ESPECIFICAÇÃO:

GRAMÁTICAS:

Símbolos terminais:são os únicos a aparecerem nas **ALFABETO** linguagens. O conjunto de símbolos não Terminais (também conhecidos por variáveis) é notado por: N ou V_N e representam construções intermediárias nas derivações; $V = V_N \cup V_T$ ou $N \cup T$ (Vocabulário ou Alfabeto)

REGRAS DE PRODUÇÃO

Responsáveis pela geração dos elementos de L. Tem a forma " $\alpha \rightarrow \beta$ " que especifica uma condição para que um string - seja gerado onde α ∈ V⁺ e β∈ V*

ELEMENTO S - é o símbolo não terminal que DISTIGUIDO | representa uma classe especial de strings, usualmente chamado Lde "sentenças".

Formalmente: Uma gramática é representada por G=< N, T, P, S>

Produções: Se $\alpha \rightarrow \beta$ é uma produção de P na gramática G e $\alpha \in V^+$ e $\beta \in V^*$ então $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$, onde $\gamma \in V^*$, $\delta \in V^*$

 $\alpha_1 \Rightarrow^* \alpha_m$

DEF: L(G)={w/ w \in T* (ou V_T*) \land S \Rightarrow *w}

Exemplo: $G = < N, T, P, S > onde N = { S}; T = {0,1};$ $P={S\rightarrow 0S1; S\rightarrow 01}$

A partir das regras de P, podemos gerar as seguintes derivações;

2 S⇒01 ou;

1 1 $S {\Rightarrow} 0S1 {\Rightarrow} 00S11 {\Rightarrow} 000S111... {\Rightarrow} 0^{n\text{-}1}S1^{n\text{-}1} {\Rightarrow} 0^{n}1^{n}$ Daí L(G)= $\{0^n1^n/ n \ge 1\}$

CONVENCÕES:

 $x^{0} = \varepsilon$; $x^{1}=x$; $x^{2}=xx$; $x^{3}=xxx$... $x^{n}=xxxx$... $x^{n}=xxxxx$... $x^{n}=xxxxxx$... $x^{n}=xxx$ n ocorrências de x DEF: Sejam X e Y Linguagens sobre um Alfabeto. A concatenação de X e Y denotada Por XY, é definida por: $XY = \{rs/r \in X \land s \in Y\}$ Xⁿ representa a concatenação de X com o próprio X n vezes, $X^0 = \{\epsilon\}$ e $X^1 = X$

Ex: Se $X=\{a,b,c\}$ e $Y=\{abb, ba\}$ então $X^0=\{\epsilon\}$, daí:

 $X^1=X=\{a,b,c\};$

 $X^2 = XX = \{aa,bb,cc,ab,ba,bc,cb,ac,ca\};$ X³={aaa,abb,acc,aab,aba,abc,acb,aac,aca,baa,

bbb,bcc,bab,bba,bbc,bcb,bac,bca,caa,cbb,cab ccc,cba,cbc,ccb,cac,cca}.

OBS:
$$X^* = \bigcup_{i=0}^{\infty} e \qquad X^+ = \bigcup_{i=1}^{\infty} X^i$$

Exercícios: Determine XY e YX

GRAMÁTICAS (CLASSIFICAÇÃO) **HIERARQUIA DE CHOMSKY**

CONJUNTOS E EXPRESSÕES REGULARES

DEF: Seja Σ um alfabeto. Os **conjuntos regulares** (cr) sobre Σ são definidos por:

R₁: BASE: \emptyset , $\{\epsilon\}$ e $\{a\}$, $\forall a$; $a \in \Sigma$, são conjuntos regulares (cr) sobre Σ .

R₂: PASSO RECURSIVO: Seja X e Y conjuntos regulares sobre Σ .

_			~	
_	n	+	٦,	$\overline{}$
_		10	71	

- a) $X \cup Y$;
- b) XY;
- c) X*;

São conjuntos regulares (cr) sobre Σ .

 R_3 : Só serão considerados conjuntos regulares sobre Σ , aqueles obtidos a partir de R_1 por um número finito de aplicações de R_2 .

Ex1: O conjunto de todos os strings contendo o substring "bb".

CONJUNTOS	JUSTIFICATIVA
1-{a}	base
2-{b}	base
3-{a}∪{b}={a,b}	1,2,R₂a
4-{a,b}*	$3, R_2c$
5-{b}{b}={bb}	2, R ₂ b
6-{a,b}*{bb}	4,5,R₂b
7-{a,b}*{bb}{a,b}*	$6,4,R_2b$

Ex2: O conjunto de todos os strings contendo ao menos uma ocorrência de "b" e que iniciam e terminam com "a".

${a}{a,b}*{b}{a,b}*{a}$

CONJUNTOS	JUSTIFICATIVA
1-{a}	base
2-{b}	base
3-{a}∪{b}={a,b}	1,2,R₂a
4-{a,b}*	$3,R_2c$
5-{a}{a,b}*	1,4,R ₂ b
6-{a}{a,b}*{b}	$5,2,R_2b$
7-{a}{a,b}*{b}{a,b}*	$6,4,R_2b$
$8-\{a\}\{a,b\}*\{b\}\{a,b\}*\{a\}$	$7,1,R_2b$

Ex3: O conjunto de todos os strings sobre {a,b} de comprimento par.

{aa,bb,ab,ba}*

CONJUNTOS	JUSTIFICATIVA
1-{a}	base
2-{a}{a}={aa}	1,R ₂ b
3-{b}	base
4-{b}{b}={bb}	$3, R_2b$
5-{a}{b}={ab}	1,3,R ₂ b
6-{b}{a}={ba}	3,1,,R ₂ b
7-{aa}∪{bb}={aa,bb}	2,4,R ₂ a
8-{aa,bb}\U{ab}={aa,bb,ab}	7,5,R₂a
9-{aa,bb,ab}∪{ba}	8,6,R ₂ a
10-{aa,bb,ab,ba}*	9,R₂c

DEF: Seja Σ um conjunto (alfabeto). As **expressões regulares (er)** sobre Σ são definidos por:

R₁: BASE: \emptyset , ε e a, \forall a; a $\in \Sigma$, são expressões regulares (er) sobre Σ .

R₂: PASSO RECURSIVO: Seja X e Y expressões regulares sobre Σ .

Então

- d) $(X \cup Y)$;
- e) XY;
- f) (X)*;

São expressões regulares (er) sobre Σ . R_3 : Só serão considerados expressões regulares sobre Σ , aquelas obtidos a partir de R_1 por um número finito de aplicações de R_2 .

OBS: $\{b\}\equiv b$ $\{a\}\cup\{b\}\equiv a\cup b$ $\{a\}\{b\}\equiv ab$ Expressões regulares são usualmente utilizadas para abreviar os conjuntos regulares.

NOTAÇÃO: SEJA Σ ={0,1};

LINGUAGEM
{0}
{0,1}
$\{0\}$ *= $\{0^n/n \ge 0\}$
$\{01\} = \{0\} \{1\}$
{0}*
${ba}{a,b}*$
${a,b}*$
$\left\{ b\right\} \left\{ a\right\}$

Ex4: O conjunto dos strings sobre $\{a,b\}$ que contem os substrings aa ou bb. $(a \cup b)*aa(a \cup b)*(a \cup b)*bb(a \cup b)*$

Ex5: G1=(
$$\{S,A,B\},\{a,b\},P,S$$
)
P= 1-S \rightarrow AB
2-A \rightarrow aA

3-A→a 4-B→bB

4-D→0L 5-B→ε

$$G2=(\{S,B\},\{a,b\},P,S)$$

 $P=1-S\rightarrow aS$ $2-S\rightarrow aB$

2-5→aB 3-B→bB

4-B→ε $L(G1)=L(G2)=a^+b^*$

6-C→ε

L(G1)=L(G2)=a*ba*ba*

Exercícios: As expressões regulares abaixo representam que conjuntos?

- a) $a*ba*b(a \cup b)*$
- b) (a∪b)*ba*ba*
- c) (a\b)*b(a\b)*b(a\b)* "

Bibliográfia:

HOPCROFTH, J. E., and J. D. ULLMAN. Formal Languages And Their relation To Automata. Addison-Wesley, 1969.

SUDKAMP, Thomas A. Languages and machines: an introduction to the theory of computer science. 2nd ed. - Reading, Mss: Addison-Wesley, 1997.