

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Difenoconazole is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No 1490/2002,³ as amended by Commission Regulation (EC) No 1095/2007.⁴

Difenoconazole was included in Annex I to Directive 91/414/EEC on 1 January 2009 pursuant to Article 11b of the Regulation (EC) No 1490/2002, as amended by Commission Regulation (EC) No 1095/2007 (hereinafter referred to as 'the Regulation'). In accordance with Article 12a of the Regulation the European Food Safety Authority (EFSA) is required to deliver by 31 December 2010 its view on the draft review report submitted by the Commission of the European Communities (hereinafter referred to as 'the Commission') in accordance with Article 12(1) of the Regulation. This review report was established as a result of the initial evaluation provided by the designated rapporteur Member State in the Draft Assessment Report (DAR). The EFSA therefore organised a peer review of the DAR. The conclusions of the peer review are set out in this report.

Sweden being the designated rapporteur Member State submitted the DAR on difenoconazole in accordance with the provisions of Article 10(1) of the Regulation, which was received by the EFSA on 22 December 2006. The peer review was initiated on 6 March 2007 by dispatching the DAR for consultation of the Member States and the notifier Syngenta Ltd. Following consideration of the comments received on the DAR, it was concluded that EFSA should conduct a focused peer review in the areas of mammalian toxicology, environmental fate and behaviour and ecotoxicology and deliver its conclusions on difenoconazole.

The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of difenoconazole as a fungicide on pome fruit, carrot, wheat, barley, triticale, rye and oats as proposed by the notifier. Full details of the representative uses can be found in Appendix A to this report.

No critical areas of concern were identified in the physical-chemical properties section. However, data gaps were identified for data to support the ranges of the *cis/trans* isomers in the technical specification, the biological activity of the isomers, the validation of the isomer method, the

For citation purposes: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance difenoconazole. EFSA Journal 2011;9(1):1967. [71 pp.]. doi:10.2903/j.efsa.2011.1967. Available online: www.efsa.europa.eu/efsajournal.htm

¹ On request from the European Commission, Question No EFSA-Q-2009-00244, issued on 17 December 2010.

² Correspondence: praper@efsa.europa.eu

³ OJ L224, 21.08.2002, p.25

⁴ OJ L 246, 21.9.2007, p.19

consequence for the physical-chemical properties of the active substance of the wide range of isomer content and the formulation's adhesion to seeds.

No critical areas of concern were identified in the mammalian toxicology section. Two data gaps were identified: for an assessment of the toxicological relevance of some impurities; and to clarify the uncertainties related to the isomer ratio of the tested compound (for which reference values have been derived), the isomer ratio to which the workers will be exposed and the relative toxicity of the different isomers.

Based on the metabolism studies conducted on four plant groups, the residue in plants was defined as difenoconazole for monitoring and provisionally as difenoconazole and TDM for risk assessment. Residue definitions were also proposed for animal products. No critical areas of concern were identified in the residue section. Data gaps were identified to provide information on the possible residues of TDM metabolites in primary crops, rotational crops, processed commodities and animal products. Additional residue trials and processing studies on carrots are also required. No acute or chronic intake concerns were identified for consumers, but this evaluation has to be considered provisional, since the contribution of the TDM metabolites and the isomeric composition of the residues were not taken into account.

The data available on environmental fate and behaviour were generally sufficient to carry out the required environmental exposure assessments at the EU level for the representative uses assessed. The potential for groundwater contamination consequent to these uses by difenoconazole and the metabolites 1,2,4-triazole and CGA 205375 above the parametric drinking water limit of 0.1 µg/L was assessed as low. However, data gaps were identified for identification of the metabolites V3 and M4 formed in soil incubation, and for the rate of dissipation of difenoconazole in the field under Southern European conditions. The assessment of the environmental behaviour and consequent exposure levels of individual enantiomers of difenoconazole was not finalised.

Data gaps were identified in the ecotoxicology section. Further refinement of the risk to aquatic sediment-dwelling organisms for the use in cereals is necessary. Furthermore, the potential endocrine disruption effects in fish should be addressed. A data gap was also identified to demonstrate that the increase in body weight would not lead to adverse effects on earthworm populations in order to be able to use the reproduction NOEC from the reproduction study. Data gaps were identified to address the chronic risk to earthworms and *Collembola*. The possible impact on the ecotoxicity and the environment of potential enantio-selective biologically mediated metabolism/degradation or transformation needs to be addressed in order to the risk assessment for non-target organisms.

KEY WORDS

Difenoconazole, peer review, risk assessment, pesticide, fungicide.

TABLE OF CONTENTS

Summary	1
Table of contents	3
Background	4
The active substance and the formulated product	6
Conclusions of the evaluation	
1. Identity, physical/chemical/technical properties and methods of analysis	6
2. Mammalian toxicity	6
3. Residues	8
4. Environmental fate and behaviour	9
5. Ecotoxicology	10
6. Overview of the risk assessment of compounds listed in residue definitions triggering	
assessment of effects data for the environmental compartments	14
6.1. Soil	14
6.2. Ground water	15
6.3. Surface water and sediment	16
6.4. Air	
List of studies to be generated, still ongoing or available but not peer reviewed	
Particular conditions proposed to be taken into account to manage the risk(s) identified	18
Issues that could not be finalised	18
Critical areas of concern	19
References	20
Appendices	22
Abbreviations	68

BACKGROUND

Difenoconazole is one of the 84 substances of the third stage part B of the review programme covered by Commission Regulation (EC) No 1490/2002⁵, as amended by Commission Regulation (EC) No 1095/2007.⁶

Difenoconazole was included in Annex I to Directive 91/414/EEC on 1 January 2009 pursuant to Article 11b of the Regulation (EC) No 1490/2002, as amended by Commission Regulation (EC) No 1095/2007 (hereinafter referred to as 'the Regulation'). In accordance with Article 12a of the Regulation the European Food Safety Authority (EFSA) is required to deliver by 31 December 2010 its view on the draft review report submitted by the Commission of the European Communities (hereinafter referred to as 'the Commission') in accordance with Article 12(1) of the Regulation (European Commission, 2008). This review report was established as a result of the initial evaluation provided by the designated rapporteur Member State in the Draft Assessment Report (DAR). The EFSA therefore organised a peer review of the DAR. The conclusions of the peer review are set out in this report.

Sweden being the designated rapporteur Member State submitted the DAR on difenoconazole in accordance with the provisions of Article 10(1) of the Regulation, which was received by the EFSA on 22 December 2006 (Sweden, 2006). The peer review was initiated on 6 March 2007 by dispatching the DAR to Member States and the notifier Syngenta Ltd. for consultation and comments. In addition, the EFSA conducted a public consultation on the DAR. The comments received were collated by the EFSA and forwarded to the rapporteur Member State for compilation and evaluation in the format of a Reporting Table. The comments were evaluated by the rapporteur Member State in column 3 of the Reporting Table.

The scope of the peer review was considered in a telephone conference between the EFSA, the rapporteur Member State, and the Commission on 13 July 2010. On the basis of the comments received and the rapporteur Member State's evaluation thereof it was concluded that the EFSA should organise a consultation with Member State experts in the areas of mammalian toxicology, environmental fate and behaviour and ecotoxicology.

The outcome of the telephone conference, together with EFSA's further consideration of the comments is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and additional information to be submitted by the notifier, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the rapporteur Member State, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in November 2010.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a fungicide on pome fruit, carrot, wheat, barley, triticale, rye and oats, as proposed by the notifier. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report, which is a

⁵ OJ L224, 21.08.2002, p.25

⁶ OJ L 246, 21.9.2007, p.19

compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report (EFSA, 2011) comprises the following documents:

- the comments received on the DAR,
- the Reporting Table (revision 1-1; 13 July 2010),
- the Evaluation Table (13 December 2010),
- the reports of the scientific consultation with Member State experts (where relevant).

Given the importance of the DAR including its addendum (compiled version of November 2010 containing all individually submitted addenda; Sweden, 2010) and the peer review report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Difenoconazole is the ISO common name for 3-chloro-4-[(2RS,4RS;2RS,4SR)-4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4-chlorophenyl ether (IUPAC).

The representative formulated products for the evaluation were 'Score' an emulsifiable concentrate (EC) containing 250 g/l difenoconazole and 'Dividend 030 FS' a flowable concentrate for seed treatment (FS) containing 30 g/l difenoconazole.

The representative uses evaluated for the formulation 'Score' are outdoor foliar spraying in pome fruit and carrots. The representative uses evaluated for the formulation 'Dividend 030 FS' are as a seed treatment for cereals. Full details of the GAP can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

It must be noted that difenoconazole is a mixture of diastereo isomers, but the possible preferential metabolism/degradation of each enantiomer in animals, plants and the environment was not investigated in the studies submitted in the dossier and was therefore not considered during the peer review. Moreover, the analytical methods used in the studies reported through all sections were not stereo-selective, and all values mentioned as "difenoconazole" have to be considered as "sum of isomers". The possible impact of each individual enantiomer on the toxicity, the consumer risk assessment, worker exposure and the environment was not evaluated. A general data gap, applicable for sections 2, 3, 4 and 5, was therefore identified to address the impact of the isomeric composition of the substance.

1. Identity, physical/chemical/technical properties and methods of analysis

The minimum purity of the active substance as manufactured is 940 g/kg. The ranges for the *cis* and *trans* isomers are the subject of a data gap. Information on the biological activity of the isomers is also the subject of a data gap. Toluene was considered as a relevant impurity, its maximum content in the technical material is 5 g/kg.

The main data regarding the identity of difenoconazole and its physical and chemical properties are given in Appendix A. As the isomer range is so wide, a data gap was identified to address the effect of this on the physical and chemical properties of the active substance. A data gap was identified for adherence to seed for the formulation 'Dividend 030 FS'. It should be noted that the rinsed residue result was high for the formulation 'Dividend 030 FS' so appropriate labelling should be considered.

A data gap was identified for validation of the HPLC method for the isomer ratio in the technical material.

LC-MS/MS methods are available to analyse difenoconazole in plants and difenoconazole and CGA 205375 in products of animal origin and soil. Water can be analysed for difenoconazole by GC-ECD and air by LC-MS/MS. A method of analysis for body fluids and tissues is not required because the active substance is not classified as toxic or very toxic.

2. Mammalian toxicity

The following guidance documents were used in the production of this conclusion: SANCO/221/2000 – rev. 10-final (European Commission, 2003); SANCO/222/2000 rev. 7 (European Commission, 2004); and SANCO/10597/2003 – rev. 8.1, May 2009 (European Commission, 2009).

Difenoconazole was discussed during the PRAPeR meeting 83 (October 2010). With regard to the technical specification, a data gap was identified to assess the toxicological relevance of some impurities but the batches used in the toxicological studies can be considered as representative of the technical specification (Sweden, 2010).

Extensively absorbed after oral administration, difenoconazole did not show any potential for accumulation in body tissues. Based on the acute oral toxicity results, the classification **Xn**, **R22** "Harmful if swallowed" is proposed for difenoconazole, whereas no classification is triggered for the acute toxicity after dermal or inhalation exposure, for skin or eye irritation or for skin sensitisation.

In repeated dose studies, the liver was the main target organ, showing adverse effects but also adaptive changes in short-term studies in mice and rats. The effects triggering the NOAELs include reduced body weight (gain) and/or decreased organ weights. Cataract formation was observed in dogs (in the 28-week study only) and hens, and the relationship with treatment could not be excluded. However, this effect only appeared after high dose exposure with a sufficient margin between the NOAEL and the reference values (~200). The relevant short-term NOAEL in the rat is 20 mg/kg bw/day based on the first 90-day study with Wistar rats; the short-term NOAEL in the mouse is 34 mg/kg bw/day (90-day study) and the short-term NOAEL in the dog is 31 mg/kg bw/day (28-week study). The relevant long-term NOAELs are 1.0 mg/kg bw/day for the rat and 4.7 mg/kg bw/day for the mouse. Difenoconazole is unlikely to be genotoxic *in vivo* and unlikely to pose a carcinogenic risk to humans.

In the rat multigeneration study, no adverse effect was observed on the reproductive parameters up to the highest dose tested (189 mg/kg bw/day) and the relevant NOAEL for the offspring and for the parental animals is 16.8 mg/kg bw/day. In the developmental toxicity studies, an increased number of resorptions was observed in rats and rabbits, whereas an increased incidence of skeletal variations was only noted in rat foetuses. The relevant maternal and developmental NOAELs are the same, i.e. 25 mg/kg bw/day for the rabbit, and 15.6 mg/kg bw/day for the rat (after correction for actual concentration of 78 % in the test material for the rat study).

No neurotoxicity studies were performed. No effects indicative of neurotoxicity were observed in any of the available studies.

In a mechanistic study, difenoconazole showed an enzyme induction profile (in the mouse liver) resembling phenobarbitone. Several plant metabolites were tested with an Ames test (CGA 189138, CGA 205374, CGA 205375: all negative) and with a mouse oral acute toxicity test (CGA 205374, CGA 205375: $LD_{50}>2000$ mg/kg bw). Based on the available data for the triazole derivative metabolites, and including an additional rat multigeneration study for 1,2,4-triazole showing a more critical NOAEL (Young et al., 2005), specific reference values were agreed for 1,2,4-triazole (ADI 0.02 mg/kg bw/d, ARfD 0.06 mg/kg bw), for triazole alanine (ADI and ARfD 0.1 mg/kg bw(/day)) and for triazole acetic acid and triazole lactic acid (ADI and ARfD of 1,2,4-triazole because of the limited database available).

For difenoconazole, the agreed Acceptable Daily Intake (ADI) is 0.01 mg/kg bw/day based on the 2-yr rat study; the agreed Acceptable Operator Exposure Level (AOEL) is 0.16 mg/kg bw/day and the Acute Reference Dose (ARfD) is 0.16 mg/kg bw, both based on the developmental rat study. All reference values were derived with a safety factor of 100. The agreed dermal absorption values were 2 % for the concentrate and 4 % for the dilution of the formulation 'Score', and 4 % for the concentrate of 'Dividend 030 FS' (not diluted for seed treatment in the representative uses). The operator exposure estimate during the use of 'Score' in pome fruit and carrots is below the AOEL without the use of personal protective equipment (PPE) (ranging from 2 to 75 % of the AOEL according to the German Model and UK POEM). During the use of 'Dividend 030 FS' on seed, the operator exposure

estimate is 37 % of the AOEL without the use of PPE based on the Seed Tropex model. For both products, worker (without use of PPE) and bystander exposure estimates are well below the AOEL.

It is noted that the ratio of isomers to which the workers will be exposed when re-entering treated crops is unknown, as well as the relative toxicity of the four different isomers. Additionally, there is also some uncertainty related to the isomer ratio that has been tested in the toxicological studies (see data gap in section 1). Therefore data gaps have been identified.

3. Residues

The assessment in the residue section below is based on the guidance documents listed in the document 1607/VI/97 rev.2 (European Commission, 1999), and the JMPR recommendations on livestock burden calculations stated in the 2004 and 2007 JMPR reports (JMPR, 2004, 2007).

Metabolism in plant was investigated in four plant groups: fruit crops (tomato, grape), cereals (wheat), tuber/root crops (potato) and on oilseeds/pulses crops (oilseed rape), using ¹⁴C-difenoconazole labelled in the phenyl or the triazole ring and foliar applications with a total of 2 to 6 treatments. Samples were collected for analysis at interim intervals and 6 to 40 days after the final application. In addition, metabolism was also considered in cereals following seed application.

The metabolism was seen to be similar in all four crop types. The parent difenoconazole remained the major component of the residues in the majority of the plant parts (mostly >40 % TRR), with the exception of the cereal grains, potato tubers and rape seeds, where it accounted for less than 10-15% of the TRR. In these crops, and for the triazole labelling, TRRs are mainly composed of the triazole derivative metabolites (TDM): triazole alanine (56 % and 79 % TRR in rape seeds and potato tubers) and triazole acetic acid (20 % TRR in cereal grain). In addition, triazole alanine was detected up to 42 % TRR in tomato fruits and 1,2,4-triazole up to 12 % in grape. TDM were also the major components of the residues in cereal grains following seed treatment and the major metabolites in the succeeding crop studies. Metabolites CGA 205374 (ketone), CGA 205375 (alcohol) and CGA 189138 (benzoic acid) were also identified in low proportions (below 5 % TRR). Based on the different structures identified, the following metabolic pathway in plants was proposed. As a first step, the metabolism involves hydrolysis of the dioxolane ring to form the ketone metabolite which is then reduced to the corresponding alcohol. Further oxidation of the difenoconazole-alcohol metabolite results in the cleavage of the alkyl bridge to form the difenoconazole-benzoic acid metabolite and the 1,2,4-triazole which is further metabolised to triazole alanine and triazole acetic acid. Based on these data, the residue for monitoring was defined as the parent compound difenoconazole. For risk assessment, considering that TDM are toxicologically relevant metabolites present in significant proportions in primary and rotational crops, two separate plant residue definitions were proposed: 1) difenoconazole and 2) provisionally, Triazole Derivative Metabolites. No final definition can be proposed for TDM at this stage, since a global and harmonized approach is needed for all compounds of the triazole chemical class.

A sufficient number of supervised residue trials conducted according to the critical GAPs was provided to propose MRLs on cereals (seed treatment), pome fruits and carrot. On pome fruits, the MRL calculation was derived from the Southern data only, since the GAP defined for this zone was seen to be more critical than the Northern one. Additional trials on carrot are however required in order to complete the residue dataset. No information was provided on the residue levels of TDM in primary crops. Cold rotational crop studies were provided where difenoconazole was applied to the bare soil at a rate of 750 g/ha (2N) one month prior to planting and samples were analysed for difenoconazole and triazole alanine. Residues were below the LOQs but further information on TDM residues in rotational crops are still required since this study was limited to a single plant back interval and to two crops only (spinach and carrots). These residue data are supported by the storage stability study showing difenoconazole residues to be stable up to 2 years in various plant matrices when stored at -20°C. Difenoconazole was found to be stable under standard hydrolysis conditions

simulating pasteurisation, baking and sterilisation. Processing studies were provided for apple only and it was concluded that additional processing studies on carrot are required.

Several metabolism studies on goats and laying hens were submitted where animals were fed with ¹⁴C-difenoconazole labelled on the phenyl and triazole ring. Difenoconazole was more extensively metabolised in animals than in plants, occurring at less than 10 % TRR in nearly all matrices. Difenoconazole-alcohol (CGA 205375) was by far the most abundant metabolite detected, up to 60 -90 % TRR in goat and poultry fat. Beside CGA 205375, the metabolite 1,2,4-triazole resulting from cleavage of the parent structure was also observed in significant proportions in milk (46 % TRR) and eggs (32 – 75 % TRR). Based on these studies, the residue definition for monitoring was limited to the metabolite difenoconazole-alcohol only. For risk assessment, as for plants, two separate residue definitions are proposed: 1) difenoconazole-alcohol expressed as difenoconazole and 2) provisionally, Triazole Derivative Metabolites. Only 1,2,4-triazole was detected in the animal metabolism studies, but the presence of the other TDM (CGA 131013, CGA 142586 and CGA 205369) in animal feed was not considered. Their transfer to the animal products cannot be excluded and the definition for TDM can not be limited to the 1,2,4-triazole only. As for plants, no final residue definition can be proposed for TDM, since the fate of CGA 131013, CGA 142586 and CGA 205369 were not investigated and a global and harmonized approach is needed for all compounds of the triazole chemical class. A feeding study on cow was provided where samples were analysed for difenoconazole and difenoconazolealcohol. Difenoconazole was not detected in any animal matrices, even at the highest dose level (15N for beef cattle), except in liver (highest residue 0.02 mg/kg). MRLs were derived for ruminant products from the difenoconazole-alcohol residue levels.

No chronic or acute consumer concerns were identified, the highest TMDI being 44 % of the ADI (DE child) and the highest IESTI 17 % of the ARfD (apples). However, this consumer risk assessment has to be considered as provisional since the contribution of the TDM metabolites present in primary crops, rotational crops, processed commodities and in animal matrices was not taken into account and the impact of isomeric composition of the residues could not be considered.

4. Environmental fate and behaviour

The application dossier provides no information on the behaviour of each individual difenoconazole enantiomer or each diastereoisomer pair in the environment. The notifier confirmed that the chromatographic conditions that they had used in the analyses in their studies had not enabled the diastereoisomers to be resolved, though this could have been technically possible with non-chiral chromatographic methods. It is not known if either isomer is degraded more quickly than the other or if any other conversion may occur in the environmental matrices studied. Consequently this issue is identified as a data gap.

In soil laboratory incubations under aerobic conditions in the dark, difenoconazole exhibits moderate to high persistence forming the major metabolite 1,2,4-triazole (exhibiting low to moderate persistence). Moreover, two minor transient metabolites (ascribed the codes V3 and M4) were formed but not identified or further addressed in the risk assessment. The notifier has provided some indication that V3 is very likely to be 1,2,4-triazole, which is already included in the assessment available. However, since this could not be unequivocally confirmed with the data available, a data gap remains for identification of the metabolites V3 and M4. In a radiolabelled field dissipation study, GCA 205375 was identified as a major breakdown product.

⁷ Major metabolites are defined as metabolites, which account for more than 10 % of the amount of active substance added in soil at any time during soil incubation or field dissipation studies.

Minor transient metabolites are defined as metabolites, which a) account for more than 5 % of the amount of the active substance added in soil in at least two sequential measurements during the studies; or b) for which at the end of the soil degradation studies the maximum of formation is not yet reached.

Available laboratory soil incubations and field dissipation studies suggested that there could be a dose dependence of the degradation rate. This issue was however discussed at the teleconference of Member State experts (PRAPeR TC 41), where it was concluded that the evidence provided was not strong enough to affirm dose dependent degradation. In the available aerobic laboratory incubations mineralisation of the triazole and chlorophenyl ring radiolabels to carbon dioxide accounted for 2 % (after 90-100 days) and 4-19 % (after 90-120 days) respectively. The formation of unextractable residues (not extracted using acetonitrile:water) for the triazole and chlorophenyl ring radiolabels accounted for 12-37 % (after 90-100 days) and 14-34 % (after 90-120 days) respectively. Under anaerobic soil conditions difenoconazole was stable, while 1,2,4-triazole and GCA 205375 exhibited medium and high persistency respectively. In field dissipation studies the persistency of difenoconazole was moderate to high. These studies were conducted in Germany and Switzerland and satisfactory field dissipation information covering Southern European conditions was not available. This is identified as a data gap. Since the DT_{90} of difenoconazole exceeded one year, soil accumulation was investigated in four soil accumulation studies. Under the conditions present at these trial sites in the UK, Switzerland and Italy, soil accumulation did not occur.

Difenoconazole exhibited immobility to medium mobility in soil. 1,2,4-triazole exhibited high to very high mobility, whereas CGA 205375 exhibited low mobility or was immobile. There was no evidence that the adsorption of these compounds was affected by soil pH.

In laboratory incubations in dark aerobic natural sediment water systems, difenoconazole exhibited high persistence, forming the major metabolite CGA 205375 (max. ca. 11 % AR in sediment, exhibiting high persistence). Non-extractable sediment fraction was the major sink for the applied chlorophenyl ring radiolabel accounting for 9-14 % AR (after 183 days) while mineralisation accounted for 3.0-3.9 % AR (after 183 days).

Difenoconazole and CGA 205375 were both considered to be stable in laboratory studies on photochemical transformation in water under sterile conditions

The necessary surface water and sediment exposure assessments (predicted environmental concentrations (PEC)) were carried out for difenoconazole as well as the metabolites 1,2,4-triazole and GCA 205375 using the FOCUS (FOCUS, 2001) step 1 and step 2 approach (version 1.1 of the Steps 1-2 in FOCUS calculator). For difenoconazole FOCUS (2001) step 3 and step 4 calculations were also provided. The step 4 calculation appropriately followed the FOCUS (FOCUS, 2007) guidance, with no-spray drift buffer zones implemented for the use assessed on apples ('late' spray drift values reducing spray drift by 90.4 to 90.7 % with a buffer width of up to 20 m). Combined no-spray buffer zones with vegetative buffer strips were implemented for carrots (a 5 m no spray buffer reducing drift by 72.9 to 73.5 % and reducing runoff flux with a vegetative strip by 50 %).

The necessary groundwater exposure assessments were carried out using FOCUS (FOCUS, 2000) scenarios and the model PEARL 2.2.2, 10 for difenoconazole, GCA 205375 and 1,2,4-triazole. The potential for groundwater exposure from the representative uses for these compounds above the parametric drinking water limit of 0.1 $\mu g/L$ was concluded to be low in geoclimatic situations that are represented by all nine FOCUS groundwater scenarios.

5. Ecotoxicology

The risk assessment was based on the followings documents: European Commission (2002a, 2002b, 2002c), SETAC (2001), EFSA (2009).

⁹ Simulations utilised a Q10 of 2.2 and Walker equation coefficient of 0.7.

¹⁰ Simulations utilised a Q10 of 2.2 and Walker equation coefficient of 0.7.

Isomerisation of difenoconazole cannot be excluded. No reliable information on the ecotoxicity, conversion or preferential degradation of isomers was submitted. This adds additional uncertainty to the environmental risk assessment.

The metabolism of difenoconazole in a range of plant species has demonstrated 56 - 79% of measurable residues in rape seeds and potato tubers may exist as the metabolite triazole alanine (CGA 131013). As a worst case assumption, it was proposed that 100 % of the parent compound is transformed to the metabolite (correction for molecular weight, 156 g/mole, compared to 406 g/mole for the parent, or a factor of 0.38 was taken into account).

The acute and short-term risk to birds via dietary exposure from difenoconazole and its metabolite triazole alanine was assessed as low at first tier for all the representative uses. Triazole alanine was not found in the residue study with pome fruit and therefore the risk assessment for this metabolite in pome fruit use was not performed.

The long-term risk to granivorous, medium herbivorous and small herbivorous birds from difenoconazole and the metabolite triazole alanine was assessed as low based on measured residues decline of difenoconazole in shoots emerging from treated seeds, and on measured data on dissipation of difenoconazole from treated seeds for the use in cereals.

The long-term risk of difenoconazole to insectivorous birds was assessed as low, based on a focal species (blue tit) and PT refinement for the use on pome fruit. The long-term risk of the metabolite triazole alanine to birds was assessed as low at the first tier for the use on carrots. The long-term risk of difenoconazole to medium herbivorous and insectivorous birds was assessed as high at the first tier based on the old guidance document (European Commission, 2002c) for the use on carrots. The Member State experts in PRAPeR TC 42 agreed to perform the risk assessment on the basis of the new guidance document (EFSA, 2009). The worst case scenario for late growth stages of carrot root and stem vegetables with a BBCH >40 where the focal species was woodlark (omnivore; 25 % crop leaves, 25 % weed seeds, 50 % ground arthropods) was used in the risk assessment. A calculation of the reproductive TER for this focal species was provided by the rapporteur Member State after the teleconference and presented in the addendum (Sweden, 2010). The long-term risk to woodlark was assessed as low for the use on carrots.

The acute risk to mammals via dietary exposure from difenoconazole was assessed as low at tier 1 for all representative uses. The long-term risk to granivorous and small herbivorous mammals was assessed as low based on a focal species (woodmouse), and measured residues decline of difenoconazole in emerging shoots, for the use in cereals. The long-term risk to herbivorous mammals was assessed as low based on the use of crop interception values for the use in pome fruit. The long-term risk of difenoconazole to mammals via dietary exposure was assessed as low for the use in carrots. The risk to mammals via dietary exposure from the metabolite triazole alanine was assessed as low at the first tier, for the use in cereals and carrots.

The risk assessment for fish-eating birds and mammals and earthworm-eating birds and mammals was required since $\log P_{ow}$ was 4.4. The risk assessment from secondary poisoning to birds and mammals was assessed as low for all representative uses. Additionally, the risk to birds and mammals from consumption of contaminated water was assessed as low for all representative uses.

During the peer-review process concerns were raised regarding the potential endocrine disrupting properties of difenoconazole (DMI-fungicide family). There were indications in open literature that difenoconazole is an aromatase inhibitor, but information from the toxicology section gave no indications of endocrine disruption. Therefore, the Member State experts at PRAPeR TC 42 agreed that concern for endocrine disruptive effects in birds and mammals was low. It was noted that the information on birds and mammals would not be appropriate to cover the potential endocrine disruption on fish.

Difenoconazole is very toxic to aquatic organisms. The formulations 'Dividend 030 FS' and 'Score' were less toxic than the technical active substance. In the *Chironomus riparius* study on difenoconazole, no measurements of sediment concentrations were conducted. Therefore the sediment concentrations in the test system were recalculated from the measured water concentrations (PRAPeR TC 42). The Member State experts confirmed that the PEC_{sed} plateau should be used in the risk assessment for *C. riparius*. The RMS updated the list of endpoints with the agreed TER.

EFSA notes that the aquatic risk assessment should be done with the highest PEC_{sw} available. These usually correspond with the PEC_{sw} estimated for single application instead of the PEC_{sw} for multiple applications used by the rapporteur Member State in the risk assessment. However, in this case there were a few scenarios where the PEC_{sw} for the multiple applications were higher than PEC_{sw} for a single application. Therefore EFSA calculated the TER values for the aquatic organisms using the highest PEC_{sw} available for the Step 3 and Step 4 assessment for the use on pome fruit and carrots.

The risk of difenoconazole to fish and algae and the acute risk to aquatic invertebrates was assessed as low at FOCUS step 1 for *use on cereals*. The chronic risk to aquatic invertebrates was assessed as low at FOCUS step 2. The risk to *C. riparius* was assessed as high at FOCUS step 2 for the use in cereals and there were no accepted PEC_{sw} FOCUS step 3 available. Therefore the risk to *C. riparius* needs to be further addressed and a data gap was identified for the representative use on cereals.

The risk of difenoconazole to aquatic organisms was assessed as high at FOCUS step 2 for *use on pome fruit*, with the exception of the acute risk to fish. The risk to algae was assessed as low for the use on pome fruit at FOCUS_{sw} step 3 for all relevant scenarios. However, the chronic risk to fish and the acute and chronic risk to aquatic invertebrates were assessed as high for seven out of ten scenarios. Furthermore, the chronic risk to *C. riparius* was assessed as high for four out of ten scenarios (D3 ditch, D4 pond, D5 pond and R1 pond) where the TERs values were below the Annex VI trigger values at FOCUS_{sw} step 3. At FOCUS_{sw} step 4, the chronic risk to fish, the acute and chronic risk to *D. magna* and the risk to *C. riparius* were assessed as low for the majority of scenarios, based on risk mitigation measures (e.g. non-spray buffer zones of 14 m for the use on pome fruit).

The risk to algae and the acute risk of difenoconazole to fish and aquatic invertebrates were assessed as low at FOCUS step 2 for *use on carrots*. At FOCUS step 3 a low chronic risk to fish was identified for the majority of the relevant scenarios (four out of seven scenarios). However, at FOCUS_{sw} Step 3 the chronic risk to aquatic invertebrates and *C. riparius* was assessed as high for the majority of the relevant scenarios. At FOCUS_{sw} step 4 the chronic risk to aquatic invertebrates was assessed as low. The risk to *C. riparius* was assessed as low including risk mitigation measures (e.g. non-spray buffer zones of 5 m for the use on carrots) in the full FOCUS scenarios D3, D6 and the part scenario R1 pond.

The risk from the metabolites 1,2,4-triazole and CGA 205375 was assessed as low for aquatic organisms for all representative uses.

A bioconcentration factor of 330 obtained for whole fish may indicate some potential for bioaccumulation however the risk from secondary poisoning was assessed as low (see above assessment for fish-eating birds and mammals).

The Member State experts at PRAPeR TC 42 agreed that the available information on fish would not be sufficient to assess the potential for endocrine disrupting effect of difenoconazole to fish. Therefore a data gap was identified to address the potential for endocrine disruption in fish.

Satisfactory field soil dissipation information for difenoconazole was not available to cover Southern European conditions. This information would be required to finalise the risk assessment to soil-

dwelling organisms under Southern European conditions. A low acute risk to earthworms was identified from difenoconazole and its metabolites 1,2,4-triazole and CGA 205375. The selection of the chronic endpoint for difenoconazole was discussed at PRAPeR TC 42. It was concluded that the notifier would have to demonstrate that the increase in body weight would not lead to adverse effects on earthworm populations in order to use the reproduction NOEC from the available reproduction study. However, it was noted that with the reproduction NOEC a high risk would be identified for the use in pome fruits and carrots, and that further refinement of the risk would be needed for these uses if the reproduction NOEC would be accepted. A data gap was identified for the notifier to demonstrate that the increase in body weight would not lead to adverse effects on earthworm populations in order to be able to use the reproduction NOEC from the reproduction study. The chronic risk of 1,2,4-triazole metabolite to earthworms was assessed as low. For the metabolite CGA 205375, no chronic data on earthworms were available. Based on the persistence in soil of the metabolite CGA 205375, two data gaps were identified for the submission of data in order to address the chronic risk to earthworms and *Collembola*.

The risk to soil non-target macro-organisms was assessed as low for difenoconazole and the metabolite 1,2,4-triazole.

The risk to bees, non-target arthropods, non-target soil micro-organisms, non-target plants and waste water treatment plants was assessed as low for all representative uses.

6. Overview of the risk assessment of compounds listed in residue definitions triggering assessment of effects data for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
Difenoconazole	Moderate to high persistence Single first order DT ₅₀ 53 - 235 (20°C, 40 - 48 % MWHC soil moisture) Field studies: Single first order DT ₅₀ 20 - 242 days (non normalised)	The acute risk of difenoconazole to earthworms was assessed as low. No NOEC could be derived from the reproductive earthworms study. Therefore the chronic risk to earthworms could not be finalised. The risk to non-target soil macro-organisms was assessed as low.
1,2,4-triazole (CGA 71019)	Low to moderate persistence Single first order DT ₅₀ 6 – 12 (20°C, 40 % MWHC soil moisture)	The acute and chronic risk of 1,2,4-triazole to earthworms was assessed as low.
CGA 205375	Medium to high persistence Single first order DT_{50} 83 – 152 (20°C, 40 %MWHC soil moisture)	The acute risk of CGA 205375 to earthworms was assessed as low. No long-term data on soil organisms were available, therefore the chronic risk to soil organisms could not be finalised.

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
Difenoconazole	Immobile to medium mobility $K_{foc}400-7730\;mL/g$	No	Yes	Yes	Very toxic to aquatic organisms, endpoint driving the aquatic risk assessment: <i>Daphnia magna</i> chronic NOEC = 0.0056 mg a.s./L (regulatory concentration including a safety factor of 10 = 0.00056 mg a.s./L). A high risk to the aquatic environment was indicated in the surface water risk assessment.
1,2,4-triazole (CGA 71019)	High to very high mobility $K_{foc}43-120\;mL/g$	No	No	Yes	Toxic to aquatic organisms, endpoint driving the aquatic risk assessment: fish chronic NOEC = 3.2 mg a.s./L (regulatory concentration including a safety factor of 10 = 0.32 mg a.s./L). A low risk to the aquatic environment was indicated in the surface water risk assessment.
CGA 205375	Immobile to low mobility $K_{foc}\ 1680-5440\ mL/g$	No	No	Assessment not required. Mouse oral LD ₅₀ >2000 mg/kg bw. Ames test negative.	Very toxic to aquatic organisms, endpoint driving the aquatic risk assessment: fish acute $EC_{50} = 0.74$ mg a.s./L (regulatory concentration including a safety factor of $100 = 0.0074$ mg a.s./L). A low risk to the aquatic environment was indicated in the surface water risk assessment.

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
Difenoconazole	Very toxic to aquatic organisms, endpoint driving the aquatic risk assessment: <i>Daphnia magna</i> chronic NOEC = 0.0056 mg a.s./L (regulatory concentration including a safety factor of 10 = 0.00056 mg a.s./L). A high risk to the aquatic environment was indicated in the surface water risk assessment.
1,2,4-triazole (CGA 71019)	Toxic to aquatic organisms, endpoint driving the aquatic risk assessment: fish chronic NOEC = 3.2 mg a.s./L (regulatory concentration including a safety factor of $10 = 0.32 \text{ mg a.s./L}$). A low risk to the aquatic environment was indicated in the surface water risk assessment.
CGA 205375	Very toxic to aquatic organisms, endpoint driving the aquatic risk assessment: fish acute $EC_{50} = 0.74$ mg a.s./L (regulatory concentration including a safety factor of $100 = 0.0074$ mg a.s./L). A low risk to the aquatic environment was indicated in the surface water risk assessment.

6.4. Air

Compound (name and/or code)	Toxicology
Difenoconazole	Rat $LC_{50} > 3.3$ mg/L (4h exposure, nose-only, highest technically achievable concentration).

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- Specification range supported by the available data for the *cis* and *trans* isomers (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 1).
- Biological activity of the isomers (relevant for all representative uses evaluated; data available but could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007; see section 1).
- Validation of the HPLC method for the isomer ratio in the technical specification (relevant for all representative uses evaluated; data available but could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007; see section 1).
- Adherence to seeds (relevant for the representative use evaluated as a seed treatment; submission date proposed by the notifier: unknown; see section 1).
- Given that the isomer range is so wide the effect of this on the physical, chemical and toxicological properties of the active substance is identified as a data gap (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 1 and 2).
- A data gap was identified to assess the toxicological relevance of some impurities (relevant for all representative uses evaluated; data on one of the impurities but could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007, submission date proposed by the notifier for data on the other impurities: unknown; see section 2).
- Additional supervised residue trials on carrots are required in order to complete the residue dataset, unless the stability of the residues in plant matrices is confirmed up to 33 months (relevant for the representative use evaluated in carrots; submission date proposed by the notifier: unknown; see section 3).
- Processing study on carrots (data already submitted but that could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007; see section 3)
- Information on the possible residues of TDM metabolites in primary crops, rotational crops, processed commodities and in animal matrices are required in order to perform a sound consumer risk assessment (relevant for all representative use evaluated; no submission date proposed by the notifier, see section 3).
- Identification and further assessment of the minor transient metabolites V3 and M4 formed in soil incubation studies is outstanding (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 4).
- Satisfactory field soil dissipation information for difenoconazole was not available to cover Southern European conditions. This information would be required to finalise the risk assessment to soil-dwelling organisms under Southern European conditions (relevant for all representative uses evaluated in Southern Europe; submission date proposed by the notifier: unknown; see section 4).
- Difenoconazole consists of diastereo isomers. The preferential metabolism/degradation of each
 enantiomer in plants, animals, and the environment, as well as the possible impact on the toxicity,
 the consumer risk assessment, worker exposure and the environment needs to be addressed
 (relevant for all representative uses evaluated; data gap identified by EFSA during drafting of the

conclusion; submission date proposed by the notifier: unknown; applicable to sections 2, 3, 4 and 5).

- A high risk was identified from the use of difenoconazole for *C. riparius*. Further refinement of the risk to aquatic sediment-dwelling organisms was necessary (relevant for the representative use in cereals; submission date proposed by the notifier: unknown; see section 5).
- A data gap was identified for data to address the potential for endocrine disruption in fish (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 5).
- A data gap was identified to demonstrate that the increase in body weight would not lead to adverse effects on earthworm populations in order to be able to use the reproduction NOEC from the reproduction study. As a consequence of the use of this NOEC, further refinement would be needed for the use on pome fruit and carrots (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 5).
- A data gap was identified for an earthworm reproduction study on the soil metabolite CGA 205375 (relevant for all representative uses evaluated; data available but could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007; see section 5).
- A data gap was identified for a *Collembola* reproduction study on the soil metabolite CGA 205375 (relevant for all representative uses evaluated; data available but could not be taken into account due to the provisions in Regulation 1490/2002 and 1095/2007; see section 5).

PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

- The rinsed residue result was high for the formulation 'Dividend 030 FS' so appropriate labelling should be considered (see section 1).
- Risk mitigation measures corresponding to 14 m non-spray buffer zones and 5 m non-spray buffer zones were required to address the risk to aquatic organisms for the representative uses on pome fruit and carrots, respectively (see section 5).

ISSUES THAT COULD NOT BE FINALISED

- Possible impact on the toxicity, the consumer risk assessment, worker exposure and the
 environment of the variable isomer ratio in the technical and of the potential enantio-selective
 biologically mediated metabolism/degradation/transformation in plants, animals, and the
 environment needs to be addressed.
- The consumer risk assessment has to be considered provisional since the possible contribution of the TDM metabolites present in primary crops, rotational crops, processed commodities and products of animal origin to the overall consumer exposure was not considered. Moreover, the impact of the enantiomeric composition of the residues was not considered.
- Consequent to the data gap for further information to address the identity of soil metabolites V3 and M4, the groundwater exposure assessment for metabolites is not finalised.
- The risk to soil non-target organisms under Southern European conditions could not be finalised whilst the soil exposure assessment under Southern European conditions is not finalised.

- The chronic risk assessment to sediment-dwellers could not be finalised for the uses on cereals.
- The chronic risk assessment of difenoconazole to earthworms could not be finalised for all the representative uses. For the metabolite CGA 205375, the chronic risk could not be assessed for any of the representative uses.

CRITICAL AREAS OF CONCERN

• None.

REFERENCES

- Sweden, 2006. Draft Assessment Report (DAR) on the active substance difenoconazole prepared by the rapporteur Member State Sweden in the framework of Directive 91/414/EEC, December 2006.
- Sweden, 2010. Final Addendum to Draft Assessment Report on difference on azole, compiled by EFSA, November 2010.
- EFSA (European Food Safety Authority), 2009. Guidance Document on Risk Assessment for Birds and Mammals on request of EFSA. EFSA Journal 2009; 7(12):1438
- EFSA (European Food Safety Authority), 2011. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance difenoconazole.
- European Commission, 1999. Guidelines for the generation of data concerning residues as provided in Annex II part A, section 6 and Annex III, part A, section 8 of Directive 91/414/EEC concerning the placing of plant protection products on the market, 1607/VI/97 rev.2, 10/6/1999.
- European Commission, 2002a. Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev.2 final, 17 October 2002.
- European Commission, 2002b. Guidance Document on Aquatic Ecotoxicology Under Council Directive 91/414/EEC. SANCO/3268/2001 rev 4 (final), 17 October 2002.
- European Commission, 2002c. Guidance Document on Risk Assessment for Birds and Mammals Under Council Directive 91/414/EEC. SANCO/4145/2000.
- European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10-final, 25 February 2003.
- European Commission, 2004. Guidance Document on Dermal Absorption. SANCO/222/2000 rev. 7, 19 March 2004.
- European Commission, 2008. Review report for the active substance difenconazole. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 14 March 2008 in view of the inclusion of difenconazole in Annex I of Directive 91/414/EEC. SANCO/830/08 rev. 1, 10 March 2008.
- European Commission, 2009. Guidance Document on the Assessment of the Equivalence of Technical Materials of Substances Regulated under Council Directive 91/414/EEC. SANCO/10597/2003 rev. 8.1, May 2009.
- FOCUS, 2000. "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002.
- FOCUS, 2001. "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS, 2007. "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.
- JMPR, 2004. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Rome, Italy, 20–29 September 2004, Report 2004, 383 pp.

- JMPR, 2007. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Geneva, Switzerland, 18–27 September 2007, Report 2007, 164 pp.
- SETAC (Society of Environmental Toxicology and Chemistry), 2001. Guidance Document on Regulatory Testing and Risk Assessment procedures for Plant Protection Products with Non-Target Arthropods. ESCORT 2.
- Young AD, Sheets LP, Elcock LE, 2005. A Two-Generation Reproductive Toxicity Study in the Wistar Rat with 1,2,4-Triazole. Draft Assessment Report (DAR) on the active substance tebuconazole prepared by the rapporteur Member State Denmark in the framework of Directive 91/414/EEC, February 2007.

APPENDICES

APPENDIX \mathbf{A} – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡ Function (*e.g.* fungicide)

Rapporteur Member State Co-rapporteur Member State Difenoconazole Fungicide

Sweden

Not assigned

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ‡

Chemical name (CA) ‡

CIPAC No ‡

EC No (EINECS or ELINCS) ‡

FAO Specification (including year of publication) ‡ Minimum purity of the active substance as manufactured

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Molecular formula ‡
Molecular mass ‡
Structural formula ‡

3-chloro-4-[(2RS,4RS;2RS,4SR)-4-methyl-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl 4-chlorophenyl ether

1-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole

687

119446-68-3

Not allocated

No FAO specification available.

940 g/kg. Open for cis/trans ranges

Toluene: 5 g/kg

Open for others.

C₁₉H₁₇Cl₂N₃O₃

406.3 g/mol

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡
Boiling point (state purity) ‡

Temperature of decomposition (state purity) Appearance (state purity) ‡

Vapour pressure (state temperature, state purity) ‡
Henry's law constant ‡
Solubility in water (state temperature, state purity and pH) ‡
Solubility in organic solvents ‡
(state temperature, state purity)

Surface tension ‡
(state concentration and temperature, state purity)
Partition co-efficient ‡
(state temperature, pH and purity)
Dissociation constant (state purity) ‡

UV/VIS absorption (max.) incl. $\epsilon \ddagger$ (state purity, pH)

Flammability ‡ (state purity)

Explosive properties ‡ (state purity)
Oxidising properties ‡ (state purity)

82.0-83.0°C (99.3%)								
Not relevant at atmosph	Not relevant at atmospheric pressure as decomposition occurs.							
100.8°C at 3.7 mPa (99.	.3%)							
Decomposition starts at about 337°C (99.3%)								
Technical material: Off-white powder with a slightly sweetish								
odour, purity not stated.								
<u>Purified material:</u> White fine odourless crystalline powder,								
purity 99.3 %								
3.32×10^{-8} Pa at 25°C (99.0%)							
9.0 x 10 ⁻⁷ Pa m ³ mol ⁻¹ at 25°C								
15 mg/l \pm 1.3 mg/l at pH 7.2 and 25 °C								
No pH effect is anticipated at environmentally relevant pH								
Solubility at 25°C in g/L (94.6%):								
acetone: >500 g/l								
dichloromethane: >500 g/l								
ethyl acetate: >500 g/l								
hexane: 3.0 g/l methanol: >500 g/l								
octanol: 110 g/l	0 8/1							
toluene >500 g/l								
62.8 mN/m at 20°C (90	% saturat	ed solution)(94.6%)						
,		,,						
$\log P_{O/W} = 4.36 \pm 0.02 a$	at 25 °C a	and a pH of approx. 8 (99.3%)						
		ironmentally relevant pH.						
		oonding acid (i.e the neutral						
species is predominantly								
	λ_{max} [nm	a] ε (l x mol ⁻¹ x cm ⁻¹)						
Neutral media:	215	28658						
		17392						
	275							
		$[1] \varepsilon (1 \times mol^{-1} \times cm^{-1})$						
Acidic media:	215	29306						
	235	17556						
	275	1743						
A 11 1' 1'		$[1] \varepsilon (1 \times \text{mol}^{-1} \times \text{cm}^{-1})$						
Alkaline media:	220	21210						
	235 275	17176						
	413	1542						

Flammability: Not highly flammable

Auto-flammability: No self-ignition below the melting point Flash-point: Not applicable since the melting point is $>40~^{\circ}\text{C}$

No absorption maxima between 300 nm and 700 nm at any pH.

Not explosive (91.8%) Not oxidising (91.8%)

Summary of representative uses evaluated (Difenoconazole)*

Summary	i represen	tative uses evaluate			_	•									
Crop and/			F	Pests or	Form	ılation		Applic	ation	1	Application	n rate per t	reatment	PHI	
or situation	Member		G	Group of pests	Type	Conc	method	growth	number	interval	kg as/hL	Water	kg as/ha	(days)	Remarks:
	State or	Product name	or	controlled		of as	kind	stage &	min-	between applications		L/h		(
(a)	Country		I	(c)	(d-f)	(i)	(f-h)	season	max	(min)	min-max	min-max	min-max	(1)	(m)
(u)			(b)					(j)	(k)					(1)	
Pome fruit	EU	Score	F	Podosphaera	EC	250	High vol	Spray			0.00375	500	0.01875	28	EU(N) [I] [IV] [V]
	(N/S)	A7402T		leucotricha		g/l	spray or mist blower	programme beginning at	1.4	10.14	0.00373	1500	0.05625	20	[VI]
				Venturia			illist blower	flowering	1-4	10-14		500	0.0375		EU (S) [I] [II] [IV]
				inaequalis				(BBCH 61)			0.0075	1000	0.0750	14	[V] [VI]
Carrot		Score	F	Alternaria dauci	EC	250	High vol	First							
	EU	A7402T		Erysiphe heraclei		g/l	spray	application at	1-3	14	-	100	0.125	14	[I] [II] [IV] [V] [VI]
	(N/S)	11, 1021		21 yaspite tieraetet		8/1		BBCH 42/43				500			
Wheat		Dividend 030 FS	F	Fusarium spp.	FS	30	Seed	ВВСН	1	-	0.03-0.06	-	0.005	-	kg as/ha rate depends
	EU	A9142G		Tilletia spp.		g/l	treatment	00			kg as/tonne		0.012		on seeding rate
	(N/S)														
		D	-	n ,	770	20	a 1	DD GVV			0.02.0.05		0.005		[VI]
Barley	EII	Dividend 030 FS	F	Pyrenophorma granimea	FS	30	Seed treatment	ВВСН	1	-	0.03-0.06 kg as/tonne	-	0.005	-	kg as/ha rate depends on seeding rate
	EU (N/S)	A9142G		granimea		g/l	treatment	00			kg as/tollic		0.012		[I] [II] [III] [IV] [V]
	(= ", ~)														[VI]
Triticale		Dividend 030 FS	F	Fusarium spp.	FS	30	Seed	ВВСН	1	-	0.03-0.06	-	0.005	-	kg as/ha rate depends
	EU	A9142G		Tilletia spp.		g/l	treatment	00			kg as/tonne		0.012		on seeding rate
	(N/S)					8									[I] [II] [III] [IV] [V]
															[VI]
Rye		Dividend 030 FS	F	- Fusarium	FS	30	Seed	BBCH	1	-	0.03-0.06	-	0.005	-	kg as/ha rate depends
	EU (N/S)	A9142G		spp. Urocystis		g/l	treatment	00			kg as/tonne		0.012		on seeding rate
	(14/5)			occulata											[I] [II] [III] [IV] [V] [VI]

Crop and/			F	Pests or	Form	ılation		Applic	ation		Application	n rate per t	reatment	PHI	
or situation	Member State or	Product name	G or	Group of pests controlled	Туре	Conc of as	method kind	growth stage &	number min-	interval between applications	kg as/hL	Water L/h	kg as/ha	(days)	Remarks:
(a)	Country		I (b)	(c)	(d-f)	(i)	(f-h)	season (j)	max (k)	(min)	min-max	min-max	min-max	(1)	(m)
Oats	EU (N/S)	Dividend 030 FS A9142G	F	Ustilago avenae Pyrenphora avenae Cochliobolus sativum Fusarium culmorum Gibberella avenacea Pythium ultimum	FS	30 g/l	Seed treatment	BBCH 00	1	•	0.03-0.06 kg as/tonne	•	0.005 0.012	•	kg as/ha rate depends on seeding rate [I] [II] [III] [IV] [V] [VI]

- [I] The groundwater exposure assessment for metabolites that may be formed in soil was not finalised.
- [II] The risk assessment to soil dwelling organisms from exposure to difenoconazole under southern European conditions was not finalised.
- [III] The chronic risk assessment to sediment dwelling organisms from the exposure to difenoconazole could not be finalised for the representative uses on cereals.
- [IV] The chronic risk of difenoconazole to earthworms could not be finalised.
- [V] The consumer risk assessment has to be considered provisional since the possible contribution of the TDM metabolites to the overall consumer exposure was not considered.
- [VI] Possible impact on the toxicity, the consumer risk assessment, worker exposure and the environment of the variable isomer ratio in the technical and of the potential enantio-selective biologically mediated metabolism/degradation/transformation in plants, animals, and the environment needs to be addressed.
- *For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
- (a)For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph No 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated

- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- $(\bar{\mathbf{k}})$ Indicate the minimum and maximum number of application possible under practical conditions of use
- (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)

Impurities in technical as (analytical technique)

Plant protection product (analytical technique)

GC-FID Open for validation of the isomer ratio method

GC-FID

HPLC-UV (Dividend 030 FS) and GC-FID (Score)

Analytical methods for residues (Annex IIA, point 4.2) Residue definitions for monitoring purposes

Food of plant origin

Food of animal origin

Soil

Water surface

drinking/ground

Air

Difenoconazole

Difenoconazole alcohol (CGA 205375) expressed as

difenoconazole

Difenoconazole, data gap needs to be filled before

Difenoconazole alcohol (CGA 205375) can be excluded.

Difenoconazole

Difenoconazole

Difenoconazole

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Soil (analytical technique and LOQ)

Water (analytical technique and LOQ)

Air (analytical technique and LOQ)

Active substance Difenoconazole

Body fluids and tissues (analytical technique and LOQ)

LC-MS/MS; 0.02 mg/kg (apple, lettuce), 0.05 mg/kg (wheat grain, oilseed rape)

ILV available down to 0.01 mg/kg for all matrices

Difenoconazole and CGA 205375: LC-MS/MS; LOQ 0.01 mg/kg (tissues, fat, eggs), 0.005 mg/kg (milk)

ILV available down to LOQ

Difenoconazole and CGA 205375: LC-MS/MS; LOQ 0.01

mg/kg

GC-ECD; LOQ 0.05 µg/l (drinking), 0.1 µg/l (surface)

LC-MS/MS; 0.99 ng/L

Not required as the active substance is not classified as toxic or very toxic.

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

RMS/peer review proposal

None

-9%) excretion within 48 hours.

No evidence for accumulation

demonstrated.

Difenoconazole

Initially highest residues in fat, liver, brown fat, Harderian gland, adrenal gland and stomach. At 168 hours, residues above the plasma concentration only detected in fat.

Rapid and extensive within 48 hours mainly via faeces (>77%)

Extensively metabolised, mainly by hydrolysis of the ketal and

hydroxylation; also by cleavage of the triazole (1, 2, 4- triazole

Triazole derivative metabolites (1,2,4-triazole, triazole acetic

and in urine (>12%). Entero hepatic recirculation

determined to represent <10% in male rats).

acid, triazole alanine, triazole lactic acid).

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)	Absorption,	distribution,	excretion and	metabolism	(toxicokinetics)	(Annex	IIA, point 5.1)
--	-------------	---------------	---------------	------------	------------------	--------	-----------------

Rate and extent of oral absorption ‡

About 80 - 90% based on the biliary (73-76%) and urinary (14

Distribution ‡

Potential for accumulation ‡ Rate and extent of excretion ‡

Metabolism in animals ‡

Toxicologically relevant compounds ‡ (animals and plants)
Toxicologically relevant compounds ‡ (environment)

Acute toxicity (Annex IIA, point 5.2)

Rat LD_{50} oral ‡ Mouse LD_{50} oral Rabbit LD_{50} dermal ‡ Rat LC_{50} inhalation ‡

Skin irritation ‡
Eye irritation ‡
Skin sensitisation ‡

1453 mg /kg bw	R22
> 2000 mg/kg bw	
>2010 mg/kg bw	
> 3.3 mg/L (4h exposure, nose-only, highest	
technically achievable concentration)	
Non-irritant	
Non- irritant	
Non-sensitiser (modified Buehler test)	

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡

Relevant oral NOAEL ‡

Relevant dermal NOAEL ‡
Relevant inhalation NOAEL ‡

Genotoxicity ‡ (Annex IIA, point 5.4)

Rat: reduced body weight, heart and carcass weight, reduced
food and water consumption; liver (at high doses after oral
exposure); liver and thyroid (follicular hypertrophy) after
dermal exposure

<u>Mouse</u>: reduced bodyweight gain, reduced ovary weight, liver (increased weight with enlargement, vacuolization and coagulative necrosis)

<u>Dog</u>: decreased body weight gain, liver (increased weight and changes in clinical chemistry), cataract formation (at high doses)

 Rat: 20 mg/kg bw/d (90-day)

 Mouse: 34 mg/kg bw/d (90-day)

 Dog: 31 mg/kg bw/d (28-week)

 Rat: 100 mg/kg bw/d (28-day)

 No data – not required.

Equivocal increases in chromosomal aberrations in CHO cells *in vitro*.

Difenoconazole is unlikely to be genotoxic *in vivo*.

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡

<u>Rat</u>: reduced body weight gain; liver (increased relative weight, hepatocyte hypertrophy)

<u>Mouse</u>: reduced body weight (gain); liver (increased weight, histopathological changes including necrosis, hypertrophy, fatty change and bile stasis.

Parental: reduced body weight (gain)

Reproductive: no adverse effect

number of resorptions (rat, rabbit)

16.8 mg/kg bw/d

189 mg/kg bw/d

16.8 mg/kg bw/d

Offspring: reduced body weight through lactation

Developmental: skeletal variations (rat), increased

Relevant NOAEL ‡	Rat: 1.0 mg/kg bw/d (2-yr) Mouse: 4.7 mg/kg bw/d (18-mo)
Carcinogenicity ‡	Liver adenomas/carcinomas in mice, only at high doses where toxicity was observed.
	Difenoconazole is considered unlikely to pose a carcinogenic risk to humans.

Reproductive toxicity (Annex IIA, point 5.6) Reproduction toxicity

Reproduction target / critical effect ‡

Relevant parental NOAEL ‡
Relevant reproductive NOAEL ‡
Relevant offspring NOAEL ‡

Developmental toxicity

Developmental target / critical effect ‡

Relevant maternal NOAEL ‡

Relevant developmental NOAEL ‡

Maternal: reduced body weight gain/reduced food consumption (rat, rabbit); abortions (2) and death (1)			
(rabbit)			
Rat: 15.6* mg/kg bw/d			
Rabbit: 25 mg/kg bw/d			
Rat: 15.6* mg/kg bw/d			
Rabbit: 25 mg/kg bw/d			

^{*}corrected for actual concentration of 78% in the test material

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡

Repeated neurotoxicity ‡

Delayed neurotoxicity ‡

No data available, no indication of neurotoxic			
properties in the available acute toxicity studies, no			
data required.			
No data available, no indication of neurotoxic			
properties in the available acute toxicity studies, no			
data required.			
No data available – not required			

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡

Studies performed on metabolites or impurities ‡

Dietary treatment of chickens with 5000 ppm difenoconazole during 8 weeks led to cataract development in some animals after one month of treatment.

Supplementary study on enzyme induction performed: difenoconazole is considered to be a reversible inducer of metabolising enzymes in the mouse liver with an enzyme induction profile resembling phenobarbitone.

Studies submitted for the plant metabolites:

CGA 189138: bacterial reverse mutation test negative **CGA 205374:** mouse acute oral $LD_{50} > 5000$ mg/kg bw, bacterial reverse mutation test negative

CGA 205375: mouse acute oral LD_{50} 2309 mg/kg bw, bacterial reverse mutation test negative

Several studies were submitted for the triazole derivative metabolites (as plant metabolites), and were already considered during the meeting PRAPeR 14 (January 2007). Based on these data and including an additional multigeneration study performed with 1,2,4-triazole and showing a more critical NOAEL (Young, 2005), specific reference values were agreed for the triazole metabolites (see also PRAPeR 14):

- **1,2,4-triazole**: ADI 0.02 mg/kg bw/d based on the 2-generation rat study by Young (2005) (SF 1000); ARfD 0.06

mg/kg bw based on the rat developmental study (SF 500).

- **triazole acetic acid** and **triazole lactic acid**: ADI and ARfD of 1,2,4-triazole (because of limited database available)
- **triazole alanine**: ADI and ARfD 0.1 mg/kg bw(/d) based on the rat developmental study (SF 1000).

Medical data ‡ (Annex IIA, point 5.9)

No detrimental effects on health in manufacturing personnel.

Summary (Annex IIA, point 5.10)

ADI ‡

AOEL ‡

Value	Study	Safety factor
0.01 mg/kg bw/d	2-yr rat	100
2 2	J	
0.16 mg /kg bw/d	developmental, rat	100
0.16 mg /kg bw	developmental, rat	100

Dermal absorption ‡ (Annex IIIA, point 7.3)

Formulation ((SCORE® 250 EC (A 7402 G, EC) (23.2% w/w, 250 g/L); DIVIDEND®030FS (A9142G) (2.86% w/w, 30 g/L))

SCORE® 250 EC (A 7402 T): no data available.

Data obtained for SCORE® 250 EC (A 7402 G) used to

represent type A 7402 T:

2% undiluted formulation, 4% diluted spray solution, based on rat *in vivo* and comparative *in vitro* human/rat skin. DIVIDEND®030FS (A9142G): no data available. Data obtained for diluted SCORE® 250 EC (A 7402 G) (i.e.

4%) used for **undiluted** DIVIDEND®030FS (A9142G).

Exposure scenarios (Annex IIIA, point 7.2)

Operators using SCORE® 250 EC (A-7402 T)

Operators using **DIVIDEND® 030 FS** (A-9142 G)

Workers re-entering crop treated with **SCORE**® **250 EC** (A-7402 T)

Workers loading and sowing seed treated with **DIVIDEND® 030 FS** (A-9142 G) Bystanders

Exposure estimates in % of AOEL (without use of PPE*)					
Crop – application – Zone	German	UK POEM			
	model	(5L bottle)			
Pome fruit – tractor – North	2	16			
Pome fruit – tractor – South	3	19			
Pome fruit – hand held - North	3	14			
Pome fruit – hand held – South	4	15			
Carrot – tractor	3	75			
Carrot – hand held	-	63			
T - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ED ED O DEM	1 1 / 11			

Estimated exposure according to SEEDTROPEX model (all tasks combined) is 37% of the AOEL without use of PPE.

Crop	EUROPOEM estimates in %
	AOEL(without use of PPE)
Pome fruit	3.4 (after one application)
Carrot	3.1 (after one application)

Estimated exposure according to SEEDTROPEX model is 6.9% of the AOEL.

SCORE[®] **250 EC**: <1% of AOEL for bystanders situated at 10 m distance from the orchards and exposed during 5 minutes. **DIVIDEND**[®]**030 FS**: Incidental exposure in seed treatment facilities is not expected to exceed the operator exposure during seed treatment.

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

RMS/peer review proposal
Xn; R22

Difenoconazole

^{*}PPE: personal protective equipment

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered

Foliar treatment:

Cereals (spring wheat) Root vegetables (potato) Fruits (tomato, grapes) (oilseed rape)

Pulses/oilseeds

Cereals

Seed treatment: (spring wheat)

Rotational crops

Leafy vegetables (lettuce, spinach), root vegetables (carrot, sugarbeet, turnip), cereals (spring and winter wheat, maize), oilseeds (mustard)

Metabolism in rotational crops similar to metabolism in primary crops?

Yes, in part. No residues of parent difenoconazole were found. Residues mainly composed of TDM metabolites: triazole alanine (TA), triazole acetic acid (TAA) and triazole lactic acid (TLA).

Processed commodities

Difenoconazole stable under standard hydrolysis conditions representative of pasteurisation/baking/sterilisation (more than 96% TRR consisted of parent difenoconazole).

Residue pattern in processed commodities similar to residue pattern in raw commodities? Plant residue definition for monitoring

Difenoconazole

Yes

Plant residue definition for risk assessment

Two separate residue definitions:

1) Difenoconazole

2) Triazole derivative metabolites (TDM) (provisional, pending the definition of a common and harmonised approach for all the active substances of the triazole chemical class)

Conversion factor (monitoring to risk assessment)

None

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered

Time needed to reach plateau concentration in milk and eggs

Ruminant (goat), poultry (hen) 48 hours [14C-phenyl]-difenoconazole in milk ¹⁴C-triazole]-difenoconazole 144 hours in milk [¹⁴C-phenyl] and [¹⁴C-triazole] in egg yolk 168 hours in eggs white [14C-triazole]-difenoconazole 120 hours

Animal residue definition for monitoring

Difenoconazole alcohol (CGA-205375) expressed as difenoconazole

Animal residue definition for risk assessment

Two separate residue definitions:

- 1) Difenoconazole alcohol (CGA-205375) expressed as difenoconazole
- 2) Triazole derivative metabolites (provisional, pending information on metabolism of TDM in animals and pending the definition of a common and harmonised approach for all the active substances of the triazole chemical class)

Conversion factor (monitoring to risk assessment)

Yes

Metabolism in rat and ruminant similar (yes/no)

Yes

Not concluded

Fat soluble residue: (yes/no)

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

Residues of difenoconazole in human food commodities of succeeding crops (lettuce, carrot, spinach) not expected to exceed 0.01 mg/kg.

In one study conducted with the [¹⁴C-triazole-] label, TRRs in mature maize and wheat grain were 0.211 and 0.341 mg/kg, consisting mainly of TDM [triazole alanine (44-66.2%), triazole acetic acid (25.9%) and triazole lactic acid (9.7%)]

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 introduction)

<u>Difenoconazole</u> stable when stored frozen at -20°C, up to:

- 24 months in potato, tomato, cotton (cottonseed oil) and wheat (straw, forage and grain)
- 12 months in lettuce (head), soybean (beans) and banana.

<u>Difenoconazole</u> stable at least 12 months in animal matrices (Eggs, milk, poultry breast and beef liver) when stored frozen at -20°C.

<u>Difenoconazole and Difenoconazole alcohol (CGA-205375)</u> stable at least 10 months in animal matrices (milk, liver, kidney, fat and muscle) when stored frozen at -18°C.

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Expected intakes* by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)

Potential for accumulation (yes/no):

Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)

Ruminant:	Poultry:	Pig:
Conditions of require	ement of feeding studion	es
Yes 0.23/0.65 mg/kg DM Dairy/Beef cattle	No	No
n/a	n/a	n/a
n/a	n/a	n/a

Feeding study^a (residues of **difenoconazole-alcohol** (CGA 205375) for the feeding rate 10 mg/kg DM corresponding to a 43N and 15N dose rate for dairy and beef cattle)

Residue levels in matrices : mean (Max) mg/kg CGA 205375

0.008 (0.009)	
0.077 (0.095)	
0.044 (0.052)	
0.303 (0.350)	
0.022 (0.024)	

Muscle

Liver
Kidney
Fat
Milk
Eggs

^a: Parent also analysed for in the feeding study. At the highest feeding rate (10 mg/kg DM), all values below LOQs (0.005 mg/kg milk, 0.01 mg/kg other matrices), except in liver (HR 0.02 mg/kg).

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Стор	Northern or Southern Region, field or glasshouse	Trials results relevant to the representative uses (a)	Recommendation/comments	MRL estimated from trials according to representative use	HR (c)	STMR (b)
Wheat	Northern and	Grain: 2x <0.01, 6x <0.02 (North) 2x <0.01, 4x <0.02 (South)		0.02	0.02	0.02
	Southern	Straw: 2x <0.01, 2x <0.02, 2x <0.04, 0.04, 0.05 (North) 2x <0.01, 3x <0.04, 0.05 (South)			0.05	0.04
Apple and Pear	Northern	cGAP: 0.056 g/ha, PHI 28 days 0.01, 0.02, 0.03, 0.04, 2x 0.05, 0.06, 2x 0.07	MRL derived from trials conducted in the Southern region, since Southern GAP leads to higher residue	0.3	0.07	0.05
	Southern	cGAP: 0.075 g/ha, PHI 14 days 0.04, 0.05, 0.07, 0.08, 0.10, 0.11, 0.13, 0.14, 0.15, 0.16, 0.28	levels. $R_{max} = 0.31$; $R_{ber} = 0.30$		0.28	0.11
Carrot	Northern	2x 0.02, 0.03, 0.04, 0.05, 0.07, 0.11, 0.12	MRL derived from merged northern and southern datasets, as similar residue levels in both zones.	0.2	0.13	0.05
	Southern	0.02, 0.03, 0.07, 0.11, 0.13	R_{max} = 0.17; R_{ber} = 0.22 3 additional trials required in Southern EU			

⁽a) Numbers of trials in which particular residue levels were reported e.g. 3 x <0.01, 1 x 0.01, 6 x 0.02, 1 x 0.04, 1 x 0.08, 2 x 0.1, 2 x 0.15, 1 x 0.17

⁽b) Supervised Trials Median Residue i.e. the median residue level estimated on the basis of supervised trials relating to the critical GAP

⁽c) Highest residue

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.01 mg/kg bw/day
TMDI (% ADI) according to EFSA PRIMo	Highest TMDI: 44% ADI (DE child)
rev2	(Provisional, TDM contribution and isomeric composition of the residues not considered)
TMDI (% ADI) according to WHO European diet	-
TMDI (% ADI) according to national (to be specified) diets	-
IEDI (WHO European Diet) (% ADI)	-
NEDI (specify diet) (% ADI)	Not calculated (TMDI < 100%)
Factors included in IEDI and NEDI	Not applicable
ARfD	0.16 mg/kg bw
IESTI (% ARfD) according to EFSA PRIMo rev2	17% ARfD (Apples) 16% ARfD (Pears) 5% ARfD (Carrots)
NESTI (% ARfD) according to national (to be specified) large portion consumption data	-
Factors included in IESTI and NESTI	Highest residue (HR)

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

	Number	Processing factors		Amount	
Crop/process/processed product	of studies	Transfer factor Mean (values)	Yield factor	transferred (%) (Optional)	
Apple/Washed fruit	2	0.78 (0.71, 0.84)			
Apple/Wet pomace	4	4.3 (3.5, 6.5, 4.0, 3.0)			
Apple/Dry pomace	1	16			
Apple/Juice (before/after pasteurisation)	1 ^a	0.02/0.02			
Apple/Puree	1	0.14			

^a: 4 studies available for apple juice, but 3 studies disregarded as residues in RAC and juice at/close to the LOQ

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Plant products	(difenoconazole	e)
----------------	-----------------	----

 Pome fruit
 0.3 mg/kg

 Carrot
 0.2 mg/kg

 Cereal grain
 0.05* mg/kg

Ruminant products (difenoconazole alcohol expressed as difenoconazole)

Liver 0.05 mg/kgOther ruminant products 0.01* mg/kg

When the MRL is proposed at the LOQ, this should be annotated by an asterisk (*) after the figure.

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Mineralization after 100 days ‡

20°, standard moisture conditions:

[14C-triazole]-label: 0.2% (91 d), 1.6% (100 d) and 2.1% (90 d)

[14C-chlorophenyl]-label: 18.1% (100 d), 3.7% (106 d), 5.5% (90 d), 19.3% (90 d), 11.3% (120 d), 14.4% (120 d), 15.2% (120 d) (n=7)

study on 1,2,4-triazole at 20°:

15.4% and 33.0%, both after 120 d (n=2)

study on [14C-triazole]-labelled CGA 205375 at 20°:

10.0%, 2.8%, 0.2% (all after 84 days) (n=3)

Non-extractable residues after 100 days ‡

Metabolites requiring further consideration ‡

- name and/or code, % of applied (range and maximum)

20°, standard moisture conditions:

[14C-triazole]-label: 11.9% (91 d), 21.8% (100 d) and 36.6%

(90 d) (n=3)

[14C-chlorophenyl]-label: 22.8% (100 d), 20.6% (106 d), 13.8% (90 d), 33.7% (90 d), 17.4% (120 d), 18.1% (120 d),

19.2% (120 d) (n=7)

study on 1,2,4-triazole at 20°:

64.7% and 40.1%, both after 120 d (n=2)

study on [14C-triazole]-labelled CGA 205375 at 20°:

15.6%, 17.2%, 15.6% (all after 84 days) (n=3)

CGA 205375: max. 4.4-9.7% after 56-120 d

[¹⁴C-triazole] and [¹⁴C-chlorophenyl] labels (n=7) in laboratory incubations: Max 11.9% found in radiolabelled field dissipation study.

CGA 71019: max. 20.6-23.4% after 190/271 d

[¹⁴C-triazole]-label (n=2)

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡

Mineralization after 100 days

Non-extractable residues after 100 days

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Soil photolysis ‡

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

0.1% after 110 d [14C-triazole]-label (n=1)	
11.6% after 110 d [¹⁴ C-triazole]-label (n=1)	
None	

None			

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Laboratory studies 4							
Difenoconazole	Aerobio	c conditi	ons				
Soil type	g/ha ¹	pН	t. °C / % MWHC	DT_{50}/DT_{90} (d)	$DT_{50} (d)^3$	St.	Method of
		_			20 °C	(r^2)	calculation
					pF2/10kPa		
loam	141	7.2	20 / 40	104 / 345	64	0.999	SFO
loam	143	7.2	20 / 40	118 / 392	72	0.998	SFO
Geomean loam (n=2)				111 / 368	111		
sandy loam	75	5.0	20 / 40	123 ⁴ / 409	123	0.913	SFO
silt loam	750	7.2	20 / 48	456 ⁴ / >>273	456	0.892	SFO
silt loam	750	7.2	30 / 48	$175^2/>>178^2$	-	0.977	SFO
silt loam	750	7.2	20 / 24	$709^{2,4}/>>281^2$	-	0.855	SFO
silt loam	750	7.2	20 / 48	$345^4/>>281$	345	0.973	SFO
silt loam	750	7.2	10 / 48	$602^{2,4} / >> 281^2$	-	0.952	SFO
silt loam	75	7.2	20 / 48	83 / 277	83	0.950	SFO
Geoman silt loam (n=3)			235 / >277	235		

loam	128	7.2	20 / 22	$136^2 / 452^2$	-	0.986	SFO
loam	128	7.2	10 / 43	$338^{2,4} / > 1000^2$	-	0.993	SFO
loam	12.8	7.2	20 / 43	53 / 175	53	0.995	SFO
loam sterile	128	7.2	20 / 43	>1000 ^{2,4} /	-	-	-
				$>1000^{2}$			
sandy loam	193	7.4	20 / 40	149 / 496	136	0.977	SFO
sandy loam/loamy							SFO
sand	193	7.5	20 / 40	186 / 617	177	0.939	
silty clay loam	193	6.7	20 / 40	187 / 620	151	0.972	SFO
Geometric mean (n=7)				136 / > 390	130		
Median (n=7)				149 / ≥ 409	136		

CGA 71019	Aerobic conditi	ons					
Soil type	pH	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _{dp} /k _f	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
sandy loam	6.4	20 / 40	6.3 / 21	-	5.0	0.75	SFO
loamy sand	5.8	20 / 40	9.9 / 33	-	9.9	0.81	SFO
silt loam	6.7	20 / 40	12 / 41	-	8.2	0.95	SFO
Geometric mean			9.1 / 30.5		7.4		
Median			9.9 / 33		7.7		

CGA 205375	Aerobic cond	litions					
Soil type	pF	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _{dp} /k _f	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
sandy loam	7.4	20 / 40	93 / 309	-	85	0.980	SFO
sandy loam/loamy sand	7.5	20 / 40	83 / 275	-	79	0.995	SFO
silt loam	5.8	3 20 / 40	152 / 504	-	123	0.996	SFO
Geometric mean			106 / 350		94		
Median			93 / 309		85		

Field studies ‡

Tiera staares .										
Difenoconazole										
Soil type (indicate if bare		Location	g/ha¹	pН	Depth	$DT_{50}(d)$	DT ₉₀ (d)	Chi2	$DT_{50}(d)$	Method of
or cropped soil wa	s used).				$(cm)^2$	actual	actual	(%)	Norm.	calculation
									20°C	
silt loam	bare	Germany	>>250	7.4	0-20	160	532	18.6	-	SFO
silt loam	bare	Germany	500	6.6	0-10	20	68	13.0	-	SFO
loamy sand	bare	Germany	500	6.2	0-10	59	195	18.3	-	SFO
silt loam	bare	Germany	500	6.8	0-20	64	211	14.1	-	SFO
loamy sand	bare	Germany	500	5.6	0-10	61	202	14.8	-	SFO
sandy loam	bare	Germany	750	6.0	0-20	265	879	18.6	-	SFO
silt loam	bare	Germany	750	6.0	0-20	242	802	20.9	-	SFO
silt loam	bare	Germany	750	5.7	0-20	118	394	21.8	-	SFO
clay loam	bare	Switzerland	125	7.3	0-10	83	277	-	-	SFO
Geometric mean		•	•			92	305			
Median						83	277			

Treatment rate (g a.s./ha) used in studies.

pH dependence ‡	
(yes / no) (if yes type of dependence)

No		

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

¹ Test concentration re-calculated into corresponding g a.s./ha dose for comparison with the representative uses.
² Values not included in the mean/median because they were obtained from test at 10/30°C, dry moisture or sterile conditions.

³ In case the same soil was tested under standard conditions, the variations in temperature and moisture were not considered for mean/median values of normalised data. 4 DT₅₀ value extrapolated beyond the durations of the study.

² Indicates depth considered.

Soil accumulation and plateau concentration ‡

No accumulation observed after up to 10 years use under the following conditions:

10-yr study in Switzerland (sandy loam):

7 years appl. of 125 g/ha to wheat, 2 years appl. of 125 g/ha to rape and 1 year 3x125 g/ha to sugar beet. Taking crop interception (90% by wheat and sugar beet and 80% by rape, FOCUS GW) into account the "effective doses" would have been 12.5 g/ha for 7 years, 25 g/ha for 2 years and 37.5 g/ha for 1 year.

4-yr study in N Italy (sandy loam):

Annual application to pome fruit at 250 g/ha. Assuming standard crop interception (50-65%, FOCUS GW) the annual "effective dose" would have been 87.5-125 g/ha.

4-yr study in N Italy (silt clay):

Annual application to sugar beets at 202-241 g/ha. Assuming crop interception of 90% the "effective dose" would have been within 20-24 g/ha each year.

3-yr study in UK (sandy loam and clay): 3-yr appl. to winter wheat or bare ground, at 75 g/ha and 150 g/ha. Assuming 90% crop interception by wheat the net application rates would have been 7.5 and 15 g/ha. (this study considered as supplementary)

Laboratory studies ‡

Difenoconazole	Anaero	bic cond	itions				
Soil type	g/ha ¹	pН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
loam	128	7.2	20 / flooded	stable	-	-	-
Geometric mean/median				-	-		

¹ Test concentration re-calculated into corresponding g a.s./ha dose for comparison with the representative uses.

CGA 71019	Anaero	bic cond	litions					
Soil type		pН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _{dp} /k _f	DT ₅₀ (d) 20°C pF2/10kPa	St. (r ²)	Method of calculation
silt loam		7.3	20 / flooded	81 / 268	-	-	0.972	SFO
Geometric mean/media	n			-	-	-		

CGA 205375	Anaerob	ic cond	itions					
Soil type		pН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _{dp} /k _f	DT ₅₀ (d) 20°C pF2/10kPa	St. (r ²)	Method of calculation
sandy loam/loamy sand		7.5	20 / flooded	213 / 706	-	-	0.986	SFO
Geometric mean/median		•		-	-	-	·	•

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Difenoconazole ‡							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
sand	0.36	7.9	-	-	12.8	3870	0.74
sandy loam	1.98	7.8	-	-	63.0	3520	0.76
silt loam	1.74	6.5	-	-	54.8	3470	0.85
silty clay loam	0.67	6.9	-	-	47.2	7730	0.91
clay	2.79	5.9	-	-	97.8	3470	0.89
sand	0.52	6.5	-	-	2.1	400	0.80
silt loam	0.58	7.5	-	-	35.0	5660	0.88
sandy loam	0.58	8.5	-	-	11.5	1960	0.94
Arithmetic mean					40	3760	0.85
Median						3495	0.87
pH dependence, Yes or No No							

CGA 71019 ‡							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
silty clay	0.70	8.8	-	-	0.83	120	0.90
clay loam	1.74	6.9	-	-	0.75	43	0.83
silty clay loam	0.70	7.0	-	-	0.72	104	0.92
sandy loam	0.81	6.9	-	-	0.72	89	1.02
Arithmetic mean					0.75	89	0.91
Median					0.74	82	0.91
pH dependence (yes or no)			No				

CGA 205375 ‡							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
loamy sand	2.17	5.7	-	-	118	5440	0.81
silty clay loam	1.16	6.6	-	-	45.5	3920	0.76
clay	2.63	6.7	-	-	44.1	1680	0.76

sandy loam	1.17	6.8	-	-	22.6	1930	0.72
loam	1.22	7.6	-	-	23.6	1930	0.77
Arithmetic mean					51	2980	0.76
Median					44	1930	0.76
pH dependence (yes or no)			No				

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡

Eluation: 200 mm

Time period: 2 d

Difenoconazole did not move out of the zone of application in

any of four soils tested.

Study used only to support results from adsorption/desorption

tests.

Aged residues leaching ‡

Not submitted, not required

Lysimeter/ field leaching studies ‡

Not submitted, not required

PEC (soil) (Annex IIIA, point 9.1.3)

<u>Difenoconazole</u> Method of calculation

Application data

DT₅₀ (d): 265 days Kinetics: SFO

Field or Lab: longest DT₅₀s from field studies (n=9).

Crop: Seed treatment; Spray on apples; Spray on carrots

Depth of soil layer: 5 cm (for plateau PECsoil mixing in 20 cm considered for carrots and seed treatment scenarios, except for

the last year)

Soil bulk density: 1.5 g/cm³

% plant interception: Seed treatment: no interception;

Apples: 65% Carrots: 80%

Number of applications: 1 (seed treatment); 4 (apples);

3 (carrots)

Interval (d): 10 d (apples); 14 d (carrots) Application rates: 12.3 g a.s./ha (seed treatment); 4 x 75 g a.s./ha (apples); 3 x 125 g a.s./ha (carrots)

$PEC_{(s)}$	
(mg/kg)	
Difenoconaze	<u>ole</u>
Seed treatme	<u>nt</u>
Initial	
Short term	24h
	2d
	4d
Long term	7d
C	28d
	50d
	1000

Single application	Single application	Multiple application	Multiple application
Actual	Time weighted average	Actual	Time weighted
			average
0.016		-	
0.016	0.016	-	-
0.016	0.016	-	-
0.016	0.016	-	-
0.016	0.016	-	-
0.015	0.016	-	-
0.014	0.015	-	-
0.013	0.014	-	-

Plateau concentration

0.00257 mg/kg (lower part of the "saw-tooth" curve; before annual applications, 20 cm depth) 0.0190 mg/kg (upper part of the "saw-tooth" curve; after annual applications, 5 cm depth)

PEC_(s) (mg/kg) <u>Difenoconazole</u> <u>Apples</u> Initial

Single	Single	Multiple	Multiple
applicati	on application	application	application
Actua	Time weighted aver	rage Actual	Time weighted
			average
0.035		0.135	

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

PEC _(s) (mg/kg) Difenoconazo Apples	<u>ole</u>	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Short term	24h	-	-	0.135	0.135
	2d	-	-	0.134	0.135
	4d	-	-	0.134	0.134
Long term	7d	-	-	0.133	0.134
	28d	-	-	0.125	0.130
	50d	-	-	0.118	0.127
	100d	-	-	0.104	0.119
Plateau	Plateau 0.0912 mg/kg (lower part of the "saw-tooth" curve; before annual applications, 5 cm depth)				

concentration

0.219 mg/kg (upper part of the "saw-tooth" curve; after annual applications, 5 cm depth)

PEC _(s) (mg/kg)		Single application	Single application	Multiple application	Multiple application			
Difenoconazo	<u>ole</u>	Actual	Time weighted average	Actual	Time weighted			
Carrots					average			
Initial		0.033		0.0955				
Short term	24h	-	-	0.0953	0.0954			
	2d	-	-	0.0950	0.0953			
	4d	-	-	0.0945	0.0950			
Long term	7d	-	-	0.0938	0.0946			
	28d	-	-	0.0888	0.0921			
	50d	-	-	0.0838	0.0895			
	100d	-	-	0.0735	0.0840			
Plateau		0.0161 mg/kg (lower part of the "saw-tooth" curve; before annual applications, 20 cm depth)						
concentration		0.112 mg/kg (upper part	0.112 mg/kg (upper part of the "saw-tooth" curve; after annual applications, 5 cm depth)					

CGA 71019			Initial PECs=				
Method of calculation			Max parent PECs x Max. metabolite in soil x Mol. Wt fraction.				
			where:				
			Max. parent Pl	ECs: 0.016 mg/kg (seed t	reatment);		
			0.135 mg/kg (a	apples); 0.0955 mg/kg (ca	arrots)		
			Max. CGA 710	019 in soil: 23%			
			Molecular wei	ght fraction: 0.170.			
Application data			Use of difenoconazole as Seed treatment; Spray in apples;				
			Spray in carrots.				
$PEC_{(s)}$	Single	S	ingle	Multiple	Multiple		
(mg/kg)	application	app	lication	application	application		
	Actual	Time wei	ghted average	Actual	Time weighted		
					average		
Seed treatment							
Initial	0.0006			-			
<u>Apples</u>							
Initial	-			0.00528			

CGA 205375

Carrots Initial

Method of calculation

Initial PECs=

Max parent PECs x Max. metabolite in soil x Mol. Wt fraction. where:

Max. parent PECs: 0.016 mg/kg (seed treatment); 0.135 mg/kg (apples); 0.0955 mg/kg (carrots)

0.00373

Max. CGA 205375 in soil: 10% (a value of 11.9% should have

been used)

Molecular weight fraction: 0.862.

Use of difenoconazole as Seed treatment; Spray in apples;

Spray in carrots.

Application data

18314732, 2011. 1, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10/2903/j.efsa.2011.1967 by University College London UCL Library Services, Wiley Online Library on [1405/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

$PEC_{(s)}$	Single	Single	Multiple	Multiple
(mg/kg)	application	application	application	application
	Actual	Time weighted average	Actual	Time weighted
				average
Seed treatment				
Initial	0.0014		-	
<u>Apples</u>				
Initial	-		0.0116	
Carrots				
Initial	•		0.00823	

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites > 10 % ‡

Difenoconazole: No degradation observed at pH 5, 7 and 9 (25°C, 30 days)

CGA 71019: No degradation observed at pH 5, 7 and 9 (25°C, 30 days)

CGA 205375: No degradation observed at pH 4, 7 and 9 (50°C, 5 days)

Photolytic degradation of active substance and metabolites above 10 % ‡

Difenoconazole: Stable (<10% transformation over 15 days, continuous irradiation)

CGA 205375: Stable (<10% transformation over 15 days, continuous irradiation)

Quantum yield of direct phototransformation in water at $\lambda\!\!>\!290~\text{nm}$

0.0155.

Predicted half-lives were between 12 and >10000 years at 52°N latitude depending on season.

CGA 205375: 0.0266.

Predicted half-lives were between 14 and >10000 years at 52°N latitude depending on season.

Readily biodegradable ‡ (yes/no)

No

Degradation in water / sediment

Difenoconazole	Distribut	ion of to	otal ra	dioactivity in Po	ond/Riv	er systems (20°	C):			
				day 0. Decrease		•		0% by day 7	7/14.	
	Given th	Given the short $DisT_{50}$ from water <1% of applied difenoconazole was estimated to remain in the water								
		column after 7 and 14 days.								
	Distribut	Distribution of Difenoconazole in Pond/River systems (8°C):								
	Max. in	Max. in water 83/87% day 0. Decreased to 15/36% by day 3 and to 2.3/12% by day 14.								
	Max. in	sedimen	t 99.8	/96.5% day 42.					-	
	Metaboli	ites iden	tified	(20°C, 14C-chlo	ropheny	/l label):				
	CGA 20:	5375 ma	ax. 4.9	% in pond syste	m (days	s 32 and 127),				
	max. 11.	6-11.4%	in riv	er system (days	90-183	3).				
Water / sediment	pН	pН	t.	DT_{50}/DT_{90}	St.	DT ₅₀ /DT ₉₀	St.	DT ₅₀ -	St.	Method of
system	water	sed	°C	whole sys.	(r^2)	water	(r^2)	DT_{90}	(r^2)	calculation
	phase			Degradation		Dissipation		sed		
Pond	-	6.9	20	ca	0.99	1.0 / 3.3	0.987	-		SFO
				324/>1000	8					
River	-	7.2	20	ca	0.99	2.0 / 6.6	0.968	-		SFO
				307/>1000	9					
Geometric mean				315 / >1000		1.1 / 4.6		-		

CGA 205375

Distribution of CGA 205375 in Pond/River systems:

Max. in water 97/96% day 0. Decreased to <10% by day 7/14. Max. in sediment 91/87% day 62/28.

Metabolites identified (¹⁴C-triazole label):

CGA 71019 max. 3.2% in pond system (day 148),

max. 14.1% in river system (day 148).

Water / sediment system	pH water	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r ²)	DT ₅₀ -DT ₉₀ water	St. (r ²)	DT ₅₀ - DT ₉₀	St. (r ²)	Method of calculation
	phase			Degradation		Dissipation		sed		
Pond	7.97	7.09	20	ca 630/>1000	0.765	1.4 / 4.7	0.958	-	-	SFO
River	8.1	7.46	20	ca 301/>1000	0.932	3.1 / 10.2	0.985	-	-	SFO
Geometric mean				ca 435/>1000		2.1 / 6.9				

Mineralization and no	n extract	able resid	lues		
Water / sediment	pН	pН	Mineralization	Non-extractable residues	Non-extractable residues in
system	water	sed	x % after n d. (end of	in sed. max x % after n d	sed. max x % after n d (end of
	phase		the study).		the study)
Parent; Pond, 20°	-	6.9	$3.0\% (183 d)^1$	-	13.9 % (183 d) ¹
Parent; River, 20°	-	7.2	3.9 % (183 d) ¹	-	8.7 % (183 d) ¹
Parent; Pond, 8°	-	7.2	1.9 % (183 d) ¹	-	11.4 % (183 d) ¹
Parent; River, 8°	-	7.2	2.9 % (181 d) ¹	-	9.8 % (181 d) ¹
CGA 205375; Pond	7.97	7.09	$0.5\% (148 \text{ d})^2$	-	$8.2 \% (148 \text{ d})^2$
CGA 205375; River	8.1	7.46	0.4 % (148 d) ²	-	13.0 % (148 d) ²

^{1 14}C-Chlorophenyl radiolabel

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Difenoconazole

Parameters used in FOCUSsw step 1 and 2

Parameters used in FOCUSsw step 3

Parameters used in FOCUSsw step 4

Risk mitigation applied in FOCUSsw step 4

Application rate

Molecular weight (g/mol): 406 Water solubility (mg/L): 15 K_{OC} (mL/g): 3759.4 (mean value)

 DT_{50} soil (d): 86 (previous arithmetic mean of normalised lab values)

(note that geomean normalised DT_{50} soil 130 d would be the correct value to use)

DT₅₀ water/sediment system (d): 315.5 (mean value)

 DT_{50} water (d): 315.5 (mean value, degradation whole system) DT_{50} sediment (d): 315.5 (mean value, degradation whole system)

Crop interception (%): 0 (seed treatment); 70 (apples and carrots)

"No drift" option used for seed treatment scenario (Steps 1-2). Plateau PECsed calculated as:

(max PECsed after 1 year of treatment) \div (1 - $e^{\text{-}k\;x\;t}$), where: $k{=}$ ln 2/315.5 days

Version control no.'s of FOCUS software: SWASH 1.1; Drift calculator 1.1; PRZM_SW 1.1.1; MACRO 4.4.2; TOXSWA

Vapour pressure: 0 (worst case)

1/n: 0.8 (mean value) (note that 0.85 would be the correct value to use)

O10 2.2

Other parameters set to the same value as in Steps 1 and 2. Plateau PECsed calculated using same eq. as in Steps 1-2.

Version control no.'s of FOCUS software: As in Step 3 except TOXSWA ver. 2.2.1

Other parameters set to the same value as in Steps 3.

Plateau PECsed calculated using same eq. as in Steps 1-2.

Buffers of 14 m and 20 m used for apples to reduce spray drift. Vegetative buffer strip of 5 m used for carrots to reduce spray drift and run-off (run-off reduction 50%).

Seed treatment (Steps 1 and 2): 12.3 g a.s./ha

Apples (Steps 1-4): 4 x 75 g a.s./ha (7 d interval) (late

application drift values)

Carrots (Steps 1-4): 3 x 125 g a.s./ha (at Steps 3 and 4 scenario R2 also 6 x 125 g a.s./ha was simulated to account for 2 annual crops grown) (14 d interval)

Application window for 1st treatment, Step 3: 1 March-18

² ¹⁴C-triazole radiolabel

April (apples); 2 March-15 June (carrots)

Application window for 1st treatment, Step 4: 1 March-6 April (apples); 2 March-3 June (carrots)

Difenoconazole	Day after	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
FOCUS STEP 1	overall	Actual	TWA	Actual	TWA
Scenario	maximum				
Seed treatment	0	0.693		26.0	
Apples	0	32.4		722	
Carrots	0	24.2		801	
				Max* Plateau	
				PEC _{SED} : 1453	

^{*} The plateau PECsed was based on the maximum PECsed, calculated for the use in carrots.

Difenoconazole	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (μg/kg)	
FOCUS STEP 2	overall	Actual	TWA	Actual	TWA
Scenario	maximum				
Seed treatment					
N EU autumn					
planting	0	0.336		12.6	
Apples S EU, spring	0	4.23		128	
Carrots S EU, spring	0	2.73		96.5	
				Max* Plateau	
				PEC _{SED} : 232	

^{*} The plateau PECsed was based on the maximum PECsed, calculated for the use in apples.

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
FOCUS STEP 3	body	overall	Actual	TWA	Actual	TWA
Scenario		maximum				
Apples multiple ap						
D3	Ditch	0	1.789		3.875	
		7		0.326		3.686
		21		0.206		3.259
		28		0.191		3.111
					Plateau PEC _{SED} 7.026	
D4	Pond	0	0.241		3.937	
		7		0.219		3.937
		21		0.193		3.934
		28		0.185		3.932
					Plateau PEC _{SED} 7.138	
D4	Stream	0	1.677		0.255	
		7		0.018		0.242
		21		0.015		0.219
		28		0.015		0.209
					Plateau PEC _{SED} 0.462	
D5	Pond	0	0.240		4.033	
		7		0.219		4.033
		21		0.192		4.031
		28		0.185		4.029
					Plateau PEC _{SED} 7.312	
D5	Stream	0	1.806		0.287	
		7		0.020		0.271
		21		0.019		0.244
		28		0.014		0.232
					Plateau PEC _{SED} 0.520	
R1	Pond	0	0.227		3.723	
		7		0.205		3.723
		21		0.179		3.718
		28		0.172		3.714
					Plateau PEC _{SED} 6.750	
R1	Stream	0	1.372		0.718	

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
FOCUS STEP 3	body	overall	Actual	TWA	Actual	TWA
Scenario		maximum				
		7		0.034		0.695
		21		0.029		0.652
		28		0.023		0.634
					Plateau PEC _{SED} 1.302	
R2	Stream	0	1.819		1.568	
		7		0.026		1.548
		21		0.022		1.510
		28		0.019		1.492
					Plateau PEC _{SED} 2.843	
R3	Stream	0	1.943		1.849	
		7		0.130		1.740
		21		0.103		1.557
		28		0.096		1.489
					Plateau PEC _{SED} 3.353	
R4	Stream	0	1.380		1.761	
		7		0.093		1.690
		21		0.040		1.571
		28		0.036		1.522
					Plateau PEC _{SED} 3.193	

Difenoconazole	Water	Day after	PEC _{SW} (μg/L)		PEC _{SED} (µg/kg)	
FOCUS STEP 3	body	overall	Actual	TWA	Actual	TWA
Scenario		maximum				
Carrots multiple ap						
D3	Ditch	0	0.573		0.979	
		7		0.093		0.937
		21		0.059		0.840
		28		0.044		0.800
					Plateau PEC _{SED} 1.775	
D6	Ditch	0	0.570		0.428	
		7		0.076		0.410
		21		0.026		0.374
		28		0.026		0.362
					Plateau PEC _{SED} 0.776	
R1	Pond	0	0.082		3.908	
		7		0.076		3.892
		21		0.068		3.854
		28		0.066		3.818
					Plateau PEC _{SED} 7.086	
R1	Stream	0	0.376		23.00	
		7		0.057		22.86
		21		0.030		22.59
		28		0.025		22.49
					Plateau PEC _{SED} 41.70	
R2, 1st crop	Stream	0	0.504		62.88	
		7		0.015		62.54
		21		0.007		61.09
		28		0.006		60.84
					Plateau PEC _{SED} 114.0	
R2, 2nd crop	Stream	0	0.504		146.6	
		7		0.022		145.3
		21		0.014		143.1
		28		0.012		142.8
					Plateau PEC _{SED} 265.8	
R3	Stream	0	0.530		7.356	
		7		0.050		7.314
		21		0.030		7.249

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
FOCUS STEP 3	body	overall	Actual	TWA	Actual	TWA
Scenario		maximum				
		28		0.025		7.234
					Plateau PEC _{SED} 13.34	
R4	Stream	0	0.713		18.15	
		7		0.190		17.85
		21		0.088		17.45
		28		0.085		17.19
					Plateau PEC _{SED} 32.91	

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
FOCUS STEP 4	body	overall	Actual	TWA	Actual	Plateau PEC _{SED}
Scenario		maximum				
Apples, 14 m buffer	multiple app	olications				
D3	Ditch	0	0.326		0.777	1.409
D4	Pond	0	0.101		1.74	3.155
D4	Stream	0	0.351		0.056	0.102
D5	Pond	0	0.101		1.78	3.227
D5	Stream	0	0.378		0.062	0.112
R1	Pond	0	0.095		1.68	3.046
R1	Stream	0	0.287		0.508	0.921
R2	Stream	0	0.381		1.51	2.738
R3	Stream	0	0.407		0.769	1.394
R4	Stream	0	0.444		1.52	2.756

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (μg/kg)	
FOCUS STEP 4	body	overall	Actual	TWA	Actual	Plateau PEC _{SED}
Scenario		maximum				
Apples, 20 m buffe	Apples, 20 m buffer multiple applications					
D3	Ditch	0	0.325		0.515	0.934
D4	Pond	0	0.064		1.14	2.067
D4	Stream	0	0.183		0.030	0.054
D5	Pond	0	0.064		1.16	2.103
D5	Stream	0	0.197		0.033	0.060
R1	Pond	0	0.067		1.26	2.285
R1	Stream	0	0.230		0.478	0.867
R2	Stream	0	0.198		1.50	2.720
R3	Stream	0	0.292		0.623	1.130
R4	Stream	0	0.444		1.49	2.702

Difenoconazole	Water	Day after	PEC _{SW} (μg/L)		PEC _{SED} (μg/kg)	
FOCUS STEP 4	body	overall	Actual	TWA	Actual	Plateau PEC _{SED}
Scenario		maximum				
Carrots, 5 m buffer	multiple appl	lications				
D3	Ditch	0	0.151		0.273	0.495
D6	Ditch	0	0.150		0.123	0.223
R1	Pond	0	0.044		2.20	3.989
R1	Stream	0	0.162		11.7	21.2
R2, 1st crop	Stream	0	0.180		32.0	58.0
R2, 2nd crop	Stream	0	0.180		74.1	134.4
R3	Stream	0	0.206		3.73	6.76
R4	Stream	0	0.392		9.24	16.8

Difenoconazole FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC _{SW} (µg/L) Actual		
Apples single application					
D3	Ditch	0	2.72		

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)
FOCUS STEP 3	body	overall	Actual
Scenario		maximum	
D4	Stream	0	2.46
D5	Stream	0	2.49
R1	Stream	0	2.08
R2	Stream	0	2.76
R4	Stream	0	2.08

Difenoconazole	Water	Day after	$PEC_{SW}(\mu g/L)$		
FOCUS STEP 3	body	overall	Actual		
Scenario		maximum			
Carrots single application					
D3	Ditch	0	0.783		
D6	Ditch	0	0.781		
R1	Stream	0	0.517		
R2, 1st crop	Stream	0	0.682		
R2, 2nd crop	Stream	0	0.694		
R3	Stream	0	0.725		

Difenoconazole	Water	Day after	PEC _{SW} (μg/L)		
FOCUS STEP 4	body	overall	Actual		
Scenario		maximum			
Apples, 14 m buffer single application					
D3	Ditch	0	0.464		
D4	Stream	0	0.486		
D5	Stream	0	0.492		
R1	Stream	0	0.410		
R2	Stream	0	0.544		
R3	Stream	0	0.578		

Difenoconazole	Water	Day after	PEC _{SW} (µg/L)	
FOCUS STEP 4	body	overall	Actual	
Scenario	-	maximum		
Carrots, 5 m buffer single applications				
D3	Ditch	0	0.211	
D6	Ditch	0	0.211	
R1	Stream	0	0.188	
R2, 1st crop	Stream	0	0.248	
R2, 2nd crop	Stream	0	0.253	
R3	Stream	0	0.264	

CGA 71019

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 69 Water solubility (mg/L): 730 Soil or water metabolite: Both K_{OC} (mL/g): 89 (mean value)

 DT_{50} soil (d): 6.45 (arithmetic mean of normalised lab values) (note that geomean normalised DT_{50} soil 7.4 d would be the correct value to use)

 DT_{50} water/sediment system (d): 1000 (worst case assumption)

 DT_{50} water (d): 1000 (worst case assumption) DT_{50} sediment (d): 1000 (worst case assumption) Simulated together with parent compound:

Crop interception (%): 0 (seed treatment); 70 (apples and carrots)

"No drift" option used for seed treatment scenario.

Max. occurrence observed (%), used to calculate dose and

Application rate

formation in aquatic systems:

Water/Sediment: 9.6 (worst case assumption calc. by RMS)

Soil: 23.4

Seed treatment: 12.3 g a.s./ha

Apples: 4 x 75 g a.s./ha (7 d interval) Carrots: 3 x 125 g a.s./ha (14 d interval)

CGA 71019	Day after	$PEC_{SW}(\mu g/L)$	PEC _{SED} (μg/kg)
FOCUS STEP 1	overall	Actual	Actual
Scenario	maximum		
Seed treatment	0	0.148	0.132
Apples	0	3.76	3.11
Carrots	0	4.43	3.89

CGA71019	Day after	PEC _{SW} (µg/L)	PEC _{SED} (μg/kg)
FOCUS STEP 2	overall	Actual	Actual
Scenario	maximum		
Seed treatment			
N EU autumn			
planting	0	0.0482	0.0429
Apples S EU, spring	0	0.272	0.237
Carrots S EU, spring	0	0.176	0.155

CGA 205375

Application rate

Parameters used in FOCUSsw step 1 and 2

Molecular weight (g/mol): 350

Water solubility (mg/L): 100 (assumed value)

Soil or water metabolite: Both K_{OC} (mL/g): 2979.4 (mean value)

 $DT_{50}\ soil\ (d);\ 71.5$ (previous arithmetic mean of normalised lab values) (note that geomean normalised $DT_{50}\ soil\ 94\ d$ would

be the correct value to use)

 $DT_{50} \ water/sediment \ system \ (d): 465.5 \ (arithmetic \ mean)$ $DT_{50} \ water \ (d): 465.5 \ (mean \ value, \ degradation \ whole \ system)$

 DT_{50} sediment (d): 465.5 (mean value, degradation whole system)

Simulated together with parent compound:

Crop interception (%): 0 (seed treatment); 70 (apples and carrots)

"No drift" option used for seed treatment scenario.

Max. occurrence observed (%),used to calculate dose and

formation in aquatic systems: Water/Sediment: 11.6

Soil: 9.7

Plateau PECsed calculated as:

(max PECsed after 1 year of treatment) \div (1 – e^{-k x t}), where:

k= ln 2/435 days

Seed treatment: 12.3 g a.s./ha Apples: 4 x 75 g a.s./ha (7 d interval)

Carrots: 3 x 125 g a.s./ha (14 d interval)

CGA 205375	Day after	$PEC_{SW}(\mu g/L)$	$PEC_{SED}(\mu g/kg)$
FOCUS STEP 1	overall	Actual	Actual
Scenario	maximum		
Seed treatment	0	0.0679	2.02
Apples	0	3.20	57.8
Carrots	0	2.38	62.6
			Max* Plateau PEC _{SED} :
			142

^{*} The plateau PECsed was based on the maximum PECsed, calculated for the use in carrots.

18314732, 2011, 1, Downloaded from https://efsa.onlinelibrary.wiley.com/doi/10.2936/jefsa.2011.1967 by University College London UCL Library Services, Wiley Online Library on [14.05/2025]. See the Terms and Conditions (https://anlinelibrary.wiley

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

CGA205375	Day after	PEC _{SW} (µg/L)	PEC _{SED} (μg/kg)
FOCUS STEP 2	overall	Actual	Actual
Scenario	maximum		
Seed treatment			
N EU autumn			
planting	0	0.0327	0.973
Apples S EU, spring	0	0.457	11.0
Carrots S EU, spring	0	0.274	7.61

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (*e.g.* modelling, field leaching, lysimeter)

Model used: FOCUS PEARL 2.2.2

Scenarios: Difenoconazole and the metabolites CGA71019 and CGA 205375 were simulated in separate model runs.

For use in apples all 9 FOCUS scenarios were run. For use in carrots Châteaudun, Hamburg, Kremsmünster, Porto and Thiva were run with two annual crops assumed, and Jokioinen was run with one annual crop assumed.

The results from the simulations in apples and carrots are considered to cover also the use of difenoconazole in seed treatment.

Crops: Apples and carrots.

Difenoconazole:

 DT_{50} soil (d): 86.0 (previous arithmetic mean of normalised lab values) (note that geomean normalised DT_{50} soil 130 d would be the correct value to use)

Koc (mL/g): 3759.4 (mean value)

1/n: 0.8 (mean value) (note that 0.85 would be the correct value to use)

CGA 71019:

 DT_{50} soil (d): 6.45 (arithmetic mean of normalised lab values) (note that geomean normalised DT_{50} soil 7.4 d would be the correct value to use)

Koc (mL/g): 89 (mean value)

1/n: 0.9 (mean value)

CGA 205375:

 DT_{50} soil (d): 71.5 (previous arithmetic mean of normalised lab values) (note that geomean normalised DT_{50} soil 94 d would be the correct value to use)

Koc (mL/g): 2979.4 (mean value)

1/n: 0.8 (mean value)

Q10 for all compounds 2.2

Difenoconazole:

Application rate: 4 x 75 g a.s./ha, 7 d interval (apples); 3 x 125 g a.s./ha or 6 x 125 g a.s./ha, 14 d interval (carrots) No. of applications: 4 (apples); 3 (carrots, Jokioninen) 6 (carrots, remaining scenarios)

Time of application: BBCH 61 (apples); BBCH 42-43 (carrots) Application window for 1st treatment: 22 March - 17 May

(apples); 10-19 April (carrots) Crop interception (%): 65 (apples); 70 (carrots)

CGA 71019

Application rate: 4 x 2.98 g a.s./ha, 7 d interval (apples); 3 x 4.97 g a.s./ha or 6 x 4.97 g a.s./ha, 14 d interval (carrots) (calc. as appl. rate parent x max. metabolite in soil (23.4%) x mol. wt fraction (69/406)).

Other parameters as for parent.

Application rate

CGA 205375:

Application rate: 4 x 6.07 g a.s./ha, 7 d interval (apples); 3 x 10.12 g a.s./ha or 6 x 10.12 g a.s./ha, 14 d interval (carrots) (calc. as appl. rate parent x max. metabolite in soil (9.4%) x mol. wt fraction (350/406)). Other parameters as for parent.

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

I EC(gw)	- FOCUS modelling results	(ov percentne ann	iuai average concentration at 1	III <i>)</i>
PJ	Scenario	Difenoconazole	fenoconazole Metabolites (µg/L)	
E		$(\mu g/L)$	CGA 71019	CGA 205375
M	Chateaudun	< 0.001	< 0.001	< 0.001
) /	Hamburg	< 0.001	< 0.001	< 0.001
/Apples	Jokioinen	< 0.001	< 0.001	< 0.001
ples	Kremsmunster	< 0.001	< 0.001	< 0.001
3	Okehampton	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001
	Sevilla	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	< 0.001	< 0.001

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

<u> </u>	, I O O O O I III O II I I I I I I I I I	(0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dan arenge comeentment at 1	/
Р	Scenario	Difenoconazole	Metaboli	ites (µg/L)
EL		(µg/L)	CGA 71019	CGA 205375
	Chateaudun	< 0.001	< 0.001	< 0.001
) 2	Hamburg	< 0.001	< 0.001	< 0.001
Car	Jokioinen ¹	< 0.001	< 0.001	< 0.001
rots	Kremsmunster	< 0.001	< 0.001	< 0.001
8	Porto	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	< 0.001	< 0.001

¹ One carrot crop per season assumed; in the other scenarios two annual carrot crops assumed.

PEC(gw) From lysimeter / field studies

Parent/metabolites	1 st year	2 nd year	3 rd year
Annual average (µg/L)	not available, not requested	not available, not requested	not available, not requested

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

rate and benaviour in an (Annex 11A, point 7.2.2, F	Amica III, point 2.3)
Direct photolysis in air ‡	Not submitted, not required
Quantum yield of direct phototransformation	Difenoconazole: 0.0155 (in water)
	CGA 205375: 0.0266 (in water)
Photochemical oxidative degradation in air ‡	DT ₅₀ 5 hours derived by the Atkinson method (AOP 1.85).
	OH (12 h) concentration assumed: 1.5 x 10 ⁶ radicals/cm ³ .
Volatilisation ‡	Volatilisation from soil: <0.05% after 24 hours (measured as %
	¹⁴ C in absorption trap).
	Volatilisation from plants and soil: <9% after 24 hours
	(measured as % loss).
Metabolites	None identified.

PEC (air)

Method of calculation Expert judgement based on vapour pressure, Henry's Law constant and experimental data on volatilisation.

PEC_(a)

Maximum concentration Expected to be negligible.

Residues requiring further assessment

Environmental occurring metabolite requiring further Soil: Difenoconazole, CGA 71019 and CGA 205375

assessment by other disciplines (toxicology and ecotoxicology) or for which a groundwater exposure assessment is triggered.

<u>Surface water:</u> Difenoconazole, CGA 71019 and CGA 205375 <u>Sediment:</u> Difenoconazole, CGA 205375

Groundwater: Difenoconazole, CGA 71019 and CGA 205375

Air: Difenoconazole

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

Not submitted, not required
Not submitted, not required
Not submitted, not required
Not submitted, not required

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Not readily biodegradable. Candidate for R53.

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day)	End point (mg/kg feed)
Birds ‡	·			
Japanese quail.	difenoconazole	Acute	LD50 >2000	-
	metabolite CGA131013	Acute	no data	-
Mallard duck	difenoconazole	Short-term	5 d LC ₅₀ >349	5 d LC50 >5000
Mallard duck	metabolite CGA131013	Short term	5 d LC ₅₀ >1342	5 d LC ₅₀ >5000
Bobwhite quail	difenoconazole	Long-term	NOEL 9.71	NOEL 100
	metabolite CGA131013	Long-term	no data	-
Mammals ‡				
Rat.	difenoconazole	Acute	LD ₅₀ >1453	-
	DIVIDEND 030FS	Acute	LD ₅₀ >3000	-
	SCORE 250EC	Acute	LD ₅₀ >3000	-
	metabolite CGA 131013	Acute	LD ₅₀ >5000	-
Rat	difenoconazole	Long-term	NOAEL 17.3	-
	metabolite CGA 131013	Long-term	NOAEL 100	-
Additional higher tier st	udies ‡	<u>-</u>	•	•
no further data				

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3) Seed treatment to cereals, 60 mg/kg seed

Seed treatment to cereals, 60 mg/kg seed						
Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger		
Tier 1 (Birds)						
granivorous bird, a.s.	Acute	22.8	>88	10		
granivorous bird, metabolite		8.66	>230	10		
medium herbivorous bird, a.s.		22.8	>44	10		
medium herbiv. bird, metabolite		17.5	110	10		
small herbivorous bird, a.s.		63.6	31.4	10		
small herbivorous bird, metabolite		24.4	82	10		
granivorous bird, a.s.	Short-term	22.8	15	10		
granivorous bird, metabolite		8.66	155	10		
medium herbivorous bird, a.s.		22.8	15	10		
medium herbiv. bird, metabolite		8.74	154	10		
small herbivorous bird, a.s.		31.8	11	10		
small herbivorous bird, metabolite		12.2	110	10		
granivorous bird, a.s.	Long-term	7.60	1.3	5		
granivorous bird, metabolite		2.89	3.4	5		
medium herbivorous bird, a.s.		3.88	1.3	5		
medium herbiv. bird, metabolite		2.97	3.3	5		
small herbivorous bird, a.s.		10.8	0.91	5		
small herbivorous bird, metabolite		4.14	2.4	5		
fish-eating bird, a.s.		0.046	210	5		
earthworm-eating bird, a.s.		0.061	160	5		
exposure via contaminated water		<< 0.001	>20000	5		
Higher tier refinement (Birds)	1	•	•			
granivorous bird, a.s.*	Long-term	1.89	5.1	5		
granivorous bird, metabolite*		0.72	13	5		
medium herbivorous bird, a.s.**		0.093	105	5		
medium herbiv. bird, metabolite**		0.034	287	5		
small herbivorous bird, a.s.**		0.13	75	5		
small herbiv. bird, metabolite**		0.049	200	5		

^{*}refinement based on measured residues of difenoconazole in shoots emerging from treated seeds

^{**}refinement based on measured data on dissipation of difenoconazole from treated seeds and diet composition of skylark in April (Green, 1978).

Tier 1 (Mammals)				
granivorous mammal, a.s.	Acute	13.8	105	10
granivorous mammal, metabolite		5.24	954	10
small herbivorous mammal*, a.s.		83.4	17.4	10
small herbiv. mammal*, metab.		31.7	158	10
granivorous mammal, a.s.	Long-term	4.54	3.8	5
granivorous mammal, metabolite		1.73	58	5
small herbivorous mammal*, a.s.		14.2	1.2	5
small herbiv. mammal*, metab.		5.39	19	5
medium herbivorous mammal*, a.s		2.86	6.1	5
medium herbiv. mammal*, metab.		1.09	92	5
fish-eating mammal, a.s.		0.029	604	5
earthworm-eating mammal, a.s.		0.076	229	5
exposure via contaminated water		<< 0.001	>200000	5
Higher tier refinement (Mammals)	1			
granivorous mammal, a.s.	Long-term	2.57	6.7	5
small herbivorous mammal*, a.s.		0.17	102	5
medium herbivorous mammal*, a.s		0.034	509	5

^{*} in higher tier refinement a medium sized herbivore was used, since small herbivorous mammals (default used in the first tier assessment) would avoid open areas with no or little vegetation cover.

Pome fruit, 4 applications of 75 g as/ha, 7 days interval (Southern EU), covers also pome fruit, 4 applications of 56.25 g as/ha, 7 days interval (Northern EU).

g as/ha, 7 days interval (Northern Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³
Tier 1 (Birds)	1	- 1	•	1 23
insectivorous bird	Acute	4.06	493	10
insectivorous bird	Short-term	2.26	154	10
insectivorous bird	Long-term	2.26	4.3	5
fish-eating bird, a.s.		0.29	25	5
earthworm-eating bird, a.s.		0.45	20	5
exposure via contaminated water		0.022	442	5
Higher tier refinement (Birds)				
insectivorous bird*	Long-term	1.38	7.1	5
Tier 1 (Mammals)				
herbivorous mammal, a.s.	Acute	9.57	152	10
herbivorous mammal, metabolite		3.64	1374	10
herbivorous mammal, a.s.	Long-term	8.33	2.1	5
herbivorous mammal, metabolite		3.17	32	5
fish-eating mammal, a.s.		0.18	98	5
earthworm-eating mammal, a.s.		0.63	28	5
exposure via contaminated water		< 0.01	>5000	5
Tier 2 refinement (Mammals)				
herbivorous mammal, a.s.	Long-term	4.89	3.5	5
(Southern EU, 4x75 g as/ha)**				
Tier 3 refinement (Mammals)				
herbivorous mammal, a.s. (Southern EU, 4x75 g as/ha)***	Long-term	2.89	6.0	5

^{*}refinement for insectivorous birds based on PT 0.61. Focal species blue tit.

Carrots, 3 applications of 125 g as/ha, 14 days interval

Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³				
Tier 1 (Birds)								
medium sized herbiv. bird, a.s.	Acute	10.7	>186	10				
medium sized herbiv. bird, metab.		4.08	>490	10				
insectivorous bird		6.76	>296	10				
medium sized herbiv. bird, a.s.	Short-term	5.70	61	10				
medium sized herbiv. bird, metab.		2.17	>618	10				
insectivorous bird		3.77	93	10				

^{**}refinement for mammals based on interception values from FOCUSgw.

^{***}refinement for mammals based on interception values from FOCUSgw and diet composition data for field vole.

Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³
medium sized herbiv. bird, a.s.	Long-term	3.65	2.7	5
medium sized herbiv. bird, metab.		1.15	8.5	5
insectivorous bird (SANCO GD)		3.77	2.6	5
Woodlark (EFSA GD 2009)*	Long-term	3.3	15	5
fish-eating bird, a.s.		0.18	53	5
earthworm-eating bird, a.s.		0.36	28	5
exposure via contaminated water		< 0.02	>400	5
Higher tier refinement (Birds)				
medium sized herbiv. bird, a.s.**	Long-term	1.47	6.6	5
insectivorous bird**		1.88	5.2	5
Tier 1 (Mammals)				
herbivorous mammal, a.s.	Acute	3.96	367	10
herbivorous mammal, metabolite		1.50	3333	10
herbivorous mammal, a.s.	Long-term	1.2	14	5
herbivorous mammal, metabolite		0.46	217	5
fish-eating mammal, a.s.		0.11	152	5
earthworm-eating mammal, a.s.		0.45	39	5
exposure via contaminated water		< 0.01	>5000	5

^{*}based on the relevant scenario for carrot BBCH>40 in the new EFSA GD.

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		(mg as/L)
Laboratory tests ‡				
Fish				
Rainbow trout	difenoconazole	96 hr (flow-	Mortality, EC ₅₀	1.1 (0.98-1.1)
		through)		
Fathead minnow	difenoconazole	34 d (flow-	Larval weight NOEC	0.0076
		through)		
Rainbow trout	DIVIDEND 030FS	96 hr (static)	Mortality, EC ₅₀	0.70(0.43 - 1.2)
Rainbow trout	SCORE 250EC	96 hr (static)	Mortality, EC ₅₀	0.65 (0.56 – 1.1)
Rainbow trout	SCORE 250EC	21 d (semi-	Growth NOEC	0.15 (mm)
		static)		
Rainbow trout	Metab. CGA 71019	96 hr (static)	Mortality, EC ₅₀	498 (378 – 657)
Rainbow trout	CGA 205375	96 hr (static)	Mortality, EC ₅₀	0.74 (0.58 - 0.95)
Rainbow trout	CGA 71019	28 d (static-	Behaviour effects, NOEC	3.2
		renewal)		
Aquatic invertebrate				
Daphnia magna.	difenoconazole	48 h (static)	Mortality, EC ₅₀	0.77 (0.59 - 0.95)
Mysidopsis bahia	difenoconazole	96 h (flow-	Mortality, EC ₅₀	0.15 (0.11 – 0.22)
		through)		
Crassostrea virginica	difenoconazole	96 h (flow-	Shell deposition, EC ₅₀	>0.30
		through)		
Daphnia magna.	difenoconazole	21 d (flow-	Reproduction, NOEC	0.0056 (mm)
		through)		
Daphnia magna.	DIVIDEND 030FS	48 h (static)	Mortality, EC ₅₀	0.43 (0.3 – 0.6)
	SCORE 250EC	48 h (static)	Mortality, EC ₅₀	0.62 - 1.38
Daphnia magna	Metab. CGA 71019	48 h (static)	Mortality, EC ₅₀	>100
Daphnia magna.	CGA 205375	48 h (static)	Mortality, EC ₅₀	1.4 (1.2 – 1.7)
Sediment dwelling organism	S			
Chironomus riparius	difenoconazole	28 d (static)	NOEC via water	0.015 (0.0525
				mg/kg).
Chironomus riparius	SCORE 250EC	28 d (static)	NOEC via water	0.075
Chironomus riparius	CGA 205375	28 d (static)	NOEC via water	0.4
Chironomus riparius	CGA 205375	28 d (static)	NOEC via sediment	10 mg/kg dw
Algae				
Scenedesmus subspicatus	difenoconazole	72 h (static)	Biomass: E _b C ₅₀	0.032 (0.026 -
				0.039)

^{**}refinement for birds based on PT 0.5. This was not fully accepted at PRAPeR TC 42, and therefore additional calculations according to the new EFSA GD were included in Tier I to replace the insectivore scenario.

Group	Test substance	Time-scale	End point	Toxicity ¹
_		(Test type)		(mg as/L)
Pseudokrchneriella subspicata	DIVIDEND 030FS	72 h (static)	Biomass: E _b C ₅₀	1.8 (1.3 – 2.6)
			Growth rate: E _r C ₅₀	>3.0 (2-8 - >3.0)
Scenedesmus subspicatus	SCORE 250EC	72 h (static)	Biomass: E _b C ₅₀	0.29(0.22 - 0.60)
			Growth rate: E _r C ₅₀	0.96 (0.62 - 1.75)
Selenastrum capricornutum	Metab. CGA 71019	96 h (static)	Biomass: E _b C ₅₀	8
			Growth rate: E _r C ₅₀	>31
Selenastrum capricornutum	CGA 205375	72 h (static)	Biomass: E _b C ₅₀	1.2 (1.2 – 1.3)
			Growth rate: E _r C ₅₀	3.1(3.0 - 3.2)
Higher plant				
No reliable data, not required.				
Microcosm or mesocosm tests				
Not required.				

indicate whether based on nominal (n_{om}) or mean measured concentrations (n_{mm}) . In the case of preparations indicate whether end points are presented as units of preparation or a.s.

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

Maximum PECsw values and TER values for Difenoconazole - seed treatment to cereals, 60 mg as/kg seed

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
			Rainbow trout	Fathead minnow (ELS)	Mysidopsis bahia	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	NOEC
			0.65 mg/L	0.0076 mg/L	0.15 mg/L	0.0056 mg/L	0.032 mg/L	0.0525 mg/kg
FOCUS Step 1		0.00069	942	11	217	8.1	46	1.1*
FOCUS Step 2								
North Europe		0.00034				16		2.3*
South Europe		-				-		
Annex VI Trigger	<u> </u>		100	10	100	10	10	10

^{*}The TER values were based on PECplateau in the sediment compartment.

Maximum PECsw values and TER values for CGA 71019 - seed treatment to cereals, 60 mg difenoconazole/kg seed

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
	. 0		Rainbow trout	Rainbow trout	Daphnia magna	Daphnia magna	Selenastrum capricornutum	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	NOEC
			498 mg/L	3.2 mg/L	>100 mg/L	No data	8 mg/L	No data
FOCUS Step 1		0.00015	3320000	21333	666667	-	546667	-

Maximum PECsw values and TER values for CGA 205375 - seed treatment to cereals, 60 mg difenoconazole/kg seed

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
			Rainbow trout	Fathead minnow (ELS)	Daphnia magna	Daphnia magna	Selenastrum capricornutum	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	NOEC
			0.74 mg/L	No data	1.4 mg/L	No data	1.2 mg/L	10 mg/kg dw
FOCUS Step 1		0.000068	10882	-	20588	-	17647	2180*

^{*}The TER value was based on PECplateau in the sediment compartment.

Maximum PECsw values and TER values for Difenoconazole – application to pome fruit in Southern EU, 4 x 75 g as/ha, 7 days interval between treatments (covers also pome fruit

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged*
			Rainbow trout	Fathead minnow (ELS)	Mysidopsis bahia	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	NOEC
			0.65 mg/L	0.0076 mg/L	0.15 mg/L	0.0056 mg/L	0.032 mg/L	0.0525 mg/kg**
FOCUS Step 1		0.032	20	0.2	4.7	0.2	1.0	0.04
FOCUS Step 2								
North Europe		-						
South Europe		0.0042	155	1.8	36	1.3	7.6	0.23
FOCUS Step 3								
D3 / ditch		0.00272	238.9	2.79	55.146	2.0	11.771	7.5
D4 / pond		0.000241***	2697	31.5	622	23	133	7.4
D4 / stream		0.00246	264.2	3.1	60.91	2.27	13.0	114
D5 / pond		0.000240***	2708	31.7	625	23	133	7.2
D5 / stream		0.00249	261.04	3.0	60.2	2.2	12.85	101
R1 / pond		0.000227	2863.4	33.4	660.7	24.6	140.9692	7.8
R1 / stream		0.00208	312.5	3.656	72.11	2.69	15.38	40.3
R2 / stream		0.00276	235.5	2.75	54.34	2.02	11.59	18.5
R3 / stream		0.00293	221.8	2.59	51.19	1.91	10.92	15.7
R4 / stream		0.00208	312.5	3.65	72.11	2.69	15.38	16.4
Annex VI Trigger**			100	10	100	10	10	10

^{*}The TER values were based on PECplateau in the sediment compartment.

^{***} The PECsw value for multiple applications is higher for these scenarios. Therefore, the worst case PECsw from 4x 56.25 g as/ha, were used in the risk assessment.

 $Maximum\ PECsw\ values\ and\ TER\ values\ for\ CGA\ 71019-application\ to\ pome\ fruit\ in\ Southern\ EU, 4\ x\ 75\ g\ as/ha, 7\ days\ interval\ between\ treatments\ (covers\ also\ pome\ fruit\ scenarios\ pome\ fruit\ pome\ fruit\ pome\ pome\ fruit\ pome\ pome\$

in Northern EU, 4 x 56.25 g as/ha, 7 days interval between treatments)

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
			Rainbow trout	Rainbow trout	Daphnia magna	Daphnia magna	Selenastrum capricornutum	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	NOEC
			498 mg/L	3.2 mg/L	>100 mg/L	No data	8 mg/L	No data
FOCUS Step 1		0.0038	131053	842	26316	-	2158	-

Maximum PECsw values and TER values for CGA 205375 – application to pome fruit in Southern EU, 4 x 75 g as/ha, 7 days interval between treatments (covers also pome fruit scenarios

in Northern EU, 4 x 56.25 g as/ha, 7 days interval between treatments)

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
			Rainbow trout	Fathead minnow (ELS)	Mysidopsis bahia	Daphnia magna	Selenastrum capricornutum	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	EbC ₅₀	NOEC
			0.74 mg/L	No data	1.4 mg/L	No data	1.2 mg/L	10 mg/kg dw
FOCUS Step 1	_	0.0032	231	-	438	-	375	76*

^{*}The TER value was based on PECplateau in the sediment compartment.

Maximum PECsw values and TER values for Difenoconazole – application to carrots, 1 x 125 g as/ha, 14 days interval between treatments

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged*
			Rainbow trout	Fathead minnow (ELS)	Mysidopsis bahia	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
	_		LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	NOEC
			0.65 mg/L	0.0076 mg/L	0.15 mg/L	0.0056 mg/L	0.032 mg/L	0.0525 mg/kg**
FOCUS Step 1		0.024	27	0.32	6.3	0.23	1.3	0.04
FOCUS Step 2	_							
North Europe		-						
South Europe		0.0027	241	2.8	56	2.1	12	0.30
FOCUS Step 3								
D3 / ditch		0.000783	830.14	9.7	191.5 9	7.15	40.85	9.6
D6 / ditch		0.000781	832.26	9.7	192.06	7.17	40.9	67.7
R1 / pond		0.000082^{***}	7927	93	1829	68	390	7.4
R1 / stream		0.00069	936.5	10.9	216.1	8	46.1	1.3
R2 / stream, 2 nd crop		0.000504***	1290	15	298	11	63	0.2
R3 / stream		0.000725***	896.5	10.5	206.7	7.7	44.1	3.9
R4 / stream		0.000713***	912	11	210	8	45	1.6
Annex VI Trigger**			100	10	100	10	10	10

^{*}The TER values were based on PECplateau in the sediment compartment.

*** The PECsw value for multiple applications is higher for these scenarios. Therefore, the worst case PECsw from 3 x 125 g as/ha, were used in the risk assessment.

Maximum PECsw values and TER values for CGA 71019 – application to carrots, 3 x 125 g as/ha, 14 days interval between treatments

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged
			Rainbow trout	Rainbow trout	Daphnia magna	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	NOEC
			498 mg/L	3.2 mg/L	>100 mg/L	No data	8.2 mg/L	No data
FOCUS Step 1		0.0044	113182	727	22727	-	1864	-

Maximum PECsw values and TER values for CGA 205375 – application to carrots, 3 x 125 g as/ha, 14 days interval between treatments

Scenario	PECini (mg/L)	PEC global max (mg/L)	fish acute	fish prolonged	Daphnia acute	Daphnia prolonged	Algae	Sed. dweller prolonged*
			Rainbow trout	Fathead minnow (ELS)	Mysidopsis bahia	Daphnia magna	Scenedesmus subspicatus	Chironomus riparius
			LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	NOEC
			0.74 mg/L	No data	1.4 mg/L	No data	1.2 mg/L	10 mg/kg dw
FOCUS Step 1		0.0024	308	-	583	167	500	70

^{*}The TER value was based on PECplateau in the sediment compartment.

FOCUSsw step 4

TER calculations for the most critical endpoints (Daphnia chronic NOEC 0.0056 mg/L and Chironomus chronic NOEC 0.0525 mg/kg) including different mitigation options for FOCUS Step 4 Scenario – application to pome fruit at 1 x 75 g a.s./ha, 7 days between treatments

Mitigation options		14 m non-spray bu	iffer zone		20 m non-spray buffer zone			
	PECsw	PECsed, plateau	TERsw	TERsed	PECsw	PECsed, plateau	TERsw	TERsed
FOCUS Step 4*								
D3 / ditch	0.000464	1.409	12.06	37.3	0.325	0.934	17	56.2
D4 / pond	0.101^{**}	3.155	55	16.6	0.064	2.067	88	25.4
D4 / stream	0.000486	0.102	11.59	517.1	0.183	0.054	31	965.2
D5 / pond	0.101^{**}	3.227	55	16.3	0.064	2.103	88	25.0
D5 / stream	0.000492	0.112	11.38	467.0	0.197	0.060	28	877.4
R1 / pond	0.095^{**}	3.046	59	17.2	0.067	2.285	84	23.0
R1 / stream	0.00041	0.921	13.65	57.0	0.230	0.867	24	60.6
R2 / stream	0.000544	2.738	10.29	19.2	0.198	2.720	28	19.3
R3 / stream	0.000578	1.394	9.68	37.7	0.292	1.130	19	46.5
R4 / stream	0.444^{**}	2.756	13	19.0	0.444	2.702	13	19.4

^{*}it should be noted that the NOEC value was based on very conservative estimate of the concentration in the sediment (see Addendum B.9, October 2010), and no effects were seen at the highest test concentration.

TER calculations for <u>the</u> most critical endpoints (Daphnia chronic NOEC 0.0056 mg/L and Chironomus chronic NOEC 0.0525 mg/kg) including different mitigation options for FOCUS Step 4 Scenario – application to carrots at 1 x 125 g a.s./ha, 14 days between treatments

Mitigation options		5 m non-spray buffer z	cone		
	PECsw	PECsed	TERsw	TERsed	
FOCUS Step 4*					
D3 / ditch	0.000211	0.495	26.54	106	
D6 / ditch	0.000211	0.223	26.54	235	
R1 / pond	0.044**	3.989	127	13.2	
R1 / stream	0.000188	21.21	29.78	2.5	
R2 / stream, 2 nd crop	0.000253	134.4	22.13	0.4	
R3 / stream	0.000264	6.763	21.21	7.8	
R4 / stream	0.000392**	16.75	14	3.1	

^{*}it should be noted that the NOEC value was based on very conservative estimate of the concentration in the sediment (see Addendum B.9, October 2010), and no effects were seen at the highest test concentration.

^{**} The PECsw value for multiple applications is higher for these scenarios. Therefore, the worst case PECsw from 4 x 75 g as/ha, were used in the risk assessment.

^{**} The PECsw value for multiple applications is higher for these scenarios. Therefore, the worst case PECsw from 3 x 125 g as/ha, were used in the risk assessment.

Bioconcentration			
	Active substance	Metabolite CGA 205375	Metabolite CGA 71019
$log P_{O/W}$	4.36	3.8	-1
Bioconcentration factor (BCF) ‡	330*	no data, not needed	-
Annex VI Trigger for the bioconcentration factor			
Clearance time (days) (CT ₅₀)	1 day	-	-
(CT ₉₀)	ca 3 days	-	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	not relevant	-	-

^{*} based on total ¹⁴C

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg as/bee)	Acute contact toxicity (LD ₅₀ μg as/bee)
difenoconazole ‡	>177	>100
Field or semi-field tests		
No significant effects on bee mortality, foraging behaviour, flig formulation SCORE 250EC.	tht activity or brood health in	semi-field study with the

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Seed treatment of 60 mg as/kg seed, corresponding to 12.3 g as/ha.

Test substance	Route	Hazard quotient	Annex VI Trigger
difenoconazole	Contact	not relevant	50
difenoconazole	oral	0.069	50
Preparation	Contact	not relevant	50
Preparation	oral	not relevant	50

Spray application to pome fruit, 75 g as/ha.

Spray application to pome truit, 73 g as/na.				
Test substance	Route	Hazard quotient	Annex VI	
			Trigger	
difenoconazole	Contact	0.75	50	
difenoconazole	oral	0.42	50	
Preparation	Contact	not relevant	50	
Preparation	oral	not relevant	50	

Spray application to carrots, 125 g as/ha.

Test substance	Route	Hazard quotient	Annex VI Trigger
difenoconazole	Contact	1.25	50
difenoconazole	oral	0.71	50
Preparation	Contact	not relevant	50
Preparation	oral	not relevant	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Effect (LR ₅₀ g as/ha)
Typhlodromus pyri ‡	difenoconazole	Mortality	112
Aphidius rhopalosiphi ‡	difenoconazole	Mortality	178

Seed treatment of 60 mg as/kg seed, corresponding to 12.3 g as/ha.

Test substance	Species	Effect	HQ in-field	HQ off-field	Trigger
		(LR ₅₀ g as/ha)			
SCORE 250EC	Typhlodromus pyri	178	0.069	not relevant	2
SCORE 250EC	Aphidius rhopalosiphi	112	0.11	not relevant	2

Spray application to pome fruit, 4 x 75 g as/ha, 7 days interval.

Test substance	Species	Effect (LR ₅₀ g as/ha)	HQ in-field (foliar/soil)	HQ off-field ¹ (foliar)	Trigger
SCORE 250EC	Typhlodromus pyri	178	1.49/0.91	0.15	2
SCORE 250EC	Aphidius rhopalosiphi	112	0.94/0.57	0.094	2

distance assumed to be 3 m in calculation of the drift rate

Spray application to carrots, 3 x 125 g as/ha, 14 days interval.

Test substance	Species	Effect (LR ₅₀ g as/ha)	HQ in-field (foliar/soil)	HQ off-field ¹ (foliar)	Trigger
SCORE 250EC	Typhlodromus pyri	178	1.7/0.64	0.028	2
SCORE 250EC	Aphidius rhopalosiphi	112	1.1/0.40	0.020	2

distance assumed to be 1 m in calculation of the drift rate

Further laboratory and extended laboratory studies ‡

Species	Life stage	Test substance, substrate and duration	Dose (g/ha) ^{1,2}	End point	Effect ³	Trigger value
Aleochara bilineata	adults	DIVIDEND 030FS, treated seeds in moistened sand	23.2 g ai/ha (60 mg as/kg seed and seed density of 379 kg/ha	LR ₅₀	>23.2 g as/ha (22.2% effect)	50% effect
Poecilus cupreus	adults	DIVIDEND 030FS, treated seeds in moistened sand	18.8 g ai/ha (60 mg as/kg seed and seed density of 307 kg/ha	LR ₅₀	>18.8 g as/ha (no effect)	50% effect
Poecilus cupreus	larvae	DIVIDEND 030FS, treated seeds in moistened sand	56.4 g ai/ha (60 mg/kg seed and seed density of 937 kg/ha	LR ₅₀	>56.4 g as/ha (no effect)	50% effect
Aphidius rhopalosiphi	juveniles	SCORE 250EC, fresh residues on glass plates.	5, 127, 253	LR ₅₀ NOER	≥253 g as/ha 5.06 g as/ha	50% effect
Typhlodromus pyri	proto- nymphs	SCORE 250EC, fresh residues on glass plates.	5, 127, 253	ER ₅₀ NOER	>127 g as/ha 5.06 g as/ha	50% effect
Chrysoperla carnea	larvae	SCORE 250EC, fresh residues on glass plates	4, 100, 200	ER ₅₀ NOER	>200 g as/ha 101 g as/ha	50% effect
Pardosa spp.	adults	SCORE 250EC, direct spray over adults, food and substrate (sand).	4, 100, 200	ER ₅₀	>200 g as/ha (no effect)	50% effect
Poecilus cupreus	adults	SCORE 250EC, direct spray over adults, food and substrate (sand).	6, 30, 150, 300	ER ₅₀	>300 g as/ha (no effect)	50% effect
Typhlodromus pyri	proto- nymphs	SCORE 250EC, fresh residues on bean leaves	6, 30, 150, 300	LR ₅₀ NOER	210 (165-267) g as/ha 30 g as/ha	50% effect

Species	Life stage	Test substance, substrate and duration	Dose (g/ha) ^{1,2}	End point	Effect ³	Trigger value
Chrysoperla carnea	larvae	SCORE 250EC, fresh residues on bean leaves	14, 28, 75, 125, 202, 288	ER ₅₀ NOER	>288 g as/ha No reliable NOER	50% effect
Orius laevigatus	nymphs	SCORE 250EC, fresh residues on maize plants	6 30 150 300	% effect	0% 7% 10% 18%*	50% effect
Trichogramma cacoeciae	adults	SCORE 250EC, fresh and 14-day old residues on broad beans.	15, 75, 125, 288	ER ₅₀ NOER	>288 g as/ha 125 g as/ha	50% effect
Coccinella septempunctata	larvae	SCORE 250EC, fresh and 14-day aged residues on broad beans.	4 appl. of 125 g ai/ha at 14-day intervals	ER ₅₀ NOER	>4 x 125 g as/ha No reliable NOER	50% effect
Episyrphus balteatus	larvae	SCORE 250EC, 14-day aged residues on broad beans.	15, 75, 125, 288	<u>L</u> R ₅₀	>288 g as/ha for aged residues based on mortality. Results from fresh residues not reliable due to high control mortality. No reliable NOER.	50% effect
Episyrphus balteatus	larvae	SCORE 250EC, fresh residues on broad beans.	288	Number of viable eggs per female. Aged residues not tested for reproduction. Potential for recovery considered likely.	62% effect when an outlier was excluded.	50% effect

¹ indicate whether initial or aged residues

Field or semi-field tests

SCORE 250EC, field study on predatory mites in apple orchards in Italy. 4 applications of 79.5 g as/ha at intervals of 10 or 11 days. No significant effect on population density of predatory mites up to 28 days after the last application, except for an increased population on day 28 after the last application.

SCORE 250EC, field study on predatory mites in apple orchards in Germany. 4 applications of 59.6 g as/ha at intervals of 9 or 12 days. No significant effect on population density of predatory mites up to 28 days after the last application.

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	End point ¹
Earthworms			
Eisenia foetida	difenoconazole ‡	Acute 14 days	LC ₅₀ >610 mg a.s./kg dw soil
Eisenia foetida	difenoconazole ‡	Chronic	no reliable data, assessment based on representative formulation studies
Eisenia foetida	DIVIDEND 030FS	Chronic 56 days, reproduction	NOEC 0.2 mg a.s./kg dw soil

³ indicate if positive percentages relate to adverse effects or not

Test organism	Test substance	Time scale	End point ¹
Eisenia foetida	SCORE 250EC	Acute	LC ₅₀ 40 (36 – 44) mg a.s./kg dw soil
			(mg a.s/ha)
Eisenia foetida	SCORE 250EC	Chronic 56 days,	no reliable data
J		reproduction	
Eisenia foetida	Metabolite CGA 71019	Acute	LC ₅₀ >1000 mg a.s./kg dw soil
Eisenia foetida	Metabolite CGA 71019	Chronic 28 days,	NOEC 1.0 mg a.s./kg dw soil
•		reproduction	
Eisenia foetida	Metabolite CGA 205375	Acute	LC ₅₀ 312 (284 – 343) mg a.s./kg dw
J			soil
Other soil macro-organism	s		•
Collembola			
Folsomia candida	difenoconazole ‡	Chronic 28 days	NOEC 500 mg a.s./kg dw soil
	Metabolite CGA 71019	Chronic 28 days	NOEC 1.8 mg a.s./kg dw soil
Soil micro-organisms			
Nitrogen mineralisation	difenoconazole ‡	28 days	<25% effect at day 28 at 1.67 and
-			16.7 mg a.s./kg dw soil in silty loam
			60% increase in loamy sand
	Metabolite CGA 71019	28 days	<25% effect at day 28 at 0.035 and
			0.353 mg a.s./kg dw soil
	Metabolite CGA 205375	28 days	<25% effect at day 28 at 0.09 and
			0.22 mg a.s./kg dw soil
	SCORE 250EC	28 days	<25% effect at day 28 at 0.33 and
			1.67 mg a.s./kg dw soil
Carbon mineralisation	difenoconazole ‡	28 days	<25% effect at day 28 at 1.67 and
			16.7 mg a.s./kg dw soil
	Metabolite CGA 71019	28 days	<25% effect at day 28 at 0.035 and
			0.353 mg a.s./kg dw soil
	Metabolite CGA 205375	28 days	<25% effect at day 28 at 0.09 and
			0.22 mg a.s./kg dw soil
	SCORE 250EC	28 days	<25% effect at day 28 at 0.33 and
			1.67 mg a.s./kg dw soil
Single species tests			
Marasmius oraede	difenoconazole	6 days	NOEC 1.64 mg as/kg
Mucor circinelloides	difenoconazole	3 days	NOEC 4.9 mg as/kg
Paecilomyces marquandii	difenoconazole	17 days	NOEC 16.4 mg as/kg
Phytophtora nicotianae	difenoconazole	17 days	NOEC 16.4 mg as/kg
2 Hyropinora meomanae		_	0 0

Field studies²

In a litter bag study with SCORE 250EC, a 17% reduction in decomposition rate was observed at direct overspray of 506 g as/ha compared to the control after 168 days. Exposure conditions considered as worst case compared to the representative use of difenoconazole in carrots, pome fruit and as seed treatment.

Toxicity/exposure ratios for soil organisms

Seed treatment of 60 mg as/kg seed, corresponding to 12.3 g as/ha.

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger	
			(mg as/kg			
			dw, initial)			
Earthworms						
	difenoconazole ‡	Acute	0.016	>19000	10	
			(0.019)**	>16000		
	difenoconazole ‡	Chronic	0.016	no data	5	
			(0.019)**			
	DIVIDEND 030FS	Chronic	0.016	6.3	5	
			(0.019)**	(5.3)		
	Metab. CGA 71019	Acute	0.0006	>770000	10	
	Metab. CGA 71019	Chronic	0.0006	1667	5	
	Metab. CGA 205375	Acute	0.0014	111000	10	
	Metab. CGA 205375	Chronic	0.0014	no data	5	
Other soil macro-orga	Other soil macro-organisms					
Collembola	difenoconazole ‡	Chronic	0.016	31200	5	

The values are not corrected due to log Pow >2.0 (e.g. LC_{50corr}). The correction is included in the TER calculation.

² litter bag, field arthropod studies not included at 8.3.2/10.5 above, and earthworm field studies

^{*}not fully reliable

Test organism	Test substance	Time scale	Soil PEC (mg as/kg dw, initial)	TER	Trigger
			(0.019)**	26000	
	CGA 71019	Chronic	0.0006	3000	5
	CGA 205375	Chronic	0.0014	no data	5

^{**}values within parentheses represents plateau concentrations in soil

Pome fruit Southern EU, 4 x 75 g as/ha, 7 days interval between treatments (covers also pome fruit in Northern EU, 4

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
			(mg as/kg		
			dw, initial)		
Earthworms					
	difenoconazole ‡	Acute	0.135	148	10
			(0.219)**	91	
	difenoconazole ‡	Chronic	0.135	no data	5
			(0.219)**		
	SCORE 250EC	Acute	0.135	148	10
			(0.219)**	(91)	
	SCORE 250EC	Chronic	0.135	no data	5
			(0.219)**		
	Metab. CGA 71019	Acute	0.005	190000	10
	Metab. CGA 71019	Chronic	0.005	200	5
	Metab. CGA 205375	Acute	0.012	13000	10
	Metab. CGA 205375	Chronic	0.012	no data	5
Other soil macro-org	ganisms				
Collembola	difenoconazole ‡	Chronic	0.135	3700	5
			(0.219)**	(2300)	
	CGA 71019	Chronic	0.005	360	5
	CGA 205375	Chronic	0.012	no data	5

^{**}values within parentheses represents plateau concentrations in soil

Carrots, 3 x 125 g as/ha, 14 days interval between treatments.

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
_			(mg as/kg		
			dw, initial)		
Earthworms					
	difenoconazole ‡	Acute	0.096	208	10
	·		(0.112)**	178	
	difenoconazole ‡	Chronic	0.096	no data	5
			(0.112)**		
	SCORE 250EC	Acute	0.096	208	10
			(0.112)**	178	
	SCORE 250EC	Chronic	0.096	no data	5
			(0.112)**		
	Metab. CGA 71019	Acute	0.004	260000	10
	Metab. CGA 71019	Chronic	0.004	268	5
	Metab. CGA 205375	Acute	0.008	19000	10
	Metab. CGA 205375	Chronic	0.008	no data	5
Other soil macro-organisms		•	•		•
Collembola	difenoconazole ‡	Chronic	0.096	5200	5
	,		(0.112)**		
	CGA 71019	Chronic	0.004	450	5
	CGA 205375	Chronic	0.012	no data	5

^{**}values within parentheses represents plateau concentrations in soil

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Not available.

Laboratory dose response tests

Most sensitive species	Test substance	ER ₅₀ (g/ha) ² vegetative vigour	ER ₅₀ (g/ha) emergence	Exposure ¹ (g as/ha)	TER	Trigger
Avena sativa, Brassica napus, Glycine maxima	difenoconazol e	>10 mg as/kg dw soil (incorporation)	>10 mg as/kg dw soil (incorporation)	not relevant	not relevant	5
Glycine maxima	SCORE 250EC	>100 g as/ha, (spray application)	100 g as/ha, (spray application)	12 (pome fruit) 3.5 (carrots)	8.1 (pome fruit) 28 (carrots)	5

¹ exposure has been estimated for spray applications based on Ganzelmeier drift data at 1 m distance for carrots, 3 m distance for pome fruit. Multiple applications were taken into account. For seed treatment, off-field exposure not relevant.

Additional studies (e.g. semi-field or field studies)

itational states (e.g. semi neta of neta states)			
Not required.			

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	end point
Activated sludge, 3 hours exposure	NOEC 32 mg/L, EC ₅₀ >100 mg/L

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

mom me rate section)	
Compartment	
soil	Parent (difenoconazole), data gap needs to be filled before Difenoconazole alcohol (CGA
	205375) can be excluded.
water	Parent (difenoconazole)
sediment	Parent (difenoconazole)
groundwater	None

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

1210)	RMS/peer review proposal	
Active substance	R50/53	
	RMS/peer review proposal	
DIVIDEND 030FS	R52/53	
	RMS/peer review proposal	
SCORE 250EC	<u>R51/53</u>	

APPENDIX B - USED COMPOUND CODE(S)

Code/Trivial name*	Chemical name	Structural formula
Difenoconazole-ketone CGA-205374	1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2- [1,2,4]triazol-1-yl-ethanone	$CI \longrightarrow O \longrightarrow CI \longrightarrow N \longrightarrow N$
Difenoconazole-alcohol CGA-205375	1-[2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-1H-[1,2,4]triazol-yl]-ethanol	CI OH N N
Difenoconazole-benzoic acid CGA-189138	2-chloro-4-(4-chloro-phenoxy)- benzoic acid	CION
1,2,4-triazole CGA 71019	1H-1,2,4-triazole	HNNN
Triazole alanine (TA) CGA 131013	2-amino-3- [1,2,4] triazol-1-yl- propionic acid	OH NH ₂ N
Triazole acetic acid (TAA) CGA 142586	[1,2,4]triazol-1-yl-acetic acid	HO N N
Triazole lactic acid (TLA) CGA 205369	[1,2,4]triazol-1-yl-lactic acid	HO N N
Phenobarbitone		H ₃ C NH

^{*} The metabolite name in bold is the name used in the conclusion.

ABBREVIATIONS

1/n slope of Freundlich isotherm

ε decadic molar extinction coefficient

°C degree Celsius (centigrade)

μg microgram

μm micrometer (micron)
 a.s. active substance
 AChE acetylcholinesterase
 ADE actual dermal exposure
 ADI acceptable daily intake
 AF assessment factor

AOEL acceptable operator exposure level

AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose

AST aspartate aminotransferase (SGOT)

AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight

CAS Chemical Abstract Service
CFU colony forming units
ChE cholinesterase

CI confidence interval

CIPAC Collaborative International Pesticide Analytical Council Limited

CL confidence limits Ct clearance time

d day

DAA days after application
DAR draft assessment report
DAT days after treatment

DM dry matter

 DT_{50} period required for 50 percent disappearance (define method of estimation) DT_{90} period required for 90 percent disappearance (define method of estimation)

dw dry weight

EbC₅₀ effective concentration (biomass)

EC₅₀ effective concentration ECHA European Chemical Agency ECD electron capture detector

EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of New Chemical Substances

EMDI estimated maximum daily intake ER₅₀ emergence rate/effective rate, median ErC₅₀ effective concentration (growth rate)

EU European Union

EUROPOEM European Predictive Operator Exposure Model

f(twa) time weighted average factor

FAO Food and Agriculture Organisation of the United Nations

FID flame ionization detector

FIR Food intake rate

FOB functional observation battery

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

g gram

GAP good agricultural practice GC gas chromatography

GCPF Global Crop Protection Federation (formerly known as GIFAP)

GGT gamma glutamyl transferase

GM geometric mean GS growth stage **GSH** glutathion hour(s) h ha hectare Hb haemoglobin Hct haematocrit hectolitre hL

HPLC high pressure liquid chromatography

or high performance liquid chromatography

HPLC-MS high pressure liquid chromatography – mass spectrometry

HQ hazard quotient

IEDI international estimated daily intake
IESTI international estimated short-term intake
ISO International Organisation for Standardisation

ILV inter laboratory validation

IUPAC International Union of Pure and Applied Chemistry

JMPR Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and

the Environment and the WHO Expert Group on Pesticide Residues (Joint

Meeting on Pesticide Residues)

K_{doc} organic carbon linear adsorption coefficient

kg kilogram

K_{Foc} Freundlich organic carbon adsorption coefficient

L litre

LC liquid chromatography LC₅₀ lethal concentration, median

LC-MS liquid chromatography-mass spectrometry

LC-MS-MS liquid chromatography with tandem mass spectrometry

LD₅₀ lethal dose, median; dosis letalis media

LDH lactate dehydrogenase

LOAEL lowest observable adverse effect level

LOD limit of detection

LOQ limit of quantification (determination)

LR lethal residue

m metre

M/L mixing and loading
MAF multiple application factor
MCH mean corpuscular haemoglobin

MCHC mean corpuscular haemoglobin concentration

MCV mean corpuscular volume

mg milligram mL millilitre mm millimetre

MRL maximum residue limit or level

MS mass spectrometry
MSDS material safety data sheet
MTD maximum tolerated dose

MWHC maximum water holding capacity
NESTI national estimated short-term intake

ng nanogram

NOAEC no observed adverse effect concentration

NOAEL no observed adverse effect level NOEC no observed effect concentration

NOEL no observed effect level NOER no observed effect residue OM organic matter content

Pa Pascal

PD proportion of different food types
PEC predicted environmental concentration
PEC_{air} predicted environmental concentration in air

 $\begin{array}{ll} PEC_{gw} & predicted \ environmental \ concentration \ in \ ground \ water \\ PEC_{sed} & predicted \ environmental \ concentration \ in \ sediment \\ PEC_{soil} & predicted \ environmental \ concentration \ in \ soil \\ \end{array}$

PEC_{sw} predicted environmental concentration in surface water

pH pH-value

PHED pesticide handler's exposure data

PHI pre-harvest interval

PIE potential inhalation exposure

pK_a negative logarithm (to the base 10) of the dissociation constant

 P_{ow} partition coefficient between n-octanol and water

PPE personal protective equipment

ppm parts per million (10^{-6}) ppp plant protection product

PT proportion of diet obtained in the treated area

PTT partial thromboplastin time

QSAR quantitative structure-activity relationship

r² coefficient of determination
RAC raw agricultural commodity
RPE respiratory protective equipment

RUD residue per unit dose
SC suspension concentrate
SD standard deviation
SFO single first-order

SSD species sensitivity distribution STMR supervised trials median residue $t_{1/2}$ half-life (define method of estimation)

TDM triazole derivative metabolite

TER toxicity exposure ratio

TER_A toxicity exposure ratio for acute exposure

TER_{LT} toxicity exposure ratio following chronic exposure TER_{ST} toxicity exposure ratio following repeated exposure

TK technical concentrate TLV threshold limit value

TMDI theoretical maximum daily intake

TRR total radioactive residue

TSH thyroid stimulating hormone (thyrotropin)

TWA time weighted average UDS unscheduled DNA synthesis

UV ultraviolet W/S water/sediment

w/v weight per volumew/w weight per weightWBC white blood cell

WG water dispersible granule WHO World Health Organisation

wk week yr year