CSCI 338: Quiz 4 (due: Friday, March 26, 8:00pm)

CONSTRUCT & TIM M2 ON input R.

Your Name:

If a is not in the form of 1 or 01" reject

otherwise run no on we and accept it if ne accepts w.

accept only if M doesn't accept w.

This is an open-book quiz (not an attendance counting), so you should try your best. After you finish, upload a pdf file on D2L under Quiz-4. A solution will be posted on D2L after the deadline.

O CONSTRUCT TIM MZ 65

Problem 1

On March 19, we covered an undecidability proof for $REGULAR_{TM}$, where we construct a TM M_2 with the property that either $L(M_2) = \Sigma^*$ or $L(M_2) = \{0^n 1^n | n \geq 0\}$ — depending on whether M accepts w or not. (This is basically Theorem 5.2 in the textbook.) On the other hand, notice that in this two cases $L(M_2)$ have overlaps (as $\{0^n 1^n\} \subset \Sigma^*$).

In this quiz, you are asked to write a new undecidability proof for $REGULAR_{TM}$ such that in the two cases (i.e., when M accepts w, and when M doesn't accept w), the corresponding two languages $L(M_2)$ do not overlap at all.

IDEA: First identify a language which is regular and $\mathbb{Z} \cap \{o^n | n\} = \emptyset$.

I will Choose $\{1, 1\}$, which can be generated as $S \rightarrow 1S \mid 1$, which is certainly regular.