SISTEMA ENDOCRINO:

HIPOTIROIDISMO

DESCRIPCIÓN DEL SISTEMA Y ENFERMEDAD

El eje hipotálamo-hipófiso-tiroideo se modela como un sistema dinámico retroalimentado, en el que cada etapa fisiológica se representa mediante componentes eléctricos análogos. El hipotálamo libera TRH, modelada por R₁ y C₁; la hipófisis responde con TSH, representada por un inductor L₁; y la tiroides produce T3/T4, modelada mediante R₂, R₅ y C₂. En condiciones normales, este sistema mantiene el equilibrio hormonal. En el hipotiroidismo subclínico, la hipófisis libera niveles elevados de TSH, pero la tiroides no responde adecuadamente, lo que mantiene los niveles de T3/T4 dentro de rangos bajos o normales, pero insuficientes. Esta condición se representa en el modelo con un aumento en R₅, que refleja mayor resistencia a la estimulación, y en C₂, que representa una mayor inercia o lentitud en la acumulación y liberación hormonal. Así, el modelo permite observar la disfunción sin ruptura total del eje.

CIRCUITO

La entrada es una señal senoidal definida como:

$$V_{e}\left(t
ight) =sin\left(rac{\pi }{2} imes t
ight)$$

Esta señal representa un estímulo hormonal cíclico o pulsátil, que simula una señal fisiológica repetitiva con una frecuencia de 250 mHz.

Componente	Control	Caso	Etapa fisiológica	Representación
R_1	33ΚΩ	33ΚΩ	Hipotálamo	Retardo en liberación de TRH
R_2	33ΚΩ	33ΚΩ	Transporte hormonal	Retardo entre hipófisis y tiroides
R_3	10ΚΩ	33ΚΩ	Tiroides	Resistencia a la respuesta hormonal
L	10mH	10mH	Hipófisis	Inercia en liberación de TSH
C ₁	10µF	10µF	Hipotálamo	Acumulación de TRH
C_2	lμF	10µF	Tiroides	Capacidad de liberación hormonal

DIAGRAMA FISIOLÓGICO

ECUACIONES INTEGRO-DIFERENCIALES

$$V_{s}=rac{1}{C_{2}}\int\left[i_{2}\left(t
ight)
ight]dt \ i_{1}\left(t
ight)=rac{V_{e}\left(t
ight)-rac{1}{C_{1}}\int\left[i_{1}\left(t
ight)-i_{2}\left(t
ight)
ight]dt}{R_{1}} \ i_{2}\left(s
ight)=rac{rac{1}{C_{1}}\int\left[i_{1}\left(t
ight)-i_{2}\left(t
ight)
ight]dt-L_{1}rac{di_{2}\left(t
ight)}{dt}-rac{1}{C_{2}}\int\left[i_{2}\left(t
ight)
ight]dt}{\left(R_{2}+R_{3}
ight)}$$

Función de transferencia

$$\frac{V_{s}\left(s\right)}{V_{e}\left(s\right)} = \frac{1}{s^{3}(C_{1}C_{2}L_{1}R_{1}) + s^{2}\left(C_{1}C_{2}R_{1}R_{3} + C_{2}R_{1}R_{2} + C_{2}L_{1}\right) + s\left(C_{1}R_{1} + C_{2}R_{2} + C_{2}R_{1} + C_{2}R_{3}\right) + 1}$$

Error en estado estacionario

$$\lim_{s o0}=\left[1-rac{V_{s}\left(s
ight)}{V_{e}\left(s
ight)}
ight]=\left[1-1
ight]=0V$$

ESTABILIDAD DEL SISTEMA EN LAZO ABIERTO

Control		Caso	
	$\lambda_1 = -2.7199$		$\lambda_1 = -0.887$
	$\lambda_2 = -26.8842$		$\lambda_2 = -5.173$
	$\lambda_2 = -76269.89$		$\lambda 3 = -1.178 \times 10^5$

El sistema es estable con una respuesta Sobreamortiguada

SIMULACIÓN: CASO, CONTROL Y TRATAMIENTO

El eje hipotálamo-hipófisis-tiroides se modeló como un circuito eléctrico. El hipotiroidismo subclínico se simuló aumentando la resistencia y capacitancia de la tiroides, reflejando su respuesta lenta. Un controlador PID se implementó para corregir la salida hormonal y restaurar el equilibrio del sistema.

CONTROLADOR PID: GANANCIAS

kP	913.4762	Settling time	78.3 ms
kI	3145.0167	Overshoot	9.23%
kD	40.9623	Peak	1.09
Cr	lμF		

CONCLUSIONES

El modelado del eje hipotálamo-hipófisis-tiroides mediante un circuito eléctrico análogo permite representar su dinámica hormonal. En el hipotiroidismo subclínico, se simula una respuesta tiroidea más lenta mediante el aumento del resistor y capacitor asociados a la glándula tiroides. Para compensar esta alteración, se incorporó un controlador PID, que mejora la respuesta del sistema y permite alcanzar niveles hormonales adecuados, simulando un control más eficiente.

Dr.Paul Antonio Valle Trujillo Ingeniería Biomédica

Modelado de Sistemas Fisiológicos

Ramirez Diaz Cesar Andres 21212173

Damian Arroyo Perla Guadalupe 21212150