MÉTODOS COMPUTACIONAIS

DR. MARCOS NAPOLEÃO RABELO
DR. WANDERLEI M. PEREIRA JUNIOR

Solução de equações unidimensionais: Método da bisseção

Grupo de Pesquisa e Estudos em Engenharia (GPEE)

MÉTODO DA BISSEÇÃO

O método da bisseção faz parte dos métodos numéricos para determinar-se solução de equações. Basicamente aqui estamos falando de determinar o zero de uma função (também chamado de raiz - Figura 1).

Figura 1 – Ilustração de equações com nenhuma, uma ou várias soluções [1].

Quando a equação é simples, é comum o emprego de técnicas ou fórmulas pré-estabelecidas que permitem a solução da equação de forma rápida. São exemplos:

- Fórmula de Bhaskara;
- Método de Briot-Ruffini.

Para equações que possuem "grau de complexidade" elevado essa determinação pode ser feita de maneira numérica por meio de aproximações. Dentro desse apanhado de técnicas de aproximação de raízes surgem os modelos numéricos de redução sucessiva de intervalos (também chamado de métodos de confinamento), são exemplos de métodos com essa característica:

- Método da bisseção;
- Método da seção áurea.

O MÉTODO DA BISSEÇÃO

O método da bisseção consiste em determinar o valor da solução de uma função dentro de um intervalo pré-estabelecido. Portanto o método explora esse intervalo dada uma função contínua $f: [a,b] \to \mathbb{R}$. Porém para obter-se uma raiz dentro desse intervalo deve-se respeitar a condição de existência dada pelo Teorema de Bolzano:

Seja uma função f(x) contínua em um intervalo [a,b], tal que, f(a). f(b) < 0. Então a função f(x) possui pelo menos uma raiz no intervalo [a,b].

Na Figura 2 é possível verificar que para a equação citada anteriormente o valor do f(0). f(4) = 0 é de aproximadamente -107,24.

Figura 2 – Gráfico da função f(x) = 8 - 4.50. (x - senx)[1].

Sabendo que existe uma raiz da função no intervalo é possível a determinação utilizando o algoritmo de bisseção que toma como principio reduções sucessivas do intervalo pela metade do seu valor.

As reduções sucessivas do intervalo seguem o seguinte critério:

$$x^{t+1} = \frac{a^t + b^t}{2} \tag{1}$$

$$f(x^{t+1}).f(a^t) < 0$$
 Novo intervalo: $[a^t, x^{t+1}]$

$$f(x^{t+1}). f(a^t) > 0$$
 Novo intervalo: $[x^{t+1}, b^t]$

Figura 3 – interpretação gráfica da função e do intervalo [2, 3].

Estado inicial

Após t = 1 iterações

Percorrendo algumas iterações São obtidos os valores das reduções de intervalo:

$$x^1 = \frac{2+3}{2} = 2,5$$

$$f(x^1).f(2) = -15,04$$

Novo intervalo: [2, 2,5]

A erro de cada iteração para esse método é dada pela avaliação do novo intervalo conforme equação 4.

$$tol = \frac{b - a}{2}$$

O algoritmo da bisseção é apresentado em sequência:

<u>Algoritmo</u>

```
ERRO = 100, TOL = 1E-2, [A, B]
      while ERRO > TOL:
             X = eq. 1
             Avalie f(a) = f(x)
5
             if FA . FX < 0:
               A = A \in B = X
             else:
               A = X \in B = B
9
             ERRO = eq. 4.
10
      RAIZ = X
```


Figura 4 – Resultados do método da bisseção.

	а	Ь	x	f(a).f(x)	erro
0	2.000000	3.000000	2.500000	-1.721769e+00	0.250000
1	2.000000	2.500000	2.250000	4.255388e+00	0.125000
2	2.250000	2.500000	2.375000	5.974407e-01	0.062500
3	2.375000	2.500000	2.437500	-2.418217e-02	0.031250
4	2.375000	2.437500	2.406250	8.276258e-02	0.015625
5	2.406250	2.437500	2.421875	1.293409e-02	0.007812
6	2.421875	2.437500	2.429688	4.175084e-04	0.003906
7	2.429688	2.437500	2.433594	-1.523526e-04	0.001953
8	2.429688	2.433594	2.431641	-5.720309e-05	0.000977
9	2.429688	2.431641	2.430664	-9.654156e-06	0.000488
10	2.429688	2.430664	2.430176	1.411385e-05	0.000244
11	2.430176	2.430664	2.430420	8.310818e-07	0.000122
12	2.430420	2.430664	2.430542	-2.185632e-07	0.000061
13	2.430420	2.430542	2.430481	-4.361243e-08	0.000031
14	2.430420	2.430481	2.430450	4.386145e-08	0.000015
15	2.430450	2.430481	2.430466	4.162334e-11	0.000008

lterações

Convergência

REFERÊNCIAS

[1] Gilat A, Suramanian V. Métodos numéricos para engenheiros e cientistas: uma introdução com aplicações usando o MATLAB. 2008.