Turing Machines

Alan Turing

- Enigma (criptography)
- Turing test
- Turing machine (1937)

Turing Machine

- Mathematical model for computation
- Abstract machine
- Can simulate any algorithm

Turing Machine

- Input band (infinite)
- Reading head
- Control Unit: states
- Transitions / moves

Turing machine – definition

7-tuple M = (Q, Γ ,b, Σ , δ ,q₀, F) where:

- Q finite set of states
- *I* alphabet (finite set of band symbols)
- $b \in \Gamma$ blank (symbol)
- $\Sigma \subseteq \Gamma \setminus \{b\}$ input alphabet
- δ : (Q\F) x $\Gamma \rightarrow$ Q x Γ x {L,R} –transition function
- $q_0 \in Q$ initial state
- $F \subseteq Q$ set of final states

L = left R = right

Example – palindrome over {0,1}

- 001100, 00100, 101101 a.s.o. accepted
- 00110, 1011 a.s.o. not accepted

<u>0</u>0110<u>0</u>

Example – palindrome over {0,1}

	0	1	b
q_0	(p ₁ ,b,R)	(p ₂ ,b,R)	(q _f ,b,R)
p_1	$(p_1,0,R)$	(p ₁ ,1,R) ←	(q ₁ ,b,L) ←
p ₂	(p ₂ ,0,R) ←	(p ₂ ,1,R) ←	(q_2,b,L)
q_1	(q _r ,b,L)		(q _f ,b,R)
q_2		(q _r ,b,L)	(q _f ,b,R)
q _r	(q _r ,0,L)	(q _r ,1,L)	(q ₀ ,b,R)
q_f			

Delete 0 in left side; search 0 in right side

Delete 1 in left side;

On right is 0 or 1?

Shift right

 q_1 and q_2 – process 0 and 1 on the right

qf –final state

0110

0	1	1	0	
	1	1	0	
	1	1	0	
	1	1	0	
	1	1	0	
	1	1	0	
	1	1		

1	1	
1	1	
1	1	
1	1	
	1	

• • •

$$(q_0, \underline{0}110) \mid -(p_1, \underline{1}10) \mid -(p_1, 1\underline{1}0)$$

$$|-(q_r, 11)| - (q_r, 11)| - (q_r, b11)$$

$$|-(q_0, \underline{1}1)|-...$$

	0	1	b
q_0	(p ₁ ,b,R)	(p ₂ ,b,R)	(q _f ,b,R)
p ₁	(p ₁ ,0,R)	(p ₁ ,1,R)	(q ₁ ,b,L)
p ₂	(p ₂ ,0,R)	(p ₂ ,1,R)	(q ₂ ,b,L)
$q_{\mathtt{1}}$	(q_r,b,L)		(q_f,b,R)
q_2		(q _r ,b,L)	(q_f,b,R)
q _r	(q _r ,0,L)	(q _r ,1,L)	(q ₀ ,b,R)
q_f			

https://turingmachinesimulator.com