Contrôle Intermédiaire Théorie des langages de programmation 1 C.S.

Durée: 2H.

Tous Documents Interdits

EXERCICE 1: (5 Pts)

On définit l'opération SM(L) comme suit:

- 1. Supprimer chaque mot de longueur pair de L
- 2. Pour chaque mot de longueur impair, supprimer le caractère du milieu

Par exemple si $L = \{001, 1100, 10101\}$, alors $SM(L) = \{01, 1001\}$. Le mot 1100 est supprimé car de longueur pair. On supprime le caractère du milieu pour le mot 001 et 10101 donnant respectivement 01 et 1001.

Soit $L_1 = \{ (01)^k 0, k \ge 0 \}.$

- 1. De quel type est ce langage ? Langage régulier, Type 3, Rationnel. (1 Pt)
- 2. Donner la grammaire du langage L_1 (1 Pt)

$S \rightarrow 01 S \mid 0$	$S \rightarrow 0 A \mid 0$	$S \rightarrow A 0$
·	$A \rightarrow 1 S$	$A \rightarrow A 01 \mid \varepsilon$

3. Donner la grammaire de $SM(L_1)$ (2 Pts)

Le langage de LM(L1) est :

$$LM(L_1) = \{ (01)^n (00)^k (10)^n; n \ge 0; k \le 1 \}$$

$$LM(L_1) = \{ (01)^n 0 (01)^n 0; n \ge 0 \} \cup \{ (01)^n (01)^n ; n \ge 0 \}$$

$$LM(L_1) = \{ 0(10)^n 0 (10)^n ; n \ge 0 \} \cup \{ (01)^n (01)^n ; n \ge 0 \}$$

La grammaire de LM(L1)

$S \rightarrow 01 S 10 00 \varepsilon$	$S \rightarrow A \mid B \mid 0$
	$A \rightarrow 01 A 01 \epsilon$
	$B \rightarrow 01 B 01 0$

- 4. De quel type est ce langage ? (1 PT)
- Type 2
- Langage algébrique
- Langage à contexte libre

EXERCICE 2: (5 Pts)

Soit E l'expression régulière suivante $E = (0 \cup 10)^*$. Trouver dans les expressions suivantes celle(s) qui dénote(nt) le complément de $L((0 \cup 10)^*)$. Justifier.

- 1. $(0 \cup 1)*11(0 \cup 1)*$
- 2. $(0 \cup 10)*11(0 \cup 1)* \cup (0 \cup 1)*1$
- 3. $(0 \cup 10)*11(0 \cup 10)*$
- 4. $(0 \cup 1)*11(0 \cup 10)* \cup (0 \cup 10)*1$
- 5. Aucune.

- 1. E_1 ne dénote pas le complément de E (0.25). $01 \notin L(E)$ et $01 \notin L(E_1) \Rightarrow L(E) \cup L(E_1) \neq X^*$ (0.25)
- 2. E₂ dénote le complément de E (0.5):

 $L(E) \cap L(E_2) = \phi$. Les mots de L(E) contiennent 11 comme facteur et ceux de $L(E_2)$ non. (1Pt)

$$L(E) \cup L(E_2) = X^*.$$

- a. $L(E) \cup L(E_2) \subseteq X^*$ par définition (0.5)
- b. $X^* \subseteq L(E) \cup L(E_2)$ Démonstration par récurrence sur la taille des mots. (1.5 Pts)
- 3. E_2 ne dénote pas le complément de E (0.25). $01 \notin L(E)$ et $01 \notin L(E_1) \Rightarrow L(E) \cup L(E_1) \neq X^*$ (0.25)
- 4. E_3 ne dénote pas le complément de E (0.25). $1101 \notin L(E)$ et $1101 \notin L(E_1) \Rightarrow L(E) \cup L(E_1) \neq X^*$ (0.25)

EXERCICE 3: (4 Pts)

Donner les grammaires engendrant les deux langages suivants (Ne pas justifier):

$$L_1 = \{a^i b^{2n} c^n a^j, i > 3j \}$$
 (2 Pts)

 $S \rightarrow aaaSa/aS/aA$

$$A \rightarrow bbAc/e$$

$$L_2 = \{a^n b^m w \text{ tq m-}|w| \equiv 1[3], w \in \{d\}^*\}$$
 (2 Pts)
S \rightarrow aS/A

$$A \rightarrow bB/A_w$$

$$B \rightarrow bC/B_w$$

$$C \rightarrow bA/C_w$$

$$A_w \rightarrow dC/$$

$$B_w \rightarrow dA/\epsilon$$

$$C_w \rightarrow dB$$

EXERCICE 4: (6 pts)

Soit $A_G < X^*$, S, S₀, F, II>, un automate généralisé où : $X = \{a, b, c\}$, $S = \{S_0, S_1, S_2\}$, $F = \{S_2\}$, et II :

Il faut rendre A^R déterministe complet (2Pts)

Etat	0	1
S (EI et EF)	I_1	$S_0 I_2$
I_1	S_1	P
S ₀ I ₂ (EF)	P	$S_2 I_2$
S ₁ (EF)	I_1	$S_0 I_2$
S ₂ I ₂ (EF)	I_1	$S_0 S_2 I_2$
S ₀ S ₂ I ₂ (EF)	I_1	$S_0 S_2 I_2$
P	P	P

Le complément de A^R

(1pt)

Etat	0	1
S (EI)	I_1	$S_0 I_2$
I ₁ (EF)	S_1	P
$S_0 I_2$	P	$S_2 I_2$
S_1	I_1	$S_0 I_2$
$S_2 I_2$	I_1	$S_0 S_2 I_2$
$S_0 S_2 I_2$	I_1	$S_0 S_2 I_2$
P (EF)	P	P