Estadística Inferencial

Clifford Torres

Facultad de Ciencias (UNI)

September 24, 2019

Intervalos de confianza

Sea el tamaño de la muestra n:

- ightharpoonup n > 30 muestra de tamaño grande.
- ▶ $n \le 30$ muestra de tamaño pequeño.

Intervalos de confianza

- No siempre se tiene la posibilidad de contar con una muestra grande.
- ▶ Vamos a focalizarnos en muestras pequeñas cuando el estadístico es la media muestral.
- Recordemos porque necesitábamos una muestra grande: Siempre y cuando las observaciones sean i.i.d., y la distribución poblacional no demasiado asimétrica, una muestra grande nos aseguraba que
 - ► La distribución muestral de la media se aproximaba a la normal a medida que *n* (tamaño de la muestra) crecía
 - ▶ Y el estimador del error estándar: $\sigma_{\hat{\theta}} = \frac{s}{\sqrt{n}}$ es confiable, donde s es el estimador de σ , el desvío poblacional que por lo general es desconocido.

¿Qué ocurre cuando n < 30?

- ▶ El TLC asevera que la distribución muestral de X̄ es aprox. Normal cualquiera sea el tamaño de la muestra siempre y cuando la distribución poblacional sea aprox. normal .
- Sin embargo, no es fácil de verificar en muestras pequeñas la condición de normalidad. Ambas muestras (n = 10 y n = 1000) provienen de una N(0,1)

► Es difícil determinar a partir de una muestra pequeña cual es la distribución de la que provienen

¿Qué ocurre cuando n < 30?

- ▶ Vimos que si $n \ge 30$, y σ es desconocido, estimamos σ con s.
- ▶ Sin embargo, cuando n < 30 y σ es desconocido (casi siempre), también podemos utilizar s como el estimador natural de σ , pero el hecho de que n sea pequeño torna a s menos confiable.
- Para mitigar esta mayor incertidumbre en s y continuar reteniendo la confianza del 95% en la construcción de los intervalos de confianza, deberíamos entonces aumentar el ancho del intervalo.
- ► Luego deberíamos trabajar con una distribución que de cuenta de la necesidad de un intervalo más ancho.
- ▶ Por lo tanto, la distribución normal estandarizada Z es reemplazada por la t de Student.

La distribución de t Student

- La t de Student también es simétrica alrededor de la media=0, con forma de campana, pero con colas más pesadas, i.e. es más probable tener más observaciones más allá de 2 desvíos estándar respecto de la media si se la compara con la distr. Normal estándar.
- Las colas más pesadas son las que van a mitigar la mayor incertidumbre originada en el cálculo del $\sigma_{\hat{\theta}}$

La distribución de t Student

- La t de Student tiene un solo parámetro, llamado grados de libertad, que determina cuan pesadas son las colas de la distribución.
- ▶ ¿Qué ocurre con la forma de la distribución cuando los grados de libertad se incrementan?

¿Cuándo y cómo se utiliza la t de Student?

- Cuando deseamos construir un intervalo de confianza para la media y el
 - $\triangleright \sigma$ desconocido
 - ► Tamaño de la muestra *n* < 30
- ▶ El intervalo de confianza (región de confianza= $1-\alpha$) se calcula de la misma manera pero en lugar de Z utilizamos t

Comparando la N(0,1) y la t

Calcular

- $P(Z \ge z_{0.025}) = 0.025$
- $P(t \ge t_{50,0.025}) = 0.025$
- $P(t \ge t_{10,0.025}) = 0.025$

La de t Student

- https://gallery.shinyapps.io/dist_calc/
- https://stattrek.com/online-calculator/ t-distribution.aspx
- http: //gauss.inf.um.es/feir/20/20A-distribuciones.html
- ▶ http://www.pwpamplona.com/wen/calcu/calcu2.htm#tv

Resumiendo...

Parámetro	Muestra	Distribución Poblacional	σ	Intervalo de confianza
Media	<i>n</i> ≥ 30	Cualquiera	Conocida	$\overline{X} \pm z_c \frac{\sigma}{\sqrt{n}}$
Media	<i>n</i> ≥ 30	Cualquiera	Desconocida	$\overline{X} \pm z_c \frac{S}{\sqrt{n}}$
Media	n < 30	Debe ser aproximadamente normal	Conocida	$\overline{X} \pm z_c \frac{\sigma}{\sqrt{n}}$
Media	n < 30	Debe ser aproximadamente normal	Desconocida	$\overline{X} \pm t_c \frac{S}{\sqrt{n}} \qquad gdl = n - 1$
Proporción	$np \ge 10$ $n(1-p) \ge 10$			$\hat{p} \pm z_c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Ejemplo

Cierta empresa está implementado un programa de adiestramiento por computadora para sus empleados. La empresa decide adiestrar a 15 empleados. La tabla muestra los tiempos de adiestramiento.

Tiempo de adiestramiento en dias							
Empleado	Tiempo	Empleado	Tiempo	Empleado	Tiempo		
1	52	6	59	11	54		
2	44	7	50	12	58		
3	55	8	54	13	60		
4	44	9	62	14	62		
5	45	10	46	15	63		

Calcular el intervalo de confianza al 95% para la media poblacional.