Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5 «Интерполяция функции»

по дисциплине «Вычислительная математика»

Вариант: 2

Преподаватель: Малышева Татьяна Алексеевна

Выполнил: Барсуков Максим Андреевич Группа: P3215

<u>Цель работы</u>: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

1. Вычислительная реализация задачи

1. Выбрать таблицу y = f(x):

	X	у	N варианта	X_1	X_2
Таблица 1.4	0.50	1.5320	2	0.502	0.645
	0.55	2.5356			
	0.60	3.5406			
	0.65	4.5462			
	0.70	5.5504			
	0.75	6.5559			
	0.80	7.5594			

2. Построить таблицу конечных разностей:

№	Xi	y _i	Δy_i	$\Delta^2 \mathbf{y}_{i}$	$\Delta^3 \mathbf{y_i}$	$\Delta^4 { m y_i}$	$\Delta^5 y_i$	$\Delta^6 \mathbf{y}_{i}$
0.	0.50	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	-0.0166
1.	0.55	2.5356	1.0050	0.0006	-0.0020	0.0047	-0.0107	
2.	0.60	3.5406	1.0056	-0.0014	0.0027	-0.0060		
3.	0.65	4.5462	1.0042	0.0013	-0.0033			
4.	0.70	5.5504	1.0055	-0.0020				
5.	0.75	6.5559	1.0035					
6.	0.80	7.5594						

3. Вычислить значения функции для аргумента *X*₁, используя первую или вторую интерполяционную формулу **Ньютона**:

Воспользуемся формулой Ньютона для интерполирования **вперед**, так как $X_1 = 0.502$ лежит в левой половине отрезка.

Для
$$X_1=0.502$$
: $t=\frac{(x-x_n)}{h}=\frac{(0.502-0.500)}{0.05}=0.04$
$$N_6(x)=y_0+t\Delta y_0+\frac{t(t-1)}{2!}\Delta^2 y_0+\frac{t(t-1)(t-2)}{3!}\Delta^3 y_0+\frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0+\frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0$$

$$y(0.502) \approx 1.5320 + 0.04 * 1.0036 + \frac{0.04(0.04 - 1)}{2} * 0.0014 + \frac{0.04(0.04 - 1)(0.04 - 2)}{6}$$

$$* (-0.0008) + \frac{0.04(0.04 - 1)(0.04 - 2)(0.04 - 3)}{24} * (-0.0012)$$

$$+ \frac{0.04(0.04 - 1)(0.04 - 2)(0.04 - 3)(0.04 - 4)}{120} * 0.0059$$

$$+ \frac{0.04(0.04 - 1)(0.04 - 2)(0.04 - 3)(0.04 - 4)(0.04 - 5)}{720} * (-0.0166)$$

 $y(0.502) \approx 1.57226249$

4. Вычислить значения функции для аргумента *X*₂, используя первую или вторую интерполяционную формулу Гаусса:

Центральная точка a = 0.65, $X_2 = 0.645 < 0.65$, то есть $x < a \rightarrow$ используем **вторую** интерполяционную формулу Гаусса.

t =
$$\frac{(x - x_0)}{h}$$
 = $\frac{(0.645 - 0.65)}{0.05}$ = -0.1

$$\begin{split} P_6(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-3} \\ &\quad + \frac{(t+3)(t+2)(t+1)t(t-1)(t-2)}{6!}\Delta^6 y_{-3} \end{split}$$

$$y(0.645) \approx 4.5462 + (-0.1) * 1.0056 + \frac{-0.1(-0.1+1)}{2} * (-0.0014)$$

$$+ \frac{(-0.1+1)(-0.1)(-0.1-1)}{6} * (-0.0020)$$

$$+ \frac{(-0.1+2)(-0.1+1)(-0.1)(-0.1-1)}{24} * (0.0047)$$

$$+ \frac{(-0.1+2)(-0.1+1)(-0.1)(-0.1-1)(-0.1-2)}{120} * (0.0059)$$

$$+ \frac{(-0.1+3)(-0.1+2)(-0.1+1)(-0.1)(-0.1-1)(-0.1-2)}{720} * (-0.0166)$$

 $y(0.502) \approx 4.4457138257325$

2. Программная реализация задачи

https://github.com/maxbarsukov/itmo/tree/master/4%20вычмат/лабораторные/lab5

Результаты выполнения программы при различных исходных данных:

Введите точку интерполяции: 0.32 Введите 'quit', чтобы закончить ввод. Введите узлы интерполяции: 0.15 1.25 0.2 2.38 0.33 3.79 0.47 5.44 quit Таблица конечных разностей: 1.2500 1.1300 0.2800 -0.0400 2.3800 1.4100 0.2400 3.7900 1.6500 5.4400 t: -0.20000000000000012 Многочлен Лагранжа P(0.32) = 3.716050824175824t: -0.20000000000000012 Многочлен Ньютона с разделенными разностями P(0.32) = 3.716050824175824

Введите точку интерполяции: 150 Введите 'quit', чтобы закончить ввод. Введите узлы интерполяции: 100 10 121 11 144 12 quit Таблица конечных разностей: 10.0000 1.0000 0.0000 11.0000 1.0000 12.0000 t: 1.380952380952381 Многочлен Лагранжа P(150.0) = 12.244494635798986t: 1.380952380952381 Многочлен Ньютона с разделенными разностями P(150.0) = 12.244494635798983t: 1.380952380952381 Многочлен Гаусса P(150.0) = 12.380952380952381t: 1.380952380952381 Многочлен Стирлинга P(150.0) = 12.38095238095238112.0 11.5 11.5 11.0

Вывод

В ходе выполнения данной лабораторной работы я рассмотрел и реализовал методы интерполяции Ньютона и Гаусса для заданной таблицы данных. Интерполяция позволяет нам предсказывать значения функции в промежуточных точках на основе имеющихся данных.

С помощью разработанной программы были вычислены приближенные значения функции для заданных аргументов с использованием методов Ньютона и Гаусса. Было проведено сравнение результатов, полученных разными методами.

Результаты показали, что оба метода могут быть эффективно использованы для интерполяции, но их точность может зависеть от конкретной функции и распределения данных. Эта работа подчеркивает важность выбора подходящего метода интерполяции в соответствии с требованиями конкретной задачи.