

Advanced Process Mining

Summer Semester 2020

Lecture XII: Stream Based Process Mining

dr.ir. Sebastiaan J. van Zelst

- Motivation
- Streaming Data (Theory)
- Stream Based Discovery
- Online Alignments

- Motivation
- Streaming Data (Theory)
- Stream Based Discovery
- Online Alignments

Streaming Data Motivation

https://directtvlatam-aem65-prod.adobecqms.net/content/dam/public-sites/channels/caribbean/tt/1742.png https://www.stadt-butzbach.de/wp-content/uploads/warning-sign-30915_1280-1.png

Streaming Data Motivation

https://directtvlatam-aem65-prod.adobecqms.net/content/dam/public-sites/channels/caribbean/tt/1742.png https://www.stadt-butzbach.de/wp-content/uploads/warning-sign-30915_1280-1.png

- Motivation
- Streaming Data (Theory)
- Stream Based Discovery
- Online Alignments

• Let's assume, we observe an infinite sequence of numbers

• Let's assume, we observe an infinite sequence of numbers

5

• Let's assume, we observe an infinite sequence of numbers

37

• Let's assume, we observe an infinite sequence of numbers

1,337

• Let's assume, we observe an infinite sequence of numbers

145,327,243

• Let's assume, we observe an infinite sequence of numbers

16,531

• Let's assume, we observe an infinite sequence of numbers

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 264 observable numbers

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- maintain a counter per value (again, an unsigned long)

- 1. c(x) = 0 for each $x \in \{0, ..., 2^{64}\}$
- **2.** i = 1
- 3. while true:
- c(S(i))++ // S represents 'the stream of numbers'
- 5. i++

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- maintain a counter per value (again, an unsigned long)

	number	value	
	0	8 byte	
	1	8 byte	
2 ⁶⁴ rows	2	8 byte	
Z° IOWS	3	8 byte	
	4	8 byte	
	5	8 byte	
	•••		

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- maintain a counter per value (again, an unsigned long)

147,573,952,589,676,412,928 bytes

	U	8 Dyte
	1	8 byte
2 ⁶⁴ rows	2	8 byte
2° 10WS	3	8 byte
	4	8 byte
	5	8 byte
	•••	

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- maintain a counter per value (again, an unsigned long)

147,573,952,589,676,412,928 bytes 144,115,188,075,855,872 KB

1		
2 ⁶⁴ rows	2	8 byte
2° 10WS	3	8 byte
	4	8 byte
	5	8 byte

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 264 observable numbers
- maintain a counter per value (again, an unsigned long)

147,573,952,589,676,412,928 bytes 144,115,188,075,855,872 KB 140,737,488,355,328 MB

3	8 byte
4	8 byte
5	8 byte

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 264 observable numbers
- maintain a counter per value (again, an unsigned long)

147,573,952,589,676,412,928 bytes 144,115,188,075,855,872 KB 140,737,488,355,328 MB 137,438,953,472 GB

-	Obyto
5	8 byte

22

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- maintain a counter per value (again, an unsigned long)

147,573,952,589,676,412,928 bytes 144,115,188,075,855,872 KB 140,737,488,355,328 MB 137,438,953,472 GB 134,217,728 TB

Counting Numbers

 Let's assume, we observe an infinit unsigned 'long' values, i.e., maintain a counter per v>' 147,573,952*.51* J5,872 KB ್ರೆ,355,328 MB رة,438,953,472 GB 134,217,728 TB

Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- Let $h: \mathbb{N} \to \{0, ..., n\}$ here n is much smaller than $|\mathbb{N}|$
 - i.e. hash function

25

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- Let $h: \mathbb{N} \to \{0, ..., n\}$ here n is much smaller than $|\mathbb{N}|$
- Consider n = 4, and h(i) = i mod 5

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 264 observable numbers
- Let $h: \mathbb{N} \to \{0, ..., n\}$ here n is much smaller than $|\mathbb{N}|$
- Consider n = 4, and h(i) = i mod 5
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...

- Let's assume, we observe an infinite sequence of numbers
- unsigned 'long' values, i.e., 2⁶⁴ observable numbers
- Let $h: \mathbb{N} \to \{0, ..., n\}$ here n is much smaller than $|\mathbb{N}|$
- Take k hash functions of size n, i.e., h₁, h₂, ..., h_k

hash ranges

		1	2	3	4	5	6	7	8		n
	1	0	0	0	0	0	0	0	0	0	0
Suc	2	0	0	0	0	0	0	0	0	0	0
functions	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0
hash	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
↓	k	0	0	0	0	0	0	0	0	0	0

• Receive 1st number: 5

hash ranges

		1	2	3	4	5	6	7	8		n
	1	0	0	0	0	0	0	0	0	0	0
Suc	2	0	0	0	0	0	0	0	0	0	0
functions	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0
hash	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
Ţ	k	0	0	0	0	0	0	0	0	0	0

- Receive 1st number: 5
- Calculate h₁(5)

hash range	es
------------	----

		1	2	3	4	5	6	7	8		n
	1	0	0	0	0	0	0	0	0	0	0
Suc	2	0	0	0	0	0	0	0	0	0	0
functions	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0
hash	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
Ţ	k	0	0	0	0	0	0	0	0	0	0

Counting Numbers

Receive 1st number: 5

hash ranges

• Calculate $h_1(5) = 4$

				¥						
	1	2	3	4	5	6	7	8		n
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
k	0	0	0	0	0	0	0	0	0	0

Counting Numbers

Receive 1st number: 5

hash ranges

• Calculate $h_1(5) = 4$

,	1	2	3	4	5	6	7	8		n
1	0	0	0	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
k	0	0	0	0	0	0	0	0	0	0

Counting Numbers

Receive 1st number: 5

• Calculate $h_2(5) = 2$

hash r	anges
--------	-------

		1	2	3	4	5	6	7	8		n
	1	0	0	0	1	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
1	k	0	0	0	0	0	0	0	0	0	0

Counting Numbers

Receive 1st number: 5

• Calculate $h_2(5) = 2$

hash r	anges
--------	-------

		1	2	3	4	5	6	7	8		n
	1	0	0	0	1	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
1	k	0	0	0	0	0	0	0	0	0	0

Counting Numbers

Receive 1st number: 5

has ranges

• Calculate $h_3(5) = 7$

											\longrightarrow
		1	2	3	4	5	6	7	8		n
1	1	0	0	0	1	0	0	0	0	0	0
2	2	0	1	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	1	0	0	0
4	1	0	0	0	0	0	0	0	0	0	0
5	5	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0
, k	ζ .	0	0	0	0	0	0	0	0	0	0

- Receive 1st number: 5
- Calculate the hash value of each hash function

		1	2	3	4	5	6	7	8		n
	1	0	0	0	1	0	0	0	0	0	0
ions	2	0	1	0	0	0	0	0	0	0	0
functio	3	0	0	0	0	0	0	1	0	0	0
	4	0	0	1	0	0	0	0	0	0	0
hash	5	0	0	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	0
↓	k	0	0	0	0	0	0	0	1	0	0

Counting Numbers

- Receive 2nd number: 37
- Calculate the hash value of each hash function

		1	2	3	4	5	6	7	8		n
	1	1	0	0	1	0	0	0	0	0	0
Suc	2	0	1	1	0	0	0	0	0	0	0
functions	3	0	0	0	0	0	1	1	0	0	0
	4	0	0	1	1	0	0	0	0	0	0
hash	5	0	0	0	1	0	0	1	0	0	0
		0	1	0	0	0	0	0	0	1	0
↓	k	1	0	0	0	0	0	0	1	0	0

Counting Numbers

- Receive 3^d number: 1,337
- Calculate the hash value of each hash function

		1	2	3	4	5	6	7	8		n
	1	1	1	0	1	0	0	0	0	0	0
ions	2	0	1	1	0	0	0	0	0	0	1
function	3	0	0	0	0	1	1	1	0	0	0
	4	0	0	2	1	0	0	0	0	0	0
hash	5	0	1	0	1	0	0	1	0	0	0
		0	1	1	0	0	0	0	0	1	0
↓	k	1	1	0	0	0	0	0	1	0	0

Counting Numbers

- Receive 3^d number: 1,337
- Calculate the hash value of each hash function

		hash r	anges								
			2	3	4	5	6	7	8		n
	1	1	1	0	1	0	0	0	0	0	0
Suc	2	0	>	1	hash	collisio	n: both	n 5 and	1,337	map to	1
functions	3	0	0	0			for has				0
	4	0	0 (2	1	0	0	0	0	0	0
hash	5	0	1	0	1	0	0	1	0	0	0
		0	1	1	0	0	0	0	0	1	0
Ţ	k	1	1	0	0	0	0	0	1	0	0

- Query: How many times did we observe number 5?
- Calculate the hash value of each hash function

		1	2	3	4	5	6	7	8		n
	1	1	1	0	1	0	0	0	0	0	0
Suc	2	0	1	1	0	0	0	0	0	0	1
function	3	0	0	0	0	1	1	1	0	0	0
	4	0	0	2	1	0	0	0	0	0	0
hash	5	0	1	0	1	0	0	1	0	0	0
		0	1	1	0	0	0	0	0	1	0
↓	k	1	1	0	0	0	0	0	1	0	0

- Query: How many times did we observe number 5?
- Calculate the hash value of each hash function

		1	2	3	4	5	6	7	8		n
- 1	1	1	1	0	1	0	0	0	0	0	0
Suc	2	0	1	1	0	0	0	0	0	0	1
functions	3	0	0	0	0	1	1	1	0	0	0
	4	0	0	2	1	0	0	0	0	0	0
hash	5	0	1	0	1	0	0	1	0	0	0
		0	1	1	0	0	0	0	0	1	0
↓	k	1	1	0	0	0	0	0	1	0	0

Counting Numbers

hash ranges

Query: How many times did we observe

Calculate the hash value of each har

			900					_			\longrightarrow
		1	2	3				7	8		n
	1	1	1	•			0	0	0	0	0
Suc	2	0	1			0	0	0	0	0	1
functions	3	0			0	1	1	1	0	0	0
	4			2	1	0	0	0	0	0	0
hash	5	L W	1	0	1	0	0	1	0	0	0
		0	1	1	0	0	0	0	0	1	0
↓	k	1	1	0	0	0	0	0	1	0	0

Streaming Data Counting Numbers

- Query: How many times did we observe number 5?
- Calculate the hash value of each hash function
- Every value in each cell can be seen as follows:

number of occurrences of 5

number of occurrences of others

- Query: How many times did we observe number 5?
- Calculate the hash value of each hash function
- Every value in each cell can be seen as follows:

- Looking at all cells for value 5, we see:
- h₁
- h₂
- h₃
- •
- h_k

- Query: How many times did we observe number 5?
- Calculate the hash value of each hash function
- Every value in each cell can be seen as follows:

number of occurrences of others

Looking at all cells for value 5, we see:

*h*₃ minimizes 'collisions' for number 5

hence, it is closest to the true number of occurrences...

• h_k

Streaming Data Counting Numbers

- Count-Min-Sketch:
- Memory: O(kn)

- Count-Min-Sketch:
- Memory: O(kn)

- Let N denote the number of elements seen so far
- Let $\epsilon, \delta \in [0,1]$
- If we let: $k = \lceil \ln \left(\frac{1}{\delta}\right) \rceil$ and $n = \lceil \frac{e}{\epsilon} \rceil$ then:
- $\widehat{x_i} \le x_i + \epsilon N$ with probability 1δ

Streaming Data Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

```
\begin{array}{l} n \leftarrow 0; T \leftarrow \emptyset; \\ \text{for each } i: \\ \begin{cases} n \leftarrow n+1; \\ \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; \\ \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ \text{else for all } j \in T \end{cases} \\ \text{do } \begin{cases} c_j \leftarrow c_j-1; \\ \text{if } c_j = 0 \\ \text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{array}
```


Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 5

num	val
5	1

$$\begin{aligned} n &\leftarrow 0; T \leftarrow \emptyset; \\ &\text{for each } i: \\ &\begin{cases} n \leftarrow n+1; \\ &\text{if } i \in T \\ &\text{then } c_i \leftarrow c_i+1; \\ &\text{else if } |T| < k-1 \\ &\text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ &\text{else for all } j \in T \end{cases} \\ &\text{do } \begin{cases} c_j \leftarrow c_j-1; \\ &\text{if } c_j = 0 \\ &\text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{aligned}$$

Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 13

num	val
5	1
13	1

Algorithm 3.1: FREQUENT(k)

$$n \leftarrow 0; T \leftarrow \emptyset;$$
 for each i :
$$\begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; & \text{else for all } j \in T \end{cases} \\ \text{do } \begin{cases} c_j \leftarrow c_j-1; & \text{if } c_j=0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases}$$

Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 1337

num	val
5	1
13	1
1337	1

$$\begin{aligned} n &\leftarrow 0; T \leftarrow \emptyset; \\ &\text{for each } i: \\ &\begin{cases} n \leftarrow n+1; \\ &\text{if } i \in T \\ &\text{then } c_i \leftarrow c_i+1; \\ &\text{else if } |T| < k-1 \\ &\text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ &\text{else for all } j \in T \end{cases} \\ &\text{do } \begin{cases} c_j \leftarrow c_j-1; \\ &\text{if } c_j = 0 \\ &\text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{aligned}$$

Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: ...

num	val
5	1
13	1
1337	1
•••	

$$\begin{aligned} n &\leftarrow 0; T \leftarrow \emptyset; \\ &\text{for each } i: \\ &\begin{cases} n \leftarrow n+1; \\ &\text{if } i \in T \\ &\text{then } c_i \leftarrow c_i+1; \\ &\text{else if } |T| < k-1 \\ &\text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ &\text{else for all } j \in T \end{cases} \\ &\text{do } \begin{cases} c_j \leftarrow c_j-1; \\ &\text{if } c_j = 0 \\ &\text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{aligned}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 8

num	val
5	2
13	5
1337	1
	•••

8	1

$$\begin{aligned} n &\leftarrow 0; T \leftarrow \emptyset; \\ &\text{for each } i: \\ &\begin{cases} n \leftarrow n+1; \\ &\text{if } i \in T \\ &\text{then } c_i \leftarrow c_i+1; \\ &\text{else if } |T| < k-1 \\ &\text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ &\text{else for all } j \in T \end{cases} \\ &\text{do } \begin{cases} c_j \leftarrow c_j-1; \\ &\text{if } c_j = 0 \\ &\text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{aligned}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

num	val
5	2
13	5
1337	1
8	1

$$n \leftarrow 0; T \leftarrow \emptyset;$$
 for each i :
$$\begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; & \text{else for all } j \in T \end{cases} \\ & \text{do } \begin{cases} c_j \leftarrow c_j-1; & \text{if } c_j = 0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases} \end{cases}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 175

num	val
5	1
13	4
1337	0
8	0

$$n \leftarrow 0; T \leftarrow \emptyset;$$
 for each i :
$$\begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; & \text{else for all } j \in T \end{cases} \\ & \text{do } \begin{cases} c_j \leftarrow c_j-1; & \text{if } c_j=0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases} \end{cases}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

num	val
5	1
13	4
1337	0
8	0

$$\begin{array}{l} n \leftarrow 0; T \leftarrow \emptyset; \\ \text{for each } i: \\ \begin{cases} n \leftarrow n+1; \\ \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; \\ \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ \text{else for all } j \in T \end{cases} \\ \text{do } \begin{cases} c_j \leftarrow c_j-1; \\ \text{if } c_j = 0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases} \end{array}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

num	val
5	1
13	4

$$n \leftarrow 0; T \leftarrow \emptyset;$$
 for each i :
$$\begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; & \text{else for all } j \in T \end{cases} \\ & \text{do } \begin{cases} c_j \leftarrow c_j-1; & \text{if } c_j = 0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases} \end{cases}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Algorithm 3.1: Frequent(k)

```
n \leftarrow 0; T \leftarrow \emptyset; for each i: \begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k-1 \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; & \text{else for all } j \in T \end{cases} & \text{do } \begin{cases} c_j \leftarrow c_j-1; & \text{if } c_j=0 \\ \text{then } T \leftarrow T \setminus \{j\}; \end{cases} \end{cases}
```

Algorithm 3.3: SPACESAVING(k)

```
egin{aligned} n &\leftarrow 0; \ T &\leftarrow \emptyset; \ 	extbf{for each } i: \ & \begin{cases} n &\leftarrow n+1; \ 	ext{if } i \in T \ 	extbf{then } c_i &\leftarrow c_i+1; \ 	ext{else if } |T| &< k \ 	extbf{then } \begin{cases} T &\leftarrow T \cup \{i\}; \ c_i &\leftarrow 1; \ 	ext{c} i &\leftarrow c_j+1; \ T &\leftarrow T \cup \{i\} \setminus \{j\}; \end{cases} \end{aligned}
```


Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?
- Observe: 8

num	val
5	2
13	5
1337	1
•••	•••
•••	
8	1

Algorithm 3.3: SPACESAVING(k)

```
n \leftarrow 0; \ T \leftarrow \emptyset; for each i: \begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; & \text{else if } |T| < k \\ \text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \end{cases} & \text{else } \begin{cases} j \leftarrow \arg\min_{j \in T} c_j; \\ c_i \leftarrow c_j+1; \\ T \leftarrow T \cup \{i\} \setminus \{j\}; \end{cases} \end{cases}
```


- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

Algorithm 3.3:	SPACES AVING (k)
----------------	--------------------

num	val
5	2
13	5
1337	1
***	***
	•••
8	1

$$egin{aligned} n \leftarrow 0; \ T \leftarrow \emptyset; \ & ext{for each i} : \ & ext{do} \ & ext{lif $i \in T$} \ & ext{then $c_i \leftarrow c_i + 1$;} \ & ext{else if $|T| < k$} \ & ext{then } \begin{cases} T \leftarrow T \cup \{i\}; \ c_i \leftarrow 1; \end{cases} \ & ext{else } \begin{cases} j \leftarrow rg \min_{j \in T} c_j; \ c_i \leftarrow c_j + 1; \ T \leftarrow T \cup \{i\} \setminus \{j\}; \end{cases} \end{aligned}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

Algorithm 3.3:	SPACES AVING (k)
----------------	--------------------

num	val
5	2
13	5
1337	1

8	1

$$egin{aligned} n \leftarrow 0; \ T \leftarrow \emptyset; \ & ext{for each i} : \ & egin{aligned} & \begin{cases} n \leftarrow n+1; \ & ext{if $i \in T$} \end{cases} \ & ext{then $c_i \leftarrow c_i+1;$} \ & ext{else if $|T| < k$} \ & ext{then $\begin{cases} T \leftarrow T \cup \{i\};$} \ c_i \leftarrow 1; \end{cases} \ & ext{else } \begin{cases} j \leftarrow rg \min_{j \in T} c_j; \ c_i \leftarrow c_j + 1; \ T \leftarrow T \cup \{i\} \setminus \{j\}; \end{cases} \end{aligned}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Observe: 175

Algorithm 3.3: SPACESAVING(k)

num	val
5	2
13	5
175	2
8	1

$$egin{aligned} n \leftarrow 0; \ T \leftarrow \emptyset; \ & ext{for each i} : \ & ext{do} \ & ext{lif $i \in T$} \ & ext{then $c_i \leftarrow c_i + 1$;} \ & ext{else if $|T| < k$} \ & ext{then } \begin{cases} T \leftarrow T \cup \{i\}; \ c_i \leftarrow 1; \end{cases} \ & ext{else } \begin{cases} j \leftarrow rg\min_{j \in T} c_j; \ c_i \leftarrow c_j + 1; \ T \leftarrow T \cup \{i\} \setminus \{j\}; \end{cases} \end{aligned}$$

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

Algorithm 3.2: LOSSYCOUNTING(k)

```
n \leftarrow 0; \Delta \leftarrow 0; T \leftarrow \emptyset; for each i: \begin{cases} n \leftarrow n+1; & \text{if } i \in T \\ \text{then } c_i \leftarrow c_i+1; \\ \text{else } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_j \leftarrow 1+\Delta; \end{cases} \\ \text{if } \lfloor \frac{n}{k} \rfloor \neq \Delta \\ \text{then } \begin{cases} \Delta \leftarrow n/k; \\ \text{for all } j \in T \\ \text{do if } c_j < \Delta \\ \text{then } T \leftarrow T \backslash \{j\} \end{cases} \end{cases}
```


Streaming Data Counting Numbers

- Let's assume, we observe an infinite sequence of numbers
- What are the k most frequent numbers observed?

General Idea/Requirements

• Let's assume, we observe an infinite sequence of objects

Any answer we can provide, typically, is an approximate answer.

General Idea/Requirements

• Let's assume, we observe an infinite sequence of objects

- Any answer we can provide, typically, is an approximate answer.
- Typically:
 - Result is 1 +/- ϵ from true value
 - With probability 1δ
- Memory: (for example) $O(\frac{1}{\epsilon^2}\log(\frac{1}{\delta}))$
- Ideally: $O(\log^k(N))$ (polylog in number of observed items)

- Motivation
- Streaming Data (Theory)
- Stream Based Discovery
- Online Alignments

Stream-Based Process Discovery

Let's assume, we observe an infinite sequence of events

- Events describe:
 - Case-Identifier
 - Activity
 - Payload

Stream-Based Process Discovery

• Let's assume, we observe an infinite sequence of events

- Events describe:
 - Case-Identifier
 - Activity
 - Payload

Stream-Based Process Discovery

Let's assume, we observe an infinite sequence of events

Let's assume, we observe an infinite sequence of events

- Typical 'streaming' analysis:
- How many times does an event occur?

What are the most frequent events?

Let's assume, we observe an infinite sequence of events

- Typical 'streaming' analysis:
- How many times does an event occur?
 - Once, every event is unique
- What are the most frequent events?
 - Every event is equally frequent, every event is unique

Let's assume, we observe an infinite sequence of events

- Typical 'streaming' analysis:
- How many times does a case occur?

What are the most frequent cases?

Let's assume, we observe an infinite sequence of events

- Typical 'streaming' analysis:
- How many times does a case occur?
 - Trivial adoption of standard streaming algorithms...
- What are the most frequent cases?
 - Trivial adoption of standard streaming algorithms...

· Let's assume, we observe an infinite sequence of events

- Typical 'streaming' analysis:
- How many

 Trivial ador
 Nice statistics, but, it does not
 - give us any process models!
- What are the most frequent cases?
 - Trivial adoption of standard streaming algorithms...

Let's assume, we observe an infinite sequence of events

 We need smart techniques to store events, temporarily, and (from time to time) discover a model

• Let's assume, we observe an infinite sequence of events

- Let's assume, we observe an infinite sequence of events
- Using a "sliding window"

- Let's assume, we observe an infinite sequence of events
- Using a "sliding window"

- Let's assume, we observe an infinite sequence of events
- Using a "sliding window"

- Let's assume, we observe an infinite sequence of events
- 1. a ← array of length k
- **2.** i, j← 0
- 3. while true:
- 4. $a[i \mod k] \leftarrow S(i)$
- 5. i++
- 6. **if** i >= k:
- 7. $j \leftarrow (j+1) \mod k$

- Let's assume, we observe an infinite sequence of events
- a ← array of length k

- while true:
- a[i **mod** k] \leftarrow S(i)
- **5**. **i++**
- 6. **if** i >= k:
- $i \leftarrow (j+1) \mod k$

- Let's assume, we observe an infinite sequence of events
- a ← array of length k

- a[i **mod** k] \leftarrow S(i)
- **5**. **i++**
- **6. if** i >= k:
- $i \leftarrow (j+1) \mod k$

• Let's assume, we observe an infinite sequence of events

```
    a ← array of length k
    i, j← 0
    while true:
    a[i mod k] ← S(i)
    i++
```

- 6. if i >= k:
- 7. $j \leftarrow (j+1) \mod k$
- a[j] = oldest element

Let's assume, we observe an infinite sequence of events

```
    a ← array of length k
    i, j← 0
    while true:
    a[i mod k] ← S(i)
    i++
    if i >= k:
    j ← (j+1) mod k
```

a[j-1] = newest element (or |a|-1 if j=0)

Let's assume, we observe an infinite sequence of events

```
    a ← array of length k
    i, j← 0
    while true:
    a[i mod k] ← S(i)
    i++
    if i >= k:
    j ← (j+1) mod k
```

[a[j],a[j+1],...,a[|a|-1],a[0],...,a[j-1]] = window

- Let's assume, we observe an infinite sequence of events
- Store events in a sliding window
- (projection onto cases is easy)
 - Either when we need it, or, continuously...

- Let's assume, we observe an infinite sequence of events
- Store events in a sliding window
- (projection onto cases is easy)
 - Either when we need it, or, continuously...
- Give to any algorithm of choice

- Let's assume, we observe an infinite sequence of events
- Store events in a sliding window
- (projection onto cases is easy)
 - Either when we need it, or, continuously...
- Let's focus on Inductive Miner (Alpha / Heuristics...)

- Let's assume, we observe an infinite sequence of events
- Store events in a sliding window
- (projection onto cases is easy)
 - Either when we need it, or, continuously...
- Let's focus on Inductive Miner (Alpha / Heuristics...)
- a>b, b>c, ...

- Idea:
 - For each case, store the last received activity

Stream-Based Process Discovery

Idea:

- For each case, store the last received activity
- Upon receiving a new event, assess that activity, deduce dfg and update last received activity

•
$$e_1 = (c_1, a)$$

case	act
C ₁	а

pair	count

•
$$e_2 = (c_2, a)$$

case	act
C ₁	а
c_2	а

pair	count

•
$$e_3 = (c_1, b)$$

case	act
C ₁	а
c_2	а

pair	count

case	act	
C ₁	a	
c ₂	а	

pair	count

•
$$e_3 = (c_1, b)$$

case	act
c ₁	b
c ₂	а

pair	count
(a,b)	1

•
$$e_4 = (c_1, c)$$

case	act
c ₁	b
C ₂	а

pair	count
(a,b)	1

case	act
C ₁	b
C ₂	а

pair	count
(a,b)	1

•
$$e_4 = (c_1, c)$$

case	act
C ₁	С
C ₂	а

pair	count
(a,b)	1
(b,c)	1

•
$$e_5 = (c_2, c)$$

case	act
C ₁	С
C ₂	а

pair	count
(a,b)	1
(b,c)	1

case	ac1
c ₁	С
C ₂	а

pair	count
(a,b)	1
(b,c)	1

•
$$e_5 = (c_2, c)$$

case	act
C ₁	С
C ₂	С

pair	count
(a,b)	1
(b,c)	1
(a,c)	1

•
$$e_6 = (c_3, a)$$

case	act
c ₁	С
c ₂ c ₃	С
c ₃	а

pair	count
(a,b)	1
(b,c)	1
(a,c)	1

•
$$e_7 = (c_3, b)$$

case	act
C ₁	С
c_2	С
C ₃	b

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

Stream-Based Process Discovery

•
$$e_7 = (c_3, b)$$

case	act
C ₁	С
c ₂ c ₃	С
c ₃	b

pair	count
------	-------

Algorithm 3.1: FREQUENT(k)

$$\begin{aligned} n &\leftarrow 0; T \leftarrow \emptyset; \\ &\text{for each } i: \\ &\begin{cases} n \leftarrow n+1; \\ &\text{if } i \in T \\ &\text{then } c_i \leftarrow c_i+1; \\ &\text{else if } |T| < k-1 \\ &\text{then } \begin{cases} T \leftarrow T \cup \{i\}; \\ c_i \leftarrow 1; \\ &\text{else for all } j \in T \\ &\text{do } \begin{cases} c_j \leftarrow c_j-1; \\ &\text{if } c_j = 0 \\ &\text{then } T \leftarrow T \backslash \{j\}; \end{cases} \end{aligned}$$

•
$$e_7 = (c_3, b)$$

case	act
c ₁	С
c ₂ c ₃	С
c ₃	b

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

•
$$e_7 = (c_3, b)$$

case	act	win
C ₁	С	3
C_2	С	2
c ₃	b	2

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

•
$$e_7 = (c_3, b)$$

case	act	win
C ₁	С	3 2
C ₂	С	2
c ₃	b	2

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

Stream-Based Process Discovery

• $e_7 = (c_3, b)$

case	act	win
C ₁	С	3 2
C_2	С	2
c ₃	b	2

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

Stream-Based Process Discovery

• $e_7 = (c_3, b)$

case	act	win
------	-----	-----

Inductive Miner (DFG Only Option)

***	***	***

pair	count
(a,b)	2
(b,c)	1
(a,c)	1

case	act	win
C ₁		
c_2		
c_3	b	2

pair	count
(a,b)	2
(b,c) (a,c)	1
(a,c)	1

- Motivation
- Streaming Data (Theory)
- Stream Based Discovery
- Online Alignments

Stream-Based Conformance Checking

STREAM

 ... we don't care how we store stuff, we assume you (smartly) store (currently active) traces:

case	act
C ₁	<a,b,c></a,b,c>
C_2	<a,c></a,c>
c_3	<a,b></a,b>

 ... we don't care how we store stuff, we assume you (smartly) store (currently active) traces:

<r1, e2, c, d, p>

- Prefix-Alignment
 - Explain all events in the trace
 - Finish in a marking that still enables us to reach the final marking

- Prefix-Alignment
 - Explain all events in the trace
 - Finish in a marking that still enables us to reach the final marking

... to fix req #2: We assume that the model is sound

Approximation Scheme

• <t_{1,1'}, t_{3,2'}>

Current Alignment

Approximation Scheme

• <t_{1,1'}, t_{3,2'}>

receive: activity c

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity c

Approximation Scheme

• <t_{1,1}, t_{3,2}>

receive: activity c

Approximation Scheme

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity

Approximation Scheme

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity e₁

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity e₁

 t_6

Approximation Scheme

Approximation Scheme

Approximation Scheme

• $< t_{1,1}$, $t_{3,2}$ >

receive: activity e1

144

Stream-Based Conformance Checking

Approximation Scheme

• <t_{1,1'}, t_{3,2'}>

receive: activity e₁

Approximation Scheme

$$min(\vec{c}^{\mathsf{T}}\vec{x} \mid \vec{m}' = \vec{m} + \mathbf{A}^{\mathsf{T}}\vec{x})$$

What to do when we do not know m' exactly???

Limiting the Exploration Area

 $p_1: 0$

p₂: 0 p₃: 1 p'₁: 0 p'₂: 0

Limiting the Exploration Area

 p_1 : 0

 p_2 : 0

p₃: 1

p'₁: 0

p'₂: 0

- More recently 'discovered'
 - (MSc thesis Daniel Schuster @ PADS RWTH)
- We can simply continue the search in conventional A*
 - Recalculate the Heuristic for each state in the Open Set when a new event arrives

- More recently 'discovered'
 - (MSc thesis Daniel Schuster @ PADS RWTH)
- We can simply continue the search in conventional A*
- Guarantees Optimality!!!
- Comparative with revert windows of 5-10...

- More recently 'discovered'
 - (MSc thesis Daniel Schuster @ PADS RWTH)
- When models are flower-like models:
 - Use approximation scheme with small windows
 - Often leads to optimal-ish results

- More recently 'discovered'
 - (MSc thesis Daniel Schuster @ PADS RWTH)
- When models are flower-like models:
 - Use approximation scheme with small windows
 - Often leads to optimal-ish results
- When models contain choices
 - The Optimal scheme starts to beat the approximation scheme

