

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-222017

(P2001-222017A)

(43)公開日 平成13年8月17日(2001.8.17)

(51)Int.Cl.⁷

G 02 F 1/1339 5 0 5
1/13 1 0 1
1/1335 5 0 0
5 0 5
5 2 0

識別記号

F I

G 02 F 1/1339 5 0 5 2 H 0 8 8
1/13 1 0 1 2 H 0 8 9
1/1335 5 0 0 2 H 0 9 1
5 0 5 5 C 0 9 4
5 2 0

テ-コ-ト(参考)

審査請求 未請求 請求項の数40 O L (全 74 頁) 最終頁に続く

(21)出願番号 特願2000-84397(P2000-84397)
(22)出願日 平成12年3月24日(2000.3.24)
(31)優先権主張番号 特願平11-142628
(32)優先日 平成11年5月24日(1999.5.24)
(33)優先権主張国 日本(J P)
(31)優先権主張番号 特願平11-263845
(32)優先日 平成11年9月17日(1999.9.17)
(33)優先権主張国 日本(J P)
(31)優先権主張番号 特願平11-340826
(32)優先日 平成11年11月30日(1999.11.30)
(33)優先権主張国 日本(J P)

(71)出願人 000005223
富士通株式会社
神奈川県川崎市中原区上小田中4丁目1番
1号
(72)発明者 田代 国広
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内
(72)発明者 吉見 琢也
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内
(74)代理人 100101214
弁理士 森岡 正樹

最終頁に続く

(54)【発明の名称】 液晶表示装置及びその製造方法

(57)【要約】

【課題】本発明は、セル工程で基板間に液晶を封入する際に用いる滴下注入プロセスを確実に行える液晶表示装置及びその製造方法を提供することを目的とする。

【解決手段】2つの基板4、16間に挟まれた液晶22を封止する光硬化性材料からなるシール剤6と、赤色光を透過させる赤色着色層28と、緑色光を透過させる緑色着色層26と、青色光を透過させる青色着色層24とを重ね合わせた遮光領域を有する遮光膜8とを備えた液晶表示装置において、シール剤6と接触する遮光膜8の領域には青色着色層24のみが形成され、シール剤6の光硬化性材料は青色帯域の波長に光反応域を有するよう構成する。

【特許請求の範囲】

【請求項1】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記シール剤と接触する遮光膜の領域には青色着色層が形成され、前記シール剤の光硬化性材料は、青色帯域の波長の光に光反応域を有していることを特徴とする液晶表示装置。

【請求項2】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記シール剤は、前記2つの基板のうちの一方との接触領域の少なくとも一部が前記一方の基板に形成された遮光膜と重なり合っていることを特徴とする液晶表示装置。

【請求項3】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板のいずれかに形成された遮光膜と、着色粒子が添加されて前記遮光膜下方に形成され、前記2つの基板を電気的に接続するトランスマニアと、前記トランスマニア上方の前記遮光膜に開口された光入射孔とを備えたことを特徴とする液晶表示装置。

【請求項4】液晶を挟持して対向する2枚の基板と、前記基板の表示領域の外側周辺部で前記2枚の基板を貼り合せるメインシールと、前記メインシールと前記表示領域との間の領域に形成された枠状構造物と、前記メインシールと前記表示領域との間の領域を遮光するブラックマトリクス額縁とを有し、前記枠状構造物の外周端と前記ブラックマトリクス額縁の外周端とは、前記基板面に垂直な方向から見てほぼ一致するように形成されていることを特徴とする液晶表示装置。

【請求項5】請求項4記載の液晶表示装置において、前記メインシールより外側の領域に形成された第2の枠状構造物を有し、前記メインシールと前記表示領域との間の領域に形成された前記枠状構造物と、前記第2の枠状構造物とで前記メインシールの両側を囲うことを特徴とする液晶表示装置。

【請求項6】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板の少なくとも一方の前記シール剤と接触する領域に凹凸構造を有する光反射層が形成されていることを特徴とする液晶表示装置。

【請求項7】2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、

前記メインシールの角部に隣接し、前記メインシール外側で且つ一方の基板の端部より内側となる領域に前記メインシール以上の剥離強度を有する接合物を部分的に配置することを特徴とする液晶表示装置。

【請求項8】2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、

前記メインシールの角部に隣接し、前記メインシール内側かつ表示領域外側となる領域に、セルギャップ相当の厚さを有し遮光用BM額縁の角部形状に準じたI字型の形状を有する構造物を配置することを特徴とする液晶表示装置。

【請求項9】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板の前記シール剤と接触する領域に光反射層が形成されていることを特徴とする液晶表示装置。

【請求項10】請求項9記載の液晶表示装置において、前記2つの基板のうち少なくとも一方の前記光反射層は、バスライン形成材料と同一の材料で形成されていることを特徴とする液晶表示装置。

【請求項11】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板の前記シール剤近傍に前記液晶を垂直配向させる配向膜が形成されていることを特徴とする液晶表示装置。

【請求項12】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板の画像表示領域と前記シール剤との間で対向する2つの電極を備えていることを特徴とする液晶表示装置。

【請求項13】複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、

前記シール剤内方に滴下液晶の拡散を制御する複数の構造物が形成されていることを特徴とする液晶表示装置。

【請求項14】複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記2つの基板の少なくとも一方に、前記シール剤内方且つ前記表示領域の外側に枠状に設けられた凸状構造物を有することを特徴とする液晶表示装置。

【請求項15】複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、

前記シール剤の外側周囲に、中空枠状のシール剤がさらに形成されていることを特徴とする液晶表示装置。

【請求項16】光硬化性材料のシール剤で2つの基板を

貼り合わせて液晶を封止し、前記シール剤に光を照射して硬化させて前記2つの基板を固定する液晶表示装置の製造方法において、

前記光硬化性材料として、青色帯域の波長の光に光反応域を有する光硬化性樹脂を用い、

前記2つの基板を貼り合わせた際に前記シール剤が接触する遮光膜の領域には青色帯域の光を透過させる着色層のみを形成することを特徴とする液晶表示装置の製造方法。

【請求項17】一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記シール剤の前記他方の基板との接触領域の少なくとも一部が前記他方の基板上に形成された遮光膜と重なり合うように形成し、

前記他方の基板に形成されたカラーフィルタを含む領域に光を照射して前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法。

【請求項18】基板の表示領域の外側周辺部に紫外線硬化樹脂を塗布してメインシールを形成し、前記メインシールと前記表示領域との間の領域に、紫外線をほぼ透過しない材質の枠状構造物を形成し、

前記基板と対向基板とで液晶を挟持して貼り合わせ、前記基板面に対して水平若しくは斜め方向から紫外線を照射して、前記メインシールを硬化させることを特徴とする液晶表示装置の製造方法。

【請求項19】一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記光は、偏光光を用いることを特徴とする液晶表示装置の製造方法。

【請求項20】一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記シール剤近傍の前記液晶の分子を垂直配向させて前記光を照射することを特徴とする液晶表示装置の製造方法。

【請求項21】一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記液晶は光重合性材料を含み、

前記液晶に光を照射して硬化させた後、前記シール剤を

硬化することを特徴とする液晶表示装置の製造方法。

【請求項22】一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

前記液晶の滴下量を滴下箇所により変化させることを特徴とする液晶表示装置の製造方法。

【請求項23】一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

滴下位置を決める複数の滴下パターンを組み合わせて前記液晶を滴下することを特徴とする液晶表示装置の製造方法。

【請求項24】一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

隣接して滴下された液晶との液晶拡散距離がほぼ等しくなる位置に前記各液晶を滴下することを特徴とする液晶表示装置の製造方法。

【請求項25】請求項24記載の液晶表示装置の製造方法において、

前記各液晶は、ほぼ同量の液晶量で滴下され、さらに、前記液晶拡散距離が等しくない位置に前記液晶量以下の量を有する液晶を滴下することを特徴とする液晶表示装置の製造方法。

【請求項26】一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記液晶滴下は、成分が異なる2種以上の液晶を同一滴下領域内に重ねて滴下することを特徴とする液晶表示装置の製造方法。

【請求項27】請求項26記載の液晶表示装置の製造方法において、

前記2種以上の液晶は、信頼性の相対的に高い第1の液晶とそれより信頼性の低い第2の液晶とを少なくとも有し、

前記第1の液晶を滴下した後、基板上に滴下された前記第1の液晶上に前記第2の液晶を滴下することを特徴とする液晶表示装置の製造方法。

【請求項28】一方の基板上の複数箇所に液晶を滴下し、減圧下でシール剤を介して他方の基板と貼り合わせてから加圧状態に戻す工程を有する液晶表示装置の製造方法において、

前記基板上に滴下液晶の拡散を制御する構造物を形成することを特徴とする液晶表示装置の製造方法。

【請求項29】請求項28記載の液晶表示装置の製造方法において、

枠状に形成された前記シール剤の対角線方向に前記滴下液晶の拡散速度が高くなるように前記構造物の配置密度

あるいは配置形状を制御することを特徴とする液晶表示装置の製造方法。

【請求項30】一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

前記両基板の貼り合わせの際、前記一方は他方の基板の少なくともいずれかを機械的に保持した状態で算囲気を減圧し、

所定の気圧になつたら前記基板の保持を機械的保持から静電チャックによる保持に切り替えることを特徴とする液晶表示装置の製造方法。

【請求項31】請求項30記載の液晶表示装置の製造方法において、

前記静電チャックは、前記基板上に形成された複数のパネル形成領域の当該パネル形成領域毎に同極性の電圧を印加して前記基板を静電吸着することを特徴とする液晶表示装置の製造方法。

【請求項32】一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記一方の基板を平行平板上に固定し、前記一方の基板に貼り合わせた前記他方の基板を押圧しつつ、前記シール剤に光を照射して硬化させることを特徴とする液晶表示装置の製造方法。

【請求項33】一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

パネル領域周囲にメインシールを形成し、前記メインシールを所定の空隙で囲むようにダミーシールを形成し、前記基板を貼り合せる際に前記空隙に真空領域を形成し、大気圧の元で前記真空領域に作用する力をを利用して前記メインシールのギャップ出しを行うことを特徴とする液晶表示装置の製造方法。

【請求項34】一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

パネル領域周囲にメインシールを形成し、

前記メインシールを所定の空隙で囲むように第1ダミーシールを形成し、

前記メインシール内方と、前記空隙に前記液晶を滴下することを特徴とする液晶表示装置の製造方法。

【請求項35】一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

基板貼り合わせ用に基板上に形成された棒状のシール剤の内方且つ表示領域の外側にセル厚を規定する凸状構造物を棒状に設け、

前記表示領域を満たす量以上であって、且つ前記シール剤内方を満たさない量の液晶を滴下し、

前記一方及び他方の基板を貼り合せる際、前記表示領域から溢れる余剰液晶を前記シール剤と前記凸状構造物との間に形成される間隙部に排出することを特徴とする液晶表示装置の製造方法。

【請求項36】一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、

基板貼り合わせ用に基板上に形成する棒状のシール剤を二重棒構造に形成し、内方の前記シール剤に液晶を流出させる開放部を設け、

前記内方のシール剤の内方を満たす量以上であって、且つ外方の前記シール剤の内方を満たさない量の液晶を滴下し、

基板貼り合せ時の余剰液晶を前記開放部から前記内方のシール剤と前記外方のシール剤との間に排出させることを特徴とする液晶表示装置の製造方法。

【請求項37】2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、

前記2つの基板を貼り合せる際の位置決め用の突起物が、前記2つの基板上に形成されていることを特徴とする液晶表示装置。

【請求項38】一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

基板貼り合わせ時に前記基板を載置したステージ上に貼り合わせ済の基板を吸着して前記光を照射し前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法。

【請求項39】一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、

前記一方及び他方の基板端部が相対的にずれるように両基板を貼り合わせ、ずれた領域にパネル検査用の外部接続端子を配置することを特徴とする液晶表示装置の製造方法。

【請求項40】請求項9記載の液晶表示装置において、前記2つの基板の一方は、複数の画素領域にスイッチング素子が形成されたアレイ基板であり、

前記アレイ基板に形成された前記光反射層の両側部には光透過領域が形成され、前記光透過領域間の前記光反射

層の幅は概ね400μmであることを特徴とする液晶表示装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、液晶表示装置（Liquid Crystal Display；LCD）及びその製造方法に関し、特に、滴下注入法を用いて2枚のパネル間に液晶を封止する液晶表示装置及びその製造方法に関する。

【0002】

【従来の技術】従来の液晶表示装置の液晶表示パネルを図104を用いて説明する。図104は、TFT（薄膜トランジスタ）をスイッチング素子として用いたアクティブマトリクス型の液晶表示パネルをカラーフィルタ基板側から見た上面の一部を示している。図104に示すように、液晶表示パネル1100は、アレイ基板1116側にマトリクス状に配置された複数の画素領域1114が形成され、各画素領域1114内にはTFT1112が形成されている。そして、複数の画素領域1114で画像の表示領域1110が構成されている。なお、詳細な図示は省略したが、各画素領域1114のTFT1112のゲート電極はゲート線に接続され、ドレイン電極はデータ線にそれぞれ接続されている。またTFT1112のソース電極は画素領域1114内に形成された画素電極に接続されている。複数のデータ線及びゲート線は、アレイ基板1116の外周に形成された端子部1102に接続されて、外部に設けられた駆動回路（図示せず）に接続されるようになっている。

【0003】アレイ基板1116よりほぼ端子部1102領域分だけ小さく形成されているカラーフィルタ（CF）基板1104が、所定のセル厚（セルギャップ）で液晶を封止してアレイ基板1116に向こうて設けられている。CF基板1104には、コモン電極（共通電極；図示せず）と共に、カラーフィルタ（図中、R（赤）、G（緑）、B（青）の文字で示している）やCr（クロム）膜等を用いたBM（ブラックマトリクス；遮光膜）1180、1180等が形成されている。BM1118は、表示領域1110内の複数の画素領域1114を画定してコントラストを稼ぐため、及びTFT1112を遮光して光リーク電流の発生を防止するために用いられる。また、BM領域部1108は表示領域1110外からの不要光を遮光するために設けられている。アレイ基板1116とCF基板1104とは光硬化性樹脂からなるシール剤1106で貼り合わされている。

【0004】ところで、液晶表示装置の製造工程は大別すると、ガラス基板上に配線パターンやスイッチング素子（アクティブマトリクス型の場合）等を形成するアレイ工程と、配向処理やスペーサーの配置、及び対向するガラス基板間に液晶を封入するセル工程と、ドライバIC

の取付けやバックライト装着などを行うモジュール工程からなる。このうちセル工程で行われる液晶注入プロセスでは、例えばTFT1112が形成されたアレイ基板1116と、それに対向するカラーフィルタ基板（対向基板）1104とをシール剤1106を介して貼り合わせた後シール剤を硬化させ、次いで液晶と基板とを真空槽に入れてシール剤に開口した注入口を液晶に浸けてから槽内を大気圧に戻すことにより基板間に液晶を封入する方法（真空注入法）が用いられている。

【0005】それに対し近年、例えばアレイ基板1116周囲に枠状に形成したシール剤1106の枠内の基板面上に規定量の液晶を滴下し、真空中でアレイ基板1116とCF基板1104と貼り合せて液晶封入を行う滴下注入法が注目されている。滴下注入法による液晶表示パネルの製造工程について図108を用いて簡単に説明する。まず、図108(a)に示すように、例えば、TFT等のスイッチング素子が形成されたアレイ基板1204の基板面上の複数箇所に、図示しない液晶滴下注入装置から液晶1206を滴下する。次いで、表示領域内に共通（コモン）電極やカラーフィルタが形成され、表示領域外周に紫外線（UV）照射で硬化するUVシール剤1202が塗布された対向基板1200を位置合わせてアレイ基板1204に貼り付ける。この工程は真空中で行われる。次いで、貼り合わせた基板を大気中に戻すと図108(b)に示すように、貼り合わせられたアレイ基板1204と対向基板1200間の液晶1206が大気圧により拡散する。次に、図108(c)に示すように、シール剤1202の塗布領域に沿う移動方向1211でUV光源1208を移動させながらUV光をシール剤1202に照射し、シール剤1202を硬化させる。

【0006】この滴下注入法は、従来のパネルの製造に広く用いられてきた真空注入法と比較して、第1に液晶材料の使用量を大幅に低減できること、第2に液晶注入時間を短縮できること等から、パネル製造のコストを低減したり量産性を向上させたりする可能性を有しているため、パネル製造工程での適用が強く望まれている。

【0007】例えば、特開昭63-179323号公報には、一方の基板上に設けたシール剤の内側の基板面に精秤した所要量の液晶を載せ、この液晶が基板面上を拡散して周辺のシール剤端面に到達するまでに、対向する他方の基板がシール剤上面に接するように重ね合わせ、周囲を減圧して両基板を圧着した後、シール剤を固化する方法が記載されている。

【0008】

【発明が解決しようとする課題】しかしながら上記公報では、滴下注入の基本的なプロセスフローは示されているものの製造技術に関する具体的な記述が少なく、実際にプロセスを適用するに当たっての現実的な技術的課題が残されている。滴下注入プロセスは、それ以前に行われ

ていた液晶注入プロセスと比較して、簡便かつ低コストに液晶パネルを製造できる反面、以下に示すような技術的困難性を有しているため液晶表示装置の製造方法への適用が遅れている。

【0009】(1) シール剤の硬化不良

シール剤1106、1202の未硬化成分が液晶と長時間接していると、その状態で高温に曝されたりすると液晶が汚染されてしまう。そのため、滴下注入プロセスを用いる場合のシール剤1106、1202には紫外光照射で速やかに硬化する光硬化性樹脂が用いられている。

【0010】ところで、近年の液晶パネル1100の大型化等により、パネル周囲の額縁部の幅は狭くなっている。従って、基板周囲に枠状に形成されるシール剤1106は、図104に示すBM額縁部1108の外周端近傍ぎりぎりに形成される場合が多い。そのため、アレイ基板1116とCF基板1104とを圧着した際に、シール剤1106がBM額縁部1108と接触してしまう領域（図104中、斜線で示した領域）が生じるが、BM額縁部1108と接触しているシール剤1106領域は遮光されて光が照射されないため、当該領域に硬化不良領域が発生してしまう。

【0011】(2) シール剤の剥離

図105は従来の液晶パネルのセル工程における液晶の滴下注入を示している。図105(a)は、シール剤1106内のアレイ基板面上に、シール剤1106の枠形状と相似形ではほぼ均等な間隔（本例では3行4列のマトリクス状）で液晶（○印で示す）1144を滴下した状態を示している。各液晶1144の滴下位置に対して、隣り合う液晶1144の滴下位置までの距離は、図示のように $d_2 = d_4 = d_6 = d_8 > d_1 = d_3 = d_5 = d_7$ という関係を有している。図105(b)は、アレイ基板とCF基板とを貼り合わせた後の液晶1144の拡散状態を示している。図105(b)に示すように、ガラス基板上のシール剤1106は四角形の枠形状に形成されているのに對し、滴下した液晶1144の液滴は基板面上で円形形状1146に拡散する。従来の滴下方式では液滴同士が干渉するため、間隙1145が十分小さくなつて液晶拡散が終了するまでに20分程度の時間を要する。

【0012】このように従来方法では、シール剤1106角部にまで液晶が拡散するのに長時間を要することになり、シール剤を硬化させるまでの待機時間が長くなってしまう。このため両基板内外の差圧により、待機時間中にシール剤の角部の剥離が発生して液晶漏れを生じてしまう可能性が高い。

【0013】(3) 基板変形と表示不良

従来プロセスでの液晶滴下における基板保持は、真空チャック、静電チャック、あるいは機械式保持装置を用いて行われている。真空チャックによる基板保持は、基板

を平行定盤上の吸着面に載置して基板裏面を真空吸引して固定する。この保持方法で例えばアレイ基板を保持し、ディスペンサ等により適量の液晶をシール剤枠形状内のアレイ基板面上に滴下する。次いで、真空雰囲気内でCF基板を位置決めしてアレイ基板と貼り合わせる工程に入る。ところが、真空チャックによる基板保持では、真空度がある程度高くなると真空チャックが機能しなくなってしまうため、基板貼り合わせ時の真空度を十分に上げることができない。従って、両基板に十分な貼り合わせ圧力をかけることができなくなってしまい、両基板を均一に貼り合わせることが困難になる。

【0014】また、機械式保持では基板の保持辺部だけに応力がかかるため基板にそりやたわみ等の変形が生じてしまい、液晶滴下後の基板の貼り合わせに際して両基板を平行に保持することができなくなる。両基板が変形した状態で貼り合わせを行うと位置ずれが大きくなり、各画素の開口率の減少や遮光部からの光もれが発生してしまうという問題が生じる。

【0015】図106は静電チャックによる基板貼り合わせを説明する図である。図106(a)は例としてアレイ基板1116の2枚取り構成のガラス基板700が静電チャック740～770で静電吸着されている状態の平面図を示している。図106(b)は、アレイ基板1116とCF基板1104とを貼り合わせる際の図106(a)に示すA-A線で切断した断面方向から見た状態を示している。

【0016】図106に示すように、ガラス基板700上で2枚のアレイ基板1116となる領域は電気的に相互に絶縁されている。ガラス基板700を静電吸着する静電チャックは、平行定盤上に4つの電極740、750、760、770を有している。4つの電極740～770のうち、電極740、750で正電極を構成し、電極760、770で負電極を構成している。正電極740と負電極760とで一方のアレイ基板1116面を静電吸着し、正電極750と負電極770とで他方のアレイ基板1116面を静電吸着するようになっている。正電極740と負電極760との境界、及び静電極750と負電極770との境界には空隙680が設けられている。平面図による図示は省略したがCF基板1104を形成するガラス基板720側の静電チャックも上述のガラス基板700を吸着する静電チャックと同様の構成を有している。

【0017】このような構成の静電チャックに、導電膜が形成されたガラス基板を載せて電極と導電膜の間に電圧を印加して、ガラスと導電膜との間にクーロン力を発生させることによりガラス基板を吸着することができる。図106に示す場合は、ガラス基板700上の導電膜は、アレイ基板1116領域上に形成されている画素電極、ゲート配線、データ配線等である。また、CF基板1104領域が形成されたガラス基板720上の導電

膜はコモン電極等である。

【0018】このような静電チャックでガラス基板700、720を保持して基板を貼り合わせるには、アレイ基板1116領域をほぼ2等分した一方の領域に正電極740、750を接触させ残りの領域に負電極760、770を接触させて、正負電極間に所定の電圧を印加してガラス基板700を静電吸着する。このとき、図106(b)に示すように、ガラス基板700のアレイ基板1116領域の正電極740、750に対応する表面は負(-)に帯電し、負電極760、770に対応する表面は正(+)に帯電する。このため、正負電極間の境界の空隙680に対応するアレイ基板1116の導電膜には正電荷と負電荷の境界線ができる。

【0019】ところで、アレイ基板1116の導電膜上部には配向膜が形成されており、その上に滴下注入により液晶が滴下されている。従って、上述の方法によりアレイ基板1116領域を静電吸着させると、アレイ基板1116領域面をほぼ2等分する境界線の両側で、液晶中の不純物イオンが配向膜上に選択的に吸着されてしまい、形成された液晶パネルを表示させると当該境界部を挟む2面の輝度が異なって表示不良が発生してしまうという問題を有している。

【0020】またさらに、アレイ基板1116を形成するガラス基板700とCF基板1104を形成するガラス基板720とを静電吸着により保持しつつ貼り合せる際、図106(b)に示すように両ガラス基板700、720の対向面に正負逆極性の電圧印加を行うと、対向する基板同士にクーロン力が作用して静電吸着による基板吸着力が弱くなる。このため、基板変形を起こしたり、基板同士が接触して静電破壊を起こしたりする可能性がある。

【0021】また、基板保持力が真空度の影響を受けない静電チャックで基板を保持する方式では、基板貼り合わせのために大気圧から減圧する途中でグロー放電が生じてしまい、基板上の回路やTFT素子に障害が発生してしまう場合があるという問題も有している。また、静電チャックと基板の間に残留した空気により静電チャックの動作が不安定になってしまい、基板貼り合わせ工程の途中で静電チャックから基板が離脱してしまうという現象が生じる場合もある。

【0022】(4) セル厚のばらつき

滴下注入プロセスにおいて液晶を両基板面内で均一に分散させるためには、ディスペンサ等により基板面上に液晶を多点滴下する必要がある。しかしながら、基板1面当たりの液晶滴下量は僅かであり、滴下位置を多点に分散させた場合には極微量の液晶を精度よく滴下させなければならない。しかし滴下時の温度変化等の環境変化による液晶の粘度や体積の変化、あるいは滴下装置(ディスペンサ)の性能のばらつきで液晶滴下量は変動してしまう。その結果、両基板間のセル厚のばらつきが発生し

てしまう。

【0023】図107は液晶パネル面に垂直な方向に切断した断面を示し、セル厚ばらつきの例を示している。図107(a)は最適の液晶滴下により、所望のセル厚が得られた状態を示している。図107において、アレイ基板1116とCF基板1104とがシール剤1106により貼り合わされており、またスペーサとしてのビーズ1150により所定のセル厚が確保されている。ところが、液晶の滴下量が多くなると、図107(b)に示すように、余分な液晶によりシール剤1106が目標ギャップまでプレスできなくなりパネル周辺部(額縁部周辺)に表示むらが発生してしまうという問題を生じる。さらに液晶の滴下量が多くなってしまうと、図107(c)に示すように、プレス不良を起こしたシール剤1106よりパネル中央部の方が膨らんでしまう現象が起きて全面に表示むらが引き起こされてしまう。

【0024】(5) 液晶の劣化

また、滴下注入法を用いて製造した液晶表示装置には、シール剤と液晶とが接するシール際で表示ムラが発生してしまうという問題が生じている。その原因の1つを図109を用いて説明する。図109は、液晶表示パネル端部の一部横断面を示している。アレイ基板1200と対向基板1204とがシール剤1202を介して対向している。アレイ基板1200の対向基板1204と対向する面には画素電極やバスライン(図109では、これらをまとめて符号1212として示す)が形成され、その上部に配向膜1214が形成され、対向基板1204のアレイ基板1200と対向する面には共通電極やカラーフィルタ(図109では、これらをまとめて符号1216として示す)が形成され、その上部に配向膜1218が形成されている。対向する電極間は所定のセルギャップが維持されて液晶1206が封止されている。図示の通り、パネル端部の液晶1206はシール剤1202に接触している。

【0025】このような構造において、シール剤硬化のためにシール剤1202に向けてUV照射を行うとUV光1210はわずかに拡散してシール剤1202近傍の図中斜線で示す領域の液晶1220をも照射してしまう。ところが、一般に、液晶材料にUV光を照射すると液晶の特性が劣化してしまい、特に比抵抗が下がる傾向にありTFT-LCD等で要求される高い電圧保持率が維持できなくなる。そのため、UVが照射されていない部分と比べて液晶セルの駆動電圧が異なり、中間調表示において表示ムラが目立つようになる。

【0026】また、滴下注入法では、UV照射前のシール剤1202と液晶1206が接触する領域が広いため、未硬化のシール剤による液晶材料の汚染の可能性も高くなる。この液晶汚染を抑制するには、UV照射を瞬時にUVシール剤を素早く硬化させる必要がある。しかし、照射時間を短縮するために高い強度のUV光を

照射すると、その漏れ光が液晶材料へ与えるダメージも大きくなってしまうという問題がある。

【0027】また、以上説明したように、滴下注入法ではシール剤に光硬化樹脂もしくは光及び熱硬化樹脂を用いる。シール剤の光硬化に関する先行技術としては、貼り合せた基板に光を透過する所定のパターンを有するマスクを介して紫外線照射する手法（特開平09-61829号公報）や上下基板の遮光部をシール配置位置で重ならないよう対向配置する手法（特開平09-90383号公報）、貼り合わせ時の圧力と大気圧または貼り合わせ後の真空チャンバ内の圧力との差圧によりパネルの圧着を行う手法（特開平10-26763号公報）等が知られている。

【0028】ところが、これらの手法を用いても滴下注入法における光硬化プロセスでは以下に示す課題を抱えている。まず、液晶の光劣化が挙げられる。光硬化樹脂には保存性や接着強度の点から紫外線硬化樹脂が用いられるが、既に説明したとおり、液晶に紫外線が照射されると光分解反応が進行し、イオン性不純物が発生する。このイオン性不純物は電圧保持率の低下による表示ムラや焼き付きといった表示不良を引き起こす。このため上記文献（特開平09-61829号公報）に開示されたような、光を透過する所定のパターンを有するマスク用いることが考えられるが、シールパターン毎にマスクが必要になり、またマスクアライメントの工数が増えることになるため、液晶の滴下注入法のねらいであるパネルの製造コスト低減及び量産性の向上を却って阻害することになりかねないという問題を有している。

【0029】第2には、パネル外形寸法の拡大が挙げられる。アレイ基板側の非表示領域には通常多くの金属膜からなる端子が形成されている。上記文献（特開平09-90383号公報）のように上下基板の遮光部をシール剤配置位置で重ならないよう対向配置するには実質的にブラックマトリクスの額縁外にシールを形成しなければならず、パネル外形寸法を拡大せざるを得なくなる。

【0030】第3には、位置ずれの問題がある。光硬化では瞬時にシール硬化が行われるため基板が本来有しているうねりや反りによる応力が残留しやすい。この状態で熱処理を行うと応力が解放され基板の位置ずれが発生する。

【0031】第4には、プレス不良の問題がある。滴下注入では上記公報（特開平10-26763号公報）のように貼り合せた時の圧力と大気圧または貼り合わせ後の真空チャンバ内の圧力との差圧により基板全体を加圧して液晶の拡散を図っている。加圧直後は液晶がシール剤まで到達していないためシール剤は瞬間に押され、基板間に混入されたスペーサの厚さにまでプレスされるが、パネル面内は所定厚より厚いため、その後シール剤は押し返されてしまう。放置時間を長くすることによりパネル厚は徐々に所定厚に近づくため、シール剤は再び

スペーサの厚さまでプレスされるが、放置の間に未硬化のシール剤で液晶が汚染されるため、実際はできるだけ短時間で硬化させなければならない。この兼ね合いで十分な放置時間をとることができず、プレス不良が発生する原因となっている。

【0032】上記の真空注入法や滴下注入法ではシール剤を短時間で硬化させるためにシールに光硬化樹脂若しくは光+熱硬化樹脂を用いている。ところが、滴下注入法ではシール剤が未硬化の状態で液晶と接してしまう可能性を有している。液晶中にシール剤成分が溶出したり、シール剤硬化時の紫外線が隣接する液晶に照射して液晶が光分解されてしまったりすると、シール際の液晶の電圧保持率が低下して表示不良が発生してしまう。

【0033】この問題に対処するため、例えば特開平6-194615号公報では、一対の基板のいずれか一方の基板の画素領域外に柱状のスペーサを配置し、当該一方の基板の周縁に沿って枠状スペーサ（枠状構造物）を配置した液晶表示装置が開示されている。これらのスペーサは、フォトリソグラフィ工程で同時に形成され、滴下注入法を用いた液晶パネル製造に用いられる。

【0034】図110(a)は、TFTをスイッチング素子として用いた図104に示したものとは別の従来のアクティブマトリクス型の液晶表示パネル100をCF(カラーフィルタ)基板側から見た上面の一部を示している。図110(b)は、図110(a)のA-A線で切断した部分断面を示している。液晶表示パネル1100のアレイ基板1116側にはマトリクス状に配置された複数の画素領域1114が形成され、各画素領域1114内にはTFT(図示せず)が形成されている。複数の画素領域1114で画像の表示領域1110が構成される。

【0035】CF基板1104は、アレイ基板1116よりほぼ端子部1102の幅だけ小さく形成されて、所定のセル厚で液晶22を封止してアレイ基板1116に対向して設けられている。アレイ基板1116とCF基板1104とは光硬化性樹脂からなるメインシール1106で貼り合わされている。図中2本の破線で示された幅1106'は、メインシール1106塗布時の幅を示している。メインシール1106と表示領域1110との間の領域にはメインシール1106と液晶22とを分離する枠状構造物1111が形成されている。アレイ基板1116及びCF基板1104間の枠状構造物1111で囲まれた領域には液晶22が封止されている。

【0036】CF基板1104には、コモン電極(図示せず)と共に、カラーフィルタ(図中、R(赤)、G(緑)、B(青)の文字で示している)が設けられている。またCF基板1104には遮光機能を有するBM額縁1108及び画素領域間を区切るBMが形成されている。枠状構造物1111の外周端は、基板1116面に垂直な方向から見てBM額縁1108の外周端より内

側に配置されている。従って、メインシール1106内側周端部がBM額縁1108外側周端部との重なり領域1107が形成される。このため、BM額縁1108によるUV光の遮光が生じてメインシール1106の硬化不良が領域1107で生じる。

【0037】また、図111に示すように、セル厚相当の枠状スペーサ1106を基板1116、1104周縁に設けたのみでは、滴下注入時に枠状スペーサ1111を満たす量以上の液晶が滴下された場合には余剰液晶が枠状スペーサ1111を乗り越えてしまい、未硬化のシール剤1106と液晶22が接して汚染物質が拡散してしまう。また、図112に示すように、セル厚が厚いと液晶22が拡散し終わる前に液晶22は容易に枠状スペーサ1111を乗り越えてしまう。図112はアレイ基板1116表面をCF基板1104側から見た状態を示している。液晶滴下法を用いて複数点の液晶滴下点1120に液晶22を滴下して基板1116、1104を貼り合わせると、貼り合わせ時の液晶22の境界1123が徐々に拡散する。液晶22が拡散しきる前は液晶未注入部1121が形成され、セル厚は余剰液晶がなくても枠状スペーサ1112の高さより厚いため、液晶境界1123は枠上スペーサ1111を乗り越えて例えれば位置1122において未硬化のメインシール1106と接触してしまう。また、図113に示すように、基板貼り合わせ後に大気開放すると、大気圧は基板全面に一様に作用するため、抵抗の大きいメインシール1106より基板中央が凹む結果、枠状スペーサ1111が浮き上がってしまい液晶22がメインシール1106に接触してしまう。

【0038】以上説明した課題に加えて、従来の滴下注入法ではさらに以下に示す課題を抱えている。

(6) 硬化不良によるシール剝離

液晶表示基板の周縁部（額縁）には、通常、ブラックマトリクス（BM：遮光膜）が形成されている。枠状スペーサの配置をうまく規定しないとシール剤が基板貼り合わせ後に広がり、その一部がBM額縁端と重なってUV光が到達せず硬化不良を起こしてしまう。硬化不良の部分では接着強度が弱いため外部応力が集中し、シール剤剥離を誘発する。シール剤位置をBM額縁端から十分離せばこのような不具合は発生しないが、額縁領域が拡大するためガラス基板面を効率よく利用できなくなる。

【0039】(7) 余剰液晶の枠状スペーサの乗り越えセル厚相当の枠状スペーサを基板周縁に設けたのみでは、滴下注入時に枠状スペーサを満たす量以上の液晶が滴下された場合に余剰液晶が枠状スペーサを乗り越え、未硬化のシール剤と液晶が接して汚染物質が拡散してしまう。また液晶滴下を制御しても滴下ディスペンサによる滴下量のばらつきや液晶が枠内に充填しきる前に液晶が枠状スペーサに到達すると、まだ液晶が拡散しきる前でセル厚が厚いため、液晶は容易に枠状スペーサを乗り

越えてしまう。

【0040】(8) 滴下跡によるムラ

滴下注入法により製造した液晶表示装置は、滴下した液晶の領域に、「滴下跡」がムラとして見える問題を有している。図114は「滴下跡」の例を示している。図114(c)は液晶滴下を示しており、滴下された液晶136が基板132上の配向膜134上に付着した状態を示している。「滴下跡」による表示ムラは、図114(a)に示すような滴下領域の境界が見えるムラ130と、図114(b)に示すような滴下領域全体が周辺輝度と異なる面状のムラ131がある。滴下注入パネルは、滴下液晶と配向膜が大気圧下で接触した後、位置決め・貼り合わせをした際、真空中で液晶が広がる。

【0041】「滴下跡」は、液晶が大気圧中で配向膜と接触したことが原因と思われる。また、滴下する液晶材料・配向膜材料によって「滴下跡」のレベルが異なることが分かっている。傾向として、液晶材料の極性が強く、用いる液晶材料・配向膜材料の電気的特性が劣る（電圧保持率が低い・イオン密度が高い・残留DC電圧が大きい）と「滴下跡」ムラが大きく生じる。特に、MVA (Multi-domain Vertical Alignment) モードによる液晶の配向制御を実現できる液晶パネルは、N型（誘電率異方性が負： $\Delta\epsilon < 0$ ）の液晶材料と、垂直配向膜を必要とするが、これらの材料はP型の液晶材料・水平配向膜と比べて材料選択性が乏しく、現状の材料では電気的特性が満足いくものが少ない。従って、大気圧中で配向膜と接触する液晶材料がより信頼性が高い液晶を用いる必要があり、これまでと異なる製造方法が必要となっている。

【0042】(9) その他の課題

さらに、滴下注入法では、工程上のトラブルにより滴下注入に失敗した基板や、メインシール近傍のセルギャップ出しに失敗した基板が後工程に進んでしまうのを防止するための管理が困難であるという問題を有している。特に、MVAモードの液晶パネルでは、電圧無印加状態ではパネル正面から見たときの液晶の屈折率異方性が0なので、液晶層は空気層と同じようにしか見えず、液晶注入状態を確実に把握することが困難である。従って、滴下注入法により製造した液晶パネルの表示ムラの検査を容易に確実に行えるようにすることが望まれる。

【0043】また、液晶と未硬化のシール剤との接触による液晶汚染を低減させるためには、高粘度のシール剤を用いることが考えられる。ところが、高粘度のシール剤ではギャップ出ししが困難になり、シール際のセル厚が表示中央部のセル厚より厚くなってしまって表示ムラが起きてしまうという問題を生じる。

【0044】また、滴下注入法を実施する上で、真空中で貼り合せた基板を大気開放後にUV照射してシール剤を硬化させるまで間の環境の変化やUV照射時の基板状態の変化、あるいはギャップ形成時の基板姿勢の不安定

等により、対向する2枚の基板間に貼り合わせズレや基板歪みによるズレが発生したり、ギャップ不良が発生したりして、安定した製品を作ることが困難であるという問題を有している。

【0045】本発明の目的は、セル工程での液晶滴下を確実に行える液晶表示装置及びその製造方法を提供することにある。また、本発明の目的は、光硬化性材料のシール剤の硬化不良を減少させた液晶表示装置及びその製造方法を提供することにある。さらに、本発明の目的は、シール剤の剥離を防止する液晶表示装置及びその製造方法を提供することにある。またさらに、本発明の目的は、基板変形や表示不良を減少させた液晶表示装置及びその製造方法を提供することにある。またさらに、本発明の目的は、液晶の滴下注入法を用いた際のセル厚のばらつきを減少させ良好なセル厚を得ることができる液晶表示装置及びその製造方法を提供することにある。本発明は、滴下注入法を用いることにより生じる問題を解決するためになされたものであり、シール剤硬化のUV照射を行っても液晶を劣化させない液晶表示装置及びその製造方法を提供することにある。さらに、本発明の目的は、シール剤硬化で生じる貼り合わせ基板の位置ずれを減少させた液晶表示装置及びその製造方法を提供することにある。またさらに、本発明の目的は、滴下注入における基板のプレス不良を改善した液晶表示装置及びその製造方法を提供することにある。本発明の目的は、メインシールと表示領域との間の領域に枠状構造物とブラックマトリクス額縁とが形成された液晶表示装置において、シール剤剥離を防止し、また未硬化のシール剤による液晶の汚染を防止できる液晶表示装置を提供することにある。また、本発明の目的は、特にMVAモードの液晶表示装置の製造工程における液晶滴下注入法を改善して、表示ムラを低減させることができる液晶表示装置の製造方法を提供することにある。さらに本発明の目的は、表示ムラの検査が容易に行える液晶表示装置の製造方法を提供することにある。また本発明の目的は、滴下注入法を用いても対向する2枚の基板間に貼り合わせズレや基板歪みによるズレが発生したり、ギャップ不良が発生したりしない液晶表示装置の製造方法を提供することにある。

【0046】

【課題を解決するための手段】上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤と、赤色光を透過させる赤色着色層と、緑色光を透過させる緑色着色層と、青色光を透過させる青色着色層とを重ね合わせた遮光領域を有する遮光膜とを備えた液晶表示装置において、前記シール剤と接触する前記遮光膜の領域には前記青色着色層のみが形成され、前記シール剤の光硬化性材料は、青色帯域の波長の光に光反応域

を有していることを特徴とする液晶表示装置によって達成される。

【0047】上記本発明の液晶表示装置において、前記赤色着色層、前記緑色着色層、及び前記青色着色層は、各画素に対応して形成される赤色、緑色、青色のカラーフィルタの形成材料とそれ同一材料で形成されていてもよい。

【0048】また、上記目的は、複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記2つの基板の少なくとも一方に、前記シール剤内方且つ前記表示領域の外側に枠状に設けられた凸状構造物を有することを特徴とする液晶表示装置によって達成される。

【0049】さらに、上記目的は、複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記シール剤の外側周囲に、中空枠状のシール剤がさらに形成されていることを特徴とする液晶表示装置によって達成される。

【0050】またさらに上記目的は、光硬化性材料のシール剤で2つの基板を貼り合わせて液晶を封止し、前記シール剤に光を照射して硬化させて前記2つの基板を固定する液晶表示装置の製造方法において、前記光硬化性材料として、青色帯域の波長の光に光反応域を有する光硬化性樹脂を用い、前記2つの基板を貼り合わせた際に前記シール剤が接触する遮光膜の領域には青色帯域の光を透過させる着色層のみを形成することを特徴とする液晶表示装置の製造方法によって達成される。この場合、前記着色層は、画素に形成される青色のカラーフィルタの形成時に同時に形成されてもよい。

【0051】また上記目的は、一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、前記液晶の滴下量を滴下箇所により変化させることを特徴とする液晶表示装置の製造方法によって達成される。

【0052】さらに上記目的は、一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、滴下位置を決める複数の滴下パターンを組み合わせて前記液晶を滴下することを特徴とする液晶表示装置の製造方法によって達成される。

【0053】また、上記目的は、一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、隣接して滴下された液晶との液晶拡散距離がほぼ等しくなる位置に前記各液晶を滴下することを特徴とする液晶表示装置の製造方法によって達成される。この液晶表示装置の製造方法において、前記各液晶は、ほぼ同量の液晶量で滴下され、さらに、前記液晶拡散距離が等しくない位置に前

記液晶量以下の量を有する液晶を滴下するようにしてもよい。

【0054】さらに、上記目的は、一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、前記両基板の貼り合わせの際、前記一方は他方の基板の少なくともいすれかを機械的に保持した状態で雰囲気を減圧し、所定の気圧になつたら前記基板の保持を機械的保持から静電チャックによる保持に切り替えることを特徴とする液晶表示装置の製造方法によって達成される。

【0055】そして、前記静電チャックは、前記気圧が 1×10^{-1} torr 以下で前記基板を吸着保持することを特徴とする。また、前記静電チャックは、前記基板上に形成された複数のパネル形成領域の当該パネル形成領域毎に同極性の電圧を印加して前記基板を静電吸着することを特徴とする。そして、前記複数のパネル形成領域間を電気的に接続する導電バスを前記基板上に形成することを特徴とする。

【0056】上記本発明の液晶表示装置の製造方法において、前記一方及び他方の基板を対向させて貼り合わせる際、前記一方及び他方の基板の双方をそれぞれ静電チャックにより吸着して、前記一方及び他方の基板の相対向する領域には同極性の電圧を印加することを特徴とする。

【0057】また、本発明の液晶表示装置の製造方法において、前記静電チャックの電極を樹型形状の正電極と負電極とが歯をかみ合わせて対向するように形成し、前記基板上に形成されたパネル形成領域内で前記樹型形状の電極に電圧を印加して前記基板を静電吸着することを特徴とする。

【0058】また、上記目的は、一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、基板貼り合わせ用に基板上に形成された枠状のシール剤の内方且つ表示領域の外側にセル厚を規定する凸状構造物を枠状に設け、前記表示領域を満たす量以上あって、且つ前記シール剤内方を満たさない量の液晶を滴下し、前記一方及び他方の基板を貼り合せる際、前記表示領域から溢れる余剰液晶を前記シール剤と前記凸状構造物との間に形成される間隙部に排出することを特徴とする液晶表示装置の製造方法によって達成される。

【0059】さらに、上記目的は、一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、基板貼り合わせ用に基板上に形成する枠状のシール剤を二重枠構造に形成し、内方の前記シール剤に液晶を流出させる開放部を設け、前記内方のシール剤の内方を満たす量以上であって、且つ外方の前記シール剤の内方を満たさない量の液晶を滴下し、基板貼り合せ時の余剰液晶を前記開放部から前記内方のシール剤と前記外方のシール剤との間に排

出させることを特徴とする液晶表示装置の製造方法によって達成される。そして、前記開放部は、前記内方のシール剤の前記基板に設けられた端子取付部に面しない辺部に設けるようにしてもよい。

【0060】さらに、上記目的は、上記本発明の液晶表示装置の製造方法に用いられる静電チャックであって、電圧を印加して基板を静電吸着する電極は、樹型形状の正電極と負電極とが歯をかみ合わせて対向していることを特徴とする静電チャックによって達成される。

【0061】上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の前記シール剤と接触する領域に光反射層が形成されていることを特徴とする液晶表示装置によって達成される。

【0062】また、上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の前記シール剤近傍に前記液晶を垂直配向させる配向膜が形成されていることを特徴とする液晶表示装置によって達成される。

【0063】さらに上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の画像表示領域と前記シール剤との間で対向する2つの電極を備えていることを特徴とする液晶表示装置によって達成される。

【0064】また上記目的は、一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記光は、偏光光を用いることを特徴とする液晶表示装置の製造方法によって達成される。

【0065】さらに上記目的は、一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記シール剤近傍の前記液晶の分子を垂直配向させて前記光を照射することを特徴とする液晶表示装置の製造方法によって達成される。

【0066】また上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記シール剤は、前記2つの基板のうちの一方との接触領域の少なくとも一部が前記一方の基板に形成された遮光膜と重なり合っていることを特徴とする液晶表示装置によって達成される。

【0067】さらに上記目的は、一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わ

せ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記シール剤の前記他方の基板との接触領域の少なくとも一部が前記他方の基板上に形成された遮光膜と重なり合うように形成し、前記他方の基板に形成されたカラーフィルタを含む領域に光を照射して前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法によって達成される。

【0068】またさらに上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板のいずれかに形成された遮光膜と、着色粒子が添加されて前記遮光膜下方に形成され、前記2つの基板を電気的に接続するトランスマット、前記トランスマット上方の前記遮光膜に開口された光入射孔とを備えたことを特徴とする液晶表示装置によって達成される。

【0069】また上記目的は、一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記一方の基板を平行平板上に固定し、前記一方の基板に貼り合わせた前記他方の基板を押圧しつつ、前記シール剤に光を照射して硬化させることを特徴とする液晶表示装置の製造方法によって達成される。

【0070】また上記目的は、一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記液晶は光重合性材料を含み、前記液晶に光を照射して硬化させた後、前記シール剤を硬化することを特徴とする液晶表示装置の製造方法によって達成される。

【0071】さらに上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板を貼り合わせる際の位置決め用の突起物が、前記2つの基板上に形成されていることを特徴とする液晶表示装置によって達成される。

【0072】上記目的は、液晶を挟持して対向する2枚の基板と、前記基板の表示領域の外側周辺部で前記2枚の基板を貼り合せるメインシールと、前記メインシールと前記表示領域との間の領域に形成された枠状構造物と、前記メインシールと前記表示領域との間の領域を遮光するブラックマトリクス額縁とを有し、前記枠状構造物の外周端と前記ブラックマトリクス額縁の外周端とは、前記基板面に垂直な方向から見てほぼ一致するようにならべて形成されていることを特徴とする液晶表示装置によって達成される。

【0073】本発明の液晶表示装置において、前記枠状構造物は、前記表示領域内に配置されたスペーサのほぼ

半分以上の高さを有し、前記枠状構造物表面又はその対向領域の少なくともいずれかに垂直配向膜が形成されていることを特徴とする。また本発明の液晶表示装置において、前記メインシールより外側の領域に形成された第2の枠状構造物を有し、前記メインシールと前記表示領域との間の領域に形成された前記枠状構造物と、前記第2の枠状構造物とで前記メインシールの両側を囲うことを特徴とする。また、本発明の液晶表示装置において、前記第2の枠状構造物の一部又は全部は、前記ブラックマトリクス額縁内に形成され、前記メインシールの形成領域上にはブラックマトリクスを形成しないことを特徴とする。

【0074】本発明によれば、真空注入法や滴下注入法において発生していたシール際の表示ムラやシール剥離は発生しなくなる。これにより真空注入法および滴下注入で製造される液晶表示パネルの製造歩留まりは大幅に改善され、特に滴下注入法で生じ得る種々の問題を解決して量産適用可能なものとすることができるようになる。

【0075】また、上記目的は、一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記液晶滴下は、成分が異なる2種以上の液晶を同一滴下領域内に重ねて滴下することを特徴とする液晶表示装置の製造方法によって達成される。本発明の液晶表示装置の製造方法において、前記2種以上の液晶は、信頼性の相対的に高い第1の液晶とそれより信頼性の低い第2の液晶とを少なくとも有し、前記第1の液晶を滴下した後、基板上に滴下された前記第1の液晶上に前記第2の液晶を滴下することを特徴とする。

【0076】さらに、上記目的は、一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記一方及び他方の基板端部が相対的にずれるように両基板を貼り合わせ、ずれた領域にパネル検査用の外部接続端子を配置することを特徴とする液晶表示装置の製造方法によって達成される。

【0077】またさらに上記目的は、一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、パネル領域周囲にメインシールを形成し、前記メインシールを所定の空隙で囲むようにダミーシールを形成し、前記基板を貼り合せる際に前記空隙に真空領域を形成し、大気圧の元で前記真空領域に作用する力をを利用して前記メインシールのギャップ出しを行うことを特徴とする液晶表示装置の製造方法によって達成される。

【0078】また上記目的は、一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、基板貼り合わせ時に前記基板を載置したステージ上に貼り合わせ済の基板を吸着して前記光を照射し前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法によって達成される。

【0079】上記目的は、一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、パネル領域周囲にメインシールを形成し、前記メインシールを所定の空隙で囲むように第1ダミーシールを形成し、前記メインシール内方と、前記空隙に前記液晶を滴下することを特徴とする液晶表示装置の製造方法によって達成される。

【0080】また、上記目的は、基板の表示領域の外側周辺部に紫外線硬化樹脂を塗布してメインシールを形成し、前記メインシールと前記表示領域との間の領域に、紫外線をほぼ透過しない材質の枠状構造物を形成し、前記基板と対向基板とで液晶を挟持して貼り合わせ、前記基板面に対して水平若しくは斜め方向から紫外線を照射して、前記メインシールを硬化させることを特徴とする液晶表示装置の製造方法によって達成される。

【0081】上記液晶表示装置の製造方法において、凹凸構造が形成された基板ステージ上に前記基板を載置し、前記斜め方向から照射される紫外線を前記凹凸構造で前記メインシールに反射させることを特徴とする。

【0082】さらに上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の少なくとも一方の前記シール剤と接触する領域に凹凸構造を有する光反射層が形成されていることを特徴とする液晶表示装置によって達成される。

【0083】またさらに、上記目的は、複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記シール剤内方に滴下液晶の拡散を制御する複数の構造物が形成されていることを特徴とする液晶表示装置によって達成される。

【0084】上記本発明の液晶表示装置において、前記複数の構造物は、前記基板上で所定の配置密度あるいは配置形状で基板上に分布していることを特徴とする。

【0085】上記目的は、一方の基板上の複数箇所に液晶を滴下し、減圧下でシール剤を介して他方の基板と貼り合わせてから加圧状態に戻す工程を有する液晶表示装置の製造方法において、前記基板上に滴下液晶の拡散を制御する構造物を形成することを特徴とする液晶表示装置の製造方法によって達成される。

【0086】上記液晶表示装置の製造方法において、枠状に形成された前記シール剤の対角線方向に前記滴下液晶の拡散速度が高くなるように前記構造物の配置密度あるいは配置形状を制御することを特徴とする。

【0087】また、上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、前記メインシールの角部に隣接し、前記メインシール外側で且つ一方の基板の端部より内側となる領域に前記メインシール以上の剥離強度を有する接合物を部分的に配置することを特徴とする液晶表示装置によって達成される。

【0088】さらに、上記目的は、2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、前記メインシールの角部に隣接し、前記メインシール内側かつ表示領域外側となる領域に、セルギャップ相当の厚さを有し遮光用BM部縁の角部形状に準じたし字型の形状を有する構造物を配置することを特徴とする液晶表示装置によって達成される。

【0089】

【発明の実施の形態】本発明の第1の実施の形態による液晶表示装置及びその製造方法について図1乃至図3を用いて説明する。本実施の形態では、シール剤の硬化不良を減少させて、セル工程での液晶滴下を確実に行える液晶表示装置及びその製造方法について説明する。また、図1を用いて、本実施の形態による液晶表示装置の液晶表示パネルの概略の構造について説明する。図1

(a)は、TFTをスイッチング素子として用いたアクティブマトリクス型の液晶表示パネル1をCF基板側から見た上面の一部を示している。図1(b)は、図1(a)のA-A線で切断した部分断面を示している。液晶表示パネル1のアレイ基板16側にはマトリクス状に配置された複数の画素領域14が形成され、各画素領域14内にはTFT13が形成されている。そして、図1に示すように、複数の画素領域14で画像の表示領域10が構成されている。詳細な図示は省略したが、各画素領域14のTFT13のゲート電極はゲート線に接続され、ドレイン電極はデータ線にそれぞれ接続されている。またTFT13のソース電極は画素領域14内に形成された画素電極に接続されている。複数のデータ線及びゲート線は、アレイ基板16の外周囲に形成された端子部2に接続されて、外部に設けられた駆動回路(図示せず)に接続されるようになっている。

【0090】アレイ基板16よりほぼ端子部2の幅だけ小さく形成されているCF基板4が、所定のセル厚で液晶を封止してアレイ基板16に対向して設けられている。アレイ基板16とCF基板4とは光硬化性樹脂からなるシール剤6で貼り合わされている。シール剤6の光硬化性樹脂は、後程詳説するが青色帯域の波長の光に光反応域を有している。アレイ基板16及びCF基板4間

のシール剤6で囲まれた領域には液晶22が封止されている。

【0091】CF基板4には、コモン電極（図示せず）と共に、カラーフィルタ（図中、R（赤）、G（緑）、B（青）の文字で示している）が設けられている。またCF基板4には、カラーフィルタ形成材料を積層させて遮光機能を持たせたBM8、18が形成されている。BM18は、表示領域10内の複数の画素領域14を画定してコントラストを稼ぐため、及び TFT13を遮光して光リーク電流の発生を防止させるために用いられる。また、BM額縁部8は表示領域10外からの不要光を遮光するために設けられている。BM額縁部8は、図1(b)に示すように、CF基板4から順に、例えば青色の顔料を分散させた樹脂からなる青色着色層24、緑色の顔料を分散させた樹脂からなる緑色着色層26、そして赤色の顔料を分散させた樹脂からなる赤色着色層28を積層して（色版重ねにより）形成されている。図2は、膜厚が約1.3nmの場合の赤色着色層28、緑色着色層26、及び青色着色層24の光透過スペクトルを示しており、横軸は波長を表し、縦軸は透過率を表している。図2に示すように、赤色着色層28の光透過スペクトルのピーク波長は 650 ± 10 nm、緑色着色層26の光透過スペクトルのピーク波長は 540 ± 10 nm、青色着色層24の光透過スペクトルのピーク波長は 460 ± 10 nmである。着色層24、26、28を積層することにより色の三原色が重ね合わされて光を透過させない遮光層が形成される。なお、BM18も図1(b)と同様の色版重ねにより形成される。

【0092】また、図1(b)に示すように、BM額縁部8周囲でシール剤6と接触する領域には、青色着色層24だけが形成されてシール剤6と接触し、緑色着色層26及び赤色着色層28が形成されていない領域20が設けられている。

【0093】このように本実施の形態は、2つの基板4、16間に挟まれた液晶22を封止する光硬化性材料からなるシール剤6と、赤色着色層28と、緑色着色層26と、青色着色層24とを重ね合わせた遮光領域を有する遮光膜8、18とを備えた液晶表示装置1であって、シール剤6と接触する遮光膜8の領域には青色光を透過させる青色着色層24だけが形成され、シール剤6の光硬化性材料は、青色帯域の波長の光に光反応域を有している例えば樹脂材料であることを特徴としている。また、遮光膜8、18の遮光領域を形成する赤色着色層28と、緑色着色層26と、青色着色層24は、各色のカラーフィルタ形成材料を用いていることを特徴としている。

【0094】以上説明した構成を有する本実施の形態の液晶表示装置による作用効果及び装置の製造方法について次に説明する。なお、本実施の形態による液晶表示装置の製造方法は、シール剤の硬化不良を減少させて、セ

ル工程での液晶滴下を確実に行う点に特徴を有しているので、他のガラス基板上に配線パターンやスイッチング素子等を形成するアレイ工程や、配向処理やスペーサの配置等のセル工程、あるいはドライバICの取付けやバックライト装着などを行うモジュール工程は従来と同様なのでその説明は省略する。

【0095】図3は、本実施の形態によるシール剤6の光硬化性樹脂の光吸収スペクトル(β)と青色着色層24の青色透過スペクトル(γ)を示し、さらに比較のため従来の光硬化性樹脂の光吸収スペクトル(α)を示している。横軸は波長（単位：nm）を表し、左側の縦軸は本実施の形態による光硬化性樹脂の光吸収スペクトル(β)と従来の光硬化性樹脂の光吸収スペクトル(α)を比較するための吸光度（単位無し）を表しており、右側の縦軸は、青色着色層24の青色光透過スペクトル(γ)のための透過率（単位：%）を表している。図3に示すように、本実施の形態による光硬化性樹脂は、従来と比較して吸光度のピークの波長が青色透過スペクトル(γ)側にシフトしている。また、スペクトルの半値幅が従来と比較して大きく、ピークから緩やかな曲線で比較的広い波長帯域に延びている。このため、本実施の形態による光硬化性樹脂の光吸収スペクトル(β)と青色着色層24の青色光透過スペクトル(γ)とは図3の斜線で示すように、オーバーラップする波長帯域を有している。

【0096】これにより、本実施の形態による光硬化性樹脂からなるシール剤6は、領域20でBM額縁部8と接触していても、光照射による硬化工程で青色着色層24を透過した青色帯域の光が照射されるため、当該領域は硬化不良を発生させることなく十分に硬化することができる。なお、青色着色層24を用いるのは、既に図2に示したようにカラーフィルタ各色の透過スペクトルにおいて、青色光の透過スペクトルが最も短波長側であり、一般的の光硬化性樹脂の吸収スペクトルと近いところにあるからである。

【0097】光硬化性樹脂の光反応域は添加する光開始剤の種類により変わる。本実施の形態では従来より長波長側に吸収域を持つ光開始剤を添加して、青色樹脂透過スペクトルとオーバーラップする波長帯域を有するようしている。

【0098】この光硬化性樹脂を用いて図1に示した位置関係になるように棒状のシール剤6をアレイ基板16上に形成する。液晶の滴下注入を行った後、CF基板4をアレイ基板16と貼り合わせる。このとき、BM額縁部8の青色着色層24とシール剤6の少なくとも一部が領域20において重なる。この状態で、CF基板4上面方から光30を照射してシール硬化を行う。

【0099】このようにBM額縁部8の領域20に青色着色層24のみを設け、青色樹脂透過波長に光反応域を有する光硬化性樹脂をシール剤6の形成材料に用いるこ

とにより、BM額縁部8にシール剤6が接触していても領域20から青色の波長帯域の光32が透過してシール剤6を照射するのでシール剤6の硬化が行われる。図2に示したように青色樹脂の透過波長は460nm近傍をピークにおおよそ380～550nmの範囲にあり、この範囲に光反応域を有する光硬化性樹脂をシール剤6に用いれば、BM領域20にシール剤6が形成されても確実に硬化させることができる。従って、シール剤6の未硬化成分が液晶と長時間接することができなくなり、液晶の汚染を防止できるようになる。その結果、従来、シール際全周に硬化不良による表示むらが発生していたのに対し、本実施の形態による液晶表示装置1によれば表示むらの発生しない高品質な画像を得ることができるようになる。

【0100】以上説明したように、本実施の形態による液晶表示装置の製造方法は、光硬化性材料のシール剤6で2つの基板4、16を貼り合わせて液晶22を封止し、シール剤6に光30を照射して硬化させて2つの基板4、16を固定する液晶表示装置の製造方法において、光硬化性材料として、青色帯域の波長の光に光反応域を有する光硬化性樹脂を用い、2つの基板4、16を貼り合わせた際にシール剤6と接触するBM額縁部8の領域20には青色帯域の光を透過させる青色着色層24のみを形成することを特徴としている。また、青色着色層24は、画素に形成される青色のカラーフィルタの形成時に同時に形成されることを特徴としている。このように、領域20に青色着色層24のみを形成することにより、青色帯域の光32は領域20に接觸しているシール剤6中に入射することができるようになる。従って、青色帯域の波長の光に光反応域を有する光硬化性樹脂を用いたシール剤6を硬化させることができるようになる。

【0101】次に、本発明の第2の実施の形態による液

晶表示装置及びその製造方法について表1乃至表3及び、図4乃至図7を用いて説明する。なお、第1の実施の形態と同一の作用機能を有する構成要素には同一の符号を付してその説明は省略する。図4(a)は、本実施の形態による液晶表示装置を対向基板4側から見た状態を示している。図4(b)は、図4(a)の円で囲んだ領域290内の拡大断面図である。第1の実施の形態では説明を省略してきたが、図4に示すように、一般に対向基板4のカラーフィルタ(CF)230が形成された表示領域周囲には遮光用のブラックマトリクス(BM)額縁部108が形成されている。本実施の形態では、対向基板4の表示領域外周囲に形成されるシール剤6の内周側が一部BM額縁部108に重なるようにシール剤6を塗布している点に特徴を有している。具体的には、プレス後のシール剤6の幅(A)が1.0mm程度となるように、またシール剤6端部がBM額縁部108端部からBM額縁部108内方に距離(B)=0.2mm入り込むよう対向基板4上にシール剤6を塗布する。そして対向基板4の基板面鉛直上方からUV光を照射してシール剤6の硬化を行う。

【0102】表1を用いてカラーフィルタ(CF)色版の紫外線透過率について説明する。表1に示すCFは、赤(R)、緑(G)、青(B)の三原色の各CFを組合せたものである。シール剤を硬化させるためのUV光源としてキセノン水銀ランプを用いた場合、ガラス基板を透過して入射するUV光で特に液晶を劣化させる輝線ピークは表1に示すように、j線(313nm)およびi線(365nm)である。カラーフィルタの色版はj線、i線を殆ど透過せず(透過率1～2%)、BMはj線もi線も透過させない。

【0103】

【表1】

輝線ピーク	250nm	313nm(j)	365nm(i)
ガラス	35%	79%	86%
CF	0%	0%	1.5%

表1. カラーフィルタ色版の紫外線透過率を表す表

【0104】次に、表2にカラーフィルタ有無で紫外線照射した場合の液晶電気特性比較を示す。表2において記号”->”は、UV照射の前後の変化を示している。なお、UV光の照射方向は、基板面鉛直方向である。評価セル上方から紫外線を照射すると「CF(カラーフィ

ルタ)なし」では液晶の電気特性の劣化が顕著であるのに対し、「CFあり」では殆ど影響を受けていない。

【0105】

【表2】

	イオン密度 (pc/cm ²)	電圧保持率 (%)
CFなし	20->463	98.9->88.2
CFあり	18->35	98.9->98.9

表2. CFの有無による液晶電気特性を表す表

【0106】従ってカラーフィルタをUV光に対する遮光マスクとして用いれば液晶のダメージを抑えることができ、シール剤6の形成パターン毎に別途遮光マスクを用意する必要はなくなる。また、シール剤6端部がBM額縁部108内に重なっているため、シール剤6端部とBM額縁部108端部との間から液晶22が露出することもないで液晶に直接UV線が照射されることもなく、液晶の劣化を防止することができる。従って、表示ムラのない高品質画像表示を行うことができるようになる。さらに、滴下注入におけるパネル外形寸法の拡大を抑制することができる。

【0107】一方、比較例として従来の液晶表示装置を図5に示す。図5(a)は、従来の液晶表示装置を対向基板200側から見た状態を示している。図5(b)は、図5(a)の円で囲んだ領域292内の拡大断面図である。本比較例では、対向基板200の表示領域外周間に形成されるシール剤202の内周側とBM額縁部108との間に隙間220が形成され、ガラス基板を通して内部の液晶が見える状態になっている。具体的には、プレス後のシール剤6の幅(C)が1.0mm程度となるように、またシール剤6端部とBM額縁部108端部との間の距離(D)=0.5mmとなるように対向基板200上にシール剤202を塗布する。そして対向基板200の基板面鉛直上方からUV光を照射してシール剤202の硬化を行う。その結果、本比較例ではUV照射の際に液晶層が露出しているためシール際全周に液晶光劣化による表示ムラが発生してしまう。また、シール剤6端部とBM額縁部108端部との距離(D)がパネル外形サイズを小さくするための妨げとなっている。

【0108】上記実施形態ではシール剤6とBM額縁部108の重なり距離は(B)=0.2mmとしているが、重なり距離は(B)=0.5mm程度まで長くする

ことが可能である。一般に、シール剤6とBM額縁部108の重なりが大きくなるとシール剤6端部は光硬化しなくなる。光開始剤に光照射すると開裂した活性種は拡散するため、ある程度の重なり距離であれば遮光部があってもシール剤6は硬化することができる。またシール剤6下面に金属膜が存在していると光硬化樹脂を透過した光が金属膜で多重反射してUV光のエネルギーが有効に利用される。これは第1の実施の形態と同様である。さらに、UV光を斜めに入射させて重なった領域のシール剤6にもUV光が直接届くようにすれば、重なり距離(B)は0.5mm程度にまですることができるようになる。

【0109】表3にシール遮光距離と硬化性の比較を示す。光硬化樹脂にはアクリル系樹脂を用い、滴下注入でセルを作製して一部シール剤6を遮光して対向基板4の基板面鉛直方向および斜め45°方向からUV光を照射して光硬化を行った結果である。硬化性の比較はアーナー尔後のシール際配向観察および液晶電気特性の測定により行っている。測定結果から鉛直方向からの照射だけでは硬化可能な遮光距離は(B)=0.2mm程度である。第1の実施の形態で説明したようにアレイ基板16に光反射層(金属膜)があるとシール剤6内を通過したUV光がそこで反射して再びシール剤6の硬化に供されるため、硬化可能な遮光距離は(B)=0.3mm程度になる。アレイ基板16に光反射層があり、且つ斜め45°からUV光を入射させると硬化可能な遮光距離は(B)=0.5mm程度になる。表3において、配向乱れが生じたり、あるいは電圧保持率の低下が1%以上になった場合を光硬化不良とみなしてXで示し、硬化性良い場合はOで示している。

【0110】

【表3】

遮光距離	シール下	照射方向	硬化性
0.0mm	ガラス	鉛直	O
0.2mm	ガラス	鉛直	O
0.3mm	ガラス	鉛直	X
0.3mm	金属膜	鉛直	O
0.5mm	金属膜	鉛直	X
0.5mm	金属膜	斜め45°	O

表3. シール遮光距離と硬化性の関係を示す表

【0111】次に、シール剤6とBM額縁部108の重なり距離(B)に関して改良した構造について図6を用いて説明する。図6は、パネルの左上部を対向基板4側から見た状態を示している。図6に示すように、一般にシール剤6はパネル角部で円弧状に曲がって形成されている。このため本例では、BM額縁部108の角部もシール剤6の曲がりに沿って円弧状に曲げている。具体的には、幅1mmのシール剤6がパネル角部において円弧状に曲げられており、それに伴って、シール剤6端と0.5mmの幅で重なっているBM額縁部108の端部も半径1mmの円弧状に曲げて形成されている。

【0112】これに対する比較例として図7を示す。図7に示すBM額縁部108の角部は、シール剤の円弧状の曲がりと無関係に直線状に直角に曲がっている。従って、図示の通りシール剤6とBM額縁部108との重なりが0.9mmになってしまい領域が生じている。このような領域のシール剤6は、表3からも明らかなようにUV光を照射しても硬化しないので、表示領域の四隅に表示ムラが発生してしまう可能性を有している。

【0113】このようにBM額縁部108角部のシール剤6との重なり幅を図6に示すように所定範囲内にして、シール剤6とBM額縁部108との重なり領域をパネル全周でほぼ同等にすることにより、パネル全周のシール剤6を十分硬化させて表示ムラのない高品質の画像を表示できるようになる。

【0114】次に、本発明の第3の実施の形態による液晶表示装置及びその製造方法について図8及び図9を用いて説明する。なお、第1及び第2の実施の形態と同一の作用機能を有する構成要素には同一の符号を付して用い、その説明は省略する。図8はBM額縁部108に設けられた本実施の形態によるトランスマ233を示している。図9は比較のために従来と同様のトランスマを備えたBM額縁部108近傍を示している。図9に示す従来のトランスマ231はシール剤6近傍のBM額縁部108内に形成されている。本実施の形態によるトランスマ233も従来と同様にシール剤6近傍のBM額縁部108内に形成されている。各トランスマ231、233ともトランスマパッド232、234を介して両基板に電気的に接続されている。

【0115】図8に示すトランスマパッド234上のBM領域には、細長い四角形状のスリット236が複数開口している。スリット236の長辺の長さ(H)は約1.0mmであり、短辺の長さ(I)は約0.2mmである。隣り合うスリット236の間隙の長さ(J)は0.2~0.8mmである。トランスマ233にはニッケル(Ni)を蒸着した黒色導電スペーサが添加されている。図9に示す従来のトランスマ231上にはスリットは形成されておらずBM膜で遮光されている。

【0116】UV照射の方法は既に説明した上記実施の形態と同様である。UV照射の結果、従来例ではトラン

スマ231の硬化不良による表示ムラが発生した。本実施の形態においても、隣り合うスリット236の間隙の長さ(J)が0.6mm以上では従来例よりは良好であるがトランスマ233の光硬化不良による表示ムラが発生した。スリット236の間隙の長さ(J)が0.4mm以下では表示ムラの発生もなく、バックライトからの光漏れも発生しなかった。

【0117】トランスマ233をシール剤6の外側に形成することも可能だが、そうするとパネル外形寸法が拡大するため、狭額縁パネルではトランスマ233をシール剤6の内側に形成する必要がある。この場合トランスマ233はBM額縁部108内に形成することになり、光硬化不良が発生する可能性が高い。そこで本実施の形態による液晶表示装置のように、BM額縁部108のトランスマ領域にスリット236等の光透過窓を設け、トランスマ233には上記の黒色導電スペーサ等の着色粒子を添加する。こうすることによりトランスマ233の光硬化不良はなくなり、またトランスマ233に黒色または濃色の導電粒子を混入することにより光透過窓からの光漏れを抑えることができる。

【0118】なお、上述のように、光透過窓の形状をほぼ四角形状のスリットとし、隣り合うスリット間の間隙の長さ(J)が0.4mm以下になるよう配置することが望ましい。また、トランスマ233内の着色粒子だけでは光透過窓の遮光が不十分な場合には光透過窓を全面透過する必要はなく、ほぼ四角形状のスリットであってもその間隙が活性種の拡散距離以内であれば光硬化可能となる。光開裂した活性種の拡散距離は通常0.2mm程度であることから、隣り合う両スリットからの拡散を考慮してもスリット間隙の長さ(J)は0.4mm以下が望ましい。なお、本実施の形態ではトランスマ233に着色粒子を混合しているため、UV光はトランスマ233を殆ど透過せず、前述の多重反射による光の回り込みによる硬化は殆ど期待できない。

【0119】また、光透過窓の形状をほぼ円形状のドットとし、その間隙の長さ(J)が0.4mm以下となるように配置してもよい。上述と同様に円形状のドットであっても隣り合うドットの間隙の長さが活性種の拡散距離以内であれば光硬化可能であり、他のBM額縁領域と殆ど同じ外観を得ることができる。

【0120】次に、本発明の第4の実施の形態による液晶表示装置及びその製造方法について図10及び図11を用いて説明する。なお、第1乃至第3の実施の形態と同一の作用機能を有する構成要素には同一の符号を用いてその説明は省略する。本実施の形態はシール剤6にUV光を照射するUV光源に特徴を有し、シール剤6の形状に準じた形状のライン(線状)光源を光照射に用いている。光硬化樹脂を光硬化させるには硬化照度以上の光を照射する必要があり、紫外線硬化樹脂の場合50~100mW/cm²程度の照射照度が必要である。従来の

光源による面照射でこの照度を得るにはランプ出力を大型化しなければならず実用的でない。本実施の形態による構成ではシール剤の所定領域のみに光照射がされるためランプ出力を抑えることができ、また一括照射ができるので基板位置ずれの発生も少ない。

【0121】図10(a)は、本実施の形態のUV光源及びその使用状態を示す斜視図であり、図10(b)は図1(a)のA-A線で切断した断面の一部を示している。図10に示すUV光源64は、アレイ基板16と対向基板4との貼り合わせ基板62上方に所定距離だけ離れて位置し、貼り合わせ基板62の基板面とほぼ平行な平面上にシール剤6の枠形状と相似形でシール剤6の外側に一回り大きく配置されたライン発光源66を有している。

【0122】図10(b)に示すように、シール剤6上面は幅XだけBM額縁部108の内側に入り込んでいる。ライン発光源66から射出するUV光は、シール剤6上面でBM額縁部108と重なっていない領域からシール剤6内部に入射するようになっている。このときの入射角度θはほぼ45°である。このような構成にするとランプ光源64をシール剤6に近づけることができる。従って、数百Wの低いランプ出力で従来と同等の光量で光照射ができるようになる。さらに、貼り合わせ基板62の一部だけを照射するので、照射による貼り合わせ基板62の温度上昇も低く抑えることができ、熱膨張によるアレイ基板16と対向基板4との位置ずれも3μm以内に抑えることが可能になる。

【0123】このように本実施の形態のUV照射光源64によれば、シール剤6塗布面に対し、BM額縁部108外側斜め方向(例えば斜め45°)から光照射するのでUV光がBM額縁部108下方まで回り込むことができる。従って、シール剤6とBM額縁部108の重なりXを0.8mm程度にまで拡大させることができ、そのため、パネル外形寸法をさらに縮小することができる。シール剤6下面に金属膜が存在する場合には、斜め照射によるUV光の多重反射が得られるため、シール剤6とBM額縁部108の重なりXをさらに拡げることができ、さらなるパネル外形寸法の縮小を図ることができる。なお、斜め照射によりBM額縁部108下方への光の回り込み量は大きくなるがシール剤6塗布面への照射強度は鉛直方向のそれよりも弱くなる。斜め照射による光回り込み量とシール剤塗布面での照射強度はトレードオフの関係にあり、ほぼ斜め45°からの照射が最も効率を上げることができる。

【0124】比較のため図11に従来のUV照射光源70を示す。図11に示す従来光源70による面照射は、100mW/cm²の紫外線照度を得るには数kWの高いランプ出力が必要となる。貼り合わせ基板62は全面照射するために加熱されて高温になり7~10μm程度の位置ずれが発生してしまう。

【0125】本発明の第5の実施の形態による液晶表示装置を図12乃至図16を用いて説明する。まず、本実施の形態による液晶表示装置の概略の構成を図12を用いて説明する。図12(a)は、TFTをスイッチング素子として用いたアクティブマトリクス型の液晶表示パネル1をCF基板側から見た上面の一部を示している。図12(b)は、図12(a)のA-A線で切断した部分断面を示している。液晶表示パネル1のアレイ基板16側にはマトリクス状に配置された複数の画素領域14が形成され、各画素領域14内にはTFT(図示せず)が形成されている。複数の画素領域14で画像の表示領域10が構成される。詳細な図示は省略したが、各画素領域14のTFTのゲート電極はゲート線に接続され、ドレイン電極はデータ線にそれぞれ接続されている。またTFTのソース電極は画素領域14内に形成された画素電極に接続されている。複数のデータ線及びゲート線は、アレイ基板16の外周囲に形成された端子部2に接続されて、外部に設けられた駆動回路(図示せず)に接続されるようになっている。

【0126】CF基板4は、アレイ基板16よりほぼ端子部2の幅だけ小さく形成されて、所定のセル厚で液晶22を封止してアレイ基板16に対向して設けられている。アレイ基板16とCF基板4とは光硬化性樹脂からなるメインシール6で貼り合わされている。図中2本の破線で示された幅6'は、メインシール6塗布時の幅を示している。メインシール6と表示領域10との間の領域にはメインシール6と液晶22とを分離する枠状構造物12が形成されている。アレイ基板16及びCF基板4間に枠状構造物12で囲まれた領域には液晶22が封止されている。

【0127】CF基板4には、コモン電極(図示せず)と共に、カラーフィルタ(図中、R(赤)、G(緑)、B(青)の文字で示している)が設けられている。またCF基板4には遮光機能を有するBM額縁8及びBM18が形成されている。BM額縁8は表示領域10外からの不要光を遮光するために設けられている。BM18は、表示領域10内の複数の画素領域14を画定してコントラストを稼ぐため、及びTFTを遮光して光リーク電流の発生を防止させるために用いられる。

【0128】枠状構造物12の外周端は、アレイ基板16面に垂直な方向から見てBM額縁8の外周端とほぼ一致するように配置されている。従って、メインシール6内側周端部がBM額縁8外側周端部に隣接して形成されても、貼り合せ後においてメインシール6が枠状構造物12を乗り越えない限りメインシール6内側周端部がBM額縁8外側周端部と重なることはない。従って、BM額縁8によるUV光の遮光は生じないのでメインシール6の硬化不良は発生しなくなる。なお、メインシール6の硬化特性によっては、ある程度の遮光領域があっても反応活性種が拡散して硬化できる場合があるので、反応

活性種の拡散距離程度の幅の遮光領域がBM額縁8で生じても問題となる。例えば、基板貼り合わせ後のメインシール6の幅が1~2μmである場合、BM額縁8により幅200μm程度が遮光されていても問題とならない。

【0129】このように本実施の形態による液晶表示装置は、液晶22を挟持して対向する2枚の基板16、4の表示領域10の外側周辺部で基板16、4を貼り合せるメインシール6と、メインシール6と表示領域10との間の領域に形成された枠状構造物12及びBM額縁8とを有しており、枠状構造物12の外周端とBM額縁8の外周端とが、基板16面に垂直な方向から見てほぼ一致するように形成されていることを特徴とする。この構成により、塗布したメインシール6'が基板16、4の貼り合わせ後に広がってメインシール6となつた際に、その一部がBM額縫8外側周端部に入り込んでしまうことがなくなる。従って、メインシール6の一部にUV光が到達せず硬化不良を起こしてしまう現象を防止して、容易に剥離しないメインシール6を得ることができる。また、メインシールの塗布位置をBM額縫8外側周端部近傍にすることができるため、額縫領域の拡大を抑制してガラス基板面を効率よく利用することができるようになる。

【0130】次に、本実施の形態による液晶表示装置の変形例に係る構造について図13を用いて説明する。図13(a)、(b)は、図12(a)のA-A線で切断した部分断面を示している。図13(a)は、アレイ基板16の表示領域10及び枠状構造物12との対向面に垂直配向膜14が形成されている状態を示している。また、図13(b)では、枠状構造物12端部表面に垂直配向膜13が形成されている状態を示している。図13(a)、(b)のいずれにも表示領域10内で所定のセル厚を得るために柱状のスペーサ15が形成されている。

【0131】また、図13(a)、(b)共、枠状構造物12はスペーサ15のはば半分以上の高さを有している。上述のようにセル厚相当の枠状構造物12を周縁に設けただけでは、滴下注入において液晶が枠状構造物12を乗り越えてしまう。ところが、枠状構造物12表面に垂直配向膜13を形成するか、枠状構造物12の対向面に垂直配向膜14が存在すると、垂直配向膜13、14により液晶22のぬれ性は低下し、メインシール6の硬化までの間に液晶22が枠状構造物12とアレイ基板16との間隙を乗り越えてメインシール6に到達しないようにすることができる。なお、時間をかければ液晶22はメインシール6に到達するが、枠状構造物12の高さが表示領域10内のスペーサ15の高さの半分以上（例えばセル厚が4μmとして約2μm程度）あれば、液晶22が枠状構造物12を乗り越えてメインシール6に到達するのに数十分の時間を要する。その間にメイン

シール6を硬化させれば液晶22が汚染されることはない。

【0132】また、メインシール6は、ギャップ出し後においてその内側周端部が枠状構造物12の外側周端部を乗り越えない位置に形成する必要がある。さらに、メインシール6はギャップ出し後においてその内側周端部が枠状構造物12の外側周端部に隣接する位置に形成することが望ましい。メインシール6を枠状構造物12に近づけすぎて塗布するとギャップ出しの過程でメインシール6の内側周端部が枠状構造物12外側周端部を乗り越えてしまい、シール剤の硬化不良やセル厚異常が発生する原因となる。一方、メインシール6と枠状構造物12間に隙間があると、パネル額縫領域が拡大してガラス基板面を有効活用できない恐れが生じたり、急激な温度変化を受けて液晶表示パネルが膨張収縮した際に隙間部の真空空泡が表示領域10内に入り込んだりする可能性が高くなる。

【0133】次に、本実施の形態による液晶表示装置の他の変形例に係る構造について図14を用いて説明する。図14(a)は、TFTをスイッチング素子として用いたアクティブマトリクス型の液晶表示パネル1をCF基板側から見た上面の一部を示している。図14(b)は、図14(a)のA-A線で切断した部分断面を示している。図12及び図13に示した液晶表示装置と同一の構成要素については同一の符号を付してその説明は省略する。

【0134】図14に示す液晶表示装置は、メインシール6内側かつ表示領域10外側となる領域にメインシール6と液晶22を分離する枠状構造物12が形成され、メインシール6外側となる領域にメインシール6とその外周部を分離する第2の枠状構造物12'が形成され、そして枠状構造物12、12'でメインシール6両側を囲うように構成されている。メインシール6外側に枠状構造物12'を設けるのはメインシール6を加圧し易くするためであり、メインシール6両側から加圧することによりメインシール6のギャップ出しが容易に行えるようになる。

【0135】枠状構造物12および12'は表示領域10のスペーサ15の半分以上の高さを有し、枠状構造物12表面若しくはその対向領域に垂直配向膜13又は14（図14では垂直配向膜13を表示している）が形成されている。この垂直配向膜13又は14を形成するのは図13を用いた上述の変形例と同様の理由による。また、メインシール6の接着強度が低下してシール剥離が生じるのを防止するため、垂直配向膜14は、枠状構造物12を越えてメインシール6と重ならないように形成することが望ましい。

【0136】また、枠状構造物12と12'の間隙距離はギャップ出し後のメインシール6の幅以上で望ましくはほぼ同等にし、メインシール6はギャップ出し後にそ

の内側及び外側周端部が枠状構造物12の外側周端部及び枠状構造物12'の内側周端部を乗り越えない位置、望ましくは隣接する位置に配置する。

【0137】また本変形例は、枠状構造物12と12'の一部若しくは全部をBM額縁8内に形成し、枠状構造物12と12'の間隙部にはBMを形成しないようにした点に特徴を有している。BM額縁8内に枠状構造物12、12'を設け、その間隙部すなわちメインシール6の塗布領域を開口してUV照射できるようすればメインシール6を完全に硬化できると共に従来BM額縁8外に必要であったメインシール6の形成領域は必要なくなる。

【0138】また、枠状構造物12はUV波長をほぼ透過しない樹脂材を用いて形成することが望ましい。滴下注入ではUV光が遮光されないようにメインシールエリアに金属膜がないCF基板側からUV照射を行う。通常、表示領域10にはマスクを被せるが、UV光の一部はアレイ基板16上に形成された金属膜で反射されて表示領域10側に入り込んでしまう。これは多重反射による光入射または光の回り込みと呼ばれる現象であり、この光により液晶22が光分解してしまうことによりシール際に表示不良が発生する。そこで枠状構造物12にUV波長をほぼ透過しない樹脂材を用いれば多重反射成分は枠状構造物12に吸収され、シール際の液晶22にUVが照射されることはない、液晶22の劣化を防止できる。

【0139】以上説明した構成は、液晶表示装置の製造工程で滴下注入法を用いる場合に最も効果が大きく、遮光によるメインシール6の硬化不良を防止し、また、未硬化のメインシール6と液晶22との接触を防止し、メインシール6の硬化時のUV光が液晶22に照射されるのを防止するという顕著な効果を滴下注入法で得ることができるようになり、滴下注入の信頼性を飛躍的に向上させることができるようになる。

【0140】また、滴下注入を用いた場合において、図16に示すように、基板16、4の貼り合わせ後、液晶22の液晶境界23が枠状構造物12に達する前に枠状構造物12を圧力Pで加圧して枠状構造物12近傍のギャップ出しを行う。これにより液晶22が枠状構造物12上に進入するのを防ぐと共にメインシール6のギャップ出しに要する時間を大幅に短縮することができるようになる。次に本実施の形態による液晶表示装置の製造方法を実施例を用いて説明する。

【0141】【実施例1】CF基板上に顔料を分散させた着色樹脂膜(赤／JSR(日本合成ゴム)製)を均一塗布し、表示領域10のスペーサ15と枠状構造物12をフォトリソグラフィ工程によりバーニングする。バ

ターンの高さは表示領域10のスペーサ15が4.0μmであり、枠状構造物12は、4.0μm(実施例A)、3.0μm(実施例B)、2.0μm(実施例C)の3種類形成する。また、スペーサ15は表示領域10の非画素領域に形成し、枠状構造物12はメインシール6内側かつ表示領域10外側となる領域であって、BM額縁8の外側周端部と枠状構造物12の外側周端部とがアレイ基板16表面に垂直な方向から見てほぼ一致するように形成する。

【0142】また、比較例Aとして枠状構造物12の外側周端部がBM額縁8の内方に0.5mm入り込んだものを作製する。CF基板4及びアレイ基板16上に垂直配向膜(JSR製)14を形成する。垂直配向膜14は、アレイ基板16表面に垂直な方向から見て枠状構造物12の外周部とはほぼ一致するように形成する。また、比較例Bとして枠状構造物12表面およびその対向領域に垂直配向膜が形成されていないものを作製した。

【0143】メインシール(協立化学製)6はギャップ出し後にその内周辺と枠状構造物12の外周辺が隣接するよう塗布する。本実施例ではギャップ出し後のメインシール幅が1mmになることからシールラインを枠状構造物12の外周辺から0.5mm離した。比較例Cではシールラインを枠状構造物12の外周部から2.0mm離している。

【0144】枠状構造物12内周とバターン高さから求まる液晶22の必要体積分を表示領域10上に滴下し、真空中で基板16、4の貼り合せを行う。貼り合せ後大気圧に戻し、液晶拡散およびギャップ出しを行う。ギャップ出し後に液晶22がほぼ表示領域10内に拡散するのを確認してから、CF基板4上方からUV照射を行い、メインシール6を硬化させる。この貼り合せ基板をスクライプ、ブレークし、液晶表示パネルが完成する。液晶表示パネルは100°Cで1時間加熱(アイソトロニック処理)後、点灯検査およびシール剥離試験を行う。

【0145】試験結果を表4に示す。比較例Aではシールコーナ部の円弧部分によりBM額縁8との重なり(遮光領域)ができ、硬化不良による表示ムラとシール剥離が発生している。比較例Bでは貼り合せ後に一部の液晶22が枠状構造物12を乗り越えて未硬化のメインシール6と接し、その周辺部から表示ムラが発生する。比較例Cでは表示ムラはないものの加熱後にコーナ部で真空空泡が発生する。それに対し実施例A、B、Cではないこれらの不具合も発生しない。

【0146】

【表4】

	備考	点灯試験	剥離試験
比較例A	コーナ部遮光 他は実施例Aと同じ	コーナ部及び周辺部で表示ムラ	1.5 kgf/mm以下で剥離
比較例B	垂直配向膜なし 他は実施例Aと同じ	周辺部で表示ムラ	1.5 kgf/mmで剥離なし
比較例C	シール間隙有 他は実施例Aと同じ	コーナ部で真空空泡	1.5 kgf/mmで剥離なし
実施例A	比較例ABCの改善 構造物高さ4μm	良好	1.5 kgf/mmで剥離なし
実施例B	比較例ABCの改善 構造物高さ3μm	良好	1.5 kgf/mmで剥離なし
実施例C	比較例ABCの改善 構造物高さ2μm	良好	1.5 kgf/mmで剥離なし

表4. 比較例A～Cと実施例A～Cのパネル試験結果

【0147】[実施例2] CF基板4上に顔料を分散させた着色樹脂膜(赤/J SR製)を均一塗布し、表示領域10のスペーサ15と枠状構造物12および12'をフォトリソグラフィ工程によりバーニングする。パターン高さは表示領域10のスペーサ15が4.0μmであり、枠状構造物12、12'は4.0μm(実施例D)、3.0μm(実施例E)、2.0μm(実施例F)の3種類形成し、パターン大きさはスペーサ15は1.0μm□、枠状構造物12および12'は0.75mm幅でメインシール6と相似形である。パターン位置はスペーサ15では表示領域10の非画素領域とし、枠状構造物12はメインシール6内側かつ表示領域10外側となる領域に、枠状構造物12'は枠状構造物12から1mm離している。本実施例ではBM額縁8の幅は2.5mmであり、枠状構造物12および12'の全部が上記領域内に収まるようにした。これにより従来BM額縁外にあったメインシールエリアをなくすことができ、片面側1mm、パネル寸法で2mmの狭額縁化が実現でき

る。

【0148】その後CF基板4およびアレイ基板16上に垂直配向膜(J SR製)14を枠状構造物12の外周辺と面一となるよう形成した。また比較例Dとして枠状構造物12の外周辺およびその対向領域まで垂直配向膜14を形成したものを作製した。メインシール(協立化学製)6はギャップ出し後にその内外周辺と枠状構造物12および12'の内外周辺が隣接するよう塗布した。以下実施例1と同様の手法により液晶表示パネルを完成させてパネル試験に供した。

【0149】試験結果を表5に示す。比較例Dではメインシール6下に垂直配向膜14が形成されているために接着強度がガラス面より弱く、シール剥離が発生した。それに対し実施例D、E、Fではシール剥離が発生しなかった。

【0150】

【表5】

	備考	点灯試験	剥離試験
比較例D	シール下配向膜有 他は実施例Dと同じ	良好	1.5 kgf/mm以下で剥離
実施例D	比較例Dの改善 構造物高さ4μm	良好	1.5 kgf/mmで剥離なし
実施例E	比較例Dの改善 構造物高さ3μm	良好	1.5 kgf/mmで剥離なし
実施例F	比較例Dの改善 構造物高さ2μm	良好	1.5 kgf/mmで剥離なし

表5. 比較例Dと実施例D～Fのパネル試験結果

【0151】[実施例3] CF基板4上に顔料を分散させた着色樹脂膜(赤/J SR製)を均一塗布し、表示領域10のスペーサ15と枠状構造物12をフォトリソグ

ラフィ工程によりバーニングする。また比較例Eとて透明樹脂(J SR製)で同様のパターンを作製する。パターン高さは共に4.0μmとし、以下実施例1と同

様の手法により液晶表示パネルを完成させてパネル試験に供する。

【0152】図15に比較例Eと実施例GのUVスペクトルを示す。図15において横軸は波長を表し、縦軸は透過率を表している。比較例E(図15の曲線(β))ではUV波長のうち300nm以上の長波長側の光は透過するが、実施例G(図15の曲線(α))の着色樹脂では殆ど透過しないことが分かる。パネル試験結果を表

6に示す。比較例Eではシール硬化時のUV照射で発生した多重反射光成分が透明樹脂を介して表示領域10内に入り込むため液晶22が光分解を起こし、周間に表示ムラが発生する。それに対し実施例Gでは表示ムラは発生しない。

【0153】

【表6】

	備考	点灯試験	剥離試験
比較例E	前記構造物に透明樹脂 他は実施例Gと同じ	全周に表示ムラ	1.5kgf/mmで剥離 なし
実施例G	比較例Eの改善	良好	1.5kgf/mmで剥離 なし

表6. 比較例Eと実施例Gのパネル試験結果

【0154】[実施例4] CF基板4上に顔料を分散させた着色樹脂膜(赤/JSR製)を均一塗布し、表示領域10のスペーサ15と枠状構造物12をフォトリソグラフィ工程によりバターニングする。パターン高さは共に4.0μmとし、以下実施例1と同様の手法により真空中で貼り合せを行う。大気開放後液晶22およびメインシール6が枠状構造物12に達する前に枠状構造物12部分を1.0kgf/cm²で加圧して枠状構造物12のギャップ出しを行う。また比較例Fとして大気開放のみで部分加圧を行わないものを作製する。ギャップ出し後に液晶22がほぼ表示領域10内に拡散する時間を測定し、以下実施例1と同様の手法により液晶表示パネルを完成させる。100°Cで1時間加熱(アイソトロビ

ック処理)した後シール近傍のセル厚測定を行う。

【0155】結果を表7に示す。液晶表示パネルに15インチ相当の画面の大きさのものを用いているが液晶22がほぼ表示領域10内に拡散するのに比較例Fでは10分程度を要する。またセル厚は面内で4.0~4.1μmであるがシール近傍のそれは+0.1~0.2μm厚くなっている。液晶滴下量をさらに減らせばこの差を減らすことができるが、それには液晶が面内にほぼ拡散するのに数十分を要してしまい現実的でない。それに対し実施例Hでは液晶拡散時間は3分程度に短縮され、セル厚も面内と同程度になっている。

【0156】

【表7】

	備考	液晶拡散時間	セル厚
比較例F	大気開放のみでギャップ出し	~10分	4.2~4.3μm
実施例H	大気開放後枠状構造物を部分加圧	~3分	4.0~4.1μm

表7. 比較例Fと実施例Hの比較

【0157】このように、本実施の形態によれば、真空注入法や滴下注入法を用いても歩留まり良く液晶表示パネルを製造できるようになるため、液晶表示パネルのさらなるコストダウンを実現してCRTの代替の表示装置として市場規模を拡大することができるようになる。

【0158】次に、本発明の第6の実施の形態による液晶表示装置及びその製造方法を図17乃至図24を用いて説明する。液晶表示パネルの周縁部にはブラックマトリクス(BM)が形成されており、シール塗布位置にマージンがないと貼り合わせ後にシールの一部がBM額縁端と重なってしまう。基板鉛直方向から紫外線を照射するとBM額縁と重なった部分は紫外線が遮光されるためシールは硬化できなくなる。この部分ではシールの接着強度が低下し、シール剥離が発生する。またシールは未

硬化のまま残るため、温度変化により液晶パネルが膨張収縮した場合シール成分が液晶中に溶出し、シール際の電圧保持率が低下する。シール塗布位置をBM額縁端から十分離せばこのような不具合は発生しないが、額縁エリアが拡大するため適当ではない。

【0159】本実施の形態では以下の方法を用いることにより上記課題を解決している。

(1) メインシールに紫外線硬化樹脂を用い、メインシール内側かつ表示領域外側となる領域にパネル厚相当の高さで紫外線をほぼ透過しない枠状構造物を形成する。少なくともメインシールに基板面水平もしくは斜め方向の紫外線を照射してシール硬化を行う。枠状構造物の高さをパネル厚相当とし、紫外線吸収性を持たせればシールを透過した紫外線の一部(特に短波長成分)もしくは

全部が液晶層に照射されなくなるため、メインシールに基板面水平もしくは斜め方向の紫外線を照射しても液晶は光劣化しなくなる。これにより従来基板鉛直方向からみて遮光されていた部分にも紫外線が照射できるためシールを完全硬化できる。

【0160】(2) メインシールに対して基板面水平もしくは斜め方向から紫外線を照射する。またそれと共に基板面鉛直方向からも紫外線照射する。これらの方向からが最も容易に紫外線照射することができる。また、照射面から遠ざかると紫外線は樹脂に吸収されて低照度になり、シール材料によっては上記方向からの紫外線照射のみでは十分な硬化物性が得られない場合がある。これは低照度になると反応性の低いシール成分は硬化し難くなるためである。そこでこのようなシールでは該方向に紫外線照射すると共に基板面鉛直方向からも紫外線を照射する。シール膜厚の薄い基板面鉛直方向では照度があまり低下しないため反応性の低いシール成分も硬化し、十分な硬化物性が得られるようになる。

【0161】(3) メインシールに基板斜め方向の紫外線を照射し、メインシール下となる領域形成した反射膜により照射方向からみて遮光される部分に紫外線を反射させる。シール塗布位置が基板辺から離れている場合や多面取りのように基板辺以外にもメインシールがある場合、また基板辺とメインシールの間にダミーシールがある場合該方向から紫外線を照射するだけではシールを完全硬化させることができない。そこでメインシール外側から該方向に紫外線を照射し、該反射膜で照射方向から遮光される部分に紫外線を反射されればシールを完全硬化できる。

【0162】平面構造の反射膜では照射角度によって紫外線が回り込み難い領域が発生するため、照射角度を広くとって遮光部全てに紫外線を反射させる必要がある。そこで該反射膜下に凹凸構造を設け、その傾斜角を制御して反射光に指向性を持たせば特定の照射角度の紫外線を効率よく遮光部に反射できるため上記のように照射角度を広く取る必要はない。

【0163】(4) 反射膜の形成を TFT 基板への金属膜形成と一括して行う。TFT 基板にゲートバスラインやデータバスラインを形成する場合、一般的に Al (アルミニウム) 等の金属を用いて成膜を行う。このときにシール塗布領域にも金属膜を一括形成すれば工程を新たに増やさなくて済む。この場合紫外線は TFT 基板側から照射して、TFT 基板上の金属膜上で反射させる。

【0164】(5) 紫外線照射を行う際の基板ステージ上かつメインシール下となる領域に凹凸構造を持った反射物を設け、その傾斜角を制御しても紫外線を効率よく遮光部に反射できる。この場合シールパターンに応じた凹凸構造を基板ステージ上に作り込む必要があるが、基板一枚毎に凹凸構造や反射膜を作り込む必要がなくなる利点が生まれる。これにより工程を新たに増やすことな

く、特定の照射角度の紫外線を効率よく遮光部に反射させることができる。

【0165】(6) メインシールに基板面水平もしくは斜め方向の紫外線を照射する手段としてメインシール中に紫外線を散乱する粒子を分散させ、当該粒子により紫外線を所定方向に散乱させる。紫外線を散乱する粒子にはフィラーのようなミクロン、サブミクロンオーダーの微粒子を選択し、その表面に金属膜もしくは金属酸化物膜をコーティングして散乱性を持たせる。この粒子に紫外線が照射されると紫外線の全部もしくは一部が散乱して所定方向に伝播する。

【0166】(7) 枠状構造物の形成を CF 基板への色版形成と一括して行い、枠状構造物の形成領域に色版を積層する。CF 色版には RGB の着色樹脂を用いるが、着色樹脂は紫外線を殆ど透過しない。CF 基板への色版形成はフォトリソグラフィ工程により着色樹脂を各色版領域に順次バーニングする。このときに構造物の形成領域にも各色版をバーニングして積層すれば工程を新たに増やすことなく構造物を形成できる。

【0167】(8) メインシールは、基板貼り合わせ後にその内周辺と枠状構造物外周辺が隣接する位置に形成され、メインシール内周辺と枠状構造物外周辺を接着させる。これによりメインシールの固定面を上下基板界面と構造物界面の3面にできるため接着強度を強くすることができる。

【0168】また、液晶が温度変化により膨張収縮しても枠状構造物はメインシールを介して対向基板側に固定されるため構造物部分のパネル厚は変動しなくなる。これにより液晶とシールは基板貼り合わせ後も完全に接触しなくなり、シールからの汚染物が液晶中に拡散することを防止できる。

【0169】(9) 上記説明した方法を用いた滴下注入により液晶表示装置を製造する。滴下注入は液晶注入後にシール硬化を行うため、上記方法による改善作用が大きい。すなわちシール遮光部は未硬化のまま残るためシール成分が液晶中に溶出してシール際の電圧保持率を低下させる。また遮光部を硬化させるため基板面水平もしくは斜め方向に紫外線を照射すると液晶層にも紫外線が照射されるため液晶が光劣化してしまう。このため未硬化領域近傍に紫外線をほぼ透過しない枠状構造物を形成してから紫外線を照射すれば滴下注入で発生する上記不具合を改善できる。

【0170】本実施の形態により上記問題点が解決されるため、UV プレスおよび滴下注入で製造される液晶表示装置の歩留まりが改善される。特に滴下注入では液晶注入後にシール硬化を行うため、本実施形態の適用が滴下注入の実用化に大きく貢献する。以下、本実施の形態による液晶表示装置及びその製造方法を実施例を用いて説明する。

【0171】(実施例1) 図17に示すように、CF 基

板4上のメインシール6内側かつ表示領域外側となる領域のBM8上に黒色樹脂を用いてパネル厚相当の枠状構造物12を形成する。枠状構造物12を形成後CF/TFT基板4、16上に配向膜(図示せず)を塗布し、CF基板4側にエポキシアクリレート系紫外線硬化樹脂からなるメインシール6を塗布して滴下注入により基板貼り合わせを行う。すなわち表示領域に枠状構造物12内周辺とパネル厚から求まる液晶22の必要体積分を滴下し、真空中で貼り合わせを行う。その後大気圧に戻し、液晶注入およびギャップ出しを行う。ギャップ出し後に液晶22がほぼ表示領域内に拡散するのを確認してから、基板辺側面から基板面水平方向に紫外線を照射してメインシール6を硬化させる。この貼り合わせ基板を120°Cで1時間加熱するアイソトロピック処理後、スクライプ、ブレークし、液晶表示パネルが得られる。得られた液晶表示パネルは点灯試験およびシール剥離試験に供された。また比較例1として透明樹脂を用いて枠状構造物を形成し、基板面鉛直方向から紫外線を照射してメインシールを硬化させた液晶表示パネルも作製して同様の試験を行った。実施例1および比較例1の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0172】(実施例2) 図18(a)に示すように、メインシール6にエポキシ系紫外線硬化樹脂を選択し、実施例1と同様の手法により基板貼り合わせてギャップ出しを行う。図18(a)に示すように、メインシール6は、基板面方向の幅が1mm程度あるのに対して厚さは4~5μmと薄いため、図18(b)に示すように、基板面に垂直方向の照度はあまり変わらないのに対し、水平方向の照度は徐々に弱くなる。これに鑑み、基板辺側面から基板面水平方向に紫外線を照射すると共に基板面鉛直方向からも紫外線を照射してメインシール6を硬化させる。

【0173】以下実施例1と同様の処理、試験を行う。また比較例2として基板面水平方向からのみ紫外線を照射してメインシール6を硬化させた液晶表示パネルを作製し同様の試験を行った。実施例2および比較例2の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0174】(実施例3) 図19に示すように、TFT基板16上のメインシール6領域かつメインシール6下となる領域にA1を成膜して反射膜152を形成する。反射膜152を形成後実施例1と同様の手法により基板貼り合わせてギャップ出しを行う。その後メインシール6外側から基板面斜め方向に紫外線を照射し、反射膜152により遮光部に紫外線を反射させてメインシール6を硬化させた。この際照射角度を広く取り、遮光部全てに紫外線が反射されるようにした。以下実施例1と同様の処理及び試験を行った。実施例3の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

す。

【0175】(実施例4) 図20(a)、(b)に示すように、TFT基板16上のメインシール6領域かつメインシール6下となる領域にレジスト樹脂を用いて傾斜角が15度となるような凹凸構造154を形成する。次いで、当該領域にTFT基板16へのA1成膜と一括して反射膜34を形成する。反射膜34を形成後実施例1と同様の手法により基板貼り合わせ、ギャップ出しを行う。その後メインシール6外側から基板面斜め60度方向に紫外線を照射し、反射膜34により基板面鉛直方向に紫外線を反射させてメインシール6を硬化させる。以下実施例1と同様の処理及び試験を行った。実施例4の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0176】(実施例5) 図21(a)、(b)に示すように、ステンレス製の基板ステージ36上でメインシール6下方となる領域に傾斜角が15度となるような凹凸構造38を形成する。凹凸構造38は基板ステージ36のメインシール6下方領域に逆三角形型の溝を入れることにより形成し、凸部が基板ステージ36上面と面一になるようしている。実施例1と同様の手法により基板貼り合わせ、ギャップ出しを行う。その後貼り合わせ基板を基板ステージ36上に載せ、メインシール6外側から基板面斜め60度方向に紫外線を照射して基板ステージ36に形成された凹凸構造38により基板面鉛直方向に紫外線を反射させてメインシール6を硬化させる。以下実施例1と同様の処理及び試験を行った。実施例5の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0177】(実施例6) 図22(b)に示すような平均粒径1μmの樹脂フィラー42の表面にAu層44を蒸着した散乱性粒子40を、図22(a)に示すように、メインシール6中に0.1wt%添加する。このメインシール6を用いて実施例1と同様の手法により基板貼り合わせ、ギャップ出しを行う。その後基板面鉛直方向から紫外線を照射し、散乱性粒子40により基板面水平もしくは斜め方向に紫外線を散乱させてメインシール6を硬化させる。以下実施例1と同様の処理及び試験を行った。実施例6の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0178】(実施例7) 図23に示すように、CF基板4上への色版形成と一括してメインシール6内側かつ表示領域外側となる領域にパネル厚相当の枠状構造物156を形成した。枠状構造物156は、CF色版を積層して形成されている。枠状構造物156を形成後実施例1と同様の手法により基板貼り合わせ、ギャップ出しを行う。その後基板辺側面から基板面水平方向に紫外線を照射してメインシール6を硬化させる。以下実施例1と同様の処理及び試験を行った。実施例7の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8

に示す。

【0179】(実施例8) 図24に示すように、基板貼り合わせ後にメインシール6の内周辺と枠状構造物12外周辺が隣接する位置にメインシール6を形成し、実施例1と同様の手法により基板貼り合わせ、ギャップ出しを行う。その後基板辺側面から基板面水平方向に紫外線を照射すると共に基板面鉛直方向からも紫外線を照射し

てメインシール6を硬化させる。以下実施例1と同様の処理及び試験を行った。実施例8の点灯試験およびシール剥離試験結果を他の実施例、比較例と共に表8に示す。

【0180】

【表8】

	シール際の点灯試験 (3V, 1Hzストレージ駆動)		シール剥離試験	
	加熱処理前	加熱処理後	強度 (kgf/mm)	判定
実施例1	○	○	2.0	△
比較例1	○	×	1.5	×
実施例2	○	○	2.5	○
比較例2	○	○	1.5	×
実施例3	○	○	2.5	○
実施例4	○	○	2.5	○
実施例5	○	○	2.5	○
実施例6	○	○	2.5	○
実施例7	○	○	2.0	△
実施例8	○	○	3.0	◎

表8. 実施例1～7、比較例1、2の点灯試験およびシール剥離試験結果

【0181】実施例1～7、比較例1、2の点灯試験およびシール剥離試験結果を示す表8において、判定は強度上問題あるものを×、問題ないが熱硬化シールに劣るものを△、同等を○、同等以上を◎としている。

【0182】実施例1～7では点灯試験、シール剥離試験共に問題ないが、比較例1では加熱後の点灯試験およびシール剥離強度に、比較例2ではシール剥離強度に問題が生じた。比較例1では基板面鉛直方向から紫外線を照射するためBM部縁により遮光された領域はシールが未硬化のまま残ってしまう。加熱処理前ではセルギャップ相当の枠状構造物により未硬化成分の溶出が抑えられるが、加熱処理後では温度変化により液晶が膨張して枠状構造物を乗り越えるため未硬化成分が液晶中に溶出し、電圧保持率が低下する。シール剥離も遮光部から剥離しており、未硬化の部分に応力が集中して1.5kgf/mmで剥離してしまった。

【0183】比較例2ではエポキシ系紫外線硬化樹脂を用いており、当該樹脂は実施例1のエポキシアクリレート系紫外線硬化樹脂より硬化照度を必要とするため基板辺側面から基板面水平方向に紫外線を照射しただけでは十分な硬化照度が得られず、1.5kgf/mmで剥離してしまった。しかし、実施例2にあるように基板面鉛直方向からも同時に紫外線照射してやれば十分な剥離強度を発揮するようになる。

【0184】また実施例8では実施例中最も剥離強度が強くなった。これは固定面Fを上下基板界面と枠状構造

物界面の3面にしたことによる。本実施の形態によれば、UVプレスおよび滴下注入により歩留まりを向上させて液晶表示パネルを製造できるようになる。

【0185】なお、本実施の形態の変形例として、バスラインがTi/AI積層により形成されている場合には、UVの反射部位のみTiを除去しておくと、TFT製造工程でAI表面には凹凸が熱で自然に形成される(Tiの段差は小さく反射率も小さい)ので、これを利用して紫外線を反射させてメインシール6に入射するようにもよい。

【0186】本発明の第7の実施の形態による液晶表示装置及びその製造方法を図25乃至図31を用いて説明する。液晶表示パネルのメインシールは一般的に熱硬化樹脂を用いるが、硬化速度が遅いため紫外線硬化樹脂で仮止めを行い、位置ずれを防止している。しかし、この仮止め工程は作業性が悪いため特開平5-33351号公報ではメインシールの外周側の四隅に導電粒子を配合した導電性紫外線硬化樹脂を円形状に塗布し、トランスマジックシールで仮止めを行う方法が提案されている。

【0187】また、UVプレスや滴下注入はメインシールを短時間で硬化させる必要があるためメインシールには紫外線硬化樹脂もしくは紫外線+熱硬化樹脂を用いている。これらの樹脂は硬化が速いため位置ずれが少なく、仮止めを必要としない。図25(a)は例えば紫外線硬化樹脂を含むメインシール6を用いた液晶表示パネルの角部に応力を加えた状態を示している。紫外線硬化

樹脂もしくは紫外線+熱硬化樹脂は熱硬化樹脂に比較して剥離強度が弱く、図25(b)に示すように応力が集中するメインシール6角部には基板との界面剥離 β が発生したり、メインシール6自体の凝集剥離 α が発生したりする。

【0188】また、図26に示すように、液晶表示パネルの周縁部にはブラックマトリクス(BM)の額縁8が形成されており、メインシール6塗布位置にマージンがないと貼り合わせ後にメインシール6角部の一部がBM額縁8端と重なって遮光される遮光領域 γ ができると硬化不良を起こす。この遮光領域 γ ではメインシール6の剥離強度が低下すると共にシールが未硬化のまま残るために液晶中に溶出し、液晶の電圧保持率を低下させる。

【0189】本実施の形態では、以下の手段を用いることにより上記課題の解決を図っている。

(1) 紫外線硬化樹脂もしくは紫外線+熱硬化樹脂をメインシールに用いた液晶表示パネルにおいて、シールコーナに隣接し、メインシール外側かつCF基板端内側となる領域にメインシール以上に剥離強度を有する接合物を部分的に配置する。シールコーナにはシール周辺部との線幅を均一にするため円弧(R)を設けるが、基板形状は四角であるためシールコーナではシールと基板端の間に空隙ができる。この空隙にメインシール以上の剥離強度を有する接合物を部分的に配置すればシールコーナの剥離強度は熱硬化樹脂と同等以上となり、シール剥離は発生しなくなる。上記公知例における樹脂形成は位置ずれの防止を目的としており、本実施形態はシール剥離の防止を目的としている。

【0190】このため接合物に導電性粒子を配合しないこと、メインシール以上の剥離強度を有する接合物を用いること、接合物の硬化をメインシールと同等もしくはそれに続けて行う点で相違している。接合物に導電性粒子を配合すると透過率が減少するため、紫外線硬化型の接合物では剥離強度が低下してシール剥離の防止にはならない。また、公知例では仮止めが行えれば特にメインシール以上の剥離強度を有する必要はなく、樹脂の硬化はメインシールの硬化に先立って行われる。

【0191】(2) 上記(1)において、シールコーナに隣接し、メインシール外側かつCF基板端内側となる領域に上記接合物を円形状に配置する。円形状であれば点打ち塗布により容易に形成できる。また、空隙に余裕があればCF基板端から接合物がはみ出さない程度に塗布量を多くして径を大きくしたり、複数点塗布して剥離強度をさらに上げたりすることも可能である。

【0192】(3) 上記(1)において、シールコーナに隣接し、メインシール外側かつCF基板端内側となる領域に上記接合物(樹脂)をパネル対向方向かつ線状に配置する。パネル対角方向に塗布すればCF基板端までの距離を稼げるため、接合物がCF基板端からはみ出しづらい、線状であれば円形状より接着面積が多くなるた

め、剥離強度をより高めることができる。

【0193】(4) 上記(1)において、上記接合物の硬化収縮率をメインシールのそれとほぼ同等にする。接合物の硬化収縮率は選択する材料により異なるが、重合性樹脂ではエポキシ系3%程度、アクリル系が6%程度である。メインシールと硬化収縮率の異なる材料を上記接合物に選択すると硬化後上記領域に歪みが発生するためクラックや剥離の原因となる。このため上記接合物にはメインシールと硬化収縮率がほぼ同等の材料を選択する。

【0194】(5) 上記(1)において、上記接合物の硬化はメインシールと同時もしくはそれに続けて行う。上記接合物が紫外線硬化型の場合、公知例のようにメインシールの硬化に先立って行えば隣接するシールコーナは基板界面の多重反射により部分硬化する。メインシールをコーナから全体へと段階的に硬化させるとシール内部に残留応力が発生し、剥離強度が低下する。上記接合物が熱硬化型の場合、上記領域を加熱しても結果的に基板全体が加熱されるため未硬化のメインシールが熱だされ、シール形状が乱れてしまう。従って上記接合物が紫外線硬化型の場合はメインシールと同時に、上記接合物が熱硬化型の場合は続けて硬化を行えば上記不具合は発生しなくなる。

【0195】(6) 紫外線硬化樹脂をメインシールに用いた液晶表示パネルにおいて、シールコーナに隣接し、CF基板と TFT 基板で形成される段差領域にメインシール以上の剥離強度を有する接合物を部分的に配置する。当該領域は通常周辺端子が形成されない領域であるため、接合物を部分的に配置しても駆動回路と干渉しない。液晶表示パネル形成後、当該領域に接合物を部分的に塗布して、硬化することにより上記(1)と同等の硬化が期待できる。

【0196】(7) 上記(1)及び(6)において、上記接合物は周辺端子辺の上領域のみに形成する。TFT基板には駆動素子と駆動回路を接続する端子が外周部に形成される。周辺端子は駆動回路の接続しき分(数mm) CF基板端から外側に出ているため、周辺端子に応力がかかると TFT 基板が大きく変形してシール/基板界面に応力が集中すること、メインシールと力点までの距離が長くなるため「てこの原理」により応力が増幅されることから非端子辺よりシール剥離が発生しやすい。逆に非端子辺は上下基板が面一となるためシール剥離は殆ど発生しない。従って接合物を周辺端子辺の領域のみに配置すれば効果的にシール剥離を抑えることができる。

【0197】(8) 上記(1)及び(6)において、接合物に重合性樹脂を用いる。重合性樹脂はメインシールにも適用されているように塗布性、形状安定性に優れており、基板への接着力も高い。接合物はメインシール外側に配置されるため液晶汚染に関係なく、メインシール

以上の剥離強度を有していれば紫外線硬化型、熱硬化型、紫外線+熱硬化型のいずれの重合性樹脂でも用いることが可能である。

【0198】(9) 紫外線硬化樹脂もしくは紫外線+熱硬化樹脂をメインシール用いた液晶表示パネルにおいて、シールコーナに隣接し、メインシール内側かつ表示領域外側となる領域にパネル厚相当の高さでBM額縁のコーナ形状に準じたL字型の構造物を配置する。液晶表示パネルの周縁部にはBM額縁が形成されるため、シール塗布位置にマージンがないと貼り合わせ後にシールコーナの一部がBM額縁端と重なって遮光され、硬化不良を起こしてしまう。そこでシールコーナに隣接し、メインシール内側かつ表示領域外側となる領域にパネル厚相当の高さでBM額縁のコーナ形状に準じたL字型の構造物を形成すれば、貼り合わせ後にシールコーナの一部がBM額縁端と重なるようシール塗布しても構造物でロックされるためシールはそれより内側に入り込めなくなる。構造物の形成位置は紫外線照射の種類（平行光か散乱光か）、メインシールの紫外線感度によってBM額縁端外側もしくは面一にするか、光の回り込み量分内側にするか選択すればよい。

【0199】(10) 上記(9)において、構造物を紫外線の一部もしくは全部を透過しない材料で形成し、シールコーナのみ基板面斜め方向から紫外線を照射してシール硬化させる。基板斜め方向から紫外線照射すればシールコーナがBM額縁端で遮光されていても基板界面の多重反射を利用してかなりの奥まで（～0.5mm）硬化させることができる。しかし、メインシールを透過した紫外線は液晶にも照射されるため光劣化を引き起こし、近傍の保持率を低下させてしまう。そこで構造物を紫外線の一部もしくは全部を透過しない材料で形成すれば上記不具合の発生も無く、シールコーナの遮光部を多重反射を利用して効率的に硬化させることができる。

【0200】(11) 上記(1)～(10)を用いて滴下注入で液晶表示パネルを製造する。紫外線硬化樹脂もしくは紫外線+熱硬化樹脂は熱硬化樹脂に比較して剥離強度が弱いが、紫外線照射量を増やしたり、熱硬化成分の添加量を増やすれば剥離強度を上げることができる。しかし、滴下注入では液晶注入後にシール硬化を行うため上記処理を適用すると液晶が光劣化したり、熱硬化成分が溶出してシール近傍で保持率が低下してしまう。また、貼り合わせ後にシールコーナの一部がBM額縁端と重なって遮光された場合、剥離強度が低下すると共に未硬化のシールが液晶中に溶出してシール際の電圧保持率を低下させる。

【0201】そこで上記(1)～(10)の手段を用いて滴下注入で液晶表示パネルを製造すれば上記不具合は発生しなくなり、改善効果は大きなものとなる。本実施の形態によりUVプレスおよび滴下注入で製造される液晶表示パネルの歩留まりが改善される。特に滴下注入で

は液晶注入後にシール硬化を行うため、本実施形態の適用は滴下注入の実用化に大きく貢献する。以下、本実施の形態による液晶表示装置及びその製造方法を実施例を用いて説明する。

【0202】(実施例1及び2) 実施例1を図27を用いて説明する。図27(a)は、液晶表示パネル全体を表し、図27(b)は液晶時パネルの一角部を表している。図27(c)は、剥離強度を調べる際の加圧点を示している。

【0203】紫外線硬化樹脂A（エポキシ樹脂／硬化収縮率3%/スリーボンド製）をメインシール6に用い、CF11が形成されたCF基板4上に基板貼り合わせ後の線幅が1mmとなるよう棒状に塗布する。続けてメインシール6角部に隣接し、メインシール6外側且つCF基板4端内側となる領域に熱硬化型樹脂（エポキシ樹脂／硬化収縮率3%/三井化学製）からなる接合物160a、160b、160cを基板貼り合わせ後の径が1mmとなるよう円形状に塗布する。

【0204】図28は実施例2を示している。実施例2では実施例1と同材料の接合物160aを線幅1mm、長さ2mmとなるようパネル対向方向かつ線状に塗布している。なお、実施例1及び2では周辺端子がTFT基板16上の縦横各一辺にあるため、周辺端子辺の領域(3点)に接合物160a～160cを塗布している。

【0205】次に滴下注入により液晶表示パネルを作製する。メインシール6の棒状パターン内にシール内周寸法とパネル厚から求まる必要量の液晶を滴下し、真空中で貼り合わせる。次いで大気圧に戻して液晶注入とギャップ出しを行う。ギャップ出しの後、基板面上方から紫外線を照射してメインシール6を硬化させる。貼り合わせ基板を120°Cで1時間加熱し、接合物160の硬化と液晶のアイソトロピック（再配向）処理を行う。次いで基板を切断し液晶表示パネルを得る。また、同様の手法により接合物がない液晶表示パネル（従来例1）も作製した。

【0206】剥離強度の測定は樹脂単体、液晶表示パネルそれぞれ行った。樹脂単体の測定は50mm×20mmのガラス基板中央にメインシール6もしくは接合物160を基板貼り合わせ後の径が1mmとなるよう円形状に塗布し、同寸法のガラス基板で十字に貼り合わせて、ギャップ出し後硬化させた。ガラス基板端の1mm内側をフォースゲージで下方向に加圧し、メインシール6もしくは接合物160が全剥離する力を読み取った。液晶表示パネルの測定はCF基板4を上、TFT基板16を下としてTFT基板16端コーナの1mm内側（図27(c)参照）をフォースゲージで下方向に加圧し、接合物160もしくはメインシール6が全剥離する力を読み取った。

【0207】その結果、メインシール6に用いている紫外線硬化樹脂Aの剥離強度は1.6kgf/mm、接合

物160に用いている熱硬化樹脂のそれは2.5 kgf/mmであった。また、実施例1の液晶表示パネルの剥離強度は3.0 kgf/mm、実施例2のそれは3.5 kgf/mm、従来例1のそれは1.8 kgf/mmであった。液晶表示パネルの剥離強度はユニット化工程で周辺端子にかかる最大荷重以上の値が求められ、その値は偏光板の貼り換え時の負荷重、駆動回路の圧着力を考慮して一般的に2.0 kgf/mm以上の値が必要となる。従来例1ではこの基準値を満たさないため、シール剥離により製造歩留まりが低下する。実施例1及び2の剥離強度は従来例のそれを上回り、基準値を満たすためシール剥離は発生しない。

【0208】(実施例3) 実施例3を図29(a)、(b)を用いて説明する。紫外線硬化樹脂A(エポキシ樹脂/硬化収縮率3%/スリーボンド製)をメインシール6に用い、CF基板4上に基板貼り合わせ後の線幅が1mmとなるよう棒状に塗布する。続けて滴下注入により液晶表示パネルを作製する。液晶表示パネル作成後、メインシール6の角部に隣接し、CF基板4とTFT基板16で形成される段差領域164(図29(b)参照)に紫外線硬化樹脂B(エポキシ樹脂/硬化収縮率3%・スリーボンド)からなる接合物162を両基板に接するよう2mmの径で円形状に塗布する。なお、本実施例も実施例1と同様に周辺端子2がTFT基板16上の縦横各一边にあるため、周辺端子2辺部の領域(3点)のみに接合物162を塗布し、接合物162のみに紫外線をスポット照射して硬化させる。剥離強度の測定は実施例1及び2と同様である。

【0209】測定の結果、メインシール6に用いている紫外線硬化樹脂Aの剥離強度は1.6 kgf/mm、接合物162に用いている紫外線硬化樹脂Bのそれは2.0 kgf/mmであった。紫外線硬化樹脂A、Bの相違はAが液晶への汚染性を考慮して多官能成分や低分子成分の添加量を少なくしているのに対し、Bは液晶と接しないためそれらの添加量を多くして剥離強度を高めたものである。上記成分は極性や溶解性が高いため液晶への汚染性が高いが、樹脂の剥離強度を高める作用がある。また、実施例3の液晶表示パネルの剥離強度は2.3 kgf/mm、従来例のそれは1.8 kgf/mmであった。実施例3の剥離強度は従来例1のそれを上回り、基準値を満たすためシール剥離は発生しない。

【0210】(実施例4) 図30を用いて本実施例を説明する。紫外線硬化樹脂C(エポキシアクリレート樹脂/硬化収縮率6%/スリーボンド製)をメインシール6に用い、CF基板4上に基板貼り合わせ後の線幅が1mmとなるよう棒状に塗布する。続けてメインシール6角部に隣接し、メインシール6外側且つCF基板4端内側となる領域に紫外線硬化樹脂Cからなる接合物164を基板貼り合わせ後の径が1mmとなるよう円形状に塗布する。

【0211】また、比較例1として同様に紫外線硬化樹脂A(エポキシ樹脂/硬化収縮率3%/スリーボンド製)からなる接合物164を塗布した。その後液化注入により液晶表示パネルを作製する。その結果、メインシール6に用いている紫外線硬化樹脂Cの剥離強度は1.6 kgf/mm、接合物164に用いている紫外線硬化樹脂Aのそれは1.6 kgf/mmであった。紫外線硬化樹脂C、Aは異なる樹脂であるため硬化収縮率に差がある。また、実施例4の液晶表示パネルの剥離強度は2.2 kgf/mm、比較例のそれは1.8 kgf/mmであり、比較例1では図30(b)に示すように、剥離試験前から硬化収縮率の高いメインシール6側にクラック166が発生していた。実施例4の剥離強度は従来例1及び比較例1のそれを上回り、基準値を満たすためシール剥離は発生しない。

【0212】(実施例5) 図31を用いて実施例5について説明する。図31(a)に示すように、メインシール6の角部に隣接し、CF基板4上のメインシール6内側且つ表示領域外側となる領域にレジスト(シブレー製)を用いてBM額縁8の角部形状に準じたL字型の構造物166を形成する。構造物166はBM額縁8外周辺から0.3mm内側に入り込んだ位置に長さ5mm、幅0.7mm、高さ4μm(パネル厚相当)で形成している。

【0213】紫外線+熱硬化樹脂(部分アクリル化エポキシ樹脂/硬化収縮率4%/協立化学製)をメインシール6に用い、CF基板4上に基板貼り合わせ後の線幅が1mmとなるよう棒状に塗布する。メインシール6は基板貼り合わせ後のシール内周辺がBM額縁8外周辺にちょうど接するよう塗布している。その後、滴下注入により液晶表示パネルを作製する。

【0214】また、同様の手法により構造物166がない液晶表示パネル(従来例2及び3)も作製する。実施例5と従来例3では基板面上方から紫外線を照射した後、図31(b)に示すように、メインシール6の角部のみ基板面斜め45度方向から紫外線をスポット照射してメインシール6の硬化を行っている。剥離強度の測定に加え、構造物21による紫外線の遮蔽効果を見るため、ガラスおよびそれにレジストを形成した場合の紫外線透過特性を測定した。

【0215】その結果、メインシール6に用いている紫外線+熱硬化樹脂の剥離強度は2.0 kgf/mmであった。また、実施例5の液晶表示パネルの剥離強度は2.3 kgf/mm、従来例2のそれは1.8 kgf/mm、従来例3のそれは2.3 kgf/mmであった。これらの液晶表示パネルを中間調(60Hz、3V矩形波印加)で点灯検査したところ、従来例2および3ではシールコーナに保持率低下による輝度むらが発生していた。従来例2では遮光部168のシール硬化不良による保持率低下であり、従来例3では液晶の光劣化による保

持率低下である。しかし、実施例1では剥離強度は基準値を満たしており、保持率低下による輝度むらも発生してなかった。

【0216】これは基板斜め方向から紫外線を照射したことにより遮光部168へ紫外線が回り込んだためであり、またレジストが液晶に有害な紫外線波長を吸収したためである。図31(c)は、ガラスあるいはガラス+レジストの紫外線透過特性を示すグラフである。図31(c)の紫外線透過特性から、ガラス+レジスト(曲線α)によれば、液晶に有害な波長域(334nmより短波長側)をガラス(曲線β)の1/4以下にカットしていることが分かる。本実施の形態によりUVプレスおよび滴下注入により歩留り良く液晶表示パネルを製造できるようになるため、液晶表示パネルのさらなるコスト低減を達成することができる。

【0217】本発明の第8の実施の形態による液晶表示装置及びその製造方法を図32乃至図35を用いて説明する。まず、本実施の形態による液晶表示装置の概略の構成について図32を用いて説明する。図32(a)は、スイッチング素子に TFT を用いたアクティブマトリクス型の液晶表示パネル1を対向基板側から見た上面の一部を模式的に示している。図32(b)は、図32(a)のA-A線で切断した部分断面を示している。アレイ基板16上には、図中基板左右方向に延びるゲートバスラインG1、G2、…、Gn(以下、Gと略記する)が上下方向に平行に複数形成されている。また、複数のゲートバスラインG上には図示を省略した絶縁膜が形成され、絶縁膜上にはゲートバスラインGにはば直交するように複数のデータバスラインD1、D2、…、Dn(以下、Dと略記する)が形成されている。互いに直交する複数のゲートバスラインGとデータバスラインDとでマトリクス状に画定される各領域が画素領域となり、各画素領域内にはTFT13と表示電極14が形成されている。TFT13のゲート電極は所定のゲートバスラインGに接続され、ドレイン電極は所定のデータバスラインDに接続され、ソース電極は画素領域内の表示電極14に接続されている。

【0218】図32(b)はゲートバスラインG1に沿う断面を示しており、アレイ基板16の対向基板4と対向する面にはゲートバスラインG1が形成され、また最上面には配向膜172が形成されている。対向基板4のアレイ基板16と対向する面には共通電極8が形成され、最上面には配向膜170が形成されている。

【0219】アレイ基板16よりほぼ端子部2の幅だけ小さく形成されている対向基板4が、所定のセル厚でアレイ基板16に対向して設けられている。アレイ基板16と対向基板4とは光硬化性樹脂からなるシール剤6で貼り合わされている。アレイ基板16及び対向基板4間のシール剤6で囲まれた領域には液晶22が封止されている。

【0220】複数のゲートバスラインG及びデータバスラインDは、アレイ基板16の外周囲に形成された端子部2にまで延びて、外部に設けられた駆動回路(図示せず)と接続されるようになっている。各ゲートバスラインGの端部には外部取り出し電極174が形成され、各データバスラインDの端部にも外部取り出し電極176が形成されている。

【0221】所定のゲートバスラインGに出力された走査信号により当該ゲートバスラインGにゲート電極が接続されたTFT13はオン状態となり、データバスラインDに出力された階調信号に基づく電圧が画素電極14に印加される。一方、対向基板側の共通電極8にも所定の電圧が印加され、画素電極14と共通電極8とに印加された電圧により、画素電極14と共通電極8との間の液晶22が駆動されるようになっている。

【0222】さて、本実施の形態の液晶表示装置は、シール剤6のアレイ基板16及び対向基板4の接触領域に複数の光反射層Rが形成されている点に特徴を有している。この光反射層Rについて図33を用いて説明する。図33(a)は、図32(a)の破線で示したブロック30内を拡大して示している。図33(b)は、図33(a)に示す領域のパネル断面を示している。また、図33(c)は、比較のため図33(b)に対応した従来のパネル断面を示している。

【0223】図33(a)、(b)に示すように、光反射層Rは、アレイ基板16と対向基板4のシール剤塗布領域に交互に形成されている。光反射層Rは、例えばゲートバスライン形成用金属あるいはデータバスライン形成用金属を用いてそれらバスラインの形成時に同時にアレイ基板16上のシール剤塗布領域に形成される。光反射層Rは、ゲートバスラインGあるいはデータバスラインDに平行でシール剤6の形成領域幅よりわずかに長い長辺を有するラインアンドスペースパターンに形成されている。

【0224】一方、光反射層Rは対向基板4側のシール剤接触領域に金属層をバーニングして形成され、対向基板4をアレイ基板16と張合わせると光反射層Rのスペース部(隙間)を埋めるように、アレイ基板16上の光反射層Rより半ピッチずれたラインアンドスペースパターンを有している。

【0225】従って、図33(b)に示すようにシール剤6を硬化させるためのUV光照射の際、対向基板4側からパネル面にほぼ垂直にUV光UV1を入射すると、アレイ基板16上の光反射層Rで光UV1は反射して当該領域のシール剤6中を往復する。このため、光UV1のエネルギーを無駄なく有効に当該領域のシール剤6の硬化に利用することができ、シール剤6を素早く硬化させて液晶22の劣化を防止することができるようになる。同様にして、アレイ基板16側からパネル面にほぼ垂直にUV光UV2を入射させると、対向基板4上の

光反射層R Uで光UV2は反射して当該領域のシール剤6中を往復する。このため、光UV2のエネルギーを無駄なく有効に当該領域のシール剤6の硬化に利用することができ、シール剤6を素早く硬化させて液晶22の劣化を防止することができるようになる。

【0226】上述のようにUV光UV1、UV2をパネル両面から照射させるのに対し、パネル面に対して斜めにUV光UV3を照射させるようにしてもよい。この場合には、パネルを透過してしまう光も存在するが、光反射層R L、R Uで1回あるいは複数回反射してシール剤6中を通るUV光の量を増やすことができるので、光UV3のエネルギーを無駄なく有効にシール剤硬化に利用することができ、シール剤6を素早く硬化させて液晶22の劣化を防止することができるようになる。なお、本実施の形態では、光反射層R L、R Uのラインアンドスペースパターンの長辺がUV光源の移動方向（図108(a)に示した移動方向211と同じ）にほぼ直交するので、パネル面の法線とUV光源の移動方向とで作られる面内でパネル面に斜めに光UV3を照射することが、照射エネルギーを有効に利用する観点から望ましい。さらに望ましくは、UV光源の移動方向を軸にして前記面を若干傾けて、光UV3が液晶表示部中央から表示部外方へ照射されるようにする。こうすることにより、シール剤6近傍の液晶表示部側へのUV光の漏れを低減させ、液晶22の劣化をより確実に抑えることができるようになる。

【0227】図33(c)は、比較のため従来の液晶表示装置におけるUV照射を示している。従来の液晶表示装置の構成でパネルにほぼ垂直な方向からUV照射UV4、UV5を行っても、光UV5のようにゲートバスラインGやデータバスラインDの外部引き出し電極174、176で反射する他は全て、光UV4のようにシール剤6を1度透過するだけであった。従って、従来の液晶表示装置ではUV光のエネルギーを十分にシール剤硬化に利用できないことが分かる。

【0228】本実施の形態は種々の変形が可能である。本実施の形態では、光反射層Rがラインアンドスペースパターンを有しているものとして説明しているが、例えば、アレイ基板16でのシール剤6の接触領域のゲートバスラインGやデータバスラインDの幅を大きくして光反射層R Lとし、光反射層R L間の隙間を埋めるように、対向基板4のシール剤6接触領域に光反射層R Uを形成してもよい。

【0229】また、反射型液晶表示装置の場合は図34に示すように、アレイ基板(反射基板)上でシール剤6の接触領域を通過する複数のバスライン間に光反射層Rを設けるようにすることができます。こうすることにより反射型液晶表示装置においても、UV光の反射光を利用して光エネルギーを無駄なく有効にシール剤硬化に利用することができ、シール剤6を素早く硬化させて液晶22の

劣化を防止することができるようになる。

【0230】また、図35に示すように、シール剤6ヘレンズ32により集光したUV光を照射し、液晶22にUV光が入射しないようにすることも有効である。これによれば、UV光のエネルギーを集中してシール剤6に与えることができるのでシール剤硬化の時間が短縮でき、液晶22の劣化を防止することができる。

【0231】なお、上記実施の形態では、光反射層R上に直接シール剤6を接触させて硬化させているが、シール剤6の密着性を向上させるため光反射層R上に例えばシリコン酸化膜(SiO₂膜)等を形成し、シール剤6はシリコン酸化膜と直接接觸させるようにしてもらおんよい。

【0232】【実施例1】次に、本実施の形態に基づく液晶表示装置の製造方法の実施例について図32及び図33を用いて簡単に説明する。なお、本実施例による液晶表示装置の製造方法は、シール剤6硬化のためのUV照射による液晶22の劣化を低減させて、セル工程での液晶滴下を確実に行えるようにする点に特徴を有しているので、他のガラス基板上に配線パターンやスイッチング素子等を形成するアレイ工程や、配向処理やスペーサーの配置等のセル工程、あるいはドライバICの取付けやバックライト装着などを行うモジュール工程のうち従来と同様の工程についてはその説明は省略する。

【0233】まず、例えば50mm×60mm×0.7mmのガラス基板からなるアレイ基板16を用いる。アレイ基板16上にゲートバスライン及びデータバスラインを形成する際、基板全面に形成されたバスライン形成金属層をバーニングしてシール剤6の接触領域に光反射層R Lを形成する。バスライン形成金属としては、Cr、Al、Ti等を用いることができる。光反射層R Lの幅は100μmで、隣り合う光反射層間の幅も100μmのラインアンドスペースパターンである。一方、対向基板4側には、例えばブラックマトリクス(BM:遮光膜)を形成する際、基板全面に形成されたBM形成金属層をバーニングしてシール剤6の接触領域に光反射層R Uを形成する。BM形成金属としてCrを用いることができる。光反射層R Uは、対向基板4がアレイ基板16と貼り合わされた際、光反射層R Lのラインアンドスペースパターンより半ピッチずれるようにバーニングされている。従って、光反射層R Uも、その幅は100μmであり、隣り合う光反射層間の幅も100μmのラインアンドスペースパターンである。

【0234】アレイ基板16及び対向基板4のシール剤6の接触領域より内側の基板面に配向膜(AL3506)を形成し、TN(ねじれネマチック)液晶層が作成できるようにラビング処理を行った後、UVシール剤(協立化学製)6を対向基板4に塗布する。図示しない滴下注入装置でアレイ基板16上に液晶(FT-5082)22を滴下した後、両基板4、16を貼り合せる。

アレイ基板16及び対向基板4の両側からシール剤6の塗布領域に対し、60mW/cm²の照射エネルギーでUV光を照射してシール剤6を硬化させてパネルが完成する。

【0235】これに対し、比較例として光反射層RUを形成しない対向基板にUVシール剤6を塗布して、液晶滴下後両基板を貼り合わせて対向基板側だけからUV照射を行ってシール剤6を硬化させる。この場合に十分な硬化を生じさせるには、上記実施例によるUV照射時間のほぼ2倍の時間を要する。

【0236】上記2つのパネルについて、所定領域のイオン密度を測定したところ、本実施例の方が比較例より格段にイオン密度が小さく、本実施の形態の構成により液晶へのダメージを大幅に減少できることが確認できた。

【0237】本発明の第9の実施の形態による液晶表示装置及びその製造方法を図36乃至図39を用いて説明する。図36は、液晶表示パネル端部のシール剤をUV照射している状態を示している。アレイ基板16及び対向基板4間に液晶を封止する光硬化性材料のシール剤6が設けられている点については本実施の形態と従来の液晶表示装置とは同様である。しかし本実施の形態は、シール剤6を硬化させるためのUV光UV6が偏光光である点に特徴を有しており、さらに、液晶22が偏光を有する光UV6を照射されても特性が劣化しない材料である点に特徴を有している。

【0238】図37は、2種類の液晶材料(A)、(B)の特性を示しており、縦軸は吸光度を表し、横軸は波長を表している。液晶材料(A)の△n(光学異方性：異常光線と常光線の屈折率の差)は、液晶材料(B)のそれより小さい。図37に示すように、液晶材料(A)、(B)は共に短波長側で高い吸光度を示し、その吸収端は相対的に△nが大きい液晶材料(B)ほど高波長側となることが確認されている。この吸収端は波長が300nmから360nm程度の紫外線領域にある。従って、屈折率が大きい液晶材料ほど紫外線を吸収して特性変化を生じ易い。つまり、液晶材料の屈折率を小さくさせた状態でUV光を照射すれば、UV光の照射による特性劣化に対する耐性を向上させることができる。

【0239】例えば図38に示すように、照射する偏光UVの偏光軸46が液晶分子182の短軸方向に一致するようにしてUV照射されれば、液晶22の劣化を抑制することができる。図38(a)は、液晶表示パネルを対向基板側から見た一部領域を示している。アレイ基板16側に形成された配向膜は図中破線の矢印180に示すように左上から右下に向けてラビング処理が施されており、対向基板4側に形成された配向膜は図中実線の矢印178に示すように右上から左下に向けて、矢印180にほぼ直交する方向にラビング処理が施されている。

このラビング処理により、図38(b)に示すように液晶22の液晶分子182は両基板4、16の基板面近傍で長軸をラビング方向に向けて90°ねじれて配列する。このようなねじれ配向においては、図38(c)に示すように、図38(b)に示した両基板面近傍での液晶分子182の長軸の向きの中間に直交する方向に偏光軸46を有するUV光を照射すれば、液晶の屈折率を小さくさせた状態での照射が実現できる。

【0240】図39を用いて他の液晶分子の配列に適用した例について説明する。図39(a)は、液晶表示パネルを対向基板側から見た一部領域を示している。アレイ基板16側に形成された配向膜は図中破線の矢印180に示すように図中上から下に向けてラビング処理が施されており、対向基板4側に形成された配向膜は図中実線の矢印178に示すように下から上に向けてラビング処理が施されている。このラビング処理により、液晶22の液晶分子182の長軸は基板に垂直な面内に含まれる配列となる。このような配向においては、図39(b)に示すように、液晶分子182の長軸の向きに直交する方向に偏光軸48を有するUV光を照射すれば、液晶の屈折率を小さくさせた状態での照射が実現できる。

【0241】[実施例2]実施例1と同様のガラス基板を用いて同様の液晶滴下によるパネルを作製した。配向膜のラビング方向は図39(a)に示すようなアンチパラレル方向とし、ホモジニアス液晶セルとしている。液晶の長軸方向に偏光軸を有する偏光UVを照射した液晶パネルと、液晶短軸方向に偏光軸を有する偏光UVを照射した液晶パネルとを作製した。所定領域で比較したところ、液晶短軸方向に偏光軸を有する偏光UVを照射した液晶パネルの方が電圧保持率が高く、イオン密度が小さいことが確認された。このように本実施の形態によれば、無偏光のUV光を照射する場合と比較して液晶22の劣化を抑制することができるようになる。

【0242】次に、本発明の第10の実施の形態による液晶表示装置及びその製造方法について図40乃至図42を用いて説明する。図40は、例えば誘電異方性が負の液晶22を滴下注入して、垂直配向膜により垂直配向させた状態を示している。この場合は液晶分子182の長軸がシール剤6を照射するUV光UV7の照射方向にほぼ平行になるため、液晶22が水平配向している場合と比較して、照射するUV光に対する偏光方向依存性を小さくできる。このため、光UV7は無偏光にすることができる。

【0243】また例えば、誘電異方性が正の液晶22を使用した液晶表示パネルを製造する場合には、図41(a)に示すように、表示領域主要部には水平配向用の配向膜50を形成し、シール剤6近傍には配向膜50とは別に、液晶を垂直配向させる垂直配向膜52を形成する。こうすることにより、シール剤6の硬化のためのU

V照射において、漏れ光がシール剤6近傍の液晶22に入射しても、液晶分子182の長軸がUV照射光の照射方向と平行になっているため偏光方向依存性が少なく、従って無偏光のUV光でも液晶劣化を抑制することができるようになる。

【0244】図41(b)は変形例の構造を示し、シール剤6近傍まで水平配向用の配向膜50を形成し、シール剤6近傍の配向膜50上に、新たに垂直配向用の配向膜52を形成している。また、図41(c)は、別の変形例の構造を示し、シール剤6近傍まで垂直配向用の配向膜52を形成し、シール剤6近傍を除き、配向膜52上に、新たに水平配向用の配向膜50を形成している。

【0245】またさらに、誘電異方性が正の液晶22の場合には、図42に示すような構成を取ることにより、無偏光のUV光が照射されても液晶の劣化を抑えることができるようになる。図42(a)は、シール剤硬化のためのUV照射の際、電圧供給源54によりアレイ基板16上のシール剤6近傍の表示電極14と対向電極4の共通電極との間に電圧を印加して、シール剤6近傍の液晶分子182を垂直に配向させておくようにしたものである。このようしても、シール剤6の硬化のためのUV照射において、漏れ光がシール剤6近傍の液晶22に入射しても、液晶分子182の長軸がUV照射光の照射方向と平行になっているため偏光方向依存性が少なく、従って無偏光のUV光でも液晶劣化を抑制することができるようになる。

【0246】またさらに、図42(b)に示すように、予めシール剤6近傍のアレイ基板16上に画素電極14とは電気的に絶縁された別の電極58を形成し、シール剤6近傍の対向基板4上には共通電極8とは電気的に絶縁された別の電極60を形成するようにしておき、電極58及び60は駆動用電源56に接続される。

【0247】シール剤6硬化のためのUV照射の際は、駆動用電源56により電極58、60間に電圧を印加してシール剤6の液晶分子182を垂直に配向させる。UV照射の漏れ光がシール剤6近傍の液晶22に入射しても、液晶分子182の長軸がUV照射光の照射方向と平行になっているため偏光方向依存性が少なく、従って無偏光のUV光でも液晶劣化を抑制することができるようになる。図41及び図42(b)の構成によれば、ノーマリホワイト型の液晶表示装置に用いるとき配向膜52間、あるいは電極58、60の領域は表示領域の額縁部として機能することができる。

【0248】【実施例3】実施例1と同様のガラス基板を用いて同様の液晶滴下によるパネルを作製した。TN液晶セルを形成するように配向膜をラビングした。両基板を貼り合わせてシール剤6にUV光を照射する際、図42(b)に示すような電極58、60に5V(30Hz)の矩形波を印加して電極58、60間の液晶22を垂直に配向させてシール剤6の硬化を行った。その結

果、電圧を印加しない場合に比較して電圧保持率、イオン密度ともに良好な特性を示した。

【0249】次に、本発明の第11の実施の形態による液晶表示装置及びその製造方法について図43乃至図55を用いて説明する。なお、第1乃至第10の実施の形態と同一の作用機能を有する構成要素には同一の符号を付してその説明は省略する。本実施の形態は、狭額縁を実現することを目的としており、反射型LCDや、アレイ側にCFを形成する技術と組み合わせることで大きな効果を奏する。また、この技術は高分子分散型液晶表示装置(PDLC)の製造プロセスにおける滴下注入法に適用可能である。近年、液晶分子と同様な屈折率を有する高分子にネマティック液晶を分散保持させた高分子分散型液晶を用い、これを挟む2枚の基板間に電圧を印加してスイッチングを行うことで、従来のような偏光板を用いて高輝度の画像表示を行えるPDLCが提案されている。このPDLCの製造方法としては、例えば液晶と重合性材料の均一溶液を作り、液晶パネルに充填させた後、光による重合により相分離し相分離構造を形成する方法等がある。

【0250】一般に液晶のポリマー化とシール剤の硬化に必要な感光量や感光波長は異なるので、光硬化性樹脂のシール剤に照射すべきUV光を液晶に照射してしまうと、液晶は不適当に感光してしまう。本実施の形態ではこれを防止する構成及び方法について実施例を用いて説明する。滴下注入法をPDLCパネルの製造工程で用いる際、以下に示す技術を導入することにより、パネルの狭額縁化を実現し、且つ簡単なプロセスで高分子分散型液晶表示装置を製造できる製造ラインを実現することができる。

【0251】既に上記実施形態で説明したが、滴下注入法においてパネルの狭額縁化を実現するには、カラーフィルタ(CF)側のBM額縁部にシール剤を形成することが必須である。BM額縁部下方のシール剤が十分硬化できるように、本実施の形態ではアレイ基板側から光を照射する。アレイ基板側に形成した複数の配線で光の回り込み現象を生じさせ高い効率で光をシール剤中に伝達できる。以下、実施例に基づいて説明する。

【0252】【実施例4】実施例4について図43乃至図46を用いて説明する。対向基板4に塗布したUV硬化型のシール剤6を光硬化させるためには、必ずしもシール剤6の全領域にUV光を照射しなくともよい。シール剤6に入射した光は散乱したり内部反射したりして照射領域以外に回り込むからである。光の回り込みが期待できる距離はおよそ200μm程度である。従って配線78の幅(L)が400μm程度であれば、配線78の両エッジからの光の回り込みの効果によりシール剤6は十分硬化できる。

【0253】また、狭額縁パネルを実現するには、シール剤6の基板との接觸領域が表示領域周囲のBM額縁部

108内に一部もしくは全部が重なるようにシール剤6を塗布する必要が生じる。一般にBM額縁部108は、CFが形成される対向基板4側に低反射クロム(Cr)膜や黒色樹脂を成膜して形成される。BM額縁部108での光の透過率は極めて小さいので、BM額縁部108下と重なるシール剤6にUV光を照射させるため、アレイ基板16側からシール剤6直下の配線78を介してUV照射を行う。

【0254】図43(a)は一実施例であって、液晶パネルの端部一部断面の概略を示している。図43(b)はアレイ基板面に向かってパネル端部を見た部分平面図である。透明ガラス基板のアレイ基板16のシール剤6の接触領域には、TFT(薄膜トランジスタ)やゲートノードラインバスラインの形成金属を用いた配線78が形成されている。図43の例では、シール剤6の塗布方向に沿って延びる配線78が複数並行に形成されている。配線78の幅(L)は上述の通り約400μmである。配線間の間隙の幅も約400μmである。シール剤6は、複数の配線78上でアレイ基板16と接触している。シール剤6の他端はBM額縁部108が形成された対向基板4に接触している。シール剤6他端の接触領域は約80%程度がBM額縁部108と重なり合っている。両基板間に液晶22が封止されている。このような構成において、アレイ基板16側からUV光UV8を照射すると、光UV8は配線78でシール剤6内に回り込み、さらにBM額縁部108で反射され、一部はさらに配線78裏面で反射してシール剤6内に拡散してシール剤6全体を十分硬化させることができる。

【0255】図44は図43(b)に示した配線78の変形例を示している。図43(b)に示した配線78がストライプパターンであるのに対して、図44に示した配線79は複数の配線を直交させて交差領域の間に複数の矩形の光透過窓が形成された構造を有している。この例でも配線幅(L)は400μmである。図45に示す配線80も配線78の変形例であり、シール剤6の接触領域間に形成された2本の配線に複数の配線が掛け渡された形状をしている。各配線の幅(L)は400μmである。図46は、図43(a)に示したパネルの変形例を示している。シール剤6の対向基板4側の接触領域が全てBM額縁部108と重なっている。この場合でもアレイ基板16側からUV光を照射することによりシール剤6を十分硬化させることができる。

【0256】【実施例5】実施例5について図47及び図48を用いて説明する。既に上記実施の形態でも説明したが、ガラス基板を透過してくる紫外線で特に液晶を劣化させる輝線ピークはj線(313nm)およびi線(365nm)である。カラー・フィルタ側からのUV入射の場合は、CF色版はj線、i線を殆ど透過させず、BMはj線、i線を全く透過させない。つまり、透過型液晶表示装置のアレイ基板16側からUV光を入射させ

る場合には、カラー・フィルタをアレイ基板16側に形成することで液晶22の劣化を防止することができる。また、反射型液晶表示装置の場合には反射電極がある程度遮光の役割を果たすことができる。

【0257】図47(a)は一実施例であって、液晶パネルの端部一部断面の概略を示している。図47(b)はアレイ基板面に向かってパネル端部を見た部分平面図である。図47に示すパネルは、アレイ基板側の画素形成領域にCF82を形成している。従って、UV光のうち少なくともj線とi線をカットして液晶22の劣化を防止することができる。図48は、反射型液晶表示パネルを示しており、反射電極83をj線とi線をカットするUV遮光膜として利用することができる。反射電極は、アレイ基板面の液晶を充填する側に形成されていてもかまわない。

【0258】【実施例6】実施例6について図49を用いて説明する。光硬化性の液晶23を使用する場合、液晶23に対する光の照射条件とシール剤6に対する照射条件は異なってくる。本実施例では、シール剤6に照射するUV光UV9は1000mJ/cm²程度の照射エネルギーである。また、液晶23を照射するUV光UV10は、CFなしの状態で2000mJ/cm²程度の照射エネルギーである。シール剤6を硬化させるUV光UV9はアレイ基板16側から配線78等を介して照射する。液晶23をポリマー化させるUV光UV10は、対向基板4側から照射する。この照射時にカラー・フィルタはいずれの基板に形成されていてもよい。このように別個の光源を用いて2つの照射条件を切り分けて使うことによりそれぞれ最適の硬化を行わせることが可能になる。

【0259】【実施例7】実施例7について図50を用いて説明する。液晶表示装置の表示性能に直接影響する液晶23のポリマー化を先に行うこと、シール剤6を硬化させる際のUV光の漏れ光や光の回り込みにより不当に液晶23の硬化が開始されるのを防止できる。先に液晶23を硬化させることにより未硬化のシール剤6からの汚染を抑えることができる。また、液晶に光重合性を持つ材料または光重合性樹脂を混合した液晶材料を行い、シール剤に熱硬化性材料を用いるようにしてもよい。この場合には、2枚の基板を貼り合わせた後、液晶にUV光を照射して硬化させ、その後シール剤の熱硬化を行うようにすればよい。このようにしても液晶を先に硬化させるため未硬化のシール剤からの汚染に対して長時間耐えることができるようになる。

【0260】【実施例8】実施例8について図51乃至図53を用いて説明する。シール剤6に可視光感光性の樹脂を用いていることを特徴とする。従って、図51においてまずシール剤6を可視光NL1で照射して硬化させる。このとき可視光NL1の漏れ光が液晶23に照射されても液晶23の感光域から外れているので問題は生

じない。次いで液晶23をUV光UV11を照射して感光させる。このときの漏れ光がシール剤6に照射されても、既に硬化が完了しているので問題は生じない。図52は、反射型液晶表示装置等において、アレイ基板16側からシール剤6を可視光NL2で照射して硬化させる。次いで、対向基板4側から液晶23をUV光UV12を照射して感光させるようにしている。図53は、可視光感光性のシール剤6を用いて自然光により硬化を行わせるようにしたものである。

【0261】[実施例9] 実施例9について図54を用いて説明する。図54に示す液晶表示装置は、シール剤6を硬化させるUV光UV13をアレイ基板16側から照射領域を特に制限せずに照射している状態を示している。アレイ基板16の光照射側の面のシール剤6への照射領域以外の領域には、UV光UV13の照射量を減じるフィルタ90が貼り付けられている。液晶23に必要な感光条件と、シール剤6に必要な感光条件の違いが光波長にある場合にはフィルタ90にはバンドパスフィルタを用いて光を調光することができる。液晶23に必要な光条件と、シール剤6に必要な感光条件の相違が光照射量にある場合にはフィルタ90には半透過性のフィルタを用いて光を調光することができる。また、この照射方法によれば、アレイ基板16側からはシール剤6の硬化のためのUV照射を行い、同時に対向基板4側から液晶23に対するUV照射を行うことができる。

【0262】[実施例10] 実施例10について図55を用いて説明する。図55は、照射光を拡散させるための凹凸が表面に形成されたガラスやフィルムの光拡散部材92を照射光源と貼り合わせ基板62との間に挿入した状態を示している。こうすることにより、上記実施例で既に説明した光の回り込み現象を効果的に生じさせることができるようにになる。

【0263】次に、本発明の第12の実施の形態による液晶表示装置の製造方法を図56を用いて説明する。本実施の形態では、シール剤の剥離を防止してセル工程での液晶滴下を確実に行える液晶表示装置の製造方法について説明する。

【0264】図56は本実施の形態による液晶パネルのセル工程における液晶の滴下注入を示している。図56(a)は、シール剤6内のアレイ基板面上に、隣接する液滴間の拡散距離がほぼ等しくなる位置にほぼ同量の液晶184の滴下を行い、その外周部で液晶拡散が疎となる位置に液晶184の滴下量以下の液晶188を滴下した状態を示している。各液晶184の滴下位置に対して、隣り合う液晶184の滴下位置までの距離は、図示のように $d_1 = d_2 = d_3 = d_4 = d_5 = d_6$ という関係を有している。図56(b)は、アレイ基板とCF基板とを貼り合わせた後の液晶184、188の拡散状態を示している。図56(b)に示すように、本実施形態では基板貼り合せ後の液晶拡散での間隙186が小さく、液晶拡散は5分以内という短時間で終了できる。そのため、従来のようなシール剤の剥離が生じることはなく液晶漏れも生じない。

【0265】このように本実施の形態は、アレイ基板16上の複数箇所に液晶を滴下してからCF基板4と貼り合わせる工程を有する液晶表示装置の製造方法において、液晶184、188の滴下量を滴下箇所により変化させることを特徴としている。また、液晶184の滴下位置を決める滴下パターンと、液晶188の滴下位置を決める滴下パターンとを組み合わせて液晶を滴下することを特徴としている。本例では、液晶184の滴下位置を決める滴下パターンにより、隣接する液滴間の拡散距離がほぼ等しくなる位置にはほぼ同量の液晶の滴下が行われ、液晶188の滴下位置を決める滴下パターンにより、液晶184の外周部で液晶拡散が疎となる位置に液晶184の液晶量以下の液晶が滴下される。

【0266】以上説明したように、液晶の滴下量、滴下パターンを2種以上に分けて液晶滴下を行うことにより液晶表示パネル面内での液晶を迅速にほぼ一様に拡散させることができる。液晶液滴は基板貼り合せ時に円形状に拡散するが、隣接する液滴間の拡散距離がほぼ等しくなる位置に液晶を滴下すれば、隣合う液滴同士の干渉は最小となり、シール剤の枠形状で画定される四角形領域に対して円形状の液晶液滴で密充填させることができるようになる。さらに、滴下位置の外周部に液晶拡散が疎となる領域ができる場合には、その領域に見合った量の液晶を補填するようになる。これにより液晶の拡散はコーナ部とパネル面内ではほぼ一様に早くなり従来のような不具合の発生を防止することができるようになる。

【0267】次に、本発明の第13の実施の形態による液晶表示装置を図57乃至図60を用いて説明する。本実施形態は、滴下注入法による液晶表示装置の製造方法に関し、特にMVA型の液晶パネルの製造方法に用いて好適である。まず、本実施の形態による滴下注入の概略を図57を用いて説明する。図57は基板面に垂直な方向で切った基板断面を示している。一方の基板(例えばTFT基板)16上に液晶滴下を行い、光硬化性材料からなるシール剤を介して一方の基板16と他方の基板とを貼り合わせ、シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、図57に示す本実施の形態は、液晶滴下の際に液晶192、194を2回以上に分けて滴下すると共にそれら液晶192、194は成分(構造・組成比など)が異なることを特徴としている。すなわち、本実施の形態では、大気圧下で配向膜190面に接触する液晶192と真空中で配向膜190面に接する液晶194が異なる材料で構成されている。これを実現するため液晶の滴下注入の際、基板16に1回目は信頼性のより高い液晶192を滴下して配向膜190と接触させ、2回目以降は1回目より信頼性がやや劣る液晶194を、1回目に滴下した液晶192

の滴下領域内（同一基板側）に重ねて滴下する。

【0268】また、図58に示すように、3回目以降に信頼性がより高い液晶192若しくは別の液晶196を滴下し、信頼性がより高い液晶192又は196で信頼性がやや劣る液晶194を覆い囲むようにしてもよい。

【0269】あるいは、図59に示すように、基板16に信頼性の高い液晶192を1回目として滴下して配向膜190と接触させ、2回目以降に1回目より信頼性がやや劣る液晶194を1回目に滴下した領域内（同一基板側）に滴下し、基板16に対向する対向基板31の相対する領域に信頼性が高い液晶192、又は196を滴下して貼り合せるようにしてもよい。

【0270】ここで、液晶の信頼性は、液晶材料が有する特性値（物性値）と関係しており、概ね次のような関係が成立する。すなわち、信頼性がより高い液晶192、196は、信頼性がやや劣る液晶194より液晶の比抵抗が高いこと、及び信頼性がより高い液晶192、196の比抵抗は $10^{14}\Omega\cdot\text{cm}$ 以上であることを満足する。また、信頼性がより高い液晶192、196の誘電率異方性の絶対値($|\Delta\epsilon_{192}|$ 若しくは $|\Delta\epsilon_{196}|$)が、信頼性がやや劣る液晶194の誘電率異方性の絶対値($|\Delta\epsilon_{194}|$)よりも小さいことが望ましい。若しくは、信頼性がより高い液晶192、196の平均誘電率 ϵ_{192} 、 ϵ_{196} 〔平均の誘電率： $\epsilon = (2\epsilon_{\perp} + \epsilon_{\parallel})/3$ 〕が5以下であることが望ましい。

【0271】2つの液晶の信頼性を顕著に異ならせる例としては、例えば図59において、信頼性がより高い液晶192、196として強い極性基を持たないニュートラル材料（中性成分）を滴下し、信頼性がやや劣る液晶194としてフッ素などの極性基を有する液晶材料（P型・N型材料）を滴下すればよい。

【0272】また、1回目に滴下した液晶192の上に、2回目の液晶194を滴下して、大気圧下では液晶192が配向膜面に接しないことが必要となる。そこで、信頼性がより高い液晶192、196の表面張力が、信頼性がやや劣る液晶194の表面張力より小さいようにすることが望ましい。

【0273】以上の液晶表示装置の製造方法において、基板16面での液晶滴下位置により滴下液晶が異なる構造・成分組成比となるようにしてもよい。図60は液晶が滴下された基板16上面を示している。図中○印は液晶滴下位置を示している。斜めのハッキングが施された○印に対して、白○印は信頼性が低い液晶の比率が高い液晶滴下位置を示し、縦横のハッキングが施された○印は信頼性が高い液晶の比率が高い液晶滴下位置を示している。図60に示すように、2枚の基板を貼り合せるメインシール6に近い液晶滴下位置の液晶は、基板中央部より信頼性がより高い液晶192、196の比率が高くなるようにする。メインシール6と接触したりUV照射を受けたりする液晶滴下位置にはそれらに対する耐性

が高いものが必要となるからである。

【0274】さらに、上述の液晶表示装置に、熱処理によるアニール處理及液晶層の流動による液晶層の均一化を行うようにしてもよい。液晶材料が液晶層領域において部分的に異なると光学的特性がバラつくことになり、表示ムラが発生するためである。以上説明した製造方法は、垂直配向膜とN型の液晶材料を用い、基板上に土手や突起状の構造物を有するMVAモードの液晶表示装置の製造方法に用いて好適である。

【0275】次に、本実施の形態による液晶表示装置の製造方法を実施例により説明する。

〔実施例1〕透明電極材料であるITO（インジウム・ティン・オキサイド）を用いて、電極面積がそれぞれ 1cm^2 となる電極X、電極Y、電極Zを形成した長さ50（mm）、幅6.0（mm）、厚さ0.7（mm）のガラス基板A、Bを用意する。基板A、Bの対向面に土手材S1808（レジスト）を塗布してバターニングし、突起物を形成する。アッシング処理後、配向膜JALS-684（JSR製）を両基板A、Bに形成する。基板AにUVシール材（共立化学製）を塗布し、基板Bにスペーサ（ミクロパールSP-204：4.0μm）を散布する。

【0276】滴下注入装置により、基板A側の電極Yだけに $\Delta\epsilon=-2.1$ の液晶を滴下し、次いで基板A側の電極X、Y、Zに対して $\Delta\epsilon=-3.8$ の液晶を滴下し、 6.0mW/cm^2 の照射エネルギーでUV光をメインシールに照射して基板A、Bを貼り合わせる。次いで偏光板をクロスニコルに配置してMVAモードの液晶セルを完成させる。液晶セルに電圧3.5Vを印加し、中間調における表示ムラを確認した。その結果、電極X、Zでは滴下跡状のムラが有るのに対し、2度滴下したY電極部分はムラがない良好な配向状態が得られることを確認した。

【0277】〔実施例2〕実施例1のガラス基板を用いて、土手、突起物形成、配向膜形成、シール塗布、UV照射、スペーサ散布は同様にして滴下液晶セルを作製する。滴下注入装置により、基板A側の露極Yだけに $\Delta\epsilon=0$ であるニュートラル液晶を滴下し、次いで基板A側の電極X、Y、Zに対して $\Delta\epsilon=-4.5$ の液晶を滴下し、 6.0mW/cm^2 の照射エネルギーでUV光をメインシールに照射して基板A、Bを貼り合わせる。この基板に対して偏光板をクロスニコルに配置し、MVAモードの液晶セルを完成させる。貼り合わせ後、液晶セルを十分にアニールし、超音波処理を行うことで液晶セル内を均一組成とした。液晶セルに電圧3.5Vを印加し、中間調における表示ムラを確認した。その結果、電極X、Zでは滴下跡状のムラが有るのに対し、2度滴下したY電極部分はムラがない良好な配向状態が得られることを確認した。

【0278】以上説明したように、本実施の形態による

液晶表示装置の製造方法によれば、滴下注入パネルにおける表示ムラを改善することが可能となり。液晶パネルの表示品質を向上させることができる。

【0279】本発明の第14の実施の形態による液晶表示装置及びその製造方法を図61乃至図66を用いて説明する。液晶は、通常、ディスペンサーでパネルの複数箇所に滴下する。滴下した液晶22は図61に示すように、時間経過と共に滴下点198から同心円状に拡散する。図112に示すように、複数の滴下した液晶の拡散先端部は重なり合って波打ち形状になる。このため、長方形の枠状に形成されているメインシールの角部は他の部位に比べて液晶の到達が遅れてしまい、真空泡が残つたり、完全に液晶が拡散するまでに長時間を要したりする。液晶の拡散に長時間を要するとシール剤と液晶とが接する時間も長くなるので液晶の汚染も生じやすくなる。

【0280】そこで、本実施の形態では、基板上に液晶の拡散速度を制御する突起物を設けるようにしている。突起物の基板上で所定の配置密度、配置形状で基板上に分布させることにより液晶の拡散速度と方向を制御する。なお、所定のセルギャップを得るために設けられる柱状スペーサーを液晶の拡散速度を制御する突起物に流用することも可能である。

【0281】滴下した液晶は基板上を全方向に均等に拡散するが、液晶が突起物に接触するとその拡散先端部は突起物を回り込んで拡散する。このため、突起物の存在する方向の拡散速度は、突起物のない方向の拡散速度より相対的に遅くなる。従って、基板上に所定の分布密度、分布形状で突起物を複数配置することにより基板上に滴下した液晶の拡散先端部の拡散形状を制御することができる。

【0282】図62は、液晶表示パネルに形成された1画素とそこに滴下された液晶の拡散状態を示している。図中縦長の長方形形状を有する画素電極のほぼ中央に液晶が滴下されたものとする。画素電極14外周囲には画素電極14外形の長辺の中心から長辺に沿う比較的長い構造物250aと、短辺の中心から短辺に沿う比較的の短い構造物250bが形成されている。画素電極14の対角線方向には構造物は形成されていない。このような構造物250a、250bを設けることにより、滴下された液晶22の各部分への拡散速度が縦横方向に比較して対角線方向に早くなる。そのため、拡散する液晶の先端部の輪郭形状は円形から方形へと変化する。従って、図63に示すように、構造物250a、250bをパネル全体に配置することにより、拡散する液晶先端部の輪郭形状を枠状のメインシール6形状とほぼ相似形にすることができるようになる。また、構造物の配置形状、配置密度を制御すれば、拡散速度の制御も可能である。また、所定のセルギャップを構造物252に代えてピーズ等のスペーサーを用いることもできる。

【0283】本実施の形態によれば、液晶の広がる方向と速さを制御することができ、メインシール形状に沿って液晶を拡散させることができる。こうすることにより、メインシール角部に残る真空泡の発生を減少させて歩留まりを向上させ、低コストで貼り合わせ精度のよい液晶パネルを製造できる。以下、本実施の形態による液晶表示装置及びその製造方法を実施例を用いて説明する。

【0284】(実施例1) CF基板上に構造物を形成する。構造物は色版を重ねて形成する。また構造物は2種類形成する。1つは図64に示すように、セルギャップを規定するための構造物252であり、他の一つは図65に示すように、液晶の拡散を制御する構造物250a、250bである。セルギャップを規定するための構造物252は、CF基板4全面に形成する。一方、液晶の拡散を制御する構造物250a、250bは、図66に示すように、シール近傍に配置する。本実施例では、図66におけるメインシール6の横方向にはメインシール6の長辺の1/10程度の幅で、縦方向にはメインシール6の短辺の1/10程度の幅でメインシール6内周囲に構造物250a、250bを設けている。

【0285】なお、セルギャップを規定する構造物252の密度は、セルギャップの精度に応じて減らしてもよい。液晶を滴下した後、減圧雰囲気下で2枚の基板を貼り合わせる。加圧状態(大気圧)に戻すと液晶が拡散するが、セルギャップを規定する構造物252が存在するパネル中央部では、滴下した液晶は滴下場所を中心に同心円状に広がる。液晶の拡散を制御する構造物250a、250bが存在する領域に到達すると、液晶は構造物250a、250bによって拡散する方向が制御されて、画素の対角線方向に広がり易くなる。このため同心円状から方形へと拡散先端部の輪郭形状を変化させて拡散し、最終的にはメインシール6とほぼ同等の形状になって拡散していく。この結果、メインシール6に到達する時刻がメインシール6の各場所においてほぼ同一となるため、コーナ部での真空泡の発生を抑えることができる。

【0286】本実施の形態によれば、液晶を均一に拡散させ、シールコーナ部に真空泡残りのないパネルを歩留りよく製造できる。また、上記記載の液晶表示装置の製造方法において、加圧状態直後の滴下液晶の拡散先端部がメインシール6に接しない拡散速度になるよう構造物の配置密度あるいは配置形状を制御することもできる。なお、メインシール6の外側周囲に第1ダミーシール6と第2ダミーシール8とが形成されている場合、基板貼り合わせ後の加圧時に第1ダミーシール6及び第2ダミーシール8間に真空領域が形成されるが、このときの滴下液晶の拡散先端部とメインシール6との間の距離は、第1ダミーシール6と第2ダミーシール8との間の幅と同等かそれ以上であることが好ましい。

【0287】次に、本発明の第15の実施の形態による液晶表示装置の製造方法について説明する。本実施の形態では、基板変形や表示不良を減少させてセル工程での液晶滴下を確実に行えることを目的とし、そのためのガラス基板の真空中での保持方法に特徴を有する液晶表示装置の製造方法について説明する。

【0288】図67は液晶パネル面に垂直な方向に切断した断面を示しており、図67を用いて本実施の形態による液晶滴下及び基板貼り合わせ工程及びその際の基板保持動作について説明する。まず、図67(a)において、平行定盤256上にアレイ基板16を載置する。アレイ基板16には、既に枠状のシール剤6が形成されており、また滴下注入により液晶184がアレイ基板16面に滴下されている。本例では、シール剤6は約20μmの厚みで塗布されている。ディスペンサにて枠状のシール剤6の内方に滴下される液晶の量は、液晶表示パネルを貼り合わせた後のセル厚を考慮して決定される。例えば、枠形状のシール剤6の内壁の縦横の辺の長さが187.4mm×247.7mmであるとすると、滴下すべき液晶量は約280ml程度になる。

【0289】液晶滴下は大気中にて行われる。平行定盤256上面には静電チャック264が設けられているが大気中では動作させず、平行定盤256上のアレイ基板16は位置決めピン(図示せず)等により平行定盤256盤上に載置されている。

【0290】平行定盤256上に載置されたアレイ基板16の直上には、平行定盤258に載置されて機械式保持装置260により保持されたCF基板4が所定距離だけ離れて対向している。平行定盤258上面には静電チャック262が設けられているが大気中では動作せず、従って、平行定盤258上のCF基板4は機械式保持装置260により保持されている。CF基板4面には既に複数のビーズを散布したスペーサ254が付着している。スペーサ254は、ビーズ散布の代わりにCF基板4面から所定の高さの柱状部材を複数形成するようにしてもららんよい。

【0291】次に、以上説明した状態から雰囲気の気圧が 5×10^{-3} torr程度になるまで減圧する。所定の減圧が行われたら、平行定盤256上面の静電チャック264を動作させてアレイ基板16を静電吸着して平行定盤256上に固定する。また、同様にして平行定盤258上面の静電チャック262を動作させてCF基板4を静電吸着して平行定盤258上に固定する。以上の動作により、アレイ基板16及びCF基板4は基板のそりやたわみ等の変形が取り除かれると共に、それぞれの定盤に確実に固定されて次工程の基板貼り合わせ時に基板ずれ等が生じないようにできる。また、静電チャック262、264の動作は、雰囲気中の気圧が 1×10^{-1} torr以下で安定状態になれば開始することができ、アレイ基板16上に形成されたTFT等の回路素子と雰囲

気中の気体との間で放電が生じることはない。

【0292】次いで、アレイ基板16とCF基板4との位置合わせを行った後、図67(b)に示すように、2つの平行平板256、258を近づけてアレイ基板16とCF基板4との貼り合わせを行う。基板貼り合わせ時の加重は、約150kgfである。

【0293】次に、図67(c)に示すように、静電チャック262による吸着を解除して平行定盤258からCF基板4を開放してから雰囲気の気圧を大気圧に戻す。これにより、シール剤6及び、液晶184、スペーサ254を介して対向するアレイ基板16とCF基板4とは大気圧によりさらに加圧されて均一なセル厚を得ることができると共に、液晶184もシール剤6内方で均一に拡散される。次に、図67(d)に示すように、光硬化性樹脂からなるシール剤6に例えばUV(紫外光)照射266を行ってシール剤6を硬化させる。

【0294】以上説明したように本実施の形態による基板保持方法を含む液晶表示装置の製造方法によれば、 10^{-1} torr以下の真空度でも確実に基板を平行定盤上に保持することができる。従って、真空中での基板貼り合わせを前提とする滴下注入プロセスに用いて極めて有効である。さらに、基板貼り合わせ時の圧力を十分高くすることができるので基板を均一に貼り合わせることができるようになる。また、液晶表示パネル内の液晶層に空泡が発生することも防止できる。このため、低コストで貼り合わせ精度に優れた液晶表示パネルを製造することができる。

【0295】次に、本発明の第16の実施の形態による液晶表示装置及びその製造方法について図68を用いて説明する。本実施の形態は、第15の実施の形態で使用した静電チャックで生じ得る基板変形や表示不良を減少させてセル工程での液晶滴下を確実に行えることを目的とし、そのためのガラス基板の真空中での保持方法に特徴を有する液晶表示装置の製造方法について説明する。

【0296】図68は本実施の形態での静電チャックによる基板貼り合わせを説明する図である。図68(a)は例としてアレイ基板16、16'の2枚取り構成のガラス基板268が静電チャック272～278で静電吸着されている状態の平面図を示している。図68(b)は、アレイ基板16とCF基板4との貼り合わせる際の図68(a)に示すA-A線で切断した断面方向から見た状態を示している。

【0297】図68に示すように、ガラス基板268に並列して形成された2枚のパネル形成領域であってアレイ基板16、16'となる領域(以下、アレイ基板16、16'略称する)間に両アレイ基板16、16'を電気的に接続する2つの導電バス292、294が形成されている。なお、本実施形態では導電バスを2カ所に設けているが、これに限らず、1カ所あるいは3カ所以上に設けることも可能である。ガラス基板26

8を静電吸着する静電チャックは、平行定盤上に4つの電極272、274、276、278を有している。4つの電極272～278のうち、電極272、276が正電極を構成し、電極274、278が負電極を構成している。正電極272、276と負電極274、278間には電源2294が接続されている。電源288からの印加電圧により正電極272、276で一方のアレイ基板16面を静電吸着し、負電極274、278で他方のアレイ基板16'面を静電吸着するようになっている。各電極272～278の境界には空隙が設けられている。平面図による図示は省略したがCF基板4側のガラス基板270の静電チャックも上述のアレイ基板16、16'側のものと同様の構成を有しており、正電極280、284、負電極79、286(図示を省略)及びそれらに電圧を印加する電源290が設けられている。

【0298】また、パネル形成領域であってCF基板4となる領域(以下、CF基板4と略称する)が複数形成されたガラス基板270にも、ガラス基板268と同様に、2枚のCF基板4を電気的に接続する導電バス(図示せず)が形成されている。特にCF基板4側の導電膜であるコモン電極はシール剤接着強度の低下や短絡による表示不良を防ぐため表示領域のみに形成されているので、通常CF基板4間は電気的に分離されている。従って、CF基板4間にライン状の導電バスを設けて基板面全体で導通をとれば、1つのCF基板4には同極性の電圧を印加しても基板吸着ができるようになる。

【0299】このような構成の静電チャックに、導電膜が形成されたガラス基板を載せて電極と導電膜の間に電圧を印加して、ガラスと導電膜との間にクーロン力を発生させることによりガラス基板を吸着することができる。図68に示す場合は、ガラス基板268上の導電膜は、アレイ基板16、16'上に形成されている画素電極、ゲート配線、データ配線等である。また、CF基板4が形成されたガラス基板270上の導電膜はコモン電極等である。

【0300】このような静電チャックを用いてアレイ基板16、16'とCF基板4とを貼り合わせるには、アレイ基板16に正電極272、276を接触させアレイ基板16'に負電極274、278を接触させて、正負電極間に所定の電圧を印加してガラス基板268を静電吸着する。このとき、図68(a)、(b)に示すように、導電バス292、294によりガラス基板268のアレイ基板16表面は負(-)に帯電し、アレイ基板16'表面は正(+)に帯電する。このようにすると、1つのアレイ基板16又は16'には同一極性の電荷だけが集まるので、従来のような1つのアレイ基板16内の導電膜に正電荷と負電荷の境界線ができることはない。従って、液晶中の不純物イオンが配向膜上に選択的に吸着されることがないので、液晶パネル表面が2等分され

て輝度が異なってしまう表示不良は発生しない。

【0301】またさらに、アレイ基板16、16'を形成するガラス基板268とCF基板4を形成するガラス基板270とを静電吸着により保持しつつ貼り合わせる際、図68(b)に示すように両基板の対向面に同極性の電圧印加を行うようにすれば、対向する基板同士には同極性の電荷が集まって反発し合い、静電吸着による基板吸着力が弱くなることがなくなるので、基板変形や基板同士の接触を防止することができるようになる。

【0302】次に、本発明の第17の実施の形態による液晶表示装置の製造方法について図69を用いて説明する。本実施の形態も第16の実施の形態と同様に、第15の実施の形態で使用した静電チャックで生じ得る基板変形や表示不良を減少させてセル工程での液晶滴下を確実に行えることを目的とし、そのための真空中でのガラス基板の保持方法に特徴を有する液晶表示装置について説明している。図69は本実施の形態での静電チャックによる基板貼り合わせを説明する図である。図69(a)は例としてアレイ基板16、16'の2枚取り構成のガラス基板268が静電チャックで静電吸着されている状態の平面図を示している。図69(b)は、図69(a)の円形枠内の拡大図を含む電極構造を示している。

【0303】図69に示すように、ガラス基板268に2枚のアレイ基板16、16'(パネル形成領域)が並列して形成されている。ガラス基板268を静電吸着する静電チャックは、平行定盤上に2つの電極部296と297を有している。図69(b)は電極部296の拡大概略図である。図69(b)に示すように、静電チャックの電極部296、楕円形状の正電極300と負電極302と共に歯を交互にかみ合わせて対向するように形成されている。正電極300と負電極302とは電源304に接続されており、電源304により、正電極300からアレイ基板16面を介して負電極302に至る回路に電圧を印加してアレイ基板16面を静電吸着することができるようになっている。

【0304】本実施の形態では正電極300と負電極302との歯状電極の間隙(電極ピッチ)は100～1000μm程度に微細化している。従って、微小間隔で交互にかみ合う両電極間に電圧を印加しても、従来のような境界部は目視では判別できないほど微細になるため、製造された液晶パネルは表示面で一様の表示品質を得ることができるようになる。

【0305】次に、本発明の第18の実施の形態による液晶表示装置及びその製造方法について図70及び図71を用いて説明する。なお、第1乃至第17の実施の形態と同一の作用機能を有する構成要素には同一の符号を用いその説明は省略する。図70は、従来(図70(a))の滴下注入における光硬化プロセスと、本実施形態(図70(b))の滴下注入における光硬化プロセ

スとの比較を示している。両プロセス共、液晶を滴下してからシール剤を塗布して真空排気し（ステップS1）、真空雰囲気中でアレイ基板と対向基板とを貼り合わせる（ステップS2）ところまでは同じである。

【0306】従来では、貼り合わせた基板を大気中に戻し大気圧による押圧（エアプレス）により基板内の液晶を拡散させる（ステップS3）。液晶の拡散を完全にするためさらに数分間基板を放置する（ステップS4）。次いで、シール剤近傍だけにUV光が照射されるように遮光マスクを基板上にセットする（ステップS5）。シール剤硬化のため、UV光源からのUV光をカラーフィルタ側から遮光マスク越しに照射して光硬化プロセスが終了する（ステップS6）。

【0307】これに対し、本実施の形態では、貼り合わせた基板を大気中に戻しエアプレスにより基板内の液晶を拡散させる（ステップS3）のと並行してシール剤硬化のためのUV光をUV光源から照射する（ステップS3'）。このステップS3'は、ステップS3のエアプレス中で、且つ液晶がシール剤およびトランスマスクに到達するまでに実行され、カラーフィルタ側に直接UV光を照射してシール剤の光硬化を行う。エアプレス及びUV照射が終了したら、液晶拡散のために数分間基板を放置して光硬化プロセスを終了する（ステップS4）。

【0308】なお、従来例及び本実施形態ともに基板の配置関係は、上基板側にカラーフィルタの形成された対向基板を配置し、下基板側にアレイ基板を配置している。また、従来例では基板を固定せずに光硬化を行い、本実施形態では下基板を真空チャックで平行平板上に固定させて光硬化を行った。その結果、従来例ではプレス不良により額縁ムラが発生し、また基板のうねりや反りにより7～10μmの位置ずれが発生した。本実施形態では額縁ムラの発生はなく基板位置ずれも3μm以下に抑えることができた。

【0309】次に、本実施の形態で用いた基板貼り合わせ装置について図71を用いて説明する。図71に示すように、基板を真空チャックにより固定するための真空吸着孔74がステージ面上に複数形成された真空ステージ71と、真空ステージ71のステージ面に對向する押圧用平面を有し、当該押圧用平面にエアプレス用の空気吹き出し孔76が複数形成された基板押圧部72とを有している。ステージ面と基板押圧部72の押圧用平面との対向距離を変えるように基板押圧部72は、図中上下方向に移動可能になっている。なお、真空ステージ71の代わりに、静電チャックを備えたステージを用いてももちろんよい。また、基板押圧部72には、第6の実施の形態で説明したと同様のUV発光源66が取り付けられており、エアプレス中にシール剤6にUV光を照射することができるようになっている。

【0310】以上の構成により、アレイ基板16を真空吸着孔74（もしくは静電チャック）で真空ステージ7

1上に吸着させて固定し、基板押圧部72の空気吹き出し孔76から対向基板4面にエアを吹き出してエアプレスにより加圧する。そして、同時にUV発光源66からUV光を照射してシール剤6及びトランスマスクの硬化を行う。この装置によればアレイ基板16が真空ステージ71上で平行固定されているため、非固定側の対向基板4にうねりや反りがあっても熱処理後にアレイ基板16側に沿うように応力が解放されるため位置ずれを小さくすることができる。また対向基板4側からエアプレスにより加圧しながらシール剤6を光硬化させるため、シール剤6は押し返されることがなくなり、プレス不良を防止することができる。

【0311】また、本実施の形態によれば、液晶22がシール剤6及びトランスマスクに到達する前にUV光照射によりシール剤6及びトランスマスクの硬化が行われる。従って、未硬化のシール剤6が液晶22に接触して液晶22を汚染することを防止することができるようになる。また、本実施の形態のように、下基板をアレイ基板16、上基板をカラーフィルタが形成された対向基板4とすることによりカラーフィルタを遮光マスクに用いることができる。

【0312】次に、本発明の第19の実施の形態による液晶表示装置及びその製造方法を図72乃至図78を用いて説明する。本実施形態は、滴下注入法による液晶表示装置の製造方法に関する。まず、図72及び図73を用いて製造方法の概略を説明する。図72は、パネル2枚取りの515（mm）×404（mm）のアレイ基板16の概略を示す斜視図である。アレイ基板16上の2つのパネル領域内に配向処理が施され、それぞれのパネル領域外周には枠状のメインシール306が塗布される。それと共に、2つのメインシール306を所定の空隙で囲むダミーシール308が塗布される。メインシール306及びダミーシール308は熱併用型シール剤を用いている。

【0313】シール剤塗布が終わったら、滴下注入法により液晶22をアレイ基板16上の2つのパネル領域内に滴下する。

【0314】次いで図73に示すように、アレイ基板16とCF基板4とを貼り合せる。CF基板4には予め接着スペーサーが散布されている。この工程は真空中で行われる。次いで、貼り合わせた基板を大気中に戻すと、図74に示す断面図のように、貼り合わされたアレイ基板16とCF基板4間に液晶22が大気圧により拡散する。このとき、メインシール306とダミーシール308との間は真空領域310が形成されるため、真空領域310の基板上の面積に応じて図74に示すように大気による力P、P1が作用する。この力P、P1はメインシールのギャップ出しに利用され、大気による力P、P1を制御することにより所望のギャップ出しをすることができるようになる。例えば、メインシールの粘度が高

いような場合には、図75に示すように図74の場合よりも真空領域310の基板上の面積を広くさせて大きな力P2を作用させるようにしてギャップ出しをすることができる。図76は、真空領域310の基板面上の面積を変えることにより得られる、表示領域中央部とメインシール近傍のセルギャップの差を示している。図76に示すように、真空領域310の基板上面面積を変えることにより、セルギャップ差を制御することができるようになる。

【0315】さらに本実施の形態によれば、真空領域310によりギャップ出しをすることができるため、図77(a)に示すような、メインシール306内に配置しているガラスファイバ等からなる従来のギャップ制御材312を用いる必要がなくなり、パネルサイズやパネル構造の変更に伴ってセル厚が変更になっても容易にギャップ出しができるようになる。またさらに、図77

(b)に示すように、メインシール306内にギャップ制御材312を配置する代わりに、ギャップ高さを規定する土手材314をメインシール306近傍に予め形成しておくことができるようになる。

【0316】またさらに、図78に示すように、基板貼り合わせステージに熱ヒータ板316を取り付けて、メインシール306及びダミーシール308を塗布したアレイ基板16を載置して、CF基板4との貼り合わせを行ってよい。この場合には、シール剤が加熱されてシール硬化が促進されてシール剤の粘度が高くなり、過熱するほどギャップが厚く形成される。従って、基板貼り合わせ直前あるいは基板貼り合わせ時の真空中でシール剤を加熱してギャップ出しの制御を行うことができるようになる。このように本実施の形態によれば、液晶の滴下注入法を用いても良好なセル厚を形成できるようになる。

【0317】本発明の第20の実施の形態による液晶表示装置の製造方法を図79乃至図87を用いて説明する。本実施形態は、滴下注入法による液晶表示装置の製造方法に関する。液晶滴下プロセスにおいてシール剤に真空泡が入っていた場合には、基板貼り合わせ後に液晶が漏れてパネル表示内に真空泡が残り表示不良となる。さらに低中粘度(8万~40万cps)のシール剤ではシール硬化前に基板から遊離してしまい、遊離部位から液晶が染み出してきて表示不良となることがある。また、滴下液晶量が多くセルギャップが厚く形成された場合はパネル端面を削って余分な液晶を抜き取って均一なセルギャップを得るようにしているが、コスト増が避けられないという問題がある。

【0318】本実施の形態では、上記の課題を解決するため、パネル領域周囲にメインシールを形成し、メインシールを所定の空隙で囲むように第1ダミーシールを形成し、メインシール内方と空隙の双方に液晶を滴下するようにしている。

【0319】本実施形態によれば、滴下注入における表示不良が最小限に抑えられ、さらにシール剤の粘度等で発生するシール戻りの問題がなくなり材料の選択が容易になると共にセルギャップを容易に調整できるようになる。

【0320】以下、本実施の形態による液晶表示装置の製造方法を実施例を用いて説明する。

(実施例1) 515mm×404mmの基板に配向処理をしたCF基板と TFT 基板を用いる。図79に示すように、TFT 基板320上にメインシール322を囲むように熱併用型シール剤を塗布して第1ダミーシール324を形成する。さらに、熱併用型シール剤を第1ダミーシールの外周囲にも塗布して第2ダミーシール326を形成する。次に、図80に示すように、メインシール322内方及びメインシール322と第1ダミーシールとの間の領域に液晶328を滴下する。

【0321】次に、図81に示すように、CF基板330に接着スペーサ(図示せず)を散布して、真空中でCF基板330とTFT基板320の貼り合わせを行い大気開放と共にギャップ出しをする。

【0322】このとき従来の液晶パネルの場合、図82(b)に示すようにメインシール322の一部に切り欠き332等が生じていると、切り欠き332を介してメインシール322から液晶が流出し、メインシール322内方に真空泡334が入ってしまい表示不良を引き起こす。

【0323】本実施例では、図82(a)に示すように、メインシール322の一部に意図的に切り欠き332を設けておいて液晶328がメインシール322外方に漏れるようにした。しかしながら、メインシール322及び第1ダミーシール324間に液晶328が入っているため、メインシール322内方に真空泡が入り込むことがなく表示不良にはならない。

【0324】(実施例2) 実施例1のTFT基板320を用い、第1ダミーシール324と第2ダミーシール326との間は空隙の状態で、図83に示すようにTFT基板320とCF基板330とを貼り合せる。CF基板330には予め接着スペーサが散布されている。この工程は真空中で行われる。次いで、貼り合わせた基板を大気中に戻すと、図83に示す断面図のように、貼り合わせたTFT基板320とCF基板330間の液晶328が大気圧により拡散する。このとき、第1ダミーシール324と第2ダミーシール326との間は真空領域が形成されるため、真空領域の基板上の面積に応じて図83に示すように大気による力P、P1が作用する。この力P、P1はメインシール322のギャップ出しに利用され、大気による力P、P1を制御することにより所望のギャップ出しをすることができるようになる。

【0325】(実施例3) メインシール322を低中粘度(8万~40万cps)のシール剤で形成し、第1ダ

ミーシール324と第2ダミーシール326は高粘度で密着性の強いシール剤で形成する。低中粘度(8万~40万cps)のシール剤でメインシール322と第1及び第2ダミーシール324、326を形成させた場合はシール戻りが発生し液晶漏れが生じるが、第1及び第2ダミーシール324、326に密着性の強いシール剤を使用することにより、メインシール322のシール戻りは発生しても液晶漏れ等の表示不良にはならない。

【0326】(実施例4)図84に示すようにメインシール322の一部に切り欠き332を形成する。メインシール322外周に第1ダミーシール324を塗布する。第1ダミーシール324内側の領域全てに液晶を滴下して、真空中でCF基板と TFT 基板の貼り合わせを行う。大気開放と共にギャップを決めた後、120°Cのオーブンに入れシール剤の本硬化を行って完全にシールを硬化させる。このとき、パネル表示内のセルギャップが目標の厚さより0.4μm薄く形成された。

【0327】そこで図85に示す加圧治具336を用い、メインシール322と第1ダミーシール324との間の領域を0.3kg/cm²の圧力で10時間加圧する。この加圧により、メインシール322と第1ダミーシール324との間の領域の液晶328が、図86の矢印で示すように、メインシール322の切り欠き332を通ってメインシール322内方に流入して所定のセルギャップが得られる。

【0328】一方、パネル表示内のセルギャップが目標値より厚い場合には、加圧治具336によりメインシール322内方を加圧する。この加圧により、メインシール322内方の液晶328が、図87の矢印で示すように、メインシール322の切り欠き332を通ってメインシール322外方に流出して所定のセルギャップが得られる。

【0329】以上の通り本実施の形態によれば、滴下注入における表示不良を最小にして歩留まりを向上させることができる。

【0330】次に、本発明の第21の実施の形態による液晶表示装置及びその製造方法について図88を用いて説明する。本実施の形態では、セル工程での滴下注入における液晶滴下量が正確でなくともセル厚のばらつきを抑えることができる液晶表示装置について説明する。図88は本実施の形態による基板貼り合わせについての説明図である。図88(a)は、液晶パネル面に垂直な方向に切断した断面であって基板貼り合わせの途中の状態を示し、図88(b)は、液晶パネル面に垂直な方向に切断した断面であって基板貼り合わせが終了した状態を示している。図中既に説明した構成部材と同一の機能作用を有する構成部材には既に用いたのと同一の符号をしてその説明は省略する。

【0331】図88に示すように、アレイ基板16上にはセル厚を規定するための凸状構造物298がシール剤

6内で表示領域10の外側に枠状に設けられている。また、CF基板4上にもセル厚を規定するための凸状構造物300がシール剤6内方で表示領域10の外側、且つアレイ基板16上の凸状構造物298と対向する位置に枠状に設けられている。

【0332】アレイ基板16の凸状構造物298の内方に、表示領域10内を満たす所要量以上且つシール剤6内を満たすには所要量未満の量の液晶184を滴下する。そして、既に説明した方法により基板貼り合わせを行う。まず、図88(a)に示すように、アレイ基板16とCF基板4とが接近してアレイ基板16側のシール剤6先端部がCF基板4に接触する。さらに押圧力を加えて両基板4、16を近接させるが、この基板貼り合わせの途中においては、凸状構造物298、300間にまだ隙間があるため、当該隙間を通して表示領域10から溢れた余剰液晶184はシール剤6と凸状構造物298、300との間隙部93の空隙94に排出される。

【0333】図88(b)に示す基板貼り合わせが終了した状態では、凸状構造物298、300は互いの先端部が密着して、両者の高さの和で所定のセル厚が決定される。それと共に、間隙部93への余剰液晶184の流出も阻止される。間隙部93内に空隙94が多少存在しても表示領域外であるので問題は生じない。なお、本実施の形態では、凸状構造物298、300をアレイ基板16、CF基板4の双方に形成したが、これに限らず、アレイ基板16側だけ、あるいはCF基板4側だけに所定の高さの凸状構造物を設けるようにしてももちろんよい。

【0334】以上の説明の通り、本実施の形態によれば、液晶滴下量が変動しても余剰液晶184はシール剤6と凸状構造物298、300との間に排出されるためアレイ基板16及びCF基板4同士は凸状構造物298、300の高さまで押圧されることになる。これによりセル厚は凸状構造物298、300の高さによって規定されるので、従来のような液晶滴下量に依存してセル厚が変動してしまう問題は発生しなくなる。すなわち、液晶滴下量が正確でなくてもセル厚のばらつきを抑えることができるようになる。

【0335】次に、本発明の第22の実施の形態による液晶表示装置及びその製造方法について図89を用いて説明する。本実施の形態も第6の実施の形態と同様に、セル工程での滴下注入における液晶滴下量が正確でなくともセル厚のばらつきを抑えることができる液晶表示装置について説明する。図中既に説明した構成部材と同一の機能作用を有する構成部材には既に用いたのと同一の符号を付してその説明は省略する。

【0336】図89に示すように、本実施の形態による表示パネルはシール剤が二重構造になっており、内方のシール剤は図1等に示した四角形の枠状のシール剤6とし、その外側にさらに四角形の枠状のシール剤340を

形成している。そして、内方のシール剤6には、その一部を切り欠いて液晶が流出可能な開放部342が設けられている。

【0337】液晶滴下注入プロセスにより、シール剤6内方を満たす所要量以上あるが、シール剤340内方を満たすには少ない量の液晶を滴下する。次いで、両基板を押圧して基板を貼り合せる。このとき、シール剤6内方で余刺となった液晶は、シール剤6の開放部342からシール剤6とシール剤340との間に流出する。

【0338】以上の説明の通り、本実施の形態によれば、液晶滴下量が変動しても余刺液晶はシール剤6とシール剤340との間に排出されるため、従来のような液晶滴下量に依存してセル厚が変動してしまう問題は発生しなくなる。すなわち、液晶滴下量が正確でなくてもセル厚のばらつきを抑えることができるようになる。

【0339】また、本実施の形態では、シール剤6の開放部342はTFT端子部2が形成されていない辺部344に設けている。基板貼り合わせ後、シール剤6とシール剤340との間の領域で基板を切断するため、開放部342は基板切断後に封止する必要がある。TFT端子部2側の辺部に開放部342を設けた場合には、封止剤がTAB (Tape Automated Bonding) 圧着領域にかかるよう工夫する必要が生じて封止工程が煩雑となる。それに対して、TFT端子部2の形成されていない辺部344側に開放部342を設けることにより封止工程を簡便に行うことができるようになる。

【0340】次に、本発明の第23の実施の形態による液晶表示装置及びその製造方法について図90を用いて説明する。図中既に説明した構成部材と同一の機能作用を有する構成部材には既に用いたのと同一の符号を付してその説明は省略する。まず、図90(a)は、アレイ基板16側の上面を示しており、図90(b)は、図90(a)のA-A線で切断した断面を示している。アレイ基板16上には表示領域10が形成され、その周囲に、シール剤6が四角形の枠状に形成されている。そして、シール剤6の外側周囲には、四角形の枠状で枠内に一定の空間を有する6個のシール剤346-1～346-6が形成されている。

【0341】液晶の滴下注入プロセスにおいて、シール剤6内方の表示領域10上にだけ液晶を滴下し、シール剤346-1～346-6の枠内には液晶を滴下しないようにする。次いで真空雰囲気中でアレイ基板16をCF基板4(図示せず)と貼り合わせる。こうすると、液晶を滴下していないシール剤346-1～346-6の枠内は減圧状態で貼り合わせられているため、大気中で吸盤の働きをするようになる。このため、基板貼り合わせ後にパネルを大気に解放した際の両基板間のずれを確実に防止して貼り合わせ精度を向上させることができる。

【0342】図90(c)は、シール剤346-1～346-6の変形例を示しており、四角形の枠状の形状に代えて、円筒状のシール剤346をシール剤6の外側周辺に複数配置したものである。このようにしてもシール剤346の円筒状枠内は減圧状態で貼り合わせられるので、大気中に基板を戻すと吸盤の働きをする。このため、基板貼り合わせ後にパネルを大気に解放した際の両基板間のずれを確実に防止して貼り合わせ精度を向上させることができる。シール剤346の形状や大きさ、数量、配置位置等は、図90(a)～(c)の例に限らず種々の形態を取り得るものである。

【0343】以上説明したように上記第1乃至第23の実施の形態によれば、セル工程での液晶滴下注入プロセスに関連する製造技術上の課題を解決することができ、滴下注入法を用いて高い歩留まりで液晶表示装置を製造できるようになる。これにより滴下注入プロセスの適用が実現のものとなり、液晶表示装置のさらなるコストダウンを図ることができ、またCRTの代替による市場規模を拡大することができるようになる。

【0344】次に、本発明の第24の実施の形態による液晶表示装置及びその製造方法について図91乃至図94を用いて説明する。なお、上記実施の形態と同一の作用機能を有する構成要素には同一の符号を付してその説明は省略する。本実施の形態は液晶の滴下注入法におけるガラス基板の保持方法に関し、真空中で基板を定盤上に保持し、液晶パネルを簡易で低成本で製造することを目的としている。

【0345】滴下注入法では、液晶を基板に滴下してから減圧雰囲気下でアレイ基板と対向基板とを位置合わせてから貼り合わせる。ところが、減圧雰囲気下での基板の正確な位置合わせは困難を伴っている。また、位置合わせをするためのアライメント系が複雑で装置が大型化する傾向にある。

【0346】本実施の形態では、基板上に突起物を設け、基板を貼り合わせる際には両基板上に形成した突起物を基準にして簡易な方法で正確な位置合わせができるようしている。本実施の形態による液晶表示装置の基板の概略の構成について図91を用いて説明する。図91に示すように、アレイ基板16上にはシール剤6、7が2重に塗布されている。シール剤6とシール剤7との間の領域には、基板面から所定高さを有する突起部96が枠状に形成されている。また、アレイ基板16の表示領域内には液晶22が図示を省略した液晶滴下装置により複数点に滴下されている。一方、対向基板4にも枠状の突起部98が形成されている。

【0347】図91のA-A線で切断した断面を示す図92を用いて、より詳細に突起部96、98について説明する。図91に示すように、シール剤6とシール剤7との間に形成された突起部96、98は、突起部96に対して突起部98の方が所定寸法だけ基板面上で内側に

形成されている。従って、大まかな位置合わせをしてから両基板4、16を貼り合わすと、突起部98の基板外方の段差と突起部96の基板内方の段差とがはまり合うようになっている。これにより正確に2つの基板4、16を貼り合わせることができる。なお、突起部96、98は双方の高さの合計がパネルのセル厚よりも高く形成されている。また、2つの基板に設けられた突起部の少なくとも一方の突起部は、基板面に対して壁部の包絡線が傾斜するように形成する。

【0348】突起部98は例えば、対向基板4にカラー フィルタを形成する際の3つのカラーフィルタ形成材料をフォトリソグラフィ技術にてバーニングして段差状に積層することにより作られている。突起部96は、アレイ基板16上に TFT 等の素子を形成する際のフォトリソグラフィ工程で用いられるレジストをバーニングして積層して作られている。

【0349】図93は突起部の変形例を示している。図93に示すように、例えばアレイ基板16側の突起部96を凹状に形成し、対向基板4側の突起部を凸状に形成して両者をはめ込むようにしても正確な位置決めができる。なお、本実施形態では、突起部96を2本の平行な構造物とし、突起部98を突起部96の平行な構造物の間にはめ込むようにして基板全周に連続的に突起部96、98を設けるようにしているが、これは必須ではなく例えば棒状の突起部を棒に沿って断続的に形成してももちろんよい。また、基板上下及び左右の4カ所に突起部を設けるようにしてもちろんよい。要は、貼り合わせる2つの基板の一方向の位置と、それに直交する方向の位置が決まるように突起部が設けられていればよい。また、図93に示す突起部96を円環状のすり鉢状に形成し、突起部98は全体としてそれと組み合わせることのできる円錐状に形成し、それらを複数個基板上に形成するようにしてもちろんよい。

【0350】また、上記実施形態では2重のシール剤6、7を形成しているが、外側に形成するシール材7は、内側のシール材6と異なる材質であってももちろんよい。この場合、シール剤6は、液晶22の抵抗値を大幅に変えないような材質であればよい。液晶の電圧保持率が低下して表示ムラを発生させないように液晶22の抵抗率変化が5%未満となる材料を用いることが望ましい。また、外側のシール剤7は、内側のシール剤6と異なるものを用いてもよい。なお、2重のシール剤6、7は、貼り合わせた2枚の基板間で2重シール剤構造が吸盤の用をなして両基板をいっそう緊密に固定するために設けられているので、例えばシール剤6のみの構造としてももちろんよい。

【0351】このように本実施の形態によれば、基板貼り合わせにおける最終的な位置合わせは基板に形成された突起物の位置によって決めることができる。突起物をフォトリソグラフィの手法を用いて形成すれば、容易に

2μm程度の位置合わせ精度が実現できる。従って、減圧雰囲気下で容易に正確に位置合わせができ、装置の大型化も抑えることができ、製造コストを増加させずに貼り合わせ精度のよい液晶パネルを製造できる。

【0352】本実施の形態によれば、低コストで位置合わせ精度の向上した液晶表示パネルを製造できる。また、シール剤が熱硬化性の材料で形成されていて熱硬化処理の際にシール剤が軟化しても基板の位置ずれ等を防止することができる。

【0353】図94は本実施の形態で用いた液晶滴下装置を示している。液晶を滴下する液晶ディスペンサ部350先端の液晶滴下孔の周囲に、フランジ状の液晶飛散防止部材101が取り付けられている。この液晶飛散防止部材101により、液晶が例えばアレイ基板16の基板面に滴下された際に、滴下液晶の飛沫がシール剤6、7等に付着してしまうことを防止できる。シール剤6、7への液晶飛沫の付着を阻止することによりシール剤の密着強度をさらに向上させることができるようになる。

【0354】次に、本発明の第25の実施の形態による液晶表示装置を図72及び図95乃至図100を用いて説明する。本実施形態は、滴下注入法による液晶表示装置の製造方法に関する。本実施の形態では、滴下注入法において基板を貼り合わせて大気開放した後、基板を平坦度の高いステージに載置し、さらに基板をステージに吸着させた状態でシール剤硬化のためのUV照射を行うことに特徴を有している。基板を平坦度の高いステージに吸着保持することにより、平坦度の高いステージ面に基板面が倣うので基板ズレや歪みが抑えられ安定したシール剤硬化を得ることができるようになる。

【0355】また、大気開放時の基板載置ステージとUV照射時の基板載置ステージとを同一のステージを用いるようにすればさらに基板ズレに対する安定性を増すことができる。大気開放時とUV照射時のステージを変更させるならば、UV照射までの基板の搬送、待機時間を常に一定に保つことで安定した歪みとなり、ズレも制御できる。

【0356】以下、本実施の形態による液晶表示装置の製造方法の実施例について比較例と共に図面を用いて説明する。配向膜処理を施した15インチ2面取りのアレイ基板およびCF基板の一方の基板に接着スペーサ若しくは樹脂製の柱状スペーサを形成し、他方の基板に熱併用型のUVシール剤を塗布する。このとき第19の実施の形態の図72に示したようなメインシール306の外周をダミーシール72で囲む真空領域74を形成することにより、基板貼り合わせ時のアレイ基板16とCF基板4間の基板ズレおよび基板搬送中の振動や撓みによる基板ズレを常にほぼ一定にできるようになる。

【0357】次いでアレイ基板16に液晶22を滴下してから真空雰囲気内のステージに載置して両基板を貼り

合わせる。次に大気開放を行うが、メインシール306で囲まれた領域は真空中に保たれているため、液晶22が当該領域内に拡散すると同時に大気圧との差圧でギャップ形成が開始される。

【0358】この時点で、まず比較例として平坦度の低い通常の机上等にパネルを搬送し再び大気開放時のステージに戻してUV照射を行う。

【0359】一方、実施例として比較例と同様にパネルを通常の机上等に放置した後、大気開放時のステージ上に戻し、さらにステージに設けた吸着機構によりパネルを吸着させてUV照射を行う。

【0360】図95は上記の実施例及び比較例の結果を図示している。図95において、1目盛は $1\mu\text{m}$ であり、角部にX印を付した実線は設計値に基づく15インチ2面取りのアレイ基板上のCF基板の貼り合わせ位置を示している。図95において、角部に△印を付した実線は、本実施例によるアレイ基板とCF基板の貼り合わせズレを示している。また、角部に◆印を付した実線は、比較例によるアレイ基板とCF基板の貼り合わせズレを示している。図95に示すように、本実施例の場合には、基板間のズレは小さく $2\mu\text{m}$ 前後となるのに対し、比較例の場合は、パネルに大きな歪みが生じているため基板間に $5\mu\text{m}$ 以上のズレが生じている。

【0361】次に実施例2として、平坦度が $\pm 50\mu\text{m}$ のステージ上にパネルを載置して真空中で貼り合わせ、大気開放後も当該ステージに吸着したままギャップが出しが完了するまで待機し、吸着したままシール剤のUV硬化を行う。図96は実施例2の結果を図示している。図96において、1目盛は $1\mu\text{m}$ であり、角部にX印を付した実線は、設計値に基づく15インチ2面取りのアレイ基板上のCF基板の貼り合わせ位置を示している。図96において、角部に■印を付した実線は、本実施例の1回目によるアレイ基板とCF基板の貼り合わせズレを示している。角部に△印を付した実線は、本実施例の2回目によるアレイ基板とCF基板の貼り合わせズレを示している。図96から明らかなように、本実施例によれば基板間ズレを $2\mu\text{m}$ 以下にできると共に、常にほぼ一定の安定した基板間ズレ量に抑えることができるようになる。

【0362】一方、比較例2として、平坦度が $\pm 50\mu\text{m}$ のステージ上にパネルを載置して真空中で貼り合わせ、大気開放後はステージから搬出して机上でUV照射する。図97は比較例2の結果を示している。図97において、1目盛は $1\mu\text{m}$ であり、角部にX印を付した実線は、設計値に基づく15インチ2面取りのアレイ基板上のCF基板の貼り合わせ位置を示している。図97において、角部に■印、◆印、及び△印を付した実線は、本比較例の1~3回のアレイ基板とCF基板の貼り合わせズレを示している。図97から明らかなように、比較例2ではパネルに生じた歪みによる大きな基板間ズレが

生じることがわかる。

【0363】次に、実施例3として図98に示すように、パネルの歪みを考慮してパネル下方の四隅及びほぼ中央を5本のピン352で大気開放後のパネルを所定時間支持した後、再び貼り合わせ時のステージに載置して吸着させてUV照射によるシール硬化を行なう。実施例3の結果を図99に示す。図99において、1目盛は $1\mu\text{m}$ であり、角部にX印を付した実線は、設計値に基づく15インチ2面取りのアレイ基板上のCF基板の貼り合わせ位置を示している。図99において、角部に■印を付した実線は、パネルを30秒間ピン352により支持した後にステージに載置して吸着させてUV照射によるシール硬化を行なった結果である。角部に△印を付した実線は、パネルを60秒間ピン352により支持した後にステージに載置して吸着させてUV照射によるシール硬化を行なった結果である。また、角部に◆印を付した実線は、ピン352による支持なしでステージに載置して吸着させてUV照射によるシール硬化を行なった結果である。図99から明らかなように、パネルを支持している時間で歪みが変動している。図99に示す程度の歪みの量が少ない常に安定した歪み量であればパネルを載置するステージ装置による補正等で基板間ズレを管理することができる。

【0364】上述と同様の動作でパネルを搬送し、大気開放後のUV照射までの時間を一定にして吸着してUV硬化した場合であって連続して5基板作製した結果を図100に示す。図100から明らかなようにCF基板の四隅で幅 $3\mu\text{m}$ 以内の正方形領域内に収まるズレ量となり、量産工程でも貼り合わせ時のオフセット補正で十分管理できることがわかる。また、UV波長が 280nm 以下を発生させるUVランプを使用した場合、液晶が劣化して保持率を低下させる表示不良が発生したが 280nm 以下をカットするフィルタを使用することで表示不良のないパネルを形成することができる。

【0365】このように本実施の形態によれば、滴下注入法を用いることによりガラス基板に生じる歪みや対向配置された2枚の基板のズレを安定して制御でき、表示不良の生じない量産可能な安定した製造工程を得ることができる。

【0366】次に、本発明の第26の実施の形態による液晶表示装置の製造方法について図101乃至図103を用いて説明する。本実施形態も滴下注入法による液晶表示装置の製造方法に関し、特にMVA型の液晶パネルの製造方法に用いて好適である。初めに本実施の形態による液晶表示装置の製造方法により製造されたアクティブマトリクス型の液晶表示装置の概略の構成を図101を用いて説明する。図101は液晶表示装置のアレイ基板を液晶層側から見た基板平面及び画素の等価回路を示している。図101に示すように、アレイ基板16上には図中上下方向に延びる複数のドレインバスライン35

3が形成されている。またアレイ基板16上には、ドレインバスライン353に直交して図中左右方向に伸びる複数のゲートバスライン354が形成されている。これらドレインバスライン353とゲートバスライン354とで画定される領域が画素領域である。

【0367】各画素領域内であってドレインバスライン353とゲートバスライン354との交差位置近傍にはTFT356が形成されている。TFT356のドレン電極358は隣接するドレインバスライン353に接続されている。ソース電極360は画素領域内に形成された画素電極364と接続されている。ゲート電極362は隣接するゲートバスライン354に接続されている。また、各画素領域を横切って蓄積容量バスライン355が形成されている。

【0368】また、各ゲートバスライン354の一端部は、ゲートバスライン束ね配線366により電気的に接続されている。ゲートバスライン束ね配線366端部は、アレイ基板16の基板端部にまで引き出されて外部接続端子368に接続されている。同様に、ドレインバスライン353の一端部は、ドレインバスライン束ね配線370により電気的に接続されている。ドレインバスライン束ね配線370端部は、アレイ基板16の基板端部にまで引き出されて外部接続端子372に接続されている。

【0369】さらに、蓄積容量バスライン355の一端部は、蓄積容量バスライン束ね配線374により電気的に接続されている。また、CF基板4側に形成されたコモン電極(図示せず)もトランസフｧ378を介して蓄積容量バスライン束ね配線374に接続されている。蓄積容量バスライン束ね配線374端部は、アレイ基板16の基板端部にまで引き出されて外部接続端子376に接続されている。外部接続端子368、372、376は隣接してアレイ基板16端部に並んで配置され、パネル検査時において検査装置からの信号を入力することができるようになっている。また、アレイ基板16の外部接続端子368、372、376の配置端部は、CF基板4端部よりずれて位置するように形成されている。

【0370】これらの束ね配線366、370、374は、アレイ基板16の製造工程における静電気保護のために各バスライン354を電気的に接続する共通電極として利用される。これら束ね配線366、370、374のうち、ゲートバスライン束ね配線366とドレインバスライン束ね配線370は、アレイ基板16とCF基板4とを貼り合わせてパネル検査を行った後切断されて分離される。一方、蓄積容量バスライン束ね配線374はそのまま残されてコモン電極が蓄積容量バスライン355に供給されるように機能する。

【0371】図101に示した液晶表示パネルは、例えばアレイ基板16上に液晶滴下を行い、光硬化性材料からなるシール剤を介してアレイ基板16とCF基板4と

を貼り合わせ、シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、アレイ基板16及びCF基板4端部が相対的にずれるように両基板を貼り合わせ、ずれた領域にパネル検査用の外部接続端子368、372、376を配置することにより得られる。なお、アレイ基板16及びCF基板4の基板サイズを予め異ならせておいて両基板を貼り合わせた際にできる空き領域に外部接続端子368、372、376を配置するようにしてもよい。

【0372】次に、図102及び図103を用いてパネル検査の一例について説明する。図102の横軸は時間を表し縦軸は電圧を表している。図102は、外部接続端子368からゲート電圧(Vg)を印加し、外部接続端子372からドレン電圧(Vd)を印加し、外部接続端子376からコモン電圧(Vc)を印加した際の各電圧波形を示している。図102に示すパネル検査では、セルギャップ異常や液晶注入異常(未注入、リーク等)を検査することを目的としている。このため、コモン電圧(Vc)を10Vで固定し、また、ゲート電圧(Vg)も22Vで固定した状態で、ドレン電圧(Vd)を1.6~7ms間隔でコモン電圧を基準に正逆1.6~5.0Vの範囲で反転させて表示領域の表示ムラを検出するようしている。表示ムラの検出は、目視あるいはCCD等の固体撮像素子による自動検出が可能である。

【0373】図103は、セル厚の相違による透過率の変化を示しているグラフである。図103において、横軸にドレン電圧Vdをとり、縦軸に透過率をとっている。また、図中実線で示した曲線はセル厚が4.2μmの場合を示し、破線の曲線はセル厚が3.8μmの場合を示している。従って、図103から明らかのように、図102で説明したパネル検査を行うことにより、パネル表示領域内のセル厚の分布に応じて輝度が異なる表示ムラを検出することができる。

【0374】以上説明したパネル検査により、液晶注入不良やギャップ出し不良が発見された場合には、アレイ基板16とCF基板4とを引き剥がして前工程に再投入することが可能である。液晶の滴下注入を用いた液晶表示装置の製造工程では、多面取りしたマザーガラスの切断等は工程の最後に行われるため、引き剥がされたアレイ基板16やCF基板4はそれぞれ前工程と同一のガラスサイズを維持している。再生処理では、液晶をアルコールやアセトン等の溶剤で洗い、配向膜やシール剤をアッティングや溶剤等により基板から取り除くことにより、配向膜印刷工程からやり直すことが可能になる。

【0375】以上説明した実施形態に基づき、本発明は以下のようにまとめられる。

(第1の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記シール剤と接触する遮光膜の領域には青色

着色層が形成され、前記シール剤の光硬化性材料は、青色帯域の波長の光に光反応域を有していることを特徴とする液晶表示装置。

【0376】(第2の発明) 上記第1の発明の液晶表示装置において、前記遮光膜は、赤色光を透過させる赤色着色層と、緑色光を透過させる緑色着色層と、青色光を透過させる前記青色着色層とを重ね合わせた遮光領域を有し、前記赤色着色層、前記緑色着色層、及び前記青色着色層は、各画素に対応して形成される赤色、緑色、青色のカラーフィルタの形成材料とそれぞれ同一材料で形成されていることを特徴とする液晶表示装置。

【0377】(第3の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記シール剤は、前記2つの基板のうちの一方との接触領域の少なくとも一部が前記一方の基板に形成された遮光膜と重なり合っていることを特徴とする液晶表示装置。

【0378】(第4の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板のいずれかに形成された遮光膜と、着色粒子が添加されて前記遮光膜下方に形成され、前記2つの基板を電気的に接続するトランスマニアと、前記トランスマニア上方の前記遮光膜に開口された光入射孔とを備えたことを特徴とする液晶表示装置。

【0379】(第5の発明) 液晶を挟持して対向する2枚の基板と、前記基板の表示領域の外側周辺部で前記2枚の基板を貼り合せるメインシールと、前記メインシールと前記表示領域との間の領域に形成された枠状構造物と、前記メインシールと前記表示領域との間の領域を遮光するブラックマトリクス額縁とを有し、前記枠状構造物の外周端と前記ブラックマトリクス額縁の外周端とは、前記基板面に垂直な方向から見てほぼ一致するよう形成されていることを特徴とする液晶表示装置。

【0380】(第6の発明) 第5の発明の液晶表示装置において、前記枠状構造物は、前記表示領域内に配置されたスペーサのほぼ半分以上の高さを有し、前記枠状構造物表面又はその対向領域の少なくともいずれかに垂直配向膜が形成されていることを特徴とする液晶表示装置。

【0381】(第7の発明) 第5又は6の発明の液晶表示装置において、前記メインシールより外側の領域に形成された第2の枠状構造物を有し、前記メインシールと前記表示領域との間の領域に形成された前記枠状構造物と、前記第2の枠状構造物とで前記メインシールの両側を囲うことを特徴とする液晶表示装置。

【0382】(第8の発明) 第7の発明の液晶表示装置において、前記第2の枠状構造物の一部又は全部は、前記ブラックマトリクス額縁内に形成され、前記メインシールの形成領域上にはブラックマトリクスを形成しない

ことを特徴とする液晶表示装置。

【0383】(第9の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の少なくとも一方の前記シール剤と接触する領域に凹凸構造を有する光反射層が形成されていることを特徴とする液晶表示装置。

【0384】(第10の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、前記メインシールの角部に隣接し、前記メインシール外側で且つ一方の基板の端部より内側となる領域に前記メインシール以上の剥離強度を有する接合物を部分的に配置することを特徴とする液晶表示装置。

【0385】(第11の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料を含む枠状に形成されたメインシールを備えた液晶表示装置において、前記メインシールの角部に隣接し、前記メインシール内側かつ表示領域外側となる領域に、セルギャップ相当の厚さを有し遮光用BM額縁の角部形状に準じたU字型の形状を有する構造物を配置することを特徴とする液晶表示装置。

【0386】(第12の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の前記シール剤と接触する領域に光反射層が形成されていることを特徴とする液晶表示装置。

【0387】(第13の発明) 第12の発明の液晶表示装置において、前記光反射層はラインアンドスペースパターンを有し、前記2つの基板間でほぼ半ピッチずれて形成されていることを特徴とする液晶表示装置。

【0388】(第14の発明) 第12又は13の発明の液晶表示装置において、前記2つの基板のうち少なくとも一方の前記光反射層は、バスライン形成材料と同一の材料で形成されていることを特徴とする液晶表示装置。

【0389】(第15の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の前記シール剤近傍に前記液晶を垂直配向させる配向膜が形成されていることを特徴とする液晶表示装置。

【0390】(第16の発明) 2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板の画像表示領域と前記シール剤との間で対向する2つの電極を備えていることを特徴とする液晶表示装置。

【0391】(第17の発明) 複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記シール剤内方に滴下液晶の拡散を制御する複数の構造物が形成されていることを特徴とする液晶表示装置。

【0392】(第18の発明) 第17の発明の液晶表示

装置において、前記複数の構造物は、前記基板上で所定の配置密度あるいは配置形状で基板上に分布していることを特徴とする液晶表示装置。

【0393】(第19の発明)複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記2つの基板の少なくとも一方に、前記シール剤内方且つ前記表示領域の外側に枠状に設けられた凸状構造物を有することを特徴とする液晶表示装置。

【0394】(第20の発明)複数の画素が形成された表示領域の外側に枠状に形成されたシール剤で、対向する2つの基板を貼り合わせて液晶を封止した液晶表示装置において、前記シール剤の外側周囲に、中空枠状のシール剤がさらに形成されていることを特徴とする液晶表示装置。

【0395】(第21の発明)光硬化性材料のシール剤で2つの基板を貼り合わせて液晶を封止し、前記シール剤に光を照射して硬化させて前記2つの基板を固定する液晶表示装置の製造方法において、前記光硬化性材料として、青色帯域の波長の光に光反応域を有する光硬化性樹脂を用い、前記2つの基板を貼り合わせた際に前記シール剤が接触する遮光膜の領域には青色帯域の光を透過させる着色層のみを形成することを特徴とする液晶表示装置の製造方法。

【0396】(第22の発明)第21の発明の液晶表示装置の製造方法において、前記着色層は、画素に形成される青色のカラーフィルタの形成時に同時に形成されることを特徴とする液晶表示装置の製造方法。

【0397】(第23の発明)一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記シール剤の前記他方の基板との接触領域の少なくとも一部が前記他方の基板上に形成された遮光膜と重なり合うように形成し、前記他方の基板に形成されたカラーフィルタを含む領域に光を照射して前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法。

【0398】(第24の発明)基板の表示領域の外側周辺部に紫外線硬化樹脂を塗布してメインシールを形成し、前記メインシールと前記表示領域との間の領域に、紫外線をほぼ透過しない材質の枠状構造物を形成し、前記基板と対向基板とで液晶を挟持して貼り合わせ、前記基板面に対して水平若しくは斜め方向から紫外線を照射して、前記メインシールを硬化させることを特徴とする液晶表示装置の製造方法。

【0399】(第25の発明)第24の発明の液晶表示装置の製造方法において、凹凸構造が形成された基板ステージ上に前記基板を載置し、前記斜め方向から照射される紫外線を前記凹凸構造で前記メインシールに反射さ

れることを特徴とする液晶表示装置の製造方法。

【0400】(第26の発明)一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記光は、偏光光を用いることを特徴とする液晶表示装置の製造方法。

【0401】(第27の発明)第26の発明の液晶表示装置の製造方法において、前記光の偏光軸は、前記液晶の分子の短軸方向にほぼ一致させることを特徴とする液晶表示装置の製造方法。

【0402】(第28の発明)一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記シール剤近傍の前記液晶の分子を垂直配向させて前記光を照射することを特徴とする液晶表示装置の製造方法。

【0403】(第29の発明)第28の発明の液晶表示装置の製造方法において、前記液晶は正の誘電異方性を有し、前記基板間に電圧を印加して少なくとも前記シール剤近傍の前記液晶を垂直配向させることを特徴とする液晶表示装置の製造方法。

【0404】(第30の発明)一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記液晶は光重合性材料を含み、前記液晶に光を照射して硬化させた後、前記シール剤を硬化することを特徴とする液晶表示装置の製造方法。

【0405】(第31の発明)一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、前記液晶の滴下量を滴下箇所により変化させることを特徴とする液晶表示装置の製造方法。

【0406】(第32の発明)一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、滴下位置を決める複数の滴下パターンを組み合わせて前記液晶を滴下することを特徴とする液晶表示装置の製造方法。

【0407】(第33の発明)一方の基板上の複数箇所に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、隣接して滴下された液晶との液晶拡散距離がほぼ等しくなる位置に前記各液晶を滴下することを特徴とする液晶表示装置の製造方法。

【0408】(第34の発明)第33の発明の液晶表示装置の製造方法において、前記各液晶は、ほぼ同量の液晶量で滴下され、さらに、前記液晶拡散距離が等しくな

い位置に前記液晶量以下の量を有する液晶を滴下することを特徴とする液晶表示装置の製造方法。

【0409】(第35の発明)一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記液晶滴下は、成分が異なる2種以上の液晶を同一滴下領域内に重ねて滴下することを特徴とする液晶表示装置の製造方法。

【0410】(第36の発明)第35の発明の液晶表示装置の製造方法において、前記2種以上の液晶は、信頼性の相対的に高い第1の液晶とそれより信頼性の低い第2の液晶とを少なくとも有し、前記第1の液晶を滴下した後、基板上に滴下された前記第1の液晶上に前記第2の液晶を滴下することを特徴とする液晶表示装置の製造方法。

【0411】(第37の発明)一方の基板上の複数箇所に液晶を滴下し、減圧下でシール剤を介して他方の基板と貼り合わせてから加圧状態に戻す工程を有する液晶表示装置の製造方法において、前記基板上に滴下液晶の拡散を制御する構造物を形成することを特徴とする液晶表示装置の製造方法。

【0412】(第38の発明)第37の発明の液晶表示装置の製造方法において、棒状に形成された前記シール剤の対角線方向に前記滴下液晶の拡散速度が高くなるように前記構造物の配置密度あるいは配置形状を制御することを特徴とする液晶表示装置の製造方法。

【0413】(第39の発明)一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、前記両基板の貼り合わせの際、前記一方は他方の基板の少なくともいずれかを機械的に保持した状態で雰囲気を減圧し、所定の気圧になつたら前記基板の保持を機械的保持から静電チャックによる保持に切り替えることを特徴とする液晶表示装置の製造方法。

【0414】(第40の発明)第39の発明の液晶表示装置の製造方法において、前記静電チャックは、前記気圧が 1×10^{-1} torr以下で前記基板を吸着保持することを特徴とする液晶表示装置の製造方法。

【0415】(第41の発明)第39の発明の液晶表示装置の製造方法において、前記静電チャックは、前記基板上に形成された複数のパネル形成領域の当該パネル形成領域毎に同極性の電圧を印加して前記基板を静電吸着することを特徴とする液晶表示装置の製造方法。

【0416】(第42の発明)第41の発明の液晶表示装置の製造方法において、前記複数のパネル形成領域間を電気的に接続する導電バスを前記基板上に形成することを特徴とする液晶表示装置の製造方法。

【0417】(第43の発明)第39乃至第42の発明のいずれかの液晶表示装置の製造方法において、前記一

方及び他方の基板を対向させて貼り合わせる際、前記一方及び他方の基板の双方をそれぞれ静電チャックにより吸着して、前記一方及び他方の基板の相対する領域には同極性の電圧を印加することを特徴とする液晶表示装置の製造方法。

【0418】(第44の発明)第39の発明の液晶表示装置の製造方法において、前記静電チャックの電極を櫛型形状の正電極と負電極とが櫛歯をかみ合せて対向するよう形成し、前記基板上に形成されたパネル形成領域内で前記櫛型形状の電極に電圧を印加して前記基板を静電吸着することを特徴とする液晶表示装置の製造方法。

【0419】(第45の発明)第39の発明の液晶表示装置の製造方法に用いられる静電チャックであって、電圧を印加して基板を静電吸着する電極は、櫛形形状の正電極と負電極とが櫛歯をかみ合せて対向していることを特徴とする静電チャック。

【0420】(第46の発明)一方の基板上の複数箇所に液晶を滴下してから、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記一方の基板を平行平板上に固定し、前記一方の基板に貼り合わせた前記他方の基板を押圧しつつ、前記シール剤に光を照射して硬化させることを特徴とする液晶表示装置の製造方法。

【0421】(第47の発明)一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、パネル領域周囲にメインシールを形成し、前記メインシールを所定の空隙で囲むようにダミーシールを形成し、前記基板を貼り合せる際に前記空隙に真空領域を形成し、大気圧の元で前記真空領域に作用する力をを利用して前記メインシールのギャップ出しを行うことを特徴とする液晶表示装置の製造方法。

【0422】(第48の発明)一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、パネル領域周囲にメインシールを形成し、前記メインシールを所定の空隙で囲むように第1ダミーシールを形成し、前記メインシール内方と、前記空隙に前記液晶を滴下することを特徴とする液晶表示装置の製造方法。

【0423】(第49の発明)一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、基板貼り合わせ用に基板上に形成された棒状のシール剤の内方且つ表示領域の外側にセル厚を規定する凸状構造物を棒状に設け、前記表示領域を満たす量以上であって、且つ前記シール剤内方

を満たさない量の液晶を滴下し、前記一方及び他方の基板を貼り合せる際、前記表示領域から溢れる余剰液晶を前記シール剤と前記凸状構造物との間に形成される間隙部に排出することを特徴とする液晶表示装置の製造方法。

【0424】(第50の発明)一方の基板上に液晶を滴下してから他方の基板と貼り合わせる工程を有する液晶表示装置の製造方法において、基板貼り合わせ用に基板上に形成する枠状のシール剤を二重枠構造に形成し、内方の前記シール剤に液晶を流出させる開放部を設け、前記内方のシール剤の内方を満たす量以上であって、且つ外方の前記シール剤の内方を満たさない量の液晶を滴下し、基板貼り合せ時の余剰液晶を前記開放部から前記内方のシール剤と前記外方のシール剤との間に排出させることを特徴とする液晶表示装置の製造方法。

【0425】(第51の発明)第50の発明の液晶表示装置の製造方法において、前記開放部は、前記内方のシール剤の前記基板に設けられた端子取付部に面しない辺部に設けることを特徴とする液晶表示装置の製造方法。

【0426】(第52の発明)2つの基板間に挟まれた液晶を封止する光硬化性材料からなるシール剤を備えた液晶表示装置において、前記2つの基板を貼り合せる際の位置決め用の突起物が、前記2つの基板上に形成されていることを特徴とする液晶表示装置。

【0427】(第53の発明)一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、基板貼り合わせ時に前記基板を載置したステージ上に貼り合わせ済の基板を吸着して前記光を照射し前記シール剤を硬化させることを特徴とする液晶表示装置の製造方法。

【0428】(第54の発明)一方の基板上に液晶滴下を行い、光硬化性材料からなるシール剤を介して前記一方の基板と他方の基板とを貼り合わせ、前記シール剤に光を照射して硬化させる工程を有する液晶表示装置の製造方法において、前記一方及び他方の基板端部が相対的にずれるように両基板を貼り合わせ、ずれた領域にパネル検査用の外部接続端子を配置することを特徴とする液晶表示装置の製造方法。

【0429】(第55の発明)第12の発明の液晶表示装置において、前記2つの基板の一方は、複数の画素領域にスイッチング素子が形成されたアレイ基板であり、前記アレイ基板に形成された前記光反射層の両側部には光透過領域が形成され、前記光透過領域間の前記光反射層の幅は概ね400μmであることを特徴とする液晶表示装置。

【0430】(第56の発明)第55の発明の液晶表示装置において、前記アレイ基板上には、前記アレイ基板背面から光を前記シール剤に照射する際のマスクとして

も機能するカラーフィルタ又は反射電極のいずれかが形成されていることを特徴とする液晶表示装置。

【0431】

【発明の効果】以上の通り、本発明によれば、セル工程でのシール剤の硬化不良を減少させることができる。また、本発明によれば、セル工程でのシール剤の剥離を防止することができる。またさらに、本発明によれば、セル工程での基板変形や表示不良を減少させることができる。またさらに本発明によれば、セル工程で生じ得るセル厚のばらつきを減少させることができる。そして、本発明によれば、セル工程での液晶滴下を確実に行えるようになる。

【0432】以上の通り、本発明によれば、シール剤硬化のUV照射を行っても液晶を劣化させないので、滴下注入法を用いて高画質の表示品質を有する液晶表示装置を実現できる。

【0433】また本発明によれば、光硬化性材料のシール剤を確実に硬化させることができるようになる。さらに本発明によれば、シール剤硬化で生じる貼り合わせ基板の位置ずれを減少させることができる。またさらに本発明によれば、滴下注入における基板のプレス不良を改善することができる。またさらに本発明によれば、滴下注入におけるパネル外形寸法の拡大を抑制することができる。

【0434】従って、本発明により、滴下注入法を用いて歩留まりを向上させて液晶パネルを製造できるようになるので、液晶表示装置の製造コストをさらに低減することができるようになる。

【0435】以上の通り、本発明によれば、メインシールと表示領域との間の領域に枠状構造物とブラックマトリクス額縁とが形成された液晶表示装置において、シール剤剥離を防止し、また未硬化のシール剤による液晶の汚染を防止できる液晶表示装置を実現できる。

【0436】また、本発明によれば、MVAモードの液晶表示装置の製造工程における液晶滴下注入法を改善して、表示ムラを低減させることができるようになる。また、本発明によれば、表示ムラの検査が容易に行えるようになる。

【0437】また本発明によれば、液晶の滴下注入法を用いても良好なセル厚を形成できるようになる。また本発明によれば、滴下注入法を用いても対向する2枚の基板間に貼り合わせズレや基板歪みによるズレが発生したり、ギャップ不良が発生したりすることを防止できる。

【0438】

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による液晶表示パネルの概略の構造を示す図である。

【図2】膜厚が約1.3nmの場合の赤色着色層28、緑色着色層26、及び青色着色層24の光透過スペクトルを示す図である。

【図3】本発明の第1の実施の形態によるシール剤6の光硬化性樹脂の光吸収スペクトル(β)と青色着色層24の青色透過スペクトル(γ)を示し、さらに比較のため従来の光硬化性樹脂の光吸収スペクトル(α)を示す図である。

【図4】本発明の第2の実施の形態による液晶表示装置のシール剤とBM額縁部の重なりを説明する図である。

【図5】本発明の第2の実施の形態における図4に示す液晶表示装置との比較例を示す図である。

【図6】本発明の第2の実施の形態による液晶表示装置の角部のシール剤とBM額縁部の関係を説明する図である。

【図7】本発明の第2の実施の形態における図6に示す液晶表示装置との比較例を示す図である。

【図8】本発明の第3の実施の形態による液晶表示装置のトランスファとBM額縁部の関係を説明する図である。

【図9】本発明の第3の実施の形態における図8に示す液晶表示装置との比較例を示す図である。

【図10】本発明の第4の実施の形態によるUV照射光源の概略の構成を説明する図である。

【図11】本発明の第4の実施の形態における図10に示すUV照射光源との比較例を示す図である。

【図12】本発明の第5の実施の形態による液晶表示装置の概略の構成を示す図である。

【図13】本発明の第5の実施の形態による液晶表示装置の変形例に係る概略の構成を示す図である。

【図14】本発明の第5の実施の形態による液晶表示装置の他の変形例に係る概略の構成を示す図である。

【図15】本発明の第5の実施の形態による液晶表示装置における比較例Eと実施例GのUVスペクトルを示す図である。

【図16】本発明の第5の実施の形態による液晶表示装置において、液晶22の液晶境界23が枠状構造物12に達する前に枠状構造物12を圧力Pで加圧して枠状構造物12近傍のギャップ出しを行うことを説明する図である。

【図17】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例1を示す図である。

【図18】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例2を示す図である。

【図19】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例3を示す図である。

【図20】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例4を示す図である。

【図21】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例5を示す図である。

【図22】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例6を示す図である。

【図23】本発明の第6の実施の形態による液晶表示装

置及びその製造方法における実施例7を示す図である。

【図24】本発明の第6の実施の形態による液晶表示装置及びその製造方法における実施例8を示す図である。

【図25】本発明の第7の実施の形態において、従来の問題点を説明する図である。

【図26】本発明の第7の実施の形態において、従来の他の問題点を説明する図である。

【図27】本発明の第7の実施の形態による液晶表示装置及びその製造方法における実施例1を示す図である。

【図28】本発明の第7の実施の形態による液晶表示装置及びその製造方法における実施例2を示す図である。

【図29】本発明の第7の実施の形態による液晶表示装置及びその製造方法における実施例3を示す図である。

【図30】本発明の第7の実施の形態による液晶表示装置及びその製造方法における実施例4を示す図である。

【図31】本発明の第7の実施の形態による液晶表示装置及びその製造方法における実施例5を示す図である。

【図32】本発明の第8の実施の形態による液晶表示装置の概略構成を示す図である。

【図33】本発明の第8の実施の形態による液晶表示装置に設けられた光反射層の構造を示す図である。

【図34】本発明の第8の実施の形態の変形例として反射型液晶表示装置に設けられた光反射層の構造を示す図である。

【図35】本発明の第8の実施の形態によるUV光の照射方法の一例を説明する図である。

【図36】本発明の第9の実施の形態による液晶表示装置の端部の一部横断面を示す図である。

【図37】2種類の液晶材料(A)、(B)の特性を示す図である。

【図38】本発明の第9の実施の形態による偏光UV照射における偏光軸46の方向を説明する図である。

【図39】本発明の第9の実施の形態による偏光UV照射における偏光軸46の方向を説明する図である。

【図40】本発明の第10の実施の形態による液晶表示装置の端部の一部横断面であって、誘電異方性が負の液晶22を滴下注入して、垂直配向膜により垂直配向させた状態を示す図である。

【図41】本発明の第10の実施の形態による液晶表示装置の端部の一部横断面であって、誘電異方性が正の液晶22を滴下注入して、垂直配向膜により垂直配向させた状態を示す図である。

【図42】本発明の第10の実施の形態による液晶表示装置の端部の一部横断面であって、誘電異方性が正の液晶22を滴下注入して、液晶22に電圧を印加して垂直配向させた状態を示す図である。

【図43】本発明の第11の実施の形態による液晶表示装置における実施例4を説明する図である。

【図44】本発明の第11の実施の形態による液晶表示装置における実施例4を説明する図である。

【図45】本発明の第11の実施の形態による液晶表示装置における実施例4を説明する図である。

【図46】本発明の第11の実施の形態による液晶表示装置における実施例4を説明する図である。

【図47】本発明の第11の実施の形態による液晶表示装置における実施例5を説明する図である。

【図48】本発明の第11の実施の形態による液晶表示装置における実施例5を説明する図である。

【図49】本発明の第11の実施の形態による液晶表示装置における実施例6を説明する図である。

【図50】本発明の第11の実施の形態による液晶表示装置における実施例7を説明する図である。

【図51】本発明の第11の実施の形態による液晶表示装置における実施例8を説明する図である。

【図52】本発明の第11の実施の形態による液晶表示装置における実施例8を説明する図である。

【図53】本発明の第11の実施の形態による液晶表示装置における実施例8を説明する図である。

【図54】本発明の第11の実施の形態による液晶表示装置における実施例9を説明する図である。

【図55】本発明の第11の実施の形態による液晶表示装置における実施例10を説明する図である。

【図56】本発明の第12の実施の形態による液晶パネルのセル工程における液晶の滴下注入を示す図である。

【図57】本発明の第13の実施の形態による液晶表示装置の製造方法における滴下注入の概略を説明する図である。

【図58】本発明の第13の実施の形態による液晶表示装置の製造方法における滴下注入の概略を説明する図である。

【図59】本発明の第13の実施の形態による液晶表示装置の製造方法における滴下注入の概略を説明する図である。

【図60】本発明の第13の実施の形態による液晶表示装置の製造方法において液晶が滴下された基板30上面を示す図である。

【図61】本発明の第14の実施の形態における滴下液晶の拡散状態について説明する図である。

【図62】本発明の第14の実施の形態における液晶表示パネルに形成された1画素とそこに滴下された液晶の拡散状態を示す図である。

【図63】本発明の第14の実施の形態における液晶表示装置において、拡散する液晶先端部の輪郭形状を枠状のメインシール6形状とほぼ相似形に制御した状態を示す図である。

【図64】本発明の第14の実施の形態による液晶表示装置におけるセルギャップを規定するための構造物29を示す図である。

【図65】本発明の第14の実施の形態による液晶表示装置における液晶の拡散を制御する構造物28a、28

bを示す図である。

【図66】本発明の第14の実施の形態による液晶表示装置における構造物28a、28b、29の配置例を示す図である。

【図67】本発明の第15の実施の形態による液晶滴下及び基板貼り合わせ工程及びその際の基板保持動作を説明する図である。

【図68】本発明の第16の実施の形態による液晶表示装置での静電チャックによる基板貼り合わせを説明する図である。

【図69】本発明の第17の実施の形態による液晶表示装置での静電チャックによる基板貼り合わせを説明する図である。

【図70】本発明の第18の実施の形態による滴下注入における光硬化プロセスと従来の滴下注入における光硬化プロセスとの比較を示す図である。

【図71】本発明の第18の実施の形態による基板貼り合わせ装置の概略の構造を示す図である。

【図72】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図73】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図74】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図75】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図76】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図77】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図78】本発明の第19の実施の形態による液晶表示装置の製造方法の概略を説明する図である。

【図79】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図80】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図81】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図82】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図83】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図84】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図85】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図86】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図87】本発明の第20の実施の形態による液晶表示装置の製造方法を示す図である。

【図8 8】本発明の第2 1の実施の形態による液晶表示装置における基板貼り合わせについて説明する図である。

【図8 9】本発明の第2 2の実施の形態による液晶表示装置における基板貼り合わせについて説明する図である。

【図9 0】本発明の第2 3の実施の形態による液晶表示装置及びその製造方法について説明する図である。

【図9 1】本発明の第2 4の実施の形態による液晶表示装置の基板の概略の構成を示す図である。

【図9 2】本発明の第2 4の実施の形態による液晶表示装置の突起部9 6、9 8について説明する図である。

【図9 3】本発明の第2 4の実施の形態による液晶表示装置の突起部9 6、9 8の変形例について説明する図である。

【図9 4】本発明の第2 4の実施の形態による液晶表示装置の製造に用いた液晶滴下装置を示す図である。

【図9 5】本発明の第2 5の実施の形態による液晶表示装置の製造方法における実施例1及び比較例の結果を示す図である。

【図9 6】本発明の第2 5の実施の形態による液晶表示装置の製造方法における実施例2の結果を示す図である。

【図9 7】本発明の第2 5の実施の形態による液晶表示装置の製造方法における比較例2の結果を示す図である。

【図9 8】本発明の第2 5の実施の形態による液晶表示装置の製造方法で用いるピン9 0を示す図である。

【図9 9】本発明の第2 5の実施の形態による液晶表示装置の製造方法における実施例3の結果を示す図である。

【図1 0 0】本発明の第2 5の実施の形態による液晶表示装置の製造方法における実施例の結果を示す図である。

【図1 0 1】本発明の第2 6の実施の形態による液晶表示装置の製造方法により製造されたアクティブマトリクス型の液晶表示装置の概略の構成を示す図である。

【図1 0 2】本発明の第2 6の実施の形態による液晶表示装置の製造方法におけるパネル検査の一例を示す図である。

【図1 0 3】本発明の第2 6の実施の形態による液晶表示装置の製造方法におけるパネル検査の一例を示す図である。

【図1 0 4】従来の液晶表示パネルの概略構成を示す図である。

【図1 0 5】従来の液晶パネルのセル工程における液晶の滴下注入を示す図である。

【図1 0 6】従来の静電チャックによる基板貼り合わせの説明図である。

【図1 0 7】従来の液晶パネルにおけるセル厚のばらつきを説明する図である。

【図1 0 8】滴下注入法による液晶表示パネルの製造工程について説明する図である。

【図1 0 9】従来の液晶表示パネルの端部の一部横断面を示す図である。

【図1 1 0】従来の液晶表示装置の概略の構成を示す図である。

【図1 1 1】従来の液晶表示装置の製造方法における課題を説明する図である。

【図1 1 2】従来の液晶表示装置の製造方法における課題を説明する図である。

【図1 1 3】従来の液晶表示装置の製造方法における課題を説明する図である。

【図1 1 4】従来の液晶表示装置の製造方法における課題を説明する図である。

【符号の説明】

- 1、1 1 0 0 液晶表示パネル
- 2、1 1 0 2 端子部
- 4、1 1 0 4 CF (カラーフィルタ) 基板
- 6、1 1 0 6 シール剤 (メインシール)
- 8、1 1 0 8 BM (ブラックマトリクス) 額縁部
- 1 0、1 1 1 0 表示領域
- 1 2 枠状構造物
- 1 3、1 1 1 2 TFT (薄膜トランジスタ)
- 1 4、1 1 1 4 画素領域
- 1 5 スペーサ
- 1 6、1 1 1 6 アレイ基板 (TFT基板)
- 1 8、1 1 1 8 BM
- 2 0 領域
- 2 2、液品
- 2 4 青色着色層
- 2 6 緑色着色層
- 2 8 赤色着色層
- 3 0、3 2 光
- 4 2 樹脂フィラー
- 4 4 Au層
- 5 8、2 7 2、2 7 4、2 7 6、2 7 8 電極
- 6 6 トランスマトリクス
- 9 8 突起部
- 1 8 2 液晶分子
- 2 3 4 トランスマトリクス
- 3 1 4 土手材
- 3 5 2 ピン

(53) 101-222017 (P2001-4級隠)

【図1】

【図2】

【図9】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図11】

(5) 101-222017 (P2001-UZ17

【図12】

【図13】

【図14】

【図15】

【図16】

(56) 101-222017 (P2001-, 銀河)

【図17】

【図18】

【図19】

【図20】

【図22】

【図23】

【図21】

【図24】

【図37】

【図25】

【図26】

【図27】

【図30】

【図28】

【図29】

【図45】

【図31】

【図32】

【図34】

【図35】

【図33】

【図36】

【図38】

【図39】

【図40】

【図41】

【図42】

【図55】

【図44】

【図46】

【図57】

【図58】

(62) 01-222017 (P2001-0E17

【図43】

【図47】

【図49】

【図51】

【図61】

(63) 101-222017 (P2001-7(17)

【図50】

【図52】

【図53】

【図54】

【図59】

【図60】

【図62】

【図56】

【図63】

【図64】

【図65】

【図72】

【図70】

【図67】

【図69】

【図86】

【図68】

【図87】

【図71】

【図73】

【図74】

【図75】

【図76】

【図77】

【図78】

【図79】

【図80】

(67) 101-222017 (P2001-h) 開

【図81】

【図82】

【図83】

【図84】

【図85】

【図88】

【図89】

【図91】

【図90】

【図92】

【図98】

【図93】

【図94】

(69) 01-222017 (P2001-0+17

【図95】

【図103】

【図104】

【図96】

【図109】

(70) 01-222017 (P2001-ch贈隠

【図97】

1マス: 1μm

【図113】

【図99】

1マス: 1μm

【図100】

1マス: 1μm

【図101】

【図102】

【図105】

(b)

【図111】

[図106]

(b)

(a)

[図107]

[図108]

【図110】

【図114】

【図112】

フロントページの続き

(51) Int.Cl.7
G 09 F 9/30

識別記号
349

F I
G 09 F 9/30

アートド (参考)
349C

(72)発明者 小池 善郎
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 今井 了
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 津田 英昭
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 井上 弘康
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 村田 聰
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 鈴木 英彦
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 吉田 秀史
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 長谷川 正
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 谷口 洋二
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 中山 徳道
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 杉村 宏幸
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

(72)発明者 大谷 稔
神奈川県川崎市中原区上小田中4丁目1番
1号 富士通株式会社内

Fターム(参考) 2H088 FA02 FA03 FA04 FA09 FA10
HA03 HA08 HA12 HA14 HA21
MA20
2H089 MA04Y NA09 NA22 NA25
NA44 QA16 RA05 TA04 TA09
TA12 TA13 TA17
2H091 FA02Y FA14Z FA34Y FC10
GA06 GA09 GA13 HA07 LA04
LA18
5C094 AA03 AA42 AA43 BA03 BA43
CA19 CA24 EB02 ED03 ED15
CB01