НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет Программной инженерии и компьютерных технологий Направление: Нейротехнологии и программная инженерия

Дисциплина: Вычислительная математика
Лабораторная работа № 5

"Модифицированный метод Эйлера"

Выполнил студент Рязанов Демид Витальевич Группа Р3221

Преподаватель: Перл Ольга Вячеславовна

г. Санкт-Петербург 2024

Содержание

Эписание метода	3
5лок-схема	4
Л сходный код	6
Тримеры работы	7
· · · · · · . Зывод	

Описание метода

Метод предназначен для приближенного нахождения частных решений ДУ первого порядка y'=f(x;y), соответствущих начальному условию $f(x_0)=y_0$. Метод основан на аппроксимации интегральной кривой ломаной линией.

Алгоритм:

- 1) Задать h длину шага, epsilon максимальную разницу между предиктором и корректором, [a,b] интервал, y_a начальное условие $f(a)=y_a$.
- 2) $x_0 = a$, $y_0 = y_a$
- 3) Посчитать предиктор $\widetilde{y_{i+1}} = y_i + h * f(x_i, y_i)$, и корректор $y_{i+1} = y_i + \frac{h * (f(x_i, y_i) + f(x_{i+1}, \widetilde{y_{i+1}}))}{2}$, где $x_{i+1} = x_i + h$
- 4) Если разница между ними больше epsilon, то $h=h*0.9*(\frac{epsilon}{|y_{i+1}-\widetilde{y_{i+1}}|})^{0.2}$, вернуться к шагу 3
- 5) Пока x < b повторять шаги 2 4
- 6) Otbet y_b

Блок-схема

Исходный код

```
def solveByEulerImproved(f, epsilon, a, y_a, b):
  function = Result.get function(f)
  h = 0.1
  x = a
  y = y_a
  while x < b:
     prev y = y + h * function(x, y)
     corrected y = y + h / 2 * (function(x, y) + function(x + h, prev y))
     if abs(prev_y - corrected_y) < epsilon:</pre>
       y = corrected_y
       x += h
     h *= 0.9 * pow(epsilon / abs(prev_y - corrected_y), 0.2)
     # корректировка h перед последней итерацией
     if x + h > b:
       h = b - x
  return y
```

Примеры работы

Пример 1

Ввод	Вывод
1	3.5091371895483694
0.1	
1	
2	
3	

Пример 2

Ввод	Вывод
3	469.0661413837314
0.01	
-1	
3	
4	

Пример 3

Ввод	Вывод
4	2975.897708409303
0.0001	
-4	
4	
4	

Пример 4

Ввод Вывод

3 3.0

0.01

3

3

3

Пример 5

Ввод Вывод

2 762.2621319845667

0.0001

2

4

5

Вывод

Модифицированный метод Эйлера является методом решения задачи Коши. Метод является модификацией простого метода Эйлера и относится к классу методов Рунге-Кутты. Является более точным по сравнению с обычным методом Эйлера, точность метода равна $o^2(h)$ Метод устойчив и подходит для решения "жестких систем" (нет резкого увеличения числа вычислений или погрешности, в зависимости от величины шага). В отличие от метода Адамса, модифицированный метод Эйлера использует для вычисления очередного значения только значение в предыдущей точке, что позволяет сэкономить память при вычислениях на компьютере. Алгоритмическая сложность метода линейная и зависит от длины интервала [a; b] и длины шага h.