Отчет по лабораторной работе №1 по курсу «Искусственный интеллект»

Выполнил студент группы М8О-304б-16 Величутин Андрей

Тема: Azure ML

Задача:

Ваша задача познакомиться с платформой Azure Machine Learning, реализовывав полный цикл разработки решения задачи машинного обучения, использовав три различных алгоритма, реализованные на этой платформе.

Оборудование студента:

Intel(R) Core(TM) i5-5200 CPU @ 2.20GHz 2.19GHz O3У 6,00 ΓБ

Программное обеспечение:

Windows 10, Python 3.7.4(С библиотеками Pandas, Numpy, Seaborn и Scikit-Learn), Jupyter notebook 4.4.0

Ход работы:

Azure Machine Learning – облачный сервис для выполнения задач прогнозной аналитики, с помощью которого можно легко создавать модели и интегрировать их в промышленные решения.

Среди особенностей данной платформы можно отметить:

- Интуитивно понятный графический интерфейс
- Готовые для работы реализации самых популярных алгоритмов машинного обучения
- Широкие вохможности предобработки данных
- Отличная визуализация всех результатов
- Облачные вычисления
- Возможность конертации в формат ноутбука на Python

На одном поле можно отобразить почти весь цикл решения задачи машинного обучения. Вот так, например, выглядит весь процесс работы с датасетом из моей предыдущей лабораторной работы:

Весь процесс работы свелся к тому, что я расставлял готовые блоки алгоритмов. И смотрел на результаты работы каждого из них.

Исхдный датасет (Блок undead.csv):

Подсчет различных статистик для датасета (Блок Summarize Data):

Конвертация категориальных признаков в индикаторные значения (Блок Convert to Indicator Values):

Следующие блоки отвечают непосредственно за обучение моделей и оценку качества на кроссвалидации по 10-ти блокам. В данной лабораторной работе я использовал следующие алгоритмы:

- Мультиклассовая логистическая регрессия
- Мультиклассовый случайный лес
- Один-Против-Всех бустинг над решающими деревьями

Чтобы не нагромождать отчет множеством скриншотов, я выписал среднюю оценку результатов раблоты для каждого класса:

Модель	Precision для класс Ghost	1 ' '	Precision для класса Ghoul	Recall для класса Ghoul		Recall для класса Goblin
Логрег	0.827963	0.886969	0.728761	0.799573	0.669113	0.560759
Случайный лес	0.819128	0.8388	0.738211	0.762051	0.632464	0.578708
Бустинг	0.808901	0.870467	0.761365	0.730214	0.60163	0.573378

Желтым выделены наилучшие значения в каждом столбце. Как можно заметить, логистическая регрессия показала в основном результаты лучше, чем случайный лес или бустинг. Возможно это произошло, так как данных в датасете не так много, а тот же бустинг показывает хорошие результаты как раз на больших данных. С другой стороны, скорее всего подкрутив параметры случайного леса или бустинга, можно добиться большей точности и полноты

Выводы:

В данной ЛР я познакомился с облачной платформой Azure ML. Лично мне она показалась достаточно удобной. Мне кажется, что пользователь без каких либо навыков прораммирования, с её помощью способен решить задачу машинного обучения. Сами же решения выглядят очень компактно и наглядно. Данный инструмент может очень пригодиться как начинающим аналитикам так и профессионалам