

Course > Week 1 > Proble... > Proble...

Problem: Simple Pendulum

Simple Pendulum

0.0/10.0 points (graded)

The lecture introduced the simple pendulum as a benchmark nonlinear system. Recall that the second-order dynamics of a damped pendulum are

$$ml^2\ddot{ heta} + mgl\sin{ heta} = -b\dot{ heta} + u$$

Consider the case where the control input u takes on a constant value. Take the constants m=3, l=1, g=10, and b=2. Plot (but do not submit) the bifurcation diagram $\theta^*vs.u$ showing the equilibrium point(s) for a fixed u. Note what happens when u increases to 30 and above.

For u=10, provide the equilibrium point(s) as a comma-separated list θ_1,θ_2,\ldots . Ensure that the number of equilibrium points is correct (no duplicate entries). The error tolerance for each element in the list is 10^{-3} . Restrict your answers to the interval $(-\pi,\pi]$.

Do the same for $u=30$.	
Submit	You have used 0 of 1 attempt

© All Rights Reserved