Proyecto: Uso del internet para solicitar/comprar bienes y servicios

Aprendizaje Automatizado, 2019-II

Erick García Ramírez

MCIC-IIMAS, UNAM

13 de Junio de 2019

Aspectos generales

- Un estudio sobre comercio en línea.
- Base de datos con perfiles socio-económicos de individuos e información sobre su actividad de compras en internet.
- Objetivos generales: conocer sobre el perfil de compradores y generar un modelo predictivo.

La base de datos

- Individual Company Sales: disponible en Kaggle.com
- 14 atributos de clientes, una bandera: 'Y' si compró el producto y 'N' en caso contrario
- 13558 renglones

(a) forward-selection y regresión logística

- Para cada $n \in \{1, ..., 14\}$, hallar (acumulativamente) los mejores n atributos
- Mejores n atributos si generan el modelo de regresión logística con máxima AUC
- No checa todos los posibles $2^{14} 1$ subconjuntos de atributos (pero la complejidad se mantiene baja)

(a) forward-selection y regresión logística

n	n atributos más importantes	AUC
1	customer_psy	0.626
2	age	0.640
3	education	0.651
4	online	0.659
5	gender	0.671
6	car_prob	0.675
7	mortgage	0.678
8	occupation	0.681
9	child	0.682
10	house_val	0.682
11	house_owner	0.682
12	fam_income	0.681
13	region	0.682
14	todas	0.684

Acumulando hacia abajo.

Mejores 8 atributos y modelo predictivo

customer_psy, age, education, online, gender, car_prob, mortgage, occupation

- El modelo de regresión logística correspondiente alcanza un score de 0.706 sobre el conjunto de prueba.
- La matriz de confusión sobre el conjunto de prueba es:

	Predicted0	Predicted1
True0	1830	1275
True1	801	3162

(b) ¿Se obtiene un mejor modelo usando PCA?

- PCA reduce la dimensionalidad encontrando las componentes (ejes) que observan la mayor varianza entre los atributos.
- Después de codificar todos los atributos categóricos, la matriz de atributos tiene dimensión 42 (columnas).
- Se prueban diferentes valores de la proporción A de varianza explicada. Se busca el modelo con mayor AUC para cada valor de A.

Modelo a partir de PCA

- Se toma mejor modelo con A = 0.90. Dimensión reducida de 42 a 21.
- El modelo de regresión logística alcanza un score de 0.701 sobre el conjunto de prueba
- la matriz de confusión sobre el conjunto de prueba es:

	Predicted0	Predicted1
True0	1833	1272
True1	843	3120

■ Es díficil determinar cuáles atributos reflejan las 21 dimensiones encontradas por PCA.

(c) Segmentación por clustering

- Dividir a los clientes en grupos de acuerdo a sus características
- Objetivo: distinguir clientes por medio de sus rasgos entre compradores y no compradores
- Se usan sólo los 8 atributos más importantes
- Aplicar KModes, una variante de KMeans para datos mixtos.

$${\tt kmodes} = {\tt KModes}({\tt n_clusters} = 2, {\tt init} = {\tt 'Huang'}, {\tt n_init} = 5)$$

- Se hallan dos clusters con centros con coordenadas mixtas.
- Es un poco complicado interpretar los clusters. El clustering no es suficientemente bueno para distiguir compradores.

Trabajo futuro

- Muchas variantes se pueden probar para mejorar el modelo predictivo
- Usar best-subset en vez de forward-selection
- Extraer más información del clustering, probar particiones en más clusterings considerando diferentes variables
- Probar otras codificaciones de los atributos categóricos