Aufgabe 1:

Analysieren Sie die folgende Situation:

Zwei Benutzerprozesse p_1 und p_2 , die drucken wollen, sprechen einen Druckerprozeß an, der Druckaufträge über eine Datei annehmen kann, die er nach dem FIFO-Prizip abarbeitet:


```
p_1: p_2:

\vdots \vdots \vdots \vdots \vdots \vdots \vdots 101 lies in; 101 lies in; 102 schreibe 'druck1', in 102 schreibe 'druck2', in; 103 in := in +1 \vdots \vdots \vdots \vdots
```

Die Prozesse p_1 und p_2 wollen also beide einen Druckauftrag loswerden, indem sie in in die Datei an die Position in schreiben.

Aufgabe 2: Leser-Schreiber-Problem

Viele Prozesse greifen auf eine gemeinsame Datenstruktur zu:

- beliebig viele Prozesse dürfen gleichzeitig lesen
- ein schreibender Prozeß braucht exklusiven Zugriff auf die Datenstruktur

Lösen Sie dieses Mutual-Exclusion-Problem mithilfe der Ihnen bekannten Synchronisationsprimitive.

Aufgabe 3: Problem der Prozeßsynchronisation

Gesucht: eine Lösung des 5-Philosophen-Problems:

- kein Philosoph darf verhungern.
- eine Gabel darf nur von einem Philosophen zugleich benutzt werden.

Aufgaben Seite 1

- nur die Gabeln unmittelbar rechts und links vom Teller dürfen benutzt werden.
- zum Essen braucht man zwei Gabeln.

Aufgabe 4: das Bankiersproblem

Der Bankier einer Kleinstadt hat einer Reihe von Kunden ein Kreditvolumen eingeräumt.

Annahme: Nicht alle Kunden werden ihre Kredite gleichzeitig voll ausschöpfen.

Beispiel: Er reserviert \$10.000 für vier Kunden, die insgesamt \$22.000 beanspruchen könnten.

Anfangszustand:

Kunde	hat	max
\overline{A}	\$0	\$6.000
B	\$0	\$5.000
C	\$0	\$4.000
D	\$0	\$7.000

Gesucht: Verklemmungsfreie Zuteilungsstrategie, wenn Kunden von Zeit zu Zeit Krediterhöhungen nachfragen.

Beispiel: sicherer Zustand

A	\$1.000	\$6.000
B	\$1.000	\$5.000
C	\$2.000	\$4.000
D	\$4.000	\$7.000
	\sum \$8.000	\sum \$22.000
		·

C kann noch Kredit gewährt werden.

Beispiel: unsicherer Zustand

A	\$1.000	\$6.000
B	\$2.000	\$5.000
C	\$2.000	\$4.000
D	\$4.000	\$7.000
	$\sum \$9.000$	\sum \$22.000

Wie können solche Zustände vermieden werden?

Aufgaben Seite 2