2 Теория колец

2.5 Полиномиальные кольца

Основные определения

Определение 1. Пусть R - коммутативное кольцо $R[X]=\{a_nX^n+a_{n-1}X^{n-1}+...+a_1X+a_0\big|a_i\in R\}, n\in\mathbb{N}$ - кольцо многочленов над R от переменной X.

Определение 2. Пусть R - коммутативное кольцо, $f(X), g(X) \in R[X]$ - полиномиальные кольца. Тогда $f(X) \cdot g(X) = c_{m+n}X^{m+n} + \ldots + c_1X + c_0, f(X) + g(X) = (a_s + b_s)X^s + \ldots + (a_1 + b_1)X + a_0 + b_0$

Теорема 1. Если D - кольцо целостности, то D[X] - кольцо целостности.

Алгоритм деления

Теорема 2. Пусть F - поле u $f(X), g(X) \in F[X]$. Тогда $\exists ! q(X), r(X) \in F[X] | f(X) = g(X) \cdot q(X) + r(X)$. Либо r(X) = 0, либо $\deg r < \deg g$.

Следствие 1. a - нуль $f(X) \Leftrightarrow (X-a)$ - множитель f(X).

Следствие 2. Многочлен степени n, определенный над некоторым полем, имеет не более n нулей с учетом их кратности.

Определение 3. Кольцо главных идеалов - кольцо целостности, в котором любой идеал главный.

Теорема 3. Пусть F - поле, I - ненулевой идеал в F[X] и $g(X) \in F[X]$. Тогда $I = (g(X)) \Leftrightarrow g(X)$ - ненулевой многочлен минимальной степени в I.

2.6 Факторизация многочленов

Определение 4. Пусть D - кольцо целостности. Необратимый ненулевой многочлен $f(X) \in D[X]$ называется неприводимым над D, если $f(X) \neq g(X) \cdot h(X)$, где $g(X) \neq const, h(X) \in D[X]$.

Теорема 4. Пусть F - поле. Если $f(X) \in F[X]$ и $\deg f = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, то f приводимо над $F \Leftrightarrow f(X)$ имеет ноль в F.

Определение 5. Содержание ненулевого многочлена вида $a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$, это $HO \mathcal{I}(a_n, a_{n-1}, \dots, a_0)$. Примитивный многочлен - это многочлен из $\mathbb{Z}[X]$ с содержанием = 1.

Лемма 1 (Гаусса). Произведение двух примитивных многочленов есть примитивный многочлен.

Доказатель ство. Рассмотрим f(X) и g(X) - примитивные От противного:

Пусть $f(X) \cdot g(X)$ - не является примитивным многочленом Пусть простое $p|content(f \cdot g)$

Если $\mathbb{Z}_p[X] = F_p[X] \Rightarrow \overline{f}(X), \overline{g}(X)$ создаются классами f(X), g(X)

$$\Rightarrow f(X) \cdot g(X) \to \overline{f(X) \cdot g(X)}$$
 $\mathbb{Z}_p[X]$ - кольцо целостности $\overline{f(X)} \cdot \overline{g(X)} = \overline{f(X)} \cdot g(X) = 0$
$$\Rightarrow \begin{bmatrix} \overline{f(X)} = 0 \\ \overline{g(X)} = 0 \end{bmatrix}, \text{ так как } F_p[X] \text{ - кольцо целостности}$$

$$\Rightarrow \begin{bmatrix} p|content(f) \\ p|content(g) \end{bmatrix} \Rightarrow \text{противоречие}$$

$$\Rightarrow f(X) \cdot g(X) \text{ - примитивный}$$

Переформулировка: Пусть $f(X) \in \mathbb{Z}[X]$. Если f - неприводим над \mathbb{Q} , то f - неприводим над \mathbb{N} .

Тесты на неприводимость

Теорема 5. Пусть p - простое u $f(X) \in \mathbb{Z}[X], \deg f \geq 1, f(X) \in \mathbb{Z}_p[X] = F_p[X] \pmod{p}$. Если $\overline{f(X)}$ неприводим на F_p u $\deg \overline{f}$, то f(X) - неприводим над \mathbb{Q} .

Замечание 1. Если $f(X) \in \mathbb{Z}[X]$ и $\overline{f}(X)$ неприводим над F_p , то в обратную сторону выполняется не всегда.

Теорема 6 (Критерий Эйзенштейна). Пусть $f(X) = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0 \in \mathbb{Z}[X]$. Если $\exists p$ - простое $|p \not| a_n, p|a_{n-1}, ..., p|a_0, p^2 \not| a_0$, то f неприводима над \mathbb{Q} .

Доказатель ство. От противного Пусть f(X) - приводим над \mathbb{Q} $\Rightarrow \exists g,h \in \mathbb{Z}[X] \big| f(X) = g(X) \cdot h(X)$ и $\deg g,\deg h \geq 1$ По условию $p|a_0,p^2 \not| a_0$ $a_0 = b_0 \cdot c_0 \Rightarrow \left[\begin{array}{c} p|b_0 \\ p|c_0 \end{array} \right]$

По условию $p \not\mid a_n = b_r \cdot c_s \Rightarrow \left[egin{array}{c} p \not\mid b_r \\ p \not\mid c_s \end{array} \right] \Rightarrow f$ - нериводим, так как противоречие.

Следствие 3. Для любого простого p многочлен, называемый круговым или циклотоническим, $\Phi_p(X) = \frac{X-1}{X+1} = X^{p-1} + X^{p-2} + \ldots + X + 1$ неприводим над $\mathbb Q$.

Теорема 7. Пусть F - none, $f(X) \in F[X]$. Тогда (f(X)) - max в $F[X] \Leftrightarrow f(X)$ - неприводим над F.

Следствие 4. $F[X]/_{(f(X))}$ - none.

Следствие 5. $f(x), g(X), h(X) \in F[X]$. Если f неприводим над F и $f|g \cdot h$, то $\begin{bmatrix} f|g \\ f|h \end{bmatrix}$

Теорема 8. Любой многочлен в $\mathbb{Z}[X]$, не являющимся ни нулем, ни константой, может быть записан в следующем виде $b_1 \cdot b_2 \cdot \ldots \cdot b_s \cdot f_1(X) \cdot f_2(X) \cdot \ldots \cdot f_m(X)$, где $b_i = const.$ f_j - неприводимые многочлены, кроме того, если $b_1 \cdot b_2 \cdot \ldots \cdot f_1(X) \cdot f_2(X) \cdot \ldots \cdot f_m(X) = c_1 \cdot c_2 \cdot \ldots \cdot c_t \cdot g_1(X) \cdot g_2(X) \cdot \ldots \cdot g_n(X)$, то $s = t, m = n, |b_i| = c_i, |f_j| = g_j$.