2 3 +2 0 11 + 1 1 1 1 1 1 1 1 2 1 -3 3 +2 9(x) $f(x) = (x+1)(2x^3+x^2-3x+3)-2$ И спаранного выше следуем, что деление с Доматили на двугиет x-а всегда возмочено, примом единственным образам One Syems S(x) EK[x] Эменент а ЕК явичения пориси иногочена S(x), ecun S(a) = C Bein a E K, mo emubacani S(a) odognaraemed psyntamam nogemariobun o bupancerium S(x)
Educamo populanoscore nepepernermon x ee znarerme a: f(a) = and + an-1 a + ... + a, a + ao EK Equa KCL, mo, orefreque, K[x]CL[x] Kommany monerio reloptino o nopuex muororderia F(x) EK[x], nomagnemanyux L Teopena 2 (mespecua Lesy) Musioner F(x) EK[x] genunce na x-a <=> f(a) = O, m e.a-noperco F(x) MOKASATEADOTBO largement f(x) na x-a e ocmanuscu f(x) = (x - a)q(x) + rRegenabul le somo palericulo x = a, nougrum: 0 = 5(a) = 7 Inp. Koperus $a \in K$ uniouruena $f(x) \in K[x]$ nazuranca k - manurum, ecum f(x)godina na $(x-a)^k$, no ne gumma na $(x-a)^{k+1}$ Угорий протический 1 называтемия простоини остановный порти называющия кратовый.

```
Теорема 3 (о чине порней многочиена)
    Syems S(x) EK[x] u n = deg S(x) > 0
    Жогда чисно порней многочина F(x) с
учениям их пратигостей не превосходит п
MOKASATEALCTBO
     Unggrune no n ≥ 1
    Вога индупции очевидна. Предимимисти, по утверисдение допалаго для всех иногочить бранова и и пусть Э(x) - произвольный иногочими
     Ameneru n
    Donancem ymbepurgerma que improviena 5(x)
Ecun mororien S(x) re uneem noprien,
    mo gouagoibamo nereio
    Unare unoverien F(×) unem neusinopun k≥1,
nopens a ∈ K Ryems a - nopens «pamisomu k≥1,
         \mathcal{F}(x) = (x - a)^k g(x)
    nouveru g(a) +0 n deg g(x) < deg F(x)
    No rreguououcereuro unguayun rueno noprien
unovorciena g(x) c priman ur npaninoomu
ne npebocrogium deg g(x).
    Icro, mo nopre cerescoricera I(x) - recuerm a u
he nopre ceneroricera g(x) (cregsembre
yenocurrocum nonora E (riem Senumenea regna)
    Meners ymberne germe mespense qua unionomera
Аобавления к теореме 3
    Ecul rueno nopulu e gremone npamnosum unovormena f(x) patro n = \deg f(x), mo uneem mecuno pognoncerme:
         S(x) = a_0 \left( x = a_1 \right)^{k_1} \cdot \left( x - a_s \right)^{k_s} \quad (*)
    rge a_0 \in K, a_0 \neq 0

a_1, ..., a_s - nonaprio pagnirriore roprin <math>S(x), s \ge 1
    Donouceruse (+) nonere zanneams 6 buge.
         f(x) = a(x - x_i) \dots (x - x_m) (x_p)
```


где $a \in K$, $a \neq 0$,

 x_1 , , x_n – корни f(x) (не обязательно различные)

Предполагая наличие разложения (**) получим так называемые формулы Виета

$$f(x) = a_n x^n + + a_1 x + a_0 = = a(x - x_1) (x - x_n)$$

Раскрыв скобки в правой части, получим

$$a_n = a$$

$$a_{n-1} = a(-x - - x_n)$$

$$a_{n-2} = = a(x_1x_2 + x_{n-1}x_n)$$

$$a_{n-k} = = a(-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \dots x_{i_k}$$

$$a_0 = a(-1)^n x_1 \quad x_n$$

Точнее, формулами Виета обычно называются формулы

$$\sum_{0 \le i_1 < \dots < i_k \le n} x_{i_1} \qquad x_{i_k} = \left(-1\right)^k \frac{a_{n-k}}{a_n}$$

$$1 \le k \le n$$

Замечание

Выражение, стоящее в левых частях формулы Виета, называется элементарными симметрическими многочленами от корней данного многочлена f(x)

Onp Функцией определенной многочленом $f(x) \in K[x]$ называется функция

$$\tilde{f} K \to K$$

задаваемая правилом

$$a \to f(a), a \in K$$

Если $f(x) \neq g(x)$ в K[x], то, вообще говоря, функции, определяемые многочленами f(x) и g(x), могут совпадать

Пример

$$K = F_2 = \{0,1\}$$
 – поле из 2 элементов

$$f(x) = x + 1$$

$$g(x) = x^2 + 1$$

Составим таблицы значений соответствующих функций

f(x) = x + 1		$g(x) = x^2 + 1$	
a	f(a)	а	g (a)
0	1	0	1
1	0	1	0

<u>Теорема 4</u> (о совпадении алгебраической и функциональной точек зрения на понятие многочлена)

Пусть К – бесконечная область целостности

Тогда
$$f(x) = g(x) \iff \tilde{f} = \tilde{g}$$