AD-A068 860

NAVAL WEAPONS SUPPORT CENTER CRANE IN
FLEET RELIABILITY ASSESSMENT PROGRAM. VOLUME 6. AN/UYK-20 COMPU--ETC(U)

UNCLASSIFIED

NL

LOCAL
CORRESCO

1 IIME 6

859 VOLUME 6

FINAL REPORT

FLEET RELIABILITY
ASSESSMENT PROGRAM

PROPERTY EN

AN/UYK-20
COMPUTER, DIGITAL DATA, COMBAT SYSTEM

NAVAL OCEANS SYSTEM CENTER SAN DIEGO, CALIFORNIA

DDC FILE COPY

Each transmittal of this document outside of the Department must have approval of the

This document has been approved for public release and sale; is distribution is unlimited.

Published by direction of Commander, Naval Electronics Systems Command.

VOLUME 6 FINAL REPORT. ELEET BELIABILITY
ASSESSMENT PROGRAM. Volume 6. AN/UYK-20 COMPUTER, DIGITAL DATA, COMBAT SYSTEM, Volume **NAVAL OCEANS SYSTEM CENTER** SAN DIEGO, CALIFORNIA 59 p

Published by direction of Commander, Naval Electronics Systems Command.

1 <u>SEP EMBER 19</u>77

409 35 1

ret

Reproduction for non-military use of the information or illustration contained in this publication is not permitted. The policy for military use reproduction is established for the Army in AR 380-5, for the Navy and Marine Corps in OPNAVINST 5510.1B and for the Air Force in Air Force Regulation 205-1.

LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose of superseded pages in accordance with applicable regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line, or other change symbol, in the outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by shaded areas.

Total number of pages in this manual is consisting of the following.

PAGE NO.	# CHANGE NO.
Title	0
A	0
i to vi	0
6-1 to 6-50	0

FLEET RELIABILITY ASSESSMENT PROGRAM

DEPARTMENT OF THE NAVY

NAVAL ELECTRONIC SYSTEMS COMMAND

PREPARED UNDER THE DIRECTION OF

W. WALLACE RELIABILITY ENGINEERING BRANCH

REVIEWED BY

J. ROBBINS
SYSTEMS EFFECTIVENESS DIVISION

G. FRIESE, CAPTAIN, USN DEP CDR LOGISTICS DIRECTORATE

APPROVED BY

RECORD OF CHANGES

CHANGE NO.	DATE	TITLE OR BRIEF DESCRIPTION	ENTERED BY
	4		
	2 3		

TABLE OF CONTENTS

CONTENTS	PREPARED BY	PAGE
VOLUME 1 GENERAL PROGRAM REPORT	NAVWPNSUPPCEN CRANE	1-1
VOLUME 2 AN/SSR-1 EQUIPMENT REPORT	NAVWPNSUPPCEN CRANE	2-1
VOLUME 3 AN/WSC-3 EQUIPMENT REPORT	NAVELEXSYSENGCEN VALLEJO	3-1
VOLUME 4 AN/URC-85 EQUIPMENT REPORT	NESTED PATUXENT RIVER	4-1
VOLUME 5 AN/URC-62 EQUIPMENT REPORT	NAVWPNSUPPCEN CRANE	5-1
VOLUME 6 AN/UYK-20 EQUIPMENT REPORT	NOSC SAN DIEGO	6-1
VOLUME 7 APPENDICES	NAVWPNSUPPCEN CRANE	7-1
A FRAP TEAM B SAMPLING C DATA CODI D DATA ANAL E LOGISTICS F GLOSSARY	MATRIX ING LYSIS I MODEL	

TABLE OF CONTENTS

VOLUME 6 A	N/UYK-20 EQUIPMENT REPORT	
SECTION		PAGE
1	INTRODUCTION	6-1
11	RESULTS 2-1 DATA PROCESSING SET, AN/UYK-20 2-2 RESULTS SUMMARY	6-2 6-2 6-2
III	SYSTEM DESCRIPTION 3-1 GENERAL 3-2 MISSION DESCRIPTION 3-3 SYSTEM DESCRIPTION 3-4 RELIABILITY REQUIREMENTS 3-5 MAINTAINABILITY REQUIREMENTS 3-6 MAINTENANCE PHILOSOPHY	6-3 6-3 6-3 6-3 6-5 6-5 6-5
70	3-7 PLANNED DEPLOYMENT	6-5 6-6
IV	RELIABILITY MODEL 4-1 BACKGROUND 4-2 RELIABILITY MODEL	6-6 6-6
v	PROBLEMS 5-1 OPERATIONAL 5-2 HARDWARE PROBLEM LIST 5-3 TIMING	6-16 6-16 6-17 6-18
VI	CORRECTIVE ACTION 6-1 RETROFIT 6-2 TIMING/LOADING 6-3 COOLING 6-4 CABLE CLAMPS 6-5 MEMORY ARRAY BOARD 6-6 CONTROL AND DATA BOARDS 6-7 CLOCK CARD 6-8 PARTS	6-19 6-19 6-19 6-19 6-19 6-19 6-19
VII	COST BENEFITS 7-1 MAINTENANCE	6-20 6-20
AIII	SPECIFICATION REQUIREMENTS 8-1 RELIABILITY SPECIFICATIONS 8-2 MAINTAINABILITY SPECIFICATIONS 8-3 AVAILABILITY SPECIFICATION 8-4 TEMPERATURE SPECIFICATIONS	6-22 6-22 6-22 6-23 6-23
IX	FLEET DATA ANALYSIS 9-1 DATA COLLECTION 9-2 COMPUTER RUN 9-3 SUMMARY OF COMPUTER ANALYSIS	6-24 6-24 6-24 6-24

TABLE OF CONTENTS (Cont.)

SECTION		PAGE
X	DEPOT DATA ANALYSIS	6-45
	10-1 BACKGROUND	6-45
	10-2 RETURNED PARTS IDENTIFICATION	6-45
	10-3 VERIFICATION RATIO	6-45
	10-4 STRUCTURED ANALYSIS	6-46

TABLES

		PAGE
6-2.1	Results for AN/UYK-20	6-2
6-4.1	Reliability Model Elements	6-9 - 6-15
6-9.1	Summary of Computer Analysis	6-44
6-10.1	Failed Parts List	6-48
6-10.2	P.C.B. Analysis NOSC DPS	6-49
6-10.3	P.C.B. Analysis Fleet DPS	6-50

SECTION I INTRODUCTION

1-1 COMBAT SYSTEM PROCESSOR.

The AN/UYK-20(V) Combat System Processor, hereafter referred to as the Data Processing Set (DPS), is a 16 bit general purpose militarized digital computer which has been procured as a standard minicomputer for Naval Combat Systems applications.

SECTION II RESULTS

2-1 DATA PROCESSING SET, AN/UYK-20.

A total of 17 sample equipments on 18 sample platforms were monitored for approximately a nine month period (June 1976 through March 1977) utilizing the 3M system with a limited amount of additional data for the sample equipment. The total operating time of the sample equipment was 34,427 hours in a total calendar time of 91,824 hours (a duty cycle of .375). During this period, a total of 20 system operational failures were encountered on the sample equipment. Of those failures, it is estimated that 18 were equipment failures.

2-1 RESULTS SUMMARY

TABLE 6-2.1

Parameter	Specified	Predict @500C	ed @30°C	Operati Ship	onal Lab	Equipment Ship
MTBF	2000	304	2066	1721	1586	2008
90% Confidence Le Upper Limit Lower Limit	evel			2370 1270		3012 1406
Verification Rati	0			.857		
MTTR (OP)	0.25			49.3	0.68	
90% Confidence Le Upper Limit Lower Limit	evel			99.2 0.00		
Down Time				248.5		
Availability Inherent Operational (.999875 Sample Obserat	.999178 ion)	.999879	0.972316 0.971339		.976178

2-1.1 COMPLIANCE.

The system meets the MTBF requirement of 2000 hours with the 90% confidence level upper limit value of 2370 hours (Table 6-9.1).

2-1.2 RELIABILITY PREDICTIONS. Two reliability predictions were calculated: one for 50°C and one for 30°C ambient intake air temperature. The adjustment results in part from the Arrhenius relationship which projects a doubling of chemical reaction rates for a 10°C rise in temperature. This results in a commensurate change in failure rates for semiconductor and other types of devices dominated by failure mechanisms that are chemical in nature. Exercising the "rule of thumb" alone would result in MTBF prediction of 1216 hours i.e., 20°C reduction results in four times improvement (304 X 4).

SECTION III SYSTEM DESCRIPTION

- 3.1 GENERAL. The AN/UYK-20(V) are being procured from Sperry Univac Defense Systems under Contract N00039-73-D-0432. The data sets are design to meet a variety of processing requirements for Naval Shipboard, land-based, and submarine combat systems.
- 3.2 MISSION DESCRIPTION. The AN/UYK-20(V) DPS are general purpose minicomputers in a ruggedized format suitable for use in control, data processing, and combat systems applications aboard all classes of ships and submarines and at land-based installations. Among the projected tasks for the data sets is the tuning, operation, and control of telecommunications equipment. The data sets will be used with input/output devices such as teletype machines and will be interfaced to other equipments as required.
- 3.3 SYSTEM DESCRIPTION. The AN/UYK-20(V) DPS consists of a single enclosure. The cabinet is designated CY-7445/UYK-20(V) for the 400 Hz version or CY-7446/UYK-20X(V) for the 60 Hz version.
- 3.3.1 DPS SECTIONS. The data set breaks down into five sections which are:

Equipment Cabinet

CY-7445/UYK-20(V) (400 Hz version) CY-7446/UYK-20(V) (60 Hz version)

Control Monitor

C-9674/UYK-20(V) (400 Hz version) C-9675/UYK-20X(V) (60 Hz version)

Memory Chassis C-9531/(V)/UYK-20(V) or C-9670(V)/UYK-20X(V)

(2ea) Memory Control Board - (included above)
(2ea) Memory Data Board - (included above)
(1-8ea) Core Memory Unit - MU-604/UYK-20(V) or MU-632/UYK-20(V)

Processor - Verifier Unit

CP-1188(V)/UYK-20(V) (400 Hz version) CP-1189(V)/UYK-20X(V) (60 Hz version)

Program Kit, Micro Memory MK-1723(V)/UYK-20(V)
Register, Computer, Single MU-633/UYK-20(V)
Register, Computer, Dual MU-634/UYK-20(V)

- 3.3.2 INTERFACE KITS. There are 16 slots allotted to input/output interfaces. The interface kits contain either two (serial type) or four cards (parallel type). The DPS I/O slots are subdivided into four sets of four slots each. A set may contain either one or two serial kits or one parallel kit.
 - (1) Interface Kit, Slow, MK 1693/UYK-20(V). (Parallel, -15V)
 (2) Interface Kit, Fast, Negative, MK 1694/UYK-20(V). (Parallel, -3V)

- (3) Interface Kit, Fast, Positive, MK 1695/UYK-20(V). (Parallel, +3.5V).
- (4) Interface Kit, Serial Communications, Synchronous MK 1718/UYK-20(V).(5) Interface Kit, Serial Synchronous MK 1719/UYK-20(V). (MIL-STD 188C, Sync).
- (6) Interface Kit, Fast Serial, MK 1720/UYK-20(V). (NTDS Serial).
- (7) Interface Kit, Serial Asynchronous MK 1721/UYK-20(V). (MIL-STD-188C, Async)/(RS-232C, Async)
 - (8) Interface Kit, Serial Communications Asynchronous MK 1722/UYK-20(V).
- (9) Interface Kit, Parallel Peripheral Input Channel (Nomenclature not available).
 - (10) Interface Kit, VACALES Serial MK1806/UYK-20(V).

Power Supply Chassis (one only, depending on power source available)

115 Vac, 3 phase delta, 400 Hz: PP-7032/UYK-20(V)

208 Vac, 3 phase wye, 400 Hz: PP-7107/UYK-20(V)

115 Vac, single phase, 400 Hz: PP-7108/UYK-20(V)

115 Vac, 3 phase delta, 60 Hz: PP-7109/UYK-20X(V) 208 Vac, 3 phase wye, 60 Hz: PP-7110/UYK-20X(V)

115 Vac, single phase, 60 Hz: PP-7111/UYK-20X(V)

3.3.3 DATA PROCESSING SET. The AN/UYK-20(V) DPS is a modular, medium-scale, general purpose digital data processing device using a micro-programmed control structure. The microprogram consists of microinstructions and control data stored in read-only memory (ROM). The DPS operates from a stored program of macroinstructions read from main memory to perform arithmetic operations, solve real-time problems, control other equipment, and perform a variety of other data processing operations. It performs two's complement integer arithmetic using signed numbers. Its logic construction is parallel. The basic word length is 16 bits which may be handled as 8-bit bytes (such as ASCII character codes), as 16-bit words, or as double-length 32-bit words. It has memory addressing capability of up to 65K 16-bit words which may be treated as groups of pages for relative (virtual) addressing. The memory cycle time is 750 nanoseconds. The DPS communicates with peripheral equipment through an I/O controller containing up to 16 channels, which may be parallel or serial channels or a mixture of both. It has an interrupt structure, dependent on priority assignments, which permits interruption of the normal of the normal program sequence to perform special functions. It allocates a portion of micro-memory for a user-defined microprogram. It has a realtime clock and a monitor clock which operate either from an internal oscillator or from an external clock input. A Math Pac option adds a square root, floating point, trigonometric, hyperbolic, and double-precision multiply and divide capability.

It can operate from either 400 Hz or 60 Hz (-20X(V) version) on a variety of standard voltages in either single or three phase configurations. The AN/UYK-20(V) is intended to be a system building block and as such will interface to input/output devices such as teletype machines, to mass memory devices such as magnetic disc or tape units, and to digital controlled devices such as printers, plotters, or radio sets. User interaction with the DPS will be, primarily, through one or more of these external devices.

- 3.4 RELIABILITY REQUIREMENTS. The AN/UYK-20(V) Data Processing Set is to have, according to specification ELEX-C-135, a specified MTBF of 2,000 hours.
- 3.5 MAINTAINABILITY REQUIREMENTS. The AN/UYK-20(V) is a modular assembly. Primary organizational level maintenance will be by replacement of printed circuit cards. Mean Time to repair is specified as 15 minutes with maximum maintenance time at the 95% confidence level specified to be 120 minutes. Mission utilization is expected to be upwards of 90%.
- 3.6 MAINTENANCE PHILOSOPHY. The AN/UYK-20(V) is repaired on the organizational level with the aid of a built-in diagnostic program which will sectionalize a problem to, typically, a three card area. Immediate repair action is effected by replacement of all three cards. At some later time when the DPS is not being utilized, the pulled cards are re-inserted into the DPS to isolate which is the defective card. If the identified card is one of those judged to be economical to repair, it will be returned to the vendor for depot level maintenance. No intermediate level maintenance is planned at this time. If the identified card is not judged economical to repair, it will be discarded. No repair of cards is planned at the organizational level.
- 3.7 PLANNED DEPLOYMENT. DMI (Defense Marketing Intelligence) reports over 800 inservice by mid 1976 and a follow-on-production on a modification of the original contract as of March 1977 of several hundred per year for two years. The system is to be used in MK 68 gun fire control systems, ESM systems such as the AN/WRL-6, and in the Marine Air Traffic Control and Landing System (MATCALS). The unit uses the CMS-2 (Compiler Monitor System 2nd generation) language which is the Navy's standard high level tactical language.

SECTION IV - RELIABILITY MODEL

4-1 BACKGROUND

4-1.1 SYSTEM DESCRIPTION - The AN/UYK-20(V) Data Processing Set (DPS) is a ruggedized general purpose medium sized minicomputer suitable for a variety of data processing tasks. The AN/UYK-20(V) occurs in two primary variants, the 400Hz powered AN/UYK-20(V) and the 60Hz powered AN/UYK-20X(V). The Power Supply, memories, general register and the interface groups allow options at the modular level. The AN/UYK-20 is of modular construction and each O-Level replaceable module is divided into Line Replaceable Units (LRU). The AN/UYK-20 provides for memory options of up to 64K memory which is contained on eight Memory Array Boards (MAB), physically located inside the Memory Control module. Each MAB contains 8K words. The AN/UYK-20 contains interfacing options for parallel input, output I/O channels, or serial channels (total of sixteen channels maximum). I/O subgroups are received with the equipment as a kit and are serviced on a replaceable card basis. One of the cards has options selected by moveable straps. Because the setting of straps does not affect the likelihood of failure, these options are shown as a single block.

4-2 THE RELIABILITY MODEL

- 4-2.1 BLOCK DIAGRAM MODEL Figure 6-4.1 is a series reliability block diagram of the AN/UYK-20(V). Because of the versatility of the equipment, a generalized mission has been developed. Since operating modes are unspecified, any channel failure must be considered a system failure. Detailed block diagrams for the blocks depicted in 6-4.1 are available from the FRAP Lead Field Activity (LFA). These become quite complex because of the nature of construction of a digital computer. Table 6-4.1 provides a list of the following module information:
 - Reliability Block Number

(2) Nomenclature (3) Reference Designation

(4) Manufacturers Stock Number

(5) Failure Rate (per million hours)

(6) Number Used

4-2.2 THE FORM OF THE MODEL - As discussed above, the AN/UYK-20 is a series model with respect to the major blocks (Figure 6-4.1). The model is based on MIL-HDBK-217B prediction and failure rates were furnished by the contractor. Series reliability is calculated by equation 1 and 2 below:

$$R(TOT) = EXP(-LT) \tag{1}$$

where
$$L = L(1) + L(2) + \dots + L(n)$$
 (2)

the failure rates L(N) can be added because an exponential distribution is assumed.

The Control-Monitor Group is made up of indicator lights and switches, but its function in system maintenance is so vital that it has been included in the overall reliability series string. Although failure of an indicator will not result in an immediate system outage; it will delay system repair because the indicator must be repaired before system trouble shooting can continue. From a reliability standpoint, the requirement to repair the indicator before the next failed item can be repaired/ replaced is equivalent to a normal fail/fix cycle. The Power Supply (see Figure 6-4.1) is a single modular line replaceable unit. Although six different options exist, three of these (Parts List Designators 5-7, see Table 6-4.1) are useable only on the AN/UYK-20 (V) and three (Parts List Designators 8-10) are useable only on the AN/UYK-20X(V). This defines three different power supply options for each of the two system frequency options. The Processor-Verifier (see Figure 6-4.1) is the heart of the DPS hardware. It contains the data shuffling, computational, instruction decoding, and general overall cycle-control circuitry. The entire remainder of the system can be viewed as supporting this section. It is here that user instructions are converted into strings of system instructions that accomplish some task, such as addition. From here instructions go to memory to call up program steps and to recall and store data bits. When the user interacts with the computer, it is this section that "converses" with him. The memory control module also depicted in Figure 6-4, buffers data to and from the Memory Array Boards and fetches and stores data on command from the Processor-Unifier.

Figure 6-4.1

FAILURE 6 NUMBER RATE X10-6 USED	.3376	. 0008	. 0105	. 2400	10.0														
MFG P/N	7101950-00	7126335-00	7128008-00	7133925-00	7133943-00	M3901915-80	7904735-20/23	7904289-12/14	MS24656	MS24655	7904733	790429-00	7101817-00	7134945-00	Ms27418-1A	MS17322-10	7904277	7904278	MS24655
. NOMENCLATURE	Filter Assy	Elec. Comp. Assy.	Resister Assy	Power Cable Assy	Fan Assy	Panel Assy	•							Choke Assy		5			•
REF	144	146	143	1MS	181	34	•	•		•		•	•	3A2FL1	٠	•	•	•	•
REL BLOCK	100	200	6003	900	900	900	200	800	600	010	110	012	013	910	910	910	710	810	610

REL BLOCK 020	REF DESIGN	NOMENCLATURE	MFG P/N 900125-16	FAILURE RATE X10 ⁻⁶	NUMBER
			7904466		
			4911632		
			910486-20		
			7101913		
			DPDT Switch		
		P.S. 115V, 400Hz, 3P	7101840-00	011	_
		P.S. 208V, 400Hz, 3P	7101995-00	011	_
		P.S. 115V, 400Hz, 1P	7101875-00	011	_
		P.S. 115V, 60Hz, 3P	7101880-00	110	_
		P.S. 208V, 60Hz, 3P	7101990-00	011	_
		P.S. 115V, 60Hz, 1P	7101885-00	110	_
		M. Reg	7092200-01	12.5	_
		2-BIT Mult	7126125-01	17.2	2
		Shift Matrix	7125500-01	14.2	2
		SFT Matrix Input	7126130-01	11.3	_
		SFT Matrix CTL	7126137	11.3	_
		MON CLK CTL	7126160-01	n.7	-
		Mem Bank Sel	7126206-01	7.54	_

TABLE 6-4.1 (cont.)

REL	REF DESIGN	NOMENCLATURE	MFG P/N	FAILURE RATE X10-6	NUMBER USED
039	11A19	I/O Data Drv	7126150-01	17.71	-
040	11A20	I/O Index Logic	7125306-01	29.4	4
150	1186	NDRO	7126147-01	37.3	-
042	1187	Micro CTL	7125275-01		
043	1188	Branch CTL	7092195-01	12.6	-
944	1189	ALU CTL 11	7125416-01 7125415-01	6.35	-
045	11810	ALU CTL	70902181		
046	11811	ALU	7092175-01	15.3	4
740	11815	S/D Xfer	7125290-01	10.5	-
048	11816	Clock	7125960-01	10.2	-
049	11817	Micro-CTL 15	7126191-01		
020	11818	I/O PRI-CTL	7126181-01	11.7	-
150	11819	Int Store	7126186-01	13.5	-
052	11820	I/O Priority	7126175-01	9.36	_
053	11821	Translator	7126171-01	17.9	-
054	11823	20MHz 0sc	7126100-01	22.4	-
990	1105	Special MEM Int'f.	7126155-01	10.7	2
990	1109	Page REG	7125405-01	48.4	-
057	11C10	MEM CTL	7125666-01	13.4	-
058	11C13	Instr Reg	7215240-01	12.3	-

Table 6-4.1 (cont.)

REL BLOCK	REF . DESIGN	NOMENCLATURE	MFG P/N	FAILURE 6 RATE X10-6	NUMBER USED
650	11015	Pt Stat Reg	7125380-01	18.4	2
090	11017	Emulate CTL I	7125236-01	12.2	-
190	11018	Emulate CTL II	7125386-01		
790	11019	Jump + IA	7126166-01	13.5	-
063	11022	Power Int	7125925-01		
990		Repeat CTL	Wiring/Straps		
990	1181	Axial Fan Assy			
990		P-BKP7-M Addr Reg			
190		PWR Int, MACLR, Mode	,		
890		XLTR CTL & TMG	MS3120E14-5P		
690		Register (Single)	•		
070		Not assigned			
170	•	Not assigned			
072	111/18	DMA Cable Assy	9		
073	1481	Axial Fan	•		
074	1401	Fixed Cap	7903001-33		
075		Not assigned	904862-15 7134919-00		

REL BLOCK	REF DESIGN	NOMENCLATURE	MFG P/N	FAILURE RATE X10 ⁻⁶	NUMBER
920		Not assigned	1N2816B		
710	14A1R1	Fixed Resister	RERGOF1GR5M		
870		Not assigned	•		
620	14A5	CTL Data BRD	•		
080	1446	Mem Data BRD	•		
180	13	Mem Array BRD	7128082-00	15.4	8
082	24A11	Multiply CTL/Math Pac			
083	2485	M Mem I	7125128-01	9.66	-
084	24XX	NRDO & Cordic	7136611-00	37.3	-
980	2482	Diag ROM	7125136-01	85.1	_
980	24C12	Emulation CTL	7125157-01	40.1	-
180	24A11	M Mem II			
880	1681	Fast Serial Drv			
680	16A2	Fast Serial Rovr			
060	1741	Serial Sync			
160	17A2	Serial Sync			
092		Not assigned			

REL REF BLOCK DESIGN	1881	094 18A3	- 560	096 19A3	097 19A2	- 860	099 20A1	100 20A3	- 101	102 21A1	103 21A2	104 21A3	105 22A1	106 22A3	107 22A4	108 23A1	109 23A3	110 23A4	III	6-1	
NOMENCLATURE	Serial Asynch Rcvr	Serial Async Drvr	Not assigned	Serial Comm Dvr	Serial Comm Rcvr	Not assigned	Async Comm Drvr	Async Comm Rcvr	Not assigned	-15V Slow Type I	-15V Slow Type II	-15V Slow Type III	-3V Fast Type I	-3V Fast Type II	-3V Fast Type III	+3V Fast Type I	+3V Fast Type II	+3V Fast Type III			
MFG P/N	713327-01	7133231-01		7150352-01	7119430-01					7119395-01	7119405-01	7119401-01	7119380-01	7119385-01	7119390-01					Table 6-4.1 (cont.)	
FAILURE RATE X10-6	64.0	62.9		52.6	34.8					31.7	38.1	47.8	21.6	32.9	30.6						
NUMBER	-	-		-	-					2	-	-	2	_	-						

Table 6-4.1 (cont.)

	REL REF BLOCK DESIGN	114 24A4	
MFG P/N		•	puld renmil.
	MFG P/N		
	NUMBER USED		

SECTION V PROBLEMS

Preceding the FRAP Program by several months an excellent problem solving program was initiated. In December 1975 a Test Analyze, and FIX (TAAF) Program was established to assess and if necessary, improve the DPS. The objective of the TAAF Program was to investigate all failures to determine if reliability problem existed, and if necessary generate appropriate corrective action recommendations. The test was conducted using four DPS's. Each processor was configured differently to assure that the majority of all DPS ordering options were included in the test. The test was conducted in a high-temperature (50°C, 50 percent relative humidity) environment with all maintenance actions strictly controlled. Test software was loaded into each computer and allowed to run continuously throughout the entire test period of at least 3000 hours per DPS. All deviations from normal operation were recorded and investigated until the problem was isolated. The test was initiated on 17 December 1975, and with the exception of a 10 day shutdown period over the holidays, the test ran continuously until 1 June 1976, for a total of 14,305 cumulative test hours. During this test period eight critical/solid failures occurred, and numerous noncritical failures occurred. It should be noted that no design modifications were made during the test period, with the exception of a redesigned master clock module which was installed after 9,200 hours of testing. The reliability improved steadily after the first 4000 hours of testing from 600 hours to 1788 hours MTBF.

The improvements as the result of TAAF are obvious when compared to the results reported in a "Thermal Analysis Test Report - AN/UYK-20" conducted in September 1975 by NOSC (formerly NELC) which states in paragraph 2.1 "The AN/UYK-20 computer, with its door closed, and not mounted in a cabinet, operated satisfact-orly (though not in a reliability sense) in both the 25°C, 50 percent relative humidity and the 50° C, 30 percent relative humidity ambient environments:. This report further states under conclusions in Item 4, "Use of 74 family of devices is marginal and borders on being unacceptable at a 50° C external ambient,..." and in Item 6, "If 54 family TTL devices were used exclusively in the UYK-20, the probability of thermal problemswould be greatly reduced".

5-1 OPERATIONAL

5-1.I HEAT. Early shipboard installation of the DPS resulted in overheating indications and intermittent malfunctions. In most every installation the DPS was placed in a rack which impeded the air flow. This raised the internal temperatures in the box and caused thermal problems with the semiconductor devices. One CV reported on a Ship's Maintenance Action Form (2-KILO) "Program faults due to inadequate ventilation xxx extended present ventilation to directly above equipment". They recognized the problem and did something to improve the cooling. An LPH also commented about the heat problem"...most probable cause is physical placement of unit. Heat is exhausted from unit and this hot exhaust is immediately directed back to the AN/UYK-20 by the TT-624 being mounted only 6 inches away". As can be seen overheating in most cases was caused by incorrect installation in racks which blocked DPS exhaust ports. The proper installation of the DPS has reduced the overheat problem.

If this could have been anticipated the specification could have been written more realistically. Specifications for future systems using semiconductor devices should certainly consider factors that influence internal cabinet temperatures.

- 5-1.2 POWER. Some sensitivity of DPS to transients on ship power grids has been reported causing intermittent program failures. These reports were for DPS's with 60 cycle, 110 VAC power supplies. The carrier found that by paralleling two generators on one power grid, that intermittent program stops were eliminated. The Electronics Maintenance Officer on the carrier was of the opinion that if these were 3 phase, 400 cycle power supplies in the DPS they would not be as sensitive to power grid transients since the 400 cycle power is more free of tranients. A NESEC field crew has since monitored the power grids and found voltage and transients within the requirements of MIL-E-16400 and MIL-STD-1399. Also, according to the Project Office, the primary cause of program failures due to power transients has been improper programming of the DPS Power Fault Interrupt by the users.
- 5-1.3 PARTS. Long repair time appears to be a problem on some ships. In some cases, long repair times seem to be a function of how difficult it is to obtain parts from ship's supply. Sometimes even the obtaining of the necessary authorization signatures can take several hours to a full days time. Then it can take several hours for the supply personnel to identify and locate the part. The prospect of these possible difficulties are sufficient to cause a 24 hour delay in the actual initiation of the procedure to obtain replacement parts. One LPH reported on a form 2 KILO "... Poor Cosal support ...", early in the FRAP reporting period.
- 5-1.4 TROUBLESHOOTING. The usual time to checkout a DPS using diagnostic software is under five minutes. Actual time required to run all diagnostics now being used with the system is in excess of one hour, including preparation time. As a rule, however, all diagnostics are not run unless unusual problems develop. According to users, typical time to troubleshoot and repair is only one-half hour.

DIAGNOSTIC TEST TIMES REPORTED

MICRO	1 minute
CP Central Processor	1 minute
CP Logic	20 seconds
1/0	
Parallel	2 minutes*
NTDS Serial	2 minutes*
Common	1 minute**

- * Total 40 minute preparation, loading of test, removal of I/O cables, and installation of jumpers in typical applications.
- ** Total of 30 minutes including preparation and loading of diagnostics is typical, according to users.
- 5-1.5 TRAINING. Maintenance training and transfer schedules of personnel need to be reviewed so as not to remove trained DPS men from ships without replacement. One ship reported on a form 2 KILO "... technical training appears to be inadequate most individuals appear confused in relation to overall system operation and how the AN/UYK-20 fits in the total system ..."

- 5-2 <u>HARDWARE PROBLEM LIST</u>. Section IX lists several items under Problem Area, Table
- 5-2.1 MEMORY ARRAY BOARDS. One area identified was cracked cores on the Memory Array Board (MAB) and often on spare boards. Most of the breakage seemed to be occurring in shipping.
- 5-2.2 CABLES. Initially, cables were not sufficiently secured and several cases of cable damage and one cable fire was reported during the FRAP monitoring period.
- 5-2.3 RESISTORS, PCB. Resistors popped loose from PCB and one case of a cracked resistor was reported from improper installation of resistors. This was observed on a MAB and on one Micro Memory I PCB.
- 5-2.4 LOGIC, PCB. Failure of logic resulted from a short between board buss caused by incorrect installation of IC on the PCB.
- 5-2.5 PCB LIST. Figure 6-10.1 is a composite list of modules returned to the contractor and to the Technical Support Activity (TSA). No defect was found for four of the items. Failed components are listed, the majority of which were integrated circuits. Some items such as the cracked core and broken resistor duplicate items on the Problem List in Section IX.

5-3 TIMING

Symptoms of master clock problems were reported early in the AN/UYK-20 program but the cause was not detected and resolved until the TAAF program as noted above.

SECTION VI CORRECTIVE ACTION

Some one hundred Class I Engineering Change Proposals (ECP) had been generated for the AN/UYK-20 as of March 1977, approximately forty of these during the FRAP monitoring period.

- 6-1 <u>RETROFIT</u>. The contractor completed Retrofit 1 and 2 on the DPSs at NOSC by December 1976 and aboard ships on an as-available basis. The retrofit included many of the ECP proposed over the last year.
- 6-2 TIMING/LOADING. Some of these ECPs include improvement in I/O control pulse width variance by one magnitude (from 15% to 1.5%) (optional), I/O Interrupt priority acknowledgements, clock performance pulse, timing accuracy and load distribution of circuit gates. A worst case analysis of gate load distribution was done by UNIVAC in the spring of 1976. This pointed up the fact that many gates were overloaded under worst case conditions. The UNIVAC representative, however, in presenting this study insisted that worst case conditions seldom occurred. However, changes to decrease gate loading were implemented in Retrofit I and II and further changes are being considered.
- 6-3 <u>COOLING</u>. Early in the FRAP monitoring period, (July 1976) a very comprehensive report was received from the USS GUAM and the USS CONSTELLATION discussing DPS overheating problems (5-1.1). As a result, poor ventilation of some DPS installations was quickly noted and corrected and subsequent installations were revised. A better internal ventilating fan was also installed in the DPSs by the contractor early in the AN/UYK-20 program.
- 6-4 <u>CABLE CLAMPS</u>. Cable clamps have been installed to correct cable abrasion problems which caused cable shorts and computer replacement such as is listed in Section IX under Problem Areas.
- 6-5 MEMORY ARRAY BOARD. In Section V cracked cores on Memory Array printed circuit boards was listed as a problem. A new shipping case was designed for the card. This eliminated breakage during shipping which seemed to be the major problem. Also, stiffeners have been added to the boards to make the board more rugged and to improve connector alignment.
- 6-6 CONTROL AND DATA BOARDS. Control and data boards also have stiffeners installed.
- 6-7 <u>CLOCK CARD</u>. A new clock card was checked out by the TAAF Program and released to the field. Further improvements are noted in paragraph 6-2, Timing/Loading.
- 6-8 PARTS. A longer burn-in of 1000 hours is being specified for the new DPS. This will cull out parts that fail during the early life of the equipment.

SECTION VII COST BENEFIT

Early detection of operational hardware problems has affected early correction at the cost of the contractor. Many of the ECPs discussed in Section VI have been implemented at no cost to the government.

- 7-1 MAINTENANCE. Early correction has resulted in lower maintenance costs immediately and for the total life cycle of the system.
- 7-1. MTBF. One of the dramatic indicators of improvement in the rise of the MTBF during the period monitored by FRAP, from 313 hours as of December 1976 to 1721 hours at the end of the monitoring period. It should be noted that the December MTBF was arrived at without the benefit of the operating time of nonreporting DPS in the sample.
- 7-1.2 MODULES. A decrease was noted in the monthly average quantity of suspected failed modules which were returned during the last two months as compared to the quantity returned during the first six months. As a result, module costs averaged twenty percent less for the last two months of the monitoring period.
- 7-1.3 TRAINING. Training or actual retraining could be a needed program. As the DPS approaches the 2000 hours MTBF, it requires less and less attention. As a result the technician loses his knowledge of the equipment through non-use. An active preventive maintenance program will help to keep the technician knowledgeable and preventive maintenance needs to be emphasized as some technicians have the philosophy "If it works leave it alone".
- 7-1.4 WATER COOLING. In the consideration of the Arrhenius rule-of-thumb noted in Section II, water cooling may offer an effective way to control the temperature of air within the DPS and to improve the reliability. By lowering the temperature 10°C the MTBF could be theoretically doubled. UNIVAC originally provided the design of a water cooled heat exchanger and a cost/benefit analysis could show an advantage to water cooling the DPS. On the other hand, some authorities insist water cooling is not effective since "chilled" water temperature can exceed 40°C.
- 7-1.5 INTEGRATED CIRCUIT TYPE. Originally TTL Type 74 Integrated Circuits (IC), operating temperature range 0°C to 70°C, were used exclusively in the DPS. A more general use of Type 54 IC (some are used in selected circuits) operating temperature range -65°C to 125°C would reduce the failure rate and improve the availability as suggested by Figure 6-7.1.
- 7-1.6 PASSIVE COMPONENTS. Changing resistors and capacitors one level from M to P level would also increase the availability of the DPS. Cost studies could show this as a desirable change.

SECTION VIII SPECIFICATION REQUIREMENTS

Specification requirements are stated in the Contract Specification EXEC-C-135 dated 27 November 1972.

8-1 RELIABILITY SPECIFICATIONS

- 8-1.1 RELIABILITY. The specification states in paragraph 3.3 "---the maximum configuration computer shall be 2000 hours specified MTBF minimum..."
 Two reliability predictions were calculated by the contractor. One at 50°C resulting in 304 hours MTBF and one at 30°C resulting in 2066 hours MTBF. Operating temperature range requirements are discussed in this Section, paragraph 8-4.
- 8-1.2 RELIABILITY DEMONSTRATION TEST. In paragraph 4.5.1.1.1 the specification states "The reliability requirements of 3.3 shall be demonstrated on the maximum configuration computer as specified in 3.1.2 for the production computers in accordance with the following test level C of MIL-STD-781 modified as follows:

Test time -4600 operate hours
Failures allowed -3
Producer's risk -L = 0.2
Consumer's risk -S = 0.3
Discrimination ratio -2.07
Temperature cycling - per para 4.4.1e
On off cycling - per para 4.4.1e

Operating tests of 4.6.1 shall be conducted continuously throughout reliability testing. With all these exceptions this ceases to be a standard MIL-STD-781 test. The follow-on contract specifies T.P. 29 and a vibration test.

- 8-1.3 BURN-IN-TEST. In paragraph 4.6.7 the specification states"...with equipment at full power and with its cooling system in normal operation, for 48 hours continuously under the conditions of temperature cycling between 0° and 50° C. The cycle shall be as follows:
 - a. 4 hours and 0°C
 - b. 2 hours transition from 0°C to 50°C
 - c. 4 hours at 50°C
 - d. 2 hours transition from 50°C to 0°C

Cycle is to be repeated four times. This Burn-In-Test was too short to catch all infant mortality failures. The 1000 hour Burn-In-Test for the follow-on contract will accomplish what this short test failed to do and provide a better product.

8-2 MAINTAINABILITY SPECIFICATIONS

8-2.1 MAINTAINABILITY. The specification states in paragraph 3.4.1.1 "The maximum configuration of the computer shall have a specified mean corrective maintenance time (M ct) of 15 minutes and a specified maximum corrective maintenance time (Mmax) of 120 minutes at a 95 percent confidence level when repair is accomplished by replacement of line replacable item (LRI) and chassis mounted components

- (this includes electronic, electro-mechanical, and mechanical parts). The system mean corrective maintenance time includes localization, isolation, disassembly, interchange, reassembly, alignment, and checkout of all maintenance tasks".
- 8-2.2 LRI-CORRECTIVE MAINTENANCE. Paragraph 3.4.1.2 of the specification states "...Mct for the piece part repair of the repairable LRI shall be 6 minutes.
- 8-2.3 QUALITATIVE MAINTAINABILITY REQUIREMENT. The specification states in paragraph 3.4.1.4 "Access panels and doors which must be opened for maintenance or inspeciton more often than monthly shall have a minimum time to open at 30 seconds". It appears that this should read no more than 30 seconds or a maximum of 30 seconds.
- 8-2.4 DIAGNOSTIC CAPABILITY. The specification states in paragraph 3.4.5.2 "The diagnostic program shall isolate 95 percent of all detectable, active logic element failures to not more than three printed circuit card modules".

8-3 AVAILABILITY SPECIFICATION

- 8-3.1 AVAILABILITY. The specification states in paragraph 3.3.3.1, a, (1) "Equipment availability for performance within this specification not less than MTBF/MTBF+Mean-Time-To-Repair (MTTR); specified in 3.3 and 3.4.
- 8-3.2 MISSION TIME FACTOR. The specification states in paragraph 3.3.3.1,(4) "Mission time factors and equipment utilization: at least 90 percent utilization during a six months cruise". The system to date cannot meet this requirement unless every LRU is supported with approximately two spares each. However, no risk factor to duty cycle requirement is specified.

8-4 TEMPERATURE SPECIFICATIONS

- 8-4.1 REQUIREMENTS. Paragraph 3.1.3 of the contract specification requires that the computer shall conform to the operating temperature conditions of Class 4 of MIL-E-16400 and the nonoperating temperature conditions of MIL-E-16400, and shall be air cooled using ambient air within the operating temperature specified.
- 8-4.2 SPECIFICATIONS. MIL-E-16400 Class 4 temperature ranges (ambient) for sheltered controlled environments (ship or shore) operating are 0 to 50° C and non-operating -62 to +71°C.

SECTION IX - FLEET DATA ANALYSIS

9-1 DATA COLLECTION

9-1.1 Data in the FRAP field study was collected by interview with operating and maintenance personnel and by mail in the form of copies of 3M OPNAV 4790/2K forms returned using pre-addressed envelopes. To allow use of parametric analysis, FRAP instructed sample platforms to include Elapsed Time Meter (ETM) readings with each submission. Numerical data was encoded, keypunched, and statistically reduced using electronic digital computers. Data from interview, narrative comments on the 3M forms, and information from failure analysis was used by FRAP reliability engineers to correlate, interpret and, sometimes, correct data submitted by the Fleet.

9-2 COMPUTER RUN

- 9-2.1 RMA ANALYSIS. These analysis and the computer output are described in Appendices C and D. Basically the outputs consist of:
 - (1) Graphs showing:
- a. The fit of best fitting probability distribution to FRAP observed times.
- b. The fit of other distributions tired. These are given for system and WRA time-to-failure, repair time and system down time.
 - (2) Tabulation of observed data for time-to-failure, repair, and down time.
- (3) Observed frequency distribution and associated goodness of fit tests and confidence limits for the above parameters.
 - (4) Confidence intervals on the O-level parts which failed.
- (5) Summaries of 2K forms where problems were detected in either failures or repair time.
 - (6) Values for inherent and observed (predicted operational) availability.

MEDIAN 6.8 MTTR 49.3 CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR 12 UYK-20 8 20. HOURS TO REPAIR 30 18 10 1.07 0.0 9.0 0.5 0.9 0.8 0.7 D. C 0.2 REPRIR COMPLETION PROBABILITY OF

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR

MEDIAN 10.5 MDT 248.5 350 UYK-20 CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL WEISULL PROBABILITY DISTRIBUTION FOR DOWN TIME 300 200 250 DOWN TIME (HOURS) 150 100 2+ 1.0 + 6.0 0.0 0.7 0.3 0.3 9.0 0.5 0.4 0.2 0.7 REPAIR CONPLETION PR38981L1TT 36

6-28

EXPONENTIAL PROBABILITY DISTRIBUTION VERSUS THEORETICAL

CUMULATIVE DBSERVED DISTRIBUTION VERSUS THEORETICAL LOGNORMAL PROBABILITY DISTRIBUTION FOR DOWN TIME

FLEET MAINTAINABILITY ASSESSMENT DATA

03364 03364 03364	03365	04668	05139	05154	20001	10002	10002	20122	20122	20122	52702
See e	mm	m m 1	m m	m m	9		e (m m 1	m	m m	rs m
REPAIR TIME (HRS) 24.0 2.0 25.0	000	000	0.0	38.0	0.0	0.0	0.0	36.0	0.0	25.0	95.0
DDWN TIME (HRS) 120.0 2.0 72.0	0.0	000	0.0	38.0	0.0	0.0	0.0	336.0	0.0	120.0	0.96
CDMPLETIDM DATE 6244 6307 6345	6359	6305	7084 6251 ABOVE RECORD	7069	6322 ABOVE RECORD	ABOVE RECORD	ABOVE RECORD	6233	ABOVE RECORD	7021	6271
DISCOVERY DATE 6239 6307			7084 6251 REPAIR TIME FOR TH	7068	8322 REPAIR TIME FOR TH	REPAIR TIME FOR TH	REPAIR TIME FOR TH	6204	REPAIR TIME FOR TH	7016	7014
510	00	000	00	0 0	° 2	o N	o S	000	ON	80	9 6
7400	00	000	00	918	0	•	0	00	0	0 5	76
15 8 18 18 8 18	8 8	8 8 9	666	37	85	8	666	666	8	8 8	93
4					-	-			-	~-	

MAINTAINABILITY (REPAIR TIME)

_
ш
>
EVEL
_
-
SYSTEM
=
in
2,
-
0,
٧
0
2
-20
UYK
>
2

α	REPAIR TIME 2.0 2.0 24.0 25.0 38.0 50.0 64.0	FRE QUENCY	CUM FREQUENCY 7.0 7.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0	N P P P P P P P P P P P P P P P P P P P	LDGNDRMAL 222 222 506 736 736 805 816 899	MAX DIFFERENCE 170 190 190 205 215 110 110 058
TOTAL REPAIR HOURS = DISTRIBUTION DETERMIN MEAN OF LN'S = 2.0 K-S CRITICAL VALUE (THEREORE THE LOGNORIA	TOTAL REPAIR HOURS = 364.0 DISTRIBUTION DETERMINATION MEAN OF LNIS = 2.05 STO DEV K-S CRITICAL VALUE (10, 16,) = THEREODE THE LOGNORMAL DISTRIBUTI		NUMBER OF REPAIRS = 16. OF LN'S = 1.78 .195 MAX DIFF CALC =	UBSERVED REPAIR RATE/HR = .4396E-01	.4396E-01	

	REPAIR TIME		FREQUENCY	FUN	CUM FREQUENCY		NPF		EXPONENTIAL	MAX DIFFERENCE
	1.0		5.		5,		,294		.043	,251
	2.0		2.		7,		.412		*08*	,328
6	0.8		1:		8.		.471		.296	.174
-3	24.0		1:		.6		.529		.652	,181
52	25.0		2.		11.		.647		199.	.137
	36.0		1:		12.		.706		.795	.147
	38.0		1.		13,		.765		.812	•100
	0.09		1.		14.		.824		.928	,164
	0.40		:		15.		.882		076.	,116
	75.0				16.		.941		.963	180.
TOTAL RE	TOTAL REPAIR HOURS =	364.0	NUMBER OF	NUMBER OF REPAIRS .	16.	DBSERVED	REPAIR F	DBSERVED REPAIR RATE/HR .	.4396E-01	
DISTRIBU	DISTRIBUTION DETERMINATION	10N								
K-S CRIT	K-S CRITICAL VALUE (.10, 16.) =	0, 16.)	236	MAX DIFF CALC .	CALC .	,328 IS (SREATER 1	THAN THE CE	.328 IS GREATER THAN THE CRITICAL VALUE	
THEREFOR	THEREFORE THE EXPONENTIAL DISTRIBUTION CANNOT BE ASSUMED	AL DISTRI	BUTION CANN	IOT BE ASSU	MED					

0.00 IS LESS THAN MITR, THUS THE EQUIPMENT MEETS THE SPECIFICATIONS

90 PER CENT UCL ON MEAN . 99.200

MEIBULL DISTRIBUTION ASSUMED, ESTIMATED PARAMETERS ARE ALPHA . 32198E+00 BETA . . 40999E+00

90 PER CENT LCL DN MEAN = 0.000

EST MEAN . 49.326

EST MEDIAN = 6,769 SPECIFIED MTTR =

COWER CONF LIM

.25 HOURS

UVK-20 SYSTEM LEVEL

00%N TIME 2.0 2.0 8.0 38.0 72.0 96.0 336.0	FREQUENCY 2. 2. 1. 1. 2. 3.	CUM FREQUENCY 5.0 7.0 8.0 9.0 10.0 12.0 15.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LOGNORMAL .132 .208 .419 .685 .777 .813 .838	MAX DIFFERENCE 204 204 214 248 225 132 043
TOTAL COWN TIME (TDT) = 1015.0		NUMBER OF REPAIRS (MR) = 16.		OBSERVED DOWN TIME/REPAIR (TDT/NR) =	. 63,44
MEAN OF LN'S = 2.54	STO DEV OF LNIS =	2.27			
K-S CRITICAL VALUE (.10, 16,) -	16, 1 . 195	MAX DIFF CALC = .248	.248 IS GREATER THAN THE CRITICAL VALUE	E CRITICAL VALUE	
THEREFORE THE LOGNORMAL DISTRIBUTION CANNOT BE ASSUMED	ISTRIBUTION CANNOT	IE ASSUMED			

	DOWN TIME	FRE	EQUENCY	CUM FREQUENCY	JENCY	NPF	EXPONENT		MAX DIFFERENCE
	1.0		5.	5,		,294	.016		.278
6	2.0		2.	7.		.412	160.		,381
-3	0.8		1:			.471	.118		,352
3	38.0		1.	.6		,529	164.		640.
	72.0			10.		.588	679.		.149
	96.0		2.	12.		904.	.780		192
	120.0		3.	15.		.882	.849		.143
	336.0			16.		176.	566.		.113
TOTAL DOWN	TOTAL DOWN TIME (TDT) = 1015.0	1015.0	NUMBEP OF	NUMBER OF REPAIRS (NR) .	R) . 16.	OBSERVED	DBSERVED DOWN TIME/REPAIR (TOT/NR)	(TOT/NR) =	63.44
DISTRIBUTI	DISTRIBUTION DETERMINATION	NC							
K-S CRITIC	K-S CRITICAL VALUE (.10, 16,) =	16. 1 .	.236	MAX DIFF CALL	381	15 GREATER	MAX DIFF CALC * .381 IS GREATER THAN THE CRITICAL VALUE	VALUE	

THEREFORE THE EXPONENTIAL DISTRIBUTION CANNOT BE ASSUMED

WEIBULL DISTRIBUTION ASSUMED, ESTIMATED PARAMETERS ARE ALPHA . 34199E+00 BETA . 31115E+00

90 PER CENT UCL ON MEAN = 665,533

00000

90 PER CENT LCL ON MEAN .

EST MEAN = 248.478

EST MEDIAN = 10,500

MAINTAINABILITY (REPAIR TIME) O-LEVEL SUMMARY UYK-20

PROBLEM

TIMES	24.0	2.0	24.0	2,0	75.0	25.0	24.0	1.0	75.0	15.0	0.00	1.0	0.40	0.40	0.40	36.0
OBSERVED REPAIR TIMES LOW MEAN HIG	24,00	2.00	24,00	2,00	75.00	25.00	24.00	1,00	75.00	56,50	26,38	1.00	06.40	64.00	00.49	15.00
OBSERVE	24.0	2.0	24.0	2.0	75.0	25.0	24.0	1.0	75.0	38.0	1.0	1.0	0.49	0.49	64.0	1.0
SPEC	٤.	۴.	.3	ε.	٤,	۴.	.3	e.	٤.	٤.	e,	٤.	٤.	£.	6.	6.
UPPER 90 CONF LIM	IMITS	IMITS	IHITS	IMITS	IMITS	IMITS	IMITS	IMITS	IMITS	152,00	21,64	IMITS	IMITS	IMITS	INITS	46.35
CONF LIM (NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	18.75	3,15	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	NO CONF LIMITS	.93
NUMBER L	:	:	1.	:	:	:	.:	:	1.	2.	:	:	:	:	1.	3.
•																
D-LEVEL NUMENCLATURE	CABLE ASSBLY	BREAKER	INDICATOR	א כרא כזר	_	ЭСК	INT STORE	TRANSLATOR	20 MHZ 05C	JUMP AND IA	MEH ARRAY BRD	MK-1720 DVR	MK-1721 RCVR	JUMPER PLUG	MK-1718 DVR	
MERIC	8	-	0	-	-						114					
		BAICBI CKT	341055 LED	11414 MON	11811 ALU	11816 CLI										
BLPCK NO. NOMENC	4 1W5 CABL	6 3AICBI CKT BREAKER	6 341055 LED INDICATOR	37 11414 MON CLK CTL	46 11911 ALI	48 11816 CLDCK	51 11819 IV	53 11821 TR	54 11823 20	62 11C19 JU	81 13 M	, 88 1641 MK	93 18A1 MK	94 1842 JU	96 1941 MK	666

YES YES

YES

MAINTAINABILITY (REPAIR TIME)

PROBLEM AREAS

2K SUMMARY FOR UVK-20

SYSTEM WRA		1-0	1-0	1-0	SYSTEM SYMPTON DIAGNOSTIC	DIAGNOSTIC	RESULTS
3		81	0	0	09 ON	MICRO	R+R MAB
3 1		81	0	•	PRDG. FAULT	SCOMP DI	ARPL HEM ARA4 BUARD
3 1		81	0	0			R+R MAB
3 1 9	6	666	0	0	SHRT P-CHO		
6 1 6	6	66	0	0	BAD CHNL		R+R 1/0-NG R+R CPU
3 1	_	25	0	0	NO LOAD		R+R BOOTS CARD
3 1		37	18	•	PBH STPS	ETM JA	M TERMINATED
3 1		81	0	0		000000	R+R HAB
3 1 9	6	66	0	0	DVR HEATING	000000	NOT GIVEN
3 1 6	6	66	o	0		DIAL 1	R R CARD 68
3 1 9	6	66	0	0	FAILD LGIC	SMOKE	R R COMPUTER
3 1	_	11	0	0	PGH FAULT	000333	R+R MAB
3 1	_	9.1	0	c	LOCKUP	MICRO-D	R.R MAB
3		81	81	81	HI DUST+DIR	-	ALSO R+R PCB 39A33
		44	42	44	EXH TEND 25	TOUR STORE	ALSO BAR ROAZ

AND SUMMARY UVK-20 EXC SYSTEM LEVEL

	84.845	46.33
	.31120 MEAN = 248.48	MEAN = 49.33
	.31120	.41000
1721.30		32200 AND BETA =
TTE DISTRIBUTION IS EXPONENTIAL WITH MEAN = 1721.30	OT DISTRIBUTION, IN VEHICLE WITH ALPHA = .34200 AND BETA =	HT DISTRIBUTION IS RETAULD WITH ALPHA = .32200 AND BETA = .41000
Y IS FY	. 15 vE	1 IS .E
DISTAIRUTIO	PISTALAUTIO	01164191810
116	10	-

INHERENT AVAILABILITY = MTHFZ (4TBF+MTTR)

MEAN TIME TO FAILURE = 1721.30

44.33 MEAN REPAIR TIME

.9721 INHERENT AVAILABILITY = ORSEMVED AVAILABILITY (SIMULATION OF PATIOS TTF/(TTF+DT))

·605d 90 PERCENT LCL ON INDIVIOUALS =

9966. SE 68. 90 PERCENT UCL ON INDIVIDUALS =

.9829 MEDIAN

MEAN

CUMULATIVE DESERVED DISTRIBUTION VERSUS THEORETICAL EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

22	:	2 2	~	595	809	N609 652	90 0	600	20 20
24 C	4 A	S S	900	SSN 595 SSBN602	SSBN608	SSBN609 SSN 652	SS SS	211	2 2
SHIP NAME CONSTELLATION	CONSTELLATION	ENTERPRISE ENTERPRISE	ADAMS, CHARLES	PLUNGER ABRAHAM LINCOL	ETHAN AL	SAM HOUSTON PUFFER	SEA DEVIL HAWKBILL FINBACK	FLYING FISH GUAM GUAM	HHITNEY, MOUNT
33641 33641 33641	33642 33642 33642 33642	33651 33651 33652 33652	44444	50580 50580 51100	51100	51170 51390 51390	51450 51480 51480 51520	51540 71780 71781	200011 200011 200012 200012 200012 200012 200012
N W W W W			. m m m m m		~ ~ ~	m m m		M M M M	
314.0 339.0	737.0	2185.0		3990	29.0	200.0	586.0 3129.0	0000	20 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.000 0.000 1191	233	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0000	0.000	000000000000000000000000000000000000000	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
314.0	9130	2188.0	130630 130630 19590 26120	399.0	29.0	20000	3129.0	0000	173.0 173.0 99.60.9 99.60.9 60.27.9
8000 3648.0	35950 35950 40280	6832.0 0.0 1176.0	5933°0 6586°0 7239°0 7892°0	0.064	650.0	1400.0	1510.0 0.0 642.0 3185.0	3780.0	478 478 478 478 478 478 478 478 478 478
9618.0	359500	6832.0 0.0 1174.0	9933.0 6586.0 7239.0 7892.0	0.00	96.0	1400.0	1510.0 642.0 3185.0	9780.0	0000000000
3304.0 3648.0	0.00	610000	25 20 00 00 00 00 00 00			1400.0 285.0 0.0	1510.0 56.0 0.0 1599.0	3760.0 873.4 419.0	98 120 100 100 100 100 100 100 100 100 100
20020	00000	00000	000000	000	000	000	00000		00000000
30000	00000	00000	00000	000	000	000	00000		00000000
20000	00040	0002	01686	000	0008	999	00000	2000	000007760
¥00~0	0000	000-0	00	000	0000	00-6	00000	00-	000000
DATE 0 0 2 6232 9 6244	0000	0 1073 9 6359 8 6359			105 A	705 625	625 705	8 7069 7 7034	01 00111
623 623 623	6230	6170 6170 6170 6359	6159 6232 6305 7012 7084	6153 7019 6112	7057 6136 7069			631 631 631	6115 6175 6175 6175 6175 6175 7054 7054
20074	0 m m 4	04044	. C W W W W 4	0+0	404	400	40040	m00m	6-38

FLEET RELIABILITY ASSESSMENT DATA

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	F 22
SSN	AOR	2 22
SHIP NAME BATFISH	KANSAS CITV	DANIELS, JOSEPH DANIELS, JOSEPH DANIELS, JOSEPH
200440	201220 201220 201220 201220 201220	527021 527021 527022 527023 527023 527023
SYS 3		
17F 0.0	144.0 2530.0 2530.0 632.0	36 000 36 000 0000 1108 0
0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000
OPERATE 0.0 176.2	114cc 2334cc 3346 41896 6186	3689.0 0.0 0.0 1557.0 2080.0
67H2 0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1490.0 2604.0 3127.0
ETM1 0.0	726.0 803.0 3376.0 4118.0	2598 000 000 000 000 000 000 000 000 000 0
125.3 0.0	C C C C C C C C C C C C C C C C C C C	4474 85474 95474 9554 9554 9556 9566 9566 9566 9566 956
		0200990
		0200020
A DL 1	061100	0000440
¥0-	000	0-00-0
ATE 0	6214 6236 7021 7040	6155 6 7014 7019 6155 6 6221 6271 7014 7018
6159	6236 6236 7016 7016 7080	6155 6155 6155 6221 6267 7014
MTYP		

		DIFFERENCE		200.	540.	.034	160.	.051	990.	.048		.032			.110	.110	.136	*10.			.153		.165	.103	::	
		EXPONENTIAL		•034	960.	760.	760.	•110	.128	.179		.230			.316	.348	.372	.475			.701		. 077.	.774		668.
11 7	SYSTEM LEVEL	CPOF		.031	490.	960.	.128	.160	.193	.226		.262			.426	.467	. 508	.549			\$09.		.671	757.	200	.912
RELIABILITY	UVK-20 SYSTE	SURVIVORS		31.	29.	28.	27.	26.	25.	23.		21.			17.	13.	12.	::			7.		5.	;	,	::
		NO. CENSORED	::		:					:	:	•	::	1.				•	::	::		Ι.			:	
		NO. FAILURES		:	-	:	.:	:	:	:		:			:	-								:		::
		TO FAIL	29.0	59.0	174.0	176.0	176.2	200.0	236.0	339.0	399.8	0.665	541.0	639.0	653.0	737.0	800.0	1108.0	1433.0	1759.0	6.6102	2185.0	2530.0	2558.0	3129.0	3948.0

RELIABILITY

UYK-20 SYSTEM LEVEL

.375 91824.0 DUTY CYCLE (0.H./C.H.) . CALENDAR HOURSIC.H.) .. DBSERVED FAILURE RATE/0.H. . ,58094E-03 EQUIPMENT OPERATING HOURS (0.H.) = 34426.9 NUMBER OF FAILURES . 20.

DISTRIBUTION DETERMINATION,

K-S CRITICAL VALUE (.10,20.) . .212

MAX FIFF CALC . . 165, IS LESS THAN CRITICAL VALUE THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

2370,142 1273,2. 90 PER CENT UCL FOR MEAN . 90 PERCENT UCL 2370.14 IS GREATER THAN 2000.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS EST. MEAN . 1721,345, EST. MEDIAN . 1193,145, 90 PER CENT LCL FOR MEAN .

RELIABILITY

2
SUMMAR
7
Ŧ
5
S
D-LEVEL
>
w
0
-
-20
UVK
2

RELIAB PROBLEM	DN C	2	yes	ON C	2	ON O	2	2	2	DN C	ON O	ON C	2	ON	ON O	ON O	, ve
TIMES	339,00	800,00	339,00	800.00	00.6++	913,00	339,00	1306,00	00,644	449.00	6027,90	3948,00	1959,00	1557,00	1557,00	1557,00	6263,90
DBSERVED FALLURE TI LOW	339.00	800,00	339,00	800.00	00.644	913.00	339.00	1306,00	449.00	00.654	233,00	3948,00	1959,00	1557,00	1557,00	1557,00	174.00
SPEC	41667.00	999.00	1000000000	852.00	2609.00	980.00	1477.00	557.00	****	742.00	951.00	848.00	190.00	156,00	152.00	156.00	14152,36 1000000,00
UPPER 90	326754,94	326754.94	\$26754,94 10000000,00	326754.94	326754.94	326754.94	326754,94	326754,94	326754,94	326754.94	5533,71	326754.94	326754,94	326754,94	34426.90 326754.94	326754,94	14152,36
HEAN	34426.90	34426.90	34426.90	34426.90	34426.90	34426.90	34426.90	34426.90	34426.90	34426.90	3442.69	34426.90	34426,90	34456,90	34426.90	34426.90	6885,38
LOWER 90 CONF LIM	8850,74	8850,74	8850,74	8850,74	8850,74	8850,74	8850,74	8850,74	8850,74	8850,74	2234,55	8850,74	8850,74	8850,74	8850,74	8850,74	3711.92
NUMBER	-	=			-	-	•	-	•	1.	10.	3	1.	-			5.
G-LEVEL NOMENCLATURE	CABLE ASSBLY	SAICEL CKT BREAKER	341055 LED INDICATOR	MON CLK CTL	ALU	CLOCK	INT STORE	TRANSLATOR	20 HHZ 05C	JUMP AND IA	MEM ARRAY BRD	MATH PAC	MK-1720 DVR	MK-1721 RCVR	JUMPER PLUG	MK-1718 DVR	
ver 20.	145			11414	11811	11916 CLUCK	11819	11821	11823	62 11619	81 13	82 24411	188 1641	1881 66	94 1842	1941	
alock mo.	,	•		37	9,	8,	51	53	*	62	81	82	88	93	*	96	666
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

RELIABILITY

	2K	SUMMARY	FOR UV	07-3	2K SUMMARY FOR UYK-20 PROBLEM AREAS	AREAS	3.130.13	
	SYSTEM	X X	1	!	1	STSTER STATE ON STACKOSTIC RESOLUTION	0146403110	X 200.13
	3	-		•	14	VISUALIR BR	*	R+K CRD 7125128
	3	-	666	0	0	SHRT P-CHO		
	3	-	666	0	0	BAD CHNL		R+R 1/0-NG R+R CPU
			666	c	0	DVR HEATING	000000	NDT GIVEN
2004400010170		-	666	0	0		DIAL 1	R R CARD 68
			000	0	0	FATED LGTC	SMOKE	R R COMPUTER

9-3 SUMMARY OF COMPUTER ANALYSIS.

TABLE 6-9.1

Parameter	AN/UYK-20
MTBF	1721 Hours
Not Greater Than	2370 Hours
Not Less Than	1273 Hours
Failures Observed	20
Verification Ratio	0.857
Est. Equipment MTBF	2008 Hours
Not Greater Than	3012 Hours
MTTR	49.3
Operational Availability	.971399

- 9-3.1 PARAMETERS. Statistical estimates of MTBF and MTTR are given above with appropriate confidence limits calculated at the 90% level.
- 9-3.2 PROBLEMS IDENTIFIED. No significant problems were identified as a result of computer analysis.
- 9-3.3 MAINTAINABILITY. The AN/UYK-20 time-to-repair data is not an acceptable fit to the expected Log-normal probability distribution. Neither is the data an acceptable fit to an exponential probability distribution. According to Lillefors K-S criteria, the best fit to the data is a Weibull distribution having a mean (MTTR) of 49.3 hours and a median of 6.7 hours. This means that one would expect a repair to require 49.3 hours on the average, while there is a 50/50 chance that repair can be completed in 6.7 hours or less.

SECTION X - DEPOT DATA ANALYSIS

10-1 BACKGROUND.

10-1.1 RETURNED PARTS REPAIR. The AN/UYK-20 Data Processing Set (DPS) is manufactured by Sperry-Univac, Defense Systems Division, Clearwater, Florida. Depot level repair for DPS modules has been established at the manufacturing plant with parts failure analysis being done by Sperry-Univac, Defense Systems, St. Paul, Minnesota.

10-2 <u>RETURNED PARTS IDENTIFICATION</u>. A problem developed at the supply depot level with parts becoming separated from their ships Maintenance Action Form (2 Kilo) when returned from ships to the Designated Turn-In Points (DIP) for ultimate delivery to the contractor/repair depot. Six of the eleven modules (Table 6-10.1) received by Univac had no maintenance form with them.

10-2.1 PROBLEM ASSISTANCE. The Fleet Repairable Assistance Agent (FRAA) Oakland office was informed of the problem. This office suggested they include in their presentations to ship's crews, information concerning the FRAP program to stress the importance of placing the 2K form in the packing case with the failed module. Their information was that if the 2K form was enclosed with the packing slip on the outside of the container, it would be discarded by the warehouseman at the Supply Depot/Designated Turn-In Point.

10-3 VERIFICATION RATIO. To assist in problem isolation, a verification factor for each 95% + significant module was calculated using:

Vf = (N1 + N2/2)/N

where N1 = Number of failures confirmed at depot

N2 = Number of non-confirmed failures

N = N1 + N2 = Total number of failures reported by fleet

This equation states that there is an even chance that a non-confirmed failure did malfunction in the fleet but the cause was not discovered at depot level repair. This is perhaps somewhat harsh on the depot test facility, but depot tests open air, room temperature, no vibration affairs, usually on simulation jigs. A verification ratio of 0.85-0.90 (20-30% unconfirmed) is considered average. The possible values range from 0.50 for no confirmations to 1.00 for all returns confirmed as failures. Some types of possible problems that will result in low verification ratios are: Errors in tech manuals, BITE design faults, misapplications, thermal or vibration problems, and correlation problems between module test jigs and actual system operating conditions.

10-3.1 RETURNED MODULE ANALYSIS. Contractor data (Figure 6-10.1) recorded a total of thirteen modules received from FRAP ships. Ten of these modules were found to be defective as confirmed failures.

Vf = (10 + 4/2)/14

= 12.0/14 = 0.857

Also: OE - eI/Vf

where: $\Theta E = Equip. \Theta$

 $\Theta I = Inher. \Theta = 1721$

 $\Theta E = 1721 = 2008 \text{ hours}$.857

10-4 STRUCTURED ANALYSIS. FRAP has developed a failure ranking technique useful for locating field problems as evidenced by their module return rates. This method takes into account both the numbers of each module used in a system and the complexity of each module. A problem is evidenced by an observed return rate which is significantly larger than the expected return rate. To measure this significance, a Poisson Test of Means is used. The results of this test are expressed in percent and represent the probability that the observed return rates and the expected return rates are truely different, i.e., the resultant value approaches 100% significance if the two rates differ by more than the random error of sampling can account for. In FRAP, 95% significance was chosen as the trigger point for follow-up study.

10-4.1 LABORATORY RETURNED PARTS. A large data base of AN/UYK-20 experience exists at the Naval Ocean Systems Center (NOSC), formerly known as Naval Electronics Laboratory Center (NELC). This data base includes all available failure/malfunction reports (FMR) from the Univac representative and the NOSC maintenance personnel for the period March 1974 to 24 May 1977. The data includes input from 61 AN/UYK Data Processing Sets (DPS) of which 30 were still on board as of June 1977. An analysis was run on three cables and twenty-six PCBs and listed in Table 6-10.2. Column descriptions of as follows:

Col 1: Part number of Printed Circuit Board (PCB)

Total number of type of PCB in the Data Processing Set (DPS)

Col 3: Total operating hours of populations

Col 4: N -Failures experienced for this PCB from Table 3 Col 5: Failure rate of PCB = $\frac{\text{Col 4} \times 10^6}{\text{Col 5}}$ Col 2 x Col 3

NB total DPS failures experienced (major)

Col 7: A Predicted failure rate of the PCB from Relia. Stress Analysis AN/UYK-20 Digital Computer, Univac, Apr 1976

Co1 8: B Predicted failure rate for DPS (same source as Col 7)

Co1 9: # Spares required for 95% (probability of completing mission) from Figure viii-2-7, Spare Parts Required, from the Maintainability Design Criteria Handbook for Designers of the Shipboard Electronic Equipment, NAVSHIPS 94324, March 1965.

Col 10: Confidence, or probability that the considered part will fail NA times or more. Calculated using Poisson Structured Analysis Program on a HP-65 calculator. If this figure is greater than .95, a problem exists with this item.

A preliminary inspection of Table 6-10.2, column 4, indicates nine items had four or more failures which possibly indicates a problem. However, a comparison of column 4 and 9 shows seven items exceeded their spares allowance and that items 8 and 11 are not critical but item twenty-four with one failure is critical. Column 10 verified these observations with the seven items having values of .95 or greater.

10-4.2 FLEET RETURNED PARTS. Table 6-10.3 lists the analysis results for fleet data which was available at the cutoff date of 22 July 1977. A look at Table 6-10.3 (Column 10) indicates items 1, 2, 4, 7, 12, 16 and 17 are possible problems with a factor of .91 or greater (col 10) and they have also used or exceeded their spares allowance (Col 4 vs. Col 9). However, only items 1, 2 and 7 have equaled or exceeded .95 in Column 10.

FAILED PARTS LIST - FRAP

PART NUMBER	SERIAL NO.	DESCRIPTION	FMR NO.	FAIL RATE	COMMENT
7150354-00	013	Power Supply	C97219	4/23/76	Shorted driver transistors
7128082-00	1407	MAB	C73958	9//9/9	No defect found.
7128082-00	599	MAB	C73959	9//9/9	Cracked core.
7150326-01	055	PCA - 56P	C73960	None	Pl Connector broken. No functional failure.
7092175-01	2480	PCA - 56P	031125	6/26/76	U2 internal short.
7126166-01	620	PCA - 56P	031126	None	U4 defective.
7126125-01	621	PCA - 56P	D31144	None	U8 defective.
7125311-01	592	PCA - 56P	052403	None	U3 defective.
7125136-01	527	PCA - 56P	052404	None	No defect found.
7125306-01	7111	PCA - 56P	D52402	None	Solder Bridge, evident handling damage.
7128082-00	209	MAB	L07938	12/25/76	Not failure analyzed.
7125128-01	690	PCA - 56P	0E120013	8/30/76	Broken resistor.
7150420-01	109	PCA ~ 56P	0E120015	8/31/76	No defect found.
7092175-01	4053	PCA - 56P	F07969	None	No defect found.

TABLE 6-10.1

* Cable Assembly

TABLE 6-10.2
PRINTED CIRCUIT BOARD ANALYSIS
ANALYSIS NOSC DPS

PCB P/N	PCB OPS	TOT OP HRS	zď	F/R EXPR	8 B	⋖	8	*	P(F NA)	
7092157	4	154.705	<u>س</u>	4.85	254	15.33	3289	9	71.	
7092185	· m	=	- ∞	17.2	=	13.91	=	S	66.	
7092200	-		4	25.8	-	12.60	-	2	86.	
7101824	2		9	19.4	-	26.31		9	86.	
7119380	2		-	3.23	-	21.63	=	2	.18	
7119395	2	•	26	181.0	-	31.76	=	7	1.00	
7119405	-		12	77.5	=	38.14		2	1.00	
7125157	-		4	25.8	=	40.09		2	69.	
7125236	-		_	6.46	-	12.19		2	.42	
7125240	-	•	_	6.46		12.28		2	.42	
7124306	4	•	4	6.46	-	24.48	-	6	60.	
7125380	7		-	3.23	-	18.45	-	4	.25	
7125405	-	-	_	6.46		48.40		2	.23	
7125926	-		m	19.4	•	4.157	-	_	1.00	
7126125	7	•	-	3.23		17.25		4	.26	
7126155	2		_	3.23	-	10.79		က	.22	
7126160	-		-	6.46		11.74		2	44.	
7126181	_	•		6.46	=	11.74	=	2	4.	
7126200	-		-	6.46	-	22.41		က	.21	
7126265	_	•	_	6.46	=	15.63	=	2	.33	
7126339	-		-	6.46		1.684		-	.89	
7128082	80		23	18.2	=	153.5	=	75	6.	
7133227	-	-	2	12.9		64.02	=	7	۴.	
7133909	-	-	-	6.46	•	.4452		0	76.	
7134994	7		വ	16.3		51.40		6	.63	
7136295	-	-	-	6.46		11.31	-	က	.45	
7150320	-		8	12.9	=	10.20	=	2	.8	
7150338	-	•	-	6.46	-	2.14	=	2	98.	
7150395	-	154,705	-	6.46	254	29.72	3289	4	.12	

TABLE 6-10.3
PRINTED CIRCUIT BOARD ANALYSIS
FLEET DPS

P(F NA)	8.69. 16.7. 19.60. 19.6
*	2-1-2-2-25E11
æ	3289
ď	15.33 12.62 15.09 21.63 32.97 31.76 38.14 85.05 29.47 17.25 13.47 13.47 11.31
N B	8
F/R EXPR	14.89 28.17 28.17 28.17 14.89 28.17 28.17 28.17 28.17 28.17 28.17 28.17 28.17 28.17
N A	282 <u></u>
TOT OP HRS	35,487
PCB DPS	4
PCB P/N	7092175 7092195 7101826 7101985 7119385 7119395 7119395 7119395 7119395 7119395 7125128 7125128 7125128 7125128 7125128 7125128 7125126 7126200 7126200

NOTE: DPS FAILURES (2K FORMS): 20 REPORTED OPERATING HOURS: 34,427 MTBF = 34,427/20 = 1721