QxQ Trigonometry Cheat Sheet

Unit Circle

Radians:

Trigonometric Functions:

 $\angle AOB = \theta$ (arc length AP)

$$\cos \theta = x = OB$$

Radians to degrees:

$$\sin \theta = y = AB$$

 $\angle AOB = \frac{180^0}{\pi}\theta = \phi^0$

$$\tan \theta = \frac{y}{x} = \frac{AB}{OB}$$

Degrees to Radians

$$\angle AOB = \frac{\pi}{180^0} \phi^0 = \theta$$

$$\cos \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$
$$\cot \theta = \frac{1}{\tan \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

From the unit circle:

$$\sin^2\theta + \cos^2\theta = 1$$

Common Angles to Remember

ϕ^0	θ (rad)	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	1	0
30°	π/6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45 ⁰	$\pi/4$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	π/3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90 ⁰	$\pi/2$	1	0	8

Sign of Trigonometric Functions (sin,cos,tan)

*large fonts show which functions are +ve in that quadrant

$$\sin(-\theta) = -\sin\theta$$
, $\cos(-\theta) = \cos\theta$, $\tan(-\theta) = -\tan\theta$

 $\sin \theta$, $\tan \theta < 0$

 $\sin \theta$, $\cos \theta < 0$

Shift by $\pi/2$

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta, \sin\left(\theta - \frac{\pi}{2}\right) = -\cos\theta$$

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta, \cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$$

Shift by π

$$\sin(\theta + \pi) = -\sin\theta$$
, $\sin(\theta - \pi) = -\sin\theta$
 $\cos(\theta + \pi) = -\cos\theta$, $\cos(\theta - \pi) = -\cos\theta$

Coordinate Systems

Polar to Cartesian	Cartesian to Polar
$x = r \sin \theta$ $y = r \cos \theta$	$r = \sqrt{x^2 + y^2}$ $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

How to get convert tan-1 from a calculator

(*For details and reasoning please see @668 on Piazza)

For $(x, y) = (\cos \theta, \sin \theta)$, and a calculator value θ_{calc} , where for usual calculators $-\frac{\pi}{2} < \theta_{calc} < \frac{\pi}{2}$

- If x > 0, y > 0; then $\theta = \theta_{calc}$
- If x > 0, y < 0; then $\theta = \theta_{calc} = \theta_{calc} + 2\pi$
- If x < 0, y > 0; then $\theta = \theta_{calc} + \pi$
- If x < 0, y < 0; then $\theta = \theta_{calc} + \pi$