Лекция 9: Обобщенные линейные модели, логистическая регрессия

Важное предположение линейной регрессии

- Нормальное распределение ошибки с константной дисперсией:
- Часто возникающие «особенности»:
 - Несимметричные распределения отклика

- □ Гетероскедастичность
- □ Ограниченная область определения отклика

- Что делать?
 - □ Явно преобразовывать отклик: **E(g(y) | x)**

НО, в общем случае: $g^{-1}(E(g(y)|x)) \neq E(y|x)$

□ Использовать функцию связи:

g(E(y|x))

Пример

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv("cars0.csv",delimiter=",")
data.head()
```

	Make	Model	Type	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase	Length
0	Acura	MDX	SUV	Asia	All	36945.0	33337.0	3.5	6.0	265	17	23	4451	106	189
1	Acura	RSX Type S 2dr	Sedan	Asia	Front	23820.0	21761.0	2.0	4.0	200	24	31	2778	101	172
2	Acura	TSX 4dr	Sedan	Asia	Front	26990.0	24647.0	2.4	4.0	200	22	29	3230	105	183
3	Acura	TL 4dr	Sedan	Asia	Front	33195.0	30299.0	3.2	6.0	270	20	28	3575	108	186
4	Acura	3.5 RL 4dr	Sedan	Asia	Front	43755.0	39014.0	3.5	6.0	225	18	24	3880	115	197

Пример (МНК) – все плохо

Dep. Variab	ole:	Invoi	се	R-squ	ıared:	0.704	1
Mod	lel:	Ol	_S Ad	j. R-squ	ıared:	0.702	J
Metho	od: L	east Squar	es	F-sta	tistic:	336.3	
Da	ite: Wed	01 Nov 20	23 Pro b	Prob (F-statistic):		1.06e-111	
Tin	ne:	01:43:0	01 Lo	g-Likeli	hood:	-4531.2	
No. Observation	ns:	42	28		AIC:	9070.	
Df Residua	als:	42	24		BIC:	9087.	
Df Mod	iel:	3 nonrobust					
Covariance Ty	pe:						
	coef	std err	t	P> t	[0.0	0.9	75]
const	2.25e+04	6682.648	3.367	0.001	9362.7	779 3.56e	+04
Weight	0.0255	1.015	0.025	0.980	-1.9	970 2.0	021
Length -	213.1397	45.054	-4.731	0.000	-301.6	96 -124.	583
Horsepower	218.3874	8.400	26.000	0.000	201.8	377 234.	898

7

Преобразование отклика и логнормальная регрессия

■ Распределение отклика y логнормальное, тогда распределение с.в. $\log(y)$ — нормальное: $\log(y) \sim N(\mu, \sigma^2)$

• Связь моментов исходной с.в. y и $\log(y)$:

$$E(y) = \exp(\mu + \frac{\sigma^2}{2}), D(y) = (e^{\sigma^2} - 1)(E(y))^2$$

• Это значит, что можно построить МНК регрессию для прогнозирования $\log(y) = w^T x$ и получить исходный отклик:

$$\mu = E(\log(y)|x) = w^T x \Rightarrow E(y|x) = \exp\left(w^T x + \frac{\sigma^2}{2}\right)$$

• Откуда брать σ^2 ? Можно взять оценку $\sigma^2 \approx MSE_{val}$, желательно на валидационном наборе

Пример (логнормальная регрессия) – лучше

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X_train, X_test, y_train, y_test = train_test_split(
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    np.log(data['Invoice']),test_size=0.3)
lnr = sm.OLS(endog=y_train, exog=X_train)
lnr_results=lnr.fit()
mse=mean_squared_error(y_test, lnr_results.predict(X_test))
lnr_results.summary()
```



```
fig, ax = plt.subplots(figsize=(5, 5))
ax.scatter(np.exp(mse/2+lnr_results.predict(
    sm.add_constant(data[['Weight','Length','Horsepower']]))),
    results.resid_pearson)
plt.xlim(0, 50000)
plt.ylim(-4, 4)
ax.set_ylabel('Остатки')
ax.set_xlabel('Прогноз')
plt.axhline(y = 0, color = 'r', linestyle = '--')
```

							_
Dep. Vari	able:	In	voice	R-	squared:	0.76	8
М	odel:	OLS		Adj. R-squared:		0.76	6
Met	thod:	Least Squares F-statistic:		statistic:	325.	9	
ı	Date: W	ed, 01 Nov	2023 I	3 Prob (F-statistic):		2.68e-9	3
Time:		01:	54:31	Log-Likelihood:		9.511	5
No. Observations:			299		-11.0	2	
Df Residuals:			295		3.77	9	
Df M	odel:		3				
Covariance 7	Туре:	nonr	obust				
	coef	std err	t	t P> t	[0.025	0.975]	
const	9.6851	0.209	46.330	0.000	9.274	10.097	
Weight	0.0001	2.83e-05	4.264	0.000	6.5e-05	0.000	
Length	-0.0060	0.001	-4.324	0.000	-0.009	-0.003	
Horsepower	0.0055	0.000	22.407	0.000	0.005	0.006	

Обобщенная линейная модель

Функция связи
$$g(E(y|x)) = w_0 + w_1 x_1 ... + w_k x_p = \langle x, w \rangle$$

■ Распределение отклика принадлежит экспоненциальному семейству $y_i \sim \text{Exp}(\theta, \phi)$, где плотность определена как:

$$p(y|\theta,\phi) = exp\left(\frac{y\theta - c(\theta)}{\phi} + h(y,\phi)\right)$$

- Математическое ожидание с.в. y зависит только от θ через некоторую монотонную ϕy нкцию связи g(.) (link function) как: $\mu = E(y) = c'(\theta) \Rightarrow \theta = g(\mu) = [c']^{-1}(\mu)$
- Дисперсия с.в. у есть функция от среднего: $D(y) = \phi c''(\theta)$
- Распределение отклика наблюдений может подсказать какую функцию связи и функцию потерь следует выбрать

Важные частные случаи

- Линейная регрессия: $p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$
- Логистическая регрессия: $p(y|\mu) = \mu^y (1-\mu)^{1-y}$
- Пуассоновская регрессия: $p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$
- Гамма регрессия: $p(y|\nu,\mu) = \frac{1}{\Gamma(\nu)y} \left(\frac{y\nu}{\mu}\right)^{\nu} e^{-\frac{y\nu}{\mu}}$

Регрессия	Отклик	Параметр $ heta$ (среднее)	Параметр ϕ	Дисперсия	Каноническая функция связи
Линейная	непрерывный неограниченный	μ	σ	σ²	тождество g(µ)= µ
Логистическая	бинарный категориальный	μ	1	(1- μ) μ	логит g(µ)= log(µ/(1- µ))
Пуассоновская	«Счетчик» - дискретный положительный	λ	1	λ	логарифм g(µ)= log(µ)
Гамма	непрерывный положительный	μ	V	μ/ v ²	обратная g(µ)= 1/µ

Примеры вывода функции связи

- Суть: приведение распределения к каноническому виду $\mathrm{Exp}(\theta,\phi)$
- Линейная регрессия (нормальное распределение):

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right) = \exp\left(\frac{y\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)$$
$$\theta = g(\mu) = \mu, c(\theta) = \frac{1}{2}\mu^2 = \frac{1}{2}\theta^2$$

Пуассоновская регрессия (распределение Пуассона):

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^{y}}{y!} = \exp\left(\frac{y\log(\lambda) - \lambda}{1} - \log(y)!\right)$$
$$\theta = g(\lambda) = \log(\lambda), c(\theta) = \lambda = e^{\theta}$$

■ Логистическая регрессия (распределение Бернулли):

$$p(y|\mu) = \mu^y (1-\mu)^{1-y} = \exp\left(y\log\left(\frac{\mu}{1-\mu}\right) - \log(1-\mu)\right)$$
$$\theta = g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), c(\theta) = -\log(1-\mu) = \log(1+e^{\theta})$$

Не все так однозначно

- На практике часто используют неканонические функции связи
- Например, для логистической регрессии:
 - Каноническая logit
 - \square probit: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\mu} z^2 dz$
 - $\log \log \log(-\log(1-\mu))$
- Для гамма регрессии:
 - Каноническая обратная
 - log, тождественная и др.
- Для «счетчиков»:

среднего

- Может быть «смесь» счетчиков
- "zero inflated" смесь 0 и пуассоновского счетчика

Пример гамма регрессии

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma())
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:		Invoic	e No.	Observa	ations:	428	
Model:		GLI	М	Df Resi	iduals:	424	
Model Family:		Gamm	а	Df	Model:	3	
Link Function:	inv	erse_powe	er		Scale: 0	.11306	
Method:		IRL	S L	og-Likel	ihood: -	5686.6	
Date:	Wed,	01 Nov 202	3	Dev	riance:	310.53	
Time:		02:03:0	7	Pearso	n chi2:	47.9	
No. Iterations:			8 Pseud	lo R-squ	ı. (CS):	-74.85	7
Covariance Type:		nonrobus	st				ر
	coef	std err	z	P> z	[0.025	0.9	9751
const 4.8	318e-05	6.76e-06	7.124	0.000	3.49e-05	6.14	- e-05
Weight 6.0	088e-09	5.99e-10	-10.164	0.000	-7.26e-09	-4.91	e-09
Length 2.3	391e-07	4.43e-08	5.402	0.000	1.52e-07	3.26	e-07
Horsepower -1.4	467e-07	2.88e-09	-50.999	0.000	-1.52e-07	-1.41	e-07

Как считать? Ответ позже

Статистика Уальда (аналогично Стьюденту для МНК)

гетероскедастичность?

Пример гамма регрессии с неканонической тождественной функцией связи

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']])
    family=sm.families.Gamma(sm.families.links.identity()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	identity	Scale:	0.066351
Method:	IRLS	Log-Likelihood:	-4359.6
Date:	Wed, 01 Nov 2023	Deviance:	24.571
Time:	02:06:57	Pearson chi2:	28.1
No. Iterations:	19	Pseudo R-squ. (CS):	0.9438
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	2.359e+04	4377.250	5.389	0.000	1.5e+04	3.22e+04
Weight	2.8085	0.849	3.307	0.001	1.144	4.473
Length	-209.3271	31.087	-6.734	0.000	270.256	-148.398
Horsepower	161.8258	8.531	18.969	0.000	145.105	178.547

Пример гамма регрессии с неканонической функцией связи log

```
gamma_model = sm.GLM(data['Invoice'],
    sm.add_constant(data[['Weight','Length','Horsepower']]),
    family=sm.families.Gamma(sm.families.links.Log()))
gamma_results = gamma_model.fit()
gamma_results.summary()
```

Dep. Variable:	Invoice	No. Observations:	428
Model:	GLM	Df Residuals:	424
Model Family:	Gamma	Df Model:	3
Link Function:	Log	Scale:	0.059580
Method:	IRLS	Log-Likelihood:	-4346.8
Date:	Wed, 01 Nov 2023	Deviance:	23.319
Time:	02:10:09	Pearson chi2:	25.3
No. Iterations:	12	Pseudo R-squ. (CS):	0.9614
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	9.6571	0.169	57.017	0.000	9.325	9.989
Weight	0.0001	2.57e-05	4.863	0.000	7.47e-05	0.000
Length	-0.0058	0.001	-5.077	0.000	-0.008	-0.004
Horsepower	0.0055	0.000	25.850	0.000	0.005	0.006

Максимизация правдоподобия для GLM методом Ньютона-Рафсона

Принцип максимума правдоподобия:

$$L(w) = -\log \prod_{i=1}^l p(y_i|\theta_i,\phi_i) = -\sum_{i=1}^l [y_i\theta_i - c(\theta_i)]/\phi_i o \min_w$$
 , где $\theta_i = w^Tx_i$

■ Метод Ньютона-Рафсона (*t* – номер итерации):

$$w^{t+1} = w^t - \eta_t \left(\nabla^2 L(w^t) \right)^{-1} \nabla L(w^t)$$

■ Градиент $\nabla L(w^t)$:

$$\frac{\partial L(w)}{\partial w_j} = \sum_{i=1}^{l} \frac{y_i - c'(w^T x_i)}{\phi_i} x_i$$

■ Матрица Гессе $\nabla^2 L(w^t)$:

$$\frac{\partial^2 L(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l \frac{c''(w^T x_i)}{\phi_i} x_i x_k$$

10

Mетод IRLS (Iteratively reweighted least squares)

- Обозначения:
 - \square Взвешенная (по наблюдениям) матрица признаков $\widetilde{X}=W_tX$,
 - \square где X исходная матрица данных,
 - \square $W_t = diag\left(\sqrt{rac{c\prime\prime(heta_i)}{\phi_i}}
 ight)$ веса наблюдений на t-ой итерации
 - \square $\widetilde{y_i} = \frac{y_i c`(\theta_i)}{\sqrt{\phi_i c``(\theta_i)}}$ модифицированные отклики
- Метод Ньютона-Рафсона принимает вид:

$$w^{t+1} = w^{t} - \eta_{t} \left(X^{T} W_{t} W_{t} X \right)^{-1} X^{T} W_{t} \left(\sqrt{\frac{\phi_{i}}{c``(\theta_{i})}} \frac{y_{i} - c'(\theta_{i})}{\phi_{i}} \right)$$

$$\left(\tilde{X}^{T} \tilde{X} \right)^{-1} \tilde{X}^{T}$$

 На каждом шаге - МНК линейной регрессии с взвешенными наблюдениями и модифицированными откликами:

$$\|\tilde{X} - \tilde{y}w\|^2 \to \min_{w}$$

Особенности поиска решения

- При небольшой выборке IRLS лучший вариант
- Но на больших выборках используют методы:
 - □ градиентные (в том числе стохастические)
 - □ квазиньютоновские (в том числе lbfgs)
- Есть варианты борьбы с переобучением:
 - □ L₁ и L₂ регуляризация
 - □ пошаговый отбор переменных (вместо тестов Фишера или Стьюдента – тест Уальда, информационные критерии и кроссвалидация работают как и для МНК)
- Для оценки важности переменных используются:
 - стандартные ошибки расчета коэффициентов (за рамками нашего курса)
 - □ статистика Уальда для оценки важности коэффициентов:

$$\frac{w_i}{SE(w_i)} \sim N(0,1)$$

Пуассоновская регрессия

 Для моделирования количества наступлений события или доли (rate) наступлений события как функции от предикторов:

$$\log(E(y|x)) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_p x_k \Rightarrow \mu(w) = e^{w_0} \cdot e^{w_1 x_1} \cdots e^{w_p x_p}$$

- Положительный (и как правило дискретный) отклик
- Функция связи: log
- Функция потерь: $L(x, y, w) = y \log \left(\frac{y}{\mu(w)}\right) (y \mu(w))$
- Интерпретация построенной модели:
 - e^w мультипликативный эффект на отклик от изменения предиктора на единицу
 - Папример, если $e^{w_1} = 1.2$, тогда увеличение x_1 на одну единицу вызывает 20% увеличение ожидаемого отклика, а если $e^{w_2} = 0.8$, тогда увеличение x_2 на одну единицу вызывает 20% уменьшение ожидаемого отклика

Пуассоновская регрессия

- Пуассоновская регрессия наиболее подходит для редких событий
 - □ распределение отклика должно иметь маленькое среднее (<10 или даже <5, в идеале ~1)
 - иначе гамма и логнормальное распределение может быть лучше чем пуассоновское, если распределение сильно ассиметричное или есть чрезмерная дисперсия
 - □ или нормальное, если распределение достаточно симметричное

Пример пуассоновской регрессии

dt=pd.read_csv("ships.csv",delimiter=",")
dt.head()

	type	age_period	operation_period	months	damages
0	1	1	1	127	0
1	1	1	2	63	0
2	1	2	1	1095	3
3	1	2	2	1095	4
4	1	3	1	1512	6

X.head()

	Intercept	C(type)[T.2]	C(type)[T.3]	C(type)[T.4]	C(type)[T.5]	months
0	1.0	0.0	0.0	0.0	0.0	127.0
1	1.0	0.0	0.0	0.0	0.0	63.0
2	1.0	0.0	0.0	0.0	0.0	1095.0
3	1.0	0.0	0.0	0.0	0.0	1095.0
4	1.0	0.0	0.0	0.0	0.0	1512.0

```
from patsy import dmatrices
import statsmodels.api as sm
y, X = dmatrices("damages~C(type)+months", dt, return_type="dataframe")
pois_model = sm.GLM(y,X, family=sm.families.Poisson())
pois_results = pois_model.fit()
pois_results.summary()
```

Generalized Linear Model Regression Results

Dep. Variable):	damag	es N	o. Obse	rvations:	34
Mode	l:	GL	.M	Df R	esiduals:	28
Model Family	r:	Poiss	on	ı	Of Model:	5
Link Function	ı:	L	og	Scale: Log-Likelihood:		1.0000
Method	l:	IRI	S			-125.73
Date	: Tue,	31 Oct 202	23		eviance:	153.59
Time):	02:55:	48	Pears	son chi2:	151.
No. Iterations	s:		6 Pse	udo R-s	qu. (CS):	1.000
Covariance Type	: :	nonrobu	ıst			
	coef	std err	z	P> z	[0.025	0.975]
Intercept 1	.7650	0.154	11.429	0.000	1.462	2.068
C(type)[T.2] 1	.4035	0.194	7.219	0.000	1.022	1.785
C(type)[T.3] -1	.2434	0.327	-3.798	0.000	-1.885	-0.602
C(type)[T.4] -0	.8902	0.287	-3.097	0.002	-1.454	-0.327
C(type)[T.5] -0	.1078	0.235	-0.460	0.646	-0.568	0.352

Пример пуассоновской регрессии

<matplotlib.lines.Line2D at 0x2e7d9070c70>

Логистическая регрессия

 Почему нельзя моделировать вероятность как непрерывный отклик с помощью линейной регрессии?

- □ Как представить категориальный отклик в виде числовой переменной?
- □ Если отклик закодирован (1=Yes, 0=No), а прогноз 1.1 или -0.4, что это означает?
- □ Если переменная имеет только два значения (или несколько), имеет ли смысл требовать постоянство дисперсии или нормальность ошибок?
- □ Вероятность ограничена, а линейная функция нет. Принимая во внимание ограниченность вероятности, можно ли предполагать линейную связь между предиктором и откликом?

Логистическая регрессия

Уравнение регрессии:

Функция связи (логит) и обратная ей (логистическая):

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \mu \Rightarrow$$

$$\Rightarrow p_i = \sigma(\mu) = \frac{1}{1 + e^{-\mu}} = \frac{1}{1 + e^{-x^T w}}$$

Основное предположение линейной логистической регрессии (линейная зависимость логита вероятности от предикторов):

меньше $\leftarrow \mu \rightarrow$ больше Ограничивает значение отклика

Функция потерь логистической регрессии

Функция потерь (логарифмическая) является аппроксимацией негладкой функции потерь sign(.):

$$L(y, x, w) = \log[1 + \exp(-yw^{T}x)] \ge$$
$$\ge \operatorname{sign}(yw^{T}x)$$

30 25 20 -1.5 -1.0 0.5 0 0.5 1.0 1.5 20 25 30

■ Градиент $\nabla Q(w)$ и матрица Гессе $\nabla^2 Q(w)$ для метода Ньютона-Рафсона:

$$w^{t+1} = w^t - \eta_t \ (\nabla^2 Q(w^t))^{-1} \nabla Q(w^t)$$

$$\frac{\partial Q(w)}{\partial w_j} = \sum_{i=1}^l (1-\sigma_i) y_i x_i, \\ \frac{\partial^2 Q(w)}{\partial w_j \partial w_k} = -\sum_{i=1}^l (1-\sigma_i) \sigma_i y_i x_i x_k$$
 где $\sigma_i = \sigma \big(y_i w^T x_i \big), \ \sigma(z) = \frac{1}{1+e^{-z}}$ - сигмоидальная функция

IRLS для логистической регрессии

- На каждом шаге:
 - МНК линейной регрессии с взвешенными наблюдениями и модифицированными остатками, старающийся улучшить эмпирический риск на самых «сложных» примерах:

$$Q(w) = \sum_{i=1}^{l} (1 - \sigma_i) \sigma_i \left(w^T x_i - \frac{y_i}{\sigma_i} \right)^2 \to \min_{w} \quad \leftrightarrow \quad \left\| \tilde{X} - \tilde{y}w \right\|^2 \to \min_{w}$$

- где:
 - \square Взвешенная (по наблюдениям) матрица признаков $ilde{X} = W_t X$
 - □ X исходная матрица данных,
 - \square $W_t = diag((1-\sigma_i)\sigma_i)$ веса наблюдений на t-ой итерации,
 - поскольку $\sigma_i = P(y_i|x_i)$ вероятность правильной классификации x_i , то чем ближе x_i к границе, тем больше вес $(1-\sigma_i)\sigma_i$ и «сложнее» пример
 - $\widetilde{y_i} = \frac{y_i}{\sigma_i}$ модифицированные отклики, чем выше вероятность ошибки тем больше $\frac{1}{\sigma_i}$

Многоклассовая логистическая регрессия и функция softmax

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.inspection import DecisionBoundaryDisplay

iris = datasets.load_iris()
X = iris.data[:, :2]
Y = iris.target

logreg = LogisticRegression()
logreg.fit(X, Y)

DecisionBoundaryDisplay.from_estimator(
    logreg, X, cmap="Pastel1")
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap="Set1")
plt.show()
```


 Логистическая регрессия с двумя классами обобщается на случай К классов (многомерная логистическая функция):

$$p(y = k|x) = \frac{e^{w_k^T x}}{\sum_{j=1}^{K} e^{w_j^T x}}$$

- Для каждой пары классов существует своя граница - линейная разделяющая функция, где вероятности классов совпадают
- Многоклассовая логистическая регрессия также называется мультиномиальной регрессией, а многомерная логистическая функция -softmax, которая «нормализует» Кмерный вектор так, чтобы сумма координат = 1

Оценка «силы» ассоциации между предиктором и бинарным откликом

■ **Шанс** (это не вероятность) — отношение вероятностей события к не событию:

$$Odds = \frac{p_{event}}{p_{nonevent}}$$

• Отношение шансов (тоже не вероятность) показывает насколько вероятнее в терминах шансов появления события в группе А (соответствующей набору значений предикторов) по сравнению с другой группой В:

$$Odds_{ratio} = \frac{odds(A)}{odds(B)}$$

Нет зависимости

Группа в знаменателе имеет более высокие шансы наступления события

Группа в **числителе** имеет более высокие шансы

	3a6	олел	
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Всего Заболел Без прививки

Всего исходов Без прививки

Вероятность Заболел Без прививки =90÷100=0.9

	3a6	олел	
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Вероятность
Заболел Без
прививки =0.90

•

Вероятность **Не заболел** Без прививки =0.10

<u>Шанс</u> **Заболеть** Без прививки = **0.90**÷**0.10**=**9**

Без прививки шанс заболеть в 9 раз выше чем с прививкой

Сравнение вероятностей и шансов

	3a6	олел	
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Шанс Заболеть с прививкой=3

Шанс Заболеть Без прививки=9

Отношение шансов =3÷9=0.3333

Шансов заболеть с прививкой в 3 раза меньше чем без

Отношение шансов в логистической регрессии

 Используется для оценки влияния переменной на отклик и показывает как изменятся шансы при изменении і-ой переменной на 1 (равно ехр от коэффициента):

$$\log \operatorname{id}(p) = \log(\operatorname{odds}) = w_0 + w_i x_i + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds} = \exp(w_0 + w_i x_i + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{logit}(p`) = \log(\operatorname{odds}`) = w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds}` = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds}` = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds}` = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

 Если больше 1 – шансы увеличиваются, если меньше, то уменьшаются, интерпретация как в пуассоновской регрессии

Отношение шансов и важность переменных

Effect	Point Estimate	95% \ Confiden							
Invoice	1.000	1.000	1.000						
Engine Size	0.295	0.094	0.931						
Horsepower	1.016	1.003	1.029						
Length	1.100	1.044	1.160						
Weight	1.005	1.004	1.007						
Cylinders	0.696	0.376	1.289						
Wheelbase	0.757	0.676	0.849						
MPG_City	1.270	0.929	1.736						
MPG_Highway	1.295	1.036	1.618						

exp(.)

Invoice			
EngineSize	•		
Horsepower		el .	
Length		⊢• -	
Weight		•	
Cylinders	-	•	_
Wheelbase		⊢	
MPG_City		+	•
G_Highway		H	•
0.0	0.5	1.0	1.5

- Analysis of Maximum Likelihood Estimates Standard Wald Parameter Estimate Chi-Square Pr > ChiSq 4.6784 0.0213 Intercept -10.76865.2983 -0.00013 0.000028 21.9445 <.0001 Invoice Horsepower 0.0156 0.00666 5.4867 0.0192 0.0270 12.6146 0.0004 0.00529 0.000908 33.9767 <.0001 Cylinders -0.38250.3146 1.3275 0.2493 Wheelbase -0.27780.0580 22.9685 <.0001 0.2389 0.1595 2.2421 0.1343 MPG City 0.2584 0.1136 5.1710
- Можно найти не только точечную оценку ОШ (OR), но и доверительный интервал
- □ Если он содержит 1, то доверительный интервал коэффициента содержит 0,т.е. предиктор не значимый
- □ Не учитывается разброс переменной

w

Категориальные предикторы

- Схемы кодировки:
 - □ Effect coding (относительно «среднего»)

<u>Переменная</u>	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	-1	-1

□ Reference coding (относительно «базового»)

<u>Переменная</u>	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	0	0

1

Effect coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Общий логарифм от шанса по всем категориям

 w_1 = разница между логарифмом шанса Low income и w_0

 w_2 = разница между логарифмом шанса Medium income и общим

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-0.5363	0.1015	27.9143	
IncLevel	1	1	-0.2259	0.1481	2.3247	0.1273
IncLevel	2	1	-0.2200	0.1447	2.3111	0.1285

M

Reference coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Логарифм шанса для High

 w_1 = Разница между логарифмами шанса Low и High

w₂ = Разница между логарифмами шанса между Medium и High

Analysis of Maximum Likelihood Estimates						
				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-0.0904	0.1608	0.3159	0.5741
IncLevel	1	1	-0.6717	0.2465	7.4242	0.0064
IncLevel	2	1	-0.6659	0.2404	7.6722	0.0056

Категориальные предикторы

Мощность	Подход
10	Бинарное кодирование
100	Преобразования или отображение
1000	на числовую шкалу
1000000 00000000	Связывание Текстовые модели
	10 100 1000 1000000

Подходы к кодировке категориальных признаков

Случайное кодирование

Бинарное кодирование

Преобразование с учётом отклика

https://github.com/scikit-learn-contrib/category_encoders

Unsupervised:

- Backward Difference Contrast [2][3]
- BaseN [6]
- Binary [5]
- Gray [14]
- Count [10]
- Hashing [1]
- Helmert Contrast [2][3]
- Ordinal [2][3]
- One-Hot [2][3]
- Rank Hot [15]
- Polynomial Contrast [2][3]
- Sum Contrast [2][3]

Supervised:

- CatBoost [11]
- Generalized Linear Mixed Model [12]
- James-Stein Estimator [9]
- LeaveOneOut [4]
- M-estimator [7]
- Target Encoding [7]
- Weight of Evidence [8]
- Quantile Encoder [13]
- Summary Encoder [13]

Преобразование с учётом отклика

Level	N_i	ΣY_i	\boldsymbol{p}_i		
Α	1562	430	0.28		
В	970	432	0.45		
С	223	45	0.20		
D	111	36	0.32		
E	85	23	0.27		
F	50	20	0.40		
G	23	8	0.35		
н	17	5	0.29		
1	12	6	0.50		
J	5	5	1.00		

«редкие значение»переменной источник
нестабильности,
недостоверности
в модели

Level – различные значения переменной **X**

 $N_{i^{-}}$ число наблюдений, что X принимает i-е значение

 Σy_i - сумма бинарных откликов для наблюдений, где **X** принимает **i**-е значение p_i = $\Sigma y_i/N_i$ - условная вероятность положительного отклика, если **X** принимает **i**-е значение

M

Преобразование с учётом отклика

Level	N_i	ΣY_i	\boldsymbol{p}_i
J	5	5	1.00
I	12	6	0.50
В	970	432	0.45
F	50	20	0.40
G	23	8	0.35
D	111	36	0.32
Н	17	5	0.29
Α	1562	430	0.28
E	85	23	0.27
C	223	45	0.20

Сортируем по $\boldsymbol{p_i}$, если значения \boldsymbol{X} «рядом» после сортировки, то можно предположить, что они «похоже» влияют на отклик

Кодирование категориального признака порядковой (ординальной) переменной

X '	N_i	ΣY_i	\boldsymbol{p}_i
1	5	5	1.00
2	12	6	0.50
3	970	432	0.45
4	50	20	0.40
5	23	8	0.35
6	111	36	0.32
7	17	5	0.29
8	1562	430	0.28
9	85	23	0.27
10	223	45	0.20

Можем отобразить категориальный **X** на порядковую шкалу (новая переменная **X**'), но не учитываем насколько похожи отклики и не решается проблема редких значений

Шансы

Level	N _i	ΣY_i	\boldsymbol{p}_i	log(<i>p</i> /1-p) _i)
J	5	5	1.00		
1	12	6	0.50	0.00	$\Delta p_i = 0.05 \Rightarrow$
В	970	432	0.45	-0.10	$\Delta \text{logit}(p_i) = 0.1$
F	50	20	0.40	-0.18	
G	23	8	0.35	-0.27	
D	111	36	0.32	<mark>-0.32</mark>	
H	17	5	0.29	-0.38	$\Delta p_i = 0.05 \Rightarrow$
A	1562	430	0.28	-0.42	$\Delta \operatorname{logit}(p_i) = 0.11$
E	85	23	0.27	<mark>-0.43</mark>	0 (11)
C	223	45	0.20	-0.60	

Рассмотрим логарифм шансов положительного отклика для i-го значения X, т.е. **logit** от p_i , сортировка не меняется, но более корректно учитываются различия в областях определенности (около 0 и 1) и неопределенности

Группировка значений переменной по шансам

Level	N _i	ΣY_i	p_i	log(<i>p</i> /1- <i>p</i> _i)
J	5	5	1.00	
1	12	6	0.50	0.00
В	970	432	0.45	-0.10
F	50	20	0.40	-0.18
G	23	8	0.35	-0.27
D	111	36	0.32	-0.32
H	17	5	0.29	-0.38
A	1562	430	0.28	-0.42
E	85	23	0.27	-0.43
С	223	45	0.20	-0.60

Можем агрегировать (например, с помощью одномерной кластеризации) «похожие» значения *X*, объединив их в однородные (с точки зрения поведения отклика) группы ...

Группировка значений переменной по шансам

X "	N _i	ΣY_i	p_i	log(<i>p</i> /1- <i>p</i> _i)
CL1	1037	463	0.45	-0.09
CL 2	424	4.4	0.22	0.24
CL2	134	44	0.33	-0.31
CL3	1664	458	0.28	-0.42
CL4	223	45	0.20	-0.60

... и создать новую категориальную переменную **X**", без редких уровней и с меньшим числом различных значений – уменьшаем число степеней свободы модели, увеличиваем стабильность модели и уменьшаем шанс переобучиться

Weight of evidence и шансы

- Снова формула Байеса (еще будем разбираться подробнее):
 - Обозначения : маленькие р плотности, большие Р вероятности
 - p(x) плотность распределения наблюдений в пространстве признаков
 - \square P(y) априорная и P(y|x) апостериорная вероятности классов
 - \square p(x|y) функция правдоподобия
 - Совместная плотность распределения:

$$p(x,y) = p(x)P(y|x) = P(y)p(x|y) \Rightarrow P(y|x) = P(y)p(x|y)/p(x)$$

Логарифм условных шансов:

$$\log\left(\frac{P(y=1|x)}{P(y=0|x)}\right) = \log\left(\frac{P(y=1)p(x|y=1)/p(x)}{P(y=0)p(x|y=0)/p(x)}\right) = \log\left(\frac{P(y=1)}{P(y=0)}\right) + \log\left(\frac{p(x|y=1)}{p(x|y=0)}\right)$$

■ WOE и «наивное» предположение (независимость переменных):

$$\log\left(\frac{P(y=1|x)}{P(y=0|x)}\right) = \log\left(\frac{P(y=1)}{P(y=0)}\right) + \sum_{j=1}^{p} \text{WOE}(x_j) \qquad \text{где WOE}(x_j) = \log\left(\frac{p(x_j|y=1)}{p(x_j|y=0)}\right)$$

Априорные шансы (log равен 0, если Вклад шансов каждой из выборка «сбалансирована»)

р переменных

M

Weight of Evidence для категориальной переменной

- Пусть в задаче с бинарным откликом категориальная (или дискретизированная) переменная x_j принимает k различных значений $\{v_1, ..., v_k\}$, тогда (опять по формуле Байеса):
 - \square $WOE(x_j)$ j-й переменной: $WOE(x_j) = \sum_{i=1}^k WOE_i(x_j)$,
 - \square где $WOE_i(x_j)$ weight of evidence i-го значения v_i

$$WOE_i(x_j) = \log\left(\frac{P(x_j = v_i | y = 1)}{P(x_j = v_i | y = 0)}\right) = \log\left(\frac{count((y = 1) \text{ and } (x_j = v_i))/count(y = 1)}{count((y = 0) \text{ and } (x_j = v_i))/count(y = 0)}\right)$$

- Интерпретация WOE:
 - □ WOEi > 0: (ОШ>1) i-e значение связано с более высоким шансом положительного отклика
 - □ WOEi < 0: (ОШ<1) i-e значение связано с более низким шансом положительного отклика
 </p>
 - □ **WOE**i = 0: (ОШ=1) i-e значение не влияет на уровень отклика
 - □ **WOE** в целом оказывает *предиктивную силу* категориальной (или дискретезированной) переменной и ее отдельных значений

Level	vel N_i ΣY_i		p_i	WOE_i
J	5	5	1.00	
1	12	6	0.50	0.71
В	970	432	0.45	0.49
F	50	20	0.40	0.3
G	23	8	0.35	80.0
D	111	36	0.32	-0.03
Н	17	5	0.29	-0.17
A	1562	430	0.28	-0.26
E	E 85 23		0.27	-0.28
C	223	45	0.20	-0.67
	3058	1010		0.17

Не решает проблему редких уровней

7

Информационная важность переменных

- Дивергенция Кульбака-Лейблера (различающая информация, относительная энтропия и другие термины):
 - □ Ассиметричная мера расхождения двух распределений
 - \square Для дискретных распределений P и Q: $D_{KL}(P||Q) = \sum_i p_i \log(p_i/q_i)$
 - \square Симметричный вариант: $D_{KL}(P;Q) = D_{KL}(P||Q) + D_{KL}(Q||P)$
- IV (информационная важность или информационный индекс) переменной:
 - □ Симметричная дивергенция (расстояние) Кульбака-Лейблера, которое показывает насколько отличаются распределения переменной (отдельных значений переменной) внутри положительного и отрицательного классов:
 - Пусть в задаче с бинарным откликом категориальная переменная x принимает k различных значений $\{v_1, ..., v_k\}$, тогда:

$$IV(x) = \sum_{j=1}^{K} (P(x = v_j | y = 1) - P(x = v_j | y = 0))WOE_j(x)$$

Information Value

Level	N_i	N_i ΣY_i		IV_i
J	5	5	1.00	
1	12	6	0.50	0.0021
В	970	432	0.45	0.0809
F	50	20	0.40	0.0015
G	23	8	0.35	0
D	111	36	0.32	0
H	17	5	0.29	0.0002
A	1562	430	0.28	0.033
E	85	23	0.27	0.0021
C	223	45	0.20	0.0284
	3058	1010		0.1482

- Эвристические пороги на IV:
 - □ Меньше 0.02 незначимая переменная
 - 🗆 0.02 0.10 низкая прогнозная сила 🕒 0.30 0.50 высокая прогнозная сила
 - □ 0.10 0.30 средняя прогнозная сила □ Больше 0.50 что-то пошло не так

Пример

```
import pandas as pd
import numpy as np
mydata = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
```

```
admit gre gpa rank
0
      0 380 3.61
      1 660 3.67
2
      1 800 4.00
                    1
3
      1 640 3.19
                    4
      0 520 2.93
5
      1 760 3.00
      1 560 2.98
                    1
7
      0 400 3.08
      1 540 3.39
9
      0 700 3.92
                    2
```

mydata.head(10)

```
def iv_woe(data, target, bins=10, show_woe=False):
   #Empty Dataframe
   newDF,woeDF = pd.DataFrame(), pd.DataFrame()
   #Extract Column Names
   cols = data.columns
   #Run WOE and IV on all the independent variables
   for ivars in cols[~cols.isin([target])]:
       if (data[ivars].dtype.kind in 'bifc') and (len(np.unique(data[ivars]))>10):
           binned_x = pd.qcut(data[ivars], bins, duplicates='drop')
           d0 = pd.DataFrame({'x': binned x, 'y': data[target]})
       else:
           d0 = pd.DataFrame({'x': data[ivars], 'y': data[target]})
       d0 = d0.astype({"x": str})
       d = d0.groupby("x", as_index=False, dropna=False).agg({"y": ["count", "sum"]})
       d.columns = ['Cutoff', 'N', 'Events']
       d['% of Events'] = np.maximum(d['Events'], 0.5) / d['Events'].sum()
       d['Non-Events'] = d['N'] - d['Events']
       d['% of Non-Events'] = np.maximum(d['Non-Events'], 0.5) / d['Non-Events'].sum()
       d['WoE'] = np.log(d['% of Non-Events']/d['% of Events'])
       d['IV'] = d['WoE'] * (d['% of Non-Events']-d['% of Events'])
       d.insert(loc=0, column='Variable', value=ivars)
       print("Information value of " + ivars + " is " + str(round(d['IV'].sum(),6)))
       temp =pd.DataFrame({"Variable" : [ivars], "IV" : [d['IV'].sum()]}, columns = ["Variable", "IV"])
       newDF=pd.concat([newDF,temp], axis=0)
       woeDF=pd.concat([woeDF,d], axis=0)
       #Show WOE Table
       if show woe == True:
                                                  iv, woe = iv woe(data = mydata, target = 'admit', bins=10, show woe = True)
           print(d)
   return newDF, woeDF
```

Пример

woe

	Variable	Cutoff	N	Events	% of Events	Non-Events	% of Non-Events	WoE	IV
0	gre	(219.999, 440.0]	48	6	0.047244	42	0.153846	1.180625	0.125857
1	gre	(440.0, 500.0]	51	12	0.094488	39	0.142857	0.413370	0.019994
2	gre	(500.0, 520.0]	24	10	0.078740	14	0.051282	-0.428812	0.011774
3	gre	(520.0, 560.0]	51	15	0.118110	36	0.131868	0.110184	0.001516
4	gre	(560.0, 580.0]	29	6	0.047244	23	0.084249	0.578450	0.021406
5	gre	(580.0, 620.0]	53	21	0.165354	32	0.117216	-0.344071	0.016563
6	gre	(620.0, 660.0]	45	17	0.133858	28	0.102564	-0.266294	0.008333
7	gre	(660.0, 680.0]	20	9	0.070866	11	0.040293	-0.564614	0.017262
8	gre	(680.0, 740.0]	44	12	0.094488	32	0.117216	0.215545	0.004899
9	gre	(740.0, 800.0]	35	19	0.149606	16	0.058608	-0.937135	0.085278
0	gpa	(2.259, 2.9]	43	8	0.062992	35	0.128205	0.710622	0.046342
1	gpa	(2.9, 3.048]	37	11	0.086614	26	0.095238	0.094917	0.000819
2	gpa	(3.048, 3.17]	42	8	0.062992	34	0.124542	0.681634	0.041955
3	gpa	(3.17, 3.31]	42	10	0.078740	32	0.117216	0.397866	0.015308
4	gpa	(3.31, 3.395]	36	8	0.062992	28	0.102564	0.487478	0.019290
5	gpa	(3.395, 3.494]	40	14	0.110236	26	0.095238	-0.146246	0.002193
6	gpa	(3.494, 3.61]	41	16	0.125984	25	0.091575	-0.318998	0.010976
7	gpa	(3.61, 3.752]	39	20	0.157480	19	0.069597	-0.816578	0.071764
8	gpa	(3.752, 3.94]	42	13	0.102362	29	0.106227	0.037062	0.000143
9	gpa	(3.94, 4.0]	38	19	0.149606	19	0.069597	-0.765285	0.061230
0	rank	1	61	33	0.259843	28	0.102564	-0.929588	0.146204
1	rank	2	151	54	0.425197	97	0.355311	-0.179558	0.012548
2	rank	3	121	28	0.220472	93	0.340659	0.435110	0.052295
3	rank	4	67	12	0.094488	55	0.201465	0.757142	0.080997

iv

	Variable	IV
0	gre	0.312882
0	gpa	0.270020
0	rank	0.292044

Сглаженное WOE для борьбы с редкими значениями

Level	N_i	ΣY_i	p_i	SWOE
J	5 +24	5 +8	0.45	0.5
1	12 +24	6 +8	0.39	0.25
В	970	432	0.44	0.48
F	50 +24	20 +8	0.38	0.21
G	23 +24	8+ 8	0.34	0.05
D	111 ₊₂₄	36 +8	0.33	-0.02
H	17	5	0.32	-0.06
A	1562 +24	430 +8	0.28	-0.26
E	85 +24	23 +8	0.28	-0.22
C	223 +24	45 +8	0.21	-0.59

- Для «исправления» ситуации с редкими значениями:
 - □ Добавим для каждого значения переменной «виртуальный» набор наблюдений (фиксированного размера) с вероятностью положительного отклика равной априорной.
 - □ Чем более редкий уровень, тем выше влияние априорного распределения.

M

Бета распределение для кодирования категориальных предикторов по выборке

Бета распределение:

- □ двухпараметрическое (альфа и бета)
- \square мат. ожидание: $\frac{a}{a+b}$
- используется для моделирования случайных величин, заданных на интервале.

Моделируем:

- условную вероятность положительного отклика для фиксированного значения категориальной переменной как случайную величину
 $p_i \sim \text{Beta } (a_s, b_s)$,
- $\ \square \ a_0$, b_0 параметры априорного распределения
- \Box a_{s} , b_{s} пересчитываются последовательно, проходя всю выборку, где категориальная переменная принимает i-e значение, при этом ...
- $\Box \ a_{s+1} = a_s + 1$, если встретили наблюдение с откликом y = 1,
- $\Box b_{S+1} = b_S + 1$, если встретили наблюдение с откликом y = 0,

Значения Х

 $p_i \sim \text{Beta}(a, b)$

Значение Х

 $p_i \sim \text{Beta}(a, b)$

$$p_i|y = 1 \sim \text{Beta}(a + 1, b)$$

Значения Х

$$p_i \sim \text{Beta}(a, b)$$

$$p_i|y = 1 \sim \text{Beta}(a + 1, b)$$

$$p_i|y = 0 \sim \text{Beta}(a, b + 1)$$

Значения Х

Результат:

$$p_i \sim \text{Beta}(a + n_1, b + n_0)$$

Оценка:

$$E(p_i) = \frac{n_1 + a}{n_1 + n_0 + a + b}$$

WOE:

$$\log\left(\frac{E(p_i)}{1 - E(p_i)}\right)$$

Наблюдаемое число событий, если х принимает i-е значение $SWOE_i(x) = \log\left(\frac{n_1 + c\rho_1}{n_0 + c(1 - \rho_1)}\right)$ вероятность события

Параметр регуляризации

 $E(p_i)$

Имитационный эксперимент

.

Практическое применение WOE и IV

- Моделенезависимый отбор важных переменных:
 - Дискретизируем (например, на квантили или равные интервалы)
 числовые переменные, категориальные берем как есть
 - □ Для всех считаем IV, сортируем переменные по убыванию, оставляем топ k самых важных

$$x_{(1)}, x_{(2)}, \dots, x_{(k)}, x_{(k+1)}, \dots, x_{(p)},$$
 где $IV(x_{(s)}) \ge IV(x_{(s+1)})$

- Моделенезависимая оценка качества разбиения на тренировочную и проверочную выборку
 - □ Дискретизируем числовые переменные, категориальные как есть
 - \square Разбиваем набор данных $Z=Z_{test}\cup Z_{train}$ и по переменным считаем IV на тренировочном и тестовом наборе
 - □ Если для некоторой переменной x: $||IV_{test}(x) IV_{train}(x)|| > \Delta$, то производим разбиение заново

Практическое применение WOE и IV

 Отображение категориальных переменных на числовую шкалу для сокращения числа степеней свободы и упрощения модели:

$$x_{new} = WOE(x_{old})$$

	admit	gre	gpa	rank	V	ariable	Cutoff	WoE	á	admit	gre	gpa	WOE ran
0	0	380	3.61	3	0	rank	1	-0.929588	0	0	380	3.61	0.4351
1	1	660	3.67	3	1	rank	2	-0.179558	1	1	660	3.67	0.4351
2	1	800	4.00	1	2	rank	3	0.435110	2	1	800	4.00	-0.9295
3	1	640	3.19	4	3	rank	4	0.757142	3	1	640	3.19	0.7571

- Эффективная дискретизации переменных:
 - □ нахождение (часто «интерактивное) такого разбиения, чтобы максимизировать IV всей переменной и по возможности добиться монотонного роста WOE

«Балансировка» выборки

- Варианты борьбы с дисбалансом:
 - □ Разные **веса у наблюдений** в функции потерь (обратно пропорционально общему числу наблюдений класса)
 - □ **Сдвиг границы** принятия решения в дискриминантной функции в сторону редкого класса пропорционально отношению размеров
 - □ «Балансировка» **oversampling** с помощью некой стратегии генерируем случайные наблюдения для выборки, увеличиваем маленький класс (например, SMOTE алгоритм):

 «Балансировка» undersampling – с помощью случайной выборки уменьшаем большой класс

м

Корректировка логистической регрессии после undersamplig

- Два способа корректировки:
 - Включить параметр «сдвига» в уравнение модели

$$g(x)^{\mathrm{adj}} = g(x)_{logit} + b$$

$$\log \left(\frac{\pi_0 \rho_1}{\pi_1 \rho_0}\right) \ \{$$

Скорректировать вероятности на выходе модели:

$$p_1^{adj} = \frac{p_1 \pi_1 \rho_0}{p_1 \pi_1 \rho_0 + (1 - p_1) \pi_0 \rho_1}$$

 π_1, π_0 - до undersampling $ho_1,
ho_0$ - после undersampling