

TURMA DOS 15 - CICLO 1

2023

MATEMÁTICA

Convenções

- Considere o sistema de coordenadas cartesiano, a menos que haja indicação contrária.
- $\mathbb{N} = \{1, 2, 3, \ldots\}$ denota o conjunto dos números naturais.
- \mathbb{R} denota o conjunto dos números reais.
- C denota o conjunto dos números complexos.
- i denota a unidade imaginária, $i^2 = -1$.

Questão 1. Determine o valor de K para que as raízes da equação do segundo grau:

$$(K-5)x^2 - 4Kx + K - 2 = 0$$

sejam o seno e o cosseno de um mesmo arco.

Questão 2. Determine o conjunto-solução da inequação:

$$x + \sqrt{x^2 - 10x + 9} > \sqrt{x + 2\sqrt{x^2 - 10x + 9}}$$

Questão 3. Em um triângulo ABC, acutângulo, a bissetriz interna do ângulo \hat{B} intercepta AC no ponto D. Uma reta paralela ao lado AB, que passa pelo ponto D, intercepta o lado BC no ponto E. Pelo ponto E traça-se uma paralela ao segmento BD que corta AC no ponto F. Sendo $AB = 20 \,\mathrm{cm}$, $BC = 30 \,\mathrm{cm}$ e $DF = 6 \,\mathrm{cm}$, determine o comprimento de seguimento BD.

Questão 4. Sejam f e g funções reais definidas por

$$f(x) = \begin{cases} 4x - 3, & \text{se } x \ge 0\\ x^2 - 3x + 2, & \text{se } x < 0 \end{cases}$$

e

$$g(x) = \begin{cases} x + 1, \text{ se } x > 0\\ 1 - x^2, \text{ se } x \le 2 \end{cases}$$

Sendo assim, determine a expressão de $f \circ g(x)$.

Questão 5. Seja S o conjunto de todos os números complexos z satisfazendo

$$|z - 2 + i| \ge \sqrt{5}$$

Se o número complexo z_0 é tal que $\frac{1}{|z_0-1|}$ é o máximo do conjunto $\left\{\frac{1}{|z-1|}:z\in S\right\}$, determine os possíveis argumentos de:

$$\frac{4 - z_0 - \overline{z_0}}{z_0 - \overline{z_0} + 2i}$$

Questão 6. Seja a_k o termo de ordem k de uma progressão geométrica infinita tal que $a_n = 1/6$. A razão entre a soma dos termos que precedem (ou seja, $\sum_{k=1}^{n-1} a_k$) e a soma dos termos que o sucedem (ou $\sum_{k=n+1}^{+\infty}$) é 30. Se a soma dos termos da progressão é 16/3. qual é o valor de n?

Questão 7. São dados três pontos no plano cartesiano: P(5,2), Q(2,-1) e R(2,0). Sabe-se que a figura geométrica formada pelos pontos que distam k da reta PQ e 2k do ponto R é um triângulo. Determine o valor de k, sendo k um número real positivo.

Questão 8. Considere 10 pontos em um plano, entre os quais não há 3 pontos colineares.

- a. Quantas são as retas que contém dois desses pontos?
- b. Qual é o número máximo de pontos de interseção dessas retas?

Questão 9. Analise para quais valores de λ a equação:

$$\sec(x) + \csc(x) = \lambda$$

Apresenta solução para algum x tal que $0 < x < \frac{\pi}{2}$.

Questão 10. Uma pirâmide triangular tem como base um triângulo de lados 13cm, 14cm, 15cm; as outras arestas medem l. Sabendo que o volume da pirâmide é igual a $105\sqrt{22}$, qual é o valor de l, em cm?

Dados

• Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$

Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$

Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$

Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$

• Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$

• Constante dos gases, $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$

• Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \,\mathrm{m}^{-1}$

• Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

• Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

• $\sqrt{2} = 1.4$

• $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$

• $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$
Н	1	1,01	Mg	12	24,31
${ m Li}$	3	6,94	Al	13	26,98
${\rm Be}$	4	9,01	Si	14	28,09
$^{\mathrm{C}}$	6	12,01	P	15	30,97
N	7	14,01	\mathbf{S}	16	32,06
O	8	16,00	Cl	17	$35,\!45$
\mathbf{F}	9	19,00	Ar	18	$39,\!95$
Ne	10	20,18	Ca	20	40,08
Na	11	22,99			

Questão 11. Um hidrocarboneto acíclico possui densidade relativa ao ar menor que 4. Uma mistura de hexano contendo 10,15% em massa de desse hidrocarboneto foi queimada com oxigênio em um recipiente selado. Após o resfriamento dos produtos verificou-se que havia 9,54 g de água e 5 L de uma mistura composta de 20 % monóxido de carbono e 80 % de dióxido de carbono, em volume, em 300 K e 234 kPa.

- a. **Determine** a fórmula empírica do hidrocarboneto desconhecido.
- b. Apresente todas as fórmulas estruturais possíveis para o hidrocarboneto.
- c. **Determine** o volume de oxigênio utilizado no experimento.

Questão 12. Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas de afinidade eletrônica em função do número atômico.

- a. Esboce qualitativamente o gráfico da afinidade eletrônica em função do número atômico para o segundo e terceiro períodos da tabela periódica.
- b. **Explique** a ocorrência dos desvios.

Questão 13. Uma amostra de 1 kg de carbonato de cálcio em $800\,\mathrm{K}$ é introduzida em um forno que opera sob $101\,\mathrm{kPa}$ o forno é então aquecido para que ocorra a reação de calcinação. A reação é espontânea e o valor absoluto da variação de energia livre é $11\,\mathrm{kJ}\,\mathrm{mol}^{-1}$.

Considere a variação da entalpia e da entropia com a temperatura, e $\ln(1+x) \approx x$.

${\rm Dados\ em\ 800K}$	$CaCO_3(s)$	CaO(s)	$CO_2(s)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-1210	-635	-394
Entropia padrão molar, $S_{\mathrm{m}}^{\circ}/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	93	40	214
Capacidade calorífica isobárica, $C_{P,\mathrm{m}}^{\circ}/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	82	43	37

Questão 14. Considere o modelo atômico de Bohr.

- a. **Determine** a razão entre a velocidade do elétron na primeira órbita do átomo de hidrogênio e a velocidade da luz.
- b. **Determine** a partir de qual valor para o número atômico a velocidade do elétron em uma espécie hidrogenoide em seu estado fundamental supera 10% da velocidade da luz.

Questão 15. Gás metano é bombeado para uma câmara de combustão a um taxa de $200\,\mathrm{L\,s^{-1}}$, em $25\,^{\circ}\mathrm{C}$ e 1,5 atm. Ar é adicionado à câmara a 1 atm, na mesma temperatura, e a mistura gasosa é ignitada. Para garantir que todo o metano sofra combustão, a quantidade de oxigênio bombeada é três vezes maior que a quantidade necessária para a combustão completa de todo o metano.

Foi determinado que 5% do carbono na corrente de saída da câmara de combustão estava na forma de monóxido de carbono, e o restante estava na forma de dióxido de carbono. A norma técnica para esse tipo de equipamento preconiza que a fração molar de monóxido de carbono na corrente de saída não seja superior a 0,20%.

- a. Determine a vazão de ar necessária para fornecer a quantidade de oxigênio desejada.
- b. Verifique se a concentração de monóxido de carbono na corrente de saída esta dentro da faixa permitida.

Questão 16. Um hidrocarboneto é queimado e os gases de exaustão são coletados em uma cilindro em $375\,\mathrm{K}$ atingindo a pressão de $1,51\,\mathrm{atm}$. A densidade dos gases do cilindro é $1,391\,\mathrm{g}\,\mathrm{L}^{-1}$.

- a. **Determine** a composição dos gases de exaustão.
- b. Determine a fórmula molecular do hidrocarboneto.

Questão 17. Considere os compostos A e B.

- a. Explique a grande diferença entre os pontos de ebulição destes compostos.
- b. Classifique o par quanto à sua relação estereoquímica.
- c. **Nomeie** os compostos conforme as regras da IUPAC.

Questão 18. O polietileno é um polímero largamente utilizado devido às suas características estruturais e às suas propriedades físicas. O diagrama de fases para um polietileno é apresentado a seguir.

Compare as formas alotrópicas do polietileno, α e β , indicando a que possui o maior valor para cada um dos seguintes parâmetros em pressão de 10 GPa.

- a. Entropia
- b. Cristalinidade
- c. Densidade
- d. Rigidez
- e. Transparência

Questão 19. Considere desprezível a variação da entropia e da energia interna com a pressão.

- a. Esboce o diagrama de fases para o carbono, indicando as fases líquida, gasosa, grafite e diamante.
- b. Explique por que não se verifica a conversão de diamante em grafite a 27 °C.
- c. **Explique** por que a conversão do grafite em diamante nunca é espontânea em $1\,\mathrm{atm}.$
- d. Determine a pressão necessária para que a conversão de grafite em diamante seja espontânea em 27 °C.

${\rm Dados\ em\ 300K}$	C(grafita)	C(diamante)
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$		1,9
Entropia padrão molar, $S_{\rm m}^{\circ}/\frac{\rm J}{\rm Kmol}$	5,7	2,4
Densidade, $d/\frac{g}{cm^3}$	2,4	4,0

Questão 20. Um hidrocarboneto monocíclico tem densidade $2,67\,\mathrm{g\,L^{-1}}$ em $100\,^\circ\mathrm{C}$ e $101\,\mathrm{kPa}$. Quando uma amostra desse hidrocarboneto é queimada são formados $1,54\,\mathrm{g}$ de água e $2,414\,\mathrm{L}$ de dióxido de carbono em $292\,\mathrm{K}$ e $103\,\mathrm{kPa}$.

- a. Determine a fórmula molecular do hidrocarboneto.
- b. Apresente todas as estruturas possíveis para o hidrocarboneto.