Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

Merge and count step.

Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.

