Document 7: Linear Transformations

Conceptual review of rotations:

We are given a vector \vec{x} broken up into a vertical component x_2 and a horizontal component x_1 , which is rotated up into quadrant 1 by an angle α . We want to rotate this vector by an angle θ about the origin from its current position of α above the positive x-axis. First, we know $x_1 = |\vec{x}|\cos(\alpha)$ and $x_2 = |\vec{x}|\sin(\alpha)$. After the transformation, we will have $x_1\prime = |\vec{x}|\cos(\alpha+\theta)$ and $x_2\prime = |\vec{x}|\sin(\alpha+\theta)$. Therefore, $x_1\prime = |\vec{x}|\cos(\alpha)\cos(\theta) - |\vec{x}|\sin(\alpha)\sin(\theta)$ and $x_2\prime = |\vec{x}|\sin(\alpha)\cos(\theta) + |\vec{x}|\sin(\theta)\cos(\alpha)$. Hence, we have $x_1\prime = x_1\cos(\theta) - x_2\sin(\theta)$ and $x_2\prime = x_1\cos(\theta) + x_2\cos(\alpha)$.

SUMMARY TABLE: Transformations Table

Name	Formula	Matrix Representation
Projection	$\operatorname{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$	$A = \begin{bmatrix} (u_1)^2 & u_1 u_2 \\ u_1 u_2 & (u_2)^2 \end{bmatrix}$
Reflection	$ref_L(\vec{x}) = 2proj_L(\vec{x}) - \vec{x}$	$A = \begin{bmatrix} 2(u_1)^2 - 1 & 2u_1u_2 \\ 2u_1u_2 & 2(u_2)^2 - 1 \end{bmatrix}$
Rotation	$R_{\theta} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = e^{i\theta} \vec{z}$	$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

$$z = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 or $z = x_1 + x_2 i_1$, $i = \sqrt{-1}$.

Eulers Identity says: $e^{i\theta}(x_1 + x_2i) = (\cos(\theta) + \sin(\theta)i)$