МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3343	 Гребнев Е.Д.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Разработать программу, способную моделировать работу машины Тьюринга, для работы со строками.

Задание

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a,b,c\}$.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом «b». Если первый встретившийся символ «b» — последний в строке, то удалить его. Если первый встретившийся символ «b» — предпоследний в строке, то удалить один символ, следующий за ним, т.е. последний в строке. Если в строке символ «b» отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит: {a, b, c, "" (пробел)}

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Была написана программа на языке Python, где возможные состояния машины были реализованы с помощью словарей.

- q1 начальное состояние машины. Пока машина находится в этом состоянии, она передвигается вправо по ленте пока не встретит любую букву.
- q1_а состояние, в которое машина попадает, если первая встреченная буква не была «b». В этом состоянии машина продолжает идти до ключевой буквы или символа пробела.
- q2 в это состояние машина попадает если встретила букву «b». В этом состоянии машина может находится только на следующем символе, который она удалит и перейдет к следующему состоянию.
- q3 состояние, в котором машина удаляет символ (2 справа после «b») либо останавливается, если считанный символ пробел.
 - q4 в этом состоянии машина удаляет любой символ.
- q5 данное состояние предусмотрено для того, чтобы машина могла завершить работу без изменения символов, после того, как удалит символы соответственно заданию.
- q6 состояние, рассчитанное для того сценария, если в считанной ленте нет ключевой буквы. В этом состоянии машина передвигается от правого пробела к левому, чтобы перейти от левого пробела к ближайшему символу и удалить его.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№	Входные данные	Выходные данные	Комментарии
п/п			
1.	«ccacac»	«cacac»	Сценарий без буквы
			«b»
2.	«acacb»	«acac»	Сценарий, где «b»
			находится на
			последнем месте
3.	«abaacb»	«abcb»	Сценарий, когда после
			«b» находится >=2
			символов.

Выводы

Была написана программа, которая может моделировать работу машины Тьюринга. Программа способна обрабатывать вводимый текст согласно заданию. В ходе разработки требовалось написать словарь, где будут описаны различные состояния машины. Затем в цикле нужные символы на считанной «ленте» заменялись согласно условию.

ПРИЛОЖЕНИЕА

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
LEFT, RIGHT, NO MOVE = -1, 1, 0
alphabet = {
'q1': {'a': ['a', RIGHT, 'q1_a'], 'b': ['b', RIGHT, 'q2'], 'c': ['c', RIGHT, 'q1_a'], '': [' ', RIGHT, 'q1']},
    'q1_a': {'a': ['a', RIGHT, 'q1 a'], 'b': ['b', RIGHT, 'q2'], 'c':
['c', RIGHT, 'q1_a'], ' ': ['', LEFT, 'q6']},
     'q2': {'a': ['', RIGHT, 'q3'], 'b': ['', RIGHT, 'q3'], 'c': ['',
RIGHT, 'q3'], ' ': ['', LEFT, 'q4']},

'q3': {'a': ['', RIGHT, 'q5'], 'b': ['', RIGHT, 'q5'], 'c': ['',
RIGHT, 'q5'], ' ': ['', NO MOVE, 'qT']},
     'q4': {'a': ['', NO MOVE, 'qT'], 'b': ['', NO MOVE, 'qT'], 'c':
['', NO MOVE, 'qT']},
'q5': {'a': ['a', RIGHT, 'q5'], 'b': ['b', RIGHT, 'q5'], 'c': ['c', RIGHT, 'q5'], '': ['', RIGHT, 'qT']},
    'q6': {'a': ['a', LEFT, 'q6'], 'b': ['b', LEFT, 'q6'], 'c': ['c',
LEFT, 'q6'], ' ': ['', RIGHT, 'q4']},
current state = 'q1'
cursor position = 0
tape = list(' ' + input() + ' ')
while current state != 'qT':
                     symbol,
                                                    next state
                                      move,
alphabet[current state][tape[cursor position]]
     tape[cursor position], cursor position, current state = symbol,
cursor position + move, next state
print(''.join(tape))
```