CENTRIFUGAL PUMP MODEL CP-5000

Operation and Maintenance Manual

Document Number: CP-5000-OM-Rev3

Date: January 2023

Equipment Model: CP-5000 Centrifugal Pump **Serial Numbers**: PUMP_001 - PUMP_050

TABLE OF CONTENTS

- 1. Safety Information
- 2. Equipment Overview
- 3. Technical Specifications
- 4. Sensor Systems
- 5. Operating Procedures
- 6. Maintenance Schedule
- 7. Troubleshooting Guide
- 8. Failure Modes and Diagnostics
- 9. Emergency Procedures
- 10. Spare Parts List

SAFETY INFORMATION

WARNING SYMBOLS

△ DANGER: Risk of death or serious injury

✓ ELECTRICAL HAZARD: Risk of electric shock

■ FIRE HAZARD: Risk of fire or explosion

★ CHEMICAL HAZARD: Risk of chemical exposure

General Safety Requirements

- All personnel must be trained and certified before operating this equipment
- Personal Protective Equipment (PPE) required: safety glasses, steel-toed boots, hard hat
- Lock-out/Tag-out procedures must be followed during maintenance
- Never operate equipment above rated capacity
- Maintain minimum safe distances from rotating equipment

Pre-Operation Safety Checks

- 1. Verify all guards and covers are properly installed
- 2. Check for leaks in piping systems
- 3. Ensure emergency stops are functional
- 4. Confirm proper grounding of electrical systems
- 5. Verify availability of emergency shutdown procedures

EQUIPMENT OVERVIEW

Description

The CP-5000 is a horizontal, single-stage centrifugal pump designed for continuous operation in oil and gas applications. The pump features a back-pullout design allowing maintenance without disturbing piping connections.

Key Components

- Impeller: Closed-type, dynamically balanced
- Casing: Horizontally split, cast steel
- Shaft: Stainless steel, precision ground
- Bearings: Heavy-duty ball bearings with grease lubrication
- Mechanical Seal: Dual mechanical seal with API 682 compliance
- Motor: 150 HP, 3600 RPM, TEFC enclosure

Applications

Crude oil transfer

- Refined product handlingProcess water circulation

- Fire water systemsGeneral industrial applications

TECHNICAL SPECIFICATIONS

Performance Data

Parameter	Value	Unit
Flow Rate (Rated)	500	GPM
Total Head (Rated)	85	ft
Efficiency	78	%
NPSH Required	8	ft
Maximum Operating Pressure	150	PSIG
Temperature Range	32-200	°F

Motor Specifications

Parameter	Value	Unit
Power	150	HP
Voltage	460	VAC
Frequency	60	Hz
Speed	3600	RPM
Current (Full Load)	200	Amps
Power Factor	0.85	-

Physical Dimensions

Parameter	Value	Unit
Length	84	inches
Width	36	inches
Height	42	inches
Weight (Dry)	2,850	lbs
Suction Size	8	inches
Discharge Size	6	inches

SENSOR SYSTEMS

Pressure Monitoring

Discharge Pressure Sensor (PT-001)

- Type: Piezoresistive pressure transmitter
- Range: 0-150 PSIG
- Accuracy: ±0.25% of span
- Normal Operating Range: 85-95 PSIG
- Alarm Levels:
 - Low: <80 PSIG
 - o High: >100 PSIG
 - Emergency Stop: >120 PSIG

Suction Pressure Sensor (PT-002)

- Type: Piezoresistive pressure transmitter
- Range: 0-50 PSIG
- Accuracy: ±0.25% of span
- Normal Operating Range: 15-25 PSIG
- Alarm Levels:
 - Low: <10 PSIG (Cavitation Risk)
 - High: >30 PSIG

Flow Measurement

Flow Rate Sensor (FT-001)

- Type: Electromagnetic flow meter
- Range: 0-800 GPM
- Accuracy: ±0.5% of reading
- Normal Operating Range: 450-550 GPM
- · Alarm Levels:
 - Low: <400 GPM
 - High: >600 GPM

Temperature Monitoring

Bearing Temperature Sensors (TE-001, TE-002)

- Type: RTD Pt100
- Range: -40 to 200°F
- Accuracy: ±1°F
- Normal Operating Range: 70-85°F
- Alarm Levels:
 - High: >90°F
 - o Critical: >110°F
 - Emergency Stop: >130°F

Motor Temperature Sensor (TE-003)

- Type: RTD Pt100 embedded in windings
- Range: 0-250°F
- Normal Operating Range: 140-160°F
- Alarm Levels:
 - High: >180°F
 - o Critical: >200°F
 - Emergency Stop: >220°F

Vibration Monitoring

Vibration Sensors (VT-001, VT-002, VT-003)

- Type: Accelerometer (X, Y, Z axes)
- Range: 0-2.0 in/sec RMS
- Frequency Range: 10-1000 Hz
- Normal Operating Range: 0.05-0.15 in/sec
- Alarm Levels:
 - o Alert: >0.20 in/sec
 - Alarm: >0.30 in/sec
 - Emergency Stop: >0.50 in/sec

Electrical Monitoring

Motor Current Sensor (CT-001)

- Type: Current transformer
- Range: 0-400 Amps
- Accuracy: ±1% of reading
- Normal Operating Range: 180-220 Amps
- Alarm Levels:
 - High: >250 Amps
 - Low: <150 Amps

Motor Speed Sensor (ST-001)

- Type: Magnetic pickup
- Range: 0-4000 RPM
- Normal Operating Range: 3550-3600 RPM
- Alarm Levels:

Low: <3500 RPMHigh: >3650 RPM

Lubrication System

Oil Pressure Sensor (PT-003)

- Type: Piezoresistive pressure transmitter
- Range: 0-100 PSIG
- Normal Operating Range: 25-35 PSIG
- Alarm Levels:
 - Low: <20 PSIG
 - o Critical: <15 PSIG

Seal Monitoring

Seal Leak Rate Sensor (FT-002)

- Type: Ultrasonic leak detector
- Range: 0-50 ml/hr
- Normal Operating Range: 0-2 ml/hr
- Alarm Levels:
 - High: >5 ml/hr
 - o Critical: >15 ml/hr

OPERATING PROCEDURES

Pre-Start Checklist

1. Visual Inspection

- o Check for oil leaks around bearings
- Verify coupling alignment
- o Inspect mechanical seal for leakage
- Check foundation bolts for tightness

2. Lubrication Check

- Verify bearing oil level in sight glass
- o Check oil quality (clear, no contamination)
- Ensure oil pressure system is operational

3. Electrical Systems

- Verify motor starter is in "OFF" position
- Check control power availability
- Test emergency stop functions
- Verify instrument air supply

4. Process Systems

- o Confirm suction valve is open
- Verify discharge valve position (25% open for startup)
- Check that system is primed
- Verify minimum flow recirculation is available

Startup Procedure

1. Initial Preparation

- Ensure all personnel are clear of equipment
- Verify pre-start checklist completion
- o Confirm process conditions are within normal range

2. Motor Startup

- Start motor using control panel
- Monitor motor current during acceleration
- Verify speed reaches normal operating range (3550-3600 RPM)
- · Check for abnormal vibration or noise

3. Flow Establishment

- o Gradually open discharge valve
- Monitor suction pressure (maintain >15 PSIG)
- Adjust flow to desired operating point
- Verify all parameters are within normal ranges

4. System Stabilization

- Allow 15-30 minutes for thermal stabilization
- o Record all operating parameters

- Verify automatic controls are functioning
- Document startup in equipment log

Normal Operation Monitoring

Continuous Monitoring Parameters:

- Discharge pressure: 85-95 PSIG
- Suction pressure: 15-25 PSIG
- Flow rate: 450-550 GPM
- Motor current: 180-220 Amps
- Bearing temperature: 70-85°F
- Motor temperature: 140-160°F
- Vibration levels: <0.15 in/sec
- Oil pressure: 25-35 PSIG

Hourly Checks:

- Record all sensor readings
- Visual inspection for leaks
- Listen for unusual noises
- Check oil levels
- Verify control system responses

Shutdown Procedure

1. Planned Shutdown

- o Gradually reduce flow by closing discharge valve
- Monitor for cavitation (suction pressure <10 PSIG)
- Stop motor when flow is minimized
- Close suction isolation valve if required

2. Emergency Shutdown

- o Press emergency stop button
- o Close emergency isolation valves
- Notify operations control room
- Implement emergency response procedures

MAINTENANCE SCHEDULE

Daily	Inspections (8 hours)
•	Record all operating parameters Visual inspection for leaks Check oil levels in bearing housing Listen for unusual noises or vibration Verify control system alarms
Week	ly Inspections (168 hours)
•	Detailed vibration analysis Motor current trend analysis Bearing temperature trending Seal leak rate monitoring Coupling inspection Foundation bolt check
Mont	hly Maintenance (730 hours)
•	Oil sample analysis (bearing lubrication) Motor insulation resistance test Calibration check of pressure instruments Vibration sensor calibration verification

Quarterly Maintenance (2,190 hours)

• Coupling alignment check

•	Comprehensive vibration analysis with FF	T
•	Motor current signature analysis	

- 🔲 Bearing inspection (if accessible)

Mechanical seal inspection	
Complete electrical connection inspection	
Control system functional test	
Semi-Annual Maintenance (4,380 hours)	
Bearing replacement (if required)	
Motor winding inspection	
Impeller inspection and cleaning	
Coupling replacement (if required)	
Complete system alignment check	
Pressure relief valve testing	
Annual Maintenance (8,760 hours)	
Complete pump disassembly and inspection	
Impeller balancing verification	
Shaft runout check	
Casing inspection for wear/corrosion	
Motor overhaul (if required)	
Complete instrument calibration	
Foundation inspection	

TROUBLESHOOTING GUIDE

Low Discharge Pressure

Possible Causes:

1. Cavitation

- o Symptoms: High vibration, noise, low suction pressure
- Action: Increase suction pressure, reduce flow rate
- o Check: NPSH available vs. required

2. Impeller Wear

- o Symptoms: Reduced efficiency, increased motor current
- o Action: Inspect impeller for erosion/corrosion
- o Check: Performance curve comparison

3. Internal Recirculation

- Symptoms: High motor current, reduced flow
- Action: Check wear rings, impeller clearances
- Check: Pump curve vs. actual performance

Diagnostic Steps:

- 1. Verify suction conditions (pressure, temperature)
- 2. Check discharge valve position
- 3. Monitor vibration patterns
- 4. Analyze motor current trends
- 5. Perform pump curve analysis

High Vibration

Possible Causes:

1. Misalignment

- o Symptoms: High axial vibration, bearing heating
- Action: Check coupling alignment
 Check: Laser alignment within 0.002"

2. Bearing Wear

- o Symptoms: High frequency vibration, temperature rise
- Action: Replace bearings, check lubrication
- · Check: Bearing condition monitoring

3. Impeller Imbalance

- Symptoms: High radial vibration at running speed
- Action: Dynamic balancing required
- o Check: Impeller damage, deposits

Diagnostic Steps:

- 1. FFT analysis of vibration spectrum
- 2. Phase analysis across coupling
- 3. Temperature monitoring trends
- 4. Oil analysis for contamination
- 5. Stroboscopic inspection during operation

Motor Overheating

Possible Causes:

1. Overload Conditions

- o Symptoms: High motor current, reduced speed
- o Action: Reduce flow rate, check system resistance
- o Check: Motor nameplate vs. operating conditions

2. Poor Ventilation

- o Symptoms: Gradual temperature rise, even heating
- Action: Clean motor cooling fins, check fan
- o Check: Ambient temperature conditions

3. Electrical Issues

- o Symptoms: Uneven heating, voltage imbalance
- Action: Check electrical connections, voltage balance
- o Check: Motor winding resistance

Diagnostic Steps:

- 1. Motor current analysis (all three phases)
- 2. Voltage balance verification
- 3. Temperature distribution mapping
- 4. Insulation resistance testing
- 5. Connection torque verification

Seal Leakage

Possible Causes:

1. Normal Wear

- o Symptoms: Gradual increase in leak rate
- Action: Plan seal replacement
- o Check: Operating hours since last replacement

2. Dry Running

- o Symptoms: Sudden increase, face damage
- o Action: Check flush system, restart procedures
- o Check: Flush flow rate and pressure

3. Contamination

- Symptoms: Abrasive wear, irregular leakage
- Action: Improve filtration, check fluid quality
- o Check: Particle count in process fluid

Diagnostic Steps:

- 1. Seal leak rate trending
- Flush system verification
- 3. Process fluid analysis
- 4. Seal chamber pressure monitoring
- 5. Temperature monitoring of seal area

FAILURE MODES AND DIAGNOSTICS

Bearing Wear Failure Mode

Early Warning Indicators:

- Bearing temperature increase >5°F above baseline
- Vibration amplitude increase >20% in high frequency range (>1000 Hz)
- Oil analysis showing metallic particles
- Slight increase in motor current

Progressive Symptoms:

- Temperature rise to 90-100°F
- Vibration levels reaching 0.20-0.30 in/sec
- Audible bearing noise
- · Oil contamination with metal particles

Critical Indicators:

- Bearing temperature >110°F
- Vibration >0.30 in/sec
- · Significant motor current increase
- · Visible oil contamination

Recommended Actions:

- Stage 1 (Early): Increase monitoring frequency, plan maintenance
- Stage 2 (Progressive): Schedule immediate bearing replacement
- Stage 3 (Critical): Emergency shutdown, replace bearings

Impeller Damage Failure Mode

Early Warning Indicators:

- Slight decrease in discharge pressure (2-5%)
- Minor increase in motor current
- Pump efficiency reduction
- Vibration increase at impeller passing frequency

Progressive Symptoms:

- Discharge pressure drop 5-15%
- Flow rate reduction with same valve position
- Motor current increase 10-20%
- · Cavitation noise development

Critical Indicators:

- Discharge pressure drop >15%
- Severe flow reduction
- High motor current (>250 Amps)
- Severe vibration and cavitation

Recommended Actions:

- Stage 1: Monitor performance trends, plan inspection
- Stage 2: Schedule impeller inspection/replacement
- Stage 3: Immediate shutdown, assess impeller damage

Cavitation Failure Mode

Early Warning Indicators:

- Suction pressure fluctuations
- Slight vibration increase
- Minor noise development
- Performance curve shifting

Progressive Symptoms:

- Suction pressure drops below 10 PSIG
- High frequency vibration (>2000 Hz)
- Audible cavitation noise
- Discharge pressure instability

Critical Indicators:

- Suction pressure <5 PSIG
- Severe vibration and noise
- Complete loss of prime
- Impeller damage progression

Recommended Actions:

- Stage 1: Increase suction pressure, reduce flow
- Stage 2: Investigate suction system issues
- Stage 3: Emergency shutdown, prevent impeller damage

Motor Issues Failure Mode

Early Warning Indicators:

- Motor temperature increase 10-15°F
- Slight motor current imbalance between phases
- Minor speed variations
- Insulation resistance decline

Progressive Symptoms:

- Temperature rise >20°F above normal
- Current imbalance >5%
- Speed reduction under load
- Vibration increase at electrical frequency

Critical Indicators:

- Temperature >200°F
- Current >250 Amps
- Speed drop >2%
- Ground fault indications

Recommended Actions:

- Stage 1: Monitor electrical parameters, check connections
- Stage 2: Plan motor inspection/maintenance
- Stage 3: Emergency shutdown, motor assessment required

Seal Degradation Failure Mode

Early Warning Indicators:

- Leak rate increase from <2 to 3-5 ml/hr
- Slight bearing temperature increase
- Minor vibration at seal location
- · Flush system pressure variations

Progressive Symptoms:

- Leak rate 5-15 ml/hr
- Visible process fluid leakage
- Seal chamber pressure drop
- Contamination in drain system

Critical Indicators:

- Leak rate >15 ml/hr
- Major process fluid loss
- · Environmental concerns
- · Risk of pump damage

Recommended Actions:

- Stage 1: Monitor leak rate trends, check flush system
- Stage 2: Plan seal replacement
- · Stage 3: Immediate seal replacement required

EMERGENCY PROCEDURES

Emergency Shutdown Sequence

- 1. Immediate Actions (0-30 seconds)
 - Press emergency stop button
 - Close emergency isolation valves
 - Activate fire suppression if required
 - o Account for all personnel

2. Short-term Actions (30 seconds - 5 minutes)

- Notify control room and emergency response
- Isolate electrical power
- Begin equipment cool-down
- Assess damage and safety hazards

3. Recovery Actions (5-30 minutes)

- o Conduct safety assessment
- Document incident details
- Begin damage assessment
- o Coordinate with maintenance team

Fire Emergency

If fire occurs near pump:

- 1. Activate manual fire alarm
- 2. Emergency stop pump immediately
- 3. Isolate fuel sources
- 4. Evacuate area (minimum 50 feet)
- 5. Contact emergency response team
- 6. Use appropriate fire suppression
 - Class B foam for hydrocarbon fires
 - CO2 for electrical fires
 - Do not use water on energized equipment

Chemical Spill Response

For process fluid spills:

- 1. Stop pump operation immediately
- 2. Isolate source of spill
- 3. Evacuate non-essential personnel
- 4. Don appropriate PPE
- 5. Begin containment procedures
- 6. Contact environmental response team
- 7. Document spill details for reporting

Personnel Injury

If injury occurs:

- 1. Ensure scene safety
- 2. Do not move injured person unless immediate danger
- 3. Call emergency medical services
- 4. Provide first aid if trained
- 5. Notify management immediately
- 6. Preserve scene for investigation
- 7. Document incident thoroughly

Power Failure

During power outage:

- 1. Pump will stop automatically
- 2. Verify emergency lighting is operational
- 3. Close manual isolation valves if required
- 4. Monitor for process upset conditions
- 5. Prepare for restart when power restored
- 6. Check equipment for damage before restart

SPARE PARTS LIST

Critical Spare Parts (Stock Level: 2 each)

Mechanical Seals

- Part Number: MS-CP5000-001
- Description: Dual mechanical seal assembly
- Lead Time: 6-8 weeks
 Cost: \$2,500 each

Bearings

- Part Number: BR-CP5000-001 (Drive End)
- Part Number: BR-CP5000-002 (Non-Drive End)
- Description: Heavy-duty ball bearings
- Lead Time: 4-6 weeksCost: \$800 each

Impeller

- Part Number: IMP-CP5000-001
- Description: Cast steel impeller, balanced
- Lead Time: 12-16 weeksCost: \$8,500 each

Recommended Spare Parts (Stock Level: 1 each)

Coupling Elements

- Part Number: CPL-CP5000-001
- Description: Elastomeric coupling element
- Lead Time: 2-4 weeksCost: \$350 each

Wear Rings

- Part Number: WR-CP5000-001 (Suction)
- Part Number: WR-CP5000-002 (Discharge)
- Description: Bronze wear rings
- Lead Time: 6-8 weeks
- Cost: \$450 each

Gaskets and O-Rings

- Part Number: GK-CP5000-KIT
- Description: Complete gasket kit
- Lead Time: 2-3 weeks
- Cost: \$180 per kit

Consumable Items (Monthly Stock)

Lubrication Oil

- Specification: ISO VG 68 turbine oil
- Quantity: 5 gallons per month
- Supplier: Multiple sources available

Thread Sealant

- Specification: Loctite 567 or equivalent
- Usage: General maintenance

Cleaning Solvents

- Specification: Non-corrosive degreaser
- Usage: Equipment cleaning

APPENDICES

Appendix A: Performance Curves

[Performance curves would be included showing flow vs. head, efficiency, and NPSH requirements]

Appendix B: Electrical Schematics

[Detailed electrical drawings and control logic diagrams]

Appendix C: Piping and Instrumentation Diagrams

[P&ID drawings showing complete pump installation]

Appendix D: Vibration Analysis Guidelines

[Detailed procedures for vibration analysis and interpretation]

Appendix E: Safety Data Sheets

[SDS for all chemicals and lubricants used with equipment]

Document Control

- Prepared by: Engineering Department
- Reviewed by: Operations Manager
- Approved by: Plant Manager
- Next Review Date: January 2024
- Distribution: Operations, Maintenance, Engineering

Revision History

- Rev 0: Initial release (January 2021)
- Rev 1: Added sensor specifications (June 2021)
- Rev 2: Updated maintenance procedures (January 2022)
- Rev 3: Enhanced troubleshooting guide (January 2023)

This manual contains proprietary information and is intended for use by authorized personnel only.