머신러닝 기법을 활용한 사출공정의 불량 원인 주요 인자 선별 및 품질 예측 모델 개발

2021년 K-인공지능 제조데이터 분석 경진대회

팀명 : M.O

팀원: 오형택, 구호근, 곽주헌

CONTENTS

(1) 문제정의

(2) 사출성형 데이터 전처리 및 탐색적 데이터 분석

(3) 분석모델 개발

(4) 분석결과 및 시사점

문제정의

■ 사출성형 정의

- 플라스틱(열경화성 수지, 열가소성 수지)을 원하는 형태의 성형품으로 만드는 기술
- 성형의 사이클이 짧고 능률이 좋아 대량생산이 가능하며 복잡한 모양까지 생산 가능
- 사출성형은 사출장치/가소화장치, 금형 등 다양한 단계를 통과하여 공정이 수행됨

< 사출성형 공정 >

문제정의

■ 사출성형 공정의 문제점

- 공정내에 간혹 성형 불량품이 발생하지만 주요 원인에 대해 알 수 없음
- 불량품 발생시 불량 원인에 대한 작업자의 빠른 조취 필요
- 사출품의 양품/불량품 검사는 작업자의 개입이 필요

■ 사출성형 공정의 개선 방안

- 머신러닝 모델 중 트리기반 모델과 부스팅 기반 모델을 사용하여 불량품을 예측하는
 주요 인자 파악
- 사출품의 양품/불량품을 구별해내는 인공지능 모델 구축을 통한 공정의 효율적 운영
 및 품질 검사 비용 절감

사출성형 데이터 전처리

■ 사출성형기 데이터셋 전처리 과정

- 사출품에 대한 품질 불량 여부를 알 수 있는 "경진대회용 사출성형기 데이터셋 labeled.csv" 활용
- 사출공정의 45개의 변수와 7996개의 데이터셋으로 구성
- 생산한 사출기 모델명(EQUIP_NAME) 변수에서 "650톤-우진2호기" 데이터만 선별
- 제품의 이름에 따라 CN7&RG3 데이터셋, CN7 데이터셋, RG3 데이터셋으로 구분
- 시간변수, 0으로만 채워진 변수 등 20개의 컬럼 제거
 ['_id', 'TimeStamp', 'PART_FACT_PLAN_DATE', 'Reason', 'PART_FACT_SERIAL', 'PART_NAME', 'EQUIP_CD', 'EQUIP_NAME', 'Barrel_Temperature_7', 'Switch_Over_Position', 'Mold_Temperature_1', 'Mold_Temperature_2', 'Mold_Temperature_5', 'Mold_Temperature_6', 'Mold_Temperature_7', 'Mold_Temperature_8', 'Mold_Temperature_9', 'Mold_Temperature_10', 'Mold_Temperature_11', 'Mold_Temperature_12']
- 1개의 종속변수(PassOrFail)와 24개의 독립변수 사용

```
# 생산한 사출기 모델명 갯수 비교
label['EQUIP_NAME'].value_counts()

650톤-우진2호기 7992
1800TON-우진 2
650톤-우진 2
Name: EQUIP_NAME, dtype: int64
```

< 생산한 사출기 모델명 갯수 비교>

사출성형 데이터 전처리

■ 사출성형기 데이터셋 전처리 과정

Data	columns (total 25 columns	١.	
#	Column	Non-Null Count	Dtype
		Non-Nuii counc	Deype
0	PassOrFail	7992 non-null	object
1	Injection Time	7992 non-null	float64
2	Filling Time	7992 non-null	float64
3	Plasticizing Time	7992 non-null	float64
1000		7992 non-null	float64
5	Cycle_Time	7992 non-null	float64
1000	Clamp_Close_Time		float64
6	Cushion_Position	7992 non-null	
7	Plasticizing_Position	7992 non-null	float64
8	Clamp_Open_Position	7992 non-null	float64
9	Max_Injection_Speed	7992 non-null	float64
10	Max_Screw_RPM	7992 non-null	float64
11	Average_Screw_RPM	7992 non-null	float64
12	Max_Injection_Pressure	7992 non-null	float64
13	Max_Switch_Over_Pressure	7992 non-null	float64
14	Max_Back_Pressure	7992 non-null	float64
15	Average_Back_Pressure	7992 non-null	float64
16	Barrel_Temperature_1	7992 non-null	float64
17	Barrel_Temperature_2	7992 non-null	float64
18	Barrel_Temperature_3	7992 non-null	float64
19	Barrel_Temperature_4	7992 non-null	float64
20	Barrel_Temperature_5	7992 non-null	float64
21	Barrel_Temperature_6	7992 non-null	float64
22	Hopper_Temperature	7992 non-null	float64
23	Mold Temperature 3	7992 non-null	float64
24	Mold_Temperature_4	7992 non-null	float64

- CN7&RG3 데이터 셋 : (7992, 25)

- CN7 데이터 셋 : (6736, 25)

- RG3 데이터 셋 : (1256, 25)

[■] 사용 데이터 셋 모양 확인

< 사용 데이터 셋 정보 >

- 사출품 양품과 불량품 비율 확인
- 양품과 불량품에 대한 심각한 클래스 불균형 확인

- 각 데이터별 피어슨 유사도 확인
- CN7&RG3, CN7 데이터 셋 "Barrel_Temperature" 변수간 높은 상관성
- RG3 데이터 셋 "Pressure" 변수간 높은 상관성

- 각 데이터별 주요 인자 분포 확인
- CN7, RG3 데이터 셋 뚜렷한 분포차이 존재하지 않음

< CN7&RG3 주요 인자 분포 >

< RG3 주요 인자 분포 >

- PCA를 통한 주요 인자 분포 확인
- PCA를 통한 양품과 불량품의 분포 차이를 뚜렷하게 구분할 수 없음

사출성형 데이터 분석모델 개발

■ 사출공정의 불량 원인 인자 파악을 위한 머신러닝 모델

- 의사결정나무 기반의 앙상블 모델의 경우 지니 불순도(Gini impurity)를 통해 변수의 중 요도를 알 수 있음
- 부스팅 기반의 모델 역시 노드가 특정 변수로 분기되었을 때 얻는 성능 상의 이득(gain)을 통해 변수의 중요도를 계산할 수 있다
- 클래스 불균형이 존재하는 사출성형 데이터셋에서 변수의 중요도를 계산할 경우 클래스가 많은 양품 데이터에 치우쳐 불량 원인에 대한 주요 요인을 판단 불가
- 양품데이터에서 불량품의 수 만큼 랜덤으로 과소표본추출을 진행하여, 양품과 불량품의 비율을 동일하게 맞추어줌
- Scikit-learn 패키지를 활용하여 앙상블기반 모델과 부스팅 기반 모델 구축 후 변수의 중요도 확인

■ 사출공정의 불량 원인에 대한 주요 인자 파악

- CN7 & RG3 제품 사출품의 양품 데이터를 과소표본추출하여 양품과 불량품을 동일한 비율로 맞춤
- 의사결정나무 > 랜덤포레스트 > XGBoost > LightGBM 순서로 모델 성능 차이를 보임

모델	정확도	정밀도	재현율	F1	ROC-AUC
랜덤포레스트	0.860	0.778	1.0	0.875	0.864
의사결정 나무	0.884	0.833	0.952	0.889	0.885
XGBoost	0.860	0.826	0.905	0.864	0.861
LightGBM	0.837	0.792	0.905	0.844	0.839

< CN7 & RG3 불량 원인 인자 파악을 위한 모델 비교 >

- 변수 중요도를 활용한 불량품을 결정하는 주요 인자 확인
- Average_Back_Pressure과 Plasticizing_Position이 불량품을 예측하는 주요 요인
- 해당 주요 인자 양품과 불량품에 대한 평균, 표준편차 등의 수치적 차이 나타남

< 표 - CN7 & RG3 불량원인 주요인자 TOP-3 >									
TOP-1 TOP-2 TOP-3									
랜덤포레스트	Average_Back_Pressure	Plasticzing_Position	Barrel_Temperature_5						
의사결정나무	Average_Back_Pressure	Plasticzing_Position	Mold_Temperature_3						
XGBoost	Average_Back_Pressure	Plasticzing_Position	Max_Injection_Pressure						
LightGBM	LightGBM Plasticzing_Position Plasticizing_Time Mold_Temperature_4								

< 표 - CN7 & RG3 제품 불량원인 주요인자 기술통계량 >										
평균 표준편차 최솟값 최댓값 25% 50% 75%										
양품 Average_Back_Pressure	59.57	3.25	13.3	90.8	59.4	59.6	59.9			
불량품 Average_Back_Pressure	62.42	6.38	58.7	87.1	59.7	60.6	62.0			
양품 Plasticizing_Position	66.09	5.38	53.55	68.86	68.25	68.34	68.49			
불량품 Plasticizing_Position	61.88	7.57	53.56	68.86	53.59	68.58	68.61			

- CN7 제품 사출품의 양품 데이터를 과소표본추출하여 양품과 불량품을 동일한 비율로 맞춤
- 랜덤포레스트 = XGBoost > 의사결정나무 = LightGBM 순서로 모델 성능 차이를 보임

모델	정확도	정밀도	재현율	F1	ROC-AUC			
랜덤포레스트	0.917	0.857	1.0	0.923	0.917			
의사결정 나무	0.875	0.8	1.0	0.889	0.875			
XGBoost	0.917	0.857	1.0	0.923	0.916			
LightGBM	0.875	0.8	1.0	0.889	0.875			

- 변수 중요도를 활용한 불량품을 결정하는 주요 인자 확인
- Plasticzing_Position 가장 중요한 변수로 선택하였고, 그외 Max_Injection_Speed, Mold_ Temperature 등
- Plasticzing_Position 양품과 불량품 수치적 차이 없음
- 나머지 주요 인자인 Max_Injection_Speed 양품과 불량품에 대한 평균, 표준편차 등의 수치적 차이 나타남

< 표 - CN7 불량원인 주요인자 TOP-3 >								
TOP-1 TOP-2 TOP-3								
랜덤포레스트	Plasticzing_Position	Mold_Temperature_4	Max_Injection_Speed					
의사결정나무	Plasticzing_Position	Cycle_Time	Barrel_Temperature_1					
XGBoost	Plasticzing_Position	Average_Back_Pressure	Max_Injection_Speed					
LightGBM	Plasticzing_Position	Barrel_Temperature_5	Hopper_Temperature_5					

< 표 - CN7 제품 불량원인 주요인자 기술통계량 >									
평균 표준편차 최솟값 최댓값 25% 50% 75%									
양품 Plasticizing_Position	68.38	0.65	59.76	68.86	68.32	68.36	68.51		
불량품 Plasticizing_Position	68.69	0.15	68.36	68.86	68.59	68.61	68.84		
양품 Max_Injection_Speed	55.55	0.82	49.3	64.8	55.1	55.4	55.9		
불량품 Max_Injection_Speed	51.6	6.77	38.5	45.4	53.3	55.5	60.9		

- RG3 제품 사출품의 양품 데이터를 과소표본추출하여 양품과 불량품을 동일한 비율로 맞춤
- RG3 데이터 셋에서는 머신러닝 모델이 양품과 불량품을 구분해내지 못함
- 사출품의 불량을 야기하는 주요인자 확인 불가

_	< RG3 불량 원인 인자 파악을 위한 모델 비교 >								
	모델	정확도	정밀도 재현율		F1	ROC-AUC			
	랜덤포레스트	0.4	0.375	0.3	0.333	0.404			
	의사결정 나무	0.3	0.25	0.2	0.222	0.3			
	XGBoost	0.3	0.25	0.2	0.22	0.303			
	ightGBM	0.5	0.5	0.3	0.375	0.5			

사출성형 데이터 분석모델 개발

- 사출품 품질을 예측하기 위해 8개의 예측모델 구축
- 의사결정나무, 랜덤포레스트, 서포트 벡터 머신, XGBoost, LightGBM, MLP(1-Layer), De ep-MLP(3-Layer), 오토인코더 사용
- 위 모델 중 성능이 우수한 모델에 대하여 SMOTE를 적용한 데이터 오버 샘플링 기법 적용
- 학습 셋 & 테스트 셋을 7:3으로 분리
- StandardScaler를 통한 데이터 표준화 진행
- Accuracy, Recall, Precision, F1-score, ROC-AUC 평가 지표 활용

- CN7&RG3 제품 인공지능 모델 구축 후 평가
- 의사결정나무가 가장 좋은 성능을 나타냄
- SMOTE를 적용하여 불량품 데이터를 오버샘플링 후 모델 학습 결과 성능이 현저히 떨어짐

< CN7 & RG3 사출품 품질 예측을 위한 인공지능 모델 >								
모델	정확도	정밀도	재현율	F1	ROC-AUC			
랜덤포레스트	0.988	0.316	0.286	0.3	0.640			
의사결정 나무	0.994	1.0	0.286	0.445	0.643			
서포트 벡터 머신	0.993	1.0	0.190	0.320	0.595			
XGBoost	0.988	0.316	0.286	0.3	0.640			
LightGBM	0.988	0.316	0.286	0.3	0.640			
MLP	0.993	1.0	0.238	0.385	0.620			
Deep-MLP	0.992	0.6	0.286	0.387	0.642			
오토인코더	0.819	0.0	0.0	0.0	0.421			
의사결정 나무 (SMOTE 적용)	0.009	0.009	1.0	0.017	0.5			

- CN7 제품에서 인공지능 모델 구축 후 평가
- 의사결정나무가 가장 좋은 성능을 나타내며, CN7&RG3 환경보다 좋은 성능 개선이 나타남
- SMOTE를 적용하여 불량품 데이터를 오버샘플링 후 모델 학습 결과 성능이 현저히 떨어짐

< CN7 사출품 품질 예측을 위한 인공지능 모델 개발 >								
모델	정확도	정밀도	재현율	F1	ROC-AUC			
랜덤포레스트	0.996	0.643	0.75	0.692	0.874			
의사결정 나무	0.999	1.0	0.75	0.857	0.875			
서포트 벡터 머신	0.998	1.0	0.583	0.737	0.792			
XGBoost	0.996	0.643	0.75	0.682	0.874			
LightGBM	0.996	0.643	0.75	0.692	0.874			
MLP	0.998	0.818	0.75	0.783	0.875			
Deep-MLP	0.996	0.6	0.75	0.667	0.874			
오토인코더	0.976	0.211	0.103	0.138	0.548			
의사결정 나무 (SMOTE 적용)	0.006	0.006	1.0	0.012	0.5			

- RG3 제품에서 인공지능 모델 구축 후 평가
- 인공지능 모델이 사출품의 품질을 예측하지 못함

	< RG3 사출품 품질 예측을 위한 인공지능 모델 개발 >								
모델	정확도	정밀도	재현율	F1	ROC-AUC				
랜덤포레스트	0.966	0.0	0.0	0.0	0.496				
의사결정 나무	0.973	0.0	0.0	0.0	0.5				
서포트 벡터 머신	0.973	0.0	0.0	0.0	0.5				
XGBoost	0.966	0.0	0.0	0.0	0.496				
LightGBM	0.966	0.0	0.0	0.0	0.496				
MLP	0.971	0.0	0.0	0.0	0.499				
Deep-MLP	0.966	0.0	0.0	0.0	0.496				
오토인코더	오토인코더 0.873		0.031	0.037	0.488				
의사결정 나무 (SMOTE 적용)	0.973	0.0	0.0	0.0	0.5				

결론 및 시사점

- 평균 압력과 계량완료위치 등이 사출품 불량 원인을 야기하는 주요 요인으로 나타남
- 의사결정나무 모델은 사출공정의 품질을 예측하는데 우수한 성능을 나타냄
- 다양한 제조 공정의 불명확한 불량 원인을 알아보기 위해 변수 중요도 파악 방법은 품질의 저하를 야기하는 주요 인자 관리할 수 있음
- 의사결정나무 모델을 사용하여 다양한 제조 공정의 품질 이상 문제를 효율적으로 관리 가능

		/	\	하		_	
				22 / 22			