Stimulated Neutrino Flavor Conversions and

Rabi Oscillations

Lei Ma in collaboration with Shashank Shalgar, and Huaiyu Duan

> Department of Physics UNM

January 30, 2017

@LANL

OUTLINE

1. Background

at are 1 100 inos 150 200 250 300 -

Neutrino Oscillations Why Do Neutrinos Oscillate

2. Matter Effect uneractions with Matter MSW Effect

Stimulated Neutrino Flavor Conversions i Oscillations Single Frequency Matter Profile and Rabi Oscillations

4. Single Frequency Matter Potential Decomposed Basis and Formalism Oscillations With Multiple Potentials Multiple Frequencies in Matter Potential

5. Summary

OVERVIEW

100 150 200 250 300 Background What are Neutrinos **Neutrino Oscillations** Why Do Neutrinos Oscillate

WHAT ARE NEUTRINOS?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- ► 250 ilons, 300
- ▶ electrically neutral,
- ▶ three flavors,
- ▶ light.

Adapted from Olga Mena & Stephen Parke (2004)

250

WHAT ARE NEUTRINOS?

Elementary particles.
Source: symmetrymagazine.org

Neutrinos are

- ► 250 iions, 300
- ► electrically neutral,
- three flavors,
- ▶ light.

Adapted from Olga Mena & Stephen Parke (2004)

250

WHAT ARE NEUTRINO OSCILLATIONS?

Probabilities of finding neutrinos to be in each flavor.

WHY DO NEUTRINOS OSCILLATE?

Fix 100 states are different from mass states.

$$\begin{pmatrix} \psi_e \\ \psi_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{\rm v} & \sin \theta_{\rm v} \\ -\sin \theta_{\rm v} & \cos \theta_{\rm v} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

WHY DO NEUTRINOS OSCILLATE?

- 25

WHY DO NEUTRINOS OSCILLATE?

$$\mathbf{H} = \frac{\omega_{\mathbf{v}}}{2} \left(-\cos 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_3 + \sin 2\theta_{\mathbf{v}} \boldsymbol{\sigma}_1 \right)$$

Oscillation frequency:

$$\omega_{
m v}=rac{\delta m^2}{2E}=rac{m_2^2-m_1^2}{2E}$$

200

ightharpoonup Mixing angle $heta_{
m v}$

FLAVOR ISOSPIN

Hamiltonian:
$$\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

$$100 \frac{\vec{\sigma}}{2} \quad 150$$
Flavor isospin: $\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$

Electron flavor survival probability

$$100 - P = \frac{1}{2} + s_3$$

Equation of motion

$$\dot{\vec{s}} = \vec{s} \times \vec{H}$$

electron flavor

muon flavor

FLAVOR ISOSPIN

Hamiltonian:
$$\mathbf{H} = -\frac{\vec{\sigma}}{2} \cdot \vec{H}$$

$$100^{\frac{1}{2}} \quad 150$$
Flavor isospin: $\vec{s} = \Psi^{\dagger} \frac{\vec{\sigma}}{2} \Psi$

Electron flavor survival probability

$$100 - P = \frac{1}{2} + s_3$$

Equation of motion

$$\vec{s} = \vec{s} \times \vec{H}$$

Vacuum oscillation Hamiltonian

$$\frac{\omega_{\rm v}}{200} \left(-\cos 2\theta_{\rm v} \boldsymbol{\sigma}_3 + \sin 2\theta_{\rm v} \boldsymbol{\sigma}_1\right) \\ \left(0\right) \left(\omega_{\rm v}\right)$$

$$\rightarrow \cos 2\theta_{\rm v} \begin{pmatrix} 0 \\ 0 \\ \omega_{\rm v} \end{pmatrix} - \sin 2\theta_{\rm v} \begin{pmatrix} \omega_{\rm v} \\ 0 \\ 0 \end{pmatrix}$$

electron flavor

muon flavor

OVERVIEW

100 ractions with Matter
MSW Effect

Stimulated Neutrino Flavor Conversions

150

Single Frequency Matter Potential Decomposed

Summai 200

INTERACTIONS WITH MATTER

Neutral current interaction between ν_e , \cdots τ_τ , and e^- , quarks etc.

Charged current interaction between $\nu_{\rm e}$ and e^-

MATTER INTERACTION

pt 100 150 200 250 300 350

Hamiltonian with matter interaction in flavor basis ($\omega_{\rm v} = \delta m^2/2E$):

$$\mathbf{H} = \frac{\omega_{\mathbf{v}}}{2} \left(-\cos 2\theta_{\mathbf{v}} \sigma_{3} + \sin 2\theta_{\mathbf{v}} \sigma_{1} \right) + \frac{\lambda(\mathbf{x})}{2} \sigma_{3}$$

- 150 cuum Hamiltonian
- Matter interaction
- $\lambda(x) = \sqrt{2}G_{\rm F}n_{\rm e}(x)$

200

$$H = \frac{\omega_{v}}{2} \left(-\cos 2\theta_{v} \sigma_{3} + \sin 2\theta_{v} \sigma_{1} \right) + \frac{\lambda(x)}{2} \sigma_{3}$$

$$\rightarrow \omega_{v} \begin{pmatrix} -\sin 2\theta_{v} \\ 0 \\ \cos 2\theta_{v} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -\lambda(x) \end{pmatrix}$$

$$= \vec{H}_{v} + \vec{H}_{m}(x)$$

Electron flavor survival probability

Oscillation frequency in vacuum:

$$\omega_{\rm v} = |\vec{H}_{\rm v}|$$

Oscillation frequency in **matter**:

$$\omega_{
m m}=|ec{H}|$$

- ▶ Maximurn possible flavor
- 200 transit 250 robabil 300 amplitude
- MSW Resonance
- A specific matter density

$$\sqrt{2}G_{\rm F}n_{\rm e}\equiv\omega_{\rm v}\cos2\theta_{\rm v}$$

MORE COMPLICATED MATTER EFFECT

Turbulence in supernova. E. Borriello, et al (2014)

250

STIMULATED NEUTRINO FLAVOR CONVERSIONS

P. Krastev and A. Smirnov (1989); J. Kneller et al (2013); K. 250 n et al (2014);

OVERVIEW

pt 100 150 200 250 300 350

Matter Effect

Stimulated Neutrino Flavor Conversions
Rabi Oscillations
Single Frequency Matter Profile and Rabi Oscillations

Single Frequency Matter Potential Decomposed

Summary

Periodic Driving Potential

Hamiltonian

$$-\frac{150}{2}r_3 - \frac{\alpha}{2} \begin{pmatrix} 0 & e^{ikt} \\ e^{-ikt} & 0 \end{pmatrix} \qquad E_1 = -\frac{\omega_m}{2}$$

$$E_1 = -\frac{\omega_m}{2}$$

 $E_2 = \frac{\omega_m}{2}$

Frequency: k

Corotating Frame

Corotating Frame

Rabi Oscillation

Hamiltonian

$$-\frac{\omega_{\mathsf{m}}}{100} \mathsf{r}_3 - \frac{\alpha}{2} \begin{pmatrix} 0 & e^{ikt} \\ e^{-ikt} & 0 \end{pmatrix} \qquad E_1 = -\frac{\omega_{\mathsf{m}}}{2}$$

 $E_2 = \frac{\omega_m}{200}$

$$E_1 = \frac{\omega_m}{2}$$

Periodic Driving Potential

Frequency: k

Rabi formula

$$P_{1\rightarrow 2}=rac{1}{1+D^2}\sin^2\left(rac{\Omega_{ar{ ext{R}}}}{2}t
ight).$$

Relative detuning

$$D = \left| \frac{\omega_{\rm m} - k}{\alpha} \right|.$$

Rabi frequency

$$\Omega_{
m R} = |lpha|\sqrt{1+D^2}$$

$$-\sin\theta_m\cos\theta_r$$

 $\lambda(x) = \lambda_0$

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3}$$

$$\begin{pmatrix} \psi_{\epsilon} \\ \psi_{\mu} \end{pmatrix}$$

$$\psi_e \ \psi_\mu$$

$$\binom{\partial e}{\mu} = \binom{\partial}{\mu}$$

$$\lambda(x) = \lambda_0 + A\cos(kx)$$

Packground matter basis:

$$H = \frac{1}{2} \left(-\omega_{m} + A \cos(kx) \cos 2\theta_{m} \right) \sigma_{3} - \frac{A \cos(kx)}{2} \sin 2\theta_{m} \sigma_{1}$$

HAMILTONIAN IN MATTER BASIS

$$\alpha = \frac{\sin 2\theta_{\rm m}}{2} A$$

pt 100

200

Matter potential frequency

$$k\sim \omega_{
m m}$$

100

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \sigma_{1}$$

$$\rightarrow \omega_{\rm m} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(kx) \\ -\sin(kx) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-kx) \\ -\sin(-kx) \\ 0 \end{pmatrix}$$

- 200

Lines: Rabi formula

Dots, diamonds, triangles, and squares are **full solutions without** approximations for $k=\omega_{\rm m}, k=(1-2\times 10^{-5})\omega_{\rm m}$, and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

OVERVIEW

Matter Effec

Stimulated Neutrino Flavor Conversions

Single Frequency Matter Potential Decomposed
150 is and Formalism
Rabi Oscillations With Multiple Potentials
Multiple Frequencies in Matter Potential

Su ²⁰⁰ ary

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

We have been making approximations.

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2\theta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \right) \sigma_{3} - \frac{\sin 2\theta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}$$

$$150 \rightarrow \omega_{\mathrm{m}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} \cos(\mathbf{k}\mathbf{x}) \\ -\sin(\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} \cos(-\mathbf{k}\mathbf{x}) \\ -\sin(-\mathbf{k}\mathbf{x}) \\ 0 \end{pmatrix}$$

RABI BASIS

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \mathbf{A} \cos(\mathbf{k} \mathbf{x}) \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\mathbf{A} \cos(\mathbf{k} \mathbf{x})}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

Better Basis

Define Rabi basis in which the wave function is related to wave function in background matter basis through

$$\begin{pmatrix} \psi_{\rm L} \\ \psi_{\rm H} \end{pmatrix} = \begin{pmatrix} e^{-i\eta(x)} & 0 \\ 0 & e^{i\eta(x)} \end{pmatrix} \begin{pmatrix} \tilde{\psi}_{\rm L} \\ \tilde{\psi}_{\rm H} \end{pmatrix}, \label{eq:psi_L}$$

ere

$$\eta(x) - \eta(0) = \frac{\cos 2\theta_{\rm m}}{2} \int_0^x A \cos(k\tau) d\tau.$$

SINGLE FREQUENCY MATTER POTENTIAL

Hamiltonian in Rabi Basis

1000 Hamiltonian

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathbf{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} \begin{pmatrix} 0 & \frac{1}{2}\alpha_{n}e^{i(n\mathbf{k})x} \\ \frac{1}{2}\alpha_{n}^{*}e^{-i(n\mathbf{k})x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n(A\cos 2\theta_m/k)$.

200

SINGLE FREQUENCY MATTER POTENTIAL

pt
$$100 - 150 - 200 - 250 - 300 - 350$$

 $\lambda(x) = \lambda_0 + A\cos(kx)$

Hamiltonian in Rabi Basis

100 Hamiltonian

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathbf{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} \begin{pmatrix} 0 & \frac{1}{2}\alpha_{n}e^{i(nk)x} \\ \frac{1}{2}\alpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

where $\alpha_n = -(-i)^n nk \tan 2\theta_m J_n(A\cos 2\theta_m/k)$.

200

Multiple potentials with different frequencies!

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 x) \\ -\sin(k_1 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} \cos(k_2 x) \\ -\sin(k_2 x) \\ 0 \end{pmatrix}^{300}$$

Cc 100 ing frame of the second potential,

$$\vec{H} = \begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_1 \begin{pmatrix} \cos(k_1 - k_2 x) \\ -\sin(k_1 - k_2 x) \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Energy gap in this frame becomes the length of the vector

$$\begin{pmatrix} 0 \\ 0 \\ \omega_m - k_2 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$D' = \left| rac{\omega_{
m m} - k_1}{lpha_1} + rac{lpha_2^2}{2lpha_1(\omega_{
m m} - k_2)}
ight|$$

Co pt ler
$$k_1 = 100$$
 150 200 250 300 350

$$D' = \left| \frac{\alpha_2^2}{2\alpha_1(\omega_{\rm m} - k_2)} \right|$$

An 100 ide reduces from 1 to 1/2 if

$$D'=1\Rightarrow lpha_{2,\mathrm{C}}\equiv \sqrt{2|lpha_1(k_2-\omega_\mathrm{m})|}.$$

150

Two driving frequencies k_1 , and k_2 , with amplitude α_1 , and α_2 For $k_1=\omega_{\rm m}$, survival of resonance requires

$$|\alpha_2| \ll \alpha_{2,\mathrm{C}} \equiv \sqrt{2|\alpha_1(k_2 - \omega_{\mathrm{m}})|}$$

Grid lines: amplitude predicted using $1/(1+D^{\prime 2})$

		22, K1 Values	
Dashed	dotted	dash-dotted	solid
050 -2	21	- 2	-21
$\sim 200 \text{ to } \sim \omega_{\text{rn}}, 10\omega_{\text{m}}$	$10^{-2}\omega_{\rm m}, 10^{-1}\omega_{\rm m}$	$5.0 \times 10^{-2} \omega_{\rm m}, 10 \omega_{\rm m}$	$5 \times 10^{-1} \omega_{\rm m}, 10^{-1} \omega_{\rm m}$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Ma pt potenti
$$\frac{1}{100}$$
 $\frac{150}{\lambda(x)} = \frac{200}{\lambda_0 + A\cos(kx)}$ $\frac{350}{\lambda(x)} = \frac{350}{\lambda_0 + A\cos(kx)}$

Consider the resonance condition ($k = \omega_{\rm m}$)

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \sum_{n=-\infty}^{\infty} \begin{pmatrix} 0 & \frac{1}{2}\alpha_{n}e^{i(nk)x} \\ \frac{1}{2}\alpha_{n}^{*}e^{-i(nk)x} & 0 \end{pmatrix}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

Ma pt potenti 100 150 200 250 300 350
$$\lambda(x) = \lambda_0 + A \cos(kx)$$
,

Consider the resonance condition ($k = \omega_{\rm m}$)

$$rac{100}{ ext{H}} \sim -rac{\omega_{ ext{m}}}{2}\sigma_{3} + rac{1}{2}egin{pmatrix} 0 & lpha_{1}e^{ikx} \ lpha_{1}^{*}e^{-ikx} & 0 \end{pmatrix} + rac{1}{2}egin{pmatrix} 0 & lpha_{n}e^{inkx} \ lpha_{n}^{*}e^{-inkx} & 0 \end{pmatrix}$$

$$D' = \left| \frac{\alpha_2^2}{2\alpha_n(\omega_{\rm m} - nk)} \right|$$

$$\begin{tabular}{c|cccc} $k = \omega_m$ \\ \hline \hline n & D' \\ \hline \hline 1 & 0 \\ \hline $1 \& -1$ & 4.8×10^{-6} \\ \hline $1 \& 2$ & 2.1×10^{-14} \\ \hline $1 \& -2$ & 6.9×10^{-15} \\ \hline \end{tabular}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

$$\alpha_n = -(-i)^n nk \tan 2\theta_{\rm m} J_n(A\cos 2\theta_{\rm m}/k)$$

$$|lpha_n| \propto \sqrt{rac{n}{2\pi}} \left(rac{eA\cos 2 heta_{
m m}}{2nk}
ight)^n, \quad ext{for large } n$$

150

Width drops fast at large n.

But the critical value for each mode becomes larger for large n's

$$\alpha_{n,C} \equiv \sqrt{2|\alpha_1(nk-\omega_{\rm m})|}$$

SINGLE FREQUENCY MATTER POTENTIAL

Width of different modes given value of matter potential frequency \boldsymbol{k}

SINGLE FREQUENCY MATTER POTENTIAL

Width of different modes given value of matter potential frequency \boldsymbol{k}

MULTIPLE FREQUENCIES IN MATTER POTENTIAL

$$\lambda(x) = \lambda_0 + \sum_{a=1}^{N} A_a \sin(k_a x)$$
 350

niltonian in Rabi Basis

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \frac{1}{2}\sum_{n_{1}=-\infty}^{\infty} \cdots \sum_{n_{N}=-\infty}^{\infty} \left(B_{\{n_{a}\}}^{*} e^{-i\sum_{a} n_{a}k_{a}x} \quad B_{\{n_{a}\}} e^{i\sum_{a} n_{a}k_{a}x} \right)$$

where

$$200_{n_a} = -(-i)^{\sum_a n_a} \tan 2\theta_m \left(\sum_a n_a k_a \right) \left(\prod_a J_{n_a} \left(\frac{A_a}{k_a} \cos 2\theta_m \right) \right)$$

CASTLE WALL MATTER POTENTIAL

Castle wall matter profile:

$$\Lambda_2 = 0.35\omega_{\rm v}\cos 2\theta_{\rm v},$$

 $\Lambda_1 = 0.15 \omega_v \cos 2\theta_v$ and period

$$X = 2 - \frac{1}{2}$$

$$\lambda(x) = \lambda_0 + \sum_1^{\infty} \lambda_n \cos(k_n x)$$
 where

$$\lambda_0 = (\Lambda_1 + \Lambda_2)/2$$
 $\lambda_n = 2(-1)^n (\Lambda_1 - \Lambda_2)/(2n\pi - \pi)$
 $k_n = 2\pi (2n - 1)/X$

CASTLE WALL MATTER POTENTIAL

Castle wall matter profile:

 $\Lambda_2 = 0.35\omega_v \cos 2\theta_v,$ $\Lambda_1 = 0.15\omega_v \cos 2\theta_v$ and period

X = 200 X = 200

Transition probability is a Rabi resonance with small variations due to higher orders.

CASTLE WALL MATTER POTENTIAL

Relative detuning of each frequency.

{n 100 }	$D'_{\{n_1,n_2\}}$
{1,0}	0
$\{1,0\} \& \{-1,0\}$	1.0×10^{-2}
{1 ₁₅₀ & {0,1}	1.1×10^{-3}
{1,0} & {2,0}	2.0×10^{-4}

200

Transition probability is a Rabi resonance with small variations due to higher orders.

OVERVIEW Ma in Effect Summary

pt 100 150 200 250 300 350

- Vacuum oscillations: flavor sates are not mass states.
- 100 I resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- 3. Stimulated oscillations: variation in 150 ar profile can cause resonances
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

 200

- 2. MSW resonance: matter potential cancels out the vacuum diagonalents of the Hamiltonian.
- Stimulated oscillations: variation in matter profile can cause resonances.
- 150 lations with two driving fields of amerent frequencies: large potential to destroy the resonance.

pt 100 150 200 250 300 350

- Vacuum oscillations: flavor sates are not mass states.

- Oscillations with two driving fields of different frequencies: large potential destroy the resonance.

For matter potential

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

Resonance condition

$$nk = \omega_{\rm m}$$

- Vacuum oscillations: flavor sates are not mass states.
- 2. 100 / resonance: matter potential cancels out the vacuum diagonal elements of the Hamiltonian.
- Oscillations with two driving fields of different frequencies: large potential to destroy the resonance.

 $|\alpha_2| \gg \alpha_{2,C} \equiv \sqrt{2|\alpha_1(k_2 - \omega_m)|}$

WHY DO NEUTRINOS OSCILLATE?

▶ basis: Hamiltonian diagonalized basis/mass basis/propagation basis, $\{|\nu_1\rangle, |\nu_2\rangle\}$.

150 $ext{ H} = -\frac{\omega_{ ext{v}}}{2}\sigma_3, ext{ where } \omega_{ ext{v}} = \frac{\delta m^2}{2F} = \frac{m_2^2 - m_1^2}{2F}.$

► The system can be solved given initial condition of the amplitudes of the two eigenstates $(\langle \nu_1 | \Psi(0) \rangle, \langle \nu_2 | \Psi(0) \rangle)^T$,

 $\begin{pmatrix} \langle \nu_1 | \Psi(x) \rangle \\ \langle \nu_2 | \Psi(x) \rangle \end{pmatrix} = \begin{pmatrix} \langle \nu_1 | \Psi(0) \rangle \exp{(i\omega_{\rm v} x/2)} \\ \langle \nu_2 | \Psi(0) \rangle \exp{(-i\omega_{\rm v} x/2)} \end{pmatrix}$

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

resultrino wave function in flavor basis $\{|\nu_{\rm c}\rangle\,, |\nu_{\mu}\rangle\}$ is related to state in energy basis $\{|\nu_{\rm 1}\rangle\,, |\nu_{\rm 2}\rangle\}$ through

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

 $\theta_{\rm v}$: vacuum mixing angle

150

200

250

WHY DO NEUTRINOS OSCILLATE?

Flavor basis

resultrino wave function in flavor basis $\{|\nu_{\rm c}\rangle\,, |\nu_{\mu}\rangle\}$ is related to state in energy basis $\{|\nu_{\rm 1}\rangle\,, |\nu_{\rm 2}\rangle\}$ through

 θ_{v} : vacuum mixing angle

150 niltonian H

Mass basis

Flavor basis

$$\frac{\omega_{\mathbf{v}}}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \\
= -\frac{\omega_{\mathbf{v}}}{2} \sigma_{3}$$

$$\begin{aligned} &\frac{\omega_{\mathrm{v}}}{2} \begin{pmatrix} -\cos 2\theta_{\mathrm{v}} & \sin 2\theta_{\mathrm{v}} \\ \sin 2\theta_{\mathrm{v}} & \cos 2\theta_{\mathrm{v}} \end{pmatrix} \\ &= \frac{\omega_{\mathrm{v}}}{2} \left(-\cos 2\theta_{\mathrm{v}} \boldsymbol{\sigma}_{3} + \sin 2\theta_{\mathrm{v}} \boldsymbol{\sigma}_{1} \right) \end{aligned}$$

NATURE OF NEUTRINO OSCILLATION

pt 100 150 200 250 300 350

Transition Probability

100

$$P(|\nu_{\rm e}\rangle \rightarrow |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm v})\sin^2\left(\omega_{\rm v}x/2\right)$$

 $\omega_{
m v} = (m_2^2 - m_1^2)/2E$ determines oscillation wavelength.

 \blacktriangleright Mixing angle θ_v determines flavor oscillation amplitude.

MSW EFFECT

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

pt

100 —

) — 2(

250

35

Constant matter profile λ_0 as an example,

Significance of $heta_{ m n}$

100 ine matter basis (eigenenergy basis) $\{\ket{\nu_L},\ket{\nu_H}\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

- 150

In matter basis

$$\mathbf{H}_{\mathsf{matter-basis}} = -rac{\omega_{\mathsf{m}}}{2} oldsymbol{\sigma_{\mathsf{3}}}$$

200

MSW EFFECT

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm v} & \sin\theta_{\rm v} \\ -\sin\theta_{\rm v} & \cos\theta_{\rm v} \end{pmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{pmatrix}$$

Constant matter profile λ_0 as an examp

nificance of $\theta_{\rm m}$

Define matter basis (eigenenergy basis) $\{\left|\nu_{\rm L}\right\rangle,\left|\nu_{\rm H}\right\rangle\}$

$$\begin{pmatrix} |\nu_{\rm e}\rangle \\ |\nu_{\mu}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\rm m} & \sin\theta_{\rm m} \\ -\sin\theta_{\rm m} & \cos\theta_{\rm m} \end{pmatrix} \begin{pmatrix} |\nu_{\rm L}\rangle \\ |\nu_{\rm H}\rangle \end{pmatrix}$$

In matter basis

$$ext{H}_{ ext{matter-basis}} = -rac{\omega_{ ext{m}}}{2} oldsymbol{\sigma}_3$$

Transition Probability

$$P(|\nu_{\rm e}\rangle \to |\nu_{\mu}\rangle) = \sin^2(2\theta_{\rm m})\sin^2(\omega_{\rm m}x)$$

SOLAR NEUTRINO PROBLEM

Ch' detector (Homestake experiment) results and theory predictions. SNU. I event for 10^{36} target atoms per second. Kenneth R. Lang (2010)

MSW EFFECT AND SOLAR NEUTRINOS

$$\begin{array}{c} | \mathbf{pt} | \mathbf{pt$$

Yellow bar is the resonance point. Red: $|\nu_e\rangle$. Green: $|\nu_{\mu}\rangle$. Adapted from Smirnov, 2003.

MSW EFFECT INVERTED HIERARCHY

Suppose
$$\omega_{
m v} = (m_2^2 - m_1^2)/2E < 0,$$

$$100 \ \ {
m H} = -\frac{\omega_{
m v}}{2} \begin{pmatrix} -\cos 2\theta_{
m v} & \sin 2\theta_{
m v} \\ \sin 2\theta_{
m v} & \cos 2\theta_{
m v} \end{pmatrix} + \sqrt{2}G_{
m F}n_{
m e}(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\mathbf{H} = \left(rac{-\omega_{\mathrm{v}}}{2}\cos 2 heta_{\mathrm{v}} + rac{\lambda(x)}{2}
ight)oldsymbol{\sigma}_{3} - rac{\omega_{\mathrm{v}}}{2}\sin 2 heta_{\mathrm{v}}oldsymbol{\sigma}_{1}$$

HAMILTONIAN

$$\lambda(x) = \lambda_0 + \frac{\delta\lambda(x)}{\delta\lambda(x)}$$

350

100 is

Background matter basis (eigen energy basis): Hamiltonian is diagonalized with only background matter profile λ_0 ,

150

$$H_{\text{background}} = -\frac{\omega_{\text{m}}}{2} \sigma_3.$$

<u>Hamiltonian</u>

200

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \boldsymbol{\sigma}_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin \theta_{\mathrm{m}} \boldsymbol{\sigma}_{1}.$$

HAMILTONIAN

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\delta \lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\frac{\delta \lambda(\mathbf{x})}{2}}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = rac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2 heta_{\mathrm{m}} A \cos(kx)
ight) \sigma_{3} - rac{\sin 2 heta_{\mathrm{m}}}{2} A \cos(kx) \sigma_{1}.$$

HAMILTONIAN

300

Hamiltonian in Background Matter Basis

$$\mathbf{H} = \frac{1}{2} \left(-\omega_{\mathrm{m}} + \frac{\delta \lambda(\mathbf{x})}{\delta \lambda(\mathbf{x})} \cos 2\theta_{\mathrm{m}} \right) \sigma_{3} - \frac{\delta \lambda(\mathbf{x})}{2} \sin 2\theta_{\mathrm{m}} \sigma_{1}.$$

Matter profile

$$\lambda(x) = \lambda_0 + A\cos(kx),$$

$$\mathbf{H} = rac{1}{2} \left(-\omega_{\mathrm{m}} + \cos 2 heta_{\mathrm{m}} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \right) \sigma_{3} - rac{\sin 2 heta_{\mathrm{m}}}{2} \mathbf{A} \cos(\mathbf{k}\mathbf{x}) \sigma_{1}.$$

RABI OSCILLATIONS

pt 100 150 200 250 300 350

The coupling strength is calculated as

$$lpha = \langle 1 | \mathbf{d} \cdot \mathbf{E} | 2
angle$$

where the electric field is

$$\mathbf{E} = \mathbf{E}_0 \sin(kt).$$

and \mathbf{d} is the dipole moment.

RABI FORMULA WORKS

Lines: Rabi formula Dots, diamonds, triangles, and squares are for $k=\omega_{\rm m}$, $k=(1-2\times 10^{-5})\omega_{\rm m}$, and $k=(1-10^{-4})\omega_{\rm m}$ respectively.

PARAMETERS USED FOR VACUUM OSCILLATIONS

$$\begin{array}{c} \textbf{pt} & 100 & 150 & 200 & 250 & 300 \\ 100 & & & \\ \theta_{12} = 33.36/180\pi; \, \theta_{13} = 8.66/180\pi; \, \theta_{23} = 40/180*\pi; \, \delta_{cp} = 0; \\ m_1^2 = 0.01; \, m_2^2 = m_1^2 + 0.000079; \, E = 1 \text{MeV} \end{array}$$

SINGLE FREQUENCY MATTER POTENTIAL

Matter potential

pt
$$\lambda'_{150} = \lambda_0 + \lambda_{00}(kx)$$
, 250 300 -

Hamiltonian in new basis

$$\widetilde{\mathbf{H}} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} - \frac{\delta\lambda(\mathbf{x})}{2}\sin 2\theta_{\mathrm{m}}\begin{pmatrix} 0 & e^{2i\eta(\mathbf{x})} \\ e^{-2i\eta(\mathbf{x})} & 0 \end{pmatrix} = -\frac{\omega_{\mathrm{m}}}{2}\sigma_{3} + \begin{pmatrix} 0 & h \\ h^{*} & 0 \end{pmatrix}$$

Hamiltonian in New Basis
$$h \equiv -\frac{\delta \lambda(x)}{2} e^{2i\eta(x)}$$

$$= \frac{i}{4} \left[\exp\left(ikx + i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)\right) - \exp\left(-ikx + i\cos 2\theta_{\rm m} \frac{A}{k}\cos(kx)\right) \right]$$

SINGLE FREQUENCY MATTER POTENTIAL

Jacobi-Anger expansion (Kneller et al, 2013)

$$e^{ieta\cos(kx)}=\sum_{n=-\infty}^{\infty}i^{n}J_{n}(eta)e^{inkx},$$

where $I_n(\beta)$ are Bessel's functions of the first kind.

SINGLE FREQUENCY MATTER PROFILE

Re 200 ance conditions

$$\hat{k} \sim \frac{1}{n}$$

SINGLE FREQUENCY MATTER POTENTIAL REVISITED

$$J_n(n \operatorname{sech} \beta) \sim \frac{e^{-n(\beta - \tanh \beta)}}{\sqrt{2\pi n \tanh \beta}}, \quad \text{for large } n$$

$$\Rightarrow \qquad \qquad = n(\beta - \tanh \beta)$$

 $|lpha_n| \propto rac{e^{-n(eta- anheta)}}{\sqrt{2\pi n} anheta}, \quad ext{for large } n$

where sech $\beta = A \cos 2\theta_{\rm m}/\omega_{\rm m}$.

$$\beta - \tanh \beta > 0 \Rightarrow$$
 Width drops fast at large n .

TWO-FREQUENCY MATTER P

$$\hat{h} = \sum_{n=0}^{\infty} \frac{1}{2} \hat{B}_n e^{i(n\hat{k}-1)\hat{x}},$$

Hamiltonian Off-diagonal Element

Apply Jacobi-Anger expansion,

$$\hat{h} = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} \frac{1}{2} \hat{B}_{n_1, n_2}(\hat{k}_1, \hat{k}_2) e^{i(n_1 \hat{k}_1 + n_2 \hat{k}_2 - 1)\hat{x}},$$

where

$$\mathbf{L}_{n_1,n_2}(\hat{k}_1,\hat{k}_2)$$

$$=-(-i)^{n_1+n_2}(n_1\hat{k}_1+n_2\hat{k}_2)J_{n_1}\left(\frac{\hat{A}_1\cos 2\theta_{\rm m}}{\hat{k}_1}\right)J_{n_2}\left(\frac{\hat{A}_2\cos 2\theta_{\rm m}}{\hat{k}_2}\right)$$

200

Which terms are important?

- 250

SINGLE FREQUENCY MATTER PROFILE REVISITED

 $\lambda(x) = \lambda_0 + A\cos(kx),$

		$k_1 = \omega_{ m m}$	
\overline{n}	D	D_1'	$2\pi\omega_{ m m}/\Omega_n$
1	0		3.2×10^{5}
150 —	10^5	4.8×10^{-6}	3.1
2	1.1×10^{9}	2.1×10^{-14}	6.3
-2	3.4×10^{9}	6.9×10^{-15}	2.1

SINGLE FREQUENCY MATTER PROFILE REVISITED

SINGLE FREQUENCY MATTER PROFILE REVISITED

Ma profile
$$100$$
 150 200 250 300 35 $\lambda(x) = \lambda_0 + A\cos(kx),$ 100 $k_1 = (1-10^{-4})\omega_{\mathrm{m}}$ n D D_1' $2\pi\omega_{\mathrm{m}}/\Omega_n$ 1 5.2 6.2×10^4 150 -1 10^5 5.2 3.1 2 1.1×10^9 5.2 6.3 200 2 3.4×10^9 5.2 2.1

CASTLE WALL MATTER PROFILE

Figure: Castle wall matter profile

CASTLE WALL MATTER PROFILE

Table: Relative detuning of each frequ 100

$\{n_1,n_2\}$	D	$D'_{\{1,0\}}$
$ \begin{cases} 1, 0 \\ \hline{150} \\ \hline{-1, 0} \\ \hline{0, 1} \\ \hline{2, 0} \end{cases} $	$0 \\ 48 \\ 1.5 \times 10^{2} \\ 2.4 \times 10^{2}$	$\begin{array}{c} - \\ 1.0 \times 10^{-2} \\ 1.1 \times 10^{-3} \\ 2.0 \times 10^{-4} \end{array}$

pt 100 150 200 250 300 350

Resonance Lines

rmere are still resonances, i.e., (almost) zero phases, on lines

$$n_{1,0}\hat{k}_1 + n_{2,0}\hat{k}_2 - 1 = 0$$

 $150 \, \hat{k}_1, \hat{k}_2 \}$ plane. \Rightarrow Resonance width for each point on resonance lines.

200

 $\hat{h} = \sum_{n_1} \sum_{n_2} \frac{1}{2} \hat{B}_{n_1, n_2} (\hat{k}_1, \hat{k}_2) e^{i(n_1 \hat{k}_1 + n_2 \hat{k}_2 - 1) \hat{x}},$

Density plot of transition amplitudes calculated using only one term out of the whole jummation in Hamiltonian. $n_1, n_2 \in [-2, 2]$

Distance to Resonance Line

150
$$d = \frac{|n_1\hat{k}_{10} + n_2\hat{k}_{20} - 1|}{\sqrt{n_1^2 + n_2^2}}.$$

Distance to Resonance Width Ratio

$$Q_2 = \frac{d}{\Gamma_2}$$
.

22/24

BESSEL'S FUNCTION

$$J_{n}(\beta) = \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m! \Gamma(m+n+1)} \left(\frac{\beta}{2}\right)^{2m+n}$$

REFERENCES I 24/24