

Attribution-based Explanations that Provide Recourse Cannot be Robust

Hidde Fokkema

Rianne de Heide

Tim van Erven

UNIVERSITY OF AMSTERDAM

Korteweg de Vries Institute for Mathematics

Summary

For any way of measuring utility, there exists a (continuous) machine learning model f for which no attribution method $arphi_f$ can provide explanations that are both recourse sensitive and continuous.

Utility

A Utility function, $u_f(x,y)$, measures the utility increase by a user when changing x to y. A user is satisfied if $u_f(x,y) \ge \tau$ for a threshold τ . Some examples,

- Flip the class label: $u_f(x,y) = f(y) \ge 0$.
- Increase score by amount τ : $u_f(x,y) = f(y) f(x) \ge \tau$.
- Increase probability by $p \times 100\%$: $u_f(x,y) = \frac{f(y)}{f(x)} \ge 1 + p.$

Attribution Methods

Machine learning model f, e.g. a classifier, and Attribution function φ_f are given by :

$$f \colon \mathcal{X} \subseteq \mathbb{R}^d \to \mathbb{R}, \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \mapsto y, \qquad \qquad \varphi_f \colon \mathcal{X} \to \mathbb{R}^d.$$

Indicating importance:

Robustness & Recourse Sensitivity

An attribution function φ_f for f is called **Robust** if it is continuous. **Recourse Sensitivity**

Informally, an attribution function is Recourse Sensitive if the user can achieve a sufficient utility increase when moving in the direction of $\varphi_f(x)$.

Impossibility Result

For Classification

Theorem 1. Suppose $\mathcal{X} = \mathbb{R}^d$, $u_f(x,y) = f(y)$, $\tau = 0$ and $\delta > 0$. Then, there exists a continuous classifier $f \colon \mathcal{X} \to \mathbb{R}$ for which no attribution method φ_f can be both recourse sensitive and continuous.

General

Theorem 2. If u_f is of the form $u_f(x,y) = \widetilde{u}(f(x),f(y))$ and if there exist $z_1, z_2 \in \mathbb{R}^d$ such that $\widetilde{u}(z_1,z_2) \geq \tau$ and $\widetilde{u}(z_1,z_1) < \tau$. Then there exists a continuous $f: \mathcal{X} \to \mathbb{R}$ for which no attribution method φ_f can be both recourse sensitive and robust.

Sufficient Conditions for Recourse with Robustness

- Theorem 2 implies the existence of continuous functions f for which no attribution function can both provide recourse and be robust.
- But for specific nice f functions this may still be possible.
- Which functions are **nice** enough?

Theorem 3. Let $u_f(x,y) = f(y)$ and $\tau = 0$, let $\delta > 0$ be arbitrary and take $f: \mathcal{X} \to \mathbb{R}$ to be any continuous function. If the set $U = \{y \in \mathcal{X} \mid f(y) \geq 0\}$ is convex, then the attribution method

$$\varphi_f(x) \coloneqq \underset{y \in U}{\operatorname{argmin}} \|y - x\| - x = P_U(x) - x$$

is well defined, and it is both recourse sensitive and continuous.

Profile picture example

In the paper & Link

- (1) Suggestions to circumvent impossibility.
- (2) Generalisation of Sufficient Conditions.
- (3) Fully characterising when Recourse and Robustness is possible in the 1-dimensional case.
- (4) Proofs.

Read our paper

online!