

planetmath.org

Math for the people, by the people.

ideal of elements with finite order

 ${\bf Canonical\ name} \quad {\bf Ideal Of Elements With Finite Order}$

Date of creation 2013-03-22 17:52:30 Last modified on 2013-03-22 17:52:30

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872)
Entry type Theorem
Classification msc 20A05
Classification msc 16D25
Related topic OrderGroup

Related topic Lcm Related topic Multiple

Related topic OrdersOfElementsInIntegralDomain

Related topic CharacteristicOfFiniteRing

Theorem. The set of all elements of a ring, which have a finite order in the additive group of the ring, is a (two-sided) ideal of the ring.

Proof. Let S be the set of the elements with finite order in the ring R. Denote by o(x) the order of x. Take arbitrary elements a, b of the set S. If lcm(o(a), o(b)) = n = ko(a) = lo(b), then

$$n(a - b) = na - nb = ko(a)a - lo(b)b = k \cdot 0 - l \cdot 0 = 0 - 0 = 0.$$

Thus $o(a - b) \leq n < \infty$ and so $a - b \in S$. For any element r of R we have

$$o(a)(ra) = \underbrace{ra + ra + \ldots + ra}_{o(a)} = r(\underbrace{a + a + \ldots + a}_{o(a)}) = r(o(a)a) = r \cdot 0 = 0.$$

Therefore, $o(ra) \leq o(a) < \infty$ and $ra \in S$. Similarly, $ar \in S$. Since S satisfies the conditions for an ideal, the theorem has been proven.