

ONLINE LEARNING APPLICATIONS PROJECT

Stefano Arcaro Gabriele Farace

Antonio Napolitano

Davide Remondina

Sofia Yang

BIDDING ENVIRONMENT (COMPETITORS)	Stochastic with uniformely distributed bids
PRICING ENVIRONMENT	Stochastic with: • demands sampled from a binomial distribution with success probability given by the conversion rate $(1-p)$ • number of trials = number of visits obtained in the bidding interaction
AUCTION TYPE	Second Price (Truthful)
BIDDING AGENTS	UCB-likePrimal-Dual (Multiplicative Pacing)
PRICING AGENT	Gaussian Process (continuous action set)

INTERACTION

PRICING ONLY

BIDDING ONLY

NUMBER OF INTERACTIONS	500
NUMBER OF CUSTOMERS	50
PRODUCT COST	0.1
NUMBER OF TRIALS	10

NUMBER OF INTERACTIONS	5000
BUDGET	1000
VALUATION	1
CTRs	[0.8 0.5 0.9 1]
NUMBER OF TRIALS	10

GPUCB

UCB-like

Multiplicative Pacing

PRICING AND BIDDING

UCB-LIKE BIDDER

PRIMAL-DUAL BIDDER

BIDDING ENVIRONMENT (COMPETITORS)	 Adversarial with uniformely distributed bids Extremes of the interval sampled from a beta distribution each round
PRICING ENVIRONMENT	Adversarial with: • demands sampled from a binomial distribution with success probability given by the conversion rate $(1 - \theta * p)$ • θ sampled from a beta distribution each round • number of trials = number of visits obtained in the bidding interaction
AUCTION TYPE	Generalized First-Price (Non-truthful)
BIDDING AGENTS	Primal-Dual (Multiplicative Pacing)
PRICING AGENT	EXP3 (discretized prices)

PRICING ONLY

NUMBER OF INTERACTIONS	500
NUMBER OF CUSTOMERS	50
PRODUCT COST	0.1
NUMBER OF TRIALS	10

EXP3

BIDDING ONLY

NUMBER OF INTERACTIONS	5000
BUDGET	1000
VALUATION	1
CTRs	[0.8 0.5 0.9 1]
LAMBDAs	[1 0.9]
NUMBER OF TRIALS	10

FF Multiplicative Pacing

PRICING AND BIDDING

- Focus on the pricing problem
- Non-stationary environment
 - Abrupt changes
 - Noisy demand curve changes each interval

GOAL

Pricing strategy for discretized set of prices $p \in [0,1]$ using:

- Sliding Window
- CUSUM

SETUP

- Defined demand curves for each interval
- Derived respective profit curves

NON-STATIONARITY CHECK

- Tested UCB1 on the environment
- Results indicate presence of non-stationarity

SLIDING WINDOW

- Sliding Window UCB
- Initial trial failed
 - Decided to test different window sizes

CHANGE DETECTION

- CUSUM UCB
- Best performing method overall

BONUS POINT

- Two-item stochastic pricing environment
- Noisy demand curve $D(p_1, p_2) + \eta$

GOAL

Build a regret minimizer for the continuous action set $[0,1]^2$ using 2D Gaussian Processes

RESULTS

- GP UCB
- Great results obtained

BIDDING ENVIRONMENT	Adversarial with full feedback	
AUCTION TYPE	Generalized First-Price (Non-truthful)	
BIDDING AGENTS	 Primal-Dual for Truthful (Multiplicative Pacing) Primal-Dual for Non-truthful (Multiplicative Pacing with Hedge) UCB-like (UCB1) UCB-like Updating ρ (our version of the algorithm) 	
GOAL	Compare the performances of different algorithms under various setups	

STANDARD CASE

SETUP

BIDDERS PER TYPE	3
VALUATIONS	[0.80 0.85 0.90]
NUMBER OF SLOTS	3
SLOT PROMINENCE	[0.8 0.9 1.0]
BUDGET	250

- UCB_classic has linear regret
- Multiplicative pacing has the smoothest curve

STANDARD CASE

SETUP

BIDDERS PER TYPE	3
VALUATIONS	[0.80 0.85 0.90]
NUMBER OF SLOTS	3
SLOT PROMINENCE	[0.8 0.9 1.0]
BUDGET	250

- Bids increase over rounds
- UCB_classic stops winning after round 500
- FF_multiplicative needs time to be consistent with bids

MANY SLOTS CASE

SETUP

BIDDERS PER TYPE	3
VALUATIONS	[0.80 0.85 0.90]
NUMBER OF SLOTS	10
SLOT PROMINENCE	[0.1 1.0]
BUDGET	250

OBSERVATION

 All algorithms have more or less the same regret except for standard UCB_like algorithm

MANY SLOTS CASE

- Multiplicative algorithm wins middle slots
- FF_multiplicative prefers going all or nothing, winning the best slot more often

LOW BUDGET - DIFFERENT VALUATION

SETUP

BIDDERS PER TYPE	3
VALUATIONS	[0.3 0.6 0.9]
NUMBER OF SLOTS	3
SLOT PROMINENCE	[0.8 0.9 1.0]
BUDGET	100

- UCB_like performs better than FF_multiplicative
- Our modification to the UCB_like algorithm performs slightly better than the original
- Many agents deplete the budget about 100 rounds before the end

LOW BUDGET - DIFFERENT VALUATION

SETUP

BIDDERS PER TYPE	3
VALUATIONS	[0.3 0.6 0.9]
NUMBER OF SLOTS	3
SLOT PROMINENCE	[0.8 0.9 1.0]
BUDGET	100

- Bidder with valuation of 0.3 have regret 0 since minimum bid for winning a slot is 0.4
- Unclear why FF_multiplicative performs badly

FINAL CONSIDERATIONS

- Best performing algorithm is:
 - Multiplicative, despite
 - FF_multiplicative having better theoretical guarantees
- Our version of UCB-like algorithm for expert feedback worked well:
 - Almost always much better than UCB1
 - Slightly better in a single case

THANK YOU

Source code available at this <u>GitHub repository</u>