

26.5.2004

日本国特許庁
JAPAN PATENT OFFICE

Rec'd PCT/PTO 21 JUL 2005
10/542930

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2003年 5月26日

出願番号
Application Number: 特願2003-147358

[ST. 10/C]: [JP2003-147358]

出願人
Applicant(s): 日東電工株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 7月 1日

特許長官
Commissioner,
Japan Patent Office

小川洋

BEST AVAILABLE COPY

出証番号 出証特2004-3056761

【書類名】 特許願
【整理番号】 P03095ND
【提出日】 平成15年 5月26日
【あて先】 特許庁長官 殿
【国際特許分類】 G02B 05/30
【発明者】
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社
内
【氏名】 杉野 洋一郎
【発明者】
【住所又は居所】 大阪府茨木市下穂積2丁目1番1号 日東ビジネスサポート株式会社内
【氏名】 清水 健司
【発明者】
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社
内
【氏名】 青木 健
【発明者】
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社
内
【氏名】 亀山 忠幸
【発明者】
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社
内
【氏名】 水嶋 洋明
【発明者】
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社
内
【氏名】 和田 守正

【特許出願人】

【識別番号】 000003964
【住所又は居所】 大阪府茨木市下穂積1丁目1番2号
【氏名又は名称】 日東電工株式会社

【代理人】

【識別番号】 100092266
【弁理士】
【氏名又は名称】 鈴木 崇生
【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104422
【弁理士】
【氏名又は名称】 梶崎 弘一
【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100105717
【弁理士】
【氏名又は名称】 尾崎 雄三
【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104101
【弁理士】
【氏名又は名称】 谷口 俊彦
【電話番号】 06-6838-0505

【手数料の表示】

【予納台帳番号】 074403
【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9903185

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 偏光板用接着剤、偏光板、その製造方法、光学フィルムおよび
画像表示装置

【特許請求の範囲】

【請求項 1】 偏光子とその透明透明保護フィルムとが接着剤層を介して接
着している偏光板における当該接着剤層の形成に用いる偏光板用接着剤であって

、
前記偏光板用接着剤は、アセトアセチル基を含有するポリビニルアルコール系
樹脂100重量部に対して、架橋剤を30重量部を超え46重量部以下の範囲で
含有していることを特徴とする偏光板用接着剤。

【請求項 2】 架橋剤が、メチロール化合物であることを特徴とする請求項
1記載の偏光板用接着剤。

【請求項 3】 偏光子が、ポリビニルアルコール系偏光子であり、透明保護
フィルムが、セルロース系透明保護フィルムであることを特徴とする請求項 1 ま
たは 2 記載の偏光板用接着剤。

【請求項 4】 偏光子の少なくとも一方の面に、接着剤層を介して透明保護
フィルムが設けられている偏光板において、前記接着剤層が請求項 1～3 のいづ
れかに記載の偏光板用接着剤により形成されていることを特徴とする偏光板。

【請求項 5】 接着剤層の厚みが、1～120 nmであることを特徴とする
請求項 4 記載の偏光板。

【請求項 6】 偏光子の少なくとも一方の面に、接着剤層を介して透明保護
フィルムが設けられている偏光板の製造方法であって、

透明保護フィルムの前記接着剤層を形成する面および／または偏光子の前記接
着剤層を形成する面に、請求項 1～3 のいづれかに記載の偏光板用接着剤を塗布
した後、透明保護フィルムと偏光子とを貼り合わせることを特徴とする請求項 4
または 5 記載の偏光板の製造方法。

【請求項 7】 請求項 1～3 のいづれかに記載の偏光板用接着剤を塗布する
前の4時間以内に、アセトアセチル基を含有するポリビニルアルコール系樹脂 1
00 重量部に対して、架橋剤を30重量部を超え46重量部以下の範囲で混合し

て前記偏光板用接着剤を調製することを特徴とする請求項6記載の偏光板の製造方法。

【請求項8】 請求項4または5記載の偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム。

【請求項9】 請求項4もしくは5記載の偏光板または請求項8記載の光学フィルムが用いられていることを特徴とする画像表示装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、偏光板用接着剤に関する。また本発明は当該偏光板用接着剤を用いた偏光板およびその製造方法に関する。当該偏光板はこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置、有機EL表示装置、PDP等の画像表示装置を形成しうる。

【0002】

【従来の技術】

液晶表示装置等には、その画像形成方式から液晶パネル表面を形成するガラス基板の両側に偏光子を配置することが必要不可欠である。偏光子は、一般的には、ポリビニルアルコール系フィルムとヨウ素などの二色性材料で染色を行った後、架橋剤を用いて架橋を行い、一軸延伸することにより製膜することにより得られる。前記偏光子は延伸により作製されるため、収縮し易い。またポリビニルアルコール系フィルムは親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。またフィルム自体の機械的強度が弱いため、フィルムが裂けたりする問題がある。そのため、偏光子の両側または片側にトリアセチルセルロースなどの透明保護フィルムを貼り合わせて、強度を補った偏光板が用いられている。前記偏光板は、偏光子と透明保護フィルムを接着剤により貼り合わせることにより製造されている。

【0003】

近年の液晶表示装置は用途が拡大し、携帯端末から家庭用の大型TVまで幅広く展開が進んできており、各用途に応じて、それぞれの規格が設けられるように

なってきてている。特に携帯端末用途では、使用者が持ち歩くことが前提であるため、耐久性に対する要求は非常に厳しい。そのため、偏光板には、結露が生じるような加湿条件下においても特性、形状が変化しない耐久性が要求が求められている。

【0004】

前記の通り偏光子は、透明保護フィルムにより強度を補強した偏光板として使用される。従来より、前記偏光子と透明保護フィルムの接着に用いる偏光板用接着剤としては、水系接着剤が好ましく、たとえば、ポリビニルアルコール水溶液に架橋剤を混合したポリビニルアルコール系接着剤が使用されている。しかし、ポリビニルアルコール系接着剤は、加湿条件下では、偏光子と透明保護フィルムとの界面で剥がれが生じる場合がある。これは、前記接着剤の主成分であるポリビニルアルコール系樹脂が水溶性高分子であり、結露した状況下では接着剤の溶解が起こっている可能性が考えられる。

【0005】

上記問題に対して、アセトアセチル基を含有するポリビニルアルコール系樹脂と架橋剤を含有する偏光板用接着剤が提案されている（たとえば、特許文献1参照。）。しかし、特許文献1に記載の態様の偏光板用接着剤では、耐水性が十分ではなかった。

【0006】

【特許文献1】

特開平7-198945号公報

【0007】

【発明が解決しようとする課題】

本発明は、耐水性の良好な偏光板用接着剤を提供することを目的とする。また本発明は当該偏光板用接着剤を用いた偏光板およびその製造方法を提供することを目的とする。また当該偏光板を偏光板を積層した光学フィルム、さらには液晶表示装置等の画像表示装置を提供することを目的とする。

【0008】

【課題を解決するための手段】

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光板用接着剤により前記目的に達成できることを見出し、本発明を完成するに至った。

【0009】

すなわち本発明は、偏光子とその透明保護フィルムとが接着剤層を介して接着している偏光板における当該接着剤層の形成に用いる偏光板用接着剤であって、

前記偏光板用接着剤は、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、架橋剤を30重量部を超え46重量部以下の範囲で含有していることを特徴とする偏光板用接着剤、に関する。

【0010】

特許文献1では、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、架橋剤0.1～30重量部を配合した接着剤が開示されている。しかし、架橋剤の配合量が30重量部以下では、結露環境下で十分な耐水性を有する接着剤が得られない。上記本発明の偏光板用接着剤は、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、架橋剤を30重量部を超え46重量部以下の範囲で配合することにより、耐水性が飛躍的に向上することを見出したものである。実施例に示すように、前記範囲で架橋剤を配合した接着剤により、偏光子と透明保護フィルムを貼り合わせたサンプルは、耐水性に優れる。すなわち、加湿耐久性試験として、たとえば、60℃の温水に浸漬させて5時間経過したときにも偏光板端部に目視で確認できる剥がれは発生しなかった。一方、架橋剤の配合量が30重量部より少ない接着剤を用いたサンプルでは、60℃の温水に浸漬させると1時間経過後には、偏光板端部に偏光子の収縮またはヨウ素の脱色が目視で確認できるほど進行していた。

【0011】

架橋剤の配合量は、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、30重量部を超え46重量部以下である。架橋剤の配合量は、前記範囲内で多いほど好ましく、31重量部以上、さらには32重量部以上、特に35重量部以上が好ましい。一方、架橋剤の配合量が多くなりすぎると

、架橋剤の反応が短時間で進行し、接着剤がゲル化する傾向がある。その結果、接着剤としての可使時間（ポットライフ）が極端に短くなり、工業的な使用が困難になる。かかる観点からは、架橋剤の配合量は、46重量部以下、さらには45重量部以下、特に40重量部以下とするのが好ましい。

【0012】

前記偏光板用接着剤に用いる架橋剤としては、メチロール化合物が好適に用いられる。

【0013】

前記偏光板用接着剤は、偏光子が、ポリビニルアルコール系偏光子であり、透明保護フィルムが、セルロース系透明保護フィルムである場合に好適に用いられる。

【0014】

また本発明は、偏光子の少なくとも一方の面に、接着剤層を介して透明保護フィルムが設けられている偏光板において、前記接着剤層が前記偏光板用接着剤により形成されていることを特徴とする偏光板、に関する。

【0015】

前記偏光板において、接着剤層の厚みは、1～120nmであることが好ましい。前記接着剤層は、好ましくは50～90nmである。1nm未満では接着力が不充分であり、一方、120nmを超える場合は、偏光板の外観に問題が発生する場合があり好ましくない。

【0016】

また本発明は、偏光子の少なくとも一方の面に、接着剤層を介して透明保護フィルムが設けられている偏光板の製造方法であって、

透明保護フィルムの前記接着剤層を形成する面および／または偏光子の前記接着剤層を形成する面に、前記偏光板用接着剤を塗布した後、透明保護フィルムと偏光子とを貼り合わせることを特徴とする前記偏光板の製造方法、に関する。

【0017】

前記偏光板の製造方法において、前記偏光板用接着剤は、塗布する前の4時間以内に、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部

に対して、架橋剤を30重量部を超える46重量部以下の範囲で混合して前記偏光板用接着剤を調製することが好ましい。

【0018】

アセトアセチル基を含有するポリビニルアルコール系樹脂に、架橋剤を配合した接着剤を、長時間放置しておくとゲル化する傾向がある。そのため、接着剤の調製は、接着剤を塗布する前のできるだけ短時間内にするのが好ましい。接着剤の調製は、接着剤を塗布する前4時間以内が好ましい。さらには3時間以内が好ましく、特に30分間以内とするのが好ましい。

【0019】

また本発明は、前記偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム、に関する。

【0020】

さらに本発明は、前記偏光板または前記光学フィルムが用いられていることを特徴とする画像表示装置、に関する。

【0021】

【発明の実施の形態】

本発明の偏光板用接着剤は、アセトアセチル基を含有するポリビニルアルコール系樹脂および架橋剤を含有する。

【0022】

アセトアセチル基を含有するポリビニルアルコール系樹脂は、ポリビニルアルコール系樹脂とジケテンとを公知の方法で反応して得られる。たとえば、ポリビニルアルコール系樹脂を酢酸等の溶媒中に分散させておき、これにジケテンを添加する方法、ポリビニルアルコール系樹脂をジメチルホルムアミドまたはジオキサン等の溶媒にあらかじめ溶解しておき、これにジケテンを添加する方法等があげられる。またポリビニルアルコールにジケテンガスまたは液状ジケテンを直接接触させる方法があげられる。

【0023】

ポリビニルアルコール系樹脂は、ポリ酢酸ビニルをケン化して得られたポリビニルアルコール；その誘導体；更に酢酸ビニルと共重合性を有する单量体との共

重合体のケン化物；ポリビニルアルコールをアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールがあげられる。前記単量体としては、（無水）マレイン酸、フマール酸、クロトン酸、イタコン酸、（メタ）アクリル酸等の不飽和カルボン酸及びそのエステル類；エチレン、プロピレン等の α -オレフィン、（メタ）アリルスルホン酸（ソーダ）、スルホン酸ソーダ（モノアルキルマレート）、ジスルホン酸ソーダアルキルマレート、N-メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N-ビニルピロリドン、N-ビニルピロリドン誘導体等があげられる。これらポリビニルアルコール系樹脂は一種を単独でまたは二種以上を併用することができる。

【0024】

前記ポリビニルアルコール系樹脂は特に限定されないが、接着性の点からは、平均重合度100～3000程度、好ましくは500～3000、平均ケン化度85～100モル%程度、好ましくは90～100モル%である。

【0025】

アセトアセチル基を含有するポリビニルアルコール系樹脂のアセトアセチル基含有量は、0.1モル%以上であれば特に制限はない。0.1モル%未満では接着剤層の耐水性が不充分であり不適当である。アセトアセチル基含有量は、好ましくは0.1～40モル%程度、さらに好ましくは2～7モル%である。アセトアセチル基含有量が40モル%を超えると架橋剤との反応点が少なくなり、耐水性の向上効果が小さい。

【0026】

架橋剤としては、ポリビニルアルコール系接着剤に用いられているものを特に制限なく使用できる。前記ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物を使用できる。たとえば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類；トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4-フェニルメタント

リイソシアネート、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類；エチレングリコルジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1, 6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類；ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類；グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類；メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ-ホルムアルデヒド樹脂、；更にナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、鉄、ニッケル等の二価金属、又は三価金属の塩及びその酸化物があげられる。これらのなかでもアミノ-ホルムアルデヒド樹脂、特に、メチロール基を有する化合物が好適である。

【0027】

前記架橋剤は、前述の通り、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、30重量部を超えて46重量部以下の範囲で配合される。

【0028】

前記アセトアセチル基を含有するポリビニルアルコール系樹脂および架橋剤を含有する偏光板用接着剤は、通常、水溶液として用いられる。水溶液濃度は特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1～15重量%、好ましくは0.5～10重量%である。

【0029】

なお、前記接着剤には、さらにシランカップリング剤、チタンカップリング剤などのカップリング剤、各種粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤、耐加水分解安定剤などの安定剤等を配合することもできる。

【0030】

本発明の偏光板は、透明保護フィルムと偏光子を、前記接着剤を用いて貼り合わせることにより製造する。偏光子の片側または両側に、前記偏光板接着剤により形成された接着剤層を介して、透明保護フィルムが設けられている。

【0031】

前記接着剤の塗布は、透明保護フィルム、偏光子のいずれに行ってもよく、両者に行ってもよい。前記接着剤の塗布は、乾燥後の厚みが1～120nm程度になるように行なうのが好ましい。塗布操作は特に制限されず、ロール法、噴霧法、浸漬法等の各種手段を採用できる。

【0032】

前述の通り、前記接着剤の調製は、接着剤を塗布する前の4時間以内に行なうのが好ましい。接着剤の調製から、塗布までを4時間以内の短時間に行なうには、接着剤の調製工程を、偏光板の製造工程の一連の工程の一部に組み込むか、または適当な調製装置を配置することにより行なうことができる。

【0033】

また、接着剤は、アセトアセチル基を含有するポリビニルアルコール系樹脂および架橋剤の混合による調製時から、塗布するまでの温度を管理することが好ましい。接着剤の温度を管理することにより耐水性をより向上することができる。接着剤の管理温度は、30～50℃の範囲とするのが好ましい。さらに好ましくは30～45℃、さらに好ましくは30～40℃である。30℃未満では耐水性が悪く、加湿条件下では保護フィルム一偏光子間での剥がれが起こりやすい。50℃を超えると架橋剤を混ぜた直後にゲル化しやすくなるため、接着剤として使用し難くなる。

【0034】

接着剤を塗布した後は、偏光子と透明保護フィルムをロールラミネーター等により貼り合わせる。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着剤層を形成する。乾燥温度は、5～150℃程度、好ましくは30～120℃で、120秒間以上、さらには300秒間以上である。

【0035】

偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たと

えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5～80 μm程度である。

【0036】

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3～7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。

【0037】

透明保護フィルムを形成する、透明ポリマーまたはフィルム材料としては、適宜な透明材料を用いるが、透明性や機械的強度、熱安定性や水分遮断性などに優れるものが好ましく用いられる。前記透明保護フィルムを形成する材料としては、例えばポリエチレンテレフタレートやポリエチレンナフタレート等のポリエスチル系ポリマー、二酢酸セルロースや三酢酸セルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体（AS樹脂）等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロ

ピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、あるいは前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。

【0038】

また、特開2001-343529号公報 (WO01/37007) に記載のポリマーフィルム、たとえば、(A) 側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B) 側鎖に置換および/非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。具体例としてはイソブチレンとN-メチルマレイミドからなる交互共重合体とアクリロニトリル・スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。フィルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。これらのフィルムは位相差が小さく、光弾性係数が小さいため偏光板の歪みによるムラなどの不具合を解消することができ、また透湿度が小さいため、加湿耐久性に優れる。

【0039】

保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より1~500μm程度である。特に1~300μmが好ましく、5~200μmがより好ましい。

【0040】

また、透明保護フィルムは、できるだけ色付きがないことが好ましい。したがって、 $Rth = [(nx + ny) / 2 - nz] \cdot d$ (ただし、nx、nyはフィルム平面内の主屈折率、nzはフィルム厚方向の屈折率、dはフィルム厚みであ

る)で表されるフィルム厚み方向の位相差値が-90 nm～+75 nmである保護フィルムが好ましく用いられる。かかる厚み方向の位相差値(R_{t h})が-90 nm～+75 nmのものを使用することにより、保護フィルムに起因する偏光板の着色(光学的な着色)をほぼ解消することができる。厚み方向位相差値(R_{t h})は、さらに好ましくは-80 nm～+60 nm、特に-70 nm～+45 nmが好ましい。

【0041】

透明保護フィルムとしては、偏光特性や耐久性などの点より、トリアセチルセルロース等のセルロース系ポリマーが好ましい。特にトリアセチルセルロースフィルムが好適である。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料からなる保護フィルムを用いてもよく、異なるポリマー材料等からなる保護フィルムを用いてもよい。

【0042】

透明保護フィルムの偏光子と接着する面には、易接着処理を施すことができる。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理等の化学処理、易接着剤層を形成するコーティング処理等があげられる。これらのなかでも、易接着剤層を形成するコーティング処理が好適である。易接着剤層の形成には、ポリオール樹脂、ポリカルボン酸樹脂、ポリエステル樹脂等の各種の易接着材料を使用することができる。なお、易接着剤層の厚みは、通常、0.01～10 μm程度、さらには0.05～5 μm程度、特に0.1～1 μm程度とするのが好ましい。

【0043】

前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、ステイッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。

【0044】

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて

形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、ステイッキング防止処理は隣接層との密着防止を目的に施される。

【0045】

またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドblast方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が $0.5 \sim 20 \mu\text{m}$ のシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2～70重量部程度であり、5～50重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層（視角拡大機能など）を兼ねるものであってもよい。

【0046】

なお、前記反射防止層、ステイッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明透明保護フィルムとは別体のものとして設けることもできる。

【0047】

本発明の偏光板は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板（ $1/2$ や $1/4$ 等の波長板を含む）、視角補償フィルムなどの液晶表示装置等の形成に用いられることがある光学層を1層または2層以上用いることができる。特に、本発明の偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層

されてなる橢円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。

【0048】

反射型偏光板は、偏光板に反射層を設けたもので、視認側（表示側）からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。

【0049】

反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また前記透明保護フィルムに微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の透明保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法などにより行うことができる。

【0050】

反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の

点などより好ましい。

【0051】

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側（表示側）からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

【0052】

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる $1/4$ 波長板（ $\lambda/4$ 板とも言う）が用いられる。 $1/2$ 波長板（ $\lambda/2$ 板とも言う）は、通常、直線偏光の偏光方向を変える場合に用いられる。

【0053】

楕円偏光板はスーパーツイストネマチック（STN）型液晶表示装置の液晶層の複屈折により生じた着色（青又は黄）を補償（防止）して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償（防止）することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。上記した位相差板の具体例としては、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き適宜なポリマーから

なるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよく、2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであってよい。

【0054】

また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。

【0055】

視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルムである。このような視角補償位相差板としては、例えば位相差フィルム、液晶ポリマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどからなる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィルムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は／及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜なもの要用いられる。

【0056】

また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いられる。

【0057】

偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルムで一旦反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射されることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。

【0058】

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。

【0059】

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なもの用いよう。

【0060】

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、そのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。

【0061】

可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畠する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。

【0062】

なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせにして2層又は3層以上重畠した配置構造とすることにより、可視光領域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

【0063】

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。

【0064】

偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。

【0065】

前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルムには、液晶セル等の他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いるこ

とができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いられる。

【0066】

また上記に加えて、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。

【0067】

粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスピース、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。

【0068】

偏光板や光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10～40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上または光学フィルム上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを偏光板上または光学フィルム上に移着する方式などがあげられる。

【0069】

粘着層は、異なる組成又は種類等のものの重畠層として偏光板や光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光板や光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1～500μmであり、5～200μmが好ましく、特に10～100μmが好ましい。

【0070】

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いよう。

【0071】

なお本発明において、上記した偏光板を形成する偏光子や透明保護フィルムや光学フィルム等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方
式により紫外線吸収能をもたせたものなどであってもよい。

【0072】

本発明の偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いよう。すなわち液晶表示装置は一般に、液晶セルと偏光板または光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組むことなどにより形成されるが、本発明においては本発明による偏光板または光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いよう。

【0073】

液晶セルの片側又は両側に偏光板または光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光板または光学フィルムは液晶セルの片側又は両側に設置することができる。両側に偏光板または光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散

板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。

【0074】

次いで有機エレクトロルミネセンス装置（有機EL表示装置）について説明する。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体（有機エレクトロルミネセンス発光体）を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。

【0075】

有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般的のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。

【0076】

有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ（ITO）などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。

【0077】

このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表

面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。

【0078】

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。

【0079】

位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を $1/4$ 波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角を $\pi/4$ に調整すれば、金属電極の鏡面を完全に遮蔽することができる。

【0080】

すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に橢円偏光となるが、とくに位相差板が $1/4$ 波長板でしかも偏光板と位相差板との偏光方向のなす角が $\pi/4$ のときには円偏光となる。

【0081】

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。

【0082】

【実施例】

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各例中、部および%は特記ない限り重量基準である。

【0083】

実施例 1

(偏光子)

平均重合度2400、ケン化度99.9モル%の厚み75μmのポリビニアルコールフィルムを、30℃の温水中に60秒間浸漬した膨潤させた。次いで、ヨウ素／ヨウ化カリウム（重量比=0.5／8）の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、トータルの延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、偏光子を得た。

【0084】

(透明保護フィルム)

厚さ80μmのトリアセチルセルロースフィルムを用いた。

【0085】

実施例1

(接着剤の調製)

アセトアセチル基を含有するポリビニアルコール系樹脂（平均重合度：1200、ケン化度：98.5モル%，アセトアセチル化度：5モル%）100部に対し、メチロールメラミン32部を、30℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、30℃の温度条件下に用いた。

【0086】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが80nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、55℃で6分間乾燥して偏光板を作製した。

【0087】

実施例2

(接着剤の調製)

アセトアセチル基を含有するポリビニアルコール系樹脂（平均重合度：1200、ケン化度：98.5モル%，アセトアセチル化度：5モル%）100部に

対し、メチロールメラミン36部を、30℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、30℃の温度条件下に用いた。

【0088】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが90nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、55℃で6分間乾燥して偏光板を作製した。

【0089】

実施例3

(接着剤の調製)

アセトアセチル基を含有するポリビニルアルコール系樹脂（平均重合度：1200, ケン化度：98.5モル%, アセトアセチル化度：5モル%）100部に対し、メチロールメラミン43部を、40℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、40℃の温度条件下に用いた。

【0090】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが50nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、55℃で6分間乾燥して偏光板を作製した。

【0091】

比較例1

(接着剤の調製)

アセトアセチル基を含有するポリビニルアルコール系樹脂（平均重合度：1200, ケン化度：98.5モル%, アセトアセチル化度：5モル%）100部に対し、メチロールメラミン23部を、23℃の温度条件下に、純水に溶解し、固

形分濃度4%に調整した水溶液を調製した。これを接着剤として、23℃の温度条件下に用いた。

【0092】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが100nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、55℃で6分間乾燥して偏光板を作製した。

【0093】

比較例2

(接着剤の調製)

アセトアセチル基を含有するポリビニルアルコール系樹脂（平均重合度：1200, ケン化度：98.5モル%, アセトアセチル化度：5モル%）100部に対し、メチロールメラミン48部を、23℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、23℃の温度条件下に用いた。

【0094】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが80nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なつたが、塗布工程中にゲル化てしまい、偏光板は得られなかった。

【0095】

比較例3

(接着剤の調製)

アセトアセチル基を含有するポリビニルアルコール系樹脂（平均重合度：1700, ケン化度：88.5モル%, アセトアセチル化度：6モル%）100部に対し、ヘキサメチレンジアミン10部を、23℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、23℃の温度条件下に用いた。

【0096】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが120nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、50℃で5分間乾燥して偏光板を作製した。

【0097】

比較例4

(接着剤の調製)

アセトアセチル基を含有するポリビニルアルコール系樹脂（平均重合度：1200, ケン化度：98.5モル%, アセトアセチル化度：5モル%）100部に対し、グリオキザール15部を、23℃の温度条件下に、純水に溶解し、固体分濃度4%に調整した水溶液を調製した。これを接着剤として、23℃の温度条件下に用いた。

【0098】

(偏光板の作成)

上記透明保護フィルムの片面に、上記接着剤を乾燥後の接着剤層の厚みが100nmとなるように塗布した。接着剤の塗布は、その調製から30分間後に行なった。次いで、偏光子の両面に接着剤付きのトリアセチルセルロースフィルムをロール機で貼り合せた後、50℃で5分間乾燥して偏光板を作製した。

【0099】

(評価)

実施例1～3、比較例1、3、4で得られた偏光板を、偏光子の吸収軸方向に50mm、吸収軸に直交する方向に25mmになるように切り出してサンプルを調製した。当該サンプルを、60℃の温水に浸漬し、時間経過とともにサンプルの端部の剥がれ量（mm）を測定した。剥がれ量（mm）の測定は、ノギスにより行なった。時間経過に対する剥がれ量を示すグラフを図1に示す。5時間経過後の剥がれ量（mm）を表1に示す。

【0100】

また、偏光板のヨウ素の脱色の確認は、以下の脱色評価方法により行なった。すなわち、作成した偏光板の幅方向中央部から $50\text{ mm} \times 25\text{ mm}$ の大きさで、偏光板の吸收軸が長辺に対して 45° となるようにサンプルを切り出し、積分球式透過率測定機（（株）村上色彩研究所製：DOT-3C）を用いて、単体透過率（%）を測定した。また、同様にして3時間温水浸漬後の偏光板からサンプルを切り出し、測定して、単体透過率（%）を測定し、それらの差（ $|\Delta T\%|$ ）を求めた。結果を表1に示す。

【0101】

【表1】

	架橋剤 種類	配合量 (部)	配合温度 (°C)	接着剤層 の厚み (nm)	接着着剤の調製から塗布までの時間 (分)	5時間後の 剥がれ量 (mm)	ヨウ素の脱色： 単体透过率变化 ΔT%
実施例1	メチロールメラミン	32	30	80	30	0	0.425
実施例2	メチロールメラミン	36	30	90	30	0	0.371
実施例3	メチロールメラミン	43	40	50	30	0	0.217
比較例1	メチロールメラミン	23	23	100	30	0.5	0.842
比較例2	メチロールメラミン	48	23	80	30	—	—
比較例3	ヘキサメチレンジアミン	10	23	120	30	0.7	1.380
比較例4	グリオキザール	15	23	100	30	25	0.993

表1より、本発明の偏光板は、温水浸漬条件下においても、剥がれが少なく、また、偏光子の脱色がなく、耐湿性が良好であることが分かる。

【図面の簡単な説明】

【図1】

実施例および比較例の偏光板の耐水性試験の結果を示すグラフである。

【書類名】

図面

【図1】

[図1] 試験結果の図

【書類名】 要約書

【要約】

【課題】 耐水性の良好な偏光板用接着剤を提供すること。

【解決手段】 偏光子とその透明透明保護フィルムとが接着剤層を介して接着している偏光板における当該接着剤層の形成に用いる偏光板用接着剤であって、前記偏光板用接着剤は、アセトアセチル基を含有するポリビニルアルコール系樹脂100重量部に対して、架橋剤を30重量部を超え46重量部以下の範囲で含有していることを特徴とする偏光板用接着剤。

【選択図】 なし

特願2003-147358

出願人履歴情報

識別番号 [000003964]

1. 変更年月日 1990年 8月31日

[変更理由] 新規登録

住所 大阪府茨木市下穂積1丁目1番2号
氏名 日東電工株式会社