Nonparametric Tests

So far we made an assumption about a distribution and then tested what the parameters of that distribution could be

Instead, non-parametric tests are tests for the entire distribution

ullet i.e. whether X follows a normal distribution or not

Kolmogorov-Smirnov Test

- ullet Suppose X_i are iid with cdf F
 - $\circ \;\;$ We want to test $H_0: F = F_0$ or $H_1: F
 eq F_0$
- We introduce the empirical cdf:

$$\hat{F}_n(t) = rac{1}{n}\sum_{i=1}^n \mathbb{1}(X_i \leq n)$$

- $\circ \;\; \hat{F}$ is an unbiased estimator of F
- \circ $nF(t) \sim \text{Binom}(n, F(t))$
 - lacksquare By the CLT, this tells us that \hat{F} converges to F asymptotically
- Intuition: reject the null if $|\hat{F}_n(t) F_0(t)|$ is large for any t
- It turns out that for:

$$T = \sup_t \left| \hat{F}_n(t) - F_0(t)
ight|$$

- $\circ \ T$ is distributed according to the KS distribution
- \circ This is not dependent on F_0
- \circ It does depend on n

Kolmogorov Lilliefors Test

- ullet Suppose we wanted to specifically test whether F is Gaussian or not
- ullet We could create a cdf F_0 that is Gaussian and matches the mean and variance of the sample
- ullet This would be ok, but T in this case would not actually have a KS distribution because we matched up the first two moments
- Instead, it follows a KL distribution and we could use those instead
 - Note: the KL rejection intervals are always smaller than the KS
 - o So this means that the KS will retain the null in more cases than KL
 - So using the KS is ok but will give worse results

Permutation Test

- ullet This is a 2-sample test where we have a set of samples X and Y and we want to test if $F_X=F_Y$ or not
 - I.e. test a simulation of the world with and without the Higgs boson and use that to determine if the Higgs boson exists or not
- If we computed the statistic $T = \sup_t \left| \hat{F}_X(t) \hat{F}_Y(t) \right|$:
 - \circ This would actually depend on the underlying distribution F and not be possible to calculate in most cases
- ullet If we computed the statistic $\left| \overline{X} \overline{Y}
 ight|$
 - If the means of the distribution are the same, but are fundamentally different, then we would be committing a large type II error
 - \circ We also still don't know F

- The permutation test is based on the second idea and resolves the second issue, but **not** the first issue
 - \circ We will actually compute $|\overline{X} \overline{Y}|$
 - We will then attempt to compute the quantiles of this
 - This still fails if they happen to have the same mean
- Under the null hypothesis, all of the data is the same and it shouldn't matter if we shuffle them around
- Under the null hypothesis, we were equally likely to have seen any of the arrangements of the data
- There are a total of 2n! ways to rearrange the data, and then we could just split the samples into left and right halves and take the difference in sample means
- ullet Therefore, if we just compute all possible permutations, we have 2n! samples for what the difference between left and right halves could be
 - \circ We could compute the α th percentile for this to get the rejection region
 - \circ In reality, we can't compute 2n! permutations, so we just do a random sample