

7th – 9th July 2010

Electro-Optics and Infrared Conference

Chalcogenide Glass for Active and Passive Mid-IR Applications

Dan Hewak

Optoelectronics Research Centre
University of Southampton
Southampton, UK
SO17 1BJ

27th – 29th September 2010
NATO SET171 – Mid-IR Fiber Laser Workshop

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE SEP 2010	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE Chalcogenide Glass for Active and Passive Mid-IR Applications			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Southampton Southampton, UK			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES See also ADA564694. Mid-Infrared Fiber Lasers (Les fibres laser infrarouge moyen). RTO-MP-SET-171				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT unclassified			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 51
b. ABSTRACT unclassified			c. THIS PAGE unclassified	19a. NAME OF RESPONSIBLE PERSON

Outline

- Background
- Purification and synthesis
- Optical fibre development
- Active devices in the mid-IR
- Concluding remarks

Optoelectronics Research Centre

- 40 year history beginning from ground breaking work in optical fibers
- Now the largest group in UK (170 staff / PhD students, 65 labs)
- Generates ~50% of our Universities Intellectual Property
- Extensive international industrial and University links
- A worldwide alumni of 600 staff many in senior positions
- A photonics cluster of 11 companies
- 270 Publications/11 Patents per year
- 50 Invited / Plenary talks per year
- Staff includes 3 Fellows of the Royal Society

Primary Research Areas

Purification & Synthesis

- Raw materials
- Reactive gas conversion
- Chemical vapour deposition

The Chalcogenides

What is a Chalcogenide?

- From Greek *sulphur-loving* for elements that frequently bond to sulphur
- Seen in various forms: crystalline, single crystal, quantum dots, phosphors, ceramics

Typical Amorphous Compositions

- As-S, As-S-Se, Ge-Sb-Te
- Predominately As or Se based (toxic!)

ORC Research Focussed On

- Gallium Lanthanum Sulphides (non-toxic)
- Germanium Sulphides (non-toxic)
- Capability to melt any glass composition exists

Glass Melting (Open Atmosphere)

- Wide range of horizontal and vertical tube furnaces, chamber furnaces, high and low temperature ovens, vacuum processing
- Processing in dry nitrogen, argon, oxygen, SF₆, hydrogen and hydrogen sulphide
- Speciality heating including rapid thermal annealing and RF induction

Glass Melting – Sealed Ampoule Melting

Typically used for compounding elements, eg. Ge, Se, Te, Sb₈

RF Induction Heating

- Clean, precise, controllable heating
- Custom design, interchangeable coils
- Flexible, we configure the furnace to our needs

CIH_ISM HF20

Up to 20 kW output
50–150kHz

How Not to Melt Glass

30 October 2005

Raw Materials are Critical!

- Ga-La-S-O samples prepared with materials sourced from different manufacturers.
- Melting conditions were identical.

In-House Designed & Built Gas Delivery

Purity Levels for LaF₃

Aldrich vs In-house purified

Notes

Pure30a(1)

Tube + crucibles baked out = 24hrs. Crucible Type = Ceramic x 2
Tube clean (though used in Pure 30 / LaCO13 / LaCO14). Powder Mass ~ 6g / 8g

Tube + crucible use or pool proved impossible.

Crucibles exposed to atmosphere for 1min. Slight black colouring on surface after purification.

Pure29

Crucible Type = Carbon x 2. Powder Mass ~ 20g / 65g

Pure28

Tube + crucibles baked out = 12hrs . New Tube used.

Crucible Type = Carbon. Powder Mass ~ 83g

Appearance of powder after purification = white

Pure27

Tube + crucibles baked out = 12hrs . New Tube used with carbon liner.

Crucible Type = Carbon. Powder Mass ~ 60 / 30g

Purification Run	C	O	S
	(Impurity Content in ppm wt)		
Aldrich	140	100	0.71
Pure30a (1)	70	6000	140
Pure29	43	350	-
Pure28	45	570	160
Pure27	65	210	780

Thermal Properties

Fig. 3. TTT diagrams of (a) GLS and (b) GLSO glasses during isothermal treatments. Viscosity data of super cooled liquid states is also shown in these figures.

Fig. 5. Transmission optical micrograph of the GLSO glass treated at 700°C for 1 h.

Glass Modification

1st Generation
US 4115872
~1978

2nd Generation
US 45335219
~1994

3rd Generation
US 5341328
~1994

4th Generation
US 5406509
~1995

5th Generation
US 6011757
~2000

Emerging
US 4115872
~2003

Background – Early Mapping of GeSbTe

- 100 samples GST alloys studied
- Each melted in sealed ampoules
- Composition individually analyzed
- Melting temperature by DTA
- Tg and crystallization by DSC
- Crystalline phases by XRD

Time Scale: several months?

Full Ternary Analysis

Calibration Runs:	2 - 3 days
Run 653	2 hours
Run 659	2 hours
Run 770	2 hours
Primary Screening	2 - 3 days

Time Scale: one week

Presented at *EPCOS '05* Cambridge Sep 2005
 R.E.Simpson, D.W.Hewak, S.Guerin, B.Hayden,
 G.Purdy, "High throughput synthesis and screening of
 chalcogenide materials for data storage"

Pioneering Technology: High Throughput Physical Vapour Deposition
 Material Discovery Times accelerated by a factor of 10 - 100

High Throughput Deposition

Shutter over each target ensures
reproducible and reliable “wedge”
which combined gives a desired gradient

Optical Screening

Hot plate heating

High Sensitivity B&W Progressive Scan
1392 x 1040 pixel CCD Camera
Starlight Express Ltd. Model SXV-H9

Full Compositional Analysis of Ga:Te:La System

EDS 1613 + 1659

Optical Fiber

Chemical Vapour Deposition

Impurities in glasses prepared by different methods (data in ppm)

Glass	Preparation Method	Cr	Fe	Co	Ni	Cu	Zn
Ge:S	CVD	<0.005	<0.0	<0.0	<0.0	<0.0	<0.05
Ga:La:S	Melt Quench	0.02	0.06	nil	0.04	0.1	<0.5

Optical Transmission

Optical Fibre Results

	Internal Loss	Optical Fibre
1992	0.1 cm^{-1}	$40 - 60 \text{ dB/m}$
2002	0.02 cm^{-1}	$2-3 \text{ dB/m}$
Target*	0.004	$< 0.2 \text{ dB/m}$

Comparison of GLS fibre with Commercial Arsenic-based fibre

Theoretical Loss Limits

Results in practice are far from predictions!

Active Devices

- Mid-IR sources
- Microspheres
- Emerging technologies

Glass Structure & Multiphonon Decay

Rare Earth Doping

Nd³⁺

Fig. 6 Emission from the two lowest Nd³⁺ levels, ${}^4\text{I}_{13/2}$ (a) and ${}^4\text{I}_{11/2}$ (b), in 1.5 mol% Nd₂S₃ doped GLS glass pumped at 815 nm with a Ti:sapphire laser and with a 300-mm monochromator and a liquid nitrogen cooled InSb measured detector

Fig. 5 Mid-infrared emission a) from the $^5\text{I}_6$ level, b) from the $^5\text{I}_5$ level, and c) from the $^5\text{I}_4$ level in Ho(1.5%):GLS pumped at $0.76 \mu\text{m}$

Ho^{3+}

Fig. 3 Overlapping emission at 2.0 and $2.2 \mu\text{m}$ from the $^5\text{I}_7$ and the $^5\text{I}_4$ levels in Ho(1.5%):GLS pumped at $0.76 \mu\text{m}$
 a) continuous wave pump laser
 b) pump laser chopped at 400 Hz

Fig. 7 Unconnected fluorescence spectra of
 a) $\text{Tm}(1.5\%)\text{-GLS}$ glass pumped at $0.7 \mu\text{m}$
 b) $\text{Tm}(1.5\%), \text{Tb}(0.2\%)\text{-GLS}$ glass pumped at $0.7 \mu\text{m}$
 c) $\text{Tm}(1.5\%), \text{Tb}(0.2\%)\text{-GLS}$ glass pumped at $2 \mu\text{m}$

Tm³⁺ and Er³⁺

Fig. 4 Fluorescence spectra of $1.57 \text{ mol\% Er}^{3+}$ doped GLS glasses and fibres
 a) $2.0 \mu\text{m}$ and $2.75 \mu\text{m}$ emission from 3.9 cm of $270 \mu\text{m}$ diameter fibre pumped
 with 60 mW at 660 nm
 b) $3.6 \mu\text{m}$ emission from 8.6 cm of $270 \mu\text{m}$ diameter fibre pumped with 70 mW at
 660 nm
 c) $4.5 \mu\text{m}$ emission from a bulk glass sample pumped with 570 mW at 810 nm

Fig. 3.4.4 Emission from three lower Pr^{3+} levels:

- a) Fluorescence from 2 m long, 500 ppm Pr^{3+} doped GLS fibre pumped with 1.064 μm Nd:YAG laser and absorption spectrum
- b) Fluorescence from 2000 ppm Pr^{3+} doped GLS bulk glass pumped with 2 μm Tm:YAG laser

Pr^{3+}

Normalised intensity

Detection limit

Er
Ho Ho Tm Nd ErDy Pr
Pr Pr Tm Dy Er Pr Ho Nd Tb

Almost full coverage of
2 - 5 micron band is
possible!

CH₄ H₂S SO₂ CH₄ H₂CO HBr CO₂ CO OCS
CO N₂O H₂O HCl H₂S window N₂O N₂O
NO₂ NO₂ NO₂ NO₂ N₂O N₂O N₂O

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Wavelength (μm)

Transition Metal Doping

IIIB	IVB	VB	VIIB	VIIIB	VII		IB	IB
21	22	23	24	25	26	27	28	29
Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu

Direct Emission Mid-IR Lasers

Research Contract from UK Laser Coalition
DSTL, Qinetiq, BAe Systems, Selex

Microspheres

Light

Microsphere Fabrication

Microsphere diameters 500 nm to 500 µm

Sphere Sorting

as fabricated...

sieving
sedimentation
rolling

Size range:
100's nm to 100's microns

Greg Elliott

Microsphere Characterization

Quality Factor: Q where $1/Q = 1/Q_{\text{material}} + 1/Q_{\text{surface}} + 1/Q_{\text{curvature}} + 1/Q_{\text{coupling}}$

$$Q_{\text{predicted}} = \sim 4 \times 10^9$$

$$Q_{\text{measured}} = 8 \times 10^4$$

Gregor R. Elliott, Daniel W. Hewak, G. S. Murugan, and James S. Wilkinson, "Chalcogenide glass microspheres; their production, characterization and potential", Optics Express, Vol. 15, Issue 26, pp. 17542-17553

Improved Coupling

Fluorescent spectrum from GLS microsphere doped with 1.5mol% Nd. Inset, close up on WGM. This measurement was taken using a fibre coupled microsphere.

Initial Lasing Observations

217 mW Pump Power

Laser Threshold: 82 mW delivered to sphere

Maximum Pump Power

(19) United States

(12) Patent Application Publication
ABDELDAYEM

(10) Pub. No.: US 2008/0212620 A1
(43) Pub. Date: Sep. 4, 2008

FIG-6

UV-Vis-NIR Spatial Beam Combination

First ever defence application ...

Siege of Syracuse
2nd Punic War - 214 BC

Burning Mirrors of Archimedes

Courtesy of Prof M. Zervas

Characteristics of Microsphere Lasers

- Extremely low threshold
- Simple, robust cavity, easily fabricated
- Integratable with planar or fibre technology
- Potential for new wavelengths in IR

Application of Phase Change in Nanophotonics

- Plasmonics
- Metamaterials

Active Plasmonics

... The Concept

- Short-range atom transient changes in waveguide properties
- Low free electron density control SPP propagation.
- High activation energy High free electron density
- High resistivity APL 84, 1416 (2004)
- Transparent Low activation energy
- Opaque

Light

Ga-La-S Plasmonics

Ge-Sb-Te (GST) unsuitable for plasmonics
– high index
– highly absorbing)

Ga-La-S is much better:

- transparent above ~ 700 nm
- High damage threshold
- Easily polished and coated
- non-toxic

Resonance switching

Nonlinear Medium

Fabry–Perot Resonator

Can we switch our metamaterials?

Planar Metamaterial

Chalcogenide metamaterial hybrid Electro-optic modulator

UNIVERSITY OF
Southampton
Optoelectronics
Research Centre

Gallium Lanthanum Sulphide:

- Optically/electrically-induced threshold switching: amorphous – crystalline
- Transmission contrast 4:1 in a device only $1/3$ of a wavelength thick.
- Operational band tuneable by design across VIS-IR range

Concluding Remarks

- Purify, purify, purify
- Don't (always) blame the composition
- Consider other geometries, emerging technologies
- Collaborate openly* (or find a very wealthy sponsor)
- Learn from history

Four years later....

*when you can

UV-Vis-NIR Spatial Beam Combination

First ever defence application ...

Siege of Syracuse
2nd Punic War - 214 BC

Burning Mirrors of Archimedes

Courtesy of Prof M. Zervas