FIBER REINFORCED POLYMER (FRP) COMPOSITES REBAR

John P. Busel Director, Composites Growth Initiative American Composites Manufacturers Association May 23, 2012

Outline

- About ACMA
- Introduction
- FRP Materials
- FRP Bars
- Standards & Specifications
- Applications
- Summary

Formed in 1979

World's largest composites trade association

representir

Manufacturers

Material Suppliers & Distributors

Composites Industry

3000+ Companies 280,000+ employees North America

Industry Consultants

Academia

ACMA Industry Council

Mission - Promote the use and growth of FRP reinforcement (rebar, tendons & grids) in concrete and masonry applications through development of quality procedures, industry specifications, performance standards, and field application guidelines.

FRP-RMC Manufacturers

- BP Composites
- Composite Rebar Technologies, Inc.
- Hughes Brothers, Inc.
- Marshall Composite Technologies, Inc.
- Pultrall, Inc.

Introduction

- The Problem Corrosion
 - Corrosion and deterioration of steel reinforced concrete
 - Mitigation techniques High costs to rehabilitate and remediate structures
 - Safety Construction zones and detours
- The Solution FRP Rebars
 - Non corrosive concrete reinforcement
 - Increase service life (durability)
 - Hundreds of applications in service in North

Traditional Approach to Corrosion Problems

- Reduce, Eliminate, or Negate the Current Flow of the Electrochemical Corrosion Cell Inherent With Steel Reinforced Concrete
 - Admixtures
 - Increase Concrete Cover
 - Efforts to reduce permeability & mitigate cracking -HPC
 - Alter Concrete Mix
 - Membranes & Overlays
 - Epoxy coated steel
 - Cathodic protection
 - Sacrificial anodes

FRP Materials

Why are composites different?

What is FRP?

Fibers

Provide strength and stiffness

Carbon, glass, aramid

Matrix

Protects and transfers load between fibers Polyester, Epoxy, Vinyl Ester, Urethane

Fib@omposite datrix

Creates a material with attributes superior to either component alone! fibers **and** matrix both play critical roles in the composites material...

What is different?

- FRP is Anisotropic
 - High strength in the direction of the fibers
 - This anisotropic behavior affects the shear strength, dowel action, and bond performance
- FRP does not exhibit yielding: the material is linear elastic until failure
 - Design should account for lack of ductility
 - Member does have substantial deformability

Composites Features

- Impervious to chloride ion and chemical attack
- Tensile strength is greater that steel
- ½ the weight of steel
- Transparent to magnetic fields and radar frequencies
- Electrically non-conductive
- Thermally non-conductive

Where should FRP rebar be used?

- Any concrete member susceptible to corrosion by chloride ions or chemicals
- Any concrete member requiring non-ferrous reinforcement due to Electro-magnetic considerations
- As an alternative to epoxy, galvanized, or stainless steel rebars
- Where machinery will "consume" the reinforced member ie. Mining and tunneling
- Applications requiring Thermal non-conductivity

Tensile Stress-Strain Characteristics

FRP Properties

	Steel	GFRP	CFRP	AFRP
Yield Stress ksi (MPa)	40 - 75 (276 - 517)	N/A	N/A	N/A
Tensile Strength ksi (MPa)	70 - 100 (483 - 690)	70 - 230 (483 - 1600)	87 - 535 (600 - 3690)	250 - 368 (1720 - 2540)
Elastic Modulus X 10 ³ ksi (MPa)	29 (200)	5.1 - 7.4 (35 - 51)	15.9 - 84 (120 - 580)	6.0 - 18.2 (41 - 125)
Yield Strain %	.1425	N/A	N/A	N/A

Source: ACI 440.1R-06

Factors Affecting Material Characteristics

- Type of fiber
- Fiber volume
- Type of resin
- Fiber orientation
- Quality control procedures during manufacturing
- Rate of curing
- Void content
- Service temperature

Coefficient of Thermal Expansion

Material	Longitudinal Direction	Transverse
Concrete	4 ~ 6	4 ~ 6
Steel	6.5	6.5
GFRP	3.5 ~ 5.6	» 12
CFRP	-4 ~ 0	41 - 58
AFRP	- 3.3 ~ - 1.1	33 - 44

Values of CTE differ between FRP materials and concrete.

Effect of High Temperatures

- Resins will soften due to excessive heat
- The tensile, compressive, and shear properties of the <u>resin</u> diminish when temperatures approach the Glass Transition Temperature, T_g
- T_g values are approximately 250°F (120°C) for vinylester resins which are typically used with <u>GFRP</u> rebars

FRP bars

Looks are deceiving

Most products are manufactured with this process

FRP Bar Types

- Materials
 - Glass/ vinylester
 - Carbon/ vinylester
- Forms
 - Solid

