线性代数 作业 8

2025年3月18日

题 1. 记 $V=C^{\infty}(\mathbb{R})$ 是 \mathbb{R} 上的光滑函数组成的 \mathbb{R} 线性空间. 第七次作业中,我们验证了两组元素 B,C 满足 $\operatorname{Span}_{\mathbb{R}}B=\operatorname{Span}_{\mathbb{R}}C=W$,且 B,C 均为 W 的基. 请写出 B,C 的转换矩阵 $P_{B\leftarrow C}$ 和 $P_{C\leftarrow B}$.

- 1. $B = (1, \cos x, \cos 2x, \cos 3x), C = (1, \cos x, \cos^2 x, \cos^3 x).$
- 2. $B = (1, x, x^2, x^3), C = (1, x a, (x a)^2, (x a)^3)$ $(a \in \mathbb{R})$ 为常数)

EXECUTE: Consider the linear map: $F: \mathbb{R}^3 \to \mathbb{R}^2$ such that $(x_1, x_2, x_3)^T \mapsto (x_1 + 2x_2, x_1 - x_2)^T$. Compute the matrix of T with respect to the basis $\alpha_1, \alpha_2, \alpha_3$ of \mathbb{R}^3 and β_1, β_2 of \mathbb{R}^2 :

- 1. $\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,0)^T, \alpha_3 = (0,0,1)^T, \beta_1 = (1,0)^T, \beta_2 = (0,1)^T$
- 2. $\alpha_1 = (1,1,1)^T, \alpha_2 = (0,1,1)^T, \alpha_3 = (0,0,1)^T, \beta_1 = (1,1)^T, \beta_2 = (1,0)^T$
- 3. $\alpha_1 = (1, 2, 3)^T, \alpha_2 = (0, 1, -1)^T, \alpha_3 = (-1, -2, 3)^T, \beta_1 = (1, 2)^T, \beta_2 = (2, 1)^T$

考虑线性映射: $F: \mathbb{R}^3 \to \mathbb{R}^2$, 使得 $(x_1, x_2, x_3)^T \mapsto (x_1 + 2x_2, x_1 - x_2)^T$ 。计算 T 关于 \mathbb{R}^3 的基 $\alpha_1, \alpha_2, \alpha_3$ 和 \mathbb{R}^2 的基 β_1, β_2 的矩阵:

- 1. $\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,0)^T, \alpha_3 = (0,0,1)^T, \beta_1 = (1,0)^T, \beta_2 = (0,1)^T$
- 2. $\alpha_1 = (1,1,1)^T, \alpha_2 = (0,1,1)^T, \alpha_3 = (0,0,1)^T, \beta_1 = (1,1)^T, \beta_2 = (1,0)^T$

3.
$$\alpha_1 = (1,2,3)^T, \alpha_2 = (0,1,-1)^T, \alpha_3 = (-1,-2,3)^T, \beta_1 = (1,2)^T, \beta_2 = (2,1)^T$$

題 3.
$$\diamondsuit$$
 $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \in M_{2 \times 2}(\mathbb{R})$

- 1. 证明和 B 交换的矩阵 A 的集合 $W = \{A \in M_{2\times 2}(\mathbb{R}) | AB = BA\}$ 是实线性空间 $M_{2\times 2}(\mathbb{R})$ 的子空间.
- 2. 找到 W 的一组基.
- **题 4.** 对于 $A \in M_n(\mathbb{R})$, 证明 $A \cdot A^T$ 的列空间和 A 的列空间相同.
- **题 5.** 令 V 是形如 AB-BA 的矩阵生成的 $M_n(\mathbb{C})$ 的子空间. 证明 $V=\{A\mid Trace(A)=0\}$.

题 6. 设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
. 考虑线性映射 $f \colon M_3(\mathbb{R}) \to M_3(\mathbb{R})$ 满足对 $B \in M_3(\mathbb{R})$ 有 $f(B) = A \cdot B$.

- 1. 求 A 的 (行) 最简阶梯型。
- 2. 求 Ker(f) 作为实线性空间的一组基。
- 3. 求 Im(f) 作为实线性空间的一组基。
- **题 7.** 假设 V 是实线性空间 $\mathbb{R}[x]$,考虑两个线性映射 $T_1, T_2 \colon V \to V$,使得 $T_1(f) = f'$ 和 $T_2(f) = xf$. 证明 $T_1 \circ T_2 T_2 \circ T_1 = Identity$. 请问在有限维线性空间 V 中是否存在这样的线性映射?