ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3

ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ (Вариант 9)

Выполнил студент 3 курса ПМиИ Кондратьев Виталий

Цель занятия:

изучение различных методов вычисления определенных интегралов, практическое интегрирование функций на ЭВМ.

Задания к работе.

- 1. Вычислить приближенно с заданной точностью интеграл $I = \int_a^b f(x)dx$ по формулам прямоугольников, трапеций и Симпсона. Величину шага определить с помощью двойного пересчета.
- 2. Определить относительную погрешность вычислений каждого метода по формуле: $\delta = \left| \frac{I I_h}{I} \right| \cdot 100 \, \%$, где I точное значение интеграла; I_h приближенное.
- 3. Составить таблицу в которой указать значение интеграла, полученное с заданной точностью, величину последнего шага интегрирования, количество точек разбиения, относительную погрешность метода.

Метод прямоугольников

Левых:

$$I = h \sum_{i=0}^{n-1} f(x_i)$$
, где $h = \frac{b-a}{n}$

Правых

$$I = h \sum_{i=1}^{n} f(x_i)$$
, где $h = \frac{b-a}{n}$

Погрешность абсолютная

$$\Delta = \max |\frac{f'(x)}{2}|(b-a)h$$

Средних:

$$I = h \sum_{i=1}^{n} f\left(x_{i-1} + \frac{h}{2}\right)$$
, где $h = \frac{b-a}{n}$

Оценка погрешности

$$\Delta = max |\frac{f''(x)}{24}|(b-a)h^2$$

Метод трапеций

$$I=h(rac{f(a)+f(b)}{2}+\sum_{i=1}^{n-1}f(x_i))$$
, где $h=rac{b-a}{n}$

$$\Delta = \max |\frac{f''(x)}{12}|(b-a)h^2$$

Метод Симпсона

$$I = \frac{h}{3} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + f(x_n) \right]$$

Оценка погрешности

$$\Delta = \frac{b - a}{2880} h^4 max |f^{(4)}(x)|$$

Условие

No	Подынтегральная ϕ ункция $f(x)$	Заданная точность	Интервал $[a,b]$	Первообразная ϕ ункции $F(x)$
9	$x \ln x$	10-4	[2; 6]	$\frac{x^2}{2}\ln x - \frac{x^2}{4}$

Ход выполнения:

Метод левых прямоугольников. Вычисления производим по формуле

$$I = h \sum_{i=0}^{n-1} f(x_i)$$
, где $h = \frac{b-a}{n}$

Во всех методах проводим вычисления для одной итерации, сравниваем абсолютную разность вычисленного нового и предыдущего значения $|I_k - I_{k-1}|$ с заданной точностью $\varepsilon = 10^{-4}$, если модуль разности больше заданной точности, удваиваем п, иначе сохраняем ответ. Все результаты вычислений приведены в итоговой таблице.

Метод правых прямоугольников. Вычисления производим по формуле

$$I = h \sum_{i=1}^{n} f(x_i)$$
, где $h = \frac{b-a}{n}$

Метод средних прямоугольников. Вычисления производим по формуле

$$I = h \sum_{i=1}^{n} f\left(x_{i-1} + \frac{h}{2}\right)$$
, где $h = \frac{b-a}{n}$

Метод трапеций. Вычисления производим по формуле

$$I=h(rac{f(a)+f(b)}{2}+\sum_{i=1}^{n-1}f(x_i)),$$
 где $h=rac{b-a}{n}$

Метод Симпсона. Вычисления производим по формуле

$$I = \frac{h}{3} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + f(x_n) \right]$$

Итоговая таблица

Точное решение 22.8654

Метод решения	Значение	Величина	Количеств	Относительна
	интеграл	последнего	о точек	я погрешность
	a	шага	разбиения	
		интегрирования		
1. Метод левых	22.8648	0.000122070312	32768	0.0025 %
прямоугольников		5		
2. Метод правых	22.8659	0.000122070312	32768	0.0025 %
прямоугольников		5		
3. Метод средних	22.8652	0.0625	64	0.0008 %
Прямоугольнико				
В				
4. Метод	22.8655	0.03125	128	0.0004 %
трапеций				
5. Метод	22.8654	0.5	8	0.0003 %
Симпсона				

Вывод: Метод Симпсона оказался наиболее выгодным для решения этой задачи, точность выше всех остальных и разбиение всего на 8 точек — сошелся быстро. Код программы и ее вывод - в приложении.

ПРИЛОЖЕНИЕ

```
"""
Лабораторная работа №3
Студент ОНК «ИВТ» ВШ КНИИИ направления ПМиИ 3 курса
Кондратьев Виталий
Вариант 9
"""
import math

def rectangle_left_integral(a, b, f, eps):
    n = 2
    ans = 0
    while True:
        h = (b - a) / n
        x = a
        prev_approximation = ans
        ans = 0
    for i in range(n):
        ans += f(x) * h
        x += h

    error = abs(ans - prev_approximation)
    if error < eps:
        return ans, h, n

    n *= 2</pre>
```

```
def rectangle right integral(a, b, f, eps):
      prev_approximation = ans
       error = abs(ans - prev approximation)
def rectangle mid integral(a, b, f, eps):
       prev_approximation = ans
           ans += f(x) * h
def trapezoidal integral(a, b, f, eps):
       prev_approximation = ans
def simpson integral(a, b, f, eps):
```

```
prev approximation = ans
        error = abs(ans - prev approximation)
    return x * math.log(x)
def F(x):
   return (x**2/2) * math.log(x) - x**2/4
def print results(exact value, calculation results):
exact value)
```

Вывод программы:

Точное решение: 22.8654

Метод левых прямоугольников:

Ответ: 22.8648 Итоговый n: 32768

Последний шаг: 0.0001220703125 Относительная погрешность: 0.0025

Метод правых прямоугольников:

Ответ: 22.8659 Итоговый n: 32768

Последний шаг: 0.0001220703125 Относительная погрешность: 0.0025

Метод средних прямоугольников:

Ответ: 22.8652 Итоговый n: 64

Последний шаг: 0.0625

Относительная погрешность: 0.0008

Метод трапеций: Ответ: 22.8655 Итоговый n: 128

Последний шаг: 0.03125

Относительная погрешность: 0.0004

Метод Симпсона: Ответ: 22.8654 Итоговый n: 8

Последний шаг: 0.5

Относительная погрешность: 0.0003