Introdução à Ciência da Computação Disciplina: 113913

Prof. Luiz Augusto F. Laranjeira, PhD

luiz.laranjeira@gmail.com

Universidade de Brasília – UnB Campus Gama

5. ESTRUTURAS CONDICIONAIS

- Estrutura Sequencial:
 - Em alguns algoritmos, como os exemplos vistos no capítulo anterior, a execução é direta, ou seja, todos os passos do algoritmo são executados em uma sequência pré-definida.
- Em outros casos, porém, testes precisam ser feitos para assegurar consistência.
 - Por exemplo, no caso de um programa que calcula as raízes de uma equação do segundo grau pela fórmula de Bhaskara, que deverá tratar o caso de delta negativo de um modo especial.

Estrutura Condicional

- O <comando> só será executado se a <condição> for verdadeira
- A <condição> deve ser uma expressão lógica

```
Estrutura Condicional Simples

Se <condição>
então <comando>
Fim-Se
```

 Se mais de um comando deve ser executado caso a <condição> seja verdadeira, então esses comandos devem ser transformados em um comando composto (indicando o Fim-Se).

```
Se <condição>
então <comando 1>
<comando 2>
<comando 3>
Fim-Se
```

- O <comando> só será executado se a <condição> for verdadeira
- A <condição> deve ser uma expressão lógica

```
Estrutura Condicional Simples

if <condição> <comando>
```

 Se mais de um comando deve ser executado caso a <condição> seja verdadeira, então esses comandos devem ser transformados em um comando composto (indicando o Fim-Se).

```
if <condição>
{
     <comando 1>
        <comando 2>
        <comando 3>
}
```

EXEMPLO:

- Suponha um algoritmo de controle de caixa de uma loja de presentes. Nessa loja, caso o cliente queira que suas compras sejam embrulhadas para presente, independente de quais foram as compras, deverá pagar uma taxa adicional de R\$4,50
- Para calcular o preço total, é necessário saber se a mercadoria será embrulhada.

Estrutura Condicional Simples:

Exemplo: Algoritmo que lê o valor da mercadoria, calcula e mostra o valor final a ser pago incluindo, se for o caso, a taxa de embrulho para presente que é de R\$ 4,50. **Algoritmo** Caixa **Variáveis** valor: real presente : literal Início Escreva ("Informe o valor da mercadoria: ") Leia (valor) Escreva ("Deverá ser embrulhada para presente?") Leia (presente) **Se** presente = 'S' então valor ← valor + 4.50 Fim-se Escreva ("Total a pagar: ",valor) Fim

Estrutura Condicional Simples:

Programa em C do algoritmo anterior

```
#include <stdio.h>
int main () {
  float valor;
  char presente;
  printf("Informe o valor da mercadoria\n");
  scanf("%f",&valor);
  printf("Deverá ser embrulhado para presente?\n");
  scanf("%c",&presente);
  if (presente=='S')
     valor += 4.50;
  printf("Total a pagar: R$%.2f\n",valor);
  return(0);
```

- Considere o problema de calcular a área de um triângulo, dados os comprimentos dos lados (A, B, C)
 - Área = $\sqrt{(P(P-A)(P-B)(P-C))}$, onde P = (A + B + C) / 2
 - Primeira Execução
 - A=3; B=4; C=5
 - PER=(3+4+5)/2=6
 - AREA= raiz (6*(6-3)*(6-4)*(6-5)) = raiz 36 = 6
 - Segunda Execução
 - A=3; B=4; C=9
 - PER=(3+4+9)/2=8
 - AREA= raiz (8*(8-3)*(8-4)*(8-9)) = raiz (-160) = ?

Nem sempre três números reais são comprimentos dos lados de um triângulo!

Três números só podem ser comprimento dos lados de um triângulo se cada um deles for menor que a soma dos outros dois:

$$A < (B+C)$$
 e $B < (A+C)$ e $C < (A+B)$

Caso contrário, A, B, e C não formam os lados de um triângulo.

Estrutura Condicional Composta

- Estrutura Condicional Composta:
 - Às vezes queremos executar uma ação caso uma condição seja satisfeita ou executar outra caso a condição não seja satisfeita. Para isso serve a estrutura condicional composta, que nos dá o poder de decidir o que será feito se a condição inicial não for atendida.

- Estrutura Condicional Composta:
 - Às vezes queremos executar uma ação caso uma condição seja satisfeita ou executar outra caso a condição não seja satisfeita. Para isso serve a estrutura condicional composta, que nos dá o poder de decidir o que será feito se a condição inicial não for atendida.

Fim

Exemplo: Algoritmo que calcula a área de um triângulo, dados os comprimentos dos lados A, B, e C. **Algoritmo** AreaTri **Variáveis** A, B, C, P, area: real Início Leia (A) Leia (B) Leia (C) **Se** (A<B+C) e (B<A+C) e (C<B+A) **então** $P \leftarrow (A+B+C)/2$ area $\leftarrow \sqrt{(P(P-A)(P-B)(P-C))}$ Escreva (area) senão **Escreva** ("Os numeros A, B e,C nao formam um triangulo.") Fim-se

Programa em C do algoritmo anterior

```
#include <stdio.h>
#include <math.h>
int main () {
  float A, B, C, P, area;
  printf("Informe os lados do triângulo: \n");
  scanf("%f",&A);
  scanf("%f",&B);
  scanf("%f",&C);
  rif ((A<B+C) && (B<A+C) && (C<B+A)) {
          P = (A+B+C)/2;
          area = sqrt(P^*(P-A)^*(P-B)^*(P-C));
          printf("Area do triângulo: %.2f\n", area);
          printf("Os números A, B, e C não formam um triângulo\n");
  return 0;
```

Exemplo:

Fim

Dados três números inteiros distintos (assume-se que o serão), elabore um algoritmo que escreva o maior número digitado.

```
Algoritmo MaiorNúmero
Variáveis
    A, B, C: inteiro
Início
    Leia (A, B, C)
    Se (A>B) então
         Se (A>C) então
              Escreva ("O maior número é A")
         Senão
              Escreva ("O maior número é C")
         Fim-Se
    Senão
         Se (B>C) então
              Escreva ("O maior número é B")
         Senão
              Escreva ("O maior número é C")
         Fim-Se
    Fim-Se
```

Esta solução ainda não é a mais elegante e otimizada possível.

 Podemos melhorar a solução utilizando um outro tipo de composição das estruturas condicionais, junto com condições mais elaboradas:

```
Algoritmo MaiorNúmero
Variáveis
    A, B, C: inteiro
Início
    Leia (A, B, C)
    Se (A>B) e (A>C) então
         Escreva ("O maior número é A")
    Senão Se (A<B) e (B>C) então
              Escreva ("O maior número é B")
           Senão
              Escreva ("O maior número é C")
           Fim-Se
    Fim-Se
Fim
```

 Uma possibilidade oferecida pelas estruturas condicionais é a de encadeamento das mesmas, que dá ainda mais poder ao programador.

Exemplo de Encadeamento de Estruturas Condicionais

```
Se <condição1> então
Se <condição2> então
Se <condição3> então
<comando1>
Senão
<comando2>
Fim-Se
Senão
<comando3>
Fim-Se
Senão
<comando4>
Fim-Se
```

```
comando1 => executado quando condição1 = V, condição2 = V, condição3 = V comando2 => executado quando condição1 = V, condição2 = V, condição3 = F comando3 => executado quando condição1 = V, condição2 = F comando4 => executado quando condição1 = F
```

 Uma possibilidade oferecida pelas estruturas condicionais é a de encadeamento das mesmas, que dá ainda mais

poder ao programador.

Exemplo de Encadeamento de Estruturas Condicionais

```
comando1 => executado quando condição1 = V, condição2 = V, condição3 = V comando2 => executado quando condição1 = V, condição2 = V, condição3 = F comando3 => executado quando condição1 = V, condição2 = F comando4 => executado quando condição1 = F
```

Exemplo de Encadeamento de Estruturas Condicionais

```
if <condição1>
    if < condição 2>
        if <condição3>
            <comando1>
        else
            <comando2>
    else
        <comando3>
else
    <comando4>
```

 Uma possibilidade oferecida pelas estruturas condicionais é a de encadeamento das mesmas, que dá ainda mais poder ao programador.


```
comando1 => executado quando condição1 = V, condição2 = V, condição3 = V comando2 => executado quando condição1 = V, condição2 = V, condição3 = F comando3 => executado quando condição1 = V, condição2 = F comando4 => executado quando condição1 = F
```

Note como as construções abaixo são equivalentes:

```
Se <condição1> então
<comando1>
Senão
<comando2>
```

```
Se <!condição1> então
<comando2>
Senão
<comando1>
```

! = Negação

Algumas Funções

Função	Sintaxe	Exemplo	=	Objetivo	Linguagem C
QUOC	QUOC (A,B)	QUOC (10,3)	3	Retornar a parte inteira de uma divisão	Basta a variável que recebe o resultado da operação ser do tipo inteiro.
RESTO()	RESTO(A,B)	RESTO(10,3)	1	Retornar o resto de uma divisão.	%
۸	A^B	2^3	8	Elevar um número a um expoente	pow()
FRAC()	FRAC(A)	FRAC(10,345)	0,345	Retornar a parte fracionária de um número real.	Feito através da subtração do valor pela sua parte inteira e armazenando o resultado em um variável real.
INTEIRO()	INTEIRO(A)	INTEIRO(10,345)	10	Retornar a parte inteira de um número real.	Dado um valor real, armazene-o em uma variável inteira e então, apenas a parte inteira deste valor é armazenada.

Algumas Funções

Função	Sintaxe	Exemplo	=	Objetivo	Linguagem C
ARRED()	ARRED(A)	ARRED(10,4)	10	Arredondar um número. Até 0,499999 arredonda para baixo, acima de 0,499999 arredonda para cima.	round() Para arredondamento sempre acima ceil() Para arredondamento sempre abaixo floor()
RAIZ()	RAIZ(A)	RAIZ(16)	4	Retorna a raiz quadrada de um número.	sqrt()

Estrutura Condicional - Exercícios

- 1. Faça um algoritmo que receba um número inteiro e verifique se esse número é par ou ímpar.
- 2. Faça um algoritmo que leia dois números e imprima uma mensagem indicando se os dois números são iguais, ou imprima o maior dos dois números, se forem diferentes.
- 3. Faça um algoritmo que solicite a idade de uma pessoa e informe:
 - Se é menor de idade;
 - Se é maior de idade e tem menos de 65 anos;
 - Se é maior de 65 anos.
- 4. Faça um algoritmo que leia três números diferentes (assuma que o sejam) e os imprima na tela em ordem crescente.
- 5. Faça um algoritmo que leia a data de nascimento de uma pessoa (dia, mês e ano, todos inteiros). Verifique se a data está correta. Imprima uma mensagem indicando ao usuário se a data está correta, ou uma mensagem indicando qual é o erro, se a data estiver incorreta. Um exemplo de erro: 31/02/2003 o mês 02 não pode ter 31. DESCONSIDERAR ANOS BISSEXTOS