QF Group Theory CC2022 By Zaiku Group

Lecture 13

Delivered by Bambordé Baldé

Friday, 26/8/2022

Learning Journey Timeline

quantumformalism.com

Measure Theory & Functional Analysis

$$\int_S f \,\mathrm{d}\mu.$$

Starts on August 29, 2022.

Upcoming Course!

Jobs ▼

Quantum Formalism

Worldwide

Orbits under Permutations

Definition 1.0

Let $\sigma \in S_n$ be an arbitrary permutation and $i \in \{1, ..., n\}$. The orbit of i under σ is defined as $Orb(i) = \{\sigma^r(i) | r \in \mathbb{Z}\}$.

• Lecture 6 refresh: Let G be a group under a binary operation * and with identity e. Given a group element $g \in G$ and $r \in \mathbb{Z}$, the exponentiation operation is defined as:

$$g^r = \left\{egin{array}{ll} e & ext{if} & r=0 \ & g*g*\ldots*g & ext{if} & r>0 \ & ext{r times} \ & g^{-1}*g^{-1}*\ldots*g^{-1} & ext{if} & r<0 \ & ext{r times} \end{array}
ight.$$

- Recall that the exponentiation has the following properties:
 - **1** $g^{r_1}g^{r_2} = g^{(r_1+r_2)}$ for all $g \in G$ and $r_1, r_2 \in \mathbb{Z}$.
 - ② $(g^{r_1})^{r_2} = g^{r_1 r_2}$ for all $g \in G$ and $r_1, r_2 \in \mathbb{Z}$ (remember Diffie-Hellman?!!).

Facts about orbits under permutations (A)

Proposition 1.0

Let $\sigma \in S_n$ be an arbitrary permutation and $i \in \{1, ..., n\}$. Then there exists an integer $r \in \mathbb{Z}^+$ such that $\sigma^r(i) = i$.

Proof: Homework challenge? Try for at least $\sigma \in S_3$ and $i \in \{1, 2, 3\}$!

Proposition 1.1

Let $\sigma \in S_n$ be an arbitrary permutation and $i \in \{1, ..., n\}$. Now let $r \in \mathbb{Z}^+$ be the smallest integer such that $\sigma^r(i) = i$. Then $Orb(i) = \{i, \sigma(i), ..., \sigma^{r-1}(i)\}$ and its cardinality is r-1 i.e. the elements of the orbit are all distinct.

Proof: Homework challenge? Try for at least $\sigma \in S_3$ and $i \in \{1, 2, 3\}$!

• The proposition above helps us computing orbits. Indeed, if we want to find Orb(i) for a given σ , all we need to do is start listing $i, \sigma(i), \sigma^2(i), \ldots$ then we stop immediately when we get back to i. This list is guaranteed to be the complete orbit of i under σ .

Facts about orbits under permutations (B)

Definition 1.1

Let $\sigma \in S_n$ be an arbitrary permutation and $i, j \in X = \{1, ..., n\}$. $\}$. We can define a relation \sim_{σ} on the set X as $i \sim_{\sigma} j$ if there exists an $r \in \mathbb{Z}$ such that $\sigma^r(i) = j$ i.e. if $j \in Orb(i)$.

- It's easy to see that $i \sim_{\sigma} i$ because $i \in Orb(i)$ right?
- Is \sim_{σ} an equivalence relation on X?

Theorem 1.0

Let $\sigma \in S_n$ be an arbitrary permutation. Then σ can be written as product of disjoint cycles.

- The proof of the theorem above involves the use of orbits under σ . To express σ as a product of disjoint cycles, we can proceed as follows:
 - **1** Find all the orbits under σ .
 - 2 For each orbit, we get a cycle.
 - 3 Take the product of the cycles associated with each orbit, this should be the same as σ !

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup