Technische Mechanik 151-0223-10

- Übung 5 -

Dr. Paolo Tiso

22. Oktober 2024

1. ¹ Die Kräfte $\mathbf{F}_A = F\mathbf{e}_y$, $\mathbf{F}_B = F\mathbf{e}_z$, und $\mathbf{F}_C = F\mathbf{e}_x$ greifen gemäss Abbildung an einem starren Quader an (Kantenlängen b, a, a).

- 1. Berechnen Sie die Dyname der Kräftegruppe in \mathcal{O} .
- 2. Berechnen Sie die Dyname der Kräftegruppe in P.
- 3. Wie muss das Verhältnis $\frac{a}{b}$ gewählt werden, damit sich die Kräftegruppe auf eine Einzelkraft reduzieren lässt?

 $^{^1\}mathrm{Aufgabe}$ aus der Übungsserie 4 der Vorlesung « 151-0223-10 Technische Mechanik», HS 2019, Prof. Dual/Prof. Glocker.

2. 2 Bestimmen Sie die eingezeichneten Komponenten der sechs am Würfel (Seitenlänge a) skizzierten Kräfte so, dass sie einem Momentvektor in z-Richtung vom Betrag M statisch äquivalent sind.

 $^{^2 \}rm Aufgabe$ aus der Übungsserie 4 der Vorlesung « 151-0223-10 Technische Mechanik», HS 2019, Prof. Dual/Prof. Glocker.

3. Eine Kugel mit Radius r rollt ohne zu gleiten auf einer festen Kegelfläche AB vom halben Öffnungswinkel $\pi/4$, einer festen Kegelfläche BC vom gleichen Öffnungswinkel und auf der gezeichneten, um \mathbf{e}_z drehenden Welle ab, wie in der ersten Abbildung gezeigt. Die Welle rotiere mit der Rotationsgeschwindigkeit $\boldsymbol{\omega}$. Zur besseren Veranschaulichung zeigt die zweite Abbildung zwei 3D-Ansichten des Systems.³

Was ist die Kinemate der Kugel in ihrem Mittelpunkt O?

(a)
$$\mathbf{v}_O = \frac{3\sqrt{2}}{2}(\sqrt{3} - \sqrt{2})r\omega \,\mathbf{e}_y; \quad \boldsymbol{\omega}_k = -3\omega(\sqrt{3} - \sqrt{2})\,\mathbf{e}_x.$$

(b)
$$\mathbf{v}_O = \sqrt{\frac{3}{2}}(3 - \sqrt{2})r\omega \,\mathbf{e}_y; \quad \boldsymbol{\omega}_k = 2\omega(3 + \sqrt{2})\,\mathbf{e}_x.$$

(c)
$$\mathbf{v}_O = \frac{3}{\sqrt{2}}(3 - \sqrt{2})r\omega \,\mathbf{e}_y; \quad \boldsymbol{\omega}_k = \omega(\sqrt{3} + \sqrt{2}) \,\mathbf{e}_x.$$

(d)
$$\mathbf{v}_O = \sqrt{2}(3 - \sqrt{2})\omega \mathbf{e}_y; \quad \boldsymbol{\omega}_k = r\omega(\sqrt{3} + \sqrt{2})\mathbf{e}_x.$$

(e)
$$\mathbf{v}_O = \frac{2\sqrt{2}}{3}(2 - \sqrt{3})r\omega \,\mathbf{e}_y; \quad \boldsymbol{\omega}_k = -2\omega(\sqrt{3} - 2)\,\mathbf{e}_x.$$

³Danke an Thomas Gratz für die Erstellung der 3D-Modelle.

4. Auf einer Kugel mit dem Radius R rollt eine Kreisscheibe mit dem Radius R/2, die auf einer in O gelagerten Welle sitzt. Die Scheibenebene enthält im Berührungspunkt P die Normale zur Kugelfläche, welche mit der Vertikalen einen Winkel von $\pi/6$ einschliesst. Der Mittelpunkt C der Nabe bewegt sich mit der Geschwindigkeit $\mathbf{v}_C = (0, v, 0)^T$.

In welcher Abbildung ist die richtige momentane Rotationsachse dargestellt?

5. Ein starrer Kegel rollt mit der gegebenen Rotationsschnelligkeit ω auf der xy-Ebene, so dass seine Spitze stets im Ursprung des raumfesten kartesischen Koordinatensystems liegt. Die Abmessungen sind der Skizze zu entnehmen.

- 1. Was ist in der skizzierten Lage die momentane Rotationsachse?
- 2. Bestimmen Sie die Geschwindigkeitsvektoren \mathbf{v}_P und \mathbf{v}_M in den Punkten P und M in der momentanen Lage.
- 3. Nehmen sie an, dass ω konstant ist. Wie lange braucht der Kegel für eine Umdrehung um die z-Achse?