Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Dualidad

Dualidad en Optimización: Problema dual

Dado el problema primal:

Tenemos el problema dual:

$$\min \ f(x_1,...,x_n) \qquad \max \ D(\lambda_1,...,\lambda_m)$$

$$s.t. \ g(x_1,...,x_n) \leqslant b \qquad s.t. \ h(\lambda_1,...,\lambda_m) \geqslant b$$

$$x_i \geqslant 0 \qquad \qquad \lambda_j \leqslant 0$$

$$n \ restr. \qquad n \ restr.$$

- Se define $D(\lambda_1,...,\lambda_m) \doteq \inf_{\bar{x}} \mathscr{L}(\bar{\lambda},\bar{x})$.
- Dualidad débil: Si $\bar{x^*}$ es una solución factible del problema primal e $\bar{\lambda^*}$ es una solución del dual entonces $f(\bar{x^*}) \geqslant D(\bar{\lambda^*})$.
- Si un problema no tiene un óptimo finito entonces el otro no es factible.

Ejemplo (1/2)

Sea

min
$$3x_1 + 4x_2 + 5x_3$$

 $s.t. -2x_1 - 1x_2 - x_3 + 7 \le 0$
 $-x_1 - 3x_2 - 2x_3 + 8 \le 0$
 $x_1, x_2, x_3 \ge 0$

N=3

El lagrangiano resulta:

$$\mathcal{L}(\bar{\lambda}, \bar{x}) = 3x_1 + 4x_2 + 5x_3 + \lambda_1(-2x_1 - 1x_2 - x_3 - 7) + \lambda_2(-x_1 - 3x_2 - 2x_3 - 8)$$
 de donde para que $D(\lambda_1, \lambda_2)$ no pueda valer $-\infty$ los términos de

 x_1, \ldots, x_3 deben ser no negativos, resultando en el sistema de inecuaciones:

$$\begin{cases} 3 - 2\lambda_1 - \lambda_2 \ge 0 \\ 4 - \lambda_1 - 3\lambda_2 \ge 0 \\ 5 - \lambda_1 - 2\lambda_2 \ge 0 \end{cases}$$

Ejemplo (2/2)

Luego, como el mínimo de \mathscr{L} se da para $x_1 = x_2 = x_3 = 0$, resulta $D(\lambda_1, \lambda_2) = \mathscr{L}(\bar{\lambda}, \bar{0}) = 7\lambda_1 + 8\lambda_2$.

Teniendo entonces las formulaciones de D y las restricciones, reformulamos el problema:

$$\max 7\lambda_1 + 8\lambda_2$$
 $s.t. 3 - 2\lambda_1 - \lambda_2 \ge 0$
 $4 - \lambda_1 - 3\lambda_2 \ge 0$
 $5 - \lambda_1 - 2\lambda_2 \ge 0$
 $\lambda_1, \lambda_2 \geqslant 0$

Nota: en estos casos de problemas lineales se da la condición de *dualidad fuerte*, por la cual el óptimo del dual coincide con el óptimo del primal.