Forecasting Auto Loan Originations: A Data-Driven Approach for the Bank

Huyen Le

August 2023

Outlines

- 1. Introduction
- 2. Data Processing
- 3. Exploratory Data Analysis
- 4. Feature Engineering
- 5. Model Selection and Training
- 6. Model Comparison
- 7. Recommendations

Introduction

- Bank's Offer: Provides auto loans to its diverse client
- Business Need: Anticipating loan demands is crucial due to fluctuating market dynamics and evolving customer behaviors.
- Role of Analytics: The analytics team leverages data to forecast trends, ensuring preparedness.
- Challenges:
 - Diverse Factors: Impacted by both internal metrics and external elements.
 - Data Integration: Essential to merge varied data sources for insights.
 - Dynamic Market: Economic shifts and changing preferences complicate forecasting.

Data Processing

- The dataset to predict auto loan originations contains:
 - Total membership
 - Application volume (Group of product, pre-approve, risk tier, term code, discount and total application volume)
 - Competitor rates
 - Macroeconomic indicators
- Data processing: Merged data resulted in:
 - 12 missing values in "Pre-approve", and 220 in "Total membership"
 - Missing values were imputed using the mean.
 - Outliers detected using the Interquartile Range and replaced with the median.
 - Drop 1,127 duplicated observations
 - Label encoding and one-hot encoding applied for categorical variables.
- Dataset Size: 32,344 observations spanning 10 years.

Data Overview

Data Overview

Data Overview

Feature engineering

Introduction

	coef	std err	t	P> t
const	-409.7928	88.872	-4.611	0.000
PREAPPROVE	94.9068	3.203	29.630	0.000
TIER	-5.5179	0.559	-9.880	0.000
BPS25	15.9242	0.126	126.084	0.000
BPS100	24.5023	1.263	19.399	0.000
TERM_CODE	46.5765	2.015	23.118	0.000
Total	0.0023	0.000	18.894	0.000
Rate	-8575.5901	340.849	-25.160	0.000
3-Year Treasury Interest Rate (%)	47.8462	3.475	13.767	0.000
GDP (Bil)	0.0116	0.005	2.136	0.033
Unemployment Rate (%)	34.4323	2.244	15.345	0.000
PRODUCT_GROUP_NEW VEHICLE	36.9167	4.205	8.779	0.000
PRODUCT_GROUP_USED VEHICLE	311.9972	5.556	56.155	0.000

Adjusted R-squared: 0.68

Model Selection and Training

- Train-test split: set aside 20% as test data, 80% training data
- Apply for the most popular models
 - Linear regression model
 - Time-series model (ARIMA)
 - Decision tree
 - Random Forest
- Decision made:
 - Based on the result of Mean absolute error (MAE), Mean squared error (MSE) and Adjusted-R squared.

Linear Regression Model

- Mean Absolute Error (MAE): 2.39×10^{-12}
- Mean Squared Error (MSE): 8.4×10^{-23}
- $R^2:1.0$
- Conclusion: Perfect fit => overfitting?
 - Inspect the coefficients to find the significant impact of lags of Volume
 => Drop lags
 - Solution: Drop lags => MAE: 202.9, MSE:83352.6, R^2 :0.68

ARIMA Model

(p,d,q)=(2,1,2)

• Introduction

Data Exploration

Model

Recommendations

ARIMA Model

MAE:436

MSE: 299167

 $R^2 :-0.11$

Machine Learning Model

Decision Tree Regressor:

- Mean Absolute Error (MAE): 131.814
- Mean Squared Error (MSE): 55742.38
- $R^2: 0.79$

Random Forest Regressor:

- Mean Absolute Error (MAE): 107.90
- Mean Squared Error (MSE): 38876.17
- $R^2:0.85$

Model Comparison

Model	MAE	MSE	R^2
Linear regression model	202.9	83352.6	0.68
ARIMA	436	299167	-0.11
Decision Tree	131.814	55742.38	0.79
Random Forest	107.90	38876.17	0.85

Model Robustness

- Stress-testing:
 - Purpose: To evaluate the model's stability and reliability under extreme or unusual conditions.
 - Outcome for Linear Regression: A 5% decrease in R-squared when introduced with outliers.
- Sensitivity analysis:
 - Purpose: To assess the influence of changes in independent variables on a specific dependent variable.
 - Result for Linear Regression: By omitting lag features, the R-squared value decreased by 32%.

Recommendation

- Collect more historical data on auto loan originations
- Evaluate the events and factors that influence auto loans
- Try different models and techniques to make the result more accurate
 - Use k-fold cross section techniques
 - Linear regression model: use Ridge regression or Lasso regression to avoid overfitting
 - Time-series model: consider different methods, or drop the insignificant lag features, add the significant interaction features
 - Random Forest/Decision Tree: Find the best hyperparameter tuning