语法分析

魏恒峰

hfwei@nju.edu.cn

2020年11月21日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Syntax Tree)

语法分析举例

(Expr)

if (

(Stmt)

(Stmt)

语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

语法分析阶段的主题之二: 构建语法分析树

	$\langle \mathrm{Stmt} \rangle$													
if	((Expr))					(St	$\mathrm{mt}\rangle$				
if	$\langle \text{Expr} \rangle$	(Optr)	(Expr)						(St	mt				
if	$(\overline{\langle Id \rangle})$	(Optr)	(Expr)						St	mt				
if	(x	(Optr)	(Expr)						St	$\mathrm{mt} \rangle$				
if	(x	>	(Expr)		$\langle \mathrm{Stmt} \rangle$									
if	(x	>	(Num))	$\langle \mathrm{Stmt} \rangle$									
if	(x	>	9)	$\langle \text{Stmt} \rangle$									
if	(x	>	9) -	(StmtList)								}	
if	(x	>	9		((StmtList)				(S	$ \text{tmt}\rangle$		_ j	
if	(x	>	9			(Stmt)			(Stmt)					
if	(x	>	9		$\overline{\langle \mathrm{Id} \rangle}$	= ((Expr)	;		(S	$\operatorname{tmt}\rangle$			
if	(x	>	9		X	= ((Expr)				$\operatorname{tmt}\rangle$			
if	(x	>	9		x	= 7	(Num)			(S	$\operatorname{tmt}\rangle$			
if	(x	>	9		x	= -	0			(S	$ \text{tmt}\rangle$			
if	(x	>	9		x			$\langle \mathrm{Id} \rangle$	=		(Expr)		; }	
if	(x	>	9		x			; y	=		$\langle \text{Expr} \rangle$			
if	(x	>	9		x	=		; y	=	(Expr)	(Optr)	(Expr)		
if	(x	>	9		x	=			=	$\langle \mathrm{Id} \rangle$	(Optr)	(Expr)		
if	(x	>	9		x	=		; y	=	У	$\langle \mathrm{Optr} \rangle$	$\langle Expr \rangle$		
if	(x	>	9		x	=			=	У	+	$\langle \text{Expr} \rangle$		
if	(x	>	9		x	=			=		+	(Num)		
if	(x	>	9) -	x	=	0	; у	=	у	+	1	; }	
								-			∄ → ∢	3 × 4 3	. ´ :	

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

上下文无关文法

Definition (Context-Free Grammar (CFG); 上下文无关文法)

上下文无关文法 G 是一个四元组 G = (T, N, P, S):

- ▶ T 是<mark>终结符号</mark> (Terminal) 集合, 对应于词法分析器产生的词法单元;
- ▶ N 是<mark>非终结符号</mark> (Non-terminal) 集合;
- ▶ P 是产生式 (Production) 集合;

$$A \in N \longrightarrow \alpha \in (T \cup N)^*$$

头部/左部 (Head) A: 单个非终结符

体部/右部 (Body) α : 终结符与非终结符构成的串, 也可以是空串 ϵ

▶ S 为开始 (Start) 符号。要求 $S \in N$ 且唯一。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕♀♡

$$G=(\{a,b\},\{S\},P,S)$$

$$S \to aSb$$
$$S \to \epsilon$$

$$S \to \epsilon$$

$$G = (\{(,)\}, \{S\}, P, S)$$

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

- $stmt \rightarrow if expr then stmt else stmt$
 - if stmt then stmt
 - begin stmtList end

 $stmtList \rightarrow stmt$; $stmtList \mid stmt$

关于语句块与条件语句的文法

约定: 如果没有明确指定, 第一个产生式的头部就是开始符号

关于终结符号的约定

- 1) 下述符号是终结符号:
- ① 在字母表里排在前面的小写字母,比如 $a \setminus b \setminus c_o$
- ② 运算符号,比如+、*等。
- ③ 标点符号,比如括号、逗号等。
- ④ 数字 0、1、…、9。
- ⑤ 黑体字符串,比如 id 或 if。每个这样的字符串表示一个终结符号。

关于**非终结符号**的约定

- 2) 下述符号是非终结符号:
- ① 在字母表中排在前面的大写字母, 比如 $A \setminus B \setminus C$ 。
- ② 字母 S。它出现时通常表示开始符号。
- ③ 小写、斜体的名字, 比如 expr 或 stmt。

$$E \rightarrow E + E + E + E + (E) + id$$

推导即是将某个产生式的左边替换成它的右边

每一步推导需要选择替换哪个非终结符号, 以及使用哪个产生式

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \rightarrow E + E + E + E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E:$ 经过一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$: 经过一步或多步推导得出

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E$: 经讨一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$: 经过一步或多步推导得出

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(E+id) \implies -(id+id)$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + E) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + E) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentence; 句子)

如果 $S \stackrel{*}{\Rightarrow} w$, 且 $w \in T^*$, 则称 w 是文法 G 的一个句子。

Definition (文法 G 生成的语言 L(G))

文法 G 的语言 L(G) 是它能推导出的所有句子构成的集合。

$$w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$$

$$S \to SS$$

$$S \to (S)$$

$$S \to ()$$
 $S \to \epsilon$

$$S \to \epsilon$$

$$L(G) =$$

$$S \rightarrow SS$$
 $S \rightarrow (S)$
 $S \rightarrow ()$
 $S \rightarrow \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o SS$$
 $S o (S)$ $S o ()$ $S o \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o aSb$$
 $S o \epsilon$

$$L(G) =$$

$$S o SS$$
 $S o (S)$ $S o ()$ $S o \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o aSb$$
 $S o \epsilon$

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$S \rightarrow aSa$$
 $S \rightarrow bSb$
 $S \rightarrow a$
 $S \rightarrow b$
 $S \rightarrow b$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$S \rightarrow aSa$$
 $S \rightarrow bSb$
 $S \rightarrow a$
 $S \rightarrow b$
 $S \rightarrow b$

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$S \to bSbb \mid A$$
$$A \to aA \mid \epsilon$$

$$A \to aA \mid \epsilon$$

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E * E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\underset{lm}{\longrightarrow}} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E + E + E + (E) + id$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\underset{\text{lm}}{\Longrightarrow}} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\underset{\text{lm}}{\Longrightarrow}} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

$$E \Longrightarrow_{\mathrm{rm}} -E \Longrightarrow_{\mathrm{rm}} -(E) \Longrightarrow_{\mathrm{rm}} -(E+E) \Longrightarrow_{\mathrm{rm}} -(E+\mathbf{id}) \Longrightarrow_{\mathrm{rm}} -(\mathbf{id}+\mathbf{id})$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ 毫 ● ♥ Q (*)

Definition (Left-sentential Form; 最左句型)

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最左句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

Definition (Right-sentential Form; 最右句型)

如果 $S \xrightarrow{*} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最右句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

语法分析树

语法分析树是静态的,它不关心动态的推导顺序

一棵语法分析树对应多个推导

语法分析树

语法分析树是静态的,它不关心动态的推导顺序

一棵语法分析树对应多个推导

但是,一棵语法分析树与最左(最右)推导一一对应

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

1 - 2 - 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

1 - 2 - 3 的语法树?

$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{number}$

1 - 2 - 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

1 - 2 - 3 的语法树?

二义性 (Ambiguous) 文法: 存在具有不唯一的语法树的句子

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (~)

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

1 + 2 * 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

1 + 2 * 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

$$1 + 2 * 3$$
 的语法树?

- $stmt \rightarrow if expr then stmt$
 - if expr then stmt else stmt
 - other
 - "悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

 $stmt \rightarrow if expr then <math>stmt$

if expr then stmt else stmt

| other

"悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

26 / 34

stmt -> if expr then stmt

if expr then stmt else stmt

other

"悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

二义性文法

不同的语法分析树产生不同的语义

二义性文法

不同的语法分析树产生不同的语义

(任何) 语法分析器都无法解析二义性文法

二义性文法

Q:如何识别二义性文法?

Q: 如何消除文法的二义性?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

左结合, 先乘除后加减

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid number$$

左结合, 先乘除后加减

$$E o E + T \mid E - T \mid T$$
 $T o T * F \mid T/F \mid F$
 $F o \mathbf{id} \mid \mathbf{number} \mid (E)$

 $stmt \rightarrow if expr then stmt$

if expr then stmt else stmt

| other

if E_1 then if E_2 then S_1 else S_2

"每个else与最近的尚未匹配的then匹配"

图 4-10 if-then-else 语句的无二义性方法

33 / 34

Thank You!

Office 926 hfwei@nju.edu.cn

34 / 34