Vorname:
Familienname:
Matrikelnummer:
Studienkennzahl(en):

1	
2	
3	
4	
\mathbf{G}	

Note:

Prüfung Funktionalanalysis Sommersemester 2023, Roland Steinbauer 1. Termin, 4.7.2023

- 1. Normierte Vektorräume & Operatoren.
 - (a) $Der Raum l^2$. Geben Sie die Definition des Folgenraums l^2 und seines Skalarprodukts an. Zeigen Sie, dass das Skalarprodukt tatsächlich endlich ist. (2 Punkte)
 - (b) Konvergenz absolut konvergenter Reihen.

 Zeigen Sie, dass in Banachräumen jede absolut konvergente Reihe konvergiert.

 Geben Sie explizit an, wo die Vollständigkeit des Raumes im Beweis verwendet wird. (4 Punkte)
 - (c) Skala von Räumen.
 Ordnen Sie die folgenden (Klassen von) Räume(n) vom speziellsten zum allgemeinsten: Normierter Vektorraum, topologischer Raum, Prä-Hilbertraum, metrischer (Vektor-)Raum und geben Sie jeweils an, wie aus der spezielleren Struktur die allgemeinere gebildet wird (z.B. wie ausgehend von einer Metrik eine Topologie definiert wird). (2 Punkte)
 - (d) Beschränkte Operatoren. Definieren Sie den Begriff eines beschränkten linearen Operators T zwischen normierten Vektorräumen und zeigen Sie, dass für solche Operatoren die Operatornorm $\|T\| = \sup_{\|x\| \le 1} \|Tx\|$ endlich ist. (2 Punkte)
- 2. Hilberträume & Operatoren.
 - (a) Orthonormalbasen.

 Definieren Sie den Begriff einer Orthonormalbasis im Prä-Hilbertraum und zeigen Sie, dass Orthonormalbasen immer maximale Orthonormalsyteme sind. Gilt auch die Umkehrung? (2 Punkte)
 - (b) Approximationssatz. Formulieren Sie den Approximationssatz für abgeschlossene und konvexe Mengen in einem Hilbertraum. Gilt der Satz auch in Banachräumen? Warum, bzw. warum nicht? (3 Punkte)

(c) Spektralsatz.

Formulieren Sie den Spektralsatz für kompakte, selbstadjungierte Operatoren. Formulieren und beweisen Sie jenes Resultat, dass für kompakte, selbstadjungierte Operatoren $T \neq 0$ die Existenz eines nichtverschwindenden Eigenwerts garantiert. Was ist das entscheidende Argument, das zur Existenz dieses Eigenwerts führt? (5 Punkte)

3. Hauptsätze der Funktionalanalysis.

(a) E' ist punktetrennend.

Der Dualraum E' eines normierten Vektorraums E ist punktetrennend. Geben Sie eine präzise Formulierung dieser Aussage an und beweisen Sie diese (unter Verwendung des Satzes von Hahn-Banach). (3 Punkte)

(b) Prinzip der gleichmäßigen Beschränktheit.

Der Satz von Banach-Steinhaus besagt, dass jede punktweise beschränkte Familie stetiger linearer Operatoren von einem Banachraum in einen normierten Vektorraum schon gleichmäßig beschränkt ist. Bearbeiten Sie die folgenden Punkte zum (Standard-)Beweis dieses Satzes. (5 Punkte)

- (i) Zu Beginn wird der Ausgangsraum der Operatorfamilie geschickt zerlegt. Wie?
- (ii) Welches starke topologische Resultat/Argument wird dann verwendet?
- (iii) Wie funktioniert die entscheidende Abschätzung, die die Beschränkung der Operatorfamilie in der Operatornorm liefert? Was hat das mit (ii) zu tun?
- (iv) Wo bzw. wie geht die Vollständigkeit des Ausgangsraumes ein?
- (c) Satz von der offenen Abbildung.

Formulieren Sie den Satz von der offenen Abbildung.

Hier wird im Beweis — im Unterschied zum Satz von Banach-Steinhaus, vgl. Aufgabe 3(b) — unter Verwendung der Surjektivität der *Ziel*raum geschickt zerlegt. Aber wo geht die Vollständigkeit des Ausgangsraumes ein? (2 Punkte)

4. Beispiele und Gegenbeispiele.

Gib jeweils ein Beispiel an und begründe kurz, warum es die geforderten Eigenschaften hat bzw. begründe, warum es kein solches Beispiel geben kann. (Jeweils 2 Punkte)

- (a) Einen separablen und einen nicht separablen Funktionenraum.
- (b) Einen unstetigen linearen Operator zwischen normierter Vektorräumen.
- (c) Einen kompakten und einen nicht kompakten Operator zwischen normierten Vektorräumen.
- (d) Einen bijektiven linearen Operator zwischen Banachräumen, der kein Isomorphismus ist.
- (e) Einen separablen normierten Vektorraum mit nicht separablem Dualraum.