ENSIM 3A Sylvain Maugeais

I.Domination II.Complexité

Complexité

ENSIM 3A Sylvain Maugeais

I.Domination II.Complexité

I. Domination

Définition

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit que (u_n) est **dominée** par (v_n) s'il existe un $n_0\in\mathbb{N}$ et une constance C telle que pour tout $n\geqslant n_0$ on a $|u_n|\leqslant C|v_n|$.

On écrit alors $u_n=O(v_n)$ et on dit que u_n est un "grand O" de v_n .

Proposition

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles et supposons que v_n est non nul pour n assez grand.

Alors $u_n=O(v_n)$ si et seulement si la suite $\frac{u_n}{v_n}$ est bornée par exemple si la suite possède une limite finie

$$n = O(n^2) \operatorname{car} \lim_{n \to +\infty} \frac{n}{n^2} = 0$$

▶
$$n = O(3n+1) \operatorname{car} \lim_{n \to +\infty} \frac{n}{3n+1} = \frac{1}{3}$$

$$\blacktriangleright \ \ln(n) = O(n) \ \mathrm{car} \ \lim_{n \to +\infty} \frac{\ln(n)}{n} = 0 \ \mathrm{(T.C.C.)}$$

$$\qquad \qquad n = O(e^n) \, \mathop{\rm car} \, \lim_{n \to +\infty} \frac{n}{e^n} = 0 \, \left({\rm T.C.C.} \right)$$

$$\qquad \qquad \bullet \ e^n \neq O(n) \ {\rm car} \ \lim_{n \to +\infty} \frac{e^n}{n} = +\infty \ {\rm (T.C.C.)}$$

- ightharpoonup si $u_n = O(w_n)$ et $v_n = O(w_n)$ alors $u_n + v_n = O(w_n)$
- ightharpoonup si $u_n=O(w_n)$ et que $\lambda\in\mathbb{R}$ alors $\lambda u_n=O(w_n)$.
- $lackbox{ su } u_n = O(w_n)$ et que v_n est bornée alors $u_n v_n = O(w_n)$
- lacksquare si $u_n=O(w_n)$ et $v_n=O(z_n)$ alors $u_nv_n=O(w_nz_n)$

Attention

On a $n^{-1} = O(1)$ mais $\ln(n) \neq O(\ln(0))$

En général, il faut faire attention quand on applique des fonctions à l'intérieur des O.

I.Domination II.Complexité

II. Complexité

II.Complexité

Entrée : L, x

Tant que i < n faire :

si L[i] = x alors sortir sinon $i \leftarrow i + 1$

Sortie: i

Attention

- pas de formule précise pour le temps de calcul T(n) (dépend de x, de l'ordre dans la liste, ...) \Rightarrow majoration
- pas de formule pour le temps que prend une comparaison (dépend du type d'objet, de l'ordinateur, ...) ⇒ majoration à une constante multiplicative près

temps de calcul T(n) est donc au plus de n comparaisons $\Rightarrow T(n) = O(n)$

Entrée : (a,b)tant que $b \neq 0$ faire :

$$a = bq + r$$
$$a \leftarrow b, b \leftarrow r$$

fin tant que Sortie : a

On note T(a,b) le temps de calcul (numbre d'opérations élémentaires) du $\operatorname{pgcd}(a,b)$ par l'algorithme d'Euclide

Principe de la majoration de T(a,b):

- on démontre que le cas le pire est le cas de la suite de Fibonacci
- on fait le calcul dans le cas de la suite de Fibonacci

I.Domination II.Complexité

Définition

Suite de Fibonacci $F_0=0$, $F_1=1$ et pour tout $n\geqslant 2$

$$F_n = F_{n-1} + F_{n-2}$$

Théorème

$$a,b\in\mathbb{N}$$
 , $a>b$, si $T(a,b)\geqslant n$ alors $a\geqslant F_{n+2}$ et $b\geqslant F_{n+1}$

La démonstration de fait par récurrence

Initialisation : Si
$$T(a,b)\geqslant 1$$
, alors $b\neq 0$, donc $b\geqslant 1=F_2$ et $a>b$ donc $a\geqslant 2=F_3$.

Hérédité : Supposons le résultat vrai au rang n.

$$a=bq+r \text{ avec } 0\leqslant r < b$$

$$T(a,b)=T(b,r)+1\geqslant n\Rightarrow T(b,r)\geqslant n-1$$

$$(\mathsf{HR})\Rightarrow b\geqslant F_{n+1} \text{ et } r\geqslant F_n$$

$$a=bq+r\geqslant qF_{n+1}+F_n\geqslant F_{n+1}+F_n=F_{n+2}$$
 COFD

I.Domination II.Complexité

Théorème

Pour tout
$$n\in\mathbb{N}$$
, $F_n=\frac{1}{\sqrt{5}}\left(\varphi^n-\varphi^{-n}\right)$ avec $\varphi=\frac{1+\sqrt{5}}{2}$

La démonstration se fait par récurrence

$$c\geqslant F_n\Leftrightarrow c\geqslant \frac{1}{\sqrt{5}}\left(\varphi^n-\varphi^{-n}\right)$$
 Comme $\varphi^{-1}\approx 0.61<1$ et que c est entier

$$c \geqslant F_n \Leftrightarrow c+1 \geqslant \frac{1}{\sqrt{5}} \varphi^n$$

$$\Leftrightarrow \sqrt{5}(c+1) \geqslant \varphi^n$$

$$\Leftrightarrow \ln(\sqrt{5}(c+1)) \geqslant n \ln(\varphi)$$

$$\Leftrightarrow \log_{\varphi}(\sqrt{5}(c+1)) \geqslant n$$

Théorème

$$T(a,b) \le \log_{\varphi} \left(\sqrt{5} \max(a,b)\right)$$

I.Domination II.Complexité

Comparaison	Complexité	Problème exemple
O(1)	constante	Accès tableaux
$O(\log(n))$	logarithmique	Dichotomie
O(n)	lináziro	Darcoure d'una lista da languaur n

Attention

- Les problèmes polynomiaux (ou moins) sont considérés comme simple
- Les problèmes exponentiels (ou plus) sont considérés comme complexe

O(n!)	factorielle	Problème du voyageur de commerce pour n villes
$O(2^{2^n})$	doublement exponentielle	Décision de l'arithmétique de Presburger pour un énoncé de longueur n
$O(n\log(\log n))$		Crible d'Eratosthène donnant tous les nombres premiers $\leqslant n$.

I.Domination II.Complexité

Youtube : ScienceEtonnante

Nos algorithmes pourraient-ils être BEAUCOUP plus rapides? (P=NP?)

