

- 1 1. A carbon nanotube device comprising:
2 a support structure including an aperture extending from a front
3 surface to a back surface of the structure; and
4 at least one carbon nanotube extending across the aperture and
5 accessible through the aperture from both the front surface and the
6 back surface of the support structure.

- 1 2. The device of claim 1 wherein the carbon nanotube comprises a
2 single-walled carbon nanotube.

- 1 3. The device of claim 1 wherein the carbon nanotube comprises a
2 multi-walled carbon nanotube.

- 1 4. The device of claim 1 wherein the carbon nanotube comprises a
2 semiconducting carbon nanotube.

- 1 5. The device of claim 1 wherein the carbon nanotube comprises a
2 metallic carbon nanotube.

- 1 6. The device of claim 1 wherein the at least one carbon nanotube
2 comprises a plurality of carbon nanotubes.

- 1 7. The device of claim 1 wherein the support structure comprises a
2 substrate.

- 1 8. The device of claim 7 wherein the support structure comprises a
2 semiconducting substrate.

1 9. The device of claim 1 wherein the support structure comprises a
2 membrane.

1 10. The device of claim 9 wherein the membrane comprises a silicon
2 nitride membrane.

1 11. The device of claim 9 wherein the membrane comprises a silicon
2 dioxide membrane.

1 12. The device of claim 1 wherein the support structure is aligned
2 between a source of electrons and an electron detector for transmission
3 electron microscopy of the carbon nanotube.

1 13. The device of claim 1 further comprising at least one pair of
2 electrically conducting contact pads disposed on the support structure and
3 separated by the aperture, with each end of a carbon nanotube located at a
4 contact pad.

1 14. The device of claim 13 wherein each carbon nanotube end
2 disposed on top of a contact pad.

1 15. The device of claim 13 wherein the at least one pair of
2 electrically conducting contact pads comprises a plurality of pairs of contact
3 pads disposed at locations around the aperture.

~

1 16. A method for fabricating a carbon nanotube device comprising:
2 providing a support structure;
3 forming at least one carbon nanotube catalyst region on a
4 surface of the support structure;

5 forming an aperture from a front surface to a back surface of the
6 support structure adjacent to the catalyst region; and

7 exposing the catalyst region to a hydrocarbon gas, synthesizing
8 across the aperture a carbon nanotube that is accessible from both the
9 front surface and the back surface of the support structure.

1 17. The method of claim 16 wherein forming a carbon nanotube
2 catalyst region comprises vapor depositing a catalyst material and
3 lithographically patterning the deposited catalyst material to define the
4 catalyst region.

1 18. The method of claim 17 wherein vapor depositing a catalyst
2 material comprises thermal evaporation of a catalyst material.

1 19. The method of claim 18 wherein vapor depositing a catalyst
2 material comprises thermal evaporation of Fe.

1 20. The method of claim 16 wherein forming a carbon nanotube
2 catalyst region comprises forming a catalyst region of less than about 2 nm in
3 thickness.

1 21. The method of claim 16 wherein the carbon nanotube catalyst
2 region is formed to substantially abut the aperture.

1 22. The method of claim 16 wherein the at least one carbon
2 nanotube catalyst region comprises at least one pair of carbon nanotube
3 catalyst regions.

1 23. The method of claim 16 wherein the support structure comprises
2 a substrate.

1 24. The method of claim 16 wherein the support structure comprises
2 a membrane.

1 25. The method of claim 16 further comprising forming an
2 electrically conducting contact pad under the carbon nanotube catalyst region
3 on the support structure surface.

1 26. The method of claim 25 wherein forming an electrically
2 conducting contact pad comprises depositing a layer of metal and etching the
3 metal layer to form a contact pad prior to forming the carbon nanotube
4 catalyst region on the contact pad.

1 27. The method of claim 16 wherein the hydrocarbon gas to which
2 the catalyst region is exposed comprises substantially only methane.

1 28. The method of claim 27 wherein the methane gas is supplied at
2 a flow rate of less than about 400 sccm.

1 29. The method of claim 27 wherein the catalyst region exposure to
2 methane is carried out at a temperature of less than about 1500 °C.

1 30. The method of claim 16 wherein the catalyst region exposure to
2 hydrocarbon gas further comprises applying an electric field across the
3 aperture in a direction corresponding to a desired nanotube synthesis
4 direction.