

Application digitale dans le domaine de l'alimentation des sportifs de haut niveau.

Analyses exploratoire et preprocessing.

Data set « Open Food Facts ».

### Sommaire.



Introduction.



#### Phase exploratoire.



Analyse valeurs manquantes, data sets numérique et catégoriel.

Distribution des données, valeurs remarquables.

Valeurs aberrantes: volumétrie, remplacement des valeurs, visualisation.



#### Pre-processing.

Imputation, encodage, remplacement valeurs manquantes.

- •KNN.
- •Iterative imputing.
- •Simple imputing.



Indépendance des variables.



Data set final.

### Introduction.

- Le data set Open Food Facts fournit des données précises sur un ensemble de produits de consommation alimentaire.
- Outre les code, nom de produit, marque, pays de production, date de production, le data set comporte aussi les éléments énergétiques et nutritifs.
- Notamment les éléments de teneur en graisse, sucre, carbohydrates, fibre, protéine, sel, sodium, vitamine A, vitamine C, calcium, fer sont essentiels à la nutrition d'un sportif de haut niveau.
- L'objectif ici est de s'appuyer sur ce data set pour fournir à l'athlète une information, le code Nutri-Sport (échelonné de A à E), lorsqu'il soumet à l'application le code barre d'un produit.
- L'application pourra également proposer des produits similaires.
- La qualité du data set n'est pas nécessairement suffisante. Des traitements préalables seront nécessaires à son exploitation.



- Dimensions.
  - 320772 lignes.
  - 162 variables: 106 de type numérique, 22 de type catégoriel.
- Valeurs manquantes.
  - Certaines variables ont des taux de valeurs manquantes supérieurs à 60%. Cf. slides suivants.
  - Pour ces variables, on juge qu'elles sont insuffisamment informatives.
     Exclusion du data set.

Taux de valeurs manquantes par variable catégorielle.



Taux de valeurs manquantes par variable numérique.



#### Après exclusion des variables non informatives.

| df_cat.isnull().mean()*100        |           |  |  |
|-----------------------------------|-----------|--|--|
| code                              | 0.007170  |  |  |
| url                               | 0.007170  |  |  |
| creator                           | 0.000623  |  |  |
| created_t                         | 0.000935  |  |  |
| created_datetime                  | 0.002806  |  |  |
| <pre>last_modified_t</pre>        | 0.000000  |  |  |
| <pre>last_modified_datetime</pre> | 0.000000  |  |  |
| product_name                      | 5.537266  |  |  |
| brands                            | 8.857382  |  |  |
| brands_tags                       | 8.859876  |  |  |
| countries                         | 0.087289  |  |  |
| countries_tags                    | 0.087289  |  |  |
| countries_fr                      | 0.087289  |  |  |
| ingredients_text                  | 22.386617 |  |  |
| serving_size                      | 34.118003 |  |  |
| additives                         | 22.404387 |  |  |
| additives_tags                    | 51.778834 |  |  |
| additives_fr                      | 51.778834 |  |  |
| nutrition_grade_fr                | 31.038245 |  |  |
| a+a+aa                            | 0 01/2/0  |  |  |

| df_num.isnull().mean()*100                         |           |
|----------------------------------------------------|-----------|
| additives_n                                        | 22.393787 |
| ingredients_from_palm_oil_n                        | 22.393787 |
| <pre>ingredients_that_may_be_from_palm_oil_n</pre> | 22.393787 |
| energy_100g                                        | 18.598568 |
| fat_100g                                           | 23.967491 |
| saturated-fat_100g                                 | 28.437021 |
| trans-fat_100g                                     | 55.327148 |
| cholesterol_100g                                   | 55.080244 |
| carbohydrates_100g                                 | 24.061951 |
| sugars_100g                                        | 23.630803 |
| fiber_100g                                         | 37.374210 |
| proteins_100g                                      | 18.969860 |
| salt_100g                                          | 20.345292 |
| sodium_100g                                        | 20.359944 |
| vitamin—a_100g                                     | 57.117828 |
| vitamin-c_100g                                     | 56.085007 |
| calcium_100g                                       | 56.027958 |
| iron_100g                                          | 56.211265 |
| nutrition-score-fr_100g                            | 31.038245 |
| nutrition-score-uk_100g<br>dtype: float64          | 31.038245 |

# Phase exploratoire. Distribution des données.

- Les données sont écartées de la moyenne.
- Existence de valeurs au delà du dernier quartile (outliers).



- Valeurs remarquables: variance, moyenne, max, écart-type.
  - Cf. slide suivant.



- Valeurs aberrantes.
  - Volumétrie: volume parfois important de valeurs situées au delà du dernier quartile.
  - Causes: des valeurs erronées (valeur saisie: 350g au lieu de 50g, par ex.)



- Variables avec des erreurs de saisie (> 100g).
- Variable 'energy\_100g': taux de valeurs en erreur de 75%.
  - Taux trop important (trop peu informatif), exclusion feature du dataset.
- Remplacement des valeurs erronées par la médiane (compte tenu de l'étalement des valeurs).

|                                        | valeurs  |
|----------------------------------------|----------|
| additives_n                            | 0.000000 |
| ingredients_from_palm_oil_n            | 0.000000 |
| ngredients_that_may_be_from_palm_oil_n | 0.000000 |
| energy_100g                            | 0.757803 |
| fat_100g                               | 0.000012 |
| saturated-fat_100g                     | 0.000009 |
| trans-fat_100g                         | 0.000016 |
| cholesterol_100g                       | 0.000000 |
| carbohydrates_100g                     | 0.000059 |
| sugars_100g                            | 0.000037 |
| fiber_100g                             | 0.000012 |
| proteins_100g                          | 0.000003 |
| salt_100g                              | 0.000493 |
| sodium_100g                            | 0.000106 |
| vitamin-a_100g                         | 0.000000 |
| vitamin-c_100g                         | 0.000009 |
| calcium_100g                           | 0.000031 |
| iron_100g                              | 0.000000 |
| nutrition-score-fr_100g                | 0.000000 |
| nutrition-score-uk_100g                | 0.000000 |

valeurs

• Affichage des valeurs aberrantes.



Visualisation des quantiles après correction des erreurs de saisie.



Pour notre analyse, seules certaines variables sont fondamentales.

Variables numériques fondamentales:

- 'fat\_100g', 'carbohydrates\_100g',
- 'fiber\_100g', 'proteins\_100g'
- 'vitamin-a\_100g'
- 'vitamin-c 100g', 'calcium 100g'
- 'iron\_100g'

Visualisation des courbes de fréquence par variable niumérique fondamentale.





Après ces premières étapes, le data set doit être traité pour le remplacement des valeurs manquantes.



Trois méthodes utilisées: KNN, SimpleImputer, IterativeImputer.

#### X\_num.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 8 columns):

| # | Column             | Non-Null Count | Dtype   |
|---|--------------------|----------------|---------|
|   |                    |                |         |
| 0 | fat_100g           | 9714 non-null  | float64 |
| 1 | carbohydrates_100g | 9730 non-null  | float64 |
| 2 | fiber_100g         | 7860 non-null  | float64 |
| 3 | proteins_100g      | 9719 non-null  | float64 |
| 4 | vitamin—a_100g     | 7575 non-null  | float64 |
| 5 | vitamin-c_100g     | 7702 non-null  | float64 |
| 6 | calcium_100g       | 7720 non-null  | float64 |
| 7 | iron_100g          | 7732 non-null  | float64 |
|   | 67 164/01          |                |         |

dtypes: float64(8) memory usage: 625.1 KB

Pour remplacer les valeurs manquantes dans le data-set, Séparer le data-set en on va utiliser la méthode catégoriel et numérique. d'imputation basée KNN. Méthode SimpleImputer() sur Les étapes suivantes sont But: remplacer les « np.nan » nécessaires au préalable: par valeur 'missing' X cat. Ces étapes permettent de remplacer les valeurs « np.nan » (dtype= float) par Méthode OHE() sur X\_cat. des valeurs dtype= string reconnues par l'encodeur OHE.

Pre-processing.
Etapes de
transformation
communes aux
trois méthodes.

```
ColumnTransformer
ColumnTransformer(transformers=[('pipeline-1',
                                 Pipeline(steps=[('simpleimputer',
                                                  SimpleImputer(fill_value='missing',
                                                                strategy='constant')),
                                                 ('onehotencoder',
                                                  OneHotEncoder(handle_unknown='ignore',
                                                                sparse_output=False))]),
                                 ['product_name', 'brands',
                                  'nutrition_grade_fr']),
                                ('pipeline-2',
                              pipeline-1
                                                                       pipeline-2
    ['product_name', 'brands', 'nutrition_grade_fr']
                                                                   ▼ StandardScaler
                             SimpleImputer
                                                                   StandardScaler()
      SimpleImputer(fill_value='missing', strategy='constant')
                             OneHotEncoder
     OneHotEncoder(handle_unknown='ignore', sparse_output=False)
```

- Méthodes de remplacement des valeurs manquantes s'appliquent sur le data-set transformé (slide précédent).
- Méthode KNN.
  - Utilise le data-set complet.
- Méthode Simple Imputer.
  - Utilise la variable seule.
- Méthode Iterative Imputer.
  - Utilise le data-set complet.

Test d'indépendance des variables.

- Variables probablement corrélées:
  - "vitamin-a"
  - "vitamin-c"





- Utilisation de PCA pour constitution de groupes ayant des caractéristiques similaires.
- Choix de trois composantes principales.
  - Captation de la variance et variance cumulée.



Projection de l'échantillon sur les deux premières composantes principales (pcs) et relation entre pcs et features.





- Le jeu de données est maintenant correct. On a développé les étapes ci-dessous:
  - Identification des variables pour lesquelles le taux de valeurs manquantes est au delà du seuil admissible.
  - Analyse de la distribution des données: centrées ou non ?
  - Outliers: volumétrie par variable, valeurs aberrantes et leur remplacement par médiane.
  - Remplacement valeurs manquantes (selon différentes méthodes)
  - Vérification de l'indépendance des variables
  - Exclusion valeurs corrélées.
- Les données correspondant aux variables fondamentales sont maintenant correctement calibrées pour générer la réponse attendue par l'utilisateur: le code NUTRISPORT (A à E) du produit présenté par l'utilisateur.

