1. Block Diagram

• Datapath

Control signals

FSM to Tap RAM: tap_A, tap_WE, tap_EN, tap_Di FSM to Data RAM: data_A, data_WE, data_EN, data_Di Output handling: sm tvalid, sm tready, sm tlast

2. Operation

- How to receive data-in and tap parameters and place into SRAM
 i. Data RAM: Implemented as a queue. I shift the address and place the new data in the address the originally stored the oldest data.
 - ii. Tap RAM: Set tap_EN to 1 to access the RAM and set tap_WE to 1111 when writing tap parameter to BRAM.
- How to access shiftram and tapRAM to do computation

 Since there is one cycle delay from we set an address to get the

 corresponding data, we need to set the desired address at cycle k-1 if we want
 to get data at cycle k. Also, we need to set EN to 1 and WE to 0000 if we

 want to access data from BRAM.
- How ap_done is generated.

 In my design, I set a 32-bit variable called config_r. When sm_tready && sm_tvalid && sm_tlast is 1, I set the config_r to 32'h0000_0006. After one cycle, the config_r would send to r_data and got received by testbench.

3. Resource Usage

1. Slice Logic									
			 						
Site Type	Used	Fixed	Prohibited	Available	Util%				
	+	+	+	+	++				
Slice LUTs*	281	0	0	53200	0.53				
LUT as Logic	281	0	0	53200	0.53				
LUT as Memory	0	0	0	17400	0.00				
Slice Registers	278	0	0	106400	0.26				
Register as Flip Flop	278	0	0	106400	0.26				
Register as Latch	0	0	0	106400	0.00				
F7 Muxes	0	0	0	26600	0.00				
F8 Muxes	0	0	0	13300	0.00				
+	+	+	+	+	++				

2. Memory					
+	+	++		+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	++		+	++
Block RAM Tile	0	0	0	140	0.00
RAMB36/FIFO*	0	0	0	140	0.00
RAMB18	0	0	0	280	0.00
+	+	++		+	++

4. Timing Report

• Synthesis Frequency 66.67MHz

• Timing on longest path and slack

5. Simulation Waveform

• Coefficient program, and read back

• Data-in stream-in

• Data-out stream-out

• RAM access control

Tap Write

Data Write

Tap & Data Read

• FSM

ap_start

ap_done

ap_start to ap_done: 21005 cycles.