Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer

Ludwig-Maximilians-Universität München Institut für Informatik 27. November 2017

Lösungsvorschlag zur 4. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 4-1 (Landau Symbole; 4 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen für $x \to \infty$.

a) $x^2 + 9x = O(x^2)$ wahr

c) $x + \sin x = O(x)$ wahr

b) $x^3 + 9x = O(x^2)$ falsch

d) $e^x = O(2^x)$ falsch

Lösungsskizze

- a) Wir können Aufgabe 3-5 benutzen, denn $\lim_{x\to\infty} |\frac{x^2+9x}{x^2}|=1$. b) Angenommen es gibt C>0 und N, so dass $|x^3+9x|\leq C|x^2|$ für alle x>N gilt. Dann gilt $x + \frac{9}{x} \le C$ für alle $x > \max(N, 0)$. Das ist für x = C aber nicht wahr, also muss die Annahme falsch gewesen sein.
- c) Es gilt: $x+\sin x \le x+1$. Mit Aufgabe 3-5 folgt x+1=O(x), also gibt es C>0 und N, so dass $|x+1| \le C|x|$ für alle x > N gilt. Daraus folgt $|x+\sin x| = x+\sin x \le x+1 = |x+1| \le C|x|$ für alle $x > \max(1, N)$.
- d) Angenommen die Aussage ist wahr. Dann gibt es C und N, so dass $e^x < C \cdot 2^x$ für alle x > N gilt. Die Ungleichung ist äquivalent zu $\frac{e^x}{2^x} < C$, was sich als $(\frac{e}{2})^x < C$ schreiben lässt. Da $\frac{e}{2} > 1$, geht $(\frac{e}{2})^x$ für $x \to \infty$ gegen ∞ . Also kann nicht $(\frac{e}{2})^x < C$ für alle x > N gelten und unsere Annahme muss falsch gewesen sein.

Aufgabe 4-2 (Trigonometrische Funktionen)

- a) Vereinfachen Sie $\arccos\left(\sin\left(x+\frac{\pi}{2}\right)\right)$. $\arccos(\cos(x))$
- b) Welchen Wert erhalten Sie für x = 5? $2\pi 5$

Aufgabe 4-3 (Trigonometrische Funktionen) Für welche Werte $c \in \mathbb{R}$ und $d \in \mathbb{R}$ gilt folgende Gleichung für alle $x \in \mathbb{R}$?

$$\sin\left(x + \frac{\pi}{3}\right) = c\sin(x) + d\cos(x)$$

Lösungsskizze

Anwenden der Formel $\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)$ aus der Vorlesung auf die linke Seite der Gleichung ergibt $\frac{1}{2}\sin(x)+\frac{\sqrt{3}}{2}\cos(x)$, also ist $c=\frac{1}{2}$ und $d=\frac{\sqrt{3}}{2}$ eine Lösung. Eine andere Lösung gibt es nicht. Wenn man in die gegebene Gleichung für x den Wert 0 einsetzt, dann erhält man $\sin\left(\frac{\pi}{3}\right)=c\sin(0)+d\cos(0)$. Ausrechnen liefert $\frac{\sqrt{3}}{2}=d$. Wenn man den Wert $\frac{\pi}{2}$ einsetzt, dann erhält man $\sin\left(\frac{2\pi}{3}\right)=c\sin\left(\frac{\pi}{2}\right)+d\sin\left(\frac{\pi}{2}\right)$. Ausrechnen liefert $\frac{1}{2}=c$. Also sind c und d eindeutig bestimmt.

Aufgabe 4-4 (Komplexe Zahlen; 4 Punkte) Für welche reellen Zahlen $x \in \mathbb{R}$ und $y \in \mathbb{R}$ gelten jeweils folgende Gleichungen?

a)
$$y \cdot e^{ix} = 3i$$
 $x = \frac{\pi}{2} + k \cdot 2\pi, y = 3$

b)
$$y \cdot e^{ix} = 1 + \sqrt{3}i$$
 $x = \frac{\pi}{3} + k \cdot 2\pi, y = 2$

c)
$$y \cdot e^{ix} = 2\sqrt{3} - 2i$$
 $x = \frac{3}{2}\pi + \frac{1}{3}\pi + k \cdot 2\pi = \frac{11}{6}\pi + k \cdot 2\pi, y = 4$

Aufgabe 4-5 (Komplexe Zahlen; 4 Punkte) Lösen Sie folgende Gleichungen über den komplexen Zahlen. Geben Sie alle Lösungen konkret in der Form z = x + iy für reelle x und y an.

a)
$$z^2(1+i)=2z$$
 Zwei Lösungen: $z=0$ und $z=1-i$

Lösungsskizze

Wenn $z \neq 0$, dann können wir durch z teilen und die Gleichung wird zu z(1+i)=2. Division durch (i+1) liefert dann $z=\frac{2}{i+1}$. Ausrechnen der rechten Seite ergibt $\frac{2}{i+1}=\frac{2(i-1)}{(i+1)(i-1)}=\frac{2(i-1)}{-2}=1-i$. Im Fall $z\neq 0$ gibt es also nur die Lösung z=1-i.

Bleibt noch der Fall z=0 zu betrachten. Hier sieht man sofort, dass eine Lösung vorliegt.

b)
$$z^2 - 2iz + 8 = 0$$
 Zwei Lösungen: $z = 4i$ und $z = -2i$

Lösungsskizze

Einsetzen von z = x + iy liefert $(x + iy)^2 - 2i(x + iy) + 8 = 0$.

Ausmultiplizieren: $x^2 + 2ixy - y^2 - 2ix + 2y + 8 = 0$

Vereinfachen: $x^2 - y^2 + 2y + 8 + (2xy - 2x)i = 0$

Eine komplexe Zahl ist 0, wenn Realteil und Imaginärteil 0 sind. Also müssen folgende Gleichungen gelten:

$$x^{2} - y^{2} + 2y + 8 = 0$$
$$2xy - 2x = 0$$

Die zweite Gleichung ist wahr gdw. x = 0 oder y = 1.

Wenn x = 0, dann wird die erste Gleichung zu $-y^2 + 2y + 8 = -(y-4)(y+2) = 0$. Also gibt es dann die Lösungen y = 4 und y = -2.

Wenn y=1, dann wird die erste Gleichung zu $x^2+9=0$. Für $x\in\mathbb{R}$ hat diese Gleichung keine Lösung.

Es gibt also genau zwei Lösungsmöglichkeiten, um die beiden Gleichungen zu erfüllen (x = 0, y = 4 und x = 0, y = -2).

Also hat die ursprüngliche Gleichung zwei Lösungen: z=4i und z=-2i.

Zur Probe können wir auch (z-4i)(z+2i) ausrechnen. Wir erhalten: $z^2+2iz-4iz+8=z^2-2iz+8$.

c)
$$z^6 = 1$$

Lösungsskizze

Sechs Lösungen:

$$z = e^{2\pi/6} = \frac{1}{2} + \frac{i\sqrt{3}}{2}$$

$$z = e^{2\cdot 2\pi/6} = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$$

$$z = e^{3\cdot 2\pi/6} = -1$$

$$z = e^{4\cdot 2\pi/6} = -\frac{1}{2} - \frac{\sqrt{3}}{2}$$

$$z = e^{5\cdot 2\pi/6} = \frac{1}{2} - \frac{\sqrt{3}}{2}$$

$$z = e^{6\cdot 2\pi/6} = 1$$

Hinweis: Es kann hilfreich sein, für z den Ausdruck x + iy einzusetzen und dann nach reellen Lösungen für x und y zu suchen.

Aufgabe 4-6 (Komplexe Zahlen) Für welche komplexen Zahlen z gelten die folgenden Aussagen jeweils?

a)
$$|z+i| \le |z-1|$$

Lösungsskizze

Schreibe z als x+iy. Dann wird $|z+i| \le |z-1|$ zu $|x+i(y+1)| \le |(x-1)+iy|$. Das entspricht $x^2+(y+1)^2 \le (x-1)^2+y^2$. Ausrechnen: $x^2+y^2+2y+1 \le x^2-2x-1+y^2$. Vereinfachen: $y \le -x-1$.

Die Aussage wird also von allen Zahlen erfüllt, die in der Ebene unterhalb der Funktion f(x) = -x - 1 liegen.

b)
$$\frac{\overline{z}}{z} = 1$$

Lösungsskizze

Für z=0 ist die linke Seite der Gleichung nicht definiert, also kann dies keine Lösung sein. Für alle andreren z ist die Gleichung $\frac{\overline{z}}{z}=1$ äquivalent zu $\overline{z}=z$. Schreibe z als x+iy. Die Gleichung wird also zu x-iy=x+iy. Das vereinfacht sich zu 0=2iy. Also gilt die Gleichung genau dann, wenn der Imaginärteil y gleich 0 ist.

Die Gleichung gilt also genau für alle reellen Zahlen außer 0.

Zeichnen Sie die Menge der Punkte, für die die Aussagen jeweils gelten, in der komplexen Zahlenebene.

Abgabe: Sie können Ihre Lösung bis zum Freitag, den 08.12. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.