Tarea Método de falsa posicion

Angel Caceres Licona

May 28, 2020

- 1 Considere la función $f(x) = x^2 4\cos(x)...$
- 1.1 Graficar en el intervalo (1,2)...

2 Código del programa

```
from math import *
   def fx(x):
         return x**2 -4*cos(x)
   def posicionfalsa(a,b,tol):
         fa = fx(a)
         fb = fx(b)
         c = b - fb*(b-a)/(fb-fa)
         tramo = abs(c-a)
12
         fc = fx(c)
         print \ ("Iteracion_{\cup \cup \cup \cup \cup} a_{\cup \cup \cup \cup \cup} b_{\cup \cup \cup \cup \cup} f(a)_{\cup \cup \cup} f(b)_{\cup \cup \cup \cup \cup} f(c)")
14
15
         for i in range (1000):
               fc = fx(c)
               i = i+1
              fc = fx(c)
```

```
20
              if (fc==0.0 or tramo < tol):</pre>
                    break
22
23
               if (fa*fc < 0 ):</pre>
                    a = c
24
25
                    fa=fc
               else:
                    b=c
27
                    fb=fc
               c = b - fb*(a-b)/(fa-fb)
29
               tramo = abs(fc)
30
              print ("%.0f" %i, "%.4f" %a,"_____%.4f" %b,"_____%.4f" %c, "______%.4f" %fa,"______%.4f" %fb,"_____%.4f" %fc)
         print ("La_{\sqcup}raiz_{\sqcup}buscada_{\sqcup}es:_{\sqcup}%.10f" %c, "con_{\sqcup}" + str(i) + "_{\sqcup}
33
              iteraciones.")
   posicionfalsa(1.0,2.0,0.0000000005)
```

2.1 Use el metodo para localizar una aproximación y haga una tabla con los datos

$\mid n \mid$	a	b	c	f(a)	f(b)	f(c)
0	1	2	1.1701206902	-1.1612092235	5.6645873462	-0.1909797940
1	1	1.1701206902	1.2036072176	-1.1612092235	-0.1909797940	-0.1909797940
2	1.2036072176	1.1701206902	1.2015197040	0.0126969883	-0.1909797940	0.0126969883
3	1.2015197040	1.1701206902	1.2015384667	-0.0001140530	-0.1909797940	-0.0001140530
4	1.2015384667	1.1701206902	1.2015382978	0.0000010265	-0.1909797940	0.0000010265
5	1.2015382978	1.1701206902	1.2015382994	-0.0000000092	-0.1909797940	-0.0000000092
6	1.2015382994	1.1701206902	1.2015382993	0.0000000001	-0.1909797940	0.0000000001[1ex]

2.2 Comprarar los resultados con las tareas anteriores...

Para el metodo de biseccion salieron 32 iteraciones. Para secante salieron 7 iteraciones.

3 Considere la función $-8e^{1-x} + \frac{7}{x}$

3.1 Graficar en el intervalo (0,2)

3.2 Hacer un programa que encuentre...

Usé el mismo programa, sólo cambié la condición de paro y salen estos resultados:

n	a	b	c	f(a)	f(b)	f(c)
0	0.55	0.57	0.5682478058	0.1807752434	-0.0173584340	-0.0010583244
1	0.5682478058	0.57	0.5681340403	-0.0010583244	-0.0173584340	-0.0010583244
2	0.5681340403	0.57	0.5681347676	0.0000067682	-0.0173584340	0.0000067682
3	0.5681347676	0.57	0.5681347629	-0.0000000433	-0.0173584340	-0.0000000433
4	0.5681347629	0.57	0.5681347630	0.0000000003	-0.0173584340	0.0000000003[1ex]

Para el método de biseccion tenemos 27 iteraciones. Para el método de secante tenemos 5 iteraciones.

$\mid n \mid$	a	b	c	f(a)	f(b)	f(c)
0	1.6	1.7	1.6096555585	-0.0154930888	0.1449646285	0.0004520236
1	1.6096555585	1.7	1.6093729685	0.0004520236	0.1449646285	0.0004520236
2	1.6093729685	1.7	1.6093813066	-0.0000133387	0.1449646285	-0.0000133387
3	1.6093813066	1.7	1.6093810607	0.0000003935	0.1449646285	0.0000003935
$\overline{4}$	1.6093810607	1.7	1.6093810679	-0.0000000116	0.1449646285	-0.0000000116
5	1.6093810679	1.7	1.6093810677	0.0000000003	0.1449646285	0.0000000003[1ex]

Para el método de biseccion tenemos 29 iteraciones. Para el método de secante tenemos 5 iteraciones.