

DTS6012M

单点 dToF 传感器小型模组

产品描述

DTS6012M 是一款全集成单通道 dToF 测距小型模组,集成自研的高灵敏红外增强 SPAD 传感器,量程可达 20m。 采用全集成方案、直方图统计算法以及快速 TDC 架构等,实现高精度测距的同时,实现 12m@100KLux 的抗阳光能力,并具有反射率校正功能。

DTS6012M集成电源模块,采用3.3V电源供电,内置温度补偿功能。支持I²C、UART接口,易于集成和使用,并采用紧凑可靠的光学封装,且尺寸小、重量轻,是微小型dToF应用的绝佳选择。

访问申稷光电官网www.shsenky.com获取更多产品信息。

产品特点

- 高集成度 dToF 测距小型模组方案
- 超小结构尺寸, 仅有 21×15×7.87 毫米
- 超轻的重量, 仅为 1.35 克
- ±6cm@0.2m~6m; ±1%@>6m 精度; 最大 量程 20m

- 集成直方图统计算法, 双目标探测
- 时间相关单光子计数(TCSPC)算法,具备 12m@100KLux 抗环境光能力
- TDC 时间窗可配置,适应不同应用场景需求
- 具备反射率校正功能

应用领域

- AGV 避障
- 定高和避障

- 接近检测
- 有无感知

目录

7	品描述	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	· 1
产	品特点		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	· 1
应	用领域		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	· 1
1	产品参	数·	•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	······	•••••	3
2	接口电	性参	数…	•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	. 3
3	使用条	件:	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	3
4	系统框	图·	•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••		••••••	4
5	管脚及	功能	描述	<u> </u>	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	٠ 4
6	包装图	纸·	•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	······	•••••	5
7	使用注	意事	顶…	•••••	•••••	•••••	••••••	•••••	••••••	•••••		••••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	٠ 5
	7.1																										
	7.2	光	が大い	J			•••••	•••••	•••••	•••••		•••••	•••••		•••••				•••••	•••••		•••••		•••••	•••••	•••••	. 6
8	接口介	绍·	••••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••	· ·····	••••••	6
9	接口协	I议P]容…	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	· 7
	9.1	UA	RT 协	议内	容…							•••••											•••••				. 7
	9.1.	1	议总	表								•••••		•••••			•••••				•••••		•••••				7
	9.1.	2 协	议帧	格式																							. 8
																											. 8
	9.2 I ² C	协i	义内容	<u>ş</u>																							13
10) 逻辑:	讨序	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	· ·····	••••••	13
	10.3 U	IAR1	「总线	詂序										•••••													13
	10.4 l ²																										
1	1 寄存語	器描	述 ····	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••		••••••	15
12	2 版本信	言息	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••	••••••		15

1 产品参数

参数	数值
拉头尺寸	21mm×1.5mm×7.87mm
连接器引脚数量	6
接口类型	I ² C、UART
工作电压	典型: 3.3V 最小: 3.0V 最大: 3.6V
FOI	<2°
多目标探测	双目标检测
温度补偿	有
反射率校正	有
激光波长	905nm
模组重量	1.35g

2 接口电性参数

参数	最小值	典型值	最大值	单位		
量程	0.2	_	20	m		
帧率	50	100	250	fps		
精度		±6cm@0.2m~6m; ±1%@>6m (对应靶面反射率 18%~88%)				
抗阳光性能 (@100Klux 阳光)	_	12	_	m		
I ² C接口速率	_	_	400k	bps		
UART 接口速率	-	_	921600	bps		
待机功耗	_	160	_	mW		
工作功耗	_	329	_	mW		

3 使用条件

	参数	数值	单位
	工作温度范围	-20 ~ 50	℃
	存储温度范围	-40 ~ 85	℃
	人体模型抗静电等级 (HBM)	2000	V
抗静电 等级 3	机器模型抗静电等级 (MM)	200	V
3-7/2	充电器件模型抗静电等级 (CDM)	500	V

参考标准: HBM: JESD22-A114; CDM: JESD22-C101; MM: JESD22-A115

4 系统框图

图 1 DTS6012M 系统示意图

5 管脚及功能描述

图 2 引脚示意图

各引脚的功能描述如下:

序号	端口名称	端口功能描述					
1	3V3_LASER	模组激光器升压电路供电,电压 3.3V					
2	3V3	模组低压电路供电,电压 3.3V					
3	UART_TX/I ² C_SDA	模组支持 UART 和 I ² C 两种通信模式,使用 GPIO(端口 5)外部上下拉模式来选择通信模式。 1) 当工作在 UART 模式下时,此端口用作 UART 的 TX 端口,即模组通信输出管脚; 2) 当工作在 I ² C 模式下时,此端口用作 I ² C 总线的 SDA 信号;					
4	UART_RX/I ² C_SCL	模组支持 UART 和 I ² C 两种通信模式,使用 GPIO(端口 5)外部上下拉模式来选择通信模式。 1) 当工作在 UART模式下时,此端口用作 UART的 RX 端口,即模组通信输入管脚; 2) 当工作在 I ² C 模式下时,此端口用作 I ² C 总线的 SCL 信号;					
5	GPIO	模组支持 UART 和 I ² C 两种通信模式。 1) GPIO 端口在外部下拉状态启动后,模组工作在 UART 模式下,此模式下 GPIO 管脚无功能; 2) GPIO 端口在外部上拉或悬空状态启动后,模组工作在 I ² C 模式下,此时 GPIO 端口作为中断输出管脚,在一帧测量完成后输出高脉冲指示;					
6	GND	接地					

注: 3、4、5接口为复用接口, UART、I²C, 两种模式, 详见硬件接口使用说明。

6 包装图纸

图 3 模组结构图

7 使用注意事项

7.1 光学盖片的选型与安装建议

面板选型建议

- 面板材质对 905nm 波段穿透率 95%以上, 雾度 5%以下。
- 面板上下表面平滑平行,材质颜色不拘。
- 面板最好小于 0.5mm, 最厚不要超过 2mm。
- 面板表面平整度小于 0.03mm。

面板安装建议

- 面板和模组相互间隙 0.1mm-0.2mm 为宜。
- 面板和模组组装后面板表面与模组端面的平行度小于 0.05mm。
- 如有防雾/防盐碱需要,面板和模组之间间隙可用黑色胶套阻隔间隙防止镜面起雾或结晶。

(a) 安装正确

(b) 盖板表面不平整,安装不正确

(c)盖板需与激光光束垂直安装

图 4 玻璃盖片安装示意图

7.2 光斑尺寸

DTS6012M 激光具有一定发散角,不同距离光斑尺寸不同,光斑尺寸参考下方示意图:

图 5 光斑尺寸示意图

8 接口介绍

模组支持 UART, I2C 两种通讯方式,但上电时,只能选择其中一种接口运行。

使用 UART 时,上电可将 GPIO 管脚接地;使用 I²C 接口,上电时 GPIO 管脚需要上拉一个 4.7K 的电阻或者直接悬空,如图 $6\,\mathrm{fm}$;

UART_TX/I²C_SDA 和 UART_RX/I²C_SCL 两个管脚在模组内部均已配备 2.2K 上拉电阻,外部可以不额外增加上拉电阻,如图 7 所示。

图 6 UART 通讯模式电路图

图 7 I²C 通讯模式电路图

9 接口协议内容

9.1 UART 协议内容

本协议采用主从通信模式, 其规定: 主机端为上位机, 本模组为下位机。上位机向下位机传送数据称之为发送, 下位机向上位机传送数据称之为应答。

本协议的默认通信速率为: 921600 bps。

本文采用的硬件通信格式: 1位起始位, 8位数据位和1位停止位, 其他无。

本文中对每帧数据进行 CRC16 数据计算,该计算中包含除校验外的所有数据。

CRC-16 校验采用 modbus 的校验方式。具体参数如下:

■ 多项式为: 0×8005■ 初始值为: 0×ffff■ 结果异或值: 0×0000■ 输入数据反转: 是■ 输出数据反转: 是

9.1.1 协议总表

编号	命令名称	命令代码
1	开始流	0×01
2	结束流	0×02
3	版本号	0×0A
4	设置波特率	0×10
5	获取波特率	0×11
6	设置 I ² C 地址	0×12
7	获取 I ² C 地址	0×13

8	配置帧率	0×1A
9	获取帧率	0×1B

9.1.2 协议帧格式

整个协议内容有两种形式的通讯方式:

命令 0×02 , $0 \times 0A$, 0×10 , 0×11 , 0×12 , 0×13 , $0 \times 1A$, $0 \times 1B$ 都是采用上位机问-下位机回复(即一问一答),命令 0×01 采用的上位机问-下位机周期回复(根据设置的帧率周期性回复)。

发送帧格式

包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
1byte	1 byte	1 byte	1 byte	1 byte	2 byte	N byte	2 byte

应答帧格式

包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
1byte	1 byte	1 byte	1 byte	1 byte	2 byte	N byte	2 byte

■ 包头: 为1个字节, 即为0×A5。

■ 设备号: 为1个字节,即为0×03。

■ 设备类型:为1个字节,根据下位机评估板的类型而定,为0×20。

■ CMD: 为 1 个字节,命令功能码,是上位机要下位机执行的功能。

■ 保留位:为1个字节,以留后续使用。

■ 长度: 为2个字节,是 data 区数据的长度(高位在前,低位在后)。

■ Data[0]-Data[N-1]: 为 N 个字节,根据每个命令解析。

■ CRC16: 为 2 个字节,所有数据的 CRC16 校验结果(高位在前,低位在后)。

■ 命令码对应的功能如下表所示,其中命令码为十六进制表示。其中,应答帧中的"命令"与发送帧中的命令一致,即 发送什么命令则应答同样的命令。

9.1.3 命令及解析

发送命令和和对应的应答命令——匹配,表格中或者带 0×的数据均为十六进制。

9.1.3.1 开始测量命令 0×01

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16	
发送	0×A5	0×03	0×20	0×01	0×00	0×000×00	0 字节	1010-10-11-11-11	
接收	0×A5	0×03	0×20	0×01	0×00	0×00 0×01	1字节	根据实际计算	

上位机发送:

命令码区: 0×01 Data 区: 无

下位机应答:

■ 0×01: 为命令开流(发送一次后,下位机周期性自动应答)

■ 0×00: 保留字节

■ 0×00 0×0E:数据区长度(高字节在前低字节在后)

■ 0×FF 0×FF 0×FF 0×FF 0×FF 0×FF 0×4B 0×03 0×5E 0×00 0×24 0×23 0×01 0×00:数据区

0×FF 0×FF: 次目标距离0×FF 0×FF: 次目标校正0×FF 0×FF: 次目标强度

■ 0×4B0×03: 主目标距离(距离结算为低字节在前,高字节在后,距离换算为 034B = 843mm)

0×5E 0×00: 主目标校正0×24 0×23: 主目标强度0×01 0×00: 阳光基底

■ 0×BB 0×D8: 16 位 CRC 校验 (高字节在前低字节在后)

■ 注:以上均为低位在前,高位在后。

9.1.3.2 查询版本号 0×0A

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16	
发送	0×A5	0×03	0×20	0×0A	1字节	0×00 0×00	无		
接收	0×A5	0×03	0×20	0×0A	1字节	0×00 0×01	1字节	根据实际计算	

上位机发送:

命令码区: 0×0a Data 区: 无数据

下位机应答:

示例: 0×A5 0×03 0×20 0×0A 0×00 0×00 0×12 0×44 0×54 0×53 0×36 0×30 0×31 0×32 0×5F 0×41 0×50 0×50 0×5F 0×56 0×31 0×2E 0×32 0×36 0×43 0×0F 0×0B

■ 0×0A:查询版本命令

■ 0×00:保留位

■ 0×000×12:数据区长度(高字节在前低字节在后)

■ 0×44 0×54 0×53 0×36 0×30 0×31 0×32 0×5F 0×41 0×50 0×50 0×5F 0×56 0×31 0×2E 0×32 0×36 0×43: 版本号为 DTS6012 APP XXXXX

■ 0×0F0×0B: 16 位 CRC 校验 (高字节在前低字节在后)

9.1.3.3 结束测量任务 0×02

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16	
发送	0×A5	0×03	0×20	0×02	1字节	0×000×00	无	1010-0-1-1-1-1	
接收	0×A5	0×03	0×20	0×02	1字节	0×00 0×01	1字节	根据实际计算	

上位机发送:

命令码区: 0×02 Data 区: 无数据

下位机应答:

示例: 0×A5 0×03 0×20 0×02 0×00 0×00 0×01 0×00 0×7C 0×C6

■ 0×02: 结束测量命令

■ 0×00: 保留位

■ 0×000×01:数据区长度(高字节在前低字节在后)

■ 0×00:数据区。返回一个字节变量。返回0表示设置成功,返回1表示设置失败。

■ 0×7C 0×C6: 16 位 CRC 校验 (高字节在前低字节在后)

9.1.3.4 设置波特率 0×10

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
发送	0×A5	0×03	0×20	0×10	1 字节	0×00 0×01	无	
接收	0×A5	0×03	0×20	0×10	1字节	0×00 0×04	4字节	根据实际计算

上位机发送:

命令码区: 0×10, 波特率设置命令。

Data 区: 共 1 个字节, 0-12 波特率选择码。

下位机应答:

示例: 0×A5 0×03 0×20 0×10 0×00 0×04 0×00 0×0E 0×10 0×00 0×2B 0×E0

■ 0×10 : 设置波特率命令

■ 0×00: 保留位

■ 0×000×04:数据区长度(高字节在前低字节在后)

■ 0×00 0×0E 0×10 0×00: 波特率为 921600 (高字节在前低字节在后)

■ 0×2B 0×E0: 16 位 CRC 校验 (高字节在前低字节在后)

■ 波特率选择码与波特率对应关系:

波特率选择码	波特率
0×00	9600
0×01	14400
0×02	19200
0×03	38400
0×04	43000
0×05	57600
0×06	76800
0×07	115200
0×08	128000
0×09	230400
0×0A	256000
0×0B	460800

0×0C 921600

9.1.3.5 获取波特率 0×11

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
发送	0×A5	0×03	0×20	0×11	1字节	0×000×00	无	
接收	0×A5	0×03	0×20	0×11	1字节	0×00 0×04	4字节	根据实际计算

上位机发送:

命令码区: 0×11, 波特率获取命令。

Data 区: 无

下位机应答:

示例: 0×A5 0×03 0×20 0×11 0×00 0×00 0×04 0×00 0×0E 0×10 0×00 0×E7 0×21

■ 0×11:获取波特率命令

■ 0×00: 保留位

■ 0×000×04:数据区长度(高字节在前低字节在后)

■ 0×00 0×0E 0×10 0×00: 波特率为 921600 (高字节在前低字节在后)

■ 0×E7 0×21: 16 位 CRC 校验 (高字节在前低字节在后)

9.1.3.6 设置 I²C 地址 0×12

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
发送	0×A5	0×03	0×20	0×12	1字节	0×00 0×01	1字节	1010-10-11-11-11-11
接收	0×A5	0×03	0×20	0×12	1字节	0×00 0×01	1字节	根据实际计算

上位机发送:

命令码区: 0×12, I2C 地址设置命令。

Data 区: 共 1 个字节, Data[0]为 I²C 器件地址(7bit < <1+0)。

下位机应答:

示例: 0×A5 0×03 0×20 0×12 0×00 0×00 0×01 0×A2 0×06 0×86

■ 0×12:设置 I²C 地址命令

■ 0×00: 保留位

■ 0×000×01:数据区长度(高字节在前低字节在后)

■ 0×A2: 设置的 I²C 地址

■ 0×06 0×86: 16 位 CRC 校验 (高字节在前低字节在后)

9.1.3.7 获取 I²C 地址 0×13

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
----	----	-----	------	-----	-----	----	------	-------

发送	0×A5	0×03	0×20	0×13	1字节	0×000×00	无	1010-70-11 AA
接收	0×A5	0×03	0×20	0×13	1字节	0×00 0×01	1字节	根据实际计算

上位机发送:

命令码区: 0×13, I²C 地址获取命令。

数据区:无

下位机应答:

示例: 0×A5 0×03 0×20 0×13 0×00 0×00 0×01 0×A2 0×C6 0×BB

■ 0×13:获取 I²C 命令 ■ 0×00: 保留位

■ 0×000×01:数据区长度(高字节在前低字节在后)

■ 0×A2: 获取的 I²C 地址

■ 0×C60×BB: 16位 CRC 校验 (高字节在前低字节在后)

9.1.3.8 设置帧率 0×1A

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
发送	0×A5	0×03	0×20	0×1A	0×00	0×000×01	1字节	1010-10-11-11-11-11-11-11-11-11-11-11-11
接收	0×A5	0×03	0×20	0×1A	0×00	0×00 0×01	1字节	根据实际计算

上位机发送:

命令码区: 0×1A, 设置帧率命令。

Data 区: 1个字节, 0×00:50FPS 0×01:100FPS 0×02:250FPS。

下位机应答:

示例: 0×A5 0×03 0×20 0×1A 0×00 0×00 0×01 0×01 0×BE 0×27

0×1A: 设置帧率命令

■ 0×00: 保留位

■ 0×000×01:数据区长度(高字节在前低字节在后)

■ 0×01:返回设置的帧率

■ 0×000×01:数据区长度(高字节在前低字节在后)

■ 0×01: 1字节, 0×00: 50FPS 0×01: 100FPS 0×02: 250FPS。

■ 0×BE 0×27: 16 位 CRC 校验 (高字节在前低字节在后)

9.1.3.9 获取帧率 0×1B

命令格式

方向	包头	设备号	设备类型	CMD	保留位	长度	Data	CRC16
发送	0×A5	0×03	0×20	0×1B	0×00	0×000×00	无	1010-10-11-11-11-11-11-11-11-11-11-11-11
接收	0×A5	0×03	0×20	0×1B	0×00	0×00 0×01	1字节	根据实际计算

上位机发送:

命令码区: 0×1B, 获取帧率命令。

Data 区: 无

下位机应答:

示例: 0×A5 0×03 0×20 0×1B 0×00 0×00 0×01 0×01 0×7E 0×1A

■ 0×1B:获取帧率命令

■ 0×00: 保留字节

■ 0×00 0×01:数据区长度(高字节在前低字节在后)

■ 0×01:1 字节, 0×00:50FPS 0×01:100FPS 0×02:250FPS。

■ 0×7E 0×1A: 16 位 CRC 校验 (高字节在前低字节在后)

注意: 在未设置帧率信息时, 获取值为默认 0×FF, 配置为默认 100FPS。

9.2 I²C 协议内容

I²C 控制器地址为 7bit, 0×51, 0位为读写位, (0×51<<1) | (w/r)。

10 逻辑时序

10.1 UART 总线时序

UART 总线时序如下图所示:

图 8 UART 总线时序图

10.2 I²C 总线时序

I²C 总线时序如下图所示:

图 9 I²C 总线时序图

11 寄存器描述

地址	寄存器含义	读写属性	备注
0×00	测量距离高 8 位	RO	距离使用 2byte 表示 (单位 mm)
0×01	测量距离低 8 位	RO	距离使用 2byte 表示 (单位 mm)
0×02	开始/结束测量命令◎	RW	写 1 开始测量,激光开启,距离数据开始刷新,写 0 结束测量激光关闭。
0×03	测试寄存器	RO	默认值 0×3B

注:固件版本不同,可能存在不需要开始测量命令即可输出距离信息

12 版本信息

日期	版本	修改内容
2023年9月7日	1.0	初始发布
2023年9月11日	1.1	增加UART协议内容
2023年11月9日	1.2	更新结构尺寸
2023年11月27日	1.3	新增接口使用说明,12C 寄存器说明
2024年1月15日	1.4	新增串口波特率、I ² C 地址修改说明
2024年4月23日	1.5	新增精度数据、新增光学盖板设计参考、新增帧率切换说明
2024年7月26日	1.6	修改系统框图和参考电路图,新增协议逻辑时序图