Module 3: Linear Models I

Recap of simple linear regression (SLR)

deterministic models: y is completely specified for a given value of x, no randomness or error allowed

probablistic models: incorporates randomness

Regression analysis uses probablistic models to investigate the relationship between two or more variables.

Setup

with

Consider data of the form

of the form $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$ $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$

The simple linear regression model is

 $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$ E(Y:)

Cardom component

deterministic component

$$\epsilon_i \sim N(0, \sigma^2)$$

independently for i = 1, 2, ..., n.

E[Y:] = $\beta_0 + \beta_1 X$; is a linear function of β_0 and β_1 . e.g. $Y_i = \beta_0 + \beta_1 (\log x_i) + \epsilon$; $Y_i = \beta_0 + \beta_1 (\lambda_i)^2 + \epsilon$;

e.g. $Y_i = \beta_0 + \lambda_i^{\beta_1} + \epsilon_i$ $Y_i = \frac{\beta_0 \chi_i}{\beta_1 + \chi_i^{\gamma_1}} + \epsilon_i$ once NoT linear

models for Y:

3

SLR: (= Bo+ B, X; + E;

Least square estimation

The least squares estimates of β_0 and β_1 are the values that jointly minimize

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2. = \sum_{i=1}^{n} \varepsilon_i^2$$

The least squares estimates of $\underline{\beta_0}$ and $\underline{\beta_1}$ are denoted by $\underline{\hat{\beta}_0}$ and $\underline{\hat{\beta}_1}$ respectively.

deviation/error $y_i - (\beta_0 - \beta_1 x_i)$ $y = \beta_0 + \beta_1 x$ $y = \beta_0 + \beta_1 x$ $y = \beta_0 + \beta_1 x$ least squares line,

estimated regression

line

Lemma 5

Suppose $u_1, u_2, ..., u_n$ are numbers and let

$$q(\gamma) = \sum_{i=1}^{n} (u_i - \gamma)^2.$$

Then $q(\gamma)$ is uniquely minimized when $\gamma = \bar{u}$.

$$q(x) = \sum_{i=1}^{n} (u_i - a_i x)^2 \text{ is uniquely minimised at } x = \frac{\sum_{i=1}^{n} a_i u_i}{\sum_{i=1}^{n} a_i^2}.$$
If $a_i = 1$, $x = \overline{u}$.

Proof of Lemma 5

$$q(Y) = \sum_{i=1}^{n} (u_i - a_i Y)^2$$

$$= \sum_{i=1}^{n} (u_i^2 - 2u_i a_i Y + a_i^2 Y^2) \qquad Y = -\frac{b}{2a}$$

$$= \sum_{i=1}^{n} u_i^2 - 2Y \sum_{i=1}^{n} a_i u_i + Y^2 \sum_{i=1}^{n} a_i^2$$

$$= (\sum_{i=1}^{n} a_i^2) Y^2 - 2(\sum_{i=1}^{n} a_i u_i) Y + (\sum_{i=1}^{n} u_i^2)$$

$$= (\sum_{i=1}^{n} a_i^2) Y^2 - 2(\sum_{i=1}^{n} a_i^2 u_i) Y + (\sum_{i=1}^{n} u_i^2)$$

This is a quadratic of 8.

The coefficient of χ^2 is non-negative, so the unique minimum occurs at $\hat{Z}_{\alpha;u}$. $\hat{Z}_{\alpha;u}$

$$\gamma = -\frac{b}{2a} = -\frac{\sum_{i=1}^{n} a_{i} u_{i}}{\sum_{i=1}^{n} a_{i}^{2}} = \frac{\sum_{i=1}^{n} a_{i} u_{i}}{\sum_{i=1}^{n} a_{i}^{2}}.$$

If
$$a_i = 1$$
, we have $y = \frac{1}{n} \stackrel{n}{\underset{i=1}{\sum}} u_i = \overline{u}$.

Theorem 7

The least square estimates for β_0 and β_1 are given by

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

where

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Proof of Theorem 7

Q(Bo,B) can be minimised in two stages.

For
$$\beta_0$$
: $Q(\beta_0, \beta_1) = \frac{2}{i\pi} \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2 = \frac{2}{i\pi} \left[(y_i - \beta_1 x_i) - \beta_0 \right]^2$
Applying Lemma 5, we have $\hat{\beta}_0 = \overline{u} = \frac{1}{n} \frac{2}{i\pi} (y_i - \beta_1 x_i)$

$$= \overline{y} - \beta_1 \overline{x}$$

For B1: Substitute \(\hat{\beta}_0\) for B0 in O(\(\beta_0, \beta_1)\), then minimise Q with respect to \(\beta_1\).

$$Q(\beta_0, \beta_0) = \sum_{i=1}^{n} \left[y_i - (\beta_0 + \beta_0 x_i) \right]^2$$

$$= \sum_{i=1}^{n} \left[y_i - (\overline{y} - \beta_1 \overline{x} + \beta_0 x_i) \right]^2$$

$$= \sum_{i=1}^{n} \left[(y_i - \overline{y}) - (x_i - \overline{x}) \beta_0 \right]^2$$

$$= \sum_{i=1}^{n} \left[(y_i - \overline{y}) - (x_i - \overline{x}) \beta_0 \right]^2$$

Applying Lemma 5, we have
$$\hat{\beta}_{i} = \frac{\hat{\Sigma}_{i} a_{i} u_{i}}{\hat{\Sigma}_{i} a_{i}^{2}} = \frac{\hat{\Sigma}_{i} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\hat{\Sigma}_{i} (x_{i} - \bar{x})^{2}} = \frac{Sxy}{Sxx}$$

Remarks for Theorem 7

1. It is possible to also minimize $Q(\beta_0, \beta_1)$ using calculus.

Solve
$$\frac{\partial Q}{\partial \beta_0} = 0$$
 and $\frac{\partial Q}{\partial \beta_1} = 0$.

$$\frac{\partial Q}{\partial \beta_0} = -2n\left(\overline{y} - \beta_0 - \beta_1 \overline{x}\right) = 0$$
Least squares equations
$$\frac{\partial Q}{\partial \beta_1} = -2\left(\frac{\sum_{i=1}^n x_i y_i - n\beta_0 \overline{x} - \beta_1 \sum_{i=1}^n x_i^2}{\sum_{i=1}^n x_i y_i - n\overline{x} \overline{y}}\right) = 0$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\overline{x} \overline{y}}{\sum_{i=1}^n x_i y_i - n\overline{x} \overline{y}} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S \times y}{S \times x}$$

Remarks for Theorem 7

2. If $S_{xx} = 0$, then the formula for the least squares estimates cannot be evaluated. This has a sensible interpretation because $S_{xx} = 0$ only when all the x-values are identical. In this situation the data clearly contain no information about the slope of the regression line.

- 3. Note that, by convention, capital letters are used for sum of squares.
 - S_{xx} is called the 'sum of squares due to x'
 - S_{xy} is called the 'cross product sum of squares'

Estimation of σ^2

To estimate σ^2 , we use the residual variance

$$S_e^2 = \frac{1}{n-2} \sum_{i=1}^n \left(y_i - \underbrace{(\hat{\beta}_0 + \hat{\beta}_1 x_i)}_{\hat{y}_i} \right)^2$$

$$y_i - \hat{y}_i = j^{th} residua$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the fitted or predicted value for the *i*th observation.

Estimation of σ^2 (cont.)

The logic of using S_e^2 as an estimator of σ^2 may be understood as follows.

If β_0 and β_1 were known, then

$$\epsilon_i = Y_i - (\beta_0 + \beta_1 x_i) \sim N(0, \sigma^2)$$

and it follows that

$$\sigma^2 = var(\epsilon_i) = E[(\epsilon_i - E(\epsilon_i))^2] = E[(\epsilon_i - 0)^2] = E[\epsilon_i^2]$$

$$E\left[\underbrace{\left(Y_{i}-(\beta_{0}+\beta_{1}x_{i})\right)^{2}}_{C}\right]=\sigma^{2}$$

Then

$$\frac{1}{n}\sum_{i=1}^n \left[\left(Y_i-(\beta_0+\beta_1x_i)\right)^2\right]$$
 could be used as an unbiased estimator for σ^2 .

Estimation of σ^2 (cont.)

In practice, $\hat{\beta}_0$ and $\hat{\beta}_1$ must be used and the denominator of n-2 rather than n is needed to make the estimator unbiased.

Remark:

The three variances discussed to date, namely, S^2 for a single sample, S_p^2 for two independent samples, and S_e^2 for linear regression, have all been constructed by the same principle.

In particular, the appropriate degrees of freedom in each case is given by the rule:

"number of observations" — "number of parameters"