

What Is My Talk about?

- Machine learning from big data is successful.
 - Great work on large-scale parallel implementation.

- However, there are various applications where massive labeled data is not available.
 - Medicine, manufacturing, disaster, infrastructure...

In this talk, I will introduce our recent advances in classification from limited information.

Supervised Classification

Binary classification from labeled samples:

- A large number of labeled samples yield better classification performance.
 - Optimal convergence rate: $\mathcal{O}\left(n^{-1/2}\right)$

Unsupervised Classification

Since collecting labeled samples is costly, let's learn a classifier from unlabeled data.

- This is equivalent to clustering.
- To justify this, need the assumption that each cluster corresponds to each class.
 - This is rarely satisfied in practice.

Zhou, Bousquet, Lal, Weston & Schölkopf (NIPS2003) and many

- Use a large number of unlabeled samples and a small number of labeled samples:
- Find a decision boundary along cluster structure induced by unlabeled samples:
 - Sometimes very useful!
 - But same weakness as unsupervised classification.

Supervised High accuracy abeling low labeling cost _OW

High

Semi-supervised

Unsupervised

ow Accuracy

Achieving high classification accuracy with low labeling costs is always a big challenge!

Relation to Deep Learning

My talk

Reinforcement Semi-supervised Unsupervised Supervised Learning Methods

Any learning method and model can be combined!

Model

Linear Additive Kernel Deep

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

UU Classification: Setup

du Plessis, Niu & Sugiyama (TAAI2013)

Given: Two sets of unlabeled data

$$\{\boldsymbol{x}_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}) \ \{\boldsymbol{x}_i'\}_{i=1}^{n'} \overset{\text{i.i.d.}}{\sim} p'(\boldsymbol{x})$$

Assumption: Only class-priors are different

$$p(y) \neq p'(y)$$

$$p(y) \neq p'(y)$$
 $p(\boldsymbol{x}|y) = p'(\boldsymbol{x}|y)$

Goal: Obtain a classifier

Optimal UU Classifier

du Plessis, Niu & Sugiyama (TAAl2013)

Sign of the difference of class-posteriors:

$$g(x) = \text{sign}[p(y = +1|x) - p(y = -1|x)]$$

Under equal test class-prior q(y = +1) = 1/2,

$$g(\boldsymbol{x}) = C \operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$$

$$C = sign[p(y = +1) - p'(y = +1)]$$

 \blacksquare Sign of C is unknown, but just knowing

$$\operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$$

still allows optimal separation!

UU Classifier Training

$$\operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$$

Difference of kernel density estimators:

- Estimate $p(\boldsymbol{x}), p'(\boldsymbol{x})$ from $\{\boldsymbol{x}_i\}_{i=1}^n, \{\boldsymbol{x}_i'\}_{i=1}^{n'}$, separately.
- Simple but systematic under-estimation of p(x) p'(x).

Anderson, Hall & Titterington (J. Multivariate Analysis 1994)

Direct estimation of density-difference:

- Fit model f(x) to p(x) p'(x) directly without estimating p(x), p'(x).
- Linear least-squares formulation yields global analytic solution!

Kim & Scott (IEEE-TPAMI2010) Sugiyama, Suzuki, Kanamori, du Plessis, Liu & Takeuchi (NIPS2012, NeCo2013)

$$\min_{f} \int \left(f(\boldsymbol{x}) - \left\{ p(\boldsymbol{x}) - p'(\boldsymbol{x}) \right\} \right)^{2} d\boldsymbol{x}$$

Direct estimation of sign of density-difference:

du Plessis, Niu & Sugiyama (TAAI2013)

- Most direct approach (following Vapnik's principle!).
- Non-convex optimization is involved (use, e.g., CCCP).

Experiments

Misclassification error rate: average (std)

5% t-test sign	$\sup[p(oldsymbol{x})-p'(oldsymbol{x})]$	U classification $\mathbb{L}p(oldsymbol{x}) - p'(oldsymbol{x})$		Clustering	Spectral Ng et al. (NIPS2001)	Infomax Sugiyama et al. (ICML2011)
Dataset	DSDD	LSDD	KDE	KM	SC	SMIC
australian	.244 (.116)	.259(.088)	.355(.104)	.265(.080)	.376(.065)	.308 (.107)
banana	.338 (.094)	.339 (.100)	.365 (.067)	.433(.049)	.427(.069)	.424 (.070)
diabetes	.340 (.075)	.361(.124)	.345(.034)	.373(.063)	.380(.048)	.371 (.114)
german	.375 (.042)	.380(.093)	.354 (.057)	.437(.024)	.445 (.057)	.438 (.041)
heart	.270(.133)	.247 (.084)	.354(.052)	.264(.059)	.315(.081)	.327 (.089)
image	.331 (.078)	.350(.067)	.350(.039)	.384(.031)	.354(.049)	.382 (.050)
ionosphere	.291 (.099)	.356(.066)	.345(.048)	.330(.070)	.322(.058)	.314 (.107)
saheart	.378(.093)	.353 (.057)	.363 (.066)	.419(.082)	.395(.022)	.385 (.040)
thyroid	.227 (.098)	.251(.087)	.302(.022)	.326(.061)	.329(.047)	.307 (.076)
twonorm	.164(.188)	.153(.121)	.352(.096)	.036 (.053)	.042(.122)	.049 (.120)
	2/ 10	m(u -	<u></u>	$\frac{1}{25}$ $\frac{1}{2}$	$(a_1 - 1)$	-0.65

$$n = n' = 40$$
 $p(y = +1) = 0.35$ $p'(y = +1) = 0.65$

UU classification with direct estimation of (sign of) density difference works well!

UU Classification: Summary

- Given two unlabeled datasets with different class-priors, we estimate the sign of difference of class-posteriors: sign[p(x) p'(x)]
- Same convergence rate as fully supervised case can be achieved! $\mathcal{O}(n^{-1/2})$
- Unlike classification from label proportions, we do not have to know class priors.

Quadrianto, Smola, Caetano & Le (JMLR2009)

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- Introduction RIKEN Center for AIP

PU Classification: Setup

Given: Positive and unlabeled samples

$$\{(\boldsymbol{x}_i, y_i = +1)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y = +1)$$
$$\{\boldsymbol{x}_i'\}_{i=1}^{n'} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Goal: Obtain an (ordinary) PN classifier

Examples:

- Click vs. non-click
- Friend vs. non-friend

Classification Risk

Risk of classifier f:

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell \Big(y f(\boldsymbol{x}) \Big) \Big] \qquad \qquad \mathbb{E} \colon \mathsf{Expectation} \qquad \ell \colon \mathsf{Loss}$$

$$= \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \Big[\ell \Big(f(\boldsymbol{x}) \Big) \Big] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \Big[\ell \Big(-f(\boldsymbol{x}) \Big) \Big]$$
 Risk for P data Risk for N data

 $\pi = p(y = +1)$: Class-prior probability (assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)
Blanchard, Lee & Scott (JMLR2010)
du Plessis, Niu & Sugiyama (IEICE2014, MLJ2017)

Since we do not have N data in the PU setting, the risk cannot be directly estimated. Natarajan, Dhillon, Ravikumar & Tewari (NIPS2013) du Plessis, Niu & Sugiyama (ICML2015)

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \Big[\ell \Big(f(\boldsymbol{x}) \Big) \Big] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \Big[\ell \Big(-f(\boldsymbol{x}) \Big) \Big]$$
 Risk for P data Risk for N data

U-density is a mixture of P- and N-densities:

$$p(\mathbf{x}) = \pi p(\mathbf{x}|y = +1) + (1 - \pi)p(\mathbf{x}|y = -1)$$

Eliminating the N-density yields

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{p(\boldsymbol{x}) - \pi p(\boldsymbol{x}|y=+1)} \left[\ell \left(- f(\boldsymbol{x}) \right) \right]$$

 Unbiased risk estimation is possible only from PU data!

Theoretical Analysis

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

Estimation error bounds:

$$R(\widehat{f}_{PU}) - R(f^*) \le C(\delta) (2\pi/\sqrt{n_P} + 1/\sqrt{n_U})$$

 $R(\widehat{f}_{PN}) - R(f^*) \le C(\delta) (\pi/\sqrt{n_P} + (1-\pi)/\sqrt{n_N})$

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell \Big(y f(\boldsymbol{x}) \Big) \Big]$$
$$f^* = \operatorname{argmin}_f R(f)$$

with probability $1 - \delta$

 $n_{\mathrm{P}}, n_{\mathrm{N}}, n_{\mathrm{U}}$: # of positive, negative and unlabeled samples

- PU (and PN) achieve optimal convergence rate.
- Comparison: PU bound is smaller than PN if

$$\pi/\sqrt{n_{\rm P}} + 1/\sqrt{n_{\rm U}} < (1-\pi)/\sqrt{n_{\rm N}}$$

 PU can be better than PN provided a large number of PU data!

Further Correction

Kiryo, Niu, du Plessis & Sugiyama (arXiv2017)

PN formulation:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Risk for P data

Risk for N data

PU formulation: $p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{p(\boldsymbol{x}) - \pi p(\boldsymbol{x}|y=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

- Risk for N data is non-negative by definition, but its approximation from PU samples can be negative due to "difference of approximations".
 - In particular, for flexible models such as deep nets.

Non-Negative PU Classification²⁰

We constrain the sample approximation term to be non-negative through back-prop training:

$$\widehat{R}(f) = \pi \widehat{\mathbb{E}}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \max \left\{ 0, \ \widehat{\mathbb{E}}_{p(\boldsymbol{x}) - \pi p(\boldsymbol{x}|y=+1)} \left[\ell \left(- f(\boldsymbol{x}) \right) \right] \right\}$$

Now the risk estimator is biased. Is it really good?

Theoretical Analysis

$$\widehat{R}(f) = \pi \widehat{\mathbb{E}}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \max \left\{ 0, \ \widehat{\mathbb{E}}_{p(\boldsymbol{x})-\pi p(\boldsymbol{x}|y=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] \right\}$$

 $\widehat{R}(f)$ is still consistent and its bias decreases exponentially: $\mathcal{O}(\exp(-1/n_{\mathrm{P}}+1/n_{\mathrm{U}}))$

 $n_{\mathrm{P}}, n_{\mathrm{U}}$: # of positive and unlabeled samples

- In practice, we can ignore the bias of $\widehat{R}(f)$!
- Mean-squared error of $\widehat{R}(f)$ is not more than the original one.
 - In practice, $\widehat{R}(f)$ is more reliable!
- Risk of $\operatorname{argmin}_f \widehat{R}(f)$ for linear models converges with optimal parametric order: $\mathcal{O}(1/\sqrt{n_{\mathrm{P}}} + 1/\sqrt{n_{\mathrm{U}}})$
 - Learned function is optimal.

Experiments

- With a large number of unlabeled data, non-negative PU can even outperform PN!
- Binary CIFAR-10:
 Positive (airplane, automobile, ship, truck)
 Negative (bird, cat, deer, dog, frog, horse)
- 13-layer CNN with ReLU

$$n_{
m P} = 1000 \\ n_{
m U} = 50000 \\ \pi = 0.4$$

PU Classification: Summary

- Just separating P and U is biased.
- To be unbiased, use composite loss $\widetilde{\ell}(m) = \ell(m) \ell(-m)$ for P data.

 Natarajan, Dhillon, Ravikumar & Tewari (NIPS2013)
 - Optimal convergence rate achieved.
 Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
- If $\ell(m) + \ell(-m) = \text{Const.}$, the same loss for P and U data. du Plessis, Niu & Sugiyama (NIPS2014)
- If $\widetilde{\ell}(m) = am + b$, optimization becomes convex. du Plessis, Niu & Sugiyama (ICML2015)
- For deep nets, roundup the empirical false negative error.

Kiryo, Niu, du Plessis & Sugiyama (arXiv2017)

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

PNU Classification

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

- PNU classification is semi-supervised learning.
- Let's decompose this into PU, PN, and NU classification:
 - Each can be solved easily.
 - Combine two of them!

PU+NU Classification

Natural choice: Combine PU & NU (symmetric).

$$R_{\mathrm{PU+NU}}(f) = (1-\gamma)R_{\mathrm{PU}}(f) + \gamma R_{\mathrm{NU}}(f) \quad 0 \le \gamma \le 1$$

Theoretical risk analysis:

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

- When PU<NU, PU<PN<NU or PN<PU<NU.
- When NU<PU, NU<PN<PU or PN<NU<PU.
- PU+NU is not the best possible combination.
- PU+PN & NU+PN are the best combinations.

PN+PU & PN+NU Classification²⁷

Proposed method: Combine best methods:

• PN+PU classification:

$$R_{\text{PN+PU}}^{\gamma}(f) = (1 - \gamma)R_{\text{PN}}(f) + \gamma R_{\text{PU}}(f) \quad 0 \le \gamma \le 1$$

• PN+NU classification:

$$R_{\text{PN+NU}}^{\gamma}(f) = (1 - \gamma)R_{\text{PN}}(f) + \gamma R_{\text{NU}}(f) \quad 0 \le \gamma \le 1$$

Theoretical Analysis

Generalization error bounds:

$$R_{0/1}(f) \le 2\hat{R}_{\text{PN+PU}}^{\gamma}(f) + \mathcal{O}(1/\sqrt{n_{\text{P}}} + 1/\sqrt{n_{\text{N}}} + 1/\sqrt{n_{\text{U}}})$$

 $R_{0/1}(f) \le 2\hat{R}_{\text{PN+NU}}^{\gamma}(f) + \mathcal{O}(1/\sqrt{n_{\text{P}}} + 1/\sqrt{n_{\text{N}}} + 1/\sqrt{n_{\text{U}}})$

$$R_{0/1}(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell_{0/1} \Big(y f(\boldsymbol{x}) \Big) \Big]$$

 \widehat{R} : Empirical version of R

 $n_{\mathrm{P}}, n_{\mathrm{N}}, n_{\mathrm{U}}$: # of positive, negative and unlabeled samples

 Unlabeled data always helps without cluster assumptions!

- We use unlabeled data for loss evaluation, not for regularization (as manifold smoothing).
 - Label information is extracted from unlabeled data!

Experiments

Misclassification error rate: average (std)

5% t-test (Grandvalet & Bengio, (Belkin et al., (Niu et al., (Li et al., NIPS2004) JMLR2006) ICML2013) JMLR2013								
Dataset	$n_{ m u}$	π	$\widehat{\pi}$	Proposed	EntReg	${\rm LapSVM}$	SMIR	${\bf WellSVM}$
Arts	5000	0.50	0.49 (0.01) 0.50 (0.01)	$24.8 \ (0.6)$	26.1(0.5)	26.1 (0.4)	40.1 (3.9) 30.1 (1.6)	27.5 (0.5) N/A
Deserts	1000 5000	$0.73 \\ 0.73$	0.52 (0.01) 0.67 (0.01) 0.67 (0.01) 0.68 (0.01)	13.0 (0.5) $13.4 (0.4)$	$13.3 \ (0.5)$	16.7 (0.8) 16.6 (0.6) 16.8 (0.8)	N/A 17.2 (0.8) 24.4 (0.6) N/A	N/A 18.2 (0.7) N/A N/A
Fields	1000 5000	$0.65 \\ 0.65$	0.57 (0.01) 0.57 (0.01) 0.57 (0.01)	22.4 (1.0) $20.6 (0.5)$	26.2 (1.0) 22.6 (0.6)	26.6 (1.3) 24.7 (0.8)	28.2 (1.1) 29.6 (1.2) N/A	,
Stadiums	1000 5000	$0.50 \\ 0.50$	0.50 (0.01) 0.50 (0.01) 0.51 (0.00)	11.4 (0.4) 11.0 (0.5)	11.5 (0.5) 10.9 (0.3)	12.5 (0.5) 11.1 (0.3)	17.4 (3.6) 13.4 (0.7) N/A	11.7 (0.4) N/A N/A
Platforms	5000	0.27	0.33 (0.01) 0.34 (0.01) 0.34 (0.01)	$23.3\ (0.8)$	24.4(0.7)	24.9(0.7)	30.1 (2.3) 26.6 (0.3) N/A	26.2 (0.8) N/A N/A
Temples	5000	0.55	0.51 (0.01) 0.54 (0.01) 0.50 (0.01)	43.4 (0.9)	$43.0\ (0.6)$	$43.1\ (1.0)$	50.7 (1.6) 43.6 (0.7) N/A	44.3 (0.5) N/A N/A

Proposed PN+PU & PN+NU works well!

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

Classification from Complementary Labels

Ishida, Niu & Sugiyama (arXiv2017)

- **Complementary label**: $\bar{y} \in \{1, 2, \dots, c\}$
 - Pattern x does not belong to class \bar{y} .
 - Choosing a complementary class is less laborious than choosing an ordinary class label for large c.
- Goal: Learn a classifier from complementary labels.

$$\{(\boldsymbol{x}_i, \bar{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \bar{p}(\boldsymbol{x}, \bar{y})$$

$$\bar{p}(\boldsymbol{x}, \bar{y}) = \frac{1}{c-1} \sum_{y \neq \bar{y}} p(\boldsymbol{x}, y)$$

Possible Approaches

$$\{(\boldsymbol{x}_i, \bar{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \bar{p}(\boldsymbol{x}, \bar{y})$$

Approach 1: Classification from partial labels

Cour, Sapp & Taskar (JMLR2011)

- Multiple candidate classes are provided for each x_i .
- Complementary labels are the extreme case of partial labels given to all c-1 classes other than \bar{y}_i .
- Approach 2: Multi-label classification
 - Each x_i can belong to multiple classes.
 - Negative label for \bar{y}_i and positives for the rest.
- We want a more direct approach!

Unbiased Risk Estimation with ³³ Complimentary Labels

Ishida, Niu & Sugiyama (arXiv2017)

c-class classifier: $f(x) = \underset{y \in \{1,...,c\}}{\operatorname{argmax}} g_y(x)$

 $g_y(\boldsymbol{x})$: 1-vs-rest classifier for y

Classification risk:

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \left[\sum_{\boldsymbol{y} \neq \boldsymbol{y}'} \ell \left(g_{\boldsymbol{y}}(\boldsymbol{x}) - g_{\boldsymbol{y}'}(\boldsymbol{x}) \right) \right]$$

 ${\mathbb E}$: Expectation

For pairwise symmetric loss, risk is

$$R(f) = rac{1}{c-1} \mathbb{E}_{ar{p}(m{x},ar{y})} \Big[\sum_{y
eq ar{y}} \ell \Big(g_y(m{x}) - g_{ar{y}}(m{x}) \Big) \Big] - ext{Const.}$$
Unbiased risk estimation is

• Unbiased risk estimation is possible from $\{(\boldsymbol{x}_i, \bar{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \bar{p}(\boldsymbol{x}, \bar{y})$!

Theoretical Analysis

Estimation error:

$$R(f^*) - R(\widehat{f}) = \mathcal{O}_p(n^{-1/2})$$

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\mathcal{L}\Big(f(\boldsymbol{x}), y\Big) \Big]$$

$$f^* = \underset{f}{\operatorname{argmin}} \mathbb{E}_{p(\boldsymbol{x},y)} \mathcal{L}\Big(f(\boldsymbol{x}), y\Big) \quad \widehat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} \bar{\mathcal{L}}\Big(f(\boldsymbol{x}_i), \bar{y}_i\Big)$$

Optimal parametric convergence rate!

Experiments

Correct classification rate: average (std)

5% t-test

Dataset	Class	# train	# test	Proposed	Partial-label	Multi-label	Ordinary labe
WAVEFORM1	$1 \sim 3$	1230	406	85.7(0.9)	84.1(1.5)	84.7(1.6)	85.8(0.9)
WAVEFORM2	$1 \sim 3$	1221	400	84.4(1.3)	83.1(2.7)	81.8(2.3)	86.7(1.8)
SATIMAGE	$1 \sim 7$	415	211	67.2(7.0)	54.8(6.8)	51.6(6.0)	67.9(4.2)
SHUTTLE	1, 4, 5	2458	809	94.9(9.7)	97.5(0.7)	90.4(11.8)	97.5(0.8)
SEGMENTATION	$1 \sim 7$	29	299	36.1(6.8)	31.7(5.8)	26.6(5.4)	58.6(4.5)
PENDIGITS	$\begin{array}{c} 1 \sim 5 \\ 6 \sim 10 \\ \mathrm{even} \ \# \\ \mathrm{odd} \ \# \end{array}$	719 719 719 719	336 335 335 336	$79.4(9.5) 77.7(3.8) \hline 74.0(7.3) \hline 88.5(5.9)$	73.2(6.4) 65.5(6.4) 58.5(9.9) 74.6(4.4)	75.9(7.7) 72.0(8.6) 65.7(6.3) 79.1(6.1)	78.8(2.9) 74.7(4.6) 74.8(5.5) 84.0(8.8)
MNIST	$\begin{array}{c} 1\sim 5\\ 6\sim 10\\ \mathrm{even}\ \#\\ \mathrm{odd}\ \# \end{array}$	5842 5421 5421 5842	980 892 892 958	$88.4(4.2) \\ 83.4(2.6) \\ \hline 85.3(2.2) \\ \hline 85.0(3.7)$	71.5(7.4) 67.4(8.1) 70.4(6.7) 67.3(8.6)	56.6(12.4) 50.5(13.7) 61.7(11.1) 57.3(13.0)	77.9(0.4) 77.0(4.5) 76.7(1.4) 76.5(0.7)
DRIVE	$1 \sim 5$ $6 \sim 10$ even # odd #	3931 3958 3932 3931	1280 1318 1295 1310	$\begin{array}{c} 87.6(5.9) \\ \hline 84.9(5.7) \\ \hline 82.4(5.6) \\ \hline 76.9(8.0) \\ \end{array}$	72.7(7.0) 73.1(5.8) 72.9(6.6) 60.0(6.9)	64.2(12.6) 69.7(9.3) 63.2(12.8) 51.6(9.3)	79.3(5.1) 81.6(2.9) 83.5(5.3) 65.4(3.3)
LETTER	$1 \sim 5$ $6 \sim 10$ $11 \sim 15$ $16 \sim 20$ $21 \sim 25$	565 550 556 550 585	171 178 177 184 167	$\begin{array}{c} 79.6(5.5) \\ 73.2(6.3) \\ \hline 73.3(5.9) \\ \hline 71.5(5.9) \\ \hline 76.2(6.0) \end{array}$	67.6(6.0) 63.9(6.1) 66.6(3.4) 64.9(5.2) 68.3(8.1)	71.0(9.3) 61.2(10.6) 59.0(10.1) 63.5(7.0) 63.1(11.2)	82.2(4.3) 75.9(5.6) 75.4(5.0) 73.9(5.3) 77.1(5.1)
VOWEL	$1 \sim 5$ $6 \sim 10$ even # odd #	48 48 48 48	42 42 42 42	$ \begin{array}{r} 35.6(9.0) \\ \hline 32.6(7.5) \\ \hline 36.6(9.0) \\ \hline 28.2(9.0) \end{array} $	$\frac{37.0(9.3)}{34.1(7.7)} \\ \hline 39.9(10.5) \\ \hline 28.8(7.2)$	31.5(6.7) 30.0(9.8) 33.3(7.8) 23.2(4.8)	54.9(6.7) 53.0(4.4) 62.1(5.6) 54.0(5.5)
USPS	$\begin{array}{c} 1 \sim 5 \\ 6 \sim 10 \\ \mathrm{even} \ \# \\ \mathrm{odd} \ \# \end{array}$	652 542 556 542	166 147 147 166	$\begin{array}{c} 70.1(5.2) \\ \hline 64.3(4.7) \\ \hline 70.6(5.4) \\ \hline 63.1(4.3) \end{array}$	62.8(7.2) 61.4(5.9) 63.7(7.2) 57.8(6.8)	45.8(5.9) 41.7(5.3) 48.4(5.3) 37.8(5.7)	76.2(2.3) 76.9(5.1) 75.7(2.7) 73.6(3.4)

Use only 1/(c-1)
times less samples
since 1 ordinary label
corresponds to
(c-1) complementary
labels

Proposed method works well!

Summary

- We need continuous effort to achieve high classification accuracy with low labeling!
 - UU classification
 - PU classification
 - PNU classification
 - Complementary labels
 - And more!

Semi-supervised

Unsupervised

High accuracy low labeling costs

Supervised

High

-abeling cost

Accuracy

High

Low

Low

Organization

- 1. Classification of classification
- 2. Classification from UU data
- 3. Classification from PU data
- 4. Classification from PNU data
- 5. Classification from complementary labels
- 6. Introduction RIKEN Center for AIP

RIKEN Center for AIP

RIKEN founded Center for Advanced Intelligence Project (AIP) in 2016.

- Our missions:
- Development of next-generation AI technology (understand deep learning and go beyond)
- Acceleration of scientific research (iPS cells, manufacturing, materials...)
- Contribution to solving socially critical problems (healthcare for super-aged society, disaster resilience, infrastructure management...)
- 4. Study of ethical, legal and social issues of Al.
- 5. Human resource development (academia & industry)

Organization of AIP Center

2017 June 1st

Over 200 researchers!

Various application domains (companies, universities, research institutes, etc.)

Goal-Oriented Technology Research Group:

Abstract complex real-world problems into solvable forms (22 teams)

Generic Technology Research Group:

Develop fundamental theory and algorithms for abstracted problems (18 teams)

NEC/ Fujitsu/ Toshiba Collaboration Centers

Artificial Intelligence in Society Research Group: Analyze the influence of AI spreading in society (8 teams)

International Partners

China

- Peking University
- Nanjing University
- Shanghai University
- Hong Kong University of Science and Technology

Korea

- KAIST
- Postech
- Artificial Intelligence
 Research Institute

Singapore

 National University of Singapore

US

- Toyota Technological Institute at Chicago
- University of Pennsylvania

Germany

- Berlin Big Data Center
- Technische Universitaet Darmstadt

UK

Edinburgh Center for Robotics

Finland

Aalto University

More coming soon!

Computational Resources

With Dr. Bill Dally (NVIDIA SVP) (Feb. 27, 2017) https://blogs.nvidia.co.jp/2017/03/06/fujitsu-ai-supercomputer/

- ■24 x NVIDIA DGX-1 (half-precision 4PFLOPS)
 - The largest customer installation of DGX-1 systems in March 2017.
- Ranked 4th in the Green500 List (June 2017)
 - 10.602GFLOPS/W

Our Office in the Heart of Tokyo!

- Directly connected to Nihonbashi Station.
- Walking distance from Tokyo Station.

Visit us!

