

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DR-639

AD

AD 273008488

METEOROLOGICAL DATA REPORT

UNGUIDED ROCKET IMPACT DISPERSION
AT WHITE SANDS MISSILE RANGE, NEW MEXICO
(February 1972)

BY

GORDON L. DUNAWAY
AND
MARJORIE McLARDIE HOIDALE

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

EECOM
UNITED STATES ARMY ELECTRONICS COMMAND

NATIONAL TECHNICAL
INFORMATION SERVICE

41

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

~~UNCLASSIFIED~~

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and individual annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
U. S. Army Electronics Command Pt. Monmouth, New Jersey		2b. GROUP
3. REPORT TITLE Unguided Rocket Impact Dispersion At White Sands Missile Range, New Mexico		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
5. AUTHOR(S) (First name, middle initial, last name) Gordon L. Dunaway and Marjorie McLercie Hoidal		
6. REPORT DATE February 1972	7a. TOTAL NO. OF PAGES 48	7b. NO. OF REPS 4
8. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) DR-689	
10. PROJECT NO. DA Task 1T665702D127-02	11. OTHER REPORT NO(S) (Any other numbers that may be assigned to this report)	
12. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.		
13. SUPPLEMENTARY NOTES	14. ORIGINATING MILITARY ACTIVITY U. S. Army Electronics Command Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico	
15. APPROVING ACT		
Impact dispersion data are presented for the following unguided sounding rockets launched from White Sands Missile Range, New Mexico, or the Utah Launch Complex, Green River, Utah, during 1965-1971: Aerobee 350, Aerobee-170, Aerobee-170-A, Aerobee-150, Athena (Second Stage), Athena H (First Stage), Nike-boosted rockets (Hydac, Javelin, Iroquois, Apache, Apache Nicap, Cat'un), Met RDTSE, Viper Loki, ARCAS, and Boosted ARCAS (Boosted I, Boosted II, HVAR, Sidewinder, and Sparrow).		

DD FORM 1473 1 SEP 68
REPLACES DD FORM 1473, 1 JAN 68, WHICH IS
OBSCURE FOR ARMY USE.

~~UNCLASSIFIED~~

Security Classification

UNCLASSIFIED

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
1. Unguided Rockets 2. Rocket dispersion 3. Aerobee-350 4. Aerobee-150 5. Aerobee-170 6. Aerobee-170-A 7. Athena (Second Stage) 8. Athena H (First Stage) 9. Nike-boosted Rockets 10. Met RDT&E Rockets 11. Viper Loki 12. ARCAS and Boosted ARCAS						

UNCLASSIFIED

Security Classification

METEOROLOGICAL DATA REPORT

UNGUIDED ROCKET IMPACT DISPERSION
AT WHITE SANDS MISSILE RANGE, NEW MEXICO
(February 1972)

By

Gordon L. Dunaway
and
Marjorie McLardie Hoidal

DR-689

DA Task 1T665702D127-02

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Approved for public release; distribution unlimited.

FOREWORD

This report is a revision of Data Report 602, published under the same title in March 1971. The revision updates the original data to cover the period through December 1971 and includes data on new rockets launched at White Sands Missile Range, New Mexico.

ABSTRACT

Impact dispersion data are presented for the following unguided sounding rockets launched from White Sands Missile Range, New Mexico, or the Utah Launch Complex, Green River, Utah, during 1965-1971: Aerobee-350, Aerobee-170, Aerobee-170-A, Aerobee-150, Athena (Second Stage), Athena H (First Stage), Nike-boosted rockets (Hydac, Javelin, Iroquois, Apache, Apache Nicap, Cajun), Met RDT&E, Viper Loki, ARCAS, and Boosted ARCAS (Boosted I, Boosted II, HVAR, Sidewinder, and Sparrow).

CONTENTS

	PAGE
INTRODUCTION -----	1
AEROBEE-350 -----	3
AEROBEE-170 and 170-A -----	5
AEROBEE-150 -----	7
ATHENA (SECOND STAGE) and ATHENA H (FIRST STAGE) -----	8
NIKE-BOOSTED ROCKETS -----	10
MET RDT6E ROCKETS -----	12
VIPER LOKI -----	14
ARCAS and BOOSTED ARCAS -----	16
REFERENCES -----	19
APPENDIX A--Dispersion Data for Individual Nike-Boosted Rocket Firings -----	21
ACKNOWLEDGEMENTS -----	41

INTRODUCTION

The statistical scatter of the actual impact points about the predicted impact point of an unguided rocket is the rocket's impact dispersion.

The causes of rocket impact dispersion can be divided into five basic categories: 1) variations in atmospheric components, 2) variations in rocket components, 3) rocket misalignments, 4) launcher misalignments, and 5) factors which do not vary but are not precisely evaluated or are unaccounted for.

Before an unguided rocket is flight-tested, a theoretical dispersion study is usually performed to estimate its dispersion. This analysis can be made using a trajectory simulation program in a high-speed computer. The best estimates available of the perturbing factors can be put in the program, and the impact points can be compared with the nominal impact point. When this procedure is used, it is assumed that the perturbing factors act independently.

This report presents the actual impact dispersion of the Aerobee-350, Aerobee-170, Aerobee-170-A, Aerobee-150, Athena (Second Stage), Athena H (First Stage), Nike-boostered rockets, Met RDT&E, Viper Loki, ARCAS, and Boosted ARCAS fired at White Sands Missile Range (WSMR), New Mexico, or the Utah Launch Complex, Green River, Utah, for the period 1965-1971. No attempt is made to isolate the various causes of dispersion.

The actual impact points were taken from surveys when available. Elsewhere, radar or Sonic Observation of Trajectory and Impact of Missiles (SOTIM) impact data were used.

A brief description of each rocket precedes the tabular presentation of its impact dispersion.

This information should be helpful for range planning and safety considerations.

AEROBEE-350

The Aerobee-350 is a slow acceleration, liquid propellant, fin-stabilized rocket used to carry payloads of 150 to 3000 pounds to altitudes from 150 statute miles (ST. Miles) above mean sea level (MSL) for the heavier payloads to 310 miles for the lighter payloads when launched at WSMR (4,000 feet MSL). A solid propellant booster is used to increase the rocket's exit velocity from a 162-foot tower.

The nominal rocket impact range is 50 statute miles, although this may vary, depending on the wind situation and project requirements.

A meteorological real-time system (1-3) in which wind data from the launch site are transmitted over commercial data lines to a high . . . computer at WSMR is used for these firings. The computer r. . . the wind data, applies it to a trajectory simulation (4), . . . selects launcher settings using iterative techniques.

There have been only two Aerobee-350 launches to date. Rocket underperformance resulted in greater wind response than expected on the first launch in 1970 and caused Missile Flight Safety to terminate thrust at approximately 42 seconds to prevent off-range impact. The miss distance on the second launch in 1971 was two statute miles.

Preceding page blank

AEROBEE-170 and AEROBEE-170-A

The Aerobee-170 and 170-A are slow acceleration, liquid propellant, fin-stabilized rockets used to carry payloads of 150 to 550 pounds to altitudes from 85 statute miles MSL for the heavier payloads to 205 miles for the lighter payloads when launched at WSMR (4,000 feet MSL). A solid propellant booster is used to increase the rocket's exit velocity from a 162-foot tower for the 170 and from a 150-foot tower for the 170-A.

The nominal rocket impact range is 50 statute miles, although this may vary, depending on the wind situation and project requirements.

The wind-weighting technique is used for Aerobee-170 and 170-A impact predictions at WSMR.

ATLAS-A-170 and ATLAS-A-170-A DISTANCES

WHITE SANDS MISSILE RANGE, NEW MEXICO

1968-71

YEAR	TOTAL FLIGHTS	CUMULATIVE MAX MISS SEPARATION MILES	RELATIVE FREQUENCY DISTRIBUTION OF ATLAS-A-170 IMPACT MISS DISTANCES (PER CENT)					
			STATUTE MILES					
			0-5	>5-10	>10-15	>15-20	>20-25	>25-30
1968	14	17.3	9	0	9	100	0	0
1969	15	—	—	—	—	—	1	1
1970	12	12.0	18	28	27	15	0	0
1971	24	11.6	26	27	8	16	9	0
<hr/>								
1968- 1971	59	12.1	24	28	15	21	6	0

Standard error of estimate for the period of record: 14.1 ST. MILES.

* The following Atlas-A-170 launches were excluded from this dispersion analysis:

- 1968 2 malfunctions
- 1970 1 malfunction
- 1971 2 malfunctions

AEROBEE-150

The Aerobee-150 is a slow acceleration, liquid propellant, fin-stabilized rocket used to carry payloads of 150 to 500 pounds to altitudes from 75 statute miles MSL for the heavier payloads to 190 miles for the lighter payloads when launched at WSMR (4,000 feet MSL). A solid propellant booster is used to increase the rocket's exit velocity from a 15'-foot tower.

The nominal rocket impact range is 50 statute miles, although this may vary, depending on the wind situation and project requirements.

The wind-weighting technique is used for Aerobee-150 impact predictions at WSMR.

AEROBEE-150 DISPERSION

WHITE SANDS MISSILE RANGE, NEW MEXICO

1965-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF AEROBEE-150 IMPACT MISS DISTANCES (PER CENT)					
			0<5	>5<10	>10<15	>15<20	>20<25	>25<30
1965	42	11.1	10	48	15	13	10	5
1966	37	9.7	12	47	24	18	0	0
1967	42	8.7	31	33	26	7	0	2
1968	45	9.2	28	30	30	5	5	3
1969	36	8.4	25	36	31	8	0	0
1970	21	8.8	29	33	24	10	0	4
1971	15	7.8	27	40	27	6	0	0

1965-1971	238	9.3	22	38	25	10	3	2
-----------	-----	-----	----	----	----	----	---	---

Standard error of estimate for the period of record: 10.7 ST. Miles.

* The following Aerobee-150 launches were excluded from this dispersion analysis:

- 1965 2 malfunctions
- 1966 3 malfunctions
- 1968 3 malfunctions; 2 dummy payload rail launches

ATHENA (SECOND STAGE) AND ATHENA H (FIRST STAGE)

The Athena is a multi-staged, fin-stabilized rocket fired from a zero-length launcher at Green River, Utah, to impact on WSMR. The first two stages of the regular Athena are unguided and require impact predictions. Since the second stage is most wind sensitive, its impact dispersion is presented. Only the first stage of the Athena H is unguided and requires impact predictions. There have been two Athena H launches to date and their miss distances were 16 and 31 statute miles.

A meteorological real-time system (1-3) in which wind data from the launch site are transmitted over commercial data lines to a high-speed computer at WSMR is used for these firings. The computer reduces the wind data, applies it to a trajectory simulation (4), and selects launcher settings using iterative techniques.

The peak altitude for the first stage of the Athena H and for the second stage of the regular Athena varies from 135 to 175 statute miles MSL. The nominal impact range is approximately 455 statute miles.

ATHENA (SECOND STAGE) DISPERSION

WHITE SANDS MISSILE RANGE, NEW MEXICO

1966-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF ATHENA IMPACT MISS DISTANCES (PER CENT)							
			0≤5	>5≤10	>10≤15	>15≤20	>20≤25	>25≤30	>30≤5	>35≤40
1966	28	12.8	7	41	19	15	15	4	0	0
1967	30	11.6	17	28	28	17	7	3	0	0
1968	16	13.7	13	44	6	6	25	0	0	6
1969	11	10.5	0	64	18	9	0	9	0	0
1970	2	10.9	0	0	100	0	0	0	0	0
1971	8	12.6	0	38	38	12	12	0	0	0

1966-										
1971	95	12.3	10	39	22	13	12	3	0	1

Standard error of estimate for the period of record: 14.1 ST. Miles

* Two Athena launches were excluded from this dispersion analysis:

9 June 1966; unknown impact

9 February 1967; second stage malfunction

NIKE-BOOSTED ROCKETS

The Nike-boosted rockets were combined in this analysis since they all showed similar impact dispersion characteristics.

Each Nike-boosted rocket utilizes a Nike M-5 booster which gives the second stage an initial impulse so that it coasts to an altitude of from 35,000 to 50,000 feet MSL prior to second-stage ignition.

The second-stage motors are, in order of higher performance: Hydac, Javelin, Iroquois, Apache, and Cajun.

The Nike-Hydac carries a 220-pound payload to approximately 135 statute miles MSL; the Nike-Javelin carries a 150-pound payload to approximately 120 miles MSL; the Nike-Iroquois carries a 70-pound payload to approximately 175 miles MSL; the Nike-Apache carries a 70-pound payload to approximately 135 miles MSL; and the Nike-Cajun carries a 70-pound payload to approximately 95 miles MSL.

Although all Nike-boosted rockets were combined for the overall dispersion analysis, a table showing impact data for the individual firings appears in Appendix A.

The nominal impact range for Nike-boosted rockets at WSMR varies from 50 to 130 statute miles.

The wind-weighting technique is used for impact predictions of Nike-boosted rockets fired at WSMR.

DISPERSION OF NIKE-BOOSTED ROCKETS**

WHITE SANDS MISSILE RANGE, NEW MEXICO

1966-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF NIKE BOOSTED ROCKET IMPACT MISS DISTANCES (PER CENT) STATUTE MILES							
			0<5	>5<10	>10<15	>15<20	>20<25	>25<30	>30<35	>35<40
1966	52	11.8	20	31	16	18	8	2	4	0
1967	41	13.2	17	19	31	14	8	8	0	3
1968	18	10.4	35	18	18	18	12	0	0	0
1969	23	11.2	17	31	26	13	13	0	0	0
1970	16	6.1	43	43	14	0	0	0	0	0
1971	15	8.2	37	37	16	5	5	0	0	0
1966-1971	171	10.9	25	28	21	15	8	3	1	1

Standard error of estimate for the period of record: 13.3 ST. Miles

* The following Nike-boosted launches were excluded from this dispersion analysis:

1966 3 malfunctions
 1967 5 malfunctions
 1968 1 malfunction
 1970 4 malfunctions

** Nike-Hydac, Nike-Javelin, Nike-Iroquois, Nike Apache, Nike-Apache Nicap, Nike Cajun.

MET RDT&E ROCKETS

The Meteorological Research, Development, Test, and Evaluation (MET RDT&E) rocket is a single-stage, fin-stabilized, solid propellant rocket used to carry a 7 to 10-pound payload to approximately 45 statute miles MSL when launched at WSMR (4,000 feet MSL). The MET RDT&E is fired from a boxed rail launcher.

The nominal rocket impact range is approximately 39 statute miles at WSMR.

The wind-weighting technique is used for MET RDT&E impact predictions at WSMR.

MET RDT&E ROCKET DISPERSION
WHITE SANDS MISSILE RANGE, NEW MEXICO

1969-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF RDT&E IMPACT MISS DISTANCES (PER CENT)					
			0<5	>5<10	>10<15	>15<20	>20<25	>25<30
1969	6	8.6	67	0	0	17	16	0
1970	52	8.7	29	42	21	3	0	5
1971	18	10.6	6	41	41	12	0	0

1969-1971	76	8.2	26	38	25	7	1	3
-----------	----	-----	----	----	----	---	---	---

Standard error of estimate for the period of record: 10.6 ST. Miles.

* The following RDT&E launches were excluded from this dispersion analysis:

1970 10 malfunctions; 4 unknown impacts
1971 ----- 1 unknown impact

VIPER LOKI

The Viper Loki is a two-staged, fin-stabilized, solid propellant meteorological rocket used to carry a 110-gram (0.24 pound) payload to approximately 80 statute miles MSL when launched at WSMR (4,000 feet MSL). The Viper Loki is fired from a rail launcher.

The nominal rocket impact range is approximately 30 statute miles at WSMR.

The wind-weighting technique is used for Viper Loki impact predictions at WSMR.

VIPER LOKI DISPERSION
WHITE SANDS MISSILE RANGE, NEW MEXICO

1969-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF VIPER LOKI IMPACT MISS DISTANCES (% CENT) STATUTE MILES				
			0<5	>5<10	>10<15	>15<20	>20<25
1969	16	11.8	0	60	0	40	0
1970	22	10.7	11	34	33	22	0
1971	21	7.5	32	37	31	0	0

1969-							
1971	59	9.0	21	40	27	12	0

Standard error of estimate for the period of record: 10.1 ST. Miles

* The following Viper Loki launches were excluded from this dispersion analysis:

1969	7 malfunctions;	4 unknown impacts
1970	1 malfunction;	12 unknown impacts
1971	-----	2 unknown impacts

ARCAS AND BOOSTED ARCAS

The ARCAS is an end-burning, slow acceleration, fin-stabilized, meteorological rocket used to carry a 6.5-pound payload to approximately 45 statute miles MSL.

A gas-generator is used to increase the exit velocity of the rocket from an 18-foot launch tube.

The nominal rocket impact range at WSMR is approximately 35 statute miles for the ARCAS and 50 miles for the Boosted ARCAS.

Various motors have been used as boosters for the ARCAS to increase its altitude capability. Boosters used with the ARCAS at WSMR have been the HVAR, MARC 14Al (Boosted ARCAS I), Sidewinder, MARC 42Al (Boosted ARCAS II), and the Sparrow. The peak altitude for a HVAR-boosted ARCAS with a 12-pound payload is approximately 57 statute miles MSL, while the MARC 14Al will reach approximately 63 miles. The Sidewinder-boosted ARCAS will reach approximately 85 miles, and the MARC 42Al and Sparrow-boosted ARCAS will reach approximately 105 miles with similar payloads.

At WSMR, the boosted ARCAS is launched from a 15-foot rail.

The wind-weighting technique is used for the ARCAS and Boosted ARCAS predictions at WSMR.

ARCAS (GAS GENERATED) DISPERSION

WHITE SANDS MISSILE RANGE, NEW MEXICO

1967-71

YEAR	*TOTAL FIRINGS	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF ARCAS IMPACT MISS DISTANCES (PER CENT) STATUTE MILES				
			0<5	5<10	10<15	>15<20	>20<25
1967	123	6.2	41	43	15	0	1
1968	126	7.7	25	51	21	0	0
1969	128	7.3	39	38	17	5	1
1970	101	6.5	44	41	10	5	0
1971	63	5.8	53	36	9	2	0
1967- 1971	541	6.8	40	42	15	3	0

Standard error of estimate for the period of record: 7.4 ST. Miles

* The following ARCAS launches were excluded from this dispersion analysis:

- 1967 4 malfunctions; 6 unknown impacts
- 1968 17 malfunctions; 8 unknown impacts
- 1969 7 malfunctions; 4 standard ARCAS
- 1970 14 malfunctions; 2 unknown impacts
- 1971 7 malfunctions; 1 unknown impact

BOOSTED ARCAS** DISPERSION

WHITE SANDS MISSILE RANGE, NEW MEXICO

1968-71

YEAR	TOTAL FIRES	CUMULATIVE MEAN MISS STATUTE MILES	RELATIVE FREQUENCY DISTRIBUTION OF BOOSTED ARCAS ¹ IMPACT MISS DISTANCES (PER CENT)				
			STATUTE MILES				
			0-5	5-10	10-15	15-20	20-25
1968	5	5.8	62	33	6	0	0
1969	10	12.2	0	57	25	0	0
1970	7	9.4	43	24	23	0	0
1971	9	10.5	39	26	26	0	0
¹ For reference, note a 10 per cent dispersion requirement in the contract.							
1968- 1971	31	9.3	33	37	24	0	0

Standard error of estimate for the period of record: 11.7 ST. Miles

* The following Boosted ARCAS launches were excluded from this dispersion analysis:

- 1968 1 malfunction; 1 unknown impact
- 1969 - malfunctions; 2 unknown impacts
- 1971 1 malfunctions

** Sparrow, KAMC-1A1 (Boosted ARCAS II), Sidewinder, KAMC-1A1
(Boosted ARCAS II), ERAS.

REFERENCES

1. Duncan, L. D., and E. Bachalo, April 1967: "Real-time meteorological system for firing unguided rockets", American Meteorological Society, Journal of Applied Meteorology, Lancaster, Pennsylvania, 6(2):394-400.
2. Duncan, L. D., July 1968: "Real-time meteorological system for unguided rocket impact prediction", Report EMDL-SS, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico.
3. Bachalo, E., August 1968: "Real-time postflight impact prediction system", Technical Report WSMR-1, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico.
4. Coopersmith, V. C., E. E. O'Dwyer, and F. Ramirez, March 1968: "Digital computer program for five-degree-of-freedom trajectory", Report EMDL-5006, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico.

**APPENDIX A
DISPERSION DATA
FOR
INDIVIDUAL NIKE-BOOSTED
ROCKET FIRINGS**

Preceding page blank

NIKE-APACHE

.1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD 1,000 lb.	PREDICTED*		ACTUAL*	2nd Stage Impact	MISS†
					1st	2nd Stage Impact			
1971	DRS NASA 14.388	12 Mar	1750M	187.0	80.0N	9.0W	50.1N	4.0W	20.5
	NASA 14.465	22 Apr	1816M	185.0	73.0N	0.0	67.4N	2.6W	6.2
	NASA 14.467	22 Apr	1847M	156.0	38.0N	8.0W	31.2N	10.8W	7.4
1970	NASA 14.413 UG	27 Jun	0145M	110	48.0N	5.0W	42.0N	6.8W	6.3
	NASA 14.413	27 Aug	2143M	110	53.6N	9.7W	49.3N	13.1W	5.5
	NASA 14.464 UA	21 Sept	2200M	140	50.0N	6.0W	----	----	Malfunction
	NASA 14.458	20 Nov	1200M	100	45.0N	7.0W	----	----	Malfunction
	NASA 14.418	17 Dec	1223M	160	50.0N	7.0W	54.0N	3.2W	5.5
1969	DRS NASA 14.420	28 May	1448M	115	50.0N	1.7E	51.0N	4.0E	2.5
	STV85	29 May	0755M	/1	70.0N	2.4W	65.0N	14.9W	13.5

* These figures are presented in ST. Miles

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*	ACTUAL*	MISS*		
					2nd Stage Impact	2nd Stage Impact			
1969	DRS 14.421	9 Jun	1000H	115	49.9N	3.1E	65.2N	6.7W	18.2
	STV87	1 July	0639H	71	69.8N	4.9W	57.4N	5.1W	12.4
	DRS NASA 14.422	13 Aug	0030H	133.5	50.0N	2.2W	56.1N	7.1E	11.2
	DRS NASA 14.423 UA	22 Aug	0435H	133.5	50.2N	5.3W	50.3N	1.9W	3.4
	NASA 14.353 UG	4 Dec	1831H	129.5	49.5N	7.4W	44.2N	1.0W	8.3

* These figures are presented in ST. Miles

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*	MISS*
						2nd Stage Impact		
1968	Speedball 11 R119 SN 53	2 Feb	1657N	92	49.83	16.1E	38.5S	12.9E
								12.4
	STRV070 3W02	27 Feb	1054N	71	46.08	9.8E	49.6S	6.1W
								16.3
	Speedball 11 R121 SN54	25 Apr	1006N	95	46.23	16.0E	44.0S	1.0E
								17.0
	Speedball 11 R122 SN 55	8 May	1025N	85	49.88	16.1E	59.3S	0.0
								20.4
	DRS NASA 14.363 GT	6 Jun	1037N	130	50.0N	1.7W	41.3N	5.6W
								9.5
	DRS NASA 14.335 GT	10 Jun	1113N	116.5	49.8N	4.4W	52.1N	4.2W
								2.3
	DRS NASA 14.336 UA	22 Aug	0238N	115	50.0N	1.7W	49.6N	1.7W
								0.4
	DRS NASA 14.301 UA	20 Aug	1332N	115	50.0N	1.7W	52.6N	12.4E
								14.3
	DRS NASA 14.352 UA	4 Dec	1111N	115	49.9N	2.6W	53.8N	3.0W
								3.9
	DRS NASA 14.353 UA	14 Dec	0810N	115	50.0N	0.0	57.1N	4.0W
								8.1
1967	Speedball R096 SN 42	11 Jan	1022N	92	39.0S	18.7E	45.2S	8.8E
								11.3

* These figures are presented in SI. Miles

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*	MISS*
					2nd Stage Impact	Impact		
1967	Speedball 11 R097 SN 43	16 Feb	1323M	65	39.0S	18.2E	45.2S	36.7E
	Speedball 11 R098 SN 44	21 Feb	1404M	75	69.8S	18.1E	47.6S	7.1E
	Speedball 11 R099 SN 45	2 May	1145M	79.5	44.5S	18.0E	44.3S	11.6E
	Speedball 11 R100 SN 96	17 May	0900M	60.0	68.9S	17.8E	37.6S	1.9E
	Speedball 11 R101 SN 47	24 May	1110M	77.5	47.2S	19.9E	53.5S	0.7W
	Speedball 11 R102 SN 48	5 July	1533M	71	69.8S	16.1E	64.7S	1.9E
	STV SR 57	7 July	0853M	71	43.9S	10.1E	41.5S	5.8W
	Speedball 11 R103 SN 51	26 July	1616M	60	49.8S	18.1E	18.1S	1.6E
	Speedball 11 R104 SN 50	26 July	1200M	88	49.8S	18.1E	51.9S	8.2E
	Speedball 11 R105 SN 49	1 Aug	1325M	68	44.5S	18.0E	39.9S	27.6E
	Speedball 11 R106 SN 52	1 Aug	1636M	55	49.8S	18.1E	2.4S	3.9E
								Malfunction

25

* Prior figures are presented in SI. Miles

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*		MISS*
						2nd Stage Impact		2nd Stage Impact	
1967	DRS NASA 16, 16, CT	6 Aug	2000M	115	43.8N	3.1E	54.1N	0.7E	11.0
	Speedball II R107 SN65	9 Aug	1406H	60	49.4S	18.1E	55.4S	22.3E	7.0
	Speedball II R108 SN52	22 Aug	1357A	60	49.8S	18.1E	66.5S	1.6E	16.8
	Speedball II R109 SN66	12 Sept	1826M	80	49.0S	18.1E	50.2S	13.8E	4.3
	Speedball II R110 SN65	19 Sept	1253M	80	49.9S	18.1E	61.2S	6.1E	Malfunction
	Speedball II R111 SN66	1 Sept	1100K	80	42.3S	18.0E	64.1S	14.8E	3.7
	Speedball II R112 SN37	42 Sept	1437M	80	49.4S	18.1E	66.9S	21.6E	4.1
	Speedball II R113 SN68	1 Sept	1155M	50	49.8S	18.1E	69.2S	15.4E	2.9
	Speedball II R114 SN69	1 Sept	1600M	50	49.1S	18.1E	70.9S	16.1E	4.1
	Speedball II R115 SN69	1 Sept	1300M	50	49.1S	18.1E	65.2S	11.2E	29.9

* Time of impact, date of impact, and time of impact.

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD	PREDICTED*		ACTUAL*		MISS*
					1bs.	2nd Stage Impact	2nd Stage Impact	2nd Stage Impact	
1967	Speedball II RL16 SN51	26 Sep ¹	1430H	78	49.8S	19.1E	52.0S	28.8E	10.9
1966	STV SRO22	18 Jun	1506H	55	64.0N	0.0	61.0N	24.2E	24.4
	STV SRO23	24 Jan	1304H	55	63.8N	5.6W	73.0N	10.5E	18.5
	STV SRO24	11 Mar	1200H	76.5	49.8N	4.3W	32.5N	13.5W	19.6
	STV SRO25	11 Mar	1402H	70	22.7N	5.6W	3.3N	1.0E	Malfunction
	STV SRO26	29 Mar	1214H	70	69.7N	6.1W	68.1N	12.0W	6.1
	STV SRO27	21 Apr	1145H	70.3	70.0N	0.0	78.3N	15.6W	17.7
	STV SRO28	21 Apr	1403H	70	70.9N	0.0	77.9N	13.7W	15.8
	STV SRO29	2 May	0826H	80	59.8N	5.2W	53.2N	24.0W	19.9
	STV SRO30	2 May	1047H	80	59.8N	5.7W	41.7N	10.7E	24.1
	STV SRO31	26 May	1600H	74.0	69.0N	3.7W	95.4N	18.2E	33.6
	STV SRO32	2 Jun	1043H	74.8	69.7N	6.1W	5.8N	1.5W	Malfunction
	Photometric SRO33	7 Jun	0346H	68.5	68.4N	3.6W	67.4N	10.0W	6.4

* These figures are presented in ST. Miles

NIKE-APACHE (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*		MISS
					2nd Stage Impact		2nd Stage Impact		
1966									
	Photometri. SRO3a	13 Jun	0344H	68.5	59.8N	5.2W	65.7N	10.4W	7.9
	STV SRO16	28 July	1100H	81	69.7N	8.7W	71.3N	7.9W	1.8
	ERDA 66-24	1 Aug	0100H	65	55.7N	5.8W	67.0N	8.3E	14.2
	ERDA 66-25	1 Aug	0306H	65	71.7N	6.3W	12.3N	5.8W	Malfunction
	ERDA 66-26	1 Aug	0600H	65	79.7N	7.0W	88.9N	6.2W	9.2
	ERDA 66-22	1 Aug	1211H	68	69.9N	6.1W	70.7N	6.0W	0.8
	ERDA 66-23	1 Aug	1505H	68	59.8N	5.2W	66.0N	5.1E	12.0
	Speedball 11 RH7 SNJ3	3 Aug	1100H	65	69.8S	18.1E	33.6S	12.9E	17.0
	STV SRO15	4 Aug	0300H	111.5	54.8N	4.8W	49.1N	4.0W	5.8
	DRS NASA 14.173 UA	15 Aug	1635H	115	52.3N	4.6W	57.6N	2.1W	5.9
	STV SRO16	16 Aug	0930H	80	69.9N	4.3W	56.3N	8.4E	14.3
	STV SRO17	19 Sept	0900H	83.4	69.7N	6.1W	4.6N	11.2N	7.1

* Predictive data presented in miles.

NIKE-APACHE (CONT)

1966-1971							
YEAR	MISSILE	DATE	TIME	PAYOUT Lbs.	PREDICTED*	ACTUAL*	MISS*
		---	---	---	2nd Stage Impact	2nd Stage Impact	---
1966	Speedball IX R88 SN34	9 Sept	1450M	83.8	49.8S	18.1E	60.5S
	Speedball II R089 SN35	28 Sept	1120M	65	49.8S	18.1E	47.5S
	Speedball II R090 SN36	5 Oct	1404M	65	49.8S	18.1E	72.3S
	Speedball II R091 SN37	12 Oct	1048M	80	49.8S	18.1E	58.6S
	Speedball II R092 SN38	12 Oct	1341M	80	49.8S	18.1E	61.7S
	DRS NASA 14.299 UA	13 Nov	1515M	115	48.4N	3.4W	68.5N
	Speedball II R093 SN39	18 Nov	1400M	45	39.0S	18.2E	37.1S
	Speedball II R094 SN40	18 Nov	1600M	45	36.9N	16.3E	20.3S
	Speedball II R095 SN41	18 Nov	1800M	45	39.0S	18.2E	45.5S

* These figures are presented in ST. Miles

NIKE-HYDAC

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*		MISS*
					2nd Stage Impact	2nd Stage Impact	2nd Stage Impact	2nd Stage Impact	
1966-1971									
1970	STV 92	12 Mar	1522N	220	10.4N	9.3W	78.7N	14.1W	9.6
STV 93	5 May	0800M	225	69.3N	9.7W	66.6N	10.9W	2.7	
STV 94	5 May	1100M	264	69.3N	9.7W	73.5N	10.9W	4.4	
STV 95	10 Aug	1119N	225	70.6N	7.6W	74.6N	9.4W	6.5	
STV 96	28 Aug	2200M	265	70.0N	1.7W	69.7N	7.2W	3.5	
1969	STV 75 (R06)	14 Jan	0630M	215	69.3N	2.4W	90.5N	7.0W	22.0
STV 82	6 Feb	0811M	905	69.9N	3.7W	62.5N	15.4W	13.8	
STV 83	6 Feb	0900M	220	68.9N	12.2W	63.4N	0.7E	14.1	
STV 84	7 Feb	0915M	220	73.9N	13.0W	81.8N	15.8W	8.4	
STV 86	9 Jun	1000M	210	70.3N	2.4W	62.0N	2.5W	8.0	
STV 88	10 July	1130M	210	70.0N	0.0	70.0N	10.5W	10.5	

NIKE-HYDAC (CONT.)

1966-1971

1966-1971						
YEAR	MISSILE	DATE	TIME	PAYOUTLOAD 1b.	PREDICTED 2nd Stage Impact	ACTUAL* 2nd Stage Impact
1969	Ballistic Round	10 July	1230H	225	70.0N 0.0	69.1N 5.2E
		STV 89	30 July	1055H	210	69.9N 3.7W
1970	Ballistic Round	30 July	1145H	225	69.9N 3.7W	74.7N 55.6N
		STV 90	24 Sept	1911H	254	69.3N 8.5W
1971	STV 91	22 Oct	1112H	264	74.4N 9.1W	80.9N 11.4W
		STV SR071	12 Aug	0614H	218	60.0N 0.0
1972	STV SR072	4 Sept	0305H	210	69.9N 3.1W	59.9N 59.9N
		STV SR073	5 Sept	0300H	218	69.9N 3.7W
1973	STV SR074	5 Sept	0300H	218	69.9N 3.7W	72.9N 72.9N
		STV SR076	10 Oct	0630H	223	69.9N 3.7W
1974	95-68-4-604	17 Oct	1530H	400	66.6N 2.3W	62.6N 62.6N
		STV SR077	24 Oct	0701H	400	61.3N 3.2W
						11.3W 11.3W
						8.9 8.9
						23.0 23.0

* These figures are presented in ST. Miles

NIKE-HYDAC (CONT.)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lb.	PREDICTED*	ACTUAL*		MISS*	
						2nd Stage Impact	2nd Stage Impact		
1967	STV SRO65	5 Jan	0900H	233	68.6N	3.0W	64.5N	7.50	6.1
	STV SRO66	24 Jan	1100H	233	50.0N	2.0W	44.8N	3.94	13.6
	STV SRO67	14 Jan	1329H	233	70.0N	2.0W	90.9N	12.86	25.6
	STV SRO68	29 Mar	0932H	213	69.3N	4.9W	69.6N	22.0W	17.1
	DAS STV	24 May	0724H	213	68.7W	2.6W	67.9N	10.1E	24.3
	SRO56								
	STV SRO59	29 Aug	0135H	263	67.9N	7.6W	67.3N	0.9W	2.7
	SRO60	13 Sept	0041H	270	60.0N	0.0	68.6N	0.0	8.6
	SRO62								
	STV SRO59	21 Sept	1000H	213	69.0N	6.0	73.1N	3.8W	3.6
	STV SRO61	11 Oct	2249H	210	70.0N	0.0	76.1N	19.0E	20.0
	STV SRO62	12 Oct	0014H	210	70.0N	1.2W	79.1N	0.4E	9.1
	STV SRO69	11 Dec	1010H	213	67.1N	6.3W	68.6N	12.4E	17.8

* These figures are converted to SI. Milon

NIKE-HAWK (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	Payload	PREDICTED*	ACTUAL*	2nd Stage Impact	MILES*
				1lb.				
1966	NEL2 8TV 60039	20 Sept	0913H	210	69.0H	2.9H	94.0H	26.3W
	NEL2 8TV 60039	27 Sept	0913H	210	69.0H	2.9H	79.7H	11.3W
	NEL2 8TV 60039	4 Oct	0802H	233	69.9H	2.9H	66.3H	2.5W
	NEL2 8TV 60041	29 Oct	1320H	233	69.9H	2.9H	67.9H	6.2W
	NEL2 8TV 60042	15 Nov	0043H	233	69.9H	2.4H	80.4H	1.7W
	NEL2 8TV 60043	22 Nov	0907H	233	69.9H	3.1H	79.5H	37.4W
	NEL2 8TV 60044	1 Dec	0823H	210	69.9H	2.9H	69.3H	5.3W
								13.7

* These figures are presented in ft., Miles

NIKE-APACHE NICAP

1967

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PREDICTED*		ACTUAL*		MISS*
					2nd Stage Impact		2nd Stage Impact		
1967	RU-67-1	23 Jan	0001N	65	61.8N	5.4W	38.4N	6.8E	Malfunction
	RO-67-2	23 Jan	0300N	65	59.8N	5.2W	67.4N	4.7W	7.6
	RO-67-3	23 Jan	0600N	65	64.8N	5.7W	16.9N	1.5E	Malfunction
	RO-67-4	23 Jan	1224N	65	59.8N	5.2W	82.2N	6.8E	25.4
	RO-67-5	26 Jan	1145N	65	75.8N	5.3W	87.8N	6.1W	12.0

NIKE-CAJUN

1966-1971

1971	Nike-Cajun	12 Jan	1930N	110	50.0N	6.0W	38.0N	1.3E	14.0
	DRS								
	Sphere	25 Mar	0947N	150	50.0N	5.0W	33.5N	13.2W	8.9
	Ejection								
	NASA 10.279								
	Nike-Cajun	11 May	2245N	111	44.0N	6.0W	38.1N	6.3W	3.4
	10.278 NA								
	Nike-Cajun	12 May	1910N	111	44.1N	7.1W	46.5N	10.1W	4.9
	10.280 NA								

* These figures are presented in ST. Miles

NIKE-CAJUN (CONT.)

YEAR	MISSILE	DATE	TIME	PAYLOAD		PREDICTED*		ACTUAL*		MISS**
				1bs.	2nd Stage Impact					
1971	3 Sphere Ejection-6	21 July	1145M	128	50.0	5.0W	43.7N	4.7W	6.3	
	3 Sphere Ejection-7	7 Sep	1400M	130	50.0N	5.0W	45.0N	10.0W	7.1	
	3 Sphere Ejection	22 Sep	1030M	127	50.0N	5.0W	48.6N	11.9W	7.0	
NASA 10.378	13 Oct	1316M	230	16.0N	5.8W	19.8N	3.4W	4.5		
NASA 10.379	13 Oct	1328M	210	33.0N	8.8W	40.6N	7.0W	7.8		
1970	NASA 10.277 NA	20 Mar	1650M	110	49.0N	5.0W	----	----	Malfunction	
	3 Sphere Ejection	9 Mar	1246M	132	54.8N	4.8W	48.8N	2.0W	6.6	
	3 Sphere Ejection	23 July	1130M	100	49.9N	2.7W	53.6N	3.5W	3.8	
Chemical Trail	5 Oct	2000M	60	59.7N	6.3W	60.1N	10.7W	4.4		
Chemical Trail	5 Oct	2200M	60	59.7N	6.3W	59.5N	4.4E	10.7		

* These figures are presented in ST. Miles

NIKE-CAJUN (CONT.)

1966-1971							
YEAR	MISSILE	DATE	TIME	PAYLOAD 1bs.	PREDICTED*		MISS*
					2nd Stage Impact	2nd Stage Impact	
1971	Chemical Trail	6 Oct	2200M	60	----	----	----
	Chemical Trail	6 Oct	2200M	60	----	----	Malfunction
1969	3 Sphere Ejection	20 Nov	1319M	60	49.9N	4.0W	51.0N
	3 Sphere Ejection	12 Dec	1900M	60	55.9N	2.9W	60.0N
1966	RN 026	22 Apr	1910M	110	65.8N	2.3W	71.1N
	NICAP/1	7 July	0438M	110	62.2N	7.7W	62.3N
	NICAP/1	15 July	1309M	110	65.6N	3.4W	65.7N
	NICAP/1	18 July	1540M	110	60.3N	3.2W	55.5N
	NICAP/1	24 July	0605M	110	58.5N	4.6W	56.8N
	NICAP/1	24 July	0130M	110	58.5N	4.6W	63.3N
	NICAP/1	24 July	0300M	110	58.5N	4.6W	67.5N
	NICAP/1	24 July	0438M	110	58.5N	4.6W	64.8N

* These figures represent 1.0 Si. Miles

NIKE-CAJUN (CONT)

1966-1971

YEAR	MISSILE	DATE	TIME	PAYLOAD lbs.	PRED. CTED*	ACTUAL 2nd Stage Impact	MISS*
					2nd Stage Impact		
1966	NICAP/1	24 July	0545M	110	58.5N	4.6W	60.4N 6.3W 2.5
	NICAP/1	24 July	0700M	110	58.5N	4.6E	58.0N 7.3W 2.8
	NASA 10.18 LA1	25 Oct	1110M	104	50.5N	0.0	55.0N 0.6W 2.6
	NASA 10.1066M	9 Dec	0400M	249	39.4N	7.0W	34.8N 1.8W 6.9

* These figures are presented in ST. Miles

NIKE-JAVELIN

1967-1970

YEAR	MISSILE	DATE	TIME	PAYLOAD 1bs.	PREDICTED*		ACTUAL*		MISS*
					2nd Stage Impact		2nd Stage Impact		
1970	ECM Round	9 Apr	1116M	207	54.8N	4.8W	59.1N	9.4W	6.3
1969	Pre- Secede 1	5 Sept	1953M	147	69.5N	8.5W	72.1N	0.9W	8.0
Pre- Secede 2	6 Sept	1952M	147		69.5N	8.5W	61.1N	23.7W	17.4
Pre- Secede 3	13 Sept	1942M	147		69.4N	9.7W	57.4N	18.9W	15.1
38	MD-67-9.5-2	14 Sept	1930M	180	70.0N	0.0	80.9N	4.4E	11.8
	MD-67-9.5-3	8 Nov	1541M	180	68.0N	2.4W	62.6N	7.4E	11.2

NIKE-IROQUOIS

YEAR	AF/AO	DATE	TIME	PAYLOAD 1bs.	PREDICTED*		ACTUAL*		MISS*
					2nd Stage Impact		2nd Stage Impact		
1971	7.015-2	8 Jan	1441M	71	58.0N	18.0W	61.0N	21.0W	4.2
	AF/AO 7.016-3	8 Jan	1531M	71	57.0N	10.0W	55.0N	1.5E	11.7
	AF/AO 7.015-3	21 Mar	2212M	71	70.0N	13.0W	71.7N	16.4W	3.8

* These figures are presented in ST. Miles

MICROQUOIS (CONT)

YEAR	MISSILE	DATE	TIME:	PREDICTED*		ACTUAL*		MISS*
				PAYLOAD lbs.	2nd Stage Impact	2nd Stage Impact	Impact	
1971								
1971	AP/AO 7.9133	11 Mar	2355M	71	72.0N	15.0W	87.9N	11.7W
	AF/AO 7.017-1	21 Sept	0230M	150	57.0N	10.0W	56.8N	12.5W
	AF/AO 7.914-1	27 Sept	0230X	150	57.0N	10.0W	55.7N	13.7W
								3.9

* These figures are presented in ST. Miles

ACKNOWLEDGEMENTS

The authors would like to express appreciation to their fellow impact predictors, George Fugate, Dennis Hulse, Len Carter, and John Sharpe for their assistance in maintaining daily records of impact data and miss distances for each hot firing. Without these logs, the task of the authors would have increased manyfold.

Preceding page blank