Projekt Egzaminacyjny

Maria Koren

Listopad 2023

Spis treści

1	Wst	tęp	3
2	Ana	aliza cen spółek	3
3	Czę	eść 1	3
	3.1	Wykres kursów zamknięcia pokazujący zmiany w czasie oraz histogram	3
	3.2	Statystyki opisowe	4
		3.2.1 Interpretacja wyników	4
	3.3	Estymacja parametrów trzech rozkładów korzystając z estymatora najwięk-	
		szej wiarygodności (MLE)	5
	3.4	Wykresy diagnostyczne	6
		3.4.1 Analiza wartości statystyk KS, CM i AD oraz kryteria informacyjne	
		AIC i BIC	7
	3.5	Testowanie hipotezy o równości rozkładów, wykorzystując statystykę KS $$.	7
4	Pod	Isumowanie	8

1 Wstęp

W tym projekcie reprezentowana jest analiza danych spółki KMR.UK (Kenmare Resources Plc)

2 Analiza cen spółek

Kenmare Resources plc to uznana firma wydobywcza, która zarządza kopalnią minerałów tytanu Moma położoną na północno-wschodnim wybrzeżu Mozambiku. Kopalnia prowadzi produkcję komercyjną od 2009 roku i jest uznawana za głównego dostawcę produktów z piasku mineralnego dla klientów na całym świecie, działających w ponad 15 krajach.

3 Część 1

3.1 Wykres kursów zamknięcia pokazujący zmiany w czasie oraz histogram

Zrobiono wykres kursu zamknięcia pokazujący zmiany w czasie, rysunek 1

Rysunek 1: Cena podczas zamknięcia

Oraz histogram, pokazujacy liczebność danych, rysunek 2

Histogram - Zmiany kursów

Rysunek 2: Histogram danych

3.2 Statystyki opisowe

Zostały obliczone nastepujące statystyki opisowe: średnia, odchylenie standardowe, skośność oraz kurtoza

Wyniki statystyk znajdują się w poniższej tabeli 1

		\bar{x}	odch. st.	skośność	kurtoza
ĺ	akcje	442.8741	26.7262	3.574323	0.52783

Tabela 1: Statystyki opisowe

3.2.1 Interpretacja wyników

Otrzymana skośność mówi o przewadzę wartości wyższych (wartość skośności powyżej zera)

• Otrzymana kurtoza mówi cieńszych ogonach niż rozkład normalny (bardziej płaski) (wartość kurtozy mniej niż 3)

3.3 Estymacja parametrów trzech rozkładów korzystając z estymatora największej wiarygodności (MLE)

Wyestymowano wyniki trzech rozkładów: normalnego, log-normalnego oraz rozkładu Weibulla za pomocą estymatora MLE. Wyżej wymienione wykresy dodano do wcześniejszego histogramu, co widać za rysynku 3

Rysunek 3: Histogram wraz z estymowanami rozkładami

Wyniki estymacji parametrów są przedstawione w tabeli 2

	μ	σ
normalny	442.8741	26.67269
	μ	σ
log-normalny	6.091499	0.05957788
	a	σ
weibulla	15.61307	455.8914

Tabela 2: Wyniki estymacji parametrów

Te wyniki oznaczają, że zostały dopasowane następujące rozkłady:

- $X \sim N(442.87, 26.67)$
- $X \sim LN(6.09, 0.059)$
- $X \sim W(15.61, 455.89)$

3.4 Wykresy diagnostyczne

Zostały zrobione wykresy diagnostyczne qq-plot (rysunek 4) oraz cdf (rysunek 5)

Rysunek 4: Wykres qq-plot

Rysunek 5: Wykres cdf

• Wykres qq-plot

Jest to wykres kwantyl-kwantyl, na osi pionowej są kwantyle teoretyczne, na osi poziomowej są kwantyle empiryczne. Kwantyl rzędu $\alpha \in (0, 1)$ zmiennej losowej ciągłej X to taka liczba q, dla której prawdopodobieństwo, że zmienna X przyjmuje wartości mniejsze lub równe q jest równe α .

Najlepiej jest gdy te kwantyle są takie same bądź bardzo blizkie siebie. Dlatego najlepszym rozkładem jest najbliższy do prostej y=x. W rozważanym przykład takim jest wykres log-normalny $X \sim LN(6.09, 0.059)$

• Wykres CDF

Funkcja rozkładu kumulacyjnego (CDF, Cumulative Distribution Function) to graficzna reprezentacja kumulatywnej dystrybuanty danej zmiennej losowej. CDF dla danej wartości x to prawdopodobieństwo, że zmienna losowa przyjmuje wartość mniejszą lub równą x. Czarnym zaznaczone są dane empiryczne. Najlepszym wykresem jest mający teorytyczne dane najbliższe do danych empirycznych. W rozważanym przykładzie takim wykresem jest log-normalny $X \sim LN(6.091, 0.059)$

Na podstawie wykresów diagnostycznych najlepszym rozkładem jest rozkład logarytmicznonormalny

3.4.1 Analiza wartości statystyk KS, CM i AD oraz kryteria informacyjne AIC i BIC

Bazując wyłącznie na wykresach diagnostycznych, nie jest możliwe wybranie jednego najlepszego wykresu. Dlatego skorzystano ze statystyk Kołmogorowa-Smirnowa, Cramera-von-Misesa, Andersona-Darlinga, a także z kryteriów informacyjnych AIC (Akaike's Information Criterion) oraz BIC (Bayesian Information Criterion)

Wartości ze statystyk KS, CM, AD są umieszczone w tabeli 3. Wartości kryteriów AIC, BIC w tabeli 4

	normalny	log-normalny	weibull
Kolmogorov-Smirnov	0.09168955	0.0798396	0.138442
Cramer-von Mises	0.3613063	0.2485924	1.257677
Anderson-Darling	2.005469	1.412547	7.416593

Tabela 3: Statystyki

	normalny	log-normalny	weibull
Akaike's Information Criterion	2355.289	2348.983	2415.692
Bayesian Information Criterion	2362.332	2356.026	2422.735

Tabela 4: Kryteria informacyjne

Ponieważ statystyki są oparte na porównaniu odległości dystrybuant, najlepszym rozkładem jest ten, który jest najbliżej do danych teorytycznych (ma najmniejszą odległość), czyli ma najmniejszą wartość statystyki. W kryteriach informacyjnych za najlepszy rozkład również jest uważany rozkład, mający najmniejszą wartość kryteria. W rozważanym przykładzie takim rozkładem jest rozkład log-normalny $X \sim LN(6.09, 0.059)$

3.5 Testowanie hipotezy o równości rozkładów, wykorzystując statystykę KS

Zrobiona hipoteza H0: F = LN(6.09, 0.0595) przeciwko hipotezie H1: F nie jest rowny LN(6.09, 0.059)

Zgenerowano N=10000 probek licznosci n (równej ilości danych) z rozkładu F0=LN(6.09,0.059) wybranego wcześniej jako najlepszego rozkładu i obliczono odległość dystrybuant empirycznych od rozkładu F0 (wartosc statystyki Dn)

Obliczona również wartość statystyki dla rzeczywustych danych

Rysowany jest histogram statystyk testu KS uzyskanych z danych losowych, a także dodany jest punkt dla statystyki testu KS uzyskanej z rzeczywistych danych dla porównania danych rzeczywistych z danymi losowymi tego rozkładu

Rysunek 6: Histogram danych teorytycznych

 ${\bf Z}$ wykresu widać, że wynik z danych rzeczywistych jest umieszczony w miejscu, gdzie dane losowe jeszcze są

Ta statystyka zwraca 2 dane: odległość (wartość statistic) oraz prawdopodobieństwo że wartości statystyki KS są takie same lub większe, gdy hipoteza zerowa jest prawdziwa Wyniki tego testowania zostaną umieszczone w tabeli 5:

statistic	p-value
0.0798396	0.0827

Tabela 5: Wartość statystyki KS w testowaniu hipotezy

P-wartość informuje o prawdopodobieństwie uzyskania takiej samej lub bardziej ekstremalnej statystyki testu, niż ta, którą otrzymaliśmy z danych rzeczywistych (zakładając że dane pochodzą z tego samego rozkładu)

Ponieważ p-wartosć p=0.0827>0.05zatem nie ma powodów odrzucenia hipotezy. Uzyskane wyniki potwierdzają wybraną hipotezę o logarytmiczno-normalnym LN(6.09,0.059)rozkładzie naszych danych

4 Podsumowanie

Badając dane spólki Kenmare Resources Plc za 2022 rok, wychodzi że dane kursu zamknięcia mieli rozkład logarytmiczno-normalny LN(6.09,0.059)