ICLR Paper

Abstract

Introduction

Program Representation with Abstract Syntax Translation

Variational Autoencoder

Limitations of VAE:

- 1. It is non-trivial to implement hard constrains with a VAE using RNNs or LSTMs.
- 2. VAEs learn an approximation of the posterior distribution P(Z|X), which is Q(Z|X). Because of this, reconstructed data x' is not identical to the original data x.

Metropolis-Hastings (MH) Algorithm

The Case for MH:

- 1. MCMC can guarantee to satisfy hard constrains by adding indicator functions to the stationary distribution. This was proposed in the paper "Constrained Sentence Generation by MH Sampling" [Miao et al].
- 2. By setting the stationary distribution of the Markov Chain to P(Z|X), we can guarantee that after convergence we obtain P(Z|X), we can guarantee that after convergence we obtain P(Z|X) and hence can sample from the true posterior distribution. This idea was first introduced in the paper "Markov Chain Monte Carlo & Variational Inference: Bridging the Gap" [Salinas et al].

Technical Approach

Data (V, E, RT, FP) for AST G(V, E)

Let A be the set of all APIs, RT be the set of all return types, and FP be the set of formal parameters in the vocabulary.

Let S be the set of control structures, S = {DSubTree, DBranch, DLoop, DExcept, DStop}

Let AST x be represented by directed graph G(V, E).

Encoder: Q(Z| X, RT, FP) Decoder: P(X| Z, RT, FP)

Metropolis-Hastings

Required Inputs:

C = list of apis or control structures that must appear in the program in order for it to be valid.

Optional Inputs:

 $e = list of apis or control structures S \setminus \{DSubTree\}$ that cannot appears in the program to be considered valid.

 $min_L = minimum length of program to be valid$ $<math>max_L = maximum length of the program to be valid, |c| < max_L$

Initialization:

If $min_L > |C|$ then nodes as added to the tree using the *insertion* proposal till $min_L = |C|$.

Problem Statement

We do Component-wise Metropolis-Hastings to sample from the multivariate posterior distribution. In Component-wise Metropolis-Hastings, we loop over each dimension and sample each dimension independently from the others. These are called component-wise updates. Each proposal distribution is univariate, working in only one dimension. The proposal for the i-th dimension is either accepted or rejected, while all other dimensions are held fixed. Here, we describe proposals for both the program space dimension and latent space dimension.

Proposals for Program Space

Let g be the proposal distribution. z = be the AST at time t where |z| = n and $z = w_1 - w_1 + w_2 = v$

Insertion

Insert node we at position in where I < m < n

Ginsert
$$(x'|x) = \begin{cases} 0 & \text{if } x' \neq \omega_1, \dots, \omega_{m-1}, \omega_c, \omega_m, \dots, \omega_r \\ \text{Softmax}(P(\omega_{m-1}, \omega_{m-1}, \omega_r, \omega_{m, \dots - \omega_n}) \mid Zt, z \end{cases}$$

$$f(x) = \omega_1, \dots, \omega_{m-1}, \omega_c, \omega_m, \dots, \omega_r$$

<u>Replacement</u>

We wish to replace wm with a new node w* at position m where I < m < n

$$g_{\text{replace}}\left(x^{i}|x\right) = \begin{cases} 0 \text{ if } x = \left[\omega_{1}, \ldots, \omega_{m-1}, \omega^{*}, \omega_{m+1}, \ldots, \omega_{n}\right] \\ softmax\left(P\left(\omega_{1}, \ldots, \omega_{m-1}, \omega^{*}, \omega_{m+1}, \ldots, \omega_{n}\right) \mid Z_{t} \\ zt, Jp\right) \neq \omega^{*} \in V \end{cases} \text{ if } \\ z = \left[\omega_{1}, \ldots, \omega_{m-1}, \omega^{*}, \omega_{m+1}, \ldots, \omega_{n}\right] \end{cases}$$

Swap

Let W_s , $W_t \in X$ where $1 \le s \le n$ and $1 \le t \le n$ and $s \ne t$. Let $X = [w_1, ..., w_t, w_s, ..., w_n]$ $g_{swap}(x'|X) = \begin{cases} 1 & \text{if } x' = [w_1, ..., w_s, w_t, ..., w_n] \\ 0 & \text{if } x' \ne [w_1, ..., w_s, w_t, ..., w_n] \end{cases}$

Constraint Growth

insert node after Wm Ginsert after $(z|x) = \begin{cases} 0 & \text{if } x = \omega, & \omega_n, \omega_{corr}, \omega_n \\ \text{onstraint} \end{cases}$ $\begin{cases} \text{goftmax}(P(\omega_1, \dots, \omega_n, \omega_c, \omega_n)) \\ \text{Zt}, \text{rt}, \text{fp}) \forall \omega_c \in V. \\ \text{if } x' = \omega_1, \dots, \omega_n, \omega_c, \dots, \omega_n \end{cases}$ $\text{Wm } \in C$

Randomly choose how many nodes to add after wc. k. This gives new AST 21k.

g constraint growth (xk/x) =

ginsertafter (x° | x). ginsert (x' | x°).... ginsert (xk) xk.

where .

20 = Wig., Wm, Wc, Wc, Wmth Wn Yorks

Deletion

Delete node w_m from x_i where $i < m \le n$ $g_{\text{delete}}(x'|x) = \begin{cases} 1 & \text{if } x' = [w_1, ..., w_{m-1}, w_{m+1}, ..., w_n] \\ 0 & \text{if } x' \neq [w_1, ..., w_{m-1}, w_{m+1}, ..., w_n] \end{cases}$ (Copied from CGMH paper)

Deleting multiple nodes (only to reverse insertion of control structures or constraint growth proposal):

Say the original AST is $X = W_1 ... Wn$ and nodes Wa and Wb were added such that $2e'' = W_1 ..., Wa, ... Wn$ $\chi' = W_1, ..., Wa, Wb, ... Wn$

Then, $g_{\text{delete}}(x'|x) = g_{\text{delate}}(x'|x'') \cdot g_{\text{delate}}(x''|x)$

Proposals for Latent Space

<u>Independent Proposal</u>

The proposal for the latent state does not depend on the current latent state.

At time t+1, x_{t+1} is already computed. The latent space is given by M_{t+1} , $\sigma_{t+1} \leftarrow Q(Z_{t+1}|X_{t+1}, g_{t+1})$ $Z_{t+1} \sim Z_{t+1} = M(M_{t+1}, \sigma_{t+1})$ $g(Z_{t+1}|Z_t) = g(Z_{t+1}) = M(M_{t+1}, \sigma_{t+1})$ Then, the acceptance rate is $A^{*}(Z_{t+1}|Z_t) = \frac{P_{independent} \cdot g(Z_t|Z_{t+1}) \cdot T(x_{t+1}, Z_t)}{P_{independent} \cdot g(Z_{t+1}|Z_t) \cdot T(x_{t+1}, Z_t)}$ $= \int_{Z_t} (Z_t) \cdot T(x_{t+1}, Z_{t+1}) \cdot T(x_{t+1}, Z_{t+1})$ $= \int_{Z_{t+1}} (Z_{t+1}) \cdot T(x_{t+1}, Z_{t+1})$

 $T(\chi_{t+1}, Z_{t+1}) = T(\chi_{t+1} | Z_{t+1}) \cdot T(Z_{t+1})$ $f_{Z_{t}}(z_{t}) \cdot P(\chi_{t+1} | Z_{t+1}) \cdot f_{Z_{t}}(z_{t+1})$ $f_{Z_{t+1}}(z_{t+1}) \cdot P(\chi_{t+1} | Z_{t}) \cdot f_{Z_{t}}(z_{t+1})$ $= f_{Z_{t}}(z_{t}) \cdot P(\chi_{t+1}) \cdot Q(Z_{t+1} | \chi_{t+1})$ $f_{Z_{t+1}}(Z_{t+1}) \cdot P(\chi_{t+1}) \cdot Q(Z_{t} | \chi_{t+1})$

Stationary Distribution

Acceptance Rate

At time titl, n' is the AST candidate A*insert (2' | 24) = P deute · gdelete (x/x'). T(x', Zt) Pinsert · ginsert (x1/x) · T(x, ZE) A delete (x'|x)= pinsert ginsert (22/21). T(x',Zt) Parlete · gallete (n' (2) · T(xt, Zt) A* swap (x'|x) = Aswap · gswap (xy|x') · T(x', Zt) Pswap · gswap (x'/ne) · T (x4, Zt) $= \frac{T(x', Z_t)}{T(x_t, Z_t)}$ A* replace (x'|x) = Preplace · greplace (xt |x') · T(x',Zt) Preplace · graplace (x/x). T(xt, Zt) ~ T(wm/2,n,Z, it, p). T(x',Zt) T(W'm/ x'...n, Z, xt/p) . T(Kt, Zt) A constraint growth (x')x) = Pollete. godelte (xt). T(x', Zt) Ponstraint · gconstraint (x1/x4)· TT (x+,Zt)
growth growth

Experiments