

Lecture 21

Examples

Announcements

Testing Hypotheses

How to do a hypothesis test

- Before computing anything: figure out the viewpoint the question wants to test, and formulate:
 - Null hypothesis: Completely specified chance model under which you can simulate data
 - Alternative hypothesis: Viewpoint from the question
 - Test statistic: to help you choose one viewpoint
- Compute the value of the test statistic in your data
- Simulate the test statistic under the null many times
- Compare the results

Definition of the P-value

The *P*-value is the chance,

- if the null hypothesis is true,
- that the test statistic
- is equal to the value that was observed in the data
- or is even further in the direction of the alternative.

P-Values and Error Probabilities

Can the Conclusion be Wrong?

Yes.

	Null is true	Alternative is true
Test favors the null		X
Test favors the alternative		

An Error Probability

- The cutoff for the P-value is an error probability.
- If:
 - your cutoff is 5%
 - and the null hypothesis happens to be true
- then there is about a 5% chance that your test will reject the null hypothesis.

P-value cutoff vs P-value

- P-value cutoff
 - Does not depend on observed data or simulation
 - Decide on it before seeing the results
 - Conventional values at 5% and 1%
 - Probability of hypothesis testing making an error
- P-value
 - Depends on the observed data and simulation
 - Probability under the null hypothesis that the test statistic is the observed value or further towards the alternative

Example: Benford's Law

Post-lecture feedback

Please fill out this <u>very short anonymous feedback form</u> for today's lecture.