Survey paper of techniques for optimizing DRAM refresh

Dan Larsson
Master Program of
Embedded Electonic Systems Design
Chalmers University of Technology
Gothenburg, Sweden
Email: larsdan@student.chalmers.se

Jonas Hemlin
Master Program of
Embedded Electonic Systems Design
Chalmers University of Technology
Gothenburg, Sweden
Email: larsdan@student.chalmers.se

Abstract—The abstract goes here.

I. INTRODUCTION

Why is it important to reduce the refreshes? Briefly mention the methods.

II. DRAM TECHNOLOGY

Explain the DRAM structure and how load and store is performed.

- A. DRAM stuff
- B. Refresh
 - III. INTELLIGENT REFRESH TECHNIQUES

Say a little about every technique.

- A. Access Recency
- B. Retention
- C. Tolerance
- D. Validity
- IV. ACCESS RECENCY

V. RETENTION

[1]

VI. TOLERANCE

VII. VALIDITY

VIII. TECHNIQUE COMBINATION

IX. EVALUATION

X. CONCLUSION

Hej

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] Z. Cui, S. A. McKee, Z. Zha, Y. Bao, and M. Chen, "Dtail: A flexible approach to dram refresh management," in *ACM International Conference on Supercomputing (ICS'14)*, Jun. 2014, pp. 43–52.