

FACULDADE DE CIÊNCIAS DEPARTAMENTO DE FÍSICA

Disciplina: Física

CURSOS: AG, EF & AEC (1^0Ano)

 ${
m Março/2020}$ Aula Prática #2

Leis de Movimento - Cinemática

Problema 1

A tabela dá as distâncias de um objecto em relação a uma certa origem, medidas em certos instantes.

x(m)	1,8	4,5	6,0	8,4	10,5	13,2	15,3
t(s)	0,6	1,5	2,0	2,8	3,5	4,4	5,1

- 1.1 Construa o gráfico x vers t
- 1.2 Caracterize o movimento;
- 1.3 Determine a inclinação do gráfico;
- 1.4 Qual é o significado físico desta inclinação?
- 1.5 Mantendo este movimento, qual é a distância da origem até o instante?

Problema 2

O boi uma Charrua, em movimento rectilíneo e uniforme, partindo da posição 120 m e 6 seg depois, passa pela posição <math>90 m. Determinar:

- 2.1 A velocidade da Charrua;
- 2.2 A equação horaria;

Regente: Guambe, PhD

2.3 Os diagramas correspondentes.

Problema 3

Calcule a velocidade escalar média de um agricultor nos seguintes casos:

- **3.1** O agricultor anda 280 m com velocidade 5,0 $\frac{m}{s}$ e depois corre 100 m com velocidade de 4,0 $\frac{m}{s}$ ao longo de uma pista rectilínea;
- **3.2** O agricultor and a 3 minutos com velocidade de $1,6 \frac{m}{s}$ e a seguir corre durante 4 minutos com velocidade de $6,0 \frac{m}{s}$, ao longo de um caminho em linha recta.

1

Assistentes: Bernardino Mucavele Phinifolo Cambalame

Alcebíades Hlunguane

Problema 4

Uma avestruz, em movimento rectilíneo uniformemente variado, percorre 60 m em 2,0 s. Durante os 2,0 s seguintes, percorre 82 m.

- 4.1 Calcular a velocidade inicial e a aceleração da avestruz.
- **4.2** Calcular a distância ela percorre nos 4,0 s seguintes.

Problema 5

Um automóvel e um camião partem do repouso no mesmo instante. Inicialmente o automóvel está a uma certa distância atrás do camião. O camião tem uma aceleração de m 2 $\frac{m}{s^2}$ e o automóvel uma aceleração de $3 \frac{m}{s^2}$. O automóvel ultrapassa o camião depois deste ter percorrido 75 m. Determinar:

- 5.1 Quanto tempo o automóvel gasta para ultrapassar o camião?
- **5.2** Qual a distância inicial entre o automóvel e o camião?
- 5.3 Qual é a velocidade de cada um no momento de ultrapassagem?

Problema 6

O movimento de uma semente é descrito pelas seguintes equações $y^2=4\cdot x$ e $y=5\cdot t$. Determine:

- **6.1** Os vectores posição da semente nos instantes $t_1 = \frac{1}{3} seg$ e $t_2 = \frac{3}{4} seg$;
- **6.2** O vector velocidade média no intervalo entre os dois instantes t_1 e t_2 ;
- **6.3** O vector aceleração num instante qualquer.

Problema 7

Duas gaivotas designadas por G_1 e G_2 deslocam-se num referencial plano ortonormado, de acordo com as seguintes equações do movimento, expressa em unidades SI: $\vec{r}_{G1} = (t-2)\hat{i} + (3\cdot t - 6)\hat{j}$ e $\vec{r}_{G2} = (3\cdot t - 12)\hat{i} + (t^2 - 16)\hat{j}$, Considerando que as gaivotas vão colidir, determinar o instante da colisão.

Probblema 8

O movimento de uma partícula é definido pelo vector $\vec{r} = A (\cos t + t \cdot \sin t) \hat{i} + A (\sin t - t \cdot \cos t) \hat{j}$ na qual t é expresso em segundo. Determine os valores de t para os quais os vectores posição e aceleração são.

- 8.1 Perpendiculares;
- 8.2 Paralelos.

Problema 9

Uma partícula move-se ao longo do eixo-x, segundo a lei $x(t) = 12 t^2 + 3 t + 4$. Onde x é em metros e t em segundos. Determinar:

- **9.1** A velocidade e a aceleração num instante t qualquer;
- **9.2** A posição, a velocidade e a aceleração para t = 3 seg e t = 5 seg;
- 9.3 A velocidade média e a aceleração média entre $t=3 \, \mathrm{seg}$ e $t=5 \, \mathrm{seg}$.

Problema 10

Um corpo move-se ao longo de uma recta de acordo com a equação $v(t)=4\,t^3+6\,t^2+2$. Se $x=5,0\,m$ quando , $t=1\,{\rm seg}$ determinar:

- **10.1** O valor de $\vec{x}(t)$ quando t = 3 seg; x(t = 3);
- **10.2** A aceleração $\vec{a}(t)$ quando t = 3 seg; a(t = 3).

Problema 11

A aceleração de um corpo com movimento rectilineo é dado por $\vec{a}(t)=6-9\,t^2$, onde \vec{a} é expresso em $\frac{m}{s^2}$ e t em segundos. Calcular a velocidade e a posição do corpo no instante $t=3\,seg$, sabendo que, $t_0=0\,seg$, $v_0=7\,\frac{m}{s}$ e $x_0=9\,m$

Problema 12

Um ponto material move-se no plano XY de tal modo que $v_x=8\,t^3+4\,t\,$ e $v_y=12\,t^2\,$. Se para $t_0=0\,seg$ tem-se $x_0=3,0\,m\,$ e $y_0=4,0\,m,\,$ obter a equação carteziana da trajectória.

Problema 13

Um volante pesado, girando em torno de seu eixo, perde velocidade devido ao atrito nos mancais. Ao final do primeiro minuto, sua velocidade angular é 0,70 de sua velocidade angular inicial, ω_0 . Supondo constantes as forças de atrito. Determinar a velocidade angular do volante no final do segundo minuto.

Problema 14

Uma partícula move-se ao longo de uma curva plana segundo a equação: $y = 2 x^2$ e x = 3 t.

- 14.1 Escrever as equações paramétricas do movimento. Para o instante $t=1\,seg.$ Determinar:
- 14.2 O vector posição do móvel;
- 14.3 O módulo do vector velocidade;
- 14.4 Os módulos das componentes normal a_n e tangencial a_t da aceleração;
- 14.5 O raio da trajectória;
- 14.6 Classificar o movimento.

Problema 15

As coordenadas de um corpo são $x(t) = t^2$ e $y(t) = (t-1)^2$

- 15.1 Obter a equação cartesiana da trajectória;
- 15.2 Fazer o gráfico da trajectória;
- **15.3** Achar componentes normal a_n e tangencial a_t para um instante qualquer;
- 15.4 Achar componentes normal e tangencial para.

Problema 16

Uma partícula descreve uma circunferência de acordo com a lei $\theta(t) = -12 t^2 + 4 t - 9$, θ onde é medido em radianos e t em segundos. Assumindo que t = 3 seg; Calcular:

- **16.1** A velocidade angular ω da partícula.
- 16.2 A aceleração angular α da partícula.

Problema 17

Um milho inicialmente em repouso $\theta=0$ e $\omega=0$ para t=0 é acelerado numa trajectória circular de raio igual a R=1,5 m segundo a equação $\alpha(t)=120$ t^2-48 t+16. Determinar:

- 17.1 A posição angular e a velocidade angular do milho como funções do tempo;
- 17.2 As componentes tangencial e centrípeta da sua aceleração, para t = 3 seg.

Alcebíades Hlunguane