What does translation invariance mean in the context of designing neural network architectures for processing images? Network should respond similarly to the same image patch, regardless of where the patch appears in the image Network should network should focus on local regions, without regard for the contents of the image in distant regions Network should exploit some of the known structure in natural images Network should be easy to train on image data	Which of the following statements is correct? For the same input and output dimensions, a convolutional layer will typically have fewer parameters than a fully connected layer For the same input and output dimensions, a convolutional layer can express more functions than a fully connected layer For the same input and output dimensions, a convolutional layer will learn a better hidden representation given any data For the same input and output dimensions, a convolutional layer will learn a better representation on tabular data where we do not assume any structure a priori on how features interact	
What does <i>locality</i> mean in the context of designing neural network architectures for processing images? Network should respond similarly to the same image patch, regardless of where the patch appears in the image Network should focus on local regions, without regard for the contents of the image in distant regions Network should exploit some of the known structure in natural images Network should be easy to train on image data	If a 100 x 100 pixel grayscale image is to be converted into a hidden representation of dimension 100 using a fully connected layer, roughly how many parameters will be needed in that layer? 106 106 104 102 108 108	
Complete the following analogy.	Suppose f and g are functions over the integers. Which of the following expression correctly computes their convolution evaluated at an integer i?	
Suppose we design a convolution kernel K with P parameters/weights for use with a 1024 x 1024 grayscale image. Then the image shape is changed to 1024 x 1024 x 3 to accommodate 3 color channels. Keeping the spatial dimensions of K the same, we design a new kernel K to operate on color images and to output 10 channels. Let P' be the number of parameters/weights in K. (Focus on weights for this question, ignore biases). Which of the following is a correct statement regarding the relationship between P and P'? P' = 30 * P P' = 10 * P P' = 10 * P RAT:	What is the price we pay for massively reducing the number of parameters in a convolutional layer (compared to a fully connected layer)? If data does not follows the assumptions of translation invariance and locality, our models might struggle even to fit our training data. Training a convolutional layer is harder than training a fully connected layer We can no longer use regularization to control overfitting in a convolutional layer We can no longer use non-linear activations such as the ReLU (rectified linear unit)	

9.		LI/LZ Regularizatio	n 就是:	
Fix a value of x and consider the function $f(w) = (w-x)^2$. Clearly the minimizer of $f(w)$ is x and the minimum value of f is zero. What will be the minimizer of the regularized function $g(w) = -(w-x)^2 + lambda * w^2$?		在 activation function 被加前,一个leyer就是一个		
x + lambda * w ²	$g(w) = cw - x^2 + xw^2$	regression.		
x + lambda * x x / (1 + lambda)	$= w^{2} - 2wx + x^{2} + \lambda w^{2}$ $= C(t\lambda) w^{2} - 2w\lambda + x^{2}$	而以 Lz regression 就是在这个 regression 后加上个 penalty term 然后再应用 activation function		
	w= 2x 2(HN) at glw 最小	- regularization: L(W)=	SEENO BE FEATURES. EXCENTION TO THE FEATURES. EXCENTION	
	= 	(aka (osso regression)	(sparsity 1) hyperparameter	
(0,			Typer parameter	
Suppose a reference model had a la	ayer like this:			
layers.Dense(16, activation="relu")		使WS布里的环境 Lz Cregulanzation :(LW): (apa nigle regression)	SCPX - weight it) = E(Y; - EW; X;;)+ \ EW;	
What happens if you change this layer to the following to get a new model:		(aka nidre regression)	A 11	
layers.Dense(16, kernel_regu	larizer=regularizers.(2(0.0), activation="relu")_		hyperparameter	
You get an error			- Урег роция	
The new model is the same a	is the reference model			
The new model underfits mo	re compared to the reference model			
	e compared to the reference model			