Reed – Solomon Coding for Fault-Tolerance in RAID-like Systems

Grigory Rozhkov, Dmitry Kharkovsky

28 February 2013

Постановка задачи

Пусть есть:

• n устройств хранения данных: D_1, D_2, \ldots, D_n , каждое из которых имеет вместимость k байт, $Data\ Devices$

Постановка задачи

Пусть есть:

- n устройств хранения данных: D_1, D_2, \ldots, D_n , каждое из которых имеет вместимость k байт, $Data\ Devices$
- Еще m устройств такой же вместимости, имеющих вспомогательный характер: C_1, C_2, \ldots, C_m , Checksum Devices

Постановка задачи

Пусть есть:

- n устройств хранения данных: D_1, D_2, \ldots, D_n , каждое из которых имеет вместимость k байт, $Data\ Devices$
- Еще m устройств такой же вместимости, имеющих вспомогательный характер: C_1, C_2, \ldots, C_m , Checksum Devices
- Мы, мечтающие о том, чтобы при утрате любых *т* устройств, было возможно восстановить всю информацию

• RAID = 'Redundant Arrays of Inexpensive Disks'

- RAID = 'Redundant Arrays of Inexpensive Disks'
- RAID-like system примерно то же самое, но в терминах распределенных систем

- RAID = 'Redundant Arrays of Inexpensive Disks'
- RAID-like system примерно то же самое, но в терминах распределенных систем
- Чем больше устройств хранения данных, тем меньше матожидание выхода из строя системы в совокупности

- RAID = 'Redundant Arrays of Inexpensive Disks'
- RAID-like system примерно то же самое, но в терминах распределенных систем
- Чем больше устройств хранения данных, тем меньше матожидание выхода из строя системы в совокупности
- RAID Level 5, m=1, одновременный выход из строя маловероятен

 Рассматривается случай полного выхода диска из строя, но не случай изменения данных

- Рассматривается случай полного выхода диска из строя, но не случай изменения данных
- Т.н. RS-Raid алгоритм разбивает каждый диск на *слова* (words) по w бит, где w выбирается программистом
- ullet На каждом диске $I=(k\; bytes)\left(rac{8\; bits}{byte}
 ight)\left(rac{1\; word}{w\; bits}
 ight)=rac{8k}{w}$ слов

- Рассматривается случай полного выхода диска из строя, но не случай изменения данных
- Т.н. RS-Raid алгоритм разбивает каждый диск на *слова* (words) по w бит, где w выбирается программистом
- ullet На каждом диске $I=(k\; bytes)\left(rac{8\; bits}{byte}
 ight)\left(rac{1\; word}{w\; bits}
 ight)=rac{8k}{w}$ слов
- Слова на C_i суть результаты некой функции F_i , примененной к словам из D_1, \ldots, D_n

- Рассматривается случай полного выхода диска из строя, но не случай изменения данных
- Т.н. RS-Raid алгоритм разбивает каждый диск на слова (words) по w бит, где w выбирается программистом
- ullet На каждом диске $I=(k\; bytes)\left(rac{8\; bits}{byte}
 ight)\left(rac{1\; word}{w\; bits}
 ight)=rac{8k}{w}$ слов
- Слова на C_i суть результаты некой функции F_i , примененной к словам из D_1, \ldots, D_n
- ullet Например, если I=1 для всех дисков, то $c_i=F_i(d_1,d_2,\ldots,d_n)$

- Рассматривается случай полного выхода диска из строя, но не случай изменения данных
- Т.н. RS-Raid алгоритм разбивает каждый диск на слова (words) по w бит, где w выбирается программистом
- На каждом диске $I = (k \ bytes) \left(\frac{8 \ bits}{byte} \right) \left(\frac{1 \ word}{w \ bits} \right) = \frac{8k}{w}$ слов
- Слова на C_i суть результаты некой функции F_i , примененной к словам из D_1, \ldots, D_n
- ullet Например, если I=1 для всех дисков, то $c_i=F_i(d_1,d_2,\ldots,d_n)$
- ullet Функция пересчета: $c_i^{new} = G_{i,j}(d_j,d_j^{new},c_i)$

Художества

Общий смысл алгоритма, пример

Пусть m = 1, w = 1.

В качестве функции F_1 рассмотрим XOR:

$$c_1 = F_1(d_1,\ldots,d_n) = d_1 \oplus d_2 \oplus \cdots \oplus d_n$$

Общий смысл алгоритма, пример

Пусть m = 1, w = 1.

В качестве функции F_1 рассмотрим XOR:

$$c_1 = F_1(d_1, \ldots, d_n) = d_1 \oplus d_2 \oplus \cdots \oplus d_n$$

Если какое-то слово d_j изменило свое значение на d_j^{new} , то c_1 пересчитывается следующим образом:

$$\textit{c}_{1}^{\textit{new}} = \textit{G}_{1,j} = \textit{c}_{1} \oplus \textit{d}_{j} \oplus \textit{d}_{j}^{\textit{new}}$$

Общий смысл алгоритма, пример

Пусть m = 1, w = 1.

В качестве функции F_1 рассмотрим XOR:

$$c_1 = F_1(d_1, \ldots, d_n) = d_1 \oplus d_2 \oplus \cdots \oplus d_n$$

Если какое-то слово d_j изменило свое значение на d_j^{new} , то c_1 пересчитывается следующим образом:

$$c_1^{\textit{new}} = \textit{G}_{1,j} = c_1 \oplus \textit{d}_j \oplus \textit{d}_j^{\textit{new}}$$

В случае если один из дисков, например D_j , прекратил функционировать, значение восстанавливается следующим образом:

$$d_j = d_1 \oplus \cdots \oplus d_{j-1} \oplus d_{j+1} \oplus \ldots d_n \oplus c_1$$

Математический аппарат

- Матрица Вандермонда
- Метод Гаусса
- Поля Галуа aka конечные поля

Рассматриваем линейные функции F_i :

$$c_i = F_i(d_1, d_2, \ldots, d_n) = \sum_{j=1}^n d_j f_{i,j}$$

Рассматриваем линейные функции F_i :

$$c_i = F_i(d_1, d_2, \ldots, d_n) = \sum_{j=1}^n d_j f_{i,j}$$

В векторном виде:

$$FD = C$$

Рассматриваем линейные функции F_i :

$$c_i = F_i(d_1, d_2, \ldots, d_n) = \sum_{j=1}^n d_j f_{i,j}$$

В векторном виде:

$$FD = C$$

F-m imes n матрица Вандермонда: $f_{i,j}=j^{i-1}$

Рассматриваем линейные функции F_i :

$$c_i = F_i(d_1, d_2, \dots, d_n) = \sum_{j=1}^n d_j f_{i,j}$$

В векторном виде:

$$FD = C$$

F-m imes n матрица Вандермонда: $f_{i,j}=j^{i-1}$ Функция пересчета очевидно выглядит следующим образом:

$$c_i^{new} = G_{i,j}(d_j, d_j^{new}, c_i) = c_i + f_{i,j}(d_j^{new} - d_j)$$

Восстановление после сбоев

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 3 & \dots & n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2^{m-1} & 3^{m-1} & \dots & n^{m-1} \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \\ c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}$$

• Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах

- Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах
- Вводятся поля Галуа поля мощности 2^w

- Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах
- Вводятся поля Галуа поля мощности 2^w
- Важное требование: $2^w > n + m$

- Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах
- Вводятся поля Галуа поля мощности 2^w
- Важное требование: $2^w > n + m$
- ullet Элементы обозначаются числами от 0 до 2^w-1

- Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах
- Вводятся поля Галуа поля мощности 2^w
- Важное требование: $2^w > n + m$
- ullet Элементы обозначаются числами от 0 до 2^w-1
- ullet Сложение обычный ХОR, например в $GF(2^4)$ $11+7=1101\oplus 0111=1100=12$

- Алгоритм Гаусса требует всякие операции, которые непонятно что значат на словах
- Вводятся поля Галуа поля мощности 2^w
- Важное требование: $2^w > n + m$
- ullet Элементы обозначаются числами от 0 до 2^w-1
- ullet Сложение обычный ХОR, например в $GF(2^4)$ $11+7=1101\oplus 0111=1100=12$
- Вычитание совпадает со сложением

• Умножение и деление

- Умножение и деление
- ullet intgflog[] таблица логарифмов для чисел от 1 до 2^w-1
- intgfilog[] таблица инвертированного логарифма для чисел от 0 до 2^w-2

- Умножение и деление
- ullet intgflog[] таблица логарифмов для чисел от 1 до 2^w-1
- intgfilog[] таблица инвертированного логарифма для чисел от 0 до 2^w-2
- gfilog[gflog[i]] == i, gflog[gfilog[i]] == i

- Умножение и деление
- ullet intgflog[] таблица логарифмов для чисел от 1 до 2^w-1
- intgfilog[] таблица инвертированного логарифма для чисел от 0 до 2^w-2
- gfilog[gflog[i]] == i, gflog[gfilog[i]] == i
- 3 * 7 = gfilog[gflog[3] + gflog[7]] = gfilog[4 + 10] = gfilog[14] = 9
- 3 ÷ 7 = gfilog[gflog[3] gflog[7]] = gfilog[4 10] = gfilog[9] = 14

Таблица логарифма и инвертированного логарифма

i	0	1	2	3	4	5	6	7
gflog[i]	_	0	1	4	2	8	5	10
gfilog[i]	1	2	4	8	3	6	12	11
i	8	9	10	11	12	13	14	15
gflog[i]	3	14	9	7	6	13	11	12
gfilog[i]	5	10	7	14	15	13	9	_

Таблицы вычисляются с помощью полиномов

W	polynome
4	$x^4 + x + 1$
8	$x^8 + x^4 + x^3 + x^2 + 1$
16	$x^{16} + x^{12} + x^3 + x + 1$
32	$x^{32} + x^{22} + x^2 + x + 1$
64	$x^{64} + x^4 + x^3 + x + 1$

• Выбираем число w такое, что $2^w > n + m$. Лучше всего 8 или 16. При w = 16 сможем поддерживать до 65535 дисков

- Выбираем число w такое, что $2^w > n+m$. Лучше всего 8 или 16. При w=16 сможем поддерживать до 65535 дисков
- Заводим таблицы gflog и gfilog

- Выбираем число w такое, что $2^w > n+m$. Лучше всего 8 или 16. При w=16 сможем поддерживать до 65535 дисков
- ② Заводим таблицы gflog и gfilog
- ③ Заводим $m \times n$ матрицу Вандермонда, где возведение в степень выполнено в $GF(2^w)$

- Выбираем число w такое, что $2^w > n + m$. Лучше всего 8 или 16. При w = 16 сможем поддерживать до 65535 дисков
- ② Заводим таблицы gflog и gfilog
- ③ Заводим $m \times n$ матрицу Вандермонда, где возведение в степень выполнено в $GF(2^w)$
- $oldsymbol{4}$ Вычисляем значения слов на C_i

- Выбираем число w такое, что $2^w > n + m$. Лучше всего 8 или 16. При w = 16 сможем поддерживать до 65535 дисков
- Заводим таблицы gflog и gfilog
- ③ Заводим $m \times n$ матрицу Вандермонда, где возведение в степень выполнено в $GF(2^w)$
- $oldsymbol{4}$ Вычисляем значения слов на C_i
- ullet Если умерло < m дисков, восстанавливаем информацию с помощью матрично-векторного уравнения, решенного методом Гаусса

Пример заполнения таблицы

Listing 1: Table filling

```
int prim_poly = 19;
int x_to_w = 1 << w;
int *gflog, gfilog = new int [x_to_w];

int b = 1;
for (log = 0; log < x_to_w - 1; log++) {
    gflog[b] = log;
    gfilog[log] = b;
    b = b << 1;
    if (b & x_to_w) b = b ^ prim_poly
}</pre>
```

Пусть m=3 и n=3. Возьмем w=4. Пусть $D_1=3$, $D_2=13$ и $D_3=9$ Матрица F выглядит так:

$$\begin{pmatrix} 1^0 & 2^0 & 3^0 \\ 1^1 & 2^1 & 3^1 \\ 1^2 & 2^2 & 3^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}$$

$$c_1 = (1)(3) \oplus (1)(13) \oplus (1)(9) = 3 \oplus 13 \oplus 9 =$$
 $= 0011 \oplus 1101 \oplus 1001 = 0111 = 7$
 $c_2 = (1)(3) \oplus (2)(13) \oplus (3)(9) = 3 \oplus 9 \oplus 8 =$
 $= 0011 \oplus 1001 \oplus 1000 = 0010 = 2$
 $c_3 = (1)(3) \oplus (4)(13) \oplus (5)(9) = 3 \oplus 1 \oplus 11 =$
 $= 0011 \oplus 0001 \oplus 1011 = 10001 = 9$

Поменяли
$$D_2=1$$
. Тогда изменение $D_2=1-13=0001\oplus 1101=12$ $c_1=7\ominus (1)(12)=0111\oplus 1100=11$ $c_2=2\ominus (2)(12)=2\oplus 11=0010\oplus 1011=9$

 $c_3 = 9 \oplus (4)(12) = 9 \oplus 5 = 10001 \oplus 0101 = 12$

Пусть сломались D_2 , D_3 и C_1 . Удалим из матрицы:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix} \cdot D = \begin{pmatrix} 3 \\ 11 \\ 9 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 11 \\ 9 \end{pmatrix}$$

$$D_2 = (2)(3) \oplus (3)(11) \oplus (1)(9) = 6 \oplus 14 \oplus 9 = 1$$

$$D_3 = (3)(3) \oplus (2)(11) \oplus (1)(9) = 5 \oplus 5 \oplus 9 = 9$$

$$C_3 = (1)(3) \oplus (4)(1) \oplus (5)(9) = 3 \oplus 4 \oplus 11 = 12$$

Реализация и производительность

Две реализации:

ullet Разбиваем файл на n частей, необходимо вычислить все c_i

- ullet Разбиваем файл на n частей, необходимо вычислить все c_i
- ullet Вычисление c_1 потребует $S_{Block}(n-1)\left(rac{1}{R_{XOR}}
 ight)$

- ullet Разбиваем файл на n частей, необходимо вычислить все c_i
- ullet Вычисление c_1 потребует $S_{Block}(n-1)\left(rac{1}{R_{XOR}}
 ight)$
- ullet А вычисление всех остальных $S_{Block}(n-1)\left(rac{1}{R_{XOR}}+rac{1}{R_{GFmult}}
 ight)$

- ullet Разбиваем файл на n частей, необходимо вычислить все c_i
- ullet Вычисление c_1 потребует $S_{Block}(n-1)\left(rac{1}{R_{XOR}}
 ight)$
- А вычисление всех остальных $S_{Block}(n-1)\left(rac{1}{R_{XOR}}+rac{1}{R_{GFmult}}
 ight)$
- ullet Таким образом вычисление всех m контрольных блоков потребует $S_{Block}(n-1)\left(rac{m}{R_{XOR}}+rac{m-1}{R_{GFmult}}
 ight)$

- ullet Разбиваем файл на n частей, необходимо вычислить все c_i
- ullet Вычисление c_1 потребует $S_{Block}(n-1)\left(rac{1}{R_{XOR}}
 ight)$
- А вычисление всех остальных $S_{Block}(n-1)\left(rac{1}{R_{XOR}}+rac{1}{R_{GFmult}}
 ight)$
- ullet Таким образом вычисление всех m контрольных блоков потребует $S_{Block}(n-1)\left(rac{m}{R_{XOR}}+rac{m-1}{R_{GFmult}}
 ight)$
- Еще необходимо учесть затраты на саму запись

ullet Необходимо вычислить $c_i + f_{i,j}(d_i^{new} - d_j)$

- ullet Необходимо вычислить $c_i + f_{i,j}(d_j^{new} d_j)$
- Вычитание 1 XOR, умножение происходит 0 или 1 раз, сложение – еще один XOR

- ullet Необходимо вычислить $c_i + f_{i,j}(d_i^{new} d_j)$
- Вычитание -1 XOR, умножение происходит 0 или 1 раз, сложение еще один XOR
- Итого: $(m+1)\cdot writes + rac{m+1}{R_{XOR}} + (1-\delta_{j,1})rac{m-1}{R_{GFmult}}$

- ullet Необходимо вычислить $c_i + f_{i,j}(d_j^{new} d_j)$
- Вычитание -1 XOR, умножение происходит 0 или 1 раз, сложение еще один XOR
- Итого: $(m+1)\cdot writes + rac{m+1}{R_{XOR}} + (1-\delta_{j,1})rac{m-1}{R_{GFmult}}$
- update penalty by Gibson

RAID controllers. Восстановление

ullet Вышло из строя $y \leq m$ дисков

RAID controllers. Восстановление

- ullet Вышло из строя $y \leq m$ дисков
- ullet Алгоритм Гаусса сработает за $\mathbb{O}(y^2n)$

RAID controllers. Восстановление

- ullet Вышло из строя $y \leq m$ дисков
- Алгоритм Гаусса сработает за $\mathbb{O}(y^2n)$
- Стоимость восстановления одного блока:

$$n \cdot reads + \frac{yS_{Block}(n-1)}{R_{XOR}} + \frac{yS_{Block}n}{R_{GFmult}} + y \cdot writes$$

Broadcast Algorithm

Broadcast Algorithm

Broadcast Algorithm

• На инициализацию потребуется

$$nS_{device}\left(\frac{1}{R_{broadcasting}} + \frac{1}{R_{GFmult}} + \frac{1}{R_{XOR}}\right)$$

• The Fan-in Algorithm

• The Fan-in Algorithm

• The Fan-in Algorithm

•

• На инициализацию потребуется

$$mS_{device} \left(\frac{log \ n}{R_{XOR}} + \frac{log \ n+1}{R_{network}} \right) + \left(\frac{(m-1)S_{device}}{R_{GFmult}} \right)$$

Вторая важная операция — восстановление действует примерно так же и, т.к. метод Гаусса работает достаточно быстро, выполнять его можно на CPU каждого устройства, а не как-то распределенно.

Вторая важная операция — восстановление действует примерно так же и, т.к. метод Гаусса работает достаточно быстро, выполнять его можно на CPU каждого устройства, а не как-то распределенно.

Выбор алгоритма зависит от проекта и целиком за Вами:)

Работает!

- Работает!
- Нигде не сказано, что это лучший способ

- Работает!
- Нигде не сказано, что это лучший способ
- И действительно, это не так

- Работает!
- Нигде не сказано, что это лучший способ
- И действительно, это не так
- Легко реализовать
- Поддерживает до 65535 дисков в условиях предыдущего пункта

Спасибо

Спасибо за внимание!