19 – Orthogonal Projections

Definition: Projection Onto a Line

Let $L = \text{Span}\{\mathbf{u}\}$ for some nonzero \mathbf{u} in \mathbb{R}^n . For any \mathbf{y} in \mathbb{R}^n , define the **orthogonal projection** of \mathbf{y} onto L to be

$$\operatorname{proj}_L(\mathbf{y}) = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}.$$

Note: we sometimes write $\operatorname{proj}_{\mathbf{u}}(\mathbf{y})$ in place of $\operatorname{proj}_{L}(\mathbf{y})$

1. Let
$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $L = \operatorname{Span}\left\{ \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\}$.

(b) Let
$$\hat{\mathbf{y}} = \operatorname{proj}_L(\mathbf{y})$$
 and $\mathbf{b} = \mathbf{y} - \operatorname{proj}_L(\mathbf{y})$. Graph $\mathbf{L}, \mathbf{y}, \hat{\mathbf{y}}$, and \mathbf{b} .

Definition

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is said to be **orthogonal** if each pair of vectors in the set is orthogonal. If the set is orthogonal *and* every vector is a unit vector, then the set is said to be **orthonormal**.

2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1/3 \\ 1/3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 4 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}$. Verify that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but *not* orthonormal.

3. Give an example of an orthonormal set of three vectors in \mathbb{R}^3 .

$$\left\{ \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 9\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 9\\ 1\\ 0 \end{bmatrix} \right\}$$

Theorem

If a set of nonzero vectors forms an orthogonal set, then the vectors are linearly independent.

Definition: Projection Onto a Subspace

Let W be a subspace of \mathbb{R}^n , and let $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be any *orthogonal* basis for W. For any \mathbf{y} in \mathbb{R}^n , define the **orthogonal projection of y onto** W to be

$$\operatorname{proj}_{W}(\mathbf{y}) = \operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{y}) + \cdots + \operatorname{proj}_{\mathbf{u}_{k}}(\mathbf{y}) = \left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} + \cdots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_{k}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k}.$$

Note: $\operatorname{proj}_W(\mathbf{y})$ gives the same answer no matter which orthogonal basis you use.

- **4.** Let $W = \text{Span}\{\mathbf{w}_1, \mathbf{w}_2\}$ for $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$.
 - (a) Verify that $\mathbf{w}_1, \mathbf{w}_2$ is an orthogonal basis for W.
 - $\overline{W}_1 \cdot \overline{W}_2 \ni -1 + 3 2 = 0 \rightarrow \overline{W}_1, \overline{W}_2 \text{ are orthogonal}$
 - · By theorem they are Linearly Independent and we are given that they span was so they form a basis for W.
 - (b) Compute $\operatorname{proj}_{W}(\mathbf{y})$ for $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$. $\operatorname{proj}_{W}(\overline{\mathbf{y}}) = \operatorname{proj}_{\overline{W}_{1}}(\overline{\mathbf{y}}) + \operatorname{proj}_{\overline{W}_{2}}(\overline{\mathbf{y}})$ $= \frac{\overline{\mathbf{y}} \cdot \overline{W}_{1}}{\overline{W}_{1}} \cdot \overline{W}_{1} + \frac{\overline{\mathbf{y}} \cdot \overline{W}_{2}}{\overline{W}_{2}} \cdot \overline{W}_{2} \longrightarrow \frac{-1 + 4 + 3}{1^{2} + 1^{2} + 1^{2}} \begin{bmatrix} \frac{1}{4} \end{bmatrix} + \frac{1 + 12 + (-6)}{(-1)^{2} + 3^{2} + (-2)^{2}} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ $\Rightarrow \frac{6}{3} \begin{bmatrix} \frac{1}{4} \end{bmatrix} + \frac{7}{14} \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{7}{4} \end{bmatrix}$
 - (c) Let $\hat{\mathbf{y}} = \text{proj}_W(\mathbf{y})$ and $\mathbf{b} = \mathbf{y} \text{proj}_W(\mathbf{y})$. Use GeoGebra to graph $W, \mathbf{y}, \hat{\mathbf{y}}, \hat{\mathbf{y}}$, and \mathbf{b} .

Theorem: Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , and let $\hat{\mathbf{y}} = \operatorname{proj}_W(\mathbf{y})$. Then $\hat{\mathbf{y}}$ is the vector of W that is *closest* to \mathbf{y} in the sense that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}}) \leq \operatorname{dist}(\mathbf{y}, \mathbf{w})$ for all \mathbf{w} in W.