Gina Vasey

HIGHLIGHTED SKILLS

Data-Driven Experience

- Applications to Plasma ideal MHD, particle-in-cell (PIC), Hall MHD, Direct Simulation Monte Carlo (DSMC)
- Machine Learning sparse regression, template matching, neural networks (PyTorch and TensorFlow)
- Reduced Order Models SVD based representations, fluid approximations

Computing

- Language Skills C++, Python, MATLAB, Fortran, Bash
- High Performance Computing parallelization, distributed systems, version control

EDUCATION

Michigan State University Computational Mathematics, Science, and Engineering Aug 2020 - Aug 2025

Doctor of Philosophy

University of Michigan GPA: 3.7/4.0 Physics and Computer Science Sep 2015 - Dec 2019

Bachelor of Science

EXPERIENCE

Michigan State University

East Lansing, MI

GPA: 3.9/4.0

Aug 2020 - Present

Graduate Assistant

• Applying sparse-regression methods to plasma simulations

Computational Mathematics, Science, and Engineering

- Enhance simulation accuracy and robustness while maintaining interpretability
- Mentor beginning graduate students on code development, distributed systems, and data analysis tools

Sandia National Laboratories

Albuquerque, NM

Radiation & ICF Target Design

Graduate Research and Development Intern

- May 2021 Present
- Creating fast, high fidelity surrogate models of expensive simulations used to optimize experimental configurations

• Training of surrogate models based on post-processed simulation data sets using machine learning algorithms

Wright State University (in Association with Air Force Research Labs)

Dayton, OH Summers 2017 - 2020

Summer Intern

- Develop educational program to teach K12 students about code sensorcraft.org
- Apply computer vision techniques to data from varied domains
- Mentored high school interns
 - Outlined appropriately challenging tasks to implement
 - Assembled student components into final product

University of Michigan

Ann Arbor, MI

Academic Year 2017

Electrical Engineering and Computer Science

Multidisciplinary Design Program

- Helped develop centralized analysis code for variety of satellite data formats
- Implemented image processing techniques

PUBLICATIONS

Quantifying Hall Conductivity using Data-Driven Model Identification

Vasey G., Bennett N., Welch D., Watson E.

In preparation

Data-Driven Recovery of Fluid Plasma Closures from Particle Simulation Data

Vasey G., Christlieb A., O'Shea B.

In preparation

Influence of initial conditions on data-driven model identification and information entropy for ideal mhd problems

Gina Vasey, Daniel Messenger, David Bortz, Andrew Christlieb, Brian O'Shea

Mar 2025

Journal of Computational Physics, Volume 524 (Peer Reviewed)

https://www.sciencedirect.com/science/article/pii/S0021999125000026

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

William E Lewis, Patrick F Knapp, Kristian Beckwith, Evstati Evstatiev, Jeffrey Fein, Christopher Jennings, Roshan Joseph, Brandon Klein, Kathryn Maupin, Taisuke Nagayama, Ravi Patel, Marc-Andre Schaeuble, Gina Vasey, David J Ampleford

Technical SAND Report (Not peer reviewed) https://doi.org/10.2172/2335899

Nov 2023

COMPETITIVE HONORS/AWARDS

Michigan State University

• Dissertation Completion Fellowship

Fall 2024

• Michigan Institute for Plasma Science and Engineering Fellow

Academic Year 2022 Academic Year 2020

• Engineering Distinguished Scholarship

University of Michigan

- University Honors
- James B. Angell Scholar

EXTRACURRICULAR ACTIVITIES

Workshop on Computing Resources at MSUhttps://github.com/vaseygin/HPCC_and_VSCode/wiki
Founded workshop and created curated resources for incoming graduate students in the CMSE department
regarding high-performance computing

PRESENTATIONS

Quantifying Hall Conductivity of the Inner MITL on Z

Pulsed Power and Plasma Science Conference

Berlin, Germany *June 2025*

Quantifying Hall Conductivity using Data-Driven Model Identification

American Physical Society Division of Plasma Physics

Oct 2024

Atlanta, GA

Data-Driven Recovery of Hammett-Perkins Closure from Particle Data

Z Fundamental Science Workshop

Albuquerque, NM *Aug 2024*

Learning Plasma Fluid Equation via Data-Driven Model Identification

(Invited) NRT Scientific Machine Learning Workshop

East Lansing, MI *Mar 2024*

Successes and Challenges Using a Data-Driven Model Selection Algorithm on Plasma Simulations

Z Fundamental Science Workshop

Albuquerque, NM *Aug 2023*

Successes and Challenges Using a Data-Driven Model Selection Algorithm on Plasma Simulations

Dense Z-Pinch Conference

Ann Arbor, MI Jul 2023

POSTERS

Data-Driven Recovery of Hammett-Perkins Closure from Particle Data American Physical Society Division of Plasma Physics	Atlanta, GA Oct, 2024
Influence of Initial Conditions on Data-Driven Model Identification for Ideal MHD Test Problems	Berkeley, CA
International Conference on Data-Driven Plasma Science	Aug, 2024
Influence of Initial Conditions on Data-Driven Model Identification for Ideal MHD Test Problems	Santa Fe, NM
International Conference on Plasma Science	May, 2023
Identifying Governing ODEs in Irregular Physical Domain with Diffusion	Spokane, WA
American Physical Society Division of Plasma Physics	Oct 2022
HIGHLIGHTED COURSE WORK	
My studies have covered high performance computing on CPUs and GPUs, theory and applications for numerical methods and theory for simulating PDEs, and generalized as well as plasma specific physics.	machine learning,
Computer Science	
CMSE 822: Parallel Computing	Fall 2020
CMSE 890: Applied Machine Learning	Spring 2022
CSE 847: Machine Learning	Spring 2023
Physics	
Physics 405: Intermediate Electricity and Magnetism	Winter 2018
Physics 453: Quantum Mechanics	Winter 2018
Physics 406: Statistical and Thermal Physics	Fall 2018
ECE 850: Electrodynamics of Plasmas	Spring 2021
Applied Math	
CMSE 820: Mathematical Foundations of Data Science	Fall 2020

Spring 2021 Spring 2021

Spring 2023

• CMSE 821: Numerical Methods for Differential Equations

CMSE 823: Numerical Linear AlgebraCMSE 890: Hyperbolic Conservation Laws