# The ${f F}$ undamental ${f T}$ heorem of ${f A}$ lgebra

 $\text{and}\dots$ 

combinatorial basketballs??

# Menu

|    | Matchings, noncrossing matchings, and the Catalan mbers |
|----|---------------------------------------------------------|
| 2. | Gauss's proof of the FTA                                |
| 3. | Basketballs                                             |
| 4. | What we know (not much)                                 |
|    |                                                         |

 $\textbf{5. What we'd like to know} \ (\textbf{plenty})$ 

## 1. (Noncrossing) Matchings

A matching of order n is a partition of  $[2n] = \{1, 2, ..., 2n\}$  into n pairs.



A matching is **noncrossing** if no two pairs cross.



Equivalently, if  $\{i < j\}$  and  $\{k < \ell\}$  are pairs in a noncrossing matching and i < k, then either

either 
$$i < j < k < \ell$$
 or  $i < k < \ell < j$ .

- Even vertices are paired with odd vertices.
- How many noncrossing matchings of order n are there?

**Theorem:** The number of noncrossing matchings of order n is

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n!)}{(2n+1)n!^2},$$

the  $n^{th}$  Catalan number.

*Proof.* Encode each NCM of order n by a (2n + 2)-tuple

$$(L, a_1, a_2, \ldots, a_{2n}, R)$$

where

$$a_i = \begin{cases} \mathsf{L} & \text{if } i < \mathrm{sp}(i), \\ \mathsf{R} & \text{if } i > \mathrm{sp}(i). \end{cases}$$



Each (2n + 2)-tuple that arises in this way

- (1) begins with L and ends with R
- (2) contains n other L's and n other R's
- (3) has the property

$$\{i \le k: a_i = \mathsf{L}\} > \{i \le k: a_i = \mathsf{R}\}$$
 for  $1 \le k \le 2n-1$ .

There are  $\binom{2n}{n}$  sequences that satisfy (1) and (2). They occur in "rotation sets" of cardinality n+1:

- The subsequence before L contains more R's than L's.
- So every rotation set contains at most one member corresponding to an NCM.
- For any sequence  $(a_i)$  satisfying (1) and (2), find k such that  $a_k = \mathsf{L}$  maximizing

$$\{i \le k : a_i = R\} - \{i \le k : a_i = L\}.$$

— Rotating the sequence so that it starts at  $a_k$  produces a sequence satisfying (3).

Therefore the number of NCM's is

$$\frac{\text{number of sequences}}{\text{size of a rotation set}} = \frac{1}{n+1} \binom{2n}{n}. \quad \blacksquare$$

#### 2. Gauss's Proof of the FTA

The Fundamental Theorem of Algebra: Let f(z) be a complex polynomial of degree n:

$$f(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_{1}z + a_{0} \tag{*}$$

where  $a_i \in \mathbb{C}$  for all i. Then f has exactly n complex roots (counting multiplicities).

Proof. (Gauss 1799; Gersten–Stallings 1988)

First, if  $f(\alpha) = 0$  for  $\alpha \in \mathbb{C}$ , then  $z - \alpha$  divides f(z). So f can have **at most** n roots.

Consider the plane algebraic curves

$$R = \{z : \operatorname{Re} f(z) = 0\},\$$
  
 $I = \{z : \operatorname{Im} f(z) = 0\},\$ 

 $\operatorname{Re} f(z)$  and  $\operatorname{Im} f(z)$  are polynomials in x and y, and

$$R \cap I = \{z : f(z) = 0\}.$$

In polar coordinates,

$$f(z) = r^n e^{in\theta} + \dots$$
 (lower-order terms),  
=  $r^n(\cos n\theta + \sin n\theta) + \dots$ 

That is,

Re 
$$f(z) = r^n \cos n\theta + \dots$$
,  
Im  $f(z) = r^n \sin n\theta + \dots$ 

**Example:**  $f(z) = z^2 + (1+2i)z + 2$ 

Re 
$$f(z) = x^2 - y^2 + x - 2y + 2$$
  
Im  $f(z) = 2xy + 2x + y$ 



Let C be a circle of radius  $r \gg 0$ . Then  $R \cap C$  consists of 2n points, one at each angle  $\theta$  for which  $\cos n\theta = 0$ —that is, near the angles

$$0, \frac{\pi}{n}, \frac{2\pi}{n}, \ldots, \frac{(2n-1)\pi}{n}.$$

Likewise,  $I \cap C$  consists of 2n points at the angles

$$\frac{\pi}{2n}$$
,  $\frac{3\pi}{2n}$ , ...,  $\frac{(4n-1)\pi}{2n}$ .



Toward infinity, each of R and I will consist of 2n disjoint "half-branches" asymptotic to the lines  $\theta = k\pi/2n$  with n even (for R) or odd (for I).



When we move further in, each R-half-branch must connect with another one to form a full R-branch (and likewise for I).



We obtain two matchings of order n, which we may assume are noncrossing.



But then each branch of R has an odd number of I-half-branches on each side of it. So it must cross at least one I-branch (in fact, an odd number).



Therefore  $|R \cap I| = n$  (counting multiplicities), and f has at least n zeroes.

(Unfortunately, the proof requires the Jordan Curve Theorem, so it isn't really that elementary...)



$$z^5 + z + 1$$



$$z^5 + z^2 + 1$$



$$z^5 + 6z^3 + 3z^2 + 5z - 2$$



$$z^5 + 6z^3 + 3z^2 + 5z - 2$$
  $z(z-1)(z+1)(z+i)(z+1-i)$ 

#### 3. Basketballs

**Definition:** An *n***-basketball** is a pair  $B = (M_1, M_2)$ , where  $M_1 =$  "black" noncrossing matching on  $\{1, 3, ..., 4n - 1\}$ ,  $M_2 =$  "red" noncrossing matching on  $\{2, 4, ..., 4n\}$ .

The **order** of B is n.

The **crossing number** of B is the number of times a red pair crosses a black pair.





A combinatorial basketball



An NBA-approved basketball

• Each red pair crosses an odd number of black pairs. Therefore,

$$cross(B) \ge n$$
 and  $cross(B) \equiv n \pmod{2}$ .

Call B simple if cross(B) = n. (These are the basketballs that arise in Gauss's proof of FTA.)



- How many simple n-basketballs are there?
- How many n-basketballs are there with k crossings?
- Do all simple basketballs arise from some complex polynomial?

### 4. Enumerating Basketballs

$$\begin{split} \mathcal{B}(n) &= \{\text{basketballs of order } n\}, \\ \mathcal{B}(n,k) &= \{B \in \mathcal{B}(n) : \text{cross}(B) = k\}, \\ b(n) &= \#\mathcal{B}(n,n) = \text{number of simple } n\text{-basketballs.} \end{split}$$

Note that 
$$\#\mathcal{B}(n) = C_n^2 = \left(\frac{1}{n+1}\binom{2n}{n}\right)^2$$
.

**Theorem** (Savitt-Singer): 
$$b(n) = \frac{1}{3n+1} \binom{4n}{n}$$
.

*Proof.* Suppose that  $\{1 < a\}$  is a black pair. Let  $\{b < c\}$  be the unique red pair that it crosses (so 1 < b < a < c.)



We have divided the circle into four subregions.



Each subregion contains a mini-basketball (after relabeling, and possibly empty). The orders p,q,r,s of the four mini-basketballs add up to n-1. Therefore

$$b(n) \ = \ \sum_{p+q+r+s=n-1} b(p)b(q)b(r)b(s).$$

The recurrence

$$b(n) \ = \ \sum_{p+q+r+s=n-1} b(p)b(q)b(r)b(s)$$

holds also for  $t_4(n)$ , where

 $t_k(n)$  = number of k-ary trees with n internal nodes.



**Fact:** The number of k-ary trees with n internal nodes is

$$t_k(n) = \frac{1}{(k-1)n+1} \binom{kn}{n}. \tag{\heartsuit}$$

Putting k = 4 in  $(\heartsuit)$ , we get

$$b(n) = \gamma_4(n) = \frac{1}{3n+1} \binom{4n}{n}.$$

### 5. Further Questions

Define  $b(n, k) = \#\mathcal{B}(n, k) = \#$  of *n*-basketballs with *k* crossings.

## Question 1: What is b(n, k)?

Define c(n, k) = b(n, n + 2k), so that c(n, 0) = b(n, n) = b(n).

First column: 
$$b(n) = \frac{1}{3n+1} \binom{4n}{n}$$
.

We'd like to find the bivariate generating function

$$\sum_{\text{basketballs } B} x^{\text{order(B)}} y^{\text{cross}(B)}.$$

Got any ideas?

Question 2a: Does every simple n-basketball arise from some honest-to-goodness complex polynomial of degree n?

• The answer is yes for  $n \leq 3$ .

Question 2b: What does the basketball associated with a particular polynomial tell us about that polynomial?

• For n = 2, the four basketballs are



... and the basketball corresponding to  $f(z)=z^2+bz+c$  is determined by the discriminant

$$\Delta = b^2 - 4c.$$

Question 3: How many (simple) basketballs are there... ... up to rotation? ... up to rotation and reflection? ... up to rotation, reflection and swapping colors? — These operations correspond to multiplying f(z) by a scalar, or replacing z with  $\bar{z}$ . Question 4: What kind of basketball is produced by a "generic" polynomial (whatever that means)?

Question 5: What about basketballs with k colors?

— Connection with k-ary trees??