

Corso di Laurea in Informatica Architettura degli elaboratori a.a. 2019-2020

Architettura degli Elaboratori 2020-2021

Rappresentazione numeri interi con segno

Prof. Elisabetta Fersini elisabetta.fersini@unimib.it

- Somma: si esegue la somma tra i bit di pari ordine
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 0 con <u>riporto</u> 1 sul bit di ordine superiore
 - 1 + 1 + 1 = 1 con <u>riporto</u> 1 sul bit di ordine superiore
- La somma è definita su gruppi di 3 bit:
 - due addendi
 - il riporto (*carry*)
- La somma di 2 unità (valore 1) di un dato ordine, creano 1 unità dell'ordine immediatamente superiore (carry).

RIPORTO						
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA						

RIPORTO					1	
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA						0

RIPORTO				1	1	
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA					0	0

RIPORTO			0	1	1	
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA				1	0	0

RIPORTO		0	0	1	1	
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA			0	1	0	0

• <u>Esempio</u>: si esegua la somma tra 010011 e 010001 (che indicano, rispettivamente, i numeri decimali 19 e 17)

RIPORTO	1	0	0	1	1	
PRIMO ADDENDO	0	1	0	0	1	1
SECONDO ADDENDO	0	1	0	0	0	1
SOMMA	1	0	0	1	0	0

36 in decimale

- Sottrazione: si esegue la differenza tra i bit di pari ordine
 - 0 0 = 0
 - 1 0 = 1
 - 1-1=0
 - 0-1=1 con prestito dal bit di ordine immediatamente superiore
- Anche la sottrazione opera su gruppi di 3 bit:
 - minuendo e sottraendo
 - prestito (borrow) proveniente dalla cifra di ordine immediatamente superiore
- Ogni volta che si deve sottrarre dalla cifra 0 la cifra 1, occorre chiedere in prestito una unità alla cifra di ordine immediatamente superiore che vale due unità della cifra di ordine inferiore.

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO					
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA					

<u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO					
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA					1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO				2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA				1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO				2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA				1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO			2	2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA			1	1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO			2	2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA			1	1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO		2	2	2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA		1	1	1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

PRESTITO		2	2	2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA		1	1	1	1

• <u>Esempio</u>: si esegua la sottrazione tra 11101 e 01110 (che indicano, rispettivamente, i numeri decimali 29 e 14)

i		P	r	es	st	it	0	C	li	ι	ır	18	3	u	n	ita	Ė	_;	>	il	m	iir	าเ	JE	er	าด	lc) :	Sá	aı	à	(0	e) (n	o	n	1	į
1	_																																							1

PRESTITO		2	2	2	
MINUENDO	1	1	1	0	1
SOTTRAENDO	0	1	1	1	0
DIFFERENZA	0	1	1	1	1

15 in decimale

 Supponendo di avere a disposizione 6 bit, si calcoli la somma e la sottrazione in binario dei seguenti numeri:

010101 e 110100

Effettuando la somma:

RIPORTO						
PRIMO ADDENDO	0	1	0	1	0	1
SECONDO ADDENDO	1	1	0	1	0	0
SOMMA						

 Supponendo di avere a disposizione 6 bit, si calcoli la somma e la sottrazione in binario dei seguenti numeri:

010101 e 110100

Effettuando la somma:

RIPORTO	1		1			
PRIMO ADDENDO	0	1	0	1	0	1
SECONDO ADDENDO	1	1	0	1	0	0
SOMMA	0	0	1	0	0	1

il numero ottenuto non è rappresentabile in quanto il risultato è su 7 bit!

 Supponendo di avere a disposizione 6 bit, si calcoli la somma e la sottrazione in binario dei seguenti numeri:

010101 e 110100

Effettuando la somma:

OVERFLOW!

RIPORTO	1		1			
PRIMO ADDENDO	0	1	0	1	0	1
SECONDO ADDENDO	1	1	0	1	0	0
SOMMA	0	0	1	0	0	1

il numero ottenuto non è rappresentabile in quanto il risultato è su 7 bit!

 Supponendo di avere a disposizione 6 bit, si calcoli la somma e la sottrazione in binario dei seguenti numeri:

010101 e 110100

Effettuando la differenza:

PRESTITO						
MINUENDO	0	1	0	1	0	1
SOTTRAENDO	1	1	0	1	0	0
DIFFERENZA						

 Supponendo di avere a disposizione 6 bit, si calcoli la somma e la sottrazione in binario dei seguenti numeri:

010101 e 110100

Effettuando la differenza:

PRESTITO						
MINUENDO	0	1	0	1	0	1
SOTTRAENDO	1	1	0	1	0	0
DIFFERENZA	???	0	0	0	0	1

Non è possibile eseguire l'operazione

- Perché non è possibile effettuare l'operazione?
 - 1 Per poter eseguire l'operazione avrei bisogno di chiedere in prestito un un bit da un ordine superiore, ma avrei bisogno di 7 bit e non 6 bit.
 - ② L'operazione $(010101 110100)_2$ sarebbe $(21 52)_{10} = -31_{10}$. Un numero negativo non è rappresentabile nel sistema binario puro.

PRESTITO						
MINUENDO	0	1	0	1	0	1
SOTTRAENDO	1	1	0	1	0	0
DIFFERENZA	???	0	0	0	0	1

Non è possibile eseguire l'operazione

Rappresentazione numeri negativi

- Come visto in precedenza, con la modalità di rappresentazione semplice non è possibile rappresentare numeri negativi.
- Per ovviare a questo problema è stato definito un metodo di rappresentazione dal nome di Modulo e Segno (MS).
- Vedremo anche altre rappresentazioni:
 - Complemento a 1 (CA1)
 - Complemento a 2 (CA2)
 - Eccesso 128

Modulo e Segno

- Supponiamo di avere a disposizione 1 Byte (8bit) per rappresentare numeri sia positivi che negativi.
- Ricorrendo al metodo del <u>Modulo e Segno</u> (MS) utilizzeremo:
 - i primi 7 bit da destra per il valore assoluto del numero
 - il bit più a sinistra (MSB) per indicare il segno
 - 1 se il numero è negativo, 0 se è positivo
- Esempio: supponiamo di voler rappresentare -4₁₀ con 8bit

Modulo e Segno

 Con n bit totali, si possono rappresentare i numeri interi nell'intervallo

$$[-(2^{n-1}-1), +(2^{n-1}-1)]_{10}$$

- Quali sono i problemi della rappresentazione MS?
 - Esistono due diverse rappresentazioni dello 0. Presi ad esempio 4 bit totali:

$$0000_2 = +0_{10}$$
 $1000_2 = -0_{10}$

Un bit tra tutti i bit disponibili viene "speso" per il segno.

- Oltre al metodo MS esiste un altro modo di rappresentare i numeri interi (positivi e negativi), ovvero il Complemento a 1 (CA1).
- Come indica il nome stesso, questo metodo si basa sull'operazione di complemento.
- Con complemento si intende l'operazione che associa ad un bit (o ad ogni sequenza di bit) il suo opposto, cioè il valore ottenuto sostituendo tutti gli 1 con 0, e tutti gli 0 con 1.
- *Esempio*: il complemento di 1001 è 0110.

- Il metodo CA1 è molto semplice e diretto:
 - Se il numero da codificare è <u>positivo</u> lo si converte in binario con il metodo tradizionale.
 - ② Se il numero è <u>negativo</u> basta convertire in binario il suo modulo e quindi eseguire l'operazione di complemento sulla codifica binaria effettuata.

• <u>Esempi</u>.

supponiamo di avere 4 bit e di voler rappresentare in CA1 il valore 3₁₀

$$3_{10} = 0011_2$$

supponiamo di avere 4 bit e di voler rappresentare in CA1 il valore -3₁₀

$$-3_{10} = \overline{0011_2} = 1100_2$$

 Anche in questo caso sussiste il problema delle due diverse rappresentazioni dello 0.

• È stato quindi introdotto un ulteriore metodo di codifica, ovvero il Complemento a 2.

- Basato CA1, il Complemento a 2 (CA2) è un altro metodo di codifica usato per rappresentare i numeri interi sia positivi che e negativi.
- Il metodo CA2 opera come segue sul valore X da codificare:
 - Se il numero X è <u>positivo</u> esso rimane invariato.
 - ② Se il numero X è <u>negativo</u>
 - Si effettua il complemento a 1 (CA1) sul valore da codificare
 - Si somma +1 al risultato ottenuto con CA1

- Il metodo CA2 supera il principale difetto di CA1, ossia la presenza di una doppia codifica per lo 0. In CA2 lo 0 ha un'unica rappresentazione.
- In CA2 i valori negativi hanno MSB = 1
- Dati n bit, si possono rappresentare i numeri interi nell'intervallo $[-(2^{n-1}), +(2^{n-1}-1)]_{10}$
- Esempio: dati 5 bit si ha

$$-16_{10} \le X \le +15_{10}$$

Esempi di CA2

Bit	Valore Assoluto	Complemento a 2
0111 1111	127	127
0111 1110	126	126
0000 0010	2	2
0000 0001	1	1
0000 0000	0	0
1111 1111	255	-1
1111 1110	254	-2
1000 0010	130	-126
1000 0001	129	-127
1000 0000	128	-128

- Esistono 3 metodi per il calcolo di CA2 di un numero X:
 - Definizione di complemento alla base

$$CA2(X) = 2^n - X$$

- Per calcolare CA2 si calcola CA1 e si somma 1
 - Partendo dalla definizione di complemento alla base 1

$$CA1(X) = (2^n - 1) - X$$

possiamo definire CA2 in funzione di CA1

$$CA2(X) = CA1(X) + 1$$

- Esistono 3 metodi per il calcolo di CA2 di un numero X:
 - ③ Regola pratica:
 - si parte da destra, si trascrivono tutti gli 0 fino ad incontrare il primo 1 e si trascrive anch'esso
 - si complementano a 1 (0 \rightarrow 1 e 1 \rightarrow 0) tutti i bit restanti
- Nota bene:
 - Il CA2 di un numero negativo dà il corrispondente valore positivo
 - CA2(CA2(X)) = X

Esempio: Rappresentare in CA2 su 4 bit il numero –7

$$7_{10} = 111_2$$

① Applicando la definizione:

$$2^4 - 7 = 10000 - 111 = 1001_{CA2}$$

① Passando dal CA1:

① Con la regola pratica

Rappresentazione CA2 e operazione CA2

- Distinzione tra <u>rappresentazione</u> in CA2 e <u>operazione</u> di CA2
 - La rappresentazione come sono organizzati i bit
 - Il calcolo procedura di trasformazione dei bit
- Per rappresentare un numero positivo in CA2 <u>non serve</u> applicare <u>l'operazione di CA2.</u>
- Per rappresentare un numero negativo in CA2 <u>è necessario</u> applicare <u>l'operazione di CA2</u> alla rappresentazione del corrispondente valore positivo.

Conversione da CA2 a decimale

- Se il numero è **positivo** (MSB = 0), si converte in base decimale usando il numero binario puro.
- Se il numero è negativo (MSB = 1), si applica l'operazione di CA2 a questo valore ottenendo la rappresentazione del corrispondente positivo, si converte il risultato come numero in binario puro e si aggiunge il segno meno.

Operazioni aritmetiche - MS

- Come si esegue la <u>somma</u> di due valori in Modulo e Segno?
- Confronto i bit di segno dei due numeri:
 - a) Se i bit di segno sono <u>uguali</u>:
 - Il bit di segno risultante sarà il bit di segno dei due addendi
 - Eseguo la somma bit a bit (a meno di overflow)
 - b) Se i bit di segno sono diversi:
 - Confronto i valori assoluti dei due addendi
 - Il bit di segno risultante sarà il bit di segno dell'addendo con valore assoluto maggiore
 - Eseguo la differenza bit a bit

Operazioni aritmetiche - MS

- Come si esegue la <u>sottrazione</u> di due valori in Modulo e Segno?
- Confronto i bit di segno dei due numeri:
 - a) Se i bit di segno sono <u>uguali</u>:
 - Il bit di segno risultante sarà uguale al bit di segno dell'operando a modulo maggiore
 - Il risultato avrà modulo pari al modulo della differenza dei moduli degli operandi
 - b) Se i bit di segno sono diversi:
 - Il bit di segno risultante sarà uguale al bit di segno del minuendo
 - Il risultato avrà modulo pari alla somma dei moduli dei due operandi
- Osservazione: A B = A + (-B)

Operazioni aritmetiche - MS

Osservazioni:

- Si può avere overflow solo quando:
 - si sommano due operandi con segno concorde
 - si sottraggono due operandi con segno discorde
- L'overflow si verifica quando c'è un riporto dalla cifra più significativa del modulo, cioè non si è nella condizione di rappresentare il risultato ottenuto.
- Nelle operazioni tra valori rappresentati in MS, gli operandi devono essere rappresentati con lo stesso numero di cifre (si aggiungono gli zeri necessari a sinistra del modulo, prima del bit di segno).

- Come si esegue la <u>somma</u> di due valori in CA2?
 - 1 Si esegue la somma su tutti i bit degli addendi, segno compreso
 - 2 Un eventuale riporto (carry) oltre il bit di segno (MSB) viene scartato
 - ③ Nel caso gli operandi siano di segno concorde (entrambi positivi o entrambi negativi) occorre verificare la presenza o meno di overflow (il segno del risultato non è concorde con quello dei due addendi)
 - L'overflow non si presenta mai quando si sommano operandi di segno opposto.
 - L'<u>overflow</u> si presenta se:

$$(+A)+(+B)=-C$$
 oppure $(-A)+(-B)=+C$

• Un altro modo per vedere se c'è overflow è guardare i riporti nelle ultime due posizioni più significative: se sono diversi c'è overflow.

Esempi di somma in CA2.

$$3 + (-8)$$

$$-2 + (-5)$$

 La sottrazione tra due numeri in CA2 viene trasformata in somma applicando la regola

ovvero

$$A - B = A + (-B)$$

$$A - B = A + CA2(B)$$

- Per assicurarsi della correttezza del risultato di un'operazione di somma in CA2 bisogna verificare l'assenza di overflow:
 - non si ha overflow se gli operandi hanno segno discorde
 - si ha overflow se gli operandi hanno segno concorde e il segno del risultato è discorde con essi

Esempio di sottrazione in CA2.

```
(+8) 0000 1000 0000 1000

-(+5) 0000 0101 -> Complementa -> +1111 1011

-----
(+3) 1 0000 0011 : scarto il carry
```


Osservazioni:

- Gli operandi devono essere rappresentati con lo stesso numero di bit
- Nell'ipotesi di avere un valore X in CA2 su n bit (segno incluso) e di volerne ricavare la rappresentazione, sempre in CA2, su m bit (m > n), si attua l'estensione del segno:

si replica l'MSB negli (m-n) bit più a sinistra

- Esempio:
 - Per i numeri positivi si aggiungono 0 nella parte più significativa

Per i numeri <u>negativi</u> si aggiungono 1 nella parte più significativa

Operazioni aritmetiche

- Esiste un'ulteriore operazione detta shift:
 - Consiste nello spostare (shift) verso destra (right) o verso sinistra (left) la posizione delle cifre di un numero, espresso in una base qualsiasi, inserendo uno zero nelle posizioni lasciate libere.
 - Left : equivale a moltiplicare il numero per la base
 - Right: equivale a dividere il numero per la base

Shift - MS

• Left: equivale a moltiplicare il numero per la base

Right: equivale a dividere il numero per la base

Shift - CA2

Left: equivale a moltiplicare il numero per la base

Right: equivale a dividere il numero per la base

Rappresentazione Eccesso 2ⁿ⁻¹

 Nella rappresentazione Eccesso 2ⁿ⁻¹ un numero X è rappresentato come segue:

$$X + 2^{n-1}$$

- Con n bit si rappresenta l'eccesso 2ⁿ⁻¹
- L'intervallo è asimmetrico (come CA2: [- 2ⁿ⁻¹ ,+ 2ⁿ⁻¹ -1]) e semplice rappresentazione dello zero!
- Regola pratica: I numeri in eccesso 2ⁿ⁻¹ si ottengono da quelli in CA2 complementando il bit più significativo

Rappresentazione Eccesso 128

• Nella rappresentazione Eccesso 128 (2⁷) un numero X è rappresentato come segue:

$$X + 128$$

• Esempio:

$$X = 5$$

1000 01012

$$X = -3$$

0111 1101₂

Passando da CA2:

$$-3_{10} \longrightarrow \overbrace{00000011_{2}}^{3} \longrightarrow \overbrace{11111100}_{\text{CA2}} \xrightarrow{\text{CA2}} \overbrace{11111101}_{\text{CA2}} \xrightarrow{\text{complemento il bit più significativo}} \overbrace{011111101}_{\text{Eccesso128}}$$

- Osservazioni:
 - In Eccesso 128 i numeri da [-128, 127] si mappano su [0, 255]
 - In pratica si usa l'eccesso 127!

Da leggere

Rappresentazione dei numeri relativi, appendice A del libro di A.
 S. Tanenbaum, "Structured computer Organization", 5th ed.