FCC SAR Measurement and Test Report

For

Dongguan Winn Technology Co., Ltd

Xianghe Rd, Xinmin Area, Chang'an, Dongguan, Guangdong, China

FCC ID: 2AA5TWINNPAD73G

FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

KDB 865664 D01 v01r03

FCC Rules: KDB 865664 D02 v01r01

Product Description: Tablet PC

Tested Model: Winnpad73G

Report No.: <u>STR14108065H</u>

Tested Date: 2014-10-27 to 2014-10-29

Issued Date: 2014-10-30

Tested By: Silin Chen / Engineer

Reviewed By: <u>Lahm Peng / EMC Manager</u>

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Silin chen Lahm peny Jumlyso

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM. Test Technology Co., Ltd.

TABLE OF CONTENTS

1. General Information	
1.1 Product Description for Equipment Under Test (EUT)	3
1.2 Test Standards	
1.3 Test Methodology	
1.4 Test Facility	
2. Summary of Test Results	6
3. Specific Absorption Rate (SAR)	
3.1 Introduction	
3.2 SAR Definition	7
4. SAR Measurement System	8
4.1 The Measurement System	8
4.2 Probe	
4.3 Probe Calibration Process	
4.4 Phantom	
4.5 Device Holder	
4.6 Test Equipment List	
5. Tissue Simulating Liquids	
5.1 Composition of Tissue Simulating Liquid	
5.2 Tissue Dielectric Parameters for Head and Body Phantoms	
5.3 Tissue Calibration Result	
6. SAR Measurement Evaluation	
6.1 Purpose of System Performance Check	
6.2 System Setup	
6.3 Validation Results	
7. EUT Testing Position	
7.1 Define Two Imaginary Lines on The Handset	
7.2 Cheek Position	
7.2 Body Worn Position	
7.3 EUT Antenna Position	
7.4 EUT Testing Position	
8. SAR Measurement Procedures	22
8.1 Measurement Procedures	
8.2 Spatial Peak SAR Evaluation	
8.3 Area & Zoom Scan Procedures	
8.4 Volume Scan Procedures	
8.5 SAR Averaged Methods	
8.6 Power Drift Monitoring	
9. SAR Test Result	
9.1 Conducted RF Output Power	
9.2 Test Results for Standalone SAR Test	
9.3 Simultaneous Multi-band Transmission SAR Analysis	
10. Measurement Uncertainty	
10.1 Uncertainty for EUT SAR Test	
10.2 Uncertainty for System Performance Check	
Annex A. Plots of System Performance Check	
Annex B. Plots of SAR Measurement	52
Annex C. EUT Photos	155
Annex D. Test Setup Photos	156
Annex E. Calibration Certificate	163

1. General Information

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Dongguan Winn Technology Co., Ltd

Address of applicant: Xianghe Rd, Xinmin Area, Chang'an, Dongguan,

Guangdong, China

Model: Winnpad73G

Manufacturer: Dongguan Winn Technology Co., Ltd

Address of manufacturer: Xianghe Rd, Xinmin Area, Chang'an, Dongguan,

Guangdong, China

General Description of EUT	
Product Name:	Tablet PC
Brand Name:	Prestigio
Model No.:	Winnpad73G
Adding Model:	/
Hardware Version:	MT83X2_MR706_MR706Z1H1C2W1.2014050411
Software Version:	ELINK_MR706Z_V2 20140418
IMEI:	865916038797792/860480921407212
Rated Voltage:	DC 3.7V Battery
Battery:	2800mAh
Dower Adentor:	K-E30502000U1
Power Adaptor:	Input 100-240V, 50/60Hz, Output DC 5V/2.0A
Device Category:	Portable Device

The EUT is GSM850/900/DCS1800/PCS1900, WCDMA Band II, Band V, Entertainment Tablet. the Entertainment Tablet is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS/EDGE class 12 for GSM850 and GSM1900 and Bluetooth, Wi-Fi, and camera functions. For more information see the following datasheet

Note: The test data is gathered from a production sample, provided by the manufacturer.

Technical Characteristics of EUT	
2G	
Support Networks:	GSM, GPRS, EDGE
Support Band:	GSM850/PCS1900
Unlink Eroguanav	GSM/GPRS 850: 824~849MHz
Uplink Frequency:	GSM/GPRS 1900: 1850~1910MHz
Downlink Fraguency:	GSM/GPRS 850: 869~894MHz
Downlink Frequency:	GSM/GPRS 1900: 1930~1990MHz
Max RF Output Power:	GSM850: 33.40dBm, GSM1900: 31.03dBm

Type of Emission: GSM850: 256KGXW, GSM1900: 257KGXW EDGE850: 254KG7W, EDGE1900: 260KG7W Antenna Type: Internal Antenna Antenna Gain: GSM850: 1.0dBi GSM850: 1.0dBi GSM850: 1.0dBi GPRS/EDGE Class: Class 12 36 WCDMA Band II, WCDMA Band V Uplink Frequency: WCDMA Band II: 1850~1980MHz WCDMA Band V: 824~849MHz WCDMA Band V: 824~849MHz Downlink Frequency: WCDMA Band II: 1930~1990MHz WCDMA Band V: 869~894MHz WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11n(HT20) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM	Type of Modulation:	GMSK, 8PSK
Antenna Type: Internal Antenna Antenna Gain: GSM850: 1.0dBi GSM1900: 1.0dBi GPRS/EDGE Class: Class 12 3G Support Networks: WCDMA Support Band: WCDMA Band II, WCDMA Band V Uplink Frequency: WCDMA Band II: 1850–1980MHz WCDMA Band V: 824–849MHz Downlink Frequency: WCDMA Band V: 824–849MHz Max RF Output Power: WCDMA Band V: 828–894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) C	Type of Emission:	GSM850: 256KGXW, GSM1900: 257KGXW
Antenna Gain: GSM850: 1.0dBi GSRN1900: 1.0dBi Support Networks: WCDMA Support Band: WCDMA Band II, WCDMA Band V WCDMA Band II: 1850~1980MHz WCDMA Band V: 824~849MHz WCDMA Band II: 1930~1990MHz WCDMA Band II: 1930~1990MHz WCDMA Band V: 869~894MHz MAR RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1.11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: Type of Antenna: Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 11Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral		EDGE850: 254KG7W, EDGE1900: 260KG7W
Antenna Gain: GPRS/EDGE Class: Class 12 3G Support Networks: WCDMA Support Band: Uplink Frequency: WCDMA Band II: 1850~1980MHz WCDMA Band II: 1850~1980MHz WCDMA Band II: 1930~1990MHz WCDMA Band II: 1930~1990MHz WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Integral Antenna Antenna Gain: Integral Antenna Antenna Gain: WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11h(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 1ntegral Antenna Gain: -0.6dBi BT Bluetooth Version: Frequency Range: 2402-2480MHz Frequency Range: 2402-2480MHz Frequency Range: Attenta Gain: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: Type of Antenna: Integral Channel Separation: Type of Antenna: Integral	Antenna Type:	Internal Antenna
GSM1900: 1.0dBi	Antonio Coine	GSM850: 1.0dBi
3G Support Networks: WCDMA Support Band: WCDMA Band II, WCDMA Band V Uplink Frequency: WCDMA Band II: 1850~1980MHz WCDMA Band II: 1930~1990MHz WCDMA Band II: 1930~1990MHz WCDMA Band V: 869~894MHz WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Fmission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range:	Antenna Gain:	GSM1900: 1.0dBi
Support Networks: WCDMA Support Band: WCDMA Band II, WCDMA Band V Uplink Frequency: WCDMA Band II: 1850~1980MHz WCDMA Band V: 824-849MHz WCDMA Band V: 869-894MHz Downlink Frequency: WCDMA Band V: 869-894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz <td>GPRS/EDGE Class:</td> <td>Class 12</td>	GPRS/EDGE Class:	Class 12
Support Band: WCDMA Band II, WCDMA Band V Uplink Frequency: WCDMA Band II: 1850~1980MHz WCDMA Band V: 824~849MHz Downlink Frequency: WCDMA Band V: 869~894MHz Max RF Output Power: WCDMAB50: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 22.57dBm, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 4222-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Integral 4040-2480MHz Frequency Range: 2402-2480MHz Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted)	3G	
Uplink Frequency: WCDMA Band II: 1850–1980MHz WCDMA Band V: 824~849MHz WCDMA Band V: 869~894MHz WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Antenna: Integral Antenna Antenna Gain: WIFI Support Standards: Support Standards: BO2.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b(fr(HT20) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: SMHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Support Networks:	WCDMA
Uplink Frequency: WCDMA Band V: 824~849MHz Downlink Frequency: WCDMA Band II: 1930~1990MHz WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) Frequency Range: 13.37dBm (Conducted) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz BT Integral Buetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPS	Support Band:	WCDMA Band II, WCDMA Band V
WCDMA Band V: 824~849MHz	Links Fragues av	WCDMA Band II: 1850~1980MHz
Downlink Frequency: WCDMA Band V: 869~894MHz Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) Frequency Range: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT U4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz	Oplink Frequency:	WCDMA Band V: 824~849MHz
Max RF Output Power: WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Evaluation: Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 1MHz/2MHz	Davidiali Francisco	WCDMA Band II: 1930~1990MHz
Type of Modulation: BPSK Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) 2412-2472MHz for 802.11b/g/n(HT20) Frequency Range: 2412-2472MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Downlink Frequency:	WCDMA Band V: 869~894MHz
Type of Emission: WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Max RF Output Power:	WCDMA850: 22.57dBm, WCDMA1900: 22.58dBm
Type of Antenna: Integral Antenna Antenna Gain: 1.0dBi WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Type of Modulation:	BPSK
Antenna Gain: WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Type of Emission:	WCDMA850: 4M21F9W, WCDMA1900: 4M15F9W
WIFI Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Type of Antenna:	Integral Antenna
Support Standards: 802.11b, 802.11g, 802.11n(HT20;HT40) Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Antenna Gain:	1.0dBi
Frequency Range: 2412-2472MHz for 802.11b/g/n(HT20) 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: Integral Integral	WIFI	
Frequency Range: 2422-2462MHz for 802.11n(HT40) RF Output Power: 13.37dBm (Conducted) Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Support Standards:	802.11b, 802.11g, 802.11n(HT20;HT40)
RF Output Power: Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: Type of Antenna: Integral Antenna Gain: BT Bluetooth Version: Frequency Range: RF Output Power: Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: Type of Antenna: Integral Antenna Gain: Po.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Type of Antenna: Integral	Eroguanay Panga:	2412-2472MHz for 802.11b/g/n(HT20)
Type of Modulation: CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: Integral	Frequency Range.	2422-2462MHz for 802.11n(HT40)
Data Rate: Data Rate: 1-11Mbps, 6-54Mbps, up to 150Mbps Quantity of Channels: 13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40) Channel Separation: Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: Integral	RF Output Power:	13.37dBm (Conducted)
Quantity of Channels:13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40)Channel Separation:5MHzType of Antenna:IntegralAntenna Gain:-0.6dBiBTBluetooth Version:V4.0+BLEFrequency Range:2402-2480MHzRF Output Power:-0.416dBm (Conducted)Data Rate:1Mbps, 2Mbps, 3MbpsModulation:GFSK, Pi/4 QDPSK, 8DPSKQuantity of Channels:79/40Channel Separation:1MHz/2MHzType of Antenna:Integral	Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Channel Separation: Type of Antenna: Integral Antenna Gain: -0.6dBi BT Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Data Rate:	1-11Mbps, 6-54Mbps, up to 150Mbps
Type of Antenna: Antenna Gain: -0.6dBi BT Bluetooth Version: Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Quantity of Channels:	13 for 802.11b/g/n(HT20); 9 for 802.11n(HT40)
Antenna Gain: BIUetooth Version: V4.0+BLE Frequency Range: RF Output Power: Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Integral	Channel Separation:	5MHz
Bluetooth Version: Frequency Range: RF Output Power: Output Pow	Type of Antenna:	Integral
Bluetooth Version: V4.0+BLE Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Antenna Gain:	-0.6dBi
Frequency Range: 2402-2480MHz RF Output Power: -0.416dBm (Conducted) Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	ВТ	
RF Output Power: Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Bluetooth Version:	V4.0+BLE
Data Rate: 1Mbps, 2Mbps, 3Mbps Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Frequency Range:	2402-2480MHz
Modulation: GFSK, Pi/4 QDPSK, 8DPSK Quantity of Channels: 79/40 Channel Separation: 1MHz/2MHz Type of Antenna: Integral	RF Output Power:	-0.416dBm (Conducted)
Quantity of Channels:79/40Channel Separation:1MHz/2MHzType of Antenna:Integral	Data Rate:	1Mbps, 2Mbps, 3Mbps
Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Modulation:	GFSK, Pi/4 QDPSK, 8DPSK
Channel Separation: 1MHz/2MHz Type of Antenna: Integral	Quantity of Channels:	79/40
Type of Antenna: Integral	<u> </u>	1MHz/2MHz
	•	Integral

1.2 Test Standards

The following report is prepared on behalf of the Dongguan Winn Technology Co., Ltd in accordance with FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1-1992, IEEE 1528-2003 and KDB 865664 D01 v01r03 and KDB 865664 D02 v01r01

Model: Winnpad73G

The objective is to determine compliance with FCC Part 2.1093 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with KDB 865664 D01 v01r03 and KDB 865664 D02 v01r01. The public notice KDB 447498 D01 v05r02 for Mobile and Portable Devices RF Exposure Procedure also.

1.4 Test Facility

• FCC – Registration No.: 934118

Shenzhen SEM.Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 934118.

• Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

• CNAS Registration No.: L4062

Shenzhen SEM.Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101)

2. Summary of Test Results

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

	D '''	SAR _{1g}	Scaled SAR _{1g}
Frequency Band	Position	(W/kg)	(W/kg)
GSM850	Head	0.1291	0.1321
GSM1900	Head	0.0943	0.1051
WCDMA Band V	Head	0.0562	0.0619
WCDMA Band II	Head	0.1627	0.1796
WLAN 2.4GHz	Head	0.0730	0.0752
GSM850	Body-worn (0mm Gap)	0.4159	0.4256
GSM1900	Body-worn (0mm Gap)	0.4868	0.5424
WCDMA Band V	Body-worn (0mm Gap)	0.5389	0.5936
WCDMA Band II	Body-worn (0mm Gap)	0.4324	0.4774
WLAN 2.4GHz	Body-worn (0mm Gap)	0.1181	0.1217
GSM850	Hotspot (0mm Gap)	0.5601	0.6071
GSM1900	Hotspot (0mm Gap)	0.3978	0.4302
WCDMA Band V	Hotspot (0mm Gap)	oot (0mm Gap) 0.4191	
WCDMA Band II	Hotspot (0mm Gap)	0.2576	0.2844
WLAN 2.4GHz	Hotspot (0mm Gap)	0.0806	0.0830
GSM850 & WLAN 2.4GHz	Head		0.2073
GSM1900 & WLAN 2.4GHz	Head		0.1803
WCDMA Band V & WLAN 2.4GHz	Head		0.1371
WCDMA Band II & WLAN 2.4GHz	Head		0.2142
GSM850 & WLAN 2.4GHz	Body-worn (0mm Gap)		0.5473
GSM1900 & WLAN 2.4GHz	Body-worn (0mm Gap)		0.6641
WCDMA Band V & WLAN 2.4GHz	Body-worn (0mm Gap)		0.7153
WCDMA Band II & WLAN 2.4GHz	Body-worn (0mm Gap)		0.5991
GSM850 & WLAN 2.4GHz	Hotspot (0mm Gap)		0.5991
GSM1900 & WLAN 2.4GHz	Hotspot (0mm Gap)		0.5132
WCDMA Band V & WLAN 2.4GHz	Hotspot (0mm Gap)		0.5447
WCDMA Band II & WLAN 2.4GHz	Hotspot (0mm Gap)		0.3674

The highest reported SAR values for head, body-worn accessory, product specific (wireless router), and simultaneous transmission conditions are 0.18W/kg, 0.59W/kg, 0.61W/kg, and 0.72W/kg respectively.

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2.1093 and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2003 and KDB 865664 D01 v01r03 and KDB 865664 D02 v01r01

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Model: Winnpad73G

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement System

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SSE5 SN 09/13 EP168 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Probe Length: 330 mm

- Length of Individual Dipoles: 4.5 mm- Maximum external diameter: 8 mm- Probe Tip External Diameter: 5 mm

- Distance between dipoles / probe extremity: 2.7mm

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB

- Calibration range: 700 to 3000MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annexe technique using reference guide at the five frequencies.

Model: Winnpad73G

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi\frac{y}{a}\right)e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

Model: Winnpad73G

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:
$$\Delta t = \text{exposure time (30 seconds)},$$

$$C = \text{heat capacity of tissue (brain or muscle)},$$

$$\Delta T = \text{temperature increase due to RF exposure}.$$

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma = \text{simulated tissue conductivity},$

 ρ = Tissue density (1.25 g/cm3 for brain tissue)

4.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent		
Delrin	3.7	0.005		

4.6 Test Equipment List

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
E-Field Probe	SATIMO	SSE5	SN 09/13 EP168	2014-03-21	2015-03-20
835MHz Dipole	SATIMO	SID835	SN 47/12 DIP 0G835-204	2013-11-26	2014-11-25
1900MHz Dipole	SATIMO	SID1900	SN 47/12 DIP 1G900-207	2013-11-26	2014-11-25
2450MHz Dipole	SATIMO	SID2450	SN 47/12 DIP 2G450-209	2013-11-26	2014-11-25
Dielectric Probe Kit	SATIMO	SCLMP	SN 47/12 OCPG49	2013-11-26	2014-11-25
SAM Phantom	SATIMO	SAM	SN/ 47/12 SAM95	N/A	N/A
MULTIMETER	KEITHLEY	Keithley 2000	4006367	2014-05-07	2015-05-06
Signal Generator	Rohde & Schwarz	SMR20	100047	2014-05-07	2015-05-06
Universal Tester	Rohde & Schwarz	CMU200	112012	2014-05-07	2015-05-06
Network Analyzer	HP	8753C	2901A00831	2014-05-07	2015-05-06
Data Acquisition Electronics	SATIMO	DAE4	915	2014-05-07	2015-05-06
Directional Couplers	Agilent	778D	20160	2014-05-07	2015-05-06

5. Tissue Simulating Liquids

5.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Head SAR

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency	Water	Salt	Triton	HEC	Preventol	DGBE
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)
			Head			
835	35.34	0.98	0.00	0.00	63.68	0.00
1900	55.26	0.52	30.40	0.00	0.00	13.82
2450	55.44	0.32	30.50	0.00	0.00	13.74
			Body			
835	52.87	1.07	0.00	0.00	46.10	0.00
1900	69.99	0.41	20.66	0.00	0.00	8.93
2450	55.44	0.32	30.50	0.00	0.00	13.74

5.2 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Model: Winnpad73G

To F	Не	ead	Body		
Target Frequency	Conductivity	Permittivity	Conductivity	Permittivity	
(MHz)	(σ)	(E _r)	(σ)	(E _r)	
150	0.76	52.3	0.80	61.9	
300	0.87	45.3	0.92	58.2	
450	0.87	43.5	0.94	56.7	
835	0.90	41.5	0.97	55.2	
900	0.97	41.5	1.05	55.0	
915	0.98	41.5	1.06	55.0	
1450	1.20	40.5	1.30	54.0	
1610	1.29	40.3	1.40	53.8	
1800-2000	1.40	40.0	1.52	53.3	
2450	1.80	39.2	1.95	52.7	
3000	2.40	38.5	2.73	52.0	
5800	5.27	35.3	6.00	48.2	

5.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and an Agilent Network Analyzer.

Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

	Head Tissue Simulating Liquid								
Enag	Tomp	(Conductivity	luctivity Permittivity					
Freq. MHz.	Temp.	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date
MITIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E}\mathbf{r})$	$(\mathcal{E}\mathbf{r})$	(%)	(70)	
835	21.2	0.91	0.90	1.11	40.02	41.5	-3.57	±5	2014-10-27
1900	21.3	1.41	1.40	0.71	38.91	40.0	-2.73	±5	2014-10-27
2450	21.3	1.78	1.80	-1.11	38.76	39.2	-1.12	±5	2014-10-27

	Body Tissue Simulating Liquid								
Emag	Tomp	·	Conductivity	nductivity Permittivity					
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date
WIIIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E}\mathbf{r})$	$(\mathcal{E}\mathbf{r})$	(%)	(/0)	
835	21.2	0.96	0.97	-1.03	54.49	55.2	-1.29	±5	2014-10-27
1900	21.3	1.49	1.52	-1.97	52.39	53.3	-1.71	±5	2014-10-27
2450	21.3	1.92	1.95	-1.54	52.43	52.7	-0.51	±5	2014-10-27

6. SAR Measurement Evaluation

6.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

6.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

System Verification Setup Block Diagram

Setup Photo of Dipole Antenna

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

6.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. Table 6.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency	Targeted SAR _{1g}	Measured SAR _{1g}	Normalized SAR _{1g}	Tolerance
MHz	(W/kg)	(W/kg)	(W/kg)	(%)
		Head		
835	9.82	2.46	9.83	-2.24
1900	40.79	10.20	40.80	-2.92
2450	52.50	13.10	52.40	-0.93
		Body		
835	10.19	2.52	10.09	-0.98
1900	40.41	10.09	40.34	-0.17
2450	51.80	12.86	51.42	-0.73

Targeted and Measurement SAR

Please refer to Annex A for the plots of system performance check.

7. EUT Testing Position

7.1 Define Two Imaginary Lines on The Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Illustration for Handset Vertical and Horizontal Reference Lines

7.2 Cheek Position

(a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 7.2).

Illustration for Cheek Position

7.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 7.3).

Illustration for Tilted Position

7.2 Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 0mm.

Illustration for Body Worn Position

7.3 EUT Antenna Position

Block Diagram for EUT Antenna Position

7.4 EUT Testing Position

		Exclusion Distance Calcul	ation			
Frequency Bands	Service	Maximum Tune-up Power	Average Power	Exclusion Distance		
GSM850	GSM	33.0dBm	24.0dBm	70mm		
GPRS850	GPRS(4slots)	29.0dBm	26.0dBm	100mm		
GSM1900	GSM	29.5dBm	20.5dBm	60mm		
GPRS1900	GPRS(4slots)	26.0dBm	23.0dBm	60mm		
WCDMA Band V	RMC 12.2k	23.0dBm	23.0dBm	60mm		
WCDMA Band II	RMC 12.2k	22.0dBm	22.0dBm	60mm		
WLAN 802.11b 17.0dBm 17.0dBm 30mm						
Note: Refer to Chap	oter 9.1 Conducted	d RF Output Power				

Model: Winnpad73G

Remark:

 Referring to KDB 447498 D01v05 and KDB616217 D04 v01r01, the distance of the antennas to all adjacent edges SAR test exclusion for adjacent edges.

Head/Body-worn/Hotspot mode SAR assessments are required for this device. This EUT was tested in different positions for different SAR test modes, more information as below:

Head SAR tests									
Antennas Right Cheek Left Cheek Right Tilted Left Tilted									
WWAN	Yes	Yes	Yes	Yes					
WLAN	Yes	Yes	Yes	Yes					

Hotspot SAR tests, Test distance: 0mm									
Antennas Front Back Right Side Left Side Top Side Bottom Side									
WWAN	No	Yes	Yes	Yes	No	Yes			
WLAN	No	Yes	Yes	Yes	Yes	No			

Body-worn SAR tests, Test distance: 0mm							
Antennas Front Back							
WWAN	Yes	Yes					
WLAN	Yes	Yes					

Remark:

1. Referring to KDB 616217 D04 v01r01, KDB 248227 D04 and KDB 447498 D01 v05r02, this device is a overall diagonal dimension(>20cm) tablet, tested in direct contact (no gap) with flat phantom.

Please refer to Annex D for the EUT test setup photos.

8. SAR Measurement Procedures

8.1 Measurement Procedures

The measurement procedures are as follows:

(a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.

Model: Winnpad73G

- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex E demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Model: Winnpad73G

8.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

9. SAR Test Result

9.1 Conducted RF Output Power

	GSM - Burst Average Power (dBm)									
Band		GSM850			PCS1900					
Channel	128	190	251	512	661	810				
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880	1909.8				
GSM	33.28	33.34	33.40	31.03	30.84	30.66				
GPRS (1 slot)	33.26	33.23	33.31	31.02	30.85	30.64				
GPRS (2 slots)	32.65	32.56	32.63	30.86	30.67	30.48				
GPRS (3 slots)	30.77	30.73	30.81	29.65	29.54	29.70				
GPRS (4 slots)	29.43	29.35	29.44	28.55	28.51	28.66				
EDGE (1 slots)	26.59	26.66	26.72	24.93	24.88	24.78				
EDGE (2 slots)	25.57	25.55	25.60	23.56	23.54	23.46				
EDGE (3 slots)	23.41	23.55	23.56	22.16	22.08	22.00				
EDGE (4 slots)	22.17	22.37	22.39	20.78	20.65	20.64				

Model: Winnpad73G

GSN	GSM - Source-Based Time-Average Power (dBm)									
Band		GSM850			PCS1900					
Channel	128	190	251	512	661	810				
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880	1909.8				
GSM	24.28	24.34	24.40	22.03	21.84	21.66				
GPRS (1 slot)	24.26	24.23	24.31	22.02	21.85	21.64				
GPRS (2 slots)	26.65	26.56	26.63	24.86	24.67	24.48				
GPRS (3 slots)	26.52	26.48	26.56	25.40	25.29	25.45				
GPRS (4 slots)	26.43	26.35	26.44	25.55	25.51	25.66				
EDGE (1 slots)	17.59	17.66	17.72	15.93	15.88	15.78				
EDGE (2 slots)	19.57	19.55	19.60	17.56	17.54	17.46				
EDGE (3 slots)	19.16	19.30	19.31	17.91	17.83	17.75				
EDGE (4 slots)	19.17	19.37	19.39	17.78	17.65	17.64				

Note: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time-average power = Burst averaged power - Duty cycle factor in dB

Duty cycle factor = 9 dB for 1 Tx slot, 6 dB for 2 Tx slots, 4.25 dB for 3 Tx slots, 3 dB for 4 Tx slots

Remark:

- 1. For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM for GSM850 and GSM1900 due to its highest source-based time-average power.
- 2. For Body SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850 and GSM1900 due to its highest source-based time-average power.
- 3. Per KDB 447498, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. The DUT do not support DTM function.

	WCDMA - Average Power (dBm)										
Band	W	CDMA Band	l V	WCDMA Band II							
Channel	4132	4183	4233	9262	9400	9538					
Frequency (MHz)	826.4	836.6	846.6	1852.4	1880.0	1907.6					
RMC 12.2k	22.28	22.58	21.75	22.57	22.01	22.40					
HSDPA Subtest-1	21.41	21.59	20.23	21.85	21.43	21.99					
HSDPA Subtest-2	21.31	21.45	20.01	21.67	21.35	21.65					
HSDPA Subtest-3	21.26	21.34	20.02	21.34	20.92	21.86					
HSDPA Subtest-4	20.86	20.15	20.11	21.29	20.99	21.21					
HSUPA Subtest-1	21.03	21.12	21.00	21.95	21.05	21.04					
HSUPA Subtest-2	20.68	20.89	20.86	21.76	20.86	20.95					
HSUPA Subtest-3	21.56	21.08	20.76	21.65	20.56	20.56					
HSUPA Subtest-4	20.45	21.11	20.56	21.53	20.67	20.38					
HSUPA Subtest-5	20.25	20.76	20.64	21.34	20.75	20.56					

Remark:

- 1. For Head SAR, per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 1/4 dB higher than RMC, SAR tests with AMR 12.2kbps can be excluded.
- 2. For Body SAR, per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA subset-1 and HSUPA subset-1 output power is < 1/4 dB higher than RMC, and SAR with RMC 12.2kbps setting is ≤ 1.2 W/kg, HSDPA and HSUPA SAR evaluation can be excluded.

	WLAN - Maximum Average Power									
Test Mode	Data Rate	Channel	Frequency (MHz)	Average Power (dBm)						
		CH 01	2412	13.37						
802.11b	1Mbps	CH 07	2442	12.81						
		CH 13	2472	12.25						
		CH 01	2412	9.66						
802.11g	54Mbps	CH 07	2442	9.16						
		CH 13	2472	8.49						
		CH 01	2412	10.01						
802.11n (20MHz)	MCS7	CH 07	2442	9.24						
		CH 13	2472	8.86						
	·	CH 03	2422	8.52						
802.11n (40MHz)	MCS7	CH 07	2442	8.26						
		CH 11	2462	7.45						

Remark:

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. Per KDB 248227, if 11g and 11n average output power is higher than 1/4 dB higher than 11b mode, SAR will be verified.

Model: Winnpad73G

3. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate. For 802.11n mode, SAR test according to the highest power channel with correspondence data rates.

	Bluetooth - Maximum Average Power									
Test Mode	Data Rate	Channel	Frequency (MHz)	Average Power (dBm)						
		CH 00	2402	-0.841						
GFSK	1Mbps	CH 39	2441	-0.597						
		CH 78	2480	-0.416						
		CH 00	2402	-1.642						
8DPSK	3Mbps	CH 39	2441	-1.404						
		CH 78	2480	-1.113						
		CH 00	2402	-1.523						
BLE	1Mbps	1Mbps CH 19 2		-1.299						
		CH 39	2480	-1.062						

Remark:

Bluetooth maximum output power (including tune-up tolerance) is -1.0dBm. Per KDB 648474 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR,16 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- The result is rounded to one decimal place for comparison

Max. Power (dBm)	Max. Power (mW)	Distance (mm)	Frequency (GHz)	Result	Limit
0	1.0	5	2.480	0.31	3

The exclusion thresholds is 0.31 < 3, therefore, the RF exposure evaluation is not required.

9.2 Test Results for Standalone SAR Test

Head SAR

	GSM850 – Head SAR Test										
Plot		Test Position	Frequency		Output	Rated	Scaling	SAR1g	Scaled		
No.	Mode	Head	CH	MHa	Power	Limit	J	Ü	SAR1g		
110.		neau	CH. MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
1	GSM	Right Cheek	251	848.8	33.40	33.5	1.02	0.0910	0.0931		
2	GSM	Right Tilted	251	848.8	33.40	33.5	1.02	0.0336	0.0344		
3	GSM	Left Cheek	251	848.8	33.40	33.5	1.02	<mark>0.1291</mark>	0.1321		
4	GSM	Left Tilted	251	848.8	33.40	33.5	1.02	0.0332	0.0340		

	GSM1900 – Head SAR Test										
Plot		Test Position	Freq	uency	Output	Rated	Sooling	SAR1g	Scaled		
No.	Mode					CH. MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g
110.		neau	Cn.	WIIIZ	(dBm)	(dBm)	Factor	(W/Kg)	(W/kg)		
11	GSM	Right Cheek	512	1850.2	31.03	31.5	1.11	0.0855	0.0953		
12	GSM	Right Tilted	512	1850.2	31.03	31.5	1.11	0.0289	0.0322		
13	GSM	Left Cheek	512	1850.2	31.03	31.5	1.11	0.0943	<mark>0.1051</mark>		
14	GSM	Left Tilted	512	1850.2	31.03	31.5	1.11	0.0258	0.0287		

	WCDMA Band V – Head SAR Test												
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Head	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Heau	CII.	WIIIZ	(dBm)	(dBm)	ractor		(W/kg)				
21	RMC	Right Cheek	4183	836.6	22.58	23.0	1.10	0.0509	0.0561				
22	RMC	Right Tilted	4183	836.6	22.58	23.0	1.10	0.0556	0.0612				
23	RMC	Left Cheek	4183	836.6	22.58	23.0	1.10	<mark>0.0562</mark>	<mark>0.0619</mark>				
24	RMC	Left Tilted	4183	836.6	22.58	23.0	1.10	0.0493	0.0543				

	WCDMA Band II – Head SAR Test												
Plot		Togt Dogtion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Mode Test Postion Head	СН.	MHz	Power Limit		Factor	(W/kg)	SAR1g				
110.		Heau	Cn.	MITZ	(dBm)	(dBm)	Factor	(w/kg)	(W/kg)				
31	RMC	Right Cheek	9262	1852.4	22.57	23.0	1.10	<mark>0.1627</mark>	<mark>0.1796</mark>				
32	RMC	Right Tilted	9262	1852.4	22.57	23.0	1.10	0.0382	0.0422				
33	RMC	Left Cheek	9262	1852.4	22.57	23.0	1.10	0.1212	0.1338				
34	RMC	Left Tilted	9262	1852.4	22.57	23.0	1.10	0.0366	0.0404				

	WLAN 2.4GHz – Head SAR Test												
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Head	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Heau	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
41	802.11b	Right Cheek	01	2412	13.37	13.5	1.03	0.0336	0.0346				
42	802.11b	Right Tilted	01	2412	13.37	13.5	1.03	0.0289	0.0298				
43	802.11b	Left Cheek	01	2412	13.37	13.5	1.03	0.0730	0.0752				
44	802.11b	Left Tilted	01	2412	13.37	13.5	1.03	0.0727	0.0749				

Remark: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

Body-worn SAR

	GSM850 – Body SAR Test (Gap: 0mm)										
Plot		Test Position	Frequency		Output	Rated	Caslina	CAD1a	Scaled		
No.	Mode	Body	СН.	MHz	Power (dBm)	Limit (dBm)	Scaling Factor	SAR1g (W/kg)	SAR1g (W/kg)		
5	GSM	Back side	251	848.8	33.40	33.5	1.02	0.4159	0.4256		
6	GSM	Front side	251	848.8	33.40	33.5	1.02	0.2391	0.2447		

	GSM1900 – Body SAR Test (Gap: 0mm)											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode		СН.	MHz	Power	Limit			SAR1g			
110.		Body	Cn.	MITIZ	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
15	GSM	Back side	512	1850.2	31.03	31.5	1.11	<mark>0.4868</mark>	<mark>0.5424</mark>			
16	GSM	Front side	512	1850.2	31.03	31.5	1.11	0.1464	0.1631			

	WCDMA Band V – Body SAR Test (Gap: 0mm)										
Dlot		Test Position	Frequency		Output	Rated	Caslina	CAD1a	Scaled		
	Plot Mode To	Body	СН.	MHz	Power	Limit	Scaling Factor	SAR1g (W/kg)	SAR1g		
110.		Body	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)		
29	RMC	Back side	4183	836.6	22.58	23.0	1.10	<mark>0.5389</mark>	<mark>0.5936</mark>		
30	RMC	Front side	4183	836.6	22.58	23.0	1.10	0.1083	0.1193		

	WCDMA Band II – Body SAR Test (Gap: 0mm)											
Plot		Test Position	Freq	uency	Output	Rated	Casling	CAD1a	Scaled			
	Mode		СН.	MII	Power	Limit	Scaling	SAR1g	SAR1g			
No.		Body	CH.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
39	RMC	Back side	9262	1852.4	22.57	23.0	1.10	0.4324	<mark>0.4774</mark>			
40	RMC	Front side	9262	1852.4	22.57	23.0	1.10	0.0928	0.1025			

		WLAN	2.4GHz -	Body SAF	R Test(Gap	o: 0mm)			
Plot		Test Postion	Frequ	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Body	СП	МЦа	Power	Limit	Scaling	Ü	SAR1g
110.		Bouy	CH. MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)	
49	802.11b	Back side	01	2412	13.37	13.5	1.03	<mark>0.1181</mark>	0.1217
50	802.11b	Front side	01	2412	13.37	13.5	1.03	0.0605	0.0623

Remark:

- 1. Per KDB 447498, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.
- 2. The Body-worn SAR for the back device with headset position is worst case and was reported.

Hotspot SAR

	GSM850 – Body SAR Test (Gap: 0mm)												
Plot	ot Test Postion		Frequency		Frequency Output Rated Scolin		Scaling	SAR1g	Scaled				
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Douy	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
7	GPRS_2TX	Back side	128	824.2	32.65	33.0	1.08	<mark>0.5601</mark>	<mark>0.6071</mark>				
8	GPRS_2TX	Front side	9262	1852.4	32.65	33.0	1.08	0.0435	0.0472				
9	GPRS_2TX	Bottom side	9262	1852.4	32.65	33.0	1.08	0.1680	0.1821				
10	GPRS_2TX	Right side	9262	1852.4	32.65	33.0	1.08	0.1180	0.1279				

	GSM1900 – Body SAR Test (Gap: 0mm)												
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Douy	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
17	GPRS_4TX	Back side	810	1909.8	28.66	29.0	1.08	<mark>0.3978</mark>	<mark>0.4302</mark>				
18	GPRS_4TX	Left side	810	1909.8	28.66	29.0	1.08	0.0258	0.0279				
19	GPRS_4TX	Bottom side	810	1909.8	28.66	29.0	1.08	0.0951	0.1028				
20	GPRS_4TX	Right side	810	1909.8	28.66	29.0	1.08	0.0702	0.0759				

	WCDMA Band V – Body SAR Test (Gap: 0mm)												
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
110.		Douy	Cn.	MITZ	(dBm)	(dBm)	ractor		(W/kg)				
25	RMC	Back side	4183	836.6	22.58	23.0	1.10	<mark>0.4191</mark>	<mark>0.4617</mark>				
26	RMC	Left side	4183	836.6	22.58	23.0	1.10	0.0815	0.0898				
27	RMC	Bottom side	4183	836.6	22.58	23.0	1.10	0.2983	0.3286				
28	RMC	Right side	4183	836.6	22.58	23.0	1.10	0.0973	0.1072				

	WCDMA Band II – Body SAR Test (Gap: 0mm)												
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled				
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g				
140.		Douy	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
35	RMC	Back side	9262	1852.4	22.57	23.0	1.10	<mark>0.2576</mark>	<mark>0.2844</mark>				
36	RMC	Front side	9262	1852.4	22.57	23.0	1.10	0.0814	0.0899				
37	RMC	Bottom side	9262	1852.4	22.57	23.0	1.10	0.1014	0.1120				
38	RMC	Right side	9262	1852.4	22.57	23.0	1.10	0.0815	0.0900				

	WLAN 2.4GHz –Body SAR Test(Gap: 0mm)								
Plot		Test Postion	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g
110.		Body	CII.	WIIIZ	(dBm)	(dBm)	Tactor	(W/Kg)	(W/kg)
45	802.11b	Back side	01	2412	13.37	13.5	1.03	<mark>0.0806</mark>	<mark>0.0830</mark>
46	802.11b	Front side	01	2412	13.37	13.5	1.03	0.0213	0.0219
47	802.11b	Top Side	01	2412	13.37	13.5	1.03	0.0713	0.0735
48	802.11b	Left side	01	2412	13.37	13.5	1.03	0.0171	0.0176

Remark: Per KDB 447498 D01 v05r02, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

9.3 Simultaneous Multi-band Transmission SAR Analysis

List of Mode for Simultanous Multi-band Transmission

No.	Configurations	Head SAR	Body-worn SAR	Hotspot SAR
1	GSM + WLAN	Yes	Yes	-
2	GPRS + WLAN	-	-	Yes
3	WCDMA + WLAN	Yes	Yes	-
4	HSUPA + WLAN	-	-	Yes
5	HSDPA + WLAN	-	-	Yes
6	GSM + Bluetooth	Yes	Yes	-
7	GPRS + Bluetooth	-	-	Yes
8	WCDMA + Bluetooth	Yes	Yes	-
9	HSUPA + Bluetooth	-	-	Yes
10	HSDPA + Bluetooth	-	-	Yes

Model: Winnpad73G

Remark:

- 1. GSM and WCDMA share the same antenna, and cannot transmit simultaneously.
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. According to the KDB 447498 D01v05r01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, WIFI/Bluetooth SAR is estimated per KDB 447498 D01v05r01 as below:

Bluetooth:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm)	Frequency (GHz)	X	SAR
0	1.0	5	2.480	7.5	0.0420

4. The maximum SAR summation is calculated based on the same configuration and test position.

Head SAR WWAN and WLAN

	WW	/AN	WLAN	GIGAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Right Cheek	GSM850	0.0931	0.0346	0.1277
Right Tilted	GSM850	0.0344	0.0298	0.0642
Left Cheek	GSM850	0.1321	0.0752	0.2073
Left Tilted	GSM850	0.0340	0.0749	0.1089
Right Cheek	GSM1900	0.0953	0.0346	0.1299
Right Tilted	GSM1900	0.0322	0.0298	0.062
Left Cheek	GSM1900	0.1051	0.0752	0.1803
Left Tilted	GSM1900	0.0287	0.0749	0.1036
Right Cheek	WCDMA Band V	0.0561	0.0346	0.0907
Right Tilted	WCDMA Band V	0.0612	0.0298	0.091
Left Cheek	WCDMA Band V	0.0619	0.0752	0.1371
Left Tilted	WCDMA Band V	0.0543	0.0749	0.1292
Right Cheek	WCDMA Band II	0.1796	0.0346	0.2142
Right Tilted	WCDMA Band II	0.0422	0.0298	0.072
Left Cheek	WCDMA Band II	0.1338	0.0752	0.209
Left Tilted	WCDMA Band II	0.0404	0.0749	0.1153

WWAN and Bluetooth

	WW	AN	Bluetooth	GIGAD	
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)	
Right Cheek	GSM850	0.0931	0.0420	0.1351	
Right Tilted	GSM850	0.0344	0.0420	0.0764	
Left Cheek	GSM850	0.1321	0.0420	0.1741	
Left Tilted	GSM850	0.0340	0.0420	0.076	
Right Cheek	GSM1900	0.0953	0.0420	0.1373	
Right Tilted	GSM1900	0.0322	0.0420	0.0742	
Left Cheek	GSM1900	0.1051	0.0420	0.1471	
Left Tilted	GSM1900	0.0287	0.0420	0.0707	
Right Cheek	WCDMA Band V	0.0561	0.0420	0.0981	
Right Tilted	WCDMA Band V	0.0612	0.0420	0.1032	
Left Cheek	WCDMA Band V	0.0619	0.0420	0.1039	
Left Tilted	WCDMA Band V	0.0543	0.0420	0.0963	
Right Cheek	WCDMA Band II	0.1796	0.0420	0.2216	
Right Tilted	WCDMA Band II	0.0422	0.0420	0.0842	
Left Cheek	WCDMA Band II	0.1338	0.0420	0.1758	
Left Tilted	WCDMA Band II	0.0404	0.0420	0.0824	

Body-worn SAR WWAN and WLAN

	WWAN		WLAN	Summed SAR
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)
Back	GSM850	0.4256	0.1217	0.5473
Front	GSM850	0.2447	0.0623	0.307
Back	GSM1900	0.5424	0.1217	0.6641
Front	GSM1900	0.1631	0.0623	0.2254
Back	WCDMA Band V	0.5936	0.1217	0.7153
Front	WCDMA Band V	0.1193	0.0623	0.1816
Back	WCDMA Band II	0.4774	0.1217	0.5991
Front	WCDMA Band II	0.1025	0.0623	0.1648

WWAN and Bluetooth

	WWAN		Bluetooth	Summed SAR	
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)	
Back	GSM850	0.4256	0.0420	0.4676	
Front	GSM850	0.2447	0.0420	0.2867	
Back	GSM1900	0.5424	0.0420	0.5844	
Front	GSM1900	0.1631	0.0420	0.2051	
Back	WCDMA Band V	0.5936	0.0420	0.6356	
Front	WCDMA Band V	0.1193	0.0420	0.1613	
Back	WCDMA Band II	0.4774	0.0420	0.5194	
Front	WCDMA Band II	0.1025	0.0420	0.1445	

Hotspot SAR WWAN and WLAN

	WW	'AN	WLAN	GIGAD
Position	Band	Scaled SAR	Scaled SAR	Summed SAR (W/kg)
rosition	Danu	(W/kg)	(W/kg)	(W/kg)
Back	GSM850	0.6071	0.0830	0.6901
Front	GSM850	0.0472	0.0219	0.0691
Top side	GSM850	-	0.0735	0.0735
Bottom side	GSM850	0.1821	-	0.1821
Right side	GSM850	0.1279	-	0.1279
Left side	GSM850	-	0.0176	0.0176
Back	GSM1900	0.4302	0.0830	0.5132
Front	GSM1900	0.0279	0.0219	0.0498
Top side	GSM1900	-	0.0735	0.0735
Bottom side	GSM1900	0.1028	-	0.1028
Right side	GSM1900	0.0759	-	0.0759
Left side	GSM1900	-	0.0176	0.0176
Back	WCDMA Band V	0.4617	0.0830	0.5447
Front	WCDMA Band V	0.0898	0.0219	0.1117
Top side	WCDMA Band V	-	0.0735	0.0735
Bottom side	WCDMA Band V	0.3286	-	0.3286
Right side	WCDMA Band V	0.1072	-	0.1072
Left side	WCDMA Band V	-	0.0176	0.0176
Back	WCDMA Band II	0.2844	0.0830	0.3674
Front	WCDMA Band II	0.0899	0.0219	0.1118
Top side	WCDMA Band II	-	0.0735	0.0735
Bottom side	WCDMA Band II	0.1120	-	0.1120
Right side	WCDMA Band II	0.0900	-	0.0900
Left side	WCDMA Band II	-	0.0176	0.0176

WWAN and Bluetooth

	WWA	AN	Bluetooth	Summed SAR	
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)	
Back	GSM850	0.6071	0.0420	0.6491	
Front	GSM850	0.0472	0.0420	0.0892	
Top side	GSM850	-	0.0420	0.0420	
Bottom side	GSM850	0.1821	0.0420	0.2241	
Right side	GSM850	0.1279	0.0420	0.1699	
Left side	GSM850	-	0.0420	0.0420	
Back	GSM1900	0.4302	0.0420	0.4722	
Front	GSM1900	0.0279	0.0420	0.0699	
Top side	GSM1900	-	0.0420	0.0420	
Bottom side	GSM1900	0.1028	0.0420	0.1448	
Right side	GSM1900	0.0759	0.0420	0.1179	
Left side	GSM1900	-	0.0420	0.0420	
Back	WCDMA Band V	0.4617	0.0420	0.5037	
Front	WCDMA Band V	0.0898	0.0420	0.1318	
Top side	WCDMA Band V	-	0.0420	0.0420	
Bottom side	WCDMA Band V	0.3286	0.0420	0.3706	
Right side	WCDMA Band V	0.1072	0.0420	0.1492	
Left side	WCDMA Band V	-	0.0420	0.0420	
Back	WCDMA Band II	0.2844	0.0420	0.3264	
Front	WCDMA Band II	0.0899	0.0420	0.1319	
Top side	WCDMA Band II	-	0.0420	0.0420	
Bottom side	WCDMA Band II	0.1120	0.0420	0.154	
Right side	WCDMA Band II	0.0900	0.0420	0.132	
Left side	WCDMA Band II	-	0.0420	0.0420	

10. Measurement Uncertainty

10.1 Uncertainty for EUT SAR Test

b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
	(+= 70)	DIST.				(+- 70)	(+-70)	
F 2 1	7.0	N	1	1	1	7.00	7.00	oc
E.2.2	2.5	R		(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	∞
E.2.2	4.0	R	$\sqrt{3}$	(Cp)^1/2	(Cp)^1/2	1.63	1.63	∞
E.2.3	1.0	R	√3	1	1	0.58	0.58	œ
E.2.4	5.0	R	√3	1	1	2.89	2.89	œ
E.2.5	1.0	R	√3	1	1	0.58	0.58	œ
E.2.6	0.02	N	1	1	1	0.02	0.02	œ
E.2.7	3.0	R	√3	1	1	1.73	1.73	œ
E.2.8	2.0	R	√3	1	1	1.15	1.15	œ
E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
E.6.2	2.0	R	√3	1	1	1.15	1.15	œ
E.6.3	0.05	R	√3	1	1	0.03	0.03	8
E.5.2	5.0	R	√3	1	1	2.89	2.89	8
E.4.2.1	0.03	N	1	1	1	0.03	0.03	N-1
E.4.1.1	5.00	N	1	1	1	5.00	5.00	
6.6.2	12.02	R	√3	1	1	6.94	6.94	8
E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
	- 00		1-	0.11	0.42			•
E.3.2	5.00	R	√3	0.64	0.43	1.85	1.24	
E 2 2	5.00	NT	1	0.64	0.42	2.20	2.15	
E.3.3	3.00	IN	1	0.04	0.43	3.20	2.13	
E.3.2	0.37	R	√3	0.6	0.49	0.13	0.10	
E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
	E.2.1 E.2.2 E.2.2 E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.2 E.6.3 E.5.2 E.4.1.1 6.6.2 E.3.1 E.3.2 E.3.2	Sec. Tol (+-%) E.2.1 7.0 E.2.2 2.5 E.2.3 1.0 E.2.4 5.0 E.2.5 1.0 E.2.6 0.02 E.2.7 3.0 E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05 E.5.2 5.0 E.4.1.1 5.00 6.6.2 12.02 E.3.1 0.05 E.3.2 5.00 E.3.3 5.00 E.3.2 0.37	Sec. Tol (+-%) Prob. Dist. E.2.1 7.0 N E.2.2 2.5 R E.2.2 4.0 R E.2.3 1.0 R E.2.4 5.0 R E.2.5 1.0 R E.2.6 0.02 N E.2.7 3.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.4.2.1 0.03 N E.4.1.1 5.00 N E.3.1 0.05 R E.3.2 5.00 R E.3.3 5.00 N E.3.2 0.37 R	Sec. Tol (+-%) Prob. Dist. Div. Dist. E.2.1 7.0 N 1 E.2.2 2.5 R $\sqrt{3}$ E.2.2 4.0 R $\sqrt{3}$ E.2.3 1.0 R $\sqrt{3}$ E.2.4 5.0 R $\sqrt{3}$ E.2.5 1.0 R $\sqrt{3}$ E.2.6 0.02 N 1 E.2.7 3.0 R $\sqrt{3}$ E.6.1 3.0 R $\sqrt{3}$ E.6.2 2.0 R $\sqrt{3}$ E.6.3 0.05 R $\sqrt{3}$ E.5.2 5.0 R $\sqrt{3}$ E.4.2.1 0.03 N 1 E.4.1.1 5.00 N 1 6.6.2 12.02 R $\sqrt{3}$ E.3.1 0.05 R $\sqrt{3}$ E.3.2 5.00 R $\sqrt{3}$ E.3.2 0.37 R $\sqrt{3}$	Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) E.2.1 7.0 N 1 1 E.2.2 2.5 R $\sqrt{3}$ (Cp)^\cdot 1/2 E.2.2 4.0 R $\sqrt{3}$ (Cp)^\cdot 1/2 E.2.3 1.0 R $\sqrt{3}$ 1 E.2.4 5.0 R $\sqrt{3}$ 1 E.2.5 1.0 R $\sqrt{3}$ 1 E.2.6 0.02 N 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 E.2.8 2.0 R $\sqrt{3}$ 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 E.4.2.1 0.03 N 1 1 E.4.1.1 5.00 N 1 1 E.3.2 5.00 R $\sqrt{3}$ 1 0.64 E.3.2 0.37 R </td <td>Sec. Tol (+-%) Prob. Dist. Div. Div. Ci (1g) Ci (10g) E.2.1 7.0 N 1 1 1 E.2.2 2.5 R $\sqrt{3}$ ($\frac{1}{2}$Cp)^1/2 ($\frac{1}{2}$Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$Cp)^1/2 ($\frac{1}{2}$Cp)^1/2 E.2.3 1.0 R $\sqrt{3}$ 1 1 E.2.3 1.0 R $\sqrt{3}$ 1 1 E.2.4 5.0 R $\sqrt{3}$ 1 1 E.2.5 1.0 R $\sqrt{3}$ 1 1 E.2.6 0.02 N 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 E.4.2.1 0.03 N <</td> <td>Sec. Tol (+-%) Prob. Dist. Div. Dist. Ci (1g) Ci (10g) Ig Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 E.2.2 2.5 R $\sqrt{3}$ (L-Cp)^A1/2 (L-Cp)^A1/2 1.02 E.2.2 4.0 R $\sqrt{3}$ (Cp)^A1/2 (Cp)^A1/2 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.02 E.2.6 0.02 N 1 1 1 1.73 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.15<</td> <td>Sec. (+-%) Tol (+-%) Prob. pist. Div. pist. Ci (1g) Ci (10g) 1g Ui (+-%) 10g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 7.00 E.2.2 2.5 R √3 (1_Cp)^1/2 (1_Cp)^1/2 1.02 1.02 E.2.2 4.0 R √3 (1_Cp)^1/2 (Cp)^1/2 1.63 1.63 E.2.3 1.0 R √3 1 1 0.58 0.58 E.2.4 5.0 R √3 1 1 0.58 0.58 E.2.5 1.0 R √3 1 1 0.58 0.58 E.2.6 0.02 N 1 1 1 0.02 0.02 E.2.7 3.0 R √3 1 1 1.15 1.15 E.6.1 3.0 R √3 1 1 1.73 1.73 E.6.2 2.0 R √3 1</td>	Sec. Tol (+-%) Prob. Dist. Div. Div. Ci (1g) Ci (10g) E.2.1 7.0 N 1 1 1 E.2.2 2.5 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.3 1.0 R $\sqrt{3}$ 1 1 E.2.3 1.0 R $\sqrt{3}$ 1 1 E.2.4 5.0 R $\sqrt{3}$ 1 1 E.2.5 1.0 R $\sqrt{3}$ 1 1 E.2.6 0.02 N 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 E.4.2.1 0.03 N <	Sec. Tol (+-%) Prob. Dist. Div. Dist. Ci (1g) Ci (10g) Ig Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 E.2.2 2.5 R $\sqrt{3}$ (L-Cp)^A1/2 (L-Cp)^A1/2 1.02 E.2.2 4.0 R $\sqrt{3}$ (Cp)^A1/2 (Cp)^A1/2 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.02 E.2.6 0.02 N 1 1 1 1.73 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.15<	Sec. (+-%) Tol (+-%) Prob. pist. Div. pist. Ci (1g) Ci (10g) 1g Ui (+-%) 10g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 7.00 E.2.2 2.5 R √3 (1_Cp)^1/2 (1_Cp)^1/2 1.02 1.02 E.2.2 4.0 R √3 (1_Cp)^1/2 (Cp)^1/2 1.63 1.63 E.2.3 1.0 R √3 1 1 0.58 0.58 E.2.4 5.0 R √3 1 1 0.58 0.58 E.2.5 1.0 R √3 1 1 0.58 0.58 E.2.6 0.02 N 1 1 1 0.02 0.02 E.2.7 3.0 R √3 1 1 1.15 1.15 E.6.1 3.0 R √3 1 1 1.73 1.73 E.6.2 2.0 R √3 1

measurement uncertainty						
Combined Standard Uncertainty		RSS		12.98	12.53	
Expanded Uncertainty		K=2		25.32	24.43	
(95% Confidence interval)						

Model: Winnpad73G

10.2 Uncertainty for System Performance Check

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	∞
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	œ
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	∞
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	8
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	8
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	8
RF ambient Conditions	E.6.1	3.0	R	√3	1	1	1.73	1.73	∞
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	oc
Tolerance									
Probe positioning with respect to	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Phantom Shell				,					
Extrapolation, interpolation and	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
integration Algoritms for Max.									
SAR Evaluation									
Dipole									
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	N-1
Input power and SAR drift	8,6.6.2	12.02	R	√3	1	1	6.94	6.94	œ
measurement									
Phantom and Tissue Parameters				I					
Phantom Uncertainty (Shape and	E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
thickness tolerances)									
Liquid conductivity - deviation	E.3.2	5.00	R	√3	0.64	0.43	1.85	1.24	
from target value									

Liquid	conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	
measurem	nent uncertainty									
Liquid permittivity - deviation		E.3.2	0.37	R	$\sqrt{3}$	0.6	0.49	0.13	0.10	
from target value										
Liquid	permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty										
Combined	l Standard Uncertainty			RSS				12.00	11.50	
Expanded Uncertainty				K=2				23.39	22.43	
(95% Con	afidanca interval)									

Model: Winnpad73G

Annex A. Plots of System Performance Check

MEASUREMENT 1

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 7 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW835			
Channels	Middle			
Signal	CW (Crest factor: 1.0)			

Frequency (MHz)	835.000000		
Relative Permittivity (real part)	40.0200000		
Conductivity (S/m)	0.910000		
Power Variation (%)	1.810000		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.545500
SAR 1g (W/Kg)	2.460145

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5411	1.8756	1.4012	1.20124	1.1514	1.0698
(W/Kg)							
	2.50	00-					
	2.37	75-			+		
	2.15	50-	\longrightarrow				
	夏 1.82 劉 1.82	25-	+		\perp		
	S) HS 1.50		++				
	යි 1.37						
	1.15						
	1.02						
	1.02	0.0 2.5 5.0	7.5 10.0 12.515	.0 17.520.0 22.5	25.0 27.530.0 3	2.535.0	
				Z (mm)			

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW1900			
Channels	Middle			
Signal	CW (Crest factor: 1.0)			

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	38.912360
Conductivity (S/m)	1.410000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.003210		
SAR 1g (W/Kg)	10.203214		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.1019	7.1125	5.2120	4.0112	3.2104	2.2442
(W/Kg)							
	10.27 9.25 7.60 WW 6.17 EWS 4.50 3.05 2.03	7-	2.5 10.0 12.5 15.	0 17.520.0 22.5: Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW2450		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

B. SAR Measurement Results

Middle Band SAR

Frequency (MHz)	2450.000000		
Relative Permittivity (real part)	38.762140		
Conductivity (S/m)	1.781240		
Power Variation (%)	1.144120		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	8.021554		
SAR 1g (W/Kg)	13.102505		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	14.1355	12.0120	10.2601	7.4845	5.9123	4.5212
	14.25 13.25 10.60 WW 7.77 EV 6.50 4.05	5- 7- 10- 15- 15-	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW835		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	835.000000		
Relative Permittivity (real part)	54.492364		
Conductivity (S/m)	0.963236		
Power Variation (%)	0.926400		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.502100		
SAR 1g (W/Kg)	2.521346		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5989	1.6985	1.1642	0.8322	0.5521	0.4025
(W/Kg)							
	2.55 2.16 1.74 1.52 1.30 9.80 0.64 0.43		7.5 10.0 12.5 15.	0 17.520.0 22.52 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW1900		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	52.394440
Conductivity (S/m)	1.491240
Power Variation (%)	0.768521
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.102232		
SAR 1g (W/Kg)	10.092420		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.1564	6.4363	5.1336	3.9541	3.1262	2.7601
(W/Kg)							
	10.27 9.25	1 1					
	7.60 W.W.B 1.60 2.17)-					
	HVS 4.50)-					
	3.05 2.03	3-	7.5 10.0 12.5 15.	0 17.520.0 22.5	25.0 27.5 30.0 3	2.5 35.0	
				Z (mm)			

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 10/27/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	dx=8mm dy=8mm
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR

Frequency (MHz)	2450.000000
Relative Permittivity (real part)	52.431240
Conductivity (S/m)	1.921230
Power Variation (%)	0.551121
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.128414
SAR 1g (W/Kg)	12.863122

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	13.3942	11.8625	9.3022	8.5761	6.3612	4.5695
(W/Kg)							
	13.27 12.25	1					
	7.60 ¥)-					
	SAB (Wilkgl 8-179	7-				_	
	చ్చ 4.50)-		$\downarrow \downarrow \downarrow$			
					\bot		
3.05-2.03-							
	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.520.0 22.5 25.0 27.5 30.0 32.5 35.0 Z (mm)						

Annex B. Plots of SAR Measurement

TYPE	BAND	<u>PARAMETERS</u>	
Tablet	GSM850	Measurement 1: Right Head with Cheek device position on Low Channel in GSM mode	
Tablet	GSM850	Measurement 2: Right Head with Tilt device position on Low Channel in GSM mode	
Tablet	GSM850	Measurement 3: Left Head with Cheek device position on Low Channel in GSM mode	
Tablet	GSM850	Measurement 4: Left Head with Tilt device position on Low Channel in GSM mode	
Tablet	GSM850	Measurement 5: Flat Plane with Back device position Body-worn on Low Channel in GSM mode	
Tablet	GSM850	Measurement 6: Flat Plane with Front device position Body-worn on Low Channel in GSM mode	
Tablet	GPR850_4TX	Measurement 7: Flat Plane with Back device position on Middle Channel in GPRS mode	
Tablet	GPR850_4TX	Measurement 8: Flat Plane with Front device position on Middle Channel in GPRS mode	
Tablet	GPRS850_4TX	Measurement 9: Flat Plane with Bottom side device position on Middle Channel in GPRS mode	
Tablet	GPRS850_4TX	Measurement 10: Flat Plane with Right side device position on Middle Channel in GPRS mode	
Tablet	GSM1900	GSM1900 Measurement 11: Right Head with Cheek device position on Low Channel in GSM mode	
Tablet	GSM1900	Measurement 12: Right Head with Tilt device position on Low Channel in GSM mode	
Tablet	GSM1900 Measurement 13: Left Head with Cheek device pos on Low Channel in GSM mode		
Tablet	GSM1900	Measurement 14: Left Head with Tilt device position on Low Channel in GSM mode	
Tablet	GSM1900	Measurement 15: Flat Plane with Back device position Body-worn on Low Channel in GSM mode	
Tablet	GSM1900	Measurement 16: Flat Plane with Front device position Body-worn on Low Channel in GSM mode	
Tablet	GPRS1900_4TX	Measurement 17: Flat Plane with Back device position on High Channel in GPRS mode	
Tablet	GPRS1900_4TX	Measurement 18: Flat Plane with Front device position	
Tablet	GPRS1900_4TX	Measurement 19: Flat Plane with Bottom side device position on High Channel in GPRS mode	

Tablet	GPRS1900_4TX	Measurement 20: Flat Plane with Right side device position on High Channel in GPRS mode
Tablet	WCDMA850_RMC	Measurement 21: Right Head with Cheek device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 22: Right Head with Tilt device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 23: Left Head with Cheek device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 24: Left Head with Tilt device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 25 Flat Plane with Back device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 26: Flat Plane with Front device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 27: Flat Plane with Bottom side device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 28: Flat Plane with Right side device position on High Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 29: Flat Plane with Back device position Body-worn on Low Channel in WCDMA mode
Tablet	WCDMA850_RMC	Measurement 30: Flat Plane with Front device position Body-worn on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 31: Right Head with Cheek device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 32: Right Head with Tilt device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 33: Left Head with Cheek device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 34: Left Head with Tilt device position on Middle Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 35: Flat Plane with Back device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 36: Flat Plane with Front device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 37: Flat Plane with Bottom side device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 38: Flat Plane with Right side device position on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 39: Flat Plane with Back device position Body-worn on Low Channel in WCDMA mode
Tablet	WCDMA1900_RMC	Measurement 40: Flat Plane with Front device position Body-worn on Low Channel in WCDMA mode
Tablet	WiFi_802.11b	Measurement 41: Right Head with Cheek device position on High Channel in WIFI mode

Tablet	WiFi_802.11b	Measurement 42: Right Head with Tilt device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 43: Left Head with Cheek device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 44: Left Head with Tilt device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 45: Flat Plane with Back side device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 46: Flat Plane with Front side device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 47: Flat Plane with Top side device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 48: Flat Plane with Left side device position on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 49: Flat Plane with Back device position Body-worn on High Channel in WIFI mode
Tablet	WiFi_802.11b	Measurement 50: Flat Plane with Front device position Body-worn on High Channel in WIFI mode

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	848.800000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-55.00, Y=-31.00

SAR 10g (W/Kg)	0.060204
SAR 1g (W/Kg)	0.091029

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0973	0.0670	0.0479	0.0361
	0.10-				
	0.09-	\longrightarrow			
	0.08-	\rightarrow			
	0.07- W 0.06-				
	⊕ 0.06-				
	o 0.05-				
	0.04				
	0.03-				
	0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	848.800000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-37.00, Y=-10.00

SAR 10g (W/Kg)	0.023521	
SAR 1g (W/Kg)	0.033561	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0350	0.0267	0.0204	0.0156
	0.035-				
	0.030-	\longrightarrow			
	0.025- W 0.020-				
	S 0.020-		\rightarrow		
	0.015-		++		
	0.012- 0.0 2.	5 5.0 7.5 10.0	0 12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 11 minutes 48 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	848.800000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-49.00, Y=-33.00

SAR 10g (W/Kg)	0.084095	
SAR 1g (W/Kg)	0.129135	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1280	0.0893	0.0657	0.0518
	0.13 - 0.12 - WW 0.10 - WW 0.08 - 0.06 -				
	0.04-	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	824.200012
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-38.00, Y=-23.00

SAR 10g (W/Kg)	0.024441	
SAR 1g (W/Kg)	0.033167	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0343	0.0269	0.0212	0.0167
	0.0343 - 0.0325 - 0.0300 - 0.0275 - 0.0250 - 0.0225 - 0.0200 - 0.0175 - 0.0150 - 0.0131 - 0.0 2	2.5 5.0 7.5 10.	0 12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.5; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Back(Body with headset)
Band	GSM850
Channels	High
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	848.800000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=8.00, Y=-15.00

SAR 10g (W/Kg)	0.299197	
SAR 1g (W/Kg)	0.415938	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3863	0.3102	0.2401	0.1772
	0.39-				
	0.35-	\rightarrow			
	₹ 0.30-				
	₹ 0.25-	\rightarrow	\rightarrow		
	0.30 - WK8 0.25 - WK8				
	0.20				
	0.15-				
	0.12- 0.0 2.5	5.0 7.5 10.0	125 150 175	20.0 22.5 25.0	
	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 Z (mm)				

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.5; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Front(Body with headset)		
Band	GSM850		
Channels	High		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	848.800000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=8.00, Y=1.00

SAR 10g (W/Kg)	0.127857	
SAR 1g (W/Kg)	0.239113	

0.00	4.00	9.00	14.00	19.00
0.0000	0.2637	0.1524	0.0895	0.0552
0.26-				
0.20-	+ $+$ $+$			
	-1 N 1			
≥ 0.15- 9				
ි 0.10-		\downarrow		
0.03-		+		
0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
		Z (mm)		
	0.0000 0.26- 0.20- 0.15- 0.10- 0.03-	0.0000 0.2637 0.26- 0.20- 0.15- 0.10- 0.03-	0.0000 0.2637 0.1524 0.26- 0.20- 0.15- 0.10- 0.03- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5	0.0000 0.2637 0.1524 0.0895 0.26

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.5; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Back	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	824.200000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-8.00, Y=-8.00

SAR 10g (W/Kg)	0.337586	
SAR 1g (W/Kg)	0.560145	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.5970	0.3803	0.2425	0.1563
	0.6-				
		$\lambda \mid \cdot \mid$			
	0.5				
	₹ 0.4-	\perp			
	3				
	B 0.4-		$\overline{}$		
	0.2-				
	0.2			4	
	0.1		10.5 10.5 10.5		
	0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	
			Z (IIIII)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Front side	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	824.200000		
Relative Permittivity (real part)	52.124510		
Conductivity (S/m)	0.96000		
Power Variation (%)	0.80000		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=8.00, Y=8.00

SAR 10g (W/Kg)	0.022347		
SAR 1g (W/Kg)	0.043496		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0470	0.0242	0.0125	0.0068
	0.05-				
	0.04-	$\lambda + 1$			
	0.04				
	₹ 0.03-	\rightarrow			
	§				
	0.03 - W 0.02 -	\rightarrow	+		
	0.01-		+		
	0.00				
	0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat plane		
Device Position	Bottom		
Band	GPRS850_2TX		
Channels	Low		
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)		

Frequency (MHz)	824.200000	
Relative Permittivity (real part)	52.124510	
Conductivity (S/m)	0.96000	
Power Variation (%)	0.80000	
Ambient Temperature	21.1	
Liquid Temperature	21.3	

Maximum location: X=-1.00, Y=-9.00

SAR 10g (W/Kg)	0.114345		
SAR 1g (W/Kg)	0.167978		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1659	0.1218	0.0893	0.0653
	0.17-				
	0.14-	+			
	፱ 0.12-	\rightarrow			
	図 0.12- (M 0.10-				
	-80.0				
	0.06-				
	0.05-				
	0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Right side	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	824.200000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=7.00, Y=8.00

SAR 10g (W/Kg)	0.054967	
SAR 1g (W/Kg)	0.118002	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1310	0.0629	0.0302	0.0158
	0.13- 0.12- 0.10- 0.08- WW 0.06- 0.04- 0.02- 0.01- 0.0 2.		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Model: Winnpad73G

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	GSM1900	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	38.912360
Conductivity (S/m)	1.410000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-64.00, Y=-25.00

SAR 10g (W/Kg)	0.044371	
SAR 1g (W/Kg)	0.085540	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0918	0.0460	0.0237	0.0137
	0.09- 0.08- 0.07- 0.05- W 0.05- V 0.04- 0.03- 0.02- 0.01- 0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Tilt	
Band	GSM1900	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	38.912360
Conductivity (S/m)	1.410000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-31.00, Y=-7.00

SAR 10g (W/Kg)	0.016004	
SAR 1g (W/Kg)	0.028947	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0311	0.0174	0.0099	0.0060
	0.031				
	0.025				
	0.004-	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 11 minutes 48 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	GSM1900		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	38.912360
Conductivity (S/m)	1.410000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-57.00, Y=-46.00

SAR 10g (W/Kg)	0.049713
SAR 1g (W/Kg)	0.094320

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1018	0.0535	0.0286	0.0165
	-0.10 -80.0 -80.0 -80.0 -80.0				
	0.02 - 0.01 - 0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	38.912360
Conductivity (S/m)	1.410000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-23.00, Y=-15.00

SAR 10g (W/Kg)	0.014502
SAR 1g (W/Kg)	0.025838

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0277	0.0155	0.0088	0.0053
	0.028-				
	0.025				
	_ 0.020-	\square			
	0.020- 0.015- 8W 0.015-				
	چ 0.010-		$\downarrow \downarrow \downarrow$		
	0.003-	5 5.0 7.5 10.0) 12.5 15.0 17.5	20.0 22.5 25.0	
	0.0 2.	5 5.0 7.5 TU.C	Z (mm)	20.0 22.3 23.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back(Body with headset)		
Band	GSM1900		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=9.00, Y=17.00

SAR 10g (W/Kg)	0.263293
SAR 1g (W/Kg)	0.486839

19.00	14.00	9.00	4.00	0.00	Z (mm)
0.0670	0.1305	0.2599	0.5070	0.0000	SAR (W/Kg)
				0.5- 0.4- 0.3- WW 0.3- 0.1- 0.0-	
	20.0 22.5 25.0	5 15.0 17.5 a	5.0 7.5 10.0	0.1-	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front(Body with headset)	
Band	GSM1900	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

 $Maximum\ location:\ X=9.00,\ Y=17.00$

SAR 10g (W/Kg)	0.118539	
SAR 1g (W/Kg)	0.146410	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1512	0.1303	0.1126	0.0977
	0.15-				
	0.14-				
	= 0.13-				
	0.13- W 0.12- W 0.11-				
	₹ 0.11-				
	0.10-		++		
	0.09-	\rightarrow	\perp		
	0.08-	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
	0.0 2.3	J.0 7.5 10.0	Z (mm)	20.0 22.3 23.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Back	
Band	GPRS1900_4TX	
Channels	High	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	1909.800000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=16.00, Y=-18.00

SAR 10g (W/Kg)	0.212614	
SAR 1g (W/Kg)	0.397806	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.4244	0.2100	0.1028	0.0533
	0.42-				
	0.25				
	0.35				
	0.30 - 0.25 - 0.25 - 0.20 - 0.				
	€ 0.20-	\perp			
	⁵⁵ 0.15−	\rightarrow	\longrightarrow		
	0.10-	+	\rightarrow		
	0.03-		++		
	0.0 2.5		12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Front side	
Band	GPRS1900_4TX	
Channels	High	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	1909.80000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-23.00, Y=-15.00

SAR 10g (W/Kg)	0.014502	
SAR 1g (W/Kg)	0.025838	

0.00	4.00	9.00	14.00	19.00
0.0000	0.0277	0.0155	0.0088	0.0053
0.028-				
0.025-	$\overline{}$			
0.020-				
/kg /				
≥ 0.015-	$\overline{}$			
δ 0.010-				
0.010				
0.003	5 50 75 100	125 150 175	20.0 22.5 25.0	
0.0 2.	5 5.6 7.5 10.0	Z (mm)	25.5 22.5 25.0	
	0.0000 0.028- 0.025- 0.020- 0.015- 0.010- 0.003-	0.0000 0.0277 0.028 - 0.025 - 0.025 - 0.015 - 0.010 - 0.003 - 0.003 - 0.003 - 0.0000	0.0000 0.0277 0.0155 0.028- 0.025- 0.020- 0.015- 0.010- 0.003- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5	0.0000 0.0277 0.0155 0.0088 0.028- 0.025- 0.015- 0.015- 0.010- 0.003- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Bottom	
Band	GPRS1900_4TX	
Channels	High	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	1909.800000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-30.00, Y=0.00

SAR 10g (W/Kg)	0.052522	
SAR 1g (W/Kg)	0.095137	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1022	0.0577	0.0326	0.0191
	0.10- 0.08- 0.06- W 0.04- 0.02- 0.01- 0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Right side	
Band	GPRS1900_4TX	
Channels	High	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

Frequency (MHz)	1909.800000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-25.00, Y=-18.00

SAR 10g (W/Kg)	0.039300	
SAR 1g (W/Kg)	0.070213	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0744	0.0413	0.0230	0.0134
· · · · · · · · · · · · · · · · · · ·	0.07-				
	0.06-				
	0.05	+			
	€ 0.04-	++			
	ॐ 0.03-		\longrightarrow		
	0.02-				
	0.01 - 0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-29.00, Y=-7.00

SAR 10g (W/Kg)	0.028229	
SAR 1g (W/Kg)	0.050865	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0545	0.0313	0.0179	0.0104
	0.05-				
	0.05	$\overline{}$			
	0.04				
	_ 0.04-				
	₹ 0.03-	\rightarrow			
	0.04-				
	0.02-				
	0.01-				
	0.01-				
	0.0 2.5	5 5.0 7.5 10.0		20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Tilt	
Band	WCDMA850_ RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-22.00, Y=-14.00

SAR 10g (W/Kg)	0.030857	
SAR 1g (W/Kg)	0.055619	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0596	0.0329	0.0184	0.0107
	0.06-				
	0.05	λ			
	0.05				
	ॼ 0.04-	+	+		
	§ 000				
	0.04 -				
	0.02-		$\overline{}$		
	0.01-		105 150 175	20.0 20.5 25.0	
	0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Cheek	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-10.00, Y=12.00

SAR 10g (W/Kg)	0.029937		
SAR 1g (W/Kg)	0.056167		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0606	0.0319	0.0169	0.0095
Z (/218)	0.06 - 0.05 - 0.04 - 0.03 - 0.02 - 0.01 - 0.01 - 0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Tilt	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	40.0200000
Conductivity (S/m)	0.910000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-2.00, Y=-7.00

SAR 10g (W/Kg)	0.026827	
SAR 1g (W/Kg)	0.049301	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0524	0.0279	0.0149	0.0083
	0.05-				
	0.04-	\rightarrow			
	<u> </u>	\			
	₹ 0.03	++			
	0.03				
	0.02				
	0.01-				
	0.00				
	0.0 2.5	5 5.0 7.5 10.0		20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=7.00, Y=8.00

SAR 10g (W/Kg)	0.321405	
SAR 1g (W/Kg)	0.419191	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.5300	0.3112	0.1513	0.0770
	0.6-				
	0.5- \$\text{\$\text{\$\gamma\$}}\$ 0.4- \$\text{\$\gamma\$}\$ 0.3- \$\text{\$\gamma\$}\$ 0.2- \$\text{\$0.1}- \$\text{\$0.0}- \$\text{\$0.0}\$ 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front side	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-6.00, Y=9.00

SAR 10g (W/Kg)	0.034642	
SAR 1g (W/Kg)	0.081510	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0915	0.0512	0.0216	0.0102
DIM (WING)	0.12- 0.10- 0.08- 0.06- W 0.06- 0.04- 0.02- 0.01- 0.0 2.5		12.5 15.0 17.5		0.0102
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Bottom	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=10.00, Y=-1.00

SAR 10g (W/Kg)	0.149500	
SAR 1g (W/Kg)	0.298271	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3303	0.1709	0.0894	0.0506
	0.33- 0.30- 0.25- WW 0.20- WW 0.15- 0.10- 0.03- 0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Right side	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-1.00, Y=6.00

SAR 10g (W/Kg)	0.048637	
SAR 1g (W/Kg)	0.097261	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1043	0.0499	0.0238	0.0123
	0.10-				
	0.08-	\rightarrow			
	<u> </u>	-			
	₹ 0.06				
	- 20.00 WHS				
	0.04		\mathbf{A}		
	0.02-				
	0.01-				
	0.0 2.9	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back(Body with headset)	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=3.00, Y=-21.00

SAR 10g (W/Kg)	0.380206	
SAR 1g (W/Kg)	0.538877	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.5624	0.4173	0.3095	0.2293
SAR (W/Rg)	0.56 - 0.50 - 0.45 - 8 0.40 - 0.35 - 0.30 - 0.25 - 0.20 - 0.17 -				0.2293
	0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front(Body with headset)	
Band	WCDMA850_RMC	
Channels	Middle	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	836.600000
Relative Permittivity (real part)	52.124510
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=3.00, Y=-21.00

SAR 10g (W/Kg)	0.083333	
SAR 1g (W/Kg)	0.108304	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1063	0.0889	0.0729	0.0585
	0.11-				
	0.10-				
	0.09-	\rightarrow			
	0.08- WK 0.07-				
	¥ 0.07-				
	0.06-		\rightarrow		
	0.05-	FO 7F 100	12.5 15.0 17.5	20.0 22.5 25.0	
	0.0 2.5	5.0 7.5 10.0	Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)		

Frequency (MHz)	1852.400000	
Relative Permittivity (real part)	38.762140	
Conductivity (S/m)	1.781240	
Power Variation (%)	1.144120	
Ambient Temperature	21.1	
Liquid Temperature	21.2	

Maximum location: X=-64.00, Y=-18.00

SAR 10g (W/Kg)	0.103194	
SAR 1g (W/Kg)	0.162663	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1766	0.1289	0.0933	0.0668
	0.18- 0.16- 0.14- 0.12- WW 0.10- 0.08- 0.06- 0.05- 0.00 2.5		12.5 15.0 17.5 2 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Tilt		
Band	WCDMA1900_ RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)		

Frequency (MHz)	1852.400000	
Relative Permittivity (real part)	38.762140	
Conductivity (S/m)	1.781240	
Power Variation (%)	1.144120	
Ambient Temperature	21.1	
Liquid Temperature	21.2	

Maximum location: X=-1.00, Y=7.00

SAR 10g (W/Kg)	0.023931	
SAR 1g (W/Kg)	0.038222	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0406	0.0262	0.0173	0.0173
	0.041-				
	0.035	$\overline{}$			
	0.030- ≥ 0.025-				
	₹ 0.025-	\rightarrow			
	∯ 0.020-		+		
	0.015-				
	0.008-	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)		

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	38.762140
Conductivity (S/m)	1.781240
Power Variation (%)	1.144120
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-56.00, Y=-32.00

SAR 10g (W/Kg)	0.075071	
SAR 1g (W/Kg)	0.121241	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1324	0.0962	0.0697	0.0502
	0.13- 0.12- 		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Tilt	
Band	WCDMA1900_RMC	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.0)	

Frequency (MHz)	1852.400000		
Relative Permittivity (real part)	38.762140		
Conductivity (S/m)	1.781240		
Power Variation (%)	1.144120		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=-2.00, Y=2.00

SAR 10g (W/Kg)	0.024926	
SAR 1g (W/Kg)	0.036646	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0374	0.0288	0.0212	0.0147
	0.037 - 0.035 -				
	0.030				
	0.025- W (MK 0.020-				
	0.015				
	0.009-	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-11.00, Y=-34.00

SAR 10g (W/Kg)	0.153271	
SAR 1g (W/Kg)	0.257619	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2778	0.1771	0.1125	0.0716
	0.28- 0.25- 0.25- 0.20- W) 0.15- 0.10- 0.04- 0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Front side		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	1852.400000		
Relative Permittivity (real part)	51.361240		
Conductivity (S/m)	1.510000		
Power Variation (%)	0.752100		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-6.00, Y=9.00

SAR 10g (W/Kg)	0.03447	
SAR 1g (W/Kg)	0.081421	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0912	0.0510	0.0211	0.0100
	0.12- 0.10- 0.08- 0.06- 0.04-				
	0.02 - 0.01 - 0.0 2.5	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Bottom		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-11.00, Y=-34.00

SAR 10g (W/Kg)	0.079120	
SAR 1g (W/Kg)	0.101359	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.2523	0.1123	0.0859	0.0759
	0.28-				
	0.25-	$\overline{}$			
	₹ 0.20-				
	§ 0.15-				
	0.20- W 0.15-		$\mathbf{X} + \mathbf{A}$		
	0.10-		+		
				\downarrow	
	0.04		105 150 175	20.0 20.5 25.0	
	0.0 2.5		12.5 15.0 17.5 : Z (mm)	20.0 22.5 25.0	
			2 (IIIII)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Right side		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-6.00, Y=9.00

SAR 10g (W/Kg)	0.034642	
SAR 1g (W/Kg)	0.081510	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0915	0.0512	0.0216	0.0102
	0.12- 0.10- 0.08- 0.06- WWW 0.06- 0.04- 0.02- 0.01- 0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back(Body with headset)		
Band	WCDMA1900_RMC		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=16.00

SAR 10g (W/Kg)	0.292160	
SAR 1g (W/Kg)	0.432370	

0.00	4.00	9.00	14.00	19.00
0.0000	0.4170	0.2887	0.2014	0.1425
0.42-				
	+			
₹ 0.30				
≥ 0.25-	\rightarrow	+		
AS 0.30-				
0.15				
0.10	50 7E 100	125 150 175	20.0 22.5 25.0	
0.0 2.5	0 5.0 7.5 10.0	Z (mm)	20.0 22.0 25.0	
	0.0000 0.42- 0.35- 0.30- 0.25- 0.20- 0.15- 0.10-	0.0000 0.4170 0.42- 0.35- 0.30- 0.25- 0.20- 0.15- 0.10-	0.0000 0.4170 0.2887 0.42- 0.35- 0.25- 0.20- 0.15- 0.10- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5	0.0000 0.4170 0.2887 0.2014 0.42- 0.35- 0.25- 0.20- 0.15- 0.10- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front(Body with headset)	
Band	WCDMA1900_RMC	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	51.361240
Conductivity (S/m)	1.510000
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3

 $Maximum\ location:\ X=0.00,\ Y=16.00$

SAR 10g (W/Kg)	0.070756
SAR 1g (W/Kg)	0.092774

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0938	0.0746	0.0604	0.0499
	0.09-				
	0.08	+			
	8 0.07				
	§ 0.07				
	S 0.06-				
	0.05-				
	0.04-	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		
			2 (11111)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	WiFi_802.11b	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	38.762140
Conductivity (S/m)	1.781240
Power Variation (%)	1.144120
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-37.00, Y=-10.00

SAR 10g (W/Kg)	0.023521	
SAR 1g (W/Kg)	0.033561	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0350	0.0267	0.0204	0.0156
	0.035-				
	0.030-				
	図 0.025- W 0.020-		+++		
	& 0.020-				
	0.015-		++		
	0.012- 0.0 2	.5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Tilt	
Band	WiFi_802.11b	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	38.762140
Conductivity (S/m)	1.781240
Power Variation (%)	1.144120
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-31.00, Y=-7.00

SAR 10g (W/Kg)	0.016004	
SAR 1g (W/Kg)	0.028947	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0311	0.0174	0.0099	0.0060
	0.031				
	0.025				
	0.004-	5 5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	WiFi_802.11b		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	2412.000000	
Relative Permittivity (real part)	38.762140	
Conductivity (S/m)	1.781240	
Power Variation (%)	1.144120	
Ambient Temperature	21.1	
Liquid Temperature	21.2	

Maximum location: X=1.00, Y=22.00

SAR 10g (W/Kg)	0.060204	
SAR 1g (W/Kg)	0.073029	

0.00	4.00	9.00	14.00	19.00
0.0000	0.0973	0.0670	0.0479	0.0361
0.10-				
0.09-	$\overline{}$			
0.08-	+ $+$ $+$	+		
₹ 0.07-	\rightarrow			
≥ 0.06-	\rightarrow			
Š 0.05-				
0.04				
0.03-	50 75 100	125 150 175	20.0 22.5 25.0	
0.0 2.3	7 3.0 7.3 10.0	Z (mm)	20.0 22.3 23.0	
	0.0000 0.10 - 0.09 - 0.08 - 0.07 - 0.06 - 0.05 - 0.04 - 0.03 -	0.0000 0.0973 0.10- 0.09- 0.08- 0.08- 0.06- 0.05- 0.04- 0.03-	0.0000 0.0973 0.0670 0.10- 0.09- 0.08- 0.07- 0.06- 0.05- 0.04- 0.03- 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5	0.0000 0.0973 0.0670 0.0479 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Tilt		
Band	WiFi_802.11b		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	38.762140
Conductivity (S/m)	1.781240
Power Variation (%)	1.144120
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=1.00, Y=22.00

SAR 10g (W/Kg)	0.031254	
SAR 1g (W/Kg)	0.072710	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	(W/Kg) 0.0000	0.0901	0.0414	0.0186	0.0100
	0.09- 0.08- 0.06- WW 0.04- 0.02- 0.01- 0.0 2.5		12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

Model: Winnpad73G

MEASUREMENT 47

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back		
Band	WiFi_802.11b		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	51.082401
Conductivity (S/m)	1.910245
Power Variation (%)	0.542660
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-1.00, Y=-9.00

SAR 10g (W/Kg)	0.055752	
SAR 1g (W/Kg)	0.080556	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1249	0.0926	0.0661	0.0448
	0.12-				
	0.10-	\rightarrow			
	₹ 0.08		$\overline{}$		
	-80.0 % -80.0 %				
	0.06				
	0.04	+	+		
	0.03-				
	0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front Side	
Band	WiFi_802.11b	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	51.082401
Conductivity (S/m)	1.910245
Power Variation (%)	0.542660
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=15.00, Y=14.00

SAR 10g (W/Kg)	0.013582
SAR 1g (W/Kg)	0.021280

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0224	0.0149	0.0100	0.0067
	0.0224-				
	0.0200 -	$\overline{}$			
	0.0175-	++			
	₹ 0.0150-	$\overline{}$			
	8 0.0150- 8 0.0125-		$\overline{}$		
	ో 0.0100-		\longrightarrow		
	0.0075		\rightarrow		
	0.0044				
		.5 5.0 7.5 10.	0 12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Top Side	
Band	WiFi_802.11b	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	51.082401
Conductivity (S/m)	1.910245
Power Variation (%)	0.542660
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-56.00, Y=-32.00

SAR 10g (W/Kg)	0.056982
SAR 1g (W/Kg)	0.071255

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1224	0.0962	0.0697	0.0502
	0.13- 0.12- 		12.5 15.0 17.5 2 Z (mm)	20.0 22.5 25.0	

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Left Side	
Band	WiFi_802.11b	
Channels	Low	
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)	

Frequency (MHz)	2412.000000
Relative Permittivity (real part)	51.082401
Conductivity (S/m)	1.910245
Power Variation (%)	0.542660
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=15.00, Y=14.00

SAR 10g (W/Kg)	0.011245
SAR 1g (W/Kg)	0.017106

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0181	0.0130	0.0092	0.0062
	0.018- 0.016- 0.014- W 0.012- W 0.010- 0.008- 0.006- 0.004- 0.0 2.				

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back(Body with headset)		
Band	WiFi_802.11b		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	2412.000000		
Relative Permittivity (real part)	51.082401		
Conductivity (S/m)	1.910245		
Power Variation (%)	0.542660		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=1.00, Y=-23.00

SAR 10g (W/Kg)	0.082928		
SAR 1g (W/Kg)	0.118113		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1232	0.0865	0.0631	0.0485
	0.12- 0.10- 0.08- 0.06- 0.04- 0.0 2.5		12.5 15.0 17.5 Z (mm)		
			2 (11111)		

Type: Phone measurement (Complete)
Date of measurement: 10/27/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 03/21/2014

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Front(Body with headset)		
Band	WiFi_802.11b		
Channels	Low		
Signal	Duty Cycle: 1.00 (Crest factor: 1.00)		

Frequency (MHz)	2412.000000		
Relative Permittivity (real part)	51.082401		
Conductivity (S/m)	1.910245		
Power Variation (%)	0.542660		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=15.00, Y=14.00

SAR 10g (W/Kg)	0.034888		
SAR 1g (W/Kg)	0.060548		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0712	0.0473	0.0312	0.0196
	0.07- 0.06- 0.05- 0.04- WW 0.03- 0.02- 0.01- 0.0 2.5	5.0 7.5 10.0 12.5 15.0	0 17.520.0 22.5 25.0 2 Z (mm)	7.5 30.0 32.5 35.0	

Annex C. EUT Photos

EUT View_Front

EUT View_Back

Antenna View

Annex D. Test Setup Photos

Test View 1 (Right Head)

Tilt

Test View 2 (Left Head)

Tilt

Test View 3

Body Back

Right side

Left side

Top side

Bottom Side

Body-worn

Annex E. Calibration Certificate

Please refer to the exhibit for the calibration certificate

***** END OF REPORT *****