Operations Research

11. The Simplex Method. Dual of Linear Program

THE SIMPLEX METHOD: A DEMONSTRATION

An iterative process starting with suboptimal solution and stopping at a feasible solution which cannot be improved

Turn inequalities to equalities: add nonnegative slack variables $w_1,\,w_2,\,w_3$

THE SIMPLEX METHOD: A DEMONSTRATION (CONT'D)

maximize
$$\zeta = \frac{+5 x_1}{+5 x_1} + 4 x_2 + 3 x_3$$
 maximize $\zeta = \frac{25}{2} - \frac{5}{2} w_1 - \frac{7}{2} x_2 + \frac{1}{2} x_3$ subject to $w_1 = 5 - 2 x_1 - 3 x_2 - 1 x_3$ $w_2 = 11 - 4 x_1 - 1 x_2 - 2 x_3$ $w_3 = 8 - 3 x_1 - 4 x_2 - 2 x_3$ $w_3 = \frac{1}{2} + \frac{3}{2} w_1 + \frac{1}{2} x_2 - \frac{1}{2} x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

1st step: take $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, then $w_1 = 5$, $w_2 = 11$, $w_3 = 8$

Find in ζ the variable with the greatest positive coefficient: here $+5x_1$ Increase x_1 and keep $x_2 = x_3 = 0$; Note the constraints $w_1, w_2, w_3 \ge 0$.

$$w_1 = 5 - 2x_1 \geqslant 0 \implies x_1 \leqslant \frac{5}{2}; \quad w_2 = 11 - 4x_1 \geqslant 0 \implies x_1 \leqslant \frac{11}{4}; \quad w_3 = 8 - 3x_1 \geqslant 0 \implies x_1 \leqslant \frac{8}{2}$$

2nd step: take
$$x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0$$
, then $w_1 = 0, w_2 = 1, w_3 = \frac{1}{2}$

Swap the roles of
$$x_1$$
 and w_1 , then the first constraint becomes $x_1 = \frac{5}{2} - \frac{1}{2}w_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3$

Rewrite all other constraints and ζ with $x_1 = \frac{5}{2} - \frac{1}{2}w_1 - \frac{3}{2}x_2 - \frac{1}{2}x_3$

THE SIMPLEX METHOD: A DEMONSTRATION (CONT'D)

maximize
$$\zeta = \frac{25}{2} - \frac{5}{2} w_1 - \frac{7}{2} x_2 + \frac{1}{2} \frac{x_3}{2}$$

subject to $x_1 = \frac{5}{2} - \frac{1}{2} w_1 - \frac{3}{2} x_2 - \frac{1}{2} x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = \frac{1}{2} + \frac{3}{2} w_1 + \frac{1}{2} x_2 - \frac{1}{2} x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \geqslant 0$

maximize
$$\zeta = 13 - 1 \ w_1 - 3 \ x_2 - 1 \ w_3$$

subject to $x_1 = 2 - 2 \ w_1 - 2 \ x_2 + 1 \ w_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $x_3 = 1 + 3 \ w_1 + 1 \ x_2 - 2 \ w_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \geqslant 0$

Find in
$$\zeta$$
 the variable with the greatest positive coefficient: here $+\frac{1}{2}x_3$

Increase x_3 and keep $w_1=x_2=0$; Note the constraints $x_1,\,w_3\geqslant 0$.

$$x_1 = \frac{5}{2} - \frac{1}{2}x_3 \geqslant 0 \implies x_3 \leqslant 5; \quad w_3 = \frac{1}{2} - \frac{1}{2}x_3 \geqslant 0 \implies x_3 \leqslant 1$$

3rd step: take
$$x_1=2, \ x_2=0, \ x_3=1, \ \ {\rm then} \ \ w_1=0, \ w_2=1, \ w_3=0$$

Swap the roles of x_3 and w_3 , then the last constraint becomes $x_3 = 1 + 3w_1 + x_2 - 2w_3$

Rewrite all other constraints and ζ with $x_3 = 1 + 3w_1 + x_2 - 2w_3$

Now ζ has no variable with positive coefficient; stop. $\max \zeta = 13$ with $x_1 = 2, \ x_2 = 0, \ x_3 = 1$.

The Simplex Method: Another Example

Turn inequalities to equalities: add nonnegative slack variables $w_1,\,w_2,\,w_3$

The Simplex Method: Another Example (Cont'd)

maximize
$$\zeta = +2 x_1 + 3 x_2 + 4 x_3$$

subject to $w_1 = 5 -2 x_2 - 3 x_3$
 $w_2 = 4 - 1 x_1 - 1 x_2 - 2 x_3$
 $w_3 = 7 - 1 x_1 - 2 x_2 - 3 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

maximize
$$\zeta = \frac{20}{3} + 2 x_1 + \frac{1}{3} x_2 - \frac{4}{3} w_1$$

subject to $x_3 = \frac{5}{3} - \frac{2}{3} x_2 - \frac{1}{3} w_1$
 $w_2 = \frac{2}{3} - 1 x_1 + \frac{1}{3} x_2 + \frac{2}{3} w_1$
 $w_3 = 2 - 1 x_1 + 1 w_1$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

1st step: take $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, then $w_1 = 5$, $w_2 = 4$, $w_3 = 7$

Find in ζ the variable with the greatest positive coefficient: here $+4x_3$

 $\mbox{Increase x_3 and keep $x_1=x_2=0$;} \ \ \mbox{Note the constraints $w_1,\,w_2,\,w_3\geqslant 0$.}$

$$w_1 = 5 - 3x_3 \geqslant 0 \implies x_3 \leqslant \frac{5}{3}; \quad w_2 = 4 - 2x_3 \geqslant 0 \implies x_3 \leqslant 2; \quad w_3 = 7 - 3x_3 \geqslant 0 \implies x_3 \leqslant \frac{7}{3}$$

2nd step: take $x_1 = 0$, $x_2 = 0$, $x_3 = \frac{5}{3}$, then $w_1 = 0$, $w_2 = \frac{2}{3}$, $w_3 = 2$

Swap the roles of x_3 and w_1 , then the first constraint becomes $x_3 = \frac{5}{3} - \frac{2}{3}x_2 - \frac{1}{3}w_1$

Rewrite all other constraints and ζ with $x_3 = \frac{5}{3} - \frac{2}{3}x_2 - \frac{1}{3}w_1$

THE SIMPLEX METHOD: ANOTHER EXAMPLE (CONT'D)

maximize
$$\zeta = \frac{20}{3} + 2 x_1 + \frac{1}{3} x_2 - \frac{4}{3} w_1$$

subject to $x_3 = \frac{5}{3}$ $-\frac{2}{3} x_2 - \frac{1}{3} w_1$
 $w_2 = \frac{2}{3} - 1 x_1 + \frac{1}{3} x_2 + \frac{2}{3} w_1$
 $w_3 = 2 - 1 x_1$ $+ 1 w_1$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
maximize $\zeta = 8 - 2 w_2 + 1 x_2$
subject to $x_3 = \frac{5}{3}$ $-\frac{2}{3} x_2 - \frac{1}{3} w_1$
 $x_1 = \frac{2}{3} - 1 w_2 + \frac{1}{3} x_2 + \frac{2}{3} w_1$
 $w_3 = \frac{4}{3} + 1 w_2 - \frac{1}{3} x_2 + \frac{1}{3} w_1$

maximize
$$\zeta = 8 - 2 w_2 + 1 x_2$$

subject to $x_3 = \frac{5}{3}$ $-\frac{2}{3} x_2 - \frac{1}{3} w_3$
 $x_1 = \frac{3}{3} - 1 w_2 + \frac{1}{3} x_2 + \frac{1}{3} w_3$
 $w_3 = \frac{4}{3} + 1 w_2 - \frac{1}{3} x_2 + \frac{1}{3} w_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \geqslant 0$

Find in ζ the variable with the greatest positive coefficient: here $+2x_1$ Increase x_1 and keep $x_2 = w_1 = 0$; Note the constraints $w_2, w_3 \geqslant 0$.

$$w_2 = \frac{2}{2} - 1x_1 \geqslant 0 \implies x_1 \leqslant \frac{2}{2}; \quad w_3 = 2 - 1x_1 \geqslant 0 \implies x_1 \leqslant 2$$

3rd step: take
$$x_1 = \frac{2}{3}$$
, $x_2 = 0$, $x_3 = \frac{5}{3}$, then $w_1 = 0$, $w_2 = 0$, $w_3 = \frac{4}{3}$

Swap the roles of x_1 and w_2 , then the second constraint becomes $x_1 = \frac{2}{3} - w_2 + \frac{1}{2}x_2 + \frac{2}{9}w_1$

Rewrite all other constraints and
$$\zeta$$
 with $x_1 = \frac{2}{3} - w_2 + \frac{1}{3}x_2 + \frac{2}{3}w_1$

THE SIMPLEX METHOD: ANOTHER EXAMPLE (CONT'D)

Find in ζ the variable with the greatest positive coefficient: here $+1x_2$

Increase x_2 and keep $w_1, w_2 = 0$; Note the constraints $x_3, w_3 \ge 0$.

$$x_3 = \frac{5}{3} - \frac{2}{3}x_2 \geqslant 0 \implies x_2 \leqslant \frac{5}{2}; \quad w_3 = \frac{4}{3} - \frac{1}{3}x_2 \geqslant 0 \implies x_2 \leqslant 4$$

3rd step: take
$$x_1 = \frac{3}{2}$$
, $x_2 = \frac{5}{2}$, $x_3 = 0$, and $w_1 = 0$, $w_2 = 0$, $w_3 = \frac{1}{2}$

Swap the roles of
$$x_2$$
 and x_3 , then the first constraint becomes $x_2 = \frac{5}{2} - \frac{3}{2}x_3 - \frac{1}{2}w_1$

Rewrite all other constraints and
$$\zeta$$
 with $x_2 = \frac{5}{2} - \frac{3}{2}x_3 - \frac{1}{2}w_1$

Now
$$\zeta$$
 has no variable with positive coefficient; stop. $\max \zeta = \frac{21}{2}$ with $x_1 = \frac{3}{2}, \ x_2 = \frac{5}{2}, \ x_3 = 0.$

The Simplex Method: A Formal Introduction

LP in standard form:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n c_j x_j \\ \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leqslant b_i, \quad i=1,2,\ldots,m \\ \\ & x_j \geqslant 0, \quad j=1,2,\ldots,n \end{array}$$

Introduce slack variables $w_i, i=1,2,\ldots,m$ and ζ for the objective function value:

$$\zeta = \sum_{j=1}^n c_j x_j$$

$$w_i = b_i - \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, \dots, m$$

dictionary

basic variables (lhs): x_1 , w_2 , w_3 nonbasic variables (rhs): w_1 , x_2 , x_3

entering variable: the variable nonbasic ⇒ basic

leaving variable: the variable basic ⇒ nonbasic

rename $(x_1,\,x_2,\,\dots,\,x_n,\,w_1,\,w_2,\,\dots,\,w_m)\Longrightarrow (x_1,\,x_2,\,\dots,\,x_n,\,x_{n+1},\,x_{n+2},\,\dots,\,x_{n+m}),$ so

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, 2, \dots, m$$

THE SIMPLEX METHOD: A FORMAL INTRODUCTION (CONT'D)

The starting dictionary

$$\zeta = \sum_{j=1}^n c_j x_j$$

$$x_{n+i} = b_i - \sum_{i=1}^n a_{ij} x_j, \quad i = 1, 2, \dots, m$$

Each dictionary has m basic variables and n nonbasic variables

 \mathcal{B} : subset from $\{1, 2, \dots, n+m\}$ that of the basic variables

 $\mathcal{N} \colon \text{subset from} \; \{1, \, 2, \, \dots, \, n+m \}$ that of the nonbasic variables

Initially
$$\mathcal{N} = \{1, 2, ..., n\}$$
 and $\mathcal{B} = \{n + 1, n + 2, ..., n + m\}$

The current dictionary is of the form

$$\begin{split} \zeta &= \overline{\zeta} + \sum_{j \in \mathcal{N}} \overline{c_j} x_j \\ x_i &= \overline{b_i} - \sum_{j \in \mathcal{N}} \overline{a_{ij}} x_j, \quad i \in \mathcal{B} \end{split}$$

The entering variable is chosen to increase ζ : pick $k \in \{j \in \mathcal{N} : \overline{c_j} > 0\}$. If no such k, then the current solution is optimal.

The leaving variable is chosen to preserve nonnegativity of the current basic variables, so

$$x_i = \overline{b_i} - \overline{a_{ik}} x_k \implies \overline{b_i} - \overline{a_{ik}} x_k \geqslant 0, \quad i \in \mathcal{B}$$

The rule for selecting leaving variable: pick $l \in \{i \in \mathcal{B} : \overline{a_{ik}} > 0 \land \frac{\overline{b_i}}{\overline{a_{ik}}} \text{ is minimal}\}$

THE SIMPLEX METHOD: CASE OF NEGATIVE RHS

Previously in standard form LP

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n c_j x_j \\ \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leqslant b_i, \quad i=1,2,\ldots,m \\ \\ & x_j \geqslant 0, \quad j=1,2,\ldots,n \end{array}$$

We assume $b_i \geqslant 0, \ \forall i = 1, 2, ..., m$.

If not the case, then consider the auxiliary problem

maximize
$$-x_0$$
 subject to
$$\sum_{j=1}^n a_{ij}x_j-x_0\leqslant b_i,\quad i=1,2,\dots,m$$

$$x_j\geqslant 0,\quad j=0,1,2,\dots,n$$

The original problem has a feasible solution iff the optimal solution of the auxiliary problem is zero.

First try to convert the initial infeasible dictionary with into a feasible one by one pivot of the "most infeasible variable".

Proceed with the usual simplex steps.

Discard all x_0 terms; reintroduce the original objective with the substituted nonbasic variables.

An example:

$$\begin{array}{ll} \text{maximize} & -2x_1-x_2\\ \text{subject to} & -x_1+x_2\leqslant -1\\ & -x_1-2x_2\leqslant -2\\ & x_2\leqslant 1\\ & x_1\geqslant 0,\; x_2\geqslant 0 \end{array}$$

THE SIMPLEX METHOD: CASE OF NEGATIVE RHS (CONT'D)

The original problem:

$$\label{eq:maximize} \begin{array}{ll} \text{maximize} & -2x_1-x_2\\ \text{subject to} & -x_1+x_2\leqslant -1\\ & -x_1-2x_2\leqslant -2\\ & x_2\leqslant 1\\ & x_1\geqslant 0,\; x_2\geqslant 0 \end{array}$$

The auxiliary problem:

$$\begin{array}{ll} \text{maximize} & -x_0 \\ \text{subject to} & -x_1+x_2-x_0 \leqslant -1 \\ & -x_1-2x_2-x_0 \leqslant -2 \\ & x_2-x_0 \leqslant 1 \\ & x_1\geqslant 0, \; x_2\geqslant 0, \; x_0\geqslant 0 \end{array}$$

Setup the initial infeasible dictionary:

The "most infeasible variable" is w_2 ; Substitute x_0 with $w_2 + 2 - x_1 - x_2$:

maximize
$$\zeta = -2 + 1 x_1 + 2 x_2 - 1 w_2$$

subject to $w_1 = 1 - 3 x_2 + 1 w_2$
 $x_0 = 2 - 1 x_1 - 2 x_2 + 1 w_2$
 $w_3 = 3 - 1 x_1 - 3 x_2 + 1 w_2$
 $x_1, x_2, x_0, w_1, w_2, w_3 \geqslant 0$

THE SIMPLEX METHOD: CASE OF NEGATIVE RHS (CONT'D)

Proceed with ordinary simplex method:

maximize	$\zeta = 0 -$	1 x ₀
subject to	$\begin{array}{rcl} x_2 &=& \frac{1}{3} \\ x_1 &=& \frac{4}{3} \\ w_3 &=& \frac{2}{3} \end{array} +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x_1	$x_2, x_0, w_1,$	$, w_2, w_3 \geqslant 0$

Discard all x_0 terms; Reintroduce the original objective

$$\mbox{maximize} \quad -2x_1-x_2 \; \equiv \; -3-w_1-w_2$$

with the substituted nonbasic variables

$$x_1 = \frac{4}{3} + \frac{2}{3}w_1 + \frac{1}{3}w_2$$
$$x_2 = \frac{1}{3} - \frac{1}{3}w_1 + \frac{1}{3}w_2$$

Combine the auxiliary dictionary with the substituted original object, we have the dictionary

maximize
$$\zeta = -3 - 1 w_1 - 1 w_2$$

subject to $x_2 = \frac{1}{3} - \frac{1}{3} w_1 + \frac{1}{3} w_2$
 $x_1 = \frac{4}{3} + \frac{2}{3} w_1 + \frac{1}{3} w_2$
 $w_3 = \frac{2}{3} + \frac{1}{3} w_1 - \frac{1}{3} w_2$
 $x_1, x_2, w_1, w_2, w_3 \geqslant 0$

This is the final form, for the coefficients of all nonbasic variables are negative.

The final maximum of the original problem is -3.

The Simplex Method: Exercises

Using Simple Pivot Tool to find the extrema of the following LP problems:

The Dual of Linear Program

LP in standard form:

$$\begin{array}{ll} \text{maximize} & x_1 + 2x_2 + x_3 + x_4 \\ \text{subject to} & x_1 + 2x_2 + x_3 \leqslant 2 \\ & x_2 + x_4 \leqslant 1 \\ & x_1 + 2x_2 \leqslant 1 \end{array} \qquad (1)$$

$$x_i \ge 0, \quad j = 1, \dots, 4$$

Suppose the LP-solver find an "optimal" solution $x_1=1,\ x_2=\frac{1}{2},\ x_3=0,\ x_4=\frac{1}{2}$ with maximum $\frac{5}{2}$, how can we check this?

Scale (1) by $\frac{1}{2}$, add (2), and add (3) scaled by $\frac{1}{2}$, we get for every feasible x_j , $j=1,\,\dots,\,4$

$$x_1 + 2x_2 + \frac{3}{2}x_3 + x_4 \leqslant \frac{5}{2}$$

The objective

$$x_1 + 2x_2 + x_3 + x_4 \leqslant x_1 + 2x_2 + \frac{3}{2}x_3 + x_4 \leqslant \frac{5}{2}$$

so $\frac{5}{2}$ is indeed optimal.

The Dual of Linear Program (Cont'd)

LP in standard form:

$$\begin{aligned} & \text{maximize} & & \sum_{j=1}^n c_j x_j \\ & \text{subject to} & & \sum_{j=1}^n a_{1j} x_j \leqslant b_1 \\ & & & \sum_{j=1}^n a_{2j} x_j \leqslant b_2 \\ & & & \dots \dots \\ & & & \sum_{j=1}^n a_{mj} x_j \leqslant b_m \\ & & & & x_j \geqslant 0, \quad j=1,\,2,\,\dots,\,n \end{aligned}$$

For every choice of the "scaling factors" $y_i \ge 0, i = 1, 2, ..., m$,

$$y_1 \sum_{j=1}^n a_{1j} x_j + y_2 \sum_{j=1}^n a_{2j} x_j + \dots + y_m \sum_{j=1}^n a_{mj} x_j \leqslant y_1 b_1 + y_2 b_2 + \dots + y_m b_m$$

Rearrange the inequality as

$$x_1 \sum_{i=1}^m a_{i1} y_i + x_2 \sum_{i=1}^m a_{i2} y_i + \dots + x_n \sum_{i=1}^m a_{in} y_i \leqslant y_1 b_1 + y_2 b_2 + \dots + y_m b_m$$

THE DUAL OF LINEAR PROGRAM (CONT'D)

Choose y_i , i = 1, 2, ..., m such that

$$c_1 \leqslant \sum_{i=1}^{m} a_{i1} y_i, \quad c_2 \leqslant \sum_{i=1}^{m} a_{i2} y_i, \quad \dots, \quad c_n \leqslant \sum_{i=1}^{m} a_{in} y_i$$

Then

$$c_1x_1 + c_2x_2 + \dots + c_nx_n \leqslant x_1 \sum_{i=1}^m a_{i1}y_i + x_2 \sum_{i=1}^m a_{i2}y_i + \dots + x_n \sum_{i=1}^m a_{in}y_i \leqslant y_1b_1 + y_2b_2 + \dots + y_mb_m$$

To make the upper bound tighter, we have the LP in dual form:

$$\begin{split} & \text{minimize} & \sum_{i=1}^n b_i y_i \\ & \text{subject to} & \sum_{i=1}^n a_{i1} y_i \geqslant c_1 \\ & \sum_{i=1}^n a_{i2} y_i \geqslant c_2 \\ & \dots \dots \\ & \sum_{i=1}^n a_{in} y_i \geqslant c_m \\ & y_i \geqslant 0, \quad i=1,\,2,\,\dots,\,m \end{split}$$

THE PRIMAL-DUAL PAIRS

The Primal

The Primal

 $\begin{array}{ll} \text{minimize} & c^\top x \\ \text{subject to} & A\,x \succcurlyeq b \\ & x \succcurlyeq 0 \end{array}$

The Dual

 $\begin{array}{ll} \text{minimize} & b^\top y \\ \text{subject to} & A^\top \, y \succcurlyeq c \\ & y \succcurlyeq 0 \end{array}$

The Dual

Primal (max)	Dual (min)
≥ constraint	≤ 0 variable
\leq constraint	≥ 0 variable
= constraint	free variable
≥ 0 variable	\leq constraint
≤ 0 variable	\geqslant constraint
free variable	= constraint