Graf Teorisi

http://en.wikipedia.org/wiki/Leonhard_Euler

Leonard Euler (1707-1783)

1736'da Königsberg'in yedi köprüsü problemini graf teorisinden yararlanarak çözdü

Bir graf nasıl tanımlanır?

2-uçlu elemana ilişkin uç-grafı

Tanım: (Ani Güç)
$$p(t) = v(t)i(t)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
[Watt][Volt] [Amper]

Ani güç, t anında elemanın bağlı olduğu devre tarafından elemana aktarılan güç

Referans nerede?

Referans 3 düğümü

Referans nerede?

Referans 2 düğümü

Referans nerede?

Referans 1 düğümü

Bu graf gösterimleri ile birşeyler kayboldu, neler?

Kaybolanları nasıl bulacağız?

Kapalı düğüm dizisi için KGY yazalım

$$v_{21}(t) + v_{13}(t) + v_{32}(t) = 0$$

G₁ Gauss yüzeyi için KAY yazalım

$$i_1(t) + i_2(t) + i_3(t) = 0$$

n-uçlu elemana ilişkin uç-grafı

Tanım: (Ani Güç)

$$p(t) = \sum_{k=1}^{n-1} v_k(t) i_k(t)$$

2-kapılılar, çok kapılılar

 S_1 Gauss yüzeyi için KAY yazalım: $i_1(t) - i_1'(t) = 0$ \longrightarrow $i_1(t) = i_1'(t)$

S₂ Gauss yüzeyi için KAY yazalım: $i_2(t) - i_2(t) = 0 \longrightarrow i_2(t) = i_2(t)$

2-kapılıya ilişkin uç-grafı

Tanım: (Ani Güç) $p(t) = v_1(t)i_1(t) + v_2(t)i_2(t)$

2- kapılı eleman içeren devre ayrık olmaz mı?

S₁ Gauss yüzeyi için KAY yazalım:

$$i_k(t) = 0$$

<u>Devre grafi</u>: Verilen bir devre için devredeki her elemana ilişkin uç grafı çizilerek elde edilen grafa devre grafı denir.

Örnek

Figure P1.2

Device no.	Datum terminal no
1	@
2	①
3	(3)
4	3
5	(10)
6	100
7	③

GrafTeorisine İlişkin Bazı Tanımlar

Tanım: (Derece)

Bir düğüme bağlı eleman sayısına o düğümün derecesi denir.

Tanım: (Yol)

G grafının aşağıdaki özellikleri sağlayan G_y alt grafına yol denir:

- G_y 'nin n çizgisi, n+1 düğümü vardır.
- G_y 'deki çizgiler e_1 , e_2 , ..., e_n düğümler d_1 , d_2 ,, d_{n+1} olmak üzere sırasıyla öyle numaralanabilirler ki e_k çizgisinin düğümleri d_k ve d_{k+1} olur.
- \bullet d₁ ve d_{n+1} düğümlerinin dereceleri bir diğer düğümlerin dereceleri ikidir.

Tanım: (Birleşik Graf)

Verilen G grafında herhangi iki düğüm arasında en az bir yol varsa buna birleşik graf denir.

Tanım: (Çevre)

G grafının aşağıdaki özellikleri sağlayan G_a alt grafına çevre denir:

- G_a birleşik bir graftır.
- Ga 'daki bütün düğümlerin dereceleri ikidir.

Tanım: (Ağaç)

Birleşik bir G grafının aşağıdaki özellikleri sağlayan G_T alt grafına ağaç denir:

- G_T , G'nin tüm düğümlerini kapsar.
- G_T çevre içermez.

Tanım: (Dal)

Ağaç'ın elemanlarına dal denir.

Tanım: (Kiriş)

G grafından G_T çıkarıldığında geriye kalan alt grafa kirişler kümesi denir.

Sonuç: n_d düğümlü bir G grafında seçilecek dal sayısı n_{d-1} dir.

Tanım: (Temel Çevreler Kümesi)

 n_e elemanlı n_d düğümlü birleşik bir G grafında G_T seçilmiş bir ağaç olsun Bu ağacın belirlediği (n_e - n_d +1) adet kirişin her birisi diğer elemanları dal olmak üzere bir çevre tanımlar. Bu çevreye t<u>emel çevre</u>, temel çevrelerin oluşturduğu kümeye de <u>temel çevreler kümesi</u> denir.

Tanım: (Kesitleme)

Birleşik bir G grafının aşağıdaki özellikleri sağlayan G_K alt grafına kesitleme denir:

- \bullet G grafından G_K çıkarıldığında geriye kalan graf iki parçadır.
- \bullet G_K 'nın bir elemanını yerine koyarsak graf birleşik olur.

Tanım: (Temel Kesitlemeler Kümesi)

 n_e elemanlı n_d düğümlü birleşik bir G grafında G_T seçilmiş bir ağaç olsun n_{d-1} tane dalın her biri diğer elemanları kiriş olmak üzere bir kesitleme tanımlar. Bu kesitlemeye t<u>emel kesitleme</u>, temel kesitlemelerin oluşturduğu kümeye de <u>temel kesitlemeler kümesi</u> denir.

- 1-a) Şekilde verilen devreye ilişkin grafı çiziniz.
 - b) 4 düğümden oluşan 10 tane kapalı düğüm dizisi belirleyiniz ve KGY yazınız.
 - c) 7 tane Gauss yüzeyi belirleyiniz ve KAY yazınız.
 - d) 10 tane çevre seçip KGY yazınız.
 - e) 7 tane kesitleme seçip KAY yazınız.
 - f) Ağaç seçip ağacın belirlediği temel kesitleme ve temel çevreler için KAY ve KGY yazınız.
 - g) 4 Düğüm için KAY yazınız.