Homework 3

Peter Nandori

2/9/2022

Solutions to be submitted on Canvas by the beginning of class on Wednesday, 2/16/22.

- (1) The amount of lateral expansion (mils) was determined for a sample of n=9 pulsed-power gas metal arc welds used in LNG ship containment tanks. The resulting sample standard deviation was s=2.81 mils. Assuming normality,
 - (a) (4 points) derive a 99% CI for σ^2 and for σ . Hint: to construct the CI for σ , take the square root of the endpoints of the CI for σ^2 .
 - (b) (2 points) give a 95% upper confidence bound for σ^2 .
- (2) (4 points) A random sample of size m = 10 from a normal distribution with unknown expectation μ_1 and variance σ^2 gives $\bar{x} = 15.3$, $s_1 = 2.43$. Another random sample size n = 15 from another normal distribution with unknown expectation μ_2 and variance σ^2 (the same σ^2 as before!) gives $\bar{y} = 14.8$, $s_2 = 3.17$. Give a 99% confidence interval for $\mu_1 \mu_2$.
- (3) (15 points) Write a function VarianceCI in R that does the following.
- (a) takes the number of simulations N, the sample size n, the parameters mean and sdev, level of confidence alpha as inputs,
- (b) generates random samples of size **n** from the normal distribution with parameters **mean** and **sdev**,
- (c) compute (100 alpha)% CI for the variance $sdev^2$ (you may want to use **qchisq**, the quantile function of the chi-squared distribution),
- (d) repeat (b)-(c) N times,
- (e) compute the successful coverage proportion, that is the number of times the CI actually contains $sdev^2$, divided by ${\bf N}$
- (f) draw a plot for coverage using matplot as we did in the file TDistrCofidenceIntervals.R last week.

Finally, run this function with $\mathbf{mean} = 0$ and $\mathbf{sdev} = 1$ and with both $\mathbf{N} = 10$, $\mathbf{N} = 100$, for both $\mathbf{n} = 5$, $\mathbf{n} = 100$ (that is, 4 cases in total). Discuss your finding.

Submit your code as well as the resulting plots and discussions in an R Markdown file.

The following problems form the extra homework. They will not contribute to your final grade.

(5) Show that the pdf of the chi-squared distribution with n degrees of freedom is

$$\frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)}$$

for x > 0 and 0 for $x \le 0$. Hint: for n = 1 use the transformation of pdf formula that is usually discussed in a first year probability theory class (be careful: you have to distinguish two cases: whether your normal random variable is positive or negative). For $n \ge 1$, use an induction and the convolution formula (also usually discussed in a first year probability class).