

ADELAIDE ALVES DE OLIVEIRA

PROFESSORA

Formação Acadêmica

- Bacharel em Estatística UNICAMP
- Mestre em Ciências FSP/USP

Atividades Profissionais

- Diretora Técnica Estatística da empresa SD&W www.sdw.com.br
- Professora de Fundamentos Estatísticos, DataMining, Análise
 Preditiva e Machine Learning na FIAP dos cursos MBA: Big Data, Data
 Science, Business Intelligence & Analytics, Digital Data Marketing, IA &
 ML e Engenharia de Dados e nos Shift: People Analytics e Python
 Journey

•

profadelaide.alves@fiap.com.br

Conceitos Estatísticos para IA

Introdução...(Voltando

→ ... enfim, seus dados não servem para nada até que você saiba como tirar informações deles

DESCRITIVO O que aconteceu?

Quantos clientes temos cancelados voluntariamente? Quais os tipos de produtos? Qual a região que mora? Qual o tempo é cliente da empresa?

DIAGNÓSTICO Por que isto aconteceu?

Qual a relação entre cancelamento e região? Quais os motivos de cancelamentos. Qual a taxa de cancelamento por safra?

PREDITIVO O que acontecerá?

Qual a probabilidade de um cliente cancelar? Quais são os clientes que que queremos reter? Qual é a segmentação de valor dos clientes de maior propensão ao cancelamento?

PRESCRITIVO O que posso fazer?

Lista de ações para reter o cliente que está ativo e que tem a propensão ao cancelamento a um determinado tempo. Qual o canal que vamos utilizar para cada cliente? Que ações?

ANÁLISE MULTIVARIADA

Análise Exploratória dos Dados

Análise de Discriminação de Estrutura

- Técnicas de dependência.
- Técnicas Multivariadas aplicáveis quando uma das variáveis pode ser identificada como dependente (variável target), e as restantes como variáveis independentes.

Análise Supervisionada

Análise Estrutural

- Técnicas de Interdependência.
- Técnicas Multivariadas que procuram agrupar dados com base em semelhança, permitindo assim a interpretação das estruturas dos dados.
 Não há distinção entre variáveis dependentes e independentes.

Análise Não Supervisionada

TÉCNICAS DE DISCRIMINAÇÃO PREVISÃO E ESTIMAÇÃO

Descobertas Supervisionadas de Relações

Quando a variável target assume valores numéricos.

PREVISÃO

- A escolha da técnica adequada depende:
 - Horizonte de previsão.
 - Curto, médio e longo prazo.
 - Acuracidade desejada.
 - Relevância e disponibilidade de dados.
 - Custo/benefício da previsão.
 - Tempo disponível para modelagem.

TÉCNICAS DE PREVISÃO: TÉCNICAS QUANTITATIVAS

Quando a variável target assume valores numéricos.

Essas técnicas podem ser agrupadas em:

 Modelos de séries temporais: Enfoca os padrões e suas mudanças, desenvolvido por meio de sua série histórica.

 Modelos causais: Utiliza informações refinadas e específicas sobre relações entre elementos do sistema.

$$Qualidade\ do\ Vinho\ = b0 + b_1x_1 + b_2x_2 + \ldots + b_nx_n$$

Variáveis preditoras como: tipo do vinho, acidez, ph, acúcar, ...

Utilização: As técnicas quantitativas são aplicadas nas condições:

- Informações do passado disponíveis;
- Informações quantificáveis em forma numérica;
- Assumir a hipótese de que algo dos padrões do passado irá se repetir no futuro (hipótese de continuidade).

TÉCNICAS DE PREVISÃO REGRESSÃO

O Modelo Causal permite:

- Expressar as relações de Causa-Efeito entre variáveis;
- Entender melhor os mecanismos geradores do fato em estudo;
- Simular situações de forma a se avaliar o seu impacto na previsão;
- Analisar situações independentes do tempo.

MODELO DE REGRESSÃO:

Esse modelo relaciona, funcionalmente, uma variável dependente às suas possíveis variáveis explicativas.

- Eficácia de propaganda sobre as vendas
- Número de acidentes pela velocidade desenvolvida
- Prever o tempo gasto no caixa de um supermercado em função do valor de compra
- Satisfação do Cliente em função do tempo de relacionamento e intensidade de uso

ANÁLISE DE REGRESSÃO

- Técnica Estatística que relaciona funcionalmente uma variável dependente às suas possíveis variáveis explicativas. Em outras palavras, consiste na obtenção de uma equação que tenta explicar variação da variável dependente pela variação do(s) nível(is) da(s) variável(is) independente(s).
 - Modelo Linear a Duas Variáveis.
 - Modelo Linear Múltiplo.

Fonte:Abras

TÉCNICAS DE PREVISÃO SÉRIES TEMPORAIS

Investigar o mecanismo gerador da série:

Descrever o comportamento da série;

Procurar periodicidades relevantes;

Fazer previsões.

TÉCNICAS DE PREVISÃO SÉRIES TEMPORAIS

Conjunto de observações ordenadas no tempo a intervalos regulares

- vendas mensais de telefones celulares no Brasil;
- estimativas trimestrais do PIB;
- preços mensais do petróleo no mercado internacional;
- índices diários da bolsa de valores de SP;
- valores diários de temperatura na cidade de SP.

TÉCNICAS DE PREVISÃO SÉRIES TEMPORAIS

TÉCNICAS DE PREVISÃO MODELO DE REGRESSÃO

ANÁLISE DE REGRESSÃO

- Técnica Estatística que relaciona funcionalmente, uma variável dependente as suas possíveis variáveis explicativas. Em outras palavras consiste na obtenção de uma equação que tenta explicar variação da variável dependente pela variação do(s) nível(is) da(s) variável(is) independente(s).
 - Modelo Linear à Duas Variáveis
 - Modelo Linear Múltiplo

MODELO DE REGRESSÃO

O Modelo que relaciona Y com várias variáveis independentes

X = variáveis independentes

$$B_0 = constante$$

B₁ = coeficientes de regressão

• Modelo Linear Múltiplo: $Y=B_0+B_1X_1+B_2X_2+B_3X_3+...+B_nX_n+e$

$$X_1, X_2, X_3,, X_n = variáveis independentes$$

Y = variável dependente

$$B_o = constante$$

 $B_1, B_2, B_3, \dots, B_n$ = coeficientes de regressão associados às n variáveis

MODELO PROBABILÍSTICO:

y = Componente Determinístico + Erro Aleatório onde y é a variável dependente

Escrever a equação linear envolve dois parâmetros:

O Intercepto de y

A inclinação da reta

Reta Ajustada
$$\hat{Y} = a + bX$$

 $= y_2 - y_1 = b$

$$ightharpoonup$$
 Reta Ajustada $\hat{Y} = a + bX$

$$Y = a + bX$$

Para cada aumento de uma unidade em X, tem se um aumento, <u>em média</u>, de b unidades em Y

 $x_1 \quad x_1 + 1$

$$\hat{Y} = a + bX$$

- Método de Mínimos Quadrados -

Cálculos dos coeficientes *a* e *b*:

$$b = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{(n-1) S_{X}^{2}}$$

$$a = \overline{Y} - b \ \overline{X}$$

* Propriedades da equação de regressão

1)
$$\sum_{i=1}^{n} e_i = 0$$

2) $\sum_{i=1}^{n} e_i^2$ é mínimo

3)
$$\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$$

4) A reta de regressão passa sempre pelo ponto

MODELO DE REGRESSÃO LINEAR

- * O critério de Mínimos Quadrados é um bom ajuste:
 - Escolhe a reta que minimiza a soma dos quadrados dos desvios;
 - As distribuições amostrais são conhecidas;
 - Sob certas condições, as distribuições amostrais dos estimadores de mínimos quadrados de B_o e B₁ tem menores desvios padrões do que qualquer outro tipo de estimadores.

. . .

- Suposições necessárias:
 - E(e) = 0
 - Var(e)= σ^2
 - Distribuição de Probabilidade é Normal
 - O Erro associado a qualquer observação é independente
 - Há técnicas baseadas na análise dos resíduos para detectar quando uma ou mais suposições foram violadas

MODELO DE REGRESSÃO LINEAR

- Indicadores de Análise de Adequacidade do Modelo:
 - Análise de Variância(ANOVA) Instrumento de Análise Estatística
 - R²-Coeficiente de Determinação da Explicação
 - Teste F Estatística da existência do Ajuste
 - Teste T Estatística da existência do Modelo
 - Resíduos Checagem das Premissas Adotadas
 - Teste DW Checagem das Premissas Adotadas

Estatística Durbin-Watson testa a presença de autocorrelação nos erros de um modelo de regressão. A autocorrelação significa que os erros de observações adjacentes são correlacionados. Se os erros estiverem correlacionados, a regressão de mínimos quadrados pode subestimar o erro padrão dos coeficientes. Os erros padrão subestimados podem fazer com que seus preditores pareçam significativos quando eles não são. Por exemplo, os erros de um modelo de regressão dos dados de preços diários de ações podem depender da observação anterior porque o preço das ações em um dia afeta o preço do dia seguinte

Multicolinearidade (forte correlação entre as variáveis independentes) - Checagem das
 Premissas Adotadas

MODELO DE REGRESSÃO LINEAR

Adequacidade do Modelo: Análise de Resíduos

Forma de avaliar se as suposições colocadas no desenvolvimento do modelo não foram violadas

$$\hat{e}_i = y_i - \hat{y}_i$$

Resíduos: diferença entre o valor observado e o valor ajustado pelo modelo

Pelo gráfico de dispersão, visualizamos o comportamento dos resíduos

Formas "padronizadas"

Resíduos PADRONIZADOS:

$$\frac{e_i}{se}$$

$$\frac{e_i}{\text{Se} \sqrt{1 - V_{ii}}}$$

onde
$$v_{ii} = \frac{1}{n} +$$

' IGUALDADE DE VARIÂNCIA

Quando o gráfico de dispersão dos Resíduos Studentizados, contra o valor predito, indica que a extensão dos resíduos aumentam com a magnitude dos valores preditos:

Então a suposição de igualdade da variância está violada

Resíduos se distribuem aleatoriamente em torno da média zero

→ Modelo de Regressão Adequado

+ •

•

_ · · •

- LINEARIDADE : Gráfico de dispersão dos valores preditos (y) e o resíduo
 - ⇒ <u>os resíduos devem estar distribuídos aleatoriamente</u>.

O comportamento não aleatório dos resíduos podem ser + eliminados ajustando no modelo um termo quadrático.

LOCALIZANDO OS OUTLIERS:

Em geral, resíduos padronizados com valores maiores que 3 são considerados outliers

_ · · •

NORMALIDADE

Pelo histograma dos resíduos padronizados pode-se analisar a suposição de normalidade

A falta de normalidade muitas vezes está relacionado com a falta de homogeneidade de variâncias.

Frequentemente, a mesma transformação estabiliza a variância e aproxima para a normalidade.

Mean = 4,1667E-4 Std. Dev. = 0,99991 N = 24

TRANSFORMAÇÃO DE VARIÁVEIS

Quando o modelo não é conhecido, pode-se escolher a transformação examinando o gráfico x e y.

 $X' = \exp(X)$

 $X' = \exp(-X)$

TRANSFORMAÇÃO DE VARIÁVEIS (X=1/P)

• Exemplo: Prevendo as vendas diárias na loja XYZ

Dia	VendasBrutas (Y)	VendasCartão (X)
1	890.50	148.00
2	197.00	110.50
3	231.00	61.50
4	170.00	0.00
5	202.50	39.00
6	225.50	7.00
7	489.70	143.40
8	234.80	26.50
9	161.50	13.50
10	284.00	71.00
11	422.00	116.00
12	300.70	49.50
13	412.40	13.00
14	346.80	105.00
15	92.30	19.00
16	255.80	44.00
17	118.50	0.00
18	286.50	24.00
19	594.00	144.00
20	263.29	62.55
21	244.08	0.00
22	394.28	13.80
23	241.31	0.00
24	299.97	23.75
25	649.04	252.60

Exemplo

MODELO DE REGRESSÃO LINEAR SIMPLES

Resultados do Excel

Estatística de regressão	
R múltiplo	0.74
R-Quadrado	0.55
R-quadrado ajustado	0.53
Erro padrão	123.27
Observações	25

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	428912.3522	428912.3522	28.22781	0.00
Resíduo	23	349477.4932	15194.67362		
Total	24	778389.8455			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	194.93	34.13	5.71	0.00	124.33	265.52
VendasCartão (X)	2.11	0.40	5.31	0.00	1.29	2.93

Exemplo

MODELO DE REGRESSÃO LINEAR SIMPLES

A relação linear entre as duas variáveis é medida pelo coeficiente de correlação

Resultados do Excel

Estatística de regressão		4
R múltiplo	0.74	
R-Quadrado	0.55	
R-quadrado ajustado	0.53	1
Erro padrão	123.27	
Observações	25	

R-quadrado da regressão, que mede a proporção da variabilidade em Y que é explicada por X. É uma função direta da correlação entre as variáveis

é uma medida semelhante ao R-quadrado mas que, ao contrário deste, não aumenta com a inclusão de variáveis independentes não significativas

Erro padrão: mede a dispersão dos valores observados em relação a equação da reta

$$\sum_{\substack{\text{Soma de}\\\text{Quadrados Total}}} (y_i - \bar{y}_i)^2 = \sum_{\substack{\text{Soma de}\\\text{Quadrados}\\\text{Regidual}}} (y_i - \bar{y}_i)^2 + \sum_{\substack{\text{Soma de}\\\text{Quadrados}\\\text{Regressão}}} (y_i - \bar{y}_i)^2 + \sum_{\substack{\text{Soma de}\\\text{Regressão}}} (y_i - \bar{y}_i)^2 + \sum_{\substack{\text{Somade}\\\text{Regressão}}} (y_i$$

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	428912.3522	428912.3522	28.22781	0.00
Resíduo	23	349477.4932	15194.67362		
Total	24	778389.8455			

A estatística F serve para testar quanto o modelo de regressão ajusta os dados. Se a probabilidade associada com F é pequena, a hipótese que R²pop = 0 é rejeitada.

	Coeficientes	Erro padrão	Stat t	valor-P (4)	95% (5 inferiores) 95% superiores
(1)Interseção	194.93	34.13	5.71	0.00	124.33	265.52
(2) VendasCartão (X)	2.11	0.40	5.31	0.00	1.29	2.93

- (1) Parâmetro B₀ (intercepto)
- (2) Parâmetro B₁ (inclinação da reta)
- (3) Teste de hipóteses dos parâmetros B₀ e B₁
- (4) Nível descritivo do teste de hipóteses (3)(5) Intervalo de confiança da estimativa do parâmetro

Análise de resíduos

Observação	Previsto(a) VendasBrutas (Y)	Resíduos	Resíduos padrão
	506.75	383.75	3.18
2	427.74	-230.74	-1.91
3	324.50	-93.50	-0.77
4	194.93	-24.93	-0.21
5	277.10	-74.60	-0.62
6	209.68	15.82	0.13
7	497.06	-7.36	-0.06
8	250.76	-15.96	-0.13
9	223.37	-61.87	-0.5
10	344.52	-60.52	-0.50
11	439.33	-17.33	-0.14
12	299.22	1.48	0.0
13	222.32	190.08	1.58
14	416.16	-69.36	-0.57
15	234.96	-142.66	-1.18
16	287.63	-31.83	-0.26
17	194.93	-76.43	-0.60
18	245.49	41.01	0.34
19	498.33	95.67	0.79
20	326.72	-63.43	-0.50
21	194.93	49.15	0.4
22	224.00	170.28	1.4
23	194.93	46.38	0.38
24	244.97	55.00	0.46
25	727.14	-78.10	-0.68

Exemplo

Análise de resíduos

Observação	Previsto(a) VendasBrutas (Y)	Resíduos	Resíduos padrão
1	506.75	383.75	3.18
2	427.74	-230.74	-1.91
3	324.50	-93.50	-0.77
4	194.93	-24.93	-0.21
5	277.10	-74.60	-0.62
6	209.68	15.82	0.13
7	497.06	-7.36	-0.06
8	250.76	-15.96	-0.13
9	223.37	-61.87	-0.51
10	344.52	-60.52	-0.50
11	439.33	-17.33	-0.14
12	299.22	1.48	0.01
13	222.32	190.08	1.58
14	416.16	-69.36	-0.57
15	234.96	-142.66	-1.18
16	287.63	-31.83	-0.26
17	194.93	-76.43	-0.63
18	245.49	41.01	0.34
19	498.33	95.67	0.79
20	326.72	-63.43	-0.53
21	194.93	49.15	0.41
22	224.00	170.28	1.41
23	194.93	46.38	0.38
24	244.97	55.00	0.46

Exemplo

•

□ · · •

Novo ajuste

Estatística de regressão	
R múltiplo	0.77
R-Quadrado	0.59
R-quadrado ajustado	0.57
Erro padrão	90.94
Observações	24

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	257779.1	257779.1	31.17137	0.000
Resíduo	22	181934.3	8269.739		
Total	23	439713.4			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	201.26	25.22	7.98	0.00	148.97	253.55
VendasCartão (X)	1.71	0.31	5.58	0.00	1.07	2.34

Exemplo

Análise de resíduos

Observação	Previsto(a) VendasBrutas	Resíduos	Resíduos	
,	(Y)		padrão	ı
1	389.89	-192.89	-2.17	D
2	306.24	-75.24	-0.85	
3	201.26	-31.26	-0.35	ı
4	267.83	-65.33	-0.73	ı
5	213.21	12.29	0.14	ı
6	446.05	43.65	0.49	ı
7	246.50	-11.70	-0.13	ı
8	224.30	-62.80	-0.71	ı
9	322.46	-38.46	-0.43	l
10	399.28	22.72	0.26	l
11	285.76	14.94	0.17	ı
12	223.45	188.95	2.12	\rangle
13	380.50	-33.70	-0.38	ı
14	233.69	-141.39	-1.59	ı
15	276.37	-20.57	-0.23	ı
16	201.26	-82.76	-0.93	l
17	242.23	44.27	0.50	ı
18	447.07	146.93	1.65	l
19	308.03	-44.74	-0.50	ı
20	201.26	42.82	0.48	ı
21	224.82	169.46	1.91	l
22	201.26	40.05	0.45	ı
23	241.80	58.17	0.65	ı
24	632.46	16.58	0.19	ı

Exemplo

Há necessidade de excluir mais alguma observação?

Exemplo

Novo ajuste

ivovo ajust	.e					Observaçã	ão	Previsto(a) VendasBrutas	Resíduos	Resíduos
Estatística de r	egressão							(Y)		padrão
R múltiplo	0.86						1	307.808	-76.808	-1.087
R-Quadrado	0.75						2	189.118	-19.118	-0.271
R-quadrado ajustado	0.74						3	264.385	-61.885	-0.876
Erro padrão	72.41						4	202.627	22.873	0.324
Observações	22						5	465.869	23.831	0.337
							6	240.261	-5.461	-0.077
ANOVA							7	215.172	-53.672	-0.759
	gl	SQ	MQ	F	F de significação		8	326.142 412.989	-42.142 9.011	-0.596 0.128
Regressão	1	311497.8	311497.8	59.40548	0.00		10	284.649	16.051	0.227
Resíduo	20	104871.735	5243.587				11	391.760	-44.960	-0.636
Total	21	416369.535					12	225.786	-133.486	-1.889
							13	274.034	-18.234	-0.258
	0 #:-!	F	01-11		95%	95%	14	189.118	-70.618	-0.999
	Coeficientes	Erro padrão	Stat t	valor-P	inferiores	superiores	15	235.436	51.064	0.723
Interseção	189.12	20.73	9.12	0.00	145.87	232.37	16	467.027	126.973	1.797
•							17	309.834	-46.544	-0.659
VendasCartão (X)	1.93	0.25	7.71	0.00	1.41	2.45	18	189.118	54.962	0.778
							19	215.751	178.529	2.526
							20	189.118	52.192	0.739
							21	234.953	65.017	0.920

Há necessidade de excluir mais alguma observação?

excluir

-27.576

-0.390

676.616

Modelo Final

Estatística de regressão					
R múltiplo	0.91				
R-Quadrado	0.83				
R-quadrado ajustado	0.82				
Erro padrão	61.02				
Observações	21				

Λ Λ	10\/A

	gl		SQ	MQ	F	F de significação
Regressão		1	335463.2	335463.2	90.1	0.00
Resíduo		19	70745.9	3723.5		
Total		20	406209.1			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	175.19	18.07	9.70	0.00	137.37	213.01
VendasCartão (X)	2.02	0.21	9.49	0.00	1.58	2.47

Estimativas

Exemplo

Considerando que a venda com cartão crédito é de R\$100, qual será o valor total de vendas?

$$\hat{y}_i = 175.19 + 2.02 \cdot x$$

$$\hat{y}_i = 175.19 + 2.02 \cdot 100 = 377$$

Como obter um intervalo de confiança para esta estimativa?

IC(95%) = estimativa
$$\pm$$
 t(1- α /2; n-2) * σ

O standard error da distribuição de um estimador \hat{y} de um valor médio, fixado x é raiz da: $(x - \overline{x})^2$

$$Var(\hat{y}) = \sigma_e^2 \left[\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_i (x_i - \overline{x})^2} \right]$$

Exemplo

Dia	VendasBrutas (Y)	VendasCartão (X)	(X-media) ²
3	231.00	61.50	18.06
4	170.00	0.00	3277.56
5	202.50	39.00	333.06
6	225.50	7.00	2525.06
7	489.70	143.40	7421.82
8	234.80	26.50	945.56
9	161.50	13.50	1914.06
10	284.00	71.00	189.06
11	422.00	116.00	3451.56
12	300.70	49.50	60.06
14	346.80	105.00	2280.06
15	92.30	19.00	1463.06
16	255.80	44.00	175.56
17	118.50	0.00	3277.56
18	286.50	24.00	1105.56
19	594.00	144.00	7525.56
20	263.29	62.55	28.09
21	244.08	0.00	3277.56
23	241.31	0.00	3277.56
24	299.97	23.75	1122.25
25	649.04	252.60	38161.62

média =	57.25	
Total	1	81830.35

Considerando que a venda com cartão crédito é de R\$100, qual será o valor total de vendas?

$$\hat{y}_i = 175.19 + 2.02 \cdot x$$

$$\hat{y}_i = 175.19 + 2.02 \cdot 100 = 377$$

Intervalo de Confiança

$$IC(95\%) = 377 \pm 3,182 \cdot 61,02 \cdot \sqrt{\frac{1}{22} + \frac{(100 - 57,25)^2}{81.930,35}}$$

$$IC(95\%) = 377 \pm 1,9427 = (375;379)$$

PREVISÃO E ESTIMAÇÃO

REGRESSÃO LINEAR MULTIVARIADA

MODELO REGRESSÃO MÚLTIPLA

O Modelo que relaciona Y com várias variáveis independentes

X = variáveis independentes

Y = variável dependente

Bo = constante

B1 = coeficientes de regressão

X1,X2,X3,....,Xn = variáveis independentes

Y = variável dependente

Bo = constante

B1,B2,B3,....,Bn = coeficientes de regressão associados às n variáveis

REGRESSÃO LINEAR MÚLTIPLA

Com os dados de uma amostra, podemos calcular as estimativas dos parâmetros (B) não conhecidos. Usando para isso o ajuste pelo método dos mínimos quadrados.

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Que minimiza
$$SSE = \sum (\bar{y} - y)^2$$

Suposições Necessárias:

$$E(e) = 0$$

$$VAR(e) = \delta^2$$

Distribuição de probabilidade de *e* é normal;

O erro associado com qualquer observação é independente.

Há técnicas baseadas na análise dos resíduos para detectar quando uma ou mais suposições foram violadas.

COEFICIENTE DE DETERMINAÇÃO

Coeficiente de determinação Ajustado:

$$R_a^2 = 1 - \frac{n-1}{n-(K+1)}(1-R^2)$$

ightharpoonup um critério para a seleção de um modelo ótimo é escolher o modelo que tem o R^2_σ máximo

* TESTANDO OS PARÂMETROS B'S

$$H_0: B_i = 0$$

H₁: B_i # 0

$$t = \frac{b_i}{Sb_i} \qquad _{com gl = n - p}$$

Quando $t > t_{\alpha/2} \Rightarrow$ região de rejeição

$$IC: \overline{b}_i + t_{\alpha/2}Sb_i$$

. . .

TESTANDO O MODELO PREDITIVO DE Y

$$H_0: B_1 = B_2 = B_3 = ... = B_n$$

H₁: pelo menos um B não é zero

Teste
$$\rightarrow$$
 $F = \frac{\text{Quadrado Médio da Regressão}}{\text{Quadrado Médio dos Resíduos}}$

ANALISE DE VARIÂNCIA

A variabilidade total observada na variável dependente está dividido em 2 componentes

- $\hat{y}_i y_i = resíduo da regressão$
- $\hat{y}_i y_i = distância da regressão da média dos y's$

$$\sum (y_i - \overline{y})^2 = \sum (y_i - \hat{y}_i)^2 + \sum (\hat{y}_i - \overline{y}_i)^2$$
Soma de
Soma de
Soma de

Soma de quadrados total SQTot Soma de quadrados residual

SQRes

quadrados regressão

SQReg

* ANALISE DE VARIÂNCIA

Podemos resumir todas essas informações numa única tabela anova:

Fonte	gl	SQ	QM	F
Regressão	p - 1	SQReg	$QMReg = \frac{SQReg}{p-1}$	$\frac{QM \operatorname{Re} g}{g^2}$
Resíduo	n - p	SQRes	$Se^2 = \frac{SQRes}{n-p}$	S_e^2
Total	n - 1	SQTOT	$S^2 = \frac{SQTot}{n-1}$	

Exemplo

* Este estudo é um caso de aplicação do método dos valores hedônicos(*), para valorar benefícios ambientais associados à proximidade a áreas verdes, existência de vista panorâmica e a localização da propriedade em rua com ou sem poluição sonora, relacionados a preços de apartamentos.

Trecho do arquivo de dados

Ordem	ValorR\$	Áream2	IA	Andar	Suites	Vista	Dist.BM	Semruído	AV200m
1	160,000	167.81	1	5	1	1	294	1	0
2	67,000	128.80	1	6	0	0	1,505	1	0
3	190,000	217.37	1	8	1	0	251	0	1
4	110,000	180.00	12	4	1	0	245	0	0
5	70,000	120.00	15	3	1	0	956	1	0
6	75,000	160.00	18	2	0	1	85	0	1
7	95,000	155.00	5	3	1	0	1,401	1	0
8	135,000	165.00	1	2	1	1	148	0	1
9	110,000	150.00	10	4	1	0	143	0	0
10	115,000	185.00	15	5	1	0	831	0	0
11	325,669	392.40	1	4	2	0	421	1	1
12	362,400	392.40	1	8	2	0	421	1	1
13	163,798	225.60	1	2	1	0	397	1	0
14	261,250	312.82	1	3	2	0	319	1	0
15	276,870	304.35	1	5	4	0	461	1	1
16	284,626	304.35	1	7	4	0	461	1	1
17	95,000	161.00	6	3	1	0	143	0	0

Exemplo

Variáveis:

- •Valor do Imóvel [Valor]: Valor do imóvel
- •Área [Area]: Utilizou-se a área total do apartamento em metros quadrados;
- •Idade Aparente [IA]: Idade aparente em anos
- •Andar [Andar]: É o número do andar do apartamento;
- •Suítes [Suites]: Número de suítes;
- •Vista Panorâmica [Vista]: A variável ambiental vista panorâmica é uma variável dicotômica: se o apartamento tiver vista panorâmica a variável vista assume valor igual a 1, se não tiver vista seu valor será 0;
- •Sem Ruído na rua [Sem Ruído]: A variável ambiental Sem Ruído é uma variável dicotômica: se o apartamento está localizado em rua onde o nível de ruído está abaixo do que é considerado não prejudicial terá valor 1, se tiver nível de ruído acima terá valor 0;
- •Distância a Avenida Beira Mar [Dist. BM]: A distância é medida em metros, pelo eixo da rua do prédio onde os apartamentos estão localizados até a Avenida Beira Mar;
- •Área Verde a uma distância de 200 metros [AV 200m]: Área verde a uma distância de 200 metros assume valor igual a 1, ultrapassando 200 metros assume valor 0.

Análise descritiva

Distância a Avenida Beira Mar

Quantidade de Suites

Exemplo

Área do Imóvel (em m2)

Número do Andar

Próximo área verde

Análise descritiva

Exemplo

Área do Imóvel (em m2) Com outras variáveis

⁺ Exemplo

Análise de correlação

		Correlatio	ns				1
		Valor (R\$)	Áre	a (m2)	Andar	Suítes	Dist. BM
Valor (R\$)	Pearson Correlation	1		.936**	.281	.758**	108
	Sig. (2-tailed)			.000	.068	.000	.490
	N	43		43	43	43	43
Área (m2)	Pearson Correlation	.936**		1	.118	.690**	153
	Sig. (2-tailed)	.000			.453	.000	.327
	N	43		43	43	43	43
Andar	Pearson Correlation	.281		.118	1	.197	.252
	Sig. (2-tailed)	.068		.453		.206	.103
	N	43		43	43	43	43
Suítes	Pearson Correlation	.758**		.690**	.197	1	135
	Sig. (2-tailed)	.000		.000	.206		.387
	N	43		43	43	43	43
Dist. BM	Pearson Correlation	108		153	.252	135	1
	Sig. (2-tailed)	.490		.327	.103	.387	
	N	43		43	43	43	43

^{**} Correlation is significant at the 0.01 level (2-tailed).

Exemplo

Saída da regressão linear múltipla do SPSS

Variables Entered/Removebd

Model	Variables Entered	Variables Removed	Method
1	AV 200m, Dist. BM, Vista, Área (m2), _a Sem ruído		Enter

a. All requested variables entered.

Model Summary

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.954 ^a	.911	.899	22906.352	.911	75.787	5	37	.000

a. Predictors: (Constant), AV 200m, Dist. BM, Vista, Área (m2), Sem ruído

b. Dependent Variable: Valor (R\$)

Saída da regressão linear múltipla do SPSS

ANOV Ab

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	198826510187.688	5	39765302037.538	75.787	.000ª
	Residual	19413935906.499	37	524700970.446		
	Total	218240446094.186	42			

a. Predictors: (Constant), AV 200m, Dist. BM, Vista, Área (m2), Sem ruído

Coefficients

		Unstand Coeffi	a.a oa	Standardized Coefficients	_	_	95% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Low er Bound	Upper Bound
1	(Constant)	-43386.850	12526.681		-3.464	.001	-68768.317	-18005.383
	Área (m2)	878.181	53.553	.885	16.398	.000	769.673	986.688
	Vista	5476.052	14721.511	.020	.372	.712	-24352.562	35304.667
	Dist. BM	-3.050	10.996	016	277	.783	-25.331	19.231
	Sem ruído	20058.757	8240.080	.139	2.434	.020	3362.769	36754.745
	AV 200m	16252.429	8252.737	.109	1.969	.056	-469.206	32974.063

a. Dependent Variable: Valor (R\$)

Exemplo

b. Dependent Variable: Valor (R\$)

Exemplo

Saída da regressão linear múltipla do SPSS

Excluindo as variáveis Vista, Dist BM e Av 200m

Variables Entered/Removed Model Variables Entered Variables Removed Method 1 Sem ruídog Área (m2) . Enter

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.948 ^a	.899	.894	23509.440

a. Predictors: (Constant), Sem ruído, Área (m2)

a. All requested variables entered.

b. Dependent Variable: Valor (R\$)

Saída da regressão linear múltipla do SPSS

A NOV Ab

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	196132696058.004	2	98066348029.002	177.433	.000ª
	Residual	22107750036.183	40	552693750.905		
	Total	218240446094.186	42			

a. Predictors: (Constant), Sem ruído, Área (m2)

b. Dependent Variable: Valor (R\$)

Coefficients

			Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-46369.160	10861.800		-4.269	.000
	Área (m2)	911.921	50.300	.919	18.130	.000
	Sem ruído	21677.313	7317.427	.150	2.962	.005

a. Dependent Variable: Valor (R\$)

Modelo final:

$$\hat{y}_i = -46.369, 16 + 911, 92 \cdot x_1 + 21.677, 31 \cdot x_2$$

Exemplo

Saída da regressão linear múltipla do SPSS

Exemplo

Exemplo

ESTIMAÇÃO DOS PARÂMETROS DO MODELO NO EXEMPLO

$$Y = b_0 + b1x_1 + b_2x_2 + e$$

Onde:

Y = Valor do imóvel (em R\$)

 $X_1 = \text{Área } (m^2)$

 X_2 = Sem ruído

Exemplo

* ESTIMAÇÃO DOS PARÂMETROS DO MODELO NO EXEMPLO

As estimativas de mínimos quadrados para B's

$$b_o = -46.369,16$$

$$b_1 = 911,92$$

$$b_2 = 21677,31$$

Então a equação que minimiza se para os dados é:

$$\hat{y}_i = -46.369,16 + 911,92 \cdot x_1 + 21.677,31 \cdot x_2$$

- Para um aumento de uma unidade na área, o valor do imóvel aumenta em média R\$ 911,92.
- Se o apartamento estiver localizado em rua onde o nível de ruído está abaixo do que é considerado não prejudicial, o valor do imóvel aumenta em média R\$ 21.677,31.

Exemplo

COEFICIENTE DE DETERMINAÇÃO

Calculando o r² para o modelo do valor das residências:

$$R^2 = 0.899$$

Significa que 90% da soma quadrada dos desvios de y sobre sua média é atribuído pela relação entre x_i e y.

O erro da previsão pode ser reduzido em 90% quando a equação de mínimos quadrados, ao invés de y, é usado para prever y.

Exemplo

ANALISE DE VARIÂNCIA

Testando (α =0.05) se o modelo com as 3 variáveis independentes é adequado para predizer o preço de venda y

$$H_0: B_1 = B_2 = B_3 = 0$$

 H_1 : pelo menos um B é = 0

$$F = \frac{QM \text{ Re } g}{QM \text{ Re } s} = 177,43$$

Para determinar se o valor de F é significante

$$P(F > 177,43) = 0.0001$$

Há uma forte evidência para rejeitar H0

As vezes, 2 ou mais <u>variáveis independentes</u> usadas no modelo **poderá contribuir com** informação redundante.

Uma variável independente é correlata com uma outra variável independente.

MULTICOLINEARIDADE

- ☐ Altas correlações entre as variáveis independentes aumenta a probabilidade de erros no cálculo dos parâmetros B's, dos Standards erros, etc.
- ☐ A regressão resultante pode ser confusa

Para detectar multicolinearidade nos modelos de regressão:

☐ Correlações significativas entre variáveis independentes do modelo;

Teste t não significativo para todos (ou quase todos) parâmetros B's, quando o teste F indica adequacidade do modelo;

Sinais opostos do que é esperado para as estimativas de B's.

- Como resolver problemas de MULTICOLINIARIDADE:
 - 1) Excluir variáveis independentes correlatas do modelo
 - 2) Se a decisão for deixar essas variáveis:
 - ter cuidado na previsão
 - 3) Usar transformações e modelo de ordem maiores para reduzir o erro
 - 4) Utilizar a técnica de sumarização, por exemplo Componentes Principais

Medidas de desempenho dos modelos

Mean Error (ME):
$$ME = \frac{\sum_{i=1}^{n} y_i - \hat{y}_i}{n}$$

Mean Absolute Error (MAE):
$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Root Mean Squared Error (RMSE): RMSE=
$$\sqrt{\frac{\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}{n}}$$

Mean Percentage Error (MPE):
$$MPE = \frac{\sum_{i=1}^{n} \frac{y_i - \hat{y}_i}{y_i * 100}}{n}$$

Mean Absolute Percentage Error (MASE):
$$MAPE = \frac{\sum_{i=1}^{L=1} \frac{\sum_{i=1}^{L=1$$

- Medidas de desempenho dos modelos
 - → problema de estimação ou previsão: (variável target quantitativa):

Modelo de Regressão Linear Simples

Raiz do Erro quadrático médio (RMSE)

$$RMSE = \sqrt{\frac{5.743,3}{12}} = \sqrt{478}, 5 = 21,9$$

Exemplo

Id	Observado (A)	Estimado (B)	Erro (A-B)	Erro absoluto A-B	Erro^2
1	207	236	-28,7	28,7	822,8
2	289	265	24,0	24,0	576,1
3	285	272	13,5	13,5	181,9
4	292	278	14,0	14,0	195,2
5	269	285	-15,5	15,5	241,6
6	291	298	-6,6	6,6	43,2
7	331	304	26,9	26,9	724,4
8	283	307	-24,3	24,3	592,6
9	364	337	27,3	27,3	747,6
10	345	340	5,1	5,1	25,9
11	370	366	4,0	4,0	16,2
12	310	350	-39,7	39,7	1.575,1
			0,0	229,7	5.742,3

•

Medidas de desempenho dos modelos

Exemplo

Data	Vendas (y) A	Budget (x)	Vendas estimadas (B)	Erro (A-B)	Erro absoluto A-B	Erro^2	%erro	% erro absoluto
jan/18	207	13	236	-28.7	28.7	822.8	-13.9	13.9
fev/18	289	22	265	24.0	24.0	576.1	8.3	8.3
mar/18	285	24	272	13.5	13.5	181.9	4.7	4.7
abr/18	292	26	278	14.0	14.0	195.2	4.8	4.8
mai/18	269	28	285	-15.5	15.5	241.6	-5.8	5.8
jun/18	291	32	298	-6.6	6.6	43.2	-2.3	2.3
jul/18	331	34	304	26.9	26.9	724.4	8.1	8.1
ago/18	283	35	307	-24.3	24.3	592.6	-8.6	8.6
set/18	364	44	337	27.3	27.3	747.6	7.5	7.5
out/18	345	45	340	5.1	5.1	25.9	1.5	1.5
nov/18	370	53	366	4.0	4.0	16.2	1.1	1.1
dez/18	310	48	350	-39.7	39.7	1575.1	-12.8	12.8
soma				0.0	229.7	5742.3	-7.3	79.3

MEDIDA	SOMA	n	RESULTADO
ME	0.0	12	0.0
MAE	229.7	12	19.14
RMSE	5742.3	12	21.88
MPE	-7.3	12	-1.04
MAPE	79.3	12	6.61

EXERCITANDO

Regressão Multipla

PREVISÃO E ESTIMAÇÃO

SÉRIES TEMPORAIS

+

· · • •

MODELOS DE SÉRIES TEMPORAIS

Considerações gerais

Uma série temporal é qualquer conjunto de observações <u>ordenadas no tempo</u>.

Exemplos:

- faturamento da campanha
- número de pedidos
- produção mensal
- estoque mensal

TÉCNICAS DE PREVISÃO

QUANTITATIVAS

MODELOS DE SÉRIES TEMPORAIS

O objetivo é identificar os padrões e suas mudanças, desenvolvido através de sua série histórica.

- Informações históricas de pelo menos dois anos disponíveis;
- Informações quantificáveis em forma numérica;
- Assumir a hipótese de que algo dos padrões do passado irá se repetir no futuro (hipótese de continuidade).

SÉRIES TEMPORAIS

PIB, Valores Correntes Trimestrais

• Análise de Séries Temporais visa identificar e explicar:

Série = T + S + C + A

T: Tendência

S: Sazonalidade

C: Ciclo

A: Aleatório

Tendência – evolução do fenômeno de interesse.

Sazonalidade – regularidade ou variação sistemática na série de dados.

Padrões Cíclicos – repetição de padrão num prazo superior a 2 anos.

Aleatório – comportamento não explicável pelos três componentes anteriores (Erro Aleatório).

•

- Principais objetivos ao analisar uma série temporal:
 - Investigar o mecanismo gerador da série temporal; por exemplo, analisando uma série de altura de ondas, queremos saber como estas ondas foram geradas;
 - Fazer previsões de valores futuros (curto ou longo prazo) da série;
 - Descrever apenas o comportamento da série;
 - Procurar periodicidade relevante nos dados.

Série temporal do faturamento (R\$)

A série apresenta tendência? Sazonalidade?

Série temporal do consumo de energia (Kw/h) de empresas do setor Agricultura

• MODELOS DE SÉRIES TEMPORAIS

Previsão de 12 meses para o faturamento mensal - Varejo (Vestuário) -

FREQUÊNCIA DA SÉRIE

FREQUÊNCIA DA SÉRIE

UNIDADE DE ANÁLISE	FREQUÊNCIA
Anual	1
Mensal	12
Diária	365
Trimestral	4
Semanal	52

Exemplo 1:

Ano		Mes	Faturamento
	2011	1	43484
	2011	2	45859
	2011	3	56254
	2011	4	58224
	2011	5	75403
	2011	6	61255
	2011	7	65601
	2011	8	80099
	2011	9	75017
	2011	10	87932
	2011	11	95266
	2011	12	79175
	2012	1	54085
	2012	2	63808
	2012	3	66330
	2012	4	72442
	2012	5	83072
	2012	6	71321
	2012	7	70095
	2012	8	99071
	2012	9	103100
	2012	10	98380
	2012	11	113751

12

84933

2012

Exemplo 2:

Período	Proporção de vendas
17/01 a 23/01	34.1
24/01 a 30/01	27.9
31/01 a 06/02	26.7
07/02 a 13/02	15.4
14/02 a 20/02	37.0
21/02 a 27/02	25.0
28/02 a 06/03	46.7

Exemplo 3:

instant	dteday	Bikes alugadas
1	01/01/2011	985
2	02/01/2011	801
3	03/01/2011	1349
4	04/01/2011	1562
5	05/01/2011	1600
6	06/01/2011	1606
7	07/01/2011	1510
8	08/01/2011	959
9	09/01/2011	822
10	10/01/2011	1321
11	11/01/2011	1263
12	12/01/2011	1162
13	13/01/2011	1406
14	14/01/2011	1421
15	15/01/2011	1248
16	16/01/2011	1204
17	17/01/2011	· 1000

USO DOS MODELOS NO CICLO DO CLIENTE

RECONQUISTA

Reconquista Qualificada $\dot{}$.

USO DOS MODELOS NO CICLO DO CLIENTE

MODELOS PREDITIVOS

Estatística Tradicional

Machine Learning

Inferência estatística

↓

Conjunto de técnicas estatísticas baseadas em I.C. e erro padrão.

- O objetivo é identificar o que funciona.
- Interessa em prever os resultados de amostras futuras.
- Foco na praticidade: Desenvolve em uma amostra e aplica em outra.
- Algoritmos para tomada de decisão.
- Limitações/grandes desafios:

Baseado em algorítmos.

- Tendência ao sobre ajuste.
- Dados influenciados por erros de medição e fatores aleatórios.
- Ajuste perfeito para um grupo de dados e pode não funcionar bem para outro.
- Algoritmo preconceituoso.

.

MODELOS PREDITIVOS

Machine Learning

Problemas práticos de predição (para tomada de decisão).

Pouco interesse em interpretar os modelos.

Liberdade para modelar a complexidade do mundo real.

Se machine learning não se importa muito com interpretação, então se importa de fato com o quê?

Performance preditiva (ou seja, acurácia das decisões).

ANÁLISE MULTIVARIADA

Análise Exploratória dos Dados

Análise de Discriminação de Estrutura

- Técnicas de dependência.
- Técnicas Multivariadas aplicáveis quando uma das variáveis pode ser identificada como dependente (variável target), e as restantes como variáveis independentes (ou preditoras).

Análise Estrutural

- <u>Técnicas de Interdependência.</u>
- Técnicas Multivariadas que procuram agrupar dados com base em semelhança, permitindo assim a interpretação das estruturas dos dados. Não há distinção entre variáveis dependentes e independentes.

Aprendizado Supervisionado

Aprendizado Não Supervisionado $_{\!_{\square}}$

ALGORITMOS de MACHINE LEARNING

TÉCNICAS DE DISCRIMINAÇÃO CLASSIFICAÇÃO

Descobertas Supervisionadas de Relações

Quando a variável target assume "classes/categorias".

TÉCNICAS DE DISCRIMINAÇÃO MÉTODO DE CLASSIFICAÇÃO

- Como os heavy users se diferem em seu perfil demográfico dos light users ?
- Quais são os clientes ativos que se assemelham aos clientes cancelados?
- Que fatores ou atitudes fazem com que os meus clientes prefiram o meu produto?
- Quais são as características que apresentam os clientes que compraram o produto de maior rentabilidade?

Como separar grupos previamente definidos? Como definir critérios, funções das variáveis que discriminem os grupos?

TÉCNICAS DE DISCRIMINAÇÃO MÉTODO DE CLASSIFICAÇÃO

- Dado um conjunto de treinamento onde cada registro contém um conjunto de atributos, e um dos atributos é a nossa variável de interesse é tipo categórica/classes.
- Encontrar um modelo para determinar o valor do atributo/classe em função dos valores de outros atributos.
- Objetivo: definir a classe de novos registros, a classe deve ser atribuída o mais corretamente possível.

GRUPO A GRUPO B GRUPO C

MODELOS PREDITIVOS - AVALIAÇÃO

- Existem diversas métricas para determinar a qualidade de um modelo.
 Dois exemplos muito utilizados:
 - → problema de estimação ou previsão: (variável target quantitativa):
 - erro quadrático médio (MSE). Calculado por:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{(\hat{y}_1 - y_1)^2 + \dots + (\hat{y}_n - y_n)^2}{n}$$

n é o número de observações, y_i é o valor real e ŷ_i é a predição do modelo. Utilizamos a Raiz quadrada desse valor RMSE

Nesse caso, um modelo bom é aquele que possui o menor erro quadrático médio.

- → problema de classificação: (variável target categórica)
- Percentagem de acertos do modelo

Acurácia: É a proporção de predições corretas. É dada por:

$$Acur\'{a}cia = rac{Quantidade\ de\ Acertos}{Total}$$

Nesse caso, um modelo bom é aquele que possui a maior acurácia.

MODELOS PREDITIVOS - AVALIAÇÃO

- Medidas de desempenho dos modelos
 - → problema de classificação: (variável target categórica/classes)

Id	Observado	Estimado
1	NÃO	SIM
2	SIM	SIM
3	NÃO	NÃO
4	SIM	SIM
5	SIM	NÃO
6	NÃO	NÃO
7	SIM	SIM
8	SIM	SIM
9	NÃO	NÃO
10	NÃO	SIM
11	SIM	SIM
12	NÃO	NÃO

		Estimado		
		NÃO	SIM	Total
	NÃO	4	2	6
Observado	SIM	1	5	6
	Total	5	7	12

Acurácia = (4+5) /12 = 75,0%

MODELOS DE AQUISIÇÃO

- Adquirir prospects com os mesmos perfis dos bons clientes da empresa;
- Campanhas sobre os clientes da concorrência;
- Estimular os clientes à aquisição de novos produtos/serviços (cross selling).

.

· · ·

] • • • •

TIPOS DE MODELOS

MODELOS DE RETENÇÃO ou MODELOS DE CHURN

Objetivo:

- Identificar na base de dados de clientes prováveis a cancelar o relacionamento com a empresa.
- Oferecer suporte a área de relacionamento e permitir que campanhas de fidelização sejam direcionadas a clientes com risco real de interromper o relacionamento com a instituição.

- Melhores resultados nas campanhas realizadas;
- Redução de custos de abordagens indesejadas;
- Satisfação dos clientes;
- Maior credibilidade.

EVOLUÇÃO DAS FERRAMENTAS

DE GESTÃO DE RISCO

TIPOS DE MODELOS

- Modelo de Credit Scoring
 - Considera informações/dados do contrato (tempo de relacionamento recente);
 - Probabilidade de o novo cliente vir a ser inadimplente.
- Modelo de Inadimplência (Behaviour Scoring)
 - Considera dados de utilização/comportamento dos clientes;
 - Probabilidade de o cliente vir a ser tornar um inadimplente.
- Modelo de Cobrança (Collection Scoring)
 - Considera dados de utilização dos clientes e do mercado;
 - Probabilidade de um cliente pagar.
- Modelo de *Churn* e fraude/anomalias/ abusos
 - Considera dados de utilização dos clientes e do mercado;
 - Probabilidade de o cliente cancelar a "conta/serviço/produto".

MODELOS PREDITIVOS

Mercado Financeiro - Exemplos

Objetivo:

• Identificar na base de dados correntistas prováveis a cancelar/inativar o relacionamento (conta corrente) com o banco;

Dimensões:

- Utilização: diretamente relacionadas à geração de receita de cada correntista (dados transacionais).
 - Exemplos: produto adquirido, quantidade de cheques emitidos, saldo médio, tempo de relacionamento, conta conjunta, etc.
- Demográficas: informações descritivas do cliente.
 - Exemplos: sexo, idade, endereço, profissão, estado civil, renda, etc
- Definição da janela de tempo de análise
- Planejamento amostral (técnicas estatísticas aliadas às restrições do Banco)

Benefícios:

• Realizar ações fidelizadoras sobre os correntistas propensos a cancelar/inativar sua conta corrente

□ • • •

TÉCNICAS DE DISCRIMINAÇÃO

MÉT⊕DO DE CLASSIFICAÇÃO

Classificadores eager (espertos)

A partir da amostragem inicial (conjunto de treinamento), constroem um modelo de classificação capaz de classificar novos registros.

Uma vez pronto o modelo, o conjunto de treinamento não é mais utilizado na classificação de novos objetos (registros)

Classificadores lazy (preguiçosos)

Cada novo registro é comparado com todo o conjunto de treinamento e é classificado segundo a classe do registro que é mais similar. Também conhecido como: Aprendizado baseado em exemplo (Instance-based Learning):

Outros Métodos

- Árvores e Regras de Decisão
- Redes Neurais
- Redes Bayesianas e Naïve Bayes
- SVM-Máquinas de Vetores de Suporte

Método kNN (k-nearest-neighbor)

- Algoritmos Genéticos
- Conjuntos Fuzzy

Técnicas de Classificação:

variável	categoria	Coeficientes
	até 3 dias	-1,276
fatura em atraso	3 a 15 dias	-0,611
ratura em atraso	de 15 a 30 dias	0,580
	mais de 30 dias	1,308
	até 1 ano	0,580
Tomno do alianto	de 1 a 3 anos	0,401
Tempo de cliente	de 3 a 8 anos	-0,264
	mais de 8 anos	-0,718
	Até R\$250	0,262
valor da fatura	R\$ 250 a R\$ 800	0,103
Valor da ratura	R\$ 800 a R\$ 1.499	-0,105
	Mais de R\$1.500	-0,261
	até 10%	0,581
% de gasto com	de 10% a 20%	0,401
alimentação	de 20% a 30%	-0,264
	mais de 30%	-0,718
	Região 4	1,067
Dogião do Disso	Região 3	0,371
Região de Risco	Região 2	-0,368
	Região 1	-1,069
	Até R\$ 1.518	0,455
	R\$ 1.519 a R\$ 3.000	0,080
renda mensal	R\$ 3.000 a R\$ 4.500	-0,122
	Mais de R\$ 4.500	-0,413
Constante		0,099

sinistro

Node 0 Category %

0,000 50,0 10283 1,000 50,0 10283 Total 100,0 20566

fx_set_ativ Adj. P-value=0,000, Chi-square=1380, 754, df=3

Node 3

■ 1,000 55,2 1621

44,8 1314

55,0 1049 45.0 859

0,000

1.000

Category % 0,000 44,

5.0: 6.0

Node 2

■ 1.000 58.8 6569

41.2 4610

0,000

[= 0,000]

1,000

Node 1

72,8 3310

27,2 1234

Category %

Qual a distância euclidiana entre os pontos?

TÉCNICAS DE CLASSIFICAÇÃO

ÁRVORES DE DECISÃO

TÉCNICAS DE DISCRIMINAÇÃO

ÁRVORES DE DECISÃO

- Metodologia estatística de fácil interpretação e utilização.
 - São estruturas de dados compostas de um nó raiz e vários nós filhos, que por sua vez têm seus filhos também e se interligam por ramos, cada um representando uma regra. Os nós que não possuem filhos são chamados de nós folhas e os que têm são chamados de nós pais, ou de decisão.
- Têm como objetivo encontrar regras que discriminem dois grupos previamente conhecidos.
- Exemplo: Encontrar uma regra que trace perfil de pessoas mais propensas a aderir a um certo produto.

ÁRVORES DE DECISÃO — EXEMPLO

Cliente BOM 50% Cliente RUIM 50% GRAU DE INSTRUÇÃO 1º GRAU SUPERIOR 2º GRAU 40% BOM 59% BOM 65% BOM 60% RUIM 41% RUIM 35% RUIM OCUPAÇÃO **ESTADO CIVIL** Setor privado ou empresa pública Outras ocupações Casado Outros ou mista 35% BOM 75% BOM 80% BOM 30% BOM 25% RUIM 70% RUIM 65% RUIM 20% RUIM

ÁRVORES DE DECISÃO — EXEMPLO

Decisões da árvore:

- Qual preditor e qual valor dividir os dados
- Profundidade e complexidade da árvore
- Resultado de cada folha

.

_

ÁRVORES DE DECISÃO – EXEMPLO

Segmento: Área Financeira

A área de crédito deseja avaliar a propensão de um cliente tornar-se inadimplente.

ÁRVORES DE DECISÃO

Critérios de parada (hiperparâmetros):

- ☐ Número de observações na divisão dos nós filhos
- ☐ 100% de classificação de uma categoria de resposta
- Número de níveis

Segmento: Seguro Residencial

A área de Seguros deseja avaliar a propensão de um novo cliente sinistrar na apresentação de uma proposta.

. . .

apolice	⁺ parcelas	qtde_cob	tpconstr	tipmora	clasmora	corretor	corrent	<u>uf</u>	set_ativ	Impseg(R\$)	<u>sinistro</u>
925578	6	9	6	casa	moradia	2	N	MS	90	100000	1
395699	1	9	6	apto	moradia	1	S	ES	26	30000	0
863771	11	9	6	casa	moradia	1	S	SP	24	200000	0
892165	11	9	6	casa	moradia	1	S	MG	27	30000	0
923092	1	9	6	casa	veraneio	2	N	SP	90	70000	0
1003098	4	9	6	casa	veraneio	1	S	SP	7	150000	1
955644	11	9	6	casa	moradia	1	S	MG	11	30000	1
987421	1	9	6	casa	moradia	2	N	SP	90	65000	1
744959	4	9	6	casa	veraneio	1	S	RS	18	70000	1
920814	11	9	6	casa	moradia	2	S	SP	90	100000	0
395550	2	9	6	casa	moradia	1	S	ES	26	20000	0
972615	6	9	6	casa	veraneio	2	N	SP	90	87500	1
958900	11	9	6	casa	moradia	1	S	MG	23	85000	1
911272	4	9	6	casa	veraneio	2	N	SP	90	150000	0
895508	11	9	6	casa	moradia	1	S	MG	33	50000	0
374234	1	9	6	apto	moradia	1	N	DF	6	30000	0
883254	11	9	6	casa	moradia	1	S	SP	24	100000	0
727885	3	9	6	casa	moradia	2	S	RS	90	180000	1
327315	11	9	6	casa	moradia	1	S	ВА	21	20000	0
910241	11	9	6	apto	moradia	1	S	SP	49	50000	. 0.
956554	10	9	6	casa	moradia	1	S	MG	27	70000	1
1000162	3	9	6	casa	moradia	2	S	MS	90	80000	1 \Box
920421	1	9	6	casa	veraneio	1	S	SP	1	40000	1

Árvores de Decisão - exemplos:

Árvores de Decisão sinistra - exemplos: Nade 0 Category % 0.000 30.0 10280 50.0 10280 100.0 20588 0.000 (x_set_athr Adj. P-valuer 0.000, Chl-squarer 1090. 50:60 Node 1 Node 2 Nade 3 Node 4 Category % Category % Category % Category % 72.8 3010 0.000 41.2 4610 0.000 44.8 1314 \$5.0 1049 45.0 869 27.2 1234 58.8 6589 SS 2 1621 S4.4 11179 22.1 4544 14.0 2905 9.0 1908 Upmora Adj. P-valuer 0.000. Chl-squarer 251. Upmara Adj. P-valuer 0.000. Chl-squarer 249. 102. df = 1 Upmora Adj. P-valuer 0.000, Chl-squarer 48.879. Upmora Adj. P-valuer 0.000, Chl-squarer 78.520. <= 0292.0 > 3292.0 <= 3292.0 > 3292.0 <= 0292.0 > 3292.0 <= 3292.0 > 3292.0 Nade S Nade 6 Nade 7 Nade 8 Nade 9 Nade 10 Node 11 Node 12 Category % 84.9 1610 738 64.2 1697 0.000 39.3 4101 0.000 89.1 509 42.8 1143 65.0 171 0.000 49.7 70.5 011 0.000 35.8 947 **1,000** 15.1 297 1,000 80.7 6341 1,000 30.9 228 1,000 57.2 1530 **1,000** 34.7 91 1,000 50.0 747 28.5 112 12.9 2844 9.2 1900 0.6 707 10.0 2670 1.0 282 7.2 1485 2.1 423 Total Total 50.8 10442 Total Total

Árvores de Decisão

- exemplos:

•

Árvores de Decisão

- exemplos:

Árvores de Decisão

- exemplos:

. . .

AVALIAÇÃO DO MODELO

Exemplo

Classification			
Observed	Predicted		
	0	1	Percent Correct
0	5.137	999	83,7%
1	1.208	4.412	78,5%
Overall Percentage	81,0%	81,5%	81,2%

Growing Method: EXHAUSTIVE CHAID Dependent Variable: Resposta

Árvores de decisão

- Algoritmos utilizados:
 - o CHAID: CHi-square Automatic Interaction Detector
 - o CART: Classification And Regression Trees
- Tipos de Variáveis
 - Variáveis Categóricas (nominais ou ordinais)
 - Variável Frequência e Ponderada (Weight)

EXERCITANDO

•

ÁRVORE DE DECISÃO

MÉTODOS DE ENSEMBLE LEARNING

BAGGING – RANDOM FOREST

Random Forest é uma técnica de bagging.

Usa diversas árvores de decisão como modelos individuais, além de fazer uma seleção aleatória de casos e de variáveis. As árvores são extremamente interpretáveis, entretanto costumam ter um poder preditivo muito baixo quando comparados aos demais estimadores. Uma forma de contornar isso é através da combinação da predição fornecida por diversas árvores para se

fazer predições.

Cada árvore tenta estimar uma classificação e isso é chamado como "voto". Idealmente, consideramos cada voto de cada árvore e escolhemos a classificação mais votada (estatística: Moda). No caso de problemas de regressão funciona similarmente, cada árvore tenta estimar a variável target e depois é considerada a média dos valores estimado em cada árvore.

MÉTODOS DE ENSEMBLE LEARNING

BAGGING

- Como funciona:
 - o Treina modelos individuais usando uma amostra aleatória para cada;
 - o Agrega os modelos individuais depois de treinados com suas respectivas amostras;
 - o No caso de problemas de regressão usa a média e no caso de classificação a moda;
- Vantagem:
 - o ajuda reduzir a variância (amostragem aleatória);
 - o pode reduzir o viés(pois estamos usando média e moda para combinar os modelos);
 - o fornece estabilidade e robustez (alto número de estimadores usados).
- Desvantagem:
 - tem um custo computacional alto (usa muito espaço e tempo cada nova iteração é criada uma amostra diferente)
 - A técnica só funciona se o modelo base já tem uma boa performance. Usar o bagging em um modelo base ruim pode fazer com que o modelo final fique ainda pior. Como os modelos individuais usam o mesmo .
 algoritmo, o bagging pode não reconhecer alguns padrões.

Técnicas de Classificação:

variável	categoria	Coeficientes
•	até 3 dias	-1,276
fatura em atraso	3 a 15 dias	-0,611
iatura em atraso	de 15 a 30 dias	0,580
	mais de 30 dias	1,308
	até 1 ano	0,580
Tompo do cliento	de 1 a 3 anos	0,401
Tempo de cliente	de 3 a 8 anos	-0,264
	mais de 8 anos	-0,718
	Até R\$250	0,262
valor da fatura	R\$ 250 a R\$ 800	0,103
valui da iatura	R\$ 800 a R\$ 1.499	-0,105
	Mais de R\$1.500	-0,261
	até 10%	0,581
% de gasto com	de 10% a 20%	0,401
alimentação	de 20% a 30%	-0,264
	mais de 30%	-0,718
	Região 4	1,067
Região de Risco	Região 3	0,371
negiao de nisco	Região 2	-0,368
	Região 1	-1,069
	Até R\$ 1.518	0,455
renda mensal	R\$ 1.519 a R\$ 3.000	0,080
renua mensai	R\$ 3.000 a R\$ 4.500	-0,122
	Mais de R\$ 4.500	-0,413
Constante		0,099

sinistro

Node 0 Category %

0,000 50,0 10283 1,000 50,0 10283 Total 100,0 20566

fx_set_ativ Adj. P-value=0,000, Chi-square=1380, 754, df=3

Node 3

■ 1,000 55,2 1621

44,8 1314

55,0 1049 45.0 859

0,000

1.000

Category % 0,000 44,

5.0: 6.0

Node 2

■ 1.000 58.8 6569

41.2 4610

0,000

[= 0,000]

1,000

Node 1

72,8 3310

27,2 1234

Category %

Qual a distância euclidiana entre os pontos?

TÉCNICAS DE CLASSIFICAÇÃO

REGRESSÃO LOGÍSTICA

ANÁLISE DE DISCRIMINAÇÃO

DE ESTRUTURA

REGRESSÃO LOGÍSTICA

Encontrar uma função logística, formada por meio de ponderações das variáveis (atributos), cuja resposta permita estabelecer a probabilidade de ocorrência de determinado evento e a importância das variáveis (peso) para essa ocorrência.

ANÁLISE DE DISCRIMINAÇÃO

DE ESTRUTURA

REGRESSÃO LOGÍSTICA

Probabilidade

Sendo Y: a resposta à preferência por um evento (sim ou não),

- a probabilidade de:
 - PreNão-preferênciaferência (ou sucesso) será p
 - (de fracasso) será (1-p)

"Chance de Ocorrência de um Evento"

• Chance = (probabilidade de sucesso) / (probabilidade de fracasso)

Exemplo, se a probabilidade de sucesso é 0,65:

a chance é igual a:
$$p / (1-p) = p / q = 0.65 / 0.35 = 1.86$$

Exemplo: Preferência por canal de futebol

Sexo	Prefere	Não prefere	Total
Masculino	146	120	266
Feminino	110	124	234
Total	256	244	500

Chance de preferir o canal de futebol entre homens:

• Chance de preferir o canal de futebol entre mulheres:

• Razão de chances de preferir canal de futebol entre homens, em relação.

às mulheres:

o
$$[p1/(1-p1)] / [p2/(1-p2)] = 1,22 / 0,89 = 1,37$$

Modelo de Regressão Logística

$$G = a + B_1 X_1 + B_2 X_2 + ... + B_n X_n$$

G: logit da resposta de preferência (sim) a :

Intersecção B₁, B₂, ...,B_n: coeficientes logísticos

• A função logística é dada pelo logito-inverso (anti-logit) que nos permite transformar o logito em probabilidade:

$$p = \frac{exp(x)}{1 + exp(x)}$$
Aproximação suave a $\pi = 1$

Aproximação suave a $\pi = 1$

Curva Logística: $\pi = \frac{\exp(a + bX_1)}{1 + \exp(a + bX_1)}$

Método de Estimação dos Coeficientes

- Regressão Linear: Método dos Mínimos Quadrados
 - É o método que determina a linha reta mais apropriada, minimizando a soma dos quadrados das diferenças entre os valores estimados de Y por meio da reta de regressão e os valores observados de Y.
- Logística: Método da Máxima Verossimilhança (algoritmo interativo)

Consiste em determinar uma função, denominada função de verossimilhança $[L(y, \vartheta)]$, que é a função de probabilidade de ocorrência de um específico conjunto de dados e estimar os parâmetros que a maximizam.

- Seleção Conjuntos de Atributos (Variáveis)
 - Variáveis Discriminantes
 - Variáveis Não-Discriminantes

Instrumento para selecionar variáveis (atributos) significativos

BACKWARD FORWARD STEPWISE

- Backward Selection: Procedimento constrói adicionando todas as variáveis e vai eliminando iterativamente uma a uma até que não haja mais variáveis.
- Forward Selection: Procedimento constrói iterativamente adicionando variáveis uma a uma até que não haja mais variáveis preditoras.
- Stepwise: Combinação de Forward Selection e Backward elimination. Procedimento constrói iterativamente uma sequência de modelos pela adição ou remoção de variáveis em cada etapa. .

Qualificação do Ajuste do Modelo

- Matriz de Classificação
- Estatística de Ajuste
- Verossimilhança : -2 log Verossimilhança
- Significância do Modelo : Qui-quadrado (similar ao F regressão)
- Ganho no Modelo (significância)

Segmento: Cartões de Crédito

A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência.

. .

Média de dias com pagamentos em atraso nos últimos 6 meses

Tempo de relacionamento em anos

Valor Médio da Fatura Mensal

Percentual dos gastos em alimentação

Regiões de Risco

Renda média mensal

Tabela de Coeficientes do Modelo

variável	categoria	Coeficientes
	até 3 dias	-1,276
fatura em atraso	3 a 15 dias	-0,611
iatura em atraso	de 15 a 30 dias	0,580
	até 3 dias 3 a 15 dias de 15 a 30 dias mais de 30 dias até 1 ano de 1 a 3 anos de 3 a 8 anos mais de 8 anos Até R\$250 R\$ 250 a R\$ 800 R\$ 800 a R\$ 1.499 Mais de R\$1.500 até 10% de 10% a 20%	1,308
	até 1 ano	0,580
Tempo de cliente	de 1 a 3 anos	0,401
rempo de cliente	de 3 a 8 anos	-0,264
	mais de 8 anos	-0,718
	Até R\$250	0,262
valor da fatura	R\$ 250 a R\$ 800	0,103
valor da ratura	R\$ 800 a R\$ 1.499	-0,105
	Mais de R\$1.500	-0,261
	até 10%	0,581
% de gasto com alimentação	de 10% a 20%	0,401
% de gasto com aminentação	de 20% a 30%	-0,264
	mais de 30%	-0,718
	Região 4	1,067
Região de Risco	Região 3	0,371
Regido de Risco	Região 2	-0,368
	Região 1	-1,069
	Até R\$ 1.518	0,455
renda mensal	R\$ 1.519 a R\$ 3.000	0,080
i cilua iliciisai	R\$ 3.000 a R\$ 4.500	-0,122
	Mais de R\$ 4.500	-0,413
stante		0,099

Tabela de Coeficientes do Modelo

$$p = \frac{exp(x)}{1 + exp(x)}$$

•

_ · · •

Modelo Logístico

Pesos definidos na modelagem

-1,276	Até 3 dias	Fatura em atraso	Mais de 30 dias	1,308
-0,718	Mais de 8 anos	Tempo de Relacionamento	Até 1 ano	0,580
-0,261	Mais de R\$1.500	Valor da Fatura	Até R\$250	0,262
-0,718	Mais de 30%	% de gasto com alimentação	Até 10%	0,580
-1,069	Região 1	Região de Risco	Região 4	1,067
-0,413	Mais de R\$4.500	Renda Mensal	Até R\$1.518	0,455
0,099		Constante		0,099
4%		Propensão		98%

□ • • •

AVALIAÇÃO DO MODELO

Exemplo

Classification			
Observed	Predicted		
	0	1	Percent Correct
0	5.137	999	83,7%
1	1.208	4.412	78,5%
Overall Percentage	81,0%	81,5%	81,2%

Growing Method: EXHAUSTIVE CHAID Dependent Variable: Resposta

TÉCNICAS DE CLASSIFICAÇÃO

Qualificação do Ajuste do Modelo

Qualificação do Ajuste do Modelo

		Previsão	do modelo	Total
		y=1	y=0	Total
Oha	y=1	n1	n2	n1+n2
Obs.	y=0	n3	<u>n4</u>	n3+n4

- Acurácia: É a proporção de predições corretas: (n1+n4)/ (n1+n2+n3+n4)
- A curva ROC plota (chamado de sensibilidade) versus (chamado de 1-especificidade) para todos os possíveis pontos de corte entre 0 e 1.
- Uma forma bastante utilizada para determinar o ponto de corte .

TÉCNICAS DE CLASSIFICAÇÃO

Qualificação do Ajuste do Modelo

Qualificação do Ajuste do Modelo

			Previsão	Total			
			y=1	y=0	Total		
0		y=1	(1)	n2	n1+n2		
Ob	05.	y=0	n3	n4	n3+n4		

- Acurácia: É a proporção de predições corretas: (n1+n4)/ (n1+n2+n3+n4)
- A curva ROC plota (chamado de sensibilidade) versus (chamado de 1-especificidade) para todos os possíveis pontos de corte entre 0 e 1.
- Uma forma bastante utilizada para determinar o ponto de corte .

TÉCNICAS DE CLASSIFICAÇÃO

Qualificação do Ajuste do Modelo

- A curva ROC plota (chamado de sensibilidade) versus (chamado de 1-especificidade) para todos os possíveis pontos de corte entre 0 e 1.
- Uma forma bastante utilizada para determinar o ponto de corte .

$$TPR = \frac{TP}{TP + FN}, \quad FPR = \frac{FP}{FP + TN}.$$

TÉCNICAS DE CLASSIFICAÇÃO

Qualificação do Ajuste do Modelo

Matriz de Confusão

		Classe Predita			
		positivo	negativo		
Classe	positivo	Verdadeiros Positivos (VP)	Falsos Negativos (FN)		
Esperada	negativo	Falsos Positivos (FP)	Verdadeiros Negativos (VN)		

Medidas de Avaliação

- Sensibilidade ou taxa de verdadeiros positivos: (VP / (VP + FN))
- Especificidade ou taxa de verdadeiros negativos: (VN / (FP + VN))
- Taxa de falsos positivos: % de falsos positivos dentre todos que a classe esperada é a classe negativa: (FP / (VN + FP))
- Taxa de falsas descobertas: % de falsos positivos dentre a classe esperada é a classe positiva: (FP / (VP + FP))
- Preditividade positiva ou precisão: % de acertos ou verdadeiros positivos: (VP / (VP + FP))
- Preditividade negativa: % de verdadeiros negativos dentre todos classificados como negativos: (VN / (VN + FN))
- Acurácia: É a proporção de predições corretas, sem considerar o que é positivo e o que negativo e sim o acerto total. É dada por: (VP+VN)/(VP+FN+FP+VN)

ANÁLISE DE REGRESSÃO LOGÍSTICA

Exemplo: Modelo Cross-Selling

Propensão à Compra de um Produto

Objetivo:

Estabelecer público-alvo para a venda qualificada de um determinado Produto X, com uso dos mailing's internos do cliente, por meio do desenvolvimento de modelos preditivos.

•

. . .

MODELOS CROSS SELLING

Propensão de compra do Produto X

MODELOS CROSS SELLING

Propensão de compra do Produto X

MODELOS CROSS SELLING

- Implementação
 - Propensão de compra do Produto X

Algoritmo Matemático

Para associar uma probabilidade de compra de um produto X a cada cliente, os seguintes passos devem ser tomados:

- 1. Identificar as variáveis, associando os respectivos coeficientes;
- Somar os coeficientes encontrados no item 1, juntamente com a constante do modelo determinando o valor de Y;
- 3. Efetuar a operação matemática que se segue, para determinação final do score.

Probabilidade =
$$100 \times e^{-y} / (1 + e^{-y})$$

MODELOS CROSS SELLING

- Implementação
 - Propensão de compra do Produto X

Regra de Decisão Estatística

Após associar a cada indivíduo sua probabilidade de compra do produto, deve-se submetê-la à Regra de Decisão, ou seja, se a probabilidade obtida for menor ou igual ao valor de corte* o assinante pertencerá ao grupo que não irá adquirir o produto, caso contrário, se essa probabilidade for maior que o valor de corte, ele pertencerá ao grupo que irá adquirir.

^{*} valor de corte é o valor de probabilidade que define os grupos, segundo análise de acertos do modelo.

MODELOS CROSS SELLING

Propensão de compra do Produto X

AVALIAÇÃO DO MODELO PREDITIVO

Decil		Base sem utlização de modelos							
	Clientes	Penetração			Lift	Lift	Capture		
	Qtde	Qtde	%	% Ac.	2.91	Ac.	%	% Ac.	
1	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	10,0%	
2	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	20,0%	
3	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	30,0%	
4	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	40,0%	
5	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	50,0%	
6	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	60,0%	
7	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	70,0%	
8	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	80,0%	
9	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	90,0%	
10	5.300	612	11,5%	11,5%	1,00	1,00	10,0%	100,0%	
Total	53.000	6.120	11,5%						

* AVALIAÇÃO DO MODELO PREDITIVO

+

Decil	Clientes	Aplicando Modelo							
		Penetração			Lift	Lift Ac.	Capture		
	Qtde	Qtde	%	% Ac.	,	,	%	% Ac.	
1	5.300	1.986	37,5%	37,5%	3,24	3,24	32,4%	32,4%	
2	5.300	1.379	26,0%	31,7%	2,25	2,75	22,5%	55,0%	
3	5.300	1.046	19,7%	27,7%	1,71	2,40	17,1%	72,1%	
4	5.300	706	13,3%	24,1%	1,15	2,09	11,5%	83,6%	
5	5.300	440	8,3%	21,0%	0,72	1,82	7,2%	90,8%	
6	5,300	244	4,6%	18,2%	0,40	1,58	4,0%	94,8%	
7	5.300	157	3,0%	16,1%	0,26	1,39	2,6%	97,3%	
8	5.300	87	1,6%	14,3%	0,14	1,23	1,4%	98,8%	
9	5.300	52	1,0%	12,8%	0,08	1,11	0,8%	99,6%	
10	5,300	24	0.5%	11,5%	0,04	1,00	0,4%	100,0%	
Total	53.000	6.120	11.5%						

EXERCITANDO

•

REGRESSÃO LOGÍSTICA

BIBLIOGRAFIA

- KUHN, M. / JOHNSON K. Applied Predictive Modeling, 1st ed. 2013, Corr. 2nd printing 2018 Edition
 - LESKOVEC, RAJAMARAM, ULLMAN. Mining of Massive Datasets, 2014. http://mmds.org.
 - HAIR, J.F. / ANDERSON, R.E. / TATHAN, R.L. / BLACK, W.C. Análise multivariada de dados, 2009
 - TORGO, L. Data Mining with R: Learning with Case Studies, 2.a ed. Chapman and Hall/CRC, 2007
 - MINGOTI, S.A.; Análise de dados através de métodos de estatística multivariada, UFMG, 2005
 - CARVALHO, L.A.V., Datamining A mineração de dados no marketing, medicina, economia, engenharia e administração. Rio de Janeiro: Editora Ciência Moderna, 2005.
 - BERRY, M.J.A., LINOFF, G. Data Mining Techniques For Marketing, Sales and Customer Support. 3a. ed. New York: John Wiley & Sons, Inc., 2011.
 - DUNHAM, M.H. Data Mining Introductory and Advanced Topics. Prentice Hall, 2002.
 - DINIZ,C.A.R., NETO F.L. Data Mining: Uma Introdução. São Paulo: XIV Simpósio Nacional de Probabilidade e Estatística.
 IME-USP, 2000.

OBRIGADO

Copyright © 2022 | Professor (a) Adelaide Alves de Oliveira

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.