Introduction to Logic, Part I, Chapter I by Patrick Suppes - exercises

Dominik Lenda

May 1, 2021

Exercise 4.

In the following examples determine the truth value of the compound sentences from the given truth values of the component sentences.

- (i) "Galileo was born before Descartes" is true.
- (ii) "Descartes was born in the sixteenth century" is true.
- (iii) "Newton was born before Shakespeare" is false.
- (iv) "Racine was a compatriot of Galileo" is false.
- (a) If Galileo was born before Descartes, then Newton was not born before Shakespeare.
 - Answer: $true \rightarrow \neg false$ is true
- (b) If either Racine was a compatriot of Galileo or Newton was born before Shakespeare, then Descartes was born in the sixteenth century. Answer: $(false \lor false) \rightarrow true$ is true
- (c) If Racine was not a compatriot of Galileo, then either Descartes was not born in the sixteenth century or Newton was born before Shakespeare. Answer: $\neg false \rightarrow (\neg true \lor false)$ is false

Exercise 5.

Let

 $N={\rm New}$ York is larger than Chicago

W =New York is north of Washington

C =Chicago is larger than New York

N, W are true and C is false.

Which of the following sentences are true?

- (a) $N \vee C$ is true
- (b) $N \wedge C$ is false
- (c) $-N \wedge -C$ is false
- (d) $N \leftrightarrow -W \lor C$ is false
- (e) $W \vee -C \rightarrow N$ is true

- (f) $(W \vee N) \rightarrow (W \rightarrow -C)$ is true
- (g) $(W \leftrightarrow -N) \leftrightarrow (N \leftrightarrow C)$ is true
- (h) $(W \to N) \to [(N \to -C) \to (-C \to W)]$ is true

Exercise 6.

Let

P =Jane Austen was contemporary of Beethoven

Q =Beethoven was a contemporary of Gauss

R = Gauss was a contemporary of Napoleon

S= Napoleon was a contemporary of Julius Caesar

P, Q, and R are true, and S is false.

Find the truth values of the following sentences:

- (a) $(P \wedge Q) \wedge R$ is true
- (b) $P \wedge (Q \wedge R)$ is true
- (c) $S \to P$ is true
- (d) $P \to S$ is false
- (e) $(P \wedge Q) \wedge (R \wedge S)$ is false
- (f) $P \wedge Q \leftrightarrow R \wedge -S$ is true
- (g) $(P \leftrightarrow Q) \rightarrow (S \leftrightarrow R)$ is false
- (h) $(-P \leftarrow Q) \leftarrow (S \leftarrow R)$ is true
- (i) $(P \rightarrow -Q) \rightarrow (S \leftrightarrow R)$ is true
- (j) $(P \to Q)[(Q \to R) \to (R \to S)]$ is false
- (k) $P \to [Q \leftrightarrow (R \to S)]$ is false

Exercise 7.

Let P be a sentence such that for any sentence Q the sentence $P \vee Q$ is true. What can be said about the truth value of P.

Answer: P is true

Exercise 8.

Let P be a sentence such that for any sentence Q the sentence $P \wedge Q$ is false. What can be said about the truth value of P.

Answer: P is false

Exercise 9.

If $P \leftrightarrow Q$ is true, what can be said about the truth value of $P \lor -Q$?

Answer: $P \lor -Q$ is true

Exercise 10.

(a) $P \vee Q$ is **not** a tautology.

(b) $P \vee -P$ is a tautology

$$\begin{array}{c|c} p & p \lor -p \\ \hline T & T \\ F & T \\ \end{array}$$

(c) $P \lor Q \to Q \lor P$ is a tautology.

i	P	Q	$P \lor Q \to Q \lor P$
7	Γ	T	T
1	Γ	F	T
i	F	T	T
i	F	F	T

(d) $P \to (P \lor Q) \lor R$ is a tautology.

P	Q	R	$P \to (P \lor Q) \lor R$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T

(e) $P \to (-P \to Q)$ is a tautology.

$$\begin{array}{c|c|c} P & Q & P \rightarrow (-P \rightarrow Q) \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \\ \end{array}$$

(f) $(P \to Q) \to (Q \to P)$ is **not** a tautology.

(g) $[(P \to Q) \leftrightarrow Q] \to P$ is **not** a tautology.

$$\begin{array}{c|c|c} P & Q & [(P \rightarrow Q) \leftrightarrow Q] \rightarrow P \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ F & F & T \\ \end{array}$$

(h) $P \to [Q \to (Q \to P)]$ is a tautology.

P	Q	$P \to [Q \to (Q \to P)]$
T	T	T
T	F	T
F	T	T
F	F	T

(i) $P \wedge Q \rightarrow P \vee R$ is a tautology.

. /		•		00
	P	Q	R	$P \wedge Q \to P \vee R$
	T	T	T	T
	T	T	F	T
	T	F	T	T
	T	F	F	T
	F	F	F	T
	F	F	T	T
	F	T	F	T
	F	T	T	T

(j) $[P \lor (-P \land Q)] \lor (-P \land -Q)$ is a tautology.

P	Q	$[P \lor (-P \land Q)] \lor (-P \land -Q)$
T	T	T
T	F	T
F	T	T
F	F	T

(k) $P \wedge Q \rightarrow (P \leftrightarrow Q \vee R)$ is a tautology.

- / \	æ		(/ Q V 10) 15 a taatoo1083.
P	Q	R	$P \wedge Q \to (P \leftrightarrow Q \vee R)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T

(1) $[P \land Q \rightarrow (P \land -P \rightarrow Q \lor -Q)] \land (Q \rightarrow Q)$ is a tautology.

P	Q	$ [P \land Q \to (P \land -P \to Q \lor -Q)] \land (Q \to Q) $
T	T	T
$\mid T \mid$	F	T
F	T	T
$\mid F$	F	T

Exercise 11.

If P and Q are distinct atomic sentences, which of the following are tautologies?

(a) $P \leftrightarrow Q$ is **not** a tautology.

I		$P \cdot P$	$\leftrightarrow Q$
7	T	٠ .	T
1	Γ F	. י	F
I	r = T	٦ .	F
I	F	י י	T

(b)
$$P \leftrightarrow P \lor P$$
 is a tautology.
$$\begin{array}{c|c} P & P \leftrightarrow P \lor P \\ \hline T & T \\ \hline F & T \end{array}$$

(c) $P \lor Q \leftrightarrow Q \lor P$ is a tautology.

P	Q	$P \lor Q \leftrightarrow Q \lor P$
T	T	T
T	F	T
F	T	T
F	F	T

 $(d) (P \to Q) \leftrightarrow (Q \to P) \text{ is$ **not** $a tautology.}$

P	Q	$(P \to Q) \leftrightarrow (Q \to P)$
T	T	T
T	F	F
F	T	F
F	F	T

(e)
$$(P \leftrightarrow P) \leftrightarrow P$$
 is a tautology.
$$\begin{array}{c|c} P & (P \leftrightarrow P) \leftrightarrow P \\ \hline T & T \\ \hline F & T \end{array}$$

Exercise 12.

On the basis of ordinary usage construct truth tables for the sentential connectives used in the following examples:

(a) Not both P and Q.

Q	$-(P \wedge Q)$
T	F
F	T
T	T
F	T
	F T

(b) Neither P nor Q.

P	Q	$-(P \lor Q)$
T	T	F
T	F	F
F	T	F
F	F	T

Exercise 13.

Give examples of sentences P and Q (not necessarily atomic) such that the following compound sentences are tautologies.

(a) Sentence $W = P \wedge Q$ is **not** a tautology. Assumption $P = P \vee -P$ and $Q = Q \vee -Q$ changes W into a tautology.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	Ψ, v	Q CIII	gcs ,,co a taatoologj.
$egin{bmatrix} T & T & T & T & T \ T & F & F & T \ F & F & F & F \ \end{bmatrix}$	P	Q	$P \wedge Q$	$(P \lor -P) \land (Q \lor -Q)$
$\left egin{array}{c c c c} T & F & F & T \\ F & T & F & T \\ F & F & F \end{array} \right \qquad \qquad T \ T$	T	T	T	T
$\left egin{array}{c c c} F & T & F & & & T \ F & F & & & T \end{array} \right $	T	F	F	T
F F F F F	F	T	F	T
	F	F	F	T

(b) Sentence $W = P \vee (P \wedge -Q)$ is **not** a tautology. Assumption $P = P \vee -P$ changes W into a tautology.

P	Q	$P \lor (P \land -Q)$	$(P \vee -P) \vee (Q \wedge -Q)$
T	T	T	T
T	F	T	T
F	T	F	T
F	F	F	T
	$\begin{array}{c c} P \\ \hline T \\ T \\ F \\ F \end{array}$	$ \begin{array}{c c} P & Q \\ \hline T & T \\ T & F \\ F & T \\ F & F \end{array} $	$ \begin{array}{c cccc} P & Q & P \lor (P \land -Q) \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ F & F & F \\ \end{array} $

(c) Sentence $W=P\to P\land -Q$ is **not** a tautology. Assumption Q=-P changes W into a tautology.

P	Q	$P \to P \land -Q$	$P \rightarrow P \land -(-P)$	
T	T	F	T	
T	F	T	T	
F	T	T	T	
F	F	T	T	
		T T	1	

(d) Sentence $W = P \rightarrow -P$ is **not** a tautology. Assumption $P = -(P \lor -P)$

Exercise 14.

Is there any sentence P such that $P \wedge -P$ is a tautology?

Answer: No such sentence exists.

Exercise 15.

If P and Q are distinct atomic sentences, the sentence $P \wedge Q$ tautologically implies which of the following?

(a)
$$P$$

$$\begin{array}{c|cccc}
P & Q & P \land Q \rightarrow P \\
\hline
T & T & T \\
T & F & T \\
F & F & T
\end{array}$$

Answer: $P \wedge Q$ tautologically implies P.

(b)
$$Q$$

$$\begin{array}{c|c|c} P & Q & P \land Q \rightarrow Q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \end{array}$$

Answer: $P \wedge Q$ tautologically implies Q.

(c)
$$P \lor Q$$

$$\begin{vmatrix} P & Q & P \land Q \rightarrow P \lor Q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \end{vmatrix}$$

Answer: $P \wedge Q$ tautologically implies $P \vee Q$.

Answer: $P \wedge Q$ does not tautologically imply $P \wedge -Q$.

Answer: $P \wedge Q$ tautologically implies $-P \vee Q$.

$$\begin{array}{c|cccc} (\mathbf{f}) & -Q \to P \\ & P & Q & P \wedge Q \to (-Q \to P) \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \\ \end{array}$$
 Answer: $P \wedge Q$ tautologically implies $-Q \to P$.

Answer: $P \wedge Q$ tautologically implies $P \leftrightarrow Q$.

Exercise 16.

If P and Q are distinct atomic sentences, the sentence $-P \vee Q$ tautologically implies which of the following?

Answer: $-P \vee Q$ does not tautologically imply P.

(b)
$$Q \to P$$

$$\begin{vmatrix} P & Q & -P \lor Q \to (Q \to P) \\ \hline T & T & T \\ \hline T & F & T \\ \hline F & T & F \\ \hline F & F & T \end{vmatrix}$$
 Answer: $-P \lor Q$ **does not** tautologically imply $Q \to P$.

(c)
$$P \to Q$$

$$\begin{array}{|c|c|c|c|c|} \hline P & Q & -P \lor Q \to (P \to Q) \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \\ \hline \end{array}$$

Answer: $-P \vee Q$ tautologically implies $P \to Q$.

(e)
$$-P \wedge Q$$

$$\begin{vmatrix}
P & Q & -P \vee Q \rightarrow -P \wedge Q \\
T & T & F \\
T & F & T \\
F & T & F
\end{vmatrix}$$

Answer: $-P \vee Q$ does not tautologically imply $-P \wedge Q$.

Exercise 17.

If P and Q are distinct atomic sentences, the sentence P is tautologically equivalent to which of the following?

(a)
$$P \vee Q$$

- v · · · ·				
P	Q	$P \leftrightarrow P \lor Q$		
T	T	T		
T	F	T		
F	T	F		
F	F	T		

Answer: P is **not** tautologically equivalent to $P \vee Q$.

(b)
$$P \lor -P$$

$$\begin{array}{c|c} P & P \leftrightarrow P \lor -P \\ \hline T & T \\ F & F \end{array}$$

Answer: P is **not** tautologically equivalent to $P \vee -P$.

(c)
$$P \wedge P$$

$$\begin{vmatrix}
P & P \leftrightarrow P \wedge P \\
T & T \\
F & T
\end{vmatrix}$$
Anguage P is touted

Answer: P is tautologically equivalent to $P \wedge P$.

(d)
$$P \rightarrow P$$

$$\begin{vmatrix} P & P \leftrightarrow P \rightarrow P \\ \hline T & T \\ F & F \end{vmatrix}$$

Answer: P is **not** tautologically equivalent to $P \to P$.

(e)
$$-P \to P$$

$$\begin{array}{c|c} P & P \leftrightarrow -P \to P \\ \hline T & T \\ \hline F & T \\ \end{array}$$
Answer: P is tautologically equivalent to $-P \to P$.

(f)
$$P \rightarrow -P$$

$$\begin{vmatrix} P & P \leftrightarrow P \rightarrow -P \\ \hline T & F \\ F & F \end{vmatrix}$$

Answer: P is **not** tautologically equivalent to $P \to -P$.