CSCI 335 Software Design and Analysis III

Graph Algorithms

(Negative costs, Acyclic Graphs, Event-node graphs)

Negative edge costs

- Dijkstra may not work
- If there are no negative-cost cycles solution exists, but is expensive: $O(|V|^*|E|)$.


```
void Graph::WeightedNegative(Vertex s) {
    Queue<Vertex> q;
    for each Vertex v
                                   No KNOWN vertices
        v.distance = kInfinity;
                                   Vertex can be enqueued/dequeued
    s.distance_ = 0;
                                     multiple times
    q.enqueue(s);
                                   No priority queue
    while (!q.isEmpty()) {
        Vertex v = q.dequeue();
        for each Vertex w adjacent to v
            if (v.distance_ + cvw < w.distance_ ) {</pre>
                w.distance = v.distance + cvw;
                w.previous = v;
                if (w is not already in q)
                    q.enqueue(w);
```

Acyclic graphs

• Improvement?

Acyclic graph: example

Acyclic graphs

- Dijkstra can be improved by selecting nodes in topological order
- Algorithm in one pass: select nodes and update distances
 - => linear time O(|V|+|E|)

Activity-node graph

Acyclic graph

Nodes are tasks with their duration In the above graph: D can start only after A and B are done, etc. Can model construction projects etc.

Event-node graph

Edges: Task / Duration

Acyclic graph

Earliest-completion time

• Earliest-completion time of project = ?

Earliest-completion time

- Earliest-completion time of project =
 length of <u>longest path</u> from start to finish
- Be aware of positive-cost cycles
- Acyclic graphs do not pose such a problem

Earliest-completion time

EC_i: earliest completion time of node i

Then

$$EC_1 = 0$$

 $EC_w = max(EC_v + c_{v,w})$ over all (v,w) in E

Earliest completion time

Algorithm for acyclic graphs provides solution in linear time.

How?

Critical paths

• Latest completion time of each task:

latest time a task can be accomplished without affecting final completion time.

Critical paths

- Latest completion time of each task: latest time a task can be accomplished without affecting final completion time.
- Go from finish to start:

$$LC_n = EC_n$$
 (last node)

$$LC_v = min(LC_w - c_{v,w})$$
 over all (v,w) in E

Latest completion times

Critical paths

 Slack time of each edge: how much activity can be delayed without affecting completion time

Slack
$$(v,w) = LC_w - EC_v - C_{v,w}$$
 ECv
 v
 v
 ECv,w
 w

Critical path: Path from start->finish with zero-slack edges

Latest