VE 320 Fall 2021

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Lecture 5

Carrier Transport (Chapter 5)

Carrier transport

n type semiconductor

$$I = \frac{\Delta Q}{\Delta t} = \frac{neA_c\Delta L}{\Delta t} = neA_cv$$

Current density

$$J = \frac{I}{A_c} = nev$$

 $J = \frac{I}{A_c} = nev$ v. average drift velocity, e: electron charge, n: electron density

$$F = -eE = m^*a \rightarrow a = -\frac{eE}{m^*} \rightarrow v = at$$
 m^* : conductivity effective mass of electrons

$$v = -\frac{et}{m^*}E$$

If effective mass and t are constant, then will v linearly increase with E?

True for low electric field

$$v = -\mu_n E$$

 $\mu_{\rm n}$ is the electron mobility – Very important for semiconductors! Unit: cm²/(V·s)

Drift current density due to electrons

$$J_{n|drf} = (-en)(-\mu_n E) = e\mu_n n E$$

Total drift current density:

$$J_{drf} = e(\mu_n n + \mu_p p) E$$

Carrier transport

Electron:

Resistor heating up by current

Thermal vibration ←→ phonon

Ionized impurity

 $scattering \rightarrow average < v > does not increase as time$

$$\mu_n = \frac{et}{m^*}$$

What is t here? Time? Give more time, then the mobility increases?

$$\mu_n = \frac{e\tau_{cn}}{m_{cn}^*}$$

 $\tau_{\rm cn}$ is the mean time between collisions for electron

Hole:
$$\mu_p = \frac{e \tau_{cp}}{m_{cr}^*}$$

Phonons

Basic facts:

Atom displacement exaggerated.

Lattice scattering, or phonon scattering

- Perfect periodic lattice: no scattering
- Thermal vibration: potential function disruption, scattering

$$\mu_L \propto T^{-3/2}$$

 μ_L : mobility only due to phonon scattering

Phonon scattering

Basic facts:

- Quantum mechanic description of atom vibration at a frequency
- A wave and also a particle
- Two kinds: optical phonons and acoustic phonons
- Optical phonons:
 short wavelength → high energy
 electron-phonon collision: inelastic scattering (energy E change)
- Acoustic phonons:
 long wavelength (tens of lattice constant) → low energy
 electron-phonon collision: elastic scattering (momentum k change)
- Acoustic: coherent movement of atoms, like sound wave
- Optical: out-of-phase movements of atoms, lattice basis consists of two or more atoms, can be excited by infrared light. Raman scattering-> useful

Phonons

Basic facts:

Previously: band structure in 3D k-space

- Direct bandgap
 (electron excited, k constant, E ↑ → f ↑, v = f λ ↑)
- Indirect bandgap (P(absorbing photon) * P(phonon scattering))

Ionized impurity scattering

Coulomb interaction

$$\mu_I \propto \frac{T^{+3/2}}{N_I}$$

 $\mu_{\rm l}$: mobility only due to ionized impurity scattering

 $N_{I} = N_{d}^{+} + N_{a}^{-}$ is the total ionized impurity concentration

If the number of ionized impurity centers increases, then the probability of a carrier encountering an ionized impurity center increases, implying a smaller value of $\mu_{\rm l}$

Total scattering and mobility

Total probability of a scattering event occurring in the differential time dt

$$\frac{dt}{\tau} = \frac{dt}{\tau_I} + \frac{dt}{\tau_L}$$

Total mobility

$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_L}$$

Mobility vs. T at different doping

Mobility vs. T

Drift current density

$$J_{drf} = e(\mu_n n + \mu_p p)E = \sigma E$$

 σ is the conductivity of the semiconductor material

Resistivity
$$\rho = \frac{1}{\sigma} = \frac{1}{e(\mu_n n + \mu_p p)}$$

For p-type semiconductor with an acceptor doping N_a ($N_d=0$) in which $N_a >> n_i$, and if electron and hole mobilities are similar, then

$$\sigma = e(\mu_n n + \mu_p p) \approx e \mu_p p$$

Assume complete ionization:

$$\sigma \approx e \mu_{\rho} N_a$$

Velocity saturation

Velocity saturation

Velocity saturation

Carrier drift velocity versus electric field for electrons in silicon

$$v_n = \frac{v_s}{\left[1 + \left(\frac{E_{\text{on}}}{E}\right)^2\right]^{1/2}}$$

 $v_{\rm s}$: saturation velocity ~ 10⁷ cm/s at 300K, $E_{\rm on}$ = 7×10³ V/cm

Small electric field:

$$v_n \cong \left(\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{on}}}\right) \cdot v_s$$

Holes, small electric field:

$$v_p \cong \left(\frac{\mathrm{E}}{\mathrm{E}_{\mathrm{op}}}\right) \cdot v_s$$

Mobility vs T

Semiconductor:

metal: conductivity \subseteq

Carrier diffusion

2 mechanisms that can induce current in a semiconductor: drift, diffusion

Diffusion is the process whereby particles flow from a region of high concentration toward a region of low concentration.

One half of the electrons at x=-l will be traveling to the right and one half of the electrons at x=l will be traveling to the left, then the net rate of electron flow, F_n in the +x direction at x=0 is

$$F_n = \frac{1}{2}n(-l)v_{th} - \frac{1}{2}n(+l)v_{th} = \frac{1}{2}v_{th}[n(-l) - n(+l)]$$

Carrier diffusion

Electron:
$$F_n = \frac{1}{2}n(-l)v_{th} - \frac{1}{2}n(+l)v_{th} = \frac{1}{2}v_{th}[n(-l) - n(+l)]$$

Taylor expansion of n at x=0 (l is very small)

$$F_{n} = \frac{1}{2} v_{th} \left\{ \left[n(0) - l \frac{dn}{dx} \right] - \left[n(0) + l \frac{dn}{dx} \right] \right\}$$
$$F_{n} = -v_{th} l \frac{dn}{dx}$$

Current density

$$J = -eF_n = +ev_{th}l\frac{dn}{dx}$$

$$J_{nx|dif} = eD_n \frac{dn}{dx}$$

where $D_{\rm n} = v_{\rm th} l$ is called the electron diffusion coefficient, has units of cm²/s

$$J_{px|dif} = -eD_p \frac{dp}{dx}$$

Carrier diffusion

Total current density with both drift and diffusion

$$J = en\mu_n E_x + ep\mu_p E_x + eD_n \frac{dn}{dx} - eD_p \frac{dp}{dx}$$

4 terms: but usually some certain term will dominate for certain cases

Nonuniform doping

Fermi level: always constant at thermal equilibrium

- The space charge induced by this diffusion process is a small fraction of the impurity concentration
- Induced electric field: prevents any further diffusion, counter the diffusion

$$E_x = -\frac{d\phi}{dx} = \frac{1}{e} \frac{dE_{Fi}}{dx}$$

Intrinsic Fermi-level changes-> there is an electric field

Nonuniform doping

Fermi level: always constant at thermal equilibrium

$$E_x = -\frac{d\phi}{dx} = \frac{1}{e} \frac{dE_{Fi}}{dx}$$

$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \approx N_d(x)$$

$$E_F - E_{Fi} = kT \ln \left(\frac{N_d(x)}{n_i} \right)$$

$$-\frac{dE_{Fi}}{dx} = \frac{kT}{N_d(x)} \frac{dN_d(x)}{dx}$$

$$E_x = -\left(\frac{kT}{e}\right) \frac{1}{N_d(x)} \frac{dN_d(x)}{dx}$$

Einstein relation

Drift current = diffusion current

Nonuniformly doped semiconductor with no electrical connection

Drift from induced electric field balances the diffusion

Electrons:

$$J_n = 0 = en\mu_n E_x + eD_n \frac{dn}{dx}$$

Assume $n=N_d$

$$J_n = 0 = e\mu_n N_d(x)E_x + eD_n \frac{dN_d(x)}{dx}$$

$$E_x = -\left(\frac{kT}{e}\right) \frac{1}{N_d(x)} \frac{dN_d(x)}{dx}$$

$$0 = -e\mu_n N_d(x) \left(\frac{kT}{e}\right) \frac{1}{N_d(x)} \frac{dN_d(x)}{dx} + eD_n \frac{dN_d(x)}{dx}$$

$$\frac{D_n}{\mu_n} = \frac{kT}{e}$$

Einstein relation
$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_n} = \frac{kT}{e}$$

Carrier concentration

Carrier drift & diffusion

carrier drift: electric field $E \neq 0$

driving force: electric field

flux:

of charges passing a unit area at a give unit time

carrier diffusion: electric field E = 0

driving force: thermal dynamics

flux:

of carriers passing a unit area at a give unit time

