S. Lavirotte, J.-Y. Tigli Polytech'Nice – Sophia PeiP 1 2015-2016

5 Exercices

5.1 Objets multimédia composites

Exercice n°1:

Voyez-vous d'autres exemples d'objets multimédias composites que ceux cités dans le cours ? Vidéo et texte (pour les sous-titres), Son et texte (fichier de karaoké), ...

Exercice n°2:

En quoi l'objet « Karaoké » (fichier .kar) est-il un objet multimédia composite ?

Un fichier de karaoké contient du son pour la musique et le texte des paroles que l'on doit chanter. Donc il inclus deux types de base.

5.2 Chaînes de traitements multimédia

Exercice n°3:

Pouvez-vous donner un exemple d'une chaîne de traitement multimédia qui permet d'acquérir du son et de restituer du texte ?

Un système de reconnaissance vocal qui permet soit de commander la machine vocalement, soit de dicter du texte. Exemple de logiciel Dragon Naturally Speaking

Où vient alors s'insérer le traitement spécifique qui se rajoute à la chaîne de traitement multimédia entre le Microphone et l'Ecran par exemple ? Quel est-il ?

Le logiciel de traitement s'insère entre le dispositif d'acquisition (avec le format de données associé) et le logiciel de rendu (le traitement de texte). Donc il prendre la place du logiciel d'édition dans le cadre du schéma présenté.

Exercice n°4:

Pouvez-vous donner un exemple d'une chaîne de traitement multimédia qui permet d'acquérir de l'image et de restituer du texte ?

C'est un logiciel de reconnaissance optique de caractère : on photographe une page, on obtient donc une image et à l'aide d'un logiciel de type OCR (Optical Caractère Recognition), on interprète les données dans l'images pour en extraire les caractères qi y sont représentés.

Où vient alors s'insérer le traitement spécifique qui se rajoute à la chaîne de traitement multimédia entre le Scanner et l'Ecran par exemple ? Quel est-il ?

C'est aussi le logiciel d'édition qui diffère. Un des logiciels fournissant ce type de fonctionnalité sur le marché est Omnipage.

5.3 Bases

Exercice n°5:

De la base 10 vers la base 2. Donner l'écriture en base 2 des nombres suivants :

$$A = 10_{(10)} \quad B = 31_{(10)} \quad C = 32_{(10)} \\ A = 1010_{(2)} \quad B = 11111_{(2)} \quad C = 100000_{(2)}$$

Exercice n°6:

De la base 2 vers la base 10. Convertir en base 10 les nombres suivants :

```
D = 101001_{(2)} E = 10110011_{(2)} F = 1100101_{(2)} G = 100010111_{(2)}
```



```
D = 41_{(10)} E = 179_{(10)} F = 101_{(10)} G = 139_{(10)}
```

Exercice n°7:

Quel est le nombre le plus grand pour chacun de ces couples de nombres ?

```
\begin{array}{l} \text{H} : 10000_{(2)} \text{ et } 64_{(10)} \quad \text{I} : 10000001_{(2)} \text{ et } 101_{(10)} \text{ J} : 10000000_{(2)} \ 128_{(10)} \text{ K} : 11111111_{(2)} \ 256_{(10)} \\ \text{H} : 10000_{(2)} = 16_{(10)} < 64_{(10)} \\ \text{I} : 10000001_{(2)} = 129_{(10)} > 101_{(10)} \\ \text{J} : 10000000_{(2)} = 128_{(10)} = 128_{(10)} \\ \text{K} : 11111111_{(2)} = 255_{(10)} \ 256_{(10)} \end{array}
```

5.4 Codage du texte

Nous allons voir que de simples fichiers texte, sans gérer de mise en forme particulière à l'exception du retour à la ligne, peuvent déjà être codés différemment.

Exercice n°8:

Créez un fichier texteANSI.txt sous Windows avec Notepad++ que vous aurez préalablement installé depuis http://notepad-plus-plus.org/fr/. Dans ce fichier, mettez le texte « Bonjour ! » et enregistrez-le.

Exercice n°9:

Créez alors deux nouveaux fichiers textes texteUTF8.txt et texteUTF16-BE.txt avec le même texte « Bonjour! » mais en modifiant le format de codage (cf. menu Encodage, successivement en UTF-8 puis UTF16-BE).

Exercice n°10:

Commencez par démarrer un terminal sous Windows (Démarrer / et taper cmd dans la zone pour rechercher les programmes). Pour afficher successivement le contenu des deux fichiers dans le terminal utilisez la commande type (équivalent de cat sous Unix) :

type nom_de_fichier (avec successivement les fichiers texteANSI.txt, texteUTF8.txt puis texteUTF16-BE.txt)

Que remarquez-vous?

L'affichage des fichiers texteANSI.txt et texteUTF8.txt sont identiques. Par contre l'affiche de texteUTF16-BE.txt affiche bien le même texte, mais avec des espaces entre chaque lettre et un caractère « bizarre » (comme un carré) avant le mot Nonjour !

Exercice n°11:

En comparants les fichiers textANSI.txt texteUTF8.txt et texteUTF16-BE.txt, à l'aide de Notepad++, que constatezvous ?

La taille du deuxième fichier (UTF16-BE.txt) est un peu plus de deux fois plus gros que le fichier textANSLtxt.

En ouvrant les deux fichiers avec le logiciel Bloc-Notes que remarquez-vous ? Comment le logiciel peut connaître l'encodage utilisé par le fichier ?

Quand on ouvre le fichier avec le bloc-note, le logiciel affiche bien le texte tapé. Les premiers octets du fichiers permettent de stocker l'information sur la nature de l'encodage utilisé dans le fichier

Exercice n°12:

Voici par exemple une série de caractère codés en ASCII (ANSI) tels que stockés dans un fichier texte.

6C 65 73 20 6E 65 75 6E 65 75 73 20 66 6F 6E 74 20 71

S. Lavirotte, J.-Y. Tigli Polytech'Nice – Sophia PeiP 1 2015-2016

20	63	6C	69	71	75	65	72						

Utilisez le tableau figurant en annexe pour trouver le texte correspondant.

les neuneus font que cliquer

Exercice n°13:

En UTF16-BE, le codage sera le suivant :

FE	FF	00	6C	00	65	00	73	00	20	00	6E	00	65	00	75	00	6E	00	65
00	75	00	73	00	20	00	66	00	6F	00	6E	00	74	00	20	00	71	00	75
00	65	00	20	00	63	00	6C	00	69	00	97	00	75	00	65	00	72		

Si l'éditeur de texte le traite comme un fichier avec des caractères codés en ASCII/ANSI, quel sera le texte affiché ?

(Il y a une séparation entre chaque lettre par rapport à la version précédente)

les neuneus font que cliquer

Cela vous rappelle-t-il quelque chose?

Le texte est identique (même encodage utilisé en ASCII et en UTF8 pour les caractères dont le code est entre o et 255). Comme ici on utilise pas de caractère ayant un vrai code sur 16 bits, le premier octet est toujours à o. Donc si on interprète les données en ASCII/ANSI, on voit des espace entre chaque lettre (caractère NUL).

Pour aller plus loin...

Chaînes de traitements multimédia

Exercice n°1:

Décliner un exemple de chaîne de traitement d'objets multimédias, en vous inspirant en particulier du tableau sur les différents types de fichiers multimédia. Si vous connaissez des logiciels qui permettent de travailler sur une ou plusieurs étapes de la chaîne, sous Linux, sous Windows, mentionnez-les.

Chaine de traitement du texte Dispositif d'acquisition : clavier Encodage de base : UTF-8 Réencodage : UTF-16

Logiciel de traitement : Notepad, gedit, Word, OpenOffice, ...

Logiciel de rendu: idem + cat, ...
Format de sortie: txt, doc, docx; ...

Dispositif de rendu : écran, imprimante, ...

C'est aussi le logiciel d'édition qui diffère. Un des logiciels fournissant ce type de fonctionnalité sur le

marché est Omnipage.

Exercice n°2:

Vers des domaines inexplorés... ou presque ... Clavier vers Haut-parleurs ? Image vers Vidéo ? ...

Maintenant que vous avez compris, décrivez une chaîne de traitement multimédia de votre invention. Quel traitement spécifique est nécessaire dans cette chaîne de traitement ?

Si l'on conçoit un objet image comme des cases grises (de 0% de noir à 100% de noir) posée sur un damier, et un objet son composé d'une séquence de couples (note, durée), décrivez un algorithme (et oui, c'est ça !) qui permettrait de transformer l'objet image vers un objet son.

Pour toutes les lignes de l'image

Pour toutes les couples de cases d'une ligne

Lire la couleur de la case n

note = Convertir la couleur en un son

Lire la couleur de la case n+1

durée = Convertir la couleur en une durée

Jouer le son(note, durée)

Exercice n°3:

Illustrez cette transformation en traitant deux exemples simples :

- Une image toute grise (que des cases à 50% de noir)
 Un seul son qui se qui a toujours la même durée
- Une image « damier » alternant 2 cases noires et 2 cases blanches
 Le son joué sera du type deux tons (le pin-pon des pompiers)

Bases

Dans ces exercices, on passera directement d'une base à l'autre sans passer par la base 10. Pour vous faciliter la conversion, penser à regrouper les bits par 4... et oui, $15_{(10)} = 1111_{(2)} = F_{(16)}$!

Exercice n°4: Conversion du binaire vers hexadécimal

Donner l'écriture en base 16 des nombres suivants :

```
V = 101101_{(2)} \quad W = 1011010111110_{(2)} \quad X = 100111001110111_{(2)} \\ V = 2D_{(16)} \quad W = B5E_{(16)} \quad X = 4E77_{(16)}
```

Exercice n°5: Conversion de l'hexadécimal vers le binaire

Donner l'écriture en base 2 des nombres suivants :

```
Y = 24D_{(16)} Z = FE_{(16)} Y = 1001001101(2) Z = 111111110(2)
```


Annexe

	nexe				_					
Décimal	Octal	Hex	Binaire	Caractère		Décimal	Octal	Hex	Binaire	Caractère
0	0	0	00000000	NUL		41	51	29	00101001)
1	1	1	0000001	SOH		42	52	2A	00101010	*
2	2	2	0000010	STX		43	53	2B	00101011	+
3	3	3	0000011	ETX		44	54	2C	00101100	,
4	4	4	00000100	EOT		45	55	2D	00101101	-
5	5	5	00000101	ENQ		46	56	2E	00101110	
6	6	6	00000110	ACK		47	57	2F	00101111	/
7	7	7	00000111	BEL		48	60	30	00110000	0
8	10	8	00001000	BS		49	61	31	00110001	1
9	11	9	00001001	HT		50	62	32	00110010	2
10	12	Α	00001010	LF		51	63	33	00110011	3
11	13	В	00001011	VT		52	64	34	00110100	4
12	14	С	00001100	FF		53	65	35	00110101	5
13	15	D	00001101	CR		54	66	36	00110110	6
14	16	E	00001110	SO		55	67	37	00110111	7
15	17	F	00001111	SI		56	70	38	00111000	8
16	20	10	00010000	DLE		57	71	39	00111001	9
17	21	11	00010001	DC1		58	72	3A	00111010	:
18	22	12	00010010	DC2		59	73	3B	00111011	;
19	23	13	00010011	DC3		60	74	3C	00111100	<
20	24	14	00010100	DC4		61	75	3D	00111101	=
21	25	15	00010101	NAK		62	76	3E	00111110	>
22	26	16	00010110	SYN		63	77	3F	00111111	?
23	27	17	00010111	ETB		64	100	40	01000000	@
24	30	18	00011000	CAN		65	101	41	01000001	Α
25	31	19	00011001	EM		66	102	42	01000010	В
26	32	1A	00011010	SUB		67	103	43	01000011	С
27	33	1B	00011011	ESC		68	104	44	01000100	D
28	34	1C	00011100	FS		69	105	45	01000101	E
29	35	1D	00011101	GS		70	106	46	01000110	F
30	36	1E	00011110	RS		71	107	47	01000111	G
31	37	1F	00011111	US		72	110	48	01001000	Н
32	40	20	00100000	SP		73	111	49	01001001	1
33	41	21	00100001	!		74	112	4A	01001010	J
34	42	22	00100010	II .		75	113	4B	01001011	K
35	43	23	00100011	#		76	114	4C	01001100	L
36	44	24	00100100	\$		77	115	4D	01001101	М
37	45	25	00100101	%		78	116	4E	01001110	N
38	46	26	00100110	&		79	117	4F	01001111	0
39	47	27	00100111	1		80	120	50	01010000	Р
40	50	28	00101000	(81	121	51	01010001	Q

Décimal	Octal	Hex	Binaire	Caractère		
82	122	52	01010010	R		
83	123	53	01010011	S		
84	124	54	01010100	Т		
85	125	55	01010101	U		
86	126	56	01010110	V		
87	127	57	01010111	W		
88	130	58	01011000	Х		
89	131	59	01011001	Υ		
90	132	5A	01011010	Z		
91	133	5B	01011011	[
92	134	5C	01011100			
93	135	5D	01011101]		
94	136	5E	01011110	٨		
95	137	5F	01011111	-		
96	140	60	01100000	`		
97	141	61	01100001	a		
98	142	62	01100010	b		
99	143	63	01100011	С		
100	144	64	01100100	d		
101	145	65	01100101	е		
102	146	66	01100110	f		
103	147	67	01100111	g		
104	150	68	01101000	h		
105	151	69	01101001	i		
106	152	6A	01101010	j		
107	153	6B	01101011	k		
108	154	6C	01101100	l		
109	155	6D	01101101	m		
110	156	6E	01101110	n		
111	157	6F	01101111	0		
112	160	70	01110000	р		
113	161	71	01110001	q		
114	162	72	01110010	r		
115	163	73	01110011	S		
116	164	74	01110100	t		
117	165	75 76	01110101	u		
118	166	76	01110110	V		
119	167	77	01110111	W		
120	170	78	01111000	X		
121	171	79	01111001	У -		
122	172	7A	01111010	Z		
123	173	7B	01111011	{		

Décimal	Octal	Hex	Binaire	Caractère
124	174	7C	01111100	
125	175	7D	01111101	}
126	176	7E	01111110	~
127	177	7F	01111111	DEL