Symmetry-adapted Wannier functions hands-on tutorial School on Wannier90 v3.0 — Virtual Edition

Yusuke Nomura, Valerio Vitale

March 26, 2020

PART I: SAWFs for the valence bands of GaAs

Outline: Obtain symmetry-adapted Wannier functions out of four valence bands of GaAs, starting from several different initial conditions. For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

```
Directories: SAWF_As_sp/
SAWF_Ga_p/
SAWF_Ga_s/
SAWF_Ga_sp/
MLWF_As_sp_Saddle/
pseudo/
```

Within each directory you will also find a ref/ folder containing the reference input files for each calculation.

Description of input files

→ DFT Input Files, common to all calculations

```
GaAs.scf.in The PWSCF input file for ground state calculation

GaAs.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid
```

→ Input Files, specific to each calculation. These can be found within each directory and might need to be modified depending on the calculation

```
{\tt GaAs.pw2wan.in} The input file for pw2wannier90 {\tt GaAs.win} The wannier90 input file
```

STEP 1: Run DFT calculations

- ► Run PWSCF to obtain the ground state density of GaAs \$> pw.x < GaAs.scf.in > GaAs.scf.out
- ► Run PWSCF to obtain the Bloch states on a uniform k-point grid \$> pw.x < GaAs.nscf.in > GaAs.nscf.out

\blacksquare STEP 2: Compute SAWFs from s-like and p-like orbitals centred on the As atom

Outline: Symmetry-adapted mode: one s-like and three p-like Wannier functions centered at As

► cd into SAWF_As_sp/

- ► Check the additional parameters for the symmetry-adapted mode in GaAs.win and GaAs.pw2wan.in
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ► Compare the results for a 4 × 4 × 4 k-point sampling with those in Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here See also ref/directory, in which one can find

Ω_I	Ω_D	Ω_{OD}	Ω	Ω_n	
				s	p
6.124	0.012	3.502	9.639	1.450	2.730

Table 1: Spreads of the four As-centered symmetry adapted Wannier functions of GaAs in Å calculated with $4\times 4\times 4$ k-point sampling. Ω_I denotes the gauge-independent part of the total spread functional Ω , Ω_D denotes the diagonal part, Ω_{OD} the off-diagonal part and Ω_n denotes the spread of one Wannier function.

the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

STEP 3 (optional): Compute MLWFs from s-like and p-like orbitals centred on the As atom + small perturbation

 $Outline:\ Maximally-localized\ Wannier\ functions\ starting\ from\ As-atomic-centered\ projections\ (+\ small\ perturbation)$

Figure 1: Four SAWFs from a) one s-like orbital and b)-d) three p-like orbitals centred on the As atom as initial projections. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

Nomura & Vitale 2 March 26, 2020

- cd into MLWF_As_sp_Saddle/
- ► Modify GaAs.win to turn off symmetry-adapted mode. Comment out the following two lines in GaAs.win site_symmetry = .true.

symmetrize_eps= 1d-9

- ► Modify GaAs.pw2wan.in to turn off symmetry-adapted mode by setting write_dmn = .false.
- ightharpoonup Put small perturbation to the center(s) of the initial projection(s).
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ► Compare the results with those in .../SAWF_As_sp.
- ► Plot the MLWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

STEP 4: Compute SAWFs from s-like and p-like orbitals centred on the Ga atom

Outline: Symmetry-adapted mode: one s-like and three p-like Wannier functions centered at Ga

- ► cd into SAWF_Ga_sp/
- ▶ Set num_wann=4 and fill out the projection part in GaAs.win.

Figure 2: Four MLWFs for valence bands in GaAs, starting from a) one s-like and b)-d) three p-like orbitals centred slightly off the As atom. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

!site_symmetry = .true.
!symmetrize_eps= 1d-9

- ► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ▶ Compare the results for a $4 \times 4 \times 4$ k-point sampling with those in Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here See also ref/directory, in which one can find

Ω_I	Ω_D	Ω_{OD}	Ω	Ω_n	
				s	p
6.124	0.151	7.648	13.924	2.448	3.825

Table 2: Spreads of the four Ga-centered symmetry adapted Wannier functions of GaAs in Å calculated with $4 \times 4 \times 4$ k-point sampling. See caption in Tab. 1 for definition of symbols.

the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

Figure 3: Four SAWFs from a) one s-like orbital and b)-d) three p-like orbitals centred on the As atom as initial projections. Ga atoms are represented by pink spheres and As atoms by yellow spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

Nomura & Vitale 4 March 26, 2020

STEP 5: Compute SAWFs from one s-like orbital centered on the Ga atom

Outline: Symmetry-adapted mode: one s-like Wannier function centered at Ga

- ► cd into SAWF_Ga_s/
- ▶ Set num_wann=1 and fill out the projection part in GaAs.win.
- ► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

- ► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWF. \$> wannier90.x GaAs
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "GaAs_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "GaAs_band.dat" lt 1

See also ref / directory in which one can find the input files (CaAs win and CaAs)
```

See also $\mathtt{ref}/$ directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

- ► Compare the results with those in Figure 1 and Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)".
- ► Plot the SAWF using xcrysden. \$> xcrysden --xsf GaAs_00001.xsf

\blacksquare STEP 6: Compute SAWFs from three p-like orbitals centred on the Ga atom

Outline: Symmetry-adapted mode: three p-like Wannier functions centered at Ga

- ► cd into SAWF_Ga_p/
- ▶ Set num_wann=3 and fill out the projection part in GaAs.win.
- ► Modify GaAs.win to turn on symmetry-adapted mode. Uncomment the following two lines in GaAs.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

► Modify GaAs.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.

Nomura & Vitale 5 March 26, 2020

- ► Run wannier90 to generate a list of the required overlaps (written into the GaAs.nnkp file). \$> wannier90.x -pp GaAs
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode written in the GaAs.mmn, GaAs.amn, and GaAs.dmn files, respectively. Additionally GaAs.sym file is also created.

 \$> pw2wannier90.x < GaAs.pw2wan.in > GaAs.pw2wan.out
- ► Run wannier90 to compute the SAWFs. \$> wannier90.x GaAs
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "GaAs_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "GaAs_band.dat" lt 1
```

See also ref/ directory, in which one can find the input files (GaAs.win and GaAs.pw2wan.in) and an output file (GaAs.wout)

- ► Compare the results with those in Figure 1 and Table I in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)".
- ► Plot the SAWFs using xcrysden. \$> xcrysden --xsf GaAs_0000*.xsf

PART II: SAWFs for Cu

Outline: Compute symmetry-adapted Wannier functions for Cu. By symmetry-adapted mode, for example, we can make atomic centered s-like Wannier function, which is not possible in the usual procedure to create maximally localized Wannier functions. For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

▶ Directories: pseudo/

Description of input files

→ DFT Input Files, common to all calculations

```
Cu.scf.in The PWSCF input file for ground state calculation
Cu.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid
```

◆ Input Files, specific to each calculation. These might need to be modified depending on the calculation

```
Cu.pw2wan.in The input file for pw2wannier90
```

Cu.sym pw2wannier90 reads this file when "read_sym = .true." in Cu.pw2wan. By default, "read_sym = .false." and Cu.sym is the output of pw2wannier90, in which the symmetry operations employed in the calculation are written for reference.

Cu.win The wannier90 input file

Figure 4: Six SAWFs from a) one s-like orbital and b)-f) 5 d-like orbitals centred on the Cu atom as initial projections. Cu atoms are represented by orange spheres. Isosurface value set to $\pm 1.0 \text{ Å}^{-3/2}$.

STEP 1: Run DFT calculations

- ► Run PWSCF to obtain the ground state of Cu pw.x < Cu.scf.in > Cu.scf.out
- ► Run PWSCF to obtain the Bloch states on a uniform k-point grid pw.x < Cu.nscf.in > Cu.nscf.out

STEP 2: Compute SAWFs for Cu from five *d*-like orbitals centred on Cu and one *s*-like orbital centred in the interstitial site

Outline: Symmetry-adapted Wannier functions for Cu (s-like Wannier function centered at (1/4,1/4,1/4) + atomic-centered d-like Wannier functions)

- ► Modify Cu.win to turn on symmetry-adapted mode. Uncomment the following two lines in Cu.win !site_symmetry = .true.
 !symmetrize_eps= 1d-9
- ► Modify Cu.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ▶ Modify Cu.pw2wan.in to use customized symmetry operations compatible to site-symmetry group

Nomura & Vitale 7 March 26, 2020

at (1/4,1/4,1/4). N.B. inversion symmetry needs to be removed! In Cu.pw2wan.in set read_sym=.true. (then pw2wannier.x will require Cu.sym)

- ► Prepare Cu.sym file.
 - \$> cp ../GaAs/SAWF_As_sp/GaAs.sym Cu.sym (symmetry operations taken from the GaAs example. N.B. GaAs does not have inversion symmetry!)
- ► Run wannier90 to generate a list of the required overlaps (written into the Cu.nnkp file). wannier90.x -pp Cu
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode (written in the Cu.mmn, Cu.amn, and Cu.dmn files, respectively).

 pw2wannier90.x < Cu.pw2wan.in > Cu.pw2wan.out
- ► Run wannier90 to compute the SAWFs.
- wannier90.x Cu

 Plot bands.
 - \$> gnuplot
 gnuplot> load "Cu_band.gnu"
 gnuplot> replot "DFT_band.dat" w l lt -1, "Cu_band.dat" lt 1

See also ref directory, in which one can find the input files ($Cu.win\ and\ Cu.pw2wan.in$) and an output file (Cu.wout)

► Compare the results with those in Fig.3 and Table II in "R. Sakuma, Phys. Rev. B 87, 235109 (2013)", which we report here

Energy window $[E_f$ -10 (eV): E_f +10 (eV)]						
Ω_I	Ω_D	Ω_{OD}	Ω		Ω_n	
				s	t_{2g}	$\overline{e_g}$
3.968	0.107	0.511	4.587	2.042	0.534	0.471

Table 3: Spreads of six symmetry adapted Wannier functions (from one s-like + five d-like oribtals) in Cu in Å calculated with $8 \times 8 \times 8$ k-point sampling. See caption in Tab. 1 for definition of Ω symbols. From crystal field theory we know that the 5 d orbitals split into two sets (3+2). t_{2g} is the Mulliken symbol for the three-fold degenerate subspace. e_g is the Mulliken symbol for the doubly-degenerate subspace.

- ► Plot the SAWFs using xcrysden. \$> xcrysden --xsf Cu_0000*.xsf
- \bigtriangleup Change the upper bound of the disentanglement window as $E_f + 20$ (eV) and leave the lower bound equal to E_f 10 (eV) and recompute the bandstructure and the SAWFs.

Nomura & Vitale 8 March 26, 2020

Figure 5: Bandstructure of Cu. DFT bands (solid lines), Wannier-interpolated bands (red plus).

PART III: SAWFs for H₃S

Outline: Compute symmetry-adapted Wannier functions for H_3S . For the theoretical background of the symmetry-adapted Wannier functions, see R. Sakuma, Phys. Rev. B 87, 235109 (2013).

➤ Directories: MLWF_12band/ SAWF_12band/ SAWF_7band/ pseudo/

Description of input files

→ DFT Input Files, common to all calculations

H3S.scf.in The PWSCF input file for ground state calculation
H3S.nscf.in The PWSCF input file to obtain Bloch states on a uniform grid

→ Input Files, specific to each calculation. These can be found within each directory and might need to be modified depending on the calculation

H3S.pw2wan.in The input file for pw2wannier90 H3S.win The wannier90 input file

STEP 1: Run DFT calculations

▶ Run PWSCF to obtain the ground state of H_3S pw.x < H3S.scf.in > H3S.scf.out

Nomura & Vitale 9 March 26, 2020

► Run PWSCF to obtain the Bloch states on a uniform k-point grid pw.x < H3S.nscf.in > H3S.nscf.out

\blacksquare STEP 2: Compute MLWFs for H₃S for 12 bands

Outline: Maximally-localized Wannier functions: H₃S, 12 band model

- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp file). wannier90.x -pp H3S
- Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode (written in the H3S.mmn, H3S.amn, and H3S.dmn files, respectively).

```
pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out
```

- ► Run wannier90 to compute the MLWFs. wannier90.x H3S
- ► Check Wannier centers and spreads (see H3S.wout).
- ▶ Plot bands.

```
$> gnuplot
gnuplot> load "H3S_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1
See also ref directory, in which one can find the input files (H3S.win and H3S.pw2wan.in) and
an output file (H3S.wout)
```

\blacksquare STEP 2: Compute SAWFs for H₃S for 12 bands

Outline: Symmetry-adapted Wannier functions: H₃S, 12 band model

- ► Modify H3S.win to turn on symmetry-adapted mode. Uncomment the following two lines in Cu.win !site_symmetry = .true.
 !symmetrize_eps= 1d-9
- ► Modify H3S.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp file). wannier90.x -pp H3S
- ► Run pw2wannier90 to compute the overlap between Bloch states, the projections for the starting guess, and the symmetry information needed for symmetry-adapted mode (written in the H3S.mmn, H3S.amn, and H3S.dmn files, respectively).

 pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out
- ► Run wannier90 to compute the SAWFs. wannier90.x H3S
- ▶ Check Wannier centers and spreads (see H3S.wout) & Compare the results with those in "../MLWF_12band/".
- ▶ Plot bands.
 \$> gnuplot
 gnuplot> load "H3S_band.gnu"
 gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1

\blacksquare STEP 3: Compute SAWFs for H₃S for 7 bands

Outline: Symmetry-adapted Wannier functions: H_3S , 7 band model (atomic-centered s-like orbital at H and atomic-centered s-like and p-like orbitals at S)

- ▶ Set num_wann=7 and fill out the projection part in H3S.win.
- ▶ Modify H3S.win to turn on symmetry-adapted mode. Uncomment the following two lines in H3S.win

```
!site_symmetry = .true.
!symmetrize_eps= 1d-9
```

- ► Modify H3S.pw2wan.in to turn on symmetry-adapted mode by setting write_dmn=.true.
- ► Run wannier90 to generate a list of the required overlaps (written into the H3S.nnkp). \$> wannier90.x -pp H3S
- ► Run pw2wannier90 to generate H3S.amn, H3S.mmn, H3S.dmn, and H3S.eig files (additionally H3S.sym file is also created).
 - \$> pw2wannier90.x < H3S.pw2wan.in > H3S.pw2wan.out
- ► Run wannier90 to construct SAWFs. \$> wannier90.x H3S
- ► Check Wannier centers and spreads (see H3S.wout).

Figure 6: Bandstructure of H₃S. DFT bands (solid lines), Wannier-interpolated bands (red plus).

Nomura & Vitale 11 March 26, 2020

► Plot bands.

```
$> gnuplot
gnuplot> load "H3S_band.gnu"
gnuplot> replot "../DFT_band.dat" w l lt -1, "H3S_band.dat" lt 1
```

Nomura & Vitale 12 March 26, 2020