How Bitcoin Achieves

Decentralization

ScroogeCoin

Crucial question:

Can we descroogify the currency, and operate without any central, trusted party?

Centralization vs. decentralization

Centralization vs. decentralization

Competing paradigms that underlie many digital technologies

Decentralization is not all-or-nothing

E-mail:

decentralized protocol, but dominated by centralized webmail services

The path to decentralization

- technology & incentive design

All Participants

Who maintains the ledger of transactions? (and how?)

Consensus

Who determines the validity of transactions to be included in the ledger?

All Participants

Bitcoin Script

Who creates new Bitcoins?

Reward for Mining

BLOCKCHAIN WORKING PRINCIPLE

Bitcoin blocks

Should I relay a proposed transaction?

- Transaction valid with current block chain
- (default) script matches a whitelist
 - Avoid unusual scripts
- Haven't seen before
 - Avoid infinite loops

Sanity checks only...
Some nodes may ignore them!

- Doesn't conflict with others I've relayed
 - Avoid double-spends

Bitcoin blocks

Why bundle transactions together?

- Single unit of work for miners
- Limit length of hash-chain of blocks
 - Faster to verify history

Bitcoin block structure

Hash chain of blocks

Bitcoin block structure

Hash tree (Merkle tree)

The real deal: a Bitcoin block

```
"hash":"0000000000000001aad2...",
                                 "ver":2,
                                 "prev_block":"0000000000000003043...",
block header
                                 "time":1391279636,
                                 "bits":419558700,
                                "nonce":459459841,
                                 "mrkl_root":"89776...",
                                "n_tx":354,
                                "size":181520,
                                 "tx":[
transaction
data
                                 "mrkl_tree":[
                                  "6bd5eb25...",
                                  "89776cdb..."
```


The real deal: a Bitcoin block header

```
"hash": "0000000000000001 aad 2...",
                    "ver":2,
mining puzzle
                    "prev_block":"0000000000000003043...",
information
                    "time":1391279636,
                    "bits":419558700,
                    "nonce":459459841,
                    "mrkl_root":"89776...",
```

Distributed consensus

Bitcoin's key challenge

Key technical challenge of decentralized e-cash: distributed consensus

or: how to decentralize ScroogeCoin

Defining distributed consensus

The protocol terminates and all correct nodes decide on the same value

This value must have been proposed by some correct node

Distributed consensus protocol. There are *n* nodes that each have an input value. Some of these nodes are faulty or malicious. A distributed consensus protocol has the following two properties:

- It must terminate with all honest nodes in agreement on the value
- The value must have been generated by an honest node

Why consensus is hard

Nodes may crash Nodes may be malicious

Network is imperfect

- Not all pairs of nodes connected
- Faults in network
- Latency

Many impossibility results

- Fischer-Lynch-Paterson (deterministic nodes): consensus impossible with a <u>single</u> faulty node
- These results say more about the model than about the problem

 The models were developed to study systems like distributed databases

Some well-known protocols

Example: Paxos, Raft

Makes certain compromises

Never produces inconsistent result, but can (rarely) get stuck

Bitcoin consensus: theory & practice

Bitcoin consensus works better in practice than in theory

Theory is still catching up

<u>BUT</u> theory is important, can help predict unforeseen attacks

Some things Bitcoin does differently

Introduces incentives

Possible only because it's a currency!

Embraces randomness

- Does away with the notion of a specific start and endpoint
- Consensus happens over long time scales about 1 hour

Bitcoin Consensus

Consensus algorithm (simplified)

- 1. New transactions are broadcast to all nodes
- 2. Follow Flooding/Gossip Protocol to broadcast
- 3. Some nodes collect new transactions into a block
- 4. In each round a <u>random</u> node gets to broadcast its block
- 5. Other nodes accept the block only if all transactions in it are valid (unspent, valid signatures)

 consens
- 6. Nodes express their acceptance of the block by including its hash in the next block they create

Mining Process

Agreement

Hashcash: Proof of work

- Based on the idea of HashCash, a Proof of Work concept invented by Adam Back in 1997 (http://www.hashcash.org/papers/hashcash.pdf)
- Originally proposed as an anti-spam throttling mechanism
- The core idea is that before accepting a transaction, the sender must first demonstrate a "cost" via a computationally "hard" problem that can simultaneously be easily verified.
- This generally referred to as a "Proof of Work"

Hashcash: Proof of work

- HashCash Cost Function: Interactive Vs. Non-interactive
- s: service name

$$\left\{ \begin{array}{ll} \mathcal{T} \leftarrow \mathsf{MINT}(s,w) & \text{mint token} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \text{token evaluation function} \end{array} \right.$$

$$\begin{cases} \mathsf{PUBLIC:} & \mathsf{hash} \ \mathsf{function} \ \mathcal{H}(\cdot) \ \mathsf{with} \ \mathsf{output} \ \mathsf{size} \ k \ \mathsf{bits} \\ \mathcal{T} \leftarrow \mathsf{MINT}(s,w) & \mathbf{find} \ x \in_R \{0,1\}^* \ \mathsf{st} \ \mathcal{H}(s||x) \stackrel{\mathsf{left}}{=}_w \ 0^k \\ & \mathbf{return} \ (s,x) \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \mathcal{H}(s||x) \stackrel{\mathsf{left}}{=}_v \ 0^k \\ & \mathbf{return} \ v \end{cases}$$

Hashcash: Proof of work

Hashcash Cost Function: Interactive Vs. Non-interactive

```
 \begin{cases} \mathcal{C} \leftarrow \mathsf{CHAL}(s,w) & \text{server challenge function} \\ \mathcal{T} \leftarrow \mathsf{MINT}(\mathcal{C}) & \text{mint token based on challenge} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \text{token evaluation function} \end{cases} 
 \begin{cases} \mathcal{C} \leftarrow \mathsf{CHAL}(s,w) & \mathbf{choose} \ c \in_R \{0,1\}^k \\ & \mathbf{return} \ (s,w,c) \end{cases} \\ \mathcal{T} \leftarrow \mathsf{MINT}(C) & \mathbf{find} \ x \in_R \{0,1\}^\star \ \mathbf{st} \ \mathcal{H}(s||c||x) \stackrel{\text{left}}{=}_w \ 0^k \\ & \mathbf{return} \ (s,x) \end{cases} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(T) & \mathcal{H}(s||c||x) \stackrel{\text{left}}{=}_v \ 0^k \\ & \mathbf{return} \ v \end{cases}
```

Prevents **DOS motivated attack or** pre-computation attacks

The real deal: a Bitcoin block

```
"hash": "0000000000000001aad2...",
                                 "ver":2,
                                 "prev_block":"0000000000000003043...",
block header
                                 "time":1391279636,
                                 "bits":419558700,
                                 "nonce":459459841,
                                 "mrkl_root":"89776...",
                                 "n_tx":354,
                                 "size":181520,
                                 "tx":[
transaction
data
                                 "mrkl_tree":[
                                  "6bd5eb25...",
                                  "89776cdb..."
```

Proof of Work

1001101|| x The «only way» to compute this Find value x so that the output value so that the output starts begins with 3 zeros. with n zeros is to try at random around 2^n times. Proof of Work [Back2002]

Finding a valid block: Proof-of-Work

Coinbase

```
"in":[
                                               Null hash pointer
                        "prev_out":{
                         "hash":"000000.....0000000",
redeeming
nothing
                          "n":4294967295
arbitrary
                     "coinbase":"..."
                              block reward
                      "out":[
                                   transaction fees
                     "value": "25.03371419",
                     "scriptPubKey": "OPDUP OPHASH160 ... "
```

Hash puzzles: Bitcoin Proof-of-Work

To create block, find nonce s.t. $H(nonce \parallel prev_hash \parallel tx \parallel ... \parallel tx)$ is very small

Output space of hash

If hash function is secure:

only way to succeed is to try enough nonces until you get lucky

Target space is 1% of overall output space, You would have to try 100 nonces before you are likely to get valid result.

Race conditions

Transactions or blocks may conflict

- Default behavior: accept what you hear first
- Network position matters
- Miners may implement other logic!

Block propagation nearly identical

Relay a new block when you hear it if:

- Block meets the hash target
- Block has all valid transactions
 - Run all scripts, even if you wouldn't relay
- Block builds on current longest chain
 - Avoid forks

Sanity check
Also may be ignored...

Source: Yonatan Sompolinsky and Aviv Zohar: "Accelerating Bitcoin's Transaction Processing" 2014

The real deal: a Bitcoin block

```
"hash": "0000000000000001aad2...",
                                "ver":2,
                                "prev_block":"0000000000000003043...",
block header
                                "time":1391279636,
                                "bits":419558700,
                                                                                   mining puzzle information
                                "nonce":459459841.
                                "mrkl_root":"89776...",
                                "n_tx":354,
                                "size":181520,
                                "tx":[
transaction
data
                                "mrkl_tree":[
                                 "6bd5eb25...",
                                 "89776cdb..."
```

Proof of Work

Mining Difficulty (Max Target)

Bits: 486604799 = 1D00FFFF

target = coefficient * 2^(8 * (exponent—3))

```
target = 00FFFF * 2^(8 * (1D - 3))

target = 00FFFF * 2 ^ (8*1A)

target = 00FFFF * 2 ^ D0
```

Block #0

Summary	
Number Of Transactions	1
Output Total	50 BTC
Estimated Transaction Volume	0 BTC
Transaction Fees	0 BTC
Height	0 (Main Chain)
Timestamp	2009-01-03 18:15:05
Difficulty	1
Bits	486604799
Size	0.285 kB
Weight	0.896 kWU
Version	1
Nonce	2083236893
Block Reward	50 BTC

Mining Pseudocode

More Info: https://en.bitcoin.it/wiki/Difficulty

```
TARGET = (65535 << 208) / DIFFICULTY;
coinbase nonce = 0;
                                        Max Target: An application-defined constant, which sets the target hash
                                              corresponding to the lowest possible difficulty, 1
while (1) {
      header = makeBlockHeader(transactions, coinbase_nonce);
      for (header_nonce = 0; header_nonce < (1 << 32); header_nonce++){
             if (SHA256(SHA256(makeBlock(header, header_nonce))) <</pre>
      TARGET)
                    break; //block found!
      coinbase nonce++;
```

CPU mining

```
while (1) {
    HDR[kNoncePos]++;
    IF (SHA256(SHA256(HDR)) < (65535 << 208) / DIFFICULTY)
    return;
}</pre>
```

- Hashes are 256-bit integers. So, TOTAL output size: 2^256.
- The current TARGET is "max_target/difficulty", where max_target is (65535 * 2^208).
- Therefore, fraction of output space is is TARGET/TOTAL. Therefore, TOTAL/TARGET=(2^256*difficulty/max_target) no. of hashes are needed on average to find a block.
- This is done over 600 sec, considering previous 2016 blocks.
- Global Hashrate:

```
(2^256 * difficulty/max_target)/600
= (2^256 * difficulty/65535 * 2^208)/600
= (2^48 * difficulty/65535 )/600
= difficulty * 7158388.055
```


Bitcoin Hash Rate (2 Months)

Setting the mining difficulty

Every two weeks, compute:

```
next difficulty= currennt difficulty * (2 weeks)/(time to mine last 2016 blocks)
```


Expected number of blocks in 2 weeks at 10 minutes/block

Mining difficulty over time

Bitcoin Hash Rate vs Difficulty (2 Months)

Note that the y-axis begins at 80,000 TeraHashes/s. The hash rate is averaged over 2016/1008/504 blocks bitcoinwisdom.com

Time to find a block

Mining hardware

Evolution of mining

CPU mining

```
while (1) {
    HDR[kNoncePos]++;
    IF (SHA256(SHA256(HDR)) < (65535 << 208) / DIFFICULTY)
    return;
}

two hashes</pre>
```

Throughput on a high-end PC = 10-20 MHz ≈ 2²⁴ Hashes/Sec

139,461 years to find a block today!

Mining difficulty "target"

(as of March 2015)

Less than 1 in about 2⁶⁴ nonecs that you try will work

PoW property 1: difficult to compute

Other words, the size of the target space is less than 1/10²⁰ of the size of the overall space

As of Aug 2014: about 10²⁰ hashes/block

Only some nodes bother to compete — miners

PoW property 2: parameterizable cost

Nodes automatically re-calculate the target every two weeks

Goal: average time between blocks = 10 minutes

Prob (Alice wins next block) = fraction of global hash power she controls

Alice with 0.1% of total hash power will find roughly one in every 1000 blocks.

Solving hash puzzles is probabilistic

Time to next block (entire network)

Alice with 0.1% of total hash power will find roughly one in every 1000 minutes.

PoW property 3: trivial to verify

Nonce must be published as part of block

Mining Bitcoins in 6 easy steps

- 1. Join the network, listen for transactions
- a. Validate all proposed transactions

 2. Listen for new blocks, maintain block chain a. When a new block is proposed; validate it
 - 3. Assemble a new valid block
- 4. Find the nonce to make your block valid
- 5. Hope everybody accepts your new block
- 6. Profit!

Useful to Bitcoin

network

Incentives in proof of work

What can a malicious node do?

Honest nodes will extend the <u>longest valid branch</u>

From Bob the merchant's point of view

Key security assumption

Attacks infeasible if majority of miners weighted by hash power follow the protocol

Security

Protection against invalid transactions is cryptographic, but enforced by consensus

Denial of Service

Protection against double-spending is purely by consensus

You're never 100% sure a transaction is in consensus branch. Guarantee is probabilistic

Assumption of honesty is problematic

Can we give nodes <u>incentives</u> for behaving honestly?

Everything so far is just a distributed consensus protocol But now we utilize the fact that the currency has value

Incentive in Coinbase Transaction

Incentive 1: block reward

Creator of block gets to

- include special coin-creation transaction in the block
- choose recipient address of this transaction

Value is fixed: currently 12.5 BTC, halves every 4 years

Block creator gets to "collect" the reward only if the block ends up on long-term consensus branch!

There's a finite supply of bitcoins

Total supply: 21 million

Block reward is how new bitcoins are created

Runs out in 2040. No new bitcoins unless rules change

Incentive 2: transaction fees

Creator of transaction can choose to make output value less than input value

Remainder is a transaction fee and goes to block creator

Purely voluntary, like a tip

Transaction View information about a bitcoin transaction

Transaction ID (TX ID)

1J29P1ceAfJHpG2jPQN1QxdHgCGEnLHd3u

9cd03f530b83b67eee52bbbd2e9067e79e31513cffb5535c7463d96a8c5d96ae

Input Address

34auLDAG8skCooDAPpWFm69JuDz3rYnaDG 16XAfbSNEkkkwshkcusFJS4JxyHs74nudp 1AW2YoNvhAwatTjUcnzYWPETb3WSonZUD8 1L5a3gfb8FNJQn2MexVEjSzvXkXCp7mEBU

Output Addresses

0.1 BTC 0.77 BTC 0.58 BTC 2.87094476 BTC

1 Confirmations

4.32094476 BTC

Block Information:

Summary	
Size	292 (bytes)
Weight	1168
Received Time	2018-02-02 07:45:17
Included In Blocks	507234 (2018-02-02 08:12:38 + 27 minutes)
Confirmations	1 Confirmations
Visualize	View Tree Chart

Transaction information:

Inputs and Outputs	
Total Input	4.32123876 BTC
Total Output	4.32094476 BTC
Fees	0.000294 BTC
Fee per byte	100.685 sat/B
Fee per weight unit	25.171 sat/WU
Estimated BTC Transacted	0.1 BTC
Scripts	Show scripts & coinbase

Recall:

transaction fee = value of inputs - value of outputs fee goes to miner who records the transaction

Costs resources for

peers to relay your transaction miner to record your transaction

Transaction fee compensates for (some of) these costs

How are transaction fees set today? No fee if

tx less than 1000 bytes in size, all outputs are 0.01 BTC or larger, and priority is large enough

Priority = (sum of inputAge*inputValue) / (trans size)

Otherwise fee is 0.0001 BTC per 1000 bytes

Approx transaction size: 148 N_{inputs}+ 34 N_{outputs} + 10

A second look at transaction fees

Default policy:

```
priority = sum(input_value * input_age)/size_in_bytes
```

Accept without fees if:

priority > 0.576

Generally, higher fee means transaction will be forwarded and recorded faster.

If you don't pay the consensus fee, your transaction will take longer to be recorded.

Miners prioritize transactions based on fees and the priority formula.

Transaction fees will matter more

Currently, block rewards are > 99% of miner revenue. But:

Eventually, transaction fees will dominate

Courtesy: Brian Warner

The real deal: coinbase transaction

```
"in":[
  "prev_out":{
    "hash": "000000.....0000000",
    "n":4294967295
"coinbase":"..."
    block reward
            transaction fees
"value": "25.03371419",
"scriptPubKey": "OPDUP OPHASH160 ... "
```

Mining economics

```
If mining reward (block reward + Tx fees) > hardware + electricity cost → Profit
```

Complications:

- fixed vs. variable costs
- reward depends on global hash rate

Putting it all together

Bitcoin is bootstrapped

What can a "51% attacker" do?

Steal coins from existing address? X

Suppress some transactions?

- From the block chain
- From the P2P network

Change the block reward?

Destroy confidence in Bitcoin?

How big is the network?

- Impossible to measure exactly
- Estimates-up to 1M IP addresses/month
- Only about 5-10k "full nodes"
 - Permanently connected
 - Fully-validate
- This number may be dropping!

Fully-validating nodes

- Permanently connected
- Store entire block chain
- Hear and forward every node/transaction

Storage costs (Size of Blckchain)

Tracking the UTXO set

- Unspent Transaction Output
 - Everything else can be stored on disk
- Currently ~12 M UTXOs
 - Out of 44 M transactions
- Can easily fit into RAM

Thin/SPV clients (not fully-validating)

Idea: don't store everything

- Store block headers only
- Request transactions as needed
 - To verify incoming payment
- Trust fully-validating nodes

1000x cost savings! (20 GB -> 23MB)

Software diversity

- About 90% of nodes run "Core Bitcoin" (C++)
 - Some are out of date versions
- Other implementations running successfully
 - BitcoinJ (Java)
 - Libbitcoin (C++)
 - btcd (Go)
- "Original Satoshi client"

Limitations & improvements

Hard-coded limits in Bitcoin

- 10 min. average creation time per block
- 1 M bytes in a block
- 20,000 signature operations per block
- 100 M satoshis per bitcoin
- 21M total bitcoins maximum
- 50,25,12.5... bitcoin mining reward

These affect economic balance of power too much to change now

Throughput limits in Bitcoin

- 1 M bytes/block (10 min)
- >250 bytes/transaction
- 7 transactions/sec 🙁

Compare to:

- VISA: 2,000-10,000 transactions/sec
- PayPal: 50-100 transaction/sec

Cryptographic limits in Bitcoin

- Only 1 signature algorithm (ECDSA/P256)
- Hard-coded hash functions (SHA-256, RIPEMD-160)

Crypto primitives might break by 2040...