$\frac{\text{Test d'analyse R\'eel}}{\text{Dur\'ee}: 2h}$

La réussite passe par un effort constant.

Exercice 1 Le But de cet exercice est de montrer qu'il existe des parties de \mathbb{Q} qui n'admettent pas de bornes supérieurs dans \mathbb{Q} . Soit $A = \{x \in \mathbb{Q}, x^2 \leq 3\}$

- 1. Montrer qu'il n'existe pas de rationnels $x \in \mathbb{Q}$ tel que $x^2 = 3$.
- 2. Justifier que la borne supérieur de A existe et est positive. Dans la suite nous allons supposer à la question 3., 4. et 5. que le sup $A \in \mathbb{Q}$.
- 3. Déduire que le $(\sup A)^2 \neq 3$.
- 4. Supposons que le $\sup A \in A$.
 - (a) Rappeler la définition \mathbb{Q} est Archimédien.
 - (b) Déduire de 4.(a) qu'il existe $n \in \mathbb{N}^*$ tel que $n(3 \sup A^2) > (2 \sup A + 1)$.
 - (c) Déduire que $r = \sup A + \frac{1}{n} \in A$ et Conclut.
- 5. On suppose que le $\sup A \notin A$
 - (a) Montrer que $r = \frac{1}{2}(\sup A + \frac{3}{\sup A}) < \sup A$
 - (b) Montrer que $r^2 3 > 0$
 - (c) Conclut
- 6. En déduire que A n'admet pas de borne supérieur dans \mathbb{Q} .

Exercice 2 Le but de cet exercice est de montrer que \mathbb{Q} est dense dans \mathbb{R}

- 1. Montrer que pour tout réels a et b tels que b-a>1 il existe $n\in\mathbb{N}$ tel que a< n< b.
- 2. Déduire que \mathbb{Q} est dense dans \mathbb{R} .
- 3. Déduire que $\mathbb{R} \setminus \mathbb{Q}$ est aussi dense dans \mathbb{R} .

1