Departamento de Eletrónica, Telecomunicações e Informática

Introdução aos Sistemas Digitais

Ano Letivo 2015/16

Mini-teste 1

No	ome:	N. Mec.:	Turma: P3-13		
1.	Represente no sistema decimal, tendo o cuidado de não exceder a precisão da representação original, o valor da quantidade racional não negativa seguinte:				
	100110.0100100 ₂ = ₁₀				
2.	Considere o seguinte par de valores: 01110011 ₂ a) Calcule, em binário, o resultado da adição aritméti				
	b) Indique, em decimal, os valores dos operando quantidades estão representadas sem sinal. Indique na representação do resultado em 8 bits. 01110011 ₂ =	e também a ocorrência, $1_2 = \underline{\qquad}_{10}$	ou não, de <i>overflow</i>		
	c) Indique, em decimal, os valores dos operando quantidades estão codificadas com sinal, em o ocorrência, ou não, de <i>overflow</i> na representação 01110011 ₂ =	complemento para 2. do resultado em 8 bits. $1_2 = \underline{_{10}}$	ndique também a		

3. Complete a seguinte tabela, representando as quantidades indicadas em binário, Gray e BCD.

Quantidade em Decimal	Binário Natural (4 bits)	Gray (4 bits)	BCD
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

4. Pretende-se construir um somador binário de 1 bit, que além dos bits de operandos "x" e "y" e resultado "z", possui também uma entrada e uma saída de *carry* (transporte), designadas respetivamente por "ci" e "co".

a) Construa a tabela de verdade das saídas "z" e "co" em função das entradas "x", "y" e "ci".

- b) Obtenha, a partir da tabela de verdade obtida na alínea anterior, as equações das saídas "z" e "co".
- c) Minimize as equações das saídas "z" e "co" obtidas na alínea anterior.

d) Desenhe o diagrama lógico do circuito resultante da minimização efetuada na alínea anterior.