Creating Cluster States Simulations of One Way Model Algorithms

Josh Kettlewell

Sheffield University

7th May 2013

Partner: Joshua Waddington

Introduction

- 1 Motivations
- 2 Theory
- Creating Cluster States
- 4 Analytical Results
- 5 Simulated Results

Motivation for One Way Model

- Quantum computers would allow efficient solutions to some problems.
- The one way model has become very popular.
- BUT we don't know how many resources would be required in order to make one work.

Measurement Based Computation

Single qubit measurements

Just-in-Time Method

Figure: *Just-in-time* computing. A typical cluster state. Every circle represents a logical qubit, and the vertices represent CZ operations.

$$R = p(m - c_1) - (1 - p)c_2 - 1$$
, by setting $R = 0$ we find
$$m = \frac{1 + pc_1 + (1 - p)c_2}{p}.$$
 (0.1)

Different Qubit Gates

Entangling Procedure	c_1	<i>c</i> ₂
Type-I fusion	2	2
Type-II fusion	3	1
Double-heralding fusion	1	1
Repeat-until-success	1	0
Broker-client model	0	0

Table: The entangling procedures and the respective values of c_1 and c_2

Analytical

$$T_{2} = \alpha(\tau + \beta \Delta N + m)$$

$$= \alpha(\tau + \beta \sqrt{\frac{(1+c_{2})^{2}}{p} - c_{2}(2-c_{2})} + \frac{1+pc_{1}+(1-p)c_{2}}{p})$$
(0.2)

Figure: Threshold of T_2 lifetime in the linear cluster state as a function of entangling procedure with $\alpha = \beta = 10$ for double heralding (upper curve) and broker-client (lower curve)

Simulation - Qubits as Objects

Question: Given an entanglement probability p how large a qubit pool would we need to make a cluster of size m?

Figure: Qubits forming a Cluster

Figure: Qubits forming a Cluster

Algorithms¹

Random algorithm (no sorting)

Greed Algorithm

Simulation Data

Simulation for Algorithm: Greed and Gate: Double Heralding

Figure: Number of Clusters of length m that are creates in number of timesteps $t=\frac{1}{p}$ for a given p. The grey line denotes number of clusters of length m=1

Simulation Data

Figure: N vs p for all possible combinations. This shows that Greed may be an optimal solution in the case of a Broker Client entanglement regime. Note that this is not a final result as is not run over enough trials.

Conclusions

- Broker Client is quantifiably better.
- The number of qubits required increases exponentially and below p = 0.2 we see a rapid increase.
- Our results are currently unclear to whether we agree with the current consensus that greed in an inferior algorithm.

Conclusions

END