COMPITI SVOLTI DI COMUNICAZIONI ELETTRICHE I

Prof. Monica GHERARDELLI

Anno Accademico 2001-2002

CLASSIFICAZIONE DEGLI ESERCIZI DAI COMPITI

E		1,			
Energia e Potenza		Serie di Fourie			
12/2/2002 n. 1 (parziale)			14/11/2001 n.1	14/09/2004 n.1	
16/4/2002 n. 3 (quesito obbligatorio)			17/07/2002 n.1	12/11/2004 n.1 (2° quesito)	
18/4/2003 n. 1			04/02/2003 n.1	12/11/2004 n.2 (1° quesito)	
12/9/2003 n.1 (1° quesito)		30/06/2003 n.2	11/02/2004 n. 1 (1° quesito)		
14/7/2004 n.1, n.3 (3° quesito)		13/02/2004 n.1	28/06/2005 n. 1 (2° quesito)		
	2	23/04/2004 n.1			
	2	23/06/2004 n.1			
	-	14/07/2004 n.1			
	Tra	sformata	di Fourier		
14/11/2001 n.2	18/07	7/2003 n.1		27/01/2004 n.1	
17/07/2002 n.2	12/09	9/2003 n.1		27/01/2005 n.1 (1° quesito)	
16/04/2002 n.1	14/11	/2003 n.1		21/04/2005 n.2	
12/09/2002 n.1			(1° quesito)	28/06/2005 n.1 (1° quesito)	
18/11/2002 n.1		7/2004 n.2	(- 1)	15/07/2005 n.1 (1° e 2° quesito)	
04/02/2003 n.3		9/2004 n.2		15/09/2005 n.2 (2° quesito)	
18/02/2003 n.1		1/2004 n.1	(1° quesito)	· · · · · · · · · · · · · · · · · · ·	
15,52,2005 M.I	12,11	., 200 : 11.1	(1 4400110)		
Convoluzione Grafica Autocorrelazione/Parseval/Densità Spettr.di Ener					
29/01/2002 n.1		29/01/2002			
12/09/2002 n. 3			2 n.2 (1° quesito)		
30/06/2003 n.1	13/02/200				
30/01/2004 n. 1			n. 2 (2° quesito)		
21/04/2005 n.1			15/07/2005 n. 1 (3° quesito)		
21/04/2003 II.1		13/07/2003	n. 1 (3 quesito)		
Funzione Delta di Dirac					
04/02/2003 n.2					
01/02/2003 11.2					
Classificazione Sistemi	Sistem	i			
12/02/2002 n.2	14/11/2001 n.3			23/04/2004 n.3	
18/02/2003 n.2	20/01/2			23/06/2004 n.2 (2° quesito)	
18/07/2003 n. 2	12/02/2			23/06/2004 n.3	
30/01/2004 n. 2	17/07/2			14/07/2004 n.3	
15/07/2005 n. 2	18/11/2			12/11/2004 n.3	
13/07/2003 11. 2	18/02/2			27/01/2005 n.1 (2° quesito)	
	18/04/2			11/02/2005 n.1 (2° e 3° quesito)	
	30/06/2			28/06/2005 n.3	
	18/07/2			15/09/2005 n.2 (1° quesito)	
	12/09/2			15/09/2005 n.3	
	14/11/2				
	30/01/2				
	13/02/2	004 N.3			
Inviluppo Complesso/ Trasform	ata di l	Hilhert	Campioname	nto	
16/04/2002 n.2	12/02/2002 n.3				
18/11/2002 n. 2	12/09/2002 n.2 (2° quesito)				
12/09/2003 n.2	18/04/2003 n.2				
14/11/2003 n.2		23/04/2004 n.2			
11/02/2005 n.2		14/09/2004 n.3			
15/09/2005 n.2 (3° quesito)		27/01/2005 n.2			
13/09/2003 II.2 (3 quesito)		21/04/2005 n.3			
			28/06/2005 n.2		
			28/06/2005 n.2 15/07/2005 n.3		

14 Novembre 2001

Esercizio 1

Determinare i coefficienti della serie di Fourier del seguente segnale periodico

Esercizio 2

Stabilire, motivando la risposta anche con un esempio, a quali condizioni deve soddisfare il segnale g(t) perché:

G(f) exp(-j2πfT) sia reale e pari

G(f) sia una funzione periodica

Esercizio 3

Sia x(t) il segnale in ingresso al seguente sistema LTI.

$$x(t)$$
 $h(t)$ $h_1(t)$ $h_2(t)$

Determinare z(t) e la potenza del segnale in uscita, y(t), quando:

$$x(t) = \sum_{n=-\infty}^{\infty} \delta(t - n 2T)$$

$$h(t) = rect \left(\frac{t + \frac{T}{2}}{T}\right) - rect \left(\frac{t - \frac{T}{2}}{T}\right)$$

$$H_{+}(f) = rect \left(\frac{f}{\Delta}\right) \qquad \Delta = \frac{3}{2T}$$

ESERCIZIO1

$$S(t) = \sum_{M=-\infty}^{+\infty} \left[A + mi \left(\frac{t-mT}{T/2} \right) + S(t-MT) \right]$$

Lo wiluffo un rerie di Fourier è deto de:

dove
$$T$$
 $\stackrel{?}{e}$ il periodo delle funcione

$$S_{n} = \frac{1}{T} \int_{-T/2}^{T/2} S(+) e^{-\frac{1}{2}2\pi \frac{A}{T}t} dt = \frac{1}{T} \int_{-T/2}^{T/2} A_{T}^{2} \sin(t/T/2) \int_{\frac{1}{2}=\frac{M}{T}}^{\frac{M}{T}} dt = \frac{1}{T} \int_{-T/2}^{T/2} A_{T}^{2} \sin(t/T/2) \int_{\frac{1}{2}=\frac{M}{T}}^{\frac{M}{T}} dt = \frac{1}{T} \int_{-T/2}^{T/2} A_{T}^{2} \sin(t/T/2) \int_{\frac{1}{2}=\frac{M}{T}}^{\frac{M}{T}} dt = \frac{1}{T} \int_{-T/2}^{T/2} \sin(t/T/2) \int_{\frac{1}{2}=\frac{M}{T}}^{T/2} dt = \frac{1}{T} \int_{-T/2}^{T/2} \sin(t/T/2) \int_{-T/2}^{T/2} dt = \frac{1}{T} \int_{-T/2$$

ESERCIZIO Z

la trasformate G(f) e je le le pari

a) $G(f)e^{-\delta 2\pi gT} \iff g(t-T)$

g(t-T) reale e pari

Infatti se s (+) è une funcione periodice, il mo spettro è une funcione delle frequence di tipo discreto

 $S(f) = \sum_{n=-\infty}^{\infty} S_n S(f-nF)$ con $F = \frac{1}{T}$, T periodo delle funcione S(+) J_m coeff. di Fourier di S(+)

Pertanto, per le profes. delle dualité (3)

ni he che è vero che se G(f) è periodico,

8(+) è una funzione costituite de campioni.

Esempio:

A.A. 2001-2002 5

Esercizio 3

$$\frac{2}{2}(t) = x(t) \otimes h(t) = \sum_{n=-\infty}^{+\infty} S(t-n27) \otimes h(t) =$$

$$= \sum_{n=-\infty}^{+\infty} h(t-n27)$$

Il reguele 2(+) è periodico, punoli il mo spettro è costituito de une repuente di sigle.
y(+) è costituito da 2 role righe spettrali, cioè

y(+) è una simisor de oscillante alla freq. di primo

armonice $\left(\frac{1}{2T}\right)$

29 Gennaio 2002

Esercizio 1

Calcolare la convoluzione grafica fra i segnali di figura.

Esercizio 2

Stabilire, motivando la risposta, se le seguenti funzioni possono rappresentare l'autocorrelazione di un segnale reale ad energia finita.

$$\begin{split} g_1(t) &= e^{-|t|} \\ g_2(t) &= e^{-t} \ u(t) \\ g_3(t) &= - e^{-|t|} \end{split}$$

Esercizio 3

In ingresso al seguente sistema, con H(f) = rect[f/4B], è posto il segnale x(t).

Determinare l'uscita y(t) nei due casi seguenti:

a)
$$X(f) = K \delta(f)$$

b)
$$X(f) = tri(f/2B)$$

Esercizios

Il sequale S.(+) è costituite de due reguali S.(+) e $S_2(+)$, dove $S_2(+) = S.(t-4T)$

Poiche la convoluzione è un oferetore lineare possiamo Aprirare in due il calcolo grafico

$$C(t) = \int_{S(\alpha)}^{+\infty} S(\alpha) \geq (t-\alpha) d\alpha = \int_{S_{1}(\alpha)}^{+\infty} S_{1}(\alpha) \geq (t-\alpha) d\alpha + \int_{S_{2}(\alpha)}^{+\infty} S_{2}(\alpha) \geq (t-\alpha) d\alpha$$

Procediamo con il calcolo del frimo dei due integral. $C_{i}(t) = \int_{-\infty}^{+\infty} S_{i}(x) \, dx$

Judividuism i var intervally di t

2)
$$t+\tau < 0$$
 $C_1(t) = 0$

2) $t+\tau < 2\tau \implies t < \tau$

$$C_1(t) = \int_0^{t+\tau} \frac{2}{2\tau} dx = \frac{\alpha^2}{2\tau} \Big|_0^{t+\tau} = \frac{(t+\tau)^2}{2\tau} = \frac{t^2}{2\tau} = \frac{t^2}{2\tau}$$

la reconda convolurione, C2 (+), sarà nelle forme nguele a C1(+), me trasleto di 4T, cioè

Lindi si avre

L sercitio 2

Possiano raffresentare graficamente le tre funcioni

Le profriété dell'autocorrelazione sous:

Se g: (+) è reale => 1)
$$R_g(0) = E_g = \int |g_i(+)|^2 d+ >0$$

2) $|R_g(7)| \le R_g(0)$
3) $R_g(7)$ reale e numetrice

Solo la prime funcione roddishe a tutte le propriete e finindi rolo pueste può refererent are la autocor relarione di un reguele reale, che he E=1.

3) It regulate all ingresso del sistema è dato de
$$W(t) \triangleq X(t)$$
 cos $(l \Pi B t) = \frac{X(t)}{2} e^{\int 2\pi B t} \frac{X(t)}{2} e^{-\int 2\pi B t}$

Possiamo valutore le sue trasformatio.

 $W(t) = \frac{X(f-B)}{2} + \frac{X(f+B)}{2}$

All inscite del filtro avenuo

 $Y(f) = W(f)H(f) = \frac{X(f-B)}{2}H(f) + \frac{X(f+B)}{2}H(f)$

Caso a)

 $V(f) = X(f) + X(f) + X(f+B) + X(f+B)$

A.A. 2001-2002

y (+) = Kcos (2 7 8+)

Pero b)
$$\chi(+) \cos(\ell\pi f_0 +) \iff \frac{\chi(f-f_0)}{2} + \frac{\chi(f+f_0)}{2}$$
 $\psi(\xi)$
 $\psi(\xi) = \chi(\xi)$
 $\psi(\xi) = \chi(\xi)$
 $\psi(\xi) = \chi(\xi)$

12 Febbraio 2002

Esercizio 1

Il segnale periodico di periodo 3T riportato in figura è posto in ingresso al filtro con risposta in frequenza H(f) = rect(f/2B), con B = 1/(4T).

Determinare il rapporto fra la potenza in uscita e la potenza in ingresso al sistema.

Esercizio 2

Stabilire se il sistema con ingresso x(t) e uscita y(t) è lineare, tempo invariante e causale (in questo caso con t>0).

$$y(t) = \int_{0}^{t} x(\alpha) d\alpha$$

Esercizio 3

Il segnale

$$s(t) = sinc^2(Bt)\cos(2\pi Bt)$$

viene campionato con campionamento istantaneo ad una frequenza f_s doppia della frequenza di Nyquist.

Disegnare lo spettro del segnale campionato.

ESERCIZIO1

Le fot eura in ingresso si calcola attraverso la definizione di Potenza di un seguale periodico di periodo To

Mel mostro coso To = 3T, fuindi

$$P = \frac{1}{3T} \int_{-T}^{2T} |x(+)|^{2} dt = \frac{1}{3T} \int_{3T}^{2T} |x(+)|^{2} dt =$$

$$= \frac{1}{3T} 2 \int_{3T}^{T} \frac{t^{2}}{T^{2}} dt = \frac{2}{3T} \int_{3T^{2}}^{2T} \int_{0}^{T} =$$

$$= \frac{2}{9T} \frac{T^{3}}{T^{2}} = \frac{2}{9}$$

Il reguele, in fuanto periodico, è reileppablile ni derie di Fourier $\times (+) = \sum_{t=0}^{+\infty} \times_{t} e^{\int_{0}^{2\pi} \frac{dt}{3T}} t$

$$\frac{E_{SERCIZIO2}}{y(+) = \int_{0}^{t} x(\alpha) d\alpha}$$

Lineare: la relazione ingresso/uscita è di tipo integrale, che è un operatore lineare, puindi il sistema è lineare

TEMPO-INVARIANTE: delle def si he che se y (+) = \(\times \times (a) d \)
il sisteme è tempo mivoriante quando

Mel nost w coro: $y(t-t_0) = T[x(t-t_0)]$ $y(t-t_0) = \int_{-\infty}^{t} x(x) dx \qquad T[x(t-t_0)] = \int_{-\infty}^{t} x(x-t_0) dx$ poniano $x-t_0=\beta$ nella 2ª relatione $\Rightarrow T[x(t-t_0)] = \int_{-\infty}^{t-t_0} x(\beta) d\beta$ $= \sum_{t=0}^{t} \text{ evident } e \text{ the ile due expression} \text{ tono diverse}$

CAUSALE: Il risteme è causale, in finanto, per t > 0 l'urite objende solo dagli ingressi agli istanti precedenti

Esercizio3

Luindi

$$S(\beta) = \frac{1}{2B} tri(\frac{\beta \cdot \beta}{B}) + \frac{1}{2B} tri(\frac{\beta + \beta}{B})$$

Le frequence d'ampionamento minima, per il reguale s(t), evvero le frequence di Nyquist, è $f_N = 2 \times 2B = 4B$: $f_S = 2f_N \implies f_S = 8B$ è le frequence di comp. reelte

16 Aprile 2002

Esercizio 1

Calcolare la trasformata di Fourier del segnale

$$s(t) = \sum_{n=0}^{4} \left(\frac{1}{2}\right)^n rect \left[\frac{t-2n}{2}\right]$$

In particolare, si calcolino modulo e fase di tale trasformata per f=1/2.

Esercizio 2

Trovare il segnale inviluppo complesso relativo al segnale passa-banda

$$s(t) = sinc^{2}(20 t) cos[400 \pi t]$$

Indicare la procedura di campionamento per una corretta ricostruzione.

Esercizio 3

Calcolare la potenza media del segnale

$$s(t) = 3\cos(8\pi t) - 4\cos[4\pi (t-3)]$$

Facoltativo: Se il segnale è posto in ingresso ad un sistema con risposta impulsiva $h(t) = 2 \operatorname{sinc}^2(t) \cos(8 \pi t)$, determinarne l'uscita.

$$S(+) = \sum_{M=0}^{l_1} \left(\frac{1}{2}\right)^M \operatorname{red}\left(\frac{1}{2}\right)^M$$

$$S(f) = {}^{9}\int_{1}^{4} S(+) \int_{1}^{4} = \sum_{n=0}^{4} \left(\frac{1}{2}\right)^{n} {}^{9}\int_{1}^{4} red\left(\frac{t-2n}{2}\right) \int_{1}^{4} dt$$

$$= \sum_{n=0}^{4} \left(\frac{1}{2}\right)^{n} 2 \operatorname{mic}\left(2f\right) e^{-j2\pi} f^{2n}$$

$$S(f)|_{\rho=\frac{1}{2}}=0$$
 \Rightarrow fore nulle e modulo mullo

Esercitio 2

S(+)= mic (20 t) cos[21 (200) t]

Le frequence fortante fo = 200

Confrontando l'expressione di s (+) con puelle canonico di un sequale parabande expresso in termini di mivilippo conflesso: g (+) = g_s (+) cos (217 fot) - g_q (+) seu(217 fot), si ha

5(+)= suc (20t)

seguele reele, coincident e con la component e ni here

Poiche l'inviluppe complexo è costituite de un requele recle, il campionamento potra essere effettuato prelevando una sequenza di campioni de $S_s(+) \equiv \vec{S}(+)$ con frequenza $f_S \ge \mathcal{E}\left(\frac{B}{2}\right)$, dove B è le brando del signale S(+)

 $3(1) = mic^{2}(20t) \longrightarrow 3(1) = \frac{1}{20} ti(\frac{1}{20})$

Quindi P. = 20.2=40

21

0)
$$5(+)=3\omega s \left[2\pi 4t\right] - 4\omega s \left[2\pi 2t - 12\pi\right] =$$

$$= 3\frac{e^{j2\pi 4t}}{2} + 3\frac{e^{-j2\pi 4t}}{2} - 4\frac{e^{j2\pi 2t - 12\pi}}{2} - 4\frac{e^{j(2\pi 2t - 12\pi)}}{2} =$$

$$= \frac{3}{2}e^{j2\pi 4t} + \frac{3}{2}e^{-j2\pi 4t} - 2e^{j(2\pi 2t - 12\pi)} - 2e^{j(2\pi 2t - 12\pi)}$$

$$P = \sum_{M=-\infty}^{+\infty} |S_M|^2 = \left| \frac{3}{2} \right|^2 + \left| \frac{3}{2} \right|^2 + \left| \frac{2}{2} \right|^2 + \left| \frac{2}{2} \right|^2 = \frac{9}{2} + 8 = \frac{95}{2}$$

17 Luglio 2002

Esercizio 1

Determinare lo sviluppo in serie di Fourier del segnale di figura e calcolare la potenza media associata alla componente continua.

Esercizio 2

La trasformata di Fourier del segnale g(t) = exp[-t] u(t) è, come noto, $G(f) = \frac{1}{1+j2\pi f}$

Determinare la trasformata di Fourier del segnale: $h(t) = \frac{1}{1 - j6\pi t}$ giustificando la risposta.

Esercizio 3

Disegnare, nel dominio del tempo, l'uscita del sistema con risposta impulsiva h(t) = rect(t/2), quando in ingresso è posto il segnale x(t) riportato in figura.

$$X_{T}(+)$$
 è un reguele periodico di periodo $T_{0}=4$

Quindi $X_{T}(+)=\sum_{i=1}^{\infty}X_{i}$ e $X_{i}=\sum_{i=1}^{\infty}X_{i}$ e $X_{i}=\sum_{i=1}^{\infty}X_{i}$

$$X_{u} = \frac{1}{70} \left[x(\beta) \right]_{\xi = \frac{u}{70}}$$
 dove $X(\xi) = \frac{3}{7} \left\{ x_{\tau}(\xi) \right\}$

Luindi X(P) è le trosformate di Fourier del reguelo sul periodo fondamentale:

$$X(t) = \operatorname{rect}\left(\frac{t-1}{2}\right) + \operatorname{drect}\left(\frac{t-1}{2}\right)$$

$$X(t) = \operatorname{drinc}(\operatorname{df}) e^{-\int e^{2\pi} t} + \operatorname{drinc}(t) e^{-\int \pi t}$$

$$X_{n} = \frac{1}{T_{0}} \left[\times (2) \right]_{P = \frac{n}{T_{0}}} = \frac{1}{4} \left[-2 \operatorname{mic} \left(\frac{n}{2} \right) e^{-j \frac{n}{2}} + 2 \operatorname{mic} \left(\frac{n}{4} \right) e^{-j \frac{n}{2}} \right]$$

$$P_{x_0} = |X_0|^2 = \left[\frac{1}{4}(2+2)\right]^2 = 1$$

$$G(3t) = \frac{1}{1+j2\pi 31}$$
 $\stackrel{\text{prop 4}}{\underset{Q=3}{\longleftarrow}} \frac{1}{|Q|} \left(-\frac{1}{Q} \right) = \frac{1}{3} e^{\frac{1}{3}} u \left(-\frac{1}{3} \right)$

ESERCIZIO3

$$y(t) = A$$
 rect $\left(\frac{t-2}{2}\right) + 2A$ tri $\left(\frac{t}{2}\right) + A$ rect $\left(\frac{t+2}{2}\right)$

12 Settembre 2002

Esercizio 1

Sia dato il segnale ad energia finita riportato in figura. Determinarne la trasformata di Fourier e disegnare lo spettro delle fasi.

Esercizio 2

Stabilire se la funzione della frequenza $S_x(f) = T^2 sinc^2(Tf)rect\left(\frac{Tf}{2}\right)$ può rappresentare la densità spettrale di energia di un segnale reale x(t).

Il segnale x(t) rispetta le condizioni del teorema del campionamento?

Esercizio 3

Determinare la convoluzione grafica fra il segnale x(t) riportato in figura e la funzione gradino unitario u(t)

A.A. 2001-2002 25

$$ESERCIZIO 1$$

$$S(+) = +\pi i \left(\frac{t - T/2}{I/2} \right) - +\pi i \left(\frac{t + T/2}{I/2} \right)$$

$$S(f) = \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} \right) e^{-j2\pi f T/2} - \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) e^{j2\pi f T/2} =$$

$$= \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \left[e^{-j2\pi f T/2} - e^{j2\pi f T/2} \right] =$$

$$= -e^{j} \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \left[e^{j\pi f T} - e^{j\pi f T} \right] =$$

$$= -e^{j} \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \operatorname{seu} \left(\pi f T \right)$$

$$= -e^{j} \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \operatorname{seu} \left(\pi f T \right)$$

$$= -e^{j} \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \operatorname{seu} \left(\pi f T \right)$$

$$= -e^{j} \frac{T}{2} \operatorname{mic}^{2} \left(\frac{T}{2} f \right) \operatorname{seu} \left(\pi f T \right)$$

ESERCIZIO 2

- a) Le funcione $S_{\times}(f)$ in functo reale e pari reffresente la elevrite spettrale di energie del reguale reale $\times(+)$. Infatti, delle teorie $S_{\times}(f) = |X(f)|^2 = |X(f)|^2 = |X(f)|^2 = |X(f)|^2$
- b) Il reguele x(t) è reale, Fourier trespormabile e a bande limitate, foiche |X(t)| è nullo per $|f| > \frac{1}{T}$. Per effettuere un campionamento privo di plianing occorre che $f_s \ge \frac{2}{T}$

ESERCIZIO3

Il segual x(+) è composto da due seguali', x, (+) e $x_1(+)$, dove x, (+) = 5(++2)

Pertanto x(+) = S(+, 2) + x = (+)

Porniamo procedere al colcolo repersto della comoluzioni:

Questo per le limerité dell'oferatore convolurione Calcolianno fraficamente le reconde expressione: ribeltions u(+) intorno all'asse d.

