Χ

p22cs013@coed.svnit.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Natural Language Processing (course)

Click to register for Certification exam

(https://examform.nptel.a

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work?

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

Week 5 ()

Week 7: Assignment

Your last recorded submission was on 2023-09-11, 17:02 IST Due date: 2023-09-13, 23:59 IST.

1) 1 point

Suppose you have a raw text corpus and you compute word co occurrence matrix from there. Which of the following algorithm(s) can you utilize to learn word representations? (Choose all that apply) [1 mark]

- a. CBOW
- b. SVD
- c. PCA
- d. GloVe
 - **✓** a.
 - □ b.
 - □с.
 - **✓** d.

2) 1 point

What is the method for solving word analogy questions like, given A, B and D, find C such that A:B::C:D, using word vectors? [1 mark]

- a. $v_c = v_a + (v_b v_d)$, then use cosine similarity to find the closest word of v_c .
- b. $v_c = v_a + (v_d v_b)$ then do dictionary lookup for v_c
- c. $v_c = v_d + (v_b v_a)$ then use cosine similarity to find the closest word of v_c .
- d. $v_c = v_d + (v_a v_b)$ then do dictionary lookup for v_c .
- e. None of the above

Week 6 ()

Week 7 ()

- Lecture 31 :
 Distributional
 Semantics Introduction
 (unit?
 unit=66&lesson
 =67)
- Lecture 32:
 Distributional
 Models of
 Semantics
 (unit?
 unit=66&lesson
 =68)
- Lecture 33 :
 Distributional
 Semantics :
 Applications,
 Structured
 Models (unit?
 unit=66&lesson
 =69)
- Lecture 34 : Word Embeddings -Part I (unit? unit=66&lesson =70)
- Lecture 35 :
 Word
 Embeddings Part II (unit?
 unit=66&lesson
 =71)
- Week 7 -Lecture Materials (unit? unit=66&lesson =72)
- Quiz: Week 7 : Assignment (assessment? name=186)

○ a.○ b.○ c.○ d.○ e.	
What is the value of $PMI(w_1, w_2)$ for $C(w_1) = 100$, $C(w_2) = 2000$, $C(w_1, w_2) = 64$ 100000? N: Total number of documents. $C(w_i)$: Number of documents, w_i has appeared in. $C(w_i, w_j)$: Number of documents where both the words have appeared in. Use base 2 in logarithm. [1 mark]	1 point 4, N = Note:
a. 4 b. 5 c. 6 d. 5.64	
○ a.○ b.○ c.○ d.	
Given two binary word vectors w_1 and w_2 as follows: w_1 = [1010101010] w_2 = [0011111100] Compute the Dice and Jaccard similarity between them. [2 mark a. 6/11, 3/8 b. 10/11, 5/6	2 points
c. 4/9, 2/7 d. 5/9, 5/8 a. b. c. d.	
5)	2 points

Feedback Form (unit? unit=66&lesson =187)

Week 8 ()

Download videos ()

Text Transcripts ()

Books ()

Consider two probability distributions for two words be *p* and *q*. Compute their similarity scores with KL-divergence. [2mark]

p = [0.20, 0.75, 0.50]q = [0.90, 0.10, 0.25]

Note: Use base 2 in logarithm.

- a. 4.704, 1,720
- b. 1.692, 0.553
- c. 2.246, 1.412
- d. 3.213, 2.426
- a.
- O b.
- <u>О</u> с.
- Od.

2 points

Consider the following word co-occurrence matrix given below. Compute the cosine similarity between

(i) w1 and w2, and (ii) w1 and w3.

[2 mark]

	w4	w5	w6
w1	2	9	4
W2	1	5	6
W3	3	0	1

- a. 0.773, 0.412
- b. 0.881, 0.764
- c. 0.665, 0.601
- d. 0.897, 0.315
- a.
- Ob.
- Ос.
- d.

7) 1 point

Which of the following statement(s) is/are True? [1 mark]

- a. In structured distributional semantics, co-occurrence statistics are collected using parser extracted relations.
- b. Term mismatch occurs from the word independence assumption during document indexing.
- c. We can use distribution semantic models for query expansion.
- d. Attributional similarity depends on the degree of correspondence between attributes.

✓ a.

✓ b.	
~ c.	
☐ d.	
You may submit any i	number of times before the due date. The final submission will be considered
for grading.	
Submit Answers	