Curso de Pós-Graduação em Ciências Veterinárias - UFRRJ

Métodos Estatísticos

Prof: Wagner Tassinari

wagner.tassinari@ini.fiocruz.br

Probabilidade

Probabilidade

Probabilidade

- Teoria matemática utilizada para se estudar incerteza oriunda de fenômenos de caráter aleatório.
- Base sobre a qual são construídos importantes métodos de inferência estatística.

Alguns conceitos

- Experimento Determinístico: conhecidas as condições sob as quais o experimento vai ser realizado podemos indicar, a "priori", o resultado que será obtido.
 - Exemplo: Na operação 2 + 2, sabe-se que o resultado é o número 4.
- Experimento Aleatório: sabemos os resultados possíveis, mas não podemos dizer qual deles irá ocorrer.
 - Exemplo: No lançamento de uma moeda, o resultado poderá ser cara ou coroa.

Espaço Amostral: é o conjunto de todos os resultados possíveis de um certo experimento aleatório.

Evento: é qualquer subconjunto do espaço amostral.

Características de um experimento aleatório

- Cada experimento poderá ser repetido indefinidamente sob condições inalteradas;
- Podemos descrever os possíveis resultados;
- Há uma regularidade quando o experimento for repetido um grande número de vezes.

Exemplo de um experimento aleatório

- Experimento Aleatório: Jogar um dado homogêneo e observar o resultado
 - Espaço Amostral: {1,2,3,4,5,6}
 - Evento: {sair o número 6}, {sair um número par}
- 2. Experimento Aleatório: Uma pessoa faz um exame para saber se tem uma determinada doença
 - Espaço Amostral: {tem a doença, não tem a doença}
 - Evento: {tem a doença}

Como atribuir probabilidades aos eventos ?

- 1. Através de características teóricas da realização do fenômeno.
- Exemplo: Em um dado n\(\tilde{a}\)o viciado temos igual probabilidade para cada uma das faces.

$P(sair\ o\ n\'umero\ 6) = 1/6 \rightarrow$ eventos equiprováveis

- 2. Através da frequência relativa.
- Exemplo: Suponha a população de uma cidade no ano de 2001 = 100.000 habitantes. No mesmo ano, os casos registrados de uma determinada doença nessa cidade = 20 pacientes.
- Prevalência = P(ter a doença) = freq.relativa = 20/100000
 = 0,0002

Definição de probabilidade clássica (frequência relativa)

$$P(A) = \frac{k}{n}$$

Sendo:

k: Número de casos favoráveis ao evento A no experimento

n: Número total de casos no experimento

Relembrando conjuntos

- Vamos representar o espaço amostral por Ω e dois eventos quaisquer deste espaço amostral por A e B.
- Definição: Uma função de probabilidade P(.) é denominada probabilidade se satisfaz as condições:
 - i. $0 \le P(A) \le 1$
 - ii. $P(\Omega) = 1$
 - iii. $P(A \cap B) = P(A) + P(B)$, se A e B são eventos disjuntos

A e B são A ∩ B=Ø
Disjuntos
(ou mutuamente
exclusivos)

Pode-se mostrar que valem também as seguintes relações: Se A e B são dois eventos quaisquer, então:

iv)
$$P(A \cup_{\hat{T}} B) = P(A) + P(B) - P(A \cap B)$$

(regra da adição)

A probabilidade da interseção é contada duas vezes!!

Para o evento complementar vale a relação:

$$V) P(\overline{A}) = 1 - P(A)$$

vi.
$$P(\emptyset) = 0$$

Para o evento vazio ∅, a probabilidade é zero.

Exemplo 1: Supondo a urna abaixo, qual a probabilidade do objeto sorteado ser quadrado ou vermelho ?

Exemplo 1: Supondo a urna abaixo, qual a probabilidade do objeto sorteado ser quadrado ou vermelho ?

Resumindo:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = 0$$
 : $P(A \cup B) = P(A) + P(B)$

(eventos mutuamente exclusivos)

- Exemplo 2: Calcule a probabilidade de sair ímpar no lançamento de um dado
- A: Sair ímpar
- A = 1, 3, 5

$$P(A) = \frac{k}{n} = \frac{3}{6} = \frac{1}{2}$$

Exemplo 3: Retira-se uma carta de um baralho. Determine a probabilidade de ocorrer:

a. Dama
$$ightarrow P(\textit{Dama}) = \frac{4}{52}$$

- b. Carta de copas ou espada $\rightarrow P(Dama \cup Espada) = \frac{26}{52}$
- c. Rei ou carta de espada
 - i. A: Sair rei
 - ii. B: Sair uma carta de espada

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52}$$

- Muitas vezes o fato de um evento ocorrer influencia na probabilidade da ocorrência de um outro evento. Neste caso, definimos:
- Dados dois eventos A e B , a probabilidade condicional de B dado que A ocorreu é representada por P(B|A):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

• Que pode ser escrito como (pela regra do produto):

$$P(A \cap B) = P(A).P(B|A)$$

Resumindo

$$A \cap B$$

$$P(A \cap B) = P(A).P(B/A)$$
$$= P(B).P(A/B)$$

Exemplo 4: Raio X do tórax para detectar tuberculose

Tuberculose			
Raio X	Não	Sim	Total
Negativo	1739	8	1747
Positivo	51	22	73
Total	1790	30	1820

a) P(um paciente escolhido ao acaso ter tuberculos e) =
$$\frac{30}{1820}$$
 = 0,016

$$\begin{array}{l} \textbf{b)} \\ P(\text{ter tuberculos e} \mid \text{raio X positivo}) = \frac{P(\text{ter tuberculos e} \cap \text{raio X positivo})}{P(\text{raio X positivo})} = \frac{\frac{22}{1820}}{\frac{73}{1820}} = \frac{22}{73} = 0,301 \\ \end{array}$$

 Dois eventos A e B são independentes se a informação da ocorrência ou não de A não altera a probabilidade de ocorrência de B. Isto é,

$$P(B|A) = P(B)$$

ou ainda de forma equivalente (pela regra do produto):

$$P(A \cap B) = P(A).P(B)$$

Exemplo de Independência

Resumindo

$$P(A \cap B) = P(A).P(B/A)$$
$$= P(B).P(A/B)$$

$$P(A/B) = P(A) e P(B/A) = P(B)$$
 \therefore $P(A \cap B) = P(A).P(B)$ (eventos independentes)

Exemplo 5:

Doença			
Exposição	Sim	Não	Total
Sim	40	60	100
Não	60	90	150
Total	100	150	250

P(um paciente ter a doença) =
$$\frac{100}{250}$$
 = 0,4

P(ter a doença | houve exposição) =
$$\frac{40}{100}$$
 = 0,4

"Não há associação entre a doença e a exposição"

Probabilidade - Resumo

 $A \cup B$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

eventos mutuamente exclusivos

 $A \cap B$

$$P(A \cap B) = P(A).P(B/A) = P(B).P(A/B)$$

$$P(A \cap B) = P(A).P(B)$$

eventos independentes

 \overline{A}

$$P(\overline{A}) = 1 - P(A)$$

Medidas de qualidade de um teste (Sensibilidade e Especificidade)

Exemplo de Lind & Singer (1986): qualidade da tomografia computadorizada para o diagnóstico de metástase de carcinoma de fígado. (Comparado com laparotomia, um teste padrão ouro). Suponha que nessa população a prevalência (p) de metástase de carcinoma de fígado é de 2%.

Exemplo de Lind & Singer (1986):

Tabela 1: Resultados da tomografia computadorizada em 150 pacientes.

	Tomografia computadorizada		
Metástase		Negativo	Total
	Positivo (T ₊)	(T_)	
Presente (D ₊)	52	15	67
Ausente (D _.)	9	74	83
Total	61	89	150

Eventos:

T₊: o resultado do teste é positivo

T_.: o resultado do teste é negativo

D₊: o indivíduo é portador da doença

D_: o indivíduo não é portador da doença.

Sensibilidade(s) do Teste

- Exemplo 6: Qual é a probabilidade do teste ser positivo sabendo que o paciente está doente, ou seja, P(T₊|D₊)?
- Se o paciente está doente: o espaço amostral agora está limitado somente aos pacientes doentes (D₊):

	Positivo (T ₊)	Negativo (T_)	Total
Presente (D ₊)	52	15	67

• E essa probabilidade pode ser calculada por: $\frac{52}{67} = 0,78$

$$P(T_{+}|D_{+}) = \frac{P(T_{+} \cap D_{+})}{P(D_{+})} = 0.78$$

Essa probabilidade é chamada de sensibilidade(s) do teste.

Especificidade(s) do Teste

Exemplo 6: Qual é a probabilidade do teste ser negativo dado que o paciente não está doente, $P(T_-|D_-)$?

$$P(T_{-}|D_{-}) = \frac{P(T_{-} \cap D_{-})}{P(D_{-})} = \frac{74/150}{83/150} = 0,89$$

Outras medidas de interesse são:

Falso negativo (1-s)	P(T ₋ D ₊)
Falso positivo (1-e)	$P(T_{+} D_{-})$
Valor preditivo positivo (VPP)	$P(D_{+} T_{+})$
Valor preditivo negativo (VPN)	P(D_ T_)

Valores Preditivos

Valor Preditivo Positivo

$$VPP = P(D_{+}|T_{+}) = \frac{P(D_{+} \cap T_{+})}{P(T_{+})} = \frac{52/150}{61/150} = 0,852$$

Valor Preditivo Negativo

$$VPN = P(D_{-}|T_{-}) = \frac{P(D_{-} \cap T_{-})}{P(T_{-})} = \frac{74/150}{89/150} = 0,831$$

Primeiro abra o Rcommander

• Segundo carregue o plugin RcmdrPlugin.EZR

O Rcommander será reinicializado com o RcmdrPlugin.EZR

■ Rcommander \rightarrow Statistical analysis \rightarrow Accuracy of diagnostic test \rightarrow Accuracy of qualitative test

Exercício:

Os dados abaixo se referem ao exame de Raio X do tórax para detectar tuberculose.

Tuberculose			
Raio X	Não	Sim	Total
Negativo Positivo	1739 51	8 22	1747 73
Total	1790	30	1820

Determine a sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo.

Solução utilizando o plugin "RcmdrPlugin.EZR"

