6.002 电路与电子学

数字电路响应速度

复习

$$v_C = V_I + \left(V_O - V_I\right) e^{\frac{-t}{RC}} \quad ---- \quad (1)$$

让我们把结果应用到一个反相器上

首先,B点的上升延迟时间 t_r

在 A 点电压由高电平 1 变为低电平 0

首先,B点的上升延迟时间 t_x

首先,B点的上升延迟时间 t_r

B点电压由低电平 0 变为高电平 1 的等效电路

由(1)式可得

$$v_B = V_S + (0 - V_S) e^{\frac{-\iota}{R_L C_{GS}}}$$

现在,我们需要得到当 $v_B=V_{OH}$ 的时间 t

或者

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

得到 t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln \frac{V_S - V_{OH}}{V_S}$$

或者

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

得到 t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln rac{V_S - V_{OH}}{V_S}$$
例如 $R_L = 1K$ $V_S = 5V$ $C_{GS} = 0.1 \, pF$ $V_{OH} = 4V$

$$t_r = -1 \times 10^3 \times 0.1 \times 10^{-12} \ln \frac{5-4}{5}$$

= 0.16 ns
 $RC = 0.1 \text{ ns } !$

下降延迟时间 t_f

下降延迟时间是B点电压 v_B 降到 V_{OL} 的时间

B点电压由高电平1变为低电平0的等效电路

下降延迟时间 t_f

B点电压由高电平1变为低电平0的等效电路

戴维南替换

曲①

$$v_B = V_{TH} + \left(V_S - V_{TH}\right) e^{\frac{-t}{R_{TH}C_{GS}}}$$

下降延迟时间 t_f 是B点的电压 v_B 降到 V_{OL} 所需的时间

$$V_{OL} = V_{TH} + \left(V_S - V_{TH}\right) e^{\frac{-t_f}{R_{TH}C_{GS}}}$$

或者
$$t_f = -R_{T\!H}C_{G\!S} \ln \frac{V_{O\!L} - V_{T\!H}}{V_S - V_{T\!H}}$$

$$t_f = -R_{TH}C_{GS} \ln \frac{V_{OL} - V_{TH}}{V_S - V_{TH}}$$

例如:

$$R_{L} = 1K \qquad V_{S} = 5V \qquad R_{ON} = 10\Omega$$

$$C_{GS} = 0.1 pF \qquad V_{OL} = 1V$$

$$R_{TH} \approx 10\Omega, \quad V_{TH} \approx 0V$$

$$t_{f} = -10 \cdot 0.1 \cdot 10^{-12} \ln \frac{1}{5}$$

$$= 1.6 ps$$

$$RC = 1 ps !$$

为了复习:缓慢也许比较好

问题

因此,工程师决定让速度加快……

$$ewline R_L$$
 $ewline R_L$ $ewline R_L$ $ewline R_L$ $ewline R_N$ $ewline R_N$

为了复习:缓慢也许比较好

问题

为什么?想一想……

例①

为什么?想一想……

例②

串音干扰!

串音干扰的典型电路:

例③

……6.002 专家找到了解决办法

详细的分析在复习课中介绍