Principal component analysis

Principal component analysis (PCA)

- workhorse of machine learning
- primarily used for dimensionality reduction
- unsupervised (does not predict)
- extension of "correlation" for multiple variables

Give me a machine learning algorithm, and I can show you at the root of that algorithm is PCA!

Churchland et al., 2012

Churchland et al., 2012

How can we "compress" them?

How can we "compress" them?

Idea 1: Only keep x1 or x2 that has the largest variance.

How can we "compress" them?

Idea 1: Only keep x1 or x2 that has the largest variance.

Idea 2: Search for a combination of x1 and x2 that has the largest variance.

How can we "compress" them?

How can we "compress" them?

What happens for three variables: x1, x2, x3?

if data look like a pencil?

... a pancake?

... a sphere?

Three useful outputs of PCA:

- fraction variance explained
- loadings
- principal components

Three useful outputs of PCA:

- Section 1 in Notebook

- Section 2 in Notebook