Taller de Recuperación de Ecuaciones Diferenciales

Punto	1(a)	1(b)	2	3	4	Definitiva
Calificación						
Puntaje	10.0/50	10.0/50	10.0/50	10.0/50	10.0/50	

NOMBRE:

1. Encuentre la solución particular de las siguientes ecuaciones diferenciales.

a)
$$\frac{d^2y}{d\theta^2} + y = 0, \quad y\left(\frac{\pi}{3}\right) = 0, y'\left(\frac{\pi}{3}\right) = 2$$

b)
$$y'' - 2y' + 2y = 0, \quad y(0) = 1, y(\pi) = 1$$

- 2. Considere la ecuación y'' y' 2y = 0.
 - a) Demuestre que $y_1(t) = e^{-t}$ y $y_2(t) = e^{2t}$ forman un conjunto de soluciones fundamentales.
 - b) Tome $y_3(t)=-2e^{2t}$, $y_4(t)=y_1(t)+2y_2(t)$ y $y_5(t)=2y_1(t)-2y_3(t)$. ¿Las ecuaciones $y_3(t),\ y_4(t),\ y_5(t)$ también son soluciones de la ecuación diferencial?
 - c) Determine si cada uno de los siguientes pares forman un conjunto fundamental de soluciones: $\{y_1(t), y_3(t)\}; \{y_2(t), y_3(t)\}; \{y_1(t), y_4(t)\}; \{y_4(t), y_5(t)\}.$
- 3. Encuentre la solución general de la siguiente ecuación diferencial

$$y'' - 8y' + 20y = 100x^2 - 26xe^x$$

4. Encuentre la solución general de la siguiente ecuación diferencial

$$y'' - 2y' + y = \frac{e^t}{1 + t^2}$$

Fecha de Entrega: Jueves 13 de Octubre

POR FAVOR JUSTIFIQUE CLARAMENTE TODOS SUS CÁLCULOS La nota de este Taller mejora la peor nota que tenga el estudiante de la siguiente manera

$$NuevaNota = PeorNota + (PeorNota * 1,5)/5,0.$$

La realización de este taller no es obligatoria.

Octubre 11 de 2022