	$\tau_{1^-}^{\#2}\alpha$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
	$\tau_{1^{}}^{\#1}\alpha$	0	0	0	0	0
$u^{\kappa\lambda}_{,} + \omega^{\kappa\lambda}_{,} + \omega^{\kappa}_{,} + \omega^$	$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$
$ \frac{+\frac{1}{3}t_1 \omega_{k,l}}{\kappa \partial_{\theta} \omega_{\alpha\beta}} = \frac{+\frac{1}{3}t_1 \omega_{k,l}}{\kappa \partial_{\theta} \omega_{\alpha\beta}} = \frac{-\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}}{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}} = \frac{\frac{2}{3}t_1 \omega_{\beta k,l}}{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}} = \frac{\frac{2}{3}t_1 \omega_{\beta k,l}}{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}} = \frac{\frac{2}{3}t_1 \omega_{\beta k,l}}{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}} = \frac{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}}{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}} = \frac{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}}{\kappa \partial_{\beta} \omega_{\alpha\beta}} = \frac{\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}}{\kappa \partial_{\beta} \omega_{\alpha\beta}} = \frac{1}{\kappa} $	$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$
$t_{2} \omega_{\kappa\lambda}^{\prime} \omega_{\kappa\lambda}^{\prime} - t_{2}$ $t_{2} \omega_{\kappa\lambda}^{\prime} \omega_{\kappa\lambda}^{\prime} - t_{3}$ $t_{2} \omega_{\beta} - \frac{1}{3} t_{1} \partial^{\alpha} f_{\epsilon}$ $t_{2} \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}$ $t_{2} \omega_{\beta \kappa} \partial^{\kappa} f^{\beta} + t_{2} \omega_{\beta \kappa} \partial^{\kappa} f^{\beta} + \omega_{\lambda}^{\prime} \partial^{\kappa} f^{\beta} \partial^{\kappa} f^{\beta}$ $t_{2} \omega_{\beta} \partial^{\kappa} f^{\beta} $	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0
$\omega_{\kappa}{}^{\kappa} - \frac{1}{3}t_{1} \omega_{\kappa}{}^{\kappa\lambda} \omega_{\kappa\lambda}{}^{\prime} + \frac{2}{3}t_{2} \omega_{\kappa}{}^{\kappa\lambda} \omega_{\kappa\lambda}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\lambda}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\alpha}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\alpha}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\alpha}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\alpha}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{1} \omega_{\kappa\gamma}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{2} \omega_{\kappa\omega}{}^{\prime} \omega_{\kappa\gamma}{}^{\prime} + \frac{1}{3}t_{2} \omega_{\kappa\omega}{}$	$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1+4 t_2)}{3 (1+k^2)^2 t_1 t_2}$	0	0
	$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0
$-\frac{1}{3}t_1 \omega_{\alpha'}$ $\frac{1}{3}t_2 \omega_{\kappa\lambda'}$ $\frac{1}{3}t_2 \omega_{\kappa\lambda'}$ $\frac{1}{6}t_2 \partial_{\alpha} f_{\theta\kappa}$ $\frac{1}{6}t_2 \partial_{\alpha} f_{\lambda}$ $\frac{1}{6}t_2 \partial_{\alpha} f_{\lambda}$ $\frac{1}{3}t_1 \partial_{\kappa} f_{\lambda}$ $\frac{1}{3}t_2 \omega_{\kappa\theta}$ $\frac{1}{3}t_2 \partial_{\alpha} f_{\lambda}$ $\frac{1}{6}t_2 \partial_{\kappa} f_{\lambda}$		$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \tau^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2} \alpha$	0	0	0	<i>آلاد</i> ً <u> </u>	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\sqrt{2}kt_1\right $	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$		
${f}_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\tilde{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0	
$\omega_{1}^{\#2}_{+\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\Bigg \frac{1}{3}k^2(t_1+t_2)$	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta = \frac{1}{6} (t_1 + 4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + ^{lpha}$	

 $\frac{24k^2}{(3+4k^2)^2t_1}$

 $-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$

 $\frac{12\,i\,k}{(3+4\,k^2)^2\,t_1}$

	$\omega_{2}^{\#1}_{\alpha\beta}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_2^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

$\omega_{0}^{\#1}$ \dagger	$f_{0}^{#1} +$	f#2 +	ω_{0}^{*1}			
			$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
== 0 5	20		$\tau_{2}^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\bar{l} k \sigma_{2+}^{\#1\alpha\beta} == 0$			$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0

 $\sigma_2^{\#1} + ^{\alpha\beta}$

 $\sigma_{2}^{\#1} + ^{\alpha eta \chi}$

 $\tau_2^{\#1} + ^{\alpha\beta}$

 $f_{0}^{\#2}$

 $\omega_{0}^{\#1}_{+}$

0 0

3 (1)	- ik						3	•		- 1 j						#	1	1	1	3	3	3	3	2	20
$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	+	$\omega_1^{''} \dot{\bar{+}}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0	constraints	sps				$k \sigma_{1}^{\#1}{}^{\alpha} == 0$		$\sigma_{1}^{\#2}{}^{lpha}$	$k \ \sigma_{1}^{\#2\alpha\beta} == 0$	$\bar{i}k\sigma_2^{\#1}{}^{\alpha\beta}==0$	
$\sigma_1^{\#2} + ^{\alpha \beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_1^{\#_1} + \alpha$	$\sigma_1^{\#2} + ^{\alpha}$	$\tau_1^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$			$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_1^{#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$	Source co	SO(3) irreps	$\tau_{0}^{#2} == 0$	$\tau_{0}^{\#1} == 0$	$\sigma_{0}^{\#1} == 0$	$t_1^{\#2\alpha} + 2\bar{l}$	$\tau_{1}^{\#1}{}^{\alpha} == 0$!!	+	-2	Total #:

?	, i	<u> </u> - -
	$J^P = 0^-$? -
?		- - - F

Lagrangian density

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No
_
massless
particl
cles

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$