

Familiarization with Basic CT/DT Functions

Lab Exercises on December 5, 2021

Department of Electronics and Computer Engineering
Pulchowk Campus, Lalitpur

Ashlesh Pandey
PUL074BEX007

1 Objectives

• Familiarization and review of basic continuous time and discrete time functions.

2 Background Theory

2.1 Some MATLAB commands

Command	Use Case
who	Lists current variables
whos	Lists current variables (long display)
input	Requests user input
disp	Displays contents of an array or string
clear all	Remove variables from the current workspace
close all	Close all plots
pause	Pause execution
home	Send cursor home
length	Computes number of elements
plot	Generates xy plot
tiledlayout	Creates a tiled chart layout for displaying multiple plots
nexttile	Creates an axes object and places it into the next empty tile
hold	Freezes current plot
grid	Displays grid lines
stem	Creates stem plot
legend	Places legend on figure
xlabel	Adds text label to x-axis
ylabel	Adds text label to y-axis

real	Real part of complex number
imag	Imaginary part of complex number
abs	Absolute value and complex magnitude
angle	Phase angle in interval $[-\pi, \pi]$
zeros	Creates an array of zeros
ones	Creates an array of ones
exp	Returns the exponential of arguments
sin	Returns the sine of argument in radians
cos	Returns the cosine of argument in radians

Table 1: Some MATLAB commands with their use cases

3 Lab Exercises

Problem 1

Plot the baic signal using MATLAB

a. Impulse Response

```
function y = impulse_response(x)
y = x==0;
```

Listing 1: Matlab function to return impulse response

b. Unit-step

```
function y = unit_response(x)
y = x>=0;
```

Listing 2: Matlab function to return unit-step response

c. Ramp

```
function y = ramp_response(x)

y = 2 .* x;
```

Listing 3: Matlab function to return ramp response

d. Rectangular

Listing 4: Matlab function to return rectangular response

```
function y = basic_plot_selector(
                                               case {'rectangular','rect'}
    basic_plot_name,x)
                                                   y=rectangular_response(x
                                      10
   switch basic_plot_name
                                            /2);
       case 'impulse'
                                               otherwise
                                      11
           y=impulse_response(x);
                                                   error('The function you
       case {'unit','unit-step'}
                                            want is not found.');
           y=unit_response(x);
                                          end
       case 'ramp'
                                      14 end
           y=ramp_response(x);
```

Listing 5: Matlab function to return desired response based on user input

```
basic_plot_name=input('Enter
                                           basic_plot_name,n);
    function you want to plot: ','s
                                      6 1=tiledlayout (2,1);
     ');
                                       7 title(1,{sprintf('%s',['Plot for '
n = -5:5;
                                            ,basic_plot_name, ' function'])
                                            ,'(PUL074BEX007)'})
t=-5:0.01:5;
4 y=basic_plot_selector(
                                      8 nexttile
    basic_plot_name,t);
                                      9 plot(t,y,'LineWidth',1.5)
                                      xlabel('t','interpreter','latex')
5 z=basic_plot_selector(
```

```
ylabel('y(t)','interpreter','latex
')

title('Continuous Time Function')

nexttile

tem(n,z,'Linewidth', 1.5)

xlabel('n','interpreter','latex')

ylabel('y[n]','interpreter','latex

')

title('Discrete Time Function')

print(basic_plot_name,'-depsc')
```

Listing 6: Matlab script to plot desired response based on user input

```
>> lab_2_1
Enter function you want to plot: impulse
```


Figure 1: Plot for impulse function

>> lab_2_1

Enter function you want to plot: unit-step

Figure 2: Plot for unit-step function

>> lab_2_1

Enter function you want to plot: ramp

Figure 3: Plot for ramp function

>> lab_2_1
Enter function you want to plot: rectangular

Figure 4: Plot for rectangular function

Problem 2 Plot the following continuous-time signals.

a. $x(t) = Ce^{at}$ where C and a are real numbers and choose C and a both positive and negative.

```
function y =
    exponential_response_ct(C,a,t)

2    y = C .* exp(a.*t);
end
```

Listing 7: Matlab function to return CT exponential response

```
t=-5:0.01:5;
                                      plot(t,y1,'Linewidth',1.5)
                                      title('For C and a both positive')
2 C=1;
                                      xlabel('t', 'interpreter', 'latex')
a=1;
4 y1=exponential_response_ct(C,a,t);
                                      ylabel('y(t)','interpreter','latex
                                            ')
5 C = -1;
                                      15 nexttile
a = -1;
7 y2=exponential_response_ct(C,a,t);
                                      plot(t,y2,'Linewidth',1.5)
8 1=tiledlayout(2,1);
                                      title('For C and a both negative')
9 title(1,{'Plot for continuous time
                                      xlabel('t', 'interpreter', 'latex')
      exponential function', '(
                                      ylabel('y(t)','interpreter','latex
                                            ')
     PUL074BEX007)'})
10 nexttile
                                      print('lab_2_2_a','-depsc');
```

Listing 8: Matlab script to plot CT exponential function with C and a both real

Figure 5: Plot for CT exponential function with C and a both real

b. Plot the same signal taking a as pure imaginary number.

```
t = -5:0.01:5;
                                       plot(t,real(y),'Linewidth',1.5)
                                      9 title('Real part')
2 C=1;
                                      ylabel('Real [x(t)]')
3 a=1i;
4 y=exponential_response_ct(C,a,t);
                                      n xlabel('t')
5 1=tiledlayout(2,1);
                                      12 nexttile
6 title(1,{'Plot for continuous time
                                      plot(t,imag(y),'Linewidth',1.5)
                                      title('Imaginary part')
      exponential function', 'with a
                                      ylabel('Imag [x(t)]')
      as pure imaginary number','(
     PUL074BEX007)'})
                                      16 xlabel('t')
7 nexttile
                                      print('lab_2_2_b','-depsc')
```

Listing 9: Matlab script to plot CT exponential function with a purely imaginary

Plot for continuous time exponential function

Figure 6: Plot for CT exponential function with C, a both positive and negative

0

2

3

-1

-2

-3

-5

-4

c. Consider complex exponential signal as specified in b) where C is expressed in polar form i.e., $C=|C|e^{j\theta}$ and a in rectangular form i.e., $a=r+j\omega_o$. Then function x(t), on simplification, becomes

$$x(t) = |C|e^{rt}[\cos(\omega_o t + \theta) + j\sin(\omega_o t + \theta)]$$

Now, plot the signal for different values of r and comment on the results.

i. r=0 ii. r<0 iii. r>0

Listing 10: Matlab function to return CT exponential (polar form) response

```
r=input('Enter the value for r: ')
                                     9 nexttile
                                     plot(t, real(y), 'Linewidth', 1.5)
t=-5:0.01:5;
                                     n title('Real part')
                                     vlabel('Real [x(t)]')
3 C=1;
                                     xlabel('t', 'interpreter', 'latex')
w = pi;
5 theta=pi;
                                     14 nexttile
6 y=exponential_response_polar(C,r,w
                                     plot(t, imag(y), 'Linewidth', 1.5)
     ,theta,t);
                                     title('Imaginary part')
                                     ylabel('Imag [x(t)]')
7 l=tiledlayout(2,1);
8 title(1,{sprintf('Plot for CT
                                     xlabel('t', 'interpreter', 'latex')
                                     print(sprintf('lab_2_2_c_%d',r),'-
    exponential function with r=%d'
     ,r),'(PUL074BEX007)'})
                                          depsc')
```

Listing 11: Matlab script to plot the function for values of r based on user input

>> lab_2_2_c

Enter the value for r: 0

Plot for CT exponential function with r=0 (PUL074BEX007)

Figure 7: Plot for CT exponential function with r=0

>> lab_2_2_c
Enter the value for r: -1

Plot for CT exponential function with r=-1 (PUL074BEX007) Real part 100 Real [x(t)] 0 -100 -3 0 . -5 -2 -1 1 2 3 5 **Imaginary part** 100 Imag [x(t)] 50 -50 -3 -2 0 2 3 5 -4 -1 1 -5

Figure 8: Plot for CT exponential function with r=-1

>> lab_2_2_c
Enter the value for r: 1

-100

-5

-4

-3

-2

Plot for CT exponential function with r=1 (PUL074BEX007) Real part 100 Real [x(t)] 0 -100 -5 -4 -3 -2 -1 0 1 2 3 **Imaginary part** 50 Imag [x(t)] 0 -50

Figure 9: Plot for CT exponential function with r = -1

-1

0

1

2

3

5

Problem 3 Plot the DT exponential function $x[n]=a^n$, $a=|a|e^{j\theta}$. Choose the suitable value of a and θ .

```
function y =
    exponential_response_dt(a, theta
    ,n)

y = (abs(a).*exp(1i.*theta)).^n;
end
,n)
```

Listing 12: Matlab function to return DT exponential response

```
n = -5:5;
                                      ylabel('Magnitude of x[n]')
                                      xlabel('n','interpreter','latex')
2 a=2;
                                      12 nexttile
3 theta=pi;
y = exponential_response_dt(a, theta,
                                      stem(n, angle(y)*180/pi,'Linewidth'
                                            ,1.5)
    n);
5 1=tiledlayout(2,1);
                                      title ('Phase')
                                      15 yticks([-180 0 180])
6 title(1,{'Plot for DT exponential
     function','(PUL074BEX007)'})
                                      16 ylim([-180 180])
7 nexttile
                                      ylabel('Phase of x[n] in degree')
stem(n,abs(y),'Linewidth',1.5)
                                      xlabel('n','interpreter','latex')
9 title('Magnitude')
                                      print('lab_2_3','-depsc')
```

Listing 13: Matlab script to plot DT exponential function

Figure 10: Plot for DT exponential function

Problem 4

Synthesize the signal from the FS coefficients as $C_0 = 1$, $C_1 = C_{-1} = \frac{1}{4}$, $C_2 = C_{-2} = \frac{1}{2}$, $C_3 = C_{-3} = \frac{1}{3}$.

Listing 14: Matlab function to return synthesized signal from the FS coefficients

```
pulo74BEX007)'})

c=[1/3 1/2 1/4 1 1/4 1/2 1/3];

plot(t, real(y), 'Linewidth', 1.5)

l=tiledlayout(1,1);

title(1,{'Signal synthesis from ylabel('t', 'interpreter', 'latex')}

the FS coefficients','(

print('lab_2_4','-depsc')
```

Listing 15: Matlab script to plot the synthesized signal

Figure 11: Plot for synthesized signal from the FS coefficients

Problem 5

Plot fundamental sinusoidal signal, its higher harmonics up to 5th harmonics and add all of them to see the result. Comment on the result.

Listing 16: Matlab function to return sinusoidal harmonics and their sum

```
figure()

t=-5:0.01:5;

w=pi/6;

4 n=5;

ffn, y] = harmonic_sum(w,n,t);

l=tiledlayout(2,1);
```

```
7 title(1,{'Plot for sinusoidal
                                      title('Sum of Harmonics')
                                      ylabel('Amplitdue')
     harmonics and their sum','(
     PUL074BEX007) '})
                                      xlabel('t', 'interpreter', 'latex')
8 nexttile
                                      18 labels = {'1st Harmonic','2nd
9 p1=plot(t,fn,'Linewidth',1.5);
                                           Harmonic', '3rd Harmonic', '4th
title('Sinusoidal Harmonics')
                                           Harmonic', '5th Harmonic', 'Sum
ylabel('Amplitude')
                                           of Harmonics'};
xlabel('t','interpreter','latex')
                                      legend([p1;p2],labels,'Location','
13 ax2=nexttile;
                                           northoutside','Orientation', '
p2=plot(t,y,'Linewidth',1.5,'color
                                           horizontal','NumColumns',3)
                                      print('lab_2_5','-depsc')
     ','blue');
```

Listing 17: Matlab script to plot sinusoidal harmonics and their sum

Plot for sinusoidal harmonics and their sum (PUL074BEX007)

Figure 12: Plot for sinusoidal harmonics and their sum