

In This Course

- + What is Cisco's Software Defined Wide-Area Network (SD-WAN)?
- How Cisco SD-WAN Works Behind-the-Scenes
- + Onboarding & Deploying Cisco SD-WAN Controllers, Routers & VPNs
- + Implementing Cisco SD-WAN Templates & Policies
- + Advanced Cisco SD-WAN Features
 - Direct Internet Access (DIA)
 - Application Aware Routing (AAR)
 - + Security
 - + QoS
 - + TLOC Extension
 - Direct Cloud Access & Cloud OnRamp

Brian McGahan

CCIEx4 #8593 & CCDE #2013::13

In This Course

- + What is Cisco's Software Defined Wide-Area Network (SD-WAN)?
- How Cisco SD-WAN Works Behind-the-Scenes
- + Onboarding & Deploying Cisco SD-WAN Controllers, Routers & VPNs
- + Implementing Cisco SD-WAN Templates & Policies
- + Advanced Cisco SD-WAN Features
 - Direct Internet Access (DIA)
 - Application Aware Routing (AAR)
 - + Security
 - + QoS
 - + TLOC Extension
 - Direct Cloud Access & Cloud OnRamp

Course Prerequisites

- + Course assumes a working knowledge of...
 - + Cisco IOS (XE) syntax
 - Basic IP Routing with static & dynamic protocols (e.g. OSPF/BGP)
 - + Differences between WAN technologies (e.g. Internet vs. MPLS)
- + Course does not assume previous experience with...
 - + IPsec VPNs
 - + SD-WAN implementations
 - + Cisco's SD-WAN Viptela OS

In This Section

- + Traditional WAN Routing Problems
- + What is SD-WAN?
- + How SD-WAN Can Fix Traditional Problems
- Cisco's SD-WAN Solution Overview

Traditional WAN Routing Problems - Management

- + In traditional networking, each router is managed separately
 - + Each device is typically manually configured from a Command Line Interface (CLI)
 - + E.g. IP addressing, routing protocols, & VPN configs are locally significant
 - + Change control becomes an issue as the network starts to scale
 - + E.g. 1000 branch sites = 1000 routers to manually configure for each change
 - + Bolt-on Network Management Systems (NMS) only offer a limited fix
 - + E.g. Cisco Prime, SolarWinds, etc.
 - + Additional software licensing, increasing Total Cost of Ownership (TCO)
 - + NMS is typically just for monitoring, not for configuring
 - + Still might need something like Ansible to automate & manage configurations

Traditional WAN Routing Problems – Secure Connectivity

- + In traditional networking, secure any-to-any connectivity is difficult at scale
 - + Could use static site-to-site IPsec tunnels, but hard to manage as network grows
 - + E.g. adding 100th site means 99 other sites need to be reconfigured
 - + Routers have upper limits on how many IPsec tunnels they can form
 - + E.g. Branch routers have much smaller CPUs than DC Edge routers
 - + Could use group encryption like GETVPN/GDOI, but this limits transport options
 - + E.g. NAT isn't supported, so Internet links are not supported
 - + Could use dynamic encryption, like DMVPN, but it has drawbacks as well
 - + Scaling up requires forklift upgrades of hub routers
 - + Scaling out requires difficult routing and failover logic w/ daisy-chained hubs
 - + DMVPN still has no visibility of underlying transport issues
 - + E.g. service degradation (brownouts) can still occur without complicated IP SLA / PfR / iWAN configurations

Traditional WAN Routing Problems – Intelligent Routing

- + In traditional networking, intelligent routing is difficult to implement
 - + E.g. routing is normally based on a flat metric, not the real-time state of the network
- For example, a branch router with 2 ISPs typically uses default routes to both
 - + Allows for basic failover and load balancing, but no application intelligence
 - + E.g. static routes could prevent against link failure (blackout) but can't prevent against service degradation (brownout)
 - + Could use something like IP SLA, but typically difficult to configure and scale

Traditional WAN Routing Problems – Service Reliability

- + Traditionally, Direct Internet Access (DIA) could not meet reliability goals
 - + Internet routing does not offer any end-to-end...
 - + Bandwidth guarantees
 - + Delay/Jitter guarantees
 - + Mean Time to Repair (MTTR) SLA
- + Traditionally, result was that expensive Private WAN circuits were needed
 - + E.g. MPLS L2VPN/L3VPN
- + Additionally, Private WAN typically does not offer Internet access
 - + Separate Internet circuits were typically still required, driving up costs
 - + E.g. collect all traffic at a central DC, then route it to the Internet

What is Software Defined WAN (SD-WAN)?

- Software Defined WAN (SD-WAN) uses centralized Controllers to decouple
 WAN Edge Routers' data-plane from their control-plane & management-plane
 - + Data-plane is the forwarding of traffic between interfaces
 - + Control-plane is the policy of how to forward this traffic, e.g. VPN, VoIP vs. Data, etc.
 - + Management-plane is the configuration & monitoring of these policies
- + SD-WAN is meant to fix previously mentioned problems with WAN Edge Routing
 - + Note that this is for **WAN Edge** only, and does not apply to DC Core / LAN Core, etc.
 - + DC Core (e.g. Cisco ACI) & LAN Core (e.g. Cisco SD-Access) can hand-off to SD-WAN

Solving Traditional WAN Routing Problems with Software Defined WAN (SD-WAN)

- + SD-WAN offers some of the following benefits vs. traditional WAN routing
 - + Centralized management easier configuration, monitoring, & automation
 - + We make changes on Controller, then it pushes changes to WAN Edge Routers
 - + For example, allows for central Zero Touch Provisioning (ZTP) of new sites
 - + Secure connectivity transparent automation of IPsec config & key management
 - + E.g. simple any-to-any encryption
 - + Intelligent routing traffic can be routed based on application performance parameters
 - + E.g. choose lowest delay path for VoIP traffic based on current network conditions
 - + Cloud optimization SaaS traffic can be offloaded to closet cloud entry-point
 - + E.g. don't go to the central Data Center to reach AWS/Azure/GCP; use local DIA
 - + Lower TCO SD-WAN is transport agnostic, which results in lower costs
 - E.g. MPLS isn't required; you could use multiple lower cost Internet circuits or a mix of MPLS + Internet and still meet reliability goals

What is Cisco's Software Defined Wide Area Networking (SD-WAN) Solution?

- + Cisco's (Viptela) SD-WAN solution offers all of these benefits, such as...
 - + Single Pane of Glass Management
 - + vManage Controller allows centralized configuration and management
 - + Simple Provisioning
 - + Automated onboarding of new sites with Zero Touch Provisioning (ZTP)
 - + Secure Connectivity
 - + Automatically uses IPsec w/certificates for encryption between sites
 - Intelligent Routing
 - + Supports Application Aware Routing (AAR) + automatic failover
 - Lower TCO
 - + Can use cheap Internet circuits instead of MPLS/VPLS, or a combination
 - + Cloud Friendly
 - Simplifies SaaS/laaS deployments by optimizing forwarding

How does Cisco's SD-WAN Solution Work?

- + Cisco's SD-WAN Solution can be broken down into two main components
 - + SD-WAN Controllers
 - + WAN Edge Routers
- Controllers consist of three devices, each performing a different function
 - + vManage NMS GUI for configuring & managing the SD-WAN Solution
 - + vBond Orchestrator Automation engine used for onboarding new routers
 - + vSmart Controller Controls Routing & Policy decisions
- WAN Edge Routers consist of two categories of devices
 - vEdge Routers running Viptela software
 - cEdge Routers running Cisco IOS XE software
 - Both are available as hardware boxes and as Virtual Machines (VMs)

Example Simple Cisco SD-WAN Topology

Example Cisco SD-WAN Topology

- + The first step in Cisco SD-WAN is to "onboard" the Controllers
 - + Onboarding is the process of establishing secure tunnels between the devices
- vBond, vSmart, & vManage controllers use PKI Certificates to authenticate
 - + For Cisco cloud-hosted controllers, PKI "just works"
 - + Can also use internal Certificate Authority (CA) for on-prem hosted controllers
- Controllers then create DTLS (TLS over UDP) tunnels between each other
 - + All control & management-plane traffic sent over DTLS is AES-256 encrypted
 - Uses UDP base port 12346 for transport, but can hop around for NAT

- + Next step is to "onboard" the WAN Edge Routers
 - + I.e. establish secure tunnels from WAN Edge to the Controllers
- WAN Edge Router first establishes a DTLS tunnel to vBond
 - + vBond is the "orchestrator", and is in charge of new devices joining the SD-WAN
 - + vBond has a list of authorized serial numbers, e.g. from Cisco Smart Licensing
 - + WAN Edge knows vBond IP address either through manual config or through Zero Touch Provisioning (ZTP)
 - + Once complete, vBond tells vSmart & vManage about new WAN Edge Router
- WAN Edge Router next establishes DTLS tunnels to vManage & vSmart

- + vManage can now manage the WAN Edge Router over DTLS
 - + E.g. securely push a config template to the new WAN Edge Router
- vSmart can now exchange control-plane info with WAN Edge over DTLS
 - + vSmart collects and distributes symmetric IPsec keys for all WAN Edge Routers
 - + IKE/ISAKMP is not needed because a secure tunnel already exists
 - + This makes the IPsec control-plane much more scalable
 - + vSmart learns routes from WAN Edges w/ Overlay Management Protocol (OMP)
 - vSmart pushes routes & policy to other WAN Edge Routers via OMP
 - + vSmart is analogous to a BGP Route Reflector
 - + vSmart can control the routing policy for all WAN Edge Routers
 - + e.g. hub-and-spoke, Application Aware Routing (AAR), etc.

- Final step is that WAN Edge Routers form IPsec tunnels between sites
 - + IPsec keys are learned from vSmart over DTLS, so IKE/ISAKMP isn't needed
 - + IPsec keys are global by default, but can be set to "pairwise"
 - + Pairwise means one key per-peer, instead of same key for all
 - + IPsec re-keying happens periodically, with new keys sent to vSmart for distribution
 - + Rekey timer and replay-window can be modified if desired
- Default vSmart policy is a full-mesh of IPsec tunnels
 - + vSmart learns about all Transport Locations (TLOCs) from OMP advertisements
 - + TLOC is WAN Edge Router's IP towards WAN, plus other attributes like "color"
 - + Result is if two WAN Edges have both ISP1 & ISP2, four tunnels form:
 - + ISP1 to ISP1 / ISP2 to ISP2 / ISP1 to ISP2 / ISP2 to ISP1
 - + vSmart policies are centrally controlled through vManage

- IPsec data-plane uses modified ESP over UDP
 - Uses AES encryption & SHA authentication
 - + MPLS label is added to carry the VPN number
 - + E.g. VPN 1 can talk to VPN 1 by default
 - + E.g. VPN 1 cannot talk to VPN 2 by default Orginal Packet
 - + UDP base port is 12346, but can jump around
 - + E.g. two WAN Edges both behind NAT is supported in certain cases

Added by ESP/UDP

Added by

ESP/UDP

- + Once IPsec data-plane is established between WAN Edge Routers, Bidirectional Forwarding Detection (BFD) is used to track tunnel states
 - + Traditional IPsec uses Dead Peer Detection (DPD), which is slow
 - + BFD is a lightweight way to quickly detect direct or indirect link failures
 - + E.g. BFD tracks the entire transport path, not just your local link to ISP
 - + BFD also measures link statistics like latency, loss, & jitter
 - + Can be used later for Application Aware Routing (AAR)
 - + Traffic is automatically re-routed around BFD failures by default
 - + E.g. tracking the WAN "just works" out of the box

Cisco SD-WAN CLI Verifications

- Verify Control-Plane & Management-Plane (DTLS) tunnels
 - + vBond show orchestrator connections
 - + vManage/vSmart/vEdge-show control connections
 - + cEdge show sdwan control connections
- Verify Data-Plane (IPsec) tunnels
 - + vEdge show bfd sessions
 - + cEdge show sdwan bfd sessions
- Verify Overlay (VPN) Routing
 - + vEdge show ip route [vpn 1]
 - + cEdge-show ip route [vrf 1]

Cisco SD-WAN GUI Verifications

- + View a WAN Edge Router's Running Configuration
 - + vManage > Configuration > Devices > (3 dots) > Running Configuration
- SSH to a WAN Edge Router
 - + vManage > Monitor > Devices > (3 dots) > SSH Terminal

Cisco SD-WAN GUI Verifications (cont.)

- Verify the Control Plane from vManage
 - + vManage > Monitor > Devices > [device]
 - + Control Connections
 - + Equivalent of show [sdwan] control connections
 - + Real Time > BFD Sessions
 - + Equivalent of show [sdwan] bfd sessions
 - + Real Time > IP Routes
 - + Equivalent of show ip route [vrf *]
- Verify the Data Plane from vManage
 - + vManage > Monitor > Devices > [device] > Troubleshooting > Ping | Traceroute
- + Perform remote packet capture from vManage
 - vManage > Administration > Settings > Data Stream > Enabled
 - + Monitor > Devices > [device] > Troubleshooting > Packet Capture

Cisco SD-WAN Controllers Overview

- Cisco's Viptela SD-WAN Solution uses three types of controllers
 - + vManage used for management
 - + vSmart used for routing & traffic policies
 - + vBond used for orchestration
- Starting v20.14.x, solution is now rebranded as Cisco Catalyst SD-WAN
 - + vManage renamed to SD-WAN Manager
 - + vSmart renamed to SD-WAN Controller
 - + vBond renamed to SD-WAN Validator
 - + Only a cosmetic change, all functionality in this course is still the same
 - + v20.9 is current Suggested Release; v20.10 and above is Early Deployment (ED)
- Controllers can be hosted by Cisco (public cloud) or internally (private cloud)

Cisco SD-WAN Controller Functions

- vBond provides Orchestration Plane
 - Authenticates & authorizes SD-WAN WAN Edge Routers so secure control connections can be established (i.e. DTLS tunnels)
- + **vSmart** runs the Control Plane
 - + Learns routes from WAN Edge Routers and reflects them back
 - + Like a BGP Route Reflector, but for Overlay Management Protocol (OMP)
 - + Implements control-plane policies to affect traffic flows
 - + Distributes centralized data plane polices to SD-WAN WAN Edge Routers
 - + E.g. local Cloud OnRamp, Application Aware Routing (AAR), etc.
- + **vManage** runs the Management Plane
 - + "Single Pane of Glass" for centralized provisioning, troubleshooting, and monitoring
 - + Provides a GUI for manual management and APIs for automation

Cisco SD-WAN Controller Hosting Options – Cisco Cloud

- Hosting SD-WAN Controllers in Cisco Cloud
 - + Cisco provides you IP Addresses & credentials for vManage, vSmart, & vBond, which are pre-configured and reachable via the public Internet
 - + Controllers + vEdge & cEdges already trust Cisco Certificate Authority (CA)
 - + E.g. PKI "just works" automatically when using Cisco Cloud
 - + Onboarding new WAN Edge Routers is simple with Zero Touch Provisioning (ZTP)
 - WAN Edge Router gets an IP address via DHCP from the ISP
 - + Router contacts a pre-defined ZTP server in Cisco Cloud
 - + Cisco Smart Licensing already has the serial numbers registered
 - + E.g. onboarding "just works" automatically when using Cisco Cloud

Cisco SD-WAN Controller Hosting Options – Private Cloud

- + Hosting SD-WAN Controllers in "Private" Cloud
 - + vManage, vSmart, & vBond are virtual machines hosted internally
 - + Could be on-prem, private colocation, public cloud, etc.
 - + Controllers must be reachable from WAN Edge Routers
 - E.g. via the public Internet and/or Private WAN (e.g. MPLS)
 - + Internal Certificate Authority (CA) is used for authentication
 - + E.g. Controllers manually install/trust your internal Root CA & request cert signing
 - + WAN Edge Routers must manually install the Root CA Cert
 - + Onboarding WAN Edge Routers is more of a manual process in this case

Onboarding Overview

- + "Onboarding" is the process of establishing secure tunnels between the devices
 - + Cisco SD-WAN Controllers use PKI (Certificates) to authenticate each other
 - + DTLS (TLS over UDP) tunnels are then established to exchange control-plane info

SD-WAN Controllers – Underlay Transport

- + The first step in onboarding the Controllers is to establish IP transport between themselves & the WAN Edge Routers in the underlay network
 - + E.g. over the Internet or MPLS facing link(s)
- + Viptela OS uses VPN numbers to represent different routing table spaces
 - + I.e. VPN numbers in Viptela OS are equivalent to VRFs in Cisco IOS
- VPN 0 is the "Transport VPN", and is used for links facing towards the WAN
 - + VPN 0 is the underlay transport for the overlay IPsec tunnels
 - + E.g. towards the public Internet or private MPLS
 - + VPN 0 is equivalent to the global (default) VRF in Cisco IOS
 - + All Controllers & WAN Edge Routers need reachability to each other in VPN 0
 - + I.e. this is where DTLS tunnels are established for the control-plane

SD-WAN Controllers – Management VPN

- VPN 512 is the "Management VPN", used for Out-of-Band Management
 - + VPN 512 is equivalent to VRF "Mgmt-intf" in Cisco IOS
 - + Can have a default route separate from the Transport VPN (0)
- Controllers & Edges don't need VPN 512 if you only want to manage them in-band
 - allow-service command under the "tunnel-interface" in VPN 0 needs to be modified to allow for in-band management on the WAN facing links
 - + E.g. SSH, NETCONF, HTTPS
 - + **allow-service** doesn't affect mgmt between Controllers or to WAN Edge Router
 - + I.e. DTLS traffic is always allowed in between Controllers and in on WAN Edge

Onboarding Internally Hosted Cisco SD-WAN Controllers – Required CLI Config

- + Onboarding Controllers starts with minimum CLI options
 - + Host-name
 - + System-ip
 - + Does not need to be routable, just a unique Router-ID
 - + Site-id
 - Devices in the same site don't form IPsec tunnels with each other
 - + Organization-name
 - + Must match the ORG in *serialFile.viptela* generated from Cisco Licensing Portal
 - vBond IP Address
 - + I.e. Who is the Orchestrator?
 - + VPN 0 The "Transport VPN"
 - + Interface(s), IP address(es), and routing towards the WAN
 - + Unique tunnel "color" for each WAN link
 - + Color can be used in routing decisions later

vBond Example Initial CLI Config

```
config t
                                    vpn 512
                                      interface eth0
system
host-name vBond-1
                                       ip dhcp-client
 system-ip 172.17.101.103
                                       no shutdown
 site-id 1
 organization-name VIPTELA.local
                                    commit and-quit
vbond 150.1.1.103 local
vpn 0
 interface ge0/0
  ip address 150.1.1.103/24
  tunnel-interface
   encapsulation ipsec
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


vSmart Example Initial CLI Config

```
config t
                                     vpn 512
                                      interface eth0
system
                                       ip dhcp-client
 host-name vSmart-1
 system-ip 172.17.101.102
                                       no shutdown
 site-id 1
                                     commit and-quit
 organization-name VIPTELA.local
 vbond 150.1.1.103
vpn 0
 no interface eth0
 interface eth1
  ip address 150.1.1.102/24
  tunnel-interface
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


vManage Example Initial CLI Config

```
config t
                                     vpn 512
                                      interface eth0
system
                                       ip dhcp-client
host-name vManage-1
 system-ip 172.17.101.101
                                       no shutdown
 site-id 1
                                     commit and-quit
 organization-name VIPTELA.local
vbond 150.1.1.103
vpn 0
 no interface eth0
 interface eth1
  ip address 150.1.1.101/24
  tunnel-interface
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


Enabling Enterprise Certificates on vManage

- vManage listens for HTTPS for GUI management via web browser
 - + Allowed in Management VPN (512) by default
 - + Can be allowed in Transport VPN (0) with allow-service [https | all] under CLI conf t; vpn 0; interface [int]; tunnel-interface
- vManage trusts Cisco's Certificate Authority (CA) by default
 - + Allows for very simple Zero Touch Provisioning (ZTP)
- + For internally hosted controllers, set to *Enterprise Root Certificate* on vManage
 - + Administration > Settings
 - + Set org, e.g. VIPTELA.local
 - + Set vBond IP address
 - + Set Controller Certificate Authorization to Enterprise Root Certificate
 - + Paste your private Root CA Certificate

Enabling Enterprise Certificates on vManage – GUI Example

Trusting the Root CA Certificate on the SD-WAN Controllers

- + All three Controllers must manually install your private Root CA Cert
 - + Run **vshell** from Controllers CLI to drop to Linux shell
 - Copy the Root CA Cert to filesystem with SCP/TFTP
 - + Could also use vi MyCA.crt and paste Cert in
 - + When complete, **exit** vshell
- Install the Root CA Cert from all Controllers CLI
 - + vManage-1# request root-cert-chain install /home/admin/MyCA.crt
- + Sync the Root CA Cert in the vManage database (required)
 - + <a href="https://<vManage-ip-address">https://<vManage-ip-address/dataservice/system/device/sync/rootcertchain

Trusting the Root CA Certificate on the SD-WAN Controllers – CLI Example

```
vManage-1# vshell
vManage-1:~$ more IOS-CA.crt
----BEGIN CERTIFICATE----
MIIFADCCAuigAwIBAgIBATANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZJT1Mt
Q0EwHhcNMjAwMTAxMDAwODQ0WhcNNDAwMTAxMDAwODQ0WjARMQ8wDQYDVQQDEwZJ
T1MtQ0EwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQC3UaZO6YaoJU1h
NKZF7g+ptUHb14Ha37j/jzNlyqQ2V2a0/1ixGQOTYO3TXjdy/4T9NH/PPk8Vx/7/
w1scCIzTtG60I+yx6a0yDKastHdVlHMn4VPnIvkSdKZjqDV6wjNPWhQHhS5uCQsn
6kCQM/Q4bj0abC/TCmqmDsMkBA5DUHa0H1adfgpjC5v/vG8NmF1ris+hCI4lqACu
o+VqY8Z8b3DIOi1Tv5GF8aGA4qnUqmaKY6+VeOKWiddwM9wH0t0kzURuqaBpkOYp
<snip>
vManage-1:~$ exit
vManage-1# request root-cert-chain install /home/admin/IOS-CA.crt
Uploading root-ca-cert-chain via VPN 0
Copying ... /home/admin/IOS-CA.crt via VPN 0
Updating the root certificate chain...
Successfully installed the root certificate chain
```


Syncing the Root CA Cert in the vManage Database Example

Signing the Controllers Certificates with Internal Certificate Authority (CA)

- All controllers must generate Certificate Signing Requests (CSRs),
 which are then signed by the internal Root CA
- + First, add the new vSmart & vBond Controllers from vManage
 - + vManage > Configuration > Devices > Controllers > Add Controller
 - + Add vBond IP address, credentials, and Generate CSR
 - + Add vSmart IP address, credentials, and Generate CSR
- Next, view the Certificate Signing Requests from vManage
 - + vManage > Configuration > Certificates > Controllers > ● > View CSR | Generate CSR

SD-WAN Controllers Certificate Signing Request Example

Using Cisco IOS as a Root CA Server Example – Signing the SD-WAN Controllers Certificates

```
IOS-CA#crypto pki server IOS-CA request pkcs10 terminal
PKCS10 request in base64 or pem
% Enter Base64 encoded or PEM formatted PKCS10 enrollment request.
% End with a blank line or "quit" on a line by itself.
----BEGIN CERTIFICATE REOUEST-
MIIDTTCCAjUCAQAwqcwxCzAJBqNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh
<snip>
vFRHP1aMMUWAn6XutBKZCiq4mGKqkhIRuR81n81EFW4Y
----END CERTIFICATE REQUEST----
% Granted certificate:
----BEGIN CERTIFICATE----
MIIErDCCApSqAwIBAqIBBTANBqkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZJT1Mt
<snip>
W6e1iHB8FZLcR7/8yin9nxSOw5xYGwe7USb/+0ZjmzVGByIYP/0zGkq7wL8R4G10
----END CERTIFICATE----
```


Installing the SD-WAN Controllers Signed Certificates

- + vManage > Configuration > Certificates > Controllers > Install Certificate
 - + Paste or upload each of the Controllers' Certificates granted from the Root CA

Verifying SD-WAN Controller Onboarding from CLI

- + Once PKI Authentication is complete, DTLS tunnels form between all Controllers
 - + vManage forms one tunnel per-vCPU to vBond

vManage-1# show control connections | exclude vedge | tab

INSTANCE	PEER TYPE	SITE ID	DOMAIN ID	LOCAL PRIVATE IP	LOCAL PRIVATE PORT	PUBLIC IP	PUBLIC PORT	<snip></snip>
0	vsmart	1	1	150.1.1.101	12346	150.1.1.102	12346	
0	vbond	0	0	150.1.1.101	12346	150.1.1.103	12346	
1	vbond	0	0	150.1.1.101	12446	150.1.1.103	12346	
2	vbond	0	0	150.1.1.101	12546	150.1.1.103	12346	
3	vbond	0	0	150.1.1.101	12646	150.1.1.103	12346	
4	vbond	0	0	150.1.1.101	12746	150.1.1.103	12346	
5	vbond	0	0	150.1.1.101	12846	150.1.1.103	12346	
6	vbond	0	0	150.1.1.101	12946	150.1.1.103	12346	
7	vbond	0	0	150.1.1.101	13046	150.1.1.103	12346	

Verifying SD-WAN Controller Onboarding from vManage GUI

Verifying SD-WAN Controller Onboarding from vManage GUI (cont.)

Verifying & Troubleshooting SD-WAN Controller Onboarding from CLI

- Verify that DTLS connections are up between Controllers
 - + show control connections from vManage, vSmart, & vEdge
 - + show orchestrator connections from vBond
- + Troubleshoot failed onboarding of Controllers
 - + **show control connections-history** from vManage, vSmart, & vEdge
 - + show orchestrator connections-history from vBond
 - + Check **LOCAL ERROR** & **REMOTE ERROR** fields against legend

Example Cisco SD-WAN Topology

vBond Example Initial CLI Config

```
config t
                                    vpn 512
                                      interface eth0
system
host-name vBond-1
                                       ip dhcp-client
 system-ip 172.17.101.103
                                       no shutdown
 site-id 1
 organization-name VIPTELA.local
                                    commit and-quit
vbond 150.1.1.103 local
vpn 0
 interface ge0/0
  ip address 150.1.1.103/24
  tunnel-interface
   encapsulation ipsec
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


vSmart Example Initial CLI Config

```
config t
                                     vpn 512
                                      interface eth0
system
                                       ip dhcp-client
 host-name vSmart-1
 system-ip 172.17.101.102
                                       no shutdown
 site-id 1
                                     commit and-quit
 organization-name VIPTELA.local
 vbond 150.1.1.103
vpn 0
 no interface eth0
 interface eth1
  ip address 150.1.1.102/24
  tunnel-interface
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


vManage Example Initial CLI Config

```
config t
                                     vpn 512
                                      interface eth0
system
                                       ip dhcp-client
host-name vManage-1
 system-ip 172.17.101.101
                                       no shutdown
 site-id 1
                                     commit and-quit
 organization-name VIPTELA.local
vbond 150.1.1.103
vpn 0
 no interface eth0
 interface eth1
  ip address 150.1.1.101/24
  tunnel-interface
   color biz-internet
   allow-service all
  no shutdown
 ip route 0.0.0.0/0 150.1.1.254
```


Enabling Enterprise Certificates on vManage

- vManage listens for HTTPS for GUI management via web browser
 - + Allowed in Management VPN (512) by default
 - + Can be allowed in Transport VPN (0) with allow-service [https | all] under CLI conf t; vpn 0; interface [int]; tunnel-interface
- vManage trusts Cisco's Certificate Authority (CA) by default
 - + Allows for very simple Zero Touch Provisioning (ZTP)
- + For internally hosted controllers, set to *Enterprise Root Certificate* on vManage
 - + Administration > Settings
 - + Set org, e.g. VIPTELA.local
 - + Set vBond IP address
 - + Set Controller Certificate Authorization to Enterprise Root Certificate
 - + Paste your private Root CA Certificate

Enabling Enterprise Certificates on vManage – GUI Example

Trusting the Root CA Certificate on the SD-WAN Controllers

- + All three Controllers must manually install your private Root CA Cert
 - + Run **vshell** from Controllers CLI to drop to Linux shell
 - Copy the Root CA Cert to filesystem with SCP/TFTP
 - + Could also use vi MyCA.crt and paste Cert in
 - + When complete, **exit** vshell
- Install the Root CA Cert from all Controllers CLI
 - + vManage-1# request root-cert-chain install /home/admin/MyCA.crt
- + Sync the Root CA Cert in the vManage database (required)
 - + <a href="https://<vManage-ip-address">https://<vManage-ip-address/dataservice/system/device/sync/rootcertchain

Trusting the Root CA Certificate on the SD-WAN Controllers – CLI Example

```
vManage-1# vshell
vManage-1:~$ more IOS-CA.crt
----BEGIN CERTIFICATE----
MIIFADCCAuigAwIBAgIBATANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZJT1Mt
Q0EwHhcNMjAwMTAxMDAwODQ0WhcNNDAwMTAxMDAwODQ0WjARMQ8wDQYDVQQDEwZJ
T1MtQ0EwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQC3UaZO6YaoJU1h
NKZF7g+ptUHb14Ha37j/jzNlyqQ2V2a0/1ixGQOTYO3TXjdy/4T9NH/PPk8Vx/7/
w1scCIzTtG60I+yx6a0yDKastHdVlHMn4VPnIvkSdKZjqDV6wjNPWhQHhS5uCQsn
6kCQM/Q4bj0abC/TCmqmDsMkBA5DUHa0H1adfgpjC5v/vG8NmF1ris+hCI4lqACu
o+VqY8Z8b3DIOi1Tv5GF8aGA4qnUqmaKY6+VeOKWiddwM9wH0t0kzURuqaBpkOYp
<snip>
vManage-1:~$ exit
vManage-1# request root-cert-chain install /home/admin/IOS-CA.crt
Uploading root-ca-cert-chain via VPN 0
Copying ... /home/admin/IOS-CA.crt via VPN 0
Updating the root certificate chain...
Successfully installed the root certificate chain
```


Syncing the Root CA Cert in the vManage Database Example

Signing the Controllers Certificates with Internal Certificate Authority (CA)

- All controllers must generate Certificate Signing Requests (CSRs),
 which are then signed by the internal Root CA
- + First, add the new vSmart & vBond Controllers from vManage
 - + vManage > Configuration > Devices > Controllers > Add Controller
 - + Add vBond IP address, credentials, and Generate CSR
 - + Add vSmart IP address, credentials, and Generate CSR
- Next, view the Certificate Signing Requests from vManage
 - + vManage > Configuration > Certificates > Controllers > ● > View CSR | Generate CSR

SD-WAN Controllers Certificate Signing Request Example

Using Cisco IOS as a Root CA Server Example – Signing the SD-WAN Controllers Certificates

```
IOS-CA#crypto pki server IOS-CA request pkcs10 terminal
PKCS10 request in base64 or pem
% Enter Base64 encoded or PEM formatted PKCS10 enrollment request.
% End with a blank line or "quit" on a line by itself.
----BEGIN CERTIFICATE REOUEST-
MIIDTTCCAjUCAQAwqcwxCzAJBqNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh
<snip>
vFRHP1aMMUWAn6XutBKZCiq4mGKqkhIRuR81n81EFW4Y
----END CERTIFICATE REQUEST----
% Granted certificate:
----BEGIN CERTIFICATE----
MIIErDCCApSqAwIBAqIBBTANBqkqhkiG9w0BAQsFADARMQ8wDQYDVQQDEwZJT1Mt
<snip>
W6e1iHB8FZLcR7/8yin9nxSOw5xYGwe7USb/+0ZjmzVGByIYP/0zGkq7wL8R4G10
----END CERTIFICATE----
```


Installing the SD-WAN Controllers Signed Certificates

- + vManage > Configuration > Certificates > Controllers > Install Certificate
 - + Paste or upload each of the Controllers' Certificates granted from the Root CA

Verifying SD-WAN Controller Onboarding from CLI

- + Once PKI Authentication is complete, DTLS tunnels form between all Controllers
 - + vManage forms one tunnel per-vCPU to vBond

vManage-1# show control connections | exclude vedge | tab

INSTANCE	PEER TYPE	SITE ID	DOMAIN ID	LOCAL PRIVATE IP	LOCAL PRIVATE PORT	PUBLIC IP	PUBLIC PORT	<snip></snip>
0	vsmart	1	1	150.1.1.101	12346	150.1.1.102	12346	
0	vbond	0	0	150.1.1.101	12346	150.1.1.103	12346	
1	vbond	0	0	150.1.1.101	12446	150.1.1.103	12346	
2	vbond	0	0	150.1.1.101	12546	150.1.1.103	12346	
3	vbond	0	0	150.1.1.101	12646	150.1.1.103	12346	
4	vbond	0	0	150.1.1.101	12746	150.1.1.103	12346	
5	vbond	0	0	150.1.1.101	12846	150.1.1.103	12346	
6	vbond	0	0	150.1.1.101	12946	150.1.1.103	12346	
7	vbond	0	0	150.1.1.101	13046	150.1.1.103	12346	

Verifying SD-WAN Controller Onboarding from vManage GUI

Verifying SD-WAN Controller Onboarding from vManage GUI (cont.)

Verifying & Troubleshooting SD-WAN Controller Onboarding from CLI

- Verify that DTLS connections are up between Controllers
 - + show control connections from vManage, vSmart, & vEdge
 - + show orchestrator connections from vBond
- + Troubleshoot failed onboarding of Controllers
 - + **show control connections-history** from vManage, vSmart, & vEdge
 - + show orchestrator connections-history from vBond
 - + Check **LOCAL ERROR** & **REMOTE ERROR** fields against legend

Cisco SD-WAN Edge Routers Overview

- + Cisco SD-WAN Edge Routers come in two variations
 - vEdge Routers running Viptela OS
 - + End-of-Sale Jan 2023, but supported until Jan 2028
 - + cEdge Routers running Cisco IOS XE SD-WAN
- + Both vEdge & cEdge Routers come in physical and virtual form factors
 - + E.g. vEdge-1000 vs. vEdge Cloud
 - + E.g. Cisco ISR 4000 vs. Catalyst 8000v
- + Features are similar between vEdge & cEdge, but different syntax

Onboarding Cisco SD-WAN vEdge Routers

- + Onboarding vEdge Routers starts with minimum CLI options
 - + Host-name
 - + System-ip
 - + Does not need to be routable, just a unique Router-ID
 - + Site-id
 - + Devices in the same site don't form IPsec tunnels with each other
 - + Organization-name
 - + Must match the ORG in *serialFile.viptela* generated from Cisco Licensing Portal
 - + vBond IP Address
 - + I.e. Who is the Orchestrator?
 - + VPN 0 The "Transport VPN"
 - + Interface(s), IP address(es), and routing towards the WAN
 - + Unique tunnel "color" for each WAN link
 - + Color can be used in routing decisions later

Example vEdge Router Initial CLI Config

```
vpn 0
config
                                     interface ge0/0
                                      ip address 150.11.1.0/31
system
                                      tunnel-interface
host-name vEdge-2
                                       encapsulation ipsec
 system-ip 172.17.2.2
                                       color biz-internet
 site-id 2
                                       allow-service all
organization-name VIPTELA.local
                                      no shutdown
vbond 150.1.1.103
                                     ip route 0.0.0.0/0 150.11.1.1
                                    commit and-quit
```


Installing a Private Root CA Certificate on the vEdge Router

- + If not using Cisco Cloud for PKI, install the Root CA Cert:
 - + vEdge-2# vshell
 - + vEdge-2:~\$ vi MyCA.crt
 - + "i" to insert in vi
 - + Paste the Root CA Certificate
 - + "<esc> :wq" to save and quit
 - + vEdge-2:~\$ exit
 - + vEdge-2# request root-cert-chain install /home/admin/MyCA.crt

Understanding the WAN Edge List

- vBond Orchestrator needs to know the list of Chassis Numbers & Serial Numbers of the WAN Edge Routers to authenticate & onboard them
 - + Can be done automatically through vManage sync to Cisco Smart Licensing
 - + Done manually by uploading the **serialFile.viptela** from Cisco Licensing Portal
 - + vManage > Configuration > Devices > Upload WAN Edge List
 - + Check the box to "send to controllers" to sync to vBond
- vBond must have the WAN Edge List synchronized with vManage
 - + WAN Edge List not synced will result DTLS tunnel failure
 - + I.e. onboarding fails if vBond can't authenticate the WAN Edge Router
 - Can be re-synced from vManage > Configuration > Certificates > WAN Edge List > Send to Controllers
 - Verified with show orchestrator valid-vedges from vBond CLI

Onboarding the vEdge Router from vManage

- Once the WAN Edge List is uploaded and synced to vBond, goto
 vManage > Configuration > Devices
 - + Choose the appropriate Chassis Number from the list and then "Generate Bootstrap Configuration" from the ellipses on the right
 - + For vEdge Cloud we can choose any used Chassis Number
 - Select "Cloud-Init" and click OK
 - + Copy the UUID and OTP fields
- + Enter the following command on the vEdge CLI:
 - + request vedge-cloud activate chassis-number *UUID* token *OTP* where *UUID* and *OTP* are the strings from the Bootstrap Configuration

vEdge Onboarding CLI Verifications

- + Was the Certificate granted?
 - + show control local-properties
 - + Should show "certificate-status Installed" and "token Invalid"
- + If not, what error code was generated?
 - + show control connections-history
- + Did the vEdge form DTLS tunnels to vSmart/vManage/vBond?
 - + show control connections
- + Have IPsec tunnels formed to the other sites?
 - + show bfd sessions

Cisco SD-WAN Edge Routers Overview

- + Cisco SD-WAN Edge Routers come in two variations
 - vEdge Routers running Viptela OS
 - + End-of-Sale Jan 2023, but supported until Jan 2028
 - + cEdge Routers running Cisco IOS XE SD-WAN
- + Both vEdge & cEdge Routers come in physical and virtual form factors
 - + E.g. vEdge-1000 vs. vEdge Cloud
 - + E.g. Cisco ISR 4000 vs. Catalyst 8000v
- + Features are similar between vEdge & cEdge, but different syntax

Understanding IOS XE SD-WAN Mode

- + Cisco IOS XE routers don't run in SD-WAN Mode by default
 - + Modes are mutually exclusive; can't run both at the same time
 - + Enabling SD-WAN mode w/ controller-mode enable requires a reboot
 - + In SD-WAN mode, router uses config-transaction instead of config t
 - + Changes are saved with **commit**

```
router# controller-mode enable
Ensure the BOOT variable points to a valid image
Continue? [confirm]
% Warning: Bootstrap config file needed for Day-0 boot is missing
Do you want to abort? (yes/[no]): no
Mode change success
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
%SYS-5-RELOAD: Reload requested by Exec. Reload Reason: Enabling controller-mode.
```


Onboarding Cisco IOS XE SD-WAN cEdge Routers

- + Onboarding IOS XE cEdge Routers starts with minimum CLI options
 - + Host-name
 - + System-ip
 - + Does not need to be routable, just a unique Router-ID
 - + Site-id
 - + Devices in the same site don't form IPsec tunnels with each other
 - + Organization-name
 - + Must match the ORG in *serialFile.viptela* generated from Cisco Licensing Portal
 - + vBond IP Address
 - + I.e. Who is the Orchestrator?
 - + Underlay Transport
 - WAN Interface(s), IP address(es), & routing in the default VRF
 - + Unique tunnel "color" for each WAN link
 - + Color can be used in routing decisions later

Example IOS XE SD-WAN cEdge Configuration

```
config-transaction
hostname Cat8Kv-1
                                         interface Tunnel1
                                          ip unnumbered GigabitEthernet1
system
 system-ip 172.17.101.1
                                          tunnel source GigabitEthernet1
 site-id 101
                                          tunnel mode sdwan
 organization-name VIPTELA.local
                                          no shutdown
vbond 150.1.1.103
                                         sdwan
interface GigabitEthernet1
                                          interface GigabitEthernet1
 no shutdown
                                           tunnel-interface
 ip address 10.101.1.1 255.255.255.252
                                            encapsulation ipsec
                                            color biz-internet
ip route 0.0.0.0 0.0.0.0 10.101.1.2
                                            allow-service all
                                         commit
```


Installing a Private Root CA Certificate on the IOS XE cEdge Router

+ If not using Cisco Cloud for PKI, install the Root CA Cert:

Cat8Kv-1#

```
Cat8Kv-1#copy tftp://192.168.223.127/MyCA.crt bootflash:
Destination filename [MyCA.crt]?
Accessing tftp://192.168.223.127/MyCA.crt...
Loading MyCA.crt from 192.168.223.127 (via GigabitEthernet3): !
[OK - 1245 bytes]
1245 bytes copied in 0.100 secs (12450 bytes/sec)
Cat8Kv-1#request platform software sdwan root-cert-chain install bootflash:MyCA.crt
Uploading root-ca-cert-chain via VPN 0
Copying ... /bootflash/MyCA.crt via VPN 0
Updating the root certificate chain...
Successfully installed the root certificate chain
```


Understanding the WAN Edge List

- vBond Orchestrator needs to know the list of Chassis Numbers & Serial Numbers of the WAN Edge Routers to authenticate & onboard them
 - + Can be done automatically through vManage sync to Cisco Smart Licensing
 - + Done manually by uploading the **serialFile.viptela** from Cisco Licensing Portal
 - + vManage > Configuration > Devices > Upload WAN Edge List
 - Check the box to "send to controllers" to sync to vBond
- + vBond must have the WAN Edge List synchronized with vManage
 - + WAN Edge List not synced will result DTLS tunnel failure
 - + I.e. onboarding fails if vBond can't authenticate the WAN Edge Router
 - Can be re-synced from vManage > Configuration > Certificates > WAN Edge List > Send to Controllers
 - Verified with show orchestrator valid-vedges from vBond CLI

Onboarding an IOS XE cEdge Router from vManage

- Once the WAN Edge List is uploaded and synced to vBond, goto
 vManage > Configuration > Devices
 - + Choose the appropriate Chassis Number from the list and then "Generate Bootstrap Configuration" from the ellipses on the right
 - + For Catalyst 8000v we can choose any used Chassis Number
 - + Select "Cloud-Init" and click OK
 - + Copy the UUID and OTP fields
- + Enter the following command on the IOS XE cEdge CLI from exec mode:
 - + request platform software sdwan vedge_cloud activate chassis-number *UUID* token *OTP*, where *UUID* and *OTP* are the strings from the Bootstrap Configuration

Verifying & Troubleshooting IOS XE cEdge Router Onboarding

- + Was the Certificate granted?
 - + show sdwan control local-properties
 - + Should show "certificate-status Installed" and "token Invalid"
- + If not, what error code was generated?
 - + show sdwan control connection-history
- + Did the cEdge form DTLS tunnels to vSmart/vManage/vBond?
 - + show sdwan control connections
- + Have IPsec tunnels formed to the other sites?
 - + show sdwan bfd sessions
- + Viewing the running config when in SD-WAN Mode:
 - + show sdwan running-config

What are Cisco SD-WAN Service VPNs?

- Service VPNs are used for traffic sent inside IPsec tunnels between SD-WAN sites
 - + E.g. your private-to-private traffic
- Service VPNs provide a full-mesh of connectivity within the VPN by default
 - + All VPN 1 sites can talk to all other VPN 1 sites, but not VPN 2 sites
 - + All VPN 2 sites can talk to all other VPN 2 sites, but not VPN 1 sites
 - + More granular routing policies can be defined using the vSmart later...
- + The **Service VPN Number** is encoded as an MPLS Label in the custom IPsec header
 - + Viptela OS (vEdge) uses VPNs 1-511 for Service VPNs
 - + 0 reserved for Transport, 512 for MGMT
 - + IOS XE (cEdge) uses VRF numbers for the same purpose
 - + Global default VRF in IOS XE maps to VPN 0 in Viptela OS
 - + VRF 1 maps to VPN 1, VRF 2 maps to VPN 2, etc.

Cisco SD-WAN Service VPNs Data-Plane

- + Service VPN Number is encoded in the IPsec data-plane as an MPLS Label
 - + When an SD-WAN Edge Router receives a packet in an IPsec tunnel, it uses the MPLS Label to find which routing table (VPN/VRF) to do a lookup in

Cisco SD-WAN Service VPNs Routing Control-Plane

- Cisco uses a custom protocol called Overlay Management Protocol (OMP)
 to exchange SD-WAN control-plane routing information
 - + Extra attributes like **Service VPN Number** are encoded inside OMP Routes
- Result is that SD-WAN routing is like an MPLS L3VPN (BGP VPNv4 AFI)
 - + In L3VPN, BGP VPNv4 routes include a prefix/len, Route Target (RT), & MPLS Label
 - + Route Target (RT) defines which routing table the prefix belongs to
 - + This is how customer info is segmented in the control-plane for multi-tenancy
 - + RT is analogous to the **Service VPN Number** in our SD-WAN solution
 - + BGP learned MPLS Label number is used in the data-plane encapsulation
 - + Packets sent to the BGP VPNv4 prefix have the MPLS Label number inside
 - + Receiving Edge Router uses the MPLS Label to map to the customer's VRF
 - + Likewise in SD-WAN, MPLS Label maps to a Service VPN Number (VPN/VRF)

Routing over Service VPNs with Overlay Management Protocol (OMP)

- + OMP is a BGP-like protocol which advertises a prefix with a set of attributes
 - + Attributes include VPN Number, Transport Location (TLOC), Color, Site-ID, Tag, etc.
 - + Attributes can be used later for routing policies like Application Aware Routing (AAR)
- + OMP runs automatically between the WAN Edge Routers and vSmart Controller
 - + Sent over DTLS tunnels from WAN Edge Routers to vSmart formed during onboarding
 - WAN Edge Routers redistribute routes from connected, static, BGP/OSPF/IS-IS/etc.
 into OMP, and then advertises them to vSmart Controller
 - + Redistribute connected by default, plus OSPF Internal on vEdge (but not cEdge)
 - vSmart Controller acts like a BGP Route Reflector
 - + WAN Edge Routers do not run OMP directly with each other, only with vSmart
 - + vSmart receives routes from WAN Edge Routers, applies any configured policies, runs path selection rules, then reflects routes back to WAN Edge Routers

Example OMP Routes from vSmart Controller

vSmart-1# show omp routes | tab
Code:

C -> chosen

<snip>

R -> resolved

<snip>

			PATH			ATTRIBUTE		
VPN	PREFIX	FROM PEER	ID	LABEL	STATUS	TYPE	TLOC IP	COLOR
1	192.168.3.0/24	172.17.101.1	66	1003	C,R	installed	172.17.101.1	mpls
1	192.168.33.0/24	172.17.3.3	66	1005	C,R	installed	172.17.3.3	mpls
		172.17.3.3	68	1005	C,R	installed	172.17.3.3	biz-internet
1	192.168.44.0/24	172.17.4.4	66	1005	C,R	installed	172.17.4.4	mpls
		172.17.4.4	68	1005	C,R	installed	172.17.4.4	biz-internet
1	192.168.101.0/24	172.17.101.1	66	1003	C,R	installed	172.17.101.1	mpls
		172.17.102.1	68	1003	C,R	installed	172.17.102.1	biz-internet
1	192.168.102.0/24	172.17.5.5	66	1006	C,R	installed	172.17.5.5	mpls
		172.17.6.6	68	1005	C,R	installed	172.17.6.6	biz-internet

vSmart-1#

Example Detailed OMP Route from vSmart Controller

vSmart-1# show omp route 192.168.33.0/24 nomore				RECEIVED FROM:				
				peer	172.1	<mark>7.3.3</mark>		
omp route entries for vpn 1 route 192.168.33.0/24				path-id	68			
	RECEIVED FROM:				label 1005			
peer	172.1	<mark>.7.3.3</mark>		status	status C,R			
path-id	66			loss-reason	not se	et		
label	1005			lost-to-peer	not se	et		
status	C,R	,R		lost-to-path-i				
<snip></snip>				Attributes	3 :			
Attributes:				originato	r	172.17.3.3		
origina	ator	172.17.3.3		type		installed		
type		installed		tloc		172.17.3.3,	biz-internet	ipsec
<mark>tloc</mark>		172.17.3.3, mpls	, ipsec	ultimate-	tloc	not set		
ultimat	te-tloc	not set		domain-id	[not set		
domain-	-id	not set		overlay-i	.d	1		
overlay	y-id	1		site-id		33		
site-id		33		region-id	L	None		
region-id		None		region-pa	th	not set		
region-path		not set		affinity-	group	None		
affinity-group		None		route-reo	riginato	or not set		
route-reoriginator not		or not set		preferenc	:e	not set		
prefere	ence	not set		tag		not set		
tag		not set		origin-pr	oto	connected		
origin-	-proto	connected		origin-me	tric	0		
origin-	-metric	0		as-path		not set		
as-path		not set		community	•	not set	VIN	
community		not set		unknown-a	ttr-len	not set		

unknown-attr-len not set

Configuring a Service VPN via the vEdge/cEdge CLI

```
vEdge:
config t
!
vpn 1
  interface ge0/1
   ip address 192.168.2.254/24
   no shutdown
!
commit
```

```
cEdge:
config-transaction
vrf definition 1
 rd 1:1
 address-family ipv4
  route-target export 1:1
  route-target import 1:1
 exit-address-family
interface GigabitEthernet2
 vrf forwarding 1
 ip address 192.168.3.254 255.255.255.0
 no shutdown
commit
```


vEdge/cEdge CLI Verifications

- + Are IPsec tunnels up to the other sites?
 - + vEdge: show bfd sessions
 - + cEdge: **show sdwan bfd sessions**
- + Are we learning OMP routes from vSmart?
 - + vEdge: show ip route [omp]
 - + cEdge: show ip route vrf 1 [omp]
 - + vEdge: show omp route
 - + cEdge: **show sdwan omp route**
 - + cEdge: **show sdwan ip fib**
- + Do we have IP connectivity to the other sites?
 - + vEdge: ping vpn 1 1.2.3.4 / traceroute vpn 1 1.2.3.4
 - + cEdge: ping vrf 1 1.2.3.4 / traceroute vrf 1 1.2.3.4

What are Cisco SD-WAN Device Templates?

- SD-WAN Device Templates are a way to standardize & automate configurations across SD-WAN Edge Routers (Devices)
- Device Templates can be attached to one or more Devices,
 which are then centrally controlled through vManage
 - + Local CLI configuration is disabled once a Device is attached to a Template
- + Templates can also be attached before onboarding new WAN Edge Routers
 - + l.e. pre-provision the config before the device is onboarded
- + Device Templates fall into two main categories:
 - + CLI Templates
 - + Feature Templates

What are Cisco SD-WAN CLI Templates?

- + CLI Templates are a way to automate WAN Edge Routers using standard CLI syntax (IOS XE or Viptela OS) and variable replacements
- + CLI Templates can be quickly built from the vManage GUI by using an already onboarded WAN Edge Router's config as an example
 - + Create a CLI Template & use "Load Running config from reachable device" dropdown
 - + Device's running-config will load in a "Config Preview" window
 - + Highlight a value you want to become a variable, then click "Create Variable"
 - + CLI Templates use double curly braces to define variables, e.g. **{{var}}**}
- When a Device is Attached to a CLI Template, "Device Specific Values" are defined
 - + You can manually enter the values via the GUI or download/upload a CSV

Cisco SD-WAN CLI Template for cEdge Router (IOS XE) Example

```
hostname {{hostname}}
 system
 system-ip {{System-IP}}
 site-id {{Site-ID}}
vrf definition {{VPN}}
 rd {{VPN}}:{{VPN}}
 address-family ipv4
  route-target export {{VPN}}:{{VPN}}
  route-target import {{VPN}}:{{VPN}}}
  exit-address-family
interface GigabitEthernet1
 ip address {{WAN1-IPv4-Addr}}
 no shutdown
interface GigabitEthernet2
vrf forwarding {{VPN}}
 ip address {{LAN-IPv4-Addr}}
no shutdown
```

```
ip route 0.0.0.0 0.0.0.0 {{WAN1-Default-GW}}
interface Tunnel1
no shutdown
ip unnumbered GigabitEthernet1
tunnel source GigabitEthernet1
tunnel mode sdwan
sdwan
interface GigabitEthernet1
 tunnel-interface
  encapsulation ipsec
  color {{WAN1-Color}}
  allow-service all
```


Example Completed Cisco SD-WAN CLI Template for cEdge Router (IOS XE)

```
hostname Cat8Kv-1
 system
 system-ip 172.17.101.1
 site-id 101
vrf definition 1
 rd 1:1
 address-family ipv4
  route-target export 1:1
  route-target import 1:1
  exit-address-family
interface GigabitEthernet1
 ip address 10.1.1.1 255.255.255.252
no shutdown
interface GigabitEthernet2
vrf forwarding 1
 ip address 192.168.1.254 255.255.25.0
no shutdown
```

```
ip route 0.0.0.0 0.0.0.0 10.1.1.2
interface Tunnel1
no shutdown
ip unnumbered GigabitEthernet1
tunnel source GigabitEthernet1
tunnel mode sdwan
sdwan
interface GigabitEthernet1
 tunnel-interface
  encapsulation ipsec
  color biz-internet
  allow-service all
```


What are Cisco SD-WAN Feature Templates?

- Feature Templates are a way to automate WAN Edge Routers configuration using the vManage GUI in a modular and re-usable fashion
- + Feature Templates transform our Intent into the required CLI commands
 - + E.g. you can enable OSPF routing without needing to know the exact OSPF CLI
- + Feature Templates are specific to Device Models
 - + E.g. Viptela OS syntax is different than IOS XE syntax, so they have separate templates
- + Feature Templates combine in different ways to form a Device Template
 - + Feature Templates can be re-used between multiple Device Templates
 - + Device Templates start with a list of default Feature Templates based on Device Type
 - + Lots of default Feature Templates that you can **Copy** and customize

Feature Template Variables

- Like CLI Templates, Feature Templates use variable replacement to customize the WAN Edge Routers attached to the Device Template
 - + E.g. different WAN Edge Routers have different IP addresses
- + Feature Templates have **Global** variables and **Device Specific** variables
 - + Global variables apply to all Devices attached to the Device Template
 - + E.g. all routers use GigabitEthernet1 as the WAN interface
 - + Device Specific variables must be manually defined for each Device attached
 - + Variable names can be customized inside the Feature Template
 - + Values are defined manually when you attach a Device to a Template through the GUI, or you can download/upload values in CSV format

Feature Template Global vs. Device Specific Variable Example

Attaching Devices to Templates

- + After **Device Specific** variable values are defined, vManage allows you to preview the config & config-diff of changes being pushed to Devices
 - + Config Diff shows highlighted deletions in red, and additions in green
- Once you approve the changes, vManage pushes the config over DTLS
 - + If the configuration fails (i.e. syntax is rejected), it will automatically rollback
 - + E.g. we entered a bad subnet mask for an interface in a Device Specific variable
 - + If DTLS tunnel from Device to vManage goes down, auto-rollback of config after 5min
 - + E.g. we entered the wrong default gateway IP address in a Device Specific variable, which broke connectivity from Device to vManage

Cisco SD-WAN CLI Templates Example

- + Create a CLI Template for cEdge (IOS XE) routers as follows:
 - + Name the Device Template cEdge-Single-WAN-CLI
 - Use Cat8Kv-1 as an example config
 - + Create Device Specific Variables as needed...
 - + Hostname
 - + System-IP
 - + Site-ID
 - + IP Addresses
 - + Default Gateway
 - + Tunnel Color
 - + Apply this Template to Cat8Kv-1 & Cat8Kv-2

Example Device Specific Values for CLI Templates

Hostname	Cat8Kv-1	Cat8Kv-2
System-IP	172.17.101.1	172.17.101.2
Site-ID	101	101
WAN1-IPv4-Addr	10.101.1.1 255.255.255.252	150.101.2.1 255.255.255.252
WAN1-Default-GW	10.101.1.2	150.101.2.1
WAN1-Color	mpls	biz-internet
LAN1-IPv4-Addr	192.168.101.101 255.255.255.0	192.168.101.102 255.255.255.0

Example Cisco SD-WAN Topology

Cisco SD-WAN Device & Feature Templates Example

- + Create a Device Template for cEdge (IOS XE) routers as follows:
 - + Name the Device Template **cEdge-Single-WAN**
 - + Create Feature Templates as needed
 - + Transport VPN template
 - + Service VPN template
 - + Interface templates
 - + Create Device Specific Variables as needed in these Feature Templates
 - + Hostname
 - + System-IP
 - + Site-ID
 - + IP Addresses
 - + Default Gateway
 - + Tunnel Color
 - + Apply this Template to Cat8Kv-1 & Cat8Kv-2

Example Device Specific Values for Device Templates

Hostname	Cat8Kv-1	Cat8Kv-2
System-IP	172.17.101.1	172.17.101.2
Site-ID	101	101
WAN1-IPv4-Addr	10.101.1.1/30	150.101.2.1/30
WAN1-Default-GW	10.101.1.2	150.101.2.1
WAN1-Color	mpls	biz-internet
LAN1-IPv4-Addr	192.168.101.101/24	192.168.101.102/24

Example Cisco SD-WAN Topology

Advanced Cisco SD-WAN Device Templates – cEdge Example

- + SD-WAN Edge Routers Cat8Kv-1 & Cat8Kv-2 are attached to the pre-configured template cEdge-Single-WAN-Template
- Modify the Template to enable EIGRP AS 65535 on the links towards the Extranet router, and redistribute as necessary.
- Once the config changes are applied to Cat8Kv-1 & Cat8Kv-2, other VPN 1 sites should have IP reachability to 7.7.7.7/32 via the Extranet router

Advanced Cisco SD-WAN Device Templates – vEdge Example

- + SD-WAN Edge Routers **vEdge-1** & **vEdge-2** are attached to the pre-configured template **vEdge-DC-Template**
- + Modify the Template to enable routing on these devices as follows:
 - + Run **OSPF Area 1** on the sub-interface towards **DC-Services**, and redistribute where necessary. Once complete the other VPN 1 sites should have IP reachability to **4.4.4.4/32**
 - + Run **BGP AS 12345** and peer to the **DC-ISP** address **10.9.9.9** in **AS 999**, and redistribute where necessary. Once complete the other VPN 1 sites should have IP reachability to **9.9.9.9/32**

Example Cisco SD-WAN Topology

CLI Add-On Templates Overview

- When an SD-WAN Edge Router is in vManage Mode (i.e. a template is attached),
 configuration from the local CLI is blocked
- CLI Add-On Templates gives you a way to further customize Device Templates by using CLI syntax
 - + Final configuration pushed from vManage is a merge of the Device/Feature Templates & the CLI Add-On Template
 - + In cases where the configuration overlaps, the CLI Add-On Template takes priority
- + CLI Add-On Templates only apply to cEdge (IOS XE) routers, not vEdge

Pre-Provisioning SD-WAN Edge Routers with Templates

- + Device & CLI Templates can be attached before onboarding occurs
 - + I.e. When the device is onboarded, the config from Template is immediately applied
- + Template is pre-provisioned by attaching to Chassis Number before onboarding
 - + Can be used for both Zero Touch Provisioning (ZTP) and manual provisioning
 - + Template's Device Specific variables are defined before WAN Edge Router onboards
 - + Once Device is reachable from vManage (i.e. over DTLS), Template is applied

Attaching Device Template to Chassis Number for Pre-Provisioning

Defining Device Specific Variables for Pre-Provisioned Device

Scheduling Template Attachment to Pre-Provisioned Devices

+ After attaching the Template, vManage schedules the configuration to be pushed once the Device becomes reachable (i.e. onboards)

Template Pre-Provisioned Device Status Before Onboarding

Template Pre-Provisioned Device Status After Onboarding

After onboarding, Template is applied and Device should be "In Sync"

Verifying Template is Assigned Using CLI

+ CLI "commit" is not allowed when a device is in vManage mode

vEdge-3# config t

+ I.e. when a Template is attached, changes can't be made from the CLI

```
Entering configuration mode terminal
vEdge-3(config) # no vpn 1
vEdge-3(config)# commit and-quit
Aborted: 'system': This device is being managed by the vManage. Configuration
through the CLI is not allowed.
vEdge-3(config)#
Cat8Kv-1#config-transaction
admin connected from 127.0.0.1 using console on Cat8Kv-1
Cat8Kv-1(config)# hostname abc
Cat8Kv-1(config)# commit
Aborted: 'system is-vmanaged': This device is being managed by vManage,
configuration through CLI is not allowed.
Cat8Kv-1(config)#
```


What are Cisco SD-WAN Policies?

- + SD-WAN Policies are how we can encode our Intent into the network
 - + E.g. I want VoIP to get the best service
- + SD-WAN Policies can be used to affect both the control-plane and the data-plane
 - + Traffic from A to B should forward through C
 - YouTube traffic should forward from A to D
 - VoIP should automatically use the lowest delay path

What Can SD-WAN Policies Do?

- + SD-WAN Policies are used to apply features such as...
 - + Traffic Engineering & Application Aware Routing (AAR)
 - + Direct traffic based on the source, destination, application, QoS requirements, etc.
 - + VPN Membership
 - + Allows for Shared Services (i.e. route leaking) & Service Chaining
 - Network Address Translation (NAT)
 - + Used for traffic not sent over the SD-WAN, e.g. to the Internet in the *Underlay*
 - + Access Control Lists (ACLs) & Security Policy
 - + E.g. filter out specific traffic with ACLs, IPS, SSL/TLS Proxy, URL Filtering, etc.
 - + Quality of Service (QoS)
 - + E.g. reserve bandwidth for specific applications
 - + Cflowd
 - Similar to NetFlow used to collect traffic statistics

Types of SD-WAN Policies

- + SD-WAN Policies can be grouped into main two categories
 - Centralized Policies
 - + Policies that apply across the entire network
 - Localized Policies
 - + Policies that apply to an individual Edge Router
- Centralized and Localized Policies can be further grouped in 2 sub-categories
 - Control Policies
 - + Also called *Topology Policies*
 - + Used to affect the routing (OMP) control-plane
 - + Data Policies
 - + Also called *Traffic Policies*
 - + Analogous to Policy Based Routing (PBR)

SD-WAN Control (Topology) Policies

- + Control / Topology Policies are used to affect the routing (OMP) control-plane
- + Example Control Policy Use Cases:
 - + Prevent spoke-to-spoke communication by filtering routes
 - + E.g. only advertise hub routes to spokes
 - + Force spoke-to-spoke traffic to flow through the central Data Center (DC) first
 - + E.g. force traffic to be inspected by centralized Firewalls at the DC
 - + Prefer MPLS over public Internet
 - + E.g. "color" preference
 - Isolate Guest Users from Corporate WAN
 - + E.g. allow Internet access for guests, but not site-to-site SD-WAN traffic
 - + Allow access to Shared Services
 - + E.g. route leaking between VPNs
 - + Filtering Redistribution
 - + E.g. filter/modify routing attributes with a locally significant policy

SD-WAN Data (Traffic) Policies

- + Data / Traffic Policies are used to override the control-plane routing policy
- + Example Data Policy Use Cases:
 - Direct Internet Access (DIA)
 - + E.g. don't use the SD-WAN if the destination is not internal
 - + Direct Cloud Access
 - + E.g. don't use the SD-WAN to reach Office 365, Google Apps, Salesforce, etc.
 - + Cloud Based Firewall
 - + E.g. redirect internal traffic to Cisco Umbrella for scrubbing
 - + Application Aware Routing (AAR)
 - + E.g. VoIP should prefer to use color MPLS unless delay goes over 100ms
 - + Security Filtering
 - + E.g. ACLs, ZBFW, IPS, URL Filtering, Malware Protection, DNS Security, etc.
 - + Quality of Service (QoS)
 - + E.g. mark an application's traffic as critical

Applying SD-WAN Centralized Policies through vSmart

- + vSmart is the central point of policy application for SD-WAN Centralized Policies
 - + vSmart receives OMP routes from Edges, applies policies, and advertises routes back
 - + Similar logic to a BGP Route Reflector
 - + <u>Centralized Policy application direction is from the perspective of vSmart</u>
 - + Inbound policy affects routes received on vSmart from WAN Edge Routers
 - + Outbound policy affects routes advertised from vSmart to WAN Edge Routers
- + Before applying any policies, the vSmart controller(s) must be in vManage mode
 - + vManage mode means that a Template is applied

Attaching Templates to vSmart

- + To apply a Policy, the vSmart controller(s) must be in vManage mode
- + vSmart in vManage mode implies a Template must be attached to vSmart
 - + Same as WAN Edge Routers, could be a CLI Template or Device/Feature Template
- Using a CLI Template is a quick way to set the vSmart to vManage mode
 - Configuration > Devices > Templates > Device Templates > Create Template >
 CLI Template > Device Model: vSmart > Load Running config dropdown > vSmart
 - + No variables needed unless you're applying the template to multiple vSmarts
 - + E.g. each vSmart could have a separate unique CLI template if you wanted

Applying SD-WAN Localized Policies through Device Templates

- + Some device specific policies need to be locally significant to the Edge Routers
 - + E.g. Apply an ACL inbound on the Service VPN (LAN) interface
 - + E.g. Redistribute OMP into BGP and set MED to 100
- Localized Policies are still centrally created & managed through vManage,
 but are not applied through the vSmart controller
 - + Localized Policies are applied through Device Templates & Feature Templates
 - + Device Templates are used to attach the Localized Policy to the Edge Router
 - + E.g. here is the definition of the ACL named "inside-in"
 - + Feature Templates define where the Localized Policy is actually applied
 - + E.g. ACL "inside-in" applies to Feature Template "cEdge-LAN" inbound

Configuring Cisco SD-WAN Policies

- + Configuring an SD-WAN Policy is a 3-step process
 - + Define the Lists what am I matching?
 - + Define the Policy what action am I taking?
 - + Apply the Policy who does the policy apply to, and in which direction?
- + SD-WAN Policy logic is like a Route-Map in Cisco IOS
 - + Policy is processed top-down until a match occurs
 - + Once a match occurs, the defined actions are taken, and it exits the process
 - + If no match occurs, Policy defaults to implicit deny at the end
- + Order-of-operations in the Policy is significant
 - More specific matches should be at the top
 - + E.g. if you match "ALL-IP" before "HTTPS", "HTTPS" will have zero hits

Activating SD-WAN Centralized Policies

- + After a Centralized Policy is created, it must be applied (Activated)
 - + Configuration > Policies > click 3 dots on right of policy > Activate
 - + Activating is pushing the Policy config to vSmart
- + vSmart can only have one active SD-WAN Policy at a time
- To modify the active Policy, first make a copy
 - + Configuration > Policies > click 3 dots on right of policy > Copy
 - + E.g. My-Policy-v002
 - + Now you can modify the new copy
 - + Configuration > Policies > click 3 dots on right of <u>copy</u> > Edit
- + Activating the new Policy will automatically de-activate the old Policy
 - + If the new Policy has unexpected results, you can re-activate the old Policy
 - + E.g. My-Policy-v002 has a mistake, re-activate My-Policy-v001

Verifying SD-WAN Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] bfd sessions
 - + show ip route
 - + show omp route
 - + show [sdwan] policy service-path

Verifying SD-WAN Traffic Flows via CLI

- + CLI command **show** [**sdwan**] **policy service-path** is used to show the forwarding result of any configured policies based on your input
 - + E.g. what happens when a TCP packet from source IP 1.2.3.4 & port 34567 is received on interface Gig2 in VPN 1 with destination IP 5.6.7.8 & port 443?
 - + Similar in logic to the IOS command show ip cef exact-route
 - + Can also match App name & DSCP (QoS) markings

show [sdwan] policy service-path vpn-id vpn-id interface interfacename source-ip ip-address dest-ip ip-address protocol number source-port portnumber dest-port port-number [all | app application-name | dscp value]

Verifying SD-WAN Traffic Flows via CLI Example

vEdge-1# show policy service-path vpn 1 interface ge0/2.10 source-ip 4.4.4.4 dest-ip 192.168.33.1 protocol 6 source-port 34567 dest-port 443 all

Number of possible next hops: 2

Next Hop: IPsec

Source: 150.11.1.0 12346 Destination: 150.33.0.1 12346 Color: custom1

Next Hop: IPsec

Source: 150.22.1.0 12346 Destination: 150.33.0.1 12346 Color: custom2

Cat8Kv-1# show sdwan policy service-path vpn 1 interface GigabitEthernet2.101 source-ip 192.168.101.1 dest-ip 192.168.33.1 protocol 1 all

Number of possible next hops: 2

Next Hop: IPsec

Source: 10.101.1.1 12346 Destination: 150.33.0.1 12346 Local Color: mpls Remote Color: biz-internet

Remote System IP: 172.17.3.3

Next Hop: IPsec

Source: 10.101.1.1 12346 Destination: 10.33.0.1 12346 Local Color: mpls Remote Color: mpls

Remote System IP: 172.17.3.3

SD-WAN CLI Verification Review

- Before we create a Policy, let's verify the default behavior of the SD-WAN
 - + Did the WAN Edge Routers form IPsec tunnels between sites?
 - + vEdge-1# show bfd sessions
 - + cEdge-1# show sdwan bfd sessions
 - + Did vSmart receive routes from the WAN Edge Routers?
 - + vSmart-1# show omp route
 - + Did the WAN Edge Routers receive routes from vSmart?
 - + vEdge-1# show ip route vpn 1
 - + vEdge-1# show omp route vpn 1
 - + cEdge-1# show ip route vrf 1
 - + cEdge-1# show sdwan omp route vpn 1
 - + Do we have IP reachability to the destinations over the SD-WAN?
 - + vEdge-1# ping vpn 1 1.2.3.4
 - + cEdge-1# ping vrf 1 1.2.3.4

SD-WAN CLI Verification Review (cont.)

- In this example we will verify from WAN Edge Routers vEdge-3 & vEdge-4
 - + Routers have System-IPs **172.17.3.3** & **172.17.4.4** respectively
 - + Routers have 2 WAN links each, one color "mpls", the other color "biz-internet"
 - + By default, WAN Edge Routers form a full-mesh of IPsec tunnels out all colors
 - + The result in this case is 4 IPsec tunnels:
 - + 1) mpls to mpls
 - + 2) mpls to biz-internet
 - + 3) biz-internet to mpls
 - + 4) biz-internet to biz-internet

vEdge-3# show bfd sessions | in "172.17.4.4|S"

			SOURCE TLOC	REMOTE TLOC
SYSTEM IP	SITE ID	STATE	COLOR	COLOR
172.17.4.4	44	up	mpls	mpls
172.17.4.4	44	up	mpls	biz-internet
172.17.4.4	44	up	biz-internet	mpls
172.17.4.4	44	up	biz-internet	biz-internet

	DST PUBLIC	DST PUBLIC	<snip></snip>
SOURCE IP	IP	PORT	
10.33.0.1	10.44.0.1	12346	
10.33.0.1	150.44.0.1	12346	
150.33.0.1	10.44.0.1	12346	
150.33.0.1	150.44.0.1	12346	

SD-WAN CLI Verification Review (cont.)

- + Next, vSmart learns routes from **vEdge-3** & **vEdge-4**
 - + Each Router advertises a LAN interface in VPN 1 via both "mpls" & "biz-internet"
 - + **By default, vSmart does not filter any routing advertisements**, just reflects them back
 - + Result is each Router has 2 routes to each prefix, one via **mpls**, one via **biz-internet**

```
vSmart-1# show omp route vpn 1 | tab | nomore | include "172.17.[3-4].[3-4]|P"
                                      PATH
                                                               ATTRIBUTE
VPN
       PREFIX
                                                                          TLOC IP
                                                                                       COLOR
                                                                                                     ENCAP
                         FROM PEER
                                      ID
                                             LABEL
                                                       STATUS
                                                               TYPE
                                                                                                            <snip>
       192.168.33.0/24
                         172.17.3.3
                                                                          172.17.3.3
1
                                      66
                                             1005
                                                       C,R
                                                               installed
                                                                                      mpls
                                                                                                     ipsec
                                                                                                            <snip>
                         172.17.3.3
                                             1005
                                                                          172.17.3.3
                                                                                      biz-internet
                                      68
                                                       C,R
                                                               installed
                                                                                                     ipsec
                                                                                                            <snip>
       192.168.44.0/24
                         172.17.4.4
                                             1005
                                                               installed
                                                                          172.17.4.4
1
                                                       C,R
                                                                                      mpls
                                                                                                            <snip>
                                                                                                     ipsec
                         172.17.4.4
                                                       C,R
                                                                          172.17.4.4 biz-internet
                                             1005
                                                               installed
                                                                                                     ipsec
                                                                                                            <snip>
vEdge-3# show omp route vpn 1 | tab | nomore | include "172.17.4.4|P"
                                             PATH
                                                                        ATTRIBUTE
       PREFIX
                                                                                   TLOC IP
VPN
                                                                                               COLOR
                           FROM PEER
                                             ID
                                                    LABEL
                                                              STATUS
                                                                        TYPE
       192.168.44.0/24
                           172.17.101.102
                                                    1005
                                                             C,I,R
                                                                                  172.17.4.4 mpls
1
                                             13
                                                                        installed
                                                                                                            <snip>
                           172.17.101.102
                                                    1005
                                                             C,I,R
                                                                                   172.17.4.4 biz-internet
                                             14
                                                                        installed
                                                                                                            <snip>
                                                                                                            <snip>
vEdge-4# show omp route vpn 1 | tab | nomore | include "172.17.3.3|P"
                                                                                                            <snip>
                                             PATH
                                                                                                            <snip>
                                                                        ATTRIBUTE
       PREFIX
                                                                                   TLOC IP
VPN
                                                                        TYPE
                                                                                               COLOR
                                                                                                            <snip>
                           FROM PEER
                                             ID
                                                    LABEL
                                                              STATUS
       192.168.33.0/24
                           172.17.101.102
                                                                        installed 172.17.3.3 mpls
1
                                             13
                                                    1005
                                                             C,I,R
                                                                                                            <snip>
                                                                        installed 172.17.3.3 biz-internet
                           172.17.101.102
                                                    1005
                                                             C,I,R
                                             14
                                                                                                            <snip>
```

SD-WAN CLI Verification Review (cont.)

vEdge-3# show policy service-path vpn 1 interface ge0/2 source-ip 192.168.33.1 dest-ip 192.168.44.1 protocol 1 all

- + Although we only have **2 routes**, we use all **4 tunnels** for multi-path routing
 - + This is because we have 2 IPsec tunnels to each remote color

```
Number of possible next hops: 4
Next Hop: IPsec
  Source: 10.33.0.1 12346 Destination: 150.44.0.1 12346 Color: mpls
Next Hop: IPsec
  Source: 150.33.0.1 12346 Destination: 150.44.0.1 12346 Color: biz-internet
Next Hop: IPsec
  Source: 10.33.0.1 12346 Destination: 10.44.0.1 12346 Color: mpls
Next Hop: IPsec
  Source: 150.33.0.1 12346 Destination: 10.44.0.1 12346 Color: biz-internet
vEdge-4# show policy service-path vpn 1 interface ge0/2 source-ip 192.168.44.1 dest-ip 192.168.33.1 protocol 1 all
Number of possible next hops: 4
Next Hop: IPsec
  Source: 10.44.0.1 12346 Destination: 150.33.0.1 12346 Color: mpls
Next Hop: IPsec
  Source: 150.44.0.1 12346 Destination: 150.33.0.1 12346 Color: biz-internet
Next Hop: IPsec
  Source: 10.44.0.1 12346 Destination: 10.33.0.1 12346 Color: mpls
Next Hop: IPsec
  Source: 150.44.0.1 12346 Destination: 10.33.0.1 12346 Color: biz-internet
```

- + Next, let's create a Policy on vSmart to accomplish the following:
 - + Allow Spokes to reach the Hub (DC) over IPsec tunnels
 - + Prevent Spokes from learning each other's routes
 - + Prevent Spokes from forming IPsec tunnels with each other
- + First step is to classify the routes we want to apply policy to
 - + DC routes can be grouped together by Site-ID 1
 - + Spokes can also be grouped together by Site-ID "Not 1", e.g. 2-999

Classifying Based on Site-ID

First, we create two "Site Lists", one for DC (Site 1) and one for Spokes (Site 2-999)

+ Next, we create a "Custom Control" Policy with the following logic:

+ IF Routes == ANY && Site-ID == DC, accept

+ IF TLOC == ANY && Site-ID == DC, accept

+ ELSE, reject

Under "Topology" add "Custom Control (Route & TLOC)"

+ Add a sequence of type "Route"

Match the Site List "DC" and set the Actions to "Accept", then Save

+ Add another sequence of type "TLOC"

+ Match the Site List "DC" and set the Actions to "Accept", then Save

+ Verify the Default Action is Reject (implicit deny at the end), then Save

≡ Cisco SD-	-WAN	Select Resource (Group▼	Configuration •	Policies
Add Custom Control P	Policy				
Name*	filter-spoke-to-s	spoke			
Description*	filter-spoke-to-s	spoke			
① Sequence Typ		Default Action			
↑ Drag & drop to i	reorder	Reject		Enabled	
: Route					
:: TLOC					
Default Action					
Default Actio	n				

- + Now we apply the Policy outbound to all "Spokes" Sites:
 - + Recall this is **outbound from the perspective of the vSmart**

+ The final step is to "Activate" the Policy, which sends the config to vSmart

+ Like with Templates, vSmart Policy activation can show you the config-diff

Finally, the Policy config is pushed to vSmart

Verifying Policies from vSmart CLI

```
vSmart-1# show run | begin ^policy
policy
                                              sequence 11
 lists
                                               match tloc
  site-list DC
                                                site-list DC
   site-id 1
                                               action accept
  site-list SPOKES
   site-id 2-999
                                              default-action reject
 prefix-list AnyIpv4PrefixList
   ip-prefix 0.0.0.0/0 le 32
                                            apply-policy
 control-policy filter-spoke-to-spoke
                                             site-list SPOKES
  sequence 1
                                              control-policy filter-spoke-to-spoke out
   match route
   prefix-list AnyIpv4PrefixList
    site-list DC
                                            vSmart-1#
   action accept
```

Verifying Policy Results from WAN Edge Routers

+ Spokes (**vEdge-3** & **vEdge-4**) now won't form IPsec tunnels with each other:

```
vEdge-3# show bfd sessions | in 172.16.4.4
vEdge-4# show bfd sessions | in 172.16.3.3
   Spokes will no longer have each other's routes:
vEdge-3# show omp route vpn 1 192.168.44.0/24
         show omp routes-table family ipv4 received-entries vpn 1 192.168.44.0/24
syntax error: unknown argument
Error executing command: CLI command error -
vEdge-4# show ip route vpn 1 192.168.33.0/24
         show ip routes-table vpn 1 ipv4 192.168.33.0/24 *
```

syntax error: unknown argument

Error executing command: CLI command error -

Verifying Policy Results from WAN Edge Routers (cont.)

+ Spokes will still form IPsec tunnels with the DC (Site-ID 1)

vEdge-3# show bfd sessions

_			SOURCE TLOC	REMOTE TLOC		DST PUBLIC	DST PUBLIC		
SYSTEM IP	SITE ID	STATE	COLOR	COLOR	SOURCE IP	IP	PORT	ENCAP	<snip></snip>
									- <snip></snip>
172.17.1.1	1	up	mpls	custom1	10.33.0.1	150.11.1.0	12346	ipsec	<snip></snip>
172.17.1.1	1	up	mpls	custom2	10.33.0.1	150.22.1.0	12346	ipsec	<snip></snip>
172.17.1.1	1	up	biz-internet	custom1	150.33.0.1	150.11.1.0	12346	ipsec	<snip></snip>
172.17.1.1	1	up	biz-internet	custom2	150.33.0.1	150.22.1.0	12346	ipsec	<snip></snip>
172.17.2.2	1	up	mpls	custom1	10.33.0.1	150.11.2.0	12346	ipsec	<snip></snip>
172.17.2.2	1	up	mpls	custom2	10.33.0.1	150.22.2.0	12346	ipsec	<snip></snip>
172.17.2.2	1	up	biz-internet	custom1	150.33.0.1	150.11.2.0	12346	ipsec	<snip></snip>
172.17.2.2	1	up	biz-internet	custom2	150.33.0.1	150.22.2.0	12346	ipsec	<snip></snip>

Verifying Policy Results from WAN Edge Routers (cont.)

+ Result is that Spokes can reach routes from the DC, but not other Spokes:

```
vEdge-3# ping vpn 1 192.168.44.1
Ping in VPN 1
PING 192.168.44.1 (192.168.44.1) 56(84) bytes of data.
From 127.1.0.2 icmp seq=1 Destination Net Unreachable
From 127.1.0.2 icmp_seq=2 Destination Net Unreachable
<snip>
vEdge-3# ping vpn 1 4.4.4.4
Ping in VPN 1
PING 4.4.4.4 (4.4.4.4) 56(84) bytes of data.
64 bytes from 4.4.4.4: icmp seq=1 ttl=254 time=54.0 ms
64 bytes from 4.4.4.4: icmp seq=2 ttl=254 time=51.3 ms
<snip>
```


Overlay Management Protocol (OMP) Review

- + Cisco SD-WAN uses Overlay Management Protocol (OMP) for routing decisions
 - + OMP is a custom (proprietary) protocol, but very similar in logic to BGP
 - + vSmart Controller acts like a BGP Route Reflector (RR)
- + WAN Edge Routers first send OMP updates to vSmart over DTLS
 - + vSmart can apply user-defined routing policies on these <u>inbound</u> updates
- Next, vSmart performs OMP best-path selection on a per-prefix per-VPN basis
 - + E.g. 192.168.0.0/24 in VPN 1 is a separate selection from 192.168.0.0/24 in VPN 2
 - + OMP prefers routes with a higher "preference" value

Overlay Management Protocol (OMP) Review (cont.)

- + Only "best" paths on vSmart are candidate to be advertised to other Edge Routers
 - + vSmart will advertise up to 4 multi-paths by default
 - + Can be modified with **send-path-limit** under **omp** global config mode on vSmart
- vSmart then reflects "best" routes back to other WAN Edge Routers
 - + Can be modified with omp send-backup-paths in vSmart global config
 - + vSmart can apply user-defined routing policies on these <u>outbound</u> updates

Cisco SD-WAN Traffic Engineering

- Traffic Engineering (i.e. modifying path selection) can be accomplished in multiple ways in Cisco's SD-WAN implementation
 - + Centralized Policies on vSmart
 - + Modify OMP attributes on routes received from WAN Edge Routers
 - + I.e. an *inbound* policy from the perspective of vSmart
 - + Modify OMP attributes on routes sent to WAN Edge Routers
 - + I.e. an <u>outbound</u> policy from the perspective of vSmart
 - + Localized Policies on WAN Edge Routers
 - + E.g. modify attributes when BGP is redistributed into OMP, or vice-versa
 - + Localized Policies are attached using Device Templates & Feature Templates, not through vSmart advertisements

Cisco SD-WAN Traffic Engineering with Centralized Policies Example

- Data Center (Site 1) devices vEdge1 & vEdge2 both have dual WAN connections
 - + Links to **DC-Edge-1** are color "custom1"
 - + Links to **DC-Edge-2** are color "custom2"
- + By default, remote sites should see 4 paths to the DC routes
 - + Paths 1 & 2 via **vEdge1** colors "custom1" & "custom2"
 - + Paths 3 & 4 via **vEdge2** colors "custom1" & "custom2"
- + Configure a Traffic Engineering policy as follows:
 - + Load-share all traffic to the DC between **vEdge1** "custom1" & **vEdge2** "custom2"
 - + Fallback to **vEdge1** "custom2" & **vEdge2** "custom1" if both primary paths are down

Cisco SD-WAN Traffic Engineering with Centralized Policies Example

```
vSmart-1# sh run | begin ^policy
policy
lists
  tloc-list vEdge-1-custom1
   tloc 172.17.1.1 color custom1 encap ipsec
  tloc-list vEdge-2-custom2
   tloc 172.17.2.2 color custom2 encap ipsec
  site-list DC
   site-id 1
  prefix-list AnyIpv4PrefixList
   ip-prefix 0.0.0.0/0 le 32
 control-policy DC-Inbound-Traffic-Engineering
  sequence 1
  match route
   prefix-list AnyIpv4PrefixList
    tloc-list vEdge-1-custom1
   action accept
    set
    preference 200
```

```
sequence 11
  match route
   prefix-list AnyIpv4PrefixList
   tloc-list vEdge-2-custom2
   action accept
    set
    preference 200
  default-action accept
apply-policy
site-list DC
  control-policy DC-Inbound-Traffic-Engineering in
```


Verifying SD-WAN Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] bfd sessions
 - + show ip route
 - + show omp route
 - + show [sdwan] policy service-path

Direct Internet Access (DIA) Overview

- Many SD-WAN designs have a default route in both the *Underlay* & the *Overlay*
 - + *Underlay* default route is used to establish transport from the WAN Edge Routers to the Controllers, and to other sites' WAN Edge Routers over the Internet
 - + E.g. transport for DTLS & IPsec tunnels over biz-internet, LTE, etc.
 - + Overlay default route is used to centrally collect Internet traffic over the SD-WAN
 - + E.g. send end-users' Internet traffic across the SD-WAN to the DC so it can be inspected by centralized firewalls
- Centralized Internet connectivity has multiple design issues
 - + Central bandwidth/firewalls must be sized correctly to account for all remote sites
 - + Increasing capacity may result in "forklift" upgrades
 - + E.g. you need to buy a bigger router/firewall that can handle the increased flows
- + DIA is designed to fix this problem by distributing Internet access to remote sites

How Direct Internet Access (DIA) Works

- + Goal of DIA is to limit traffic sent over the SD-WAN to only internal destinations
 - + E.g. traffic to internal private addresses (RFC 1918) should use the SD-WAN
- + Traffic to external destinations (e.g. the Internet) is sent to the local *Underlay*
 - + Leak the traffic from the Service VPN (e.g. VPN 1) into the Transport VPN (VPN 0)
 - + Perform a source Network Address Translation (NAT) to the Underlay address(es)
 - + E.g. NAT overload to the public IP of the WAN link
- Result is that traffic for the Internet is distributed amongst the remote sites
 - + No need to send traffic to the DC first before going to the Internet
 - Reduces the load on centralized DC Internet connections and firewalls

Implementing Direct Internet Access (DIA)

- + DIA is effectively a form of Policy Based Routing (PBR)
 - + Overrides the normal routing lookup with a policy-based lookup...
 - + IF traffic destination == RFC1918, use the SD-WAN
 - + ELSE IF traffic destination != RFC1918, NAT to the Underlay (VPN 0)
- + DIA is implemented using a Centralized Data (Traffic) Policy
 - Match destination RFC1918, set action Accept
 - + I.e. perform normal forwarding for traffic going to internal addresses
 - + Match destination ANY, set action Accept & NAT to VPN 0
 - + I.e. leak Internet-bound traffic to the local Underlay; don't use the SD-WAN
- + Fallback option can be used to prevent blackholes if local Internet link is down
 - + E.g. fallback to the SD-WAN tunnel to DC over MPLS if local ISP is down

Cisco SD-WAN Direct Internet Access (DIA) Example

```
vSmart-1# sh run | begin ^policy
                                               lists
                                                 data-prefix-list Any
policy
                                                  ip-prefix 0.0.0.0/0
 data-policy Primary-VPN DIA
  vpn-list Primary-VPN
    sequence 1
                                                 data-prefix-list Internal
     match
                                                  ip-prefix 10.0.0.0/8
                                                  ip-prefix 172.16.0.0/12
      destination-data-prefix-list Internal
                                                  ip-prefix 192.168.0.0/16
     action accept
                                                 site-list Spokes
                                                  site-id 2-999
    sequence 11
     match
                                                 vpn-list Primary-VPN
      destination-data-prefix-list Any
                                                  vpn 1
     action accept
      nat use-vpn 0
                                               apply-policy
      nat fallback
                                                site-list Spokes
                                                 data-policy Primary-VPN DIA from-service
  default-action drop
```

Verifying SD-WAN Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] bfd sessions
 - + show ip route
 - + show omp route
 - + show [sdwan] policy service-path

Cisco SD-WAN Default VPN Forwarding Review

- Cisco SD-WAN automatically defaults to any-to-any connectivity over IPsec
 - + All sites form tunnels to all other sites out all colors by default
 - + E.g. internet to internet, mpls to mpls, internet to mpls, mpls to internet, etc.
 - + All sites advertise connected routes into OMP with all TLOCs by default
 - + E.g. Edge Router 172.17.1.1 has WAN links to Biz-Internet & MPLS
 - + 192.168.1.0/24 in VPN 1 is via TLOC 172.17.1.1 color Biz-Internet
 - + 192.168.1.0/24 in VPN 1 is via TLOC 172.17.1.1 color MPLS
 - + Routes do not leak between VPNs by default
 - + E.g. all VPN 1 sites can reach all other VPN 1 sites, but not VPN 2
 - + E.g. all VPN 2 sites can reach all other VPN 2 sites, but not VPN 1

Cisco SD-WAN Guest User Access & VPN Membership Filtering

- + In addition to private-to-private and private-to-Internet traffic over the SD-WAN, sites may also want to offer Guest-to-Internet connectivity
- + First step in providing Guest access is to segment the traffic into different VPNs
 - + E.g. Service VPN 1 for "Corp-VPN" and Service VPN 2 for "Guest-VPN"
 - + This prevents Guest users from sending traffic to internal resources, and vice-versa
 - + This does not prevent Guests in Site 1 from accessing Guests in Site 2 by default
- Next step is to filter the Guest network advertisements across the SD-WAN
 - + By default, vSmart accepts/sends advertisements for all VPNs
 - + "VPN Membership" filter is used to limit which VPNs are accepted/sent to which sites
 - + E.g. match VPN list "Only-Corp-VPN", set action accept, apply to site list "All-Sites"

VPN Membership Filter Example

```
vSmart-1# sh run | begin ^policy | nomore
policy
 lists
  vpn-list Only-Corp-VPN
   vpn 1
  site-list All-Sites
   site-id 1-999
 vpn-membership vpnMembership -969927050
  sequence 10
  match
   vpn-list Only-Corp-VPN
   action accept
  default-action reject
apply-policy
 site-list All-Sites
  vpn-membership vpnMembership -969927050
```


Verifying VPN Membership Filters

vSmart-1# show omp route vpn 2 | tab Code:

C -> chosen

I -> installed

Red -> redistributed

Rej -> rejected

<snip>

Inv -> invalid

<snip>

VPN	PREFIX	FROM PEER	ID	LABEL	STATUS	TYPE	TLOC IP	<snip></snip>
								<snip></snip>
2	172.16.33.0/24	172.17.3.3	66	1006	Rej,R,Inv	installed	172.17.3.3	<snip></snip>
		172.17.3.3	68	1006	Rej,R,Inv	installed	172.17.3.3	<snip></snip>
2	172.16.44.0/24	172.17.4.4	66	1006	Rej,R,Inv	installed	172.17.4.4	<snip></snip>
		172.17.4.4	68	1006	Rej,R,Inv	installed	172.17.4.4	<snip></snip>
2	172.16.101.0/24	172.17.101.1	66	1004	Rej,R,Inv	installed	172.17.101.1	<snip></snip>
		172.17.101.1	68	1004	Rej,R,Inv	installed	172.17.101.1	<snip></snip>
		172.17.102.1	66	1004	Rej,R,Inv	installed	172.17.102.1	<pre><snip></snip></pre>
		172.17.102.1	68	1004	Rej,R,Inv	installed	172.17.102.1	<snip></snip>

Guest Direct Internet Access (DIA)

- + Guest-to-Internet traffic should use the local Underlay for Internet access
 - + E.g. don't follow a default route across the SD-WAN to the DC for Guest Internet
- + Solution is to combine VPN Membership filtering with the previous DIA example
 - Control Policy for Guest Route Filtering
 - + IF VPN == Corp-VPN && Site == Any, action Accept
 - + ELSE, action Reject
 - Data Policy for Guest Direct Internet Access (DIA)
 - + IF VPN == Guest-VPN && traffic destination == Internal, action Reject
 - + ELSE IF VPN == Guest-VPN && traffic destination != Internal, action NAT to VPN 0

Guest DIA with VPN Membership Filtering Example – Part 1

```
vSmart-1# sh run | begin ^policy | nomore
                                                 lists
policy
                                                  vpn-list Corp-VPN
 data-policy Guest-VPN Guest-DIA
                                                   vpn 1
 vpn-list Guest-VPN
   sequence 1
                                                  vpn-list Guest-VPN
   match
                                                   vpn 2
     destination-data-prefix-list Internal
                                                  data-prefix-list Any
                                                   ip-prefix 0.0.0.0/0
    action drop
                                                  data-prefix-list Internal
                                                   ip-prefix 10.0.0.0/8
   sequence 11
                                                   ip-prefix 172.16.0.0/12
   match
                                                   ip-prefix 192.168.0.0/16
     destination-data-prefix-list Any
    action accept
                                                  site-list All-Sites
                                                   site-id 1-999
     nat use-vpn 0
                                                  site-list Spokes
   default-action drop
                                                   site-id 2-999
```


Guest DIA with VPN Membership Filtering Example – Part 2

```
vpn-membership vpnMembership_-969927050
  sequence 10
  match
   vpn-list Corp-VPN
   action accept
 default-action reject
apply-policy
site-list All-Sites
 vpn-membership vpnMembership_-969927050
 site-list Spokes
 data-policy _Guest-VPN_Guest-DIA from-service
```


Verifying SD-WAN Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] bfd sessions
 - + show ip route
 - + show omp route
 - + show [sdwan] policy service-path

Cisco SD-WAN VPN Route Leaking Overview

- + By default, a full-mesh of connectivity exists within each Service VPN
 - + Hosts in Service VPN 1 can reach all other sites with VPN 1, but not VPN 2
 - + Hosts in Service VPN 2 can reach all other sites with VPN 2, but not VPN 1
- + Route Leaking is the process of allowing selective access between VPN boundaries
 - + E.g. copy route X from VPN 1 into VPN 2, and copy route Y from VPN 2 into VPN 1
 - + Result is that X & Y have reachability to each other even though they're in separate VPNs
 - + Implies that X & Y are unique networks, i.e. IP addresses do not overlap

Implementing Cisco SD-WAN VPN Route Leaking

- + Cisco SD-WAN implements Route Leaking through Centralized Control Policies
 - + Control Policy In-From-Corp-VPN-Sites
 - + IF VPN == Corp-VPN && prefix-list == Corp-VPN-Routes-to-Leak, action Accept && export to VPN Extranet-VPN
 - + ELSE Accept
 - + I.e. don't filter other prefixes
 - + Control Policy In-From-Extranet-VPN-Sites
 - + IF VPN == Extranet-VPN && prefix-list == Extranet-VPN-Routes-to-Leak, action Accept && export to VPN Corp-VPN
 - + ELSE Accept
 - + l.e. don't filter other prefixes

Controlling Cisco SD-WAN VPN Route Leaking

- + Route Leaking is applied inbound from the perspective of vSmart
 - + SD-WAN sites advertise OMP routes outbound to vSmart
 - + vSmart receives routes inbound and applies the policy (leak the routes into target VPN)
 - + Leaked routes are then advertised outbound from vSmart to all sites by default
- + Implies that additional filters may be needed to control where leaked routes are sent
 - + E.g. in our case both the DC & Spoke sites learn about the Extranet routes
 - + Filtering advertisements from vSmart outbound to Spokes would need a 3rd policy
 - + E.g. when Extranet routes are leaked into Corp-VPN, set an OMP tag inbound
 - + 3rd Policy out to Spokes, match this tag & set action reject, then default action accept

Cisco SD-WAN VPN Route Leaking Example – Part 1 (Define Lists)

```
vSmart-1# sh run | begin ^policy | nomore
policy
 lists
  vpn-list Corp-VPN
   vpn 1
  vpn-list Extranet-VPN
   vpn 777
  site-list DC
   site-id 1
  site-list Extranet-Site
   site-id 101
  site-list Spokes
   site-id 2-999
```

```
!
prefix-list DC-Shared-Services
ip-prefix 4.4.4.4/32
!
prefix-list Extranet-Routes
ip-prefix 7.7.7.7/32
!
prefix-list _AnyIpv4PrefixList
ip-prefix 0.0.0.0/0 le 32
```


Cisco SD-WAN VPN Route Leaking Example – Part 2 (Define Policies)

```
control-policy Leak-Extranet-to-Corp-VPN
  sequence 1
  match route
   prefix-list Extranet-Routes
   vpn-list Extranet-VPN
   action accept
    set
    omp-tag 777
    export-to
    vpn-list Corp-VPN
 default-action accept
```

```
control-policy Leak-DC-Services-to-Extranet
  sequence 1
  match route
   prefix-list DC-Shared-Services
   vpn-list
               Corp-VPN
   action accept
   export-to
    vpn-list Extranet-VPN
 default-action accept
control-policy Filter-Extranet-to-Spokes
 sequence 1
  match route
                777
   omp-tag
   prefix-list AnyIpv4PrefixList
   action reject
 default-action accept
```

Cisco SD-WAN VPN Route Leaking Example – Part 3 (Apply Policies)

```
apply-policy
site-list DC
control-policy Leak-DC-Services-to-Extranet in
!
site-list Extranet-Site
control-policy Leak-Extranet-to-Corp-VPN in
!
site-list Spokes
control-policy Filter-Extranet-to-Spokes out
!
```


Verifying Cisco SD-WAN VPN Route Leaking from vSmart CLI

vSmart-1# show omp route 4.4.4.4/32 Code:

C -> chosen

<snip>

Ext -> extranet

<snip>

	7		PATH			ATTRIBUTE		
VPN	PREFIX	FROM PEER	ID	LABEL	STATUS	TYPE	TLOC IP	<snip></snip>
					- -			<snip></snip>
1	4.4.4.4/32	172.17.1.1	78	1005	C,R	installed	172.17.1.1	<snip></snip>
		172.17.1.1	79	1005	C,R	installed	172.17.1.1	<snip></snip>
		172.17.2.2	78	1005	C,R	installed	172.17.2.2	<pre>2 <snip></snip></pre>
		172.17.2.2	79	1005	C,R	installed	172.17.2.2	<pre>2 <snip></snip></pre>
777	4.4.4.4/32	172.17.1.1	101	1005	C,R, <mark>Ext</mark>	original	172.17.1.1	<snip></snip>
	J					installed	172.17.1.1	<snip></snip>
		172.17.1.1	102	1005	C,R, <mark>Ext</mark>	original	172.17.1.1	<snip></snip>
						installed	172.17.1.1	<snip></snip>
		172.17.2.2	101	1005	C,R, <mark>Ext</mark>	original	172.17.2.2	<pre>2 <snip></snip></pre>
						installed	172.17.2.2	<pre>2 <snip></snip></pre>
		172.17.2.2	102	1005	C,R, <mark>Ext</mark>	original	172.17.2.2	<pre>2 <snip></snip></pre>
						installed	172.17.2.2	<pre>2 <snip></snip></pre>

Verifying SD-WAN Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] bfd sessions
 - + show ip route
 - + show omp route
 - + show [sdwan] policy service-path

Cisco SD-WAN Service Insertion / Service Chaining Overview

- + Cisco SD-WAN **Service Insertion** is the process of automatically inserting external devices such as Firewalls, Intrusion Prevention Systems (IPS), Load Balancers, etc. into the SD-WAN data-plane based on a Policy
 - + **Service Chaining** means combining multiple devices together, e.g. Firewall first, Load Balancer next, etc.
- + Service Insertion in SD-WAN uses a combination of functions such as...
 - + Feature Templates to define the device type (FW/IPS/etc.) and location
 - + Centralized Control Policies with match criteria about when insertion will happen
 - + Can also be a Data Policy or ACLs starting in vManage release 20.13.x
 - + OMP routes & MPLS label values to trigger traffic redirection in the data-plane

How Cisco SD-WAN Service Insertion Works – Service Routes

- + Service Insertion starts by advertising a "Service Route" to vSmart via OMP
 - + Service Route originator is the SD-WAN Edge Router attached to the Firewall / IPS / LB
- + The OMP **Service Route** is used to...
 - + Describes the type of service (i.e. FW vs. IPS)
 - + Assign an MPLS label locally unique to the originator of the Service Route
- vSmart uses the Service Route to trigger traffic redirection based on a Policy
 - + E.g. IF Policy match == TRUE
 - + THEN action == accept && set service FW vpn 1

How Cisco SD-WAN Service Insertion Works – Triggering Redirection

- + Once the **Service Route** is learned by vSmart, redirection is triggered by a Policy
 - + In our example, redirection will be based on matching a route (Control Policy)
 - + In newest vManage code, redirection can also be based on a Data Policy and/or ACL
 - + E.g. redirect only TCP Port 80 to the IPS
- + When Policy match occurs and action is "**set service**", two key changes occur:
 - + OMP TLOCs are re-written to the originator of the **Service Route**
 - + E.g. change the next-hop to tunnel(s) towards the Edge Router attached to Firewall
 - + MPLS label in OMP route is re-written to that of the **Service Route**
 - Data-plane packets use this new MPLS label when sending traffic to the re-written TLOCs, where traffic is redirected based on this locally unique label
 - + E.g Firewall insertion has a different label than IPS insertion

Implementing SD-WAN Service Insertion — Advertising Network Service Availability

- + First define where the FW/IPS/etc. is located in the SD-WAN fabric
 - + Defined in the Feature Template for the Service VPN of the Edge Router(s) attached to the Firewall

Implementing SD-WAN Service Insertion – Verifying Service Routes

- Once the Feature Template has the Service defined and is attached, the WAN Edge Routers advertise the Service Routes to vSmart
 - + Service Route represents the TLOCs & MPLS Label that will be re-written to perform traffic redirection (i.e. Service Insertion)

vSmart-1# show omp services service FW <snip>

ADDRESS					PATH	REGION			
FAMILY	VPN	SERVICE	ORIGINATOR	FROM PEER	ID	ID	<mark>LABEL</mark>	STATUS	
ipv4	1	 <mark>FW</mark>	172.17.1.1	172.17.1.1	 78	None	 <mark>1006</mark>	C,I,R	
				172.17.1.1	79	None	1006	C,I,R	
	1	<mark>FW</mark>	172.17.2.2	172.17.2.2	78	None	1006	C,I,R	
				172.17.2.2	79	None	1006	C,I,R	

Implementing SD-WAN Service Insertion — Defining the Redirection Policy

- + Using a Custom Control Policy, define what traffic should be redirected
 - + E.g. traffic using the default route in the Corp-VPN from the DC site will be redirected to the firewall in VPN 1

Implementing SD-WAN Service Insertion — Example Control Policy

```
vSmart-1# show run | begin ^policy
policy
 lists
  vpn-list Corp-VPN
  vpn 1
  site-list DC
   site-id 1
  site-list Spokes
   site-id 2-999
  prefix-list Default-Route
   ip-prefix 0.0.0.0/0
```

```
control-policy Firewall-Redirect
  sequence 1
  match route
   prefix-list Default-Route
    site-list DC
   vpn-list Corp-VPN
   action accept
    set
     service FW vpn 1
  default-action accept
apply-policy
 site-list Spokes
  control-policy Firewall-Redirect out
```


Implementing SD-WAN Service Insertion – Traffic Forwarding Before Redirection

Cat8Kv-1#show sdwan omp route vpn 1 0.0.0.0/0 <snip>

					PATH			PSEUDO		
TENANT	VPN	ROUTE ADDR	<snip></snip>	FROM PEER	ID	LABEL	STATUS	KEY	TLOC IP	COLOR
			- <snip>-</snip>							
0	1	0.0.0.0	<snip></snip>	172.17.101.102	25	1005	C,I,R	1	172.17.1.1	custom1
			<snip></snip>	172.17.101.102	47	1005	C,I,R	1	172.17.1.1	custom2
			<snip></snip>	172.17.101.102	49	1005	C,I,R	1	172.17.2.2	custom1
			<snip></snip>	172.17.101.102	51	1005	C,I,R	1	172.17.2.2	custom2

Cat8Kv-1#show ip route vrf 1 8.8.8.8

Routing Table: 1

% Network not in table

Cat8Kv-1#traceroute vrf 1 8.8.8.8 numeric

Type escape sequence to abort.

Tracing the route to 8.8.8.8

VRF info: (vrf in name/id, vrf out name/id)

1 10.10.10.1 20 msec 18 msec 20 msec

2 10.9.9.9 43 msec * 36 msec

Implementing SD-WAN Service Insertion – Traffic Forwarding After Redirection

Cat8Kv-1#show sdwan omp route vpn 1 0.0.0.0/0 <snip>

			<snip></snip>	PATH			PSEUDO			<snip></snip>
TENANT	VPN	ROUTE ADDR	<pre><snip> FROM PEER</snip></pre>	ID	LABEL	STATUS	KEY	TLOC IP	COLOR	<snip></snip>
			<snip></snip>							<snip></snip>
0	1	0.0.0.0	<pre><snip> 172.17.101.102</snip></pre>	69	<mark>1006</mark>	C,I,R	1	172.17.1.1	custom1	<snip></snip>
			<pre><snip> 172.17.101.102</snip></pre>	70	<mark>1006</mark>	C,I,R	1	172.17.1.1	custom2	<snip></snip>
			<pre><snip> 172.17.101.102</snip></pre>	71	<mark>1006</mark>	C,I,R	1	172.17.2.2	custom1	<snip></snip>
			<pre><snip> 172.17.101.102</snip></pre>	72	<mark>1006</mark>	C,I,R	1	172.17.2.2	custom2	<snip></snip>

Cat8Kv-1#show ip route vrf 1 8.8.8.8

Routing Table: 1

% Network not in table

Cat8Kv-1#traceroute vrf 1 8.8.8.8 numeric

Type escape sequence to abort.

Tracing the route to 8.8.8.8

VRF info: (vrf in name/id, vrf out name/id)

- 1 10.10.10.1 27 msec 16 msec 20 msec
- 2 172.16.100.254 62 msec 41 msec 41 msec
- 3 150.100.2.1 42 msec 35 msec 37 msec
- 4 150.22.0.2 34 msec * 38 msec

Cisco SD-WAN Access-Lists (ACLs) Overview

- + ACLs are implemented in Cisco SD-WAN using Localized Data Policies
 - + ACLs are locally significant, not advertised through a vSmart policy
- + vManage centrally controls the ACL definitions
 - + Configuration > Policies > Localized Policy > Access Control Lists
- + ACLs are pushed to devices through their **Device Templates**
 - Device Template > Additional Templates > Policy
- + ACLs are applied at the port level under the Interface
 - + Under ACL/QoS define the ingress/egress IPv4/IPv6 ACL
- + Allows you to re-use the same ACL between multiple devices
 - + If the ACL is updated, all devices using a Device Template referencing the ACL will automatically be updated
 - + Helps to prevent drift of ACL configurations
 - + I.e. we don't have to manage ACLs on a box-by-box basis

Verifying Access-Lists

```
+ vEdge & cEdge
```

```
+ show [sdwan] access-list-associations
+ show [sdwan] access-list-counters
+ show [sdwan] access-list-names
+ show [sdwan] access-list-policers
```


Cisco SD-WAN Security Overview

- + Cisco SD-WAN has several security features built-in...
 - + Application-Aware Enterprise Firewall
 - + I.e. Zone-Based Policy Firewall (ZFW/ZBPF)
 - + Inline Intrusion Detection/Prevention System (IDS/IPS)
 - + Snort-based IPS with dynamic signature updates published by Cisco Talos
 - + URL Filtering
 - + Security virtual image from Cisco software portal contains URL categories
 - + Advanced Malware Protection (AMP) and Threat Grid
 - + Threat Grid API allows uploading of files to malware analysis
 - + DNS Security with Cisco Umbrella
 - + Requires registration through Umbrella portal
- + Security Policy is defined under Configuration > Security
- + Security Policy is applied under **Device Template**
 - + Additional Templates > Security Policy

Cisco SD-WAN Quality of Service (QoS) Overview

- Quality of Service (QoS) in Cisco SD-WAN is implemented using a combination of Centralized Policies and Localized Policies
 - + Centralized Data Policies are used to classify traffic
 - + Match could be DSCP, L3 SRC/DST L4 Ports, Application, etc.
 - + Localized Policies are used for traffic scheduling & congestion management
 - + Map traffic classes to hardware queues
 - + Choose scheduling technique for the queue
 - + Low Latency Queuing (LLQ) or Weighted Round Robin (WRR)
 - + Choose congestion management technique for the queue
 - + Random Early Detection (RED) or Tail Drop
 - + Choose bandwidth reservation
 - + Choose buffer percentage

Implementing Cisco SD-WAN Quality of Service (QoS)

- + Centralized Data (Traffic) Policy is first used to classify traffic
 - + Match traffic, then action is set Traffic Class
 - + Centralized Policy is then activated through vSmart
 - + E.g. apply to Spokes, direction From Service
- Create Localized QoS Lists to map Traffic Class to Queue
 - Queue 0 is always the Low Latency Queue (LLQ)
 - + Queue 0 automatically includes the control-plane
 - + E.g. DTLS tunnels from WAN Edge to Controllers
- + Localized Policy is then used to apply QoS scheduling/management
 - + Create a QoS Map to match Traffic Class
 - + Define LLQ bandwidth limit and/or bandwidth/buffer reservation for Queues
 - + Apply Localized Policy to Device Template
 - + Reference QoS Map from WAN Feature Template

Verifying QoS Policies

- + vSmart
 - + show run [policy]
- + vEdge & cEdge
 - + show [sdwan] running-config
 - + show [sdwan] policy from-vsmart
 - + show policy-map interface

Cisco SD-WAN Application Aware Routing (AAR) Overview

- Application Aware Routing (AAR) is used to optimize traffic routing across
 the overlay SD-WAN tunnels based on App performance requirements
- + SD-WAN Edge Routers sample real-time traffic conditions of all IPsec tunnels using **Bidirectional Forwarding Detection (BFD)**
 - + E.g. mpls to mpls, biz-internet to biz-internet, etc.
 - + System calculates average packet loss, latency, and jitter for each path
- + Sampling results are then compared against App QoS parameters
 - + E.g. VoIP should have no more than 50ms delay, 25ms jitter, and 5% loss
- + Traffic is dynamically routed over QoS compliant tunnels based on a Policy
 - + E.g. IF App == Voice && SLA-Class Voice-And-Video == Compliant
 - + THEN Prefer Color MPLS
 - + ELSE Fallback-to-Best-Path

How Application Aware Routing (AAR) Works

- + Application Aware Routing (AAR) is implemented through a Centralized Data Policy
 - + Like previous Data Policy examples, AAR is effectively Policy Based Routing (PBR)
 - Match criteria is defined (e.g. App), then Action is to poll SLA Class & map traffic to tunnel(s)
- + Match criteria for AAR can classify traffic up to Layer 7
 - + vManage contains a variety of pre-defined App matches
 - + E.g. Google Apps, Microsoft 365, VoIP, etc.
 - + Custom matches can also be defined
 - + E.g. TCP 80/443 + regex for *.myapp.com
- + SLA Class defines the loss / latency / jitter parameters
 - + Likewise a bunch of classes pre-defined in vManage
 - + E.g. "Voice-and-Video", "Best-Effort", etc.

Application Aware Routing (AAR) Tunnel Mapping

- + Traffic is ECMP load-balanced between all tunnels meeting the SLA by default
- + If the SLA is not met (e.g. delay is too high), traffic is automatically re-routed
 - + E.g. Use ECMP on all colors, but exclude the paths where SLA is not met
- + Preferred Color can be defined in addition to SLA Class
 - + E.g. Use MPLS first, but if the SLA is not met, use any other color (e.g. biz-internet)
- Additional branching logic can be defined
 - + Backup Preferred Color
 - + E.g. prefer MPLS, but fallback to just biz-internet instead of biz-internet & LTE
 - + Fallback to Best-Path
 - + E.g. prefer MPLS, but fallback to biz-internet or LTE, whichever is better
 - + Strict Mode
 - + E.g. prefer MPLS, but drop the packet if the SLA is not met

Defining an Application Aware Routing (AAR) Policy Example

Verifying Application Aware Routing (AAR) Policies from vSmart

```
vSmart-1# sh run | begin ^policy
                                                      lists
                                                        vpn-list Corp-VPN
policy
 sla-class Voice-And-Video
                                                         vpn 1
  loss
  latency 45
                                                        app-list REAL TIME APPS
  jitter 30
                                                         app rtp
                                                         app sccp
 app-route-policy Corp-VPN Prefer-MPLS
                                                         app sip
  vpn-list Corp-VPN
                                                         app sip soap
   sequence 1
                                                         app skinny
    match
                                                         app uaudp rtp
     source-ip 0.0.0.0/0
     app-list REAL TIME APPS
                                                        site-list Spokes
                                                         site-id 2-999
    action
                                                      apply-policy
     sla-class Voice-And-Video preferred-color mpls
                                                       site-list Spokes
                                                        app-route-policy Corp-VPN Prefer-MPLS
```


Application Aware Routing (AAR) App Probe Classes

- + SD-WAN Edge Routers sample the loss/delay/jitter of tunnels using **BFD**
- + BFD is marked as DSCP CS6 (48) by default
 - + DSCP CS6 / IP Precedence 6 (Internetwork Control) is higher priority than user traffic
 - + E.g. **DSCP EF / IP Precedence 5 (Critical) for voice/video is lower than BFD**
- + Since BFD has a higher priority than user traffic, it may skew sampling results
 - + E.g. users are having performance issues with "bulk-data", but the problem is hidden since BFD is being processed with a higher priority during periods of congestion
- + App Probe Class allows you to fix this by user defining...
 - + Which output queue the BFD sampling packets are placed in
 - + E.g. use the same queuing behavior of a VoIP phone call
 - + What is the DSCP marking of the BFD sampling packets
 - + E.g. use DSCP EF to simulate a VoIP phone call

Defining an App Probe Class for Application Aware Routing (AAR)

- + App Probe Class is defined under Centralized Policy Lists
 - + Class-Map to define Queue number must first be defined under Localized Policy Lists
 - + DSCP value is entered in decimal
 - + E.g. DSCP EF (101110) = 46

Defining an SLA Class for Application Aware Routing (AAR)

- + Custom **SLA Class** can be used to define loss, latency, and jitter limits
 - + SLA Class calls App Probe Class which defines QoS marking of BFD sampling

Verifying Application Aware Routing (AAR)

- Verifying AAR from vManage
 - Monitor > Devices > [device] > Real Time > Device Options > App Route Statistics
 - Monitor > Devices > [device] > Real Time > Device Options > App Route SLA Class
 - Monitor > Devices > [device] > Troubleshooting > App Route Visualization
 - Monitor > Devices > [device] > Troubleshooting > Simulate Flows
- Verifying AAR from vSmart CLI
 - + show run [policy]
- Verifying AAR from vEdge & cEdge CLI
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] policy app-route-policy-filter
 - + show [sdwan] policy service-path

SD-WAN Policy Example – Application Aware Routing (AAR)

- + Configure an AAR Policy on the Spokes as follows:
 - + Real-time traffic (e.g. VoIP) should only route over colors that have less than 50ms delay & jitter, or 2% packet loss
 - + All other traffic should prefer to route over Biz-Internet, but failover to MPLS if packet loss exceeds 5%, or delay & jitter exceed 200ms

SD-WAN Policy Example – Application Aware Routing (AAR) Part 1

```
vSmart-1# sh run | begin ^policy
policy
                                        sequence 11
 sla-class OTHER-TRAFFIC
                                         match
                                          destination-data-prefix-list Any
  loss 5
  latency 200
  jitter 200
                                         action
                                           sla-class OTHER-TRAFFIC preferred-color biz-internet
 sla-class REALTIME-TRAFFIC
  loss
  latency 50
  jitter 50
 app-route-policy Corp VPN AAR-POLICY
  vpn-list Corp VPN
   sequence 1
    match
     source-ip 0.0.0.0/0
     app-list REAL TIME APPS
    action
     sla-class REALTIME-TRAFFIC
```


SD-WAN Policy Example – Application Aware Routing (AAR) Part 2

```
lists
vpn-list Corp_VPN
 vpn 1
 data-prefix-list Any
  ip-prefix 0.0.0.0/0
 app-list REAL TIME APPS
 app rtp
 app sccp
 app sip
 app sip_soap
 app skinny
 app uaudp_rtp
 site-list Spokes
  site-id 2-999
```

```
!
!
apply-policy
site-list Spokes
app-route-policy _Corp_VPN_AAR-POLICY
!
!
```


Verifying Application Aware Routing (AAR)

- Verifying AAR from vManage
 - Monitor > Devices > [device] > Real Time > Device Options > App Route Statistics
 - Monitor > Devices > [device] > Real Time > Device Options > App Route SLA Class
 - Monitor > Devices > [device] > Troubleshooting > App Route Visualization
 - Monitor > Devices > [device] > Troubleshooting > Simulate Flows
- Verifying AAR from vSmart CLI
 - + show run [policy]
- Verifying AAR from vEdge & cEdge CLI
 - + show [sdwan] policy from-vsmart
 - + show [sdwan] policy app-route-policy-filter
 - + show [sdwan] policy service-path

Cisco SD-WAN TLOC Review

- In Cisco SD-WAN a Transport Locator (TLOC) is an identifier used to represent a specific WAN transport interface on an SD-WAN Edge Router
 - + I.e. an interface in VPN 0 on WAN Edge Router "cEdge-1"
- + A TLOC is comprised of three main components
 - + System IP
 - + The unique identifier for each WAN Edge Router
 - + Color
 - + The type of transport, e.g. MPLS, Biz-Internet, LTE, etc.
 - + Encapsulation
 - + Either IPsec or GRE as the transport protocol
- + By default, a full mesh of tunnels is established from and to all TLOCs
 - + e.g. MPLS to MPLS, Internet to Internet, MPLS to Internet, Internet to MPLS, etc.
 - + Can be limited to same-to-same color with **restrict** option under tunnel

Cisco SD-WAN TLOC Extension

- TLOC Extension is a feature used to add path diversity and redundancy in cases where multiple WAN Edge Routers in the same site only have a single WAN link each
 - + E.g. in Site 101, Cat8Kv-1 has MPLS only, and Cat8Kv-2 has Biz-Internet only
- + TLOC Extension allows a WAN Edge Router to share its TLOC with another Edge Router without adding additional physical WAN links
 - + E.g. Cat8Kv-1 can share Cat8Kv-2's Biz-Internet link, without the need to physically dual-home to both MPLS and Biz-Internet providers
- + TLOC Extension is accomplished by adding additional physical or logical East/West links between the WAN Edge Routers where new tunnels will terminate
 - + E.g. Cat8Kv-1 indirectly connects to Biz-Internet through Cat8Kv-2

Example TLOC Extension Topology

Verifying TLOC Extension

- + vSmart
 - + show omp tlocs [system-ip]
- + vEdge & cEdge
 - + show [sdwan] omp tlocs
 - + show [sdwan] bfd sessions

What is Cisco SD-WAN Direct Cloud Access?

- Direct Cloud Access is a subset of Direct Internet Access (DIA) used to distribute access to AWS/Azure/GCP etc. to WAN Edge Routers using the local Internet breakout link
 - + I.e. don't follow the default route over the SD-WAN to reach cloud providers
- + Direct Cloud Access, like DIA, is implemented using a Centralized Data Policy
 - + IF destination == AWS/Azure/GCP/etc. THEN NAT to VPN 0

What is Cisco SD-WAN Cloud OnRamp?

- + Cisco SD-WAN **Cloud OnRamp** is a suite of features designed to optimize and simplify the integration of cloud applications and infrastructure with the SD-WAN
- Cloud OnRamp directly integrates with your cloud provider to automate
 VPN connectivity between the SD-WAN and the Cloud
 - + E.g. vManage is configured with your AWS credentials
 - + CSR1000v / Catalyst 8000v instances are automatically instantiated inside the Cloud, which are then used as Transit Gateways to reach your Virtual Private Cloud (VPC) over IPsec VPNs
 - + Eliminates the need to manually configure IPsec VPNs on the cloud side
- Configured under Configuration > Cloud onRamp under vManage

Recommended Resources

- + Cisco Press SD-WAN Book
 - Cisco Software-Defined Wide Area Networks: Designing, Deploying and Securing Your Next Generation WAN with Cisco SD-WAN
- Cisco SD-WAN Documentation
 - + https://www.cisco.com/c/en/us/td/docs/routers/sdwan/config/ios-xe-sdwan17.html
- Cisco DevNet Sandbox
 - + Free virtual instances of SD-WAN devices for lab testing
 - + <u>https://devnetsandbox.cisco.com/</u>

