

LICENCIATURA EM ENGENHARIA INFORMÁTICA

INTELIGÊNCIA COMPUTACIONAL 23-24

Aprendizagem por Reforço

- 1. Para cada um dos agentes indicados especifique o ambiente, agente, ações e recompensas:
 - a. Robot aspirador.
 - b. Campanha de marketing para venda de um produto com base no perfil do cliente.
 - c. Controlo de temperatura de uma sala (com sistema de ar condicionado).
- **2.** Considere um agente num mundo em grelha 3x2, conforme mostrado na figura 1. Começamos no estado "1" e terminamos no canto superior direito (estado 6). Ao atingir o estado 6, recebe uma recompensa de +10 e inicia um novo episódio. Em todas as outras ações que não levam ao estado "6", a recompensa é -1.
 - O agente inica na célula A e pretende alcançar F. Quando alcançar F recebe uma recompensa de +10 e o episódio termina. Para qualquer outro movimento que não conduza a F recebe a recompensa de "-1".

Α	В	С
start		
D	E	F
		finish

Figura 1 – Ambiente.

Em cada estado temos quatro ações possíveis: cima, baixo, esquerda e direita. Para cada ação, o agente move-se de forma determinista na direção pretendida. Não são possíveis movimentos para fora da grelha.

As estimativas atuais para os valores de Q(s,a) são apresentadas na tabela abaixo:

S/A				
	Up	Down	Left	Right
Α	4			3
В	6		3	8
С	9		7	
D		2		5
Е		6	5	8

- a. Considerando que existe o conhecimento completo do ambiente, atualize o valor de Q(C,left) com base na equação de Bellman, para uma política sôfrega e taxa de desconto de 0,9.
- b. Assuma agora que não tem o conhecimento completo do ambiente. Atualize a Q-table com o algoritmo "SARSA". A partir de B, seguiu-se a trajetória:

"B - baixo - E - direita - F", terminando o episódio.

Atualize a tabela considerando coeficiente de aprendizagem de 0,2 e desconto de 0,8.

3. Considere um sistema com dois estados (S1,S2) e duas ações (a1,a2). Um agente executa ações e observa as recompensas e transições de acordo com as iterações (Estado atual; recompensa; ação; transição resultante):

It1: S1 r=-10 a1:S1->S1 It2: S1 r=-10 a2:S1->S2 It3: S2 r=+20 a1:S2->S1 It4: S1 r=-10 a2:S1->S2

- a. Represente a Q-table, com entradas inicializadas a zero
- b. Atualize a tabela com o algoritmo de Q-learning para as quatro iterações com coeficiente de aprendizagem de 0.5 e taxa de desconto de 0.5.
- **4.** Como se mede o desempenho de um agente de Aprendizagem por Reforço?

Resposta:

Para medir o desempenho de um agente de aprendizagem por reforço, pode-se simplesmente somar as recompensas que recebe (normalmente com desconto).

Num ambiente simulado, executam-se muitos episódios e mede-se o valor total de recompensas que obtém em média (assim como valor mínimo, máximo, desvio padrão, etc.).

5. Na aprendizagem por reforço em que consiste o fator de desconto? A política óptima pode mudar se o fator de desconto for alterado? Justifique.

Resposta:

Ao estimar o valor de uma ação, o algoritmo de aprendizagem por reforço soma todas as recompensas a que essa ação conduz, dando mais peso às recompensas imediatas e menos peso a recompensas posteriores (considerando que uma ação tem mais influência no futuro próximo do que no futuro distante).

Para modelar este comportamento, aplica-se um fator de desconto em cada iteração (passo). Por exemplo, com um fator de desconto de 0.9, uma recompensa de 100 recebida dois passos mais tarde é contabilizada com o valor de $0.9\times0.9\times100=81$ quando se estima o valor da ação.

Claramente o valor deste parâmetro tem um impacto na política ótima: se valorizarmos o futuro, podemos estar dispostos a suportar "penalizações imediatas" pela perspetiva de eventuais recompensas futuras, ao passo que se não valorizarmos o futuro, "seguramos" qualquer recompensa imediata que encontrarmos.

6. O que entende por um algoritmo de RL "off-policy"? Apresente um exemplo?

Resposta:

Um algoritmo off-line aprende o valor da política ótima (ou seja, a soma das recompensas descontadas que podem ser esperadas para cada estado se o agente agir de forma ótima), enquanto o agente executa uma política diferente. O Q-Learning é um exemplo deste tipo de algoritmo.

Em contraste, um algoritmo de política on-line aprende o valor da política que o agente efetivamente executa, incluindo tanto a política de "exploration" como a de "exploitation". O SARSA é um exemplo de um algoritmo deste tipo.

Soluções 2 e 3:

2a.

A equação de Bellman especifica indica:

$$Q(s, a) = \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma \sum_{a'} \pi(s', a') Q(s', a')]$$

Uma vez que o ambiente é determinístico, apenas consideramos um estado seguinte s' (Probabilidade (C,left)->B =1) e sendo uma política "greedy", consideramos apenas a melhor ação a'

$$Q(C,left) = 1*[-1 + 0.9*(1*8)] = 6.2$$

2b.

Para um agente SARSA - $Q(s_t, a_t) = Q(s_t, a_t) + \alpha^*(r_t + \gamma^*Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$

	SARSA policy	Q-learning policy
Escolher A'	ε -greedy ($\varepsilon > 0$ com exploration)	ε -greedy ($\varepsilon > 0$ com exploration)
Atualizar Q	ε -greedy ($\varepsilon > 0$ com exploration)	greedy policy (ε=0, sem exploration)

Assim:

Q(B, Baixo)=6+0,2*(-1+0,8*8-6)=6+0,2*(-0,6)=6-0,12=5,88

Q(E, Direita)=8 +0.2*(10+0.8*0-8)=8.4.

3.a

Q	a1	a2
S1	0	0
S2	0	0

3.b

Q-learning: Q(state,action) \leftarrow (1- α)Q(state,action)+ α (reward+ γ maxaQ(next state,all actions))

• Iteração1: S1 r=-10 a2:S1->S1

Q(s1,a1)=(1-0,5)*0+0,5*(-10+0,5*max[0,0])=0-5=-5

Q	a1	a2
S1	-5	0
S2	0	0