

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Design and Evaluation of a Processing-in-Memory Architecture for the Smart Memory Cube

Erfan Azarkhish(erfan.azarkhish@unibo.it)

Davide Rossi (davide.rossi@unibo.it)

Igor Loi (<u>igor.loi@unibo.it</u>)

Luca Benini (<u>luca.benini@iis.ee.ethz.ch</u>)

GA n. 291125

ARCS 2016 - ARCHITECTURE OF COMPUTING SYSTEMS 04-07 April 2016, Nuremberg, Germany

Outline

- Intro:
 - Near Memory Computation
 - Smart Memory Cube (SMC)
- Proposed Processing-in-Memory (PIM)
 Architecture for the SMC
- Full-System Simulation Results

Near Memory Computation (NMC)

Not successful industrial products

Incompatibility of DRAM and logic processes [Patterson, ICCD, 1997]

Heterogeneous 3D Integration

- Starting from 2011, this situation started to change:
 Through-silicon-vias (TSV)
 - DRAM and logic very close to each other but in their own processes
 - Commercial maturity → memory manufacturers
- Examples
 - High Bandwidth Memory (HBM)
 - DiRAM4 3D Memory
 - Hybrid Memory Cube (HMC)

Heterogeneous 3D Integration

- Starting from 2011, this situation started to change:
 Through-silicon-vias (TSV)
 - DRAM and logic very close to each other but in their own processes
 - Commercial maturity → memory manufacturers
- Examples
 - High Bandwidth Memory (HBM)
 - DiRAM4 3D Memory
 - Hybrid Memory Cube (HMC)
 - + Backed up by HMC consortium
 - + Higher flexibility by abstracting away the details of DRAM control
 - Suitable for Near Memory Computation

Smart Memory Cube (SMC)

- + A modular extension to the standard HMC
- → fully compatible with its IO interface
- + No new die is introduced in the stack

[E. Azarkhish, et. al., "High performance AXI-4.0 based interconnect for extensible smart memory cubes," IEEE DATE, 2015]

Smart Memory Cube (SMC)

- + PIM has a global visibility of the whole memory space
 - + Modular and scalable
 - + No concern about DRAM process

Cycle Accurate Model

Traffic-based Analysis

[E. Azarkhish, et. al., "High performance AXI-4.0 based interconnect for extensible smart memory cubes," IEEE DATE, 2015]

In this work: we design a PIM processor

Motivations for Near Memory Computation

Literature:

- 1. Latency Reduction: Reduction in data movement
- 2. Higher <u>bandwidth</u>: TSVs instead of Pins

Observation: HMC's serial links can deliver all its internal bandwidth to the outside $(4 \text{ Links}) \times (32 \text{ Lanes}) \times (30 \text{Gbps}) > 320 \text{GB/s}$

Motivations for Near Memory Computation

Literature:

- 1. Latency Reduction: Reduction in data movement
- 2. Higher bandwidth: TSVs instead of Pins

Observation: HMC's serial links can deliver all its internal bandwidth to the outside $(4 \text{ Links}) \times (32 \text{ Lanes}) \times (30 \text{Gbps}) > 320 \text{GB/s}$

Inside HMC:

- **TSV interface** is the main bottleneck
- Logic-base has the same bandwidth available as the external world
- Lower latency

What are PIM's benefits

- Located on the Logic Base
- Performance? Energy?

State of the Art (2013-2015)

SoA	PIM Model	Platform	Cache on PIM	Cache Coherence	Memory Management	Application	Energy Saving	Perf. Gain
NDA: [HPCA'15]	CGRA	gem5	No	Uncacheable	Segmentation with no paging	Big Data (MapReduce)	46%	1.6X
AMD + UNT: [Euro-Par'14]	Cortex-A5 x 64	gem5	L1I, L1D, L2	Software flush	Contiguous preallocated	Big Data (MapReduce)	23%	1.1X
Sandia.GOV [CO-HPC'14]	Light GP Cores x 16	SST (Instruction Trace)	L1I, L1D, L2	Yes - Hardware	Preallocation	Scientific: Sparse Linear Algebra,	-	~2X
TOP-PIM: [HPDC'14]	PIM= CPU+GPU	Analytical	L1, L2	Gathered Statistics	Preallocated	Graph, HPC, GPGPU	85%	7%
SNU+CMU [ISCA'15]	Low-level operations	In-house	No	Yes - Hardware	Full Virtual Memory	Big Data	1.6X	20%
AMC: [CF'15]	Vector Processors	Mambo simulator	No	Yes - Hardware	Full Virtual Memory + Allocation	Dense Matrix Operations	-	Up to 5X
Utah: [ISPASS'14]	Cortex-A5 x 1000	SIMICS Trace-based	L1	-	-	Big Data (MapReduce)	18X	15X
LiM: [3DIC'13]	App. Specific	Sniper Trace-based	-	-	Preallocation	Dense Matrix, BLAS, FFT	>100X	>100X
SNU+CMU [ISCA'15]	In-order cores x 512	In-house	L1, L2, Prefetchers	Uncacheable	Segmentation	Page Rank	87%	10X

State of the Art (2013-2015)

SoA	PIM Model	Platform	Cache on PIM	Cache Coherence	Memory Management	Application	Energy Saving	Perf. Gain				
NDA: [HPCA'15]	CGRA	gem5	No	Uncacheable	Segmentation with no paging	Big Data (MapReduce)	46%	1.6X				
AMD + UNT: [Euro-Par'14]	Cortex-A5 x 64	gem5	L1I, L1D, L2	Software flush	Contiguous preallocated	Big Data (MapReduce)	23%	1.1X				
[CO-H	[CO-H											
2. Full System simulation is desired (OS and all software and hardware layers) 3. For 1 memory cube: Less than 2X improvements are reported												
4. With networks of multiple memory cubes are used \rightarrow ~10X improvement												
An	→ High end applications											
[CF'15]	Processors	simulator	NO	Hardware	Allocation	Operations	-	Up to 5X				
Utah: [ISPASS'14]	Cortex-A5 x 1000	SIMICS Trace-based	L1	-	-	Big Data (MapReduce)	18X	15X				
LiM: [3DIC'13]	App. Specific	Sniper Trace-based	-	-	Preallocation	Dense Matrix, BLAS, FFT	>100X	>100X				
SNU+CMU [ISCA'15]	In-order cores x 512	In-house	L1, L2, Prefetchers	Uncacheable	Segmentation	Page Rank	87%	10X				

Our Contributions

- Full-system simulation environment for SMC
- Looking <u>in depth</u> into the <u>offload model</u>, including **driver** and **OS** effects and constraints
- Address virtual memory issues
 - Evaluate their overheads
- Assessing <u>energy and performance</u> advantages in a minimalistic setting:
 - (Small PIM configuration)
 - Minimum cost and power overheads

Proposed PIM Architecture

The Smart Memory Cube (SMC)

Proposed PIM Architecture

Proposed PIM Architecture

Hardware Features

- Maintain the standard interface of HMC
 - Memory mapped communications
 - No change in the packet protocol
- Flexible execution of different kernels
 - ELF Binary offloading
- Zero-copy virtual memory support
 - TLB + Page Table
- Bulk data transfer:
 - Virtually addressed DMA engine + Scratchpad Memory
- Extend atomic HMC Commands
 - Local computations inside DRAM dies

Modeling Methodology

- High level HMC model in gem5 (General Memory System)
- Calibrated and verified based on our CA model of HMC

Modeling Methodology

- High level HMC model in gem5
- Calibrated and verified based on our CA model of HMC

Pushed to http://reviews.gem5.org/r/2986/

Complete model in gem5

SMC: 512MB - 16 Vaults - 4 Mem Dies.

Evaluated Scenarios

- 1. Kernel Offloading:
 - ELF Binary offloading
- 2. Task Offloading: (User Data Structures)
 - Build page table flush the caches pass the pointers
- 3. Actual Execution

Programming Model

User Level API

(User Space)

- Abstract away the details
- Multiple user-level Apps
- Standard Driver

(Kernel Space)

- Adopted from MALI GPU
- Firmware & Memory mapped registers

Software Stack

Benchmarks

Large-Scale **Graph Processing** Kernels

→ Latency Sensitive

Average Teenage Follower (ATF)

Google's Page Rank (PR)

Breadth First Search (BFS)

Bellman Ford Shortest Path (BF)

[Ahn et. al., ISCA'15]

Offload to PIM for acceleration LIL Representation

Compact and scalable

```
for ( ulong_t i=0; i<NODES; i++ )</pre>
      nodes[i].page rank = 1.0 / NODES;
      nodes[i].next rank = 0.15 / NODES;
                                                        Large
    ulong t count = 0;
    float diff = 0.0;
                                                       Graphs
    do {
                                                 (~500K Nodes)
      for ( ulong_t i=0; i<NODES; i++ )</pre>
        float delta = 0.85 * nodes[i].page rank / nodes[i].out degree;
        for (ulong t j=0; j<nodes[i].out degree; j++) // for node.successors
            nodes[i].successors[j]->next rank += delta;
      diff = 0.0;
      for (ulong ti=0; i<NODES; i++)
        diff += fabsf(nodes[i].next rank - nodes[i].page rank);
        nodes[i].page rank = nodes[i].next rank;
        nodes[i].next rank = 0.15 / NODES;
    } while (++count < PAGERANK MAX ITERATIONS && diff >
PAGERANK MAX ERROR);
```


Performance Results

Average Speedup of PIM:

- 1.7X compared to the host SoC
- 1.3X compared to host-side accelerator

Including all offloading overheads

Performance Results

Average Speedup of PIM:

- 1.7X compared to the host SoC
- 1.3X compared to host-side accelerator

→ If we extend the **Atomic HMC Operations**:

atomic-min, atomic-increment, and atomic-add-immediate

Average Speedup of PIM:

- Graph benchmarks:
 - 2X compared with the host
 - 1.5X compared to the host-side accelerator

Offloading Overheads

Task offloading overhead

- Always below 5%
- For 500K nodes: less than 2%

API & Driver:

- VA → PA translation
- Page Table
- Cache Flush
- Send Pointers

Offloading Overheads

System Power Estimation

- Logic Synthesis: Interconnects, TLB, DMA Engine:
- CACTI: Caches and SPM
- DRAMPower: DRAM devices:
- Excel Sheets:
 - Serial Links: [S. Lloyd, Computer 2015] [P. Rosenfeld, 2014], [J. Jeddeloh, VLSIT 2012]
 - Link Power Gating: [J. Ahn, TVLSI 2015]
 - Vault Controllers: [B. Boroujerdian, Berkley, 2012]
 - HMC Controller: [M. Schaffner, DATE 2015]
 - ARM Processors: [B.M. Tudor, SIGMETRICS 2013]
 - Atomic Operations: [A. Aminot, ARCS 2015]
- Background Power was ignored:
 - Peripheral devices, secondary storage, cooling mechanism, system's clocking,
 - Unused DRAM cells (Memory Usage < 100MB)

Power Efficiency

Power Reduction: 70%

(Serial Links, Host Caches)

Optimum Perf./Watts

Host: 2GHz

PIM: 1.5GHz

3X Energy efficiency impr.

1.5X Perf Improvement

50% energy reduction

Summary

- High-level HMC model in gem5 model with verified accuracy
- Full System Simulation
- Zero-copy virtual address support
 - → Negligible overheads
- In a minimalistic setting: Single Core PIM + DMA + ...
 - Performance:
 - up to 2X performance improvement in comparison with the host processor
 - 1.5X performance compared with host-side accelerator
 - Energy: (Same performance)
 - 70% energy reduction (host SoC)
 - 55% energy reduction (host side accelerator)
- PIM requires less buffering compared to the host side accelerator
 - To maintain the same bandwidth

Little's Law: $L = \lambda W$

- Due to lower access latency
- → Further cost and energy optimizations

Ongoing works

- Cluster of low-power PIM processors
 - Parallelized kernels

- Applicability of our method to High-bandwidth Memory (HBM)
 - No abstracted interface, but
 - Less power overheads
 - Deal with DRAM commands

Source: www.amd.com

Thank you, questions?

- (1) E. Azarkhish, D. Rossi, I. Loi, and L. Benini, "High performance AXI-4.0 based interconnect for extensible smart memory cubes," IEEE DATE, 2015
- (2) J. Jeddeloh and B. Keeth, Hybrid memory cube new DRAM architecture increases density and performance in VLSI Technology (VLSIT), 2012 Symposium on, June 2012, pp. 87–88.
- (3) P. Rosenfeld, Performance exploration of the hybrid memory cube Ph.D. dissertation, univ. of Maryland, 2014.
- (4) G. Kim, J. Kim, J. H. Ahn, and J. Kim, Memory-centric system interconnect design with hybrid memory cubes, in Parallel Architectures and Compilation Techniques (PACT), 2013 22nd International Conference on, Sept 2013, pp. 145–155
- (5) A. Farmahini-Farahani, et. al., "NDA: Near-DRAM acceleration architecture leveraging commodity DRAM devices and standard memory modules," HPCA 2015
- (6) G. Stelle, et. al., "Using a Complementary Emulation-Simulation Co-Design Approach to Assess Application Readiness for Processing-in-Memory Systems", CO-HPC'14
- (7) Z. Sura, et. al., "Data access optimization in a processing-in-memory system", CF 2015
- (8) Q. Zhu, et. al., "A 3D-Stacked Logic-in-Memory Accelerator for Application-Specific Data Intensive Computing", 3DIC 2013
- (9) D. Zhang, et. al., "TOP-PIM: Throughput-Oriented Programmable Processing in Memory", HPDC 2014
- (10) J. Ahn, et. al. "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture", ISCA 2015
- (11) J. Ahn, et. al., "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing", ISCA 2015