SEQUENCE LISTING

<110>	University of South Florida
<120>	INHIBITION OF SHIP TO ENHANCE STEM CELL HARVEST AND TRANSPLANTATION
<130>	1372.160PRC
<160>	14
<170>	PatentIn version 3.2
<210>	1
	19
<212>	RNA
	Artificial Sequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity and good knockdown against the human SHIP1 cDNA sequence.
<400>	1
gcctgtt	cgtc atccattga 19
<210>	2
<211>	19
<212>,	RNA
<213>	Artificial Sequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity and good knockdown against the human SHIP1 cDNA sequence.
<400>	2
ataagtt	eggt gatcttggt
<210>	3
<211>	19
<212>	RNA
<213>	Artificial Sequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity
	and good knockdown against the human SHIP1 cDNA sequence.
400	
<400>	
gecacat	cctg tactgacaa 19
<210>	4
<211>	19
<211>	
	Artificial Sequence
~4.1.0	morriorar poducinoc
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity and good knockdown against the human SHIP1 cDNA sequence.

<400> agacag	4 gcat tgcaaacac 19
<210>	5
<211>	19
<212>	RNA
<213>	Artificial Sequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity
	and good knockdown against the human SHIP1 cDNA sequence.
<400>	5
	ctca cogetteac 19
0.1.0	
<210>	6
	19 DNA
<212>	Artificial Sequence
\Z13/	Artificial Sequence
<220>	
<223>	va va-jouquemous
	and good knockdown against the human SHIP1 cDNA sequence.
<400>	6
	ctac cgtgtggat 19
	19
<210>	
<211>	
<212>	Artificial Sequence
\Z13 /	Arcifficial bequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity
	and good knockdown against the human SHIP1 cDNA sequence.
<400>	7
	ccta caccaagca 19
<210>	8
<211>	19
<212>	RNA
<213>	Artificial Sequence
<220>	
<223>	SHIP1 siRNA target sequences. Predicted to have good specificity
	and good knockdown against the human SHIP1 cDNA sequence.
<400>	8
	gcga catcatgac 19
_	
-010	
<210> <211>	9 19
<211>	RNA

```
<213> Artificial Sequence
<220>
<223> SHIP1 siRNA target sequences. Predicted to have good specificity
       and good knockdown against the human SHIP1 cDNA sequence.
<400> 9
gcgacatcat gacgagtga
                                                                      19
<210> 10
<211>
       19
<212> RNA
<213> Artificial Sequence
<220>
<223>
       SHIP1 siRNA target sequences. Predicted to have good specificity
       and good knockdown against the human SHIP1 cDNA sequence.
<400> 10
aggacagatt gagtttctc
                                                                      19
<210> 11
<211> 19
<212> RNA
<213> Artificial Sequence
<220>
<223>
       SHIP1 siRNA target sequences. Predicted to have good specificity
       and good knockdown against the human SHIP1 cDNA sequence.
<400> 11
ggtgctatgc cacattgaa
                                                                      19
<210> 12
<211> 19
<212> RNA
<213> Artificial Sequence
<220>
<223>
      SHIP1 siRNA target sequences.
                                     Predicted to have good specificity
       and good knockdown against the human SHIP1 cDNA sequence.
<400> 12
gtttggtgag actcttcca
                                                                      19
<210> 13
<211> 19
<212> RNA
<213> Artificial Sequence
<220>
<223>
      SHIP1 siRNA target sequences. Predicted to have good specificity
      and good knockdown against the human SHIP1 cDNA sequence.
<400> 13
agacggagcg tgatgaatc
                                                                      19
```

<210> 14 <211> 4870 <212> DNA

<213> Human

<400> 14

gtggagggc ctccgctccc ctcggtggtg tgtgggtcct gggggtgcct gccggcccag 60 ccgaggaggc ccacgcccac catggtcccc tgctggaacc atggcaacat cacccgctcc 120 aaggeggagg agetgettte caggacagge aagggeaega getteetegt gegtgeeage 180 gagtccatct cccgggcata cgcgctctgc gtgctgtatc ggaattgcgt ttacacttac 240 agaattctgc ccaatgaaga tgataaattc actgttcagg catccgaagg cgtctccatg 300 360 aggttettea ccaagetgga ccageteate gagttttaca agaaggaaaa catggggetg gtgacccatc tgcaataccc tgtgccgctg gaggaagagg acacaggcga cgaccctgag 420 gaggacacag tagaaagtgt cgtgtctcca cccgagctgc ccccaagaaa catcccgctg 480 actgccagct cctgtgaggc caaggaggtt cctttttcaa acgagaatcc ccgagcgacc 540 gagaccagcc ggccgagcct ctccgagaca ttgttccagc gactgcaaag catggacacc 600 agtgggcttc cagaagagca tcttaaggcc atccaagatt atttaagcac tcagctcgcc 660 caggactetg aatttgtgaa gacagggtee ageagtette eteacetgaa gaaactgace 720 acactgetet geaaggaget etatggagaa gteateegga eeeteeeate eetggagtet 780 ctgcagaggt tatttgacca gcagctctcc ccgggcctcc gtccacgtcc tcaggttcct 840 ggtgaggcca atcccatcaa catggtgtcc aagctcagcc aactgacaag cctgttgtca 900 960 tccattgaag acaaggtcaa ggccttgctg cacgagggtc ctgagtctcc gcaccggccc 1020 tecettatee etecagteae etttgaggtg aaggeagagt etetggggat teeteagaaa atgcagetca aagtegaegt tgagtetggg aaactgatea ttaagaagte caaggatggt 1080 tctgaggaca agttctacag ccacaagaaa atcctgcagc tcattaagtc acagaaattt 1140 ctgaataagt tggtgatctt ggtggaaaca gagaaggaga agatcctgcg gaaggaatat 1200 gtttttgctg actccaaaaa gagagaaggc ttctgccagc tcctgcagca gatgaagaac 1260 aagcactcag agcagccgga gcccgacatg atcaccatct tcatcggcac ctggaacatg 1320 ggtaacgccc cccctcccaa gaagatcacg tcctggtttc tctccaaggg gcagggaaag 1380 acgogggacg actotgogga ctacatocco catgacattt acgtgatogg caccoaagag 1440 gaccccctga gtgagaagga gtggctggag atcctcaaac actccctgca agaaatcacc 1500 agtgtgactt ttaaaacagt cgccatccac acgctctgga acatccgcat cgtggtgctg 1560

gccaagcctg	agcacgagaa	ccggatcagc	cacatctgta	ctgacaacgt	gaagacaggc	1620
attgcaaaca	cactggggaa	caagggagcc	gtgggggtgt	cgttcatgtt	caatggaacc	1680
·tccttagggt	tcgtcaacag	ccacttgact	tcaggaagtg	aaaagaaact	caggcgaaac	1740
caaaactata	tgaacattct	ccggttcctg	gccctgggcg	acaagaagct	gagtcccttt	1800
aacatcactc	accgcttcac	gcacctcttc	tggtttgggg	atcttaacta	ccgtgtggat	1860
ctgcctacct	gggaggcaga	aaccatcatc	cagaaaatca	agcagcagca	gtacgcagac	1920
ctcctgtccc	acgaccagct	gctcacagag	aggagggagc	agaaggtctt	cctacacttc	1980
gaggaggaag	aaatcacgtt	tgccccaacc	taccgttttg	agagactgac	tcgggacaaa	2040
tacgcctaca	ccaagcagaa	agcgacaggg	atgaagtaca	acttgccttc	ctggtgtgac	2100
cgagtcctct	ggaagtctta	tcccctggtg	cacgtggtgt	gtcagtctta	tggcagtacc	2160
agcgacatca	tgacgagtga	ccacagccct	gtctttgcca	catttgaggc	aggagtcact	2220
tcccagtttg	tctccaagaa	cggtcccggg	actgttgaca	gccaaggaca	gattgagttt	2280
ctcaggtgct	atgccacatt	gaagaccaag	tcccagacca	aattctacct	ggagttccac	2340
tcgagctgct	tggagagttt	tgtcaagagt	caggaaggag	aaaatgaaga	aggaagtgag	2400
ggggagctgg	tggtgaagtt	tggtgagact	cttccaaagc	tgaagcccat	tatctctgac	2460
cctgagtacc	tgctagacca	gcacatcctc	atcagcatca	agtcctctga	cagcgacgaa	2520
tcctatggcg	agggctgcat	tgcccttcgg	ttagaggcca	cagaaacgca	gctgcccatc	2580
tacacgcctc	tcacccacca	tggggagttg	acaggccact	tccaggggga	gatcaagctg	2640
cagacetete	agggcaagac	gagggagaag	ctctatgact	ttgtgaagac	ggagcgtgat	2700
gaatccagtg	ggccaaagac	cctgaagagc	ctcaccagcc	acgaccccat	gaagcagtgg	2760
gaagtcacta	gcagggcccc	tccgtgcagt	ggctccagca	tcactgaaat	catcaacccc	2820
aactacatgg	gagtggggcc	ctttgggcca	ccaatgcccc	tgcacgtgaa	gcagaccttg	2880
tcccctgacc	agcagcccac	agcctggagc	tacgaccagc	cgcccaagga	ctccccgctg	2940
gggccctgca	ggggagaaag	tcctccgaca	cctcccggcc	agccgcccat	atcacccaag	3000
aagtttttac	cctcaacagc	aaaccggggt	ctccctccca	ggacacagga	gtcaaggccc	3060
agtgacctgg	ggaagaacgc	aggggacacg	ctgcctcagg	aggacctgcc	gctgacgaag	3120
cccgagatgt	ttgagaaccc	cctgtatggg	tccctgagtt	ccttccataa	gcctgctccc	3180
aggaaggacc	aggaatcccc	caaaatgccg	cggaaggaac	ccccgccctg	cccggaaccc	3240
ggcatcttgt	cgcccagcat	cgtgctcacc	aaagcccagg	aggctgatcg	cggcgagggg	3300
cccggcaagc	aggtgcccgc	gccccggctg	cgctccttca	cgtgctcatc	ctctgccgag	3360

ggcagggcgg	ccggcgggga	caagagccaa	gggaagccca	agaccccggt	cagctcccag	3420
gccccggtgc	cggccaagag	gcccatcaag	ccttccagat	cggaaatcaa	ccagcagacc	3480
ccgcccaccc	cgacgccgcg	gccgccgctg	ccagtcaaga	gcccggcggt	gctgcacctc	3540
cagcactcca	agggccgcga	ctaccgcgac	aacaccgagc	tcccgcatca	cggcaagcac	3600
cggccggagg	aggggccacc	agggcctcta	ggcaggactg	ccatgcagtg	aagccctcag	3660
tgagctgcca	ctgagtcggg	agcccagagg	aacggcgtga	agccactgga	ccctctcccg	3720
ggacctcctg	ctggctcctc	ctgcccagct	tcctatgcaa	ggctttgtgt	tttcaggaaa	3780
gggcctagct	tctgtgtggc	ccacagagtt	cactgcctgt	gagacttagc	accaagtgct	3840
gaggctggaa	gaaaaacgca	caccagacgg	gcaacaaaca	gtctgggtcc	ccagctcgct	3900
cttggtactt	gggaccccag	tgcctcgttg	agggcgccat	tctgaagaaa	ggaactgcag	3960
cgccgatttg	agggtggaga	tatagataat	aataatatta	ataataataa	tggccacatg	4020
gatcgaacac	tcatgatgtg	ccaagtgctg	tgctaagtgc	tttacgaaca	ttcgtcatat	4080
caggatgacc	tcgagagctg	aggctctagc	cacctaaaac	cacgtgccca	aacccaccag	4140
tttaaaacgg	tgtgtgttcg	gaggggtgaa	agcattaaga	agcccagtgc	cctcctggag	4200
tgagacaagg	gctcggcctt	aaggagctga	agagtctggg	tagcttgttt	agggtacaag	4260
aagcctgttc	tgtccagctt	cagtgacaca	agctgcttta	gctaaagtcc	cgcgggttcc	4320
ggcatggcta	ggctgagagc	agggatctac	ctggcttctc	agttctttgg	ttggaaggag	4380
caggaaatca	gctcctattc	tccagtggag	agatctggcc	tcagcttggg	ctagagatgc	4440
caaggcctgt	gccaggttcc	ctgtgccctc	ctcgaggtgg	gcagccatca	ccagccacag	4500
ttaagccaag	cccccaaca	tgtattccat	cgtgctggta	gaagagtctt	tgctgttgct	4560
cccgaaagcc	gtgctctcca	tcctggctgc	cagggagggt	gggcctcttg	gttccaggct	4620
cttgaaatag	tgcagccttt	tcttcctatc	tctgtggctt	tcaactctgc	ttccttggtt	4680
attaagagaa	tagatgggtg	atgtctttcc	ttatgttgct	ttttcaacat	agcagaatta	4740
atgttgggag	ctaaatccac	tggtgtgtgt	gaatgcagaa	gggaatgcac	cccaccttcc	4800
catgaatgaa	gtctgcgtac	caataaattg	tgccttctcc	tccaaaaaaa	aaaaaaaaa	4860
ataaaaaaaa						4870