

Exercise 1

- 1-1. Consider the circuit of Fig.1.1.
- a) Using the simple model with $V_{Don} = 0.7$ V, solve for I_D ;
- b) Find I_D and V_D using the ideal diode equation. Use $I_S = 10^{-14}$ A and T = 300 K.

Fig.1.1

Answer:

a.
$$I_D = \frac{V_{in} - 2*V_{Don}}{R_1 + R_2} = \frac{2.5 - 2*0.7}{4K\Omega} = 275uA$$

b.
$$I_S = 10^{-14} A, T = 300 K, V_{Don} = 0.7 V. I_D = I_S \times (e^{\frac{V_D q}{KT}} - 1)$$
 where $\frac{KT}{q} = 26mV@300K$

$$I_D = \frac{V_{in} - 2 \cdot V_{Don}}{R_1 + R_2} = I_S \times \left(e^{\frac{V_D q}{KT}} - 1\right) \text{ iterating on this expression we can obtain } \frac{V_D}{I_D} = \frac{0.628V}{311uA}$$

- 1-2. For the circuit in Fig.1.2, V_s =3.3 V. Assume A_D = 12 μ m², ϕ_0 = 0.65 V, and m= 0.5, N_A = 2.5 × 10¹⁶ and N_D = 5 × 10¹⁵.
- a) Is the diode forward- or reverse-biased?
- b) Find I_D and V_D ;
- c) Find the depletion region width, W_i , of the diode;
- d) Use the parallel-plate model to find the junction capacitance, C_j ;
- e) Set $V_s = 1.5$ V. Again using the parallel-plate model, explain qualitatively why C_j increases.

Fig.1.2

Answer:

- a. Reverse biased
- b. $I_D = I_{REV} = -I_S \approx 0, V_D = -V_S = -3.3V$

c.
$$W_j = \sqrt{\frac{2 \cdot \varepsilon_{si}}{q} \times \frac{N_A + N_D}{N_A N_D} \times (\varphi_0 - V_D)}, q = 1.6 \times 10^{-19} C, V_D = -V_S = -3.3 V,$$

$$\varepsilon_{si} = 11.7\varepsilon_0 = 1.035 \times 10^{-10} \, F/_m$$
, $N_A = 2.5 \times \frac{10^{16}}{\text{cm}^3}$, $N_D = 5 \times \frac{10^{15}}{\text{cm}^3}$

 $W_i = 1.107 \times 10^{-4} cm.$

d.
$$C_j = \frac{\varepsilon_{si} \cdot A_D}{W_j}$$
, $A_D = 12 \times 10^{-8} cm^2$, $C_j = 1.12 \times 10^{-15} F$.

e. V_{SNEW} = 1.5V < V_{SOLD} = 3.3V. The new voltage reduces the reverse bias of the PN junction, hence the width of the depletion region, W_j , decreases. As you bring the plates of capacitor together, the capacitance increases.

1-3. Fig.1.3 shows NMOS and PMOS devices with drains, source, and gate ports annotated. Determine the operation region (saturation, linear, or cut-off) and the drain current I_D for each of the biasing configurations given in table. Assume the model parameters from Table.1.1, V_{BS} =0 and W/L = 1, L=1um, fill the table

Fig.1.3

Answer:

	$V_{GS}(V)$	$V_{DS}(\mathbf{V})$	Operation region	I_D
NMOS	2.5	2.5	saturation	392.04uA
	3.3	2.2	linear	726uA
	0.6	0.1	cut-off	0
PMOS	-0.5	-1.25	cut-off	0
	-2.5	-1.8	saturation	176.58uA
	-2.5	-0.7	linear	101.5uA

NMOS :1. Saturation
$$I_D = k'_n \frac{W}{I} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS}) = 392.04 uA;$$

2. linear
$$I_D = 2 \times k_n' \frac{W}{L} \left((V_{GS} - V_{TH}) V_{DS} - \frac{V_{DS}^2}{2} \right) = 726 uA;$$

3. cut-off $I_D = 0$,

PMOS : 1. cut-off
$$I_D = 0$$
,

2. Saturation
$$I_D = k_p' \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS}) = 176.58 uA$$

3. linear
$$I_D = 2 \times k_p' \frac{W}{L} \left((V_{GS} - V_{TH}) V_{DS} - \frac{V_{DS}^2}{2} \right) = 101.5 uA$$

- 1-4. An NMOS device is plugged into the test configuration shown below in Fig. 1.4 The input V_{in} is 2V. The current source draws a constant current of 50 μ A. R is a variable resistor between $10k\Omega$ and $30 k\Omega$. Transistor M1 has following transistor parameters: $k'=110\mu$ V/A², $V_T=0.7$ V, and $V_{DSAT}=0.6$ V, and has a $W/L=2.5\mu$ m/0.25um. For simplicity, the body effect and channel length modulation can be neglected, i.e $\lambda=0$, $\gamma=0$.
- a) When $R = 10k\Omega$ find the operation region, V_D and V_S .
- b) For the case of $R = 10 \text{k}\Omega$, would V_S increase or decrease if $\lambda \neq 0$. Explain qualitatively.

Answer:

a. When R = 10K, $V_D = V_{DD} - 1R = 2.5 - 50 \times 10^{-6} \times 10^4 = 2.5 - 0.5 = 2V$. Assume the device is in saturation $I_D = k_n' \frac{W}{L} (V_{GS} - V_{TH})^2 = 50uA$ find $V_{GS} - V_{TH} = 0.213V$, so $V_{GS} = 0.213 + 0.7V = 0.913V$,

 $V_S = 1.087 V.V_{GS}$ =0.913V, V_{DS} =1.087V device in the saturation.

b. Increase. V_D is fixed due to constant current. $1 + \lambda V_{DS}$ form would try to increase the current more then 50uA, thus V_{GS} needs to reduce by increase V_S .

Thinking Questions(optional)

1-5. Show that two MOS transistors connected in parallel with channel widths of W_1 and W_2 and identical channel lengths of L can be modeled as one equivalent MOS transistor whose width is W_1+W_2 and whose length is L, as shown in Fig.1.5 Assume the transistors are identical except for their channel widths.

Fig.1.5

Answer:

For
$$V_{DS} \leq V_{GS} - V_{TH}$$

$$I_{D1} = \mu C_{OX} \frac{W_1}{L} [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$

$$I_{D2} = \mu C_{OX} \frac{W_2}{L} [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$
.....
$$I_{Dn} = \mu C_{OX} \frac{W_n}{L} [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$

$$\therefore I_D = I_{D1} + I_{D2} + \dots + I_{Dn} = \mu C_{OX} \frac{W_1 + W_2 + \dots + W_n}{L} [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$
For $V_{DS} \geq V_{GS} - V_{TH}$

$$I_D = I_{D1} + I_{D2} + \dots + I_{Dn} = \frac{1}{2}\mu C_{OX} \frac{W_1 + W_2 + \dots + W_n}{L} (V_{GS} - V_{TH})^2$$

Thus the equivalent length = L and the equivalent width = $W_1 + W_2 + ... + W_n$.

1-6. Show that two MOS transistors connected in series with channel lengths of L_1 and L_2 and identical channel widths of W can be modeled as one equivalent MOS transistor whose width is W and whose length is L_1+L_2 , as shown in Fig. 1.6. Assume the transistors are identical except for their channel lengths. Ignore the body effect and channel-length modulation.

F1g.1.6

Answer:

(1) When $V_{GS} < V_{TH}$ and $V_{GE} < V_{GS} < V_{TH}$, the MOSFETs are in cut off.

(2) While M1 operates in triode ($V_{DE} < V_{GE} - V_{THN}$), that is equivalent to $V_{DE} + V_{ES} < V_{GE} + V_{ES} - V_{THN}$, i.e. $V_{DS} < V_{GS} - V_{THN}$.

Thus M2 operates in triode, too.

Thus

$$I_{D1} = \mu_n C_{OX} \frac{W}{L_1} [(V_{GE} - V_{TH}) V_{DE} - \frac{1}{2} V_{DE}^2]$$
 (1)

$$I_{D2} = \mu_n C_{OX} \frac{W}{L_2} [(V_{GS} - V_{TH}) V_{ES} - \frac{1}{2} V_{ES}^2]$$
 (2)

Since

$$V_{DS} = V_{DE} + V_{ES} \quad (3)$$

$$V_{GE} = V_{GS} - V_{ES} \quad (4)$$

$$I_{D1} = I_{D2} = I_{D}$$
 (5)

It can be derived from equations (1), (2), (3), (4) and (5) that

$$(V_{GS} - V_{TH})V_{ES} - \frac{1}{2}V_{ES}^{2} = \frac{L_{2}}{L_{1}}[(V_{GS} - V_{TH} - V_{ES})(V_{DS} - V_{ES}) - \frac{1}{2}(V_{DS} - V_{ES})^{2}]$$

$$= \frac{L_{1}}{L_{1} + L_{2}}[(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^{2}]$$

So we can get
$$I_D = \mu_n C_{OX} \frac{W}{L_1 + L_2} [(V_{GS} - V_{TH})V_{DS} - \frac{1}{2}V_{DS}^2]$$

(3) While M1 operates in saturation ($V_{DE} > V_{GE} - V_{THN}$). It means $V_{DE} + V_{ES} > V_{GE} + V_{ES} - V_{THN}$, i.e. $V_{DS} > V_{GS} - V_{THN}$.

 $V_E = V_G - V_{GE} < V_G - V_{THN}$, it means $V_{ES} < V_{GS} - V_{THN}$. M2 operates in triode.

So

$$I_{D1} = \frac{1}{2} \mu_n C_{OX} \frac{W}{L_1} (V_{GE} - V_{TH})^2$$
 (1)

$$I_{D2} = \frac{1}{2} \mu_n C_{OX} \frac{W}{L_2} [2(V_{GS} - V_{TH})V_{ES} - V_{ES}^2]$$
 (2)

$$V_{DS} = V_{DE} + V_{ES} \quad (3)$$

$$V_{GE} = V_{GS} - V_{ES} \quad (4)$$

$$I_{D1} = I_{D2} = I_{D}$$
 (5)

It can be derived from equations (1), (2), (3), (4) and (5) that

$$I_D = \frac{1}{2} \mu_n C_{OX} \frac{W}{L_1 + L_2} (V_{GS} - V_{TH})^2$$

That just like a MOSFET operating in saturation, which has a length of $L_1 + L_2$ and a width of W. It can be deducted similarly that n MOSFETs in series acts as a MOSFET with an aspect ratio of $W/(L_1 + L_2 + \ldots L_n)$.

Table.1.1

Parameter Symbol		Typical Parameter Value		
	Parameter Description	n-Channel	p-Channel	Units
$V_{ extsf{T0}}$	Threshold voltage $(V_{BS}=0)$	0.7	- 0.7	V
$K^{'}$	Transconductance parameter (in saturation)	110.0	50.0	μ A/V ²
γ	Bulk threshold parameter	0.4	0.57	$V^{1/2}$
λ	Channel length modulation parameter	0.04 (L=1μm) 0.01 (L=2μm)	0.05 (L=1μm) 0.01 (L=2μm)	V ⁻¹
$2 \Phi_{_{\mathrm{F}}} $	Surface potential at strong inversion	0.7	0.8	V

$$*K' = \frac{1}{2}\mu C_{ox}$$