The topology of random graphons

Jan Reimann, Penn State April 29, 2015

joint work with Cameron Freer (MIT)

Homogeneous structures

- A countable (relational) structure \mathcal{M} is homogeneous if every isomorphism between finite substructures of \mathcal{M} extends to an automorphism of \mathcal{M} .
- **Fraissé**: Any homogeneous structure arises as a *amalgamation process* of finite structures over the same language (Fraissé limits).
- Examples:
 - **■** (ℚ, <),
 - the Rado (random) graph
 - the universal K_n -free graphs, $n \ge 3$ (Henson)

Randomnized constructions

- Many universal homogeneous structures can obtained (almost surely) by adding new points according to a randomized process.
 - (\mathbb{Q} , <): add the n-th point between (or at the ends) of any existing point with uniform probability 1/n.
 - Rado graph: add the *n*-th vertex and connect to every previous vertex with probability *p* (uniformly and independently).
 - Vershik: Urysohn space, Droste and Kuske: universal poset
 - Henson graph: ???

Constructions "from below"

- A naive approach to "randomize" the construction of the Henson graph would be as follows:
 - In the n-th step of the construction, pick a one-vertex extension uniformly among all possible extensions that preserve K_n -freeness.
- However: **Erdös, Kleitman, and Rothschild** showed that this asymptotically almost surely yields a bipartite graph (in fact, the *random* countable bipartite graph)
 - The Henson graph(s), in contrast, has to contain every finite K_n -free graph as an induced subgraph, in particular, C_5 and hence cannot be bipartite.

Constructions "from above"

- **Petrov and Vershik** (2010) showed how to construct universal K_n -free graphs probabilistically by *sampling* them from a continuous graph.
- These continuous graphs, known as **graphons**, have been studied extensively over the past decade.
 - See, for example the recent book by Lovasz, Large networks and graph limits (2012).

Graphons

- One basic motivation behind graphons is to capture the asymtotic behavior of growing sequences of dense graphs, e.g. with respect to subgraph densities.
- While the Rado graph can be seen as the limit object of a sequence (G_n) of finite random graphs, it does not distinguish between the distributions with which the edges are produced.
- For any $0 , <math>\mathbb{G}(n, p)$ converges almost surely to (an isomorphic copy of) the Rado graph.
 - However, $p_1 \ll p_2$, $\mathbb{G}(n, p_1)$ will exhibit very different subgraph densities than $\mathbb{G}(n, p_2)$

Graphons and graph limits

Basic idea: "pixel pictures"

Graphons and graph limits

Convergence of pixel pictures

Graphons and graph limits

Convergence of pixel pictures

Convergence

- Let (G_n) be a graph sequence with $|V(G_n)| \to \infty$.
- We say (G_n) converges if

for every finite graph F, the relative number $t_i(F, G_n)$ of embeddings of F into G_n converges.

Graphons

- $W : [0, 1]^2 \to [0, 1]$ measurable, and for all x, y, W(x, x) = 0 and W(x, y) = W(y, x).
- Think: W(x, y) is the probability there is an edge between x and y.
- Subgraph densities:
 - edges: $\int W(x, y) dx dy$
 - triangles: $\int W(x, y)W(y, z)W(z, x) dx dy dz$
 - this can be generalized to define $t_i(F, W)$.

The limit graphon

THM: For every convergent graph sequence (G_n) there exists (up to weak isomorphim) exactly one graphon W such that for all finite F:

 $t_i(F, G_n) \longrightarrow t_i(F, W)$.

The limit graphon

Example: Uniform attachment graphs

add new node, connect any pair of non-adjacent nodes with prob. 1/n

graphon:

 $W(x,y) = 1 - \max(x,y)$

from: L. Lovász, Large networks and graph limits (2012)

A compatible metric

- Edit distance: $d_1(F, G) = ||A_F A_G||_1$.
- Cut distance: $d_{\square}(F,G) = ||A_F A_G||_{\square}$, where $||.||_{\square}$ is the **cut norm**

$$||A||_{\square} = \frac{1}{n^2} \max_{S,T \subseteq [n]} |\sum_{i \in S, j \in T} A_{ij}|.$$

- d_{\square} can be extended to graphs of different order...
- ... and to graphons:

$$||W||_{\square} = \sup_{S,T \subset [0,1]} \int_{S \times T} W(x,y) \, dx \, dy.$$

A compatible metric

- A sequence (G_n) converges iff it is a Cauchy sequence with respect to d_{\square} .
- $G_n \to W$ iff $d_{\square}(G_n, W) \to 0$

Sampling from graphons

- We can obtain a finite graph $\mathbb{G}(n, W)$ from W by (independently) sampling n points x_1, \ldots, x_n from W and filling edges according to probabilities $W(x_i, x_j)$.
 - almost surely, we get a sequence with $\mathbb{G}(n, W) \to W$.
- If we sample ω -many points from $W(x, y) \equiv 1/2$, we almost surely get the random graph.

The Petrov-Vershik graphon

- **Petrov and Vershik** (2010) constructed, for each $n \ge 3$, a graphon W such that we almost surely sample a universal K_n -free graph.
 - The graphons are (necessarily) 0, 1-valued.
 - Such graphons are called random-free.
 - The constructions resembles a finite extension construction with simple geometric forms, where each step satisfies a new type requiring attention.
 - The method can also be used to construct random-free graphons universal for *all* finite graphs.

Universal graphons

• A random-free graphon is *countably universal* if for every set of distinct points from $[0, 1], x_1, x_2, ..., x_n, y_1, ..., y_m$, the intersection

$$\bigcap_{i,j} E_{x_i} \cap E_{y_j}^C$$

has non-empty interior.

- Here $E_x = \{y: W(x, y) = 1\}$ is the neighborhood of x.
- For *countably* K_n -free universal graphs, we require this to hold only for such tuples where the induced subgraph by the x_i has no induced K_{n-1} -subgraph,
 - additionally, require that there are no n-tuples in X which induce a K_n

writer made a rep.

The topology of graphons

• Neighborhood distance:

$$r_W(x, y) = || W(x, .) - W(y, .) ||_1 = \int |W(x, z) - W(y, z)|$$

and mod out by $r_W(x, y) = 0$.

- Example: $W(x, y) \equiv p$ is a singleton space.
- **THM:** (Freer & R.) (informal) If W is a random-free universal graphon obtained via a "tame" extension method, then W is recompact in the r_W topology.

"Tame" extensions

• **DEF:** A random-free graphon W has continuous realization of extensions if there exists a function

$$f:(x_1,\ldots,x_n),(y_1,\ldots,y_m)\mapsto (l,r)$$

that is continuous a.e. such that for all \vec{x} , \vec{y} ,

$$[l,r]\subseteq\bigcap_{i,j}E_{x_i}\cap E_{y_j}^C.$$

- Here $E_x = \{y: W(x, y) = 1\}$ is the neighborhood of x.
- The Petrov-Vershik graphons have uniformly continuous realization of extensions.

Non-compactness

THM: If a countably (K_n -free) universal graphon has uniformly continuous realization of extensions, then it is not compact in the r_W -topology.

Features of the proof

- ullet Building a "Cantor sequence" in W.
- Apply the Szemeredi regularity lemma to pass to a sequence of stepfunctions that approximate the graphon *uniformly*.
- Use universality to find the next splitting.
- Uniform continuity guarantees that the Szemeredi "squares" are filled with the right measure.

Regularity lemma

- For every $\epsilon > 0$ there is an $S(\epsilon) \in \mathbb{N}$ such that every graph G with at least $S(\epsilon)$ vertices has an equitable partition of V into k pieces $(1/\epsilon \le k \le S(\epsilon))$ such that for all but ϵk^2 pairs of indices i, j, the bipartite graph $G[V_i, V_j]$ is ϵ -regular.
- For every graphon W and $k \ge 1$ there is stepfunction U with k steps such that

$$d_{\square}(W, U) < \frac{2}{\sqrt{\log k}} \parallel W \parallel_2$$

Complexity of universal graphons

construction:	fully	tame	general
	random	deterministic	deterministic
complexity of graphon	low (singleton)	high (non- compact, infinite Minkowski dimension)	?