## 컴개실 PPT HW2 컴퓨터 내부에서 사진, 음성, 영상의 표현과 처리

13조 조강현 백승우 박재완2 배수민

## l 컴퓨터에서 사진의 표현

#### I. 컴퓨터에서 사진의 표현

Hello

래스터 그래픽 (Raster Graphics)
JPEG PNG GIF 등의 포맷

벡터 그래픽 (Vector Graphics) AI SVG 등의 포맷



표본화 (Sampling) : 아날로그 이미지의 연속적인 공간을 불연속적인 공간으로 변환하는 과정



디지털 이미지의 최소 표현 단위를 **화소(pixel)**라 하고, 이미지의 화소 수를 **해상도(Resolution)**라 한다.

Raster Graphics에서 컴퓨터는 디지털 이미지를 화소의 집합으로 저장한다.

양자화 (Quantization) : 각 화소별 연속적인 밝기 데이터를 불연속적인 데이터로 변환하는 과정



각 화소별 밝기를 불연속적인 단계로 구분하여 숫자로 나타낸다.

G 비트 양자화는 2<sup>G</sup> 단계의 색상을 표현할 수 있다. 일반적으로 흑백사진은 8 비트 (256 레벨) 양자화로 표현한다.

화면 좌표계 화소(픽셀) (2,0)(0,0)(1,0)(0,1)(1,1)(0,2)





표현 방법



### 01-1 Raster Graphics - 이미지 파일의 저장

디지털화된 이미지는 다양한 형태로 저장된다.





| 무압축 포맷                      | 손실 압축 포맷                                                 | 무손실 압축 포맷                                             |
|-----------------------------|----------------------------------------------------------|-------------------------------------------------------|
| 압축을 하지 않고<br>원본 그대로 저장하는 방식 | 인간이 지각하기 힘든 범위의<br>이미지 데이터를 버리고<br>데이터 크기를 줄여 압축하는<br>방식 | 반복 표현되는 데이터를<br>최대한 줄여 원본과 같은<br>정보량을 유지하며 압축하는<br>방식 |
| ВМР                         | GIF, PNG                                                 | JPEG                                                  |

#### 01-2 Vector Graphics



수학적인 방식으로 흑백 혹은 컬러 이미지를 표현하여 저장한다.

정점, 두 개의 점을 이은 선, 세 개 이상의 선이 모인 면 등이 각각 두께, 색상, 곡률 등의 값을 가져 그래픽을 표현한다.

# Ⅱ 컴퓨터에서 오디오의 표현













Sample Rate: 44.1kHz

Bit Rate: 16 bit



·인간 가청주파수 : 20~20000Hz

· Sample Rate > 2\*(인간 가청주파수)

16자리 이진법 사용가능

:= (2^16) 개의 값 사용 가능

(파동은 압축 -> 팽창 -> 압축 과정을 거치므로 돌아오는 진동까지 컴퓨터가 해석해야 하므로 Sample Rate 가 44.1kHz가 되어야 함.)





### FLAC: Free Lossless Audio Codec



MP3와 달리 오디오 스트림에 손실 발생 X

오디오 소스를 온전한 모습으로 보존 ||

인코드 후 디코드 -> 똑같은 오디오 데이터 획득!

P.S. 예전에는 FLAC 파일을 지원하는 기기가 많이 없었음. -> 최근엔 많은 기기에서 지원

# Ⅲ 컴퓨터에서 동영상의 표현

#### 03 컴퓨터에서 동영상의 표현 – 컨테이너 포맷

#### 동영상 파일(Container Structure)



- Stream : 연속성을 가지는 데이터(Video Stream = 비디오 데이터)
- 동영상의 확장자는 동영상의 정보가 담기는 Container의 종류
- Container에는 Codec으로 가공된 Video/Audio Stream이 하나 이상 존재

#### 03 컴퓨터에서 동영상의 표현 - 다양한 동영상 파일 포맷



#### 03 컴퓨터에서 동영상의 표현 - 코덱(CODEC)



\*CODEC = (en)COder-DECoder

#### 03 컴퓨터에서 동영상의 표현 - 코덱의 종류



크게 두 종류로 나뉜다.

- 원본 데이터 손상 없이 압축하는 Lossless 방식
- 일부 데이터를 생략함으로써 파일 크기를 줄이는 Lossy 방식

#### Run Length Encoding: 무손실 압축

예시) RRRRBBBRRRRRBRBBBBBBRRR



4R3B6R1B2R7B3R

중복되는 데이터 부분을 중복되는 횟수와 중복되는 값으로 나타냄

- ✓단순한 영상에선 성능 Good
- ✓복잡한 영상(실제 영상)에선 성능 Bad



#### Vector Quantization: 손실 압축

비슷한 패턴끼리 묶어준 다음 묶음마다 코드를 부여한다.

코드를 이용하여 압축해줄 수 있다.



| (1,0,0,0) | (1,1,1,1) |
|-----------|-----------|
| (1,1,1,1) | (1,0,0,0) |
| (1,1,1,1) | (1,0,0,0) |
| (1,0,0,0) | (1,1,1,1) |
| (1,0,0,0) | (1,0,1,1) |
| (1,0,0,0) | (1,1,0,1) |
| (1,1,1,1) | (1,0,0,0) |
| (1,1,1,1) | (1,0,1,0) |

✓압축해제 할 땐 코드마다 지정해둔 패턴(흰색 글자로 표시)으로 다시 바꾸어주면 된다.

✓Indeo 3.2, Cinepak 코덱 등에서 사용하는 압축 방법

#### Discrete Cosine Transform(DCT)

한국어로 "이진 코사인 변환"

이미지에서 화소 밝기의 변화율을 파형으로 나타내면 다음과 같다.





사람의 눈은 밝기의 변화율이 큰 부분(높은 주파수)에는 둔감하고, 그 반대에는 민감하다.

따라서 이미지를 파형으로 나타낸 후, 높은 주파수의 파형을 제거해주면 화질에 큰 차이 없이 압축할 수 있다!

✓JPEG와 MPEG 계열 코덱 등에서 사용하는 압축 방법

#### 출차

#### 파트 1

- https://en.wikipedia.org/wiki/Raster\_graphics
- https://en.wikipedia.org/wiki/Vector\_graphics

#### 파트 2

- https://evan-moon.github.io/static/f62ba441843fe9172b18fc5498bd765d/2c288/sampling.png
- https://evan-moon.github.io/static/b1bb1c1aa17f6cf158141942536a758f/f2239/bitrate.png
- https://en.wikipedia.org/wiki/Sampling (signal processing)
- <a href="https://en.wikipedia.org/wiki/Audio file format">https://en.wikipedia.org/wiki/Audio file format</a>

#### 파트 3

- https://en.wikipedia.org/wiki/Video\_file\_format
- https://en.wikipedia.org/wiki/Codec
- <a href="https://en.wikipedia.org/wiki/Run-">https://en.wikipedia.org/wiki/Run-</a> length\_encoding#:~:text=Run%2Dlength%20encoding%20(RLE),than%20as%20the%20original%20run.
- https://en.wikipedia.org/wiki/Vector\_quantization
- https://en.wikipedia.org/wiki/Discrete\_cosine\_transform
- https://en.wikipedia.org/wiki/Discrete\_wavelet\_transform
- https://url.kr/5zuej4
- https://url.kr/6casw7