معیار R^2 برای ارزیابی یک مدل

پارامتر R^2 که به ضریب تعیین (تشخیص) نیز معروف است، بیانگر نسبت پراکندگی بین مقادیر خروجی مدل و مقادیر واقعی (اندازه گیری شده) بوده و به صورت زیر تعریف می گردد:

$$R^2 = 1 - \frac{SSE}{SST}$$

و یا می توان نوشت:

$$R = \sqrt{1 - \frac{SSE}{SST}} \qquad , \qquad 0 \le R \le 1$$

در این رابطه، پارامترهای SSE و SSE به صورت زیر تعریف میشوند:

$$SST = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

$$\overline{y} = \frac{\sum_{i=1}^{N} y_i}{n}$$

پارامتر مجموع مربعات خطا 8 (SSE) نیز طبق تعریف بیانگر میزان مجموع مربع خطاها در هر نقطه | از دادهها است:

$$SSE = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

که \hat{y}_i خروجی اندازه گیری شده و \hat{y}_i خروجی مدل است.

در بحث ارزیابی یک مدل با معیار R^2 ، هرچه مقدار پارامتر R^2 به یک نزدیک تر باشد، مدل به طور نسبی بهتر است. به طور تجربی، اگر برای یک مدل، مقدار ضریب تعیین در بازه $R^2 \leq 1$ فسبی بهتر است. به طور تجربی، اگر برای یک مدل، مقدار ضریب تعیین در بازه $R^2 \leq 1$

^{1.} R-Square

^{2.} Coefficient of Determination

^{3.} Sum Squares Error (SSE)

ساختاری اشد، باید به دنبال ساختاری (0.95 R < 0.95 باشد، باید به دنبال ساختاری دیگری باشیم.