VERMES MIKLÓS Fizikaverseny

Kolozsvár, JZsUK, 2024. április 13.

Országos döntő

XI. osztály

1. feladat (1,5 pont) (Darvay-Kovács-Lázár-Tellmann. *Fizika példatár. Mechanika*. Tellmann Jenő feladata)

		Pont
a)	A henger egyensúlyi helyzetében a henger súlya az arkhimédészi felhajtó erővel egyenlő: $G = F_A$.	0,2
	Amikor a hengert y elmozdulásnyit lemerül, az $F_A > G$, a hengerre egy F erő hat:	
	For the first f is a finite function of f is a finite function of f is a finite function of f in f is a finite function of f in f is a finite function of f in	0,3
	Mivel az erő arányos a henger elmozdulásával, és ellentétes irányú, $F = -\mathbf{k} \cdot \mathbf{y}$, vagyis rugalmas	0,2
	jellegű (pszeudoellasztikus) erő hatására a henger harmonikus rezgőmozgást végez.	0,2
b)	Az F erő által létrehozott gyorsulás: $m \cdot a = -Sy\rho_0 g$, ahonnan $a = -(S\rho_0 g/m)y$, mivel $a = -\omega^2 y$. Ebben $S\rho_0 g/m = \omega^2 = 4\pi^2/T^2$	0,4
	1.0	0.2
	Mivel $m = \rho Sh$, így $S\rho_0 g/\rho Sh = 4\pi^2/T^2$, kapjuk: $\rho = T^2 g \rho_0/4\pi^2 h$.	0,2
	Számértékekkel: $\rho = 0.8^2 10 \ 1000/4 \cdot 9.87 \cdot 0.25 = 648 \ \text{kg/m}^3$, valószínű fahengerről van szó.	0,2

Összesen: 1,5 pont

JAVÍTÓKULCS

2. feladat (2,5 pont) (Lázár Zsolt)

		Pont
a)	A húr hossza minden esetben a hullám félhullámhosszával egyenlő, mert a húr mindkét vége rögzített, még akkor is, ha az le van fogva. $\lambda = 2 \cdot l$	0,2
	Minden oktáv pontosan kétszeres hangmagasságot jelent: $v_2 = 2v_1 = 4v_0$	0,2
	Az alaphang oktávját a húr eredeti hosszának felezésével kapjuk meg, a következőt a maradék felezésével és így tovább: $\lambda = c/v$ és $l = \lambda/2 = c/2v$,	0,2
	$l_0 = c/2v_0$	0,1
	$l_1 = c/2v_1 = c/2 \cdot 2v_0 = l_0/2.$	0,2
	$l_2 = c/2v_2 = c/2 \cdot 2v_1 = l_1/2 = l_0/4$. és $l_2 = 65/4 = 16,25$ cm.	0,4
b)	$l = \lambda/2 = c/2v$, $v = c/2l = 330/1,3 \approx 254 \text{ Hz}$	0,2
	$T = \mu v^2 = 0.417 \cdot 10^{-3} \cdot 3100^2 = 4007 \text{ N (azaz } 400 \text{ kp)}$	0,2
	$S = \pi d^2/4 = 3,14 \cdot 0,7^2/4 = 0,385 \text{ mm}^2,$ 1 m húr térfogata $V = S \cdot h$	0,2
	$= 0.385 \cdot 1000 \text{ mm}^3 = 384.8 \text{ mm}^3$	0,2
	$\mu = m/l = \rho \cdot V = 0.0078 \cdot 384.8 = 3 \text{ g/m (ahol a } \rho_{\text{ac\'el}} = 0.0078 \text{ g/mm}^3)$	0,2
	Elfogadható fizikai magyarázatok az eltérések okaira.	0,4

Összespont: 2,5 pont

3. feladat (1,3 pont) (Lénárt Levente)

	Pont
A hengerben keltett hang esetén a hengerben levő levegőoszlop <i>l</i> magassága a	0,2
negyedhullámhosszal egyenlő, mert a henger felül nyitott, alul zárt: $l = \lambda/4$, ahonnan: $\lambda = 4l$	0,2
A hullámhossz felírható a hang sebessége és frekvenciája függvényében: $\lambda = c/v$, innen $v = c/\lambda$	0,2
Ebbe behelyettesítve a λ értékét, kapjuk: $v = c/4l$	0,1
A hengerben levő levegő térfogata: $V = S \cdot l = S \cdot h - \Delta V$, ahol ΔV a befolyó víz miatt kiszorított	0,2
térrész.	0,2
Innen: $l = (S \cdot h - \Delta V)/S = h - \Delta V/S$	0,1
Mivel a henger keresztmetszete: $S = \pi \cdot r^2 = \pi \cdot d^2/4$ és $\Delta V = Q \cdot t$	0,2
Ezeket behelyettesítve az <i>l</i> -be kapjuk: $l = h - 4 \cdot Q \cdot t/\pi \cdot d^2$	0,1
Ezeket behelyettesítve az <i>l</i> -be kapjuk: $l = h - 4 \cdot Q \cdot t/\pi \cdot d^2$ Ezt behelyettesítve a frekvenciára adódik: $\nu = \frac{c}{4\left(h - \frac{4Qt}{\pi d^2}\right)}$	0,2

Összesen: 1,3 pont

4. feladat (1,4 pont) (Lázár Zsolt)

	Pont
Kezdetben: $\Delta t_1 = 2 \cdot l_1 / v_1$. ahol $v_1 = (T_1 / \mu_1)^{1/2}$	0,2
Miután a szál megnyúlt, $l_2 = 1,33 \cdot l_1$, benne a hullám sebessége is megváltozik.	0,2
Egyben megváltozik a fajlagos tömeg is. $\mu_1 = m/l_1$, $\mu_2 = m/l_2 = m/1,33 \cdot l_1 = \mu_1/1,33$	0,3
Hooke törvénye szerint: $F/S = E \cdot \Delta l/l$, ha Δl megnő, azt F arányos növekedése váltja ki. Tehát: $T_2 = 1,33 \cdot T_1$.	0,2
A megváltozott sebesség: $v_2 = (T_2/\mu_2)^{1/2} = (1,33T_1/(\mu_1/1,33))^{1/2} = 1,33(T_1/\mu_1)^{1/2} = 1,33v_1$	0,2
A megnyúlás után a visszaverődési idő: $\Delta t_2 = 2 \cdot l_2/v_2 = 2 \cdot 1,33 \cdot l_1/1,33v_2 = 2 \cdot l_1/v_1 = \Delta t_1$. Tehát, a hullám visszaverődési ideje nem változik meg. A sebesség a hosszúsággal arányosan változik.	0,3

Összesen: 1,4 pont

5. feladat (2,3 pont) (Kovács Zoltán)

		Pont
a)	A víz felületén tranzverzális hullámok terjednek.	0,1
b)	$T = 1/v = 0.2 \text{ s. } \lambda = c \cdot T = 0.1 \cdot 0.2 = 0.02 \text{ m} = 2 \text{ cm vagy } \lambda = c/v = 0.1/5 = 0.02 \text{ m} = 2 \text{ cm}.$	0,4
c)	$y_1 = y_2 = y = A \sin 2\pi v \cdot t$, konkrétan: $y = 0.01 \sin 10\pi \cdot t$	0,2
d)	$y = A \sin 2\pi (t/T - x/\lambda)$, konkrétan: $y = 0.01 \sin 2\pi \cdot (t/0.2 - x/0.02)$.	0,2
e)	$\Delta x = 0.4 - 0.3 = 0.1 \text{ m}.$	0,1
	$\Delta x/\lambda = \Delta t/T$, innen $\Delta t = T \cdot \Delta x/\lambda = 0.2 \cdot 0.1/0.02 = 1$ s	0,2
	$\Delta x/\lambda = \Delta \varphi/2\pi$, innen $\Delta \varphi = 2\pi \Delta x/\lambda = 2\pi \cdot 0, 1/0, 02 = 10\pi$ rad	0,2
f)	$A_r^2 = A^2 + A^2 + 2A^2 \cos 10\pi = 4A^2$, ahonnan $A_r = 2A = 0.02$ m.	0,2
g)	$y_C = 0.02 \sin(10\pi \cdot t - 40\pi)$, ha $t \ge 4$ s. Elfogadható a $y_C = 0.02 \sin(10\pi \cdot t)$ a $t \ge 4$ s feltétellel is.	0,3
h) i)	$\begin{array}{c c} A & 2A \\ \hline 0 & A \\ \hline \end{array}$	0,2 0,2

Összesen: 2,3 pont

Hivatalból: 1 pont