right\}$$
, para obtener valores distintos de 1 para el MCD.

Estudio la divisibilidad 5:(sujetos a \star^2 y \star^3):

Si
$$5 \mid a^{97} - 36 \iff a^{97} - 1 \equiv 0 \ (5) \iff a^{97} \equiv 1 \ (5) \xrightarrow{\text{analizo casos} \atop 5 \mid a \circ 5 \mid a}$$

$$a^{97} \equiv 1 \ (5) \Leftrightarrow \begin{cases} (\operatorname{rama} \ 5 \not\mid a) \xrightarrow{5 \text{ es primo}} a \cdot (\overbrace{a^4})^{24} \equiv 1 \ (5) \Leftrightarrow a \equiv 1 \ (5), \text{ absurdo con } \bigstar^2 \ (\operatorname{rama} \ 5 \mid a) \xrightarrow{5 \text{ es primo}} 0 \equiv 1 \ (3) \to \text{ si } a \equiv 0 \ (5) \Rightarrow a^{97} \not\equiv 1 \ (5) \end{cases}$$

Conclusión divisilidad 5:
$$5 \not\mid a^{97} - 36 \quad \forall a \in \mathbb{Z}$$

Estudio la divisibilidad 3 (sujetos a^{*} y^{*}):

$$3 \mid a^{97} - 36 \iff a^{97} \equiv 0 \ (3) \iff a^{97} \equiv 0 \ (3) \xrightarrow{\text{analizo casos} \atop 3 \mid a \text{ o } 3 \mid a}$$

$$a^{97} \equiv 0 \ (3) \Leftrightarrow \begin{cases} (\operatorname{rama} 3 \not | a) \xrightarrow{3 \text{ es primo}} a \cdot (a^2)^{48} \equiv 0 \ (3) \Leftrightarrow a \equiv 0 \ (3) \end{cases} \checkmark$$

$$(\operatorname{rama} 3 | a) \xrightarrow{3 \text{ es primo}} a \equiv 0 \ (3) \Leftrightarrow 0 \equiv 0 \ (3) \to \text{ si } a \equiv 0 \ (3) \Rightarrow a^{97} \equiv 0 \ (3)$$

Conclusión divisilidad 3:

$$3 \mid a^{97} - 36 \iff a \equiv 0 \ (3)^{*}$$

De \star^1 3 es un posible MCD, tengo que ver si 3^2 o 3^3 también dividen.

Estudio la divisibilidad 9 en a = 3k por \star^4 :

$$9 \mid (3k)^{97} - 36 \iff 3k^{97} \equiv 0 \ (9) \iff 3 \cdot (3^2)^{48} \cdot k^{97} \equiv 0 \ (9) \iff 0 \equiv 0 \ (9) \quad \checkmark \quad \forall k \in \mathbb{Z}$$

Conclusión divisilidad 9:
$$9 \mid a^{97} - 36 \text{ puede ser que } (a^{97} - 26:135) = 9$$

Estudio la divisibilidad 27 en a = 3k por \star^4 :

$$27 \mid (3k)^{97} - 36 \iff (3k)^{97} \equiv 9 \ (27) \iff 3 \cdot (3^3)^{32} \cdot k^{97} \equiv 9 \ (27) \iff 0 \equiv 9 \ (27)$$

Conclusión divisilidad 27:

Si
$$a \equiv 0 \ (3) \Rightarrow 27 \ / a^{97} - 36$$

Finalmente: el mcd es 9

Determinar todos los $n \in \mathbb{Z}$ tales que

$$(n^{433} + 7n + 91:931) = 133.$$

Expresar las soluciones mediante una única ecuación.

Para que se cumpla que $(n^{433} + 7n + 91 : \underbrace{931}_{7^2 \cdot 19}) = \underbrace{133}_{7 \cdot 19}$ deben ocurrir las siguientes condiciones:

$$\begin{cases} 7 \mid n^{433} + 7n + 91 \\ 19 \mid n^{433} + 7n + 91 \\ 7^2 \not\mid n^{433} + 7n + 91 \end{cases}$$

 $Estudio\ la\ divisibilidad\ 7:$

Si
$$7 \mid n^{433} + 7n + 91 \iff n^{433} + 7n + 91 \equiv 0 \ (7) \iff n^{433} \equiv 0 \ (7) \xrightarrow[7]{\text{analizo casos}} 0$$

$$n^{433} \equiv 0 \ (7) \Leftrightarrow \begin{cases} (\operatorname{rama} \ 7 \not\mid n) & \xrightarrow{\text{7 es primo}} (\underbrace{n^6}_{7 \not\mid n})^{72} \cdot n \equiv 0 \ (7) \Leftrightarrow n \equiv 0 \ (7), \text{ pero esta rama } 7 \not\mid n \to 2 \end{cases}$$

$$(\operatorname{rama} \ 7 \mid n) & \xrightarrow{\text{7 es primo}} 0 \equiv 0 \ (7) \text{ y como esta rama } 7 \mid n \to n \equiv 0 \ (7) \end{cases} \checkmark^{*1}$$

Conclusión divisibilidad 7:

$$7 \mid n^{433} + 7n + 91 \Leftrightarrow n \equiv 0 \ (7)$$

Estudio la divisibilidad $7^2 = 49$:

Si
$$7^2 \not/ n^{433} + 7n + 91 \iff n^{433} + 7n + 91 \not\equiv 0 \ (49) \iff n^{433} + 7n + 42 \not\equiv 0 \ (49)$$

$$\xrightarrow{\text{de }^{\bigstar^1} \text{ tengo que}} (7k)^{433} + 7 \cdot 7k + 42 \not\equiv 0 \ (49) \Leftrightarrow 7 \cdot (49)^{216} \cdot k^{433} + 49k + 42 \not\equiv 0 \ (49) \Leftrightarrow 42 \not\equiv 0 \ (49)$$

Conclusión divisibilidad 49:

$$49 \not\mid n^{433} + 7n + 91 \quad \forall n \in \mathbb{Z}$$

Estudio la divisibilidad 19:

Si
$$19 \mid n^{433} + 7n + 91 \iff n^{433} + 7n + 91 \equiv 0 \ (19) \iff n^{433} + 7n + 15 \equiv 0 \ (19) \xrightarrow{\text{analizo casos} \atop 19 \mid n \text{ o } 19 \mid f \text{ n}}$$

$$n^{433} + 7n + 15 \equiv 0 \text{ (19)} \Leftrightarrow \begin{cases} (\operatorname{rama } 19 \not\mid n) & \xrightarrow{19 \text{ es primo}} (n^{18})^{24} \cdot n + 7n + 15 \equiv 0 \text{ (19)} \Leftrightarrow 8n \equiv -15 \text{ (19)} \Leftrightarrow \\ \underset{\leftarrow}{\times 7} & \boxed{n \equiv 10 \text{ (19)}} \checkmark \star^{2} \\ (\operatorname{rama } 19 \mid n) & \xrightarrow{19 \text{ es primo}} 15 \equiv 0 \text{ (19)} \to \operatorname{ningún} n \end{cases}$$

Conclusión divisibilidad 19:

$$19 \mid n^{433} + 7n + 91 \Leftrightarrow n \equiv 10 \ (19)$$

$$\begin{cases} \star^{1} n \equiv 0 \ (7) \\ \star^{2} n \equiv 10 \ (19) \end{cases} \xrightarrow{\begin{array}{c} 7 \perp 19 \\ \text{hay solución por TCH} \end{array}} \begin{cases} \frac{\star^{2}}{\text{en } \star^{1}} n = 7(19k + 10) = 133k + 70 \rightarrow \boxed{n \equiv 70 \ (133)} \end{cases} \checkmark$$

Ejercicios de la guía:

1. Hacer!

2. Determinar todos los (a, b) que simultáneamente $4 \mid a, 8 \mid b \land 33a + 9b = 120$.

Si
$$(33:9) \mid 120 \Rightarrow 33a + 9b = 120$$
 tiene solución. $(33:9) = 3$, $3 \mid 120$ \checkmark
$$\begin{cases} 4 \mid a \rightarrow a = 4k_1 \\ 8 \mid b \rightarrow b = 8k_2 \end{cases} \xrightarrow{\text{meto en} \atop 33a + 9b = 120} 132k_1 + 72k_2 = 120 \xrightarrow{\text{(132:72)} = 12 \mid 120 \atop \text{coprimizo}} 11k_1 + 6k_2 = 10$$

Busco solución particular con algo parecido a Euclides:

Busco solution particular con algo parecido a Euclides.
$$\begin{cases}
11 = 6 \cdot 1 + 5 \\
6 = 5 \cdot 1 + 1
\end{cases}
\xrightarrow{\text{escribo al 1 como} \atop \text{combinación entera de 11 y 6}} 1 = 11 \cdot -1 + 6 \cdot -2 \xrightarrow{\text{solución} \atop \text{particular}} 10 = 11 \cdot (-10) + 6 \cdot 20$$

Para $11k_1 + 6k_2 = 10$ tengo la solución general $(k_1, k_2) = (-10 + (-6)k, 20 + 11k)$ con $k \in \mathbb{Z}$ Pero quiero los valores de $a \ y \ b$:

La solución general será $(a,b) = (4k_1, 8k_2) = (-40 + 24k, 160 + (-88)k)$

Otra respuesta con solución a ojo menos falopa, esta recta es la misma que la anterior:

$$(a,b) = (2+3k, 6-11k) \text{ con } k \equiv 2 (8)$$

3. Si se sabe que cada unidad de un cierto producto A cuesta 39 pesos y que cada unidad de un cierto producto B cuesta 48 pesos, ¿cuántas unidades de cada producto se pueden comprar gastando exactamente 135 pesos?

$$\begin{cases} A \ge 0 \land B \ge 0. \text{ Dado que son productos.} \\ (A:B) = 3 \Rightarrow 39A + 28B = 135 \xrightarrow{\text{coprimizar}} 13A + 16B = 45 \\ \text{A ojo } \to (A,B) = (1,2) \end{cases}$$

- 4. Hallar, cuando existan, todas las soluciones de las siguientes ecuaciones de congruencia:
 - i) $17X \equiv 3 \ (11) \xrightarrow{\text{respuesta}} X \equiv 6 \ (11)$ pasar
 - ii) $56X \equiv 28 \ (35)$ $\begin{cases}
 56X \equiv 28 \ (35) \iff 7X \equiv 21 \ (35) \iff 7X 35K = 21 \\
 \xrightarrow{\text{a}} (X, K) = (-2, -1) + q \cdot (-5, 1) \\
 X \equiv -2 \ (5) \iff X \equiv 3 \ (5) = \{\dots, -2, 3, 8, \dots, 5q + 3\} \\
 \xrightarrow{\text{respuesta}} X \equiv 3 \ (5) \text{ corroborar}
 \end{cases}$

iv)
$$78X \equiv 30 \ (12126) \rightarrow 78X - 12126Y = 30 \xrightarrow{(78:12126) = 6} 13X - 2021Y = 5$$

Busco solución particular con algo parecido a Euclides:

$$\begin{cases} 2021 = 13 \cdot 155 + 6 \\ 13 = 6 \cdot 2 + 1 \end{cases} \xrightarrow{\text{Escribo al 1 como} \atop \text{combinación de 13 y2021}} 1 = 13 \cdot 311 + 2021 \cdot (-2) \xrightarrow{\text{quiero} \atop \text{al 5}} 5 = 13 \cdot 1555 + 2021 \cdot (-10)$$

Respuesta:
$$\boxed{78X \equiv 30 \; (12126) \iff X \equiv 1555 \; (2021)}$$

Hallar todos los $(a, b) \in \mathbb{Z}^2$ tales que $b \equiv 2a$ (5) y 28a + 10b = 26.

Parecido al 2..

$$b \equiv 2a \ (5) \iff b = 5k + 2a \xrightarrow{\text{meto en} \atop 28a + 10b = 26} 48a + 50k = 26 \xrightarrow{(48:59)=2} 24a + 25k = 13 \xrightarrow{\text{a} \atop \text{ojo}} \left\{ \begin{array}{c} a = -13 + (-25)q \\ k = 13 + 24q \end{array} \right\}$$

Let's corroborate:

$$b = 5 \cdot \underbrace{(13 + 24q)}_{k} + 2 \cdot \underbrace{(-13 + (-25)q)}_{a} = 39 + 70q \begin{cases} b = 39 + 70q \equiv 4 \ (5) \\ 2a = -26 - 50q \equiv -1 \ (5) \equiv 4 \ (5) \end{cases} \checkmark$$

- Hacer! 6.
- Hacer! 7.
- Hacer!
- Hacer! 9.
- Hallar, cuando existan, todos los enteros a que satisfacen simultáneamente:

i)
$$\begin{cases} \star^{1} a \equiv 3 \ (10) \\ \star^{2} a \equiv 2 \ (7) \\ \star^{3} a \equiv 5 \ (9) \end{cases}$$

El sistema tiene solución dado que 10, 7 y 9 son coprimos dos a dos. Resuelvo:

$$\xrightarrow[\text{en }^{\star^1}]{\text{Arranco}} a = 10k + 3 \stackrel{\text{(7)}}{\equiv} 3k + 3 \stackrel{\text{(*)}^2}{\equiv} 2 \text{ (7)} \xrightarrow[3 \perp 7]{\text{usando que}} k \equiv 2 \text{ (7)} \rightarrow k = 7q + 2.$$

$$\xrightarrow[a]{\text{actualizo}} a = 10 \cdot \underbrace{(7q+2)}_{k} + 3 = 70q + 23 \stackrel{\text{(9)}}{\equiv} 7q \stackrel{\text{(*)}}{\equiv} 5 \text{ (9)} \xrightarrow[7 \perp 9]{\text{usando que}} q \equiv 0 \text{ (9)} \rightarrow q = 9j$$

$$\xrightarrow[a]{\text{actualizo}} a = 70 \underbrace{(9j)}_{k} + 23 = 680j + 23 \rightarrow \boxed{a \equiv 23 (630)} \checkmark$$

La solución hallada es la que el Teorema chino del Resto me garantiza que tengo en el intervalo $[0, 10 \cdot 7 \cdot 9)$

iii)
$$\begin{cases} \star^1 a \equiv 1 \ (12) \\ \star^2 a \equiv 7 \ (10) \\ \star^3 a \equiv 4 \ (9) \end{cases}$$

- 11. Hacer!
- 12. Hacer!
- 13. Hacer!
- 14. Hacer!
- 15. Hallar el resto de la división de a por p en los casos.
 - i) $a = 71^{22283}$, p = 11

$$\overline{a = 71^{22283} = 71^{10 \cdot 2228 + 2 + 1}} = \underbrace{(71^{10})^{2228}}_{\stackrel{11/7}{=} p_{12228}} \cdot 71^2 \cdot 71^1 \equiv 71^3 (11) \rightarrow a \equiv 5^3 (11) \quad \checkmark$$

Usando corolario con p primo y $p \perp 71$, $\rightarrow 71^{22283} \equiv 71^{r_{10}(22283)} (11) \equiv 71^3 (11) \rightarrow a \equiv 5^3 (11)$

ii) $a = 5 \cdot 7^{2451} + 3 \cdot 65^{2345} - 23 \cdot 8^{138}, \ p = 13$

$$\overline{a \equiv 5 \cdot 7^{204 \cdot 12 + 3} + 3 \cdot 8^{11 \cdot 12 + 6} (13) \to a \equiv 5 \cdot (7^{12})^{204} \cdot 7^3 + 3 \cdot (8^{12})^{11} \cdot 8^6 (13)}$$

$$\xrightarrow[p \text{ f } 7]{p \text{ f } 8} a \equiv 5 \cdot 7^3 + 3 \cdot 8^6 (13) \to a \equiv 5 \cdot (-6^3 + 3 \cdot 5^5) (13) \text{ consultar}$$

- 16. Resolver en $\mathbb Z$ las siguientes e
ecuaciones de congruencia:
 - i) $2^{194}X \equiv 7 (97)$

$$\xrightarrow{2 \perp 97} 2^{194} = (2^{96})^2 \cdot 2^2 \equiv 4 \ (97) \to 4X \equiv 7 \ (97) \xrightarrow{\times 24} -X \equiv \underbrace{168}_{\stackrel{(97)}{\equiv} 71} (97) \xrightarrow{-71 \stackrel{(97)}{\equiv} 26} X \equiv 26 \ (97) \quad \checkmark$$

ii) $5^{86}X \equiv 3 (89)$

Hacer!

- 17. Hacer!
- 18. Hacer!
- 19. Hacer!
- 20. Hallar el resto de la división de:

i)
$$43 \cdot 7^{135} + 24^{78} + 11^{222}$$
 por 70

ii)
$$\sum_{i=1}^{1759} i^{42}$$
 por 56

- i) Hacer!
- ii) Calcular el resto pedido equivale a resolver la ecuaición de equivalencia:

Calcular el resto pedido equivale a resolver la ecuaición de equivalencia:
$$X \equiv \sum_{i=1}^{1759} i^{42} \ (56) \text{ que será aún más simple en la forma: } \begin{cases} X \equiv \sum_{i=1}^{1759} i^{42} \ (7) \\ X \equiv \sum_{i=1}^{1759} i^{42} \ (8) \end{cases}$$

Ahora se labura el módulo 8.

$$\begin{cases} \sum_{i=1}^{1759} i^{42} \equiv X \ (8) \xrightarrow{\text{8 no es primo}} \text{Analizo a mano} \xrightarrow{219 \cdot 8 + 7 = 1759} X \equiv \sum_{i=1}^{1759} i^{42} \ (8) \stackrel{\text{(8)}}{\equiv} \\ = 219 \cdot \underbrace{(1^{42} + 2^{42} + 3^{42} + 4^{42} + 5^{42} + 6^{42} + 7^{42} + 0^{42})}_{\text{8 términos: } r_8(i^{42}) = (r_8(i))^{42}} + \underbrace{(1^{42} + 2^{42} + 3^{42} + 4^{42} + 5^{42} + 6^{42} + 7^{42})}_{\text{8 términos: } r_8(i^{42}) = (r_8(i))^{42}} \\ \Rightarrow \begin{cases} 2^{42} = (2^3)^{14} \stackrel{\text{(8)}}{\equiv} 0 \\ 4^{42} = (2^3)^{14} \cdot (2^3)^{14} \stackrel{\text{(8)}}{\equiv} 0 \\ 6^{42} = (2^3)^{14} \cdot 3^{42} \stackrel{\text{(8)}}{\equiv} 0 \\ 1^{42} = 1 \\ 3^{42} = (3^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \\ 5^{42} = (5^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \\ 7^{42} = (7^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \end{cases} \\ \Rightarrow \begin{cases} \frac{\text{reemplazo}}{\text{res a cn}} \sum_{i=1}^{1759} i^{42} \stackrel{\text{(8)}}{\equiv} 219 \cdot 4 + 4 = 880 \stackrel{\text{(8)}}{\equiv} 0 \rightarrow X \equiv 0 \ \text{(8)} \end{cases}$$

El sistema $\begin{cases} X \equiv 3 \ (7) \\ X \equiv 0 \ (8) \end{cases}$ tiene solución $X \equiv 24 \ (56)$, por lo tanto el resto pedido: $r_{56} \left(\sum_{i=1}^{1759} i^{42} \right)$

$$r_{56} \left(\sum_{i=1}^{1759} i^{42} \right) = 24$$

21. Hacer!

22. Resolver en \mathbb{Z} la ecuación de congruencia $7X^{45} \equiv 1$ (46).

$$7X^{45} \equiv 1 \text{ (46)} \xrightarrow{\text{multiplico por} \atop 13} 91X^{45} \equiv 13 \text{ (46)} \rightarrow X^{45} \equiv -13 \text{ (46)} \rightarrow X^{45} \equiv 33 \text{ (46)}$$

$$\rightarrow \begin{cases} X^{45} \equiv 33 \text{ (23)} \rightarrow X^{45} \equiv 10 \text{ (23)} \xrightarrow{23 \text{ primo y } 23 \text{ / } X} X^{22}X^{22}X^{1} \stackrel{(23)}{\equiv} X \equiv 10 \text{ (23)} \end{cases}$$

$$X^{45} \equiv 10 \text{ (2)} \rightarrow X^{45} \equiv 0 \text{ (2)} \xrightarrow{\text{si mismo impar veces}} X \equiv 0 \text{ (2)}$$
Leadure if and a congruencial $X = 10 \text{ (46)}$ generals has condicioned expendicular approximation of the second distance expension of the second distance expensi

Hallar todos los divisores positivos de $5^{140}=25^{70}$ que sean congruentes a 2 módulo 9 y 3 módulo 11.

Quiero que ocurra algo así: $\begin{cases} 25^{70} \equiv 0 \ (d) \rightarrow 5^{140} \equiv 0 \ (d) \\ d \equiv 2 \ (9) \end{cases}$. De la primera ecuación queda que el divisor $d = 5^{\alpha} \text{ con } \alpha \text{ compatible con las otras ecuaciones.} \rightarrow \begin{cases} 5^{\alpha} \equiv 2 \ (9) \\ 5^{\alpha} \equiv 3 \ (11) \end{cases}$

→ Usaré viejo truco de exponenciales de módulo periódicas:

$$\begin{array}{c}
5^{\alpha} \equiv 2 \ (9) \\
5^{3} \equiv -1 \ (9) \xrightarrow{\text{al}} 5^{6} \equiv 1 \ (9) \xrightarrow{5^{\alpha} = 5^{6k+r_{6}(\alpha)} = (5^{6})^{k} 5^{r_{6}(\alpha)}} \xrightarrow{r_{6}(\alpha)} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \\
\hline
r_{9}(5^{\alpha}) \ 1 \ 5 \ 7 \ 8 \ 4 \ 2
\end{array}$$

$$\begin{array}{c}
\xrightarrow{\text{Busco}} \\
5^{\alpha} \equiv 3 \ (11) \xrightarrow{\text{a ojo}} 5^{2} \equiv 3 \ (11) \\
\xrightarrow{\text{fermateo}} 5^{10} \equiv 1 \ (11) \xrightarrow{\text{noto que tengo otro}} 5^{2} \cdot 5^{10} \equiv 3 \ (11) \\
\xrightarrow{\text{para no perder soluciones de } 5^{\alpha} \equiv 3 \ (11)} \xrightarrow{\text{tabla de restos por las dudas}} \xrightarrow{r_{11}(5^{\alpha})} 1 \ 5 \ 3 \ 4 \ 9 \ 1
\end{array}$$

$$\begin{array}{c}
\xrightarrow{\text{FI} \text{ gistamps}} \begin{cases}
\alpha \equiv 5 \ (9) \end{cases} \text{ so recycly a para que } 5^{\alpha} \equiv 2 \ (45) \text{ y. adamés } 0 \text{ s. c. o. } 140 \text{ legens seed.}$$

El sistema $\begin{cases} \alpha \equiv 5 \ (9) \\ \alpha \equiv 2 \ (5) \end{cases}$ se resuelve para $\alpha \equiv 32 \ (45)$ y además $0 < \alpha \le 140$ lo que se cumple para $\alpha = 45k + 32 = \begin{cases} 32 & \text{si} \quad k = 0 \\ 77 & \text{si} \quad k = 1 \\ 122 & \text{si} \quad k = 2 \end{cases}$ $\rightarrow \mathcal{D}_{+}(25^{70}) = \{5^{32}, 5^{77}, 5^{122}\}$

$$\alpha = 45k + 32 = \begin{cases} 32 & \text{si} \quad k = 0\\ 77 & \text{si} \quad k = 1\\ 122 & \text{si} \quad k = 2 \end{cases} \rightarrow \boxed{\mathcal{D}_{+}(25^{70}) = \{5^{32}, 5^{77}, 5^{122}\}}$$

25 .	Hacer!			
	TT			
26.	Hacer!			
27.	Hacer!			
28.	Hacer!			
2 9.	Hacer!			
30.	Hacer!			