1. Espacios de Sobolev

Consideremos el problema

$$\begin{cases}
-u'' + u = f, & (a,b) \\
u(a) = u(b) = 0
\end{cases}$$

y multipliquemos por una función test $\phi \in \mathscr{C}^\infty_C((a,b))$. Al hacer integración por partes nos queda

$$\int_a^b u'\phi' + \int_a^b u\phi = \int_a^b f\phi.$$

Esta es la formulación débil del problema y la gracia es que ahora solo necesitamos que *u* sea continuamente diferenciable. Con herramientas de análisis funcional buscaremos revolver el sistema para estas funciones menos regulares, y a partir de estas deducir las más regulares.

Definición 1: Derivada débil

Sean $u, v \in L^1_{loc}(\Omega)$ con $\Omega \subset \mathbb{R}^n$ abierto y α un multiíndice (ie. $\alpha = (\alpha_1, \dots, \alpha_n)$). Decimos que v es la α -derivada débil de u si se cumple que

$$\int_{\Omega} u D^{\alpha} \phi = (-1)^{|\alpha|} \int_{\Omega} v \phi \qquad \forall \phi \in \mathscr{C}_{C}^{\infty}(\Omega).$$

En tal caso denotamos $v = D^{\alpha}u$.

Proposición 1.

Si existe la α -derivada débil de una función $u \in L^1_{loc}(\Omega)$, entonces es única salvo un conjunto de medida nula.