INSTITUTO FEDERAL SUL-RIO-GRANDENSE UNIVERSIDADE ABERTA DO BRASIL

Programa de Fomento ao Uso das TECNOLOGIAS DE COMUNICAÇÃO E INFORMAÇÃO NOS CURSOS DE GRADUAÇÃO - TICS

Cálculo Vetorial

Vasco Ricardo Aquino da Silva

TiCs

Ministério da **Educação**

SUMÁRIO

UNIDADE A - VETORES	5
Características e Operações	
Vetores iguais	
Vetores Opostos	
Operações com vetores na forma geométrica	8
Adição de vetores	8
Subtração de vetores	9
Operações com vetores na forma analítica	9
Vetores no Plano	9
Vetores no espaço	10
Atividade	11
UNIDADE B - PRODUTO ENTRE VETORES	
Produto escalar	
Aplicações do produto escalar	
Produto vetorial	
Produto misto	
Atividades	19
UNIDADE C - RETAS E PLANOS	
Estudo da reta	
Atividades	
Resumo	
UNIDADE D - FUNÇÕES DE VÁRIAS VARIÁVEIS	
Definições.	
Função de duas variáveis	27
Representações	27
Alguns gráficos de funções de duas variáveis	28
Características	
Funções de várias variáveis	
Limites de funções de duas variáveis	
Continuidade	
Atividades	
Usando o programa winplot para traçado de gráficos	
Exercícios	
UNIDADE E - DERIVADAS PARCIAIS	33
Exercícios	35
UNIDADE I - FUNÇÕES VETORIAIS	37
Funções vetoriais: Introdução	39
UNIDADE J - INTEGRAIS DE LINHA	
Exercícios	
UNIDADE K - CAMPOS VETORIAIS	
Exercícios	47

Vetores

Unidade A Cálculo Vetorial

٠ ١	J	н	u	α	u	\Box	٦.	

VETORES

Características e Operações

É um elemento matemático representado por um segmento de reta orientado. Possuí **módulo** (que é o comprimento do segmento), **direção** e **sentido**.

Indicamos um vetor definido por dois pontos da seguinte maneira:

$$\vec{v} = \overrightarrow{AB} = B - A$$

Vamos analisar algumas comparações entre vetores:

Vetores iguais

Mesmo módulo, mesma direção e mesmo sentido

Vetores opostos

Têm o mesmo módulo, mesma direção, mas sentidos opostos.

ao Uso das Tecnologias da Informação e Comunicação

Algumas definições são importantes dentro do estudo dos vetores, tanto para uma interpretação geométrica quanto para uma análise analítica.

- 1. Dois vetores são paralelos se os seus representantes tiverem a mesma direção.
- 2. Qualquer ponto do espaço é representante do vetor zero (ou vetor nulo).
- 3. Um vetor é unitário se o seu módulo é igual a 1.
- 4. O versor de um vetor não nulo, é um vetor unitário, de mesma direção e mesmo sentido do vetor dado.

Operações com vetores na forma geométrica

Adição de vetores

É utilizada na adição de qualquer quantidade de vetores.

Exemplo:

Para somar os vetores acima, devemos posicionar cada vetor junto ao outro, de forma que a extremidade de um vetor coloque-se junto à origem do outro.

E o vetor soma, ou também chamado vetor resultante (\vec{R}), será o **vetor que une a origem do primeiro com a extremidade do último**, formando assim um polígono.

Subtração de vetores

Realizar a subtração, $\vec{a} - \vec{b}$, é como somar a mais um vetor de mesma intensidade, mesma direção, porém, com sentido oposto ao do vetor \vec{b} originalmente representado. Na realidade, estaremos fazendo a adição do vetor a com um vetor oposto ao vetor b (a + (-b)).

Operações com vetores na forma analítica

Vetores no Plano

Qualquer vetor não nulo pode ser expresso em função de dois vetores não paralelos \vec{v}_1 e \vec{v}_2 .

E neste caso dizemos que \vec{v} é combinação linear de \vec{v}_1 e \vec{v}_2 .

Então, escrevemos: $\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2$

Também dizemos que conjunto desses vetores:

 $B = {\vec{v}_1, \vec{v}_2}$ forma uma base do \Re^2 .

As bases mais utilizadas são as ortonormais àquelas em que os vetores são ortogonais e unitários.

Os vetores nesse sistema são representados por \vec{i} e \vec{j} , ambos com origem na origem dos eixos coordenados e extremidade em (1,0) e (1,0) respectivamente.

A base mais utilizada é chamada de base canônica:

Usando a base canônica determinamos a expressão analítica de um vetor:

Ou seja, tomando $\vec{v} = x\vec{i} + y\vec{j}$

Escrevemos o vetor $\vec{v} = (x, y)$ portanto um vetor é um ponto do plano.

Exemplos:

Forma canônica	Forma analítica
$2\vec{i} + 3\vec{j}$	(2,3)
$2\vec{j}$	(0,2)
$-5\vec{i}$	(-5,0)
$-\vec{i} + \vec{j}$	(-1,1)

Vetores no espaço

Todas as propriedades estudadas para os vetores no plano continuam válidas no espaço, bastando para isso considerarmos a seguinte base canônica:

ATIVIDADE

1. Em cada parte determine as coordenadas dos 8 cantos da caixa:

- 2. Pesquise qual é a fórmula que calcula a distância entre dois pontos e aplique para as seguintes questões:
 - **a.** (1,-2,0) e (-3,4,1)
 - **b.** (5,3,-4) e (3,1,-4)
 - **c.** (-1,-2,-3) e (1,2,3)
 - **d.** (0,0,0) e (-5,2,-1)
- **5.** Dados os pontos A(3, -4) e B(-1, 1) e o vetor v = (-2,3), calcular:
 - a. (B A) + 2v
 - **b.** (A B) v
 - c. B + 2(B A)
 - **d.** 3*v* 2(A B)

Produto entre vetores

Unidade B Cálculo Vetorial

UNIDADE	R		

PRODUTO ENTRE VETORES

Unidade B

Produto escalar

Chama-se produto escalar de $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$ número real $\vec{u}.\vec{v}$ dado por:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Exemplo:

$$\vec{u} = (-2, 1, 5)$$

$$\vec{v} = (0, -4, 3)$$

$$\vec{u} \cdot \vec{v} = (-2)(0) + (1)(-4) + (5)(3) = 0 - 4 + 15 = 11$$

Aplicações do produto escalar

Uma aplicação importante do produto escalar é a **condição de ortogonalidade** entre vetores:

$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$

Exemplo:

Os vetores $\vec{u} = (2, -4) \cdot \vec{v} = (4, 2)$ são ortogonais, pois fazendo o produto escalar o resultado é zero.

Outra aplicação importante é o cálculo do ângulo entre dois vetores: A fórmula é dada por $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$

Calcular o ângulo entre os vetores:

$$u = (1,1,4)$$
 e $v = (-1,2,2)$

$$\cos\theta = \frac{(1,1,4)(-1,2,2)}{|(1,1,4)|(-1,2,2)|} = \frac{-1+2+8}{\sqrt{18}\sqrt{9}} = \frac{9}{9\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\theta = arc \cos\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ}$$

Produto vetorial

O produto vetorial de $\vec{u} \times \vec{v}$ é o vetor de módulo igual à área do paralelogramo definido pelos dois vetores e direção perpendicular ao plano do paralelogramo.

Para facilitar o cálculo desse produto vetorial, utilizaremos a seguinte notação: $\vec{u} \times \vec{v} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix}$

Exemplo:

Dados $\vec{u} = 2\vec{i} + \vec{j} + 2\vec{k}$ e $\vec{v} = 3\vec{i} - \vec{j} - 3\vec{k}$ determine *u* vetorial *v*:

$$u \times v = \begin{vmatrix} i & j & k \\ 2 & 1 & 2 \\ 3 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 2 \\ 3 & -3 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} \vec{k} = -1 + 12j - 5k = (-1, 12, -5)$$

Produto misto

Dados os vetores $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ e $\vec{w} = (w_1, w_2, w_3)$ definimos o produto misto entre u, v e w, denotado por [u,v,w] ou por $u.(v\times w)$, como o número real obtido a partir do determinante

$$[u, v, w] = u \cdot (v \times w) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

O resultado do produto misto é um NÚMERO REAL.

Exemplo:

Dados os vetores $\vec{u} = (2,1,3)$, $\vec{v} = (0,-1,2)$ e $\vec{w} = (2,2-1)$ calcule o produto misto $\vec{u} \cdot (\vec{v} \times \vec{w})$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 2 & 1 & 3 \\ 0 & -1 & 2 \\ 2 & 2 & -1 \end{vmatrix}$$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 2 & 1 & 3 \\ 2 & 2 & -1 \end{vmatrix}$$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 2 & 1 & 3 \\ 0 & -1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = 2$$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (+2 + 4 + 0) - (-6 + 8 + 0)$$

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = 4$$

Calcule o volume do paralelepípedo formado pelos vetores:

$$\vec{u} = (1,1,5)$$
 $\vec{v} = (0,3,2)$ $\vec{w} = (2,2,1)$

$$v = \begin{vmatrix} 1 & 1 & 5 \\ 0 & 3 & 2 \\ 2 & 2 & 1 \end{vmatrix} = |-27| = 27$$

ATIVIDADE

Assistir ao vídeo seguindo o link abaixo

http://www.youtube.com/watch?v=pVZuclu-icY&feature=related

Resolver os seguintes exercícios.

- **1.** Dados os vetores $\vec{u} = (2, -3, -1)$ e $\vec{v} = (1, -1, 4)$, calcule:
 - a. $2\vec{u}$.
 - b. (u+3v).(v-2u)
 - c. (u+v).(u-v)
- **2.** Determine o vetor \vec{v} , paralelo ao vetor u = (2, -1, 3), tal que $\langle v, u \rangle = -42$. (pesquise essa notação usada).
- **3.** Determine o vetor \vec{v} , ortogonal ao eixo das ordenadas, $\langle v, v_1 \rangle = 8$ e $\langle v, v_2 \rangle = -3$, sendo $\vec{v}_1 = (3, 1, -2)$ e $\vec{v}_2 = (-1, 1, 1)$.
- **4.** Sabendo que |u|=2, |v|=3 e $\langle u,v\rangle=-1$, calcule $\langle (u+v),(v-4u)\rangle$.
- 5. Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 20cm. Calcule \overrightarrow{AB} . \overrightarrow{AC} .
- 6. Calcule o valor de m de modo que seja 120º o ângulo entre os vetores u = (1, -2, 1) e v = (-2, 1, m+1).
- **7.** Dados os vetores $\vec{u} = 3i j 2k$, v = (2, 4, -1) e w = -i + k calcule:
 - a. $|\vec{u} \times \vec{u}|$
 - b. $(2\vec{v}) \times (3\vec{v})$
 - c. $\vec{u} \times (\vec{v} + \vec{w})$
 - d. $\vec{u} \cdot (\vec{v} \times \vec{w})$
 - e. $(\vec{u} \times \vec{w}) + (\vec{w} \times \vec{u})$
- **8.** Dados os pontos A(2,1,-1), B(3,0,1) e C(2,-1,-3), determine o ponto D tal que $\overrightarrow{AD} = \overrightarrow{BC} \times \overrightarrow{AC}$.
- 9. Dados os vetores $\vec{u} = (3,1,1)$, $\vec{v} = (-4,1,3)$ e $\vec{w} = (1,2,0)$ determine \vec{x} de modo que $\vec{x} \perp \vec{w}$ e $\vec{x} \times \vec{u} = \vec{v}$.
- **10.** Dados os vetores $\vec{u} = (3, -1, 1)$, $\vec{v} = (1, 2, 2)$ e $\vec{w} = (2, 0, -3)$, calcule:
 - a. $(\vec{u}, \vec{v}, \vec{w})$
 - b. $(\vec{w}, \vec{u}, \vec{v})$

Retas e Planos

Unidade C Cálculo Vetorial

Inidade	2
Official	-

RETAS E PLANOS

Nesta unidade faremos um tratamento analítico da reta e do plano, utilizando os conceitos de vetores vistos anteriormente.

Estudo da reta

Consideremos a reta "r" que passa pelo ponto $A(x_0, y_0, z_0)$ e tem a direção do vetor **não nulo** $\vec{v} = (a, b, c)$

Sendo P(x, y, z) um ponto qualquer (variável) de "r" temos $\overrightarrow{AP} = t\overrightarrow{v}, t \in IR$ que é a equação vetorial da reta.

As outras equações utilizadas são:

• A equação paramétrica:

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt, t \in IR \\ z = z_0 + ct \end{cases}$$

• A equação simétrica;

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

• A equação reduzida:

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z}{c}$$

ATIVIDADES

Exercícios

1. Determine a equação vetorial da reta r que passa pelo ponto A(3,0,-5) e tem a direção do vetor $\vec{v}=2\vec{i}+2\vec{j}-\vec{k}$

Você deve encontrar como resposta: $(x,y,z) = 3 + 2t, 2t, -5 - t, t \in IR$

2. Determine as equações paramétricas da reta r, que passa pelo ponto A(3,-1,2) e é paralela ao vetor $\vec{v} = (-3, -2, 1)$

Você deve encontrar como resposta: $\begin{cases} x = 3 - 3t \\ y = -1 - 2t \\ z = 2 + t \end{cases}$

3. Determine as equações simétricas da reta que passa pelo ponto A(3,0,-5) e tem a direção do vetor $\vec{v}=2\vec{i}+2\vec{j}-\vec{k}$

Você deve encontrar como resposta: $\frac{x-3}{2} = \frac{y}{2} = \frac{z+5}{2}$

4. Estabeleça as equações reduzidas da reta r que passa pelos pontos A(2,1,-3) e B(4,0,-2).

Você deve encontrar como resposta: $y = \frac{-x+4}{2}$ e $z = \frac{x-8}{2}$

Resumo

Assista às apresentações **"Estudo da Reta"** e **"Estudo do Plano"**, em Power Point, e faça um resumo sobre ela.

Funções de várias variáveis

Unidade D Cálculo Vetorial

1.1		÷	اہ	_	اہ	_		
U	П	l	u	а	u	е	\cup	

Todas aquelas regras válidas para as quantidades escalares são válidas para as quantidades vetoriais.

O conceito de derivada parcial pode ser aplicado geometricamente para encontrar a inclinação de uma superfície na direção de *x* e *y*.

Podemos aplicar as derivadas parciais como taxa de variação e essa interpretação envolve muitos fenômenos físicos.

Definições

Função de Duas Variáveis

Uma função real f de duas variáveis é uma relação que a cada par ordenado de números reais (x, y) associa um único número real z=f(x,y).

As funções de duas variáveis aparecem em muitas situações práticas, tais como:

- Áreas de figuras que dependem da altura e da largura.
- Volumes que dependem da altura e do raio.

Representações

As funções de duas variáveis podem ser representadas graficamente por superfícies em sistema tridimensional de coordenadas.

- Unidade D

Alguns gráficos de funções de duas variáveis:

Equação: z = ax + by + c

Superfície gerada: Plano

Equação: $z = ax^2 + by^2 + c$

Superfície gerada: Paraboloide elíptico

Características

Podemos classificar as funções de duas variáveis em explícitas ou implícitas.

Explícitas

Podem ser colocadas na forma : z = f(x, y)

Implícitas

Podem ser colocadas na forma: f(x, y) = 0

Funções de várias variáveis

Definição: Diz-se que z é uma **função** de x, y,...,t, e escreve-se z=f(x,y,...,t), quando a correspondência entre z e o conjunto (x, y, ..., t) é tal que para cada grupo $(x_i, y_i, ..., t_i)$ o valor de z_i fique univocamente definido.

Domínio de f(x,y,...t): é o conjunto de todos os valores (x,y,...t) possíveis para as variáveis independentes.

Exemplo:

Determine o domínio da função abaixo e represente-o graficamente

$$f(x,y) = 9 - x^{2} - y^{2}$$

$$9 - x^{2} - y^{2} \ge 0$$

$$x^{2} + y^{2} \le 9$$

$$Dom \ f = (x,y) \in R^{2}/x^{2} + y^{2} \le 9$$

Limites de funções de duas variáveis

Dada uma função f(x,y), dizemos que o limite de f é igual a L quando (x,y) se aproxima de um ponto de referência (a,b), se pudermos tornar os valores de f(x,y) tão próximos de L conforme (x,y) se aproximar de (*a*,*b*).

$$\lim_{x \to ab} f(x,y) = L$$

Para se estimar o limite de uma função de duas variáveis f no ponto (x, y) é necessário calcular esse valor por todas as **trajetórias** que passem por este ponto. Se em todos os casos o resultado for sempre o mesmo, digamos *L*, diz-se que o limite existe e que vale *L*.

Caso o limite não exista em alguma trajetória ou dê um valor diferente para trajetórias diferentes, dizemos que o limite não existe.

Exemplo

Mostre que a função abaixo não tem limite quando (x,y) se aproxima de (0,0).

$$f(x,y) = \frac{2x^2y}{x^4 + y}$$

Tentamos calcular o limite por substituição direta, o que gera a indeterminação 0/0.

Tomamos uma trajetória que passe pelo ponto (0,0), $y=kx^2$.

$$f(x, kx^{2}) = \frac{2x^{2}kx^{2}}{x^{4} + (kx^{2})^{2}} = \frac{2kx^{4}}{x^{4} + k^{2}x^{4}} = \frac{2k}{1 + k^{2}}$$

$$\frac{\lim_{(x,y)\to(0,0)}}{ao \ longo \ de \ y = kx^2} f(x,y) = \frac{2k}{1+k^2}$$

Note que este limite varia de acordo com o valor escolhido para k. Logo, este limite não existe.

Continuidade

Uma função f(x,y) é contínua no ponto (x_a, y_a) se:

(i) Existir
$$f(x_0, y_0)$$
;

(i) Existir
$$f(x_0, y_0)$$
;
(ii) Existir $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ (iii) $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$

Usando o programa winplot para traçado de gráficos

O programa winplot pode ser usado para uma melhor visualização de gráficos com duas variáveis. No site http://www.gregosetroianos.mat.br/softwinplot.asp existe uma boa explicação sobre o uso desse programa.

Resolver os sequintes exercícios

- 1. Seja a função dada por $f(x, y) = \ln(y x)$. Determine:
 - a. f(1,2)
 - f(0,0)
 - f(-3, -4)
 - Domínio f
 - Imagem f
- 2. Um tanque para estocagem de oxigênio líquido num hospital deve ter a forma de um cilindro circular reto de raio r e de altura I (em metros), com um hemisfério em cada extremidade. Descreva o volume do tanque em função da altura I e do raio r.

3. Encontre o domínio das seguintes funções:

$$a. \quad f(x,y) = 2x - y^2$$

b.
$$f(x,y) = \frac{xy-5}{2\sqrt{y-x^2}}$$

c.
$$f(u,v,w) = \frac{uw}{u-2v}$$

d.
$$f(x,y) = \sqrt{9-x^2} - \sqrt{4-y^2}$$

e.
$$f(x,y) = \sqrt{4 - x^2 - y^2}$$

$$f. f(x,y) = \sqrt{y - x^2}$$

g.
$$f(x,y) = \frac{\cos(x)(y^2 - 1)}{x^2 - y^2}$$

h.
$$f(x,y) = \log(36 - 4x^2 - 9y^2)$$

i.
$$f(x,y) = \log(x^2 - y^2 - 1)$$

4. Esboce o gráfico do domínio de cada uma das funções abaixo:

a.
$$f(x,y) = \sqrt{1-x^2-y^2}$$

b.
$$fx, y = \frac{x}{x - y}$$

c.
$$f(x, y) = arcsen(x + y)$$

d.
$$f(x, y) = \ln(y - x)$$

Derivadas parciais Exercícios

> Unidade E Cálculo Vetorial

Unidade F
Offidado E

DERIVADAS PARCIAIS EXERCÍCIOS

1. Dada a função $f(x, y) = x^2 - y^2 + 3x - 4$, calcule:

a)
$$f(0,0) =$$

b)
$$f(3, 4) =$$

c)
$$f(2, t) =$$

d) os valores de x para os quais $f(x, y) = -y^2$

2. Encontre uma função de várias variáveis que nos dê:

- a) O volume de água necessário para encher uma piscina redonda de x metros de raio e y metros de altura.
- b) A quantidade de rodapé, em metros, necessária para se colocar numa sala retangular de largura x e comprimento v.
- c) A quantidade, em metros quadrados, de papel de parede necessária para revestir as paredes laterais de um quarto retangular de x metros de largura, y metros de comprimento, se a altura do quarto é z metros
- d) O volume de um paralelepípedo retângulo de dimensões x, y e z.
- e) A distância entre dois pontos $P_1(x_1,y_1,z_1)$ e $P_2(x_2,y_2,z_2)$.
- f) A temperatura nos pontos de uma esfera, se ela, em qualquer ponto, é numericamente igual a distância do ponto ao centro da esfera.

3. Calcule as derivadas parciais das funções a seguir:

a)
$$z = x^2 . sen y$$

b)
$$f(x,y) = x^2 + 3xy - 4y^2$$

c)
$$z = sen(3x) \cdot cos(2y)$$

d)
$$f(x, y, z) = \frac{x^2 + y^2 + z^2}{x + y + z}$$

4. Determinar as derivadas parciais $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ das funções abaixo:

a)
$$z = x^2 + 3y^2 + 4xy + 1$$

b)
$$z = x2 sen(2xy)$$

c)
$$z = e^{x^2 - 2y^2 + 4x}$$

$$d) \quad z = \frac{1}{x + 2y + 1}$$

- 5. Dado o ponto P(-1, 4), $f(x, y) = \sqrt{x^2 + y^2}$ calcule:
 - a) $\frac{\partial f}{\partial x}(x,y)$
 - b) $\frac{\partial f}{\partial x}(-1,4)$
 - c) $\frac{\partial f}{\partial y}(x,y)$
 - d) $\frac{\partial f}{\partial y}(-1,4)$
- **6.** A função $T(x, y) = 60 2x^2 3y^2$ representa a temperatura em qualquer ponto de uma chapa. Encontre a razão de variação da temperatura em relação à distância percorrida ao longo da placa na direção dos eixos positivos x e y, no ponto (1, 2). Considere a temperatura medida em graus Celsius e a distância em cm.
- 7. Determine as derivadas parciais de 2a ordem das seguintes funções:
 - a) $z = x^2 3y^3 + 4x^2y^2$
 - $b) \quad z = x^2 y^2 xy$
 - c) $z = \ln xy$
 - d) $z = e^{xy}$
- 8. Se z = f(x,y) tem derivadas parciais de 2ª ordem contínuas e satisfaz a equação de Laplace
- $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$, ela é dita uma função harmônica. Verifice se as funções dadas são harmônicas:

Funções vetoriais Exercícios

Unidade I Cálculo Vetorial

11	n	١T	М	9	М		
\cup	ш	ш	u	a	u	\cup	

EXERCÍCIOS

Funções Vetoriais: Introdução

1. Determine o domínio de r(t) e o valor de $r(t_0)$:

a)
$$r(t) = \cos t i - 3t j$$
; $t_0 = \pi$

b)
$$r(t) = (\sqrt{3t+1}, t^2); t_0 = 1$$

c)
$$r(t) = \cos \pi t i - \ln t \ j + \sqrt{t-2} \ k; \ t_0 = 3$$

d)
$$r(t) = (2e^{-t}, arc \ sen \ t, \ln(1-t)); \ t_0 = 0$$

2. Descreva o gráfico da equação:

a)
$$r = (3-2t)i + 5t j$$

b)
$$r = 2ti - 3j + (1+3t)k$$

c)
$$r = 3i + 2\cos t \, j + 2\operatorname{sen} t \, k$$

d)
$$r = 2\cos t i - 3 \operatorname{sen} t j + k$$

e)
$$r = -3i + (1 - t^2)j + tk$$

- 3. 3. Obtenha a inclinação da reta que está representada por r = (1-2t) i-(2-3t)j.
- 4. Obtenha as coordenadas do ponto em que a reta r= (2+t)i +(1-2t)j +3t k intersecta o plano xy.
- **5.** Esboce o segmento de reta representado pela equação:

a)
$$r = (1-t)i + tj; 0 \le t \le 1$$

b)
$$r = (1-t)(i+j) + t(i-j); 0 \le t \le 1$$

6. Escreva uma equação vetorial para o segmento de reta de P a Q:

7. Esboce o gráfico de r(t) e mostre o sentido de t crescente:

a)
$$r(t) = 2i + tj$$

b)
$$r(t) = (3t - 4.6t + 2)$$

c)
$$r(t) = (2\cos t, 5\sin t); \ 0 \le t \le 2\pi$$

d)
$$r(t) = (1 + \cos t)i + (3 - \sin t)j; 0 \le t \le 2\pi$$

e)
$$r(t) = 2\cos t i + 2sen t j + tk$$

$$f) \quad r(t) = ti + t^2j + 2k$$

Lista - Integrais de linha

Unidade J Cálculo Vetorial

U	ı	Ш	u	a	u	U	J	

INTEGRAIS DE LINHA

1. Determine se r(t) é uma função lisa de parâmetro t:

a.
$$r(t) = t^3 i + (3t^2 - 2t)j + t^2 k$$

b.
$$r(t) = \cos t^2 i + sen t^2 j + e^{-t} k$$

c.
$$r(t) = te^{-t}i + (t^2 - 2t)j + \cos \pi t k$$

d.
$$r(t) = sen \pi t i + (2t - \ln t) j + (t^2 - t)k$$

2. Encontre o comprimento de arco do gráfico de r(t):

a.
$$r(t) = t^3 i + t j + \frac{1}{2} \sqrt{6} t^2 k; \ 1 \le t \le 3$$

b.
$$r(t) = (4+3t)i + (2-2t)j + (5+t)k; 3 \le t \le 4$$

c.
$$r(t) = 3\cos t \ i + 3 \sin t \ j + t k; \ 0 \le t \le 2\pi$$

d.
$$r(t) = t^2 i + (\cos t + t \operatorname{sen} t) j + (\operatorname{sen} t - t \cos t) k; \quad 0 \le t \le \pi$$

3. Calcule a integral de linha em relação a s ao longo da curva C:

$$\int_{C} \frac{1}{1+x} ds$$

$$\int_{C} \frac{1}{1+x} ds \qquad C: r(t) = ti + \frac{2}{3} t^{\frac{3}{2}} j \qquad (0 \le t \le 3)$$

$$(0 \le t \le 3)$$

43

$$\int_{C} 3x^2 yz \ dx$$

$$\int_{C} 3x^{2}yz \ ds \qquad C: x = t, \ y = t^{2}, \ z = \frac{2}{3}t^{3} \qquad (0 \le t \le 1)$$

4. Em cada parte, calcule a integral
$$\int_{a}^{b} (3x+2y)dx + (2x-y) dy$$
 ao longo da curva indicada:

- a. O segmento de reta de (0,0) até (1,1).
- **b.** O arco parabólico $y=x^2$ de (0,0) a (1,1).

c. A curva
$$y = sen\left(\frac{\pi x}{2}\right)$$
 de (0,0) até (1,1).

d. A curva $y=x^3$ de (0,0) até (1,1).

5. Calcule a integral de linha ao longo da curva C:

$$\int_{C} -y dx + x dy \qquad C: y^{2} = 3x \quad de \quad (3,3) \quad at\acute{e} \quad (0,0)$$

$$\int_{C} (x^2 + y^2) dx - x dy$$

$$C: x^2 + y^2 = 1, \text{ no sentido anti-horário de (1,0) até (0,1)}$$

$$\int_{C} yzdx - xzdy + xydz \qquad C: x = e^{t}, y = e^{3t}, z = e^{-t}; \quad (0 \le t \le 1)$$

6. Calcule $\int_C x^2 z dx - yx^2 dy + 3dz$ ao longo da curva C mostrada na figura.

7. Calcule a massa de um arame fino com o formato da hélice $x=3\cos t,\ y=3\sin t,\ z=4t\quad (0\leq t\leq \frac{\pi}{2})$ se a função de densidade for $\delta=\frac{kx}{1+y^2}$, k>0.

8. Calcule a massa de um arame fino com o formato do arco circular $y = \sqrt{9 - x^2}$ $(0 \le x \le 3)$ se a função de densidade for $\delta = x\sqrt{y}$.

Campos Vetoriais Exercícios

Unidade K Cálculo Vetorial

		I Inidade K
		Official C

K.6 EXERCÍCIOS

Campos Vetoriais

- 1. Esboce o campo vetorial desenhando alguns vetores que não se intersectem:
 - a. F(x,y) = 2i-j
 - **b.** F(x,y)=(y,-x)
 - **c.** F(x,y)=yj
- 2. Determine a divergência e o rotacional dos seguintes campos de vetores:

a)
$$F(x, y, z) = (x + y + z x^2, x)$$

b)
$$F(x, y, z) = (x + y + z, x^2, yz)$$

c)
$$F(x, y, z) = (x^2 + y^3 + z^4, xyz, xz + yz)$$

d)
$$F(x, y, z) = (xyz^2, xy^3z, -xyz^3).$$

e)
$$F(x, y, z) = (\cos(x) sen(y), \cos(xz), sen(yz))$$

f)
$$F(x, y, z) = (e^x \cos(y), e^x \operatorname{sen}(y), 0)$$

g)
$$F(x, y, z) = (x^2 + y^2 + z^2, xy, xyz)$$
.

h)
$$F(x, y, z) = (xy^2, 2xy^2z, 3xy^2z)$$

i)
$$F(x, y, z) = (\cos(xy), \cos(yz), sen(xz)).$$

3. Determine se os seguintes campos são conservativos e , em caso afirmativo, ache o seu potencial:

a)
$$F(x, y, z) = (2xz + y^2, 2xy, e^z + x^2)$$

b)
$$F(x, y, z) = (xy, e^x, e^z)$$

c)
$$F(x, y, z) = (ln(xy), ln(yz), ln(zx))$$

d)
$$F(x, y, z) = (e^x, 2e^y, 3e^z)$$

e)
$$F(x, y) = (10xy + y sen(xy), 5x^2)$$

f)
$$F(x, y, z) = (1 + y sen(xy), 1 - cos(xz, z))$$

g)
$$F(x, y, z) = (6xy + z^3, 3x^2 - z, 3x^2 - y)$$

4. Ache o valor das constantes a, b e c tais que o campo de vetores seja irrotacional:

a)
$$F(x, y, z) = (axy - z^3, (a-2)x^2, (1-a)xz^2)$$

- b) F(x, y, z) = (x + 2y + az, bx 3y z, 4x + cy + 2z)
- 5. Calcule $\nabla \cdot (FXG)$ sendo F(x,y,z)=2xi+j+4yk e G(x,y,z)=x i+y j-z k.
- **6.** Calcule $\nabla \cdot (\nabla XF)$ sendo Fx,y,z)=sen x i+cos (x-y)j+zk.
- 7. Calcule $\nabla X(\nabla XF)$ sendo F(x,y,z)=xy j+xyz k.
- **8.** Verifique que o vetor posição r=x i+y j+z k tem as seguintes propriedades:
 - a) Rot r = 0
 - b) Div r = 3
- **9.** Dada a função $F(x,y,z)=(x^2-y,x^3+z^2,-3xyz)$ determine rot (x,y,z) em P(1,1/3,-1).