Math 342 Tutorial May 28, 2025

Question 1. Prove that if a and b are different integers, then there exist infinitely many positive integers a such that a+n and b+n are coprime. [Hint: Consider linear combinations of a0 and a1 and a2 if a3 and a4.]

Question 2. Prove that every integer > 6 can be represented as a sum of two integers > 1 which are coprime. [Hint. Consider the three cases $n = 4k \pm 1$, n = 4k, and n = 4k + 2 separately, and write the summands in terms of k].

Question 3. An integer n is *powerful* if, whenever a prime p divides n, p^2 divides n. Show that every powerful integer n can be written as the product of a perfect square and a perfect cube.

Question 4. Show that $(a, b) \mid [a, b]$. When does (a, b) = [a, b]?

Question 5. Show that if a, b, c > 0, then

$$(a, b, c)[ab, ac, bc] = abc = (ab, ac, bc)[a, b, c].$$

Question 6. An arithmetic function $f: \mathbf{N} \to \mathbf{C}$ is multiplicative if f(mn) = f(m)f(n) whenever (m, n) = 1. The summatory function F of an arithmetic function $f: \mathbf{N} \to \mathbf{C}$ is defined as $F(x) = \sum_{d|x} f(d)$. The number of divisors functions is defined as $\tau(x) = \#\{d: d \mid x\}$. (a) Show that every summatory function of a multiplicative function is multiplicative. (b) Show the number of divisors function is multiplicative. (c) If $n = p_1^{e_1} \cdots p_k^{e_k}$, show that $\tau(n) = (e_1 + 1) \cdots (e_k + 1)$. (d) Prove that for every positive integer k, the set of all positive integers n whose number of positive integer divisors is divisible by k contains an infinite arithmetic progression. [Hint: Consider a progression defined by a linear combination of consecutive powers of 2, and use part (c).]

Question 7. Prove that there exists infinitely many triplets of positive integers x, y, z for which the numbers x(x+1), y(y+1), z(z+1) form an increasing arithmetic progression. [Hint: write y and z as increasing linear functions of x.]

Question 8. Prove that for every even n > 6 there exist primes p and q such that (n - p, n - q) = 1.

Question 9. (a) Prove that for every three consecutive odd integers, one must be divisible by 3. [Hint. Write n = 2k + 1 and consider the possible cases for $k \pmod{3}$.] (b) Find all primes which can be represented as both a sum and difference of primes.

Question 10. Find all integer solutions x, y of the equation $2x^3 + xy - 7 = 0$ and prove that this equation has infinitely many solutions in positive rationals. [Hint: Use the possible values for x in the first part to infer a possible form for x in the second part.]

Question 11. An astronomer knows that a satellite orbits the Earth in a period that is an exact multiple of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11 orbits in an interval that starts when a 24-hour clock reads 0 hours and ends when the clock reads 17 hours, how long is the orbital period of the satellite?

Question 12. (a) Let p be an odd prime. Show the congruence $x^2 \equiv 1 \pmod{p^k}$ has exactly two incongruent solutions, namely, $x \equiv \pm 1 \pmod{p^k}$. (b) Show that the congruence $x^2 \equiv 1 \pmod{2^k}$ has exactly four incongruent solutions, namely, $x \equiv \pm 1 \pm (1 - 2^{k-1}) \pmod{2^k}$, when k > 2. Show there is one when k = 1 and two when k = 2.