Jakub Kujawa Mikołaj Kowalski Grupa G8

Rozwiązywanie układu równań liniowych XA=B, gdzie $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$, zmodyfikowaną metodą Doolittle'a (tj. poprzez rozkład A = UL, gdzie U jest macierzą trójkątną górną, a L macierzą trójkątną dolną z jedynkami na głównej przekątnej). Wyznaczanie macierzy A^{-1} oraz det(A) na podstawie rozkładu.

Projekt nr 1

1 Opis metody

Rozwiązanie układu równań XA=B, gdzie $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$, zmodyfikowaną metodą Doolitle'a opiera się na wyznaczeniu macierzy $L \in \mathbb{R}^{n \times n}$ oraz $U \in \mathbb{R}^{n \times n}$ takich, że L jest macierzą trójkątną dolną z jedynkami na glównej przekątnej, a U macierzą trójkątną górną oraz A=UL. Niech:

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{pmatrix}.$$

oraz

$$L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{pmatrix}.$$

Poszczególne elementy macierzy wyznaczamy ze wzorów:

$$u_{ij} = a_{ij} - \sum_{k=j+1}^{n} u_{ik} l_{kj} \tag{1}$$

oraz

$$l_{ij} = \frac{a_{ij} - \sum_{k=i+1}^{n} u_{ik} l_{kj}}{u_{ii}}$$
 (2)

gdzie wzór (1) stosujemy dla $i \leq j$, a wzór (2) dla i > j. Schemat wyznaczania opiera się na naprzemiennym obliczaniu wartości elementów macierzy U w n-tej kolumnie, wartości elementów w n-tym wierszu macierzy L, n-1-szej kolumnie macierzy U, n-1-szym wierszu macierzy L itd.

Po wyznaczeniu macierzy L oraz U należy rozwiązać następujące równania:

$$YL = B (3)$$

oraz

$$XU = Y \tag{4}$$

gdzie $Y \in \mathbb{R}^{n \times n}$.

Macierz Y z równania (3) wyznacza się za pomocą wzoru

$$y_{ij} = b_{ij} - \sum_{k=j+1}^{n} y_{ik} l_{kj}$$

wyznaczając kolejne kolumny macierzy zaczynając od n-tej.

Natomiast macierz X z równania (4) wyznacza się za pomocą wzoru

$$x_{ij} = \frac{y_{ij} - \sum_{k=1}^{i-1} x_{ik} u_{ki}}{u_{jj}}$$

wyznaczając kolejne kolumny macierzy zaczynając od pierwszej.

Wyznacznik macierzy A wyznaczymy dzięki zależności:

$$det(A) = det(UL) = det(U) * det(L)$$

Natomiast z własności macierzy trójkątnych mamy:

$$det(L) = \prod_{i=1}^{n} l_{i,i} = 1$$

Zatem

$$det(A) = det(U)$$

Wyznaczając odwrotność macierzy A również skorzystamy z wyznaczonych wcześniej macierzy L i U:

$$A^{-1} = (UL)^{-1} = L^{-1}U^{-1}$$

gdzie L^{-1} i U^{-1} istnieją tylko, gdy $det(U) \neq 0$, czyli gdy żadna wartość na glównej przekątnej macierzy U nie jest równy 0. Niech

$$L^{-1} = \begin{pmatrix} l'_{11} & 0 & 0 & \dots & 0 \\ l'_{21} & l'_{22} & 0 & \dots & 0 \\ l'_{31} & l'_{32} & l'_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l'_{n1} & l'_{n2} & l'_{n3} & \dots & l'_{nn} \end{pmatrix}.$$

oraz

$$U^{-1} = \begin{pmatrix} u'_{11} & u'_{12} & u'_{13} & \dots & u'_{1n} \\ 0 & u'_{22} & u'_{23} & \dots & u'_{2n} \\ 0 & 0 & u'_{33} & \dots & u'_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & u'_{nn} \end{pmatrix}.$$

Z własności macierzy trójkątnych mamy:

$$l'_{ii} = 1$$

oraz

$$u'_{ii} = \frac{1}{u_{ii}}$$

Pozostałe elementy macierzy L^{-1} oraz U^{-1} wyznaczymy, wykorzystując wzory:

$$l'_{ij} = -\sum_{k=j+1}^{n} l_{ik} l'_{kj}$$

oraz

$$u'_{ij} = -\frac{\sum_{k=i+1}^{n} u_{ik} u'_{kj}}{u_{ii}}$$

gdzie elementy macierzy L^{-1} wyznaczamy wierszami od pierwszego do n-tego, a elementy macierzy U^{-1} wierszami od n-tego do pierwszego.

Wykorzystując program do wyliczenia macierzy X nie unikniemy błędów obliczeniowych. Ich analizę oprzemy na wyliczeniach:

i) wskaźnika uwarunkowania macierzy A:

$$cond(A) = ||A^{-1}|| ||A||$$

ii) błędu rozkładu:

$$e_{dec} = \frac{\|A - UL\|}{\|A\|}$$

iii) błędu względnego:

$$e_{rel} = \frac{\|X - Z\|}{\|Z\|}$$

iv) współczynnika stabilości:

$$wsp_{stab} = \frac{\|X - Z\|}{\|Z\|cond(A)}$$

v) współczynnika poprawności:

$$wsp_{popr} = \frac{\|B - XA\|}{\|A\| \|X\|}$$

vi) jakiegos kurna wpolczynnika prawego:

$$r_R = \frac{\|AA^{-1} - I\|}{\|A\| \|A^{-1}\|}$$

vii) jakiegos kurna wspolczynnika lewego:

$$r_L = \frac{\|A^{-1}A - I\|}{\|A\| \|A^{-1}\|}$$

gdzie Z jest dokładnym rozwiązaniem układu, X rozwiązaniem obliczonym numerycznie przybliżeniem wyznaczonym naszym algorytmem, a A^{-1} wyznaczoną przez nas odwrotnością macierzy A.

2 Opis programu obliczeniowego

W czasie tworzenia programu obliczeniowego zostały stworzone następujące funkcje:

- 1. mdoolittle(A)=[U,L]: przyjmuje za argument macierz kwadratową A i wyznacza jej rozkład UL
- 2. invmd(A)=[Ai]: przyjmuje za argument macierz kwadratową A i wyznacza jej odwrotność za pomocą rozkładu UL
- 3. solvemd(A,B)=[X]:
 przyjmuje za argument macierze kwadratowe o tych samych wymiarach A oraz
 B i wyznacza rozwiązanie układu nierówności XA=B za pomocą rozkładu UL

- 4. $\det \operatorname{md}(A) = d$:
 - przyjmuje za argument macierz kwadratową A i wyznacza jej wyznacznik za pomocą rozkładu UL
- 5. $\operatorname{condmd}(A,p)=c$:

przyjmuje za argument macierz kwadratową A oraz p-normę i wyznacza wskaźnik uwarunkowania macierzy A korzystając z p-normy i funkcji invmd do wyznaczenia A^{-1}

6. $\operatorname{edec}(A,p)=e$:

przyjmuje za argument macierz kwadratową A oraz p-normę i wyznacza błąd rozkładu macierzy A zmodyfikowaną metodą Doolittle'a korzystając z p-normy

7. erel(A,B,p)=e:

przyjmuje za argument macierz kwadratową A, macierz kwadratową B oraz pnormę i wyznacza bład względny (korzystając z pnormy) rozwiązania układu XA=B zmodyfikowaną metodą Doolittle'a

8. wsppopr(A,B,p)=w:

przyjmuje za argument macierz kwadratową A, macierz kwadratową B oraz p-normę i wyznacza współczynnik poprawności (korzystając z p-normy) rozwiązania układu XA=B zmodyfikowaną metodą Doolitle'a

9. wspstab(A,B,p)=w:

przyjmuje za argument macierz kwadratową A, macierz kwadratową B oraz pnormę i wyznacza współczynnik stabilności (korzystając z pnormy) rozwiązania układu XA=B zmodyfikowaną metodą Doolitle'a względem rozwiązania $X=B\cdot A^{-1}$

- 10. rR
- 11. rL

3 Przykłady obliczeniowe

/ToDo

4 Analiza wyników

Cos tu sie zanalizuje

Literatura

[1] G. Dahlquist and Å. Björck, Metody numeryczne, PWN, Warszawa, 1983.

 $[2]\;\; J.\; i\; M.\; Jankowscy, Przegląd metod i algorytmów numerycznych, cz. 1, WNT, Warszawa, 1981.$

Wszelkie pytania i wnioski prosimy kierować na adres: wrubelki@wp.pl