Survival analysis and regression – Part 2

Michael Otterstatter
BCCDC Biostats Session
November 8, 2019

Session overview

- In this session we will discuss
 - continue exploring regression models for survival data
 - an example of a Cox proportional hazards regression

Background

- Simply put, 'survival analysis' is the analysis of longitudinal event data, specifically the <u>time-to-event</u>
- Often, and historically, these analyses focussed on the survival, or time-to-death, of people
- But, the same models apply to the time to injury, illness, admission, readmission, recovery, or any definable health or disease state, and even the time to failure of machines!

Survival analysis

- Define event of interest, time zero, time scale and how participants exit
 - Consideration of censoring
- 2. Descriptive analysis: univariate modeling
 - KM curves and descriptive statistics
- 3. Inferential analysis: multivariate modeling
 - Cox regression (semi-parametric)

Distribution of survival times

Survival curve, S(t): Fraction (or probability of) surviving by time t

Hazard h(t): risk of death in the next small interval among those still alive

Hazard ratio $h_1(t)/h_2(t)$: ratio of hazards between two groups

If the hazards $h_1(t)$ and $h_2(t)$ remain **proportional** over time, the difference in risk can be properly summarized by a single number, the hazard ratio

 Recall, most regression models relate observations to a *linear series* of predictors, in the general form

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 \dots$$

 Recall, most regression models relate observations to a *linear series* of predictors, in the general form

 Recall, most regression models relate observations to a linear series of predictors, in the general form

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 \dots$$

• Link functions are used to model observations that are not simple continuous outcomes (e.g., counts, probabilities, etc.)

 Recall, most regression models relate observations to a *linear series* of predictors, in the general form

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 \dots$$

• Link functions are used to model observations that are not simple continuous outcomes (e.g., counts, probabilities, etc.)

$$\log(\mu_i) = \alpha + \beta_1 x_1 + \beta_2 x_2 \dots$$
 Poisson model

$$\log\left(\frac{p}{1-\rho}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2 \dots \qquad \text{Logistic model}$$

- In the case of survival (time-to-event) analysis, we model the hazard
- log of the hazard ratio is the link used connect to the linear predictors

$$\log(HR) = \log\left(\frac{h(t)}{h_0(t)}\right) = \beta_1 x_1 + \beta_2 x_2 \dots$$

- In the case of survival (time-to-event) analysis, we model the hazard
- log of the hazard ratio is the link used connect to the linear predictors

$$\log(HR) = \log\left(\frac{h(t)}{h_0(t)}\right) = \beta_1 x_1 + \beta_2 x_2 \dots$$

$$\log h(t) = \log(h_0(t)) + \beta_1 x_1 + \beta_2 x_2 \dots$$
Intercept slopes

- In the case of survival (time-to-event) analysis, we model the hazard
- log of the hazard ratio is the link used connect to the linear predictors

$$\log(HR) = \log\left(\frac{h(t)}{h_0(t)}\right) = \beta_1 x_1 + \beta_2 x_2 \dots$$

$$\log h(t) = \log(h_0(t)) + \beta_1 x_1 + \beta_2 x_2 \dots$$

$$h(t) = h_0(t)e^{\beta_1 x_1 + \beta_2 x_2 \dots}$$

- The most common proportional hazards model is the Cox regression
- Sometimes this model is termed semi-parametric -- linear predictor set is parametric, but no assumptions are made about baseline hazard $h_0(t)$ (often written as $\lambda_0(t)$)

$$h(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 \dots}$$

An example

- Multiple myeloma study (see Krall et al, 1975)
 - 65 patients undergoing treatment (48 died during study)
 - Analysis of survival time from diagnosis
 - Identifying factors associated with survival

Time!	months)	IDesd July	ies en Hemi	gelobin		white	ploode	6/92/43	cells tron	ninurine Seri
Time	Status	LogBUN	HGB	Platelet	Age	LogWBC	Frac	LogPBM	Protein	SCalc
1.25	1	2.2175	9.4	1	67	3.6628	1	1.9542	12	10
1.25	1	1.9395	12	1	38	3.9868	1	1.9542	20	18
2.00	1	1.5185	9.8	1	81	3.8751	1	2	2	15
2.00	1	1.7482	11.3	0	75	3.8062	1	1.2553	0	12
2.00	1	1.301	5.1	0	57	3.7243	1	2	3	9
3.00	1	1.5441	6.7	1	46	4.4757	0	1.9345	12	10
4.00	0	1.9542	10.2	1	59	4.0453	0	0.7782	12	10
4.00	0	1.9243	10	1	49	3.959	0	1.6232	0	13
5.00	1	2.2355	10.1	1	50	4.9542	1	1.6628	4	9
5.00	1	1.6812	6.5	1	74	3.7324	0	1.7324	5	9
6 00	1	1 2617	۵	1	77	2 5///1	Λ	1 /67/	1	Q

Descriptive analysis

Kaplan-Meier survival curve

Descriptive analysis

Estimated (smoothed) hazard function

Cox proportional hazards regression

$$h(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 \dots}$$

Cox proportional hazards regression

$$h(t) = \lambda_0(t)e^{\beta_1 x_1 + \beta_2 x_2 \dots}$$

Summ	ary of the	Number of E Values	vent	and Cens	sored	
Tota	I Even	t Censo	red		rcent sored	
6	5 48	3	17		26.15	
Conv	ergence cn	terion (GCON	1V = 1E	-orsansn	en	
	Me	odel Fit Stati		o y outlon	ou.	
		odel Fit Stati Without Covariates	stics	With	ou.	
-		Without	stics	With	ou.	
-	Criterion	Without Covariates	cov	With	ou.	

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio				
LogBUN	1	1.79836	0.64833	7.6942	0.0055	6.040				
HGB	1	-0.12631	0.07183	3.0920	0.0787	0.881				
Platelet	1	-0.25059	0.50747	0.2438	0.6214	0.778				
Age	1	-0.01279	0.01948	0.4316	0.5112	0.987				
LogWBC	1	0.35371	0.71319	0.2460	0.6199	1.424				
Frac	1	0.33788	0.40728	0.6883	0.4068	1.402				
LogPBM	1	0.35893	0.48603	0.5454	0.4602	1.432				
Protein	1	0.01307	0.02617	0.2494	0.6175	1.013				
SCalc	1	0.12595	0.10340	1.4837	0.2232	1.134				

Assessing model fit (as usual, with residuals)

Estimating survival using fitted model

```
data Inrisks;
  length Id $20;
  input LogBUN HGB Id $12-31;
  datalines;

1.00 10.0 logBUN=1.0 HGB=10
  1.80 12.0 logBUN=1.8 HGB=12
;

proc phreg data=Myeloma plots(overlay)=survival;
  model Time*VStatus(0)=LogBUN HGB;
  baseline covariates=Inrisks out=Pred1 survival=_all__ / rowid=Id;
run;
```

Estimating survival using fitted model

References

- Columbia University Mailman School of Public Health. Population Health Methods. Time to event data analysis. https://www.mailman.columbia.edu/research/population-health-methods/time-event-data-analysis
- George H. Dunteman & Moon-Ho R. Ho. 2011. Survival Analysis. In, An Introduction to Generalized Linear Models. SAGE Publications, Inc.
- Krall, J. M., Uthoff, V. A., and Harley, J. B. 1975. A Step-up Procedure for Selecting Variables Associated with Survival. *Biometrics* 31: 49–57.
- McCullagh P, Nelder JA. 1989. Generalized Linear Models. Chapman & Hall.
- O'Quigley, J., 2008. Proportional hazards regression (Vol. 542). New York: Springer.
- Sainani, K.L. Introduction to Survival Analysis. Stanford University Department of Health Research and Policy. https://web.stanford.edu/~kcobb/index.html