ELG 5255: Applied Machine Learning Assignment 1

Group23_HW1

1. Overview

The main objective of this assignment is to build some ML models and check their performance using many different packages and tools of python and learning new Techniques (OVR and OVO) to deal with muticlassification problems as it is binary classification problems.

2. Methodology

We followed some defined steps to obtain the aimed results:

1. (a) Load the DUMD dataset and convert UNS column into numerical data

Before and after.

Index	STG	SCG	STR	LPR	PEG	UNS	Index	STG	SCG	STR	LPR	PEG	
0	0.000	0.000	0.000	0.000	0.000	Very Low	0	0.000	0.000	0.000	0.000	0.000	
1	0.080	0.080	0.100	0.240	0.900	High	1	0.080	0.080	0.100	0.240	0.900	
2	0.100	0.100	0.150	0.650	0.300	Medium	2	0.100	0.100	0.150	0.650	0.300	
3	0.080	0.080	0.080	0.980	0.240	Low	3	0.080	0.080	0.080	0.980	0.240	
4	0.090	0.150	0.400	0.100	0.660	Medium	4	0.090	0.150	0.400	0.100	0.660	
5	0.100	0.100	0.430	0.290	0.560	Medium	5	0.100	0.100	0.430	0.290	0.560	
6	0.200	0.140	0.350	0.720	0.250	Low	6	0.200	0.140	0.350	0.720	0.250	
7	0.000	0.000	0.500	0.200	0.850	High	7	0.000	0.000	0.500	0.200	0.850	
8	0.180	0.180	0.550	0.300	0.810	High	8	0.180	0.180	0.550	0.300	0.810	
9	0.060	0.060	0.510	0.410	0.300	Low	9	0.060	0.060	0.510	0.410	0.300	
10	0.200	0.200	0.700	0.300	0.600	Medium	10	0.200	0.200	0.700	0.300	0.600	
11	0.120	0.120	0.750	0.350	0.800	High	11	0.120	0.120	0.750	0.350	0.800	
12	a a5a	a a7a	a 7aa	a a1a	a a5a	Very Low	12	a a5a	a a7a	a 7aa	a a1a	a a5a	

1. (b) Choose two features based on PairPlot (the two most separable features that classification model can classify the different classes from each other easily) and "ExtraTreesClassifier"

from sklearn.ensemble import ExtraTreesClassifier

Output: feature importance score for each feature.

[0.05059389, 0.02684576, 0.06839334, 0.15636901, 0.697798]

After choosing two features.

■ DataSetTrain - DataFrame							
Index	LPR	PEG	UNS				
0	0.000	0.000	0				
1	0.240	0.900	3				
2	0.650	0.300	2				
3	0.980	0.240	1				
4	0.100	0.660	2				
5	0.290	0.560	2				
6	0.720	0.250	1				
7	0.200	0.850	3				
8	0.300	0.810	3				
9	0.410	0.300	1				
10	0.300	0.600	2				
11	0.350	0.800	3				

1. (c) Apply SVM (rbf) and Perceptron

```
# SVM Classifier
@staticmethod
def SVM(X ,Y ,GeneralizationTerm):
    ClassifierSVM = SVC(kernel="rbf", C = GeneralizationTerm, probability=True)
    ClassifierSVM.fit(X,Y)
    return ClassifierSVM

# PERCEP Classifier
@staticmethod
def PERCEP(X,Y,LearningRate,Epoch):
    ClassifierPERCEP = Perceptron(eta0=LearningRate, max_iter=Epoch)
    ClassifierPERCEP.fit(X,Y)
    return ClassifierPERCEP
```

1. (c) Classify testing data by using SVM and Perceptron classifiers. Provide accuracies, confusion matrix and decision boundaries for both classifiers.

2. (a) Obtain the binarized labels (OvR)

```
# One Vs Rest Spliting

# One Vs Rest Spliting

# Overwheld def Overwhel
```

The required class = 1, and the rest = 0.

Y train for each of 4 models.

	SVM's	SVM's decision boundary	Comments
Classes	accuracies		
	on test		
Very	97.5	OVR_SVM_0 (Very Low Vs Rest)	This
low vs		Very Low Wrong	model
Rest		1.0 - Rest Rest	correctly
		Rest Rest	classifies
		Rest Pest	very low
		Rest Rest Rest	class from
		est lest	the rest.
		0.6 - Rest Rest Rest Rest	the rest.
		U Rest Rest	And there
		Rest Rest	
		Rest Rest Rest	are only 2
		Rest Rest Rest Rest Rest Rest	wrong
		0.2 - Rest Rest	points.
		Rest Rest	
		0.0	
		0.0 1	
		0.0 0.2 0.4 0.6 0.8 1.0 LPR	
	0.625		TEN .
low vs	96.25	OVR_SVM_1 (Low Vs Rest)	This
Rest		1.0 - Rest Wrong	model
		Rest Rest Rest	correctly
		Rest Rest Rest	classifies
		0.8 - Pest Pest Pest	low class
		Best Best Best Best Best Best Best Best	from the
		Rest Rest	rest.
		Best Best Best Best	
		Веst Best Pest	And there
		0.4 - Rest Rest	are only 3
		Best Rest	wrong
		Rest	points.
		Rest	
		Rest	
		0.0 - Rest Rest	
		0.0 0.2 0.4 0.6 0.8 1.0 LPR	

2. (b) OvR Overall accuracy (after aggregation) is = 96.25 We applied numpy.argmax() to these probabilities.

Y_P	redSVM_0_Prop - N	Y_F	Y_PredSVM_1_Prop - I		Y_PredSVM_2_Prop - I		■ Y_PredSVM_3_Prop - NumPy object array				
		_									
	0		0		0		_	0			
0	0.022	0	0.009	0	0.8660		0	0.046			
1	0.000	1	0.000	1	0.9864		1	0.001			
2	0.053	2	0.013	2	0.9490		2	0.036			
3	0.866	3	0.019	3	0.0000		3	0.003			
4	0.061	4	0.000	4	0.2165		4	0.880			
5	0.002	5	0.000	5	0.0000		5	1.000			
6	0.000	6	0.002	6	0.9905		6	0.000			
7	0.050	7	0.000	7	0.0780		7	0.952			
8	0.001	8	0.965	8	0.0018		8	0.000			
9	0.003	9	0.000	9	0.9882		9	0.001			
10	0.000	10	0.001	10	0.9949		10	0.000			

To obtain this (OvR Y_Predict) and compare it with Y_Actual.

⊞	■ YProbALL_OvR - NumPy object array								
		0							
	0	2							
	1	2							
	2	2							
	3	0							
	4	3							
	5	3							
	6	2							
	7	3							
	8	1							
	9	2							
	10	2							

There are 3 wrong points predicted.

3. (a) Obtain the binarized labels (OvR)

```
# One Vs Rest Spliting

# One Voletand

# One
```

Very Low -> 0, Low -> 1, Medium -> 2, High -> 3

Y_train for each of 6 models.

1. (b) OvO Overall accuracy (after aggregation) is = 95.0 We applied numpy.argmax() to these probabilities.

To obtain this (OvO Y_Predict) and compare it with Y_Actual.

There are 4 wrong points predicted.

4. (a) Conclusion

We have learned many new things during this assignment, and we have discovered some useful techniques like OvR and OvO. We have gotten familiar with new libraries. We have learnt how to select features based on PairPlot and discover which features is more important.

Now, we can say that we are capable of dealing with different types of SVM (We have tried rbf and linear) and we discover that the Perceptron algorithm is based on neural network.

We learnt how to divide a multi-classification problem into small Binary classification problems by using OVO and OVR techniques.

Those approaches divide a big classification problem into small ones by changing the labels of the target variables in the train dataset for each of binary classification problem (for OvR) and train one model on each dataset, for instance -> 1 for Very low class and 0 for others and so on....

Or by splitting our train dataset into different datasets for each model to train on it (for OvO) the number of binary datasets will be equal to (NumClasses * (NumClasses -1)) / 2.

After that, we aggregate our results to obtain final accuracy for OvR and OvO and, we have obtained an accuracy of 96.25 from OvR which is higher then the normal SVM (rbf) approach that we tried in point number 1 (c).