Preparing your figures to share with others

Changing plot style

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"]
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Choosing a style

```
plt.style.use("ggplot")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"]
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Back to the default

plt.style.use("default")

The available styles

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.h

The "bmh" style

```
plt.style.use("bmh")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"]
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Seaborn styles

```
plt.style.use("seaborn-colorblind")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"]
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


• Dark backgrounds are usually less visible

- Dark backgrounds are usually less visible
- If color is important, consider choosing colorblind-friendly options

- Dark backgrounds are usually less visible
- If color is important, consider choosing colorblind-friendly options
 - "seaborn-colorblind" or "tableau-colorblind10"

- Dark backgrounds are usually less visible
- If color is important, consider choosing colorblind-friendly options
 - "seaborn-colorblind" or "tableau-colorblind10"
- If you think that someone will want to print your figure, use less ink

- Dark backgrounds are usually less visible
- If color is important, consider choosing colorblind-friendly options
 - "seaborn-colorblind" or "tableau-colorblind10"
- If you think that someone will want to print your figure, use less ink
- If it will be printed in black-and-white, use the "grayscale" style

Practice choosing the right style for you!

Sharing your visualizations with others

A figure to share

```
fig, ax = plt.subplots()
ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")
plt.show()
```

A figure to share

```
fig, ax = plt.subplots()

ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")

plt.show()
```


Saving the figure to file

```
fig, ax = plt.subplots()

ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")

fig.savefig("gold_medals.png")
```

Saving the figure to file

```
fig, ax = plt.subplots()

ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")

fig.savefig("gold_medals.png")
```

ls

gold_medals.png

Different file formats

fig.savefig("gold_medals.jpg")

Different file formats

```
fig.savefig("gold_medals.jpg")
```

```
fig.savefig("gold_medals.jpg", quality=50)
```

Different file formats

```
fig.savefig("gold_medals.jpg")

fig.savefig("gold_medals.jpg", quality=50)

fig.savefig("gold_medals.svg")
```

Resolution

fig.savefig("gold_medals.png", dpi=300)

Size

fig.set_size_inches([5, 3])

Another aspect ratio

fig.set_size_inches([3, 5])

Practice saving your visualizations!

Automating figures from data

Why automate?

- Ease and speed
- Flexibility
- Robustness
- Reproducibility

How many different kinds of data?

summer_2016_medals["Sport"]

How many different kinds of data?

```
summer_2016_medals["Sport"]
```

```
ID
62
              Rowing
65
           Taekwondo
73
            Handball
134759
            Handball
135132
          Volleyball
              Boxing
135205
Name: Sport, Length: 976, dtype: object
```

Getting unique values of a column

```
sports = summer_2016_medals["Sport"].unique()
```

Getting unique values of a column

```
sports = summer_2016_medals["Sport"].unique()
print(sports)
['Rowing' 'Taekwondo' 'Handball' 'Wrestling'
'Gymnastics' 'Swimming' 'Basketball' 'Boxing'
'Volleyball' 'Athletics']
```

Bar-chart of heights for all sports

```
fig, ax = plt.subplots()

for sport in sports:
    sport_df = summer_2016_medals[summer_2016_medals["Sport"] == sport
```

Bar-chart of heights for all sports

Bar-chart of heights for all sports

Figure derived automatically from the data

Practice automating visualizations!