### Statistic Inference Project Assignment Part1

Pete Schnettler January 13, 2016

#### Overview

#### Comparing the simulated mean and variance with the theoretical values

We will run 1000 rounds of simulation of 40 exponentials with  $\lambda=0.2$  , using a fixed seed, and comparing the distribution of the simulated mean and variance with the theoretical value of  $1/\lambda$ :

```
## Warning: package 'knitr' was built under R version 3.2.3
```

```
kable(df)
```

|             | Mean     | Variance |
|-------------|----------|----------|
| Sample      | 4.984081 | 24.70639 |
| Theoretical | 5.000000 | 25.00000 |

# 1.Show the sample mean and compare it to the theoretical mean of the distribution

The Sample mean is 4.984081 while the Theoretical mean is 5.0 while are within a couple of decimal points, as expected by the Central Limit Theorem.

# 2.Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution

The sample variance 24.7 and theoretical variance 25 are also close

## 3. Show that the distribution is approximately normal

Also, according to the CLT, the distribution of the simulated means should be approximately normal. .

```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.2.2
```

```
#Calculate the row means
meanVals <- rowMeans(simMatrix)

zMean <- (meanVals - mean(meanVals)) / sd(meanVals)

qplot(zMean, geom = "blank") +
    stat_function(fun = dnorm, aes(colour = 'Normal')) +
    geom_histogram(aes(y = ..density..), alpha = 0.4, binwidth=.35) +
    geom_vline(xintercept=0, colour="red", linetype="longdash") +
    scale_colour_manual(name = 'Density', values = c('red', 'blue')) +
    ylab("Density") + xlab("z") +
    ggtitle("Distribution of means of 40 Exponential Distribution Lambda of 0.

2") +
    theme_bw() +
    theme(legend.position = c(0.85, 0.85))</pre>
```



The plot of the means above appears approximately normal