Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 13: Introduction to Cryptography" Date and time: 2020/09/04 11:07 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject:

☐ Master

☐ Lehramt

□ others

NOTES

Program:

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

☐ Bachelor

, , , , , , , , , , , , , , , , , , ,	u.u.u.g.		T _
	Max	Reached	Comments
Basics	9		
DES & AES	20		
Fields and Modular Arithmetics	27		
Hash Functions, Digital Signature and Cryptographic Protocols	10		
Public Key Cryptography	16		
Quantum Cryptography	8		
Sum	90		
Grade:			
Date of the review of the exam:			

estion 1: Basics	[9 Points]
a) [9 Points] Explain Kerckhoff's principle and give	e one argument in favor and one against
it.	

[10 Points]	Describe the	Output Feed	lback Mode	Encryption.	

Onestion	3.	Fields	and	Modular	A rithn	netics
Oueshon	J:	rieius	anu	Midulai	AHUII	neucs

[27 Points]

Show that $x^{\frac{p+1}{4}} \mod p$ is a square root of x .						

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [10 Points]

Question 5: Public Key Cryptography

[16 Points]

(a) [10 Points] Consider the elliptic curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the point P=(0,0) compute -P.

	antum Cry		not mendinass	o anontum con	ton alomont	[8 Points]
8 Points]	Present a qua	ntum circuit tr	nat produces	a quantum en	tangiement.	