Elements of Data Science - F21

Midterm Review

This is intended as a guide and is not guaranteed to be comprehensive.

Material considered fair for the exam is anything from class and slides.

Data Science Tools

- Data Science workflow
- Jupyter+Ipython Notebooks
- conda Virtual Environments
- using Git to pull code and materials

Python Intro/Review Numpy and Pandas

- Importing modules
- Defining functions
- String Formatting
- What are Exceptions?
- Using assert
- Basic Python data types
- Collections module: Counter, defaultdict
- Python flow control: if: elif: else: , for x in xs:
- Sorting with lambda functions as the key
- List Comprehensions
- Numpy
 - arrays
 - indexing/slicing
 - Boolean masks and bitwise operations
- Pandas
 - Series
 - DataFrames
 - indexing/slicing
 - .loc[]
 - o .iloc[]
 - .describe()
 - .info()
 - .shape

Visualization and Data Exploration

- Matplotlib
 - plotting using matplotlib
 - using plt.subplots()
 - modifiying plots using ax
- Variable Types
- Central tendencies
 - mean
 - median

- Spread
 - variance
 - std deviation
 - IQR
- Correlation
 - Pearson Correlation Coefficient
- Univarite Plotting
 - histogram
 - boxplots
- Bivariate Plotting
 - scatterplot
 - barplot
 - jointplot
 - pairplot

Hypothesis Testing

- Random Sampling vs Population Distribution
- Sample Statistic
- Confidence Intervals
- Normal (Gaussian) Distribution
 - Standard Normal Distribution
 - Z-Score
- Central Limit Theorem
- Bootstrap Sampling
- A/B Test
- Hypothesis Testing
 - Type I and II error
 - Significance and Power
 - Permutation Tests
 - o One-tailed vs Two-tailed
 - p-values
- Calculating "How many observations?"
 - what 4 values are related?
- Multi-Armed Bandit
 - benefits of using
 - greedy
 - o epsilon-greedy

Intro to ML

- Dimensions of ML
 - Interpretation vs Prediction
 - Learning Paradigms (SL,UL,etc.)
 - Regression vs Classification
 - o Binary, Multiclass, Multilabel Classification
- sklearn common functions
 - ∘ .fit()
 - .predict()
 - .predict_proba()

Machine Learning Models

- Simple Linear Regression
 - Residuals in linear models
 - Interpreting Coefficients of OLS
 - Colinearity
- Multiple Linear Regression
- Logistic Regression
- Concept of Gradient Descent
- Perceptron/Multilayer Perceptron
- One vs. Rest for Multiclass/Multilabel
- k-Nearest Neighbor
- Decision Trees
- Ensembles
 - Random Forest
 - Gradient Boost
 - Stacking