Homework 3: Linear Regression and Logistic Regression

Student Name	Student ID
米家龙	18342075

Homework 3: Linear Regression and Logistic Regression

Exercise One: Linear Regression

- (a) 梯度下降法训练线性回归模型
- (b) 学习率 0.0002 进行训练
- (c) 随机梯度下降迭代

Exercise Two: Logistic Regression

- (a) 建立梯度下降模型
- (b) 模型公式
- (c) 训练模型
- (d) 何时错误率为0
- (e)
- (f) k 类

Exercise One: Linear Regression

(a) 梯度下降法训练线性回归模型

迭代次数 1500000 学习率 0.00015 其他参数 0.0

线性回归模型为:

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_3 x_2$$

梯度下降迭代,单次迭代为:

$$egin{aligned} heta_0 = & heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_0^{(i)}) \ heta_1 = & heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_1^{(i)}) \ heta_2 = & heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_2^{(i)}) \end{aligned}$$

计算误差:

$$E_{ heta} = rac{1}{2m} \sum (h_{ heta}(x^{(i)}) - y^{(i)})^2$$

结果如图:

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1! [12:39:28]
\$ python ex1_1.py
迭代次数: 100000
迭代次数: 200000
迭代次数: 300000
迭代次数: 500000
迭代次数: 500000
迭代次数: 600000
迭代次数: 600000
迭代次数: 800000
迭代次数: 900000
迭代次数: 900000
迭代次数: 1000000
迭代次数: 1100000
迭代次数: 1100000
迭代次数: 1100000
迭代次数: 1100000
迭代次数: 1300000
迭代次数: 1300000
迭代次数: 1500000

达什	次数: 1500000						
ļi	teration_times	į.	theta_0	theta_1	theta_2	training_error	testing_error
	100000 200000 300000 400000 500000 600000 700000 800000 1000000 1100000 1200000	+- 	(46. 3296898744998136+0) (65. 48726377455391+0) (73. 56838135286633+0) (76. 97702592695264) (77. 41488623832598+0) (79. 277239864247716+0) (79. 385157715944682+0) (79. 43867683284433+0) (79. 44886832484626+0) (79. 44988832484626+0) (79. 45979795987623+0) (79. 461396528044124+0)	(7.889396249476696+0j) (6.990863029404427+0j) (6.82620145956337+0j) (6.786514436873318+0j) (6.773294654933331+0j) (6.7631871594561+0j) (6.763782368814935+0j) (6.762265997879133+0j) (6.762265997879133+0j) (6.762265997879134+0j) (6.761996188813019+0j) (6.761996188813019+0j) (6.761996188813019+0j) (6.76199612424267465+0j)	(-72.75988628414542+8j) (-72.54875177994413+8j) (-72.448317804146683+8j) (-72.448317804146683+8j) (-72.493263899522+9j) (-72.385941838609+9j) (-72.385941838609+9j) (-72.38178162323482+8j) (-72.3815683274912-9j) (-72.38194868868951+8j) (-72.38994884119635+8j) (-72.389989688452+9j)	(67.00770433342782+0j) (15.05928928987686+0j) (5.816099470156692+0j) (4.171445722319440+0j) (3.8788257644139449+0j) (3.8267578020536805+0j) (3.8154949341156192+0j) (3.815551609260957+0j) (3.8154949214752738+0j) (3.8154994214752738+0j) (3.81549888834738114+0j)	(124, 46329858931732+0j) (119, 45529167923775+0j) (125, 87211889837877+0j) (136, 09646855981045+0j) (132, 14840411638428+0j) (133, 14840411638428+0j) (133, 665199338784463+0j) (133, 62599257650442+0j) (133, 69459457452578+0j) (133, 73725490911016+0j) (133, 73725490911016+0j) (133, 73725490911016+0j)
	1300000 1400000 1500000	 	(79.46283769726229+0j) (79.46344560792623+0j) (79.46370203539838+0j)	(6.76194818178497+0j) (6.761942174053969+0j) (6.7619396398867595+0j)	(-72.38089247606189+0j) (-72.38088552248874+0j) (-72.38088258934867+0j)	(3.8154881894940003+0j) (3.815488137186075+0j) (3.8154881278789357+0j)	(133.74485152266115+0j) (133.74580231243996+0j) (133.7462033809804+0j)

(b) 学习率 0.0002 进行训练

迭代次数 2000 学习率 0.0002 其他参数 0.0

由于学习率增大,导致 numpy 中的 float64 无法储存数据,出现越界情况,因此需要降低迭代次数

Libonobios			thata 0		thata 1	l shed
L-10/0.5X:	2000			·		+
	2000					
迭代次数:	1800					
迭代次数:	1600					
迭代次数:	1400					
迭代次数:	1200					
迭代次数:	1000					
迭代次数:	800					
	600					
	400					
迭代次数:	200					
\$ python ex						
		TCGESHO in	D:\blog\work\数据挖掘	E\003\src on	git:master o +1 ~4	-1 ! [14:47:17]

+	+					l
	iteration_times	theta_0	theta_1	theta_2	training_error	testing_error
	200 400 600 800	(-7419647681519.265+0j) (-1.5334309487509745e+27+0j) (-3.169167291385024e+41+0j) (-6.549770844892271e+55+0j)	(-797108992373154.8+0j) (-1.6473984357466904e+29+0j) (-3.404705795653743e+43+0j) (-7.036562196141691e+57+0j)	(-40027400400191.13+0j) (-8.272529533249248e+27+0j) (-1.7096974620960116e+42+0j) (-3.533460231418971e+56+0j)	(5.408955977575895e+119+0j)	(5.843277999585407e+33+0j) (2.4958497095327123e+62+0j) (1.0660567190225037e+91+0j) (4.553466996960281e+119+0j)
	1000 1200	(-1.3536520535605036e+70+0j) (-2.797615253268798e+84+0j)	(-1.4542580332014772e+72+0j) (-3.0055393076617444e+86+0j)	(-7.30266113380845e+70+0j) (-1.5092531440157547e+85+0j)		(1.9449304452973656e+148+0j) (8.307415952657405e+176+0j)
	1400 1600	(-5.781878057020486e+98+0j) (-1.194950371649372e+113+0j)	(-6.211598164607341e+100+0j) (-1.283761342272082e+115+0j)	(-3.119198619494886e+99+0j) (-6.44649975813287e+113+0j)	(4.21501467731833e+205+0j) (1.800366704922734e+234+0j)	(3.548361329698566e+205+0j) (1.5156178765880466e+234+0j)
	1800 2000	(-2.4696238430196043e+127+0j) (-5.1040127445565443e+141+0j)		(-1.3323088459925176e+128+0j) (-2.7535048905734244e+142+0j)		(6.473685553405475e+262+0j) (2.76511680758978e+291+0j)

发现结果会在最后一轮迭代时误差变得极大,结果难以正确收敛,因此需要适当降低学习率,从而加快 模型收敛

(c) 随机梯度下降迭代

迭代次数 1500000 学习率 0.00015 其他参数 0.0

对于每次迭代,用随机选择 k 个数据取代原本的使用全部数据,从而降低训练时间每次迭代随机选择1个点:


```
# m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [14:46:23]
迭代次数:
迭代次数:
迭代次数:
迭代次数:
迭代次数:
                        700000
                        800000
900000
                        1000000
 迭代次数:
迭代次数:
迭代次数:
                        1100000
1200000
1300000
 迭代次数:
                        1400000
 迭代次数:
                        1500000
    iteration_times
                                                            theta_0
                                                                                                                  theta_1
                                                                                                                                                                            theta_2
                                                                                                                                                                                                                              training_error
                                                                                                                                                                                                                                                                                       testing_error
               100000
200000
300000
                                            (45.56427166518742+0j)
(64.90846655522468+0j)
(73.17368037088248+0j)
                                                                                                   (7.120819974005324+0j)
(6.856817079358346+0j)
(6.894989351094943+0j)
                                                                                                                                                          (-72.81697357269552+0j)
(-72.82135165823283+0j)
(-72.48304315006082+0j)
                                                                                                                                                                                                                     (74.97398453731172+0j)
(59.22579679440705+0j)
(58.39858789343953+0j)
                                                                                                                                                                                                                                                                             (167.75076768938254+0j)
                                                                                                                                                                                                                                                                             (38.54967351765427+0j)
(315.50989907402186+0j)
                                                                                                   (6.796273713102282+0j)
(6.7459150017141+0j)
(6.87265596326524+0j)
(6.719688246516645+0j)
                                                                                                                                                          (-72.47138096043322+0j)
(-72.47138096043322+0j)
(-72.41623326317428+0j)
(-72.39280977208203+0j)
(-72.36158939348306+0j)
                                                                                                                                                                                                                                                                              (123.6029732666993+0j)
(75.58580722030275+0j)
(460.350364622462+0j)
                400000
                                             (76.48365318043486+0j)
                                                                                                                                                                                                                      (4.516039335968798+0j)
                                            (78.10656345247246+0j)
(78.90298641266008+0j)
(79.3541023118299+0j)
               500000
                                                                                                                                                                                                                   (13.988274197590213+0j)
(123.41730214664695+0j)
                                                                                                                                                                                                                     (23.2670051812108+0j)
                700000
                                                                                                                                                                                                                                                                             (57.844367360587846+01)
                                                                                                                                                                                                                   (23.26700518121083+0)
(190.99752861217294+0)
(27.12231283218881+0)
(4,9193224754446591+0)
(24.10935919486257+0)
(35.276644061572116+0)
(15.631156150106316+0)
(10.196702542149337+0)
                                            (79.47359999304176+0j)
(79.40253034773984+0j)
(79.50218926793355+0j)
                                                                                                   (6.641619631501108+0j)
(6.703424957638746+0j)
(6.777784514071769+0j)
(6.805090650439095+0j)
                                                                                                                                                              -72.59825538697835+0j)
-72.30610249784169+0j)
-72.51313314018827+0j)
                                                                                                                                                                                                                                                                             (8.548382371474117+0j)
(39.980865114588816+0j)
(161.72772884101914+0j)
                800000
              900000
              1100000
                                            (79.56991141307478+01)
                                                                                                                                                              -72.39940604380196+0j)
                                                                                                                                                                                                                                                                             (245.75025472535503+01)
                                            (79.59389751985297+0j)
(79.49654110824915+0j)
(79.3686425616194+0j)
                                                                                                   (6.797571505489232+0j)
(6.795131589483796+0j)
(6.773982480630369+0j)
(6.803127083104148+0j)
                                                                                                                                                          (-72.39375999157497+0j)
(-72.3913498202932+0j)
(-72.13495174004706+0j)
                                                                                                                                                                                                                                                                             (44.333757484945316+0j)
(215.7305610429229+0j)
(177.04528218847358+0j)
              1200000
```

(-72.5910723856222+0j)

(14.112072178456312+0j)

(219.38716271838408+0j)

每次迭代随机选择10个点:

(79.43477484773402+0j)

1400000 1500000

Gradient Descent

iteration_times	theta_0	theta_1	theta_2	training_error	testing_error
100000	(46.34809186052259+0j)	(7.059019801405366+0j)	(-72.75534094173833+0j)	(76.69741860638312+0j)	(81.62523908939363+0j)
200000	(65.49348357014439+0j)	(6.8865623287009425+0j)	(-72.53710297643438+0j)	(16.95980221814405+0j)	(94.83988184620998+0j)
300000	(73.5664322687333+0j)	(6.8157904623772785+0j)	(-72.45443528356624+0j)	(6.061315637998747+0j)	(116.47164446045281+0j)
400000	(76.98361527268986+0j)	(6.77666871831483+0j)	(-72.40589322040567+0j)	(5.173677757406317+0j)	(110.3465269019974+0j)
500000	(78.41941730964453+0j)	(6.784078012956168+0j)	(-72.38958004438986+0j)	(5.438358147846674+0j)	(159.07037538370867+0j)
600000	(79.01730470429221+0j)	(6.772296050845378+0j)	(-72.38617737497297+0j)	(4.209819838328085+0j)	(146.19600132113035+0j)
700000	(79.28031375952084+0j)	(6.752262050109669+0j)	(-72.3938802999256+0j)	(5.392749195165788+0j)	(109.21083204453835+0j)
800000	(79.39230177260634+0j)	(6.766509917915975+0j)	(-72.3907538226293+0j)	(3.9426795314875056+0j)	(141.5302745815811+0j)
900000	(79.42873297625582+0j)	(6.755194120222312+0j)	(-72.3819952430397+0j)	(4.367548385424636+0j)	(118.7658970206819+0j)
1000000	(79.44709497196055+0j)	(6.762396217233191+0j)	(-72.37152635441066+0j)	(3.822539338645019+0j)	(134.97002653467933+0j)
1100000	(79.46650946135907+0j)	(6.753930010654532+0j)	(-72.383876869708+0j)	(4.534521240089657+0j)	(116.87934527170074+0j)
1200000	(79.46491825399633+0j)	(6.764311682829974+0j)	(-72.38315575548212+0j)	(3.8714844025031536+0j)	(138.80985351229583+0j)
1300000	(79.4638856095243+0j)	(6.735732068879663+0j)	(-72.3760629995657+0j)	(11.141734917805847+0j)	(83.55568382476952+0j)
1400000	(79.4677428230819+0j)	(6.783774268168681+0j)	(-72.37898253005474+0j)	(9.059908887923102+0j)	(185.6256459206857+0j)
1500000	(79.46467590801011+0j)	(6.747018955084334+0j)	(-72.38004724914009+0j)	(6.2183865169305355+0j)	(103.55858578642429+0j)

由于随机性的存在,即使随着迭代次数的增加导致测试误差整体下降,但是波动依然很大,但是训练时间较短

Exercise Two: Logistic Regression

(a) 建立梯度下降模型

使用 Sigmoid 函数作为逻辑函数

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$P(y=1|x; heta) = g(heta^T x) = rac{1}{1+e^{- heta^T x}}, \qquad heta = [\,w_0 \quad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6\,]$$

因为y符合二项分布,对应条件的对数似然函数为:

$$LCL = \sum \log p^{(i)} + \sum \log(1-p^{(i)})$$

(b) 模型公式

对上述对数似然函数求偏导

对
$$w_0$$
求備导 $\dfrac{\partial}{\partial w_0}LCL=\sum (y^{(i)}-p^{(i)})$ 对 w_j 求備导 $\dfrac{\partial}{\partial w_j}LCL=\sum (y^{(i)}-p^{(i)})x_j^{(i)}, \qquad j\in[1,6], \ j$ 是整数

梯度下降为

$$egin{aligned} w_0 &:= w_0 + lpha rac{\partial}{\partial w_0} LCL = w_0 + lpha \sum (y^{(i)} - p^{(i)}) \ &w_j := w_j + lpha rac{\partial}{\partial w_j} LCL = w_j + lpha \sum (y^{(i)} - p^{(i)}) x_j^{(i)}, \qquad j \in [1,6], \ j$$
是整数

(c) 训练模型

```
学习率 0.00015 初始参数 \theta=[w_0\quad w_1\quad w_2\quad w_3\quad w_4\quad w_5\quad w_6]=[0\quad 0\quad 0\quad 0\quad 0\quad 0\ ]
```

在不使用随机抽样的梯度下降的情况下,发现在迭代次数较小的时候便会收敛,并且在测试集上的效果 也好

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [21:41:28] \$ python ex2_1.py

+	+	·	·	·	+	·	+	+	tt
iteration_times	theta_0	theta_1	theta_2	. –	theta_4	theta_5	. –	train_error_rate	test_error_rate
20	0.0182	-0.1252	0.1548	-0.1261	0.1531	-0.1093	-0.0034	0.002499999999999467	0.0
40	0.0394	-0.2368	0.2984	-0.2390	0.2953	-0.2058	-0.0042	0.0024999999999999467	0.0
60	0.0609	-0.3378	0.4309	-0.3412	0.4266	-0.2925	-0.0040	0.0024999999999999467	0.0
80	0.0813	-0.4301	0.5530	-0.4346	0.5474	-0.3714	-0.0034	0.0024999999999999467	0.0
100	0.1004	-0.5148	0.6658	-0.5205	0.6588	-0.4437	-0.0027	0.0024999999999999467	0.0
120	0.1182	-0.5932	0.7702	-0.5997	0.7619	-0.5104	-0.0020	0.002499999999999467	0.0
140	0.1347	-0.6658	0.8673	-0.6733	0.8575	-0.5721	-0.0013	0.0	0.0
160	0.1501	-0.7335	0.9579	-0.7417	0.9466	-0.6295	-0.0006	0.0	0.0
180	0.1645	-0.7968	1.0426	-0.8057	1.0299	-0.6830	0.0001	0.0	0.0
200	0.1779	-0.8561	1.1222	-0.8658	1.1081	-0.7332	0.0008	0.0	0.0
220	0.1906	-0.9120	1.1972	-0.9222	1.1816	-0.7804	0.0015	0.0	0.0
240	0.2025	-0.9648	1.2680	-0.9756	1.2510	-0.8249	0.0021	0.0	0.0
260	0.2138	-1.0147	1.3352	-1.0260	1.3167	-0.8669	0.0027	0.0	0.0
280	0.2244	-1.0621	1.3989	-1.0739	1.3791	-0.9067	0.0034	0.0	0.0
300	0.2346	-1.1072	1.4596	-1.1194	1.4384	-0.9446	0.0040	0.0	0.0

使用随机抽样进行随机梯度下降后,每次迭代选择一个点,效果如下:

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [22:18:14]

<pre>\$ python</pre>	ex2_1.py
----------------------	----------

								·	
iteration_times	theta_0	theta_1		theta_3				train_error_rate	test_error_rate
20	0.0003	-0.0002	0.0006	-0.0002	0.0005	-0.0000	-0.0001	0.4675	0.4499999999999999
40	-0.0000	-0.0007	0.0008	-0.0007	0.0006	-0.0005	-0.0003	0.05749999999999996	0.12
60	0.0007	-0.0006	0.0016	-0.0008	0.0014	-0.0002	0.0001	0.3824999999999995	0.36
80	0.0007	-0.0010	0.0020	-0.0011	0.0017	-0.0005	-0.0001	0.1099999999999999	0.0899999999999997
100	0.0007	-0.0014	0.0025	-0.0015	0.0021	-0.0008	-0.0002	0.0374999999999998	0.0300000000000000027
120	0.0004	-0.0019	0.0027	-0.0020	0.0023	-0.0012	-0.0004	0.0	0.0
140	0.0006	-0.0021	0.0033	-0.0023	0.0026	-0.0014	-0.0004	0.0	0.0
160	0.0004	-0.0026	0.0036	-0.0027	0.0028	-0.0019	-0.0003	0.0024999999999999467	0.0
180	0.0004	-0.0029	0.0038	-0.0030	0.0031	-0.0022	-0.0003	0.00749999999999951	0.0
200	0.0004	-0.0032	0.0042	-0.0033	0.0035	-0.0024	-0.0004	0.00749999999999951	0.0
220	0.0000	-0.0037	0.0043	-0.0039	0.0036	-0.0031	-0.0005	0.0374999999999998	0.04000000000000000
240	0.0000	-0.0041	0.0048	-0.0042	0.0040	-0.0035	-0.0005	0.0374999999999998	0.0599999999999994
260	0.0002	-0.0043	0.0052	-0.0044	0.0044	-0.0038	-0.0005	0.0350000000000000	0.0300000000000000027
280	0.0009	-0.0044	0.0060	-0.0046	0.0052	-0.0036	-0.0002	0.002499999999999467	0.0
300	0.0006	-0.0049	0.0062	-0.0050	0.0055	-0.0041	-0.0003	0.010000000000000000	0.0

每次迭代选择10个点,效果如下:

Gradient Descent 0.05 training error testing error 0.04 0.03 Error 0.02 0.01 0.00 200 400 600 800 1000 **Iteration Times**

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [23:18:35]

python ex2_1.py									
iteration_times	theta_0	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_error_rate	test_error_rate
50	0.0006	-0.0082	0.0098	-0.0089	0.0096	-0.0077	-0.0000	0.01749999999999996	0.0300000000000000027
100	-0.0003	-0.0168	0.0194	-0.0180	0.0185	-0.0164	-0.0009	0.03500000000000003	0.0499999999999993
150	0.0006	-0.0251	0.0289	-0.0265	0.0286	-0.0239	-0.0008	0.025000000000000022	0.0300000000000000027
200	0.0037	-0.0313	0.0397	-0.0335	0.0394	-0.0289	0.0004	0.00749999999999951	0.0
250	0.0049	-0.0394	0.0498	-0.0418	0.0490	-0.0357	0.0014	0.00749999999999951	0.0
300	0.0028	-0.0492	0.0579	-0.0509	0.0571	-0.0450	-0.0004	0.0174999999999996	0.0300000000000000027
350	0.0041	-0.0570	0.0679	-0.0582	0.0671	-0.0518	-0.0007	0.01249999999999956	0.0200000000000000018
400	0.0045	-0.0654	0.0773	-0.0661	0.0766	-0.0588	-0.0015	0.01249999999999956	0.0300000000000000027
450	0.0065	-0.0727	0.0876	-0.0736	0.0866	-0.0650	-0.0006	0.01249999999999956	0.010000000000000000
500	0.0098	-0.0794	0.0981	-0.0802	0.0969	-0.0701	0.0002	0.00749999999999951	0.0
550	0.0104	-0.0875	0.1075	-0.0881	0.1062	-0.0771	-0.0007	0.00749999999999951	0.0
600	0.0127	-0.0947	0.1177	-0.0956	0.1160	-0.0829	-0.0008	0.0050000000000000044	0.0
650	0.0148	-0.1020	0.1278	-0.1028	0.1259	-0.0887	-0.0012	0.002499999999999467	0.0
700	0.0132	-0.1113	0.1363	-0.1113	0.1337	-0.0971	-0.0020	0.00749999999999951	0.0
750	0.0128	-0.1192	0.1451	-0.1196	0.1421	-0.1046	-0.0033	0.00749999999999951	0.0
800	0.0149	-0.1260	0.1549	-0.1265	0.1518	-0.1102	-0.0029	0.00749999999999951	0.0
850	0.0164	-0.1335	0.1642	-0.1340	0.1612	-0.1164	-0.0033	0.00749999999999951	0.0
900	0.0197	-0.1401	0.1743	-0.1406	0.1713	-0.1212	-0.0022	0.002499999999999467	0.0
950	0.0219	-0.1473	0.1841	-0.1474	0.1804	-0.1278	-0.0010	0.002499999999999467	0.0
1000	0.0246	-0.1536	0.1939	-0.1540	0.1904	-0.1335	-0.0008	0.002499999999999467	0.0
	+	+	 	 	·	+	 	 	l

发现由于随机抽样的存在,会使得上述两个数据变化较大,但是都能在较小迭代次数时使得错误率收敛 到0

(d) 何时错误率为0

当迭代次数足够多时,错误率会降低到0

(e)

```
学习率为 0.00015 迭代次数 150000,每10000次进行一次对比 每次随机抽样一个点 初始参数 \theta=\begin{bmatrix}w_0&w_1&w_2&w_3&w_4&w_5&w_6\end{bmatrix}=\begin{bmatrix}0&0&0&0&0&0\end{bmatrix}
```

效果如图:

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [23:32:17]

\$	ex2	1	. pv	

iteration_times	theta_0	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_LCL	test_LCL
10000	0.0188	-0.1584	0.1903	-0.1557	0.1871	-0.1362	-0.0045	-240.14687677073658	-60.47103506330641
20000	0.0457	-0.2916	0.3654	-0.2917	0.3583	-0.2530	-0.0039	-210.67492122213278	-53.378081684296276
30000	0.0797	-0.4060	0.5249	-0.4098	0.5200	-0.3501	0.0019	-186.96798714132936	-47.5883511537697
40000	0.1002	-0.5140	0.6651	-0.5195	0.6594	-0.4424	-0.0005	-167.7849146307326	-42.94723014564307
50000	0.1204	-0.6127	0.7930	-0.6183	0.7862	-0.5270	-0.0001	-151.95135997770126	-39.08818800747125
60000	0.1426	-0.7001	0.9116	-0.7074	0.9039	-0.6006	0.0019	-138.7919585465978	-35.84639905749885
70000	0.1679	-0.7772	1.0238	-0.7870	1.0141	-0.6652	0.0065	-127.71261318245382	-33.07281847002782
80000	0.1825	-0.8532	1.1223	-0.8643	1.1113	-0.7302	0.0062	-118.28607250009303	-30.757302443046438
90000	0.1964	-0.9233	1.2148	-0.9341	1.2022	-0.7895	0.0051	-110.19905316703746	-28.762068277824365
100000	0.2102	-0.9881	1.3013	-0.9987	1.2873	-0.8445	0.0053	-103.1769219844462	-27.016930649066573
110000	0.2192	-1.0512	1.3804	-1.0617	1.3639	-0.8983	0.0035	-97.03803407233139	-25.51359157240098
120000	0.2347	-1.1066	1.4573	-1.1180	1.4404	-0.9435	0.0053	-91.62802054984951	-24.14226652386014
130000	0.2460	-1.1603	1.5285	-1.1723	1.5104	-0.9889	0.0051	-86.82215485496864	-22.941020269806746
140000	0.2581	-1.2101	1.5976	-1.2224	1.5776	-1.0298	0.0061	-82.53054012207086	-21.852745930776162
150000	0.2688	-1.2587	1.6615	-1.2710	1.6405	-1.0695	0.0049	-78.67136901079554	-20.884950748601288

Iteration Times

发现 LCL 虽然在收敛,但是收敛速率较慢,因此决定调整参数

```
学习率为 0.002
```

迭代次数 150000, 每10000次进行一次对比

每次随机抽样10个点

初始参数 $\theta = [w_0 \quad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6] = [0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0]$

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [23:35:36] \$ python ex2_1.py

iteration_times	theta_0	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_LCL	test_LCL
10000	0.6637	-3.0826	4.1441	-3.1128	4.0387	-2.5185	0.0736	-15.749085903369812	-4.396161109002259
20000	0.8048	-3.7593	5.1096	-3.8013	4.9317	-3.0378	0.1118	-9.659963910622967	-2.679273613127637
30000	0.8833	-4.1854	5.7315	-4.2388	5.4847	-3.3414	0.1331	-7.313771246468274	-2.0114347501704284
40000	0.9415	-4.4969	6.2008	-4.5664	5.8962	-3.5635	0.1526	-6.021470819408092	-1.6395830356292556
50000	0.9799	-4.7476	6.5793	-4.8263	6.2185	-3.7436	0.1614	-5.192702797680419	-1.4043759497767765
60000	1.0200	-4.9577	6.9057	-5.0432	6.4921	-3.8801	0.1611	-4.605252845105316	-1.2364596426214909
70000	1.0481	-5.1454	7.1931	-5.2347	6.7262	-4.0014	0.1600	-4.158115375316776	-1.1106031144082096
80000	1.0688	-5.3086	7.4473	-5.4067	6.9287	-4.1090	0.1454	-3.8100438607340195	-1.015339775413815
90000	1.0952	-5.4485	7.6777	-5.5603	7.1154	-4.1991	0.1487	-3.5291206893500577	-0.9349252442673722
100000	1.1104	-5.5829	7.8881	-5.7017	7.2822	-4.2837	0.1449	-3.294530239246505	-0.8697731249254488
110000	1.1271	-5.7045	8.0850	-5.8306	7.4382	-4.3635	0.1465	-3.0944970241130805	-0.8131268170643279
120000	1.1492	-5.8128	8.2663	-5.9488	7.5841	-4.4258	0.1550	-2.9257655862491245	-0.7646994707646675
130000	1.1606	-5.9162	8.4361	-6.0650	7.7118	-4.4905	0.1523	-2.777917159360264	-0.7241264887360227
140000	1.1674	-6.0166	8.5907	-6.1742	7.8310	-4.5552	0.1503	-2.648621667816832	-0.6885670283806418
150000	1.1840	-6.1058	8.7418	-6.2688	7.9477	-4.6072	0.1485	-2.534285684669245	-0.6567597221765253

可以看到,在至少90000次后,测试 LCL 低于-1

```
学习率为 0.002
迭代次数 150000, 每10000次进行一次对比
每次使用全部数据
初始参数 \theta = [w_0 \quad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6] = [0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0]
```

效果如下:

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 ~1 ! [23:40:34]
\$ python ex2_1.py

法代次数: 10000

法代次数: 20000

法代次数: 30000

法代次数: 50000

法代次数: 50000

法代次数: 50000

法代次数: 80000

法代次数: 80000

法代次数: 80000

法代次数: 110000

法代次数: 110000

法代次数: 110000

法代次数: 120000

法代次数: 130000

法代次数: 130000

法代次数: 110000

		theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_LCL	test_LCL
10000	1.3529	-7.5270	11.1754	-7.8734	9.6892	-5.3665	0.0729	-1.339580606496876	-0.33821020863814194
20000	1.4504	-8.6913	13.2218	-9.2662	11.0464	-5.8667	0.0145	-0.8472548756918611	-0.21404030642625943
30000	1.5021	-9.4524	14.5567	-10.2057	11.8893	-6.1344	-0.0157	-0.6439500793932034	-0.16433834883185244
40000	1.5377	-10.0341	15.5671	-10.9355	12.5102	-6.3099	-0.0340	-0.5279204029485183	-0.13634100814741174
50000	1.5653	-10.5114	16.3874	-11.5399	13.0055	-6.4371	-0.0462	-0.4512901499786415	-0.11794506285468936
60000	1.5885	-10.9193	17.0813	-12.0595	13.4192	-6.5350	-0.0546	-0.3962270984231673	-0.10473789339652366
70000	1.6087	-11.2773	17.6844	-12.5172	13.7757	-6.6137	-0.0607	-0.3544164633775374	-0.09469298093925343
80000	1.6268	-11.5973	18.2190	-12.9274	14.0895	-6.6790	-0.0651	-0.3214058377944959	-0.08673723433585363
90000	1.6434	-11.8874	18.6998	-13.2997	14.3702	-6.7345	-0.0683	-0.294574161228479	-0.08024418452910695
100000	1.6589	-12.1532	19.1373	-13.6412	14.6246	-6.7826	-0.0707	-0.2722678842969689	-0.0748210461663403
110000	1.6735	-12.3988	19.5388	-13.9569	14.8574	-6.8250	-0.0723	-0.2533871628033328	-0.07020773618841293
120000	1.6873	-12.6273	19.9103	-14.2507	15.0721	-6.8628	-0.0735	-0.23716921856866607	-0.0662244509239065
130000	1.7005	-12.8412	20.2560	-14.5256	15.2716	-6.8970	-0.0743	-0.2230668056983897	-0.06274246473386888
140000	1.7132	-13.0423	20.5794	-14.7840	15.4580	-6.9281	-0.0747	-0.21067614349300862	-0.05966691719953799
150000	1.7255	-13.2322	20.8835	-15.0280	15.6329	-6.9568	-0.0749	-0.1996921914843576	-0.05692618424958884

m7811 at LAPTOP-QTCGESHO in D:\blog\work\数据挖掘\003\src on git:master o +1 ~4 -1 ! [0:17:14]

可以发现,使用全部数据收敛的更快,但是训练的时间更久

(f) k 类

```
学习率 0.00015 每个测试集迭代次数150次,迭代完成后进行对比 初始参数 \theta=[w_0\quad w_1\quad w_2\quad w_3\quad w_4\quad w_5\quad w_6\,]=[0\quad 0\quad 0\quad 0\quad 0\quad 0\,]
```

输出如下:

Gradient Descent

4				L	L				
set	theta_0	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_error_rate	test_error_rate
10	0.0002	-0.0133	0.0280	-0.0289	0.0325	-0.0188	-0.0099	0.0	0.0100000000000000000000000000000000000
20	0.0201	-0.0364	0.0818	-0.0273	0.0684	-0.0255	-0.0385	0.0	0.0499999999999999
30	0.0037	-0.0756	0.0758	-0.0858	0.0959	-0.0828	-0.0156	0.0	0.049999999999999
40	0.0386	-0.0820	0.1290	-0.0910	0.1414	-0.0703	-0.0211	0.0	0.0100000000000000000000000000000000000
50	0.0688	-0.0973	0.1763	-0.0843	0.1719	-0.0573	-0.0192	0.12	0.08999999999999999997
60	-0.0072	-0.1507	0.1539	-0.1781	0.1653	-0.1132	0.0084	0.0	0.0300000000000000027
70	-0.0516	-0.2095	0.1584	-0.2052	0.1435	-0.1888	-0.0160	0.24285714285714288	0.35
80	-0.0869	-0.2250	0.1942	-0.2336	0.1677	-0.2254	-0.0866	0.25	0.41000000000000000
90	0.0418	-0.1796	0.2553	-0.2124	0.2965	-0.1935	0.0210	0.0	0.0
100	-0.0171	-0.2065	0.2715	-0.2252	0.2249	-0.2459	0.0008	0.040000000000000036	0.059999999999999
110	0.0431	-0.2173	0.3099	-0.2518	0.3325	-0.1931	-0.0186	0.0	0.0
120	0.0362	-0.2517	0.3221	-0.2789	0.3046	-0.2584	0.0221	0.0250000000000000022	0.0
130	0.0102	-0.2768	0.3425	-0.3159	0.3411	-0.2642	-0.0452	0.03076923076923066	0.0300000000000000027
140	0.0091	-0.3202	0.3746	-0.3230	0.3502	-0.2414	-0.0395	0.0071428571428572285	0.0300000000000000027
150	-0.0427	-0.3469	0.3575	-0.3690	0.3945	-0.3218	-0.0845	0.0599999999999994	0.13
160	0.0526	-0.3427	0.4173	-0.3384	0.4206	-0.2786	-0.0193	0.0	0.0
170	0.0794	-0.3314	0.4776	-0.3670	0.4526	-0.2910	0.0192	0.0	0.0
180	-0.0107	-0.4105	0.4449	-0.3783	0.4541	-0.3922	-0.0773	0.0222222222222143	0.0499999999999999
190	0.0249	-0.4310	0.4978	-0.4001	0.4540	-0.3455	-0.0836	0.02631578947368418	0.0300000000000000027
200	0.0511	-0.4239	0.4827	-0.4605	0.5269	-0.4038	-0.0268	0.0050000000000000044	0.020000000000000018
210	0.0519	-0.4560	0.5348	-0.4696	0.5105	-0.4039	-0.0749	0.00952380952380949	0.0300000000000000027
220	0.0540	-0.4188	0.6041	-0.4266	0.5112	-0.4197	-0.0050	0.00909090909090915	0.0
230	0.1425	-0.4155	0.6446	-0.4612	0.5939	-0.4065	0.0234	0.0	0.0
240	0.1387	-0.4913	0.6216	-0.4692	0.6180	-0.3982	0.0433	0.0	0.0
250	0.0799	-0.5124	0.6089	-0.4980	0.6033	-0.4475	0.0183	0.0040000000000000036	0.0
260	0.1733	-0.4383	0.6563	-0.4692	0.7208	-0.4090	0.0777	0.0038461538461538325	0.0100000000000000000000000000000000000
270	0.0709	-0.5164	0.6692	-0.5415	0.6390	-0.5072	0.0334	0.011111111111111072	0.0
280	0.1722	-0.5176	0.6679	-0.5330	0.7319	-0.4036	0.0448	0.0	0.0
290	0.1125	-0.5634	0.6556	-0.5889	0.7687	-0.4843	0.0195	0.0	0.0
300	0.1313	-0.5663	0.7326	-0.5829	0.7239	-0.4734	0.0217	0.0	0.0
310	0.0829	-0.6044	0.7527	-0.6161	0.7283	-0.4986	0.0207	0.003225806451612856	0.0
320	0.0787	-0.6206	0.7447	-0.6029	0.7321	-0.5217	-0.0654	0.006249999999999978	0.0100000000000000000000000000000000000
330	0.1247	-0.6081	0.8033	-0.6419	0.7893	-0.5105	0.0244	0.0	0.0
340	0.0617	-0.6647	0.8058	-0.6560	0.6999	-0.5308	-0.0453	0.014705882352941235	0.0300000000000000027
350	0.1055	-0.5849	0.8428	-0.6310	0.8075	-0.5879	-0.0629	0.0028571428571428914	0.0
360	0.1400	-0.6375	0.8659	-0.6660	0.8536	-0.5439	0.0400	0.0	0.0
370	0.1502	-0.6622	0.8609	-0.6694	0.8885	-0.5608	-0.0187	0.0	0.0
380	0.1862	-0.6456	0.8977	-0.6707	0.8869	-0.5417	-0.0537	0.0	0.0
390	0.1280	-0.7036	0.8742	-0.6894	0.8657	-0.6090	0.0510	0.00512820512820511	0.0
400	0.1425	-0.6985	0.9070	-0.7307	0.8810	-0.5520	-0.0395	0.0	0.0
+	+	·	·	+	+	·	·	t	·

可以发现,在统一迭代次数和学习率的情况下,随着测试样本的增加,错误率整体逐渐降低;但是由于是随机抽样的样本选取,如果只进行一次完整的过程的话,可能导致错误率的波动