B.TECH/EE/3RD SEM/ELEC 2101/2020

CIRCUIT THEORY (ELEC 2101)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

C

andida	ites are require	d to give answer	in their own wol	rds as far as practicable.	
	(N	Grou Iultiple Choice		ns)	
Choose the correct alternative for the following: 10 × 1 =					
(i)	Supermesh analysis is based on (a) KCL (c) both KVL & KCL		(b) KVL (d) law of conservation of energy		
(ii)	For perfect or magnetically co		e value of the co-	efficient of coupling of two (d) 0.2	
(iii)	The Laplace training (a) $\frac{1}{s}$	nsform of a unit impty $(b) \frac{1}{s^2}$	oulse function is (c) 1	(d) s	
(iv)	Integration of step signal gives (a) Impulse signal (c) Sinusoidal signal		• • •	(b) Ramp signal (d) Parabolic signal	
(v)	The time consta	ant of an R-L circuit (b) $\frac{R}{L}$	is (c) $\frac{L}{R}$	(d) L	
(vi)	•	vork is symmetrica (b) BC - AD= -1	•	(d) $h_{12} = h_{21}$	
(vii)	A network has 8 branches and 5 nodes. The number of fundamental cut-set in the network would be (a) 6 (b) 5 (c) 4 (d) 3				
(viii)	(a) branch volt(b) branch volt(c) branch curr	al cut-set matrix givages and branch curages and twig voltagents and link currents	rrents ges	tween	

1.

B.TECH/EE/3RD SEM/ELEC 2101/2020

- The transfer function of a normalised 3rd order Butterworth low-pass filter is (ix)

(b) $\frac{1}{(s+1)(s^2+\sqrt{2}s+1)}$ (d) $\frac{1}{(s+1)(s^2+s+1)}$

- The d.c. gain of a system represented by the transfer function $\frac{10}{(s+1)(s+2)}$ is (x)
 - (a) 1
- (b) 2
- (c) 5
- (d) 10

Group - B

Calculate mesh currents for 2. (a) the circuit of Fig. 2(a).

Fig. 2(a)

(b) Calculate the current through 1Ω resistance using Norton's theorem for the circuit of fig. 2(b).

(c) In the circuit of fig. 2(c), the consists of resistance R_L Calculate the value of R_L for which the source delivers maximum power to the load.

Fig. 2(c) 4 + 6 + 2 = 12

For the circuit shown in fig. 3. (a) superposition use theorem to calculate the value of *i*.

Fig. 3(a)

(b) Determine the current in 5 Ω resistance in the magnetically coupled circuit as shown in fig. 3(b).

6 + 6 = 12

4. (a) Determine Laplace transform of the waveform shown in fig. 4(a).

(b) In the series R-L-C circuit shown in figure 4(b), the switch S is closed at t = 0. There is no initial charge on the capacitor. Determine the resulting current for t > 0. Also determine the nature of damping occurring in the circuit.

$$5 + (6 + 1) = 12$$

5. (a) In the network shown in fig. 5(a), the switch 'S' is closed and a steady state is reached in the network. At time t = 0, the switch is opened. Determine i(t) for t > 0.

(b) Determine the signal f(t) whose first derivative is as shown in the fig. 5(b). Also sketch waveform of f(t).

7 + 5 = 12

Group - D

6. (a) State the properties of Complete Incidence Matrix.

B.TECH/EE/3RD SEM/ELEC 2101/2020

(b) Draw the oriented graph for the circuit shown in Fig. 6(b). Find its complete incidence matrix and Tie-set matrix. Assume the sub-graph shown in figure below as a tree. Use graph theory to find mesh equations for the circuit.

$$3 + (1 + 2 + 2 + 4) = 12$$

- 7. (a) Define Z-parameters. Express Z-parameters in terms of Y-parameters and transmission parameters.
 - (b) Determine Z-parameters, Y-parameters and ABCD- parameters of the circuit shown in Fig. (7b).

$$(2+2+2)+(2+2+2)=12$$

Group - E

- 8. (a) Draw the circuit diagram of a notch filter. Derive the expression transfer function and centre frequency of this filter. Sketch its frequency response curve.
 - (b) Design a 2^{nd} order Butterworth low pass filter of cut-off frequency 1kHz. (1 + 6 + 1 + 1) + 3 = 12

9. Determine the poles of 5th order Butterworth filter. Sketch the location of poles on splane and hence determine the normalized transfer function of the low pass filter.

$$(5 + 3 + 4) = 12$$

Department & Section	Submission Link
EE	https://classroom.google.com/c/MTIxOTk2MTM4MTk3/a/MjcxNTUwMTc1
regular	NTE2/details
students	
EE backlog students	https://classroom.google.com/c/MjQ4NTI4MDE2NjE4/a/Mjc0MDYyNDI4NT <u>E5/details</u>