

8月论文分享

BLNet: A Fast Deep Learning Framework for Low-Light Image Enhancement with Noise Removal and Color Restoration

IEEE

Retinex理论

➤一张图像S,可以被分解为照明层I和反射层R两个部分,其中照明层为单通道图像,反射层为3通道图像。

$$S = I \circ R$$

- ➤照明层I: 低频信息, 亮度的强度和分布。
- ▶反射层R: 高频信息, 语义信息如场景、纹理、细节等。

RetinexNet (来自BMVC 2018)

网络总览

网络总览

- ➤分解阶段:用U-Net将图像分解为照明层和反射层。此处,提出NCBC (Noise and Color Bias Control Module)模块,抑制反射层中的噪声,同时控制色调平衡。
- ➤ 增强阶段:用一个结构与分解阶段极其相似的 U-Net。

➤通过精心设计的损失函数,用两个U-Net就能同时达到亮度增强、去除噪声、恢复色调、保留细节的目标。同时解决弱光增强领域中遇到的种种不足之处。

分解网络的设计

- ▶ RetinexNet: 用一个简单的卷积网络, 会放大噪声和造成色调失真。
- ▶KinD: 用一个浅层的U-Net, 但反射层的噪声还是被放大了, 仍有严重色调失真。
- ➤论文方案:用一个更深层的U-Net,原因是,U-Net的这种先下采样再上采样的结构有去噪的功能,尽量避免噪声被放大。
- ▶同时,引入NCBC模块来解决反射层的噪声和色调失真。
- ➤受上面两个方法的影响,用了RetinexNet提出的重建损失reconstruction loss,来约束分解过程。

分解阶段的损失函数 $L_{decom} = 1.0L_{rc} + 0.1L_{smooth} + 0.01L_{equal}$

$$ho$$
 重建损失 $L_{rc} = \sum_{i} \sum_{j} \lambda_{ij} \|R_i * L_j - S_j\|_1$ (弱光和正常图像间权重取1, 否则取0.001)

 \triangleright 约束弱光和正常光分解出的反射层 $L_{equal} = \|R_{low} - R_{high}\|_1$

▶以往的工作中,用平滑损失来约束照明层,使其只含有低频信息例如光照的分布和强度,所有的高频信息如细节和纹理,都保留在反射层中。本方法也用了RetinexNet提出的平滑损失,来使分解出的照明层光滑。

$$L_{smooth} = \sum_{i} \left\| \nabla_{h} L_{i} * e^{-\lambda * \nabla_{h} R_{i}} \right\| + \sum_{i} \left\| \nabla_{v} L_{i} * e^{-\lambda * \nabla_{v} R_{i}} \right\|$$
 (弱光和正常图像分别计算)

- ➤按照以往的工作:此时,照明层足够光滑、只含低频信息,分解后产生的噪声都只出现在反射层。
- ▶但是,本论文认为,可以使照明层含有一些高频信息,在经过增强后被恢复出来!

改进之处: NCBC模块

- ightharpoonup以往的工作用TV损失(Total variance loss)来平滑反射层。 $L_{TV}^{low} = \|\nabla_h \phi(R_{low})\|_2^2 + \|\nabla_v \phi(R_{low})\|_2^2$
- ▶通过实验,论文发现:直接用TV损失来平滑反射层并不利于去噪,还可能引起图像失真。为了不引用额外的去噪网络(导致整个网络处理速度变慢,且在反射层引起色调失真),论文提出NCBC模块,来抑制噪声、控制反射层色调。
- ▶同时,通过此模块的损失设计(noise loss),被TV loss平滑掉的反射层中的细节和噪声,都被转移到了照明层上。因此,不像其他方法,我们的照明层也包含了一些高频信息,比如细节和纹理。这样一来,我们可以把细节保留在照明层中,这意味着,在经过增强网络后,细节能够被其修复和重建。

包含:一个简单CNN,和两个损失函数

输入: R_{low} 和 R_{high}

输出:参与损失项的计算,用 ϕ 表示

$$L_{TV}^{low} = \|\nabla_h \phi(R_{low})]\|_2^2 + \|\nabla_v \phi(R_{low})]\|_2^2$$
 (平滑反射层)

$$L_{MSE} = \|R_{low} - R_{high}\|_2^2$$
 (使弱光域的反射层 尽量接近正常光)

$$L_{noise} = 0.05L_{TV}^{low} + 1.0L_{MSE}$$
 (抑制反射层噪声)

包含:一个简单CNN,和两个损失函数

输入: R_{low} 和 R_{high}

输出:参与损失项的计算,用 ϕ 表示

 $L_{color} = \|\phi(R_{low}) - \phi(R_{high})\|_{1}$

(使低光域反射层 的全局信息尽量接 近正常光,以保证 色调不失真)

模块总损失函数: $L_{NCBC} = 0.2L_{noise} + 0.1L_{color}$

增强阶段的损失函数

- ▶结构:与分解网络极其相似的U-Net。
- ightharpoonup效果主要依赖于损失函数。 $L_{eh} = 1.0L_{rc} + 1.0L_{bri} + 1.0L_{per} + 1.0L_{grad}$

$$L_{rc} = \|R_{low} * L_{output} - S_{high}\|_1$$
 (重建损失)

$$L_{bri} = \left\| L_{output} - L_{high} \right\|_{1}$$

$$L_{per} = \frac{1}{CHW} \left\| \phi(R_{low} * L_{output}) - \phi(S_{high}) \right\|_2^2 \quad \text{(用感知损失,保持纹理信息的不变,} \\ \phi \, \text{代表VGG16提取} \quad \text{)}$$

$$L_{grad} = \|\nabla_h(R_{low} * L_{output}) - \nabla_h(S_{high})\|_1 + \|\nabla_v(R_{low} * L_{output}) - \nabla_v(S_{high})\|_1 + \|\nabla_v(R_{low} * L_{output}) - \nabla_v(S_{high})\|_1$$
 (保持锐度和平滑度之间的平衡,不要太过平滑)

实验细节

- ▶数据集: LOL训练集和验证集
- ▶还在几个被广泛使用的数据集上进行了测试: DICM、LIME、MEF
- ▶量化评估指标: PSNR、SSIM、LPIPS、FSIM、UQI
- ▶用 Angular Error 和 DeltaE 作为色调失真的计算指标

$$AngularError = arcos(\frac{\langle S_{output}, S_{high} \rangle}{\|S_{output}\| \cdot \|S_{high}\|})$$

消融实验

➤NCBC模块可以增强亮度、 切制噪声、纠 正色偏、除去 光晕伪影

(a) RetinexNet [13](17.78/0.49/0.83) (b) Ours w/o NCBC(17.70/0.83/0.94)

Fig. 3. Ablation study on the LOL dataset (PSNR/SSIM/Color Bias Average).

(a) Our model without NCBC (b) Our model with NCBC (1.16/1.14/1.15) (1.03/0.99/1.01)

(c) Our model without NCBC (d) Our model with NCBC (1.73/1.87/1.80) (0.86/1.24/1.05)

Fig. 4. Ablation study on LOL dataset (color bias mean/color bias median/color bias average).

消融实验

➤调整NCBC模块中的noise loss的权重

$$L_{noise} = 0.05L_{TV}^{low} + 1.0L_{MSE}$$

Fig. 5. The images in the first and second row from left to right represent the low-light image's reflectance and GroundTruth's illumination (low-light image's illumination is too dark to compare) decomposed by our decomposition net without the NCBC Module, using noise loss with weight coefficients of 0.2, 0.4 and 0.7.

从左到右,随着noise loss权重增大,反射层趋于光滑,照明层趋于尖锐

和SOTA的量化评估

有监督指标:

Traditional Methods	PSNR↑	SSIM↑	LPIPS↓	FSIM↑	UQI↑
Input	7.7733	0.1914	0.4173	0.7190	0.0622
MSRCR [11]	13.1728	0.4615	0.4404	0.8450	0.7884
BIMEF [35]	13.8752	0.5949	0.3673	0.9263	0.7088
LIME [12]	16.7586	0.4449	0.4183	0.8549	0.8805
Dong [36]	16.7165	0.4783	0.4226	0.8886	0.8078
SRIE [34]	11.8552	0.4954	0.3657	0.9085	0.5033
MF [33]	16.9662	0.5075	0.4092	0.9236	0.8572
NPE [32]	16.9697	0.4839	0.4156	0.8964	0.8943
RRM [19]	13.8765	0.6636	0.3476	0.8821	0.7275
LECARM [38]	14.4099	0.5448	0.3687	0.9288	0.6406
JED [20]	13.6857	0.6509	0.3549	0.8812	0.7143
PLM [61]	16.2620	0.4617	0.4284	0.8265	0.8892
DIE [39]	14.0181	0.5188	0.3910	0.9172	0.7027
DL Methods	PSNR↑	SSIM↑	LPIPS↓	FSIM↑	UQI↑
MBLLEN [18]	17.8583	0.7247	0.3672	0.9262	0.8261
RetinexNet [13]	16.7740	0.4249	0.4670	0.8642	0.9110
GLAD [14]	19.7182	0.6820	0.3994	0.9329	0.9204
RDGAN [16]	15.9363	0.6357	0.3985	0.9276	0.8296
Zero-DCE [17]	14.8671	0.5623	0.3852	0.9276	0.7205
Zhang [48]	19.4968	0.7003	0.3911	0.8514	0.8521
EnlightenGan [15]	17.4828	0.6515	0.3903	0.9226	0.8499
Our model w/o NCBC	18.4446	0.7605	0.3514	0.9261	0.9259
Our model	20.1447	0.7918	0.3126	0.9454	0.9371

Angular Error,评估色调:

Traditional Methods	Mean↓	Median↓	Average↓	DeltaE↓
MSRCR [11]	3.7421	4.5877	4.1649	27.4496
BIMEF [35]	3.4004	3.5187	3.4595	33.8820
LIME [12]	3.2096	4.0825	3.6460	21.1816
Dong [36]	3.3499	4.1481	3.7490	25.3349
SRIE [34]	3.4488	4.0751	3.7620	44.3194
MF [33]	3.3277	3.9810	3.6544	24.5488
NPE [32]	3.5588	4.2505	3.9046	22.6374
RRM [19]	3.3745	3.5821	3.4784	32.9843
LECARM [38]	3.4091	3.9668	3.6979	34.5143
JED [20]	3.4064	3.8651	3.6357	33.8342
PLM [61]	3.4274	3.7085	3.4829	22.0553
DIE [39]	3.4597	4.1164	3.7880	34.1583
Deep Learning Methods	Mean↓	Median↓	Average↓	DeltaE↓
MBLLEN [18]	3.2716	4.4620	3.8669	21.5774
RetinexNet [13]	3.7501	4.4975	4.3589	21.3550
GLAD [14]	3.3110	3.8021	3.5565	16.0393
RDGAN [16]	4.3899	5.3027	4.8463	26.3796
Zero-DCE [17]	4.1051	4.6860	4.3955	31.4451
Zhang [48]	3.3744	3.9104	3.6424	17.6652
EnlightenGan [15]	4.5296	5.2536	4.8916	21.9113
Our model w/o NCBC	2.8645	3.9083	3.3864	16.0604
Our model	2.1785	2.3870	2.3024	13.5264

Gray Entropy (GE) 和 Color Entropy (CE),评估图像信息量:

Deep Learning Methods	GE↑	CE↑	Time cost↓
Low-Light Input	4.7432	14.3837	-
GroundTruth	7.0400	21.3163	-
MBLLEN [18]	7.1421	21.3664	80 ms
RetinexNet [13]	6.8346	21.1266	20 ms
GLAD [14]	7.1141	21.5237	25 ms
RDGAN [16]	6.6327	20.1053	30 ms
Zero-DCE [17]	6.5964	18.9072	2 ms
Zhang [48]	7.0673	21.4085	20 ms
EnlightenGan [15]	7.0664	21.3476	20 ms
Our model w/o NCBC	7.0336	21.3651	7 ms
Our model	7.1450	21.5882	7 ms

和SOTA的量化评估

本方法在耗时上存在优势,原因在于:

- 1. 网络结构简单,分解和增强都是 U-Net结构,计算速度快
- 2. 去噪和色调调整的步骤由损失函数进行,没有使用额外的网络, 在测试时不耗费额外时间

Fig. 11. Runtime cost and performance comparison of our method and other state-of-the-art deep learning methods on the LOL dataset.

和SOTA的视觉评估

和SOTA的视觉评估

不足之处

▶如果图像中存在过暗区域,仍会出现光晕伪影和局部阴影

Fig. 12. Some failure cases of our results.

工作亮点

- ▶在RetinexNet的工作上进行了改进,解决了前者的不足,效果有明显提升。
- ➤提出NCBC模块,用损失函数替代专门的网络,在保证结果质量的同时降低处理 耗时。
- ➤实验结果展示比较全面,在量化指标中,用Angular Error来评估色调,用GE和 CE来评估图像信息量,以展示算法在这两个层面上的效果。

Learning to Enhance Low-Light Images with a Synthetic-Real Interaction Training Strategy

ICDH 2020

背景

- ▶现存的深度网络忽视了网络强大的描写能力。它们倾向于设计复杂的网络结构, 包含大量参数,定义多种损失函数。这导致了参数的冗余和计算上的压力。
- ▶为了解决这个问题,我们研究了一个新颖的训练策略,去挖掘网络强大的描写能力。这篇工作是领域内首次尝试这个思路的工作。

网络结构

- >设计了一个具有强大描写能力的网络,同时具有更少的参数。
- ▶参考Retinex理论,用这个网络从图像中得到其照明层,再相除得到其反射层, 将其反射层作为最终增强结果。
- ▶ 含26个卷积层的残差网络,文章详细描述了结构设计。

Synthetic-Real 迭代训练策略

- ▶广受认可的一个观点是,训练数据的分布决定了深度学习的表现。
- >但是,如何对训练数据去建立训练的流程,也是同等重要的。
- ➤现存的弱光增强工作,都考虑通过一个单步的训练pipeline去训练参数。一个广泛使用的训练策略是,直接去使用真实的成对数据集,比如MIT-Adobe 5K dataset ,学习一个从弱光到正常光间的映射是困难的,因此给网络结构和损失函数的设计带来许多阻碍,导致设计出来的网络含有很大的参数量。
- ▶但是,我们设计的网络是轻量的,因此不能通过单步训练pipeline获得理想结果。
- ▶因此,考虑用训练策略来达到满意的结果。

Synthetic-Real 迭代训练策略

- >不仅用了真实图像对,也合成了成对数据。
- ▶考虑平滑度之间的联系,将深度作为照明层。此处用的是NYU Depth dataset。

Figure 2: Visual comparison of the depth and illumination maps. The left bottom corner of each sub-figure demonstrates the input image.

Synthetic-Real 迭代训练策略

- ▶用合成训练机制去引导生成平滑的照明层。合成训练阶段不是用来获取理想增强结果(即反射层)的,而是用来获取中间成分(即照明层)的。
- >之后,真实训练阶段是用来纠正照明层、获得理想增强结果的。

训练损失函数

▶简单的损失函数,只用到MSE。

$$\mathcal{L} = egin{cases} \mathcal{L}_{MSE}(\mathbf{I}, \mathbf{I}_d), & ext{if synthetic,} \ \mathcal{L}_{MSE}(\mathbf{L}, \hat{\mathbf{R}}), & ext{if real,} \end{cases}$$

论文强调:使用的损失非常简单,无需任何正则化。

与弱光增强领域的其他SOTA方法比,是突破性的。

I:弱光的照明层

 I_d : 真实深度

L:弱光输入图像

R: 真实反射层 (指的可能是对应的正常光图像)

- ▶论文的主要贡献在于这个 Synthetic-Real 迭代训练策略。
- ▶只用真实图像对训练,迭代了600个epoch,照明层和反射层仍存在伪影。因为 网络和损失函数都太过简单,难以解决困难的任务。
- ▶只用合成图像对训练,可以避免伪影,但亮度和色调都不令人满意,因为合成 图像和真实图像存在差异。
- ▶我们的 Synthetic-Real 训练策略,在相同的训练epoch下表现得很好,尤其是有效增强亮度、抑制伪影。

- ▶2次迭代的结果与1次迭代比,视觉效果和量化结果都提高了。
- > (每个iteration含600个epoch)

效果展示

Metric	RetinexNet [7] (BMVC '18)	EnlightenGAN [10] (Arxiv '19)	DPE [13] (CVPR '18)	WhiteBox [14] (TOG '18)	DeepUPE [9] (CVPR '19)	Ours
PSNR/SSIM	11.9803/0.6836	15.1854/0.7460	15.9902/0.7754	20.0479/0.8346	20.8898/0.8391	23.2041/0.8721
Parameters # (Reduction)	2.1103M (57.75%)	8.6455M (89.69%)	3.3292M (73.22%)	25.6901M (96.53%)	2.9963M (70.25%)	0.8915M

效果展示

- ▶亮点在于,提出用训练策略来弥补简单的网络结构,也能达到同等效果。
- >不足之处在于,没有对不同的网络结构进行实验对比,深入探究这个训练策略。
- >实验做得太过简单,采用的指标和测试数据集太少,说服力不够。

颜色损失

- ➤金老师说,可以思考为什么这里的色调调整方法取得了成功,它对比其他color loss有什么优势?
- ▶补充SOTA论文中用到的颜色损失(鸿俊在组会中提供)

Zero-DCE中的颜色损失:

$$L_{col} = \sum\nolimits_{\forall (p,q) \in \varepsilon} (J^p_{\searrow} - J^q)^2, \varepsilon = \{(R,G), (R,B), (G,B)\}$$

Deep-UPE中的颜色损失:

$$\mathcal{L}_{c}^{i} = \sum_{p} \angle((\mathcal{F}(I_{i}))_{p}, (\tilde{I}_{i})_{p}),$$

补充:论文2

▶用深度图去替代照明层的理论是错误的。金老师说,它们除了看上去都是光滑

的,实际上没有任何相关之处。

Synthetic-Real 迭代训练策略

>不仅用了真实图像对,也合成了成对数据。

>考虑平滑度之间的联系,将深度作为照明层。此处用的是NYU Depth dataset。

Figure 2: Visual comparison of the depth and illumination maps. The left bottom corner of each sub-figure demon-

▶但是,这种先达成一个目标,再达成另一个目标的做法,是可取的。

$$\mathcal{L} = \begin{cases} \mathcal{L}_{MSE}(\mathbf{I}, \mathbf{I}_d), & \text{if synthetic,} \\ \mathcal{L}_{MSE}(\frac{\mathbf{L}}{\mathbf{I}}, \hat{\mathbf{R}}), & \text{if real,} \end{cases}$$