Name:	

MATH 101 Summer 2022 HW 4: Due 05/31

"Nothing has such power to broaden the mind as the ability to investigate systematically and truly all that comes under thy observation in life."

-Marcus Aurelius

Problem 1. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not. If the relation is a function, determine its domain, codomain, and range.

Problem 2. (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not. If the relation is a function, compute the functions value at x=4.

$$f(x) = 67.3 - 9.7x$$

$$g(x) = 11.1x^2 - 15.7x + 12.9$$

Problem 3. (10pt) Suppose f(x) and g(x) are the functions given below.

x	-3	-2	-1	0	1	2	3
f(x)	6	0	-4	5	4	-3	2
g(x)	0	3	1	1	2	9	6
h(x)	-1	5	-8	-3	8	2	0

Compute the following:

(a)
$$(g+h)(1) =$$

(b)
$$(g-f)(0) =$$

(c)
$$(-2h)(3) =$$

(d)
$$\left(\frac{h}{g}\right)(2) =$$

(e)
$$f(1) h(-1) =$$

(f)
$$f(-1 - h(0)) =$$

(g)
$$(f \circ g)(-2) =$$

(h)
$$(g \circ h)(-3) =$$

(i)
$$(h \circ g)(-3) =$$

(j)
$$(h \circ f \circ g)(1) =$$

Problem 4. (10pt) Suppose f(x) and g(x) are the functions given below.

$$f(x) = 5x - 6$$

$$g(x) = 3x + 1$$

Compute the following:

(a)
$$g(2) =$$

(b)
$$f(-1) =$$

(c)
$$2f(1) - g(2) =$$

(d)
$$f(x) - g(x) =$$

(e)
$$f(x) g(x) =$$

(f)
$$\left(\frac{f}{g}\right)(x) =$$

(g)
$$(f \circ g)(0) =$$

(h)
$$(g \circ f)(1) =$$

(i)
$$(f \circ g)(x) =$$

(j)
$$(g \circ f)(x) =$$

Problem 5. (10pt) Determine if the relation below is a function or not. If it is a function, explain why. If it is not a function, explain why.

Problem 6. (10pt) Determine whether the point (3, -4) is on the graph of $f(x) = \frac{x+1}{x-4}$. Determine also whether the point (9, -2) is on the graph of f(x). For each, explain why or why not.

Problem 7. (10pt) On the plot below and as accurately as possible, sketch the function $f(x) = \frac{2x^2 - 5}{x + 11}$.

Problem 8. (10pt) Explain why the function sketched below has an inverse and then sketch its inverse.

Problem 9. (10pt) How many y-intercepts can a function have? Explain. Is this the same for x-intercepts? Explain.

Problem 10. (10pt) Using the concept of range and the fact that every non-horizontal line $\ell(x)$ intersects any horizontal line, explain why the equation $\ell(x)=c$ has a solution for every real number c.