EEP 524 Applied High-Performance GPU Computing

LECTURE 4: Wednesday, January 27, 2021

Instructor: Dr. Colin Reinhardt

University of Washington - Professional Masters Program Winter 2021

Lecture 3 : Outline

- Review and miscellaneous topics
 - GPI APIs
 - Nsight Visual Studio GPU debugger
 - Grid sizing
 - using nvcc
- AWS cloud GPU: Turing T4
- First look at GPU performance analysis
 - theory, practice, empirical
- Discussion

HW1 due Sun, 31 Jan by 11:59 PM (ought to be enough extensions!)

The GPU APIs

- CUDA
 - Runtime API
 - Driver API
 - CUDA C++ (kernel) language extensions
- OpenCL
 - Host API
 - C (kernel) language
- Comments
 - don't mix up datatypes or syntax between host and device
 - or between CUDA and OpenCL!
 - be sure to include the right headers and link libraries

Nsight Visual Studio: GPU Debugger

https://developer.nvidia.com/nsight-visual-studio-edition

- Stepping into CUDA kernel code on device is real!
- Powerful capabilities to use integrated Visual Studio debug with CUDA
 - view warps
 - view GPU registers
 - view per-thread kernel variables
 - more

Grid Sizing

- There are ways to automatically determine a reasonable (not always optimal) size for your execution configuration
 - blocks-per-grid (# workgroups)
 - threads-per-block (# workitems)
- Rules-of-Thumb (often broken)
 - threads-per-block even multiple of
 - warpsize (32)
 - total # SMs on device
 - Total grid size = nearest power-of-two

```
int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

// OR
int blocksPerGrid = ceil(numElements/ threadsPerBlock;

my1Dkernel<<<blocksPerGrid, threadsPerBlock>>> (foo,bar);
```

Using nvcc: NVIDIA CUDA Compiler

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

- Simplest
 - nvcc -o <output_file>.exe <input_path>/<input_file>.cu
- A few more options
 - nvcc -x cu -o <output file>.exe -I <include path> -l<libraries> <input path>/<input file>.cpp
- Generating a PTX (intermediate assembly file)
 - nvcc -o <output_file>.ptx <input_path>/<input_file>.cu -ptx
- Compiling OpenCL
 - nvcc -x cu -o oclquery.exe ocl_queryplatformdevice_hostapp.cpp -lOpenCL
- Steering GPU Code Generation
 - --gpu-architecture (-arch) [-arch compute_75]
 - controls preprocessing and compilation of input to PTX for a virtual architecture
 - at runtime, if no binary load image (real arch) is found, PTX is JIT-compiled
 - --gpu-code (-code) [-code sm 50]
 - controls embedded binary load code image in resulting executable for specified real architecture
 - --generate-code (-gencode)
 - allows multiple PTX generations for different virtual architectures

CUDA compilation trajectory

Turing T4

- Unified shared memory/L1cache per SM = 96KB
- 64KB/32KB or 32KB/64KB
- \blacksquare L2 = 6MB
- Each SM
 - 64 FP32 + 64 INT32 cores
 - parallel execution pipes
 - 4 processing blocks
 - 16 FP32, 16 INT32 cores
 - 2 Tensor cores
 - 1 warp scheduler
 - 1 dispatch unit
 - L0 instruction cache
 - 64KB register file

Figure 41. Turing TU104 Full Chip Diagram

Turing T4

Table 5. Comparison of the Pascal Tesla P4 and the Turing Tesla T4

GPU	Tesla P4 (Pascal)	Tesla T4 (Turing)	
GPCs	4	5	
TPCs	20	20	
SMs	20	40	
CUDA Cores/SM	128	64	
CUDA Cores/GPU	2,560	2,560	
Tensor Cores/SM	NA	8	
Tensor Cores/GPU	NA	320	
RT Cores	NA	40	
GPU Base Clock MHz	810	585*	
GPU Boost Clock MHz	1,063	1,590	
Peak FP32 TFLOPS	5.5	8.1	
Peak INT32 TIPS	NA	8.1	
Peak FP16 TFLOPS	NA	16.2	
Peak FP16 Tensor TFLOPS with FP16 Accumulate*	NA	65	
Peak FP16 Tensor TFLOPS with FP32 Accumulate*	NA	65	
Peak INT8 Tensor TOPS*	22	130	
Peak INT4 Tensor TOPS*	NA	260	
Frame Buffer Memory Size and Type	8192 MB GDDR5X	16384 MB GDDR6	
Memory Interface	256-bit	256-bit	
Memory Clock (Data Rate)	6 Gbps	10 Gbps	
Memory Bandwidth (GB/sec)	192	320	
ROPs	64	64	
TDP	75 Watts	70 Watts	
101	75 Watts	70 Watts	

- global mem: large & slow
- shared mem: small & fast

Device code can:

- R/W per-thread registers
- R/W per-thread local memory
- R/W per-block shared memory
- R/W per-grid global memory
- Read only per-grid constant memory

Host code can

 Transfer data to/from per grid global and constant memories

 use shared mem when the overhead of moving data from global can be offset by repeated use of the data within the block

A first look at GPU Performance Analysis

theory and practice

Growth of Functions

- Computational Complexity
 - Estimate growth of a function without worrying about (machine-dependent) constant multipliers and smaller order terms
 - Independent of hardware and software used to implement the algorithm!
 - Time complexity: time required to solve problem of particular size
 - Space complexity: memory required to solve problem of particular size
- Big-Omicron (big-0) Notation

$$O(g(n)) = \begin{cases} f(n) \text{: there exist positive constants } c, n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \end{cases}$$

Big-Omega (big-Ω) Notation

$$\Omega(g(n)) = \begin{cases} f(n) \text{: there exist positive constants } c, n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \end{cases}$$

Big-Theta (big-0) Notation

$$\Theta(g(n)) = \begin{cases} f(n) \text{: there exist positive constants } c_1, c_2, n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \end{cases}$$

Growth of Functions

EXAMPLE Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$

$$0 \le 8x \log x \le 8x^2 \text{ for } x > 1$$

Thus it follows

$$3x^2 + 8x \log x \le 11x^2 \text{ for } x > 1$$

So

$$3x^2 + 8x \log x$$
 is $O(x^2)$ for $c_2 = 11$ and $n_0 = 1$

Also

$$0 \le x^2 \le 3x^2 + 8x \log x \text{ for } x > 1$$

So

$$3x^2 + 8x \log x$$
 is $\Omega(x^2)$ for $c_1 = 1$ and $n_0 = 1$

Therefore we have

$$0 \le c_1 x^2 \le f(x) \le c_2 x^2 \text{ for } x > n_0 \text{ with } c_1 = 1, c_2 = 11, n_0 = 1 \text{ THUS } f(x) \text{ is } \Theta(x^2)$$

Growth of Functions

Useful reference plots and terms for common function growth behaviors

Running time	Is said to run in
$\Theta(1)$	constant time
$\Theta(\log n)$	logarithmic time
$\Theta(n)$	linear time
$\Theta(n^2)$	quadratic time
O(f(n))	polynomial time

Performance Theory and Metrics

Arithmetic Intensity: $AI = \frac{\text{computational work}}{\text{communication}}$

 $AI_{practical} = \frac{FLOPS}{bytes memory traffic}$

Example:

Hypothetical device with **100 Gb/s** memory bandwidth (i.e. 25 Gfloats/s) And **625 GFLOP/s** peak single-precision arithmetic throughput

What AI for kernel to reach both peak arithmetic and memory throughputs?

AI = 625/100 = 6.25 FLOP per byte memory transaction

(Or 625/25 = 25 FLOP/float memory transaction)

BLAS: Basic Linear Algebra Subroutines

- Categorized into three sets of routines
 - correspond to both chronological order of definition/publication and degree of the polynomial in complexity of algorithms
- Level 1 (1979): operations take linear time O(n)
 - vector operations on strided arrays: dot products, vector norms
 - generalized vector addition
 - ightharpoonup S/DAXPY y = ax + y
- Level 2 (1988): operations take quadratic time $O(n^2)$
 - matrix-vector operations, including generalized matrix-vector multiplication
 - $\mathbf{y} = a\mathbf{A}\mathbf{x} + b\mathbf{y}$
- Level 3 (1990): operations take cubic time $O(n^3)$
 - matrix-matrix operations, including generalized matrix multiplication
 - GEMM: y = aAB + bC

Arithmetic Intensity (AI): Examples

Evaluate AI for 3 standard algorithms from BLAS Levels 1-3

case	BLAS function	
1	DAXPY	$y = \alpha x + y$
2	DGEMV	$\mathbf{y} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$
3	DGEMM	$C = \alpha AB + \beta C$

- 1. Find computational work **W** (FLOPs)
 - Work is property of chosen algorithm and is independent of platform
 - In these (above) cases work depends only on input size: W=W(n)
- 2. Find communication = memory traffic **Q** (bytes)
 - Unlike W, Q depends heavily on details of platform, such as cache hierarchy design. Initially, we'll make the "perfect cache" assumption
 - 2. $Q(n) = Q_r(n) + Q_w(n)$: read and write data traffic differs

Calculating FLOP/s

- typically FLOP = one floating-point operation.
 - multiplication, addition, subtraction, comparison of two single-precision floating point numbers
 - division, square-root, other complex operations must be considered separately, they are more costly in terms of clock-cycles
 - double-precision operations generally take twice as long

Example: basic Matrix Multiplication

MIPS: Million-of-Instructions-Per-Second: measure of integer performance

Arithmetic Intensity: Examples

case	BLAS function	
1	DAXPY	$y = \alpha x + y$
2	DGEMV	$y = \alpha A x + \beta y$
3	DGEMM	$\mathbf{C} = \alpha \mathbf{A} \mathbf{B} + \beta \mathbf{C}$

Empirical performance data capture

Nsight Compute CLI (command line interface)

// NSight Compute Profiling CLI for AI: time, FLOPs, mem-bytes ncu -k-vectorAdd --metrics

smsp_sass_thread_inst_executed_op_fadd_pred_on.sum,smsp_sass_thread_inst_executed_op_ffma_pred_on.sum,smsp_sass_thread_inst_executed_op_fmul_pred_on.sum,dram_bytes.sum,lts_t_bytes.sum,l1tex_t_bytes.sum,sm_cycles_elapsed.avg,sm_cycles_elapsed.avg.per_second ./vecadd cudart.exe

// RESULTS: for simple vectorAdd kernel

[Vector addition of 33554432 float elements]

CUDA kernel launch with 131072 blocks of 256 threads

==PROF== Profiling "vectorAdd": 0%....50%....100% - 3 passes

Test PASSED. All elements agree between CPU and GPU within tolerance threshold ftol = 0.00001

[1500] vecadd cudart.exe@127.0.0.1

vectorAdd(float const*, float const*, float*, int), 2021-Jan-25 23:24:27, Context 1, Stream 7 Section: Command line profiler metrics

dram_bytes.sum	Mbyte	439.45
Iltex_t_bytes.sum	Mbyte	402.65
ltst_bytes.sum	Mbyte	402.71
sm_cycles_elapsed.avg	cycle	891,502.60
sm_cycles_elapsed.avg.per_second	cycle/usecond	584.99
<pre>smspsass_thread_inst_executed_op_fadd_pred_on.sum</pre>	inst	33,554,432
<pre>smspsass_thread_inst_executed_op_ffma_pred_on.sum</pre>	inst	0
<pre>smsp_sass_thread_inst_executed_op_fmul_pred_on.sum</pre>	inst	0

Nsight Compute CLI Profiling

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

SETS contain SECTIONS contain METRICS

- ncu --list-sets
- ncu --list-sections
- ncu --query-metrics (there are LOTS, 100s)
- Profile using a set and a section for a kernel <kernel_name>
 - console output results
- ncu -k vectorAdd --set default --section MemoryWorkloadAnalysis cudart vecadd.exe
 - output results to a report file
- ncu -k vectorAdd -o vecadd_profile_rpt --set default -section MemoryWorkloadAnalysis cudart vecadd.exe