- (a) $bab+a^*b+(ab)^*b^*$. (b) $(bab+a^*b+(ab)^*b^*)^*$. (c) $a(bab+a^*b+(ab)^*b^*)^*(a+b)^*$.
- 20. Considere os seguintes autómatos.

Em cada caso,

- (a) indique o sistema de equações lineares que lhe está associado; (sugestão para o autómato \mathcal{C} : adaptar o sistema associado fazendo $s_j = \varepsilon$ se fecho $_{\varepsilon}(j) \cap F \neq \emptyset$, e fazendo $s_j = \emptyset$ caso contrário)
- (b) resolva o sistema e determine uma expressão regular que represente a linguagem reconhecida pelo autómato.
- 21. Recorrendo à elaboração de autómatos e usando sistemas de equações lineares, determine uma expressão regular que represente cada uma das seguintes linguagens sobre o alfabeto $A = \{a, b, c\}$.
 - (a) $L_1 = \{ u \in A^* : |u|_b \le 1 \}.$
 - (b) $L_2 = \{ u \in A^* : |u|_a \text{ \'e par} \}.$
 - (c) $L_3 = \{u \in A^* : u \text{ tem uma e uma só ocorrência do factor } ab\}.$
- 22. Sejam $A = \{a, b\}$ um alfabeto e $L = A^*(ab)^+$.
 - (a) Determine todos os resíduos da linguagem L.
 - (b) Deduza que L é reconhecível.
- 23. Considere o alfabeto $A = \{a, b\}$ e o autómato \mathcal{A} descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares.
- (b) Determine o autómato minimal equivalente ao autómato dado.

24. Considere os autómatos \mathcal{A}_1 e \mathcal{A}_2 representados respetivamente por

e para cada um destes autómatos:

- (a) Calcule um autómato determinista completo e acessível que lhe seja equivalente.
- (b) Determine o autómato minimal que lhe é equivalente.
- 25. Considere o alfabeto $A = \{a, b, c\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares.
- (b) Indique um autómato determinista e acessível que reconheça $L(A)^*$.
- (c) Determine o autómato minimal que reconhece $L(A)^*$.
- 26. Considere o alfabeto $A=\{a,b,c\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine duas palavras de comprimento maior do que 7 que sejam aceites pelo autómato \mathcal{A} .
- (b) Determine L(A), utilizando o método das equações lineares.
- (c) Indique um autómato síncrono determinista que reconheça $L(\mathcal{A}) \cup \mathcal{L}(a^*b^*)$.

- 27. Seja $A = \{0, 1\}$. Considere as linguagens:
 - \bullet L_1 constituída pelas palavras sobre A que têm pelo menos um algarismo repetido;
 - L_2 constituída pelas palavras sobre A que têm um número par de ocorrências do símbolo 1 e um número ímpar de ocorrências do símbolo 0.
 - (a) Para cada uma das linguagens anteriores, determine um autómato que a reconhece.
 - (b) Para cada uma das linguagens anteriores, indique uma expressão regular que a represente.
 - (c) Determine o autómato minimal que reconhece L_1 :
 - i. determinando-o por minimização do autómato calculado anteriormente;
 - ii. usando a construção com base no cálculo de resíduos.
- 28. Seja $A = \{a, b, c\}$ um alfabeto. Considere os seguintes autómatos finitos:
 - (i) $\mathcal{B}_1 = (\{1,2,3,4\}, A, \delta_1, 1, \{2,3\})$ em que a função de transição δ_1 é definida pela tabela abaixo.

δ_1	1	2	3	4
a	$\{2,4\}$	{3}	Ø	{4}
b	{1}	Ø	Ø	{1}
c	{1}	Ø	Ø	{1}

(ii) $\mathcal{B}_2 = (\{1,2,3,4\}, A, \delta_2, 1, \{3,4\})$ em que a função de transição δ_2 é definida pela tabela abaixo.

δ_2	1	2	3	4
a	{3}	{2}	{4}	{2}
b	{1}	{1}	{1}	{1}
c	{1}	{1}	{1}	{1}

(iii) $\mathcal{B}_3 = (\{1,2,3,4\}, A, \delta_3, 1, \{3,4\})$ em que a função de transição δ_3 é definida pela tabela abaixo.

δ_3	1	2	3	4
a	{1}	$\{1, 3\}$	{4}	Ø
b	{2}	{1}	Ø	Ø
c	{2}	{1}	Ø	Ø

De entre as afirmações seguintes selecione a afirmação verdadeira.

- (a) \mathcal{B}_2 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (b) \mathcal{B}_1 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (c) \mathcal{B}_1 , \mathcal{B}_2 e \mathcal{B}_3 são autómatos equivalentes.
- (d) \mathcal{B}_2 e \mathcal{B}_3 são autómatos e acessíveis e são equivalentes.
- 29. Considere o alfabeto $A = \{a, b, c\}$ e o autómato \mathcal{A} descrito na figura abaixo.

- (a) Determine uma palavra, que admite o factor c^2a^3c , reconhecida pelo autómato \mathcal{A} e verifique se \mathcal{A} é determinista.
- (b) Determine um autómato que seja determinista, completo e acessível e que reconheça a linguagem L(A).
- (c) Determine um autómato que seja determinista e acessível e que reconheça a linguagem $L(A)^*$.
- (d) Calcule $L(A)^*$.
- 30. Sejam A um alfabeto e $L \subseteq A^*$ uma linguagem reconhecível. Mostre que $A^* \setminus L$ é uma linguagem reconhecível.
- 31. Seja $A = \{a, b\}$. Mostre que são reconhecíveis as linguagens:
 - (a) $a^{-1}A^*abaA^*$;
- (b) $(abab)^{-1}A^*abaA^*$.
- 32. Sejam A um alfabeto, $u \in A^*$ e L uma linguagem sobre A. Supondo que L é reconhecível, mostre que $u^{-1}L$ é uma linguagem reconhecível.
- 33. Elabore uma pequena pesquisa de modo a responder às questões seguintes.
 - (a) Sejam A um alfabeto e L_1 e L_2 linguagens sobre A reconhecíveis. Mostre que:
 - i. $L_1 \cap L_2$ é uma linguagem reconhecível;
 - ii. $L_1 \setminus L_2$ é uma linguagem reconhecível.
 - (b) Seja $A = \{a, b, c\}$. Mostre que são reconhecíveis as linguagens:
 - i. K_1 constituída pelas palavras com um número par de ocorrências de a e que admitem bc como factor.
 - ii. K_2 constituída por todas as palavras que têm um número par de ocorrências de a e que não têm ca^2 como fator.