LUNDS TEKNISKA HÖGSKOLA MATEMATIK

Svar och anvisningar, 2012–01–12 Tredimensionell vektoranalys

a) Låt Y_3 vara sfären $x^2 + y^2 + z^2 = 4$ med normal riktad utåt. Ge Y samma orientering. Eftersom $\nabla \times \boldsymbol{u} = (0,0,0)$ i alla punkter $utom\ origo$, så är flödet genom Y_1 lika med flödet genom Y_3 . Y_3 har normalen $\boldsymbol{n} = \frac{\boldsymbol{r}}{|\boldsymbol{r}|}$. Alltså ges flödet av

$$\iint_{Y_3} \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3} \cdot \boldsymbol{n} \, dS = \iint_{Y_3} \frac{1}{4} \, dS = \frac{1}{4} \cdot 4\pi 2^2 = 4\pi.$$

Svar: 4π ut ur kroppen K.

- b) Detta kan beräknas med metoder från envariabelsanalys. Ytan är $4\pi(2+a)$.
- c) Y_2 är en del av Y_3 och har därför samma normal som Y_3 . På samma sätt som i a) får vi att flödet genom Y_2 ges av

$$\iint_{Y_2} \frac{1}{4} dS = \frac{1}{4} \cdot 4\pi (2+a) = \pi (2+a).$$

Eftersom

$$\iint_{Y} \mathbf{u} \cdot \mathbf{n} \, dS = \iint_{Y_1} \mathbf{u} \cdot \mathbf{n} \, dS + \iint_{Y_2} \mathbf{u} \cdot \mathbf{n} \, dS,$$

får vi att

$$\iint_{Y_1} \mathbf{u} \cdot \mathbf{n} \, dS = 4\pi - \pi(2+a) = \pi(2-a).$$

- 2. a) Se läroboken.
 - b) Låt Y vara cirkelskivan som innesluts av γ , med normalen $\boldsymbol{n} = \frac{1}{\sqrt{3}}(1, 1, 1)$. Då är

$$\int_{\gamma} \boldsymbol{u} \cdot d\boldsymbol{r} = \iint_{Y} \nabla \boldsymbol{u} \cdot \boldsymbol{n} \, dS = \iint_{Y} \frac{z}{\sqrt{3}} \, dS.$$

På grund av symmetri ser man att integralen försvinner om och endast om c=0.

c) På grund av symmetri är

$$\iint_{Y} \frac{z}{\sqrt{3}} dS = \iint_{Y} \frac{z}{\sqrt{3}} dS = \frac{z_m}{\sqrt{3}} \iint_{Y} dS,$$

där z_m är medelvärdet av z på Y. Men $z_m=c$ alltså är

$$\iint_{Y} \frac{z}{\sqrt{3}} \, dS = \frac{c\pi}{\sqrt{3}}.$$

Svar: $\frac{c\pi}{\sqrt{3}}$.