MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) At the bottom of this page there is a capital letter in front of the page number. What is that letter?

A) A

B) B

C) C

2) Object A has a position as a function of time given by $r A(t) = 3.00 t i + 1.00 t^2 j$. Object B has a position as a function of time given by $r B(t) = 4.00 t i - 1.00 t^2 j$. All quantities are in SI units. What is the distance between object A and object B at time t = 3.00 s?

A) 15.0 m

B) 2.27 m

C) 34.6 m

D) 18.2 m

E) 29.8 m

TA TA

FA+NT=FB : DT=FB-FA RT(+)=[+] [+[-]2+]

3) A monkey is 20 m above the ground, sitting at the top of a tree. A person standing on the ground 10 meters from the base of the tree wants to feed the monkey. He uses an air cannon to shoot food to the monkey. If the person knows that the monkey is going to drop from the tree at the same instant that the air cannon fires, where should the air cannon be aimed so that the monkey can catch the food? Air resistance is small enough to be ignored and you can assume that the speed of sound is very large.

A) He should aim it below the monkey.

B) He should aim it above the monkey.

He should aim it at the monkey.

Class notes Video

4) Two identical twins each have a rock and are standing on a level roof. One rock weighs twice as much as the other. The twin with heavier rock drops hers. At the same instant, the twin with the lighter rock throws her rock horizontally with a speed of 19.6 m/s. Ignoring the air, which rock hits the ground first?

A) the lighter one

B) the heavy one

they hit at the same time.

D) there is no way to tell

drop [horizantz

y(+)=-10+0t-4.9t is the I egh, of Motion for BOTH

Rocks!!

Must hit & same time

Constant Changes because & an
5) A baseball is thrown from center field to home plate. Ignoring the air, which of the following statements is true?
A) $v_x^2 + v_y^2 \neq \text{constant.}$
B The horizontal motion is independent of the vertical motion.
C) The velocity of the ball is zero at the instant that it reaches its maximum height.
D) The trajectory will depend on the ball's mass as well as its initial velocity and launch angle.
E) The acceleration is +g when the ball is rising and -g when falling. Our eght. At Change directive & acceleration of the change.
6) The velocity versus time graph for a moving object is shown in the figure. We can say that its
speed v (m/s)
V = Speed 3+ X longe in "+" direction
2+ 3500
· 1 2 3 4 5 6 7 8 9t (s)
-2 x - Dropalry time
-3+ Large in
A) increases and then decreases. B) increases.
C decreases and then increases. D) decreases.
from t=0 to t = 3.8 to
7) Ignoring the air, when an object is dropped its
A) acceleration increases. (B) velocity increases.
C) mass increases. D) mass decreases.
Not in our equations
G.O. Co.

8) A car	r accelerates from 10.0 m	a/s to 30.0 m/s at a rate of 3.00	m/s ² . How far does	the car travel while accelerati	ng?
	133 m	B) 80.0 m	C) 226 m	D) 399 m	
D[X(4)=X	1 Vo- 10m/s 1 Vo- 10m/s 10+at=10+36	0+1.5+U \\ U	30 Ms +2 t, 6.67 -) X, = 10 t	+174=133,4	
Constitution of the Party of th	= £1, 1/= 30, X=X				
said A) B)	about the penny at the in	nstant when it has reached its ical components of its velocitent of its velocity is zero.	maximum height?	air, which of the following car	n be
chan	riging while its speed is not be a speed in the speed is not be a speed in the spee	ot changing?	change well	Changing.	
			OV_	ER	×

11) The velocity, in m/s, of an object is given by the expression $v(t) = 3.00 + 4.00t^2$, where t is in seconds. Determine the position of the object as a function of time if it is located at x = 1.00 m at time t = 0.000 s.

A)
$$4.00 t + 1.00$$
B) $1.00 + 3.00 t + 1.33t^3$
C) 1.33

C) 1.33

D) $3.00 t + 1.33t^3$

E) 4.00t

$$V(t) = \frac{dx(t)}{dt}$$

i. SdxHJ=(V(+)J+

 $X(t) = \int (3+4t^2)dt$ $X(t) = 3t + 4t^2 + constant$

Given: X(f=0)=1=3(0)+4(0)+constart

: Constant =1

14) Vectors \overrightarrow{A} and \overrightarrow{B} are shown in the figure. Vector \overrightarrow{C} is given by $\overrightarrow{C} = \overrightarrow{B} - \overrightarrow{A}$. The magnitude of vector \overrightarrow{A} is 16.0 units, and the magnitude of vector \overrightarrow{B} is 7.00 units. What is the magnitude of vector \overrightarrow{C} ?

- 15) An object has a position given by $r = [2.0 + 5.00 t]\hat{i} + [3.0 2.00 t^2]\hat{j}$, where quantities are in SI units. What is the speed of the object at time t = 2.00 s?
 - A) 13.0 m/s
- B) 6.40 m/s
- (C) 9.43 m/s
- D) 7.00 m/s
- E) 7.65 m/s

E) 15.5