Creating annotated corpora

Giovanni Colavizza

Text Mining Amsterdam University College

April 6, 2021

Overview

NLP and Human Annotations

2 Evaluation

3 Platforms and shared tasks

NLP and Human Annotations

NLP and Human Annotations

- NLP (and ML in general) is driven by human-annotated corpora.
- http://nlpprogress.com.
- Annotation is **difficult** and **expensive**.

Annotation pipeline

Annotation pipeline

Specs and guidelines

- Goal: given our problem, how can we formalize our description of the annotation process for multiple annotators to provide the same judgment?
 - What is the goal of the project?
 - How will the annotation be created? (For example, which tags or documents to annotate first, how to use the annotation tools, etc.)
 - What is each tag called and how is it used? (provide examples and discuss problematic choices.)
 - What parts of the text do you want annotated?
- Note: annotation is usually boring and time-consuming, and cannot be done for 8 hours straight. Annotators also get better over time: early annotations might be discarded.

Adjudication

- Adjudication is the process of deciding on a single annotation for a piece of text, using information from all independent annotators.
- Yes, it is only possible when multiple annotators independently annotate (at least some) of the corpus. This is a very good procedure to follow, and the only one which will allow to evaluate results.
- It can be as time-consuming (or more so) as a primary annotation.
- It does not need to be identical with a primary annotation (all annotators can be wrong by chance), but unlikely so.

Evaluation

Interannotator agreement

annotator A

		puppy	fried chicken
וטומוט	puppy	6	3
<u>ਰ</u>	fried chicken	2	5

observed agreement = 11/16 = 68.75%

Cohen's kappa

- Similar idea to mutual information: observed minus expected agreement.
- Cohen's kappa is defined for two annotators over the same set of annotation tasks:

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

Where p_o is the observed correct agreement and p_e the expected correct agreement.

annotator A

r B		puppy	fried chicken
annotator	puppy	7	4
	fried chicken	8	81

Cohen's kappa example

• $p_o = 0.88$

•
$$p_e = P(A = puppy)P(B = puppy) + P(A = chicken)P(B = chicken)$$

•

$$\kappa = \frac{0.88 - 0.773}{1 - 0.773} = 0.471$$

annotator A

ت ص		puppy	fried chicken
annotator	puppy	7	4
anr	fried chicken	8	81

Cohen's kappa scores

Note: these are rules of thumb.

0.80-1.00	Very good agreement	
0.60-0.80	Good agreement	
0.40-0.60	Moderate agreement	
0.20-0.40	Fair agreement	
< 0.20	Poor agreement	

Exercise: try to calculate fringe cases. E.g., 50/50 puppet/chicken all in agreement, 0/100 puppet/chicken all in agreement, 50/50 wrong puppet/chicken all in agreement.

Fleiss' kappa

- Extension to multiple annotators (> 2).
- Defined as Cohen's kappa but comparing pairs of annotators:

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

annotator A

z M		puppy	fried chicken
annotator	puppy	7	4
anr	fried chicken	8	81

Fleiss' kappa

- Number of annotators who assign category j to item i: n_{ij} .
- For item i with n annotations, how many annotators agree among all n(n-1) possible pairs:

$$P_{i} = \frac{1}{n(n-1)} \sum_{j=1}^{K} n_{ij} (n_{ij} - 1)$$

 Note that N is the number of items, and K the available annotation categories. Average agreement among all items:

$$P_o = \frac{1}{N} \sum_{i=1}^{N} P_i$$

Fleiss' kappa, continued

Probability of category j:

$$p_j = \frac{1}{Nn} \sum_{i=1}^{N} n_{ij}$$

Expected agreement by chance:

$$P_e = \sum_{j=1}^K p_j^2$$

• Back to original formula:

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

Platforms and shared tasks

Annotation tools

- Brat http://brat.nlplab.org
- Inception https://inception-project.github.io
- Prodigy https://prodi.gy

Annotation platforms

- Supervisely https://supervise.ly
- Dataturks https://dataturks.com
- Amazon Mechanical Turk https://www.mturk.com
- Figure Eight https://www.figure-eight.com
- Alcrowd https://www.aicrowd.com