$FTP \underbrace{Algorithms}_{\overline{C}heat\ Sheet}$

Diego Gil

Herbstsemester 2024/25

Contents

Search and Analysis 1

2 Data Structures

2.1 Trees

2.1.1**KD-Trees**

Problem Type: Construction of a KD-Tree from 2D points

What to Look For:

- Set of 2D points given as coordinates
- Request to build a KD-Tree
- Questions about tree properties (height, leaves)

Given Points: $P = \{(1,3), (12,1), (4,5), (5,4), ($ (10,11),(8,2),(2,7)

Solution Strategy:

- 1. Sort points by x-coordinate (root level)
- 2. Find median point
- 3. Split into left/right subtrees
- 4. Repeat with y-coordinates for next level
- 5. Continue alternating x/y until all points placed

Detailed Solution:

1. Root Level (x-split)

• Sorted x: (1,3),(2,7),(4,5),(5, 4),(8,2),(10,11),(12,1)

• Median (5,4) becomes root ℓ_1

Figure 1: * Coordinate Split at Root Level

2. Tree Structure

Figure 2: * KD-Tree Structure

3. Final Properties

• Height: 3 (counting from 0)

• Leaves: 7 (all original points)

• Second leaf from left: (4,5)

Exam Tips:

- 1. Always start by sorting points on current dimension
- 2. Mark median point clearly in your sorting
- 3. Draw coordinate system with splitting lines
- 4. Keep track of which dimension you're splitting on:
 - Level 0: x-coordinate
 - Level 1: y-coordinate
 - Level 2: x-coordinate
 - And so on...
- 5. Verify tree properties at the end

Common Mistakes to Avoid:

- Don't forget to alternate dimensions
- Don't skip sorting at each level
- Don't mix up left (<) and right (>) subtrees
- Don't forget to verify final tree properties

KD-Tree Complexity Analysis

Problem Type: Complexity proof for KD-Tree construction

What to Look For:

- Proof of time complexity $O(n \log n)$
- Proof of space complexity O(n)
- Recursive analysis

Solution Strategy:

- 1. Prove space complexity first (easier)
- 2. Analyze recursive structure
- 3. Set up recurrence relation
- 4. Apply Master Theorem

Space Complexity Proof:

- 1. For $n=2^k$ points:
 - Internal nodes (parents): $2^k 1$
 - Total nodes: $2^k + 2^{k-1} = n + n/2 = 3n/2 < 3n$
- 2. For general n (not power of 2):
 - Find t where $2^{t-1} < n < 2^t$

 - Internal nodes n_p : $2^{t-2} < n_p < 2^{t-1}$ Total nodes: $3 \cdot 2^{t-2} < n + n_p < 3 \cdot 2^{t-1}$
 - Therefore: $n + n_p < 3n$
- 3. Each node uses O(1) storage
- 4. Total storage: $O(1) \cdot O(n) = O(n)$

Time Complexity Proof:

- 1. At each recursion:
 - Split n points into two subsets of n/2
 - Finding median costs O(n)

2. Recurrence relation:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

- 3. Apply Master Theorem:
 - Similar to Merge-Sort analysis
 - Results in $T(n) = O(n \log n)$

Key Points for Exam:

- Space complexity proof:
 - Count nodes for power of 2
 - Extend to general case
 - Multiply by constant storage
- Time complexity proof:
 - Identify recursive pattern
 - Write recurrence relation
 - Apply Master Theorem
- Remember median finding is O(n)

Common Mistakes to Avoid:

- Don't forget to account for non-power-of-2 cases
- Don't ignore constant factors in space analysis
- Remember to justify linear median finding
- Don't skip the Master Theorem application

3 Graph Algorithms

3.1 Graph Representations

3.1.1 Graph Transpose

Problem Type: Computing transpose G^T of a directed graph G = (V, E)

What to Look For:

- Graph representation type (matrix/list)
- Direction of edges must be reversed
- Time complexity analysis required

Key Definitions:

- $G^T = (V, E^T)$ where $E^T = \{(v, u) \mid (u, v) \in E\}$
- |V| = n (number of vertices)
- |E| (number of edges)

Solution for Adjacency Matrix:

1. Given matrix M_G , create M_G^T by swapping entries:

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{pmatrix}$$

$$M^{T} = \begin{pmatrix} m_{11} & m_{21} & \cdots & m_{n1} \\ m_{12} & m_{22} & \cdots & m_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ m_{1n} & m_{2n} & \cdots & m_{nn} \end{pmatrix}$$

2. Example:

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, M^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

- 3. Time Complexity: $\Theta(n^2)$
 - Must swap $n^2 n$ entries (excluding diagonal)
 - Each swap is O(1)

Solution for Adjacency List:

- 1. Create empty adjacency lists for G^T : O(n)
- 2. For each vertex v in G:
 - For each edge (v, w) in v's adjacency list
 - Add v to w's list in G^T
- 3. Time Complexity: $\Theta(|V| + |E|)$
 - Creating lists: O(|V|)
 - Processing edges: O(|E|)

Comparison:

- Matrix: $\Theta(n^2)$ always
- List: $\Theta(|V| + |E|)$ which is better for sparse graphs
- List requires more complex implementation

Common Mistakes to Avoid:

- Don't forget self-loops (diagonal elements)
- Don't count diagonal elements in matrix swaps
- Remember to initialize all new lists in adjacency list solution
- Don't confuse |V| and |E| in complexity analysis

3.2 Shortest Paths

3.2.1 Dijkstra's Algorithm Limitations

Problem Type: Counterexample for Dijkstra with negative weights

What to Look For:

- Directed graph with negative weights
- Minimal example showing algorithm failure
- Negative cycle demonstration

Solution:

1. Consider this directed graph:

- 2. Why Dijkstra fails:
 - Initial distance to a: -4
 - After one cycle: -5
 - After two cycles: −6
 - Continues to decrease indefinitely

Key Properties:

- Any negative cycle causes Dijkstra to fail
- Algorithm assumes:
 - Edge weights are non-negative
 - Shortest paths exist (no negative cycles)
- For negative weights, use Bellman-Ford instead

Common Mistakes to Avoid:

- Single negative edge isn't enough
- Example must have negative total cycle weight
- Remember: Bellman-Ford can detect negative cycles

3.2.2 Dijkstra's Algorithm Step-by-Step

Problem Type: Tracing Dijkstra's algorithm iterations

What to Look For:

- Starting vertex (source)
- Number of iterations to analyze
- Distance values after specific iterations
- Edge weights and graph structure

Example Graph:

Initial State:

- Source vertex a: distance = 0
- All other vertices: distance = ∞
- No vertices marked as visited

After Two Iterations:

- 1. First Iteration:
 - Visit a
 - Update: b.d = 1, c.d = 5
- 2. Second Iteration:
 - Visit b (closest unvisited)
 - Update: d.d = 4, e.d = 2

Final State After 2 Iterations:

- Visited: $\{a, b\}$
- Distances:
 - -c.d = 5 (via a)
 - -d.d = 4 (via b)
 - -e.d = 2 (via b)
 - $-f.d = \infty$ (no path found yet)

Key Points:

- Always visit closest unvisited vertex
- Update distances through latest visited vertex
- Keep track of visited set
- Remember: distances are cumulative

Common Mistakes to Avoid:

- Don't forget to mark vertices as visited
- Only update distances through current vertex
- Check all edges from current vertex
- Remember to compare new paths with existing ones

3.3 BFS Properties

3.3.1 BFS Limitations with Shortest Paths

Problem Type: Counterexample showing BFS limitations

What to Look For:

- Graph must have multiple shortest paths
- Some shortest paths cannot be discovered by BFS
- Example should be minimal

Solution:

1. Consider this undirected graph G:

2. Consider subgraph G' (a valid shortest path tree):

Key Observations:

- G' contains shortest paths from a to all vertices
- These paths are unique in G'
- BFS can never produce exactly G' because:
 - If it visits b before c: will use (b, e) instead of (c, e)
 - If it visits c before b: will use (c, d) instead of (b, d)
- No vertex ordering in BFS can produce G'

Important Properties:

- BFS always finds shortest paths
- But cannot find all possible shortest path trees
- Order of vertex processing affects which paths are found

• Some valid shortest path trees are impossible for BFS

Common Mistakes to Avoid:

- Don't confuse "shortest path" with "shortest path
- Remember BFS guarantees shortest paths but not specific trees
- Example must work for all possible vertex orderings
- Graph should be minimal (removing edges breaks the property)