

WIFI SSID:SparkAlSummit | Password: UnifiedAnalytics

databricks

Using Deep Learning on Apache Spark to diagnose thoracic pathology from chest X-rays

Yuhao Yang, Intel Bala Chandrasekaran, Dell EMC

#UnifiedAnalytics #SparkAlSummit

Agenda

- Problem statement
- Analytics Zoo
- Chest Xray Model architecture
- Results and Observations

Predicting diseases in Chest X-rays

- Develop a ML pipeline in Apache Spark and train a deep learning model to predict disease in Chest X-rays
 - An integrated ML pipeline with Analytics Zoo on Apache Spark
 - Demonstrate feature engineering and transfer learning APIs in Analytics Zoo
 - Use Spark worker nodes to train at scale

CheXNet

- Developed at Stanford University, CheXNet is a model for identifying thoracic pathologies from the NIH ChestXray14 dataset
- https://stanfordmlgroup.github.io/projects/chexnet/

X-ray dataset from NIH

- 112,120 images from over 30000 patients
- Multi label (14 diseases)

00000013_005.png,Emphysema | Infiltration | Pleural_Thickening 00000013_006.png,Effusion|Infiltration 00000013_007.png,Infiltration 00000013_008.png,No Finding

- Unbalanced datasets
 - Close to 50% of the images have 'No findings'
 - Infiltration get the most positive samples (19894) and Hernia get the least positive samples (227)

Analytics Zoo

Analytics Zoo

Distributed TensorFlow, Keras and BigDL on Apache Spark

Reference Use Cases	Anomaly detection, sentiment analysis, fraud detection, chatbot, sequence prediction, etc.
Built-In Deep Learning Models	Image classification, object detection, text classification, recommendations, sequence-to-sequence, anomaly detection, etc.
Feature Engineering	Feature transformations for Image, text, 3D imaging, time series, speech, etc.
High-Level Pipeline APIs	 Distributed TensorFlow and Keras on Spark Native deep learning support in Spark DataFrames and ML Pipelines Model serving API for model serving/inference pipelines
Backends	Spark, TensorFlow, Keras, BigDL, OpenVINO, MKL-DNN, etc.

https://github.com/intel-analytics/analytics-zoo/

Bringing Deep Learning To Big Data Platform

- Distributed deep learning framework for Apache Spark*
- Make deep learning more accessible to big data users and data scientists
 - Write deep learning applications as standard Spark programs
 - Run on existing Spark/Hadoop clusters (no changes needed)
- Feature parity with popular deep learning frameworks
 - E.g., Caffe, Torch, Tensorflow, etc.
- High performance (on CPU)
 - Built-in Intel MKL and multi-threaded programming
- Efficient scale-out
 - Leveraging Spark for distributed training & inference

https://github.com/intel-analytics/BigDL

https://bigdl-project.github.io/

Architecture

- Training using synchronous mini-batch SGD
- Distributed training iterations run as standard Spark jobs

Parameter Synchronization

Integrated Pipeline for Machine Learning and Deep Learning

Source: https://spark.apache.org/docs/2.1.1/ml-pipeline.html#estimators

Building the X-ray Model

Let's build the model

Read the X-ray images as Spark DataFrames

 Initialize NNC ontext and load Xray images into DataFrames using NNImageReader

 Process loaded X-ray images and add labels (another DataFrame) using Spark transformations

Feature Engineering – Image Pre-processing

Transfer Learning using ResNet-50 trained with ImageNet

Defining the model with Transfer Learning APIs

- Load a pre-trained model using Net.load_bigdl. The model is trained with ImageNet dataset
 - ResNet 50
 - VGG16
 - DenseNet
 - Inception
- Remove the final softmax layer of ResNet-50
- Add new input (for resized x-ray images) and output layer (to predict the 14 diseases). Activation function is Sigmoid
- Avoid overfitting
 - Regularization
 - Dropout

Define the Optimizer

Read the X-ray images Feature Engineering Define the model Define optimizer Training the model

- Evaluated two optimizers: SGD and Adam Optimizer
- Learning rate scheduler is implemented in two phases:
 - Warmup + Plateau schedule
 - Warmup: Gradually increase the learning rate for 5 epochs
 - Plateau: Plateau("Loss", factor=0.1, patience=1, mode="min", epsilon=0.01, cooldown=0, min_lr=1e-15)

Train the model using ML Pipelines

Read the X-ray images

Feature Engineering

Define the model

Define optimizer

Training the model

- Analytics Zoo API NNEstimator to build the model
- .fit() produces a neural network model which is a Transformer
- You can now run .predict() on the model for inference
- AUC-RoC is used to measure the accuracy of the model. Spark ML pipeline API *BinaryClassificationEvaluator* to determine the AUC-ROC for each disease.

Results and observations

Spark parameter recommendations

- Number of executors

 Number of compute nodes
- Number of executor cores

 Number of physical cores minus two
- Executor memory

Number of cores per executor * (Memory required for each core + data partition)

Impact on Learning Rate Scheduler

- Adam (with Learning Rate Scheduler) outperforms SGD
- Learning rate scheduler helps is covering the model much faster

Base model comparison

Batch size and Scalability

Two factors:

- Batches per thread (mini-batch): Number of images in a iteration per worker
- Global batch size: Batches per thread * Number of workers
- Batch size is a critical parameter for model accuracy as well as for distributed performance
 - Increasing the batch size increases parallelism
 - Increasing the batch size may lead to a loss in generalization performance especially

Scalability

3x speed up from 4 nodes to 16 nodes. ~ 2.5 hours to train the model

Future Work

- Study the scalability of the model beyond 16 nodes
 - Implement LARS and other advanced learning rate scheduler for large scale training
- Develop performance characteristic and sizing guidelines for image classification problems

Links

Code and white paper available at https://github.com/dell-ai-engineering/BigDL-lmageProcessing-Examples

Acknowledgements

(Alphabetical)

Mehmood Abd, Michael Bennett, Sajan Govindan, Jenwei Hsieh, Andrew Kipp, Dharmesh Patel, Leela Uppuluri, and Luke Wilson

SEARCH SPARK + AI SUMMIT

Distributed training in BigDL

Distributed Training in BigDL

Read the X-ray images as Spark DataFrames

 Initialize NNC ontext and load Xray images into DataFrames using NNImageReader

Process loaded X-ray images and add labels (another DataFrame) using Spark transformations

Feature Engineering – Image Preprocessing

RowTolmage() ImageCenterCrop() ImageFlip() ImageChannelNormalize() ImageMatToTensor()

Built in Feature engineering API -ChainedPreprocessing

Defining the model with Transfer Learning APIs

- Load a pre-trained model. The model is trained with ImageNet dataset
- Remove the final softmax layer of ResNet-50
- Add new input (for resized Xray images) and output layer (to predict the 14 diseases)
- Activation function is Sigmoid
- Used regularizations to avoid overfitting

Define the Optimizer

- Evaluated two optimizers: SGD and Adam Optimizer
 - Adam outperforms SGD
- Learning rate scheduler is implemented in two phases:
 - Warmup: Gradually increase the learning rate for 5 epochs
 - Cool down: Hold the learning rate for a few epochs before cooling down till desired accuracy is achieved

Train the model using ML Pipelines

- Analytics Zoo API NNEstimator to build the model
- .fit() produces a neural network model which is a Transformer
- You can now run .predict() on the model for inference
- AUC-RoC is used to measure the accuracy of the model. Spark ML pipeline API BinaryClassificationEvaluator to determine the AUC-ROC for each disease.