Semantics: General Idea

A semantics specifies the meaning of sentences in the language.

An interpretation specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - > constants denote individuals
 - > predicate symbols denote relations

Formal Semantics

- An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where
- \triangleright D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- \nearrow π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.

Example Interpretation

Constants: phone, pencil, telephone.

Predicate Symbol: *noisy* (unary), *left_of* (binary).

$$D = \{ \nearrow, \emptyset, \mathbb{N} \}.$$

$$\blacktriangleright$$
 $\phi(phone) = \emptyset$, $\phi(pencil) = \emptyset$, $\phi(telephone) = \emptyset$.

$$\pi(noisy)$$
: $\langle \aleph \rangle$ FALSE $\langle \lozenge \rangle$ TRUE $\langle \lozenge \rangle$ FALSE $\pi(left_of)$:

$$\pi(left_of):$$

$$\langle \mathcal{H}, \mathcal{H} \rangle \quad FALSE \quad \langle \mathcal{H}, \mathcal{H} \rangle \quad TRUE \quad \langle \mathcal{H}, \mathcal{H} \rangle \quad FALSE \quad \langle \mathcal{H}, \mathcal{$$

Important points to note

- The domain *D* can contain real objects. (e.g., a person, a room, a course). *D* can't necessarily be stored in a computer.
- \blacktriangleright $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either *TRUE* or *FALSE*.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$.

Ground (variable-free) atom $p(t_1, ..., t_n)$ is

- true in interpretation I if $\pi(p)(t'_1, \ldots, t'_n) = TRUE$, where t_i denotes t'_i in interpretation I and
- false in interpretation *I* if $\pi(p)(t'_1, \ldots, t'_n) = \text{FALSE}$.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is

true in interpretation *I* otherwise.

Example Truths

true

true

false

true

false

true

false

true

In the interpretation given before:

noisy(phone)

left_of (phone, pencil)

noisy(telephone)

noisy(pencil)

left_of (phone, telephone)

 $noisy(pencil) \leftarrow left_of(phone, telephone)$

 $noisy(pencil) \leftarrow left_of(phone, pencil)$

 $noisy(phone) \leftarrow noisy(telephone) \land noisy(pencil)$

Models and logical consequences

- A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

Simple Example

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

 $KB \models p, KB \models q, KB \not\models r, KB \not\models s$

	$\pi(p)$	$\pi(q)$	$\pi(r)$	$\pi(s)$	
$\overline{I_1}$	TRUE	TRUE	TRUE	TRUE	is a model of KB
I_2	FALSE	FALSE	FALSE	FALSE	not a model of <i>KB</i>
I_3	TRUE	TRUE	FALSE	FALSE	is a model of <i>KB</i>
I_4	TRUE	TRUE	TRUE	FALSE	is a model of <i>KB</i>
I_5	TRUE	TRUE	FALSE	TRUE	not a model of KB
	ı				

User's view of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate constants with individuals you want to name.
- 3. For each relation you want to represent, associate a predicate symbol in the language.
- 4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 5. Ask questions about the intended interpretation.
- 6. If $KB \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- ➤ All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.