Adv. Descriptive Statistics, Visualization, & Simple Regression

Business Analytics

Business Analytics Definition

Business analytics refers to the application of data analysis and modeling techniques for understanding business situations and improving business decisions.

IMPLICATIONS:

- data → past business performance
- methods → statistics + mathematics + computational methods
- business decisions → actionable insight

Types of Analytics

What has happened?

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics

Business Impact

Business Problems & Data Science Solutions

- **Classification** attempts to predict, for each individual in a population, which of a (small) set of classes this individual belongs.
- **Regression** ("value estimation") attempts to estimate or predict, for each individual, the numerical value of some variable for that individual.
- **Similarity matching** attempts to identify similar individuals based on data known about them.
- **Clustering** attempts to group individuals in a population together by their similarity, but not driven by any specific purpose.
- **Co-occurrence grouping** attempts to find associations between entities based on transactions involving them.
- **Profiling** attempts to characterize the typical behavior of an individual, group, or population.
- **Causal modeling** attempts to identify causal relations between variables of interest, and infer the effects of actions on outcomes.

Review

Descriptive Statistics

- Measures of central tendency (mean, median, mode) a.
- b. Measures of spread and variability (range, quartiles, variance, standard deviation)
- Measures of association (correlation)
- Frequency distributions d.

Introduction to R

- Data variables & basic operations
- Loading data and reading data b.
- Summary stats C.

Lesson Objectives

Adv. Descriptive Statistics & Visualization

- Shape of Distributions & Statistical Graphics
 - Histograms
 - Scatterplots ii.
 - The Box Plot
- **Z-Scores**
- Hypothesis testing & statistical significance.

Regression

- **Linear Models**
- b. Ordinary Least Squares
- Simple Linear Regression

Time Series

Scatter Plot

Shape of Distribution

The relative location of the mode, median, and mean in a unimodal distribution:

Symmetric

For a symmetric distribution, the mean, median, and mode are all approximately the same.

Left-skewed

For a left-skewed distribution, the mode is larger than the median which is larger than the mean.

Right-skewed

For a right-skewed distribution, the mode is less than the median, which is less than the mean.

Histograms & Distributions

Normal Distribution

Properties:

- mean = median = mode
- symmetry about the center
- 50% of values less than the mean and 50% greater than the mean
- 68% of values are within 1 standard deviation of the mean
- 95% of values are within 2 standard deviation of the mean
- 99% of values are within 3 standard deviation of the mean

Normalizing Data → **Fitting a** distribution to data

Histogram of x

X

Normal curve centered at mean of data set with standard deviation equal to the deviation of the sample data.

How good is this model?

Significance Testing and Confidence **Intervals**

The intent is to determine whether there is enough evidence to "reject" a conjecture or hypothesis about the process.

The conjecture is called the **null** hypothesis

Hypothesis Testing

Steps:

- **State the hypotheses.** This involves stating the null and alternative hypotheses. The hypotheses are stated in such a way that they are mutually exclusive. That is, if one is true, the other must be false.
- **Formulate an analysis plan.** The analysis plan describes how to use sample data to evaluate the null hypothesis. The evaluation often focuses around a single test statistic.
- 3. **Analyze sample data.** Find the value of the test statistic (mean score, proportion, t-score, z-score, etc.) described in the analysis plan.
- **Interpret results.** Apply the decision rule described in the analysis plan. If the value of the test 4. statistic is unlikely, based on the null hypothesis, reject the null hypothesis.

Significance Levels (α) & P-Values

Alpha sets the standard for how extreme the data must be before we can reject the null hypothesis. The P-value indicates how extreme the data are.

- If the p-value is less than or equal to the alpha (p< α), then we reject the null hypothesis, and we say the result is statistically significant.
- If the p-value is greater than alpha (p > α), then we fail to reject the null hypothesis, and we say that the result is statistically nonsignificant (n.s.)

Statistically Significant Results

- A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.
- A test result is statistically significant when the sample statistic is unusual enough relative to the null hypothesis that we can reject the null hypothesis for the entire population.
- The common alpha values of 0.05 and 0.01 are simply based on tradition.

Business Implication

- Load the Zagat file and run summary statistics study on "service"
- Are there outliers?
 - Run the "Outlier Detection & Z-score" Rscript
- Normalize the data
 - See section 3.3 on NYUClassess
- Run a statistical test
 - Use R function *t.test(x)*

Visualization for Descriptive Analytics

- Data types
- Data transformation percentages, proportions...
- Chart types visualizing patterns, relationships, comparisons, or distributions?

Data Types

Basic Chart Terminology

Basic Chart Terminology

Bar Chart

Shipping Volumes of the Top 5 Shipping Ports

Histogram

US Smartphone Penetration Rate, by Age Group

among mobile subscribers in the US

During Q2 2014

Time Series

Scatter Plot

Life Expectancy v. Per Capita GDP, 2007

Box Plot (Box & Whisker diagram)

Geo-spatial Map

Customer Call Center Satisfaction

770.1

