# Group Theory Notes

Basu Dev Karki

# Content

| 1                                   | Subgroups |                                                      | 2  |
|-------------------------------------|-----------|------------------------------------------------------|----|
|                                     | 1.1       | Definitions and Examples                             | 2  |
|                                     | 1.2       | Centralizers and Normalizers, Stabilizer and Kernels | 5  |
|                                     | 1.3       | Cyclic and Cyclic Subgroups                          | 9  |
|                                     |           | Subgroups Generated by Subsets of a Group            | 14 |
| 2 Quotients Groups and Homomorphism |           | 18                                                   |    |
|                                     | 2.1       | Definition and Examples                              | 18 |
|                                     | 2.2       | More on Cosets and Lagrange's Theorem                | 24 |

### 1 Subgroups

First, we'll define some things which will come in handy later on.

#### 1.1 Definitions and Examples

**Definition 1.1.** A subgroup H of G is subset of G such that every group axiom holds on H with the same group operation of G. If H is a subgroup of G we shall write  $H \leq G$ .

**Proposition 1.1.** A subset H of G is a subgroup of G if and only if

- 1.  $H \neq \emptyset$  and
- $2. \ \forall x, y \in H, \ xy^{-1} \in H$

**Definition 1.2.** A kernel of a function  $\varphi: G \to H$  are groups, is the set

$$\ker(\varphi) = \{ g \in G \mid \varphi(g) = e_H \}$$

where G and H are groups.

**Proposition 1.2.** A function  $\varphi: G \to H$  is injective if and only if  $\ker(\varphi) = \{0\}$ .

**Definition 1.3.** A group action is a function  $\mu: G \times A \to A$  such that

- 1.  $\mu(g_1, \mu(g_2, a)) = \mu(g_1 \cdot g_2, a)$
- 2.  $\mu(e, a) = a$

To make the notation simple enough, we abbreviate the notation of  $\mu(g, a)$  to  $g \cdot a$  or sometimes ga.

**Remark.** Instead of saying 'Group Action of G on A', we saying group G acts on the set A.

**Definition 1.4.** Let group G act on set A. A stabilizer of a, where  $a \in A$ , is a the set consisting of elements which fixes a. i.e

$$G_a = \{ g \in G \mid g \cdot a = a \}$$

**Proposition 1.3.** The  $G_a$  is a subgroup of G for all  $a \in A$ .

**Proposition 1.4.** Let the group G act on a set A. The relation  $\sim$  defined on A by

$$a \sim b \iff a = hb$$
 for some  $h \in G$ 

is a equivalence relation.

**Definition 1.5.** For each  $a \in A$  the equivalence class under  $\sim$  is called *orbit* of a under action of G. Thus,

$$\mathcal{O}(a) = \{x \in A \mid x \sim a\} = \{ha \mid h \in G\}$$

**Definition 1.6.** Let G be an abelian group. Define

$$t = \{g \in G \mid |g| < \infty\}$$

and call it the torsion subgroup of G.

You can check that the set is a subgroup of G.

#### Problems and Solutions

**Problem:** Find a non-abelian group G such that the set of all elements with finite order is not a subgroup of G.

Solution: 
$$G = GL_2(\mathbb{Q})$$
. Take  $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  and  $b = \begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}$ . Here,  $|a| = |b| = 2$  but  $|ab| = \infty$ .

**Problem :** Let H and K be subgroups of G. Prove that  $H \cup K$  is a subgroup if and only if  $H \subseteq K$  or  $K \subseteq H$ .

Solution: The  $(\Leftarrow)$  is pretty simple. For  $(\Rightarrow)$ , suppose neither of  $H \subseteq K$  or  $K \subseteq H$  is true. Then, there exists a element h, k s.t  $h \in H$  and  $h \notin K$  and  $k \in K$  and  $k \notin H$ . But since  $H \cup K$  is a subgroup,  $h \cdot k$  must be either in H or K. If  $h \cdot k \in H$  then  $h^{-1} \cdot (h \cdot k) \in H$  and if  $h \cdot k \in K$  then  $(h \cdot k) \cdot k^{-1} \in K$ 

**Problem:** Let F be any field. Define

$$SL_n(F) = \{ A \in GL_n(F) \mid \det(A) = 1 \}$$

(called the special linear group). Prove that  $SL_n(F) \leq GL_n(F)$ .

Solution: If we use some basic properties of determinants we should be able to prove that this is a subgroup of the general linear group. We know that,

$$\det(AB) = \det(A) \cdot \det(B)$$

From this basic fact, we should be able to verify every subgroup axiom.

**Problem:** Prove that the intersection of arbitrary amount of non-empty collection of subgroups of G is also a subgroup of G.

Solution: Let us suppose

$$K = \bigcap G_i$$

where  $G_i$  are the subgroups.

Let us take  $a \in K$ . Since,  $a \in K$  that implies that  $a \in G_i$ . Since, of them are subgroups  $a^{-1} \in G_i$  thus  $a^{-1} \in K$ . It's easy to see that  $e_G \in K$ . Associativity is also pretty easy to check. If  $a \in G$  and  $b \in G$  then  $ab \in G$  as  $a, b \in G_i$  which means  $ab \in G_i$ .

**Problem :** Let A be an abelian group and fix some  $n \in \mathbb{Z}$ . Prove that the following subsets are subgroup of A,

- 1.  $\{a^n \mid a \in A\}$
- 2.  $\{a \in A \mid a^n = 1\}$

Solution: The problem can be easily solved if we know a facts about abelian group. Let  $a, b \in A$  then

- 1.  $(ab)^n = a^n b^n$
- 2.  $(a^{-1})^n = (a^n)^{-1}$  (This is true in general for all group A)

**Problem :** Let H be a subgroup of additive group of rational numbers with the property that  $1/x \in H$  for every non-zero element of  $x \in H$ . Prove that H = 0 or  $H = \mathbb{Q}$ .

Solution: If H has no non-zero element then  $H=\{0\}$ . If H has has a non-zero element x then  $x=\frac{a}{b}$  for some  $a,b\in\mathbb{Z}$ . Since,  $\frac{a}{b}\in H$  then  $a\in H$  because of the additive nature of H. Since,  $a\in H$  we have  $\frac{1}{a}\in H$ , thus  $1\in H$  as  $a\cdot\frac{1}{a}=1$ . Since,  $1\in H$  we must have  $-1\in H$  as well. Thus, every integer a is in H. Since,  $a\in H$  we have  $\frac{1}{a}\in H$  thus,  $\frac{b}{a}\in H$  for any  $b\in\mathbb{Z}$ . Thus, every rational number can be obtained by this method. Thus,  $\mathbb{Q}=H$ .

**Problem:** Show that  $\{x \in D_{2n} \mid x^2 = 1\}$  is not a subgroup of  $D_{2n}$  (n > 2).

Solution: We know that  $(r^k s)^2 = 1$  for all  $0 \le k \le n$ . Thus,  $(r^k s)(r^j s) = r^k (sr^j)s = r^{k-j}$ . Thus  $r^k = r^j \implies k = j$ . But since n > 2 we can take different k, j. Thus, the set is not closed and thus it cannot be a subgroup of  $D_2 n$ .

**Remark.** Here, if you do not know about the Dihedral groups, then it might be little confusing but, essentially

$$D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}\$$

This Dihedral group is the set of symmetries of a regular n-gon. You can check that

$$sr^k = r^{-k}s$$

#### 1.2 Centralizers and Normalizers, Stabilizer and Kernels

We'll look at some important families of subgroups. Let A be any non-empty subset of G.

**Definition 1.7.** Define  $C_G(A) = \{g \in G \mid gag^{-1} = a \ \forall a \in A\}$ . This subset is called *centralizers* of A in G. The set is the collection of elements in G which commutes with every element of A.

Proposition 1.5.  $C_G(A) \leq G$ 

*Proof.* One can check that  $1 \in C_G(A)$ . Suppose  $x \in C_G(A)$ , then  $xax^{-1} = a \implies a = x^{-1}ax$ . Thus,  $x^{-1} \in C_G(A)$ . Let  $x, y \in C_G(A)$  then

$$(xy)a(xy)^{-1} = (xy)a(y^{-1}x^{-1})$$
  
=  $x(yay^{-1})x^{-1}$   
=  $xax^{-1}$   
=  $a$ 

Thus,  $xy \in C_G(A)$ .

**Definition 1.8.** Define  $Z(G) = \{g \in G \mid gx = xg \ \forall x \in G\}$ . This is the set of elements in G such that it commutes with every other element of G. This is called the *center* of G.

**Remark.** You may notice that  $Z(G) = C_G(G)$ . Thus,  $Z(G) \leq G$ .

**Definition 1.9.** Define  $gAg^{-1} = \{gag^{-1} \in G \mid a \in A\}$ . Define the *normalizers* of A in G to be the set

$$N_G(A) = \{ q \in G \mid qAq^{-1} = A \}$$

**Proposition 1.6.**  $N_G(A) \leq G$  and  $C_G(A) \leq N_G(A)$ .

*Proof.* Similar proof like **Proposition 1.4**.

#### Examples

- 1. Let G be abelian group. Then Z(G) = G, also  $N_G(A) = C_G(A) = G$ .
- 2. Let  $G = D_8$ . And let  $A = \{1, r, r^2, r^3\}$  be a subgroup of rotations in  $D_8$ . We show that  $C_{D_8}(A) = A$ . Since, powers of r commute with each other, we have  $A \leq C_{D_8}(A)$ . One can check  $s \notin C_{D_8}(A)$  as  $sr = r^{-1}s \neq rs$ . Now, if  $a \notin A$  and  $a \in D_8$  then a must be of the form  $sr^i$ . If  $a \in C_{D_8}(A)$  with  $a = sr^i$  then  $s = (sr^i)(r^{-i})$ , thus a contradiction.

#### Stabilizer and Kernels of a Group Action

We have already seen what a stabilizer is, now lets look at what a kernel of a group action is

**Definition 1.10.** A kernel of a group G acting on a set A is the set of elements in g such that it fixes every element in A. That is, if  $\phi: G \times A \to A$  is a group action then

$$\ker(\phi) = \{ g \in G \mid g \cdot s = s \ \forall s \in A \}$$

**Proposition 1.7.** Kernel of a group action is a subgroup of the group G.

*Proof.* If  $g \in \ker(\phi)$  then  $g \cdot s = s \implies g^{-1} \cdot (g \cdot s) = g^{-1} \cdot s \implies s = g^{-1} \cdot s$ . Thus,  $g^{-1} \in \ker(\phi)$ . Similarly, you can verify other axioms.

We'll see that the centralizers, normalizers and kernels are some special case of facts that stabilizer and kernels of actions are subgroups. Let S = P(G) be the collection of all the subsets of group G, and let G act on S by conjugation i.e

$$\phi: G \times S \to S$$
 where  $g \cdot A = gAg^{-1}$ 

where  $qAq^{-1}$  is defined just like in **Definition 1.9.** 

Under this action, the stabilizer of A is same as normalizer of A i.e  $N_G(A) = G_A$ . This is basically of the definition,  $N_G(A) = \{g \in G \mid gAg^{-1} = A\} = \{g \in G \mid g \cdot A = A\} = G_A$ . Thus,  $N_G(A) \leq G$ .

Next Let the group  $N_G(A)$  act on  $A \subseteq G$  by conjugation. One can check that the centralizer of A is the same as kernel of this action. Thus,  $C_G(A) = \ker(\phi) \leq N_G(A)$  and from the above argument  $C_G(A) \leq N_G(A) \leq G \implies C_G(A) \leq G$ . One can also check that G acting on G by conjugation has kernel same as the center of the group i.e Z(G) thus,  $Z(G) \leq G$ 

#### **Problems and Solutions**

**Problem :** Prove that  $C_G(Z(G)) = G$  and  $N_G(Z(G)) = G$ .

Solution: We already know that  $C_G(Z(G))$  and  $N_G(Z(G))$  are the subgroups of G. Thus, if we prove every element of  $C_G(Z(G))$  and  $N_G(Z(G))$  is also an element of G then we're done. Let  $a \in Z(G)$ , then ga = ag for any  $g \in G$ . Thus,  $g \in C_G(Z(G))$ . Since,  $gZ(G)g^{-1} = \{gag^{-1} \mid a \in Z(G)\} = \{a \mid a \in Z(G)\} = Z(G)$ . Thus, for any  $g \in G$  we have  $gZ(G)g^{-1} = Z(G)$  which means that  $N_G(Z(G))$  collects all the  $g \in G$ . Thus,  $N_G(Z(G)) = G$ .

**Problem:** If A and B are the subsets of G such that  $A \subseteq B$  then  $C_G(B) \le C_G(A)$ .

Solution: Every element of  $C_G(B)$  is in  $C_G(A)$  as xb = ba for all  $b \in B$  so xa = ax for all  $a \in A$  thus,  $x \in C_G(A)$ . Thus, we are done.

**Problem:** Let H be a subgroup of G.

- 1. Show that  $H \leq N_G(H)$ .
- 2. Show that  $H \leq C_G(H) \iff H$  is abelian.

Solution: For the first part,  $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ . If we let  $g \in H$  be an arbitrary element then  $\{ghg^{-1} \mid h \in H\} = H$ . This, can be proved by proving  $\varphi_g : H \to H$  is a bijection for  $g \in H$ . Since, g is arbitrary  $H \leq N_G(H)$ .

For the second part, if H is abelian then ga = ag for every  $a, g \in H$  thus  $H \leq C_G(H)$ . If  $H \leq C_G(H)$  then ga = ag for all  $a \in H$  and since H is a subgroup of  $C_G(H)$  every element of H is in  $C_G(H)$  that means ga = ag for every  $a, g \in H$ . Thus H is abelian.

**Problem :** Let  $n \in \mathbb{Z}$  and  $n \geq 3$ . Prove the following

- 1.  $Z(D_{2n}) = \{1\}$  if n is odd
- 2.  $Z(D_{2n}) = \{1, r^k\}$  if n = 2k

Solution: We know that only elements that commute with powers of r are powers of r. Thus,  $r^i$  be the element that commutes with every element of  $D_{2n}$ . Then,  $r^i(sr^i) = (sr^i)r^i \implies r^i(r^{-i}s) = sr^{2i} \implies s = sr^{2i} \implies r^{2i} = 1 \implies n \mid i \text{ if } n \text{ is odd. But } i < n \text{ so } i = 0$ . If n = 2k then  $n \mid 2i \implies 2i = nk$  but  $2i < 2n \implies 2 > k \implies k = 1$ . Thus i = n/2.

**Problem :** Let  $G = S_n$  and fix an  $i \in \{1, 2, 3, ..., n\}$  and let  $G_i = \{\sigma \in G \mid \sigma(i) = i\}$ . Prove that  $G_i$  is a subgroup of G and find  $|G_i|$ .

Solution: The subgroup part of this is pretty easy. To find,  $|G_i|$  we fix the map  $i \to i$  and let the other maps vary. The number of ways to do this is (n-1)! and this is the size of the group.

**Problem :** For any subgroup H of G and for any non-empty subset of A in G define  $N_H(A) = \{h \in H \mid hAh^{-1} = A\}$ . Show that  $N_H(A) = N_G(A) \cap H$  and deduce that  $N_H(A)$  is a subgroup of H.

Solution:  $N_H(A)$  collects every  $h \in H$  for which  $hAh^{-1} = A$ .  $N_G(A) \cap H$  also collects  $h \in H$  for which  $hAh^{-1} = A$  thus  $N_G(A) \cap H = N_H(A)$ . To deduce  $N_H(A)$  is a subgroup of H, you can easily check the axioms.

**Problem :** Let H be a subgroup of order 2 in G. Show that  $N_G(H) = C_G(H)$ . Deduce that if  $N_G(H) = G$  then  $H \leq Z(G)$ .

Solution: Since, H has order 2 H must be  $\{e, h\}$  where  $h \neq e$  and  $h^2 = e$ . Now, if  $gHg^{-1} = H$  then  $\{ghg^{-1} \mid g \in G\} = \{e, ghg^{-1}\} = \{e, h\} \implies gh = hg$ . Thus,  $N_G(H)$  collects  $g \in G$  which commutes with h which is exactly  $C_G(H)$ . For the second part, since  $N_G(H) = G$  that means h commutes with every  $g \in G$ . Thus,  $\{e, h\} \subseteq Z(G)$  and  $H \leq Z(G)$ .

**Problem:** Prove that  $Z(G) \leq N_G(A)$  for any subset A of G.

Solution: Since Z(G) collects every  $g \in G$  such that it commutes with every other element of G, it must commute with every element of A. Thus,  $gAg^{-1} = \{gag^{-1} \mid g \in Z(G)\} = \{g \mid g \in Z(G)\} = A$  which means every  $g \in Z(G)$  is also an element of  $N_G(A)$ .

#### 1.3 Cyclic and Cyclic Subgroups

**Definition 1.11.** A group G is called *cyclic* if if can be generated by a single element i.e there is some  $x \in G$  such that  $H = \{x^n \mid n \in \mathbb{Z}\}$ . We write is as  $G = \langle x \rangle$  and say G is generated by x.

**Proposition 1.8.** If  $H = \langle x \rangle$  then |H| = |x|.

x are different and thus  $|H| = \infty$ .

*Proof.* Suppose  $|x| = n < \infty$  then  $1, x, \dots, x^{n-1}$  are all distinct. Thus |H| is at least n. Now, using the division algorithm we can show that these are all of them. Suppose now  $|x| = \infty$  then that means there is no finite  $n \in \mathbb{Z}$  s.t  $x^n = 1$ . If  $x^b = x^c$  then  $x^{b-c} = 1$  contradicting the fact that there is no n s.t  $x^n = 1$ . Thus, all of the powers of

**Proposition 1.9.** Let G be a group and let  $x \in G$ . If  $x^m = 1$  for some  $m \in \mathbb{Z}$  then |x| divides m.

**Proposition 1.10.** Any two cyclic group of same order are isomorphic. More specifically,

1. If  $n \in \mathbb{Z}^+$  and  $\langle x \rangle$  and  $\langle y \rangle$  are both cyclic groups of order n, then the map

$$\varphi: \langle x \rangle \to \langle y \rangle$$
$$x^k \to y^k$$

is well defined and is an isomorphism.

2. If  $\langle x \rangle$  is an infinite cyclic group then

$$\varphi: \mathbb{Z} \to \langle x \rangle$$
$$k \to x^k$$

is well defined and is an isomorphism.

**Proposition 1.11.** Let G be a group, let  $x \in G$  and let  $a \in \mathbb{Z} \setminus \{0\}$  then

- 1. If  $|x| = \infty$  then  $|x^a| = \infty$
- 2. If  $|x| = n < \infty$  then  $|x^a| = \frac{n}{(n,a)}$

*Proof.* 1. is pretty simple. Suppose  $|x^a| = k$  then  $x^{ak} = 1$  now  $n \mid ak$ . Write (n, a) = d and n = du and a = dv. Then,  $du \mid dvk \implies u \mid k$ . But

$$x^{a} = x^{dv} \implies (x^{du})^{v} = (x^{n})^{v} = 1$$

$$\implies (x^{a})^{u} = 1$$

$$\implies k \mid u$$

. Thus,  $k = u \implies n = dk \implies k = \frac{n}{d} = \frac{n}{(n,a)}$ .

**Proposition 1.12.** Let  $H = \langle x \rangle$ .

1. Assume  $|x| = \infty$ . Then  $H = \langle x^a \rangle \iff a = \pm 1$ .

2. Assume  $|x| = n < \infty$ . Then  $H = \langle x^a \rangle \iff (a, n) = 1$ . The number of generators of H is  $\varphi(n)$ .

*Proof.* For 1. we know  $x \in \langle x^a \rangle$  as  $\langle x^a \rangle = \langle x \rangle$  thus

$$x = x^{ak} \implies ak = 1 \implies a = \pm 1$$

For 2. we know  $H = \langle x^a \rangle \implies |H| = |x^a| \iff |x| = |x^a|$ ,

$$\iff \frac{n}{(n,a)} = n$$

$$\iff$$
  $(n,a)=1$ 

Since, the number of positive integers less than n and co-prime to n are exactly  $\varphi(n)$ , thus the number of generators are exactly equal to  $\varphi(n)$ .

**Theorem 1.1.** Let  $H = \langle x \rangle$  be a cyclic group.

- 1. Every subgroup of H is cyclic. More precisely, if  $K \leq H$ , then either  $K = \{1\}$  or  $K = \langle x^d \rangle$ , where d is the smallest positive integer such that  $x^d \in K$ .
- 2. If  $|H| = \infty$ , then for any distinct nonnegative integers a and b,  $\langle x^a \rangle \neq \langle x^b \rangle$ .
- 3. If  $|H| = n < \infty$ , then for each positive integer a dividing n there is a unique subgroup of H of order a. This subgroup is the cyclic group  $\langle x^d \rangle$ , where  $d = \frac{n}{a}$ . Furthermore, for every integer m,  $\langle x^m \rangle = \langle x^{(n,m)} \rangle$ , so that the subgroups of H correspond bijectively with the positive divisors of n.

*Proof.* 1. and 2. are pretty easy. For 3. the cyclic group  $\langle x^{n/a} \rangle$  has order a. To prove uniqueness, suppose K is any subgroup of H with order a, then  $\langle x^b \rangle = K$  where b is the smallest positive integer b s.t  $x^b \in K$ (this is from 1.). Thus,

$$|\langle x^{n/a}\rangle| = |\langle x^b\rangle| \implies \frac{n}{d} = a = \frac{n}{(n,b)}$$

$$\implies d = (n,b) \implies d \mid b$$

Hence,  $\langle x^b \rangle \leq \langle x^d \rangle$  and since they both have same order  $\langle x^b \rangle = \langle x^d \rangle$ . For the assertion on 3., one can prove that  $\langle x^m \rangle \leq \langle x^{(n,m)} \rangle$  as  $(n,m) \mid n$ , and since they have same order  $\langle x^m \rangle = \langle x^{(n,m)} \rangle$ . This means that the number of subgroups has a bijection with the divisors of n.

#### **Problems and Solutions**

**Problem:** Find all subgroup of  $\mathbf{Z}_{45} = \langle x \rangle$ , giving a generator of each. Describe the containment between these subgroups.

Solution: There are exactly 6 different subgroups of  $\mathbf{Z}_{45}$ . Since there is a one to one correspondence between divisors of 45 and subgroups of  $\mathbf{Z}_{45}$  we can list all of them,

$$\{1\}, \langle r \rangle, \langle r^3 \rangle, \langle r^5 \rangle, \langle r^9 \rangle, \langle r^1 5 \rangle$$

**Problem:** If x is an element of a finite group G and |x| = |G|. Prove that  $G = \langle x \rangle$ .

Solution: Let |x| = n. We know that  $\{1, x, \dots, x^{n-1}\}$  is a subgroup of G. Since, it is a subgroup and has the same order as G thus  $G = \{1, x, \dots, x^{n-1}\} = \langle x \rangle$ .

**Problem :** Let  $\mathbb{Z}_{48} = \langle x \rangle$  and use isomorphism  $\mathbb{Z}/48\mathbb{Z} \cong \mathbb{Z}_{48}$  with  $[1] \mapsto x$  to find all the subgroups of  $Z_{48}$ .

Solution: If  $\langle [x] \rangle$  is a cyclic subgroup of  $\mathbb{Z}/48\mathbb{Z}$  then  $\langle \varphi([x]) \rangle$  is a subgroup of  $\mathbf{Z}_{48}$  where  $\varphi$  is the isomorphic map.

**Problem:** Let  $\mathbf{Z}_{48} = \langle x \rangle$ . For which integer a does the map  $\varphi_a$  defined by  $\varphi_a : [1] \mapsto x^a$  extends to an isomorphism from  $\mathbb{Z}/48\mathbb{Z}$  to  $\mathbf{Z}_{48}$ .

Solution: We already know it is an homomorphism as

$$\varphi([u] + [v]) = (x^a)^{u+v} = (x^a)^u (x^a)^v = \varphi([u])\varphi([v])$$

But to be an isomorphism  $x^{na}$  needs to cover  $\mathbf{Z}_{48}$  for all  $n \in \mathbb{Z}$ . Thus,

$$\mathbf{Z}_{48} = \langle x \rangle = \langle x^a \rangle$$
$$\implies (48, a) = 1$$

So, for all the a which are co-prime to 48 the map,  $\varphi_a$  is an isomorphism.

**Problem :** Let  $\mathbf{Z}_{36} = \langle x \rangle$ . For which integer a does the map  $\psi_a : [1] \mapsto x^a$  extend to an well defined homomorphism from  $\mathbb{Z}/48\mathbb{Z}$  onto  $\mathbf{Z}_{36}$ . Can  $\psi_a$  ever be surjective?

Solution: One can check that the map is a homomorphism. Now, we need to show that

$$[u] = [v] \implies \psi_a([u]) = \psi_a([v])$$

If [u] = [v] then u - v = 48m

$$1 = \psi_a([0]) = \psi_a([u - v]) = x^{a(u - v)} = x^{48am}$$

$$\implies 36 \mid 48am$$

$$\implies 3 \mid am$$

Since  $3 \mid am$  must hold for all integer m, if  $3 \nmid a$  then  $3 \mid m$  for all integer m which is clearly absurd thus  $3 \mid a$ . Thus,  $x^{48 \cdot 3k \cdot m} = 1$  as  $36 \mid 144km$ . Thus,

$$x^{a(u-v)} = 1 \implies x^{au} = x^{av} \implies \psi_a([u]) = \psi_a([v])$$

**Problem:** Find a presentation for  $\mathbf{Z}_n$  with one generator.

Solution:  $\mathbf{Z}_n = \langle r \mid r^n = 1 \rangle$ .

**Problem :** Show that if H is any group with  $h^n = 1$  then there exists a unique homomorphism from  $\mathbf{Z}_n = \langle x \rangle$  to H such that  $x \mapsto h$ .

Solution: Define  $\psi: \mathbf{Z}_n \to H$  by  $\psi(x^k) = h^k$ . This is a homomorphism and is unique because the output is completely determined by h.

**Problem :** Show that if H is any group and h is an element of H, then there is a unique homomorphism from  $\mathbb{Z}$  to H such that  $1 \to h$ .

Solution: Define  $\psi: \mathbb{Z} \to H$  by  $\psi(k) = h^k$ . This is a homomorphism and is unique as the output is completely determined by h.

**Problem:** Let p be a prime and n be a positive integer. Show that if x is an element of the group G such that  $x^{p^n} = 1$  then  $|x| = p^m$  for some  $m \le n$ .

Solution: We know that if  $x^n = 1$  then |x| must divide n. Thus, |x| must divide  $p^n$  but the only divisors of  $p^n$  are powers of p. Thus,  $|x| = p^m$  for some  $m \le n$ .

**Problem:** Show that  $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$  is not cyclic.

Solution: Consider  $\{1, -1\}$  and  $1, 1 + 2^{n-1}$ . They both are subgroups of order 2. But a cyclic group has exactly 1 subgroup of order d, where d is the divisor of order of the cyclic group G. But we found two distinct subgroups of the group with same order.

**Problem:** Let G be a finite group and let  $x \in G$ .

- 1. Prove that if  $g \in N_G(\langle x \rangle)$  then  $gxg^{-1} = x^a$  for some  $a \in \mathbb{Z}$ .
- 2. Prove conversely that if  $gxg^{-1} = x^a$  for some  $a \in \mathbb{Z}$  then  $g \in N_G(\langle x \rangle)$ . [Show first that  $gx^kg^{-1} = (gxg^{-1})^k = x^{ak}$  for any integer k, so that  $g\langle x \rangle g^{-1} \leq \langle x \rangle$ . If x has order n, show the elements  $gx^ig^{-1}$ ,  $i = 0, 1, \ldots, n-1$ , are distinct, so that  $|g\langle x \rangle g^{-1}| = |\langle x \rangle| = n$  and conclude that  $g\langle x \rangle g^{-1} = \langle x \rangle$ .]

**Problem:** Let G be a cyclic group of order n and let k be an integer relatively prime to n. Prove that the map  $x \mapsto x^k$  is surjective. Use Lagrange's Theorem (Exercise 19, Section 1.7) to prove the same is true for any finite group of order n. (For such k each element has a kth root in G. It follows from Cauchy's Theorem in Section 3.2 that if k is not relatively prime to the order of G then the map  $x \mapsto x^k$  is not surjective.)

**Problem:** Let  $\mathbf{Z}_n$  be a cyclic group of order n and for each integer a let

$$\sigma_a: \mathbf{Z}_n \to \mathbf{Z}_n$$
 by  $\sigma_a(x) = x^a$  for all  $x \in Z_n$ .

- 1. Prove that  $\sigma_a$  is an automorphism of  $Z_n$  if and only if a and n are relatively prime.
- 2. Prove that  $\sigma_a = \sigma_b$  if and only if  $a \equiv b \pmod{n}$ .

- 3. Prove that every automorphism of  $Z_n$  is equal to  $\sigma_a$  for some integer a.
- 4. Prove that  $\sigma_a \circ \sigma_b = \sigma_{ab}$ . Deduce that the map  $a \mapsto \sigma_a$  is an isomorphism of  $(\mathbb{Z}/n\mathbb{Z})^{\times}$  onto the automorphism group of  $Z_n$  (so  $\operatorname{Aut}(Z_n)$  is an abelian group of order  $\varphi(n)$ ).

#### 1.4 Subgroups Generated by Subsets of a Group

**Proposition 1.13.** If  $\mathcal{A}$  is any non empty collection of subsets of G then the intersection of all members of  $\mathcal{A}$  is also a subgroup of G.

*Proof.* Trivial.  $\Box$ 

**Definition 1.12.** If A is any subset of group G define

$$\langle A \rangle = \bigcap_{\substack{A \subseteq H \\ H \leq G}} H$$

This is called subgroup generated by A.

**Definition 1.13.** Let  $A = \{a_1, \ldots, a_n\}$  then define

$$\bar{A} = \{ a_1^{\epsilon_1} a_2^{\epsilon_2} \cdots a_n^{\epsilon_n} \mid n \in \mathbb{Z}_{\geq 0}, a_i \in A, \epsilon_i = \pm 1 \}$$

where  $\bar{A} = \{1\}$  if  $A = \emptyset$ .

**Remark.** Here,  $a_i$ 's need not to be distinct.

Proposition 1.14.  $\bar{A} = \langle A \rangle$ 

*Proof.* First we prove that  $\bar{A}$  is a subgroup. Note that  $\bar{A} \neq \emptyset$ . If  $a, b \in \bar{A}$  then write  $a = a_1^{\epsilon_1} \cdots a_n^{\epsilon_n}$  and  $b = b_1^{\delta_1} \cdots b_m^{\delta_m}$  then one can check that  $ab^{-1} \in \bar{A}$ . Thus,  $\bar{A}$  is a subgroup of G.

Now, since  $A \subseteq \bar{A}$  as  $a = a^1$  for every  $a \in A$ , we can say that  $\langle A \rangle \subseteq \bar{A}$ . It is because  $\langle A \rangle$  is the intersection of all the subgroups containing A. Now, since  $\langle A \rangle$  contains A and is a group, it must contain every element of form  $a_1^{\epsilon_1} \cdots a_n^{\epsilon_n}$  thus  $\bar{A} \subseteq \langle A \rangle$ . This completes the proposition.

#### **Problems and Solutions**

**1.** Prove that if H is a subgroup then  $\langle H \rangle = H$ .

Solution: From the definition,

$$\langle H \rangle = \bigcap_{\substack{H \subseteq K \\ K \le G}} K$$

Since,  $H \subseteq H$  and  $H \leq G$  thus  $\langle H \rangle \subseteq H$ . But also  $H \subseteq \langle H \rangle$ .

**2.** Prove if A is a subset of B then  $\langle A \rangle \leq \langle B \rangle$ . Give an example of  $A \subseteq B$  with  $A \neq B$  but  $\langle A \rangle = \langle B \rangle$ .

Solution: From the definition we have,

$$\langle B \rangle = \bigcap_{\substack{B \subseteq K \\ K < G}} K$$

Since,  $A \subseteq B$  we have  $\langle A \rangle \leq \langle B \rangle$ . For the example, take  $G = D_{16}$  and  $A = \{r\}$  and  $B = \{r, r^3\}$ .

**3.** Prove if H is an abelian subgroup of G then  $\langle H, Z(G) \rangle$  is abelian. Give and explicit example of a abelian subgroup H such that  $\langle H, C_G(H) \rangle$  is not abelian.

Solution: We know that,  $\bar{A} = \langle A \rangle$  thus

$$\langle H, Z(G) \rangle = \{ a_1^{\epsilon_1} \cdots a_n^{\epsilon_n} \mid e_i = \pm 1, n \in \mathbb{Z}_{>0}, a_i \in H \cup Z(G) \}$$

So, if you take two elements from  $\langle H, Z(G) \rangle$ , they will commute thus  $\langle H, Z(G) \rangle$  is an abelian group. For the example, choose  $H = \{1, r^2\}$  and  $G = D_8$ .

**3.** Prove that H is a subgroup then H is generated by  $H - \{1\}$ .

Solution: Since, we know that  $\bar{A} = \langle A \rangle$  thus

$$\langle H - \{1\} \rangle = \{a_1^{\epsilon_1} \cdots a_n^{\epsilon_n} \mid a_i \in H - \{1\}, n \in \mathbb{Z}_{\geq 0}, \epsilon_i = \pm 1\}$$

Thus, for  $a \in H$  and  $a \neq 1$ ,  $a \in \langle H - \{1\} \rangle$  and also  $1 = a^1 a^{-1} \in \langle H - \{1\} \rangle$ . Also,  $a \in \langle H - \{1\} \rangle$  is just some combination of elements in H thus  $a \in H$ . Thus, we have

$$\langle H - \{1\} \rangle = H$$

**4.** Prove that the multiplicative group of positive rational numbers is generated by the set  $\{\frac{1}{p} \mid p \text{ is a prime }\}$ .

Solution: Since,

$$\left\langle \left\{ \frac{1}{p} \mid p \text{ is a prime} \right\} \right\rangle = \left\{ \frac{p_1^{a_1} \cdots p_n^{a_n}}{q_1^{b_1} \cdots q_m^{a_m}} \mid p_i, q_i \in \mathbf{Primes} \right\} = \mathbb{Q}_{>0}$$

**5.** A group H is called *finitely generated* if there is a finite set A such that  $H = \langle A \rangle$ .

- (a) Prove that every finite group is finitely generated.
- (b) Prove that  $\mathbb{Z}$  is finitely generated.
- (c) Prove that every finitely generated subgroup of the additive group  $\mathbb{Q}$  is cyclic. [If H is a finitely generated subgroup of  $\mathbb{Q}$ , show that  $H \leq \langle \frac{1}{k} \rangle$ , where k is the product of all the denominators which appear in a set of generators for H.]
- (d) Prove that  $\mathbb{Q}$  is not finitely generated.
- **6.** Exhibit a proper subgroup of  $\mathbb{Q}$  which is not cyclic.
- 7. A subgroup M of a group G is called a maximal subgroup if  $M \neq G$  and the only subgroups of G which contain M are M and G.
  - (a) Prove that if H is a proper subgroup of the finite group G then there is a maximal subgroup of G containing H.
  - (b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.
  - (c) Show that if  $G = \langle x \rangle$  is a cyclic group of order  $n \geq 1$  then a subgroup H is maximal if and only if  $H = \langle x^p \rangle$  for some prime p dividing n.
- 8. This is an exercise involving Zorn's Lemma (see Appendix I) to prove that every nontrivial finitely generated group possesses maximal subgroups. Let G be a finitely generated group, say  $G = \{g_1, g_2, \ldots, g_n\}$ , and let  $\mathcal{S}$  be the set of all proper subgroups of G. Then  $\mathcal{S}$  is partially ordered by inclusion. Let  $\mathcal{C}$  be a chain in  $\mathcal{S}$ .
  - (a) Prove that the union, H, of all the subgroups in  $\mathcal{C}$  is a subgroup of G.
  - (b) Prove that H is a proper subgroup. [If not, each  $g_i$  must lie in H and so must lie in some element of the chain C. Use the definition of a chain to arrive at a contradiction.]
  - (c) Use Zorn's Lemma to show that S has a maximal element (which is, by definition, a maximal subgroup).
- **9.** Let p be a prime and let

$$Z = \{ z \in \mathbb{C} \mid z^{p^m} = 1 \text{ for some } n \in \mathbb{Z}^+ \}$$

(so Z is the multiplicative group of all p-power roots of unity in  $\mathbb{C}$ ). For each  $k \in \mathbb{Z}^+$  let

$$H_k = \{ z \in Z \mid z^{p^k} = 1 \}$$

(the group of  $p^k$ th roots of unity). Prove the following:

- (a)  $H_k \leq H_m$  if and only if  $k \leq m$ .
- (b)  $H_k$  is cyclic for all k (assume that for any  $n \in \mathbb{Z}^+$ ,  $\{e^{2\pi it/n} \mid t = 0, 1, \dots, n-1\}$  is the set of all nth roots of 1 in  $\mathbb{C}$ ).
- (c) Every proper subgroup of Z equals  $H_k$  for some  $k \in \mathbb{Z}^+$  (in particular, every proper subgroup of Z is finite and cyclic).
- (d) Z is not finitely generated.

10. A nontrivial abelian group A (written multiplicatively) is called *divisible* if for each element  $a \in A$  and each nonzero integer k there is an element  $x \in A$  such that  $x^k = a$ , i.e., each element has a kth root in A (in additive notation, each element is the kth multiple of some element of A).

- (a) Prove that the additive group of rational numbers,  $\mathbb{Q}$ , is divisible.
- (b) Prove that no finite abelian group is divisible.
- 11. Prove that if A and B are nontrivial abelian groups, then  $A \times B$  is divisible if and only if both A and B are divisible groups.

## 2 Quotients Groups and Homomorphism

#### 2.1 Definition and Examples

**Definition 2.1.** Let  $\varphi: G \to H$  be a homomorphism. A *fiber* over a, where  $a \in \operatorname{im}(\varphi)$ , is the set of elements in G that gets mapped to a under  $\varphi$  i.e

$$X_a = \{ g \in G \mid \varphi(g) = a \}$$

It is also denoted by  $\varphi^{-1}(a)$ .

**Definition 2.2.** We define the product of *fibers* as following

$$X_a \cdot X_b = \{g_1 g_2 \mid g_1 \in X_a, g_2 \in X_b\}$$

Remark. By definition of the product of fibers, we can see that

$$X_a \cdot X_b = X_{ab}$$

**Proposition 2.1.** The set of *fibers* over the elements of  $\operatorname{im}(\varphi)$  forms a group.

*Proof.* The identity element of the set is going to be  $X_{1_H}$ . The inverse of  $X_a$  is going to be  $X_{a^{-1}}$ . And one can check that the associativity the closure property holds.

**Definition 2.3.** If  $\varphi$  is a homomorphism  $\varphi: G \to H$ , the kernel of  $\varphi$  is the set

$$\{g \in G \mid \varphi(g) = 1_H\}$$

and will be denoted by  $\ker \varphi$ .

**Remark.** The kernel of  $\varphi$  is the same as the fiber over  $1_h$  i.e

$$\ker \varphi = X_{1H}$$

**Definition 2.4.** Let  $\varphi: G \to H$  be a homomorphism with kernel K. The quotient group or the factor group, G/K (read as  $G \mod K$ ), is the group whose elements are the fibers of  $\varphi$ .

**Proposition 2.2.** Let  $\varphi: G \to H$  be a homomorphism of groups with kernel K. Let  $X \in G/K$  be the fiber above a. i.e  $X = \varphi^{-1}(a)$ 

- 1. For any  $u \in X$ ,  $X = \{uk \mid k \in K\} = uK$
- 2. For any  $u \in X$ ,  $X = \{ku \mid k \in K\} = Ku$

*Proof.* We'll prove 2. and leave 1. for the future me. Suppose  $k \in K$  then

$$\varphi(ku) = \varphi(k)\varphi(u)$$
$$= 1 \cdot \varphi(u)$$
$$= a$$

Thus,  $ku \in X \implies Ku \subseteq X$ . Now, to show  $X \subseteq Ku$ , take any  $g \in X$  then define  $k := gu^{-1}$  thus

$$\varphi(k) = \varphi(gu^{-1}) = aa^{-1} = 1$$
 $\implies k \in K$ 

Thus,  $g = ku \in Ku \implies X \subseteq Ku$ .

**Remark.** Any coset(check below for the definition) is also an *fiber* for some element. It is because

$$uK = \varphi^{-1}(\varphi(u)) = uK$$

**Definition 2.5.** For a  $N \leq G$  and any  $g \in G$  let

$$gN = \{gn \mid n \in N\} \text{ and } Ng = \{ng \mid n \in G\}$$

be the *left coset* and *right coset* of N in G. Any element of a coset is called a *representative* of the coset.

**Remark.** To verify a map is a well defined map, one can't just use the condition imposed on the map. For example, the proof of the theorem below, I have said the operation is indeed well-defined but didn't prove it. You can't go about doing the following. Let uK = u'K and vK = v'K thus

$$(uv)K = (uK)(vK)$$
$$= (u'K)(v'K)$$
$$= (u'v')K$$

Here, you're assuming that  $a = b \implies f(a) = f(b)$  which is true if f were to be a function. But to be a function, it needs to be well defined. Therefore you're assuming it's well defined to begin with.

**Theorem 2.1.** Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set whose elements are left cosets of K in G with operation defined by

$$(uK) \circ (vK) = (uv)K$$

forms a group, G/K.

*Proof.* One can check that the set whose elements are left cosets of K in G with operation defined above, does indeed form a group. Note that the operation is also well defined. Now, if X and Y are fibers then Z = XY is also a fiber. Now, we can write each fiber as

$$X = uK$$
,  $Y = vK$ ,  $XY = jK$ 

But we set j = uv as  $uv \in XY$ . Thus, every element of G/K is in set  $\{uK \mid u \in G\}$ . But we also that every coset is also a fiber thus, every element of  $\{uK \mid u \in G\}$  is in G/K.

**Proposition 2.3.** Let N be any subgroup of the group G. The set of left cosets of N in G form a partition of G. Furthermore, for all  $u, v \in G$ ,  $uN = vN \iff v^{-1}u \in N$  and in particular, uN = vN if and only if u and v are representative of the same coset.

*Proof.* Since,  $g \in gN$  as  $1 \in N$ , we can say that

$$g = \bigcup_{g \in G} gN$$

Now, if  $x \in uN \cap vN$  then

$$x = un = vm$$

Thus,  $u = vmn^{-1} \implies ut = vmn^{-1}t \in vN$ . Thus,  $uN \subseteq vN$  as ut covers every element of uN.

Now, one can reverse the roles and prove  $vN \subseteq uN$ , which altogether implies uN = vN. Thus, if  $uN \cap vN \neq \emptyset$  then uN = vN.

For the other part of the proposition,  $uN = vN \iff u = vn \iff v^{-1}u = n \in N$ .

If uN = vN = K then  $u, v \in K$ . Thus they are the representative of the same coset. Also, if  $u \in tN$  and  $v \in tN$  then uN = tN = vN.

**Proposition 2.4.** Let G be a group and let N be a subgroup of G.

1. The operation on the set of left cosets of N on G defined by

$$(uN) \cdot (vN) = (uv)N$$

is well defined if and only if  $qnq^{-1} \in N$  for all  $q \in G$  and for all  $n \in N$ .

2. If the above operation is well-defined then the it makes the set of left coset into a group.

*Proof.* Assume the operation is well-defined i.e  $u, u_1 \in uN, v, v_1 \in vN \implies uvN =$  $u_1v_1N$ . Let g be an arbitrary element of G and let n be an arbitrary element of N. Then, set  $u = 1, u_1 = n$  and  $v_1 = v = g^{-1}$  thus

$$1g^{-1}N = ng^{-1}N \implies g^{-1}N = ng^{-1}N$$

Thus,  $ng^{-1} \in g^{-1}N \implies gng^{-1} = k \in N$ .

Now, suppose  $gng^{-1} \in N$  for all  $g \in G$  and  $n \in N$ . Let  $u, u_1 \in uN$  and  $v, v_1 \in vN$ . We need to show

$$(uv)N = (u_1v_1)N$$

Since,  $u_1 \in uN$  and  $v_1 \in vN$  we can write them as  $u_1 = un_1$  and  $v_1 = vm$  for some  $n, m \in \mathbb{N}$ . Now, if we can prove  $u_1 v_1 \in (uv) \mathbb{N}$  then we'd be done.

$$u_1v_1 = (un)(vm)$$
  
=  $u(vv^{-1})nvm$   
=  $(uv)(v^{-1}nv)m = (un)(n_1m)$ 

where  $n_1 = v^{-1}nv = v^{-1}n(v^{-1})^{-1} \in N$  as per the assumption. Thus,  $u_1v_1 \in uvN \implies$  $(u_1v_1)N = (uv)N.$ 

For the second part, just check the group axioms.

**Definition 2.6.** The element  $qnq^{-1}$  is called the *conjugate* of n by q. The set  $qNq^{-1} =$  $\{gng^{-1} \mid n \in N\}$  is called *conjugate* of N by g. The element g is said to normalize N if  $gNg^{-1} = N$ . A subgroup N is called normal if every element of G normalizes N i.e  $qNq^{-1}=N$  for all  $q\in G$ . If N is a normal subgroup of G then we write it as  $N\triangleleft G$ .

**Proposition 2.5.** Let N be the subgroup of G. Then the following are equivalent

- 1.  $N \subseteq G$
- 2.  $N_G(N) = G$

- 3. gN = Ng for all  $g \in G$
- 4.  $gNg^{-1} \subseteq N$

*Proof.* Most of them easily follow from the definition and previous propositions.  $\Box$ 

**Definition 2.7.** We define  $G/N = \{gN \mid g \in G\}$  for  $N \leq G$ .

**Proposition 2.6.** Let  $N \leq G$ . Then N is normal if and only if N is a kernel of some homomorphism.

*Proof.* Suppose N is a kernel of some homomorphism  $\varphi$ . Then gN = Ng for all  $g \in G$  and by previous proposition we can say  $N \subseteq G$ . Now, suppose  $N \subseteq G$  then we define a map  $\psi : G \to G/N$  such that  $g \mapsto gN$ . Then,

$$\psi(g_1g_2) = (g_1g_2)N$$

$$= g_1Ng_2N$$

$$= \psi(g_1)\psi(g_2)$$

Thus,  $\psi$  is indeed a homomorphism. Now,

$$\ker \psi = \{g \mid \psi(g) = 1N\}$$

$$= \{g \mid gN = N\}$$

$$= \{g \mid g \in N\}$$

$$= N$$

Thus, N is the kernel of  $\psi$ .

**Definition 2.8.** Let  $N \subseteq G$ . The homomorphism  $\psi: G \to G/N$  defined by  $\psi(g) = gN$  is called the *natural projection* of G onto G/N. If  $\bar{H} \subseteq G/N$  is a subgroup of G/N, the complete preimage of  $\bar{H}$  in G is the preimage of  $\bar{H}$  under the natural projection.

#### Problems and Solutions

**Problem :** Let  $\varphi: G \to H$  be an homomorphism and Let E be a subgroup of H. Prove that  $\varphi^{-1}(E) \leq G$ , where  $\varphi^{-1}(E) = \{x \mid \varphi(x) \in E\}$ . If  $E \subseteq H$ , prove that  $\varphi^{-1}(E) \subseteq G$ . Deduce that  $\ker \varphi \subseteq G$ .

Solution: Since,  $\varphi^{-1}(E) = \{x \mid \varphi(x) \in E\}$ . This subset of G is clearly not empty and if  $x, y \in \varphi^{-1}(E)$  then  $\varphi(xy^{-1}) = \varphi(x)\varphi(y)^{-1} \in E$  as E is a subgroup and  $\varphi(x), \varphi(y) \in E$ . Thus,  $xy^{-1} \in \varphi^{-1}(E)$  for all  $x, y \in \varphi^{-1}(E)$  which implies that  $\varphi^{-1}(E) \leq G$ .

If  $E \subseteq H$  then take any arbitrary element g of G and take any arbitrary element of n of  $\varphi^{-1}(E)$ . Thus,  $\varphi(gng^{-1}) = \varphi(g)\varphi(n)\varphi(g)^{-1} \in E$  as  $\varphi(n) \in E$  and  $\varphi(g) \in H$  and E is normal. Thus,  $gng^{-1} \in \varphi^{-1}(E)$  which implies  $g\varphi^{-1}(E)g \subseteq \varphi^{-1}(E) \implies \varphi^{-1}(E) \subseteq G$ . For kernel part, take  $E = \{1\} \subseteq H$ 

**Problem :** Let  $\varphi: G \to H$  be a homomorphism of groups with kernel K and let  $a, b \in \varphi(G)$ . Let  $X \in G/K$  be the fiber above a and let Y be the fiber above b, i.e,  $X = \varphi^{-1}(a)$  and  $Y = \varphi^{-1}(b)$ . Fix an element of X. Prove that if XY = Z in the quotient group G/K and w is any member of Z, the there is some  $v \in Y$  such that uv = w.

Solution: First part follows immediately from **Definition 1.2.** and for the second part look at  $\varphi(u^{-1}w)$  where w is an arbitrary member of Z. Thus,

$$\varphi(u^{-1}w) = a^{-1}(ab)$$
$$= b$$

Thus,  $u^{-1}w \in Y \implies w = uv$  for some  $v \in Y$ .

**Problem :** Let A be an abelian group and let B be an subgroup of A. Prove that A/B is abelian. Give an example of a non-abelian of a non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

Solution: Any subgroup of a abelian group is a normal subgroup. Notice that,

$$(uB)\circ (vB)=(uv)B=(vu)B=(uB)\circ (vB)$$

For the example part, take  $G = S_3$  and  $N = \{e, (123), (132)\}.$ 

**Problem :** Prove that in quotient group G/N,  $(gN)^{\alpha} = g^{\alpha}N$  for all  $\alpha \in \mathbb{Z}$ .

Solution : If we let 
$$(gN)^{\alpha} := \underbrace{(gN) \cdot (gN) \cdots (gN)}_{\alpha}$$
 for  $\alpha \geq 0$  then

$$(gN)\cdot (gN)\cdots (gN)=\{(gN)\cdot (gN)\}\cdots (gN)$$
  
=  $(g^2N)\cdot (gN)\cdots (gN)$  (Proposition 2.4.)  
=  $g^{\alpha}N$ 

**Problem:** Prove that the order of the element gN in G/N is n, where n is the smallest positive integer such that  $g^n \in N$  (and gN has infinite order if no such n exists). Give an example to show that the order of gN in G/N may be strictly smaller than the order of g in G.

Solution: Let n be the smallest positive integer such that  $g^n \in N$ . Then,  $g^n N = N$ . Now, if there exists a s < n s.t  $g^s \in N$ , then it would contradict our assumption. Thus order of gN is n. Now, Suppose  $g^n \notin N$  for any n > 0 then  $g^n N \neq N$  for any n > 0. Thus the order is infinite if no such n exists.

An example of  $g^s N = N$  and s < |g| is  $N = \{1, r, r^2\} \le D_6$ , g = r.

**Problem :** Define  $\varphi : \mathbb{R}^{\times} \to \{\pm 1\}$  by letting  $\varphi(x)$  be x divided by the absolute value of x. Describe the fibers of  $\varphi$  and prove that  $\varphi$  is a homomorphism.

Solution: The fiber over -1 is  $X_{-1} = \{x \mid \varphi(x) = -1\}$ . Since  $\varphi(x) = \frac{x}{|x|} = -1$ , the only numbers that get mapped to -1 are x < 0. Similarly, the only number that get mapped to 1 are x > 0. Thus the fiber over 1 and -1 are the positive and negative reals. Now,  $\varphi(x \cdot y) = \frac{xy}{|xy|} = \frac{x}{|x|} \frac{y}{|y|} = \varphi(x)\varphi(y)$ .

**Problem :** Define  $\pi: \mathbb{R}^2 \to \mathbb{R}$  by  $\pi(x,y) = x + y$ . Prove that  $\pi$  is a surjective homomorphism and describe the kernel and fibers of  $\pi$  geometrically.

Solution: To prove its a homomorphism, take

$$\pi((x,y) + (a,b)) = \pi(x+a,y+b) = x+y+a+b = \pi(x,y) + \pi(a,b)$$

To prove its surjectivity, notice that for a real number x there are always two real numbers that add up to x.

The ker  $\pi$  is the set of solution to the equation x + y = 0 and the fiber over a of  $\varphi$  is the set of solution to the equation x + y = a.

**Problem :** Let  $\varphi : \mathbb{R}^{\times} \to \mathbb{R}^{\times}$  be a map sending x to |x|. Prove it is a homomorphism and find the image of  $\varphi$ . Describe the kernel and the fibers of  $\varphi$ .

Solution: To show that it is a homomorphism,

$$\varphi(x \cdot y) = |x \cdot y| = |x| \cdot |y| = \varphi(x)\varphi(y)$$

The image of  $\varphi$  would be the positive reals. The ker  $\varphi = \{\pm 1\}$  and  $X_a = \{\pm a\}$ .

**Problem:** Define  $\varphi : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$  by  $\varphi(a+ib) = a^2 + b^2$ . Prove that the map is a homomorphism and find its image. Describe the kernel and the fibers of  $\varphi$  geometrically.

Solution: To prove its homomorphism,

$$\varphi((a+bi)\cdot(c+di)) = \varphi(ac-bd+(ad+bc)i)$$
$$= (ac-bd)^2 + (ad+bc)^2$$
$$= (a^2+b^2)(c^2+d^2)$$

The image of  $\varphi$  is  $\mathbb{R}_{>0}$  and the kernel is a set of solution to  $x^2 + y^2 = 1$  which is a circle with radius 1.

The fiber of  $X_a$  is also the set of solution to the equation of circle with radius  $\sqrt{a}$ .

#### 2.2 More on Cosets and Lagrange's Theorem

**Theorem 2.2** (Lagrange's Theorem). If G is a finite subgroup and H be its subgroup then order of H divides order of G and the number of left cosets of H in G is exactly  $\frac{|G|}{|H|}$ .

*Proof.* Let |H| = n and let k be the number of left cosets of H in G. By definition of a left coset the map

$$\Psi: H \to gH$$
 defined by  $h \to gh$ 

is a surjection from H to left coset gH. Also, if  $\Psi(h_1) = \Psi(h_2)$  then  $gh_1 = gh_2 \implies h_1 = h_2$ . Thus, the map  $\Psi$  is a bijection and

$$|H| = |qH|$$

Since, G is partitioned into k disjoint cosets of H which have the same order as H, we have

$$|G| = nk \implies \frac{|G|}{|H|} = k$$

**Remark.** We could add a similar proof for gH and conclude number of left cosets = number of right cosets for any finite group G.

**Definition 2.9.** If G is a group (possibly infinite) and  $H \leq G$ , then the number of left cosets of H in G is called the *index* of H in G and is denoted by |G:H|.

**Proposition 2.7.** If G is a finite group and  $x \in G$ , then order of x divides the order of G. In particular  $x^{|G|} = 1$  for all  $x \in G$ .

*Proof.* Apply lagrange's theorem on  $H = \langle x \rangle$ .

**Proposition 2.8.** If G is a group of prime order p, then G is cyclic, hence  $G \cong \mathbf{Z}_p$ .

*Proof.* Take any  $x \in G$  such that  $x \neq 1$  then  $|\langle x \rangle|$  divides p which implies  $\langle x \rangle = G$ .

**Proposition 2.9.** Let G be a group and H be a subgroup of G with |G:H|=2. Then  $H \triangleleft G$ .

*Proof.* Let  $g \in G$  be arbitrary. If  $g \in H$ , then clearly

$$qH = H = Hq$$
.

If  $g \notin H$ , then since there are exactly two left cosets of H in G and  $g \notin H$ , these must be H and gH. Because left cosets are disjoint, we have

$$qH = G \setminus H$$
.

Similarly, the right cosets of H in G are also disjoint, so the two right cosets must be H and Hg, and therefore

$$Hg = G \setminus H$$
.

Thus,

$$Hg = G \setminus H = gH$$
.

Hence gH = Hg for all  $g \in G$ , and therefore  $H \subseteq G$ .

**Theorem 2.3** (Cauchy's Theorem). If G is finite group and p is a prime dividing |G| then G has an element of order p.

Proof. Next Chapter  $\Box$ 

**Theorem 2.4** (Sylow's Theorem). If G is a finite group and  $|G| = p^{\alpha}m$ , where  $p \nmid m$  then G has a subgroup of order  $p^{\alpha}$ .

Proof. Next Chapter

**Definition 2.10.** Let G be a group and  $H, K \leq G$  and define

$$HK = \{hk \mid h \in H, k \in K\}$$

**Proposition 2.10.** If H and K are finite subgroups of a group then

$$|HK| = \frac{|HK|}{|H \cap K|}$$

Proof. Notice that

$$HK = \bigcup_{h \in H} hK$$

Since, each coset has size |K| it is enough to find the number of left cosets of form hK where  $h \in H$ . But  $h_1K = h_2K$  where  $h_1, h_2 \in H$  if and only if  $h_2^{-1}h_1 \in K$ . Thus,

$$h_1K = h_2K \iff h_2^{-1}h_1 \in (H \cap K) \iff h_1(H \cap K) = h_2(H \cap K)$$

Thus the number of distinct cosets of the form hK where  $h \in H$  is the number of distinct left cosets of  $H \cap K$  in H. Thus, by lagrange's theorem we've the number of distinct left cosets of  $H \cap K$  in H equal to  $\frac{|H|}{|H \cap K|}$ . Since, there are  $\frac{|H|}{|H \cap K|}$  distinct cosets and each coset has a size of |K| we get our desired formula.

**Proposition 2.11.** If H and K are subgroups of a group, HK is a subgroup if and only if HK = KH.

*Proof.* Assume first that HK = KH and let  $a, b \in HK$ . We prove  $ab^{-1} \in HK$ , so HK is a subgroup by the subgroup criterion. Let

$$a = h_1 k_1$$
 and  $b = h_2 k_2$ ,

for some  $h_1, h_2 \in H$  and  $k_1, k_2 \in K$ . Then  $b^{-1} = k_2^{-1} h_2^{-1}$ , so

$$ab^{-1} = h_1 k_1 k_2^{-1} h_2^{-1}.$$

Let  $k_3 = k_1 k_2^{-1} \in K$  and  $h_3 = h_2^{-1}$ . Thus  $ab^{-1} = h_1 k_3 h_3$ . Since HK = KH,

$$k_3h_3 = h_4k_4$$
 for some  $h_4 \in H$ ,  $k_4 \in K$ .

Therefore,

$$ab^{-1} = h_1(h_4k_4) = (h_1h_4)k_4,$$

and since  $h_1h_4 \in H$ ,  $k_4 \in K$ , we obtain  $ab^{-1} \in HK$ , as desired.

Conversely, assume that HK is a subgroup of G. Since  $K \leq HK$  and  $H \leq HK$ , by the closure property of subgroups,  $KH \subseteq HK$ . To show the reverse containment, let  $hk \in HK$ . Since HK is a subgroup,  $hk = a^{-1}$  for some  $a \in HK$ . If  $a = h_1k_1$ , then

$$hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH,$$

so  $HK \subseteq KH$ . Hence HK = KH, completing the proof.

**Proposition 2.12.** If H and K are subgroups of G and  $H \leq N_G(K)$ , then HK is a subgroup of G. In particular, if  $K \subseteq G$  then  $HK \leq G$  for any  $H \leq G$ .

*Proof.* We prove HK = KH. Let  $h \in H$ ,  $k \in K$ . By assumption,  $hkh^{-1} \in K$ , hence

$$hk = (hkh^{-1})h \in KH.$$

This proves  $HK \subseteq KH$ . Similarly,  $kh = h(h^{-1}kh) \in HK$ , proving the reverse containment.

For the second statement: if  $K \subseteq G$ , then  $N_G(K) = G$ , so in particular  $H \le N_G(K)$  for any subgroup  $H \le G$ . The result then follows from the first part.

**Definition 2.11.** If A is any subset of  $N_G(K)$  (or  $C_G(K)$ ), we shall say A normalizes K (centralizes K, respectively).

# **Problems and Solutions**