Traditional Feature-based methods: Link

4th April, Graphic Contents Reading Group

Praveen Selvaraj

Recap

Recap: Node-level features

Importance-based features

Structure-based features

Recap: Node-level features

- Importance-based features
 - Node degree
 - Centrality measures
 - Eigenvector centrality
 - Betweenness centrality
 - Closeness centrality
- Structure-based features

Recap: Node-level features

- Importance-based features
 - Node degree
 - Centrality measures
 - Eigenvector centrality
 - Betweenness centrality
 - Closeness centrality
- Structure-based features
 - Node degree
 - Clustering coefficient
 - Graphlet degree vector

Link-level task

Link prediction formulation

- Links missing at random
- <u>Links over time</u>
 Given a graph G[t₀, t'₀], output a ranked list L of edges predicted to appear in G[t₁, t'₁].

Links over time - algorithm

- For each pair of nodes (x,y), compute a score c(x,y)
 - Example: no of common neighbors between node x and y
- Sort the pairs of nodes (x,y) by their score c(x,y)
- Top n pairs would be the predicted links
- Check which of these links actually appear in G[t₁, t'₁]

Link-level features

- Distance-based features
- Local neighborhood features
- Global neighborhood features

Shortest path distance

$$S_{BH} = S_{BE} = S_{AB} = 2$$
$$S_{BG} = S_{BF} = 3$$

Shortest path distance

Treats BH and BE,AB as the same, but their 'connectedness' is different.

• Common neighbors: $|N(v_1) \cap N(v_2)|$

• Common neighbors: $|N(v_1) \cap N(v_2)|$ e.g: $|N(A) \cap N(B)|$

Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: $|N(v_1) \cap N(v_2)| / |N(v_1) \cup N(v_2)|$

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: |N(v₁)∩N(v₂)| / |N(v₁)∪N(v₂)|
 e.g: |N(A)∩N(B)| / |N(A)∪N(B)|

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: |N(v₁)∩N(v₂)| / |N(v₁)∪N(v₂)|
 e.g: |N(A)∩N(B)| / |N(A)∪N(B)|
 = |{C}| / |{C,D}| = 1/2

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: |N(v₁)∩N(v₂)| / |N(v₁)∪N(v₂)|
 e.g: |N(A)∩N(B)| / |N(A)∪N(B)|
 = |{C}| / |{C,D}| = 1/2
- Adamic-Adar index: $\sum_{u \in \square(v_1)} \bigcap \square_{(v_2)} 1/log(k_u)$

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: |N(v₁)∩N(v₂)| / |N(v₁)∪N(v₂)|
 e.g: |N(A)∩N(B)| / |N(A)∪N(B)|
 = |{C}| / |{C,D}| = 1/2
- Adamic-Adar index: ∑u∈□(v1)∩□(v2) 1/log(ku)
 e.g: 1/log(kc)

- Common neighbors: |N(v₁) ∩ N(v₂)|
 e.g: |N(A)∩N(B)| = |{C}| = 1
- Jaccard's coefficient: |N(v₁)∩N(v₂)| / |N(v₁)∪N(v₂)|
 e.g: |N(A)∩N(B)| / |N(A)∪N(B)|
 = |{C}| / |{C,D}| = 1/2
- Adamic-Adar index: ∑u∈□(v1)∩□(v2) 1/log(ku)
 e.g: 1/log(kc) = 1/log4 = 1.66

Limitations

$$\begin{aligned} N_A \cap N_E &= \phi \\ |N_A \cap N_E| &= 0 \end{aligned}$$

Katz Index

Count the number of paths of all lengths between a pair of nodes.

Katz Index

Count the number of paths of all lengths between a pair of nodes.

Q) how would you do this?

Katz Index

Count the number of paths of all lengths between a pair of nodes.

- Q) how would you do this?
- A) use powers of the adjacency matrix!

paths of len 1 between Node 1's neighbors Node 2 Node 1's neighbors

paths of len 1 between Node 1's neighbors Node 3 Node 1's neighbors

paths of len 1 between Node 1's neighbors Node 4 Node 1's neighbors

Adjacency matrix powers

- A_{uv} specifies #paths of length 1 between u and v
- A²_{uv} specifies #paths of length 2 between u and v
- Aluv specifies #paths of length I between u and v

Katz Index

Katz index between 2 nodes:

Sum over all path lengths

$$S_{v_1v_2} = \sum_{l=1}^{\infty} \beta^l A_{v_1v_2}^l$$
 #paths of length l between v_1 and v_2 $0 < \beta < 1$: discount factor

Katz Index

Katz index between 2 nodes:

Sum over all path lengths

$$S_{v_1v_2} = \sum_{l=1}^{\infty} \beta^l A_{v_1v_2}^l$$
 #paths of length l between v_1 and v_2 $0 < \beta < 1$: discount factor

Katz index matrix computed in closed form:

$$S = \sum_{i=1}^{\infty} \beta^{i} A^{i} = (I - \beta A)^{-1} - I,$$
$$= \sum_{i=0}^{\infty} \beta^{i} A^{i}$$

Summary

Distance-based features

shortest path distance between 2 nodes. doesn't capture neighborhood

Local neighborhood overlap

captures number of shared nodes between 2 nodes. null when no nodes are shared.

Global neighborhood overlap

counts number of paths of all lengths between 2 nodes.