Experiment No. 4

Title: Conversion of one type of flip flop to other type of flip-flop (J-K, D, and T flip-flop)

Batch: B1 Roll No.: 16010420133 Experiment No.: 4

Aim: To study flip flops (J-K, D, and T flip flop) using IC 7476 and Conversion of one type of flip flop to other type of flip-flop (J-K, D, and T flip-flop)

Resources needed: Simulation Platform,

Vlab Link: http://vlabs.iitb.ac.in/vlabs-dev/labs/digital-electronics/experiments/verify-truth-table-of-flipflops-iitr/simulation.html

Theory:

Theory: "Flip-flop" is the common name given to two-state devices which offer basic memory for sequential logic operations. Flip-flops are heavily used for digital data storage and transfer and are commonly used in banks called "registers" for the storage of binary numerical data.

Fig: Types of Flip-flops

Set-Reset FlipFlop:

The set/reset type flip-flop is triggered to a high state at Q by the "set" signal and holds that value until reset to low by a signal at the Reset input. This can be implemented as a NAND gate latch or a NOR gate latch and as a clocked version.

One disadvantage of the S/R flip-flop is that the input S=R=1 gives ambiguous results and must be avoided. The J-K flip-flop gets around that problem.

JK FlipFlop:

JK-flip flop has two inputs, traditionally labeled J and K. IC 7476 is a dual JK master slave flip flop with preset and clear inputs. If J and K are different then the output Q takes the value of J at the next clock edge. If J and K are both low then no change occurs. If J and K are both high at the clock edge then the output will toggle from one state to the other. It can perform the functions of the set/reset flip-flop and has the advantage that there are no ambiguous states.

D FlipFlop:

D flip-flop tracks the input, making transitions with match those of the input D. The D stands for "data"; this flip-flop stores the value that is on the data line. It can be thought of as a basic memory cell. D flip-flop can be made from J-K flip-flop by connecting both inputs through a not gate as shown in fig.

T FlipFlop:

T or "toggle" flip-flop changes its output on each clock edge, giving an output which is half the frequency of the signal to the T input. It is useful for constructing binary counters, frequency dividers, and general binary addition devices. It can be made from a J-K flip-flop by tying both of its inputs high.

Table: Characteristic table and Excitation Table of flipflops

FlipFlop	Characteristic Table			Characterist	Exci	Excitation Table			
name				ic Equation					
SR	S	R	Qnext		Q	Qnext	S	R	
	0	0	Q	Qnext=	0	0	0	X	
	0	1	0	S+R'Q	0	1	1	0	
	1	0	1		1	0	0	1	
	1	1	Foribidden	Where SR=0	1	1	X	1	
JK	J	K	Qnext		Q	Qnext	J	K	
	0	0	Q	Qnext=	0	0	0	X	
	0	1	0	JQ'+K'Q	0	1	1	X	
	1	0	1		1	0	X	1	
	1	1	Q'(T)		1	1	X	0	
D	D		Qnext		Q	Qnext	next D		
	1		0	Qnext=D	0	0	0		
			1		0	1	1		
					1	0		0	
					1 1			1	
T	T		Qnext		Q	Qnext	T		
	0		Q Qnext=		0	0	0		
1			K. J. SORIYA COLLEG	TQ'+T'Q	0	1		1	
			J.S.		1	0		1	
			OINE		1	1		0	

Procedure:

- a) Draw the pinout diagram of IC 7476
- b) Explore Vlab for SR, JK, D and T flipflop Link for Vlab Simulation: Virtual Labs (iitb.ac.in)
- c) Convert JK flipflop to D and T flip. (Show the procedure on separate sheets.)
- d) Connect the J&K flipflop as D and T flip flop and verify the respective Characteristic Tables.

Observations and Results:

- 1. Complete the Characteristic and Excitation Tables of SR, JK, T AND D flipflps.
- 2. Observe and explore the Vlab Simulation.
- 3. Show the conversion of JK flipflop to D and T flipflop.
- **4.** Observe the output for all the possible combinations of input.

IC 7476:

SR Flip Flop:

D Flip Flop:

JK Flip Flop:

T Flip Flop:

1) Jk to D Flip Flop

Procedure:- 1) Execute logical expression for excitation table of JK 2) Implementation

JK Flip Flop to D Flip Flop

2) Jk to T Flip Flop

Procedure:- 1) Execute logical expression for excitation table of JK

2) Implementation

JK Flip Flop to T Flip Flop

CircuitVerse Simulation:

Outcomes:

CO: Design the combinational and sequential circuits using basic building blocks

Conclusion:

- 1. We have learned about flip-flops (J-K, D and T) using IC 7476.
- 2. Conversion of one type of flip flop to another type of flip-flop like JK-D and JK-T and verifying our results on Circuitverse.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

- 1. Donald P Leach, Albert Paul Malvino "Digital principles and Applications" Tata McGraw Hill 8th Edition 2014
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/flipflop.html

