Itemset and Association Rule Mining

Yannick Toussaint ENSMN R407, LORIA B160 Yannick.Toussaint@loria.fr

Automn 2018

Summary of the lecture

- 1 Itemset Mining
- 2 Association Rules
- 3 Examples
- 4 Generators and Closed Itemsets
- 6 Algorithms
- 6 Sets of rules

Itemset and Association Rule Mining

- A symbolic approach: when some interpretation is needed
- Knowledge representation and reasoning: Bridging the gap with semantic web technologies, description logics, classification and case-based reasoning, ontology engineering
- Including some background knowledge such as: a dog is an animal, fluoroquinoles are quinolones...
- Applications in agronomy, astronomy, biology, chemistry, cooking, medicine, pharmacogenomics...

Facebook would have some 1300 symbolic features describing users.

What can say a binary table?

Extracting itemsets from a binary table

We consider a set of objects O, a set of attributes (or items) A, and a relation $R \subseteq O \times A$, where R(o, a) means that the object o has the attribute a.

- An itemset is any subset of attributes.
- The support of an itemset indicates how many objects include the itemset. An itemset is called frequent, if its support is $\geqslant \sigma_s$.

Objects / Items	а	b	С	d	е
o1	Х	Х		Х	Х
o2	Х		Х		
о3	Х	Х	Х		Х
о4		Х	Χ		Х
о5	Х	Х	Х		Х

- Frequent versus rare itemsets ($\sigma_s = 3$)
- If |A| = n, the number of potential itemsets is equal to 2n

Objects / Items	а	b	С	d	e
o1	Х	Х		Х	Х
o2	Х		Х		
о3	Х	Х	Х		Х
04		Х	Χ		Х
о5	Х	Х	Х		Х

Itemsets extracted ($\sigma_S = 2$):

Itemsets of length 1: {a} (4),{b} (4), {c} (4), {e} (4).

- Itemsets of length 2: {ab} (3),
 {ac} (3), {ae} (3), {bc} (3),
 {be} (4), {ce} (3),
- Itemsets of length 3: {abc}(2), {abe} (3), {ace} (2), {bce} (3),
- Itemsets of length 4: {abce}(2),
- Itemsets of length 5: -

The support is a monotonously decreasing function.

- Heuristics have to be used for pruning the set of all itemsets to be tested
- Levelwise search of frequent itemsets: the **Apriori algorithm** [Agrawal et al. 93]
- Every sub-itemset of a frequent itemset is a frequent itemset,
 - 2 Every super-itemset of an infrequent itemset is infrequent.

8 / 56

Yannick Toussaint Association Rules Automn 2018

Apriori can be summarized as follows:

- The search for frequent itemsets begins with the search for frequent itemsets of length 1.
- The frequent itemsets are recorded and combined together to form candidate itemsets of greater length.
 - Infrequent itemsets are discarded and by consequence, all their superitemsets
 - Candidate itemsets are then tested, and the process continues in the same way, until no more candidates can be formed.
- When data to be mined are huge, there is a need for minimizing the access to the data for calculating the support.

An association rule has the form $A \longrightarrow B$, where A and B are two itemsets.

- The support of the rule $A \longrightarrow B$ is defined as the support of the itemset $A \cup B$.
- The confidence of a rule $A \longrightarrow B$ is defined as the quotient $\frac{supp(A \cup B)}{supp(A)}$
- The confidence can be seen as a conditional probability P(B|A), i.e. probability of B knowing A.

Support may be relative, *i.e.* the proportion of the set of objects.

- Given the two thresholds σ_s (support) and σ_c (confidence), a rule $A \longrightarrow B$ is said to be valid (or strong) if
 - $supp(A \longrightarrow B) \ge \sigma_s$
 - $conf(A \longrightarrow B) \ge \sigma_c$
- A valid rule can only be extracted from a frequent itemset.
- A rule is said to be exact if its confidence is equal to 1, i.e. $supp(A \cup B) = supp(A)$, otherwise the rule is approximate.

Objects / Items	а	b	С	d	e
o1	Х	Х		Х	Х
o2	Χ		Х		
o3	Х	Х	Х		Х
o4		Х	Х		Х
o5	Х	Х	Х		Х

For example,

- with $\sigma_s = 3$ and $\sigma_c = 3/5$
 - ac is frequent
 - $a \longrightarrow c$ is valid (with support 3 and confidence 3/4)
 - $c \longrightarrow a$ is valid (with support 3 and confidence 3/4)
- with $\sigma_s = 1$ and $\sigma_c = 3/5$
 - abd is frequent
 - $d \longrightarrow ab$ is valid (with support 1 and confidence 1)
 - $ab \longrightarrow d$ is not valid (with support 1 and confidence 1/3)

Generation of valid association rules

- From a frequent itemset P (of length necessarily greater than or equal to 2)
- Extraction starts by generating the valid rules with a right hand side (conclusion) of length 1,
 - rules of the form $P \setminus \{i\} \longrightarrow \{i\}$
 - ullet where $\{i\}$ is an item of length 1
 - $P \setminus \{i\}$ denotes the itemset P without the item $\{i\}$
- Then, the conclusions of the valid rules $P \setminus \{i\} \longrightarrow \{i\}$ are combined for generating the candidate conclusions of length 2,(check confidence)
 - $P \setminus \{ij\} \longrightarrow \{ij\}$
 - and the process continues until no more valid rules can be generated from the frequent itemset.

Example (with $\sigma_s = 2$ and $\sigma_c = 2/5$)

Objects / Items	а	b	С	d	е
o1	Х	Х		Х	Х
o2	Х		Х		
о3	Х	Х	Х		X
o4		X	X		Х
o5	Χ	Χ	Χ		Х

- When $P = \{ab\}$, the generated valid rules are:
 - $\{a\} \longrightarrow \{b\}$ (supp= 3; conf= 3/4)
 - $\{b\} \longrightarrow \{a\} \ (3; \ 3/4)$

Example (with $\sigma_s = 2$ and $\sigma_c = 2/5$)

Objects / Items	а	b	С	d	е
o1	Х	Х		Х	X
o2	Х		X		
o3	Х	Х	X		X
о4		Х	X		X
o5	Х	Х	Х		Х

- When $P = \{abc\}$, the generated valid rules are:
 - $\{ab\} \longrightarrow \{c\} \ (2; \ 2/3),$
 - $\{ac\} \longrightarrow \{b\} \ (2; 2/3),$
 - $\{bc\} \longrightarrow \{a\} \ (2; 2/3)$
- As {a, b, c} has three valid conclusions, they can be combined for producing the new conclusions {ab, ac, bc} and generate the rules (cnfidence should be checked):
 - $\{c\} \longrightarrow \{ab\}\ (2; 2/4)$
 - $\{b\} \longrightarrow \{ac\} (2; 2/4)$
 - $\{a\} \longrightarrow \{bc\} (2; 2/4)$

Measures associated to association rules

There exist a number of possible measures that can be attached to an association rule [LFZ99, CNT03]: $A \longrightarrow B$

- The confidence of the rule : the conditional probability P(B|A), range [0,1].
- The interest or lift of the rule $A \longrightarrow B$ measure is defined as $P(A \cup B)/P(A) \times P(B)$
 - i.e. the interest measures the degree of compatibility of A and B, i.e. the simultaneous occurrences of both events A and B.
 - The interest measures the degree of independence of the attributes A and B. The interest is symmetrical (lift($A \longrightarrow B$) = lift($B \longrightarrow A$))
 - its range in the interval $[0, +\infty[$
 - It is equal to 1 whenever the "events" A and B are statistically independent.

A rule may have a high confidence but a low lift

Measures associated to association rules

• The conviction of the rule $A \longrightarrow B$ is defined as

$$P(A) \times P(\overline{B})/P(A \cup \overline{B})$$

- Conviction was developed as an alternative to confidence which was found to not capture direction of associations adequately
- Conviction measures the deviation of the rule $A \longrightarrow B$ by taking into account the rule $A \longrightarrow \overline{B}$. The \overline{B} means that at least one item of B is not present.
- range of conviction is $[0, +\infty[$
- Conviction is not computable for exact rules because $P(A \cup \overline{B})$ is equal to 0 (there is no counterexample for exact rules);

Measures associated to association rules

• The dependency of the rule $A \longrightarrow B$ is defined as

$$|P(B|A) - P(B)| = |P(A \cup B)/P(A) - P(B)|$$

i.e.

- The dependency measures the distance between the confidence of the rule and the independence case
- Range is [0, 1[
- A dependency close to 0 (respectively to 1) means that A and B are independent (respectively dependent);

19 / 56

Yannick Toussaint Association Rules Automn 2018

Domain of application

- Mining Chemical Reaction Database
- An Experiment in Biology

- Knowledge discovery algorithms for mining chemical reaction databases [BLNN04b]
- Synthesis planning is mainly based on retrosynthesis, i.e. a
 goal-directed problem-solving approach, where the target molecule is
 iteratively transformed by applying reactions for obtaining simpler
 fragments, until finding accessible starting materials
- For a given target molecule, a huge number of starting materials and reactions may exist, e.g. thousands of commercially available chemical compounds. Thus, exploring all the possible pathways issued from a target molecule leads to a combinatorial explosion, and needs a strategy for choosing reaction sequences to be used within the planning process.

Discovering generic reactions – called synthesis methods – from chemical reaction databases in order to design generic and reusable synthesis plans.

Yannick Toussaint Association Rules Automn 2018 22 / 56

- The main questions for the synthesis chemist are related to chemical families to which a target molecule belongs, i.e. the molecule that has to be built, and to the reactions or sequence of reactions building structural patterns, to be used for building these families.
- Two main categories of reactions may be distinguished:
 - reactions building the skeleton of a molecule the arrangement of carbon atoms on which relies a molecule
 - and reactions changing the functionality of a molecule, i.e. changing a function into another function

• Interest in reactions changing the functionality: what are the reactions allowing the transformation of a function F_i into a function F_i ?

Yannick Toussaint Association Rules Automn 2018 24 / 56

Two reaction databases,

- Organic Syntheses database orgsyn-2000 including 5,486 records
- Journal of Synthetic Methods database jsm-2002 including 75,291 records

Every record contains one chemical equation involving structural information:

- Transformation of an initial state or the set of reactants
- Into a final state or the set of products associated with an atom-to-atom mapping between the initial and final states

Reaction #13426 in the jsm-2002 database:

Yannick Toussaint Association Rules Automn 2018 26 / 56

Preprocessing: Improve the quality of the selected data by cleaning and normalizing the data

- Exporting and analyzing the structural information recorded in the databases
- Extracting and representing the functional transformations in a target format

The considered transformations are functional modifications

- Addition of a function
- Deletion of a function
- Reactions have been considered at an abstract level (block) level)thanks to Resyn-Assistant

The resyn-assistant system [VL00] has been used for

- Recognize the building blocks of reactions
- Based on the atom-to-atom mapping, the system establishes the correspondence between the recognized blocks of the same nature, and determines their role in the reaction

A function may be present:

- ullet Only in a reactant \longrightarrow the function in the reactant is destroyed
- ullet Only in a product \longrightarrow the function in the product is formed
- ullet In both \longrightarrow the function is unchanged

At the end of the pre-processing step, the information obtained by the recognition process is incorporated into the representation of the reaction.

Data on reactions have been transformed into a binary table:

- A reaction can be considered from two main points of view:
 - a global point of view on the functionality interchanges leads to consider a single entry R corresponding to a single analyzed reaction, to which a list of properties, i.e. formed and/or destroyed and/or unchanged functions, is associated,
 - a specific point of view on the functionality transformations that is based on the consideration of two (or more) different entries R_k corresponding to the different functions being formed

	destroyed blocks created blocks unchanged blo					created blocks			d bloc	ks				
functions		anhydride		hemiacetal		carbonyle		carboxylate		alkene		phenyl		
T ¹		X		X		X		X		X		X		

Entries/Blocks	Destroyed		Form	ed	Unchanged		
	anhydride	hemiacetal	carbonyle	ester	alcene	aryle	
without correspondence entry R	×	×	×	×	x	×	
with correspondence entry \mathbf{R}_1	x	х		х	х	х	
entry ${f R}_2$		×	×		×	х	

A 3-itemset:

 $\texttt{carboxilic} - \texttt{acid}_d \land \texttt{primary} - \texttt{amine}_d \land \texttt{secondaryamine}_f$

- has a support of 121
- carboxilic acid_d and primary amine_d have been deleted
- secondaryamine_f is formed
- Since the support of carboxilic acid_d and secondary amine_f is 154
- $\begin{tabular}{ll} \bullet & The \ rule \\ & carboxilic acid_d \land secondary amine_f \longrightarrow primary amine_d \\ \end{tabular}$
- has a support = 121 and confidence = 78.6

If "carboxilic acid is deleted and a secondary amine is formed" is true, "primary amine has been deleted" is true in 78.6% of the cases in the databases.

Number of itemsets and association rules extracted

		ORGSY	N2000	JSM20	202
		OKOSTI	N2000	JSIV121	302
		global ¹	specific ²	global ¹	specific ²
	minsup > 1	26.053	9.707	504.316	139.159
Itemsets	minsup > 10	659	543	12.834	7.326
	minsup > 100	41	41	1.089	763
	minsup > 10 and confidence > 0	1.366	1.048	Nd	39.496
Association	minsup > 10 and confidence > 50	78	140	Nd	2.687
rules	minsup > 1 and confidence > 0	427.908	72.882	Nd	nd
	minsup > 1 and confidence > 50	225.800	23.801	Nd	1.326.268

Mining Chemical Reaction Database

Analysis of frequent itemsets:

- From which deleted function a formed function is created: $F_d \wedge F_f$
- Formed functions from two deleted functions: $F_f \wedge F_{1d} \wedge F_{2d}$
- Formed functions that depend on the presence of unchanged functions: $F_f \wedge F_d \wedge F_\mu$

38 / 56

Mining Chemical Reaction Database

Association rules bring further information

The more frequent way to form a molecule F_f : if function F_f is formed than is is formed from F_{id}

- F_f should be the premise of the rule: $F_f \longrightarrow \{F_{id}\}$
- Ranking rules following decreasing confidence

If you know that a function F_d is formed from two functions and you know one of them:

- ullet F_f should be the premise of the rule: $F_f \wedge F_{1d} \longrightarrow \{F_{2d}\}$
- Ranking rules following decreasing confidence

Mining Chemical Reaction Database

Looking at Carboxylate Esters: most frequent functions involved in carboxilate creation.

 $carboxilate_f \longrightarrow F_{id}$

Entry	destroyed function ¹	$sup(P)^2$	conf ³
1	alcohol	1030	21.5
2	carboxylic-acid	660	13.8
3	carboxylate	651	13.6
4	carbonyl	567	11.8
5	anhydride	419	8.7
6	alkene	334	7.0
7	ether	206	4.3
8	acetal	181	3.8
9	acyl-chloride	175	3.7
10	vinyloxycarbonyl	140	2.9

Experiments in biology

Cancer diagnosis (after discretisation of gene expression):

$$cancer \longrightarrow geneA \uparrow geneB \downarrow geneC \uparrow$$

Different association rules

A remark about association rules:

- if $\{ab\} \longrightarrow \{cd\}$ is a valid rule
- then $\{abcd\}$ is frequent, so are $\{ab\}$ $\{a\}$, $\{b\}$...
- ullet then $\{abc\} \longrightarrow \{d\}$ and $\{abd\} \longrightarrow \{c\}$ are valid rules

The shorter the premise (condition), the more informative the rule.

Yannick Toussaint

Generators and closed itemsets

- An itemset is a generator if it has no proper subset with the same support.
- An itemset is closed if it has no proper superset with the same support. The closure of an itemset X, $\gamma(X)$, is the largest superset of X with the same support.
- A frequent itemset is a Maximal frequent itemset (MFI) if all its supersets are not frequent.

Equivalence classes

Yannick Toussaint Association Rules Automn 2018 44 / 56

Equivalence classes

Frequent itemsets, closed frequent itemsets and frequent generators:

45 / 56

Algorithms[']

Different kind of algorithms for mining itemsets

- Levelwise algorithms
- Vertical algorithms
- Hybrid algorithms (Eclat-Z, Charm-MFI)
- Other algorithms (FP-growth)

46 / 56

At each level, are itemset of the same length.

The most well-known algorithm: Apriori

Property 1 (downward closure): All subsets of a frequent itemset are

frequent.

Property 2 (anti-monotonocity): All supersets of an infrequent itemset are infrequent.

Examples: Apriori-Close, Close, Titanic, Pascal, Pascal+, Zart, etc.

- Apriori was the first efficient algorithm for finding Fls. It is a breadth-first, bottom up levelwise algorithm
- Two tables : C_i candidate itemsets, F_i frequent itemsets.
- *i*-itemsets are combined to produce i + 1-candidtae itemsets

• Two tables : C_i candidate itemsets, F_i frequent itemsets.

Apriori

Running example

	Α	В	С	D	Е
1	x		x	x	
2		x	x		>
3	x	x	x		×
4		x			×
5	x	x	x		×

$$min_supp = 3$$

2

F_1	supp
{A}	3
{B}	4
{C}	4
{E}	4

- With one database pass, the support of candidate itemsets is counted and infrequent itemsets are pruned.
- Possibility to test close itemsets and generators

```
supp
                                              F,
                                                    supp
{AB}
                                              {AC}
{AC}
        3
                                              {BC}
{AE}
                                              {BE}
{BC}
                                             {CE}
{BE}
{CE}
       supp
                                                    supp
{BCE} 3
                                             {BCE} 3
C_{\Lambda}
       supp
              STOP!
                                         FIs: U F
```

FIs: U F_i

20

The candidate generation and the support counting require a subset test.

- To generate C_i we run over F_i
- In the support counting process, the database is read object per object
- We need to find the subsets of the corresponding itemset for each object in C_k and the support value of each subset in C_k is incremented (by 1)
- require the use of hash-tree or prefix-tree for the data structure

Vertical Algorithms

Algorithms that process the database vertically (deep-first algorithms)

- Eclat
- Charm

Sets of rules

The goal is to find interesting association rules

- \bullet All valid association rules \longrightarrow too many rules, many of them are redundant
- Different concise representations (bases): Closed Rules (CR), Generic basis (\mathcal{GB}) , informative basis (\mathcal{IB}) , minimal non-redundant association rules (\mathcal{MNR}) ...

A very good comparative study of these bases can be found in [Kry02]. A "good" representation of association rules:

- should enable the derivation of all valid rules
- should forbid the derivation of rules that are not valid
- should allow the determination of rules parameters such as support and confidence

Sets of rules

Generic Basis (for exact association rules): Let FC be the set of frequent closed itemsets. For each frequent closed itemset f, let FG_f denote the set of frequent generators of f. The generic basis:

$$\mathcal{GB} = \{r : g \longrightarrow f \setminus g | f \in FC \land g \in FG_f \land g \neq f\}$$

Informative basis for approximate association rules: Let FC be the set of frequent closed itemsets and let FG denote the set of frequent generators. The notation $\gamma(g)$ means the closure of itemset g. The informative basis:

$$(IB) = \{r : g \longrightarrow f \setminus g | f \in FC \land g \in FG \land \gamma(g) \subset f\}$$

Yannick Toussaint Association Rules Automn 2018 56 / 56