Álgebra I Práctica 7 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

- Notas teóricas
- Ejercicios de la guía:

1.	6.	11.	16.	21.	26.	31.	36.
2.	7.	12.	17.	22.	27.	32.	37.
3.	8.	13.	18.	23.	28.	33.	38.
4.	9.	14.	19.	24.	29.	34.	39.
5.	10.	15.	20.	25.	30.	35.	

• Ejercicios Extras

Notas teóricas:

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$\therefore \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$

$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos $g y R \in \mathbb{K}[X]$ tal que $f = g \cdot g + R$ con $\operatorname{gr}(R) < \operatorname{gr}(f) \circ R = 0$
- α es raíz de $f \iff X \alpha \mid f \iff f = g \cdot (X \alpha)$
- Máximo común divisor: Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.
 - -(f:q) | f y (f:q) | q
 - $-f = (f:q) \cdot k_f$ y $q = (f:q) \cdot k_q$ con k_f y k_q en $\mathbb{K}[X]$
 - Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples:

Sea $f \in \mathbb{K}[x]$ no nulo, y sea $\alpha \in \mathbb{K}$. Se dice que:

- $-\alpha$ es raíz múltiple de $f \Leftrightarrow f = (x \alpha)^2 q$ para algún $q \in \mathbb{K}[X]$
- $-\alpha$ es raíz simple de $f \Leftrightarrow x \alpha \mid f$ en $\mathbb{K}[X]$, pero $(X \alpha)^2 \not\mid f$ en $\mathbb{K}[X] \Leftrightarrow f = (X \alpha)q$ para algún $q \in \mathbb{K}[X]$ tal que $q(\alpha) \neq 0$.
- Sea $m \in \mathbb{N}_0$. Se dice que α es raíz de multiplicidad (exactamente) m de f, y se nota mult $(\alpha; f) =$ $m \iff (X - \alpha)^m \mid f$, pero $(x - \alpha)^{m+1} \not\mid f$.
 - O equivalentemente, $f = (X \alpha)^m q \operatorname{con} q \in \mathbb{K}[X]$, pero $q(\alpha) \neq 0$
- Sea $f \in \mathbb{K}[X]$ no nulo $\operatorname{mult}(\alpha; f) \leq \operatorname{gr}(f)$:
- Sean $f, g \in \mathbb{K}[X]$ no ambos nulos, y $\alpha \in \mathbb{K} \Rightarrow f(\alpha) = f(\alpha) = 0 \Leftrightarrow (f : g)(\alpha) = 0$
- Vale que α es raíz múltiple de $f \iff f(\alpha) = 0$ y $f'(\alpha) = 0 \iff \alpha$ es raíz de $(f:f'), X \alpha \mid (f:f')$
 - $\operatorname{mult}(\alpha, f) = m \iff f(\alpha) = 0$ y $\operatorname{mult}(\alpha; f') = m$ –

$$- \operatorname{mult}(\alpha; f) = m \iff \left\{ \begin{array}{l} \operatorname{mult}(\alpha; f) \geq m \\ \operatorname{mult}(\alpha; f) \geq m \end{array} \right\} \begin{array}{l} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)}(\alpha) = 0 \\ \operatorname{mult}(\alpha; f) = m \end{array} \right\}$$

Cantidad de raíces:

Ejercicios de la guía:

- 1. Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:
 - i) $(4X^6 2X^5 + 3X^2 2X + 7)^{77}$.
 - ii) $(-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$.
 - iii) $(-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$.
 - i) coeficiente principal: 4⁷⁷ grado: $6 \cdot 77$
 - ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28
 - $(\underbrace{-3X^5 + X^4 X + 5}_{f})^4 + \underbrace{-81X^{20} + 19X^{19}}_{g})$ Cuando sumo me queda: $\operatorname{cp}(f^4) - \operatorname{cp}(g) = (-3)^4 - 81 = 0 \Rightarrow \operatorname{gr}(f^4 + g) < 20 \rightarrow \operatorname{Calculo} \operatorname{el} \operatorname{cp}(f^4 + g) \operatorname{con} \operatorname{gr}(f^4 + g) = 19.$

aburo $a \ f:$ $\frac{\text{para usar}}{\text{formula de } f \cdot g} (-3X^5 + X^4 - X + 5)^4 = (-3X^5 + 1X^4 - X + 5)^2 \cdot (-3X^5 + X^4 - X + 5)^2$ $f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente}$ $\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{me interesa solo} \\ \text{el término con } k = 19} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\bigstar}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\bigstar}{=} 2 \cdot a_9 \cdot b_{10}$ $\begin{cases} k=0 & \text{$\langle i+j=k$} \\ \int & \text{el termino con } k=19 \\ \int & \frac{b_{10} \text{ sale a}}{\text{ojfmetro}} & b_{10} = (-3)^2 = 9 \\ \begin{cases} \frac{a_9 \text{ no tan fácil, volver}}{\text{a usar } \sum f \cdot g \text{ en } k=9} & f \cdot f = \sum_{k=0}^{10} \left(\sum_{i+j=k} c_i \cdot d_j\right) X^k \xrightarrow{k=9} \sum_{i+j=9} c_i \cdot d_j X^9 \stackrel{\bigstar^3}{=} c_4 \cdot d_5 + c_5 \cdot d_4 \stackrel{\bigstar^2}{=} 2 \cdot c_4 \cdot d_5 \\ \begin{cases} \frac{d_5 \text{ sale a}}{\text{ojfmetro}} & d_5 = -3 \\ \frac{c_4 \text{ sale a}}{\text{ojfmetro}} & c_4 = 1 \end{cases} & \rightarrow a_9 = -6 \\ \begin{cases} \text{cp}(f^4) = 2 \cdot (-6) \cdot (9) = -108 \\ \text{cp}(g) = 19 \end{cases} & \rightarrow \text{cp}(f^4 + g) = -89 \end{cases} \checkmark$

★¹: Sabemos que el gr $(f^4) = 20 \Rightarrow \text{gr}(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{\begin{array}{c} i = 10, j = 9 \\ \lor \\ i = 0, i = 10 \end{array}\right\}$

 \star^2 : porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.

★³: Idem ★¹ para el polinomio f grado: 19

- 2. Hacer!
- 3. Hacer!
- 4. Hallar el cociente y el resto de la división de f por g en los casos

i)
$$f = 5X^4 + 2X^3 - X + 4$$
 y $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = 4X^4 + X^3 - 4$$
 y $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$,

iii)
$$f = X^n - 1$$
 y $g = X - 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

Resultado válido para $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$

Resultado válido para
$$\mathbb{Q}[X]$$
, $\mathbb{R}[X]$, $\mathbb{C}[X]$
En $\mathbb{Z}/p\mathbb{Z} \to 4X^4 + X^3 - 4 = (2X^2 + 1) \cdot \underbrace{(2X^2 + 4X + 6)}_{q[X]} + \underbrace{(3X + 4)}_{r[X]}$

iii) Después de hacer un par iteraciones en la división asoma la idea de que:

$$X^n-1=(X-1)\cdot\sum_{j=0}^{n-1}X^j+\underbrace{0}_{r[X]},$$
 (que es la geométrica con $X\neq 1$)

Inducción: Quiero probar que $p(n): X^n - 1 = (X - 1) \cdot \sum_{i=0}^{n-1} X^j \ \forall n \in \mathbb{N}$

Caso base:
$$p(1): X^1 - 1 = (X - 1) \sum_{j=0}^{1-1} X^j \Rightarrow p(1)$$
 es Verdadero \checkmark

Paso inductivo:

Paso inductivo:
$$p(k): \underbrace{X^k - 1 = (X-1) \cdot \sum_{j=0}^{k-1} X^j}_{HI} \text{ es Verdadera} \stackrel{?}{\Rightarrow} p(k+1): X^{k+1} - 1 = (X-1) \cdot \sum_{j=0}^k X^j \text{ es Verdadera}$$

$$(X-1) \cdot \sum_{j=0}^{k} X^{j} = (X-1) \cdot \left(\sum_{j=0}^{k-1} X^{j} + X^{k}\right) = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + (X-1) \cdot X^{k} = X^{k} - 1 + X^{k+1} - X^{k} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot X^{k}}$$

$$X^{k+1}-1$$

Dado que p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción también será verdadera $p(n) \ \forall n \in \mathbb{N}$

- Determinar todos los $a \in \mathbb{C}$ tales que **5**.
 - i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$,
 - ii) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$,
 - iii) El resto de la división de $X^5 3x^3 x^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.
 - i) Haciendo la division de $X^3 + 2X^2 + 2X + 1$ por $X^2 + aX + 1$, se tiene que:

$$X^{3} + 2X^{2} + 2X + 1 = (X - a + 2)(X^{2} + aX + 1) + \underbrace{(a^{2} - 2a + 1)X + a - 1}_{\text{resto}}$$

Así, para que $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$ tiene que ocurrir que el resto sea 0. O sea,

$$X^{2} + aX + 1 \mid X^{3} + 2X^{2} + 2X + 1 \iff (a^{2} - 2a + 1)X + a - 1 = 0$$
$$\iff \begin{cases} a^{2} - 2a + 1 = 0 \\ a - 1 = 0 \end{cases}$$

Analizo las ecuaciones:

- $a 1 = 0 \iff a = 1$
- $a^2 2a + 1 = 0 \xrightarrow{a=1} 1^2 2.1 + 1 = 1 2 + 1 = 0$

Luego, el valor de $a \in \mathbb{C}$ tal que $X^3 + 2X^2 + 2X + 1$ es divisible por $X^2 + aX + 1$ es $\boxed{a = 1}$.

- ii) Hacer!
- iii) Haciendo la division de $X^5 3X^3 X^2 2X + 1$ por $X^2 + aX + 1$, se tiene que:

$$X^{5} - 3X^{3} - X^{2} - 2X + 1 = q(X^{2} + aX + 1) + \underbrace{r}_{\text{resto}}$$

con $q = (X^3 - aX^2 + (a^2 - 4)X - a^3 + 5a - 1)$ y $r = (a^4 - 6a^2 + a + 2)X + a^3 - 5a + 2$. Así,

$$r = -8X + 4$$

$$\iff (a^4 - 6a^2 + a + 2)X + a^3 - 5a + 2 = -8X + 4$$

$$\iff \begin{cases} a^4 - 6a^2 + a + 2 = -8 \\ a^3 - 5a + 2 = 4 \end{cases} \iff \begin{cases} a^4 - 6a^2 + a + 10 = 0 \\ a^3 - 5a - 2 = 0 \end{cases}$$

Analizo las ecuaciones:

• $a^3 - 5a - 2 = 0 \Leftrightarrow a(a^2 - 5) - 2 = 0$ Veo que a = -2 es solución, por lo que divido $a^3 - 5a - 2$ por a + 2 con Ruffini:

Por lo que $a^3 - 5a - 2 = (a+2)(a^2 - 2a - 1)$

Busco las raíces de $a^2 - 2a - 1$ con la fórmula resolvente:

$$a_{+,-} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot (-1)}}{2}$$
$$= \frac{2 \pm \sqrt{8}}{2}$$
$$= 1 \pm \sqrt{2}$$

Por lo que
$$a^3 - 5a - 2 = (a+2)(a-1+\sqrt{2})(a-1-\sqrt{2}) = 0 \iff \begin{cases} a = -2 \\ a = 1+\sqrt{2} \\ a = 1-\sqrt{2} \end{cases}$$

• $a^4 - 6a^2 + a + 10 = 0$

Me fijo que valores de a obtenidos antes verifican:

- Si
$$a = -2 \Rightarrow (-2)^4 - 6(-2)^2 - 2 + 10 = 16 - 24 - 2 + 10 = 0$$
 ✓
- Si $a = 1 + \sqrt{2} \Rightarrow (1 + \sqrt{2})^4 - 6(1 + \sqrt{2})^2 + 1 + \sqrt{2} + 10 = 10 + \sqrt{2} \neq 0$

Si
$$a = 1 + \sqrt{2} \Rightarrow (1 + \sqrt{2}) = 6(1 + \sqrt{2}) + 1 + \sqrt{2} + 10 = 10 + \sqrt{2} \neq 0$$

- Si $a = 1 - \sqrt{2} \Rightarrow (1 - \sqrt{2})^4 - 6(1 - \sqrt{2})^2 + 1 - \sqrt{2} + 10 = 10 - \sqrt{2} \neq 0$

Luego, el único valor de $a \in \mathbb{C}$ tal que el resto de dividir a $X^5 - 3x^3 - x^2 - 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4 es $\boxed{a = -2}$

- **6.** <u>Definición</u>: Sea K un cuerpo y sea $h \in \mathbb{K}[X]$ un polinomio no nulo. Dados $f, g \in \mathbb{K}[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g(h)$.
 - i) Probar que \equiv (h) es una relación de equivalencia en $\mathbb{K}[X]$.
 - ii) Probar que si $f_1 \equiv g_1$ (h) y $f_2 \equiv g_2$ (h) entonces $f_1 + f_2 \equiv g_1 + g_2$ (h) y $f_1 \cdot f_2 \equiv g_1 \cdot g_2$ (h).
 - iii) Probar que si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$.
 - iv) Probar que r es el resto de la división de f por h si y solo si $f \equiv r$ (h) y r = 0 o gr(r) < gr(h).
 - i) uff... Para probar que esto es una relación de equivalencia pruebo que sea reflexiva, simétrica y transitiva,
 - reflexiva: Es f congruente a f módulo h? $f \equiv f(h) \iff h \mid f f = 0 \iff h \mid 0$
 - sim'etrica: Si $f \equiv g$ (h) $\iff g \equiv f$ (h) $f \equiv g$ (h) $\iff h \mid f g \iff h \mid -(g f) \iff h \mid g f \iff g \equiv f$ (h) \checkmark
 - transitiva: Si $\begin{cases} f \equiv g(h) \\ g \equiv p(h) \end{cases} \stackrel{?}{\iff} f \equiv p(h).$

$$\begin{cases} h \mid f - g & \xrightarrow{F_1 + F_2} \\ h \mid g - p & \xrightarrow{F_2} \end{cases} \begin{cases} h \mid f - g \\ h \mid f - p \end{cases} \rightarrow f \equiv p(h) \quad \checkmark$$

Cumple condiciones para ser una relación de equivalencias en $\mathbb{K}[X]$

ii) Si
$$\begin{cases} f_1 \equiv g_1(h) \\ f_2 \equiv g_2(h) \end{cases}$$

$$f_1 \equiv g_1(h) \iff h \mid f_1 - g_1 \Rightarrow h \mid f_2 \cdot (f_1 - g_1) \iff f_1 \cdot f_2 \equiv g_1 \cdot f_2(h) \iff f_1 \cdot f_2 \equiv g_1 \cdot g_2(h)$$

- iii) Inducción: Quiero probar p(n): Si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$. Caso base: $p(1): f^1 \equiv g^1(h) \star^2$ Verdadera \checkmark
- 2 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

 $\textit{Paso inductivo: } p(k): \underbrace{f^k \equiv g^k \; (h)}_{HI} \; \text{es verdadera} \stackrel{?}{\Rightarrow} p(k+1): f^{k+1} \equiv g^{k+1} \; (h) \; \text{¿También lo es?}$

$$f^{k} \equiv g^{k} (h) \iff h \mid f^{k} - g^{k} \Rightarrow h \mid f \cdot (f^{k} - g^{k}) \iff f^{k+1} \equiv f \cdot g^{k} (h) \iff f^{k+1} \equiv g^{k+1} (h) \quad \checkmark$$

Finalmente p(1), p(k), p(k+1) resultaron verdaderas y por el principio de inducción p(n) es verdadera $\forall n \in \mathbb{N}$

- iv) Hacer!
- 7. Hallar el resto de la división de f por g para:

i)
$$f = X^{353} - X - 1$$
 y $g = X^{31} - 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = X^{1000} + X^{40} + X^{20} + 1$$
 y $g = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

iii)
$$f = X^{200} - 3X^{101} + 2$$
, y $g = X^{100} - X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

iv)
$$f = X^{3016} + 2X^{1833} - X^{174} + X^{137} + 2X^4 - X^3 + 1$$
, y $g = X^4 + X^3 + X^2 + X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ (Sugerencia ver **4.** iii))).

i)
$$g \mid g \iff X^{31} - 2 \equiv 0 \ (X^{31} - 2) \iff X^{31} \equiv 2 \ (g)$$

$$f = X^{353} - X - 1 = (\underbrace{X^{31}}_{\stackrel{(g)}{=} 2})^{11} X^{12} - X - 1 \stackrel{(g)}{=} 2^{11} X^{12} - X - 1 \rightarrow \boxed{r_g(f) = 2^{11} X^{12} - 1}$$

iii)
$$g \mid g \iff X^{100} - X + 1 \equiv 0 \ (X^{100} - X + 1) \iff X^{100} \equiv X - 1 \ (g)$$

 $f = X^{200} - 3X^{101} + 2 = (X^{100})^2 - 3X^{100}X + 2 \stackrel{(g)}{\equiv} (X - 1)^2 - 3(X - 1)X + 2$
 $\rightarrow r_g(f) = (X - 1)^2 - 3(X - 1)X + 2$

iv) Usando la sugerencia: Del ejercicio **4.** iii) sale que
$$X^n - 1 = (X - 1) \cdot \sum_{k=0}^{n-1} X^k$$

$$\frac{n=5}{\text{para el } g} X^5 - 1 = (X - 1) \underbrace{\left(X^4 + X^3 + X^2 + X + 1\right)}_{g} \iff X^5 \equiv \underbrace{1}_{r_g(X^5)} (g) \checkmark$$

$$f = (X^5)^{603}X + 2(X^5)^{366}X^3 - (X^5)^{34}X^4 + (X^5)^{27}X^2 + 2X^4 - X^3 + 1$$

$$f \equiv \underbrace{X + 2X^3 - X^4 + X^2 + 2X^4 - X^3 + 1}_{=X^4 + X^3 + X^2 + X + 1 = g} (g) \iff \boxed{f \equiv 0 \ (g)}$$

8. Hacer!

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $q = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1$$
, $q = X^5 - 2X^4 + 2X^2 - 3X + 1$,

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X-1$

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X^2 + 1$

El MCD escrito como combinación polinomial de f y $g \rightarrow X^2 + 1 = f \cdot 1 + g \cdot (-X^3)$

 $iii) \xrightarrow{\text{Haciendo}} \xrightarrow{\text{Euclides}}$

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = (X^{5} - 2X^{4} + 2X^{2} - 3X + 1) \cdot 2X + (X^{4} + 2X + 1)$$

$$X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = (X^{4} + 2X + 1) \cdot (X - 2) + 3$$

$$X^{4} + 2X + 1 = 3 \cdot (\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}) + 0$$

El MCD será el último resto no nulo y $m\'onico \rightarrow (f:g) = 1$

El MCD escrito como combinación polinomial de f y $g \to \left[1 = \frac{1}{3}g \cdot (2X^2 - 4X + 1) - \frac{1}{3}f \cdot (X - 2)\right]$

Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 - 2X^2 - X + 2$.

Sea $P \in \mathbb{K}[X] \Rightarrow el \ resto \ de \ dividir \ a \ P \ por \ X - a \ es \ P(a)$.

$$f(X) = q(X) \cdot \underbrace{X^3 - 2X^2 - X + 2}_{g(X)} + r(X), \text{ con } g(X) = (X - 2) \cdot (X - 1) \cdot (X + 1) \text{ y } r(X) = a^2 + bX + c, \text{ ya}$$

$$\text{que el gr}(r) < \text{gr}(g) \xrightarrow{\text{evaluar}} \begin{cases} f(1) = -2 = q(1) \cdot g(1) + r(1) = -2 \\ f(2) = 1 = q(2) \cdot g(2) + r(2) = 1 \\ f(-1) = 0 = q(-1) \cdot g(-1) + r(-1) = 0 \end{cases} \rightarrow \begin{cases} r(1) = a + b + c = -2 \\ r(2) = 4a + 2b + c = 1 \\ r(-1) = a - b + c = 0 \end{cases} \rightarrow \begin{cases} 1 & 1 & 1 & | -2 \\ 4 & 2 & 1 & | 1 \\ 1 & -1 & 1 & | 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | \frac{4}{3} \\ 0 & 1 & 0 & | -1 \\ 0 & 0 & 1 & | -\frac{7}{3} \end{pmatrix} \rightarrow r(X) = \frac{4}{3}X^2 - X - \frac{7}{3}$$

Sea $n \in \mathbb{N}$, $n \geq 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1$ por $X^3 - X$ en $\mathbb{Q}[X]$.

$$\begin{cases} f(X) = X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1 \\ g(X) = X \cdot (X - 1) \cdot (X + 1) \end{cases} \Rightarrow f = q(X) \cdot g(X) + r(X) \text{ con } \operatorname{gr}(\underbrace{aX^2 + bX + c}_{r(X)}) \le 2$$

$$\begin{cases} f(0) = q(0) \cdot \underbrace{g(0)}_{=0} + r(0) = 1 \\ f(1) = q(1) \cdot \underbrace{g(1)}_{=0} + r(1) = 3 \\ f(-1) = q(-1) \cdot \underbrace{g(-1)}_{=0} + r(-1) = 1 + 3(-1)^{n+1} + 3(-1)^n - 5 - 2 + 1 = \begin{cases} 2 & n \text{ impar } \\ 1 & n \text{ par } \end{cases} \end{cases}$$

$$\xrightarrow{\text{sistema de ecuaciones de } r(X)$$

$$\begin{cases} r(0) = c = 1 \\ r(1) = a + b + 1 = 3 \rightarrow a + b = 2 \\ r(-1) = a - b + 1 = \begin{cases} 2 \rightarrow a - b = 1 & n \text{ impar } \\ 1 \rightarrow a - b = 0 & n \text{ par } \end{cases}$$

$$\begin{cases} \frac{n}{\text{impar}} \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & \frac{1}{2} \end{pmatrix} \rightarrow \begin{bmatrix} r_{impar}(X) = \frac{3}{2}X^2 + \frac{1}{2}X + 1 \end{bmatrix} \checkmark$$

$$\begin{cases} \frac{n}{\text{par}} \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{bmatrix} r_{par}(X) = X^2 + X + 1 \end{bmatrix} \checkmark$$

12. Hallar la forma binomial de cada una de las raíces complejas del polinomio $f(X) = X^6 + X^3 - 2$.

El cociente $q(X) = X^5 + X^4 + X^3 + 2X^2 + 2X + 2$ se puede factorizar en grupos como $q(X) = (X^2 + X + 1) \cdot (X^3 + 2)$. Entonces las 5 raíces que me faltan para tener las 6 que debe tener $f \in \mathbb{C}[X]$ salen de esos dos polinomios.

$$X^{2} + X + 1 = 0 \Rightarrow \begin{cases} \alpha_{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \\ \alpha_{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} \end{cases}$$

$$X^{3} + 2 = 0 \xrightarrow{\text{exponencial}} \begin{cases} r^{3} = 2 \rightarrow r = \sqrt[3]{2} \\ 3\theta = \pi + 2k\pi \rightarrow \theta = \frac{\pi}{3} + \frac{2k\pi}{3} \text{ con } k = 0, 1, 2. \end{cases} \end{cases} \rightarrow \begin{cases} \alpha_{4} = \sqrt[3]{2}e^{i\frac{\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} + i\frac{\sqrt{3}}{2}) \\ \alpha_{5} = \sqrt[3]{2}e^{i\pi} = -\sqrt[3]{2} \\ \alpha_{6} = \sqrt[3]{2}e^{i\frac{5\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2}) \end{cases}$$

Sea $w=e^{\frac{2\pi}{7}i}$. Probar que $w+w^2+w^4$ es raíz del polinomio X^2+X+2 13.

Voy a usar que si $w \in G_7 \Rightarrow \sum_{i=0}^6 w^i = 0 \quad (w \neq 1)$

Si
$$f(X) = X^2 + X + 2$$
 y $w + w^2 + w^4$ es raíz $\Rightarrow f(w + w^2 + w^4) = 0$

$$(w + w^{2} + w^{4})^{2} + w + w^{2} + w^{4} + 2 = \underbrace{w^{8}}_{=w} + 2w^{6} + 2w^{5} + 2w^{4} + 2w^{3} + 2w^{2} + w + 2 = 2 \cdot \sum_{j=0}^{6} w^{j} = 0 \quad \checkmark$$

14.

- i) Probar que si $w = e^{\frac{2\pi}{5}i} \in G_5$, entonces $X^2 + X 1 = [X (w + w^{-1})] \cdot [X (w^2 + w^{-2})]$.
- ii) Calcula, justificando cuidadosamente, el valor exacto de $\cos(\frac{2\pi}{5})$.

i) Voy a usar que si
$$w \in G_5 \Rightarrow \begin{cases} \sum_{j=0}^4 w^j = 0 & (w \neq 1) \\ w^k = w^{r_5(k)} \end{cases}^{-1}$$

$$X^{2} + X - 1 = [X - (w + w^{-1})] \cdot [X - (w^{2} + w^{-2})] = X^{2} - (w^{2} + w^{-2})X - (w + w^{-1})X + \underbrace{(w + w^{-1})(w^{2} + w^{-2})}_{\bigstar^{1}} = X^{2} - X\underbrace{(w^{2} + w^{-2} + w + w^{-1})}_{\bigstar^{1}} + \underbrace{w + w^{2} + w^{3} + w^{4}}_{\bigstar^{2}} = X^{2} - X\underbrace{(w + w^{2} + w^{3} + w^{4})}_{\bigstar^{2}} + -1 + \underbrace{1 + w + w^{2} + w^{3} + w^{4}}_{=0} = X^{2} - X\underbrace{(-1 + \underbrace{1 + w + w^{2} + w^{3} + w^{4}}_{=0})}_{=0} - 1 = \underbrace{(w + w^{2} + w^{3} + w^{4})}_{\bigstar^{2}} + -1 + \underbrace{(w + w^{2} + w^{3} + w^{4})}_{=0} - 1 =$$

ii) Calculando las raíces a mano de
$$X^2+X-1 \to \left\{ \begin{array}{l} \frac{-1+\sqrt{5}}{2} \\ y \\ \frac{-1-\sqrt{5}}{2} \end{array} \right.$$

Pero del resultado del inciso i) tengo que :
$$w = e^{i\frac{2\pi}{5}} \xrightarrow[\text{la factorización es}]{\text{sé que una raíz dada}} w + w^{-1} = w + \overline{w} = 2\text{Re}(w) = 2 \cdot \underbrace{\cos(\frac{2\pi}{5})}_{\cos\theta \geq 0, \, \theta \in [0, 2\pi]} = \frac{-1 + \sqrt{5}}{2}$$

$$\rightarrow \left| \cos(\frac{2\pi}{5}) = \frac{-1 + \sqrt{5}}{4} \right| \quad \checkmark$$

15.

- i) Sean $f, g \in \mathbb{C}[X]$ y sea $a \in \mathbb{C}$. Probar que a es raíz de f y g si y sólo sí a es raíz de (f : g).
- 🎧 ¡Aportá! Correcciones, subiendo ejercicios, 🗡 al repo, críticas, todo sirve.

- ii) Hallar todas las raíces complejas de X^4+3X-2 sabiendo que tiene una raíz en común con X^4+3X^3-3X+1 .
- i) Hacer!
- ii) Busco el (f:g): $X^{4} + 3X 2 = (X^{4} + 3X^{3} 3X + 1) \cdot 1 + (-3X^{3} + 6X 3)$ $X^{4} + 3X^{3} 3X + 1 = (-3X^{3} + 6X 3) \cdot (-\frac{1}{3}X 1) + (2X^{2} + 2X 2)$ $-3X^{3} + 6X 3 = (2X^{2} + 2X 2) \cdot (-\frac{3}{2}X + \frac{3}{2}) + 0$ $(f:g) = X^{2} + X 1 \xrightarrow{\text{raices}} \begin{cases} \alpha_{1} = \frac{1 + \sqrt{5}}{2} \\ \alpha_{2} = \frac{1 \sqrt{5}}{2} \end{cases}$ $X^{4} + 3X 2 = (X^{2} + X 1) \cdot (X^{2} X + 2) + 0$
- 16. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$,

ii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$,

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$$

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$.

- i) $f = X^5 2X^3 + X$, a = 1, Todos casos de factoreo: $f = X^5 2X^3 + X = X(X^4 2X^2 + 1) = X(X^2 1)^2 = X(X 1)^2(X + 1)^2 =$ La multiplicidad de a = 1 como raíz es 2.

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a=2,$$

 $f = (X-2)^3((X+2) + (X+1)) = (X-2)^3(2X+3)$
[La multiplicidad de $a=2$ como raíz de f es 3.]

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$, $f = (X-2)^2(X^2-4) - 4(X-2)^3 = (X-2)^2(X-2)(X+2) - 4(X-2)^3 = (X-2)^3(X+2-4) = (X-2)^4$ La multiplicidad de $a = 2$ como raíz de f es 4 .

17. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} - (n+1)X^n + a$ tiene solo raíces simples en \mathbb{C} .

$$f = nX^{n+1} - (n+1)X^n + a$$

$$\xrightarrow{\text{derivo}} f' = n(n+1)X^n - n(n+1)X^{n-1} \iff f' = n(n+1)X^{n-1}(X-1)$$

$$f'(\alpha) = 0 \Leftrightarrow \begin{cases} n > 1 \Rightarrow f'(\alpha = 1) = 0 \text{ y } f'(\alpha = 0) = 0 \\ n = 1 \Rightarrow f'(\alpha = 1) = 0 \end{cases}$$

Para que las raíces α , de f no sean simples, es necesario que $f'(\alpha) = 0$. Por lo tanto, estudio solo los valores de raíces encontrados para la derivada. Si f ha de tener raíces dobles, estás deberían ser $\alpha = 1$ o $\alpha = 0$. Entonces:

$$\begin{cases} f(\alpha = 1) = a - 1 \Rightarrow f(1) \neq 0 \ \forall n \in \mathbb{N} \Leftrightarrow a \neq 1 \\ f(\alpha = 0) = a \Rightarrow f(0) \neq 0 \Leftrightarrow a \neq 0 \end{cases}$$

Si $a = 0 \land n = 1 \Rightarrow f$ tiene solo una raíz simple en 0.

Si $a \neq 1 \Rightarrow f$ tiene solo raíces simples $\forall n \in \mathbb{N}$.

Si $a \neq 0 \land n > 1 \Rightarrow f$ tiene solo raíces simples.

seguramente hay una mejor forma de expresar la respuesta.

- 18. Controlar y Pasar
- 19. Sea $f = X^{20} + 8X^{10} + 2a$. Determinar todos los valores de $a \in \mathbb{C}$ para los cuales f admite una raíz múltiple en \mathbb{C} . Para cada valor hallado determinar cuántas raíces distintas tiene f y la multiplicidad de cada una de ellas.
- Si f tiene raíces múltiples $\alpha_k \Leftrightarrow f(\alpha_k) = f'(\alpha_k) = 0$, por lo tanto tanto comienzo buscando las raíces de f' para sacarme ese a de en medio.

$$f' = 20X^{19} + 80X^9 = 20X^9(X^{10} + 4) \Rightarrow f' = 0 \Leftrightarrow \begin{cases} X = 0 \\ X^{10} = -4 \Leftrightarrow X = \sqrt[10]{4}e^{i\frac{2k+1}{10}\pi} & k \in \mathbb{Z}_{[0,9]} \end{cases}$$
Here do momento 11 refers do f' . Mo interess suber si son refers do f :

Hay de momento 11 raíces de f'. Me interesa saber si son raíces de f

$$f(0) = 2a \Rightarrow f(0) = 0 \Leftrightarrow a = 0$$

$$f = (X^{10})^2 + 8X^{10} + 2a \Rightarrow f(\alpha = X^{10}) = -4 = (-4)^2 + 8(-4) + 2a = -16 + 2a = 0 \Leftrightarrow a = 8$$

Entonces:

Si
$$a = 0 \Rightarrow f = X^{10}(X^{10} + 8)$$

 $\Rightarrow f = 0 \Leftrightarrow X = 0 \text{ o } X^{10} = -8, \text{ donde } \left[\mu(0; f) = 10\right] \text{y} \left[\mu(\sqrt[10]{8}e^{i\frac{2k+1}{10}\pi}); f\right) = 1 \text{ } k \in \mathbb{Z}_{[0-9]}.$
11 raíces distintas.

Si
$$a = 8 \Rightarrow f = X^{20} + 8X^{10} + 16 = (X^{10} + 4)^2$$

 $\Rightarrow f = 0 \Leftrightarrow X^{10} = -4$, donde $\mu(\sqrt[10]{4}e^{i\frac{2k+1}{10}\pi}); f = 2 \ k \in \mathbb{Z}_{[0-9]}$.
10 raíces distintas.

20. Hacer!

21.

- i) Probar que para todo $a \in \mathbb{C}$, el polinomio $f = X^6 2X^5 + (1+a)X^3 + (1+a)X^2 2X + 1$ es divisible por $(X-1)^2$.
- ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.

i)
$$(X-1)^2 \mid f \ \forall a \in \mathbb{C} \Leftrightarrow 1 \text{ es } por \ lo \ menos \ \text{raı́z doble de } f \Leftrightarrow f(1)=f'(1)=0.$$

$$\begin{cases} f = X^6 - 2X^5 + (1+a)X^3 + (1+a)X^2 - 2X + 1 & \xrightarrow{\text{evaluo}} f(1) = 0 \ \forall a \in \mathbb{C} \\ f' = 6X^5 - 10X^4 + 4(1+a)X^3 - 6aX^2 + 2(1+a)X - 2 & \xrightarrow{\text{evaluo}} f'(1) = 0 \ \forall a \in \mathbb{C} \end{cases}$$

Calculando f(1) y f'(1) se comprueba.

ii)
$$(X-1)^3 \mid f \Leftrightarrow f''(1) = 0$$

 $\Rightarrow f'' = 30X^4 - 40X^3 + 12(1+a)X^2 - 12aX + 2(1+a) \xrightarrow{\text{eval\'uo}} f''(1) = 2a$
 $\Rightarrow f''(1) = 0 \Leftrightarrow a = 0$

$$(X-1)^3 \mid f \iff a=0$$

Observar que si $a \neq 0$, 1 es una raíz doble de f de otra forma es una raíz por lo menos triple.

Ir a índice \uparrow

38. Hacer!

39. Hacer!

Ejercicios extras:

1.

a) Hallar todos los posibles $\mathbf{c} \in \mathbb{R}$, $\mathbf{c} > 0$ tales que:

$$f = X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + \mathbf{c}$$

tenga una raíz de argumento $\frac{3\pi}{2}$

- b) Para cada valor de **c** hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene al menos una raíz doble.
- Voy a usar que: $\star^1 \begin{cases} (-i)^2 = -1 \\ (-i)^3 = i \\ (-i)^4 = 1 \\ (-i)^5 = -i \end{cases}$

$$f(r(-i)) = (r(-i))^{6} - 4(r(-i))^{5} - (r(-i))^{4} + 4^{3} + 4(r(-i))^{2} + 48(r(-i)) + \mathbf{c} = \begin{cases} \operatorname{Re} : -r^{6} - r^{4} - 4r^{2} + \mathbf{c} = 0 \Rightarrow \mathbf{c} = r^{6} + r^{4} + 4r^{2} \\ \operatorname{Im} : r(4r^{4} - 4r^{2} - 48) = 0 \xrightarrow{\text{bicuadrática}} r^{2} = y \text{ y } r \in \mathbb{R}_{>0} \end{cases} r^{2} = 3$$

Por lo tanto si $\mathbf{c} = r^6 + r^4 + 4r^2 = (r^2)^3 + (r^2)^2 + 4r^2 \Rightarrow \mathbf{c} = 48$ con raíces $\pm \sqrt{3}i$ dado que $f \in \mathbb{Q}[X]$

b) Debe ocurrir que $(X - \sqrt{3}i)(X + \sqrt{3}i) = X^2 + 3$ $\begin{array}{r}
-4X^{4} \\
-4X^{5} - 4X^{4} + 4X^{3} \\
4X^{5} + 12X^{3} \\
-4X^{4} + 16X^{3} + 4X^{2} \\
4X^{4} + 12X^{2} \\
\hline
16X^{3} + 16X^{2} + 48X \\
-16X^{3} - 48X \\
\hline
16X^{2} + 48 \\
-16X^{2} - 48 \\
\hline
0
\end{array}$

 $f = (X^2 + 3)\underbrace{(X^4 - 4X^3 - 4X^2 + 16X + 16)}_q$ como f tiene al menos una raíz doble puedo ver las

raíces de la derivada de q:

$$q' = (4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0$$
 Posibles raíces, Gauss : $(4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0$ Posibles raíces, Gauss : $(4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0$ Posibles raíces, Gauss : $(4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0$ Posibles raíces, Gauss : $(4X^3 - 12X^2 - 8X + 16)' = 4(X^3 - 3X^2 - 2X + 4) = 0$ Posibles raíces, Gauss : $(4X^3 - 3$

 $h^2 = (X^2 - 2X - 4)^2 \rightarrow$ no la vi venir

factorizaciones:

$$\begin{bmatrix}
\mathbb{Q}[X] & \to & f = (X^2 + 3)(X^2 + 3)(X^2 - 2X - 4)^2 \\
\mathbb{R}[X] & \to & f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X^2 - 2X - 4)^2 \\
\mathbb{C}[X] & \to & f = (X - (1 + \sqrt{5}))(X - (1 - \sqrt{5}))(X - 3i)^2(X + 3i)^2
\end{bmatrix}$$

2. Factorizar el polinomio $P = X^6 - X^5 - 13X^4 + 14X^3 + 35X^2 - 49X + 49$ como producto de irreducibles en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ sabiendo que $\sqrt{7}$ es una raíz múltiple.

Un polinomio con coeficientes racionales, y una raíz irracional $\alpha=\sqrt{7}$, tendrá también al conjugado irracional $\alpha=\sqrt{7}$, tendrá también al conjugado irracional $\alpha=\sqrt{7}$

Si agregamos la información de que $\sqrt{7}$ es por lo menos raíz doble, obtenemos que:

$$\begin{cases} \sqrt{7} \text{ es raíz de } f \Rightarrow -\sqrt{7} \text{ es raíz de } f \Rightarrow (X^2 - 7) \mid f \\ \sqrt{7} \text{ es raíz doble de } f \Rightarrow -\sqrt{7} \text{ es raíz doble de } f \Rightarrow (X^2 - 7)^2 = X^4 - 14X^2 + 49 \mid f \quad \checkmark \end{cases}$$

¹Estoy usando la misma notación para conjugado racional y conjugado complejo. ¿Está bien? No sé, no me importa mientras se entienda.

- 3. Hallar todos los polinomios mónicos $f \in \mathbb{Q}[X]$ de grado mínimo que cumplan simultáneamente las siguientes condiciones:
 - i) $1 \sqrt{2}$ es raíz de f;
 - ii) $X(X-2)^2 \mid (f:f');$
 - iii) $(f: X^3 1) \neq 1;$
 - iv) f(-1) = 27;
 - i) Como $f \in \mathbb{Q}[X]$ si $\alpha_1 = 1 \sqrt{2}$ es raíz entonces $\alpha_2 = 1 + \sqrt{2}$ para que no haya coeficientes irracionales en el polinomio.

$$(X - (1 - \sqrt{2})) \cdot (X - (1 + \sqrt{2})) = X^2 - 2X - 1$$

Por lo tanto $X^2 - 2X - 1$ será un factor de $f \in \mathbb{Q}[X]$.

- ii) Si $X(X-2)^2 \mid (f:f') \Rightarrow \begin{cases} \alpha_3 = 0 \text{ raíz simple de } f' \Rightarrow \text{ raíz doble de } f \\ \alpha_4 = 2 \text{ raíz simple de } f' \Rightarrow \text{ raíz doble de } f \end{cases}$ Por lo tanto $X^2(X-2)^3$ serán factores de f.
- iii) Si $(f: X^3 1) \neq 1$ quiere decir que por lo menos alguna de las 3 raíces de: $X^3 1 = (X 1) \cdot (X (-\frac{1}{2} + \frac{\sqrt{3}}{2})) \cdot (X (-\frac{1}{2} \frac{\sqrt{3}}{2}))$ tiene que aparecer en la factorización de f. Pero parecido al item i) si tengo una raíz compleja, también necesito el conjugado complejo, para que no me queden coeficientes de f en complejos,

 $X^3 - 1 = (X - 1) \cdot (X^2 + X + 1)$, me quedaría con el factor de menor grado si eso no rompe otras condiciones.

Por lo tanto (X-1) o (X^2+X+1) aparecerá en la factorización de f.

iv) f(-1) = 27. Hasta el momento:

$$\begin{cases} f_1 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X^2 + X + 1) \to f_1(-1) = 2 \cdot (-27) \cdot 1 \cdot 1 = -54 \\ f_2 = (X^2 - 2X - 1) \cdot (X - 2)^3 \cdot X^2 \cdot (X - 1) \to f_2(-1) = 2 \cdot (-27) \cdot 1 \cdot (-2) = 108 \end{cases}$$

, ninguno cumple la condición iv).

Para encontrar un polinomio que cumpla lo pedido tomaría el f_2 que tiene menor grado de los dos y lo multiplicaría por $(X-\frac{3}{4})$ de manera que $f=(X^2-2X-1)\cdot X^2\cdot (X-2)^3\cdot (X-1)\cdot (X-\frac{3}{4}) \rightarrow |f(-1)|=27$ así cumpliendo todas las condiciones.

Factorizar como producto de polinomios irreducibles en $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$ al polinomio 4.

$$f = X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15$$

sabiendo $(f: X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15) \neq 1$

$$X^5 + 2X^4 - 7X^3 - 7X^2 + 10X - 15 = \left(X^4 - X^3 + 6X^2 - 5X + 5 \right) \\ \cdot \left((X+3) \right) + \left(-10X^3 - 20X^2 + 20X - 30 \right) \\ X^4 - X^3 + 6X^2 - 5X + 5 = \left(-10X^3 - 20X^2 + 20X - 30 \right) \cdot \left(-\frac{1}{10}X + \frac{3}{10} \right) + \left(14X^2 - 14X + 14 \right) \\ -10X^3 - 20X^2 + 20X - 30 = \left(14X^2 - 14X + 14 \right) \\ \cdot \left(-\frac{5}{7}X - \frac{15}{7} \right) + 0$$

Hacer!

Sea $(f_n)_{(n\geq 1)}$ la sucesión de poliniomios en $\mathbb{R}[X]$ definida como: $f_1=X^5+3X^4+5X^3+11X^2-20$ y $f_{n+1} = (X+2)^2 f'_n + 3f_n$, para cada $n \in \mathbb{N}$. Probar que -2 es raíz doble de f_n para todo $n \in \mathbb{N}$.

Por inducción en n:

q(n) = -2 es raíz doble de f_n , $\forall n \in \mathbb{N}$

Caso base j,q(1) es V?

$$f_1 = X^5 + 3X^4 + 5X^3 + 11X^2 - 20$$

$$f_1' = 5X^4 + 12X^3 + 15X^2 + 22X$$

$$f_1'' = 20X^3 + 36X^2 + 30X + 22$$

$$f_1(-2) = 0$$

$$f_1'(-2) = 0$$

$$f_1''(-2) = -54 \neq 0$$

 $\therefore mult(-2, f_1) = 2 \Rightarrow -2$ es raíz doble de $f_1 \Rightarrow q(1)$ es V

Paso inductivo $\xi q(n) \Rightarrow q(n+1), \ \forall n \in \mathbb{N}$?

HI: -2 es raíz doble de f_n

QPQ -2 es raíz doble de
$$f_{n+1} = (X+2)^2 f'_n + 3f_n$$

$$-2$$
 es raíz doble de $f_{n+1} \Leftrightarrow f_{n+1}(-2) = 0 \land f'_{n+1}(-2) = 0 \land f''_{n+1}(-2) \neq 0$

-2 es raíz doble de
$$f_{n+1} \Leftrightarrow f_{n+1}(-2) = 0 \wedge f'_{n+1}(-2) = 0 \wedge f''_{n+1}(-2) \neq 0$$

 $f_{n+1}(-2) = (-2+2)^2 f'_n(-2) + 3f_n = \underbrace{0f'n(-2)}_{=0} + 3f_n(-2) = 0$

Por HI, se que $f_n(-2)=0$ pues -2 es raíz múltiple de $f_n\Rightarrow f_{n+1}(-2)=3f_n(-2)=3\cdot 0=0$

$$mult(-2, f_{n+1}) \ge 1$$

$$f'_{n+1} = \underbrace{2(X+2)}_{=2X+4} f'_n + (X+2)^2 f''_n + f'_n$$

 $f'_{n+1}(-2) = 2\underbrace{(-2+2)}_{=0} f'_n + \underbrace{(-2+2)}_{=0} f''_n + f'_n = f'_n \underbrace{=}_{HI} 0 \text{ pues se que -2 es raı́z doble de } f_n \Rightarrow -2 \text{ es raı́z de}$ $f'_n \Rightarrow mult(-2, f_{n+1}) \ge 2$ $f''_{n+1} = 2f'_n + (2x+4)f''_n + 2(x+2)f''_n + (x+2)^2 f'''_n + f''_n$ $f'''_{n+1}(-2) = 2f'_n(-2) + \underbrace{(-4+4)}_{=0} f'''_n(-2) + 2\underbrace{(-2+2)}_{=0} f'''_n(-2) + \underbrace{(-2+2)^2}_{=0} f'''_n(-2) + f''_n(-2) = 2f'_n(-2) + \underbrace{(-2+2)^2}_{=0} f'''_n(-2) +$

$$f'_n \Rightarrow mult(-2, f_{n+1}) \geq 2$$

$$f''_{n+1} = 2f'_n + (2x+4)f''_n + 2(x+2)f''_n + (x+2)^2 f'''_n + f''_n + f''_n + f''_{n+1}(-2) = 2f'_n(-2) + \underbrace{(-4+4)}_{=0} f''_n(-2) + 2\underbrace{(-2+2)}_{=0} f'''_n(-2) + \underbrace{(-2+2)^2}_{=0} f'''_n(-2) + f''_n(-2) = 2f'_n(-2) + \underbrace{(-2+2)^2}_{=0} f'''_n(-2) + \underbrace{(-2+2)^2}_{=0} f'''_n(-$$

$$f_n''(-2)$$

Por HÍ, $f_n'(-2)=0$ y $f_n''(-2)\neq 0$ \therefore $f_{n+1}''(-2)\neq 0 \Rightarrow mult(-2,f_{n+1})=2 \Rightarrow -2$ es raíz doble de $f_{n+1}\Rightarrow (q(n)\Rightarrow q(n+1),\ \forall n\in\mathbb{N})$

Luego, queda probado que -2 es raíz doble de $f \ \forall n \in \mathbb{N}$.

6.

a) Determinar todos los valores de $n \in \mathbb{N}$ (positivo) para los cuales el polinomio

$$f = X^5 + \frac{n}{3}X^4 - \frac{8}{3}X^3 + \frac{11}{3}X^2 - X$$

tiene una raíz **entera** no nula.

Solución:

Limpiando los denominadores de f se obtiene el polinomio g con las mismas raíces:

$$g = 3X^5 + nX^4 - 8X^3 + 11X^2 - 3X = X(\underbrace{3X^4 + nX^3 - 8X^2 + 11X - 3}_h)$$

Por enunciado ignoramos la raiz nula y utilizando el Lema de Gauss buscamos las raices racionales

$$h = 3X^4 + nX^3 - 8X^2 + 11X - 3$$

Aquí, $a_0 = -3 \text{ y } a_n = 3$

$$Div(a_0) = Div(a_n) = \{\pm 1, \pm 3\}$$

Como busco raíces enteras, las busco en el conjunto:

$$\{\pm 1, \pm 3\}$$

Chequeo:

$$h(-1) = 0 \iff n = -19 \notin \mathbb{N}$$

$$h(1) = 0 \iff n = -3 \notin \mathbb{N}$$

$$h(-3) = 0 \iff \boxed{n=5} \in \mathbb{N}$$

$$h(3) = 0 \iff n = \frac{67}{9} \notin \mathbb{N}$$

Rta: n=5 es el unico valor de $n\in\mathbb{N}$ para los cuales el polinomio f tiene una raíz entera no nula.

b) Para el o los valores hallados en el ítem (a), factorizar el polinomio f obtenido como producto de irreducibles en $\mathbb{Q}[X], \mathbb{R}[X]$ y $\mathbb{C}[X]$

Solución:

Primero factorizo la raiz nula de de f

$$f = X^5 + \frac{5}{3}X^4 - \frac{8}{3}X^3 + \frac{11}{3}X^2 - X = X(X^4 + \frac{5}{3}X^3 - \frac{8}{3}X^2 + \frac{11}{3}X - 1)$$

Se, por el item (a), que -3 es una de las raices racionales de f. Busco otras posibles raices racionales en el polinomio h (con n=5) obtenido en el item (a) en el conjunto $\{\pm \frac{1}{3}\}$

$$h(-\frac{1}{3}) = -\frac{208}{27}$$

 $h(\frac{1}{3}) = 0 \implies \frac{1}{3}$ es una raiz racional de f.

 $m(3) = 0 \longrightarrow 3$ es una raiz racionar de 1.

Factorizo el polinomio f diviendolo por el producto de las dos raíces encontradas $(X+3)\cdot (X-\frac{1}{3})=X^2+\frac{8}{3}-1$

$$\begin{array}{c|c} X^4 + \frac{5}{3}X^3 - \frac{8}{3}X^2 + \frac{11}{3}X - 1 & X^2 + \frac{8}{3}X - 1 \\ -X^4 - \frac{8}{3}X^3 + X^2 & X^2 - X + 1 \\ \hline -X^3 - \frac{5}{3}X^2 + \frac{11}{3}X & X^3 + \frac{8}{3}X^2 - X \\ \hline X^2 + \frac{8}{3}X - 1 & X^2 - \frac{8}{3}X + 1 \\ -X^2 - \frac{8}{3}X + 1 & 0 \end{array}$$

Factorizo el polinomio cuadratico $X^2 + \frac{8}{3}X - 1$

$$\Delta = (-1)^2 - 4 \cdot 1 \cdot 1 = -3$$

$$x_{+} = \frac{1 + \sqrt{3}i}{2} \in \mathbb{C} \text{ y } x_{-} = \frac{1 - \sqrt{3}i}{2} \in \mathbb{C}$$

Rta

 $f = X(X+3)(X-\frac{1}{3})(X-(\frac{1}{2}+\frac{\sqrt{3}}{2}i))(X-(\frac{1}{2}-\frac{\sqrt{3}}{2}i)) \in \mathbb{C}$ con todos sus factores de multiplicidad 1 y por lo tanto irreducibles.

 $f = X(X+3)(X-\frac{1}{3})(X^2-X+1) \in \mathbb{R}$ con 3 factores de multiplicidad 1 y 1 de multiplicidad 2 pero de raices complejas y por lo tanto irreducibles en \mathbb{R} .

 $f = X(X+3)(X-\frac{1}{3})(X^2-X+1) \in \mathbb{Q}$ con 3 factores de multiplicidad 1 y 1 de multiplicidad 2 pero de raices complejas y por lo tanto irreducibles en \mathbb{Q} .