THE BUILDING BLOCKS: MAKING FUNCTIONS FROM GATES

LEARNING OBJECTIVES

- Summary of gates
- Showing that electronics is not necessary for logic gates
- Equivalence of circuits and boolean expressions
- Constructing circuits from boolean expressions (and hence creating functions)
- Constructing circuits from truth tables using the sum of products algorithm

STILL CHAPTER 4

BASIC GATES

NOT JUST WIRES

- We can implement gates in many different ways, here are just a few the only thing special about electronics is that we can make gates smaller and faster
- Redstone in Minecraft https://www.youtube.com/watch?
 v=OOWaYNf35X4
 - and also without redstone https://www.youtube.com/watch?
 v=753sKN64YhQ
- in Lego https://www.youtube.com/watch?v=SYi9sJkS19Q
- as a sculpture (in our building) https://www.youtube.com/watch?
 v=GQ_JZgj9o9w (starting at 1 minute)

OR FROM AND AND NOT

A	В	not A	not B	not A and not B	not (not A and not B)
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

so not (not A and not B) is the same as A or B $\overline{A} \bullet \overline{B} = A + B$ this means (not A and not B) is the same as not (A or B) $\overline{A} \bullet \overline{B} = \overline{A + B}$ which is A nor B

This is one form of DeMorgan's law

AND FROM OR AND NOT

A	В	not A	not B	not A or not B	not (not A or not B)
0	0	1	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

so not (not A or not B) is the same as A and B $\overline{A} + \overline{B} = A \cdot B$ this means (not A or not B) is the same as not (A and B) $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$ which is A nand B

This is another form of DeMorgan's law

NOT FROM NOR

• If we use the same value as the two inputs to NOR we get NOT

We can then make a NAND gate from a NOR gate

not (not A nor not B) = A nand B another form of De Morgan's law

YOUR TURN

- Using the previous slide as a template show that we can make a NOR gate only using NAND gates
- In fact NOR gates are functionally complete by themselves
- And NAND gates are functionally complete by themselves
- But we will normally use NOT, AND and OR because it makes the design of circuits easier for our purposes

SHORTHAND MULTIPLE INPUT ANDS / ORS

- AND/OR can take any number of inputs
- AND = 1 if all inputs are 1
- OR = 1 if any input is 1
- So we can picture them like this:

BUILDING COMPUTER CIRCUITS

- To build a circuit from desired outcomes
 - Use a standard circuit construction algorithm
 - sum-of-products algorithm
- To convert a circuit to a Boolean expression
 - Start with output and work backward
 - Find next gate back, convert to Boolean operator
 - Repeat for each input, filling in left and right side
- To convert a Boolean expression to a circuit
 - Similar approach

BUILDING CIRCUIT EXAMPLE

Example from text (page 195)

Build truth table (this circuit has two outputs)

Inputs		Out			
a	ь	С	Output-1	Output-2	_
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	0	1	$2^3 = 8$ input combinations
1	0	0	0	0	combinations
1	0	1	0	0	
1	1	0	1	1	
1	1	1	0	0	

SUM OF PRODUCTS

Example from text

Find true rows for Output-1

Inputs				
a	ь	c	Output-1	
0	0	0	0	
0	0	1	0	
0	1	0	1	← case 1
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	← case 2
1	1	1	0	

OR THE OUTPUT OF THE ANDS

CLEARER

- It is clearer to see if we use more than one input to the ANDs
- This is the sum of products algorithm, you OR together the values coming from the ANDs. Each AND corresponds to a row with 1 in the output

THE SUM OF PRODUCTS ALGORITHM

FIGURE 4.25

- 1. Construct the truth table describing the behavior of the desired circuit
- 2. While there is still an output column in the truth table, do Steps 3 through 6
- Select an output column
- 4. Subexpression construction using AND and NOT gates
- Subexpression combination using OR gates
- 6. Circuit diagram production
- 7. Done

The sum-of-products circuit construction algorithm

YOU DO

• Use the sum of products technique to produce the circuit for output-2 of this truth table.

Inputs		Out	puts		
a	b	с	Output-1	Output-2	_
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	0	1	$2^3 = 8 \text{ input}$
1	0	0	0	0	combinations
1	0	1	0	0	
1	1	0	1	1	
1	1	1	0	0	

CIRCUIT OPTIMISATION

- The circuit we produced in slide 15 is not optimal
- Show that the following circuit also creates the same function
- We do not study circuit optimisation in this course that is in PHYSICS 140

MORE FOR YOU TO DO

Write the boolean expression equivalent to

this circuit

Draw the truth table

- Draw the circuit equivalent to the expression:
 NOT (A AND NOT B) OR A
- Using the sum of products technique draw the circuit for the truth table

A	В	Output
0	0	1
0	1	1
1	0	0
1	1	1