LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

PROOF/DEDUCTION THEORY

MODEL THEORY VS.

Two ways - do the harmonise?

- we looked at truth tables
 - inductive definition when a formula is true or false; $\varphi_1, \ldots, \varphi_n \models \psi$ if for every interpretation β in which $\varphi_1, \ldots, \varphi_n$ is true implies that $\hat{\beta}(\psi) = \text{true}$
- we looked at natural deduction:
 - $\varphi_1, \dots \varphi_n \vdash \psi$ valid sequent if ψ is deducable with the rules from $\varphi_1, \dots, \varphi_n$
- Suspicious question 1: is it possible that $\varphi_1, \ldots, \varphi_n$ are all true, $\varphi, \ldots, \varphi_n \vdash \psi$ holds, but ψ is false?
- O **Suspicious question 2**: Is it possible that the truth table tells us that ψ is always true if $\varphi_1, \ldots, \varphi_n$ and there does not exist a proof for that?

Soundness

Theorem

Given propositional logic formulae $\varphi_1, \ldots, \varphi_n, \psi$ with $\varphi_1, \ldots, \varphi_n \vdash \psi$, then $\varphi_1, \ldots, \varphi_n \models \psi$ holds.

Soundness

Theorem

Given propositional logic formulae $\varphi_1, \ldots, \varphi_n, \psi$ with $\varphi_1, \ldots, \varphi_n \vdash \psi$, then $\varphi_1, \ldots, \varphi_n \models \psi$ holds.

Proof (Induction on the number of steps in the proof)

Soundness

Theorem.

Given propositional logic formulae $\varphi_1, \ldots, \varphi_n, \psi$ with $\varphi_1, \ldots, \varphi_n \vdash \psi$, then $\varphi_1, \ldots, \varphi_n \models \psi$ holds.

Proof (Induction on the number of steps in the proof)

Base Case: $\varphi_1, \ldots, \varphi_n \vdash \psi$ has a proof in one step

- only premises are one-step-proofs
- \bigcirc thus: n = 1, $\varphi_1 = \psi$
- \bigcirc thus: $\psi \vdash \psi$
- \bigcirc ψ true iff ψ true
- \bigcirc thus $\psi \models \psi$

Soundness-Proof: Induction Hypothesis

Induction Hypothesis: Let k be in \mathbb{N} arbitrary but fixed. Assume that for all $n \in \mathbb{N}_0$ and for all proofs of length at most k $\varphi_1, \ldots, \varphi_n \vdash \psi$ implies $\varphi_1, \ldots, \varphi_n \models \psi$

Soundness-Proof: Induction Hypothesis

Induction Hypothesis: Let k be in \mathbb{N} arbitrary but fixed. Assume that for all $n \in \mathbb{N}_0$ and for all proofs of length at most k $\varphi_1, \ldots, \varphi_n \vdash \psi$ implies $\varphi_1, \ldots, \varphi_n \models \psi$ Induction Step: Let n be in \mathbb{N} and $\varphi_1, \ldots, \varphi_n \vdash \psi$ a proof of length k+1.

 \bigcirc proof of length k + 1 has structure

1.	φ_1	premise
2.	φ_2	premise
:	:	:
n.	φ_n	premise
:	:	:
(k+1).	ψ	conclusion

 \bigcirc proof of length k + 1 has structure

1.	φ_1	premise
2.	φ_2	premise
•	:	:
n.	φ_n	premise
•	:	:
(k+1).	ψ	conclusion

O what do we know about this proof?

 \bigcirc proof of length k + 1 has structure

1.	φ_1	premise
2.	φ_2	premise
•	:	:
		manaico.
n.	φ_n	premise
n. :	φ_n	:

- what do we know about this proof?
- \bigcirc there is a step k leading to ψ

 \bigcirc proof of length k + 1 has structure

1.	φ_1	premise
2.	φ_2	premise
:	:	:
n.	φ_n	premise
:	:	:
(k+1).	1/1	conclusion

- what do we know about this proof?
- \bigcirc there is a step k leading to ψ
- we do not know which rule was applied ~> proof for all rules necessary

last applied rule is $(\land i)$

$$\bigcirc \psi = \psi_1 \wedge \psi_2$$

 \bigcirc ψ_1 , ψ_2 occur up in the proof

last applied rule is $(\land i)$

- $\bigcirc \psi = \psi_1 \wedge \psi_2$
- \bigcirc ψ_1 , ψ_2 occur up in the proof

1.	φ_1	premise
•	:	:
n.	φ_n	premise
•	:	:
i_1	ψ_1	
•	:	:
i_2	ψ_2	
•	:	:
(k+1).	ψ	conclusion

last applied rule is $(\land i)$

- $\bigcirc \psi = \psi_1 \wedge \psi_2$
- \bigcirc ψ_1, ψ_2 occur up in the proof
 - $\bigcirc \psi_1, \psi_2 \text{ above } \psi$
 - $\bigcirc \varphi_1, \ldots, \varphi_n \vdash \psi_1$
 - $\bigcirc \varphi_1, \ldots, \varphi_n \vdash \psi_2$
 - \bigcirc (IH) $\varphi_1, \ldots, \varphi_n \models \psi_1$
 - \bigcirc (IH) $\varphi_1, \ldots, \varphi_n \models \psi_2$
 - o truth table:

$$\varphi_1,\ldots,\varphi_n\models\psi_1\wedge\psi_2=\psi$$

1.	φ_1	premise	
:			
n.	φ_n	premise	
:		:	
i_1	ψ_1		
:	:	:	
i_2	ψ2	*	2
		SIS CONTRACTOR	
		12 15 / 25 MELL	10
		(N) S10 N	NUZ

conclusion

last applied rule is $(\vee e)$

$$\begin{array}{c|cccc} \psi_1 & & \psi_2 \\ \vdots & & \vdots \\ \psi & & \psi \end{array}$$

last applied rule is $(\vee e)$

1.	φ_1	premise
•	•	•
n.	φ_n	premise
•	•	•
i_1	$\psi_1 \lor \psi_2$	
$i_1 + 1$	$\psi_1 \lor \psi_2$ ψ_1	assumption
		•
j_1	ψ	
$j_1 + 1$	ψ_2	assumption
•	•	•
k	ψ	
(k + 1)	ψ	conclusion ?

last applied rule is $(\vee e)$

$$\bigcirc \psi_1, \psi_2$$
 above ψ

$$\bigcirc \varphi_1, \ldots, \varphi_n \vdash \psi_1 \lor \psi_2$$

$$\bigcirc \varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi$$

$$\bigcirc \varphi_1, \ldots, \varphi_n, \psi_2 \vdash \psi$$

$$\bigcirc$$
 (IH) $\varphi_1, \ldots, \varphi_n \models \psi_1 \lor \psi_2$

$$\bigcirc$$
 (IH) $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi$

$$\bigcirc$$
 (IH) $\varphi_1, \ldots, \varphi_n, \psi_2 \vdash \psi$

 \bigcirc truth table: $\varphi_1, \ldots, \varphi_n \models \psi$

1.	φ_1	premise
:	:	:
n.	φ_n	premise
1	:	:
i_1	$\psi_1 \lor \psi_2$	
$i_1 + 1$	ψ_1	assumption
:	:	:
j ₁	ψ	
$j_1 + 1$	ψ2	assumption
1	:	:
k	ψ	
(k + 1)	ψ	conclusion

Soundness Proof

the remaining cases are left as exercises

○ what does it mean if we don't have a proof for $\varphi_1, \ldots, \varphi_n \vdash \psi$?

- what does it mean if we don't have a proof for $\varphi_1, \ldots, \varphi_n \vdash \psi$?
- o either it does not hold or

- what does it mean if we don't have a proof for $\varphi_1, \ldots, \varphi_n \vdash \psi$?
 - o either it does not hold or
- o we are not smart enough to find one

- what does it mean if we don't have a proof for $\varphi_1, \ldots, \varphi_n \vdash \psi$?
- o either it does not hold or
- we are not smart enough to find one
- \bigcirc if we find one valuation where $\varphi_1, \dots \varphi_n$ is true but ψ is false under this valuation, we know...

- what does it mean if we don't have a proof for $\varphi_1, \ldots, \varphi_n \vdash \psi$?
- o either it does not hold or
- we are not smart enough to find one
- \bigcirc if we find one valuation where $\varphi_1, \dots \varphi_n$ is true but ψ is false under this valuation, we know...
- ... that we can't find a proof (contraposition to our Soundness-Theorem)

 \bigcirc we believe in $\varphi_1, \ldots, \varphi_n \vdash \psi$

- \bigcirc we believe in $\varphi_1, \ldots, \varphi_n \vdash \psi$
- we cannot prove it

- \bigcirc we believe in $\varphi_1, \ldots, \varphi_n \vdash \psi$
- we cannot prove it
- \bigcirc we know $\varphi_1, \ldots, \varphi_n \models \psi$

- \bigcirc we believe in $\varphi_1, \ldots, \varphi_n \vdash \psi$
- we cannot prove it
- \bigcirc we know $\varphi_1, \ldots, \varphi_n \models \psi$
- does there exist a proof or not?

- \bigcirc we believe in $\varphi_1, \ldots, \varphi_n \vdash \psi$
- we cannot prove it
- \bigcirc we know $\varphi_1, \ldots, \varphi_n \models \psi$
- does there exist a proof or not?
- it does

Theorem

For an $n \in \mathbb{N}_0$ and $\varphi_1, \dots \varphi_n \models \psi$, $\varphi_1, \dots \varphi_n \vdash \psi$ also holds.

Theorem

For an $n \in \mathbb{N}_0$ and $\varphi_1, \dots \varphi_n \models \psi$, $\varphi_1, \dots \varphi_n \vdash \psi$ also holds.

Theorem

For an $n \in \mathbb{N}_0$ and $\varphi_1, \dots \varphi_n \models \psi$, $\varphi_1, \dots \varphi_n \vdash \psi$ also holds.

1.
$$\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$$
 holds

Theorem

For an $n \in \mathbb{N}_0$ and $\varphi_1, \dots \varphi_n \models \psi$, $\varphi_1, \dots \varphi_n \vdash \psi$ also holds.

- 1. $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ holds
- **2.** $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid

Theorem

For an $n \in \mathbb{N}_0$ and $\varphi_1, \dots \varphi_n \models \psi, \varphi_1, \dots \varphi_n \vdash \psi$ also holds.

- 1. $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ holds
- 2. $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- 3. $\varphi_1,\ldots,\varphi_n \vdash \psi$

Tautology and Contradiction

Definition

propositional formula φ tautology iff it evaluates to true under all its valuations, i.e. $\models \varphi$

Tautology and Contradiction

Definition

propositional formula φ tautology iff it evaluates to true under all its valuations, i.e. $\models \varphi$

Definition

propositional formula φ contradiction iff it evaluates to false under all its valuations, i.e. $\not\models \varphi$

Tautology and Contradiction

Definition

propositional formula φ tautology iff it evaluates to true under all its valuations, i.e. $\models \varphi$

Definition

propositional formula φ contradiction iff it evaluates to false under all its valuations, i.e. $\not\models \varphi$

EXAMPLE

- $\bigcirc p \lor \neg p$ is a tautology
- $\bigcirc p \land \neg p$ is a contradiction

 \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- \bigcirc **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- \bigcirc **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold
 - \circ thus: φ_1 true and conclusion false

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- \bigcirc **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold
 - thus: φ_1 true and conclusion false
 - \circ thus: φ_2 true and conclusion false

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- \bigcirc **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold
 - thus: φ_1 true and conclusion false
 - thus: φ_2 true and conclusion false
 - inductively: all φ_i true and ψ false

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- \bigcirc **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold
 - thus: φ_1 true and conclusion false
 - thus: φ_2 true and conclusion false
 - inductively: all φ_i true and ψ false
 - this would contradict $\varphi_1, \ldots \varphi_n \models \psi$

- \bigcirc in general $\chi \to \zeta$ false iff ζ false and χ true
- **Suppose**: $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ does not hold
 - thus: φ_1 true and conclusion false
 - \circ thus: φ_2 true and conclusion false
 - inductively: all φ_i true and ψ false
 - this would contradict $\varphi_1, \ldots \varphi_n \models \psi$
 - consequently $\varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$ tautology

 \bigcirc we want to show that if $\varphi_1 \dots, \varphi_n \models \psi$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid

- \bigcirc we want to show that if $\varphi_1 \dots, \varphi_n \models \psi$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- \bigcirc with Step 1 we can also prove: if $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid

- \bigcirc we want to show that if $\varphi_1 \dots, \varphi_n \models \psi$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- \bigcirc with Step 1 we can also prove: if $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- \bigcirc since both are the same formulae we can show in general that $\models \eta$ implies $\vdash \eta$

- we want to show that if $\varphi_1 \dots, \varphi_n \models \psi$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- with Step 1 we can also prove: if $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ holds then $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi \dots)))$ is valid
- since both are the same formulae we can show in general that $\models \eta$ implies $\vdash \eta$

Theorem

If the formula η *is a tautology that* η *is a theorem.*

Some considerations:

Some considerations:

 \bigcirc η tautology

Some considerations:

- \bigcirc η tautology
 - η has propositional atoms p_1, \ldots, p_n (distinct and all)

Some considerations:

- \bigcirc η tautology
 - η has propositional atoms p_1, \ldots, p_n (distinct and all)
 - in the truth table all lines valuate to true

p_1		p_n	η
false		false	true
	:		
true		true	true

 \bigcirc η theorem

Some considerations:

- \bigcirc η tautology
 - η has propositional atoms p_1, \ldots, p_n (distinct and all)
 - o in the truth table all lines valuate to true

p_1		p_n	η
false		false	true
	:		
true		true	true

- \bigcirc η theorem
 - we need a proof for η based on the 2^n lines

Lemma

 \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n

Lemma

- \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n
- $0 \in [2^n]$ (line number in the truth table)

Lemma

- \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n
- $0 \in [2^n]$ (line number in the truth table)
- $\bigcirc \ \forall i \in [n]: \ \hat{p}_i := \begin{cases} p_i & \textit{if } p_i \textit{ in line } \ell \textit{ is true,} \\ \neg p_i & \textit{otherwise} \end{cases}$

Lemma

- \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n
- $0 \ell \in [2^n]$ (line number in the truth table)

$$\bigcirc \ \forall i \in [n]: \ \hat{p}_i := \begin{cases} p_i & \text{if } p_i \text{ in line } \ell \text{ is true,} \\ \neg p_i & \text{otherwise} \end{cases}$$

Then

1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ provable if entry for φ in line ℓ is true

Lemma

- \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n
- $0 \in [2^n]$ (line number in the truth table)

$$\bigcirc \ \forall i \in [n]: \ \hat{p}_i := \begin{cases} p_i & \textit{if } p_i \textit{ in line } \ell \textit{ is true,} \\ \neg p_i & \textit{otherwise} \end{cases}$$

Then

- 1. $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$ provable if entry for φ in line ℓ is true
- 2. $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$ provable if entry for φ in line ℓ is false

Lemma

- \bigcirc φ formula with exactly the propositional atoms p_1, \ldots, p_n
- $0 \ell \in [2^n]$ (line number in the truth table)

$$\bigcirc \ \forall i \in [n]: \ \hat{p}_i := \begin{cases} p_i & \textit{if } p_i \textit{ in line } \ell \textit{ is true,} \\ \neg p_i & \textit{otherwise} \end{cases}$$

Then

- 1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ provable if entry for φ in line ℓ is true
- 2. $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$ provable if entry for φ in line ℓ is false

Proof by structural induction on the formulae.

 \bigcirc if φ atom p, we have $\varphi = p_1$

- \bigcirc if φ atom p, we have $\varphi = p_1$
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1 \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1 \vdash \neg \varphi$

- \bigcirc if φ atom p, we have $\varphi = p_1$
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1 \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1 \vdash \neg \varphi$
- \bigcirc application of $\varphi = p_1$: we have to prove
 - 1. p_1 in line ℓ true then $\hat{p}_1 \vdash p_1$
 - 2. p_1 in line ℓ false then $\hat{p}_1 \vdash \neg p_1$

- \bigcirc if φ atom p, we have $\varphi = p_1$
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1 \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1 \vdash \neg \varphi$
- \bigcirc application of $\varphi = p_1$: we have to prove
 - 1. p_1 in line ℓ true then $\hat{p}_1 \vdash p_1$
 - 2. p_1 in line ℓ false then $\hat{p}_1 \vdash \neg p_1$
- \bigcirc application of \hat{p}_1 's definition: we have to prove
 - 1. p_1 in line ℓ true then $p_1 \vdash p_1$
 - 2. p_1 in line ℓ false then $\neg p_1 \vdash \neg p_1$

- \bigcirc if φ atom p, we have $\varphi = p_1$
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1 \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1 \vdash \neg \varphi$
- \bigcirc application of $\varphi = p_1$: we have to prove
 - 1. p_1 in line ℓ true then $\hat{p}_1 \vdash p_1$
 - 2. p_1 in line ℓ false then $\hat{p}_1 \vdash \neg p_1$
- \bigcirc application of \hat{p}_1 's definition: we have to prove
 - 1. p_1 in line ℓ true then $p_1 \vdash p_1$
 - **2.** p_1 in line ℓ false then $\neg p_1 \vdash \neg p_1$
- \bigcirc there exists 1-line-proofs for $p_1 \vdash p_1$ and $\neg p_1 \vdash \neg p_1$

consider
$$\varphi = \neg \psi$$

 $\bigcirc \ \varphi$ and ψ have the same propositional atoms

consider
$$\varphi = \neg \psi$$

- $\bigcirc \ \varphi$ and ψ have the same propositional atoms
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$

$$\mathrm{consider}\ \varphi = \neg \psi$$

- \bigcirc φ and ψ have the same propositional atoms
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \neg \psi$: we have to prove
 - 1. $\neg \psi$ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \psi$
 - 2. $\neg \psi$ in line ℓ false then $\hat{p}_1, \dots, \hat{p}_n \vdash \psi$

consider
$$\varphi = \neg \psi$$

- \bigcirc φ and ψ have the same propositional atoms
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \neg \psi$: we have to prove
 - 1. $\neg \psi$ in line ℓ true then $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \psi$
 - 2. $\neg \psi$ in line ℓ false then $\hat{p}_1, \dots, \hat{p}_n \vdash \psi$
- \bigcirc application of \neg true = false: we have to prove
 - 1. ψ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \psi$
 - 2. ψ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \psi$

$$\mathrm{consider}\ \varphi = \neg \psi$$

- \bigcirc φ and ψ have the same propositional atoms
- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \neg \psi$: we have to prove
 - 1. $\neg \psi$ in line ℓ true then $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \psi$
 - **2.** $\neg \psi$ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \psi$
- \bigcirc application of \neg true = false: we have to prove
 - 1. ψ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \psi$
 - 2. ψ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \psi$
- there exists proofs by IH
- \bigcirc first part done, for the second apply $(\neg \neg i)$

Preparations for the remaining Cases

- \bigcirc consider $\varphi = \varphi_1 \circ \varphi_2$ for $\circ \in \{\land, \lor, \rightarrow\}$
- \bigcirc propositional atoms of φ_1 : q_1, \ldots, q_ℓ
- \bigcirc propositional atoms of φ_2 : r_1, \ldots, r_k
- $\bigcirc \{q_1,\ldots,q_{\ell},r_1,\ldots,r_k\} = \{p_1,\ldots,p_n\}$
- $\bigcirc \hat{q}_1, \dots, \hat{q}_\ell \vdash \psi_1 \text{ and } \hat{r}_1, \dots, \hat{r}_k \vdash \psi_2 \text{ then } \hat{p}_1, \dots, \hat{p}_n \vdash \psi_1 \land \psi_2$ (with rule $(\land i)$)

Proof for Implication

consider
$$\varphi = \varphi_1 \rightarrow \varphi_2$$

Proof for Implication

consider
$$\varphi = \varphi_1 \rightarrow \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$

Proof for Implication

consider
$$\varphi = \varphi_1 \rightarrow \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \varphi_1 \rightarrow \varphi_2$: we have to prove
 - 1. $\varphi_1 \to \varphi_2$ in line ℓ true then $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi_1 \to \varphi_2$
 - 2. $\varphi_1 \to \varphi_2$ in line ℓ false then $\hat{p}_1, \dots, \hat{p}_n \vdash \neg(\varphi_1 \to \varphi_2)$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

 \bigcirc case 1: φ_1 in line ℓ false

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: $arphi_1$ in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - $\circ \hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - $\circ \hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - \circ $\hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - \circ $\hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true
 - then φ_2 in line ℓ true

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - \circ $\hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true
 - then φ_2 in line ℓ true
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - $\circ \hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true
 - then φ_2 in line ℓ true
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi_2$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - \circ $\hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \land \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true
 - then φ_2 in line ℓ true
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi_2$
 - $\hat{p}_1,\ldots,\hat{p}_k\vdash\varphi_1\land\varphi_2$

$$\varphi_1 \to \varphi_2$$
 in line ℓ true

- \bigcirc case 1: φ_1 in line ℓ false
 - set $\varphi' = \varphi_2 \vee \neg \varphi_2$
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi'$
 - \circ $\hat{p}_1 \dots \hat{p}_n \vdash \neg \varphi_1 \wedge \varphi'$
 - remains to show: $\neg \varphi_1 \land \varphi' \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)
- \bigcirc case 2: φ_1 in line ℓ true
 - then φ_2 in line ℓ true
 - IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
 - IH: $\hat{r}_1, \ldots, \hat{r}_k \vdash \varphi_2$
 - \circ $\hat{p}_1,\ldots,\hat{p}_k \vdash \varphi_1 \land \varphi_2$
 - remains to show: $\varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$ (Exercise)

$$\varphi_1 \to \varphi_2$$
 in line ℓ false

 $\bigcirc \ \ arphi_1$ in line ℓ true and $arphi_2$ in line ℓ false

$$\varphi_1 \to \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 in line ℓ true and φ_2 in line ℓ false
- $\bigcirc \ \hat{q}_1, \dots, \hat{q}_\ell \vdash \varphi_1$

$$\varphi_1 \to \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 in line ℓ true and φ_2 in line ℓ false
- $\bigcirc \hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
- $\bigcirc \hat{r}_1, \ldots, \hat{r}_\ell \vdash \neg \varphi_2$

$$\varphi_1 \to \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 in line ℓ true and φ_2 in line ℓ false
- $\bigcirc \hat{q}_1,\ldots,\hat{q}_\ell \vdash \varphi_1$
- $\bigcirc \ \hat{r}_1, \dots, \hat{r}_\ell \vdash \neg \varphi_2$
- $\bigcirc \ \hat{p}_1, \dots, \hat{p}_\ell \vdash \varphi_1 \land \neg \varphi_2$

$$\varphi_1 \to \varphi_2$$
 in line ℓ false

- $\bigcirc \ \ arphi_1$ in line ℓ true and $arphi_2$ in line ℓ false
- $\bigcirc \hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
- $\bigcirc \hat{r}_1,\ldots,\hat{r}_\ell \vdash \neg \varphi_2$
- $\bigcirc \hat{p}_1, \ldots, \hat{p}_\ell \vdash \varphi_1 \land \neg \varphi_2$
- \bigcirc remains to show: $\varphi_1 \land \neg \varphi_2 \vdash \neg (\varphi_1 \rightarrow \varphi_2)$ (Exercise)

Proof for Conjunction

consider
$$\varphi = \varphi_1 \wedge \varphi_2$$

Proof for Conjunction

consider
$$\varphi = \varphi_1 \wedge \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$

Proof for Conjunction

consider
$$\varphi = \varphi_1 \wedge \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - **2.** φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \varphi_1 \land \varphi_2$: we have to prove
 - 1. $\varphi_1 \wedge \varphi_2$ in line ℓ true then $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi_1 \wedge \varphi_2$
 - 2. $\varphi_1 \wedge \varphi_2$ in line ℓ false then $\hat{p}_1, \dots, \hat{p}_n \vdash \neg(\varphi_1 \wedge \varphi_2)$

 $\varphi_1 \wedge \varphi_2$ in line ℓ true

 $\bigcirc\ \phi_1$ and ϕ_2 in line ℓ true

- \bigcirc φ_1 and φ_2 in line ℓ true
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$

- \bigcirc φ_1 and φ_2 in line ℓ true
- \bigcirc IH: $\hat{q}_1, \dots, \hat{q}_{\ell} \vdash \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi_2$

- \bigcirc φ_1 and φ_2 in line ℓ true
- \bigcirc IH: $\hat{q}_1, \dots, \hat{q}_{\ell} \vdash \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi_2$
- $\bigcirc \hat{p}_1, \dots, \hat{p}_\ell \vdash \varphi_1 \land \varphi_2$

$$\bigcirc$$
 set $\varphi' = \varphi_2 \lor \neg \varphi_2$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume that φ_1 evaluates to false

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume that φ_1 evaluates to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume that φ_1 evaluates to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume that φ_1 evaluates to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$
- $\bigcirc \hat{p}_1, \dots, \hat{p}_\ell \vdash \neg \varphi_1 \land \varphi'$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume that φ_1 evaluates to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$
- $\bigcirc \hat{p}_1, \ldots, \hat{p}_\ell \vdash \neg \varphi_1 \land \varphi'$
 - \supset remains to show $\neg \varphi_1 \land (\varphi_2 \lor \neg \varphi_2) \vdash \neg (\varphi_1 \land \varphi_2)$

Proof of Disjunction

consider
$$\varphi = \varphi_1 \vee \varphi_2$$

Proof of Disjunction

consider
$$\varphi = \varphi_1 \vee \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$

Proof of Disjunction

consider
$$\varphi = \varphi_1 \vee \varphi_2$$

- we have to prove
 - 1. φ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi$
 - 2. φ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi$
- \bigcirc application of $\varphi = \varphi_1 \lor \varphi_2$: we have to prove
 - 1. $\varphi_1 \vee \varphi_2$ in line ℓ true then $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1 \vee \varphi_2$
 - 2. $\varphi_1 \vee \varphi_2$ in line ℓ false then $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg(\varphi_1 \vee \varphi_2)$

Proof of Disjunction: Part 1

$$\varphi_1 \vee \varphi_2$$
 in line ℓ true

$$\bigcirc$$
 set $\varphi' = \varphi_2 \lor \neg \varphi_2$

Proof of Disjunction: Part 1

$$\varphi_1 \vee \varphi_2$$
 in line ℓ true

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume w.l.o.g. φ_1 to be true

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume w.l.o.g. φ_1 to be true
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume w.l.o.g. φ_1 to be true
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume w.l.o.g. φ_1 to be true
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$
- $\bigcirc \hat{p}_1, \dots, \hat{p}_\ell \vdash \neg \varphi_1 \land \varphi'$

- \bigcirc set $\varphi' = \varphi_2 \lor \neg \varphi_2$
- \bigcirc assume w.l.o.g. φ_1 to be true
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \varphi'$
- $\bigcirc \hat{p}_1, \ldots, \hat{p}_\ell \vdash \neg \varphi_1 \land \varphi'$
 - \bigcirc remains to show $\varphi_1 \land (\varphi_2 \lor \neg \varphi_2) \vdash \varphi_1 \lor \varphi_2$

 $\varphi_1 \vee \varphi_2$ in line ℓ false

 \bigcirc φ_1 and φ_2 evaluate to false

$$\varphi_1 \vee \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 and φ_2 evaluate to false
- \bigcirc IH: $\hat{q}_1, \dots, \hat{q}_{\ell} \vdash \neg \varphi_1$

$$\varphi_1 \vee \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 and φ_2 evaluate to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_{\ell} \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \neg \varphi_2$

- \bigcirc φ_1 and φ_2 evaluate to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \neg \varphi_2$
- $\bigcirc \hat{p}_1, \ldots, \hat{p}_\ell \vdash \neg \varphi_1 \land \neg \varphi_2$

$$\varphi_1 \vee \varphi_2$$
 in line ℓ false

- \bigcirc φ_1 and φ_2 evaluate to false
- \bigcirc IH: $\hat{q}_1, \ldots, \hat{q}_\ell \vdash \neg \varphi_1$
- \bigcirc IH: $\hat{r}_1, \ldots, \hat{r}_\ell \vdash \neg \varphi_2$
- $\bigcirc \hat{p}_1, \ldots, \hat{p}_\ell \vdash \neg \varphi_1 \land \neg \varphi_2$
- \bigcirc we already proved: $\neg \varphi_1 \land \neg \varphi_2 \vdash \neg (\varphi_1 \lor \varphi_2)$

LaTFoCS

Step 2
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

Step 2
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

 \bigcirc we have a proof for $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$

Step 2
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

- \bigcirc we have a proof for $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$
- \bigcirc augment this proof by introducing $\varphi_1, \ldots, \varphi_n$ as premises

Step 2
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

- \bigcirc we have a proof for $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$
- \bigcirc augment this proof by introducing $\varphi_1, \ldots, \varphi_n$ as premises
- \bigcirc applying *n* times (\rightarrow *e*)

Step 2
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

- \bigcirc we have a proof for $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$
- \bigcirc augment this proof by introducing $\varphi_1, \ldots, \varphi_n$ as premises
- \bigcirc applying *n* times (\rightarrow *e*)
- \bigcirc we get ψ as conclusion

Soundness and Completeness

Theorem

For propositional formulae $\phi_1, \ldots, \phi_n, \psi$ we have

$$\varphi_1, \ldots, \varphi_n \models \psi \quad \textit{iff} \quad \varphi_1, \ldots, \varphi_n \vdash \psi \; \textit{valid}$$

Soundness and Completeness

Theorem

For propositional formulae $\varphi_1, \ldots, \varphi_n, \psi$ we have

$$\varphi_1,\ldots,\varphi_n\models\psi$$
 iff $\varphi_1,\ldots,\varphi_n\vdash\psi$ valid

we have now:

- everything provable is true
- everything true is provable

