

Monte Carlo simulations

Eirik Malinen

MC simulations 1

- Simulations of stochastic processes
- Interactions are stochastic: the path of a single ionizing particle may not be predicted
- Interactions are quantified by probabilities (cross sections)
- Random numbers and cross sections may be used to simulate single events
- Better than analytical methods, but requires CPUtime

MC simulations 2

- Photons give rise to electrons and vice versa; coupled energy transport
- Analytic methods are suboptimal for:
 - Modeling of scatter
 - Generating electron- and photon spectra
 - Modeling interface effects
 - Calculating energy dependence of dosimeter response

UiO Department of Physics University of Oslo

MC simulation - example

• Use random numbers to estimate π

Ratio of areas: $\pi/4$

Draw random numbers;

Sample points so that $x^2 + y^2 \le 1$

Here, Ratio = 787/1000 = 0.787

$$\rightarrow \pi \approx 4 \times 0.787 = 3.148$$

Random walk

UiO Department of Physics University of Oslo

Photon MC

Description of photons and their energy depositions:

- 1. Position
- 2. Pathlength
- 3. Interaction
- 4. Secondary photon?

Expension Depends on photon energy

1: Draw two random numbers; 0<R<1

UiO Department of Physics
University of Oslo

Photon pathlength

• Photon attenuation:

$$N = N_0 e^{-\mu z}$$

• Describes the number of photons at depth z - is a type of *frequency distribution*:

$$\begin{split} f(z) &= Ce^{-\mu z} \quad , \quad \int\limits_0^\infty f(z)dz \stackrel{!}{=} 1 \implies C = \mu \\ &\Rightarrow \left\langle z \right\rangle = \int\limits_0^\infty z f(z)dz = \frac{1}{\mu} \end{split}$$

• Expected pathlength: 1/μ

UiO Department of Physics

Photon interaction point 1

- At what depth does an event (interaction) take place?
- Need a cumulative distribution with respect to depth:

$$F(z) = \int_{0}^{z} f(z')dz' = \int_{0}^{z} \mu e^{-\mu z'}dz' = 1 - e^{-\mu z}$$

F(z): probability that a photon has interacted between 0 and z

UiO Department of Physics University of Oslo

Photon interaction point 2

 Draw a random number R₁ – what is the corresponding pathlenght for this photon?

$$F(z_1) = R_1 = 1 - e^{-\mu z_1} \implies e^{-\mu z_1} = 1 - R_1$$

$$z_1 = -\frac{\ln(1 - R_1)}{\mu}$$

Example: $R_1=0.6 \rightarrow z_1=18.3 \text{ cm}$

UiO Department of Physics University of Oslo

Pathlength sampling

• Sampled pathlength of 1000 photons (1 MeV):

Interaction sampling

- What interaction occur at given depth?
- Total probability:

$$\mu = \tau + \sigma_R + \sigma + \kappa$$

• Probability for e.g. Compton scatter:

$$p_{Compton} = \frac{\sigma}{\mu}$$

• Draw random number:

UiO Department of Physics University of Oslo

Sampling of scattered photons

- Is the photon scattered? In what direction?
- Angular distribution follows Compton cross section:

• Compton distribution has no analytic cumulative

Must draw two random numbers

UiO Department of Physics

Sampling Compton scatter

UiO Department of Physics University of Oslo

Electron MC 1

- Simulations of electrons and positrons are more complicated
- A 0.5 MeV electron interacts ~10000 times when slowing down to 1 keV in aluminium!
- Number of calculations $\rightarrow \infty$
- *Macroscopic* Monte Carlo: Evaluate the electron after a given steplength several interactions included in one step (simulations of every interaction: *microscopic* Monte Carlo)

Electron MC 2

Relative energy loss per step, η:

$$\eta = \frac{T_{k+1} - T_k}{T_k} = \frac{\Delta T}{T_k}$$

- T_k: electron energy in interaction point k
- η is set by user
- may be sampled. Step length: $\Delta s = \eta \frac{T_k}{\left(\frac{dT}{dx}\right)_{k,k+1}}$

UiO Department of Physics University of Oslo

Electron 'walk'

UiO Department of Physics University of Oslo

Electron 'tree'

University of Oslo

Electron MC, example

• 18 MeV electrons in water/bone

EGSnrc

- EGSnrc is a widely used MC code for e.g. simulations of photon- and electron beams
- Complicated programming, but simplified, userfriendly interface available: egs_inprz

http://nrc-enrc.github.io/EGSnrc/

UiO Department of Physics
University of Oslo

EGSnrc/DOSRZ

• DOSRZ: MC in cylindrical geometry

DOSRZ

- The user sets:
 - Phantom geometry
 - Radiation type- and energy (or spectrum)
 - Source (parallel beam, point source, ...)
 - Number of "histories", i.e. number of particles
 - Some MC parameters

University of Oslo

Some important parameters

- ECUT: lower limit for electron transport (includes rest mass of 0.511 MeV)
- PCUT: lower limit for photon transport
- AE: lower limit for generation of electrons
- AP: lower limit for generation of photons
- AE and AP is medium specific and must be set in PEGS (see below)

Directories

UiO Department of Physics
University of Oslo

Interface

UiO Department of Physics University of Oslo

Interface

UiO Department of Physics University of Oslo

Interface

UiO Department of Physics
University of Oslo

Interface

UiO Department of Physics
University of Oslo

Interface

UiO Department of Physics
University of Oslo

Interface

UiO Department of Physics
University of Oslo

Interface

UiO Department of Physics
University of Oslo

$Output - *.egsgph \ (with \ IWATCH=graph)$

р	q	r x	У	Z	E
i	0	2 -3.8381002	-2.2746158	0.0000000	0.10000000
1	0	2 -3.8381002	-2.2746158	1.8895864	0.10000000
2	-1	2 -3.8381002	-2.2746158	1.8895864	0.52920631
2	-1	2 -3.8381002	-2.2746158	1.8895864	0.52920631
2	-1	2 -3.8381002	-2.2746158	1.8895864	0.52920631
1	0	2 -3.8381002	-2.2746158	1.8895864	0.81773069E-01
1	0	2 -3.9120636	-3.2345552	1.8234146	0.81773069E-01
2	-1	2 -3.9120636	-3.2345552	1.8234146	0.52306919
2	-1	2 -3.9120636	-3.2345552	1.8234146	0.52306919
2	-1	2 -3.9120636	-3.2345552	1.8234146	0.52306919
1	0	2 -3.9120636	-3.2345552	1.8234146	0.69693251E-01
1	0	2 -7.7017622	-3.0405600	2.4233341	0.69693251E-01
2	-1	2 -7.7017622	-3.0405600	2.4233341	0.51507270
2	-1	2 -7.7017622	-3.0405600	2.4233341	0.51507270
2	-1	2 -7.7017622	-3.0405600	2.4233341	0.51507270
1	0	2 -7.7017622	-3.0405600	2.4233341	0.65609927E-01
1	0	2 -9.9838972	-0.41123173	0.71254671	0.65609927E-01
1	0	2 -9.9838972	-0.41123173	0.71254671	0.65609927E-01
1	0	2 -9.9838972	-0.41123173	0.71254671	0.65609927E-01
1	0	1 -9.9919167	-0.40199202	0.70653480	0.65609927E-01
0	0	0 0.0000000	0.0000000	0.0000000	0.0000000
1	0	2-0.81262147	-1.4711231	0.0000000	0.10000000
1	0	2-0.81262147	-1.4711231	0.17595443	0.10000000
2	-1	2-0.81262147	-1.4711231	0.17595443	0.52714602
2	-1	2-0.81262147	-1.4711231	0.17595443	0.52714602
2	-1	2-0.81262147	-1.4711231	0.17595443	0.52714602
1	0	2-0.81262147	-1.4711231	0.17595443	0.83314356E-01
1	0	1 -7.7556510	-6.3126755	0.52070326	0.83314356E-01

p: particle q: charge r: region x: x-coord E=energy

UiO Department of Physics University of Oslo

Output - *.egslst

UiO Department of Physics University of Oslo

Output - *.egslst

UiO Department of Physics
University of Oslo

Output - *.egslst

UiO Department of Physics

PEGS

- Preprocessor for EGS
- Medium definition is performed in PEGS
- Have to set AE og AP, in addition to UE og UP (upper limit for for electron- and photon energy)

UiO Department of Physics
University of Oslo

PEGS

