21. Orthonormal Bases

The canonical/standard basis

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

has many useful properties.

• Each of the standard basis vectors has unit length:

$$||e_i|| = \sqrt{e_i \cdot e_i} = \sqrt{e_i^T e_i} = 1.$$

• The standard basis vectors are *orthogonal* (in other words, at right angles or perpendicular).

$$e_i \cdot e_j = e_i^T e_j = 0$$
 when $i \neq j$

This is summarized by

$$e_i^T e_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases},$$

where δ_{ij} is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix.

Given column vectors v and w, we have seen that the dot product $v \cdot w$ is the same as the matrix multiplication $v^T w$. This is the *inner product* on \mathbb{R}^n . We can also form the *outer product* vw^T , which gives a square matrix.

The outer product on the standard basis vectors is interesting. Set

$$\Pi_{1} = e_{1}e_{1}^{T} \\
= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \\
\vdots \\
\Pi_{n} = e_{n}e_{n}^{T} \\
= \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \\
= \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

In short, Π_i is the diagonal square matrix with a 1 in the *i*th diagonal position and zeros everywhere else. ¹

Notice that $\Pi_i \Pi_j = e_i e_i^T e_j e_j^T = e_i \delta_{ij} e_j^T$. Then:

$$\Pi_i \Pi_j = \left\{ \begin{array}{ll} \Pi_i & \quad i = j \\ 0 & \quad i \neq j \end{array} \right. .$$

Moreover, for a diagonal matrix D with diagonal entries $\lambda_1, \ldots, \lambda_n$, we can write

$$D = \lambda_1 \Pi_1 + \ldots + \lambda_n \Pi_n.$$

Other bases that share these properties should behave in many of the same ways as the standard basis. As such, we will study:

¹This is reminiscent of an older notation, where vectors are written in juxtaposition. This is called a 'dyadic tensor,' and is still used in some applications.

• Orthogonal bases $\{v_1, \ldots, v_n\}$:

$$v_i \cdot v_j = 0 \text{ if } i \neq j$$

In other words, all vectors in the basis are perpendicular.

• Orthonormal bases $\{u_1, \ldots, u_n\}$:

$$u_i \cdot u_j = \delta_{ij}$$
.

In addition to being orthogonal, each vector has unit length.

Suppose $T = \{u_1, \ldots, u_n\}$ is an orthonormal basis for \mathbb{R}^n . Since T is a basis, we can write any vector v uniquely as a linear combination of the vectors in T:

$$v = c^1 u_1 + \dots c^n u_n.$$

Since T is orthonormal, there is a very easy way to find the coefficients of this linear combination. By taking the dot product of v with any of the vectors in T, we get:

$$v \cdot u_i = c^1 u_1 \cdot u_i + \ldots + c^i u_i \cdot u_i + \ldots + c^n u_n \cdot u_i$$

$$= c^1 \cdot 0 + \ldots + c^i \cdot 1 + \ldots + c^n \cdot 0$$

$$= c^i,$$

$$\Rightarrow c^i = v \cdot u_i$$

$$\Rightarrow v = (v \cdot u_1)u_1 + \ldots + (v \cdot u_n)u_n$$

$$= \sum_i (v \cdot u_i)u_i.$$

This proves the theorem:

Theorem. For an orthonormal basis $\{u_1, \ldots, u_n\}$, any vector v can be expressed

$$v = \sum_{i} (v \cdot u_i) u_i.$$

Relating Orthonormal Bases

Suppose $T = \{u_1, \dots, u_n\}$ and $R = \{w_1, \dots, w_n\}$ are two orthonormal bases for \mathbb{R}^n . Then:

$$w_1 = (w_1 \cdot u_1)u_1 + \ldots + (w_1 \cdot u_n)u_n$$

$$\vdots$$

$$w_n = (w_n \cdot u_1)u_1 + \ldots + (w_n \cdot u_n)u_n$$

$$\Rightarrow w_i = \sum_j u_j(u_j \cdot w_i)$$

As such, the matrix for the change of basis from T to R is given by

$$P = (P_i^j) = (u_j \cdot w_i).$$

Consider the product PP^T in this case.

$$(PP^{T})_{k}^{j} = \sum_{i} (u_{j} \cdot w_{i})(w_{i} \cdot u_{k})$$

$$= \sum_{i} (u_{j}^{T} w_{i})(w_{i}^{T} u_{k})$$

$$= u_{j}^{T} \left[\sum_{i} (w_{i} w_{i}^{T}) \right] u_{k}$$

$$= u_{j}^{T} I_{n} u_{k} \quad (*)$$

$$= u_{j}^{T} u_{k} = \delta_{jk}.$$

In the equality (*) is explained below. So assuming (*) holds, we have shown that $PP^T = I_n$, which implies that

$$P^T = P^{-1}$$
.

The equality in the line (*) says that $\sum_i w_i w_i^T = I_n$. To see this, we examine $(\sum_i w_i w_i^T)v$ for an arbitrary vector v. We can find constants c^j such that $v = \sum_j c^j w_j$, so that:

$$\begin{split} &(\sum_{i} w_{i}w_{i}^{T})v &= (\sum_{i} w_{i}w_{i}^{T})(\sum_{j} c^{j}w_{j}) \\ &= \sum_{j} c^{j} \sum_{i} w_{i}w_{i}^{T}w_{j} \\ &= \sum_{j} c^{j} \sum_{i} w_{i}\delta_{ij} \\ &= \sum_{j} c^{j}w_{j} \text{ since all terms with } i \neq j \text{ vanish} \\ &= v. \end{split}$$

Then as a linear transformation, $\sum_i w_i w_i^T = I_n$ fixes every vector, and thus must be the identity I_n .

Definition A matrix P is orthogonal if $P^{-1} = P^{T}$.

Then to summarize,

Theorem. A change of basis matrix P relating two orthonormal bases is an orthogonal matrix. i.e.

 $P^{-1} = P^T$.

Example Consider \mathbb{R}^3 with the orthonormal basis

$$S = \left\{ u_1 = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, u_3 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}.$$

Let R be the standard basis $\{e_1, e_2, e_3\}$. Since we are changing from the standard basis to a new basis, then the columns of the change of basis matrix are exactly the images of the standard basis vectors. Then the change of basis matrix from R to S is given by:

$$P = (P_i^j) = (e_j u_i) = \begin{pmatrix} e_1 \cdot u_1 & e_1 \cdot u_2 & e_1 \cdot u_3 \\ e_2 \cdot u_1 & e_2 \cdot u_2 & e_2 \cdot u_3 \\ e_3 \cdot u_1 & e_3 \cdot u_2 & e_3 \cdot u_3 \end{pmatrix}$$
$$= \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

From our theorem, we observe that:

$$P^{-1} = P^{T} = \begin{pmatrix} u_{1}^{T} \\ u_{2}^{T} \\ u_{3}^{T} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

We can check that $P^TP=I_n$ by a lengthy computation, or more simply, notice that

$$(P^T P)_{ij} = \begin{pmatrix} u_1^T \\ u_2^T \\ u_3^T \end{pmatrix} \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We are using orthonormality of the u_i for the matrix multiplication above.

Orthonormal Change of Basis and Diagonal Matrices. Suppose D is a diagonal matrix, and we use an orthogonal matrix P to change to a new basis. Then the matrix M of D in the new basis is:

$$M = PDP^{-1} = PDP^{T}$$
.

Now we calculate the transpose of M.

$$M^{T} = (PDP^{T})^{T}$$

$$= (P^{T})^{T}D^{T}P^{T}$$

$$= PDP^{T}$$

$$= M$$

So we see the matrix PDP^T is symmetric!

References

• Hefferon, Chapter Three, Section V: Change of Basis

Wikipedia:

- Orthogonal Matrix
- Diagonalizable Matrix
- Similar Matrix

Review Questions

- 1. Let $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
 - i. Write D in terms of the vectors e_1 and e_2 , and their transposes.
 - *ii.* Suppose $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible. Show that D is similar to

$$M = \frac{1}{ad - bc} \begin{pmatrix} \lambda_1 ad - \lambda_2 bc & (\lambda_1 - \lambda_2) bd \\ (\lambda_1 - \lambda_2) ac & -\lambda_1 bc + \lambda_2 ad \end{pmatrix}.$$

- iii. Suppose the vectors $\begin{pmatrix} a & b \end{pmatrix}$ and $\begin{pmatrix} c & d \end{pmatrix}$ are orthogonal. What can you say about M in this case?
- 2. Suppose $S = \{v_1, \ldots, v_n\}$ is an *orthogonal* (not orthonormal) basis for \mathbb{R}^n . Then we can write any vector v as $v = \sum_i c^i v_i$ for some constants c^i . Find a formula for the constants c^i in terms of v and the vectors in S.
- 3. Let u, v be independent vectors in \mathbb{R}^3 , and $P = \text{span}\{u, v\}$ be the plane spanned by u and v.
 - i. Is the vector $v^{\perp} = v \frac{u \cdot v}{u \cdot u} u$ in the plane P?
 - ii. What is the angle between v^{\perp} and u?
 - iii. Given your solution to the above, how can you find a third vector perpendicular to both u and v^{\perp} ?
 - iv. Construct an orthonormal basis for \mathbb{R}^3 from u and v.
 - v. Test your abstract formulae starting with

$$u = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$$
 and $v = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$.