arbitrary pair (j_-, j_+) . We can see that each ellipsoid can be chosen one after another and disjointly, for each critical point of the function $\pi_{2,1,1}|_{S_{0,e_G}}$ corresponding to each vertex v of degree at least 3.

We can put an ellipsoid of the standard form centered at some point and containing the point $(\pi_{2,1,1}(v_0)-\epsilon_{v_0,+,j},a_{v_0,+,j})\in F_{D_{\{S_0,c_G\}},1}$ $((\pi_{2,1,1}(v_0)+\epsilon_{v_0,-,j},a_{v_0,-,j})\in F_{D_{\{S_0,c_G\}},1})$ in the interior in such a way that the boundary $\overline{D_{j'}}-D_{j'}$ of its closure contains a point $p_{j'}\in S_{0,c_G}$ with $\pi_{2,1,1}(p_{j'})=\pi_{2,1,1}(v_0)$. We also do in such a way that the intersection $(\overline{D_{j'}}-D_{j'})\bigcap \overline{D_{\{S_{0,c_G}\}}}$ is mapped by $\pi_{2,1,1}$ into $\mathbb R$ as an injective function with the minimum (resp. maximum) $\pi_{2,1,1}(v_0)$. Remember that the relations $0<\epsilon_{v_0,-,j},\epsilon_{v_0,+,j}<\epsilon'<\epsilon$ are satisfied and that the numbers $\epsilon_{v_0,-,j_1}$ and $\epsilon_{v_0,-,j_2}$ ($\epsilon_{v_0,+,j_1}$ and $\epsilon_{v_0,+,j_2}$) are mutually disjoint for distinct numbers j_1 and j_2 and sufficiently small. Remember also that the relation $a_{v_0,-,j_1}< a_{v_0,-,j_2}$ holds for an arbitrary pair (j_1,j_2) with $j_1< j_2$, that the relations $a_{v_0,+,j_1}< a_{v_0,+,j_2}$ holds for an arbitrary pair (j_1,j_2) with $j_1< j_2$, and that the relations $a_{v_0,-,j_-}< a_{v_0,+,j_+}$ and $a_{v_0}-\epsilon'< a_{v_0,-,j_-},a_{v_0,+,j_+}< a_{v_0}+\epsilon'$ hold for an arbitrary pair (j_-,j_+) . We can see that each ellipsoid can be chosen one after another, disjointly, and disjoint from the previous ellipsoids, for each critical point of the function $\pi_{2,1,1}|_{S_{0,c_G}}$ corresponding to each vertex v_0 of degree 1.

We put ellipsoids $D_{j'}$ of the standard form one after another to have our desired result.

Proposition 1. In the present inductive procedure, for a step putting an ellipsoid $D_{j'}$ centered at the point $x_{j'} := (\pi_{2,1,1}(v) \pm \epsilon_{v,\pm,j}, a_{v,\pm,j})$ or $x_{j'} := (\pi_{2,1,1}(v_0) \pm \epsilon_{v_0,\pm,j}, a_{v_0,\pm,j})$, we abuse the notation from Definition 4.

First, $D_{j'}$ is (S, D_S) -connected.

In addition, we assume at least one of the following in a step in the procedure.

- At least one ellipsoid centered at a point of the form $(\pi_{2,1,1}(v) \pm \epsilon_{v,\pm,j_0}, a_{v,\pm,j_0})$ has been put in the case v is of degree at least 3.
- At least one ellipsoid centered at a point of the form $(\pi_{2,1,1}(v_0) \pm \epsilon_{v_0,\pm,j_0}, a_{v_0,\pm,j_0})$ has been put in the case v_0 is of degree 1.

Under this additional assumption, the pointed set $(D_j, x_{j'})$ is (S, D_S, A_{D_S}) -PLS and it is not (S, D_S, A_{D_S}) -PS.

Proof. The first part follows from assumptions on a sufficiently small positive number $\epsilon_0 > 0$, another sufficiently small one $\epsilon > 0$, and sufficiently small ones with the relations $0 < \epsilon_{v,-,j}, \epsilon_{v,+,j}, \epsilon_{v_0,-,j}, \epsilon_{v_0,+,j} < \epsilon' < \epsilon$.

We see the additional part. The set $\overline{D_{j'}}$ contains a point of the boundary $\overline{D_{j'}}$ – $D_{j'}$ such that the value of the projection $\pi_{2,1,1}$ there is $\pi_{2,1,1}(v)$ or $\pi_{2,1,1}(v_0)$. The set $\overline{D_{j'}}$ contains no point from $F_{D_S,2}$ by considering the local shape of the curve S_{0,c_G} . From the additional assumption, there exists at least one point different from this such that the value of the projection $\pi_{2,1,1}$ there is $\pi_{2,1,1}(v)$ or $\pi_{2,1,1}(v_0)$ in $F_{D_S,1}$. We can easily check that the pointed set $(D_j, x_{j'})$ is $(\mathcal{S}, D_{\mathcal{S}}, A_{D_S})$ -PLS and it is not $(\mathcal{S}, D_{\mathcal{S}}, A_{D_S})$ -PS.

We present another example as our new result.

Theorem 5. We also abuse the notation from Definition 4 here. In our steps here, for each pair of ellipsoids of the standard form centered at $(\pi_{2,1,1}(v_0))$