Mid-term Exam

- 3/18 next Mon.
- 1 hour during class
- Written
- Open book
- No electronic devices
 - Considered as cheating
- No talking
 - 20% penalty each time

Double Transposition

- Plaintext: attackxatxdawnx
 - 5 x 3 matrix

	col 1	col 2	col 3
row 1	а	t	t
row 2	а	С	k
row 3	Х	а	t
row 4	х	d	а
row 5	W	n	х

		col 1	col 2	col 3
Permute rows	row 3	Х	а	t
	row 5	W	n	х
	row 1	а	t	t
	row 4	X	а	d
	row 2	а	С	k

	col 1	col 3	col 2
row 3	X	t	а
row 5	w	х	n
row 1	а	t	t
row 4	х	а	d
row 2	а	k	С

- Ciphertext: xtawxnattxadakc
- Key is matrix size and permutations: (3, 5, 1, 4, 2) and (1, 3, 2)

Double Transposition - Decryption

- Ciphertext: xtawxnattxadakc
 - 5 x 3 matrix

	col 1	col 3	col 2
row 3	Х	t	а
row 5	W	х	n
row 1	а	t	t
row 4	Х	а	d
row 2	а	k	С

	col 1	col 2	col 3
row 3	Х	а	t
row 5	w	n	x
row 1	а	t	t
row 4	Х	а	d
row 2	а	С	k

•	•
	_
	/

	col 1	col 2	col 3
row 1	а	t	t
row 2	а	С	k
row 3	х	а	t
row 4	х	d	а
row 5	W	n	Х

- Plaintext: attackxatxdawnx
- Does not disguise the letters

1. Double Transposition

- Row permutation, then column permutation
- The key is matrix size and permutations
- The ciphertext is lealethrawergtoe

2. Affine Cipher – Simple Substitution Cipher

- $c = (a * p + b) \mod 26$
- t -> H, o -> E
- We can have 7 = 19a + b(mod 26) and 4 = 14a + b(mod 26)
 - Subtract 2 equations
 - 3 = 5a mod (mod 26)
 - $3*5^{-1} = a \pmod{26}$
 - 3*21 = 11 mod 26 = a (mod 26)
 - a = 11
 - b = 6
- $c = 11p + 6 \pmod{26}$
- To decipher:
 - ap = $c b \pmod{26}$
 - $p = a^{-1*}(c b) = 11^{-1}(c-6) = 19(c-6) \mod 26$
 - if you bow at all bow low

A5/1 Majority of three clocking bits

- At each cycle: $m = \text{maj}(x_8, y_{10}, z_{10})$
 - **Examples:** maj(0,1,0) = 0 and maj(1,1,0) = 1
- For each register, if bit == maj, then step
- Then compute the keystream bit using $x_{18} \oplus y_{21} \oplus z_{22}$

3. A5/1

- First round,
 - X = (x0, x1, ..., x18) = (1010101010101010101)
 - Y = (y0, y1, ..., y21) = (110011001100110011)
 - Z = (z0, z1, ..., z22) = (11100001111100001)
 - maj = 1, x step, z step; last bits of x, y, z 0 1 0->key bit 1
- Next round,
 - X = (x0, x1, ..., x18) = (x101010101010101010)
 - Y = (y0, y1, ..., y21) = (110011001100110011)
 - Z = (z0, z1, ..., z22) = (x1110000111100001111000)
 - maj = 0; x step, y step ... last bits 1, 1, 0 -> key bit 0
- Repeat...
- Anwser: 10000

Stream Cipher - Encryption

 A keystream generator takes a key K of n bits in length and stretches it into a long keystream

Encryption: The keystream is XORed with the plaintext P to produce ciphertext C.

```
Keystream — Ciphertext
```


MAC for integrity

- Message Authentication Code (MAC)
 - Used for data integrity
 - Integrity not the same as confidentiality
- MAC is computed as CBC residue
- That is, compute CBC encryption, saving only final ciphertext block, the MAC

How does MAC work?

- Suppose Alice has 4 plaintext blocks
- Alice computes

$$C_0 = E(IV \oplus P_0, K), C_1 = E(C_0 \oplus P_1, K),$$

 $C_2 = E(C_1 \oplus P_2, K), C_3 = E(C_2 \oplus P_3, K) = MAC$

- Alice sends IV, P₀, P₁, P₂, P₃ and MAC to Bob
- Suppose Trudy changes P₁ to X
- Bob computes

$$C_0 = E(IV \oplus P_0, K), C_1 = E(C_0 \oplus X, K),$$

 $C_2 = E(C_1 \oplus P_2, K), C_3 = E(C_2 \oplus P_3, K) = MAC \neq MAC$

■ That is, error propagates into MAC

4. RC4

- Based on ci = pi ⊕ ki
- $\mathbf{k}_0 = \mathbf{c}_0 \oplus \mathbf{p}_0$
- Replace c_0 with $c_0' = p_0' \oplus k_0 = p_0' \oplus (c_0 \oplus p_0)$
- Trudy knows c₀, p₀, So she can forge this c₀'
- No. Any change in ciphertext can be propagated into the MAC.

Block Cipher Notation

- P = plaintext block
- C = ciphertext block

- Encrypt P with key K to get ciphertext C
 - C = E(P, K)
- Decrypt C with key K to get plaintext P
 - P = D(C, K)

Triple DES or 3DES

- Today, 56 bit DES key is too small
 - Exhaustive key search is feasible
- But DES is everywhere, so what to do?
- Triple DES or 3DES (112 bit key)
 - $C = E(D(E(P, K_1), K_2), K_1)$
 - $P = D(E(D(C, K_1), K_2), K_1)$

Only two keys!

More on 3DES

- Why Encrypt-Decrypt-Encrypt with 2 keys?
 - Backward compatible: E(D(E(P, K), K), K) = E(P, K)
 - And 112 bits is enough

- Why not $C = E(E(P, K_1), K_2)$?
 - A (semi-practical) known plaintext attack

Meet-in-the-middle attack

- Pre-compute table of $E(P, K_1)$ for every possible key K_1 (resulting table has 2^{56} entries) used for search
- Then for each possible K_2 compute $D(C, K_2)$ until a match in table is found (2^{56})
- When match is found, have $E(P, K_1) = D(C, K_2)$
- Result gives us keys: $C = E(E(P, K_1), K_2)$

5. Double DES

• C = D(E(P, K_1), K_2)

- Use K₂ to encrypt both sides, we get
- $E(C, K_2) = E(P, K_1)$
 - Try to find K₁ and K₂ make the above equation work
- Still suffer from meet in the middle attack

ECB Mode

- Notation: C = E(P, K)
- Given plaintext $P_0, P_1, ..., P_m, ...$
- Most obvious way to use a block cipher:

Encrypt

$$C_0 = E(P_0, K)$$
 $P_0 = D(C_0, K)$

$$C_1 = E(P_1, K)$$
 $P_1 = D(C_1, K)$

$$C_2 = E(P_2, K) \dots P_2 = D(C_2, K) \dots$$

- For fixed key K, this is "electronic" version of a codebook cipher (without additive)
 - With a different codebook for each key

ECB Mode

 Good: both encryption and decryption can be done in parallel

Question: Anything bad about it?

Cipher Block Chaining (CBC) Mode -- (Encryption)

■ Blocks are "chained" together: $C_{i+1} = E(C_i \oplus P_{i+1}, K)$

Initialization vector

Question: how does the receiver knows IV for decryption?

- A random initialization vector (IV) is used to initialize CBC
- IV is random, but not secret
- Analogous to classic codebook with additive

A better picture of CBC

Counter Mode (CTR)

Encryption

$$C_0 = P_0 \oplus E(IV, K),$$

$$C_1 = P_1 \oplus E(IV+1, K),$$

$$C_2 = P_2 \oplus E(IV+2, K),...$$
 $P_2 = C_2 \oplus E(IV+2, K),...$

Decryption

$$P_0 = C_0 \oplus E(IV, K),$$

$$C_1 = P_1 \oplus E(IV+1, K),$$
 $P_1 = C_1 \oplus E(IV+1, K),$

$$P_2 = C_2 \oplus E(IV+2, K),...$$

6. Counter Mode

- Instead we use
- $C_i = P_i \oplus E(K, IV + i)$
 - Use IV+i as key
 - IV is not secret
 - If Trudy can get a single block of known P, then she can get the K, then can decrypts all blocks

RSA: Trapdoor key generation

- Let p and q be two large prime numbers
 - A prime number has no positive divisors other than 1 and itself
- Let $N = p \cdot q$ be the **modulus**
- Choose e **relatively prime** to $(p-1) \cdot (q-1)$
- Find d such that $d \cdot e = 1 \mod (p-1) \cdot (q-1)$
 - So d is the *multiplicative inverse* of e in the *ring* of integers modulo (p-1) ·(q-1). Recall d must exist!
- Public key is (N, e)
- Private key is d

RSA encryption and decryption

- Message M is treated as a *number* in [0, N)
- To encrypt M with public key we compute
 C = Me mod N
- To decrypt ciphertext C with private key compute
 M = C^d mod N

Public key is (N, e), private key is d

Public Key Notation

- Sign message M with Alice's private key: [M]_{Alice}
- Encrypt message M with Alice's public key: {M}_{Alice}
- Then

```
\{[M]_{Alice}\}_{Alice} = M
\{\{M\}_{Alice}\}_{Alice} = M
```

- Notations:
 - Square brackets: [] → Private key
 - Curly brackets: {} → Public key

7. RSA

- To encrypt: $C = M^e \mod N = 19^3 = 28 \mod 33$.
- To decrypt: $M = C^d \mod N = 28^7 = 19 \mod 33$

- To sign: $S = [M]_{Alice} = M^d \mod N = 25^7 \mod 33 = 31$.
- To verify: $M = \{[M]_{Alice}\}_{Alice} = S^e = 31^3 = 25 \mod 33$
 - Bob received message 25, the signature is verified

Overview of Diffie-Hellman

- Invented by Malcolm Williamson (GCHQ, British Equivalent of NSA) and, independently, by Diffie and Hellman (Stanford)
 - Diffie and Hellman won ACM Turing award for this!

- A "key exchange" algorithm
 - Used to establish a shared symmetric key
- Not for encrypting or signing

Based on the discrete logarithm algorithm

- Based on discrete log problem, which is believed to be difficult:
 - •Given: g, p, and gk mod p
 - Find: exponent k
 - For example, in real numbers, log2(8)=3 because 2³=8
 - But for discrete log, finding the k is not feasible to do
- Example
 - Question 1: g = 2, p = 17, $(g^k \text{ mod } p) = 13$. What is k?

Diffie-Hellman

- Public: g and p
- Private: Alice's exponent a, Bob's exponent b

- □ Alice computes $(g^b)^a = g^{ba} = g^{ab} \mod p$
- □ Bob computes $(g^a)^b = g^{ab} \mod p$
- □ Use $K = g^{ab} \mod p$ as symmetric key

8. Diffie-Hellman

- Bob got: ga mod p
- Bob wants $(g^a)^b \mod p = X$
- But this require Bob to solve the discrete log problem, where the base is g^a mod p.
 - Solving discrete log problem is difficult

Knapsack Problem

■ Given a set of n weights W_0 , W_1 , ..., W_{n-1} and a sum S, is it possible to find $a_i \in \{0,1\}$ so that

$$S = a_0 W_0 + a_1 W_1 + ... + a_{n-1} W_{n-1}$$
?

Example

- •Weights (62, 93, 26, 52, 166, 48, 91, 141)
- Problem: Find subset that sums to S = 302
- **Answer**: 62 + 26 + 166 + 48 = 302

Knapsack Problem

- General knapsack (GK) is hard to solve
- But superincreasing knapsack (SIK) is easy
- SIK: each weight is greater than the sum of all previous weights

$$W_0, W_1, ..., W_i, ..., W_{n-1}$$

Superincreasing: $W_0 + ... + W_{i-1} < W_i$

Knapsack Keys

- Start with (2, 3, 7, 14, 30, 57, 120, 251) as the SIK
- Choose m = 41 and n = 491
 - m, n relatively prime
 - n exceeds sum of elements in SIK
- Compute "general" knapsack: modular multiplication

```
2 \cdot 41 \mod 491 = 82
```

```
3 \cdot 41 \mod 491 = 123
```

 $7 \cdot 41 \mod 491 = 287$

 $14 \cdot 41 \mod 491 = 83$

 $30 \cdot 41 \mod 491 = 248$

 $57 \cdot 41 \mod 491 = 373$

 $120 \cdot 41 \mod 491 = 10$

 $251 \cdot 41 \mod 491 = 471$

"General" knapsack: (82, 123, 287, 83, 248, 373, 10, 471)

Knapsack Crypto Example

Encrypt with public key, decrypt with private key

```
Ciphertext: 548
Private key:
(2, 3, 7, 14, 30, 57, 120, 251)
Multiplier m = 41
Modulus n = 491
```

- To decrypt,
 - $548 \cdot 41^{-1} = 548 \cdot 12 = 193 \mod 491$
 - Solve (easy) SIK with S = 193

9. Knapsack

- SIK is (3, 5, 10, 23), cipher 29
- $-m^{-1}C = 6 * 29 = 174 = 33 \mod 47.$
- Using super-increasing knapsack in the private key, we find the plaintext is 0011
- Since $m^{-1} * m = 6m = 1 \mod 47$, m = 8

- Multiply each element in the super-increasing knapsack with m and reduce mod 47, we can get the general knapsack
 - **•** (24, 40, 33, 43)

Elliptic Curve Crypto (ECC)

- "Elliptic curve" is not a cryptosystem
- Elliptic curves are a different way to do the math in public key system
- Elliptic curve versions of DH, RSA, etc.
 - Compare to the exponential version
- Why would we want them if we already have DH and RSA?

Points on Elliptic Curve

- Discrete version: $y^2 = x^3 + ax + b \pmod{p}$
- Consider $y^2 = x^3 + 2x + 3 \pmod{5}$ $x = 0 \Rightarrow y^2 = 3 \Rightarrow \text{no solution (mod 5)}$ $x = 1 \Rightarrow y^2 = 6 = 1 \Rightarrow y = 1,4 \pmod{5}$ $x = 2 \Rightarrow y^2 = 15 = 0 \Rightarrow y = 0 \pmod{5}$ $x = 3 \Rightarrow y^2 = 36 = 1 \Rightarrow y = 1,4 \pmod{5}$

 $x = 4 \Rightarrow y^2 = 75 = 0 \Rightarrow y = 0 \pmod{5}$

• Then points on the elliptic curve are (1,1), (1,4), (2,0), (3,1), (3,4), (4,0), and the point at infinity: ∞

10. Elliptic Curve

$$y^2 = x^3 + 11x + 19 \pmod{167}$$

- Verify P (2, 7) on E
 - $7^2 = 2^3 + 11 * 2 + 19 \mod 167$
 - **49** = 49
 - Points on the elliptic curve

What is secret sharing

- Goal: Alice and Bob want to share a secret S in the sense that:
 - Neither Alice nor Bob alone (nor anyone else) can determine S with a probability better than guessing
 - Alice and Bob together can easily determine S

Shamir's Secret Sharing

- \square Give (X_0, Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- \Box Give (X_2,Y_2) to Charlie
- ☐ Then any two can cooperate to find secret S
- But one can't find secret S
- □ A "2 out of 3" scheme

11. 2 out of 3

- We have ax + by = 18
- Use two values
 - -4a + 10/3 * b = 18
 - -6a + 2 * b = 18
- We can get a=2, b=3
- Then, 2x + 3y = 18

• Make x = 0, get S = 6

