ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 12: Factorización y Fracciones Parciales.

Problema 1.

a.- Utilizar el siguiente resultado: x_0 es al menos una raíz doble de $p \in \mathcal{P}(\mathbb{R})$, si y solamente si, $p(x_0) = p'(x_0) = 0$, para determinar el valor de las constantes a y b de $p(x) = x^3 + 3x^2 + ax + b$, si $x_0 = 1$ es una raíz doble. Además, encuentre los factores irreducibles de p en $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(\mathbb{C})$, respectivamente.

b.- ¿Cuál es el valor de la constante k, si $x_0 = 2$ es una raíz de:

$$p(x) = x^5 - 2x^4 + kx^3 + 4x^2 + kx + 4$$
?

Encuentre la factorización en irreducibles de p en $\mathcal{P}(\mathbb{R})$ y $\mathcal{P}(\mathbb{C})$, respectivamente.

Problema 2.

a.- Recordar que $p \in \mathcal{P}(\mathbb{R})$ es una función polinomial par, si para todo $x \in \mathbb{R}$ p(-x) = p(x). Demuestres que p es una función polinomial par, si y solamente si, se satisface la propiedad:

$$p(x_0) = 0, \ x_0 \in \mathbb{C} \implies p(-x_0) = p(\overline{x_0}) = 0$$

Representar, en el plano de Argand, las raíces de los polinomios $p_1(x) = x^4 + 16$, $p_2(x) = x^4 - 16$ y $p_3(x) = x^4 - 2x^2 + 2$. Construya una función polinomial par $p_4 \in \mathcal{P}(\mathbb{R})$ con $gr(p_4) = 6$ que tenga cuatro raíces complejas y dos reales ¿es posible que $p_4(x)$ tenga seis raíces complejas, siendo una función par?

Problema 3. Construya polinomios mónicos $p_i \in \mathcal{P}(\mathbb{K})$, i = 1, 2, 3 de grado mínimo, si se sabe que:

- (i) $p_1(1)=p_1(1+3i)=p_1(1-3i)=0$ y $z_0=3-4i$ y su conjugado $\bar{z_0}$ son raíces de multiplicidad 3 de $p_1(x)$
- (ii) $p_2(2+\sqrt{3})=p_2(-2)=p_2(2-i)=0$
- (iii) p(2) = p(-2) = p(-1+i) = p(1-i) = p(-1-i) = p(1+i) = 0

En los casos que (a) $\mathbb{K} = \mathbb{R}$ (b) $\mathbb{K} = \mathbb{C}$ y (c) $\mathbb{K} = \mathbb{Q}$. [En Práctica (ii) y (iii)]

Problema 4. Utilizar el Teorema del valor intermedio para construir un algoritmo que nos permita determinar las raíces del polinomio $p(x) = x^3 + x^2 - 2x - 2$ en el intervalo [0,3].

Problema 5. ¿Cuál es el valor de las constantes a y b en la definición de $p \in \mathcal{P}(\mathbb{Q})$ si $p(x) = x^3 + ax^2 + \frac{3}{2}x + b$ y $p(1 + \sqrt{2}) = 0$? [En Práctica]

Problema 6. Utilizar la división sintética para encontrar la multiplicidad de la raíz $x_0 = -3$ de $p(x) = x^6 + 6x^5 + 9x^4 - x^2 - 6x - 9$. Encontrar la factorización de p(x) en irreducibles en (a) $\mathcal{P}(\mathbb{R})$ (b) $\mathcal{P}(\mathbb{C})$ y (c) $\mathcal{P}(\mathbb{Q})$. [En Práctica]

Problema 7. Hallar las posibles raíces racionales de los siguientes polinomios de $\mathcal{P}(\mathbb{R})$:

$$p_1(x) = x^4 - 2x^2 - 3x - 2$$
 $p_2(x) = x^3 - x - 6$ $p_3(x) = x^5 - x^3 + 2$ $p_4(x) = x^5 - 10$ $p_5(x) = 2x^3 - x^2 + 1$ $p_6(x) = 3x^4 + 7x^2 + 6$ $p_7(x) = 2x^4 + x^3 + x^2 - 7x + 3$ $p_8(x) = x^6 + 2x^4 + x^2 - 3$ $p_9(x) = x^3 + 10x + 1$

[En Práctica $P_3, P_6 y P_7$.]

Problema 8. Sean $p, q \in \mathcal{P}(\mathbb{R})$ tal que gr(p) < gr(q) los cuales no tienen ceros comunes. Si la factorización en irreducibles de q en $\mathcal{P}(\mathbb{R})$ es

$$q(x) = (x - a_1)(x - a_2)(x - a_3)(x - a_4) \cdots (x - a_m)$$

demuestre que

$$\frac{p(x)}{q(x)} = \frac{\frac{p(a_1)}{q'(a_1)}}{x - a_1} + \frac{\frac{p(a_2)}{q'(a_2)}}{x - a_2} + \dots + \frac{\frac{p(a_m)}{q'(a_m)}}{x - a_m}$$

donde $q'(a_1) = (x - a_2) \cdots (x - a_m)$, etc. Encontrar, de dos maneras distintas, la descomposición en fracciones parciales de: $\frac{10x^2 + 9x - 7}{(x+2)(x^2-1)}$.

Problema 9. Observar que la descomposición en fracciones parciales de $\frac{1}{x^2(x^2-2x+4)}$ la podemos escribir como:

$$\frac{1}{x^2(x^2-2x+4)} = \frac{Ax+B}{x^2} + \frac{-Ax+C}{x^2-2x+4}.$$

Determinar los valores de las constantes A, B y C.

Problema 10. Descomponer en suma de fracciones parciales:

$$R_1(x) = rac{x+2}{x^2-7x+12} \qquad R_2(x) = rac{10x^2+9x-7}{(x+2)(x^2-1)}$$
 $R_3(x) = rac{x^3+4x-3}{x^2-x} \qquad R_4(x) = rac{9x^2-x-4}{x(2x^2+3x-2)}$ $R_5(x) = rac{3x+2}{x^3+5x^2-6} \qquad R_6(x) = rac{x^4-3x^3-19x^2+4x+18}{x^2-3x-18}$ [En Práctica R_6 .]