MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD.79 Quantum Computation

Problem 1. For any unit vector $\mathbf{j} = (j_x, j_y, j_z)$ we can define the following operator

$$\sigma_{\mathbf{j}} = j_x \sigma_X + j_y \sigma_Y + j_z \sigma_Z$$

which corresponds to a π -radian rotation about **j**-axis.

- (a) show that $\sigma_i^2 = I$.
- (b) σ_i has two eigenvalues: +1 and -1.
- (c) Find the eigenvectors $|+\rangle_{\mathbf{j}}$ and $|-\rangle_{\mathbf{j}}$ respectively corresponding to eigenvalues +1 and -1.

Problem 2. Find an approximation to

$$e^{i\theta\sigma_{_{\scriptstyle Y}}/2}e^{i\theta\sigma_{_{\scriptstyle X}}/2}e^{-i\theta\sigma_{_{\scriptstyle Y}}/2}e^{-i\theta\sigma_{_{\scriptstyle X}}/2}$$

up to the second order of θ for $\theta \ll 1$.

Problem 3. Rewrite $\frac{1}{\sqrt{2}}(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$ in the following basis $\{|+\rangle_A \otimes |+\rangle_B, |+\rangle_A \otimes |-\rangle_B, |-\rangle_A \otimes |+\rangle_B, |-\rangle_A \otimes |-\rangle_B\}$.

What are Pr(++), Pr(+-), Pr(-+), and Pr(--)?

Problem 4. For any two qubits $|\psi\rangle$ and $|\phi\rangle$, find a unitary operator U with the following property:

$$U|\psi\rangle_A\otimes|\phi\rangle_B=|\phi\rangle_A\otimes|\psi\rangle_B.$$

Write down U in the basis $\{|0\rangle_A \otimes |0\rangle_B, |0\rangle_A \otimes |1\rangle_B, |1\rangle_A \otimes |0\rangle_B, |1\rangle_A \otimes |1\rangle_B \}$.

Problem 5. Write out

$$\frac{1}{\sqrt{2}}(|0\rangle_A\otimes|1\rangle_C+|1\rangle_A\otimes|0\rangle_C)\otimes|+\rangle_B$$

in the following basis:

 $\left\{|000\rangle_{ABC},|001\rangle_{ABC},|010\rangle_{ABC},|011\rangle_{ABC},|100\rangle_{ABC},|101\rangle_{ABC},|110\rangle_{ABC},|111\rangle_{ABC}\right\}.$

Problem 6. Simplify the following expression:

$$_{A}\langle+|\big(|0\rangle_{A}\otimes|1\rangle_{B}+|1\rangle_{A}\otimes|0\rangle_{B}\,\big)/\sqrt{2}$$
 .