2007年全国硕士研究生入学统一考试数学一试题

- 一、选择题: $1 \sim 10$ 小题,每小题 4 分,共 40 分,下列每题给出的四个选项中,只有一个选项符合题目 要求,请将所选项前的字母填在答题纸指定位置上
- (1) 当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是(

$$A.1 - e^{\sqrt{x}} \qquad B.\ln\frac{1+x}{1-\sqrt{x}} \qquad C.\sqrt{1+\sqrt{x}} - 1 \qquad D.1 - \cos\sqrt{x}$$

- (2) 曲线 $y = \frac{1}{r} + \ln(1 + e^x)$ 渐近线的条数为(D.3
- (3) 如图,连续函数 y = f(x) 在区间 [-3,-2], [2,3] 上的图形分别是直径为 1 的上、下半圆周,在区间 [-2,0],[0,2]上图形分别是直径为2的上、下半圆周,设 $F(x) = \int_0^x f(t)dt$,则下列结论正确的是(

A. $F(3) = -\frac{3}{4}F(-2)$

B. $F(3) = \frac{5}{4}F(2)$

 $C. F(-3) = \frac{3}{4}F(2)$

- D. $F(-3) = -\frac{5}{4}F(-2)$
- (4) 设函数 f(x) 在 x = 0 连续,则下列命题错误的是(

 - A. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0) = 0 B. 若 $\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$ 存在,则 f(0) = 0

 - C. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0) 存在 D. 若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 f'(0) 存在
- (5) 设函数 f(x) 在 $(0,+\infty)$ 上具有二阶导数,且 f''(x)>0,令 $u_n=f(n)(n=1,2,\cdots)$,则下列结论正确的 是(
 - A. 若 $u_1 > u_2$,则 $\{u_n\}$ 必收敛
- B. 若 $u_1 > u_2$,则 $\{u_n\}$ 必发散
- C. 若 $u_1 < u_2$,则 $\{u_n\}$ 必收敛
- D. 若 $u_1 < u_2$,则 $\{u_n\}$ 必发散

(6) 设曲线 L: f(x,y) = 1 (f(x,y) 具有一阶连续偏导数)过第 II 象限内的点 M 和第 IV 象限内的点 N , Γ 为L上从点M到点N的一段弧,则下列积分小于零的是(

A.
$$\int_{\Gamma} f(x,y) dx$$

$$B. \int_{\Gamma} f(x,y) dy$$

$$C. \int_{\Gamma} f(x, y) ds$$

B.
$$\int_{\Gamma} f(x, y) dy$$
D.
$$\int_{\Gamma} f'_{x}(x, y) dx + f'_{y}(x, y) dy$$

(7) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是(

$$A \cdot \alpha_1 - \alpha_2 \cdot \alpha_2 - \alpha_3 \cdot \alpha_3 - \alpha_1$$

$$B \cdot \alpha_1 + \alpha_2 \cdot \alpha_2 + \alpha_3 \cdot \alpha_3 + \alpha_1$$

$$C \cdot \alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$

$$D \cdot \alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$$

(8) 设矩阵
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 $A \ni B$ ()

- A. 合同,且相似
- B. 合同,但不相似
- C. 不合同,但相似
- D. 既不合同,也不相似
- (9) 某人向同一目标独立重复射击,每次射击命中目标的概率为p(0 ,则此人第<math>4次射击恰好第2次命中目标的概率为(

$$A.3p(1-p)^2$$

$$B.6p(1-p)^2$$

$$C.3p^2(1-p)^2$$

$$D.6p^2(1-p)^2$$

(10) 设随机变量(X,Y) 服从二维正态分布,且X与Y不相关, $f_X(x),f_Y(y)$ 分别表示X,Y的概率密度,

则在Y = y条件下,X的条件概率密度 $f_{X|Y}(x|y)$ 为()

$$A \cdot f_X(x)$$

$$B \cdot f_{Y}(y)$$

$$C.f_X(x)f_Y(y)$$

$$D.\frac{f_X(x)}{f_Y(y)}$$

二、填空题: 11-16 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(11)
$$\int_{1}^{2} \frac{1}{x^{3}} e^{\frac{1}{x}} dx = \underline{\qquad}$$

(12) 设
$$f(u,v)$$
为二元可微函数, $z = f(x^y, y^x)$,则 $\frac{\partial z}{\partial x} =$ _____

(13) 二阶常系数非齐次线性微分方程 $y'' - 4y' + 3y = 2e^{2x}$ 的通解为 $y = ____$

(14) 设曲面
$$\Sigma: |x| + |y| + |z| = 1$$
,则 $\bigoplus_{\Sigma} (x + |y|) dS =$ ______

(15) 设距阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 A^3 的秩为_____

(16) 在区间(0,1)中随机地取两个数,则这两数之差的绝对值小于 $\frac{1}{2}$ 的概率为______

三、解答题: 17-24 小题, 共 86 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.

(17)(本题满分 10 分)

求函数
$$f(x,y) = x^2 + 2y^2 - x^2y^2$$
, 在区域 $D = \{(x,y) | x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值和最小值.

(18)(本题满分 11 分)

计算曲面积分
$$I = \iint_{\Sigma} xzdydz + 2zydzdx + 3xydxdy$$
, 其中 Σ 为曲面 $z = 1 - x^2 - \frac{y^2}{4} (0 \le z \le 1)$ 的上侧.

(19)(本题满分 11 分)

设函数
$$f(x)$$
, $g(x)$ 在 $\left[a,b\right]$ 上连续,在 $\left(a,b\right)$ 内二阶可导且存在相等的最大值,又 $f(a)=g(a)$,
$$f(b)=g(b)$$
,证明:存在 $\xi\in (a,b)$,使得 $f"(\xi)=g"(\xi)$.

(20)(本题满分 10 分)

设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $(-\infty, +\infty)$ 内收敛,其和函数 $y(x)$ 满足 $y'' - 2xy' - 4y = 0$, $y(0) = 0$, $y'(0) = 1$

(I) 证明
$$a_{n+2} = \frac{2}{n+1} a_n, n = 1, 2, \dots$$

(II) 求 y(x) 的表达式

(21)(本题满分 11 分)

设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases} \tag{1}$$

与方程
$$x_1 + 2x_2 + x_3 = a - 1$$
 (2)

有公共解,求 a 得值及所有公共解.

(22)(本题满分 11 分)

设 3 阶实对称矩阵 A 的特征值 $\lambda_1=1, \lambda_2=2, \lambda_3=-2, \alpha_1=(1,-1,1)^T$ 是 A 的属于 λ_1 的一个特征向量,记 $B=A^5-4A^3+E$,其中 E 为 3 阶单位矩阵.

- (I) 验证 α , 是矩阵 B 的特征向量, 并求 B 的全部特征值与特征向量;
- (II) 求矩阵 B.

(23)(本题满分 11 分)

设二维随机变量
$$(X,Y)$$
 的概率密度为 $f(x,y) = \begin{cases} 2-x-y, & 0 < x < 1, 0 < y < 1. \\ 0, & 其他 \end{cases}$

- (I) $\stackrel{*}{\mathcal{R}} P\{X > 2Y\}$;
- (II) 求Z = X + Y的概率密度 $f_z(z)$.

(24)(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta}, & 0 < x < \theta, \\ \frac{1}{2(1-\theta)}, & \theta \le x < 1, . \\ 0, & \sharp \text{ th} \end{cases}$$

其中参数 $\theta(0<\theta<1)$ 未知, $X_1,X_2,...X_n$ 是来自总体 X 的简单随机样本, \overline{X} 是样本均值.

- (I) 求参数 θ 的矩估计量 $\hat{\theta}$;
- (II) 判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量,并说明理由.

2007年全国硕士研究生入学统一考试数学一试题解析

一、选择题

(1)【答案】B

【详解】

方法 1: 排除法: 由几个常见的等价无穷小, 当 $x \to 0$ 时,

$$e^{x} - 1 \sim x; \sqrt{1+x} - 1 \sim \frac{1}{2}x; \ 1 - \cos x = 2\sin^{2}\frac{x}{2} \sim 2(\frac{x}{2})^{2} = \frac{x^{2}}{2}, \ \exists \ x \to 0^{+} \ \text{时,此时} \ \sqrt{x} \to 0 \ , \ \text{所以}$$
 $1 - e^{\sqrt{x}} \sim (-\sqrt{x}); \sqrt{1 + \sqrt{x}} - 1 \sim \frac{1}{2}\sqrt{x}; \ 1 - \cos\sqrt{x} \sim \frac{1}{2}(\sqrt{x})^{2}, \ \text{可以排除} \ A \ , \ C \ , \ D \ , \ \text{所以选(B)}.$

方法 2:
$$\ln \frac{1+x}{1-\sqrt{x}} = \ln \frac{1-\sqrt{x}+\sqrt{x}+x}{1-\sqrt{x}} = \ln \left[1+\frac{x+\sqrt{x}}{1-\sqrt{x}}\right]$$

当
$$x \to 0^+$$
时, $1-\sqrt{x} \to 1$, $\frac{x+\sqrt{x}}{1-\sqrt{x}} \to 0$,又因为 $x \to 0$ 时, $\ln(1+x) \sim x$,

所以
$$\ln[1+\frac{x+\sqrt{x}}{1-\sqrt{x}}] \sim \frac{x+\sqrt{x}}{1-\sqrt{x}} \sim x+\sqrt{x} = \sqrt{x}\left(\sqrt{x}+1\right) \sim \sqrt{x}$$
,选(B).

方法 3:
$$\lim_{x \to 0^{+}} \frac{\ln(\frac{1+x}{1-\sqrt{x}})}{\sqrt{x}} = \lim_{x \to 0^{+}} \frac{\left[\ln(\frac{1+x}{1-\sqrt{x}})\right]'}{\left(\sqrt{x}\right)'} = \lim_{x \to 0^{+}} \frac{\frac{1-\sqrt{x}}{1+x}(\frac{1+x}{1-\sqrt{x}})'}{\frac{1}{2\sqrt{x}}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1 - \sqrt{x}}{1 + x} \cdot \frac{1 - \sqrt{x} + \frac{1}{2\sqrt{x}} (1 + x)}{\left(1 - \sqrt{x}\right)^{2}}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0^{+}} \frac{2\sqrt{x} \left(2\sqrt{x} + 1 - x\right)}{(1 + x)\left(1 - \sqrt{x}\right)}$$

设
$$\frac{2\sqrt{x}(2\sqrt{x}+1-x)}{(1+x)(1-\sqrt{x})} = \frac{A}{1+x} + \frac{B}{1-\sqrt{x}}$$
,则 $A(1-\sqrt{x}) + B(1+x) = 4x + 2\sqrt{x} - 2x\sqrt{x}$

对应系数相等得: $A=2\sqrt{x}, B=1$, 所以

原式 =
$$\lim_{x \to 0^+} \frac{2\sqrt{x} \left(2\sqrt{x} + 1 - x\right)}{(1+x)\left(1 - \sqrt{x}\right)} = \lim_{x \to 0^+} \left[\frac{2\sqrt{x}}{1+x} + \frac{1}{1-\sqrt{x}}\right]$$

$$= \lim_{x \to 0^+} \frac{2\sqrt{x}}{1+x} + \lim_{x \to 0^+} \frac{1}{1-\sqrt{x}} = 0 + 1 = 1, \quad \text{选(B)}.$$

(2)【答案】D

【详解】因为
$$\lim_{x\to 0} y = \lim_{x\to 0} \left(\frac{1}{x} + \ln(1+e^x)\right) = \lim_{x\to 0} \frac{1}{x} + \lim_{x\to 0} \ln(1+e^x) = \infty$$
,
所以 $x = 0$ 是一条铅直渐近线;

因为
$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \left(\frac{1}{x} + \ln(1 + e^x) \right) = \lim_{x \to -\infty} \frac{1}{x} + \lim_{x \to -\infty} \ln(1 + e^x) = 0 + 0 = 0$$
,

所以 y = 0 是沿 $x \to -\infty$ 方向的一条水平渐近线;

$$\Rightarrow a = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\frac{1}{x} + \ln(1 + e^x)}{x} = \lim_{x \to +\infty} \left(\frac{1}{x^2} + \frac{\ln(1 + e^x)}{x}\right)$$

$$= \lim_{x \to +\infty} \frac{1}{x^2} + \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} \xrightarrow{\text{ABLICE}} 0 + \lim_{x \to +\infty} \frac{\frac{e^x}{1 + e^x}}{1} = 1$$

$$\Rightarrow b = \lim_{x \to +\infty} \left(y - a \cdot x\right) = \lim_{x \to +\infty} \left(\frac{1}{x} + \ln(1 + e^x) - x\right)$$

$$= \lim_{x \to +\infty} \frac{1}{x} + \lim_{x \to +\infty} \left(\ln(1 + e^x) - x\right) \xrightarrow{\text{ABLICE}} 0 + \lim_{x \to +\infty} \left(\ln(1 + e^x) - \ln e^x\right)$$

$$= \lim_{x \to +\infty} \ln\left(\frac{1 + e^x}{e^x}\right) = \lim_{x \to +\infty} \ln(e^{-x} + 1) = \ln 1 = 0$$

所以y = x是曲线的斜渐近线,所以共有3条,选择(D)

(3)【答案】C

【详解】由题给条件知, f(x) 为 x 的奇函数,则 f(-x) = -f(x) ,由 $F(x) = \int_0^x f(t)dt$,知 $F(-x) = \int_0^{-x} f(t)dt \underbrace{\diamondsuit t = -u \int_0^x f(-u)d(-u)}_{0} \text{因为} f(-u) = -f(u) \int_0^x f(u)du = F(x),$

故F(x)为x的偶函数,所以F(-3) = F(3).

而
$$F(2) = \int_0^2 f(t)dt$$
 表示半径 $R = 1$ 的半圆的面积,所以 $F(2) = \int_0^2 f(t)dt = \frac{\pi R^2}{2} = \frac{\pi}{2}$,

 $F(3) = \int_0^3 f(t)dt = \int_0^2 f(t)dt + \int_2^3 f(t)dt$,其中 $\int_2^3 f(t)dt$ 表示半径 $r = \frac{1}{2}$ 的半圆的面积的负值,所以

$$\int_{2}^{3} f(t)dt = -\frac{\pi r^{2}}{2} = -\frac{\pi}{2} \cdot \left(\frac{1}{2}\right)^{2} = -\frac{\pi}{8}$$

所以
$$F(3) = \int_0^2 f(t)dt + \int_2^3 f(t)dt = \frac{\pi}{2} - \frac{\pi}{8} = \frac{3\pi}{8} = \frac{3}{4} \cdot \frac{\pi}{2} = \frac{3}{4}F(2)$$

所以
$$F(-3) = F(3) = \frac{3}{4}F(2)$$
,选择 C

(4)【答案】(D)

【详解】

方法 1: 论证法,证明 A.B.C 都正确,从而只有 D.不正确.

由
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在及 $f(x)$ 在 $x=0$ 处连续,所以

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} (\frac{f(x)}{x}x) = \lim_{x \to 0} \frac{f(x)}{x} \cdot \lim_{x \to 0} x = 0 \cdot \lim_{x \to 0} \frac{f(x)}{x} = 0, \quad \text{fight}(A) \to \text{fight}(A)$$

由选项(A) 知,
$$f(0) = 0$$
 , 所以 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$ 存在, 根据导数定义,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$
存在,所以(C)也正确;

由 f(x) 在 x=0 处连续,所以 f(-x) 在 x=0 处连续,从而

$$\lim_{x \to 0} [f(x) + f(-x)] = \lim_{x \to 0} f(x) + \lim_{x \to 0} f(-x) = f(0) + f(0) = 2f(0)$$

所以
$$2f(0) = \lim_{x \to 0} \left[\frac{f(x) + f(-x)}{x} \cdot x \right] = \lim_{x \to 0} \frac{f(x) + f(-x)}{x} \cdot \lim_{x \to 0} x = 0 \cdot \lim_{x \to 0} \frac{f(x) + f(-x)}{x} = 0$$

即有 f(0) = 0.所以(B)正确,故此题选择(D).

方法 2: 举例法,举例说明(D)不正确. 例如取 f(x) = |x|,有

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x - 0} = \lim_{x \to 0} \frac{|x| - |-x|}{x} = 0 \ \text{ and } \ \frac{|x| - |-x|}{x} = 0$$

$$\overline{m} \qquad \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x - 0}{x - 0} = -1 , \quad \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x - 0}{x - 0} = 1 ,$$

左右极限存在但不相等,所以 f(x) = |x| 在 x = 0 的导数 f'(0) 不存在. (D)不正确,选(D).

(5)【答案】(D)

【详解】 $u_n = f(n)$, 由拉格朗日中值定理, 有

$$u_{n+1} - u_n = f(n+1) - f(n) = f'(\xi_n)(n+1-n) = f'(\xi_n), (n=1,2,\cdots)$$

其中 $n < \xi_n < n+1$, $\xi_1 < \xi_2 < \dots < \xi_n < \dots$ 。由f''(x) > 0,知f'(x)严格单调增,故

$$f'(\xi_1) < f'(\xi_2) < \cdots < f'(\xi_n) < \cdots$$

若 $u_1 < u_2$,则 $f'(\xi_1) = u_2 - u_1 > 0$,所以 $0 < f'(\xi_1) < f'(\xi_2) < \dots < f'(\xi_n) < \dots$

$$u_{n+1} = u_1 + \sum_{k=1}^{n} (u_{k+1} - u_k) = u_1 + \sum_{k=1}^{n} f'(\xi_k) > u_1 + nf'(\xi_1).$$

而 $f'(\xi_1)$ 是一个确定的正数. 于是推知 $\lim_{n\to\infty}u_{n+1}=+\infty$, 故 $\{u_n\}$ 发散. 选(D)

(6)【答案】B

【详解】用排除法.

将
$$f(x,y)=1$$
 代入知 $\int_{\Gamma} f(x,y)ds=\int_{\Gamma} ds=s>0$,排除 C.
$$\mathbb{R} f(x,y)=x^2+y^2 \,, \quad M \,, \quad N$$
 依次为 $(-\sqrt{2}/2,\sqrt{2}/2) \,, \quad (\sqrt{2}/2,-\sqrt{2}/2) \,, \quad \mathbb{Q}$ $\Gamma: x=\cos\theta, y=\sin\theta \qquad \frac{3}{4}\pi \leq \theta \leq \frac{7}{4}\pi$

(7) 【答案】A

【详解】

方法 1: 根据线性相关的定义,若存在不全为零的数 k_1, k_2, k_3 ,使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$ 成立,则称 $\alpha_1, \alpha_2, \alpha_3$ 线性相关.

因 $(\alpha_1-\alpha_2)+(\alpha_2-\alpha_3)+(\alpha_3-\alpha_1)=0$,故 $\alpha_1-\alpha_2$, $\alpha_2-\alpha_3$, $\alpha_3-\alpha_1$ 线性相关,所以选择(A).

方法 2: 排除法

因为
$$(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) C_2, \ \sharp \oplus C_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

$$\mathbb{E} \quad \left| C_2 \right| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \underbrace{\frac{1}{17} \times (-1) + 2}_{=} \underbrace{\frac{1}{1}}_{=} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}$$

$$= 1 \times 1 - 1 \times (-1) = 2 \neq 0 .$$

故 C_2 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, C_2 右乘 $\left(\alpha_1,\alpha_2,\alpha_3\right)$ 时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有

$$r(\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1) = r(\alpha_1, \alpha_2, \alpha_3) = 3$$

所以 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关,排除(B).

因为
$$(\alpha_1-2\alpha_2,\alpha_2-2\alpha_3,\alpha_3-2\alpha_1)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) C_3, \quad \sharp + C_3 = \begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix},$$

$$|C_3| = \begin{vmatrix} 1 & 0 & -2 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{vmatrix} \underbrace{\frac{1}{17} \times 2 + 27}_{0} \begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \\ 0 & -2 & 1 \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} 1 & -4 \\ -2 & 1 \end{vmatrix}$$

$$=1\times1-(-2)\times(-4)=-7\neq0$$

故 C_3 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, C_3 右乘 $(\alpha_1,\alpha_2,\alpha_3)$ 时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有

$$r(\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1) = r(\alpha_1, \alpha_2, \alpha_3) = 3$$

所以 $\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$ 线性无关,排除(C).

因为 $(\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1)$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) C_4, \quad \sharp + C_4 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix},$$

$$\begin{vmatrix} C_4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{vmatrix} \underbrace{\frac{1}{17} \times (-2) + 2\cancel{7}}_{=} \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & -4 \\ 0 & 2 & 1 \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} 1 & -4 \\ 2 & 1 \end{vmatrix}$$

$$=1\times1-2\times(-4)=9\neq0.$$

故 C_4 是可逆矩阵,由可逆矩阵可以表示为若干个初等矩阵的乘积, C_4 右乘 $(\alpha_1,\alpha_2,\alpha_3)$ 时,等于作若干次初等变换,初等变换不改变矩阵的秩,故有

$$r(\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1) = r(\alpha_1, \alpha_2, \alpha_3) = 3$$

所以 $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$ 线性无关,排除(D).

综上知应选(A).

(8) 【答案】B

【详解】

方法 1:
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 1 & 1 \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{vmatrix}$$
 2.3列分别加到1列 $\begin{vmatrix} \lambda & 1 & 1 \\ \lambda & \lambda - 2 & 1 \\ \lambda & 1 & \lambda - 2 \end{vmatrix}$

提出え
$$\lambda$$
 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{vmatrix}$ $\underbrace{\frac{1}{17} \times (-1) + 277}_{1 \times 1} \lambda$ $\begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - 3 & 0 \\ 1 & 1 & \lambda - 2 \end{vmatrix}$ $\underbrace{\frac{1}{17} \times (-1) + 377}_{0 \times 1} \lambda$ $\begin{vmatrix} 1 & 1 & 1 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = (-1)^{1+1} \lambda \begin{vmatrix} \lambda - 3 & 0 \\ 0 & \lambda - 3 \end{vmatrix} = (\lambda - 3)^2 \lambda = 0$

则 A 的特征值为 3 , 3 , 0 ; B 是对角阵,对应元素即是的特征值,则 B 的特征值为 1 , 1 , 0 . A , B 的特征值不相同,由相似矩阵的特征值相同知, A与B 不相似。

由 A,B 的特征值可知, A,B 的正惯性指数都是 2,又秩都等于 2 可知负惯性指数也相同,则由实对称矩阵合同的充要条件是有相同的正惯性指数和相同的负惯性指数,知 A 与 B 合同,应选(B). **方法 2:** 因为迹(A)=2+2+2=6,迹(B)=1+1=2 \neq 6,所以 A 与 B 不相似(不满足相似的必要条件).又 $\left|\lambda E - A\right| = \lambda(\lambda - 3)^2$, $\left|\lambda E - B\right| = \lambda(\lambda - 1)^2$,A 与 B 是同阶实对称矩阵,其秩相等,且有相同的正惯性指数,故 A 与 B 合同.

(9)【答案】 C

【详解】把独立重复射击看成独立重复试验.射中目标看成试验成功. 第4次射击恰好是第2次命中目标可以理解为: 第4次试验成功而前三次试验中必有1次成功,2次失败.

根据独立重复的伯努利试验,前3次试验中有1次成功2次失败.其概率必为 $C_3^1p(1-p)^2$. 再加上第4次是成功的,其概率为p.

根据独立性原理: 若事件 A_1, \dots, A_n 独立,则 $P\{A_1 \cap A_2 \cap \dots \cap A_n\} = P\{A_1\}P\{A_2\}\dots P\{A_n\}$

所以,第4次射击为第二次命中目标的概率为 $C_3^1 p(1-p)^2 \cdot p = 3p^2(1-p)^2$. 所以选(C)

(10)【答案】 A

【详解】二维正态随机变量(X,Y)中,X与Y的独立等价于X与Y不相关。而对任意两个随机变量X与Y,如果它们相互独立,则有 $f(x,y)=f_{x}(x)f_{y}(y)$ 。

由于二维正态随机变量 (X,Y) 中 X 与 Y 不相关,故 X 与 Y 独立,且 $f(x,y)=f_X(x)f_Y(y)$. 根据条件概率密度的定义,当在 Y=y 条件下,如果 $f_Y(y)\neq 0$,则

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x).$$

现 $f_Y(y)$ 显然不为 0, 因此 $f_{X|Y}(x|y) = f_X(x)$. 所以应选(A)

二、填空题

(11)【答案】
$$\frac{\sqrt{e}}{2}$$

【详解】命
$$\frac{1}{x} = t$$
,有 $x = \frac{1}{t}, dx = -\frac{1}{t^2}dt$

$$\int_{1}^{2} \frac{1}{x^{3}} e^{\frac{1}{x}} dx = \int_{1}^{\frac{1}{2}} t^{3} e^{t} dt = \int_{1}^{\frac{1}{2}} t^{3} e^{t} \left(-\frac{1}{t^{2}} \right) dt = -\int_{1}^{\frac{1}{2}} t e^{t} dt = \int_{\frac{1}{2}}^{\frac{1}{2}} t e^{t} dt$$

$$\frac{\cancel{\cancel{\text{TRR}}} \cancel{\cancel{\text{T}}} \cancel{\cancel{\text{T}}}} \int_{\frac{1}{2}}^{1} t de^{t} = \left(t e^{t} \right)_{\frac{1}{2}}^{1} - \int_{\frac{1}{2}}^{1} e^{t} dt = e - \frac{1}{2} e^{\frac{1}{2}} - e^{t} \Big|_{\frac{1}{2}}^{1}$$

$$= e - \frac{1}{2} e^{\frac{1}{2}} - \left(e - e^{\frac{1}{2}} \right) = \frac{1}{2} e^{\frac{1}{2}} = \frac{\sqrt{e}}{2}$$

(12)【答案】 $f_1'(x^y, y^x)yx^{y-1} + f_2'(x^y, y^x)y^x \ln y$

【详解】
$$\frac{\partial z}{\partial x} = \frac{\partial f(x^y, y^x)}{\partial x} = f_1'(x^y, y^x) \frac{\partial x^y}{\partial x} + f_2'(x^y, y^x) \frac{\partial y^x}{\partial x} = f_1'(x^y, y^x) yx^{y-1} + f_2'(x^y, y^x) y^x \ln y$$

(13) 【答案】 $C_1e^x + C_2e^{3x} - 2e^{2x}$

【详解】这是二阶常系数非齐次线性微分方程,且函数 f(x)是 $P_m(x)e^{\lambda x}$ 型(其中 $P_m(x)=2, \lambda=2$).

所给方程对应的齐次方程为 y''-4y'+3y=0 ,它的特征方程为 $r^2-4r+3=0$, 得特征根 $r_1=1,r_2=3$,对应齐次方程的通解 $y=C_1e^{r_1x}+C_2e^{r_2x}=C_1e^x+C_2e^{3x}$

由于这里 $\lambda=2$ 不是特征方程的根,所以应设该非齐次方程的一个特解为 $y^*=Ae^{2x}$,所以 $\left(y^*\right)'=2Ae^{2x}\,,\,\, \left(y^*\right)''=4Ae^{2x}\,,\,\, (\lambda e^{2x}-4\cdot 2Ae^{2x}+3Ae^{2x}=2e^{2x}\,,$

则 A = -2, 所以 $y^* = -2e^{2x}$. 故得原方程的通解为 $y = C_1e^x + C_2e^{3x} - 2e^{2x}$.

(14)【答案】 $\frac{4}{3}\sqrt{3}$

【详解】
$$\iint_{\Sigma} (x+|y|)dS = \iint_{\Sigma} xdS + \iint_{\Sigma} |y|dS$$
,

对于第一部分,由于积分区域关于x轴、y轴是对称的面,被积函数x为x的奇函数,所以 $\iint_{\Sigma}xdS=0$.

对于第二部分, 因 Σ 关于 x,y,z 轮换对称, 所以 $\bigoplus_{\Sigma}|x|dS=\bigoplus_{\Sigma}|y|dS=\bigoplus_{\Sigma}|z|dS$, 那么

$$\oint_{\Sigma} |y| dS = \frac{1}{3} \oint_{\Sigma} (|x| + |y| + |z|) dS = \frac{1}{3} \oint_{\Sigma} dS$$
,由曲面积分的几何意义, $\oint_{\Sigma} dS$ 为曲面的表面积,所以

 $\bigoplus_{\Sigma} |y| dS = \frac{1}{3} \bigoplus_{\Sigma} dS = \frac{1}{3} \times (\Sigma$ 的面积). 而 Σ 为 8 块同样的等边三角形,每块等边三角形的边长为 $\sqrt{2}$,所

以Σ的面积 =
$$8 \cdot \frac{1}{2} \left(\sqrt{2}\right)^2 \sin \frac{\pi}{3} = 4\sqrt{3}$$
.

所以
$$\bigoplus_{\Sigma} (x + |y|) dS = \bigoplus_{\Sigma} |y| dS = \frac{1}{3} \cdot 4\sqrt{3} = \frac{4}{3}\sqrt{3}$$

(15)【答案】1

【详解】

由阶梯矩阵的行秩等于列秩,其值等于阶梯形矩阵的非零行的行数,知 $r\left(A^3\right)=1$.

(16) 【答案】 3/4

【详解】不妨假定随机地抽出两个数分别为X和Y,它们应是相互独立的. 如果把 (X,Y)看成平面上一个点的坐标,则由于

0 < X < 1, 0 < Y < 1, 所以(X, Y) 为平面上

正方形: 0 < X < 1, 0 < Y < 1 中的一个点.

X和Y两个数之差的绝对值小于 $\frac{1}{2}$ 对应于正方形中 $\left|X-Y\right|<\frac{1}{2}$ 的区域.

所有可能在区间(0,1)中随机取的两个数X,Y,可以被看成上图中单位正方形里的点. $|X-Y|<\frac{1}{2}$ 的区域就是正方形中阴影的面积D. 根据几何概率的定义:

$$P(|X-Y|<\frac{1}{2})=\frac{D$$
的面积
单位正方形面积

三、解答题

(17)【详解】

方法 1: 先求函数 f(x,y) 在 D 的内部驻点,

由
$$\begin{cases} f_x' = 2x - 2xy^2 = 0 \\ f_y' = 4y - 2x^2y = 0 \end{cases}$$
,解得 D 内的驻点为 $(\pm\sqrt{2},1)$,相应的函数值为 $f(\pm\sqrt{2},1) = 2$

再考虑在 D 的边界 L_1 : $y = 0(-2 \le x \le 2)$ 上的 f(x,y). 即 $f(x,0) = x^2(-2 \le x \le 2)$, 易知函数 f(x,y) 在此边界上的最大值为 $f(\pm 2,0) = 4$,最小值为 f(0,0) = 0 .

考虑在 D 的边界 L_2 : $x^2 + y^2 = 4(y \ge 0)$ 上的 f(x, y), 所以 $y = \sqrt{4 - x^2}$,

$$h(x) = f(x, \sqrt{4 - x^2}) = x^2 + 2(4 - x^2) - x^2(4 - x^2) = x^4 - 5x^2 + 8, -2 \le x \le 2$$

由
$$h'(x) = 4x^3 - 10x = 0$$
 得驻点 $x_1 = 0, x_2 = -\sqrt{\frac{5}{2}}, x_3 = \sqrt{\frac{5}{2}}$,

所以函数 h(x) 在相应点处的函数值为

$$h(0) = f(0,2) = 8$$
, $h(-\sqrt{\frac{5}{2}}) = f(-\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}}) = \frac{7}{4}$, $h(\sqrt{\frac{5}{2}}) = f(\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}}) = \frac{7}{4}$

综上可知函数在D上的最大值为f(0,2)=8,最小值为f(0,0)=0.

方法 2: 在 D 内与边界 L 上,同方法 1.

在边界
$$L_2$$
: $x^2 + y^2 = 4(y \ge 0)$ 上,构造函数 $F(x, y, \lambda) = x^2 + 2y^2 - x^2y^2 + \lambda(x^2 + y^2 - 4)$

$$\Leftrightarrow \begin{cases}
F'_{x} = 2x - 2xy^{2} + 2\lambda x = 0 \\
F'_{y} = 4y - 2x^{2}y + 2\lambda y = 0 \\
F'_{\lambda} = x^{2} + y^{2} - 4 = 0
\end{cases} \qquad \text{解} = \begin{cases}
x = \pm \sqrt{5/2} \\
y = \sqrt{3/2}
\end{cases}, \begin{cases}
x = 0 \\
y = 2
\end{cases}$$

$$f(\pm\sqrt{5/2}, \sqrt{3/2}) = 7/4$$
, $f(0,2) = 8$

综上,f(x,y)在D上的最大值为8,最小值为0

(18)【详解】

方法 1:增加一个曲面使之成为闭合曲面,从而利用高斯公式,

补充曲面片
$$S: z = 0, x^2 + \frac{y^2}{4} \le 1$$
,下侧为正,有

$$I = \iint\limits_{\Sigma + S} xzdydz + 2zydzdx + 3xydxdy - \iint\limits_{S} xzdydz + 2zydzdx + 3xydxdy = I_1 + I_2$$

根据高斯公式,
$$I_1 = \iint\limits_{\Omega} (z+2z)dv = \int_0^1 3zdz \iint\limits_{x^2 + \frac{1}{4}y^2 < 1-z} dxdy = \int_0^1 6\pi z(1-z)dz = \pi$$

其中,
$$\Omega = \left\{ (x, y, z) \middle| x^2 + \frac{y^2}{4} \le 1 - z, 0 \le z \le 1 \right\}$$
. 又 $I_2 = -\iint_{x^2 + \frac{1}{4}y^2 \le 1} 3xydxdy$

由函数奇偶性可知
$$\iint\limits_{x^2+\frac{1}{4}y^2\leq 1} 3xydxdy=0$$
, 从而 $I=\pi+0=\pi$.

方法 2: 曲面 \sum 在 xOy 上的投影记为 D_{xy} ,由于曲面 \sum 的正向法向量为 $\vec{n} = (-z'_x, -z'_y, 1) = (2x, \frac{1}{2}y, 1)$, 所以

$$I = \iint_{\Sigma} xz dy dz + 2zy dz dx + 3xy dx dy = \iint_{D_{xy}} (X, Y, Z) \cdot \vec{n} dx dy$$

$$= \iint_{x^2 + \frac{1}{4}y^2 \le 1} [2x^2(1 - x^2 - \frac{1}{4}y^2) + y^2(1 - x^2 - \frac{1}{4}y^2) + 3xy] dx dy$$

$$\Leftrightarrow \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}, 0 \le \theta \le 2\pi, 0 \le r \le 1, \text{ M}$$

$$I = \int_{0}^{2\pi} d\theta \int_{0}^{1} [2r^2(1 - r^2)\cos^2 \theta + 2r^2(1 - r^2)\sin^2 \theta + 6r^2 \cos \theta \sin \theta] 2r dr = 12\pi \cdot \int_{0}^{1} r^3(1 - r^2) dr = \pi$$

方法 3: 记曲面 \sum 在三个坐标平面上的投影分别为 D_{xy} , D_{yz} , D_{zx} ,则利用函数奇偶性有,

$$\iint_{\Sigma} 3xy dx dy = \iint_{D_{xy}} 3xy dx dy = 0$$

$$\iint_{\Sigma} xz dy dz = 2\iint_{D_{yz}} z \sqrt{1 - z - \frac{y^2}{4}} dy dz = 2\int_{0}^{1} z dz \int_{-2\sqrt{1-z}}^{-2\sqrt{1-z}} \sqrt{1 - z - \frac{y^2}{4}} dy = \int_{0}^{1} z [2(1-z)\pi] dz = \frac{\pi}{3}$$

$$\iint_{\Sigma} 2zy dz dx = 8\iint_{D_{zx}} z \sqrt{1 - z - x^2} dz dx = 8\int_{0}^{1} z dz \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \sqrt{1 - z - x^2} dx = 4\pi \int_{0}^{1} z (1-z) dz = \frac{2\pi}{3}$$

所以
$$I = \iint_{\Sigma} xzdydz + 2zydzdx + 3xydxdy = \frac{\pi}{3} + \frac{2\pi}{3} + 0 = \pi$$

(19) 【详解】欲证明存在 $\xi \in (a,b)$ 使得 $f''(\xi) = g''(\xi)$,可构造函数 $\varphi(f(x),g(x)) = 0$,从而使用介值定理、微分中值定理等证明之.

令 $\varphi(x) = f(x) - g(x)$, 由 题 设 f(x), g(x) 存 在 相 等 的 最 大 值 , 设 $x_1 \in (a,b)$, $x_2 \in (a,b)$ 使 得 $f(x_1) = \max_{[ab]} f(x) = g(x_2) = \max_{[ab]} g(x)$. 于是 $\varphi(x_1) = f(x_1) - g(x_1) \ge 0$, $\varphi(x_2) = f(x_2) - g(x_2) \le 0$

若
$$\varphi(x_1)=0$$
,则取 $\eta=x_1\in(a,b)$ 有 $\varphi(\eta)=0$.

若
$$\varphi(x_2)=0$$
,则取 $\eta=x_2\in(a,b)$ 有 $\varphi(\eta)=0$.

若 $\varphi(x_1) > 0, \varphi(x_2) < 0$,则由连续函数介值定理知,存在 $\eta \in (x_1, x_2)$ 使 $\varphi(\eta) = 0$.

不论以上哪种情况, 总存在 $\eta \in (a,b)$, 使 $\varphi(\eta) = 0$.

再 $\varphi(a) = f(a) - g(a) = 0$, $\varphi(b) = f(b) - g(b) = 0$,将 $\varphi(x)$ 在区间 $[a,\eta]$, $[\eta,b]$ 分别应用罗尔定理,得存在 $\xi_1 \in (a,\eta)$, $\xi_2 \in (\eta,b)$,使得 $\varphi'(\xi_1) = 0$, $\varphi'(\xi_2) = 0$;再由罗尔定理知,存在 $\xi \in (\xi_1,\xi_2)$,使 $\varphi''(\xi) = 0$.即有 $f''(\xi) = g''(\xi)$.

(20)【详解】(I) 证法一: 对 $y = \sum_{n=0}^{\infty} a_n x^n$ 求一阶和二阶导数,得 $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}, y'' = \sum_{n=2}^{\infty} n (n-1) a_n x^{n-2},$

代入
$$y'' - 2xy' - 4y = 0$$
, 得
$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - 2x \sum_{n=1}^{\infty} na_n x^{n-1} - 4 \sum_{n=0}^{\infty} a_n x^n = 0$$

$$\mathbb{E} \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}x^n - \sum_{n=1}^{\infty} 2na_nx^n - \sum_{n=0}^{\infty} 4a_nx^n = 0$$

于是
$$\begin{cases} 2a_2 - 4a_0 = 0 \\ (n+1)a_{n+2} - 2a_n = 0, \end{cases} n = 1, 2, \dots, \quad 从而 \qquad a_{n+2} = \frac{2}{n+1}a_n, n = 1, 2, \dots,$$

证法二:由于 $y = \sum_{n=0}^{\infty} a_n x^n$,根据泰勒级数的唯一性便知 $a_n = \frac{y^{(n)}(0)}{n!}$.

在方程 y'' - 2xy' - 4y = 0 两端求 n 阶导数,得 $y^{(n+2)} - 2xy^{(n+1)} - 2(n+2)y^{(n)} = 0$

令
$$x = 0$$
, 得 $y^{(n+2)}(0) - 2(n+2)y^{(n)}(0) = 0$,

即
$$(n+2)!a_{n+2}-2(n+2)\cdot n!a_n=0$$
, 故 $a_{n+2}=\frac{2}{n+1}a_n, n=1,2,\cdots$

(II) 证法一: 由于 $a_{n+2} = \frac{2}{n+1} a_n$, $n = 1, 2, \dots, a_2 = 2a_0$, 且根据题设中条件 $a_0 = y(0) = 0$, $a_1 = y'(0) = 1$, 所以 $a_{2n} = 0$, $n = 1, 2, \dots$;

$$a_{2n+1} = \frac{2}{2n}a_{2n-1} = \dots = \frac{2^n}{2n(2n-2)\cdots 4\cdot 2}a_1 = \frac{1}{n!}, n = 0, 1, 2, \dots$$

从而
$$y(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{2n+1} = x \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = x e^{x^2}$$
.

证法二: 因为
$$y = \sum_{n=0}^{\infty} a_n x^n$$
 ,所以 $\frac{y}{x} = \sum_{n=1}^{\infty} a_n x^{n-1}$,两边求导,得 $(\frac{y}{x})' = \sum_{n=2}^{\infty} (n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+1)a_{n+2} x^n$

由于
$$a_{n+2} = \frac{2}{n+1} a_n, n = 1, 2, \dots,$$

所以
$$(\frac{y}{x})' = \sum_{n=0}^{\infty} 2a_n x^n = 2y$$
,即函数 $y(x)$ 满足方程 $(\frac{y}{x})' - 2y = 0$

令
$$u(x) = \frac{y}{x}$$
,则上述方程变为 $u' - 2xu = 0$,即 $\frac{du}{u} = 2xdx$,解之得 $u = Ce^{x^2}$,从而 $y = Cxe^{x^2}$.

由
$$y'(0) = 1$$
 得 $C = 1$, 所以 $y = xe^{x^2}$.

(21) 【详解】

方法 1: 因为方程组(1)、(2)有公共解,将方程组联立得

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \\ x_1 + 2x_2 + x_3 = a - 1 \end{cases}$$
(3)

对联立方程组的增广矩阵作初等行变换

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a \end{pmatrix} \underbrace{1 \stackrel{?}{7} \times (-1) + 2 \stackrel{?}{7}}_{1} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a \end{pmatrix}$$

$$\underbrace{1 \not \exists \overrightarrow{\uparrow} \times (-1) + 3 \not \exists \overrightarrow{\dagger}}_{1} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 3 & a^{2} - 1 & 0 \\ 1 & 2 & 1 & a \end{pmatrix}}_{1} \underbrace{1 \not \exists \overrightarrow{\uparrow} \times (-1) + 4 \not \exists \overrightarrow{\dagger}}_{0} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 3 & a^{2} - 1 & 0 \\ 0 & 1 & 0 & a - 1 \end{pmatrix}}_{0}$$

$$\underbrace{4 \overleftarrow{7} \times (-1) + 2 \overleftarrow{7} \overleftarrow{7}}_{0 \ 1 \ 0 \ 1 \ 0 \ a-1} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & a-1 & 1-a \\ 0 & 3 & a^2-1 & 0 \\ 0 & 1 & 0 & a-1 \end{bmatrix} \underbrace{4 \overleftarrow{7} \overleftarrow{7} \times (-3) + 3 \overleftarrow{7} \overleftarrow{7}}_{1} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & a^2-1 & 3-3a \\ 0 & 1 & 0 & a-1 \end{bmatrix}$$

換行
$$\frac{\cancel{\cancel{+}}}{0} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & a-1 \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & a^2-1 & 3-3a \end{pmatrix} \underbrace{3\cancel{\cancel{+}} \times (-a-1) + 4\cancel{\cancel{+}}}_{3\cancel{\cancel{+}} \times (-a-1) + 4\cancel{\cancel{+}}} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & a-1 \\ 0 & 0 & a-1 & 1-a \\ 0 & 0 & 0 & (a-1)(a-2) \end{pmatrix}$$

由此知,要使此线性方程组有解,a必须满足(a-1)(a-2)=0,即a=1或a=2.

当 a=1 时, r(A)=2 , 联立方程组(3)的同解方程组为 $\begin{cases} x_1+x_2+x_3=0\\ x_2=0 \end{cases}$, 由 r(A)=2 , 方程组

有 n-r=3-2=1 个自由未知量. 选 x_1 为自由未知量, 取 $x_1=1$, 解得两方程组的公共解为 $k(1,0,-1)^T$, 其中 k 是任意常数.

当 a=2 时,联立方程组(3)的同解方程组为 $\begin{cases} x_1+x_2+x_3=0\\ x_2=0\\ x_3=-1 \end{cases}$,解得两方程的公共解为 $\begin{pmatrix} 0,1,-1 \end{pmatrix}^T$.

方法 2: 将方程组(1)的系数矩阵 A 作初等行变换

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{bmatrix} \underbrace{1 / \overrightarrow{T} \times (-1) + 2 / \overrightarrow{T}}_{1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & a - 1 \\ 1 & 4 & a^2 \end{bmatrix}$$

$$\underbrace{1 \overleftarrow{\uparrow} \times (-1) + 3 \overleftarrow{\uparrow}}_{1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & a - 1 \\ 0 & 3 & a^{2} - 1 \end{bmatrix} \underbrace{2 \overleftarrow{\uparrow} \times (-3) + 3 \overleftarrow{\uparrow}}_{2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & a - 1 \\ 0 & 0 & (a - 1)(a - 2) \end{bmatrix}$$

当 a=1 时, r(A)=2 , 方程组(1)的同解方程组为 $\begin{cases} x_1+x_2+x_3=0\\ x_2=0 \end{cases}$, 由 r(A)=2 , 方程组有

n-r=3-2=1个自由未知量.选 x_1 为自由未知量,取 $x_1=1$,解得(1)的通解为 $k\left(1,0,-1\right)^T$,其中 k 是任意常数. 将通解 $k\left(1,0,-1\right)^T$ 代入方程(2)得 k+0+(-k)=0,对任意的 k 成立,故当 a=1 时, $k\left(1,0,-1\right)^T$ 是(1)、(2)的公共解.

当 a=2 时, r(A)=2 , 方程组(1)的同解方程组为 $\begin{cases} x_1+x_2+x_3=0 \\ x_2+x_3=0 \end{cases}$,由 r(A)=2 ,方程组有 n-r=3-2=1个自由未知量.选 x_2 为自由未知量,取 $x_2=1$,解得(1)的通解为 $\mu(0,1,-1)^T$,其中 μ 是任意常数. 将通解 $\mu(0,1,-1)^T$ 代入方程(2)得 $2\mu-\mu=1$,即 $\mu=1$, 故当 a=2 时,(1)和(2)的公共解为 $(0,1,-1)^T$.

(22) 【详解】(I) 由 $A\alpha_1 = \alpha_1$,可得 $A^k\alpha_1 = A^{k-1}(A\alpha_1) = A^{k-1}\alpha_1 = \cdots = \alpha_1$, k 是正整数,故

$$B\alpha_1 = (A^5 - 4A^3 + E)\alpha_1 = A^5\alpha_1 - 4A^3\alpha_1 + E\alpha_1 = \alpha_1 - 4\alpha_1 + \alpha_1 = -2\alpha_1$$

于是 α_1 是矩阵B的特征向量(对应的特征值为 $\lambda_1' = -2$).

若 $Ax = \lambda x$,则 $(kA)x = (k\lambda)x$, $A^m x = \lambda^m x$ 因此对任意多项式 f(x) , $f(A)x = f(\lambda)x$,即 $f(\lambda)$ 是 f(A) 的特征值.

故 B 的特征值可以由 A 的特征值以及 B 与 A 的关系得到, A 的特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = -2$,则 B 有特征值 $\lambda_1' = f(\lambda_1) = -2$, $\lambda_2' = f(\lambda_2) = 1$, $\lambda_3' = f(\lambda_3) = 1$, 所以 B 的全部特征值为一2,1,1.

由 A 是实对称矩阵及 B 与 A 的关系可以知道, B 也是实对称矩阵,属于不同的特征值的特征向量正交. 由前面证明知 α_1 是矩阵 B 的属于特征值 $\lambda_1'=-2$ 的特征向量,设 B 的属于 1 的特征向量为 $(x_1,x_2,x_3)^T$, α_1 与 $(x_1,x_2,x_3)^T$ 正交,所以有方程如下:

$$x_1 - x_2 + x_3 = 0$$

选 x_2, x_3 为自由未知量,取 $x_2=0, x_3=1$ 和 $x_2=1, x_3=0$,于是求得 B 的属于 1 的特征向量为 $\alpha_2=k_2(-1,0,1)^T, \alpha_3=(1,1,0)^T$

故 B 的所有的特征向量为: 对应于 $\lambda_1'=-2$ 的全体特征向量为 $k_1\alpha_1$,其中 k_1 是非零任意常数,对应于 $\lambda_2'=\lambda_3'=1$ 的全体特征向量为 $k_2\alpha_2+k_3\alpha_3$,其中 k_2,k_3 是不同时为零的任意常数.

(II) **方法 1:** 令矩阵
$$P = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
,求逆矩阵 P^{-1} .

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \underbrace{1 \not \uparrow + 2 \not \uparrow }_{1} \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\underbrace{17 + 37}_{0} \begin{bmatrix} 1 & -1 & 1 & \vdots & 1 & 0 & 0 \\ 0 & -1 & 2 & \vdots & 1 & 1 & 0 \\ 0 & 2 & -1 & \vdots & -1 & 0 & 1 \end{bmatrix} \underbrace{7 \times 2 + 37}_{0} \begin{bmatrix} 1 & -1 & 1 & \vdots & 1 & 0 & 0 \\ 0 & -1 & 2 & \vdots & 1 & 1 & 0 \\ 0 & 0 & 3 & \vdots & 1 & 2 & 1 \end{bmatrix}$$

$$\underbrace{3\overleftarrow{\uparrow}\overrightarrow{\uparrow}\div3}\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1/3 & 2/3 & 1/3 \end{bmatrix}\underbrace{3\overleftarrow{\uparrow}\overrightarrow{\uparrow}\times(-2)+2\overleftarrow{\uparrow}\overrightarrow{\uparrow}}_{0}\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1/3 & -1/3 & -2/3 \\ 0 & 0 & 1 & 1/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\frac{3 \cancel{\uparrow} \times (-1) + 1 \cancel{\uparrow}}{0} \begin{bmatrix} 1 & -1 & 0 \vdots & 2/3 & -2/3 & -1/3 \\ 0 & -1 & 0 \vdots & 1/3 & -1/3 & -2/3 \\ 0 & 0 & 1 \vdots & 1/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\frac{2 \cancel{\uparrow} \times (-1) + 1 \cancel{\uparrow}}{0} \begin{bmatrix} 1 & 0 & 0 \vdots & 1/3 & -1/3 & 1/3 \\ 0 & -1 & 0 \vdots & 1/3 & -1/3 & -2/3 \\ 0 & 0 & 1 \vdots & 1/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\underbrace{2 \overleftarrow{\text{T}} \times (-1) + 1 \overleftarrow{\text{T}}}_{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1/3 & 2/3 & 1/3 \end{bmatrix}$$

$$\underline{2 行 \times (-1)} \begin{bmatrix}
 1 & 0 & 0 \vdots & 1/3 & -1/3 & 1/3 \\
 0 & 1 & 0 \vdots & -1/3 & 1/3 & 2/3 \\
 0 & 0 & 1 \vdots & 1/3 & 2/3 & 1/3
 \end{bmatrix}$$

则
$$P^{-1} = \begin{bmatrix} 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & 2/3 \\ 1/3 & 2/3 & 1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

由 $P^{-1}BP = diag(-2,1,1)$,所以

$$B = P \cdot diag(-2,1,1) \cdot P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$=\frac{1}{3}\begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 2 & -2 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 0 & 3 & -3 \\ 3 & 0 & 3 \\ -3 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

方法 2: 由(I) 知 α_1 与 α_2 , α_3 分别正交,但是 α_2 和 α_3 不正交,现将 α_2 , α_3 正交化:

取
$$\beta_2 = \alpha_2, \beta_3 = \alpha_3 + k_{12}\beta_2 = (1,1,0) + (-\frac{1}{2},0,\frac{1}{2}) = (\frac{1}{2},1,\frac{1}{2})$$
.

其中,
$$k_{12} = -\frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)}\beta_2 = -\frac{1 \times (-1)}{(-1) \times (-1) + 1 \times 1}(-1, 0, 1)^T = (-\frac{1}{2}, 0, \frac{1}{2})$$

再对 α_1 , β_2 , β_3 单位化:

$$\xi_1 = \frac{\alpha_1}{\|\alpha_1\|} = \frac{1}{\sqrt{3}}(1, -1, 1), \xi_2 = \frac{\beta_2}{\|\beta_2\|} = \frac{1}{\sqrt{2}}(-1, 0, 1) = \xi_3 = \frac{\beta_3}{\|\beta_3\|} = \frac{\sqrt{2}}{\sqrt{3}}(\frac{1}{2}, 1, \frac{1}{2})$$

其中,
$$\|\alpha_1\| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}, \|\beta_2\| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, \|\beta_3\| = \sqrt{(\frac{1}{2})^2 + 1^2 + (\frac{1}{2})^2} = \sqrt{\frac{3}{2}}$$
合并成正交矩

阵,

ਮੋਟੇ
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \end{bmatrix}$$

由 $Q^{-1}BQ = diag(-2,1,1)$, 有 $B = Q \cdot diag(-2,1,1) \cdot Q^{-1}$. 又由正交矩阵的性质: $Q^{-1} = Q^T$, 得

$$B = Q \cdot diag(-2,1,1) \cdot Q^{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{\sqrt{2}}{2\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & \frac{\sqrt{2}}{2\sqrt{3}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2\sqrt{3}} \end{bmatrix} \begin{bmatrix} \frac{-2}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{-2}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{\sqrt{2}}{2\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & \frac{\sqrt{2}}{2\sqrt{3}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

(23) 【详解】 计算 $P\{X > 2Y\}$ 可用公式 $P\{X > 2Y\} = \iint_{x > 2y} f(x,y) dx dy$ 求 Z = X + Y 的概率密度 $f_Z(z)$: 可用两个随机变量和的概率密度的一般公式求解.(卷积公式)

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy = \int_{-\infty}^{+\infty} f(x, z - x) dx.$$

此公式简单,但讨论具体的积分上下限会较复杂.

另一种方法可用定义先求出 $F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$, 然后再 $f_Z(z) = F_Z(z)$.

(I)
$$P\{X > 2Y\} = \iint_D (2-x-y)dxdy$$
, $\sharp + D$

为0 < x < 1, 0 < y < 1中x > 2y的那部分区域(右

图阴影部分); 求此二重积分可得

$$P\{X > 2Y\} = \int_0^1 dx \int_0^{\frac{1}{2}x} (2 - x - y) dy$$

$$= \int_0^1 (x - \frac{5}{8}x^2) dx = \frac{7}{24}$$

(II)**方法 1**:根据两个随机变量和的概率密度的卷积公式有 $f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x)dx$.

先考虑被积函数 f(x,z-x) 中第一个自变量 x 的变化范围,根据题设条件只有当 0< x<1时 f(x,z-x) 才不等于 0. 因此,不妨将积分范围改成 $f_{z}(z)=\int_{0}^{1}f(x,z-x)dx$.

现再考虑被积函数 f(x,z-x) 的第二个变量 z-x .显然,只有当 0 < z-x < 1时, f(x,z-x) 才不等于 0.且为 2-x-(z-x)=2-z.为此,我们将 z 分段讨论.

因为有0 < z - x < 1,即是x < z < 1 + x,而x 的取值范围是(0,1),所以使得f(x,z-x)不等于0 的z 取值范围是(0,2] 如下图,在0 < x < 1情况下,在阴影区域 D_1 和 D_2 ,密度函数值不为0,积分方向如图所示,积分上下限就很好确定了,所以很容易由卷积公式得出答案。 $z \le 0$ 时,由于0 < x < 1,故z - x < 0,

故
$$f_{z}(z) = 0$$
;

$$0 < z \le 1$$
 时, $f_Z(z) = \int_0^z (2-z) dz = 2z - z^2$;

$$1 < z \le 2$$
 时, $f_Z(z) = \int_{z-1}^1 (2-z) dz$

$$=4-4z+z^2$$
;

2 < z时,由于0 < x < 1,故z - x > 1,

故
$$f_Z(z) = 0$$
.

总之,
$$f_Z(z) = \begin{cases} 2z - z^2, & 0 < z \le 1 \\ z^2 - 4z + 4, & 1 < z \le 2 \\ 0, & 其他 \end{cases}$$

当
$$z \le 0$$
时, $F_Z(z) = 0$;

当z > 2时, $F_z(z) = 1$;

当 $0 < z \le 1$ 时,

$$F_Z(z) = \int_0^z dx \int_0^{z-x} (2 - x - y) dy$$
$$= -\frac{1}{3}z^3 + z^2$$

当 $1 < z \le 2$ 时,

$$F_{Z}(z) = 1 - \int_{z-1}^{1} dx \int_{z-x}^{1} (2-x-y) dy = \frac{1}{3}z^{3} - 2z^{2} + 4z - \frac{5}{3}$$
所以
$$f_{Z}(z) = F'(z) = \begin{cases} 2z - z^{2}, & 0 < z \le 1 \\ z^{2} - 4z + 4, & 1 < z \le 2 \\ 0, & 其他 \end{cases}$$

- (24)【答案】 θ 的矩估计量为 $\hat{\theta} = 2\overline{X} \frac{1}{2}$; $4\overline{X}^2$ 不是为 θ^2 的无偏估计量.
- 【详解】本题中只有唯一参数 θ ,则在求矩估计的时候,只要令样本均值 \overline{X} 等于总体的期望E(X)就可以求得了,而判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量,只要判断 $E(4\overline{X}^2)=\theta^2$ 是否成立即可.
- (I) 记 $E(X) = \mu$,则由数学期望的定义,有

$$\mu = E(X) = \int_0^\theta \frac{x}{2\theta} dx + \int_\theta^1 \frac{x}{2(1-\theta)} dx = \frac{1}{4} + \frac{1}{2}\theta$$

样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 用样本均值估计期望有 $EX = \overline{X}$

即是令
$$\mu = \frac{1}{4} + \frac{1}{2}\theta$$
,解出 $\theta = 2\mu - \frac{1}{2}$,

因此参数 θ 的矩估计量为 $\hat{\theta} = 2\overline{X} - \frac{1}{2}$;

(II) 只须验证 $E(4\overline{X}^2)$ 是否为 θ^2 即可,而由数学期望和方差的性质,有

$$E(4\overline{X}^2) = 4E(\overline{X}^2) = 4(D\overline{X} + (E\overline{X})^2) = 4(\frac{1}{n}DX + (EX)^2) , \ \overline{m}$$

$$E(X) = \frac{1}{4} + \frac{1}{2}\theta , \ E(X^2) = \frac{1}{6}(1 + \theta + 2\theta^2) ,$$

$$D(X) = E(X^2) - (EX)^2 = \frac{5}{48} - \frac{\theta}{12} + \frac{1}{12}\theta^2 ,$$
于是
$$E(4\overline{X}^2) = \frac{5 + 3n}{12n} + \frac{3n - 1}{3n}\theta + \frac{3n + 1}{3n}\theta^2 \neq \theta^2$$

因此 $4\overline{X}^2$ 不是为 θ^2 的无偏估计量.