# Thanks, Cupid

Fundamentals of Data Science (CSC4780)
Fall 2020 Dr. Berkay Aydin
Georgia State University
12/06/2022

**Cupid Scientists:** Cindy Thai, Lorena Burrell, Capella Edwards, Venkata Mani Mohana Rishitha Srikakulapu, Laurel Sparks



# **Overview**



- BusinessUnderstanding
- Data Understanding (Sources, Exploration, & Preprocessing)
- Model Selection
- Feature Selection
- Data Sampling
- Model Optimization

- Performance Metrics
- Summary
- Recommendation

Introduction (Business Understanding)

### **Dating Applications:**

Generate a list of suitable partners for the person looking for love to connect with based on location and limited filtering

**Goal:** Sell premium services to allow the user to generate a more refined list of matches that have been filtered based on the users preferences.

### **Businesses will benefit from:**

- predicting which people are most likely to match with each other
- Predicting what matches have a high probability that the users will go on a date.

This will yield **more profits** for the business to **sell more premium services**, and get more users to join the app which will **increase the variety of dating partners** for paying customers.

# **Data Sources and Data Exploration (Data Understanding)**

- Data sourced from a Speed Dating experiment conducted by Columbia **Business School** (Raymond Fisman, Sheena S. Iyengar, Emir Kamenica, and Itamar Simonson, 2006)
  - Wide range of descriptive features (continuous, categorical) & 8,000+ instances
- After Data Exploration we selected 19 out of 195 features to base our model on

| Feature              | Desc.                                          | Count | % of Mis   | sing  | Card. | Min. | Q1       | Median   | Q3       | Max.     | Mean     | Std. Dev. |
|----------------------|------------------------------------------------|-------|------------|-------|-------|------|----------|----------|----------|----------|----------|-----------|
| hobby_diff_phys      | sum of difference between hobby/interest value | 8188  |            | 0.02  | 36    | 0.00 | 8.00     | 12.00    | 15.00    | 35.0     | 12.01    | 4.89      |
| hobby_diff_out       | sum of difference between hobby/interest value | 8188  |            | 0.02  | 52    | 3.00 | 12.00    | 16.00    | 21.00    | 58.0     | 17.23    | 6.77      |
| hobby_diff_in        | sum of difference between hobby/interest value | 8188  |            | 0.02  | 38    | 2.00 | 12.00    | 16.00    | 19.00    | 41.0     | 15.95    | 5.27      |
| attr_diff            | difference in self-rated amount vs partner's p | 8136  |            | 0.03  | 758   | 0.67 | 19.00    | 26.50    | 37.00    | 131.0    | 30.56    | 16.15     |
| sinc_diff            | difference in self-rated amount vs partner's p | 8136  |            | 0.03  | 726   | 1.00 | 15.00    | 19.48    | 24.00    | 62.0     | 20.00    | 8.02      |
| intel_diff           | difference in self-rated amount vs partner's p | 8136  |            | 0.03  | 633   | 0.00 | 18.98    | 23.00    | 29.00    | 69.0     | 24.39    | 8.93      |
| amb_diff             | difference in self-rated amount vs partner's p | 8100  |            | 0.03  | 702   | 0.00 | 7.50     | 11.00    | 15.00    | 57.0     | 11.55    | 5.57      |
| fun_diff             | difference in self-rated amount vs partner's p | 8118  |            | 0.03  | 640   | 0.00 | 15.50    | 20.00    | 24.00    | 61.5     | 20.24    | 7.65      |
| income_diff          | difference between incomes                     | 2178  |            | 0.74  | 1061  | 8.00 | 6591.00  | 14997.00 | 26150.00 | 85670.0  | 18447.40 | 15078.11  |
| age_diff             | difference between ages                        | 8159  |            | 0.02  | 25    | 0.00 | 1.00     | 3.00     | 5.00     | 32.0     | 3.66     | 3.06      |
| confidence           | percentage of people each person dating expect | 1790  |            | 0.79  | 50    | 0.00 | 0.15     | 0.25     | 0.38     | 20.0     | 0.39     | 0.93      |
| exphappy             | user expectation of happiness with speed datin | 8245  |            | 0.01  | 11    | 1.00 | 5.00     | 6.00     | 7.00     | 10.0     | 5.52     | 1.72      |
| out_freq             | rating of how often user goes out (not necessa | 8267  |            | 0.01  | 8     | 1.00 | 1.00     | 2.00     | 3.00     | 7.0      | 2.16     | 1.11      |
| date_freq            | rating of how often user goes on dates         | 8249  |            | 0.01  | 8     | 1.00 | 4.00     | 5.00     | 6.00     | 7.0      | 5.02     | 1.44      |
| imprace              | importance of having same racial/ethnic backgr | 8267  |            | 0.01  | 21    | 0.50 | 2.00     | 3.50     | 5.00     | 10.0     | 3.79     | 2.04      |
| Feature              | Desc. Co                                       | unt % | of Missina | Card. | Mode  | Ma   | de Frea. | Mode %   | 2nd Mode | 2nd Mod  | a Evan 2 | nd Mode % |
| samerace             |                                                | 346   | 0.0        | 2     |       |      | 5039     | 60.38    | 1        | Ziiu Wou | 3307     | 39.62     |
|                      |                                                | 346   | 0.0        | 2     |       |      | 5805     | 69.55    | 1        |          | 2541     | 30.45     |
|                      |                                                | 346   | 0.0        | 2     |       |      | 6852     | 82.10    | 1        |          | 1494     | 17.90     |
| same_career<br>match |                                                | 346   | 0.0        | 2     |       |      | 6972     | 83.54    | 1        |          | 1374     | 16.46     |

| Feature     | Desc.                                          | Count | % of Missing | Card. | Mode | Mode Freq. | Mode %     | 2nd Mode | 2nd Mode Freq. | 2nd Mode % |
|-------------|------------------------------------------------|-------|--------------|-------|------|------------|------------|----------|----------------|------------|
| samerace    | are the two participants the same race         | 8346  | 0.0          | 2     | 0    | 5039       | 60.38      | 1        | 3307           | 39.62      |
| same_goal   | whether both people have the same goal in part | 8346  | 0.0          | 2     | 0    | 5805       | 69.55      | 1        | 2541           | 30,45      |
| same_career | whether both intended career paths fall into t | 8346  | 0.0          | 2     | 0    | 6852       | 82.10      | 1        | 1494           | 17.90      |
| match       | target: did they end up matching               | 8346  | 0.0          | 2     | 0    | 6972       | 83.54      | 1        | 1374           | 16.46      |
|             | 4 0 0 Data Oarlin D                            |       |              |       | •    | •          | <b>~</b> . | •        |                |            |

Figure 1 & 2: Data Quality Reports for Continuous & Categorical features (used for data exploration and feature selection)

# **Data Preprocessing**

### Handling Missing Values:

- Continuous features: mean imputation
  - Income feature ('income\_diff'): KNN imputation (better estimate, far more missing values)
- No missing values in categorical features

### Handling Outliers:

- Dropping instances with outliers would remove near 50% of all instances
- Clamped outliers with Tukey's Range Test & Interquartile-Range
- Clamped 'income\_diff' with 0.5 & 0.95 percentiles (due to high amount/severity of outliers)

#### Normalization:

Normalized all continuous features into [0,1] range normalization

## **Data Transformation**

- Reduced 195 features to 19 features (18 descriptive; 1 target)
- Handled missing values with mean imputation or KNN imputation
- Normalized continuous features with range normalization
  - Preserves original relationships of original feature distributions while putting features into normalized range for model building





Figure 3 & 4:
Example
histogram
distributions of
normalized
features

# **Model Selection**



#### Information-Based

Highly interpretable (gives businesses choice in course of action based on decision rule)

#### **Similarity-Based**

Lazy Learner (memorizes training data, meaning it takes no time in the training phase)

#### **Probability-Based**

Fast implementation (no iterations needed)
Highly scalable

# **Feature Selection**

### **Impurity-Based Univariate Feature Selection (IUFS)**

Utilized Entropy, Gini Index, Information Gain Ratio.



#### **Recursive Feature Elimination (RFE)**

Using a logistic regression model to rank descriptive features

Based on results of IUFS and RFE: reduced 18 descriptive features to 16 features

Removed 'same\_goal' (same goal in speed dating; removed due to IUFS), 'amb\_diff' (correlation between self-rating of ambition; removed due to RFE)

Tested **all** features and **selected** features on kNN classifier: accuracy score <u>improved</u> with selected features

# **Data Sampling**

The remaining 25% of the data was used for testing



# **Model Optimization**

Each model had its parameters optimized via an accuracy-based grid search. Then we found the optimal threshold based on the F1 Score, Gilbert Skill Score (GSS), and Hanssen-Kuipers Skill Score (TSS) evaluation of each model. All thresholds were low (biased towards positive predictions).

#### Gaussian Naive Bayes:

 Performed best with smoothing variance of 0.01 (0.01 of largest variance of all features added to all variance calculations)

#### **Decision Tree:**

 Performed best with maximum depth of 10, purity criteria using gini index over entropy or log loss

#### K Nearest Neighbors:

Performed best with distance-based weights,
 Manhattan distance, and leaf size of 10

|                    | Actual Positive | Actual Negative |
|--------------------|-----------------|-----------------|
| Predicted Positive | 166             | 578             |
| Predicted Negative | 193             | 1150            |

|                    | Actual Positive | Actual Negative |
|--------------------|-----------------|-----------------|
| Predicted Positive | 164             | 241             |
| Predicted Negative | 195             | 1487            |

|                    | Actual Positive | Actual Negative |
|--------------------|-----------------|-----------------|
| Predicted Positive | 232             | 194             |
| Predicted Negative | 127             | 1534            |

# Figure 5: Confusion matrices for selected models

# **Model Evaluation**



Figure 6: Selected models and performance measures

### Conclusion

We recommend that our dating application used the K Nearest Neighbors (kNN) model with our optimized hyperparameters for predicting matches.

- kNN had the highest accuracy score (0.85) and highest score for every performance metric tested
- kNN model has low optimal threshold: biased toward positive predictions (matches)
  - More positive matches = more user engagement
- In scenarios with multiple matches; the most ideal match will have the highest probability score
- We can sell these services behind a premium subscription and generate profit