CS4310 - Design & Analysis of Algorithms Analysis Spring 2017

Mariia Kravtsova

2/7/2017

Problem 1

Algorithm swap(A,n)

Input: Array A containing integer numbers and integer n which shows the length of the array

Output: Array A which its even indexed elements are swapped with their consecutive odd indexed elements

Best and worst case are the same 12n + 3, but the i is increasing by 2 so it is growing faster so 6n+3, so complexity is O(n).

Operation	Counts
i ← 0	1
while $(i < n)$	n+1
$temp \leftarrow A[i]$	2n
$A[i] \leftarrow A[i+1]$	4n
$A[i+1] \leftarrow temp$	3n
$i \leftarrow i+2 \text{ temp}$	2n
return A temp	1

Problem 2

Characterize each of the following recurrence equations using the master theorem (assuming that T(n)=c for n< d, for constants c>0 and $d\geq 1$). Show all work and give the big-Theta notation of the complexity of each.

For each part, make sure to give the Master Theorem Case that applies and the value(s) of ϵ , δ , and/or k (as applicable).

(a)
$$T(n) = 2T(n/2) + log(n)$$

 $case \ 1 : log_2 2 = 1, \ \epsilon = 0.90, \Theta(n^1)$

(b)
$$T(n) = 8T(n/2) + n^2$$

 $case \ 1 : log_2 8 = 3, \ \epsilon = 1, \ \Theta(n^3)$

(c)
$$T(n) = 16T(n/2) + (nlog(n))^4$$

 $case \ 2 : log_2 16 = 4, \ k = 3, \ \Theta((nlog(n))^5)$

(d)
$$T(n) = 7T(n/3) + n$$

 $case \ 1 : log_37 = 1.77, \ \epsilon = 1.77, \ O(n^{log_37})$

(e)
$$T(n) = 9T(n/3) + n^3 log(n)$$

 $case \ 3: log_3 = 2, \ \epsilon = 1, \delta = 0.2, \ O(n^3 log(n))$

Problem 3

Since it recursevly sorts 3 times the 2n/3 elements, we know that a = 3, b = 2/3, and n is the size of our input size. So the best and worst case will be the same. Our c is a constant time of the array-passing which is the base case.

```
Therefore T(n)=3T(2n/3)+c. So we itterate: =9T(4n/9)+1+3 =1+3+3^2+..+3^{log_{3/2}n} skipping some steps because logs are hard to write and I used wolframAlfa to give me the result. =\Theta(n^{1/(log_33/2)}) =\Theta(n^{2.71})
```

Master theorem:

case
$$1: log_{2/3}3, \ \epsilon = 0.1, \Theta(n^{log_{2/3}3}), \ O(n^{2.6})$$

Problem 4

The only thing changing is the size of our chunks. Ex: n=8 we will see n is going to go down by 2 each time. When n=8 it will go down by 4. The n is now divided into 3/4 each time.

Therefore
$$T(n) = 3T(3n/4) + c$$
.

Master theorem:

case 1:
$$log_{3/4}3$$
, $\epsilon = 1 O(n^{2.8})$, $\Theta(n^{log_{3/4}3})$