

Inter**Lab**

FCC Measurement/Technical Report on

NFC transceiver of Bittium Tough Mobile

FCC ID: V27SD-41

IC ID: 3282B-SD41

Report Reference: MDE_ELEKT_1502_FCCe

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Director: Dr. Harald Ansorge Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

0	Sun	nmary	3
	0.1 0.2	Technical Report Summary Measurement Summary	3 4
1	Adr	ninistrative Data	5
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2	Tes	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Special software used for testing Product labelling	6 7 7 7 8 8 8
3	Tes	t Results	9
	3.1 3.2 3.3 3.4	Spurious radiated emissions Occupied bandwidth Spectrum mask Frequency tolerance	9 13 14 15
4	Tes	t Equipment	17
5	Pho	to Report	24
6	Set	up Drawings	24
7	FCC	and IC Correlation of measurement requirements	25
8	Anr	nex measurement plots	26
	8.1 8.2 8.3	Radiated emissions Occupied bandwidth Spectrum mask	26 29 30

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an intentional radiator operating at 13.56 MHz

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-14 Edition) and 15 (10-1-14 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.205 Restricted bands of operation

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.215 Additional provisions to the general radiated emission limitations

§ 15.225 Operation within the band 13.110-14.010 MHz

ANSI C63.10-2013 is applied

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

Test report Reference: MDE_ELEKT_1502_FCCe Page 3 of 30

0.2 Measurement Summary

FCC Part 15, Subp	art C	§ 15.207	
Conducted Emission	s AC Power line		
The measurement w OP-Mode	vas performed accord Setup	ing to ANSI C63.10 Port	2013 Final Result
-	-	-	N/A
FCC Part 15, Subp	art C	§15.209	
Radiated Emissions			
The measurement w	vas performed accord	ing to ANSI C63.10	2013
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
FCC Part 15, Subp	art C	§ 15.215	
Occupied Bandwidth)		
The measurement w	vas performed accord	ing to ANSI C63.10	2013
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
FCC Part 15, Subp	art C	§ 15.225	
Spectrum Mask			
	vas performed accord	_	2013
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	Enclosure	passed
FCC Part 15, Subp		§ 15.225	
Frequency Tolerance			
	vas performed accord		2013
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_02	Enclosure	passed
N/A not applicabl	e (the EUT is powered	d hv DC)	
ny not applicable	c (the Lot to powered	<i>a 5 y 5 6 y</i>	
Responsible for		Responsible	
Accreditation Scope:		for Test Report:	

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in under the registration number 96716.	a report submitted to the FCC and accepted
The test facility is also accredited by the aboratory accreditation no.:	e following accreditation organisation: DAkkS D-PL-12140-01-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2015-08-24
1.2 Project Data	
Responsible for testing and report:	DiplIng. Dobrin Dobrinov
Date of Test(s): Date of Report:	2015-09-07 to 2015-10-21 2015-10-23
1.3 Applicant Data	
Company Name:	Bittium Wireless Ltd.
Address:	Tutkijantie 8, 90570 Oulu Finland
Contact Person:	Mr. Jyrki Juvani
1.4 Manufacturer Data Company Name:	please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under TestType Designation:
Kind of Device:
NFC transceiver
Bittium Tough Mobile
13.56 MHz card reader

(optional)

Voltage Type: DC (internal battery)

Voltage level: 3.8 V

General product description:

The NFC transceiver is a part of the Bittium Tough Mobile smartphone for reading NFC tags.

Specific product description for the EUT:

When activated from the phone menu the NFC reads tags in a near proximity of maximum 2'' (0.05 m) distance.

The EUT provides the following ports:

Ports

Enclosure

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A Radiated	NFC	Bittium Tough	K0251300430	0302	Andorid	-
sample	transceiver	Mobile			Version 5.1.1	
(Code:						
DE1132001ah01)						
Remark: EUT A is equipped with an integral antenna.						
EUT B Radiated	NFC	Bittium Tough	K0253400870	04	Andorid	_
sample	transceiver	Mobile			Version 5.1.1	
(Code:						
DE1132001aj01)						
Remark: EUT B is	equipped with	an integral ant	enna.			

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	FCC ID
AE 1	AE 1 Battery Model: 3700034		352001	-	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX 1	Laptop RE	Fujitsu Ltd. Lifebook E series E781	DSCK013817	2012-03	Win7 Prof. Engl.	-
AUX 2	AC Adapter RE	Fujitsu Ltd.	11Y06774A	2011.11	-	-
AUX 3	AC/DC Adapter	KSA29B0500 200D5	PO315	_	_	_
AUX 4	NFC ID Tag	Desfire PJW1942NA	042D37C2B1 2D80	_	-	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AE 1 + AUX 1 to 4	setup for EUT reading a tag (representative setup for
		radiated emissions measurements
Setup_02	EUT B + AE 1	setup for EUT in Continuous Wave mode

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	modulated carrier signal	EUT is transmitting a periodic modulated signal
		and is continuously reading TAG information.
op-mode 2	CW carrier signal	EUT is transmitting a non-modulated signal

2.7 Special software used for testing

Using an external PC, connected to the bottom EUT interface connector and a Qualcomm software provided by the applicant, it is possible to set the EUT into the CW operating mode for performing the Frequency tolerance test.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Spurious radiated emissions

Standard FCC Part 15, 10-1-14 Edition Subpart C

The test was performed according to: ANSI C63.10-2013

3.1.1 Test Description

The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMC test software from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 200 Hz - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit(dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Test report Reference: MDE_ELEKT_1502_FCCe

Page 11 of 30

3.1.3 Test Protocol

Temperature: 25 °C Air Pressure: 1009 hPa Humidity: 45 %

3.1.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	-	-	-	-	-	-	-	-	-
90°	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. Please refer to the plot in the annex.

3.1.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m	Limit dBµV/m	Limit dBµV/m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical	31.320	28.4	-	-	40.0	-	-	11.6	1
Vertical	37.920	31.7	-	-	40.0	_	-	8.3	1
Vertical	159.300	33.0	-	-	43.5	-	-	10.5	1
Horizontal	360.000	36.9	-	-	46.0	-	-	9.1	1
Horizontal	408.000	38.1	-	-	46.0	-	-	7.9	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see measurement plot in annex.

3.1.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

3.2 Occupied bandwidth

Standard FCC Part 15, 10-1-14 Edition Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case

(widest) occupied bandwidth.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.215 (c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. ...

3.2.3 Test Protocol

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 39 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

20 dB bandwidth		Remarks
(kHz)	(kHz)	
425.4	532.562	The 20 dB bandwidth from 13.3473 MHz to 13.7727 MHz is contained within the designated frequency band 13.110 MHz to 14.010 MHz.

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_ELEKT_1502_FCCe Page 13 of 30

3.3 Spectrum mask

Standard FCC Part 15, 10-1-14 Edition Subpart C

The test was performed according to: FCC §15.225

3.3.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.10–2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 13.06 - 14.06 MHz

Frequency steps: 5 kHzIF-Bandwidth: 10 kHz

- Measuring time / Frequency step: 100 ms

3.3.2 Test Limits

FCC Part 15, Subpart C, §15.225 (a-d), and §15.209, corrected by the means of the extrapolation of §15.31 due to the reduced measuring distance from 30 m to 10 m.

3.3.3 Test Protocol

Temperature: 23 °C Air Pressure: 1012 hPa Humidity: 41 %

Op. Mode	Setup	Port	
op-mode 1	Setup_01	Enclosure	

Maximum value dBµV/m	Limit dBµV/m	Remarks
29.71 @ 3m distance	100 1 0 10 11 1	measuring distance 3 m
l 19.25 @ 10m distance	103.1 @ 10m distance	

Remark: Because of the transmitter's low output power, the transmitter field strength is measured at 3 m distance.

The equivalent field strength, calculated for 10m distance is: $H_{10m} = H_{3m} - 20*(1-log_{10}3) = 29.71 - 20*(1-0.477121254) = 19.25 (dBµV/m)$ This result is used for measurements of Occupied Bandwidth Please see annex for the measurement plot.

3.3.4 Test result: Spectrum mask

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_ELEKT_1502_FCCe Page 14 of 30

3.4 Frequency tolerance

Standard FCC Part 15, 10-1-14 Edition Subpart C

The test was performed according to: FCC §15.225

3.4.1 Test Description

The Equipment Under Test (EUT) is placed in a temperature chamber.

The frequency drift during temperature and voltage variation is measured by the means of a spectrum analyzer with frequency counter function.

The temperature was varied from -10 °C to +55 °C. At +20 °C the extreme power supply voltages of 85% and 115% are applied. After reaching each target temperature and waiting sufficient time allowing the temperature to stabilize, one measurement is performed immediately after powering on the EUT, and three further measurements are performed after 2, 5 and 10 minutes continuous operation of EUT.

3.4.2 Test Limits

FCC Part 15, Subpart C, §15.225 (e): The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test report Reference: MDE_ELEKT_1502_FCCe

3.4.3 Test Protocol

Temperature: -10° C to $+55^{\circ}$ C

Air Pressure: 1012 hPa Humidity: 42 %

Op. Mode **Port** Setup

op-mode 2	Setup_01	i	Enclosure		
Temperature	Voltage	Time	Frequency	Delta	Manaliat
/ °C	/ V	/ min.	/ MHz	/ Hz	Verdict
55	3.8	0	13.559697	-303	Passed
55	3.8	2	13.559693	-307	Passed
55	3.8	5	13.559690	-310	Passed
55	3.8	10	13.559688	-312	Passed
40	3.8	0	13.559724	-276	Passed
40	3.8	2	13.559721	-279	Passed
40	3.8	5	13.559720	-280	Passed
40	3.8	10	13.559718	-282	Passed
30	3.8	0	13.559717	-283	Passed
30	3.8	2	13.559765	-235	Passed
30	3.8	5	13.559760	-240	Passed
30	3.8	10	13.559756	-244	Passed
20	3.6	0	13.559753	-247	Passed
20	3.6	2	13.559783	-217	Passed
20	3.6	5	13.559789	-211	Passed
20	3.6	10	13.559795	-205	Passed
20	3.8	0	13.559797	-203	Passed
20	3.8	2	13.559785	-215	Passed
20	3.8	5	13.559786	-214	Passed
20	3.8	10	13.559786	-214	Passed
20	4.2	0	13.559784	-216	Passed
20	4.2	2	13.559802	-198	Passed
20	4.2	5	13.559796	-204	Passed
20	4.2	10	13.559793	-207	Passed
10	3.8	0	13.559790	-210	Passed
10	3.8	2	13.559800	-200	Passed
10	3.8	5	13.559804	-196	Passed
10	3.8	10	13.559806	-194	Passed
0	3.8	0	13.559813	-187	Passed
0	3.8	2	13.559840	-160	Passed
0	3.8	5	13.559840	-160	Passed
0	3.8	10	13.559841	-159	Passed
-10	3.8	0	13.559843	-157	Passed
-10	3.8	2	13.559854	-146	Passed
-10	3.8	5	13.559854	-146	Passed
-10	3.8	10	13.559854	-146	Passed

Remark: The limit is a delta of max. ± 1356 Hz (0.01 %). The applicant declared extremal voltage and temperature conditions.

3.4.4 Test result: Frequency tolerance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

Test report Reference: MDE_ELEKT_1502_FCCe Page 16 of 30

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 2Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

NSA (FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/11920513	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck Mess-Elektronik OHG
Biconical dipole	VUBA 9117	9117-108	Schwarzbeck Mess-Elektronik OHG
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	SucoFlex	W18.02-2+W38.02-2	HUBER+SUHNER
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/002 Ro	hde & Schwarz GmbH & Co. KG

Test report Reference: MDE_ELEKT_1502_FCCe Page 17 of 30

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	Standard Calibration		2015/06/23 2018/06/22
Double-ridged horn	HF 907	102444	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2015/05/11 2018/05/10
Double-ridged horn- duplicated 2015-07-15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/18000-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	ВВНА 9170	BBHA9170262	Schwarzbeck Mess-Elektronik OHG
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna (upgraded)	HL 562 Ultralog new biconicals	830547/003	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2015/06/30 2018/06/29
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD Calibration		2014/11/27 2017/11/27
Standard Gain / Pyramidal Horn Antenna 26.5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 2, Lab 3Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
Broadband Power Divider1506A / 93459 N (Aux)		LM390	Weinschel Associates	
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.	
,	Calibration Details		Last Execution Next Exec.	
	Customized calibration		2013/12/04 2015/12/03	
Digital Multimeter 13 (Clamp Meter)	Fluke 325	31270091WS	FLUKE	
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis	
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH	
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright	
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.	
	Standard		2014/02/10 2016/02/09	
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG	
Spectrum Analyzer	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG	
	DKD calibration		2015/06/23 2018/06/22	
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG	

Test Equipment Digital Signalling Devices

Lab ID: Lab 2, Lab 3

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Uni	it CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Standart calibration		2015/01/21 2018/01/19
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	DKD calibration		2014/12/02 2017/12/01
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	K43 4v21, K53 4v21, K56 4v22, K5 K59 4v22, K61 4v22, K62 4v22, K6 K65 4v22, K66 4v22, K67 4v22, K6 Firmware: μP1 8v50 02.05.06	3 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
Communication rester	DKD calibration		2014/12/03 2017/12/02
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14 B54V14, B56V14, B68 3v04, B95, F SW options: K21 4v11, K22 4v11, K23 4v11, K2 K28 4v10, K42 4v11, K43 4v11, K5 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CMCIA, U65V02 4 4v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
EMI Receiver / Spectru Analyzer	um ESR 7	101424	Rohde & Schwarz
. , .	Calibration Details		Last Execution Next Exec.
	Initial Factory Calibration		2014/11/13 2016/11/12
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2014/06/24 2017/06/23
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 during calibration		2009/12/03
Spectrum Analyzer	FSW 43	103779	Rohde & Schwarz
	Calibration Details		Last Execution Next Exec.
	Initial Factory Calibration		2014/11/17 2016/11/16

Test Equipment Multimeter 03

Lab ID:Lab 2, Lab 3Description:Fluke 177Serial Number:86670383

Single Devices for Multimeter 03

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(1 1 1 1 1)	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test report Reference: MDE_ELEKT_1502_FCCe Page 21 of 30

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide	erWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	r FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
Standard	Standard calibration		2015/06/25 2016/06/24
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/12/02 2017/12/01
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyzer	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration after reparation		2015/04/02 2017/04/01

Test Equipment T/A Logger 13

Lab ID:Lab 2, Lab 3Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer	
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- un GmbH	d Regeltechnik
	Customized calibration		2015/02/27	2017/02/26

Test Equipment T/H Logger 03

Lab ID:Lab 3Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 03 (Environ)	7482	Lufft Mess- und Regeltechnik GmbH
Customized calibration		2015/02/27 2017/02/26

Test Equipment T/H Logger 12

Lab ID:Lab 2Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 12 (Environ)	12482	Lufft Mess- und Regeltechnik GmbH
Customized calibration		2015/03/10 2017/03/09

Test Equipment Temperature Chamber 05

Lab ID: Lab 3

Manufacturer: see single devices

Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer	
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch	
VOLSCII US	Customized calibration		2014/03/11	2016/03/10

Test report Reference: MDE_ELEKT_1502_FCCe Page 23 of 30

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

Test report Reference: MDE_ELEKT_1502_FCCe

7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements Radio equipment operating in the Band 13.110-14.010 MHz from FCC and IC.

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Out-of-band emissions	§ 15.225 (d)	RSS Gen Issue 4: 6.13/8.9/8.10; RSS-210 Issue 8: A2.6
In-band emissions	§ 15.225 (a) / (b) / (c)	RSS-210 Issue 8: A2.6
Frequency Stability	§ 15.225 (e)	RSS-210 Issue 8: A2.6
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3; RSS Gen Issue 4: 5/7 *)
Handling of active and passive tag devices of RFID application	§ 15.225 (f)	RSS Gen Issue 4: 8.7

^{*)} Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

8 Annex measurement plots

8.1 Radiated emissions

8.1.1 Radiated emissions (f < 30 MHz)

8.1.2 Radiated emissions (f > 30 MHz)

(DE1132001ah01)

Manufacturer: Elektrobit

Operating Condition: WLAN TX on 2437 MHz, b-mode, 1 Mbps, NFC TX on 13.56 MHz,

AC/DC Adapter, 120V/60Hz, EUT charging

Test Site: 7 layers, Ratingen

Operator: URO

Test Specification: FCC Part 15 B Class B

Horizontal EUT position, Horizontal+Vertical antenna polaris. Comment:

Start of Test: 07.09.2015 / 14:30:31

SCAN TABLE: "FCC part 15 b"

Short Description: FCC part 15 b

Transducer

Start Stop Step Detector Meas. IF Transferequency Frequency Width Time Bandw.
30.0 MHz 1.0 GHz 60.0 kHz MaxPeak 1.0 ms 120 kHz HL562

8.2 Occupied bandwidth

8.2.1 20 dB and 99% bandwidth

Date: 21.0 CT 2015 12:10:54

Remarks: Occupied BW = 425.4 kHz is between markers M2 and M3.

99% occupied BW = 532.562 kHz is between markers T1 and T2. Markers M4 and M5 mark the designated frequency band from 13.110 MHz to 14.010 MHz.

8.3 Spectrum mask

