assignment08

July 3, 2019

1 Functional Programming SS19

2 Assignment 08 Solutions

2.0.1 Exercise 1 ($\beta\delta$ – Reduction)

Recall the notation of " δ -reduction", which is defined as follows:

A set δ of rules of the form $ct_1...t_n \to r$ with $c \in C$, $t_1,...,t_n$, $r \in \Lambda$ is called a delta-rule if

- 1. $t_1, ..., t_n$, r are closed lambda terms
- 2. all t_i are in \rightarrow_{β} -normal form
- 3. the t_i do not contain any left-hand side of a rule from δ
- 4. in δ there exist no two different rules $ct_1...t_n \to r$ and $ct_1...t_m \to r'$ with $m \ge n$

For such a set δ we define the relation \rightarrow_{δ} as the smallest relation with

- $l \rightarrow_{\delta} r$ for all $l \rightarrow r \in \delta$
- if $t_1 \rightarrow_{\delta} t_2$ then also $(t_1 r) \rightarrow_{\delta} (t_2 r)$, $(r t_1) \rightarrow_{\delta} (r t_2)$, and $\lambda y.t_1 \rightarrow_{\delta} \lambda y.t_2$ for all $r \in \Lambda$, $y \in V$.

We denote the combination of β - and δ -reduction by $\rightarrow_{\beta\delta}$, i.e. $\rightarrow_{\beta\delta}=\rightarrow_{\beta}\cup\rightarrow_{\delta}$.

The four conditions (1), (2), (3), (4) are required in order to ensure that $\rightarrow_{\beta\delta}$ is confluent. Now assume that we replace condition (4) by the following condition:

in δ there exist no two different rules $ct_1...t_n \to r$ and $ct_1...t_m \to r'$ with $m \ge n$ and $r \ne r'$.

Would $\rightarrow_{\beta\delta}$ *still be confluent? Please explain your answer.*

A $\rightarrow_{\beta\delta}$ reduction with the modified condition (4) is not confluent in general. In particular, the modified condition allows rules $ct_1...t_n \rightarrow r$ and $ct_1...t_m \rightarrow r$ with $m \geq n$; depending on the evaluation strategy, this might lead to a terminating reduction sequence when applying one of the rules, but a non-terminating reduction when applying another rule.

To show this, let us consider an example in which we have the following rules in δ :

1: c True
$$\rightarrow \lambda x.x$$

2: c True False $\rightarrow \lambda x.x$

If we then need to reduce the expression $\exp = c$ True $(\lambda y.y \ y)(\lambda y.y \ y)$, the reduction using rule 1 terminates since the resulting term is in weak head normal order:

c True
$$(\lambda y.y \ y)(\lambda y.y \ y)$$

 $\rightarrow_{\delta_1} (\lambda x.x)(\lambda y.y \ y)(\lambda y.y \ y)$

On the other hand, the reduction using rule 2 does not terminate since the term $(\lambda y.y \ y)(\lambda y.y \ y)$ has to be reduced for the rule to be applied, but the β -reduction on it does not terminate.

The modified condition may however be confluent in some cases. As another example, let us consider the following rules in δ :

1: c True \rightarrow True 2: c True True \rightarrow True 3: True True \rightarrow True

If we need to reduce $\exp = c$ True True, the reduction rule 1 results in True True, which can then be reduced to True by applying rule 3. Similarly, applying rule 2 on exp results in True. In this case, both rules can be reduced to the same expression.

2.0.2 Exercise 2 (Weak Head Normal Order Reduction)

For each of the following terms please show the reduction steps of the WHNO-reduction with the $\rightarrow_{\beta\delta}$ -relation up to weak head normal form. In each step, please indicate whether it is a \rightarrow_{β} - or \rightarrow_{δ} -step. Also indicate if the reduction stops because no more $\beta\delta$ -reduction is possible or if it stops only because the term is already in WHNO. Note that Nil, Cons, and False are constructors. Here the set δ contains the following rules:

if False
$$\rightarrow \lambda xy.y$$

gt 22 23 \rightarrow False
mult 4 2 \rightarrow 8
isa_{Cons} Nil \rightarrow False

a) $(\lambda x.mult \ x \ 2)$ (if $(gt \ 22 \ 23) \ 1 \ 4)$

$$\begin{array}{c} (\lambda x.\mathsf{mult}\; x\; 2)\; (\mathsf{if}\; (\mathsf{gt}\; 22\; 23)\; 1\; 4) \to_{\beta} \mathsf{mult}\; (\mathsf{if}\; (\mathsf{gt}\; 22\; 23)\; 1\; 4)\; 2 \\ \qquad \to_{\delta} \mathsf{mult}\; (\mathsf{if}\; \mathsf{False}\; 1\; 4)\; 2 \\ \qquad \to_{\delta} \mathsf{mult}\; ((\lambda x\; y.y)\; 1\; 4)\; 2 \\ \qquad \to_{\beta} \mathsf{mult}\; ((\lambda x\; y.y)\; 1\; 4)\; 2 \\ \qquad \to_{\beta} \mathsf{mult}\; ((\lambda y.y)\; 4)\; 2 \\ \qquad \to_{\beta} \mathsf{mult}\; 4\; 2 \\ \qquad \to_{\delta} 8 \end{array}$$

The term is in WHNO at this point, so the reduction stops.

```
b) (\lambda x \ y.x \ y) \ ((\lambda z.mult \ 4 \ z) \ 2)
```

$$(\lambda x \ y.x \ y) \ ((\lambda z.mult \ 4 \ z) \ 2) \rightarrow_{\beta} \lambda y.((\lambda z.mult \ 4 \ z) \ 2) \ y$$

This term is already in WHNO, so the reduction stops even though additional $\beta\delta$ -reduction steps are possible.

```
c) (\lambda z.if (isa_{Cons} z) Nil (Cons ((\lambda x.mult 4 x) 2) Nil)) Nil
```

```
(\lambda z. \text{if } (\text{isa}_{\textit{Cons}} \ z) \ \text{Nil} \ (\text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil})) \ \text{Nil} \rightarrow_{\beta} \text{if } (\text{isa}_{\textit{Cons}} \ \text{Nil}) \ \text{Nil} \ (\text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil})) \\ \rightarrow_{\delta} \text{if } (\text{False}) \ \text{Nil} \ (\text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil})) \\ \rightarrow_{\delta} (\lambda x \ y. y) \ (\text{Nil} \ (\text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil})) \\ \rightarrow_{\beta} (\lambda y. y) \ (\text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil}) \\ \rightarrow_{\beta} \text{Cons} \ ((\lambda x. \text{mult } 4 \ x) \ 2) \ \text{Nil}
```

At this point, there are no additional $\beta\delta$ -reduction steps possible since Cons is a constructor, so the term is in WHNO.

2.0.3 Exercise 3 (Simple Haskell to Lambda Calculus)

Please translate the following Haskell-expression into a lambda term using Lam:

Hint: If you want, you can write (plus x y) instead of (x + y), i instead of isa_Nil, etc. Let $exp = \langle zs - \rangle$ if isa_Nil zs then 0 else 1 + length (sel_2,2 (argof_Cons zs)). We then have

```
\mathcal{L}am(\text{let length} = \exp \text{ in length Nil})
= \mathcal{L}am(\text{length Nil})[\text{length } / \text{ fix}(\lambda \text{ length.}\mathcal{L}am(\exp))]
```

We have that

```
 \mathcal{L}am(\exp) = \mathcal{L}am(\zs -> if isa\_Nil zs then 0 else 1 + length (sel\_2,2 (argof\_Cons zs))) 
 = \lambda zs. \mathcal{L}am(if isa\_Nil zs then 0 else 1 + length (sel\_2,2 (argof\_Cons zs))) 
 = \lambda zs. (if \mathcal{L}am(isa\_Nil zs) \mathcal{L}am(0) \mathcal{L}am(1 + length (sel\_2,2 (argof\_Cons zs)))) 
 = \lambda zs. (if (\mathcal{L}am(isa\_Nil) \mathcal{L}am(zs)) 0 \mathcal{L}am(plus 1 length (sel\_2,2 (argof\_Cons zs)))) 
 = \lambda zs. (if (isa\_Nil zs) 0 (\mathcal{L}am(plus 1) \mathcal{L}am(length (sel\_2,2 (argof\_Cons zs))))) 
 = \lambda zs. (if (isa\_Nil zs) 0 (\mathcal{L}am(plus) \mathcal{L}am(1) (\mathcal{L}am(length) \mathcal{L}am(sel\_2,2 (argof\_Cons zs))))) 
 = \lambda zs. (if (isa\_Nil zs) 0 (plus 1 (length (\mathcal{L}am(sel\_2,2) \mathcal{L}am(argof\_Cons zs))))) 
 = \lambda zs. (if (isa\_Nil zs) 0 (plus 1 (length (sel\_2,2 (\mathcal{L}am(argof\_Cons \mathcal{L}am(zs))))) 
 = \lambda zs. (if (isa\_Nil zs) 0 (plus 1 (length (sel\_2,2 (argof\_Cons zs)))) 
 = \lambda zs. (if isa\_Nil zs) 0 (plus 1 (length (sel\_2,2 (argof\_Cons zs))))
```

Therefore,

 $\mathcal{L}\mathit{am}(\text{let length} = \exp \text{ in length Nil}) \\ = \mathcal{L}\mathit{am}(\text{length Nil})[\text{length } / \text{ fix}(\lambda \text{ length zs.}(\text{if isa_Nil zs 0 (plus 1 (length (sel_2,2 (argof_Cons zs))))))})] \\ = (\text{fix}(\lambda \text{ length zs.}(\text{if isa_Nil zs 0 (plus 1 (length (sel_2,2 (argof_Cons zs))))))}) \text{ Nil } \\ \text{Let us denote } (\text{fix}(\lambda \text{ length zs.}(\text{if isa_Nil zs 0 (plus 1 (length (sel_2,2 (argof_Cons zs))))))}) \\ \text{by r. Using this notation, we can, for completeness, perform a } \beta\text{-reduction to evaluate the expression:} \\ \end{aligned}$

```
\begin{split} &\operatorname{fix}(\mathbf{r}) \operatorname{Nil} \\ &\to_{\delta} r \ (\operatorname{fix}(\mathbf{r})) \operatorname{Nil} \\ &\to_{\beta} (\lambda \operatorname{zs.}(\operatorname{if} \operatorname{isa\_Nil} \operatorname{zs} 0 \ (\operatorname{plus} 1 \ (\operatorname{fix}(\mathbf{r}) \ (\operatorname{sel\_2,2} \ (\operatorname{argof\_Cons} \operatorname{zs})))))) \operatorname{Nil} \\ &\to_{\beta} \operatorname{if} \operatorname{isa\_Nil} \operatorname{Nil} 0 \ (\operatorname{plus} 1 \ (\operatorname{fix}(\mathbf{r}) \ (\operatorname{sel\_2,2} \ (\operatorname{argof\_Cons} \operatorname{Nil}))) \end{split}
```

which evaluates to 0 since if isa_Nil evaluates to true.