PICT RESTRICT

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE-411043

Department of Computer Engineering

CLASS: S.E.COMP SUBJECT:DEL

EXPT. NO.:4 DATE:

TITLE : MULTIPLEXER / DEMULTIPLEXER

OBJECTIVE:

- 1. Verification of Function table of IC-74LS153
- 2. Design and Implement 8:1 MUX using IC-74LS153 and verify its truth Table
- 3. Realization of the following Boolean expression using IC-74153 and verify its truth-Table

$$F(A,B,C,D) = \sum m($$

- 4. Verification of Function table of IC-74LS138
- 5. Realization of the following Boolean expression using IC-74138 and verify its truth-Table

$$F(A,B,C) = \sum m($$

APPARATUS :

Digital-Board, GP-4Patch-Cords, IC-74LS32, IC-74LS08 / IC-74LS04 / IC-74LS153/IC-741LS38 and Required Logic gates if any.

THEORY :

Multiplexer is a combinational logic device, which has many input & one output, this output can be selected according to select input. IC-74LS153 is Dual 4:1 MUX. It is a 16-pin dual in-line packaged IC, which has two enable pins (STROBE Active Low). We can design 8:1 MUX using cascading of Two 4:1 MUX. This is achieved with the help of enable / strobe inputs and multiplexer tree is designed. To implement 8:1 MUX we need

3 select lines and one output. Use dual 4:1 MUX for select lines 2 are common, use enable pin for 3^{rd} select line. Connect the first strobe of first 4:1 MUX and the second strobe of second 4:1 MUX through one Inverter. This is 3^{rd} select line only one 4:1 MUX will become active at one time. Connect outputs of 2 -MUX to OR get so that we get one output .

De-Multiplexer/Decoder is a combinational logic device, which has one input & many output, one output can be selected according to select input. IC-74LS138 is 3 to 8 Line Decoder/Demultiplexer. It is a 16-pin dual packaged IC, which has three enable pins (2-STROBE Active Low and one Active High). IC-74LS138 produces complementary output. i.e. the output of 74LS138 is Active Low. We can design any combinational circuits using IC-74LS138. DEMUX/Decoder performs reverse operation to that of Multiplexer

PIN DIAGRAM:

P:F-LTL UG/03/R1 4.2 DEL

PROCEDURE:

- 1. Make the connections as per the Pin diagram of IC-74LS153 and Verify its Truth Table.
- 2. Make the connections as per the Logic circuit of 8:1 MUX and Verify its Truth Table
- 3. Make the connections as per Logic circuit of the given function and Verify its Truth
 Table
- 4. Make the connections as per the pin diagram of IC-74LS138 and Verify its Truth Table
- 5. Make the connections as per the Logic circuit of given function and Verify its Truth Table

Design of Multiplexer

Function Table: IC-74LS153

Chip Enable I/P		Select I	nput	OUTPUT		
1E	2E	S1(MSB)	S0(LSB)	MUX-I (1Y)	MUX-2 (2Y)	
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			

Logical Expression:

P:F-LTL UG/03/R1 4.3 DEL

Department of Computer Engineering

Logic Diagram:

Design of 8:1 MUX.using IC-74LS153

Design Table:

S2 (MSB)	S1	SO(LSB)	OUTPUT (Y)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Department of Computer Engineering

Logical Expression:	
Logic Diagram:	

Department of Computer Engineering

Design of Realization of Boolean expression using IC-74LS153

 $F(A,B,C,D)=\Sigma($

(LSB Variable Reduction Method)

Decimal Equ.	A (MSB) (s2)	B (s1)	C (so)	D(LSB)	OUTPUT Y	Derived Logic
0	0	0	0	0		
1	0	0	0	1		_
2	0	0	1	0		
3	0	0	1	1		_
4	0	1	0	0		
5	0	1	0	1		_
6	0	1	1	0		
7	0	1	1	1		_
8	1	0	0	0		
9	1	0	0	1		_
10	1	0	1	0		
11	1	0	1	1		_
12	1	1	0	0		
13	1	1	0	1		-
14	1	1	1	0		
15	1	1	1	1		-

Department of Computer Engineering

Logic Diagram:	

Department of Computer Engineering

Design of Realization of Boolean expression using IC-74LS153

 $F(A,B,C,D)=\Sigma($

(MSB Variable Reduction Method)

Decimal Equ.	(s2)	B (s1)	C (so)	D(LSB)	OUTPUT Y	Derived Logic
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
10	1	0	1	0		
11	1	0	1	1		
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

Department of Computer Engineering

Implementation Table:
Logio Dinggaya
Logic Diagram:

P:F-LTL_UG/03/R1 4.9 DEL

Design of Decoder

Function Table : IC-74LS138

Chip Enable Input		Active Low Output								
G₃	G ₂	G ₁	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
1	0	0								
1	0	0								
1	0	0								
1	0	0								
1	0	0								
1	0	0								
1	0	0								
1	0	0								

Logical Expression:

Logic Diagram:	

Design of Realization of Boolean expression using IC-74LS138

 $F(A,B,C,D)=\Sigma($

Decimal Equ.	Α	В	С	OUTPUT F(A,B,C)
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Logical Expression:

Department of Computer Engineering

Logic Gates / MSI Device required for Implementation:

Sr.No.	Title	Name of the IC	Number of Gates required	IC Required
01	Design of 8:1 MUX.			
02	Realization of Boolean expression using LSB reduction method			

Department of Computer Engineering

	03	Realization of Boolean		
0		expression using MSB		
		reduction method		
		5 1: .: 65 1		
	04	Realization of Boolean		
0		expression using Decoder		
		IC		

CONCLUSION:									

REFFRENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH

Subject teacher Sign with Date

Remark