# MATH E-156 Mathematical Statistics

### Harvard Extension School

Dmitry Kurochkin

Fall 2020 Lecture 9

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathrm{E}[ar{X}]$
    - ullet Covariance between Two Sampling Values,  ${\sf Cov}(X_i,X_j)$
    - Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - $\bullet$  Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{X}}^2$



- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathrm{E}[\bar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - ullet Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{x}}^2$



# Definition of Sample Mean and Sample Variance

#### Def.

Let  $X_1, X_2, \ldots, X_n$  be independent identically distributed (iid) random variables. Then we define:

• sample mean as

$$\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$$

sample variance as

$$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2}$$

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathrm{E}[\bar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - ullet Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - ullet Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{X}}^2$



# Distribution of Sample Mean

### Claim

If 
$$X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 then

$$ar{X} \sim \mathsf{Normal}\left(\mu, \frac{\sigma^2}{n}\right)$$
 .

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - ullet Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - ullet Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{x}}^2$

# Independence of Sample Mean and Sample Variance

Thm.

If 
$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 then

$$\bar{X}$$
 and  $(X_1-\bar{X},\,X_2-\bar{X},\ldots,\,X_n-\bar{X})$  are independent.

# Independence of Sample Mean and Sample Variance

## Thm.

If 
$$X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 then

$$\bar{X}$$
 and  $(X_1 - \bar{X}, X_2 - \bar{X}, \dots, X_n - \bar{X})$  are independent.

# Corollary

If 
$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 then

 $ar{X}$  and  $S^2$  are independent.

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{x}}^2$

# Distribution of Sample Variance

### Thm.

If 
$$X_1, X_2, \dots, X_n \overset{\mathsf{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

# Distribution of Sample Variance

### Thm.

If  $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$  then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

## Corollary

If  $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\mu, \sigma^2)$  then

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{X}}^2$



# Population Parameters: Mean and Variance

#### Def.

Let population of size N consist of  $x_1, x_2, \dots, x_N$  values. Then we define:

• population mean as

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

population variance as

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

# Population Parameters: Mean and Variance

## Claim

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$
$$= \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \mu$$

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance
- Survey Sampling
  - Population Parameters: Mean and Variance
  - Simple Random Sampling (SRS)
    - Definition of SRS,  $X_1, X_2, \ldots, X_n$
    - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
  - Estimation of Population Mean
    - ullet Definition of Sample Mean of SRS,  $ar{X}$
    - ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
    - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
    - Variance of Sample Mean,  $Var(\bar{X})$
  - Estimation of Population Variance
    - ullet Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{x}}^2$

# Definition of SRS, $X_1, X_2, \ldots, X_n$

#### Def.

Sampling from a population of size N in way that  $\underline{\operatorname{each}}$  of the  $\binom{N}{n}$  possible samples of size n taken without replacement has the  $\underline{\operatorname{same}}$  probability of occurrence, is called  $\underline{\operatorname{simple}}$  random sampling.

We denote observed sampling values by

$$X_1, X_2, \ldots, X_n$$
.

#### <u>Remark</u>

- $\textbf{ 1 Note that for each } i \in \{1,2,\ldots,n\},$ 
  - $ightharpoonup X_i$  is not same as  $x_i$ , the *i*-th population value
  - $ightharpoonup X_i$  is a random variable (r.v.)
  - $X_i$  is not independent of  $X_j$ ,  $j \in \{1, 2, \ldots\}$

# Probability Distributions of Sampling Values, $P(X_i = x)$

#### Lemma

Denote the distinct values assumed by the population members by  $\xi_1, \xi_2, \dots, \xi_m$ , and denote the number of population members that have the value  $\xi_k$  by  $n_k$ , where  $k \in \{1, 2, \dots, m\}$ .

Then, given  $i \in \{1, 2, \dots n\}$ ,  $X_i$  is a discrete random variable with the following probability mass function:

$$P(X_i = \xi_k) = \frac{n_k}{N}$$
 for  $k \in \{1, 2, \dots, m\}$ .

Also, for each  $i \in \{1, 2, \dots, n\}$ ,

$$E[X_i] = \mu$$
$$Var(X_i) = \sigma^2$$

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance

# Survey Sampling

- Population Parameters: Mean and Variance
- Simple Random Sampling (SRS)
  - Definition of SRS,  $X_1, X_2, \ldots, X_n$
  - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$

## • Estimation of Population Mean

- ullet Definition of Sample Mean of SRS,  $ar{X}$
- ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
- ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
- Variance of Sample Mean,  $Var(\bar{X})$
- Estimation of Population Variance
  - Expectation of  $\hat{\sigma}^2$
  - Expectation of  $s_{\bar{x}}^2$

# Definition of Sample Mean of SRS, $\bar{X}$

### Def.

Let  $X_1, X_2, \ldots, X_n$  denote the sample values. We define the sample mean as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

#### Remark

- **①** Note that for each  $i \in \{1, 2, \dots, n\}$ ,
  - lacksquare  $X_i$  is not same as  $x_i$ , the i-th population value
  - ➤ X<sub>i</sub> is a random variable (r.v.)
  - ▶  $X_i$  is not independent of  $X_j$ ,  $j \in \{1, 2, ...\}$
- One that
  - $\bar{X}$  is a random variable (r.v.); distribution of  $\bar{X}$  will be referred to as sampling distribution of  $\bar{X}$
  - $\blacktriangleright$  the sampling distribution of  $\bar{X}$  determines how accurately  $\bar{X}$  estimates the population mean,  $\mu$



# Expected Value of Sample Mean, $\mathrm{E}[\bar{X}]$

#### Thm.

Assuming simple random sampling from a population with the population mean  $\mu$ ,

$$E[\bar{X}] = \mu.$$

# Covariance between Two Sampling Values, $Cov(X_i, X_j)$

#### Lemma

For simple random sampling (i.e. without replacement),

$$P(X_i = \xi_l | X_j = \xi_k) = \begin{cases} \frac{n_l}{N-1}, & \text{if } k \neq l, \\ \frac{n_l - 1}{N-1}, & \text{if } k = l, \end{cases}$$

and

$$\operatorname{Cov}(X_i, X_j) = -\frac{\sigma^2}{N-1} \quad \text{if} \quad i \neq j.$$

# Variance of Sample Mean, $Var(\bar{X})$

#### Thm.

Assuming simple random sampling from a population with the population variance  $\sigma^2$ ,

$$\begin{aligned} \mathsf{Var}(\bar{X}) &= \frac{\sigma^2}{n} \left( \frac{N-n}{N-1} \right) \\ &= \frac{\sigma^2}{n} \underbrace{\left( 1 - \frac{n-1}{N-1} \right)}_{\substack{\text{finite population correction}}} \end{aligned}$$

- Sampling
  - Definition of Sample Mean and Sample Variance
  - Distribution of Sample Mean
  - Independence of Sample Mean and Sample Variance
  - Distribution of Sample Variance

# Survey Sampling

- Population Parameters: Mean and Variance
- Simple Random Sampling (SRS)
  - Definition of SRS,  $X_1, X_2, \ldots, X_n$
  - ullet Probability Distributions of Sampling Values,  $P(X_i=x)$
- Estimation of Population Mean
  - ullet Definition of Sample Mean of SRS,  $ar{X}$
  - ullet Expected Value of Sample Mean,  $\mathbb{E}[ar{X}]$
  - ullet Covariance between Two Sampling Values,  $\operatorname{Cov}(X_i,X_j)$
  - ullet Variance of Sample Mean,  $Var(\bar{X})$
- Estimation of Population Variance
  - Expectation of  $\hat{\sigma}^2$
  - Expectation of  $s_{\bar{x}}^2$



# Expectation of $\hat{\sigma}^2$

#### Thm.

Assuming simple random sampling from a population with the population variance  $\sigma^2$ ,

$$E[\hat{\sigma}^2] = \sigma^2 \left(\frac{n-1}{n}\right) \frac{N}{N-1},$$

where

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

#### <u>Remark</u>

lf

$$E[\hat{\sigma}^2] \neq \sigma^2,$$

we will say that  $\hat{\sigma}^2$  is *biased* estimator of  $\sigma^2$ .

# Expectation of $s_{\bar{X}}^2$

## Corollary

Assuming simple random sampling from a population with the population variance  $\sigma^2$ ,

$$s_{\bar{X}}^2 = \frac{\hat{\sigma}^2}{n} \left( \frac{n}{n-1} \right) \left( \frac{N-1}{N} \right) \left( \frac{N-n}{N-1} \right)$$

is an unbiased estimate of  $Var(\bar{X})$ , that is,

$$\mathrm{E}[s_{\bar{X}}^2] = \mathsf{Var}(\bar{X}).$$

#### Remark

Note that

$$s_{\bar{X}}^2 = \frac{S^2}{n} \left( 1 - \underbrace{\frac{n}{N}}_{\text{sampling fraction}} \right), \quad \text{where} \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \bar{X} \right)^2.$$