Unit->6

HOSEL CONT. NORCE Vector Spaces Continued:

The dimension of Nul A: The dimension of Nul A is the number of free variable on the equation of Ax=0.

The dimension of Col A: The dimension of Col A & the number of prot column on A.

Example 1: Find the dimensions of the null space and column space

First reduce the augmented matex [A O] to echelon

0 00000

There are three free variables of , x and x5. Hence the dimension of Nul A 18 3. Also dem Col A=2 because has two prot columns.

Example 2: Find a basis and dimension of the subspace

$$H = \begin{cases} 3a + 6b - c \\ 6a - 2b - 2c \\ -9a + 5b + 3c \end{cases} : a,b,c \in \mathbb{R}$$

solution: We have,

= avit by + cvi

which shows that H 48 linear combination of vz, vz, vz. clearly vz +0, 12 48 not multiple of 1/2, but 1/3 18 a multiple of 1/2. So by spanning set theorem {v1, v2} also spans H and since It is linearly independent. So, It Is a basis for H and dimension of H (dim H) = 2.

General solution of Ax = 092, $x_1 + x_2 + x_5 = 0$ $x_2 - 2x_3 + 3x_5 = 0$ x_3 is free $x_4 - 5x_5 = 0$ x_5 is free. x_5 is free. x_5 is x_5 is

@ Change of Basis:

Let B= {b1, b2, ..., bn} and C= {c1, c2, ..., cn} are basis for Rn. Then change of co-ordinate matrix from B to C 43 denoted by C+B and defined by C+B = [[b_1]c[b_2]c...[b_n]c].

and $[X]_c = {P \atop C \leftarrow B} [X]_B$.

It means the matrix P convert B-coordinates into C-ordinate.

Note: P = B+C -1

Example 1: Let $B = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ where $b_1 = \begin{bmatrix} -9\\1 \end{bmatrix}$, $b_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $C_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $C_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ are the two basis for R^2 , then.

?) Find the change of co-ordinale makex from C to B.

TP) Find the change of co-ordinate mater from B to C.

(1) For the change of coordinate matrix from B to C.

[[b]]c[b]]c=P For [bit, Let b1=x4+y2 $\Rightarrow \begin{bmatrix} -9 \\ 1 \end{bmatrix} = x \begin{bmatrix} 1 \\ 4 \end{bmatrix} + y \begin{bmatrix} 3 \\ -5 \end{bmatrix}$

yi.e, -9 = x+3y - 0and 1 = -4x - 5y - 99

Solving, we have, x = 6 and y = -5. Therefore $[b_1]_c = \begin{bmatrix} -6 \\ -5 \end{bmatrix}$

Again, for [b2]c, let b2=x4+yc2 $\Rightarrow \begin{bmatrix} -5 \\ -1 \end{bmatrix} = \chi \begin{bmatrix} 14 \\ -4 \end{bmatrix} + y \begin{bmatrix} 3 \\ -5 \end{bmatrix}$

Here, x+3y=-5 — 119) and -4x-5y=-1 — (14). Solving we have x=4 and y=-3.

Therefore [by/c = [4]

Thus,
$$P_{C+B} = [[b_3]_c [b_2]_c] = [6 47]$$
.

Again,
$$P = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [6 47]$$

$$B+C = [P_3]_c [b_2]_c] = [P_3]_c [b_2]_c]$$

$$B+C = [P_3]_c [b_2]_c] = [P_3]_c [b_2]_c]$$

$$B+C = [P_3]_c [b_2]_c]$$

De co-ordinate mapping:

Let, T: V > 1 Rn be a transformation. Let B = {b_3,b_3,...,bn}

be a basis for V then there exists unique set of scalars

C1, C2,..., Cn such that, x = C1b_1 + C2b_2 + ... + Cnbn.

Then the vector C1 is called the co-ordinate vector of x relative to the basis B,

denoted by [X]B = C1

C1

C2

C3

Jie, [X]B = C1

C3

C4

in v to unique member in IR". T: V -> IR", called the co-ordinate mapping.

 $\times \xrightarrow{[]^{B}} [\times]^{B}$

€. One-to-one transformation:

Let u, u EV such that [u] = [v] B

Let,
$$[u]_{B} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
, $[v]_{B} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$

Now) u = caba + 02 b2+...+cnbn

$$\Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ -c_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_n \end{bmatrix}$$

... u = dyb1+d2b2+...+dnbn

This shows that the transformation is one-to-one.

vector space such that, b1 = 49+C2 fib2=-69+62 suppose x=3b1+b2 i.es [X]B = [3] Find [X]c [X]c = P [X]B, read as change of matrix from B to C where, $P_{C+B} = \begin{bmatrix} [b_1]_c & [b_2]_c \end{bmatrix}$ $= \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} X \end{bmatrix}_{C} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$... [X] c = 16 2. Let B= {b1, b2, ..., bn3, C= {G, C2, ..., cn3 be two bases of a vector space V of dimension n. To show {[b] [b] [b] [... s Lon Ic & 18 linearly independent. For bibbinobn are basis in B. =) bis ..., by are linearly independent. 50, 24 b2+22 b2+ 1... + 2mbn=0-0 => x=...=xn=0 Operating []c &n both sides of (3) [22 b2 +22 b2+...+26 n] c = [0] = [b_1] + x_2 [b_2] + ... + xn[bn] = 0, Since [] = 8

linear. Since, $x_1 = \dots = x_n = 0$.

[b₂]_c,...[b_n]_c are lineary independent. ites columns of CEB = [[bs]c...[bn]] are dinearly independent,

Example: - Consider two bases B= {b1,b2} and C= {G,G} for a

The bases for
$$/R^2$$
 given by $B = \{b_1, b_2\}$ and $C = \{c_1, c_3\}$. The bases for $/R^2$ given by $B = \{b_1, b_2\}$ and $C = \{c_1, c_3\}$. The the change of co-ordinale matrix from $C = \{c_1, c_3\}$. The change of co-ordinale matrix from $B = \{c_1, c_2\}$ are the bases for $C = \{c_1, c_2\}$ and $C = \{c_1, c_2\}$ and $C = \{c_1, c_2\}$ are the bases for $C = \{c_1, c_2\}$ and $C = \{c_1, c_2\}$

Ance, the columns of P are linearly independent.

It is invertible. $\begin{bmatrix}
P & -1 & P \\
B + C & = C + B
\end{bmatrix}$ determinant $\begin{vmatrix} 5 & 3 \\ 6 & 4 \end{vmatrix} = 5 \times 4 - 6 \times 3$ $\begin{vmatrix} 6 & 4 \\ = 20 - 18 \\ = 2 \end{vmatrix}$ $\begin{vmatrix} 2 & 2 \\ -6 & 5 \end{vmatrix}$ i. $P = \begin{bmatrix} P & -1 \\ B + C \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix}$