1.4 Exercícios

- 1) A Empresa Beerco produz 2 tipos de cerveja, em quantidade x_1 e x_2 , a partir de três ingredientes, como descrito no quadro a seguir. Procura-se maximizar o lucro.
- a) Descreva o problema, utilizando um modelo de programação linear, interpretando as variáveis e as (in)equações;
 - b) Resolva-o pelo método gráfico.

Cerveja	Ingrediente/unidade			Lucro
	milho	cevada	\mathbf{malte}	por unidade
1	1	1	2	\$50
2	2	1	1	\$40
Disponibilidade	80	30	40	

2) Uma seguradora deve analisar dois tipos de requisição, A e B. Cada requisição passa por três seções e permanece em cada uma delas conforme descrito no quadro a seguir:

	Permanência		Tempo de trabalho	
	(horas)		dispon ível	
Seção	A	В	horas semanais	
1	5	8	80	
2	8	4	80	
3	12	4	120	

A seguradora deseja tratar tantas requisições quanto possível, por semana. Mas, cada tipo de requisição possui um grau de importância diferente; ou seja, uma requisição do tipo A é duas vezes mais importante que uma requisição do tipo B.

- a) Modelize o problema por PL, interpretando as variáveis e as (in)equações;
 - b) Resolva-o pelo método gráfico.
- 3) [1] Um fazendeiro dispõe de 200 litros de leite, 160 horas de mão de obra e 10 litros de coalho, para fazer queijos dos tipos A e B. Cada quilo do queijo tipo A necessita de 10 litros de leite, 5 horas de mão de obra e 1 litro de coalho. Cada quilo do queijo tipo B requer 13 litros de leite, 10 horas de mão de obra e meio litro de coalho. O fazendeiro lucra \$0,20 com um quilo do queijo tipo A e \$0,50 com cada quilo do queijo tipo B.

- a) Modele esse problema como um problema de programação linear, para otimizar a produção de queijos do fazendeiro, indicando o significado das variáveis de decisão do PPL;
 - b) Resolva-o pelo método gráfico.
- 4) Um fabricante produz duas variedades de biscoitos de chocolate com coco: Prestígio e Chococo. Cada pacote de biscoito Prestígio, vendido a \$6, leva 1un de farinha de trigo, 2un de chocolate e 4un de coco, enquanto que cada pacote de biscoito Chococo, vendido a \$5, leva 1un de farinha de trigo, 5un de chocolate e 1un de coco. O estoque contém 8un de farinha, 30un de chocolate e 20un de coco.
- a) formule um modelo de PL para otimizar o planejamento de produção desta fábrica;
- b) resolva-o graficamente, indicando o planejamento ótimo de produção encontrado, bem como o valor ótimo da função objetivo;
- 5) A turma de Isabel decidiu fazer arranjos florais, utilizando flores do jardim da escola, para vender no Dia dos Namorados, a fim de arrecadar dinheiro para sua formatura. Os alunos idealizaram arranjos formados por margaridas, rosas e violetas. Eles dispõem de 88 margaridas, 44 rosas e 112 violetas, e pensaram em formar dois tipos de arranjos: A e B. Cada arranjo tipo A será composto por 8 margaridas, 2 rosas e 8 violetas; cada arranjo tipo B será composto por 4 margaridas, 4 rosas e 8 violetas.

Quantos arranjos de cada tipo a turma deve fazer, de modo a obter a maior arrecadação, considerando que um arranjo tipo A será vendido a \$40 e um arranjo tipo B será vendido a \$30?

- a) Formule o problema por programação linear;
- b) Resolva-o graficamente e, em seguida, responda os itens abaixo:
 - i) interprete a solução ótima, indicando a quantidade de arranjos

18 Introdução à Programação Linear

florais a serem feitos, a arrecadação máxima obtida e as sobras de flores, se for o caso;

- ii) diga, justificando, quais flores limitaram a confecção dos arranjos;
- iii) indique um outro ponto extremo da região viável (diferente da origem, se for o caso) e diga qual o lucro seria obtido com esta solução.