Introduction to p-adic Galois representations

Jared Weinstein

Take Recall A/C ab var of dim g, $\omega_{\delta} A = C^{\delta}/\Lambda, \quad rk_{\mathbb{Z}} \Lambda = 2g.$ Facts $H_{\delta}(A, \mathbb{Z}) = \Lambda$, $H'(A, C) = Hom(\Lambda_{C}, C) \simeq HdR(A)$ $(\lambda \mapsto \int_{\delta} \omega) \longleftrightarrow \omega.$

H_{dR}(A) = H°(A, Ω_A) ⊕ H'(A, Q_A) (Hodge Lecomp.

Note $H_1(A, \mathbb{Z}/p^n\mathbb{Z}) = \frac{1}{p^n} \Lambda/\Lambda = \Lambda [p^n].$ $H_1^{\text{El}}(A, \mathbb{Z}p) = \varprojlim_n \Lambda [p^n] = T_p \Lambda \quad \text{Take mod at } p.$

The (Tote, good reduction)

Let K/Ω_p finite. A/K ab var. $C = \hat{R}$. $H_{ab}(A_{\bar{k}}, \mathbb{Z}_p) \otimes C \simeq H^o(A, \Omega_{A/C}) (-1) \oplus H^o(A_C, \Omega_{AC})$ $\simeq C^o(-1) \oplus C^o$

as C v.s. w/ Semilinear GK-actions.
(Hodge-Tate decomp.).

Aside (1) Servilinear Gx-action:

 $C S G_K$. $V \in Vect_{C}$. $\sigma: V \rightarrow V$, $V \circ \in G_K$ $\sigma(\alpha v) = \sigma(\alpha) \sigma(v)$, $\alpha \in C$.

(2) Tate twist:

$$\chi_{cycl}: G_K \longrightarrow \mathbb{Z}_p^{\times}, \ \sigma(\S_{p^n}) = \S_{p^n}^{\chi_{cycl}(\sigma)}.$$
 $\sigma(c) = (c) = \chi_{cycl}^{n}(\sigma) \cdot c.$
 $\sigma(c) = \chi_{cycl}^{n}(\sigma) \cdot c.$

(10: Can imagine $c = 2\pi i$).

The Let $\gamma \colon G_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$ be a clar, $2(I_{\mathbb{Q}_p})$ infinite, then $H^i(G_{\mathbb{Q}_p}, C_{(\gamma)}) = 0$, i = 0, 1.

pf Involves study of tower Koo/K.

\(\bar{K} \) Assume \(Koo = \bigcup Kn, \)

\(Koo \) For N>0, \(Km+n/Kn \) Cyclic of deg pⁿ

\(\bigcup (1 \)

\(Koo \) + tot ramified.

\(\text{R} \)

\(\text{e.g. } \) Kn = K(gyn).

Prop $\exists o < \varepsilon < 1$ S.t. $\forall n \gg o$, $\forall g \in Gal(K_{n+1}, K_n)$, $\forall x \in O_{K_{n+1}}$, $\forall x \in O_{K_{n+1}}$

 $\underbrace{\text{Ex}} \quad \text{In case} \quad \mathsf{K}_n = \mathsf{K}(\mathsf{gpn}),$ $\mathsf{Gal}(\mathsf{Knn}/\mathsf{Kn}) \simeq {}^{1+p^n \mathcal{I}_p}/{}_{1+p^{nn}\mathcal{I}_p}$ $\mathsf{Leo} \quad \mathsf{g}(\mathsf{Spnn}) - \mathsf{Spnn} = \mathsf{Spnn}(\mathsf{S}_p^\alpha - \mathsf{I}) \equiv \mathsf{O}(\mathsf{p}^{\frac{1}{p-1}}) \leftarrow \mathsf{I} + \mathsf{p}^n \mathsf{a}.$

 $(\underline{or} \exists o < E < 1 \text{ s.t. } \forall n >> 0, \ \forall x \in \mathcal{O}_{K_{n+1}},$ $\mathcal{N}_{K_{n+1}/K_n}(x) = x^p \text{ (mod } p^E).$

Now define some rings of char p.

perfect $= \widehat{E}_{K}^{+} := \lim_{K \to \mathbb{R}_{p}} (\varphi_{K_{0}}/p^{\xi} = \{(x_{0}, X_{1}, \dots) : X_{i}^{p} = X_{i-1}\}$ norm "field" U $E_{K}^{+} := \{x \in \widehat{E}_{K}^{+} : \forall n \gg 0, x_{n} \in \mathcal{O}_{K_{n}}/p^{\xi}\}.$

Let $k_n = res$ field of k_n , $k_\infty = \bigcup_n k_n = k_n$ for $N \gg 0$.

Then kn C OK/pE via Teichmüller lift. Get ko C Ek.

e.g. Cyclotomic case $K_n = \mathbb{Q}_p(y_p)$: E_K^{\dagger} contains $E = (1, \S_p, \S_{p^2}, \cdots) \in E_k^{\dagger}$ $X^p \times Y^p$ $T = E - 1 = (0, \S_{p^{-1}}, \S_{p^2} - 1, \cdots)$

 $T = E - I = (0, \xi_{1} - 1, \xi_{p^{2}} - 1, \cdots)$ wiformizers.

us T is a top nilp wit.

Easy to check: #FITI ~ Ex.

Prop If Noto, the Q_{K_n} is a uniformizer, then $\exists \pi_{n+1} \in Q_{K_{n+1}} \text{ s.f. } \pi_{n+1} \equiv \pi_n \mod \mathfrak{p}^{\ell}$.

If Let $\varpi_{n+1} \in Q_{K_{n+1}}$ be a unit. Then $N(\varpi_{n+1}) = \sum_{i=1}^{\infty} Iai i \varpi_n$, ai $\in k_n$. wif of K_n .

Want to find: $\pi_{n+1} = \sum_{i} [b_{i}] \widetilde{w}_{n+1}$ So that $\pi_{n+1} \equiv \pi_{n} \pmod{p^{\xi}}$. $\Rightarrow \sum_{i} [b_{i}^{p}] \widetilde{w}_{n+i}^{p} \equiv \pi_{n} \pmod{p^{\xi}}$ $N(\widetilde{w}_{n+1}^{i})$

Solve for bis.

Let $\bar{\pi} = (..., \pi_n, \pi_{n+1}, ...) \in E_k^+$ $t \in S$ unifs.

 $\frac{T_{hm}}{T_{c}}$ (a) $E_{k}^{\dagger} \sim k_{\infty} I \times I$ (let $E_{k} = k_{\infty} ((\times))$).

(6) Ext ~ ko I x /p].

Have a map $\theta: W(\widetilde{E}_k^+) \longrightarrow \widehat{U}_{\widehat{K}_{\infty}}$ $\downarrow_{x_1} \longrightarrow \lim_{n \to \infty} \widehat{x}_n^n$

where $x = (x_0, x_1, ...), x_n \in Q_{k_\infty}/p^{\xi}$.

 $\widetilde{\chi}_{0}$, $\widetilde{\chi}_{i}$, \cdots $\in \mathcal{O}_{k_{\infty}}$

& ker $\theta = (\omega)$.

e.g. In cycl case: $\varepsilon = (1.5p, 5p^2, \dots) \in \widetilde{E}_k^{\dagger} \subseteq \widetilde{E}_k$ $O([\varepsilon]) = 1, \quad O([\varepsilon^{1/p}]) = 5p \quad \omega \quad \omega = \frac{[\varepsilon] - 1}{[\varepsilon^{1/p}] - 1}.$

If M/Ko a fin ext'n,

M = U Mn, Mn = Mo Kn, N>0.

then Em/Ex fin sep ext'n.

15

Red((x))

Thm (Fontaine-Wintenberger) I equiv

If in exting \sim fin sep extins (

of K_{∞})

If K_{∞} If K

Cor GK ~ GEK.

Rink Facts on Ex = Ro ((x)):

In cycl case
$$T \simeq \mathbb{T}_p^{\times}$$
 $\Upsilon_a \leftarrow 1 \quad a \quad | \quad K_{10} \quad K_{10}$