Examenul de bacalaureat național 2016

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{48} = 4\sqrt{3}$, $\sqrt{27} = 3\sqrt{3}$	2p
	$4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$	3 p
2.	$f(x) = g(x) \Leftrightarrow 2x - 1 = 2 - x \Leftrightarrow 3x = 3$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=1$	2 p
3.	$3^{8-3x} = 3^2 \Leftrightarrow 8-3x = 2$	3 p
	x=2	2p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $2.5 = 10$ numere	3 p
5.	AB=4	2p
	$BC = 4 \Rightarrow AB = BC$	3p
6.	$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$, $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$, $\cos 60^{\circ} = \frac{1}{2}$	3p
	$\sin 45^{\circ} \cdot \cos 45^{\circ} + \cos 60^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} = 1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$1 \circ 2016 = 1 \cdot 2016 - 1 - 2016 + 1 =$	3p
	=2015-2015=0	2p
2.	$y \circ x = yx - y - x + 1 =$	2p
	$= xy - x - y + 1 = x \circ y$, pentru orice numere reale $x \neq y$, deci legea de compoziție " \circ " este	3 p
	comutativă	
3.	$x \circ y = xy - x - (y - 1) =$	2p
	=x(y-1)-(y-1)=(x-1)(y-1), pentru orice numere reale x și y	3 p
4.	$(x-1) \circ x = (x-2)(x-1)$	2p
	$(x-2)(x-1) = 0 \Leftrightarrow x = 1 \text{ sau } x = 2$	3 p
5.	$x^{2} \circ x^{2} = (x^{2} - 1)(x^{2} - 1) =$	2 p
	$=(x-1)(x+1)(x-1)(x+1)=(x-1)^2(x+1)^2$, pentru orice număr real x	3 p
6.	(a-1)(b-1)=3	2p
	Cum a și b sunt numere naturale, obținem $a=2$, $b=4$ sau $a=4$, $b=2$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix} = 2 \cdot (-2) - (-4) \cdot 1 =$	3 p
	=-4+4=0	2 p

Ministerul Educației Naționale și Cercetării Științifice Centrul Național de Evaluare și Examinare

2.	$M(a) = \begin{pmatrix} 2+a & 1 \\ -4 & -2+a \end{pmatrix} \Rightarrow \det(M(a)) = \begin{vmatrix} 2+a & 1 \\ -4 & -2+a \end{vmatrix} = a^2$	3p
	$a^2 = 16 \Leftrightarrow a = -4 \text{ sau } a = 4$	2p
3.	$M(-1) + M(0) + M(1) = A + (-1) \cdot I_2 + A + 0 \cdot I_2 + A + 1 \cdot I_2 =$	3 p
	$=A-I_2+A+A+I_2=3A$	2 p
4.	$A \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	2p
	$M(a) \cdot M(b) = (A + aI_2)(A + bI_2) = A \cdot A + (a + b)A + abI_2 = (a + b)A + abI_2$, pentru orice numere reale $a \neq b$	3р
5.	Matricea $M(a)$ este inversabilă $\Leftrightarrow \det(M(a)) \neq 0$	2p
	$a^2 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \{0\}$	3p
6.	$\det(M(1)) = 1 \neq 0 \text{si} (M(1))^{-1} = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}$	2p
	$X = (M(1))^{-1} \cdot A \Leftrightarrow X = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$	3р