Ad-Hoc Networks Project Report

Suryansh Sharma, Jure Vidmar, Suhail Nogd, Eghonghon Eigbe Delft University of Technology Intelligent Systems Department The Netherlands

> S.sharma-13@student.tudelft.nl XXXXX@student.tudelft.nl XXXXX@student.tudelft.nl XXXXX@student.tudelft.nl

Abstract—This paper studies whether emotional expressions provided by a human observer can improve the learning performance of a reinforcement learning agent by influencing the exploration/exploitation trade-off in Q learning. When the human observer shows positive affect the agent tends more towards exploitation while negative affect will make the agent explore more.

I. Introduction

A. Motivation and related work

II. RESEARCH QUESTION

A. Hypotheses

III. METHOD

A. Materials

- 1) Exploration/Exploitation Strategies:
- 2) EARL: Emotion, Adaptation and Reinforcement Learning Framework:
 - 1) Emotion recognition module perceives human facial expressions in real time. For this we will be using Affectiva [?] (more in section ??)
 - 2) A reinforcement learning agent fed the recognized emotion as input.
 - 3) An artificial emotion module slot can utilize all available information to produce artificial emotion of agent which can be later used as intrinsic reward or as input for the expression module.
 - 4) An expression module aims to express robot emotion. This module consist of a robot head with different degrees of freedom(such as eyes, ears, lips and eyelids) to generate expressions.

B. Affectiva

- C. Experimental setup / approach
 - 1) Continuous environment:
 - 2) Social learning and non-social learning:

D. Measures

E. Work plan

- Week 1.5: Finalize how the expressions will influence the temperature parameter.
- Week 1.6: Look further into the implementation details of the work of Broekens [?]

- Week 1.7: Adapt implementation and prepare experiment
- Week 1.8: Perform experiment with human observers
- Week 1.9: Finalize results, conclusion and discussion and prepare presentation
- Week 1.10: Give presentation

IV. RESULTS

A. Discussion

V. CONCLUSION AND FURTHER RESEARCH

REFERENCES

- [1] Dautenhahn, K. (2007). Socially intelligent robots: dimensions of humanrobot interaction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1480), 679-704.
- [2] J. Fasola, M. J. Mataric, Using socially assistive human-robot interaction to motivate physical exercise for older adults. in Proceedings of the IEEE, vol. 100, no. 8, pp. 2512- 2526, 2012.
- [3] P. Baxter et al. Long-term human-robot interaction with young users, in IEEE/ACM HRI 2011 Conference, 2011.
- [4] B. Scassellati, H. Admoni and M. Mataric, Robots for use in autism research, in Annual review of biomedical engineering, vol. 14, pp. 275-294, 2012.
- [5] Thomaz, A. L., & Breazeal, C. (2006, July). Reinforcement learning with human teachers: Evidence of feedback and guidance with implications for learning performance. In Aaai (Vol. 6, pp. 1000-1005).
- [6] Taylor, M. E., & Borealis, A. I. (2018). Improving Reinforcement Learning with Human Input. In IJCAI (pp. 5724-5728).
- [7] Messinger, D. S., Duvivier, L. L., Warren, Z., Mahoor, M., Baker, J., Warlaumont, A. S., & Ruvolo, P. (2014). Affective computing, emotional development, and autism. In The Oxford Handbook of Affective Computing.
- [8] Broekens, J. (2007). Emotion and reinforcement: affective facial expressions facilitate robot learning. In Artifical intelligence for human computing (pp. 113-132). Springer, Berlin, Heidelberg.
- [9] Breazeal, C., Velasquez, J.: Toward teaching a robot 'infant' using emotive communication acts. In: Edmonds, B., Dautenhahn, K. (eds.): Socially Situated Intelligence: a workshop held at SAB'98, Zrich. University of Zrich Technical Report (1998) 25-40
- [10] Isbell, C. L. Jr., Shelton, C. R., Kearns, M., Singh, S., Stone, P.: A social reinforcement learning agent. In: Proceedings of the fifth international conference on Autonomous agents. ACM (2001) 377-384
- [11] Iosifidis, Alexandros and Tefas, Anastasios and Pitas, Ioannis, Person specific activity recognition using fuzzy learning and discriminant analysis. Signal Processing Conference, 2011 19th European. IEEE (pp. 1974-1978)
- [12] Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art. Jordao, Artur and Nazare Jr, Antonio C and Sena, Jessica and Schwartz, William Robson. arXiv preprint arXiv:1806.05226 (2018)
- [13] Sutton, Richard S and Barto, Andrew G and others. Reinforcement learning: An introduction. MIT press (1998)

- [14] Broekens, Joost and Kosters, Walter A and Verbeek, Fons J. Affect, anticipation, and adaptation: Affect-controlled selection of anticipatory simulation in artificial adaptive agents Adaptive behavior vol. 15 n. 4. Sage Publications Sage UK: London, England (2007). pp(397-422)
- [15] Rose, Susan A., Lorelle R. Futterweit, and Jeffery J. Jankowski. "The relation of affect to attention and learning in infancy." Child Development 70.3 (1999): 549-559.
- [16] von Hecker, Ulrich, and Thorsten Meiser. "Defocused attention in depressed mood: evidence from source monitoring." Emotion 5.4 (2005): 456
- [17] Ishida, Fumihiko, et al. "Reinforcement-learning agents with different temperature parameters explain the variety of human actionselection behavior in a Markov decision process task." Neurocomputing 72.7-9 (2009): 1979-1984.
- [18] "Metrics". Affectiva Developer Portal, 2018, https://developer.affectiva.com/metrics/. Accessed 30 Sept 2018.
 [19] McDuff, Daniel, et al. "AFFDEX SDK: a cross-platform real-time multi-
- [19] McDuff, Daniel, et al. "AFFDEX SDK: a cross-platform real-time multiface expression recognition toolkit." Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, 2016.