Untitled

Jamie Ash

2022-12-09

Question 1. Prove each of the following. I each case, you should create a bijection between the two sets.Briefly justify that your function are in fact bijections.

- (a) $\{\heartsuit, \clubsuit, \spadesuit\} = \{\circ, \square, \triangle\}$
- (b) $\mathbb{N} = \{oddnaturalnumbers\}$
- (c) $A \times \{1\} = A$, where A is any set.

Question 2. Let \digamma denote the seet of all functions from \mathbb{N} to $\{0,1\}$.

- (a) Describe at least three functions in the set F.
- (b) Prove that $|F| = |P(\mathbb{N})|$.

Use multiplicatory rule to show $|F| = 2^{|\mathbb{N}|}$. *Note: a function with the same input and same out put is an equal function. so there's $2 \times 2 \times 2 \times ... \times n$ where n is the last natural number.

elements in $\mathbb{N} = \{1, 2, 3...n\}$ options for each element = $\{(0, 1)_1, (0, 1)_2, (0, 1)_3...(0, 1)_n\}$