Problema 795

Siguen dos triangles equilàters \overrightarrow{ABC} i \overrightarrow{DBC} que tenen un costat comú \overline{BC} .

Pel punt D es traça una secant variable que talla la prolongació del costat \overline{AB} en E i la del costat \overline{AC} en F.

Determineu el lloc geomètric del punt intersecció M de les rectes BF i CE.

Solució:

Considerem els triangles ABC i DBC amb les següents coordenades cartesianes.

$$B(0,0)$$
, $C(2,0)$, $A(1,\sqrt{3})$, $D(1,-\sqrt{3})$.

El circumcentre O del triangle ABC té les coordenades: $O\left(1, \frac{\sqrt{3}}{3}\right)$.

Siga P(a, 0) un punt qualsevol de la recta BC.

Siga E la intersecció de les rectes DP i AB. Siga F la intersecció de les rectes DP i AC.

La recta AB té equació: $r_{AB} \equiv y = \sqrt{3} x$.

La recta AC té equació: $r_{AC} \equiv y = -\sqrt{3} (x-2)$.

La recta DP té equació:

$$r_{DP} \equiv y = \frac{\sqrt{3}}{a-1} (x-a).$$

Efectuant la intersecció de les rectes DP i AB, les coordenades de E són:

$$E\!\!\left(\frac{-a}{a\!-\!2},\frac{-\sqrt{3}a}{a\!-\!2}\right)\!.$$

Efectuant la intersecció de les rectes DP i AC, les coordenades de F són:

$$F\!\!\left(\frac{3a\!-\!2}{a},\frac{2\sqrt{3}-\sqrt{3}a}{a}\right)\!.$$

L'equació de la recta CE és:
$$r_{CE} \equiv y = \frac{\sqrt{3}a}{3a-4}(x-2)$$
.

L'equació de la recta BF és:
$$r_{BF} \equiv y = -\frac{\sqrt{3}a}{3a-2}(x-2)$$
.

Efectuant la intersecció de les rectes CE i BF, les coordenades de M són:

$$M\!\!\left(\frac{3a^2-2a}{3a^2-6a+4},-\frac{\sqrt{3}a^2-2\sqrt{3}a}{3a^2-6a+4}\right)\!.$$

Comprovem que $\overline{OM} = \frac{2\sqrt{3}}{3}$.

$$\left(\frac{3a^2-2a}{3a^2-6a+4}-1\right)^2+\left(-\frac{\sqrt{3}a^2-2\sqrt{3}a}{3a^2-6a+4}-\frac{\sqrt{3}}{3}\right)^2=\frac{16(a-1)^2}{\left(3a^2-6a+4\right)^2}+\frac{4\left(3a^2-6a+2\right)^2}{3\left(3a^2-6a+4\right)^2}=\frac{4}{3}\;.$$

Aleshores M pertany a la circumferència circumscrita del triangle $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$.

