Analytic Combinatorics Applied To RNA Structures

Christie Burris May 8th, 2018

Master's Thesis Defense

Virginia Tech

Department of Mathematics and The Biocomplexity Institute

Mathematical Biocomplexity Lab

- **Problems**: Molecular Biology, Evolution
- Tools: Analytic Combinatorics, Topological Graph Theory, Complex Analysis, and Probability Theory
- Starting point: where this research stems from
- **Results**: information on structures

Background

Central Dogma:

Our work:

- Based on the idea that the central dogma is not the whole story
- Focus on noncoding RNA (98%)
- Structure as important as sequence

Figure drawn from Vienna RNA Web Servies, Kerpedjiev P, Hammer S, Hofacker IL (2015).

Structures to Diagrams

Nucleotides ← Vertices
Pairings ← Edges

- Vertex degree ≤ 3
- Distinguish the backbone (horizontal line)
- 1-arcs are different from backbone

Research Question

Q: How does the length of the irreducible component change as the complexity of the structures increases?

Figures drawn from ViennaRNA Web Servies, Kerpedjiev P, Hammer S, Hofacker IL (2015).

Starting Point: Secondary Structures

Theorem (Li and Reidys, 2018): The expectation and variance of the length of the longest rainbow in secondary structures is given by

$$E[Y_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)), \quad \alpha = 2.482$$

$$V[Y_n] = \beta n^{\frac{3}{2}} (1 + o(1)).$$

The rainbow-spectrum of RNA secondary structures

Thomas J. X. Li · Christian M. Reidys

Generalized Results

Theorem 1: The expectation and variance of the length of the longest block in γ -structures for $\gamma = 1$ is given by

$$E[B_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)), \quad \alpha = 1.416$$

$$V[B_n] = \beta n^{\frac{3}{2}} (1 + o(1)), \quad \beta = 0.304.$$

Theorem 2: For fixed k, the distribution of the number of blocks of length k is negative binomial.

Theorem 3: For any
$$k = o(n)$$
, $\lim_{n \to \infty} P(n - B_n = k) = \frac{[z^k]G_{\tau}^2(z)\mu^k}{G_{\tau}^2(\mu)}$.

Analytic Combinatorics

Flajolet, P and Sedgewick, R. Analytic Combinatorics, 2009.

Begin: Generalize RNA structures to graph diagrams

Combinatorial Classes

Generating Functions

Coefficient Asymptotics Symbolic enumeration – deriving generating functions without recurrence relations

- Find a functional form of generating function
- Find asymptotic expansion of function at its dominant singularity
- Extract coefficient asymptotics using analytic transfer theorems

Results: Expectation and variance of the longest irreducible component

Structures with Crossings

Why are structures with crossing more difficult to study (in a Bioinformatics sense)?

General crossing diagrams have a more complex notion of irreducibility, if at all.

Irreducibility

An equivalence relation on arcs:

For any arcs $\alpha_1, \alpha_k \in E$ we say $\alpha_1 \sim \alpha_k$ iff there exists a sequence of arcs $(\alpha_1, ..., \alpha_{k-1}, \alpha_k)$ such that α_i and α_{i+1} are crossing for every $1 \le i \le k$.

- *Irreducible diagram:* for any two arcs α_i and α_j in its maximal component, $\alpha_i \sim \alpha_j$.
- A diagram can be partitioned into *blocks* (irreducible components).

For secondary structures, irreducible components are maximal arcs (rainbows).

Examples of irreducible components for crossing structures.

Topological Graph Theory

A *ribbon graph*, or *fatgraph*, is a triple (H, σ, α) where H is the set of half-edges, σ is the vertex permutation, and α is a fixed-point free involution.

Computing genus: $g = 1 - \frac{1}{2}(V - E + R)$

γ-Structures

 γ -structure: a diagram whose maximal irreducible components are of genus $\leq \gamma$.

Building blocks of γ -structures are irreducible shadows.

Figure: All 4 irreducible shadows of genus g = 1.

**Generating functions for irreducible shadows are polynomials, i.e. finite:

$$m = 2g + r - 1$$
$$2m \ge 3(r - 1) + 2$$

Analytic Combinatorics

Flajolet, P and Sedgewick, R. Analytic Combinatorics, 2009.

Begin: Generalize RNA structures to graph diagrams

Symbolic enumeration – deriving generating functions without recurrence relations

- Find a functional form of generating function
- Find asymptotic expansion of function at its dominant singularity
- Extract coefficient asymptotics using analytic transfer theorems

Results: Expectation and variance of the longest irreducible component

Enumerate y-structures

 \mathcal{G}_{τ} : Combinatorial class of γ -structures

$$\begin{aligned} \mathcal{G}_{\tau,n} &= \mathcal{G}_{\tau} \Big|_{|G|=n} \\ G_{\tau}(z) &= \sum_{G \in \mathcal{G}_{\tau}} z^{|G|} = \sum_{n \geq 0} g_{\tau}(n) z^{n} \end{aligned}$$

(via symbolic enumeration)
$$\begin{cases} A = B \cup C \implies A(x) = B(x) + C(x) & B \cap C = \emptyset \\ *A = B \times C \implies A(x) = B(x) \cdot C(x) \\ A = SEQ(B) \implies A(x) = (1 - B(x))^{-1} \end{cases}$$

$$A = SEQ(B) \implies A(x) = (1 - B(x))^{-1}$$

Generating Functions

Y-matchings:
$$H(u) = \left(1 - uH(u) - H(u)^{-1} \sum_{g \le \gamma} \sum_{m=2g}^{6g-2} i_g(m) \left(\frac{uH(u)^2}{1 - uH(u)^2}\right)^m\right)^{-1}$$

Y-structures:
$$G_{\tau}(z) = \frac{1}{1-z+u_{\tau}(z)z^2} H\left(\frac{u_{\tau}(z)z^2}{(1-z+u_{\tau}(z)z^2)^2}\right)$$

Why are we concerned with generating functions?

$$(\mathcal{G}_{\tau,n},P)$$
: probability space with $P(G) = \frac{1}{|\mathcal{G}_{\tau,n}|}$.

$$B_n: \mathcal{G}_{\tau,n} \to \mathbb{Z}^+$$

$$G \mapsto \text{Length of the longest block}$$

$$P(B_n = n - k) = \frac{\text{Count of structures with longest block length } n - k}{\text{Count of all possible structures}}$$

$$E[B_n] = \sum_{k=1}^{n} (n-k)P(B_n = n-k)$$

Why are we concerned with generating functions?

$$(\mathcal{G}_{\tau,n},P)$$
: probability space with $P(G) = \frac{1}{|\mathcal{G}_{\tau,n}|}$.

$$B_n: \mathcal{G}_{\tau,n} \to \mathbb{Z}^+$$

 $G \mapsto$ Length of the longest block

$$P(B_n = n - k) = \frac{\text{Count of structures with longest block length } n - k}{\text{Count of all possible structures}}$$

$$= \frac{[z^n](G_{\leq n-k}(z) - G_{\leq n-k-1}(z))}{[z^n]G_{\tau}(z)}$$

Structures with blocks of length at most n - k and n - k - 1.

Analytic Combinatorics

Flajolet, P and Sedgewick, R. Analytic Combinatorics, 2009.

Begin: Generalize RNA structures to graph diagrams

Symbolic enumeration – deriving generating functions without recurrence relations

- Find a functional form of generating function
- Find asymptotic expansion of function at its dominant singularity
- Extract coefficient asymptotics using analytic transfer theorems

Results: Expectation and variance of the longest irreducible component

Complex Analysis – Functional Forms

An implicit functional form of H(u) for $\gamma = 1$:

$$P(u,X) = -1 + X + 3X^{2}u - 4X^{3}u - 3X^{4}u^{2} + 6X^{5}u^{2} - 2X^{6}u^{3} - 4X^{7}u^{3} + 3X^{8}u^{4} + X^{9}u^{4} - X^{10}u^{5}$$

$$P(u,H(u)) = 0$$

For arbitrary
$$\mathbf{Y}$$
: $P(u, X) = (1 - uX^2)^{6\gamma - 2} (-1 + X - uX^2) - (1 - uX^2)^{6\gamma - 2} \sum_{g \le \gamma} \sum_{m=2g}^{6g - 2} i_g(m) \left(\frac{uX^2}{1 - uX^2}\right)^m$
 $P(u, H(u)) = 0$

Next: Consider function as analytic object to perform singularity analysis.

Analytic Transfers

Theorem (Flajolet and Sedgewick, 2009): For α an arbitrary complex number other than a negative integer,

$$[z^n](1-z)^{-\alpha} = n^{\alpha-1}\Gamma(1/2)^{-1}(1+O(n^{-1})), \quad n \to \infty$$

Method:

- 1. Identify dominant singularity of $G_{\tau}(z)$: $z = \mu$.
- 2. Determine singular expansion:

$$G_{\tau}(z) = \theta_0 + \theta_1(\mu - z)^{\frac{1}{2}} + \theta_2(\mu - z) + O((\mu - z)^{\frac{3}{2}})$$

3. Apply transfer theorem:

$$[z^n]G_{\tau}(z) = \frac{\theta_1\sqrt{\mu}}{\Gamma(-1/2)}n^{-\frac{3}{2}}\mu^{-n}(1+O(n^{-1}))$$

Expected Length of Blocks

Theorem 1: The expectation and variance of the length of the longest block in γ -structures for $\gamma = 1$ is given by

$$E[B_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)), \quad \alpha = 1.416$$

$$V[B_n] = \beta n^{\frac{3}{2}} (1 + o(1)).$$

Proof:
$$E[B_n] = \sum_{k=1}^{n} (n-k)P(B_n = n-k)$$

$$E[B_n] = n - \sum_{k=1}^{n^{\frac{1}{8}}} kP(B_n = n - k) - \sum_{k=n^{\frac{1}{8}}}^{\frac{n-1}{2}-1} kP(B_n = n - k) - \sum_{k=\frac{n-1}{2}-1}^{n} kP(B_n = n - k)$$

$$o(n^{\frac{1}{2}}) \qquad \alpha n^{\frac{1}{2}} (1 + o(1)) \qquad o(n^{\frac{1}{2}})$$

Approximation method:

bound P by 1

Riemann Sum approx. Euler-Maclaurin Sum approx.

Expected Length of Blocks, Cont.

1.
$$\sum_{k=1}^{n^{\frac{1}{8}}} kP(B_n = n - k) \le \sum_{k=1}^{n^{\frac{1}{8}}} k = \frac{n^{\frac{1}{8}}(n^{\frac{1}{8}} + 1)}{2} = o(n^{\frac{1}{2}})$$

2.
$$\sum_{k=n^{\frac{n}{8}}}^{\frac{n}{2}-1} kP(B_n = n-k) = \frac{2c}{\theta_0} n^{\frac{1}{2}} \sum_{k=1}^{\infty} \frac{1}{n} \left(1 - \frac{k}{n}\right)^{-\frac{3}{2}} \left(\frac{k}{n}\right)^{-\frac{1}{2}} (1 + O(k^{-1}))(1 + O(n^{-1})) = \frac{4c}{\theta_0} n^{\frac{1}{2}} (1 + o(1))$$

$$\sum_{k=0}^{\infty} \frac{1}{n} \left(1 - \frac{k}{n}\right)^{-\frac{3}{2}} \left(\frac{k}{n}\right)^{-\frac{1}{2}} = \int_{0}^{1/2} (1 - x)^{-\frac{3}{2}} x^{-\frac{1}{2}} dx (1 + o(1)) = 2(1 + o(1))$$
 (Riemann Sum Formula)

3.
$$\sum_{k=\frac{n}{2}-1}^{n} k P(B_n = n-k) \le n(1 - \sum_{k=1}^{\frac{2}{5}} P(B_n = n-k) - \sum_{k=n^{\frac{2}{5}}}^{\frac{n}{2}-1} P(B_n = n-k)) = o(n^{\frac{1}{2}})$$

Expected Length of Blocks, Cont.

3a.
$$\sum_{k=1}^{n^{\frac{2}{5}}} P(B_n = n - k) = \sum_{k} \frac{b_k \mu^k}{\theta_0^2} (1 + o(n^{-\frac{1}{2}})) = (1 - \frac{2c}{\theta_0} \sum_{k \ge n^{\frac{2}{5}}} k^{-\frac{3}{2}}) + O(\sum_{k \ge n^{\frac{2}{5}}} k^{-\frac{5}{2}})) (1 + o(n^{-\frac{1}{2}}))$$

$$\sum_{k > n^{\frac{2}{5}}} k^{-\frac{3}{2}} = \xi(\frac{3}{2}, n^{\frac{2}{5}}) = 2n^{-\frac{1}{5}} (1 + O(n^{-\frac{2}{5}}))$$

(Hurwitz-Zeta Function)

$$\sum_{k=1}^{\frac{2}{5}} P(B_n = n - k) = 1 - \frac{4c}{\theta_0} n^{-\frac{1}{5}} + o(n^{-\frac{1}{2}})$$

3b.
$$\sum_{k=n^{\frac{2}{5}}}^{\frac{n}{2}-1} kP(B_n = n-k) = \frac{2c}{\theta_0} \sum_{k} \left(1 - \frac{k}{n}\right)^{-\frac{3}{2}} k^{-\frac{3}{2}} (1 + O(k^{-1}))(1 + O(n^{-1})) = \frac{4c}{\theta_0} n^{-\frac{1}{5}} + o(n^{-\frac{1}{2}})$$

$$\sum_{k} \left(1 - \frac{k}{n}\right)^{-\frac{3}{2}} k^{-\frac{3}{2}} = \int_{n^{\frac{2}{5}}}^{\frac{n}{2}} \left(x - \frac{x^2}{n}\right)^{-\frac{3}{2}} dx + \frac{1}{2} \left(x - \frac{x^2}{n}\right)^{-\frac{3}{2}} \Big|_{n^{\frac{2}{5}}}^{\frac{n}{2}} + \dots$$
 (Euler-Maclaurin Sum Formula)

Varying y

Theorem: The expectation and variance of the length of the longest block in γ -structures is given by

$$E[B_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)),$$

$$V[B_n] = \beta n^{\frac{3}{2}} (1 + o(1)).$$

γ	0	1	2	3
α_{γ}	2.482	1.416	0.964	0.734
β_{v}	0.533	0.304	0.207	0.159

Secondary structures

Short Blocks

Theorem 2: For fixed k, the distribution of the number of blocks of length k is negative binomial, NB(2,t), $t = \frac{[z^k]T(z)\mu^k}{1-T(\mu)+[z^k]T(z)\mu^k}$.

$$E[W_{k,n}] = \frac{2t}{1-t},$$

$$V[W_{k,n}] = \frac{2t}{(1-t)^2}.$$

Short Blocks

Wrap Up/Future Work

- Described the spectrum of blocks for γ -structures
 - Length of the longest block
 - Distribution of number of blocks of a finite size
- Develop framework for higher dimensional rainbows

Length Distribution

$$E[B_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)),$$

$$V[B_n] = \beta n^{\frac{3}{2}} (1 + o(1)).$$

Corollary 3: For all $\varepsilon > 0$, there exists a positive integer $t(\varepsilon)$ such that

$$\lim_{n\to\infty} P(B_n \ge n - t(\varepsilon)) \ge 1 - \varepsilon$$

$$\lim_{n \to \infty} P(B_n \ge n - 100) = 0.688$$

$$\lim_{n \to \infty} P(B_n \ge n - 500) = 0.752$$

Length Distribution

$$E[B_n] = n - \alpha n^{\frac{1}{2}} (1 + o(1)),$$

$$V[B_n] = \beta n^{\frac{3}{2}} (1 + o(1)).$$

Theorem 3: For any
$$k = o(n)$$
, $\lim_{n \to \infty} P(n - B_n = k) = \frac{[z^k]G_{\tau}^2(z)\mu^k}{G_{\tau}^2(\mu)}$.

Let
$$k = n^{\frac{1}{2}}$$
. $\lim_{n \to \infty} P(n - B_n = n^{\frac{1}{2}}) = 0$

