

Contexte et Objectif

Gestion du risque

Différencier les bons et moins bons clients en terme de capacité de remboursement.

Contexte et Objectif

Établir une classification des clients basée sur leurs caractéristiques démographiques, leurs comportements financiers ainsi que sur leur historique de crédit.

Mise à disposition d'un dashboard interactif pour évaluer rapidement le risque de défaut des clients.

Review des données (analyse + préparation)

™ Modélisation : réduction du risque métier (metrics, scores)

Disponibilité du data product : API, Dashboard (MLOps)

E Structure des données

Aperçu des données | feature engineering

CREDIT_INCOME_PERCENT	float64	rapport entre montant du crédit et les revenus du client
ANNUITY_INCOME_PERCENT	float64	rapport entre l'annuité du prêt et les revenus du client
CREDIT_TERM	float64	durée du paiement en mois
DAYS_EMPLOYED_PERCENT	float64	rapport entre l'expérience professionnelle et l'âge du client

307 511 observations121 variables

105 quantitatives16 qualitatives

11 % nan

Exploration labels

Déséquilibre évident entre les classes positive et négative.

Exploration | expérience professionnelle

Une large majorité des clients ont moins de 10 ans d'expérience professionnelle.

Exploration | âge

L'âge seul ne permet pas de tirer des conclusions sur les prêts.

Exploration | âge et remboursement

Les jeunes emprunteurs (20-30 ans) ont un taux d'échec de remboursement plus élevé, tandis que ce taux diminue progressivement avec l'âge, particulièrement après 50 ans.

Exploration | sources externes et remboursement

Les emprunteurs ayant des scores plus faibles sur les variables EXT_SOURCE_1, EXT_SOURCE_2, et EXT_SOURCE_3 ont une probabilité plus élevée de ne pas rembourser leurs prêts, tandis que les emprunteurs ayant des scores plus élevés tendent à mieux rembourser.

Exploration sources externes et âge

Existence d'un relation linéaire modérée entre l'âge et la première source externe.

Modélisation | entraînement des modèles (GridSearch)

Modèle linéaire

Régression Logistique

'C': [0.001, 0.01, 0.1, 1]

Bagging

Random Forest Classifier

'n_estimators': [50, 100, 200]

'max_depth': [5, 10]

'min_samples_split': [2, 5]

'n_estimators': [50, 100, 200]

'max_depth': [3, 5, 7]

'learning_rate': [0.01, 0.1, 0.2]

'subsample': [0.8, 1.0]

Modélisation | tracking MLFlow

Modélisation | seuil optimal du meilleur modèle

Fonction de coût

C = 1 * FP + 10 * FN

AUC: 0.76

Seuil optimal: 0.51

Coût minimal: 32160

Modélisation | feature importances

Modélisation | data drift

Dataset Drift

Dataset Drift is NOT detected. Dataset drift detection threshold is 0.5

243
Columns

11
Drifted Columns

Share of Drifted Columns

Data Drift Summary

						Q Search	×
Column	Туре	Reference Distribution	Current Distribution	Data Drift	Stat Test	Drift Score	
CREDIT_TERM	num		■■■ ■■■■■■■■■■	Detected	Wasserstein distance (normed)	0.575103	
AMT_REQ_CREDIT_BUREAU_QRT	num			Detected	Wasserstein distance (normed)	0.359052	
CREDIT_INCOME_PERCENT	num			Detected	Wasserstein distance (normed)	0.293721	
AMT_REQ_CREDIT_BUREAU_MON	num			Detected	Wasserstein distance (normed)	0.281765	
AMT_GOODS_PRICE	num			Detected	Wasserstein distance (normed)	0.210785	
AMT_CREDIT	num			Detected	Wasserstein distance (normed)	0.207334	
AMT_ANNUITY	num			Detected	Wasserstein distance (normed)	0.161102	
AMT_REQ_CREDIT_BUREAU_WEEK	num			Detected	Wasserstein distance (normed)	0.15426	
NAME_CONTRACT_TYPE	num	<u> </u>		Detected	Jensen-Shannon distance	0.14755	
DAYS_LAST_PHONE_CHANGE	num	Ĭ,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Detected	Wasserstein distance (normed)	0.138977	
FLAG_EMAIL	num			Detected	Jensen-Shannon distance	0.122121	

Data product | API

Data product | API

model_uri = 'runs:/8b9687c798834eb5b9e070154b21cf44/xgboost_classifier_best_model'

Data product | dashboard interactif

Prédiction du score du client via son numéro d'identifiant unique.

Informations sur les caractéristiques les plus influentes négativement ou positivement lors de la prédiction.

Évaluation du risque de crédit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SHAP Value

DEF_60_CNT_SOCIAL_CIRCLE

CREDIT_TERM

CODE_GENDER_M

DAYS_EMPLOYED

FLAG_OWN_CAR

Data product | dashboard interactif

Data product | ci - cd

Merci pour votre écoute