Методы Оптимизации

Основано на лекциях Романовой А.А. Конспект написан Заблоцким Данилом

Весенний семестр 2024

Эти записи не одобряются лекторами, и я вношу в них изменения (часто существенно) после лекций. Они далеко не точно отражают то, что на самом деле читалось, и, в частности, все ошибки почти наверняка мои.

Оглавление

1	Лин	нейное программирование	
	1.1	Постановка задачи, теорема эквивалентности	5
	1.2	Базисные решения КЗЛП	8

Введение

Лекция 1: Начало

от 9 фев 8:45

Методы оптимизации - раздел прикладной математики, предметом изучения которого является теория и методы оптимизации.

Определение 1 (Оптимизационная задача). Оптимизационная задача - задача выбора из множества возможных вариантов, наилучших в некотором смысле,

$$\begin{cases} f(x) \to \min \text{ (max)} \\ x \in D \end{cases},$$

где

D — множество допустимых решений,

 $x \in D$ – допустимое решение,

f(x) — целевая функция (критерий оптимизации).

Задачи математического программирования (МП) и их классификация

1939 г. Л.В. Конторович

1947 г. Д. Данциг

с 50 гг. бурное развитие

Нобелевская премия по экономике Конторовичу и Купмаксу

Определение 2 (Задача математического программирования).

(1) $f(x) \to \max(\min)$

(2) $g_i(x) \# 0, i = \overline{1, m}, \# \in \{ \leq, \geq, = \}$ (3) $x_j \in \mathbb{R}, j = \overline{1, n} (x \in \mathbb{R}^n, x = (x_1, \dots, x_n))$

Множество точек x, удовлетворяющих условиям (2)–(3), называется множеством D доп. решений.

Определение 3 (Оптимальное решение). $x^* \in D$ называется onmumaльным решением задачи (1)–(3), если $\forall x \in D \ f(x^*) \geqslant f(x)$ для задачи на max и $\forall x \in D \ f(x^*) \leqslant f(x)$ для задачи на min.

 x^* является глобальным экстремумом.

Определение 4 (Разрешимая задача). Задача (1)–(3), которая обладает оптимальным решением, называется *разрешимой*, и *неразрешимой* в противном случае.

 $D = \mathbb{R}^n$ — задача безусловной оптимизации, в противном случае — задача условной оптимизации.

Примечание (Классификация).

- 1. Если f, g_i являются линейными, то задача является задачей линейного программирования (ЛП).
- 2. Если хотя бы одна из функций f и g_i нелинейная, то задача нелинейного програмирования.
- 3. f, g_i выпуклые, то *выпукголого программирования*.

Глава 1

Линейное программирование

1.1 Постановка задачи, теорема эквивалентности

Определение 5 (Общая задача ЛП (ЗЛП)).

$$f(x) = c_0 + \sum_{j=1}^{n} c_j x_j \to \max \text{ (min)}$$

$$\sum_{j=1}^{n} a_{ij} x_j \# b_i, \ i = \overline{1, m}, \ \# \in \{\leqslant, \geqslant, =\}$$

$$x_j \geqslant 0, \ j \in \mathcal{J} \leqslant \{1, \dots, n\}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}^{C} \qquad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
_{дано}

Замечание. Б.о.о. далее полагаем $c_0 = 0$, так как добавление константы не влияет на процесс нахожденя оптимального решения.

Примечание (Матричная задача).

$$f(x) = (c, x) \to \max \text{ (min)}$$

$$Ax \# b$$

$$x_j \geqslant 0, \ j \in \mathcal{J} \subseteq \{1, \dots, n\}$$

Примечание (Каноническая ЗЛП (КЗЛП)).

$$f(x) = (c, x) \to \max$$

$$Ax = b$$

$$x \geqslant \overline{0} (\overline{0} = (0, \dots, 0))$$

Примечание (Симметричная ЗЛП).

$$\begin{array}{lll} f(x) = & (c,x) \to \max & & f(x) = & (c,x) \to \min \\ & Ax < b & & \text{или} & & Ax \geqslant b \\ & x \geqslant \overline{0} & & & x \geqslant \overline{0} \end{array}$$

Примеры моделей ЛП

Пример. Задача о составлении оптимального плана пространства

$$m$$
 ресурсов $i=\overline{1,m}$ n видов продукции $j=\overline{1,n}$

 b_i – запас i-го ресурса, $i = \overline{1,m}$

Известно: a_{ij} – кол-во рес. i, требуемое для пр-ва 1ед. прод. вида j c_j – прибыль от продажи 1ед. jго продукта

Необходимо составить план производства, максимизирующий суммарную прибыль.

Переменные: x_i ед. продукции вида j производства $(j = \overline{1, n})$,

$$\sum_{j=1}^{n} c_j x_j \to \max$$

$$\sum_{j=1}^{n} a_{ij} x_j \leqslant b_i, \ i = \overline{1, m}$$

$$x_j \geqslant 0, \ j = \overline{1, n}$$

Пример. О максимальном потоке

G=(V,E) ориент. взвешенный $c:E o\mathbb{R}$ – веса дуг – пропускная способность s – источник t – сток

Пусть x_{ij} – поток по дуге $(i,j) \in E$,

$$\begin{cases} f = & \sum_{j:(s,j)\in E} x_{sj} \to \max\\ & \sum_{j:(j,i)\in E} x_{ji} = \sum_{k:(i,k)\in E} x_{ik}, \ i \in V \setminus \{s,t\}\\ & 0 \leqslant x_{ij} \leqslant c_{ij}, \ (i,j) \in E \end{cases}$$

 \Diamond

 \Diamond

Теорема эквивалентности задач ЛП

Определение 6 (Эквивалентные задачи). Две задачи МП

$$\left\{ \begin{array}{l} f(x) \to opt \\ x \in D \end{array} \right. \left\{ \begin{array}{l} \overline{f}(\overline{x}) \to \overline{opt} \\ \overline{x} \to \overline{D} \end{array} \right. \left. \begin{array}{l} D \xrightarrow{\phi} \overline{D} \\ \overline{D} \xrightarrow{\overline{\phi}} D \end{array} \right.$$

называются эквивалентными, если любому допустимому решению каждой из них по некоторому правилу соответсвует допустимое решение другой задачи, причем оптимальному решению соответсвует оптимальное.

Теорема 1 (Первая теорема эквивалентности). Для любой задачи ЛП \exists эквивалентная ей каноническая $3\Pi\Pi$.

Примечание (Идея доказательства). $n=2, \ m=3$

$$\begin{array}{ll} f = c_1x_1 + c_2x_2 \to \min & \overline{f} = -c_1x_1 - c_2x_2 \to \max \\ a_{11}x_1 + a_{12}x_2 = b_1 & a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 \leqslant b_2 & a_{21}x_1 + a_{22}x_2 + x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 \geqslant b_3 & a_{31}x_1 + a_{32}x_2 - x_4 = b_3 \\ x_1 \geqslant 0 & x_1, x_3, x_4 \geqslant 0 \\ x_2 \in \mathbb{R} & x_2 = x_2' - x_2'', \ x_2' \geqslant 0, \ x_2'' \geqslant 0 \end{array}$$

$$\overline{f} = -c_1x_1 - c_2x_2' + c_2x_2'' \to \max$$

$$a_{11}x_1 + a_{12}x_2' - a_{12}x_2'' = b_1$$
КЗЛП
$$a_{21}x_1 + a_{22}x_2' - a_{22}x_2'' + x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2' - a_{32}x_2'' - x_4 = b_3$$

$$x_1, x_2', x_2'', x_3, x_4 \geqslant 0$$

Неоднозначность – разность, $\forall x \in D \ f(x) = -f(\overline{x}), \ \overline{x} \in \overline{D}$

$$\overline{x} = \phi(x)$$
.

Очевидно, что оптимальность также сохраняется при таких преобразованиях.

Теорема 2 (Вторая теорема эквивалентности). Для любой задачи ЛП \exists эквивалентная ей симметричная задача ЛП.

Примечание (Идея доказательства).

$$\alpha = \beta \iff \left\{ \begin{array}{ll} \alpha \leqslant \beta & \qquad (c, x) \to \max \\ \alpha \geqslant \beta & \qquad Ax \leqslant b \\ x \geqslant 0 & \qquad x \geqslant 0 \end{array} \right. \mid \begin{array}{ll} (c, x) \to \min \\ Ax \geqslant b \\ x \geqslant 0 & \qquad x \geqslant 0 \end{array}$$

Замечание. Смысл теоремы 1 в том, чтобы свести решение ЗЛП к КЗЛП. **Примечание** (Геометрическая интерпретация). n=2,

$$f = c_1 x_1 + c_2 x_2 \to \max$$

 $a_{i1} x_1 + a_{i2} x_2 \le b_i, \ i = \overline{1, m}$

Линии уровня целевой функции

$$c_1x_1+c_2x_2=const \\ \bot \nabla f=(c_1,c_2)$$

$$\exists!x^*-\text{ опт. решение}$$
 ЗЛП разрешима
$$\text{беск. много опт. реш.}$$

$$f\to +\infty \text{ на мн-ве } D \text{ (ф-я неогр. сверху на } D)$$
 ЗЛП неразрешима
$$D=\varnothing \text{ нет доп. реш.}$$

1.2 Базисные решения КЗЛП

КЗЛП
$$\begin{array}{c} (1) \ f = (c,x) \to \max \\ (2) \quad Ax = b \\ (3) \quad x \geqslant \overline{0} \end{array} \right\} D$$

$$A_{m imes n} = (A^1,A^2,\dots,A^n)$$
 $A^j = \left(egin{array}{c} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{array}
ight)$ — j -ый столбец матрицы A

Определение 7 (Базисное решение системы (2)). Пусть \overline{x} – решение системы (2). Вектор \overline{x} называется базисным решением системы (2), если система векторных столбцов матрицы A, соответствующая ненулевым компонентам вектора \overline{x} , линейно независима.

Замечание. В случае однородной системы (b=0), решение x=0 является базисным.

Определение 8 (Базисное решение КЗЛП). Неотрицательное базисное решение системы (2) называется базисным (опорным) решением $K3Л\Pi$.

Пример.

$$3x_1 - 4x_2 + x_3 \to \max$$

$$\begin{cases} 2x_1 + 2x_2 + 3x_3 - x_4 + x_5 = 1\\ 2x_1 + 4x_2 + x_4 + 2x_5 = 2\\ x_j \ge 0, \ j = \overline{1,5} \end{cases}$$

$$A = \begin{pmatrix} 2 & 2 & \mathbf{3} & \mathbf{-1} & 1\\ 2 & 4 & \mathbf{0} & \mathbf{1} & 2 \end{pmatrix}$$

 $x^1=(0,0,1,2,0)$ — базисное решение системы, так как $\begin{vmatrix} 3 & -1 \\ 0 & 1 \end{vmatrix} \neq 0$ соответствует базису $\{A^3,A^4\}$.

$$x^1$$
 и БР КЗЛП $x^2=(1,0,-\frac{1}{3}\;,0,0)$ БР СЛАУ, но не КЗЛП $x^3=(0,0,0,0,1)$ БР КЗЛП

 \Diamond

Определение 9 (Вырожденное решение). x — базисное решение КЗЛП называется *вырожденным*, если число ненулевых компонент вектора x меньше ранга матрицы A.

Примечание. x^3 — вырожденное, недост.: соответствует разным наборам баз. столбцов матрицы.

 x^3 соответствует $\{A_1, A_5\}, \{A_3, A_5\}, \{A_4, A_5\}.$