

## WT901C 数字姿态传感器说明书



产品规格书:SPECIFICATION

型 号: WT901C (TTL) WT901C(232)

描述: 9 轴带外壳数字姿态传感器

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

传感器生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期: 2019.11.27



#### www.wit-motion.com

| 版本号  | 版本更新内容    | 更改人 | 日期       |
|------|-----------|-----|----------|
| V1.0 | 发布        | 章小宝 | 20171019 |
| V1.1 | 更新上位机     |     | 20190114 |
| V1.2 | 更新上位机图片,解 | 胡名林 | 20191127 |
|      | 锁指令,报警指令  |     |          |



## 目录

| 1  | 产品         | 概述.   | 5              | - |
|----|------------|-------|----------------|---|
| 2  | 性能         | 参数.   | 6              | - |
| 3  | 引脚         | 说明。   | 及尺寸说明6         | _ |
| 4  | 轴向         | 说明.   | 7              | _ |
| 5  | 硬件         | 连接    | 方法7            | - |
|    | 5.1        | 串口    | 」(TTL)连接       | - |
|    | 5.2        | 232   | 电平连接8          | - |
| 6  | 软件         | 使用    | 方法9            | - |
|    | 6.1        | 使月    | 月方法9           | - |
|    | 6.2        | 恢复    | 更出厂设置 12       | - |
|    | 6.3        | 模均    | P校准12          | - |
|    | $\epsilon$ | 5.3.1 | 加计校准 13        | - |
|    | 6          | 5.3.2 | 磁场校准14         | - |
|    | 6          | 5.3.3 | Z 轴归 016       | - |
|    | $\epsilon$ | 5.3.4 | 高度置零16         | - |
|    | 6          | 5.3.5 | 陀螺仪自动校准17      | - |
|    | 6.4        | 设置    | <b>置回传内容17</b> | - |
|    | 6.5        | 设置    | <b>置回传速率17</b> | - |
|    | 6.6        | 设置    | 置通信波特率18       | - |
|    | 6.7        | 记录    | - 19           | - |
|    | 11.1       | 安装    | 专方向21          | - |
|    | 11.2       | 休眼    | 民及解休眠21        | - |
|    | 11.3       | 测量    | 量带宽设置21        | - |
|    | 11.4       | 九轴    | 由算法与六轴算法21     | - |
| 12 | 串口         | 通信    | 协议 22          | - |
|    | 12.1       | 模均    | 央至上位机:22       | - |



| 12.1.1  | 时间输出:2        | 22 - |
|---------|---------------|------|
| 12.1.2  | 加速度输出:        | 23 - |
| 12.1.3  | 角速度输出:        | 23 - |
| 12.1.4  | 角度输出:         | 23 - |
| 12.1.5  | 磁场输出:         | 24 - |
| 12.2 上位 | 7.机至模块2       | 24 - |
| 12.2.1  | 寄存器地址表        | 24 - |
| 12.2.2  | 保持配置2         | 26 - |
| 12.2.3  | 解锁2           | 26 - |
| 13.1.1  | 设置校准          | 26 - |
| 13.1.2  | 设置安装方向        | 27 - |
| 13.1.3  | 休眠与解休眠        | 27 - |
| 13.1.4  | 算法转换          | 27 - |
| 13.1.5  | 陀螺仪自动校准       | 27 - |
| 13.1.6  | 设置回传内容        | 27 - |
| 13.1.7  | 设置回传速率2       | 28 - |
| 13.1.8  | 设置串口波特率       | 29 - |
| 13.1.9  | 设置 X 轴加速度零偏   | 29 - |
| 13.1.1  | 0 设置 Y 轴加速度零偏 | 29 - |
| 13.1.1  | 1 设置 Z 轴加速度零偏 | 29 - |
| 13.1.1  | 2 设置 X 轴角速度零偏 | 30 - |
| 13.1.1  | 3 设置 Y 轴角速度零偏 | 30 - |
| 13.1.1  | 4 设置 Z 轴角速度零偏 | 30 - |
| 13.1.1  | 5 设置 X 轴磁场零偏  | 30 - |
| 13.1.1  | 6 设置 Y 轴磁场零偏  | 30 - |
| 13.1.1  | 7 设置 Z 轴磁场零偏  | 31 - |
| 13.1.1  | 8 设置模块报警      | 31 - |
| 应用领域.   | 3             | 32 - |



## 1 产品概述

- ◆ 模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进的动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度静态 0.05 度,动态 0.1 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 模块内部自带电压稳定电路,工作电压 3.3v~5v,引脚电平兼容 3.3V/5V 的嵌入式系统,连接方便。
- ◆ 支持串口 TTL/232 接口方便用户选择最佳的连接方式。串口速率 2400bps~921600bps 可调。
- ◆ 最高 200Hz 数据输出速率。输入内容可以任意选择,输出速率 0.1~200HZ 可调节。





## 2 性能参数

- 1、电压: 3.3V~5V
- 2、电流: <40mA
- 3、体积: 51.3mm X 36mm X 15mm
- 4、焊盘间距:上下 100mil(2.54mm),左右 600mil(15.24mm)
- 5、测量维度: 加速度: 3 维, 角速度: 3 维, 磁场: 3 维, 角度: 3 维, 气压:1 维(JY-901B)。
- 6、量程:加速度:±2/4/8/16 g (可选),角速度:±250/500/1000/2000 °/s (可选),角度±180°。
- 8、稳定性:加速度: 0.01g,角速度 0.05°/s。
- 9、姿态测量稳定度: 0.01°。
- 10、数据输出内容: 时间、加速度、角速度、角度、磁场、端口状态、四元素、气压(JY-901B)、高度(JY-901B)。
- 11、数据输出频率 0.1Hz~200Hz。
- 12、数据接口: 串口(TTL 电平, 波特率支持 2400、4800、9600、19200、38400、57600、115200、230400、460800、921600)。

## 3 引脚说明及尺寸说明



| 大寸 | 36mm X 51.3mm X 15mm |
|----|----------------------|
| 重量 | 13g                  |



| 名称  | 功能                     |  |  |  |  |  |
|-----|------------------------|--|--|--|--|--|
| VCC | 模块电源, 3.3V 或 5V 输入     |  |  |  |  |  |
| RX  | 串行数据输入,TTL 或 232<br>电平 |  |  |  |  |  |
| TX  | 串行数据输出,TTL 或 232<br>电平 |  |  |  |  |  |
| GND | 地线                     |  |  |  |  |  |

## 4 轴向说明

如上图所示,模块的轴向在上图标示出来,向上为X轴,向左为Y轴,垂直模块向外为Z轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。X 轴角度即为绕X 轴旋转方向的角度,Y 轴角度即为绕Y 轴旋转方向的角度,Y 轴角度即为绕Y 轴旋转方向的角度。

## 5 硬件连接方法

#### 5.1 串口(TTL)连接

与计算机连接,需要 USB 转 TTL 电平的串口模块。推荐以下两款 USB 转串口模块:



三合一购买链接:

https://item.taobao.com/item.htm?id=574767679001&spm=2014.21600712.0.0 六合一购买链接:

https://item.taobao.com/item.htm?id=553416023259&spm=2014.21600712.0.0

1. USB-TTL 串口模块: 把模块和 USB-TTL 连接好,在插到电脑上。模块和 USB-TTL 连接方法 是: 模块的 VCC TX RX GND 分别于 USB 串口模块的+5V/3V3 RX TX GND 对应相接,**注意** TX 和 RX 需要交叉,即 TX 接 RX,RX 接 TX。





#### 5.2 232 电平连接

与计算机连接, 需要 USB 转 232 电平的串口模块。推荐以下的一款 USB 转串口模块: <a href="https://item.taobao.com/item.htm?spm=a1z10.3-c.w4002-13639062253.9.xblv0P&id=541909874044">https://item.taobao.com/item.htm?spm=a1z10.3-c.w4002-13639062253.9.xblv0P&id=541909874044</a>



USB 串口模块连接倾角开关的方法是: USB 串口的拨码开关 1 拨至 ON,拨码开关 2 拨至 (丝印) 2,开关 S1 拨至上(下图中靠近 232-TTL 丝印),5V/3V3 接 JY61 模块的 VCC,232T 接模块 RX,232R 接模块 TX,GND 接模块的 GND。

注意: 232R、232T 引脚在六合一模块的背面。





## 6 软件使用方法

#### 6.1 使用方法

#### 注意,上位机无法运行的用户请下载安装.net framework4.0:

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

通过 USB-TTL 模块连接上电脑打开上位机,安装好串口模块对应的驱动 CP210X 或者 CH340 以后,可以再设备管理器中查询到对应的端口号,下图安装的是 CH340 驱动设备管理器显示如下:



安装 CP210X 驱动设备管理器显示如下:





三合一驱动程序为 CH340, 如下:

#### https://pan.baidu.com/s/1LWxOTc6XmGvoxi7f9ltfhA#list/path=%2F

六合一驱动为 CP2102 如下:

#### http://pan.baidu.com/s/106Rleae?frm=fujian

打开 Mini IMU. exe 软件,在【资料包/上位机】中,点击串口选择菜单,选择刚才设备管理器里面看到的 COM 号。



在上位机软件上点击波特率菜单选择波特率,9600选择完成后,点击"打开"上位机软件上即可出现数据。





当本次采集数据与上一次采集数据间隔时间较长时,图表更新会比较慢,此时可以右键点击图像,弹出清图栏,点击清图选项加快数据刷新速率。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。





#### 6.2 恢复出厂设置

指令法操作方法:将 JY-901 模块和电脑通过 USB-TTL 模块连接好,点击设置选项卡,点击恢复设置按钮即可。恢复出厂设置以后,需对模块重新上电。(此方法需要提前知道模块的波特率,如果波特率不匹配指令将无法生效)

## 6.3 模块校准

注意:模块校准和配置要在上位机配置栏右下角显示在线状态下进行,如下图所示, 离线说明上位机没有控制到模块。

模块使用前,需要对模块进行校准。JY901 模块的校准包括加计校准、磁场校准。 JY61P 模块校准包括 Z 轴归 0、加计校准。





#### 6.3.1 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

加计校准方法如下:

- 1.首先使模块保持水平静止,点击配置栏里的加速度,会弹出一个校准界面。
- 2.把自动计算选项勾上,上位机会自动计算加速度零偏值,再点击写入参数。





点击上位机左侧"数据"可以看到角度数据如下图所示:

 $3.1\sim2$  秒后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0 ° 左右。校准后 XY 轴角度就跟精确了。



注意: Z 轴水平静止的时候是有 1 个 G 的重力加速度的。

#### 6.3.2 磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角 Z 轴角度测量的准确性。



磁场校准方法如下:

- 1.校准时,先连接好模块和电脑,将模块放置于远离干扰磁场的地方(**即远离磁和铁等物质 20CM 以上**),再打开上位机软件。
- 2. 在设置页面中,点击校准栏下的磁场按钮,就可以进入磁场校准模式,这时弹出 MagCal 窗口,在此窗口下点击开始校准。



3. 然后缓慢绕三个轴转动模块,让数据点在三个平面内画点,可以多转几圈,等画出 比较规则的椭圆以后,就可以停止校准了。校准完成后点击写入参数。





注意:数据点尽量在椭圆以内,不能再椭圆外面,如果不能画出椭圆,请远离磁场干扰,再参考校准视频,把模块放在地球磁场南北轴线上缓慢转圈。

校准视频: https://pan.baidu.com/s/1kVN0EZP

#### 6.3.3 Z轴归0

注意: Z轴归0只对JY61P有效。

JY901 的 Z 轴角度是绝对角度,以东北天为坐标系,不能相对归 0。

Z 轴归 0 是使模块 Z 轴角度初始状态为相对 0 度角,模块使用前和 Z 轴漂移较大的情况下可以进行 Z 轴归 0 校准,模块上电时 Z 轴会自动归 0。

上位机 Z 轴归 0 方法如下: 首先模块静止放置,点击配置打开配置栏,在配置栏里面的"Z 轴角度置零"选项,模块数据栏里面可以看到 Z 轴角度回到 0°。



#### 6.3.4 高度置零

高度置零是对模块输出的高度进行归 0 的操作。模块的高度输出是根据气压计算出来的,高度归 0 操作就是将当前气压值作为零高度位置进行计算。操作方法是点击配置栏里的"高度"选项即可。只有带气压模块(JY901B、JY61PB)才有高度输出。



#### 6.3.5 陀螺仪自动校准

陀螺仪校准是校准角速度,传感器默认是有进行校准的。 只有当模块是匀速旋转的情况下,可以把陀螺仪自动校准去掉。

#### 6.4 设置回传内容

设置方法:数据回传的内容可以根据用户需要进行定制,点击配置选项栏,在需要输出的数据内容前面打钩即可。以JY901为例,模块默认输出为加速度、角速度、角度、磁场。

时间为模块内部的时间,默认是以上电初始时刻为 2015 年 1 月 1 日 0:0:0.0。如果连接 GPS 模块,将 GPS 接收到的时间作为模块的时间。注意 GPS 时间会比北京时间晚 8 小时。

气压数据仅支持配备了气压传感器的 JY901B、JY61PB 型传感器,对没有配气压传感器的 JY-901 无效。

经纬度和地速信息仅在模块连接了 GPS 模块后有效。要获得正确的数据还需要将设置内容里面的"经纬度"、"地速"、"定位精度"勾选上。注意:勾选上"GPS 原始"之后模块只输出 GPS 原始的信息了,其它数据都不会输出。



#### 6.5 设置回传速率

设置方法:点击上位机配置选项,在配置栏里选择回传速率 0.1~200HZ 可选。



模块默认的回传速率是 10Hz, 回传的速率最高支持 200Hz。

10HZ 指的是 1S 回传 10 个数据包,按默认回传 1 个数据包是 33 个字节。

注意:如果回传内容较多,同时通信的波特率又较低的情况下,可能没法传输这么多数 据,此时模块会自动降频,并以允许的最大输出速率进行输出。简单点说就是回传速率高 的话,波特率也要设置高一点,一般用 115200。



#### 6.6 设置通信波特率

设置方法:模块支持多种波特率,默认波特率为9600。设置模块的波特率需要在软件 与模块正确连接的基础上,在配置栏(JY9Config)里的通信速率下拉框中选择需要更改的 波特率。

注意: 更改以后,模块在原来的波特率下已经不输出数据了,要重新在上位机主界面 重新选择已经更改好的波特率,才会输出数据。





#### 6.7 记录数据

- 7 传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。
- 8 使用方法:点记录---开始按钮可以将数据保存为文件



10 点击停止按钮,出现如图所示的弹窗:

9





点击确定,即打开保存的文件,如下图所示。保存的文件在上位机程序的目录下 Data191125143153.txt: 文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴向上的加速度, wx wy wz 分别表示 x y z 三个轴向上的角速度, Anglex Angley Anglez 分别表示 x y z 三个轴向的角度,T 代表时间,hx hy hz 分别表示 x y z 三个轴向上的磁场。

| Data 191          | 125143153.txt       | t - 记事本             |               |                 |            |       |                | _         |        | ×  |
|-------------------|---------------------|---------------------|---------------|-----------------|------------|-------|----------------|-----------|--------|----|
| 文件( <u>F</u> ) 编辑 | 景(E) 格式( <u>O</u> ) | 查看( <u>V</u> ) 帮.   | 助( <u>H</u> ) |                 |            |       |                |           |        |    |
| StartTime         | : 2019-11-          | <b>25 14:25:5</b> 9 | .127          |                 |            |       |                |           |        | ^  |
| address           | Time(s)             | ax(g)               | ay(g)         | az(g)           | wx(de      | g/s)  | wy(deg/s)      | wz(deg/s) | AngleX |    |
| (deg)             | AngleY(de           | eg)                 | AngleZ(d      | leg)            | T(°)       |       | hx             | hy        | hz     |    |
| Lon(deg)          | Lat(deg)            | GPSHeigh            | nt(m)         | GPSYaw(         | deg)       |       | GPSV(km,       | /h)       | SV     |    |
| PDOP              | HDOP                | VDOP                |               |                 |            |       |                |           |        |    |
| 0x50              | 14:31:54.0          | )51                 | 0.7544        | 0.5957          | -0.307     | 6     | 0.0000         | 0.0000    | 0.0000 |    |
| 117.4274          | -48.4113            | 149.8206            | 39.7800       | 410             | 120        |       | 936            | 113.82648 | 3500   |    |
| 22.764743         | 317                 | 56.7                | 0.0           | 0.477           | 5          |       | 3.75           | 2.74      | 2.56   |    |
| 0x50              | 14:31:54.1          | 150                 | 0.7563        | 0.5952          | -0.310     | 1     | 0.0000         | 0.0000    | 0.0000 |    |
| 117.4274          | -48.4113            | 149.8260            | 39.7900       | 408             | 119        |       | 938            | 113.82648 | 3500   |    |
| 22.764743         | 317                 | 56.7                | 0.0           | 0.477           | 5          |       | 3.75           | 2.74      | 2.56   |    |
| 0x50              | 14:31:54.2          | 255                 | 0.7559        | 0.5957          | -0.306     | 6     | 0.0000         | 0.0000    | 0.0000 |    |
| 117.4274          | -48.4113            | 149.8206            | 39.7700       | 410             | 118        |       | 938            | 113.82648 | 3500   |    |
| 22.764743         | 317                 | 56.7                | 0.0           | 0.477           | 5          |       | 3.75           | 2.74      | 2.56   |    |
| 0x50              | 14:31:54.3          | 351                 | 0.7539        | 0.5947          | -0.309     | 1     | 0.0000         | 0.0000    | 0.0000 |    |
| 117.4219          | -48.4113            | 149.8206            | 39.7900       | 412             | 119        |       | 939            | 113.82648 | 3500   |    |
| 22.764743         | 317                 | 56.7                | 0.0           | 0.477           | 5          |       | 3.75           | 2.74      | 2.56   |    |
| 0x50              | 14:31:54.4          | 151                 | 0.7549        | 0.5957          | -0.309     | 1     | 0.0000         | 0.0000    | 0.0000 |    |
| 117.4219          | -48.4113            | 149.8206            | 39.8000       | 411             | 120        |       | 938            | 113.82648 | 3500   |    |
| 22.764743         | 317                 | 56.7                | 0.0           | 0.477           | 5          |       | 3.75           | 2.74      | 2.56   |    |
| 0x50              | 14:31:54.5          |                     | 0.7568        | 0.5952          | -0.310     |       | 0.0000         | 0.0000    | 0.0000 |    |
| 117 /210          | <b>ΛΩ Λ112</b>      | 1/0 0260            | 20 2100       | #17<br>第1行,第1   | 101<br>Ell | 100%  | Q⊿∩<br>Windows | 112 226/9 | TF-8   | ~  |
|                   |                     |                     |               | 95 1 1 J 7 95 1 | 73         | 10070 | vvilluows      | (CILLI)   | 11-0   | .: |



#### 11.1 安装方向

模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。

垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面"安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。



垂直安装

#### 11.2 休眠及解休眠

休眠:模块暂停工作,进入待机状态。休眠后可以降低功耗。

解休眠:模块从待机状态进入工作状态。

使用方法:模块默认为工作状态,在上位机配置栏里面点击"休眠"选项,进入休眠状态,再点击"休眠"选项,模块解除休眠。

#### 11.3 测量带宽设置

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。

使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为20HZ。

#### 11.4 九轴算法与六轴算法

JY61P用的是6轴算法,Z轴角度主要是根据角速度积分解算的。

JY901 用的是 9 轴算法, Z 轴角度主要是根据磁场解算的, 不会有漂移现象。

当901使用环境有磁场干扰时,可以尝试用6轴算法检测角度。

九轴算法转 6 轴算法使用方法: 在上位机配置栏里吧算法改成"Axis6", 再进行加计校准和 Z 轴归零校准。校准完成后就可以正常使用了。

注意:这里只能是 JY901 可以进行算法转换,系统默认为 9 轴算法。JY61P 是不能进行算法转换的。



| Normal - Config                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------|
| · 支传感器配置 - 锁定 - 解锁 - 校准时间                                                                                            |
| 系统     恢复设置     睡眠     报警     算法     Axis 9      女装方向: Herizon > 1指令启动 Axis 9        校准     Axis 9 Axis 6     Axis 6 |
| 加速度 磁场 高度 Z轴角度置零 设置角度参考 🗹 陀螺仪自动校准                                                                                    |
| 范围  加速度: 16 g/s2 → β陀螺仪: 2000 deg/ → 帯宽: 20 Hz → GPS时区: VTC 中时区 →                                                    |
| 内容                                                                                                                   |
| □ 压力                                                                                                                 |
| 通讯 通讯速率: 115200 V 回传速率: 10Hz V 设备地址: 0x50 更改                                                                         |
| 接口                                                                                                                   |
| DO 模式: AIN V 脉宽: 0 🖨 周期: 0 🖨                                                                                         |
| D1 模式: AIN V 脉宽: 0 🗣 周期: 0 🕏                                                                                         |
| D2 模式: AIN ✓                                                                                                         |
| D3 模式: AIN                                                                                                           |
| ■ 在线                                                                                                                 |
| ad Configuration Completed                                                                                           |

## 12 串口通信协议

电平: TTL 电平(非 RS232 电平,若将模块错接到 RS232 电平可能造成模块损坏) 波特率: 2400、4800、9600(默认)、19200、38400、57600、115200、230400、460800、921600,停止位 1,校验位 0。

## 12.1 模块至上位机:

## 12.1.1 时间输出:

| 0x55 | 0x50    | YY        | MM     | DD       | НН         | MM     | SS     | MSL      | MSH      | SUM |
|------|---------|-----------|--------|----------|------------|--------|--------|----------|----------|-----|
| YY   | : 年, 20 | YY 年      |        |          |            |        |        |          |          |     |
| MN   | 1:月     |           |        |          |            |        |        |          |          |     |
| DD   | : 目     |           |        |          |            |        |        |          |          |     |
| НН   | : 时     |           |        |          |            |        |        |          |          |     |
| MN   | 1:分     |           |        |          |            |        |        |          |          |     |
| SS:  | 秒       |           |        |          |            |        |        |          |          |     |
| MS   | : 毫秒    |           |        |          |            |        |        |          |          |     |
| 毫種   | 少计算公司   | <b>弌:</b> |        |          |            |        |        |          |          |     |
|      |         |           |        |          | - 22       |        |        |          |          |     |
|      | 电话: 07  | 55-33185  | 882 邮箱 | 盲: wit@w | rit-motion | .com 网 | 站: wwv | v.wit-mo | tion.con | า   |



MS=((MSH << 8)|MSL)

Sum=0x55+0x50+YY+MM+DD+HH+MM+SS+MSL+MSH

#### 12.1.2 加速度输出:

|--|

计算方法:

a<sub>x</sub>=((AxH<<8)|AxL)/32768\*16g(g 为重力加速度,可取 9.8m/s²)

a<sub>v</sub>=((AyH<<8)|AyL)/32768\*16g(g 为重力加速度,可取 9.8m/s²)

a<sub>z</sub>=((AzH<<8)|AzL)/32768\*16g(g 为重力加速度,可取 9.8m/s²)

温度计算公式:

 $T = ((TH << 8)|TL)/100 \, ^{\circ}C$ 

校验和:

Sum = 0x55 + 0x51 + AxH + AxL + AyH + AyL + AzH + AzL + TH + TL

说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、 每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下: 假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:

Data=((short)DataH<<8)|DataL。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

http://elecmaster.net/forum.php?mod=viewthread&tid=812&page=1&extra=#pid1582

#### 12.1.3 角速度输出:

| 0x55 | 0x52 | wxL | wxH | wyL | wyH | wzL | wzH | TL | TH | SUM | l |
|------|------|-----|-----|-----|-----|-----|-----|----|----|-----|---|
|------|------|-----|-----|-----|-----|-----|-----|----|----|-----|---|

计算方法:

 $w_x = ((wxH << 8)|wxL)/32768*2000(^{\circ}/s)$ 

 $w_y = ((wyH << 8)|wyL)/32768*2000(^{\circ}/s)$ 

 $w_z\!\!=\!\!((wzH\!\!<\!\!<\!\!8)|wzL)/32768*2000(^\circ\!/s)$ 

温度计算公式:

T=((TH<<8)|TL)/100 °C

校验和:

Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL

#### 12.1.4 角度输出:

| 0x55 | 0x53 | RollL | RollH | PitchL | PitchH | YawL | YawH | TL | TH | SUM |
|------|------|-------|-------|--------|--------|------|------|----|----|-----|
|------|------|-------|-------|--------|--------|------|------|----|----|-----|

计算方法:

滚转角(x 轴)Roll=((RollH<<8)|RollL)/32768\*180(°)

俯仰角(y轴)Pitch=((PitchH<<8)|PitchL)/32768\*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768\*180(°)



温度计算公式:

T=((TH<<8)|TL)/100 °C

校验和:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL

#### 注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块,向上为 X 轴,向 左为 Y 轴,垂直模块向外为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为为 z-v-x,即先绕 z 轴转,再绕 y 轴转,再绕 x 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X, 在表示姿态的时候,俯仰角(Y轴)的范围只有±90度,超过90度后会变换到小于90度,同时让 X轴的角度大于180度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动, X 轴的角度 也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

#### 12.1.5 磁场输出:

计算方法:

磁场(x轴)Hx=((HxH<<8)|HxL)

磁场(y轴)Hy=((HyH <<8)|HyL)

磁场(z轴)Hz=((HzH<<8)|HzL)

温度计算公式:

T = ((TH << 8)|TL)/100 °C

校验和:

Sum=0x55+0x54+HxH+HxL+HyH+HyL+HzH+HzL+TH+TL

#### 12.2 上位机至模块

说明:

- 1. 出厂默认设置使用串口,波特率 9600,帧率 10Hz。配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。
- 2. 数据格式

| 0xFF | 0xAA | Address | DataL | DataH |
|------|------|---------|-------|-------|
|------|------|---------|-------|-------|

## 12.2.1 寄存器地址表

| 地址   | 符号    | 含义     |
|------|-------|--------|
| 0x00 | SAVE  | 保存当前配置 |
| 0x01 | CALSW | 校准     |
| 0x02 | RSW   | 回传数据内容 |



|      |          | www.wit-moti |
|------|----------|--------------|
| 0x03 | RATE     | 回传数据速率       |
| 0x04 | BAUD     | 串口波特率        |
| 0x05 | AXOFFSET | X轴加速度零偏      |
| 0x06 | AYOFFSET | Y轴加速度零偏      |
| 0x07 | AZOFFSET | Z轴加速度零偏      |
| 0x08 | GXOFFSET | X轴角速度零偏      |
| 0x09 | GYOFFSET | Y轴角速度零偏      |
| 0x0a | GZOFFSET | Z轴角速度零偏      |
| 0x0b | HXOFFSET | X轴磁场零偏       |
| 0x0c | HYOFFSET | Y轴磁场零偏       |
| 0x0d | HZOFFSET | Z轴磁场零偏       |
| 0x0e | D0MODE   | D0 模式        |
| 0x0f | D1MODE   | D1 模式        |
| 0x10 | D2MODE   | D2 模式        |
| 0x11 | D3MODE   | D3 模式        |
| 0x12 | D0PWMH   | D0PWM 高电平宽度  |
| 0x13 | D1PWMH   | D1PWM 高电平宽度  |
| 0x14 | D2PWMH   | D2PWM 高电平宽度  |
| 0x15 | D3PWMH   | D3PWM 高电平宽度  |
| 0x16 | D0PWMT   | D0PWM 周期     |
| 0x17 | D1PWMT   | D1PWM 周期     |
| 0x18 | D2PWMT   | D2PWM 周期     |
| 0x19 | D3PWMT   | D3PWM 周期     |
| 0x1a | IICADDR  | IIC 地址       |
| 0x1b | LEDOFF   | 关闭 LED 指示灯   |
| 0x1c | GPSBAUD  | GPS 连接波特率    |
|      |          |              |
| 0x30 | YYMM     | 年、月          |
| 0x31 | DDHH     | 日、时          |
| 0x32 | MMSS     | 分、秒          |
| 0x33 | MS       | 毫秒           |
| 0x34 | AX       | X轴加速度        |
| 0x35 | AY       | Y轴加速度        |
| 0x36 | AZ       | Z轴加速度        |
| 0x37 | GX       | X轴角速度        |
| 0x38 | GY       | Y轴角速度        |
| 0x39 | GZ       | Z轴角速度        |
| 0x3a | HX       | X轴磁场         |
| 0x3b | HY       | Y轴磁场         |
| 0x3c | HZ       | Z轴磁场         |
| 0x3d | Roll     | X轴角度         |
| 0x3e | Pitch    | Y轴角度         |
|      |          |              |



|      |           | 11 11 11 11 11 11 1 |
|------|-----------|---------------------|
| 0x3f | Yaw       | Z轴角度                |
| 0x40 | TEMP      | 模块温度                |
| 0x41 | D0Status  | 端口 D0 状态            |
| 0x42 | D1Status  | 端口 D1 状态            |
| 0x43 | D2Status  | 端口 D2 状态            |
| 0x44 | D3Status  | 端口 D3 状态            |
| 0x45 | PressureL | 气压低字                |
| 0x46 | PressureH | 气压高字                |
| 0x47 | HeightL   | 高度低字                |
| 0x48 | HeightH   | 高度高字                |
| 0x49 | LonL      | 经度低字                |
| 0x4a | LonH      | 经度高字                |
| 0x4b | LatL      | 纬度低字                |
| 0x4c | LatH      | 纬度高字                |
| 0x4d | GPSHeight | GPS 高度              |
| 0x4e | GPSYaw    | GPS 航向角             |
| 0x4f | GPSVL     | GPS 地速低字            |
| 0x50 | GPSVH     | GPS 地速高字            |
| 0x51 | Q0        | 四元素 Q0              |
| 0x52 | Q1        | 四元素 Q1              |
| 0x53 | Q2        | 四元素 Q2              |
| 0x54 | Q3        | 四元素 Q3              |

## 12.2.2 保持配置

SAVE: 设置

0: 保持当前配置

1: 恢复默认配置并保存

#### 12.2.3 解锁

#### 对模块进行校准时需要先发送解锁指令

#### 13.1.1 设置校准

| 0xFF 0 | 0xAA | 0x01 | CALSW | 0x00 |
|--------|------|------|-------|------|
|--------|------|------|-------|------|

CALSW: 设置校准模式

0: 退出校准模式

1: 进入加速度计校准模式

2: 进入磁场校准模式

3: 高度置 0



#### 13.1.2 设置安装方向

| 0xFF | 0xAA | 0x23 | DIRECTION | 0x00 |
|------|------|------|-----------|------|
|------|------|------|-----------|------|

DIRECTION: 设置安装方向

0: 设置为水平安装

1: 设置为垂直安装

#### 13.1.3 休眠与解休眠

| O. EE | O A A | 0v22 | 001  | 000  |
|-------|-------|------|------|------|
| 0xFF  | 0xAA  | UXZZ | 0x01 | 0x00 |

发送该指令模块进入休眠(待机)状态,再发送一次,模块从待机状态进入工作状态。

#### 13.1.4 算法转换

| 0xFF | 0xAA | 0x24 | ALG | 0x00 |
|------|------|------|-----|------|
|      |      |      |     |      |

ALG: 九轴算法与六轴算法设置

0: 设置成 9 轴算法1: 设置成 6 轴算法

#### 13.1.5 陀螺仪自动校准

|--|

GYRO: 陀螺仪校准设置

0: 选择陀螺仪自动校准

1: 去掉陀螺仪自动校准

0xFF

#### 13.1.6 设置回传内容

| RSV | WL 位定义 | (      |        |        |        |        |        |        |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 位   | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
| 名称  | 0x57 包 | 0x56 包 | 0x55 包 | 0x54 包 | 0x53 包 | 0x52 包 | 0x51 包 | 0x50 包 |
| 默认值 | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 0      |

0x02

0xAA

**RSWL** 

**RSWH** 

#### RSWH 位定义

| 位   | 7 | 6 | 5 | 4 | 3 | 2      | 1      | 0      |
|-----|---|---|---|---|---|--------|--------|--------|
| 名称  | X | X | X | X | X | 0x5A 包 | 0x59 包 | 0x58 包 |
| 默认值 | 0 | 0 | 0 | 0 | 0 | 0      | 0      | 0      |

X为未定义名称。

0x50包: 时间信息包

0: 不输出 0x50 数据包

1: 输出 0x50 数据包



- 0x51 包:加速度信息包
  - 0: 不输出 0x51 数据包
  - 1: 输出 0x51 数据包
- 0x52包:角速度信息包
  - 0: 不输出 0x52 数据包
  - 1: 输出 0x52 数据包
- 0x53 包:角度信息包
  - 0: 不输出 0x53 数据包
  - 1: 输出 0x53 数据包
- 0x54包:磁场信息包
  - 0: 不输出 0x54 数据包
  - 1: 输出 0x54 数据包
- 0x55 包: 端口状态
  - 0: 不输出 0x55 数据包
  - 1: 输出 0x55 数据包
- 0x56 包: 气压&高度包
  - 0: 不输出 0x56 数据包
  - 1: 输出 0x56 数据包
- 0x57 包: 经纬度包
  - 0: 不输出 0x57 数据包
  - 1: 输出 0x57 数据包
- 0x58包: 地速数据包
  - 0: 不输出 0x58 数据包
  - 1: 输出 0x58 数据包
- 0x59包:四元素输出包
  - 0: 不输出 0x59 数据包
  - 1: 输出 0x59 数据包
- 0x5A:卫星定位精度
  - 0: 不输出 0x5A 数据包
  - 1: 输出 0x5A 数据包

#### 13.1.7 设置回传速率

| 0xFF | 0xAA | 0x03 | RATE | 0x00 |
|------|------|------|------|------|
|------|------|------|------|------|

RATE: 回传速率

0x01: 0.1Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz (默认)

0x07: 20Hz 0x08: 50Hz



0x09: 100Hz 0x0a: 125Hz 0x0b: 200Hz 0x0c: 单次输出 0x0d: 不输出

设置完成以后需要点保存配置按钮,再给模块重新上电后生效

#### 13.1.8 设置串口波特率

| 0xFF | 0xAA | 0x04 | BAUD | 0x00 |
|------|------|------|------|------|
|      |      |      |      |      |

BAUD: 波特率设置

0x00: 2400

0x01: 4800

0x02:9600(默认)

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600

#### 13.1.9 设置 X 轴加速度零偏

| 0xFF 0x | xAA 0x05 | AXOFFSETL | AXOFFSETH |
|---------|----------|-----------|-----------|
|---------|----------|-----------|-----------|

AXOFFSETL: X 轴加速度零偏低字节 AXOFFSETH: X 轴加速度零偏高字节

AXOFFSET= (AXOFFSETH <<8) | AXOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

#### 13.1.10 设置 Y 轴加速度零偏

| 0xFF | 0xAA | 0x06 | AYOFFSETL | AYOFFSETH |
|------|------|------|-----------|-----------|

AYOFFSETL: Y 轴加速度零偏低字节 AYOFFSETH: Y 轴加速度零偏高字节

AYOFFSET= (AYOFFSETH <<8) | AYOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

## 13.1.11 设置 Z 轴加速度零偏

| 0xFF 0xAA 0x07 AZOFFSETL AZOFFS |
|---------------------------------|
|---------------------------------|

AZOFFSETL: Z 轴加速度零偏低字节 AZOFFSETH: Z 轴加速度零偏高字节

AZOFFSET= (AZOFFSETH <<8) | AZOFFSETL



说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

#### 13.1.12 设置 X 轴角速度零偏

0xFF 0xAA 0x08 GXOFFSETL GXOFFSETH

GXOFFSETL: X 轴角速度零偏低字节 GXOFFSETH: X 轴角速度零偏高字节

GXOFFSET= (GXOFFSETH <<8) | GXOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

#### 13.1.13 设置 Y 轴角速度零偏

0xFF 0xAA 0x09 GYOFFSETL GYOFFSETH

GYOFFSETL: Y轴角速度零偏低字节 GYOFFSETH: Y轴角速度零偏高字节

GYOFFSET= (GYOFFSETH <<8) | GYOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

#### 13.1.14 设置 Z 轴角速度零偏

0xFF 0xAA 0x0A GXOFFSETL GXOFFSETH

GZOFFSETL: Z 轴角速度零偏低字节 GZOFFSETH: Z 轴角速度零偏高字节

GZOFFSET= (GZOFFSETH <<8) | GZOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

#### 13.1.15 设置 X 轴磁场零偏

0xFF 0xAA 0x0b HXOFFSETL HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

#### 13.1.16 设置 Y 轴磁场零偏

0xFF 0xAA 0x0c HXOFFSETL HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。



#### 13.1.17 设置 Z 轴磁场零偏

0xFF 0xAA 0x0d HXOFFSETL HXOFFSETH

HXOFFSETL: Z 轴磁场零偏低字节 HXOFFSETH: Z 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,磁场的输出值为传感器测量值减去零偏值。

#### 13.1.18 设置模块报警

1. X 轴角度最小值设置

0xFF 0xAA 0x5A DATEL DATAH

比如 FF AA 5A E4 F8 设置的是 X 轴角度最小值位-10 度。

2. X 轴角度最大值设置

0xFF 0xAA 0x5B DATEL DATAH

比如 FF AA 5B 1C 07 设置的是 X 轴角度最大值位 10 度。

071C 转换成是进制为 1820,

1820\*180/32768=9.997。

3. Y轴角度最小值设置

| 0xFF   0xAA   0x5E   DATEL   DATAH | 0xFF | UAAA | 0x5E | DATEL | DATAH |
|------------------------------------|------|------|------|-------|-------|
|------------------------------------|------|------|------|-------|-------|

比如 FF AA 5E E4 F8 设置的是 Y 轴角度最小值位-10 度。

4. Y轴角度最大值设置

| 0xFF | 0xAA | 0x5F | DATEL | DATAH  |
|------|------|------|-------|--------|
| OXIT | UAAA | UXJI | DAILL | DAIAII |

比如 FF AA 5F 1C 07 设置的是 X 轴角度最大值位 10 度。

5. 确认时间设置

| 0xFF | 0xAA | 0x68 | DATEL | DATAH |
|------|------|------|-------|-------|

比如 FF AA 68 00 00 设置的确认时间是 0ms。

6. 保持时间设置

| 0xFF | 0xAA     | 0x59  | DATEL | DATAH |
|------|----------|-------|-------|-------|
|      | 01111111 | 01107 |       |       |

比如 FF AA 59 64 00 设置的保持时间是 100ms。

7. 报警电平设置

| 0xFF | 0xAA | 0x62 | DATEL | DATAH |
|------|------|------|-------|-------|

比如 FF AA 62 00 00 设置的报警电平是 0。



## 14 应用领域

农业机械



太阳能



医疗器械



地质监测

物联网



电力监控



工程机械









# 深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

WT901C 数字姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦