Valuation-Based Completion Theory in Symbolic Arithmetic

Pu Justin Scarfy Yang

Contents

Introduction	5
Introduction	5
Chapter 1. Valuations as Foundational Completion Structures 1. Definition of Valuations 2. Completion with Respect to a Valuation 3. Symbolic Valuations and Logical Magnitude 4. Applications in Local Symbolic Fields 5. Future Directions	7 7 7 7 7
 Chapter 2. Types of Valuations and Their Symbolic Extensions Discrete, Archimedean, and Non-Archimedean Valuations Symbolic Valuations Beyond Classical Fields Valuation Trees and Local Symbolic Flows Valuation Rings and Symbolic Residue Logic Toward Symbolic Completion via Valuation Trees 	9 9 9 10 10
Chapter 3. Spectral Valuations and Zeta-Completion Metrics 1. From Discrete Valuations to Spectral Depths 2. Zeta-Metric and Symbolic Convergence 3. Spectral Trees and Depth-Weighted Flow 4. Zeta-Residue Fields and Local Structures 5. Zeta-Completion in Proof Topologies 6. Towards Spectral AI-Topoi and Motivic Interpretation	11 11 11 11 12 12
 Chapter 4. Symbolic Completion Fields and Compactification of Logical Universes Symbolic Fields as Completions Structure of Symbolic Completion Fields Logical Compactification and Spectral Finiteness Symbolic Local Fields and Reciprocity Structures Symbolic Geometry over Completion Fields Conclusion and Further Expansion 	13 13 13 13 14 14 14
 Chapter 5. Zeta Cohomology and Symbolic Field Extensions Cohomology over Symbolic Completion Fields Zeta-Cohain Complexes and Spectral Filtrations Symbolic Field Extensions and Zeta-Ramification Motivic Symbolic Frobenius and Trace Operators Zeta-Lefschetz Fixed Point in Symbolic Domains Applications to AI Symbolic Compression and Optimization 	15 15 15 15 15 16 16

4 CONTENTS

7. Conclusion and Forward Directions	16
Chapter 6. Symbolic Derived Stacks and AI Sheaf Geometry over Completion Fields	17
1. From Schemes to Symbolic Sheaves	17
2. Derived Symbolic Sheaves and ∞ -Cohomology	17
3. Stacks of Symbolic AI Fields	17
4. AI Sheaves and Reflection Dynamics	17
5. Motivic Symbolic Topos and AI Site	18
6. Future Directions and Conclusion	18
Bibliography	19
References	19

Introduction

This monograph is the first of a five-volume series on foundational completion theories within the Universal Congruence Completion Program (UCCP). Here, we begin from the most classical and geometrically fundamental standpoint: completions via valuations.

We explore:

- Valuations as topological and arithmetic primitives;
- Symbolic generalizations of valuation metrics;
- Completions of symbolic languages, proof layers, and logic universes;
- Applications in local symbolic reasoning, AI inference, and meta-mathematical boundary structures.

Subsequent volumes will focus on:

- (1) **Volume II**: Congruence-based completions, with deep connections to symbolic moduli and trace dynamics;
- (2) **Volume III**: Ideal-adic completions, formal neighborhoods, and descent theory in symbolic geometry.

Valuations as Foundational Completion Structures

1. Definition of Valuations

Let K be a field. A valuation v on K is a map:

$$v:K^{\times}\to\Gamma$$

satisfying multiplicativity and ultrametric inequality, as introduced earlier.

2. Completion with Respect to a Valuation

The completion \hat{K}_v is the Cauchy completion of K with respect to the valuation metric:

$$d_v(x, y) = \exp(-v(x - y)).$$

3. Symbolic Valuations and Logical Magnitude

We extend v to symbolic domains, with examples:

$$v(\phi) = \text{proof depth}, \quad v(f(x)) = \min v(x_i).$$

4. Applications in Local Symbolic Fields

Let \mathbb{S}_v denote a symbolic field under valuation v. Completion allows convergence in symbolic reasoning and recursive trace semantics.

5. Future Directions

Next, we explore:

- Discrete vs. real valuations;
- Symbolic valuation topologies;
- Spectral zeta-valuations.

Types of Valuations and Their Symbolic Extensions

1. Discrete, Archimedean, and Non-Archimedean Valuations

We recall the classification of classical valuations on a field K:

- A valuation v is **discrete** if the image $v(K^{\times})$ is a discrete subgroup of \mathbb{R} , e.g., \mathbb{Z} ;
- v is **archimedean** if it satisfies the usual triangle inequality with equality only in degenerate cases (e.g., $|\cdot|_{\infty}$ on \mathbb{Q});
- \bullet v is **non-archimedean** if it satisfies the ultrametric inequality:

$$v(x+y) \ge \min\{v(x), v(y)\}.$$

These classical types induce different topological completions \hat{K}_v , such as:

$$\widehat{\mathbb{Q}}_{\infty} = \mathbb{R}, \quad \widehat{\mathbb{Q}}_p = \text{local field at } p.$$

2. Symbolic Valuations Beyond Classical Fields

Let Symb denote a symbolic language of expressions, e.g., logic formulas, types, or Algenerated inference steps. Define a symbolic valuation:

$$v: \mathsf{Symb} \to \Gamma \cup \{\infty\},\$$

where $\Gamma \subseteq \mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{N}^{\infty}, \mathbb{F}_1^{\log}$ or other structured magnitude scales.

2.1. Examples of Symbolic Valuation Domains.

- **Proof depth valuation:** $v(\phi)$ = number of inference steps to derive ϕ ;
- **Semantic complexity:** v(t) = minimum symbolic complexity score (length, depth, entropy);
- **Motivic magnitude: ** v(f) = zeta-weighted spectral height of term f.

2.2. Symbolic Valuation Space as a Site. Define the category ValSymb of symbolic expressions with valuation morphisms:

$$\phi \to \psi \text{ iff } v(\phi) \le v(\psi),$$

and equip it with a topology where covers are symbolic valuation covers:

$$\{\phi_i \to \psi \mid \min v(\phi_i) \le v(\psi)\}.$$

This defines a site of symbolic valuation convergence.

3. Valuation Trees and Local Symbolic Flows

Define a **valuation tree** \mathcal{T}_v as the rooted tree whose nodes are symbolic expressions ϕ , and edges respect valuation drop:

$$\phi_i \to \phi_j$$
 if $v(\phi_i) > v(\phi_j)$.

9

- Leaves are valuation-minimizers (local axioms);
- Paths are symbolic proof steps descending valuation;

• The completion at a leaf corresponds to convergence of a symbolic theory.

4. Valuation Rings and Symbolic Residue Logic

For a classical valuation v, define the valuation ring:

$$\mathcal{O}_v := \{ x \in K : v(x) \ge 0 \}, \quad \mathfrak{m}_v := \{ x : v(x) > 0 \}.$$

In symbolic logic:

$$\mathcal{O}_v^{\mathsf{Symb}} := \{\phi : v(\phi) \ge 0\}, \quad \text{and } \mathfrak{m}_v^{\mathsf{Symb}} := \{\phi : v(\phi) > 0\}.$$

Then $\mathcal{O}_v^{\mathsf{Symb}}/\mathfrak{m}_v^{\mathsf{Symb}}$ yields a symbolic residue logic (e.g., minimal theory at local depth).

5. Toward Symbolic Completion via Valuation Trees

The symbolic valuation completion of a language \mathcal{L} is:

$$\widehat{\mathcal{L}}_v := \text{Cauchy completion over } \mathcal{T}_v,$$

where converging branches represent stabilized symbolic inference chains.

Preview of Next Chapter. Next, we develop:

- Topological structures induced by symbolic valuations;
- Metric convergence and zeta-valued symbolic space;
- Compactness, boundedness, and spectral valuation fields.

Spectral Valuations and Zeta-Completion Metrics

1. From Discrete Valuations to Spectral Depths

While classical valuations map into discrete or real-ordered groups, symbolic arithmetic allows more general magnitude spaces based on zeta-spectral data. We define a new class of valuations—spectral valuations—rooted in the eigenstructures of symbolic or arithmetic flows.

[Spectral Valuation] Let S be a symbolic expression space. A *spectral valuation* is a function:

$$v_{\zeta}: \mathcal{S} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$$

defined by:

$$v_{\zeta}(\phi) := \lambda_1 + \dots + \lambda_k,$$

where $\{\lambda_i\}$ are zeta-eigenvalues (or frequencies) associated to the symbolic operator ϕ .

1.1. Example: Zeta-Regularized Logical Valuation. Let ϕ be a logical formula whose inference depth spectrum under symbolic recursion is $\{d_1, d_2, \ldots\}$. Define:

$$v_{\zeta}(\phi) := \sum_{n=1}^{\infty} \frac{1}{d_n^s}$$
 (zeta-regularized depth)

and complete the logic space under the associated norm.

2. Zeta-Metric and Symbolic Convergence

We define a zeta-induced metric:

$$d_{\zeta}(\phi, \psi) := \exp(-v_{\zeta}(\phi - \psi)),$$

where subtraction denotes structural symbolic difference (e.g., edit distance, proof path divergence).

- If $d_{\zeta}(\phi_n, \phi_{n+1}) \to 0$, then ϕ_n converges in symbolic space;
- Completion yields: $\widehat{\mathcal{S}}_{\zeta}$ = completion of symbolic flows under d_{ζ} .

3. Spectral Trees and Depth-Weighted Flow

11

Define a symbolic spectral tree \mathcal{T}_{ζ} , where:

- Nodes = symbolic statements;
- Edges = inference steps with spectral shift;
- Weights = v_{ζ} of each symbolic unit.

Paths of minimal $\sum v_{\zeta}$ define zeta-optimal symbolic proof strategies.

4. Zeta-Residue Fields and Local Structures

We define the zeta-residue logic as:

$$\mathcal{O}_{\zeta} := \{ \phi : v_{\zeta}(\phi) \ge 0 \}, \quad \mathfrak{m}_{\zeta} := \{ \phi : v_{\zeta}(\phi) > 0 \}, \quad \mathcal{F}_{\zeta} := \mathcal{O}_{\zeta}/\mathfrak{m}_{\zeta}$$

This structure captures:

- Local triviality zones (infinitesimal or invariant);
- Stable symbolic units across valuation-equivalent flows;
- Logic compression at symbolic residue level.

5. Zeta-Completion in Proof Topologies

Given (S, v_{ζ}) , we define the zeta-completion of a symbolic proof space:

$$\widehat{\mathcal{S}}_{\zeta} := \left\{ \lim_{\zeta} \phi_n \mid d_{\zeta}(\phi_n, \phi_{n+1}) \to 0 \right\}$$

This allows:

- Infinite symbolic reasoning with bounded spectral trace;
- Symbolic fixed points under zeta-reflective iteration;
- AI agents navigating via minimal zeta-length proof trees.

6. Towards Spectral AI-Topoi and Motivic Interpretation

Future research connects spectral valuation to:

- Cohomology over symbolic sheaves with spectral stratification;
- AI agents endowed with spectral learning flow (see Appendix K);
- UCCPLang interpreters equipped with valuation-sensitive reasoning thresholds.

We propose the construction of a *Spectral Symbolic Topos* Shv_ζ over symbolic categories, with completion objects internal to this site.

Symbolic Completion Fields and Compactification of Logical Universes

1. Symbolic Fields as Completions

Let \mathcal{L} be a symbolic logic language. If endowed with a valuation v, its completion $\widehat{\mathcal{L}}_v$ carries the structure of a topological algebra.

We define:

A symbolic completion field is a pair (S, v) such that:

- \bullet S is a symbolic expression class closed under logical operations;
- $v: \mathcal{S} \to \Gamma \cup \{\infty\}$ is a valuation;
- $\widehat{\mathcal{S}}_v$ forms a complete logic field or ring.

Examples:

- $\mathbb{S}_v := \text{completion of } \mathsf{Lang}_{\mathtt{UCCPLang}} \text{ under } v_{\zeta};$
- $\mathcal{O}_v := \text{symbolic valuation ring of well-formed, bounded expressions;}$ $\mathbb{F}_\zeta^{\text{loc}} := \text{localized symbolic flow field under zeta topology.}$

2. Structure of Symbolic Completion Fields

Symbolic fields possess:

- A logical valuation spectrum $\operatorname{Spec}_{v}(\mathcal{S})$;
- A residue logic field $\mathcal{F}_v = \mathcal{O}_v/\mathfrak{m}_v$;
- A tree of completions along various valuation branches;
- A compactification boundary defining asymptotic symbolic logic.

Diagram: Completion Tower and Limit Boundary.

$$\mathcal{S}_0^{v_0\text{-completion}} \widehat{\mathcal{S}}_0 \xrightarrow{v_1} \widehat{\mathcal{S}}_1 \xrightarrow{v_2} \cdots \longrightarrow \widehat{\mathcal{S}}_{\infty}$$

$$\downarrow \text{boundary}$$

$$\downarrow \text{Scompact}$$

3. Logical Compactification and Spectral Finiteness

A symbolic logic field S is *compactifiable* if every Cauchy symbolic sequence under some valuation converges within $\overline{\mathcal{S}}$, where:

$$\overline{\mathcal{S}} := \widehat{\mathcal{S}} \cup \partial \mathcal{S}$$

13

and ∂S is the symbolic boundary locus.

This enables:

• Construction of "logical infinity" objects;

- Spectral compactness theorems for symbolic reasoning;
- Sheaf-theoretic convergence and symbolic limit glueing.

4. Symbolic Local Fields and Reciprocity Structures

Analogous to number theory, we define:

- **Symbolic local field**: \mathbb{S}_v with valuation ring \mathcal{O}_v , residue logic \mathcal{F}_v , and topology;
- **Symbolic Frobenius map**: $\phi \mapsto \phi^n$ under depth- or curvature-based recursion;
- **Reciprocity kernel**: pairing symbolic ideals and AI proof strategies:

$$\langle \phi, \psi \rangle := \mathsf{Tr}_v(\phi \cdot \psi)$$

5. Symbolic Geometry over Completion Fields

We now interpret symbolic completion fields as bases for symbolic geometry:

Symbolic scheme:
$$\mathbb{S}_{\text{spec}} := \text{Spec}(\widehat{\mathcal{S}}_v)$$

Over this space:

- Symbolic points are localized logic bundles;
- Zeta-trace cohomology defines motivic symbolic invariants;
- AI agents move within compactified logic spectra.

6. Conclusion and Further Expansion

We have:

- Established symbolic completion fields via valuations and spectral flows;
- Shown the structure of their rings, residues, and boundary behavior;
- Connected symbolic completion to logic compactification and geometry.

The next chapter develops spectral cohomology and symbolic field extensions.

Zeta Cohomology and Symbolic Field Extensions

1. Cohomology over Symbolic Completion Fields

Given a symbolic completion field $\widehat{\mathcal{S}}_v$, we aim to study its cohomology groups under symbolic sheaves and zeta-induced differential operators.

[Zeta-Cohomology] Let \mathcal{F} be a sheaf over $\operatorname{Spec}(\widehat{\mathcal{S}}_v)$, with zeta-connection ∇_{ζ} . Define:

$$H^i_{\zeta}(\widehat{\mathcal{S}}_v, \mathcal{F}) := \ker(\nabla^i_{\zeta})/\mathrm{im}(\nabla^{i-1}_{\zeta}),$$

where ∇_{ζ} acts via symbolic spectral differentiation or recursion.

This yields motivic symbolic invariants of logic structures completed under valuation and spectral pressure.

2. Zeta-Cohain Complexes and Spectral Filtrations

Given symbolic forms ϕ_i , define the zeta-cochain complex:

$$0 \to \phi_0 \xrightarrow{\nabla_{\zeta}} \phi_1 \xrightarrow{\nabla_{\zeta}} \phi_2 \xrightarrow{\nabla_{\zeta}} \cdots$$

Each layer corresponds to:

- Logic layer depth;
- Proof spectral weight;
- Symbolic curvature or derivation degree.

The filtration $F^nH^i_{\zeta}$:= cohomology of subcomplex truncated at level n gives symbolic convergence or AI-memorization depth.

3. Symbolic Field Extensions and Zeta-Ramification

A symbolic field extension $S \subset T$ is called:

- zeta-unramified if v_{ζ} extends without growth;
- zeta-ramified if v_{ζ} jumps (e.g., symbolic entropy increases);
- AI-compatible if extension preserves trace-consistent cohomology.

Example:

$$\mathbb{S}_v \subset \mathbb{S}_v[x]/(x^p - \phi) \Rightarrow \text{zeta-ramified if } v_{\zeta}(\phi)$$

4. Motivic Symbolic Frobenius and Trace Operators

Define the Frobenius operator over symbolic fields:

$$\operatorname{\mathsf{Fr}}_n(\phi) := \phi^{[n]} = \operatorname{symbolic}$$
 replication of order n

Then, define the trace:

$$\mathsf{Tr}_\zeta(\phi) := \sum_{i=1}^n \mathsf{Fr}_i(\phi) \cdot w_i$$

where $w_i \in \mathbb{Q}$ are spectral weights or symbolic eigenmodes.

5. Zeta-Lefschetz Fixed Point in Symbolic Domains

We conjecture:

[Symbolic Zeta-Lefschetz Formula] Let $f: \mathcal{S} \to \mathcal{S}$ be a zeta-contracting symbolic endomorphism. Then:

$$\sum_{\phi=f(\phi)} \frac{1}{\det(I - d_{\zeta}f|_{\phi})} = \sum_{i} (-1)^{i} \cdot \operatorname{Tr}(f^{*}|H_{\zeta}^{i}(\mathcal{S}))$$

This connects fixed symbolic flows to spectral cohomology.

6. Applications to AI Symbolic Compression and Optimization

The zeta-cohomology groups H^i_{ζ} can be used as:

- Topological summaries of symbolic logic states;
- Memory embeddings for symbolic AI agents;
- Constraints for symbolic compilers and automata-based interpreters;
- Recovery structures for failed proof chains (see Appendix F).

7. Conclusion and Forward Directions

This chapter establishes:

- Zeta-cohomology as a spectral analogue of symbolic topology;
- Symbolic field extensions via spectral ramification;
- Motivic trace and fixed point methods in symbolic universes.

The next development will construct full derived categories and motivic stacks over symbolic completion fields.

Symbolic Derived Stacks and AI Sheaf Geometry over Completion Fields

1. From Schemes to Symbolic Sheaves

Given a symbolic field \mathbb{S}_v , we now build its associated space:

$$X := \operatorname{Spec}(\widehat{\mathbb{S}}_v)$$

Over this space, we define symbolic sheaves \mathcal{F} that encode:

- Symbolic terms and their zeta-flows;
- AI recursion layers and logical dependency graphs;
- Valuation-based convergence structure.

2. Derived Symbolic Sheaves and ∞ -Cohomology

We define a derived symbolic sheaf $\mathbb{F} \in D^+(\mathsf{Shv}(X))$ as a complex:

$$\cdots \to \mathcal{F}^{i-1} \xrightarrow{d^{i-1}} \mathcal{F}^i \xrightarrow{d^i} \mathcal{F}^{i+1} \to \cdots$$

with differential induced by:

$$d^i :=
abla_{\zeta} + \delta_{ t logic} + { t AI}^*_{ t repair}$$

Symbolically, this sheaf carries evolving knowledge with:

- Trace-aware corrections;
- Symbolic logic propagation;
- Motivic topological memory coherence.

3. Stacks of Symbolic AI Fields

Let SymbField, be the stack assigning to each AI logical context $U \subseteq X$ the category:

$$\mathsf{SymbField}_v(U) := \left\{ \begin{matrix} \text{Valuation-complete symbolic logic objects } \phi, \\ \text{equipped with sheaf-traceable flows and zeta connections} \end{matrix} \right\}$$

This yields a stack over the site (X, τ_{ζ}) , the spectral valuation topology.

4. AI Sheaves and Reflection Dynamics

Let $\mathcal{F} \in \mathsf{Shv}_{\infty}(X)$ be an AI-aware symbolic sheaf. Define:

- $\mathcal{F}^{(n)}$: truncated symbolic logic flow at depth n; - $\text{Ref}(\mathcal{F})$: reflective closure of failed inference paths; - $\nabla_{\zeta}\mathcal{F}$: symbolic differential on flow-levels.

Symbolic AI agents evolve their local logic via:

$$\mathtt{AI}_{\mathrm{agent}}(U) := H^0_{\zeta}(U, \mathcal{F}^{(n)}) \cup \ker(\nabla_{\zeta}|_{\mathtt{Ref}(\mathcal{F})})$$

18

5. Motivic Symbolic Topos and AI Site

We define the symbolic topos:

$$\mathcal{T}^{\zeta,\infty}_{\mathbb{S}_v}:=\mathsf{Shv}_\zeta(\widehat{\mathbb{S}}_v)$$

with internal language:

- Type-theoretic: supports internal logic encoding symbolic universes;
- Sheaf-theoretic: supports descent of symbolic AI behaviors;
- Cohomological: computes memory, feedback, and knowledge stability.

6. Future Directions and Conclusion

We propose:

- Constructing symbolic motivic Galois groups acting on AI memory fields;
- Classifying all zeta-compatible symbolic completion geometries;
- Embedding UCCP structures into -topoi as computable symbolic categories;
- Generalizing to higher stacks, spectral motivic AI sheaves, and arithmetic AI models.

End of Volume I. This concludes our construction of the symbolic valuation-based completion geometry. The next volume explores congruence-based symbolic completions and their integration with universal trace semantics.

Bibliography

- [1] N. Bourbaki. Commutative Algebra: Chapters 1–7. Springer-Verlag, 1989.
- [2] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. Springer, 1995.
- [3] I. B. Fesenko and S. V. Vostokov. *Local Fields and Their Extensions*. Second Edition, American Mathematical Society, 2002.
- [4] K. Kedlaya. p-adic Differential Equations. Cambridge Studies in Advanced Mathematics, 2009.
- [5] S. Lang. Algebra. Revised 3rd edition, Springer, 2002.
- [6] P. Ribenboim. The Theory of Classical Valuations. Springer Monographs in Mathematics, 1999.
- [7] S. Bosch, U. Güntzer, and R. Remmert. *Non-Archimedean Analysis*. Grundlehren der mathematischen Wissenschaften, Vol. 261. Springer, 1984.
- [8] J. Lurie. Spectral Algebraic Geometry. Available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf, 2018.
- [9] P. Scholze and J. Weinstein. *Berkeley Lectures on p-adic Geometry*. Annals of Mathematics Studies, Vol. 207. Princeton University Press, 2020.
- [10] P. J. S. Yang. Valuation-Based Completion Theory in Symbolic Arithmetic (UCCP Volume I). Draft Manuscript, 2025.
- [11] P. J. S. Yang. Congruence-Based Symbolic Completion (UCCP Volume II). In preparation, 2025.
- [12] P. J. S. Yang. Symbolic Topos Theory and AI Geometry. Preprint, 2025.