Хордовые диаграммы и "инвариант Чмутова-Варченко". Заметки

Полина Закорко Глеб Минаев Саша Даниярходжаев Иван Русских 10 августа 2021 г.

TODOs

Написать	про	модель	СВ	есам	И.																•			7
Написать																								
Написать	про	модель	на	геом	етр	Иτ	ec	KO	М	гр	ad	bе.												8

Написание этих заметок вдохновлено лекцией С.К. Ландо на ЛШСМ 2021. В них мы записали (записываем) всё, что получили, изучая хордовые диаграммы, их графы пересечений и описанный в лекции "инвариант Чмутова-Варченко".

0.1 Краткий пересказ основных моментов лекции

Определение 1. Xopdoвas диаграмма — набор из n хорд на окружности, таких что

- \bullet концы хорд суть 2n попарно различных точек на окружности,
- концы хорд можно двигать по окружности, но нельзя их совмещать и менять их порядок.

Нас не будут интересовать геометрические составляющие чертёжа и конфигурации пересечений (пересекаются ли хорды в одной точке или нет), но будет интересовать, какие хорды пересекаются, а какие — нет.

 $\Gamma pa\phi$ nepeceuehuŭ хордовой диаграммы — граф, вершины которого суть хорды данной хордовой диаграммы, а две вершины соединяются ребром тогда и только тогда, когда пересекаются соответствующие хорды.

Инвариант Чмутова-Варченко (для краткости также будем писать просто "инвариант ЧВ" или "ИЧВ") — многочлен, задаваемый хордовой диаграммой по следующим правилам (несложно понять по индукции, что ИЧВ всякой диаграммы определён):

1. Инвариант ЧВ пустой диаграммы равен 1.

2. Инвариант ЧВ диаграммы с ровно одной хордой равен c.

3. При удалении ребра с ровно одним пересечением ИЧВ делится на (c-1).

4. Диаграмма, состоящая из двух непересекающихся диаграмм, имеет ИЧВ, равный произведению ИЧВ данных диаграмм.

- 5. Также имеется два шестичленных правила-рекурренты.
 - (а) Первое правило.

(b) Второе правило.

Отметим важность следующей упомянутой на лекции теоремы.

Теорема 1. ИЧВ зависит только от графа пересечений. То есть, говоря формально, любые две диаграммы, имеющие одинаковый граф пересечений, имеют равные инварианты ЧВ.

Мы будем подразумевать её верность и использовать в дальнейшем. Также отсюда следует, что можно определять ИЧВ не только для хордовых диаграмм, но и для соответствующих им графов пересечений.

В качестве мотивировки укажем, что одним из основных вопросов, поставленных на лекции, была следующая гипотеза.

Гипотеза 2. Пусть $p_n(c) - ИЧВ$ полного графа на n вершинах (или также хордовой диаграммы, получаемой проведением главных диагоналей вписанного 2n-угольника), а

$$P(c,t) := \sum_{n=0}^{\infty} p_n(c)t^n$$

— производящая функция данной последовательности. Тогда требуется показать, что

$$P(c,t) = \frac{1}{1-ct+\frac{1}{1-(c-2)t+\frac{(4c-3)t^2}{1-(c-6)t+\frac{(9c-18)t^2}{1-(c-n(n-1))t+\frac{(n^2c-n^2(n^2-1))t^2}{\cdots}}}}$$

Сложность гипотезы заключается как минимум в том, что сложность вычисления p_n растёт экспоненциально быстро, и на данный момент посчитаны значения только для $n \leqslant 16$. На момент написания этих заметок гипотеза не доказана.

0.2Частные результаты с применением компьютера

Определение 2. Рассмотрим графы-циклы. Такие графы реализуются, например, 2*n*-угольником с ребрами вида (2k+1;2k+4) $(k=0,\ldots,n-2)$. Обозначим за f_n инвариант ЧВ для цикла длины n, а $F:=\sum_{n=0}^{\infty}f_nt^n$ — производящая функция f_n .

Лемма 3.

1. Верна рекуррента

$$f_n = c(c-2)(c-1)^{n-2} + cf_{n-2} - f_{n-1}$$

или по-другому

$$f_n + f_{n-1} - cf_{n-2} = c(c-2)(c-1)^{n-2}$$
.

2. Верна формула

$$f_n = (c-1)^n + \left(1 - \frac{2}{\sqrt{1+4c}}\right) \left(\frac{-1-\sqrt{1+4c}}{2}\right)^n + \left(1 + \frac{2}{\sqrt{1+4c}}\right) \left(\frac{-1+\sqrt{1+4c}}{2}\right)^n$$

3. Верна формула

$$F = \frac{3 - 2(c - 3)t - (4c - 3)t^2}{(1 + t - ct)(1 + t - ct^2)}.$$

Доказательство.

- 1. Данная рекурента следует из применения 5а для случая n > 3 и 5b для случая n = 3.
- 2. Несложно видеть, что

$$(f_n + f_{n-1} - cf_{n-2}) - (c-1)(f_{n-1} + f_{n-2} - cf_{n-3}) = c(c-2)(c-1)^{n-2} - (c-1)c(c-2)(c-1)^{n-3} = 0$$

Так мы получаем на последовательность $(f_n)_{n=0}^{\infty}$ линейную рекуренту с характеристическим многочленом

$$(\lambda^2 + \lambda - c)\lambda - (c - 1)(\lambda^2 + \lambda - c) = (\lambda^2 + \lambda - c)(\lambda - (c - 1)).$$

Если α и β — корни $\lambda^2 + \lambda - c$ (в частности, $\alpha + \beta = -1$, $\alpha\beta = -c$), то для некоторых A и B

$$f_n = C(c-1)^n + A\alpha^n + B\beta^n.$$

Подставляя в изначальную рекуренту данную формулу, получаем C=1. А A и B легко определить, подставляя n=0,1.

3. Заметим, что рекуррента

$$f_n + f_{n-1} - cf_{n-2} = c(c-2)(c-1)^{n-2}$$

означает, что $F(c,t)\cdot (1+t-ct^2)$ и $\sum_{n=0}^{\infty}c(c-2)(c-1)^{n-2}t^n$ совпадают во всех степенях t кроме, быть может, 0 и 1. Следовательно

$$F(1+t-ct^{2}) - (f_{1}+f_{0})t - f_{0} = \sum_{n=2}^{\infty} c(c-2)(c-1)^{n-2}t^{n}$$

$$F(1+t-ct^{2}) - (f_{1}+f_{0})t - f_{0} = \frac{c(c-2)t^{2}}{(1-(c-1)t)}$$

$$F(1+t-ct^{2}) = \frac{c(c-2)t^{2}}{(1-(c-1)t)} + (f_{1}+f_{0})t + f_{0}$$

$$F(1+t-ct^{2}) = \frac{c(c-2)t^{2}}{(1-(c-1)t)} + (c+3)t + 3$$

$$F(1+t-ct^{2}) = \frac{3-2(c-3)t - (4c-3)t^{2}}{(1+t-ct)}$$

$$F = \frac{3-2(c-3)t - (4c-3)t^{2}}{(1+t-ct)(1+t-ct^{2})}$$

Пример 1. Если по рекуренте доопределить f_0 , f_1 и f_2 , то коэффициенты можно найти в следующей таблице (нули в таблице опущены).

F	c^0	c^1	c^2	c^3	c^4	c^5	c^6	c^7	c^8	c^9	c^{10}	c^{11}	c^{12}	c^{13}
$f_0 = t^0$	3													
$f_1 = t^1$		1												
$f_2 = t^2$			1											
$f_3 = t^3$		2	-3	1										
$f_4 = t^4$		-4	8	-4	1									
$f_5 = t^5$		6	-13	10	-5	1								
$f_6 = t^6$		-8	18	-18	15	-6	1							
$f_7 = t^7$		10	-23	30	-35	21	-7	1						
$f_8 = t^8$		-12	28	-48	72	-56	28	-8	1					
$f_9 = t^9$		14	-33	74	-133	126	-84	36	-9	1				
$f_{10} = t^{10}$		-16	38	-110	225	-250	210	-120	45	-10	1			
$f_{11} = t^{11}$		18	-43	158	-355	453	-462	330	-165	55	-11	1		
$f_{12} = t^{12}$ $f_{13} = t^{13}$		-20	48	-220	530	-768	926	-792	495	-220	66	-12	1	
$f_{13} = t^{13}$		22	-53	298	-757	1238	-1727	1716	-1287	715	-286	78	-13	1

Определение 3. Рассмотрим графы $K_{2,n}$ и $K_{1,1,n}$. Такие графы реализуются, например, n параллельными рёбрами, которые пересекают два ребра, в случае $K_{2,n}$ параллельные и в случае $K_{1,1,n}$ пересекающиеся. Обозначим за p_n и q_n инвариант ЧВ для $K_{2,n}$ и $K_{1,1,n}$ соответственно, а $P:=\sum_{n=0}^{\infty}p_nt^n$ и $Q:=\sum_{n=0}^{\infty}q_nt^n$ — их производящие функции.

Лемма 4.

1. Верны рекурренты

$$p_{n+1} = (c-2)p_n - q_n + c^{n+2}, q_{n+1} = (c-2)q_n - p_n + c^{n+2},$$

или по-другому

$$p_{n+1} - (c-2)p_n + q_n = c^{n+2}, q_{n+1} - (c-2)q_n + p_n = c^{n+2}.$$

2. Верны формулы

$$p_n = \frac{1}{3}c^{n+2} + \frac{1}{6}c(4c-3)(c-3)^n + \frac{1}{2}c(c-1)^n$$
$$q_n = \frac{1}{3}c^{n+2} + \frac{1}{6}c(4c-3)(c-3)^n - \frac{1}{2}c(c-1)^n$$

3. Верны формулы

$$P = \frac{c^2 - (c^3 - c^2 - c)t - c^2t^2}{(1 - ct)(1 - (c - 1)t)(1 - (c - 3)t)}, \qquad Q = \frac{(c^2 - c) - (c^3 - 3c^2 + 2c)t - (c^3 - 2c^2)t^2}{(1 - ct)(1 - (c - 1)t)(1 - (c - 3)t)}.$$

Доказательство.

- 1. Данная рекурента следует из применения 5а для случая $K_{2,n}$ и 5b для случая $K_{1,1,n}$ на двух данных и крайней хордах.
- 2. Давайте рассмотрим $u_n := p_n + q_n$, $v_n := p_n q_n$. Рассматривая сумму и разницу рекуррент, получаем

$$u_{n+1} - (c-3)u_n = 2c^{n+2}, v_{n+1} - (c-1)v_n = 0.$$

В таком случае понятно, что $v_n = A(c-1)^n$, а переписывая рекуррентное соотношение на u_n как

$$(u_{n+2} - (c-3)u_{n+1}) - c(u_{n+1} - (c-3)u_n) = 0,$$

получаем $u_n = Bc^n + C(c-3)^n$. Подставляя v_0 , имеем, что A = c. Подставляя u_n в рекурренту

$$u_{n+1} - (c-3)u_n = 2c^{n+2}$$

получаем $B=\frac{2}{3}c^2$. Подставляя u_0 , получаем $C=\frac{1}{3}c(4c-3)$. Таким образом по формулам

$$p_n = \frac{u_n + v_n}{2} \qquad q_n = \frac{u_n - v_n}{2}$$

восстанавливаются прямые формулы p_n и q_n .

3. В терминах предыдущего пункта введём $U = \sum_{n=0}^{\infty} u_n t^n$ и $V = \sum_{n=0}^{\infty} v_n t^n$ — производящие функции нововведённых последовательностей. Очевидно, что

$$U = P + Q,$$
 $V = P - Q,$ \Longrightarrow $P = \frac{U + V}{2},$ $Q = \frac{U - V}{2}.$

Рекуррента на v_n означает, что

$$V(1 - (c - 1)t) - v_0 = 0,$$

откуда

$$V = \frac{v_0}{(1 - (c - 1)t)} = \frac{c}{1 - (c - 1)t}.$$

Рекуррента на u_n означает, что

$$U(1 - (c - 3)t) - u_0 = \sum_{n=1}^{\infty} 2c^{n+2}t^n = \sum_{n=0}^{\infty} 2c^{n+3}t^{n+1} = \frac{2c^3t}{(1 - ct)}$$
$$U(1 - (c - 3)t) = \frac{2c^3t}{(1 - ct)} + c(2c - 1) = \frac{c(2c - 1) + c^2t}{(1 - ct)}$$
$$U = \frac{c(2c - 1) + c^2t}{(1 - ct)(1 - (c - 3)t)}$$

Отсюда несложно понять искомый ответ.

 $\Pi pumep~2.~$ Коэффициенты P и Q можно найти в следующих таблицах (нули в таблицах опущены).

P	c^0	c^1	c^2	c^3	c^4	c^5	c^6	c^7	c^8	c^9	c^{10}	c^{11}
$p_0 = t^0$			1									
$p_1 = t^1$		1	-2	1								
$p_2 = t^2$		-4	8	-4	1							
$p_3 = t^3$		13	-30	21	-6	1						
$p_4 = t^4$		-40	106	-96	40	-8	1					
$p_5 = t^5$		121	-362	400	-220	65	-10	1				
$p_6 = t^6$		-364	1212	-1572	1070	-420	96	-12	1			
$p_7 = t^7$		1093	-4006	5943	-4802	2345	-714	133	-14	1		
$p_8 = t^8$		-3280	13118	-21856	20384	-11872	4508	-1120	176	-16	1	
$p_9 = t^9$		9841	-42642	78714	-83064	56070	-25452	7896	-1656	225	-18	1
0	c^0	c^1	c^2	c^3	c^4	c^5	c^6	c^7	c ⁸	c^9	c^{10}	c ¹¹
Q	c^0	c^1	c^2	c^3	c^4	c^5	c^6	c^7	c^8	c^9	c^{10}	c^{11}
$q_0 = t^0$	c^0	-1	1		c^4	c^5	c ⁶	c^7	c ⁸	c ⁹	c^{10}	c ¹¹
$\begin{array}{c c} \hline q_0 = t^0 \\ \hline q_1 = t^1 \end{array}$	c ⁰	-1 2	1 -3	1		c^5	c ⁶	c ⁷	c ⁸	c ⁹	c ¹⁰	c ¹¹
	c ⁰	-1 2 -5	1 -3 10	1 -5	1		c ⁶	c ⁷	c ⁸	c ⁹	c ¹⁰	c ¹¹
$q_0 = t^0$ $q_1 = t^1$ $q_2 = t^2$ $q_3 = t^3$		-1 2 -5 14	1 -3 10 -33	1 -5 24	1 -7	1		c ⁷	c ⁸	c ⁹	c ¹⁰	c ¹¹
$q_0 = t^0$ $q_1 = t^1$ $q_2 = t^2$ $q_3 = t^3$ $q_4 = t^4$		-1 2 -5 14 -41	1 -3 10 -33 110	1 -5 24 -102	1 -7 44	1 -9	1		c ⁸	c ⁹	c ¹⁰	c ¹¹
		-1 2 -5 14 -41 122	1 -3 10 -33 110 -367	1 -5 24 -102 410	1 -7 44 -230	1 -9 70	1 -11	1		c ⁹	c ¹⁰	c ¹¹
$q_{0} = t^{0}$ $q_{1} = t^{1}$ $q_{2} = t^{2}$ $q_{3} = t^{3}$ $q_{4} = t^{4}$ $q_{5} = t^{5}$ $q_{6} = t^{6}$		-1 2 -5 14 -41 122 -365	1 -3 10 -33 110 -367 1218	1 -5 24 -102 410 -1587	1 -7 44 -230 1090	1 -9 70 -435	1 -11 102	1 -13	1		c ¹⁰	c ¹¹
$q_{0} = t^{0}$ $q_{1} = t^{1}$ $q_{2} = t^{2}$ $q_{3} = t^{3}$ $q_{4} = t^{4}$ $q_{5} = t^{5}$ $q_{6} = t^{6}$ $q_{7} = t^{7}$		-1 2 -5 14 -41 122 -365 1094	1 -3 10 -33 110 -367 1218 -4013	1 -5 24 -102 410 -1587 5964	1 -7 44 -230 1090 -4837	1 -9 70 -435 2380	1 -11 102 -735	1 -13 140	1 -15	1		c ¹¹
$q_{0} = t^{0}$ $q_{1} = t^{1}$ $q_{2} = t^{2}$ $q_{3} = t^{3}$ $q_{4} = t^{4}$ $q_{5} = t^{5}$ $q_{6} = t^{6}$		-1 2 -5 14 -41 122 -365	1 -3 10 -33 110 -367 1218	1 -5 24 -102 410 -1587	1 -7 44 -230 1090	1 -9 70 -435	1 -11 102	1 -13	1		1 -19	c ¹¹

0.3 Вариации начальной модели

Кроме всего нас также интересует как можно изменить модель так, чтобы в новых терминах искомые величины было легче изучать и/или вычислять на компьютере. Таким образом здесь мы приведём придуманные нами модели.

0.3.1 Модель с весами.

Тут надо описать сашину модель, состоящую из:

- 1. графа пересечений,
- 2. "весов" на вершинах графа, равных длине минимальной дуги, стягиваемой соответствующей хордой,
- 3. "весов" на рёбрах графа, равных (ориентированному!) сдвигу одной дуги относительно другой (чтобы можно было точно восстановить их относительное положение).

Также для алгоритмической оптимизации можно попробовать хранить веса только в (на) остовном дереве.

0.3.2 Модели на прямой.

Их много, но эффекта не очень много. Надо попробовать, посмотреть, что получится

0.3.3 Модель на геометрическом графе.

Написать про модель на геометрическом графе.