In [1]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt

%matplotlib inline

In [2]: df=pd.read_csv("C:/Users/hp/Downloads/USA_Housing.csv")

In [3]: | df.head()

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Addre
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry A 674\nLaurabury, I 370
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Vie Suite 079\nLa Kathleen, C <i>I</i>
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabe Stravenue\nDanieltov WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO / 448
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFF AE 093

In [4]: df.tail()

Out[4]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
USNS Williams\nFPO AP 30153-7653	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC 9258, Box 8489\nAPO AA 42991-3352	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Tracy Garden Suite 076\nJoshualand, VA 01	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace\nFPO AE 73316	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 George Ridges Apt. 509\nEast Holly, NV 2	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1) memory usage: 273.6+ KB

we have 7 columns and 5000 rows

```
In [6]: df.describe()
Out[6]:
                                                 Avg. Area
                                                               Avg. Area
                                   Avg. Area
                      Avg. Area
                                                                                 Area
                                                Number of
                                                               Number of
                                                                                              Price
                        Income
                                  House Age
                                                                            Population
                                                   Rooms
                                                               Bedrooms
                   5000.000000
                                 5000.000000
                                               5000.000000
                                                             5000.000000
                                                                           5000.000000 5.000000e+03
           count
           mean
                  68583.108984
                                    5.977222
                                                  6.987792
                                                                3.981330
                                                                          36163.516039 1.232073e+06
             std
                  10657.991214
                                    0.991456
                                                  1.005833
                                                                1.234137
                                                                           9925.650114 3.531176e+05
                   17796.631190
                                    2.644304
                                                  3.236194
                                                                2.000000
                                                                            172.610686 1.593866e+04
            min
            25%
                  61480.562388
                                    5.322283
                                                  6.299250
                                                                3.140000
                                                                          29403.928702 9.975771e+05
            50%
                                                  7.002902
                  68804.286404
                                    5.970429
                                                                4.050000
                                                                          36199.406689 1.232669e+06
            75%
                  75783.338666
                                    6.650808
                                                  7.665871
                                                                4.490000
                                                                         42861.290769 1.471210e+06
            max 107701.748378
                                                                         69621.713378 2.469066e+06
                                    9.519088
                                                 10.759588
                                                                6.500000
In [8]: df.columns
Out[8]: Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Room
         s',
                  'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Addres
          s'],
                dtype='object')
```

EXPLORATORY DATA ANALYSIS

```
In [10]:
         print(df.isnull().sum())
         Avg. Area Income
                                           0
         Avg. Area House Age
                                           0
         Avg. Area Number of Rooms
                                           0
         Avg. Area Number of Bedrooms
                                           0
         Area Population
                                           0
         Price
                                           0
         Address
                                           0
         dtype: int64
```

There is no null values present in the dataset.

We see the distribution of target variables Skewness and spread, so that it helps us to select appropriate statistical data models etc.

<Figure size 1200x800 with 0 Axes>

we see the relationship between the target variables and other features

```
In [18]: sns.heatmap(df.corr(), annot=True)
```

C:\Users\hp\AppData\Local\Temp\ipykernel_21272\621126171.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a futur e version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(), annot=True)

Out[18]: <AxesSubplot: >

Correlation matrix between features. The relation between householder's income and house price is high

MODEL BUILDING

```
In [21]: #Split data into trainig and testing
         from sklearn.model_selection import train_test_split
In [22]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, rando
In [23]: from sklearn.linear model import LinearRegression
         lm = LinearRegression()
         lm.fit(X_train,y_train)
Out[23]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with
         nbviewer.org.
In [26]: # make prediction using test data
         y pred = lm.predict(X test)
In [28]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [29]: # Evaluate the model
         mse = mean_squared_error(y_test, y_pred)
         mae = mean_absolute_error(y_test, y_pred)
         r2 = r2 score(y test, y pred)
In [30]:
         print(f"Mean Squared Error (MSE): {mse}")
         print(f"Mean Absolute Error (MAE): {mae}")
         print(f"R-squared (R2): {r2}")
         Mean Squared Error (MSE): 10460958907.208803
         Mean Absolute Error (MAE): 82288.22251914945
         R-squared (R<sup>2</sup>): 0.9176824009649256
         Y is 90% dependent on x variables
In [33]: # Interpret the coefficients
         coefficients = pd.DataFrame({'feature': X.columns, 'coefficient': lm.coef_})
         print(coefficients)
                                  feature
                                              coefficient
         0
                         Avg. Area Income
                                                21.528276
                      Avg. Area House Age 164883.282027
         1
         2
               Avg. Area Number of Rooms 122368.678027
         3 Avg. Area Number of Bedrooms
                                             2233.801864
                          Area Population
                                               15.150420
```

```
In [36]: predictions = lm.predict(X_test)
In [37]: plt.scatter(y_test,predictions)
```

Out[37]: <matplotlib.collections.PathCollection at 0x20312cd3c10>

Here we got a linear scatter plot. It shows that model is fit and good.

```
In [ ]:
```