Exemples du cours du chapitre calcul intégral Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

19 mars 2020

Table des matières

- Exemple 1
- Exemple 2
- Exemple 3
- Exemple 4
- Exemple 5
- Exemple 5

Exemple 1 Partie 1

Soit f la fonction définie sur [0;2] par f(x)=2-x. La surface dont l'aire est égale à intégrale $I=\int_1^2 f(x) \ \mathrm{d}x$ est le triangle BCD rectangle isocèle en C dont l'aire est $\frac{1}{2}\times 1\times 1=\frac{1}{2}$.

Exemple 1 Partie 2

Soit f la fonction définie sur [0;2] par f(x) = 2-x. La surface dont l'aire est égale à intégrale $I = \int_0^1 f(x) \, dx$ est le trapèze OABC rectangle isocèle en O dont l'aire est $\frac{1}{2} \times (OA + BC) \times OC = \frac{3}{2}$.

Exemple 2 Question 1

Soit M(t) un point mobile sur un axe tel que à chaque instant $t \in [0; +\infty[$ (en secondes) on connaît sa vitesse instantanée v(t) en mètres par seconde.

A l'instant t = 0, le point mobile est à l'origine de l'axe et pour tout $t \in [0; +\infty[$, on a $v(t) = 3 \text{ m.s}^{-1}$.

• Question 1 La fonction v est constante donc dérivable donc continue sur [0; +∞[. ∫₀⁴ v(t)dt est l'aire du rectangle EFGH c'est-à-dire 4 × 3 = 12. On peut l'interpréter comme la distance parcourue par le mobile en 3 secondes. Notons que la dimension de l'intégrale est celle de v(t)dt : vitesse × temps = distance.

Exemple 2 Question 2

• Question 2 $\int_2^5 v(t) dt$ est égale à $(5-2) \times 3 = 9$. C'est la distance parcourue par le mobile entre les instants t=2 et t=5 à une vitesse de 3 m.s $^{-1}$. $\frac{1}{5-2} \int_2^5 v(t) dt$ est égale à $\frac{\text{distance}}{\text{temps}} = \frac{9}{3}$, c'est la vitesse moyenne du mobile entre les instants t=2 et t=5. Comme sa vitesse est constante, c'est sa vitesse instantanée à tout instant. On a un exemple, d'utilisation de l'intégrale dans un calcul de valeur moyenne. Notons que $\frac{1}{5-2} \int_2^5 v(t) dt$ a la même dimension que v(t), c'est une vitesse.

Exemple 2 Question 3

• Question 3 $g(t) = \int_0^t v(u) du$ est l'aire du rectangle *EFIJ* c'est-à-dire $t \times 3 = 3t$.

On peut l'interpréter comme la distance parcourue par le mobile en *t*3 secondes.

g est une fonction linéaire donc elle est dérivable sur $[0; +\infty[$ et g'(t) = 3. On remarque que g'(t) = v(t). On peut l'expliquer en prenant la limite du taux de variation $\frac{g(t+h)-g(t)}{h} = \frac{3(t+h)-3t}{h} = 3 \text{ quand } h \text{ tend vers } 0.$ $g(t) = \int_0^t v(u) \, \mathrm{d} u$ est une primitive de v.

Exemple 3

Voir Notebook et Corrigé (suivez les liens).

Exemple 4 Question 1

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• f est dérivable sur $[0; +\infty[$ et $f'(t) = \frac{1}{\sqrt{2\pi}} \times (-t) \mathrm{e}^{-\frac{t'}{2}}$. Pour tout réel t > 0, on a f'(t) > 0 et f'(0) = 0. On en déduit que f est strictement décroissante sur $]0; +\infty[$. Puisque $\lim_{x \to -\infty} \mathrm{e}^x = 0$, on a par composition $\lim_{t \to +\infty} \mathrm{e}^{-\frac{t^2}{2}} = 0$.

Exemple 4 Questions 2 et 3

f est dérivable donc continue sur $[0; +\infty[$. De plus, pour tout $t \ge 0$, on a $f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ donc $f(t) \ge 0$. On peut appliquer le théorème fondamental, qui nous permet d'affirmer que $F: x \mapsto \int_0^x f(t) dt$ est définie et dérivable sur $[0; +\infty[$ et que pour tout réel $x \ge 0$, F'(x) = f(x). Notez qu'on utilise plutôt x pour F et t pour F' = f mais qu'on pourrait écrire : pour tout réel $t \ge 0$, F'(t) = f(t). Puisque f est strictement positive sur $[0; +\infty[$ et ne s'annule qu'en 0, on en déduit que F est strictement croissante sur $[0; +\infty[$. Page suivante un graphique qui permet de comprendre pourquoi F(x)aire sous la courbe de f entre 0 et x est croissante.

Exemple 4 Questions 2 et 3

Exemple 5 Question 1

Soient les fonctions f et F continues sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ définies par :

$$F(x) = \tan x - x$$
 et $f(x) = \tan^2 x$

F est dérivable sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et pour tout réel $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, on a :

$$F'(x) = \frac{\cos(x) \times \cos(x) - \sin(x) \times (-\sin(x))}{\cos^2(x)} - 1 = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} - 1$$

$$F'x() = \frac{\sin^2(x)}{\cos^2(x)} = \tan^2 x$$

F est donc une primitive de f.

Exemple 5 Question 2 a)

Soient g et G les fonctions définies sur]0; $+\infty[$ par :

$$g(x) = \frac{1 + \ln x}{x}$$
 et $G(x) = \frac{1}{2} (\ln x)^2 + \ln x$

G est dérivable sur]0; $+\infty$ [, et pour tout réel x > 0, on a :

$$G'(x) = \frac{1}{2} \times \frac{1}{x} \times 2\ln(x) + \frac{1}{x} = \frac{1 + \ln x}{x}$$

 $G'(x) = g(x)$

G et donc une primitive de g.

Notons que M définie par M(x) = G(x) + 1, a même dérivée g que G donc c'est une aussi une primitive de g. On peut remplacer 1 par une constante k, toute fonction de la forme G(x) + k est une primitive de g.

Exemple 5 Question 2 b)

$$G(e) = \frac{1}{2} (\ln e)^2 + \ln e = \frac{3}{2}.$$

La fonction H définie par $H(x) = G(x) - G(e) = G(x) - \frac{3}{2}$, s'annule en e et a pour dérivée H' = G' = g donc c'est une primitive de g qui s'annule en e.

Supposons qu'il existe une autre primitive N de g qui s'annule en e, on a (H-N)' = H'-N' = g-g = 0 donc H-N est constante. De plus, (H-N)(e) = 0 donc H-N=0 donc H=N. H est donc l'unique primitive de g qui s'annule en e.

Exemple 6 Question 1) Partie 1

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• f(x) = 4 admet pour primitives les fonctions de la forme :

$$F(x) = 4x + k$$
 avec k constante réelle

• f(x) = 0 admet pour primitives les fonctions de la forme :

$$F(x) = k$$
 avec k constante réelle

• $f(x) = \frac{1}{\sqrt{x}}$ admet pour primitives les fonctions de la forme :

$$F(x) = 2\sqrt{x} + k$$
 avec k constante réelle

• $f(x) = 3 + x + x^4$ admet pour primitives les fonctions de la forme :

$$F(x) = 3x + \frac{1}{2}x^2 + \frac{1}{5}x^5 + k \text{ avec } k \text{ constante r\'eelle}$$

Exemple 6 Question 1) Partie 2

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• $f(x) = \sin(2x)$ admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{2}\cos(2x) + k$$
 avec k constante réelle

• $f(x) = \cos(3x)$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{3}\sin(3x) + k \text{ avec } k \text{ constante réelle}$$

• $f(x) = \frac{1}{x^4}$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{-4+1}x^{-4+1} + k \text{ avec } k \text{ constante réelle}$$

Exemple 6 Question 1) Partie 3

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• $f(x) = e^{-2x}$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{-2}e^{-2x} + k \text{ avec } k \text{ constante réelle}$$

b $f(x) = \frac{-1}{x}$ admet pour primitives les fonctions de la forme :

$$F(x) = -\ln(|x|) + k = -\ln(-x) + k$$
 avec $-x > 0$ et k constante réelle

Exemple 6 Question 2)

Soit la fonction définie sur]0; $+\infty$ [par $F: x \mapsto x \ln x - x + 1$ Pour tout réel x > 0, on a,en appliquant la formule de dérivation d'un produit pour $x \ln(x)$:

$$F'(x) = x \times \frac{1}{x} + 1 \times \ln(x) - 1 = \ln(x)$$

F est donc une primitive de la fonction In. La primitive G de In qui s'annule en \sqrt{e} . est donc de la forme G(x) = F(x) + k. Il suffit de déterminer K en évaluant G en \sqrt{e} :

$$G(\sqrt{e}) = F(\sqrt{e}) + k = \frac{1}{2}\sqrt{e} - \sqrt{e} + 1 + k = 0 \Leftrightarrow k = \frac{1}{2}\sqrt{e} - 1$$

La primitive de ln qui s'annule en \sqrt{e} est donc $G(x) = x \ln x - x + \frac{1}{2} \sqrt{e}$.

Exemple 6 Question 2)

Soit la fonction définie sur]0; $+\infty$ [par $F: x \mapsto x \ln x - x + 1$ Pour tout réel x > 0, on a,en appliquant la formule de dérivation d'un produit pour $x \ln(x)$:

$$F'(x) = x \times \frac{1}{x} + 1 \times \ln(x) - 1 = \ln(x)$$

F est donc une primitive de la fonction In. La primitive G de In qui s'annule en \sqrt{e} . est donc de la forme G(x) = F(x) + k. Il suffit de déterminer K en évaluant G en \sqrt{e} :

$$G(\sqrt{e}) = F(\sqrt{e}) + k = \frac{1}{2}\sqrt{e} - \sqrt{e} + 1 + k = 0 \Leftrightarrow k = \frac{1}{2}\sqrt{e} - 1$$

La primitive de ln qui s'annule en \sqrt{e} est donc $G(x) = x \ln x - x + \frac{1}{2} \sqrt{e}$.

Exemple 7 Partie 1

• $f(x) = x^2 - 2x - 1 - \frac{1}{x^2} - \frac{1}{x} + e^x$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{x^3}{3} - x^2 - x + \frac{1}{x} - \ln(|x|) + e^x + k \text{ avec } k \text{ constante réelle}$$

② $f(x) = \cos(4x-1) - 2\sin(2x)$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{4}\sin(4x - 1) + 2 \times \frac{1}{2}\cos(2x) + k \text{ avec } k \text{ constante r\'eelle}$$

③ $f(x) = \frac{e^{731x}}{(e^{731x}+1)^2}$ est de la forme $\frac{1}{731} \frac{u'}{u^2}$ avec $u(x) = e^{731x} + 1$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{u(x)} + k = -\frac{1}{731} \frac{1}{e^{731x} + 1} + k = \text{ avec } k \text{ constante réelle}$$

Exemple 7 Partie 2

1 $f(x) = \frac{e^{-x}}{e^{-x}+1}$ est de la forme $-\frac{u'}{u}$ avec $u(x) = e^{-x}+1$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\ln(|u(x)|) + k = -\ln(|e^{-x}+1|) + k = -\ln(e^{-x}+1) + k$$
, $k \in \mathbb{R}$

② $f(x) = \frac{x}{e^{x^2}} = xe^{-x^2}$ est de la forme $-\frac{1}{2}u'e^u$ avec $u(x) = -x^2$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{2}e^{u(x)} + k = -\frac{1}{2}e^{-x^2} + k$$
, $k \in \mathbb{R}$

Exemple 7 Partie 3

• $f(x) = \frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln(x)}$ est de la forme $\frac{u'}{u}$ avec $u(x) = \ln(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = \ln(|u(x)|) + k = \ln(|\ln(x)|) + k , k \in \mathbb{R}$$

Sur]0; 1[, on a $\ln(x) < 0$ donc $F(x) = \ln(-\ln(x)) + k$. Sur]1; $+\infty$ [, on a $\ln(x) > 0$ donc $F(x) = \ln(\ln(x)) + k$.

② $f(x) = \cos(x)e^{\sin(x)}$ est de la forme $u'e^u$ avec $u(x) = \sin(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = e^{u(x)} + k = e^{\sin(x)} + k , k \in \mathbb{R}$$

§ $f(x) = \frac{1}{x} \times (\ln x)^2$ est de la forme $u'u^2$ avec $u(x) = \ln(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{3}u^{3}(x) + k = \frac{1}{3}(\ln(x))^{3} + k , k \in \mathbb{R}$$

