CS201

MATHEMATICS FOR COMPUTER SCIENCE I

Lecture 9

BINOMIAL THEOREM

BINOMIAL THEOREM

$$(1+x)^m = \sum_{i=0}^m \binom{m}{i} x^i.$$

Consequences:

$$2^{m} = \sum_{i=0}^{m} {m \choose i}$$

$$0 = \sum_{i=0}^{m} (-1)^{i} {m \choose i}$$

$${m \choose k} = {m-1 \choose k} + {m-1 \choose k-1}$$

3/14

for $1 \le k \le m$.

BINOMIAL THEOREM

PROOF.

- Multiply out the m operands and collect terms of the kind x^i .
- Since the product is a degree m polynomial in x, there will be exactly m+1 terms.
- For the term x^i , consider a sequence of m slots and fill i of them with x and rest with 1.
- Number of ways of choosing *i* slots for *x*'s is exactly $\binom{m}{i}$.
- Hence,

$$(1+x)^m = \sum_{i=0}^m \binom{m}{i} x^i.$$

Counting size of union set

- Suppose A_1, A_2, \ldots, A_n are finite sets.
- We wish to count the size of the set $A_1 \cup A_2 \cup \cdots \cup A_n$.
- $|A_1| + |A_2| + \cdots + |A_n|$ is clearly an upper bound on the size.
- However, it may not be equal since sets may intersect.
- $|A_i \cap A_i|$ is the common elements between A_i and A_i .
- To avoid overcounting common elements, we can subtract $\sum_{1 \le i \le n} |A_i \cap A_j| \text{ from } \sum_{1 \le i \le n} |A_i|.$
- However, this may undercount since elements common to three sets will not be counted.

INCLUSION-EXCLUSION PRINCIPLE

THEOREM

For finite sets A_1, A_2, \ldots, A_n :

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j \le k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|.$$

INCLUSION-EXCLUSION PRINCIPLE

PROOF.

- Consider an element a that is contained in exactly $m A_i$'s.
- It is counted $\binom{m}{1}$ times in $\sum_{1 \leq i \leq n} |A_i|$, $\binom{m}{2}$ times in $\sum_{1 \leq i < j \leq n} |A_i \cap A_j|$, $\binom{m}{3}$ times in $\sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k|$ etc.
- Hence its contribution to the sum is:

$$\binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m-1} \binom{m}{m} = \binom{m}{0} = 1,$$

by Binomial Theorem.

COUNTING ONTO MAPPINGS

- How many onto mappings exist from finite set A to finite set B?
 - ▶ If |B| > |A| then no onto mapping exists.
 - ▶ Let $|B| = m \le n = |A|$.
 - ▶ For $b \in B$, define F_b to be the set of mappings from A to B that map A to $B \setminus \{b\}$.
 - ▶ Then, the number of onto mappings equals $m^n |\cup_{b \in B} F_b|$.
 - ▶ For any subset $C \subseteq B$, $\bigcap_{b \in C} F_b$ contains all mappings that map A to $B \setminus C$.
 - Hence,

$$|\cap_{b\in C} F_b| = (m-|C|)^n.$$

COUNTING ONTO MAPPINGS

• By Inclusion-Exclusion Principle:

$$| \cup_{b \in B} F_b | = \sum_{b \in B} |F_b| - \sum_{b,c \in B, b \neq c} |F_b \cap F_c| + \cdots + (-1)^{m-1} | \cap_{b \in B} F_b |$$

$$= \binom{m}{1} (m-1)^n - \binom{m}{2} (m-2)^n + \cdots + (-1)^{m-1} \binom{m}{m} (m-m)^n$$

$$= \sum_{i=1}^m (-1)^{i-1} \binom{m}{i} (m-i)^n$$

COUNTING ONTO MAPPINGS

• Therefore, number of onto mappings are:

$$m^{n} - |\cup_{b \in B} F_{b}| = m^{n} - \sum_{i=1}^{m} (-1)^{i-1} {m \choose i} (m-i)^{n}$$

$$= \sum_{i=0}^{m} (-1)^{i} {m \choose i} (m-i)^{m}.$$

DERANGEMENTS

- How many bijections are there from the set $[1, n] = \{1, 2, 3, ..., n\}$ to [1, n] such that $f(i) \neq i$ for every i?
- Such a mapping is called a derangement.
- Define F_i to be the set of bijections that map i to i.
- The number of derangements equals

$$n! - |\cup_{1 \leq i \leq n} F_i|$$
.

- For any subset $J \subseteq [1, n]$, $\bigcap_{i \in J} F_i$ is the set of bijections that map every $i \in J$ to itself.
- Hence,

$$|\cap_{i\in J} F_i| = (n-|J|)!.$$

DERANGEMENTS

• By Inclusion-Exclusion Principle,

$$| \cup_{1 \le i \le n} F_i | = \sum_{1 \le i \le n} |F_i| - \sum_{1 \le i < j \le n} |F_i \cap F_j| + \dots + (-1)^{n-1} | \cap_{1 \le i \le n} F_i |$$

$$= \binom{n}{1} (n-1)! - \binom{n}{2} (n-2)! + \dots + (-1)^{n-1} \binom{n}{n} (n-n)!$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} (n-i)!$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \frac{n!}{i!(n-i)!} (n-i)!$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \frac{n!}{i!}$$

DERANGEMENTS

• Therefore, total number of derangements are:

$$n! - |\cup_{1 \le i \le n} F_i| = n! - \sum_{i=1}^n (-1)^{i-1} \frac{n!}{i!}$$
$$= n! (\sum_{i=0}^n (-1)^i \frac{1}{i!}).$$

Manindra Agrawal CS201: Lecture 9 14/14