Séquençage

Février 2016

Bérénice Batut

■ berenice.batut@udamail.fr

Séquençage

Crédits: http://scienceprogress.org

Séquençage ADN

Détermination de l'ordre d'enchaînement des nucléotides d'un fragment d'ADN/ARN donné

Pourquoi séquencer l'ADN?

Identification de gènes, de régions plus larges, de chromosomes ou de génomes entiers

Applications

- Biologie moléculaire
- Biologie évolutive
- Métagénomique
- Médecine
- Forensiques

Un peu de bibliographie

- Revue sur l'histoire du début du séquençage et de la bioinformatique : *Hutchinson*, *Nucl Acids Res*, 2007
- Revues sur les différentes méthodes de séquençage
 - Metzker, Genome Res, 2005
 - Metzker, Nature Rev Genet, 2010
 - Schadt et al, Hum Mol Genet, 2010

Méthodes de séquençage

Première génération

Séquençage de Sanger

Sanger & Coulson, J Mol Biol, 1975; Sanger et al, Proc Natl Acad Sci USA, 1977

Crédits: Estvezj (modifié)

Séquençage de Sanger

Sanger & Coulson, J Mol Biol, 1975; Sanger et al, Proc Natl Acad Sci USA, 1977

Crédits: Schadt et al, Hum Mol Genet, 2010

Avantages

- Bonne qualité des séquences jusqu'à 1kb
- 1 run ~ 2h
- Nombreux outils de traitements bioinformatique

Limites

- Coûts élevés (~ 3€ par séquence)
- Pas haut-débit (384 séquences par run)

Seconde génération

Principe

- Préparation de l'échantillon
 - Amplification clonale
 - Immobilisation
- Séquençage et visualisation
 - Cycle reversible termination (CRT)
 - Sequencing by ligation (SBL)
 - Single-nucleotide addition (SNA)
 - Real-time sequencing

Préparation de l'échantillon (1)

Amplification clonale par émulsion PCR

a Roche/454, Life/APG, Polonator Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

Préparation de l'échantillon (1)

Amplification clonale solid-phase

Préparation de l'échantillon (2)

Immobilisation des primers

Préparation de l'échantillon (2)

Immobilisation des templates

d Helicos BioSciences: two-pass sequencing Single molecule: template immobilized

Préparation de l'échantillon (2)

Immobilisation des polymérases

Séquençage et visualisation Cyclic reversible termination (CRT)

Crédits : Schadt et al, Hum Mol Genet, 2010

Cyclic reversible termination (CRT)

Cyclic reversible termination (CRT)

Séquençage et visualisation Sequencing by ligation (SBL)

Single-nucleotide addition (SNA) ou pyroséquençage

Single-nucleotide addition (SNA) ou pyroséquençage

Real-time sequencing

Différentes plateformes

Plateforme	Préparation	Séquençage
Roche/454	PCR par émulsion	Pyroséquençage
Illumina	Solid-phase amplification	CRT
Life/APG	PCR par émulsion	SBL
Polonator	PCR par émulsion	SBL
Helicos (Biosciences)	Immobilisation des templates ou primers	CRT
Pacific (Biosciences)	Immobilisation des polymérases	Real-time

Illumina

Vidéo YouTube

Avantages

- Haut-débit
- Coûts faibles

Limites

- Amplification
 - Risque d'erreur
 - Augmentation de la complexité et du temps associé à la préparation
- Génération importante de données
 - Traitement
 - Stockage
- Séquences courtes

Entre la 2e et 3e génération

Ion Torrent

Mesure du largage d'un H+ lors de l'incorporation d'une base avec une puce électronique

Vidéo YouTube

Ion Torrent

- Avantages
 - Pas besoin de lumière, scanning et caméras
- Limites
 - Système "wash-and-scan" avec une amplification PCR

Helicos Genetic Analysis Platform

Imagerie d'ADN individuels fixés sur une surface plane pendant leur élongation avec une polymérase modifiée et des nucléotides fluorescents

Helicos Genetic Analysis Platform

- Avantages
 - Pas de PCR
- Limites
 - Arrêt de l'élongation
 - Taux d'erreur > 5%

Troisième génération

Troisième génération

Single-molecule sequencing (SMS)

Crédits: http://www.biorigami.com

Troisième génération

3 principales méthodes

- SBS
- Nanopores
- Imagerie directe

Sequencing by synthesis (SBS)

Observation de molécules d'ADN polymérases seules lors de la synthèse d'une seule molécule d'ADN

Crédits : Schadt et al, Hum Mol Genet, 2010

Sequencing by synthesis (SBS)

2 techniques

- Séquençage en temps réel de molécules simples
- Séquençage en temps réel avec observation du transfert d'énergie entre molécules fluorescentes

Crédits: John MacNeill

4 méthodes

• Détection électrique directe des molécules d'ADN simple

Crédits: Schadt et al, Hum Mol Genet, 2010

4 méthodes

• Détection électrique directe des molécules d'ADN simple

4 méthodes

- Détection électrique directe des molécules d'ADN simple
- Séquençage médié par un transistor

Crédits : Schadt et al, Hum Mol Genet, 2010

4 méthodes

- Détection électrique directe des molécules d'ADN simple
- Séquençage médié par un transistor

4 méthodes

- Détection électrique directe des molécules d'ADN simple
- Séquençage médié par un transistor
- Utilisation d'un nanopore biologique comme MspA (Mycobacterium smegmatis Porin A)
- Mesure optique

Imagerie directe des molécules d'ADN individuelles par microscopie

Imagerie directe des molécules d'ADN individuelles par microscopie

Crédits : Schadt et al, Hum Mol Genet, 2010

Troisième génération

Avantages

- Pas besoin de PCR (molécule simple)
- Haut débit
- Délai de production plus courts
- Reads plus longs
- Plus forte précision
- Besoins en ADN plus faibles
- Coûts plus faibles

Comparaison des générations et des méthodes

Comparaison des générations

	1e génération	2e génération	3e génération
Technologie fondamentale	Discrimination par taille de brin, fragment d'ADN labellisé, produit par SPS ou dégradation	"Wash-and-scan" SPS	SPS, par dégradation, par inspection directe de molécule d'ADN
Résolution	Moyenne selon le nombre de copie de l'ADN séquencé	Moyenne selon le fonction du nombre de copie de l'ADN séquencé	Elevé
Précision	Haute	Haute	Modérée
Taille des séquences	800/1000 pb	10/50 pb	1000+ pb

Crédits: Schadt et al, Hum Mol Genet, 2010

Comparaison des générations

	1e génération	2e génération	3e génération
Volume des données	Bas	Haut	Modéré
Coûts	Elevé par base, bas par séquençage	Bas par base, élevé par séquençage	Bas/Modéré par base, bas par séquençage
Temps	~ heures	~ jours	~ heures
Préparation	Modérement complexe, PCR non requise	Complexe, PCR requise	Simple/Complexe suivant la technologie employée
Analyses	Facile	Complexe (quantité de données, taille des reads)	Complexe (quantité de données, types d'information)

Crédits: Schadt et al, Hum Mol Genet, 2010

Choix de la plateforme

A prendre en considération

- Application souhaitée
- Coût d'un run et de son traitement
- Longueur des reads
- Nombre de reads par run
- Taux d'erreur
- Disponibilité

Longueur des reads

Length (bp)	Genome element
25-75	SNP, short frameshift mutation
100-400	Short functional signature
500-1,000	Whole domain, single domain genes
1,000-5,000	Short operons, multidomain genes
5,000-10,000	Longer operons, some cis-control elements
>100,000	Prophages, pathogenicity islands, various mobile insertion elements
>1,000,000	Whole prokaryotic chromosome organization

Crédits: Wooley et al, Plos Comp Biol, 2010

Longueur des reads

- Reads longs
 - Facilité d'assemblage
 - Optimal pour des génomes jamais séquencés et la caractérisation du transcriptome
- Reads courts
 - Faibles coûts
 - Plus forte couverture
 - Re-séquençage pour applications basées sur la fréquence (comptage)

Comparaison des plateformes

		Millions of	Bases /	Reagent	Reagent	Reagent			
Instrument	Run time	Reads/run	read	Cost/run	Cost/Gb	Cost/Mread	bp/run	Gbp/run	cost/Gb
Applied Biosystems 3730 (capillary)	2 hrs,	0.000096	650	\$144	\$2307692,31	\$1500000,00	624	0	\$2307692,31
454 GS Jr, Titanium	10 hrs,	0.1	400	\$977	\$19540,00	\$9770,00	5.0E+07	0.05	\$19540,00
454 FLX Titanium	10 hrs,	1	400	\$6200	\$15500,00	\$6200,00	4.0E+08	0.4	\$15500,00
454 FLX+	20 hrs,	1	650	\$6200	\$9538,46	\$6200,00	6.5E+08	0.65	\$9538,46
Illumina GA IIx - v5 PE	14 days	640	288	\$17978	\$97,54	\$28,09	1.8E+11	184.32	\$97,54
Illumina MiSeq v2 Nano	28 hrs,	1	500	\$639	\$1278,00	\$639,00	5.0E+08	0.5	\$1278,00
Illumina MiSeq v2 Micro	19 hrs,	4	300	\$798	\$665,00	\$199,50	1.2E+09	1.2	\$665,00
Illumina MiSeq v2	39 hrs,	15	500	\$1066	\$142,13	\$71,07	7.5E+09	7.5	\$142,13
Illumina MiSeq v3	55 hrs,	22	600	\$1442	\$109,24	\$65,55	1.3E+10	13.2	\$109,24
Illumina NextSeq 500	30 hrs,	400	300	\$4000	\$33,33	\$10,00	1.2E+11	120	\$33,33
Illumina HiSeq 2500 - rapid run	40 hrs,	300	300	\$4126	\$45,84	\$13,75	9.0E+10	90	\$45,84
Illumina HiSeq 2500 - high output v3	11 days	1500	200	\$13580	\$45,27	\$9,05	3.0E+11	300	\$45,27
Illumina HiSeq 2500 - high output v4	6 days	2000	250	\$14950	\$29,90	\$7,48	5.0E+11	500	\$29,90
Illumina HiSeq X (2 flow cells)	3 days	6000	300	\$12750	\$7,08	\$2,13	1.8E+12	1800	\$7,08
Ion Torrent - PGM 314 chip	3,7 hrs,	0.475	400	\$474	\$2494,74	\$997,89	1.9E+08	0.19	\$2494,74
Ion Torrent - PGM 316 chip	4,9 hrs,	2.5	400	\$674	\$674,00	\$269,60	1.0E+09	1	\$674,00
Ion Torrent - PGM 318 chip	7,3 hrs,	4.75	400	\$874	\$460,00	\$184,00	1.9E+09	1.9	\$460,00
Ion Torrent - Proton I	4 hrs,	70	175	\$1000	\$81,63	\$14,29	1.2E+10	12.25	\$81,63
Ion Torrent - Proton II (forecast)	5 hrs,	280	175	\$1000	\$20,41	\$3,57	4.9E+10	49	\$20,41
Ion Torrent - Proton III (forecast)	6 hrs,	500	175	\$1000	\$11,43	\$2,00	8.8E+10	87.5	\$11,43
Life Technologies SOLiD - 5500xl	8 days	1410	110	\$10503	\$67,72	\$7,45	1.6E+11	155.1	\$67,72
Pacific Biosciences RS II	2 hrs,	0.03	3000	\$100	\$1111,11	\$3333,33	9.0E+07	0.09	\$1111,11
Oxford Nanopore MinION (forecast)	≤6 hrs,	0.1	9000	\$900	\$1000,00	\$9000,00	9.0E+08		\$1000,00
Oxford Nanopore GridION 2000 (forecast)	varies	4	10000	\$1500	\$37,50	\$375,00	4.0E+10	40	\$37,50
Oxford Nanopore GridION 8000 (forecast)	varies	10	10000	\$1000	\$10,00	\$100,00	1.0E+11	100	\$10,00

Multiplexage

Moyen de diminuer les coûts de séquençage

- Ajout d'un tag d'identification pour chaque échantilon
- Mélange des échantillons
- Préparation et séquençage en parallèle
- Tri des séquences en fonction des échantillons (information de source contenue dans la séquence)

Taux d'erreur

Instrument	Erreurs principales	Taux d'erreur (%s)
454	Indels	1
Illumina	Substitutions	0.1
Ion Torrent	Indels	1
SOLiD	Biais AT	<= 0.1
Oxford Nanopore	Délétions	4
PacBio RS	Indels	<= 1

Comparaison des plateformes

Instrument	Avantages	Inconvénient
454 FLX+	Reads contigus les plus longs des 2nd génération	Coûts éleveés par Mb, problèmes de reagents
454 GS Jr	Plus faibles coûts par run que 454 FLX+	Coûts élevés par Mb, Peu de reads, Reads plus courts que FLX
Illumina HiSeq	Failes coûts par Mb	Coûts élevés d'instruments et de runs; Besoin de personnels qualifiés
Illumina MiSeq	Coûts modérés d'instruments et runs, Faibles coûts par Mb pour une petite plateforme, Durée des runs les rapides et les reads les plus longs des plateformes Illumina	Relativement peu de reads et coûts plus élevés par Mb que HiSeq
Illumina NextSeq	Facilité d'utilisation, coûts modérés d'instruments et de run	Nouvelle chimie et nouveau design d'instruments

Comparaison des plateformes

Instrument	Avantages	Inconvénient
Ion Torrent	Faibles coûts d'instruments, machine simple	Plus forts taux d'erreurs qu'Illumina, plus de temps de manipulation, moins de reads à coûts plus élevés que MiSeq
PacBio	Séquençage en temps réel simple molécule, Reads plus longs; Capacité de détection des modifications de bases	Forts taux d'erreur, Faible nombre de reads par run, Coûts élevés par Mb
SOLiD	Forte précision, Capacité de sauver les cycles de séquençage ayant échoué	Longévité de la plateforme, Reads relativement courts, Plus de gaps dans l'assemblage que pour les données Illumina
Oxford Nanopore	Instrument portable et low-cost, Reads extrêmement longs	Très récent

Traitement des données issues du séquençage

Traitement des données issues du séquençage

- Gestion des données
- Prétraitement des données
- Contrôle de la qualité des séquences
- Assemblage
- Analyses des séquences

Gestion des données

Types de données

Types de données

- Séquençage single-end
 - 1 fichier de sortie
- Séquençage paired-end
 - 2 fichiers de sortie
 - Concaténation des fichiers en faisant attention au sens de lecture

Formats des données brutes

- FastA: Format répandu de stockage des séquences biologiques
- FastQ (Illumina)
- SFF (Roche 454)
- SRF (Helicos)
- HDF5 (PacBio, Applied Biosystems, Oxford Nanopore)

FastA

FastA

Pas de standard dans les description malgré des tentatives

Banque de données	Description
GenBank	gi numero_gi gb numero_accession locus
EMBL	gi numero_gi emb numero_accession locus
DDDJ	gi numero_gi dbj numero_accession locus
NBRF PIR	pir entree
Protein Research Foundation	prf nom
Swiss-Prot	sp numero_accession nom
Brookhave PDB	pdb entree chaine
Brevets	pat brevet numero
GenInfo Backbone Id	bbs numero
General datase identifier	gnl base_de_donnees identifiant
NCBI Reference Sequence	ref numero_accession locus
Local Sequence idenfier	lci identifiant

Code des acides nucléoiques

Code	Signification	Mémorisation	
Α	A	A dénosine	
С	С	Cytosine	
G	G	Guanine	
Т	Т	Thymine	
U	U	U racile	
R	A ou G	pu R ine	
Υ	C, T ou U	p Y rimidine	
K	G, T ou U	Ketone (cétone)	
М	A ou C	a M ine	
S	C ou G	S trong (interaction forte)	
W	A, T ou U	W eak (interaction faible)	

Code des acides nucléoiques

Code	Signification	Mémorisation
В	différent de A	B vient après A
D	différent de C	D vient après C
Н	différent de G	H vient après G
V	différent de T ou U	V vient après U
N	A, C, G, T ou U	N 'importe
X	acide nucléique masqué	
-	gap	

Code des acides aminés Standard IUB/IUPAC

Code	Signification	Ш	Code	Signification
Α	Alanine		0	Pyrrolisine
В	Acide aspartique		Р	Proline
С	Cystéine		Q	Glutamine
D	Acide aspartique		R	Arginine
Е	Acide glutamique		S	Sérine
F	Phénylalanine		Т	Thréonine
G	Glycine		U	Sélénocystéine
Н	Histidine		V	Valine
I	Isoleucine		W	Tryptophane
K	Lysine		Υ	Tyrosine
L	Leucine		Z	Acide glutamique
М	Méthionine		X	N'importe
N	Asparagine		*	Codon stop

Différents fichiers en FastA

Extension	Signification	Commentaire
.fasta, .fas, .fa	FastA générique	Tout fichier fasta
.fna	FastA nucleic acid	Fichier fasta contenant une séquence d'acides nucléiques
.ffn	FastA functional nucleotide	Fichier fasta contenant une séquence nucléique d'une région codante d'un génome
.faa	FastA amino acid	Fichier fasta contenant une séquence d'acides aminés
.frn	FastA non-coding RNA	Fichier fasta contenant une séquence d'ARN non-codant d'un génome

FastQ

Score de qualité

Mesure de qualité de l'identification des bases par le séquençage ADN

Score assigné à chaque base dans les sorties des séquenceurs

Score de qualité

Score de qualité

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
30 40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Codage du score de qualité

Standard Flowgram Format (SFF)

- Format de sortie de 454 et Ion Torrent
- Fichier binaire
 - Section en-tête commune à tous les reads
 - Pour chaque read
 - Section en-tête du read
 - Section des données du read

En-tête globale d'un fichier SFF

magic_number version index_offset index_length number_of_reads key_length key_sequence header_length number_of_flows_per_read flowgram_format_code flow_chars eight_byte_padding index_magic_number Index_version	uint32_t char[4] uint64_t uint32_t uint32_t uint16_t char[key_length] uint16_t uint16_t uint16_t uint8_t char[number_of_flows_per_read] uint8_t[*] uint32_t char[4]	Offset et longueur d'un index optionel des reads Nombre de reads contenus dans le fichier Longueur et bases nucléotides de la séquence clé utilisée pour ces reads Nombre d'octets requis pour l'ensemble des champs de l'en-tête Nombre de flow pour chaque read Format utilisé pour encoder chaque valeur du flowgram de chaque read Tableau des bases nucléotides correspondant aux nucléotides utilisés pour chaque flow de chaque read S'il y a un index des reads
---	---	--

En-tête pour un read dans un fichier SFF

read_header_length	uint16_t ←	Longueur de l'en-tête du read en octet
name_length	uint16_t	Longueur et nom de l'accession ou nom du read
name	cnar[name_lengtn]—	
number_of_bases		Nombre de bases dans ce read
clip_qual_left	uint16_t	Position et qualité de la première base après le point de coupure au
clip_adapter_left	uint16_t —	début du read
clip_qual_right	uint16_t—	Position et qualité de la dernière base avant le point de coupure à la fin
clip_adapter_right	uint16_t	du read
eight byte padding	uint8 t[*]	

Données d'un read dans un fichier SFF

flowgram_values flow_index_per_base bases quality_scores eight_byte_padding uint*_t[number_of_flows]
uint8_t[number_of_bases]
char[number_of_bases]
uint8_t[number_of_bases]
uint8_t[*]

Estimation de l'étirement de l'homopolymère pour chaque flow Position de flow de chaque base dans la séquence Séquence de nucléotides Score de qualité pour chaque base (même calcul que pour les données fastg)

Prétraitement des données

Primers, adaptateurs, barcodes

Séquence cible

Adaptateur Barcode Primer

Ident

Courte séquence l'échar

nucléotidique capable de réaliser le pontage entre deux fragments d'ADN terminés par des séquences

non complémentaires

➤ Identifiant unique de l'échantillon dans les cas de multiplexage MID ("Multiplex Identifier", 454) ou Index (Illumina)

Brin d'ADN qui sert de point de départ à la synthèse ADN

Primer

Adaptateur

Multiplexage / Démultiplexage

Démultiplexage

Utilisation de fichier de "mapping"

Exemple:

Sample ID	Barcode	Primer	Description
G1	CGTTTC	ACGGRAGGCAGCAG	Crohn DNA
G2	CCCGTT	ACGGRAGGCAGCAG	Healthy DNA
G3	GGTCAC	ACGGRAGGCAGCAG	Crohn RNA
G4	AGTGCT	ACGGRAGGCAGCAG	Healthy RNA

Contrôle de la qualité des séquences

Contrôle de la qualité des séquences

Plusieurs paramètres à vérifier

- Longueur des séquences
- Score de qualité des bases
- Contenu en bases
- Duplications de séquence
- Complexité des séquences
- Contamination

Longueur des séquences

Score de qualité des bases

Score de qualité des bases

2 niveaux à vérifier

- Score de qualité de la séquence entière
 - Eliminer les séquences avec score moyen < 25
 - Huse et al, Genome Biology, 2007
- Score de qualité par base

Score de qualité par base

Coupure des séquences basées sur le score de qualité par base

Coupure de longueur fixe

Coupure des séquences basées sur le score de qualité par base

Coupure de longueur variable

Utilisation d'une fenêtre glissante

Assemblage

Terminologie

- Assemblage : Alignement et fusion de reads en séquences ADN plus longues
- **Contig** : Séquence génomique continue et ordonnée générée par l'assemblage de reads qui se chevauchent
- Scaffold : Contigs chevauchant séparés par des gaps de longueur connue

Terminologie

Utilisation de l'assemblage

Alignement sur un génome de référence

Génome de référence

- Identification de variants
- Reséquençage de génomes

Utilisation de l'assemblage

Assemblage de novo

Construction des séquences ADN d'un organisme sans génome de référence

- Idéal
 - Longs reads sans erreurs
 - Problème de simple déduction
- Réalité
 - Reads courts et sujets aux erreurs
 - Problème d'inférence compliqué

Statistiques de séquençage

- Profondeur ou couverture : Nombre moyen de fois qu'un nucléotide particulier est représenté dans une collection de reads aléatoire
- Profondeur de couverture : Nombre de reads x Longueur des reads / Taille de l'assemblage

Métriques d'assemblage

- Nombre de contigs/scaffolds
- Taille des contigs/scaffolds
- Taille totale
- Nombre de N
- N50
 - Longueur du plus petit contig dans l'ensemble qui contient le moins de configs dont les longueurs combinées représente au moins 50% de l'assemblage

Analyse des séquences

Analyse des séquences

- Construction de génomes
- Détection des SNP ou indels
- Détection de nouveaux gènes ou éléments régulateurs
- Détermination des niveaux d'expression
- ...

Références

- Quelques vidéos sur les différentes méthodes de séquençage
 - Apport d'Ion Torrent par rapport à Illumina

Métagénomique