

SENSOR SERIAL NUMBER: 0416 CALIBRATION DATE: 12-May-21

Glider APL CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -1.02484871e+001CPcor = -9.5700e-008 (nominal) 1.14852048e+000 CTcor = 3.2500e-006 (nominal)

-2.82869481e-003 2.79391167e-004

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.00000	2.99496	0.00000	0.00000
1.0000	34.6297	2.96153	5.90936	2.96154	0.00001
4.4999	34.6106	3.26721	6.13145	3.26721	-0.00000
15.0000	34.5701	4.24459	6.79234	4.24458	-0.00002
18.5000	34.5616	4.58821	7.00967	4.58822	0.00001
24.0000	34.5524	5.14369	7.34711	5.14370	0.00001
29.0000	34.5477	5.66325	7.64896	5.66327	0.00001
32.5000	34.5456	6.03410	7.85711	6.03409	-0.00001

f = Instrument Output (kHz)

 $t = temperature (°C); p = pressure (decibars); <math>\delta = CTcor; \epsilon = CPcor;$

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

