Species distribution modeling with three-step pseudo-absences

Maialen Iturbide

November 14, 2014

Introduction

This document provides an introduction to species distribution modeling (SDM) with three–step pseudo–absences.

Species distribution models (SDM) are statistical tools to predict the distribution of species in geographic space based on the relation of known species distribution to the environment. SDMs can be classified into profile techniques that only use distribution of presence data and group discrimination techniques that also require information of the environmental range where the species do not occur, that is, absence data. Due to the great effort involved in true absences sampling, most of the available datasets for predictive modeling are lacking in absence data (Zaniewski et al. (2002); Lobo et al. (2010)), thereby some authors apply profile techniques such as ecological niche factor analysis (ENFA; Cianfrani et al. (2010); McKinney et al. (2012)), Mahalanobis distance (MADIFA: i.e. Kuo (2010); Martin et al. (2012)) and environmental envelopes (BIOCLIM and DOMAIN: i.e. Giovanelli et al. (2010); Monk et al. (2010)). However, given that group discrimination techniques generally perform better (Elith and et al (2006); Engler et al. (2004); Chefaoui and Lobo (2008)), the most common methodological approach is to use group discrimination techniques relative to the available environment or background samples, also known as pseudo-absences, thus obtaining a representation of the environmental range in the region of study.

One of the most simple methods of generating pseudo-absences is to perform a random selection of the entire study area (Jiang et al. (2014); Carone et al. (2014); Sequeira et al. (2014)). However, it rises the risk of introducing false absences into the model from locations that are suitable for the species. Faced with this problem, several authors employ a presence-only algorithm as a preliminary step to move pseudo-absences away in the environmental space (Zaniewski et al. (2002); Engler et al. (2004); Barbet-Massin et al. (2012); Liu et al. (2013)).

The way of generating pseudo-absences strongly influences the results obtained (Lobo et al. (2010); Wisz and Guisan (2009); Barbet-Massin et al. (2012); Hirzel et al. (2001)), as well as the extent from which background is sampled, a constraint distribution of pseudo-absences around presence locations can lead to misleading models while the opposite, can inflate artificially test statistics and predictions, as well as potentially less informative response variables (Van-DerWal and Shoo (2009)).

This document shows an example of a full Species distribution modeling process carried out with the mopa package in R. Pseudo-absences are generated in three-steps combining profiling techniques and background extent limitations.

If you want to know more about SDM in R, you could consult, for example, documentation from package dismo made by Robert J. Hijmans and Jane Elith.

Getting started

2.1 Install mopa

The mopa is available from github repository.

```
> devtools::install_git("https://github.com/miturbide/mopa")
> library(mopa)
```

2.2 Species occurrence data

Regarding presence data, Hernandez et al. (2006) suggested that research in environmental niche modeling should focus in broad distribution subunits that are based on distinct genetic linages, in this connection Gonzalez et al. (2011) demostrated that omission error is reduced when biologically meaningful data is modeled. Thus, functions in the mopa package are prepared to run with more than one group of presences at the same time (could be a list of either distribution subunits of a single species or distribution of multiple species), anyway, functions also perform with a single group or species (data frame). In this example we use a data set (list) of two phylogenetic groups (H11 and H5) of Quercus sp in Europe. This is, R-object Oak_phylo2, available with the mopa package.

2.3 Environmental variables

Predictor variables are typically organized as raster (grid) type files. The set of predictor variables (rasters) can be used to make a 'RasterStack', which is a collection of 'RasterLayer' objects (see Raster-class in the raster package for more info).

- > # RatserStack of environmental variables
- > data(biostack)
- > plot(biostack)

Study area and background

3.1 Creation of the background grid

The regular point grid which covers the continental area can be created as follows:

```
> library(raster)
> ac<-xyFromCell(biostack[[1]], 1:ncell(biostack[[1]]))
> ex<-extract(biostack[[1]], ac)
> sp_grid<-SpatialPoints(ac[-which(is.na(ex)),])
> projection(sp_grid)<-CRS("+proj=longlat +init=epsg:4326")</pre>
```

Anyway, R-object sp_grid is available in mopa, covering the World at 10 km resolution.

3.2 Limit study area to the bounding boxes around presences

Function boundingCoords creates the matrix of bounding coordinates around point records (xy records). In this case, since Oak_phylo2 object is a list of two groups of points, a list of two matrixes will be created.

```
> oak.extension<-boundingCoords(Oak_phylo2)</pre>
```

Function delimit creates polygon shapes from bounding coordinates and limits SpatialPoints data (sp_grid) to the defined boundaries, in other words, does the intersection of the background point grid with the bounding boxes. A list with two objects is obtained, (1)bbs: polygon shape of the bounding boxes and (2)bbs.grid: list of data frames of the background point grid limited by the bounding coordinates.

```
> box.grid<-delimit(oak.extension, sp_grid, names(Oak_phylo2))
> plot(box.grid[[1]])
> for (i in 1:length(Oak_phylo2)){
+ points(Oak_phylo2[[i]], col=colors()[i*50])
+ }
```


Three—step pseudo—absences generation

4.1 STEP1: environmental profiling

The first step is the selection of the environmental unsuitable areas with a presence only algorithm (function <code>OCSVMprofiling</code>). We run One-class support vector machines (OCSVM) (Scholkopf and Smola (2001)) for each oak group.

4.2 STEP2: background extents

The second step is the limitation of the background by the definition of a threshold distance. To do so, here we apply a criteria based in the performance of the SDM considering different extents in each study area. Thus, before modeling, backgrounds of different extent must be created with function bgRadio. In the example below, extents are created for a sequence of 100 km between distances, from 20 km to the length of the half diagonal of the bounding box.

Listed matrixes with xy coordinates are obtained, each matrix correspond to a different background extent.

4.3 STEP3: pseudo-absences sampling

In the third step, with function PseudoAbsences, you can create pseudo—absences either at random or with k-means clustering, by modifying argument kmeans. You can also set the prevalence (proportion of presences against pseudo-absences) and the exclusion buffer (minimum distance to be kept to presences without pseudo-absences).

4.3.1 At random

In the example below, pseudo–absences are generated at random, in equal number to presences and keeping a $10~\rm km$ distance to presences.

```
> pa_random <-PseudoAbsences(xy = Oak_phylo2, bg.grids = ext,
+ exclusion.buffer = 0.083, prevalence = 0.5,
+ kmeans = FALSE)

[1] "generating pseudo-absences for species 1 out of 2"
[1] "generating pseudo-absences for species 2 out of 2"

> plot(ext$H11[[5]], pch="*", col= "grey", cex=.5)
> points(pa_random$H11[[5]], col="red", pch=".", cex=4)
> points(Oak_phylo2$H11, col="blue", pch=".", cex=3)
```


4.3.2 With k-means clustering

In the example below, pseudo–absences are generated with k–means clustering, in equal number to presences and keeping a 10 km distance to presence.

4.4 Put presences and pseudo-absences together

Function ${\tt bindPresAbs}$ binds presence and absence data for each background extension.

```
> presaus <-bindPresAbs(presences = Oak_phylo2,
+ absences = pa_random)</pre>
```

Species distribution modeling

The allModeling function does the species distribution modelling and k-fold cross validation for a set of presence/absence data per species corresponding to a different background extent. Algorithms supported are "glm", "svm", "maxent", "mars", "randomForest", "cart.rpart" and "cart.tree".

In the example below, we do a 10–fold cross validation of the "mars" modelling algorithm.

```
> modirs <-allModeling(data = presaus, varstack = biostack,
+ k = 10, algorithm = "mars", destdir = getwd(),
+ projection = CRS("+proj=longlat +init=epsg:4326"))</pre>
```

Named Rdata objects are stored in the specified path. Each Object is given a name indicating the algorithm, background extent, and species in this order (if a single species is provided no name is given for de species). Character object with listed files is returned. Each Rdata consists of a list with six components:

(1) allmod: fitted model with all data for training, (2) auc: AUC statistic in the cross validation, (3) kappa: kappa statistic in the cross validation, (4) tss: true skill statistic in the cross validation, (5) mod: fitted model with partitioned data, (6) p: cross model prediction.

To select the model corresponding to the geographical extent beyond which the AUC scored by the model does not increase we need to load the generated data and extract auc values with function loadTestValues.

To extract the extent at which maximum AUC value is scored, we use function indextent.

```
> ind<-indextent(auc_mars)
> ind

km820 km1820
9 19
```

Thus, the ind object in this example gives the index of the background extent to be considered for each group/species and is going to be used to extract definitive model components and data with function loadDefinitiveModel as follows.

Bibliography

- Barbet-Massin, M., Jiguet, F., Albert, C. H., Thuiller, W., 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3 (2), 327–338.
- Carone, M. T., Guisan, A., Cianfrani, C., Simoniello, T., Loy, A., Carranza, M. L., 2014. A multi-temporal approach to model endangered species distribution in europe. the case of the eurasian otter in italy. Ecological Modelling 274, 21–28.
- Chefaoui, R. M., Lobo, J. M., 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling 210 (4), 478–486.
- Cianfrani, C., Le Lay, G., Hirzel, A., Loy, A., 2010. Do habitat suitability models reliably predict the recovery areas of threatened species? Journal of Applied Ecology 47 (2), 421–430.
- Elith, J., et al, 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151.
- Engler, R., Guisan, A., Rechsteiner, L., 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41 (2), 263–274.
- Giovanelli, J., de Siqueira, M., Haddad, C., Alexandrino, J., 2010. Modeling a spatially restricted distribution in the neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modelling 221 (2), 215–224, cited By (since 1996)28.
- Gonzalez, S., Soto-Centeno, J., Reed, D., 2011. Population distribution models: Species distributions are better modeled using biologically relevant data partitions. BMC Ecology 11.
- Hernandez, P. A., Graham, C. H., Master, L. L., Albert, D. L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29 (5), 773–785.
- Hirzel, A. H., Helfer, V., Metral, F., 2001. Assessing habitat-suitability models with a virtual species. Ecological modelling 145 (2), 111–121.

- Jiang, Y., Wang, T., De Bie, C., Skidmore, A., Liu, X., Song, S., Zhang, L., Wang, J., Shao, X., 2014. Satellite-derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts. Ecological Indicators 38, 72–80.
- Kuo, Y. L., 2010. Unexpected side-effects of winter feeding: Learning from mahalanobis distances factor analysis in the case of red-crowned cranes in hokkaido, japan. In: Modelling for Environment's Sake: Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010. Vol. 1. pp. 112–116.
- Liu, C., White, M., Newell, G., Griffioen, P., 2013. Species distribution modelling for conservation planning in victoria, australia. Ecological Modelling 249, 68–74.
- Lobo, J. M., Jiménez-Valverde, A., Hortal, J., 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33 (1), 103–114.
- Martin, J., Revilla, E., Quenette, P., Naves, J., Allainé, D., Swenson, J., 2012. Brown bear habitat suitability in the pyrenees: Transferability across sites and linking scales to make the most of scarce data. Journal of Applied Ecology 49 (3), 621–631.
- McKinney, J., Hoffmayer, E., Wu, W., Fulford, R., Hendon, J., 2012. Feeding habitat of the whale shark rhincodon typus in the northern gulf of mexico determined using species distribution modelling. Marine Ecology Progress Series 458, 199–211.
- Monk, J., Ierodiaconou, D., Versace, V., Bellgrove, A., Harvey, E., Rattray, A., Laurenson, L., Quinn, G., 2010. Habitat suitability for marine fishes using presence-only modelling and multibeam sonar. Marine Ecology Progress Series 420, 157–174.
- Scholkopf, B., Smola, A. J., 2001. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.
- Sequeira, A. M. M., Mellin, C., Fordham, D., Meekan, M., Bradshaw, C., 2014.
 Predicting current and future global distributions of whale sharks. Global Change Biology 20 (3), 778–789.
- VanDerWal, J., Shoo, L. P., 2009. Selecting pseudo-absence data for presenceonly distribution modeling: How far should you stray from what you know? Ecological Modelling (4), 589–594.
- Wisz, M. S., Guisan, A., 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? an information-theoretic approach based on simulated data. BMC Ecology 9 (1), 8.
- Zaniewski, A. E., Lehmann, A., Overton, J. M., 2002. Predicting species spatial distributions using presence-only data: a case study of native new zealand ferns. Ecological Modelling 157 (2), 261–280.