Prova 2 Total points 18/20

As justificativas das questões de múltipla escolha e as respostas das questões dissertativas devem ser enviadas em um documento separado (formato PDF).

The respondent's email (henrique.padula@ufv.br) was recorded on submission of this form.

Considere o problema de ordenação, onde as listas (de tamanho n) a serem *2/4 ordenadas possuem [n/2] valores iguais a um número real x e [n/2] valores iguais a um outro número real y (estes números estão distribuídos aleatoriamente na lista). Assinale as afirmativas verdadeiras. Justifique suas respostas (em uma folha separada).

- No pior caso, o algoritmo quicksort (com a partição de Hoare) ordenará esse tipo de listas em tempo O(n log₂ n).
- II) Essas listas podem ser ordenadas por um algoritmo de tempo O(n) (diga qual seria esse algoritmo).
- III) No melhor caso, o algoritmo *mergesort* ordenará esse tipo de listas em tempo O(n).
- IV) No pior caso, o algoritmo *quicksort* (com a partição de *Hoare*) ordenará esse tipo de listas em tempo $O(n^2)$.

	- 1	e	Ш
_/		C	•

○ III e IV

II e IV

O lell

Somente IV

Individual feedback

Esse tipo de listas corresponde ao melhor casso do Quicksort. A partição de Hoare sempre dividirá a lista em partes iguais (sublistas balanceadas).

Para um array A[1 .. n] de n números inteiros, o que determina (retorna) o *4/4 seguinte algoritmo? Qual é a complexidade do algoritmo? Justifique suas respostas (em uma folha separada).

ALGORITMO(A[i . . r])

#Entrada: um subarray de A[1 . . n], onde i e r são os índices inicial e final.

```
if i == r : return A[i]
```

else:

```
m = \lfloor (i + r)/2 \rfloor

a = ALGORITMO (A[i . . m])

b = ALGORITMO (A[m+1 . . r])

if a > b: return b
```

else: return a

- Determina o menor número do array. A complexidade do algoritmo é O(n log2 n).
- Determina a mediana. A complexidade do algoritmo é O(n log2 n).
- Determina o menor número do array. A complexidade do algoritmo é O(log2 n).
- Determina o maior número do array. A complexidade do algoritmo é O(n log2 n).
- O Determina o maior número do array. A complexidade do algoritmo é O(log2 n).

Individual feedback

A complexidade é O(n), pois T(n) = 2T(n/2) + 1

Relacione a coluna da esquerda com a coluna da direita com base nos métodos * de projeto de algoritmos.									
	(A) Divide o problema em partes menores e combina sua solução em uma solução global.	(B) Geralmente testa todas as possibilidades para se encontrar uma solução. É uma abordagem baseada diretamente na definição do problema e nos conceitos envolvidos.	(C) Calcula a solução para subproblemas, dos problemas menores para os maiores, armazenando os resultados parciais durante o processo, reutilizando-os assim que possível.	(D) O método sugere a construção de uma solução através de uma sequência de passos. Em cada passo escolhe o item/elemento mais atrativo que vê pela frente para fazer parte da solução atual.	Score				
(II) Divisão e conquista		0	0	0	1/1				
(I) Força bruta	\circ		0	0	1/1				
(III) Programação dinâmica	0	0		0	1/1				
(IV) Método guloso	0	0	0	•	1/1				

Para esta questão, o item a) deve ser respondido neste formulário. As *4/4 respostas dos outros itens devem ser feito em uma folha separada.

Aplicando Programação Dinâmica (PD) deseja-se determinar o elemento de menor valor de uma lista L[1..n] com n elementos não ordenados.

- a) Apresente uma relação de recorrência para determinar o elemento de menor valor de forma bottom-up.
- b) Para a lista L[1..8] = {10, 8, 4, 2, 20, 12, 6, 5}, monte a tabela utilizada pelo método de PD e mostre como é obtida elemento de maior valor.
- c) Escreva o pseudocódigo do algoritmo de PD e apresente sua complexidade.

menor_valor[i] = min(menor_valor[i-1], L[i]), com menor_valor[0] = "\infty"

Individual feedback

Se a lista tem um único elemento (n=1), então menor_valor[1] = L[1] (o único elemento).

Para esta questão, o item a) deve ser respondido neste formulário. As *4/4 respostas dos outros itens devem ser feito em uma folha separada.

Dada uma barra de metal de comprimento n metros, deseja-se cortar esta barra em pedaços menores de comprimentos p_1, \ldots, p_m (inteiros); sendo que $p_1 = 1$ m e $p_i < n$, $\forall i \ge 2$. O objetivo é obter o menor número de pedaços. Note que, a pior solução é cortar a barra em n pedaços, cada pedaço de comprimento 1 metro.

- a) Escreva uma estratégia gulosa para cortar a barra obtendo o menor número de pedaços.
- b) Aplique sua estratégia para resolver a seguinte instância: Comprimento da barra n = 20, comprimento dos possíveis pedaços: $p_1 = 1$, $p_2 = 7$, $p_3 = 5$, $p_4 = 2$, $p_5 = 4$.
- c) Escreva o pseudocódigo do seu algoritmo guloso. O algoritmo deve determinar/imprimir as barras menores obtidas no corte. Calcule a complexidade do algoritmo.

Cortar sempre o maior pedaço possivel, desde que esse nao ultrapasse o tamanho atual da barra

28/09/2022 21:01

Google Forms

