

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección adversa Signalling

Extensiones

Matching Theory

Juegos experimentales

Anexos

References

Teoría de los Juegos y Estrategia

Tópico 4: Economía de la Información

Luis Chávez

Escuela Profesional de Economía USMP

Lima, 2025

Contenido

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adver Signalling

Extensione

Matching Theor

Anexos

References

- 1 Introducción
- 2 Información asimétrica Riesgo moral Selección adversa Signalling
- 3 Extensiones Matching Theory Juegos experimentales
- 4 Anexos

Acerca de

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Selección ao Signalling

Extensione

Matching Theory

Anexos

Reference

- 1 La era de la información.
- 2 En particular, la información tecnológica (a lo Varian) y digital.
- 3 La información es un bien económico.
- 4 La información induce estrategias (incentivos y contratos).

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Selección adve

Extensione

Juegos experime

Allexus

Reference

El problema: sea una relación bilateral en la que una parte contrata a otra para llevar a cabo alguna acción o tomar una decisión, a cambio de una retribución. Se trata del contratista (principal) y al contratante (agente).

- El principal diseña el contrato.
- El agente aceptará el contrato siempre que $U(\cdot)$ sea mayor que la que obtendría de no firmarlo (utilidad de reserva).
- La negociación es unilateral (∄ contraoferta del agente).
- El agente acepta o no firmar el contrato.

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adven Signalling

Extensione

Matching The Juegos experin

Anexos

References

Definición 1 (información)

Conjunto de características verificables (variables) dentro de un contrato.

- Información simétrica.
- Información asimétrica (oculta): induce el problema del principal y el agente.

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adve Signalling

Extensione

Matching Theory

Juegos experimenta

Anexos

Reference

Definición 2 (contrato)

Promesa fiable entre ambas partes, en la que se especifican las obligaciones de cada una ante cualquier contingencia. Incluye el mecanismo de pago mediante el cual el agente será compensado por su esfuerzo (Macho-Stadler and Pérez-Castrillo, 2001).

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección advers Signalling

Extension

Matching Theory

Juegos experimental

Anexos

Reference

Ejemplo 1

Al contratar un taxi, contratas a un agente para que realice una tarea. Tú, el cliente, deseas llegar a tu destino rápidamente y a bajo costo, pero el taxista busca maximizar sus profits. El conductor parece tener un incentivo para cobrar de más, y tu capacidad para monitorear esto es muy limitada porque conoces muy poco sobre los patrones de tráfico y las rutas rápidas.

Supuestos

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección advers Signalling

Extensione

Matching Theory

Anexos

Reference

- 1 Información completa entre el principal (P) y el agente (A).
- 2 Puede haber información simétrica, pero imperfecta.
- 3 La naturaleza (N) 'decide' algo.
- 4 Interacción dinámica: ENPS.
- 5 Juego estático (contrato de un sólo periodo).

El modelo base

Game Theory

Luis Chávez

Introducción

Informació

Riesgo moral Selección advers Signalling

Extensiones

Matching Theor

Anexos

Reference

- Los participantes¹, P y A, poseen información completa a priori y posteriori al contrato
- El resultado del vínculo laboral es un valor monetario, x.
- El conjunto de posibles resultados, X.
- El esfuerzo del A, e.
- Un componente aleatorio donde ambos participantes tiene la misma distribución prior.

¹Pueden ser personas, instituciones o firmas.

El modelo base

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Selección ac Signalling

Extensione

Matching Theory

Juegos experimentals

Anexos

Reference

Como el resultado es aleatorio, se define la probabilidad de un resultado particular como:

$$Prob(x = x_i | e) = p_i(e), \quad \forall \{i\}_1^n, \ p_i(e) > 0$$
 (1)

si $X = \{x_1, ... x_n\}$ es cierto que $\sum_i p_i(e) = 1$. Como existe incertidumbre, las preferencias por el riesgo se escribe vía funciones de beneficios del tipo VNM. El comportamiento de P depende de su función cóncava de beneficios

$$B(x-w), \quad B'>0, \ B''<0$$
 (2)

donde w es el pago de A.

Game Theory

Luis Chávez

Introducción

Informació

Riesgo moral Selección adv Signalling

Extensiones

Matching Theory
Juegos experiment

Anexos

References

El agente recibe w como contraprestación por sus servicios, pero a costa de e. Su utilidad 2 se puede escribir como

$$U(w,e) = u(w) - v(e)$$
(3)

donde v'(e) > 0 y $v''(e) \ge 0$

²Separable aditivamente y cóncava en $u(\cdot)$.

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Selección adv Signalling

Extensione

Matching Theor

Anexos

Reference

El conflicto de intereses está seteado por:

- P está interesado en x pero A no.
- A P no le interesa e, mientras que a A si.
- Un mayor e induce a creer que un mejor resultado será más probable.

Entonces, ¿existe cooperación?.

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección advers Signalling

Extensiones

Matching Theory

Anexos

Reference

El problema de P alcanza una solución pareto-eficiente:

$$\max_{e, \ w(x_i), \forall i} \sum_{i=1}^{n} p_i(e) B(x_i - w(x_i))$$
 (4)

s.a la condición de participación:

$$\sum_{i=1}^{n} p_i(e) u(w(x_i)) - v(e) \ge \underline{U}$$
 (5)

donde se asume que e es observable por P (verificable).

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adv

Extensione

Matching Theory

Juegos experimentales

/ IIIC/(O3

Reference

Ejemplo 2

Sea el espacio de esfuerzo del agente $e \in [0,\infty)$ y la producción $x(e) = 100 \ln(1+e)$. Si A rechaza el contrato, $\underline{U} = 3$ y el P obtiene 0. Si A acepta el contrato, de modo que $U(e,w) = \ln(w) - e^2$ y B = x(e) - w(e). Resolver.

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección adversa Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

Reference

Ejemplo 2 (continuación...)

$$ln(w)=e^2+3$$

$$w = exp(e^2 + 3)$$

Luego,

$$B(e) = 100 \ln(1+e) - exp(e^2 + 3)$$

$$\frac{100}{1+e} = exp(e^2 + 3)(2e)$$

$$e^* = 0.77$$

Contenido

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adver

Signalling

Extensiones

Juegos experimentales

Allexus

Reference

- Introducción
- 2 Información asimétrica Riesgo moral Selección adversa
- 3 Extensiones Matching Theory Juegos experimentales
- 4 Anexos

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Selection ad Signalling

Extension

Matching The

Anexos

Reference

Definición 3 (riesgo moral)

Un modelo presenta **riesgo moral** si la acción de A no es verificable o, en su defecto, si A recibe información privada post vínculo laboral.

Ejemplo: el esfuerzo de A (¿incluye el contrato?).

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral Selección adve

Extensione

Matching The

Anexos

Reference

Sea el modelo estándar en su versión discreta. A puede elegir n posibles esfuerzos $e_1, ..., e_n$ (acciones, en general), los cuales producen m resultados $x_1, ..., x_m$. El resultado a priori es una señal que aporta información sobre la acción elegida por A. Cuando A escoge e_i , P observa x_i con probabilidad $p_{ii} > 0^3$.

P (neutral al riesgo) observa el resultado, paga w_j y conserva $x_j - w_j$. Si la función de A U(w, e) es separable en el esfuerzo y el salario, se define:

$$U(w,e) = u(w) - e \tag{6}$$

Si A tiene preferencias von Neumann-Morgenstern, se tiene:

$$B = x - w \tag{7}$$

³Si p = 0, P puede excluir algunos esfuerzos.

Problema de A

Game Theory
Luis Chávez

Introducción

Información asimétrica

Riesgo moral

Signalling

Extensione

Matching Theory

Juegos experiment

Anexos

Reference

Cuando P ofrece w_i , A escoge su esfuerzo para optimizar:

$$\max_{\{i=1,...,n\}} \sum_{j=1}^{m} p_{ij} u(w_j) - e_i$$
 (8)

s.a los n-1 restricciones de incentivos

$$\sum_{j=1}^{m} p_{ij} u(w_j) - e_i \ge \sum_{j=1}^{m} p_{kj} u(w_j) - e_k, \quad k \ne i$$
 (9)

y la restricción de participación cuando se elige el esfuerzo e_i :

$$\sum_{i=1}^{m} p_{ij} u(w_j) - e_i \ge \underline{U}$$
 (10)

Problema de P

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Signalling

Extensione

Matching Theory

Anexos

Reference

P debe elegir el contrato $w_1, ..., w_m$ que maximiza su utilidad esperada condicionada a la decisión de A:

$$\max_{w_1,\dots,w_m} \sum_{j=1}^m p_{ij}(x_j - w_j) \tag{11}$$

s.a (9) y (10). El lagrangiano de P será:

$$\mathcal{L}(w, \lambda, \mu) = \sum_{j=1}^{m} p_{ij}(x_j - w_j) + \sum_{\substack{k=1\\k \neq i}}^{n} \lambda_k \left(\sum_{j=1}^{m} p_{ij} u(w_j) - e_i - \sum_{j=1}^{m} p_{kj} u(w_j) + e_k \right)$$

$$+\mu\left(\sum_{i=1}^{m}p_{ij}u(w_{j})-e_{i}-\underline{U}\right) \tag{12}$$

Aplicaciones

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral Selección adve

Eutonolon

LATERISION

Matching Theory

Juegos experimenta

Anexos

Reference

Ejemplo 3

Sea el modelo de riesgo moral regular con P neutral al riesgo y A con aversión al riesgo. A puede elegir entre dos niveles de esfuerzo $e_i \in \{\underline{e}, \overline{e}\}$ con un costo asociado $c_i \in \{\underline{c}, \overline{c}\} = \{0, c\}$; con c > 0. Cada esfuerzo genera aleatoriamente uno de dos posibles niveles de beneficio, $x_i \in \{\underline{x}, \overline{x}\}$ con $p(\underline{x}|\underline{e}) > p(\underline{x}|\overline{e})$. La función de utilidad de A es

$$u(w,c_i) = \ln w - c_i \tag{13}$$

Se pide describir el problema P-A cuando P desea implementar \bar{e} y determine la escala salarial óptima que se ofrecerá hacia A que implementa \bar{e} .

Contenido

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral

Selección adversa

Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

Reference

- Introducción
- 2 Información asimétrica

Riesgo moral

Selección adversa

Signalling

- ③ Extensiones Matching Theory Juegos experimentales
- 4 Anexos

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral Selección adversa Signalling

Extensione

Matching Theor

Anexos

Reference

Definición 4 (selección adversa)

Un modelo presenta **selección adversa** si A posee información privada antes del vínculo contractual con P.

El modelo de vinos

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Selección adversa

Extensione

Matching Theo

Juegos experimental

Anexos

Reference

Sea el caso de un vendedor (P) que tiene vinos de diferentes calidades y precios. Ello le ayuda a segmentar su mercado por calidad. El comprador (A) es el bebedor de vino. Dado que hay segmentación, se habla de una discriminación de precios de segundo grado.

El modelo de vinos

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Selección adversa

Signalling

Extensione

Matching Theory

Juegos experimental

Anexos

Reference

El bebedor moderado (A) planea comprar como máximo una botella de vino por período. Su utilidad es

$$U = \theta q - t, \quad \theta = \{\theta_1, \theta_2\}, \ \theta_1 < \theta_2 \tag{14}$$

donde q es la calidad que compra y θ es un parámetro que indexa su gusto por la calidad. Si no compra vino, U=0. Se cumple la condición Spence-Mirrlees:

$$\frac{\partial [u(q,\theta') - u(q,\theta)]}{\partial q} > 0, \quad \forall \theta' > \theta \tag{15}$$

Dado q, los consumidores más especiales están dispuestos a pagar más que los consumidores 'básicos' por el mismo aumento en la calidad. Esto ayuda a segmentar el mercado en calidad. Se sabe que $p(\theta_1) = \pi$.

El modelo de vinos

Game Theory
Luis Chávez

Introducción

Informació asimétrica

Selección adversa Signalling

Extensione

Matching Theory

Juegos experiments

Anexos

Peterence

P es un monopolista local que produce vino de calidad $q \in (0, \infty)$ con costos

$$C = C(q) \tag{16}$$

donde *C* es doblemente diferenciable y estrictamente diferenciable:

$$C'(0) = 0$$

$$C'(\infty) = \infty$$

Su beneficio está dado por

$$t - C(q) \tag{17}$$

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Selección adversa

Signalling

Extensiones

Matching Theory

Anexos

Reference

Primer mejor: discriminación perfecta

Si P observa el tipo θ_i de A, su problema será:

$$\max_{q_i,t_i} t_i - C(q_i) \tag{18}$$

s.a

$$\theta_i q_i - t_i \ge 0 \tag{19}$$

El productor ofrecerá $q_i = q_i^*$ tal que $C'(q^*) = \theta_i$ y $t_i^* = \theta_i q_i^*$ para el consumidor de tipo θ_i , extrayendo así todo su excedente.

Game Theory

Luis Chávez

Introducción

Información

Riesgo moral Selección adversa Signalling

Extensiones

Matching Theory

Juegos experimentales

Anexos

References

Game Theory

Luis Chávez

Introducció

Información asimétrica

Selección adversa Signalling

Extensiones

Matching Theor

Anexos

References

Implicancias:

- Las calidades óptimas son eficientes.
- Como $\theta_1 < \theta_2$, $q_2^* > q_1^*$, lo que implica que el consumidor sofisticado compra una calidad de vino más alta que el comprador básico (discriminación de primer grado).

Game Theory
Luis Chávez

Introducció

Informació

Selección adversa Signalling

Extensione

Matching Theory

Juegos experimenta

Anexos

Reference

Segundo mejor: información asimétrica

Ahora, P sólo conoce que la proporción de consumidores básicos es π . Si él propone el primer mejor, con contratos (q_1^*, t_1^*) y (q_2^*, t_2^*) , el consumidor sofisticado escogería el primero ya que:

$$\theta_2 q_1^* - t_1^* = (\theta_2 - \theta_1) q_1^* > 0 = \theta_2 q_2^* - t_2^*$$
 (20)

El consumidor sofisticado tiene incentivo para mentir y elegir el contrato del consumidor básico, porque le da utilidad positiva. Por eso, el primer mejor no es implementable cuando hay información privada: no respeta RCI.

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Selección adversa

Extensiones

Matching Theory

Anexos

Reference

Entonces, el problema se redefine a:

$$\max_{t_i,q_i} [\pi(t_1 - C(q_1)) + (1 - \pi)(t_2 - C(q_2))]$$
 (21)

s.a

$$\theta_1 q_1 - t_1 \ge \theta_1 q_2 - t_2, \ (RCI_1)$$
 (22)

$$\theta_2 q_2 - t_1 \ge \theta_2 q_1 - t_1, \ (RCI_2)$$
 (23)

$$\theta_1 q_1 - t_1 \ge 0, \ (RP_1)$$
 (24)

$$\theta_2 q_2 - t_2 \ge 0, \ (RP_2)$$
 (25)

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Selección adversa Signalling

Extensione

Matching Th

۸

Reference

En el óptimo:

- RP_1 se activa si $t_1 = \theta_1 q_1$.
- RP_2 se activa si $t_2 t_1 = \theta_2(q_2 q_1)$.
- $q_2 \geq q_1$.
- RCI₁ y RP₂ pueden ser esquivados.
- El consumidor sofisticado compra la calidad eficiente $q_2 = q_2^*$.

¿Demostración? Véase Salanié (2005).

Aplicaciones

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral

Selección adversa

Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

Reference

Ejemplo 4

Considere el trabajo de Macdonald y Tapadar (2010).

Contenido

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral

Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

Reference

- Introducción
- 2 Información asimétrica

Riesgo moral Selección adversa

Signalling

- 3 Extensiones Matching Theory Juegos experimentales
- 4 Anexos

Game Theory

Luis Chávez

Introducció

Informació

Selección a

Signalling

Matching Theor

Anexos

Reference

- En los modelos de selección adversa, la parte desinformada toma la iniciativa al ofrecer a la parte informada una lista de contratos entre los cuales los diferentes tipos de agentes informados pueden elegir según sus características particulares.
- En la vida real, a veces es difícil determinar si la iniciativa recae en la parte informada o en la desinformada.
- Así, es importante estudiar también los juegos en los que la parte informada juega primero enviando una señal que puede revelar información sobre su tipo. La parte desinformada intenta entonces descifrar estas señales.

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral

Signalling

. . .

Extension

Matching The

Anexos

References

Definición 5 (señalización)

Un modelo presenta **señalización** si A puede enviar señales antes de la firma del contrato a P, en el que P observa esas señales.

Mercado de autos usados

Game Theory

Luis Chávez

Introducción

Informació

Riesgo moral

Signalling

Extensione

Matching Theory

Anexos

Reference

Considere el modelo de Akerlof (1970). Se asume la presencia de carros buenos y carros malos en el mercados de vehículos usados⁴.

⁴Véase los limones.

Aplicaciones

Game Theory

Luis Chávez

Introducción

Informació

Riesgo moral

Signalling

Eutonolon

Extensione

Matching Theory
Juegos experimentales

Anexos

References

Ejemplo 5

Considere el trabajo de Tyler et al. (2000).

Contenido

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección adv Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

References

- Introducción
- 2 Información asimétrica Riesgo moral Selección adversa Signalling
- 3 Extensiones Matching Theory Juegos experimentales
- 4 Anexos

Fundamentos

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección adversa Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

References

Pizarra...

Contenido

Game Theory

Luis Chávez

Introducción

Información asimétrica

Riesgo moral Selección adve Signalling

Extensiones

Matching Theory

Juegos experimentales

Anexos

References

- 1 Introducción
- 2 Información asimétrica Riesgo moral Selección adversa Signalling
- 3 Extensiones
 Matching Theory
 Juegos experimentales
- 4 Anexos

Fundamentos

Game Theory

Luis Chávez

Introducción

Informació asimétrica

Riesgo moral Selección adversa Signalling

Extensione

Matching Theory

Juegos experimentales

Anexos

References

Pizarra...

Referencias

Game Theory

Luis Chávez

Introducció

Informació asimétrica

Riesgo moral Selección adver Signalling

Extensione

Matching Theo

Anexos

References

Macho-Stadler, I. and Pérez-Castrillo, J. D. (2001). An introduction to the economics of information: incentives and contracts. OUP Oxford.

Salanié, B. (2005). The Economics of Contracts: A Primer. MIT Press, 2nd edition.