2.2 单级蒸汽压缩式制冷的实际循环

2.2.5 不凝性气体对循环性能的影响 及单级压缩实际制冷循环分析

一般积存在冷凝器的上部, 它

- ① 冷凝器压力增加;
- ② 压缩机排气压力及温度
- ③ 此功增加;
- ④ 性能系数下降;
- ⑤ 压缩机容积效率降低

由前章分析理论循环可知:

- ①单位制冷量 $q_0 = f_1(t_0)$ 、过冷度、过热度、 t_k
- ②单位比功 $w_0 = f_2(t_0, i_k)$
- ③制冷剂质量流量 $q_m = f_3(t_0, t_k,$ 过热度)

因此,制冷循环系统的制冷量、功耗等均与 t_0 、 t_k 等工况 有关,方便起见,按理论循环分析的结果也适用于实际情况。 理论制冷量 $\Phi_0 = q_{v_h}q_{z_v}$ 理论输气量imes单位容积制冷量

理论功率 $P_0 = q_m w_0 = \frac{q_{v_h}}{v_1} w_0 = q_{v_h} w_{0_v}$

其中: $w_{0_v}=w_0/v_1$ 为单位容积(比容积)压缩功,单位是 kJ/m^3 注意:

> 当压缩机理论输气量 q_{v_h} 为定值时,系统制冷量 Φ_0 和压缩功 P_0 分别与单位容积制冷量 q_{zv} 和比容积缩 W_{0} 成正比关系,因此只要分析后者即可得到 前者的变化规律了

2.3.1 蒸发温度对循环性能的影响 假定冷凝温度不变,蒸发

温度由 t_0 降到 $t_{0'}$

- 1) 单位容积制冷量
- ① 单位质量制冷量稍有下降↓(变化不大)。
- ② 吸气21增加,单位位容积制冷量↓;
- ③ 对给定的制冷压缩机, 单位容积制冷量 \downarrow $q_{zv} = \frac{h_1' - h_3}{v_1} \downarrow$

图2-15 氨的单位制冷量及单位容积制冷量与蒸发温度的关系

2.3.1 蒸发温度对循环性能的影响

假定冷凝温度不变,蒸发温度由 t_0 降到 t_0

- 2) 单位容积功 (比容积功)
- ① 理论比功W0↑
- ② 吸气比容积1;
- ③ 单位容积功 $w_{0_v} = w_0/v_1$ \uparrow 或 \downarrow 。

为了找出它们之间的变化规律,

假定制冷剂蒸汽为理想气体,由 热力学绝热压缩过程比功公式可知:

2019/11/12

$$w_{0v} = w_0/v_1 = \frac{k}{k-1} \frac{p_0 v_1}{v_1} \left[\left(\frac{p_k}{p_0} \right)^{\frac{k-1}{k}} - 1 \right] = \frac{k}{k-1} p_0 \left[\left(\frac{p_k}{p_0} \right)^{\frac{k-1}{k}} - 1 \right]$$

由上式分析可知:

- ① $p_0 = 0$ 及 $p_0 = p_k$ 射, $w_{0v} = 0$
- ② 当蒸发压力 p_0 由 p_k 逐 渐下降时, w_{0v} 开始逐 渐增加,达到某一最 大值时又开始逐渐减小。

图2-16 氨的理论比功和比容积功与蒸发温度的关系

2019/11/12

压缩机的理论功率为:

$$P_0=q_{vh}w_{0v}=q_{vh}rac{k}{k-1}p_0\left[\left(rac{p_k}{p_0}
ight)^{rac{k-1}{k}}-1
ight]$$
 理论输气量 $imes$ 绝热压缩比容积功

对上式求导,令 $\left(\frac{\partial P_0}{\partial p_0}\right)_{p_k}=0$ 即可求得功率最大值时的压比

$$\left(\frac{p_k}{p_0}\right)_{P_0=max}=k^{rac{k}{k-1}}$$
 通过对不同工质的计算发现:

$$k^{\frac{k}{k-1}} \approx 3$$

由此理论分析得出:压比大约在3时,所需功率最大。

此分析同样适用于实际情况

2.3.1 蒸发温度对循环性能的影响

假定冷凝温度不变, 蒸发

温度由 t_0 降到 $t_{0'}$

3)性能系数(COP) 当蒸发温度 t_0 降低时,

性能系数下降。

在不同的冷凝温度条件下,

下降的趋势不同。

℃ 图2-17 氨的性能系数与蒸发温度的关系

2.3.2 冷凝温度对循环性能的影响

假定蒸发温度不变, 冷凝

温度由 t_k 升到 $t_{k'}$

- 1) 单位容积制冷量
- ① 单位质量制冷量↓;
- ② 单位容积制冷量↓;
- ③ 对给定的制冷压缩机, 制冷量↓;

图2-18 冷凝温度变化时循环的变化

2.3.2 冷凝温度对循环性能的影响

假定蒸发温度不变,冷凝

温度由 t_k 升到 $t_{k'}$

- 2) 比容积功 W_{0v}
- ① 压比↑,
- ② 单位质量压缩功 (理论 比功)w₀↑;
- ③ v_1 未变,比容积功 w_{0v} \uparrow

2.3.2 冷凝温度对循环性能的影响

假定蒸发温度不变,冷凝温度由 t_k 升到 t_{k^\prime}

3) 性能系数

 $t_k \uparrow$, $q_0 \downarrow$, $w_0 \uparrow$, COP \downarrow

在不同的工况条件下,压缩机的运行特性是不一样的。

(压缩机的运行特性曲线介绍)

图2-19 810F单级制冷压机的运行特性曲线

制冷工况分两类:

标准工况和空调工况 分别是用来标明低温 和高温用压缩机的名 义制冷能力和轴功率 最大轴功率工况是 用来考核压缩机的 噪声、振动及机器 能否正常启动; 最大压差工况用来 考核制冷机的零件 强度、排气温度、 油温和电机绕组温

2.4.1 月冷压缩机工况

压缩机工况包括:

名义工况; 最大轴功率工况; 最大压差工况。

每种工况均规定了一系列温度,如:排气饱和

D (冷凝)温度、吸入饱和 (蒸发)温度,吸入

温度等

2019/11/12

11

1) 活塞式单级制冷压缩机 (GB/T10079-2001)

表 2-5 有机制冷压缩机名义工况

单位:℃

类型	吸入压力饱和温度	力饱和温度 排出压力饱和温度 吸入		环境温度
高温	7.2	54.4 [©]	18.3	35
	7.2	48.9 [©]	18.3	35
中温	-6. 7	48.9	18.3	35
低温	- 31.7	40.6	18.3	35

- ①为高冷凝压力工况。
- ②为低冷凝压力工况。

名义工况的制冷剂液体过冷度为0℃。

表 2-6 无机制冷压缩机名义工况

单位:℃

类型	吸入压力饱和温度	排出压力饱和温度	吸入温度	制冷剂液体温度	环境温度
中低温	15	30	-10	25	32

2) 螺杆式制冷压缩机 (GB/T19410-2008)

表 2-7 螺杆式制冷压缩机及机组名义工况

单位:℃

类型	吸气饱和(蒸发)温度	排气饱和(冷凝)温度	吸气温度 [©]	吸气过热度 ^②	过冷度
高温(高冷凝温度)		50	0.0		
高温(低冷凝温度)	5	40	20		
中温(高冷凝温度)	10	45			0
中温(低冷凝温度)	-10	40		10 或 5 ^①	
低温	-35	40			:

- ① 用于 R717。
- ② 吸气温度适用于高温名义工况,吸气过热度适用于中温、低温名义工况。

3) 全封闭涡旋式制冷压缩机 (GB/T18429-2001)

单位:℃

表 2 - 8	全封闭涡旋式压缩机名义工况
---------	---------------

类型	吸入饱和 (蒸发)温度	排气饱和 (冷凝)温度	吸气温度	液体温度	环境温度
高温	7.2	54.4	18.3	46.1	35
中温	- 6. 7	48.9	4.4	48.9	35
低温	— 31. 7	40.6	4.4	40.6	35

使用范围为:

高温型:蒸发温度 -23.3~12.5℃,冷凝温度27~60℃,压力比 ≤ 6.0 。

中温型: 蒸发温度 -23.3 \sim 0 $^{\circ}$ C, 冷凝温度27 \sim 60 $^{\circ}$ C。 低温型: 蒸发温度 -40 \sim 12.5 $^{\circ}$ C, 冷凝温度27 \sim 60 $^{\circ}$ C。

2.4.1 制冷机工况

制冷机工况没有制冷压缩机约束的那么多条件,在同样的用冷要求环境条件下,如何提高蒸发温度、降低冷凝温度正是企业竞争的主要目标,因而不应该在设计和比较产品时,规定冷凝温度、蒸发温度及其它温度,按室内的要求和室外的条件设定工况比较科学。

1)蒸汽压缩循环冷水(热泵)机组中的"工业或商业用及 类似用途的冷水(热泵)机组" (GB/T18430.1-2007)

表 2-9 名义工况时的温度/流量条件

•		使用侧冷、热水		热源侧(或放热侧)					
				水冷式		风冷式		蒸发冷却式	
	项目	水流量	出口水温	出口水温	水流量	干球温度	湿球温度	干球温度	湿球温度
		/m³/(h • kW)	/℃	/℃	./m³/(h•kW)	/℃	/°C	/℃	/°C
	制冷		7	30	0.215	35			24
•	制热 (热泵)	0.172	45	15	0. 134	7 7	6		·

2.4.1 制冷机工况

2) 房间空气调节器 (GB/T 7725-2004)

表 2-10 房间空气调节器按使用气候环境

单位℃

类型	T1	Т2	Т3
气候环境	温带气候	低温气候	高温气候
最高温度	43	35	52

表 2-11 房间空气调节器试验工况

工况条件			大户业大			
	工儿来门		1.47	T1-气候条		度 [⊕] /℃
		T1	27	T2—气候条	一件为寒带	24
	额定制冷	T2	21	T3—气候条	个件为热带	.9
		T3 /	29		1 3 4 4 4 4	24
		T1 /	32	23	43	26
制	最大运行	T2/	27	19	. 35	24
冷		Т3	32	23	52	31
运		T1			21	
~ 行	冻 结	T2	21	15	10	
,,		Т3			21	
	最小运行		21 [©]	15	制造厂推荐的最低温度	
	凝: 冷凝水		27	24	27	24
	热泵额	高温			7	6
	定制热	低温 ^③	20	15(最大)	2	1
制	AC IPI XX	超低温 ^③			-7	-8
热	最大运行		27		24	18
运 行	最小运	运行 ^①	20		— 5	<u>-6</u>
1.1	自动除霜		20	12	2	1
-	电热额	定制热	20			

例2-6

例2-6

根据条件:

冷却水温度30 $^{\circ}$ C; 冷凝器冷端端部传热温差 $\Delta t_k = 10 ^{\circ}$ C;

冷冻水温度7°C;蒸发器冷端端部传热温差 $\Delta t_0 = 5$ °C;

液体过冷度 $\Delta t_g = 5^{\circ} \mathrm{C}; /$ (在冷凝器内过冷)

吸气管有害过热度 $\Delta t_{\eta} = 5^{\circ}$ C。

$$t_k = t_w + \Delta t_k + \Delta t_g = 30 + 10 + 5 = 45$$
°C

$$t_0 = t_c - \Delta t_0 = 7 - 5 = 2$$
°C

$$t_3 = t_k - \Delta t_g = 45 - 5 = 40$$
°C

$$t_1 = t_0 + \Delta t_r = 2 + 5 = 7^{\circ}$$
C

图2-20 压--焓图

	t/ °C	p/MPa	$v/(m^3/kg)$	h/(kJ/kg)	$s/[kJ/(kg \cdot K)]$
0	2	0.4633		1607.5	
1	7	0.4633	0. 27568	1620.8	6. 1137
2	96.23	1.5567		1798. 4	6. 1137
3	40	1.5567		509. 28	

Þ

例2-6

① 单位质量制冷量

$$q_0 = h_0 - h_4 = 1607.5 - 509.28$$

= 1098.2kJ/kg

②单位容积制冷量

$$q_{zv} = \frac{q_0}{v_1} = \frac{1098.2}{0.2757} = 3983.7 \text{kJ/m}^3$$

图2-20 压--焓图

③理论此功

$$w_0 = h_2 - h_1 = 1798.4 - 1620.8 = 177.6 \text{kJ/kg}$$

4指示比功

$$w_i = \frac{w_0}{\eta_i} = \frac{177.6}{0.8} = 222.0 \text{kJ/kg}$$

$$w_i = h_{2_s} - h_1$$

$$h_{2s} = w_i + h_1 = 1620.8 + 222.0 = 1842.8 kJ/kg$$

2019/11/12

2(

例2-6

5性能系数

$$COP_0 = \frac{q_0}{w_0} = \frac{1098.2}{177.6} = 6.18$$

$$COP = \frac{q_0}{w_0/\eta_s} = \frac{1098.2}{177.6/0.68} = 4.20$$

⑥ 冷凝器单位热负荷

$$q_k = h_{2_s} - h_3 = 1842.8 - 509.28 = 1333.5 \text{ kJ/kg}$$

⑦ 所需制冷剂流量

$$q_m = \frac{\Phi_0}{q_0} = \frac{56}{1098.2} = 52.8 \times 10^{-3} \text{kg/s}$$

⑧ 实际输气量和理论输气量

$$q_{v_s} = q_m v_1 = 52.8 \times 10^{-3} \times 0.2757 = 14.56 \times 10^{-3} m^3/s$$

 $q_{v_h} = \frac{q_{v_s}}{\eta_v} = \frac{14.56 \times 10^{-3}}{0.8} = 24.5 \times 10^{-3} m^3/s$ 2

倒2-6

⑨ 压缩机所需的理论功率和轴功率

$$P_0 = q_m w_0$$

= 52.8 × 10⁻³ × 177.6
= 9.38kW

$$P_S = \frac{P_0}{\eta_S} = \frac{9.38}{0.68} = 13.8 \text{kW}$$

⑩ 冷凝器热负荷

$$\Phi_k = q_m q_k = 52.8 \times 10^{-3} \times 1333.5$$
= 70.4kW

图2-20 压--焓图

此过冷温度 不是在冷凝 器里过冷的

书上这里错了, 应该有过冷

例 2-7

$$t_k = t_w + \Delta t_k = 30 + 8 = 38^{\circ}$$
C
 $t_0 = t_c - \Delta t_0 = -10 - 10 = -20^{\circ}$ C
 $t_{1'} = t_0 + 10$

 $t_{1'} = t_0 + 10$ = $-20 + 10 = -10^{\circ}$ C

2019/11/12 $t_3 = 32^{\circ}C$

例2-7

各状态点参数如下表

	4	1 1'
0	图2-21 压焓	h 图
g)	h/(kJ/kg)	$s/[kJ/(kg \cdot K)]$
	397.06	

	t/℃	p/MPa	$v/(m^3/kg)$	h/(kJ/kg)	$s/[kJ/(kg \cdot K)]$
1	-20	0.245		397.06	
1'	-10	0.245	0.097407	403.71	1.8085
2	78.1	1.46		443.95	1.8085
3	32	1.46		239.16	

(1) 循环特性计算如下:

① 压力比 $\pi = \frac{p_k}{p_0} = \frac{1.46}{0.245} = 5.96$

② 单位质量制冷量

2019/11/12 $q_0 = h_1' - h_4 = 403.71 - 239.16 = 164.55 \text{kJ/kg}$ 24

例 2-7

③单位容积制冷量

$$q_{zv} = \frac{q_0}{v_{11}} = \frac{164.55}{0.0974} = 1689.3 \text{ kJ/m}^3$$

4理论比功

$$w_0 = h_2 - h_{1'} = 443.9 - 403.71 = 40.19 \text{ kJ/kg}$$

⑤指示比功

$$w_i = \frac{w_0}{\eta_i} = \frac{40.19}{0.65} = 61.83 \text{ kJ/kg}$$

⑥轴比功

$$w_s = \frac{w_i}{\eta_m} = \frac{61.83}{0.85} = 72.7 \text{ kJ/kg}$$

图2-21 压--焓图

例 2-7

⑦性能系数

$$COP_0 = \frac{q_0}{w_0} = \frac{164.55}{40.19} = 4.09$$

$$COP = \frac{q_0}{w_s} = \frac{164.55}{72.7} = 2.26$$

图2-21 压--焓图

⑧ 循环效率

逆卡诺循环性能条数
$$COP_C = \frac{T_C}{t_w - t_c} = \frac{273 - 10}{30 - (-10)} = 6.58$$

循环效率
$$\eta = {^{COP}}/{_{COP_C}} = {^{2.26}}/{_{6.58}} = 0.34$$

 $= 0.079 \, m^3/c$

(2) 制冷机的特性参数计算如下

$$q_{v_h} = \frac{\pi}{4} D^2 SnZ = \frac{\pi}{4} \times 0.01^2 \times 0.07 \times 1440 \times \frac{6}{60}$$
 2019/11/12

26

例 2-7

②实际输气量

$$q_{v_s} = q_{v_h} \eta_v = 0.79 \times 0.6 = 0.0474^{m^3/s}$$

③制冷机的质量流量

$$q_m = \frac{q_{v_s}}{v_{1'}} = \frac{0.0474}{0.0974} = 0.487 \text{kg}$$
 $h_{2s} = h_{1'} + \frac{h_2 - h_{1'}}{\eta_i} = 403.7 + \frac{443.9 - 403.7}{0.65}$

4制冷机的总制冷量

$$\Phi_0 = q_m q_0 = 0.478 \times 164.55 = 80.1$$
 kW

= 465.5

2 2s

kW²⁷

⑤ 压缩机的输入功率

理论功率
$$P_0 = q_m w_0 = 0.487 \times 40.19 = 19.6$$
 kW

指示功率
$$P_i = q_m w_i = 0.487 \times 61.83 = 30.1$$
 kW

籼功率 $P_e = \frac{P_i}{\eta_m} = \frac{30.1}{0.85} = 35.4$ kW

⑥冷凝器热负荷:
$$\Phi_0 = q_m(h_{2s} - h_3)$$

 $= 0.487 \times (465.5 - 239.2) = 110.2$

2.5 CO_2 跨临界循环

CO₂环境友好,是第四代制冷剂中重要一员,因受其 临界温度的限制,无法在一些制冷装置中采用常规的蒸气压 缩式循环,如用于汽车空调、家用热水器等。

(临界点状态: 31℃; 7.3MPa)

- 1-2 等熵压缩过程
- 2-3 等压冷却过程
- 3-4 绝热节流过程
- 4-1 吸热过程(制冷)

提高压力,可以增加制冷量, 如图 $\Delta h=h_4-h_{4a}$,从 $t=t_3$ 的等

> 温线可以看出,压力 达到一定值后,继续

图2-22 二氧化碳跨临界循环

2019/11/12 提高压力, Δh 增量减小,

2.5 CO2跨临界循环

1) 汽车空调用CO₂跨临界循环

图2-13 汽车空调用CO2跨临界循环

A压缩机;B气体冷却器;C回热器;D膨胀阀;E蒸发器;F储液器;G回油毛细管

CO₂跨临界循环的排气压力虽然很高,但压比较小, 且流动阻力的相对值低,实验表明,循环性能系数不低

2019/11/12 于使用传统制冷剂的装置

2.5 CO_2 跨临界循环

2) 用于水加热器的CO2跨临界循环

在T-S图上,过程2-3-4是一条逐渐下降的曲线,它与逐渐上升的水温线(虚线)相配合,构成一台具有逆流换热的

热交换器,不仅可以减小 传热温差,降低不可逆损 失,还可获得较高的出水 温度。

对CO₂跨临界循环 用压缩机,目前尚无国 标规定的工况。

对温升比较大的情况可以

用右方案,否则见书P61

2019/11/12

图2-24 用于水加热的CO2跨临界循环

2.5 CO2跨临界循环

二氧化碳热泵热水器性能测试温度条件

(日本冷冻协会制定)

单位℃

热泵测试标准:	水侧		热源侧				
JAR4050—2005	冷却水		空气进口温度				
JAK4030—2003	水进口温度	水出口温度	干球温度	湿球温度			
额定加热条件	17 ± 1.0	65±2.0	16±1.0	12 ± 0.5			
夏季加热条件	24 ± 1.0	65 ± 2.0	25 ± 1.0	21 ± 0.5			
冬季加热条件	9±1.0	$> 85 \pm 2.0$	7±1.0	6±0.5			
除霜条件	5±2.0		2±1.0	1 ± 0.5			
过负荷条件	29 ± 2.0		43±1.0	26 ± 0.5			

思考题

- ▶ 什么是工况? (蒸发温度,冷凝温度,液 体过冷温度,吸气过热温度等)
- ► 什么是名义工况? (用于标定产品性能的测点标准工况; 有关标准、产品铭牌或样本上; 取决于国家地区和制冷剂种类)
- 》我国的制冷和空调设备名义工况: 房间空调器名义工况;不同压缩机及机组的高温和中温工况、制冷和热泵工况。

作业题

计算题:

一台采用R22制冷剂的热泵型房间空调器,其额定制热工况下的蒸发温度为3°C,冷凝温度为50°C,蒸发器出口液体过冷度蒸发器出口液体更和10°C,冷凝器出口液体过冷度为5°C,当额定制热量为2800W,压缩机的总效率 $(\eta_i; \eta_m; \eta_{mo};)$ 和容积效率 (η_v) 分别为0.7和0.9时,请问:

- (1) 需要选用多大理论输气量的压缩机?
- (2) 其制热COP为多少?
- (机械效率取0.92, 电机效率取0.9)

判断题

判断题:

某空调制冷系统制冷量 $\Phi_0 = 6$ kW, 性能系数为3.0;

则轴功率:
$$P_e = \frac{\Phi_0}{COP} = 2 \text{ kW}$$

根据系统能量守恒,冷凝器热负荷:

$$Q_k = \Phi_0 + P_e = 8 kW$$

以上计算是否正确?

错! 冷凝器热负荷应该是:

$$Q_k = \Phi_0 + P_i$$

第二章完

