

Cours Réseaux

UFR de Mathématiques et Informatique Licence 3 Informatique Semestre 5

Prof. Ahmed Mehaoua
Ahmed.mehaoua@parisdescartes.fr

Plan Général

- 1) ARCHITECTURES DES RESEAUX, DEFINITIONS
- 2) COUCHE PHYSIQUE : MATERIELS, TRANSMISSION
- 3) COUCHE LOGICIEL: COUCHE LIAISON, PROTOCOLES HDLC
- 4) LES RESEAUX LOCAUX : ETHERNET ET WIFI
- 5) RESEAU INTERNET: ADRESSAGE, NOMMAGE DES RESSOURCES
- 6) RESEAU INTERNET: ROUTAGE DES INFORMATIONS
- 7) LES EQUIPEMENTS D'INTERCONNEXION (HUB, SWITCH, GATEWAY, ...)

Chapitre 3

Réseaux Informatiques Couche Liaison

Plan

- DEFINITIONS ET PRINCIPES DE BASE
- ☐ CONTRÔLE DE FLUX
- ☐ CONTRÔLE DES ERREURS
- PROTOCOLES HDLC
- ☐ FORMAT ET TYPES DE TRAMES (I, S et U)

Couche Liaison de données : Objectifs

- Communication (fiable et efficace) entre deux machines adjacentes
 - deux machines physiquement connectées par un canal de transmission
 - La couche liaison récupère des paquets de la couche réseau.
 - Pour chaque paquet, elle construit une (ou plusieurs) trame(s).
 - La couche liaison envoie chaque trame à la couche physique.
- Liaisons de transmission ne sont pas parfaites :
 - Débit binaire limité, le délai de propagation est non nul, il peut y avoir des erreurs de transmission
- Cette couche doit assurer une transmission exempte d'erreurs sur un canal de communication.
- Elle doit aussi assurer un délivrance ordonnée des informations

Couche Liaison de données : Services offerts

Couche Liaison de données : Services offerts

- Gestion (délimitation) de trames
- Contrôle d'erreurs
- Contrôle de flux
- Contrôle d'accès à un canal partagé (MAC)

Fonction Délimitation des trames de données

(trames I)
Transfert des données applicatives

DELIMITATION DES DONNEES exemple Trame HDLC

Le champ « DONNEES est généralement de taille constante.

N = 128 ou 256 octets

FCS: Frame Check Sequence (contrôle des erreurs binaires)

DELIMITATION DES DONNEES

protocole synchrone orienté bit

- Un mécanisme de transparence permet de regler les problèmes d'apparition du fanion dans le bloc de données.
- Avantages : (1) indépendant du code utilisé (2) trame de taille variable et longue
- Exemples: IOSI HDLC, IETF PPP

Fonction Contrôle des erreurs

Numérotation des trames, calcul de CRC, acquittement, retransmission (trames S et I)

CONTRÔLE DES ERREURS

1- Vérification au récepteur de données

Vérification du format des trames :

longueur, valeurs prédéfinies de certains champs

Détection de la corruption des trames :

- 2- Information de l'émetteur de données
 - Soit implicitement par temporisateur
 - . armé à chaque envoi de trame,
 - désarmé lors de la réception d'un acquittement positif
 - Soit explicitement : par "Nack" (acquittement négatif)
 - le rejet total : retransmission de toutes les trames à partir de celle spécifiée
 - le rejet sélectif : retransmission de la trame spécifiée
- 3- Retransmission de la trame (perdue ou détruite) par l'émetteur

Exemple de calcul CRC-4

Format trame HDLC CHAMP COMMANDE

T (1 bit): Indique le type de trame

N(S) et N(R) (6 bits) : Indique le numéro des trames émises et reçues

P/F (1 bit) : Demande de réponse immédiate à la suite de l'envoi d'une trame de commande, ou l'envoi de la derniere trames de données pour forcer l'envoi d'un acquittement

Champs FCS (Frame Check Sequence – 16 bits), est un code de redondance cyclique (CRC) calculé au moyen du polynome générateur:

$$- CRC-16 = x^{16}+x^{15}+x^2+1$$

HDLC CHAMP COMMANDE

- Trois types de trames :
 - les trames d'information (I *Information*)
 - les trames de supervision (S Supervisory)
 - les trames non numérotées (U Unnumbered)

Elles se distinguent notamment par leur champ Commande :

Types de trame	Champ Commande								
Ī	0		N(S)	P/F	N(R)			
S	1	0	Type		P/F	N(R)			
U	1	1	M	M	P/F	M	M	M	

Note: deux formats du champ Commande existent:

- le format normal (8 bits)
- le format étendu (16 bits) : négocié lors de l'établissement de la connexion pour avoir un champ de commande plus grand et ainsi effectuer la numérotation modulo 128.

HDLC TRAMES DE SUPERVISION

4 types de trames de supervision,

- codées dans le sous-champ Type du champ Commande
- commande ou réponse
- (ACK + CF) RR ("Received & Ready") 00 : acquittement
 - confirme la réception des trames de données de n° < N(R)
 - demande la transmission des trames suivantes
- (ACK + CF) RNR ("Received & Not Ready") 10 : contrôle de flux
 - confirme la réception des trames de données de n° < N(R)
 - interdit la transmission des trames suivantes
- (ACK + RET) REJ ("Reject") 01: protection contre les erreurs
 - confirme la réception des trames de données de n° < N(R)
 - demande la retransmission des trames de $n^o \ge N(R)$
- (ACK + RET) SREJ ("Selective Reject") 11 : protection contre les erreurs
 - confirme la réception des trames de données de n° < N(R)
 - demande la retransmission de la trame de nº = N(R)
 - non-utilisée par LAP-B

HDLC TRAMES DE GESTION

Trame d'établissement de la connexion - commande :

- SABM (Set asynchronous balanced mode) en format normal
- SABME (Set asynchronous balanced mode extended) en format étendu

Trame de libération de la connexion - commande :

DISC (Disconnection)

Trame de confirmation - réponse :

- UA ("Unnumbered acknowledgment"):

Trame de récupération des erreurs -réponse :

- FRMR ("Frame reject"):

Trame d'indication de connexion libérée

- DM ("Disconnected mode")

HDLC Trames I, S, U

bit7	bitß	bit5	bit4	bit3	bit2	bitt	bit0	I	g =		
	Nr		P/F		Ns		0	trame I	Trame I		
	Nr		P/F	0	0	0	1	RR			
	Nr		P/F	0	1	0	1	RNR	> Trame S		
	Nr		P/F	1	0	0	1	REJ			
	Nr		P/F	1	1	0	1	SREJ			
0	0	0	Р	4	4	1	1	SARM			
1	0	0	Р	0	0	1	1	SNRM			
0	0	1	Р	1	1	1	۳	SABM			
0	1	1	Р	1	1	1	1	SABME	> Trame U		
0	1	0	Р	0	0	1	1	DISC	Traine 0		
0	1	1	F	0	0	1	1	UA			
4	0	0	F	0	1	1	1	CMDR/FRMR			
0	0	0	F	1	1	1	1	DM	<i>.</i>		

HDLC NUMEROTATION DE TRAMES

V(S): numéro de la prochaine trame à envoyer (0 à 7)

V(R) : numéro de la prochaine trame attendue en réception (0 à 7)

N(S): numéro de la trame

N(R): acquittement des trames reçues de numéro strictement inférieur à N(S)

HDLC SCENARIOS D'ECHANGES

HDLC VARIABLES

- Chaque entité tient à jour les trois variables suivantes :
 - V(S) = numéro de la prochaine trame d'information à émettre,
 - V(R) = numéro de la prochaine trame à recevoir,
 - DN(R) = numéro du dernier acquittement reçu.
- et connaît les constantes suivantes :
 - T1 = délai de garde au bout duquel une trame non acquittée est réémise.
 - T2 = délai d'acquittement pendant lequel le récepteur peut retarder l'envoi de l'acquittement d'une trame.
 - NI = taille maximum d'une trame.
 - N2 = nombre maximum de réémissions d'une même trame.
 - W = largeur de la fenêtre.
 - etc.

HDLC TIMERS ET PARAMETRES

TAILLE MINI d'une trame HDLC : 32 octets

TAILLE MAX d'une trame HDLC : 1150 octets

Nombre de trames de la fenêtre d'anticipation : W inférieur ou égal à 7, paramétrable

TIMER T1:

Durée maximale d'attente d'un acquittement à l'émission d'une trame.

L'expiration de T1 sans récéption de ACK entraine la retransmission de la première trame émise non acquittée.

T1 = 100,200,400,800,1600 ou 2550 ms paramétrable

TIMER T2:

Durée maximale d'attente avant d'acquitter une trame reçue, au moyen d'une trame de supervision si aucune trame I disponible.

Temps de transmission de la trame la plus longue : soit 1150 octets

N2:

Nombre maximale de réémissions de la même trame I, avant de considérer la liaison hors service (N2=10).

Fonction Ouverture et fermeture des connexions

initialisation des paramètres (trames U)

HDLC ETABLISSEMENT/CLOTURE DE LIAISON

Fonction Contrôle de flux des données

éviter les congestions des mémoires (trames S)

CONTRÔLE DE FLUX

2 mécanismes

CONTRÔLE DE FLUX avec mécanisme SIMPLE et UTOPIQUE « SEND & WAIT »

Hypothèses:

- Transmission de trames de données (I) dans un seul sens
- Canal de communication parfait (pas d'erreurs ni pertes)
- Taille finie des mémoires tampon

Solution:

• Introduction de 2 trames de supervision (S), qui ne transportent aucune information utile et qui sont invisibles aux utilisateurs :

- RR (Receiver Ready)

- RNR (Receiver Not Ready)

2 variantes:

• Envoie d'une trame de supervision après chaque trame de données,

• Envoie d'une trame RNR ssi tampon plein, suivie d'une trame RR pour reprendre les envois.

Problèmes des duplications de trames

CONTRÔLE DE FLUX avec mécanismes « SEND & WAIT » et CONTRÔLE DES ERREURS avec « ACQUITTEMENT »

Temporisateur

Temporisateur

Α

В

Trame erronée

Trame retransmise

Trame

ACK

Trame

NACK

Trame

Hypothèses:

- Transmission de trames de données (I) dans un seul sens
- Canal de communication bruité
- Taille finie des mémoires tampon

Problèmes:

- Trames perdues
- Trames erronées
- Duplication de trame

Solution:

- Ajouter un processus d'acquittement positif ou négatif
- Utiliser un temporisateur ou Timer pour borner le délai de recéption des ACK
- Numérotation des trames modulo M (valeur 2, 8 ou 128)
- Ajout d'un champ N(S) dans l'en-tête des trames de données et de supervision
- · Ajout de compteurs V(S) et V(R) dans les terminaux émetteurs et récepteurs
- Requière une initialisation de l'échange pour la négociation de la valeur du compteur (protocole en mode connecté)

ATTENTION : La fonction de Contrôle de Flux et de contrôle d'erreurs peuvent utiliser la même trame de supervision (par exemple RR et RNR)

Transmission avec fenêtre d'anticipation

Les protocoles simples précédents (bit alterné, "send and wait", "stop and go") ont comme principal inconvénient de n'autoriser que la transmission d'une seule trame à la fois.

La liaison de données est alors inoccupée la plupart du temps. De même, l'émetteur (resp. le récepteur) passe son temps à attendre l'acquittement du récepteur (resp. la trame de données de l'émetteur)

- On autorise l'émission (resp. la réception) de plusieurs trames d'information consécutives sans attendre l'acquittement de la première (resp. avant d'envoyer l'acquittement).
 - on remarque que la source et le puits émettent et reçoivent simultanément
 - que la liaison est utilisée de manière bidirectionnelle

Transmission avec fenêtre d'anticipation (2/3) Exemple W = 3

on peut émettre 0, 1, 2

on reçoit trame RR demandant 3

on reçoit trame RR demandant 5

0 1 2 3 4 5 6 7 0 1 2 3 4

on peut émettre 3, 4, 5

on peut émettre 5, 6,7

0 1 2 3 4 5 6 7 0 1 2 3 4

- on reçoit trame RR demandant 7
- on peut émettre 7, 0, 1
- etc ...

Transmission avec fenêtre d'anticipation (3/3)

☐ Le nombre maximum de trames consécutives que l'on peut ainsi émettre (resp. recevoir) est la largeur de la fenêtre d'anticipation d'émission (resp. de réception).

Dans l'exemple : la largeur W≥ 3

Pour que la capacité de la liaison de données soit totalement utilisée il faut que :

- W* L ≥ Ta/r * D
 - L étant la longueur moyenne d'une trame, Ta/r la durée d'aller/retour et D le débit nominal de la liaison.

La largeur de fenêtre peut être :

- fixe
 - . par exemple : HDLC ou X25.3
- variable
 - . par exemple : TCP
 - dans ce cas sa valeur instantanée est appelée crédit

CONTRÔLE DE FLUX par fenêtre d'anticipation et CONTROLE DES ERREURS par Ack/retransmission groupé ou sélectif

OBJECTIF:

- Augmenter l'efficacité du dialogue
- Efficacité = délai d'émission des données / délai de transmission total

PRINCIPE:

- Emission de plusieurs trames à la suite sans attendre la réception d'un ACK
- Une trame de supervision peut acquitter un groupe de trames de données
- Nombre de trames emises avant ACK = N-1
- 1. REJET ET RETRANSMISSION GROUPEE (GO-Back-N) de toutes les trames à partir de la trame erronée ou perdue au moyen d'une trame de supervision REJ
- 2. REJET ET RETRANSMISION SELECTIVE (Selective Reject) au moyen de la trame de supervision SREJ

Rejet et Retransmission groupé: trame REJ

Rejet et Retransmission sélectif: trame SREJ

PANORAMA DES PROTOCOLES DE LIAISON DE DONNEES

Exemple le protocole HDLC

HDLC QU'est-ce que c'est?

HDLC offre un service de transfert de données fiable et efficace entre deux systèmes adjacents.

High-level Data Link Control:

- ISO 3309 : HDLC frame structure
- ISO 4335 : HDLC : elements of procedure,
- ISO 7448 : MultiLink procedure (MLP),
- ISO 7776 : LAP-B compatible link control procedure,
- ISO 7809 : Consolidated classes of procedures,
- ISO 8471 : HDLC balanced, link address information

☐ Utilisé comme protocole de la couche Liaison de données dans les normes X.25 (du CCITT) en usage dans les réseaux publics de transmission numériques de données (TRANSPAC, par exemple).

HDLC HISTORIQUE

1960: BSC ("Binary synchronous communication") - IBM

- tout premier protocole synchrone :
 - l'horloge du récepteur est maintenue synchronisée même s'il n'y a pas de transmission de données
 - transmission plus rapide (sans resynchronisation)
 - nécessite un contrôleur de communication spécialisé
- l'unité de transmission est le caractère (code ASCII (7 bits) ou EBCDIC (8 bits))
 - . par abus : protocole "orienté" caractère

70 : SDLC (Synchronous data link control") - IBM

- l'unité de transmission est la trame
- normalisé par l'ANSI ("American national standard institute) sous le nom ADCCP ("Advanced data communication - control procedure")

76: HDLC ("High data link control")

- protocole basé sur l'élément binaire ("orienté" bit)
- ISO 3309 : HDLC frame structure
- ISO 4335 : HDLC : elements of procedure

HDLC HISTORIQUE (2/2)

80 : adapté pour l'accès au réseau numérique de données

- LAP-B ("Link access procedure-balanced"):
 - . rôles équilibrés (symétriques) entre les deux systèmes adjacents
- normalisé : CCITT X25.2 et ISO 7776

85 : adapté aux réseaux locaux

- protocole de la sous-couche d'homogénéisation LLC ("Logical link control")
- apparition d'un mode de transmission non connecté (LLC classe 1)
- normalisé : IEEE 802.2 et ISO 8802/2

Autres adaptations:

- Télex : LAP-X - CCITT T71

- RNIS - canal D : LAP-D - CCITT Q921 ou I441

HDLC FONCTIONS

- 1. DELIMITATION et IDENTIFICATION des trames (Protocole)
- 2. GESTION de la liaison de données (Procédure) :
 - Etablissement et libération de la liaison de données sur un ou plusieurs circuits physiques préalablement activées,
- 3. SUPERVISION du fonctionnement de la liaison de données selon :
 - Le mode de transmission (synchrone ou asynchrone)
 - La nature de l'échange (simplex, half-duplex ou full-duplex)
 - Le type de liaison (point-à-point ou multipoint)
 - Le mode de l'échange (hiérarchique ou symétrique)
- 4. IDENTIFICATION de la source et du destinataire (Adressage)
- 5. CONTROLE D'ERREURS (Procédure)
- 6. CONTROLE DE FLUX (Procédure)

HDLC SCENARIOS D'ECHANGES

Scénario d'échange HDLC avec W = 3 (suite)

HDLC ENVOI DE TRAMES

Emission d'une trame I

Vérifier que V(S) < DN(R) + W puis :

- N(S) = V(S) et N(R) = V(R);
- mémoriser la trame;
- incrémenter V(S) modulo N;
- armer le temporisateur (délai de garde T1) associé à la trame;
- désarmer T2.
- Emission d'une trame REJ
 - -N(R) = V(R)
 - désarmer T2.
- Emission d'une trame RR
 - -N(R) = V(R)
 - désarmer T2.

HDLC: RECEPTION DE TRAMES

- Sur réception d'une trame
 - Si la trame est invalide
 - alors la trame est ignorée (si FCS incorrect) ou émission d'une trame FRMR (format incorrect).
- Sur réception d'une trame I
 - Si N(S) \neq V(R)
 - <u>alors</u> trame non-attendue (déséquencée)
 - émettre un trame REJ;
 - $\underline{\sinon} / * N(S) = V(R) * /$
 - . Armement du temporisateur T2 (délai d'acquittement) associé à N(S);
 - . incrémentation de V(R).
 - $\underline{Si} DN(R) \le N(R) \le V(S) \underline{alors}$
 - désarmer les temporisateurs T1 des trames de n° compris entre DN(R) et N(R);
 - DNR(R) = N(R);
- Sur réception d'une trame RR
 - \underline{Si} DN(R) \leq N(R) \leq V(S) \underline{alors}
 - désarmer les temporisateurs T1 des trames de n° compris entre DN(R) et N(R);
 - DNR(R) = N(R)

HDLC RECEPTION DE TRAMES (2/2)

- Sur réception d'une trame REJ
 - \underline{Si} DN(R) \leq N(R) \leq V(S) alors
 - désarmer les temporisateurs T1 des trames de n° compris entre DN(R) et N(R);
 - . DNR(R) = N(R);
 - . Emettre les trames de numéros compris entre N(R) et V(S).
- A l'expiration du délai T1 associé à une trame
 - Si le nombre de retransmissions n'est pas dépassé (< N2)
 - alors on réémet la trame I telle qu'elle a été mémorisée.
- ☐ A l'expiration du temporisateur T2
 - émettre une trame RR.