Circuit Optimization

- ✓ Goal: To obtain the simplest implementation for a given function
- ✓ Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
- ✓ Optimization requires a cost criterion to measure the simplicity of a circuit
- ✓ Distinct cost criteria we will use:
 - Literal cost (L)
 - Gate input cost (G)
 - Gate input cost with NOTs (GN)

Literal Cost

- ✓ Literal a variable or it complement
- ✓ Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram
- ✓ Example, which solution is best?

```
• F = BD + ABC + ACD
                                                 L = 8
• F = BD + ABC + ABD + \underline{ABC}
```

•
$$F = (A + B)(A + D)(B + C + D)(B + C + D)$$
 L = 10

L = 11

Gate Input Cost

- ✓ Gate input costs the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations. (G inverters not counted, GN inverters counted)
- ✓ For SOP and POS equations, it can be found from the equation(s) by finding the sum of:
 - all literal appearances
 - the number of terms, (G) and
 - optionally, the number of distinct complemented single literals (GN).
- ✓ Example, which solution is best?

• F = BD + ABC + ABD + ABC _ G = 15,
$$GN = 18$$

•
$$F = (A + B)(A + D)(B + C + D)(B + C + D)$$
 $G = 14$, $GN = 17$

Cost Criteria (continued)

- G (gate input count) adds the remaining OR gate inputs
- GN(gate input count with NOTs) adds the inverter inputs

Cost Criteria (continued)

- $F = ABC + \overline{ABC}$
- L = 6 G = 8 GN = 11

- L = 6 G = 9 GN = 12
- ✓ <u>Same</u> function and <u>same</u> literal cost
- ✓ But first circuit has <u>better</u> gate input count and <u>better</u> gate input count with NOTs

Boolean Function Optimization

- ✓ Minimizing the gate input (or literal) cost of a (a set of) Boolean equation(s) reduces circuit cost.
- ✓ We choose gate input cost.
- ✓ Boolean Algebra and graphical techniques are tools to minimize cost criteria values.
- ✓ Some important questions:
 - When do we stop trying to reduce the cost?
 - Do we know when we have a minimum cost?
- ✓ Treat optimum or near-optimum cost functions for two-level (SOP and POS) circuits first.
- ✓ Introduce a graphical technique using Karnaugh maps (K-maps, for short)

Karnaugh Maps (K-map)

- ✓ A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares (corresponding to cubes)
- ✓ The K-map can be viewed as
 - A reorganized version of the truth table or a particular cube representation

Some Uses of K-Maps

- ✓ Provide a means for:
 - Finding optimum
 - SOP and POS standard forms, and
 - two-level AND/OR and OR/AND circuit implementations

for functions with small numbers of variables

- Visualizing concepts related to manipulating Boolean expressions
- Demonstrating concepts used by computer-aided design programs to simplify large circuits

The Boolean Space Bⁿ

```
\checkmark B = { 0,1}
\checkmark B<sup>2</sup> = {0,1} × {0,1} = {00, 01, 10, 11}
    Karnaugh Maps: Boolean Cubes:
 Bo
 B1
 B2
 Вз
 B4
```

Two Variable Maps

✓ A 2-variable Karnaugh Map:

- Note that minterm m_0 and minterm m_1 are "adjacent" and differ in the value of the variable γ
- Similarly, minterm m_0 and minterm m_2 differ in the x variable.

×	y = 0	y = 1
	m_0	m_1
x = 0	×γ	×γ
× = 1	m ₂	m ₃
	×ÿ	ху

- Also, m_1 and m_3 differ in the x variable as well.
- Finally, m₂ and m₃ differ in the value of the variable y

K-Map and Truth Tables

- ✓ The K-Map is just a different form of the truth table.
- ✓ Example Two variable function:
 - We choose a,b,c and d from the set $\{0,1\}$ to implement a particular function, F(x,y).

Function Table

Input	Function
Values	Value
(x,y)	F(x,y)
0 0	α
0 1	b
10	С
11	d

K-Map

x	y = 0	y = 1
x = 0	a	Ь
× = 1	С	d

K-Map Function Representation

✓ Example: F(x,y) = x

F = x	y = 0	y = 1
x = 0	0	0
× = 1	1	1

✓ For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:

$$F(x,y) = x\overline{y} + xy = x$$

K-Map Function Representation

✓ Example: $G(x,y) = \overline{xy} + x\overline{y} + xy$

G=x+y	y = 0	y = 1
x = 0	0	1
× = 1	1	1

 \checkmark For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem:

$$G(x,y) = (xy + xy) + (xy + xy) = x + y$$
Duplicate xy

✓ A three-variable K-map:

yz	yz=00	yz=01	yz=11	yz=10	
X	mo	m ₄	m ₃	m ₂	
x=0	•••0	•••1	3	•••2	
x=1	m ₄	m ₅	m ₇	m ₆	

✓ Where each minterm corresponds to the product terms:

yz X	yz=00	yz=01	yz=11	yz=10
x=0	xyz	χyz	жyz	xyz
x=1	x y-z-	x y- z	хуz	x y z

Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the K-Map

Alternative Map Labeling

- ✓ Map use largely involves:
 - Entering values into the map, and
 - Reading off product terms from the map.
- ✓ Alternate labelings are useful:

Example: Combining Squares

- √ Example: Let
- \checkmark F (x, y, z) = \sum_{m} (2, 3, 6, 7)

✓ Applying the Minimization Theorem three times:

$$F(x,y,z) = \overline{x}yz + xyz + \overline{x}y\overline{z} + xy\overline{z}$$

$$= yz + y\overline{z}$$

$$= y$$

 \checkmark Thus the four terms that form a 2 \times 2 square correspond to the term "y".

Combining Squares

- ✓ By combining squares, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria
- ✓ On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a cube that is product term with two variables
 - Four "adjacent" terms represent a cube that is product term with one variable
 - Eight "adjacent" terms is the function of all ones (no variables) is a tautology $f^1=1$.

Example Functions

- ✓ By convention, we represent the minterms of F by a "1" in the map and leave the minterms of blank F
- ✓ Example:

F (x, y, z) =
$$\sum_{m}$$
 (2, 3, 4, 5)
F (x, y, z) = \overline{x} y + x \overline{y}

- ✓ Example:
- \checkmark F (x, y, z) = \sum_{m} (3, 4, 6, 7)
- \checkmark F (x, y, z) = y z + x \overline{z}
- Learn the locations of the 8 indices based on the variable order shown (x, most significant and z, least significant) on the map boundaries

- ✓ Reduced literal product terms for SOP standard forms correspond to cubes i.e. to rectangles on the K-maps containing cell counts that are powers of 2.
- ✓ Rectangles of 2 cells represent 2 adjacent minterms; of 4 cells represent 4 minterms that form a "pairwise adjacent" ring.

✓ Topological warps of 3-variable K-maps that show

✓ Example Shapes of 2-cell Rectangles:

✓ Read off the product terms for the rectangles shown

✓ Example Shapes of 4-cell Rectangles:

✓ Read off the product terms for the rectangles shown

Z

Z

X

Y

- ✓ K-Maps can be used to simplify Boolean functions by a systematic methods. Terms are selected to cover the "1s"in the map.
- ✓ Example: Simplify F (x, y, z) = \sum_{m} (1, 2, 3, 5, 7)

$$F(x, y, z) = z + \overline{x}y$$

Three-Variable Map Simplification

Use a K-map to find an optimum SOP equation for $F(x, y, z) = \sum_{m} (0, 1, 2, 4, 6, 7)$

Four Variable Maps

✓ Map and location of minterms:

wx	/Z yz=00	yz=01	yz=11 \	/ yz=10	
wx=00	0	1	3	2	
w×=01	4	5	7	6	
wx=11	12	13	15	14	X
W wx=10	8	9	11	10	
•		Z	Z		•

Four Variable Terms

- ✓ Four variable maps can have rectangles. corresponding to:
 - A single 1 = 4 variables, (i.e. Minterm)
 Two 1s = 3 variables,

 - Four 1s = 2 variables
 - Eight 1s = 1 variable,
 - Sixteen 1s = zero variables (i.e. Constant "1")

Four-Variable Maps

✓ Example Shapes of Rectangles:

Four-Variable Maps

✓ Example Shapes of Rectangles:

Four-Variable Map Simplification

Four-Variable Map Simplification

Systematic Simplification

- ✓ A Prime Implicant is a cube i.e. a product term obtained by combining the maximum possible number of adjacent squares in the map into a rectangle with the number of squares a power of 2.
- ✓ A prime implicant is called an Essential Prime Implicant if it is the only prime implicant that covers (includes) one or more minterms.
- ✓ Prime Implicants and Essential Prime Implicants can be determined by inspection of a K-Map.
- ✓ A set of prime implicants "covers all minterms" if, for each minterm of the function, at least one prime implicant in the set of prime implicants includes the minterm.

Example of Prime

✓ Find ALL Prime Implicants

Prime Implicant Practice

✓ Find all prime implicants for:

Prime implicants are: A,BC, and BD

Another Example

✓ Find all prime implicants for:

 $\sum_{m} = AB + \overline{ACD} + \overline{ACD} + \overline{ABC}$ $\sum_{c} = \sum_{m} + \overline{ABD} + BCD + BCD$

K-Maps, implicates

✓ Find all prime implicates for:

$$F=(w+y+z)(w'+x'+y)(x+y)(w+x+y')(w+x'+z)(w'+x+z)$$

$$\prod_{m} = (w+x)(w'+y)(w+z)(x+z)$$
 $\prod_{c} = \prod_{m} (y+z) (y'+x')_{35}$

Don't Cares in K-Maps

- ✓ Sometimes a function table or map contains entries for which it is known that:
 - the input values for the minterm will never occur
 - the output value for the minterm is not used
- ✓ In these cases, the output value need not be defined
- ✓ Instead, the output value is defined as a don't care
- ✓ By placing "don't cares" (an "x" entry) in the function table or map, the cost of the logic circuit may be lowered.
- Example: A logic function having the binary codes for the BCD digits as its inputs. Only the codes for 0 through 9 are used. The six codes, 1010 through 1111 never occur, so the output values for these codes are x to represent "don't cares."

or

Incompletely Specified Functions

```
✓ F = (f, d, r) : B^n \rightarrow \{0, 1, x\}
where x represents "don't care".
```

• f = onset function -• r = offset function -• d = don't care function -(f,d,r) forms a partition of B^n . i.e. • f + d + r = B^n • fd = fr = dr = \emptyset (pairwise disjoint)