

Übungsblatt LA 4

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

> Sie kennen die Begriffe Matrix, symmetrische/schiefsymmetrische Matrix, Einheitsmatrix, inverse Matrix, Transposition und deren wichtigste Eigenschaften.

> Sie können Matrizen addieren, subtrahieren und mit einem Skalar bzw. mit einer anderen Matrix multiplizieren und bestimmen, ob diese Operationen für gegebene Matrizen durchführbar sind oder nicht.

1. Aussagen über Matrizen

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Eine reelle 2x3 Matrix besteht aus 2 Zeilen und 3 Spalten.	Χ	
b) Eine reelle Zahl $x \in \mathbb{R}$ kann als $1x1$ Matrix aufgefasst werden.	Χ	
c) Ein Vektor $\vec{v} \in \mathbb{R}^3$ kann als reelle $3x1$ Matrix interpretiert werden.	Χ	
d) Eine reelle 2x3 Matrix hat 8 Komponenten.		X
e) Wenn A eine $2123x8248$ Matrix ist und B eine $8248x9178$ Matrix, dann ist die Summe $A + B$ definiert.		X
f) Wenn A eine $2123x8248$ Matrix ist und B eine $8248x9178$ Matrix, dann ist das Produkt $A \cdot B$ definiert.	Х	
g) Wenn \vec{u} und \vec{v} zwei Vektoren sind, dann ist das Produkt $\vec{v} \cdot \vec{u}^T$ definiert.	X	
h) Für zwei beliebige quadratische n x n Matrizen gilt: $A \cdot B = B \cdot A$.		X
i) Für jede beliebige Matrix gilt: $(((A^T)^T)^T)^T = (A^T)^T$.	Χ	
j) Hat eine Matrix genau 13 Komponenten, so handelt es sich entweder um eine $13x1$ oder eine $1x13$ Matrix.	X	
k) Wenn A eine $16x20$ Matrix und B eine $16x30$ Matrix ist, dann ist das Produkt $A^T \cdot B$ definiert.	X	
I) Für 2 beliebige $2x^2$ Matrizen A und B mit $A \neq B$ gilt: $A \cdot B \neq B \cdot A$.		Χ
m) Ist eine $2x^2$ Matrix sowohl symmetrisch als auch schiefsymmetrisch, dann gilt: $A=0$.	X	

2. Addition, Subtraktion, Transposition mit Matrizen

Berechnen Sie die folgenden Ausdrücke mit den gegebenen Matrizen.

$$A = \begin{pmatrix} 1 & 3 & -1 \\ 4 & -2 & 8 \end{pmatrix}, B = \begin{pmatrix} -3 & 9 & 3 \\ -6 & 6 & 3 \end{pmatrix}$$

a)
$$C = A + B$$

b)
$$C = -2A$$

c)
$$C = B/3$$

d)
$$C = 2B - A$$

$$D = \begin{pmatrix} 3 & 2 & 5 \\ -1 & 2 & 3 \end{pmatrix}, E = \begin{pmatrix} 1 & 8 & -2 \\ 3 & 0 & 1 \end{pmatrix}, F = \begin{pmatrix} 5 & 0 & 10 \\ 0 & -2 & 8 \end{pmatrix}$$

e)
$$D + E + F$$

f)
$$3D - 2(E + 5F)$$

g)
$$3D^{T} - 3(E + 2F)^{T}$$

e)
$$D + E + F$$
 f) $3D - 2(E + 5F)$ g) $3D^T - 3(E + 2F)^T$
h) $2(D + E) - 3(D^T - E^T)^T + 5(F - 2D)$

a)

$$\underline{\underline{C}} = A + B = \begin{bmatrix} 1 & 3 & -1 \\ 4 & -2 & 8 \end{bmatrix} + \begin{bmatrix} -3 & 9 & 3 \\ -6 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 + (-3) & 3 + 9 & -1 + 3 \\ 4 + (-6) & -2 + 6 & 8 + 3 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 12 & 2 \\ -2 & 4 & 11 \end{bmatrix}.$$

$$\underline{\underline{C}} = -2 \cdot A = \begin{bmatrix} (-2) \cdot 1 & (-2) \cdot 3 & (-2) \cdot (-1) \\ (-2) \cdot 4 & (-2) \cdot (-2) & (-2) \cdot 8 \end{bmatrix} = \begin{bmatrix} -2 & -6 & 2 \\ -8 & 4 & -16 \end{bmatrix}.$$

c)

$$\underline{\underline{C}} = \frac{B}{3} = \begin{bmatrix} \frac{-3}{3} & \frac{9}{3} & \frac{3}{3} \\ \frac{-6}{3} & \frac{6}{3} & \frac{3}{3} \end{bmatrix} = \underline{\begin{bmatrix} -1 & 3 & 1 \\ -2 & 2 & 1 \end{bmatrix}}$$

d)

$$\underline{\underline{C}} = 2 \cdot B - A = \begin{bmatrix} 2 \cdot (-3) - 1 & 2 \cdot 9 - 3 & 2 \cdot 3 - (-1) \\ 2 \cdot (-6) - 4 & 2 \cdot 6 - (-2) & 2 \cdot 3 - 8 \end{bmatrix} = \begin{bmatrix} -7 & 15 & 7 \\ -16 & 14 & -2 \end{bmatrix}$$

$$\begin{pmatrix} 3+1+5 & 2+8+0 & 5-2+10 \\ -1+3+0 & 2+0-2 & 3+1+8 \end{pmatrix} = \begin{pmatrix} 9 & 10 & 13 \\ 2 & 0 & 12 \end{pmatrix}$$

$$= \begin{pmatrix} 3.3 & 3.2 & 3.5 \\ 3.(-1) & 3.2 & 3.3 \end{pmatrix} - \begin{pmatrix} 2.1 & 2.8 & 2.(-2) \\ 2.3 & 2.0 & 2.1 \end{pmatrix} - \begin{pmatrix} 10.5 & 10.0 & 10.10 \\ 10.0 & 10.(-2) & 10.8 \end{pmatrix}$$

$$= \begin{pmatrix} 9-2-50 & 6-16-0 & 15+4-100 \\ -3-6-0 & 6-0+20 & 9-2-80 \end{pmatrix}$$

$$- \begin{pmatrix} -43 & -40 & -81 \\ -9 & 26 & -73 \end{pmatrix}$$

$$g) \quad 3D = 3(E + 2F)$$

$$= 3 \cdot \begin{pmatrix} 3 & -1 \\ 2 & 2 \\ 5 & 3 \end{pmatrix} - 3 \begin{pmatrix} 1 + 2 \cdot 5 & 8 + 2 \cdot 0 & -2 + 2 \cdot 10 \\ 3 + 2 \cdot 0 & 0 + 2 \cdot / - 2 \end{pmatrix} = 1 + 2 \cdot 8$$

$$= \begin{pmatrix} 9 & -3 \\ 6 & 6 \\ 15 & 9 \end{pmatrix} - 3 \cdot \begin{pmatrix} 11 & 3 \\ 8 & -4 \\ 18 & 17 \end{pmatrix}$$

$$= \begin{pmatrix} 9 - 3 \cdot 11 & -3 - 3 \cdot 3 \\ 6 - 3 \cdot 8 & 6 - 3 \cdot / - 4 \\ 15 - 3 \cdot 18 & 9 - 3 \cdot 17 \end{pmatrix} = \begin{pmatrix} -24 & -12 \\ -18 & 18 \\ -39 & -42 \end{pmatrix}$$

$$h)$$

$$h) \quad 2(D + E) - 3(D^T - E^T)^T + 5(F - 2D)$$

$$= 2 \cdot \begin{pmatrix} 4 & 10 & 3 \\ 2 & 2 & 4 \end{pmatrix} - 3 \cdot \begin{pmatrix} 3 - 1 & -1 - 3 \\ 2 - 8 & 2 - 0 \\ 5 + 2 & 3 - 1 \end{pmatrix} + 5 \cdot \begin{pmatrix} -1 & -4 & 0 \\ 2 & -6 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 9 & 20 & 6 \\ 4 & 4 & 9 \end{pmatrix} - 3 \cdot \begin{pmatrix} 2 & -6 & 7 \\ -4 & 2 & 2 \end{pmatrix} + \begin{pmatrix} -5 & -20 & 0 \\ 10 & -30 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 8 - 6 - 5 & 20 + 18 - 20 & 6 - 24 + 0 \\ 4 + 12 + 10 & 4 - 6 - 30 & 8 - 6 + 10 \end{pmatrix}$$

$$= \begin{pmatrix} -3 & 18 & -15 \\ 26 & -32 & 12 \end{pmatrix}$$

3. Matrizen berechnen mit Python/Numpy

Berechnen Sie die Matrizen aus Aufgabe 2a) – d) mit Python/Numpy.

```
# Python initialisieren
import numpy as np;
# Parameter
A=np.array([[1,3,-1],[4,-2,8]]);
B=np.array([[-3,9,3],[-6,6,3]]);
# Berechnungen
C=A+B;
D=-2*A;
E=(1/3)*B;
F=2*B-A;
# Ausgabe
print('C=',C);
print('D=',D);
print('E=',E);
print('F=',F);
```

4. Produkte von Matrizen

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix}$.

Berechnen Sie die jeweiligen Produkte der Matrizen.

a)
$$C = A \cdot B$$

b)
$$C = B \cdot A$$

c)
$$C = A \cdot \mathbb{E}$$

d)
$$C = \mathbb{E} \cdot A$$

a)

$$\underline{\underline{C}} = A \cdot B = \begin{bmatrix} 2 \cdot (-1) + 4 \cdot 2 & 2 \cdot 4 + 4 \cdot (-3) \\ 3 \cdot (-1) + 1 \cdot 2 & 3 \cdot 4 + 1 \cdot (-3) \end{bmatrix} = \begin{bmatrix} -2 + 8 & 8 - 12 \\ -3 + 2 & 12 - 3 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -4 \\ -1 & 9 \end{bmatrix}.$$

$$\underline{\underline{C}} = B \cdot A = \begin{bmatrix} (-1) \cdot 2 + 4 \cdot 3 & (-1) \cdot 4 + 4 \cdot 1 \\ 2 \cdot 2 + (-3) \cdot 3 & 2 \cdot 4 + (-3) \cdot 1 \end{bmatrix} = \begin{bmatrix} -2 + 12 & -4 + 4 \\ 4 - 9 & 8 - 3 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & 0 \\ -5 & 5 \end{bmatrix} \neq A \cdot B.$$

c)

$$\underline{\underline{C}} = A \cdot \mathbb{1} = \left[\begin{array}{ccc} 2 \cdot 1 + 4 \cdot 0 & 2 \cdot 0 + 4 \cdot 1 \\ 3 \cdot 1 + 1 \cdot 0 & 3 \cdot 0 + 1 \cdot 1 \end{array} \right] = \left[\begin{array}{ccc} 2 + 0 & 0 + 4 \\ 3 + 0 & 0 + 1 \end{array} \right] = \left[\begin{array}{ccc} 2 & 4 \\ 3 & 1 \end{array} \right] = \underline{\underline{A}}.$$

d)

$$\underline{\underline{C}} = \mathbb{1} \cdot A = \begin{bmatrix} 1 \cdot 2 + 0 \cdot 3 & 1 \cdot 4 + 0 \cdot 1 \\ 0 \cdot 2 + 1 \cdot 3 & 0 \cdot 4 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2 + 0 & 4 + 0 \\ 0 + 3 & 0 + 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} = \underline{\underline{A}}.$$

→ Die Multiplikation von Matrizen ist im Allgemeinen nicht kommutativ, d. h. abhängig von den Matrizen A und B kann entweder $A \cdot B = B \cdot A$ oder $A \cdot B \neq B \cdot A$ gelten.

5. Produkte mit Matrizen II

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$$
 und $B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$.

Berechnen Sie die jeweiligen Produkte der Matrizen.

a)
$$C = A^T \cdot A$$

b)
$$C = A \cdot A^T$$

c)
$$C = (A \cdot B)^T$$

f) $C = (B^T \cdot A^T)^T$

d)
$$C = A^T \cdot B^T$$

e)
$$C = B^T \cdot A^T$$

f)
$$C = (B^{1} \cdot A^{1})^{2}$$

Transponierte Matrizen:

$$A^{T} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}, B^{T} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$

a)
$$\underline{\underline{C}} = A^T \cdot A = \begin{bmatrix} 3 \cdot 3 + (-2) \cdot (-2) & 3 \cdot (-1) + (-2) \cdot 1 \\ (-1) \cdot 3 + 1 \cdot (-2) & (-1) \cdot (-1) + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 9 + 4 & -3 - 2 \\ -3 - 2 & 1 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 13 & -5 \\ -5 & 2 \end{bmatrix}.$$

$$\underline{\underline{C}} = A \cdot A^{T} = \begin{bmatrix} 3 \cdot 3 + (-1) \cdot (-1) & 3 \cdot (-2) + (-1) \cdot 1 \\ (-2) \cdot 3 + 1 \cdot (-1) & (-2) \cdot (-2) + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 9+1 & -6-1 \\ -6-1 & 4+1 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & -7 \\ -7 & 5 \end{bmatrix} \neq A^{T} \cdot A.$$

$$\underline{\underline{C}} = (A \cdot B)^T = \begin{bmatrix} 3 \cdot 2 + (-1) \cdot 3 & 3 \cdot (-1) + (-1) \cdot 4 \\ (-2) \cdot 2 + 1 \cdot 3 & (-2) \cdot (-1) + 1 \cdot 4 \end{bmatrix}^T = \begin{bmatrix} 6 - 3 & -3 - 4 \\ -4 + 3 & 2 + 4 \end{bmatrix}^T$$

$$= \begin{bmatrix} 3 & -7 \\ -1 & 6 \end{bmatrix}^T = \begin{bmatrix} 3 & -1 \\ -7 & 6 \end{bmatrix}.$$

$$\underline{\underline{C}} = A^T \cdot B^T = \begin{bmatrix} 3 \cdot 2 + (-2) \cdot (-1) & 3 \cdot 3 + (-2) \cdot 4 \\ (-1) \cdot 2 + 1 \cdot (-1) & (-1) \cdot 3 + 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 6 + 2 & 9 - 8 \\ -2 - 1 & -3 + 4 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 1 \\ -3 & 1 \end{bmatrix} \neq (A \cdot B)^T.$$

$$\underline{\underline{C}} = B^T \cdot A^T = \begin{bmatrix} 2 \cdot 3 + 3 \cdot (-1) & 2 \cdot (-2) + 3 \cdot 1 \\ (-1) \cdot 3 + 4 \cdot (-1) & (-1) \cdot (-2) + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 6 - 3 & -4 + 3 \\ -3 - 4 & 2 + 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -1 \\ -7 & 6 \end{bmatrix} = (A \cdot B)^T.$$

$$\underline{\underline{C}} = \left(B^T \cdot A^T\right)^T = \begin{bmatrix} 3 & -1 \\ -7 & 6 \end{bmatrix}^T = \begin{bmatrix} 3 & -7 \\ -1 & 6 \end{bmatrix} = A \cdot B.$$

6. Produkte mit Matrizen III

Gegeben seien die folgenden Matrizen:

$$A = \begin{pmatrix} 4 & -3 & 2 \\ 6 & 2 & 5 \\ -1 & -2 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 \\ 1 & 2 \\ 5 & 6 \end{pmatrix}, \vec{u} = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}.$$

Berechnen Sie die jeweiligen Produkte (falls definiert) der Matrizen.

- a) $A \cdot B$
- b) $B \cdot A$
- c) $A \cdot \vec{u}$
- d) A^2 i) $B^T \cdot \vec{v}$
- e) B^2 i) $\vec{v}^T \cdot B$

- f) $\vec{v}^T \cdot \vec{u}$
- g) $\vec{v} \cdot \vec{u}$
- h) $\vec{u} \cdot \vec{v}^T$

$$\underline{\underline{A} \cdot \underline{B}} = \begin{bmatrix} 4 & -3 & 2 \\ 6 & 2 & 5 \\ -1 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 \\ 1 & 2 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 45 & 58 \\ 10 & 10 \end{bmatrix}.$$

b)

Das Produkt $B \cdot A$ ist nicht definiert.

c)

$$\underline{\underline{A} \cdot \mathbf{u}} = \begin{bmatrix} 4 & -3 & 2 \\ 6 & 2 & 5 \\ -1 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ -4 \end{bmatrix} = \begin{bmatrix} -14 \\ -16 \\ -16 \end{bmatrix}.$$

d)

$$\underline{\underline{A^2}} = \begin{bmatrix} 4 & -3 & 2 \\ 6 & 2 & 5 \\ -1 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & -3 & 2 \\ 6 & 2 & 5 \\ -1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} -4 & -22 & -1 \\ 31 & -24 & 37 \\ -19 & -7 & -3 \end{bmatrix}.$$

e)
Das Produkt B² ist nicht definiert.

f`

$$\underline{\mathbf{v}^T \cdot \mathbf{u}} = \begin{bmatrix} 1 & 3 & -3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ -4 \end{bmatrix} = \begin{bmatrix} 18 \end{bmatrix} = \underline{18}.$$

g)

Das Produkt $\vec{v} \cdot \vec{u}$ ist nicht definiert.

h)

$$\underline{\mathbf{u} \cdot \mathbf{v}^{T}} = \begin{bmatrix} 0 \\ 2 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 6 & -6 \\ -4 & -12 & 12 \end{bmatrix}.$$

i)

$$\underline{B^T \cdot \mathbf{v}} = \begin{bmatrix} 3 & 1 & 5 \\ 4 & 2 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix} = \underline{\begin{bmatrix} -9 \\ -8 \end{bmatrix}}.$$

j)

$$\underline{\mathbf{v}^T \cdot B} = \begin{bmatrix} 1 & 3 & -3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 4 \\ 1 & 2 \\ 5 & 6 \end{bmatrix} = \underline{\begin{bmatrix} -9 & -8 \end{bmatrix} = (B^T \cdot \mathbf{v})^T}.$$

7. Matrizen berechnen mit Python/Numpy

Berechnen Sie die Matrizen aus Aufgabe 6 mit Python/Numpy.

```
# Initialisieren
import numpy as np;
# Parameter
A=np.array([[4,-3,2],[6,2,5],[-1,-2,3]]);
B=np.array([[3,4],[1,2],[5,6]]);
u=np.array([[0],[2],[-4]]);
v=np.array([[1],[3],[-3]])
# Berechnungen
C=A@B;
# D=B@A; nicht definiert
E=A@u;
F=A@A;
# G=B@B; nicht definiert
H=v.T@u;
# J=v@u; nicht definiert
K=u@v.T;
L=B.T@v;
M=v.T@B;
# Ausgabe
print('C= ',C);
print('D kann nicht gebildet werden');
print('E= ',E);
print('F= ',F);
print('G kann nicht gebildet werden');
print('H= ',H);
print('J kann nicht gebildet werden');
print('K= ',K);
print('L= ',L);
print('M= ',M);
```