Inhaltsverzeichnis

Vorwort		5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21
3	Dualräume und ihre Darstellungen	31
4	Kompakte Operatoren	37
5	Der Satz von Hahn-Banach	45
6	Schwache Konvergenz und Reflexivität	57

Schwache Konvergenz und Reflexivität

Sei X ein normiert Raum, X' der Dualraum und X'' = (X')' dessen Dualraum. Wir nennen X'' den Bidualraum von X.

Sei $x \in X$, so kann auf kanonische Weise eine Abbildung $i(x): X' \to \mathbb{K}$, (i(x))(x') = x'(x), definiert werden. i(x) ist sicher linear, i(x) ist stetig, da:

$$|(i(x))(x')| = |x'(x)| \le ||x'|| ||x|| = ||x|| ||x'|| \forall x' \in X'$$

mit $||i(x)|| \le ||x||$. Es gilt sogar ||i(x)|| = ||x|| (dies folgt aus dem Satz von Hahn-Banach). Also $i(x) \in X''$ und i Isometrie.

{satz6.1}

Satz 6.1

Die Abbildung $i: X \to X''$, (i(x))(x') = x'(x), ist eine lineare Isometrie (im Allgemeinen nicht surjektiv).

i heißt auch kanonische Abbildung von X nach X''. Wir schreiben auch i_X . Auf diese Weise wird X mit einem Unterraum von X'' identifiziert. Da X'' vollständig ist, gilt das folgende Korollar:

{kor6.2}

Korollar 6.2

Jeder normierte Raum ist isometrisch isomorph zu einem dichten Unterraum eines Banachraumes.

Beispiel

i) Sei $X = c_0$. Es 'gilt': $X' \cong \ell^1$ und $X'' \cong \ell^\infty$. Mit dieser Identifizierung gilt $i_{c_0}(x) = x$, denn: Identifizieren wir $(y_n)_n \in \ell^1$ mit dem Funktional $(x_n)_n \mapsto \sum y_n x_n$, so folgt:

$$(i_{c_0}(x))(y) = y(x) = \sum_n y_n x_n = z(y)$$

mit $z \in \ell^{\infty}$ stellt das Funktional $(y_n) \mapsto \sum_n x_n y_n$. Somit $z = x = i_{c_0}(x)$. Insbesondere i_{c_0} ist nicht surjektiv.

- ii) $X = \ell^1$. Es gilt $X' = \ell^{\infty}$ und nach Kapitel 5 ist $X'' = (\ell^{\infty})'$ nicht isometrisch isomorph zu ℓ^1 . Also ist i_{ℓ^1} nicht surjektiv.
- iii) Analoge Überlegungen zu i) zeigen: Für $1 < p1\infty$ stimmt die kanonische Einbettung i_{ℓ^p} mit der Identität $I \colon \ell^p \to \ell^p$ überein. Somit ist i_{ℓ^p} surjektiv. Die gleichen überlegungen gelten für L^p .

{def6.3}

Definition 6.3

Ein Banachraum X heißt reflexiv, wenn i_X surjektiv ist.

Für reflexive Räume gilt $X \cong X''$. Die Umkehrung hiervon gilt nicht (ein Beispiel wurde 1950 von James angegeben).

Beispiel

- i) ℓ^p und L^p sind reflexiv für 1 .
- ii) c_0 , ℓ^1 sind nicht reflexiv.
- iii) Endlich dimensionale Räume X sind reflexiv, da

$$\dim X = \dim X' = \dim X''$$

//

{satz6.4}

Satz 6.4

- i) Abgeschlossene Unterräume reflexiver Räume sind reflexiv.
- ii) Ein Banachraum X ist genau dann reflexiv, wenn X' reflexiv ist.

Beweis:

i) X reflexiv, $U \subseteq X$ abgeschlossen. Sei $u'' \in U''$. $x' \mapsto u''(x'|_U)$ liegt in X'', denn

$$|u''(x'|_U)| \le ||u''|| ||x'|_U|| \le ||u''|| ||x'||$$