Marcin Mikuła

Interpolacja

Do obliczeń użyłem języka Python na systemie Windows 10.

Funkcja do analizy:

$$f(x) = e^{-\sin(2*x)} + \sin(2*x) - 1$$

Wykres 1. Zadana funkcja

Funkcję interpolującą wyznaczam dla liczby punktów wynoszącą 30 000.

Metoda Lagrange'a

		Lagrange		
Liczba węzłów	Rozkład równomierny		Rozkład Chebysheva	
-	Norma maksimum	Kwadrat różnicy	Norma maksimum	Kwadrat różnicy
3	0,718	3514,060	0,827	2831,256
5	0,889	4010,266	0,715	2044,602
6	0,962	3536,877	0,682	2097,878
8	0,933	3586,446	0,582	2349,463
9	0,636	2693,262	0,726	2552,783
10	1,061	4855,419	0,646	2145,757
11	4,068	46537,191	0,633	1876,581
12	2,679	16700,196	0,597	1788,386
15	50,366	4394355,985	0,509	1381,787
20	270,720	75642662,583	0,201	123,150

Tabela 1. Błędy uzyskane przy użyciu metody Lagrange'a dla węzłów o rozkładzie równoległym i Chebysheva

Na kolorowo w rozkładzie równomiernym zaznaczono jak wraz ze wzrostem liczby węzłów pojawia się i wzrasta efekt Rungego przy około 12 węzłach(otrzymany wielomian jest stopnia 11). Dla rozkładu węzłów Chebysheva przy około 12 węzłach błędy zaczynają maleć (zaznaczono na kolorowo), wielomian interpolujący z coraz większą dokładnością przybliża zadaną funkcję.

Kolorem niebieskim zaznaczona jest funkcja zadana, a czerwonym interpolująca.

Wykres 1. Interpolacja Lagrange'a dla 10 równoodległych węzłów, brak efektu Rungego

Wykres 2. Interpolacja Lagrange'a dla 12 równoodległych węzłów, bardzo widoczny efekt Rungego

Kolorem <mark>cyjanowym</mark> zaznaczona jest funkcja zadana, a magentą interpolująca. Dla porównania wykresy dla węzłów Chebysheva:

Wykres 3. Interpolacja Lagrange'a dla 10 węzłów Chebysheva

Wykres 4. Interpolacja Lagrange'a dla 12 węzłów Chebysheva

Jak można zauważyć efekt Rungego właściwie nie występuje dla węzłów Chebysheva, natomiast w przypadku węzłów równoodległych jest on bardzo widoczny i znacznie zmieniający dokładność uzyskanych wyników.

Najlepszą dokładność udało mi się uzyskać przy 40 węzłach Chebysheva(wielomian 39 stopnia).

Wykres 5. Interpolacja Lagrange'a dla 40 węzłów Chebysheva.

Metoda Newtona

Newton							
Liczba węzłów	Rozkład równomierny		Rozkład Chebysheva				
-	Norma maksimum	Kwadrat różnicy	Norma maksimum	Kwadrat różnicy			
3	0,718	3514,060	0,827	2831,256			
5	0,889	4010,266	0,715	2044,602			
6	0,962	3536,877	0,682	2097,878			
8	0,933	3586,446	0,582	2349,463			
9	0,636	2693,262	0,726	2552,783			
10	1,061	4855,419	0,646	2145,757			
11	4,068	46537,191	0,633	1876,581			
12	2,679	16700,196	0,597	1788,386			
15	50,366	4394355,985	0,509	1381,787			
20	270,720	75642662,584	0,201	123,150			

Tabela 2. Błędy uzyskane przy użyciu metody Newtona dla węzłów o rozkładzie równoległym i Chebysheva

Na kolorowo dla rozkładu rówomiernego zaznaczono jak wraz ze wzrostem liczby węzłów pojawia się i wzrasta efekt Rungego przy około 12 węzłach(otrzymany wielomian jest stopnia 11).

Kolorem niebieskim zaznaczona jest funkcja zadana, a czerwonym interpolująca.

Wykres 6. Interpolacja Lagrange'a dla 10 równoodległych węzłów, brak efektu Rungego

Wykres 7. Interpolacja Lagrange'a dla 12 równoodległych węzłów, bardzo widoczny efekt Rungego

Dla porównania wykresy dla węzłów Chebysheva: Kolorem cyjanowym zaznaczona jest funkcja zadana, a magentą interpolująca.

Wykres 8. Interpolacja Newtona dla 10 węzłów Chebysheva

Wykres 9. Interpolacja Newtona dla 12 węzłów Chebysheva

Wykres 10. Interpolacja Newtona dla 40 węzłów Chebysheva

Dla metody Newtona również można zauważyć, że dla węzłów Chebysheva efekt Rungego nie występuje. Wykresy uzyskane przy pomocy metody Newtona i Lagrange'a są takie same. Dla wielomianu powyżej 41 stopnia funkcja interpolująca jest błędnie wyznaczana. Dla przykładu wykres wielomianu 44 stopnia.

Wykres 11. Interpolacja Newtona dla 45 węzłów Chebysheva