Name: P.Asha Belcilda ¶

Rollno:225229104

# Loan approval classification using SVM

In [31]: import pandas as pd

#### Step 1: Understand data

In [32]: data=pd.read\_csv("train\_loan.csv") data Out[32]: Loan ID Gender Married Dependents Education Self\_Employed ApplicantIncome Coa **0** LP001002 0 Male No Graduate 5849 No LP001003 Male Yes 1 Graduate No 4583 Graduate 2 LP001005 Male Yes 0 Yes 3000 Not 3 LP001006 2583 Male 0 Yes No Graduate LP001008 Male No 0 Graduate No 6000 LP001011 2 Graduate 5417 Male Yes Yes Not LP001013 2333 Male Yes 0 No Graduate LP001014 3036 Male Yes 3+ Graduate No LP001018 Male Yes 2 Graduate 4006 Νo LP001020 Male Yes Graduate No 12841

```
In [33]:
          data.head
Out[33]: <bound method NDFrame.head of
                                                Loan ID
                                                         Gender Married Dependents
          Education Self_Employed \
          0
               LP001002
                            Male
                                      No
                                                   0
                                                           Graduate
                                                                                No
          1
               LP001003
                            Male
                                     Yes
                                                   1
                                                           Graduate
                                                                                No
          2
               LP001005
                            Male
                                     Yes
                                                   0
                                                           Graduate
                                                                               Yes
          3
                            Male
                                                   0
                                                      Not Graduate
               LP001006
                                     Yes
                                                                                No
          4
                            Male
                                                   0
               LP001008
                                      No
                                                           Graduate
                                                                                No
          5
               LP001011
                            Male
                                     Yes
                                                   2
                                                           Graduate
                                                                               Yes
          6
               LP001013
                            Male
                                     Yes
                                                   0
                                                      Not Graduate
                                                                                No
                                                  3+
          7
                            Male
                                                           Graduate
               LP001014
                                     Yes
                                                                                No
          8
               LP001018
                            Male
                                     Yes
                                                   2
                                                           Graduate
                                                                                No
          9
                            Male
                                                   1
               LP001020
                                     Yes
                                                           Graduate
                                                                                No
                                                   2
          10
               LP001024
                            Male
                                     Yes
                                                           Graduate
                                                                                No
                            Male
                                                   2
          11
               LP001027
                                     Yes
                                                           Graduate
                                                                               NaN
          12
               LP001028
                            Male
                                     Yes
                                                   2
                                                           Graduate
                                                                                No
          13
                            Male
                                                   0
                                                           Graduate
               LP001029
                                      No
                                                                                No
                                                   2
          14
               LP001030
                            Male
                                     Yes
                                                           Graduate
                                                                                No
          15
               LP001032
                            Male
                                      No
                                                   0
                                                           Graduate
                                                                                No
                                                   1
          16
               LP001034
                            Male
                                      No
                                                      Not Graduate
                                                                                No
                                                             7 1
In [34]:
          data.shape
Out[34]: (614, 13)
In [35]: | data.columns
Out[35]: Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education',
                  'Self Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
                 'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Status'],
                dtype='object')
In [36]:
          data.dtypes
Out[36]: Loan ID
                                 object
          Gender
                                 object
         Married
                                 object
          Dependents
                                 object
          Education
                                 object
          Self Employed
                                 object
          ApplicantIncome
                                  int64
          CoapplicantIncome
                                float64
          LoanAmount
                                float64
          Loan Amount Term
                                float64
          Credit_History
                                float64
          Property Area
                                 object
          Loan Status
                                 object
          dtype: object
```

| In [37]: | data | .info                      |      |     |     |      |                |              |   |
|----------|------|----------------------------|------|-----|-----|------|----------------|--------------|---|
| Out[37]: |      | nd method D<br>ation Self_ |      |     | Loa | n_ID | Gender Married | l Dependents |   |
|          | 0    | LP001002                   | Male | No  | 0   |      | Graduate       | No           |   |
|          | 1    | LP001003                   | Male | Yes | 1   |      | Graduate       | No           |   |
|          | 2    | LP001005                   | Male | Yes | 0   |      | Graduate       | Yes          |   |
|          | 3    | LP001006                   | Male | Yes | 0   | Not  | Graduate       | No           |   |
|          | 4    | LP001008                   | Male | No  | 0   |      | Graduate       | No           |   |
|          | 5    | LP001011                   | Male | Yes | 2   |      | Graduate       | Yes          |   |
|          | 6    | LP001013                   | Male | Yes | 0   | Not  | Graduate       | No           |   |
|          | 7    | LP001014                   | Male | Yes | 3+  |      | Graduate       | No           |   |
|          | 8    | LP001018                   | Male | Yes | 2   |      | Graduate       | No           |   |
|          | 9    | LP001020                   | Male | Yes | 1   |      | Graduate       | No           |   |
|          | 10   | LP001024                   | Male | Yes | 2   |      | Graduate       | No           |   |
|          | 11   | LP001027                   | Male | Yes | 2   |      | Graduate       | NaN          |   |
|          | 12   | LP001028                   | Male | Yes | 2   |      | Graduate       | No           |   |
|          | 13   | LP001029                   | Male | No  | 0   |      | Graduate       | No           |   |
|          | 14   | LP001030                   | Male | Yes | 2   |      | Graduate       | No           |   |
|          | 15   | LP001032                   | Male | No  | 0   |      | Graduate       | No           |   |
|          | 16   | LP001034                   | Male | No  | 1   | Not  | Graduate       | No           | • |

In [38]: data.LoanAmount.value\_counts()

| 0, 11.107.00 |                                                                                                                                                                                                      |                                                                                                                                           |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Out[38]:     | 120.0 110.0 110.0 100.0 187.0 160.0 128.0 113.0 96.0 95.0 70.0 115.0 135.0 135.0 136.0 135.0 136.0 135.0 136.0 135.0 144.0 155.0 144.0 155.0 144.0 155.0 180.0 152.0                                 | 20<br>17<br>15<br>12<br>11<br>10<br>9<br>8<br>8<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>5<br>5 |
|              | 315.0<br>101.0<br>73.0<br>142.0<br>48.0<br>164.0<br>83.0<br>191.0<br>166.0<br>495.0<br>214.0<br>240.0<br>72.0<br>42.0<br>349.0<br>280.0<br>405.0<br>279.0<br>304.0<br>650.0<br>436.0<br>78.0<br>59.0 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                               |

```
300.0 1

376.0 1

117.0 1

311.0 1

Name: LoanAmount, Length: 203, dtype: int64
```

### Step 2 : Data Cleaning

```
In [42]: data['Dependents'].dtype
Out[42]: dtype('0')
In [43]: data["Dependents"].fillna("No_Dep", inplace = True)
          data["Dependents"]
Out[43]: 0
                      0
                      1
          1
          2
                      0
          3
                      0
          4
                      0
          5
                      2
          6
                      0
          7
                     3+
          8
                       2
          9
                      1
          10
                       2
                       2
          11
          12
                       2
          13
                      0
                       2
          14
          15
                      0
          16
                       1
          17
                      0
          18
                      0
In [44]: dep={'0':0,'1':1,'2':2,'3+':3,'No_Dep':0}
          data.Dependents= [dep[item] for item in data.Dependents]
```

```
In [45]: | data['Dependents'].astype(int)
Out[45]: 0
                 0
                 1
         1
                 0
         2
         3
                 0
         4
                 0
         5
                 2
         6
                 0
         7
                 3
         8
                 2
         9
                 1
         10
                 2
         11
                 2
                 2
         12
         13
                 0
         14
                 2
         15
                 0
         16
                 1
         17
                 0
         18
                 0
In [49]: | data['Married'].fillna(data['Married'].mode()[0], inplace = True)
          data['Gender'].fillna(data['Gender'].mode()[0], inplace = True)
          data['Education'].fillna(data['Education'].mode()[0], inplace = True)
          data['Self_Employed'].fillna(data['Self_Employed'].mode()[0], inplace = True)
          data['Dependents'].fillna(data['Dependents'].mode()[0], inplace = True)
          data['Credit History'].fillna(data['Credit History'].mode()[0], inplace = True)
In [50]: data.isnull().sum()
Out[50]: Loan ID
                                0
         Gender
                                0
         Married
                                0
         Dependents
                                0
          Education
                                0
         Self Employed
                                0
         ApplicantIncome
                                0
         CoapplicantIncome
                                0
         LoanAmount
                               22
         Loan Amount Term
                               14
         Credit History
                                0
         Property_Area
                                0
         Loan Status
                                0
         dtype: int64
         data['LoanAmount'].fillna(data['LoanAmount'].mean(),inplace = True)
In [53]:
         data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mean(),inplace = True)
In [55]:
```

| In [56]: | <pre>data.drop(['Loan_ID'],axis=1)</pre> |        |         |            |                 |               |                 |                |  |  |
|----------|------------------------------------------|--------|---------|------------|-----------------|---------------|-----------------|----------------|--|--|
| Out[56]: |                                          | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | CoapplicantInc |  |  |
|          | 0                                        | Male   | No      | 0          | Graduate        | No            | 5849            |                |  |  |
|          | 1                                        | Male   | Yes     | 1          | Graduate        | No            | 4583            | 15             |  |  |
|          | 2                                        | Male   | Yes     | 0          | Graduate        | Yes           | 3000            |                |  |  |
|          | 3                                        | Male   | Yes     | 0          | Not<br>Graduate | No            | 2583            | 23             |  |  |
|          | 4                                        | Male   | No      | 0          | Graduate        | No            | 6000            |                |  |  |
|          | 5                                        | Male   | Yes     | 2          | Graduate        | Yes           | 5417            | 41             |  |  |
|          | 6                                        | Male   | Yes     | 0          | Not<br>Graduate | No            | 2333            | 15             |  |  |
|          | 7                                        | Male   | Yes     | 3          | Graduate        | No            | 3036            | 25             |  |  |
|          | 8                                        | Male   | Yes     | 2          | Graduate        | No            | 4006            | 15             |  |  |
|          | 9                                        | Male   | Yes     | 1          | Graduate        | No            | 12841           | 109            |  |  |
|          |                                          |        |         |            |                 |               |                 | <b>&gt;</b>    |  |  |

**Step 3: Exploratory data analysis** 

```
In [62]:
          import seaborn as sns
          import matplotlib.pyplot as plt
In [64]:
          sns.countplot(x ='Married', data = data)
          plt.show()
             400
             350
             300
             250
          200
            150
            100
             50
              0
                           Νo
                                                  Yes
```

Married

```
In [65]: sns.countplot(x ='Dependents', data = data)
   plt.show()
```



In [67]: sns.countplot(x = 'Education', data = data)
 plt.show()



```
In [70]: sns.countplot(x ='Self_Employed', data = data)
plt.show()
```



## Step 4: EXtarct X and y

```
In [71]: X=data.drop(['Loan_Status'],axis=1)
In [72]: y=data.pop('Loan_Status')
```

# Step 5 : One Hot Encodeing

```
In [73]: X=pd.get_dummies(X)
```

In [83]: X

Out[83]:

|     | Dependents | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_ |
|-----|------------|-----------------|-------------------|------------|------------------|---------|
| 0   | 0          | 5849            | 0.0               | 146.412162 | 360.0            |         |
| 1   | 1          | 4583            | 1508.0            | 128.000000 | 360.0            |         |
| 2   | 0          | 3000            | 0.0               | 66.000000  | 360.0            |         |
| 3   | 0          | 2583            | 2358.0            | 120.000000 | 360.0            |         |
| 4   | 0          | 6000            | 0.0               | 141.000000 | 360.0            |         |
| 5   | 2          | 5417            | 4196.0            | 267.000000 | 360.0            |         |
| 6   | 0          | 2333            | 1516.0            | 95.000000  | 360.0            |         |
| 7   | 3          | 3036            | 2504.0            | 158.000000 | 360.0            |         |
| 8   | 2          | 4006            | 1526.0            | 168.000000 | 360.0            |         |
| 9   | 1          | 12841           | 10968.0           | 349.000000 | 360.0            |         |
| 10  | 2          | 3200            | 700.0             | 70.000000  | 360.0            |         |
| 11  | 2          | 2500            | 1840.0            | 109.000000 | 360.0            |         |
| 12  | 2          | 3073            | 8106.0            | 200.000000 | 360.0            |         |
| 13  | 0          | 1853            | 2840.0            | 114.000000 | 360.0            |         |
| 14  | 2          | 1299            | 1086.0            | 17.000000  | 120.0            |         |
| 15  | 0          | 4950            | 0.0               | 125.000000 | 360.0            |         |
| 16  | 1          | 3596            | 0.0               | 100.000000 | 240.0            |         |
| 17  | 0          | 3510            | 0.0               | 76.000000  | 360.0            |         |
| 18  | 0          | 4887            | 0.0               | 133.000000 | 360.0            |         |
| 19  | 0          | 2600            | 3500.0            | 115.000000 | 342.0            |         |
| 20  | 0          | 7660            | 0.0               | 104.000000 | 360.0            |         |
| 21  | 1          | 5955            | 5625.0            | 315.000000 | 360.0            |         |
| 22  | 0          | 2600            | 1911.0            | 116.000000 | 360.0            |         |
| 23  | 2          | 3365            | 1917.0            | 112.000000 | 360.0            |         |
| 24  | 1          | 3717            | 2925.0            | 151.000000 | 360.0            |         |
| 25  | 0          | 9560            | 0.0               | 191.000000 | 360.0            |         |
| 26  | 0          | 2799            | 2253.0            | 122.000000 | 360.0            |         |
| 27  | 2          | 4226            | 1040.0            | 110.000000 | 360.0            |         |
| 28  | 0          | 1442            | 0.0               | 35.000000  | 360.0            |         |
| 29  | 2          | 3750            | 2083.0            | 120.000000 | 360.0            |         |
|     |            |                 |                   |            | •••              |         |
| 584 | 1          | 2787            | 1917.0            | 146.000000 | 360.0            |         |
| 585 | 1          | 4283            | 3000.0            | 172.000000 | 84.0             |         |
| 586 | 0          | 2297            | 1522.0            | 104.000000 | 360.0            |         |
| 587 | 0          | 2165            | 0.0               | 70.000000  | 360.0            |         |

| 588       0       4750       0.0       94.000000       360.0         589       2       2726       0.0       106.000000       360.0         590       0       3000       3416.0       56.000000       180.0         591       2       6000       0.0       205.000000       240.0         592       3       9357       0.0       292.000000       360.0 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 590       0       3000       3416.0       56.000000       180.0         591       2       6000       0.0       205.000000       240.0         592       3       9357       0.0       292.000000       360.0                                                                                                                                            |  |
| 591       2       6000       0.0       205.000000       240.0         592       3       9357       0.0       292.000000       360.0                                                                                                                                                                                                                    |  |
| <b>592</b> 3 9357 0.0 292.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                        |  |
| 2000 0 140 000000 100 0                                                                                                                                                                                                                                                                                                                                |  |
| <b>593</b> 0 3859 3300.0 142.000000 180.0                                                                                                                                                                                                                                                                                                              |  |
| <b>594</b> 0 16120 0.0 260.000000 360.0                                                                                                                                                                                                                                                                                                                |  |
| <b>595</b> 0 3833 0.0 110.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
| <b>596</b> 2 6383 1000.0 187.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>597</b> 0 2987 0.0 88.000000 360.0                                                                                                                                                                                                                                                                                                                  |  |
| <b>598</b> 0 9963 0.0 180.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
| <b>599</b> 2 5780 0.0 192.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
| <b>600</b> 3 416 41667.0 350.000000 180.0                                                                                                                                                                                                                                                                                                              |  |
| <b>601</b> 0 2894 2792.0 155.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>602</b> 3 5703 0.0 128.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
| <b>603</b> 0 3676 4301.0 172.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>604</b> 1 12000 0.0 496.000000 360.0                                                                                                                                                                                                                                                                                                                |  |
| <b>605</b> 0 2400 3800.0 146.412162 180.0                                                                                                                                                                                                                                                                                                              |  |
| <b>606</b> 1 3400 2500.0 173.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>607</b> 2 3987 1411.0 157.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>608</b> 0 3232 1950.0 108.000000 360.0                                                                                                                                                                                                                                                                                                              |  |
| <b>609</b> 0 2900 0.0 71.000000 360.0                                                                                                                                                                                                                                                                                                                  |  |
| <b>610</b> 3 4106 0.0 40.000000 180.0                                                                                                                                                                                                                                                                                                                  |  |
| <b>611</b> 1 8072 240.0 253.000000 360.0                                                                                                                                                                                                                                                                                                               |  |
| <b>612</b> 2 7583 0.0 187.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |
| <b>613</b> 0 4583 0.0 133.000000 360.0                                                                                                                                                                                                                                                                                                                 |  |

614 rows × 631 columns

# Step 6: Model Building

In [79]: from sklearn.model\_selection import train\_test\_split
X\_train,X\_test,y\_train,y\_test=train\_test\_split(X,y,test\_size=.30,random\_state=4

In [81]: from sklearn.preprocessing import StandardScaler
ss= StandardScaler()

```
In [82]: | X train ss=ss.fit transform(X train)
         X train ss
Out[82]: array([[-0.71703534, -0.50133384, 0.27865737, ..., -0.62317695,
                 -0.79056942, 1.40682858],
                [-0.71703534, -0.42803179, 0.45103751, ..., 1.60468065,
                 -0.79056942, -0.71081865],
                [-0.71703534, -0.5669725, 0.23208844, ..., -0.62317695,
                  1.26491106, -0.71081865],
                [-0.71703534, -0.37088951, -0.59751445, ..., -0.62317695,
                 -0.79056942, 1.40682858],
                \lceil -0.71703534, 0.76362634, -0.59751445, \dots, -0.62317695, \rceil
                  1.26491106, -0.71081865],
                [-0.71703534, 1.36387019, -0.59751445, ..., -0.62317695,
                 -0.79056942, 1.40682858]])
In [85]: X test ss=ss.fit transform(X test)
         X test ss
Out[85]: array([[-0.78697069, 0.60310661, -0.4897835 , ..., -0.68429085,
                  1.31171195, -0.67579058],
                [-0.78697069, -0.1508012, -0.4897835, ..., -0.68429085,
                  1.31171195, -0.67579058],
                [1.15422368, -0.17338842, -0.07075971, ..., 1.4613669]
                 -0.7623625 , -0.67579058],
                [1.15422368, 1.02547189, -0.4897835, ..., -0.68429085,
                 -0.7623625 , 1.47974835],
                [-0.78697069, -0.34587267, 0.20984434, ..., 1.4613669]
                 -0.7623625 , -0.67579058],
                [-0.78697069, 0.03716241, -0.4897835, ..., 1.4613669,
                 -0.7623625 , -0.67579058]])
         from sklearn.svm import LinearSVC
In [87]:
         lvc=LinearSVC()
         lvc.fit(X_train_ss,y_train)
         1 pred=lvc.predict(X test ss)
```

```
In [88]:
          1_pred
Out[88]: array(['Y',
                                         'Υ',
                                                                'Υ',
                                                                      'Υ',
                              'Υ',
                                    'Υ',
                                               'Υ',
                       'Υ',
                                                    'Υ',
                                                          'Y',
                                               'Y',
                   'Υ',
                        'Υ',
                                         'Y',
                                                     'Υ'
                                                                           'Y',
                              'Υ'
                                    'Y',
                                                          'Υ'
                                                                'Y'
                                                                      'Y'
                                    'Y'
                              'Y'
                                         'Y'
                                               'Υ'
                                                                      'N'
                                                                'N'
                                                                      'N'
                                                                           'N'
                                                                'N',
                   'Y'
                              'Υ
                                         'Y'
                                               'N'
                                                           'Υ'
                                                                'Υ'
                              'Y'
                                    'Υ'
                                                                      'Υ'
                   'N',
                                         'Υ'
                                               'Υ'
                                                     'Υ'
                                                          'Y'
                   'N',
                              'Υ'
                                         'Y'
                                               'Y'
                                                     'Y'
                                                          'Υ'
                              'Y'
                                    'N'
                                         'Υ'
                                                           'N'
                                                                      'Υ'
                                                                           'Υ'
                                         'Y'
                                                                      'Υ'
                              'Υ'
                                                          'Υ'
                                                                'Υ'
                        'Υ'
                                         'Υ'
                                               'Υ'
                                                     'Y'
                                                                      'Υ'
                                    'N'
                              'Υ',
                                   'Υ',
                                         'Υ',
                                               'Υ',
                                                    'Υ',
                                                          'Υ',
                                                                'Υ',
                                                                     'Υ',
                                                                'Υ',
                                                    'Υ',
                                                                     'Υ',
                                                                           'Υ',
                                               'Υ',
                                    'Y'
                                         'Y'
                                                          'Y',
                             'N', 'Y', 'N', 'Y',
                                                    'Y', 'Y',
                                                               'Υ',
                                                                           'Y',
                                                                     'Y',
                   'Y', 'Y', 'N'], dtype=object)
In [93]: | from sklearn.metrics import accuracy score
           lvc_acc=accuracy_score(y_test,l_pred)
           print("lvc_acc_score : ",lvc_acc)
          lvc acc score : 0.7513513513513513
In [95]:
          from sklearn.metrics import confusion_matrix
           c_mat=confusion_matrix(y_test,l_pred)
          c_mat
Out[95]: array([[ 21, 44],
                  [ 2, 118]], dtype=int64)
In [97]: from sklearn.metrics import classification report
           c rep=classification report(y test,l pred)
           print(c_rep)
                                        recall f1-score
                         precision
                                                             support
                               0.91
                                          0.32
                                                     0.48
                      Ν
                                                                   65
                      Υ
                               0.73
                                          0.98
                                                     0.84
                                                                  120
          avg / total
                               0.79
                                          0.75
                                                     0.71
                                                                  185
```

#### **Step 7: Performance Comparison**

```
In [101]: from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(X_train_ss,y_train)
lr_pred=lr.predict(X_test_ss)

from sklearn.svm import LinearSVC
lvc=LinearSVC()
lvc.fit(X_train_ss,y_train)
l_pred=lvc.predict(X_test_ss)

from sklearn.metrics import accuracy_score
lvc_acc=accuracy_score(y_test,l_pred)
print("linear_svc_acc_score : ",lvc_acc)

from sklearn.metrics import accuracy_score
lr_acc=accuracy_score(y_test,lr_pred)
print("linear_reg_acc_score : ",lr_acc)
```

linear\_svc\_acc\_score : 0.7513513513513513
linear\_reg\_acc\_score : 0.7783783783783784