Capítulo 2-Projeto Lógico Combinacional I

Profa. Eliete Caldeira

Tradeoffs de Componentes de Blocos Operacionais

Anteriormente:

 versões mais básicas e fáceis de compreender desses componentes

Agora:

 métodos para construir versões mais rápidas ou menores de alguns deles

Somador

- Somador com propagação do bit de transporte de "vai um" requer que:
 - os bits de "vai um" se propaguem através de todos os somadores completos antes que todas as saídas fiquem corretas.
- O caminho mais longo através do circuito é conhecido como caminho crítico do circuito.
- Grande atraso

Somador: como melhorar?

- Somador com lógica de dois níveis
 - Somador projetado com o uso de uma lógica de dois níveis tem um atraso de apenas duas portas
- A construção de um somador de N bits usando dois níveis de lógica resulta em circuitos excessivamente grandes à medida que N cresce acima de oito ou mais bits
 - Um somador com 4 bits cerca de 100 portas. Assim, podemos utilizar 2 somadores de 4 bits para gerar um de 8 (apenas 4 atrasos usando lógica de 2 níveis)

Quanto maior o número de entradas na porta, maior o atraso que ela apresenta
 a7 a6 a5 a4 b7 b6 b5 b4 a3 a2 a1 a0 b3 b2 b1 b0

a3a2a1a0

cin -

4-bit adder

cout s3s2s1s0

cin

a3a2a1a0 b3b2b1b0 4-bit adder cin

cout s3s2s1s0

Somador: como melhorar?

- Somador com antecipação de transporte
 - A velocidade do somador com antecipação e aumentada, mas não são usadas tantas portas como em um somador com dois níveis de lógica

- Se $s_i = a_i \oplus b_i \oplus c_i$ e $c_{i+1} = a_i b_i + a_i c_i + b_i c_i$
- Então:
 - $\circ c_1 = a_0b_0 + a_0c_0 + b_0c_0$
 - $c_2 = a_1b_1 + a_1c_1 + b_1c_1$
 - $\circ c_3 = a_2b_2 + a_2c_2 + b_2c_2$
 - \circ $c_4 = a_3b_3 + a_3c_3 + b_3c_3$
- Substituindo c₁ em c₂:
 - $\circ c_2 = a_1b_1 + a_1(a_0b_0 + a_0c_0 + b_0c_0) + b_1(a_0b_0 + a_0c_0 + b_0c_0)$
 - $c_2 = a_1b_1 + a_1a_0b_0 + a_1a_0c_0 + a_1b_0c_0 + b_1a_0b_0 + b_1a_0c_0 + b_1b_0c_0$

Substituindo c₂ em c₃:

- $c_3 = a_2b_2 + a_2(a_1b_1 + a_1a_0b_0 + a_1a_0c_0 + a_1b_0c_0 + b_1a_0b_0 + a_1a_0c_0 + b_1b_0c_0) + b_2(a_1b_1 + a_1a_0b_0 + a_1a_0c_0 + a_1b_0c_0 + b_1a_0b_0 + b_1a_0c_0 + b_1b_0c_0)$
- $c_3 = a_2b_2 + a_2a_1b_1 + a_2a_1a_0b_0 + a_2a_1a_0c_0 + a_2a_1b_0c_0 + a_2b_1a_0b_0 + a_2b_1a_0c_0 + a_2b_1b_0c_0 + b_2a_1b_1 + b_2a_1a_0b_0 + b_2a_1a_0c_0 + b_2a_1b_0c_0 + b_2b_1a_0b_0 + b_2b_1a_0c_0 + b_2b_1b_0c_0$

Substituindo c₃ em c₄:

 $\begin{array}{l} \circ \ c_4 = a_3b_3 + a_3(a_2b_2 + a_2a_1b_1 + a_2a_1a_0b_0 + a_2a_1a_0c_0 + a_2a_1b_0c_0 + \\ a_2b_1a_0b_0 + a_2b_1a_0c_0 + a_2b_1b_0c_0 + b_2a_1b_1 + b_2a_1a_0b_0 + \\ b_2a_1a_0c_0 + b_2a_1b_0c_0 + b_2b_1a_0b_0 + b_2b_1a_0c_0 + b_2b_1b_0c_0) + \\ b_3(a_2b_2 + a_2a_1b_1 + a_2a_1a_0b_0 + a_2a_1a_0c_0 + a_2a_1b_0c_0 + a_2b_1a_0b_0 + \\ a_2b_1a_0c_0 + a_2b_1b_0c_0 + b_2a_1b_1 + b_2a_1a_0b_0 + b_2a_1a_0c_0 + b_2a_1b_0c_0 + \\ b_2b_1a_0b_0 + b_2b_1a_0c_0 + b_2b_1b_0c_0) \end{array}$

- Esquema mais eficiente de antecipação do bit de transporte
- Se a_i+b_i gera vai-um ($a_i=1$ e $b_i=1$), então $c_{i+1}=1$ independente de c_i
 - Se $c_i = 0$, então $a_i + b_i + c_i = 10$
 - Se $c_i = 1$, então $a_i + b_i + c_i = 11$
- Se $a_i + b_i = 1$ (($a_i = 1$ e $b_i = 0$) ou ($a_i = 0$ e $b_i = 1$)), então $c_{i+1} = c_i$
 - Se $c_i = 0$, então $a_i + b_i + c_i = 01$
 - Se $c_i = 1$, então $a_i + b_i + c_i = 10$
- Ou seja,
 - $c_{i+1} = a_i b_i + (a_i \oplus b_i) c_i$

- Sejam definidos:
 - gerar como $g_i = a_i b_i$
 - e propagar como $p_i = a_i \oplus b_i$
- Então
 - $c_1 = g_0 + p_0 c_0$
 - $c_2 = g_1 + p_1c_1 = g_1 + p_1(g_0 + p_0c_0) = g_1 + p_1g_0 + p_1p_0c_0$
 - $c_3 = g_2 + p_2 c_2 = g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 c_0) = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$
 - $c_4 = g_3 + p_3 c_3 = g_3 + p_3 (g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0) = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$
- Além disto $s_i = p_i \oplus c_i$

- Cada bloco SPG tem 3 portas para gerar g_i (and), p_i (xor) e s_i (xor), total de 12 portas para 4 bits
- O bloco de antecipação de transporte tem 2+3+4+5 = 14 portas para 4 bits
- Total de 26 portas com 4 níveis de tempo de atraso
- Para 8 bits 8x3+(2+3+4+5+6+7+8+9) = 68 com o atraso de 4 portas lógicas

- Problemas: à medida que o número de bits do somador aumenta, as portas do circuito de antecipação de transporte têm cada vez mais entradas.
- Portas com muitas entradas gastam muitos transistores, ocupam maior área e têm tempo de atraso maior
- Além disto, portas com muitas entradas são construídas de árvores de portas menores.

Somadores hierárquicos com antecipação de bit de transporte

- Podemos construir somadores a partir de somadores menores
- A primeira forma é conectar para propagar transporte
 - 16 atrasos de porta versus 32 atrasos no caso do somadores de propagação

Somadores hierárquicos com antecipação de bit de transporte

- Outra forma é conectar usando um gerador de transporte antecipado
- No módulo $P = p_3p_2p_1p_0$

e
$$G = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0$$

Somadores hierárquicos com antecipação de bit de transporte

Para 32 bits:

Figure 6.63 View of multilevel carry-lookahead, showing tree structure, which enables fast addition with reasonable numbers and sizes of gates. Each level adds only two gate-delays.

Somador com seleção de bit de transporte

Figure 6.64 8-bit carry-select adder implemented using three 4-bit adders.

Tradeoff de somadores

Figure 6.65 Adder tradeoffs.

Unidade Lógica e Aritmética

- ULA ou ALU (Arithmetic Logic Unit) em complemento de 2
- Entradas:
 - $\begin{array}{ll} \circ & x = (x_{n-1}, \, ... \, , x_0); \, x_j \in \{0,1\} \\ \circ & y = (y_{n-1}, \, ... \, , y_0); \, y_i \in \{0,1\} \end{array}$
 - $c_{in} \in \{0,1\}$
 - \circ F = (f_2, f_1, f_0)
- Saídas:
 - $z = (z_{n-1}, ..., z_0); z_j \in \{0, 1\}$
 - c_{in} , sgn, zero, ovf $\in \{0,1\}$
- A tabela mostra as funções

F	Operation			
001	ADD	add	z = x + y	
011	SUB	subtract	z = x - y	
101	ADDC	add with carry	$z = x + y + c_{in}$	
110	CS	change sign	z = -x	
010	INC	increment	z = x + 1	

sgn = 1 if z < 0, 0 otherwise (the sign) zero = 1 if z = 0, 0 otherwise ov f = 1 if z overflows, 0 otherwise

Unidade Lógica e Aritmética

Como deve ser a tabela-verdade do circuito que gera K_x , K_y , K_{mx} e c_0 a partir de F e de c_{in} ?

Unidade Lógica e Aritmética

Geração dos sinais e controle

$$a_i = \begin{cases} b_i & \text{if } K = 0 \\ b_i' & \text{if } K = 1 \end{cases}$$

Operation	Op-code		Control Signals		
	$f_2f_1f_0$	<u>z</u>	K_x	K_y	K_{MX}
ADD	001	$ADD(\underline{x}, \underline{y}, 0)$	0	0	1
SUB	011	$ADD(\underline{x}, \underline{y'}, 1)$	0	1	1
ADDC	101	$ADD(\underline{x}, \underline{y}, c_{in})$	0	0	1
CS	110	$ADD(\underline{x'}, \underline{0}, 1)$	1	d.c.	0
INC	010	$ADD(\underline{x}, \underline{0}, 1)$	0	d.c.	0

$$K_x = f_2 f_1$$

$$K_y = f_1$$

$$K_{MX} = f_0$$

$$c_0 = f_1 + f_2 f_0 c_{\text{in}}$$

Redes ALU

Considere o módulo ALU onde P e G são sinais de propagar e gerar e $c_{out} = G+P.c_{in}$

$Control\;(S)$	Function
ZERO	z = 0
ADD	$z = (x + y + c_{\rm in}) \bmod 16$
SUB	$z = (x + y' + c_{\text{in}}) \bmod 16$
EXSUB	$z = (x' + y + c_{\text{in}}) \bmod 16$
AND	$\underline{z} = \underline{x} \cdot \underline{y}$
OR	$\underline{z} = \underline{x} + \underline{y}$
XOR	$\underline{z} = \underline{x} \oplus \underline{y}$
ONE	z = 1111

a' denotes the integer represented by vector \underline{a}' \cdot , \bullet , and \oplus are applied to the corresponding bits

Redes ALU

Rede carry skip de ALU's

Um MUX 2:1 é um bloco universal, ou seja, com ele é possível fazer as operações NOT, AND e OR

Decomposição de Shannon

$$z = f(x_{n-1}, x_{n-2}, \dots, x_0) = f(x_{n-1}, x_{n-2}, \dots, 1) \cdot x_0$$
+ $f(x_{n-1}, x_{n-2}, \dots, 0) \cdot x'_0$

 Repetindo a decomposição de Shannon podese obter uma árvore de MUXes

- Implemente usando MUX 2:1a função $f(x_3,x_2,x_1,x_0) = z = x_3 (x_1+x_2x_0)$
- Decomponha na sequência em relação a x₀, x₁, x₂ e x₃

- Implemente usando MUX 2:1a função $f(x_3,x_2,x_1,x_0) = z = x_3 (x_1+x_2x_0)$
- Decomponha na sequência em relação a x₀, x₁, x₂ e x₃
 - $f(x_3,x_2,x_1,0) = x_3(x_1+x_2,0) = x_3(x_1+0) = x_3.x_1$
 - $f(x_3,x_2,x_1,1) = x_3(x_1+x_2.1) = x_3(x_1+x_2)$
 - $f(x_3,x_2,0,0) = x_3.0 = 0$
 - $f(x_3,x_2,1,0) = x_3.1 = x_3$
 - $f(x_3,x_2,0,1) = x_3(0+x_2) = x_3(x_2) = x_3.x_2$
 - $f(x_3,x_2,1,1) = x_3(1+x_2) = x_3(1) = x_3$
 - $f(x_3,0,0,1) = x_3.0 = 0$
 - $f(x_3,1,0,1) = x_3.1 = x_3$

Implemente usando MUX 2:1a função

$$f(x_3,x_2,x_1,x_0) = z = x_3(x_1+x_2x_0)$$

Decomponha na sequência em relação a x_0 , x_1 , x_2 e x_3

•
$$f(x_3,x_2,x_1,0) = x_3(x_1+x_2.0) = x_3(x_1+0) = x_3.x_1$$

•
$$f(x_3,x_2,x_1,1) = x_3(x_1+x_2,1) = x_3(x_1+x_2)$$

•
$$f(x_3,x_2,0,0) = x_3.0 = 0$$

•
$$f(x_3,x_2,1,0) = x_3.1 = x_3$$

•
$$f(x_3,x_2,0,1) = x_3(0+x_2) = x_3(x_2) = x_3.x_2$$

•
$$f(x_3,x_2,1,1) = x_3(1+x_2) = x_3(1) = x_3$$

- $f(x_3,0,0,1) = x_3.0 = 0$
- $f(x_3,1,0,1) = x_3.1 = x_3$

- A decomposição de Shannon não precisa ser realizada em uma ordem específica.
- Repetindo o exemplo, decompondo em outra ordem. O que muda?

- Implemente usando MUX 2:1a função $f(x_3,x_2,x_1,x_0) = z = x_3 (x_1+x_2x_0)$
- Mas agora decomponha na sequência em relação a x₁, x₀ e x₂

- Implemente usando MUX 2:1a função $f(x_3,x_2,x_1,x_0) = z = x_3 (x_1+x_2x_0)$
- Mas agora decomponha na sequência em relação a x₁, x₀ e x₂
 - $f(x_3,x_2,0,x_0) = x_3 (0+x_2.x_0) = x_3 (x_2.x_0) = x_3.x_2.x_0$
 - $f(x_3,x_2,1,x_0) = x_3(1+x_2.x_0) = x_3(1) = x_3$
 - $f(x_3,x_2,0,0) = x_3.x_2.0=0$
 - $f(x_3,x_2,0,1) = x_3.x_2.1 = x_3.x_2$
 - $f(x_3,0,0,1) = x_3.0 = 0$
 - $f(x_3,1,0,1) = x_3.1 = x_3$

- Implemente usando MUX 2:1a função $f(x_3,x_2,x_1,x_0) = z = x_3 (x_1+x_2x_0)$
- Mas agora decomponha na sequência em relação a x_1 , x_0 e x_2
 - $f(x_3,x_2,0,x_0) = x_3(0+x_2.x_0) = x_3(x_2.x_0) = x_3.x_2.x_0$
 - $f(x_3,x_2,1,x_0) = x_3(1+x_2.x_0) = x_3(1) = x_3$
 - $f(x_3,x_2,0,0) = x_3.x_2.0=0$
 - $f(x_3,x_2,0,1) = x_3.x_2.1 = x_3.x_2$
 - $f(x_3,0,0,1) = x_3.0 = 0$
 - $f(x_3,1,0,1) = x_3.1 = x_3$

- A implementação obtida depende da ordem em que a decomposição de Shannon é realizada
- Mas, não é possível saber qual a melhor ordem antecipadamente
- O bloco MUX 2:1 é usado em FPGAs para implementar funções combinacionais programação em campo

FIM