Claims

1. A compound of formula I

5 wherein

10

15

20

25

the dashed line is absent or represents a bond;

A represents C(O), $S(O)_2$, C(O)O (in which latter group the O moiety is attached to R^1), C(O)NH, $S(O)_2NH$ (in which latter two groups the NH moiety is attached to R^1) or C_{1-6} alkylene;

R¹ represents

- (a) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, CN, C₃₋₁₀ cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C₁₋₆ alkyl, C₁₋₆ alkoxy and aryl), OR^{4a}, S(O)_nR^{4b}, S(O)₂N(R^{4c})(R^{4d}), N(R^{4e})S(O)₂R^{4f}, N(R^{4g})(R^{4h}), B¹-C(O)-B²-R⁴ⁱ, aryl and Het¹),
- (b) C₃₋₁₀ cycloalkyl or C₄₋₁₀ cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo, =O, CN, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C₁₋₆ alkyl, C₁₋₆ alkoxy and aryl), OR^{4a}, S(O)_nR^{4b}, S(O)₂N(R^{4c})(R^{4d}), N(R^{4e})S(O)₂R^{4f}, N(R^{4g})(R^{4h}), B³-C(O)-B⁴-R⁴ⁱ, aryl and Het²,
 - (c) aryl, or

172

(d) Het^3 ;

R^{4a} to R⁴ⁱ independently represent, at each occurrence,

(a) H,

5

10

20

25

- (b) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C₁₋₆ alkoxy, aryl and Het⁴),
 - (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, aryl and Het⁵),
 - (d) aryl or
 - (e) Het^6 ,

provided that R^{4b} does not represent H when n is 1 or 2;

- 15 the group -D-E-
 - (a) when the dashed line represents a bond, represents $-C(R^{5a})=C(R^{5b})$ -, or
 - (b) when the dashed line is absent, represents $-C(R^{6a})(R^{6b})-C(R^{7a})(R^{7b})-$; R^{5a} and R^{5b} independently represent H, halo, OH, C_{1-4} alkyl, $(CH_2)_{0-4}O(C_{1-3}$ alkyl) (which latter two groups are optionally substituted by one OH group or one or more F atoms);

 R^{6a} , R^{6b} , R^{7a} and R^{7b} independently represent H, F or methyl; or R^{5a} and R^{5b} together represent C_{2-4} n-alkylene; or one of R^{6a} and R^{6b} , together with one of R^{7a} and R^{7b} , represents C_{1-4} n-alkylene;

R² represents

- (a) H,
- (b) halo;

173

(c) C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, CN, C₁₋₄ alkoxy, C(O)OH, C(O)O-C₁₋₄ alkyl and OC(O)-C₁₋₄ alkyl) or

- (d) together with R^{3a} , R^2 represents C_{2-3} *n*-alkylene, T^1 -(C_{1-2} *n*-alkylene) or (C_{1-2} *n*-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
 - (e) together with R^{3a} and R^{3b} , R^2 represents T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

10

15

5

R^{3a} and R^{3b} independently represent H, F or methyl (which latter group is optionally substituted by one or more F atoms), or

- (a) together with R^2 , R^{3a} represents C_{2-3} *n*-alkylene, T^1 -(C_{1-2} *n*-alkylene) or (C_{1-2} *n*-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (b) together with R^2 , R^{3a} and R^{3b} represent T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 T^1 and T^2 independently represent O, S, N(H) or N(C₁₋₄ alkyl);

20 G represents

- (a) $-C(O)N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_a$ -,
- (b) $-C(O)N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_a$ -,

(c)

$$[N(R^{8c})C_{0-2} \text{ alkylene}]_{0-1} Q^{2a}$$

$$(d) \longrightarrow N \longrightarrow (CH_2)_{0-4} \longrightarrow N$$

 R^9 represents H or a 5- to 10-membered aromatic heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms, which heterocyclic group is optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl;

Q¹ represents O, NR^{10a} , $[N(H)]_{0-1}C(O)-C_{0-2}$ alkylene, C(O)NHNHC(O), or $-N=C(R^{10b})$ -;

a represents 0 or 1;

Q^{2a} represents

Q^{2b} represents

15

5

L represents

- (a) C₀₋₆ alkylene-R^a,
- (b) C₀₋₂ alkylene-CH=CH-C₀₋₂ alkylene-R^a,
- (c) C_{0-2} alkylene- $C \equiv C C_{0-2}$ alkylene- R^a ,

20 (d)

$$Ar$$
 R^b

175

(e)
$$(CH_2)_{0-1}$$
 R^c

wherein the dashed line represents an optional double bond, or

 $(f) \longrightarrow Het \longrightarrow R^d$ R^{11c}

Ar represents phenyl or naphthyl;

5

10

Het represents a 5- to 10-membered heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms;

 R^{11a} represents H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy; $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$) and $S(O)_{0-2}R^{12d}$;

15 R^{11b} and R^{11c} independently represent H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$), $S(O)_{0-2}R^{12d}$, =O, =NH, =NOH and =N-CN;

 R^{12a} to R^{12c} independently represent H, C_{1-6} alkyl or C_{3-7} cycloalkyl (which latter two groups are optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms);

 R^{12d} represents, independently at each occurrence, C_{1-6} alkyl optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms;

176

 R^{12e} and R^{12f} represent, independently at each occurrence, H or C_{1-4} alkyl optionally substituted by one or more halo atoms;

Ra to Rd independently represent

5 (a)

(b)

(c)

$$C_{0-3}$$
 alkylene $-N$

(d)

10

$$\mathbb{R}^{13c}$$
 \mathbb{R}^{14e}

(e)

$$\xrightarrow{\mathsf{N}} \overset{\mathsf{O}}{\underset{\mathsf{H}}{\bigvee}} \mathsf{R}^{\mathsf{14f}}$$

(f)

(g) Het^x

or R^b to R^d may also represent H;

Q³ represents O, N(R^{10c}), S(O)₂, S(O)₂NH, C(O) or -CH=N-; Q⁴ represents O, S or CH₂;

a represents 0 or 1;

Het^x represents a 5- or 6-membered heterocyclic group containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic group may be substituted by one or more substituents selected from halo, =O, C_{1-6} alkyl and C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more halo atoms);

 R^{13a} to R^{13c} independently represent

15 (a) H,

10

- (b) CN,
- (c) NH₂,
- (d) OR^{15} or
- (e) $C(O)OR^{16}$;
- 20 R¹⁵ represents
 - (a) H,
 - (b) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl,
 - (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
 - (d) C₁₋₃ alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

178

R¹⁶ represents

5

- (a) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, which latter three groups are optionally interrupted by one or more oxygen atoms, or
- (b) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (c) C₁₋₃ alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;
- 10 R^{8a} to R^{8c}, R^{10a} to R^{10c} and R^{14a} to R^{14g} independently represent
 - (a) H or
 - (b) C₁₋₄ alkyl (which latter group is optionally substituted by one or more substituents selected from halo and OH),
 - or R^{14a} and R^{14b} independently represent C(O)O-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
 - or R^{14c} represents
 - (a) C_{1-4} alkyl substituted by C_{3-7} cycloalkyl or aryl,
 - (b) C₃₋₇ cycloalkyl,
- (c) $C(O)O-C_{1-6}$ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
 - (d) $C(O)C_{1-6}$ alkyl,
 - (e) C(O)N(H)-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms) or
- 25 (f) $S(O)_2$ - C_{1-6} alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
 - or R^{14c} and R^{14d} together represent C_{3-6} *n*-alkylene optionally interrupted by O, S, N(H) or N(C_{1-4} alkyl) and/or substituted by one or more C_{1-4} alkyl groups;

PCT/SE2005/000124

each aryl independently represents a C_{6-10} carbocyclic aromatic group, which group may comprise either one or two rings and may be substituted by one or more substituents selected from

- (a) halo,
- 5 (b) CN,
 - (c) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C₁₋₆ alkoxy, C(O)OH, C(O)O-C₁₋₆ alkyl, phenyl (which latter group is optionally substituted by halo) and Het⁷),
- 10 (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het⁸),
 - (e) OR^{17a} ,
- 15 (f) $S(O)_p R^{17b}$,
 - (g) $S(O)_2N(R^{17c})(R^{17d})$,
 - (h) $N(R^{17e})S(O)_2R^{17f}$,
 - (i) $N(R^{17g})(R^{17h})$,
 - (i) B^5 -C(O)- B^6 - R^{17i} ,
 - (k) phenyl (which latter group is optionally substituted by halo),
 - (l) Het9 and
 - (m) $Si(R^{18a})(R^{18b})(R^{18c})$;

 R^{17a} to R^{17i} independently represent, at each occurrence,

25 (a) H,

20

(b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het¹⁰),

- (c) C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C₁₋₆ alkyl, C₁₋₆ alkoxy, phenyl (which latter group is optionally substituted by halo) and Het¹¹),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het¹²,

10

20

25

provided that R^{17b} does not represent H when p is 1 or 2;

Het¹ to Het¹² independently represent 4- to 14-membered heterocyclic groups containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may comprise one, two or three rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- 15 (c) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, C₁₋₆ alkoxy, C(O)OH, C(O)O-C₁₋₆ alkyl, phenyl (which latter group is optionally substituted by halo) and Het^a),
 - (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^b),
 - (e) = 0
 - (f) OR^{19a} ,
 - $(g) S(O)_q R^{19b},$
 - (h) $S(O)_2N(R^{19c})(R^{19d})$.
 - (i) $N(R^{19e})S(O)_2R^{19f}$,
 - (j) $N(R^{19g})(R^{19h})$,
 - $(k) B^7 C(O) B^8 R^{19i},$
- 30 (1) phenyl (which latter group is optionally substituted by halo),

181

- (m) Hetc and
- (n) $Si(R^{20a})(R^{20b})(R^{20c})$;

R^{19a} to R¹⁹ⁱ independently represent, at each occurrence,

- 5 (a) H,
 - (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^d),
- 10 (c) C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C₁₋₆ alkyl, C₁₋₆ alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^e),
 - (d) phenyl (which latter group is optionally substituted by halo) or
- 15 (e) Het^f ,

20

25

provided that R^{19b} does not represent H when q is 1 or 2;

Het^a to Het^f independently represent 5- or 6-membered heterocyclic groups containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may be substituted by one or more substituents selected from halo, =O and C_{1-6} alkyl;

B¹ to B⁸ independently represent a direct bond, O, S or NH; n, p and q independently represent 0, 1 or 2;

 R^{18a} , R^{18b} , R^{18c} , R^{20a} , R^{20b} and R^{20c} independently represent C_{1-6} alkyl or phenyl (which latter group is optionally substituted by halo or C_{1-4} alkyl);

unless otherwise specified

- (i) alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkylene and alkenylene groups, as well as the alkyl part of alkoxy groups, may be substituted by one or more halo atoms, and
- 5 (ii) cycloalkyl and cycloalkenyl groups may comprise one or two rings and may additionally be ring-fused to one or two phenyl groups;

or a pharmaceutically-acceptable derivative thereof.

10 2. A compound as claimed in Claim 1, which is a compound of formula Ic, Id or Ie,

wherein X¹ represents CH or N;

when X1 represents CH

- (a) R^x represents R^b as defined in Claim 1, and
- (b) R^y represents R^{11a} as defined in Claim 1;

5 when X¹ represents N

- (a) R^x represents R^d as defined in Claim 1, and
- (b) R^y represents R^{11c} as defined in Claim 1;

r represents 1 to 3;

s represents 2 to 4;

t represents 1 to 3;

u and v independently represent 0 to 2, the sum of u and v being 1 or 2; and R^1 , R^2 , R^{3a} , R^{3b} , R^{11a} , R^{11c} , R^{13a} , R^{13b} , R^{14a} , R^{14b} , R^b , R^d and A are as defined in Claim 1.

15 3. A compound as claimed in Claim 2 which is a compound of formula Ic,

$$\begin{array}{c|c}
R^2 R^{3a} & R^{3b} \\
N & (CH_2)_r
\end{array}$$
Ic
$$\begin{array}{c|c}
R^y
\end{array}$$

wherein

20

A represents $CH(CH_3)CH_2$ (in which latter group the $CH(CH_3)$ unit is attached to R^1) or CH_2 , $(CH_2)_2$ or CF_2CH_2 (in which latter group the CF_2 unit is attached to R^1);

R¹ represents

- (a) isopropyl or *tert*-butyl,
- (b) cyclopentyl, cyclohexyl or bicyclo[2.2.1]hept-5-ene,

- (c) phenyl optionally substituted by one or two substituents selected from halo, CN, methyl, CF₃, methoxy, OCF₃, phenoxy, morpholin-4-yl or O-CH₂-(2-chlorothiazol-5-yl),
- (d) imidazolyl optionally substituted by one to three substituents selected from Cl, methyl and phenyl,
- (e) isoxazolyl optionally substituted by one or two substituents selected from methyl, phenyl and 2-thienyl,
- (f) thiazolyl optionally substituted by one or two methyl groups,
- (g) thienyl optionally substituted by Cl or pyridinyl,
- 10 (h) pyrazolyl optionally substituted by one to three substituents selected from Cl, methyl, ethyl, phenyl and morpholin-4-yl,
 - (i) pyrrolyl optionally substituted by one to three substituents selected from methyl, S(O)₂-phenyl, C(O)-phenyl and 1,3,4-triazol-1-yl,
- 15 (j) pyridinyl optionally substituted by OH, methoxy or morpholin-4-yl, and optionally in the form of an *N*-oxide,
 - (k) pyridonyl,
 - (l) pyrazinyl,
 - (m) benzodioxolyl optionally substituted by halo,
 - (n) benzomorpholinyl optionally substituted by methyl;
 - (o) 2,1,3-benzoxadiazolyl,
 - (p) 2,3-dihydrobenzofuranyl or
 - (q) quinolinyl;

R⁵ and R⁶ both represent H;

25 r represents 1;

20

the group

$$X^1$$
 R^x

WO 2005/075424

represents

20

25

 R^{o} represents H, F, Cl, OH, methyl, tetrazol-1-yl, OCH₂C(O)N(H) R^{12b} or CH₂N(H) R^{14c} ;

- R^{12b} represents H or C_{1-3} alkyl optionally substituted by $N(CH_3)_2$; R^{14c} represents C(O)O-tert-butyl, H, ethyl, CH_2CF_3 or cyclopentyl; R^m represents H, methyl, CF_3 , methoxy, F or Cl; and R^{ya} represents H or methyl.
- 4. A pharmaceutical formulation including a compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 5. A compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, for use as a pharmaceutical.
 - 6. The use of a compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, as an active ingredient for the manufacture of a medicament for the treatment of a condition where inhibition of thrombin is beneficial.
 - 7. A method of treatment of a condition where inhibition of thrombin is beneficial, which method comprises administration of a therapeutically effective amount of a compound as defined in any one of Claims 1 to 3, or a

pharmaceutically acceptable derivative thereof, to a person suffering from, or susceptible to, such a condition.

- 8. A process for the preparation of a compound of formula I as defined in Claim 1, which comprises:
- (a) for compounds of formula I in which the group G represents
 - (i) $C(O)N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_a$ -,
 - (ii) $C(O)N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_a$ -,
 - (iii) $C(O)N(R^{8b})-C_{2-3}$ alkynylene- $(Q^1)_a$ -,

10 (iv)

5

$$N(R^{8c})C_{0-2}$$
 alkylene Q^{2a} Q^{2b}

(v)

$$Q^{2a} Q^{2b}$$

wherein Q^{2a} represents N or NHCH,

coupling of a compound of formula II,

wherein the dashed line, R¹, R², R^{3a}, R^{3b}, A, D and E are as defined in Claim 1, with a compound of formula III,

wherein L is as defined in Claim 1 and G^a represents

187

(i) $-N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_{a}$ -,

(ii)
$$-N(R^{8b})-C_{2-3}$$
 alkenylene- $(Q^1)_a$ -,

(iii)
$$-N(R^{8b})-C_{2-3}$$
 alkynylene- $(Q^1)_a$ -,

(iv)

$$\rightarrow$$
 N(R^{8c})C₀₋₂ alkylene $-Q^{2a}$ Q^{2b}

(v)

5

10

$$Q^{2a}$$
 Q^{2b}

wherein Q^{2a} represents N or NHCH and R^{8a} , R^{8b} , R^{8c} , R^{9} , Q^{1} , Q^{2b} and a are as defined in Claim 1;

(b) for compounds of formula I in which G represents

$$\begin{array}{c} O - N \\ N \end{array} (CH_2)_{0-4} \end{array}$$

and L represents L^a , which latter group represents L as defined in Claim 1, except that it does not represent C_0 alkylene- R^a , cyclisation of a compound of formula IV,

$$R^{2}$$
 R^{3a} R^{3b} $O-N$ $(CH_{2})_{0-4}$ L^{a} IV A NH R^{1}

15

20

wherein L^a is as defined above and the dashed line, R^1 , R^2 , R^{3a} , R^{3b} , A, D and E are as defined in Claim 1;

(c) for compounds of formula I in which R^a, R^b, R^c or R^d represents -C(=NH)NH₂, -C(=NNH₂)NH₂ or -C(=NOH)NH₂, reaction of a compound of formula V,

188

wherein L^b represents L as defined in Claim 1, except that R^a, R^b, R^c or R^d (as appropriate) is replaced by a cyano or -C(=NH)O-C₁₋₄ alkyl group, and the dashed line, R¹, R², R^{3a}, R^{3b}, A, D, E and G are as defined in Claim 1, with a suitable source of ammonia, hydrazine or hydroxylamine;

- (d) for compounds of formula I in which R^{13a} , R^{13b} or R^{13c} represents H, deprotection of a corresponding compound of formula I in which R^{13a} , R^{13b} or R^{13c} (as appropriate) represents C(O)O-CH₂aryl;
- (e) for compounds of formula I in which R^{14c} represents H, deprotection of a corresponding compound of formula I in which R^{14c} represents C(O)O-C₁₋₆ alkyl;
 - (f) reaction of a compound of formula VI.

10

20

wherein the dashed line, R², R^{3a}, R^{3b}, A, D, E, G and L are as defined in
Claim 1, with a compound of formula VII,

$$R^1$$
-A-Lg¹ VII

wherein Lg¹ represents a leaving group and R¹ and A are as defined in Claim 1;

(g) for compounds of formula I in which A represents C(O)NH, reaction of a compound of formula VI, as defined above, with a compound of formula VIII,

189

 R^1 -N=C=O VIII

wherein R¹ is as defined in Claim 1;

5

(h) for compounds of formula I in which A represents C_{1-6} alkylene, reaction of a compound of formula VI, as defined above, with a compound of formula IX,

 R^{1} - C_{0-5} alkylene-CHO IX

wherein R¹ is as defined in Claim 1, followed by reduction in the presence of a reducing agent; or

- (i) for compounds of formula I in which R^a, R^b, R^c or R^d represents
 -C(=NCN)NH₂, reaction of a corresponding compound of formula I in which R^a, R^b, R^c or R^d, respectively, represents -C(=NH)NH₂ with cyanogen bromide.
- 9. A compound of formula II, as defined in Claim 8, or a protected derivative thereof.
 - 10. A compound of formula IV, as defined in Claim 8, or a protected derivative thereof.
- 20 11. A compound of formula VI, as defined in Claim 8, or a protected derivative thereof.