ASSIGNMENT-9 dets suppose: "I" be a PARTIALLY COMPUTABLE FUNCTION. These exists a 1-program that computes the function, f. Asking a no-op instruction to 1-program, also computes of by new 1-program. .. By adding no op instructions to the 1-program, we can cleate new L-program that computes f. dots suppose - we are adding "K" no op instructions to generate new 1-poogram where "k" can be any natural number [1,2,3 --- R] .. It can generate INFINITE 1-poograms and the length of the programs is lak, Kal Therefore, f is computed by INFINITELY many 1-programs whose length 12K, K≥0

F -TVGWUJIVA BASE CASE : for K=0; the length of P=0 Therefore: - P is an empty program. For empty program: $-\psi_p^{(1)}(x) = 0$ This satisfies the condition: $-\psi_{p}^{(1)}(x) \leq 0$ as $0 \leq 0$ Assume that, P is a straight line 1-program of length in, then $\psi_{0}^{(i)}(\mathbf{x}) \leq n \rightarrow (i)$ we are supposed to prove for the peogram of length n+1. The program of length not can be written as program of length n and one extra metruction at the end of it. From is= The maximum value of the output of the program of length on" is the Adding one extra nutruction, the maximum value can be not. . The maximum value of the output of the program of length n+1 is n+1. Therefore :- $y^{(1)}(x) \leq n+1$, if the length π n+1. Hence, by PROOF DF INDUCTION, I length of program p is K,

then $\psi^{(i)}(x) \leq K$ for all x.

***			Ċ
9 9			•
20	-03) To prove that a function of p.c in L++ (=)		•
	It is a p.c 2 conditions must be satisfied	d.	•
4 T	(i) A function can be computed by 6++ program of it	can be computed by	
	L-pobgann		•
5 2 4 5 8 9	(ii) A function can be computed by 1 program of A ca	m be computed by	
	L++ porglam		, and
	· · · · · · · · · · · · · · · · · · ·		-
10	As all the instruction in Lase included in L++, we can or	brously cay that a	
1	function computed by Lprogram can also be computed	by L++ program.	
	By this, condition (i) is satisfied as we know the	nat L++ extends L	
	and all notructions in 1-program can be execute	ed by L++.	(
	and the second second	V	
24-	Grandition in the patrician a grant ford a more	be VEK to be	
1	For condition is, to be latisfied, we should find a may;		
	computed Pn L-program.	1446	
	The following will can be used for event	5	
	V < K in L-program.		
		55.30.3	10 11
	[A] IF V==0 GOTO B		55.
	V ← V − 1), i
	GOTO A		
	$(B) V \rightarrow V+1$		
ď.	$V \rightarrow V+I$		
	$V \rightarrow V + 1 = [K - times]$		
	= [r= vires]		
13	· · · · · · · · · · · · · · · · · · ·		- 12
W.W.	V → V+1 J		
	Since, L++ consists of all 1-instruction and VEK can I	be computed by L proglam	
	in the above method, we can say that condition (ii) is most	t.	
	Since, boths conditions are satisfied, a function is p.c in L		1 1