Fuzzy logic, fuzzy sets and fuzzy relations

Shabana K M

PhD Research Scholar Department of Computer Science and Engineering

IIT Palakkad

15 June 2021

Fuzzy logic vs Classical logic

Classical logic

- based on two values True and False
- might be inadequate to represent human reasoning
- cannot handle propositions with variable answers

Fuzzy logic vs Classical logic

Classical logic

- based on two values True and False
- might be inadequate to represent human reasoning
- cannot handle propositions with variable answers

Fuzzy logic

- the truth value of variables may be any real number between 0 and 1, both inclusive
- handles the concept of partial truth
- represents vagueness and imprecise information

Fuzzy logic vs. Crisp logic

(a) Crisp logic

Fuzzy logic vs. Crisp logic

Fuzzy logic vs. Crisp logic

Sets

- a collection of elements, also referred to as members
- can be finite or infinite

Sets

- a collection of elements, also referred to as members
- can be finite or infinite

Crisp sets

- an element is either a member of the set or not
- example red belongs to the set of colors whereas apple doesn't

Sets

- a collection of elements, also referred to as members
- can be finite or infinite

Crisp sets

- an element is either a member of the set or not
- example red belongs to the set of colors whereas apple doesn't

Fuzzy Sets

- allow elements to be partially in a set
- each element given a degree of membership
- membership value ranges from 0 (not an element) to 1 (a member)
- example consider the set of young people a 100 year old person will not be a member, but people at the age of 20, 30, or 40 years can have varying degrees of membership

- lacksquare A fuzzy set A is characterized by a function $\mu_A:\mathcal{X} o[0,1]$
 - $-\mu_A$ is called the membership function of A
 - defined over the universe of discourse ${\mathcal X}$
 - for each $x \in \mathcal{X}$, the value $\mu_A(x)$ is called the grade of membership of x in A

- lacksquare A fuzzy set A is characterized by a function $\mu_A:\mathcal{X} o[0,1]$
 - $-\mu_A$ is called the membership function of A
 - defined over the universe of discourse ${\mathcal X}$
 - for each $x \in \mathcal{X}$, the value $\mu_A(x)$ is called the grade of membership of x in A
- Let $x \in \mathcal{X}$. Then x is called
 - **not included** in the fuzzy set A if $\mu(x) = 0$ (no member)
 - **fully included** if $\mu(x) = 1$ (full member)
 - o partially included if $0 < \mu(x) < 1$ (fuzzy member)

- lacksquare A fuzzy set A is characterized by a function $\mu_A:\mathcal{X} o[0,1]$
 - μ_A is called the membership function of A
 - defined over the universe of discourse ${\mathcal X}$
 - for each $x \in \mathcal{X}$, the value $\mu_A(x)$ is called the grade of membership of x in A
- Let $x \in \mathcal{X}$. Then x is called
 - o **not included** in the fuzzy set A if $\mu(x) = 0$ (no member)
 - **fully included** if $\mu(x) = 1$ (full member)
 - o partially included if $0 < \mu(x) < 1$ (fuzzy member)
- Crisp sets are special cases of fuzzy sets with 0 and 1 as membership degrees

- lacksquare A fuzzy set A is characterized by a function $\mu_A:\mathcal{X} o[0,1]$
 - $-\mu_A$ is called the membership function of A
 - defined over the universe of discourse ${\mathcal X}$
 - for each $x \in \mathcal{X}$, the value $\mu_A(x)$ is called the grade of membership of x in A
- Let $x \in \mathcal{X}$. Then x is called
 - o **not included** in the fuzzy set A if $\mu(x) = 0$ (no member)
 - **fully included** if $\mu(x) = 1$ (full member)
 - o **partially included** if $0 < \mu(x) < 1$ (fuzzy member)
- Crisp sets are special cases of fuzzy sets with 0 and 1 as membership degrees
- The set of elements with a non-zero membership is called the Support of the fuzzy set

Membership function for Fuzzy sets¹

¹Image source: Google

■ A fuzzy set is often represented as a pair (\mathcal{X}, μ)

- A fuzzy set is often represented as a pair (\mathcal{X}, μ)
- lacksquare $\mathbb{F}(\mathcal{X})$ denote the set of all fuzzy sets on \mathcal{X}

- A fuzzy set is often represented as a pair (\mathcal{X}, μ)
- $\blacksquare \mathbb{F}(\mathcal{X})$ denote the set of all fuzzy sets on \mathcal{X}
- For finite universes \mathcal{X} , a fuzzy set can be represented as $A = \sum_{x \in \mathcal{X}} \mu(x)/x$

- A fuzzy set is often represented as a pair (\mathcal{X}, μ)
- $\blacksquare \mathbb{F}(\mathcal{X})$ denote the set of all fuzzy sets on \mathcal{X}
- For finite universes \mathcal{X} , a fuzzy set can be represented as $A = \sum_{x \in \mathcal{X}} \mu(x)/x$
- and for infinite universes $\mathcal X$ as $A = \int_{x \in \mathcal X} \mu(x)/x$

- A fuzzy set is often represented as a pair (\mathcal{X}, μ)
- $\blacksquare \mathbb{F}(\mathcal{X})$ denote the set of all fuzzy sets on \mathcal{X}
- For finite universes \mathcal{X} , a fuzzy set can be represented as $A = \sum_{x \in \mathcal{X}} \mu(x)/x$
- and for infinite universes \mathcal{X} as $A = \int_{x \in \mathcal{X}} \mu(x)/x$
- In these representations, ∑,∫ and / have only symbolic meaning

Figure: Consider the fuzzy set $A = \{\text{real numbers near 0}\}$ represented as $A = \int_{x \in \mathcal{X}} \mu(x)/x$ where $\mu(x) = \frac{1}{1+x^2}$

 A fuzzy membership function is different from a statistical probability distribution

- A fuzzy membership function is different from a statistical probability distribution
- $lue{}$ Consider the fuzzy set A defined as $\{ two \ or \ so \}$. In this case, the universal set $\mathcal X$ is the set of positive integers

- A fuzzy membership function is different from a statistical probability distribution
- Consider the fuzzy set A defined as $\{two \ or \ so\}$. In this case, the universal set \mathcal{X} is the set of positive integers
- A membership function $\mu_A(x)$ can be defined as follows: $\mu_A(1) = 0.5, \mu_A(2) = 1, \mu_A(3) = 0.5, \mu_A(4) = 0, ...$

- A fuzzy membership function is different from a statistical probability distribution
- $lue{}$ Consider the fuzzy set A defined as $\{ two \ or \ so \}$. In this case, the universal set $\mathcal X$ is the set of positive integers
- A membership function $\mu_A(x)$ can be defined as follows: $\mu_A(1) = 0.5, \mu_A(2) = 1, \mu_A(3) = 0.5, \mu_A(4) = 0, ...$

■ Support: $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$

- **Support:** $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$
- The fuzzy set A is said to be **empty** $(A = \emptyset)$ iff $\forall x \in \mathcal{X}$: $\mu_A(x) = 0$

- **Support:** $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$
- The fuzzy set A is said to be **empty** $(A = \emptyset)$ iff $\forall x \in \mathcal{X}$: $\mu_A(x) = 0$
- Height: $hgt(A) = sup_{x \in \mathcal{X}} \ \mu_A(x)$

- **Support:** $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$
- The fuzzy set A is said to be **empty** $(A = \emptyset)$ iff $\forall x \in \mathcal{X}$: $\mu_A(x) = 0$
- **Height:** $hgt(A) = sup_{x \in \mathcal{X}} \ \mu_A(x)$
- The fuzzy set A is said to be **unimodal** if hgt(A) is the membership degree for only one element of \mathcal{X}

- **Support:** $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$
- The fuzzy set A is said to be **empty** $(A = \emptyset)$ iff $\forall x \in \mathcal{X}$: $\mu_A(x) = 0$
- **Height:** $hgt(A) = sup_{x \in \mathcal{X}} \ \mu_A(x)$
- The fuzzy set A is said to be **unimodal** if hgt(A) is the membership degree for only one element of \mathcal{X}
- The fuzzy set A is said to be **normalized** iff hgt(A) = 1

- **Support:** $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$
- The fuzzy set A is said to be **empty** $(A = \emptyset)$ iff $\forall x \in \mathcal{X}$: $\mu_A(x) = 0$
- **Height:** $hgt(A) = sup_{x \in \mathcal{X}} \ \mu_A(x)$
- The fuzzy set A is said to be **unimodal** if hgt(A) is the membership degree for only one element of \mathcal{X}
- The fuzzy set A is said to be **normalized** iff hgt(A) = 1
 - The fuzzy sets other than ∅ with height less than 1 are said to be subnormal
 - A is subnormal $\Leftrightarrow 0 < hgt(A) < 1$
 - A non-empty subnormal fuzzy set A can be normalized into the set A^* by dividing the membership function of A by hgt(A) $\forall x \in \mathcal{X}: \mu_{A^*}(x) = \mu_A(x)/hgt(A)$

■ Cardinality: For a fuzzy set A with finite support, $card(A) = \sum_{x \in A} \mu_A(x)$

- Cardinality: For a fuzzy set A with finite support, $card(A) = \sum_{x \in A} \mu_A(x)$
- lacksquare A fuzzy set in whose support is single point in $\mathcal X$ with membership equal to one is called a **fuzzy singleton**

- Cardinality: For a fuzzy set A with finite support, $card(A) = \sum_{x \in A} \mu_A(x)$
- A fuzzy set in whose support is single point in \mathcal{X} with membership equal to one is called a **fuzzy singleton**
- Two fuzzy sets A and B are equal (A = B) iff $\forall x \in \mathcal{X} : \mu_A(x) = \mu_B(x)$

- Cardinality: For a fuzzy set A with finite support, $card(A) = \sum_{x \in A} \mu_A(x)$
- A fuzzy set in whose support is single point in \mathcal{X} with membership equal to one is called a **fuzzy singleton**
- Two fuzzy sets A and B are equal (A = B) iff $\forall x \in \mathcal{X} : \mu_A(x) = \mu_B(x)$
- A fuzzy set A is said to be included in a fuzzy set B, $(A \subseteq B)$ iff $\forall x \in \mathcal{X} : \mu_A(x) \leq \mu_B(x)$

Fuzzy sets - Other definitions

- Cardinality: For a fuzzy set A with finite support, $card(A) = \sum_{x \in A} \mu_A(x)$
- A fuzzy set in whose support is single point in \mathcal{X} with membership equal to one is called a **fuzzy singleton**
- Two fuzzy sets A and B are equal (A = B) iff $\forall x \in \mathcal{X} : \mu_A(x) = \mu_B(x)$
- A fuzzy set A is said to be included in a fuzzy set B, $(A \subseteq B)$ iff $\forall x \in \mathcal{X} : \mu_A(x) \leq \mu_B(x)$
- For a fuzzy set A any element $x \in \mathcal{X}$ that satisfies $\mu_A(x) = 0.5$ is called a **crossover point**

For a fuzzy set
$$A = (\mathcal{X}, \mu)$$
 and $\alpha \in [0, 1]$

• $A^{\geq \alpha} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha\}$ is called its α -cut

- $A^{\geq \alpha} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha\}$ is called its α -cut
- $A^{>\alpha} = \{x \in \mathcal{X} : \mu_A(x) > \alpha\}$ is called its **strong** α -cut

- $A^{\geq \alpha} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha\}$ is called its α -cut
- $A^{>\alpha} = \{x \in \mathcal{X} : \mu_A(x) > \alpha\}$ is called its **strong** α -cut
- Support of A $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$ is also a strong α -cut $A^{>0}$

- $A^{\geq \alpha} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha\}$ is called its α -cut
- $A^{>\alpha} = \{x \in \mathcal{X} : \mu_A(x) > \alpha\}$ is called its **strong** α -cut
- Support of A $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$ is also a strong α -cut $A^{>0}$
- The 1-cut $A^{\geq 1} = \{x \in \mathcal{X} : \mu_A(x) = 1\}$ is called the **core/kernel** of A

- $A^{\geq \alpha} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha\}$ is called its α -cut
- $A^{>\alpha} = \{x \in \mathcal{X} : \mu_A(x) > \alpha\}$ is called its **strong** α -cut
- Support of A $supp(A) = \{x \in \mathcal{X} : \mu_A(x) > 0\}$ is also a strong α -cut $A^{>0}$
- The 1-cut $A^{\geq 1} = \{x \in \mathcal{X} : \mu_A(x) = 1\}$ is called the **core/kernel** of A
- The **level** of a fuzzy set A is defined as $A^{=\alpha} = \{x \in \mathcal{X} : \mu_A(x) = \alpha\}$

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- \blacksquare supp(A) =

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- hgt(A) =

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A \text{ is normalized!}$
- A is

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A$ is normalized!
- A is unimodal
- \bullet core(A) =

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A$ is normalized!
- A is unimodal
- $core(A) = \{4\}$
- \blacksquare crossover(A) =

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A$ is normalized!
- A is unimodal
- $core(A) = \{4\}$
- $crossover(A) = \{2\}$
- $A^{>0.5} =$

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A$ is normalized!
- A is unimodal
- $core(A) = \{4\}$
- $crossover(A) = \{2\}$
- $A^{>0.5} = \{3, 4, 5\}$
- The 0.3-level set $A^{=0.3}$ =

- This set can be represented as $\mathbf{A} = 0.0/0 + 0.0/1 + 0.5/2 + 0.8/3 + 1/4 + 0.7/5 + 0.3/6 + 0.0/7 + 0.0/8 + 0.0/9$
- $supp(A) = \{2, 3, 4, 5, 6\}$
- $hgt(A) = 1 \rightarrow A$ is normalized!
- A is unimodal
- $core(A) = \{4\}$
- $crossover(A) = \{2\}$
- $A^{>0.5} = \{3, 4, 5\}$
- The 0.3-level set $A^{=0.3} = \{6\}$

■ Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$
- Power of a fuzzy set A^{α} : $\mu_{A^{\alpha}}(x) = \{\mu_{A}(x)\}^{\alpha}$ for all $x \in \mathcal{X}$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$
- Power of a fuzzy set A^{α} : $\mu_{A^{\alpha}}(x) = \{\mu_{A}(x)\}^{\alpha}$ for all $x \in \mathcal{X}$
- Cartesian Product $A \times B$: $\mu_{A \times B}(x, y) = \min\{\mu_A(x), \mu_B(y)\}$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$

- $\mathcal{X} = \{x_1, x_2, x_3, x_4\}$
- **A** = $0.5/x_1 + 0.4/x_2 + 0.6/x_4$
- **B** = $0.1/x_1 + 0.5/x_2 + 1/x_3 + 0.1/x_4$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$
- Power of a fuzzy set A^{α} : $\mu_{A^{\alpha}}(x) = \{\mu_{A}(x)\}^{\alpha}$ for all $x \in \mathcal{X}$
- Cartesian Product $A \times B$: $\mu_{A\times B}(x,y) = \min\{\mu_A(x), \mu_B(y)\}$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$

- $\mathcal{X} = \{x_1, x_2, x_3, x_4\}$
- **A** = $0.5/x_1 + 0.4/x_2 + 0.6/x_4$
- **B** = $0.1/x_1 + 0.5/x_2 + 1/x_3 + 0.1/x_4$
- **A** \cup **B** = $0.5/x_1 + 0.5/x_2 + 1/x_3 + 0.6/x_4$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$
- Power of a fuzzy set A^{α} : $\mu_{A^{\alpha}}(x) = \{\mu_{A}(x)\}^{\alpha}$ for all $x \in \mathcal{X}$
- Cartesian Product $A \times B$: $\mu_{A\times B}(x,y) = \min\{\mu_A(x), \mu_B(y)\}$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$

- $\mathcal{X} = \{x_1, x_2, x_3, x_4\}$
- **A** = $0.5/x_1 + 0.4/x_2 + 0.6/x_4$
- **B** = $0.1/x_1 + 0.5/x_2 + 1/x_3 + 0.1/x_4$
- **A** \cup **B** = $0.5/x_1 + 0.5/x_2 + 1/x_3 + 0.6/x_4$
- **A** \cap **B** = $0.1/x_1 + 0.4/x_2 + 0/x_3 + 0.1/x_4$

- Union $A \cup B$: $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- Intersection $A \cap B$: $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ for all $x \in \mathcal{X}$
- **Complement** A^c : $\mu_{A^c}(x) = 1 \mu_A(x)$
- Power of a fuzzy set A^{α} : $\mu_{A^{\alpha}}(x) = \{\mu_{A}(x)\}^{\alpha}$ for all $x \in \mathcal{X}$
- Cartesian Product $A \times B$: $\mu_{A\times B}(x,y) = \min\{\mu_A(x),\mu_B(y)\}$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$

- $\mathcal{X} = \{x_1, x_2, x_3, x_4\}$
- **A** = $0.5/x_1 + 0.4/x_2 + 0.6/x_4$
- **B** = $0.1/x_1 + 0.5/x_2 + 1/x_3 + 0.1/x_4$
- **A** \cup **B** = $0.5/x_1 + 0.5/x_2 + 1/x_3 + 0.6/x_4$
- **A** \cap **B** = $0.1/x_1 + 0.4/x_2 + 0/x_3 + 0.1/x_4$
- $A^c = 0.5/x_1 + 0.6/x_2 + 1.0/x_3 + 0.4/x_4$

Commutativity

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Commutativity

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativity

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativity

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativity

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Idempotence

$$A \cup \mathcal{X} = \mathcal{X}, \ A \cap \mathcal{X} = A$$

$$A \cup A = A, \ A \cap A = A$$

$$A \cup \emptyset = A, \ A \cap \emptyset = \emptyset$$

$$(A^{c})^{c} = A$$

Idempotence

$$A \cup \mathcal{X} = \mathcal{X}, A \cap \mathcal{X} = A$$

 $A \cup A = A, A \cap A = A$
 $A \cup \emptyset = A, A \cap \emptyset = \emptyset$
 $(A^c)^c = A$

De Morgan's Laws

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Idempotence

$$A \cup \mathcal{X} = \mathcal{X}, A \cap \mathcal{X} = A$$

 $A \cup A = A, A \cap A = A$
 $A \cup \emptyset = A, A \cap \emptyset = \emptyset$
 $(A^c)^c = A$

De Morgan's Laws

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Transitivity

If
$$A \subseteq B$$
, $B \subseteq C$, then $A \subseteq C$

• fuzzy sets defined over the Cartesian product of the universe of discourses $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$

- fuzzy sets defined over the Cartesian product of the universe of discourses $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$
- map elements of one universe, say \mathcal{X}_1 , to those of another universe, say \mathcal{X}_2 , and so on

- fuzzy sets defined over the Cartesian product of the universe of discourses $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$
- map elements of one universe, say \mathcal{X}_1 , to those of another universe, say \mathcal{X}_2 , and so on
- the Cartesian product, denoted as, $\mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_n$ is a collection of ordered pairs, such that

$$\mathcal{X}_{1}x\mathcal{X}_{2}x...x\mathcal{X}_{n} = \{(x_{1},x_{2},...,x_{n}) \mid x_{1} \in \mathcal{X}_{1}, x_{2} \in \mathcal{X}_{2},...,x_{n} \in \mathcal{X}_{n}\}$$

- fuzzy sets defined over the Cartesian product of the universe of discourses $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$
- map elements of one universe, say \mathcal{X}_1 , to those of another universe, say \mathcal{X}_2 , and so on
- the Cartesian product, denoted as, $\mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_n$ is a collection of ordered pairs, such that $\mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_n = \{(x_1, x_2, ..., x_n) \mid x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, ..., x_n \in \mathcal{X}_n\}$
- within a relation R, the n-tuples $(x_1, x_2, ..., x_n)$ have varying degree of memberships given by $\mu_R(x_1, x_2, ..., x_n)$

Fuzzy relations

- fuzzy sets defined over the Cartesian product of the universe of discourses $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$
- map elements of one universe, say \mathcal{X}_1 , to those of another universe, say \mathcal{X}_2 , and so on
- the Cartesian product, denoted as, $\mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_n$ is a collection of ordered pairs, such that $\mathcal{X}_1 \times \mathcal{X}_2 \times ... \times \mathcal{X}_n = \{(x_1, x_2, ..., x_n) \mid x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, ..., x_n \in \mathcal{X}_n\}$
- within a relation R, the n-tuples $(x_1, x_2, ..., x_n)$ have varying degree of memberships given by $\mu_R(x_1, x_2, ..., x_n)$
- membership values indicate the strength of the relation between the tuples

 $\qquad \qquad \mathcal{X} = \!\! \{ \text{typhoid, viral, cold} \}, \, \mathcal{Y} = \!\! \{ \text{running nose, high temp, shivering} \}$

- $\qquad \qquad \mathcal{X} = \!\! \{ \text{typhoid, viral, cold} \}, \, \mathcal{Y} = \!\! \{ \text{running nose, high temp, shivering} \}$
- The fuzzy relation R over $\mathcal{X} \times \mathcal{Y}$ can be represented by a matrix with elements from [0,1] as follows:

- $\qquad \qquad \mathcal{X} = \{ \text{typhoid, viral, cold} \}, \ \mathcal{Y} = \{ \text{running nose, high temp, shivering} \}$
- The fuzzy relation R over $\mathcal{X} \times \mathcal{Y}$ can be represented by a matrix with elements from [0,1] as follows:

	runningnose	hightemp	shivering
typhoid	(0.1	0.9	0.8
viral	0.2	0.9	0.7
cold	0.9	0.4	0.6

- $\qquad \mathcal{X} = \{ \text{typhoid, viral, cold} \}, \ \mathcal{Y} = \{ \text{running nose, high temp, shivering} \}$
- The fuzzy relation R over $\mathcal{X} \times \mathcal{Y}$ can be represented by a matrix with elements from [0,1] as follows:

	runningnose	hightemp	shivering
typhoid	(0.1	0.9	0.8
viral	0.2	0.9	0.7
cold	0.9	0.4	0.6

- **A** = $0.2/a_1 + 0.7/a_2 + 0.4/a_3$, **B** = $0.5/b_1 + 0.6/b_2$

- $\mathcal{X} = \{\text{typhoid, viral, cold}\}, \mathcal{Y} = \{\text{running nose, high temp, shivering}\}$
- The fuzzy relation R over $\mathcal{X} \times \mathcal{Y}$ can be represented by a matrix with elements from [0,1] as follows:

$$\begin{array}{cccc} & \textit{runningnose} & \textit{hightemp} & \textit{shivering} \\ \textit{typhoid} & 0.1 & 0.9 & 0.8 \\ \textit{viral} & 0.2 & 0.9 & 0.7 \\ \textit{cold} & 0.9 & 0.4 & 0.6 \\ \end{array}$$

- **A** = $0.2/a_1 + 0.7/a_2 + 0.4/a_3$, **B** = $0.5/b_1 + 0.6/b_2$
- $\mu_{A\times B}(x,y) = \min\{\mu_A(x), \mu_B(y)\} \text{ for all } x \in \mathcal{X}$

$$\mathbf{R} = \mathbf{A} \times \mathbf{B} = \begin{bmatrix} a_1 & b_2 \\ a_2 & 0.2 \\ 0.5 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$$

Consider the relation R: "x is considerably larger than y", where $x,y\in\mathbb{R}$

$$R(x, y) = \begin{cases} 0 & \text{for } x \le y \\ (x - y)/(10 \ y), & \text{for } y < x \le 11y \\ 1 & \text{for } x > 11y \end{cases}$$

Since fuzzy relations are only special fuzzy sets:

- propositions that hold true for fuzzy sets also hold true for fuzzy relations
- operations defined for fuzzy sets also applicable to fuzzy relations

Since fuzzy relations are only special fuzzy sets:

- propositions that hold true for fuzzy sets also hold true for fuzzy relations
- operations defined for fuzzy sets also applicable to fuzzy relations

Let R and S be two fuzzy relations on AxB

```
Union: \mu_{R \cup S}(a, b) = \max\{\mu_R(a, b), \mu_S(a, b)\}

Intersection: \mu_{R \cap S}(a, b) = \min\{\mu_R(a, b), \mu_S(a, b)\}

Complement: \mu_{R^c}(a, b) = 1 - \mu_R(a, b)
```

Since fuzzy relations are only special fuzzy sets:

- propositions that hold true for fuzzy sets also hold true for fuzzy relations
- operations defined for fuzzy sets also applicable to fuzzy relations

Let R and S be two fuzzy relations on AxB

```
Union: \mu_{R \cup S}(a, b) = \max\{\mu_R(a, b), \mu_S(a, b)\}

Intersection: \mu_{R \cap S}(a, b) = \min\{\mu_R(a, b), \mu_S(a, b)\}

Complement: \mu_{R^c}(a, b) = 1 - \mu_R(a, b)

Inverse: \mu_{R^{-1}}(a, b) = \mu_R(b, a)
```

Since fuzzy relations are only special fuzzy sets:

- propositions that hold true for fuzzy sets also hold true for fuzzy relations
- operations defined for fuzzy sets also applicable to fuzzy relations

Let R and S be two fuzzy relations on AxB

Union: $\mu_{R \cup S}(a, b) = \max\{\mu_{R}(a, b), \mu_{S}(a, b)\}$

Intersection: $\mu_{R \cap S}(a, b) = \min\{\mu_R(a, b), \mu_S(a, b)\}$

Complement: $\mu_{R^c}(a,b) = 1 - \mu_R(a,b)$

Inverse: $\mu_{R^{-1}}(a, b) = \mu_{R}(b, a)$

Composition: For fuzzy relations $R \in \mathbb{F}(\mathcal{X}_1 \times \mathcal{X}_2)$ and $S \in \mathbb{F}(\mathcal{X}_2 \times \mathcal{X}_3)$,

their composition or relational product $R \circ S$ is defined as:

$$\mu_{R\circ S}(x,y) = \max_{z\in\mathcal{X}_2} \ \min\{\mu_R(x,z),\mu_S(z,y)\} \ \text{for all } (x,y)\in\mathcal{X}_1\times\mathcal{X}_3$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 & y_1 & y_2 \\ x_2 & 0.5 & 0.1 \\ 0.2 & 0.9 \\ x_3 & 0.8 & 0.6 \end{cases}$$

$$S = \begin{cases} y_1 & z_2 & z_3 \\ y_2 & 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{cases}$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 & y_1 & y_2 \\ x_2 & 0.5 & 0.1 \\ 0.2 & 0.9 \\ x_3 & 0.8 & 0.6 \end{cases}$$

$$S = \begin{cases} y_1 & z_2 & z_3 \\ y_1 & 0.6 & 0.4 & 0.7 \\ y_2 & 0.5 & 0.8 & 0.9 \end{cases}$$

$$\mu_{R \circ S}(x_1, z_1) = \max\{\min\{\mu_R(x_1, y_1), \mu_S(y_1, z_1)\}, \min\{\mu_R(x_1, y_2), \mu_S(y_2, z_1)\}\}$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 & y_1 & y_2 \\ x_2 & 0.5 & 0.1 \\ 0.2 & 0.9 \\ x_3 & 0.8 & 0.6 \end{cases}$$

$$S = \begin{cases} y_1 & z_2 & z_3 \\ y_2 & 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{cases}$$

$$\begin{split} \mu_{R \circ S}(x_1, z_1) &= \max\{\min\{\mu_R(x_1, y_1), \mu_S(y_1, z_1)\}, \min\{\mu_R(x_1, y_2), \mu_S(y_2, z_1)\}\}\\ &= \max\{\min\{0.5, 0.6\}, \min\{0.1, 0.5\}\} \end{split}$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} \begin{pmatrix} 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{pmatrix}$$

$$S = \begin{cases} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{pmatrix}$$

$$\begin{split} \mu_{R\circ S}(x_1,z_1) &= \max\{\min\{\mu_R(x_1,y_1),\mu_S(y_1,z_1)\},\min\{\mu_R(x_1,y_2),\mu_S(y_2,z_1)\}\}\\ &= \max\{\min\{0.5,0.6\},\min\{0.1,0.5\}\}\\ &= \max\{0.5,0.1\} \end{split}$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} \begin{pmatrix} 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{pmatrix}$$

$$S = \begin{cases} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{pmatrix}$$

$$\begin{split} \mu_{R\circ S}(x_1,z_1) &= \max\{\min\{\mu_R(x_1,y_1),\mu_S(y_1,z_1)\},\min\{\mu_R(x_1,y_2),\mu_S(y_2,z_1)\}\}\\ &= \max\{\min\{0.5,0.6\},\min\{0.1,0.5\}\}\\ &= \max\{0.5,0.1\}\\ &= 0.5 \end{split}$$

$$X = (x_1, x_2, x_3), Y = (y_1, y_2), Z = (z_1, z_2, z_3)$$

$$R = \begin{cases} x_1 & y_2 \\ 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{cases}$$

$$S = \begin{cases} y_1 & z_2 & z_3 \\ y_2 & 0.6 & 0.4 & 0.7 \\ 0.5 & 0.8 & 0.9 \end{cases}$$

$$R \circ S = \begin{cases} x_1 & z_2 & z_3 \\ x_1 & 0.5 & 0.4 & 0.5 \\ 0.5 & 0.8 & 0.9 \\ 0.6 & 0.6 & 0.7 \end{cases}$$

References

- 1 https://cse.iitkgp.ac.in/~dsamanta/courses/sca/resources/ slides/FL-01%20Introduction.pdf
- 2 https://cse.iitkgp.ac.in/~dsamanta/courses/sca/resources/ slides/FL-02%20Fuzzy%20Rules.pdf
- 3 http://webhome.csc.uvic.ca/~mcheng/460/notes/fuzzy_logic.pdf
- 4 Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications, John Wiley & Sons, ISBN: 0-471-95636-8, https://www.researchgate.net/publication/260990913_Fuzzy_
 - Sets_Fuzzy_Logic_Fuzzy_Methods_with_Applications
- 5 https://en.wikipedia.org/wiki/Fuzzy_set

Image Sources

- 1 https://www.researchgate.net/figure/ Traditional-crisp-set-and-fuzzy-set-membership-functions_fig2_224605202
- 2 https://www.iitk.ac.in/eeold/archive/courses/2013/intel-info/d1pdf3.pdf
- 3 https://cse.iitkgp.ac.in/~dsamanta/courses/sca/resources/slides/FL-01%20Introduction.pdf
- 4 http://web.cecs.pdx.edu/~mperkows/CLASS_479/LECTURES479/FL001.PDF
- 5 http://webhome.csc.uvic.ca/~mcheng/460/notes/fuzzy_logic.pdf
- 6 http://osp.mans.edu.eg/elbeltagi/AI%20FuzzyRelations.pdf