Problems to Week 5 Tutorial — MACM 101 (Fall 2014)

- 1. Negate and simplify each of the following.
 - (a) $\forall x \ (P(x) \to Q(x));$
 - (b) $\exists x ((P(x) \lor Q(x)) \to R(x)).$
- 2. Let the universe for the variables in the following statements consists of all real numbers. In each case negate and simplify the given statement.
 - (a) $\forall x \forall y ((x < y) \rightarrow \exists z (x < z < y));$
 - (b) $(\forall x \forall y ((x > 0) \land (y > 0))) \rightarrow (\exists z (xz > y)).$
- 3. Determine which of the following arguments are valid and which are invalid. Provide an explanation for each answer. (Let the universe consist of all people presently residing in Canada.)
 - (a) All mail carriers carry a can of mace.

 Mrs. Bacon is a mail carrier.

Therefore Mrs. Bacon carries a can of mace.

- (b) All law-abiding citizens pay their taxes.Mr. Pelosi pays his taxes.Therefore Mr. Pelosi is a law-abiding citizen.
- (c) All people who are concerned about the environment recycle their plastic containers.

Margarite is not concerned about the environment.

Therefore Margarite does not recycle her plastic containers.

4. For a prescribed universe and any open statements P(x), Q(x), prove that

$$\forall x \ (P(x) \land Q(x)) \iff (\forall x \ P(x)) \land (\forall x \ Q(x)).$$

5. Provide the reasons for the steps verifying the following argument. (Here a denotes a specific but arbitrary chosen element from the given universe.) (For Step 9 refer to Table 2.19 in the textbook.)

Premises: $\forall x \ (P(x) \to (Q(x) \land R(x))), \ \forall x \ (P(x) \land S(x)).$ Conclusion: $\forall x \ (R(x) \land S(x)).$

Steps Reasons

- 1. $\forall x \ (P(x) \to (Q(x) \land R(x)))$
- 2. $\forall x \ (P(x) \land S(x))$

- 3. $P(a) \to (Q(a) \land R(a))$
- 4. $P(x) \wedge S(a)$
- 5. P(a)
- 6. $Q(a) \wedge R(a)$
- 7. R(a)
- 8. S(a)
- 9. $R(a) \wedge S(a)$
- 10. $\forall x \ (R(x) \land S(x)).$
- 6. Give a direct proof that, for all integers k and ℓ , if k,ℓ are both even, then $k+\ell$ is even.
- 7. Give a proof by contraposition that, for all integers k and ℓ , if $k\ell$ is odd, then k,ℓ are both odd.