

A kurzus célja

- Ismertetjük a vállalati IT biztonsági rendszerek feladatait, elemeit, felépítését. A téma tárgyalása során kiemelten kezeljük a módszertani, irányítási szempontokat.
 Bemutatjuk a biztonsági rendszerelemek működési elvét, valamint az egyes védelmi intézkedések bevezetésének és üzemeltetésének lépéseit.
- Nem hacker tanfolyam!!!
 Heti 90 percben lehetetlen
- A cél egy szemléletmód átadása
- Informatikusként tudni kell, hogy milyen eszközei, lehetőségei vannak a "sötét oldalnak"
- Programozóként meg aztán pláne! Programozók írják a programokat (amiket aztán a hackerek támadnak.)

2020.09.05

ELTE IT Biztonság Speci

- Az információbiztonság irányitási rendszerei
- Sérülékenység elemzés és kezelés
- Kriptográfiai protokollok
- Határvédelmi technológiák
- Behatolásvédelem
- Üzemeltetés biztonság
- Fizikai biztonság
- Vírusvédelem
- Dokumentumvédelem

2020.09.05

ELTE IT Biztonság Spec

Agenda

Fejezetek:

- Biztonsági kockázatok elemzése
- Szabályozások, módszertanok
- Naplófeldolgozás és elemzés
- Incidens menedzsment
- Szervezetek és biztonságtudatosság, GDPR
- SSH/TLS

Előfeltételek

- Alapvetően nincs, de előnyt jelent
 - Valamilyen programozási nyelv közép szintű ismerete
 - Felhasználói szintű linux ismeret
 - Hálózati alapismeret (TCP/IP)
- A tárgy sikeres elvégzése

SOK-SOK MUNKA

2020.09.05

ELTE IT Biztonság Speci

Számonkérés

 A félév végén egy vizsgateszt (feleletválasztós, 4 lehetőséből mindig egy a helyes)

2020.09.05.

A tárgy honlapja

Az előadások anyaga (és egyéb): http://compalg.inf.elte.hu/~attila/Teaching.html lapon.

2020.09.05

ELTE IT Biztonság Speci

Miért fontos az IT biztonság?

- A szervezetek informatika nélkül működésképtelenek
- Az informatikai függőség egyre nagyobb
- Az informatikai rendszerek fenyegetettsége kritikus
- A szervezeti adatok mindig informatikai adatok
- Létszükséglet a szolgáltatások folytonossága és az adatok bizalmas kezelése

2020.09.05

Információbiztonság

Az információbiztonság az információ számos különféle "bizalmi" aspektusával foglalkozik. Az információbiztonság nem korlátozódik a számítógépes rendszerekre, sem az elektronikus vagy gépi úton olvasható információkra. Az információ vagy adatok bármilyen formában történő megőrzésére vagy védelmére vonatkozik.

www.wordIQ.com

2020.09.05

2020.09.05

ELTE IT Biztonság Speci

Adat vs. információ Adat vs. információ Mindig az információt védjük!!!

Informatikai biztonság

Az informatikai biztonság a védelmi rendszer olyan, a védő számára kielégítő mértékű állapota, amely az informatikai rendszerben kezelt adatok bizalmassága, hitelessége, sértetlensége és rendelkezésre állása, illetve a rendszerelemek rendelkezésre állása és funkcionalitása szempontjából zárt, teljes körű, folytonos és a kockázatokkal arányos.

2020.09.05

Információ/adatbiztonság

Amit meg kell őrizni:

- Bizalmasság (titkosság)
- Sértetlenség (változtatás nem történt, hiteles az adat, információ valódisága, letagadhatatlan, elszámoltatható)
- Folyamatos rendelkezésre állás (megbízhatóság, megbízható működés)
- Funkcionalitás (szolgáltatás minősége)

Az első hármat CIA-elvnek is nevezik (Confidentiality, Integrity, Availability)

2020.09.05

Sértetlenség

Az információt/adatot csak az arra jogosultak, szabályozott módon változtathatják meg.

2020.09.05

ELTE IT Biztonság Speci

Rendelkezésre állás

Az a tényleges állapot, amikor egy informatikai rendszer szolgáltatásai állandóan, illetve egy meghatározott időben rendelkezésre állnak, és a rendszer működőképessége sem átmenetileg, sem tartósan nincs akadályozva.

2020.09.05.

Biztonság és kockázat

 Nincs teljes biztonság, csak minimális kockázat.

 A biztonság nem más, mint tudatos kockázatvállalás

2020.09.05

ELTE IT Biztonság Speci

Szótár

- Fenyegetés Threat
- Sérülékenység **Vulnerability**
- Kockázat Risk
- Védelmi intézkedés Countermeasure
- Védelem Safeguard
- Vagyontárgy **Asset**
- Kitettség Exposure

2020.09.05.

Biztonsági alapelvek

- Ismerd meg magad és az ellenséged
- A biztonság kompromisszumok kérdése
- Mindent nem védhetünk 100%-os biztonsággal
- A védelem legyen egyenszilárdságú
- A védelem ne kerüljön többe, mint a védendő érték
- A biztonság nem egy állapot, hanem egy folyamat
- Mindig az egyszerű megoldást válasszuk
- Legyen a védelem több szintű

2020.09.05

ELTE IT Biztonság Speci

Információbiztonság, mint folyamat

- 1. Információvagyon felmérése, értékelése
- Fenyegetések számba vétele
- 3. Kockázatok meghatározása
- 4. Kockázatok kezelése
- 5. Védelmi intézkedések foganatosítása
- 6. Védelmi intézkedések nyomon követése
- 7. GOTO 1

2020.09.05

Védelmi intézkedések

Elvárások:

- Teljes körű (a rendszer összes elemére)
- Zárt (minden fenyegetés)
- Folytonos (megszakítás nélkül)

PreDeCo-elv

Preventív intézkedések

Pl.: biztonsági frissítések telepítése

Detektív intézkedések

Pl.: IDS rendszerek

Korrektív intézkedések

Pl.: backup/visszaállás

2020.09.05

ELTE IT Biztonság Speci

Védelmi kontrollok

- Adminisztratív kontrollok
 - Policy-k, eljárások, oktatás
- Fizikai kontrollok

Backup-ok, kábelezés, kontroll zónák

• Technikai/Logikai kontrollok

Hálózati architektúra, tűzfalak, titkosítás, rendszeres audit

2020.09.05

Adminisztratív védelem

- Törvények
- Szabványok, műszaki normák
- Ágazati végrehajtási utasítások
- Helyi szabályzatok
 - Informatikai Szabályzat
 - Dokumentumkezelési Szabályzat
 - Katasztrófa-elhárítási terv

2020.09.05

ELTE IT Biztonság Speci

Fizikai védelem

- Vagyonvédelmi megoldások (videó, beléptető, behatolás-jelző...)
- Tűzvédelem (tűzjelző és oltórendszer…)
- Üzemeltetés védelem (szünetmentes megoldások, redundancia...)

2020.09.05

Technikai/Logikai védelem

- Informatikai betörésvédelmi megoldások
- Mentési rendszerek, archiválás
- Vírusvédelem
- Jogosultságkezelés
- Titkosítás, kriptográfia
- Tűzfal
- . . .

2020.09.05

ELTE IT Biztonság Speci

Az informatikai biztonsági környezet

A fenyegetettség állapota:

ha az informatikai biztonsági környezet valamely eleme olyan állapotban van, hogy fennáll a bizalmasság, a sértetlenség, vagy a rendelkezésre állás sérülése, akkor az adott elem a fenyegetettség állapotába került ez az állapot éppen ellentétes a biztonságéval, a fenyegetettség állapotában az informatikai biztonsági rendszer elemét – illetve a sikeres támadáshoz szükséges titkot, kulcsot, stb. – felfedhetik, módosíthatják, vagy megsemmisíthetik

2020.09.05

Honnan származnak a fenyegetések?

- Belső támadók
 - Hitelesített felhasználók, akik olyan adatokhoz vagy erőforrásokhoz akarnak hozzáférni, ami sérti a legkevesebb jogosultság elvet.
 - Lehet szándékos vagy vétlen támadás.
 - A belső támadók veszélyesebbek.
- Külső támadók:
 - Nem hitelesített felhasználók, akik a hitelesítési eljárások megkerülésével férnek hozzá az adatokhoz.
 - Hackerek, crackerek...

2020.09.05

2020.09.05. **ELTE IT Security Course**

Fenyegetés típusok

- A fenyegetések kihasználásával egy támadó hozzáférést szerezhet a rendszerhez, alkalmazásokat futtathat, információt olvashat, hozhat létre, adhat hozzá és törölhet.
- Néhány példa lehetséges fenyegetésekre:
 - Adat remanencia (data remanence): Akkor következik be, ha egy mágneses adattárolót felülírtak vagy töröltek, de továbbra is kinyerhető belőle információ. http://en.wikipedia.org/wiki/Data_remanence
 - Átejtés (spoofing): Akkor következik be, amikor egy személy vagy egy alkalmazás másnak adja ki magát az adatok meghamisításával, így szerezve jogosulatlan hozzáférését. Pl. az IP spoofing során a támadó hamisított IP címmel megbízható hosztnak adja ki magát. http://en.wikipedia.org/wiki/Spoofing_attack

2020.09.05

ELTE IT Biztonság Speci

Fenyegetések

- Beágyazás (tunneling): Egy biztonsági rendszer megkerülése alacsonyszintű rendszerfunkciók elérésével. Pl. HTTP tunelling, melynek célja legális forgalomba ágyazott nem legális tartalommal kikerülni a tűzfalat.
 - http://en.wikipedia.org/wiki/Tunneling_protocol
- Célzott adatbányászat (targeted data mining): Adatbázisok áttekintése meghatározott információkért, melyek érzékeny adatokat szolgáltathatnak a rendszerről. http://en.wikipedia.org/wiki/Data_mining
- Fizikai hozzáférés (physical access): Fizikai hozzáférés egy hálózathoz, berendezéshez vagy támogató rendszerhez.
- Hátsókapu (backdoor): Olyan szoftverbe vagy hardverbe épített eljárás, melynek segítségével ki lehet kerülni az adott entitás hitelesítési eljárásait. http://en.wikipedia.org/wiki/Backdoor

2020.09.05

Fenyegetések

- Jelszótörés (password cracking): olyan eljárás, melynek segítségével a hitelesítést szolgáló jelszavak visszaállíthatók, pl. gyenge lenyomatból vagy brute force módszerrel. http://en.wikipedia.org/wiki/Password cracking
- Kártékony kód (malicious code): Olyan kód, mely végrehajtása közben megsérti a biztonsági szabályzatot, és a felhasználó tudta nélkül károkat okoz.

http://en.wikipedia.org/wiki/Malware

- Kémkedés (spying): Hagyományos eszközökkel (pl. mikrofon, kamera) elkövetett jogosulatlan információszerzés.
 - http://en.wikipedia.org/wiki/Spying
- Kifigyelés (shoulder surfing): Érzékeny adatok direkt leolvasása a képernyőről. http://en.wikipedia.org/wiki/Shoulder_surfing

2020.09.05

ELTE IT Biztonság Speci

Fenyegetések

- Kisugárzás (emanation): A hardvereszközökből származó elektromágneses sugárzásból visszaállított információk megszerzése. http://en.wikipedia.org/wiki/TEMPEST
- Közbeékelődéses támadás (man-in-the-middle attack): olyan támadás, ahol a támadó a két fél közé, számukra láthatatlanul kapcsolódva mindegyik fél felé a másik partnerének adja ki magát. http://en.wikipedia.org/wiki/Man-in-the-middle
- Kukabúvárkodás (dumpster diving): A támadás célja leselejtezett (vö. kidobott) iratokból érzékeny információk visszaállítása. http://en.wikipedia.org/wiki/Dumpster_diving
- Lehallgatás (eavesdropping): a hálózat adatforgalmának monitorozása abból a célból, hogy érzékeny adatok birtokába jusson a megfigyelő. http://en.wikipedia.org/wiki/Eavesdropping

2020.09.05

Fenyegetések

 Megszemélyesítés (impersonation): a támadás során a támadó egy hitelesített személynek adja ki magát, így szerez nem hitelesített hozzáférést, pl. lopott jelszóval. http://en.wikipedia.org/wiki/Impersonation

 Mobil kód (mobile code): Olyan szoftver, ami a hálózaton keresztül érkezik, és a helyi gépen hajtódik végre, általában a felhasználó engedélyével, de károkat okozhat a tudta nélkül. Pl. rosszindulatú ActiveX vezérlők.

http://en.wikipedia.org/wiki/Mobile_code

 Objektum újrafelhasználás (object reuse): Az a lehetőség, hogy egy érzékeny adat rendelkezésre áll egy nem hitelesített felhasználónak, pl. egy érzékeny adat megmarad a swap memóriában, amit a gép egy másik felhasználója is láthat.

2020.09.05

ELTE IT Biztonság Speci

Fenyegetések

- Buffer túlcsordulás (buffer overflow): Egy alkalmazás több adatot ír a memóriaterületére, mint amennyit lehetne, így felülír esetlegesen más alkalmazáshoz tartozó érzékeny memóriaterületet. A felülírás pl. tartalmazhat kártékony kódot vagy kikerülhet hitelesítési eljárást. http://en.wikipedia.org/wiki/Buffer_overflow
- Rejtett csatorna (covert channel): Olyan kommunikációs csatorna, melyen a legális csatornák kapacitását használva nem engedélyezett adatforgalom halad keresztül. Az időzített csatornán az adás előfordulása, a tárolási csatornán a memória adott területének írása/törlése szolgáltat információt.

http://en.wikipedia.org/wiki/Covert_channel

2020.09.05

Fenyegetések

- Személyes ráhatás (social engineering): olyan gépfüggetlen eljárás, melynek lényege az, hogy a támadó a rendszerrel dolgozó emberektől megszerzett adatok segítségével tör be a rendszerbe. http://en.wikipedia.org/wiki/Social_engineering
- Szimatolás (sniffing): Információszerzés a hálózati csomagok elfogásának segítségével. A lehallgatással szemben (ami általános hálózati forgalomra vonatkozik) a szimatolás kimondottan csomagkapcsolt hálózatokra értelmezhető. http://en.wikipedia.org/wiki/Packet_sniffer
- Visszajátszás (replay): A hitelesítési eljárás kijátszása egy hálózati csomag elfogásával és későbbi visszaküldésével. http://en.wikipedia.org/wiki/Replay_attack

2020.09.05

ELTE IT Biztonság Speci

Fenyegetések 2020

- 1. Cloud Vulnerability
 - Érzékeny adatok a felhőben
- 2. Al-Enhanced Cyberthreats
 - Adaptív kártékony kódok
- 3. Blockchain based small contracts
 - Kódot tartalmaz
- 4. Social engineering attacks
- 5. Fakenews

2020.09.05.

Hozzáférés-ellenőrzés

- A hozzáférés-ellenőrzés olyan biztonsági mechanizmusok gyűjteménye, amely meghatározza, hogy a felhasználók mit tehetnek a rendszerben, azaz milyen erőforrásokhoz férhetnek hozzá, és milyen műveleteket hajthatnak végre.
- Azok a védelmi intézkedések tartoznak ide, melyek szabályozzák, hogy egy felhasználó
 - milyen felhatalmazással férhet a rendszerhez,
 - milyen alkalmazásokat futtathat,
 - mit olvashat, hozhat létre, adhat hozzá és törölhet egy információból.
- Három lépésből áll:
 - · azonosítás (identification),
 - · hitelesítés (authentication),
 - engedélyezés (authorization)
- A hozzáférés-ellenőrzés része az elszámoltathatóság.

2020.09.05

Hozzáférés-ellenőrzés elvei

- Feladatok szétválasztása (Separation of Duties)
 - Célja, hogy egy folyamat lépéseit különböző személyek végezzék el.
 - Ehhez a folyamatot meg kell tervezni.
 - Megakadályozza, hogy egy személy a teljes folyamatot ellenőrizze és manipulálja.
 - Például egy könyvelési osztályon nem fogadhatja be ugyanaz a személy a számlákat, és nem kezdeményezheti ezek kifizetését.

2020.09.05

ELTE IT Biztonság Speci

Hozzáférés-ellenőrzés elvei

- Legkevesebb jogosultság (Least Privilege)
 - Az elv betartásával a rendszer a felhasználók és az alkalmazások erőforrásokhoz való hozzáférését csak a legszükségesebbekre korlátozza.
 - Ehhez meg kell határozni a felhasználók munkájához szükséges jogosultságok minimális halmazát.
 - A felhasználók ehhez a halmazhoz kapnak csak hozzáférést, se többhöz,

se kevesebbhez.

 Példa a Windows User Account Control (UAC) megoldása.

2020.09.05

Hitelesítés

- Tudás alapú Something you know
- Tulajdon alapú Something you have
- Tulajdonság alapú Something you are

A jó hitelesítés során a **háromból legalább kettőt**, **egymástól függetlenül** kell használni! Ez az erős autentikáció vagy többlépcsős hitelesítés.

2020.09.05

ELTE IT Biztonság Speci

Tudás alapú: Jelszavak

- Jelszó politika (pl. korlátozott élettartam)
- Jelszó menedzsment (ne legyen szótári alakú, kisNAGY+szám+speckar, min8kar, ...)
- Jelszó hashelés
- Jelmondatok
- Lehetséges támadások:

Brute-force vagy szótár alapú támadás, lehallgatás, social engineering

2020.09.05

Azonosítás, hitelesítés - módszerek

Azonosítás

Alapértelmezés: elutasítás (deny/no access)

Hitelesítés

- Centralizált

RADIUS (A kliens fogadja a felhasználói kéréseket, amit egy titkosított csatornán továbbít a szervernek. A szerver hitelesíti a felhasználót - pl. egy LDAP szerveren (http://padre.web.elte.hu/ldap.html) keresztül -, és visszaküldi a felhasználóra vonatkozó konfigurációs információkat. UDP alapú) TACACS+ (Terminal Access Controller Access-Control System , TCP alapú, 49-es porton))

<u>Single-sign-on</u>, (SSO) ha egy felhasználó több rendszerhez szeretne hozzáférni

- Decentralizált

Kerberos (pl. Microsoft Active Directory, 88-as porton, nem szabványos)

Hozzáférés ellenőrzési modellek

- Discretionary Access Control (DAC)
 - Az objektum tulajdonosa mondja meg ki/mit tehet meg vele
 - Linux filesystem jogosultság
 - Windows ACL-ek
- Mandatory Access Control (MAC)
 - Az AC mechanizmus felülbírálhatja a tulajdonos döntését
 - "security labels" / "sensitivity labels"
 - SELinux

2020.09.05

ELTE IT Biztonság Speci

Olvasinvalók

- Shon Harris All In One CISSP Exam Guide 4th ed.
- Harold F. Tipton, Kevin Henry Official (ISC)2 Guide to the CISSP CBK
- http://biztostu.hu
- http://silentsignal.hu
- http://google.com:)
- A Kevin Mitnick által írt könyvek, főleg social engineering témakörben:
 - A megtévesztés művészete
 - A behatolás művészete
 - A legkeresettebb hacker

I inkek

http://www.amazon.com/Art-Intrusion-Exploits-Intruders-Deceivers/dp/0471782661/http://www.amazon.com/Art-Deception-Controlling-Element-Security/dp/076454280X/http://www.libri.hu/konyv/a-legendas-hacker.html http://www.libri.hu/konyv/a-legendas-hacker-2.html

Kevin Mitnick-ről szóló HACKERS 2 - Operation Takedown c. film (angolul) http://www.youtube.com/watch?v=nVPV5dzM0yY http://www.imdb.com/title/tt0159784/

2020.09.05.