Tugas Analisis Vektor

Pembahasan Soal Bu Nur

Anggota Kelompok 10

1.	Nicholas Joe Sumantri	(5002221003)
2.	Renaldy Satriaji Wahyudi	(5002221155)
3.	Teosofi Hidayah Agung	(5002221132)
4.	Bagus Rico Pambudi	(5002221144)

Departemen Matematika Institut Teknologi Sepuluh Nopember Semester Genap 2023/2024

SOAL & PEMBAHASAN

1. **[SOAL]**

Diketahui fungsi vektor $\vec{F}(x,y) = 2xy^3\hat{i} + (1+3xy^2)\hat{j}$

- (a) Buktikan bahwa $\vec{F}(x,y)$ adalah medan vektor konservatif pada bidang-xy. \vec{F} dikatakan medan vektor konservatif saat $\nabla \times \vec{F} = 0$.
- (b) Jika gaya $\vec{F}(x,y)$ adalah konservatif maka $\vec{F} = \nabla \phi$ dan $\phi(x,y)$ disebut potensial $\vec{F} = \nabla \phi$.

[PEMBAHASAN]

(a)

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy^3 & 1 + 3xy^2 & 0 \end{vmatrix} = \hat{i}(0 - 0) - \hat{j}(0 - 0) + \hat{k}(6xy^2 - 6xy^2) = 0$$

(b)
$$2xu^{3\hat{i}} + (1 + 3x^2u^2)$$

 $2xy^{3}\hat{i} + (1 + 3x^{2}y^{2})\hat{j} = \left(\frac{\partial\phi}{\partial x}\hat{i} + \frac{\partial\phi}{\partial y}\hat{j} + \frac{\partial\phi}{\partial z}\hat{k}\right)$

•

$$\frac{\partial \phi}{\partial x} = 2xy^3$$

$$\int \partial \phi = \int 2xy^3 dx$$

$$\phi = x^2y^3 + f(y)$$

_

$$\frac{\partial \phi}{\partial y} = 3x^2y^2 + f'(y)$$

$$1 + 3x^2y^2 = 3x^2y^2 + f'(y)$$

$$f'(y) = 1$$

$$f(y) = y$$

maka:

$$\boxed{\phi = x^2 y^3 + y}$$

2. **[SOAL**]

Diberikan $I = \oint_C (x-y) dx + (x+y) dy$. Jika C kurva tertutup yang membatasi daerah $y = x^3$ dan $x = y^2$

- (a) Hitung integral tersebut tanpa menggunakan teorema Green.
- (b) Hitung integral tersebut dengan menggunakan teorema Green.

[PEMBAHASAN]

•
$$I = \oint_C (x - y) dx + (x + y) dy$$

- C kurva tertutup yang membatasi daerah $y=x^3$ dan $x=y^2$
- (a) Hitung integral tersebut tanpa menggunakan teorema green

•
$$\mathbf{y} = \mathbf{x}^3$$

 $x = t, dx = dt$
 $y = t^3, dy = 3t^2$

$$\int_0^1 (t - t^3) dt + (t + t^3) 3t^2 dt = \int_0^1 t + 2t^3 + 3t^5 dt$$

$$= \frac{1}{2}t^2 + \frac{1}{2}t^4 + \frac{1}{2}t^6 \Big|_0^1$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= \frac{3}{2}$$

•
$$\mathbf{x} = \mathbf{y^2}$$

 $x = t^2$, $dx = 2t dt$
 $y = t$, $dy = dt$

$$\int_{1}^{0} (t^{3} - t)2t \, dt + (t^{2} + t) \, dt = \int_{1}^{0} 2t^{3} - t^{2} + t \, dt$$

$$= \frac{1}{2}t^{4} - \frac{1}{3}t^{3} + \frac{1}{2}t^{2} \Big|_{1}^{0}$$

$$= \left(\frac{1}{2} - \frac{1}{3} + \frac{1}{2}\right) \Big|_{1}^{0}$$

$$= -\frac{1}{2} + \frac{1}{3} - \frac{1}{2}$$

$$= -\frac{2}{3}$$

$$\mathrm{Hasil}: \frac{3}{2} + \left(-\frac{2}{3}\right) = \frac{5}{6}$$

(b) Hitung integral tersebut dengan menggunakan teorema Green.

$$\oint_C M \, dx + N \, dy = \iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dx \, dy$$

$$\oint_C (x - y) \, dx + (x + y) \, dy = \iint_R 1 - (-1) \, dx \, dy = \iint_R 2 \, dx \, dy$$

$$= \int_{x=0}^1 \int_{y=x}^{\sqrt{x}} 2 \, dx \, dy = \int_{x=0}^1 2y \Big|_{x^3}^{\sqrt{x}} \, dx$$

$$= \int_{x=0}^1 2\sqrt{x} - 2x^3 \, dx = 2\left(\frac{2}{3}x^{\frac{3}{2}} - \frac{1}{4}x^4\right) \Big|_0^1$$

$$= 2\left(\frac{2}{3} - \frac{1}{4}\right) = 2\left(\frac{8 - 3}{12}\right)$$

$$= \frac{5}{6}$$

Hasil:
$$\frac{5}{6}$$

3. **[SOAL**]

Gunakan teorema Stokes untuk menghitung $\oint_C \mathbf{F} \cdot d\mathbf{r}$ dengan $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$ dan C adalah segitiga dengan titik sudut (1,0,0), (0,1,0), (0,0,1) terorientasikan searah dengan putaran jarum jam bila dilihat dari atas.

[PEMBAHASAN]

Teorema Stokes menyatakan bahwa $\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\mathbf{\nabla} \times \mathbf{F}) \cdot n \, dS.$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} = (0 - y)\mathbf{i} - (z - 0)\mathbf{j} + (0 - x)\mathbf{k} = -y\mathbf{i} - z\mathbf{j} - x\mathbf{k}$$

Persamaan bidang S adalah x+y+z=1. Normal vektor bidang S adalah $\boldsymbol{n}=\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$. Sehingga

$$dS = \frac{\boldsymbol{n}}{\|\boldsymbol{n}\|} dA = \frac{1}{\sqrt{3}} (\boldsymbol{i} + \boldsymbol{j} + \boldsymbol{k}) dA$$

Kemudian akhirnya didapatkan

$$\iint_{S} (\mathbf{\nabla} \times \mathbf{F}) \cdot n \, dS = \iint_{S} (-y\mathbf{i} - z\mathbf{j} - x\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) \frac{1}{\sqrt{3}} dA$$

$$= \frac{1}{\sqrt{3}} \iint_{S} (-y - z - x) dA$$

$$= \frac{1}{\sqrt{3}} \int_{0}^{1} \int_{0}^{1-x} (-x - y - (1 - x - y)) \, dy dx$$

$$= \frac{1}{\sqrt{3}} \int_{0}^{1} \int_{0}^{1-x} (-1) \, dy dx$$

$$= \frac{-1}{\sqrt{3}} \int_{0}^{1} 1 - x \, dx$$

$$= \frac{1}{\sqrt{3}} \int_{0}^{1} x - 1 \, dx$$

$$= \frac{1}{\sqrt{3}} \left(\frac{x^{2}}{2} - x\right) \Big|_{0}^{1}$$

$$= \frac{1}{\sqrt{3}} \left(\frac{1}{2} - 1\right) = -\frac{1}{2\sqrt{3}}$$

4. **[SOAL]**

Hitung fluks medan vektor $\iint_S \mathbf{F} \cdot n \, dS$ jika diberikan vektor gaya $\mathbf{F} = 4x\mathbf{i} + 2y^2\mathbf{j} + z^2\mathbf{k}$ menembus permukaan tertutup S yang dibatasi oleh $x^2 + y^2 = 4$ dan z = 3.

[PEMBAHASAN]

• Dengan Teorema Gauss

$$\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iiint_{V} (\nabla \cdot \vec{F}) \, dV.$$

• Divergensi \vec{F} :

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} (4x) + \frac{\partial}{\partial y} (-2y^2) + \frac{\partial}{\partial z} (z^2).$$
$$= 4 - 4y + 2z.$$

• Integral volume:

Vdibatasi $x^2 + y^2 = 4 \rightarrow r = 2, \, z = 0 \,$ sampa
iz = 3. Ubah ke koordinat kutub.

$$\iiint_{V} (4 - 4y + 2z) \, dV = \iiint_{V} (4 - 4(r\sin\theta + 2z) \, r \, dr \, d\theta \, dz$$

$$= \int_{0}^{3} \int_{0}^{2\pi} \int_{0}^{2} (4r - 4r^{2}\sin\theta + 2zr) \, dr \, d\theta \, dz$$

$$= \int_{0}^{3} \int_{0}^{2\pi} \left[2r^{2} - \frac{4r^{3}\sin\theta}{3} + 2r^{2} \right]_{0}^{2} \, d\theta \, dz$$

$$= \int_{0}^{3} \int_{0}^{2\pi} \left[8 - \frac{32}{3}\sin\theta + 4z \right] \, d\theta \, dz$$

$$= \int_{0}^{3} \left[16\pi + \frac{32}{3}\cos\theta + 4z\theta \right]_{0}^{2\pi} \, dz$$

$$= \int_{0}^{3} \left[16\pi + 0 + 8\pi z \right] \, dz$$

$$= \left[16\pi z + 4\pi z^{2} \right]_{0}^{3}$$

$$= 48\pi + 36\pi = 84\pi$$