Step 1: The Need for Speed

Using the eval command, create a field called ratio that shows the ratio between the upload and download speeds.

Source="server_speedtest.csv" sourcetype="csv" | eval ratio = 'DOWNLOAD_MEGABITS' / 'UPLOAD_MEGABITS'

Create a report using the Splunk's table command to display the following fields in a statistics report:

Source="server_speedtest.csv" sourcetype="csv" | table _time IP_ADDRESS DOWNLOAD_MEGABITS UPLOAD MEGABITS | eval ratio = 'DOWNLOAD_MEGABITS' / 'UPLOAD_MEGABITS'

_time ‡	IP_ADDRESS \$	DOWNLOAD_MEGABITS \$ /	UPLOAD_MEGABITS \$ /	ratio 🗢 🖌
2020-02-24 20:30:00	198.153.194.2	126.91	26.51	4.787
2020-02-24 18:30:00	198.153.194.2	125.91	25.51	4.936
2020-02-24 16:30:00	198.153.194.1	124.91	24.51	5.096
2020-02-23 23:30:00	198.153.194.2	123.91	8.51	14.6
2020-02-23 23:30:00	198.153.194.1	122.91	7.51	16.4
2020-02-23 22:30:00	198.153.194.1	78.34	6.51	12.0
2020-02-23 20:30:00	198.153.194.2	65.34	4.23	15.4
2020-02-23 18:30:00	198.153.194.2	17.56	3.43	5.12
2020-02-23 14:30:00	198.153.194.1	7.87	1.83	4.30
2020-02-23 14:30:00	198.153.194.2	12.76	2.19	5.83

Answer the following questions:

Based on the report created, what is the approximate date and time of the attack? **2020-02-23 14:30:00pm**

How long did it take your systems to recover?

Systems recovered at 2020-02-23 22:30:00pm. 8 hours total

Step 2: Are We Vulnerable?

Create a report that shows the count of critical vulnerabilities from the customer database server.

The database server IP is 10.11.36.23.

The field that identifies the level of vulnerabilities is severity.

source="nessus_logs.csv" sourcetype="csv" dest_ip="10.11.36.23" | stats count by severity

Build an alert that monitors every day to see if this server has any critical vulnerabilities. If a vulnerability exists, have an alert emailed to soc@vandalay.com.

source="nessus_logs.csv" sourcetype="csv" dest_ip="10.11.36.23" severity=critical

Step 3: Drawing the (base)line

When did the brute force attack occur?

source="Administrator_logs.csv" sourcetype="csv" name="An account failed to log in"

The attack started at 8AM on Feb 21 2020

Determine a baseline of normal activity and a threshold that would alert if a brute force attack is occurring.

Since the average failed logins attempts is around 6 to 23. I put the alert trigger at 30 or higher within an hour span.

Design an alert to check the threshold every hour and email the SOC team at SOC@vandalay.com if triggered.

Possible brute force attack

Permissions: Private. Owned by admin. Edit

Modified: Oct 6, 2021 2:18:10 AM
Alert Type: Scheduled. Hourly, at 0 minutes past the hour. Edit

Trigger Condition: .. Number of Results is > 30. Edit

Actions: ∨1 Action Edit

Send email