

1. 실습 전 꼭 알아둡시다!!!

아두이노 수업시 주의할 사항입니다.

극성이 있는 경우 플러스와 마이너스를 꼭 확인합니다!

- 국성: 플러스와 마이너스로 나뉘어져 있는 특성입니다.
- *LED*가 극성을 가지고 있는 대표적인 전자부품 으로써 극성을 가지고 있는 전자부품에 플러스와 마이너스를 잘못 연결하면 전자부품이 망가질 수 있습니다.
- 강의 시 극성이 있는 부품 소개할 경우 꼭 적어놓으시고 실습 시 참고 하시기 바랍니다.

발광 다이오드 (LED: Light Emitting Diode)

3

전원핀과 그라운드 핀을 곧바로 연결하면 고장납니다.

아두이노가 견딜 수 있는 최대 전류가 있어요!

Л

PC와 아두이노 연결 후 아두이노 IDE 환경 설정합니다. 1

■ 보드 설정

[도구]-[보드]-[Arduino/Genuino Uno]

아두이노 IDE에서 여러분이 사용하는 보드 종류를 설정

선택 메뉴를 누르면 아두이노 모델 목록이 표시

5

PC와 아두이노 연결 후 아두이노 IDE 환경 설정합니다. 2

■ 포트 설정

[도구]-[포트]-[COM?(Arduino Uno)]

아두이노 UNO를 연결한 상태에서 메뉴 선택하면 현재 PC에 연결된 장치들의 목록을 볼 수 있습니다.

이 중 뒤에 "(Arduino Uno)"가 붙은 것이 연결 되어 있는 아두이노 UNO를 뜻합니다.

선택이 안되는 음각상태이면, USB케이블을 연결해야 합니다.

레시피 정리

- 1) LED의 플러스(+)다리와 브레드 보드의 13번 핀을 점퍼 와이어를 이용하여 연결합니다.
- 2) LED의 마이너스(-) 다리와 저항을 연결합니다.
- 3) LED의 저항에 연결된 다른 한쪽을 GND에 연결합니다
- 4) 보여드리는 대로 프로그램을 코딩 해주세요.
- 5) 아두이노와 PC를 연결해 주세요.
- 6) 스케치 상단의 "확인" 버튼과 "업로드" 버튼을 누릅니다.
- 7) LED가 1초 간격으로 반짝거립니다.

11

11

예제2) 예제2를 변경해봅시다.

LED를 <mark>8번</mark> 포트에 연결한 후 LED가 1초 간격의 일정한 주기로 깜빡 거릴 수 있도록 아두이노를 연결하고, 코딩하여 결과를 확인해 보세요.

아두이노 구성품에 대해 알아봅시다

오늘 수업시간에 필요한 구성품을 더 자세히 알아보는 시간입니다.

15

LED

- 전류가 흐르면 빛이 나는 액추에이터
- LED 렌즈: 윗 부분에 둥근 모자처럼 생긴 부분, 여러가지 색이 있음
- 아두이노 보드와 사용하는 LED는 주로 렌즈의 지름이 5mm인 것을 많이 사용
- 극성이 있음. 긴쪽다리(+), 짧은쪽다리(-).
- 플러스와 마이너스를 잘못 연결하면 망가질 수 있음.

저항 읽는 법 4개 띠 저항 2%, 5%, 10% 560kΩ± 5% 색상 1번띠 3 번띠 오차 (등급코드) 1st band 2st band 승수 → 220 Ω 2 2 *10 노란색 10KΩ 파란색 보라색 회색 힌색 0.01 0.1%, 0.25%, 0.5%, 1% 5개 띠 저항 1st band 2st band 승수 237Ω± 1% → 10K Ω *1K 1 0 http://mon.futurepia.com/109

pinMode(13, OUTPUT);

pinMode

해당 핀의 용도(입력으로 사용할 것인지, 출력으로 사용할 것인지 설정)를 설정하는 명령어. (핀번호, INPUT^{입력} 또는 OUTPUT^{출력} 설정), 주로 LED나 피에조 스피터 ; 문장이 끝났음을 알리는 기호

pinMode(13, INPUT);

pinM ode

해당 핀의 용도를 설정하는 명령어. 매개변수는 (핀 번호, INPUT 또는 OUTPUT). 13번 핀을 통해서 입력된다는 설정

23

23

digitalWrite(13, HIGH);

digitalWrite

디지털 핀의 전압을 LOW 또는 HIGH로 설정하는 명령어

() 안에 매개변수로 2개가 필요하다. (핀번호, LOW 낮은값 또는 $HIGT^{높은값}$ 설정)

; 문장이 끝났음을 알리는 기호 0V 5\

delay(1000);

delay

특정 시간동안 아두이노를 멈추게 하는 명령어 숫자의 단위는 밀리초(ms : millisecond)이다.

1000 밀리초 = 1초

25

25

예제3) LED가 두 개라면 어떻게 할까요?

■13, 8핀 사용

변수를 사용하여 제어하기

00

앞의 실험과 마찬가지로 LED가 연결될 핀 번호를 직접 다 써줘도 좋지만,

두 개 이상의 핀에 LED를 연결하려면 <u>변수를 선언하면</u>좋아요!

변수란? 데이터를 저장하는 그릇

int a; a = 13;int b = 8; //정수형으로 a라는 변수를 선언하였습니다. //a라는 그릇에 13이라는 값을 넣었습니다. // b라는 정수를 담는 그릇에 8을 넣었습니다.

⊝

27

LED가 두 개인 경우 변수를 사용해서 코딩을 해

볼까요?

- ② 변수에 담긴 핀의 기능을 출력으로 설정
- ③ 디지털 핀의 전압을 HIGH 즉 5V로 설정
- ④ 1초 동안 유지
- ⑤ 디지털 핀의 전압을 LOW 즉 0V로 설정
- ⑥ 1초 동안 유지

LED가 두 개인 경우 변수를 사용해서 코딩을 해 볼까요?

- ① 두개의 LED 변수를 만들어서 사용 led1 변수에 13, led2 변수에 8 담기
- ② 변수에 담긴 핀의 기능을 출력으로 설정
- ③ 디지털 핀의 전압을 HIGH 즉 5V로 설정
- ④ 1초 동안 유지
- ⑤ 디지털 핀의 전압을 LOW 즉 0V로 설정
- ⑥ 1초 동안 유지

```
◎ Blink | 아두이노 1.6.6
파일 편집 스케치 둘 도움말
                                             Ø.
int led1=13;
int led2=8;
void setup() {
   pinMode(led1, OUTPUT);
   pinMode(led2, OUTPUT);
void loop() {
   digitalWrite(led1, HIGH);
   delay(1000);
   digitalWrite(led1, LOW);
   delay(1000);
   digitalWrite(led2, HIGH);
   delay(1000);
   digitalWrite(led2, LOW);
   delay(1000);
```

29

예제4) LED 3개 사용

LED를 8번, 9번, 10번 핀에 각각 연결해서 각각의 LED가 1초 단위로 차례대로 깜빡이도록 아두이노를 연결하고, 코딩 하여 결과를 확인해 보세요.

4. LED로 반짝이는 반딧불 만들기

점점 밝게 점점 어두워지게

33

예제5) 서서히 밝아지는 LED 조명 만들기

반딧불 LED 만들기

켜고 끄는 방식이 아니라, 점점 밝아지고 점점 어두워지는 방식으로 9번 핀의 LED 조명 밝기 를 조절할 수 있어요.

2) 아두이노 설정 절차입니다.

- ① 9번 핀의 전압이 0~255까지 0.01초씩 쉬어가며 변할 수 있도록 합니다. (점점 밝아집니다.)
- ② 9번 핀의 전압이 255~0까지 0.01초씩 쉬어가며 변할 수 있도록 합니다. (점점 어두워집니다.)
- ③ ①~②의 과정을 반복합니다.

```
⊝

ARDUINO
```

```
for(int i = 0; i <256; i++) {
}
```

for (변수; 조건; 변수변화) { }

- { } 안의 내용을 <u>조건을 만족할 때까지 반복</u>하는 명령어
- () 안에 매개변수로 3개가 필요하다. (변수 선언과 초기화; *조건*; 변수변화) 매개변수 구분은 ; 사용
- i 값이 0부터 256보다 작을때까지 1씩 증가하면서 실행문을 실행시킨다.

37

37

```
⊝⊕
```

```
for(int i = 2<u>5</u>5 ; i > -1 ; i--) {
실행문;
}
```

for

- { } 안의 내용을 <u>조건을 만족할 때까지 반복</u>하는 명령어
- () 안에 매개변수로 3개가 필요하다. (변수 선언과 초기화; *조건*; 변수변화) 매개변수 구분은 ; 사용

i 값은 255부터 -1보다 클때까지 1씩 감소하면서 실행문을 실행시킨다.


```
◎ Blink | 아두이노 1.6.6
                                                                               3) 코드 작성
                                              파일 편집 스케치 둘 도움말
                                              void setup() {
   아날로그는 setup() 설정 안해도 됨
                                              void loop() {
① 9번 핀의 전압이 0~255까지 0.01초씩 쉬어가며 변할
                                               for (int i = 0; i < 256; i++) {
    수 있도록 합니다.
                                                  analogWrite(9, i);
    (점점 밝아집니다.)
                                                  delay(10);
① 9번 핀의 전압이 255~0까지 0.01초씩 쉬어가며 변할
    수 있도록 합니다.
   (점점 어두워집니다.)
                                               for (int i = 255; i > -1; i--) {
① ①~②의 과정을 반복합니다.
                                                 analogWrite(9, i);
                                                 delay(10);
                                               }
```

4) 실행

- ① 아두이노의 USB를 PC와 연결하세요
- ② 프로그램을 확인하여 컴파일 하세요
- ③ 프로그램을 업로드 하여 코드를 아두이노 보드로 업로드 하세요.

4

41

예제5) 레시피 정리

- 1) 아두이노 보드 9번 핀에 점퍼 와이어를 연결한 뒤 브레드보드의 가로줄 부분에 꽂아줍니다.
- 2) 점퍼 와이어를 꽂은 같은 줄에 LED의 긴 다리를 꽂고, 짧은 다리는 옆줄에 꽂아눕니다.
- 3) 저항을 디귿(ㄷ)자로 구부린 뒤 한 쪽을 LED의 짧은 다리가 있는 줄에 꽂아눕니다.
- 4) 저항만 꽂혀있는 줄에 새로운 점퍼 와이어를 꽂고, 반대쪽을 아두이노 보드의 그라운드 핀에 연결해 둡니다.
- 5) 보여드리는 대로 프로그램을 코딩 해 주세요.
- 6) 아두이노와 PC를 연결해 주세요.
- 7) 스케치 상단의 "확인"버튼과 "업로드 " 버튼을 누릅니다.
- 8) LED가 점점 밝아집니다.

예제6) 서서히 밝아지는 LED 쌍으로 만들기

60

핀번호 9번, 10번에 연결된 LED가 0.5초 간격으로 점점 각각 점점 밝아졌다가 어두어졌다가를 반복할수 있도록 아두이노를 연결하고, 코딩하여 결과를 확인해 보세요.

43

43

예제7) 3개의 LED가 순차적으로 점점 밝아지고 어두워졌다가를 반복

핀 번호 9 \sim 11번의 LED가 파도타기처럼 조도가 점점 밝아졌다가 어두워졌다가를 반복할 수 있도록 아두이노를 연결하고, 코딩 하여 결과를 확인해 보세요.(0 \sim 255사이의 밝기를 가질 수 있도록 하고, 각 사이의 지연시간은 0.01초로 합니다.)

4.

