

A DISTRICT RECOMMENDER

IBM Data Science Capstone Project

Georgios Lekkas

June 4, 2020

THE PROBLEM

A person moving to a new city for work or studies, must choose the areas where to look for accomodation

- "If I have no time or budget for on-site exploration, which is the right place for me?"
- City guides are for tourists
- Expat or student forums have little information and carry subjective opinions

The new "District Recommender" service comes to fill that gap

- Supports decisions with objective data
- Takes personal preferences into account

DATA SOURCES

- Data on the districts of each city
 Web scraping from Wikipedia
- Geolocation of each district
 Online information provider: ArcGIS by ESRI
- Venues in each district
 Via the Foursquare API; categorized by type
- Taxonomy of venues
 Via the Foursquare API
- User input
 City of destination
 Preferred districts in other cities & their ratings

Initial testing areas

Three European cities

- London, England
- Glasgow, Scotland
- Copenhagen, Denmark

Example of user input

Destination: Copenhagen, Denmark

Preferences:

District code	District_name	City	Rating
E9	Hackney, Homerton	London	3.5
N1	Barnsbury, Canonbury, Islington	London	4.0
W11	Holland Park, Notting Hill	London	5.0

METHODOLOGY

The problem maps directly to a class of problems and solutions studied by Data Science, known as Recommender Systems

Two types of recommender systems:

- Content-based recommenders: the system tries to figure out the user's favourite aspects of an item, and then recommends items that present those aspects.
- Collaborative filtering recommenders: the system find other users that have similar preferences and opinions to the target user, and then recommends items that those others have liked

We decide to build a content-based recommender. We must

- Find out the user's favorite aspects from the districts and ratings given
- Use user preferences to recommend districts in the destination city

THE PROCESS

The acquired data is processed to produce a recommendation in five steps:

- 1. Transform the dataset of districts and venue categories
- 2. **Select** the districts that correspond to the user's preferences
- Use preferences to calculate a user profile vector of weights assigned to Venue categories
- 4. Obtain a numeric preference score for each unknown district
- 5. **Present** the top scoring alternatives, in text form and on a map

1A/ DATA TRANSFORMATION: CATEGORY AGGREGATION

The Foursquare API returns detailed (leaf-level) categories

Designate specific categories in the category hierarchy, that can serve as **aggregation points** for all categories below it

We experiment with High-Level Categories

1B/ DATA TRANFORMATION: SCALING

- The complete list of venues for each district was one-hot encoded, based on the highlevel category
- The aggregated results by district using mean(), was unevenly scaled across categories
- Data was scaled using a QuantileTransformer with a uniform distribution output
- The probability density function of each feature is mapped to a uniform distribution

District_code	Arts & Entertainment	Food	Nightlife Spot	 Shop & Service	Travel & Transport	
1000-1499	0.261364	0.443182	0.102273	 0.102273	0.056818)
1500-1799	0.000000	0.538462	0.076923	 0.076923	0.153846	
1800-1999	0.261364	0.443182	0.102273	 0.102273	0.056818	

District_code	Arts & Entertainment	Food	Nightlife Spot	 Shop & Service	Travel & Transport
1000-1499	0.916667	0.494186	0.451550	 0.362403	0.527132
1500-1799	0.000000	0.742248	0.284884	 0.207364	0.860465
1800-1999	0.916667	0.494186	0.451550	 0.362403	0.527132

2/ DATA SELECTION

The subset of cities' encoded data that belongs to the districts known and rated by the user

District code	Arts & Entertainment	•••	Food	Nightlife Spot	Outdoors & Recreation	Professional & Other Places	Shop & Service	Travel & Transport
E9	0.521318		0.612403	0.618217	0.866279	0.000000	0.476744	0.393411
N1	0.000000		0.689922	0.926357	0.542636	0.992248	0.220930	0.271318
W11	0.432171		0.701550	0.655039	0.449612	0.000000	0.759690	0.306202

3/ CALCULATE USER PROFILE

Express user preferences on venue categories as numbers

User profile = (User Ratings) x (Venue Category Data of user-preferred districts)

Venue High Level Category	Weight
Arts & Entertainment	3.985465
College & University	0.000000
Food	8.410853
Nightlife Spot	9.144380
Outdoors & Recreation	7.450581
Professional & Other Places	3.968992
Shop & Service	6.350775
Travel & Transport	3.993217

Nightlife and Outdoors & Recreation now weigh nearly as much as, or more than Food. These preference weights seem in line with the character of London areas chosen by the user

4/ CALCULATE SCORES OF UNKNOWN DISTRICTS

To arrive at a single number of 'likeability' for each district, we'll calculate a weighted average

The formula is

District score = (Venue Category Data) \times (User profile vector)

District_code	District_name	Score
2200	Copenhagen N	0.610662
2400	Copenhagen NV	0.546174
1500-1799	Copenhagen V	0.451454
2000	Frederiksberg	0.443338
2100	Copenhagen Ø	0.432967

5/ PRESENT BEST RECOMMENDATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

The Recommender produces results in line with expectations, it could be envisaged as support to human decision-making, although not tested and refined enough yet

 The trendy London neighborhoods preferred by the user are similar to the proposed districts of Nørrebro, Vesterbro, Østerbro and Frederiksberg. Many venues for Food, Art, Nightlife, Shops and Recreational activities

A lot of space for improvement, some possible ways:

- Additional data sources, for example data on property prices
- Improve the representation of the district profiles.
 - How to weigh one vs. dozens of venues of the same type?
 - Search of improved district representations supported by clustering and visualization of districts
- Improve scoring calculations to increase effect of low ratings
- Improve accuracy of district profiling by aggregating on different venue categories
 - Investigate intermediate levels between the top-most and the lowest ones
- Reduce dimension of districts, using other criteria for geographical decomposition