Regressão linear simples e correlação

Fabio Cop

Instituto de Ciências do Mar - UNIFESP

05 junho, 2021

Um pouco de história

convergem.

ullet A primeira solução para o problema da regressão (relacionar uma variável resposta Y a uma variável preditora X) foi o **Método dos Mínimos Quadrados (MMQ)**, publicado por por Gauss (1777 – 1855) em 1809, embora haja relatos históricos de que Gauss pensou e resolveu o problema quando tinha apenas 11 anos. Gauss aplicou o método obter predições sobre as órbitas dos corpos ao redor do Sol a partir de observações astronômicas.

• O termo **regressão** foi empregado por Francis Galton em 1866, um dos pais da Biometria e primo de *Charles Darwin*, no séc. XIX, para descrever o fenômeno biológico onde a altura dos descendentes de pais altos tende a regressar em direção à média. Desta forma, pais muito altos tenderiam a ter descendentes mais baixos que eles próprios e vice versa. A altura dos descendentes tenderia portanto a **regressar** à média da população.

• Para Galton a regressão tinha apenas um significado biológico, mas suas idéias foram estendidas por Udny Yule e Karl Pearson para um contexto estatístico mais geral. Na formulação de Yule e Pearson, assume-se que a distribuição conjunta da variável resposta e da variável preditora f(Y,X) é Gaussiana (Normal), o que confunde os conceitos de regressão e correlação.

• Esta suposição foi modificada por R. A. Fisher em 1922 e 1925. Fisher assumiu que a distribuição condicional da variável resposta f(Y|X) é Gaussiana, mas a conjunta não precisa ser. Esta solução é mais próxima daquela formulada por Gauss. Fisher desenvolveu também o método da **Máxima** Verossimilhança (MV). Para uma variável em que f(Y|X) é Gaussiana, a solução pelo MMQ e pela MV

Conteúdo da Aula

- 1. Introdução
 - 1.1. Descrevendo relações funcionais
 - 1.2. Predições sobre fenômenos ambientais
 - 1.3. Estrutura geral do modelo de regressão
- 2. Compreendendo o modelo
 - 2.1. O modelo matemático
 - 2.2. Os dados e o gráfico de dispersão
 - 2.3. O modelo estatístico
 - 2.4. Estimativa dos parâmetros: Método dos mínimos quadrados
 - 2.5. Variâncias e Covariâncias
- 3. Teste de hipóteses: coeficiente de inclinação
- 4. Pressupostos da regressão linear
- 5. Coeficiente de correlação linear de Pearson

1. Descrevendo relações funcionais

O Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** em 1955 como um centro de pesquisa hidrológica. Um serviço ecossistêmico óbvio das bacias hidrográficas nesta região é o fornecimento hídrico. Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva.

1. Descrevendo relações funcionais

O Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** em 1955 como um centro de pesquisa hidrológica. Um serviço ecossistêmico óbvio das bacias hidrográficas nesta região é o fornecimento hídrico. Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva.

1. Predições sobre fenômenos ambientais

O Serviço Florestal americano estabeleceu a Floresta Experimental de **Hubbard Brook (HBEF)** em 1955 como um centro de pesquisa hidrológica. Um serviço ecossistêmico óbvio das bacias hidrográficas nesta região é o fornecimento hídrico. Podemos supor que o volume de água anual que uma bacia pode fornecer tem relação com o volume de chuva.

1. Predições sobre fenômenos ambientais

Taxa de fotossíntese em folhas do mangue-vermelho (Rhizophora mangle)

$$Y = \frac{k \times X}{D + X}$$

Figura 4.3 Relação entre a intensidade luminosa e a taxa fotossintética. Os dados são medidas da taxa de assimilação líquida e da radiação fotossinteticamente ativa para n=15 folhas jovens da planta do mangue-vermelho *Rhizophora mangle* em Belize (Farnsworth e Ellison, 1996b). A equação de Michaelis-Menten com a forma Y = kX/(D+X) foi ajustada aos dados. As estimativas dos parâmetros ± 1 desvio-padrão são $k=7,3\pm0,59$ e $D=313\pm86,6$.

Seja uma variável aleatória Y com distribuição normal proveniente de um experimento aleatório.

Seja uma variável aleatória Y com distribuição normal proveniente de um experimento aleatório.

1 - As observações em Y e X compõem um par (y_i, x_i) de modo que:

$$Y = \left[egin{array}{c} y_1 \ y_2 \ \dots \ y_n \end{array}
ight], X = \left[egin{array}{c} x_1 \ x_2 \ \dots \ x_n \end{array}
ight]$$

- 2 X é determinada experimentalmente e sem erros.
- 3 Y é uma variável aleatória normalmente distribuída, com μ_i variância σ^2 .

$$Y \sim \mathcal{N}(\mu_i, \sigma^2)$$

4 - μ_i é representado por um modelo linear que expressa o valor esperado de y_i para um dado valor de x_i . Compõe a parcela determinística do modelo.

$$E(Y|x_i) = \mu_i = \beta_0 + \beta_1 x_i$$

- 5 β_0 e β_1 são as contantes a serem estimadas, representando o **intercepto** e o **coeficience de inclinação da reta**, repectivamente.
- 6 σ^2 é a **variância** de Y e ser estimada. σ^2 é **constante** para todos os valores em X.

2. O modelo matemático

- 1. Y: variável resposta (dependente);
- 2. X: variável preditora (independente);

$$E(Y|x_i) = \beta_0 + \beta_1 x_i$$

1. Parâmetros do mdelo

 β_0 : Intercepto;

 β_1 : coeficiente de inclinação da reta (**coeficiente de regressão**);

2. O modelo matemático

Se o intercepto eta_0 e a inclinação eta_1 são conhecidos, podemos <code>PREDIZER</code> qualquer valor y_i para um dado valor em x_i .

$$E(Y|x_i) = \beta_0 + \beta_1 x_i$$

2. A tabela e o gráfico de dispersão

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

Show 5 v ent	ries			Searc	h: [
		[Divers	idade			Vazao
1				0.78	}		Ο
2	1.59						0.01
3	3 1.44						
4	0.9					0.06	
5	1.62				0.07		
Showing 1 to 5 of 26 entries							
Previous	1	2	3	4	5	6	Next

2. O modelo estatístico: reta de regressão e resíduos (ε_i)

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

Show 5 v entries		Searc		
	y_i	x_i	${\hat y}_i$	$arepsilon_i$
1	0.78	0	1.28	-0.5
2	1.59	0.01	1.29	0.3
3	1.44	0.04	1.29	0.15
4	0.9	0.06	1.3	-0.4
5	1.62	0.07	1.3	0.32

Showing 1 to 5 of 26 entries

Previous

4 5 6

Next

2. O modelo estatístico: reta de regressão e resíduos (ε_i)

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

$arepsilon_i$
-0.5
0.3
0.15
-0.4
0.32

Showing 1 to 5 of 26 entries

Previous

4 5 6

Next

2. O modelo estatístico: reta de regressão e resíduos (ε_i)

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

- y_i : variável resposta i: $1 \cdots n$;
- x_i : variável preditora i: $1 \cdots n$;
- n: tamanho da amostra;
- β_0 : intercepto;
- β_1 : coeficiente inclinação da reta;
- ε_i : resíduo responsável pela variação de y_i em torno do valor **predito** (\hat{y}_i) pela reta de regressão.

2. O modelo estatístico: reta de regressão e resíduos $(arepsilon_i)$

$$y_i|x_i=eta_0+eta_1x_i+arepsilon_i$$

- y_i : variável resposta i: $1 \cdots n$;
- x_i : variável preditora i: $1 \cdots n$;
- n: tamanho da amostra;
- β_0 : intercepto;
- β_1 : coeficiente inclinação da reta;
- ε_i : resíduo responsável pela variação de y_i em torno do valor **predito** (\hat{y}_i) pela reta de regressão.

O resíduo associado a cada observação diminui ou aumenta à medida que o pontos está mais próximo ou distante da reta de regressão.

2. Estimativa dos parâmetros

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Parte determinística: β_0 e β_1

$$\beta_0 + \beta_1 x_i$$

Parte estocástica: σ^2

$$arepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

2. Estimativa dos parâmetros

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Como estimar os parâmetros de um modelo de regressão?

- 1. Método dos Mínimos Quadrados (MMQ)
- 2. Estimador de Máxima Verossimilhança (EMV)

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2.$$

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2.$$

Soma dos quadrados dos resíduos (SQ_{Res})

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2.$$

$$SQ_{Res} = \sum_{i=1}^n arepsilon_i^2 = \sum_{i=1}^n (y_i - \hat{y_i})^2.$$

---> Estime $\hat{\beta}_0$ e $\hat{\beta}_1$ que minimize a quantia:

$$\sum_{i=1}^n (y_i - \hat{y_i})^2 = \sum_{i=1}^n (y_i - (\hat{eta}_0 + \hat{eta}_1 x_i))^2$$

2. Variâncias e Covariâncias

2. Variâncias e Covariâncias

Soma dos Quadrados de ${\cal Y}$

$$SQ_Y = \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n (y_i - \overline{y})(y_i - \overline{y})$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1}$$

Soma dos Quadrados de X

$$SQ_X = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})$$

Variância amostral de X

$$s_X^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Soma dos produtos cruzados de Y e X

$$SQ_{YX} = \sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})$$

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

A covariância pode ser NEGATIVA

Quando:

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})<0$

OU

$$(y_i-\overline{y})<0$$
; $(x_i-\overline{x})>0$

de modo que:

$$s_{YX}=rac{\sum_{i=1}^n(y_i-\overline{y})(x_i-\overline{x})}{n-1}<0$$

A covariância pode ser POSITIVA

Quando:

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})>0$

OU

$$(y_i-\overline{y})<0$$
; $(x_i-\overline{x})<0$

de modo que:

$$s_{YX}=rac{\sum_{i=1}^n(y_i-\overline{y})(x_i-\overline{x})}{n-1}>0$$

A covariância pode ser NULA

Quando:

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

OU

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

de modo que:

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1} pprox 0$$

2. Variâncias e Covariâncias: estimando β_1

$$\hat{eta}_1 = rac{SQ_{YX}}{SQ_X} = rac{s_{XY}}{s_X^2}$$

2. Variâncias e Covariâncias: estimando β_0

$$\overline{y} = \hat{eta}_0 + \hat{eta}_1 \overline{x}$$

$$\hat{eta}_0 = \overline{y} - \hat{eta}_1 \overline{x}$$

2. Variâncias e Covariâncias: estimando σ^2

$$y_i = \hat{eta}_0 + \hat{eta}_1 x_i + arepsilon_i$$

O Quadrado Médio do Resíduo $\left(QM_{Res}
ight)$

$$arepsilon \sim \mathcal{N}(0,\sigma^2)$$

$$\hat{\sigma}^2 = Q M_{Res} = rac{SQ_{Res}}{n-2}$$

Hipótese nula

$$H_0:eta_1=0$$

$$y_i = eta_0 + arepsilon_i$$

Hipótese alternativa

$$H_1:eta_1
eq 0$$

$$y_i = eta_0 + eta_1 x_i + arepsilon_i$$

 H_0 pode ser testada por meio do teste t para o estimador \hat{eta}_1

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

Erro padrão de \hat{eta}_1

$$s_{\hat{eta}_1} = \sqrt{rac{\hat{\sigma}^2}{SQ_X}}$$

 $t_{calculado}$ depende da **magnitude de** $\hat{eta_1}$

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende da **magnitude de** $\hat{eta_1}$

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende da **magnitude de** $\hat{eta_1}$

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}}$$

 $t_{calculado}$ depende da **variância residual** - $s_{\hat{eta}_1} = \sqrt{rac{\hat{\sigma}^2}{SQ_X}}$

$$t_{calculado} = rac{{{\hateta}_1} - {eta_1}}{{s_{{\hateta}_1}}}$$

 $t_{calculado}$ depende da **variância residual** - $s_{\hat{eta}_1} = \sqrt{rac{\hat{\sigma}^2}{SQ_X}}$

$$t_{calculado} = rac{{{\hateta}_1} - {eta_1}}{s_{{\hateta}_1}}$$

 $t_{calculado}$ depende do ${\sf tamanho}$ da ${\sf amostra}$ - n

$$t_{calculado} = rac{{\hat eta}_1 - eta_1}{s_{{\hat eta}_1}}$$

 $t_{calculado}$ depende do ${\sf tamanho}$ da ${\sf amostra}$ - n

$$t_{calculado} = rac{{\hat eta}_1 - eta_1}{s_{{\hat eta}_1}}$$

3. Teste de hipóteses: diversidade de espécies e vazão

Na figura ao lado, os coeficientes de regressão foram estimados pelo MMQ em $\hat{eta}_0=1.28$ e $\hat{eta}_1=0.21$.

O valor de t foi:

$$t_{calculado} = rac{\hat{eta}_1 - eta_1}{s_{\hat{eta}_1}} = rac{0.21 - 0}{0.089} = 2.351$$

Embora exista uma alta variabilidade ao redor da reta de regressão o valor de p associado a este resultado foi p=0.0273, o que se interpretado ao nível de significância $\alpha=0,05$ nos leva a **rejeitar** H_0 .

Nossa conclusão é de que **existe** uma relação crescente entre a Diversidade de espécies e a vazão dos riachos.

3. Teste de hipóteses: diversidade de espécies e vazão

```
rdiv <- lm(Diversidade ~ Vazao, data = peixes)
 summary(rdiv)
##
## Call:
## lm(formula = Diversidade ~ Vazao, data = peixes)
##
## Residuals:
     Min
            10 Median
                           30 Max
## -0.65179 -0.20498 0.06043 0.26830 0.55249
##
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.28467 0.09508 13.512 1.03e-12 ***
            ## Vazao
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3486 on 24 degrees of freedom
## Multiple R-squared: 0.1872, Adjusted R-squared: 0.1533
## F-statistic: 5.527 on 1 and 24 DF, p-value: 0.02728
```


3. Teste de hipóteses: diversidade de espécies e vazão

```
rdiv <- lm(Diversidade ~ Vazao, data = peixes)
 summary(rdiv)
##
## Call:
## lm(formula = Diversidade ~ Vazao, data = peixes)
##
## Residuals:
     Min
            10 Median
                           30 Max
## -0.65179 -0.20498 0.06043 0.26830 0.55249
##
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.28467 0.09508 13.512 1.03e-12 ***
            ## Vazao
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3486 on 24 degrees of freedom
## Multiple R-squared: 0.1872, Adjusted R-squared: 0.1533
## F-statistic: 5.527 on 1 and 24 DF, p-value: 0.02728
```


- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i,x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i, x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i, x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

$$Y \sim \mathcal{N}(\mu_i, \sigma^2)$$
 $E(Y|x_i) = \mu_i = eta_0 + eta_1 x_i$

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i, x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

$$arepsilon \sim \mathcal{N}(0, \sigma^2)$$

- 1. O modelo linear descreve adequadamente a relação funcional entre Y e X;
- 2. Cada par de observação (y_i, x_i) é independente dos demais;
- 3. A variável X é medida sem erros;
- 4. Os resíduos têm distribuição normal;
- 5. A variância residual σ^2 é constante ao longo de X.

$$arepsilon \sim \mathcal{N}(0, \sigma^2)$$

