副本 lecture01

Goal

上完课之后可以在学术界、工业界、英语和法律教育等构建机器学习应用

Prerequisites

理解基础的计算机技能和概念、比如时间复杂度、栈、队列、二叉树; 有概率论基础,知道随机变量、期望、方差; 有线代基础,知道矩阵,向量,以及他们相乘,特征向量。

homework

会通过若干作业来练习这些ML思想

form study group

建议组建学习小组,可以互相帮助,一起学习

Project

这门课的目标之一: 做一个有意义的机器学习项目

浏览之前的课程网站,有许多项目:诊断癌症、地震工程、理解文学等。会让你得到启发

Discussion Section

在每周会有一些讨论环节,讨论内容有:线代、概率论、Python、NumPy、凸优化算法、隐含 马尔可夫模型等。

Piazza

学生使用Piazza进行讨论问题,鼓励活跃参与回答问题。私人问题可以发邮件。

这次课程和之前课程的变化:

①从MATLAB改为python; ②加入期中考试。

有60小时办公室时间可以问问题,作业提交截止日期在课表上。

CS229A, CS229, CS230的区别

课程	CS229A	CS229	CS230
课程内容	ML	ML	DL
More math	×	$\sqrt{}$	×
More applied	$\sqrt{}$	×	$\sqrt{}$

如果想成为ML领域的专家,建议多学一些像概率统计、凸优化、强化学习等。

学习ML的伟大意义

会让世界变得更美好,比如:改善医疗保健系统、让民主运行的更好等。

ML的一些定义

Arthur Samuel

So field of study gives computers the ability to learn without being explicitly programmed.

Tom Mitchell

a program is said to <u>learn from experience E with respect to task T and some</u> <u>performance measure P, if its performance on T, as measured by P, improves with experience E.</u>

Different tools in ML

1. Supervised Learning

监督学习(最广泛应用)

定义:

给出若干带有标记Y的X,找出X到Y的映射,然后根据这个映射判断新X。

例子

例1,房价(回归问题)

例2, 乳腺肿瘤和乳腺癌(分类问题)

支持向量机

用来处理无穷个输入特征。

Video: 汽车自动驾驶

输入X为人类操作方向盘、输出Y为轮子偏向、观察若干之后学会自动驾驶。

2. Machine Learning Strategy

3.Deep Learning

ML的一个分支

4. Unsupervised Learning

定义

没有标记的数据集,仅有输入×和输出y,从中找到有价值的数据

例子

例1, 谷歌新闻对新闻进行聚类分类

例2,基因问题

例3,鸡尾酒会问题

一个房间里,有一个麦克风收集五个人一块讲话,要求分离出每个人说话的声音

例4, 类比数据

用 男人->女人 类比: 国王->往后 用 东京->日本 类比: 华盛顿->美国 进而可以从大量无标记数据中,找到规律

5.Reinforcement Learning

例子

例1, 直升机倒着飞

例2, 训练狗狗, 训练直升机

例3, 机器狗

例4,玩游戏(AlphaGo)