$$\frac{E \times 104}{f(x) = 4 + xe^{-x}}$$
 $I = [-1; 0]$

1.
$$f'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x)$$
 Signe de f' : $e^{-x} > 0$ $| 1-x>0$

Toujours $| x| - 1$
 $f'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x)$ Signe de f' : $e^{-x} > 0$ $| 1-x>0$
 $| x| - 1$
 $| x| - 1$

2. f est craissante sur I et manure 1-e \(\frac{1}{2} \) \(\frac{1}{2} \) donc \(\frac{1}{2} \) = 0 aduet
une solution \(\text{unique} \) unique \(\pi \) sur \(\text{I} \).

×	-0,57	-0,569	-0,568	-0,567	+0,566				
f(x)	-0,00\$9	-0,0051	-0,0024	0,0004	0,0032				
-0,0024202004									
			4						
		0	(~ - 0, "	567					

$$f(x) = \frac{1-x}{1+x} \qquad I = J-1; +\infty \left[\rightarrow f(x) = 1-2x+2x^2+x^2 \in (x) \right] \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Tangente en
$$O: y = 1-2x$$

Position de
$$e$$
 par rapport à $T: f(x) - (1-2x) = 2x^2$

Signe de
$$2x^2$$
: x

×	-1	+00	f(x)-(1-2x)>0	sur	I
2x2	4	=/	f(x) > (4-2x)		

Dorc pour tout « voisin de O, le est ou-dessus de T.

