$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C, \quad \alpha \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{x dx}{a^2 + x^2} = \frac{1}{2} \ln(a^2 + x^2) + C$$