课程知识点关联图

课程专题一:标签学习

最小化回归误差 最小化分类信息熵 决策树 输出是类别标签:如文 算 法 回归树 本分类、图片分类、计 以分类回归思想建模 算广告 **GBRT** 最大化数据似然 逻辑回归 标签学习 以概率思想建模 朴素贝叶斯 Bagging 集成方法 **Adaboost**

课程专题二: 概率图模型方法

课程专题三:神经网络方法

课程专题四:前沿研究

课程内容总结

- 强调模型的理论基础和实用价值
 - 所讲授算法模型在工业上可用
- 强调各种模型间的联系以融会贯通
- 强调通过编程实战培养实践能力

对于科研工作者,这门课将为你奠定后续研究的基础; 对于工程实践者,这门课将为你扫平开发智能应用的障碍。

"弱人工智能"的机理

工业界实用的ML机理

"智能"的体现: 提供一种功能

输入	功能	输出
文本	文本分类	标签
图片	图片分类	标签
中文一句话	翻译	英文一句话
问句	对话系统	答句
图片	Image Caption	图片描述
语音	语音识别	文字

将智能的功能转化为从输入到输出的非线性运算

弱人工智能 与 强人工智能

弱人工智能vs强人工智能

John Searle

弱AI: Acting Humanly

强AI: Acting and Thinking Humanly

课程内容:以弱人工智能为主

强人工智能: scientific theories of internal activities of the brain

- Cognitive Science: predicting and testing behavior of human subjects (top-down)
- Cognitive Neuroscience: Direct identification from neurological data (bottom-up)

监督机器学习

- 三要素
 - 优化目标建立
 - 优化求解过程
 - 模型预测过程