

PROOF BY INDUCTION

Given claim P(n), we construct a proof by induction to show P(n) holds for all $n \ge n_0$:

Proof. We use induction to prove $\forall n \geq n_0 : P(n)$. [We often set $n_0 = 1$.]

1. Show that $P(n_0)$ is **T**. [Base case.]

2. Show that $P(n) \rightarrow P(n+1)$ for a general $n \ge n_0$. [Induction step.]

> Direct proof: Assume P(n) is **T**. Show P(n+1) is **T**.

Proof by contraposition: Assume P(n+1) is **F**. Show P(n) is **F**.

3. Conclude therefore that P(n) holds for all $n \ge n_0$.

(in LATEX: \$\hfill\blacksquare\$)

Fall 2022

PROOF BY INDUCTION — EXAMPLE

Tinker! What proof techniques might we try here...?

Prove claim $P(n) = "4^n - 1$ is divisible by 3"

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. $P(1) = 4^1 - 1 = 3$. P(1) is **T**.

[Base case.]

2. Prove $P(n) \rightarrow P(n+1)$ for all $n \ge 1$.

[Induction step.]

Specifically, if $4^n - 1$ is divisible by 3, then $4^{n+1} - 1$ is divisible by 3. P(n) P(n+1)

Can you prove this implication using a direct proof...?

PROOF BY INDUCTION — EXAMPLE

2. Prove $P(n) \rightarrow P(n+1)$ for all $n \ge 1$.

[Induction step.]

Specifically, if $4^n - 1$ is divisible by 3, then $4^{n+1} - 1$ is divisible by 3.

Proof. We prove the implication using a direct proof.

- (i) Assume that P(n) is **T**, i.e., that $4^n 1$ is divisible by 3. [Induction hypothesis.]
- (ii) This means that $4^n 1 = 3k$ for some integer k. Thus, $4^n = 3k + 1$.
- (iii) Observe that $4^{n+1} = 4 \times 4^n$; then, $4^{n+1} = 4(3k+1) = 12k+4$. Therefore, $4^{n+1} - 1 = 12k+3 = 3(4k+1)$, which is a multiple of 3.
- (iv) Since $4^{n+1} 1$ is a multiple of 3, it follows that $4^{n+1} 1$ is divisible by 3.
- (v) Therefore, P(n+1) is **T**.

Are we done ...?

What have we proven...?

Yes, we are done—we have proven that $4^n - 1$ is divisible by 3 for all $n \ge 1$...

Prove claim $P(n) = "4^n - 1$ is divisible by 3"

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. $P(1) = 4^1 - 1 = 3$. P(1) is **T**.

[Base case.]

2. Prove $P(n) \rightarrow P(n+1)$ for all $n \ge 1$.

[Induction step.]

Proof. We prove the implication using a direct proof.

- (i) Assume that P(n) is **T**, i.e., that $4^n 1$ is divisible by 3. [Induction hypothesis.]
- (ii) This means that $4^n 1 = 3k$ for some integer k. Thus, $4^n = 3k + 1$.
- (iii) Observe that $4^{n+1} = 4 \times 4^n$; then, $4^{n+1} = 4(3k+1) = 12k+4$. Therefore, $4^{n+1} - 1 = 12k+3 = 3(4k+1)$, which is a multiple of 3.
- (iv) Since $4^{n+1} 1$ is a multiple of 3, it follows that $4^{n+1} 1$ is divisible by 3.
- (v) Therefore, P(n+1) is **T**.
- 3. By induction, we have proven P(n) for all $n \ge 1$.

PROOF BY INDUCTION — PROOF TEMPLATE

Given claim P(n), we construct a proof by induction to show P(n) holds for all $n \ge n_0$:

Proof. We use induction to prove $\forall n \geq n_0 : P(n)$.

[We often set $n_0 = 1$.]

1. Show that $P(n_0)$ is **T**.

[Base case.]

2. Show that $P(n) \rightarrow P(n+1)$ for a general $n \ge n_0$.

[Induction step.]

Direct proof:

Assume P(n) is **T**.

Show P(n+1) is **T**.

or

Proof by contraposition: Assume P(n+1) is **F**.

Show P(n) is **F**.

3. Conclude therefore that P(n) holds for all $n \ge n_0$.

WHY DOES INDUCTION WORK?

Using induction, here is how we prove the $\forall n$ part of the claim:

PROOF BY INDUCTION — EXAMPLE

Prove claim $P(n) = "1 + 2 + ... + n = \frac{n(n+1)}{2}$ " using induction

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

- 1. [Base case] $P(1) = \frac{1}{2}(1)(1+1) = 1$. P(1) is **T**.
- 2. [Induction step] We show $P(n) \to P(n+1)$ for all $n \ge 1$ via a direct proof.

Assume (induction hypothesis) that P(n) is **T**.

Prove
$$P(n+1)$$
: $1+2+...+n+(n+1)=\frac{(n+1)(n+2)}{2}$.

Manipulate the LHS to get it into a form that resembles P(n)...

...also look to "plug in" the induction hypothesis...

Prove claim
$$P(n) = 1 + 2 + ... + n = \frac{n(n+1)}{2}$$
 using induction

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

- 1. [Base case] $P(1) = \frac{1}{2}(1)(1+1) = 1$. P(1) is **T**.
- 2. [Induction step] We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$ via a direct proof.

Assume (induction hypothesis) that P(n) is **T**.

Prove
$$P(n+1)$$
: 1 + 2 + ... + n + (n+1) $\frac{(n+1)(n+2)}{2}$

LHS:
$$1 + 2 + ... + n + (n+1) = [1 + 2 + ... + n] + (n+1)$$

plug in the induction hypothesis...

$$\frac{n(n+1)}{2} + (n+1) = \frac{1}{2} (n+1)(n+1+1).$$

Prove claim
$$P(n) = "1 + 2 + ... + n = \frac{n(n+1)}{2}$$
" using induction

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

- 1. [Base case] $P(1) = \frac{1}{2}(1)(1 + 1) = 1$. P(1) is **T**.
- 2. [Induction step] We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$ via a direct proof.

Assume (induction hypothesis) that P(n) is **T**.

Prove
$$P(n+1)$$
: $1 + 2 + ... + n + (n+1) = \frac{(n+1)(n+2)}{2}$.

LHS:
$$1 + 2 + ... + n + (n+1) = [1 + 2 + ... + n] + (n+1)$$

plug in the induction hypothesis...

$$= \frac{n(n+1)}{2} + (n+1) = \frac{1}{2} (n+1)(n+1+1).$$

3. By induction, we have proven P(n) for all $n \ge 1$.

PROOF BY INDUCTION — EXAMPLE

Prove claim $S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1)$ using induction

Proof. We use induction to prove $\forall n \geq 1 : S(n)$.

- 1. [Base case] $S(1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$. S(1) is **T**.
- 2. [Induction step] We show $S(n) \to S(n+1)$ for all $n \ge 1$ via a direct proof.

Assume (induction hypothesis) that S(n) is T.

Prove
$$S(n+1)$$
: $\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

Manipulate the LHS to get it into a form that resembles S(n)...

...also look to "plug in" the induction hypothesis...

Prove claim $S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1)$ using induction

Proof. We use induction to prove $\forall n \geq 1 : S(n)$.

- 1. [Base case] $S(1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$. S(1) is **T**.
- 2. [Induction step] We show $S(n) \to S(n+1)$ for all $n \ge 1$ via a direct proof.

Assume (induction hypothesis) that S(n) is T.

Prove
$$S(n+1)$$
: $\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

LHS:
$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 = \frac{1}{6} n(n+1)(2n+1) + (n+1)^2$$
plug in the
induction hypothesis...
$$= \frac{1}{6} (n+1)(n+2)(2n+3).$$

3. By induction, we have proven S(n) for all $n \ge 1$.

PROOF BY INDUCTION

Prove the following claims using induction...

Claim 1. $P(n) = "n^2 - n + 41$ is a prime number." Prove $\forall n \ge 1$, P(n) is **T**.

Claim 2. $P(n) = "5^n - 1$ is divisible by 4." Prove $\forall n \ge 1$, P(n) is **T**.

Claim 3. $P(n) = "n \le 2^n$." Prove $\forall n \ge 1$, P(n) is **T**.

Claim 4.
$$P(n) = \text{``}1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$$
."

Prove $\forall n \ge 1$, $P(n)$ is **T**.

Claim 5. $P(n) = "n^{17} + 9$ and $(n + 1)^{17} + 9$ have no factors in common." Prove $\forall n \ge 1$, P(n) is **T**.

Claim 5 does not hold—tinker with some values but see the textbook for where this fails...

PROOF BY INDUCTION — STAMPS EXAMPLE

Assume we have an old stamp-dispensing machine stocked with an infinite number of 5ϕ and 7ϕ stamps

Also assume minimum postage is 19¢

Can we accommodate any postage starting at 19¢—e.g., 19¢, 20¢, 21¢, etc.?

19¢	20 ¢	21 ¢	22 ¢	23 ¢	24 ¢	25 ¢	26 ¢	
5¢,7¢,7¢	5¢, 5¢,	7¢,7¢,7¢	5¢, 5¢,	śśś	5¢, 5¢,	5¢, 5¢,	5¢,7¢,	•••
	5¢, 5¢		5¢,7¢		7¢,7¢	5¢, 5¢, 5¢	7¢,7¢	

Can we accommodate any postage starting at 24ϕ —e.g., 24ϕ , 25ϕ , 26ϕ , etc.?

How can we prove that we can accommodate any postage starting at 24¢ using induction...?

PROOF BY INDUCTION — STAMPS EXAMPLE

How can we prove that we can accommodate any postage starting at 24¢ using induction...?

24 ¢	25 ¢	26 ¢	27 ¢	28 ¢	29 ¢	30 ¢	31¢	
5¢, 5¢, 7¢,	5¢, 5¢, 5¢,	5¢, 7¢, 7¢,	5¢, 5¢, 5¢,	7¢,7¢,7¢,	5¢,5¢,5¢,	5¢, 5¢, 5¢,	5¢,5¢,7¢,	
7¢	5¢, 5¢	7¢	5¢,7¢	7¢	7¢,7¢	5¢, 5¢, 5¢	7¢,7¢	

Given the first five solutions...

...we can always add another 5¢ stamp to get the next set of five solutions

Can you write an inductive proof for this problem?

WHAT NEXT...?

Problem Set 2 is due at recitations this Wednesday, September 21

• We are going to spread out to neighboring rooms: Ricketts 208 and 212

Homework 2 is posted and due by 11:59PM on September 29

Problem Set 3 will be posted by next Monday—due at recitations on September 28

Email me extra-time accommodations ASAP

Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice!