Lab 4 - Predicting Breast Cancer

Submitted By Name: Harsha KG Register Number: 19112005 Class: 5 BSc Data Science

Objectives

Understand about Logistic Regression, K-Nearest Neighbours and Decision Trees

Problem Definition

Compare and Contrast the Differences in Classification Result among Logistic Regression, K-Nearest Neighbors and Decision Trees with respect to the Breast Cancer Dataset.Download the dataset as available in the URL: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data (https://www.kaggle.com/uciml/breast-cancer-wisconsin-data)

Demonstrate various evaluation metrices Check the effect of classification with respect to change in train-test dataset, classification parameters, hyper parameters etc

Use appropriate visualizations and interpretations on result cases Do the standard practices, as discussed in class

Approach

Imported the dataset using the required library. Did some preprocessing techniques before exploration to make the datset into standard format and then did some EDA. After that datset is splitted into training and testing set. Build models of Logistic, K Nearest Neighour and Decision tree by changing the parameter values of each algorithm.

References:

- 1. Scikit Documentation
- 2. https://towardsdatascience.com/machine-learning-with-python-classification-complete-tutorial-d2c99dc524ec)
- 3. https://stackabuse.com/overview-of-classification-methods-in-python-with-scikit-learn/ [Evaluation Metrics]

In [1]:

```
# Importing the Libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn import metrics
import hvplot.pandas
import itertools
import plotly.graph_objs as go
import plotly.tools as tls
import plotly.figure_factory as ff
import plotly.offline as py
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
BC = pd.read_csv("Breast_Cancer_Ml4.csv")
```

In [3]:

BC.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

In [4]:

```
BC.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

memory usage: 142.4+ KB

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64
dtype	es: float64(30), int64(1)	, object(1)	
	4.40 4 1/0		

localhost:8889/nbconvert/html/Machine_Learning_NVD/19112005_Harsha_BC.ipynb?download=false

In [5]:

```
BC.isnull().sum()
BC.isna().sum()
```

Out[5]:

id 0 diagnosis 0 radius_mean 0 texture_mean 0 perimeter_mean 0 0 area_mean smoothness_mean 0 compactness_mean 0 concavity_mean 0 concave points mean 0 symmetry_mean 0 fractal_dimension_mean 0 radius_se 0 texture_se 0 0 perimeter_se area se 0 0 smoothness_se compactness_se 0 0 concavity_se concave points_se 0 0 symmetry se fractal_dimension_se 0 0 radius_worst texture_worst 0 0 perimeter_worst area_worst 0 smoothness_worst 0 0 compactness_worst concavity_worst 0 0 concave points_worst symmetry_worst 0 fractal_dimension_worst 0 dtype: int64

In [6]:

BC['diagnosis'].value counts()

Out[6]:

B 357 M 212

Name: diagnosis, dtype: int64

In [7]:

Distribution of diagnosis variable

In []:

In [8]:

```
#correlation
correlation = BC.corr()
#tick labels
matrix_cols = correlation.columns.tolist()
#convert to array
corr_array = np.array(correlation)
```

In [9]:

```
#Plotting
trace = go.Heatmap(z = corr_array,
                   x = matrix_cols,
                   y = matrix_cols,
                   xgap = 2,
                   ygap = 2,
                   colorscale='Viridis',
                   colorbar = dict() ,
layout = go.Layout(dict(title = 'Correlation Matrix for variables',
                        autosize = False,
                        height = 720,
                        width
                               = 800,
                        margin = dict(r = 0, l = 210,
                                       t = 25, b = 210,
                               = dict(tickfont = dict(size = 9)),
                        yaxis
                        xaxis
                                = dict(tickfont = dict(size = 9)),
fig = go.Figure(data = [trace],layout = layout)
py.iplot(fig)
```

Correlation Matrix for variables

In [10]:

```
plt.figure(figsize = (20,10))
sns.set_theme(style="darkgrid")

radius = BC[['radius_mean','radius_se','radius_worst','diagnosis']]
sns.pairplot(radius, hue='diagnosis', markers=["o", "s"])
```

Out[10]:

<seaborn.axisgrid.PairGrid at 0x1a08f50ec10>

<Figure size 1440x720 with 0 Axes>

In [11]:

```
plt.figure(figsize = (20,10))
sns.set_theme(style="darkgrid")

radius = BC[['radius_mean','radius_se','radius_worst','diagnosis']]
sns.pairplot(radius, hue='diagnosis', markers=["o", "s"])
```

Out[11]:

<seaborn.axisgrid.PairGrid at 0x1a0b7b36970>

<Figure size 1440x720 with 0 Axes>

In []:

In []:

In [14]:

```
# 2 datasets
M = BC[(BC['diagnosis'] != 0)]
B = BC[(BC['diagnosis'] == 0)]
```

In [15]:

```
def plot_feat1_feat2(feat1, feat2) :
    trace0 = go.Scatter(
        x = M[feat1],
        y = M[feat2],
        name = 'malignant',
        mode = 'markers',
        marker = dict(color = '#FFD700',
            line = dict(
                width = 1)))
    trace1 = go.Scatter(
        x = B[feat1],
       y = B[feat2],
        name = 'benign',
        mode = 'markers',
        marker = dict(color = '#7EC0EE',
            line = dict(
                width = 1)))
    layout = dict(title = feat1 +" "+"vs"+" "+ feat2,
                  yaxis = dict(title = feat2,zeroline = False),
                  xaxis = dict(title = feat1, zeroline = False)
    plots = [trace0, trace1]
    fig = dict(data = plots, layout=layout)
    py.iplot(fig)
```

In [16]:

```
plot_feat1_feat2('perimeter_mean','radius_worst')
plot_feat1_feat2('area_mean','radius_worst')
plot_feat1_feat2('texture_mean','texture_worst')
plot_feat1_feat2('area_worst','radius_worst')
```

perimeter_mean vs radius_worst

area_mean vs radius_worst

texture_mean vs texture_worst

area_worst vs radius_worst

In [17]:

```
plot_feat1_feat2('smoothness_mean','texture_mean')
plot_feat1_feat2('radius_mean','fractal_dimension_worst')
plot_feat1_feat2('texture_mean','symmetry_mean')
plot_feat1_feat2('texture_mean','symmetry_se')
```

smoothness_mean vs texture_mean

radius_mean vs fractal_dimension_worst

texture_mean vs symmetry_mean

texture_mean vs symmetry_se

In [18]:

```
plot_feat1_feat2('area_mean','fractal_dimension_mean')
plot_feat1_feat2('radius_mean','fractal_dimension_mean')
plot_feat1_feat2('area_mean','smoothness_se')
plot_feat1_feat2('smoothness_se','perimeter_mean')
```

area_mean vs fractal_dimension_mean

radius_mean vs fractal_dimension_mean

area_mean vs smoothness_se

smoothness_se vs perimeter_mean

In [19]:

```
sns.barplot(x="radius_mean", y="texture_mean", data=BC[170:180])
plt.title("Radius Mean vs Texture Mean",fontsize=15)
plt.xlabel("Radius Mean")
plt.ylabel("Texture Mean")
plt.show()
plt.style.use("ggplot")
```

Radius Mean vs Texture Mean


```
In [20]:
```

```
BC.drop(columns='id',axis=1,inplace=True)
```

In [21]:

```
BC.head()
```

Out[21]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CI
0	М	17.99	10.38	122.80	1001.0	0.11840	
1	М	20.57	17.77	132.90	1326.0	0.08474	
2	М	19.69	21.25	130.00	1203.0	0.10960	
3	М	11.42	20.38	77.58	386.1	0.14250	
4	М	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

In [22]:

```
Y = BC['diagnosis']
X = BC.drop(['diagnosis'], axis=1)
```

In [23]:

Y.head()

Out[23]:

0 M

1 M

2 M

3 M

1 N

Name: diagnosis, dtype: object

In [24]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = .30, random_state
= 8)
```

In [25]:

X_train.head()

Out[25]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactne
547	10.26	16.58	65.85	320.8	0.08877	
331	12.98	19.35	84.52	514.0	0.09579	
421	14.69	13.98	98.22	656.1	0.10310	
95	20.26	23.03	132.40	1264.0	0.09078	
125	13.85	17.21	88.44	588.7	0.08785	

5 rows × 30 columns

In [26]:

X_test.head()

Out[26]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactne
325	12.670	17.30	81.25	489.9	0.10280	
557	9.423	27.88	59.26	271.3	0.08123	
475	12.830	15.73	82.89	506.9	0.09040	
308	13.500	12.71	85.69	566.2	0.07376	
553	9.333	21.94	59.01	264.0	0.09240	

5 rows × 30 columns

In [27]:

Y_test.head()

Out[27]:

325 B 557 B

475 B308 B

553 B

Name: diagnosis, dtype: object

```
10/1/21, 6:27 PM
                                                 19112005 Harsha BC
   In [28]:
   Y_train.head()
   Out[28]:
   547
          В
   331
          В
   421
          В
   95
          Μ
   125
          В
   Name: diagnosis, dtype: object
   LogisticRegression
   In [29]:
   #Feature Scaling
   from sklearn.preprocessing import StandardScaler
   sc = StandardScaler()
```

X_train = sc.fit_transform(X_train) X test = sc.transform(X test) In [30]: from sklearn.linear model import LogisticRegression In [31]: logistic_regressor = LogisticRegression() In [32]: logistic_regressor.fit(X_train, Y_train) Out[32]: LogisticRegression() In [33]: y_pred = logistic_regressor.predict(X_test) y prob = logistic regressor.predict proba(X test)

```
In [34]:
y_pred[0:5]
```

```
Out[34]:
array(['B', 'B', 'B', 'B'], dtype=object)
```

In [35]:

```
data = pd.DataFrame({'Actual': Y_test, 'Predicted': y_pred})
data
```

Out[35]:

	Actual	Predicted
325	В	В
557	В	В
475	В	В
308	В	В
553	В	В
154	В	В
208	В	В
311	В	В
329	М	М
282	М	М

171 rows × 2 columns

In [36]:

```
y_prob[0:5]
```

Out[36]:

```
array([[9.98588993e-01, 1.41100703e-03], [9.99647709e-01, 3.52291383e-04], [9.92574976e-01, 7.42502412e-03], [9.99968116e-01, 3.18836820e-05], [9.99978480e-01, 2.15199463e-05]])
```

In [37]:

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, y_pred)
dataframe_conf_matrix = conf_matrix
sns.heatmap(dataframe_conf_matrix, annot=True)
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a093de3070>

In [38]:

```
from sklearn.metrics import accuracy_score
acc_score1 = accuracy_score(Y_test, y_pred)
print(acc_score1)
```

0.9766081871345029

In [39]:

```
print("Training Score: ",logistic_regressor.score(X_train,Y_train)*100)
```

Training Score: 98.99497487437185

In [40]:

```
print("Testing Score: ",logistic_regressor.score(X_test,Y_test)*100)
```

Testing Score: 97.6608187134503

In [41]:

```
from sklearn.metrics import classification_report
class_report = classification_report(Y_test, y_pred)
print(class_report)
```

	precision	recall	f1-score	support
В	0.98	0.98	0.98	105
M	0.97	0.97	0.97	66
accuracy			0.98	171
macro avg	0.98	0.98	0.98	171
weighted avg	0.98	0.98	0.98	171

In [42]:

```
from sklearn.metrics import confusion_matrix
Cm = confusion_matrix(Y_test,y_pred)
Cm
```

Out[42]:

```
array([[103, 2], [ 2, 64]], dtype=int64)
```

In [43]:

```
Accuracy = (Cm[0][0] + Cm[1][1]) / (Cm[0][0] + Cm[1][1] + Cm[0][1] + Cm[1][0])

print("Accuracy", Accuracy)

Error_rate = (Cm[0][1] + Cm[1][0]) / (Cm[0][0] + Cm[1][1] + Cm[0][1] + Cm[1][0])

print("Error_rate", Error_rate)

Sensitivity = Cm[0][0]/(Cm[0][0] + Cm[1][0])

print("Sensitivity", Sensitivity)

Specificity = Cm[1][1]/(Cm[1][1] + Cm[0][1])

print("Specificity", Specificity)

Recall = Cm[0][0]/(Cm[0][0] + Cm[1][0])

print("Recall", Recall)

Precision = Cm[0][0]/(Cm[0][0] + Cm[0][1])

print("Precision", Precision)

F1Score = (2*(Precision*Recall))/(Precision + Recall)

print("F1Score", F1Score)
```

Accuracy 0.9766081871345029 Error_rate 0.023391812865497075 Sensitivity 0.9809523809523809 Specificity 0.96969696969697 Recall 0.9809523809523809 Precision 0.9809523809523809 F1Score 0.9809523809523809

In [44]:

```
def doLogisticRegression(X, Y, test_size = 0.20, random_state = 42, penalty='12', solve
r='lbfgs'):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size, ra
ndom_state = random_state)

logistic_regressor = LogisticRegression(penalty=penalty, solver=solver)
logistic_regressor.fit(X_train, Y_train)
y_pred = logistic_regressor.predict(X_test)

acc_score = accuracy_score(Y_test, y_pred)
return acc_score
```

In [45]:

```
Test: 0.3 | Random State: 10 | Penalty: none | Solver: newton-cg | Accurac
v: 0.9415204678362573
Test: 0.3 | Random State: 10 | Penalty: none | Solver: lbfgs | Accuracy :
0.9415204678362573
Test: 0.3 | Random State: 10 | Penalty: none | Solver: liblinear | Accurac
y: 0.9415204678362573
Test: 0.3 | Random State: 10 | Penalty: none | Solver: sag | Accuracy : 0.
9415204678362573
Test: 0.3 | Random State: 10 | Penalty: none | Solver: saga | Accuracy :
0.9415204678362573
Test: 0.3 | Random State: 10 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9473684210526315
Test: 0.3 | Random State: 10 | Penalty: 12 | Solver: 1bfgs | Accuracy : 0.
9473684210526315
Test: 0.3 | Random State: 10 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9473684210526315
Test: 0.3 | Random State: 10 | Penalty: 12 | Solver: sag | Accuracy : 0.94
73684210526315
Test: 0.3 | Random State: 10 | Penalty: 12 | Solver: saga | Accuracy : 0.9
473684210526315
Test: 0.3 | Random State: 25 | Penalty: none | Solver: newton-cg | Accurac
y: 0.9298245614035088
Test: 0.3 | Random State: 25 | Penalty: none | Solver: 1bfgs | Accuracy :
0.9298245614035088
Test: 0.3 | Random State: 25 | Penalty: none | Solver: liblinear | Accurac
y: 0.9298245614035088
Test: 0.3 | Random State: 25 | Penalty: none | Solver: sag | Accuracy : 0.
9298245614035088
Test: 0.3 | Random State: 25 | Penalty: none | Solver: saga | Accuracy :
0.9298245614035088
Test: 0.3 | Random State: 25 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9239766081871345
Test: 0.3 | Random State: 25 | Penalty: 12 | Solver: lbfgs | Accuracy : 0.
9239766081871345
Test: 0.3 | Random State: 25 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9239766081871345
Test: 0.3 | Random State: 25 | Penalty: 12 | Solver: sag | Accuracy : 0.92
39766081871345
Test: 0.3 | Random State: 25 | Penalty: 12 | Solver: saga | Accuracy : 0.9
239766081871345
Test: 0.3 | Random State: 55 | Penalty: none | Solver: newton-cg | Accurac
y: 0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: none | Solver: 1bfgs | Accuracy :
0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: none | Solver: liblinear | Accurac
y: 0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: none | Solver: sag | Accuracy : 0.
9532163742690059
Test: 0.3 | Random State: 55 | Penalty: none | Solver: saga | Accuracy :
0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: 12 | Solver: lbfgs | Accuracy : 0.
9532163742690059
Test: 0.3 | Random State: 55 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9532163742690059
Test: 0.3 | Random State: 55 | Penalty: 12 | Solver: sag | Accuracy : 0.95
32163742690059
Test: 0.3 | Random State: 55 | Penalty: 12 | Solver: saga | Accuracy : 0.9
532163742690059
Test: 0.25 | Random State: 10 | Penalty: none | Solver: newton-cg | Accura
```

```
cy: 0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: none | Solver: lbfgs | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: none | Solver: liblinear | Accura
cy: 0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: none | Solver: sag | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: none | Solver: saga | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: 12 | Solver: lbfgs | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9300699300699301
Test: 0.25 | Random State: 10 | Penalty: 12 | Solver: sag | Accuracy : 0.9
300699300699301
Test: 0.25 | Random State: 10 | Penalty: 12 | Solver: saga | Accuracy : 0.
9300699300699301
Test: 0.25 | Random State: 25 | Penalty: none | Solver: newton-cg | Accura
cy: 0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: none | Solver: lbfgs | Accuracy :
0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: none | Solver: liblinear | Accura
cy: 0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: none | Solver: sag | Accuracy :
0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: none | Solver: saga | Accuracy :
0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: 12 | Solver: lbfgs | Accuracy :
0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.916083916083916
Test: 0.25 | Random State: 25 | Penalty: 12 | Solver: sag | Accuracy : 0.9
16083916083916
Test: 0.25 | Random State: 25 | Penalty: 12 | Solver: saga | Accuracy : 0.
916083916083916
Test: 0.25 | Random State: 55 | Penalty: none | Solver: newton-cg | Accura
cy: 0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: none | Solver: lbfgs | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: none | Solver: liblinear | Accura
cy: 0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: none | Solver: sag | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: none | Solver: saga | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: 12 | Solver: lbfgs | Accuracy :
0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9300699300699301
Test: 0.25 | Random State: 55 | Penalty: 12 | Solver: sag | Accuracy : 0.9
300699300699301
Test: 0.25 | Random State: 55 | Penalty: 12 | Solver: saga | Accuracy : 0.
9300699300699301
Test: 0.2 | Random State: 10 | Penalty: none | Solver: newton-cg | Accurac
y: 0.9385964912280702
```

```
Test: 0.2 | Random State: 10 | Penalty: none | Solver: lbfgs | Accuracy :
0.9385964912280702
Test: 0.2 | Random State: 10 | Penalty: none | Solver: liblinear | Accurac
v: 0.9385964912280702
Test: 0.2 | Random State: 10 | Penalty: none | Solver: sag | Accuracy : 0.
9385964912280702
Test: 0.2 | Random State: 10 | Penalty: none | Solver: saga | Accuracy :
0.9385964912280702
Test: 0.2 | Random State: 10 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9298245614035088
Test: 0.2 | Random State: 10 | Penalty: 12 | Solver: lbfgs | Accuracy : 0.
9298245614035088
Test: 0.2 | Random State: 10 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9298245614035088
Test: 0.2 | Random State: 10 | Penalty: 12 | Solver: sag | Accuracy : 0.92
98245614035088
Test: 0.2 | Random State: 10 | Penalty: 12 | Solver: saga | Accuracy : 0.9
298245614035088
Test: 0.2 | Random State: 25 | Penalty: none | Solver: newton-cg | Accurac
y: 0.9210526315789473
Test: 0.2 | Random State: 25 | Penalty: none | Solver: lbfgs | Accuracy :
0.9210526315789473
Test: 0.2 | Random State: 25 | Penalty: none | Solver: liblinear | Accurac
y: 0.9210526315789473
Test: 0.2 | Random State: 25 | Penalty: none | Solver: sag | Accuracy : 0.
9210526315789473
Test: 0.2 | Random State: 25 | Penalty: none | Solver: saga | Accuracy :
0.9210526315789473
Test: 0.2 | Random State: 25 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9385964912280702
Test: 0.2 | Random State: 25 | Penalty: 12 | Solver: 1bfgs | Accuracy : 0.
9385964912280702
Test: 0.2 | Random State: 25 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9385964912280702
Test: 0.2 | Random State: 25 | Penalty: 12 | Solver: sag | Accuracy : 0.93
85964912280702
Test: 0.2 | Random State: 25 | Penalty: 12 | Solver: saga | Accuracy : 0.9
385964912280702
Test: 0.2 | Random State: 55 | Penalty: none | Solver: newton-cg | Accurac
v: 0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: none | Solver: 1bfgs | Accuracy :
0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: none | Solver: liblinear | Accurac
y: 0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: none | Solver: sag | Accuracy : 0.
9210526315789473
Test: 0.2 | Random State: 55 | Penalty: none | Solver: saga | Accuracy :
0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: 12 | Solver: newton-cg | Accuracy
: 0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: 12 | Solver: 1bfgs | Accuracy : 0.
9210526315789473
Test: 0.2 | Random State: 55 | Penalty: 12 | Solver: liblinear | Accuracy
: 0.9210526315789473
Test: 0.2 | Random State: 55 | Penalty: 12 | Solver: sag | Accuracy : 0.92
10526315789473
Test: 0.2 | Random State: 55 | Penalty: 12 | Solver: saga | Accuracy : 0.9
210526315789473
```

In [46]:

```
BC_1= pd.DataFrame(columns = ['Test Size', 'Random States', 'Penalty', 'Solvers', 'Accu
racy'])
BC_1
```

Out[46]:

Test Size Random States Penalty Solvers Accuracy

In [48]:

```
penalties = ['none', '12']
test_size = [0.30, 0.25, 0.20]
random_states = [10, 25, 55]
solvers = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
for t_size in test_size:
    for r_state in random_states:
        for penalty in penalties:
            for solver in solvers:
                accuracy = doLogisticRegression(X, Y, t_size, r_state, penalty)
#print("Test: {} | Random State: {} | Penalty: {} | Solver: {} | Accuracy : {}".format
(t_size, r_state, penalty, solver, accuracy))
                BCEvaluation = {}
                BCEvaluation['Test Size'] = t_size
                BCEvaluation['Random States'] = r_state
                BCEvaluation['Penalty'] = penalty
                BCEvaluation['Solvers'] = solver
                BCEvaluation['Accuracy'] = accuracy
                BC 1= BC 1.append(BCEvaluation, ignore index = True)
```

In [49]:

BC_1

Out[49]:

	Test Size	Random States	Penalty	Solvers	Accuracy
0	0.3	10	none	newton-cg	0.941520
1	0.3	10	none	lbfgs	0.941520
2	0.3	10	none	liblinear	0.941520
3	0.3	10	none	sag	0.941520
4	0.3	10	none	saga	0.941520
175	0.2	55	12	newton-cg	0.921053
176	0.2	55	12	lbfgs	0.921053
177	0.2	55	12	liblinear	0.921053
178	0.2	55	12	sag	0.921053
179	0.2	55	12	saga	0.921053

180 rows × 5 columns

In [50]:

```
sns.displot(x = 'Accuracy', data = BC_1)
```

Out[50]:

<seaborn.axisgrid.FacetGrid at 0x1a093ed4c10>

K-Nearest Neighbors

In [80]:

```
from sklearn.neighbors import KNeighborsClassifier
classifier= KNeighborsClassifier()
classifier.fit(X_train, Y_train)
```

Out[80]:

KNeighborsClassifier()

In [81]:

```
y_pred= classifier.predict(X_test)
```

In [82]:

```
from sklearn.metrics import accuracy_score
acc_score2 = accuracy_score(Y_test, y_pred)
print(acc_score2)
```

0.9590643274853801

In [83]:

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, y_pred)
dataframe_conf_matrix = conf_matrix
sns.heatmap(dataframe_conf_matrix, annot=True)
```

Out[83]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a0939d98b0>

In [84]:

```
Accuracy = (Cm[0][0] + Cm[1][1]) / (Cm[0][0] + Cm[1][1] + Cm[0][1] + Cm[1][0])

print("Accuracy", Accuracy)

Error_rate = (Cm[0][1] + Cm[1][0]) / (Cm[0][0] + Cm[1][1] + Cm[0][1] + Cm[1][0])

print("Error_rate", Error_rate)

Sensitivity = Cm[0][0]/(Cm[0][0] + Cm[1][0])

print("Sensitivity", Sensitivity)

Specificity = Cm[1][1]/(Cm[1][1] + Cm[0][1])

print("Specificity", Specificity)

Recall = Cm[0][0]/(Cm[0][0] + Cm[1][0])

print("Recall", Recall)

Precision = Cm[0][0]/(Cm[0][0] + Cm[0][1])

print("Precision", Precision)

F1Score = (2*(Precision*Recall))/(Precision + Recall)

print("F1Score", F1Score)
```

Accuracy 0.9766081871345029 Error_rate 0.023391812865497075 Sensitivity 0.9809523809523809 Specificity 0.96969696969697 Recall 0.9809523809523809 Precision 0.9809523809523809 F1Score 0.9809523809523809

In [85]:

Out[85]:

Text(0, 0.5, 'Error Rate')


```
In [128]:
```

```
BC_2=pd.DataFrame(columns=['n_neighbour','leaf_size','Accuracy'])
```

In [129]:

```
BC_2
```

Out[129]:

n_neighbour leaf_size Accuracy

In [154]:

```
def doKNeighborsClassifier(X, Y, test_size = 0.20, random_state = 42):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size, ra
ndom_state = random_state)

KNeighbors_Classifier = KNeighborsClassifier()
    KNeighbors_Classifier.fit(X_train, Y_train)
    y_pred = KNeighbors_Classifier.predict(X_test)

acc_score = accuracy_score(Y_test, y_pred)
```

In [156]:

```
n_neighbour = [5, 25, 35]
leaf_size = [10, 25, 55]

for neighbour in n_neighbour:
    for leaf in leaf_size:
        accuracy = doKNeighborsClassifier(X, Y,neighbour,leaf)

    BCEvaluation_KNN = {}
    BCEvaluation_KNN['n_neighbour'] = neighbour
    BCEvaluation_KNN['leaf_size'] = leaf
    BCEvaluation_KNN['Accuracy'] = accuracy
    BC_2= BC_2.append(BCEvaluation_KNN, ignore_index = True)
```

Decision Tree

In [98]:

```
#Fitting Decision Tree classifier to the training set
from sklearn.tree import DecisionTreeClassifier
classifier= DecisionTreeClassifier()
classifier.fit(X_train, Y_train)
```

Out[98]:

DecisionTreeClassifier()

In [99]:

```
#Predicting the test set result
y_pred= classifier.predict(X_test)
y_pred
```

Out[99]:

```
'B',
     'M',
                                      'Μ',
                                         'M', 'B',
         'M', 'B', 'B', 'M',
                             'M', 'M',
                         'B',
     'M',
         'M',
             'B',
                 'B',
                     'B',
                              'M',
                                          'Β',
                                              'M',
                                  'M',
                                      'Μ',
                                                  'M'
                                                      'B'
         'B',
                                 'M',
                                                  'B',
             'M',
                         'M',
                             'B',
                                      'M',
                                         'M',
                 'M', 'B',
                                              'M',
             'B', 'M', 'M',
                         'B', 'B', 'B',
                                      'M', 'M', 'B',
     'B', 'M',
                 'B', 'M',
        , 'B',
             'M',
                         'M', 'B', 'M',
                                      'B', 'M',
                                             'B',
     'B'
                                                  'M'
                         'M',
                              'B',
                                          'M',
     'B', 'B',
                                 'B'
                                      'M',
                                              'B'
             'M',
                 'M', 'B',
     'Β',
                                                  'B',
                                             'M',
         'B',
             'B', 'B', 'M',
                         'B', 'B',
                                 'B',
                                      'M', 'B',
     'B', 'M', 'B', 'M', 'B',
                         'B', 'B', 'B',
                                      'B', 'B', 'M',
                         'B', 'B', 'B',
     'B', 'M', 'M', 'M', 'B',
                                      'B', 'M', 'B',
                                                  'B',
                                      'B', 'B',
                                                  'M',
         'Μ',
                                 'Β',
             'B', 'M', 'B',
                         'M', 'B',
                                             'B',
     'M', 'M'], dtype=object)
```

In [135]:

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, y_pred)
dataframe_conf_matrix = conf_matrix
sns.heatmap(dataframe_conf_matrix, annot=True)
```

Out[135]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a0942b3b20>

In [100]:

```
#Creating the Confusion matrix
from sklearn.metrics import confusion_matrix
cm= confusion_matrix(Y_test, y_pred)
cm
```

Out[100]:

```
array([[98, 7],
[ 5, 61]], dtype=int64)
```

In [101]:

```
from sklearn.metrics import accuracy_score
acc_score3 = accuracy_score(Y_test, y_pred)
print(acc_score3)
```

0.9298245614035088

In [139]:

```
def doDecisionTreeClassifier(X, Y, test_size = 0.20, random_state = 42):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size, ra
ndom_state = random_state)
    classifier= DecisionTreeClassifier()
    classifier.fit(X_train, Y_train)
    y_pred= classifier.predict(X_test)

acc_score = accuracy_score(Y_test, y_pred)
```

In [143]:

```
BC_3= pd.DataFrame(columns = ['Test Size', 'Random States'])
BC_3
```

Out[143]:

Test Size Random States

In [144]:

```
test_size = [0.30, 0.25, 0.20]
random_states = [10, 25, 55]
for t_size in test_size:
    for r_state in random_states:
        accuracy = doDecisionTreeClassifier(X, Y, t_size, r_state)

#print("Test: {} | Random State: {} | Penalty: {} | Solver: {} | Accuracy : {}".format
(t_size, r_state, penalty, solver, accuracy))

BCEvaluation = {}
BCEvaluation['Test Size'] = t_size
BCEvaluation['Random States'] = r_state
BCEvaluation['Accuracy'] = accuracy
BC_3= BC_3.append(BCEvaluation, ignore_index = True)
```

Accuracy Score of Models

In [102]:

Out[102]:

NAME OF MODEL ACCURACY SCORE

0	LOGISTIC REGRESSION	0.976608
1	K-NN	0.959064
2	DECISION TREE	0.929825

Hyperparameter Tuning

In [138]:

```
0.9824999999999999
```

```
{'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'}
```

In [106]:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
oHe = OneHotEncoder()
```

In [120]:

```
0.9246153846153847
{'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 30, 'min_samples_s
plit': 4}
```

Comparing models before and after Parameter Tuning

In [116]:

Out[116]:

	NAME OF MODEL	ACCURACY SCORE	BEST ACCURACY (AFTER HYPER-PARAMETER TUNING)
0	LOGISTIC REGRESSION	0.976608	0.982500
1	K-NN	0.959064	0.969872
2	DECISION TREE	0.929825	0.926987

Conclusion

In []:

To conclude this notebook, it ${\bf is}$ fairly evident that it ${\bf is}$ the Logistic Regression mode 1 that has come out

triumphant with the highest accuracies both before and after the hyper-parameter tuning . It ended up with an

accuracy of 97% before hyper-parameter tuning **and** 98% after **and is** hence, the best suited model out of the rest **for** the given dataset.