## **Assignment 9**

### TODO#1

### 1) N(0, 1)



## 2) Bernoulli(0.3)



### 3) B(10, 0.3)



# 4) Multinomial(n = 10, p = [0.3, 0.2, 0.5])



## 5) U(0, 1)



# 6) T(0, 1)



TODO#2



จากการ plot เปรียบเทียบระหว่าง Empirical Mean และ Theoretical Mean จะเห็นว่ายิ่ง Sampling size มีขนาดใหญ่ขึ้นก็จะยิ่งทำให้ Empirical Mean มีค่าลู่เข้า Theoretical Mean มากเท่านั้น

TODO#3 [หมายเหตุ : ในข้อนี้จะทำการตั้ง density = True เพื่อการเปรียบเทียบที่ชัดเจน]





จากการ plot histogram ของ sample size ขนาด 500, 1000, 5000, 10000 ตามลำดับ เทียบกับ true PDF พบว่า histogram มีความใกล้เคียงกับ true PDF มากขึ้น เมื่อ sample size มีขนาดมากขึ้น

#### TODO#4



เมื่อ plot จำนวนครั้งของการออกหัวจาก
การโยนเหรียญ 100 ครั้งของเหรียญ
100000 เหรียญ (จำนวนมาก) จะเห็นว่า
histrogram ที่ได้ออกมามีหน้าตาคล้าย
กับ normal distribution

#### **TODO#5**

ต้องการหา 
$$P(X > 40) = 1 - P(X \le 40)$$

โดยทฤษฎี CLT จะได้ว่าจำนวนครั้งของการออกหัวจากการโยนเหรียญ 100 ครั้งของ เหรียญ 100000 เหรียญ (จำนวนมาก) มีลักษณะคล้าย normal distribution นั่นคือเราสามารถคำนวณ  $P(X \leq 40)$  จาก CDF(z) เมื่อ  $z = \frac{40-mean}{std}$  ซึ่งเมื่อทำการคำนวนผ่าน python ตามโค้ดดังนี้

```
n = 100
p = 0.3

z = (40 - binom.mean(n, p, loc=0))/binom.std(n, p, loc=0)
probability = 1-norm.cdf(z)
print(probability)

0.014548165870626129
```

จึงได้ว่า probability ที่ได้จากการคำนวณผ่าน CLT มีค่าประมาณ 0.0145

#### TODO#6

ทำการคำนวณหา actual probability โดยการนับจำนวนเหรียญที่ทอยแล้วออกหัวมากกว่า 40 ครั้ง แล้วนำมาหารจำนวนเหรียญทั้งหมดโดยทำผ่านโค้ดดังนี้

```
# TODO#6
count = 0
for c in s:
   if c >= 41:
      count += 1
print(count/len(s))
0.01235
```

ซึ่งได้ว่า actual probability มีค่า 0.01235
ซึ่งจะเห็นว่า probability ที่ได้จากการคำนวณผ่าน CLT มีค่าสูงกว่า
actual probability ประมาณ 0.002 เท่านั้น โดยความแตกต่างนี้
อาจเกิดจากการสุ่มทอยลูกเต๋าที่ไม่สามารถกำหนดให้เป็น normal
distribution อย่างสมบูรณ์แบบได้

#### TODO#7

จาก 
$$Z=X+Y$$
 จะได้ว่า  $p_Z(z)=\,p_X(x)*p_Y(y)$  ตาม  ${\sf code}$  ข้างล่างนี้

```
tx = np.arange(-3, 3, delta)
X = 0.1*np.heaviside(tx+2, 1) + 0.3*np.heaviside(tx, 1) - 0.4*np.heaviside(tx-2, 1)

ty = np.arange(2, 6, delta)
Y = (np.heaviside(ty-3, 1) - np.heaviside(ty-5, 1))/(5-3)

# have to find p(z) = p(x+y) = p(x)*p(y)

tz = np.arange(-1, 9-delta, delta)
Z = np.convolve(X, Y)*delta
```

### จากนั้นทำการหาพื้นที่ใต้กราฟทั้งหมดของ $p_Z(z)$ ใน $\mathsf{result}$

```
result_start = 0
result_start_index = (result_start+1)*1000
result_stop = 8
result_stop_index = (result_stop+1)*1000
result = round(np.sum(Z[result_start_index:result_stop_index+1])*delta, 3)
```

### และทำการหาพื้นที่ใต้กราฟตั้งแต่ 3 ถึง 5 ของ $p_Z(z)$ ใน partial

```
partial_start = 3
partial_start_index = (partial_start+1)*1000
partial_stop = 5
partial_stop_index = (partial_stop+1)*1000
partial = round(np.sum(Z[partial_start_index:partial_stop_index+1])*delta, 3)
```

ซึ่งจะได้ว่า 
$$P(3 < Z < 5) = \frac{partial}{result} = 0.5$$

#### TODO#8

```
# TODO#8

X = sample_uniform(sample_size=100000, from_x=-1, to_x=1)

# 8.1

A1 = 10

Y1 = X + A1

print("correlation of X and Y1 : ", np.corrcoef(X, Y1)[0][1])

# 8.2

A2 = sample_uniform(sample_size=100000, from_x=-1, to_x=1)

Y2 = X + A2

print("correlation of X and Y2 : ", np.corrcoef(X, Y2)[0][1])

# 8.3

A3 = sample_uniform(sample_size=100000, from_x=-10, to_x=10)

Y3 = X + A3

print("correlation of X and Y3 : ", np.corrcoef(X, Y3)[0][1])

# 8.4

A4 = sample_uniform(sample_size=100000, from_x=-100, to_x=100)

Y4 = X + A4

print("correlation of X and Y4 : ", np.corrcoef(X, Y4)[0][1])

correlation of X and Y1 : 0.999999999999998

correlation of X and Y2 : 0.7066700835728315

correlation of X and Y3 : 0.10031037591820145

correlation of X and Y4 : 0.006530791298734063
```

#### **TODO#9**

- 1) จากข้อ 8 จะเห็นว่า X และ Y มี correlation ที่ลดน้อยลงเรื่อย ๆ เมื่อ A มีการกระจายตัวที่มากขึ้น
- 2) จาก code ข้างล่าง แสดงให้เห็นว่า ถึงแม้ ช่วงของ A จะไม่ได้อยู่ตำแหน่งเดิม แต่มีการกระจายตัวแบบก็ จะทำให้ได้ correlation เท่าเดิม

```
# TODO#9
A5 = A3+10000
Y5 = X + A5
print("correlation of X and Y3 : ", np.corrcoef(X, Y3)[0][1])
print("correlation of X and Y5 : ", np.corrcoef(X, Y5)[0][1])
correlation of X and Y3 : 0.10031037591820145
correlation of X and Y5 : 0.1003103759182018
```

#### TODO#10

1) เราต้องการให้ 
$$E[P(Fail|t)] = E\left[\frac{0.97}{2250}(t-15)^2+0.001\right]$$
 มีค่าน้อยที่สุด โดย  $E\left[\frac{0.97}{2250}(t-15)^2+0.001\right] = \frac{0.97}{2250}E[(t-15)^2]+0.001$   $= \frac{0.97}{2250}\int_{-\infty}^{\infty}(t-15)^2p(t)dt+0.001$   $= \frac{0.97}{2250}\int_{\mu-1}^{\mu+1}\frac{(t-15)^2}{(\mu+1)-(\mu-1)}dt+0.001$   $= \frac{0.97}{2250x2}\left(\frac{(\mu-14)^3-(\mu-16)^3}{3}\right)+0.001$ 

ทำการ differentiate เพื่อหาค่าต่ำสุดของ E[P(Fail|t)] จะได้

$$0 = 3(\mu - 14)^{2} - 3(\mu - 16)^{2}$$

$$0 = ((\mu - 14) - (\mu - 16))((\mu - 14) + (\mu - 16))$$

$$0 = 2\mu - 30$$

$$\mu = 15$$

. ดังนั้นจึงสรุปได้ว่า ควรตั้งค่าแอร์ที่ 15 องศา

**2)** นำค่า  $\mu$  ที่ได้จากข้อ **1** มาแทนใน

$$E[P(Fail|t)] = \frac{0.97}{2250x2} \left( \frac{(\mu - 14)^3 - (\mu - 16)^3}{3} \right) + 0.001$$
$$= \frac{0.97}{2250x2} \left( \frac{(15 - 14)^3 - (15 - 16)^3}{3} \right) + 0.001$$
$$= 0.0011437037$$

ดังนั้น probability of failure at the temperature used in part 1 คือ 0.0011437037 3) ให้ p แทนความน่าจะเป็นที่ disk ทั้งหมดจะพัง และ n แทนจำนวนครั้งที่ส่ง request

$$P(Fail > 1) < 0.01\%$$

$$1 - P(Fail \le 1) < 0.01\%$$

$$1 - {}^n_0 C p^0 (1 - p)^n - {}^n_1 C p^1 (1 - p)^{n-1} < 0.01\%$$

$$1 - \frac{0.01}{100} < (1 - p)^n + np(1 - p)^{n-1}$$

$$0.9999 < (1 - p)^n + np(1 - p)^{n-1}$$

พิจารณา ใช้ 1 disk : จะได้ n=10000, p=0.0011437037 แทนค่าลงในอสมการ พบว่า 0.9999 < 0.0001334410151748368 ซึ่งไม่เป็นจริง

พิจารณา ใช้ 2 disks : จะได้ n=10000,  $p=0.0011437037^2$  แทนค่าลงในอสมการพบว่า 0.9999<0.9999151999167454 ซึ่งเป็นจริง ดังนั้นจึงควรใช้อย่างน้อย 2 disks

#### TODO#11

1) มีทั้งหมด 3 คู่ ได้แก่ a-b, b-c, b-d

เนื่องจาก covariance matrix ระหว่าง a-b คือ  $\begin{bmatrix} 10x10^{-3} & 0 \\ 0 & 3x10^{-3} \end{bmatrix}$  ซึ่ง diagonal นั่นคือ a กับ b independent กัน

เนื่องจาก covariance matrix ระหว่าง b-c คือ  $\begin{bmatrix} 3x10^{-3} & 0 \\ 0 & 12x10^{-3} \end{bmatrix}$  ซึ่ง diagonal นั่นคือ b กับ c independent กัน

เนื่องจาก covariance matrix ระหว่าง b-d คือ  $\begin{bmatrix} 3x10^{-3} & 0 \\ 0 & 15x10^{-3} \end{bmatrix}$  ซึ่ง diagonal นั่นคือ b กับ d independent กัน

```
2)
        def expected_return(n):
          sampling_size = 10000
          expected_value = [0, 0, 0, 0]
          for i in range(sampling_size): # simulate 10000 returns
            return_value = day0
            rits = multivariate_normal.rvs(mean=miu, cov=cov_matrix, size = n)
            rits product = np.prod(rits, axis=0)
            return_value *= rits_product
            expected_value += (return_value-day0)/sampling_size
          return expected value
        result 30days = expected return(30)
        print("Expected return of coin a after 30 days : ", result_30days[0])
        print("Expected return of coin b after 30 days : ", result_30days[1])
        print("Expected return of coin c after 30 days : ", result_30days[2])
        print("Expected return of coin d after 30 days : ", result_30days[3])
        print()
        result_180days = expected_return(180)
        print("Expected return of coin a after 180 days : ", result_180days[0])
        print("Expected return of coin b after 180 days : ", result_180days[1])
        print("Expected return of coin c after 180 days : ", result_180days[2])
        print("Expected return of coin d after 180 days : ", result 180days[3])
        Expected return of coin a after 30 days : 0.9181916176900436
        Expected return of coin b after 30 days : 0.6321683613423271
        Expected return of coin c after 30 days : 1.293898138865285
        Expected return of coin d after 30 days: 1.3555383458431087
        Expected return of coin a after 180 days : 6.561157161892945
        Expected return of coin b after 180 days : 4.464782919693632
        Expected return of coin c after 180 days : 10.818915439930684
       Expected return of coin d after 180 days: 9.401930978218006
```

#### 3) ทำการหา probability ของแต่ละเหรียญตาม code ด้านล่าง

```
# TODO#11.3
def profit probability(n):
  sampling_size = 10000
  count_profit = np.array([0, 0, 0, 0])
  for i in range(sampling size): # simulate 10000 returns
    rits = multivariate_normal.rvs(mean=miu, cov=cov_matrix, size = n)
    rits_product = np.prod(rits, axis=0)
    for j in range(4):
      if rits_product[j] > 1:
        count_profit[j] += 1
  return count profit/sampling size
days = 100
profit_prob = profit_probability(days)
print("a :", profit_prob[0])
print("b :", profit_prob[1])
print("c :", profit_prob[2])
print("d :", profit_prob[3])
a: 0.4179
b: 0.5447
c: 0.4348
d: 0.3838
```

### ซึ่งพบว่า coin b ความน่าจะเป็นที่จะได้กำไรมากกว่า coin อื่น ๆ

ทำการหา variance ของแต่ละเหรียญตาม code ด้านล่าง

```
def variance(n):
  sampling size = 10000
  expected_value = [0, 0, 0, 0]
  sqrt_expected_value = [0, 0, 0, 0]
  for i in range(sampling_size): # simulate 10000 returns
    return_value = day0
    rits = multivariate_normal.rvs(mean=miu, cov=cov_matrix, size = n)
    rits_product = np.prod(rits, axis=0)
    return value *= rits product
    expected value += (return value-day0)/sampling size
    sqrt_expected_value += (return_value-day0)**2/sampling_size
  return sqrt_expected_value-expected_value**2
var = variance(days)
print("a :", var[0])
print("b :", var[1])
print("c :", var[2])
print("d :", var[3])
a: 307.4776729433312
 : 48.97578082427312
c: 475.63944622465857
  : 751.5395229509239
```

ซึ่งพบว่า coin b มี variance น้อยกว่า coin อื่น ๆ อย่างเห็นได้ชัด

Expected[return] : 11.36 Variance[return] : 3469.786

Probability of having profit : 0.408

- 4) เนื่องจาก  $\mu$  ของ  $r_{i,t}$  ของแต่ละ coin มีค่าประมาณ 1 และมีการกระจายแบบ normal distribution ทำให้เมื่อคำนวณ rate ทั้งหมดออกมาแล้วทำให้มีความน่าจะเป็นที่ rate ของทั้ง n วันมีค่ามากกว่า 1 (กำไร) และ ความน่าจะเป็นที่ rate ของทั้ง n วันมีค่าน้อยกว่า 1 (ขาดทุน) มีค่าเท่า ๆ กัน นั่นคือ แต่ละ เหรียญจะมีความน่าจะเป็นที่จะได้กำไรประมาณ 50%
- 5) ทำการคำนวณค่า Expected[return] , Variance[return] ,Probability of having profit ได้ตามภาพข้างล่าง

```
STRATEGY # 1
                                                                                                    STRATEGY # 6
        Expected[return] : 0.989
                                                         Expected[return] : 1.275
                                                                                                            Expected[return]: 1.185
        Variance[return] : 41.045
                                                         Variance[return]: 71.382
                                                                                                            Variance[return]: 47.827
        Probability of having profit : 0.46
                                                         Probability of having profit : 0.442
                                                                                                           Probability of having profit : 0.464
                                                 T = 180 :
                                                                                                   T = 180 :
        Expected[return]: 7.905
                                                         Expected[return] : 10.762
                                                                                                            Expected[return] : 9.632
        Variance[return] : 1374.388
Probability of having profit : 0.396
                                                         Variance[return] : 8016.166
                                                                                                            Variance[return] : 2422.087
                                                         Probability of having profit : 0.342
                                                                                                            Probability of having profit : 0.402
STRATEGY # 2
                                                 STRATEGY # 5
                                                                                                   STRATEGY # 7
                                                                                                   T = 30:
        Expected[return] : 0.591
                                                          Expected[return] : 0.79
                                                                                                            Expected[return] : 1.132
        Variance[return] : 10.556
Probability of having profit : 0.518
                                                          Variance[return] : 25.801
                                                                                                            Variance[return] : 56.214
                                                         Probability of having profit: 0.489
                                                                                                            Probability of having profit : 0.451
                                                 T = 180 :
                                                                                                   T = 180:
        Expected[return] : 4.389
                                                         Expected[return]: 6.147
                                                                                                           Expected[return]: 9.333
        Variance[return] : 146.559
                                                          Variance[return] : 760.473
                                                                                                            Variance[return]: 4695.277
        Probability of having profit : 0.546
                                                         Probability of having profit : 0.471
                                                                                                            Probability of having profit : 0.369
STRATEGY # 3
        Expected[return] : 1.382
        Variance[return] : 54.608
        Probability of having profit : 0.469
```

T = 30

| Strategy | Buy a | Buy b | Buy c | Buy d | Expected[return] | Variance[return] | Probability of having profit |
|----------|-------|-------|-------|-------|------------------|------------------|------------------------------|
| 1        | 100%  | 0%    | 0%    | 0%    | 0.989            | 41.045           | 0.46                         |
| 2        | 0%    | 100%  | 0%    | 0%    | 0.591            | 10.556           | 0.518                        |
| 3        | 0%    | 0%    | 100%  | 0%    | 1.382            | 54.608           | 0.469                        |
| 4        | 0%    | 0%    | 0%    | 100%  | 1.275            | 71.382           | 0.442                        |
| 5        | 50%   | 50%   | 0%    | 0%    | 0.79             | 25.801           | 0.489                        |
| 6        | 50%   | 0%    | 50%   | 0%    | 1.185            | 47.827           | 0.464                        |
| 7        | 50%   | 0%    | 0%    | 50%   | 1.132            | 56.214           | 0.451                        |

T = 180

| Strategy | Buy a | Buy b | Buy c | Buy d | Expected[return] | Variance[return] | Probability of having profit |
|----------|-------|-------|-------|-------|------------------|------------------|------------------------------|
| 1        | 100%  | 0%    | 0%    | 0%    | 7.905            | 1374.388         | 0.396                        |
| 2        | 0%    | 100%  | 0%    | 0%    | 4.389            | 146.559          | 0.546                        |
| 3        | 0%    | 0%    | 100%  | 0%    | 11.36            | 3469.786         | 0.408                        |
| 4        | 0%    | 0%    | 0%    | 100%  | 10.762           | 8016.166         | 0.342                        |
| 5        | 50%   | 50%   | 0%    | 0%    | 6.147            | 760.473          | 0.471                        |
| 6        | 50%   | 0%    | 50%   | 0%    | 9.632            | 2422.087         | 0.402                        |
| 7        | 50%   | 0%    | 0%    | 50%   | 9.333            | 4695.277         | 0.369                        |

- 6) พิจารณาจากทั้ง T = 30 และ 180 จะเห็นว่า strategy 3 ให้ expected value ที่มีค่าสูงที่สุดทั้ง 2 ตาราง จึงสรปว่า strategy 3 ให้ return สงที่สด
- 7) พิจารณาจากทั้ง T = 30 และ 180 จะเห็นว่า strategy 2 มี Probability of having profit สูง ที่สุดทั้ง 2 ตาราง นอกจากนี้ยังมีค่า Variance[return] ที่ต่ำอย่างเห็นได้ชัด ทำให้ค่า return ที่ คาดการณ์ไว้นั้นจะไม่คลาดเคลื่อนมาก ด้วยทั้งสองอย่างที่กล่าวมาจึงทำให้สรุปได้ว่า strategy 2 ปลอดภัย ที่สุด

8)

```
def cov(n):
                                                               Covariance of a and b : -0.000978
 sampling_size = 10000
                                                               Covariance of a and c : 0.153294
 r = [[], [], [], []]
 for i in range(sampling_size):
                                                               Covariance of a and d : 0.208118
   rits = multivariate_normal.rvs(mean=miu, cov=cov_matrix, size = n)
                                                               Covariance of b and c : -0.004009
   rits_product = np.prod(rits, axis=0)
                                                               Covariance of b and d : -0.001292
   for j in range(4):
    r[j] += [rits_product[j]]
                                                               Covariance of c and d : 0.075911
 return r
                                                               T = 180
coin_name = ['a', 'b', 'c', 'd']
coin30 = cov(30)
                                                               Covariance of a and b : -0.052952
coin180 = cov(180)
                                                               Covariance of a and c : 4.453592
                                                               Covariance of a and d: 7.317359
print("T = 30")
                                                               Covariance of b and c : 0.082997
for i in range(4):
 for j in range(i+1, 4):
                                                               Covariance of b and d : 0.023325
   print("Covariance of", coin_name[i], "and", coin_name[j],
                                                               Covariance of c and d : 2.127712
         ":", round(np.cov(coin30[i], coin30[j])[0][1], 6))
print("\nT = 180")
for i in range(4):
 for j in range(i+1, 4):
   print("Covariance of", coin_name[i], "and", coin_name[j],
```

':", round(np.cov(coin180[i], coin180[j])[0][1], 6)

- จากการคำนวณค่า covariance ของ coin คู่ต่าง ๆ พบว่า มีเพียง  $r_a-r_c$  และ  $r_a-r_d$  ที่มีค่า covariance สูงอย่างเห็นได้ชัด ซึ่งแสดงให้เห็นว่าปริมาณการเปลี่ยนแปลงของ  $r_a-r_c$  และ  $r_a-r_d$  มีการเปลี่ยนแปลงตามกันค่อนข้างมากเมื่อเทียบกับคู่อื่น ๆ ทำให้ถึงแม้ variance ที่ T=30 จะไม่ได้มีค่า สูงมาก แต่เมื่อ T=180 จะเห็นว่า T=180 จะ
- 9) จากคำถามข้างต้น ทำให้ได้ว่า strategy ที่ดีควรที่จะต้องมีค่า Expected[return] และ Probability of having profit ที่สูง และ Variance[return] ที่น้อย โดยการเลือกให้ค่า variance ที่น้อยจะต้องเลือกสิ่งที่มีค่า correlation ต่ำ เพราะหากมีค่าที่สูงจะทำให้มีความสัมพันธ์กัน มากและค่า variance จะสูงส่งผลให้เกิดความคลาดเคลื่อนสูง