

Minimum Cost to to Connect All Points

Efficiently connect all points on a 2D plane using the minimum total total Manhattan distance.

Graph Representation

Nodes

Each point is a node in the graph.

Edges

Edge weight is the Manhattan distance between two points. points.

Prim's Algorithm

1 Start

(9)

Begin with an arbitrary starting node.

Grow MST

Iteratively add the minimum weight edge.

3 Completion

Stop when all nodes are in the MST.

Priority Queue

Efficient

Quickly retrieve the minimum edge cost.

Incremental

Add new edges as nodes are included.

Minimum Spanning Tree

1 Connectivity

Ensures all points are connected.

2 Minimal Cost

Minimizes the total Manhattan distance.

3 Acyclic

Forms a tree structure without cycles.

Time Complexity

Space Complexity

1

Graph

O(V^2)

2

Priority Queue

O(E)

3

Total

 $O(V^2 + E)$

Key Takeaways

Efficient

Prim's algorithm with priority queue.

Optimal

Minimum spanning tree ensures minimal cost.

Connectivity

All points connected with unique paths.

