Projektarbeit Netzwerk Dokumentation

Yannik Bürkle, Marcus Herrmann, Dennis Reise

<2024-05-17 Fr>

Contents

1	MA	.C-Adressen-Tabellen
	1.1	SWSERVERROOM
	1.2	SWBUERO
	1.3	SWLABOR
	1.4	SWMEETING
2	Rou	tingtabelle RTR1
3	Net	ze und ihre Eigenschaften
	3.1	Firmennetz
	3.2	IoT-Netzwerk
	3.3	Privat-Netzwerk
	3.4	WLAN-Management-Netzwerk
	3.5	Fallback VLAN
	3.6	Simuliertes Internet
4	IP-	Adressen 8
	4.1	Firmennetz
	4.2	IoT-Netz
	4.3	Privat-Netzwerk
	4.4	WirelessManagement
5	Auf	bau des Netzwerks
6	Dok	kumentation der ausgeführten Aktionen
	6.1	Allgemein
	6.2	SWSERVERROOM
	63	SWI ABOD 13

6.4	SWBUERO	14
6.5	SWMEETING	14
6.6	RTR1	15
6.7	SERVER1	17
6.8	Alle Enddevices (PCx, OSCx, MOTORx, TVx)	17
6.9	Wireless LAN Controller	18
6.10	SPEAKER_MEETING	18
6.11	Simuliertes Internet 8.8.8.8	18
6.12	Simuliertes Mitarbeiternotebook	
	6.12.1 Tests	18
6.13	Simuliertes Notebook im VLAN 20 (IoT-Netz)	19
	6.13.1 Tests	19

1 MAC-Adressen-Tabellen

1.1 SWSERVERROOM

 ${\tt SWSERVERROOM\#show\ mac-address-table} \\ {\tt Mac\ Address\ Table}$

Vlan	Mac Address	Туре	Ports
10	0001.43b8.6c01	DYNAMIC	GigO/2
10	0001.64be.b617	DYNAMIC	Fa0/2
10	0001.c963.aae3	DYNAMIC	GigO/1
10	0006.2a52.5372	DYNAMIC	GigO/1
10	0090.2b11.6254	DYNAMIC	GigO/1
10	00d0.bcbe.b68a	DYNAMIC	Fa0/22
10	00e0.8f60.9dcd	DYNAMIC	Fa0/23
10	00e0.f758.668e	DYNAMIC	GigO/1
20	0001.43b8.6c01	DYNAMIC	GigO/2
20	0001.43eb.baea	DYNAMIC	Fa0/23
20	0001.97d4.3b62	DYNAMIC	Fa0/23
20	0004.9a2a.0553	DYNAMIC	Fa0/23
20	0007.ec9b.9670	DYNAMIC	Fa0/23
20	0040.0b5a.7743	DYNAMIC	Fa0/23
20	00e0.f7eb.7845	DYNAMIC	Fa0/23
30	0001.43b8.6c01	DYNAMIC	GigO/2

40	0001.c946.8201	DYNAMIC	Fa0/1
40	000b.be06.0a01	DYNAMIC	Fa0/24
40	00d0.5831.aa01	DYNAMIC	GigO/1
40	00e0.a31a.5b56	DYNAMIC	Fa0/21

1.2 SWBUERO

SWBUERO#show mac-address-table
Mac Address Table

Vlan	Mac Address	Туре	Ports
10	0001.43b8.6c01	DYNAMIC	GigO/1
10	0001.64be.b617	DYNAMIC	GigO/1
10	0001.64e2.4119	DYNAMIC	GigO/1
10	0001.c963.aae3	DYNAMIC	Fa0/3
10	0006.2a52.5372	DYNAMIC	Fa0/1
10	0090.2b11.6254	DYNAMIC	Fa0/4
10	00e0.8f60.9dcd	DYNAMIC	GigO/1
10	00e0.f758.668e	DYNAMIC	Fa0/2
10	0001.6478.ac12	DYNAMIC	GigO/1
30	0001.64e2.4119	DYNAMIC	GigO/1
40	0001.64e2.4119	DYNAMIC	GigO/1
40	00d0.5831.aa01	DYNAMIC	Fa0/24
40	00e0.a31a.5b56	DYNAMIC	GigO/1
			_

1.3 SWLABOR

 ${\tt SWLABOR\#show\ mac-address-table} \\ {\tt Mac\ Address\ Table}$

Vlan	Mac Address	Туре	Ports
10	0001.43b8.6c01	DYNAMIC	Fa0/24
10	0001.64be.b617	DYNAMIC	Fa0/24
10	0001.64e2.4117	DYNAMIC	Fa0/24

10	0001.c963.aae3	DYNAMIC	Fa0/24
10	0006.2a52.5372	DYNAMIC	Fa0/24
10	0090.2b11.6254	DYNAMIC	Fa0/24
10	00e0.8f60.9dcd	DYNAMIC	Fa0/1
10	00e0.f758.668e	DYNAMIC	Fa0/24
20	0001.43b8.6c01	DYNAMIC	Fa0/24
20	0001.43eb.baea	DYNAMIC	Fa0/11
20	0001.64e2.4117	DYNAMIC	Fa0/24
20	0001.97d4.3b62	DYNAMIC	Fa0/21
20	0004.9a2a.0553	DYNAMIC	Fa0/10
20	0007.ec9b.9670	DYNAMIC	Fa0/13
20	0040.0b5a.7743	DYNAMIC	Fa0/20
20	00e0.f7eb.7845	DYNAMIC	Fa0/12

1.4 SWMEETING

SWMEETING#sh mac-address-table
Mac Address Table

Vlan	Mac Address	Туре	Ports
10	0001.43b8.6c01	DYNAMIC	Fa0/24
10	0001.64e2.4118	DYNAMIC	Fa0/24
10	0001.c963.aae3	DYNAMIC	Fa0/24
10	0090.2b11.6254	DYNAMIC	Fa0/24
10	00e0.8f60.9dcd	DYNAMIC	Fa0/24
10	0001.6478.ac12	DYNAMIC	Fa0/2
10	0006.2a52.5372	DYNAMIC	Fa0/24
30	0001.64e2.4118	DYNAMIC	Fa0/24
40	0001.64e2.4118	DYNAMIC	Fa0/24
40	000b.be06.0a01	DYNAMIC	Fa0/1
40	00e0.a31a.5b56	DYNAMIC	Fa0/24

2 Routingtabelle RTR1

RTR1#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP [output shortened]

```
Gateway of last resort is not set
     0.0.0.0/1 is subnetted, 1 subnets
C*
        0.0.0.0/1 is directly connected, GigabitEthernet0/1
     45.0.0.0/32 is subnetted, 1 subnets
        45.232.17.11/32 is directly connected, GigabitEthernet0/1
L
     172.19.0.0/16 is variably subnetted, 8 subnets, 2 masks
        172.19.0.0/25 is directly connected, GigabitEthernet0/0.10
С
        172.19.0.1/32 is directly connected, GigabitEthernet0/0.10
L
С
        172.19.0.128/25 is directly connected, GigabitEthernet0/0.20
L
        172.19.0.129/32 is directly connected, GigabitEthernet0/0.20
С
        172.19.1.0/25 is directly connected, GigabitEthernet0/0.30
L
        172.19.1.1/32 is directly connected, GigabitEthernet0/0.30
C
        172.19.1.128/25 is directly connected, GigabitEthernet0/0.40
        172.19.1.129/32 is directly connected, GigabitEthernet0/0.40
L
RTR1#show ipv6 route
IPv6 Routing Table - 15 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
[output shortened]
    2001:DB8:0:0:10::/80 [0/0]
     via GigabitEthernet0/0.10, directly connected
    2001:DB8::10:0:0:1/128 [0/0]
L
    via GigabitEthernet0/0.10, receive
    2001:DB8:0:0:20::/80 [0/0]
    via GigabitEthernet0/0.20, directly connected
L
    2001:DB8::20:0:0:1/128 [0/0]
    via GigabitEthernet0/0.20, receive
C
    2001:DB8:0:0:30::/80 [0/0]
    via GigabitEthernet0/0.30, directly connected
L
    2001:DB8::30:0:0:1/128 [0/0]
    via GigabitEthernet0/0.30, receive
C
    2001:DB8:0:10::/64 [0/0]
    via GigabitEthernet0/0.10, directly connected
L
    2001:DB8:0:10::1/128 [0/0]
    via GigabitEthernet0/0.10, receive
C
    2001:DB8:0:20::/64 [0/0]
    via GigabitEthernet0/0.20, directly connected
    2001:DB8:0:20::1/128 [0/0]
     via GigabitEthernet0/0.20, receive
```

```
C 2001:DB8:0:30::/64 [0/0]
```

via GigabitEthernet0/0.30, directly connected

L 2001:DB8:0:30::1/128 [0/0]

via GigabitEthernet0/0.30, receive

C 2001:DB8:0:40::/64 [0/0]

via GigabitEthernet0/0.40, directly connected

L 2001:DB8:0:40::1/128 [0/0]

via GigabitEthernet0/0.40, receive

L FF00::/8 [0/0]

via NullO, receive

Die Routingtabelle von RTR1 ist also sehr simpel. Alle Netze sind direkt verbunden über die verschiedenen Subinterfaces von GigabitEthernet0/0.

3 Netze und ihre Eigenschaften

3.1 Firmennetz

• VLAN ID: 10

• CISCO VLAN Name: "FIRMENNETZ"

• IPv4-Bereich: 172.19.0.0/25

• IPv4-Gateway: 172.19.0.1

• IPv6-Bereich: 2001:db8:0:10::/64

• IPv6-Gateway: fe80::1

3.2 IoT-Netzwerk

• VLAN ID: 20

• CISCO VLAN Name: "IoT-Netz"

• IPv4-Bereich: 172.19.0.128/25

• IPv4-Gateway: 172.19.0.129

• IPv6-Bereich: 2001:db8:0:20::/64

• IPv6-Gateway: fe80::1

3.3 Privat-Netzwerk

• VLAN ID: 30

• CISCO VLAN Name: "Privat-Netzwerk"

• IPv4-Bereich: 172.19.1.0/24

• IPv4-Gateway: 172.19.1.1

• IPv6-Bereich: 2001:db8:0:30::/64

 \bullet IPv6-Gateway: fe80::1

3.4 WLAN-Management-Netzwerk

• VLAN ID: 40

• CISCO VLAN Name: "WirelessManagement"

• IPv4-Bereich: 172.19.1.128/25

• IPv4-Gateway: 172.19.1.129

• IPv6-Bereich: 2001:db8:0:40::/64

• IPv6-Gateway: fe80::1

3.5 Fallback VLAN

• VLAN ID: 999

• CISCO VLAN Name: "Fallback VLAN"

Das Fallback VLAN haben wir benutzt, um nicht verwendete Ports an den Switches auf ein nicht existentes VLAN zu legen, um die Netzwerksicherheit zu erhöhen.

3.6 Simuliertes Internet

• IPv4-Bereich: 0.0.0.0/1

4 IP-Adressen

4.1 Firmennetz

statisch gesetzt:

IPv4	IPv6	Host
172.19.0.1	2001:db8:0:10::1	RTR1
172.19.0.2	2001:db8:0:10::2	S00001

dynamisch via DHCP bzw. IPv6 SLAAC:

IPv4	IPv6	Host
172.19.0.100	2001:db8:0:10:d49f:3db0:9e4c:dc9b	PCBUERO1
172.19.0.101	2001: db8: 0: 10: b9b2: eb49: d889: 6cd4	PCBUERO2
172.19.0.106	2001:db8:0:10:49ba:9e31:8b71:f1f9	PCBUERO3
172.19.0.102	2001:db8:0:10:9105:77aa:3fee:3784	PCBUERO4
172.19.0.103	2001:db8:0:10:6ad7:bdfb:7b47:4bb5	PCLABOR1
172.19.0.105	2001: db 8: 0: 10: 780 f: ea 94: 2881: 7 aec	PCRECEPTION
172.19.0.107	2001:db8:0:10:e2a7:991d:f6dd:b3ee	TVMEETING

4.2 IoT-Netz

statisch gesetzt:

IPv4	IPv6	Host
172.19.0.129	2001:db8:0:20::1	RTR1

dynamisch via DHCP bzw. IPv6 SLAAC:

IPv4	IPv6	Host
172.19.0.143	keine	OSC1
172.19.0.145	keine	OSC2
172.19.0.144	keine	OSC3
172.19.0.141	keine	OSC4
172.19.0.140	keine	MOTOR1
172.19.0.142	keine	MOTOR2
172.19.0.146	keine	LAPTOP-IOTTEST

4.3 Privat-Netzwerk

statisch gesetzt:

IPv4	IPv6	Host
172.19.1.1	2001:db8:0:30::1	RTR1

dynamisch via DHCP bzw. IPv6 SLAAC:

IPv4	IPv6	Host
172.19.1.13	keine	LAPTOP-MITARBEITER1
172.19.1.11	keine	SPEAKER_MEETING

${\bf 4.4 \quad Wireless Management}$

statisch gesetzt:

IPv4 IPv6 Host 172.19.1.129 keine RTR1 172.19.1.130 keine WLC

5 Aufbau des Netzwerks

6 Dokumentation der ausgeführten Aktionen

6.1 Allgemein

• zuerst die bestehenden Geräte ins Netzwerk aufgenommen

- für die Oszilloskope und Motorregler Cisco-Gerät "MCU-PT" mit 1 FE-Port genommen
- Zusätzliche Hardware:
 - SWSERVERROOM
 - SWMEETING

APBREAK und PCRECEPTION sind via Patch Panel direkt am Hauptswitch SWSERVERROOM angebunden

- Display Names Prefixes
 - SW Switch
 - RTR Router
 - PC Arbeitsplatz-PC
 - AP Access Point
 - TV Fernseher
- Geräte sind mit dem Raumname SERVERROOM, BUERO, MEET-ING, LABOR, BREAK, RECEPTION benannt, wenn mehrere gleichartige Geräte in einem Raum vorhanden sind, werden sie ab 1 nummeriert
- Router wird ohne Raumname benannt und erhält einfach den Namen RTR1

6.2 SWSERVERROOM

• Hostname SWSERVERROOM gesetzt

hostname SWSERVERROOM

• logging synchronous für con0 und vty0-4 aktiviert

line con0
 logging synchronous
line vty 0 4
 logging synchronous

• VLANs angelegt

```
vlan 10
name "FIRMENNETZ"
vlan 20
name "IoT-Netz"
vlan 30
name "Privat-Netzwerk"
vlan 40
name "WirelessManagement"
vlan 999
name "Fallback VLAN"
```

• Standardkonfiguration für alle Ports erstellen und Ports abschalten

```
interface range fa0/1-24,gi0/1-2
  shutdown
  switchport mode access
  switchport access vlan 999
```

• Port zu Router (Gi0/2) als Trunk konfiguriert und aktiviert

```
interface gi0/2
  description link to RTR1
  switchport mode trunk
  switchport trunk native vlan 999
  switchport trunk allowed vlan 10,20,30,40
  no shutdown
```

• Port zu Büro-Switch (Gi0/1) als Trunk konfiguriert und aktiviert

```
interface gi0/1
  description link to SWBUERO
  switchport mode trunk
  switchport trunk native vlan 999
  switchport trunk allowed vlan 10,30,40
  no shutdown
```

• Port zu SERVER1 (Fa0/22) konfiguriert und aktiviert

```
interface fa0/22
description link to SERVER1
```

```
switchport mode access
switchport access vlan 10
no shutdown
```

• Port zu Labor-Switch (Fa0/23) als Trunk konfiguriert und aktiviert

```
interface fa0/23
  description link to SWLABOR
  switchport mode trunk
  switchport trunk native vlan 999
  switchport trunk allowed vlan 10,20
  no shutdown
```

Port zu Meetingraum-Switch (Fa0/24) als Trunk konfiguriert und aktiviert

```
interface fa0/24
  description link to SWMEETING
  switchport mode trunk
  switchport trunk native vlan 999
  switchport trunk allowed vlan 10,30,40
  no shutdown
```

• Port zu Pausenraum-Accesspoint (Fa0/1) als Trunk konfiguriert und aktiviert

```
interface fa0/1
  description link to APBREAK
  switchport mode trunk
  switchport trunk native vlan 40
  switchport trunk allowed vlan 30,40
  no shutdown
```

• Port zu Empfangs-PC (Fa0/2) konfiguriert und aktiviert

```
interface fa0/2
  description link to PCRECEPTION
  switchport mode access
  switchport access vlan 10
```

• Port zu WLAN-Controller (Fa0/21) konfiguriert und aktiviert

```
switchport fa0/21
description link to Wireless Controller0
switchport mode access
switchport access vlan 40
no shutdown
```

6.3 SWLABOR

- Hostname SWLABOR gesetzt
- logging synchronous für con0 und vty0-4 aktiviert
- VLANs angelegt
- Alle Switchports Fa0/1-24,Gi0/1-2 shutdown
- Alle Switchports Fa0/1-24,Gi0/1-2 auf VLAN 999 gesetzt
- Switchport Fa0/24 (link to SWSERVERROOM) auf Trunk 10,20,30 konfiguriert und up

```
interface fa0/24
  description link to SWSERVERROOM
  switchport mode trunk
  switchport trunk native vlan 999
  switchport trunk allowed vlan 10,20,30
  no shutdown
```

 $\bullet\,$ Switchport Fa0/1 (link to SWLABOR1) auf Access 10 konfiguriert und up

```
interface fa0/1
  description link to SWLABOR1
  switchport mode access
  switchport access 10
  no shutdown
```

 \bullet Switch ports Fa0/10-13 (link to OSCx) auf Access 20 konfiguriert und up

```
interface range fa0/10-13
  switchport mode access
  switchport access vlan 20
  no shutdown
```

 \bullet Switchports Fa0/20-21 (link to MOTORx) auf Access 20 konfiguriert und up

interface range fa0/20-21
 switchport mode access
 switchport access vlan 20

6.4 SWBUERO

- Hostname SWBUERO gesetzt
- logging synchronous für con0 und vty0-4 aktiviert
- VLANs angelegt
- Alle switchports Fa0/1-24,Gi0/1-2 shutdown
- Alle Switchports Fa0/1-24,Gi0/1-2 auf VLAN 999 gesetzt
- Switchports Fa0/1-4 (link to PCBUEROx) auf access 10 konfiguriert und up
- Switchport Fa0/24 (link to APBUERO) auf Trunk native VLAN 40, allowed 30 konfiguriert und up
- Switchport Gi0/1 (link to SWSERVERROOM) auf trunk native 999, allowed 10,30,40 konfiguriert und up

6.5 SWMEETING

- Hostname SWMEETING gesetzt
- logging synchronous fün con0 und vty0-4 aktiviert
- VLANs angelegt
- Alle switchports Fa0/1-24,Gi0/1-2 shutdown
- Alle switchports Fa0/1-24,Gi0/1-2 auf access 999 gesetzt
- Switchport Fa0/1 (link to APMEETING) auf trunk native VLAN 40, allowed VLANs 30,40 konfiguriert und up
- Switchport Fa0/24 (link to SWSERVERROOM) auf trunk native 999, allowed 10,30,40 konfiguriert und up

6.6 RTR1

- Vier Cover in der Physical view hinzugefügt, um die leeren Plätze zu füllen
- Initialer Assistent übersprungen
- Hostname RTR1 gesetzt
- Logging synchronous für line con0 und vty0-15 gesetzt

```
line con 0
  logging synchronous
line vty 0 15
  logging synchronous
```

• Subinterface Gi0/0.10 mit dot1q 10 konfiguriert und IP-Adresse 172.19.0.1/25, 2001:db8:0:10::1/64, fe80::1 zugewiesen

```
interface gi0/0.10
  encapsulation dot1Q 10
  ip address 172.19.0.1 255.255.255.128
  ipv6 address 2001:db8:0:10::1/64
  ipv6 address fe80::1 link-local
```

• Subinterface Gi0/0.20 mit dot1q 20 konfiguriert und IP-Adresse 172.19.0.129/25, 2001:db8:0:20::1/64, fe80::1 zugewiesen, helper-adresse zugewiesen

```
interface gi0/0.20
  encapsulation dot1Q 20
  ip address 172.19.0.129 255.255.255.128
  ipv6 address 2001:db8:0:20::1/64
  ipv6 address fe80::1 link-local
  ip helper-address 172.19.0.2
```

 \bullet Subinterface Gi0/0.30 mit dot1q 30 konfiguriert und IP-Adresse 172.19.1.1/25, 2001:db8:0:30::1/64, fe80::1 zugewiesen

```
interface gi0/0.30
  encapsulation dot1Q 30
  ip address 172.19.1.1 255.255.255.128
  ipv6 address 2001:db8:0:30::1/64
  ipv6 address fe80::1 link-local
  ip helper-address 172.19.0.2
```

• Subinterface Gi0/0.40 mit dot1q 40 konfiguriert und IP-Adresse 172.19.1.129/25, 2001:db8:0:40::1/64, fe80::1 zugewiesen

```
interface gi0/0.40
  encapsulation dot1Q 40
  ip address 172.19.1.129 255.255.255.128
  ipv6 address 2001:db8:0:40::1/64
  ipv6 address fe80::1 link-local
  ip helper-address 172.19.0.2
```

• Interface Gi0/0 up

```
interface gi0/0
  no shutdown
```

Um eine Internetverbindung zu simulieren, haben wir ein weiteres Interface mit einer "öffentlichen" IP-Adresse hinzugefügt und den Internetzugriff mit einem NAT den Netzen ermöglicht:

• Access List für Internetzugriff definieren

```
ip access-list standard NAT-SOURCES
  10 permit 172.19.0.0 0.0.0.127
  20 permit 172.19.1.0 0.0.0.127
```

• NAT Pool anlegen für Internetzugriff

```
ip nat pool ISPGIVEN 45.232.17.12 45.232.17.12 netmask 128.0.0.0
```

• Source NAT für Internet definieren und Interface für simulierten Internettraffic erstellen

```
ip nat inside source list NAT-SOURCES pool ISPGIVEN
interface gi0/1
  ip address 45.232.17.11 128.0.0.0
  ip nat outside
interface gi0/0.10
  ip nat inside
interface gi0/0.30
  ip nat inside
```

Für die Netzisolation haben wir Access-Lists erstellt und diese den Subinterfaces hinzugefügt:

```
ip access-list standard FROMIOT
  10 permit 172.19.0.0 0.0.0.127
  90 deny any
interface gi0/0.20
  ip access-group FROMIOT out
ip access-list standard FROMPRIVAT
  10 deny 172.19.0.0 0.0.0.127
  20 deny 172.19.0.128 0.0.0.127
  30 permit any
interface gi0/0.30
  ip access-group FROMPRIVAT out
ip access-list standard FROMFIRMENNETZ
  10 deny 172.19.1.0 0.0.0.127
```

20 permit any

interface gi0/0.10 ip access-group FROMFIRMENNETZ out

6.7 SERVER1

- Hostname S000001 gesetzt
- IP-Adressen 172.19.0.2/25, 2001:db8:0:10::2/64 gesetzt
- DHCP-Server konfiguriert (KONFIG FEHLT)
- DHCPv6-Server konfiguriert (KONFIG FEHLT)
- DNS aktiviert ohne Konfig.

Alle Enddevices (PCx, OSCx, MOTORx, TVx) 6.8

• Gateway IPv4 und IPv6 via DHCP/automatisch gesetzt

• FastEthernet0 IPv4 und IPv6 Adressen via DHCP(v6) beziehen

6.9 Wireless LAN Controller

- WLAN-Netz Sensoic_Gast mit VLAN 30, WPA2-PSK Passphrase "CIS-COPacketTracer", lokale Switching und Authentikation konfiguriert
- DHCP-Pool aps angelegt mit Gateway 172.19.1.129, DNS 172.19.0.2, Start IP Address 172.19.1.140, Subnetzmask 255.255.255.128, max user 20, WLC address 172.19.1.130

6.10 SPEAKER MEETING

• WLAN-Netzwerk Sensoic Gast konfiguriert

6.11 Simuliertes Internet 8.8.8.8

Für die simulierte Internetverbindung haben wir einen weiteren Router mit der IP 8.8.8.8 erstellt und diesen direkt mit unserem Router RTR1 verbunden.

```
interface Gi0/0
  ip address 8.8.8.8 128.0.0.0
  no shutdown
```

Weitere Einstellungen haben wir nicht vorgenommen, da wir diesen Router nur verweden um zu verifizieren, ob Verbindung von den einzelnen Netzen möglich ist.

6.12 Simuliertes Mitarbeiternotebook

Wir haben ein weiteres Notebook "Laptop-Mitarbeiter1" hinzugefügt, um Netzwerkrichtlinien für das Privat-Netzwerk zu testen. Dieses wird per WLAN-Verbindung an Sensoic_Gast angebunden und erhält seine IP-Adresse per DHCP.

6.12.1 Tests

- ☑ VLAN 30 kann ins Internet sprechen [getestet als Ping an 8.8.8.8]
- \boxtimes VLAN 30 kann nicht in das Firmennetz sprechen [getestet als Ping an 172.19.0.103]

6.13 Simuliertes Notebook im VLAN 20 (IoT-Netz)

Wir haben ein weiteres Notebook "Laptop-IoTTest" hinzugefügt, um Netzwerkrichtlinien für das IoT-Netzwerk zu testen. Dieses wird per LAN direkt am SWSERVERROOM angebunden (Fa0/10) und erhält seine IP-Adresse per DHCP.

6.13.1 Tests

- □ VLAN 20 kann nicht in das Privatnetzwerk sprechen [getestet als Ping an 172.19.1.16 (Laptop-Mitarbeiter1)]