# EECS 16A Designing Information Devices and Systems I Discussion 5C

#### 1. Timer Circuit

In this problem, we will walk through another useful, real-world circuit, the timer circuit. The circuit is shown below. All resistors have a resistance of  $1 \text{ k}\Omega$  and  $C_1 = 1 \mu\text{F}$ .



(a) Find the current through the capacitor  $C_1$  in terms of the voltage  $V_3$  and the resistor  $R_1$ .

#### Answer

For an op-amp, no current flows into the input terminals. Therefore, all the current through  $R_1$  must flow through  $C_1$ . Applying the Golden Rules, we know that  $v_+ = v_- = 0$  V.

$$i_{R_1} = i_{C_1} = \frac{v_3}{R_1}$$

(b) Suppose that at time t = 0,  $C_1$  is uncharged. Find the voltage  $v_1$  in terms of t,  $v_3$ , and  $R_1$ . What is the maximum  $|v_1|$  could be?

# **Answer:**

Recall the voltage across a capacitor is related to the charge on the capacitor, that is Q = CV. Current is related to charge with the equation  $I = \frac{dQ}{dt}$ .

$$v_{C_1} = \frac{Q}{C_1} = \frac{It}{C_1} = \frac{v_3}{R_1 C_1} t = \frac{v_3}{1 \text{ ms}} t$$

Note that a  $\Omega$ F is a second. Using the formula for  $v_{C_1}$  from above and the fact that  $v_- = v_+ = 0$ , the voltage at node  $v_1$  can be calculated as:

$$v_{C_1} = 0 - v_1 \implies v_1 = -\frac{v_3}{1 \text{ ms}} t$$

The maximum or minimum for  $v_1$  is the top or bottom supply rail, so either +1 V or -1 V. Therefore, the maximum  $|v_1| = 1$  V.

(c) How is  $v_2$  related to  $v_1$ ? What is the voltage  $v_2$ ?

## **Answer:**

 $O_2$  is an inverting amplifier. The output voltage  $v_2$  is equal to  $-v_1$ .

$$v_2 = \frac{v_3}{1 \, \text{ms}} t$$

Now, let's independently analyze the circuit in the two possible outputs of the comparator, when  $v_3 = 1 \text{ V}$  and when  $v_3 = -1 \text{ V}$ .

(d) Assume that the output of the comparator  $v_3$  has railed to the top rail. With this value of  $v_3$ , what is  $v_2$  as a function of time? What is the voltage at the positive input of the comparator? At what time will the two inputs of the comparator be equal?

## **Answer:**

With  $v_3$  at the top rail,  $v_2$  is  $\frac{t}{1 \text{ ms}} \text{V}$ . The voltage at the positive input of the comparator is 0.5 V because of  $R_5$  and  $R_4$ . Therefore, when t = 0.5 ms,  $v_2 = 0.5 \text{ V}$ .

(e) Now assume that the reverse occurs, that is, the output of the comparator has railed to the bottom rail. Repeat part (d) with this value of  $v_3$ .

#### **Answer:**

With  $v_3$  at the bottom rail,  $v_2$  is  $-\frac{t}{1 \text{ ms}}$  V. Similar to part (d), the voltage at the positive input is -0.5 V. Therefore, when t = 0.5 ms,  $v_2 = -0.5$  V.

(f) What is  $v_3$  as a function of time? Draw a graph of  $v_3$  and  $v_2$ . Since the graph is periodic, find its period and frequency.

## **Answer:**

Notice that in each of the above cases, once  $v_2$  was equal to  $v_+$ , the output of the comparator would flip. This leads to a periodic function, where  $v_3$  is either  $+1\,\mathrm{V}$  or  $-1\,\mathrm{V}$ . The period of this function is  $T=2\,\mathrm{ms}$ . Notice that in each of the above cases we analyzed, we always assumed that the capacitor was initially uncharged. However, when  $v_3$  switches, the capacitor will already have some charge built up on it, so it must first be drained. This is why the period is twice what we expect.



(g) Suppose that we changed the value of  $C_1$  to be  $2\mu F$ ? What is the new period? Suppose that we change  $R_5$  to be  $2k\Omega$ . What is the new period? What if we change  $R_5$  to be  $0\Omega$ ? Will this circuit still operate? **Answer:** 

Notice above we got the constant 1 ms by multiplying  $R_1$  and  $C_1$  together. If we double  $C_1$ , the effective period would double because it would take longer to charge  $C_1$  to the same voltage with the same current.

Changing  $R_5$  affects the "flip" threshold because  $v_+$  is at a different voltage. Increasing  $R_5$  decreases the voltage at  $v_+$ , so we would expect the flip voltage to decrease. In fact, the new period is  $\frac{4}{3}$ ms. The circuit would not operate if  $R_5 = 0\Omega$ . The inverting input needs to be able to go above and below the non-inverting input, which is not possible if the non-inverting input is constant at the rail.

# 2. Practice: Dividers for Days

(a) Solve the following circuit for  $v_x$ .



**Answer:** 

$$v_x = \frac{1}{2}V_1 + \frac{1}{2}V_2$$

(b) You have access to two voltage sources,  $V_1$  and  $V_2$ . You can use two resistors (as long as  $0 \le R < \infty$ ). How would you design a circuit that produces a voltage  $v_x = \frac{1}{3}V_1 + \frac{2}{3}V_2$ ?

## **Answer:**

Use superposition. Even if you know the voltage summer, make sure you know the analysis with KVL/KCL. Using any nonzero values for *R*:



(c) You have two current sources  $I_1$  and  $I_2$ . You also have a load resistor  $R_L = 6k\Omega$ . Similar to the first part, you can use whatever resistors you want (as long as they are finite integer values). How would you design a circuit such that the current running through  $R_L$  is  $I_L = \frac{2}{5}(I_1 + I_2)$ ?

## **Answer:**

Use superposition, so think of the two currents as one summed current. Use KCL to determine how to divide the currents.



$$R_L = 6 \,\mathrm{k}\Omega, R_1 = 4 \,\mathrm{k}\Omega$$