Organizacija datoteka

Serijska i sekvencijalna organizacija datoteke

Struktura, formiranje, traženje, obrada, ažuriranje, primena i ocena

Sadržaj

- Serijska organizacija datoteke
- Sekvencijalna organizacija datoteke

Osnovna struktura

- slogovi smešteni jedan za drugim
 - u sukcesivne memorijske lokacije
- fizička struktura ne sadrži informacije o vezama između slogova logičke strukture datoteke
- ne postoji veza između vrednosti ključa sloga i adrese lokacije u koju je smešten
- redosled memorisanja slogova najčešće prema hronološkom redosledu njihovog nastanka
- slogovi mogu, a i ne moraju, biti blokirani

- Primer mala serijska datoteka D_{ser}
 - slogova N = 13
 - faktor blokiranja f = 3
 - slogovi
 - dvojke $(k(S_i), p(S_i))$
 - k(S_i) vrednost ključa
 - $p(S_i)$ konkretizacija ostalih obeležja sloga S_i (i = 1,...,13)
 - fizički blokovi
 - adrese (relativne) $A_i = i$: A_1 , A_2 , A_3 , A_4 i A_5
 - oznaka kraja datoteke: *

A ₁						
	34	$p(S_1)$	07	p(S ₂)	03	p(S ₃)

A ₂						
	15	p(S ₄)	19	p(S ₅)	29	p(S ₆)

A ₃						
	64	p(S ₇)	43	p(S ₈)	23	p(S ₉)

A ₄						
	27	p(S ₁₀)	13	p(S ₁₁)	49	p(S ₁₂)

A ₅					
	25	p(S ₁₃)	*		

it

Serijska organizacija datoteke

Formiranje serijske datoteke

- serijska datoteka se generiše
 - najčešće u postupku obuhvata podataka
- slogovi
 - formiraju se prenosom podataka sa različitih izvora
 - izvorna dokumenta
 - uređaji i softveri za očitavanje vrednosti (u realnom vremenu)
 - upisuju se jedan za drugim u sukcesivne memorijske lokacije
 - svaki novi slog se upisuje na kraj datoteke
- rezultat obuhvata podataka
 - neblokirana ili
 - blokirana serijska datoteka

- Formiranje serijske datoteke
 - obuhvat podataka upotreba
 - u realnom vremenu
 - na mestu i u trenutku nastanka podataka
 - u batch režimu
 - migracija podataka

Traženje sloga u serijskoj datoteci

- traženje slučajno odabranog sloga
 - ne postoji funkcionalna veza između vrednosti ključa i adrese lokacije sloga
 - traženje logički narednog = traženje slučajno odabranog
- primena metode linearnog traženja
 - počinje od početka datoteke
 - pristupanje sukcesivno memorisanim blokovima i slogovima
- uspešno traženje, ukupan broj pristupa R_u :

$$1 \le R_u \le B$$

– neuspešno traženje, ukupan broj pristupa R_n :

$$R_n = B$$

B – ukupan broj blokova serijske datoteke

Traženje sloga u serijskoj datoteci

- ukupan broj blokova datoteke: $B = \left| \frac{N+1}{f} \right|$

 - f faktor blokiranja
 - + 1 zbog specijalnog sloga sa oznakom kraja datoteke
- uspešno traženje, očekivani (srednji) broj pristupa
 - verovatnoća traženja bilo kog sloga datoteke je ista, 1 / N

$$\overline{R}_u = \frac{B}{2}$$

Traženje sloga u serijskoj datoteci

– uspešno traženje, ukupan broj upoređivanja argumenta traženja i vrednosti ključa U_u :

$$1 \le U_u \le N$$

- uspešno traženje, očekivani (srednji) broj upoređivanja argumenta traženja i vrednosti ključa
 - verovatnoća traženja bilo kog sloga datoteke je ista, 1 / N

$$\overline{U}_u = \frac{N+1}{2}$$

– neuspešno traženje, ukupan broj upoređivanja argumenta traženja i vrednosti ključa U_n :

$$U_n = N$$

Obrada serijske datoteke - vodeća

- može se koristiti kao vodeća u režimu direktne obrade
- može se koristiti kao vodeća u redoslednoj obradi datoteke čiji ključ sadrži
 - ukoliko se ide na sekvencijalni pristup slogovima u hronološkom redosledu

Obrada serijske datoteke - obrađivana

- program koji vrši redoslednu obradu serijske datoteke
 - učitava sukcesivne slogove vodeće datoteke
 - svaki naredni slog vodeće datoteke sadrži logički narednu vrednost ključa obrađivane serijske datoteke
 - te vrednosti ključa se koriste kao argumenti za traženje u serijskoj datoteci metodom linearnog traženja
- u režimu direktne obrade
 - sukcesivni slogovi vodeće datoteke sadrže slučajno odabrane vrednosti ključa obrađivane serijske datoteke
 - traženje je, ponovo, linearno
- traženje logički narednog i slučajno odabranog sloga serijske datoteke
 - obavlja se identično, krećući od prvog sloga datoteke

Obrada serijske datoteke - obrađivana

- putem vodeće datoteke od $N_v = N_v^u + N_v^n$ slogova
 - N_v^u slogova inicira uspešna traženja
 - N_vⁿ slogova inicira neuspešna traženja
- inicira ukupan prosečni broj traženja

$$\overline{R}_{uk} = N_v^u \overline{R}_u + N_v^n \overline{R}_n$$

$$\overline{R}_{uk} \approx N_v^u \frac{B}{2} + N_v^n B$$

 broj pristupa se ne razlikuje za slučaj direktne i redosledne obrade

Primer - mala serijska datoteka - D_{ser}

 A_3

- slogova N = 13
- faktor blokiranja f = 3
- Direktna obrada
 - Sadržaj vodeće datoteke:
 - 64, 21, 8, 3
- Redosledna obrada
 - Sadržaj vodeće datoteke:
 - 3, 8, 21, 64

A ₁						
	34	p(S ₁)	07	p(S ₂)	03	p(S ₃)

A ₂						
	15	p(S ₄)	19	p(S ₅)	29	$p(S_6)$

64	p(S ₇)	43	p(S ₈)	23	p(S ₉)

,						
	27	p(S ₁₀)	13	p(S ₁₁)	49	p(S ₁₂)

A_5					
	25	p(S ₁₃)	*		

Ažuriranje serijske datoteke

- upis novog sloga
 - u prvu slobodnu lokaciju na kraju datoteke
 - mora mu prethoditi jedno neuspešno traženje
 - jednostavan, ali zahteva veliki broj pristupa

$$R_{i} = \begin{cases} R_{n} + 1, & \neg (f \mid (N+1)) \\ R_{n} + 2, & f \mid (N+1) \end{cases}$$

- svaki f-ti put neophodno je proširiti datoteku novim blokom
- očekivani broj pristupa

$$\overline{R}_i = R_n + 1 + \frac{1}{f}$$

Ažuriranje serijske datoteke

- brisanje postojećeg sloga
 - mora mu prethoditi jedno uspešno traženje
 - najčešće samo logičko izmenom statusa aktuelnosti sloga
 - fizičko brisanje bi zahtevalo veliki broj pristupa
- modifikacija sadržaja postojećeg sloga
 - mora mu prethoditi jedno uspešno traženje
- očekivani broj pristupa za
 - logičko brisanje ili
 - modifikaciju sadržaja sloga

$$\overline{R}_d = \overline{R}_u + 1$$

Oblasti primene i ocena karakteristika

- pogodne kao male datoteke
 - kada mogu stati cele u OM
 - zbog veoma velikog broja pristupa potrebnog za pronalaženje logički narednog ili slučajno odabranog sloga
 - druge vrste organizacije donose samo mala poboljšanja u efikasnosti obrade malih datoteka
- serijska organizacija podataka u kombinaciji sa indeksnim strukturama
 - veoma pogodna za direktnu obradu
 - osnovna fizička struktura relacionih baza podataka
- serijska datoteka kao rezultat obuhvata podataka
 - polazna osnova za izgradnju datoteka sa drugim vrstama organizacije podataka

Sadržaj

- Serijska organizacija datoteke
- Sekvencijalna organizacija datoteke

Osnovna struktura

- slogovi su smešteni sukcesivno jedan za drugim
- logički susedni slogovi smeštaju se u fizički susedne lokacije
 - postoji informacija o vezama između slogova logičke strukture podataka datoteke, ugrađena u fizičku strukturu
 - realizovana kao linearna logička struktura podataka
 - smeštanjem sloga sa većom vrednošću ključa u lokaciju sa većom adresom
 - rastuće uređenje po vrednostima ključa ⇒ slog sa najmanjom vrednošću ključa smešta se u prvu lokaciju
- naziva se i fizički sekvencijalnom organizacijom

Osnovna struktura

- veza između memorisanih vrednosti ključa k(S) i adresa lokacija
 - nije ugrađena u strukturu datoteke
 - ne predstavlja bilo kakvu matematičku funkciju
- slogovi se smeštaju u blokovima od po f (≥1) slogova
 - poželjno da faktor blokiranja f bude što veći
- savremeni OS (*Unix*) i programski jezici (*C*, *C*++,
 Java) podržavaju samo serijski način pristupa
 - korisnicima je ostavljeno da naprave svoje sopstvene sekvencijalne metode pristupa

it

Sekvencijalna organizacije datoteke

 A_{4}

- Primer mala sekvencijalna datoteka D_{sek}
 - slogova N = 13
 - faktor blokiranja f = 3
 - slogovi
 - isti sadržaj kao i D_{ser}
 - dvojke $(k(S_i), p(S_i))$
 - k(S_i) vrednost ključa
 - $p(S_i)$ konkretizacija ostalih obeležja sloga S_i (i = 1,...,13)
 - oznaka kraja datoteke: *
 - indeksi i (i=1,...,13)
 ukazuju na logički redosled smeštanja slogova

A ₁						
	03	p(S ₁)	07	p(S ₂)	13	p(S ₃)

A_2						
	15	p(S ₄)	19	p(S ₅)	23	$p(S_6)$

A ₃						
	25	p(S ₇)	27	p(S ₈)	29	p(S ₉)

34	p(S ₁₀)	43	p(S ₁₁)	49	p(S ₁₂)

64	p(S ₁₃)	*		

- najčešće sortiranjem serijske datoteke
- saglasno rastućim ili opadajućim vrednostima ključa

Traženje sloga u sekvencijalnoj datoteci

- logički narednog ili
- slučajno odabranog

traženje slučajno odabranog sloga

- moguća primena metoda
 - linearnog traženja
 - binarnog traženja
- nema praktičnog smisla ako je datoteka velika i smeštena na eksterni memorijski uređaj
- ima praktičnog smisla ako je cela datoteka smeštena u OM
 - nju, u tom slučaju, može predstavljati
 - » neka linearna struktura nad skupom slogova ili
 - » blok neke druge datoteke, npr. indeks-sekvencijalne

Traženje sloga u sekvencijalnoj datoteci

- traženje logički narednog sloga
 - linearnom metodom traženja
 - počevši od tekućeg, fizički susedni blokovi se učitavaju u OM
 - u centralnoj jedinici se vrši upoređivanje argumenata traženja i vrednosti ključa sukcesivnih slogova dok se
 - traženi slog ne pronađe
 - argument traženja ne postane manji od vrednosti ključa sloga
 - ne dođe do kraja datoteke
 - traženje novog, logički narednog sloga, započinje od sloga na kojem se prethodno traženje zaustavilo
 - tekućeg sloga datoteke

Traženje sloga u sekvencijalnoj datoteci

- traženje logički narednog sloga
- broj pristupa pri uspešnom i pri neuspešnom traženju

$$0 \le R \le B - i$$

- *i* redni broj tekućeg bloka u odnosu na početak
- broj poređenja argumenata traženja i vrednosti ključeva slogova, pri uspešnom i neuspešnom traženju

$$1 \leq U \leq N - i + 1$$

i - redni broj tekućeg sloga

Obrada sekvencijalne datoteke

- vodeća datoteka u direktnoj i redoslednoj obradi
 - česta upotreba
 - sukcesivno učitavanje fizički susednih slogova, počevši od prvog pa do poslednjeg
 - ukupan broj pristupa, kada se sekvencijalna datoteka koristi kao vodeća u obradi

$$R_{uk} = B = \left\lceil \frac{N+1}{f} \right\rceil$$

- Obrada sekvencijalne datoteke obrađivana
 - redosledna
 - direktna
 - direktna obrada
 - ima smisla ako je sekvencijalna datoteka mala, tako da se može smestiti u operativnu memoriju
 - performanse obrade malo se razlikuju od performansi obrade serijske datoteke

$$\overline{R}_{uk} = N_v^u \overline{R}_u + N_v^n \overline{R}_n$$

$$\overline{R}_{uk} \approx N_v^u \frac{B}{2} + N_v^n \frac{B}{2}$$

- Obrada sekvencijalne datoteke obrađivana
 - redosledna obrada
 - iterativan proces
 - vodeća datoteka generiše logički naredne vrednosti ključa za traženje u obrađivanoj, sekvencijalnoj datoteci
 - svaki korak obrade = traženje logički narednog sloga
 - vrši se metodom linearnog traženja
 - svaki blok datoteke učitava se u OM samo jedanput
 - vodeća datoteka sadrži N_v (N_v≥ 1) slogova
 - uključuje vrednost ključa veću ili jednaku najvećoj vrednosti ključa u obrađivanoj datoteci

- upis novog sloga
 - pronalaženje mesta upisa novog sloga neuspešno traženje
 - lokacija sloga sa prvom većom vrednošću ključa od datog
 - pomeranje za jednu lokaciju udesno svih slogova sa vrednostima ključa većim od vrednosti ključa novog sloga
- brisanje postojećeg sloga
 - prethodno pronalaženje sloga uspešno traženje
 - pomeranje za jednu lokaciju ulevo svih slogova sa većom vrednošću ključa, ako se brisanje vrši fizički
- modifikacija sadržaja sloga
 - prethodno pronalaženje sloga uspešno traženje
- upis i brisanje: ozbiljan problem ukupnog broja pristupa

Ažuriranje sekvencijalne datoteke

- u režimu direktne obrade
 - u proseku, pomeranje polovine od ukupnog broja slogova za jednu lokaciju udesno (pri upisu) ili ulevo (pri brisanju) sloga
 - primenjuje se kada je kompletna datoteka smeštena u OM

u režimu redosledne obrade

- poseban iterativni postupak
 - kreiranje potpuno nove datoteke, na osnovu postojeće
- primeren kada se datoteka ne može kompletno smestiti u operativnu memoriju
- datoteke i uloge u obradi
 - D_s
 obrađivana, ulazna (stara) sekvencijalna datoteka
 - $-D_n$ obrađena, izlazna (nova) sekvencijalna datoteka
 - D_D
 vodeća datoteka promena, serijska, ulazna
 - − D_a datoteka grešaka, izlazna

- Ažuriranje sekvencijalne datoteke
 - u režimu redosledne obrade

it

Sekvencijalna organizacije datoteke

- u režimu redosledne obrade
- format sloga datoteke D_s i D_n identičan $(k(S_i), p(S_i))$
- format sloga datoteke promena D_p : $(k(S_i), p_p(S_i), s_p(S_i))$
 - $s_p(S_i)$ polje statusa izvršene operacije, moguće vrednosti:
 - -n novi slog, m podaci za modifikaciju, b slog za brisanje
- format sloga datoteke grešaka D_g : $(k(S_i), p(S_i), s_g(S_i))$
 - $s_q(S_i)$ polje opisa greške, moguće vrednosti ukazuju na:
 - pokušaj upisa već postojećeg sloga u datoteku
 - pokušaj brisanja ili modifikacije nepostojećeg sloga datoteke

- u režimu redosledne obrade
 - sekvencijalni pristup sa učitavanjem slogova $S_s(D_s)$ i $S_p(D_p)$
 - upoređivanje vrednosti ključeva tekućih slogova
 - generisanje novih slogova $S_n(D_n)$ na osnovu sadržaja tekućih slogova S_s i S_p
 - upis slogova S_n u datoteku D_n
- dužina intervala između dva ažuriranja
 - određuje se tako da se tokom njega nakupi toliki broj promena koji bi opravdao pristupanje svim slogovima stare i generisanje nove datoteke
 - duži interval ⇒ veća efikasnost obrade, ali i duže vreme neusaglašenosti sadržaja datoteke sa realnim stanjem

- u režimu redosledne obrade
- datoteka promena D_p sadrži $N_v = N_v^n + N_v^b + N_v^m$ slogova
 - $-N_v^n$ za upis, N_v^b za brisanje i N_v^m za modifikaciju

– i
$$B_v$$
 blokova:

$$B_{v} = \left\lceil \frac{N_{v} + 1}{f} \right\rceil$$

- postojeća datoteka D_s sadrži B_s blokova: $B_s = \left| \frac{N+1}{f} \right|$
- nova datoteka D_n sadrži B_n blokova:

$$B_n = \left\lceil \frac{N + N_v^n - N_v^b + 1}{f} \right\rceil$$

- u režimu redosledne obrade
- srednji broj pristupa pri ažuriranju datoteke za jedno traženje logički narednog sloga

$$\overline{R} = \frac{B_v + B_s + B_n}{N_v}$$

Oblasti primene i ocena karakteristika

- prednosti
 - najpogodnija fizička organizacija za redoslednu obradu
 - ekonomično korišćenje memorijskog prostora
 - mogućnost korišćenja i magnetne trake i magnetnog diska, kao medijuma
- nedostaci
 - nepogodnost za direktnu obradu
 - potreba sortiranja pri formiranju
 - relativno dugotrajan postupak ažuriranja

Oblasti primene i ocena karakteristika

- najpogodnija fizička organizacija za redoslednu obradu
 - režim redosledne obrade često se koristi u praksi, u paketnoj (batch) obradi podataka
 - posledica činjenice da su logički susedni slogovi smešteni u fizički susedne lokacije
 - učitavanjem jednog bloka u OM, pribavlja se f slogova koji najverovatnije učestvuju u narednim koracima obrade
 - poželjno je da f bude što veći
 - kada $N_v \to N$, tada $R \to 1$ / f, te se s povećanjem f poboljšava efikasnost obrade

Sadržaj

- Serijska organizacija datoteke
- Sekvencijalna organizacija datoteke

Literatura

- Pavle Mogin: Strukture podataka i organizacija datoteka
 - Glave 8 i 9, izuzev poglavlja 9.6

Pitanja i komentari

Serijska i sekvencijalna organizacija datoteke

Struktura, formiranje, traženje, obrada, ažuriranje, primena i ocena