Module 1.4: Two proofs and primes MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

A proof about primes

Proposition. If p, r, s are positive integers such that $p = r \cdot s$ and p is prime then one of r and s is 1 and the other one equals p.

Proof. Assume that $p = r \cdot s$ and p is prime.

Then r is a factor of p (r | p).

Since p is prime, r = 1 or r = p.

In the first case r = 1 therefore $p = 1 \cdot s$ and thus s = p.

In the second case r = p therefore $p = p \cdot s$.

Dividing both sides of $p = p \cdot s$ by p we get 1 = s.

Done.

Another proof about primes

Proposition. For all integers x, if x > 1, then $x^3 + 1$ is *not* prime.

Proof. Let x be any integer such that x > 1 and let's denote $x^3 + 1$ by n.

We are going to show that n has a factor that is neither 1 nor equal to n and therefore n cannot be a prime.

First observe that $x^3 + 1 = (x + 1)(x^2 - x + 1)$. (Multiply and check!)

Let's also denote x+1 by r and x^2-x+1 by s.

Note that both r and s are factors of n, since $n = r \cdot s = s \cdot r$.

Now, because x > 1 we have r = x + 1 > 1.

Another proof about primes (continued)

We just derived r > 1.

Now, multiply both sides of r > 1 with s. We get $r \cdot s > s$.

However $r \cdot s = n$. Therefore n > s. underline

We can also show s > 1 underline by the following reasoning:

$$x > 1$$
 (Recall assumption)
 $x^2 > x$ (Multiplying both sides by x.)
 $x^2 - x > 0$ (Subtracting x from both sides.)
 $x^2 - x + 1 > 1$ (Adding 1 to both sides.)

To summarize, we have shown 1 < s < n.underline Therefore n has a factor, namely s, that is neither 1 nor equal to n. Done.