

n维点集

主讲人: 侯中华

大连理工大学数学科学学院

一、 $n维空间的定义: n个实数x_1, ..., x_n按给定的顺序排列,所得到的元素叫做n$

元有序数组。记为 $x=(x_1, \dots, x_n)$ 。其中 x_i 叫做x的第i个分量, $i=1,2,\dots,n$ 。

所有n元有序数组所构成的集合记为Rn。在Rn上,定义两种运算如下:

1、加法:任取x=(x₁,···,xn), y=(y₁,···,yn)∈ Rn, 定义:x+y=(x₁+y₁,···,xn+yn)。

2、<mark>数乘</mark>: 任取x=(x₁,···,x_n)∈ Rn以及实数c, 定义: cx=(cx₁,···,cx_n)。

3、空间:赋予了加法和数乘运算的集合Rⁿ上叫做n维线性空间。

4、注A.4:当有序数组的分量个数较少时,可用不同的拉丁字母表示。比如

(x), (x,y), (x,y,z),···, 等。当n=1时,括号可以省略。

二、n维空间的表示

1、1维空间R1:

图A-4. 数轴

画一条水平直线L,在上面选定两点0,E。0作为原点,E作为单位点。取0E的长度为1,取0到E的方向为正向。这样得到的有向直线L叫做坐标轴,通称数轴。对于L上任取的点P,0P与0E的长度的比例记为 | x | 。若P与E在0的同侧,赋予"+"号,若P与E在0的异侧,赋予"-"号。则实数x与L的点P之间有1-1对应。称x为点P关于E的坐标。

数轴通常记为0x。易见,实数的加法和乘法运算与1元有序数组的加法和数乘运算一致。因此,实数集R可视为1维空间R¹。故n维空间的概念是实数集概念的推广。

2、<u>2维空间R</u>2:

图A-4. 平面直角坐标系

在平面II上画一条水平直线L₁和一条垂直的直线L₂,取交点0为公共原点。再取两条 直线外的点E作为单位点。过E作 L_2 和 L_1 的平行线依次与 L_1 和 L_2 相交于 E_1 和 E_2 。 $令0E_1$ 和 OE_0 的长度均为1, OE_1 和 OE_0 的方向为 L_1 和 L_2 的正向。所得到的两条有向直线 $\overline{L_1}$ 和 $\overline{L_2}$ 叫 做坐标轴。在 Π 上任取一点P,过P作 $\overline{L_2}$ 和 $\overline{L_1}$ 的平行线依次与 $\overline{L_1}$ 和 $\overline{L_2}$ 相交于 P_1 和 P_2 。 P_1 和 P_2 关于 E_1 和 E_2 的坐标记为 x_1 和 x_2 。则有序数组 (x_1, x_2) 与 Π 上的点P之间是1-1对应。 $\overrightarrow{L_1}$ 和 $\overrightarrow{L_2}$ 通常记为 $0x_1$ 和 $0x_2$ 。称取定坐标轴的平面 \square 为**平面直角坐标系**,记为 $0x_1x_2$ 。

2、3维空间R3:

图A-6. 空间直角坐标系

在空间中収定一点0为原点。过0点画三条互相垂直的直线L₁、L₂和L₃,再収直线外的点E作为单位点。过E作平行于L₂和L₃、L₃和L₁、L₁和L₂的平行平面依次与L₁、L₂和L₃相交于E₁、E₂和 E₃。**令**0E₁、0E₂和0E₃的长度均为1,取0E₁、0E₂和0E₃方向为L₁、L₂和L₃的正向。所得到的有向直线 $\overrightarrow{L_1}$ 、 $\overrightarrow{L_2}$ 和 $\overrightarrow{L_3}$ 叫做坐标轴。在空间中任取一点P,过X作平行于 $\overrightarrow{L_2}$ 和 $\overrightarrow{L_3}$ 、 $\overrightarrow{L_3}$ 和 $\overrightarrow{L_1}$ 、 $\overrightarrow{L_1}$ 和 $\overrightarrow{L_2}$ 的平行平面依次与 $\overrightarrow{L_1}$ 、 $\overrightarrow{L_2}$ 和 $\overrightarrow{L_3}$ 相交于P₁、P₂和P₃。 P₁、P₂和P₃关于E₁、E₂和E₃的坐标记为x₁、x₂和x₃。则可定义3元有序数组(x₁, x₂, x₃)与空间中的点P之间的1-1对应。 $\overrightarrow{L_1}$ 、 $\overrightarrow{L_2}$ 和 $\overrightarrow{L_3}$ 通常记为0x₁、0x₂和0x₃。称収定坐标轴的空间为空间直角坐标系,记为0x₁x₂x₃。

三、n维空间的度量

1、度量的定义: 任取 $x=(x_1, \dots, x_n)$, $y=(y_1, \dots, y_n) \in \mathbb{R}^n$, 则x与y之间的度量定义为:

图A-7. 两点间距离

2、度量的性质: 任取x,y,z∈Rⁿ, 则(1).||x-y||≥0且||x-y||=0当且仅当x=y; (非负性) (2).||x-y||=||y-x||; (对称性) (3).||x-z||≤ ||x-y||+||y-z||; (三角不等式)

3、注A.5: (1). 度量的概念是两个实数之差的绝对值概念的推广;

(2). 从几何表示来看, x与y之间的度量恰是这两点之间的距离。

故度量通常被称为距离。但需要注意的是,两者是不同的概念!

点x的去心r-邻域。

4、球形邻域: 给定 $x=(x_1, ..., x_n) \in Rn$ 和正数 r>0。 作点集 $B(x,r)=\{y \in R^n; ||y-x|| < r\}$,称之为 点x的半径为r的球形邻域,简称r-邻域。 作点集 $B^{\circ}(x,r)=\{y \in R^n; 0 < ||y-x|| < r\}$,称之为

注A.6: 图7中, a是A的内点, 内点必属于A; d是A的外点, 外点必不属于A; b是不属于A的边界点, c是属于A的边界点。

- 5、点与集合的关系:给定Rn的子集A,其余集记为Ac。
- (1).**内点和外点**: 称点x为A的**内点**, 若存在r>0,使得 B(x,r)∩Ac=Ø, 亦即 B(x,r)∩A;

称点x为A的外点,若存在r>0,使得 $B(x,r) \cap A = \emptyset$,亦即 $B(x,r) \subseteq Ac$; (2).<mark>边界点</mark>:若x既不是A的内点又不是A的外点,则称其为A的边界点。x是A的边界点当且仅当对任意的r>0,总有 $B(x,r) \cap Ac \neq \emptyset$ 和 $B(x,r) \cap A \neq \emptyset$ 。

- (3). 内部、外部和边界: A的全体内点的集合叫做A的内部,记为 A° ; A的全体外点的集合叫做A的外部(A的外部是其余集的内部); A的全体边界点的集合叫做A的边界,记为 ∂A ; A的内部和边界的并集称为A的闭包,记为 \bar{A} 为。易见 $\bar{A}=A^{\circ}\cup\partial A=A\cup\partial A$ 。
- <u>(4). 聚点和孤立点</u>: x称为A的**聚点**,如果对任意的r>0,总有 $B^{\circ}(x,r)\cap A\neq\emptyset$ 。聚点若不属于A,则必属于A的边界。**若x属于A**并且x不是A的聚点,则称其为A的**孤立点**。
- 6. n维点集的类型
- (1). <u>开集和闭集</u>:若A的所有点均为内点,则称其为**开集**。A是开集当且仅当 $A=A^{\circ}$; 若A的所有聚点都在其中,则称其为**闭集**。 A是闭集当且仅当 $A=\overline{A}$;

- (2). <u>折线的定义</u>: 给定k+1个点 $P_0, P_1, \dots, P_m \in \mathbb{R}^n$ 。连接 P_{k-1} 和 P_k 的直线段记为 $[P_{k-1}P_k] = \{P = (t-1)P_{k-1} + tP_k; 0 \le t \le 1\}$ 。这些线段的并集叫做以 P_0, P_1, \dots, P_m 为顶点的折线。 P_0 和 P_m 叫该折线的<mark>端点</mark>。
- (3). <u>连通集</u>:给定Rⁿ中的子集A。若其中任意两点都是包含于A中的某一条折线的端点,则A是一个<mark>连通集</mark>。
- (4). 区域和闭区域:连通的开集D称为区域。区域的闭包称为闭区域。
- (5). <u>有界集和无界集</u>:给定Rⁿ中的子集A。若其任意一点到原点的距离都小于某个给定的正数,则称A为<mark>有界集</mark>。否则称为无界集。

注A.7: 1). 图8中, A是连通集; B是区域; C是闭区域; AUB不是连通集; BUC是连通集。这里, 虚线表示不在集合中的点, 实线表示含在集合中的点, 实线表示含在集合中的点。2). 连通集的精确定义需要用到"连续"的概念。我们以后再补充它的定义。

谢谢!