

Model Optimization and Tuning Phase Template

Date	15 July 2024
Team ID	740080
Project Title	Flight Delay Prediction using Machine Learning.
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random Forest Classifier		from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix rfc = RandomForestClassifier() rfc.fit(x_train,y_train) y_test_predict1 = rfc.predict(x_test) test_accuracy = accuracy_score(y_test,y_test_predict1) test_accuracy c:\Users\indhu\AppData\Local\Programs\Python\Python312\Lib\site_packages\sklearn\base.py:1473: return fit_method(estimator, *args, **kwargs) 0.9150561797752809

Logistic Regression	 Is a lightidegression() In fitts_train_y_train() y_tmt_prefect(= in_prefect(_text)) y_tmt_prefect(= in_prefect(_text)) tot_train_y = accoracy_core()_tmt_p_text_prefect() tot_train_y = accoracy_core()_tmt_p_tex
Decision Tree Classifier	 <pre>dtc = DecisionTreeClassifier() dtc.fit(x_train,y_train) y_test_predict3 = dtc.predict(x_test) test_accuracy = accuracy_score(y_test,y_test_predict3) test_accuracy 0.8606741573033708</pre>
Extra Tree Classifier	 etc = ExtraTreesClassifier() etc.fit(x_train,y_train) y_test_predict4 = etc.predict(x_test) test_accuracy = accuracy_score(y_test,y_test_predict4) test_accuracy s:\Users\indhu\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\base.py.1473 return fit_method(estimator, *args, **kwargs) a ggg7640440438333

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
-------	------------------

Precision recall f1-score support		<pre>print(classification_report(y_test,y_test_predict1))</pre>
1.0 0.71 0.59 0.65 293 accuracy 0.92 2225 macro avg 0.83 0.78 0.80 2225 weighted avg 0.91 0.92 0.91 2225	Random Forest Classifier	precision recall f1-score support
Random Forest Classifier macro avg 0.83 0.78 0.80 2225 weighted avg 0.91 0.92 0.91 2225		
Random Forest Classifier weighted avg 0.91 0.92 0.91 2225		
<pre>confusion_matrix(y_test, y_test_predict1)</pre>		
		<pre>confusion_matrix(y_test, y_test_predict1)</pre>
array([[1863, 69], [120, 173]])		
<pre>y_train_predict2 = rfc.predict(x_train) train_accuracy = accuracy_score(y_train,y_train_predict2) train_accuracy print(classification_report(y_test,y_test_predict2))</pre>		<pre>train_accuracy = accuracy_score(y_train,y_train_predict2) train_accuracy</pre>
precision recall f1-score support		precision recall f1-score support
0.0 0.95 0.96 0.95 1932 1.0 0.70 0.65 0.68 293		0.0 0.95 0.96 0.95 1932 1.0 0.70 0.65 0.68 293
Linear Regression accuracy macro avg eighted avg e.83 e.81 e.82 e.82 e.92 e.92 e.92 e.92 e.92 e.92 e.92 e.9	Linear Regression	macro avg 0.83 0.81 0.82 2225
<pre>confusion_matrix(y_test, y_test_predict2)</pre>		confusion_matrix(y_test, y_test_predict2)
array([[1852, 80], [102, 191]])		array([[1852, 80], [102, 191]])
<pre>y_train_predict3 = dtc.predict(x_train) train_accuracy = accuracy_score(y_train_y_train_predict3) train_accuracy print(classification_report(y_test,y_test_predict3))</pre>		<pre>train_accuracy = accuracy_score(y_train,y_train_predict3) train_accuracy</pre>
precision recall f1-score support		nrecision recall f1-score support
0.0 0.92 0.92 1932 1.0 0.47 0.48 0.48 293	Decision Tree Classifier	0.0 0.92 0.92 0.92 1932
Decision Tree Classifier accuracy macro avg 9.79 9.86 2225 9.79 9.79 9.79 2225		
weighted avg 0.86 0.86 2225		
<pre>confusion_matrix(y_test, y_test_predict3)</pre>		confusion_matrix(y_test, y_test_predict3)
array([[1773, 159], [151, 142]])		

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest Classifier	The Random Forest model was selected for its superior performance, exhibiting high accuracy during train and test. Its often more accurate than decision tree it builds multiple tree and averages their predictions, reducing the risk of overfitting. It can model non-linear relationships better than Linear Regression. Effective in detecting anomalies in datasets, useful in fraud detection and network security.