Big Data Analytics

Jour 3 — Algorithmes 2/2

François-Marie Giraud

Introduction

Problème : détection de variables cachées, de "structures" cachées (clusters, variété topologique (manifold), ...)

Clustering de Clients

Détection d'anomalie :

Réduction de la dimensionalité

Comment appréhender des données en grande dimension?

$$X = \begin{bmatrix} X_{1,1} & X_{1,2} & \dots & X_{1,D} \\ X_{2,1} & X_{2,2} & \dots & X_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ X_{N,1} & X_{N,2} & \dots & X_{N,D} \end{bmatrix}$$

La malédiction des grandes dimensions!

Nombre d'extrémités dans une espace de dimension :

dim	1	2	3	4	5	
pts	2	4	8	16	32	

- · Séléction de dimensions
- · Projections linéaires (ACP, LDA, ...)
- Projections non-linéaires (kernels, neural network embeddings, ...)

Projections linéaires

Réduction de la dimensionalité :

Réduction de la dimensionalité : Projections linéaires

- · Principal Component Analysis (Non-supervisée)
- · Linear Discriminant Analysis (Supervisée)

$$X = \begin{bmatrix} X_{1,1} & \dots & X_{1,D} \\ \vdots & \ddots & \vdots \\ X_{N,1} & \dots & X_{N,D} \end{bmatrix}$$

chaque dimension est centrée (et réduite) :

$$\bar{X} = \begin{bmatrix} X_{1,1} - \bar{X_1} & \dots & X_{1,D} - \bar{X_D} \\ \vdots & \ddots & \vdots \\ X_{N,1} - \bar{X_1} & \dots & X_{N,D} - \bar{X_D} \end{bmatrix}$$

OU

$$\tilde{X} = \begin{bmatrix} \frac{X_{1,1} - \bar{X}_1}{\sigma(X_1)} & \cdots & \frac{X_{1,D} - \bar{X}_D}{\sigma(X_D)} \\ \vdots & \ddots & \vdots \\ \frac{X_{N,1} - \bar{X}_1}{\sigma(X_1)} & \cdots & \frac{X_{N,D} - \bar{X}_D}{\sigma(X_D)} \end{bmatrix}$$

Matrice de covariance (resp. corrélation) :

$$\frac{1}{N} * \bar{X}^T * \bar{X} , (\frac{1}{N} * \tilde{X}^T * \tilde{X})$$

ACP:

Retrouver les valeurs et vecteurs propres de de la matrice de covariance (resp. corrélation), donc diagonaliser la matrice carrée obtenue.

Vecteur propre : vecteur permettant de projeter les données Valeur propre : "proportion d'information" conservée par la projection suivant le vecteur propre correspondant Réduction de dimension : On ne projette que suivant le nombre de vecteurs propres voulus

Linear Discriminant Analysis

Démo Sklearn

Apprentissage non-supervisé > Démo Sklearn

Support TP: PCA/LDA

PCA- iris dataset - Tutoriel PCA-LDA - Tutoriel

Variantes Spécifiques

Analyse des Correspondances Multiples (ACM)

ACP sur des données qualitatives (Ex : enquètes d'opinions avec QCM)

Chaque variable qualitative est transformé en vecteur sparse. On obtient une matrice binaire sur laquelle on procède à l'ACP.

Analyse Factorielle pour données mixtes (AFDM)

Quand on a des variables qualitative ET quantitatives pour décrires nos échantillons, on discrétise chaque variable quantitative. On peut ainsi procéder à l'Analyse en Composantes Multiples

Analyse Factorielle des Correspondances (AFC)

Méthode sur un tableau de contingence :

Yaourts	Nantes	Bordeaux	Limoges	Tours	Poitiers	TOTAL
Ananas	14	15	9	20	20	78
Banane	15	10	14	20	21	80
Fraise	16	16	26	8	22	88
Framboise	18	14	24	20	17	93
Abricot	17	18	20	22	16	93
TOTAL	80	73	93	90	96	432

On procède alors à une double ACP (une sur le profil ligne, l'autre sur le profil colonne) en utilisant une métrique particulière : le χ^2

Avez-vous des questions?

Métriques de clustering

Métriques en Non-Supervisé

coût =
$$\sum_{i} \sum_{j} \delta_{i,j} |x_j - \mu_i|$$

où $\delta_{i,j}$ vaut 1 si le cluster μ_i est le plus proche du point x_j , 0 sinon

Métrique : Silouhette

Points
$$x = \{x_1, \dots, x_n\}$$
, Clusters $\mu = \{\mu_1, \dots, \mu_k\}$.

$$a(x_i) = \frac{1}{\#\mu_i - 1} \sum_{j} |x_i - x_j|$$

$$b(x_i) = \min_{i \neq j} \frac{1}{\#\mu_j} \sum_j |x_i - x_j|$$

où:

 $\#\mu_i$ est le nombre d'éléments de x dans le cluster μ_i L'ensembe d'indice j ne représente que ceux des points appartenant au cluster μ_j

 $a(x_i)$: distance moyenne aux autres points du cluster contenant x_i

 $b(x_i)$: distance moyenne aux points du cluster le plus proche

Métrique : Silouhette

$$s_{i} = \frac{b_{i} - a_{i}}{\max\{a_{i}, b_{i}\}}, \quad s_{i} = \begin{cases} 1 - a_{i}/b_{i} & \text{if } a_{i} < b_{i} \\ 0 & \text{if } a_{i} = b_{i} \\ b_{i}/a_{i} - 1 & \text{if } a_{i} > b_{i} \end{cases}$$

donc $s_i \in [-1, 1]$

 $s_i \approx 1 \iff x_i \text{ bien clusterisé}$ $s_i \approx 0 \iff x_i \text{ au bord de 2 clusters}$ $s_i \approx -1 \iff x_i \text{ mal clusterisé}$ Apprentissage non-supervisé > Métriques de clustering

Métrique : etc

- · Calinski-Harabaz index
- · Davies-Bouldin Index
- ...

Clustering Hiérarchique

Clustering Hiérarchique

Deux approches:

- · Agglomérantes (bottom-up)
- Divisantes (top-down)

Classification Ascendante Hiérarchique (CAH)

Métode Agglomérante

- · Chaque élément est dans une classe distincte
- · On itère jusqu'à ce qu'on ait le nombre de classes voulues
- On utilise une mesure de dissimilarité inter-classe comme critère d'aggrégation

A chaque itération, on calcule la dissimilarité entre toutes les classes puis on fusionne les plus similaires.

Classification Ascendante Hiérarchique (CAH)

Quelques distances de dissimilarités, après avoir défini une distance D dans l'espace :

- saut minimum : $dissim(C_1, C_2) = \min_{x \in C_1, y \in C_2} D(x, y)$
- saut maximum : $dissim(C_1, C_2) = \max_{x \in C_1, y \in C_2} D(x, y)$
- saut moyen : $dissim(C_1, C_2) = moyenne D(x, y)$ $x \in C_1, y \in C_2$
- · distance de Ward qui vise à maximiser l'inertie inter-classe
- ٠ ..

$$O(n^2)$$
 < complexité < $O(n^3)$!

Espérance-Maximisation

Expectation-Maximisation

Expectation-Maximisation

Input : Données, nombre de clusters, métrique Initialisation Aléatoire Jusqu'à clusters "stables" :

- 1. Calculer les "centres" de chaque cluster
- 2. Réassigner les clusters à tous les points

Apprentissage non-supervisé > Espérance-Maximisation

Expectation-Maximisation

video time

K-Means

K-Means

Algorithme EM

K-Means

distance euclidienne, Manhattan, Chebychev

Euclidean Distance

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

Manhattan Distance

Chebyshev Distance

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \left[|x_1-x_2|+|y_1-y_2| \max(|x_1-x_2|,|y_1-y_2|) \right]$$

Gaussian Mixture Model

Les clusters sont représentés par un centre et une matrice de covariance.

Density-Based Spatial Clustering of Applications with Noise...

Tant qu'il reste des points non-étiquettés :

- Prend un point non-étiquettés au hasard et on regarde son voisinage
- 2. Si (densité > seuil) alors (Nouveau cluster)
 - 2.1 Expansion du cluster de proche en proche dans le voisinage
- 3. Sinon (Bruit)

Démo Sklearn

Apprentissage non-supervisé > Démo Sklearn

Support TP: Clustering

<u>kmean - Tutoriel</u> <u>dbscan - Tutoriel</u>

Conclusions

Clustering - Conclusions

Clustering - Conclusions

Pas de métrique satisfaisante! ← Théorie de la Décision :

Problème qui se mesure en plusieurs dimensions

Pas de solution unique!

Classification Hiérarchique sur

Composantes Principales

Classification Hiérarchique sur Composantes Principales (CHCP)

Après réduction de dimension, on procède à un algorithme de classification hiérarchique.

Obtenus à partir de données relatives aux crimes aux États-Unis. Colonnes d'origine : Population Totale, Meurtres, Viols, Agression

Clustering par ACP

Réduction de la dimensionalité : PCA

(Souvenez-vous)

Matrice de covariance (resp. corrélation) :

$$\frac{1}{N} * \bar{X}^T * \bar{X} , (\frac{1}{N} * \tilde{X}^T * \tilde{X})$$

ACP:

Retrouver les valeurs et vecteurs propres de de la matrice de covariance (resp. corrélation), donc diagonaliser la matrice carrée obtenue.

Vecteur propre : vecteur permettant de projeter les données Valeur propre : "proportion d'information" conservée par la projection suivant le vecteur propre correspondant Réduction de dimension : On ne projette que suivant le nombre de vecteurs propres voulus

Clustering par ACP

$$\frac{1}{N} * \bar{X} * \bar{X}^{T}$$
, $(\frac{1}{N} * \tilde{X} * \tilde{X}^{T})$

En considérant les individus comme des features et les features comme des individus, les vecteurs propres ayant une grande valeur propre peuvent être considérés comme des centre de cluster d'individus.

Avez-vous des questions?

Détection d'anomalies

Détection d'Anomalies

Détection:

- · de Fraude
- · d'Intrusion/Fuite (physique ou électronique)
- · Santé (biologique, geologique, machine, ...)

Définition

- · une anomalie diffère de la norme par ses features
- · les anomalies sont rares comparées aux instances normales

Modes de détection d'anomalie

Détection d'Anomalies : Supervisé

Problème de classification normal. Réseaux de neurones et SVM très performants.

Détection d'Anomalies : Semi-Supervisé

Détection de nouveauté. Pas traité ici. One-class SVM très utilisé.

Détection d'Anomalies : Non-Supervisé

De nombreuses méthodes :

- · Local Outlier Factor (LOF)
- Unweighted Cluster-Based Outlier Factor
- Isolation Forest
- Autoencoder
- ...

Détection d'Anomalies

· anomalies locales

- · anomalies locales
- · basé sur les k voisins du point

- · anomalies locales
- · basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins

- · anomalies locales
- · basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins

- · anomalies locales
- · basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins

Désavantages

- · lent (quadratique)
- · a des à priori sur la distribution des données

Isolation tree

- · arbre aléatoire (comme random forest mais le split est aléatoire)
- · but : isoler une anomalie plus vite qu'un exemple normal
- · petit chemin pour arriver à une feuille : anomalie
- \rightarrow Se sert du fait que les features des anomalies ne sont pas distribuées comme les autres.

Isolation forest

Apprentissage non-supervisé

Démo Sklearn

Support TP: Détection d'anomalie

<u>local-outlier-factor - Tutoriel</u> <u>isolation-forest - Tutoriel</u>

Avez-vous des questions?

Apprentissage non-supervisé

Travaux Pratiques : Réduction de

dimension

Apprentissage non-supervisé > Travaux Pratiques : Réduction de dimension

TP: Réduction dimension

PCA - TP

Apprentissage non-supervisé

Travaux Pratiques: Clustering

Apprentissage non-supervisé > Travaux Pratiques : Clustering

TP: Clustering

<u>clustering - TP</u>

Avez-vous des questions?