1)

a)

G	←	←
+1000	847.65	732.35
W	↑	↑
-1000	570.67	634.78
\rightarrow	↑	↑
288.44	490.95	612.32

Begin by solving for the two locations adjacent to our locations of known utility:

$$\begin{split} &U([2,3]) = R([2,3]) + (0.9)*[\ (0.8)*U([1,3]) + (0.1)*U([2,3]) + (0.1)*U([2,2])\] \\ &U([2,3]) = (-1) + (0.72)*(1000) + (0.09)*U([2,3]) + (0.09)*U([2,2]) \\ &U([2,3]) = (720) + (0.09)*U([2,3]) + (0.09)*U([2,2]) \\ &0 = (720) + (-0.91)*U([2,3]) + (0.09)*U([2,2]) \end{split}$$

$$\begin{split} &U([2,2]) = R([2,2]) + (0.9)*[\ (0.8)*U([2,3]) + (0.1)*U([2,2]) + (0.1)*U([1,2])\] \\ &U([2,2]) = (-1) + (0.72)*U([2,3]) + (0.09)*U([2,2]) + (0.09)*(-1000) \\ &U([2,2]) = (-90.04) + (0.72)*U([2,3]) + (0.09)*U([2,2]) \\ &0 = (-91) + (0.72)*U([2,3]) + (-0.91)*U([2,2]) \end{split}$$

2 equations, 2 unknowns, set the two equal to each other, solve for one term, substitute that solution into one of the equations to solve for the second term, use that answer to solve the first term:

$$(720) + (-0.91)*U([2,3]) + (0.09)*U([2,2]) = (-91) + (0.72)*U([2,3]) + (-0.91)*U([2,2])$$

$$(720) + (-0.91)*U([2,3]) + (0.09)*U([2,2]) + (91) - (0.72)*U([2,3]) + (0.91)*U([2,2]) = 0$$

$$(811) + (-1.63)*U([2,3]) + (1)*U([2,2]) = 0$$

Solve for U([2,2]):

$$U([2,2]) = (-811) + (1.63)*U([2,3])$$

Substitute into either of the equations to solve for U([2,3]):

$$0 = (720) + (-0.91)*U([2,3]) + (0.09)*[(-811) + (1.63)*U([2,3])]$$
$$0 = (720) + (-0.91)*U([2,3]) + (-72.99) + (0.1467)*U([2,3])$$

$$0 = (647.01) + (-0.7633)*U([2,3])$$

$$(0.7633)*U([2,3]) = (647.01)$$

$$U([2,3]) = (647.01) / (0.7633)$$

U([2,3]) = (847.648)

With U([2,3]) known, use either of the two original equations to solve for U([2,2]):

$$0 = (-91) + (0.72)*(847.648) + (-0.91)*U([2,2])$$

$$0 = (-91) + (610.307) + (-0.91)*U([2,2])$$

$$0 = (519.307) + (-0.91)*U([2,2])$$

$$(0.91)*U([2,2]) = (519.307)$$

$$U([2,2]) = (519.307) / (0.91)$$

U([2,2]) = (570.667)

--

Next, use the next two adjacent locations to the two we have just calculated:

$$U([3,3]) = R([3,3]) + (0.9)*[(0.8)*U([2,3]) + (0.1)*U([3,3]) + (0.1)*U([3,2])]$$

$$U([3,3]) = (-1) + (0.72)*(847.648) + (0.09)*U([3,3]) + (0.09)*U([3,2])$$

$$U([3,3]) = (609.307) + (0.09)*U([3,3]) + (0.09)*U([3,2])$$

$$0 = (609.307) + (-0.91)*U([3,3]) + (0.09)*U([3,2])$$

$$U([3,2]) = R([3,2]) + (0.9)*[(0.8)*U([3,3]) + (0.1)*U([3,2]) + (0.1)*U([2,2])]$$

$$U([3,2]) = (-1) + (0.72)*U([3,3]) + (0.09)*U([3,2]) + (0.09)*(570.667)$$

$$U([3,2]) = (50.3603) + (0.72)*U([3,3]) + (0.09)*U([3,2])$$

$$0 = (50.3603) + (0.72)*U([3,3]) + (-0.91)*U([3,2])$$

$$(609.307) + (-0.91)*U([3,3]) + (0.09)*U([3,2]) = (50.3603) + (0.72)*U([3,3]) + (-0.91)*U([3,2])$$

$$(609.307) + (-0.91)*U([3,3]) + (0.09)*U([3,2]) + (-50.3603) - (0.72)*U([3,3]) + (0.91)*U([3,2]) \\ = 0$$

$$(558.9467) + (-1.63)*U([3,3]) + (1)*U([3,2]) = 0$$

Solve for U([3,3]):

$$(1.63)*U([3,3]) = (558.9467) + (1)*U([3,2])$$

$$U([3,3]) = (558.9467) + (1)*U([3,2]) / (1.63)$$

Substitute into either equation:

$$0 = (609.307) + (-0.91)*[(558.9467) + (1)*U([3,2]) / (1.63)] + (0.09)*U([3,2])$$

$$0 = (609.307) + [(-508.6415) + (-0.91)*U([3,2]) / (1.63)] + (0.09)*U([3,2])$$

$$0 = (993.17) + (-508.6415) + (-0.91)*U([3,2]) + (0.1467)*U([3,2]) / (1.63)$$

$$0 = (993.17) + (-508.6415) + (-0.91)*U([3,2]) + (0.1467)*U([3,2])$$

$$0 = (484.52891) + (-0.7633)*U([3,2])$$

$$(0.7633)*U([3,2]) = (484.52891)$$

$$U([3,2]) = (484.52891) / (0.7633)$$

U([3,2]) = (634.782)

$$0 = (50.3603) + (0.72)*U([3,3]) + (-0.91)*(634.782)$$

$$0 = (-527.29) + (0.72)*U([3,3])$$

$$(0.72)*U([3,3]) = (527.29)$$

$$U([3,3]) = (527.29) / (0.72)$$

U([3,3]) = (732.349)

--

$$U([1,1]) = R([1,1]) + (0.9)*[(0.8)*U([2,1]) + (0.1)*U([1,1]) + (0.1)*U([1,2])]$$

$$U([1,1]) = (-1) + (0.72)*U([2,1]) + (0.09)*U([1,1]) + (0.09)*(-1000)$$

$$U([1,1]) = (-90.04) + (0.72)*U([2,1]) + (0.09)*U([1,1])$$

$$0 = (-91) + (0.72)*U([2,1]) + (-0.91)*U([1,1])$$

Neither U([2,1]) or U([1,1]) is known, solve for them first:

$$U([2,1]) = R([2,1]) + (0.9)*[(0.8)*U([2,2]) + (0.1)*U([1,1]) + (0.1)*U([3,1])]$$

$$U([2,1]) = (-1) + (0.72)*(570.667) + (0.09)*U([1,1]) + (0.09)*U([3,1])$$

$$U([2,1]) = (409.88) + (0.09)*U([1,1]) + (0.09)*U([3,1])$$

$$0 = (409.88) + (0.09)*U([1,1]) + (0.09)*U([3,1]) - (1)U([2,1])$$

Three unknowns

$$U([3,1]) = R([3,1]) + (0.9)*[(0.8)*U([3,2]) + (0.1)*U([3,1]) + (0.1)*U([2,1])]$$

$$U([3,1]) = (-1) + (0.72)*(634.782) + (0.09)*U([3,1]) + (0.09)*U([2,1])$$

$$U([3,1]) = (457.043) + (0.09)*U([3,1]) + (0.09)*U([2,1])$$

$$0 = (457.043) + (-0.91)*U([3,1]) + (0.09)*U([2,1])$$

2 unknowns, no complementary equation, use these three to solve for 3 equations, 3 unknowns:

Solve for U([1,1]):

$$(0.91)*U([1,1]) = (-91) + (0.72)*U([2,1])$$

$$U([1,1]) = (-91) + (0.72)*U([2,1]) / (0.91)$$

Use to eliminate U([1,1]) in the only other equation that has it:

$$0 = (409.88) + (0.09)*[(-91) + (0.72)*U([2,1]) / (0.91)] + (0.09)*U([3,1]) - (1)U([2,1])$$

$$0 = (409.88) + [(-8.19) + (0.0648)*U([2,1]) / (0.91)] + (0.09)*U([3,1]) - (1)U([2,1])$$

$$0 = [(372.99) + (-8.19) + (0.0648)*U([2,1]) + (0.0819)*U([3,1]) - (0.91)U([2,1])] / (0.91)$$

$$0 = (364.8008) + (-0.8452)*U([2,1]) + (0.0819)*U([3,1])$$

We now have 2 equations with 2 complementary unknowns:

$$(457.043) + (-0.91)*U([3,1]) + (0.09)*U([2,1]) = (364.8008) + (-0.8452)*U([2,1]) + (0.0819)*U([3,1])$$

$$(457.043) + (-0.91)*U([3,1]) + (0.09)*U([2,1]) - (364.8008) + (0.8452)*U([2,1]) - (0.0819)*U([3,1]) = 0$$

$$(92.2422) + (-0.9919)*U([3,1]) + (0.9352)*U([2,1]) = 0$$

Solve for U([3,1]):

$$(0.9919)*U([3,1]) = (92.2422) + (0.9352)*U([2,1])$$

U([3,1]) = [(92.2422) + (0.9352)*U([2,1])]/(0.9919)

Substitute into either equation:

$$0 = (457.043) + (-0.91)*([(92.2422) + (0.9352)*U([2,1]))] / (0.9919)) + (0.09)*U([2,1])$$

$$0 = (458.043) + ([(-83.94) + (-0.851)*U([2,1])] / (0.9919)) + (0.09)*U([2,1])$$

$$0 = [(454.878) + (-83.81956) + (-0.851)*U([2,1]) + (0.089)*U([2,1])] / (0.9919)$$

$$0 = (374.103) + (-0.762)*U([2,1])$$

$$(0.762)*U([2,1]) = (374.103)$$

$$U([2,1]) = (374.103) / (0.762)$$

U([2,1]) = (490.949)

Use to solve:

$$0 = (364.8008) + (-0.8452)*U([2,1]) + (0.0819)*U([3,1])$$

$$0 = (364.8008) + (-0.8452)*(490.949) + (0.0819)*U([3,1])$$

$$0 = (-50.149) + (0.0819)*U([3,1])$$

$$U([3,1]) = (50.149) / (0.0819)$$

U([3,1]) = (612.32)

And:

$$0 = (-91) + (0.72)*U([2,1]) + (-0.91)*U([1,1])$$

$$0 = (-91) + (0.72)*(490.949) + (-0.91)*U([1,1])$$

$$0 = (262.483) + (-0.91)*U([1,1])$$

$$(0.91)*U([1,1]) = (262.483)$$

$$U([1,1]) = (262.483) / (0.91)$$

U([1,1]) = (288.443)

b)

Temporal difference Q-learning:

$$U^{\pi}(s) = U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s)) - U^{\pi}(s)$$

 $\alpha = 1$

 $\gamma = 0.9$

5 executions of sequence: Right, Up, Up, Left (starting from [1,1])

Pass 1:

[1,1]:

$$\begin{split} U^{\pi}([1,1]) &= U^{\pi}([1,1]) + (1)(\ (-1) + (0.9)^*\ U^{\pi}([2,1]) - U^{\pi}([1,1])\) \\ U^{\pi}([1,1]) &= 0 + (1)(\ (-0.04) + (0.9)^*\ (0) - (0)\) \end{split}$$

$U^{\pi}([1,1]) = (-1)$

[2,1]:

$$\begin{split} U^\pi([2,1]) &= U^\pi([2,1]) + (1)(\ (\text{-}1) + (0.9) *\ U^\pi([2,2]) \ \text{-}\ U^\pi([2,1])\) \\ U^\pi([2,1]) &= (0) + (1)(\ (\text{-}0.04) + (0.9) *(0) \ \text{-}\ (0)\) \end{split}$$

$U^{\pi}([2,1]) = (-1)$

[2,2]:

$$\begin{split} &U^{\pi}([2,2]) = U^{\pi}([2,2]) + (1)(\ (-1) + (0.9)*\ U^{\pi}([2,3]) - U^{\pi}([2,2])\) \\ &U^{\pi}([2,2]) = (0) + (1)(\ (-1) + (0.9)*(0) - (0)\) \\ &U^{\pi}([2,2]) = 0 + (1)(\ (-1) + (0.9)*\ (0) - (0)\) \end{split}$$

$U^{\pi}([2,2]) = (-1)$

$$U^{\pi}([2,3]) = U^{\pi}([2,3]) + (1)((-1) + (0.9)* U^{\pi}([3,3]) - U^{\pi}([2,3]))$$

$$U^{\pi}([2,3]) + (1)((-1) + (0.9)*(1000) + (0.9)$$

$$U^{\pi}([2,3]) = (0) + (1)((-1) + (0.9)*(1000) - (0))$$

$$U^{\pi}([2,3]) = 0 + (1)((-1) + (900) - (0))$$

$U^{\pi}([2,3]) = (899)$

[1,3]:

Terminal state, U([3,3]) = 1000

$$U^{\pi}[1,1] = -1$$

$$U^{\pi}[2,1] = -1$$

$$U^{\pi}[2,2] = -1$$

$$U^{\pi}[2,3] = 899$$

$$U^{\pi}[1,3] = 1000$$

Pass 2:

$$[1,1]$$
:

$$\begin{split} U^{\pi}([1,1]) &= U^{\pi}([1,1]) + (1)(\ (-1) + (0.9)^*\ U^{\pi}([2,1]) - U^{\pi}([1,1])\) \\ U^{\pi}([1,1]) &= (-1) + (1)(\ (-1) + (0.9)^*\ (-1) - (-1)\) \end{split}$$

$U^{\pi}([1,1]) = -1.9$

$$[2,1]$$
:

$$U^{\pi}([2,1]) = U^{\pi}([2,1]) + (1)((-1) + (0.9)* U^{\pi}([2,2]) - U^{\pi}([2,1]))$$

$$U^{\pi}([2,1]) = (-1) + (1)((-1) + (0.9)*(-1) - (-1))$$

$U^{\pi}([2,1]) = -1.9$

$$[2,2]$$
:

$$U^{\pi}([2,2]) = U^{\pi}([2,2]) + (1)(\ (-1) + (0.9)*\ U^{\pi}([2,3]) - U^{\pi}([2,2])\)$$

$$U^{\pi}([2,2]) = (-1) + (1)((-1) + (0.9)*(899) - (-1))$$

$U^{\pi}([2,2]) = 808.1$

[2,3]:

$$\begin{split} U^{\pi}([2,3]) &= U^{\pi}([2,3]) + (1)(\ (\text{-}1) + (0.9) *\ U^{\pi}([3,3]) - U^{\pi}([2,3])\) \\ U^{\pi}([2,3]) &= (899) + (1)(\ (\text{-}1) + (0.9) *\ (1000) - (899)\) \end{split}$$

$U^{\pi}([2,3]) = (899)$

[1,3]:

Terminal state, U([3,3]) = 1000

$$U^{\pi}[1,1] = -1.9$$

$$U^{\pi}[2,1] = -1.9$$

$$U^{\pi}[2,2] = 808.1$$

$$U^{\pi}[2,3] = 899$$

$$U^{\pi}[1,3] = 1000$$

Pass 3:

[1,1]:

$$\begin{array}{l} U^{\pi}([1,1]) = U^{\pi}([1,1]) + (1)(\ (-1) + (0.9)*\ U^{\pi}([2,1]) - U^{\pi}([1,1])\) \\ U^{\pi}([1,1]) = (-1.9) + (1)(\ (-1) + (0.9)*\ (-1.9) - (-1.9)\) \end{array}$$

$U^{\pi}([1,1]) = -2.71$

[2,1]:

$$U^{\pi}([2,1]) = U^{\pi}([2,1]) + (1)((-1) + (0.9)* U^{\pi}([2,2]) - U^{\pi}([2,1]))$$

$$U^{\pi}([2,1]) = (-1.9) + (1)((-1) + (0.9)* (808.1) - (-1.9))$$

$U^{\pi}([2,1]) = 726.29$

[2,2]:

$$U^{\pi}([2,2]) = U^{\pi}([2,2]) + (1)((-1) + (0.9)* U^{\pi}([2,3]) - U^{\pi}([2,2]))$$

$$U^{\pi}([2,2]) = (808.1) + (1)((-1) + (0.9)* (899) - (808.1))$$

$U^{\pi}([2,2]) = 808.1$

[2,3]:

$$\begin{split} U^{\pi}([2,3]) &= U^{\pi}([2,3]) + (1)(\ (-1) + (0.9)^*\ U^{\pi}([3,3]) - U^{\pi}([2,3])\) \\ U^{\pi}([2,3]) &= (899) + (1)(\ (-1) + (0.9)^*\ (1000) - (899)\) \end{split}$$

$U^{\pi}([2,3]) = 899$

```
[1,3]:
Terminal state, U([3,3]) = 1000
U^{\pi}[1,1] = -2.71
U^{\pi}[2,1] = 726.29
U^{\pi}[2,2] = 808.1
U^{\pi}[2,3] = 899
U^{\pi}[1,3] = 1000
         Pass 4:
[1,1]:
U^{\pi}([1,1]) = U^{\pi}([1,1]) + (1)((-1) + (0.9)*U^{\pi}([2,1]) - U^{\pi}([1,1]))
U^{\pi}([1,1]) = (-2.71) + (1)((-1) + (0.9)*(726.29) - (-2.71))
U^{\pi}([1,1]) = 652.661
[2,1]:
U^{\pi}([2,1]) = U^{\pi}([2,1]) + (1)((-1) + (0.9)*U^{\pi}([2,2]) - U^{\pi}([2,1]))
U^{\pi}([2,1]) = (726.29) + (1)((-1) + (0.9)*(808.1) - (726.29))
U^{\pi}([2,1]) = 726.29
[2,2]:
U^{\pi}([2,2]) = U^{\pi}([2,2]) + (1)((-1) + (0.9)*U^{\pi}([2,3]) - U^{\pi}([2,2]))
U^{\pi}([2,2]) = (808.1) + (1)((-1) + (0.9)*(899) - (808.1))
U^{\pi}([2,2]) = 808.1
[2,3]:
U^{\pi}([2,3]) = U^{\pi}([2,3]) + (1)((-1) + (0.9)*U^{\pi}([3,3]) - U^{\pi}([2,3]))
U^{\pi}([2,3]) = (899) + (1)((-1) + (0.9)*(1000) - (899))
U^{\pi}([2,3]) = 899
[1,3]:
Terminal state, U([3,3]) = 1000
U^{\pi}[1,1] = 652.661
U^{\pi}[2,1] = 726.29
U^{\pi}[2,2] = 808.1
U^{\pi}[2,3] = 899
```

$$U^{\pi}[1,3] = 1000$$

Pass 5:

$$\begin{split} U^{\pi}([1,1]) &= U^{\pi}([1,1]) + (1)(\ (-1) + (0.9)^*\ U^{\pi}([2,1]) - U^{\pi}([1,1])\) \\ U^{\pi}([1,1]) &= (652.661) + (1)(\ (-1) + (0.9)^*\ (726.29) - (652.661)\) \end{split}$$

$U^{\pi}([1,1]) = 652.661$

$$[2,1]$$
:

$$\begin{split} U^\pi([2,1]) &= U^\pi([2,1]) + (1)(\ (-1) + (0.9)^*\ U^\pi([2,2]) - U^\pi([2,1])\) \\ U^\pi([2,1]) &= (726.29) + (1)(\ (-1) + (0.9)^*\ (808.1) - (726.29)\) \end{split}$$

$U^{\pi}([2,1]) = 726.29$

$$[2,2]$$
:

$$U^{\pi}([2,2]) = U^{\pi}([2,2]) + (1)((-1) + (0.9)* U^{\pi}([2,3]) - U^{\pi}([2,2]))$$

$$U^{\pi}([2,2]) = (808.1) + (1)((-1) + (0.9)* (899) - (808.1))$$

$U^{\pi}([2,2]) = 808.1$

$$[2,3]$$
:

$$\begin{split} U^{\pi}([2,3]) &= U^{\pi}([2,3]) + (1)(\ (-1) + (0.9) *\ U^{\pi}([3,3]) - U^{\pi}([2,3])\) \\ U^{\pi}([2,3]) &= (899) + (1)(\ (-1) + (0.9) *\ (1000) - (899)\) \end{split}$$

$U^{\pi}([2,3]) = 899$

[1,3]:

Terminal state, U([3,3]) = 1000

$$U^{\pi}[1,1] = -0.13756$$

$$U^{\pi}[2,1] = -0.13756$$

$$U^{\pi}[2,2] = 809.924$$

$$U^{\pi}[2,3] = 899.96$$

$$U^{\pi}[1,3] = 1000$$

Cell	Pass 1	Pass 2	Pass 3	Pass 4	Pass 5
[1,1]	-1	-1.9	-2.71	652.66	652.66
[2,1]	-1	-1.9	726.29	726.29	726.29
[2,2]	-1	808.1	808.1	808.1	808.1
[2,3]	899	899	899	899	899

					DI. Holdel
[3,3]	1000	1000	1000	1000	1000

2)

a)

P(Class) = # times hungry/not hungry appears as the classification out of the total number of classifications:

```
P(Class = hungry) = 600/1000 = 0.6
```

P(Class = not hungry) = 400/1000 = 0.4

b)

m = "the wumpus is not hungry"

bigrams:

the wumpus

wumpus is

is not

not hungry

By Bayes rule:

```
P(Class = hungry \mid Message = m) = P(Message = m \mid Class = hungry) / P(Class = hungry) \\ = P(P(wumpus \mid the) \mid class = hungry * P(is \mid wumpus) \mid class = hungry * P(not \mid is) \mid class = hungry * P(hungry \mid not) \mid class = hungry) / P(Class = hungry)
```

```
P(wumpus|the) = 300/1000 = 0.3

P(is|wumpus) = 90/1000 = 0.09

P(not|is) = 60/1000 = 0.06

P(hungry|not) = 100/1000 = 0.1
```

$$0.3 * 0.09 * 0.06 * 0.1 = 0.000162$$

```
P(message = m | class = hungry) = 0.000162
P(class = hungry) = 0.6
0.000162 / 0.6 = 0.00027
```

$P(class = hungry \mid message = m) = 0.00027$

```
P(Class = not hungry | Message = m) = P(Message = m | Class = not hungry) / P(Class = not hungry) 
= P(P(wumpus|the) | class = not hungry * P(is|wumpus) | class = not hungry * P(not|is) | class =
```

not hungry * P(hungry|not) | class = not hungry) / P(Class = not hungry)

 $\begin{array}{lll} P(wumpus|the) & = 150/1000 & = 0.15 \\ P(is|wumpus) & = 40/1000 & = 0.04 \\ P(not|is) & = 60/1000 & = 0.06 \\ P(hungry|not) & = 200/1000 & = 0.2 \\ \end{array}$

0.15 * 0.04 * 0.06 * 0.2 = 0.000072

 $P(message = m \mid class = not \ hungry) = 0.000072$ $P(class = not \ hungry) = 0.4$

0.000072 / 0.4 = 0.00018

$P(class = not hungry \mid message = m) = 0.00018$

d)

 $P(class = hungry \mid message = m) = 0.00027 > P(class = not hungry \mid message = m) = 0.00018$

The more likely class, given this corpus, is the classification is "not hungry" for message m.

2)

Sentence cannot be parsed, it is not consistent with (accepted) by the grammar.

4)

```
input sequence: [C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub>, C<sub>5</sub>, C<sub>6</sub>, C<sub>7</sub>]
V1, onset = P(C2|onset)P(onset)
       =(0.5)(1.0)=0.5
V1, mid = P(C2|mid) = 0
V1, end = P(C2|end) = 0
V1, final = 0
V2, onset = P(C3|onset)max\{[P(onset|onset)V1, onset], 0,0,0\}
        = (0.3)[(0.6)(0.5)] = 0.09
V2, mid = P(C3|mid)max\{[P(mid|onset)V1, onset, P(mid|mid)V1, mid, 0,0]\}
        = (0.3)\{[(0.4)(0.5)], [(0.5)(0)]\} = \{0.06, 0\}
V2, end = P(C3|end) = 0
V2, final = 0
V3, onset = P(C3|onset)max\{[P(onset|onset)V2, onset, 0, 0, 0]\}
        = (0.3)[(0.6)(0.09)] = 0.0162
V3, mid = P(C3|mid)max \{ [P(mid|onset)V2, onset, P(mid|mid)V2, mid], 0, 0 \}
       = (0.3)\{[(0.4)(0.09)], [(0.5)(0.06)]\} = \{0.0108, 0.009\}
V3, end = P(C3|end) = 0
V3, final = 0
V4, onset = P(C4|onset) = 0
V4, mid = P(C4|mid)max\{[P(mid|onset)V3, onset, P(mid|mid)V3, mid], 0, 0\}
       = (0.3)\{[(0.4)(0.0162)], [(0.5)(0.0108)]\} = \{0.00243, 0.00162\}
V4, end = P(C4|end)max\{[P(end|mid)V3, mid, P(end|end)V3, end], 0\}
       = (0)\{[()()], [()()]\} \{0, 0\}
V4, final = 0
V5, onset = P(C5|onset) = 0
V5, mid = P(C5|mid)max\{[P(mid|onset)V4, onset, P(mid|mid)V4, mid], 0,0\}
        = (0.4)\{[(0.4)(0)], [(0.5)(0.00243)]\} = \{0, 0.000486\}
V5, end = P(C5|end)max\{[P([end|mid]V4, mid), P(end|end)V4, end, 0\}
        = (0.2)\{[(0.5)(0.00243)], [(0.3)(0)]\} = \{0.000243, 0\}
V5, final = 0
```

```
V6, onset = P(C6|onset) = 0
V6, mid = P(C6|mid) = 0
V6, end = P(C6|end)max\{[P(end|mid)V5, mid, P(end|end)V5, end], 0\}
       = (0.4)\{[(0.5)(0.000486)], [(0.3)(0.000243)]\} = \{0.0000972, 0.00002916\}
V6, final = 0
V7, onset = P(C7|onset) = 0
V7, mid = P(C7|mid) = 0
V7, end = P(C7|end)max\{[P(end|mid)V6, mid, P(end|end)V6, end], 0\}
       = (0.4)\{[(0.5)(0)], [(0.3)(0.0000972)]\} = \{0, 0.000011664\}
V7, final = 0
P(final|end)V7, end
       =(0.7)(0.000011664)
       = 0.0000081648
       = 8.16 \times 10^{-6}
P(HMM) = 8.16 \times 10^{-6}
Most probable path:
```

Onset, onset, mid, mid, end, end, final