

Plan de cours

- Introduction
 - Objectifs de ce cours
 - Introduction à la transmission d'information
 - Rappels de base en électronique
- Cours

out by orngice223, CC-BY

- La transmission électrique
- La fonction amplification
- La fonction filtrage
- Applications

Objectifs de ce cours Pourquoi venir à ce cours ?

- Culture technique de l'ingénieur
 - Electronique et telecoms de base
 - Notion d'information, de puissance, d'énergie : importants dans d'autres domaines techniques
 - Bagage technique considéré comme maîtrisé par tout ingénieur, culture commune
- Entrainement à la réflexion multidisciplinaire
 - Passer de la pratique à la théorie et réciproquement
 - Apprendre quand et comment faire des approximations

yout by orngice223, (

3

Objectifs de ce cours Pourquoi sécher ce cours ?

- Pour:
 - mieux passer pour un inculte
 - éviter de savoir réfléchir sur des sujets multidisciplinaires
 - ne surtout rien connaître en électronique hardware, en électricité de base, en distribution d'énergie, en télécoms, etc...
 - échouer à valider la matière (20-25% des étudiants)
- Parce que le cours est peut-être trop facile
 - Hum... pour certains seulement!:-)
- Etc...

Introduction : historique de la transmission d'information

- le messager, le « avis à la population »
- le courrier écrit, le coursier, le service postal...
- les messages codés : signes, fanions, télégraphe...
- le télégraphe électrique, le code Morse
- le téléphone électrique « analogique »
- le téléscripteur, la télécopie
- le réseau téléphonique
- la téléphonie numérique
- la téléphonie sans fil
- internet

Introduction : historique de la transmission d'information

- Communiquer à distance : un besoin de l'homme
- Qualités de la communication :
 - Intégrité de l'information transmise
 - Rapidité
 - Fort volume de donnée par unité de temps : débit
 - Temps de transport d'un bloc d'information unitaire : temps de latence
 - Confidentialité
 - Fiabilité, disponibilité
 - Capacité de couverture

ayout by orngice 223, CC-BY

out by orngice 223, CC-BY

out by orngice223, CC-BY

Introduction : l'électricité comme support de communication

- Caractéristiques de l'électricité utiles :
 - Transmission de l'onde électrique : très rapide
 - Capacité à voyager sur la distance
 - Capacité à changer d'état rapidement
 - Peu d'énergie nécessaire au transport d'information
- Problématiques:
 - Problématiques de bruit et de transport longue distance
 - Amplification, filtrage
 - Nécessité de convertir l'information en électricité
 - Transducteurs

Introduction: schéma d'une transmission électronique Information Information (signal physique) (signal physique) Conversion Conversion signal physique → signal électronique signal électronique signal physique Support de Emission du Réception du Transmission signal électronique signal électronique Layout by orngice223, CC-BY (media) Emetteur Récepteur

Rappels d'électronique la tension électrique

- Différence de potentiel, en Volts (V)
 - Entre deux noeuds (équipotentielles): $V_{ab} = V_a V_b$
 - Entre un noeud et la masse : $V_a = V_a V_{\text{masse}}$, @ $V_{\text{masse}} = 0$
- Equivaut à une "différence de pression électrique"
- Peut être :
 - Imposée par un générateur de tension
 - positive ou négative
 - ocontinue (DC), varier dans le temps, alternative (AC)...
 - notée sur le schéma par une flèche semblable à un vecteur

Rappels d'électronique : Le courant électrique

- Flux de charge électrique, en ampères (A) = Coulombs / seconde (C.s⁻¹)
 - "quantité de courant" passant dans un point donné, par unité de temps
- Peut être:
 - positif ou négatif
 - ocontinu (DC), varier dans le temps, alternatif (AC)...
 - Noté sur le schéma par une flèche sur un fil
- Convention générateur : le courant "sort"
- Convention récepteur : le courant "entre"

13

Rappels d'électronique : le courant électrique

A R1 B R2

Rappels d'électronique : la loi d'Ohm

- Convention récepteur
- \odot U = R.I
- \odot I = U / R
- Impédance complexe (condensateurs, inductances)
 - \odot Z = a + j.b
 - \odot U = Z.I

15

Rappels d'électronique : la puissance

- P = U . I
 - En Watt
 - Valable :
 - en DC
 - en AC avec des Z = a + j.b
 - lacktriangle en instantané : P(t) = U(t) . I(t)
- Couplé avec la loi d'ohm :
 - $P = (R.I).I \Rightarrow P = R.I^2$
 - P = U . (U / R) => P = U / R
- Quantité d'énergie par unité de temps

Rappels d'électronique : le signe de la puissance

- Convention générateur
 - Si P > 0 => le générateur émet de la puissance électrique dans le circuit
 - Autre source d'énergie
- Convention récepteur
 - si P > 0 => le composant reçoit (et donc consomme) de la puissance électrique dans le circuit
 - Produit du travail

17

Rappels d'électronique : L'énergie

- Puissance multipliée par le temps durant lequel elle est développée
- dE = dP . dT
- E = intégrale_{de 0 à T}(P(t).dt)
- Exemples :
 - 1W pendant 1s =
 - 1W pendant 1h =
 - 1kW pendant 1h =
 - 10W pendant 1 journée =
 - 1kWh dépensé en 2h =

Rappels d'électronique : conversion Norton - Thévenin

- Tout générateur de Thévenin peut être converti en un générateur de Norton avec :
 - In =
 - Rn =
- Tout générateur de Norton peut être converti en un générateur de Thévenin avec :
 - Eth =
 - Rth =

23

Rappels d'électronique : Théorême de Thévenin

- Tout circuit linéaire peut être converti en un générateur de Thévenin, avec :
 - Eth = tension de sortie à vide du circuit
 - Rth = résistance équivalente entre les deux points de sortie du circuit, avec les générateurs de tension coupés
 - Génés de courant : I = 0 => remplacés par circuits ouverts
 - Génés de tension : V = 0 => remplacés par court-circuit

Rappels d'électronique : Théorême de Thévenin, méthode

- Délimiter précisément "le circuit" à convertir. Il ne doit avoir que deux points dits "de sortie"
- Calculer la tension entre les deux points de sortie du circuit, connectés "à rien d'autre" (ie: "à vide")
 - => c'est Eth
- "Couper les générateurs"
 - Génés de courant => I = 0 => circuit ouvert
 - Génés de tension => V = 0 => court-circuit
- Redessiner le circuit, générateurs coupés
- Calculer la résistance équivalente de la sortie du circuit
 - => c'est Rth

25

Rappels d'électronique : Théorême de Norton

- Il existe, demander Wikipedia
- Pas au programme, car Thévenin suffit à embrouiller suffisamment les étudiants

ayout by omgjce223, CC

La transmission : Bruit électromagnétique

- Existence d'un bruit électromagnétique ambiant
- Le courant induit dans une boucle de courant est est proportionnel à :
 - La dérivée du champ magnétique
 - La surface de la boucle
- Conclusion:
 - Pour avoir moins de bruit, il faut minimiser la surface de boucle

La transmission : Réduction du bruit électromagnétique

• 1 fil avec retour par la terre

• 2 fils proches (paire différentielle)

ayout by orngice223, CC-BY

La transmission : Réduction du bruit électromagnétique

- Paire différentielle torsadée
 - Sens des surfaces alterné d'une boucle à l'autre
 - => compensation des courants induits
 - Très résistant aux perturbations
 - Très faible émission de champs électromagnétiques

La transmission : pertes par effet Joule

Tout conducteur est résistif

Matériau	Conductivité thermique W/m/°C	Coefficient de dilatation ppm /°C	Résistivité électrique µohms .cm	densité
Altominium	237	23,5	2,67	2,67
Cuivre	401	16,6	1,69	8,55
Съ-Мо 15/85	184	6,6		9,9
Cu-W 10/90	230	6		17,3
Denal (Fe-Ni-W)	105	5,8	16	17,4
Fer	58,6	13,9	12	T,2
Invar (Fe64-Ni36)	13	0,6 à 1,2	80	8,1
Kovar (Fe-Ni-Co)	16,7	5,04	49	8,37
Laiton (Cu70-Zn30)	112	19,2	7	8,55
Molybdéne	140	5,5	5,5	10,22

- Sur une longue distance : un fil peut être très résistif
 - Perte de puissance = R. I²

• Modélisation de la résistance de l'isolant :

- Notes
 - ullet le courant de fuite reste faible (quelques nA, μ A, mA) devant le courant nominal dans la ligne

La transmission : conséquence des pertes

- Les pertes de puissances impliquent :
 - Baisse de la puissance reçue par le récepteur
 - A bruit identique, dégradation du SNR
 - Distance maximale d'émission
- Pour compenser les effets dus aux pertes :
 - Niveau plus fort en sortie
 - Amplification, régénération au milieu de la ligne
 - Revient à "aller moins loin"
 - Récepteur plus sensible

vout by omaice223, CC-

- Tout quadripôle linéaire peut être modélisé par le modèle complet (ou "impédances") du quadripôle
 - Appelé également "paramètres en h" ou "en s"
 - Par convention : courants entrants

La transmission : Modélisation en quadripôle

- Détermination des coefficients un à un, en masquant les doubles effets :
 - h11 = Vin / Iin, avec Vout = 0
 - Impédance d'entrée
 - h12 = Vout / Vin, avec Iout = 0
 - Gain direct (forward gain)
 - h22 = Vout / Iout, avec Vin = 0
 - Impédance de sortie
 - h21 = Vin / Vout, avec Iin = 0
 - Gain inverse (reverse gain)

wout by omgice223, CC

La transmission : Modélisation simplifiée du quadripôle

- Modèle simplifié
 - Impédance d'entrée
 - Géné de Thévenin en sortie
 - Par convention : courants sortants
- Valable uniquement si h21 << h12</p>
 - Ok pour la majorité des composants actifs modernes

La transmission : Méthode de modélisation

- La modélisation d'un quadripôle Q en un quadripôle QM consiste à :
 - Identifier Rin, G, Rout
 - De telle manière que le modèle de quadripôle QM soit exactement équivalent au quadripôle Q, c'est-à-dire :
 - L'entrée de QM est équivalente à l'entrée de Q
 - La sortie de QM est équivalente à la sortie de Q
- Normalement, il faudrait utilise le modèle complet
 - On utilise quand même le modèle simplifié
 - ... mais il n'est vrai que pour une configuration donnée

La transmission : caractéristiques d'un quadripôle

- Facteur de transfert en tension (gain en tension)
 - Gv = Vout / Vin
- Facteur de transfert en courant (gain en courant)
 - Gi = Iout / Iin
- Facteur de transfert intrinsèque en puissance (rendement)
 - Puissance fournie en sortie / puissance consommée en entrée
 - \bullet η = Pout / Pin = (Vout . Iout) / (Vin . Iin)

- $Ru = \infty$ (ou bien Ru >> Rs)
 - Iu =
 - Pu =
- Ru = 0 (ou bien Ru << Rs)</p>
 - Vu =
 - Pu =
- Cas général :

 - $Pu = Vu^2 / Ru = ... = E^2 . Ru / (Rs + Ru)^2$
 - Le maximum de Pu est atteint pour Ru = Rs

La transmission : l'adaptation d'impédance

- Maximisation de Pu => Ru = Rs
 - Impédances adaptées
- Mesure de l'adaptation d'impédance :
 - ROS (Ratio d'Ondes Stationaires)
 - \bigcirc ROS = max(Zs / Zu; Zu / Zs)
 - Bien adapté => ROS = 1
 - Pu maximal
 - Mal adapté => ROS → infini
 - Pu minimal, puissance dite "réfléchie"
- Ne pas confondre avec TOS
 - http://fr.wikipedia.org/wiki/Rapport_d%27onde_stationnaire

5!

La transmission : chiffrage des puissances en jeu

- Emission :
 - Téléphone filaire : 1mW à 10mW
 - Wifi, GSM: ~0.1 à 2W
 - Emission radio: 100W, 1kW
- Réception
 - Téléphone filaire: 0.1mW à 10mW
 - GSM, Wifi: quelques μW
 - GPS: 0.1nW
- Palette des puissances difficile à représenter sur un seul intervalle

La transmission le Bel

- Fonctionnement du Bel (Graham Bell):
 - Au lieu de mesurer une puissance par "la valeur de sa puissance" (donc : en Watt)
 - On la mesure par "le log10 de la valeur de sa puissance"
- Exemple : le Bel
 - **1W =>**
 - 10mW =>
 - **100W =>**
 - **0** 1μW =>
 - 1nW =>
- Si P est multiplié par 10 => P_Bel augmente de 1

La transmission Bilan sur le dB

- Puissances, gains (ratios) de puissance
 - $P_dB = 10.log10(P)$
 - $G_dB = 10.log10(G)$
- Tension, courant, gains en tension ou en courant
 - $U_dB = 20. \log 10 (U)$
 - I_dB = 20. log10 (I)
 - $G_dB = 20 . log10(G)$

yout by omgjce223, CC-BY

La transmission Bilan sur le dB

- Si G_dB > 1
 - Augmentation de puissance ("gain" de puissance)
- Si G_dB < 1</p>
 - Diminution de puissance (atténuation)
- Dans une chaîne
 - Les gains en termes réels se multiplient
 - Les gains en dB s'additionnent

yout by omgjce223, CC-BY

65

La transmission Bilan sur le dB

- Puissances, gains (ratios) de puissance
 - $P_dB = 10.log10(P)$
 - $G_dB = 10.log10(G)$
- Tension, courant, gains en tension ou en courant
 - $U_dB = 20. \log 10 (U)$
 - I_dB = 20. log10 (I)
 - $G_dB = 20 . log 10(G)$

out by orngjce223, CC-BY

La transmission Bilan sur le dB

- Si G_dB > 1
 - Augmentation de puissance ("gain" de puissance)
- Si G_dB < 1</p>
 - Diminution de puissance (atténuation)
- Dans une chaîne
 - Les gains en termes réels se multiplient
 - Les gains en dB s'additionnent

La transmission : problématique de filtrage

- 1 inductance = 1 fil (et réciproquement)
- 1 condensateur = 2 conducteurs isolés (et réciproquement
- La ligne de transmission se modélise donc ainsi :

La transmission : problématique de filtrage

- Normalement, ne pose pas de problème de pertes ou de filtrage, car quelque soit la fréquence, l'énergie passe de cellules en cellules.
- Mais:
 - Il ne faudrait pas oublier la résistance du fil!

La transmission : problématique de filtrage

- dL n'intervient pas beaucoup dans le filtrage
- Par contre, dR et dC interviennent

- Fc = dR1.dC1
 - Filtre passe-bas 1er ordre
 - Ligne plus longue => plus de cellules et plus de résistance et plus de capa => plus d'atténuation des hautes fréqauences

- Diagramme de l'oeil = indicateur de mesure de la qualité d'une ligne
- Filtrage passe-bas =>
 - Dégradation du diagramme de l'oeil
- Pour compenser ce filtrage passe-bas:
 - Equalisation
 - Câbles faibles pertes (faible R) => plus gros
 - Aller moins loin (répéteurs)

http://www.ni.com/white-paper/14227/er

L'amplification Introduction

- But : augmenter la puissance (courant ou tension ou les deux) d'un signal
- Exemples:
 - Amplification forte puissance avant émission
 - Amplification faible puissance après réception
 - Isolation entrée -sortie
- Domaines d'application :
 - Audio
 - Radio
 - Câble de données
 - Capteurs
 - Actionneurs

- Ampli à entrée en tension et sortie en tension
 - But : Vout proportionnel à Vin
 - Rin = résistance d'entrée
 - Générateur de Thévenin "commandé en tension"
 - G = Gain (
 - Rout = résistance de sortie (ohm)

L'amplification L'ampli V-V idéal

Environnement de l'ampli

- Caractéristiques d'un ampli tension-tension "idéal"
 - Vin ne dépend que de E
 - Vin ne dépend pas de Re
 - Vout ne dépend pas de Ru

L'amplification bruit, distorsions

- Ampli parfait : Vout = G . Vin
- Mais en réalité...
 - Problématiques de filtrage (bande passante non plate)
 - Certaines fréquences trop amplifiées, d'autres pas assez
 - Se voit sur le
 - Problématiques de linéarité (distorsion)
 - Signaux faibles bien amplifiés, mais signaux forts pas assez amplifiés
 - Saturation au-delà d'un certain niveau
 - Ajout de bruit
 - Fréquences parasites ajoutées
 - Bruit blanc ajouté

79

L'amplification Ampli V-I

- Ampli à entrée en tension et sortie en courant
 - But: Iout proportionnel à Vin
 - Rin = résistance d'entrée
 - Générateur de Norton "commandé en tension"
 - G = Transconductance (

= mho = Siemens (S))

Rout = résistance de sortie

80

Layout by omgice223, CC-BY

- Caractéristiques d'un ampli tension-courant "idéal"
 - Vin ne dépend que de E
 - => Rin =
 - Iout ne dépend pas de Ru
 - => Rout =

L'amplification Technologie

- Deux technologies principales :
 - Amplification à gain faible
 - Souvent à base d'ampli V-I (transistor) suivi d'une R
 OVin → courant In → tension In . R
 - Monte haut en fréquence
 - Parfois : problèmes de linéarité ou de précision du gain
 - Ampli à gain très fort, contre-réactionné
 - Le gain fort, idéaliement infini (AOP) est contrôlé pour le rammener à une valeur choisie
 - Souvent précis
 - Difficile de monter en fréquence, problèmes d'oscillations

ut by orngjce223, CC-BY

- Suiveur
 - Vout = Vin
- Sommateur
 - Vout = Va + Vb + ...
- Différentiateur
 - Vout = Va Vb
- Convertisseur tension-courant
 - Iout = G. Vin
- Convertisseur courant-tension
 - Vout = G. Iin

Montage en suiveur de tension :

L'amplification Les montages AOP

- Résistance négative
- Simulateur d'inductance forte valeur
- Comparateur (éventuellement avec hystérésis)
- Redresseur diode sans seuil
- Ampli logarithmique / ampli exponentiel
- Oscillateur
- ...

out by orngjce223, CC-BY

http://fr.wikipedia.org/wiki/Montages_de_base_de_l%27amplificateur_op%C3%A9rationnel

L'amplification Le régime linéaire du NPN

- Fonctionnement en "régime linéaire":
 - Ic = . Ib
 - Vbe ~= 0.6V
- Conditions du régime linéaire :
 - Ib > 0
 - Vce > 0

L'amplification Le régime saturé du NPN

- Si Vce n'est plus suffisamment fort pour permettre à Ic de passer suffisamment fort => régime saturé
 - Ic $< \beta$. Ib
 - Vce tend vers 0 (Vce tends vers Vce_sat ~= 0.3V)
- Régime imposé par le circuit connecté sur C (sortie)
- Utilisé pour amplifier des signaux logiques

ayout by orngice223, CC-BY

out by orngice223, CC-BY

L'amplification Le régime bloqué du NPN

- Si Vbe n'est pas suffisamment fort pour permettre à Ib de passer (Vbe < 0V ou < 0.6V) => régime bloqué
 - \bullet Ib = 0
 - Ic = . Ib = 0
 - Vce =
- Régime imposé par le circuit connecté en B (entrée)

out by orngjce223, CC-BY

91

L'amplification Les applications des bipolaires

- Avantages:
 - Bonne linéarité
 - Faible bruit
- Inconvénients :
 - Consommation de courant
 - Vce_sat != 0 => Vce . I => chauffe
- Applications:
 - HF
 - Audio
 - Haute tension

- Si Vgs > 2 Vgsth (exemple : Vgs = 5V)
 - Rds "nul" => le courant passe
 - Transistor "passant"
- Si Vgs < Vgsth / 2 (exemple : Vgs = 0)
 - Rds "infini" => le courant le passe pas
 - Transistor bloqué

- Avantages:
 - Rdson peut être très faible, pas de Vce_sat
 - Chauffe moins
- Inconvénients :
 - Capa de gate problématique en HF
 - Limités en tension
- Applications:
 - Basse tension, forts courants, électronique de puissance
 - Découpage
 - Circuits numérique

ayout by omgjce223, CC-BY

- Attention : les deux transistors ne doivent pas conduire en même temps !
- Applications :
 - Electronique de puissance
 - Electronique numérique
- Système plus efficace électriquement, meilleur rendement

du Système à la Fonction (suite)

Cours de transmission de l'information et d'électronique générale

EFREI - L1 - Février 2013

Pierre Prot – prot@efrei.fr –

1

Plan de cours

- Introduction
 - Objectifs de ce cours
 - Introduction à la transmission d'information
 - Rappels de base en électronique
- Cours
 - La transmission électrique
 - La fonction amplification
 - La fonction filtrage
 - Applications

out by orngice223, CC-BY

Le filtrage Pulsation, fréquence

- Fréquence : f, en nombre de périodes par secondes
 - Unité SI : ou
 - 5 fois par secondes =
 - 6 fois par minutes =
- \bullet Pulsation : ω , en nombre de radian par secondes
 - Unité SI:
 - On définit 1 période = 1 tour de cercle = $2.\pi$ radians
 - 5 fois par secondes =
 - 6 fois par minutes =
- Ainsi : $\omega =$, ou bien f =

3

Le filtrage Introduction au spectre

- Th de Fourrier : tout signal périodique peut être décomposé en une somme de sinusoïdes de fréquences (f) et d'amplitudes (A) déterminées
- Inversement : une somme de sinusoïdes de fréquences et d'amplitudes différentes donne un signal périodique
- L'ensemble des couples (f, A) qui composent un signal = le spectre

out by orngjce223, CC-BY

Le filtrage Introduction

- Filtre = quadripôle
 - Une entrée sur 2 pôles
 - Une sortie sur 2 pôles
 - Un facteur de transfert (gain) en U, ou en I, ou en P
- But du filtrage : avoir un gain différent en fonction de la fréquence du signal
 - Gain : G(f)
 - Exemple:
 - \bigcirc Vout = Gv(f). Vin
 - \bigcirc Pout = Gp(f). Pin

Layout by omgjce22

Le filtrage Caractérisation d'un filtre

- Fonction de transfert :
 - H(j ω) = Vout / Vin
 - \bullet Variable de Laplace : $p = j\omega$
 - Calcul de Vout/Vin en considérant les impédances complexes
 - \odot Condensateur : $Zc = 1 / jC\omega$
 - **1** Inductance : $Zl = jL\omega$
 - Résistance Zr = R

Layout by omgjce223, CC-BY

Le filtrage Caractérisation d'un filtre Diagrame de Bode : Diagrame d'amplitude Abcisses: \omega ou f (axe Ordonnées: | H(j\omega) | en dB (axe Diagrame de phase Abcisses: \omega ou f (axe Ordonnées: Arg(H(j\omega)) (axe Ordonnées: Arg(H(j\omega)) (axe

Le filtrage Autres caractéristiques

- Bande passante
 - Bande de fréquence que le filtre laisse passer
- Bande coupée
 - Bande de fréquence que le filtre atténue
- Fréquence de coupure
 - Cassure dans le diagrame de Bode
- Pente de coupure
 - Pente d'un segment du diagrame de Bode
 - 20dB / décade = 'pente 1'
- Type de filtre
 - Passe-bas, passe-haut
 - Passe-bande, coupe-bande

11

Le filtrage Applications mathématiques

- En temporel, en régime AC:
 - Vout(ω) = H(j ω). Vin(ω)
- En spectral :
 - S_vout = Bode($H(j\omega)$) . S_vin

your by omgreezes, co-

Le filtrage Rappels mathématiques

- $H(j\omega) = Vout / Vin$
 - Donc $|H(j\omega)|_{dB}$ = $\log 10(|H(j\omega)|)$
- $(X * Y * ... * Z)_{dB} =$

$$= X_{dB} + Y_{dB} + \dots + Z_{dB}$$

- 1 décade = multiplication par 10
 - Pour une tension : + 1 décade = + dB
 - Pour une puissance : + 1 décade = + dB

Le filtrage Méthode du diagrame de Bode

- Calculer $H(j\omega)$ = Vout/Vin
- Décomposer en produit de fonction de bases
 - \blacksquare H(j ω) = H1(j ω) * H2(j ω) * ... * Hn(j ω)
- Tracer les diagrames de Bode des fonctions H1, H2, ...,Hn
- Additionner les diagrames asymptotiques de Bode

 - \bigcirc Donc: B = B1 + B2 + ... + Bn
 - lacktriangle Dessiner B, diagramme asymptotique de Bode de H(j ω)
- Dessiner le diagrame réel de Bode
 - -3dB aux fréquences de coupure

Le filtrage Méthode d'analyse : récapitulatif

- Analyse HF / BF
 - Remplacement des composants par leurs modèles BF, puis HF
 - => permet de connaitre globalement le type de filtre
- Tracé du diagramme de Bode
 - $H(j\omega) = Vout / Vin$
 - \odot Zc = 1/jCw; Zl = jLw
 - Tracé de Bode de la fonction de transfert
 - => permet de connaître précisément le comportement du filtre

Le filtrage Utilité des filtres complexes

- Passe-bande /coupe-bande
 - Audio (équaliseur)
 - Radio (sélection d'un signal dans une bande)
- Filtre à pente plus raides
 - Pente 1 = 20dB/décade
 - Pente 2 = 40dB/décade
 - **...**
 - But : couper plus efficacement au-delà de la fréquence de coupure
 - Audio, échantillonnage, déparasitage, etc...

31

Le filtrage Ordre d'un filtre

- 1 élément filtrant
 - Ordre 1
 - Pente 1
- 2 éléments filtrants =
 - Ordre 2
 - 1 pente 2 ou 2 pentes 1
- ...
- N éléments filtrants
 - Ordre N
 - 1 pente N ou ... ou N pentes 1

ayout by orngjce223, CC-BY

Le filtrage Les réponses des filtres complexes

- Plusieurs types de réponses standardisées
 - Pour chaque topologie : des avantages et des inconvénients
 - Choix en fonction de l'application
 - Théorie mathématique "costaude"
 - Implémentation et calcul à l'aide de logiciels calculateurs ("Elsie", ou logiciels de fondeurs : LTC, TI, Analog, Microchip, etc...)
- L'analyse qualitative HF/BF marche très bien

yout by orngjce223, CC-BY

33

Le filtrage Les réponses des filtres complexes

- Critères
 - Planéité de la bande passante (pass-band flatness)
 - Bande coupée sans remontées (no stop-band ripple
 - Coupure franche et rapide au coin (sharp corner)
 - Planéité du délai de groupe (group delay flatness / linear phase)
 - **O** Déphasage(ω) = délai(ω)
 - Si le délai varie en fonction de la fréquence → distorsion

out by orngjce223, CC-BY

Le filtrage La réponse Butterworth

- Le plus commun
 - Bande passante la plus plate
 - Coupure franche
 - Délai raisonnable
- Applications
 - Asservissement
 - Usage général

ayout by orngjce223, CC-BY

Le filtrage La réponse Bessel

- Pour l'audio
 - Bande passante très atténuée vers le haut
 - Coupure arrondie
 - Délai de groupe excellent (Linear Phase Response)
- Application
 - Audio
 - Vidéo

Lavout by orngice 223. CC-I

Le filtrage La réponse Chebyshev type 2

- Spécifique
 - Bande passante
 - Plate en amplitude
 - Oscillante en phase
 - Coupure très sèche
 - Remontées dans la band coupée
 - Délai de groupe mauvais
- Application
 - Analyse fréquentielle
 - Applications spécifiques

- Spécifique
 - Bande passante
 - Oscillante en amplitude
 - Coupure très sèche
 - Pas de remontées dans la bande coupée
 - Délai de groupe mauvais
- Application
 - Analyse fréquentielle
 - Applications spécifiques

Layout by omgjce223, CC-BY

- Principe: un AOP, des éléments filtrants autour
- Analyse
 - Calculatoire
 - Modèles HF/BF

out by omgjce223, CC-BY

41

Le filtrage Les filtres actifs

- Avantages :
 - Permet d'amplifier tout en filtrant
 - Rin possiblement très élevé
 - Rout possiblement très faible
 - Caractéristiques indépendantes de la charge
- Limites = celles de l'AOP
 - Rapidité
 - Distorsion
 - Prix

Applications

- Techniques
 - Le relais de transmission
 - L'équalisation de ligne
 - L'équalisation audio
 - Le gain variable
 - Le filtrage de bruit hors bande
- Solutions technologiques de communication
 - Le télégraphe
 - Le téléphone analogique, les réseaux de téléphonie
 - Le fax
 - L'ADSL

45

Applications Le relais de transmission

- Objectif:
 - Ocompenser les pertes des lignes de transmission
 - Insertion d'amplificateurs sur la ligne
- Problématiques :
 - Calculer le gain et le nombre de relais pour compenser les pertes dues à la longueur de ligne
- Solutions:
 - Calculer les pertes de la ligne par unité de longueur (par exemple : en dB/km)
 - Ocalculer les pertes de la ligne sur toute sa longueur
 - Disposer plusieurs amplis dont le gain total est au moins équivalent aux pertes totales

yout by orngjce223, CC-BY

Applications relais de transmission (alimentation)

- Problématiques : le relais (ampli) doit être alimenté
 - Une alim (secteur, panneaux solaires, batterie, ...) par relais = cher
- Solutions:
 - Faire circuler l'alimentation et le signal sur la ligne
 - L'alim = DC seulement
 - Le signal = AC seulement
 - Utilisation de condensateurs et inductances pour séparer les chemins de l'alim et du signal

ayout by orngice223, CC-BY

Applications relais de transmission (régénération)

- Problématiques : à force d'amplifications et d'atténuations, le signal se dégrade
 - Dégradation du SNR
 - Distorsions dues
 - aux non-linéarités des amplis
 - a la bande passante des amplis, de la ligne
 - aux parasites ajoutées par les amplis
- Solutions (valable pour le numérique)
 - Retransformer en numérique
 - Vérifier que le signal numérique est valide
 - Le retransmettre
- Plus cher, mais plus fiable
- Moins de relais par unité de longueur

Applications L'équalisation de ligne

- Objectif:
 - Compenser l'effet de filtrage passe-bas d'une ligne
- Problématique:
 - La compensation doit être adaptée aux "imperfections" de la ligne, pour ne pas rajouter de déformations additionelles
- Solution:
 - Diagramme de Bode de la ligne, puis calcul du filtre correcteur
 - Filtre auto-adaptatif (compliqué, mais des solutions clés en mains existent)

Applications L'équalisation audio

- Objectif:
 - Compenser les déformations dues à la bande passante non plate des différents éléments d'une chaîne audio
- Problématique:
 - Le son doit "plaire à l'auditeur"
- Solution:
 - Réglage manuel du volume des graves/medium/aigus

Applications Le gain variable

- Objectif:
 - Construire un amplificateur dont le gain peut être modifié électriquement
- Problématique:
 - La multiplication de deux tension = difficile
- Solution:
 - Potentiomètre
 - Potentiomètre numérique
 - Résistance variable à l'aide d'un MOSFET

Applications
Le gain variable

Barreau résistif
Curseur
Ra
Rb
Rb
Ra + Rb = Rtot

Pont diviseur
Vca =

Applications Le gain variable

- Potentiomètre numérique
 - Pont diviseur de tension avec 2ⁿ résistances
 - Sélection d'un noeud par interrupteur commandé électroniquement

Applications Le gain variable

- Utilisation d'un MOSFET
 - Rds varie en fonction de Vgs
 - => à l'aide de Vgs, on règle Rds
- Problèmes :
 - Non linéarité du MOSFET
 - Varie beaucoup avec la température

Layout by omgjce223, CC-BY