Do We Really Know the Best Initial Therapy for Polycythemia Vera (PV)?

Mary Frances McMullin, MD, FRCPath

Belfast City Hospital

Belfast, United Kingdom

m.mcmullin@qub.ac.uk

Survival in Patients With PV

Tefferi A, et al. Leukemia. 2013;27(9):1874-1881.

Goals of Therapy

- Control blood counts
- Prevent thromboembolic events
- Prevent hemorrhagic events
- Remove or reduce MPN associated symptoms
- Prevent progression to myelofibrosis (MF) or acute leukemia
- Reduce or eliminate JAK2 mutant clone
- "Cure" the disease

Symptoms in 1179 MPN Patients

ET, essential thrombocythemia; MMM, myeloid metaplasia

Mesa RA, et al. *Cancer.* 2007;109(1):68-76.

PV: Management Agents

- Aspirin
- Venesection
- Hydroxycarbamide
- Interferons
- Radioactive phosphorus-32
- Busulfan
- Anagrelide

Probability of Survival Free of a Thrombotic Event

"Bloodletting"
18th century Persian
manuscript illustration

Relationship Between PCV Range and Vascular Occlusive Episodes

In patients with primary proliferative polycythemia

PCV, packed cell volume

Adapted from Pearson TC, et al. Lancet. 1978;2(8102): 1219-1222

Kaplan-Meier Curves for the Primary End Point and Total Cardiovascular Events

Primary endpoint

Time until death from cardiovascular causes or major thrombotic event

Secondary endpoint

 Total rate of cardiovascular events, defined as the primary endpoint plus superficial-vein thrombosis

Marchioli R, et al. N Engl J Med. 2013;368(1): 22-33.

Hydroxycarbamide

Trial	Patients	Follow-up	Outcomes	Treatments		<i>P</i> value
				Previously treated	Previously untreated	
PSVG-08	118		1 year failure free survival	59%	73%	
Donovan, 1984	59 untreated					
				<u>Hydroxycarbamide</u>	<u>Controls</u>	
PSVG-08	51	795	Overall survival	68.60%	60.00%	.07
Kaplan, 1986 and	(134 PSVG-01	weeks	Thrombosis	9.80%	32.80%	.018
Fructman, 1997	controls)		Acute leukemia	5.90%	1.50%	.25
			Myelofibrosis	7.80%	12.70%	.37
West, 1987	100	1963-1986	Thrombosis	1.00%		
			Acute leukemia	1.00%		
			Myelofibrosis	6.00%		
Löfvenberg, 1988	59	1981-1986	5-year survival	86.00%		
	(24 PV)		Thrombosis	8.40%		
			Acute leukemia and MDS	3.00%		
Weinfeld, 1994	50	5 years	Thrombosis	12.00%		
	(30 PV)	minimum	Acute leukemia and MDS	10.50%		
Nand, 1996	42	1993-1995	Acute Leukemia	6.00%		
	(16 on HU alone)					
Tartarsky and	71	10.9 years	Thrombosis	5.60%		
Sharon, 1997		median	Acute leukemia	5.60%		
			Myelofibrosis	2.80%		
Nielsen, 2003	58 (29 PV)	7.8 years	Acute leukemia and MDS	14%		

Donovan PB, et al. Am J Hematol. 1984;17(4):329-334. Kaplan ME, et al. Semin Hematol. 1986;23(3):167-171. Fruchtman SM, et al. Semin Hematol. 1997;34(1):17-23. West WO, et al. South Med J. 1987;80(3):323-327. Löfvenberg E, et al. Eur J Haematol. 1998;41(4):375-381. Weinfeld A, et al. Eur J Haematol. 1994;52(3):134-139. Nand S,et al. Am J Hematol. 1996;52(1):42-46. Tatarsky I, et al. Semin Hematol. 1997;34(1):24-28. Nielsen I, et al. Am J Hematol. 2003;74(1):26-31.

Hydroxycarbamide

- PVSG -08: Showed efficacy of hydroxycarbamide
- Acute leukemia and MDS: 0% to 14%
- Extensive experience in sickle cell anemia:
 No increase in leukemia
- Hydroxycarbamide: Leukemogenicity not proven, prevents thrombosis and possibly progression to myelofibrosis

³²P and Busulfan

- EORTC trial (1981)
- Comparing ³²P and busulfan and venesection to maintain the hematocrit (Hct)
- Better overall survival with busulfan than ³²P (70% vs 55% at 10 years)
- No differences in leukemia, non-hematologic malignancy, or myelofibrosis rates between arms

Acute Myeloid Leukemia (AML)/MDS Transformation According to Treatment

Treatment	Odds ratios	95% CI
None	1.0	Ref
³² P only	1.5	0.8-2.8
Alkylating agent only	0.9	0.4-2.1
Hydroxyurea (HU) only	1.2	0.6-2.4
Mixed treatment (2 or more)	2.9	1.4-5.9

Recommendation: Management of PV

- 1. Venesection to maintain the Hct at <0.45
- 2. Aspirin 75 mg/day unless it is contraindicated
- 3. Cytoreduction should be considered if:
 - Poor tolerance of venesection
 - Symptomatic or progressive splenomegaly
 - Other evidence of disease progression (eg, weight loss and nights sweats)
 - Thrombocytosis
- 4. Choice of cytoreductive therapy, if indicated:
 - <40 years: First-line interferon, second-line hydroxycarbamide or anagrelide
 - 40-75 years: First-line hydroxycarbamide, second-line interferon or anagrelide
 - >75 years: First-line hydroxycarbamide, second-line ³²P or intermittent low dose busulfan

Pegylated Interferon-Alpha-2a: Hematological Responses and Treatment Discontinuations

Estimated cumulative incidence of treatment response

Cumulative incidence of treatment discontinuation

Pegylated Interferon-Alpha-2a Is Able to Induce Molecular Remission in Patients With PV

Cohort of Danish Patients With ET, PV, and MF Treated With Recombinant Interferon Alpha

Change from baseline in JAK2 V617F mutant allele burden in the 102 individual patients with a median follow-up of 42 months (range 12–146 months)

Stauffer Larsen T, et al. Leuk Res. 2013;37(9):1041-1045.

The ELN Criteria for Response

- Endpoints that are capable of measuring the effects of drugs on clinically relevant benefit for patients
- Symptomatology
 - Patient-reported quality-of-life instrument (MPN-SAF TSS)
- Disease complications
- Bone marrow histological remission

Definition of Response in PV

PR	A	Durable* resolution of disease-related signs, including palpable hepatosplenomegaly, large symptom improvement,† AND	
	В	Durable* PB count remission, defined as Hct lower than 45% without phlebotomies platelet count <400 x10 ⁹ /L, WBC count <10 x10 ⁹ L, AND	
	С	Without progressive disease, and no hemorrhagic or thrombotic events, AND	
	D	Bone marrow histological remission defined as the presence of age-adjusted normocellularity and disappearance of trilinear hyperplasia, and absence of greater than grade 1 reticulin fibrosis	
	A	Durable* resolution of disease-related signs, including palpable hepatosplenomegaly, and large symptoms improvement, AND	
	В	Durable* PB count remission, defined as: Hct lower than 45% without phlebotomies, platelet count <400 x10 ⁹ /L, WBC count <10 x10 ⁹ L, AND	
	С	Without progressive disease, and absence of hemorrhagic or thrombotic events, AND	
	D	Without bone marrow histological remission defined as persistence of trilineage hyperplasia	
	NR	Any response that does not satisfy partial remission	
	PD	Transformation into post-PV myelofibrosis, myelodysplastic syndrome or AML	
41	Car tarat		

^{*}Lasting for at least 12 weeks; †Large symptom improvement (≥ 10-point decrease) in MPN-SAF TSS. CR, complete resonse; PR, partial response Barosi G, et al. *Blood.* 2013;121(23):4778- 4781

Molecular Response

- Not required for assignment as complete or partial response
- Molecular response evaluation requires analysis in peripheral blood granulocytes
- CR: Eradication of a preexisting abnormality
- PR: >50% decrease in allele burden, assessable only if baseline mutant burden >20%

MPD-RC Pegylated Interferon-Alpha-2a Studies

MPD-RC 111¹ Phase II

168 patients

ET/PV patients HU resistant/refractory

and

20 patients with splanchnic vein thrombosis

MPD-RC 112² Phase III

612 patients

ET/PV patients
diagnosed within three
years of trial entry

Randomized between pegylated interferonalpha-2a plus aspirin and HU plus aspirin

MPD-RC, Myeloproliferative Disorders Research Consortium

1. National Institutes of Health. Available at: http://clinicaltrials.gov/show/NCT01259817. Assessed on October 21, 2014. 2. National Institutes of Health. Available at: http://clinicaltrials.gov/show/NCT01259856. Assessed on October 21, 2014.

MPD-RC 112 Study Design

National Institutes of Health. Available at: http://clinicaltrials.gov/show/NCT01259856. Assessed on October 21, 2014.