Load Libraties

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1. Load Data

Out[4]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

2. Outlier detection using boxplot

```
In [13]: fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(21,7))
    sns.boxplot(x = 'Product', y = 'Age', data=aerofit_df, ax=ax1)
    sns.boxplot(x = 'Product', y = 'Usage', data=aerofit_df, ax=ax2)
    sns.boxplot(x = 'Product', y = 'Fitness', data=aerofit_df, ax=ax3)
    plt.xticks(fontsize= 13)
# plt.title('Box plot of numerical columns', fontsize=16);
```


In [14]: | aerofit_df.describe()

Out[14]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

```
In [16]: | aerofit_df['Fitness'].median()
```

Out[16]: 3.0

3. Other feature effect on the product purchased

In [18]: ax = sns.countplot(x="Product", data=aerofit_df, hue='MaritalStatus')

In [19]: ## Looks the Partnered persons purchased more than Single (in all 3 categories of

In [34]: sns.histplot(data=aerofit_df, x="Age", bins=10, hue='Product')

Out[34]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [27]: ## Who all are aged around 25 purchased more product compare with others. ## The persons aged around 30 to 37 (approx) purchased product KP481

```
In [35]: sns.histplot(data=aerofit_df, x="Income", bins=10, hue='Product')
```

Out[35]: <AxesSubplot:xlabel='Income', ylabel='Count'>

In [39]: sns.histplot(data=aerofit_df, x="Gender", bins=10, hue='Product')

Out[39]: <AxesSubplot:xlabel='Gender', ylabel='Count'>

In []: ## Most mens like KP781 compare with Females
More Females like KP281 compare with Males

4.Representing the marginal probability like - against Product

Product		
KP281	48	32
KP481	36	24
KP781	23	17

In [32]: pd.crosstab(aerofit_df.Product, aerofit_df.Gender)

Out[32]:

Gender	Female	Male	
Product			
KP281	40	40	
KP481	29	31	
KP781	7	33	

5. Correlation among different factors

```
In [44]: sns.pairplot(aerofit_df, hue='Product')
```

Data to identify probability

```
In [57]: | aerofit_df[(aerofit_df['Product'] == 'KP781') & (aerofit_df['Gender'] == 'Male')]
Out[57]: Product
                            33
                            33
          Age
          Gender
                            33
          Education
                            33
          MaritalStatus
                            33
          Usage
                            33
          Fitness
                            33
                            33
          Income
          Miles
                            33
          dtype: int64
In [58]: | aerofit_df[(aerofit_df['Product'] == 'KP781') & (aerofit_df['Gender'] == 'Female
Out[58]: Product
                           7
                            7
          Age
                            7
          Gender
                            7
          Education
          MaritalStatus
                            7
                            7
          Usage
          Fitness
                            7
          Income
                            7
          Miles
                            7
          dtype: int64
In [59]: | aerofit_df[(aerofit_df['Gender'] == 'Female')].count()
Out[59]: Product
                            76
                            76
          Age
          Gender
                            76
          Education
                            76
          MaritalStatus
                            76
          Usage
                           76
          Fitness
                            76
          Income
                           76
          Miles
                           76
          dtype: int64
In [ ]:
```