Wait, what'd ya say? - Noise Aware DNN Training

An Examination of Generalizability, Robustness, and Quantization

Ryleigh Byrne, Wyatt Focht

Introduction & Motivation

Current literature surrounding deep-neural-networks (DNNs) lacks exploration into the effect that post-training, model-weight perturbation has on the performance. We seek to analyze this effect by evaluating the impact that weight-perturbation has on model generalizability and quantization.

We also seek to employ various preventative methods to attempt to mitigate impact that weight-perturbation has on a model's performance. The preventative methods are

- · Naive noise-aware training
- · Sharpness-Aware Minimization (SAM)
- · SAM with multi-step weight perturbation training

Our Contributions

- · Model-resistance to varying strengths of weight perturbation attacks
- Evaluation of generalizability to new data on naive-noise, SAM, multi-step SAM models
- · Evaluation of quantization on naive-noise, SAM, multi-step SAM models
- Evaluation of training performance of naive-noise, SAM, multi-step SAM models

Methodology

Model Creation

- Each model trained and validated on CIFAR-10 Dataset (10 classes; 50,000 training images; 10,000 testing images
- Each model configured in Resnet-20 architecture
- · resnetStandard: model generated from standard training
- resnetNaiveNoiseAware: model generated from noise-aware training (Gaussian noise perturbations to model weights at every epoch)
- resnetSAM: model generated utilizing SAM during training
- resnetMultiStepSAM: model generated using multi-step SAM during training (increase SAM neighborhood size throughout training)

Weight Perturbation with Gaussian Noise

- · Iterate over layers of each model
- · Generate random Gaussian noise for layer
- Multiply generated noise by perturbation strength factor (= 0.1)
- · Add result to weights of current layer

Experimental Evaluations

Overall Generalizability

Model Type	Testing Accuracy
Standard	0.8974
Naive-Noise	0.5031
SAM	0.9026
Multi-Step SAM	0.9109

Vanilla Testing Accuracy on Unseen Testing Data

Resistance to Gaussian Weight Perturbation

Robustness to Quantization

PRATT SCHOOL of ENGINEERING

Further Discussion

Loss vs Epochs

Model Type	Training Time (sec)	Ratio to Standard Time
Standard	4923	1
Naive-Noise	5374	1.09
SAM	6241	1.27
Multi-Step SAM	5862	1.19

Training Times for Various Models

Conclusions

Trainin

- High similarity in training & validation loss for Naive Noise, but low accuracy overall
- SAM & Multi-Step SAM have high training time (require two forward passes per epoch)
 Generalizability
- Multi-Step SAM achieves highest level of generalizability, as expected¹

Weight Perturbation

- · Naive Noise has highest robustness to weight perturbation
- Tradeoff between accuracy and robustness to varying attack strengths

 Overhitation
- No models showed exceptional robustness to quantization
- · Naive Noise performed exceptionally worse, due to low accuracy overall

 Foret, Kleiner, Mobahi, & Neyshabur. (n.d.). SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY IMPROVING GENERALIZATION. T.ICLR 2021. https://arxiv.org/odf/2010.01412.pdf