India

National Olympiad

2005

- 1 Let M be the midpoint of side BC of a triangle ABC. Let the median AM intersect the incircle of ABC at K and L, K being nearer to A than L. If AK = KL = LM, prove that the sides of triangle ABC are in the ratio 5:10:13 in some order.
- 2 Let α and β be positive integers such that $\frac{43}{197} < \frac{\alpha}{\beta} < \frac{17}{77}$. Find the minimum possible value of β .
- $\boxed{3}$ Let p,q,r be positive real numbers, not all equal, such that some two of the equations

$$px^2 + 2qx + r = 0qx^2 + 2rx + p$$

 $0rx^2 + 2px + q = 0$.

(0)

have a common root, say α . Prove that

- a) α is real and negative;
- b) the remaining third quadratic equation has non-real roots.

All possible 6-digit numbers, in each of which the digits occur in nonincreasing order (from left to right, e.g. 877550) are written as a sequence in increasing order. Find the 2005-th number in this sequence.

Let x_1 be a given positive integer. A sequence $\{x_n\}_{n\geq 1}$ of positive integers is such that x_n , for $n\geq 2$, is obtained from x_{n-1} by adding some nonzero digit of x_{n-1} . Prove that

- a) the sequence contains an even term;
- b) the sequence contains infinitely many even terms.

Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$f(x^2 + yf(z)) = xf(x) + zf(y),$$

for all $x, y, z \in \mathbb{R}$.