3. Криволинейные интегралы

3.2. Вычисление криволинейного интеграла второго рода

Пусть кривая L задана уравнением в параметрической форме x=x(t), y=y(t). Тогда dx=x'(t)dt, dy=y'(t)dt. Если точке M кривой L соответствует значение параметра $t=\alpha$, а точке N соответствует значение $t=\beta$, то от криволинейного интеграла (3) можно перейти к определенному интегралу:

$$\int\limits_{MN}F_{x}dx+F_{y}dy=\int\limits_{lpha}^{eta}[F_{x}(t)x'(t)+F_{y}(t)y'(t)]dt\;.$$

Если в качестве параметра t взять координату x, т.е. положить $x=t,\,y=y(x),\,dy=y'(x)dx$, то

$$\int\limits_{MN}F_xdx+F_ydy=\int\limits_{xy}^{x_N}[F_x(x,y(x))+F_y(x,y(x))y'(x)]dx\;.$$

Если в качестве параметра t принять координату y, т.е. положить $y=t,\, x=x(y),\, dx=x'(y)dy$, то

$$\int\limits_{MN}F_xdx+F_ydy=\int\limits_{y_M}^{y_N}[F_x(x(y),y)x'(y)+F_y(x(y),y)]dy\;.$$

Пример 1. Вычислить $\int\limits_L xydx + (x+y)dy$, где L – четверть окружности $x=R\cos t\ y=R\sin t$ от t=0 до $t=\frac{\pi}{2}$.

Решение. Найдем $dx=-R\sin t dt,\;dy=R\cos t dt,$ тогда

$$\int_{L} xydx + (x+y)dy = \int_{0}^{\frac{\pi}{2}} \left[(-R^3)\cos t \sin^2 t + R^2(\cos t + \sin t)\cos t \right] dt =
onumber \ = -R^3 rac{\sin^3 t}{3} \Big|_{0}^{\frac{\pi}{2}} + R^2 \left(rac{t}{2} + rac{1}{4}\sin 2t
ight) \Big|_{0}^{\frac{\pi}{2}} + R^2 rac{\sin^2 t}{2} \Big|_{0}^{\frac{\pi}{2}} = -rac{R^3}{3} + rac{\pi R^2}{4} + rac{R^2}{2} \ .$$

Пример 2. Вычислить $\int\limits_{\mathbf{r}} xydx + (x+y)dy$, где

- 1. линия L парабола $y=x^2$ от точки O(0,0) до точки A(1,1);
- 2. линия L двухзвенная ломаная, стороны которой параллельны осям координат.

Решение.

Случай (1): $y=x^2$, $dy=2xdx,\;x_O=0,\;x_A=1$;

$$\int\limits_{L_0} xydx + (x+y)dy = \int\limits_0^1 (x^3 + (x+x^2) \cdot 2x)dx = \left(rac{x^4}{4} + rac{2x^3}{3} + rac{2x^4}{4}
ight)igg|_0^1 = rac{17}{12} \; .$$

Случай (2): $\int\limits_{L_2} xydx + (x+y)dy = \int\limits_{OA_1} xydx + (x+y)dy + \int\limits_{A_1A} xydx + (x+y)dy;$

на отрезке OA_1 : y=0 ; dy=0 , $x_O=0$, $x_{A_1}=0$,

$$\int\limits_{OA_1} xydx + (x+y)dy = 0 \; ;$$

на отрезке A_1A : x=1, dx=0, $y_{A_1}=0$, $y_A=1$,

$$\int\limits_{A_1A} xy dx + (x+y) dy = \int\limits_0^1 (1+y) dy = \left(y + rac{y^2}{2}
ight)igg|_0^1 = rac{3}{2} \; ,$$

тогда $\int\limits_{L_2} xydx + (x+y)dy = rac{3}{2}x$

Случай (3):
$$\int\limits_{L_3} xydx + (x+y)dy = \int\limits_{OA_2} xydx + (x+y)dy + \int\limits_{A_2A} xydx + (x+y)dy;$$

на отрезке OA_2 : x=0; dx=0, $y_O=0$, $y_{A_2}=1$,

$$\int\limits_{OA_2} xy dx + (x+y) dy = \int\limits_0^1 y dy = \left. rac{y^2}{2}
ight|_0^1 = rac{1}{2} \; ;$$

на отрезке A_2A : y=1, dy=0, $x_{A_2}=0$, $x_A=1$,

$$\int\limits_{A_2A} xydx + (x+y)dy = \int\limits_0^1 xdx = rac{x^2}{2}igg|_0^1 = rac{1}{2} \; ;$$

тогда
$$\int\limits_{L_2} xydx + (x+y)dy = rac{1}{2} + rac{1}{2} = 1.$$

С помощью криволинейного интеграла второго рода можно вычислить площадь, ограниченную замкнутой линией L по формуле: $S=\oint\limits_{\mathbb{R}}xdy-ydx.$

Пример. Вычислить площадь эллипса, заданного уравнениями в параметрической форме: $x=a\,\cos t,\,y=b\,\sin t.$

Решение.

$$S = rac{1}{2} \int \limits_0^{2\pi} \left[a \, \cos t \cdot b \, \cos t - b \, \sin t (-a \, \sin t)
ight] dt = rac{1}{2} a b \int \limits_0^{2\pi} \left(cos^2 t + \sin^2 t
ight) dt = rac{ab}{2} t igg|_0^{2\pi} = \pi \, ab \; .$$

◀ Вопросы преподавателю

Перейти на...

8. Теория вероятностей и математическая статистика