Boletín de Problemas 4: ECUACIONES DE NUDOS Y MALLAS

Problema 1. Determinar las tensiones de los nudos A y B usando el método de los nudos, y las potencias en la resistencia R_1 y la fuente de intensidad. Datos: $I_g = 10$ A, $R_1 = R_2 = R_3 = 1\Omega$.

Solución: $V_A = 15 \text{ V}$; $V_B = 10 \text{ V}$, $P_{R1} = 25 \text{ W}$, $P_{Ig} = 150 \text{ W}$ cedida

Problema 2. Determinar las tensiones de los nudos en el circuito de la f gura y la intensidad por R_2 . Datos: $I_g = 10$ A, $R_1 = 2\Omega$, $R_2 = 2\Omega$ y $R_3 = R_4 = R_5 = 4\Omega$.

Solución: $V_A = 30 \text{ V}$; $V_B = 20 \text{ V}$; $V_C = 20 \text{ V}$; $I_{R2} = 5 \text{ A}$

Problema 3. Determinar las tensiones de los nudos en el circuito de la f gura y la potencia total consumida por las resistencias. Datos: $E_g = 20 \text{ V}$, $R_1 = 2\Omega$, $R_2 = 2\Omega$ y $R_3 = 4\Omega$, $R_4 = 4\Omega$, $R_5 = 4\Omega$, $R_g = 2\Omega$.

Solución: $V_A = 12 \text{ V}$; $V_B = 8 \text{ V}$; $V_C = 8 \text{ V}$; $P_R = 80 \text{ W}$

Problema 4. Determinar las tensiones de los nudos en el circuito de la f gura y la potencia cedida por la fuente. Datos: $E_g = 11 \text{ V}$, $R_1 = 2\Omega$, $R_2 = 4\Omega$ y $R_3 = 2\Omega$, $R_4 = 4\Omega$, $R_5 = 1\Omega$.

Solución: $V_A = -5 \text{ V}$; $V_B = 6 \text{ V}$; $V_C = 1 \text{ V}$; P = 44 W

Problema 5. Determinar las tensiones de los nudos en el circuito de la figura y las potencias cedidas por las fuentes. Datos: $E_g=20$ V, $I_g=4$ A, $R_1=R_2=R_3=R_4=R_5=2\,\Omega$.

Solución: $V_A=20~{
m V}; V_B=11~{
m V}; V_C=13~{
m V}; P_V=160~{
m W}; P_I=52~{
m W}$

Problema 6. Determinar las intensidades de malla y la potencia generada por la fuente en el circuito de la figura. Datos: $E_g=4$ V, $R_1=1$ Ω , $R_2=2$ Ω y $R_3=2$ Ω .

Solución: $I_a = 1$ A, $I_b = 1.5$ A, $P_g = 6$ W

Problema 7. Determinar las intensidades de malla en el circuito de la figura y la potencia total disipada. Datos: $I_g = 12$ A, $R_1 = R_2 = R_3 = R_4 = R_5 = R_g = 2 \Omega$.

Solución: $I_a = -6$ A; $I_b = -3$ A; $I_c = -3$ A; P = 144 W

Problema 8. Determinar las intensidades de malla en el circuito de la figura y la potencia cedida por la fuente. Datos: $I_g = 8 \text{ A}$, $R_1 = 2 \Omega$, $R_2 = 1 \Omega$ y $R_3 = 2 \Omega$, $R_4 = 1 \Omega$, $R_5 = 1 \Omega$.

Solución: $I_a=0.5~\mathrm{A}$; $I_b=-3~\mathrm{A}$; $I_c=5~\mathrm{A}$; $P=76~\mathrm{W}$

Problema 9. Determinar las intensidades de malla en el circuito de la figura y las potencias cedidas por las fuentes. Datos: $I_g = 5$ A, $E_g = 10$ V, $R_1 = R_2 = R_3 = R_4 = R_5 = 2 \Omega$.

Solución: $I_a=3$ A; $I_b=5$ A; $I_c=4$ A; $P_{Ig}=120$ W; $P_{Eg}=-10$ W

Problema 10. Escribir las ecuaciones de nudos del circuito de la figura.

Solución: