

Las estructuras de Lewis son representaciones sencillas de iones y compuestos, que facilitan el recuento exacto de electrones y constituyen una base importante para predecir estabilidades relativas.

Se utilizan con frecuencia al estudiar las propiedades de las moléculas.

Hidrógeno	H•	H•
Carbono	•Ç•	•¢•
Agua	н;о∶н	н-о-н
Etileno	н н С :: С Н Н	H H C=C H H
Acetileno	H:C:::C:H	H-C≣C-F

Podemos representar la **formación de enlaces** utilizando símbolos de Lewis para mostrar los átomos constituyentes.

La formación de la molécula de H_2 a partir de dos átomos de H se puede representar así:

$$H \cdot + \cdot H \longrightarrow H : H$$

Así, cada átomo de hidrógeno adquiere un segundo electrón y alcanza la configuración electrónica estable, con dos electrones del gas noble helio.

La formación de un enlace entre dos átomos de cloro para dar una molécula de Cl_2 se puede representar de forma similar:

¿Que son esos puntos que se ponen a cada elemento?

Los electrones de valencia son los electrones que se encuentran en el nivel de energía más alto del átomo, estos son los responsables de la interacción entre átomos de distintas especies o entre los átomos de una misma. Los electrones en los niveles de energía externos son aquellos que serán utilizados en la formación de compuestos.

 $Capa de valencia = 8e^-$

Al escribir estructuras de Lewis, normalmente indicamos con una línea cada par de electrones compartido entre dos átomos, y los pares de electrones no compartidos se dibujan como puntos.

Siguiendo esta convención, las estructuras de Lewis para H_2 y Cl_2 se dibujan así:

GRUPO	IA	ПА	ПА	IVA	VA	VIA	VIIA	VIIIA
# electrones de Valencia	1	2	3	4	5	6	7	8
	$\operatorname{H}^{\bullet}$	e Be	В.	Č :	N:	0	F	Ne
E L E	Li•	•• Mg	Å1.	Si	P :	S	Cl	Ar
M E N	Na•	Ča	Ğa.	Ge	As :	Se	Br	Kr
T O S	K•	Šr	Îñ.	\$n.	Sb.	Te	Ĭ	Xe
	Rb•	Ba	Ťå.	Pb	Bi•	Po	At	Rn

Regla del octeto

Formulada por Lewis, nos dice que <u>un átomo diferente del hidrogeno</u> tiende a formar enlaces ganando, perdiendo o compartiendo electrones, hasta quedar rodeado por ocho electrones de valencia.

Un octeto significa tener cuatro pares de electrones de valencia dispuestos alrededor del átomo.

<u>La regla del octeto funciona principalmente para los elementos del segundo periodo de la tabla periódica</u>. Estos elementos tienen subniveles 2s y 2p que pueden contener un total de ocho electrones.

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Regla del octeto

Difluoruro de oxígeno

Enlaces múltiples.

Wrong, this has too many electrons!

Wrong, no octet

Correct. Triple bond obeys the octet rule.

Enlaces múltiples.

Al compartirse un par de electrones, se forma un solo enlace, al que generalmente llamamos enlace sencillo.

En muchas moléculas, los átomos completan un octeto compartiendo más de un par de electrones entre ellos.

Cuando se comparten dos pares de electrones, dibujamos dos líneas, que representan un doble enlace.

En el dióxido de carbono, por ejemplo, se forman enlaces entre carbono, que tiene cuatro electrones de capa de valencia, y oxígeno, que tiene seis:

¿Como dibujar estructuras de Lewis?

- Sumar los electrones de valencia de todos los átomos. En el caso de un anión, sume un electrón al total por cada carga negativa. En el caso de un catión, reste un electrón por cada carga positiva.
- Escriba los símbolos de los átomos para indicar cuáles átomos están unidos entre sí, conéctelos con un enlace sencillo (un guion, que representa dos electrones). Las fórmulas químicas suelen escribirse en el orden en que los átomos se conectan en la molécula o ion, como en el HCN. El átomo central es por lo general el átomo menos electronegativo que los que lo rodean.
- Complete los octetos de los átomos unidos al átomo central. Recuerde que el hidrógeno sólo puede tener dos electrones.

• Coloque los electrones que sobren en el átomo central, <u>incluso si ello da lugar a más de un octeto</u>.

• Si no hay suficientes electrones para que el átomo central tenga un octeto, <u>pruebe con enlaces</u> <u>múltiples</u>. Utilice uno o más de los pares de electrones no compartidos de los átomos unidos al átomo central para formar dobles o triples enlaces.

Para NF₃

Formula

Organizar los átomos

Sumar e⁻ Valencia

acomodar e

Estructura de Lewis

N 5e⁻ F 7e⁻ X 3 = 21e⁻

Total 26e⁻

Escriba la estructura de Lewis para el (CO₃²-).

Paso 1 – Contar los e- de Valencia: $C \rightarrow 4$ (2s²2p²) y $O \rightarrow 6$ (2s²2p⁴) temenos un anion con carga -2, se deben sumar en el total de e-

$$4 + (3 \times 6) + 2 = 24$$
 electrones de valencia

Paso 2 -Determinar el número de electrones necesarios para formar los octetos.

(C) 8 electrones + (O)
$$3 \times 8$$
 electrones = 32

Paso 3 -Determinar el número de enlaces

$$32 - 24 = 8$$
 electrones compartidos $8/2 = 4$ enlaces

Paso 4 – Dibujar la molécula. El C es menos electronegativo, pongámoslo al centro.

Paso 5 - Completar octetos

Paso 6 -Agregar cargas formales

Posibles estructuras para el (CH₂O)

$$H - C - O - H$$
 $-1 + 1$
 $H = 0 0$
 $H = 0$
 H

Las estructuras de Lewis con elementos cuya carga es elevada, son menos comunes que aquellas con una carga pequeña.

En la estructura de Lewis, los átomos cuya carga es negativa, por lo general se colocan con los elementos más electronegativos.

¿Cuál es la estructura correcta para el CH₂O?

Resonancia.

- No siempre existe una única estructura de Lewis que pueda explicar las propiedades de una molécula o ion.
- Existen moléculas que pueden tener varias estructuras equivalentes <u>sin</u> <u>que se pueda dar preferencia a una sobre las demás</u>

Resonancia.

- No son diferentes tipos de moléculas, solo hay un tipo.
- Las estructuras son equivalentes.
- Sólo difieren en la distribución de los electrones, no de los átomos.

Ejemplos comunes: O_3 , NO_3^- , SO_4^{2-} , NO_2 , y benceno.

or

Resonancia.

Escribir las distintas formas resonantes del ácido nítrico HNO_3

O también

Carga formal.

Cuando dibujamos una estructura de Lewis, estamos describiendo la forma en que los electrones se distribuyen en una molécula (o ion). En algunos casos, es posible dibujar varias estructuras de Lewis distintas que obedezcan la regla del octeto. ¿Cómo decidimos cuál es la más razonable?

Carga formal.

Para calcular la carga formal de cualquier átomo en una estructura de Lewis, asignamos los electrones al átomo como sigue:

- 1. Todos los electrones no compartidos (no enlazantes) se asignan al átomo en el que se encuentran.
- 2. Se asigna la mitad de los electrones enlazantes a cada átomo del enlace.

¿Cual es la estructura de Lewis correcta para PO₄3-?

$$\begin{bmatrix} : \ddot{O} = 1 \\ : \ddot{O} = P = 1 \\ \vdots \ddot{O} = P = 1 \\ : \ddot{O} : \ddot{O} : \end{bmatrix}^{3-} \begin{bmatrix} : \ddot{O} = 1 \\ 0 & \ddot{O} = P = 1 \\ \vdots \ddot{O} : \ddot{O} : \end{bmatrix}^{3-} \\ \vdots \ddot{O} : \ddot{O} :$$

Las cargas formales de los átomos se muestran en rojo. A la izquierda, el átomo de P tiene un octeto; a la derecha, el átomo de P tiene un **octeto expandido** de cinco pares de electrones.

Se utiliza comúnmente la estructura de la derecha para el ion fosfato porque tiene cargas formales más pequeñas en los átomos.

- 1. Moléculas con número impar de electrones.
- 2. Moléculas en las que un átomo tiene menos de un octeto.
- 3. Moléculas en las que un átomo tiene más de un octeto.

1. Moléculas con número impar de electrones

En casi todas las moléculas el número de electrones es par, y hay un apareamiento completo de los electrones. No obstante, en unas cuantas moléculas, como ClO_2 , NO y NO_2 , el número de electrones es impar.

Es imposible aparear totalmente estos electrones, y tampoco puede lograrse un octeto en torno a todos los átomos.

El NO contiene $5e^- + 6e^- = 11$ electrones de valencia. Las dos estructuras de Lewis más importantes para esta molécula son:

2. Moléculas en las que un átomo tiene menos de un octeto

Un segundo tipo de excepción se da cuando hay menos de ocho electrones alrededor de un átomo en una molécula o ion poliatómico.

Ésta también es una situación relativamente rara y suele encontrarse en compuestos de boro y berilio.

Por ejemplo, consideremos el trifluoruro de boro, BF_3 . Si seguimos los primeros cuatro pasos del procedimiento para dibujar estructuras de Lewis, llegaremos a la siguiente estructura:

Sólo hay seis electrones alrededor del átomo de boro. En esta estructura de Lewis, las cargas formales de los átomos de B y F son cero.

Más importante

Menos importantes

3. Moléculas en las que un átomo tiene más de un octeto

La tercera clase de excepciones, y la más grande, consiste en moléculas o iones en los que hay más de ocho electrones en la capa de valencia de un átomo.

Si dibujamos la estructura de Lewis para el PCl_5 , por ejemplo, nos vemos obligados a "expandir" la capa de valencia y colocar 10 electrones alrededor del átomo de fósforo central:

Sólo se observan capas de valencia expandidas en elementos a partir del periodo 3 de la tabla periódica

Ejemplos de octetos expandidos.

$$[SiF_6]^{2-}$$

 $Si \rightarrow e^- de \ valencia = 4$
 $F \rightarrow e^- de \ valencia = 7$

$$PCl_5$$

 $P \rightarrow e^- de \ valencia = 5$
 $Cl \rightarrow e^- de \ valencia = 7$

$$XeF_2$$

 $Xe \rightarrow e^- de \ valencia = 8$
 $F \rightarrow e^- de \ valencia = 7$

¿Porque se expande el octeto?

• Los elementos del tercer periodo en adelante tienen orbitales s, p y d sin llenar.

Orbitales para la capa de valencia de un átomo de fósforo

- Cuanto más grande sea el átomo central, más electrones podrán rodearlo. Por tanto, los casos de capas de valencia expandidas aumentan al incrementarse el tamaño del átomo central.
- El tamaño de los átomos circundantes también es importante. Las capas de valencia expandidas se presentan con mayor frecuencia cuando el átomo central está unido a los átomos más pequeños y más electronegativos, como F, Cl y O.

Ejercicios.

- CH₄
 BH₃
- 4. HCN
- 5. BeF₂

GRUPO	IA	ПА	ПА	IVΑ	VA	VIA	VIIA	VIIIA
# electrones de Valencia	1	2	3	4	5	6	7	8
	H^{ullet}	Be	В.	Č :	N:	0	F	Ne
E L E	Li•	Mg	Ål.	Si	P	S	.Cl	Ar
M E N	Na•	Ča	Ğa.	Ge	As	Se	Br	Kr
T O S	K•	Sr	Îñ.	Sn.	Sb.	Te	Ĭ	Xe
	Rb•	Ba	Ťå.	Pb.	Bi	Po	At	Rn

Geometría molecular.

¿Qué es la geometría molecular?

La geometría de una molécula nos dice como están distribuidos sus átomos en el espacio, los ángulos y las distancias de enlace.

Esta geometría nos ayuda a predecir propiedades como reactividad, polaridad, magnetismo, actividad biológica, etc.

Teoría de repulsión de pares de electrones de la capa de valencia (RPECV)

Es un modelo que tiene como objetivo determinar la geometría de una molécula. Ya que los pares de electrones alrededor de un átomo central (pares de electrones libres y/o pares de electrones enlazados) están cargados negativamente, entonces éstos tienden a alejarse para minimizar la repulsión electrostática entre ellos.

Los pares de electrones se repelen entre sí, tanto si están en enlaces químicos (pares enlazantes) como si no están compartidos (pares solitarios). Los pares de electrones se disponen alrededor de un átomo con orientaciones que minimicen las

TABLA 9.1 Geometrías de dominios electrónicos en función del número de dominios de electrones

Número de dominios electrónicos	Acomodo de dominios electrónicos	Geometría de dominios electrónicos	Ángulos de enlace predichos
2	180°	Lineal	180°
3	120°	Trigonal plana	120°
4	109.5°	Tetraédrica	109.5°
5	1200	Bipirámide trigonal	120° 90°
6	90°	Octaédrica	90°

TABLA 9.2 Geometrías de dominios de electrones y formas moleculares para moléculas con dos, tres y cuatro dominios de electrones alrededor del átomo central

Total de dominios de electrones	Geometría de dominios de electrones	Dominios enlazantes	Dominios no enlazantes	Geometría molecular	Ejemplo
2	Lineal	2	0	B A B	ö=с=ö
3	Trigonal plana	3	0	B B B Trigonal plana	#:
		2	i	B Angular	
4	Tetraédrica	4	0	B B B	H C H
		3	1	B B B Pirámide trigonal	н _Н
		2	2	B A A B B A Angular	о. н н

TABLA 9.3 Geometrías de dominios de electrones y formas moleculares para moléculas con cinco y seis dominios de electrones alrededor del átomo central

Total de dominios de electrones	Geometría de dominios de electrones	Dominios enlazantes	Dominios no enlazantes	Geometría molecular	Ejemplo
5 Bipirámide trigonal	5	0	B B B B Bipirámide trigonal	PCl ₅	
	4	1	B B B Balancín	SF ₄	
		3	2	B B B B B B B B B B B B B B B B B B B	CIF ₃
		2	3	B B Lineal	XeF ₂
6	Octaédrica	6	0	B B B B Octaédrica	SF ₆
		5	1	B B B B Pirámide cuadrada	BrF ₅
		4	2	B B B Cuadrada plana	XeF ₄

Lineal.

Trigonal planar.

Clase	# de átomos unidos al átomo central	# de pares electrones libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_3	3	0	triangular plana	triangular plana
AX ₂ E	2	1 B	triangular plana	Forma doblada
	. A	120° B		
	AX ₃ Eiemple	os:	AX ₂	E

Ejemplos: SO₃, BX₃, (X=F, Cl, Br, I) NO₃-, CO₃²⁻

Ejemplos: SO₂, O₃, PbCl₂, SnBr₂

Tetraédrica.

Clase	# de átomos unidos al átomo central	# de pares de electrones libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_4	4	0	tetrahédrica	tetrahédrica
AX_3E	3	1	109.5°	B
AX_2E_2	2	2	A.	A
				B
AX_4		AX_3E		-
•	Ejemplos: CH ₄ , SiCl ₄ ,	Ejemplo	os:	AX_2E_2
- 1	SO ₄ ²⁻ , ClO ₄ -	NH ₃ , PF ClO ₃ -, F	3	Ejemplos:
			130	H ₂ O, OF ₂ , SCI ₂
Tetrahed	ral	Trigonal pyramidal	Bent (V	shaped)

Bipiramidal trigonal.

Clase	central	átomo central
AX ₅	5	0
	AX_5	
	Ejemp	olos:
	X= ha	sX ₅ , donde logeno, SOF ₄
	Trigonal bi	ipyramidal

de átomos

unidos al átomo

de electrones

libres en el

Arreglo de los pares de electrones

Geometría molecular

triangular bipiramidal triangular bipiramidal

Clase	# de átomos pegados al átomo central	# de pares libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX ₅	5	0	triangular bipiramidal	triangular bipiramidal
AX_3E_2	3	2	triangular bipiramidal	Forma de T
		jemplos: CIF ₃ , BrF ₃	B B B B	F — CI :

Clase	# de átomos pegados al átomo central	# de pares libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_5	5	0	triangular bipiramidal	triangular bipiramidal
AX_2E_3	2	3	triangular bipiramidal	lineal
	AX ₂ E ₃	Ejemplos: XeF ₂ , I ₃ -, IF ₂ -	B A B	

Posiciones Axial y ecuatorial: a partir de sistemas de 5 atomos enlazados al atomo central, se encuentran dos diferentes posiciones para los enlaces, y dos angulos de enlace (90 y 120°).

Axial (vertical) y Ecuatorial (horizontal)

Las repulsiones equatorial-equatorial son mas débiles que las repulsions axial-equatorial, mientras que las axial axial son Fuertes.

Cuando le sea possible, ubique los pares solitarios en estos sistemas de 5 atomos enlazandos al atomo central, en posiciones *ecuatoriales*

Octaédrica.

Clase	# de átomos pegados al átomo central	# de pares libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_6	6	0	octahédrico	octahédrico
	AX ₆	Ejemplos: SF ₆ , IOF ₅	90° B	B B B
O	ctahedral			

Clase	# de átomos pegados al átomo central	# de pares libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_6	6	0	octahédrico	octahédrico
AX ₅ E	5	1	octahédrico _B	piramidal cuadrada
	AX ₅ E	Ejemplos: BrF ₅ , TeF ₅ ⁻ ,	B B B	F F Br F
	Square pyramidal	XeOF ₄		

Clase	# de átomos pegados al átomo central	# de pares libres en el átomo central	Arreglo de los pares de electrones	Geometría molecular
AX_6	6	0	octahédrico	octahédrico
AX_6 AX_4E_2	4	2	octahédrico	cuadrada plana
	AX ₄ E ₂	Ejemplos: XeF ₄ , ICl ₄ ⁻	B B B	F\ _F Xe F\ _F

Square planar

Resumen: Pasos para dibujar una molécula y definir su forma

Paso 1 Dibujar estructura Lewis. **Formula** molecular Paso 2 Haga el conteo total de los e-s de **Estructura** los atomos alrededor del atomo Lewis central y del atomo central Arreglo Paso 3 Ajuste si es necesario electrones enlaces multiples o pares libres Paso 4 Conteo de los electores enlazantes y no Angulo de enlazantes y determine enlace forma Forma molecular (AX_mE_n)

PROBLEMA: Dibuje la forma de la molecula y prediga los angulos de enlace de **(a)** PF₃ y **(b)** COCl₂.

SOLUCION: (a) Para PF₃ hay 26 electrones de Valencia (5 del P + 7 x 3 del F), su estructura Lewis es esta:

Al organizar mediante enlaces simples los átomos de F, el P quedará con un par libre, por tanto su forma sería tetraédrica, con un ángulo de enlace ideal de 109.5°, pero al existir el par libre, el ángulo será inferior a 109.5, por las repulsiones que crea el par libre del fosforo.

La forma molecular para PF_3 es trigonal piramidal (AX_3E).

(b)En COCl₂ hay 24 electrones de Valencia (4 del C + 6 O + 7 x 2 Cl) e⁻. Su estructura de Lewis es:

 AX_3E

Hay 3 átomos enlazandose al atomo central de C, siendo un **Sistema trigonal planar**, con un ángulo ideal de 120°, pero al haber un doble enlace y pares libres, el ángulo entre Cl-C-Cl será inferior y/o superior a **120°**

Moléculas sin pares de electrones libres (PRIMARIAS)

AB ₂	AB_3	AB_4	AB_5	AB ₆
BeCl ₂	BF ₃	CH₄	PCI ₅	SF ₆
:Ç1—Be—Ç1:	: <u>F</u> —₽—F:	₩ н— ç — н н		
2 pares de e- de enlace	3 pares de e- de enlace	4 pares de e- de enlace	5 pares de e- de enlace	6 pares de e- de enlace
180°	120°	109.5°	90 y 120°	90°
0-0-0				
Lineal	Triangular plana	Tetraédrica	Bipirámide trigonal	Octaédrica

Moléculas con pares de electrones libres (PL) y pares de electrones de enlace (PE).(DERIVADAS)

	SnCl ₂	PE=2	• •	Angular
AB ₂ E	:Çl— <u>;;</u> —Çl:	PL=1		ángulo menor 120°
	NH₃	PE=3) •	Pirámide
AB ₃ E	н— й—н	PL=1		trigonal
J	H			107°
	H ₂ O	PE=2	• • •	Angular
AB ₂ E ₂	н — ;; — н	PL=2	o.I.	105°

Moléculas con pares de electrones libres (PL) y pares de electrones de enlace (PE).(continuación)

AB ₄ E	SF ₄	PE=4 PL=1	Balancín
AB ₃ E ₂	CIF ₃	PE=3 PL=2	Forma de T
AB ₅ E	BrF ₅	PE=5 PL=1	Pirámide cuadrada
AB ₄ E ₂	XeF ₄	PE=4 PL=2	Plano cuadrada

ESPECIE	LEWIS	TRPECV		GEOMETRÍA REAL
(n° de e-)	(estructura electrónica)	Geometría elect. ideal /	Distorsiones angulares	
CO_2		0-0-0	no existen	o=c=o
(16)	<u>o</u> =c= <u>o</u>	o=c=o	$OCO = 180^{\circ}$	lineal
	Н	lineal H	no existen	Н
SiH ₄	l 'i'	Ϊ	HSiH = 109.5°	Ϊ
(8)	н— si—н 	H Si H	H3IH = 109.3	H Si-H
	11	tetraédrica		tetraédrica
H ₂ O (8)	н— <u>ō</u> —н	H O H tetraédrica	HOH < 109.5° debido a las mayores repulsiones de los pares libres	H O H angular
I ₃ ⁻ (22)	==	bipirámide trigonal	bipirámide trigonal	l ⊖
		orphaniae argona	orphamiae argonar	
NO ₃ ⁻ (24)	-2/3 N -2/3 O I 1 -2/3 O I 0 0 0 0 0 0 0 0 0	O O N -2/3 O trigonal plana	no hay	o-2/3 + -2/3 N \inc -2/3 O O trigonal plana

ESPECIE	LEWIS		ECV	GEOMETRÍA REAL
(n° de e ⁻)	(estructura electrónica)	Geometría elect. ideal /	Distorsiones angulare	es .
[AlCl ₂ F ₂] (32)		CI BO AI F F Tetraédrica	ClAlCl > 109.5° FAlF < 109.5° debido a las menores repulsiones de los pares de enlace Al-F	CI PO F F Tetraédrica distorsionada
SiBrClF.		Si F Br Si F tetraédrica	FSiCl < ClSiBr ClSiBr < BrSiI debido a las mayores repulsiones ejercidas por los pares más voluminosos	Br Si F tetraédrica distorsionada

NO ₂ ⁻ (18)		Trigonal plana	ONO < 120° debido a las mayores repulsiones del par libre	angular
SeF ₄ (34)	IF — Se — FI	F. Se—: F bipirámide trigonal	$F_{ax}SeF_{ax} < 180^{\circ}$ $F_{ec}SeF_{ec} < 120^{\circ}$ debido a las mayores repulsiones del par libre	F. Se F Se F silla de montar distorsionada
IF ₄ ⁻ (36)	F F F	F F octaédrica	no hay; las repulsiones de los pares libres se compensan	F F F planocuadrada
SO ₃ F ⁻ (32)	1 F I O S S O O O O O O O O O O O O O O O O	F S O ^{-1/3} O ^{-1/3} tetraédrica	FSO < 109.5° OSO > 109.5° debido a las mayores repulsiones ejercidas por los enlaces	F S O ^{-1/3} O ^{-1/3} tetraédrica distorsionada

PF ₃ O (32)		F P F F tetraédrica	FPF < 109.5° OPF > 109.5° debido a las mayores repulsiones del enlace doble (FPF 102.5°)	PFF F tetraédrica distorsionada
PCl ₃ O (32)	101 	CI P CI CI tetraédrica	C1PC1 < 109.5° OPC1 > 109.5° debido a las mayores repulsiones del enlace doble (C1PC1 103.3°)	CI PCI CI CI tetraédrica distorsionada
PBr ₃ O (32)	IOI Br — P — BrI BrI	Br Br Br tetraédrica	BrPBr < 109.5° OPBr > 109.5° debido a las mayores repulsiones del enlace doble (BrPBr 106°)	O Br Br Br Br Br Br Br Br

		ı		
[BBr ₂ I ₂] ⁻ (32)	IBrI ⊖_ IBr — B—_II I <u>I</u> I	Br Br Br Br Br	IBI > 109.5° BrBBrl < 109.5° debido a las menores repulsiones de los pares de enlace B-Br	Br B
SBr ₂ F ₂ O (40)	Br S = 0	Br S=0 Br Simon Br Simon	BrSBr < 120° OSF > 90° debido a las mayores repulsiones del enlace doble	Br S O Br S O F bipirámide trigonal distorsionada
AsCl ₃ O (32)	IOI <u>C</u> I—As— <u>C</u> II <u>C</u> II	CI AS CI CI tetraédrica	ClAsCl < 109.5° OAsCl > 109.5° debido a las mayores repulsiones del enlace doble	CI AS CI CI CI tetraédrica distorsionada
IBr ₂ ⁺ (20)	I <u>B</u> r — <u>I</u> — <u>Br</u> I	⊕ Br Br tetraédrica	BrIBr < 109.5° debido a las mayores repulsiones de los pares libres	Br Br angular

XeF ₂ (22)	IFI (Xe I I <u>F</u> I	Xe—: F bipirámide trigonal	no hay distorsiones angulares	F Xe F lineal
BI ₃ (24)		trigonal plana	no hay	B trigonal plana
AsH ₃ (8)	H— As—H H	H AS H H tetraédrica	HAsH < 109.5° (91.0°, debido a las mayores repulsiones del par libre)	H AS H H pirámide trigonal
PH ₃ (8)	H—P—H H	H P H H tetraédrica	HPH < 109.5° (93.8°, debido a las mayores repulsiones del par libre)	H P H H pirámide trigonal

NH ₃ (8)	H —N —H 	H N H H tetraédrica	HNH < 109.5° (107.3°, debido a las mayores repulsiones del par libre)	H H H pirámide trigonal
NF ₃ (26)	I_F — N — F_I 	F N F F tetraédrica	FNF < 109.5° (102.1°, debido a las mayores repulsiones del par libre)	F N F F pirámide trigonal
PBr ₃ (26)	IBr—P—Brl — IBri	Br Br tetraédrica	BrPBr < 109.5° debido a las mayores repulsiones del par libre	Br Br Br pirámide trigonal
BC1F ₂ (24)		F B F trigonal plana	FBF < 120° C1BF > 120° debido a las menores repulsiones de los pares de enlace B–F	CI B F trigonal plana

SF ₄ O (40)	(F) S = 0	F. S=O F bipirámide trigonal	FaxSFax < 180° FecSFec < 120° debido a las mayores repulsiones del enlace doble	F. S=O F bipirámide trigonal
HCN (10)	H—C≡NI	H—C≡NI lineal	no hay	H—C≡NI lineal
BrF ₃ (28)	IFI Br—FI IFI	Br—F Br—F Brimani Brimani B	F F F FaxBrFax < 180° debido a las repulsiones de los pares libres	F Br F F F forma de T distorsionada
BrF ₂ ⁺ (20)	Br (F) F)	F ⊕ Br ····································	FBrF < 109.5° debido a las repulsiones de los pares libres	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$

BrF ₄ ⁻ (36)	Θ FI Br FI	F Br F	no hay; las repulsiones de los pares libres se compensan	Planocuadrada
ClO ₂ ⁻ (20)	ICI=O 	O	OC1O < 109.5°	-1/ ₂ Cl -1/ ₂
	O	tetraédrica	debido a las mayores repulsiones de los :	angular C _{2v}
PF ₃ O (32)	101 	P F F	FPF < 109.5° OPF > 109.5° debido a las mayores	F P F
	_	tetraédrica	repulsiones del enlace doble	tetraédrica distorsionada
PF ₅ (40)	F F F F F F F F F F	F. P—F F bipirámide trigonal	no hay	F. P—F F bipirámide trigonal
	_	_	_	

BrF ₃ (28)	F Br—F <u> </u> F	Br—F	$ \begin{array}{c} $	$F \stackrel{Br}{\underset{\alpha}{\smile}} F$
		bipirámide trigonal	α < 90°	forma de T distorsionada
		Hay otros isómeros	debido a las repulsiones	
		menos estables	de los :	
IF ₃ O (34)	IF FI	F F	$F_{ax}IF_{ax} < 180^{\circ}$ $F_{ec}IO < 120^{\circ}$	F \(\bigc\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		bipirámide trigonal	debido a las repulsiones	silla de montar
		Hay otros isómeros	del:	distorsionada
		menos estables	y de 💳	
N ₂ O ₄ (34)	$ \begin{array}{c c} \hline{O} & \bigoplus & \bigoplus & \bigoplus & \bigoplus \\ \hline{O} & & & & \bigoplus & \bigoplus \\ \hline{O} & & & & & & \bigoplus \\ \hline{O} & & & & & & \bigoplus \\ \hline{O} & & & & & & \bigoplus \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & & & & & & & \\ \hline{O} & &$	entorno trigonalplano para cada N La molécula puede ser plana o con los fragmentos NO ₂ situados en planos perpendiculares	α > 120° debido a las mayores repulsiones entre los enlaces	O N N O La molécula puede ser plana o con los fragmentos NO2 situados en planos perpendiculares