Funciones inversas

Definición Una función f es **uno-uno** (que se lee "uno a uno") si $f(a) \neq f(b)$ cuando $a \neq b$.

La condición $f(a) \neq f(b)$ para $a \neq b$ significa que ninguna línea *horizontal* corta a la gráfica de f en más de un punto.

Definición Para cualquier función f, la **inversa** de f, denotada por f^{-1} , es el conjunto de todos los pares (a,b) para los que el par (b,a) pertenece a f.

Teorema f^{-1} es una función si y sólo si f es uno-uno. **1.1**

Demostración.- Supongamos primero que f es uno-uno. Sean (a,b) y (a,c) dos pares de f^{-1} . Entonces (b,a) y (c,a) pertenecen a f, de manera que a=f(b) y a=f(c); como f es uno-uno, b=c. Por lo tanto, f^{-1} es una función.

Recíprocamente, Supongamos que f^{-1} es una función. Si f(b) = f(c), entonces f contiene a los pares (b, f(b)) y (c, f(c)) = (c, f(b)), y por lo tanto (f(b), b) y (f(b), c) pertenecen a f^{-1} . Como por hipótesis, f^{-1} es una función, b = c; es decir, f es uno-uno.

Es evidente por definición que

$$\left(f^{-1}\right)^{-1} = f.$$

Como (a,b) pertenece a f si y sólo si (b,a) pertenece a f^{-1} , deducimos que