

The Visualization Process

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Overview of the visualization process
- Visualization pipeline
- Visualization scenarios
- Presentational visualization
- Data types and classification of visualization techniques

Overview of the Visualization Process

Image adapted from Weiskopf/Machiraju/Möller.

faccording to F. Mansmann: Visual Analytics Ture

Goals of Visualization Process

Presentation

- Starting point: facts to be presented are fixed a priori
- Process: choice of appropriate presentation techniques
- Result: high-quality visualization of the data to present facts
- Confirmatory analysis
 - Starting point: hypotheses about the data
 - Process: goal-oriented examination of the hypotheses
 - Result: visualization of data to confirm or reject the hypotheses
- Exploratory analysis
 - Starting point: no hypotheses about the data
 - Process: interactive, usually undirected search for structures, trends
 - Result: visualization of data to lead to hypotheses about the data

197

Visualization: Confirmatory/Exploratory Analysis

Anscombe's Quartet: Raw Data

	1		2	2	3		4	
	X	Υ	X	Υ	Χ	Υ	X	Υ
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.8	16	0.8	16	0.8	316

Visualization: Confirmatory/Exploratory Analysis

Oversimplification -->

Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.8	16	0.8	16	0.8	316

Visualization: Confirmatory/Exploratory Analysis

J. Matejka, G. Fitzmaurice: "Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing", ACM SIGCHI Conference on Human Factors in Computing Systems, 2017.

User-Centered View on Exploration

- How is the user doing this?
 - By acquiring overview information ("global view")
 - By acquiring detail information ("local view")
 - By limiting the information space being examined
 - By focusing while maintaining context
 - By navigating through an information space
- How can we help the user?
 - By representing and presenting information appropriately
 - By providing suitable controls and navigational cues for limiting, focusing, and the control of movement in information space

Visual Information-Seeking Mantra

Overview first, zoom and filter, then details-on-demand.

Ben Shneiderman

[Ben Shneiderman, "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations". In Proceedings of the IEEE Symposium on Visual Languages, 336-343, 1996.]

[Haber, McNabb 1990]

Visualization Pipeline – Data Acquisition

- Data sources
- Data representation
- Time dependency

Visualization Pipeline – Filtering

Data → data

- Data format conversion
- Clipping/cropping/de-noising
- Slicing
- Resampling
- Interpolation/approximation
- Classification/segmentation

Visualization Pipeline – Mapping

- Data → graphical primitives, triangle meshes
- Scalar field → isoline/isosurface
- 2D field → height field
- 3D field → volume
- Vector field → arrows
- Tensor field → glyphs

Graphical Primitives: Points Lines Surface Volumes Attributes: Color Texture Transparency

Visualization Pipeline – Rendering

- Geometry, Images, Volumes,...
- Image Synthesis / Rendering Methods
 - e.g.: rasterization (OpenGL, D3D, Vulkan), ray tracing
- "Realism"
 - e.g.: shadows, lighting, shading
- Non-photorealistic rendering

- Example: IRIS Explorer
 - 1992, Silicon Graphics (SGI)
 - Application-building system for collaborative scientific visualization
 - Distributed, heterogeneous environments
 - Visual programming environment
 - Graphical dataflow models

Image Source: http://yohanan.org/steve/projects/iris-explorer

- Example: MegaMol
 - Started 2006, University of Stuttgart
 - University of Dresden, University of Tübingen
 - Cross-platform scientific visualization prototyping framework (Linux, Windows)
 - Originally designed for large, dynamic particle simulations
 - Has evolved into a general-purpose visualization framework
 - Distributed, heterogeneous environments
 - Visual programming environment
 - Graphical dataflow models

- Example: Inviwo
 - Started ~2014
 - Linköping University, Ulm University, KTH Royal Institute of Technology
 - "Free configurable visualizations for scientific data"
 - Initially designed for medical volume rendering
 - Has been extend to geometry/meshes, particles, images, vector fields etc.
 - Visual programming environment
 - Graphical dataflow models
 - Python scripting

- Visualization process only reasonable if visualized data is analyzed
- Example: simulation of the air flow around a wing

- **Optimum:** results of visual analysis have impact on:
 - Data modeling
 - Simulation
 - Visualization
- User can interact with the whole process
- However: time-consuming processes
- → Tradeoff between functionality and performance needed

Reference model for visualization

Video/movie mode

Tracking / monitoring

Interactive post processing / visualization

Interactive steering / computational steering

according to F. Mansmann: Visual Analytics Tutc

Scenarios – Confirmatory / Exploratory Analysis

- Measurable goals:
 - Learning time: How long does a regular user need to implement certain tasks?
 - Speed: How fast can some tasks be accomplished?
 - Error rate (ratio success to failure)
 - How many and which kind of errors are made?
 - Time-dependent retention: How well do users keep their knowledge?
- Subjective satisfaction:
 - How do the visualizations please the users?
 - User engagement/motivation → can influence task performance

- Annotation and labeling is critical
- Provide additional information
- Organize and explain data
- Seek spatial clarity
- **Example:** Medical/anatomical visualization

• **Example** from The New York Times

• **Example** from The New York Times

Examp

• Example the transfer of the

• Example: Robert Koch-Institut: COVID-19-Dashboard

• **Example:** Visualization of Molecular Processes (gene transcription)

Data Types

- Levels of measurement
 - Measurements (in science) performed using 4 different types of scales
- Types of scales (in ascending order)
 - Nominal (categorical; attributes only named)
 - Ordinal (rank order of data attributes)
 - Interval (distances defined, but no absolute zero point)
 - Ratio (distances defined and absolute zero)
- Interval & ratio: also subsumed as quantitative data
- Attribute dimensions
 - Scalar, vector, tensor, multivariate
- Data domain
 - 0D, 1D, 2D, 3D, ..., time dependency

Data Types

- Data type has effect on appropriate visualization
- Example for nominal data

[J. Mackinlay: Automating the design of graphical presentations of relational information. ACM TOG 5(2):110-141, 1986]

→ APT (A Presentation Tool): using Artificial Intelligence to chose a visualization

Data Representation in Scientific Visualization

Classification of Visualization Methods

The Visualization Pipeline simulations data bases sensors data acquisition mapping – classification raw data stream volume rend.; glyphs; 3D ribbons: filtering/processing isosurfaces icons topology **Graphical Primitives: Points** height fields; attribute arrows; visualization data interaction 2D color coding LIC symbols Lines Surface mapping 1D Volumes scalar tensor/MV vector renderable representation **Attributes:** Color Texture rendering Transparency **Visualization** (displayable images, videos)

Classification of Visualization Methods

Visualization

Continuous Model

#	Dep.		1		Many
Vai	riables		Ivially		
Data Type		Scalar	Vector	Tensor	Multi- variate
Independent Variables	1D	- Line graph			Combine
	2D	- Colour map - Isolines	- LIC - Particle traces - Glyphs		scalar, vector, & tensor
	3D	Volume renderingIsosurfaces		- Tensor ellipsoids	methods
# Inc	nD	Multi	3		

Discrete Model

Connected

Graph & Tree Visualizations:

- Node link diagrams (2D and 3D)
- Space-filling mosaics
- Hierarchical graphs

Unconnected

# Variables	2D	- Scatter plot - Bar chart
	3D	- 3D scatter plot - 3D bar chart
	nD	 Multiple views Aggregation Glyphs Dense pixel displays Parallel coordinates

