ENS201 – TERM PROJECT

Batuhan KARABAĞLI 22293

My student id is 22293 accordingly my capacitance will be 22.2 pF and my frequency will be around 293 MHz.

Firstly I started with calculation of area my with formula $C = (\epsilon.A) / d. \epsilon 0$ is **8.854e-12**, ϵ is 9.6 for alumina and distance between plates is **0.375mm**. Thus my area is **97,9e-6m^2** and it is **9.8*9.8mm** sides.

TASK-1 (Perfect Conductor- Perfect Insulator):

		Туре	Name	Material	Thickness
		Dielectric		AIR	
•	1	Conductor La	cond (1)	PERFECT_C	10 um
		Dielectric		Alumina	0.375 mm
2	2	Conductor La	cond2 (2)	PERFECT_C	10 um
		Dielectric		AIR	

- According to my calculations I designed plates. With 9.8mm sides.

Then I simulated with my design. Then i go on to a schematic view to apply our equations given. I changed S parameters according to my frequency area and my steps. Then i plug in my perfect capacitor.

After i input my equations for capacitance and quality factor i gathered those two graphics:

Graphic has shown according to my calculations it should be around 22.2pF and it is 25pF now it is really close to the calculation around 293MHz frequency. And it is a positive value so it acts like a capacitor.

TASK-2(Lossy Conductor-Perfect Insulator):

In this step I changed materials, now conductor layers are **not perfect** they are **Aluminium**.

		Туре	Name	Material	Thickness
		Dielectric		AIR	
1	1	Conductor La	cond (1)	Aluminium	10 um
		Dielectric		Alumina	0.375 mm
2	2	Conductor La	cond2 (2)	Aluminium	10 um
		Dielectric		AIR	

For this step I applied the same steps as i did in task-1. Firstly I simulated. And went to the schematic view.

Then again I applied the same equation I did before. And generated graphs accordingly.

Result shows capacitance is really close to 22.2pF but little higher than Task-1.

TASK-3(Lossy Conductor – Lossy Insulator):

In this step I also changed the insulator to the **lossy alumina** which has **0.003** tangent loss.

	Туре	Name	Material	Thickness
	Dielectric		AIR	
1	Conductor La	cond (1)	Aluminium	10 um
	Dielectric		Alumnia_lossy	0.375 mm
2	Conductor La	cond2 (2)	Aluminium	10 um
	Dielectric		AIR	

For schematic view i changed to lossy_conductor and lossy_insulator:

And lastly i applied equations correct way and generated graphs:

It is really close to Task-2 but just a little bit lower capacitance value resulted. As we see Quality factor becomes less negative for each step. And Capacitance Trendlines almost stayed the same.