

vremenski kontinuirand sinusoide

funkcije

vremenski stalni sustav

Signali i sustavi

Profesor Branko Jeren

5. ožujka 2007.

sustavi školska godina 2006/2007 Predavanie 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Otipkavanje vremenski kontinuiranih signala

otipkavanjem vremenski kontinuiranog signala u_a: Realni → Realni u diskretnim trenucima vremena t = nT, nastaje vremenski diskretan signal u: Cjelobrojni → Realni dakle, za

$$\forall t \in Realni, u_a(t)$$

otipkavanjem slijedi

$$\forall n \in C$$
jelobrojni, $u(n) = u_a(t)|_{t=nT} = u_a(nT)$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Otipkavanje vremenski kontinuiranih sinusoidnih signala 1

realna vremenski kontinuirana sinusoida definirana je kao

$$u_a$$
: Realni \rightarrow Realni $u_a(t) = \cos(2\pi F t + \theta) = \cos(\Omega t + \theta)$

gdje su F frekvencija signala [Hz] i Ω kutna frekvencija [rad/s]

• za $t=nT=\frac{n}{F_s}=\frac{2\pi n}{\Omega_s}$ i $\forall n\in \textit{Cjelobrojni}$ slijedi

$$u(n) = u_a(nT) = \cos(2\pi F nT + \theta) = \cos(\Omega T n + \theta) =$$
$$= \cos(\frac{2\pi F}{F} n + \theta) = \cos(\frac{2\pi \Omega}{\Omega} n + \theta) = \cos(\omega n + \theta)$$

gdje su $F_s=1/T$ frekvencija otipkavanja i $\Omega_s=2\pi F_s$ kutna frekvencija otipkavanja

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kad funkcije

Linearni vremenski stalni sustav

Otipkavanje vremenski kontinuiranih sinusoidnih signala 2

dakle otipkani signal je

$$u(n) = \cos(\omega n + \theta), \quad \forall n \in Cjelobrojni$$

pri čemu je $\omega = \Omega T$ normalizirana kutna frekvencija (ili korak argumenta) [rad/uzorku] diskretnog signala u(n)

- kako Ω neograničen, to će i ω biti neograničen, pa je očigledno da se, pri otipkavanju vremenski kontinuiranog sinusoidnog signala, može javiti aliasing (za $|\omega| > \pi$)
- ovdje će se razmotriti pod kojim uvjetima otipkavati vremenski kontinuirani signal da bi se izbjegla pojava aliasinga

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao

Linearni vremenski stalni sustavi

Jednoznačno otipkavanje vremenski kontinuiranih sinusoidnih signala

• pri otipkavanju vremenski kontinuiranog sinusoidnog signala kutne frekvencije $\Omega_0=2\pi F_0$ s frekvencijom otipkavanja $F_s=\frac{1}{T}$ nastaje vremenski diskretna sinusoida (sinusoidni niz) normalizirane kutne frekvencije

$$\omega_0 = \Omega_0 T = \Omega_0 \frac{1}{F_s} = \frac{2\pi\Omega_0}{\Omega_s}$$

aliasing se ne javlja za $\omega_0 \leq \pi$, pa iz $\frac{2\pi\Omega_0}{\Omega_c} \leq \pi$ slijedi

$$\Omega_s \geq 2\Omega_0$$
 ili $F_s \geq 2F_0$

- zaključujemo: vremenski kontinuirana sinusoida će biti jednoznačno otipkana ako je frekvencija otipkavanja dvostruko veća od frekvencije otipkavane vremenski kontinuirane sinusoide
- ovaj zaključak je specijalni slučaj teorema otipkavanja koji će kasnije biti detaljno analiziran

2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Primjeri otipkavanja vremenski kontinuiranih sinusoidnih signala

- otipkavaju se vremenski kontinuirane sinusoide frekvencija $F_1=4\ kHz, F_2=20\ kHz, F_3=28\ kHz, F_4=44\ kHz,$ a frekvencija otipkavanja neka je $F_s=48\ kHz$
- prethodni zaključak ukazuje da će otipkavanje treće i četvrte sinusoide rezultirati aliasingom, jer frekvencija otipkavanja nije dvostruko veća od frekvencije vremenski kontinuirane sinusoide
- ilustrirajmo postupak otipkavanja

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Postupak otipkavanja vremenski kontinuiranih sinusoidnih signala

$$u_1(t) = \cos(2\pi F_1 t) = \cos(2\pi \cdot 4 \cdot 10^3 \cdot t)$$

$$u_2(t) = \cos(2\pi F_2 t) = \cos(2\pi \cdot 20 \cdot 10^3 \cdot t)$$

$$u_3(t) = \cos(2\pi F_3 t) = \cos(2\pi \cdot 28 \cdot 10^3 \cdot t)$$

$$u_4(t) = \cos(2\pi F_4 t) = \cos(2\pi \cdot 44 \cdot 10^3 \cdot t)$$

za
$$t = nT = \frac{n}{F_s} = \frac{n}{48 \cdot 10^3}$$

$$u_1(n) = \cos(2\pi F_1 n T) = \cos(2\pi \cdot \frac{4 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{\pi}{6}n)$$

$$u_2(n) = \cos(2\pi F_2 n T) = \cos(2\pi \cdot \frac{20 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{5\pi}{6}n)$$

$$u_3(n) = \cos(2\pi \cdot \frac{28 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{7\pi}{6}n) = \cos(-\frac{5\pi}{6}n)$$

$$u_4(n) = \cos(2\pi \cdot \frac{44 \cdot 10^3}{48 \cdot 10^3} \cdot n) = \cos(\frac{11\pi}{6}n) = \cos(-\frac{\pi}{6}n)$$

sustavi školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi ka funkcije

Linearni vremenski stalni sustav

Otipkavanje vremenski kontinuiranih sinusoida

Slika 1: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kad funkcije

Linearni vremenski stalni sustav

Primjer aliasinga kod audio signala1

- otipkava se vremenski kontinuiran signal $0.65sin(2\pi\cdot 440\cdot t) + 0.12sin(2\pi\cdot 21527\cdot t)$ frekvencijom otipkavanja $F_s = 44100\,\mathrm{Hz}$
- komponenta frekvencije $F=21527\,\mathrm{Hz}$ izvan je slušnog područja, pa je u reprodukciji čujna samo komponenta frekvencije $F=440\,\mathrm{Hz}$ (nota A)
- pri otipkavanju signala s frekvencijom $F_s = 22050 \, \text{Hz}$ dolazi do pojave aliasinga i komponenta frekvencije $F = 21527 \, \text{Hz}$ zrcali se u osnovno frekvencijsko područje kao sinusoida frekvencije $F = 22050 21527 = 523 \, \text{Hz}$ (nota C)
- u reprodukciji se čuju komponenta frekvencije $F=440\,\mathrm{Hz}$, te komponenta frekvencije $F=523\,\mathrm{Hz}$ koja je nastala aliasingom komponente frekvencije $F=21527\,\mathrm{Hz}$

2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski

Aliasing kod audio signala 2

prikazan je signal otipkan frekvencijom otipkavanja
 F_s = 44100 Hz i frekvencijom otipkavanja
 F_s = 22050 Hz

Slika 2: Aliasing kod otipkavanja audio signala 🖘

školska godina 2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi ka funkcije

Linearni vremenski stalni sustav

Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida 1

- u slučaju signala koji se sastoji od više vremenski kontinuiranih sinusoida otipkavanje treba biti dvostruko više frekvencije od najviše frekvencije među sinusoidnim komponentama signala
- u slučaju nemogućnosti promjene frekvencije otipkavanja (diskretizacije) alliasing se može pojaviti
- zanimljiv je primjer vrtnje kotača (npr. automobila Formule 1) na televizijskim ekranima gdje gledatelj, u relativno kratkom vremenu, tipično pri naglim promjenama brzine vrtnje kotača, stječe dojam da se kotač povremeno vrti naprijed, povremeno nazad, a ponekad kao i da stoji na mjestu
- efekt je posljedica pojave aliasinga i biti će ilustriran narednom slikom

Otipkavanje vremenski kontinuirane sinusoide

Sustavi ka funkcije

Linearni vremenski Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida 2

Slika 3: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Još o aliasingu pri otipkavanju vremenski kontinuiranih sinusoida 3

Slika 4: Aliasing kod otipkavanja vremenski kontinuiranih sinusoidnih signala

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kad funkcije

Linearni vremenski stalni sustav

Kvantizirani signali – signali diskretne amplitude

- signali diskretne amplitude su signali za koje je Kodomena ⊂ Cjelobrojni
- u postupku digitalizacije analognih signala, A/D pretvorbom, potrebno je uz otipkavanje signala izvršiti i njegovu kvantizaciju po amplitudi
- u primjerima koji slijede područje vrijednosti nekvantiziranog signala neka je iz intervala [0,7.193] ⊂ Realni, a promatraju se kvantizirani signali za kvantizacijski interval
 - Q = 1 ⇒ trenutna vrijednost kvantiziranog signala poprima neku od 8 mogućih cjelobrojnih vrijednosti
 - *Q* = 0.25 ⇒ trenutna vrijednost kvantiziranog signala poprima neku od 29 mogućih cjelobrojnih vrijednosti
- slijede primjeri kvantizacije, zaokruživanjem, signala za dane kvantizacijske intervale (kvante amplitude)
- na slikama su prikazani nekvantizirani signal, postupak kvantizacije, kvantizirani signal i otipkani kvantizirani signal

sustavi školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Kvantizirani signali – signali diskretne amplitude

Slika 5: Postupak kvantizacije signala po amplitudi, Q=1

sustavi školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Kvantizirani signali – signali diskretne amplitude

Slika 6: Postupak kvantizacije signala po amplitudi, Q = 0.25

2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Mikrofon kao sustav 1

 u uvodnom predavanju pokazano kako mikrofon – i svaki drugi sustav – možemo prikazati blokom kao na sl. 7

Slika 7: Mikrofon prikazan blokom

 pobuda mikrofona su signali definirani kao: odziv mikrofona su signali definirani kao

 $Zvuk: Vrijeme \rightarrow Tlak$

Miklzlazi : Vrijeme → Napon

Vrijeme ⊂ Realni i Tlak ⊂ Realni Vrijeme ⊂ Realni i Napon ⊂ Realni

školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Klasa signala, prostor signala, prostor funkcija 1

 skup svih zvučnih signala koji predstavljaju ulazne signale u mikrofon nazivamo klasa ili prostor zvučnih signala i pišemo

$$ZvucniSignali = [Vrijeme \rightarrow Tlak]$$

- u općem slučaju vrijedi:
- neka je signal $u:D\to K$
- skup *U* svih signala *u* naziva se klasom ili prostorom signala ili prostorom funkcija
- pišemo:

$$U = [D \to K] = \{u|u: D \to K\}$$

i čitamo "Klasa signala U, što možemo pisati i kao $[D \to K]$, je skup svih signala u takvih da $u : D \to K$ "

2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski

Sustavi kao funkcije 1

• sustav S je funkcija¹ i transformira ulazni signal, u, u izlazni signal, y, pa je

$$y = S(u)$$

 sustav S je dakle funkcija koja preslikava prostor signala u prostor signala

$$S:[D_u\to K_u]\to [D_y\to K_y]$$

• sustav S je sveukupnost ul./izl. parova (u, y)

$$S = \{(u, y) | u \in U, y \in Y\}$$

• ovako definirani model sustava naziva se model ulaz-izlaz

¹može biti i relacija

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Sustavi kao funkcije 2

sustave opisujemo blokovskim dijagramima

- sustavi su funkcije čije su domene i kodomene prostori signala
- tako, ako je, $u \in [D_u \to K_u]$ i y = S(u) tada je $y \in [D_v \to K_v]$

školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Kontinuirani sustavi

klasa sustava koji su opisani funkcijom

 $KontSustavi : KontSignali \rightarrow KontSignali$

 KontSignali je skup vremenski kontinuiranih signala koji ovisno o konkretnom sustavu mogu biti

```
KontSignali = [Vrijeme \rightarrow Realni] ili KontSignali = [Vrijeme \rightarrow Kompleksni] uz Vrijeme = Realni ili Vrijeme = Realni
```


Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Diskretni sustavi

klasa sustava koji su opisani funkcijom

 $DiskrSustavi : DiskrSignali \rightarrow DiskrSignali$

 dakle vremenski diskretni sustavi djeluju s klasama diskretnih signala koji mogu biti

```
DiskrSignali = [Cjelobrojni \rightarrow Realni] ili

DiskrSignali = [Cjelobrojni \rightarrow Kompleksni] ili

DiskrSignali = [Prirodni_0 \rightarrow Realni] ili

DiskrSignali = [Prirodni_0 \rightarrow Kompleksni]
```


Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Primjer kontinuiranog sustava

• na sl.8 je pokazan odziv kontinuiranog sustava $y(t) = \frac{1}{2}u(t)$ na pobudu sinusnim signalom

Slika 8: Primjer kontinuiranog sustava

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Ponašanje sustava određuje funkcija sustava – primjer

 dan je primjer tri različita sustava pobuđena istom pobudom i na slici su prikazana tri moguća različita odziva ovisna o funkciji sustava

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Povezivanje sustava

- spajanjem sustava grade se složeniji sustavi
- na primjeru audio sustava pokazano je da je on složen od tri sustava spojenih u kaskadu
- kaskadni, paralelni, te spoj sustava u povratnu vezu omogućuju bilo koju kombinaciju povezivanja sustava

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Kaskada sustava

razmotrimo opis dvaju sustava u kaskadnom

- funkcija S opisuje sustav koji je nastao spajanjem, u kaskadu, sustava S_1 i S_2
- uz oznake signala i oznake klasa funkcija na slici vrijedi

$$w = S_1(u)$$
 i $y = S_2(w)$ $\Rightarrow y = S_2(S_1(u)) = S(u)$

 zaključujemo kako je funkcija nastalog sustava S kompozicija funkcija S₁ i S₂

$$\forall u \in U, y = S(u) = S_2(S_1(u)) \Leftrightarrow S = S_2 \circ S_1$$

2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Primjer audio sustava 1

- prije je opisan audio sustav svojim blokovskim dijagramom
- audio sustav je primjer sustava čiji su podsustavi spojeni u kaskadu

 na blokovskom dijagramu su dvostruke oznake (radi preglednosti–duže, radi jednostavnosti–kraće)

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Mikrofon kao sustav 2

- već je pokazano kako mikrofon definiramo kao sustav
- signal Zvuk: Vrijeme → Tlak je mogući ulazni signal u sustav Mikrofon i predstavlja element klase signala, označimo ga ZvucniSignali

$$ZvucniSignali = [Vrijeme \rightarrow Tlak]$$

 mikrofon pretvara signal Zvuk u električni signal, na blokovskom dijagramu označen
 MikIzlaz : Vrijeme → Napon, koji je element klase signala

$$Mikrofonskilzlazi = [Vrijeme \rightarrow Napon]$$

• pa se sustav mikrofon može definirati kao:

Mikrofon : ZvucniSignali → Mikrofonskilzlazi

2006/2007

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Pojačalo i zvučnik kao sustav

 prostor signala Mikrofonskilzlazi je u primjeru audio sustava prostor ulaznih signala u sustav pojačalo, a prostor izlaznih signala pojačala neka je označen kao PojacaniSignali = [Vrijeme → Napon], pa sustav Pojacalo možemo opisati funkcijom

Pojacalo: Mikrofonskilzlazi o PojacaniSignali

 klasu izlaznih signala iz zvučnika označimo kao *IzlaziZvucnika* = [Vrijeme → Tlak] i sustav Zvucnik definiran je kao

Zvucnik : PojacaniSignali → IzlaziZvucnika

školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Audio sustav kao funkcija 1

- opisom svakog podsustava odgovarajućim funkcijama moguće je definirati funkciju koja opisuje audio sustav kao cjelinu
- neka je funkcija koja opisuje audio sustav

AudioSustav : ZvucniSignali → IzlaziZvucnika

```
pri čemu je klasa ulaznih signala ZvucniSignali = [Vrijeme \rightarrow Tlak], a klasa izlaznih signala IzlaziZvucnika = [Vrijeme \rightarrow Tlak]
```


Profesor Branko Jeren

Otipkavanje vremenski kontinuiran sinusoide

Sustavi kao funkcije

vremenski stalni sustavi

Audio sustav kao funkcija 2

 za audio sustav s oznakama kao na slici možemo napisati jednadžbe

pa je

$$AudioSustav = Zvucnik \circ Pojacalo \circ Mikrofon$$

za skraćene oznake signala i podsustava pišemo

$$v = f_1(u), w = f_2(v), y = f_3(w) \Rightarrow y \Rightarrow f_3(f_2(f_1(u))) \ge$$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Primjer kaskadne veza podsustava 1

- prijeđeni put automobila, u nekom vremenu, ovisi o pritisku na akcelerator (papučicu gasa)
- poznate su veze akceleracije, brzine i prijeđenog puta

$$a(t) = \frac{dv(t)}{dt}$$
 i $v(t) = \frac{dy(t)}{dt}$

 veze akceleracije, brzine i prijeđenog puta možemo prikazati i preko integrala pa je tada

$$v(t) = v(0) + \int_0^t a(\tau)d au$$
 i $y(t) = y(0) + \int_0^t v(\lambda)d\lambda$

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski

Primjer kaskadne veza podsustava 2

 svaki od integrala realizirajmo pomoću podsustava koji realiziraju postupak integracije, dakle, integratora

$$Brzine = [[0, 50] \rightarrow Realni], \quad Pozicije = [[0, 50] \rightarrow Realni]$$

• pa podsustav S možemo definirati kao

$$\forall v \in Brzine, \forall t \in [0, 50]$$

$$S(v)(t) = y(t) = y(0) + \int_0^t v(\lambda) d\lambda$$

2006/2007

Otipkavanje vremenski kontinuiran sinusoide

Sustavi kao funkcije

Linearni vremenski

Primjer kaskadne veza podsustava 3

isto tako za odrediti ovisnost brzine o akceleraciji slijedi

$$Akceleracije = [[0, 50] \rightarrow Realni], \quad Brzine = [[0, 50] \rightarrow Realni]$$

• pa podsustav Q možemo definirati kao

$$\forall a \in Akceleracije, \forall t \in [0, 50]$$

$$Q(a)(t) = v(t) = v(0) + \int_0^t a(\tau)d\tau$$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski

Primjer kaskadne veza podsustava 4

 vezu prijeđenog puta (pozicije) i akceleracije prikazujemo kaskadnim spojem opisanih podsustava

 $S \circ Q$: Akceleracije \rightarrow Pozicije

$$S \circ Q : [[0,50] \rightarrow \textit{Realni}] \rightarrow [[0,50] \rightarrow \textit{Realni}]$$

• pa sustav $S \circ Q$ možemo definirati kao

$$\forall a \in Akceleracije, \forall t \in [0, 50]$$

$$(S \circ Q)(a)(t) = S(Q(a))(t) = y(t) = y(0) + \int_0^t v(\lambda)d\lambda =$$
$$y(t) = y(0) + \int_0^t \left[v(0) + \int_0^\lambda a(\tau)d\tau \right] d\lambda$$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Paralelna veza podsustava

paralelna veza podsustava prikazana je blokovskim dijagramom

slijede jednadžbe

$$y_1 = f_1(u), \quad y_2 = f_2(u) \Rightarrow y = f_1(u) + f_2(u)$$

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski

Povratna veza podsustava

- primjer spoja podsustava u povratnoj vezi dan je na primjeru sustava za regulaciju kućne temperature
- povratna veza podsustava prikazana je blokovskim dijagramom

• za ovaj spoj vrijede jednadžbe

$$e = u \pm w$$

$$w = f_2(y) \Rightarrow e = u \pm f_2(y)$$

$$y = f_1(e) \Rightarrow y = f_1(u \pm f_2(y))$$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Primjer "složenog" sustava

- sustav koji čine na razne načine spojeni podsustavi ilustriramo jednim od demonstracijskih primjera za programski sustav MATLAB - sustavom regulacije kućne temperature
- pretpostavljeno je zagrijavanje kuće električnim grijačem određene snage koji upuhuje topli zrak
- predviđena je mogućnost postavljanja željene temperature, te dozvoljeno odstupanje od te temperature do $1\,^\circ\mathrm{C}$
- dakle, ako temperatura padne za 1°C ispod postavljene vrijednosti termostat uključuje grijač,
- ako temperatura naraste za 1°C iznad postavljene vrijednosti termostat isključuje grijač
- sustav uključuje i izračun potrošene energije

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Sustav regulacije temperature kuće 1

za ovaj spoj vrijede jednadžbe

$$e = zbrajalo(pt, s)$$
 $tg = izracun_potrosnje(v)$
 $v = termostat(e)$ $y = kuca(vt, w)$
 $w = grijac(v)$ $s = senzor(y)$

$$tg = izracun_potrosnje(v)$$

 $y = kuca(vt, grijac(termostat(zbrajalo(pt, senzor(y)))))$

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

- kako bi mogli odrediti odziv, tj. rješenje prethodne jednadžbe, potrebno je napisati matematičke modele za svaki od podsustava
- najsloženiji je termodinamički model kuće
- on uzima u obzir cijeli niz faktora poput:
 - geometriju kuće: dužinu, širinu, visinu, nagib krova, broj prozora, visinu i širinu prozora,
 - izolacijska svojstva: zidova, prozora
 - masu zraka u zadanom volumenu
 - vanjsku i unutarnju temperaturu itd.
- vrlo pojednostavljeni model, korišten u MATLAB demonstracijskom primjeru² svodi se na diferencijalni sustav prvog reda i njegovo djelovanje će biti razumljivo uvidom u odziv simulacije cijelog sustava

 $^{^2}$ zainteresirani više mogu pronaći u MATLAB ightarrow HelpightarrowDemosightarrow Simulinkightarrow GeneralightarrowThermodynamic Model of a House $\ref{thermodynamic}$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni

vremenski stalni sustav

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane

Sustavi kao funkcije

Linearni

vremenski stalni sustav

2006/2007

Otipkavanje vremenski kontinuiran sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Sustavi kao funkcije

- termostat, u zajednici sa zbrajalom, predstavlja regulator sustava koji regulira unutarnju temperaturu kuće unutar $\pm 1\,^{\circ}\mathrm{C}$ oko postavljene temperature
- kad amplituda ulaznog signala u termostat postane veća od 1 on na izlazu generira logičku jedinicu koja predstavlja signal uključivanja grijača
- za amplitudu ulaznog signala u termostat manju od -1termostat generira na svom izlazu logičku nulu što će biti signal isključivanja grijača
- termostat predstavlja komparator s histerezom i njegov matematički model je:

$$v(t) = termostat(e)(t) = \left\{egin{array}{ll} on & {\sf za} \ e(t) \geq 1 \ off & {\sf za} \ e(t) \leq -1 \ {\sf zadržava} \ {\sf prethodno} \ {\sf stanje} & {\sf za} - 1 < e(t) < 1 \ {\sf zadržava} \ {\sf zadržava} \ {\sf tanje} \ {\sf zadržava} \ {\sf zadrž$$

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustav

Karakteristika komparatora s histerezom

 na slici je ulazno izlazna karakteristika komparatora s histerezom i njegov odziv na sinusnu pobudu

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kad funkcije

Linearni vremenski stalni sustavi

Vremenski stalni sustavi 1

- u definiciji vremenski stalnog sustava koristi se sustav za kašnjenje
- neka je D_M vremenski diskretan sustav za kašnjenje ulaznog signala za M koraka
- odziv toga sustava $y(n) = D_M(u)(n)$ definiran je kao

$$\forall n, M \in C$$
jelobrojni, $y(n) = u(n - M)$

- vremenski stalni (invarijantni) sustavi su sustavi koji ne mijenjaju parametre tijekom vremena
- dakle, sustav S je vremenski stalan, ako za bilo koju pobudu u(n) daje odziv y(n), a za zakašnjeli ulaz $D_M(u)(n)$ daje zakašnjeli odziv $D_M(y)(n)$
- ovo se svojstvo ilustrira grafički

Otipkavanjo vremenski kontinuiran sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Vremenski stalni sustavi 2

diskretni sustav S vremenski je stalan (vremenski invarijantan) ako vrijedi

$$\forall u, n, M$$
 $S(D_M(u))(n) = D_M(S(u))(n)$

Otipkavanje vremenski kontinuirane

Sustavi kao

Linearni vremenski stalni sustavi

Vremenski stalni sustavi – primjer

 pokazuje se kako sustav za ekspanziju vremenski diskretnog signala nije vremenski stalan

$$y(n) = \begin{cases} u(\frac{n}{L}) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$

• odziv ovog sustava $y_1(n)$ za ulaz $u_1(n) = u(n-M)$ je

$$y_1(n) = \begin{cases} u_1(\frac{n}{L}) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$
$$y_1(n) = \begin{cases} u(\frac{n}{L} - M) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$

• s druge strane je

$$y(n-M) = \begin{cases} u(\frac{n-M}{L}) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$

• sustav nije vremenski stalan jer je $y_1(n) \neq y(n-M)$

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Linearni sustavi

na slici je grafička interpretacija linearnosti sustava

uz oznake na slici sustav će biti linearan ako vrijedi

$$y_1 = S(u_1),$$
 $y_2 = S(u_2)$
 $S(\alpha u_1) = \alpha S(u_1) = \alpha y_1,$ $S(\beta u_2) = \beta S(u_2) = \beta y_2$
 $S(\alpha u_1) + S(\beta u_2) = \alpha y_1 + \beta y_2$
i finalno
 $S(\alpha u_1 + \beta u_2) = \alpha S(u_1) + \beta S(u_2)$

princip superpozicije

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi kad

Linearni vremenski stalni sustavi

Linearni sustavi – primjer 1

sustavi školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuiran sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Linearni sustavi – primjer 2

pokazuje se kako je sustav opisan jednadžbom diferencija

$$y(n) = \sum_{m=0}^{M} b(m)u(n-m)$$

linearan sustav

$$y(n) = \sum_{m=0}^{M} b(m)u(n-m)$$

= $\sum_{m=0}^{M} b(m)[\alpha u_1(n-m) + \beta u_2(n-m)]$
= $\alpha \sum_{m=0}^{M} b(m)u_1(n-m) + \beta \sum_{m=0}^{M} b(m)u_2(n-m)$
= $\alpha y_1(n) + \beta y_2(n)$

sustavi školska godina 2006/2007 Predavanje 5

Profesor Branko Jeren

Otipkavanje vremenski kontinuirane sinusoide

Sustavi k funkcije

Linearni vremenski stalni sustavi

Bezmemorijski sustavi

 bezmemorijski sustav ima svojstvo da odziv sustava ovisi samo o trenutnoj vrijednosti ulaznog signala, a ne o njihovim prethodnim vrijednostima i možemo pisati:

$$\forall t \in Realni$$
 $y(t) = f(u(t))$

ili

$$\forall n \in C$$
jelobrojni $y(n) = f(u(n))$

• primjer bezmemorijskog sustava bio je primjer sustava za izračunavanje kvadratnog korijena deklarativno definiranog s funkcijom $y=\sqrt{u}$

Otipkavanje vremenski kontinuiran sinusoide

Sustavi kao funkcije

Linearni vremenski stalni sustavi

Memorijski sustavi

memorijski kauzalni sustav s beskonačnom memorijom definiran je s

$$\forall t \in Realni$$
 $y(t) = F(u_{(-\infty,t]})(t)$

ili

$$\forall n \in C$$
 jelobrojni $y(n) = F(u_{(-\infty,n]})(n)$

- vladanje sustava uglavnom pratimo na konačnom vremenskom intervalu $(t_0, t]$ ili $(n_0, n]$, koji nazivamo interval promatranja
- zanima nas, dakle, odsječak odziva $y_{(t_0,t]}$ ili $y_{(n_0,n]}$ kao posljedica odsječka pobude $u_{(t_0,t]}$ ili $u_{(n_0,n]}$
- za sustave opisane jednadžbama diferencija ili sustave opisane s diferencijalnim jednadžbama rezultat pobude iz intervala $(-\infty, n_0]$ ili $(-\infty, t_0]$ može se uzeti u obzir jednim ili više brojeva α_i pa su $y(n) = F(\alpha_i, u_{(n_0,n]})(n)$ odnosno $y(t) = F(\alpha_i, u_{(t_0,t]})(t)$

Linearni vremenski stalni sustavi

Primjeri memorijskih sustava

- primjer memorijskog sustava s konačnom memorijom bio je razmatran kod analize imperativne realizacije sustava za kvadratni korijen
- tamo je pokazano da kvadratni korijen možemo efikasno izračunati realizacijom sustava opisanog jednadžbom diferencija

$$y(n) = \frac{1}{2} \left[y(n-1) + \frac{u}{y(n-1)} \right]$$
 za $n = 1, 2, 3...$

primjer kontinuiranog memorijskog sustava

$$\forall t \in Realni$$
 $y(t) = \frac{1}{M} \int_{t-M}^{t} u(\tau) d\tau$

ili uz zamjenu varijabli

$$y(t) = \frac{1}{M} \int_0^M u(t_{\overline{a}}, \tau) d\tau$$