

# User Analysis: CTR Prediction on Features & Behaviors

Yingfan Duan, Hazel Gu, Haotian Wu, Han Yu, Dawei Zhao

# Agenda

Business Problem
Value & Impact

Data 02

EDA & Preprocessing Feature Engineering

Model Mining

LightGBM

Random Forest

Model Findings & Tests

Model Evaluation
Feature Importance

Discussion 05

Key Takeaways

Future Works

Potential Improvements



# **Business Problem**



# **Business Value**





# **Dataset Introduction**

| Size & Shape |               |  |
|--------------|---------------|--|
| Size         | 456 MB        |  |
| Rows &       | #3M           |  |
| Columns      | #36           |  |
| Target       | 'Label'       |  |
| Variable     | (1 = clicked) |  |

| Features Groups |                                                  |  |
|-----------------|--------------------------------------------------|--|
| User            | uid<br>age<br>gender<br>net_type                 |  |
| Ads             | adv_id<br>slot_id<br>Inter_type_cd               |  |
| Apps            | spread_app_id<br>app_first_class<br>his_app_size |  |

| Stats   |                                  |  |
|---------|----------------------------------|--|
| Dtype   | All numerical<br>Int64 / float64 |  |
| Missing | Represented<br>by -1             |  |
| Unique  | uid: #1.05M<br>adv_id: #5796     |  |



## **EDA**





# **Feature Engineering Overview**



# **Data Preprocessing**



# Missing Value/ Basic Feature Extraction





# **Data Preprocessing**

03 Ordinal

### **Ordinal Data Encoder**

- Not actually continuous



Mobile Device Launch Time



Device Price/Size



**Put into Buckets** 

**Equally Spaced** 

Frequency Considered 04

### **Memory Reduction**



# **Feature Engineering: Exposure and Interaction**

## **Exposure: Count**

- Compute the count for each feature value per day (both train and validation set: Day 1 Day 7)
- Example: User 'A' appeared 3 times on Day 1
- □ Apply and create the Count Variables to some features (User side/Advertisement side/Media(app) side)

# **Interaction: Crossing Count**

- ☐ Compute the count for each feature pair per day (both train and validation set: Day 1 Day 7)
- □ Example: User 'A' + Advertisement 'Apple' appeared 5 times on Day 1
- □ Apply and create the Crossing features to some pair generated by user profile and advertisement characteristics

# Feature Engineering: CTR - Related

### **Previous Day CTR** CTR Using the 'LABEL' column (mean) Using the 'LABEL' column (mean) The CTR for train (day 1 - day 6) is Calculate the CTR based on the previous computed using its own day's label mean day's label mean The CTR for validation (day 7) is evaluated Set day 6 as the previous day of both day 1 using the overall label mean of the rest (train) and day 7 (validation) days Apply and create the PREVDAY\_CTR Apply and create the CTR features to **every** features to every features in the data set **features** in the data set

# **Feature Engineering: Embedding**

## Word2Vec

- Convert data into numerical matrix
- Use SKIP GRAM for Word2Vec
- $\Box$  Set embedding size = 8
- Primarily apply to User & Ads related
   features cross-relationship with others

#### Example:

```
User id & Adv id Adv id & User age
User id & Adv tags Adv id & Adv App id
Adv id & Residence Adv id & City rank
```

# **Embedding: T-SNE Visualization**





# **LightGBM Introduction**

## **LightGBM (Light Gradient Boosting)**

- □ Developed by Microsoft in 2016
- □ Distributed Gradient Boosting
- □ Decision Tree Algorithm
- Used for classification, ranking, etc.
- Improve performance and scalability
- ☐ Gradient-Based One-Side Sampling (GOSS)
- ☐ Exclusive Feature Bunding (EFB)
- □ ALWAYS used for CTR prediction problem & high-dimensional data

# Histogram based algorithm

buckets continuous features into discrete bins



### **EFB**

Dimension reduction by bundling features together



### **GOSS**

Retains large gradients while random sampling small gradients



# **LightGBM & Random Forest**





## **Model Framework**



# **Feature Performance Comparison**

| LightGBM      |               |  |
|---------------|---------------|--|
| Stat features | AUC + 0.02    |  |
| CTR features  | Recall + 0.5  |  |
| W2V features  | AUC increases |  |

We selected original features, stat features, all ctr features and one set of embedding features for final model.



## **Model Selection**



Choose LightGBM as our final model

# **Parameter Tuning**

Strategy: Bayesian Optimization

| boosting_type    | goss | is_unbalanced    | True |
|------------------|------|------------------|------|
| lambda_l1        | 1.79 | learning_rate    | 0.05 |
| max_depth        | 11   | lambda_l2        | 4.75 |
| num_leaves       | 179  | bagging_fraction | 1.0  |
| colsample_bytree | 0.5  | min_child_sample | 15   |

## **Best Model**

| AUC | 0.79 | Recall    | 0.66 |
|-----|------|-----------|------|
| F1  | 0.18 | Precision | 0.11 |



# **Detailed Feature Importance**

01

### **8 customer related features**

Focus on personalized ads, especially users' age, career, residence, etc;

02

### **Embedding features**

Use ad embedding to represent users are effective features for prediction

03

### Slot\_id feature

Ad position impacts CTR greatly

04

### 4 device related features

Device type, price, size and net type impact CTR



## **Findings & Recommendations**



- slot\_id related feature
  - Deeper analysis on ads position on Apps
- device-related features
  - Have customized ads for different types of mobile devices

## **Challenges**

- **Enormous data size** needs high computational power
- Masked data can only conclude on feature importance, but unable to generate literal recommendations
- Imbalance issue 96.1% vs. 3.9%; did perform SMOTE and undersampled the data, but was still unbalanced





### **Future Works**

### **Project Improvements**

- More delicate parameter tuning
- Embedding is an important technique to predict CTR, but did not lift our model's performance up although deemed as important. We could try more combinations of embedded features and see how they can positively affect our model performance
- Could add weight to days when predicting day 7

#### **Future extensions**

- Geospatial location analysis city and province names in original dataset are masked. Had we have unmasked geographical information, we could potentially analyze CTR trend within different regions
- Time of day analysis we only know which day each record was on within a 7-day period. Had we have the specific time of day information about when the ads were pushed to users, we could do analysis on CTR patterns throughout different periods of a day

