A számításelmélet alapjai I.

11. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

KÖRNYEZETFÜGGŐ NYELVEK

Definíció

Egy $G = \langle N, T, P, S \rangle$ grammatikát hossz-nemcsökkentőnek mondunk, ha minden szabályának alakjára az alábbiak valamelyike teljesül

- $S \to \varepsilon$, de ha van ilyen szabály, akkor más szabály nem tartalmazhatja jobboldalán S-et.
- ▶ $u \rightarrow v$, ahol $u, v \in (T \cup N)^+$ és $|u| \le |v|$.

A környezetfüggő grammatikák nyilván hossz-nemcsökkentőek.

Tétel

Minden hossz-nemcsökkentő grammatika környezetfüggő nyelvet generál.

Bizonyítás: (vázlat) Minden hossz-nemcsökkentő $G = \langle N, T, P, S \rangle$ grammatikához megadható egy vele ekvivalens $G' = \langle N', T, P', S \rangle$ környezetfüggő grammatika.

Hossznemcsökkentő grammatika

1. lépés: Álterminálisok bevezetése

A szokásos módon feltehető, terminálisok csak

 $A \rightarrow a \ (A \in N, a \in T)$ alakú szabályok jobboldalán fordulnak elő.

2. lépés: Környezetfüggő szabályokkal való helyettesítés

Legyen $X_1 X_2 \cdots X_n \to Y_1 Y_2 \cdots Y_m \ (m \ge n)$ egy

hossznemcsökkető szabály. Ezt az alábbi csupa 1-es típusú szabályokkal szimulálhatjuk:

$$X_{1}X_{2}\cdots X_{n} \rightarrow Z_{1}X_{2}\cdots X_{n},$$

$$Z_{1}X_{2}\cdots X_{n} \rightarrow Z_{1}Z_{2}X_{3}\cdots X_{n},$$

$$\vdots$$

$$Z_{1}Z_{2}\cdots Z_{n-1}X_{n} \rightarrow Z_{1}Z_{2}\cdots Z_{n}Y_{n+1}\cdots Y_{m} \quad (n \leq m),$$

$$Z_{1}Z_{2}\cdots Z_{n}Y_{n+1}\cdots Y_{m} \rightarrow Y_{1}Z_{2}\ldots Z_{n}Y_{n+1}\cdots Y_{m},$$

$$\vdots$$

$$Y_{1}\cdots Y_{n-1}Z_{n}Y_{n+1}\cdots Y_{m} \rightarrow Y_{1}Y_{2}\cdots Y_{m},$$

ahol Z_1, Z_2, \ldots, Z_n új nemterminálisok.

Hossz-nemcsökkentő grammatika

Meggondolható, hogy a Z_1, \ldots, Z_n új volta miatt a szabályokat csak ebben a sorrendben lehet és kell végrehajtani, ezért az új grammatika is ugyanazt a nyelvet generálja. Csináljuk meg ezt a szabálytranszformációt az összes "rossz" szabályra. Az így kapott G' grammatika már 1-típusú és L(G)-t generálja.

1. Példa (csak egyetlen hosszú szabály):

Az *ABC* → *DEFGH* szabály a következő környezetfüggő szabályokkal helyettesíthető:

 $ABC \rightarrow XBC$

 $XBC \rightarrow XYC$

 $XYC \rightarrow XYZGH$

XYZGH → DYZGH

DYZGH → DEZGH

DEZGH → DEFGH

(X, Y, Z új nemterminálisok)

Hossz-nemcsökkentő grammatika

2. Példa:
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$

 $(D, E, F, Z_1, Z_2 \text{ új nemterminálisok})$

$$P = \{S \rightarrow abc, S \rightarrow aSBc, cB \rightarrow Bc, bB \rightarrow abb\}$$

Egy a G-vel ekvivalens 1-es típusú grammatika szabályai:

$$S o DEF$$
 $EB o Z_2B$ $Z_2B o DSBF$ $Z_2B o Z_2EE$ $FB o Z_1B$ $Z_2EE o DEE$ $Z_1B o Z_1F$ $D o a$ $E o b$ $E o c$

Nem környezetfüggetlen környezetfüggő nyelv

Következmény

$$\mathcal{L}_2 \subset \mathcal{L}_1$$

Bizonyítás: (vázlat) $\mathcal{L}_2 \subseteq \mathcal{L}_1$, ugyanis minden 2-es típusú grammatikához van vele ekvivalens Chomsky normálformájú grammatika. A Chomsky normálformájú grammatikák azonban környezetfüggőek.

Láttuk, hogy $L = \{a^n b^n c^n \mid n \ge 1\} \notin \mathcal{L}_2$ (Bar-Hillel lemmával).

Az alábbi hossz-nemcsökkentő $G = \langle \{S, B\}, \{a, b, c\}, P, S \rangle$ grammatika viszont L-et generálja, ahol

$$P = \{S \rightarrow abc, S \rightarrow aSBc, cB \rightarrow Bc, bB \rightarrow bb\}$$

Valóban,
$$S \Rightarrow^* a^{n-1}abc(Bc)^{n-1} \Rightarrow^* a^nbB^{n-1}c^n \Rightarrow^* a^nb^nc^n$$
.

Másrészt teljes indukcióval belátható, hogy minden w mondatformában $|w|_a = |w|_b + |w|_B = |w|_c$ és b, B, c nem állhat a előtt. ($|w|_t$ a w szóban előforduló t betűk száma.) Mivel minden B b mellé kell kerüljön ezért a generált szavak L-beliek.

Definíció

Egy $G = \langle N, T, P, S \rangle$ grammatikát Kuroda normálformájúnak mondunk, ha minden szabályának alakjára az alábbiak valamelyike teljesül

- $S \to \varepsilon$, de ha van ilyen szabály, akkor más szabály nem tartalmazhatja jobboldalán S-et.
- ightharpoonup A
 ightharpoonup a, ahol $A \in N$, $a \in T$,
- ightharpoonup A
 ightharpoonup BC, ahol $A, B, C \in N$,
- ightharpoonup AB
 ightharpoonup AC, ahol $A, B, C \in N$,
- ▶ $BA \rightarrow CA$, ahol $A, B, C \in N$.

A Kuroda normálformájú grammatikák nyilván környezetfüggőek.

Tétel

Minden környezetfüggő grammatika G grammatikához van vele ekvivalens Kuroda normálformájú G' grammatika.

Bizonyítás: (vázlat)

1. lépés: Álterminálisok bevezetése

A szokásos módon feltehető, terminálisok csak $A \rightarrow a \ (A \in N, a \in T)$ alakú szabályok jobboldalán fordulnak elő.

2. lépés: Környezetfüggetlen szabályok hosszredukciója

Szintén a Chomsky normálformánál látott módon.

3. lépés: Környezetfüggő láncmentesítés

Az A-ból láncszabályokkal elérhető nemterminálisok $H(A) = \{B \in N \mid A \Rightarrow^* B\}$ halmazának meghatározása a Chomsky normálformánál látott módon. A szabályrendszer módosítása:

$$P' := \{A_1 \cdots A_n \to w \mid w \notin N \land \exists B_1 \cdots B_n \to w \in P : B_i \in H(A_i) \ (\forall 1 \leq i \leq n)\}.$$

4. lépés: Környezetfüggő szabályok hosszredukciója

Az $X_1 \cdots X_m \rightarrow Y_1 \cdots Y_n$ alakú szabályok szimulációja, ahol $n \geq m \geq 2$.

Ha n=m=2, akkor a következő lépésre ugorhatunk. Különben a szabály szimulációja a $Z_1, Z_2, \ldots, Z_{n-2}$ új nemterminálisok bevezetésével:

$$X_1X_2 \rightarrow Y_1Z_1,$$
 $Z_1X_3 \rightarrow Y_2Z_2,$
 \vdots
 $Z_{m-3}X_{m-1} \rightarrow Y_{m-2}Z_{m-2},$

Továbbá ha n = m, akkor

$$Z_{m-2}X_m \rightarrow Y_{m-1}Y_m$$

egyébként (n > m) esetén:

$$Z_{m-2}X_m \rightarrow Y_{m-1}Z_{m-1},$$
 $Z_{m-1} \rightarrow Y_mZ_m,$
 \vdots
 $Z_{n-3} \rightarrow Y_{n-2}Z_{n-2},$
 $Z_{n-2} \rightarrow Y_{n-1}Y_n.$

5. lépés: Az $AB \rightarrow CD$, $A \neq C$, $B \neq D$ szabályok eliminációja

Végül a nem Kuroda-normálformájú szabályok sémája ekkor $AB \rightarrow CD \ (A, B, C, D \in N)$. Átalakításukhoz szabályonként egyedi W új nemterminálisokat vezetünk be és a fenti szabályt az alábbi szabályokkal szimuláljuk:

 $AB \rightarrow AW$, $AW \rightarrow CW$, $CW \rightarrow CD$.

A kapott G' grammatika ekvivalens G-vel. Ugyanis az átalakított grammatikában ezen 3 szabály bármelyikének alkalmazása implikálja a másik 2 alkalmazását ebben a sorrendben. Meggondolható, hogy az $AB \to AW$ szabályalkalmazás hátratolható közvetlenül az $AW \to CW$ szabályalkalmazás elé, míg a $CW \to CD$ szabályalkalmazás előrehozható közvetlenül az $AW \to CW$ szabályalkalmazás utánra.

Példa:

$$S \rightarrow C \mid AABC$$

$$A \rightarrow ABC \mid a$$

$$B \rightarrow b$$

$$C \rightarrow B \mid bA$$

$$ABC \rightarrow ABaC$$

1-2. lépés után:

$$S \rightarrow C \mid AD$$

$$A \rightarrow AF \mid a$$

$$B \rightarrow b$$

$$C \rightarrow B \mid YA$$

$$ABC \rightarrow ABXC$$

$$D \rightarrow AE$$

$$E \rightarrow BC$$

$$F \rightarrow BC$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

3. lépés: $H(S) = \{S, C, B\}$, $H(C) = \{C, B\}$, minden más Z nemterminálisra $H(Z) = \{Z\}$.

$$S \rightarrow AD \mid YA \mid b$$

$$A \rightarrow AF \mid a$$

$$B \rightarrow b$$

$$C \rightarrow YA \mid b$$

$$ABC \rightarrow ABXC$$

$$ACC \rightarrow ABXC$$

$$ASC \rightarrow ABXC$$

$$ABS \rightarrow ABXC$$

$$ACS \rightarrow ABXC$$

$$ASS \rightarrow ABXC$$

$$D \rightarrow AE$$

$$E \rightarrow BC$$

$$F \rightarrow BC$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

4. lépés: $S \rightarrow AD \mid YA \mid b$ $A \rightarrow AF \mid a$ $B \rightarrow b$ $C \rightarrow YA \mid b$ $AB \rightarrow AZ_1 \quad Z_1C \rightarrow BZ_2 \quad Z_2 \rightarrow XC$ $AC \rightarrow AZ_3 \quad Z_3C \rightarrow BZ_4 \quad Z_4 \rightarrow XC$ $AS \rightarrow AZ_5$ $Z_5C \rightarrow BZ_6$ $Z_6 \rightarrow XC$ $AB \rightarrow AZ_7 \quad Z_7S \rightarrow BZ_8 \quad Z_8 \rightarrow XC$ $AC \rightarrow AZ_9 \quad Z_9S \rightarrow BZ_{10} \quad Z_{10} \rightarrow XC$ $AS \rightarrow AZ_{11}$ $Z_{11}S \rightarrow BZ_{12}$ $Z_{12} \rightarrow XC$ $D \rightarrow AE$ $E \rightarrow BC$ $F \rightarrow BC$ $X \rightarrow a$ $Y \rightarrow b$

```
5. lépés:
S \rightarrow AD \mid YA \mid b
A \rightarrow AF \mid a
B \rightarrow b
C \rightarrow YA \mid b
AB \rightarrow AZ_1 Z_1C \rightarrow Z_1W_1 Z_1W_1 \rightarrow BW_1 BW_1 \rightarrow BZ_2 Z_2 \rightarrow XC
AC \rightarrow AZ_3 Z_3C \rightarrow Z_3W_2 Z_3W_2 \rightarrow BW_2 BW_2 \rightarrow BZ_4 Z_4 \rightarrow XC
AS \rightarrow AZ_5 Z_5C \rightarrow Z_5W_3 Z_5W_3 \rightarrow BW_3 BW_3 \rightarrow BZ_6 Z_6 \rightarrow XC
AB \rightarrow AZ_7 Z_7S \rightarrow Z_7W_4 Z_7W_4 \rightarrow BW_4 BW_4 \rightarrow BZ_8 Z_8 \rightarrow XC
AC \rightarrow AZ_9 Z_9S \rightarrow Z_9W_5 Z_9W_1 \rightarrow BW_5 BW_5 \rightarrow BZ_{10}
AS \to AZ_{11} \quad Z_{11}S \to Z_{11}W_6 \quad Z_{11}W_6 \to BW_6 \quad BW_6 \to BZ_{12}
D \rightarrow AE
                                                                                               Z_{10} \rightarrow XC
E \rightarrow BC
                                                                                               Z_{12} \rightarrow XC
F \rightarrow BC
X \rightarrow a
Y \rightarrow b
```

A környezetfüggő nyelvek szóproblémája

Állítás: Eldönthető, egy $G = \langle N, T, P, S \rangle$ hossz-nemcsökkentő grammatika és $u \in T^*$ szó esetén $u \in L(G)$.

Bizonyítás: Ha $u = \varepsilon$, akkor $u \in L(G) \Leftrightarrow S \to \varepsilon \in P$.

 $n = |u| \ge 1$ esetén legyen $r = \sum_{i=1}^{n} |T \cup N|^{i}$. Ekkor r a $T \cup N$ halmaz legfeljebb n hosszú, nemüres szavainak száma.

Mivel *G* hossz-nemcsökkentő, ezért *u* levezetései nem tartalmaznak *n*-nél hosszabb mondatformát,így *u* minden *r*-nél hosszabb levezetése tartalmaz ismétlődő mondatformát.

Ebből következően ha $S \Rightarrow_G^* u$, akkor u-nak létezik legfeljebb r hosszú levezetése is, hiszen egy levezetésben az ismétlődő mondatformák közötti levezetést kihagyva ugyanannak a szónak egy rövidebb levezetését kapjuk.

Tehát $u \in L(G)$, akkor és csak akkor, ha G legfeljebb r hosszú levezetéssel generálható. Utóbbiak viszont algoritmikusan előállíthatók.

Tétel

Bármely $G = \langle N, T, P, S \rangle$ 0-típusú grammatikához van vele ekvivalens G' grammatika, ahol G' minden szabályának alakjára az alábbiak valamelyike teljesül

- ▶ $S \rightarrow \varepsilon$, de ha van ilyen szabály, akkor más szabály nem tartalmazhatja jobboldalán S-et.
- ightharpoonup A
 ightharpoonup a, ahol $A \in N$, $a \in T$,
- ightharpoonup A
 ightharpoonup B, ahol $A, B \in N$,
- ▶ $A \rightarrow BC$, ahol $A, B, C \in N$,
- ► $AB \rightarrow B$, ahol $A, B \in N$,
- ightharpoonup AB
 ightharpoonup AC, ahol $A, B, C \in N$,
- ▶ $BA \rightarrow CA$, ahol $A, B, C \in N$.

Megjegyzés: a 0-típusú ε -mentesítést láttuk a zártsági tétel bizonyításában.

Bizonyítás: (vázlat)

Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges 0-típusú grammatika. Ekvivalens átalakításokkal a fenti alakra hozzuk.

1. lépés: 0. típusú ε -mentesítés

- Minden $u \to \varepsilon$ alakú szabályt, ahol $u \in (N \cup T)^+$, helyettesítsük az $uX \to X$ és $Xu \to X$ alakú szabályokkal minden egyes $X \in (N \cup T)$ -re.
- A kapott G' grammatikára $L(G') = L(G) \setminus \{\varepsilon\}$. Ha $\varepsilon \notin L(G)$, akkor G' ekvivalens G-vel. Ha $\varepsilon \in L(G)$, akkor adjuk hozzá G'-höz az $S' \to S \mid \varepsilon$ szabályokat, ahol S' új nemterminális. Ez esetben S' legyen az új kezdőszimbólum.

2. lépés: Álterminálisok bevezetése

A szokásos módon.

3. lépés: Hossznemcsökkentő szabályok hosszredukciója A Kuroda NF-nál látott módon.

4. lépés: Hosszcsökkentő szabályok hosszredukciója

Legyen $X_1 \cdots X_m \to Y_1 \cdots Y_n$ egy hosszcsökkentő szabály $(X_i, Y_j \in N)$, azaz $m > n \ge 1$. Ezt a szabályt helyettesíthetjük az alábbi szabályhalmazzal, ahol $U_1, \ldots U_m$ és $Z_{n+1}, \ldots Z_m$ új, a szabályhoz bevezetett nemterminálisok:

$$X_{m-1}X_{m} \to Z_{m}U_{m}, \qquad Z_{m}U_{m} \to U_{m}, \qquad Z_{m-1}U_{m-1}, \qquad Z_{m-1}U_{m-1} \to U_{m-1}, \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad Z_{n+1}U_{n+1} \to U_{n}Y_{n}, \qquad Z_{n-1}U_{n} \to U_{n-1}Y_{n-1} \qquad \vdots \qquad \vdots \qquad Z_{n+1}U_{n+1} \to U_{n}Y_{n}, \qquad Z_{n+1}U_{n} \to U_{n}Y_{n}, \qquad Z_$$

5. lépés: Az $AB \rightarrow CD$, $A \neq C$, $B \neq D$ szabályok eliminációja A Kuroda NF-nál látott módon.

Példa:

$$S \rightarrow AB \mid BAB$$

$$AB \rightarrow \varepsilon$$

$$BAb \rightarrow bA$$

$$A \rightarrow a \mid SS$$

1. lépés:

$$S' \to S \mid \varepsilon$$

$$S \rightarrow AB \mid BAB$$

$$SAB \rightarrow S$$

$$AAB \rightarrow A$$

$$BAB \rightarrow B$$

$$aAB \rightarrow a$$

$$bAB \rightarrow b$$

$$BAb \rightarrow bA$$

$$A \rightarrow a \mid SS$$

$$ABS \rightarrow S$$

$$ABA \rightarrow A$$

$$ABB \rightarrow B$$

$$ABa \rightarrow a$$

$$ABb \rightarrow b$$

2-3. lépés:

$$S' \to S \mid \varepsilon$$

$$S \rightarrow AB \mid BC$$

$$SAB \rightarrow S$$

$$AAB \rightarrow A$$

$$BAB \rightarrow B$$

$$XAB \rightarrow X$$

$$YAB \rightarrow Y$$

$$BAY \rightarrow YA$$

$$A \rightarrow a \mid SS$$

$$C \rightarrow AB$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$ABS \rightarrow S$$

$$ABA \rightarrow A$$

$$ABB \rightarrow B$$

$$XAB \rightarrow X$$
 $ABX \rightarrow X$

$$ABY \rightarrow Y$$

```
4. lépés:
S' \to S \mid \varepsilon
S \rightarrow AB \mid BC
AB \to Z_3 U_3 \ Z_3 U_3 \to U_3 \ SU_3 \to Z_2 U_2 \ Z_2 U_2 \to U_1 S \ U_1 S \to S
ABS → S-t hasonlóan...
ABb → Y-t hasonlóan...
AY \to Z_{33}U_{33} \ Z_{33}U_{33} \to U_{32}A \ BU_{32} \to U_{31}Y \ U_{31}Y \to Y
A \rightarrow a \mid SS
C \rightarrow AB
X \rightarrow a
Y \rightarrow b
```

```
5. lépés:
S' \to S | \varepsilon
S \rightarrow AB \mid BC
AB \rightarrow AW_1 \quad AW_1 \rightarrow Z_3W_1 \quad Z_3W_1 \rightarrow Z_3U_3
Z_3U_3 \rightarrow U_3
SU_3 \rightarrow SW_2 SW_2 \rightarrow Z_2W_2 Z_2W_2 \rightarrow Z_2U_2
U_{31}Y \rightarrow Y
A \rightarrow a \mid SS
C \rightarrow AB
X \rightarrow a
Y \rightarrow b
```

0-típusú nyelvek algoritmikus problémái

Kevés pozitív eredmény mondható 0-típusú nyelvek algoritmikus kérdései kapcsán.

Bizonyítás nélkül megemlítjük, hogy a 0-típusú grammatikák szóproblémája algoritmikusan eldönthetetlen.

Egy parciálisan eldöntő (helyes választ adó, azonban nem mindig termináló) algoritmust azonban készíthetünk.

Legyen $G = \langle N, T, P, S \rangle$ 0-típusú grammatika és $u \in T^*$. Készíthetünk egy végtelen gráfot, melynek csúcsai $(N \cup T)^*$ elemeivel címkézettek és $x \in (N \cup T)^*$ -ból akkor és csak akkor van irányított él $y \in (N \cup T)^*$ -ba, ha $x \Rightarrow_G y$. A gráf minden csúcsa véges kifokú, hiszen P véges és egy szabályt legfeljebb annyi kezdőpozícióban alkalmazhatunk, amennyi a szó hossza.

Tehát $u \in L(G)$ akkor és csak akkor, ha ebben a gráfban egy S-ből indított szélességi bejárás megtalálja u-t. (Ha $u \notin L(G)$, akkor tipikusan nem terminál az algoritmus.)

További érdekesebb normálformák

Tétel

Bármely $G = \langle N, T, P, S \rangle$ 3-típusú grammatikához van vele ekvivalens G' grammatika, ahol G' minden szabályának alakjára az alábbiak valamelyike teljesül

- $S \to \varepsilon$, de ha van ilyen szabály, akkor más szabály nem tartalmazhatja jobboldalán S-et.
- ightharpoonup A
 ightharpoonup a, ahol $A \in N$, $a \in T$,
- ightharpoonup A
 ightharpoonup aB, ahol $A, B \in N, a \in T$,

Bizonyítás: Tudjuk, hogy van G-vel ekvivalens

 $G'' = \langle N'', T, P'', S'' \rangle$ 3-as normálformájú grammatika. Minden $A \to aB, B \to \varepsilon \in P''$ esetén adjuk hozzá az $A \to a$ szabályt a szabályrendszerhez és hagyjuk el az ε -szabályokat. Továbbá ha volt $S'' \to \varepsilon \in P''$ szabály, akkor legyen S_0 az új kezdőszimbólum és adjuk hozzá a szabályrendszerhez az $S_0 \to S'' \mid \varepsilon$ szabályokat, majd az $S_0 \to S''$ láncszabályt a szokásos módon elimináljuk.

További érdekesebb normálformák

Definíció

Egy $G = \langle N, T, P, S \rangle$ környezetfüggetlen grammatikát **Greibach normálformájúnak** mondunk, ha minden szabálya $A \rightarrow a\alpha$ alakú, ahol $A \in N$, $a \in T$ és $\alpha \in N^*$.

Tétel

Minden ε -mentes G környezetfüggetlen grammatikához megkonstruálható vele ekvivalens Greibach normálformájú G' környezetfüggetlen grammatika.

(Nem bizonyítjuk.)

Megjegyzés: Amennyiben G nem ε -mentes, akkor ezen felül szokásos módon a korlátozott ε -szabályt is meg kell engedni.

További érdekesebb normálformák

Tétel

Bármely $G = \langle N, T, P, S \rangle$ 0-típusú grammatikához van vele ekvivalens G' grammatika, ahol G' minden szabályának alakjára az alábbiak valamelyike teljesül

- $ightharpoonup A
 ightharpoonup \varepsilon$, ahol $A \in N$,
- ightharpoonup A
 ightharpoonup a, ahol $A \in N$, $a \in T$,
- ightharpoonup A
 ightharpoonup BC, ahol $A, B, C \in N$,
- ightharpoonup AB
 ightharpoonup CD, ahol $A, B, C, D \in N$.

(Nem bizonyítjuk.)