SECTION 1: THE MOLECULES THAT GENERATE MOTION

LECTURE 2: ROTARY MOTORS

Roop Mallik, BSBE – IIT Bombay

BB101 – Biology. Autumn Semester 2022-2023

Resources:-

Molecular Biology of the Cell: Alberts

Chapter 4, Single Molecule Biology: Alex Knight

Physical Biology of the Cell. Philips, Kondev, Theriot, Garcia

Article by R. Berry (Flagellar motor)

RECALL FROM LAST LECTURE

Molecular Motors – Special Protein Machines

Generates Directed "Predictable" Motion using :-

- Electrical energy
- Chemical energy
- Light energy
- Other energy (?)

- "Mechano-chemical" Enzyme
- Motion drives metabolic functions
- Works at the Molecular Level ... "Nano"

Theoretical Models Ratchet and Pawl

Rectify Thermal Motion to do Useful work

Why should you care?

- Cannot imagine Life without Motion
- Essential e.g. needed for cells to divide.
 Mutations lead to Neuronal degeneration,
 Developmental defects, Cancer
- Likely important to Evolve higher forms of Life.
- Efficient nanoscale machines Can we make our own?

More Info :- <u>iBiology Talk Ronald Vale</u> <u>Motor Proteins in Disease</u>

The Motion of Cells

"The motion of most of them in the water was so swift, and so various, upwards, downwards, and roundabout, that I admit I could not but wonder at it."

Motion Inside of Cells

From "Microscopic World"

The plant Elodea

1774

"I know that the phenomenon that I announce is too strange to be believed at first... I saw two torrents inside each sectionOne of the torrents rose on one side and descended on the other, constantly... and this not once but thousands of times and for days, and for entire weeks"

What kind of motion do Motor Proteins generate?

Linear
 Motors

DNA based

Use of Genetic Information (RNA Polymerase)
Making Proteins (Ribosome)

Protein based

Moving muscles
(Myosin)
Moving things in the cell
(Myosin, Kinesin, Dynein)

We'll return to Linear Motors in next class

RNA

Out

RNA Polymerase

Artofthecell

2) Rotary Molecular Motors

Example 1
Bacterial Flagellar Motor

Helical Flagellum (propeller) rotated by Flagellar Motor

Example 2 ATP Synthase

Cristae

Outer membrane

Inner membrane

Mitochondria

Rotary Motors play a critical role in your body ...

- Allow bacteria to hunt for food (by burning ATP)
- Make ATP to store Chemical energy → Use inside Cells

Nanoscale Protein
Machines burn ATP to
generate Force

Assume one ATP burnt per Cycle.

What does this number tell you?

Making ATP in your Body The ATP synthase Motor in Mitochondria

Electron **Transport** Chain → Flow of electrons to Oxygen → **Energy** is used to pump out Protons

Simplified Cartoon view Biochemistry by Lehninger

Proton gradient across mitochondria membrane acts like a battery

Turns the fan (ATP synthase).

ATP

Synthase

Rotary motion compresses ADP and Pi together to make ATP

Some numbers ...

Daily energy intake for an adult = approx. 2400 Kilo calories = $2400 \times 1000 \times 4.2 = 10^7$ Joules

Energy in 1 ATP molecule = 10^{-19} Joules If all food is converted into ATP, then you make $10^{7}/10^{-19} = 10^{26}$ molecules of ATP/day

How much does this ATP weigh? ATP Molecular weight = 507 So, 6 x 10²³ ATP molecules weigh 507 grams 10²⁶ molecules of ATP would weigh ~85 Kilograms (More than my body weight!)
Thus, most ATP is continuously converted into *Energy*.

1 ATP synthase can make 300 molecules of ATP per second In 24 hours, it makes 25 x 10^6 ATP molecules You need 10^{26} / $(25 \times 10^6) = 4 \times 10^{18}$ ATP synthases to convert your daily food intake into ATP

Will not discuss ATP Synthase. You can read more:-

- (1) Molecular Biology of the Cell by Alberts
- (2) Biochemistry by Lehninger

Human body has ~10¹² Cells, So an average cell should have ~4 million ATP synthases. Homework :- Would so many ATP synthases fit inside a Cell?

Proton gradient used to:-

- ☐ Run the Flagellar Motor to Swim around (find food)
- ☐ Run ATP synthase (Make ATP for other enzymes)

MORE INFO: CRONODON

Flagellar Motor

- No Magnetic field
- Reversible rotary machine, 45 nm dia, hundreds of RPM
- Rotating flagella (~10 mic long, 20nm thick) helical filament
- Maximum power ~10⁻¹⁵ W
- Propels bacteria at speeds upto 100 μm/s

Bacterial Flagellar Motor

Protons bind the rotor, introduced from outside the cell by channels in the stator. In order to pass into the cell they must be transferred to a second set of channels by rotation of the rotor, so that rotation and proton flow are coupled.

You can see Motors rotate on a Coverslip

Maarten M. van Oene, SciRep 2017

How Good is the Bacterial Flagellar Motor?

Rotates upto 18,000 rpm (Car engine ??)

Torque $\approx 2000 \text{ pN-nm} = 2 \times 10^{-18} \text{ N-m}$

Power ≈ 10⁻¹⁵ Watts

Ola Motor ~ 10²⁰ times larger than Bacterial Motor Scale up the Flagellar Motor by 10²⁰ to Ola Size ...

Flagellar Motor could now be 10⁵ Watts = 100 kW (Compare to Ola 8.5kW)

It's Torque could now be 200 N-m (Compare to Ola 58 N-m)

Ola S1 electric scooter

Motor Power: 8.5kW

Motor Torque: 58Nm

More Information:

The biophysicist's guide to the bacterial flagellar motor

How about the Internal Combustion engine? Enfield Thunderbird 500 cc Maximum Power 27.2 HP @ 5250 rpm Max Torque 41.3 Nm @ 4000 rpm

FOR YOU TO THINK ABOUT/READ ...

- Energy from 1 ATP = 10^{-19} Joules. If a Nanomotor uses 1ATP/Cycle, what does this tell you about the working of the Nanomotor?
- What would happen if a flagella of the bacteria gets stuck to a rigid surface as the bacteria is swimming along?
- How is the Torque and Power of Bacterial Flagellar Motor measured?

The torque versus speed response of bacterial flagellar motor is shown in a diagram taken from this PAPER

- How can the motor speed be varied in such experiments?
- What are the approximate values of Torque at low motor speed?
- Why is there a "knee" in this response?

