Computer Architecture

ICT 1019Y Week 1 Lecture

Binary Numbers

von Neumann Model

- How does this run a stored program?
- What is the von
 Neumann
 Bottleneck?

Converting Between Bases

- The following methods work for converting between *arbitrary* bases
 - We'll focus on converting to/from **binary** because it is the basis for digital computer systems
- Two methods for radix conversion
 - Subtraction method
 - Easy to follow but tedious!
 - Division remainder method
 - Much faster

Subtraction Method: Decimal to Binary

20	1
2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
28	256
2 ⁹	512
2 ¹⁰	1024
211	2048

Convert 789₁₀ to binary (base 2)

789 – 512 = 277	1xxxxxxxxx
277 – 256 = 21	11xxxxxxxx
21	110xxxxxxx
21	1100xxxxxx
21	11000xxxxx
21 – 16 = 5	110001xxxx
5	1100010xxx
5-4 = 1	11000101xx
1	110001010x
1-1= <mark>0</mark>	1100010101
	21 21 21 21 - 16 = 5 5 5 5-4 = 1 1

Division Method: Decimal to Binary

Convert 789₁₀ to binary

789 / 2 = 394.5	Remainder of 1
394 / 2 = 197	Remainder of 0
197 / 2 = 98.5	Remainder of 1
98 / 2 = 49	Remainder of 0
49 / 2 = 24.5	Remainder of 1
24 / 2 = 12	Remainder of 0
12 / 2 = 6	Remainder of 0
6 / 2 = 3	Remainder of 0
3 / 2 = 1.5	Remainder of 1
1/2 = 0.5 (stop when <1)	Remainder of 1
\wedge	

Read **bottom** to **top**:

 $789_{10} = 1100010101_2$

Divide by 2 since we're converting to binary (base 2)

Binary to Decimal

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
27	128
2 ⁸	256
2 ⁹	512
2 ¹⁰	1024
2 ¹¹	2048

Convert 1011000100₂ to decimal

$$= 1x2^9 + 0x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 0x2^0$$

$$= 512 + 128 + 64 + 4$$

= 708

Binary to Decimal (Faster!)

Convert 1011000100₂ to decimal

1 011000100 ₂	0*2 + 1 = 1
10110001002	1*2 + 0 = 2
10 1 1000100 ₂	2*2 + 1 = 5
101 1 000100 ₂	5*2 + 1 = 11
10110001002	11*2 + <mark>0</mark> = 22
10110001002	22*2 + 0 = 44
10110001002	44*2 + 0 = 88
1011000 1 00 ₂	88*2 + 1 = 177
10110001002	177*2 + 0 = 354
101100010 <mark>0</mark> 2	354*2 + 0 = 708

Double your current total and add new digit

Range

- What is the smallest and largest 8-bit unsigned binary number?
 - **₹** XXXXXXXXX
 - **Smallest** = $00000000_2 = 0$
 - 7 Largest = 111111111_2 = 255

Converting Between Bases

- What about fractional values?
 - Fractional values can be approximated in all base systems
 - No guarantee of finding an exact representations under all radices
- Example of an "impossible" fraction:
 - The quantity ½ is exactly representable in the binary and decimal systems, but is not in the ternary (base 3) numbering system

Converting Between Bases

- Fractional values are shown via nonzero digits to the right of the decimal point ("radix point")
 - **₹** These represent negative powers of the radix:

$$0.47_{10} = 4 \times 10^{-1} + 7 \times 10^{-2}$$

$$0.11_2 = 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= \frac{1}{2} + \frac{1}{4}$$

$$= 0.5 + 0.25 = 0.75$$

Subtraction Method: Decimal to Binary

Convert 0.8125₁₀ to binary

2-1	0.5
2 ⁻²	0.25
2 ⁻³	0.125
2-4	0.0625
2 -5	0.03125
2 ⁻⁶	0.015625

Does 0.5 fit in 0.8125? (yes)	0.8125-0.5 = 0.3125	.1
Does 0.25 fit in 0.3125? (yes)	0.3125-0.25 = 0.0625	.11
Does 0.125 fit in 0.0625? (no)	0.0625	.110
Does 0.0625 fit in 0.0625? (yes)	0.0625-0.0625 =	.1101

Stop when you reach 0 fractional parts remaining (or you have enough binary digits)

Multiplication Method: Decimal to Binary

Convert 0.8125₁₀ to binary

0.8125 * 2 = 1.625	1 (whole number)
0.625 * 2 = 1.25	1
0.25 * 2 = 0.5	0 (no whole number)
0.5 * 2 = 1.0	1
^	7

Stop when you reach 0 fractional parts remaining (or you have enough binary digits)

Read top to bottom:
$$0.8125_{10} = .1101_2$$

Hexadecimal Numbers

- Computers work in binary internally
- Drawback for humans?
 - Hard to read long strings of numbers!
 - **Example:** $11010100011011_2 = 13595_{10}$
- For compactness and ease of reading, binary values are usually expressed using the **hexadecimal** (base-16) numbering system

Hexadecimal Numbers

- The hexadecimal numbering system uses the numerals 0 through 9 and the letters A through F
 - 7 The decimal number 12 is C_{16}
 - The decimal number 26 is 1A₁₆
- It is easy to convert between base 16 and base 2, because $16 = 2^4$
- To convert from binary to hexadecimal, group the binary digits into sets of four

- A = 10
- B = 11
- C=12
- D = 13
- E = 14
- F=15

Converting Between Bases

Using groups of 4 bits, the binary number 11010100011011₂ (13595₁₀) in hexadecimal is:

Careful!

If the number of bits is not a multiple of 4, pad on the left with zeros.

Thus, <u>safest</u> to <u>start at the right</u> and work towards the left!

Signed Integers

- To represent signed integers, computer systems use the highorder bit to indicate the sign
 - 0xxxxxxxx = Positive number
 - 1xxxxxxxx = Negative number

Value of the number

High order bit / Most significant bit

- What have we given up compared to unsigned numbers?
 - **Range!** With the same number of bits, unsigned integers can express twice as many "positive" values as signed numbers
- Design challenge How to interpret the value field?

- There are three ways in which signed binary integers may be expressed:
 - Signed magnitude
 - One's complement
 - Two's complement
- In an 8-bit word, signed magnitude representation places the **absolute value** of the number in the 7 bits to the right of the sign bit.

Examples of 8-bit signed magnitude representation:

What if I wanted 16-bit signed magnitude representation?

- Computers perform arithmetic operations on signed magnitude numbers in much the same way as humans carry out pencil and paper arithmetic.
 - Ignore the signs of the operands while performing a calculation
 - Apply the appropriate sign after calculation is complete

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Convert 75 and 46 to binary
- Arrange as a sum, but separate the (positive) sign bits from the magnitude bits

```
0 1001011
0 + 0101110
```

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Just as in decimal arithmetic, we find the sum starting with the rightmost bit and work left.

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- In the second bit, we have a carry, so we note it above the third bit.

$$0 \quad 1001011 \\ 0 + 0101110 \\ \hline 01$$

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- The third and fourth bits also give us carries.

$$0 \quad 1001011 \\ 0 + 0101110 \\ \hline 1001$$

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Once we have worked our way through all eight bits, we are done.

In this example, I picked two values whose sum would fit into 7 bits (leaving the 8th bit for the sign). If the sum doesn't fit into 7 bits, we have a problem.

- Example: using 8-bit signed magnitude binary arithmetic, find 107 + 46.
- The carry from the seventh bit overflows and is discarded no room to store it!
- We get an erroneous result: 107 + 46 = 25.

No magic solution to this overflow problem – you need more bits! (or a smaller number)

- How do I know what sign to apply to the *signed magnitude* result?
 - Works just like the signs in pencil and paper arithmetic

Addition rules

- If the signs are the same, just add the absolute values together and use the same sign for the result
- If the signs are different, use the sign of the larger number. Subtract the larger number from the smaller

- Example: Using signed magnitude binary arithmetic, find -46 + -25.
- Because the signs are the same, all we do is add the numbers and supply the negative sign when finished

- Mixed sign addition (aka subtraction) is done the same way
 - Example: Using signed magnitude binary arithmetic, find 46 + -25.
- The sign of the result is the sign of the larger (here: +)
 - Note the "borrows" from the second and sixth bits.

- Strengths
 - Signed magnitude is easy for people to understand
 - You'll find that, in low-level computer design, "easy for people to understand" doesn't count for very much!
- Drawbacks
 - Makes computer **hardware** more **complicated** / slower
 - Have to compare the two numbers first to determine the correct sign and whether to add or subtract
 - Has two different representations for zero
 - Positive zero and negative zero
- We can **simplify computer hardware** by using a *complement* system to represent numbers

8-bit *one's complement* representation:

7 + 3 is: 00000011

- 3 is: 11111100 (just invert all the bits!)

- In one's complement representation, as with signed magnitude, negative values are indicated by a 1 in the high order bit
- Complement systems are useful because they eliminate the need for subtraction just complement one and add them together!

- One's complement is simpler to implement in hardware than signed magnitude
 - Don't need to compare numbers to see which is larger (for mixed signs)
- Still one disadvantage
 - Positive zero and negative zero
- Solution? Two's complement representation
 - Used by all modern systems

- ▼ To express a value in two's complement representation:
 - If the number is **positive**, just convert it to binary and you're **done**
 - If the number is **negative**, find the **one's complement** of the number (i.e. invert bits) and then **add 1**
- **Example:**
 - In 8-bit binary, 3 is: 0000011 (notice how nothing has changed!)
 - -3 using one's complement representation is: 11111100
 - Adding 1 gives us -3 in two's complement form: 11111101

With two's complement arithmetic, all we do is add the two binary numbers and discard any carries from the high order bit

Example: Using two's complement binary arithmetic, find 48 + -19 = 29

```
48 in binary is: 00110000
19 in binary is: 00010011,
-19 using one's complement is: 11101101,
-19 using two's complement is: 11101101.
```

Reminders

For positive numbers, the *signed-magnitude*, *one's* complement, and *two's* complement forms are all **the same**!

In *one's complement / two's complement* form, you only need to modify the number if it is **negative**!

Range

- What is the smallest and largest 8-bit two's complement number?
 - **₹** XXXXXXXXX
 - **Smallest (negative)** $# = 100000000_2 = -128$
 - **T** Largest (positive) $\# = 011111111_2 = 127$

Overflow

- Overflow: The result of a calculation is too large or small to store in the computer
 - We only have a finite number of bits available for each number
- Can we prevent overflow?
 - Not without re-writing your program to use values that can fit within computer memory
- **∇** Can we **detect** overflow? Yes!
 - **7** Easy to detect in complement arithmetic
 - A set of rules that you could implement in hardware