Thermodynamique Question 17

Détente de Joule-Thompson

Soit un système ouvert Σ en écoulement stationnaire dans un tuyau possédant un étranglement.

Aucun des paramètres ne dépend du temps.

On considère le système fermé à l'instant t entre AB et

CD et à l'instant t + dt entre A'B' et C'D'

 $m_{ABCD} = m_{A'B'C'D'}$ et $m_{A'B'CD} = m_{A'B'CD}$ donc

 $d_{CC'DD'} = dm_{ABA'B'}$

Donc $\rho_1 V_1 dt S_1 = \rho_2 V_2 dt S_2 = dm$

Premier principe: $(U+E)_{A'B'C'D'}(t+dt) - (U+E)_{ABCD}(t) = \delta W + \delta W_u + \delta Q$ où δW est le travail des forces de pression et δW_u est le travail du reste.

$$\delta W = \Delta (PSV dt) = dm (\frac{P_2}{\rho_2} - \frac{P_1}{\rho_1})$$
Or, par stationnarité, $(U + E)_{A'B'}$

Or, par stationnarité,
$$(U+E)_{A'B'CD}(t+dt) = (U+E)_{A'B'CD}(t) = 0$$

donc $(U+E)_{A'B'C'D'}(t+dt) - (U+E)_{ABCD}(t) = (U+E)_{CC'DD'}(t+dt) - (U+E)_{ABA'B'}(t)$

$$= dm \left(u_2 - e_{p_2} + \frac{v_2^2}{2} - u_1 - e_{p_1} - \frac{v_1^2}{2} \right) = \frac{P_2}{\rho_2} - \frac{P_1}{\rho_1} + w_u + q$$

Or
$$h = u + \frac{P}{\rho}$$
 donc

$$h_2 + e_{p_2} + \frac{v_2^2}{2} - h_1 - e_{p_1} - \frac{v_1^2}{2} = w_u + q$$

Deuxième méthode : méthode des systèmes ouverts

On raisonne en permanence sur le système ouvert ABCD. Il échange de la matière en AB et en CD. Premier principe:

$$(U+E)_{ABCD}(t+dt) - (U+E)_{ABCD}(t) = dm \left(u_1 + e_{p_1} + \frac{v_1^2}{2} - u_2 - e_{p_2} - \frac{v_2^2}{2} \right) + dm \left(\frac{P_1}{\rho_1} - \frac{P_2}{\rho_2} + w_u + q \right)$$
On retrouve bien $h_2 - e_{p_2} + \frac{v_2^2}{2} - h_1 - e_{p_1} - \frac{v_1^2}{2} = w_u + q$

On suppose que le tuyau est calorifugé.

Les températures sont quasi-uniformes. On peut donc considérer que $\delta Q=0$.

Ainsi
$$h_2 + e_{p_2} + \frac{v_2^2}{2} - h_1 - e_{p_1} - \frac{v_1^2}{2} = w_u$$

Si le fluide est un gaz, e_p et $\frac{v^2}{2}$ sont négligeables et on a $h_2 - h_1 = w_u$

Si de plus le gaz ne reçoit pas de travail utilise alors $h_1 = h_2$, la transformation est isenthalpique. Si enfin $T_1 = T_2$, on dit que le gaz suit la deuxième loi de Joule. C'est le cas des gaz parfaits.