

Introduction to Machine Learning

Lior Sidi & Noa Lubin

Meet us

Lior Sidi

- Machine Learning Team Lead at Wix
- NLP, RecSys, User Centric Al.
- Ex: Startup, Consultat, researcher
- BSc and MSc from BGU SISE.
- Scholar / Linkedin

Noa Lubin

- Machine Learning Team Lead at Diagnostic Robotics
- NLP, health, space
- Ex: NASA, Amazon, Elbit, IAI
- BSC EE Technion
- MSc CS NLP Bar Ilan
- Linkedin

What is ML?

Traditional programing

- Machines Follow Instruction
- Humans Learn From Experience

Yandex

The Arthur Samuel's Checkers

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."

— Arthur Samuel (1959)

Machine Learning is the ability to generalize from experience onto unseen example

Traditional programing

Machine Learning

Learning Tasks

Yandex

Types of ML

Unsupervised Learning

- > No labels
- > No feedback
- > Find hidden structure in data

Yandex

Unsupervised Learning

- > No labels
- > No feedback
- > Find hidden structure in data

Yandex

Clustering

Dimension Reduction

Unsupervised Learning

- > No labels
- > No feedback
- > Find hidden structure in data

tsne\$Y[,1]

https://mark-borg.github.io/blog/2016/tsne-ml/

> Decision process
> Reinforcement Learning
> Reward system
> Learn series of actions

Yandex

https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

Supervised Learning

Binary Classification diagram

Multi-Class Classification

Multi-Label Classification

Supervised Learning

> Direct feedback

> Predict outcome/future

Yandex

Regression Vs Classification

andex ISEDUEARNIN

Supervised tasks

Supervised tasks

Syllabus

week	Topics
1 Intro	Intro to ML (Lior): supervised, unsupervsied, reinforcement Building model cycle: data, model, evaluation. Optimization and linear regression (Noa): Optimization: GD, early stopping, LR, SGD, regularization
2 Linear & Logistic Regression	Linear regression: Ordinary Linear Regression , L2/L1 regularization on OLS Logistic regression: Regression vs Classification, Cross entropy Binary/multi class logistic Regression Explainability
3 SVM	Hard and soft SVM Hinge loss Kernel trick

week	Topics
4 Naive Bayes	Refresher on the Bayes theorem Naive Bayes theory Gender detection/Spam detection use case (including preproseccing)
5 Decision trees	Decision Tree as a Greedy Method Optimization Criteria: Gini & Entropy+ L2 Depth, Leaves and other Hyper Parameters
6 End2End ML	Formulating a business problem - arranging data, data visualization, feature extraction, EDA, hyper parameter tuning,
7-8 Ensemble	Intro to Ensemble Methods - Aggregation - Bagging - Stacking - Boosting - Gradient Boosting

ML in Practice

Ground Truth

Product

Stocks recommender for users.

Learning task

Learn if a stock price will increase the next day

Data sources

All stock of S&P 500

Labeling

A stock with high revenue potential -> 4% price increment

Labeling function

Date	Stock	Price
1/1/2020	TSLA	50
1/1/2020	AMZ	63
1/1/2020	APPL	42
2/1/2020	TSLA	55
2/1/2020	AMZ	60
2/1/2020	APPL	39
3/1/2020	TSLA	60

Date	Stock	Price	Label
1/1/2020	TSLA	50	
1/1/2020	AMZ	63	0
1/1/2020	APPL	42	0
2/1/2020	TSLA	55	1
2/1/2020	AMZ	60	0
2/1/2020	APPL	39	0
3/1/2020	TSLA	60	1

Classical Learning Framework

Modeling (Data & Learning)

Baseline

Only last price value:

- Last day increment
- Moving average

Improvements

Based on last year data predict next day performance

- Aggregate last week data
- Extract technical indicator features

Label

Feature extraction - Data modeling

Date	Stock	Price	Label					
1/1/2020	TSLA	50	1 \					
1/1/2020	AMZ	63	0					
1/1/2020	APPL	42	0					
2/1/2020	TSLA	55	0 —	G	roup by S	tock, weel	ζ.	
2/1/2020	AMZ	60	0		Days price	Price	RSI	Sector
2/1/2020	APPL	39	0		increase	Chang e		
3/1/2020	TSLA	60	1	/	4	0.12	0.4	Auto

Feature extraction

Days price increase	Price Change	RSI	Sector	Label
4	0.12	0.4	Auto	1
2	0.35	0.7	Software	0
4	0.8	0.5	Energy	0
3	0.22	0.3	Materials	1
5	0.3	0.6	Health	0
1	0.1	0.3	Telco	1

Extract features

Days price increase norm	Price Change <0.3	RSI	Sector_ Auto
4 / 7	0	0.4	1
2/7	1	0.7	0
4/7	1	0.5	0
3 / 7	0	0.3	0
7 / 7	1	0.6	0
1 / 7	0	0.3	0

Feature Selection

Days price increase	Price Change	RSI	Sector	Label
4	0.12	0.4	Auto	1
2	0.35	0.7	Software	0
4	0.8	0.5	Energy	0
3	0.22	0.3	Materials	1
5	0.3	0.6	Health	0
1	0.1	0.3	Telco	1

Days price ncrease norm	Price Change <0.3	RSI	Sector_ Auto
4) 7	0	0.4	1
2/7	1	0.7	0
4/7	1	0.5	0
3/7	0	0.3	0
7/7	1	0.6	0
1/7	0	0.3	0

Extract features

How to Estimate Model's Performance

Steps to Predictive Modeling

How To Evaluate?

Tesla

- Buy Confidence 80%
- Not Buy Confidence 20%

Amazon

- Buy Confidence 49%
- Not Buy Confidence 51%

Estimating Performance

E.g. Choose best model Hyper parameter optimization

Estimating Performance - Data is Abundant

Datasets distribution: Training <> Validation == Test ~ Real world = Random

Validation used for Hypertuning and model Calibration

Testing used for final evaluation

Rolling window cross validation

Cross Validation

		Label	
		Condition Positive (Buy)	Condition Negative (Don't Buy)
Classifier	Predict Positive (should buy)		
Classifier	Predict Negative (shouldn't buy)		

		Label	
		Condition Positive (Buy)	Condition Negative (Don't Buy)
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	
Classifier	Predict Negative (shouldn't buy)		True Negative (TN) = 1820

		Label	
		Condition Positive (Buy)	Condition Negative (Don't Buy)
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180
Classifier	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
Ciassiller	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
Classifier	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		True Positive Rate Recall Sensitivity TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

		Label		
		Condition Positive (Buy)	Condition Negative (Don't Buy)	
Classifier	Predict Positive (should buy)	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value Precision TP / (TP + FP) = 20 / (20 + 180) = 10%
Classifier	Predict Negative (shouldn't buy)	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
		True Positive Rate Recall Sensitivity TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	Specificity TN / (FP + TN) = 1820 / (180 + 1820) = 91%	Accuracy (TP + TN) / (TP + TN + FP + FN) F1 score (2*Precision*Recall) / (Precision + Recall)

Estimating Performance

E.g. Choose best model Hyper parameter optimization How should we split the stocks data? Why we need validation? What is the test?

What types of ML Algorithms are there?

SCHOOL OF DATA SCIENCE

Steps to Predictive Modeling

Parametric vs. Non-parametric Models

Almost all models for machine learning have "parameters" or "weights" that need to be learned.

Parametric Models	Nonparametric models
The number of	The number of
parameters is constant,	parameters grows with
or independent of the	the number of training
number of training	examples.
examples.	

Can you think of an example?

Can you think of an example for parametric and non-parametric method?

Generative vs. Discriminative

	Discriminative model	Generative model
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	GDA, Naive Bayes

The Brief History of Machine Learning

Classical vs Deep Learning Framework

Feature Extraction

"Algorithm which transforms raw data into numeric values which can be used as input to a learning algorithm. Usually helps with **reducing** and **fixing** dimensionality."

e.g.

Shimada K., Matsukawa T., Noguchi Y., Kurita T. (2011) Appearance-Based Smile Intensity Estimation by Cascaded Support Vector Machines. In: Koch R., Huang F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6468. Springer, Berlin, Heidelberg

Some Realities on DL

Don't be fool by the hype

- Can be beaten by GBT for tabular data (CatBoost, XGBoost, LightGBM).
- No Feature Engineering Yuppie.
 Yet... Network Architecture Search (NAS),
 Annoying GPU issues, Loss design, hours of training
- 3. Overkill sometimes and infeasible Example: try to train a DL to predict if a number is even or odd...

Yandex No Free Lunch Theorem - Best Model Does Not Exists

A superior black-box optimisation strategy, which is better than anything else for any kind of problem, is impossible.

Deep cannot be always better.

https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

Modeling - Linear

Modeling - Linear

Modeling - Maximum Margin

Modeling - K nearest neighbors

Modeling - K nearest neighbors

- 1. To classify a new input vector x
- Examine the k closest training data points to x
- 3. Assign the object to the most frequently occurring class

Modeling - K nearest neighbors

- 1. To classify a new input vector x
- Examine the k closest training data points to x
- Assign the object to the most frequently occurring class

What about?

- K is Odd vs Even K?
- How can we apply Voting?

Modeling - K nearest neighbors

Defining Distance Measures

Definition: Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $D(O_1,O_2)$

Distance function behavior

- $dis(x,y) \ge 0$
- dis(x,y)=0 iff x==y
- dis(x,y) = dis(y,x)
- $dis(x, z) \le dis(x, y) + dis(y, z)$

Distance Function

$$L1(X_1, X_2) = ManhattenDistance(\begin{bmatrix} x_{11} \\ x_{1i} \\ x_{1n} \end{bmatrix}, \begin{bmatrix} x_{21} \\ x_{2j} \\ x_{2n} \end{bmatrix}) = \sum_{i=1}^{n} |x_{1i} - x_{2i}|$$

$$L2(X_1, X_2) = Euclidean Distance(\begin{bmatrix} x_{11} \\ x_{1i} \\ x_{1n} \end{bmatrix}, \begin{bmatrix} x_{21} \\ x_{2i} \\ x_{2n} \end{bmatrix}) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})}$$

CosineSimilarity(X₁, X₂) =
$$\frac{\sum_{i=1}^{n} (x_{1i} * x_{2i})}{\sqrt{\sum_{i=1}^{n} x_{1i}^{2}} * \sqrt{\sum_{i=1}^{n} x_{2i}^{2}}}$$
 (x₁₁, x₁₂)

Using Euclidean Distance

Price Change <0.3	RSI	Sector_ Auto	Label
0	0.4	1	1
1	0.7	0	0
1	0.5	0	0
0	0.3	0	1
1	0.6	0	0
0	0.3	0	1

What do you think about the distance values?

Using Manhattan distance

Price Change <0.3	RSI	Sector_ Auto	Label	
0	0.4	1	1	0-1 + 0.4-0.7 + 1-0
1	0.7	0	0	= 1 + 0.3 + 1 = 2
1	0.5	0	0	
0	0.3	0	1	0-0 + 0.4-0.3 + 1-0
1	0.6	0	0	= 0 + 0.1 + 1 = 1
0	0.3	0	1	

Any ideas about issues with using absolute?

Hughes phenomenon (1968) (Peaking Paradox)

a. Curse of Dimensionality

b. Hughes phenomenon

http://37steps.com/2322/hughes-phenomenon/

Attribute 1	
1	
0	

Attribute 1	Attribute 2	Attribute 3
1	1	1
0	1	1
1	0	1
0	0	1
1	1	0
0	1	0
1	0	0
0	0	0

Why Nearest Neighbours Fails in High Dimensions?

Kevin Murphy's book: Machine Learning - A probabilistic Perspective

Beyer et. al. Theorem

The difference between the maximum and minimum distances to a given query point does not increase as fast as the nearest distance to any point in high dimensional space.

This makes a proximity query meaningless and unstable because there is poor discrimination between the nearest and furthest neighbor.

KNN Best Practices

When to Consider

- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

How to evaluate our model performance?

Estimating Performance

Bias Variance Tradeoff - Regression

High bias (underfit)

"Just right"

Bias Variance Tradeoff - Classification

Total Error

Assume a simple model $y = f(x) + \epsilon$, $E(\epsilon) = 0$, $Var(\epsilon) = \sigma_{\epsilon}^2$,

$$\operatorname{Err}(x_0) = \operatorname{E}[(y - h(x_0))^2 | X = x_0]$$

$$= \sigma_{\epsilon}^2 + \left[\operatorname{E}h(x_0) - f(x_0)\right]^2 + \operatorname{E}[h(x_0) - \operatorname{E}h(x_0)]^2$$

$$= \sigma_{\epsilon}^2 + \operatorname{Bias}^2(h(x_0)) + \operatorname{Var}(h(x_0))$$

$$= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^2 + \operatorname{Variance}$$

Optional pencil and paper exercise: prove it in details

Bias Variance Tradeoff

Over and Underfitting

Prediction Error

High

Bias Variance Analysis - Learning Curve

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

size

Bias Variance Analysis - Learning Curve

Review Homework

- Part 1 Implement k-Nearest Neighbours (KNN)
- Part 2.1 Learn and evaluate kNN algorithm on artificial data + Analyse the properties of KNN
- Part 2.2 Finding the optimal k
- Part 2.3 Using cross validation

Steps to Predictive Modeling

Steps to Predictive Modeling

Steps to Predictive Modeling

- Traditional programming vs Machine Learning
- Learning vs Generalization
- Data Science is a practical profession
- There are many topics -> understand over memorize
- Build a Baseline model as soon as possible!
- Keep Asking questions
- There is no silver bullet / free lunch theory

Reading Materials

- 1. A few useful things to know about machine learning.pdf
- 2. CIS 419:519 Introduction to Machine Learning.pdf
- 3. Empirical Risk Minimization.pdf
- 4. Confusion matrix
- 5. Cornell KNN intro
- 6. <u>Introduction to Statistical Learning Theory.pdf</u>
- 7. On the Surprising Behavior of Distance Metrics in High Dimensional Space.pdf
- 8. Statistical learning theory a primer.pdf
- 9. Statistical Machine Learning-Introduction.pdf
- 10. 2012b A Geometrical Explanation of Stein Shrinkage.pdf
- 11. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF MULTIVARIATE NORMAL DISTRIBUTION STEIN.pdf
- 12. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS FISHER 1936
 Annals of Eugenics Wiley Online Library.pdf