Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

Arthur Busquet Nunes Abreu

Trabalho de Sistemas Operacionais:

Introdução a Redes com GNU/Linux

NOVA FRIBURGO

2019

Antes de qualquer coisa é necessário configurar a rede em modo bridge, como vemos na imagem.

```
2)
                          usuario@usuario-VirtualBox: ~
                                                                            + ×
 Arquivo Editar Abas Ajuda
usuario@usuario-VirtualBox:~$ ifconfig
 Command 'ifconfig' not found, but can be installed with:
sudo apt install net-tools
usuario@usuario-VirtualBox:~$ sudo apt install net-tools
 [sudo] senha para usuario:
 Lendo listas de pacotes... Pronto
 Construindo árvore de dependências
Lendo informação de estado... Pronto
Os NOVOS pacotes a seguir serão instalados:
  net-tools
O pacotes atualizados, 1 pacotes novos instalados, O a serem removidos e 18 não
atualizados.
É preciso baixar 194 kB de arquivos.
Depois desta operação, 803 kB adicionais de espaço em disco serão usados.
Obter:1 http://cz.archive.ubuntu.com/ubuntu bionic/main amd64 net-tools amd64 1.
60+git20161116.90da8a0-lubuntu1 [194 kB]
Baixados 194 kB em 0s (501 kB/s)
 A seleccionar pacote anteriormente não seleccionado net-tools.
 (Lendo banco de dados ... 117873 ficheiros e directórios actualmente instalados.
  preparar para desempacotar .../net-tools 1.60+git20161116.90da8a0-lubuntul amd
```

Como é visível, para se usar o comando *ifconfig* é preciso instalar previamente o conjunto de ferramentas determinado net-tools.

```
usuario@usuario-VirtualBox:~$ sudo ifconfig enp0s3 down
usuario@usuario-VirtualBox:~$ sudo ifconfig enp0s3 up
usuario@usuario-VirtualBox:~$
```

Com ele instalado podemos utilizar o comando *sudo ifconfig enp0s3 down* que desconectará a máquina da rede. E o comando *sudo ifconfig enp0s3 up* que conectará a máquina a rede.

```
usuario@usuario-VirtualBox:~$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.30.44 netmask 255.255.254.0 broadcast 192.168.31.255
       inet6 fe80::8504:9efa:6ac3:3955 prefixlen 64 scopeid 0x20<link>
       inet6 fe80::62cf:e173:7205:7e55 prefixlen 64 scopeid 0x20<link>
       inet6 fe80::3bf9:4309:978d:a161 prefixlen 64 scopeid 0x20<link>
       ether 08:00:27:e0:4a:aa txqueuelen 1000 (Ethernet)
       RX packets 6918 bytes 8767620 (8.7 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 3307 bytes 238478 (238.4 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Loopback Local)
       RX packets 147 bytes 14020 (14.0 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 147 bytes 14020 (14.0 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
usuario@usuario-VirtualBox:~$
```

Através do comando *ifconfig* conseguimos visualizar as seguintes informações:

O IP da máquina: 192.168.30.44 O endereço MAC: 08:00:27:e0:4a:aa A máscara de rede: 255.255.254.0

```
usuario@usuario-VirtualBox:~$ sudo route
Tabela de Roteamento IP do Kernel
default
Destino
             Roteador MáscaraGen.
                                          Opções Métrica Ref
                                                             Uso Iface
              192.168.31.254 0.0.0.0
                                          UG
                                                100 0
                                                              0 enp0s3
192.168.30.0 0.0.0.0
                            255.255.254.0
                                                100
                                                       0
                                                               0 enp0s3
usuario@usuario-VirtualBox:~$
```

O gateway padrão é exibido quando visualizamos as entradas do roteador, utilizando o comando *sudo route*. Logo o gateway padrão é: 192.168.30.44

3)

```
usuario@usuario-VirtualBox:~$ sudo nslookup www.cefet-rj.br
Server: 127.0.0.53
Address: 127.0.0.53#53

Non-authoritative answer:
www.cefet-rj.br canonical name = nginx.cefet-rj.br.
Name: nginx.cefet-rj.br
Address: 200.9.149.88

usuario@usuario-VirtualBox:~$
```

O comando utilizado para exibir informações de um site, incluindo o DNS é o **sudo nslookup**, seguido do endereço da página. Com isso, visualizamos que seu DNS é 200.9.149.88.

```
usuario@usuario-VirtualBox:~$ sudo apt-get install iperf
Lendo listas de pacotes... Pronto
Construindo árvore de dependências
Lendo informação de estado... Pronto
Os NOVOS pacotes a seguir serão instalados:
 iperf
O pacotes atualizados, 1 pacotes novos instalados, O a serem removidos e 62 não
atualizados.
É preciso baixar 60,5 kB de arquivos.
Depois desta operação, 176 kB adicionais de espaço em disco serão usados.
Obter:1 http://cz.archive.ubuntu.com/ubuntu bionic-updates/universe amd64 iperf
amd64 2.0.10+dfsgl-lubuntu0.18.04.2 [60,5 kB]
Baixados 60,5 kB em 0s (132 kB/s)
A seleccionar pacote anteriormente não seleccionado iperf.
(Lendo banco de dados ... 117921 ficheiros e directórios actualmente instalados.
A preparar para desempacotar .../iperf 2.0.10+dfsgl-lubuntu0.18.04.2 amd64.deb
A descompactar iperf (2.0.10+dfsq1-lubuntu0.18.04.2) ...
Configurando iperf (2.0.10+dfsg1-lubuntu0.18.04.2) ...
A processar 'triggers' para man-db (2.8.3-2ubuntu0.1) ...
usuario@usuario-VirtualBox:~$
```

Para ser habilitado a realizar as operações solicitadas, antes de tudo, deve-se instalar o iperf, através do comando **sudo apt-get install iperf.**

a)

```
usuario@usuario-VirtualBox:~$ iperf -c www.cefet-rj.br -p 80
Client connecting to www.cefet-rj.br, TCP port 80
TCP window size: 85.0 KByte (default)
 3] local 192.168.30.44 port 38762 connected with 200.9.149.88 port 80
write failed: Connection reset by peer
[ ID] Interval Transfer
                                Bandwidth
  3] 0.0- 0.0 sec 498 KBytes 126 Mbits/sec
usuario@usuario-VirtualBox:~$
usuario@usuario-VirtualBox:~$ sudo iperf -c www.google.com -p 80
[sudo] senha para usuario:
Client connecting to www.google.com, TCP port 80
TCP window size: 85.0 KByte (default)
[ 3] local 192.168.30.44 port 37910 connected with 172.217.30.4 port 80
write failed: Connection reset by peer
[ ID] Interval Transfer
                                Bandwidth
  3] 0.0- 0.2 sec 527 KBytes 21.3 Mbits/sec
usuario@usuario-VirtualBox:~$
```

O desempenho externo foi avaliado utilizando o comando **sudo iperf** -c <u>www.cefet-rj.br</u> -p 80, no qual o parâmetro c indica que a execução será feita no modo cliente e o parâmetro p altera a porta de comunicação (no caso, foi escolhida a porta 80).

Foi utilizado o site do google como comparativo, e baseado nos resultados é visível que o site do cefet possui um desempenho externo bem inferior, com menor quantidade de dados enviados em um tempo consideravelmente maior.

b)

```
usuario@usuario-VirtualBox:~$ iperf -c 200.9.149.88 -p 80

Client connecting to 200.9.149.88, TCP port 80

TCP window size: 85.0 KByte (default)

[ 3] local 192.168.30.44 port 38764 connected with 200.9.149.88 port 80

write failed: Connection reset by peer

[ ID] Interval Transfer Bandwidth

[ 3] 0.0- 0.0 sec 437 KBytes 132 Mbits/sec

usuario@usuario-VirtualBox:~$ ■
```

```
usuario@usuario-VirtualBox:~$ sudo iperf -c 172.217.30.4 -p 80

Client connecting to 172.217.30.4, TCP port 80

TCP window size: 85.0 KByte (default)

[ 3] local 192.168.30.44 port 37912 connected with 172.217.30.4 port 80

write failed: Connection reset by peer

[ ID] Interval Transfer Bandwidth

[ 3] 0.0- 0.0 sec 467 KBytes 108 Mbits/sec

usuario@usuario-VirtualBox:~$ ■
```

A avaliação do desempenho internamente foi feita de forma nem similar ao item anterior, com a diferença de que ao invés de utilizar o "nome" do site, procuramos pelo seu endereço. Comparando os resultados do site do CEFET com o do Google chegamos a conclusão de que o segundo continua tendo um desempenho melhor, porém com uma diferença menor.

c)

Para avaliar o desempenho do DNS utiliza-se um sintaxe similar a usada na avaliação de desempenho interna, com a distinção de que selecionamos a porta 53 e, em seguida, o parâmetro -u. Esse parâmetro serve para selecionar o UDP(User Datagram Protocol) como protocolo de transporte.

d)

```
usuario@usuario-VirtualBox:~$ sudo iperf -c 8.8.8.8 -p 53 -u

Client connecting to 8.8.8.8, UDP port 53

Sending 1470 byte datagrams, IPG target: 11215.21 us (kalman adjust)

UDP buffer size: 208 KByte (default)

[ 3] local 192.168.30.44 port 55121 connected with 8.8.8.8 port 53

[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec

[ 3] Sent 893 datagrams

[ 3] WARNING: did not receive ack of last datagram after 10 tries.

usuario@usuario-VirtualBox:~$ ■
```

Avaliando o DNS do google cujo IP do servidor primário é 8.8.8.8, vemos que a velocidade e desempenho dos dois é igual.

```
usuario@usuario-VirtualBox:~$ ping -b 192.168.31.255
WARNING: pinging broadcast address
PING 192.168.31.255 (192.168.31.255) 56(84) bytes of data.
64 bytes from 192.168.31.254: icmp_seq=1 ttl=64 time=0.837 ms
64 bytes from 192.168.30.9: icmp_seq=1 ttl=255 time=1.66 ms (DUP!)
64 bytes from 192.168.30.8: icmp_seq=1 ttl=255 time=3.37 ms (DUP!)
^C
--- 192.168.31.255 ping statistics ---
1 packets transmitted, 1 received, +2 duplicates, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.837/1.960/3.375/1.056 ms
usuario@usuario-VirtualBox:~$ ■
```

Após dar o comando *ping -b 192.168.31.255*, no qual o parâmetro -b indica que se trata de um ping com broadcast, vemos que três máquinas responderam. Vale ressaltar que foi o utilizado o comando Ctrl+C para encerrar o processo, uma vez que, eu já havia feito o teste anteriormente e, consequentemente, já sabia que após essas três máquinas ocorreriam apenas repetições.

inet 192.168.30.44 netmask 255.255.254.0 broadcast 192.168.31.255 Converter número decimal em binário Número decimal Número binário 11110 Converter número decimal em binário Número decimal 254

Operação Lógica do AND: 111111110 e 11110 = 00011110 00011110 em binário = 30 em decimal X = 30

b) Y= 200 + numeroNaChamada Y= 200 + 02 = 202

Número binário

11111110

```
usuario@usuario-VirtualBox:~$ sudo ifconfig enp0s3 192.168.30.202
[sudo] senha para usuario:
usuario@usuario-VirtualBox:~$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.30.202 netmask 255.255.255.0 broadcast 192.168.30.255
        inet6 fe80::8504:9efa:6ac3:3955 prefixlen 64 scopeid 0x20<link>
        ether 08:00:27:e0:4a:aa txqueuelen 1000 (Ethernet)
        RX packets 10721 bytes 9464196 (9.4 MB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 3859 bytes 283176 (283.1 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Para alterar o endereço IP utilizou-se o seguinte comando: **sudo ifconfig enp0s3 192.30.202**. O termo **enp0s3** indica que será realizada a substituição do IP atual para aquele que vem em seguida no comando. Após isso, podemos ver que o endereço foi realmente alterado, como está na imagem acima.

6)

usuario@usuario-VirtualBox:~\$ sudo nano /etc/hostname

```
GNU nano 2.9.3 /etc/hostname Modificado
arthurabreu
```

Para alterar o nome da máquina realiza-se um processo bem simples. Basta acessar o arquivo /etc/hostname através do comando sudo nano /etc/hostname e modificar o nome da máquina que lá se encontra pelo nome de sua preferência, no caso: arthurabreu.

7)

usuario@usuario-VirtualBox:~\$ sudo nano /etc/hosts

```
GNU nano 2.9.3
                                                                    Modificado
                                     /etc/hosts
127.0.0.1
               localhost
127.0.1.1
               usuario-VirtualBox
192.168.30.229 savioteixeira
192.168.30.215 joaogoncalves
192.168.30.227 pedrolabrador
192.168.40.218 lucassilva
# The following lines are desirable for IPv6 capable hosts
      ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
f02::1 ip6-allnodes
ff02::2 ip6-allrouters
^G Obter Ajud^O Gravar
                         'W Onde está?'K Recort txt Justificar'C Pos atual
               Ler o arg ^\ Substituir^U Colar txt ^T VerfOrtog ^
```

O processo para adicionar máquinas no arquivo /etc/hosts é simples e parecido com o processo da questão anterior. Para isso, envia o comando **sudo nano /etc/hosts** que permitirá sua entrada no arquivo, e uma vez lá dentro, o usuário pode guardar os endereços IP seguido do nome da máquina de quem desejar, como é visto no exemplo acima.

```
PING pedrosilva (192.168.40.226) 56(84) bytes of data.

64 bytes from pedrosilva (192.168.40.226): icmp_seq=1 ttl=64 time=1.74 ms

64 bytes from pedrosilva (192.168.40.226): icmp_seq=2 ttl=64 time=1.03 ms

64 bytes from pedrosilva (192.168.40.226): icmp_seq=3 ttl=64 time=0.948 ms

64 bytes from pedrosilva (192.168.40.226): icmp_seq=4 ttl=64 time=0.956 ms

64 bytes from pedrosilva (192.168.40.226): icmp_seq=5 ttl=64 time=0.920 ms

PING pedrolabrador (192.168.40.227) 56(84) bytes of data.

64 bytes from pedrolabrador (192.168.40.227): icmp_seq=1 ttl=64 time=2.43 ms

64 bytes from pedrolabrador (192.168.40.227): icmp_seq=2 ttl=64 time=1.00 ms

64 bytes from pedrolabrador (192.168.40.227): icmp_seq=3 ttl=64 time=1.48 ms

64 bytes from pedrolabrador (192.168.40.227): icmp_seq=3 ttl=64 time=1.48 ms

65 bytes from pedrolabrador (192.168.40.227): icmp_seq=4 ttl=64 time=1.00 ms
```

Como podemos ver acima, segue dois exemplos do comando *ping* <enderecoDaMaquina>.

9)

```
usuario@usuario-VirtualBox:~$ sudo ping -b 192.168.40.255
WARNING: pinging broadcast address
PING 192.168.40.255 (192.168.40.255) 56(84) bytes of data.
```

Acima encontra-se um exemplo de ping broadcast.