SDN による QoS を考慮した IoT 通信制御手法

A Method of SDN Based QoS Aware IoT Communication Management

国本 典晟 / Tensei Kunimoto

1 はじめに

近年、画像や動画などの大容量データの需要が急速に拡大したことによるインターネット全体の帯域の逼迫が問題になっているが、IoT デバイスの増加とスマートホームの技術の進歩に伴い、ホームネットワーク内部の帯域並びにホームネットワーク外部のインターネットの帯域の逼迫はより深刻化すると予想される。現在、ISP (Internet Service Provider) は各家庭の総帯域を契約した帯域の範囲内で制御しており、要求される帯域が回線の帯域を上回る場合、特定アプリケーションやユーザの帯域を制御することでネットワークの品質確保に努めている[1]. しかし、そういった帯域制御は多様なサービスやトラフィックに最適化されたものではなく、IoT デバイスが要求する複数の QoS 要件を満たすことができない.

この問題の解決

2 関連研究

2.1 SDN ベースの QoS を考慮した帯域管理フレームワーク

Jang らは、スマートホームのネットワークデバイスのための革新的なネットワーク管理モデルを開発する必要があるとして、SDN ベースの QoS を考慮した帯域管理フレームワークを提案した [2]. この研究では、QCI (3GPP LTE QoS Class Identifier) をスマートホーム向けのサービス用に表 1 のように再定義し、QCI サービスをパケット遅延の上限値に基づいて SDN により 3 つに分類することで各サービスの QoS を最適化を目指した. これにより、従来の ISP の帯域制御手法を上回る結果を得た.

図を挿入する場合は、図1や図2のように引用することができる。図の横幅が大きい場合は、図2のようにすることもできる。

ちなみに、LATEX ではベクターファイルとして EPS ファイルを推奨していた頃もあったようだが、現在は PDF ファイルを使用することが推奨されている。 PDF ファイルに出力するのが前提なら、dvipdfmx では PDF、PNG、JPEG がそのまま使用できる。 dvipdfmx は EPS ファイルそのものを自分で扱えないので、Ghostscript を内部で呼び出して変換する。 PDF ファイルで問題がなければ EPS にこだわる必要はないと思われる。ただし、ジャーナルによっては図

表 1 スマートホーム向けに再定義された OCI

QCI	Priority	Device	Resource	Packet	Packet	Example Services
	-	type	Type	Delay	Error	-
				Budget	Loss	
1	2	Non-	GBR	100ms	10^{-2}	Conversational
		M2M				voice
2	3	Non-	GBR	50ms	10^{-3}	Real time gam-
		M2M			_	ing
3	4	Non-	GBR	150ms	10^{-3}	Conversational
		M2M				video
4	5	Non-	GBR	300ms	10^{-6}	Non-
		M2M				conversational
						video (Buffered
5	1	M2M	Non-	60ms	10^{-6}	streaming) Mission critical
3	1	IVI Z IVI	GBR	OUIIIS	10 "	delay sensitive
			GBK			data transfer
6	6	Non-	Non-	300ms	10^{-6}	Video (Buffered
Ü	Ü	M2M	GBR	2001113	10	streaming)
						TCP-based
						(for example,
						www, email,
						chat, ftp, p2p
						and the like)
7	7	Non-	Non-	100ms	10^{-3}	Voice, Video
		M2M	GBR			(Live stream-
						ing), Interactive
8	8	M2M	Non-	N/A	10^{-6}	gaming Non mission
8	8	MZM	GBR	N/A	10 "	critical delay
			OBK			insensitive data
						transfer

図1 悩む男の子

として PDF を使うのがダメだったりするので慎重に.

2.2 ダイクストラ法

表は表 2 のように引用することができ、表を作成する場合は罫線を少なくすることと、横線のみの使用を心がけることが推奨される.

図2 ドライブする家族

表 2 代表的なデータの型

データの型	宣言	ビット幅
短整数型	short	16
整数型	int	32
単精度浮動小数点型	float	32
倍精度浮動小数店型	double	64

4 評価

5 今後の課題

参考文献

- [1] 総務省,帯域制御の運用基準に関するガイドライン(改定), 2019.
- [2] Hung-Chin Jang and Jian-Ting Lin, SDN Based QoS Aware Bandwidth Management Framework of ISP for Smart Homes,
- [3] Latex Wiki (https://texwiki.texjp.org/).
- [4] 渡辺 豊, "角皆静男先生のご逝去を悼む", 地球化学, vol.50, no.1, pp.1-3, 2016.

3 提案手法

- 3.1 概要
- 3.2 想定するアーキテクチャ
- 3.3 動作手順
 - 1. 書かれた論文は書いた人の研究者としての人格を表す
 - 2. データのみ出して論文を書かない者は、テクニシャン である
 - 3. データも出さず、論文(原著論文)を書かない者は、評論家である
 - 4. 研究者は論文を書くことによって成長する. また,成 長の糧にしなければならない
 - 5. 論文は研究者の飯のタネである
 - 6. 論文は後世の研究に影響を与えなければならない
 - 7. 研究者は書いた論文に責任を問われる
 - 8. 忙しくて論文が書けないというのは、言い訳にはならず、能力がないといっているのと同じである
 - 9. 博士論文以上の論文を書けない者は、その博士論文は 指導教官のものといわれても仕方がない
- 10. 研究において最も重要なのはアイデアであり、それが 試されるのが論文である