Ödev-3

1.

Yanda verilen kuvvetlendirici devresinde bütün BJT'ler ileri aktif bölgede çalışmaktadır. Bütün transistorlar eş özelliklere sahiptir. $R=100~k\Omega$ dur.

Teslim tarihi: 15.04.2016

Transistor parametreleri: β_F =300, V_{BE} ≈0.6V, V_T =25mV, $1/r_{ce}$ ≈0

- a) Giriş DC olarak 0V da iken V_{E3} DC gerilimini hesaplayınız.
- b) Küçük işaret kazancı v_o/v_i 'i hesaplayınız (r_{ce6} =47k Ω).
- c)Devrenin giriş ve çıkış dirençlerini hesaplayınız.
- d) r_{ce5} =47k Ω alarak CMRR'yi dB cinsinden hesaplayınız.
 - e) Devrenin benzetimini PSPICE/LTSPICE kullanarak yapınız.
 - "a", "b" ve "c" seçeneklerinde bulduğunuz verileri hesaplattırarak karşılaştırın.
 - Girişe 1kHz frekansında, 10mV genlikli bir sinüs işareti uygulayarak giriş ve çıkış işaretini zamana bağlı olarak birlikte çizdirin (kondansatör değerini 1μF olarak alabilirisiniz).
 - Spice grafik çıktılarında arka planın siyah olmaması önerilir. Devrenin görüntüsünün de eklenmesi gereklidir. Çalışma noktaları da devre şeması üzerinde gösterilmelidir.

Aktif devre parametreleri ve PSPICE/LTSPICE eşdeğerleri için aşağıdaki verileri kullanabilirsiniz:

BJT:

.model NPN_odev3 NPN

+IS = 2e - 15

+BF=300

+NF=1

2. Bu sorudaki işlemsel kuvvetlendiriciler ideal kabul edilecektir.

- a) V_O gerilimini dirençler ve girişlere uygulanan gerilimler cinsinden ifade ediniz. b) $V_1 = V_2 = V_3$ iken $V_O = 0$ olması için R_2/R_1 oranı ne olmalıdır?

c) Yukarıdaki işlemsel kuvvetlendirici ideal olduğuna göre V_o/V_i gerilim kazancını hesaplayınız

e-posta ile gönderilen ödevler kabul edilmeyecektir. Soru çözümleri ayrıntılı bir şekilde verilmelidir. Kullanılan değişkenler ve birimler standart olmalıdır. Sadece sonuç içeren, çok kısa çözümler puanlandırılmayacaktır. Birimlere dikkat etmeyi unutmayınız.