

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Rahmad Mahendra

Revised by:

Suryana Setiawan

Review: Grammar

- Salah satu model komputasi adalah *rewrite system / production system / rule-based system*.
- Grammar menyatakan suatu *rewrite system* yang digunakan untuk mendefinisikan bahasa.
- Grammar G dapat ditulis sebagai quadruple (V, Σ, R, S) :
 - V: alfabet *rule* yang terdiri dari simbol non-terminal dan terminal.
 - \circ Σ : himpunan simbol terminal (subset dari V).
 - R: himpunan *rule* dengan bentuk umum $\alpha \rightarrow \beta$
 - S: simbol start, dengan $S \in (V-\Sigma)$.

Review: Grammar

- Alfabet V pada grammar G dibagi menjadi dua subset.
 - Alfabet terminal (Σ), simbol yang membentuk stringstring pada L(G)
 - Alfabet non-terminal, elemen yang berfungsi sebagai working symbols yang akan digunakan ketika grammar dioperasikan.
- Rule *R* pada grammar *G* berbentuk $\alpha \rightarrow \beta$
 - α disebut sebagai *left-hand side*, dan β *right-hand side*
 - Bagaimana ketentuan α dan β pada regular grammar?

Pembentukan String pada Grammar

- Diberikan grammar G, relasi biner derives in-one-step, $x =>_G y$ sebagai berikut
 - $\forall x, y \in V^* (x = >_G y \text{ iff } x = \alpha A \beta, y = \alpha \gamma \beta, \text{ dan terdapat } rule A \rightarrow \gamma$
- Bentuk $w_0 =>_G w_1 =>_G w_2 =>_G \dots =>_G w_n$ disebut derivasi pada G.
- => $_G$ * disebut relasi *derive*.
- => $_G$ * merupakan <u>penutup refleksif transitif</u> dari => $_G$. Mengapa?
- Bahasa yang dapat dibangkitkan oleh (*generated by*) G adalah $L(G) = \{w \in \Sigma^* : S = >^*_G w\}$. L(G) adalah himpunan seluruh kemungkinan string yang dapat diturunkan dari S dengan menerapkan serangkaian F pada grammar G.

Regular Grammar

- Bahasa *L* adalah *bahasa reguler* jika dan hanya jika *L* dapat dibentuk oleh suatu *regular grammar* (RG) *G*.
- Regular grammar adalah grammar denga setiap rulenya mengambil salah satu dari 3 format rule berikut
 - $A \rightarrow a$
 - $A \rightarrow aB$
 - $A \rightarrow \varepsilon$

dengan $A, B \in (V - \Sigma)$ dan $a \in \Sigma$, dan ε string kosong

- $L = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}$
- Ekspresi reguler untuk L adalah $(aa \cup ab \cup ba \cup bb)^*$
- FSM untuk L adalah

• RG untuk L adalah:

$$\begin{array}{ccc} \circ & S \to \varepsilon & S \to aT & S \to bT \\ T \to aS & T \to bS \end{array}$$

Dapat disingkat:

$$S \rightarrow \varepsilon \mid aT / bT \mid T \rightarrow aS / bS$$

• String *aaba* dibentuk oleh grammar sbb:

$$S \Rightarrow aT \Rightarrow aaS \Rightarrow aabT \Rightarrow aabaS \Rightarrow aaba$$

Context-Free Grammar

- Bahasa *L* adalah *context-free* jika dan hanya jika *L* dapat dibentuk oleh suatu *context-free grammar* (CFG) *G*.
- Pada CFG, *left-hand side* pada setiap *rule* harus berupa simbol non-terminal tunggal. Sedangkan *right-hand side* bisa berupa urutan simbol apapun (non-terminal maupun terminal, boleh string kosong).
 - Apa hubungan antara CFG dengan regular grammar?
- Contoh rule yang valid pada CFG

$$\circ S \rightarrow a$$

$$S \rightarrow bSb$$

$$\circ S \to T$$

$$S \rightarrow aaSSbT$$

Contoh rule yang tidak valid pada CFG

$$\circ$$
 aSb \rightarrow aTb

$$a \rightarrow \epsilon$$

$$\circ$$
 $ST \rightarrow bb$

- Bahasa berupa himpunan string-string yang dibentuk dari alfabet $\Sigma = \{a, b\}$ di mana frekuensi kemunculan simbol 'a' sama dengan simbol 'b'
- $L = \{w \in \{a, b\}^* : \#_a w = \#_b w\}$
- Rule CFG untuk *L* adalah:

$$S \rightarrow aSb$$
 $S \rightarrow SS$
 $S \rightarrow bSa$ $S \rightarrow \varepsilon$

• String "ba", "aabb", dan "abbaba" dibentuk oleh CFG dengan proses derivasi sebagai berikut:

$$S \Rightarrow bSa \Rightarrow ba$$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$
 $S \Rightarrow aSbbSa \Rightarrow abbaSba \Rightarrow aababa$

- Balanced parentheses language
- $Bal = \{w \in \{\}, (\}^*: \text{ tanda kurung seimbang}\}$
- Rule CFG untuk *L* adalah:

$$S \rightarrow (S)$$

$$S \rightarrow SS$$

$$S \rightarrow \varepsilon$$

Tunjukkan bahwa ekspresi di bawah ini merupakan anggota bahasa *Bal*

- ()(())
- (()(()(())))

Context Sensitive Grammar

- Context sensitive grammar $G = (V, \Sigma, R, S)$ adalah suatu unrestricted grammar di mana R memenuhi batasan:
 - Left-hand side (LHS) setiap rule mengandung paling sedikit satu simbol non terminal.
 - Jika R mengandung $rule S \rightarrow \varepsilon$, maka S tidak muncul pada right-hand side (RHS) rule manapun.
 - Kecuali $S \to \varepsilon$, setiap *rule* $\alpha \to \beta$ pada R harus memenuhi properti $|\alpha| \le |\beta|$.

Contoh 1 (lanjutan)

- $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$
- Grammar yang disajikan pada halaman 3 BUKAN contextsensitive grammar.
- AⁿBⁿCⁿ bisa di-generate dari context-sensitive grammar dengan rule sebagai berikut

$$S \rightarrow T \mid \varepsilon$$

 $T \rightarrow aTBc \mid abc$
 $cB \rightarrow WB$
 $WB \rightarrow WX$
 $WX \rightarrow BX$
 $BX \rightarrow Bc$
 $bB \rightarrow bb$

Tunjukkan derivasi string "aabbcc"!

Bahasa Context-Sensitive

- Bahasa L context-sensitive jika $\forall w \in L$, w bisa digenerate oleh suatu context-sensitive grammar.
- Adakah mesin spesifik yang menerima bahasa contextsensitive?
 - Linear Bounded Automata (LBA)
- LBA adalah mesin Turing di mana tape dibatasi oleh panjang input.
 - LBA adalah mesin Turing yang tidak menggunakan lebih dari k.|w| tape square, di mana w adalah input dan k adalah suatu integer positif (fixed).

Unrestricted Grammar

- Unrestricted grammar G dapat ditulis sebagai quadruple (V, Σ, R, S) :
 - V: alfabet *rule* yang terdiri dari simbol non-terminal dan terminal.
 - \circ Σ : himpunan simbol terminal (subset dari V).
 - R: himpunan rule dengan bentuk umum $V^+ \times V^*$
 - S: simbol start, dengan $S \in (V-\Sigma)$.
- Right-hand side (RHS) pada unrestricted grammar boleh mengandung lebih dari satu simbol.
- Teorema:
 - Suatu bahasa L dapat dibentuk oleh suatu unrestricted grammar **iff** terdapat suatu mesin Turing semi-decide L

- $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$
- Rule unrestricted grammar untuk AⁿBⁿCⁿ adalah:

$$S \rightarrow aBSc$$

 $S \rightarrow \varepsilon$
 $Ba \rightarrow aB$
 $Bb \rightarrow bb$
 $Bc \rightarrow bc$

• Derivasi string "abc" dan "aabbcc" sebagai berikut:

$$S => aBSc => aBc => abc$$

$$S \Rightarrow aB\underline{S}c \Rightarrow aBa\underline{B}\underline{S}cc \Rightarrow a\underline{B}\underline{a}Bcc \Rightarrow aa\underline{B}\underline{B}cc \Rightarrow aa\underline{B}\underline{b}cc \Rightarrow aabbccc$$

• Diberikan rule unrestricted grammar *G* sebagai berikut:

$$S \rightarrow T \#$$
 /* tandai akhir string
 $T \rightarrow aTa$ /* generate wCw^R
 $T \rightarrow bTb$
 $T \rightarrow C$
 $C \rightarrow CP$ /* generate pusher

 $Paa \rightarrow aPa$ /* push karakter ke kanan

 $Pab \rightarrow aPb$
 $Pba \rightarrow bPa$
 $Pbb \rightarrow bPb$
 $Pa\# \rightarrow \#a$ /* mencapai akhir string

 $Pb\# \rightarrow \#b$

• Definisikan L(G)

 $C\# \to \varepsilon$

Contoh 2 (lanjutan)

- $L(G) = \{ww : w \in \{a, b\}^*\}$
- Strategi generate ww
 - Generate wCw^R#
 di mana C = temporary middle marker dan # = temporary right boundary
 - Reverse w^{R}
 - Remove C dan #
- Tunjukkan derivasi untuk string berikut
 - 3 °
 - abab
 - babbbabb

Chomsky Hierarchy

- Basis dari Chomsky Hierarchy adalah jumlah dan organisasi memori yang diperlukan untuk memroses suatu bahasa.
 - Type 0 (semi-decidable): tidak ada batasan memori
 - Type-1 (context-sensitive): memori terbatas pada panjang string
 - Type-2 (context-free): memori tidak terbatas tetapi hanya dapat diakses melalui mekanisme state
 - Type-3 (regular): memori berhingga

Chomsky Hierarchy

