Resolução – Provinha VI (Física I)

Isabella B. – 11810773

Foguetes podem ser considerados como sistemas de massa variável. Suponhamos que o nosso objetivo seja construir um foguete que voe o mais alto possível. Qual é a melhor maneira de atingir esse objetivo? Seria gastar todo o combustível no começo, soltarmos aos poucos, ou talvez um meio termo? Analisaremos este problema nesta provinha.

Questão 1

Faremos primeiro o caso em que desprezamos a força da gravidade.

Figura 1: Ejeção de um pacote de combustível de massa Δm .

Veja a Figura 1. Suponha que, em um intervalo de tempo Δt , uma massa Δm de combustível é ejetada com velocidade ve em relação ao foguete. Orientamos o eixo positivo do deslocamento do foguete para a esquerda na figura acima, de forma que v > 0.

(a) Como não há forças externas do problema, use a conservação do momento linear total para achar a diferença de velocidade Δv que o foguete ganha em termos de $m, \Delta m$ e v_e .

Resolução:

(b) Divida o resultado acima por Δt e tome o limite $\Delta t \to 0$. Se definirmos a massa restante no foguete m(t) de sorte que $m(0) = m + \Delta m$ e $m(\Delta t) = m$, mostre que atua no foguete uma força de propulsão $F_p = -v_e \, \dot{m}$.

Resolução:

(c) Dado que a massa inicial do foguete é m_0 e a final, $m_f < m_0$, resolva a equação diferencial encontrada no item anterior e prove que a diferença de velocidade entre os instantes final e inicial é dada por

$$\Delta v = v_e \ln \left(\frac{m_0}{m_f} \right) \tag{1.1}$$

Resolução:

Questão 2

Agora introduziremos gravidade no problema. Inicialmente, temos um foguete parado na superfície da Terra apontado diretamente para cima.

(a) Escreva a segunda lei de Newton para o foguete, considerando aceleração da gravidade q constante.

Resolução:

(b) Isole a aceleração $a=\dot{v}=\ddot{h}$ da segunda lei de Newton e mostre que

$$a(t) = -g - v_e \frac{\mathrm{d}}{\mathrm{d}t} \ln \left(m(t) \right) \tag{2.1}$$

Resolução:

(c) Suponhamos que o foguete saia do chão com velocidade nula e que sua massa inicial total seja m_0 , contando com o combustível. A partir da equação 2.1, encontre o fluxo inicial de massa $|\dot{m}(0)| = -\dot{m}(0)$ mínimo para que o foguete saia do chão, em termos de m_0 , g e v_e .

Resolução:

(d) Usando a equação 2.1, prove que a velocidade v(t) é dada por:

$$v(t) = -g\,t - v_e \ln \left(\frac{m(t)}{m_0}\right)$$

Resolução:

(e) Suponhamos que o foguete saia do chão, h(0) = 0, e que demore um tempo t_I para consumir todo o combustível, de forma que ele atinja uma altura intermediária $h(t_I) = H_I$ e que a massa do foguete sem combustível seja $m(t_I) = m_f$. Nestas condições, integre a equação da velocidade v(t) encontrada acima para encontrar a seguinte relação para H_I :

$$H_I = -\frac{1}{2}g\,t_I^2 - v_e \int_0^{t_I} \ln\left(\frac{m(t)}{m_0}\right) \mathrm{d}t\,.$$

Resolução:

(f) Se, após o combustível ter acabado, o foguete tiver uma velocidade $v_I = v(t_I)$ positiva, então ele ainda subirá mais um pouco. Sabendo que só a força peso atua no foguete para $t > t_I$, prove que sua altura máxima será

$$\begin{split} H &= H_I + \frac{v_I^2}{2g} \\ &= \frac{\left(\Delta v\right)^2}{2g} - v_e \int_0^{t_I} \ln\left(\frac{m(t)}{m_f}\right) \mathrm{d}t \,, \end{split} \tag{2.2}$$

onde Δv está definido em 1.1.

Resolução:

Questão 3

A expressão para a altura máxima encontrada na equação 2.2 é genérica, e depende de como a massa do

Resolução Por Isabella B.

foguete (com combustível) m(t) diminui com o tempo. Para os itens a seguir, vamos assumir um modelo simples em que a massa do foguete é dada por $m(t) = m0e - \alpha t$, para $t \ge 0$ e a uma constante positiva.

(a) Encontre o tempo t_I quando o combustível do foguete acaba em termos de α, m_f e m_0 .

Resolução:

(b) Usando o que foi encontrado no item 2.c, mostre que deve ser maior que g/v_e para que o foguete não só saia do chão, mas para que continue acelerando enquanto houver combustível.

Resolução:

(c) Prove que a altura máxima do foguete neste caso é dada por

$$H = \frac{v_e^2}{2g} \left[\ln \left(\frac{m_0}{m_f} \right) \right]^2 \left(1 - \frac{g}{\alpha \, v_e} \right)$$

Resolução:

(d) Esboce o gráfico de $H(\alpha)$ como função do parâmetro α , para $\alpha>g/v_e$, e prove que $H(\alpha)$ não possui valor máximo, mas que, para todo $\alpha>0$,

$$H(\alpha) < H_{\text{máx}} = \lim_{\alpha \to \infty} H(\alpha) = \frac{v_e^2}{2g} \left[\ln \left(\frac{m_0}{m_f} \right) \right]^2 \tag{3.1}$$

Resolução:

(e) O foguete voa mais alto se gastar o combustível lenta ou rapidamente? Por quê? Com base em 2.2, argumente por que sua resposta vale no caso de uma função m(t) genérica — não necessariamente exponencial — mantidos constantes m_0, m_f, v_e e g?

Resolução:

Questões extra

Questão 4

A análise feita na questão 3 nos leva a crer que maximizamos a altura máxima atingida pelo foguete se tomarmos o limite $\alpha \to +\infty$. Essa situação corresponderia a gastarmos todo o combustível instantaneamente em t=0, assim que sairmos do chão. Contudo, temos de ser muito cuidadosos com a matemática subjacente:

(a) Antes do lançamento, o foguete está parado no chão, portanto $m(t)=m_0$ para t<0. Dito isso, mostre que $\lim_{\alpha\to\infty}m(t)=m_0\,(1-\theta(t)),$ onde $\theta(t)$ é a função degrau, definida por

$$\theta(t) = \begin{cases} 1, & \text{se } t \geqslant 0 \\ 0, & \text{se } t < 0 \end{cases}$$

Faça um esboço de $\lim_{\alpha \to \infty} m(t)$.

Resolução Por Isabella B.

Resolução:

(b) Prove que o fluxo de massa $|\dot{m}(t)| = -\dot{m}(t)$ no limite $\alpha \to \infty$ é zero para $t \neq 0$ e que não está definido em t = 0. Portanto, $\lim_{\alpha \to +\infty} |\dot{m}(t)|$ não está bem definida como função em \mathbb{R} .

Resolução:

(c) Apesar disso, ainda podemos realizar algumas operações em $\lim_{\alpha \to +\infty} |\dot{m}(t)|$ que normalmente se fariam com funções bem definidas. Em particular, podemos integrá-la, já que sua "primitiva" — $\lim_{\alpha \to +\infty} m(t)$ está bem definida para $t \in \mathbb{R}$. Definimos a "função" delta de Dirac¹ por $\delta(t) = \lim_{\alpha \to +\infty} |\dot{m}(t)| / m_0$. Mostre que

$$\int_{I} \delta(t) \, \mathrm{d}t = 1 \,,$$

para qualquer intervalo aberto $I \subseteq \mathbb{R}$ que contenha 0.

Resolução:

Questão 5

Poderíamos ter pensado da seguinte forma ao resolver o problema da questão 2: calculamos a variação da energia mecânica ΔE_M entre os instantes inicial e final — quando o foguete atinge sua altura máxima H — e o trabalho W_p realizado pela força de propulsão $F_p = -v_e \dot{m}$ neste percurso. Assim, acharíamos a altura máxima H através da relação $\Delta E_M = W_p$.

Mostre que, em geral, $\Delta E_M \neq W_p$ para o modelo da questão 3 e dê uma explicação para este aparente paradoxo.

Resolução Por Isabella B.

 $^{^{1}}$ Como estávamos argumentando, função não é o nome apropriado para $\delta(t)$. De fato, a extensão matematicamente rigorosa mais próxima do que queremos dizer são as distribuições, que são uma generalização de funções.