Algoritmi avansaţi

Seminar 6 (săpt. 11 și 12)

1. Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_0P_1P_2\dots P_{12}$, unde $P_0=(0,-2), P_1=(5,-6), P_2=(7,-4), P_3=(5,-2), P_4=(5,2), P_5=(7,4), P_6=(7,6)$ iar punctele P_7,\dots,P_{12} sunt respectiv simetricele punctelor P_6,\dots,P_1 față de axa Oy.

Soluție. În figură sunt reprezentate o posibilă triangulare și 3-colorarea asociată - există și alte variante corecte.

2. Fie poligonul $\mathcal{P} = (P_1P_2P_3P_4P_5P_6)$, unde $P_1 = (5,0)$, $P_2 = (3,2)$, $P_3 = (-1,2)$, $P_4 = (-3,0)$, $P_5 = (-1,-2)$, $P_6 = (3,-2)$. Arătaţi că Teorema Galeriei de Artă poate fi aplicată în două moduri diferite, aşa încât, aplicând metoda din teoremă şi mecanismul de 3-colorare, în prima variantă să fie suficientă o singură cameră, iar în cea de-a doua variantă să fie necesare şi suficiente două camere pentru supravegeherea unei galerii având forma poligonului \mathcal{P} .

Soluţie. Poligonul este un hexagon convex, deci pentru triangularea sa vor fi folosite $3 \cdot 6 - 6 - 3 = 9$ muchii. Aceasta înseamnă că vom trasa 3 diagonale. Sunt posibile două situații: (a) cele trei diagonale au un vârf comun; (b) nu există un vârf comun al celor trei diagonale (acest lucru se poate demonstra trasând una dintre diagonale și apoi raționând inductiv - este esențial că poligonul este un hexagon convex). În cazul (a) este suficientă o cameră, iar în cazul (b) 3-colorarea indică utilizarea a două camere.

3. Dați exemplu de poligon cu 6 vârfuri care să aibă atât vârfuri convexe, cât și concave și toate să fie principale.

Soluție. În figură este desenat un poligon cu 4 vârfuri convexe și 2 vârfuri concave. Pot fi luate în considerare și alte variante (de exemplu cu un singur vârf concav, cu doar 3 vârfuri convexe, etc.).

4. Fie $\mathcal{M} = \{A_i \mid i = 0, ..., 50\} \cup \{B_i \mid i = 0, ..., 40\} \cup \{C_i \mid i = 0, ..., 30\}, dată de punctele <math>A_i = (i + 10, 0), i = 0, 1, ..., 50, B_i = (0, i + 30), i = 0, 1, ..., 40, C_i = (-i, -i), i = 0, 1, ..., 30.$ Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .

Soluție. Trebuie stabilite mai întâi numărul de puncte n și numărul de puncte de pe frontiera acoperirii convexe k (atenție la numărarea punctelor, nu trebuie numărat un punct de două ori...). Pe o schiță se observă că sunt în total 123 de puncte (punctele din mulțimile $\{A_i \mid i=0,\ldots,50\}, \{B_i \mid i=0,\ldots,40\}$, respectiv $\{C_i \mid i=0,\ldots,30\}$ sunt diferite între ele). Obținem n=123, k=3, apoi aplicăm formulele pentru determinarea numărului de triunghiuri, respectiv a numărului de muchii.

$$n_t = 2n - k - 2 = 241,$$
 $n_m = 3n - k - 3 = 343.$

5. Dați un exemplu de mulțime din \mathbb{R}^2 care să admită o triangulare având 6 triunghiuri și 11 muchii.

Soluție. Fie n numărul de puncte ale unei astfel de mulțimi și k numărul de puncte de pe frontiera acoperirii convexe. Au loc relațiile

$$\begin{cases} 2n - k - 2 = 6 \\ 3n - k - 3 = 11 \end{cases}$$

Rezolvând acest sistem obţinem $n=6,\,k=4,\,$ deci o astfel de mulţime are 6 puncte, din care 4 sunt situate pe frontiera acoperirii convexe.

Un posibil exemplu: $\{(0,0),(5,0),(5,3),(0,3),(1,1),(3,1)\}.$

6. În \mathbb{R}^2 fie punctele $P_1 = (1,7)$, $P_2 = (5,7)$, $P_3 = (7,5)$, $P_4 = (1,3)$, $P_5 = (5,3)$, $P_6 = (\alpha - 1,5)$, cu $\alpha \in \mathbb{R}$. Discutați, în funcție de α , numărul de muchii ale unei triangulări asociate mulțimii $\{P_1, P_2, P_3, P_4, P_5, P_6\}$.

Soluție. Trebuie analizată configurația punctelor $P_1, P_2, \dots P_6$ și determinate numărul n de puncte și numărul k de puncte de pe frontiera acoperirii convexe.

Punctele $P_1P_2P_3P_4P_5$ determină un pentagon convex. Punctul P_6 descrie o dreaptă paralelă cu Ox care trece prin punctul P_3 .

- Pentru $\alpha 1 \le 1$, adică $\alpha \in (-\infty, 2]$ punctul P_6 este situat în exteriorul sau pe laturile pentagonului $P_1P_2P_3P_4P_5$. Avem n = 6, k = 6, deci 4 fețe și 9 muchii.
- Pentru $\alpha 1 > 1$ şi $\alpha 1 < 7$, adică $\alpha \in (2,8)$ punctul P_6 este situat în interiorul pentagonului $P_1P_2P_3P_4P_5$. Avem n = 6, k = 5, deci 5 fețe și 10 muchii.
- Pentru $\alpha-1=7$, adică $\alpha\in\{8\}$ punctul P_6 coincide cu P_3 . Avem n=5, k=5, deci 3 fețe și 7 muchii.
- Pentru $\alpha 1 > 7$, adică $\alpha \in (8, \infty)$ punctul P_6 este situat în exteriorul pentagonului $P_1 P_2 P_3 P_4 P_5$. Avem n = 6, k = 6, deci 4 fețe și 9 muchii.

7. Fie $\mathcal G$ un graf planar conex, v numărul de noduri, m numărul de muchii, f numărul de fețe. Se presupune că fiecare vârf are gradul ≥ 3 . Demonstrați inegalitățile

$$v \le \frac{2}{3}m, \qquad m \le 3v - 6$$

 $m \le 3f - 6, \quad f \le \frac{2}{3}m$
 $v \le 2f - 4, \quad f \le 2v - 4$

Dați exemplu de grafuri în care au loc egalități în relațiile de mai sus.