Assignment

Due on Monday, August 29, 2022

Advanced Lectures on Pattern Processing by Tomoya Sakai

You will make a Jupyter notebook (ipynb) on the <u>CIFAR 10</u> image classification experiment in the following scenario. The notebook must include all your code and explanation texts, and run without an error on Google Colaboratory.

EXPERIMENT

■ Aims

- Show your understanding on how to build a convolutional neural network (CNN) classifier in PyTorch.
- > Explain why the resulting classifier is reasonably tuned by providing convincing reasons/evidence.

■ Senario

- The task is image classification on the <u>CIFAR 10</u> dataset. You will build a CNN model trained and validated with the <u>CIFAR 10</u> dataset, and test it with <u>CIFAR-10.1</u> dataset as instructed below. Note that it is forbidden to rebuild your classifier after the test.
- > Instructions:

 \diamondsuit

♦ Dataset usage

Dataset usage			
	Include a summary of the CIFAR 10 dataset in the notebook as a text.		
	Import the training and test datasets as train_dataset and val_dataset using		
	torchvision.datasets.CIFAR10() with the options train=True and		
	train=False, respectively (see PyTorch Tutorial #14).		
	You may apply any normalization to both datasets and data augmentation to the		
	training dataset.		
CNN modeling and training			
	Describe the architecture of your CNN model and explain why you designed it as		
	such.		
	Implement your model using torch.nn modules.		
	Show the summary of your model using torchsummary.		
	Itemize the hyperparameters for training the model, e.g., the learning rate, the		
	number of epochs, etc, and show how to reasonably set them.		

☐ Display	y how the losses and accuracies behaved for train_dataset and
val_da	ataset.
\diamond Evaluation	
□ Show t	he accuracies and the confusion matrix for val_dataset.
□ Discuss	s whether your model reasonably captures the image features by showing
the CA	M (class activation maps) or GRAD-CAM.
□ What d	lid (should) you do to achieve the better results? Show why as well.
♦ Test scoring	
☐ Test yo	our model with CIFAR-10.1 dataset using the sample code
https:/	/github.com/tsakailab/alpp/blob/main/ex_CIFAR-10/TestByCIFAR10_1.ipynb
□ Write v	what you find in the test scores.
□ DO NO	OT modify or train your model again on the basis of the test scores.
■ Submission	of your notebook: Upload your ipynb at LACS. The filename should be
CIFAR10_CN	N_bbxxxxxxx.ipynb where xxxxxxxx is your student ID. Do not clear
the outputs	of all cells. The shorter the running time and the simpler your code, the
better.	
REPORTING REQUIR	EMENTS
\square Clearly written t	ext cells in Japanese or English.
☐ Describe what ea	ach figure shows, and explain what it means.
☐ Provide convinci	ng reasons for your definitions/settings.
☐ Try to explain wh	hy for every cause and result.
☐ Cite reliable sour	rces and show the list of references. Note that a URL alone is not a citation.
\square Justify if the con	tents of your notebook does not satisfy any one of these requirements.
Submission: Assignme	ent, Advanced Lectures on Pattern Processing @LACS
Due date: Monday, Au	gust 29, 2022
Questions: tsakai@cis.	nagasaki-u.ac.jp