No.	SOLUTION
1(a)	$\frac{1}{x-2} \ge \frac{2x-3}{(x-2)(x-3)}$
	x-2 = (x-2)(x-3)
	(zero marks for cross multiply)
	$\frac{1}{x-2} - \frac{2x-3}{(x-2)(x-3)} \ge 0$
	$\frac{x-3-(2x-3)}{(x-2)(x-3)} \ge 0$
	$\frac{x}{(x-2)(x-3)} \le 0$
	From number line: $x \le 0$ or $2 < x < 3$
(b)	$\left \frac{x+1}{x-1} \right \le 2 \to -2 \le \frac{x+1}{x-1} \le 2$
	$-2 \le \frac{x+1}{x-1} \qquad and \qquad \frac{x+1}{x-1} \le 2$
	$\left \frac{x+1}{x-1} + 2 \ge 0 \right \frac{x+1}{x-1} - 2 \le 0$
	$\frac{x+1+2x-2}{x-1} \ge 0 \qquad \frac{x+1-2x+2}{x-1} - 2 \le 0$
	$\frac{3x-1}{x-1} \ge 0 \qquad \qquad \frac{-x+3}{x-1} \le 0$
	From number line: $x \le \frac{1}{3}$ or $x > 1$ and $x < 1$ or $x \ge 3$
	Hence, $x \le \frac{1}{3}$ or $x \ge 3$

No. SOLUTION

2(a)
$$u = \ln x$$
 $dv = xdx$

$$du = \frac{1}{x}dx \qquad v = \frac{x^2}{2}$$

$$y = \int x \ln x dx$$

$$y = \ln x \frac{x^2}{2} - \int \frac{1}{x} \frac{x^2}{2} dx$$

$$y = \ln x \frac{x^2}{2} - \frac{x^2}{4} + C$$

	2021 31 231 3010110118
No.	SOLUTION
	$(1,0), C = \frac{1}{4}$
	$y = \ln x \frac{x^2}{2} - \frac{x^2}{4} + \frac{1}{4}$
2(b)	
	Let $u = \cos x$
	$du = -\sin x dx$
	$-du = \sin x dx$
	$\int \sin(x) \left[\cos(x)\right]^2 dx$
	$=-\int u^2 du$
	$=-\frac{1}{3}u^3+C$
	$=-\frac{\cos^3 x}{3} + C$

No.	SOLUTION
3(a)	$\sqrt{2x-1} = x - 0 \cdot 5$
	$2x - 1 = x^2 - x + 0.25$
	$\sqrt{2x - 1} = x - 0.5$ $2x - 1 = x^2 - x + 0.25$ $x^2 - 3x + 1.25 = 0$ $x = 0.5, x = 2.5$
	x = 0.5, x = 2.5
(b)	$A = \int_{0.5}^{2.5} \sqrt{2x - 1} - x + 0.5 \ dx$
	$= \left[\frac{(2x-1)^{\frac{3}{2}}}{2\left(\frac{3}{2}\right)} - \frac{x^2}{2} + 0.5x \right]_{0.5}^{2.5}$
	= 2/3 units square

No.	SOLUTION
4	• Volume of revolution generated by $4x^2 + 4y = 41$
	$V = \pi \int_{0}^{5/2} \left(-x^2 + \frac{41}{4} \right)^2 dx$
	$=\pi \int_{0}^{5/2} \left(x^4 - \frac{41}{2} x^2 + \frac{1681}{16} \right) dx$
	$=\pi \left[\frac{x^5}{5} - \frac{41}{6}x^3 + \frac{1681}{16}x\right]_0^{5/2}$
	$=175\frac{5}{12}\pi unit^3$
	• Volume of revolution generated by $y = 2x-3 + 2 = \begin{cases} -2x+5 \\ 2x-1 \end{cases}$
	$V = \pi \int_{0}^{3/2} (-2x+5)^{2} dx + \pi \int_{3/2}^{5/2} (2x-1)^{2} dx$
	$= \pi \int_{0}^{3/2} \left(4x^2 - 20x + 25\right) dx + \pi \int_{3/2}^{5/2} \left(4x^2 - 4x + 1\right) dx$
	$= \pi \left[\frac{4x^3}{3} - 10x^2 + 25x \right]_0^{3/2} + \pi \left[\frac{4x^3}{3} - 2x^2 + x \right]_{3/2}^{5/2}$
	$= \pi \left(19\frac{1}{2} - 0\right) + \pi \left(10\frac{5}{6} - 1\frac{1}{2}\right)$
	$=28\frac{5}{6}\pi \ unit^3$
	Volume of revolution of region R
	$= \left(175 \frac{5}{12} - 28 \frac{5}{6}\right) \pi \ unit^3 = 146 \frac{7}{12} \pi \ unit^3$

No.	SOLUTION
5 (a)	-12 <u>j</u>

5(b)
$$\| 2u + y \| = \| 11i - 4j \|$$

$$= \sqrt{11^2 + (-4)^2}$$

$$= \sqrt{137}$$
(c)
$$|u| = \sqrt{3^2 + (4)^2} = 5 = 3$$

$$|u| = \frac{1}{|u|} u = \frac{1}{5} (3i + 4j)$$
(d)
$$|u \cdot y| = |u| ||b|| \cos \theta$$

$$15 - 48 = 5(13) \cos \theta$$

$$\cos \theta = -\frac{33}{65}$$

$$\theta = 120.51^{\circ}$$

N	lo.	SOLUTION
6(a)	(4) (1)
(i))	$\boldsymbol{r} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
(ii)	$(4 + \lambda) - 2(-1 - 2\lambda) + (2 + \lambda) = 20$ $\Rightarrow 4 + 2 + 2 + \lambda + 4\lambda + \lambda = 20$ $\Rightarrow \lambda = 2$
		The point of intersection is: (4+2, -1-4, 2+2)=(6, -5, 4)
(b))(i)	$\overrightarrow{BC} = \begin{pmatrix} -2\\0\\0 \end{pmatrix} \qquad \overrightarrow{BV} = \begin{pmatrix} -2\\-2\\4.5 \end{pmatrix}$
		$ \tilde{n} = \begin{vmatrix} \tilde{i} & \tilde{j} & \tilde{k} \\ -2 & 0 & 0 \\ -2 & -2 & 4.5 \end{vmatrix} $
		= i(0) - j(-9-0) + k(4-0)
		=9j+4k
b(i	ii)	B is on the plane, $\begin{pmatrix} x-2\\y-2\\z-0 \end{pmatrix} \cdot \begin{pmatrix} 0\\9\\4 \end{pmatrix} = 0 \Rightarrow 9y + 4z = 18$

	2021 S1 EST Solutions	P
No.	SOLUTION	
7(a)	f(x) = 2x + 1	
	$f^{2}(x) = 2(2x+1)+1$	
	=4x+3 (shown)	
(b)	Let P_n be the statement $f^n(x) = 2^n x + 2^n - 1$	
	STEP 1: Prove that P_1 is true.	
	When n = 1, LHS = $f^{1}(x) = 2x + 1$	
	and RHS = $2^{1}(x)+2^{1}-1=2x+1$	
	Hence LHS = RHS.	
	Therefore P_1 is true.	
	STEP 2: Assume that P_n is true for an arbitrary $n \in \mathbb{Z}^+$.	
	P_n : $f^n(x) = 2^n x + 2^n - 1$	
	STEP 3: Prove that P_{n+1} is true.	
	P_{n+1} : $f^{n+1}(x) = 2^{n+1}x + 2^{n+1} - 1$	
	$L.H.S. = f^{n+1}(x)$	
	$=f^{n}f\left(x\right)$	
	$=f^{n}(2x+1)$	
	$=2^{n}(2x+1)+2^{n}-1$	
	$=2^{n+1}x+2^n+2^n-1$	
	$= 2^{n+1}x + 2^{n+1} - 1 = R.H.S(shown)$	
	Hence P_n is true implies P_{n+1} is true. Since P_1 is true, it follows by the	
	principle of mathematical induction that P_n is true for all $n \in \mathbb{Z}^+$	