Université Amar Telidji Laghouat Faculté des Sciences Département d'Informatique Année Universitaire : 2021/2022 3 ème Licence Informatique Module : Compilation

30/11/2021

Série N°4

Analyse syntaxique : Méthodes d'analyse ascendantes

Exercice $N^{\circ}1$:

Soit $G = (\{S\}, \{(,), nbr\}, S)$ suivante : $S \longrightarrow S(S) | nbr | \epsilon$

- 1. Construire la collection d'ensembles d'items LR(0) pour cette grammaire.
- 2. La grammaire est-elle LR(0)?
- 3. La grammaire est-elle SLR(1)?
- 4. Si oui analyser la chaîne ((nbr)(nbr)) et déduire son arbre de dérivation.

Exercice $N^{\circ}2$:

Soit $G = (\{S, C\}, \{c, d\}, S)$ suivante : $S \longrightarrow CC$ $C \longrightarrow cC \mid d$

- 1. Cette grammaire est-elle LR(1)? (correction en cours)
- 2. Cette grammaire est-elle LALR(1)? (correction en cours)
- 3. Analyser la chaîne **ccdc** et déduire son arbre de dérivation en utilisant les méthodes LR et LALR. Conclusion?
- 4. Analyser la chaîne **ccdcd** et déduire son arbre de dérivation en utilisant les méthodes LR et LALR. Conclusion?

Exercice $N^{\circ}3$:

Soit $G = (\{Dec, D_id, Type\}, \{id, char, bool, :, ;, ,\}, Dec)$ suivante : $Dec \longrightarrow D_id : Type ;$ $D_id \longrightarrow D_id , id \mid id$ $Type \longrightarrow char \mid bool$

- 1. Construire la collection d'ensembles d'items LR(1) pour cette grammaire.
- 2. Cette grammaire est-elle LR(1)?
- 3. Cette grammaire est-elle LALR(1)?
- 4. Analyser la chaîne id, id: char; et déduire son arbre de dérivation en utilisant la méthode LALR(1).

Exercice $N^{\circ}4$:

```
\overline{\text{Soit G} = (\{ \text{ Insts}, \text{ Inst}, \text{ Cond} \}, \{ \text{si}, \text{ alors}, \lor, \land, \text{ faux}, \text{ vrai} \}, \text{ Insts}) \text{ suivante} :}
\text{Insts} \longrightarrow \text{Inst} \mid \text{Insts Inst}
\text{Inst} \longrightarrow \text{si Cond alors Inst}
\text{Cond} \longrightarrow \text{Cond} \lor \text{Cond} \mid \text{Cond} \land \text{Cond} \mid \text{faux} \mid \text{vrai}
```

- 1. Construire la collection d'ensembles d'items LR(1) pour cette grammaire.
- 2. Construire la table d'analyse LR(1) pour cette grammaire.
- 3. Cette grammaire est-elle LR(1)? Si non pourquoi?
- 4. Proposer une solution pour que G soit LR(1).

Exercice $N^{\circ}5$:

On veut analyser syntaxiquement des expressions arithmétiques. Les opérandes sont des nombres entiers. Les opérateurs permis sont -, \times , et \uparrow (opérateur de puissance). Les opérateurs - et \times sont associatifs à gauche. L'opérateur \uparrow est associatif à droite. L'ordre \uparrow , \times , - est un ordre selon la priorité décroissante des opérateurs (\uparrow est le plus prioritaire).

(a) Parmi les grammaires suivantes, expliquer quelle est celle qui correspond à la description donnée ci-dessus :

G_1	G_2	G_3	G_4	G_5
$E \longrightarrow F \uparrow E \mid F$	$E \longrightarrow E - T \mid T$	$E \longrightarrow E \uparrow F \mid F$	$E \longrightarrow E - T \mid T$	$E \longrightarrow E \uparrow F \mid F$
$F \longrightarrow F \times G \mid G$	$T \longrightarrow T \times F \mid F$	$F \longrightarrow F \times G \mid G$	$T \longrightarrow T \times F \mid F$	$F \longrightarrow G \times F \mid G$
$G \longrightarrow G - H \mid H$	$F \longrightarrow F \uparrow G \mid G$	$G \longrightarrow G - H \mid H$	$F \longrightarrow G \uparrow F \mid G$	$G \longrightarrow H - G \mid H$
$H \longrightarrow (E) \mid nbr$	$G \longrightarrow (E) \mid nbr$	$H \longrightarrow (E) \mid nbr$	$G \longrightarrow (E) \mid nbr$	$H \longrightarrow (E) \mid nbr$

- (b) Améliorer la grammaire obtenue en (a) pour qu'elle génère des expressions arithmétiques (parenthésés ou non) seulement avec deux opérateurs − et ↑.
- (c) Construire la collection d'ensembles d'items LR(1) pour la grammaire obtenue en (b).
- (d) Sans construction de la table d'analyse LALR(1), Quelle est sa dimension?.

Solutions

Solution d'exercice N°1 :

```
Soit G = (\{S\}, \{(, ), nbr\}, S) suivante :

S \longrightarrow S(S)| nbr | \epsilon

(1) (2) (3)
```

1. Construction de la collection d'ensembles d'items LR(0) :

$$\begin{split} &\mathbb{I}_0 = \text{Ferm } (\ S' \longrightarrow .\ S) = [\ S' \longrightarrow .\ S] \ [S \longrightarrow .\ S(S)] [S \longrightarrow .\ nbr] \ [S \longrightarrow .\] \\ &\mathbb{I}_1 = \text{GOTO } (\mathbb{I}_0,S) = [\ S' \longrightarrow S \ .] \ [S \longrightarrow S \ .(S)] \\ &\mathbb{I}_2 = \text{GOTO } (\mathbb{I}_0,nbr) = [S \longrightarrow nbr \ .] \\ &\mathbb{I}_3 = \text{GOTO } (\mathbb{I}_1,() = [S \longrightarrow S \ (.S)] [S \longrightarrow .\ S(S)] [S \longrightarrow .\ nbr] \ [S \longrightarrow .\] \\ &\mathbb{I}_4 = \text{GOTO } (\mathbb{I}_3,S) = [S \longrightarrow S \ (S.)] [S \longrightarrow S.(S)] \\ &\mathbb{I}_2 = \text{GOTO } (\mathbb{I}_3,nbr) \\ &\mathbb{I}_5 = \text{GOTO } (\mathbb{I}_4,)) = [S \longrightarrow S \ (S).] \\ &\mathbb{I}_3 = \text{GOTO } (\mathbb{I}_4,()) \end{split}$$

Table d'analyse LR (0)

	()	nbr	#	S
\mathbb{I}_0	\mathbb{R}_3	\mathbb{R}_3	$\mathbb{R}_3 \mathbb{D}_2$	\mathbb{R}_3	\mathbb{I}_1
\mathbb{I}_1	\mathbb{D}_3			Accepter : Chaine correcte	
\mathbb{I}_2	\mathbb{R}_2	\mathbb{R}_2	\mathbb{R}_2	\mathbb{R}_2	
\mathbb{I}_3	\mathbb{R}_3	\mathbb{R}_3	$\mathbb{R}_3 \mathbb{D}_2$	\mathbb{R}_3	\mathbb{I}_4
\mathbb{I}_4	\mathbb{D}_3	\mathbb{D}_5			
\mathbb{I}_5	\mathbb{R}_1	\mathbb{R}_1	\mathbb{R}_1	\mathbb{R}_1	

2. La table d'analyse est multi-définie \Rightarrow G n'est pas LR (0)

Table d'analyse SLR (1)

	()	nbr	#	S
\mathbb{I}_0	\mathbb{R}_3	\mathbb{R}_3	\mathbb{D}_2	\mathbb{R}_3	\mathbb{I}_1
\mathbb{I}_1	\mathbb{D}_3			Accepter : Chaine correcte	
\mathbb{I}_2	\mathbb{R}_2	\mathbb{R}_2		\mathbb{R}_2	
\mathbb{I}_3	\mathbb{R}_3	\mathbb{R}_3	\mathbb{D}_2	\mathbb{R}_3	\mathbb{I}_4
\mathbb{I}_4	\mathbb{D}_3	\mathbb{D}_5			
\mathbb{I}_5	\mathbb{R}_1	\mathbb{R}_1		\mathbb{R}_1	

- 3. La table d'analyse est mono-définie \Rightarrow G est SLR (1)
- 4. L'analyse de la chaine : ((nbr)(nbr))#

Pile	Chaine	Action
#I ₀	((nbr)(nbr))#	\mathbb{R}_3 : empiler \mathbb{S}, \mathbb{I}_1
# \mathbb{I}_0 S \mathbb{I}_1	((nbr)(nbr))#	\mathbb{D}_3 : empiler (, \mathbb{I}_3 ; Av
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3	(nbr)(nbr))#	\mathbb{R}_3 : empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4	(nbr)(nbr))#	\mathbb{D}_3 : empiler (, \mathbb{I}_3 ; Av
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3	nbr)(nbr))#	\mathbb{D}_2 : empiler nbr, \mathbb{I}_2 ; Av
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 nbr \mathbb{I}_2)(nbr))#	\mathbb{R}_2 : dépiler 2 sym, empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 S \mathbb{I}_4)(nbr))#	\mathbb{D}_5 : empiler), \mathbb{I}_5 ; Av
$\#\mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 S \mathbb{I}_4) \mathbb{I}_5$	(nbr))#	\mathbb{R}_1 : dépiler 8 sym, empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4	(nbr))#	\mathbb{D}_3 : empiler (, \mathbb{I}_3 ; Av
$\#\mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3$	nbr))#	\mathbb{D}_2 : empiler nbr, \mathbb{I}_2 ; Av
$\#\mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 \text{ nbr} \mathbb{I}_2)$))#	\mathbb{R}_2 : dépiler 2 sym, empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 S \mathbb{I}_4))#	\mathbb{D}_5 : empiler), \mathbb{I}_5 ; Av
$\#\mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4 (\mathbb{I}_3 S \mathbb{I}_4) \mathbb{I}_5$)#	\mathbb{R}_1 : dépiler 8 sym, empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4)#	\mathbb{D}_5 : empiler), \mathbb{I}_5 ; Av
# \mathbb{I}_0 S \mathbb{I}_1 (\mathbb{I}_3 S \mathbb{I}_4) \mathbb{I}_5	#	\mathbb{R}_1 : dépiler 8 sym, empiler S, \mathbb{I}_4
# \mathbb{I}_0 S \mathbb{I}_1	#	Chaine correcte

Figure 1 – Dérivation de la chaine ((nbr)(nbr))

Solution d'exercice $N^{\circ}\mathbf{2}$:

$$\begin{split} G &= (\{S,C\}, \{c,d\}, S) \text{ suivante}: \\ S &\longrightarrow CC \\ &\qquad (1) \\ C &\longrightarrow cC \mid d \\ &\qquad (2) \qquad (3) \end{split}$$

- 1. Correction en cours (Section ??)
- 2. Correction en cours (Section ??)
- 3. Analyse de la chaîne ccdc#

— En utilisant la méthode LR (1):

Pile	Chaine	Action
$\#\mathbb{I}_0$	ccdc#	$1:\mathbb{D}_3:$ empiler $c,\mathbb{I}_3,$ Av
# \mathbb{I}_0 c \mathbb{I}_3	cdc#	$2:\mathbb{D}_3:$ empiler c, $\mathbb{I}_3,$ Av
$\#\mathbb{I}_0\mathbf{c}\mathbb{I}_3\mathbf{c}\mathbb{I}_3$	dc#	$3:\mathbb{D}_4:$ empiler d, $\mathbb{I}_4,$ Av
$\#\mathbb{I}_0 c \mathbb{I}_3 c \mathbb{I}_3 d \mathbb{I}_4$	c#	$4:\mathbb{R}_3: D\ 2 \text{ sym}; E\ (C), \mathbb{I}_8$
$\#\mathbb{I}_0 c\mathbb{I}_3 c\mathbb{I}_3 C\mathbb{I}_8$	c#	$5:\mathbb{R}_2: D 4 \text{ sym}; E (C), \mathbb{I}_8$
$\#\mathbb{I}_0 c\mathbb{I}_3 C\mathbb{I}_8$	c#	$6:\mathbb{R}_2: D 4 \text{ sym}; E (C), \mathbb{I}_2$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2$	c#	$7:\mathbb{D}_6:$ empiler c, $\mathbb{I}_6,$ Av
# $\mathbb{I}_0 \mathbb{C} \mathbb{I}_2 \mathbb{c} \mathbb{I}_6$	#	Erreur : Chaine incorrecte

FIGURE 2 – Dérivation de la chaine ccdc en utilisant la méthode LR (1)

— En utilisant la méthode LALR (1):

Pile	Chaine	Action
$\#\mathbb{I}_0$	ccdc#	$1:\mathbb{D}_{36}:$ empiler c, $\mathbb{I}_{36},$ Av
$\#\mathbb{I}_0 c\mathbb{I}_{36}$	cdc#	$2:\mathbb{D}_{36}:$ empiler c, $\mathbb{I}_{36},$ Av
$\# \mathbb{I}_0 \mathbf{c} \mathbb{I}_{36} \mathbf{c} \mathbb{I}_{36}$	dc#	$3:\mathbb{D}_{47}:$ empiler d, $\mathbb{I}_{47},$ Av
$\#\mathbb{I}_0\mathbf{c}\mathbb{I}_{36}\mathbf{c}\mathbb{I}_{36}\mathbf{d}\mathbb{I}_{47}$	c#	$4:\mathbb{R}_3: D\ 2 \text{ sym}; E(C), \mathbb{I}_{89}$
$\#\mathbb{I}_0 c \mathbb{I}_{36} c \mathbb{I}_{36} C \mathbb{I}_{89}$	c#	$5:\mathbb{R}_2: D 4 \text{ sym}; E (C), \mathbb{I}_{89}$
# $\mathbb{I}_0 c \mathbb{I}_{36} C \mathbb{I}_{89}$	c#	$6:\mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_2$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2$	c#	$7: \mathbb{D}_{36}:$ empiler c, \mathbb{I}_{36} , Av
# $\mathbb{I}_0 \mathbb{C} \mathbb{I}_2 \mathbb{C} \mathbb{I}_{36}$	#	Erreur : Chaine incorrecte

FIGURE 3 – Dérivation de la chaine ccdc en utilisant la méthode LALR (1)

4. Analyse de la chaîne ccdcd#

— En utilisant la méthode LR (1):

Pile	Chaine	Action
$\#\mathbb{I}_{\mathrm{O}}$	ccdcd#	$1:\mathbb{D}_3:$ empiler $c,\mathbb{I}_3,$ Av
$\#\mathbb{I}_0 c\mathbb{I}_3$	cdcd#	$2:\mathbb{D}_3:$ empiler c, $\mathbb{I}_3,$ Av
$\#\mathbb{I}_0\mathbf{c}\mathbb{I}_3\mathbf{c}\mathbb{I}_3$	dcd#	$3:\mathbb{D}_4:$ empiler d, $\mathbb{I}_4,$ Av
# \mathbb{I}_0 c \mathbb{I}_3 c \mathbb{I}_3 d \mathbb{I}_4	cd#	$4:\mathbb{R}_3: D\ 2\ \text{sym}; E\ (C), \mathbb{I}_8$
$\#\mathbb{I}_0\mathbf{c}\mathbb{I}_3\mathbf{c}\mathbb{I}_3\mathbf{C}\mathbb{I}_8$	cd#	$5: \mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_8$
$\#\mathbb{I}_0\mathbf{c}\mathbb{I}_3\mathbf{C}\mathbb{I}_8$	cd#	$6:\mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_6$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2$	cd#	$7:\mathbb{D}_6:$ empiler c, $\mathbb{I}_6,$ Av
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{c}\mathbb{I}_6$	d#	$8:\mathbb{D}_7:$ empiler d, $\mathbb{I}_7,$ Av
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{c}\mathbb{I}_6\mathbb{d}\mathbb{I}_7$	#	$9:\mathbb{R}_3: D\ 2\ \text{sym}; E\ (C), \mathbb{I}_9$
$\# \mathbb{I}_0 \mathbb{C} \mathbb{I}_2 \mathbb{c} \mathbb{I}_6 \mathbb{C} \mathbb{I}_9$	#	$10:\mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_5$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{C}\mathbb{I}_5$	#	$11 : \mathbb{R}_1 : D 4 \text{ sym}; E (S), \mathbb{I}_1$
$\#\mathbb{I}_0S\mathbb{I}_1$	#	Accepter : Chaine correcte

FIGURE 4 – Dérivation de la chaine ccdcd en utilisant la méthode LR (1)

— En utilisant la méthode LALR (1):

Pile	Chaine	Action
$\#\mathbb{I}_0$	ccdcd#	$1:\mathbb{D}_{36}:$ empiler $c,\mathbb{I}_{36},$ Av
$\#\mathbb{I}_0 c\mathbb{I}_{36}$	cdcd#	$2:\mathbb{D}_{36}:$ empiler c, $\mathbb{I}_{36},$ Av
# $\mathbb{I}_0 c \mathbb{I}_{36} c \mathbb{I}_{36}$	dcd#	$3:\mathbb{D}_{47}:$ empiler d, $\mathbb{I}_{47},$ Av
$\# \mathbb{I}_0 \mathbf{c} \mathbb{I}_{36} \mathbf{c} \mathbb{I}_{36} \mathbf{d} \mathbb{I}_{47}$	cd#	$4:\mathbb{R}_3: D\ 2 \text{ sym}; E\ (C), \mathbb{I}_{89}$
$\# \mathbb{I}_0 \mathbf{c} \mathbb{I}_{36} \mathbf{c} \mathbb{I}_{36} \mathbf{C} \mathbb{I}_{89}$	cd#	$5:\mathbb{R}_2: D 4 \text{ sym}; E (C), \mathbb{I}_{89}$
# $\mathbb{I}_0 c \mathbb{I}_{36} C \mathbb{I}_{89}$	cd#	$6:\mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_2$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2$	cd#	$7: \mathbb{D}_{36}: \text{empiler c}, \mathbb{I}_{36}, \text{Av}$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{c}\mathbb{I}_{36}$	d#	$8:\mathbb{D}_{47}:$ empiler d, $\mathbb{I}_{47},$ Av
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{c}\mathbb{I}_{36}\mathbb{d}\mathbb{I}_{47}$	#	$9:\mathbb{R}_3: D\ 2 \text{ sym}; E\ (C), \mathbb{I}_{89}$
$\# \mathbb{I}_0 \mathbb{C} \mathbb{I}_2 \mathbb{c} \mathbb{I}_{36} \mathbb{C} \mathbb{I}_{89}$	#	$10:\mathbb{R}_2: D 4 \text{ sym}; E(C), \mathbb{I}_5$
$\#\mathbb{I}_0\mathbb{C}\mathbb{I}_2\mathbb{C}\mathbb{I}_5$	#	$11 : \mathbb{R}_1 : D 4 \text{ sym}; E (S), \mathbb{I}_1$
$\#\mathbb{I}_0S\mathbb{I}_1$	#	Accepter : Chaine correcte

FIGURE 5 – Dérivation de la chaine *ccdcd* en utilisant la méthode LALR (1)

Solution d'exercice $N^{\circ}3$:

```
\begin{split} G = ( \{ \text{ Dec, D\_id, Type} \}, \{ \text{id, char, bool, :, ;, ,} \}, \text{ Dec}) \text{ suivante :} \\ \text{Dec} &\longrightarrow \text{D\_id : Type ;} \\ & (1) \\ \text{D\_id} &\longrightarrow \text{D\_id , id } | \text{ id} \\ & (2) \qquad (3) \\ \text{Type} &\longrightarrow \text{char } | \text{ bool} \\ & (4) \qquad (5) \end{split}
```

1. Construction de la collection d'ensembles d'items LR(1) : $\mathbb{I}_0 = \text{Ferm } [D' \longrightarrow \text{Dec}, \#] = [D' \longrightarrow \text{Dec}, \#] [\text{Dec} \longrightarrow \text{D}_i \text{d} : \text{Type}; , \#] [\text{D}_i \text{d} \longrightarrow \text{D}_i \text{d}, :| ,] [\text{D}_i \text{d} \longrightarrow \text{Id}, :| ,] [\text{D}_i \text{d} \longrightarrow \text{D}_i \text{d}, :| ,]$ $\mathbb{I}_1 = \text{GOTO } (\mathbb{I}_0, \text{Dec}) = [D' \longrightarrow \text{Dec.}, \#] \, \mathbb{I}_2 = \text{GOTO } (\mathbb{I}_0, \text{D}_i \text{d}) = [\text{Dec} \longrightarrow \text{D}_i \text{d} : \text{Type}; , \#] [\text{D}_i \text{d} \longrightarrow \text{D}_i \text{d}, :| ,]$ $\mathbb{I}_3 = \text{GOTO } (\mathbb{I}_0, \text{id}) = [\text{D}_i \text{d} \longrightarrow \text{id}, :| ,]$ $\mathbb{I}_4 = \text{GOTO } (\mathbb{I}_2, :) = [\text{Dec} \longrightarrow \text{D}_i \text{d} : \text{Type}; , \#] [\text{Type} \longrightarrow \text{.char}, ;] [\text{Type} \longrightarrow \text{.bool}, ;]$ $\mathbb{I}_5 = \text{GOTO } (\mathbb{I}_2, :) = [\text{D}_i \text{d} \longrightarrow \text{D}_i \text{d} : \text{Type}; , \#]$ $\mathbb{I}_6 = \text{GOTO } (\mathbb{I}_4, \text{Type}) = [\text{Dec} \longrightarrow \text{D}_i \text{d} : \text{Type} .; , \#]$ $\mathbb{I}_7 = \text{GOTO } (\mathbb{I}_4, \text{char}) = [\text{Type} \longrightarrow \text{char} .; ;]$

$$\begin{split} &\mathbb{I}_8\text{= GOTO }(\mathbb{I}_4, bool) = [\text{Type} \longrightarrow bool \text{ ., ; }] \\ &\mathbb{I}_9\text{= GOTO }(\mathbb{I}_5, id) = \text{I5= GOTO }(\text{I2, ,}) = [\text{D_id} \longrightarrow \text{D_id , id . , :}| \text{ ,}] \\ &\mathbb{I}_{10}\text{= GOTO }(\mathbb{I}_6,;) = [\text{Dec} \longrightarrow \text{D_id : Type ; . , \#}] \end{split}$$

2. Table d'analyse LR (1)

	id	char	bool	;	,	:	#	Dec	D_id	Type
\mathbb{I}_0	\mathbb{D}_3							\mathbb{I}_1	\mathbb{I}_2	
\mathbb{I}_1							ACC			
\mathbb{I}_2					\mathbb{D}_5	\mathbb{D}_4				
\mathbb{I}_3					\mathbb{R}_3	\mathbb{R}_3				
\mathbb{I}_4		\mathbb{D}_7	\mathbb{D}_8							\mathbb{I}_6
\mathbb{I}_5	\mathbb{D}_9									
\mathbb{I}_6				\mathbb{D}_{10}						
\mathbb{I}_7				\mathbb{R}_4						
\mathbb{I}_8				\mathbb{R}_5						
\mathbb{I}_9					\mathbb{R}_2	\mathbb{R}_2				
\mathbb{I}_{10}							\mathbb{R}_1			

La table d'analyse est mono-définie \Rightarrow G est LR(1)

3.
$$C_{LR(1)} = \{ \mathbb{I}_0, \mathbb{I}_1, \dots \mathbb{I}_{10} \}$$

 $C_{LALR(1)} = \{ \mathbb{I}_0, \mathbb{I}_1, \dots \mathbb{I}_{10} \}$

4. L'analyse de la chaîne id, id : char; :

Pile	Chaine	Action
\mathbb{I}_0	id, id: char; #	$1: \mathbb{D}_3: E(id); \mathbb{I}_3; Av$
$\mathbb{I}_0id\mathbb{I}_3$,id:char;#	$2:\mathbb{R}_3: D\ 2 \text{ sym}; E\ (D_id), \mathbb{I}_2$
$\mathbb{I}_0 D_id \mathbb{I}_2$,id:char;#	$3:\mathbb{D}_5:\mathrm{E}(,);\mathbb{I}_5;\mathrm{Av}$
$\mathbb{I}_0\mathrm{D_id}\mathbb{I}_2,\mathbb{I}_5$	id:char;#	$4:\mathbb{D}_9: \mathrm{E}(\mathrm{id}); \mathbb{I}_9; \mathrm{Av}$
$\mathbb{I}_0 D_{-id} \mathbb{I}_2, \mathbb{I}_5 id \mathbb{I}_9$: char;#	$5: \mathbb{R}_2: D 6 \text{ sym}; E (D_id), \mathbb{I}_2$
$\mathbb{I}_0D_id\mathbb{I}_2$: char;#	$6: \mathbb{D}_4: \mathrm{E}(:); \mathbb{I}_4; \mathrm{Av}$
$\mathbb{I}_0\mathrm{D_id}\mathbb{I}_2:\mathbb{I}_4$	char;#	$7: \mathbb{D}_7: \mathrm{E}(\mathrm{char}); \mathbb{I}_7; \mathrm{Av}$
$\mathbb{I}_0 D_{-id} \mathbb{I}_2 : \mathbb{I}_4 char \mathbb{I}_7$;#	$8: \mathbb{R}_4: D\ 2 \text{ sym}; E \text{ (Type)}, \mathbb{I}_6$
$\mathbb{I}_0 D_{-id} \mathbb{I}_2 : \mathbb{I}_4 Type \mathbb{I}_6$;#	$9: \mathbb{D}_{10}: E(;); \mathbb{I}_{10}; Av$
$\mathbb{I}_0 D_{-id} \mathbb{I}_2 : \mathbb{I}_4 \text{Type } \mathbb{I}_6 ; \mathbb{I}_{10}$	#	$10: \mathbb{R}_1: D \ 8 \ \text{sym}; E \ (Dec), \mathbb{I}_1$
\mathbb{I}_0 Dec \mathbb{I}_1	#	Accepter : Chaine correcte

FIGURE 6 – Dérivation de la chaine id, id : char; #

Solution d'exercice N°4:

```
G = (\{ \text{Insts}, \text{Inst}, \text{Cond} \}, \{ \text{si}, \text{alors}, \lor, \land, \text{faux}, \text{vrai} \}, \text{Insts}) \text{ suivante} :
Insts \longrightarrow Inst | Insts Inst
                                                                           (1)
                                                                                                               (2)
Inst \longrightarrow si Cond alors Inst
                                                                                                             (3)
 Cond \longrightarrow Cond \lor Cond \mid Cond \land Cond \mid faux \mid vrai
                                                                                                           (4)
                                                                                                                                                                                                                                    (5)
                                                                                                                                                                                                                                                                                                              (6)
                                                                                                                                                                                                                                                                                                                                                                 (7)
                      1. Construction de la collection d'ensembles d'items LR(1) :
                                         \mathbb{I}_0= Ferm [Insts'\longrightarrow. Insts, #] = [Insts'\longrightarrow. Insts, #] [Insts \longrightarrow. Inst, #|si] [Insts \longrightarrow. Insts Inst, #|si] [Inst
                                            \longrightarrow si Cond alors Inst, #|si]
                                         \mathbb{I}_1 = \text{GOTO}(\mathbb{I}_0, \text{Insts}) = [\text{Insts}' \longrightarrow \text{Insts}_{\bullet}, \#] [\text{Insts} \longrightarrow \text{Insts}_{\bullet}, \#|\text{si}] [\text{Inst} \longrightarrow \bullet, \text{si Cond alors Inst}_{\bullet}, \#|\text{si}]
                                         \mathbb{I}_2 = \text{GOTO}(\mathbb{I}_0, \text{Inst}) = [\text{Insts} \longrightarrow \text{Inst}_{\bullet}, \#|\text{si}]
                                         \mathbb{I}_3 = \text{GOTO}(\mathbb{I}_0, \text{si}) = [\text{Inst} \longrightarrow \text{si} \cdot \text{Cond alors Inst}, \#|\text{si}][\text{Cond} \longrightarrow \cdot \text{Cond} \vee \text{Cond}, \text{alors}|\vee|\wedge][\text{Cond} \longrightarrow \cdot \text{Cond} \vee \text{Cond}]
                                         Cond \wedge Cond, alors |\vee|\wedge| [Cond \longrightarrow faux, alors |\vee|\wedge| [Cond \longrightarrow vrai, alors |\vee|\wedge|
                                         \mathbb{I}_4 = \text{GOTO}(\mathbb{I}_1, \text{Inst}) = [\text{Insts} \longrightarrow \text{Insts Inst}, \#|\text{si}]
                                         \mathbb{I}_3 = \text{GOTO}(\mathbb{I}_1, \text{si})
                                         \mathbb{I}_5 = \text{GOTO }(\mathbb{I}_3, \text{Cond}) = [\text{Inst} \longrightarrow \text{si Cond. alors Inst., } \#|\text{si}] [\text{Cond} \longrightarrow \text{Cond. } \lor \text{Cond. , alors} |\lor|\land] [\text{Cond. } \lor \text{Cond. } \lor \text{Cond
                                           \longrightarrow Cond . \land Cond , alors |\lor|\land]
                                         \mathbb{I}_6 = \text{GOTO}(\mathbb{I}_3, \text{faux}) = [\text{Cond} \longrightarrow \text{faux}, \text{alors}] \vee [\wedge]
                                         \mathbb{I}_7 = \text{GOTO}(\mathbb{I}_3, \text{vrai}) = [\text{Cond} \longrightarrow \text{vrai}, \text{alors} | \vee | \wedge ]
                                         \mathbb{I}_8 = \text{GOTO}(\mathbb{I}_5, \text{ alors}) = [\text{Inst} \longrightarrow \text{si Cond alors . Inst , } \#|\text{si}][\text{Inst} \longrightarrow \text{. si Cond alors Inst , } \#|\text{si}]
                                         \mathbb{I}_9 = \text{GOTO}(\mathbb{I}_5, \vee) = [\text{Cond} \longrightarrow \text{Cond} \vee .\text{Cond}, \text{alors}|\vee|\wedge] [\text{Cond} \longrightarrow .\text{Cond} \vee \text{Cond}, \text{alors}|\vee|\wedge|\wedge] [\text{Cond} \longrightarrow .\text{Cond} \vee \text{Cond}, \text{alors}|\vee|\wedge|\wedge| ] [\text{Cond} \longrightarrow .\text{Cond} \vee \text{Cond}, \text{cond
                                           \longrightarrow . Cond \land Cond, alors |\lor|\land [Cond \longrightarrow . faux, alors |\lor|\land] [Cond \longrightarrow . vrai, alors |\lor|\land]
                                         \mathbb{I}_{10} = \text{GOTO}(\mathbb{I}_5, \wedge) = [\text{Cond} \longrightarrow \text{Cond} \wedge \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond} \vee \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond} \vee \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond} \vee \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \vee | \wedge ] [\text{Cond} \longrightarrow \cdot \text{Cond}, \text{alors} | \wedge ] [\text
                                            \longrightarrow . Cond \land Cond , alors |\lor|\land [Cond \longrightarrow . faux, alors |\lor|\land] [Cond \longrightarrow . vrai, alors |\lor|\land]
                                         \mathbb{I}_{11}= GOTO (\mathbb{I}_8, Inst) = [Inst \longrightarrow si Cond alors Inst \cdot, #|si]
                                         \mathbb{I}_3= GOTO (\mathbb{I}_8, si)
                                         \mathbb{I}_{12}= GOTO (\mathbb{I}_9, Cond) = [Cond \longrightarrow Cond \lor Cond \lor, alors |\lor|\land] [Cond \longrightarrow Cond \lor Cond, alors |\lor|\land]
                                         [Cond \longrightarrow Cond \cdot \land Cond \cdot alors | \lor | \land ]
                                         \mathbb{I}_6= GOTO (\mathbb{I}_9, faux)
                                         \mathbb{I}_7= GOTO (\mathbb{I}_9, vrai)
                                         \mathbb{I}_{13}= GOTO (\mathbb{I}_{10}, Cond) = [Cond \longrightarrow Cond \wedge Cond \wedge , alors |\vee|\wedge] [Cond \longrightarrow Cond \wedge \vee Cond , alors |\vee|\wedge]
                                         [Cond \longrightarrow Cond \cdot \land Cond \cdot alors | \lor | \land ]
                                         \mathbb{I}_6= GOTO (\mathbb{I}_{10}, faux)
                                         \mathbb{I}_7= GOTO (\mathbb{I}_{10}, vrai)
                                         \mathbb{I}_9 = \text{GOTO}(\mathbb{I}_{12}, \vee) \mathbb{I}_{10} = \text{GOTO}(\mathbb{I}_{12}, \wedge)
                                         \mathbb{I}_9 = \text{GOTO}(\mathbb{I}_{13}, \vee)
                                         \mathbb{I}_{10}= GOTO (\mathbb{I}_{13}, \wedge)
```

2. Table d'analyse LR (1)

 $C_{LR(1)} = \{ \mathbb{I}_0, \mathbb{I}_1, \dots \mathbb{I}_{13} \}$

	si	alors	V	\wedge	faux	vrai	#	Insts	Inst	Cond
\mathbb{I}_0	\mathbb{D}_3							\mathbb{I}_1	\mathbb{I}_2	
\mathbb{I}_1	\mathbb{D}_3						ACC		\mathbb{I}_4	
\mathbb{I}_2	\mathbb{R}_1						\mathbb{R}_1			
\mathbb{I}_3					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_5
\mathbb{I}_4	\mathbb{R}_2						\mathbb{R}_2			
\mathbb{I}_5		\mathbb{D}_8	\mathbb{D}_9	\mathbb{D}_{10}						
\mathbb{I}_6		\mathbb{R}_6	\mathbb{R}_6	\mathbb{R}_6						
\mathbb{I}_7		\mathbb{R}_7	\mathbb{R}_7	\mathbb{R}_7						
\mathbb{I}_8	\mathbb{D}_3								\mathbb{I}_{11}	
\mathbb{I}_9					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_{12}
\mathbb{I}_{10}					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_{13}
\mathbb{I}_{11}	\mathbb{R}_3						\mathbb{R}_3			
\mathbb{I}_{12}		\mathbb{R}_4	$\mathbb{D}_9 \mathbb{R}_4$	$\mathbb{D}_{10} \mathbb{R}_4$						
\mathbb{I}_{13}		\mathbb{R}_5	$\mathbb{D}_9 \mathbb{R}_5$	$\mathbb{D}_{10} \mathbb{R}_5$		·				

3. La table d'analyse est multi-définie ⇒ G n'est pas LR(1), G est ambigüe

4. Elimination des conflits :

Pour éliminer les conflits dans la table d'analyse, on va utiliser les règles suivantes :

- (a) Les opérateurs \land et \lor sont associatifs à gauche.
- (b) L'ordre \land et \lor est un ordre selon la priorité décroissante des opérateurs (\land est le plus prioritaire).

Dans la case $[\mathbb{I}_{12}, \vee]$, nous avons deux actions, \mathbb{D}_9 et \mathbb{R}_4 :

 \mathbb{R}_4 : signifie que sommet de la pile contient $Cond \vee Cond$ qui doit être réduit par Cond

 \mathbb{D}_9 : signifie qu'il faut empiler le symbole \vee qui se trouve à la tête de la chaîne, on a donc une chaîne de la forme $Cond \vee Cond \vee Cond$, puisque \vee est associative à gauche (règle (a)), donc \mathbb{R}_4 est favorisée a \mathbb{D}_9 .

Dans la case $[\mathbb{I}_{12}, \wedge]$, nous avons deux actions, \mathbb{D}_{10} et \mathbb{R}_4 :

 \mathbb{R}_4 : signifie que sommet de la pile contient $Cond \vee Cond$ qui doit être réduit par Cond

 \mathbb{D}_{10} : signifie qu'il faut empiler le symbole \wedge qui se trouve à la tête de la chaîne, on a donc une chaîne de la forme $Cond \vee Cond \wedge Cond$, puisque \wedge est plus prioritaire que \vee , (règle (b)), donc \mathbb{D}_{10} est favorisée a \mathbb{R}_4 .

Dans la case $[\mathbb{I}_{13}, \vee]$, nous avons deux actions, \mathbb{D}_9 et \mathbb{R}_5 :

 \mathbb{R}_5 : signifie que sommet de la pile contient $Cond \wedge Cond$ qui doit être réduit par Cond

 \mathbb{D}_9 : signifie qu'il faut empiler le symbole \vee qui se trouve à la tête de la chaîne, on a donc une chaîne de la forme $Cond \wedge Cond \vee Cond$, puisque \wedge est plus prioritaire que \vee , (règle (b)), donc \mathbb{R}_5 est favorisée a \mathbb{D}_9 .

Dans la case $[\mathbb{I}_{13}, \vee]$, nous avons deux actions, \mathbb{D}_{10} et \mathbb{R}_5 :

 \mathbb{R}_5 : signifie que sommet de la pile contient $Cond \wedge Cond$ qui doit être réduit par Cond

 \mathbb{D}_{10} : signifie qu'il faut empiler le symbole \wedge qui se trouve à la tête de la chaîne, on a donc une chaîne de la forme $Cond \wedge Cond \wedge Cond$, puisque \wedge est associative à gauche (règle (a)), donc \mathbb{R}_5 est favorisée a \mathbb{D}_{10} .

Table d'analyse après élimination des conflits

	si	alors	V	\wedge	faux	vrai	#	Insts	Inst	Cond
\mathbb{I}_0	\mathbb{D}_3							\mathbb{I}_1	\mathbb{I}_2	
\mathbb{I}_1	\mathbb{D}_3						ACC		\mathbb{I}_4	
\mathbb{I}_2	\mathbb{R}_1						\mathbb{R}_1			
\mathbb{I}_3					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_5
\mathbb{I}_4	\mathbb{R}_2						\mathbb{R}_2			
\mathbb{I}_5		\mathbb{D}_8	\mathbb{D}_9	\mathbb{D}_{10}						
\mathbb{I}_6		\mathbb{R}_6	\mathbb{R}_6	\mathbb{R}_6						
\mathbb{I}_7		\mathbb{R}_7	\mathbb{R}_7	\mathbb{R}_7						
\mathbb{I}_8	\mathbb{D}_3								\mathbb{I}_{11}	
\mathbb{I}_9					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_{12}
\mathbb{I}_{10}					\mathbb{D}_6	\mathbb{D}_7				\mathbb{I}_{13}
\mathbb{I}_{11}	\mathbb{R}_3						\mathbb{R}_3			
\mathbb{I}_{12}		\mathbb{R}_4	\mathbb{R}_4	\mathbb{D}_{10}						
\mathbb{I}_{13}		\mathbb{R}_5	\mathbb{R}_5	\mathbb{R}_5						

La table d'analyse est mono-définie \Rightarrow G est LR(1)

2^{eme} solution :

Changement de la grammaire :

 $\textbf{Cond} \longrightarrow \textbf{Cond} \vee \textbf{A} \mid \textbf{A}$

 $A \longrightarrow A \wedge B \mid B$

 $B \longrightarrow faux \mid vrai$

Solution d'exercice $N^{\circ}5$:

	G_1	G_2	G_3	G_4	G_5
	$E \longrightarrow F \uparrow E \mid F$	$E \longrightarrow E - T \mid T$	$E \longrightarrow E \uparrow F \mid F$	$E \longrightarrow E - T \mid T$	$E \longrightarrow E \uparrow F \mid F$
	$F \longrightarrow F \times G \mid G$	$T \longrightarrow T \times F \mid F$	$F \longrightarrow F \times G \mid G$	$T \longrightarrow T \times F \mid F$	$F \longrightarrow G \times F \mid G$
	$G \longrightarrow G - H \mid H$	$F \longrightarrow F \uparrow G \mid G$	$G \longrightarrow G - H \mid H$	$F \longrightarrow G \uparrow F \mid G$	$G \longrightarrow H - G \mid H$
(a)	$H \longrightarrow (E) \mid nbr$	$G \longrightarrow (E) \mid nbr$	$H \longrightarrow (E) \mid nbr$	$G \longrightarrow (E) \mid nbr$	$H \longrightarrow (E) \mid nbr$
	Non car:	Non car:	Non car:	Oui	Non car:
	Priorité inversée	associativité inversée	Priorité inversée		Priorité inversée
		pour ↑	et associativité		et associativité inversée
			inversée pour ↑		

(b)
$$E \longrightarrow E - F \mid F$$

(1) (2)
 $F \longrightarrow G \uparrow F \mid G$
(3) (4)
 $G \longrightarrow (E) \mid nbr$
(5) (6)

(c) Construction de la collection d'ensembles d'items LR(1) :

```
 \begin{split} \mathbb{I}_0 &= \text{Ferm } (\ E' \longrightarrow \cdot E, \#) = [\ E' \longrightarrow \cdot E, \#] \ [E \longrightarrow \cdot E - F, \#] - ] \ [E \longrightarrow \cdot F, \#] - ] \ [F \longrightarrow \cdot G \uparrow F, \#] - ] \ [F \longrightarrow \cdot G, \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [F \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot (E) \ , \#] - ] \ [G \longrightarrow \cdot
```

```
\mathbb{I}_{10}= GOTO (\mathbb{I}_4,G) =[F \longrightarrow G \cdot \uparrow F , )|-] [F \longrightarrow G\cdot , \cdot \mid-]
                                             \mathbb{I}_{11} = \text{GOTO}\left(\mathbb{I}_{4}, () = [G \longrightarrow (.E), )|-|\uparrow] [E \longrightarrow .E - F, )|-] [E \longrightarrow .F, )|-] [F \longrightarrow .G \uparrow F, )|-] [F \longrightarrow .G, )|-] [G \longrightarrow .E \rightarrow .F, )|-] [F \longrightarrow .G \uparrow F, ]|-] [F \longrightarrow .G \uparrow F, ]|-]
                                               \cdot (E), |\cdot|\uparrow| [G \longrightarrow \cdot nbr, |\cdot|\uparrow|
                                             \mathbb{I}_{12}= GOTO (\mathbb{I}_4,nbr) = [G \longrightarrow nbr., )|-|\uparrow]
                                               \mathbb{I}_{13}\text{= GOTO }(\mathbb{I}_6\text{,F})\text{=}[E\longrightarrow E\text{ - F}_{\raisebox{-0.7ex}{\text{-}}},\#|\text{-}]
                                               \mathbb{I}_3= GOTO (\mathbb{I}_6,G)
                                             \mathbb{I}_4= GOTO (\mathbb{I}_6,()
                                               \mathbb{I}_5= GOTO (\mathbb{I}_6,nbr)
                                               \mathbb{I}_{14}= GOTO (\mathbb{I}_7, F) = [F \longrightarrow G \uparrow F., #|-]
                                               \mathbb{I}_3 = \text{GOTO}(\mathbb{I}_7, \mathbb{G})
                                               \mathbb{I}_4 = \text{GOTO} (\mathbb{I}_7, ())
                                               \mathbb{I}_5= GOTO (\mathbb{I}_7,nbr)
                                               \mathbb{I}_{15}= GOTO (\mathbb{I}_{8},)) = [G \longrightarrow (E) \cdot , #|-|\uparrow]
                                             \mathbb{I}_{16} = GOTO \; (\mathbb{I}_8, \text{--}) = [E \longrightarrow E \; \text{--} \; F, \; )[\text{--}] \; [F \longrightarrow \text{--} \; G \uparrow F \; , \; )[\text{--}] \; [F \longrightarrow \text{--} \; G \; , \; )[\text{--}] \; [G \longrightarrow \text{--} \; (E) \; , \; )[\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; )[\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; )[\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G \longrightarrow \text{--} \; nbr \; , \; ][\text{--}] \; [G
                                             \mathbb{I}_{17} = GOTO\left(\mathbb{I}_{10}\uparrow\right) = [F \longrightarrow G\uparrow \centerdot F \,,\,) | - ] \, [F \longrightarrow \centerdot G\uparrow F \,,\,) | - ] \, [F \longrightarrow \centerdot G \,,\,) | - ] \, [G \longrightarrow \centerdot (E) \,,\,) | - |\uparrow] \, [G \longrightarrow \centerdot \, nbr \,,\,) | - |\uparrow] \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \centerdot (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\uparrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\downarrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\downarrow| \, [G \longrightarrow \thickspace (E) \,,\,] | - |\downarrow| \, [G \longrightarrow \thickspace (E) \,,
                                             \mathbb{I}_{18} = \text{GOTO}(\mathbb{I}_{11}, \mathbb{E}) = [G \longrightarrow (E_{\bullet}), )|-|\uparrow][E \longrightarrow E_{\bullet} - F, )|-]
                                               \mathbb{I}_9= GOTO (\mathbb{I}_{11},F)
                                               \mathbb{I}_{10}= GOTO (\mathbb{I}_{11},G)
                                             \mathbb{I}_{11}= GOTO (\mathbb{I}_{11},()
                                               \mathbb{I}_{12}= GOTO (\mathbb{I}_{11},nbr)
                                               \mathbb{I}_{19} = \text{GOTO}(\mathbb{I}_{16}, F) = [E \longrightarrow E - F_{\bullet}, )|-]
                                             \mathbb{I}_{10}= GOTO (\mathbb{I}_{16},G)
                                             \mathbb{I}_{11}= GOTO (\mathbb{I}_{16},()
                                               \mathbb{I}_{12}\text{=} \operatorname{GOTO}\left(\mathbb{I}_{16}, \operatorname{nbr}\right)
                                               \mathbb{I}_{20}= GOTO (\mathbb{I}_{17},F) = [F \longrightarrow G \uparrow F., )|-]
                                             \mathbb{I}_{10}= GOTO (\mathbb{I}_{17},G)
                                             \mathbb{I}_{11}= GOTO (\mathbb{I}_{17},()
                                               \mathbb{I}_{12}= GOTO (\mathbb{I}_{17},nbr)
                                               \mathbb{I}_{21}\text{= GOTO }(\mathbb{I}_{18},\!)) = [G \longrightarrow (E) {\color{red} \cdot} \,,\,) \big| \text{-} \big| {\uparrow} ]
                                             \mathbb{I}_{16}= GOTO (\mathbb{I}_{18},-)
(d) C_{LR(1)} = \{ \mathbb{I}_0, \mathbb{I}_1, \dots \mathbb{I}_{21} \}
                                                  C_{LALR(1)} = \{ \mathbb{I}_0, \mathbb{I}_1, \mathbb{I}_{29}, \mathbb{I}_{310}, \mathbb{I}_{411}, \mathbb{I}_{512}, \mathbb{I}_{616}, \mathbb{I}_{717}, \mathbb{I}_{818}, \mathbb{I}_{1319}, \mathbb{I}_{1420}, \mathbb{I}_{1521} \} = 12 \text{ items} \Rightarrow 13 \text{ lignes dans la table} \}
                                               LALR (1)
```