7. Sensores de fuerza, torque y deformación

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA. Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.

Contenidos

- Conceptos: fuerza, torque, deformación
- Sensor piezorresistivo
- Sensor piezoeléctrico

- ∃ sensores para medir fuerzas o deformaciones basados en fenómeno:
 - Piroeléctrico, capacitivo, óptico, ultrasónico y magnético.
- Veremos los más empleados: piezorresistivos (a) y piezoeléctricos (b).
 - (a) \triangle deformación $\Longrightarrow \triangle R$; (b) \uparrow presión $\Longrightarrow \uparrow V$.
- La unidad de medida de la fuerza en el S.I. es el Newton (N).
 - Una fuerza es considerada + si genera una tensión sobre un cuerpo.
 - Por contra, la fuerza es considerada si comprime un cuerpo.
- La unidad de medida del torque en el S.I. es el Newton-metro (Nm).
 - El torque es + si se aplica en counterclockwise (- en clockwise).
- Las deformaciones son adimensionales; ∄ ninguna unidad.
 - ullet Deformación normal: cuando la deformación es $oldsymbol{\perp}$ a un plano.
 - Deformación cortante: si la deformación es ⊤ a un plano.

- Ppio.: transductor de fuerza o deformación a señal eléctrica.
- El +usado: galga extensiométrica, basada en ppio. lord Kelvin (1856):
 - La R de metal o semicond. varía cuando es deformado por una fuerza.
 - 1.^a vez usado en 1930 para medir deformaciones (Simmons y Ruge).
- Factor de galga (GF): correlación entre deformación y ΔR :

$$GF = \frac{\Delta R/R_0}{\varepsilon_x} \implies R = R_0 \cdot (1 + GF \cdot \varepsilon_x)$$
 (1)

donde:

 R_0 : resistencia inicial de la galga $[\Omega]$

 ΔR : variación de la resistencia debido a deformación $[\Omega]$

: deformación longitudinal $\left(=\frac{\Delta L_x}{L_x}\right)$ [adimensional]

GF: suele ser 2 para la mayoría de las galgas [adimensional]

- Módulo elastic. o de Young (E) refleja rigidez material [Pa]: $E = \frac{\sigma_x}{\varepsilon_x}$.
 - Donde $\sigma_x = esfuerzo_x = \frac{F_x}{A}$ y $\varepsilon_x = deformacion_x = \frac{\Delta L_x}{L_x}$.

- El comportamiento de galga se ve alterado por factores ambientales.
- El principal factor es la temperatura, que dilata/contrae el material.
 - Para contrarrestar: circuito acondiciona/ o con galga autocompensada.
- Material de fabricación: metal o semiconductor (SC).
 - SC: GF > metálicas ⇒ sensor ↑↑ sensitivo y pequeño.
 - Dvtjas.: ↓ robustez y ↑ sensible a cambios de temperatura.
 - Metal: las + usadas por su robustez (frente a las semiconductoras).
 - Fabricación: sustrato aislante y flexible, con un patrón de alambrado.
 - Diámetro alambre +usado ≈ 0.025 mm. Longitud = [0.25 mm, 15 cm].
 - Aleaciones + usadas: constantán (Cu+Ni), karma (Cr+Ni).
 - Constantán tiene sensitividad lineal en gran rango de deformaciones.

Figura: Imágenes extraídas de (a) sensoricx.com y (b,c) Wikipedia

- Para medir, las galgas se montan sobre el elemento a medir.
 - Las marcas (Fig. izda.) son para alinearla con el elemento.
- La galga es mucho más sensible a deformaciones en dirección vertical.
 - Si se extiende vertical/, los canales se hacen más largos y estrechos.
- Configuración de la/s galga/s depende de direc. deformación a medir.
 - Uniaxial: si es en un solo eje, se usa alambrado largo y angosto.
 - Roseta de deformación (c): +usada, 3 galgas a 45°. Mide todas direc.

- Composición de galgas para conocer fuerza aplicada sobre un cuerpo.
- ullet Es un cubo con cuatro galgas en las paredes ot a superficie apoyo.
 - Al aplicar carga sobre cara superior se deforman las cuatro galgas.
- Galgas en caras opuestas, misma orientación; contiguas, rotadas 90°.
 - Dos galgas miden ΔL_{cuerpo} en direcc. \perp a superf. y, las otras dos, \top .
 - Registran (C) compresión ($\downarrow R$) vs. (T) elongación superficie ($\uparrow R$).
- Cada galga se conecta como brazo resistivo de puente de Wheatstone.

$$V_{SALIDA} = V_S \frac{SG_3^C}{SG_3^C + SG_1^T} - V_S \frac{SG_4^T}{SG_4^T + SG_2^C}$$
 (2)

[Ej.: Configuración de celda de carga como circuito puente Wheatstone]

Figura: Imgs. (A) kalascale.com, (B,C,D) disglobal.co y (E,F) directindustry.es

- Celda de columna o celda de lata (Fig. A): 16+ col. con 2 galgas/col.
 - Galga axial (mide $\Delta L_{columna}$) y galga transversal ($\Delta grosor$).
 - Rango medición= 22kg 200Tm con $R \approx 350\Omega$ y $V_{in}^{CC} = [10 15]V$.
- Celda de viga (Fig. B): un extremo fijo a superf. y otro libre (carga).
 - Rango medición= $10kg 50Tm \text{ con } R \approx 350\Omega \text{ y } V_{in}^{CC} = [5 20]V.$
 - ullet Las galgas miden deformación cortante, aunque \exists otras variantes:
 - Viga doble (C): extremos fijos y carga central (rangos = viga simple).
 - Viga en S (D): trabaja en compresión o tensión. Rango medición:
 - $10kg 10Tm \text{ con } R \approx 350\Omega \text{ y } V_{in}^{CC} = [10 15]V.$
 - En cantiléver(E): galgas en ranura pasante miden deflexión (rangos=S).
- Celda de plataforma (F): \approx cantiléver con \uparrow ranura y hecha de Al.
 - \downarrow capacidad: $2.5kg 2Tm \text{ con } R \approx 350\Omega \text{ y } V_{in}^{CC} = [10 20]V.$

Figura: Imágenes extraídas de digikey.es

- Compuestos por polímero flexible + tinta sensible a presión (círculo).
- El área de detección es considerada un único punto (círculo).
 - Para obtener mediciones fiables, aplicar F uniformemente en círculo.
- FlexiForce: $t_{respuesta} < 5\mu s$. Rango medición = [4,4-440]N.
- FSR: $t_{respuesta} \approx Flexiforce$. Rango medición = [1 100]N.
- Para acondicionar la salida se suele usar circuito amplif. inversor.
 - Es un sensor resistivo $\implies V_{out}$ cambia $\propto R_{sensor}$.
 - Para medir \uparrow cargas: \uparrow área_{deteccion} y $\downarrow V_{in}$ o \downarrow ganancia_{amplif}.
 - Medir \downarrow cargas: necesaria \uparrow sensibilidad $\Longrightarrow \uparrow V_{in}$ o \uparrow ganancia_{amplif}.

Figura: Imagen extraída de Flexiforce A201 datasheet

- Specs. FlexiForce A201 en circuito con *OpAmp MCP6004*:
 - Resistencia en lazo de realimentación: $R_F = R_{FEFDBACK} = 100 k\Omega$.
 - Alimentación del sensor: $V_{REF} = 5V(V_{50\%}^{CA})$ o = $[0,25-1,25]V(V^{CC})$.
- Especificaciones OpAmp MCP6004 según su datasheet:
 - Alimentación del OpAmp: $V_{SUPPLY} = V_{DD} = [1.8 6]V$.
- Chip CMOS usado con rango $V_{in} = V_{DD} + 300 mV$ a $V_{SS} 300 mV$.

[Recordar Anexo de Tema 4 sobre la simbología del voltaje.]

Figura: Izda. de pce-instruments.com; dcha. de Investigating Remote Sensor Placement for Practical Haptic Sensing with EndoWrist Surgical Tools, A. Spiers

- El torque aplicado sobre eje se puede medir por métodos de medición:
 - Indirectos: si caract. del actuador que genera torque son conocidas.
 - E.g. midiendo el voltaje y/o la corriente de operación del actuador.
 - Directos: con sensor de torque, que puede ser estático o dinámico.
- Veamos métodos de medición directos: sensor de torque est./din.

- Estático: el de la Figura 5, con celda de carga en cantiléver.
 - Tiene eje para acoplar sensor al actuador o sistema a medir. Fórmula:

$$\gamma = \frac{\tau}{G} \tag{3}$$

donde:

 γ : (gamma) deformación cortante, angular o de cizalladura

 τ : (tau) esfuerzo cortante $\left[Pa = \frac{N}{m^2}\right]$

G: módulo de elasticidad tangencial o de rigidez o cortante [Pa]

• Si G de material desconocido \implies calcularlo según fórmula:

$$G = \frac{E}{2(1+\nu)} \tag{4}$$

donde:

E: Módulo elastic. o de Young (E) refleja rigidez material [Pa]: $E = \frac{\sigma_x}{\varepsilon_x}$.

 ν : (nu) coef. Poisson [adim.], propio de cada material (= $-\frac{\varepsilon_{transversal}}{\varepsilon_{lognitudinal}}$)

[Ejercicio para practicar: estiramiento y estrechamiento de cable de cobre]

• Con esfuerzo cortante (τ) se puede saber el torque que lo generó:

$$T = -\frac{\tau}{r}J\tag{5}$$

donde:

T: torque aplicado [Nm]

r: radio del eje [m]

J: momento polar de inercia (MPI) del eje $[m^4]$

- 1.^a/3 ley Newton, ley inercia: todo cuerpo tiende a mantener reposo.
 - A menos que se obligue a cambiarlo porque se aplique fuerza sobre él.
- MPI: capacidad de cuerpo para oponerse a torsión alrededor de eje.
 - \uparrow masas alejadas del centro de gravedad $\Longrightarrow \uparrow MPI$.
 - \downarrow masas o cerca del centro de gravedad $\Longrightarrow \downarrow MPI$.
- Rango med.= $[0.03 271000]Nm \text{ con } R = 350\Omega, V^{CC} = [10 20]V$.
- Usos principales:
 - Realizar pruebas de sistemas rotacionales.
 - Medir par de apriete de tornillos en sistema que requieren precisión.

Figura: Figura extraída de directindustry.es

- Tienen un eje con libertad de rotación sobre el que se montan galgas.
- Este sensor se coloca entre el actuador y la carga que se desea mover.
- Pueden medir además velocidad y ángulo mediante encoder interno.
 - Muy cómodo para relacionar par con la posición donde se produce este.
- Rango med.= $[0.06 565000]Nm \text{ con } R = 350\Omega, V^{CC} = [10 20]V.$
- Tipos: con escobillas (CE) o sin escobillas (SE) (aka brushless).
 - CE: pueden medir ↑ valores de par, pero a ↓ vel.
 - Al transmitir la señal por escobillas, estas meten mucho ruido a ↑ vel.
 - SF: transmisión de señal se realiza mediante un sistema de telemetría.
 - Lo que permite obtener señal más limpia a mayor velocidad de rotación.

- Ventajas frente a los piezorresistivos (PRs):
 - Más compactos.
 - Sensitividad independiente del volumen; solo depende del material.
 - $\bullet~+\mbox{Usados:}$ cuarzo, sulfato o tantalio de litio, polímero ferroeléctrico.
 - Poseen \uparrow frec. natural \implies muy útiles en mediciones dinámicas.
- Desventajas de los piezoeléctricos (PEs):
 - $\bullet \ \mathsf{PRs:} \ \mathsf{+estables} \ \mathsf{y} \ \mathsf{comportam.} \ \mathsf{+lineal} \Longrightarrow \mathsf{+\acute{u}tiles} \ \mathsf{en} \ \mathsf{medic.} \ \mathsf{\uparrow} \mathsf{precisi\acute{o}n.}$
- Fenóm. PEs: (L)ongitudinal, (C)ortante, (T)ransversal, (H)idrostático.
 - Geometría circular, anillo o placas cuadradas: explotan fenóm. L y C.
 - ullet V_{out} medido sobre la misma cara sobre la que se aplica la carga.
 - Geometría eje circular, prisma regular, cilindro o viga a flexión: T.
 - ullet V_{out} medido sobre caras no cargadas, aplicando carga transversal.
 - Geometría de prisma regular: se explota el fenómeno H.
 - Carga y V_{out} en todas las caras: las tres direcciones (x, y, z).

- Sensitividad independiente del volumen; solo depende del material.
- Si consideramos nula la deformación volumétrica del material:

$$\sigma = \frac{F}{A} \tag{6}$$

 σ : esfuerzo normal resultante $\ensuremath{\left[\textit{Pa} \right]}$

F : fuerza aplicada [N]

A: área de material piezoeléctrico $[m^2]$

- Si electrodos conectados al material PE están en cortocircuito ⇒
 - ullet campo eléctrico del material PE= 0 \Longrightarrow densidad flujo eléctrico:

$$D = C_{pz}\sigma \implies D = \frac{C_{pz}F}{A} \implies DA = C_{pz}F \implies q = C_{pz}F$$
 (7)

D : densidad de flujo eléctrico $\left[\frac{C}{m^2}, C = Coulombs\right]$

 C_{pz} : coeficiente piezoeléctrico [C/N]

- q : carga eléctrica existente entre los electrodos del sensor,
 considerando que estos tienen la misma área A que el material PE.
- ullet De la ecuación anterior, $q=\mathcal{C}_{pz}\mathcal{F}$, vemos que \exists relación $\propto q-\mathcal{F}$.
 - ullet Esta relación de ∞ está definida por \mathcal{C}_{pz} , propio de cada material.

Figura: Imagen extraída de hbm.com

- Este sensor con forma de disco es de los más usados.
- Disco ext. de acero y, dentro, dos anillos PEs separados por electrodo.
 - De este electrodo se toma la lectura de salida del sensor: fenóm. long.
- Rangos medición= [5kN, 1MN]. Rigidez del sensor= $[1, 100] \frac{kN}{\mu m}$
 - La rigidez es un factor muy importante en estos sensores.
 - ↓ rigidez ⇒ poder leer fuerzas pequeñas, aunque rango ↑.

Figura: Imagen extraída de Wikimedia Commons

- Se montan en un disco elementos sensitivos al fenóm. cortante.
- Los PEs se alinean para que su eje sensitivo sea tangente al disco.
- ullet Los PEs se conectan en paralelo para que su salida sea \propto torque.
- Tipos: din. y est., al igual que los sensores de torque piezorresistivos.
- Uso principalmente en aplicaciones dinámicas:
 - Medir fuerza de corte en maquinaria o herramientas.
 - Medir par y fuerza de las ruedas de un vehículo en marcha.

7. Sensores de fuerza, torque y deformación

Julio Vega

julio.vega@urjc.es

Sensores y actuadores