A. Alpenliebe

1 second, 256 megabytes

It's your birthday and you want to distribute Alpenleibe to your friends in an interesting way. You have N friends F_1 , F_2 ... F_N . Suppose you give M_i Alpenleibe to your i^{th} friend, F_i . You don't like your first (F_1) , second (F_2) , third (F_3) , and fourth friend (F_4) , so you give 0 Alpenleibe to them, but you give 1 Alpenliebe to your fifth friend (F_5) .

For others, to the F_i friend, if i is **odd** you give $i+M_{i-1}+M_{i-3}+M_{i-5}$ Alpenliebe else you give $i/2+M_{i-2}+M_{i-4}$ Alpenliebe where [x/y] represents integer division, i.e., the quotient when you divide x by y.

Given N, find the number of Alpenleibe you give to F_N .

Input

You are given one integer N.

 $1 \le N \le 20$

Output

Print M_N , the number of Alpenleibe you give to your N^{th} friend.

input	
1	
output	
0	

input	
5	
output	
1	

B. Pick Some Get Some

3 seconds, 256 megabytes

Given an array A of n integers and an integer x. Find if there exists a subsequence $B=b_1b_2\dots b_k$ of the array A of length $k(k\geq 1)$ such that, after multilying some (possible none) elements of B by -1, the sum of the elements of B becomes x.

Note: A subsequence is a sequence which can be obtained by removing some (possibly none) elements from the original sequence. For example, [3, 3] is a subsequence of [4, 3, 1, 3] but [1, 4] is not.

Input

First line of input contains 3 integers n,k,x ($1 \leq k \leq n \leq 20$) and ($-10^{15} < x < 10^{15}$).

Second line contains n integers a_1 , a_2 a_n ($-10^9 \le a_i \le 10^9$).

Output

Print "Yes" (without quotes) if such a subsequence exists in the array, else print "No".

input		
5 3 7 5 1 4 3 1		
output		
Yes		

```
input
5 3 7
7 3 4 5 2
```

```
output
Yes
```

```
input
5 3 7
7 3 4 5 12
output
No
```

In the first test case, 5+1+1=7

In the second test case, 4+5-2=7

In the third test case, there is no such subsequence of length 3.

C. Subsequence check

1 second, 256 megabytes

Your friend challenged you to a problem (t times).

There are n elements in an array. You have to find whether there exists a subsequence of the array whose sum is a multiple of k. But there is a catch. Your friend decided to $remove\ 1$ element from the array (any element). Now, you need to find whether you can get a subsequence whose sum is a multiple of k no matter which element was deleted by your friend ($subsequence\ must\ contain\ atleast\ 1$ element).

A string A is a subsequence of a string B if A can be obtained from B by deletion of several (possibly, zero or all) characters.

Input

The first line contains one integer t ($1 \le t \le 5$) — the number of test cases. Each test case consists of two lines.

The first line contains two integers n (1 $\leq n \leq$ 18) — the length of the array and k (1 $\leq k \leq$ 10 9).

The second line contains n integers $a_1, a_2, a_3, \dots, a_n$ ($-10^9 \le a_i \le 10^9$).

It is guaranteed that the sum of n over all test cases does not exceed 18.

Output

Print "YES" if you can find such a subsequence, "NO" otherwise.


```
input

1
4 4
0 0 0 0 0

output

YES
```

input		
1		
3 3		
5 11 7		
output		
NO		

 ${\bf Explanation\ of\ test\ case:}$

k = 4

arr = 1 2 -2 -1

If we delete 1: Subsequence: 2 + (-2) = 0If we delete 2: Subsequence: 1 + (-1) = 0

If we delete -2: Subsequence: 1 + (-1) = 0

If we delete 1: Subsequence: 2 + (-2) = 0

We are getting a subsequence divisible by k, no matter which element is deleted, therefore the answer is YES

NOTE: Remainder of 0 with any number is always 0.

NOTE: Remainder of -xk with k is always 0 (Here x is any positive integer), e.g., -4 is divisble by 2.

Codeforces (c) Copyright 2010-2022 Mike Mirzayanov The only programming contests Web 2.0 platform