Analisi Numerica I

FORMULARIO

Ordine di convergenza $\exists k_0 > 0, C > 0$:

$$\frac{\left|x^{k+1} - \alpha\right|}{\left|x^k - \alpha\right|^p} \le C \quad \forall k \ge k_0$$

allora $\{x^k\}_{k\in\mathbb{N}}\to\alpha$ con ordine p. Il più piccolo C si dice fattore di convergenza, $\log C$ velocità di convergenza.

Approssimazione di radici

Metodo di bisezione Posti $f \in C^0([a,b])$ con $f(a^0) \cdot f(b^0) < 0$ e $x^0 = \frac{a^0 + b^0}{2}$, si itera:

se
$$f(a^k)f(x^k)$$

$$\begin{cases} = 0 & \alpha = x^k & \text{STOP} \\ < 0 & a^{k+1} = a^k & b^{k+1} = x^k \\ > 0 & a^{k+1} = x^k & b^{k+1} = b^k \end{cases}$$

Errore:
$$|e^k| \le \frac{b-a}{2^{k+1}}$$

$$x^{k+1} = \frac{a^{k+1} + b^{k+1}}{2}$$

 $x^{k+1} = \frac{a^{k+1} + b^{k+1}}{2}$ Converge sempre ma lentamente e non con monotonia, non su può definire ordine.

Metodo di Newton Posti $f \in C^1([a, b])$ e $x^0 \in [a, b]$, si itera:

$$x^{k+1} = x^k - (m)\frac{f(x^k)}{f'(x^k)}$$

Ordine: 2 per radici semplici (m = 1), 1 per radici multiple se mignoto (lo poniamo 1). Se è nota la molteplicità si può rendere di ordine 2 sempre: ponendo m la molteplicità della radice.

Metodo delle corde parallele Posti $f \in C^0([a,b])$ e $x^0 \in$ [a,b], fissato m si itera:

$$x^{k+1} = x^k - \frac{f(x^k)}{m} \quad \left(e.g. \ m = \frac{f(b) - f(a)}{b - a}\right)$$

CN convergenza (radici semplici): $0 < \frac{f'(\alpha)}{m} < 2$ Ordine: 1 in generale, 2 se $m = f'(\alpha)$

Non sempre converge per radici multiple.

Metodo delle secanti Come metodo corde ma

$$m_k = \frac{f(x^k) - f(x^{k-1})}{x^k - x^{k-1}}$$

Converge localmente con ordine $\varphi = \frac{1+\sqrt{5}}{2}$, servono due punti iniziali, non è di punto fisso.

Metodi di punto fisso Data Φ , trovare α t.c $\alpha = \Phi(\alpha)$

Teorema punto fisso: $\Phi \in \mathcal{C}^0([a,b])$ e $\Phi([a,b]) \subseteq [a,b]$ lipschitziana con L < 1, allora $\exists ! \alpha \in [a, b]$ t.c $\alpha = \Phi(\alpha)$ e $\forall x^0 \in$ $[a,b], \{\Phi(x^{k-1})\}_k \to \alpha.$

<u>Teorema Ostrowski:</u> α punto fisso di $\Phi \in \mathcal{C}^1(U)$ $(U \in \mathcal{N}(\alpha))$ t.c. $|\Phi'(\alpha)| < 1$. Esiste $V \in \mathcal{N}(\alpha)$ t.c. $\forall x^0 \in V, \{\Phi(x^k)\}_k \to \alpha$ e

$$\lim_{k \to +\infty} \frac{x^{k+1} - \alpha}{x^k - \alpha} = \Phi(\alpha)$$

Teorema ordine convergenza: α punto fisso di $\Phi \in \mathcal{C}^p(U)$ ($U \in$ $\overline{\mathcal{N}(\alpha)}$ con $\Phi^{(i)}(\alpha) = 0$ $(1 \le i < p)$ e $\Phi^{(p)}(\alpha) \ne 0$, allora il metodo ha ordine p e

$$\lim_{k \to +\infty} \frac{x^{k+1} - \alpha}{(x^{(k)} - \alpha)^p} = \frac{\Phi^{(p+1)}(\alpha)}{p!}$$

Fattore di convergenza $C = \frac{|\Phi^{(p+1)}(\alpha)|}{p!}$.

Sistemi lineari

Preliminari

Dominanza diagonale (stretta se >):

- righe: $|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ e almeno una vale > colonne: $|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ e almeno una vale > stretta \implies non singolare, minori principali dominanti non sin-

golari, se è simmetrica e $a_i i > 0$ allora è definita positiva.

Raggio spettrale:
$$\rho(A) = \max_{\sigma(A)} |\cdot| = \inf_{\|\cdot\|_m} \|A\|_m$$

Norma energia (A msdp):
$$||v||_A = \sqrt{v^t A v}$$

Norma matriciale: $||A||_m = \sup_{v \neq 0} \frac{||Av||}{||v||} (||\cdot|| \in (\mathbb{R}^n)^\vee)$

vec:
$$\|\cdot\|_1 = \sum_i |v_i|, \|\cdot\|_{\infty} = \max_i |v_i|, \|\cdot\|_2 \sqrt{\sum_i |v_i|^2}$$
 mat: $\|\cdot\|_1$: col. max, $\|\cdot\|_{\infty}$: riga max, $\|A\|_2 = \sqrt{\rho(A^t A)}$

Frobenius (mat): $||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$

Teorema norme matriciali indotte

$$||A||_m = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_m}{||x||_v} \implies$$

$$||Ax||_v \le ||A||_m ||x||_v$$
; $||I_n||_m = 1$; $||AB||_m \le ||A||_m ||B||_m$

Prodotto tra matrici triangolari

Triangolari uguali
$$c_{ij} = \sum_{k=\min\{i,j\}}^{\max\{i,j\}} a_{ik} b_{kj} \quad \text{se nella parte interessante altrimenti } c_{ij} = 0 \quad a_{ij} = \sum_{k=1}^{\min\{i,j\}} l_{ik} u_{kj}$$

Fsub e Bsub $Ax = b, A \in M_n(\mathbb{R})$ triangolare

$$Fsub (^{\circ}): \begin{cases} x_1 = \frac{b_1}{a_{11}} \\ x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j \right) \end{cases}$$

$$Bsub \left(\underset{\circ}{\overset{*}{\nearrow}} \right) : \begin{cases} x_n = \frac{b_n}{a_{nn}} \\ x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=i+1}^n a_{ij} x_j \right) \end{cases}$$

Entrambi $O(n^2)$

Stabilità num cond: $K(A) = ||A|| ||A^{-1}|| \ge 1$

Stabilita num cond:
$$K(A) = ||A|| ||A|| - || \ge 1$$

$$\underbrace{\text{Priori:}}_{C} \frac{1}{C} \left(\frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||} \right) \le \frac{||\delta x||}{||x||} \le C \left(\frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||} \right)$$

$$\operatorname{dove} C = \left(\frac{1 - K(A) ||\delta A|| / ||A||}{K(A)} \right)^{-1}$$

dove
$$C = \left(\frac{\frac{1}{K(A)}}{K(A)}\right)$$

 $K(A) \gtrsim 1 \Rightarrow \text{ben condizionata}; K(A) \gg 1 \Rightarrow \text{mal condizionata}$

<u>Posteriori:</u> x sol corretta, y sol calcolata Errore: e = x - y,

Residuo: r = b - Ay = Ae (non è un buon indicatore, bisogna guardare anche K(A)) $\frac{1}{K(A)}\frac{\|e\|}{\|b\|} \leq \frac{\|e\|}{\|x\|} \leq K(A)\frac{\|r\|}{\|b\|}$

ElMetodo (aka MEG)

$$m_i^k = \frac{a_{ik}^k}{a_{kk}^k} \qquad \qquad a_{ij}^{k+1} = a_{ij}^k - m_i^k \cdot a_{kj}^k$$

$$b_i^{k+1} = b_i^k - m_i^k \cdot b_k^k$$

Operazioni: $\frac{2}{3}n^3 + O(n^2)$.

Fattorizzazione LU
$$\begin{cases} Ly = b \\ Ux = y \end{cases}$$

Pivoting MEG: righe o colonne, Doolittle: righe, Crout: colonne, Cholesky: righe o colonne.

Si scambia in modo da avere come nuovo pivot quello di modulo massimo.

Matrici di permutazione: se moltiplico prima scambio righe, se moltiplico dopo scambio colonne.

Righe: scompongo
$$PA = (PM^{-1})A^{(n)} = LU \Rightarrow \begin{cases} Ly = Pb \\ Ux = y \end{cases}$$
 colonne: $Ly = b$; $Uz = y$; $Qx = z$

Metodi Iterativi (pt. fisso)

$$x^{k+1} = Bx^k + f$$

$$B = I - MA \quad ; \quad f = Mb$$

$$A = \begin{pmatrix} & -F \\ D & \\ -E & \end{pmatrix} \quad \alpha_k^{\nabla} = \frac{\langle r^k, r^k \rangle}{\langle r^k, Ar^k \rangle}$$

$$r^k = b - Ax^k$$

$$x^{k+1} = x^k + Mr^k$$

Metodo	M
Jacobi ®	D^{-1}
Gauss-Seidel ®	$(D - E)^{-1}$
JOR®	ωD^{-1}
SOR	$\frac{\frac{D}{\omega} - E^{-1}}{\alpha_k P^{-1}}$
Richardson	$\tilde{\alpha}_k P^{-1}$
Gradiente ®	$\alpha_k^{\nabla} I$

Convergenza $\Leftrightarrow \rho(B) < 1$; Consistenza: $[Ax = b \Leftrightarrow x = Bx + f]$ Fattore di convergenza: $\rho(B)$

velocità di convergenza: $-\log \rho(B)$

GS converge \Leftarrow • A msdp, oppure

• Adom diag stretta (righe o colonne)

J converge \Leftarrow • A e 2D - A msdp, oppure

• A dom diag stretta (righe o colonne)

A tridiagonale $\Rightarrow \rho(B_{GS}) = (\rho(B_J))^2 \Rightarrow [GS \text{ conv} \Leftrightarrow J \text{ conv}]$ [GS,J] Operazioni: $2n^2 + O(n)$

J vettoriale, GS sequenziale.

J converge \Rightarrow JOR converge per $0 < \omega < 1$

Se A simm def pos, [JOR converge $\iff 0 < \omega < \frac{2}{\rho(D^{-1}A)}$] SOR converge $\implies 0 < \omega < 2$ in quanto $\rho(B_{GS}) \ge |1 - \omega|$ A msdp tridiagonale $\omega_{opt}^{SOR} = \frac{2}{1 + \sqrt{1 - \rho(D^{-1}A)^2}}$

(R)ichardson stazionari

Consistenti \iff det $P \neq 0 \land \alpha_{(k)} \neq 0$ almeno fino a convergenza. SOTTO QUESTE IPOTESI, LE SEGUENTI PROPRIETÀ:

- Convergente $\iff \forall \lambda \in \sigma(P^{-1}A), \ 0 < \frac{\alpha|\lambda|^2}{2\operatorname{Re}(\lambda)} < 1$

 $-\sigma(P^{-1}A) \subset \mathbb{R}_{>0}$, converge $\iff 0 < \alpha < 2/\lambda_{max}$ e

 $\alpha_{opt} = \frac{2}{\lambda_{max} + \lambda_{min}}$; $\rho(B_{\alpha_{opt}}) = \min_{\alpha} \rho(B_{\alpha}) = \frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}}$ inoltre, se $P^{-1}A$ msdp,

$$\rho(B_{\alpha_{opt}}) = \frac{K_2(P^{-1}A) - 1}{K_2(P^{-1}A) - 1} \; ; \; \|e^{k+1}\|_A \le \rho(B_\alpha) \|e^k\|_A$$

 ∇ richiede A msdp

Prop. ortogonalità:

Frop. ortogonalita:
$$\langle r^k, p^{k+1} \rangle = 0 \qquad \langle p^{k+1}, Ap^k \rangle = 0 \qquad \langle r^k, r^{k+1} \rangle = 0 \\ \langle r^i, r^j \rangle = 0 \qquad \langle p^i, Ap^j \rangle = 0$$
 se

A msdp, $\overline{\nabla}$ converge in al più n passi e $\langle e^k, p^j \rangle = 0$ (j < k),

$$||e||_A \le \frac{2c^k}{1+c^2k}||e^0||_A$$
 dove $c = \frac{\sqrt{K_2(A)}-1}{\sqrt{K_2(A)}+1}$

Interpolazione polinomiale

Interpolazione di Lagrange
$$p(x) = \sum_{i=0}^n y_i \ell_i(x) \text{ con } \ell_i(x) = \prod_{\substack{j=0 \\ j \neq i}}^n \frac{x-x_j}{x_i-x_j} \hspace{0.2cm} ; \qquad \left(\sum_{i=0}^n \ell_i(x) = 1\right)$$

Nodi equispaziati
$$R_{n+1} = \{x_i^j = a + ih \in [a, b] \mid i = 0, \dots, n\}$$

dove $h = \frac{b-a}{n} \implies \ell_{n,i}(x) = \sum_{j=0}^{n} \frac{t-j}{i-j} \text{ con } x = a + th$

Nodi di Chebyshev

 $R_{n+1} = \left\{ x_i = a + \frac{b-a}{2} \left[1 + \cos\left(\frac{\pi}{n}(n-i)\right) \right] \middle| i = 0, \dots, n \right\}$ anche qui i i polinomi di Lagrange non dipendono dall'intervallo ma dai nodi.

Entrambi i nodi sono simmetrici rispetto al centro dell'intervallo.

Matrice di interpolazione e costante di Lebesgue

$$X = \begin{pmatrix} R_1 | & 0 & \cdots & 0 \\ \cdots & R_2 | & \cdots & 0 \\ \cdots & \cdots & R_3 | & 0 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \qquad \Lambda_n(X) = \left\| \sum_{i=0}^n |\ell_{n,i}(x)| \right\|_{\infty}$$

$$\forall X, \exists C > 0: \ \Lambda_n(X) \ge \frac{2}{n} \log(n+1) - C \left(\lim_{n \to +\infty} \Lambda_n(X) = +\infty \right)$$

equispaziati: $\Lambda_n(X) \approx \frac{2^{n+1}}{en(\log n + \gamma)};$ Chebyshev: $\Lambda_n(X) \leq \frac{2}{\pi} \left[\log \left(\frac{\pi}{8} n \right) + \gamma \right] + \frac{\pi}{72n^2}$

Teorema errore puntiale posto $\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i),$

$$Ef_n(x) = f(x) - Pf_n(x) = \frac{f^{(n+1)}(\xi)}{(n+i)!} \omega_{n+1}(x)$$

Teorema stima errore

$$Ef_{n,\infty}(x) = ||f - Pf_n||_{\infty} \le [1 + \Lambda_n(X)]Ef_n^{min}$$

Teorema convergenza Chebyshev Se f è lipschitziana su [a,b], la successione dei polinomi interpolatori con nodi di Chebyshev converge uniformemente a f su [a,b]. Teorema convergenza Se $f \in \mathcal{C}^{\infty}([a,b])$, se $\lim_{k \to +\infty} \frac{(b-a)^k}{k!} ||f^{(k)}||_{\infty} = 0$ la successione dei polinomi interpolatori converge a f su [a,b] a prescindere dalla scelta dei nodi.

Interpolazione di Lagrange composita

Soddividiamo in M sottoreticoli con k+1 nodi ciascuno (conto due volte i nodi agli estremi), e interpolo su ogni sottoreticolo con un polinomio di grado k.

È stabile: $||P_{M,k}(x) - \bar{P}_{M,k}(x)||_{\infty} \le \Lambda_k(X) \max_i |\delta y_i|$

Errore: (posta h l'ampiezza dei sottointervalli)

$$||Ef_{M,k}(x)||_{\infty} = ||f(x) - Pf_{M,k}(x)||_{\infty} \le \frac{||f^{(k+1)}(\xi)||_{\infty}}{(k+1)!} (hk)^{k+1} \lim_{M \to +\infty} ||Ef_{M,k}(x)||_{\infty} = 0$$

Splines cubiche

$$S_{i+1}(x) = \frac{M_{i+1}}{6h_{i+1}}(x - x_i)^3 - \left(\frac{h_{i+1}}{6}M_{i+1} - \frac{y_{i+1}}{h_{i+1}}\right)(x - x_i) + \frac{M_i}{6h_{i+1}}(x - x_{i+1})^3 + \left(\frac{h_{i+1}}{6}M_i - \frac{y_i}{h_{i+1}}\right)(x - x_{i+1})$$

dove gli M_i sono l'unica soluzione del sistema tridiagonale simmetrico ($M_0 = M_{n+1} = 0$ imposti)

$$\frac{h_i}{6}M_{i-1} + \frac{h_i + h_{i+1}}{3}M_i + \frac{h_{i+1}}{6}M_{i+1} = \frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i}$$

che, se i nodi sono equispaziati diventa

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2}(y_{i+1} - 2y_i + y_{i-1})$$

Errore: Se $M_0 = f''(a)$ e $M_{n+1} = f''(b)$, x $||f^{(r)} - S^{(r)}||_{\infty} \le C_r h_{max}^{4-r} ||f^{(4)}||_{\infty}$ con C_0 , C_1 , C_2 costanti, C_3 dipende dai nodi.

Integrazione numerica

Formule di quadratura: $I_n(f) = \sum_{i=0}^n \alpha_i f(x_i)$. Consistenza: integra esattamente costanti

Grado di esattezza r: integra esatta/. i polinomi di grado $\leq r$

Formule interpolatorie: $\alpha_i = \int_a^b \ell_{n,i}(x) dx$ Le formule interpolatorie sono consistenti. Una formila è interpolatoria se e solo se ha grado di esattezza $r \geq n$.

Formule di Newton-Cotes (i.e. interpolatorie, nodi equispaziati)

Chiuse $R_{n+1} = \{x_i = a + ih \in [a,b] \mid i = 0,\dots,n; \ h = \frac{b-a}{n}\}$ $\alpha_i = hw_i \quad w_i = \int_0^n \ell_{n,i}(t)dt;$ consistent $\iff \sum_i w_i = n.$ Aperte $R_{n+1} = \{x_i = a + (i+1)h \in [a,b] \mid i=0,\dots,n; \ h = \frac{b-a}{n+2}\}$ $\alpha_i = hw_i \quad w_i = \int_{-1}^{n+1} \ell_{n,i}(t)dt;$ consistent $\iff \sum_i w_i = n+2.$ I pesi non dipendono da [a,b] ma solo da $h \in n$; $w_i \in \alpha_i$ sono simmetrici rispetto al centro dell'intervallo.

Nome	Metodo	GE
Rettangolo (a)	$I_0(f) = (b-a)f\left(\frac{a+b}{2}\right)$	1
Trapezi (c)	$I_1(f) = \frac{b-a}{2} [f(a) + f(b)]$	1
Simpson (c)	$I_2(f) = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$	3

Grado di esattezza r = n se n dispari, r = n + 1 se n pari.

Teorema valor medio discreto $u \in \mathcal{C}^0$, φ_i costanti concordi in segno. Allora $\exists \xi \in]a,b[$ t.c. $\sum_{i=0}^n \varphi_i u(x_i) = u(\xi) \sum_{i=0}^n \varphi_i$ **Errore** R $\frac{1}{3}h^3f^{(2)}(\xi)$, T $-\frac{1}{12}h^3f^{(2)}(\xi)$, CS $-\frac{1}{90}h^4f^{(4)}(\xi)$

Formule di N-C composite Reticolo con M+1 nodi, sottoreticoli con k+1 nodi.

Grado di esattezza k se k dispari, k+1 se k pari. Convergono con ordine k+1 se k dispari, k+2 se k pari.

 \implies OC composite: Rettangolo 2, Trapezi 2, Simpson 4.

Errore Rettangoli $\frac{b-a}{6}f^{(2)}(\xi)(\frac{H}{2})^2 = \frac{b-a}{6}f^{(2)}(\xi)h^2$

Trapezi $\frac{b-a}{12}f^{(2)}(\xi)H^2$

Cavalieri-Simpson $\frac{b-a}{180}f^{(4)}(\xi)(\frac{H}{2})^4 = \frac{b-a}{180}f^{(4)}(\xi)h^4$

h ampiezza sottointervalli piccoli, H ampiezza intervalli grandi.

Derivazione numeriche

Diff. finite	Formula $(h > 0)$	Errore
Avanti	$\frac{f(x+h)-f(x)}{h}$	$-\frac{h}{2}f''(\xi)$
Indietro	$\frac{f(x)-f(x-h)}{h}$	$\frac{h}{2}f''(\xi)$
Centrale	$\frac{f(x+h)-f(x-h)}{2h}$	$-\frac{h^2}{6}f'''(\xi)$

Problemi di Cauchy

Dati $I \subset \mathbb{R}$, $t_0 \in I$, $f(t, y(t)) \in \mathcal{C}^0(I \times \mathbb{R})$, cerchiamo $y \in \mathcal{C}^1(I)$ t.c. y'(t) = f(t, y(t)) e $y(t_0) = y_0$, o, equiv. $y(t) = \int_{t_0}^t f(s, y(s)) ds$.

Teorema esistenza unicità locale se f localmente lipschitziana rispetto a y, $\exists ! y$ soluzione locale.

Teorema esistenza unicità globale se f uniformemente lipschitziana rispetto a $y, \exists ! y$ soluzione globale.

Stabilità PDC consideriamo il sistema perturbato $z'(t) = f(t, z(t)) + \delta(t)$ e $z(t_0) = y_0 + \delta_0$ t.c. $\exists ! z$ soluzione.

DEF Stabilità Lyapunov Se I limitato, δ tale che $|\delta_0| < \delta$ e $|\delta(t)| < \delta \forall t \in I$. Il PDC so dice stabile secondo L. se $\exists C : \forall t \in I, |z(t) - y(t)| \leq C\delta$.

Teorema stab. Lyapunov Se f è uniformementeo lipschitziana rispetto a y, il PDC è stabile secondo Lyapunov. DEF asintotica Stabilità Se I illimitato, il PDC si dice asintoticamente stabile se è Lyapunov-stabile su ogni sottointervallo limitato contenente t_0 e $\lim_{t\to +\infty} |\delta(t)| = 0 \Rightarrow \lim_{t\to +\infty} |y(t)-z(t)| = 0$.

ı	Т		. 1 6/1			
l	E. avanti	$u_{i+1} = u$	$i + hf(t_i, u_i)$			
l	E. indietro	$u_{i+1} = u$	$_{i} + hf(t_{i+1}, u_{i+1})$	1)		
l	D.centrate		$_{i-1} + 2hf(t_i, u_i)$			
	C-N	$u_{i+1} = u$	$_i + \frac{h}{2} \left[f(t_i, u_i) \right] +$	$+ f(t_{i+})$	$[u_{i+1}, u_{i+1}]$	
	Heun u_{i+}		$\frac{d}{dt}\left[f(\overline{t}_i,u_i)+f(t)\right]$			$(u_i))]$
	Nome	esplicito implicito	Passi $(p+1)$	Lin	OCons	Oconv
ı						
١	E. avanti	E	1 = 0 + 1	L	1	1
	E. avanti E. indietro	E I	$egin{array}{l} 1 = 0 + 1 \ 1 = 0 + 1 \end{array}$	L L	1 1	1
		E I E		_	1 1 2	1

1 = 0 + 1

1 = 0 + 1

L

NL

2

 u_{i+1}^* calcolata usanto nel metodo y al posto di u.

Metodo

Ι

 \mathbf{E}

Errore di troncamento locale: $\tau_{i+1}(h) = \frac{y_{i+1} - u_{i+1}^*}{h}$

Errore di troncamento globale: $\tau(h) = \max_{i} |\tau_{i+1}(h)|$

Consistenza $\lim_{h\to 0} \tau(h) = 0$ - Ordine cons q se $\tau(h) = O(h^q)$

Stabilità metodi

Nome

C-N

Heun

(zero) $\exists h_0 > 0, C > 0 \text{ t.c. } \forall h \in]0, h_0[$ e $\forall i \text{ si ha } |u_i - z_i| \leq C\delta$ δ perturbazione massima, C costante, z soluzione calcolata del sistema perturbato.

Teorema zero-stab. metodi espliciti a un passo. Riscrivendo il metodo come $u_{i+1} = u_i + h\Phi(t_i, u_i; h)$ se Φ è lipschitziana rispetto a u con $t \in [t_0, t_0 + T]$ (Λ), il metodo è zero stabile con $C = (1 + \frac{1}{\Lambda}) e^{T\lambda}$

(assoluta) applicando il metodo al problema modello $y' = \lambda y, y(0) = 1$ ($t < 0, \lambda \in \mathbb{C}, \operatorname{Re} \lambda < 0$) la cui soluzione esatta è $y(t) = e^{\lambda t}$, il metodo si dice assolutamente stabile se $\exists h_0 > 0 : \lim_{t_i \to +\infty} |u_i| = 0 \ \forall h \in]0, h_0[$

Regione di assoluta stabilità:

 $\{h\lambda \in \mathbb{C} \mid \text{il metodo è assolutamente stabile}\}$

(iii) C C II metodo e assoratamento stasno)		
Metodo	Regione di assoluta-stabilità	
E. avanti	$\{h\lambda \in \mathbb{C}^- \mid 0 < h < -\frac{2\operatorname{Re}\lambda}{\ \lambda\ ^2}\}$	
E. indietro	$\{h\lambda \in \mathbb{C} 1-h\lambda > 1\}$	
C-N	$\mathbb{C}^{-} = \{ h\lambda \in \mathbb{C} \mid \operatorname{Re}(h\lambda) < 0 \}$	
Heun	$\{h\lambda \in \mathbb{C} 1 + h\lambda + \frac{h^2}{2}\lambda^2 \le 1\}$	

Errore metodi espliciti ad un passo, Φ lipschitziana rispetto a u con $t \in [t_0, t_0 + T]$ (Λ), allora $|e_i| = |y_i - u_i| \le (|e_0| + \frac{\tau(h)}{\Lambda}) e^{ih\Lambda}$

Metodi di Runge-Kutta un passo, espliciti, non lineari, s stadi. Consideriamo solo quelli in cui K_j dipende solo da quelli già calcolati (in generale $\lozenge = s$, qui $\lozenge = j-1$).

$$\begin{cases} u_0 = y_0 \\ u_{i+1} = u_i + h \sum_{j=1}^s b_j K_j \\ K_j = f(t_i + c_j h, u_i + h \sum_{l=1}^{\diamond} a_{jl} K_l) \\ c_j = \sum_{l=1}^{\diamond} a_{jl} \in [0, 1] \end{cases} \qquad \begin{pmatrix} c & A \\ \hline 0 & b \end{pmatrix}$$

Completamente caratterizzato dalla matrice di Butcher $\uparrow.$

Consistenza $\iff \sum_{j} b_{j} = 1$ Ordine $q \le s \ (q < s \text{ se } s > 4)$

Ordine 2 \iff $b_1 + b_2 = 1$ e $b_2 c_2 = \frac{1}{2}$

Convergenza con ordine q se $\tau(h)$ e $|e_0|$ vanno a 0 come h^q . Regione di assoluta stabilità $\left\{h\lambda \in \mathbb{C} \mid \left|1+\sum_{k=1}^s \frac{(h\lambda)^k}{k!}\right| < 1\right\}$

Equazioni alle differenze lineari (di ordine k) $u_{i+k} + \alpha_{k-1}u_{i+k-1} + \cdots + \alpha_0u_i = \varphi_{i+k}$ (omogenea $\varphi_{i+k} = 0$) Polinomio caratteristico $\Pi(r) = r^k + \alpha_{k-1}r^{k-1} + \cdots + \alpha_0$ Soluzioni fondamentali $\{r_i^j\}_j$, k' radici distinte con molteplicità m_j . Tutte le soluzioni: $u_i = \sum_{j=1}^{k'} \left(\sum_{s=1}^{m_j-1} \gamma_{sj}i^s\right) r_j^i$ (γ determinati imponendo condizioni iniziali.)

Metodi multistep

$$\begin{cases} u_0 = y_0 & u_1, \dots, u_p \text{da assegnare} \\ u_{i+1} = \sum_{j=0}^p a_j u_{i-j} + h \sum_{j=-1}^p b_j f(t_{i-j}, u_{i-j}) \end{cases}$$

 $b_{-1}=0$ esplicito; $b_{-1}\neq 0$ implicito. Consistenza $\iff \sum_{j=-1}^p a_j = 1$ e $-\sum_{j=0}^p j a_j + \sum_{j=-1}^p b_j =$

Ordine q se consistente e $\forall k < q$,

$$\sum_{j=0}^{p} (-j)^k a_j + k \sum_{j=-1}^{p} (-j)^{k-1} b_j = 1$$

Adams-Bashforth (esplicito) Interpolo con un polinomio di grado p passante per i punti (t_{i-j}, u_{i-j}) con $j = 0, \ldots, p$ e integro tra t_i e t_{i+1} .

$$\begin{cases} u_0 = y_0 \\ u_{i+1} = u_i + h \sum_{j=0}^p b_j f(t_{i-j}, u_{i-j}) = u_i + \int_{t_i}^{t_{i+1}} Pf_p^{(i)}(t) dt \end{cases}$$

Adams-Moulton (implicito) Interpolo con un polinomio di grado p+1 passante per i punti (t_{i-j}, u_{i-j}) con $j=-1, \ldots, p$ e integro tra t_i e t_{i+1} .

$$\begin{cases} u_0 = y_0 \\ u_{i+1} = u_i + h \sum_{j=-1}^p b_j f(t_{i-j}, u_{i-j}) = u_i + \int_{t_i}^{t_{i+1}} Pf_{p+1}^{(i)}(t) dt \end{cases}$$

Tutti i metodi di Adams hanno ordine p+1 se sono espliciti, p se sono impliciti. Per verificarlo

Consistenza Ordine
$$\sum_{j=-1}^p b_j = 1 \qquad k \sum_{j=-1}^p (-j)^{k-1} b_j = 1 \quad \forall k \leq q$$

Polinomio caratteristico di un metodo multistep

Applicando un metodo multistep lineare al problema modello $y' = \lambda y, y(0) = 1, \lambda \in \mathbb{C}^-$, si ottiene un'equazione alle differenze il cui polinomio caratteristico è

$$\Pi(r) = \rho(r) - h\lambda\sigma(r)$$

$$\rho(r) = r^{p+1} - \sum_{j=0}^{p} a_j r^{p-j} \qquad \sigma(r) = b_{-1} r^{[p+1]} + \sum_{j=0}^{p} r^{p-j}$$

Consistenza metodi multistep

Se un metodo multistep è consistente, allora $\rho(1) = 0$

Condizione delle radici

Siano r_j le radici di ρ , il metodo la soddisfa se

- $-|r_j| \le 1 \forall j$
- $|r_j| = 1 \implies r_j$ è una radice semplice

Teorema zero stabilità un metodo consistente è zero stabile se e solo se soddisfa la condizione delle radici.

Condizione assoluta delle radici Siano $r_i(h)$ le radici di Π . Il metodo la soddisfa se $\exists h_0 > 0$ t.c. $\forall h \in]0, h_0[$, $|r_i(h)| \leq 1 \forall j$ (i.e. per h suff. piccoli le radici sono in modulo minori di 1)

Teorema assoluta stabilità un metodo consistente è assolutamente stabile se e solo se soddisfa la condizione assoluta delle radici.

Convergenza un metodo multistep consistente

- converge se e solo se soddisfa la condizione delle radici e $|e_i| = O(h)$
- converge con ordine q se e solo se soddisfa la condizione delle radici e $|e_i| = O(h^q)$ e $\tau(h) = O(h^q)$

I barriera di Dahlquist se un metodo multistep lineare consistente e zero-stabile ha p+1 passi, allora ha ordine $q \leq p+2$ se p+1 è dispari; $q \le p+3$ se p+1 è pari.

II barriera di Dahlquist

- non esistono metodi multistep lineari espliciti consistenti assolutamente stabili senza condizioni su h
- non esistono metodi multistep lineari di ordine q < 2 (impliciti) consistenti assolutamente stabili senza condizioni su h

Metodi predictor-corrector Idea: predico $u_{i+1}^{(0)}$ con un metodo lineare esplicito, correggo iterando il metodo implicito (pt. fisso) m volte $(u_{i+1}^{(k+1)} = \Phi(u_{i+1}^{(k)}))$.

Teorema ordine q_P ordine predictor, q_C ordine corrector, qordine complessivo

- $q_P \ge q_C \implies q = q_C$
- $q_P < q_C \text{ e } m \ge q_C q_P \implies q = q_C$
- $q_P < q_C$ e $m < q_C q_P \implies q = q_P + m < q_C$

Iterazioni corrector minime per avere ordine q

- $q_P \ge q_C \implies m \ge 1$
- $q_P < q_C \implies m > q_C q_P$

Metodi di ABM (predictor-corrector)

Predictor: Adams- Bashforth esplicito a p+1 passi Corrector: Adams-Moulton implicito a p+1 passi

 $\implies q_P = p + q, \ q_C = p + 2 \implies q_C - q_P = 1 \le m$ basta un'iterazione del metodo corrector per avere ordine $q_C = p + 2$

PDC del secondo ordine

$$\begin{cases} y''(t) = -k^2 y(t) \\ y(0) = \alpha \\ y'(0) = \beta \end{cases} \longrightarrow \begin{cases} y'(t) = v(t) \\ v'(t) = -k^2 y(t) \\ y(0) = \alpha \\ v(0) = \beta \end{cases} \longrightarrow \begin{cases} Y'(t) = F(t, Y(t)) \\ Y(t_0) = Y_0 \end{cases}$$

Sigle

ms: matrice simmetrica

msdp: matrice simmetrica definita positiva

PDC: problema di Cauchy