

SF1625 Envariabelanalys Tentamen Fredagen den 24 oktober 2014

Skrivtid: 14:00-19:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen utgörs av de första tre uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

De tre följande uppgifterna utgör del B och de sista tre uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

2

DEL A

- 1. Låt $f(x) = e^{-x} \sin x$.
 - A. Bestäm alla kritiska (stationära) punkter till funktionen f.
 - B. Avgör vilka av de kritiska punkterna som är lokala maxpunkter.
- 2. Beräkna nedanstående integraler och förenkla svaren så långt som möjligt.

A.
$$\int_0^1 \frac{x}{1+x^4} dx$$
 (använd substitutionen $x^2 = t$)

- B. $\int_0^{\pi} x \sin x \, dx$ (använd partiell integration)
- 3. När en kondensator laddas ur över ett motstånd gäller att spänningen \boldsymbol{u} uppfyller differentialekvationen

$$\frac{du}{dt} + \frac{u}{RC} = 0$$

där R är motståndets resistans, C är kondensatorns kapacitans och u(t) alltså spänningen vid tiden t.

- A. Lös differentialekvationen.
- B. Beräkna hur lång tid det tar för spänningen att halveras (förutsatt att den är positiv).

3

DEL B

- 4. Betrakta funktionerna $F(x) = \int_0^x \frac{e^t}{t+2} dt$ och $G(x) = \int_0^{x^2} \frac{e^t}{t+2} dt$.
 - A. Beräkna F'(x) och G'(x) med hjälp av huvudsatsen och kedjeregeln.
 - B. Beräkna F'(1) och G'(1).
- 5. Använd Maclaurinpolynomet (alltså Taylorpolynomet kring origo) av grad 2 till funktionen $f(x) = e^{-x^2}$ för att approximativt beräkna integralen

$$\int_{0}^{1/2} e^{-x^2} dx.$$

Avgör sedan också om ditt approximativa värde är mindre än $1/100~{\rm från}$ integralens sanna värde.

6. Visa olikheten $\ln(\cos x) + x \tan x \ge x^2/2$, då $-\pi/2 < x < \pi/2$, till exempel genom att studera funktionen f given av $f(x) = \ln(\cos x) + x \tan x - x^2/2$.

DEL C

- 7. A. Definiera vad som menas med derivatan av en funktion f i en punkt a.
 - B. Låt

$$f(x) = \begin{cases} \frac{\ln(1+x) - x}{x^2}, & x \neq 0 \\ -1/2, & x = 0. \end{cases}$$

Använd derivatans definition för att beräkna f'(0).

- 8. Beräkna arean av den rätvinkliga triangel som begränsas av koordinataxlarna och tangentlinjen i punkten (2,1) till kurvan med ekvation $(x^2+y^2)^2-7x^2+3y^2=0$.
- 9. Låt $f(x) = x^3 + x + 1$.
 - A. Visa att funktionen f är inverterbar.
 - B. Beräkna integralen $\int_{1}^{3} g(t) dt$ där g är inversen till f.