

Neural Network Basics II

Today

- Multilayer perceptron
- Activation functions
- Surrogate loss functions
- A closer look at softmax/cross entropy loss
- Short intro to PyTorch

Last time: Block Diagrams

• Activation function $\sigma(x)$ is applied per-coordinate.

Last time: Another Visualization

Last Time: Universal Approximation

• Given any function $f: [-1,1]^d \to \mathbb{R}$, any $\epsilon \geq 0$, and any non-polynomial activation function σ , there is some sufficiently large h such that there is a single-layer neural network $W_2\sigma(W_1x+b)$ with activation σ , hidden size h such that for all $x \in [-1,1]^d$:

$$|f(x) - W_2 \sigma(W_1 x + b)| \le \epsilon$$

• In practice, h might have to be absurdly large in order for this theorem to be useful.

Multi-Layer Perceptron (MLP)

• Last time we talked about a single layer perceptron:

Multi-Layer Perceptron (MLP)

• A more concise diagram of a single layer perceptron:

Multi-Layer Perceptron (MLP)

• The MLP just does this many times in a row:

• This is called *depth*. "Deep learning" means using deep architectures.

Multi-Layer Perceptron

Activation Functions

Activation Functions

• Last class we covered the sigmoid activation:

$$\sigma(x) = \frac{\exp(x)}{1 + \exp(x)}$$

This activation is no longer so popular because of vanishing gradients.

Vanishing Gradients

• Gradient Descent is a "local search" algorithm.

• Small gradient = changing θ by a little does not change the output much.

Vanishing Gradients and Sigmoid

Range of "learning"

- If the network parameters put the sigmoid into the saturated region, then the gradient will be very small.
- The deeper the network, the more likely one is to hit the saturated region.
- This makes it harder to train deep networks with sigmoid activation.

ReLU activation

 Modern deep networks usually use some variant of the rectified linear unit activation:

$$\sigma(x) = \max(x, 0)$$

- This still shares some inspiration with sigmoid: it is "off" when the input is negative.
- Since it does not saturate on the positive end, it has a much larger range of "learning".

ReLU activation MLP

A more modern MLP looks like:

ReLU networks are piece-wise linear.

Variations on ReLU

- Softplus: $\sigma(x) = \log(1 + \exp(x))$
 - "smooth ReLU"

• GeLU: $\sigma(x) = \frac{x(1+\text{erf}(\frac{x}{\sqrt{2}}))}{2}$

• Much more recent.

Loss Functions

Classification Losses

Classification Architectures

• Prediction is the coordinate of p with the highest value: $prediction = \operatorname{argmax}_{j} p[j]$

True Classification Loss

We want to optimize the true train error:

$$\sum_{dataset} 1[prediction \neq label]$$

• Let $S = \{(x_1, y_1), ..., (x_N, y_N)\}$ where $y_i \in \mathbb{R}^C$ is a 1-hot vector:

$$y_i = (0, ..., 1, ..., 0)$$

 $y_i[k] = 1$ only if x_i has label k .

True Classification Loss

- Prediction is the coordinate of p with the highest value: $prediction = argmax_j p[j]$
- Loss is $\ell(y, p) = 1 y[prediction]$
- Why can't we use this loss?
 - Non-differentiable
 - Even if it were, there would be vanishing gradients.

True Classification Loss

• It's best to visualize this loss for binary classification:

 $p_{correct} - p_{incorrect}$

Hinge Loss

- Hinge is to true loss as ReLU is to sigmoid:
- $hinge(y, p) = \max_{i \neq correct} [\max p_i p_{correct} + 1, 0]$

Output of the NN

Hinge Loss

- Hinge is to true loss as ReLU is to sigmoid:
- $hinge(y, p) = \max[\max p_i p_{correct} + 1, 0]$
- The score for the "true" label needs to be 1 more than all the other scores to have zero loss.

Hinge Loss vs True Loss

- If the average hinge loss is 0.1, what can you say about the average number of mistakes?
- If the average hinge loss is 0.99, what can you say about the average number of mistakes?

Cross-Entropy Loss

Input 1: a distribution over the C possible output classes

$$p = (p_1, ..., p_C),$$
 $\sum_{i=1}^{C} p_i = 1$

Input 2: the true class value as a 1-hot vector:

$$y = (0, ..., 1, ..., 0)$$

• The cross-entropy loss is:

$$\ell(p, y) = \sum_{i} -1[y = i]\log(p_i)$$
$$= -\log(p_{correct\ class})$$

Cross-Entropy Loss

• If the correct class has probability $p_{correct} = 1$,

$$\ell(p, y) = -\log(p_{correct}) = 0$$

• If the correct class has probability $p_{correct} = 0$,

$$\ell(p, y) = -\log(0) = \infty$$

Cross-Entropy Loss

- The hinge loss is the smallest convex upper-bound of the classification loss.
- The cross-entropy is also convex, and positive.
- How is it related to the classification loss?
 - When do we not choose class k?
 - When $k \neq \operatorname{argmax}_i(p_i)$.
 - If $k \neq \operatorname{argmax}_i(p_i)$, then $p_k \leq \frac{1}{2}$.
- If incorrect,

$$\ell(p, y) = -\log(p_k) \ge -\log\left(\frac{1}{2}\right) = \log(2)$$

Cross-Entropy and Classification Loss

- Since $\ell(p, y) \ge 0$, when the prediction is correct we have $\ell(p, y) \ge 1[prediction \ne true\ label]$.
- Otherwise, we have

$$\ell(p, y) = -\log(p_k) \ge -\log\left(\frac{1}{2}\right) = \log(2)$$

• So, in general $\ell(p,y) \ge \log(2)1[prediction \ne true\ label]$

Softmax

- Cross-Entropy loss requires the input to be a distribution.
- The output of a linear layer is never normalized to
 1.
- The *softmax layer* turns arbitrary vectors into probability distributions:

$$softmax(x)[i] = \frac{\exp x[i]}{\sum_{j} \exp x[j]}$$
$$\sum_{i} softmax(x)[i] = 1$$

UNSTABLE SOFTWAX

$$s_i = \frac{e^{a_i}}{\sum_{j=1}^{N} e^{a_j}}$$

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

import numpy as np

```
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)

x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])

print('x = ', x)
print('y = ', y)
```

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

Console

```
x = [0.09003057 \ 0.24472847 \ 0.66524096]
```

```
import numpy as np
def softmax(x):
    exps = np.exp(x)
    return exps / np.sum(exps)
x = softmax([1, 2, 3])
y = softmax([1000, 2000, 3000])
print('x = ', x)
print('y = ', y)
```

Console

```
x = [0.09003057 \ 0.24472847 \ 0.66524096]
y = [nan nan nan]
```

$$s_i = \frac{e^{a_i}}{\sum_{j=1}^N e^{a_j}}$$

$$= \frac{Ce^{a_i}}{\sum_{j=1}^{N} Ce^{a_j}}$$

$$= \frac{e^{a_i + \log C}}{\sum_{j=1}^{N} e^{a_j + \log C}}$$

Cross Entropy and KL-Divergence

• Entropy: For a distribution π :

$$H(\pi) = -\sum_{i} \pi_{i} \log(\pi_{i})$$

• KL-Divergence:

$$D(\pi||p) = \sum_{i} \pi_{i} \log\left(\frac{\pi_{i}}{p_{i}}\right)$$

- $D(\pi||p) \ge 0$, and $D(\pi||p) = 0$ only if $\pi = p$.
- Think of $y = \pi$ as a distribution. Then crossentropy(p, y) = H(y) + D(y||p)

Summary

- Most common architecture: ReLU blocks, followed by a linear block with softmax (for classification)
- What about regression?
- Other tasks?

Deep Learning is modular

PyTorch

Why do we need deep learning libraries?

- Deep learning architectures can get very complicated!
- Instead of writing specialized code, use "auto-grad" library
- Easy to specify computation graph, find gradients

Popular DL libraries


```
class TwoLayerNet (torch.nn.Module):
         def init (self, input size, layer size, output size):
 3
           super(TwoLayerNet, self). init ()
 4
 5
           self.Linear1 = torch.nn.Linear(input size, layer size)
           self.activation1 = torch.nn.ReLU()
           self.Linear2 = torch.nn.Linear(layer size, output size)
           self.activation2 = torch.nn.ReLU()
10
          self.softmax = torch.nn.Softmax(-1)
11
12
13
         def forward(self, x):
14
          out = self.Linear1(x)
1.5
          out = self.activation1(out)
16
17
          out = self.Linear2(out)
18
          out = self.activation2(out)
          out = self.softmax(out)
19
20
21
          return out
```

- A "tensor" is an n-dimensional matrix.
- By convention, the first dimension of a tensor of datapoints is the "batch dimension"
- In this example, x is a batch of 4 datapoints, each of which is 2-dimensional.

```
net = TwoLayerNet(2, 10, 3)
scores = net(x)
loss_func = torch.nn.CrossEntropyLoss()

label_indices = np.argmax(y,axis=1)

loss = loss_func(scores, label_indices)

print("scores: ", scores, "\n\nlabels: ", label_indices, "\n\nloss: ", loss)
```

```
class MultiLaverNet(torch.nn.Module):
        def init (self, input size, layer sizes, output size):
          super(MultiLayerNet, self). init ()
          layer sizes = [input size] + layer sizes
          self.linear layers = [torch.nn.Linear(layer sizes[i], layer sizes[i+1]) for i in range(len(layer_sizes)-1)]
          self.activations = [torch.nn.ReLU() for in self.linear layers]
          self.final linear = torch.nn.Linear(layer sizes[-1], output size)
10
          self.softmax = torch.nn.Softmax(-1)
11
12
13
        def forward(self, x):
14
          out = x
15
16
          for linear layer, activation in zip(self.linear layers, self.activations):
           out = linear layer(out)
17
           out = activation(out)
18
19
          out = self.final linear(out)
20
          out = self.softmax(out)
21
22
23
          return out
```

Next Time

- Backpropogation algorithm
 - How to build an automatic differentiation package.
 - What are these weird "graph" and "leaf" things my tensorflow/pytorch code keeps complaining about?