M51660L

SERVO MOTOR CONTROL FOR RADIO CONTROL

DESCRIPTION

The M51660L is a semiconductor integrated circuit for use in servo motor control in radio control applications.

Housed in a 14-pin molded plastic zig-zag inline package (ZIP), the M51660L contributes to the miniaturization of the set.

The built-in voltage regulating circuit, and the differential comparator used in the comparator circuit provide the M51660L with extremely stable power supply voltage fluctuation characteristics and temperature change characteristics.

FEATURES

- Excellent power supply and temperature stability
- Simple setting of dead band
- Includes protection circuit for continuous "H" level input

APPLICATION

Digital proportional system for radio control, and servo motor control circuit, etc.

RECOMMENDED OPERATING CONDITIONS

Supply voltage range ······3.5 –	- 7V
Rated supply voltage 4	.8V

SERVO MOTOR CONTROL FOR RADIO CONTROL

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		7.5	V
lo sink	Output sink current		500	mA
lo sourse	Output source current		200	mA
Pd	Power dissipation		550	mW
Kθ	Thermal derating range	Ta ≥ 25°C	5.5	mW/°C
Topr	Operating temperature		-20 – +75	°C
Tstg	Storage temperature range		-40 – +125	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C and Vcc = 4.8V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Llmit
			Min.	Тур.	Max.	Unit
Icc	Circuit current	When output is OFF		3.5	5	mA
		When output is ON		20		
Vol	Output voltage "L"	Io sink = 100mA		0.1	0.2	V
		Io sink = 400mA		0.4	0.7	
Vон	Output voltage "H"	lo source = 100mA	3.4	3.8		V
IPNP	External PNP transistor		30)		A
	Drive current					mA
VReg	Internal regulated supply voltage		2.3	2.45	2.6	V
IReg	Internal regulated supply output current				3.0	mA
TDB	Minimum dead band width	R _{DB} = 510Ω, Cs = 0.1 μ F			1.5	μs

TYPICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

SERVO MOTOR CONTROL FOR RADIO CONTROL

Deadband width vs. deadband resistance

APPLICATION EXAMPLE

Servo motor control circuit for radio-controlled

SERVO MOTOR CONTROL FOR RADIO CONTROL

TECHNICAL APPLICATION NOTES PIN DESCRIPTION

1. Servo Position Voltage Input Pin (Pin ①)

Connect the potentiometer terminal for position detection that follows the output axis. Compare this voltage with the voltage of the triangular wave of pin $\ensuremath{\textcircled{2}}$ and drive the motor. A capacitor of approximately 0.1µF should be connected for noise prevention.

2. Timing Capacitor Pin (Pin 2)

Connect a capacitor that will generate a triangular wave by constant current charging. A typical value is $0.1\mu F$. Also connect a feedback resistor from the output here.

3. Timing Resistor (Pin 3)

Connect a resistor that will determine the value of the constant current of pin 2. A resistor of $18k\Omega$ will yield a current of 1.0mA. A capacitor of approximately $0.03\mu F$ should be connected in parallel with the resistor to increase stability.

4. External PNP Transistor Drive (1) (Pin (4))

Connect to the base of the external PNP transistor.

5. Input Pin (Pin (5))

Operate with a positive pulse of peak value 3V or greater.

6. Output 1 Pin (Pin 6)

Connect a feedback resistor between this pin and pin 2).

7. Ground (pins 7 and 8)

8. Error Pulse Output pin (Pin 9)

Connect a resistor between this pin and pin 1. The dead band will change according to the value of this resistor.

9. Output 2 pin (Pin 10)

This is the output 2 pin.

10. Stretcher Input Pin (Pin 11)

Connect the capacitor and resistor of the pulse stretcher section

11. External PNP Transistor Drive 2 (Pin 12)

Connect to the base of the external PNP transistor.

12. Regulated Voltage Output Pin (Pin (3))

This is the output of the internal regulated supply voltage. Make connections from this pin to a potentiometer or pulse stretcher resistor. Connect a capacitor of approximately $2.2\mu F$ for stability.

13. Supply Voltage (Pin (4))

The supply voltage exhibits uniform characteristics from 3.5V to 7V. Connect a capacitor of approximately $10\mu F$.

This datasheet has been downloaded from:

www. Data sheet Catalog. com

Datasheets for electronic components.