Алгоритмы. Домашнее задание №12

Горбунов Егор Алексеевич

10 декабря 2015 г.

Задача №1 (степень одиночества)

 $LR(T) = \frac{Koличество единственных детей в T}{Koличество вершин в T}$. Ребёнок единственный, если он один такой у своего родителя. Корень не является единственным ребёнком.

- (a) Покажите, что в любом ненулевом AVL-дереве T $LR(T) \leq \frac{1}{2}$
- (b) Правда ли, что если $LR(T) \leq \frac{1}{2}$, то $h(T) \leq \log size(T)$?
- (c) Пусть в дереве T есть всего $\Theta(size(T))$ единственных детей и все они листья. Правда ли, что для любого такого дерева $h(T) \leq \log size(T)$?

Решение: Обозначим LC(T) — множество единственных детей в T.

(а) В AVL-дереве на 1 вершине $LR(T) = 0 \le \frac{1}{2}$. На 2 вершинах $LR(T) = \frac{1}{2}$. Пускай утверждение верно для всех AVL-деревьев на $1,2,\ldots,n-1$ вершине. Рассмотрим AVL-дерево T на n>2 вершинах пусть T_l и T_r — это левое и правое поддерево, подвешенные к корню T. Т.к. высоты T_l и T_r отличаются максимум на 1, а n>2, то оба T_l и T_r — непустые AVL-деревья. Пусть размер $T_l-n_l < n$, а размер $T_r-n_r < n$. Заметим, что индукционное предположение для T_l и T_r верно и $n=n_l+n_r+1$.

$$LR(T) = \frac{|LC(T_l)| + |LC(T_r)|}{n} = \frac{n_l n_r}{n} \left(\frac{|LC(T_l)|}{n_l n_r} + \frac{|LC(T_r)|}{n_l n_r} \right) \le \frac{n_l n_r}{n} \left(\frac{1}{2n_l} + \frac{1}{2n_r} \right) =$$

$$= \frac{1}{2} \frac{n_l + n_r}{n} = \frac{1}{2} \frac{n - 1}{n} \le \frac{1}{2}$$

Итого по индукции показали, что утверждение (а) верно.

- (b) Нет, не правда. Рассмотрим дерево T на n вершинах (в данном случае n чётное) изображённое на рисунке 1. Высота этого дерева равна $\frac{n}{2}+1$, но при этом единственный ребёнок лишь один это лист n. Таким образом $LR(T)=\frac{1}{n}\leq 12$, но при этом высота $h(T)=\frac{n}{2}+1>\log n$
- (c) Обозначим n = size(T). Рассмотрим дерево изображённое на рисунке 2. В этом дереве n = 3m + 1 вершина. Высота этого дерева равна m + 2 (m «веточек» влево и ещё 2 уровня под корень и его сына 2). Ясно, что в таком графе одиноких детей ровно m,

Рис. 1: K задаче 1 (b)

они выделены красным на изображении и каждый из них является листом, т.е. дерево T удовлетворяет условию задачи $(m = \lfloor \frac{n}{3} \rfloor)$. Но, как было сказано выше, высота этого дерева равна $m+2=\lfloor \frac{n}{3} \rfloor+2 \geq \log n$ начиная с некоторого n. Таким образом утверждение пункта задачи неверно!

Рис. 2: К задаче 1 (с)

Задача №2 (Слияния *AVL*-деревьев)

Пусть даны $2\ AVL$ -дерева T_1 и T_2 . Придумать, как построить AVL-дерево T, являющееся объединением деревьев T_1 и T_2 за время:

- (a) $\mathcal{O}(h(T_1)size(T_2))$
- (b) $\mathcal{O}(\max\{size(T_1), size(T_2)\})$

Решение:

Задача №3 (Порядковые статистики)

(а) Придумайте, как в AVL-дереве T реализовать операцию получения k-ой порядковой статистики за $\mathcal{O}(h(T))$

- (b) Придумайте, как в AVL-дереве T найти index(k) позицию ключа k в отсортированном массиве ключей за $\mathcal{O}(h(T))$
- (c) Придумайте, как в AVL-дереве T найти количество ключей между k_1 и k_2 за $\mathcal{O}\left(h(T)\right)$

Решение: