第三章 函数

3.1 $R_2, R_3, R_6, R_7 \in A \longrightarrow B$, 其中 $R_2, R_6 \in A \rightarrow B$ 。

3.2

结论 1: $f \cap g$ 仍是函数。

证明: 由 $f, g \in A \rightarrow B$, 得:

 $\forall x, y, z$

 $\langle x, y \rangle \in f \cap g \land \langle x, z \rangle \in f \cap g$

 $\iff \langle x, y \rangle \in f \land \langle x, y \rangle \in g \land \langle x, z \rangle \in f \land \langle x, z \rangle \in g$ (集合交定义)

 $\implies \langle x, y \rangle \in f \land \langle x, z \rangle \in f$ (命题逻辑化简律)

 $\Rightarrow y = z$ (f 是函数)

也即, $f \cap g$ 符合函数的定义,是一个函数。

结论 2: $f \cap g \in A \rightarrow B$ 当且仅当 f = g。

证明: 充分性显然。下面证必要性。

若不然, 就有 $\langle x,y \rangle \in f \land \langle x,y \rangle \notin g$ 或 $\langle x,y \rangle \notin f \land \langle x,y \rangle \in g$ 。由对称性, 不妨设 $\langle x,y \rangle \in f \land \langle x,y \rangle \notin g$ 。

这时,将有 $x \notin \text{dom}(f \cap g)$ (若不然,假设存在 z,使 $\langle x,z \rangle \in f \cap g$,这时由 $\langle x,z \rangle \in g$ 和 $\langle x,y \rangle \notin g$ 可知 $z \neq y$ 。但 $\langle x,y \rangle \in f$ 且 $\langle x,z \rangle \in f \cap g \subseteq f$ 。这就使 $y \neq z$ 且 $\langle x,y \rangle \in f \wedge \langle x,z \rangle \in f$,与 f 是函数矛盾),从而与 $f \cap g$ 是全函数矛盾。

结论 3: $f \cup g$ 是函数 $\Leftrightarrow f \cup g \in A \rightarrow B \Leftrightarrow f = g$ 。

先证: $f \cup g$ 是函数 $\Leftrightarrow f \cup g \in A \rightarrow B$ 。

证明: 由全函数定义即得充分性, 即: $f \cup g \in A \rightarrow B \Rightarrow f \cup g$ 是函数。

再证必要性。

若 f ∪ g 是函数,则:

 $\operatorname{dom}(f \cup g) = \operatorname{dom} f \cup \operatorname{dom} g \tag{教材定理 2.3(1)}$

 $= A \cup A \tag{f,g \in A \to B}$

=A (幂等律)

由全函数定义有: $f \cup g \in A \rightarrow B$ 。

故有: $f \cup g$ 是函数 $\Rightarrow f \cup g \in A \rightarrow B$ 。

综合得: $f \cup g$ 是函数 $\Leftrightarrow f \cup g \in A \rightarrow B$ 。

再证: $f \cup g \in A \rightarrow B \Leftrightarrow f = g$ 。