Skanda Koppula

Collaborators: Jonathan Frankle, Sam DeLaughter April 22, 2017

Problem 1.1 The function $H': \{0,1\}^m \to \{0,1\}^n$ that applies the one-bit compression UOWHF H repeatedly is also a UOWHF. Specifically, for a size-m input x and key $K = k_m |k_{m-1}| \dots |k_n|$:

$$H'_K(x) = H_{k_m}(H_{k_{m-1}}(\dots H_{k_n}(x)))$$

We show that this construction is a UOWHF by contradiction. Suppose there existed a PPT A that could produce such a colliding x' for H' (as per the UOWHF definition). We construct a PPT B that breaks the UOWHF-ness of H_{k_t} with probability $\frac{1}{\text{poly}}$:

- 1. B begins by querying A for its commitment pre-image x.
- 2. B then guesses a specific location t in the chain/UOWHF to break. The choice of t is $m \le t < n$, a poly-sized number of choices to guess among.
- 3. B picks $k_t, k_{t-1}, \dots k_n$, and evaluates $\gamma = H_{k_t}(H_{k_{t-1}}(\dots H_{k_n}(x)))$.
- 4. Declare γ as the commitment pre-image for the UOWHF t that we chose to break.
- 5. Following UOWHF protocol, key k_t is selected, and we select keys $k_m, k_{m-1}, \ldots, k_{t+1}$ as well.
- 6. B queries A for its collision, x'.
- 7. B outputs its collision guess $\gamma' = H_{k_t}(H_{k_{t-1}}(\dots H_{k_n}(x')))$.

B outputs the correct guess γ' with at least $\frac{1}{m-n} = \mathsf{non-negl}(x)$ probability. By definition, $H'_K(x) = H'_K(x')$. This means that at some point in the chain, evaluation of the hash chain must switch from differing to being the same (evaluating on input x vs. x'). The probability we select the correct such switching point t is $\frac{1}{\mathsf{poly}}$, implying that B breaks the UOWHF-ness of H a non-negligible amount, contradiction. No B can exist, H' is a UOWHF.

Problem 1.2.a.

That \bar{H} is a function that compresses its input by one bit is clear from the dimensionality of $M: n \times n + 1$. What remains is showing that \bar{H} is universal: that given two randomly chosen (x_1, y_1) and (x_2, y_2) , the probability of choosing M such that $Mx_1 = y_1$ and $Mx_2 = y_2$ is $\frac{1}{22n}$

The total size of the space of all binary $n \times n + 1$ matrices is $2^{n(n+1)}$. Denote M[i] as the i-th row of M, and y[i] as the i-th entry in y. Mechanics of matrix multiplication tell us that $M[i] \cdot x_1 = y_1[i]$ and $M[i] \cdot x_2 = y_2[i]$. This means that every row corresponds to an underconstrained 2-equation, n+1 variable linear equation with binary coefficients and variables. From counting principles, we see that there are 2^{n-1} satisfying assignments to each row M[i], and thus $2^{n(n-1)}$ M's that satisfy the universal hash function condition. The probability of picking such an M is thus $\frac{2^{n(n-1)}}{2^{n(n+1)}} = \frac{1}{2^{n(n+1)-n(n-1)}} = \frac{1}{2^{2n}}$ as desired for universality.

Problem 1.2.b.

This reduces to sampling a row-rank-n M such that $My = M(x_2 - x_1) = 0$. If we are able to sample a full-rank $n \times n$ matrix M', we can always compute the necessary values for the last column in M to satisfy the linear equality. This reduces the problem to sampling a full rank $n \times n$ matrix in poly-time w.h.p.

If we randomly sample the binary column vectors of the matrix in order: the first column vector is trivially linearly independent. The second column is linearly dependent with the first column vector with probability $\frac{1}{2^n}$, so the probability that it is linearly independent is $1 - \frac{1}{2^n}$. Similarly, the probability that the third column is linearly dependent with the first two is $\frac{2}{2^n}$, so the probability that it's linearly independent is $1 - \frac{1}{2^{n-1}}$. Because each draw is independent, the probability that all n vectors are linearly independent is:

$$p(n) = \prod_{i=0}^{n-2} 1 - 2^{-(n-i)}$$

We want to show that p(n) is greater than some constant non-negl c. Using the lower bound $e^{-2x} \le 1 - x$ for every term in the product above, we obtain:

$$p(n) \ge \prod_{i=0}^{n-2} e^{-\frac{2}{2^{n-i}}} = e^{-2\sum_{j=2}^{n} \frac{1}{2^{j}}} = e^{-2(\frac{1}{2} - 2^{-n})} = e^{2^{-n+1} - 1} \ge \lim_{n \to \infty} e^{2^{-n+1} - 1} = \frac{1}{e}$$

This shows that we obtain a full rank matrix with non-negligible probability.

Problem 1.2.c.

 $H_{M,i}(x)$ compresses its input by a single bit by virtue of the size-preserving permutation, and the single-bit compression function \bar{H} . We show H is a UOWHF by contradiction. Assume there were a PPT A that could break the UOWHF-ness. Using A, we construct PPT B to break the one-wayness of permutation $f_i(x)$. On challenge input $f_i(\alpha)$:

- 1. Begin by querying A for its commitment pre-image x
- 2. Use the Part 1.2.b. to sample M such that $Mf_i(\alpha) = Mf_i(x)$.
- 3. Extract from A the colliding pre-image x' such that $Mf_i(x) = Mf_i(x') = \gamma$.
- 4. Output x'.

By Lemma 1.2.c, with high probability (non-negligible), there are only two non-zero values of $f_i(\zeta)$ that map to γ . This fact, combined with the fact that $Mf_i(x) = Mf_i(x') = Mf_i(\alpha)$, and the fact that f_i is a permutation, means α must be either x or x' with non-negligible probability. This increases the probability of a one-wayness break of f_i to non-negligible, contradiction. No such A can exist, and H is a UOWHF.

Proof of Lemma 1.2.c (with non-negligible probability, there is no other unique x'' such that $Mx' = Mx'' = Mx'' = \gamma$. The probability that $M\beta = \gamma$ is $\frac{1}{2^n}$. The probability that this is not the case is $1 - \frac{1}{2^n}$. Now, we want this to be true for all $x'' \neq x, x', 0$ in the input space of $f_i(x) = \beta$. There are $2^{n+1} - 3$ such possible inputs. Thus, the total probability that there is no other input that maps to γ is thus:

$$p = (1 - \frac{1}{2^n})^{2^{n+1} - 3} \ge e^{-2(\frac{1}{2^n})(2^{n+1} - 3)} = e^{\frac{3}{2^{n-1}} - 4} \ge \lim_{n \to \infty} e^{\frac{3}{2^{n-1}} - 4} = \frac{1}{e^4}$$

Here, we've applied the bound $1-x \ge e^{-2x}$. This shows the probability of no third valid x'' existing is bounded above a non-negligible amount.