Introduction to Data Mining

Lab 4: More Classifiers

Name: Phạm Đức Đạt ID: ITITIU20184

4.1. Classification boundaries

In the fifth class, we are going to look at some machine learning methods used to classify datasets in Weka. (See the lecture of class 4 by Ian H. Witten, [1]¹). We are going to learn about linear regression, classification by regression, and support vector machines.

In this section, we are going to start by looking at classification boundaries for different machine learning methods. We are going to use Weka's **Boundary Visualizer**, and a 2-dimensional datasets. Follow the instructions in [1] to do some experiments, and then fill in the following table with the **classifier models**.

Datas	Rules → OneR	Laz	y → IBk
et		K=5	K=20
Iris.2D		IB1 instance-based classifier	=== Classifier model (full training set)
.arff	=== Classifier model (full training set)	using 5 nearest neighbour(s) for	===
	===	classification	
	petalwidth:		IB1 instance-based classifier
	< 0.8 -> Iris-setosa		using 20 nearest neighbour(s) for
	< 1.75 -> Iris-versicolor	Time taken to build model: 0	classification
	>= 1.75 -> Iris-virginica	seconds	
	(144/150 instances correct)	BoundaryVisualizer	
		Class for visualizing class probability estimates. More	
		Dataset Classifier	
		iris-weka filters unsuper Open File Choose IBIx k. SW 0A \vecka core neighboursearch Class Attribute Visualization Attributes	
		class (Nom) X petallength (Num)	
		Class color	
		Iris-setosa Iris-versicolor Iris-virginica	
		Add / remove data points	
		0000 000 000 € • • • • • • • • • • • • •	
		000 O O O O O O O O O O O O O O O O O O	
		Open a new window	
		O COCCOOO O Sampling control	
		2 Base for sampling (r)	
		3 Kernel bandwidth (k)	
		Plotting	
		OCC 0	

¹ http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

Try other learning methods, e.g NaiveBayes using SupervisedDiscretization, i.e. supervised discretization is to take the classes into account when discretizing numeric attributes into ranges... [Refer to Text [2]. Chapter 7 for discretization part]

Dataset	et Bayes > NaiveBayes		Trees > J48		
				minNumbObj = 5	minNumbObj = 10
Iris.2D.ar ff	=== Classifier Naive Bayes Cla Attribute ================= petallength mean std. dev. weight sum precision petalwidth mean std. dev. weight sum precision	Class	versicolor Iris-vir (0.33) 4.2452 0.4712 50 0.1405 1.3097 0.1915 50 0.1143	J48 pruned tree	J48 pruned tree petalwidth <= 0.6: Iris-setosa (50.0) petalwidth > 0.6 petalwidth <= 1.7: Iris-versicolor (54.0)
	Time taken to b	ouild model: 0 seconds			

4.2. Linear regression

In this section, we are going to deal with numeric classes using a classical statistical method.

Follow the lecture of <u>linear regression</u> in [1] to learn how to calculate weights of attributes from training data, and make predictions. [Refer to Text [2]. Chapter 4.6 for linear regression part]

Follow the instructions in [1] to examine the model of **linear regression** on the **cpu** dataset.

Write down the results in the following table:

Dataset	Correlation coefficient	Mean absolute error	Root mean squared error	Relative absolute error	Root relative squared error
Сри	0.9012	41.0886	69.556	42.6943 %	43.2421 %
Linear Regression Model	class =				
	0.049	1 * MYCT	+		
	0.015	2 * MMIN	+		
	0.005	6 * MMAX	+		
	0.629	8 * CACH	+		
	1.459	9 * CHMA	X +		
	-56.075	i			

Do again to examine M5P on the cpu dataset, and then write down the results in the following table:

Dataset	Correlation coefficient	Mean absolute error	Root mean squared error	Relative absolute error	Root relative squared error	
Сри	0.9274	29.8309	60.7112	30.9967	37.7434	
Classifier model	M5 pruned model tree	:				
	CHMIN >7.5					
	LM 1 (*	65/12.903%)		MMAX		
			<=28000	>28000	LM 5 (23/48.302%)	
		<=13240	>13240	LM 4 (11/24.185%)		
	<=81.5 LM 2 (6/18.551%)	>81.5 LN	3 (4/30.824%)			

```
Linear regression models:

Linear Regression Model

class =

0.0491 * MYCT +
0.0152 * MMIN +
0.0056 * MMAX +
0.6298 * CACH +
1.4599 * CHMAX +
-56.075
```

Is M5P non-linear regression? - - No, M5P is a tree model

4.3. Classification by regression

Follow the instructions in [1] to investigate two-class classification by regression, using the diabetes dataset.

We are going to convert the nominal class to the numeric class so that the linear regression model is applicable.

Write down the results in the following table:

Classifier model	Evaluation
Linear Regression Model	
class=tested_positive =	
0.0209 * preg +	
0.0057 * plas +	
-0.0024 * pres +	
0.0131 * mass +	
0.1403 * pedi +	
0.0028 * age +	
-0.8363	

Correlation coefficient	0.5322	
Mean absolute error	0.3366	
Root mean squared error	0.4036	
Relative absolute error	74.0119 %	
Root relative squared error	84.6013 %	
Total Number of Instances	768	

4.4. Support vector machines

Learn about logistic regression in [2]. Chapter 4.6

Follow the lecture of support vector machines (SVMs) in [1], ...

Support vector machines (SVMs, also **support vector networks** [1]) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples into one category or the other, making it a non-probabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall on.

Follow the instructions in [1] to examine **SMO** and **LibSVM**, and fill in the following table:

Dataset	SMO's classifier model and performance	LibSVM's classifier model and performance

diabetes	SMO		-	=== Classifier model (full training	set) ===	
	<pre>Kernel used: Linear Kernel: K(x,y) = <x,y> Classifier for classes: tested_negative, tested_positive BinarySMO Machine linear: showing attribute weights, not support vectors. 1.3614 * (normalized) preg + 4.8764 * (normalized) plas</x,y></pre>			LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) Time taken to build model: 0.14 seconds === Stratified cross-validation === ==== Summary ===		
	+ -0.8118 * (normalized) pres + -0.1158 * (normalized) skin + -0.1776 * (normalized) insu			Correctly Classified Instances	500	65.1042 %
	+ 3.0745 * (normalized) mass + 1.4242 * (normalized) pedi			Incorrectly Classified Instances	268	34.8958 %
	+ 0.2601 * (normalized) age - 5.1761			Kappa statistic Mean absolute error	0 0.349	
	Number of kernel evaluations: 19131	(69.279% cached)		Root mean squared error Relative absolute error	0.5907	
	Correctly Classified Instances Incorrectly Classified Instances	594 174	77.3438 % 22.6563 %	Root relative squared error	76.7774 % 123.9347 %	
	Kappa statistic Mean absolute error	0.4682 0.2266		Total Number of Instances	768	
	Root mean squared error Relative absolute error	0.476 49.848 %				
	Root relative squared error Total Number of Instances	99.862 %				
	Total Manbel of Instances	700				

Notice: A wrapper class for the libsvm tools (the libsvm classes, typically the jar file, need to be in the classpath to use this classifier) >> see http://weka.wikispaces.com/LibSVM