

전기/전자 기초

개요

• 모든 전자 장비들은 전기를 기반으로 움직인다.

학교에서 이미 배웠던(하지만 기억은 흐릿한?)
 전압, 전류, 저항 등의 기초지식들을 복습해 보자.

 전자 회로를 접할 때 자주 나타나는 개념들을 이해해 보자.

전기(Electricity)란?

- 원자의 구성
 - 양성자(proton): +전하
 - 전자(electron) : -전하
 - 중성자(neutron)
- 전자의수 == 양성자의 수
 - 평상시에는 전기적으로 중성

• +전하와 -전하의 관계

전하(electric charge)란?

- 물체가 띠고 있는 전기적 성질
 - 양(+)전하, 음(-)전하
- 모든 전기현상의 근원이 되는 실체
- 기호 : Q / 단위 : C(쿨롱, Coulomb)
 - 1C: 6.24 x 10¹⁸ 개의 전자(혹은 양성자)

전류(Current)

- 기호 : I / 단위 : A(암페어)
- 전자가 전압차이에 의해 이동하는 것
- A: 단위시간 당 전자의 이동량
- 1A: 1초 동안 1C의 전자 이동
 1C = 6.24 x 10¹⁸개의 전자
- 물의 비유 : 물이 흐르는 것

전압(Voltage)

- 기호: V / 단위: V(Volt)
- 전위
 - 전기의 위치에너지
- 1V: 1초 동안 1C을 운반할 수 있는 전압
- 물의 비유
 - 수위가 높을 수록,
 - 많은 양의 물이 흐른다.

수압 실험 (기준점이 중요하다.)

통에 구멍을 뚫음

수압이 높을 때

수압이 낮을 때

전압 차이에 따른 전류의 세기

전압의 실체:양전하와 음전하의 관계

높은 전압

• 많은 수의 양성자가 많은 수의 전자를 끌어당긴다.

낮은 전압

• 약간의 양성자가 약간의 전자를 끌어당긴다.

아주 낮은 전압

• 전하가 없을 때에도 전자를 약간은 끌어당긴다.

저항(Resistor)

- 기호 : R / 단위 : ohm(Ω, 옴)
- 전류의 흐름을 방해하는 모든 물질
- 전류의 양을 제어하는 용도로 사용 될 수 있다.
- 저항과 물의 비유

저항(Resistor)

- 저항의 실체
 - 원자의 진동: 모든 원자들은 항상 진동하고 있다.
 - <u>- 진동이 클</u> 수록 => 전자가 지나가기 어려워진다.

만화로 배우는 전기 98p, 저항에 대한 설명

음의 법칙(Ohm's Law)

• I=V/R

직렬 연결과 병렬 연결

- 직렬: 전압 변화x / 저항 2배 / 전류 ½배
- 병렬: 전압 변화x / 저항 ½배 / 전류 2배

전류의 세기 체험하기

- 빛의 세기로 체험하기
 - 전압: 9V
 - LED 내부저항: 1800음
 - 전류: 5mA = 0.005A
- 혀로 체험하기
 - 전압: 9V
 - 혀의 저항: 50000옴
 - 전류: 0.18mA

전류의 세기 체험하기

• 빛의 세기로 체험하기

- 전압: 9V

- LED 내부저항: 1800옴

- 전류: 5mA = 0.005A

• 혀로 체험하기

- 전압: 9V

- 혀의 저항: 50000옴

- 전류: 0.18mA

정전압 어댑터의 용량

• 전압: 일정 ex> 항상 5V

• 전류: 제품차이 ex> 2A(=2000mA) <= 최대 2A 공급 가능

실수로 낮은 저항은 연결하거나 쇼트시키면 안 된다. 2A는 엄청 큰 전류이다!

쇼트란?

- Short == short-circuit == 단락 == 短駱 - 짧게 이어지다.
- +와 -가 바로 연결되거나, 저항값이 0에 가까운 경우

- 순간적으로 큰 전류가 흐르고, 이로 인해 열이 발생한다.
 - 주변의 사물이 이 열을 견디지 못할 경우 타버린다.

건전지와 껌종이로 불 붙이기

- https://www.youtube.com/watch?v=_LAunryCu9c
 - 껌종이 = 은박지 = 알루미늄

전기의 위험성

- 우리 몸에 damage를 입히는 전류의 양: 50mA 이상
- 높은 전압에 접촉할수록 큰 전류가 흐른다.
- 인체의 저항: 조건에 따라 500음~100000음
 - 손발이 젖으면 저항이 작아짐, 건조하면 저항이 높아짐
- 위험한 전압: 25V 이상
- 팁: 감전의 위험이 의심되면 손등쪽 방향으로 손가락을 대어본다. 근육은 전류가 흐르면 안쪽으로 오그라 들기 때문, 반대로 손바닥쪽으로 접촉하면 대상을 더 만지게 된다.

전기의 위험성

- 0.2mA: 찌릿찌릿함
- 20mA : 따끔함
- 100mA : 고통을 느낌
- 200mA : 0.1초 안에 사망
- 500mA: 0.01초 안에 사망
- 1000mA : 0.001초 안에 사망

전기의 위험성

- 5000v 감전 사고
 - https://www.youtube.com/watch?v=duK593IS43Y
 - https://www.youtube.com/watch?v=wgYWDfZTbMA

전압 차이(전위차)의 중요성

Datasheet란?

- 전자 부품의 스펙, 특성, 사용법이 정리된 문서
- 즉, 특정 부품에 대한 사용 매뉴얼

DATA SHEET

AMD

Am29F400B

4 Megabit (512 K x 8-Bit/256 K x 16-Bit)
CMOS 5.0 Volt-only Boot Sector Flash Memory

DISTINCTIVE CHARACTERISTICS

- Single power supply operation
 - 5.0 volt-only operation for read, erase, and program operations
 - Minimizes system level requirements
- Manufactured on 0.32 µm process technology
 - Compatible with 0.5 µm Am29F400 device
- High performance
 - Access times as fast as 45 ns
- Low power consumption (typical values at 5 MHz)
 - 1 µA standby mode current
 - 20 mA read current (byte mode)
 - 28 mA read current (word mode)
 - 30 mA program/erase current
- Flexible sector architecture
- Flexible sector architecture
 - One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and seven 64 Kbyte sectors (byte mode)
 - One 8 Kword, two 4 Kword, one 16 Kword, and seven 32 Kword sectors (word mode)
 - Supports full chip erase
 - Sector Protection features:

A hardware method of locking a sector to

Embedded Algorithms

- Embedded Erase algorithm automatically preprograms and erases the entire chip or any combination of designated sectors
- Embedded Program algorithm automatically writes and verifies data at specified addresses
- Minimum 1,000,000 program/erase cycles per sector guaranteed
- 20-year data retention at 125° C
 - Reliable operation for the life of the system
- Package option
 - 48-pin TSOP
 - 44-pin SO
 - Known Good Die (KGD) (see publication number 21258)
- Compatibility with JEDEC standards
 - Pinout and software compatible with singlepower-supply Flash
 - Superior inadvertent write protection
- Data# Polling and toggle bits
 - Provides a software method of detecting program or erase operation completion
- Ready/Busy# pin (RY/BY#)

전기 관련 단위 체계

abbreviation	Means	Multiply unit by	<u>Or</u>
р	pico	.00000000001	10 -12
n	nano	.00000001	10 -9
μ	micro	.000001	10 -6
m	milli	.001	10 ⁻³
	Unit	1	10 ⁰
k	kilo	1,000	10 ³
M	mega	1,000,000	10 ⁶
G	giga	1,000,000,000	10 ⁹

풀업(Pull-Up) 저항

- 입력 핀에는 항상 HIGH 혹은 LOW 신호를 주어야 한다.
 - 신호가 없다면 HIGH도 LOW도 아닌 플로팅(Floating) 상태가 된다
- 스위치 off: 전류는 IC로
- 스위치 on : 전류는 gnd로
- 저항 존재 이유
 - U력으로 들어가는 전류량 제어
 - GND로 연결될 때 쇼트 방지

• Pull-Up의 의미 : 전위를 High 레벨로 확실하게 끌어 올려줌

풀다운(Pull-Down) 저항

- 스위치 off: 전류는 gnd로
- 스위치 on : 전류는 IC로
- Pull-Down의 의미: 전위를 Low 레벨로 확실하게 끌어 내려줌

풀업/풀다운의 중요성

- HIGH와 LOW를 명확히 하기 위하여
 - Floating 상태 방지
- 전류 소모 방지
 - 풀업 상태일 때 불필요한 전류 흐름 차단
 - 기본 풀다운 상태로 놔두면 전류가 계속 GND로 흐름
- 오작동 방지
 - 만약 어떤 입력 핀이 외부 메모리나 센서에 연결되어 있다고 가정할 때, 풀업/풀다운 처리가 되어있지 않다 면 초기화 작업 전까지 어떤 오작동을 일으킬지 모른다.

Active Low

• 0(Logic Low)인 상태를 "참"으로 보는 input

- enable
- /enable
- #enable
- enable#
- _enable
- enable_n

```
□ PA3 (AD3)
 RXD0/(PDI) PE0
                                                                     ☐ PA4 (AD4)
                                                                      PA5 (AD5)
(TXD0/PDO)PE1 🗌
(XCK0/AIN0) PE2
                                                                      PA6 (AD6)
(OC3A/AIN1) PE3
                                                                     □ PA7 (AD7)
                                                                     ☐ PG2(ALE)
(OC3B/INT4) PE4
(OC3C/INT5) PE5
                                                                     PC7 (A15)
                                                                     ☐ PC6 (A14)
   (T3/INT6) PE6
                                                                     PC5 (A13)
                                                                     ☐ PC4 (A12)
                                                                     ☐ PC3 (A11)
     (MOSI) PB2
                                                                    □ PC2 (A10)
      (OC0) PB4 □
                                                                  35 PC0_(A8)
                                                                    PG (RD)
     (OC1A) PB5
                                                                    □ PG((WR)
    (OC1B) PB6 □
                                            SCL/INT0) PD0
```

Active Low

- #RESET의 예
 - LOW 전압을 가할 때 "reset"이 된다.
 - 반면 HIGH 전압일 때는 "reset"되지 않는다.

• 장점

- Active High 회로보다 전류를 덜 소비한다.
 - Active High에선 항상 GND에 묶여있어야 하므로 전류가 흘러 나가게 된다.

감사합니다.