Nonlinear Schrödinger Equation with non-zero boundary conditions

1 IST

The focusing nonlinear Schroödinger equation with symmetric NZBC is

$$iq_t + q_{xx} + 2|q|^2q = 0$$
,

where $|q(x,t)| \to q_{\pm}$ as $x \to \pm \infty$, and $|q_-| = |q_+|$. Related to this PDE are two ODEs, one of which is the "scattering problem,"

$$\phi_x = (ik\sigma_3 + Q)\,\phi\,,$$

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 , $Q(x,t) = \begin{pmatrix} 0 & q \\ -q^* & 0 \end{pmatrix}$.

As $x \to \pm \infty$, the solutions of the scattering problem are approximated by those of the asymptotic scattering problem $\phi_x = X_{\pm} \phi$, where $X_{\pm} = ik\sigma_3 + Q_{\pm}$ and $Q_{\pm} = \lim_{x \to \pm \infty} Q(x,t)$. The eigenvalues of X_{\pm} are

$$\lambda(k) = (q_0^2 + k^2)^{1/2}$$
.

The eigenvalues are given by a complex square root, so there is a branch cut along $i[-q_o, q_o]$. We write the eigenvector matrix for X_{\pm} (dropping the dependence on t) as

$$Y_+(k) = I + i\sigma_3 O_+/(k + \lambda(k))$$
.

The Jost eigenfunctions $\phi_{\pm}(x,k)$ solve the scattering ODE and satisfy the boundary conditions

$$\phi_{\pm}(x,k) = Y_{\pm}(k) e^{i\lambda x \sigma_3} + o(1)$$
 as $x \to \pm \infty$.

(The Jost eigenfunctions are actually functions of t, as well, but in what follows we only need time t=0.) For all $k \in \mathbb{R} \cup i(-q_o,q_o)$ and for all $x \in \mathbb{R}$, $\phi_-(x,k)$ and $\phi_+(x,k)$ are two fundamental matrix solutions of the Lax pair, so there is some matrix S(k) (the "scattering matrix") such that

$$\phi_{+}(x,k) = \phi_{-}(x,k) S(k)$$
.

It turns out that the columns of ϕ_{\pm} may be extended to different regions of the complex k-plane. The entries of S(k) may be written as Wronskians of columns of the ϕ_{\pm} , so some of them may be extendable as well. In particular, we will care about $s_{11}(k)$, which extends beyond $k \in \mathbb{R} \cup i(-q_o, q_o)$, because the zeros of $s_{11}(k)$ correspond to solitary waves in the solution q(x,t).

2 Piecewise constant potentials

A summary of some results will be given in the case of the IVP with the following piecewise constant, box-like initial conditions:

(1)
$$q(x,0) = \begin{cases} 1, & |x| > L, \\ b e^{i\alpha}, & |x| < L, \end{cases}$$

where b > 0. The case 0 < b < 1 represents a potential well, the case b > 1 a potential barrier. The parameter α represents the phase difference between the value of the potential inside the box and its background value.

This is a convenient potential to consider, because the scattering ODE may be solved exactly, and so the Jost solutions at t = 0 have a simple representation in certain subsets of the real axis. Namely,

(2a)
$$\phi_{-}(x,0,k) = \left(I + \frac{i}{k+\lambda}\sigma_{3}Q_{-}\right)e^{i\lambda x\sigma_{3}} \qquad x < -L$$

(2b)
$$\phi_{+}(x,0,k) = \left(I + \frac{i}{k+\lambda}\sigma_{3}Q_{+}\right)e^{i\lambda x\sigma_{3}} \qquad x > L.$$

In addition, a fundamental matrix solution of the scattering problem in the region |x| < L is

(2c)
$$\phi_0(x,0,k) = \left(I + \frac{i}{k+\mu}\sigma_3 Q_0\right) e^{i\mu x \sigma_3} \qquad |x| < L,$$

where

$$\mu^2 = k^2 + b^2.$$

The expression of all these eigenfunctions beyond these domains is obtained by requiring continuity at the boundary. Thus, there exist matrices $S_+(k)$ and $S_-(k)$, independent of x, such that

(4a)
$$S_{+}(k) = \phi_0^{-1}(x, 0, k)\phi_{+}(x, 0, k),$$

(4b)
$$S_{-}(k) = \phi_o^{-1}(x, 0, k)\phi_{-}(x, 0, k).$$

The scattering matrix $S(k) = \phi_{-}^{-1}(x, 0, k)\phi_{+}(x, 0, k)$ is given by

$$S(k) = S_{-}^{-1}(k)S_{+}(k)$$
.

Evaluating (??) at $x = \pm L$ (respectively),

$$s_{1,1}(k) = e^{-2iL(\mu-\lambda)} \left[e^{4iL\mu} \left(b^2(k+\lambda)^2 - 2b\cos\alpha(k+\lambda)(k+\mu) + (k+\mu)^2 \right) + b^2 + 2b\cos\alpha(k+\lambda)(k+\mu) + (k+\lambda)^2(k+\mu)^2 \right] / ((k+\lambda)^2 + 1)((k+\mu)^2 + b^2).$$

Note that $s_{1,1}(k)$ depends on $\mu(k)$, which is defined by (??) up to a sign. After some algebra,

(5)
$$s_{1,1}(k) = e^{2iL\lambda} \left(\cos(2L\mu) - \frac{i(b\cos\alpha + k^2)}{\lambda\mu} \sin(2L\mu) \right).$$

2.1 Results

- 1. If b < 1 and $\cos \alpha > b$ there are no discrete eigenvalues (that is, zeros of s_{11}). (So there is a class of perturbations of the constant background that don't have any solitons.)
- 2. If b>1 and $\cos\alpha>1/b$, there is always at least one eigenvalue. The eigenvalues are always purely imaginary, in the interval i(1,b). More precisely, there are n discrete eigenvalues in i(1,b) whenever $(n-1)\pi/(2\sqrt{b^2-1}) < L < n\pi/(2\sqrt{b^2-1})$, and these eigenvalues accumulate near ib (on the imaginary axis) as L increases. (This means that there are
- 3. If b < 1 and $\cos \alpha < b$, we don't have analytical results. Numerical evidence suggests there are no zeros for $L < (2n+1)\pi/(4\sqrt{b^2-b_\alpha^2})$. As L increases, an eigenvalues appear on the continuous spectrum and accumulate near ib.

4. If b > 1 and $\cos \alpha < 1/b$, $s_{1,1}$ has a zero on the continuous spectrum at ib_{α} if $L = (2n+1)\pi/(4\sqrt{b^2 - b_{\alpha}^2})^3$. Numerical evidence suggests that as L increases, the eigenvalues travel towards the imaginary axis, bifurcating at points in i(1,b). The eigenvalues that travel down disappear at i; those that travel up accumulate on the imaginary axis near ib.

3 Numerical Questions

I have been wondering what any of these solutions look like. In particular,

- 1. What happens to q(x,t) in the case when there are no solitons? That is, what does q(x,t) look like if b < 1 and $\cos \alpha > b$?
- 2. Is there a difference between the q(x,t) with a purely imaginary eigenvalue and the q(x,t) with a complex eigenvalue, or a purely real "eigenvalue?" (Technically, if a zero of s_{11} is real, then it is on the continuous spectrum, and so is not actually an eigenvalue.)
- 3. What happens at the L at which eigenvalues bifurcate? That is, in a case where $L \epsilon$ has one eigenvalue, and $L + \epsilon$ has 2 eigenvalues, what happens to q(x, t) right at L?