CS 240

Data Structures and Algorithms I

Alex Vondrak

ajvondrak@csupomona.edu

October 7, 2011

In Code

Primitive operations on most modern processors include:

- Arithmetic (e.g., +, -, *, /)
- Conditionals (e.g., if, ==)
- Fetching/storing a single location in memory (e.g., setting a variable)

- Let $t_i = \#$ times **for** gets executed at element *i*.
- Let n = haystack.length.

	Cost	Times	Worst
<pre>for(int element : haystack)</pre>	c_1	$\sum_{i=0}^{n-1} t_i \\ \sum_{i=0}^{n-1} t_i$	
<pre>if (element == needle)</pre>	<i>c</i> ₂	$\sum_{i=0}^{n-1} t_i$	
return true;	<i>c</i> ₃	1 or 0	
return false;	C4	1 or 0	

In Code

Primitive operations on most modern processors include:

- Arithmetic (e.g., +, -, *, /)
- Conditionals (e.g., if, ==)
- Fetching/storing a single location in memory (e.g., setting a variable)

- Let $t_i = \#$ times **for** gets executed at element *i*.
- Let n = haystack.length.

	Cost	Times	Worst
<pre>for(int element : haystack)</pre>	c_1	$\sum_{i=0}^{n-1} t_i \\ \sum_{i=0}^{n-1} t_i$	n
<pre>if (element == needle)</pre>	<i>c</i> ₂	$\sum_{i=0}^{n-1} t_i$	
return true;	<i>c</i> ₃	1 or 0	
return false;	C4	1 or 0	

In Code

Primitive operations on most modern processors include:

- Arithmetic (e.g., +, -, *, /)
- Conditionals (e.g., if, ==)
- Fetching/storing a single location in memory (e.g., setting a variable)

- Let $t_i = \#$ times **for** gets executed at element *i*.
- Let n = haystack.length.

	Cost	Times	Worst
<pre>for(int element : haystack)</pre>	c_1	$\sum_{i=0}^{n-1} t_i \\ \sum_{i=0}^{n-1} t_i$	n
<pre>if (element == needle)</pre>	<i>c</i> ₂	$\sum_{i=0}^{n-1} t_i$	n
return true;	<i>c</i> ₃	1 or 0	
return false;	C4	1 or 0	

In Code

Primitive operations on most modern processors include:

- Arithmetic (e.g., +, -, *, /)
- Conditionals (e.g., if, ==)
- Fetching/storing a single location in memory (e.g., setting a variable)

- Let $t_i = \#$ times **for** gets executed at element *i*.
- Let n = haystack.length.

	Cost	Times	Worst
<pre>for(int element : haystack)</pre>	c_1	$\sum_{i=0}^{n-1} t_i \\ \sum_{i=0}^{n-1} t_i$	n
<pre>if (element == needle)</pre>	c_2	$\sum_{i=0}^{n-1} t_i$	n
return true;	<i>c</i> ₃	1 or 0	1
return false;	C4	1 or 0	

In Code

Primitive operations on most modern processors include:

- Arithmetic (e.g., +, -, *, /)
- Conditionals (e.g., if, ==)
- Fetching/storing a single location in memory (e.g., setting a variable)

- Let $t_i = \#$ times **for** gets executed at element *i*.
- Let n = haystack.length.

	Cost	Times	Worst
<pre>for(int element : haystack)</pre>	c_1	$\sum_{i=0}^{n-1} t_i \\ \sum_{i=0}^{n-1} t_i$	n
<pre>if (element == needle)</pre>	<i>c</i> ₂	$\sum_{i=0}^{n-1} t_i$	n
return true;	<i>c</i> ₃	1 or 0	1
return false;	C4	1 or 0	1

Worst-Case Analysis

Problem: counting the precise number of steps is laborious...

Example

Worst-Case Analysis

Problem: counting the precise number of steps is laborious...

Example

How Precise Do We Need To Be?

- Already throw away constant number of operations (they vary)
- What happens when n grows very large?
 - $n^2 10$?
 - $n^{100} n$?
 - $n^3/1000 100n^2 100n + 3$?

Definition (Big-O Notation)

To consider the order of growth of a function, we classify it with O:

$$f \in O(g) \iff \exists c > 0$$

 $\exists n_0 \ge 0$
 $\forall n \ge n_0, \quad f(n) \le cg(n)$

$$n^{2} - 1$$

$$5\log_2 n$$

$$2n + 5$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

$$n^2 - 1$$

$$5\log_2 n$$

$$2n + 5$$

$$f(n) = 10$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n > n_0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is O of the next

$$n^{2} - 1$$

$$5\log_2 n$$

$$f(n)=10$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

$$n^{2} - 1$$

$$5\log_2 n$$

$$2n + 5$$

$$f(n) = 10$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is *O* of the next

$$n^2 - 1$$
 51

$$5\log_2 n$$

$$\exists c > 0$$

$$\exists n_0 \ge 0$$

$$\forall n \ge n_0, \quad f(n) \le cg(n)$$

$$n^{2} - 1$$

$$5\log_2 n$$

$$2n + 5$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is *O* of the next

$$n^2 - 1$$

$$5\log_2 n$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

$$n^2 - 1$$

$$5\log_2 n$$

$$2n + 5$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is *O* of the next

$$n^2 - 1$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is *O* of the next

$$n^2 - 1$$

$$5\log_2 n$$

$$\exists c > 0$$

$$\exists n_0 \geq 0$$

$$\forall n \geq n_0, \quad f(n) \leq cg(n)$$

Rearrange the following functions so that each is O of the next $n^2 - 1$ $5 \log_2 n$ 10

2n + 5

So,

$$10 \in O(5 \log_2 n)$$

$$5 \log_2 n \in O(2n+5)$$

$$2n+5 \in O(n^2-1)$$

and the proper arrangement is

10

 $5\log_2 n$

2n + 5

 $n^2 - 1$

Common Functions

Theorems About O

- *O* is reflexive. I.e., $\forall f, f \in O(f)$.
- O is transitive. I.e., $f \in O(g) \land g \in O(h) \implies f \in O(h)$.
- $f \in O(g) \implies f(n) + g(n) \in O(g)$.
- $f \in O(f') \land g \in O(g') \implies f(n) \cdot g(n) \in O(f'(n) \cdot g'(n))$
- $kf(n) + c \in O(f)$.