Sistemas Embarcados Multiprocessados

Exame de Qualificação: Mateus Beck Rutzig

mbrutzig@inf.ufrgs.br

Orientador: Luigi Carro

carro@inf.ufrgs.br

Laboratório de Sistemas Embarcados Instituto de Informática Universidade Federal do Rio Grande do Sul

Dispositivos embarcados dos anos 90

Processamento de Vídeo

- Video Conferência
- Processamento de Vídeo
- Reconhecimento de Imagens

Processamento de voz

Realidade Virtual

Requisitos de desempenho para CADA dispositivo

Processadores com diferentes capacidades de processamento

Aplicações são as mesmas dos anos 90...

...mas agora convergiram para um único dispositivos

Requisitos de desempenho para os dispositivos atuais

=~ 6.5 bi/sec

 A busca pelo desempenho caminha em paralelo com rígidas restrições de projeto que manipulam orçamentos de...

- Potência
- Área
- Energia

Redução do Time-to-Market

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP
 - Multicore homogêneo
 - Multicore heterogêneo

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP

Parede da Frequência

Não há muito espaço para diminuir o tempo de estágio do pipeline [3]

- Multicore homogêneo
- Multicore heterogêneo

- 2] S. Borkar "Design Challenges of Technology Scaling" Micro 1999
- Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, Doug Burger. Clock rate versus IPC: the end of the road for conventional microarchitectures. In ISCA 2000

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP

- Multicore homogêneo
- Multicore heterogêneo

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP

- Multicore homogêneo
- Multicore heterogêneo

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP

- Multi-core homogêneo
- Multi-core heterogêneo?

- Possíveis soluções para alcançar os requisitos de desempenho, energia, potência e "time-to-market"
 - Um processador com infinitos recursos para explorar ILP

- Multicore homogêneo
- Multicore heterogêneo ?
 - Vantagens
 - Tempo de projeto reduzido
 - Aumento do "Yield"
 - Escalabilidade
 - Desvantagens
 - Mapeamento das aplicações nos processadores
 - Re-escrita do código
 - · As aplicações nem sempre oferecem paralelismo neste grão

Sumário

- 1. Paralelismo de Grão Grosso
- 2. Arquiteturas Multiprocessadas

Sumário

- Paralelismo de Grão Grosso
- 2. Arquiteturas Multiprocessadas

- Níveis de exploração
 - Processos
 - Threads

- Níveis de exploração
 - Processos

Paralelismo extraído automaticamente pelo Sistema Operacional

Threads

- Níveis de exploração
 - Processos

Paralelismo extraído automaticamente pelo Sistema Operacional

Threads

Projetista do software é responsável pela extração do paralelismo Sistema Operacional mapeia as threads nos processadores

- Níveis de exploração
 - Processos
 - API (Application Programming Interface)
 - MPI (Message Passing Interface)
 - Comunicação baseada em troca de mensagens
 - Mais utilizada para comunicação em clusters
 - Threads
 - OpenMP (Open Multi-Processing)
 - Comunicação baseada em memória compartilhada
 - Mais utilizada para comunicação intra-chip

Projetista do software é responsável pela extração do paralelismo Sistema Operacional mapeia as threads nos processadores

Exemplos OpenMP

```
#define N 4
int main(int argc, char **argv)
{
  int i, a[N];
    #pragma omp parallel for
    for (i = 0; i < N; i++)
        a[i] = 2 * i;
  return 0;
}</pre>
T
a
T
b
T
c
T
d
```


Nenhuma dependência de dados entre as iterações

Exemplos OpenMP

```
#define N 4
int main(int argc, char **argv)
{
  int i, a[N];
  #pragma omp parallel for
  for (i = 0; i < N; i++)
      a[i] = 2 * i;
return 0;</pre>
```


Nem todo o software é capaz de explorar uma abordagem multiprocessada

```
#define N 4
int main(int argc, char **argv)
{
   int i, a[N];
   #pragma omp parallel for
   for (i = 0; i < N; i++)
        a[i] = 2 * a[i-1];
   return 0;
}</pre>
```

Existe dependência de dados entre as iterações

Sumário

- 1. Paralelismo de Grão Grosso
- 2. Arquiteturas Multiprocessadas

Sumário

- 1. Paralelismo de Grão Grosso
- 2. Arquiteturas Multiprocessadas
 - Propósito Geral
 - Embarcados

Cell Processor (Playstation 3 Console)

- Processador central de alto desempenho
 - Power Processing Element (PPE)
 - IBM PowerPC
 - Multithreaded (2 Threads)
 - Cache L1 (32kb I e 32 Kb D)
 - Cache L2 512 Kb
 - Frequência: 3.2 GHz
 - Atua como controlador dos processadores periféricos
- Oito processadores periféricos
 - Synergistic Processing Elements (SPE)
 - Baseados em Processamento Vetorial (SIMD)
 - 256 Kb Local Storage
 - Controlados por software
- Dificuldades para codificar software
 - Desenvolvedores de SW são responsáveis pelo gerenciamento dos dados das Local Storages

- UltraSparc T2 (Niagara 2)
 - 8 processadores baseados no instruction set Sparc-V9
 - Cada processador é capaz de executar 8 threads concorrentemente (total de 64 threads)
 - "Server on a Chip"
 - PCI express
 - Duas portas 10 Gigabit Ethernet
 - 4 controladores dual-channel FBDIMM
 - Pipeline de 8 estágios (1.6Ghz)
 - Cache L2 4MB
 - 8 Bancos
 - Associativa por conjunto 16
 - Aplicações
 - WebServers
 - Database

Intel 80 Cores

- 1 trilhão de operações de ponto flutuante por segundo
- Consumo de potência: 62 Watts
- Baseado em uma arquitetura VLIW
 - Exploração do ILP via compilador
 - Término da Era x86
 - Quebra da compatibilidade de SW
 - Core2Duo
 - 291 milhões de transistores
 - Intel 80 Cores
 - 1000 milhões de transistores
- Problema de interconexão!
 - Network mesh-based

Simplicidade dos Cores: Remoção do HW superescalar

Intel Larrabee

- Arquitetura CPU-GPU híbrida
- Replicações da arquitetura P54C
 - Pentium 75–120 MHz (1995)
 - Processador Superescalar In-Order
- Poderosa execução de processamento vetorial
 - Melhorias na tecnologia SSE
- Extensões Larrabee no instruction set
 - Voltadas para o processamento gráfico
- Grande largura de banda com a memória

NVIDIA Tesla D870

- Contém 2 placas Tesla C870
 - 3 GB DDR3
 - 256 streaming processors
 - Consumo máximo 170 Watts
- GPGPU (General-Purpose Graphics Processing Unit ou Unidade de Processamento Gráfico de Uso Geral)
 - 1 trilhão de operações de ponto flutuante por segundo
- Suporte a tecnologia Compute Unified Device Architecture (CUDA)
 - Extensões no Compilador C/C++

Propósito Geral

- Utilizam arquitetura homogênea
 - Facilidade no gerenciamento de distribuição das threads
 - Tempo curto de validação
- Utilizam poucas técnicas de redução de consumo de potência
 - DFVS (Dynamic Frequency and Voltage Scaling)
- Tendência (já acontecendo!)
 - Replicação de cores simples para explorar paralelismo de grão grosso

Sumário

- 1. Paralelismo de Grão Grosso
- 2. Arquiteturas Multiprocessadas
 - Propósito Geral
 - Embarcados
- 3. Tendências para o Futuro Embarcado

Samsung S3C6410 (IPhone 3G)

- ARM 1176JZF-S processador de propósito geral (667 MHz)
 - Pipeline de 9 estágios (ARMv6)
 - Processamento vetorial (SIMD)
 - Tecnologia Jazelle Execução Java Nativa
 - Thumb Instruction Set compactação de instruções
 - Extensões DSP
- Aceleradores multimedia
 - Formatos: MPEG4, VCI, H.264
- 128 MB RAM
- Gerenciamento de energia
 - ARM Intelligent Energy Management
 - Desligamento de partes do hardware não utilizadas
 - Potência Estática

Samsung S3C6410

Samsung S5PC100 (IPhone 3G S)

- ARM Cortex A8 Processador de Propósito Geral (600MHz)
 - Pipeline 13 estágios superescalar (ARMv7) com preditor de saltos dinâmico
 - Dobro de cache L1, além da inserção de 256Kb de cache L2
 - Tecnologia NEON ARM
 - Extensões para acelerar H.264 e MP3
 - Desempenho 2 vezes melhor que a anterior
 - Thumb2 Instruction Set
- Alta Definição manipulando vídeos
 - 720p
- 256 MB RAM
- Gerenciamento de energia
 - Potência Dinâmica:
 - 3 níveis de clock gating
 - Grosso nível de arquitetura
 - Médio- nível de blocos (NEON)
 - Fino- nível de componente lógico
 - Potência estática (multi-Vt)

Samsung S5PC100

Omap Platform 4440

- Dual-core ARM Cortex A9 MPCore Processador de Propósito Geral
 - Cada ARM Cortex A9 pode ser composto de até 4 cores
- POWERVR™ SGX540 multi-threaded graphics accelerator
 - Suporte as APIs OpenGL 2.0 Directx 10.1
 - Reprodução de vídeo em alta definição (1080p)
- Gerenciamento de energia
 - Dynamic Power Switching (DPS)
 - Troca de modo de alimentação baseado na atividade do sistema
 - Static Leakage Management (SLM)
 - Coloca o sistema em modo standby (mais agressivo)

Propósito Geral x Embarcados

	Processador	Arquitetura	Organização	Cores	Multithreaded Cores?	Interconexão
Embarcados	OMAP4440	Heterogêneo	Heterogêneo/ Homogêneo	2 ARM Cortex A9 1 PowerVR graphics accelerator 1 Image Signal Processor	Não	Barramento
	Samsung S3C6410	Heterogêneo	Heterogêneo	1 ARM1176JZF-S + Multimedia Accelerators	Não	Barramento
	Samsung S5PC100	Heterogêneo	Heterogêneo	1 ARM Cortex A8 + Multimedia Accelerators	Não	Barramento
Propósito Geral	Cell	Heterogêneo	Heterogêneo	1 PowerPC 8 SPE	Não	Barramento
	Niagara 2	Homogêneo	Homogêneo	8 SPARC V9 ISA	Sim (8 threads)	Crossbar
	Intel 80-Cores	Homogêneo	Homogêneo	80 VLIW	Não	NoC Mesh
	Intel Larrabee	Homogêneo	Homogêneo	n P54C x86 cores SIMD execution	Não	Barramento
	NVIDIA Tesla (GeForce8800)	Homogêneo	Homogêneo	128 Stream Processors	Sim (até 768 threads)	"Network"

Propósito Geral x Embarcados

	Processador	Arquitetura	Organização	Cores	Multithreaded Cores?	Interconexão
Embarcados	OMAP4440	Heterogêneo	Heterogêneo/ Homogêneo	2 ARM Cortex A9 1 PowerVR graphics accelerator 1 Image Signal Processor	Não	Barramento
	Samsung S3C6410	Heterogêneo	Heterogêneo	1 ARM1176JZF-S + Multimedia Accelerators	Não	Barramento
	Samsung S5PC100	Heterogêneo	Heterogêneo	1 ARM Cortex A8 + Multimedia Accelerators	Não	Barramento
Propósito Geral	Cell	Heterogêneo	Heterogêneo	Fronteira entre os 2	? domínios	Barramento
	Niagara 2	Homogêneo	Homogêneo	8 SPARC V9 ISA	Sim (8 threads)	Crossbar
	Intel 80-Cores	Homogêneo	Homogêneo	80 VLIW	Não	NoC Mesh
	Intel Larrabee	Homogêneo	Homogêneo	n P54C x86 cores SIMD execution	Não	Barramento
	NVIDIA Tesla (GeForce8800)	Homogêneo	Homogêneo	128 Stream Processors	Sim (até 768 threads)	"Network"

Replicação de cores com o mesmo Instruction Set

Propósito Geral x Embarcados

	Processador	Arquitetura	Organização	Cores	Multithreaded Cores?	Interconexão
Embarcados	OMAP4440	Heterogêneo	Heterogêneo/ Homogêneo	2 ARM Cortex A9 1 PowerVR graphics accelerator 1 Image Signal Processor	Não	Barramento
	Samsung S3C6410	Heterogêneo	Heterogêneo	1 ARM1176JZF-S + Multimedia Accelerators	Não	Barramento
	Samsung S5PC100	Heterogêneo	Heterogêneo	1 ARM Cortex A8 + Multimedia Accelerators	Não	Barramento
1	(011	_		quando novos dom para dispositivos er		? Barramento
Gera	Niagar		<u>.</u>			Crossbar
Propósito Geral	Inte 80-Coi	GPP	GPP	GPP	GPP	NoC Mesh
Prop	Inte Larrab			r		Barramento
	NVID Tesla (GeFo	1 D#2	D#3	128		"Network"
	D#	4	. D#r	Hardware /	Adaptável	35

Conclusão

	Processador	Arquitetura	Organização	Cores	Multithreaded Cores?	Interconexão	
Embarcados	OMAP4440	Heterogêneo	Heterogêneo/ Homogêneo	2 ARM Cortex A9 1 PowerVR graphics accelerator 1 Image Signal Processor	Não	Barramento	
	Samsung S3C6410	Heterogêneo	Heterogêneo	1 ARM1176JZF-S + Multimedia Accelerators	Não	Barramento	
	Samsung S5PC10 <mark>0</mark>	Heterogêneo	Heterogêneo	1 ARM Cortex A8 + Multimedia Accelerators	Não	Barramento	
Propósito Geral	O que acontecerá quando novos domínios de aplicações migrarem para dispositivos embarcados?						
	Niagara 2	Homogêneo	Homogêneo	8 SPARC V9 ISA		Crossbar	
	Futuro próximo: 80 Hardware dedicado para executar os domínios atuais						
	Futuro não tão distante:						
	Tesla (Gerorceasou)						

Exame de Qualificação:

Sistemas Embarcados Multiprocessados

Mateus Beck Rutzig

mbrutzig@inf.ufrgs.br

Orientador: Luigi Carro

carro@inf.ufrgs.br

Laboratório de Sistemas Embarcados Instituto de Informática Universidade Federal do Rio Grande do Sul