Introduction to Digital Design

Prof. Dr. Berna Örs Yalçın

Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr

Goals and objectives

- The goal of this course is to:
 - provide a good understanding of the digital systems.
- introduce the basic building blocks of digital design including combinational logic circuits, combinational logic design, arithmetic functions and circuits and sequential circuits.
- Showing how these building blocks are employed in larger scale digital systems
- Having successfully completed this course, the student will:
 - acknowledge the importance of digital systems.
- Design a digital circuit given a Boolean function.
- Get familiar with typical combinatorial (adders, decoders, multiplexers, encoders) and sequential (D flip-flops, counters, registers, shift registers) components.
- Understand how larger systems are organized.

References

- ■Text Books:
 - Digital Design, M. Morris Mano, Michael D. Ciletti,
- ■Logic and Computer Design Fundamentals, 4/E, M. Morris Mano and Charles Kime , Prentice Hall, 2008.
- Slides and all anouncements : ninova

Grading

- ■1st Midterm % 25
- 6th week
- ■2nd Midterm % 25
- 11th week
- ■5 Homeworks % 10
- ■Final Exam % 40

What is a Digital System?

- One characteristic:
- Ability of manipulating discrete elements of information
- A set that has a finite number of elements contains discrete information
- Examples for discrete sets
- Decimal digits {0, 1, ..., 9}
- Alphabet {A, B, ..., Y, Z}
- Binary digits {0, 1}
- One important problem
- how to represent the elements of discrete sets in physical systems?

Types of Digital Systems

- ■No state present
- Combinational Logic System
- Output = Function(Input)
- State present
- State updated at discrete times
- => Synchronous Sequential System
- State updated at any time
 - =>Asynchronous Sequential System
- State = Function (State, Input)
- Output = Function (State) or Function (State, Input)

Digital System Example:

A Digital Counter (e. g., odometer):

Inputs: Count Up, Reset

Outputs: Visual Display

State: "Value" of stored digits

Analog – Digital Signals

- The physical quantities in real world like current, voltage, temperature values change in a continuous range.
- The signals that can take any value between the boundaries are called analog signals.
- •Information take discrete values in digital systems.
- Binary digital signals can take one of the two possible values: 0-1, high-low, openclosed.

How to Represent?

- In electronics circuits, we have electrical signals
- voltage
- current
- Different strengths of a physical signal can be used to represent elements of the discrete set.
- Which discrete set?
- Binary set is the easiest
- two elements {0, 1}
- Just two signal levels: 0 V and 4 V
- This is why we use binary system to represent the information in our digital system.

Binary System

- Binary set {0, 1}
- The elements of binary set, 0 and 1 are called "binary digits"
- or shortly "bits".
- How to represent the elements of other discrete sets
 - Decimal digits {0, 1, ..., 9}
 - Alphabet {A, B, ..., Y, Z}
- Elements of any discrete sets can be represented using groups of bits.
- ■9 **→** 1001
- A → 1000001

How Many Bits?

What is the formulae for number of bits to represent a discrete set of n elements?

```
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 2, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
\{0, 1, 3\}
```

 \P {0, 1, 2, 3, 4, 5, 6, 7} \P 000 → 0, 001 → 1, 010 → 2, ands 011 → 3 \P 100 → 4, 101 → 5, 110 → 6, ands 111 → 7.

The formulae, then,

ŝ

If n = 9, then 4 bits are needed

Representation of positive numbers

•Örnek: 215_{10} =(1101 0111)₂= \bigcirc 2⁷+1·2⁶+0·2⁵+1·2⁴+0·2³+1·2²+1·2¹ \bigcirc 2⁰

Most Signaficant Bit (MSB)
 Least Signaficant Bit (LSB)

•The largest postive number that can be represented by 8 bits is:

•(1111 11111)₂=255₁₀

■The smallest postive number that can be represented by 8 bits is:

•(0000 0000)₂=0₁₀

■14

Some Bases

Name	Base	Digits
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Some Numbers in Different Bases

Decimal	Binary	Octal	Hexa decimal				
(Base 10)	(Base 2)	(Base 8)	(Base 16)				
00	00000	00	00				
01	00001	01	01				
02	00010	02	02				
03	00011	00011 03 03					
04	00100	04	04				
05	00101	05					
06	00110	06	06				
07	00111	07	07				
08	01000	10	08				
09	01001	11	09				
10	01010	12	OA				
11	0101 1	13	OB				
12	01100	14	0C				
13	01101	1101 15 0D					
14	01110	16 OE					
15	01111	17 OF					
16	10000	20	10				

Base Conversions

- From base-r to decimal is easy
- expand the number in power series and add all the terms
- Reverse operation is somewhat more difficult
- <u>Simple idea</u>:
- divide the decimal number successively by r
- accumulate the remainders.

Example: 46₁₀ to base 2

- ■Convert 46 to binary
- ■46/2=23 remainder 0
- ■23/2=11 remainder 1
- ■11/2=5 remainder 1
- ■5/2=2 remainder 1
- ■2/2=1 remainder 0
- ■1/2=0 remainder 1
- ■Put results together
- ■101110₂

Example: 46 10 to hexadecimal (base 16)

- ■Convert 46 to base 16
- ■46/16=2 remainder 14
- ■2/16=0 remainder 2
- ■Put results together
- ■2E₁₆

Conversion from base r to base decimal

■Convert 1011110₂ to base 10

$$1011102 = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$$
$$= 32 + 8 + 4 + 2$$
$$= 46$$

Conversions between Binary, Octal and Hexadecimal

- Octal to Binary
- ■743.056₈=111 100 011.000 101 110₂
- Hexadecimal to Binary
- A49.0C6₁₆=1010 0100 1001.0000 1100 0110₂
- Binary to Octal
- 1 | 011 | 100 | 011.000 | 101 | 110 | 1₂=1343.0564₈
- Binary to Hexadecimal
- 1 | 1010 | 0100 | 1001.0010 | 1100 | 0110 | 1₂=1A49.2C68₁₆
- Octal and hexadecimal representations are more compact.
- Therefore, we use them in order to communicate with computers directly using their internal representation

Binary Numbers and Binary Coding

- Flexibility of representation
- Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.
- ■Information Types
- Numeric
- Must represent range of data needed
- Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
- Tight relation to binary numbers
- Non-numeric
- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2ⁿ binary numbers.
- Example: A binary code for the seven colors of the rainbow
- ■Code 100 is not used

Color	Binary Numbe					
Red	000					
Orange	001					
Yellow	010					
Green	011					
Blue	101					
Indigo	110					
Violet	111					

Number of Elements Represented

- Given n digits in radix r, there are r^n distinct elements that can be represented.
- ■But, you can represent m elements, $m < r^n$
- **■**Examples:
- You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
- You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).
- This second code is called a "one hot" code.