Variant calling

What are genetic variants

SNP (single-nucleotide polymorphism)

— a mutation or substitution of a single nucleotide that occurs at a specific position in the genome with at least certain frequency (e.g. > 1%).

SNV (single-nucleotide variant)

Similar like SNP, but no frequency requirement

InDel

Insertion or deletion of one or multiple nucleotides in the genome

Structural variation

 the variation in structure of the genome, including duplication, insertion, deletion, inverision, copy-number variation, etc.

Identification of SNPs (SNP calling)

Reads

Single-nucleotide polymorphism (SNP) is the most common genetic variation among individuals. Next-generation sequencing technology provide a cost-effective tool for SNP detection.

 $P(g|D) = Prior(g).P(D|g) / \Sigma Prior(x).P(D|x)$

SNP calling algorithm may consider:

- Sequencing quality
- Alignment uniqueness and accuracy
- Likelihood calculation based on observed data
- Prior probability (dbSNP or other resource)

ATGACGGTATGCT Reference -ACGAGAT **ACGAGAT ACGAGAT ACGAGAT ACGGGAT ACGGGAT ACGAGAT**

Variant calling format (VCF)

```
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN.Number=1.Type=Integer.Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseORankSum.Number=1.Type=Float.Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth; some reads may have been filtered">
##INFO=<ID=DS,Number=0,Type=Flag,Description="Were any of the samples downsampled?">
##INFO=<ID=Dels,Number=1,Type=Float,Description="Fraction of Reads Containing Spanning Deletions">
##INFO=<ID=FS,Number=1,Type=Float,Description="Phred-scaled p-value using Fisher's exact test to detect strand bias">
##INFO=<ID=HaplotypeScore, Number=1, Type=Float, Description="Consistency of the site with at most two segregating haplotypes">
##INFO=<ID=InbreedingCoeff,Number=1,Type=Float,Description="Inbreeding coefficient as estimated from the genotype likelihoods per-sample when compared
against the Hardy-Weinberg expectation">
##INFO=<ID=MLEAC, Number=A, Type=Integer, Description="Maximum likelihood expectation (MLE) for the allele counts (not necessarily the same as the AC), f
or each ALT allele, in the same order as listed">
##INFO=<ID=MLEAF, Number=A, Type=Float, Description="Maximum likelihood expectation (MLE) for the allele frequency (not necessarily the same as the AF),
for each ALT allele, in the same order as listed">
##INFO=<ID=MO.Number=1.Type=Float.Description="RMS Mapping Quality">
##INFO=<ID=M00,Number=1,Type=Integer,Description="Total Mapping Quality Zero Reads">
##INFO=<ID=MORankSum,Number=1,Type=Float,Description="Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities">
##INFO=<ID=QD, Number=1, Type=Float, Description="Variant Confidence/Quality by Depth">
##INFO=<ID=RPA, Number=., Type=Integer, Description="Number of times tandem repeat unit is repeated, for each allele (including reference)">
##INFO=<ID=RU.Number=1.Type=String.Description="Tandem repeat unit (bases)">
##INFO=<ID=ReadPosRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias">
##INFO=<ID=STR,Number=0,Type=Flag,Description="Variant is a short tandem repeat">
##contig=<ID=gb|BK006935.2|,length=230218>
##reference=file:///home/lijun/Day1/Variant_calling/S288C_Chromosome_I.fasta
#CHROM POS
                                              FILTER INFO
                                                               FORMAT exomeSM
                               ALT
ab1BK006935.21 32
                                               42.77 .
                                                               AC=1;AF=0.500;AN=2;BaseORankSum=0.615;DP=19;Dels=0.00;FS=0.000;HaplotypeScore=13.5644;
MLEAC=1:MLEAF=0.500:MO=60.00:MO0=0:MORankSum=-0.280:OD=2.25:ReadPosRankSum=-0.615 GT:AD:DP:GO:PL 0/1:16,3:19:71:71,0,504
             ##fileformat=VCFv4.0
                                                                                          Mandatory header lines
             ##fileDate=20100707
             ##source=VCFtools
                                                                                                     Optional header lines (meta-data
             ##reference=NCBI36
                                                                                                     about the annotations in the VCF body)
             ##INF0=<ID=AA, Number=1, Type=String, Description="Ancestral Allele
        header
             ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
             ##FORMAT=<ID=GT.Number=1.Type=String.Description="Genotype"
             ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality (phred score)">
             ##FORMAT=<ID=GL, Number=3, Type=Float, Description="Likelimoods for RR, RA, AA genotypes (R=ref, A=alt)">
             ##FORMAT=<ID=DP.Number=1.Type=Integer.Description="Read Depth">
             ##ALT=<ID=DEL,Description="Deletion">
             ##INFO=<ID=SVTYPE.Number=1.Type=String.Description="Type of structural variant">
             ##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
                                                                                                                    Reference alleles (GT=0)
             #CHROM POS ID
                                 REF ALT
                                              QUAL FILTER INFO
                                                                                    FORMAT
                                                                                               SAMPLE1 SAMPLE2
                                                                                                         0/0:29
                                 ACG_A,AT
                                                                                   GT:DP
                                                                                               1/2:13
                       1
                                                    PASS
                       2
                                      T, CT
                                                    PASS
                                                                                               0 1:100 2/2:70
                          rs1
                                                            H2; AA=T
                                                                                   GT:GO
                                                    PASS
                                                                                   GT:GO
                                                                                                1 0:77
                                                                                                         1/1:95
                                                                                                                    Alternate alleles (GT>0 is
                     100
                                       <DEL>
                                                            SVTYPE=DEL; END=300
                                                                                   GT:GQ:DP
                                                                                               1/1:12:3 0/0:20
                                                                                                                    an index to the ALT column)
                                                            Other event
             Deletion
                                                                                      Phased data (G and C above
                          SNP
                                                  Insertion
                                                                                      are on the same chromosome)
                                     Large SV
```

Criteria to filter SNPs (or other variants)

Hard filter

- QUAL (Phrep quality) 20
- DP (Depth) 5
- QD (QualByDepth) 2
- AC (Total number of alternate alleles called) 2
- RPB (Mann-Whitney U test of Read Position Bias (bigger is better))
- FS (FisherStrand) 60
- MQ (RMSMappingQuality) 40
- MQRankSum (MappingQualityRankSumTest) 12.5
- ReadPosRankSum (ReadPosRankSumTest) 8.0

Soft filter

- Variant Quality Score Recalibration (VQSR)
- Add filter information instead of remove variants

Softwares for SNP calling

- Samtools/bcftools
 - Complete solution for variant discovery
 - Hard and soft filter
 - Multiplody supported

GATK

- Complete solution for variant discovery
- Both hard filter and soft (self-learned) filter (e.g. human data)
- Multiplody supported

Freebayes

- Variant calling
- Hard filter
- Multiplody supported, population or pool sample supported

Variant calling in metagenome

- Difficulty
 - a mixture of genome DNA
 - Highly variable abundance
 - Multiple strains for each species
 - Higher uncertainty in alignment

- Software available
 - Freebayes

Why Freebayes works better for calling variants in metagenomes?

- Not precise alignment based
- Flexible ploidy
- Capable to deal with pool samples
- Population diversity incorporated

Important parameters in Freebayes

 -T (theta) -- The expected mutation rate or pairwise nucleotide diversity

-p -- ploidy

-J -- pooled-discrete

-K --pooled-continuous

Visualize the variants

Open IGV and go to "Genome"-> "load genome from file",
 then select "contig.fa" in your pc

Transfer these files to your pc

Load bam alignment "contig.sort.bam"

 Go to "Tools" -> "Run igvtools", "Browse" your vcf file " contig.bam.vcf" and select command "Index". Click "Run"

Load vcf file "contig.bam.vcf"

What you see is like

Practice

- Map yeast reads to the reference genome and refine the alignment
- Call variants using bcftools
- Filter the variants
- Call variants in the demo metagenome data
- Filter the variants using vcffilter
- Visualize the variants