الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الحتبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي صندوق U_1 على 5 كريات تحمل الأرقام 1 ، 1 ، 1 ، 1 ، 3 ويحتوي صندوق U_2 على 4 كريات تحمل الأرقام 1 ، 1 ، 2 ، 2 ، 2 ، 1 ، 1 ويحتوي صندوق U_1 على 4 كريات على 5 كريات على 5 كريات على 6 كريات على 9 كريا

نختار عشوائيا أحد الصندوقين ونسحب منه عشوائيا كريتين في آن واحد.

" نعتبر الحوادث A: M " سحب كريتين تحملان رقمين فرديين A: M " سحب كريتين تحملان رقمين زوجيين (1 M سحب كريتين إحداهما تحمل رقما فرديا والأخرى تحمل رقما زوجيا M

أ) أنجز الشجرة التي تُنمذج هذه التجرية.

$$P(C)$$
 بيّن أنّ $P(A) = \frac{1}{12}$ و $P(A) = \frac{23}{60}$ ثمّ احسب (ب

ينفرغ محتوى الصندوقين U_1 و U_2 في صندوق جديد U_3 ثمّ نسحب منه عشوائيا كريتين في آن واحد.

المتغيّر العشوائي الذي يرفق بكل عملية سحب لكريتين جُداء الرقمين المسجلين عليهما. X

 $\{1;2;3;4;6\}$ هي X هي المتغيّر العشوائي المجموعة قيم المتغيّر العشوائي

 $E\left(X
ight)$ عيّن قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي $E\left(X
ight)$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كل حالة من الحالات الآتية:

 $h(x) = 7e^{2x} - 3$ بـ: \mathbb{R} بالذي يحقّق $y(\ln 2) = 25$ هو الدالة y' = 2y + 6 الذي يحقّق y' = 2y + 6 الذي يحقّق (1

 $\lim_{x\to+\infty} \left[x - \ln(e^x - 1) \right] = +\infty$ (2

31 هي المتوسطة الدالة $x\mapsto x(x^2+1)^2$ على المجال (3) هي 31 (3

 $v_n = \int_n^{n+1} e^{-x+3} dx$ بنا المنتالية المعرّفة على \mathbb{N} بنا المنتالية المعرّفة على (v_n) (4

 $v_0 + v_1 + \dots + v_n = e^3 - e^{-n+2}$ ، n من أجل كل عدد طبيعي

التمرين الثالث: (05 نقاط)

$$u_{n+1}=-1+rac{2}{2-u_n}$$
 ، n عدد طبیعي $u_0=rac{1}{2}$: ومن أجل كل عدد $u_0=u_0=1$

$$0 < u_n \leq \frac{1}{2}$$
 ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (أ (1

(D)

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

بيّن أنّ المتتالية
$$(u_n)$$
 متناقصة تماما.

$$v_n = \frac{1}{u_n} - 1$$
 ، n نضع: من أجل كلّ عدد طبيعي (2

$$n$$
 بدلالة v_n بدلالة v_n بدلالة v_n بدلالة أ) أثبت أنّ المتتالية v_n بدلالة المتتالية أ

$$\lim_{n\to+\infty}u_n$$
 بستنتج أنّه: من أجل كلّ عدد طبيعي ، $n=\frac{1}{2^n+1}$ ، n عدد طبيعي (ب

$$T_n = \frac{1}{u_0} + \frac{1}{u_1} + \dots + \frac{1}{u_n}$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (3

 $T_n=2^{n+1}+n$ ، n عدد طبیعی عدد أجل كلّ من أجل كلّ من أجل كلّ عدد S_n احسب

التمرين الرابع: (07 نقاط)

$$x\mapsto (2x-1)e^{2x}$$
 بـ \mathbb{R} بـ يلدالة المعرّفة على التمثيل البياني للدالة المعرّفة على Γ

و
$$(D)$$
 المستقيم ذو المعادلة $y=1$ ، y هي فاصلة نقطة

تقاطع
$$(\Gamma)$$
 و (D) و (Γ)

$$(D)$$
 بقراءة بيانية ، حدّد وضعية (Γ) بالنسبة إلى $(1$

$$g(x) = (2x-1)e^{2x}-1:$$
ب الدالة المعرّفة على $g(x)$ ب الدالة المعرّفة على $g(x)$ ب الدالة المعرّفة على $g(x)$ ب المارة $g(x)$ ب المارة $g(x)$ ب المارة ويم $g(x)$

$$f(x) = (x-1)(e^{2x}-1)$$
 بالدالة المعرّفة على $\mathbb R$ بالدالة المعرّفة المعرّفة على الدالة المعرّفة المعرّفة على الدالة الدالة المعرّفة على الدالة الدال

$$(2\ cm\$$
وحدة الطول) $(0;ec{i},ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f

$$\lim_{X\to +\infty} f(X)$$
 و $\lim_{X\to -\infty} f(X)$ احسب (1

$$-\infty$$
 عند (C_f) عند $y=-x+1$ عند Δ) عند Δ عند (Δ) مقارب مائل لـ (Δ) عند (Δ) عند (Δ)

$$(\Delta)$$
 ادرس وضعية (C_f) بالنسبة إلى

$$f'(x) = g(x)$$
 ، x عدد حقیقی عدد من أجل كل عدد من أجل كل عدد عقیقی

ب) استنتج أنّ
$$f$$
 متناقصة تماما على $-\infty$; α ومتزايدة تماما على أثم شكّل جدول تغيّراتها.

بيّن أنّ
$$(C_f)$$
 يقبل مماسا (T) موازيا لـ (Δ) ، يُطلب تعيين معادلة له.

. فواصل نقط تقاطع
$$(C_f)$$
 مع حامل محور الفواصل (4

$$(f(lpha) \simeq -0.9$$
 و $f(1,4) \simeq 6.2$ و (C_f) و (T) ، (Δ) ارسم (T)

$$f\left(x
ight) = -x + m$$
 ناقش بيانيا، حسب قيم الوسيط الحقيقي m ، عدد حلول المعادلة

$$\int_0^{\frac{1}{2}} (x-1) e^{2x} dx = \frac{3-2e}{4}$$
 : نين أنّ بين أنّ بين أنّ (5) باستعمال المكاملة بالتجزئة، بيّن أنّ

 $m{\psi}$ استنتج، بالسنتيمتر المربع، مساحة الحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات التي معادلاتها:

y = -x + 1 $y = \frac{1}{2}$, x = 0

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

يحتوي كيس على 10 كريات متماثلة ولا نفرق بينها باللّمس، موزعة كما يلي: 3 كريات بيضاء مرقمة بـ: 1 ، 1 ، 2

و 3 كريات حمراء مرقمة بـ: 1 ، 2 ، 2 و 4 كريات خضراء مرقمة بـ: 1 ، 2 ، 2 ، 2

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث C ، B ، A الآتية:

" الحصول على كريتين من نفس اللون " B ، " الحصول على كرية خضراء على الأقل A

" الحصول على كربتين تحملان رقمين زوجيين $^{\prime\prime}$

 $\frac{2}{3}$ يساوي $\frac{4}{15}$ وأنّ احتمال الحدث $\frac{4}{15}$ يساوي (أ (1

ب) احسب الاحتمالين P(C) و $P(A \cap C)$ هل الحدثان P(C) مستقلان؟

ج) استنتج احتمال الحصول على كريتين من نفس اللون علما أنّهما تحملان رقمين زوجيين.

2 نعتبر المتغيّر العشوائي X الذي يرفق بكل عملية سحب لكريتين مجموع الرقمين المسجلين عليهما.

أ) برّر أنّ مجموعة قيم المتغيّر العشوائي X هي $\{2;3;4\}$

 $E\left(X
ight)$ عين قانون احتمال المتغيّر العشوائي X ثمّ احسب أمله الرياضياتي $\left(X
ight)$

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

دات المجهول z في z هما: 8 $z^2-4z+1=0$ هما:

$$\frac{1}{4} - \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} + \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad -\frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac$$

الشكل الجبري للعدد المركب $\frac{1+\sqrt{3}+i}{1-i}$ هو:

$$\frac{\sqrt{3}}{2} + i \left(\frac{-2 + \sqrt{3}}{2} \right) \left(\div \frac{\sqrt{3}}{2} - i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2$$

الجذران التربيعيان للعدد المركب -8+6i هما:

$$-3-i$$
 g $3+i$ g $1-3i$ g $1+3i$ g $1+3i$

: هو $\frac{1+i}{\sqrt{3}-i}$ الشكل المثلثي للعدد المركب (4

$$\frac{\sqrt{2}}{2} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right) \left(\div \frac{\sqrt{2}}{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left$$

التمرين الثالث: (05 نقاط)

 $u_{n+1}=rac{4}{5}u_n+1$ ، u_n عدد طبیعي $u_0=0$ ومن أجل كلّ عدد المعرّفة ب $u_0=0$

 $u_n < 5$ ، n عدد طبیعي (أ (1

بيّن أنّ (u_n) متزايدة تماما.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

 $v_n = u_n - 5$ ، نضع: من أجل كلّ عدد طبيعي (2

$$v_0$$
 الأول عنيين حدّها الأول ، $\frac{4}{5}$ المنتالية (v_n) هندسية أساسها

$$u_n=-5igg(rac{4}{5}igg)^n+5$$
 ، n عبارة عبارة v_n بدلالة v_n اكتب عبارة v_n اكتب عبارة التج أنّه: من أجل كلّ عدد طبيعي

 $\lim_{n\to+\infty}u_n$ (=

$$T_n = u_0 + u_1 + \dots + u_n$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (3 $T_n = 5n - 20 \bigg(1 - \bigg(\frac{4}{5}\bigg)^n\bigg)$ ، n عدد طبيعي عدد طبيعي S_n نصب S_n بدلالة n ثمّ بيّن أنّه من أجل كلّ عدد طبيعي

التمرين الرابع: (07 نقاط)

 $f(x) = \left(\left(\ln x\right)^2 - 3\right)\ln x$ الدالة المعرّفة على المجال $g(x) = \left(\left(\ln x\right)^2 - 3\right)\ln x$ الدالة المعرّفة على المجال

 $\left(O; \overrightarrow{i}, \overrightarrow{j} \,
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f \,
ight)$

المسب النتيجة هندسيا. $\lim_{x \to 0} f(x)$ احسب (أ (1

 $\lim_{x\to +\infty} f(x)$ باحسب (ب

$$f'(x) = \frac{3(-1+\ln x)(1+\ln x)}{x}$$
 ، $]0;+\infty[$ من المجال عدد حقيقي x من المجال عدد حقيقي (1 عدد عقيقي x من المجال x

$$(-1+\ln x)(1+\ln x)>0$$
 : x المتراجحة ذات المجهول $(-1+\ln x)(1+\ln x)>0$ المجال $(-1+\ln x)(1+\ln x)>0$

- - 1 عيّن معادلة لـ (C_f) مماس معادلة لـ (T) عيّن معادلة الفاصلة الفاصلة عيّن معادلة الفاصلة الفاصلة (T)
 - . عيّن فواصل نقط تقاطع (C_f) مع حامل محور الفواصل (C_f)
 - $\left[0\,;e^{2}
 ight]$ ارسم $\left(C_{f}
 ight)$ و $\left(C_{f}
 ight)$ على المجال $\left(T
 ight)$

$$F(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$$
 بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$ بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$ بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$

- ب) احسب مساحة الحيّز المستوي المحدّد بالمنحني (C_f) وحامل محور الفواصل والمستقيمين اللذين معادلتا هما: x=e و x=1
- . الدالة المعرّفة على $0;+\infty$ بياني في المعلم السابق. $h(x)=\left((\ln x)^2-3\right)\left|\ln x\right|$ بياني في المعلم السابق.

العلامة				٤					
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)							
التمرين الأول (04 نقاط)									
2	0.75	$U_1 < \frac{3}{5}$ انجاز الشجرة التي تنمذج التجربة $U_1 < \frac{3}{5} \rightarrow C$ $< \frac{1}{2} \rightarrow U_1 < \frac{1}{6} \rightarrow B$ $\frac{1}{6} \rightarrow C$					1		
	2 × 0.5	P	$(B) = \frac{1}{2}$	$\langle \frac{1}{6} = \frac{1}{12}$		2 3	2 0	00	
	0.25	$P(C) = 1 - (P(A) + P(B)) = \frac{8}{15}$							
	0.5	أ) تبرير عناصر المجموعة {1;2;3;4;6}							
2	5 × 0.25	$P(X = x_i)$	$ \begin{array}{c} 1 \\ \underline{10} \\ \underline{36} \end{array} $	2 15 36	$\frac{3}{\frac{5}{36}}$	$\frac{4}{\frac{3}{36}}$	$\begin{array}{c c} 6 \\ \hline 3 \\ \hline 36 \end{array}$	ب)	2
	0.25						$E(\lambda$	$\left(1 \right) = \frac{85}{36}$	
		(ين الثاني					
1	2 × 0.5	F		2)=25				صحيح	1
1	2 × 0.5	$\lim_{x \to +\infty} \left[x - \ln(e^x - 1) \right] = \lim_{x \to +\infty} \left[\ln e^x - \ln(e^x - 1) \right]$ $= \lim_{x \to +\infty} \ln \frac{e^x}{e^x - 1} = 0$ $\lim_{x \to +\infty} \left[x - \ln(e^x - 1) \right] = \lim_{x \to +\infty} \left[x - \ln(e^x - 1) \right]$ $= \lim_{x \to +\infty} \left[-\ln(1 - e^{-x}) \right] = 0$					2		
1	2 × 0.5	$\frac{1}{2-0} \int_0^2 x (x^2+1)^2 dx = \left[\frac{1}{12} (x^2+1)^3 \right]_0^2 = \frac{31}{3} : $ خاطئ لأنّ:				3			
1	2 × 0.5	$v_0 + v_1 + \dots + v_n$	•	$\int_{-x+3}^{+3} dx + \int_{-x+3}^{+3} dx$	_		$\int_{n}^{n+1} e^{-x}$		4

		التمرين الثالث (05 نقاط)					
1.5	0.25	أ) البرهان بالتراجع: التحقق من صحّة الخاصية الابتدائية					
	0.75	إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)					
	0.5	ب) من أجل كلّ n من n من أجل كلّ n من أجل كلّ n من أجل كلّ n من أجل كلّ n ب					
	0.5	$v_{n+1} = \frac{1}{u_{n+1}} - 1 = \frac{2(1 - u_n)}{u_n} = 2\left(\frac{1}{u_n} - 1\right) = 2v_n$ (1)	2				
2	2×0.25	$v_n = v_0 \times q^n = 2^n$					
	2 × 0.5	$\lim_{n \to +\infty} u_n = 0$ و $u_n = \frac{1}{v_n + 1} = \frac{1}{2^n + 1}$ ، n و $u_n = 0$					
1.5	0.5 + 1	$T_n = S_n + (n+1) = 2^{n+1} + n$ $S_n = V_0 \frac{1-q^{n+1}}{1-q} = 2^{n+1} - 1$					
		التمرين الرابع (07 نقاط)					
0.5	0.25	(D) على المجال $[-\infty; lpha]$ أسفل	1 (I				
0.5	0.25	(D) على المجال $[\alpha:]lpha:+\infty$ على المجال $[\alpha:]lpha:+\infty$ على المجال المجال على المجال المحال المح					
	0.25	x $-\infty$ α $+\infty$ $g(x)$ إشارة	2				
0.5		$g(x)$ - ϕ +					
	0.25	$0.6 < lpha < 0.7$ ومنه: $g(0.7) \simeq 0.62$ ومنه: $g(0.6) \simeq -0.34$					
0.5	2 × 0.25	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty$					
	0.25	$\lim_{x \to -\infty} \left[f(x) - (-x+1) \right] = 0 ($	2				
1		$ig(\Deltaig)$ أعلى $ig(C_f)\colon ig]1;+\infty$ وعلى $ig(\Deltaig)$ أعلى $ig(C_f)\colon ig]-\infty;1$					
	3 × 0.25	$A(1;0)$ في النقطة $\Delta (C_f)$ في النقطة (C_f)					
	0.25	f'(x) = g(x) ، x عدد حقیقی و أجل كلّ عدد عقیقی					
	2 × 0.25	$[lpha;+\infty[$ متناقصة تماما على $]-\infty;lpha]$ ومتزايدة تماما على f	3				
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$					
1.5	0.25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	 						

2	2 × 0.25	أ) فاصلتا نقطتي تقاطع (C_f) مع حامل محور الفواصل هما: 0 و				
	0.25 0.25 0.50	ب) الرسم: Δ (Δ) رسم (Δ) (Δ) رسم (Δ	4			
	0.50	لما $m<1-\frac{1}{2}e$ يوجد حلول و لما $m<1-\frac{1}{2}e$ يوجد حل وحيد $m<1-\frac{1}{2}e$ يوجد حلان و لمّا $m<1-\frac{1}{2}e<0$ يوجد حلان و لمّا $m<1-\frac{1}{2}e<0$				
	2 × 0.25	$\int_0^{\frac{1}{2}} (x-1) e^{2x} dx = \frac{1}{4} \left[(2x-3) e^{2x} \right]_0^{\frac{1}{2}} = \frac{3-2e}{4} : \text{(i)}$				
1	2 × 0.25	$\mathcal{A} = \int_0^{\frac{1}{2}} \left[-x + 1 - f(x) \right] dx = -\int_0^{\frac{1}{2}} (x - 1) e^{2x} dx (1)$ $= \frac{2e - 3}{4} \times 4 cm^2 = (2e - 3) cm^2$	5			

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

العلامة							
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)					
	التمرين الأول (04 نقاط)						
	2 × 0.5	$P(B) = 1 - P(\overline{B}) = 1 - \frac{C_6^2}{C_{10}^2} = \frac{2}{3} \text{o} P(A) = \frac{C_4^2 + C_3^2 + C_3^2}{C_{10}^2} = \frac{4}{15} \text{(f)}$					
2.75	2 × 0.5	$P(A \cap C) = \frac{C_3^2 + C_2^2}{C_{10}^2} = \frac{4}{45} \text{o} P(C) = \frac{C_6^2}{C_{10}^2} = \frac{1}{3} (\mathbf{L})$	1				
	0.25	$P(A \cap C) = P(A) \times P(C)$ الحدثان A و A مستقلان لأنّ					
	2 × 0.25	ب C مستقلان ، $P_C(A) = P(A) = \frac{4}{15}$ بان ، $P_C(A) = P(A) = \frac{4}{15}$					
	0.25	أ) تبرير عناصر المجموعة {2;3;4}					
1.25	4 × 0.25	$E(X) = \frac{16}{5} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2				
		التمرين الثاني (04 نقاط)					
1	2 × 0.5	$z_2 = \frac{1}{4} - \frac{1}{4}i$ و $z_1 = \frac{1}{4} + \frac{1}{4}i$ ، $\Delta = -16$ الاقتراح الصحيح هو جـ) لأنّ					
1	2 × 0.5	$\frac{1+\sqrt{3}+i}{1-i} imes \frac{1+i}{1+i} = \frac{\sqrt{3}}{2}+i\left(\frac{2+\sqrt{3}}{2}\right)$ الاقتراح الصحيح هو أ					
1	2 × 0.5	$\left(1+3i\right)^2=-8+6i$ و $\left(-1-3i\right)=-\left(1+3i\right)$ و الاقتراح الصحيح هو أ) لأنّ:					
1	2 × 0.5	الاقتراح الصحيح هو ب) لأنّ: $arg\left(\frac{1+i}{\sqrt{3}-i}\right) = arg\left(1+i\right) - arg\left(\sqrt{3}-i\right) o \left \frac{1+i}{\sqrt{3}-i}\right = \frac{\sqrt{2}}{2}$					
		التمرين الثالث (05 نقاط)					
	0.25	أ) البرهان بالتراجع: التحقق من صحّة الخاصية الابتدائية	1				
1.5	0.75	إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)	•				
	0.5	ب) من أجل كلّ n من n من n من n من n من n من أجل كلّ n من أجل كلّ n من أجل كلّ n من أجل كلّ n					
	0.5	$v_{n+1} = u_{n+1} - 5 = \frac{4}{5}u_n - 4 = \frac{4}{5}(u_n - 5) = \frac{4}{5}v_n$, \mathbb{N} من أجل كلّ n من أجل كلّ n					
	0.25	$v_0 = -5$	2				
2	2 × 0.5	$u_n = v_n + 5 = -5\left(\frac{4}{5}\right)^n + 5$ $v_n = v_0 \times q^n = -5\left(\frac{4}{5}\right)^n$ (φ					
	0.25	$\lim_{n \to +\infty} \left(\frac{4}{5}\right)^n = 0 \forall \lim_{n \to +\infty} u_n = 5 (\Rightarrow)$					

	<u> </u>	m 1					
1.5	1	$S_n = V_0 \frac{1 - q^{n+1}}{1 - q} = -25 \left[1 - \left(\frac{4}{5} \right)^{n+1} \right]$	3				
	0.5	$T_n = S_n + 5(n+1) = 5n - 20\left[1 - \left(\frac{4}{5}\right)^n\right]$ و					
		التمرين الرابع (07 نقاط)					
1.25	0.25 + 0.5	(C_f) ا المستقيم ذو المعادلة $x=0$ مقارب له، $\lim_{x o 0} f(x) = -\infty$ (أ	1				
1.20	0.5	$\lim_{x \to +\infty} f(x) = +\infty (\downarrow)$	1				
	0.5	$f'(x) = \frac{3(-1+\ln x)(1+\ln x)}{x}$ ، $]0;+\infty[$ من أجل كلّ x من $]0;+\infty[$					
	0.5	$\left]0;e^{-1} ight[\cup]e;+\infty ight[$ ب $\left[0;e^{-1} ight]$ مجموعة حلول المتراجحة هي					
	0.25	$\left[e;+\infty ight[e]0;e^{-1} ight]$ متزايدة تماما على كلّ من المجالين $f\left(e;+\infty ight[e]$					
2.25	0.25	$\lceil e^{-1};e ceil$ ومتناقصة تماما على المجال	2				
	0.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	2 × 0.25	y = f'(1)(x-1) + f'(1) = -3x + 3 : (T) أ) معادلة لـ					
	3 × 0.25	$e^{\sqrt{3}}$ ب $e^{-\sqrt{3}}$ ، 1 هي: $e^{-\sqrt{3}}$ و $e^{-\sqrt{3}}$ و $e^{-\sqrt{3}}$					
2	0.25 0.5	ج) الرسم: (T) رسم (C_f) رسم (C_f)	3				
	0.25	$F'(x) = f(x)$ ، $]0; +\infty[$ من أجل كلّ x من أرأ					
0.75	2 × 0.25	$\mathcal{A} = -\int_{1}^{e} f(x) dx = -[F(e) - F(1)] = (2e - 3)u.a$ (ب	4				

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيد التام بسلم التنقيط