

Kod przedmiotu:	Temat laboratorium:		
ESO	Badanie parametrów propagacyjnych w światłowodach pasywnych		
Data wykonania pomiarów:	Godzina wykonania pomiarów:	Zespół:	Prowadzący:
16/11/2020	12:15-16:00	Z1	Krzysztof Anders
Członkowie zespołu:			
Piotr Mikołajczyk			
Punkty/ocena:			

Uwaga! Gotowe sprawozdanie w formacie PDF proszę wysłać na adres: krzysztof.anders@pw.edu.pl w temacie wpisując **ESO**

Oświadczenie o samodzielnym wykonaniu pracy podczas weryfikacji efektów uczenia się w trybie zdalnym.

Oświadczam, że niniejsza praca stanowiąca podstawę do uznania osiągnięcia efektów uczenia się z przedmiotu Laboratorium Fotoniki została wykonana przeze mnie samodzielnie.

Imię Nazwisko: Piotr Mikołajczyk

Numer albumu: 272018

Z1 : Badanie charakterystyki spektralnej tłumienności włókien światłowodowego

Rys.1 – Światłowód 1 i światłowód 2 oraz ich tłumienie w paśmie odpowiednio 700 – 1700 nm oraz 100 – 1800nm

Niestety nie posiadam dokładnego L, więc tylko takie wykresy [dB]. Pokazują one że największe straty są w paśmie 700nm – 900nm (rysunek 1) po czym zaczyna się długie okno transmisyjne w zasadzie od 900nm do 1500nm po czym następuje tzw. Absorbcja w podczerwieni. Światłowód nr 2. Tłumi zdecydowanie mniej w paśmie 850.nm – 1600nm (14 rzędów wielkości), natomiast od 100nm do 750nm praktycznie nie ma możliwości na propagacje na dłuższe dystanse – pierwszy światłowód nadaje się do połączeń lokalnych, natomiast drugi, do połączeń wielokilometrowych (przyjmując że L jest na poziomie X,X [km]).

Z2. OTDR

W sprawozdaniu odpowiedz na pytanie: Co zmienia się w przebiegu krzywej reflektogramu przy zmianach ustawień Range oraz Pulse?

Poziom szumów zmienia się wraz ze zwiększaniem szerokości impulsu (RMS szumu rośnie) jednak , dzięki dłuższemu impulsowi , zbocza powracające impulsu są dalej od siebie i efektywnie pomiar jest dokładniejszy (czyli jest gdzieś złoty środek gdzie poziom szumów vs. Szerokość impulsu jest optymalna do detekcji zaburzeń takich jak połączenia światłowodów lub odbicie od końca światłowodu (jak w przypadku na laboratorium). Impuls szerszy jest amplitudowo wyraźniejszy jednak bardziej rozmyty. Wraz ze zmianą długości światłowodu widać pojawiające się kolejne zaburzenia które są połączeniem światłowodu fizycznego połączenia kolejnych odcinków w celu uzyskania większej długości. Wraz z długością fali ze względu na pasmowy charakter światłowodów oraz fotodetektora.

→ 1 0,0000 --- -67,1 0,000

→ (0,4994) 0,110 0,219 0,110

--- 2 0,4994 --- 0,110

File name: imio_451.trc

Reflectance (dB)

Att. (dB/km)

Cumul. (dB)

+

100ns pulse 0.5 km 15s duration

Pos./Length (km)

Loss (dB)

Identification.

Test Configurati

User Preference

3

(1)

0.2km 100nsw

0.2km 30ns

0.2km 30ns

Average: 15s

Pulse:50ns

$\lambda = 1310 \text{ nm}$

złącze

 $\lambda = 1550 \text{ nm}$

złącze

- 2) złącze
- 3/4) spaw
- 5) koniec światłowodu 1

$\lambda = 1625 \text{ nm}$

Złącze

Chciałem zmierzyć metodą 2 punktową – poprawić pomiary wcześniejsze przez co skasowałem 3 slajdy i niestety nie udało mi się zalogować w pustym okienku na urządzeniu (chciałem domierzyć sobie te połączenia).

Z3. Badanie wpływu Makro zagięć na tłumienność światłowodu

Wraz ze zmniejszającą się długością fali, zagięcia mają mniejszy wpływ na tłumienie. Dla średnicy zagięcia 25mm, każda wiązka światła z użytych długości fali, nie widzi zaburzenia. Oznacza to że dla tego typu światłowodu, trzeba prowadzić go tak aby minimalny promień zagięcia nie przekraczał 25mm w celu uzyskania dobrej transmisji. Oznacza to również że im dłuższa długość fali tym bardziej wnika ona w płaszcz.