# Experimental Design Note 14 Nested Design

Keunbaik Lee

Sungkyunkwan University

#### Nested and Split-Plot Designs

- Text reference, Chapter 14
- These are multifactor experiments that have some important industrial/ agricultural applications
- Nested and split-plot designs frequently involve one or more random factors, so the methodology of Chapter 13 (expected mean squares, variance components) is important
- There are many variations of these designs- we consider only some basic situations

#### Crossed vs Nested Factors I

Factorial

Factors A (a levels) and B (b levels) are considered crossed if every combinations of A and B (ab of them) occurs. An example:

|   |   | Factor B |   |    |     |     | 2  | 3  | 4  | _ |   |   |
|---|---|----------|---|----|-----|-----|----|----|----|---|---|---|
|   |   |          | 1 | хх | : ) | κx  | xx | XX |    |   |   |   |
|   |   | 2        |   |    | хх  | : ( | ×Χ | xx | XX |   |   |   |
|   |   |          | ( | 3  | ХХ  | : ) | ×Χ | xx | XX |   |   |   |
| A |   | 1        |   |    | 2   |     | 3  |    |    | 4 |   |   |
| В | 1 | 2        | 3 | 1  | 2   | 3   | 1  | 2  | 3  | 1 | 2 | 3 |
|   | Х | Х        | Х | Х  | Х   | х   | х  | х  | х  | Х | Х | Х |
|   | х | х        | х | Х  | Х   | Х   | х  | х  | Х  | Х | х | х |

#### Crossed vs Nested Factors II

- Factor *B* is considered nested under *A* (*a* levels) if
  - 1 under each fixed level (i) of A, B has  $b_i$  levels.
  - 2 the levels of B under the sample level of A are comparable.
  - 3 under a level of A, the levels of B can be arbitrarily numbered.

| A | 1 |   |   | 2 |   |   | 3 |   |   | 4  |    |    |
|---|---|---|---|---|---|---|---|---|---|----|----|----|
| В | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|   | χ | χ | χ | Χ | χ | χ | χ | χ | X | χ  | χ  | χ  |
|   | χ | χ | X | X | χ | χ | χ | X | X | Х  | Х  | Х  |

## Material Purity Experiment I

Consider a company that buys raw material in batches from three different suppliers. The purity of this raw material varies considerably, which causes problems in manufacturing the finished product. We wish to determine if the variability in purity is attributable to difference between the suppliers. Four batches of raw material are selected at random from each supplier, three determinations of purity are made on each batch. The data, after coding by subtracting 93 are given below.

## Material Purity Experiment II



Figure 14-1 A two-stage nested design.

## Material Purity Experiment III

|           |    | Supplier 1 |    |   |    | Supp | olier 2 |   | Supplier 3 |    |    |   |
|-----------|----|------------|----|---|----|------|---------|---|------------|----|----|---|
|           | -  |            |    | - | _  |      |         | - |            |    |    | - |
| Batches   | 1  | 2          | 3  | 4 | 1  | 2    | 3       | 4 | 1          | 2  | 3  | 4 |
|           | 1  | -2         | -2 | 1 | 1  | 0    | -1      | 0 | 2          | -2 | 1  | 3 |
|           | -1 | -3         | 0  | 4 | -2 | 4    | 0       | 3 | 4          | 0  | -1 | 2 |
|           | 0  | -4         | 1  | 0 | -3 | 2    | -2      | 2 | 0          | 2  | 2  | 1 |
|           |    |            |    |   | _  |      |         | - |            |    |    | - |
| $y_{ij.}$ | 0  | -9         | -1 | 5 | -4 | 6    | -3      | 5 | 6          | 0  | 2  | 6 |
| $y_{i}$   |    | -{         | 5  |   |    | 4    | 4       |   |            | 1  | 4  |   |

#### Other Examples for Nested Factors

- Drug company interested in stability of product
  - Two manufacturing sites
  - Three batches from each site
  - Ten tablets from each batch
- Stratified random sampling procedure
  - Randomly sample five states
  - Randomly select three counties
  - Randomly select two towns
  - Randomly select five households

#### Statistical Model

Two factor nested model

$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{k(ij)}$$

for 
$$i = 1, \dots, a$$
;  $j = 1, \dots, b$ ;  $k = 1, \dots, n$ .

- Bracket notation represents nested factor
- Cannot include interaction
- Factors may be random or fixed
- Can use EMS algorithm to derive tests

## Sum of Squares Decomposition

$$y_{ijk} = \bar{y}_{...} + (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..}) + (y_{ijk} - \bar{y}_{ij.})$$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{...})^{2} = bn \sum_{i=1}^{a} (\bar{y}_{i..} - \bar{y}_{...})^{2} + n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{y}_{ij.} - \bar{y}_{i..})^{2}$$

$$+ \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ij.})^{2}$$

$$SS_{T} = SS_{A} + SS_{B(A)} + SSE$$

## Analysis of Variance Table

| Source of | Sum of      | Degrees of | Mean              | F <sub>0</sub> |
|-----------|-------------|------------|-------------------|----------------|
| Variation | Squares     | Freedom    | Square            |                |
| A         | $SS_A$      | a — 1      | $MS_A$            |                |
| B(A)      | $SS_{B(A)}$ | a(b-1)     | $MS_{B(A)} \ MSE$ |                |
| Error     | SSe ´       | ab(n-1)    | MSE ´             |                |
| Total     | SST         | abn-1      |                   |                |

$$SS_{T} = \sum_{i} \sum_{j} \sum_{k} y_{ijk}^{2} - y_{...}^{2} / abn$$

$$SS_{A} = \frac{1}{bn} \sum_{i} y_{i}^{2} - y_{...}^{2} / abn$$

$$SS_{B(A)} = \frac{1}{n} \sum_{i} \sum_{j} y_{ij}^{2} - \frac{1}{bn} \sum_{i} y_{i}^{2}$$

$$SSE = \sum_{i} \sum_{k} \sum_{j} y_{ijk}^{2} - \frac{1}{n} \sum_{i} \sum_{j} y_{ij}^{2}$$

Use EMS to define proper tests

#### Two-Factor Nested Model with Fixed Effects

$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{k(ij)}$$
 where  $\sum_{i=1}^a \tau_i = 0$  and  $\sum_{j=1}^b \beta_{j(i)} = 0$  for each  $i$ .

|                    | F | F | R |                                                             |
|--------------------|---|---|---|-------------------------------------------------------------|
|                    | a | b | n |                                                             |
| Term               | i | j | k | EMS                                                         |
| $	au_i$            | 0 | b | n | $\sigma^2 + \frac{bn\sum_i \tau_i^2}{a-1}$                  |
| $\beta_{j(i)}$     | 1 | 0 | n | $\sigma^2 + \frac{n\sum_{i}\sum_{j}\beta_{j(i)}^2}{a(b-1)}$ |
| $\epsilon_{k(ij)}$ | 1 | 1 | 1 | $\sigma^{2}$                                                |

- Estimates:  $\hat{\tau}_i = \bar{y}_{i..} \bar{y}_{...}$ ;  $\hat{\beta}_{j(i)} = \bar{y}_{ij.} \bar{y}_{i...}$
- Tests:  $MS_A/MSE$  for  $H_0: \tau_i = 0$ ;  $MS_{B(A)}/MSE$  for  $H_0: \beta_{j(i)} = 0$ .

#### Two-Factor Nested Model with Random Effects

$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{k(ij)}$$
 where  $\tau_i \sim N(0, \sigma_{\tau}^2)$  and  $\beta_{j(i)} \sim N(0, \sigma_{\beta}^2)$ .

|                     | R | R | R |                                                                              |
|---------------------|---|---|---|------------------------------------------------------------------------------|
|                     | a | Ь | n |                                                                              |
| Term                | i | j | k | EMS                                                                          |
| $\overline{\tau_i}$ | 1 | b | n | $\sigma^2 + n\sigma_{\beta}^2 + bn\sigma_{\tau}^2$                           |
| $\beta_{j(i)}$      | 1 | 1 | n | $\sigma^2 + n\sigma_{eta}^2 + bn\sigma_{	au}^2 \ \sigma^2 + n\sigma_{eta}^2$ |
| $\epsilon_{k(ij)}$  | 1 | 1 | 1 | $\sigma^2$                                                                   |

- Estimates:  $\hat{\sigma}_{\tau}^2 = (MS_A MS_{B(A)})/nb$ ;  $\hat{\sigma}_{\beta}^2 = (MS_{B(A)} MSE)/n$ .
- Tests:  $MS_A/MS_{B(A)}$  for  $H_0: \sigma_{\tau}^2 = 0$ ;  $MS_{B(A)}/MSE$  for  $H_0: \sigma_{\beta}^2 = 0$ .



#### Two-Factor Nested Model with Mixed Effects

$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \epsilon_{k(ij)}$$
 where  $\sum_{i=1}^{a} \tau_i = 0$  and  $\beta_{j(i)} \sim N(0, \sigma_{\beta}^2)$ .

|                    | F | R | R |                                                                |
|--------------------|---|---|---|----------------------------------------------------------------|
|                    | a | b | n |                                                                |
| Term               | i | j | k | EMS                                                            |
| $	au_i$            | 0 | b | n | $\sigma^2 + n\sigma_{\beta}^2 + \frac{bn\sum_i \tau_i^2}{a-1}$ |
| $\beta_{j(i)}$     | 1 | 1 | n | $\sigma^2 + n\sigma_\beta^2$                                   |
| $\epsilon_{k(ij)}$ | 1 | 1 | 1 | $\sigma^2$                                                     |

- Estimates:  $\hat{\tau}_i = \bar{y}_{i..} \bar{y}_{...}$ ;  $\hat{\sigma}^2_{\beta} = (MS_{B(A)} MSE)/n$ .
- Tests:  $MS_A/MS_{B(A)}$  for  $H_0: \tau_i = 0$ ;  $MS_{B(A)}/MSE$  for  $H_0: \sigma_\beta^2 = 0$ .

## Expected Mean Squares in the Two-Stage Nested Design

■ TABLE 14.1 Expected Mean Squares in the Two-Stage Nested Design

| E(MS)          | A Fixed<br>B Fixed                                     | A Fixed<br>B Random                                          | A Random<br>B Random                               |
|----------------|--------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| $E(MS_A)$      | $\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$               | $\sigma^2 + n\sigma_{\beta}^2 + \frac{bn\sum \tau_i^2}{a-1}$ | $\sigma^2 + n\sigma_{\beta}^2 + bn\sigma_{\tau}^2$ |
| $E(MS_{B(A)})$ | $\sigma^2 + \frac{n \sum \sum \beta_{j(i)}^2}{a(b-1)}$ | $\sigma^2 + n\sigma_\beta^2$                                 | $\sigma^2 + n\sigma_{\beta}^2$                     |
| $E(MS_E)$      | $\sigma^2$                                             | $\sigma^2$                                                   | $\sigma^2$                                         |

## Purity Experiment

See nested.SAS.

#### Other Scenarios for Nested Factors I

- Staggered Nested Designs
- General *m*-Stage Nested Designs

$$y_{ijkl} = \mu + \tau_i + \beta_{j(i)} + \gamma_{k(ij)} + \epsilon_{l(ijk)}$$

Designs with Both Nested and Factorial Factors

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_{k(j)} + (\tau \beta)_{ij} + (\tau \gamma)_{ik(j)} + \epsilon_{l(ijk)}$$

Sections 14.2, 14.3 in Textbook.

#### Other Scenarios for Nested Factors II



■ FIGURE 14.4 A three-stage staggered nested design

## General *m*-Stage Nested Designs I







$$y_{ijkl} = \mu + \tau_i + \beta_{j(i)} + \gamma_{k(ij)} + \epsilon_{l(ijk)}$$

## General m-Stage Nested Designs II

■ TABLE 14.7

Analysis of Variance for the Three-Stage Nested Design

| Source of Variation | Sum of Squares                                                            | Degrees of Freedom | Mean Square |
|---------------------|---------------------------------------------------------------------------|--------------------|-------------|
| A                   | $bcn \sum_{i} (\overline{y}_{i} - \overline{y}_{})^{2}$                   | a-1                | $MS_A$      |
| B (within A)        | $cn\sum_{i}\sum_{j}(\overline{y}_{ij}-\overline{y}_{})^{2}$               | a(b-1)             | $MS_{B(A)}$ |
| C (within B)        | $n\sum_{i}\sum_{j}\sum_{k}(\overline{y}_{ijk}-\overline{y}_{})^{2}$       | ab(c-1)            | $MS_{C(B)}$ |
| Error               | $\sum_{i} \sum_{j} \sum_{k} \sum_{l} (y_{ijkl} - \overline{y}_{ijk})^{2}$ | abc(n-1)           | $MS_E$      |
| Total               | $\sum_{l}\sum_{j}\sum_{k}\sum_{l}(y_{ijkl}-\overline{y}_{})^{2}$          | abcn-1             |             |

## General m-Stage Nested Designs III

#### ■ TABLE 14.8

Expected Mean Squares for a Three-Stage Nested Design with A and B Fixed and C Random

| Model Term                              | <b>Expected Mean Square</b>                                                   |
|-----------------------------------------|-------------------------------------------------------------------------------|
| $	au_i$                                 | $\sigma^2 + n\sigma_\gamma^2 + rac{bcn\sum 	au_i^2}{a-1}$                    |
| $oldsymbol{eta}_{j(i)}$                 | $\sigma^2 + n\sigma_{\gamma}^2 + rac{cn\sum\sum ar{\beta}_{j(i)}^2}{a(b-1)}$ |
| $\gamma_{k(ij)}$                        | $\sigma^2 + n\sigma_{\gamma}^2$                                               |
| $oldsymbol{\epsilon}_{\mathit{l(ijk)}}$ | $\sigma^2$                                                                    |

#### Example 14.2 Nested and Factorial Factors I

■ TABLE 14.9 Assembly Time Data for Example 14.2

|                      |     | Layo | ut 1 |     |     |     |     |     |                |
|----------------------|-----|------|------|-----|-----|-----|-----|-----|----------------|
| Operator             | 1   | 2    | 3    | 4   | 1   | 2   | 3   | 4   | y <sub>i</sub> |
| Fixture 1            | 22  | 23   | 28   | 25  | 26  | 27  | 28  | 24  | 404            |
|                      | 24  | 24   | 29   | 23  | 28  | 25  | 25  | 23  |                |
| Fixture 2            | 30  | 29   | 30   | 27  | 29  | 30  | 24  | 28  | 447            |
|                      | 27  | 28   | 32   | 25  | 28  | 27  | 23  | 30  |                |
| Fixture 3            | 25  | 24   | 27   | 26  | 27  | 26  | 24  | 28  | 401            |
|                      | 21  | 22   | 25   | 23  | 25  | 24  | 27  | 27  |                |
| Operator totals, y,k | 149 | 150  | 171  | 149 | 163 | 159 | 151 | 160 |                |
| Layout totals, y,j., |     | 6    | 19   |     |     | 6   | 33  |     | 1252 =         |

## Example 14.2 Nested and Factorial Factors II

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_{k(j)} + (\tau \beta)_{ij} + (\tau \gamma)_{ik(j)} + \epsilon_{(ijk)l}$$

for i = 1, 2, 3 (Fixtures); j = 1, 2 (Layouts); k = 1, 2, 3, 4 (Operators); l = 1, 2 (replicates).

Assume that fixtures and layouts are fixed, operators are random - gives a mixed model (use restricted form)

#### Example 14.2 Nested and Factorial Factors III

#### ■ TABLE 14.10

Expected Mean Squares for Example 14.2

| Model<br>Term              | Expected Mean Square                                               |
|----------------------------|--------------------------------------------------------------------|
| $\overline{	au_i}$         | $\sigma^2 + 2\sigma_{\tau\gamma}^2 + 8\sum \tau_i^2$               |
| $\beta_{j}$                | $\sigma^2 + 6\sigma_{\gamma}^2 + 24\sum \beta_j^2$                 |
| $\gamma_{k(j)}$            | $\sigma^2 + 6\sigma_{\gamma}^2$                                    |
| $(	auoldsymbol{eta})_{ij}$ | $\sigma^2 + 2\sigma_{\tau\gamma}^2 + 4\sum\sum (\tau\beta)_{ij}^2$ |
| $(\tau \gamma)_{ik(j)}$    | $\sigma^2 + 2\sigma_{\tau\gamma}^2$                                |
| $\epsilon_{(ijk)l}$        | $\sigma^2$                                                         |

## Example 14.2 Nested and Factorial Factors IV

■ TABLE 14.11

Analysis of Variance for Example 14.2

| Source of Variation                | Sum of<br>Squares | Degrees of<br>Freedom | Mean<br>Square | $F_{\theta}$ | P-Value |
|------------------------------------|-------------------|-----------------------|----------------|--------------|---------|
| Fixtures (F)                       | 82.80             | 2                     | 41.40          | 7.54         | 0.01    |
| Layouts (L)                        | 4.08              | 1                     | 4.09           | 0.34         | 0.58    |
| Operators (within layouts), $O(L)$ | 71.91             | 6                     | 11.99          | 5.15         | < 0.01  |
| FL                                 | 19.04             | 2                     | 9.52           | 1.73         | 0.22    |
| FO(L)                              | 65.84             | 12                    | 5.49           | 2.36         | 0.04    |
| Error                              | 56.00             | 24                    | 2.33           |              |         |
| Total                              | 299.67            | 47                    |                |              |         |