Contents

Control-Lab-in-a-Box (CLB) - 3.2

3.1 Introduction	<u>2</u>
3.2 Hardware	3
3.3 Algorithm Design4	
3.4 Algorithm Design – Data	
<u>Rejection5</u>	
3.5 Summary6	A

Ultrasonic Sensor

Key Learning Points

After this Lecture, you will be able to:

Obtain measured distance values from the ultrasonic sensor, and undertake the process of data rejection for 'unwanted' data points

- 1. Introduction
- 2. Actuation 3. Measurement
 - 4. System Identification and Control

C-SR04 .402

3.1 Introduction

- Required hardware for the exercise:
 - ✓ Supported Arduino
 Uno board _____
 - ✓ USB cable
 - ✓ Breadboard
 - ✓ Ultrasonic HC-SR04 sensor
 - ✓ 4 x male-to-male wires

HC-SR04 ultrasonic sensor details:

- Distance measurement of 0.02 to 4.00m
- Accuracy of $\pm 0.003m$

Calculation for distance measurement:

(halved as t is time of Trig and Echo) $d = \frac{1}{2}tc$ Distance

Speed of sound (approximately 343m/s)

3.2 Hardware

- Required hardware for the exercise:
 - ✓ Supported Arduino Mega 2560 board
 - ✓ USB cable
 - ✓ Breadboard
 - ✓ Ultrasonic HC-SR04 sensor
 - ✓ 4 x male-to-female wires
- Set-up the CLB rig as illustrated to the right, using the following components of importance:
 - o 2.8: HC-SR04 ultrasonic sensor
 - 3.5: Ultrasonic sensor and LEDs mount
 - o 4.6: 2 x bolt, 16mm, M3
 - o 4.7: 2 x nuts, M3

3.3 Algorithm Design

- 'Ultrasonic Sensor' block is found under the 'Sensors' tab in 'Simulink Support Package for Arduino Hardware'
- 'Display' and 'Scope' are both found under the 'Sinks' tab in 'Simulink'

• Undertake the following three steps:

- i. Double click on 'Ultrasonic Sensor' then set the number of signal pins to '2'
- ii. The trigger pin should be defined as '4' and the echo pin as '5'
- iii. Select a sampling time/interval, T_s (e.g., 0.01 seconds you should investigate different values)

Move an object Infront of the ultrasonic sensor to measure the distance.

3.4 Algorithm **Design – Data** Rejection

- This could be set-up for use within the operational requirenents of the sensor, i.e., 0.02 to 4.00*m*
- 'Switch' block is found in 'Signal Routing' of 'Switch'
- 'Memory' block is found in 'Discrete' of 'Simulink'

Undertake the following step:

Double click on the 'Switch' and change the 'Threshold' to 0.1 (how this set-up works: if the ultrasonic sensor output value is above 0.1 meters, then the last known stored value in the memory below 0.1 meters will be the output)

Contents

Control-Lab-in-a-Box (CLB) - 3.2

<u>3.1</u>	Introduction	<u>2</u>
3.2	Hardware	<u>.3</u>
	Algorithm Design4	
<u>3.4</u>	Algorithm Design – Data	
	Rejection5	
3.5	Summary6	

Ultrasonic Sensor

Of Soldies Air

3.5 Summary

- An ultrasonic distance measuring sensor has been used with an Arduino Uno
- Simulink has then been used to develop a data rejection algorithm to reject 'unwanted' data points

- 1. Introduction
- 2. Actuation 3. Measurement
 - 4. System Identification and Control