Taller de Inteligencia artificial y estudio del movimiento humano Asociación Chilena de Ciencias del Movimiento 6/11/2024, Antofagasta, Chile. Mauricio Cerda

En este taller usaremos un video de un salto (gentileza laboratorio biomecánica José Carrasco, UDP) sobre el cual haremos mediciones simples de ángulos, posiciones y finalmente postura del cuerpo.

(A) Actividad preparatoria

En esta actividad activaremos su licencia y creamos su primer programa Matlab para cargar una imagen en un entorno web. Para hacer esta actividad siga los siguientes pasos:

1- Crea tu cuenta MathWorks o si ya tienes una, abre tu sesión:

Crea tu cuenta

https://www.mathworks.com/mwaccount/account/create

o Abre sesión

https://www.mathworks.com/login

Si tu Institución cuenta con licencia de campus, tu cuenta se enlazará a la licencia automáticamente. Se recomienda usar correo institucional.

2- Accede a la licencia creada para el taller:

https://www.mathworks.com/licensecenter/classroom/4641802/

3- Visite el siguiente enlace:

https://github.com/busmangit/postura

4- Descargue los archivos de taller haciendo click en "Open in Matlab online":

5- Confime que quiere hacer una copia del repositorio en su espacio de trabajo Matlab:

6- Abra el archivo notebook scripts/ActividadPreparatoria.mlx seleccionando el botón "Open".

7- Revise que el path actual corresponda a la carpeta scripts. En caso contrario no podrá usar las funciones predefinidas en el taller:

8- Ejecute cada celda en el notebook (siga las instrucciones de su docente). Puede subir sus propias fotos.

(B) Actividad detección de características

Utilizaremos una imagen ya en rechazo (rechazo.png) y calcularemos el angulo entre las rodillas y el piso (horizontal). Siga los siguientes pasos:

- 1- Abra el archivo notebook ActividadDeteccion.mlx.
- 2- Ejecute la primera celda del notebook, con la herramienta tooltip identifique los colores (RGB) de los marcadores de la rodilla ¿Podemos seleccionar un color preciso para cada marcador? ¿Por qué?
- 3- Utilice la APP colorThreshold en Matlab escritorio, y genere 3 funciones para segmentar: marcador rojo (createMaskRed), marcador azul (createMaskBlue), color piel (createMaskSkin) en base a la función createMask. Siga las instrucciones de su docente para realizar estos pasos. Luego podrá ejecutar la segunda celda sin errores.

4- Utilizando las 3 funciones ejecute la celda del notebook. ¿Cuál es el ángulo de la línea que une los marcadores respecto a la horizontal?

(C) Actividad Tracking

Utilizaremos ahora un video y haremos el tracking de uno de los marcadores de rodilla basados en la detección de colores. Luego construiremos el grafico de posición y(t) para dicho marcador.

- 1- Abra el archivo notebook ActividadTracking.mlx
- 2- Ejecute la primera celda del notebook, verá que ahora toda la detección de la posición esta contenida en la función getRedBluePositions(I)

Detección de puntos azul y rojo

```
[Xred,Yred,Xblue,Yblue] = getRedBluePositions(I);
```

Limpieza: borrar elementos pequeño de color piel, mantener objetos azules y rojos solo si estan rodeados de color piel.

```
%visualizamos: imagen, el segmento de recta, y el angulo imshow(I); hold on, plot([Xblue Xred], [Yblue Yred], 'g');
```

3- Ahora ejecute las celda que aplica la detección a cada frame del video completo:

Detección de puntos azul y rojo

```
[Xred,Yred,Xblue,Yblue] = getRedBluePositions(I);
```

Limpieza: borrar elementos pequeño de color piel, mantener objetos azules y rojos solo si estan rodeados de color piel.

```
%visualizamos: imagen, el segmento de recta, y el angulo
imshow(I);
hold on,
plot([Xblue Xred], [Yblue Yred], 'g');
```

4- Ejecute la última celda del notebook para visualizar el movimiento del marcador ¿Cómo podría cambiar de marcador?

(D) Actividad Aprendizaje Profundo.

Utilizaremos el mismo video y haremos la estimación de pose completa usando un modelo de Aprendizaje pre-entrenado.

1- Abra el archivo notebook ActividadDeepLearning.mlx y ejecuta cada celda.

(D) Actividad Aprendizaje Profundo.

Este ejemplo muestra como estimar la postura para una o mas personas usando el algortimo OpenPose y una red neuronal pre-entrenada.

El objetivo es estimar la ubicación de las personas y la orientación de las partes de su cuerpo.

Hay dos estrategias principales de estimacion de postura: top-down y bottom-up.

This example shows how to estimate the body pose of one or more people using the OpenPose algorithm and a pretrained network.

OpenPose es un algoritmo para estimacion de múltiples personas que usa una estregia bottom-up [1]. OpenPose estima heatmaps que indican la probabilidad que una parte específica del cuerpo este asociada a un pixel. También OpenPose estima los part affinity fields (PAFs), que son campos vectoriales que indican si dos segmentos del cuerpo estan conectados o no. Por cada par de segmentos conectados, por ejemplo cuello y hombros, hay dos PAFs hay 2 PAFs que muestran las componentes x- y y- de los campos vectoriales entre los segmentos.

Para obtener una pose completa, OpenPose realiza operaciones de post-procesamiento. Primero identificando los segmentos corporales en base a los heatmaps. Luego, mediante operaciones sucesivas identifica conexiones entre segmentos del curspo. Para más información puede ver el algoritmo en Identify Poses from Heatmaps and PAFs.

Importar la red neuronal

Importa la red ya entrenada en formato ONNX.

```
dataDir = fullfile(tempdir,"OpenPose");
```

2- Ejecute la última celda del notebook para visualizar el movimiento del marcador ¿Detecta algún problema del tracking?

	Actividad opcional: modifique su código para que haga la estimación para cada frame. Use como ejemplo la actividad C donde se hace la lectura de los frame de un video.