频率与概率

1.频率

对任意随机试验, Ω 是样本空间,A 是事件,设在n次试验中,事件A 出现的次数为 n_A 次,数

 $\frac{n_A}{n}$

称为事件A在n 次试验中出现的频率,记为 $f_n(A)$,即

$$f_n(A) = \frac{n_A}{n}.$$

历史上,有很多学者为了考察某些问题的概率而做了大量的试验,以观察一些问题的实质.例如在抛硬币试验中,有这样三组数据:

试验者	试验次数	正面出现次数	频率
蒲丰	4040	2048	0.5069
K.皮尔逊	12000	6019	0.5016
K.皮尔逊	24000	12012	0.5005

概率的统计定义

对于任何一个事件A, 若事件A在N次重复试验中发生的频率随着N的增大将稳定到某个常数,就称该常数为事件发生的概率,记为P(A).

例1 在抛硬币试验中,以A表示出现正面朝上这一事件,则由上面的统计数据得到事件 A发生的概率为

$$P(A) = \frac{1}{2}.$$

例2 为了设计某路口向左拐弯的汽车侯车道. 在每天交通最繁忙的时间(上午9时)在该路口观察候车数,共观察了60天,得数据如下:

等候车辆数	0	1	2	3	4	5	6	总和
等候天数	4	16	20	14	3	2	1	60
频率	$\frac{4}{60}$	16 60	<u>20</u> 60	14 60	3 60	$\frac{2}{60}$	$\frac{1}{60}$	1

试求某天上午9时在该路口至少有5辆汽车在等候左转弯的概率.

解 设事件A表示"至少有5辆汽车在等候左转弯"这一事件,在60次观察中,事件发生的频率

$$f_{60}(A) = \frac{2+1}{60} = \frac{1}{20} = 0.05,$$

故可近似地认为至少有5辆汽车在等候左转弯的概率为

$$P(A) = 0.05.$$

思考题

频率可以完全作为概率的替代吗? 频率与古典概率和几何概率有什么共同性质?

谢谢

同济大学数学科学学院概率统计教学团队