

Synthesis and catalytic performance of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ mixed oxide as low-temperature NH_3 -SCR catalyst with enhanced SO_2 resistance

Qinghua Yan^{a,b}, Sining Chen^a, Cheng Zhang^a, Qiang Wang^{a,*}, Benoit Louis^{b,*}

^a College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, PR China

^b Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France

ARTICLE INFO

Keywords:

Selective catalytic reduction
Mn-based catalyst
Layered double hydroxides
 SO_2 resistance
Regenerability

ABSTRACT

A new type of low-temperature NH_3 -SCR catalyst with a chemical composition of $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{O}_x$ was prepared from layered double hydroxides precursors for the first time. The purpose of this novel design is to improve the De-NO_x efficiency and SO_2 resistance of Mn-based catalysts. The $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst achieved a NO_x conversion as high as 90% at 200 °C, which is much higher than that of the control catalysts Cu-Mn/TiO_2 (86.1%) and Mn/TiO_2 (80.7%). The properties of catalysts were characterized in detail using a series of physico-chemical techniques including XRD, BET, FTIR, SEM, TEM, H_2 -TPR, NH_3 -TPD, TGA, and XPS analyses. The excellent catalytic performance of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst can be associated with its higher specific surface area and surface acidity, and more active MnO_2 and CuO species. Besides, when copper oxide is introduced, the catalysts showed significant resistance to 100 ppm SO_2 and 5% H_2O . Finally, the poisoning mechanism and the regenerability of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst was proposed. In short, the newly designed $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst was found to have higher catalytic activity and excellent SO_2 and H_2O resistance compared to the control catalysts of Cu-Mn/TiO_2 and Mn/TiO_2 .

1. Introduction

In order to fulfill the new and stricter regulations, many pollutant control technologies have been widely used to reduce the emission of air pollutants. The selective catalytic reduction (SCR) of NO_x with NH_3 (NH_3 -SCR) is an efficient technique for removing NO_x from flue gases of power plant [1]. Commercial SCR catalysts (e.g. $\text{V}_2\text{O}_5\text{-WO}_3\text{/TiO}_2$) are always placed prior to dust precipitation and desulphurization system, and the high concentration of SO_2 and dust normally reduce the performance and durability of catalysts [2]. Therefore, a tail-end configuration is becoming attractive and the development of a suitable catalyst for low temperature (i.e. 140–200 °C) environment is crucial [3].

Over the past decade, great interest has been drawn on the research of low temperature SCR catalysts containing transition metal oxide catalysts such as CuO/TiO_2 , $\text{Fe}_2\text{O}_3\text{/TiO}_2$, and $\text{MnO}_x\text{/TiO}_2$ [4–9]. Among them, Mn-based catalysts have shown excellent De-NO_x property under low-temperature sulfur-free conditions [10,11]. Under the actual SCR conditions, the stability of sulfates formed on TiO_2 surface is weaker than that on other supports such as ZrO_2 and Al_2O_3 . Therefore, TiO_2 is believed to be a more SO_2 -resistant support than other mixed oxides [12–14]. However, Mn/TiO_2 catalyst still has some problems, for example, easy sintering, poor thermal stability, and short lifetime, etc.

Especially, during the preparation of Mn/TiO_2 catalyst, sintering easily occurs, resulting in a poor dispersion of active component. Many studies have shown that the Cu-Ti mixed oxide was a potential catalyst for HC-SCR with excess oxygen [15–19]. In addition, the Cu-based catalysts are more SO_2 -resistant. Since the conventional impregnation preparation method often results in aggregated Mn oxides and relatively low catalytic activity, thus new synthesis methods for obtaining highly dispersed active components are highly desired.

Layered double hydroxides (LDHs) are a class of ionic lamellar compounds made up of positively charged brucite-like layers, with an interlayer region containing charge compensating anions and solvation molecules. LDHs have been suggested as a promising precursor for the preparation of highly dispersed mixed oxides with many good properties [20–24]. The layered double oxides (LDOs) obtained by calcination of LDHs normally consist highly dispersed active components, which possess better sintering-resistant property [25]. Thus, we propose that by optimizing the chemical composition of catalyst and using LDHs as precursor, a new catalyst $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{O}_x$ containing MnO_x and CuO as active components and TiO_2 as support can be designed. And such newly designed SCR catalyst should possess higher catalytic activity and better SO_2 -resistant and sintering-resistant properties.

In this work, $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{O}_x$ catalysts with different contents of Cu,

* Corresponding authors.

E-mail addresses: qiangwang@bjfu.edu.cn (Q. Wang), blouis@unistra.fr (B. Louis).

Mn, and Ti were prepared from the corresponding LDH precursors. All samples were carefully characterized using a series of techniques including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), and BET analysis. The NH₃-SCR catalytic activity of catalysts were evaluated in the range of 100–250 °C. The influence of SO₂ and H₂O on the performance of catalysts were also investigated and compared with the conventional Mn/TiO₂ and Cu-Mn/TiO₂ catalysts. Finally, the involved mechanism was studied using X-ray photoelectron spectroscopy (XPS), in situ-diffuse reflectance infrared Fourier transform spectroscopy (in situ-DRIFTS), thermogravimetric analysis (TGA), NH₃-temparature programmed desorption (NH₃-TPD), SO₂-temparature programmed desorption (SO₂-TPD), and H₂-temparature programmed reduction (H₂-TPR).

2. Experimental

2.1. Preparation of Cu_wMn_yTi_{1-y}O_x, Cu-Mn/TiO₂, and Mn/TiO₂

The standard co-precipitation method is used to synthesize the Cu_wMn_yTi_{1-y}CO₃ LDHs precursors. Hydroxyl ions (OH[−]) and carbonates (CO₃^{2−}) were continuously supplied by the decomposition of urea in water. Cu(NO₃)₂·6H₂O (Sinopharm Chemical Reagent Co., Ltd.), 50% Mn(NO₃)₂ (Sinopharm Chemical Reagent Co., Ltd.) and titanium propoxide (Alfa Aesar) were used as metal precursors with various ratios of *w* and *y* (*w* = 0.5–3, *y* = 0.25–0.75). The mixed solution was stirred at 90 °C for 2 days. The synthetic precipitate was thoroughly washed with deionized water and then dried at 60 °C for 12 h. Cu_wMn_yTi_{1-y}CO₃ LDHs were calcined at 400 °C for 5 h to obtain Cu_wMn_yTi_{1-y}O_x catalyst. A more detailed preparation process of LDHs has been reported in many literature [26,27]. 20 wt% Mn/TiO₂, 10 wt% Cu-10 wt% Mn/TiO₂, 20 wt% Cu-20 wt% Mn/TiO₂, and 40 wt% Cu-20 wt% Mn/TiO₂ were also prepared using the traditional incipient wetness method as control catalysts.

2.2. Catalyst characterization

Powder XRD was used to analyze the synthesized and calcined samples using a reflection mode of Cu Ka radiation on a Shimadzu XRD-7000 instrument. The chemisorption analyzer (SSA-7000, Builder) was used to measure the BET specific surface area (SSA) of samples. The morphologies of samples were characterized using field emission scanning electron microscope (FE-SEM, SU-8010, Hitachi). High resolution transmission electron microscopy (HR-TEM) analyses were performed on Tecnai G2 F20 (FEI, USA), with an accelerating voltage of 200 kV. Thermo Scientific Escalab 250Xi instrument was used for XPS analysis using monochromatic Al *kc* radiation (*hν* = 1486.6 eV) at 15 kW accelerating power. The chemisorption analyzer (PCA-1200, Builder) was used for NH₃-TPD, SO₂-TPD, SO₂+NH₃+O₂-TPD, and H₂-TPR analyses.

Q50 TGA (TA Instruments) was used to perform thermogravimetric analysis of samples. In a flowing nitrogen (60 mL/min), the furnace temperature was raised to 800 °C at a rate of 10 °C/min. The FTS 3000 MX FTIR spectrophotometer (Bruker Vertex 70) was used to perform FTIR analysis using diamond ATR technology. The in situ DRIFT characterization was also implemented on the FTS 3000 MX FTIR (Bruker Vertex 70) spectrophotometer with a reaction cell (ZnSe windows) and a diffuse reflectance attachment (HARRICK). The resolution was 4 cm^{−1}, the number of scans was 32, the spectra were expressed as Kubelka–Munk function, and the background spectrum of catalyst was recorded in N₂.

2.3. Catalytic activity measurements

The NH₃-SCR catalytic experiments of synthesized catalysts were carried out in a fixed-bed stainless steel reactor at a flow rate of

200 mL/min loaded with 150 mg catalyst. The inlet gas contained 500 ppm NH₃, 500 ppm NO_x (about 480 ppm NO, and 20 ppm NO₂), 100 ppm SO₂ (if needed), 5% H₂O (if needed), and 5% O₂ with Ar as balance. The NO_x analyzer (Thermo Scientific 42i-HL, USA) was used to monitor the NO_x concentrations on-line, and the quadrupole mass spectrometer (QGA, Hidden, UK) was used to assess the N₂ selectivity. The NO_x conversion and N₂ selectivity at the steady state were obtained using the follow Eqs. (1) and (2).

$$\text{NO}_x \text{ conversion} = \left(1 - \frac{\text{NO}_x(\text{out})}{\text{NO}_x(\text{in})} \right) \times 100\% \quad (1)$$

$$\text{N}_2 \text{ selectivity} = \left(1 - \frac{2\text{N}_2\text{O}(\text{out})}{\text{NO}_x(\text{in}) + \text{NH}_3(\text{in}) - \text{NO}_x(\text{out}) - \text{NH}_3(\text{out})} \right) \times 100\% \quad (2)$$

3. Results and discussion

3.1. Characterization of samples

First, in order to confirm the successful synthesis of Cu_wMn_yTi_{1-y}CO₃ LDHs, powder XRD analyses were performed. Fig. 1 shows the XRD patterns of Cu_wMn_yTi_{1-y}CO₃ LDHs with the same Mn/Ti of 1 but different Cu/(Mn + Ti) molar ratios of 0.5, 1, 2, and 3. Four precursors all exhibited the characteristic diffraction peaks of LDHs structure without any impurity phase. The diffraction peaks at 2θ = 12.8°, 25.8°, 36.5°, 39.1°, 43.6°, 53.1°, and 63.1° can be attributed to the reflections of (003), (006), (012), (009), (015), (018), and (110) planes for Cu_wMn_yTi_{1-y}CO₃ LDHs phase, respectively.

The specific surface area (SSA) is an important parameter for the performance of catalysts, thus the BET analyses of LDHs, LDOs, Cu-Mn/TiO₂, and Mn/TiO₂ were performed and summarized in Table 1. The SSA of Cu_wMn_yTi_{1-y}CO₃ LDHs became higher from 86.6 to 113.5 m²/g with the increase in molar ratio of Cu/(Mn + Ti). After calcination, the SSA of obtained mixed oxides were slightly decreased to the range of 56–102.1 m²/g. It should be noted that Cu-Mn/TiO₂ catalyst possesses a larger specific surface area than Mn/TiO₂, indicating that the introduction of copper increased the specific surface area of catalysts [10,28]. Among all mixed oxides, Cu₁Mn_{0.5}Ti_{0.5}O_x showed the highest SSA. It is well known that higher SSA could provide more available active sites on the catalyst surface for the reactants to participate in the reactions.

In addition, to better illustrate the structure of synthesized Cu_wMn_yTi_{1-y}CO₃ LDHs, FTIR analyses were further conducted, as shown in Fig. 1(c). All samples exhibited similar FTIR spectra to Mg-Al hydrotalcite. The stretching vibrations of –OH groups at 3350 cm^{−1}, the angular deformation vibration of H₂O molecules at 1420 cm^{−1}, and the vibrations of carbonate ions at 1311 cm^{−1} were observed. The bands at about 866 and 497 cm^{−1} can be attributed to M–O (M–OH, O–M–O or M–O–M) vibrations [21,29–32]. Thus, both XRD and FTIR data confirmed the successful synthesis of Cu_wMn_yTi_{1-y}CO₃ LDHs. In addition, after calcination, Cu_wMn_yTi_{1-y}CO₃ is mainly present in the CuO phase (Fig. 1(d)), and the related Mn phase almost did not be observed. This is probably because Mn oxide exists in a highly dispersed state.

The morphology of LDHs was revealed by SEM analyses. Fig. 2(a) shows that Cu_{0.5}Mn_{0.5}Ti_{0.5}CO₃ LDH possesses nanoplatelets morphology assembled together, a typical morphology for LDHs. Fig. 2(b) shows the HR-TEM image of the Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst. A lattice fringe with a spacing distance of 0.25 nm was observed, which can be referenced to the (−111) crystal plane of CuO. These data further suggested that Cu_wMn_yTi_{1-y}CO₃ LDH was successfully synthesized, and thermal treatment can lead to the formation of highly dispersed CuO species, which agrees well with the results of XRD.

Fig. 1. (a) XRD patterns of Cu_wMn_yTi_{1-y}-CO₃ LDHs with different Cu/(Mn + Ti) ratios from 0.5 to 3, (b) XRD pattern of Cu_wMn_{0.5}Ti_{0.5}-CO₃ LDH with Cu/(Mn + Ti) = 1, (c) FTIR spectra of Cu_wMn_yTi_{1-y}-CO₃ LDHs with different Cu/(Mn + Ti) ratios, and (d) XRD patterns of Cu_wMn_{0.5}Ti_{0.5}O_x LDOs with different Cu/(Mn + Ti) ratios obtained by calcining at 400 °C.

Table 1

Specific surface area, pore size, and pore volume of Cu_wMn_yTi_{1-y}-CO₃ LDHs and the corresponding Cu_wMn_yTi_{1-y}O_x LDOs.

Samples	BET SSA (m ² /g)	BH Pore size (Å)	BH pore volume (cm ³ /g)
Cu _{0.5} Mn _{0.5} Ti _{0.5} CO ₃ LDH	86.6	46.0	0.199
Cu ₁ Mn _{0.5} Ti _{0.5} CO ₃ LDH	113.5	71.8	0.408
Cu ₂ Mn _{0.5} Ti _{0.5} CO ₃ LDH	99.8	46.3	0.231
Cu ₃ Mn _{0.5} Ti _{0.5} CO ₃ LDH	68.3	45.2	0.154
Cu _{0.5} Mn _{0.5} Ti _{0.5} O _x LDO	67.0	59.0	0.198
Cu ₁ Mn _{0.5} Ti _{0.5} O _x LDO	102.1	66.3	0.339
Cu ₂ Mn _{0.5} Ti _{0.5} O _x LDO	83.2	79.6	0.331
Cu ₃ Mn _{0.5} Ti _{0.5} O _x LDO	56.0	54.7	0.153
Mn/TiO ₂	34.3	56.3	0.112
Cu-Mn/TiO ₂	45.1	63.6	0.104

3.2. NH₃-SCR activity of Cu_wMn_yTi_{1-y}O_x catalysts

3.2.1. The effect of catalyst components

To further investigate the role of catalyst components in Cu_wMn_yTi_{1-y}O_x catalysts with different molar ratios of Cu/(Mn + Ti) and Mn/Ti were prepared and catalytically evaluated. Fig. 3 presents the influences of Cu/(Mn + Ti) ratio (0.5, 1, 2, and 3) and Mn/Ti ratio (1:3, 1:1, and 3:1) on the De-NO_x activity of Cu_wMn_yTi_{1-y}O_x catalysts in the low temperature range of 100–250 °C. Initially, we optimized the Cu/(Mn + Ti) molar ratio of Cu_wMn_{0.5}Ti_{0.5}O_x by varying the Cu/(Mn + Ti) ratio from 0.5 to 1, 2, and 3. It could be seen that Cu₁Mn_{0.5}Ti_{0.5}O_x represents the best SCR catalyst, with a De-NO_x up to 90% at 200 °C.

The effect of Mn/Ti molar ratio (1:3, 1:1 and 3:1) was also

investigated after determining the optimal Cu/(Mn + Ti), as shown in Fig. 3(b). The NO_x conversions increased obviously by increasing the Mn/Ti molar ratio from 1:3 to 1:1 at 100–250 °C. However, the NO_x conversion decreased for a certain extent with a further increase of Mn/Ti ratio from 1:1 to 3:1. For instance, at 100, 150, 200, and 250 °C, the NO_x conversion was decreased from 52.2%, 78.4%, 90%, and 80.8% to 30.9%, 51.1%, 80.8%, and 70.3%, respectively. It is well known that when the loading exceeds the maximum loading of the support monolayer, sintering will occur, thereby resulting in a decrease in the NO_x conversion. These data clearly demonstrated that the Cu/(Mn + Ti) and Mn/Ti molar ratios had a significant influence on the De-NO_x activity of catalysts, and the optimum composition Cu₁Mn_{0.5}Ti_{0.5}O_x exhibited the highest NO_x conversion of 90% at 200 °C.

In the following section, a comparative study on Mn/TiO₂, Cu-Mn/TiO₂, and Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts was performed, as shown in Fig. 4. It can be seen that the performance of Mn/TiO₂ and Cu-Mn/TiO₂ was worse than that of Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst within the whole experimental temperature range. The low temperature activities of Cu-Mn/TiO₂ and Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts, with the introduction of Cu, were significantly better than that of Mn/TiO₂ catalyst. For Mn/TiO₂, Cu-Mn/TiO₂, and Cu₁Mn_{0.5}Ti_{0.5}O_x, the NO_x conversion at 200 °C was 80.7%, 86.1%, and 90%, respectively. It is apparent that the Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst possessed much better SCR performance than the other two catalysts. In addition, the selectivity of NO_x conversion into N₂ was also investigated over Mn/TiO₂, Cu-Mn/TiO₂, and Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts, as shown in Fig. 4(a). The N₂ selectivity of Cu₁Mn_{0.5}Ti_{0.5}O_x was 99.4%, which is much higher than that of Cu-Mn/TiO₂ (95%) and Mn/TiO₂ (88%) at 200 °C. Thus, it can be concluded that the Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst not only possesses high De-NO_x

Fig. 2. (a) SEM image of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{-CO}_3$ LDH, and (b) the HR-TEM image of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ calcined at 400 °C.

property, but also has high N_2 selectivity.

More control catalysts with higher Cu and Mn loadings, 20 wt% Cu-20 wt% Mn/TiO₂ and 40 wt% Cu-20 wt% Mn/TiO₂, were also synthesized and evaluated. As shown in Fig. S2, the NO_x conversion decreased with increasing the loadings of Cu and Mn, which was 86.1%, 80.2%, and 60.3% for 10 wt% Cu-10 wt% Mn/TiO₂, 20 wt% Cu-20 wt% Mn/TiO₂, and 40 wt% Cu-20 wt% Mn/TiO₂, respectively. This is due to the maximum monolayer load limitation of the carrier. However, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ showed higher NO_x conversion of 90% under the same condition. These results demonstrated that the catalysts obtained by calcination of LDHs can avoid the maximum monolayer load limitation of the carrier, and thereby obtaining highly dispersed catalysts with improved catalytic activity.

To clarify why $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst has better activity than conventional catalysts, the XRD patterns of samples were analyzed and displayed in Fig. 4(b). After 400 °C calcination, both Mn/TiO₂ and Cu-Mn/TiO₂ were converted into a mixture of oxides and spinels. For Mn/TiO₂, the diffraction peaks can be attributed to anatase TiO₂ and crystallized MnO₂ (JCPDS No. 24-0735). For Cu-Mn/TiO₂, there were some new peaks corresponded to CuO phase (JCPDS No. 48-1548). For $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, only CuO phase (JCPDS No. 48-1548) was observed, while the MnO_x phase was not identified. It implies that the manganese oxides might be in a highly dispersed state.

In order to identify the chemical composition and the state of surface species of different catalysts, the samples were examined using XPS analyses. The photoelectron spectra of O 1 s, Cu 2p, and Mn 2p of Mn/TiO₂, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, and Cu-Mn/TiO₂ samples were displayed in Fig. 5. The XPS spectra of Cu 2p for $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ and Cu-Mn/TiO₂ catalysts were displayed in Fig. 5(a). For these two catalysts, the Cu 2p_{3/2} and Cu 2p_{1/2} peaks at 934 and 955.0 eV were observed, with two satellite peaks at 960.0–965.0 eV and 938.0–945.0 eV, respectively. The value of $\text{Cu}^{2+}/(\text{Cu}^{2+} + \text{Cu}^{1+})$ in $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ (63%) is higher than that in Cu-Mn/TiO₂ (49.4%), which is beneficial for promoting the

low-temperature SCR activity.

The XPS spectra of Mn 2p for Mn/TiO₂, Cu-Mn/TiO₂, and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts were displayed in Fig. 5(b), which suggests that MnO_x existed as a mixed-valence state in these three catalysts. The value of $\text{Mn}^{4+}/(\text{Mn}^{4+} + \text{Mn}^{3+})$ follows the order of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ (53.4%) > Cu-Mn/TiO₂ (48.6%) > Mn/TiO₂ (38.0%). Previous studies have demonstrated that the presence of Mn⁴⁺ species is conducive to the low temperature De- NO_x activity [25,33–35]. Therefore, the higher value of $\text{Mn}^{4+}/(\text{Mn}^{4+} + \text{Mn}^{3+})$ in $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst may be one of the reasons for its higher catalytic activity at low temperature.

In Fig. 5(c), all Ti 2p XPS spectra consist two peaks at 464.3 and 458.3 eV, which represent Ti 2p_{1/2} and Ti 2p_{3/2}. The result also indicated that Ti⁴⁺ state is the main valence in all catalysts [36,37]. After introducing Cu, the binding energies shifted to lower values. This indicated that the introduction of Cu can influence the chemical environments of Ti⁴⁺ in Cu-Mn/TiO₂ and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts.

The O 1 s XPS spectra of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, Cu-Mn/TiO₂, and Mn/TiO₂ catalysts were displayed in Fig. 5(d), which could be fitted into two peaks. The peak at 528.7–530.9 eV corresponds to lattice oxygen (O_α), whereas the other peak at 531.4–532.5 eV is related to the surface adsorbed oxygen (O_β) [38]. It has been reported that O_β has an important influence on the oxidation reaction due to its higher mobility [39–41]. The O_β/(O_α + O_β) ratios of Cu-Mn/TiO₂, and Mn/TiO₂ catalysts were significantly lower than that of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ sample. XPS results indicated that the relatively higher ratios of $\text{Cu}^{2+}/(\text{Cu}^{2+} + \text{Cu}^{1+})$, $\text{Mn}^{4+}/(\text{Mn}^{4+} + \text{Mn}^{3+})$, and O_β/(O_α + O_β) might account for the good De- NO_x performance of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst.

The FTIR spectroscopy of pyridine chemisorption is most widely used to detect the surface acidity of catalysts. Fig. 6(a) shows the FTIR spectra of pyridine adsorbed on Mn/TiO₂, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, and Cu-Mn/TiO₂. The bands at about 1446, 1490, 1577, and 1597 cm^{-1} can be attributed to the pyridine coordinated to L acids, whereas the characteristic band at 1546 cm^{-1} corresponds to B acid sites [42]. The

Fig. 3. The influence of (a) Cu/(Mn + Ti) ratio (0.5, 1, 2, and 3), (b) Mn/Ti ratio (1:3, 1:1, and 3:1) on the activity of $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{O}_x$ mixed oxide catalysts. Calcination temperature = 400 °C, and operating temperature = 100, 150, 200, and 250 °C. Reaction conditions: $[\text{NO}_x] = [\text{NH}_3] = 500 \text{ ppm}$, $[\text{O}_2] = 5\%$, balance Ar, total flow rate = 200 mL/min, catalyst 0.15 g.

Fig. 4. (a) The NO_x conversion and N_2 selectivity over Mn/TiO_2 , $\text{Cu}-\text{Mn}/\text{TiO}_2$, and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts, and (d) The XRD patterns of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, $\text{Cu}-\text{Mn}/\text{TiO}_2$, and Mn/TiO_2 calcined at 400 °C. Reaction conditions: $[\text{NO}_x] = [\text{NH}_3] = 500 \text{ ppm}$, $[\text{O}_2] = 5\%$, balance Ar, total flow rate = 200 mL/min, catalyst 0.15 g.

concentrations of the L and B sites can be quantified from the intensities of the peaks at about 1450 and 1546 cm^{-1} , which follows the order of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ (230.5 $\mu\text{mol/g}$) > $\text{Cu}-\text{Mn}/\text{TiO}_2$ (127.2 $\mu\text{mol/g}$) > Mn/TiO_2 (102.1 $\mu\text{mol/g}$) [43,44]. Fig. 6(b) shows the relationship between the catalytic performance and acidity. Obviously, with the introduction of Cu, the catalytic performance of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst increases with elevating the quantities of L and B acids.

The surface acidity and surface Cu and Mn active species of Mn/TiO_2 , $\text{Cu}-\text{Mn}/\text{TiO}_2$, and CuMnTiO_x catalysts were investigated by NH_3 -TPD and H_2 -TPR experiments, as shown in Fig. 6(c, d). Since the adsorption of NH_3 is very important in NH_3 -SCR reaction, NH_3 -TPD analysis was used to determine the catalyst surface acidity. Two desorption peaks for all samples were observed, which can be described as the reduction of MnO_x and/or copper species. The desorption peak at low temperature located at about 155 °C. The amounts of desorbed NH_3 (surface acidity) were compared by integrating the NH_3 -TPD curves and it is obvious that $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ possesses much higher intensity than that of Mn/TiO_2 and $\text{Cu}-\text{Mn}/\text{TiO}_2$, indicating $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ has more

acidic sites for NH_3 adsorption. The reaction mechanism of NH_3 -SCR has been previously investigated and it has been demonstrated that the catalytic property is related to the surface acidity of catalysts [45].

According to literature report, the reduction peak of Mn/TiO_2 catalyst between 150 and 500 °C could be divided into three steps: $\text{MnO}_2 \rightarrow \text{Mn}_2\text{O}_3 \rightarrow \text{Mn}_3\text{O}_4 \rightarrow \text{MnO}$ [46]. For $\text{Cu}-\text{Mn}/\text{TiO}_2$, $\text{Cu}_{0.5}\text{Mn}_{0.5}\text{O}_x$, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, $\text{Cu}_2\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, and $\text{Cu}_3\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ samples, three reduction peaks were observed, which related to the stepwise reduction of CuO_x species i.e., $\text{Cu}^{2+} \rightarrow \text{Cu}^{1+}$ (about 136 °C) and $\text{Cu}^{1+} \rightarrow \text{Cu}$ (about 163 °C) [47], and the bulk Cu^{2+} reduction [48], overlapped with the reduction of surface MnO_x species. For $\text{Cu}-\text{Mn}/\text{TiO}_2$, in addition to the reduction peak at about 250 °C, actually there was one peak at around 146 °C for the reduction of Cu. However, because the peak was so weak that after being combined with other data, this peak became not so obvious. In order to prevent any misleading, we provided the H_2 -TPR profile of $\text{Cu}-\text{Mn}/\text{TiO}_2$ catalyst separately as Fig. S1.

For $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, the intensity of H_2 -TPR at low temperature was stronger than that of $\text{Cu}-\text{Mn}/\text{TiO}_2$ and Mn/TiO_2 , suggesting that

Fig. 5. XPS spectra of (a) Cu 2p, (b) Mn 2p, (c) Ti 2p, and (d) O 1s of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, $\text{Cu}-\text{Mn}/\text{TiO}_2$, and Mn/TiO_2 catalysts.

Fig. 6. (a) FTIR spectra of pyridine adsorbed at 200 °C on Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ catalysts, (b) Variations in the quantity of acidity and the catalytic performance of Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ catalysts at 200 °C, (c) NH₃-TPD and (d) H₂-TPR profiles over the Mn/TiO₂, Cu-Mn/TiO₂, Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu₂Mn_{0.5}Ti_{0.5}O_x, Cu₃Mn_{0.5}Ti_{0.5}O_x, Cu_{0.5}Mn_{0.5}Ti_{0.5}O_x, and Cu-Mn/TiO₂ catalysts.

Fig. 7. (a) Long-term isothermal NO_x conversion of catalysts in the presence of 100 ppm SO₂ at 200 °C, (b) The influence of 5% H₂O and 100 ppm SO₂ addition on the NO_x conversion of catalysts at 200 °C, (c) The influence of 5% H₂O and 100 ppm SO₂ on the NO_x conversion of catalysts at different temperature, and (d) SEM image of Cu₁Mn_{0.5}Ti_{0.5}O_x after used in the gas containing 5% H₂O and 100 ppm SO₂ at 200 °C. The inset Table is the SEM-EDX analysis of the selected area of sample. Reaction conditions: [NO_x] = [NH₃] = 500 ppm, [O₂] = 5%, [H₂O] = 5%, [SO₂] = 100 ppm, balance Ar, total flow rate = 200 mL/min, catalyst 0.15 g.

Cu₁Mn_{0.5}Ti_{0.5}O_x surface possesses more highly dispersed copper and manganese oxide crystallites, which are important active species for the low-temperature SCR reaction. Therefore, the increase of surface active species on Cu₁Mn_{0.5}Ti_{0.5}O_x maybe one reason for its higher NO_x conversion than the conventional Mn/TiO₂ catalyst. The H₂-TPR peak areas of Cu-Mn/TiO₂ and CuMnTiO_x are larger than that of Mn/TiO₂. The H₂ consumptions of samples were quantified through a pulse experiment, which followed the sequence of Cu₁Mn_{0.5}Ti_{0.5}O_x (1.15 mmol/g) > Cu₂Mn_{0.5}Ti_{0.5}O_x (0.82 mmol/g) > Cu₃Mn_{0.5}Ti_{0.5}O_x (0.69 mmol/g) > Cu_{0.5}Mn_{0.5}Ti_{0.5}O_x (0.47 mmol/g) > Cu-Mn/TiO₂ (0.25 mmol/g) > Mn/TiO₂ (0.16 mmol/g). The improvement maybe attributed to the synergistic influence between copper and manganese species. Therefore, Cu₁Mn_{0.5}Ti_{0.5}O_x prepared by LDH calcination has higher Mn and Cu species reduction ability, which means that the surface oxygen mobility increases and the SCR reaction proceeds rapidly [20,49].

g) > Mn/TiO₂ (0.16 mmol/g). The improvement maybe attributed to the synergistic influence between copper and manganese species. Therefore, Cu₁Mn_{0.5}Ti_{0.5}O_x prepared by LDH calcination has higher Mn and Cu species reduction ability, which means that the surface oxygen mobility increases and the SCR reaction proceeds rapidly [20,49].

3.2.2. The effect of SO₂ and H₂O

SO₂ poisoning is a critical problem for SCR catalysts. As shown in Fig. 7(a), the long-term De-NO_x properties of Mn/TiO₂, Cu-Mn/TiO₂, and Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts were evaluated at 200 °C with 100 ppm

Table 2

Specific surface area, pore size, and pore volume of fresh and sulfated $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, $\text{Cu}-\text{Mn}/\text{TiO}_2$, and Mn/TiO_2 .

Samples	BET SSA (m^2/g)	BJH Pore size (Å)	BJH pore volume (cm^3/g)
$\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$	102.1	66.3	0.339
$\text{Cu}-\text{Mn}/\text{TiO}_2$	45.1	63.6	0.104
Mn/TiO_2	34.3	56.3	0.112
$\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x\text{-S}$	69.3	49.8	0.173
$\text{Cu}-\text{Mn}/\text{TiO}_2\text{-S}$	26.4	139.8	0.115
$\text{Mn}/\text{TiO}_2\text{-S}$	16.4	127.7	0.104

SO_2 . For $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ sample, the NO_x conversion only slightly decreased even after running for 12 h. However, the decreases in NO_x conversion for Mn/TiO_2 and $\text{Cu}-\text{Mn}/\text{TiO}_2$ were significant, which was 14% and 6% respectively after 10 h. These results clearly demonstrated that $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ sample is much less effected by SO_2 than Mn/TiO_2 and has great potential for practical applications.

For low-temperature $\text{NH}_3\text{-SCR}$, the influences of H_2O and SO_2 on the De- NO_x performance can not be ignored [50,51]. Thus, the resistance of Mn/TiO_2 , $\text{Cu}-\text{Mn}/\text{TiO}_2$, and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts to both H_2O and SO_2 was also investigated at 200 °C, as displayed in Fig. 7(b). Without H_2O and SO_2 , the NO_x conversion for Mn/TiO_2 , $\text{Cu}-\text{Mn}/\text{TiO}_2$, and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ was 80%, 86%, and 90%, respectively. After adding

5% H_2O , the NO_x conversion of Mn/TiO_2 , $\text{Cu}-\text{Mn}/\text{TiO}_2$, and $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ decreased to 58%, 66.1% and 78.3%, respectively. After adding 5% H_2O and 100 ppm SO_2 simultaneously, the synergistic influence of H_2O and SO_2 further decreased the catalysts property. However, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ still resulted in higher activity than Mn/TiO_2 and $\text{Cu}-\text{Mn}/\text{TiO}_2$, even with both H_2O and SO_2 . For $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, the NO_x conversion was still 64.6% after 6 h, which is much higher than that for Mn/TiO_2 (38.0%) and $\text{Cu}-\text{Mn}/\text{TiO}_2$ (49.1%). Once H_2O and SO_2 were stopped, the NO_x conversion for $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ recovered to 73.4%, and the conversion of Mn/TiO_2 and $\text{Cu}-\text{Mn}/\text{TiO}_2$ was only recovered to 42.1% and 58.1%, respectively. This results indicated that $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst also possesses better resistance to the coexistence of SO_2 and H_2O than Mn/TiO_2 and $\text{Cu}-\text{Mn}/\text{TiO}_2$ catalysts.

In order to observe the viability of catalysts, the effect of 100 ppm SO_2 and 5% H_2O at higher temperatures (200–400 °C) of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$, $\text{Cu}-\text{Mn}/\text{TiO}_2$, and Mn/TiO_2 catalysts were comparatively examined, as shown in Fig. 7(c). With the increase of testing temperature, the catalytic property of all catalysts showed a certain degree of decline. $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalyst showed higher catalytic property in the whole tested temperature range. For instance, at 250 °C, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ resulted in a NO_x conversion of 61.7%, which is much higher than that for $\text{Cu}-\text{Mn}/\text{TiO}_2$ (48.1%) and Mn/TiO_2 (21.2%). At 400 °C, the NO_x conversion of $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ decreased to 48.6%, but it was still higher than that of $\text{Cu}-\text{Mn}/\text{TiO}_2$ (28.1%) and Mn/TiO_2

Fig. 8. In situ DRIFT 500 ppm SO_2 + 5% O_2 co-adsorption spectra over (a) Mn/TiO_2 (b) $\text{Cu}-\text{Mn}/\text{TiO}_2$, and (c) $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts at 200 °C as a function of time for 60 min. In situ DRIFT spectra obtained after a 30 min exposure to 1000 ppm NH_3 and 1000 ppm NH_3 + 500 ppm SO_2 in the presence of 5% O_2 over (d) Mn/TiO_2 , (e) $\text{Cu}-\text{Mn}/\text{TiO}_2$, and (f) $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ catalysts at 200 °C.

Fig. 9. In situ DRIFT spectra obtained after a 30 min exposure to 2000 ppm NO + 5% O₂ or 2000 ppm NO + 500 ppm SO₂ in the presence of 5% O₂ over (a) Mn/TiO₂, (b) Cu-Mn/TiO₂, and (c) Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts at 200 °C.

(16.5%). In all, the results suggested that Cu₁Mn_{0.5}Ti_{0.5}O_x has better viability and stability, even at higher temperatures and in the presence of SO₂ and H₂O.

The used catalysts were further characterized using XRD and SEM analyses. In the XRD patterns of Fig. S3, no characteristic diffraction peak of the sulfate species was found. This may be due to the short time of SO₂ poisoning and the low content of sulfate species. We then

examined the morphology of the used Cu₁Mn_{0.5}Ti_{0.5}O_x by SEM characterization, as shown in Fig. 7(d). Some deposits could be seen on the surface, which may be attributed to the formation of (NH₄)₂SO₄/NH₄HSO₄ and sulfate species. To further confirm the existence of sulfate species, SEM-EDS analysis was performed as shown in the inset of Fig. 7(d), which indicated that the sulfate species indeed existed on the surface of catalyst, although the amount was quite small.

In addition, the SSA of fresh and deactivated catalysts are summarized in Table 2. The SSA of fresh Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ was 102.1, 45.1, and 34.3 m²/g, respectively. After the sulfate species formed and deposited on the catalysts surface, the SSA of all sulfated Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ became 69.3, 26.4, and 16.4 m²/g, respectively. Obviously, the SSA of all samples decreased to a certain extent, which may be one reason to explain the decrease in catalytic activity. However, it is apparent that Cu₁Mn_{0.5}Ti_{0.5}O_x also possesses larger SSA than other catalysts. The BET analyses also confirmed that the Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst has stronger resistance to SO₂ than the other controlled catalysts.

The DRIFT experiment of SO₂ + O₂ at 200 °C was used to understand the inter-relationship between catalysts and sulfates. As displayed in Fig. 8, the symmetric stretching frequencies of O—S—O species at about 1000 and 1100 cm⁻¹, and the asymmetric stretching frequencies of O=S=O species at about 1310 and 1350 cm⁻¹ were detected [49,52,53]. However, the band at 1350 cm⁻¹ on Mn/TiO₂ was much stronger than that on Cu₁Mn_{0.5}Ti_{0.5}O_x, indicating that much more sulfates species was formed on Mn/TiO₂. The results showed that the formation of sulfate species is due to sulfation at 200 °C, while Cu₁Mn_{0.5}Ti_{0.5}O_x has better resistance to SO₂ than Mn/TiO₂.

NH₃ adsorption is believed to be an important step in NH₃-SCR reaction. Therefore in order to clarify how SO₂ might impact this process, a comparative study was performed. Fig. 8(d-f) displays the DRIFT spectra of Cu-Mn/TiO₂, Cu₁Mn_{0.5}Ti_{0.5}O_x, and Mn/TiO₂ after exposure to NH₃/N₂ and SO₂ co-adsorption with NH₃ at different times. The bands at 1590–1596 cm⁻¹ and 1182–1192 cm⁻¹ belong to NH₃ coordinated to L acids [52,54]. The bands at 1652–1669 cm⁻¹ and 1436–1455 cm⁻¹ assigned to B acids [55]. However, for Cu₁Mn_{0.5}Ti_{0.5}O_x, the intensity of band at 1590 and 1652 cm⁻¹ was much stronger than that on other catalysts, indicating a stronger adsorption of NH₃ due to the addition of Cu. This NH₃-DRIFT conclusion is consistent with the pyridine infrared and NH₃-TPD conclusions, suggesting that Cu₁Mn_{0.5}Ti_{0.5}O_x has more L and B acid sites, and may be one of the reasons for its high activity.

All catalysts were then exposed to both NH₃ and SO₂ for 30 min. Compared with only NH₃ exposure, the intensity of bands corresponding to NH₃ on L acid sites (about 1590 cm⁻¹) and B acid sites (1652 cm⁻¹) slightly decreased, which indicated that the amount of adsorbed NH₃ on L and B acid sites was reduced. However, the emergence of new bands at 1342–1361 cm⁻¹ and 1246–1265 cm⁻¹ suggested the formation of O=S=O and HSO₄⁻ species, respectively [49]. These results showed that SO₂ indeed has an impact on NH₃ adsorption, and forms some new NH₄HSO₄ species. Notably, it is clear that during SO₂ co-adsorption with NH₃, Cu₁Mn_{0.5}Ti_{0.5}O_x still has more L acid sites and less NH₄HSO₄ species compared with other catalysts, which is very important for the occurrence of SCR reactions.

In order to better explain the formation of NO₂ in the mechanism scheme, an NO + O₂ adsorption experiment on in situ DRIFT was performed. For the NO + O₂ adsorption experiments, 2000 ppm NO + 5% O₂ was injected for 30 min at 200 °C and the corresponding spectra were recorded as a function of time. As shown in Fig. 9, the formation of bands at about 1609, 1583, 1543, and 1281 cm⁻¹ were observed after NO + O₂ adsorption on all samples. Based on literature studies, the two bands at about 1583 and 1281 cm⁻¹ were assigned to nitrate species, while the band at about 1609 cm⁻¹ was attributed to adsorbed NO₂ species [56–58], and the band at 1543 cm⁻¹ could also be assigned to NO₂-containing species, like nitrito (O-bound NO₂) and nitro (NO₃) species [59].

Fig. 11. NO_x conversions of fresh, deactivated and regenerated catalysts treated by thermal regeneration. Reaction conditions: [NO_x] = [NH₃] = 500 ppm, [O₂] = 5%, [H₂O] = 5%, [SO₂] = 100 ppm, balance Ar, total flow rate = 200 mL/min, GHSV = 60,000 h⁻¹, testing temperature = 200 °C, catalyst 0.15 g.

The enhancement role of copper oxide can be interpreted that NO could be oxidized to NO₂ easily at low temperatures. To better explain the formation of NO₂ in the mechanism scheme, NO oxidation experiment was conducted. The inlet gas contained 500 ppm NO_x (about 455 ppm NO, and 45 ppm NO₂), and 5% O₂ with Ar as balance. At 200 °C, the Cu₁Mn_{0.5}Ti_{0.5}O_x was exposed to the gas for 140 min, the concentration of each component was monitored. Fig. S4 shows that the concentration of NO₂ increased from 45 ppm to 152 ppm, indicating that NO was oxidized to NO₂ in the presence of catalyst. This is conducive to the formation of ammonium nitrite, which promotes the occurrence of “fast-SCR”.

In addition, the interactions between SO₂ and NO_x were also investigated by comparing the in situ DRIFT spectra taken during catalyst exposure to NO_x and SO₂ co-adsorption with NO_x, as shown in Fig. 9.

After adding SO₂, most of the bands for NO_x species except the one at about 1609 cm⁻¹ disappeared, and in the meantime, the new band at 1351–1357 cm⁻¹ belongs to the asymmetric stretching frequencies of O=S=O species was observed. The results again proved that SO₂ competes with NO_x for surface adsorption sites, resulting in less NO_x adsorption. It is also worth noting that the intensity of sulfur species band on Cu₁Mn_{0.5}Ti_{0.5}O_x was much weaker than that on Cu-Mn/TiO₂ and Mn/TiO₂, and in contrary the intensity of the NO_x species band on Cu₁Mn_{0.5}Ti_{0.5}O_x was stronger than that on Cu-Mn/TiO₂ and Mn/TiO₂. This data further demonstrated that the Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst has better resistance to SO₂ than other catalysts.

In order to study the influence of SO₂ on the redox property of catalysts, the pre-sulfated and fresh catalysts were analyzed by H₂-TPR. As displayed in Fig. 10(a), the reduction peaks of pre-sulfated catalysts shifted to higher temperatures than the fresh catalysts. It has been recommended that the reduction peak temperature is an indication of reducibility, and the lower reduction temperature represents greater reducibility. In addition, the reduction peak area of all the samples reduced, indicating that SO₂ had negative effect on the reducibility of catalysts. For Mn/TiO₂ catalyst, the two reduction peaks located at 328 and 426 °C were greatly shifted to 404 and 493 °C. These data suggested that the addition of Cu can promote the SO₂ resistance of Mn-based SCR catalyst. For the Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts obtained from LDHs precursors, the reduction peak temperatures were still very low even after SO₂ pre-sulfation, which only slightly increased from 136, 163, and 280 °C to 165, 184, and 294 °C. Compared with Mn/TiO₂ and Cu-Mn/TiO₂, the reduction peak for Cu₁Mn_{0.5}Ti_{0.5}O_x was somehow stronger and the peak temperature was still very low.

In addition, a high temperature H₂ consumption peak at 646–687 °C was observed for all pre-sulfated Mn/TiO₂, Cu-Mn/TiO₂, and Cu₁Mn_{0.5}Ti_{0.5}O_x catalysts. This peak was absent with all fresh catalysts, confirming that it was due to the reduction of sulfates species. The TCD signal at high temperature (646–687 °C) assigned to SO₂ and H₂S further supported that sulfur is mainly stored as either sulfates or surface SO₂ groups, consistent with literature reports by Zhang et al. [57] and Wijayanti et al. [60]. The H₂ consumption of Mn/TiO₂-S, Cu-Mn/TiO₂-S, and Cu₁Mn_{0.5}Ti_{0.5}O_x-S were also quantified, which followed the

Fig. 12. Schematic illustration of the preparation process of CuMnTiO_x, and a redox catalytic cycle of the low-temperature NH₃-SCR reactions over CuMnTiO_x catalysts.

order of Cu₁Mn_{0.5}Ti_{0.5}O_x-S (0.81 mmol/g) > Cu-Mn/TiO₂-S (0.16 mmol/g) > Mn/TiO₂-S (0.1 mmol/g). Thus, it can be concluded that Cu₁Mn_{0.5}Ti_{0.5}O_x catalyst has the best SO₂ resistance among all studied catalysts.

To explain this, TGA test was used to analyze the thermal stability of pre-sulfated Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂ and Mn/TiO₂. Fig. 10(b) shows that the weight loss of the pre-sulfated samples was in three steps. The step 1 (26–200 °C) is mainly due to the desorption of water adsorbed on samples [49,61]. The weight loss in step 2 (200–550 °C) was due to the decomposition of (NH₄)₂SO₄ and/or NH₄HSO₄ [31], and the weight loss in step 3 (550–800 °C) corresponds to Ti(SO₄)₂, Mn (SO₄)₂, and/or CuSO₄. For the pre-sulfated Mn/TiO₂, it showed a weight loss of 1.61 wt% and 4.92 wt% in step 2 and step 3, respectively. After adding Cu to the Mn-based catalyst, the weight loss for Cu-Mn/TiO₂ and Cu₁Mn_{0.5}Ti_{0.5}O_x became much less, which was 0.63 wt% and 0.39 wt% in step 2, and 1.31 wt% and 1.06 wt% in step 3, respectively. The results further demonstrated that less sulfate species was deposited on the surface of Cu₁Mn_{0.5}Ti_{0.5}O_x. The above results explains why Cu₁Mn_{0.5}Ti_{0.5}O_x has better activity even in the presence of SO₂.

In order to explain the influence of SO₂, SO₂-TPD analyses were performed with Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ after exposure to 5000 ppm SO₂ at 80 °C for 1 h, as shown in Fig. 10(c). For Mn/TiO₂, two SO₂ desorption peaks were observed at 292 and 542 °C. However, only one major SO₂ desorption peak appeared at 361 °C for Cu₁Mn_{0.5}Ti_{0.5}O_x and 365 °C for Cu-Mn/TiO₂, which was due to the decomposition of sulfate species [62,63]. The SO₂-TPD peak of Mn/TiO₂ is much larger than that for Cu₁Mn_{0.5}Ti_{0.5}O_x, indicating Cu₁Mn_{0.5}Ti_{0.5}O_x has excellent SO₂-resistant capacity. The deactivation of catalysts can be attributed to the sulfate species formation, which is consistent with the TGA analysis. In addition, the SO₂-desorption temperature of Cu₁Mn_{0.5}Ti_{0.5}O_x is much lower than that of Mn/TiO₂, and this will be very beneficial for the catalyst regeneration process.

In addition, the SO₂ + NH₃ + O₂-TPD analyses of samples were used to clarify sulfate species. Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ were exposed to 2500 ppm SO₂ and 2500 ppm NH₃ in the presence of 5% O₂ at 80 °C for 1 h, and all SO₂ + NH₃ + O₂-TPD results were shown

in Fig. 10(d). For Mn/TiO₂, there are two desorption peaks at about 195 and 361 °C, which are attributed to the decomposition of (NH₄)₂SO₄/NH₄HSO₄ and sulfate species. For Cu-Mn/TiO₂ and Cu₁Mn_{0.5}Ti_{0.5}O_x, only one wide desorption peak (about 260 and 242 °C) attributable to (NH₄)₂SO₄/NH₄HSO₄ and sulfate species appeared, respectively. Obviously, it can be seen that the desorption peak of Mn/TiO₂ is much stronger than Cu₁Mn_{0.5}Ti_{0.5}O_x. Combining the in situ DRFT, SO₂-TPD, TGA, and SO₂ + NH₃ + O₂-TPD analyses, we can conclude that Cu₁Mn_{0.5}Ti_{0.5}O_x has less (NH₄)₂SO₄/NH₄HSO₄ and sulfate species formation, indicating Cu₁Mn_{0.5}Ti_{0.5}O_x has superior SO₂ resistance.

Fig. 11 shows the NO_x conversion of the deactivated catalysts after thermal regeneration. The NO_x conversion of fresh Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ at 200 °C was 90%, 86.1%, and 80.7%, respectively. After 12 h of operation in the presence of 100 ppm SO₂, the NO_x conversions of Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ catalysts decreased to 71.1%, 52.3%, and 41.5%, respectively. After thermal regeneration at 400 °C in air, the NO_x conversion of Cu₁Mn_{0.5}Ti_{0.5}O_x, Cu-Mn/TiO₂, and Mn/TiO₂ was recovered to 85.8%, 62.6%, and 51.8%, respectively. These results clearly indicated that Cu₁Mn_{0.5}Ti_{0.5}O_x has much better regenerability and greater potential for practical applications than other catalysts.

3.2.3. Mechanism study

In all, the high activity of CuMnTiO_x catalyst for NH₃-SCR at low-temperature could be attributed to high dispersion of manganese oxides and copper oxide with a high SSA, as well as the abundance of acid sites, etc. The NO oxidation reaction could be enhanced by the electron transferring, as shown in the following Eqs. (3)–(5) [64–67]. In addition, adding Cu can increase the amount of acid sites and enhance the SO₂ resistance of the Mn-based NH₃-SCR catalysts. Based on the all the above results, a redox cycle for the NH₃-SCR reaction at low temperatures over this novel CuMnTiO_x catalyst can be proposed, as described in Fig. 12. The NH₃-SCR reaction mechanism over CuMnTiO_x could be explained by the E-R mechanism and L-H mechanism [68–70]. The coordinated NH₃ on the Lewis acid sites and the NH₄⁺ on the Brønsted acid sites can react with gaseous NO (E-R mechanism) and the adsorbed

NO (L-H mechanism) over the CuMnTiO_x catalyst. In E-R mechanism, the absorbed NH_3 species is converted to NH_2 species, and then reacts with gaseous NO to form highly active $\text{NH}_4\text{NO}_2/\text{NH}_2\text{NO}$ intermediate. After that, $\text{NH}_4\text{NO}_2/\text{NH}_2\text{NO}$ is unstable and decompose rapidly into N_2 and H_2O . While in the L-H mechanism, the NH_3 -SCR reaction occurs between adsorbed NH_3 species and adsorbed NO species.

4. Conclusions

We designed a series of novel low-temperature NH_3 -SCR catalysts $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{O}_x$ containing CuO and MnO_x as active components and TiO_2 as support from $\text{Cu}_w\text{Mn}_y\text{Ti}_{1-y}\text{CO}_3$ LDHs precursors. The optimal sample $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ displayed a high De- NO_x efficiency of 90% at 200 °C, higher than that for 20 wt% Mn/ TiO_2 (80.7%), 10 wt% Cu-10 wt% Mn/ TiO_2 (86.1%), 20 wt% Cu-20 wt% Mn/ TiO_2 (80.2%), and 40 wt% Cu-20 wt% Mn/ TiO_2 (60.3%). XRD, HR-TEM, and XPS analyses showed that the $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ sample contains highly dispersed MnO_2 and CuO phases, which may be partly responsible for its good performance. NH_3 -TPD, Py-FTIR, in situ DRIFT, and H_2 -TPR results suggested that $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ possesses more acid sites and surface active species than other samples studied in this work. In addition, $\text{Cu}_1\text{Mn}_{0.5}\text{Ti}_{0.5}\text{O}_x$ has excellent resistance to SO_2 and H_2O , and its aged sample has better regenerability, suggesting a greater potential for practical applications.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51622801, 51572029), and the Beijing Excellent Young Scholar (2015000026833ZK11).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:<https://doi.org/10.1016/j.apcatb.2018.07.035>.

References

- [1] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, NH_3 -NO/NO₂ chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction, *Catal. Today* 114 (2006) 3–12.
- [2] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH_3 over $\text{MnO}_x/\text{Al}_2\text{O}_3$, *J. Catal.* 171 (1997) 208–218.
- [3] X. Tang, J. Hao, H. Yi, J. Li, Low-temperature SCR of NO with NH_3 over AC/C supported manganese-based monolithic catalysts, *Catal. Today* 126 (2007) 406–411.
- [4] Y.J. Kim, H.J. Kwon, I.S. Nam, J.W. Choung, J.K. Kil, H.J. Kim, M. Cha, G.K. Yeo, High de NO_x performance of Mn/ TiO_2 catalyst by NH_3 , *Catal. Today* 151 (2010) 244–250.
- [5] R.Q. Long, R.T. Yang, R. Chang, Low temperature selective catalytic reduction (SCR) of NO with NH_3 over Fe-Mn based catalysts, *Chem. Commun.* 5 (2002) 452–453.
- [6] A. Sultana, M. Sasaki, H. Hamada, Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia, *Catal. Today* 185 (2012) 284–289.
- [7] S. Roy, M.S. Hegde, G. Madras, Catalysis for NO_x abatement, *Appl. Energy* 86 (2009) 2283–2297.
- [8] P.G. Smirniotis, D.A. Pena, B.S. Upadhye, Low-temperature selective catalytic reduction (SCR) of NO with NH_3 by using Mn, Cr, and Cu oxides supported on hombikat TiO_2 , *Angew. Chem. Int. Ed.* 40 (2001) 2479–2482.
- [9] K. Shen, Y. Zhang, X. Wang, H. Xu, K. Sun, C. Zhou, Influence of chromium modification on the properties of $\text{MnO}_x\text{-FeO}_x$ catalysts for the low-temperature selective catalytic reduction of NO by NH_3 , *J. Energy Chem.* 22 (2013) 617–623.
- [10] Z. Wu, B. Jiang, Y. Liu, Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia, *Appl. Catal. B: Environ.* 79 (2008) 347–355.
- [11] J. Li, H. Chang, L. Ma, J. Hao, R.T. Yang, Low-temperature selective catalytic reduction of NO_x with NH_3 over metal oxide and zeolite catalysts-a review, *Catal. Today* 175 (2011) 147–156.
- [12] S. Roy, B. Viswanath, M.S. Hegde, G. Madras, Low-temperature selective catalytic reduction of NO with NH_3 over $\text{TiO}_x\text{M}_w\text{O}_{2.8}$ ($\text{M}=\text{Cr, Mn, Fe, Co, Cu}$), *J. Phys. Chem. C* 112 (2008) 6002–6012.
- [13] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Ternary NiCo_2P_x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction, *Adv. Mater.* 29 (2017) 1605502.
- [14] G. Zhao, X. Huang, X. Wang, X. Wang, Progress in catalyst exploration for heterogeneous CO_2 reduction and utilization: a critical review, *J. Mater. Chem. A* 5 (2017) 21625–21649.
- [15] B. Bridier, N. López, J. Pérez-Ramírez, Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues, *J. Catal.* 269 (2010) 80–92.
- [16] J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H. Peden, Effects of hydrothermal aging on NH_3 -SCR reaction over Cu/zeolites, *J. Catal.* 287 (2012) 203–209.
- [17] J. Xue, X. Wang, G. Qi, J. Wang, M. Shen, W. Li, Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NO_x with ammonia: relationships between active Cu sites and de- NO_x performance at low temperature, *J. Catal.* 297 (2013) 56–64.
- [18] P.A. Kumar, M.P. Reddy, L.K. Ju, B. Hyun-Sook, H.H. Phil, Low temperature propylene SCR of NO by copper alumina catalyst, *J. Mol. Catal. A Chem.* 291 (2008) 66–74.
- [19] V. Houel, D. James, P. Millington, S. Pollington, S. Poulsom, R. Rajaram, R. Torbati, A comparison of the activity and deactivation of $\text{Ag}/\text{Al}_2\text{O}_3$ and Cu/ZSM-5 for HC-SCR under simulated diesel exhaust emission conditions, *J. Catal.* 230 (2005) 150–157.
- [20] B. Liu, Y. Liu, C. Li, W. Hu, P. Jing, Q. Wang, J. Zhang, Three-dimensionally ordered macroporous Au/ $\text{CeO}_2\text{-Co}_3\text{O}_4$ catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde, *Appl. Catal. B: Environ.* 127 (2012) 47–58.
- [21] Q. Wang, S.V.Y. Tang, E. Lester, D. O'Hare, Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor, *Nanoscale* 5 (2013) 114–117.
- [22] J. Wang, X. Mei, L. Huang, Q. Zheng, Y. Qiao, K. Zang, S. Mao, R. Yang, Z. Zhang, Y. Gao, Z. Guo, Z. Huang, Q. Wang, Synthesis of layered double hydroxides/graphene oxide nanocomposite as novel high-temperature CO_2 adsorbent, *J. Energy Chem.* 24 (2015) 127–137.
- [23] Q. Qin, J. Wang, T. Zhou, Q. Zheng, L. Huang, Y. Zhang, P. Lu, A. Umar, B. Louis, Q. Wang, Impact of organic interlayer anions on the CO_2 adsorption performance of Mg-Al layered double hydroxides derived mixed oxides, *J. Energy Chem.* 26 (2017) 346–353.
- [24] J. Wang, Y. Yang, L. Jia, N. Yang, Q. Guan, L. Huang, A. Umar, Q. Wang, P. Ning, The influence of the charge compensating anions of layered double hydroxides (LDHs) in LDH-NS/Graphene oxide nanohybrid for CO_2 capture, *J. Nanosci. Nanotechnol.* 18 (2018) 2956–2964.
- [25] Q. Yan, S. Chen, C. Zhang, D. O'Hare, Q. Wang, Synthesis of $\text{Cu}_{0.5}\text{Mg}_{1.5}\text{Mn}_{0.5}\text{Al}_{0.5}\text{O}_x$ mixed oxide from layered double hydroxide precursor as highly efficient catalyst for low-temperature selective catalytic reduction of NO_x with NH_3 , *J. Colloid Interface Sci.* 526 (2018) 63–74.
- [26] Y. Nie, Q. Yan, S. Chen, D. O'Hare, Q. Wang, CuTi LDH derived NH_3 -SCR catalysts with highly dispersed CuO active phase and improved SO_2 resistance, *Catal. Commun.* 97 (2017) 47–50.
- [27] R. Yang, Y. Cui, Q. Yan, C. Zhang, L. Qiu, D. O'Hare, Q. Wang, Design of highly efficient NO_x storage-reduction catalysts from layered double hydroxides for NO_x emission control from naphtha cracker flue gases, *Chem. Eng. J.* 326 (2017) 656–666.
- [28] M.H. Yao, R.J. Baird, F.W. Kunz, T.E. Hoost, An XRD and TEM investigation of the structure of alumina-supported Ceria-Zirconia, *J. Catal.* 166 (1997) 67–74.
- [29] Q. Wang, H.H. Tay, D.J.W. Ng, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo, A. Borgna, The effect of trivalent cations on the performance of Mg-M- CO_3 layered double hydroxides for high-temperature CO_2 capture, *ChemSusChem* 3 (2010) 965–973.
- [30] C.J. Wang, D. O'Hare, Topotactic synthesis of layered double hydroxide nanorods, *J. Mater. Chem.* 22 (2012) 23064–23070.
- [31] P. Zhang, G. Qian, Z.P. Xu, H. Shi, X. Ruan, J. Yang, R.L. Frost, Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism, *J. Colloid Interface Sci.* 367 (2012) 264–271.
- [32] Y. Gao, Z. Zhang, J. Wu, X. Yi, A. Zheng, A. Umar, D. O'Hare, Q. Wang, Comprehensive investigation of CO_2 adsorption on Mg-Al- CO_3 LDH-derived mixed metal oxides, *J. Mater. Chem. A* 1 (2013) 12782–12790.
- [33] X. Tang, J. Li, L. Sun, J. Hao, Origination of N_2O from NO reduction by NH_3 over $\beta\text{-Mn}_2\text{O}_3$ and $\alpha\text{-Mn}_2\text{O}_3$, *Appl. Catal. B: Environ.* 99 (2010) 156–162.
- [34] Y. Wu, Y. Lu, C. Song, Z. Ma, S. Xing, Y. Gao, A novel redox-precipitation method for the preparation of $\alpha\text{-Mn}_2\text{O}_3$ with a high surface Mn^{4+} concentration and its activity toward complete catalytic oxidation of o-xylene, *Catal. Today* 201 (2013) 32–39.
- [35] S.S.R. Putluru, L. Schill, A.D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Mn/TiO_2 and $\text{Mn-Fe}/\text{TiO}_2$ catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH_3 at low temperatures, *Appl. Catal. B: Environ.* 165 (2015) 628–635.
- [36] Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Ordered mesoporous $\text{CeO}_2\text{-TiO}_2$ composites: highly efficient photocatalysts for the reduction of CO_2 with H_2O under simulated solar irradiation, *Appl. Catal. B: Environ.* 130–131 (2013) 277–284.
- [37] X. Gao, Y. Jiang, Y. Zhong, Z. Luo, K. Cen, The activity and characterization of $\text{CeO}_2\text{-TiO}_2$ catalysts prepared by the sol-gel method for selective catalytic reduction

of NO with NH₃, *J. Hazard. Mater.* 174 (2010) 734–739.

[38] C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao, J. Zhang, Low-temperature selective catalytic reduction of NO with NH₃ over nano-flaky MnO_x on carbon nanotubes in situ prepared via a chemical bath deposition route, *Nanoscale* 5 (2013) 9199–9207.

[39] L. Chen, J. Li, M. Ge, The poisoning effect of alkali metals doping over nano V₂O₅–WO₃/TiO₂ catalysts on selective catalytic reduction of NO_x by NH₃, *Chem. Eng. J.* 170 (2011) 531–537.

[40] Q. Li, H. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V₂O₅/TiO₂ for NO_x removal, *J. Hazard. Mater.* 192 (2011) 915–921.

[41] F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie, T. Hu, Selective catalytic reduction of NO with NH₃ over iron titanate catalyst: catalytic performance and characterization, *Appl. Catal. B: Environ.* 96 (2010) 408–420.

[42] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on SiO₂–Al₂O₃, TiO₂, ZrO₂ and CeO₂: general considerations for the identification of acid sites on surfaces of finely divided metal oxides, *Colloid. Surf. A* 190 (2001) 261–274.

[43] N. Li, A. Wang, M. Zheng, X. Wang, R. Cheng, T. Zhang, Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane, *J. Catal.* 225 (2004) 307–315.

[44] P. Kalita, N.M. Gupta, R. Kumar, Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies, *J. Catal.* 245 (2007) 338–347.

[45] J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, Studies on surface structure of M_xO_y/MoO₃/CeO₂ system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH₃, *Appl. Catal. B: Environ.* 95 (2010) 144–152.

[46] B. Jiang, B. Deng, Z. Zhang, Z. Wu, X. Tang, S. Yao, H. Lu, Effect of Zr addition on the low-temperature SCR activity and SO₂ tolerance of Fe-Mn/Ti catalysts, *J. Phys. Chem. C* 118 (2014) 14866–14875.

[47] C. Sun, J. Zhu, Y. Lv, Dispersion, reduction and catalytic performance of CuO supported on ZrO₂-doped TiO₂ for NO removal by CO, *Appl. Catal. B: Environ.* 103 (2011) 206–220.

[48] S. Guerrero, I. Guzmán, G. Aguilera, Sodium-promoted NO adsorption under lean conditions over Cu/TiO₂ catalysts, *Catal. Commun.* 11 (2009) 38–42.

[49] Y. Xiong, C. Tang, X. Yao, L. Zhang, L. Li, X. Wang, Y. Deng, F. Gao, L. Dong, Effect of metal ions doping (M = Ti⁴⁺, Sn⁴⁺) on the catalytic performance of MnO_x/CeO₂ catalyst for low temperature selective catalytic reduction of NO with NH₃, *Appl. Catal. A: Gen.* 495 (2015) 206–216.

[50] Z. Huang, Z. Zhu, Z. Liu, Combined effect of H₂O and SO₂ on V₂O₅/AC catalysts for NO reduction with ammonia at lower temperatures, *Appl. Catal. B: Environ.* 39 (2002) 361–368.

[51] X. Lu, C. Song, S. Jia, Z. Tong, X. Tang, Y. Teng, Low-temperature selective catalytic reduction of NO_x with NH₃ over cerium and manganese oxides supported on TiO₂-graphene, *Chem. Eng. J.* 260 (2015) 776–784.

[52] T. Yamaguchi, T. Jin, K. Tanabe, Structure of acid sites on sulfur-promoted iron oxide, *J. Phys. Chem. C* 90 (1986) 3148–4152.

[53] M. Waqif, P. Bazin, O. Saur, J.C. Lavalley, G. Blanchard, O. Touret, Study of ceria sulfation, *Appl. Catal. B: Environ.* 11 (1997) 193–205.

[54] L. Zhang, J. Pierce, V.L. Leung, D. Wang, W.S. Epling, Characterization of Ceria's interaction with NO_x and NH₃, *J. Phys. Chem. C* 117 (2013) 8282–8289.

[55] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Ammonia oxidation over Au/MO_x/γ-Al₂O₃-activity, selectivity and FTIR measurements, *Catal. Today* 90 (2004) 3–14.

[56] G. Qi, R.T. Yang, R. Chang, MnO_x–CeO₂ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH₃ at low temperatures, *Appl. Catal. B: Environ.* 51 (2004) 93–106.

[57] L. Zhang, D. Wang, Y. Liu, K. Kamasamudram, J. Li, W.S. Epling, SO₂ poisoning impact on the NH₃-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst, *Appl. Catal. B: Environ.* 156–157 (2014) 371–377.

[58] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Relationship between SO₂ poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO₂ catalyst, *Catal. Today* 153 (2010) 84–89.

[59] J. Eng, C.H. Bartholomew, Kinetic and mechanistic study of NO_x reduction by NH₃ over H-form zeolites, *J. Catal.* 171 (1997) 27–44.

[60] K. Wijayanti, S. Andonova, A. Kumar, J. Li, K. Kamasamudram, N.W. Currier, A. Yezers, L. Olsson, Impact of sulfur oxide on NH₃-SCR over Cu-SAPO-34, *Appl. Catal. B: Environ.* 166–167 (2015) 568–579.

[61] D.W. Kwon, K.B. Nam, S.C. Hong, The role of ceria on the activity and SO₂ resistance of catalysts for the selective catalytic reduction of NO_x by NH₃, *Appl. Catal. B: Environ.* 166–167 (2015) 37–44.

[62] M. Waqif, O. Saur, J.C. Lavalley, S. Perathoner, G. Centi, Nature and mechanism of formation of sulfate species on copper/alumina sorbent-catalysts for SO₂ removal, *J. Phys. Chem. 95* (1991) 4051–4058.

[63] K.S. Yoo, S.D. Kim, S.B. Park, Sulfation of Al₂O₃ in flue gas desulfurization by CuO/γ-Al₂O₃ sorbent, *Ind. Eng. Chem. Res.* 33 (1994) 1786–1791.

[64] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with NH₃, *Catal. Today* 111 (2006) 236–241.

[65] S. Veprek, D.L. Cocke, S. Kehl, H.R. Oswald, Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques, *J. Catal.* 100 (1986) 250–263.

[66] Z. Chen, Q. Yang, H. Li, X. Li, L. Wang, S.C. Tsang, Cr-MnO_x mixed-oxide catalysts for selective catalytic reduction of NO_x with NH₃ at low temperature, *J. Catal.* 276 (2010) 56–65.

[67] F.C. Buciuman, F. Patcas, T. Hahn, A spillover approach to oxidation catalysis over copper and manganese mixed oxides, *Chem. Eng. Process.* 38 (1999) 563–569.

[68] Y. Chen, J. Wang, Z. Yan, L. Liu, Z. Zhang, X. Wang, Promoting effect of Nd on the reduction of NO with NH₃ over CeO₂ supported by activated semi-coke: an in situ DRIFTS study, *Catal. Sci. Technol.* 5 (2015) 2251–2259.

[69] L. Chen, J. Li, M. Ge, DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NO_x with NH₃, *Environ. Sci. Technol.* 44 (2010) 9590–9596.

[70] N. Yang, R. Guo, W. Pan, Q. Chen, Q. Wang, C. Lu, S. Wang, The deactivation mechanism of Cl on Ce/TiO₂ catalyst for selective catalytic reduction of NO with NH₃, *Appl. Surf. Sci.* 378 (2016) 513–518.