

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Redes Neuronales

Tiedes Neuronales						
Clave:	Semestre:	mestre: Eje temático:			No. Créditos:	
	6-8	Bio-Info	Bio-Informática			
Carácte	Carácter: Optativa Horas Horas semana			Total de Horas		
Tipo: Teórico-Práctica			Teoría:	Práctica:		
Tipo: Te	orico-Practica	1	3	4	7	112
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación indicativa antecedente: Álgebra Lineal I; Estructuras de Datos; Matemáticas para las Ciencias de la Tierra III

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivos generales:

Conocer y comprender la situación de las redes neuronales artificiales, representantes importantes de la corriente conexionista de la inteligencia artificial.

Conocer los procesos del sistema nervioso central y de sus componentes, las neuronas, que han servido como inspiración para estos algoritmos.

Presentar con el rigor matemático necesario, una variada selección de tipos de redes neuronales.

Explicar aplicaciones de cada tema a diversas áreas del conocimiento.

Conocer y aplicar las técnicas y reglas de dedo, utilizadas en la implementación de redes neuronales para propósitos tanto comerciales como de investigación.

Conocer y explicar las herramientas matemáticas que hasta hoy se han utilizado para la construcción de la teoría de las redes neuronales artificiales, con la finalidad de comprender los problemas abiertos que existen en dicha área.

Índice temático				
Unided	Tomas	Horas		
Unidad	Temas	Teóricas Prácti	Prácticas	
ı	Introducción: Dos caminos hacia las redes neuronales	3	4	
	Modelos matemáticos del sistema nervioso central	3	4	

III	Aprendizaje, clasificación y reconocimiento de	6	8
111	patrones	U	O
IV	El modelo de Hopfield	9	12
V	El Perceptrón multicapa	9	12
VI	Aproximación de funciones	6	8
VII	El mapeo auto organizado	9	12
VIII	Máquinas de soporte vectorial	3	4
	Total de horas:	48	64
Suma total de horas:		11	12

Contenido temático			
Unidad	Tema		
I Introducción: Dos caminos hacia las redes neuronales			
I.1	La ruta coneccionista a la inteligencia artificial.		
1.2	La ruta de los sistemas dinámicos.		
II Modelos	matemáticos del sistema nervioso central		
II.1	Neurodinámica básica.		
II.2	Los modelos de ecuaciones diferenciales.		
II.3	Los modelos de mapeos discretos.		
III Aprendiz	zaje, clasificación y reconocimiento de patrones		
III.1	El Perceptrón simple.		
III.2	Separabilidad lineal.		
III.3	Regla de actualización de pesos.		
III.4	Limitaciones.		
IV El mode	elo de Hopfield		
IV.1	Memorias asociativas.		
IV.2	Cuencas de atracción.		
IV.3	Paisaje de energía.		
IV.4	Limitaciones.		
IV.5	La máquina de Boltzmann.		
IV.6	Aplicaciones.		
	ptrón multicapa		
V.1	El problema de XOR revisado.		
V.2	Separabilidad lineal por pedazos.		
V.3	Algoritmo de retropropagación.		
V.4	Entrenamiento por algoritmos genéticos.		
V.5	Preprocesamiento de datos.		
V.6	Aplicaciones		
VI Aproxim	nación de funciones		
VI.1	Redes Neuronales de funciones de base radial.		
VI.2	Redes Neuronales de regresión generalizada.		
VI.3	El modelo de Siegelmann y el hipercómputo.		
VI.4	Aplicaciones.		

VII El mapeo auto organizado			
VII.1	Mapeos que preservan la topología.		
VII.2	El algoritmo de Kohonen.		
VII.3	Comportamiento del algoritmo en el tiempo.		
VII.4	Clustering.		
VII.5	Modificaciones al algoritmo.		
VII.6	Aplicaciones.		
VIII Máquinas de soporte vectorial			
VIII.1	El truco del Kernel y la dimensión Vapnik–Chervonenkis.		
VIII.2	Minería de datos con máquinas de soporte vectorial.		

Bibliografía básica:

- 1. Beale, R., Jackson, R. *Neural Computing: an Introduction*, Institute of Physics Publishing, 1990.
- 2. Haykin, S. Neural Networks and Learning Machines, Prentice Hall, 2008.
- 3. Hertz, J.A., Palmer, R.G., Krogh, A. *Introduction to the Theory of Neural Computation*, Addison Wesley, 1991.

Bibliografía complementaria:

- 1. Bishop, Ch.M. Neural Networks for Pattern Recognition, Oxford University Press, 1996.
- 2. Kohonen, T. Self-Organizing Maps, Springer-Verlag, 2000.
- 3. Hamel, L. Knowledge Discovery with Support Vector Machines, John Wiley, 2009.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	()
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	()
Prácticas de taller o laboratorio	(X)	Proyectos de programación	(X)
Prácticas de campo	()	Proyecto final	()
•	` ,	Seminario	()
Otras:			` ,
		Otras:	

Perfil profesiográfico: Matemático, físico, actuario o Licenciado en Ciencias de la Computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.