Final Project: 图像超分辨率

数字图像处理课程助教、中山大学

次 迎进入数字图像处理大作业! 数字图像处理课程即将结束,我们希望你能享受这个难忘的经历并且从中学到有用的知识。 最后,我们准备深入了解并开发一个有趣的应用——图像超分辨率。这次大作业与期中考一样,占总评相当大的比例,所以请认真对待。

1 引言

通过之前的作业,你已经意识到,当你直接放大一张低分辨率图像的时候,你将得到一张模糊的 图像。以往的你,为了看清楚低分辨率图像的细节,例如下图蝴蝶的翅膀,你往往会点击放大按钮把 图像放大,然而,放大之后模糊的细节不尽人意。幸好,你参加了数字图像处理课程,现在的你能够 开发出图像超分辨率算法,可以从低分辨率图像生成出一张高分辨率图像。

针对这次大作业,我们将在附件中提供一个简单而有效的图像超分辨率方法,作为基本任务。另 外我们也提供难度更高的方法,作为附加任务。这次大作业的成绩将很大程度上取决于最终效果。

(a) 高分辨率图像

(b)双三次插值放大

(c) 超分辨率方法放大

图 1. 蝴蝶翅膀放大 3 倍,其中(a)是高分辨率图像,(b)和(c)是低分辨率图像

2 要求

请解压附件中的 Train 和 Set14 文件,其中 Train 的图像用于超分辨率算法的训练与参数调整,而 Set14 的图像用于测试超分辨率算法的效果。

2.1 基本任务(100分)

我们常用**峰值信噪比** *PSNR*(*Peak Signal-to-Noise Ratio*)和**结构相似性指标** *SSIM*(*Structural Similarity Index*)这两个指标来反映两张尺寸相同的图像的相似程度。*PSNR* 值和 *SSIM* 值越大,意味着这两张图片越相似。如图 2 所示,图 2(c)的 *PSNR* 值和 *SSIM* 值都比图 2(b)的大,而我们通过主观判断也可以看出,图 2(c)比图 2(b)跟原图更相似。

(a)原图 (PSNR, SSIM)

(b) (27.08, 0.7508)

(c) (27.32, 0.7606)

图 2. (a)是高分辨率原图, (b)和(c)是低分辨率图像通过不同的超分辨率算法得到的近似图

在图像超分辨率任务中,我们将用这两个指标作为评价指标。如果原图和经过超分辨率后得到的高分辨率图像的 PSNR 值和 SSIM 值越大,则证明这种超分辨率方法越好。在接下来的任务 1 和任务 2 中,我们主要完成这两个评价指标的实现。

1. (10 分)实现超分辨率评价指标——峰值信噪比 *PSNR(Peak Signal-to-Noise Ratio)*,函数格式是 "*PSNR*(input_img1, input_img2) →output", 该函数返回图像 input_img1 和图像 input_img2 的 *PSNR* 值。给定尺寸 *M* × *N* 的原图 *X* 及其噪声近似图像 *Y*,则它们的均方差 *MSE(Mean Squared Error)*可以表示成:

$$MSE(X,Y) = \frac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} [X(i,j) - Y(i,j)]^{2}$$

它们的 PSNR 值定义为:

$$PSNR(X,Y) = 20 \cdot \log_{10}(\frac{MAX_I}{\sqrt{MSE(X,Y)}})$$

其中 MAX_1 是图像的灰度级别 -1 (对于 8-bit 灰度图, 若灰度值区间为[0,255]则取值 255).

提示:对于 RGB 彩色图像,我们可以先将图像由 RGB 色彩空间转换到 YCbCr 色彩空间,然后只用 Y 通道来计算 *PSNR*。Matlab 示例代码为:

(10分)实现超分辨率的另一个评价指标——结构相似性指标 SSIM(Structural Similarity Index),
函数格式是 "SSIM (input_img1, input_img2) →output", 该函数返回图像 input_img1 和图像
input_img2 的 SSIM 值。给定尺寸 M×N的原图 X 及其噪声近似图像 Y, 他们的 SSIM 可以定义为:

$$SSIM(X,Y) = \frac{(2\mu_X \mu_Y + c_1)(2\sigma_{XY} + c_2)}{(\mu_X^2 + \mu_Y^2 + c_1)(\sigma_X^2 + \sigma_Y^2 + c_2)}$$

- μ_X 是图像 X 的平均值
- μ_Y 是图像 Y 的平均值
- σ_X^2 是图像 X 的方差
- σ_Y^2 是图像 Y 的方差
- $\sigma_{XY} \in X \cap Y$ 的协方差
- $c_1 = (k_1 L)^2$, $c_2 = (k_2 L)^2$ 是两个用来维持稳定的常数
- L 是图像的灰度级别 1 (对于 8-bit 灰度图, 若灰度值区间为[0,255]则取值 255)
- k_1 和 k_2 默认分别取 0.01 和 0.03.

提示: *SSIM* 的详细计算方式请参照 https://ece.uwaterloo.ca/~z70wang/research/ssim/, 对于 RGB 彩色图像处理方法同上。请在报告中写明 *SSIM* 的实现思路。

3. (20 分)实现基于双三次插值(bicubic interpolation)的图像缩放算法。函数格式是 "bicubic (input_img, height, width) →output_img", 该函数返回双三次插值后的结果图像。请在报告中描述双三次插值算法(bicubic interpolation),并简要写出实现思路。

提示:通过第一次作业,大家已经了解到如何利用双线性插值(bilinear interpolation)进行图像缩放。现在开始实现一种更加复杂插值方式——双三次插值,该算法能够产生比双线性插值更清晰的图像。双三次插值利用了邻近的 16 个点来估计给定位置的灰度值。令(x,y)是我们想要赋以灰度值的原图位置坐标,并令 p(x,y)表示其灰度值,那么利用双三次插值计算 p(x,y)的公式如下:

$$p(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} p(x_i, y_j) W(x - x_i) W(y - y_j),$$

其中 $p(x_i, y_i)$ 是点(x,y) 的邻近点灰度值,W(x)是邻近点对应的权重,它按照下面公式计算:

$$W(x) = \begin{cases} 1.5|x|^3 - 2.5|x|^2 + 1 & 0 \le |x| \le 1 \\ -0.5|x|^3 + 2.5|x|^2 - 4|x| + 2 & 1 < |x| \le 2 \\ 0 & otherwise \end{cases}$$

关于双三次插值的详细解释请参考附件中的"Cubic convolution interpolation for digital image processing"以及"ImageZooming".

- 4. (10分) 用基于双三次插值的图像超分辨率算法进行实验。具体实验步骤如下:
 - a) 对 Set14 的每一张图像 I_{HR} ,利用双三次插值算法,把原图缩小至原来尺寸的 1/3 得到图像 I_{LR}
 - b) 再次利用双三次插值算法将 I_{LR} 上采样至 I_{LR} 尺寸的三倍得到图像 I_{RL} (与 I_{HR} 尺寸相同)
 - c) 计算 $PSNR(I_{HR}, I_{BI})$ 和 $SSIM(I_{HR}, I_{BI})$,并填写在表格 1 中。请对照所得到的结果是否与论文 3(ECCV 2014)的结果相近。
- 5. (50 分)仔细阅读并实现论文 1 (ICCV 2013)的超分辨率算法。仿照第 4 问,对 Set14 每一张低分辨率图像 I_{LR} (原图 I_{HR} 经过双三次插值缩至原尺寸 1/3 所得的图像),通过超分辨率算法获得图像 I_{SR} (I_{SR} 的尺寸和原图 I_{HR} 尺寸一样),并计算出 $PSNR(I_{HR}, I_{SR})$ 和 $SSIM(I_{HR}, I_{SR})$,填写在表格 1 中。同时也请将每张图像进行超分辨运算的时间填写在表格 1 中。请在报告中描述算法内容,并简要写出实现思路。

提示:论文 1 的超分辨率方法涉及聚类,聚类的介绍可参考附件 Clustering.pptx。聚类可以使用函数库,例如 matlab 的聚类函数库使用方法可以参考 https://cn.mathworks.com/help/stats/kmeans.html

2.2 高级任务(可选)(30分)

- 1. 选择论文 2, 3 或 4 的其中一篇,也可以自行寻找适当方法(需注明出处),并将其实现。仿照 2.1 的第 5 问,计算出相应的 *PSNR* 和 *SSIM*,同时记录相应的运行时间。把这些结果也填写在表格 1 中。请在报告中描述算法内容,并简要写出实现思路。
- 2. 分析当前实现的算法优缺点,在效果与效率方面跟 2.1.5 实现的超分辨率方法进行对比,并解释原因。

表格 1: 不同算法在 Set14 测试集上的 PSNR, SSIM 以及运行时间

Set14 images	双三次插值算法		基本任务超分辨率算法			高级任务超分辨率算法		
	PSNR	SSIM	PSNR	SSIM	Time	PSNR	SSIM	Time
baboon								
barbara								
bridge								
coastguard								
comic								
face								
flowers								
foreman								
lenna								
man								
monarch								
pepper								
ppt3								
zebra								
average								

2.3 编程语言

你可以选择任意的编程语言。如果你选择了深度学习相关的方法,例如论文 3 和 4,那么你不允许使用 caffe 与 matconvnet。

2.4 提交

1. 完整的代码。

- 2. 实验报告(PDF 格式),包括 1)简要介绍你所实现的方法,2)各个算法的实现过程,3)实现结果与分析 4)分析你所实现的算法的缺点,并提出你可能的改进方案。
- 3. 描述算法实现思路的时候,不要简单地复制粘贴代码。
- 4. 作业文件夹命名格式为:编程语言_学号_名字_大作业,以 zip 压缩包提交。