Chapter 7 Time-varying Fields

In a single current loop, Faraday's Law of electromagnetic induction states that the electromotive force is

$$V_{emf} = -\frac{d\Phi}{dt} \tag{7-1}$$

or

$$\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s}$$
 (7-2)

 V_{emf} is the electromotive force (*emf*) induced along a conducting loop C, generating a current in such a way that the current opposes the change of the magnetic flux (Lenz's law). Note that the electromotive force and the electric voltage we previously learned about differ by a negative sign due to Kirchohhoff's voltage law (resulting from $\nabla \times \vec{E} = \vec{f}$). For loops of N,

$$(7-1) \Rightarrow V_{emf} = -\frac{d\Lambda}{dt}, \tag{7-3}$$

where $\Lambda = N\Phi$ is the magnetic linkage.

Transformer emf: For a stationary current loop C,

$$(8-2) \Rightarrow V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$$
 (7-4)

From the Stokes theorem, one obtains

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{7-5}$$

(a) Loop in a changing B field

Figure 6-2 (b) Equivalent circuit

Flux Cutting (motional) emf: The electric field induced in a moving wire in a static magnetic field.

The electrons in a moving wire experience a magnetic force, or an

equivalent electric field given by $\vec{E} = \frac{\vec{F}}{q} = \vec{u} \times \vec{B}$, where \vec{u} is the

velocity vector of the moving wire. The voltage induced in the moving wire is therefore

$$V = \oint_C \vec{E} \cdot d\vec{l} = \oint_C \vec{u} \times \vec{B} \cdot d\vec{l}$$
 (7-6)

Ex. AC generator: a rotating loop in a stationary magnetic field.

i. Solve from (7-1)
$$V = -\frac{d\Phi}{dt}$$

Calculation for the magnetic flux $\Phi = \int \vec{B} \cdot d\vec{s} = whB_0 \cos \alpha$

Apply Eq. (7-1)
$$V = -\frac{d\Phi}{dt} = whB_0 \sin \alpha \frac{d\alpha}{dt}$$
, but $\alpha = \omega t$,

where ω is the angular frequency of the rotating loop.

The induced voltage is therefore

$$V = -\frac{d\Phi}{dt} = whB_0\omega\sin\omega t \tag{7-7}$$

This solution can't be obtained from $V = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$, because

$$\frac{\partial \vec{B}}{\partial t} = 0$$
.

ii. Solve from (7-6) $V = \oint_C (\vec{u} \times \vec{B}) \cdot d\vec{l}$ where the velocity vector \vec{u}

is expressed by $\vec{u} = \frac{w}{2} \omega \hat{a}_{\phi}$.

$$\Rightarrow V = \frac{w}{2} \omega B_0 \sin(\alpha) \times 2h = whB_0 \omega \sin \omega t$$
 (7-8)

 \Rightarrow (7-7) = (7-8), as expected.

The last problem can't be solved from $V = -\int_S \frac{\partial B}{\partial t} \cdot d\vec{s}$, because

$$\partial \vec{B}/\partial t = 0$$
 . There must be another term (in fact,

$$V = \oint_C (\vec{u} \times \vec{B}) \cdot d\vec{l} \quad \text{in} \quad V = -\frac{d\phi}{dt} \quad \text{other than} \quad -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \quad .$$

Indeed, for a moving current loop C in a time-varying \vec{B} field, the time derivative in (7-1) predicts both the transformer emf and the flux cutting emf. Mathematically it can be found that

$$V = \frac{-d\phi}{dt} = \oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$$

$$\Leftrightarrow \oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \left[\frac{\partial \vec{B}}{\partial t} - \nabla \times (\vec{u} \times \vec{B}) \right] \cdot d\vec{s}$$

$$\Leftrightarrow V = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} + \oint_{C} (\vec{u} \times \vec{B}) \cdot d\vec{l}$$
 (7-9)

Therefore the electromagnetic induction consists of the transformer emf and the motional emf.

Maxwell Equations

From what we have learned so far, we write the following for electricand magnetic-field quantities

$$\nabla \times \vec{E} = \frac{-\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}$$

$$\nabla \cdot \vec{D} = \rho$$

$$\nabla \cdot \vec{B} = 0$$
(7-10)

According to one of the two null identities of vectors, the left hand side of Eq. (7-10) gives $\nabla \cdot (\nabla \times \vec{H}) = 0$.

However taking divergence to the right hand side of (7-10) gives

$$abla \cdot \vec{J} = -rac{\partial
ho}{\partial t}$$
 according to the equation of continuity . This

contradiction prompts the need for modifying Eq. (7-10). To be consistent, let's pretend adding a term "?" to the left hand side of Eq. (7-10) to achieve

$$\Rightarrow \nabla \cdot (\nabla \times \vec{H} + ?) = -\frac{\partial \rho}{\partial t}$$

The term "?" must satisfy $\nabla \cdot ? = -\frac{\partial \rho}{\partial t}$.

Recall the Gauss law $\nabla \cdot \vec{D} = \rho$

One immediately finds the assumed term "?" equal to

$$? = -\frac{\partial \vec{D}}{\partial t} = -\vec{J}_d$$

This reasoning concludes an equivalent current density from the time derivative of the D vector, called the *displacement current density*. Equation (7-10) is modified as

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$

With the modified Eq. (7-10), we have the following set of equations governing electromagnetics in both the static and time-varying regimes. This set of equations is called Maxwell's equations.

A Complete Set of Maxwell's Equations

Differential Form

Integral Form

1. Faraday's Law

$$(7-11.a, b)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s} = -\frac{d\Phi}{dt}$$

2. Ampere's circuital law

$$(7-12.a, b)$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$

$$\oint_C \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$$

3. Gauss's law

$$\nabla \cdot \vec{D} = \rho$$

$$\oint_{S} \vec{D} \cdot d\vec{s} = Q$$

4. no magnetic charges

$$(7-14.a, b)$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint_{S} \vec{B} \cdot d\vec{s} = 0$$

Maxwell's equations, together with the Lorentz force equation

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$
 and the equation of continuity $\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$,

describe all the known phenomena in electromagentics.

Be reminded that in a conductor the current density and electric field

intensity is related by

$$\vec{J} = \sigma \vec{E} \,, \tag{7-15.a, b, c}$$

and in a simple medium (linear, isotropic), the polarization and magnetization vectors give rise to the relationships

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$
 and $\vec{B} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$

Physical Picture of the Displacement Current

$$\frac{\partial \vec{D}}{\partial t} = \vec{J}_d$$

For a capacitor driven by an AC voltage source $V=V_0\sin\omega t$, there's a magnetic field intensity generated along the abcd loop in space. The abcd loop can be defined by the surface S_1 intercepting a physical current density or the surface S_2 intercepting a displacement current through the capacitor C. According to Ampere's law

$$\oint_{a,b,c,a} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot d\vec{s}$$

Question:

Prof. Yen-Chieh Huang, Dept. of Electrical Engineering, National Tsinghua University, Taiwan office: EECS516/HOPE301, tel: 03-5162214, 5162340, email: ychuang@ee.nthu.edu.tw
CHAPTER 7 Time-varying Fields

Is
$$\int_{S_1} \vec{J} \cdot d\vec{s} = \int_{S_2} \vec{J}_d \cdot d\vec{s}$$
?

For the surface S_1

$$\int_{s_1} \vec{J} \cdot d\vec{s} = I_c = C \frac{dV}{dt} = C \frac{d(V_0 \sin \omega t)}{dt} = CV_0 \omega \cos \omega t \quad (7-16)$$

For the surface S_2

$$\int_{s_2} \vec{J}_d \cdot d\vec{s} = \int_{s_2} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s} = I_d = \frac{\partial (\varepsilon V/d)}{\partial t} \cdot A = \frac{\varepsilon A}{d} \frac{\partial (V_0 \sin \omega t)}{\partial t}$$

$$= CV_0 \omega \cos \omega t$$
(7-17)

(the parallel-plate capacitor formula, $C = \mathcal{E}A/d$, has been used) \Rightarrow It turns out that (7-16) = (7-17)

This concludes that a displacement current is equivalent to a physical current.

A straightforward way is to calculate the capacitor current under a driving voltage V.

$$i_c = C \frac{dV}{dt}$$
, but $V = \frac{Dd}{\varepsilon}$ and $C = \frac{\varepsilon A}{d}$ at the capacitor. Therefore
$$i_c = A \frac{dD}{dt} \Rightarrow J_c = \frac{dD}{dt} = J_d$$
.

Boundary Conditions for Time-varying Fields

(figure adopted from the reference book by Ramo, Whinnery, and van Duzer.)

1. Apply Faraday's law to the boundary $\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$

Since the surface at the boundary can arbitrarily small, the integration on the right hand side goes to zero. One obtains the boundary condition for the tangential electric field intensities

$$\Rightarrow E_{t1} = E_{t2} \tag{7-18}$$

2. Apply Ampere's law to the boundary $\oint_C \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$

Again the surface integral for the displacement current goes to zero. One obtains the boundary condition for the tangential magnetic field intensities

$$\Rightarrow H_{t1} - H_{t2} = J_s \text{ or } \hat{a}_{n2} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$$
 (7-19)

3. Apply Gauss's law to the boundary $\oint_{S} \vec{D} \cdot d\vec{s} = Q$ and obtain the

boundary condition for the normal components of the electric flux density.

$$\Rightarrow D_{n1} - D_{n2} = \rho_s \text{ or } \hat{a}_{n2} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$$
 (7-20)

4. Apply $\oint_S \vec{B} \cdot d\vec{s} = 0$ to the boundary and obtain the boundary

condition for the normal components of the magnetic flux density.

$$\Rightarrow B_{n1} - B_{n2} = 0 \text{ or } \hat{a}_{n2,1} \cdot (\vec{B}_1 - \vec{B}_2) = 0$$
 (7-21)

For **time-varying** cases at a dielectric-conductor boundary

1. dielectric

2. perfect conductor

i. inside the conductor

$$\vec{E} = 0, \vec{D} = 0, \vec{H} = 0, \vec{B} = 0$$
 (7-22)

From $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$, if $\vec{E} = 0$ in a conductor, \vec{B} can not be a time-varying field. Note that a static magnetic field in a conductor is not necessarily zero. A static current in a conductor can certainly sustain a static magnetic field in it.

ii. at a dielectric surface just above a perfect conductor

$$\hat{a}_{n2} \times \vec{E}_{1} = 0, \hat{a}_{n2} \cdot \vec{B}_{1} = 0,$$

$$\hat{a}_{n2} \cdot \vec{D}_{1} = \rho_{s}, \hat{a}_{n2} \times \vec{H}_{1} = \vec{J}_{s}.$$
(7-23)

Time-varying Potential Functions

From $\nabla \cdot \vec{B} = 0$, it is straightforward to have $\nabla \times \vec{A} = \vec{B}$.

From Faraday's law
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
, one can write

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} (\nabla \times \vec{A})$$
 or $\nabla \times (\vec{E} + \frac{\partial \vec{A}}{\partial t}) = 0$. From the null

identity of a scalar field $\nabla \times (\nabla V) = 0$, the above expression is reduced to

$$\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\nabla V$$

Very often, one derives the electric field of an electromagnetic wave from known scalar and vector potentials according to

$$\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \nabla V \ . \tag{7-24}$$

In the following, we find the governing equations for \vec{A} and V .

Retarded Vector Potential

Recall Ampere's law

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \text{ or } \nabla \times \vec{B} = \mu \varepsilon \frac{\partial \vec{E}}{\partial t} + \mu \vec{J}$$

Use $\vec{B} = \nabla \times \vec{A} \Rightarrow$ Left hand side (LHS) of Ampere's law becomes $\nabla \times \nabla \times \vec{A} = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$

Use (7-24) \Rightarrow Right hand side (RHS) of Ampere's law becomes

$$\mu \vec{J} + \mu \varepsilon \partial / \partial t (-\nabla V - \partial \vec{A} / \partial t) = \mu \vec{J} - \nabla (\mu \varepsilon \frac{\partial V}{\partial t}) - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2}$$

LHS = RHS gives

$$\Rightarrow \nabla^2 \vec{A} - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J} + \nabla (\nabla \cdot \vec{A} + \mu \varepsilon \frac{\partial V}{\partial t})$$

Because the vector potential is a defined symbol through the expression $\vec{B} = \nabla \times \vec{A}$, one still has the freedom to define the divergence of \vec{A} according to the Helmholtz theorem in the second chapter.

A vector field is well defined with its divergence and curl. Given $\vec{B} = \nabla \times \vec{A} \ , \ \text{we still have a freedom of defining the divergence of}$ $\nabla \cdot \vec{A} \ .$

Set the so-called *Lorentz gauge*:
$$\nabla \cdot \vec{A} + \mu \varepsilon \frac{\partial V}{\partial t} \equiv 0$$
 (7-25)

Ampere's law is reduced to the so-called nonhomogeneous wave equation for the magnetic vector potential, given by

$$\nabla^2 \vec{A} - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J}$$
 (7-26)

It will become clear later as why we call Eq. (7-26) a wave equation.

Retarded Scalar Potential

In a homogeneous medium, Gauss's law $\nabla \cdot \vec{D} = \rho$ can be written as

$$\nabla \cdot \vec{E} = \rho/\varepsilon$$

From (7-24), Gauss's law becomes

$$-\nabla \cdot (\nabla V + \partial \vec{A}/\partial t) = \rho/\varepsilon$$

Use Lorentz gauge
$$\Rightarrow -\nabla^2 V - \frac{\partial}{\partial t} (\nabla \cdot \vec{A} = -\mu \varepsilon \frac{\partial V}{\partial t}) = \rho / \varepsilon$$

$$\Rightarrow \nabla^2 V - \mu \varepsilon \frac{\partial^2 V}{\partial t^2} = -\rho/\varepsilon \tag{7-27}$$

This is the so-called nonhomogeneous wave equation for the electric scalar potential. In the spherical coordinate system, the solution for the so-called *wave equation*,

$$\nabla^2 V - \mu \varepsilon \frac{\partial^2 V}{\partial t^2} = 0$$

has the form¹

$$V(t,R) = \frac{f(t - R\sqrt{\mu\varepsilon})}{R},$$
(7-28)

where $f(t - R\sqrt{\mu\varepsilon})$ is any arbitrary function (called wave function) of $t - R\sqrt{\mu\varepsilon}$. At a later time $t + \Delta t$ corresponding to a farther $R + \Lambda R$ location the function becomes $f(t + \Delta t - (R + \Delta R)\sqrt{\mu\varepsilon})$. If an observer is looking at the same point the wave function, the observe will see $f(t + \Delta t - (R + \Delta R)\sqrt{\mu\varepsilon}) = f(t - R\sqrt{\mu\varepsilon})$ subject to $\Delta t - \Delta R \sqrt{\mu \varepsilon} = 0$ or equivalently see a moving wave propagating at a velocity of $u = \Delta R / \Delta t = 1 / \sqrt{\mu \varepsilon}$.

In the static electromagnetics, the solutions for $\nabla^2 \vec{A} = -\mu \vec{J}$

¹ Another form $f(t + \sqrt{\mu \varepsilon})/R$ means propagation in the opposite direction but follows the same

and
$$\nabla^2 V = -\rho/\varepsilon$$
 are

$$\vec{A}(R) = \frac{\mu}{4\pi} \int_{V'} \frac{\vec{J}(R)}{R} dv'$$
 and $V(R,t) = \frac{1}{4\pi\varepsilon} \int_{V'} \frac{\rho(R)}{R} dv'$

respectively, where R is the distance between the location of interest and the source.

Based on the discussion on Eq. (7-28), the solution of

$$\nabla^2 \vec{A} - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J}$$
 is a **retarded vector potential**, given by

$$\vec{A}(R,t) = \frac{\mu}{4\pi} \int_{V'} \frac{\vec{J}(t - \sqrt{\mu\varepsilon}R)}{R} dv'; \qquad (7-29)$$

the solution of $\nabla^2 V - \mu \varepsilon \frac{\partial^2 V}{\partial t^2} = -\rho/\varepsilon$ is a retarded scalar potential, given by

$$V(R,t) = \frac{1}{4\pi\varepsilon} \int_{V'} \frac{\rho(t - \sqrt{\mu\varepsilon}R)}{R} dv'$$
 (7-30)

Both Eqs. (7-29, 30) indicate propagating potential waves at a speed of $u=1/\sqrt{\mu\varepsilon}$. The potential wave is induced by a source and arrives at R with a time delay of t=R/u. Therefore the Maxwell's equation predicts a wave of time varying fields moving at a speed of $u=1/\sqrt{\mu\varepsilon}$.

With known $ec{A}$ and V , the electromagnetic fields of a wave can be calculated from

$$\vec{E} = -\nabla V - \partial \vec{A}/\partial t$$
 and $\vec{B} = \nabla \times \vec{A}$

In phasor notation (harmonic field only), the sources at the origin assume the forms

$$\rho(t) = \operatorname{Re}(\hat{\rho}e^{j\omega t}) \text{ and } \vec{J}(t) = \operatorname{Re}(\vec{\hat{J}}e^{j\omega t}).$$

The wave equation with a source excitation

$$\nabla^2 \vec{A} - \mu \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J}$$

reduces to

by

$$\nabla^2 \vec{\hat{A}} + \omega^2 \mu \varepsilon \vec{\hat{A}} = -\mu \vec{\hat{J}} \quad \text{or} \quad \nabla^2 \vec{\hat{A}} + k^2 \vec{\hat{A}} = -\mu \vec{\hat{J}}$$
 (7-31)

where $k = \omega \sqrt{\varepsilon \mu} = \frac{2\pi}{\lambda}$ is called the *wave number* with λ being the wavelength of the time-harmonic wave. The solution of (7-31) is given

$$\vec{\hat{A}}(R) = \frac{\mu}{4\pi} \int_{V'} \frac{\vec{\hat{J}}e^{-jkR}}{R} dv', \qquad (7-32)$$

The real-time solution can be converted from the above complex field, given by

$$\vec{A}(R,t) = \frac{\mu}{4\pi} \int_{V'} \frac{\text{Re}[\vec{\hat{J}}e^{-jkR}e^{j\omega t}]}{R} dv'$$

Similarly, in phasor notation (harmonic field only), Eq. (7-30) gives

$$\hat{V}(R) = \frac{1}{4\pi\varepsilon} \int_{V'} \frac{\hat{\rho}e^{-jkR}}{R} dv'$$
 (7-33)

Source-free Wave Equations

Assume there's no charge or current in space, the source-free Maxwell's equations are

$$\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}, \quad \nabla \times \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t}$$
 (7-34.a,b)

$$\nabla \cdot \vec{E} = 0 \qquad \qquad \nabla \cdot \vec{H} = 0 \tag{7-34.c,d}$$

Use the first expression to write

$$\nabla \times \nabla \times \vec{E} = -\mu \frac{\partial \nabla \times \vec{H}}{\partial t}$$

 \Rightarrow LHS = $\nabla(\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\nabla^2 \vec{E}$, because $\nabla \cdot \vec{E} = 0$ in a source-free space.

$$\Rightarrow RHS = -\varepsilon\mu \frac{\partial^2 \vec{E}}{\partial t^2} = -\frac{1}{u^2} \frac{\partial^2 \vec{E}}{\partial t^2}$$

Equating LHS and RHS to obtain the *Homogeneous Vector Wave Equations*

$$\Rightarrow \qquad \nabla^2 \vec{E} - \frac{1}{u^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \tag{7-35}$$

For the magnetic field, similarly, on can derive

$$\nabla^2 \vec{H} - \frac{1}{u^2} \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \tag{7-36}$$

Helmholtz's Equations

In phasor notations, the source-free Maxwell's equations are

$$\nabla \times \vec{\hat{E}} = -j\omega\mu \vec{\hat{H}}$$
, $\nabla \times \vec{\hat{H}} = j\omega\varepsilon \vec{\hat{E}}$

$$\nabla \cdot \vec{\hat{E}} = 0 \qquad \nabla \cdot \vec{\hat{H}} = 0$$

Follow the above derivation, one can obtain the *Homogeneous Vector Helmholtz's Equations*

$$\nabla^2 \vec{\hat{E}} + k^2 \vec{\hat{E}} = 0$$
 and $\nabla^2 \vec{\hat{H}} + k^2 \vec{\hat{H}} = 0$.

where $k = \omega \sqrt{\varepsilon \mu} = 2\pi / \lambda$ is the wave number. From Eq. (1-25), the solution of the fields $\Psi = E$, H propagating along z has the form

$$\Psi(t,z) = \Psi_0 \cos(\omega t - kz + \phi_0) = \text{Re}[\hat{\Psi}e^{j\omega t}] \text{ with}$$

$$\hat{\Psi} = \hat{E}, \hat{H} = \Psi_0 e^{-jkz + j\phi_0}.$$

For a harmonic field in a conducting material, there will be current induced by the time-varying field, according to

$$\nabla \times \vec{\hat{H}} = j\omega \varepsilon \vec{\hat{E}} + \vec{\hat{J}} = j\omega \varepsilon \vec{\hat{E}} + \sigma \vec{\hat{E}} = j\omega \varepsilon_c \vec{\hat{E}},$$

where the permittivity becomes a complex number $\mathcal{E}_{c} \equiv \mathcal{E}' - j\mathcal{E}''$ with $\sigma = \omega \mathcal{E}''$ (S/m).

The wave number is also a complex number, given by

$$k_c = \omega \sqrt{\mu \varepsilon_c} = \omega \sqrt{\mu (\varepsilon' - j\varepsilon'')} = k_r - jk_i, \tag{7-37}$$

where k_r and $-k_i$ are the real and imaginary parts of k_c , respectively. Note that k has a role of determining the spatial variation of a wave during propagation, as can be seen from (7-32) and (7-33). Substitute k_c into

$$\hat{\Psi} = \hat{E}, \hat{H} = \Psi_0 e^{-jkz+j\phi_0}$$
 to obtain

$$\hat{\Psi} = \hat{E}, \hat{H} = \left(\Psi_0 e^{-jk_r z + j\phi_0}\right) \times e^{-k_i z}.$$

Therefore, if k turns out to be a complex number, the wave is attenuated

in a conductor due to ohmic loss.

To see the degree of attenuation, one can define *loss tangent* as

$$\tan \delta_c \equiv \frac{\varepsilon''}{\varepsilon'} \approx \frac{\sigma}{\omega \varepsilon}, \tag{7-38}$$

where δ_c is called *loss angle*.

The complex form of permittivity $\mathcal{E}_c \equiv \mathcal{E}' - j\mathcal{E}''$ not only applies to a conducting material, but also applies to any lossy dielectric material, because the motion of charges or dipoles in a lossy dielectric is also a form of a current. \mathcal{E}'' becomes significant when the frequency of the field is close to the resonant frequency of the dipole.

It can be concluded from this chapter that a time-varying field generates an electromagnetic wave in space moving with a speed of

$$u = \frac{1}{\sqrt{\varepsilon\mu}}$$
. For a time harmonic wave, there's a specific wavelength λ

and frequency v, satisfying $u=\lambda v$ or $u=\omega/k$ where $\omega=2\pi v$ and $k=2\pi/\lambda$.