Randomized Algorithms

Introduction

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

Self Introduction

- **Ph.D.**: CSIE, National Chung Cheng University, 2011.
 - DAAD-NSC Sandwich Program (2007–2008).
 - Dissertation supervisors: Maw-Shang Chang & Peter Rossmanith (RWTH Aachen)
- Postdoc in Genomics Research Center, Academia Sinica (2011–2014).
- Postdoc in Institute of Information Science, Academia Sinica (2014–2018).
- Quantitative Analyst (intern) of Point72/Cubist Systematic Strategies (2018–2019).
- Quantitative Analyst of Seth Technologies Inc. (2020–2021/01).

Textbooks and Materials

• Textbooks:

- *Randomized Algorithms*. Motwani, R. and Raghavan, P., 1995. Cambridge University Press.
- Probability and Computing: Randomized Algorithms and Probabilistic Analysis. M. Mitzenmacher and E. Upfal, 2005.

Other materials:

Prepared slides.

Probability and Computing

Prerequisites

- Basic undergraduate courses in
 - Algorithms
 - Data structures
 - Probability theory
 - Discrete mathematics
- Motivation.

• Curiosity.

Topics

- Examples of Probability Paradoxes
- Las Vegas and Monte Carlo
- Randomized Quicksort
- Chernoff Bounds
- The Stable Marriage Problem
- The Coupon Collector's Problem
- The Secretary Problem
- Random Graphs
- Random Treaps
- Markov Chains (Optional)
- Monte Carlo Simulation (Optional)

Grading Policy

- Assignments (x 10, 50%)
- Programming Project bonus (x *n*, 5%)
- Final Team Report (50%)
 - Peer-Grading Mechanism.
 - Election Game Equilibrium.
 - Presentation for other selected topics.

Traditional deterministic algorithms

Randomized algorithms

Why?

- Randomized algorithms are
 - often much *simpler* than the best known deterministic ones.
 - often much *more efficient* (faster or using less space) than the best known deterministic ones.

 Sometimes ideas from the randomized algorithms lead to good deterministic algorithms.

Comparisons

- It's different from the *average-case* analysis of deterministic algorithms.
 - e.g., expected running time of a deterministic algorithm on input sampled from a distribution.

- In most scenarios, it's NOT a heuristic algorithm.
 - The accuracy is guaranteed, or
 - The running time is guaranteed.

An illustrating example:

• **Problem:** find a grade-'A' student in a class of *n* students where half of them get 'A'.

- What is the time complexity for the best deterministic algorithm?
 - I mean, in the "worst case".

A randomized algorithm (from Wikipedia)

```
findingA_LV(array L, n)

begin

repeat

Randomly select one element out of n elements.

until 'A' is found

end
```

Assignment: Prove that the expected number of iterations is $\lim_{n\to\infty}\sum_{i=1}^n\frac{i}{2^i}\leq 2$.

A randomized algorithm (from Wikipedia)

```
finding A_MC(array L, n, k)
begin
  i \leftarrow 0
  repeat
     Randomly select one element out of n elements.
      i \leftarrow i + 1
  until i = k or 'A' is found
end
```

After *k* iterations, $\Pr[\text{find } A] = 1 - (1/2)^k$.

Birthday problem (paradox)

- There are *n* randomly chosen people in a room.
- How *large* should *n* be such that there is at least one pair of them having the same birthday (mm/dd)?
- By the pigeonhole principle, n = 367? or 366?

- Let us consider this problem in the other way around.
 - How *large* should n be such that there is at least one pair of them having the same birthday (mm/dd) with probability ≥ 0.5 ?

Birthday problem (paradox)

- *n* people: $x_1, x_2, ..., x_n$
- Event *i*: some pair of $x_1, x_2, ..., x_i$ have the same birthday.
- $\Pr[\text{Event2}] = 1 \frac{364}{365}$
- $\Pr[\text{Event3}] = 1 \frac{364}{365} \cdot \frac{363}{365}$
- •
- $\Pr[\text{Event23}] = 1 \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \frac{343}{365} \approx 0.507297.$
- 23 is much less than 366 or 367.