Sprawozdanie Niduc 2					
Numer grupy 7		Termin zajęć	Czw. parz. 11:15		
Skład grupy:		Prowadzący		Ocena	
Aleksander Dziągwa	281055				
Filip Kwiek	280947	Prof. hab. Stanisław Piestrak			
Kacper Mikosiński	280985				

Spis treści

1	Cel projektu	2
2	Implementacja projektu 2.1 Opis systemu	
	2.2 Implementacja na mikrokontrolerze Arduino	. 3
3	Opis algorytmów oraz ich implementacja w języku C	5
	3.1 Algorytm głosowania większościowego	. 5
	3.2 Algorytm Medianowy	. 5
	3.3 Algorytm Largest Difference Rejection	. 6
	3.4 Algorytm Iteracyjny	. 6
4	Testy systemu	7
	4.1 Tabele wyników testów	. 8
5	Porównanie algorytmów	11
	5.1 Algorytm głosowania większościowego	. 11
	5.2 Algorytm medianowy	
	5.3 Algorytm Largest Difference Rejection (LDR)	
	5.4 Algorytm iteracyjny	
	5.5 Porównanie zastosowań algorytmów	
6	Wnioski	12
7	Literatura (Artykuły naukowe)	12

1 Cel projektu

Zadanie polega na rozważeniu systemu tolerującego uszkodzenia składającego się z pewnej liczby czujników lub kanałów obliczeniowych, zwielokrotnionych (min. 3) celem podwyższenia niezawodności, znajdujących zastosowanie w tzw. systemach krytycznych, których uszkodzenie może zagrażać zdrowiu lub życiu ludzkiemu (np. system wspomagania hamulców ABS, kolejowe lub lotnicze systemy sterowania, etc.). Wyniki dostarczane przez całkowicie sprawne czujniki lub kanały obliczeniowe w zasadzie powinny być identyczne lub przynajmniej zbliżone do siebie. Wynik uznany za poprawny jest wybierany z użyciem algorytmu głosującego (istnieje szereg modeli do wyboru). Celem projektu jest implementacja i porównanie różnych algorytmów głosowania dla róznych modeli błędów i uszkodzeń.

2 Implementacja projektu

W naszej implementacji, projekt został wykonany za pomocą platformy Arduino Mega oraz algorytmów napisanych w języku C/C++. Jako algorytmów głosowania użyliśmy:

- Większościowego
- \bullet Medianowego
- Largest Difference Rejection
- Iteracyjnego

2.1 Opis systemu

Nasz system składał się z mikrokontrolera Arduino oraz trzech dalmierzy sonicznych. Mierzyły one dystans do najbliższej przeszkody, która była naprzeciwko ich. Następnie dane były zbierane przez nasz kod na płytce i następnie za pomocą wspomnianych wyżej algorytmów wykrywało, który dalmierz pokazywał wynik niezgodny z resztą, co może być wynikiem awarii lub jakiegoś bliżej nieznanego błędu.

2.2 Implementacja na mikrokontrolerze Arduino

Obraz 1: Podstawowa implementacja systemu

Obraz 2: Implementacja z zakłóceniami w postaci kawałka chusteczki

Obraz 3: Implementacja systemu, który mierzy odległość od powierzchnii, która wytłumia dźwięk

3~ Opis algorytmów oraz ich implementacja w języku C

3.1 Algorytm głosowania większościowego

Algorytm głosowania większościowego porównuje parami dwa pomiary, jeżeli ich różnica jest mniejsza niż granica tolerancji, zwraca jeden z pomiarów, natomiast gdy każda para wykracza poza tolerancję algorytmu, zwracany jest błąd czujników.

Obraz 1: algorytm większościowy

3.2 Algorytm Medianowy

Sortuje otrzymane pomiary rosnąco, na koniec zwraca wynik najbliższy prawdzie.

Obraz 2: algorytm medianowy

3.3 Algorytm Largest Difference Rejection

Oblicza różnice między wszystkimi parami wartości wejściowych, po czym znajduje parę wartości o najmniejszej różnicy, a jako wynik zwraca średnią arytmetyczną wartości tej pary.

```
double abs_diff(double a, double b) {
    return fabs(a - b);
}

double large_difference_rejection(double s1, double s2, double s3) {
    //funkcja implementująca algorytm odrzucenia największej różnicy
    //algorytm ten odrzuca wynik najbardziej odbiegający od reszty
    //jako wynik zwraca średnią z pozostałych wyników

double d12 = abs_diff(s1, s2);
    double d23 = abs_diff(s2, s3);
    double d13 = abs_diff(s1, s3);

if (d12 >= d23 && d12 >= d13)
    return (s1 + s2) / 2.0;

if (d23 >= d12 && d23 >= d13)
    return (s2 + s3) / 2.0;

return (s1 + s3) / 2.0;
```

Obraz 3: algorytm ldr

3.4 Algorytm Iteracyjny

Algorytm ma na celu znalezienie stabilnej średniej ze wszystkich (w naszym wypadku 3) modułów, aby w sposób iteracyjny odsiać wartości, które mocno

się różnią od aktualnej średniej arytmetycznej lub tolerancji.

Obraz 4: algorytm iteracyjny

4 Testy systemu

Przeprowadziliśmy 3 serie testów, w których nasz system sprawdzał odległości bez zakłóceń i z zakłóceniami. Jako zakłócenia uznaliśmy wcześniej pokazany kawałek chusteczki oraz koc, który pochłaniał dźwięk soniczny, oraz sami produkowaliśmy zakłócenia dźwiękowe, które będą widoczne w tabelach, jako wartości od razu widoczne jako nieprawidłowe. Odległość mierzona była w centymetrach.

4.1 Tabele wyników testów

Lp	Czujnik 1	Czujnik 2	Czujnik 3	Większościowy	Mediana	ONR	Iteracyjny
1	21,56	21,13	20,97	21,56	21,13	21,27	21,22
2	20,56	21,03	20,96	20,56	20,96	20,8	20,85
3	21,09	21,13	20,96	21,09	21,09	21,05	21,06
4	21,56	20,81	20,55	20,81	20,81	21,05	20,68
5	20,67	21,13	20,96	20,67	20,96	20,9	20,92
6	21,09	21,13	20,96	21,09	21,09	21,05	21,06
7	21,45	21,03	20,85	21,45	21,03	21,15	21,11
8	21,56	21,13	20,96	21,56	21,13	21,26	21,22
9	21,56	21,12	20,97	21,56	21,12	21,27	21,22
10	21,45	21,13	20,96	21,45	21,13	21,21	21,18
11	21,09	21,15	20,96	21,09	21,09	21,05	21,07
12	21,09	21,13	20,85	21,09	21,09	20,99	21,03
13	21,15	20,81	20,97	21,15	20,97	20,98	20,98
14	21,09	21,15	20,96	21,09	21,09	21,05	21,07
15	20,97	20,71	20,44	20,97	20,71	20,71	20,71
16	20,67	21,13	20,96	20,67	20,96	20,9	20,92
17	21,56	21,13	$20,\!55$	21,56	21,13	21,05	21,35
18	20,58	21,13	20,96	20,58	20,96	20,86	20,89
19	20,67	21,13	20,55	20,67	20,67	20,84	20,78
20	20,68	21,13	20,97	20,68	20,97	20,91	20,93
21	21,56	21,15	20,55	21,56	21,15	21,05	21,35
22	21,09	21,13	20,96	21,09	21,09	21,05	21,06
23	20,97	21,03	20,85	20,97	20,97	20,94	20,95
24	20,68	21,13	20,97	20,68	20,97	20,91	20,93
25	21,08	21,13	20,96	21,08	21,08	21,05	21,06
26	20,58	21,03	20,55	20,58	20,58	20,79	20,72
27	20,68	21,13	20,55	20,68	20,68	20,84	20,79
28	21,09	21,13	20,56	21,09	21,09	20,85	20,93
29	21,45	20,83	20,55	20,83	20,83	21	20,69
30	21,09	21,13	20,55	21,09	21,09	20,84	20,92
31	20,68	21,13	20,97	20,68	20,97	20,91	20,93
32	20,68	21,13	20,55	20,68	20,68	20,84	20,79
33	20,68	21,13	20,55	20,68	20,68	20,84	20,79
34	20,67	21,13	20,87	20,67	20,87	20,9	20,89
35	21,09	21,13	20,55	21,09	21,09	20,84	20,92
36	20,68	21,13	20,97	20,68	20,97	20,91	20,93
37	21,09	20,81	20,44	21,09	20,81	20,77	20,78
38	20,68	21,13	20,55	20,68	20,68	20,84	20,79

Tabela 1: Tabela wyników z czujników bez zakłóceń

Lp	Czujnik 1	Czujnik 2	Czujnik 3	Większościowy	Mediana	ONR	Iteracyjny
1	3403.30	18.52	19.41	18.52	19.41	1710.91	0.00
2	16.46	16.28	1197.24	16.46	16.46	606.76	0.00
3	19.74	16.28	20.43	19.74	19.74	18.35	20.08
4	3455.64	16.28	18.04	16.28	18.04	1735.96	0.00
5	20.53	16.29	18.81	20.53	18.81	18.41	19.67
6	3450.61	16.28	18.81	-1.00	18.81	1733.44	0.00
7	19.11	16.28	18.38	19.11	18.38	17.69	17.92
8	172.87	16.28	18.40	-1.00	18.40	94.57	0.00
9	3399.71	16.28	19.55	-1.00	19.55	1707.99	0.00
10	19.19	16.28	20.85	19.19	19.19	18.56	19.19
11	3383.35	16.28	20.96	-1.00	20.96	1699.81	0.00
12	19.64	16.38	20.44	19.64	19.64	18.41	20.04
13	3404.89	16.28	149.00	-1.00	149.00	1710.58	0.00
14	18.81	16.28	1197.04	-1.00	18.81	606.66	0.00
15	3412.30	16.28	147.39	-1.00	147.39	1714.29	0.00
16	18.81	16.28	1196.95	-1.00	18.81	606.61	0.00
17	3410.31	16.28	1197.29	-1.00	1197.29	1713.29	0.00
18	18.81	16.28	1197.17	-1.00	18.81	606.72	0.00
19	3646.11	16.28	151.21	-1.00	151.21	1831.19	0.00
20	18.71	16.28	1197.04	-1.00	18.71	606.66	0.00
21	192.99	16.28	147.85	-1.00	147.85	104.63	0.00
22	191.98	16.29	148.67	-1.00	148.67	104.13	0.00
23	192.44	16.60	151.49	-1.00	151.49	104.52	0.00
24	3467.95	16.28	151.97	-1.00	151.97	1742.11	0.00
25	19.67	16.28	1196.83	-1.00	19.67	606.55	0.00
26	3460.68	16.28	1196.92	-1.00	1196.92	1738.48	0.00
27	19.23	16.60	1197.05	-1.00	19.23	606.83	0.00
28	3390.04	16.60	150.73	-1.00	150.73	1703.32	0.00
29	18.80	16.64	1196.97	-1.00	18.80	606.80	0.00
30	3363.54	16.38	1197.22	-1.00	1197.22	1689.96	0.00
31	18.80	16.28	1197.02	-1.00	18.80	606.65	0.00
32	3358.04	16.28	1197.33	-1.00	1197.33	1687.16	0.00
33	20.08	16.38	1197.12	-1.00	20.08	606.75	0.00
34	127.03	16.28	148.21	-1.00	127.03	82.24	0.00
35	3342.65	16.29	1196.86	-1.00	1196.86	1679.47	0.00
36	18.80	16.28	1197.04	-1.00	18.80	606.66	0.00
37	126.22	16.28	1197.05	-1.00	126.22	606.66	0.00
38	3356.31	16.28	1197.17	-1.00	1197.17	1686.29	0.00
39	19.21	16.28	148.09	-1.00	19.21	82.18	0.00
40	124.08	16.60	149.39	-1.00	124.08	83.00	0.00
41	3350.17	16.28	1197.50	-1.00	1197.50	1683.22	0.00
42	19.57	16.28	1197.29	-1.00	19.57	606.78	0.00
43	3354.01	16.60	20.97	-1.00	20.97	1685.30	0.00

Tabela 2: Tabela wyników testów z zakłóceniami w postaci chusteczki higienicznej oraz zakłóceń dźwiękowych

Lp	Czujnik 1	Czujnik 2	Czujnik 3	Większościowy	Mediana	ONR	Iteracyjny
1	18,25	15,95	18,16	18,25	18,16	17,1	18,2
2	18,25	15,95	18,62	18,25	18,25	17,29	18,25
3	18,25	15,97	17,75	18,25	17,75	17,11	18
4	18,66	15,97	17,73	18,66	17,73	17,31	17,73
5	18,66	15,97	17,73	18,66	17,73	17,31	17,73
6	17,78	15,95	17,75	17,78	17,75	16,87	17,77
7	17,78	15,97	17,73	17,78	17,73	16,88	17,76
8	17,78	15,97	17,75	17,78	17,75	16,88	17,77
9	18,66	15,95	17,73	18,66	17,73	17,3	17,73
10	19,59	12,66	16,84	-1	16,84	16,12	16,84
11	20,36	$17,\!25$	17,73	17,25	17,73	18,8	17,73
12	270,23	17,24	17,73	17,24	17,73	143,73	0
13	20,89	18,52	147,97	-1	20,89	83,25	0
14	3393,59	$17,\!24$	148,3	-1	148,3	1705,41	0
15	18,76	18,52	$147,\!52$	18,76	18,76	83,02	0
16	20,01	15,97	11,28	-1	15,97	15,65	15,97
17	35,81	16,28	17,2	16,28	17,2	26,04	0
18	18,99	15,97	17,27	-1	$17,\!27$	17,48	17,27
19	$19,\!55$	15,95	16,84	15,95	16,84	17,75	16,84
20	$19,\!55$	15,95	16,84	15,95	16,84	17,75	16,84
21	17,8	16,28	16,77	16,28	16,77	17,04	16,95
22	70,45	59,29	109,52	-1	70,45	84,4	0
23	77,26	64,98	78,63	-1	77,26	71,81	0
24	$76,\!52$	75,99	75,32	76,52	75,99	75,92	75,95
25	74,62	36,79	107,98	-1	$74,\!62$	72,38	0
26	3391,82	34,69	1197,46	-1	1197,46	1713,26	0
27	3388,89	24,99	1197,09	-1	1197,09	1706,94	0
28	3410,5	73,57	1196,86	-1	1196,86	1742,04	0
29	80,52	28,97	1197,09	-1	80,52	613,03	0
30	3407,17	19,17	1197,19	-1	1197,19	1713,17	0
31	76,32	20,77	1197,19	-1	76,32	608,98	0
32	3404,27	21,3	1196,81	-1	1196,81	1712,79	0
33	77,96	75,99	1197,09	-1	77,96	636,54	0
34	25,09	22,05	1197,02	-1	25,09	609,54	0
35	24,37	66,39	1196,92	-1	66,39	610,64	0
36	3450,05	22,66	1197,38	-1	1197,38	1736,35	0
37	25,97	23,24	111,51	-1	25,97	67,37	0
38	3402,59	23,14	1196,95	-1	1196,95	1712,86	0
39	80,85	22,05	1197,28	-1	80,85	609,67	0
40	3400,95	37,73	110,77	-1	110,77	1719,34	0
41	24,03	$22,\!55$	1196,97	-1	24,03	609,76	0
42	3389,39	62,44	1196,86	-1	1196,86	1725,92	0
43	25,02	22,05	1196,71	-1	25,02	609,38	0
44	3350,42	22,57	1197,05	-1	1197,05	1686,5	0
45	24,3	65,12	1196,78	-1	65,12	610,54	0
46	3377,37	$65,\!56$	1197,1	-1	1197,1	1721,47	0
47	24,82	65,87	1196,93	-1	65,87	610,87	0
48	3360,46	65,12	1196,74	-1	1196,74	1712,79	0
49	78,82	24,61	1197,31	-1	78,82	610,96	0
50	3443,46	24,71	1196,86	-1	1196,86	1734,09	0

Tabela 3: Tabela wyników czujników z zakłóceniami dźwiękowymi oraz powierzchnią pochłaniającą dźwięk

5 Porównanie algorytmów

5.1 Algorytm głosowania większościowego

Algorytm ten sprawdza się dobrze w sytuacjach, gdzie dane z czujników są generalnie zgodne, a liczba zakłóceń jest niewielka. Dzięki prostocie jego implementacji i niskim wymaganiom obliczeniowym, jest szczególnie użyteczny w systemach czasu rzeczywistego o ograniczonych zasobach obliczeniowych. Jednak w obecności dużych zakłóceń lub systematycznych błędów jednego z czujników może zwracać niepoprawne wyniki, gdyż nie potrafi efektywnie odrzucać wartości odstających.

5.2 Algorytm medianowy

Algorytm medianowy wyróżnia się odpornością na wartości odstające. Z tego powodu znajduje zastosowanie w systemach, gdzie zakłócenia są częste i mogą znacząco odbiegać od typowych wartości. Jego wadą jest większa złożoność obliczeniowa w porównaniu do algorytmu większościowego, co może być istotne w systemach o ograniczonej mocy obliczeniowej. Warto również zauważyć, że algorytm medianowy najlepiej działa, gdy liczba czujników jest nieparzysta, co zapewnia jednoznaczność wyniku.

5.3 Algorytm Largest Difference Rejection (LDR)

Algorytm LDR jest przydatny w systemach, gdzie dokładność wyników ma kluczowe znaczenie, a liczba czujników jest wystarczająca do wykrycia i odrzucenia najbardziej odstających wartości. Jego działanie jest szczególnie efektywne w sytuacjach, gdy zakłócenia są mniejsze, ale bardziej równomiernie rozłożone pomiędzy czujnikami. Wadą algorytmu jest wyższa złożoność obliczeniowa w porównaniu do większościowego i medianowego, co może być ograniczeniem w przypadku systemów czasu rzeczywistego.

5.4 Algorytm iteracyjny

Algorytm iteracyjny jest najbardziej zaawansowanym z analizowanych rozwią-zań. Dzięki iteracyjnej eliminacji odstających wartości, charakteryzuje się wysoką skutecznością w sytuacjach, gdzie zakłócenia są znaczące i nieprzewidywalne. Algorytm ten wymaga jednak znacznie większej mocy obliczeniowej i jest bardziej skomplikowany do implementacji, co może ograniczać jego zastosowanie w systemach o niskiej wydajności. Algorytm iteracyjny znajduje zastosowanie w krytycznych systemach bezpieczeństwa, gdzie poprawność wyników jest kluczowa.

5.5 Porównanie zastosowań algorytmów

W tabeli 4 zestawiono przypadki użycia każdego algorytmu:

Algorytm	Przydatność	Ograniczenia		
Większościowy	Proste systemy, niewielka liczba	Niska odporność na wartości od-		
	zakłóceń	stające		
Medianowy	Odporność na duże zakłócenia	Większa złożoność obliczeniowa		
LDR	Dokładne systemy, równomierne	Wysoka złożoność, wymagania		
	zakłócenia	obliczeniowe		
Iteracyjny	Krytyczne systemy, znaczne za-	Złożoność implementacji, wyma-		
	kłócenia	gania sprzętowe		

Tabela 4: Porównanie zastosowań algorytmów.

6 Wnioski

Podsumowując, wybór odpowiedniego algorytmu powinien być uzależniony od specyfiki systemu, dostępnych zasobów oraz rodzaju i częstotliwości występujących zakłóceń. Algorytm większościowy będzie dobrym wyborem w systemach o niskiej złożoności, podczas gdy algorytm iteracyjny najlepiej sprawdzi się w złożonych systemach krytycznych.

7 Literatura (Artykuły naukowe)

- "Experimental Comparison of Voting Algorithms in Cases of Disagreement" (EUROMICRO 1997)
- "A Taxonomy for Software Voting Algorithms Used in Safety-Critical Systems" (IEEE Transactions on Reliability, 2004)
- "A Taxonomy of Voting Schemes for Data Fusion and Dependable Computation" (Reliability Engineering and System Safety, 1996)