**Aufgabe 1** (Frühjahr 2014). Sei L/K eine endliche Galoiserweiterung. Zeigen Sie, daß für  $\alpha \in L$  folgende Aussagen äquivalent sind.

- (a) Es gilt  $L = K(\alpha)$ .
- (b) Für alle  $g \in Gal(L/K)$  mit  $g \neq id$  gilt  $g(\alpha) \neq \alpha$ .

Lösung. "(a)  $\Rightarrow$  (b)": Nach (a) nehmen wir an, daß  $\alpha$  ein primitives Element von L über K ist. Da L eine K-Algebra ist und genauer als K-Algebra von  $\alpha$  erzeugt, ist jeder K-Automorphismus von L, das heißt jedes Element  $g \in \operatorname{Gal}(L/K)$  eindeutig durch das Bild von  $\alpha$  bestimmt. Es ist also  $g = \operatorname{id}_L$  genau dann, wenn  $g(\alpha) = \alpha$ . Dies zeigt (b).

"(b)  $\Rightarrow$  (a)": Wir nehmen (b) an, das heißt es gilt  $g(\alpha) \neq \alpha$  für alle  $\mathrm{id}_L \neq g \in \mathrm{Gal}(L/K)$ . Es ist  $K \subset K(\alpha) \subset L$  ein Zwischenkörper, also ist  $L/K(\alpha)$  Galois'sch und hat Galoisgruppe  $\mathrm{Gal}(L/K(\alpha)) \subset \mathrm{Gal}(L/K)$ . Nach Definition gilt für  $g \in \mathrm{Gal}(L/K(\alpha))$  daß  $g|_{K(\alpha)} = \mathrm{id}_{K(\alpha)}$ , also insbesondere  $g(\alpha) = \alpha$ . Nach der Voraussetzung ist dann  $g = \mathrm{id}_L$ , also  $\mathrm{Gal}(L/K(\alpha)) = \{\mathrm{id}_L\}$ . Nach dem Hauptsatz der Galoistheorie ist der dazu korrespondierende Zwischenkörper L und es folgt  $K(\alpha) = L$ .

**Aufgabe 2** (Herbst 2003). Gegeben sei das Element  $z = X^2 + X^{-2}$  des rationalen Funktionenkorpers  $\mathbb{Q}(X)$ .

- (a) Zeigen Sie, daß  $\mathbb{Q}(X)$  über  $\mathbb{Q}(z)$  endlich vom Grad  $\leq 4$  ist.
- (b) Bestimmen Sie die Gruppe der Automorphismen von  $\mathbb{Q}(X)$  die z festlassen.
- (c) Zeigen Sie, daß  $\mathbb{Q}(X)$  über  $\mathbb{Q}(z)$  Galois'sch ist und geben Sie alle Körper zwischen  $\mathbb{Q}(X)$  und  $\mathbb{Q}(z)$  an.

Lösung. **Zu** (a): Wir zeigen, daß X Nullstelle eines Polynoms über  $\mathbb{Q}(z)$  ist. Nach Umstellen der Gleichung  $z = X^2 + X^{-2}$  gilt

$$zX^2 = X^4 + 1$$

Also  $X^4 - zX^2 + 1 = 0$ , das heißt X ist Nullstelle des Polynoms  $Y^4 - zY^2 + 1 \in \mathbb{Q}(z)[Y]$ . Das Element X ist also algebraisch über  $\mathbb{Q}(z)$  und das Minimalpolynom von X über  $\mathbb{Q}(z)$  teilt  $Y^4 - zY^2 + 1$ . Damit hat die Erweiterung  $\mathbb{Q}(X)/\mathbb{Q}(z)$  maximal den Grad 4.

**Zu** (b): Die sind genau die Elemente in  $\operatorname{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z))$  und nach (a) ist  $|\operatorname{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z))| \leq |\mathbb{Q}(X)| = \mathbb{Q}(z)| \leq 4$ . Jedes Element in  $\sigma \in \operatorname{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z))$  ist eindeutig bestimmt durch den Wert  $\sigma(X)$ . Sei  $\sigma(X) = \frac{f}{g}$  mit teilerfremden Polynomen  $f, g \in \mathbb{Q}[X]$  und  $g \neq 0$ . Nach Definition gilt

$$\sigma(z) = z$$
 
$$\sigma(X^2 + X^{-2}) = X^2 + X^{-2} = \frac{X^4 + 1}{X^2} \quad | \text{mit } z = X^2 + X^{-2}$$
 
$$\sigma(X^2 + X^{-2}) = \sigma(X)^2 + \sigma(X)^{-2} = \frac{f^2}{g^2} + \frac{g^2}{f^2} = \frac{f^4 + g^4}{f^2 g^2} \quad | \text{denn } \sigma \text{ ist K\"orperhomomorphismus}$$

Also

$$\frac{X^4+1}{X^2} = \frac{f^4+g^4}{f^2g^2}$$

und beide Brüche sind vollständig gekürzt, damit  $f^2g^2=X^2$  und  $f^4+g^4=X^4+1$ . Also ist  $f=\pm X$  und  $g=\pm 1$  oder umgekehrt.  $\sigma(X)$  kann also die Werte  $X, -X, X^{-1}$ , und  $-X^{-1}$  annehmen. Damit gibt es vier Elemente in  $\operatorname{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z))$  gegeben durch

$$\begin{aligned} \sigma_1(X) &= X & \text{also } \sigma_1 &= \mathrm{id}_{\mathbb{Q}(X)} \\ \sigma_2(X) &= -X & \text{also } \sigma_2^2 &= \mathrm{id}_{\mathbb{Q}(X)} \\ \sigma_3(X) &= X^{-1} & \text{also } \sigma_3^2 &= \mathrm{id}_{\mathbb{Q}(X)} \\ \sigma_4(X) &= -X^{-1} & \text{also } \sigma_4^2 &= \mathrm{id}_{\mathbb{Q}(X)} \end{aligned}$$

Damit ist  $Gal(\mathbb{Q}(X)/\mathbb{Q}(z))$  isomorph zu  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ .

**Zu** (c): Nach (b) gilt  $4 = |\operatorname{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z))| \leq [\mathbb{Q}(X):\mathbb{Q}(z)] \leq 4$  also hat die Erweiterung  $\mathbb{Q}(X)/\mathbb{Q}(z)$  den Grad 4, und  $Y^4 - zY^2 + 1 \in \mathbb{Q}(z)[Y]$  ist das Minimalpolynom von X über  $\mathbb{Q}(z)$ . Es hat genau die Nullstellen  $X, X^{-1}, -X$  und  $-X^{-1}$ , die alle in  $\mathbb{Q}(X)$  enthalten sind. Also ist  $\mathbb{Q}(X)$  Zerfällungskörper von  $Y^4 - zY^2 + 1 \in \mathbb{Q}(z)[Y]$  über  $\mathbb{Q}(z)$ , und damit ist die Erweiterung  $\mathbb{Q}(X)/\mathbb{Q}(z)$  normal und separabel, also Galois'sch.

Nach dem Hauptsatz der Galoistheorie sind die Zwischenkörper von  $\mathbb{Q}(X)/\mathbb{Q}(z)$  genau die Fixkörper der Untergruppen von  $\mathrm{Gal}(\mathbb{Q}(X)/\mathbb{Q}(z)) = \{\mathrm{id}, \sigma_2, \sigma_3, \sigma_4\}.$ 



 $\sigma_2$  hat den Fixpunkt  $X^2$ . Wir haben einen Turm  $\mathbb{Q}(z) \subset \mathbb{Q}(z, X^2) \subset \mathbb{Q}(X)$ . Da  $X \notin \mathbb{Q}(z, X^2)$  ist die zweite Inklusion echt. Außerden ist  $X^2$  kein Fixpunkt von  $\sigma_3$  oder  $\sigma_4$ , liegt damit nicht im Grundkörper. Also ist  $\mathbb{Q}(z, X^2)$  der Fixkörper von  $\langle \sigma_2 \rangle$ .

 $\sigma_3$  hat den Fixpunkt  $X+X^{-1}$ , und wieder haben wir echte Erweiterungen  $\mathbb{Q}(z) \notin \mathbb{Q}(z, X+X^{-1}) \notin \mathbb{Q}(X)$ , denn  $X \notin \mathbb{Q}(z, X+X^{-1})$  und  $X+X^{-1} \notin \mathbb{Q}(z)$ , da  $X+X^{-1}$  ist kein Fixpunkt von  $\sigma_2$  oder  $\sigma_4$ . Also ist  $\mathbb{Q}(z, X+X^{-1})$  der Fixkörper von  $(\sigma_3)$ .

 $\mathbb{Q}(z, X + X^{-1})$  der Fixkörper von  $\langle \sigma_3 \rangle$ .  $\sigma_4$  hat den Fixpunkt  $X - X^{-1}$ , und wieder haben wir echte Erweiterungen  $\mathbb{Q}(z) \notin \mathbb{Q}(z, X - X^{-1}) \notin \mathbb{Q}(X)$ , denn  $X - X^{-1} \notin \mathbb{Q}(z)$  und  $X \notin \mathbb{Q}(z, X - X^{-1})$ . Also ist  $\mathbb{Q}(z, X - X^{-1})$  der Fixkörper von  $\langle \sigma_4 \rangle$ .



**Aufgabe 3** (Frühjahr 2004). Es sei K/k eine Galoiserweiterung, deren Galoisgruppe isomorph zur symmetrischen Gruppe  $S_n$  ist. Zeigen Sie:

- (a) K enthält n zueinander konjugierte Zwischenkörper vom Grad n über k, die zusammen K über k erzeugen.
- (b) K ist der Zerfällungskörper eines Polynoms vom Grad n aus k[X] über k

Lösung. **Zu** (a): Nach dem Hauptsatz der Galoistheorie gibt es zu jedem Zwischenkörper  $k \subset E_i \subset K$  vom Grad n über k korrespondiert eine Untergruppe  $U_i \subset \text{Gal}(K/k) \cong S_n$  vom Index n, also Untergruppen der Ordnung (n-1)!. Dies sind die n Gruppen, die jeweils ein Element i festlassen

$$\operatorname{Stab}_{S_n}(i) = \{ \sigma \in S_n \mid \sigma(i) = i \}.$$

Die zugehörigen n Zwischenkörper sind die gesuchten  $k \subset E_i \subset K$  und es gilt

$$Gal(K/E_i) \cong Stab_{S_n}(i)$$
.

Das Kompositum  $E_1\cdots E_n$  ist ein Zwischenkörper  $k\subset E_i\subset E_1\cdots E_n\subset K$  und hat Galoisgruppe

$$\operatorname{Gal}(K/E_1 \cdots E_n) \cong \operatorname{Gal}(K/E_1) \cap \cdots \cap \operatorname{Gal}(K/E_n) \cong \operatorname{Stab}_{S_n}(1) \cap \cdots \cap \operatorname{Stab}_{S_n}(n) = \{\operatorname{id}\}.$$

Es folgt  $K = E_1 \cdots E_n$ .

Die Gruppen  $\operatorname{Stab}_{S_n}(i)$  sind paarweise konjugiert zueinander: für  $\sigma = (ij)$  gilt

$$\operatorname{Stab}_{S_n}(i) = \sigma \operatorname{Stab}_{S_n}(j)\sigma^{-1},$$

also  $\operatorname{Gal}(K/E_i) = \sigma \operatorname{Gal}(K/E_j)\sigma^{-1}$  Für die zugeh $\tilde{\mathbf{A}}$ ¶rigen Körper gilt  $E_i = \sigma(E_j)$ , das heißt sie sind konjugiert.

**Zu** (b): Die Körper  $E_i$  aus (a) sind also separabel über k, und für einen davon, ohne Einschränkung  $E_1/k$  wählen wir ein primitives Element  $E_1 = k(a)$ . Sei  $m_{k,a} \in k[X]$  das Minimalpolynom von aüber k. Es hat Grad  $\deg(m_{k,a}) = [E_1 : k] = n$ .

Da K/k normal ist, und das ireduzible Polynome  $m_{k,a} \in k[X]$  eine Nullstelle in K hat, muß  $m_{k,a}$  über K in Linearfaktorne zerfallen. Wir behaupten, daß K der Zerfällungskörper von  $m_{k,a}$  ist.

D  $E_1$  zu jedem  $E_i$  konjugiert ist, gibt es zu jedem i ein  $\sigma_i \in Gal(K/k) \cong S_n$  (nämlich  $\sigma_i = (1i)$ ) mit  $\sigma_i(E_1) = E_i$ , insbesondere gilt  $\sigma_i(a) \in E_i$ . Da  $\sigma_i$  ein k-Automorphismus von K ist, ist  $\sigma_i(a)$  ein primitives Element von  $E_i$  und ebenfalls eine Wurzel von  $m_{k,a}$ , denn es gilt  $\sigma_i(m_{k,a}) = m_{k,a}$  und  $0 = \sigma_i(0) = \sigma(m_{k,a}(a)) = m_{k,a}(\sigma_i(a))$ .

Setzten wir  $a_i = \sigma_i(a)$ , so gilt  $K = E_1 \cdots E_n = k(a_1, \dots, a_n)$  wobei die  $a_i$  genau die n Nullstellen von  $m_{k,a}$  sind.

**Aufgabe 4** (Herbst 2004). Es sei  $K = \mathbb{F}_{3^3}$  der Körper mit 27 Elementen. Was ist die Ordnung der Galoisgruppe  $G = \text{Gal}(K/\mathbb{F}_3)$ ? In wieviele und wie lange Bahnen zerfällt K unter der Operation von G?

Lösung. Wie jede endliche Erweiterung eines endlichen Körpers ist  $K/\mathbb{F}_3$  Galois'sch mit zyklischer Galoisgruppe die vom Frobenius  $\sigma: K \to K, a \mapsto a^3$  erzeugt wird. Die Ordnung der Galoisgruppe ist der Grad der Körpererweiterung

$$|\operatorname{Gal}(K/\mathbb{F}_3)| = [K : \mathbb{F}_3] = 3.$$

Die Galoisgruppe enthält die Elemente

$$id = \sigma^{0} : a \mapsto a$$
$$\sigma : a \mapsto a^{3}$$
$$\sigma^{2} : a \mapsto a^{9}$$

Wir untersuchen die Operation

$$: G \times K \to K, (g, a) \mapsto g(a).$$

Ist  $a \in \mathbb{F}_3$ , so git  $a = a^3 = a^9$ , also für die Bahn

$$G \cdot a = \{a\},\$$

das heißt  $|G\cdot a|$  = 1, und es gibt drei solcher Bahnen der Länge 1. Ist  $a\in K\backslash \mathbb{F}_3$ , so ist  $a\neq a^3$ ,  $a\neq a^9$  und  $a^3\neq a^9$ , also

$$G \cdot a = \{a, a^3, a^9\},$$

das heißt  $|G \cdot a| = 3$ . Da  $|K \setminus \mathbb{F}_3 = 27 - 3 = 24$  gibt es  $\frac{24}{3} = 8$  solcher Bahnen.