Annex II - STREAM: Auxiliary scripts for the conversion from DG MARE Med&BS format to GFCM/DCRF format

I. Bitetto

Mon Jul 15 15:16:06 2019

Tools

R, Rstudio and packages.

```
#R general option:
#chunk option
knitr::opts chunk$set(cache=TRUE,echo=TRUE, warning=FALSE,
    message=FALSE, fig.height=6,progress=FALSE,verbose=FALSE,
        include=TRUE, dev='png', autodep=FALSE)
#Load packages
library(reshape2)
library(reshape)
library(dplyr)
library(knitr)
library(pander)
#pander options
panderOptions('table.split.table', 60)
panderOptions('table.style', 'grid')
panderOptions('table.split.cells', 10)
panderOptions('table.alignment.default', 'left')
panderOptions('table.alignment.rownames', 'right')
panderOptions('decimal.mark', ',')
panderOptions('graph.fontsize', '10')
```

script 01: Table II.2

This script allow to convert the DG MARE Med&BS A_Catch table into the GFCM/DCRF Table II.2 (Catch data per species) using the communication table between fleet segments as defined in GFCM DCRF and metier-LOA as defined within DCF

Settings

```
# set the working directory
myWD <- paste("C:\\Users\\Bitetto Isabella\\OneDrive - Coispa Tecnologia & Ricerca
S.C.A.R.L\\MARE22\\STREAM\\FINAL REVISION OF DELIVERABLES\\DG_MARE_MedBS_to_GFCM",
sep="")</pre>
```

setwd(myWD)

ACatch=read.table("A_Catch_medbs_example.csv", sep=";",header=T)
CT=read.table("Communication_table.csv",sep=";",header=T)
species=read.table("Species TableII.2.csv",sep=";",header=F)

AREA=99

Input Data

1) DG MARE Med&BS A_Catch

Table continues below

ID	COUNTRY	YEAR
COUNTRY199991VL12180TB50D100DEMSPSA 99	COUNTRY1	9999
COUNTRY199992VL12180TB50D100DEMSPSA 99	COUNTRY1	9999
COUNTRY19999-1-10TB50D100DWSPSA 99	COUNTRY1	9999
COUNTRY199991-10TB50D100MDDWSPSA 99	COUNTRY1	9999
COUNTRY199992-10TB50D100MDDWSPSA 99	COUNTRY1	9999
COUNTRY199991-1GNS16D20DEMFSA 99	COUNTRY1	9999

Table continues below

QUARTER	VESSEL_LENGTH	GEAR	MESH_SIZE_RANGE
1	VL1218	ОТВ	50D100
2	VL1218	OTB	50D100
-1	-1	ОТВ	50D100
1	-1	ОТВ	50D100
2	-1	ОТВ	50D100
1	-1	GNS	16D20

FISHERY	AREA	SPECON	SPECIES	LANDINGS
DEMSP	SA 99	-1	НКЕ	51,56
DEMSP	SA 99	-1	HKE	23,48
DWSP	SA 99	-1	НКЕ	1,442
MDDWSP	SA 99	-1	HKE	13,47

MDDWSP	SA 99	-1	НКЕ	15,26
DEMF	SA 99	DIS-DEROG	HKE	111,1
Table continu	ies below			
DISCARDS	NO_SAM	PLES_LANDINGS		
1,977	0			
0,9396	2			

 0,9396
 2

 0,01478
 2

 0,2537
 1

 0
 1

 -1
 11

Table continues below

NO_LENGTH_MEASUREMENTS_LANDINGS

109

101

51

573

162

79

Table continues below

NO_AGE_MEASUREMENTS_LANDINGS	NO_SAMPLES_DISCARDS
55	3
46	2
45	4
105	2
55	1
58	3

Table continues below

NO_LENGTH_MEASUREMENTS_DISCARDS

219

104

35

109

14

-1

Table continues below

NO_AGE_MEASUREMENTS_DISCARDS	NO_SAMPLES_CATCH
39	3
38	4
35	6
17	3
10	2
-1	14
Table continues below	
Tuble continues below	
NO_LENGTH_MEASUREMENTS_CATCH	NO_AGE_MEASUREMENTS_CATCH
	NO_AGE_MEASUREMENTS_CATCH 94
NO_LENGTH_MEASUREMENTS_CATCH	
NO_LENGTH_MEASUREMENTS_CATCH 328	94
NO_LENGTH_MEASUREMENTS_CATCH 328 205	94 84
NO_LENGTH_MEASUREMENTS_CATCH 328 205 86	94 84 80

Table continues below

MIN_AGE	MAX_AGE	AGE_0	AGE_0_NO_LANDED
0	5	0	0
0	3	0	2,709
0	6	0	1,05
0	4	0	172,7
0	7	0	5,465
1	10	0	0

AGE_0_MEAN_WEIGHT_LANDED	AGE_0_MEAN_LENGTH_LANDED
0	0

0,025	15,7
0,019	14,3
0,013	13
0,021	15,1
0	0

AGE_0_NO_DISCARD	AGE_0_MEAN_WEIGHT_DISCARD
237,2	0,009
111,5	0,009
3,022	0,005
37,54	0,007
0	0
-1	-1

Table continues below

AGE_0_MEAN_LENGTH_DISCARD	AGE_20_PLUS
11,7	20
11	20
9,3	20
10,7	20
0	20
-1	20

AGE_20_PLUS_NO_LANDED	AGE_20_PLUS_MEAN_WEIGHT_LANDED
0	0
0	0
0	0
0	0
0	0

AGE_20_PLUS_MEAN_LENGTH_LANDED	AGE_20_PLUS_NO_DISCARD
0	0
0	0
0	0
0	0
0	0
0	-1

Table continues below

AGE_20_PLUS_MEAN_WEIGHT_DISCARD

0 0 0 0 0 -1

AGE_20_PLUS_MEAN_LENGTH_DISCARD 0 0 0 0 0 -1

2) Communication table between GFCM/DCRF fleet segments and DCF metier-LOA

ARŁA	Fleet_seg	gment	METIER		LOA
10	Longline	rs 12-24	LLS_DEF_0_0_0		VL1218
10	Trawlers	s 6- >24	OTB_DEF_>=40	_0_0	VL1218
GEAR_A	ACatch	MESH_SIZE_	RANGE_ACatch	FISHERY_	ACatch
LLS		-1		DEMF	
OTB		50D100		DEMSP	

```
3) List of species
V1
MUT
```

HKE

Processing tables

Using some data in the DG MARE Med&BS format:

```
# Association of GFCM fleet segment to Bland and ACatch tables
# selection of the species
ACatch=ACatch[as.character(ACatch$SPECIES) %in% as.character(species[,1]),]
ACatch=ACatch[,c(2:9,11:13)]
ACatch_L=aggregate(ACatch$LANDINGS,by=list(ACatch$COUNTRY, ACatch$YEAR,
                                  ACatch$VESSEL_LENGTH, ACatch$GEAR, ACatch$MESH_SI
ZE_RANGE,
                                  ACatch$FISHERY, ACatch$AREA, ACatch$SPECIES),FUN
="sum")
ACatch_D=aggregate(ACatch$DISCARDS,by=list(ACatch$COUNTRY, ACatch$YEAR, ACatch$VES
SEL_LENGTH,
                                    ACatch$GEAR, ACatch$MESH SIZE RANGE, ACatch$FIS
HERY,
                                    ACatch$AREA, ACatch$SPECIES),FUN="sum")
Merge=merge(ACatch L, ACatch D, by=c("Group.1", "Group.2", "Group.3", "Group.4", "Group.
                                    "Group.6", "Group.7", "Group.8"))
colnames(Merge) =c("COUNTRY", "YEAR", "VESSEL_LENGTH", "GEAR", "MESH_SIZE_RANGE", "F
ISHERY",
                   "AREA", "SPECIES", "LANDINGS", "DISCARDS")
Merge$DISCARDS[Merge$DISCARDS<0]=NA
Merge$GFCM fleetsegment=as.character(Merge$GEAR)
Merge$GFCM fleetsegment=""
for (i in 1:nrow(Merge)){
if (nrow(CT[as.character(CT$LOA)== as.character(Merge$VESSEL_LENGTH[i]) &
            as.character(CT$GEAR ACatch)== as.character(Merge$GEAR[i]) &
            as.character(CT$MESH SIZE RANGE ACatch) ==
            as.character(Merge$MESH_SIZE_RANGE[i]) &
            as.character(CT$FISHERY ACatch) == as.character(Merge$FISHERY[i]),])>0)
{
Merge$GFCM_fleetsegment[i]= as.character(CT[as.character(CT$LOA)==
     as.character(Merge$VESSEL_LENGTH[i]) &
     as.character(CT$GEAR ACatch)== as.character(Merge$GEAR[i]) &
     as.character(CT$MESH SIZE RANGE ACatch)==
       as.character(Merge$MESH SIZE RANGE[i]) &
       as.character(CT$FISHERY ACatch)==
```

```
as.character(Merge$FISHERY[i]) , | $Fleet_segment)
} else {
Merge$GFCM_fleetsegment[i]=""}
Merge_noempty=Merge[Merge$GFCM_fleetsegment!="",]
Merge_noempty_L=aggregate(Merge_noempty$LANDINGS,by=list(Merge_noempty$COUNTRY,
                                  Merge_noempty$YEAR, Merge_noempty$GFCM_fleetsegm
ent,
                                  Merge_noempty$SPECIES),FUN="sum")
Merge_noempty_D=aggregate(Merge_noempty$DISCARDS,by=list(Merge_noempty$COUNTRY,
                              Merge_noempty$YEAR, Merge_noempty$GFCM_fleetsegment,
                            Merge_noempty$SPECIES),FUN="sum")
Merge=merge(Merge_noempty_L, Merge_noempty_D, by=c("Group.1", "Group.2", "Group.3",
                                                  "Group.4"))
Merge$GSA=AREA
Merge=Merge[,c(1,2,7,3,4,5,6)]
Merge$Catch= rowSums(data.frame(col1=Merge[,6],col2=Merge[,7]),na.rm=T)
colnames(Merge) =c("Country", "Reference_year", "GSA", "Fleet_segment", "Species",
                   "Total_landing_per_species_(tons)","Total_discards_per_species_
(tons)",
                   "Total_catch_per_species")
```

Output

GFCM/DCRF TableII.2

Table continues below

Country	Reference_year	GSA	Fleet_segment
COUNTRY1	9999	99	Longliners 12-24
COUNTRY1	9999	99	Trawlers 6->24

Table continues below

Total_catch_per_species

100,1

script 02: Table VII.2

This script allow to convert the DG MARE Med&BS B_Landings table into the GFCM/DCRF Table VII.2 (Biological information: Length data) using the communication table between fleet segments as defined in GFCM DCRF and metier-LOA as defined within DCF and the primary data in SDEF format

Settings

```
# set the working directory
myWD <- paste("C:\\Users\\Bitetto Isabella\\OneDrive - Coispa Tecnologia & Ricerca
S.C.A.R.L\\MARE22\\STREAM\\FINAL REVISION OF DELIVERABLES\\DG_MARE_MedBS_to_GFCM",
sep="")
setwd(myWD)

Bland=read.table("B_Landings_medbs_example.csv",sep=";",header=T)
CA=read.table("CA_example.csv",sep=";",header=T)
TR=read.table("TR_example.csv",sep=";",header=T)
CT=read.table("Communication_table.csv",sep=";",header=T)
alpha=read.table("Scientific name to FAO 3alphacode.csv",sep=",",header=T)
species=read.table("Species TableVII.2.csv",sep=";",header=F)</pre>
AREA=99
```

Input Data

1) DG MARE Med&BS B_Landings

ID			COUNTRY	YEAR	
COUNTRY19	9991-1GNS16D20DEM	1FSA 99	COUNTRY1	9999	
COUNTRY19	9992-1GNS16D20DEM	IFSA 99	COUNTRY1	9999	
COUNTRY19	9991-1GNS16D20SLP	FSA 99	COUNTRY1	9999	
COUNTRY19	9992-1GNS16D20SLP	FSA 99	COUNTRY1	9999	
COUNTRY19	9991-1GTR16D20DEN	ISPSA 99	COUNTRY1	9999	
COUNTRY19	9992-1GTR16D20DEN	ISPSA 99	COUNTRY1	9999	
Table continues below					
QUARTER	VESSEL_LENGTH	GEAR	MESH_SIZE_RA	NGE	
1	-1	GNS	16D20		

2	-1	GNS	16D20
1	-1	GNS	16D20
2	-1	GNS	16D20
1	-1	GTR	16D20
2	-1	GTR	16D20

FISHERY	AREA	SPECON	SPECIES	LANDINGS	UNIT
DEMF	SA 99	-1	HKE	101	cm
DEMF	SA 99	-1	НКЕ	113,1	cm
SLPF	SA 99	-1	HKE	5,723	cm
SLPF	SA 99	-1	НКЕ	3,585	cm
DEMSP	SA 99	-1	НКЕ	40,98	cm
DEMSP	SA 99	-1	HKE	51,83	cm

Table continues below

LENGTHCLASS0	LENGTHCLASS1	LENGTHCLASS2
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

LENGTHCLASS100_PLUS

0

0

0

0

0

2) Communication table between GFCM/DCRF fleet segments and DCF metier-LOA

AREA	Fleet_seg	gment	METIER		LOA
99	Longline	rs 12-24	LLS_DEF_0_0_0		VL1218
99	Trawlers	s 6- >24	OTB_DEF_>=40	_0_0	VL1218
GEAR_	ACatch	MESH_SIZE_	RANGE_ACatch	FISHERY_	ACatch
LLS		-1		DEMF	
OTB		50D100		DEMSP	

3) List of species

V1 MUT

HKE

4) Scientific name to FAO 3alphacode

Scientific	X3ALPHACODE
Chamaelea gallina	SVE
Centrophorus granulosus	GUP
Chimaera monstrosa	СМО
Dalatias licha	SCK
Dasyatis pastinaca	JDP
Etmopterus spinax	ETX

5) SDEF CA table

sampType	landCtry	vslFlgCtry	year	quarter	
S	COUNTRY1	COUNTRY1	9999	2	-
S	COUNTRY1	COUNTRY1	9999	2	
S	COUNTRY1	COUNTRY1	9999	2	
S	COUNTRY1	COUNTRY1	9999	2	
S	COUNTRY1	COUNTRY1	9999	2	
S	COUNTRY1	COUNTRY1	9999	2	

month	proj	trpCode	staNum	area	rect
5	PROJECT	46_10_2017	999	99	NA
5	PROJECT	46_10_2017	999	99	NA
5	PROJECT	46_10_2017	999	99	NA
5	PROJECT	46_10_2017	999	99	NA
5	PROJECT	46_10_2017	999	99	NA
5	PROJECT	46_10_2017	999	99	NA

Table continues below

subRect	foCatEu6	stock	spp
NA	OTB_DEF_>=40_0_0	NA	Scyliorhinus canicula
NA	OTB_DEF_>=40_0_0	NA	Lophius budegassa
NA	OTB_DEF_>=40_0_0	NA	Lophius budegassa
NA	OTB_DEF_>=40_0_0	NA	Lophius budegassa
NA	OTB_DEF_>=40_0_0	NA	Citharus linguatula
NA	OTB_DEF_>=40_0_0	NA	Citharus linguatula

Table continues below

catchCat	landCat	commCatScl	commCat	sex
DIS	NA	NA	S	F
DIS	NA	NA	S	N
DIS	NA	NA	S	N
DIS	NA	NA	S	N
DIS	NA	NA	S	N
DIS	NA	NA	S	N

lenCls	age	fishId	lenCode	ageMeth	plusGrp
175	NA	4856914	scm	NA	NA
90	NA	4851033	scm	NA	NA
90	NA	4851034	scm	NA	NA

NA
NA
NA
cale matStage
1
0
0
0
NA

6) SDEF TR table

Table continues below

sampType	landCtry	vslFlgCtry	year	proj	
S	COUNTRY1	COUNTRY1	9999	PROJECT	
S	COUNTRY1	COUNTRY1	9999	PROJECT	
S	COUNTRY1	COUNTRY1	9999	PROJECT	
S	COUNTRY1	COUNTRY1	9999	PROJECT	
S	COUNTRY1	COUNTRY1	9999	PROJECT	
S	COUNTRY1	COUNTRY1	9999	PROJECT	

trpCode	vslLen	vslPwr	vslSize	vslType
59_10_2017	VL0612	NA	NA	NA
63_10_2017	VL0612	NA	NA	NA
58_10_2017	VL0612	NA	NA	NA
57_10_2017	VL0612	NA	NA	NA
84_10_2017	VL0612	NA	NA	NA
60_10_2017	VL0612	NA	NA	NA

harbour	foNu	m	daysAt	Sea	vslId	sampCtry
Port	NA		NA		1	COUNTRY1
Port	NA		NA		1	COUNTRY1
Port	NA		NA		2	COUNTRY1
Port	NA		NA		3	COUNTRY1
Port	NA		NA		3	COUNTRY1
Port	NA		NA		3	COUNTRY1
sampMeth		asvsl	Size	asdays	AtSea	
SelfSamplin	g	NA		NA		
SelfSamplin	g	NA		NA		
SelfSamplin	g	NA		NA		
SelfSamplin	g	NA		NA		
SelfSamplin	g	NA		NA		
SelfSamplin	g	NA		NA		

Processing tables

Using some data in the DG MARE Med&BS format:

```
#Association of GFCM fleet segment to B Landings
B_melt$GFCM_fleetsegment=as.character(B_melt$GEAR)
B melt$GFCM fleetsegment=""
for (i in 1:nrow(B melt)){
if (nrow(CT[as.character(CT$LOA)== as.character(B_melt$VESSEL_LENGTH[i]) &
as.character(CT$GEAR ACatch)== as.character(B melt$GEAR[i]) &
as.character(CT$MESH SIZE RANGE ACatch)== as.character(B melt$MESH SIZE RANGE[i])
as.character(CT$FISHERY_ACatch)== as.character(B_melt$FISHERY[i]),])>0) {
B_melt$GFCM_fleetsegment[i]=
  as.character(CT[as.character(CT$LOA)== as.character(B melt$VESSEL LENGTH[i]) &
as.character(CT$GEAR_ACatch) == as.character(B_melt$GEAR[i]) &
as.character(CT$MESH SIZE RANGE ACatch)== as.character(B melt$MESH SIZE RANGE[i])
as.character(CT$FISHERY ACatch)== as.character(B melt$FISHERY[i]) , | $Fleet segment
)
} else {
    B melt$GFCM fleetsegment[i]=""}
}
B melt=B melt[as.character(B melt$GFCM fleetsegment)!="",]
B land1=aggregate(B melt$value,by=list(B melt$COUNTRY,
                B melt$YEAR,B melt$AREA,B melt$GFCM fleetsegment,
                B melt$SPECIES,B melt$UNIT,B melt$variable),FUN="sum")
B land1[,3]=AREA
B land1$Source of data="BS"
B_land1$Name_of_the_scientific_survey =""
B_1 and 1 = B_1 and 1 [, c(1, 2, 3, 9, 10, 4, 5, 6, 7, 8)]
colnames(B_land1)=c("Country","YEAR","GSA","Source_of_data",
                     "Name_of_the_scientific_survey",
                    "GFCM fleetsegment", "SPECIES", "Length unit", "Length",
                    "Number of individuals expanded per length classes")
# only landing should be taken into account, according to the specifications
CA=CA[CA$catchCat=="LAN",]
# Association of 3alpha code to primary data
CA2 = merge(CA,alpha,by.x="spp",by.y="Scientific")
colnames(CA2)[ncol(CA2)]="spp2"
CA2$spp= CA2$spp2
CA \leftarrow CA2[,c(2:15, 1, 16:32)]
length_unit <- unique(data.frame(species = Bland$SPECIES, unit = Bland$UNIT) )</pre>
```

```
for (nr in 1:nrow(length unit) ) {
  if (nrow(CA[as.character(CA$spp) == as.character(length_unit$species[nr]), ]) >0
) {
    if (length unit$unit[nr] == "cm") {
      CA$lenCls[as.character(CA$spp) == as.character(length_unit$species[nr])] <-</pre>
CA$lenCls[as.character(CA$spp) == as.character(length_unit$species[nr])]/10
  }
}
# association of GFCM fleet segment to primary data
TR_CA=merge(TR,CA,by=c("year","trpCode", "sampType", "landCtry",
                        "vslFlgCtry", "proj"),all=F)
TR_CA$GFCM_fleetsegment=TR_CA$landCtry
TR_CA$GFCM_fleetsegment=""
TR_CA=TR_CA[,c(1,15,7,25,27,32,33,41,44,45)]
TR_CA$lenCls=round(TR_CA$lenCls,0)
for (i in 1:nrow(TR_CA)){
    if (nrow(CT[as.character(CT$LOA)== as.character(TR CA$vslLen[i]) &
                as.character(CT$METIER)== as.character(TR CA$foCatEu6[i]) ,])>0) {
    TR_CA$GFCM_fleetsegment[i]=
      as.character(CT[as.character(CT$LOA)== as.character(TR_CA$vslLen[i]) &
      as.character(CT$METIER)== as.character(TR_CA$foCatEu6[i]) , | $Fleet_segment)
    } else {
        TR_CA$GFCM_fleetsegment[i]=""
    }
}
TR_CA=TR_CA[as.character(TR_CA$GFCM_fleetsegment)!="",]
TR_CA <- TR_CA[as.character(TR_CA\spin) \( \frac{\spin}{\sin} \) as.character(length_unit\species),]
write.table(TR_CA, "TR_CA.csv", sep=";", row.names=F)
agg=aggregate(TR CA$spp,by=list(TR CA$year,TR CA$spp,
                                 TR_CA$GFCM_fleetsegment,TR_CA$lenCls),FUN="length"
colnames(agg)=c("YEAR", "SPECIES", "GFCM_fleetsegment", "Length",
                "Number_of_individuals_sampled")
agg_w=aggregate(TR_CA$indWt,by=list(TR_CA$year,TR_CA$spp,
                 TR_CA$GFCM_fleetsegment,TR_CA$lenCls),FUN="mean",na.rm=T)
colnames(agg_w)=c("YEAR","SPECIES","GFCM_fleetsegment","Length",
                   "Weight of individuals sampled")
```

Output

GFCM/DCRF Table VII.2

Table continues below

	Country	Reference_year	GSA
24	COUNTRY1	9999	99
27	COUNTRY1	9999	99
28	COUNTRY1	9999	99
29	COUNTRY1	9999	99
30	COUNTRY1	9999	99
31	COUNTRY1	9999	99

Table continues below

	Source_of_data	Name_of_the_scientific_survey
24	BS	

27 BS

_, ___

28 BS

29	BS
30	BS

31 BS

Table continues below

	Fleet_segment	Species	Length_unit
24	Longliners 12-24	НКЕ	cm
27	Longliners 12-24	HKE	cm
28	Longliners 12-24	HKE	cm
29	Longliners 12-24	HKE	cm
30	Longliners 12-24	НКЕ	cm
31	Longliners 12-24	HKE	cm

Table continues below

	Length
24	29
27	31
28	32
29	33
30	34
31	35

Table continues below

$Number_of_individuals_sampled_per_length_classes$

24 NA27 NA28 NA29 NA

30 NA

31 NA

Table continues below

Weight_of_individuals_sampled_per_length_classes

```
24
     NA
27
     NA
28
     NA
29
     NA
30
     NA
31
     NA
      Number_of_individuals_expanded_per_length_classes
24
      1150
27
      766
28
     383
29
     766
30
     1832
31
     2598
```

script 03: Table VII.3.1

This script allow to convert the DG MARE Med&BS ML table into the GFCM/DCRF Table VII.3.1 (Biological information: Size at first maturity)

Settings

```
# set the working directory
myWD <- paste("C:\\Users\\Bitetto Isabella\\OneDrive - Coispa Tecnologia & Ricerca
S.C.A.R.L\\MARE22\\STREAM\\FINAL REVISION OF DELIVERABLES\\DG_MARE_MedBS_to_GFCM",
sep="")
setwd(myWD)

ML_tab=read.table("ML table.csv",sep=";",header=T)
species=read.table("Species TableVII.3.1.csv",sep=";",header=F)

AREA=99
YEAR=9999</pre>
```

Input Data

1) DG MARE Med&BS ML (Maturity at length)

COUNTRY	AREA	START_YEAR	END_YEAR	SP	PECIES
COUNTRY1	99	9999	9999	НІ	KE
COUNTRY1	99	9999	9999	Н	KE
COUNTRY1	99	9999	9999	НІ	KE
COUNTRY1	99	9999	9999	Н	KE
COUNTRY1	99	9999	9999	Н	KE
COUNTRY1	99	9999	9999	НІ	KE
SEX	LENGTHCLASS	UNIT	SAMPLE_SIZE	PRM	COMMENTS
SEX F	LENGTHCLASS 14	UNIT cm	SAMPLE_SIZE 55	PRM 0	COMMENTS NA
-					
F	14	cm	55	0	NA
F F	14 15	cm cm	55 35	0	NA NA
F F	14 15 16	cm cm	55 35 33	0 0 0	NA NA NA

2) List of species

V1

MUT

HKE

Processing tables

Using some data in the DG MARE Med&BS format:

```
Final=L50[,c(1,8,7,4,5,6,9)]
colnames(Final)=c("Country", "Reference_year", "GSA", "Species", "Sex", "L50", "Reference")
```

Output

GFCM/DCRF Table VII.2

Table continues below

Country	Reference_year	GSA	Species	Sex
COUNTRY1	9999	99	HKE	F
COUNTRY1	9999	99	MUT	F
L50	Reference			
33		=		

script 04: Table VII.3.2

This script allow to create the GFCM/DCRF Table VII.3.2 (Biological information: Maturity data) using the GFCM/DCRF Table VII.2 (Biological information: Length data) and the primary data in SDEF format (CA merged with TR)

Settings

11

```
# set the working directory
myWD <- paste("C:\\Users\\Bitetto Isabella\\OneDrive - Coispa Tecnologia & Ricerca
S.C.A.R.L\\MARE22\\STREAM\\FINAL REVISION OF DELIVERABLES\\DG_MARE_MedBS_to_GFCM",
sep="")
setwd(myWD)

TR_CA=read.table("TR_CA.csv",sep=";",header=T)
T_VII2=read.table("TableVII.2.csv",sep=";",header=T)
species=read.table("Species TableVII.2.csv",sep=";",header=F)

AREA=10</pre>
```

Input Data

1) Primary data SDEF format (CA merged with TR)

year sampCtry vslLen	foCatEu6	spp
----------------------	----------	-----

9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	MUT
9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	HKE
9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	HKE
9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	MUT
9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	MUT
9999	COUNTRY1	VL1218		OTB_DEF_:	>=40_0_0	MUT
sex	lenCls	indWt	matS	Stage	GFCM_fleetse	gment
M	12	NA	2c		Trawlers 6->	24
M	22	70,4	2c		Trawlers 6->	24
F	22	72,54	1		Trawlers 6->	24
M	12	15	2c		Trawlers 6->	24
M	12	NA	2c		Trawlers 6->	24
F	20	97,1	2b		Trawlers 6->	24

2) GFCM/DCRF Table VII.2

Table continues below

Country	Reference_year	GSA	Source_of_data
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS

Name_of_the_scientific_survey	Fleet_segment	Species
NA	Longliners 12-24	НКЕ
NA	Longliners 12-24	HKE
NA	Longliners 12-24	НКЕ
NA	Longliners 12-24	HKE

NA		Longliners 12-24	НКЕ
Table continues be	low		
Length_unit	Length		
cm	29	-	
cm	31		
cm	32		
cm	33		
cm	34		
cm	35		
Table continues be	elow		
Number_of_indivi	duals_sample	ed_per_length_classes	
NA			
Table continues be	low		
Weight_of_individ	uals_sampled	d_per_length_classes	
NA			
Number_of_indivi	duals_expand	ded_per_length_classes	
1150			
766			
383			
766			
1832			
2598			

NA

Longliners 12-24

HKE

Processing tables

Using some data in the DG MARE Med&BS format:

```
# selection of the species
TR CA=TR CA[as.character(TR CA$spp) %in% as.character(species[,1]),]
agg=aggregate(TR CA$spp,by=list(TR CA$year,TR CA$spp,
      TR_CA$GFCM_fleetsegment,TR_CA$lenCls,TR_CA$sex,TR_CA$matStage),
      FUN="length")
colnames(agg)=c("YEAR", "SPECIES", "GFCM_fleetsegment", "Length", "Sex",
                "Maturity", "Number of individuals sampled")
agg w=aggregate(TR CA$indWt,by=list(TR CA$year,TR CA$spp,
    TR CA$GFCM fleetsegment,TR CA$lenCls,TR CA$sex,TR CA$matStage),
    FUN="mean",na.rm=T)
colnames(agg_w)=c("YEAR", "SPECIES", "GFCM_fleetsegment", "Length", "Sex",
                  "Maturity", "Weight_of_individuals_sampled")
agg_tot=aggregate(TR_CA$spp,by=list(TR_CA$year,TR_CA$spp,
    TR CA$GFCM fleetsegment,TR CA$lenCls,TR CA$sex),FUN="length")
colnames(agg_tot)=c("YEAR","SPECIES","GFCM_fleetsegment","Length",
                    "Sex", "Number of individuals sampled")
AGG=merge(agg,agg_tot,by=c("YEAR","SPECIES","GFCM_fleetsegment","Length","Sex"))
colnames(AGG)[c(7,8)]=c("Numbers by sex stage","Numbers by sex")
AGG$Perc of stage in sex= AGG$Numbers by sex stage/AGG$Numbers by sex
Mer=merge(T VII2, AGG,by.y=c("YEAR","SPECIES","GFCM fleetsegment","Length"),
          by.x=c("Reference_year", "Species", "Fleet_segment", "Length"))
Mer$Percentage of sex= Mer$Numbers by sex/ Mer$Number of individuals sampled per
length classes
Mer$Number of individuals expanded=
  Mer$Number of individuals expanded per length classes*Mer$Percentage of sex*Mer$
Perc_of_stage_in_sex
mer2=merge(Mer,agg_w,by.y=c("YEAR","SPECIES","GFCM_fleetsegment","Length","Sex",
                            "Maturity"),
           by.x=c("Reference_year", "Species", "Fleet_segment", "Length", "Sex",
                  "Maturity"))
Final=mer2[,c(7,1,8,9,10,3,2,11,4,5,6,15,20,19)]
Final$Weight_of_individuals_sampled=Final$Weight_of_individuals_sampled/1000
Final[,ncol(Final)]=round(Final[,ncol(Final)],0)
```

Output

GFCM/DCRF Table VII.3.2

Table continues below

Country	Reference_year	GSA	Source_of_data
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS
COUNTRY1	9999	99	BS

Table continues below

Name_of_the_scientific_survey	Fleet_segment	Species
NA	Trawlers 6- >24	НКЕ
NA	Trawlers 6->24	HKE
NA	Trawlers 6- >24	HKE
NA	Trawlers 6- >24	HKE
NA	Trawlers 6- >24	HKE
NA	Trawlers 6->24	HKE

Length_unit	Length	Sex	Maturity
cm	16	F	1
cm	16	M	2b
cm	16	M	2c
cm	17	F	1
cm	17	M	2b

cm	18	F	1
Table continues be	elow		
Number_of_indivi	duals_sample	ed_(per_	length_class_sex_and_maturity_stage)
1			
1			
1			
1			
1			
5			
Table continues be	elow		
Weight_of_individ	uals_sampled	d_(per_le	ength_class_sex_and_maturity_stage)
0,02693			
0,02664			
0,03109			
0,03414			
0,03209			
0,04054			
Number_of_indivi	duals_expand	led_(per	r_length_class_sex_and_maturity_stage)
2795			
2795			
2795			
21123			
21123			
41994			