Discrete 3D surfaces of revolution Final presentation

Zied BEN ОТНМАNE Thomas BENOIST Adrien BISUTTI Lydie RICHAUME

University of Poitiers

March 2nd, 2016

Outline

- Introduction
- Work achieved
- Project management
- Conclusion

Outline

- Introduction
 - Collaborators and clients
 - Roles
 - Context
 - Objectives
- Work achieved
- Project management
- 4 Conclusion

Collaborators and clients

- Clients:
 - Éric ANDRES (Professor and former director of XLIM-SIC department)
 - Gaëlle LARGETEAU-SKAPIN (University lecturer, Discrete geometry)
- Exemple of final user :
 - Aurélie MOURIER (Artist)
- Pedagogic Supervisor :
 - Philippe MESEURE (Professor, Computer Graphics)

Roles

- Team composition :
 - Thomas BENOIST Project manager
 - Zied BEN OTHMANE Quality manager
 - Adrien Bisutti Risks manager
 - Lydie RICHAUME Tasks manager

Context

- Éric Andres and Gaëlle Largeteau-Skapin developed a new algorithm to model discrete surfaces of revolution.
- Display the result with Mathematica

Need of a tool usable by everyone and everywhere

Objectives

- Surfaces visualization tool
 - 3D, slices visualization
 - Choose the generatrix and directrix
 - Export the results
- Algorithm to generate surfaces of revolution
 - Provided by the customers
 - Possible evolution of the algorithm

Outline

- Introduction
- Work achieved
 - Prototype
 - Demonstration
- Project management
- 4 Conclusion

Prototype

- Listes des fonctionnalités
- Étude et transcription de l'algorithme
- Documentation technique
- Prototype

Demonstration

Outline

- Introduction
- Work achieved
- Project management
 - Gantt diagram
 - Progress
 - Deliverables
 - Risk evolution
 - Quality insurance plan
 - Costs
- 4 Conclusion

Gantt diagram

Diagramme prévisionnel

Diagramme réalisé

Zoom

Diagramme prévisionnel

Diagramme réalisé

Progress

Progress

Deliverables

Nº	Deliverable	Planned date	Actual date
1	Interface and algorithm result	Dec. 23 rd	Jan. 18 th
2	Minimal application	Jan. 21 st	Jan. 25 th
2 ^{bis}	Multicoupe et paramètres	_	Jan. 29 th
3	Free hand drawing and curves with editable parameters	Jan. 29 th	Feb. 24 th
4	Equations and export	Feb. 19 th	Feb. 24 th
5	Final application	Mar. 2 nd	Mar. 2 nd
5 ^{bis}	Final documentation	Mar. 11 th	Mar. 14 th

Server linked problems

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance	•			
Other				
Global	•			

Level	Gravity	Probability	Criticity
0	None	< 1%	No critical
1	Low (marges)	de 1% à 5%	NO CILICAI
2	Important	de 5% à 20 %	Critical
3	Dangerous	> 20%	Critical

New clients

Level	Gravity	Probability	Criticity
0	None	< 1%	No critical
1	Low (marges)	de 1% à 5%	INO CITUCAL
2	Important	de 5% à 20 %	Critical
3	Dangerous	> 20%	Citical

• Evolution of the generation algorithm

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	Probability	Criticity
0	None	< 1%	No critical
1	Low (marges)	de 1% à 5%	NO CILICAI
2	Important	de 5% à 20 %	Critical
3	Dangerous	> 20%	Critical

Slow rendering

Gravity	0	1	2	3
Delay			•	
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	Gravity Probability	
0	None	< 1%	No critical
1	Low (marges)	de 1% à 5%	ino critical
2	Important	de 5% à 20 %	Critical
3	Dangerous	> 20%	Citical

Quality insurance plan

Why ISO-9126?

- International standard for the evaluation of software quality
- Given a quality note according to different criteria
- Validation of the application by the clients and the quality manager
- Externals and internals tests

Software quality measurment

	Question	Version 1	Version 2	Version 3	Version 4	Version 5
1	overall vision	1	1	0.5	1	1
2	The ease to find the information	0.5	0.5	0.5	0.5	1
3	Response speed	0.5	0.5	0.5	1	1
4	utility of the information	0	0.5	0.5	1	1
5	The choice of title and heading and their meanings	0.5	1	1	1	1
6	The completeness of the information found against the need	1	0.5	1	1	1
7	Rapidité d'exécution	0	0.5	1	1	1
8	Errors rate	0.5	0.5	0.5	1	1
9	Handling the use	1	1	1	0.5	0.5
10	The reliability of the application	0	1	1	1	1
	Total	50%	70%	75%	90%	95%

	functionality	Lev	el1	Le	Level 2		Level 3		Level 4		Level 5	
	Tunctionality	INT	EXT	INT	EXT	INT	Ext	INT	Ext	INT	Ext	
	interoperability											
Goal	ability to interact with one or more systems											
Question	Is the application uses norms and technical standards?											
	Evaluation	90%		75%		85%		100%		95.83%		
1	Adequacy											
Goal	Checking the adequacy of spots against the needs											
Question	Does each function is adequate to the customer need?											
	Evaluation		100%		80%		25%		85%		90%	
0.5	operability											
Goal	the ability to properly use the software system											
Question	At what level the software is usable?											
	Evaluation	25 %	25 %		32.14%	35.71%	35.71%		100%		100%	
	Note I/E	76.66 %	83.33%	75%	74.76%	60.35%	30.35%	100%	92.5%	95.83%	95%	
	Fonctionnalité	79.9	9 %	74	.88 %	45.3	5 %	96.	25%		1%	

Standard divisions

- Quality model
- 2 External metrics
- Internal metrics
- Quality in use metrics

Software quality evaluation

Q.I.P Reviews

- The use of such techniques for explicitly and analyzing such quality during the requirements phases
- Well-differentiated characteristics of software quality has been developed
- A large number of software quality-evaluation metrics have been defined
- Quality can lead to significant savings in software life-cycle costs

Costs

Outline

- Introduction
- 2 Work achieved
- Project management
- 4 Conclusion

Conclusion

- Technical Javascript improvement (classes, worker, blob, webgl, etc.)
- Partial final delivery
- Perspectives

Discrete 3D surfaces of revolution

Final presentation

Thanks for your attention.

Are there any questions?

