Optimization in Machine Learning

Mathematical Concepts: Quadratic forms II

Learning goals

- Geometry of quadratic forms
- Spectrum of Hessian

PROPERTIES OF QUADRATIC FUNCTIONS

Recall: Quadratic form *q*

- Univariate: $q(x) = ax^2 + bx + c$
- Multivariate: $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$

General observation: If $q \ge 0$ ($q \le 0$), q is convex (concave)

Univariate function: Second derivative is q''(x) = 2a

- $q''(x) \stackrel{(>)}{\geq} 0$: q (strictly) convex. $q''(x) \stackrel{(<)}{\leq} 0$: q (strictly) concave.
- High (low) absolute values of q''(x): high (low) curvature

Multivariate function: Second derivative is H = 2A

- Convexity/concavity of q depend on eigenvalues of H
- Let us look at an example of the form $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$

Example:
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \implies \mathbf{H} = 2\mathbf{A} = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

• Since **H** symmetric, eigendecomposition $\mathbf{H} = \mathbf{V} \wedge \mathbf{V}^T$ with

$$\mathbf{V} = \begin{pmatrix} | & | \\ \mathbf{v}_{\text{max}} & \mathbf{v}_{\text{min}} \\ | & | \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ orthogonal}$$

and
$$\Lambda = \begin{pmatrix} \lambda_{\text{max}} & 0 \\ 0 & \lambda_{\text{min}} \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$$
.

 \bullet v_{max} (v_{min}) direction of highest (lowest) curvature

Proof: With $\mathbf{v} = \mathbf{V}^T \mathbf{x}$:

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{V} \wedge \mathbf{V}^T \mathbf{x} = \mathbf{v}^T \wedge \mathbf{v} = \sum_{i=1}^d \lambda_i v_i^2 \le \lambda_{\max} \sum_{i=1}^d v_i^2 = \lambda_{\max} \|\mathbf{v}\|^2$$

Since
$$\|\mathbf{v}\| = \|\mathbf{x}\|$$
 (V orthogonal): $\max_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{A} \mathbf{x} \leq \lambda_{\max}$ Additional: $\mathbf{v}_{\max}^T \mathbf{A} \mathbf{v}_{\max} = \mathbf{e}_1^T \Lambda \mathbf{e}_1 = \lambda_{\max}$ Analogous: $\min_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{A} \mathbf{x} \geq \lambda_{\min}$ and $\mathbf{v}_{\min}^T \mathbf{A} \mathbf{v}_{\min} = \lambda_{\min}$

• $v_{\text{max}}, v_{\text{min}}$ principal axes of contour ellipses (principal axis theorem)

Proof: With
$$\mathbf{v} = \mathbf{V}^T \mathbf{x}$$
:

$$q(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c = \mathbf{v}^{\mathsf{T}} \Lambda \mathbf{v} + \mathbf{b}^{\mathsf{T}} V \mathbf{v} + c =: \tilde{q}(\mathbf{v})$$

Now:

$$q(\mathbf{v}_i) = \mathbf{e}_i^T \Lambda \mathbf{e}_i + \mathbf{b}^T V \mathbf{e}_i + c = \tilde{q}(\mathbf{e}_i)$$

Especially:
$$q(\mathbf{v}_{\text{max}}) = \lambda_{\text{max}} = \tilde{q}(\mathbf{e}_1)$$
 and $q(\mathbf{v}_{\text{min}}) = \lambda_{\text{min}} = \tilde{q}(\mathbf{e}_d)$

Recall: Second order condition for optimality is sufficient.

We skipped the **proof** at first, but can now catch up on it.

If $H(\mathbf{x}^*) \succ 0$ at stationary point \mathbf{x}^* , then \mathbf{x}^* is local minimum (\prec for maximum).

Proof: Let $\lambda_{min} > 0$ denote the smallest eigenvalue of $H(\mathbf{x}^*)$. Then:

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \underbrace{\nabla f(\mathbf{x}^*)}_{=0}^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} \underbrace{(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)}_{\geq \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 \text{ (see above)}} + \underbrace{R_2(\mathbf{x}, \mathbf{x}^*)}_{=o(\|\mathbf{x} - \mathbf{x}^*\|^2)}.$$

Choose $\epsilon > 0$ s.t. $|R_2(\mathbf{x}, \mathbf{x}^*)| < \frac{1}{2} \frac{\lambda_{\min}}{\|\mathbf{x} - \mathbf{x}^*\|^2}$ for each \mathbf{x} with $\|\mathbf{x} - \mathbf{x}^*\| < \epsilon$. Then:

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \underbrace{\frac{1}{2} \frac{\lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 + R_2(\mathbf{x}, \mathbf{x}^*)}_{>0}} > f(\mathbf{x}^*)$$
 for each \mathbf{x} with $\|\mathbf{x} - \mathbf{x}^*\| < \epsilon$.

If spectrum of $\bf A$ is known, also that of $\bf H=2A$ is known.

- If all eigenvalues of $\mathbf{H} \overset{(>)}{\geq} \mathbf{0} \ (\Leftrightarrow \mathbf{H} \overset{(\succ)}{\succcurlyeq} \mathbf{0})$:
 - q (strictly) convex,
 - there is a (unique) global minimum.
- If **all** eigenvalues of $\mathbf{H} \overset{(<)}{\leq} 0 \ (\Leftrightarrow \mathbf{H} \overset{(\prec)}{\preccurlyeq} 0)$:
 - q (strictly) concave,
 - there is a (unique) global maximum.
- If **H** has both positive and negative eigenvalues (⇔ **H** indefinite):
 - q neither convex nor concave,
 - there is a saddle point.

CONDITION AND CURVATURE

Condition of $\mathbf{H}=2\mathbf{A}$ is given by $\kappa(\mathbf{H})=\kappa(\mathbf{A})=|\lambda_{\max}|/|\lambda_{\min}|$.

High condition means:

- $|\lambda_{\text{max}}| \gg |\lambda_{\text{min}}|$
- Curvature along v_{max} ≫ curvature along v_{min}
- Problem for optimization algorithms like gradient descent (later)

Left: Excellent condition. Middle: Good condition. Right: Bad condition.

APPROXIMATION OF SMOOTH FUNCTIONS

Any function $f \in C^2$ can be locally approximated by a quadratic function via second order Taylor approximation:

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^T (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^T \nabla^2 f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$

f and its second order approximation is shown by the dark and bright grid, respectively. (Source: daniloroccatano.blog)

→ Hessians provide information about local geometry of a function.