一、填空题(共5小题,每小题3分,共15分)

1. 函数极限 $\lim_{x \to x_0} f(x) = -\infty$ 的 $G - \delta$ 定义是

 $x \rightarrow x_0$

得分

得分

2. 设a > b > 0,则 $\operatorname{arctan} a - \operatorname{arctan} b$, $\frac{a - b}{1 + a^2}$, $\frac{a - b}{1 + b^2}$ 的从小到大的严格不等式的顺序

3. 设
$$y = x^2 e^{2x}$$
,则 $d^{(n)}y =$ ______

4. 设
$$f(x) = e^{-x^2} \sin x + \cos^4 x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$$
,则 $f(x) =$ ______

5. 反常积分
$$\int_{-\infty}^{0} \frac{xe^{-x}}{(1+e^{-x})^2} dx = \underline{\hspace{1cm}}$$

1. 求极限 $\lim_{x\to 0} \frac{\int_0^x tf(x^2-t^2)dt}{\arcsin^4 x}$, 其中 f(x) 在 x=0 的邻域内连续,上

f(0) = 0, f'(0) = 1.

2. 求不定积分 $\int \sqrt{x^2 - 1} dx$.

3. 计算定积分
$$\int_{-2a}^{-a} \frac{\sqrt{x^2 - a^2}}{x^4} dx$$
.

1. 设
$$x_1 = 2$$
,且 $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$, $(n = 2, 3, \cdots)$.证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

2. 设曲线
$$y = y(x)$$
由方程 $y = 1 - xe^{y}$ 所确定,求它在点 $(0,1)$ 处的切线方程,并求 $\frac{d^{2}y}{dx^{2}}$.

3. 求函数 $f(x) = x + \frac{x}{x^2 - 1}$ 的单调区间,极值以及凹凸区间和拐点(要求列表).

4. 求双纽线 $r^2 = a^2 \cos(2\theta)$ 所围成图形的面积.

四、证明题(共2小题,每小题10分,共20分)

1. 设函数
$$f(x)$$
在 $[0,1]$ 上二阶可导,且满足条件: $|f(x)| \le a, |f''(x)| \le b, \forall x \in [0,1]$,其 a,b 为非负常数. 证明: $|f'(x)| \le 2a + \frac{b}{2}, \forall x \in [0,1]$.

中
$$a,b$$
 为非负常数. 证明: $|f'(x)| \le 2a + \frac{b}{2}, \forall x \in [0,1].$

2. 证明:函数
$$f(x) = \ln(1+x)$$
 在 $[0,+\infty)$ 上一致连续.

五、应用题(本题9分)

设由 $y = \frac{1}{x}$, y = 0, x = 1, x = 2 所围成的曲边梯形被直线 x = t (1 < t < 2) 分成 A,B 两部分,

得分

将 A,B 分别绕直线 x=t 旋转一周,所得旋转体体积分别为 V_A 和 V_B ,问 t 为何值时, V_A+V_B 最小?.