EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ Varianta 10

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

BAREM DE EVALUARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	(by the pune	
1.	$\begin{cases} a_1 + 2r = 5 \\ a_1 + 4r = 11 \end{cases} \Rightarrow a_1 = -1, r = 3$	3 p
	$a_7 = a_1 + 6r = 17$, $S_7 = 56$	2p
2.	$f(x) = g(x) \Rightarrow 2x - 1 = x + 3$	2p
	x = 4 si y = 7	2p
	A(4,7)	1p
3.	$x^2 - 1 = 8$	3p
	$x = \pm 3$	2p
4.	$a+b=150 \Rightarrow \frac{b}{4}+b=150 \Rightarrow b=120$	3 p
	a = 30	1p
	$a \cdot b = 3600$	1p
5.	$AB: \frac{x-2}{2} = \frac{y-3}{2} \Rightarrow x-y+1=0$	2p
	$C \in AB \Rightarrow m^2 - m - 2 = 0$	1p
	$C \in AB \implies m - m - 2 = 0$ $m = -1 \text{ sau } m = 2$	2p
6.	$\sin^2 x + \cos^2 x = 1 \Rightarrow \cos x = \pm \frac{2\sqrt{2}}{3}$	3p
	$x \in \left(0, \frac{\pi}{2}\right) \Rightarrow \cos x = \frac{2\sqrt{2}}{3}$	2p

	(2) 3	
SUB	SUBIECTUL al II-lea (30 de pun	
1.a)	$\det(A) = \begin{vmatrix} m & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & m \end{vmatrix} =$	1p
	$=m^2+1-2m$	4p
b)	$\begin{cases} y = -1 \\ x + y + z = 3 \\ x + y = 0 \end{cases}$	2p
	$\begin{cases} x = 1 \\ y = -1 \\ z = 3 \end{cases}$	3 p

c)	$\left(\begin{array}{c} x+y=-1 \\ \end{array}\right)$	2p
	$\begin{cases} x + y + z = 3 \end{cases}$	2 p
	x + y + z = 0	
	Scăzând ultimele 2 ecuații se obține $0 = 3 \Rightarrow$ sistem incompatibil	3 p
2.a)	(x*y)*z = (x*y-4)(z-4)+4=	1p
	((x-4)(y-4)+4-4)(z-4)+4=	1p
	=(x-4)(y-4)(z-4)+4=	1n
	= (x-4)((y-4)(z-4)+4-4)+4=	1p
	=(x-4)(y*z-4)+4=	1p
	=x*(y*z)	1p
b)	$ \begin{array}{l} x > 4 \Rightarrow x - 4 > 0 \\ y > 4 \Rightarrow y - 4 > 0 \end{array} \Rightarrow (x - 4)(y - 4) > 0 $	3 p
	$y > 4 \Rightarrow y - 4 > 0$	
	$(x-4)(y-4)+4>4, \forall x,y>4$	2p
c)	$x*4=4*x=4, \forall x \in \mathbb{R}$	2p
	1*2*3**2010 = (1*2*3)*4*(5**2010) = 4	3p

SUB	SUBIECTUL al III-lea (30 de pur		
1.a)	$(x^2)' = 2x, (\frac{2}{x})' = -\frac{2}{x^2}$	2p	
	$f'(x) = 2x - \frac{2}{x^2}$	3 p	
b)	y-f(2)=f'(2)(x-2)	2p	
	$f(2) = 5$ și $f'(2) = \frac{7}{2}$	2p	
	$y = \frac{7}{2}x - 2$	1p	
c)	$\lim_{\substack{x \to 0 \\ x < 0}} \left(x^2 + \frac{2}{x} \right) = -\infty \text{sau} \lim_{\substack{x \to 0 \\ x > 0}} \left(x^2 + \frac{2}{x} \right) = +\infty$	4p	
	Dreapta $x = 0$ este asimptotă verticală la graficul funcției	1p	
2.a)	g derivabilă pe $(0,+\infty)$	1p	
	$g'(x) = (2\sqrt{x}(\ln x - 2))' = \frac{2}{2\sqrt{x}}(\ln x - 2) + 2\sqrt{x}\frac{1}{x} =$	3 p	
	$= f(x), \ \forall x \in (0, +\infty)$	1 p	
b)	$= f(x), \forall x \in (0, +\infty)$ $\int_{1}^{4} f(x)dx = g(x)\Big _{1}^{4} =$	1p	
	$=2\sqrt{x}(\ln x - 2)\Big _{1}^{4} =$	2 p	
	$=8\ln 2-4$	2p	
c)	$g(x) = 2\sqrt{x} (\ln x - 2)$ şi $g'(x) = \frac{\ln x}{\sqrt{x}} \implies \int_{1}^{e^{2}} 2^{g(x)} g'(x) dx = \frac{2^{g(x)}}{\ln 2} \Big _{1}^{e^{2}} =$	3 p	
	$=\frac{15}{16\ln 2}$	2p	

2