Q02-Lecture 6

DENSITY MATRICES (KEVIEW)

Recall that for a pure state 14> we can diffuse a density operator $\hat{\beta} = 14\times41$.

We can also describe a <u>statistical mixture</u> of pure states {17+i} with probabilities {Pi} by

à has some useful properties!

$$tr(\hat{\rho})=1$$
 $(\hat{\delta})=tr(\hat{\delta}\hat{\rho})$ (measurement)

Purity $P(\hat{\rho})=tr(\hat{\rho}^2)\geq 0$
 $\downarrow \qquad 1$ when $P_1=1+P_1\neq 1=0$

L. <1 otherwise.

Also, we can describe the time evolution of $\hat{\rho}$ the same as any other operator: $d\hat{\rho} = \frac{1}{it} [\hat{H}, \hat{\rho}]$

Finally, for a two-level system, β takes a particularly simple form, in terms of observable quantities:

$$\hat{p} = \frac{1}{2} \left(1 + (\sigma_z) + (\sigma_x) - (\sigma_y) \right)$$

$$(\sigma_x) + (\sigma_z) + (\sigma_z) + (\sigma_z)$$

where $\langle \sigma_i \rangle = tr(\sigma_i \rho)$

Optical Bloch Equations

Recall from the last lecture the, for an atom interacting with an electromagnetic field in the rotating frame (and in the rotating wave approximation) the Hamiltonian is?

$$\hat{H} = \frac{1}{2} \begin{pmatrix} -\delta & \Omega_R \\ \Omega_R & \delta \end{pmatrix}$$

But
$$\frac{d\rho}{dt} = \frac{1}{2} \left(\frac{d\langle \sigma_2 \rangle}{dt} + i \frac{d\langle \sigma_2 \rangle}{dt} - \frac{d\langle \sigma_2 \rangle}{dt} \right)$$

This leads is to the equations:

$$\frac{d\langle \sigma_x \rangle}{dt} = \delta\langle \sigma_y \rangle$$

$$\frac{d\langle \sigma_x \rangle}{dt} = -\delta\langle \sigma_x \rangle - \Omega_R \langle \sigma_z \rangle$$

$$\frac{d\langle \sigma_x \rangle}{dt} = +\Omega_R \langle \sigma_y \rangle$$

$$\frac{d\langle \sigma_x \rangle}{dt} = +\Omega_R \langle \sigma_y \rangle$$

These can neatly be represented by:

$$\frac{d}{dt}\langle \vec{c} \rangle = \vec{Q} \times \langle \vec{c} \rangle, \text{ where } \vec{Q} = (Q_R, O, -\delta)$$

$$\langle \vec{c} \rangle = (\langle \vec{c}_X \rangle, \langle \vec{c}_Z \rangle)$$

The Geometric Picture

Remember that (T;) are not just expectation values, we can use them to plot rho on the Block sphere!

Since (\$) is the Bloch vector, what does the equation

This is a rotation! (recall: $\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$)

So then the Bloch vector rotates around the "DRIVE VECTOR" = (DR, O, -8) at an angular relocity | Il = Il2+52 (the generalized Rabi frequency!)

On resonance?

This gives you a simple way to explain the dynamics of a two level atom in a classical field!

So what about spontaneous emission?
As it turns out, a full (quantum) treatment is outside the scope of this course (maybe, depending on time).

See Grynberg, Aspect, Fabre, Ch. 6.

But we can pull the same tricks we have this entire time! (ie. introduce the concept phenomenologically)

Time Evolution of Density Matrices

$$\frac{d\hat{\rho}}{dt} = \frac{(\text{coherent})}{2} + \frac{1}{2} \left(\frac{(\text{incoherent})}{2} \right)$$

$$= \frac{1}{2}$$

 $\frac{dPij}{dt} = -VijPij$

For 2-level atom; incoherent terms are!

one can show that \$\frac{1}{2}\forall_3. How?!

Density matrix must be physical.

Let's translate these to the Bloch picture.

$$\frac{d(\sigma_2)}{dt} = -\left(\frac{(\sigma_2)+1}{2}\right) = \frac{d}{dt}(\sigma_2) = -\left(\frac{(\sigma_2)+1}{2}\right)$$

Similarly, you can show that!

$$\frac{d}{dt}(G_X) = -\frac{1}{2}(G_X)$$

$$\frac{d}{dt}(G_Y) = -\frac{1}{2}(G_Y)$$

Taking the coherent terms too we get:

$$\frac{d}{dt}(\sigma_x) = \delta(\sigma_y) - \frac{\Gamma}{2}(\sigma_x)$$

$$\frac{d}{dt}(\sigma_y) = -\delta(\sigma_x) - \Omega_R(\sigma_z) - \frac{\Gamma}{2}(\sigma_y)$$

$$\frac{d}{dt}(\sigma_z) = \Omega_R(\sigma_y) - \Gamma((\sigma_z) + 1)$$

$$\frac{d}{dt}(\sigma_z) = \Omega_R(\sigma_y) - \Gamma((\sigma_z) + 1)$$

$$\frac{d}{dt}(\sigma_z) = \Omega_R(\sigma_y) - \Gamma((\sigma_z) + 1)$$

$$\frac{d}{dt}(\sigma_z) = \Omega_R(\sigma_y) - \frac{\Gamma}{2}(\sigma_z) + \frac{\Gamma}{2}(\sigma_z)$$

The OBEs describe the evolution of the Bloch vector in
the {1e), 15)} basis, in a frame rotating at w, the drive.
So examples:
Case 1a: Stort in le), no drive.
Initially, (527=1, (5y)=0=(5x)
To y
The only non-zero rate is!
$\frac{\partial}{\partial t}\langle \sigma_z \rangle = -\Gamma(\langle \sigma_z \rangle + 1)$
which yields a decay until (52) = -1 => ground state.
$\uparrow \Rightarrow \uparrow \Rightarrow \downarrow \Rightarrow \downarrow$
Case 16: Start in 19), no drive
Nothing happens!
Cose 1c: Start in 124)= le>+19> or p== 1(1)
then (52>=0, (6y)=0, (5x)=1
Now of (6x)= - P(cox) to Note: This reduced wo! The symning in the start of the symning in the start of the
\$ 402) =- P((52)+1) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Case I : Drive on resonance. SZ= (Q,0,0) Start in 192. What happens! , decay pushes down torque drives upwards Which wins? See assignment 3! Case II: Drive for from resonance: 15/>> SLR Choose 8#40 50 = (0,0,-5) Start in 193? Nothing happens Start in Willan: State precesses @ 8 le>+1g> Eventually decays.