NPV

- 1. Today's date is January 1, 2015 and Sanjana needs some advice. Suppose Project A has cash flows of \$32 starting at the end of this year, and continuing on for three more years (thus 4 years total). The cash flows then decrease by 2% each year after that, for 4 years. After that, cash flows increase by 8% for 5 years, and then decrease by 3% for 3 years. Assume the discount rate is 12%.
- a) What is the NPV for Project A? [5 points] **Solution:** NPV = \$232.14
- 2. Today's date is January 1, 2015 and Wei needs some advice. Project A has cash flows of \$89 starting at the beginning of this year (i.e. today), and continuing on for three more years (thus 4 years total). The cash flows then increase by 3% each year after that, for 5 years. After that, cash flows decrease by 8% for 6 years. Assume the discount rate is 12%.
- a) What is the NPV for Project A? [5 points] **Solution:** NPV = \$683.65

Cash Flows

- 3. The current date is January 1, 2015. You are thinking about building a plant for a project run by Sager Enterprises that will cost \$40K today. The plant will start producing immediately, and will generate revenues for 3 years, starting at the end of this year (December 31, 2015). Each year, the revenue will be \$80K. The material costs for the project each year will be \$40K, also starting at the end of this year. Labor costs will start at \$10K at the end of this year, and stay constant. The plant has a 4 year depreciation schedule, as prescribed by the IRS. Assume a tax rate of 40%, and that all taxes are paid at the end of the year. Assume a discount rate of 9%. At the end of the project, you expect to sell the plant for \$2K (i.e. on December 31, 2017). You need to maintain working capital levels of \$15K at the end of this year and the end of next year; assume new working capital is fully recovered by December 31, 2017. The current level of working capital on January 1, 2015 is 0.
- a) Should you invest in this plant? [15 points]

Yes: NPV = \$17.53K

b) Suppose that the tax rate is now 50%. By how much will your NPV decrease? [5 points] **Solution:** New NPV = \$13.08K. Decrease is \$4.45K.

	1/1/2015	12/31/2015	12/31/2016	12/31/2017	Tax rate	0.40
Revenues		80	80	80	Depreciation Schedule	4
COGS		40	40	40	Discount Rate	0.09
Labor		10	10	10		
EBITDA		30	30	30		
Taxes on EBITDA		12	12	12		
After-tax EBITDA		18	18	18		
Depreciation Tax Shield		4	4	4		
Capex	40					
Salvage				2		
Book Value				10		
Tax on Salvage				3.2		
NWC Level		15	15	0		
NWC Change		15	0	-15		
Opp Costs						
Cash Flow	-40	7	22	42.2		
NPV	\$17.53	at tax = .4				
NPV	\$13.08	at tax = .5				

4. The current date is January 1, 2015. You are thinking about building a plant for a project run by Wayne Enterprises that will cost \$50K today. The plant will start producing immediately, and will generate revenues for 3 years, starting at the end of this year (December 31, 2015). Each year, the revenue will be \$120K. The material costs for the project each year will be \$40K, also starting at the end of this year. Labor costs will start at \$20K this year, and stay constant. The plant has a 4 year depreciation schedule, as prescribed by the IRS. Assume a tax rate of 40%, and that all taxes are paid at the end of the year. Assume a discount rate of 9%. At the end of the project, you expect to sell the plant for \$20K (i.e. on December 31, 2017). You need to maintain working capital levels of \$10K at the end of this year and the end of next year; assume new working capital is fully recovered by December 31, 2017. The current level of working capital on January 1, 2015 is 0.

a) Should you invest in this plant? [15 points]

Solution: yes, NPV = \$65.46

b) Suppose the depreciation schedule for the plant is now over 5 years, instead of 4 years, as originally prescribed by the IRS. By how much does your NPV change? [5 points] Solution: NPV decreases by \$3.30 \$0.21

	1/1/2015	12/31/2015	12/31/2016	12/31/2017	Tax rate	0.40
Revenues		120	120	120	Depreciation Schedule	4
COGS		40	40	40	Discount Rate	0.09
Labor		20	20	20		
EBITDA		60	60	60		
Taxes on EBITDA		24	24	24		
After-tax EBITDA		36	36	36		
Depreciation Tax Shield		5	5	5		
Capex	50					
Salvage				20		
Book Value				12.5		
Tax on Salvage				-3		
NWC Level		10	10	0		
NWC Change		10	0	-10		
Opp Costs						
Cash Flow	-50	31	41	68		
NPV	\$65.46					
Suppose Depreciation Sch	edule is ov	er 5 years in:	stead of 4.			
By how much does NPV ch	nange?					
NOW Depreciation amoun	nt is 10 per	year; DTS = 4	1			
New Book value of asset a	it sale is 20	, instead of 1	2.5			
DTS lost	(\$12.66)					
DTS Gained	\$10.13					
NPV of tax change on salv	\$2.32					
Total NPV change	(\$0.21)					

5. True/False and Explain:

A shorter depreciation schedule increases the NPV of a project, all else equal (and assuming the discount rate is positive and constant over time).

Solution: True, a shorter depreciation schedule implies a larger depreciation amount each year, and therefore a larger depreciation tax shield. Given the discount rate, the NPV of larger tax shields realized sooner rather than later is higher than the NPV of smaller tax shields realized over a longer amount of time. You can show this analytically as well.

6. True/False and Explain:

An increase in initial inventory requirements for a project decreases the project's NPV, all else equal.

Solution: True, an increase in inventory is effectively a cash expenditure; reductions in cash flows lead to reductions in NPV.