

Co je topologie sítě?

 říká, jakým způsobem jsou jednotlivé počítače, switche, routery nebo servery propojeny a jak mezi nimi proudí data

Představte si to jako dopravní síť. Silnice jsou kabely a auta jsou data. Když je silnice ucpaná, data se zdržují. Když je silnice přerušená, auta se nedostanou do cíle. Stejně je to i v počítačových sítích.

Topologie popisuje obecné uspořádání sítě.

Typy síťových topologií

Všechny počítače jsou připojené k jednomu centrálnímu

vrcholu je hlavní uzel a pod ním další větve. Používá se ve

"Kombinuje více topologií podle potřeby. Například část

velkých sítích, například v korporacích.

sítě je hvězda, jiná je propojena do kruhu.

zařízení, například ke switchi nebo routeru. -

NICIDĚŽNIĚIČÍ DONAA

TYP

Hvězda

Strom (Tree)

Hybridní

(Star)

VÝHODY A NEVÝHODY

- pokud selže centrální prvek, spadne celá

když vypadne kořenová větev, problém

se přenese na všechny podřízené části

+ flexibilita, síť se přizpůsobí prostředí."

+ snadné zapojení a správa

` '	NEJBEZNEJSI DOMA	sit
Sběrnice (Bus)	Všechna zařízení jsou připojena k jedné společné lince – kabelu. Je to jednoduché a levné řešení, ale dnes už zastaralé.	- když se kabel poškodí, vypadne celá síť, a navíc může docházet ke kolizím dat
Kruh (Ring)	Počítače jsou propojeny do kruhu. Data putují v jednom směru kolem dokola.	 + každý má rovný přístup k přenosu - když vypadne jeden počítač nebo kabel, může spadnout celý kruh
Smíšená (Mesh) P2P (každý s každým)	"Každý je propojen s více dalšími uzly. Existují dvě varianty – částečně nebo plně propojená síť.	 + vysoká odolnost proti chybám, protože data si najdou jinou cestu. - složitost a vysoké náklady
	"Hierarchické uspořádání – vypadá to jako strom. Na	+ přehlednost

Typy síťových topologií

Network Topology Types

Co je síťový diagram?

Síťový diagram je praktická mapa sítě.

Správce sítě ho musí mít, protože bez něj by se v síti ztratil. Diagram nám říká, jak je síť postavená, a pomáhá při plánování, údržbě nebo hledání chyb.

Fyzický diagram	Logický diagram
 ukazuje, kde jsou zařízení fyzicky umístěna a jak jsou propojena kabely. například že switch je v učebně 103, router ve školní serverovně a kabel vede mezi nimi 	 ukazuje, jak data mezi zařízeními proudí, jaké mají IP adresy a na jakých portech jsou připojená neřeší fyzické umístění, ale spíš vztahy mezi zařízeními

Síťový diagram - účel

Síťové diagramy slouží k:

- PLÁNOVÁNÍ A NÁVRHU SÍTĚ usnadňují rozhodování o tom, jakou topologii použít pro konkrétní aplikace nebo prostředí;
- DIAGNOSTICE pomáhají identifikovat potenciální problémy nebo slabá místa v síti;
- DOKUMENTACI slouží jako záznamy o rozložení sítě, což usnadňuje údržbu a správu;
- ŠKÁLOVATELNOSTI A OPTIMALIZACI umožňují zhodnotit, jak může být síť v budoucnu rozšířena nebo optimalizována pro lepší výkon.

Fyzický diagram sítě

Logický diagram sítě

Síťová architektura a souvislosti

Topologie a diagramy jsou základ, ale správce sítě musí přemýšlet i o tom, jak síť funguje v praxi. Každá síť by měla splňovat čtyři důležité vlastnosti:

VLASTNOST	POPIS
Odolnost proti chybám	 pokud vypadne jedno spojení, síť by měla najít jinou cestu, tomu říkáme redundance
Škálovatelnost	 síť musí být připravena na rozšiřování. Pokud dnes připojíme 50 počítačů, zítra to může být 500.
Kvalita služeb (QoS)	 ne všechna data jsou stejná. Hlasový hovor musí mít přednost před stahováním souborů, protože potřebuje okamžitou odezvu.
Bezpečnost	 síť musí chránit zařízení i data, nejen proti útokům zvenku, ale i proti chybám uvnitř firmy nebo školy

Odolnost proti chybám

Škálovatelnost sítě

K internetu lze připojit další uživatele a celé sítě, aniž by došlo ke snížení výkonu pro stávající uživatele.

QoS (Quality of Services)

hlasovou

Bezpečnost sítě

Bezpečnost sítě

Žádné řešení nemůže 100 % ochránit síť před různými hrozbami, které existují.

Správci sítě musí chránit informace obsažené v paketech přenášených po síti a informace uložené na zařízeních připojených k síti. Aby bylo možné dosáhnout cílů zabezpečení sítě, existují tři základní požadavky:

□ **Důvěrnost** – znamená, že k datům mají přístup a jejich čtení pouze

- zamýšlení a oprávnění příjemci.

 Integrita zajišťuje uživatelům, že informace nebyly změněny při
 - □ Integrita zajišťuje uživatelům, že informace nebyly změněny při přenosu, z místa původu do místa určení.
 - □ **Dostupnost** zajišťuje uživatelům včasný a spolehlivý přístup k datovým službám pro oprávněné uživatele.

Závěrem

Dnes jsme si vysvětlili, co znamená topologie sítě, jaké známe základní typy a jaké mají výhody a nevýhody. Naučili jsme se rozlišovat mezi fyzickým a logickým síťovým diagramem a také jsme si řekli, že při návrhu sítě nestačí myslet jen na zapojení, ale i na její spolehlivost, rozšiřitelnost, kvalitu služeb a bezpečnost.

Pamatujte si: topologie je základní mapa, diagram je praktický nástroj a architektura je celkový koncept sítě.

A to je vše přátelé.

POUŽITÁ LITERATURA a ZDROJE

PETERKA, Jiří. Archiv článků a přednášek [online]. [cit. 2025-04-24]. Dostupné z: http://www.earchiv.cz

Wikipedia: Česká verze. cs.wikipedia.org [online encyklopedie]. [cit. 2025-04-24]. Dostupné z: http://cs.wikipedia.org

CISCO Networking Academy. NetAcad [online vzdělávací portál]. [cit. 2025-04-24]. Dostupné z: http://www.netacad.com

Ke tvorbě byla částečně využita generativní AI ChatGPT 5.0 – kontrolováno autorem.