Note: Preview of slides from (matrixOfLinearTransformations.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

To represent a linear transformation, we will use matrices.

In previous example, whenever we have a receipe table, it gives a linear transformation from space of drink combinations to space of material combinations.

		9
	2	1
6	1	1

If we call this map T. Then we use , as symbols for those drinks in the domain. And

$$T\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \qquad T\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$$

as symbols for its position in the codomain. Since materials are all in the codomain, it makes more sense to write our table as

	T ()	T (S)
	2	1
6	1	1

This table can be written as an expression

$$\begin{pmatrix} T & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = \begin{pmatrix} \mathbf{0} & & \mathbf{0} \\ & & \\ & & \\ \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Factor T out, we can write

$$T\left(\begin{array}{ccc} & & & \\ \hline & & & \\ \end{array}\right) = \left(\begin{array}{ccc} & & \\ & & \\ \end{array}\right) \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Note that here (,) is a basis of the domain, and (,) is a basis of the codomain. We call the matrix

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

The matrix representation of T in the basis (\bigcirc , \bigcirc) and (\bigcirc , \bigcirc). It determines the linear transformation completely.

Definition 1

For a linear transformation $T: V \longrightarrow W$, let

- $\mathcal{E} = (\vec{v_1} \quad \vec{v_2} \quad \cdots \quad \vec{v_n})$ be a basis of domain V
- $\mathcal{F} = (\vec{w_1} \quad \vec{w_2} \quad \cdots \quad \vec{w_m})$ be a basis of codomain W.

The matrix representation of T with respect to \mathcal{E} and \mathcal{F} , is the matrix P such that

$$T\begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{pmatrix} = \begin{pmatrix} \vec{w}_1 & \vec{w}_2 & \cdots & \vec{w}_m \end{pmatrix} P$$

In other words, the matrix representation is the recipe table to make $T \begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{pmatrix}$ by materials $\begin{pmatrix} \vec{w}_1 & \vec{w}_2 & \cdots & \vec{w}_m \end{pmatrix}$.

The matrix representation P of $T:V\longrightarrow W$ with basis $\mathcal E$ and $\mathcal F$, is the coordinate matrix of

$$T\mathcal{E} = \begin{pmatrix} T\vec{e}_1 & T\vec{e}_2 & \cdots & T\vec{e}_n \end{pmatrix}$$

in the following basis of codomain W

$$\mathcal{F} = \begin{pmatrix} \vec{w}_1 & \vec{w}_2 & \cdots & \vec{w}_m \end{pmatrix}.$$

The matrix P fits into the following linear combination equation

$$\overbrace{\left(\vec{T}\vec{e}_{1} \quad \vec{T}\vec{e}_{2} \quad \cdots \quad \vec{T}\vec{e}_{n}\right)}^{\mathcal{F}} = \overbrace{\left(\vec{w}_{1} \quad \vec{w}_{2} \quad \cdots \quad \vec{w}_{m}\right)}^{\mathcal{F}} P$$

Each column of P is the coordinate of $T\vec{e_i}$ in the basis \mathcal{F} .

$$P = \begin{pmatrix} [T\vec{e}_1]^{\mathcal{F}} & [T\vec{e}_2]^{\mathcal{F}} & \cdots & [T\vec{e}_n]^{\mathcal{F}} \end{pmatrix}$$

Excercise.Let
$$V = P_{2,x} = \{ax^2 + bx + c, \text{ where } a, b, c \in F\},\ W = P_{2,t} = \{at^2 + bt + c, \text{ where } a, b, c \in F\}$$

Consider a linear map

$$T: V \longrightarrow W, f(x) \longmapsto f(t+1)$$

Find matrix representation of T with bases

$$\mathcal{F} = \begin{pmatrix} 1 & t & t^2 \end{pmatrix}$$
 in V $\mathcal{E} = \begin{pmatrix} 1 & 2x+1 & x^2+1 \end{pmatrix}$ in W

Solution.: Apply the linear transformation T on each of the function on basis and write the coordinate in basis of the target. We find

$$T(1) = 1 = \underbrace{\begin{pmatrix} 1 & t & t^2 \end{pmatrix}}_{\mathcal{F}} \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{[T(1)]^{\mathcal{F}}}$$

$$T(2x+1) = 2(t+1) + 1 = \underbrace{\begin{pmatrix} 1 & t & t^2 \end{pmatrix}}_{[T(2x+1)]^{\mathcal{F}}} \underbrace{\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}}_{[T(2x+1)]^{\mathcal{F}}}$$

$$T(x^2+1) = (t+1)^2 + 1 = \underbrace{\begin{pmatrix} 1 & t & t^2 \end{pmatrix}}_{[T(x^2+1)]^{\mathcal{F}}} \underbrace{\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}}_{[T(x^2+1)]^{\mathcal{F}}}$$

We write this into a matrix form

$$T\underbrace{\begin{pmatrix} 1 & 2x+1 & x^2+1 \end{pmatrix}}_{\mathcal{E}} = \underbrace{\begin{pmatrix} 1 & t & t^2 \end{pmatrix}}_{\mathcal{F}} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

We know the matrix representation of T is $\begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$