EM characterization of Switched Mode Power Supply

Manoj Gulati IIIT-Delhi 18 Nov 2013

Brief Background of NILM

Idea: Infer state of appliances non-intrusively

Need:

Indoor activity sensing

Indoor localization

Individual Energy apportionment

Insights in to NILM

Power trace from Laptop

ElectriSense

ElectriSense

Probabilistic modeling for EMI trace using Gaussian curve fitting

ElectriSense:

Linearly Regulated Power Supply

SMPS

Switched Mode Power Supply

Idea: EM Characterization in SMPS

Need: Modelling approaches by NILM folks fails on complex loads.

Why EMI?

EMI signals are stable and predictable

Origin: Switching action of SMPS

Effect on Design: EMI filters and suppression req.

EM noise

Conducted EMI

Radiated EMI

EM noise propagation

Resistive (or Galvanic) coupling

- Noise signal propagates through electrical connections
- 'Common impedance' can be classified as galvanic coupling
- Occurs due to sharing of current paths [1] [2]

Capacitive coupling

Electric fields form the main coupling path

Inductive coupling

- · High frequency switching currents in Inductors
- Cause strong magnetic fields at high frequencies
- Occurs quite often in SMPS

Wave coupling

- Noise is transmitted via Electromagnetic wave
- Come in to picture at high frequencies usually in Ghz

DC-DC Convertor

Buck Convertor (Step down)

Boost Convertor (Step up)

Buck Boost Convertor (Step up/down)

Simple Buck Regulator (Open-loop)

Image Courtesy:

Buck Regulator (Closed-loop)

Image Courtesy:

AN: 1162 Compensator Design Procedure for Buck Converter with Voltage-Mode Error-Amplifier

Buck Regulator

Simplified Buck Convertor

PULSE(0 24 0.0 0.01us 0.01us .5us 1us)

Transient Analysis

Steady State Analysis

Steady State Analysis

Frequency Domain Analysis

Frequency Domain Analysis

Acknowledgements

Dr. Hashmi PhD EC University of Cardiff

Dr. Shobha Sundar Ram PhD EC UT Austin

Mr. Makarand Mijar Senior Design Engineer Qualcomm, India

I will be working on this project in December, 13 if anyone interested to work along with me please drop a mail at manojg@iiitd.ac.in

Thanks for your concentration.

Slides available on request.