MATH 222-004

Name:

For full credit please explain all of your answers. No calculators are allowed.

Problem 1. Find the second degree Taylor Polynomial $T_2\{\cos(2x)\}$ and bound the error $|\cos(2x) - T_2\{\cos(2x)\}| = |R_2\{\cos(2x)\}|$ for |x| < 1.

Solution 1.

We know $T_2f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2$. If you used the taylor series for $\cos(t)$ below and substituted 2x for t that is completely valid and you'll get the right answer. We'll go through and do it to see that we get the same answer. f(0) = 1. $f'(x) = -2\sin(2x)$, so f'(0) = 0 and $f''(x) = -4\cos(2x)$, so f''(0) = -4. Plugging this in we find

$$T_2\cos(2x) = 1 - 2x^2$$

The faster way was to make a substitution. Now to bound the error we recall Lagrange's Remainder theorem which tell us

$$R_2\{\cos(2x)\} = \frac{\cos^{(3)}(\xi)}{3!}x^3$$

We know |x| < 1 from the problem and we know $|\cos(2\xi)| < 1$ for any value of ξ . We just have to be careful because every time we differentiate we pick up a multiple of 2 via the chain rule. You could compute this explicitly and see that $\cos^{(3)}(x) = 8\sin(2x)$ so we've picked up three multiples of two. Or you could just notice what we discussed in the last sentence. Either is completely acceptable! Using this information we find

$$|R_2\{\cos(2x)\}| \le \frac{8}{3!}$$

Problem 2. Now find the Taylor series $T_{\infty}\cos(2x)$ by substituting, adding, multiplying or applying long division and/or differentiating the known Taylor series: $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. (Memorize/write this down for the exam). **Solution 2.**

We can just substitute as discussed above so

$$\cos(2x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n}$$

Make sure that you are raising both 2 and x to the 2n. For a sanity check you can see the first few terms agree with what you computed above. We can heuristically justify this as well because the only difference between the derivatives of $\cos(x)$ and $\cos(2x)$ are that you pick up a multiple of 2 every time you differentiate $\cos(2x)$. So if you look at the 2n term of $\cos(2x)$ it should differ from $\cos(x)$ by a multiple of 2^{2n} which is exactly what happens.