HWS 2021 Prof. Dr. David Prömel Anna Kwossek

Stochastic Calculus Problem Sheet 1

Exercise 1.1

Let $X = (X_t, t \ge 0)$ be adapted to a right-continuous filtration, then the entry times $\tau_A := \inf\{t \ge 0 : X_t \in A\}$ are stopping times if

- 1. A is open, X is right-continuous or
- 2. A is closed, X is continuous.

Exercise 1.1

Let X and Y be integrable random variables with

$$\mathbb{E}[X|Y] = Y$$
 and $\mathbb{E}[Y|X] = X$, \mathbb{P} -a.s.

Prove that X = Y \mathbb{P} -a.s.

Exercise 1.2

Let $x: [0,1] \to \mathbb{R}$ be a continuous function, and let $(\pi_n)_{n \in \mathbb{N}}$ be the sequence of partitions given by the dyadic rational in [0,1], that is, π_n is given by the set $\{\frac{k}{2^n}: k=0,\ldots,2^n\}$, and thus $\lim_{n\to\infty} |\pi^n|=0$. Show that, if the sum

$$\sum_{t_k^n \in \pi^n} y_{t_k^n} \left(x_{t_{k+1}^n} - x_{t_k^n} \right)$$

converges to a finite limit for every continuous function $y: [0,1] \to \mathbb{R}$, then x is of finite variation. [Hint: Use the Banach-Steinhaus theorem.]

Exercise 1.3

Let $W = (W_t)_{t\geq 0}$ be a Brownian motion (BM). Show that

- (a) $W^1 := -W$ is a BM.
- (b) $W_t^2 := W_{T+t} W_T, t \ge 0$, is a BM for any $T \in (0, \infty)$.
- (c) $W^3 := \alpha B + \sqrt{1 \alpha^2} B'$ is a BM, where B and B' are two independent BMs and $\alpha \in [0, 1]$.
- (d) Show that the independence of B and B' in c) cannot be omitted, i.e., if B and B' are not independent, then W^3 need not be a BM. Give two examples.