Nei grafici del tempo di esecuzione abbiamo inserito una iperbole a indicare l'andamento ideale del tempo di esecuzione all'aumentare del numero di thread. La linea orizzontale rappresenta il "limite" teorico di $\frac{T_1}{p}$, con T_1 a indicare il tempo sequenziale e p il numero di processori fisici. Con hyperthreading attivo, questo limite viene superato.

Nei grafici dello speedup abbiamo disegnato la bisettrice del quadrante, a indicare lo speedup perfettamente lineare. Il limite è rappresentato anche qui dalla linea orizzontale y = p, il massimo speedup che si può sperare di ottenere con p processori fisici. Anche questo limite viene superato dall'hyperthreading.

Elenco delle figure

1	Speedup/thread e tempo/thread della prima implementazione, contro password di lunghezza 4, sul Raspberry Pi
2	Speedup/thread e tempo/thread con l'i5, prima e seconda implementazione, contro password di lunghezza 6
3	Speedup/thread su iMac, prima implementazione, contro password di lunghezza 5
4	Tempo/thread su iMac, prima implementazone, contro password di lunghezza 5
5	Speedup/thread e tempo/thread della seconda implementazione, contro password di lunghezza 5, sul Raspberry Pi
6	Speedup/thread e tempo/thread su Raspberry Pi, seconda implementazione, contro password di lunghezza 6
7	Speedup/thread su iMac, seconda implementazione, contro password di lunghezza 5
8	Tempo/thread su iMac, seconda implementazone, contro password di lunghezza 5
9	Speedup/thread su iMac, seconda implementazione, contro password di lunghezza 6
10	Tempo/thread su iMac, seconda implementazone, contro password di lunghezza 6
11	Speedup/thread su iMac, contro i file di benchmark

Figura 2: Speedup/thread e tempo/thread con l'i5, prima e seconda implementazione, contro password di lunghezza 6.

Figura 4: Tempo/thread su iMac, prima implementazone, contro password di lunghezza 5.

thread

Figura 5: Speedup/thread e tempo/thread della seconda implementazione, contro password di lunghezza 5, sul Raspberry Pi.

Figura 6: Speedup/thread e tempo/thread su Raspberry Pi, seconda implementazione, contro password di lunghezza 6.

