Topics — Example Sheet 2

Lucas Riedstra

...

Question 1. Recall that the Epanechnikov kernel is a second-order kernel defined by

$$K_E(x) = \frac{3}{4\sqrt{5}} \left(1 - \frac{x^2}{5}\right) \mathbb{1}_{|x| \le \sqrt{5}},$$

and that $\mu_2(K_E) = 1$. Let K_0 be another non-negative second-order kernel with $\mu_2(K_0) = 1$. By considering $e(x) := K_0(x) - K_E(x)$, or otherwise, show that $R(K_0) \ge R(K_E)$.

Proof. We recall the definitions

$$R(K) = \int_{\mathbb{R}} K^2(u) du, \quad \mu_2(K) = \int_{\mathbb{R}} u^2 |K(u)| du,$$

and we recall that K has order 2 if and only if

$$\int_{\mathbb{R}} uK(u) \, \mathrm{d}u = 0.$$

??

Question 2. For $\beta \in (0,1]$ and L > 0, let $\mathcal{F}_2(\beta, L)$ denote the class of densities on \mathbb{R}^2 that satisfy

$$|f(x,y) - f(x_0,y_0)| \le L(|x - x_0|^{\beta} + |y - y_0|^{\beta})$$

for all $(x, y), (x_0, y_0) \in \mathbb{R}^2$. Let K be a non-negative kernel on \mathbb{R} with $\mu_{\beta}(K)$ and R(K) finite. Given i.i.d. pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$, consider the kernel density estimator \hat{f}_n obtained using a product kernel, i.e.,

$$\hat{f}_n(x_0, y_0) := \frac{1}{nh^2} \sum_{i=1}^n K\left(\frac{x_0 - X_i}{h}\right) K\left(\frac{y_0 - Y_i}{h}\right).$$

Find a bound on MSE $\{\hat{f}_n(x_0, y_0)\}$ that holds uniformly for all $f \in \mathcal{F}_2(\beta, L)$ and $(x_0, y_0) \in \mathbb{R}^2$.

Proof. First we compute a variance bound following the proof of proposition 19: noting that $\hat{f}_n(x,y) = \frac{1}{n} \sum_{i=1}^n K_h(x-X_i) K_h(y-Y_i)$, we have

$$\operatorname{Var} \hat{f}_{n}(x,y) = \frac{1}{n} \operatorname{Var}(K_{h}(x - X_{i})K_{h}(y - Y_{i})) \leq \frac{1}{n} \mathbb{E}[K_{h}^{2}(x - X_{i})K_{h}^{2}(y - Y_{i})]$$

$$= \frac{1}{nh^{4}} \iint_{\mathbb{R}^{2}} K^{2}(\frac{x - w}{h})K^{2}(\frac{y - z}{h})f(w, z) \, dw \, dz$$

$$\leq \frac{\|f\|_{\infty}}{nh^{2}} \iint_{\mathbb{R}^{2}} K^{2}(s)K^{2}(t) \, ds \, dt = \frac{\|f\|_{\infty} R(K)^{2}}{nh^{2}}.$$

Next, we compute a bias bound following the proof of proposition 22. Note that we have

Bias
$$\hat{f}_n(x,y) = \frac{1}{h^2} \iint_{\mathbb{R}^2} K(\frac{x-w}{h}) K(\frac{y-z}{h}) f(w,z) \, dw \, dz - f(x,y)$$

= $\iint_{\mathbb{R}^2} K(s) K(t) \{ f(x-sh, y-th) - f(x,y) \} \, ds \, dt$,

and taking absolute values gives

$$\begin{aligned} \left| \operatorname{Bias} \hat{f}_n(x,y) \right| &\leq \iint_{\mathbb{R}^2} K(s)K(t) |f(x-sh,y-th) - f(x,y)| \, \mathrm{d}s \, \mathrm{d}t \\ &\leq L \iint_{\mathbb{R}^2} K(s)K(t) \left(|sh|^\beta + |th|^\beta \right) \, \mathrm{d}s \, \mathrm{d}t \\ &= 2Lh^\beta \int_{\mathbb{R}} K(s) \int_{\mathbb{R}} |t| K(t) \, \mathrm{d}t \, \mathrm{d}s \\ &= 2Lh^\beta \mu_\beta(K) \int_{\mathbb{R}} K(s) \, \mathrm{d}s = 2Lh^\beta \mu_\beta(K). \end{aligned}$$

We therefore have

$$\text{MSE } \hat{f}_n(x,y) \le \frac{1}{nh^2} ||f||_{\infty} R(K)^2 + 4L^2 \mu_{\beta}(K)^2 h^{2\beta}.$$

Completely analogous to the proof of theorem 23, we can show that $||f||_{\infty}$ is bounded uniformly over $\mathcal{F}_2(\beta, L)$, and the minimiser of MSE is of order $n^{-1/(2\beta+2)}$. Plugging this into the expression gives

$$\sup_{(x,y)} \sup_{f \in \mathcal{F}} \text{MSE } \hat{f}_n(x,y) \le C n^{-2\beta/(2\beta+2)}.$$

for some C depending only on β, L, K .

Question 3. Let $\{w_i(x) | = 1, ..., n\}$ denote the effective kernel of the local polynomial estimator of order p based on $(x_1, Y_1), ..., (x_n, Y_n)$, and let R denote a polynomial of degree at most p. Prove that if $X^\top W X$ is positive definite, then

$$\frac{1}{n} \sum_{i=1}^{n} w_p(x, x_i) R(x_i) = R(x)$$

for every $x \in \mathbb{R}$.

Proof. Note that $\frac{1}{n} \sum w(x, x_i) R(x_i)$ is exactly the local polynomial estimator for data $(x_i, R(x_i))_{i=1}^n$ in the point x. Therefore, write $Y = (R(x_1), \dots, R(x_n))^{\top} \in \mathbb{R}^n$. We know that if $X^{\top}WX$ is positive definite, then

$$\hat{m}_n(x) = \hat{\beta}_0, \quad \hat{\beta} = (X^\top W X)^{-1} X^\top W Y.$$

Now, since R is a polynomial of degree p, there exists a vector v such that

$$Q_h(\cdot - x)^{\top} \boldsymbol{v} = R(\cdot),$$

and we now have

$$Y = \begin{pmatrix} R(x_1) \\ \vdots \\ R(x_n) \end{pmatrix} = \begin{pmatrix} Q_h(x_1 - x)^\top \mathbf{v} \\ \vdots \\ Q_h(x_n - x)^\top \mathbf{v} \end{pmatrix} = X\mathbf{v},$$

and therefore

$$\hat{\beta} = (X^{\top}WX)^{-1}X^{\top}WX\boldsymbol{v} = \boldsymbol{v}.$$

It is immediate that

$$R(x) = Q_h(x - x)^{\mathsf{T}} v = Q_h(0)^{\mathsf{T}} v = v_1 = \hat{m}_n(x),$$

which proves the claim.

Question 4. Fix $\beta, L > 0$ and let $m := \lceil \beta \rceil - 1$. Recalling the definition of the Hölder class of densities $\mathcal{F}(\beta, L)$, prove that there exists $A = A(\beta, L) > 0$ such that

$$\sup_{f \in \mathcal{F}(\beta, L)} \max_{j=0, \dots, m} \left\| f^{(j)} \right\|_{\infty} \le A.$$

Proof. ?? (problem: f being a density does not mean that f', f'', \ldots are densities).

Question 5. Verify that the local constant and local linear kernel regression estimators have the forms given in the lectures.

Proof. In the local constant case, we have $Q_h(u) = 1$ and therefore X = e (with e the all-ones vector). It follows that

$$\hat{m}_n(x) = \hat{\beta} = (\mathbf{e}^\top W \mathbf{e})^{-1} \mathbf{e}^\top W Y = \frac{1}{\sum_{i=1}^n W_{ii}} \cdot \sum_{i=1}^n W_{ii} Y_i = \frac{\sum_{i=1}^n K_h(x_i - x) Y_i}{\sum_{i=1}^n K_h(x_i - x)},$$

which corresponds with the expression from the lecture notes.

In the local linear case, we have $Q_h(u) = (1, u/h)^{\top}$. Define $z_i = (x_i - x)/h$ and $W_i = K_h(x_i - x)$, we have

$$X = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_n \end{bmatrix}, \quad X^\top W = \begin{bmatrix} W_1 & \cdots & W_n \\ z_1 W_1 & \cdots & z_n W_n \end{bmatrix}.$$

We can therefore compute, using $\sum_{i} z_{i}^{r} W_{i} = nh^{-r} s_{r}(x)$, that

$$X^{\top}WX = \begin{bmatrix} \sum_{i} W_{i} & \sum_{i} z_{i}W_{i} \\ \sum_{i} z_{i}W_{i} & \sum_{i} z_{i}^{2}W_{i} \end{bmatrix} = n \begin{bmatrix} s_{0}(x) & h^{-1}s_{1}(x) \\ h^{-1}s_{1}(x) & h^{-2}s_{2}(x) \end{bmatrix},$$

which gives

$$(X^{\top}WX)^{-1} = \frac{h^2}{n} \cdot \frac{1}{s_0(x)s_2(x) - s_1(x)^2} \begin{bmatrix} h^{-2}s_2(x) & -h^{-1}s_1(x) \\ -h^{-1}s_1(x) & s_0(x) \end{bmatrix}.$$

Therefore we have

$$X^{\top}WY = \begin{bmatrix} \sum_{i} W_{i}Y_{i} \\ \sum_{i} z_{i}W_{i}Y_{i} \end{bmatrix},$$

and so

$$\hat{\beta}_0 = \frac{h^2}{n} \cdot \frac{1}{s_0(x)s_2(x) - s_1(x)^2} \left(h^{-2}s_2(x) \sum_i W_i Y_i - h^{-1}s_1(x) \sum_i z_i W_i Y_i \right)$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{s_2(x) - s_1(x)(x_i - x)}{s_0(x)s_2(x) - s_1(x)^2} W_i Y_i,$$

which corresponds with the expression from the lecture notes.

Question 6. In the random design nonparametric regression model for i.i.d. pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$, each having joint density $f_{X,Y}$, observe that the regression function m may be expressed as

$$m(x) = \int_{-\infty}^{\infty} y \frac{f_{X,Y}(x,y)}{f_X(x)} \, \mathrm{d}y \,,$$

where f_X is the marginal density of X_1 . Find the estimator m(x) that results from estimating f_X and $f_{X,Y}$ using kernel density estimators with symmetric kernel K (and the corresponding product kernel in the latter case) and a common bandwidth.

Proof. We plug in

$$\hat{m}(x) = \int_{-\infty}^{\infty} y \frac{\frac{1}{n} \sum_{i=1}^{n} K_h(x - X_i) K_h(y - Y_i)}{\frac{1}{n} \sum_{i=1}^{n} K_h(x - X_i)} \, \mathrm{d}y$$
$$= \frac{\sum_{i=1}^{n} K_h(X_i - x) Z_i(y)}{\sum_{i=1}^{n} K_h(X_i - x)},$$

where $Z_i(y) = \int_{-\infty}^{\infty} y K_h(y - Y_i) dy$. We have

$$Z_i(y) = \int_{-\infty}^{\infty} y K_h(y - Y_i) \, \mathrm{d}y = \int_{-\infty}^{\infty} (y + Y_i) K_h(y) \, \mathrm{d}y$$
$$= \int_{-\infty}^{\infty} y K_h(y) \, \mathrm{d}y + Y_i \int_{-\infty}^{\infty} K_h(y) \, \mathrm{d}y = Y_i,$$

(where we use that K_h is symmetric to get rid of $\int y K_h(y) \, dy$), and so $\hat{m}(x)$ is simply the Nadaraya-Watson estimator (the local polynomial estimator with p=0).

Question 7. Let $a \le x_1 < \cdots < x_n \le b$, and let $h_i = x_{i+1} - x_i$ for $i = 1, \dots, n-1$. Given $\mathbf{g} \in \mathbb{R}^n$ and $\mathbf{\gamma} = (\gamma_2, \dots, \gamma_{n-1})^\top \in \mathbb{R}^{n-2}$, show that if there is a natural cubic spline g with $g(x_i) = g_i$ for $i = 1, \dots, n$ and $g''(x_i) = \gamma_i$ for $i = 2, \dots, n-1$ then

$$g(x) = \frac{(x - x_i)g_{i+1} + (x_{i+1} - x)g_i}{h_i} - \frac{1}{6}(x - x_i)(x_{i+1} - x)\left\{\left(1 + \frac{x - x_i}{h_i}\right)\gamma_{i+1} + \left(1 + \frac{x_{i+1} - x}{h_i}\right)\gamma_i\right\}$$

for $x \in [x_i, x_{i+1}]$ and i = 1, ..., n-1. Find the corresponding expressions for g on $[a, x_1]$ and $[x_n, b]$.

Proof. On the interval $[x_i, x_{i+1}]$, g must be a cubic polynomial p such that $p(x_i) = g_i$, $p(x_{i+1}) = g_{i+1}$, $p''(x_i) = \gamma_i$, $p''(x_{i+1}) = \gamma_{i+1}$ (where $\gamma_1 = \gamma_n = 0$). Therefore, p must have an expansion in the basis

$$\{q_1(x), q_2(x), q_3(x), q_4(x)\}$$

$$:= \left\{ x - x_i, x_{i+1} - x, (x - x_i)(x_{i+1} - x)(1 + \frac{x - x_i}{h_i}), (x - x_i)(x_{i+1} - x)(1 + \frac{x_{i+1} - x}{h_i}) \right\}.$$

Therefore, write $p(x) = aq_1(x) + bq_2(x) + cq_3(x) + dq_4(x)$. Note that

$$q_3''(x_i) = 0$$
, $q_3''(x_{i+1}) = -6$, $q_4''(x_i) = -6$, $q_4''(x_{i+1}) = 0$.

We compute a, b, c, d:

- 1. Since q_2, q_3, q_4 all give 0 when evaluated in x_{i+1} , we must have $g_{i+1} = p(x_{i+1}) = aq_1(x_{i+1}) = ah_i$ or $a = g_{i+1}/h_i$;
- 2. Analogously, we must have $b = g_i/h_i$;
- 3. Since q_1'', q_2'', q_4'' all give 0 when evaluated in x_{i+1} , we must have $\gamma_{i+1} = p''(x_{i+1}) = cq_3''(x_{i+1}) = -6c$ or $c = -\gamma_{i+1}/6$;
- 4. Analogously, we must have $d = -\gamma_i/6$.

Combining the above proves the claim.

On $[a, x_1]$, g simply needs to be a linear function with $g(x_1) = g_1$, which means it has the form $g(x) = c(x - x_1) + g_1$ for some c. We must then choose c such that the first derivative is continuous. An analogous argument holds for g on $[x_n, b]$.

Question 8. Define tri-diagonal matrices $Q=(q_{ij})_{i=1,j=2}^{n,n-1}\in\mathbb{R}^{n\times(n-2)}$ and $R=(r_{ij})_{i=2,j=2}^{n-1,n-1}\in\mathbb{R}^{(n-2)\times(n-2)}$ by

$$q_{ij} := \begin{cases} 1/h_i, & j = i+1, \\ -1/h_{i-1} - 1/h_i, & j = i, \\ 1/h_{i-1}, & j = i-1, \end{cases} \qquad r_{ij} = \begin{cases} h_i/6, & j = i+1, \\ (h_{i-1} + h_i)/3, & j = i, \\ h_{i-1}/6, & j = i-1. \end{cases}$$

Prove that g, γ represent a natural cubic spline if and only if $Q^{\top}g = R\gamma$.

Proof. In the previous question, we saw that there was at most one candidate g for the natural cubic spline which satisfies $g(x_i) = g_i$ (i = 1, ..., n) and $g''(x_i) = \gamma_i$ (i = 2, ..., n - 1). For this g, we know that g and g'' are continuous, however, we do not know if g' is continuous. We find that g represents a natural cubic spline if and only if g' is continuous at the points $x_2, ..., x_{n-1}$.

Fix $j \in \{2, ..., n-1\}$. On the interval $[x_{j-1}, x_j]$, we have

$$g'(x_j) = \frac{g_j - g_{j-1}}{h_{j-1}} + \frac{1}{6}h_{j-1}\{2\gamma_j + \gamma_{j-1}\},\,$$

while on the interval $[x_j, x_{j+1}]$, we have

$$g'(x_j) = \frac{g_{j+1} - g_j}{h_j} - \frac{1}{6}h_j\{\gamma_{j+1} + 2\gamma_j\}.$$

Equating the two and rearranging terms, we obtain

$$\frac{1}{h_j}g_{j+1} - \left(\frac{1}{h_j} + \frac{1}{h_{j-1}}\right)g_j + \frac{1}{h_{j-1}}g_{j-1} = \frac{h_j}{6}\gamma_{j+1} + \frac{h_{i-1} + h_i}{3}\gamma_j + \frac{h_{j-1}}{6}\gamma_{j-1}.$$

It is easily seen that these equations can be rewritten as $Q^{\top}g = R\gamma$, which proves the claim.

Question 9 (Continuation). Prove that R is positive definite. Deduce that, given $\mathbf{g} \in \mathbb{R}^n$, there exists a unique natural cubic spline g with knots at x_1, \ldots, x_n satisfying $g(x_i) = g_i$ for $i = 1, \ldots, n$. Show further that there exists a non-negative definite matrix $K \in \mathbb{R}^{n \times n}$ such that

$$\int_a^b g''(x)^2 \, \mathrm{d}x = \boldsymbol{g}^\top K \boldsymbol{g}.$$

Proof. It is immediate that the columns of R are linearly independent, so R is invertible and therefore positive definite. By question 8, there is exactly one γ such that there exists a natural cubic spline represented by \mathbf{g}, γ , namely $\gamma = R^{-1}Q^{\top}\mathbf{g}$. Note that, on $[x_i, x_{i+1}]$, the polynomial g has leading coefficient $c_i = \frac{1}{6} \left(\frac{\gamma_{i+1} - \gamma_i}{h_i} \right)$. Therefore, by partial integration we find (analogous to the next question)

$$\int_{a}^{b} g''(x)^{2} dx = \sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} g''(x)^{2} dx = -\sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} g'''(x)g'(x) dx$$
$$= -\sum_{i=1}^{n-1} c_{i}(g_{i+1} - g_{i}) = -\sum_{i=1}^{n} \frac{1}{6} \left(\frac{\gamma_{i+1} - \gamma_{i}}{h_{i}}\right) (g_{i+1} - g_{i}).$$

Since every γ_i can be written as a linear combination of the g_i via $\gamma = R^{-1}Q^{\top}\mathbf{g}$, it follows that there exists a matrix K such that $0 \leq \int_a^b g''(x)^2 dx = \sum_{i,j} K_{ij}g_ig_j$ for all \mathbf{g} , and therefore $\int_a^b g''(x)^2 dx = \mathbf{g}^{\top}K\mathbf{g}$ and K is positive semi-definite.

Question 10. Let $n \geq 3$, let $a \leq x_1 < \cdots < x_n \leq b$, and let $\mathbf{g} \in \mathbb{R}^n$. Prove that the natural cubic spline interpolant to \mathbf{g} at x_1, \ldots, x_n is the unique minimiser of $R(\tilde{g}) = \int_a^b \tilde{g}''(x)^2 dx$ over all $\tilde{g} \in \mathcal{S}_2[a, b]$ that interpolate \mathbf{g} at x_1, \ldots, x_n .

Hint: Let g be the natural cubic spline interpolant, $h := \tilde{g} - g$, and consider $\int_a^b g''(x)h''(x) dx$.

Solution. As in the hint we let g be the natural cubic spline interpolant, $\tilde{g} \in \mathcal{S}_2[a,b]$, and $h := \tilde{g} - g$. We know that g is a cubic polynomial p_i on each interval $[x_i, x_{i+1}]$ (denote its leading coefficient by c_i), that g'' is continuous, and that g'' = 0 on $[a, x_1]$ and on $[x_n, b]$. Furthermore, we know that $h(x_i) = 0$ for all i. Using this, we can write

$$\int_{a}^{b} g''(x)h''(x) dx = \sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} p_{i}''(x)h''(x) dx$$

$$= \sum_{i=1}^{n-1} \left(\left[p_{i}''(x)h'(x) \right]_{x=x_{i}}^{x_{i+1}} - \int_{x_{i}}^{x_{i+1}} p_{i}'''(x)h'(x) dx \right)$$

$$= -\sum_{i=1}^{n-1} c_{i} \int_{x_{i}}^{x_{i+1}} h'(x) dx$$

$$= -\sum_{i=1}^{n-1} c_{i} (h(x_{i+1}) - h(x_{i})) = 0.$$

Now we find

$$R(g) = \int_{a}^{b} g''(x)^{2} dx = \int_{a}^{b} g''(x)(\tilde{g}''(x) - h''(x)) dx = \int_{a}^{b} g''(x)\tilde{g}''(x) \stackrel{\text{CS}}{\leq} \sqrt{R(g)}\sqrt{R(\tilde{g})},$$

with equality if and only if $g'' = \tilde{g}''$ (by Cauchy-Schwarz). Rearranging gives $\sqrt{R(g)} \le \sqrt{R(\tilde{g})} \implies R(g) \le R(\tilde{g})$. Since $\tilde{g} \in \mathcal{S}_2[a,b]$ was arbitrary, we deduce that g is a minimiser of R over all function in \mathcal{S}_2 .

For uniqueness: we already know that any other minimiser $h \in \mathcal{S}_2$ must satisfy g'' = h'' a.e., so g - h is a polynomial of degree 1 a.e., and by continuity we know that g - h is a polynomial of degree 1. However, since g and h must agree on $n \geq 3$ points it follows that g = h.