Entropia e Teoria dell'Informazione

Laureando: Claudio Meggio Realtore: Sonia Mazzucchi

Anno Accademico

2016/2017

Università degli Studi di Trento

Indice

- Proprietà Informazione ed Entropia
- Codici
- Entropia Nelle catene di Markov
- Variabili casuali assolutamente continue

Introduzione

Informazione

Esempio

- i. Quando vado in palestra mi alleno
- ii. Il vincitore delle prossime elezioni sarà Claudio Baglioni
- iii. QUER W LKS E W

Informazione

Esempio

- i. Quando vado in palestra mi alleno
- ii. Il vincitore delle prossime elezioni sarà Claudio Baglioni
- iii. QUER W LKS E W

Definizione Informazione

In uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ definiamo la funzione informazione $I : \mathcal{F} \to \mathbb{R}^+$ come:

$$I(E) = -\log_a(\mathbb{P}(E)).$$

Misura di Incertezza

Definizione:

U viene detta misura di incertezza se soddisfa le seguenti:

- U(X) è un massimo quando ha distribuzione uniforme
- $U(p_1...p_n, 0) = U(p_1...p_n)$
- $U(p_1...p_n)$ è continua per tutti i suoi argomenti.
- Presa Y variabile casuale allora $U(X, Y) = U_X(Y) + U(X)$ dove $U_X(Y) = \sum_{j=1}^n p_j U(Y|X=j)$

Entropia

Definizione Entropia

Data X variabile casuale definiamo la sua Entropia come:

$$H(X) := \mathbb{E}(I(X)) = -\sum_{j=1}^{n} p_j \log(p_j)$$

Teorema:

U(X) è una misura di incertezza se e solo se

$$U(X) = KH(X), K > 0$$

Proprietà

Teorema

$$H(X) \leq \log(n)$$

Con l'uguaglianza sse X ha distribuzione uniforme

Dimostrazione:

$$H(x) - \log(n) = -\frac{1}{\ln(2)} \left(\sum_{j=1}^{n} p_{j} \ln(p_{j}) + \ln(n) \right)$$

$$= -\frac{1}{\ln(2)} \left(\sum_{j=1}^{n} p_{j} (\ln(p_{j}) + \ln(n)) \right)$$

$$\leq \frac{1}{\ln(2)} \left(\sum_{j=1}^{n} p_{j} \left(\frac{1}{p_{j} n} - 1 \right) \right) \leq 0$$

6/15

Entropia Condizionata

Definizione Entropia Condizionata

$$H_X(Y) := \mathbb{E}[H.(Y)] = \sum_{i=1}^n p_i H_i(Y)$$

dove
$$H_j(Y) := -\sum_{k=1}^m p_j(k) \log(p_j(k))$$

Entropia Condizionata

Definizione Entropia Condizionata

$$H_X(Y) := \mathbb{E}[H.(Y)] = \sum_{j=1}^n p_j H_j(Y)$$

dove $H_j(Y) := -\sum_{k=1}^m p_j(k) \log(p_j(k))$

Disuguaglianza di Shannon

$$H_X(Y) \leq H(Y)$$

Dimostrazione:

Disugauglianza di Jensen con

$$\lambda_j = p_j \quad f(x) = x \log(x) \quad x_j = p_j(k)$$

Codici

Canale di Comunicazione

$$SORGENTE \rightarrow CANALE \rightarrow RICEVENTE$$

Definizione Capacità

Viene definita capacità di un canale la quantità

$$C := \max_{\{p_1...p_n\}} I(S, R)$$

= $\max_{\{p_1...p_n\}} (H(R) - H_S(R))$

Errore

Probabilità media d'errore

$$P(E) = \sum_{i=1}^{N} P_{x_i}(E) p_i$$

Dove E è l'evento 'viene inviato x_i , ma suppongo sia stato inviato x_i ' con $i \neq j$

Distanza di Hamming

Numero di simboli che differiscono nelle due parole

Canale binario simmetrico

Sorgente S distribuita come una variabile casuale di Bernoulli di parametro ϵ

Capacità canale binario simmetrico:

$$C = 1 - H_b(p)$$

Velocità

Velocità di Trasmissione

Viene detta **velocità di trasmissione** il numero di bits d'informazione che passano attraverso un canale

Velocità

Velocità di Trasmissione

Viene detta **velocità di trasmissione** il numero di bits d'informazione che passano attraverso un canale

supponendo di ricevere

Velocità

Velocità di Trasmissione

Viene detta **velocità di trasmissione** il numero di bits d'informazione che passano attraverso un canale

supponendo di ricevere

1 1 0 1 1

Nel teorema di Shannon verranno codificate parole di lunghezza dV con parole di lunghezza d.

Il numero totale delle parole da codificare sarà $M=2^{dV}$ e le parole codice corrispondenti verranno scelte con distribuzione uniforme.

Lemmi preparativi

Lemma 1

Per ogni fissato $\delta_1 > 0$, scelto d sufficientemente grande vale:

$$\mathbb{P}(A) \leq \delta_1$$

Lemma 2

Siano ρ e δ_2 due numeri reali non negativi e supponiamo che le parole del codice siano $M=2^{d(\mathcal{C}-\rho)}$ dove $\mathcal{C}=1-H_b(p)$ è la capacità del canale allora, per d sufficientemente grande vale:

$$\mathbb{P}(B) \leq \delta_2$$

Teorema di Shannon

Teorema di Shannon

Dati $\delta, \rho > 0$ possiamo trovare un codice tale per cui se la velocità di trasmissione in un canale binario simmetrico è $V = C - \rho$ allora

$$\mathbb{P}(E) < \delta$$

Dimostrazione:

Ricordando che $E = A \cup B$, e quindi $\mathbb{P}(E) \leq \mathbb{P}(A) + \mathbb{P}(B)$

Conclusioni

- è possibile estendere il teorema a qualsiasi tipo di canale
- non costruttività del teorema
- teorema inverso

FINE

GRAZIE DELL'ATTENZIONE