CprE 530

Lecture 12

Topics

- IPv6
 - Overview
 - Packet Format
 - -ICMP V6

Reasons for IPv6

- IPv4 uses 32 bits for addresses
- Real time/streaming traffic (voice, audio)
- Security issues with IPv4

IPv6 – Larger Address Space

- Header format separates state information from dynamic routing info to simplify router actions
- New Options
- Quality of Service
- Added Security

IPv6 Address Space

- 128 bits (16 bytes)
- 4 hex digits: xx:xx:xx:xx:xx:xx:xx:xx
- Can abbreviate by removing leading zeros
 - $-:0F: \Rightarrow :F:$
 - $-xx:0:0:0:AD64:0:0:xx \Rightarrow xx::AD64:0:0:xx$
- CIDR Rules also supported (/ nbr of bits)

IPv6 Address Types

- Address types:
 - Unicast: A ⇒ B
 - Anycast: same first part; subnet broadcast
 - Multicast
- IPv6 Address Format:

IPv6 Address Format

- Common Type Prefixes
 - 010 = Provider based Unicast
 - 100 = Geographic Unicast
 - 1111 1110 10 = Link Local
 - 1111 1110 11 = Site Local
 - 1111 1111 = Multicast
 - -0000010 = IPX
 - -0000001 = NSAP

Provider Based Unicast

3	5	16		24	32	48
010	Registry	Prov	der	Subscriber	Subnet	Node
	11000	INTERNIC				
	01000	RIPNIC				
	10100	APNIC				

- A = 8 bits = 010 + Registry
- B = variable (16 bits recommended) = Provider
- C = 24 bits = Subscriber
- D = variable (32 bits recommended) = Subnet
- E = variable (48 bits recommended) = Node
 - If Ethernet, Ethernet MAC address recommended

Reserved Addresses

- Starts with: 0000 0000
- Unspecified Address= ::
- Loopback= ::1
- IPv4 Address:
 - 0000 0000 | 88 0's | 32 bit IPv4 Address

Local Address

- Starts with: 1111 1110
- Link Local:
 - 10 | 70 0's | 48 bit node address |
- Site Local:
 - 11 | 38 0's | 32 bit subnet | 48 bit node |

Multicast

- Starts with: 1111 1111
- 4 bits = flag
- 4 bits = scope (node local, link local, site local, organization, global
- 112 bits = Group ID

IPv6 Header

IPv6 Header

Priority Codes

0	None	
1	Background	News
2	Unattended	email
3	reserved	
4	attended bulk	Web
5	Reserved	
6	Interactive	Telnet
7	Control Traffic	routing

Next header Codes

Code	Next Header	
0	hop by hop	
2	ICMP	
6	TCP	
17	UDP	
44	Fragmentation	
50	Encrypted	
51	Authenticated	
53	None	

Packet Format

- 40 byte base header; N byte Extension Headers
 - -4 bits = 6 (IP version)
 - -4 bits = Priority
 - -24 bits = Flow label
 - 16 bits = Length
 - 8 bits = Next Header
 - -8 bits = Hop Limit
 - 128 bits = Source Address
 - 128 bits = Destination Header

Next Header Codes

- 2 = ICMP
- 6 = TCP
- 17 = UDP
- 43 = Source Routing
- 44 = Fragmentation
- 50 = Encrypted
- 51 = Authentication

Priority (Part 0-7)

- Congestion Controlled
 - -0 = None
 - -1 = background (news)
 - -2 = unattended (email)
 - -3 = reserved
 - -4 = Attended bulk (HTTP/FTP)
 - -5 = Reserved
 - -6 = Interactive
 - -7 = Control traffic (routing)

Priority (8-15)

- Noncongention Controlled
 - -8 = Most redundancy
 - :
 - -15 = Least redundancy

Flow Label

- Flow Label + Source Address is unique
- Router can cache "Flow Label + Source Address" to speed up routing
- TCP routing can take up to 70% of the processing with IPv4

Items not in IPv6 Headers

- ID/Offset = only needed if handling fragmentation/reassembly (not needed by routers)
- No checksum = minimal value

Extension Headers

- Can be chained
- If Next Header = 59, last header

Extension Header Types

- 1 = Hop by Hop Option
- 2 = Jumbo Payload (if payload > 65535 bytes)
 up to 2³²-1
- 3 = Source Routing
- 4 = Fragmentation (use Path MTU Discovery)
- 5 = Authentication (Authenticates sender)
- 6 = Encrypted

ICMPv6

- ICMPv6: Internet Control Messaging Protocol
- Many of the TCP/IP protocols (ARP, etc) are covered by ICMPv6 so are no longer needed

Error Reporting Packet Format

A	В	C			
D					
	Е				

- A = Type
- B = Code
- C = Checksum
- D = Other Information
- E = Data

Error Reporting Types

- 1 = Destination Unreachable
- 2 = Packet too big
- 3 = Time exceeded
- 4 = Parameter problem
- 137 = Redirection

Type 1 Codes

- 0 = No path
- 1 = Communications is prohibited
- 2 = Source routing is impossible
- 3 = Destination address is unreachable
- 4 = Port

Type 2 & 3 Codes

- Type 2 Codes
 - -0 = MTU exceeded
- Type 3 Codes
 - -0 = Hop Count
 - -1 = Fragment timeout

Type 4 & 5 Codes

- Type 4 Codes
 - -0 = Header
 - -1 = Extension Header
- Type 5 Codes
 - -0 = Router finds better path