

Старый Орхей (Orheiul Vechi) - природно-исторический комплекс, расположенный на узкой излучине реки Реут. Он состоит из N археологических объектов и M **односторонних** дорог между некоторыми парами объектов. Каждая дорога имеет уникальный номер от 1 до M, определяемый их порядком во входных данных. Для визуализации этого посмотрите рисунок ниже.

Недавно местными учеными был обнаружен массив, оставленный цивилизацией Кукутени-Триполье. Массив состоит из T целых чисел со значениями от 1 до M. Чтобы разгадать мистическое значение этого массива, новому стажеру предстоит выполнить следующую процедуру:

Вначале стажер приступает к изучению какого-то археологического объекта. Остальные ученые начинают передавать ему подмассив найденного массива (сначала передается первый элемент подмассива, затем второй и так далее). Затем стажер меняет свое местоположение в соотвествии со следующими правилами:

- Если стажер может воспользоваться дорогой, с номером равным текущему переданному числу (другими словами, текущее местоположение стажера равно начальному объекту соответствующей дороги), стажер проходит по ней (доходит до конечного объекта соответствующей дороги).
- В противном случае стажер ничего не делает и остается в своем текущем местоположении.

В связи с проведением 8-й Европейской юниорской олимпиады по информатике местные ученые попросили вас помочь им выполнить следующие Q-запросов.

- 1 L R S ученые хотят знать, каким будет конечное местоположение стажера, если изначально он находится на S-ом объекте, а передается ему подмассив, который начинается с индекса L и заканчивается индексом R.
- $2\ i\ K$ ученые присваивают i-му элементу массива значение K. Изменение является перманентным. (Другими словами, после выполнения запроса массив изменится так, что $A_i=K$).

Ваша задача - правильно ответить на все запросы типа 1.

Input

Первая строка содержит два целых числа N и M - количество археологических объектов и дорог с односторонним движением.

Следующие M строк содержат описание дорог. В частности, строка i будет содержать числа, указывающие, что i-я дорога начинается в X_i и заканчивается в Y_i Могут существовать дороги, для которых $X_i = Y_i$ или пары дорог, для которых $X_i = X_j$, $Y_i = Y_j$, но $i \neq j$.

Следующая строка содержит целое число T, длину найденного массива.

Следующая строка содержит T разделенных пробелом целых чисел $A_1,A_2\dots A_T$, представляющих элементы массива.

Следующая строка содержит целое число Q, количество запросов.

Следующие Q строк содержат описание запросов:

- ullet 1 $L\,R\,S$ для запроса типа 1.
- 2 i K для запроса типа 2.

Output

Для каждого запроса типа 1 выведите ответ в отдельной строке.

Examples

Обратите внимание, что некоторые примеры не подходят для всех подзадач.

Вот иллюстрация первого запроса для **первого** примера:

Изначально стажер стартует на объекте 2, а передаваемый подмассив [4,2,5].

Передается число 4, поэтому стажер переходит на объект 5, так как он может перейти по дороге 4.

После этого передается номер 2. Стажер остается в том же месте, так как дорога с индексом 2 не может быть использована.

Наконец, передается число 5, и стажер может пройти по соответствующему ребру, так что стажер оказывается на объекте 1, который является ответом на соответствующий запрос.

Пояснение к **третьему** примеру:

В первом запросе стажер два раза подряд пройдет по первому пути от объекта 1 до самого себя, поэтому ответом на этот запрос будет 1.

Во втором запросе первый элемент массива становится равен 2.

Во время третьего запроса число 2 первым передается стажеру, находящемуся на объекте 1. Поскольку соответствующая дорога примыкает к этому объекту, стажер проходит по ней и меняет свое местоположение на объект 2. Наконец, передается число 1, и стажер не может пройти по соответствующей дороге, поэтому конечным местоположением стажера является объект 2.

Input	Output
5 6	
1 2	
3 2	
4 2	
2 5	
5 1	1
4 5	1
6 2 1 4 2 5 3	2
3	
1 3 5 2	
1 3 5 2	
1 1 2 3	
3 3	
1 2	
2 3	
3 1	
4	2
3 1 1 2	1
4	3
1 1 2 3	
2 2 2	
1 1 2 3	
1 1 4 2	
2.2	
2 3	
1 1 1 2	
1 2	
4	1
1 1 2 3	2
3	
1 1 2 1	
2 1 2	
1 1 2 1	

Constraints and Scoring

- $1 \le N \le 50$
- $1 \le M, T, Q \le 10^5$
- $1 \leq X_i, Y_i \leq N$
- $1 \le A_i \le M$
- $1 \le L \le R \le T$
- $1 \le S \le N$
- $1 \le i \le T$
- $1 \le K \le M$

Ваше решение будет протестировано на нескольких подзадачах, каждая из которых оценивается в определенное количество баллов. Каждая подзадача содержит набор из нескольких тестов. Чтобы получить баллы за подзадачу, вам нужно решить все тесты в этой подзадаче.

Группа	Баллы	Ограничения
1	7	Q=1 (Единственный существующий запрос имеет тип 1).
2	16	N=2.
3	17	$M=N-1$, $X_i=i$, $Y_i=i+1$.
4	31	Не существует запросов типа 2 . Более того, $T \leq 3 \cdot 10^4$.
5	29	Без дополнительных ограничений.