Final Exam: Microeconomics USFQ 2022

Victor H. Aguiar

December 13, 2022

Problem 1. Checking SARP.

Let $X = \mathbb{R}_+^L$, and consider the finite dataset of consumption bundles and prices $O^T = \{x^t, p^t\}_{t \in \{1, \dots, T\}}$ where $x^t \in X$ and $p^t \in \mathbb{R}_{++}^L$ for all t. WARP is satisfied if $p^t \cdot x^t \geq p^t \cdot x^s$ ($x^t \succeq^D x^s$) implies that we cannot have

 $p^s \cdot x^s > p^s \cdot x^t \ (x^s \succ^D x^t).$

GARP is satisfied if $x^1 \succeq^D x^2 \cdots \succeq^D x^n$ implies that we cannot have $x^n \succeq^D$

- Consider a data set O^3 with prices $p^1=(4\ 1\ 5)',\ p^2=(5\ 4\ 1)',\ p^3=(1\ 5\ 4)',$ and bundles $x^1=(4\ 1\ 1)',\ x^2=(1\ 4\ 1)',\ x^3=(1\ 4\ 1)'$
- 1. Does O^3 satisfies (i) WARP, (ii) GARP. Show that O^3 cannot be rationalized by a locally-nonsatiated utility function $u: \mathbb{R}^3_+ \to \mathbb{R}$, (i.e., u rationalizes O^3 if $x^t \in argmax_y u(y)$ subject to $p^t \cdot y \leq p^t \cdot x^t$ for all t).
- 2. Consider a preference function $r: \mathbb{R}^3_+ \times \mathbb{R}^3_+ \to \mathbb{R}$ such that $r(x,y) \geq (>)0$ means that x is preferred to y. We assume that the preference function is skew-symmetric r(x,y) = -r(y,x), and strictly increasing in the first entry (i.e., $r(\cdot, y)$ is strictly increasing for all $y \in \mathbb{R}^3_+$). We say $O^T = \{x^t, p^t\}_{t \in \{1, \dots, T\}}$ is strictly rationalized by a preference function r if $r(x^t, y) > 0$ for all y such that $p^t \cdot y \leq p^t \cdot y^t$. Show that any O^T that is rationalized by a skew-symmetric and strictly increasing preference function must satisfy WARP. Consider O^3 above that cannot be rationalized by a utility function but that can be rationalized by a skew-symmetric and strictly increasing (in the first entry) preference function, can the rationalizing preference function be transitive (i.e., $r(x,y) \geq 0, r(y,z) \geq 0$ $\implies r(x,z) \ge 0$?
- 3. Show that GARP is equivalent to WARP when there are two goods L=2.

Problem 2. Price preferences. Consider a consumer that is characterized by the following utility function $V: X \times W \to \mathbb{R}$, where the consumer chooses x^t when prices are p_t , such that

$$x^t \in argmax_{x \in \mathbb{R}^L_+} V(x, -p^t \cdot x)$$

The utility $V(x,\cdot)$ is **strictly** increasing in the second argument. This consumer receives utility from consuming x, and experiences disutility when spending $p^t \cdot x$. The optimal bundle purchased by this consumer will balance the trade-offs between these two forces.

Also define the indirect utility of price by:

$$V(p^t) = max_x V(x, -p^t \cdot x).$$

Finally let's define the price-revealed preference

$$p^s \succeq_p p^t$$
,

when

$$p^s x^t \le p^t x^t$$
.

Similarly $p^s \succ_p p^t$ when $p^s x^t < p^t x^t$.

- a) Show that a data set generated by the consumer above collected in $O^T = \{p^t, x^t\}$ satisfies the Generalized Axiom of Price Revealed Preference (GAPP).
 - (GAPP: If $p^t \succeq_p p^k \succeq_p \cdots \succeq_p p^s$ then it cannot be that $p^s \succ_p p^t$.)
- b) Show that a data set generated by the special case of the model above with the following utility:

$$x^t \in argmax_{x \in X} u(x) - p^t x,$$

satisfies both the Generalized Axiom of Price Revealed Preference and the Generalized Axiom of Revealed Preference (GARP).

- (If $p^t \cdot x^t \geq p^t \cdot x^s$ then we say $x^t \succeq^D x^s$ and if $p^s \cdot x^s > p^s \cdot x^t$ then we say $x^s \succ^D x^t$. GARP is satisfied if $x^1 \succeq^D x^2 \cdots \succeq^D x^n$ then it cannot be that $x^n \succ^D x^1$.)
- c) Show that a data set generated by the special case of the model introduced in (b), satisfies the (uncompensated law of demand):

$$(p^t - p^s)'(x^t - x^s) \le 0.$$