

Identification of hydro power frequency containment reserves dynamics using PMUs

Sigurd Hofsmo Jakobsen

Norwegian university of technology and science Department of electric engineering

October 23, 2018

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

• From Sola

- From Sola
- Studied and works in Trondheim

- From Sola
- Studied and works in Trondheim
- Worked as a research engineer from 2013-2015 for SINTEF Energy Research

- From Sola
- Studied and works in Trondheim
- Worked as a research engineer from 2013-2015 for SINTEF Energy Research
- Currently PhD student at NTNU

- From Sola
- Studied and works in Trondheim
- Worked as a research engineer from 2013-2015 for SINTEF Energy Research
- Currently PhD student at NTNU
- 10% position at SINTEF Energy Research

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

Frequency quality in the Nordics

- From 2008 the time the frequency has been outside its allowed band has increased
- The performance of hydro turbine governors play an important role

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - Increasing complexity

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - · Increasing complexity
- · More dynamics

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - · Larger variability
 - More uncertainty
 - · Increasing complexity
- More dynamics
- Less time for actions

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - · Increasing complexity
- More dynamics
- Less time for actions
- Hydropower is the main resource for balancing

Figure: Present and future energy mix[Statnett]

New requirements on FCR due to frequency quality

- Nordic TSOs are developing new requirements on FCR
- This includes offline testing and verification of performance

• Aggregated system model:

- Aggregated system model:
 - G_{psys}(s): Aggregated model of FCR

- Aggregated system model:
 - G_{p_{svs}}(s): Aggregated model of FCR
 - $G_{J_{svs}}(s)$: Aggregated model of swing dynamics

- Aggregated system model:
 - $G_{p_{sys}}(s)$: Aggregated model of FCR
 - $G_{J_{sys}}(s)$: Aggregated model of swing dynamics
 - $\Delta P_l(s)$: Aggregated load changes

- Aggregated system model:
 - G_{p_{svs}}(s): Aggregated model of FCR
 - $G_{J_{SYS}}(s)$: Aggregated model of swing dynamics
 - $\Delta P_l(s)$: Aggregated load changes
- Stability requirement stated in terms of the system's sensitivity function

$$S_{sys}(s) = \frac{1}{1 + G_{p_{sys}}(s)G_{J_{sys}}(s)}$$
(1)

Stability using Nyquist

• Stability can be checked using:

$$L_{sys}(s) = G_{p_{sys}}(s)G_{J_{sys}}(s)$$
 (2)

Stability using Nyquist

• Stability can be checked using:

$$L_{sys}(s) = G_{p_{sys}}(s)G_{J_{sys}}(s) \qquad (2)$$

Stability margin given by:

$$Ms = \min |-1 - L_{sys}(j\omega)|$$
 (3)

Stability using Nyquist

Stability can be checked using:

$$L_{sys}(s) = G_{p_{sys}}(s)G_{J_{sys}}(s)$$
 (2)

Stability margin given by:

$$Ms = \min |-1 - L_{sys}(j\omega)|$$
 (3)

Notice that

$$\min |-1 - L_{sys}(j\omega)| = \max |S_{sys}(j\omega)|$$
(4)

Draft requirements for performance

Draft requirements for performance

- For the performance we want to limit the change in frequency.
- The change in frequency is given by:

$$\Delta f_{sys}(s) = -2\pi G_{J_{sys}}(s)S_{sys}(s)d(s) = 2\pi G_{1_{sys}}(s)d(s)$$
 (5)

Draft requirements for performance

- For the performance we want to limit the change in frequency.
- The change in frequency is given by:

$$\Delta f_{sys}(s) = -2\pi G_{J_{sys}}(s)S_{sys}(s)d(s) = 2\pi G_{1_{sys}}(s)d(s)$$
 (5)

We can use this for defining the performance requirements:

$$|2\pi G_{1_{\text{sys}}}(j\omega)|^2 \phi_d(\omega) < \phi_{\Delta f}(\omega) = 0.1$$
 (6)

Draft requirements for power plant

1. Measure a plant's response to ten sine injections

Draft requirements for power plant

- 1. Measure a plant's response to ten sine injections
- 2. Estimate $G_p^{(p.u.)}(s)$ for the plant based on the sine injections

Draft requirements for power plant

- 1. Measure a plant's response to ten sine injections
- 2. Estimate $G_p^{(p.u.)}(s)$ for the plant based on the sine injections
- 3. Use $G_{\rho}^{(\rho.u.)}(s)$ together with $G_{J_{sys}}^{(\rho.u.)}(s)$ to check.

$$|S(j\omega)| < \frac{1}{M_s} \tag{7}$$

and

$$|2\pi G_1(j\omega)|^2 \phi_d(\omega) < 0.1 \tag{8}$$

Drawbacks with the draft requirements

- One has to disconnect the plant to inject the sine waves.
- Injecting 10 sine waves take a lot of time.
- They assume the same swing dynamics for all plants.

Research question

 Can the draft requirements be tested using PMU measurements from normal operation?

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

Previous work at NTNU

 A transfer function was identified from the electrical frequency to the electrical power under normal operation using the ARX model structure.

Previous work at NTNU

- A transfer function was identified from the electrical frequency to the electrical power under normal operation using the ARX model structure.
- A transfer function was identified from the electrical frequency to the electrical power under normal operation using vector fitting.

Previous work at NTNU

- A transfer function was identified from the electrical frequency to the electrical power under normal operation using the ARX model structure.
- A transfer function was identified from the electrical frequency to the electrical power under normal operation using vector fitting.
- There are also other papers in the literature using other methods for online identification, however, mostly relying on data from disturbance recordings.

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

System identification basic

- Assume that a data set
 Z^N = {u[n], y[n]|n = 1...N}
 has been collected.
- The dataset Z^N is assumed generated by

$$S: y[n] = G_1(z, \theta_1)u[n] + H_1(z, \theta_1)e[n]$$
(9)

 Using the data set Z^N we want to find the parameter vector θ^N minimizing

$$\hat{\theta}_N = \arg\min_{\theta} \frac{1}{N} \sum_{n=1}^N \epsilon^2(n, \theta)$$
(10)

 The system we want to identify

- The system we want to identify
- We use a small power system

- The system we want to identify
- We use a small power system
- We use a dc power flow

- The system we want to identify
- We use a small power system
- We use a dc power flow
- This results in the following block diagram

Conclusion from the identification analysis

 We can identify a consistent estimate of G₁(s)

Conclusion from the identification analysis

- We can identify a consistent estimate of G₁(s)
 - If v₁₅(s) excites the system sufficiently,

Conclusion from the identification analysis

- We can identify a consistent estimate of G₁(s)
 - If v_{/5}(s) excites the system sufficiently,
 - and there is a delay in either $G_1(s)$ of the transfer function from $\Delta\omega_1(s)$ to $\Delta P_{e1}(s)$.

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

Example of identifying $G_1(s)$ in Simulink

 The simple power system presented was implemented in Simulink.

The identification experiment in the draft requirements

The identification experiment in the draft requirements

 They then identify the transfer function from the input to the governor to the electrical power of the generator.

$$G_{req}(s) = -\frac{G_{p}(s)G_{J}(s)T(s)}{1 + G_{J}(s)T(s)}$$

$$\tag{11}$$

The identification experiment in the draft requirements

 They then identify the transfer function from the input to the governor to the electrical power of the generator.

$$G_{req}(s) = -\frac{G_p(s)G_J(s)T(s)}{1 + G_J(s)T(s)}$$
(11)

• This is not $G_p(s)$

Example of identifying $G_{req}(s)$ in Simulink

 The transfer function specified in the draft requirements were also estimated in the simulations.

Estimating the swing dynamics of a power plant

• To find S(s) we need an estimate of $G_J(s)$.

$$S(s) \approx 2HsG_1(s)$$
 (13)

Estimating the swing dynamics of a power plant

• To find S(s) we need an estimate of $G_J(s)$.

$$Hpprox rac{\Omega_2-\Omega_1}{2\Omega_1\Omega_2(|G_1(j\Omega_1)|-|G_1(j\Omega_2)|)}$$

$$S(s) \approx 2HsG_1(s)$$
 (13)

(12)

Comparison of estimated sensitivity functions

$$G_{sys}(s) = \frac{600MW}{0.1Hz} \frac{f_0}{S_{sys}} \frac{1}{2H_{sys}s + K_{d_{sys}} * f_0}$$
(14)

Comparison of estimated $G_1(s)$

$$G_{sys}(s) = \frac{600MW}{0.1Hz} \frac{f_0}{S_{sys}} \frac{1}{2H_{sys}s + K_{d_{sys}} * f_0}$$
(15)

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

Single line diagram of the plant

Datasets used

Identified $G_1(s)$ using pmu signals

Identified $G_{req}(s)$ using control system signals

Estimated sensitivity functions

Estimated $G_1(s)$

Outline

About me

Background

Previous work using PMUs

Validation of the approach

Simulation results

Results from a real power plant

Conclusions and further work

Conclusions and further work

- It is indeed possible to identify the turbine dynamics(closed loop with electromechanical dynamics) using PMU measurements.
- The identified transfer functions can be used for checking the requirements
- The tests in the requirements are most likely to intrusive
- It should be investigated how one can use data from the control system to get better estimates.

Thanks for your attention.