Lista Zadań 02 – Elementy Teorii Grup

Filip Zieliński

28 marca 2025

Grupy Cykliczne

- 1. Czy cykliczna jest grupa (\mathbb{Z},\star), gdzie działanie \star określone jest wzorem $a\star b=a+b+5.$
- 2. Udowodnić, że dla n > 1 grupa $\mathbb{Z}_n \times \mathbb{Z}_n$ nie jest cykliczna.
- 3. Udowodnić, że jeśli NWD(m,n) > 1, to grupa $\mathbb{Z}_n \times \mathbb{Z}_m$ nie jest cykliczna.
- 4. Udowodnić, że dla każdego $a \in G$ zachodzi $\operatorname{ord}(a) = \operatorname{ord}(a^{-1})$.
- 5. Udowodnić, że jeśli G jest grupą abelową, to zbiór $T(G) = \{a \in G \mid \operatorname{ord}(a) < \infty\}$ jest podgrupą grupy G. (Nazywamy ją podgrupą torsyjną grupy G.)
- 6. Udowodnić, że jeśli $\varphi:G\to H$ jest homomorfizmem grup oraz $\varphi(a)=b$ i $\operatorname{ord}(a)<\infty$ to $\operatorname{ord}(b)\mid\operatorname{ord}(a)$. Udowodnić, że jeśli φ jest izomorfizmem, to zachodzi $\operatorname{ord}(b)=\operatorname{ord}(a)$.
- 7. Udowodnić, że obraz homomorficzny grupy cyklicznej jest grupą cykliczną.

Warstwy

8. Udowodnić, że zbiór odwrotności elementów z warstwy aH to dokładnie warstwa $Ha^{-1}.$

Podgrupy Normalne

- 9. Niech G bedzie grupą oraz H < G. Udowodnij, że następujące warunki są równoważne
 - $\bullet \ \forall a \in G \quad aH = Ha$
 - $\bullet \ \forall a \in G \quad aHa^{-1} = H$
 - $\forall a \in G \quad aHa^{-1} \subseteq H$
- 10. Centrum grupy G oznaczamyy przez Z(G) i definiujemy jako

$$Z(G) = \{ g \in G \mid \forall a \in G \ ag = ga \}.$$

Udowodnić, że $Z(G) \subseteq G$ dla każdej grupy G.

- 11. Niech G będzie grupą oraz $H \subseteq G$ i F < G. Zdefiniujmy zbiór HF jako $HF = \{hf \in G \mid h \in H \land f \in F\}$ oraz zbiór FH analogicznie. Udowodnić, że
 - HF < G,
 - FH < G,
 - jeżeli dodatkowo $F \subseteq G$, to $HF \subseteq G$.
- 12. Sprawdzić, że jeśli S jest niżej podanym podzbiorem zbioru R^* oraz $H = \{A \in GL_n(\mathbb{R}) \mid \det A \in S\}$ to $H \unlhd G$ a) \mathbb{R}^+ , b) Q^* , c) Q^+ , d) $\{2^k \mid k \in \mathbb{Z}\}$.
- 13. Niech będzie dany niepusty zbiór T oraz grupa G. Udowodnić, że
 - jeśli $H_t < G$ dla każdego $t \in T$, to $\bigcap_{t \in T} H_t < G$,
 - jeśli $H_t \leq G$ dla każdego $t \in T$, to $\bigcap_{t \in T} H_t \leq G$.