

List of Listings

Chapter 2. TensorFlow essentials

Listing 2.1. Computing the inner product of two vectors without using a library

Listing 2.2. Computing the inner product using NumPy

Listing 2.3. Different ways to represent tensors

Listing 2.4. Creating tensors

Listing 2.5. Using the negation operator

Listing 2.6. Using a session

Listing 2.7. Using the interactive session mode

Listing 2.8. Logging a session

Listing 2.9. Using a variable

Listing 2.10. Saving variables

Listing 2.11. Loading variables

Listing 2.12. Defining the average update operator

Listing 2.13. Running iterations of the exponential average algorithm

Listing 2.14. Filling in missing code to complete the exponential average algorithm

Listing 2.15. Annotating with a summary op

Listing 2.16. Writing summaries to view in TensorBoard

Chapter 3. Linear regression and beyond

Listing 3.1. Visualizing raw input

Listing 3.2. Solving linear regression

Listing 3.3. cost functionUsing a polynomial model
Listing 3.4. Splitting the dataset into testing and training sets
Listing 3.5. Evaluating regularization parameters
Listing 3.6. Parsing raw CSV datasets
Chapter 4. A gentle introduction to classification
Listing 4.1. Using linear regression for classification
Listing 4.2. Executing the graph
Listing 4.3. Measuring accuracy
Listing 4.4. Linear regression failing miserably for classification
Listing 4.5. Using one-dimensional logistic regression
Listing 4.6. Setting up data for two-dimensional logistic regression
Listing 4.7. Using TensorFlow for multidimensional logistic regression
Listing 4.8. Visualizing multiclass data
Listing 4.9. Setting up training and test data for multiclass classification
Listing 4.10. Using softmax regression
Listing 4.11. Executing the graph
Chapter 5. Automatically clustering data
Listing 5.1. Traversing a directory for data
Listing 5.2. Representing audio in Python
Listing 5.3. Obtaining a dataset for k-means
Listing 5.4. Implementing k-means
Listing 5.5. Organizing data for segmentation
Listing 5.6. Segmenting an audio clip
Listing 5.7. Setting up the SOM algorithm
Listing 5.8. Defining how to update the values of neighbors
Listing 5.9. Getting the node location of the closest match

Listing 5.10. Generating a matrix of points

Listing 5.12. Testing the implementation and visualizing the results
Chapter 6. Hidden Markov models
Listing 6.1. Defining the HMM class
Listing 6.2. Creating a helper function to access emission probability of an observation
Listing 6.3. Initializing the cacheee
Listing 6.4. Updating the cache
Listing 6.5. Defining the forward algorithm given an HMM
Listing 6.6. Defining the HMM and calling the forward algorithm
Listing 6.7. Adding the Viterbi cache as a member variable
Listing 6.8. Defining an op to update the forward cache
Listing 6.9. Defining an op to update the back pointers
Listing 6.10. Defining the Viterbi decoding algorithm
Listing 6.11. Running the Viterbi decode
Chapter 7. A peek into autoencoders
Listing 7.1. Python class schema
Listing 7.2. Using name scopes
Listing 7.3. Autoencoder class
Listing 7.4. Training the autoencoder
Listing 7.5. Testing the model on data
Listing 7.6. Using your Autoencoder class
Listing 7.7. Batch helper function
Listing 7.8. Batch learning

Listing 5.11. Running the SOM algorithm

Listing 7.12. Converting CIFAR-10 image to grayscale

Listing 7.11. Reading all CIFAR-10 files to memory

Listing 7.10. Reading from the extracted CIFAR-10 dataset

Listing 7.9. Loading images

Chapter 8. Reinforcement learning
Listing 8.1. Importing relevant libraries
Listing 8.2. Helper function to get prices
Listing 8.3. Helper function to plot the stock prices
Listing 8.4. Get data and visualize it
Listing 8.5. Defining a superclass for all decision policies
Listing 8.6. Implementing a random decision policy
Listing 8.7. Using a given policy to make decisions, and returning the performance
Listing 8.8. Running multiple simulations to calculate an average performance
Listing 8.9. Defining the decision policy
Listing 8.10. Implementing a more intelligent decision policy
Chapter 9. Convolutional neural networks
Listing 9.1. Loading images from a CIFAR-10 file in Python
Listing 9.2. Cleaning data
Listing 9.3. Preprocessing all CIFAR-10 files
Listing 9.4. Using the cifar_tools helper function
Listing 9.5. Visualizing images from the dataset
Listing 9.6. Generating and visualizing random filters
Listing 9.7. Using a session to initialize weights
Listing 9.8. Showing convolution results
Listing 9.9. Visualizing convolutions
Listing 9.10. Running the maxpool function to subsample convolved images
Listing 9.11. Setting up CNN weights
Listing 9.12. Creating a convolution layer
Listing 9.13. Creating a max-pool layer

Listing 7.13. Setting up the autoencoder

Listing 9.14. The full CNN model

Listing 9.16. Training the neural network by using the CIFAR-10 dataset
Chapter 10. Recurrent neural networks
Listing 10.1. Importing relevant libraries
Listing 10.2. Defining a class and its constructor
Listing 10.3. Defining the RNN model
Listing 10.4. Training the model on a dataset
Listing 10.5. Testing the learned model
Listing 10.6. Training and testing on dummy data
Listing 10.7. Loading data
Listing 10.8. Modifying the test function to pass in the session
Listing 10.9. Generate training data
Chapter 11. Sequence-to-sequence models for chatbots
Listing 11.1. Setting up constants and placeholders
Listing 11.2. Making a simple RNN cell
Listing 11.3. Stacking two RNN cells
Listing 11.4. Using MultiRNNCell to stack multiple cells
Listing 11.5. Defining a lookup table of scalars
Listing 11.6. Defining a lookup table of 4D vectors
Listing 11.7. Defining a lookup table of tensors
Listing 11.8. Looking up the embeddings
Listing 11.9. Extracting character vocab
Listing 11.10. Defining hyperparameters
Listing 11.11. Listing placeholders
Listing 11.12. Helper functions to build RNN cells
Listing 11.13. Encoder embedding and cell
Listing 11.14. Preparing input sequences to the decoder

Listing 9.15. Defining ops to measure the cost and accuracy

Listing 11.16. Decoder output (training)
Listing 11.17. Decoder output (inference)
Listing 11.18. Cost function
Listing 11.19. Calling an optimizer
Listing 11.20. Training the model
Chapter 12. Utility landscape
Listing 12.1. Importing relevant libraries
Listing 12.2. Generating dummy training data
Listing 12.3. Placeholders
Listing 12.4. Hidden layer
Listing 12.5. Output layer
Listing 12.6. Loss and optimizer
Listing 12.7. Preparing a session
Listing 12.8. Training the network
Listing 12.9. Preparing test data
Listing 12.10. Visualize results
Listing 12.11. Importing libraries
Listing 12.12. Preparing the training data
Listing 12.13. Placeholder
Listing 12.14. Preparing the session
Listing 12.15. Loading the VGG16 model
Listing 12.16. Preparing data for ranking
Listing 12.17. Training the ranking network
Listing 12.18. Preparing image sequences from video
Listing 12.19. Computing the utility of images
Listing 12.20. Visualizing utility scores

Listing 11.15. Decoder embedding and cell

 $Recommended \, / \, Playlists \, / \, History \, / \, Topics \, / \, Tutorials \, / \, Settings \, / \, Get \, the \, App \, / \, Sign \, Out$

I◀ PREV List of Tables