Doctor n.O

PREDICTING HEART FAILURE USING ENSEMBLE LEARNING

Team n°7
Stéphane Collot
Yannick Le Cacheux
Rishikesh Kulkarni

Objective

General objective:

 Given medical records of a patient over a given time period, predict whether he is likely to develop Heart Failure within a certain period of time

Methodology:

Use training set as well as machine learning tools to train a classifier

Heart Failure

Why heart failure?

- Very common and deadly disease:
 - 5 to 10% of adults over 65 suffering from HF in developed countries (5 million in the US)
 - 35% risk of death during year after diagnostic, ~10% / year after
- Predictable
 - Some symptoms leading to HF can be detected early: diabetes, high blood pressure, cholesterol...
 - Early prevention can help decrease risk

Dataset

We are using ExactData set. Time period of 10 years from 2005 to 2015.

Some numbers about the dataset:

 772.189 laboratory results, 313.921 diagnostics, 120.953 prescription medications, 269.301 vital signs

- 10.460 patients
 - including **4.712 patients diagnosed with Diseases Of The Circulatory System** ICD9 code within [390.0; 495.0]
 - including 879 patients diagnosed with Congestive heart failure
 ICD9 code 428.0

Feature construction

Features taken into account: medications, diagnostics, lab results and Body Mass Index (BMI)

The number of features need to be the same for every patient

```
diag1
:
diag1
:
lab1
:
BMI
```

60 diff. medications + 52 diff. diagnostics + 100 diff. lab results + 1 BMI

= 213-dimensional features vector

Cohort construction

Training set construction

Only 5% of patients with HF in dataset

> 95% accuracy if the classifier always output "NO"

This is NOT what we are trying to achieve

➤ Much more interesting to have a low false negative rate – helps prevent risk

Solution: Stratified Sampling

50% of patients with heart failure and 50% without in our training dataset

Classifiers

Binary classification: each patient is either a "YES" or a "NO"

Base classifiers:

- Logistic regression
- Decision trees
- ➤ Unstable classifiers: use of **ensemble learning** to decrease variance and improve accuracy
 - Bagging for logistic regression
 - Random forest for decision trees

Logistic Regression - Bagging

Decision Trees - Random Forest

Main idea

- Generation of a large number of decision trees introducing some randomness in the construction of the tree
- For each split in a tree, variables are chosen at random
- Combination of the results output by the different trees to calculate the final result
- Use of vote for final classification

Methods – Technology Stack

We are using

- Spark v1.3.0 (released Mar 13, 2015)
- Spark MLlib
- Spark ML (high-level API for machine learning pipelines)
- Scala
- Amazon Web Service
- GitHub

Cross Validation

- K = 10 folds for cross validation
- Cross validation can also be used to determine optimum number of models in the bag
- \blacksquare B = 10, 20, 30
- Cross validation results used to pick out the classifier with best parameters overall

ML Pipeline

ML Pipeline makes experimentation easy with Parameter Grid

Regularizer	Bag size	
1.0	10	
0.1	20	
0.01	30	
	-	

Strategy	Feature Subset	
Classification	auto	
Regression	sqrt	

- Integrated two new algorithms with ML pipeline:
 - class BaggedLogisticRegression
 - > class RandomForestforPipeline

Results – Confusion Matrices

Logistic Regression - Bagging

96% accuracy

		Prediction		
		0	1	
		Healthy	Case Patient	
	0	True negative	False positive	
Actual	Healthy	73	3	
Act	1	False negative	True positive	
,	Case Patient	3	83	

Decision trees - Random Forest

98% accuracy

		Prediction		
		0	1	
		Healthy	Case Patient	
	0	True negative	False positive	
Actual	Healthy	74	2	
Act	1	False negative	True positive	
	Case Patient	0	86	

Results - ROC curves

Logistic Regression - Bagging

Decision trees - Random Forest

Performance Evaluation

Performance evaluated on Amazon EC2 for different cluster parameters.

Amazon EC2

We tried:

T2.micro 1 vCPU 1 GB of RAM

M1.large 2 vCPU 7,5 GB of RAM

M1.large 2 vCPU 7,5 GB of RAM x3 cluster

Bagging and random forest are parallelizable -> Scalable

Name	▲ Instance ID →	Instance Type 🔻	Availability Zone -	Instance State 🔻	Status Checks
my-spark-cluster3-master-i-42784c95	i-42784c95	m1.large	us-east-1d	running	2/2 checks
my-spark-cluster3-slave-i-b9784c6e	i-b9784c6e	m1.large	us-east-1d	running	2/2 checks
my-spark-cluster3-slave-i-5d784c8a	i-5d784c8a	m1.large	us-east-1d	running	2/2 checks

Challenges / Conclusion

Challenge:

The data required scraping.

The results look too good:

- ExactData is not real data
- We don't have data before the observation windows
- Maybe there are medical features that are obviously correlated.
 We might need medical expertise to identify them.

References

- 1. Paradigm of Prediction: Predictive Analytics to Prevent Congestive Heart Failure Deborah Helen Selma, OJNI Volume 18, Number 2
- 2. Bagging Predictors
 Leo Breiman, Machine Learning, 24, 123–140 (1996)
- An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

Eric Bauer, Ron Kohavi, Machine Learning, July 1999, Volume 36, Issue 1-2, pp 105-139

4. Amazon EC2 instances http://aws.amazon.com/ec2/instance-types/

Doctor n.O

PREDICTING HEART FAILURE USING ENSEMBLE LEARNING

Team n°7
Stéphane Collot
Yannick Le Cacheux
Rishikesh Kulkarni

Thank You Any questions?

