Übung 5: CEOs Gehälter

Hintergrundinformation

Die CEO von Schweizer Firmen führen die Lohnliste der 100 grössten Unternehmen Europas nicht mehr an und liegen knapp hinter Spanien, gefolgt von Grossbritannien. Die zehn vertretenen Schweizer Unternehmen vergüteten ihre CEO 2014 im Median mit rund EUR 7 Mio. (etwa 14% weniger als im Vorjahr). Die Vergütungshöhen sind jedoch stark von der Branche und Grösse der Firmen abhängig. Die Gesamtdirektvergütung der Eurotop 100 bleibt im Jahr 2014 mit EUR 5.4 Mio. im Median konstant. Dazu gehören das Grundgehalt, die für 2014 ausbezahlte kurzfristige variable und aufgeschobene variable Vergütung sowie die 2014 gewährte langfristige variable Vergütung. Einzeln betrachtet steigt die Grundvergütung im Median um knapp 6% an, wobei 36% der europäischen Top-Unternehmen gegenüber dem Vorjahr Anpassungen vorgenommen haben. Die ausbezahlten Boni sind von 115% auf 100% der Grundvergütung in 2014 gefallen und auch die Werte der langfristig variablen Vergütung ("Long-Term Incentive"-Pläne, LTI) liegen mit 119% der Grundvergütung unter Vorjahresniveau.

Die Datei CEO.gdt beinhaltet Daten über 177 Firmen bzw. deren Geschäftsführer (engl. Chief Executive Officers, CEOs) für das Jahr 1990.

Sie wollen den Einfluss der Unternehmensperformance auf das Gehalt der CEOs untersuchen. Die Datei beinhaltet folgende Variablen:

- Salary: jährlicher CEO Gehalt in Tausend Dollars
- Sales: Unternehmensumsatz in Mio. Dollars
- Mktval = market valuation = Börsenkapitalisierung in Mio. Dollars
- Profits: Reingewinne der Unternehmungen in Tausend Dollars
- Ceoten = ceo tenure = Anzahl Jahre als CEO im analysierten Unternehmen
- Comten = company tenure: Firmenzugehörigkeit in Jahren (als CEO und als nicht-CEO)

Hinweis: Die Variable ceoten berücksichtigt nur die Anzahl Jahre als CEO im Unternehmen und nicht die gesamten Erfahrungsjahre als CEO auch bei anderen Unternehmungen.

1. Welche anderen Unternehmensvariablen könnten die Gehaltshöhe eines CEOs bestimmen?

- 2. Fügen Sie folgende logarithmierten Variablen hinzu: *I_salary* =ln(salary), *I_sales* = ln(sales) und *I_mktval* = ln(mktval)
- 3. Analysieren Sie folgende Variablen mittels gretl: salary, sales, mktval, profits, mit den entsprechenden Logarithmen. Gibt es negative Zahlen? Welche Variable weist den grössten Variationskoeffizienten auf?

	arith. Mittel	Median	Minimum	Maximum
SALARY	865,86	707,00	100,00	5299,0
1_SALARY	6,5828	6,5610	4,6052	8,5753
SALES	3529,5	1400,0	29,000	51300,
1_SALES	7,2310	7,2442	3,3673	10,845
MKTVAL	3600,3	1200,0	387,00	45400,
1 MKTVAL	7,3994	7,0901	5,9584	10,723
PROFITS	207,83	63,000	-463,00	2700,0
	Std. Abw.	Var'koeff.	Schiefe	Überwölbung
SALARY	587,59	0,67862	2,9986	17,401
1 SALARY	0,60606	0,092066	-0,11353	0,42749
SALES	6088,7	1,7251	4,1708	23,573
1 SALES	1,4321	0,19805	-0,10057	-0,18144
MKTVAL	6442,3	1,7894	3,8843	18,076
1 MKTVAL	1,1334	0,15318	0,85026	-0,025551
PROFITS	404,45	1,9461	3,1668	11,882

- 4. Welche Variable hat die grösste Schiefe? Warum haben wir nur rechtsschiefe Verteilungen?
- 5. Vergleichen Sie die Schiefen folgender Variablen-Paare:

salary-l-salary; sales - I sales und mktval - I mktval . Was stellen Sie fest?

salary	2.99	sales	4.17	mktval	3.88
l_salary	-0.11	l_sales	-0.1	l_mktval	0.85

6. Vergleichen Sie die Histogramme der Variablen salary und I_salary. Was beobachten Sie?

 Schätzen Sie ein Regressionsmodell, welches das jährliche CEO-Gehalt anhand des Unternehmensumsatzes (sales) und des Marktwertes (mktval) erklärt. Spezifizieren Sie hierzu das Modell so, dass Sie für beide erklärenden Variablen konstante Elastizitäten schätzen.

Modell 1: $\ln(\text{salary}) = \beta_1 + \beta_2 \ln(\text{sales}) + \beta_3 \ln(\text{mktval}) + u$

	Koeffizient	Stdfe	hler	t-Quotient	p-Wei	rt	
const	4,62092	0,2544	08	18,16	4,95e-	-042 **	**
1_SALES	0,162128	0,0396	703	4,087	6,67e-	-05 **	**
1_MKTVAL	0,106708	0,0501	240	2,129	0,0347	7 **	k
Mittel d. abi Summe d. qua R-Quadrat	d. Res.	6,582848 45,30965 0,299114	Stdfe	ow. d. abh. Va ehler d. Regre igiertes R-Oua	ess. (0,60605 0,51029	94
F(2, 174)		37,12853	P-Wei	-		3,73e-1	
Log-Likeliho	od -	130,5594	Akail	ke-Kriterium	2	267,118	38
Schwarz-Krit	erium	276,6472	Hanna	an-Quinn-Krite	erium 2	270,983	32

- 8. Interpretieren Sie die geschätzten Regressionskoeffizienten. Für das Interzept bilden Sie dazu e^{b_1} . In welcher Einheit ist die Variable *salary* angegeben?
- 9. Fügen Sie nun die Variable *profits* hinzu und schätzen Sie das neue Modell. Warum kann diese Variable nicht in logarithmierter Form eingefügt werden?

Modell 2:
$$\ln(\text{salary}) = \beta_1 + \beta_2 \ln(\text{sales}) + \beta_3 \ln(\text{mktval}) + \text{profits} + u$$

	Koeffizier	nt Stdfe	hler	t-Quotient	p-W	ert	
const	4,68692	0,37972	9	12,34	1,65	e-025	***
1 SALES	0,161368	0,03991	01	4,043	7,92	e-05	***
1 MKTVAL	0,0975286	0,06368	886	1,531	0,12	75	
PROFITS	3,56601e-0	0,00015	1960	0,2347	0,81	47	
Mittel d. ak	oh. Var.	6,582848	Stdak	ow. d. abh. V	ar.	0,606	059
Summe d. qua	ad. Res.	45,29524	Stdfe	hler d. Regr	ess.	0,511	686
R-Quadrat		0,299337	Korri	giertes R-Qu	adrat	0,287	186
F(3, 173)		24,63629	P-Wer	ct(F)		2,536	-13
Log-Likeliho	ood	-130,5312	Akail	re-Kriterium		269,0	625
Schwarz-Krit	erium	281,7671	Hanna	n-Quinn-Krit	erium	274,2	150

- 10. Sind die Koeffizienten individuell signifikant auf dem 5%-Signifikanzniveau?
- 11. Beurteilen Sie die Anpassungsgüte dieses Modells. Interpretieren Sie konkret den R²-Wert?
- 12. Vergleichen Sie die adjustierten R² (Modelle 1 und 2)? Was würde dadurch nahegelegt werden?
- 13. Interpretieren Sie den geschätzten Koeffizienten von profits.
- 14. Warum könnte es dennoch Sinn machen, beide Variablen *mktval* und *profits* in die Regression aufzunehmen?
- 15. Ermitteln Sie die Korrelation zwischen *I_sales* und *profits*. Regressieren Sie dazu *profits* auf *I_sales*. Erläutern Sie damit die Konsequenzen der Hinzunahme von *profits* in Bezug auf die Koeffizienten, Standardfehler und t-Statistik.

16. Ermitteln Sie die Korrelation zwischen den Variablen *I_mktval* und *profits* mittels Regression. Sind diese Variablen stark korreliert? Was hat dies für Konsequenzen für die Koeffizienten, deren Standardfehler und t-Statistik?

```
Abhängige Variable: PROFITS

Koeffizient Std.-fehler t-Quotient p-Wert

const -1843,53 127,131 -14,50 8,31e-032 ***

l_MKTVAL 277,233 16,9842 16,32 5,34e-037 ***

Mittel d. abh. Var. 207,8305 Stdabw. d. abh. Var. 404,4543

Summe d. quad. Res. 11413484 Stdfehler d. Regress. 255,3819

R-Quadrat 0,603570 Korrigiertes R-Quadrat 0,601305
```

17. Fügen Sie nun die Variable *ceoten* (Anzahl Jahre als CEO im Unternehmen) hinzu und schätzen Sie das Modell 3: $\ln(\text{salary}) = \beta_1 + \beta_2 \ln(\text{sales}) + \beta_3 \ln(\text{mktval}) + \beta_4 \text{ profits} + \beta_5 \text{ ceoten} + u$

	Koeffizient	Stdfe	hler	t-Quotient	p-We	ert	
const	4,55778	0,38025	55	11,99	1,886	-024	***
1 SALES	0,162234	0,03948	326	4,109	6,14	-05	***
1 MKTVAL	0,101760	0,06303	330	1,614	0,10	33	
PROFITS	2,90534e-05	0,00018	0355	0,1932	0,84	70	
CEOTEN	0,0116847	0,0053	202	2,187	0,03	01	**
Mittel d. al	oh. Var.	6,582848	Stdal	ow. d. abh. V	ar.	0,60	6059
Summe d. qua	ad. Res.	44,06940	Stdfe	ehler d. Regre	ess.	0,50	6179
R-Quadrat		0,318299	Korr	igiertes R-Qua	adrat	0,30	2445
F(4, 172)		20,07749	P-Wes	rt(F)		1,39	e-13
Log-Likeliho	ood -	128,1031	Akail	ke-Kriterium		266,	2063
Schwarz-Krit	cerium	282,0870	Hanna	an-Quinn-Krite	erium	272,	6469

Hinweis: Die Variable ceoten berücksichtigt nur die Anzahl Jahre als CEO im aktuellen Unternehmen und nicht die gesammelten Erfahrungsjahre als CEO auch bei anderen Unternehmungen.

- 18. Warum wurde die Variable ceoten nicht logarithmiert?
- 19. Was ist der geschätzte prozentuale Gehaltszuwachs bei einem zusätzlichen Jahr als CEO im Unternehmen, ceteris paribus?
- 20. Wie hat sich das adjustierte Bestimmtheitsmass gegenüber Modell 2 geändert?
- 21. Fügen Sie nun die Variable ceoten² hinzu und schätzen Sie das Modell 4.

 $ln(salary) = \beta_1 + \beta_2 ln(sales) + \beta_3 ln(mktval) + \beta_4 profits + \beta_5 ceoten + \beta_6 ceoten^2 + u$

	Koeffizient	Stdf	ehler	t-Quotient	p-W	ert	
const	4,44139	0,3770	98	11,78	7,94	e-024	**
1_SALES	0,163797	0,0388	3714	4,214	4,06	e-05	**
1 MKTVAL	0,0983764	0,0620	637	1,585	0,11	48	
PROFITS	3,94073e-05	0,0001	48065	0,2661	0,79	04	
CEOTEN	0,0451848	0,0141	.575	3,192	0,00	17	**
CEOTEN2	-0,00121367	0,0004	76212	-2,549	0,01	17	**
littel d. al	oh. Var. 6	,582848	Stdaby	v. d. abh. Va	r.	0,606	059
Summe d. qua	ad. Res. 4	2,45672	Stdfel	nler d. Regre	ss. (0,4982	282
R-Quadrat	C	,343245	Korri	giertes R-Qua	drat	0,3240	042
7(5, 171)	1	7,87422	P-Wert	C(F)	;	3,09e-	-14
Log-Likelih	ood -1	.24,8038	Akaike	e-Kriterium		261,6	076
Schwarz-Kri	terium 2	80,6645	Hannar	n-Quinn-Krite	rium :	269,3	364

Wie hat sich das adjustierte Bestimmtheitsmass gegenüber Modell 3 geändert?

22. Erklären Sie im Allgemeinen, warum quadrierte Variablen in die Regression aufgenommen werden.

- 23. Liegt gemäss Regression ein ab- oder ein zunehmender Grenzeffekt der Anzahl Jahre als CEO auf das CEO-Gehalt vor?
- 24. Ist der Grenzeffekt bei wenigen Erfahrungsjahren als CEO positiv oder negativ?
- 25. Ab welcher Anzahl Jahre ist ein negativer Einfluss der Erfahrungsjahre als CEO im Unternehmen auf das Gehalt zu erwarten?
- 26. Wie viele CEO's mit Erfahrungsjahren im Unternehmen oberhalb bzw. unterhalb des Parabel-Scheitelpunktes sind in der Stichprobe enthalten? Wie ist das Ergebnis bzgl. ceoten² daher zu interpretieren?

gretl: auf Variable rechtsklicken und Werte zeigen lassen:

- 27. Schätzen Sie das CEO-Gehalt für einen Umsatz von 5'000 (= \$5 Milliarden, da die Einheit Millionen ist), mktval = 10'000 (= \$10 Milliarden), und ceoten = 10 Jahre und profits = 0. Nehmen Sie die Schätzung mit Modell 3 und Modell 4 vor und vergleichen Sie Ihre Ergebnisse.
- 28. Erklären Sie was die Gewinnmarge eines Unternehmens ist.
- 29. Kreieren Sie die neue Reihe *profmarg* für die Gewinnmarge

 Hinweis: profit margin = profits / sales

 gretl Hauptfenster: Hinzufügen / Definiere neue Variable → profmarg = (profits / sales)
- 30. Schätzen Sie folgendes Modell und erklären Sie den Einfluss von *profmarg*: Modell 5: $\ln(\text{salary}) = \beta_1 + \beta_2 \ln(\text{sales}) + \beta_3 \ln(\text{mktval}) + \beta_4 \text{profmarg} + \beta_5 \text{ceoten} + \beta_6 \text{ceoten}^2 + \text{u}$

	Koeffizien	t Stdfel	hler t	-Quotient	t p-We	rt
const	4,36000	0,25818	 7	16,89	2,83e	-038 ***
1 SALES	0,160095	0,038690	03	4,138	5,49e	-05 ***
1 MKTVAL	0,115623	0,04898	69	2,360	0,019	4 **
PROFMARG	-0,286372	0,211123	3	-1,356	0,176	8
CEOTEN	0,0466231	0,01412	62	3,300	0,001	2 ***
CEOTEN2	-0,0012515	8 0,00047	4572	-2,637	0,009	1 ***
Mittel d. ab	h. Var.	6,582848	Stdabw.	d. abh.	Var.	0,606059
Summe d. qua	d. Res.	42,02217	Stdfehl	er d. Reg	gress.	0,495725
R-Quadrat		0,349967	Korrigi	ertes R-(Quadrat	0,330960
F(5, 171)		18,41272	P-Wert(F)		1,32e-14
Log-Likeliho	ood	-123,8933	Akaike-	Kriteriur	n	259,7867
Schwarz-Krit	erium	278,8436	Hannan-	Quinn-Kri	iterium	267,5154

- 31. Interpretieren Sie die geschätzten Koeffizienten b3 und b4.
- 32. Fügen Sie nun die Variable *comten* hinzu und schätzen Sie das Modell 6: $ln(salary) = \beta_1 + \beta_2 ln(sales) + \beta_3 ln(mktval) + \beta_4 promarg + \beta_5 ceoten + \beta_6 ceoten^2 + \beta_7 comten + u$

Abhängige Va	ariable: 1_SALA	ARY					
	Koeffizient	Stdfe	hler	t-Quotient	W-q	ert	
const	4,43833	0,25587	 1	17,35	1,87	e-039	***
1 SALES	0,186619	0,03944	30	4,731	4,67	e-06	***
1 MKTVAL	0,101259	0,04852	48	2,087	0,03	84	**
PROFMARG	-0,256080	0,20807	4	-1,231	0,22	01	
CEOTEN	0,0482259	0,01391	39	3,466	0,00	07	***
CEOTEN2	-0,00114052	0,00046	8963	-2,432	0,01	61	**
COMTEN	-0,00849758	0,00330	443	-2,572	0,01	10	**
Mittel d. ak	oh. Var. 6,	,582848	Stdak	ow. d. abh. V	ar.	0,606	5059
Summe d. qua	ad. Res. 40	,44872	Stdfe	hler d. Regr	ess.	0,487	7784
R-Quadrat	0,	374306	Korri	igiertes R-Qu	adrat	0,352	2223
F(6, 170)	16	5,94975	P-Wer	rt(F)		2,676	-15
Log-Likeliho	ood -12	20,5160	Akaik	re-Kriterium		255,0	319
Schwarz-Krit	cerium 27	77,2650	Hanna	n-Quinn-Krit	erium	264,0	1488

- i. Wie hat sich das adjustierte Bestimmtheitsmass gegenüber Modell 5 geändert?
- ii. Interpretieren Sie den geschätzten Koeffizienten b_{comten}.
- iii. Wie erklären Sie das negative Vorzeichen für b_{comten}?
- 33. Schätzen Sie folgendes Modell 7:

 $ln(salary) = \beta_1 + \beta_2 ln(sales) + \beta_3 ln(mktval) + \beta_4 promarg + \beta_5 ceoten + \beta_6 ceoten^2 + \beta_7 comten + \beta_8 comten^2 + u$

Ergibt es einen Sinn, die Variable comten² in die Regression aufzunehmen?

	Koeffizie	nt	Stdf	ehler	t-Quotient	7-q	Wert	
const	4,42371		0,2656	04	16,66	1,7	5e-037	**
1 SALES	0,185673		0,0398	024	4,665	6,2	5e-06	**
1 MKTVAL	0,101761		0,0487	185	2,089	0,0	382	**
PROFMARG	-0,257494		0,2087	66	-1,233	0,2	191	
CEOTEN	0,047716	3	0,0141	565	3,371	0,00	009	**
CEOTEN2	-0,001118	61	0,0004	81383	-2,324	0,0	213	**
COMTEN	-0,0060632	29	0,0118	921	-0,5099	0,6	108	
COMTEN2	-5,38888e	-05	0,0002	52832	-0,2131	0,8	315	
littel d. al	oh. Var.	6,58	32848	Stdabw	. d. abh. V	ar.	0,6060	059
umme d. qua	ad. Res.	40,4	13785	Stdfehl	ler d. Regr	ess.	0,4891	160
-Quadrat		0,37	74475	Korrigi	iertes R-Qu	adrat	0,3485	565
(7, 169)		14,4	15327	P-Wert	(F)		1,14e-	-14
og-Likelih	ood	-120,	4922	Akaike-	-Kriterium		256,98	344
chwarz-Krit	terium	282.	3935	Hannan-	-Quinn-Krit	erium	267,28	393

- 34. Welche Koeffizienten im Modell 7 sind individuell statistisch nicht signifikant?
- 35. Sind die Koeffizienten b₄, b₇ und b₈ gemeinsam signifikant? Führen Sie einen F-Test durch.


```
Nullhypothese: Die Regressionskoeffizienten sind Null für die Variablen
      PROFMARG, COMTEN, COMTEN2
  Teststatistik: F(3, 169) = 2,83696, p-Wert 0,0396991
   Das Weglassen von Variablen verbesserte 2
                                                                   von 3 Informationskriterien.
Modell 5: KO, benutze die Beobachtungen 1-177
Abhängige Variable: 1 SALARY
                   Koeffizient Std.-fehler t-Quotient
                                                                                  p-Wert
                                    0,258740 16,88 2,41e-038 ***
0,0386393 4,261 3,35e-05 ***
0,0488257 2,223 0,0275 **
0,0141169 3,196 0,0017 ***
   const
                   4.36855
   1_SALES
                    0,164633
   1 MKTVAL 0,108529
                    0,0451169
   CEOTEN2 -0,00121019 0,000474745 -2,549
Mittel d. abh. Var. 6,582848 Stdabw. d. abh. Var. 0,606059
Summe d. quad. Res. 42,47431 Stdfehler d. Regress. 0,496934
R-Quadrat 0,342973 Korrigiertes R-Quadrat 0,327693
F(4, 172) 22,44632 P-Wert(F) 6,26e-15
Log-Likelihood -124,8405 Akaike-Kriterium 259,6809
Schwarz-Kriterium 275,5617 Hannan-Quinn-Kriterium 266,1215
```

36. Sind die Koeffizienten b₇ und b₈ gemeinsam signifikant? Führen Sie einen F-Test durch.

37. Welches Regressionsmodell würden Sie vorziehen? Begründen Sie Ihre Antwort.

Auflistung der Regressionsmodelle:

```
Modell 1: ln(salary) = 4.621 + 0.162 ln(sales) + 0.107 ln(mktval)

Modell 2: ln(salary) = 4.687 + 0.161ln(sales) + 0.0975 ln(mktval) + 0.0000357profits

Modell 3: ln(salary) = 4.558 + 0.162ln(sales) + 0.1018ln(mktval) + 0.000029profits + 0.0117ceoten

Modell 4: ln(salary) = 4.441 + 0.164 ln(sales) + 0.0984 ln(mktval) + 0.000039 profits + 0.0452ceoten -0.00121ceoten²

Modell 5: ln(salary) = 4.36 + 0.160 ln(sales) + 0.115 ln(mktval) - 0.286profmarg + 0.046ceoten - 0.00124ceoten²

Modell 6: ln(salary) = 4.438 + 0.187ln(sales) + 0.1013ln(mktval) - 0.256profmarg + 0.048ceoten - 0.00114ceoten² - 0.008498 comten

Modell 7: ln(salary) = 4.424 + 0.186 ln(sales) + 0.1018 ln(mktval) - 0.257profmarg + 0.0477ceoten - 0.00112ceoten² - 0.006063 comten - 0.000054 comten²
```

	Modell 1	Modell 2	Modell 3	Modell 4	Modell 5	Modell 6	Modell 7
# Regressor	3	4	5	6	6	7	8
adj. R ²	0.291	0.2872	0.302	0.324	0.33	0.3522	0.3486
Akaike	267.12	269.06	266.21	261.61	259.78	255.03	256.98
SIC	276.65	281.76	282.09	280.66	278.84	277.26	282.39