Calcolatori Elettronici (12AGA)

Esame del 2.7.2024

Traccia di soluzioni per parte 2

Si descriva il principio di località dei riferimenti riportando qualche esempio di comportamento che lo dimostri e spiegando le ragioni che lo supportano.

Si riporti anche in quali contesti architetturali viene sfruttato il principio di località dei riferimenti.

Note

Il testo richiedeva

- Di enunciare il principio di località dei riferimenti
- Di riportare qualche esempio di comportamento che lo dimostri, spiegando le ragioni che lo supportano
- Di elencare in quali contesti architetturali viene sfruttato (ad esempio, cache e memoria virtuale).

Il principio si applica a qualsiasi accesso in memoria, per dati o istruzioni.

Si consideri un processore connesso a una memoria da 1 Kbyte e dotato di una cache direct mapped composta da 8 linee da 32 byte ciascuna.

Per ogni accesso, si indichi la linea in cui si trova eventualmente il blocco di memoria referenziato e se l'accesso in cache determina un hit o un miss.

Si specifichi il numero del blocco memorizzato in ciascuna linea della cache al termine della sequenza.

Sequenza di accessi

	linea	Blocco	
00 010 01010	2	00010	M
01 110 01100	6	01110	M
10 001 10100	1	10 001	M
11 000 00000	0	11 000	M
01 011 00110	3	01011	M
00 010 01000	2	00010	Н
10 100 00010	4	10100	M
00 101 00010	5	00101	M
01 110 01000	6	01110	Н
11 000 11000	0	11000	Н
00 010 00000	2	00010	Н
00 001 10100	1	00001	M
10 100 10010	4	10100	Н
10 010 00000	2	10010	M
00 111 00000	7	00111	M

Contenuto finale della cache

Linea	Numero del blocco
0	11000 – 24
1	00001 – 1
2	10010 – 18
3	01011 – 11
4	10100 – 20
5	00101 – 5
6	01110 – 14
7	00111 - 7

Utilizzando la tabella riportata, si elenchino le micro-operazioni eseguite da un processore MIPS durante la fase di esecuzione (ignorando il fetch) dell'istruzione sw \$s2, 100 (\$s1).

Funzione svolta	ALU Control _{2:0}
100000 (add)	010 (Add)
100010 (sub)	110 (Sub)
100100 (and)	000 (And)
100101 (or)	001 (Or)
101010(slt)	111 (SLT)

	PCWrite	Branch	PCSrc	ALUControl	ALUSrcB	ALUSrcA	RegWrite	MemtoReg	RegDst	IRWrite	MemWrite	IorD
1	0	0					0	0			0	0
2	0	0		010	10	1	0	0			0	0
3	0	0					0	0			1	1

cc1: lettura da RegFile

cc2: esecuzione somma tramite ALU

cc3: scrittura in memoria

Indirizzo	Blocco (riportarlo anche in forma binaria)	Numero di linea	н/м
0100 0000 0011 0011	0100 0000 0011 = 1024+2+1	3	M
1010 1000 1000 0011	1010 1000 1000 =2048+512+128+8	8	M
0000 0000 0101 0100	0000 0000 0101=4+1	5	Н
0000 1000 1001 1000	0000 1000 1001=128+8+1	9	M
0000 0100 0111 1010	0000 0100 0111=64+4+2+1	7	M
0000 0100 0010 0101	0000 0100 0010=128+2=130	2	M
0101 0000 1111 0110	0101 0000 1111=1024+256+8+4+2+1	15	M
0000 1000 1001 1111	0000 1000 1001=128+8+1	9	Н
0000 0000 1000 1100	0000 0000 1000=16	8	M
0000 0011 0011 0100	0000 0011 0011=32+16++2+1	19	М
0000 0011 0011 0110	0000 0011 0011=32+16++2+1	19	Н
1010 1000 1000 0110	1010 1000 1000=2048+512+128+8	8	M