TOPOLOGIA (Matemáticas) , Examen Final , Septiembre 2004

Apellidos, nombre Grupo

1. (a) Demostrar que

$$d(x,y) = \begin{cases} |x| + |y| & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

define una distancia en \mathbb{R} .

- (b) Encontrar una condición necesaria y suficiente para que una sucesión de números reales sea convergente con la distancia anterior.
- 2. Demostrar brevemente o dar un contraejemplo, según convenga:
 - a) Un conjunto compacto es siempre cerrado.
 - b) Si A y B son compactos, $A \cup B$ es compacto.
- c) Si $f:X\to Y$ y $g:Y\to Z$ no son continuas, entonces $g\circ f:X\to Z$ tampoco es continua.
 - d) Existe una distancia en \mathbb{R} que induce la topología cofinita.
- 3. Estudiar si son homeomorfos los siguientes espacios:

$$A = S^1 \cup \{(t,0) \in \mathbb{R}^2 : 0 \le t \le 1\} \qquad B = S^1 \cup \{(t,0) \in \mathbb{R}^2 : 1 \le t \le 2\}$$
$$C = S^1 \cup \{(t,0) \in \mathbb{R}^2 : 1 \le t < 2\} \qquad D = ([-1,1] \times \{0\}) \cup (\{0\} \times [0,1])$$

4. Supongamos que $\{\mathcal{U}_i\}_{i\in I}$ es una colección de abiertos de \mathbb{R}^2 que cubre el segmento $[0,1]\times\{0\}$. Demostrar que existe $\varepsilon>0$ tal que $[0,1]\times[-\varepsilon,\varepsilon]\subset\cup_{i\in I}\mathcal{U}_i$.