Remporter le championnat du monde de fléchettes sans se ruiner avec la méthode Multi-Level Monte-Carlo

Raphaël Bulle

PhD student

University of Luxembourg
Université de Bourgogne Franche-Comté

May 20, 2021

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
- Fiction vs Réalité

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
 - Fiction vs Réalité

1/ Chaque participant peut choisir la (ou les) marque(s) de fléchettes qu'il souhaite.

- 1/ Chaque participant peut choisir la (ou les) marque(s) de fléchettes qu'il souhaite.
- 2/ Chaque participant peut lancer le nombre de fléchettes qu'il souhaite.

- 1/ Chaque participant peut choisir la (ou les) marque(s) de fléchettes qu'il souhaite.
- 2/ Chaque participant peut lancer le nombre de fléchettes qu'il souhaite.
- 3/ Chaque participant joue sur sa propre cible.

- 1/ Chaque participant peut choisir la (ou les) marque(s) de fléchettes qu'il souhaite.
- 2/ Chaque participant peut lancer le nombre de fléchettes qu'il souhaite.
- 3/ Chaque participant joue sur sa propre cible.
- 4/ Le participant dont la moyenne des impacts (i.e. barycentre) est la plus proche du centre de la cible (au sens de la distance euclidienne usuelle) est désigné vainqueur.

Exemple

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
 - Fiction vs Réalité

Le centre de la cible, 0:=(0,0) peut être vu comme l'espérance d'une fléchette idéale, notée \hat{X} telle que,

$$\hat{X} \sim \mathcal{N}(0, \mathrm{Id}).$$

Il existe 27=L+1 marques de fléchettes dans le commerce. Pour chaque $l\in\{0,\cdots,L\}$, les fléchettes de la marque l sont représentées par

$$X_l \sim \mathcal{N}(m_l, \mathrm{Id}),$$

Il existe 27=L+1 marques de fléchettes dans le commerce. Pour chaque $l\in\{0,\cdots,L\}$, les fléchettes de la marque l sont représentées par

$$X_l \sim \mathcal{N}(m_l, \mathrm{Id}),$$

avec $m_l \in \mathbb{R}^2$ l'espérance de la fléchette X_l .

Il existe 27=L+1 marques de fléchettes dans le commerce. Pour chaque $l\in\{0,\cdots,L\}$, les fléchettes de la marque l sont représentées par

$$X_l \sim \mathcal{N}(m_l, \mathrm{Id}),$$

avec $m_l \in \mathbb{R}^2$ l'espérance de la fléchette X_l . On appelera *biais* de la fléchette X_l , noté b_l , la distance (euclidienne) entre son espérance et celle de la fléchette parfaite

$$b_l := \left\| \mathbb{E}\left[X_l\right] - \mathbb{E}\left[\hat{X}\right] \right\| = \|m_l\|.$$

Exemples de quelques marques de fléchettes disponibles sur le marché:

Exemples de quelques marques de fléchettes disponibles sur le marché:

 X_0 Dart-it-yourself $^{\mathsf{TM}}$

. . .

« Inutile de se ruiner quand on a du talent. »

Biais: $b_0 = 0, 5$ Prix: $p_0 = 0, 1 \in$.

Exemples de guelques marques de fléchettes disponibles sur le marché:

 X_0

 X_{13} X_0 X_{13} Dart-it-yourselfTM La fléchette tranquilleTM

« Inutile de se ruiner quand on a du talent. »

Biais: $b_0 = 0, 5$ Prix: $p_0 = 0, 1 ∈$.

«Une fléchette, qu'elle est bien pour la lancer. »

Biais: $b_l = 0, 2$ Prix: $p_l = 1, 6 ∈$.

Exemples de quelques marques de fléchettes disponibles sur le marché:

 X_0 Dart-it-yourself $^{\mathsf{TM}}$

 X_{13} La fléchette tranquille $^{\mathsf{TM}}$

 $X_L \\ \mathsf{Fl\'{e}chette} \mathsf{X}^{\mathsf{TM}}$

«Ma source d'inspiration.» -Elon Musk

« Inutile de se ruiner quand on a du talent. »

Biais: $b_0 = 0, 5$ Prix: $p_0 = 0, 1 \in$. «Une fléchette, qu'elle est bien pour la lancer. »

Biais: $b_l = 0, 2$ Prix: $p_l = 1, 6 \in$.

Biais: $b_L = 0,082$ Prix: $p_L = 40,63 \in$.

Exemple: X_0 : Dart-it-yourselfTM

(100 fléchettes)

Exemple: X_l : La fléchette tranquilleTM

(100 fléchettes)

Exemple: X_L : FléchetteXTM

(100 fléchettes)

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
 - Fiction vs Réalité

Votre cousin Gontran (et rival de toujours) a décidé, lui aussi, de participer au championnat du monde de fléchettes.

Votre cousin Gontran (et rival de toujours) a décidé, lui aussi, de participer au championnat du monde de fléchettes.

Gontran est riche, il décide donc de n'utiliser que des fléchettes FléchetteXTM.

Autrement dit, Gontran veut approcher $\mathbb{E}\left[\hat{X}\right]=0$ à l'aide de l'estimateur de Monte-Carlo (biaisé) associé à la variable aléatoire X_L .

$$E_N^{MC}[X_L] := \frac{1}{N} \sum_{i=0}^N X_L^i.$$

Autrement dit, Gontran veut approcher $\mathbb{E}\left[\hat{X}\right]=0$ à l'aide de l'estimateur de Monte-Carlo (biaisé) associé à la variable aléatoire X_L .

$$E_N^{MC}[X_L] := \frac{1}{N} \sum_{i=0}^N X_L^i.$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}\left[X_L\right] \approx \mathbb{E}_N^{\mathrm{MC}}\left[X_L\right].$$

Soit $(X^i)_i$ une suite de variables aléatoires dans $L^2(\Omega)$ indépendantes et identiquement distribuées d'espérance μ et de variance σ^2 .

Soit $(X^i)_i$ une suite de variables aléatoires dans $L^2(\Omega)$ indépendantes et identiquement distribuées d'espérance μ et de variance σ^2 .

Loi forte des grands nombres

$$\mathbf{E}_{N}^{\mathrm{MC}}\left[X\right] := \frac{1}{N} \sum_{i=1}^{N} X^{i} \xrightarrow{p.s.} \mu.$$

Soit $(X^i)_i$ une suite de variables aléatoires dans $L^2(\Omega)$ indépendantes et identiquement distribuées d'espérance μ et de variance σ^2 .

Loi forte des grands nombres

$$\mathbf{E}_{N}^{\mathrm{MC}}\left[X\right] := \frac{1}{N} \sum_{i=1}^{N} X^{i} \xrightarrow{p.s.} \mu.$$

Théorème Central Limite

$$\frac{\mathrm{E}_N^{\mathrm{MC}}\left[X\right] - \mu}{\frac{\sigma}{\sqrt{N}}} \longrightarrow \mathcal{N}(0,1).$$

$$\mathsf{MSE} \ := \ \mathbb{E}\left[\left\| \mathbb{E}_N^{\mathrm{MC}}\left[X_L \right] - \mathbb{E}\left[\hat{X} \right] \right\|^2 \right]$$

$$\begin{split} \mathsf{MSE} & := & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ & = & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \end{split}$$

$$\begin{split} \mathsf{MSE} & := & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ & = & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \\ & = & 2N^{-1} & + & \left\|\frac{1}{N}\sum_{i=1}^N\mathbb{E}\left[X_L\right]\right\|^2 \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \\ &= & 2N^{-1} & + & \left\|\frac{1}{N}\sum_{i=1}^N\mathbb{E}\left[X_L\right]\right\|^2 \\ &= & 2N^{-1} & + & \left\|m_L\right\|^2 \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \\ &= & 2N^{-1} & + & \left\|\frac{1}{N}\sum_{i=1}^N\mathbb{E}\left[X_L\right]\right\|^2 \\ &= & 2N^{-1} & + & \|m_L\|^2 \\ &= & 2N^{-1} & + & b_L^2 \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \\ &= & 2N^{-1} & + & \left\|\frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[X_L\right]\right\|^2 \\ &= & 2N^{-1} & + & \|m_L\|^2 \\ &= & 2N^{-1} & + & b_L^2 \\ &= & \mathsf{Variance} & + & \mathsf{Biais}^2 \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_N^{\mathrm{MC}}\left[X_L\right]\right]\right\|^2 \\ &= & 2N^{-1} & + & \left\|\frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[X_L\right]\right\|^2 \\ &= & 2N^{-1} & + & \|m_L\|^2 \\ &= & 2N^{-1} & + & b_L^2 \\ &= & \mathsf{Variance} & + & \mathsf{Biais}^2 \\ &\leq & \varepsilon^2 & + & 0.082^2. \end{split}$$

Autrement dit,

$$2N^{-1} \leqslant \varepsilon^2$$
,

La méthode Monte-Carlo

Autrement dit,

$$2N^{-1} \leqslant \varepsilon^2$$
,

c'est à dire,

$$N\geqslant \frac{2}{\varepsilon^2}.$$

La méthode Monte-Carlo

Autrement dit,

$$2N^{-1} \leqslant \varepsilon^2$$
,

c'est à dire,

$$N\geqslant \frac{2}{\varepsilon^2}.$$

Gontran choisit $\varepsilon = 10^{-1}$, ainsi

$$N = \left\lceil \frac{2}{\varepsilon^2} \right\rceil = \left\lceil \frac{2}{10^{-2}} \right\rceil = 200.$$

La méthode Monte-Carlo

Autrement dit,

$$2N^{-1} \leqslant \varepsilon^2$$
,

c'est à dire,

$$N \geqslant \frac{2}{\varepsilon^2}$$
.

Gontran choisit $\varepsilon = 10^{-1}$, ainsi

$$N = \left\lceil \frac{2}{\varepsilon^2} \right\rceil = \left\lceil \frac{2}{10^{-2}} \right\rceil = 200.$$

Participer au championnat lui coûtera donc...

$$N \times p_L = 200 \times 40,63 = 8126 \in !$$

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
 - Fiction vs Réalité

Vous vous demandez alors,

Vous vous demandez alors,

« Comment pourrais-je obtenir une variance aussi petite, sans casser ma tirelire ?»

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}\left[X_L\right]$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}\left[X_{L}\right]$$

$$= \mathbb{E}\left[X_{0}\right] + \sum_{l=1}^{L} \mathbb{E}\left[X_{l} - X_{l-1}\right]$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}\left[X_{L}\right]$$

$$= \mathbb{E}\left[X_{0}\right] + \sum_{l=1}^{L} \mathbb{E}\left[X_{l} - X_{l-1}\right]$$

$$\approx \mathbb{E}\left[X_{0}\right] + \sum_{l=1}^{L} \mathbb{E}\left[X_{l} - X_{l-1}\right]$$

$$= N_{0}^{-1} \sum_{i=1}^{N_{0}} X_{0}^{i} + \sum_{l=1}^{L} N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(X_{l}^{i} - X_{l-1}^{i}\right)$$

$$\begin{split} \mathbb{E}\left[\hat{X}\right] &\approx & \mathbb{E}\left[X_{L}\right] \\ &= & \mathbb{E}\left[X_{0}\right] + \sum_{l=1}^{L} & \mathbb{E}\left[X_{l} - X_{l-1}\right] \\ & & & & & \\ & & & & \\ &= & N_{0}^{-1} \sum_{i=1}^{N_{0}} X_{0}^{i} + \sum_{l=1}^{L} & N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(X_{l}^{i} - X_{l-1}^{i}\right) \\ &= & \mathbb{E}_{N_{0}}^{\text{MC}}\left[X_{0}\right] + \sum_{l=1}^{L} & \mathbb{E}_{N_{l}}^{\text{MC}}\left[X_{l} - X_{l-1}\right]. \end{split}$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}_{N_0}^{\mathrm{MC}}\left[X_0\right] + \sum_{l=1}^{L} \mathbb{E}_{N_l}^{\mathrm{MC}}\left[X_l - X_{l-1}\right].$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}_{N_0}^{\mathrm{MC}}\left[X_0\right] + \sum_{l=1}^{L} \mathbb{E}_{N_l}^{\mathrm{MC}}\left[X_l - X_{l-1}\right].$$

En posant,

$$Y_l = \left\{ \begin{array}{ll} X_0, & \text{si } l = 0 \\ X_l - X_{l-1}, & \text{sinon,} \end{array} \right.$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}_{N_0}^{\text{MC}}\left[X_0\right] + \sum_{l=1}^{L} \mathbb{E}_{N_l}^{\text{MC}}\left[X_l - X_{l-1}\right].$$

En posant,

$$Y_l = \left\{ \begin{array}{ll} X_0, & \text{si } l = 0 \\ X_l - X_{l-1}, & \text{sinon,} \end{array} \right.$$

on peut réécrire,

$$\mathbb{E}\left[\hat{X}\right] \approx \sum_{l=0}^{L} \mathcal{E}_{N_l}^{\text{MC}}\left[Y_l\right]$$

$$\mathbb{E}\left[\hat{X}\right] \approx \mathbb{E}_{N_0}^{\text{MC}}\left[X_0\right] + \sum_{l=1}^{L} \mathbb{E}_{N_l}^{\text{MC}}\left[X_l - X_{l-1}\right].$$

En posant,

$$Y_l = \left\{ \begin{array}{ll} X_0, & \text{si } l = 0 \\ X_l - X_{l-1}, & \text{sinon,} \end{array} \right.$$

on peut réécrire,

$$\mathbb{E}\left[\hat{X}\right] \approx \sum_{l=0}^{L} \mathrm{E}_{N_{l}}^{\mathrm{MC}}\left[Y_{l}\right] =: \mathbf{E}_{L}^{\mathrm{ML}}\left[X_{L}\right].$$

Vous venez de créer l'estimateur Multi-Level Monte-Carlo!

$$\mathbf{E}_{L}^{\mathrm{ML}}\left[X_{L}\right] = \sum_{l=0}^{L} \mathbf{E}_{N_{l}}^{\mathrm{MC}}\left[Y_{l}\right].$$

Quels sont les avantages de cet estimateur ?

Niveau	Marque	Biais/ prix	$[Fl\acute{echettes}] \qquad \xrightarrow{N^{-1}\sum} \qquad Estimateur \ MC$
0	Dart-it-yourself TM	+/-	$\left[Y_0^{(1)}, Y_0^{(2)}, \cdots, Y_0^{(N_0-1)}, Y_0^{(N_0)} \right] \xrightarrow{N_0^{-1} \sum} E_{N_0}^{MC} [Y_0]$
: !	La fléchette tranquille TM	~/~	$\left[Y_l^{(1)}, \cdots, Y_l^{(N_l-1)}, Y_l^{(N_l)}\right] \xrightarrow{N_l^{-1} \sum} \mathbf{E}_{N_l}^{\mathrm{MC}} \left[Y_l\right]$
: <i>L</i>	FléchetteX TM	-/+	$\left[Y_L^{(1)}, \cdots, Y_L^{(N_L)} \right] \xrightarrow{N_L^{-1} \sum} \mathcal{E}_{N_L}^{\mathcal{MC}} \left[Y_L \right]$

Niveau	Marque	Biais/ prix	$[Fl\acute{echettes}] \qquad \xrightarrow{N^{-1}\sum} \qquad Estimateur \ MC$
0	Dart-it-yourself TM		$\left[Y_0^{(1)}, Y_0^{(2)}, \dots, Y_0^{(N_0-1)}, Y_0^{(N_0)} \right] \xrightarrow{N_0^{-1} \sum} \mathbf{E}_{N_0}^{\mathrm{MC}} [Y_0]$
: 1	La fléchette tranquille TM	~/~	$\left[Y_l^{(1)}, \cdots, Y_l^{(N_l-1)}, Y_l^{(N_l)}\right] \xrightarrow{N_l^{-1} \sum} \mathbf{E}_{N_l}^{\mathbf{MC}} \left[Y_l\right]$
: L	FléchetteX TM	-/+	$\left[Y_L^{(1)}, \cdots, Y_L^{(N_L)}\right] \xrightarrow{N_L^{-1} \sum} \mathcal{E}_{N_L}^{\mathcal{MC}} \left[Y_L\right]$
			4/
			$\mathrm{E}_L^{\mathrm{ML}}\left[X_L ight]$

$$\mathsf{MSE} \ := \ \mathbb{E}\left[\left\| \mathbf{E}_L^{\mathrm{ML}} \left[X_L \right] - \mathbb{E}\left[\hat{X} \right] \right\|^2 \right]$$

$$\begin{aligned} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \end{aligned}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \\ &= & \mathbb{E}\left[\left\|\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \\ &= & \mathbb{E}\left[\left\|\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L \left[\mathbb{E}\left[\left\|\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2\right] & + & \left\|\sum_{l=0}^L \mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \end{split}$$

$$\begin{aligned} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \\ &= & \mathbb{E}\left[\left\|\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L \left[\mathbb{E}\left[\left\|\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2\right] & + & \left\|\sum_{l=0}^L \mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L 2N_l^{-1}V_l^2 & + & b_L^2 \end{aligned}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \\ &= & \mathbb{E}\left[\left\|\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L \left[\mathbb{E}\left[\left\|\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2\right] & + & \left\|\sum_{l=0}^L \mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L 2N_l^{-1}V_l^2 & + & b_L^2 \\ &= & \mathsf{Variance} & + & \mathsf{Biais} \end{split}$$

$$\begin{split} \mathsf{MSE} &:= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right] - \mathbb{E}\left[\hat{X}\right]\right\|^2\right] \\ &= & \mathbb{E}\left[\left\|\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right]\right\|^2 \\ &= & \mathbb{E}\left[\left\|\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 & + & \left\|\mathbb{E}\left[\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L \left[\mathbb{E}\left[\left\|\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right\|^2\right] - \left\|\mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2\right] & + & \left\|\sum_{l=0}^L \mathbb{E}\left[\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right]\right\|^2 \\ &= & \sum_{l=0}^L 2N_l^{-1}V_l^2 & + & b_L^2 \\ &= & \mathsf{Variance} & + & \mathsf{Biais} \\ &\in^2 & + & 0,082^2. \end{split}$$

Comme Gontran, votre objectif est de garder une variance aussi petite que voulu, autrement dit trouver une suite de nombres de fléchettes $(N_l)_{l=0}^L$ telle que,

Variance :=
$$\sum_{l=0}^{L} 2N_l^{-1}V_l^2 \leqslant \varepsilon^2$$
.

$$C := \mathsf{Coût}\left(\mathrm{E}_L^{\mathrm{ML}}\left[X_L
ight]
ight) \quad = \quad \mathsf{Coût}\left(\sum_{l=0}^L \mathrm{E}_{N_l}^{\mathrm{MC}}\left[Y_l
ight]
ight)$$

$$\begin{split} C := \operatorname{Coût}\left(\mathbf{E}_L^{\operatorname{ML}}\left[X_L\right]\right) &= \operatorname{Coût}\left(\sum_{l=0}^L \mathbf{E}_{N_l}^{\operatorname{MC}}\left[Y_l\right]\right) \\ &= \sum_{l=0}^L \operatorname{Coût}\left(\mathbf{E}_{N_l}^{\operatorname{MC}}\left[Y_l\right]\right) \end{split}$$

$$\begin{split} C := \mathsf{Coût}\left(\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right) &= \mathsf{Coût}\left(\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right) \\ &= \sum_{l=0}^L \mathsf{Coût}\left(\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right) \\ &= \sum_{l=0}^L N_l \mathsf{Coût}(Y_l) \end{split}$$

$$\begin{split} C := \mathsf{Coût}\left(\mathbf{E}_L^{\mathsf{ML}}\left[X_L\right]\right) &= & \mathsf{Coût}\left(\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathsf{MC}}\left[Y_l\right]\right) \\ &= & \sum_{l=0}^L \mathsf{Coût}\left(\mathbf{E}_{N_l}^{\mathsf{MC}}\left[Y_l\right]\right) \\ &= & \sum_{l=0}^L N_l \mathsf{Coût}(Y_l) \\ &= & \sum_{l=0}^L N_l \left(\mathsf{Coût}(X_l) + \mathsf{Coût}(X_{l-1})\right) \end{split}$$

$$\begin{split} C := \mathsf{Coût}\left(\mathbf{E}_L^{\mathrm{ML}}\left[X_L\right]\right) &= & \mathsf{Coût}\left(\sum_{l=0}^L \mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right) \\ &= & \sum_{l=0}^L \mathsf{Coût}\left(\mathbf{E}_{N_l}^{\mathrm{MC}}\left[Y_l\right]\right) \\ &= & \sum_{l=0}^L N_l \mathsf{Coût}(Y_l) \\ &= & \sum_{l=0}^L N_l \left(\mathsf{Coût}(X_l) + \mathsf{Coût}(X_{l-1})\right) \\ &= & \sum_{l=0}^L N_l (p_l + p_{l-1}) \end{split}$$

$$\begin{split} C := \operatorname{Coût}\left(\mathbf{E}_L^{\operatorname{ML}}\left[X_L\right]\right) &= \operatorname{Coût}\left(\sum_{l=0}^L \mathbf{E}_{N_l}^{\operatorname{MC}}\left[Y_l\right]\right) \\ &= \sum_{l=0}^L \operatorname{Coût}\left(\mathbf{E}_{N_l}^{\operatorname{MC}}\left[Y_l\right]\right) \\ &= \sum_{l=0}^L N_l \operatorname{Coût}(Y_l) \\ &= \sum_{l=0}^L N_l \left(\operatorname{Coût}(X_l) + \operatorname{Coût}(X_{l-1})\right) \\ &= \sum_{l=0}^L N_l (p_l + p_{l-1}) \\ &= \sum_{l=0}^L N_l C_l. \end{split}$$

Finalement, votre objectif est de trouver une suite d'entiers $(N_l)_{l=0}^L$ telle que,

$$\sum_{l=0}^{L} 2N_l^{-1}V_l^2 \leqslant \varepsilon^2,$$

et qui minimise,

$$\operatorname{\mathsf{Coût}}\left(\operatorname{E}^{\operatorname{ML}}_L[X_L]\right) = \sum_{l=0}^L N_l C_l.$$

(Les valeurs $(V_l)_{l=0}^L$ et $(C_l)_{l=0}^L$ étant données.)

C'est un problème d'optimisation sous contrainte:

Problème

Minimiser,

$$C(N_0, \cdots, N_L) = \sum_{l=0}^{L} N_l C_l,$$

sous la contrainte,

$$\sum_{l=0}^{L} 2N_l^{-1}V_l^2 \leqslant \varepsilon^2.$$

Une fois ce problème de minimisation résolu, on obtient,

$$N_l = \left[\frac{2}{\varepsilon^2} \sqrt{\frac{V_l^2}{C_l}} \sum_{k=0}^L \sqrt{2C_k V_k^2} \right].$$

En utilisant les valeurs $(V_l)_l$ et $(C_l)_l$, vous calculez chacun des N_l :

Marques	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CI	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.1	1.4	1.8	2.3	2.9	3.6	4.6	5.7	7.2
VI	1	0.659	0.435	0.287	0.189	0.125	0.082	0.054	0.035	0.023	0.015	0.010	0.006	0.004	0.002	0.001	0.001
NI	2079	1505	1089	788	571	413	299	216	157	114	82	60	43	32	23	17	12

9	7	5	4	3	2	2	1	1	1
0.0008	0.0005	0.0003	0.0002	0.0001	0.0001	7.0111e-5	4.6256e-5	3.05176e-5	2.01341e-5
9.1	11.5	14.5	18.2	23	28.9	36.4	45.9	57.9	72.9
17	18	19	20	21	22	23	24	25	26

Finalement, participer au championnat vous coûtera...

En utilisant les valeurs $(V_l)_l$ et $(C_l)_l$, vous calculez chacun des N_l :

Marques	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CI	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.1	1.4	1.8	2.3	2.9	3.6	4.6	5.7	7.2
VI	1	0.659	0.435	0.287	0.189	0.125	0.082	0.054	0.035	0.023	0.015	0.010	0.006	0.004	0.002	0.001	0.001
NI	2079	1505	1089	788	571	413	299	216	157	114	82	60	43	32	23	17	12

9	7	5	4	3	2	2	1	1	1
0.0008	0.0005	0.0003	0.0002	0.0001	0.0001	7.0111e-5	4.6256e-5	3.05176e-5	2.01341e-5
9.1	11.5	14.5	18.2	23	28.9	36.4	45.9	57.9	72.9
17	18	19	20	21	22	23	24	25	26

Finalement, participer au championnat vous coûtera...

$$C = \sum_{l=0}^{L} N_l C_l = 3883 \in \text{ (seulement !)}$$

En utilisant les valeurs $(V_l)_l$ et $(C_l)_l$, vous calculez chacun des N_l :

Marques	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
CI	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.9	1.1	1.4	1.8	2.3	2.9	3.6	4.6	5.7	7.2
VI	1	0.659	0.435	0.287	0.189	0.125	0.082	0.054	0.035	0.023	0.015	0.010	0.006	0.004	0.002	0.001	0.001
NI	2079	1505	1089	788	571	413	299	216	157	114	82	60	43	32	23	17	12

17	18	19	20	21	22	23	24	25	26
9.1	11.5	14.5	18.2	23	28.9	36.4	45.9	57.9	72.9
0.0008	0.0005	0.0003	0.0002	0.0001	0.0001	7.0111e-5	4.6256e-5	3.05176e-5	2.01341e-5
9	7	5	4	3	2	2	1	1	1

Finalement, participer au championnat vous coûtera...

$$C = \sum_{l=0}^{L} N_l C_l = 3883 \in \text{ (seulement !)}$$

Autrement dit, le coût est divisé par 2 par rapport à Monte-Carlo, alors que l'on a conservé la même variance!

Plan

- Les règles presque officielles
- Choisir le bon matériel
- La méthode Monte-Carlo
- La méthode Multi-Level Monte-Carlo
- Fiction vs Réalité

Fiction

Réalité

Réalité

$$-\mathsf{div}(\exp(a)\nabla u) = f$$

Réalité

$$-\mathsf{div}(\exp(a)\nabla u) = f$$

Réalité

$$-\mathsf{div}(\exp(a)\nabla u) = f$$

???, ???, $(C_l)_{l=0}^L$

Merci de votre attention!