Lecture-3 Propositional Equivalences

Tautologu, Contradiction & Contingency

DEFINITION 1

A compound proposition that is always true, no matter what the truth values of the propositions that occurs in it, is called a *tautology*. A compound proposition that is always false is called a *contradiction*. A compound proposition that is neither a tautology or a contradiction is called a *contingency*.

Examples of a Tautology and a Contradiction.				
р	¬р	<i>p</i> ∨ ¬ <i>p</i>	<i>p</i> ∧ ¬ <i>p</i>	
Т	F	Т	F	
F	Т	Т	F	

DEFINITION 2

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

- Compound propositions that have the same truth values in all possible cases are called logically equivalent.
- Example: Show that $\neg p \lor q$ and $p \to q$ are logically equivalent.

Truth Tables for $\neg p \lor q$ and $p \to q$.				
p	q	$\neg p$	¬p∨	$p \rightarrow q$
		_	9	_
T	T	F	T	T
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

In general, 2ⁿ rows are required if a compound proposition involves n propositional variables in order to get the combination of all truth values.

1.2 Logical Equivalences

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

1.2 Logical Equivalences involving conditioal and Biconditional Statements

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditionals.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Example: Show that ¬(p → q) and p ∧ ¬q are logically equivalent.
Solution:

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$

$$\equiv \neg(\neg p) \land \neg q \qquad by the second De Morgan law$$

$$\equiv p \land \neg q \qquad by the double negation law$$

■ Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. Solution: To show that this statement is a tautology, we will use logical equivalences to demonstrate that it is logically equivalent to T.

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$

 $\equiv (\neg p \lor \neg q) \lor (p \lor q)$ by the first De Morgan law
 $\equiv (\neg p \lor p) \lor (\neg q \lor q)$ by the associative and
communicative law for
disjunction $\equiv T \lor T$

Questions on Logical equivalences

• Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$. are logically equivalent by developing a series of logical equivalences.

• Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$. are logically equivalent using truth table.

Normal forms for compound propositions

- A literal is a propositional variable or the negation of a propositional variable.
- A term is a literal or the conjunction (and) of two or more literals.
- A clause is a literal or the disjunction (or) of two or more literals.

Definition

A compound proposition is in **disjunctive normal form** (DNF) if it is a term or a disjunction of two or more terms. (i.e. an OR of ANDs).

A compound proposition is in **conjunctive normal form** (CNF) if it is a clause or a conjunction of two or more clauses. (i.e. and AND of ORs)

Conjunctive normal form (CNF)

	\boldsymbol{x}	y	z	$x \lor y \to \neg x \land z$
1	F	F	F	Т
2	F	F	Т	Т
3	F	Т	F	F
4	F	Т	Т	Т
5	Т	F	F	F
6	Т	F	Т	F
7	Т	Т	F	F
8	Т	Т	Т	F

The formula is **not** satisfied by the truth assignment in row 3 **and** in row 5 **and** in row 6 **and** in row 7 **and** in row 8. So:, it is logically. equivalent. to:

$$\neg (\neg x \land y \land \neg z) \land \neg (x \land \neg y \land \neg z) \land \neg (x \land \neg y \land z) \land \neg (x \land y \land \neg z) \land \neg (x \land y \land z)$$

apply DeMorgan's law to obtain its CNF:

$$(XV \neg y \ Vz) \ \Lambda(\neg XV \ y \ Vz) \ \Lambda(\neg XV y \ V \neg z) \ \Lambda(\neg XV \neg y \ Vz) \ \Lambda(\neg XV \neg y \ \underline{V} \neg z)$$

Disjunctive normal form (DNF)

	x	y	z	$x \lor y \to \neg x \land z$
1	F	F	F	Т
2	F	F	Т	Т
3	F	Т	F	F
4	F	Т	Т	Т
5	Т	F	F	F
6	Т	F	Т	F
7	Т	Т	F	F
8	Т	Т	Т	F

The formula is satisfied by the truth assignment inrow 1 **or** by the truth assignment inrow 2 **or** by the truth assignment inrow 4. So, its DNF is : $(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$

STEPS TO FIND CNF OR DNF

1. Remove Negation in the Statement

2. Convert Conditional & Biconditional Statements in the Form of "And" & "OR"

3. Apply Algebraic Laws to convert them in the form SOP or POS

STEPS TO FIND PCNF OR PDNF

1. Remove Negation in the Statement

2. Convert Conditional & Biconditional Statements in the Form of "And" & "OR"

3. Apply Algebraic Laws to convert them in the form SOP or POS

4. If there is a missing term in the compound proposition, introduce (p $\land \neg p$) for PDNF and (p $\lor \neg p$) in case of PCNF.

Find DNF of the following

1.
$$(\neg p \lor \neg q) \rightarrow (p \leftrightarrow \neg q)$$

2. q Λ (p $V \neg q$).

Find CNF of the following

1. p
$$\land$$
 $(p \rightarrow q)$

2.
$$\neg (p \lor q) \leftrightarrow (p \land q)$$

Find PDNF of the following

- 1. $((p \land q) \rightarrow r) \lor ((p \land q) \rightarrow \neg r)$.
- 2. $P \rightarrow (Q \land P) \land (\neg P \rightarrow (\neg Q \land \neg R))$.
- 3. $(q \lor (p \land r)) \land ((p \lor r) \land q)$.

4. Show that $(\neg P \rightarrow R) \land (Q \leftrightarrow P) = (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)$

Thank You