Learning Objectives

- After this segment, students will be able to
 - List main-memory data-structures for Graphs
 - Describe disk-based file-structures for Graphs

Data Models of Spatial Networks

- 1. Conceptual Model: Entity Relationship Diagrams, Graphs
- 2. Logical Data Model: Abstract Data types, Custom Statements in SQL
- 3. Physical Data Model
 - Storage: Data-Structures, File-Structures
 - Algorithms for common operations

Main Memory Data-Structures

- Adjacency matrix
 - M[A, B] = 1 if and only if edge(vertex A, vertex B) exists
- Adjacency list :
 - maps a vertex to a list of its successors

Disk-based Tables

- Normalized tables
 - one for vertices, other for edges
- Denormalized
 - one table for nodes with adjacency lists

File-Structures: Partition Graph into Disk Blocks

- Which partitioning reduces disk I/O for graph operations?
 - Choice 1: Geometric partition
 - Choice 2: min-cut Graph Partition
 - Choice 2 cuts fewer edges and is preferred

Assuming uniform querying popularity across edges

Graph Based Storage Methods

- Consider two disk-paging of Minneapolis major roads
 - Non-white edges => node pair in same page
 - White edge are cut-edges
 - Node partitions on right has fewer cut-edges and is preferred

Spatial Computing

Research Group

Exercise: Graph Based Storage Methods

- Consider spatial network on right
- If a disk page holds 3 records, which partitioning will has fewest cut-edges?
 - (a) (1, 2, 3), (4,5,6)
 - (b) (2, 3, 4), (1, 5, 6)
 - (c) (1, 2, 6), (3, 4, 5)
 - (d) (1, 3, 5), (2, 4, 6)

nid	x	y	Successors	Predecessors	
1	_	_	(2,5,6)	. 0	
2	_	_	(3,5)	<u>(1)</u>	
3	-	_	(4)	(3)	
4	_	_	(5)	(3)	
5	-	_	(6)	(2,1)	
6	_	_	0	(1,5)	