13/7/25 10:39 n m

Caso de Estudio: LogiStream - Gestión Inteligente de Cadena de Suministro

1. Contexto de la Empresa

Información General

- Nombre: LogiStream S.A.S
- Sector: Logística y Cadena de Suministro (Supply Chain)
- · Ubicación: Medellín, Colombia
- Tamaño: 22 empleados
- Años en el mercado: 6 años

Productos y Servicios

- · Sistema de gestión de inventarios en tiempo real
- Plataforma de optimización de rutas de distribución
- Soluciones de trazabilidad end-to-end para cadena de suministro
- · Dashboard analytics para gestión logística
- Integración con sistemas WMS/ERP existentes

Estructura Organizacional

- Dirección General: 1 persona
- Desarrollo de Software: 10 personas (5 backend, 3 frontend, 2 mobile)
- Data Science y Analytics: 2 personas
- · QA y Testing: 1 persona
- · Ventas y Marketing: 3 personas
- Soporte Técnico: 3 personas
- Operaciones y Administración: 2 personas

Clientes Principales

· 12 empresas manufactureras medianas

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

13/7/25 10:39 n m

Métricas Actuales de Rendimiento

- Satisfacción del cliente: 74%
- Tiempo promedio de implementación: 5.2 meses
- Precisión de algoritmos de ruteo: 82%
- Defectos críticos por release: 12
- Disponibilidad del sistema: 96.5%
- Rotación de personal técnico: 28% anual

Impacto Económico

- Pérdidas por reprocesos: \$22,000 USD anuales
- Costos de soporte extraordinario: \$18,000 USD anuales
- Penalizaciones por SLA incumplidos: \$12,000 USD anuales
- Oportunidades perdidas por problemas técnicos: \$35,000 USD anuales
- Total impacto negativo: \$87,000 USD anuales

3. Diagnóstico Competisoft

3.1 Evaluación de Madurez Actual

Nivel de Capacidad por Proceso

Proceso	Nivel Actual	Evidencias		
Administración de Negocio	Nivel 2	Planificación básica, sin métricas logísticas especializadas		
Administración de Proyectos	Nivel 2	Gestión estándar, sin consideración de complejidad logística		
Administración de Procesos	Nivel 1	Procesos ad-hoc, sin estándares de integración		
Desarrollo y Mantenimiento	Nivel 2	Metodologías básicas, sin validación de algoritmos		

13/7/25 10:39 n m

- 8 distribuidoras de productos de consumo
- 5 empresas de retail con múltiples ubicaciones
- 3 operadores logísticos 3PL
- 2 empresas de e-commerce

2. Situación Actual y Problemáticas

Problemas Identificados

2.1 Gestión de Trazabilidad Compleja

- Problema: 40% de implementaciones requieren reproceso por inconsistencias en trazabilidad
- Impacto: Pérdida de credibilidad con clientes del sector alimentario y farmacéutico
- Causa raíz: Falta de procesos estandarizados para validar integridad de datos

2.2 Optimización de Algoritmos de Ruteo

- Problema: Algoritmos de optimización fallan en 25% de escenarios complejos
- Impacto: Incremento del 15% en costos de transporte para clientes
- Causa raíz: Ausencia de proceso de validación de algoritmos con datos reales

2.3 Integración con Sistemas Legacy

- Problema: 50% de integraciones ERP/WMS toman 3x más tiempo del estimado
- Impacto: Retrasos promedio de 6 semanas en proyectos
- Causa raíz: Falta de metodología estándar para integración de sistemas legacy

2.4 Gestión de Datos en Tiempo Real

- Problema: Latencia promedio de 45 segundos en actualizaciones críticas
- Impacto: Decisiones logísticas basadas en información desactualizada
- Causa raíz: Arquitectura no optimizada para procesamiento en tiempo real

2.5 Cumplimiento Regulatorio Logístico

- Problema: Dificultades para cumplir normativas DIAN y controles aduaneros
- Impacto: 30% de implementaciones requieren ajustes post-entrega
- Causa raíz: Desconocimiento de regulaciones específicas por sector

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

13/7/25 10:39 n m case-logistics

Proceso	Nivel Actual	Evidencias
Administración de Recursos	Nivel 2	Gestión formal, sin especialización logística

3.2 Matriz de Riesgos Sector Logístico

Riesgo	Probabilidad	Impacto	Nivel	Mitigación Competisoft
Falla en trazabilidad crítica	Alta	Alto	Crítico	Proceso de validación de integridad
Optimización subóptima de rutas	Media	Alto	Alto	Proceso de validación de algoritmos
Fallas en integración legacy	Alta	Medio	Alto	Metodología de integración estándar
Incumplimiento SLA tiempo real	Media	Alto	Alto	Gestión de performance especializada
Violación regulatoria aduanera	Baja	Alto	Medio	Proceso de cumplimiento regulatorio

3.3 Análisis de Brechas

Brechas Identificadas

- 1. Ausencia de proceso de validación de integridad de datos
- 2. Falta de metodología para validación de algoritmos de optimización
- 3. Insuficiente gestión de integración con sistemas legacy
- 4. Carencia de gestión especializada de performance en tiempo real
- 5. Falta de proceso de cumplimiento regulatorio logístico

1/16

4.3.2 Proceso de Validación de Algoritmos de Optimización (PVAO)

4. Propuesta de Implementación Competisoft

4.1 Objetivos Estratégicos

- Implementar procesos de validación de integridad para sistemas de trazabilidad
- Establecer metodología de validación y optimización de algoritmos logísticos
- Crear capacidades especializadas de integración con sistemas legacy
- Desarrollar gestión de performance para procesamiento en tiempo real

4.2 Alcance de Implementación

Fase 1 (Meses 1-3): Fundamentos Logísticos

- AN.2: Planificación estratégica con métricas logísticas
- AP.2: Gestión de proyectos con complejidad de integración
- DM.2: Desarrollo con validación de algoritmos

Fase 2 (Meses 4-6): Especialización Técnica Avanzada

- AN.3: Gestión de negocio con analytics logísticos
- AP.3: Gestión avanzada de proyectos de integración
- DM.3: Mantenimiento predictivo de sistemas logísticos

4.3 Procesos Específicos del Sector Logístico

4.3.1 Proceso de Validación de Integridad de Datos (PVID)

ENTRADA: Especificaciones de trazabilidad

- 1. Análisis de puntos críticos de control
- 2. Definición de reglas de integridad por sector
- 3. Implementación de validación automática
- 4. Testing con datos de producción anonimizados
- 5. Certificación de integridad end-to-end
- SALIDA: Sistema de trazabilidad certificado

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

13/7/25 10:39 n m

4.4.2 Checklist de Cumplimiento Logístico

- ☐ Trazabilidad DIAN (Decreto 1625)
- ☐ Controles aduaneros (MUISCA)
- □ Cadena de frío (farmacéutico/alimentario)
- ☐ Gestión de sustancias peligrosas
- ☐ Documentación electrónica de transporte

4.4.3 Dashboard Logístico de Performance

MÉTRICAS DE PERFORMANCE LOGÍSTICA: - Trazabilidad

├── Integridad de datos: [X]%

- Latencia promedio trazabilidad: [X]ms

L— Auditorías exitosas: [X]/[Y]

├─ Optimización

├── Eficiencia de rutas: [X]%

- Reducción de costos logísticos: [X]%

 \cL — Tiempo de cálculo algoritmos: [X]ms

— Integración

├── Sistemas legacy conectados: [X]/[Y]

├─ Disponibilidad integraciones: [X]%

Tiempo sincronización: [X]min

└─ Tiempo Real

├── Latencia máxima: [X]ms

- Throughput por segundo: [X] ops

└── Disponibilidad 24/7: [X]%

4.5 Cronograma de Implementación

Mes 1: Diagnóstico y Arquitectura

Semana 1-2: Análisis especializado

- Evaluación de sistemas de trazabilidad actuales
- Análisis de algoritmos de optimización existentes
- · Evaluación de integraciones legacy

Semana 3-4: Diseño de arquitectura objetivo

· Arquitectura para tiempo real file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

ENTRADA: Algoritmos de ruteo/optimización

- 1. Definición de escenarios de testing complejos
- 2. Validación con datos históricos
- 3. Testing de stress con volúmenes máximos
- 4. Benchmarking vs. soluciones comerciales
- 5. Validación de eficiencia computacional
- SALIDA: Algoritmos validados y certificados

4.3.3 Proceso de Integración con Sistemas Legacy (PISL)

ENTRADA: Especificaciones de integración

- 1. Análisis de arquitectura legacy existente
- 2. Mapeo de datos y transformaciones necesarias
- 3. Diseño de capa de abstracción
- 4. Testing incremental de integración
- 5. Migración gradual con rollback
- SALIDA: Integración estable y documentada

4.3.4 Proceso de Gestión de Performance Tiempo Real (PGPTR)

ENTRADA: Requerimientos de latencia

- 1. Análisis de arquitectura para tiempo real
- 2. Implementación de streaming de datos
- 3. Optimización de consultas y caches
- 4. Monitoreo continuo de performance
- 5. Auto-scaling basado en demanda

SALIDA: Sistema con performance garantizado

4.4 Plantillas Específicas del Sector

4.4.1 Matriz de Validación de Trazabilidad

Punto de Control	Tipo de Datos	Regla de Validación	Criticidad	Estado
[Punto]	[Tipo]	[Regla]	[Alta/Media/Baja]	[Estado]

5/16 file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

case-logistics

· Diseño de validación de integridad

13/7/25 10:39 n m

• Metodología de testing de algoritmos

Mes 2: Implementación de Procesos Core

Semana 5-6: Proceso de Validación de Integridad

- · Implementación del proceso PVID
- · Establecimiento de puntos de control críticos
- Testing inicial con datos de producción

Semana 7-8: Proceso de Validación de Algoritmos

- · Implementación del proceso PVAO
- · Creación de suite de testing complejo
- Benchmarking con soluciones comerciales

Mes 3: Optimización y Tiempo Real

Semana 9-10: Gestión de Performance Tiempo Real

- · Implementación del proceso PGPTR
- Optimización de arquitectura para latencia
- Implementación de monitoreo continuo

Semana 11-12: Integración y Validación Final

- Proceso de integración legacy (PISL)
- · Validación end-to-end de todos los procesos
- · Capacitación del equipo técnico

4.6 Recursos Necesarios

4.6.1 Recurso Humano

7/16

- Consultor Competisoft especialista en logística: \$5,000
- Arquitecto de sistemas tiempo real: \$4,000
- Especialista en algoritmos de optimización: \$3,500
- Tiempo interno del equipo (280 horas): \$4,200

13/7/25, 10:39 p.m. case-logistics 13/7/25, 10:39 p.m.

4.6.2 Herramientas y Tecnología

- Plataforma de testing de algoritmos: \$1,200
- Herramientas de monitoreo tiempo real: \$1,000
- Software de gestión de integraciones: \$800
- Licencias de benchmarking: \$600

4.6.3 Infraestructura y Capacitación

- Infraestructura de testing de carga: \$1,500
- Capacitación en regulaciones logísticas: \$800
- Certificación en sistemas tiempo real: \$600

Presupuesto Total: \$23,200

4.7 Beneficios Esperados

4.7.1 Beneficios Cuantitativos (Primer Año)

- Reducción de reprocesos: \$17,600 (80% reducción)
- Optimización de costos logísticos: \$45,000 (nuevos contratos premium)
- Reducción de soporte extraordinario: \$14,400 (80% reducción)
- Mejora en SLA cumplimiento: \$9,600 (80% reducción penalizaciones)
- Eficiencia en integraciones: \$25,000 (reducción tiempo implementación)

Total de beneficios: \$111,600 ROI primer año: 381%

4.7.2 Beneficios Cualitativos

- Posicionamiento como líder tecnológico en logística
- Capacidad de competir en sectores regulados (farmacéutico, alimentario)
- Mejora significativa en satisfacción del cliente
- Expertise reconocido en optimización logística

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

13/7/25, 10:39 p.m. case-logistics

5.3 Subproceso: Optimización de Algoritmos Logísticos

```
[Inicio Optimización] → [Análisis de Escenarios de Uso]

↓

[Definición de Métricas de Eficiencia] → [Desarrollo de Algoritmo Base]
↓

[Testing con Datos Históricos] ← [Implementación de Variantes]
↓
↓

[¿Cumple Benchmarks?] → [Optimización Computacional] → [Testing de Stress]
↓ No
↓

[Refinamiento] ← [Análisis de Bottlenecks] ← [¿Cumple SLA Performance?]
↓
↓
↓
Sí

[Nueva Iteración] ← [¿Iteraciones < 5?] → [Certificación de Algoritmo] → [Fin]
↓ No

[Escalamiento Arquitectura]
```

6. Implementación Detallada por Fases

6.1 Fase 1: Fundamentos y Arquitectura (Mes 1)

Actividades Específicas

1. Diagnóstico Especializado Logístico

- Evaluación de sistemas de trazabilidad actuales
- Análisis de performance de algoritmos existentes
- Evaluación de arquitectura para tiempo real

2. Diseño de Arquitectura Objetivo

- · Arquitectura orientada a eventos para tiempo real
- Diseño de microservicios para escalabilidad
- Estrategia de datos para trazabilidad completa

Entregables

- Informe de diagnóstico logístico especializado
- Arquitectura objetivo documentada
- Plan de migración tecnológica

5. Representación BPMN de Procesos Logísticos

5.1 Proceso Principal: Desarrollo de Solución Logística

```
[Inicio] → [Análisis de Requerimientos Logísticos] → [¿Incluye Trazabilidad?]

↓ Sí

[Análisis Técnico] ← [Validación de Integridad] ← [Definición Puntos de Control]

↓ ↓

[¿Requiere Optimización?] → [Diseño de Algoritmos] → [Validación de Algoritmos]

↓ Sí

[Análisis de Complejidad] → [Desarrollo Core] → [Testing de Algoritmos]

↓ ↓ ↓

[¿Requiere Integración Legacy?] ← [Integración de Componentes]

↓ Sí ↓ No

[Proceso PISL] → [Testing de Integración] → [Testing Performance Tiempo Real]

↓ ↓ ↓ ↓

↓ ↓ ↓

[¿Cumple SLA Performance?] ← [Validación Performance]

↓ No ↓ Sí

[Optimización] → [Implementación] → [Monitoreo Continuo] → [Fin]
```

5.2 Subproceso: Validación de Integridad de Datos

```
[Inicio Validación] → [Identificación de Puntos Críticos]

↓

[Definición de Reglas de Negocio] → [¿Sector Regulado?]

↓ Sí ↓ No

[Aplicación Normativas] ← [Consulta Regulatoria] → [Reglas Estándar]

↓

[Implementación de Validadores] ← [Consolidación de Reglas]

↓

[Testing con Datos Anonimizados] → [¿Pasa Validación?]

↓ No ↓ Sí

[Ajuste de Reglas] ← [Análisis de Fallos] → [Certificación de Integridad]

↓

[Nueva Validación] ← [¿Cumple Criterios?] → [Fin Validación]

↓ No

[Escalamiento a Experto]
```

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

10/16

12/16

6.2 Fase 2: Implementación de Procesos Críticos (Mes 2)

Actividades Específicas

1. Implementación de Validación de Integridad

- Desarrollo del proceso PVID
- Integración con sistemas de auditoría
- Testing con escenarios complejos

2. Establecimiento de Validación de Algoritmos

- Desarrollo del proceso PVAO
- Creación de suite de benchmarking
- Optimización computacional inicial

Entregables

13/7/25 10:39 n m

9/16

- Proceso de validación de integridad operativo
- Suite de testing de algoritmos implementada

Métricas de performance baseline establecidas

6.3 Fase 3: Optimización y Tiempo Real (Mes 3)

Actividades Específicas

1. Implementación de Gestión Tiempo Real

- Desarrollo del proceso PGPTR
- Implementación de streaming de datos
- Monitoreo y alertas automáticas

2. Optimización de Integraciones

- Desarrollo del proceso PISL
- Implementación de conectores estándar
- Testing de carga y stress

Entregables

- Sistema de tiempo real operativo
- Procesos de integración estandarizados
- Dashboard de monitoreo integral

13/7/25, 10:39 p.m. case-logis

7. Métricas y Seguimiento

7.1 KPIs Específicos del Sector Logístico

Integridad y Trazabilidad

- Integridad de datos end-to-end: Meta 99.9%
- Latencia de trazabilidad: Meta < 100ms
- · Auditorías de integridad exitosas: Meta 100%

Optimización Algorítmica

- Eficiencia de rutas vs. benchmark: Meta +15%
- Tiempo de cálculo de optimización: Meta < 5 segundos
- Precisión de predicciones logísticas: Meta > 90%

Performance Tiempo Real

- Latencia máxima de actualización: Meta < 50ms
- Throughput de transacciones: Meta > 1000 ops/seg
- Disponibilidad de servicios críticos: Meta 99.95%

Integración de Sistemas

- Tiempo promedio de integración: Meta < 2 semanas
- Éxito en primera integración: Meta 90%
- Disponibilidad de integraciones: Meta 99.9%

13/1

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.html

14/

8/7/25 10:30 n m

case-logistics

8. Lecciones Aprendidas y Mejores Prácticas

8.1 Factores Críticos de Éxito

file:///C:/Users/juand/AppData/Local/Temp/crossnote2025613-2160-18lmnfw.fj0nj.htm

- 1. Enfoque temprano en validación de integridad de datos
- 2. Benchmarking riguroso de algoritmos de optimización
- 3. Arquitectura nativa para tiempo real desde el diseño
- 4. Metodología estándar para integración de sistemas legacy

8.2 Riesgos Mitigados

- Fallas de trazabilidad crítica: Proceso PVID con múltiples validaciones
- Algoritmos subóptimos: Proceso PVAO con benchmarking continuo
- Problemas de integración: Proceso PISL con metodología probada
- Degradación de performance: Proceso PGPTR con monitoreo proactivo

8.3 Recomendaciones para Continuidad

- 1. Certificación en nuevas regulaciones logísticas internacionales
- 2. Investigación en IA para optimización predictiva
- 3. Expansión a blockchain para trazabilidad inmutable
- 4. Desarrollo de capacidades IoT para sensórica logística

9. Conclusiones y Próximos Pasos

9.1 Resultados Esperados Post-Implementación

- Liderazgo tecnológico en soluciones de trazabilidad
- Capacidad de competir en sectores altamente regulados
- Reducción del 85% en problemas de integridad de datos
- Mejora del 40% en eficiencia de algoritmos de optimización

9.2 Plan de Evolución (6-12 meses)

- 1. Implementación de procesos avanzados (Niveles 4-5)
- 2. Integración con tecnologías emergentes (IoT, Blockchain)
- 3. Expansión a analytics predictivos

6 file:///C:/Users/juand/AppData/Local/

13/7/25 10:39 n m

7.2 Dashboard de Monitoreo Logístico

DASHBOARD LOGISTREAM - COMPETISOFT

Latencia trazabilidad: 73ms

Auditorías exitosas: 23/23

OPTIMIZACIÓN ALGORÍTMICA

Eficiencia y Performance —

/ PERFORMANCE TIEMPO REAL

Ø INTEGRACIONES DE SISTEMAS

┌─ Conectividad y Estabilidad

impacto Económico

ROI y Beneficios

Ahorro mensual: \$9,300

Contratos premium: +65%

ROI acumulado: 381%

Latencia y Throughput

🚐 Latencia máxima: 42ms

Meiora vs. benchmark: +18.3%

Ö Tiempo cálculo promedio: 3.2s

ii Throughput actual: 1,347 ops/seg
● Disponibilidad servicios: 99.97%

A MÉTRICAS DE TRAZABILIDAD

─ Integridad y Auditoría

─ Integridad end-to-end: 99.94%

case-logistics

4. Certificaciones internacionales de calidad

9.3 Inversión en Capacidades Futuras

- Especialización en loT logístico: \$8,000
- Certificación en blockchain para supply chain: \$5,000
- Desarrollo de IA predictiva: \$12,000
- Cumplimiento regulatorio internacional: \$4,000

Inversión total en crecimiento: \$29,000 ROI proyectado (año 2): 520%

10. Casos de Uso Específicos Validados

10.1 Trazabilidad Farmacéutica

- Desafio: Seguimiento de medicamentos desde fabricación hasta paciente
- Solución Competisoft: Proceso PVID con validación regulatoria INVIMA
- Resultado: 100% de auditorías aprobadas, 0 incidentes de trazabilidad

10.2 Optimización de Rutas E-commerce

- Desafío: Entrega same-day en área metropolitana
- Solución Competisoft: Proceso PVAO con algoritmos adaptativos
- Resultado: 23% reducción en costos de transporte, 95% entregas a tiempo

10.3 Integración ERP Manufacturero

- Desafío: Conectar sistemas SAP legacy con solución moderna
- Solución Competisoft: Proceso PISL con capa de abstracción
- Resultado: Integración en 10 días vs. 6 semanas estimadas

Nota: Este caso demuestra cómo Competisoft puede especializarse en el sector logístico, abordando desafíos únicos como trazabilidad end-to-end, optimización algorítmica y gestión de performance en tiempo real, capacidades que requieren adaptación específica no contemplada en modelos genéricos como MPS.BR o MoProSoft.