<u>Área personal</u> / Mis cursos / <u>LC_1G_1C24</u> / <u>S4. Álgebra de Boole</u> / <u>Práctica Formativa_S4</u>

Finalizado en sábado, 7 de septiembre de 2024, 15:10 Fiempo empleado 27 minutos 31 segundos Calificación 9,52 de 10,00 (95%)						
egunta 1						
orrecta e puntúa 1,00 sobre 1,00						
Las leyes de De Morgan dicen 1) qu	ue la negación de un enur	nciado <i>y</i> es lo	ógicamente equ	ivalente al enuncia	ado	
0	en el que cada componente es		negado			
enunciado o es lógicamente equiv	alente al enunciado y			✓ en el que c	ada componente es	
negado	~ .					
La respuesta correcta es: Las leyes de De Morgan dicen 1) qu	•	-				
La respuesta correcta es: Las leyes de De Morgan dicen 1) que es [negado] y 2) la negación de u regunta 2 precta	•	-				
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen 1) ques [negado] y 2) la negación de u regunta 2 orrecta e puntúa 1,00 sobre 1,00	•	-				
La respuesta correcta es: Las leyes de De Morgan dicen 1) que es [negado] y 2) la negación de u regunta 2 precta	n enunciado <i>o</i> es lógican	nente equiva				
La respuesta correcta es: Las leyes de De Morgan dicen 1) ques [negado] y 2) la negación de u regunta 2 precta e puntúa 1,00 sobre 1,00	e siempre es verdade	ero				
La respuesta correcta es: Las leyes de De Morgan dicen 1) que es [negado] y 2) la negación de u regunta 2 precta e puntúa 1,00 sobre 1,00 Una tautología es un enunciado que	e siempre es verdade	ero				

Pred	unta	3

Correcta

Se puntúa 1,00 sobre 1,00

Utilice las leyes de De Morgan para escribir la negación del enunciado:

Hal estudia la licenciatura en matemáticas y la hermana de Hal estudiante de la licenciatura en ciencia computacional.

Seleccione una:

- a. Hal no estudia la licenciatura en matemáticas o la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
 ✓ Hal estudia la licenciatura en matemáticas o la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
- b. Hal no estudia la licenciatura en matemáticas o la hermana de Hal es estudiante de la licenciatura en ciencia computacional.
- c. Ninguna de las anteriores
- d. Hal no estudia la licenciatura en matemáticas y la hermana de Hal es estudiante de la licenciatura en ciencia computacional.
- e. Hal no estudia la licenciatura en matemáticas y la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
- f. Hal estudia la licenciatura en matemáticas y la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.

Respuesta correcta

La respuesta correcta es: Hal no estudia la licenciatura en matemáticas o la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.

Pregunta 4

Correcta

Se puntúa 1,00 sobre 1,00

Utilice las leyes de De Morgan para escribir la negación del enunciado:

El conector está suelto o el equipo está desconectado.

Seleccione una:

- a. El conector está suelto o el equipo no está desconectado
- b. El conector no está suelto o el equipo no está desconectado
- ◎ c. El conector no está suelto y el equipo no está desconectado ✓
- O d. El conector no está suelto y el equipo está desconectado
- e. Ninguna de las anteriores.
- f. El conector está suelto y el equipo no está desconectado

Respuesta correcta

La respuesta correcta es: El conector no está suelto y el equipo no está desconectado

Pregunta **5**

Correcta

Se puntúa 1,00 sobre 1,00

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land q) \lor (\sim p \lor (p \land \sim q))$$

Por lo tanto el enunciado es †

Respuesta correcta

La respuesta correcta es:

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land q) \lor (\sim p \lor (p \land \sim q))$$

 $p q \sim p \sim q p \wedge q p \wedge \sim q \sim p \vee (p \wedge \sim q) (p \wedge q) \vee (\sim p \vee (p \wedge \sim q))$ VV[F][F][V] [F] [F] [V] VF[F][V][F] [V] [V] [V] F V [V] [F] [F] [F] [V] [V] F F [V][V][F] [F] [V] [V]

Por lo tanto el enunciado es [t]

Pregunta 6

Correcta

Se puntúa 1,00 sobre 1,00

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land \sim q) \land (\sim p \lor q)$$

Por lo tanto el enunciado es C

Respuesta correcta

La respuesta correcta es:

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land \sim q) \land (\sim p \lor q)$$

Por lo tanto el enunciado es [c]

Pregunta 7 Parcialmente correcta Se puntúa 1,52 sobre 2,00

Dados los enunciados:

a) x<2 o no es el caso de que 1<x<3

b) $1 \le x$ o bien x < 2 o $x \ge 3$

Dados:

p: "x<2"

q: "1<x"

r: "x<3"

Escribir los enunciados en forma simbólica:

Enunciado a):

¿Los enunciados a) y b) son lógicamente equivalentes?

Por lo tanto los enunciados × equivalentes. no son

Respuesta parcialmente correcta.

Ha seleccionado correctamente 16.

La respuesta correcta es: Dados los enunciados:

a) x<2 o no es el caso de que 1<x<3

b) $1 \le x$ o bien x < 2 o $x \ge 3$

Dados:

p: "x<2"

q: "1<x"

r: "x<3"

Escribir los enunciados en forma simbólica:

Enunciado a):

[p] \vee [\sim (q \wedge r)]

Enunciado b):

[~q] V [(p V~r)]

¿Los enunciados a) y b) son lógicamente equivalentes?

```
q
         a)
              b)
٧
    V
         [V]
             [V]
V
              [V]
         [V]
F
    V
         [V]
              [V]
F
    F
         [V]
              [V]
V
    V
         [F]
              [F]
V
    F
         [V] [V]
    V
         [V] [V]
         [V] [V]
```

Por lo tanto los enunciados [son] equivalentes.

Pregunta **8**

Correcta

Se puntúa 1,00 sobre 1,00

De los enunciados que se presentan, se deduce una equivalencia lógica. Dé una razón para cada paso utilizando las propiedades (vistas en el capítulo 3 de la semana 2).

Enunciado 1:

 \sim (p \vee q) \wedge (\sim q \vee q)

≡~ (p v q) ∧ t por Ley de negación

Enunciado 2:

(~p∨(~p∧q))∧(c∨q)

≡~p∧(c∨q)por Ley de absorción ✓

Enunciado 3:

 $(\sim(\sim p \vee q)) \vee q \equiv$

≡ (~(~p) ∧ ~q) v q por Ley de De Morgan

Respuesta correcta

La respuesta correcta es:

De los enunciados que se presentan, se deduce una equivalencia lógica. Dé una razón para cada paso utilizando las propiedades (vistas en el capítulo 3 de la semana 2).

Enunciado 1:

 \sim (p \vee q) \wedge (\sim q \vee q)

 $\equiv \sim (p \lor q) \land t por [Ley de negación]$

Enunciado 2:

 $(\sim p \lor (\sim p \land q)) \land (c \lor q)$

 $\equiv \sim p \land (c \lor q) por [Ley de absorción]$

Enunciado 3:

 $(\sim (\sim p \vee q)) \vee q \equiv$

 $\equiv (\sim (\sim p) \land \sim q) \lor q por [Ley de De Morgan]$

Pregunta 9 Correcta Se puntúa 1,00 sobre 1,00 Del enunciado que se presenta, se deduce una equivalencia lógica utilizando las propiedades del Capítulo 3, dé una razón para cada paso: \sim ((\sim p \wedge q) \vee (\sim p \wedge \sim q)) \vee (p \wedge q) \equiv Ley distributiva $\equiv \sim (\sim p \land (q \lor \sim q)) \lor (p \land q) por$ Ley de negación $\equiv \sim (\sim p \wedge t) \vee (p \wedge q)$ por $\equiv \sim (\sim p) \vee (p \wedge q)$ por Ley de la identidad por Ley de la doble negación $\equiv p \vee (p \wedge q)$ Ley de absorción ≡ p por Respuesta correcta La respuesta correcta es: Del enunciado que se presenta, se deduce una equivalencia lógica utilizando las propiedades del Capítulo 3, dé una razón para cada paso: \sim ((\sim p \wedge q) \vee (\sim p \wedge \sim q)) \vee (p \wedge q) \equiv $\equiv \sim (\sim p \land (q \lor \sim q)) \lor (p \land q)$ por [Ley distributiva] por [Ley de negación] $\equiv \sim (\sim p \wedge t) \vee (p \wedge q)$ $\equiv \sim (\sim p) \vee (p \wedge q)$ por [Ley de la identidad] por [Ley de la doble negación] $\equiv p \lor (p \land q)$ por [Ley de absorción] ≡ p ■ Biografías Ir a... Material Adicional 🔔 ▶

Descargar la app para dispositivos móviles