DIALOG(R) File 351: Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv. **Image available** 011552465 WPI Acc No: 1997-528946/199749 XRPX Acc No: N97-440600 Multi-valued heater and control circuit for ink jet printer - has multiple heating elements for each nozzle providing multi- valued ejection and underlying circuit for heater selection Patent Assignee: CANON KK (CANO) Inventor: ABE T; IKEDA M; ISHINAGA H; KANEKO H; KASAMOTO M; KAWAI J; KUBOTA M; MATSUO K; OKADA M Number of Countries: 006 Number of Patents: 005 Patent Family: Applicat No Patent No Kind Date Kind Date Week 199749 EP 805029 A2 19971105 EP 97302612 Α 19970416 19960422 JP 9286108 Α 19971104 JP 96100574 Α 199803 19970416 200221 EP 805029 B1 20020320 EP 97302612 Α 19970416 200235 DE 69711111 E 20020425 DE 611111 Α EP 97302612 19970416 Α B1 20020917 US 97843074 19970411 200264 US 6450616 Α Priority Applications (No Type Date): JP 96100574 A 19960422 Cited Patents: No-SR.Pub Patent Details: Main IPC Filing Notes Patent No Kind Lan Pg A2 E 25 B41J-002/14 EP 805029 Designated States (Regional): DE FR GB IT 14 B41J-002/05 JP 9286108 Α EP 805029 B1 E B41J-002/14 Designated States (Regional): DE FR GB IT B41J-002/14 Based on patent EP 805029 DE 69711111 E US 6450616 В1 B41J-002/14 Abstract (Basic): EP 805029 A The ink jet printer has a printhead with a number of ejection nozzles. Each nozzle (S) has a heating resistor (201). This has a number of heating elements of different sizes in the micrometre area. Power is provided through electrode wiring (203) and each heater is connected to a separate driving transistor. The drive circuit has a shift register to load the drive signals and a latching circuit. An AND circuit provides the logic for a block selection signal to group the nozzles. Selection circuit combine with the latching circuit and a selection circuit to drive each heater. Temperature compensation circuits are included. ADVANTAGE - Allows simplification and downsizing of printhead by providing a common circuit construction. Dwg.2/14 Title Terms: MULTI; VALUE; HEATER; CONTROL; CIRCUIT; INK; JET; PRINT; MULTIPLE; HEAT; ELEMENT; NOZZLE; MULTI; VALUE; EJECT; UNDERLYING; CIRCUIT ; HEATER; SELECT Derwent Class: P75; T04; U14 International Patent Class (Main): B41J-002/05; B41J-002/14 International Patent Class (Additional): B41J-002/01; B41J-002/16; B41J-002/175 File Segment: EPI; EngPI

Manual Codes (EPI/S-X): T04-G02; U14-H01B

		•
		•

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-286108

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表	沃箇所
B41J	2/05			B41J	3/04	1031	3	
	2/01					1012	Z	
	2/175					102	Z	
				審査請求	え 未請求	請求項の数23	OL (全	14 頁)
(21)出願番号	+	特願平8-100574		(71) 出願人	000001	007		
					キヤノ	ン株式会社		
(22)出顧日		平成8年(1996)4	月22日		東京都	大田区下丸子37	「目30番2号	}
				(72)発明者	人 久保田	雅彦		
					東京都	大田区下丸子3门	「目30番2号	キヤ
					ノン株	式会社内		
				(72)発明者	石永	博之		

ノン株式会社内 (72)発明者 河合 潤

ノン株式会社内 (74)代理人 弁理士 谷 義一 (外1名)

東京都大田区下丸子3丁目30番2号 キヤ

東京都大田区下丸子3丁目30番2号 キヤ

最終頁に続く

(54)【発明の名称】 インクジェットプリントヘッドの基体、インクジェットプリントヘッド、およびインクジェット プリント装置

(57)【要約】

【課題】 高い階調性を得ることができる多値ヒータを 用いた上、それらに対する配線を一部共通化することに よって、回路構成の簡素化、およびヘッドの小型化を実 現すること。

【解決手段】 複数の発熱素子201(1)…201 (n)から成るセグメントSによって、インク吐出口に 対して備わる発熱抵抗体201を構成し、m個のインク 吐出口に対応するセグメントS(1)…S(m)におい て、発熱素子201(1)…201(n)を電源供給用 の共通配線し1に接続した。

【特許請求の範囲】

【請求項1】 複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドの一部を構成するインクジェットプリントヘッドの基体であって、

前記複数のインク吐出口のそれぞれに対して複数備わる発熱素子と、

前記発熱素子のそれぞれの一端側に電気的に接続され、かつプリントすべき画像に対応する画像データに基づいて、前記発熱素子のそれぞれを駆動可能な駆動回路と、前記画像データを、それに対応する前記複数のインク吐出口毎の駆動回路のそれぞれに供給する画像データ供給回路と、

前記発熱素子のそれぞれの他端側に接続された電力供給 用の共通配線とを備えたことを特徴とするインクジェットプリントヘッドの基体。

【請求項2】 前記駆動回路は、前記発熱素子と1対1 に対応することを特徴とする請求項1に記載のインクジェットプリントヘッドの基体。

【請求項3】 複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドの一部を構成するインクジェットプリントヘッドの基体であって、

前記複数のインク吐出口のそれぞれに対して複数備わる 発熱素子と、

前記発熱素子と複数対1に対応し、かつプリントすべき 画像に対応する画像データに基づいて、前記発熱素子を 駆動可能な駆動回路と、

前記画像データを、それに対応する前記複数のインク吐出口毎の駆動回路のそれぞれに供給する画像データ供給 回路と、

前記発熱素子のそれぞれの一端側に、該発熱素子に対応 する共通の駆動回路を接続する共通配線と、

前記発熱素子のそれぞれの他端側に接続された電力供給 用の配線とを備えたことを特徴とするインクジェットプ リントヘッドの基体。

【請求項4】 前記共通配線中にダイオードを備えたことを特徴とする請求項3に記載のインクジェットプリントヘッドの基体。

【請求項5】 前記電力供給用の配線中に、制御信号に 応じて動作するスイッチ素子を備えたことを特徴とする 請求項3または4に記載のインクジェットプリントへッ ドの基体。

【請求項6】 前記駆動回路は、前記画像データと前記 発熱素子の駆動の形態に対応する駆動信号を入力し、こ れらの入力信号に基づいて前記発熱素子のそれぞれを駆 動可能であり、かつ前記駆動信号を、複数のグループに 分けた前記インク吐出口のそれぞれのグループ毎に対応 する前記駆動回路に別々に供給する駆動信号供給回路を 備えたことを特徴とする請求項1から5のいずれかに記 載のインクジェットプリントの基体。

【請求項7】 前記発熱素子、前記駆動回路、および前 記画像データ供給回路をシリコン基体上に形成したこと を特徴とする請求項1から5のいずれかに記載のインク ジェットプリントヘッドの基体。

【請求項8】 前記発熱素子、前記駆動回路、前記画像 データ供給回路、および前記駆動信号供給回路をシリコン基体上に形成したことを特徴とする請求項6に記載の インクジェットプリントヘッドの基体。

【請求項9】 前記複数のインク吐出口のそれぞれに対して複数備わる前記発熱素子は、それぞれ発熱量が異なることを特徴とする請求項1から8のいずれかに記載のインクジェットプリントヘッドの基体。

【請求項10】 発熱素子は、発熱量に応じた面積の配線接続部を有することを特徴とする請求項9に記載のインクジェットプリントヘッドの基体。

【請求項11】 前記駆動回路は、N-MOS型のトランジスタを有することを特徴とする請求項1から10のいずれかに記載のインクジェットプリントヘッドの基体。

【請求項12】 前記画像データ供給回路は、前記画像 データをシリアルデータとして入力しかつ該シリアルデータを前記複数のインク吐出口に対応する数だけシフトするシフトレジスタと、前記シフトレジスタの出力データを一時記憶してから前記駆動回路に出力するラッチ回路を有することを特徴とする請求項1から11のいずれかに記載のインクジェットプリントヘッドの基体。

【請求項13】 前記駆動回路は、前記発熱素子を動作 可能状態とする選択信号を入力するものであることを特 徴とする請求項1から12のいずれかに記載のインクジ ェットプリントヘッドの基体。

【請求項14】 1つのインク吐出口に備えられた前記 複数の発熱素子に対して、前記選択信号を別々に供給す る選択信号供給回路を備えたことを特徴とする請求項1 3に記載のインクジェットプリントヘッドの基体。

【請求項15】 前記選択信号供給回路は、画像の記録 密度に応じた選択信号を供給するものであることを特徴 とする請求項14に記載のインクジェットプリントヘッドの基体。

【請求項16】 前記複数の発熱素子と前記複数の駆動 回路を平行に配列したことを特徴とする請求項1から1 5のいずれかに記載のインクジェットプリントヘッドの 基体。

【請求項17】 前記複数の発熱素子と前記複数の駆動 回路を互いに直交する方向に配列したことを特徴とする 請求項1から15のいずれかに記載のインクジェットプ リントヘッドの基体。

【請求項18】 複数のインク吐出口のそれぞれに連通

する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドであって、

請求項1から17のいずれかに記載のインクジェットプ リントヘッドの基体と、

前記基体との間にて、前記インク吐出口と該インク吐出口に連通するインクの流路を形成する天板とを備えたことを特徴とするインクジェットプリントヘッド。

【請求項19】 複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントへッドを用いて、プリント媒体に画像をプリントするインクジェットプリント装置であって、前記インクジェットプリントへッドとして請求項18に

前記インクジェットプリントヘッドとして請求項18に 記載のインクジェットプリントヘッドを用い、

前記インクジェットプリントへッドと前記プリント媒体 とを相対移動させる手段を備えたことを特徴とするイン クジェットプリント装置。

【請求項20】 前記インクジェットプリントヘッドを 搭載可能なキャリッジと、

前記キャリッジを主走査方向に移動させる移動手段と、前記主走査方向に対して略直交する副走査方向に前記プリント媒体を搬送する搬送手段とを備えたことを特徴とする請求項19に記載のインクジェットプリント装置。

【請求項21】 前記発熱素子は電気熱変換体であることを特徴とする請求項1から17のいずれかに記載のインクジェットプリントヘッドの基体。

【請求項22】 前記発熱素子は電気熱変換体であることを特徴とする請求項18に記載のインクジェットプリントヘッド。

【請求項23】 前記発熱素子は電気熱変換体であることを特徴とする請求項19または20に記載のインクジェットプリント装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複写機・ファクシミリ・ワープロ・ホストコンピュータ等の出力用端末としてのプリンタ、ビデオプリンタ等に適用可能なインクジェットプリントへッドの基体、インクジェットプリントへッド、およびインクジェットプリント装置に関するものである。

[0002]

【従来の技術】インクジェットプリント装置は、ノンインパクトプリントとして、サイレントの要求される現代のビジネスオフィスやその他の事務処理部門において広く利用され、高密度で高速プリントが可能であるという点、および保守が比較的容易でメンテナンスフリーに成り得るという点もあって、開発、改良が進められている。

【0003】そのようなインクジェットプリント装置の

中において、例えば、特開昭54-59936号に開示されているインクジェットプリント装置は、その構造的な特徴から高密度プリントおよび高速プリントが充分可能であり、かつプリント媒体の幅方向の全域に渡って延在するいわゆるフルラインプリントヘッドの設計製造が極めて容易であるため、その実現が熱望されている。

【0004】しかしながら、かかるインクジェットプリント装置においても、高密度でフルライン化のプリントを実現しようとすると、そのプリントヘッドの構造上の設計的問題や、プリント精度、プリントの確実性、耐久性等に直結するプリントヘッドの生産性、量産性の点において、解決すべき点が未だ残されている。

【0005】このような問題の解決策として、例えば、特開昭57-72867号や特開昭57-72868号には、プリントの高密度・高速化を図るために、インクジェットプリントへッドを高度に集積化した構造をもつインクジェットプリント装置が開示されている。

【0006】一方、インクジェットプリントヘッドとしては、例えば、特公平62-48585号に記載されているように、インク吐出用のノズルを形成するインク流路内に、複数の発熱素子を設けた多値出力のカラーインクジェットプリントヘッドが提案されている。このプリントヘッドは、1つのインク流路内に n個の発熱素子を設けて、それぞれを個別に駆動ドライバに接続して独立して駆動できるように構成され、さらに、それぞれの発熱素子の発熱量を異らせるように、それらの素子のサイズが異なっている。したがって、n個の発熱素子による印字等のプリントドットは大きさがそれぞれ異なり、

 $\{ {}_{n}C_{n-1} + {}_{n}C_{n-2} + \cdots + {}_{n}C_{2} + {}_{n}C_{1} + 1 \}$ 通り のプリントドットを形成することができる。つまり、1 ノズルで $\{ {}_{n}C_{n-1} + {}_{n}C_{n-2} + \cdots + {}_{n}C_{2} + {}_{n}C_{1} + 1 \}$ 値の階調性を得ることができる。この素子構成を、以下「多値ヒーター」と称する。

[0007]

【発明が解決しようとする課題】しかしながら、従来の構成では、1/ズルに対してn個ずつ備わる発熱素子の全てに対して、1:1に対応する駆動トランジスタが必要であった。すなわち、/ズル密度のn倍の素子密度がトランジスタに要求されることになる。一般に、駆動トランジスタとしては、バイポーラトランジスタおよびN-Moshランジスタが使用されており、<math>/ズル方向の素子密度は、約70/mの素子密度が要求され、また720dpiであれば、(35/m) μ mの素子密度が要求される。このように素子密度を上げる場合には、トランジスタをn段構成にするなどの工夫が必要となり、そのような場合、配線が複雑になったり、Nで、基体のサイズが大きくなってしまう。

【0008】また、従来の構成では、360dpiの記録密度によって画像を形成する際に要求されるインクの

吐出量(約80pl)と、720dpiの記録密度によって画像を形成する際に要求されるインクの吐出量(約20pl)を両立させるためには、約20plの吐出量を達成できるプリントヘッドを作成し、それをマルチパス方式により走査して、360/720dpiの記録密度によるプリントを行っていた。その場合、360dpiの印字等のプリントを行うには、4パス以上のマルチパスを行わないと、プリント品位を満足することはできなかった。そのため、プリント媒体1枚へのプリント時間が長くかかってしまう。

【0009】本発明の目的は、高い階調性を得ることができる多値ヒータを用いた上、それらに対する配線を一部共通化することによって、回路構成の簡素化、およびヘッドの小型化を図ることができるインクジェットプリントヘッドの基体、インクジェットプリントヘッド、およびインクジェットプリント装置を提供することにある。

[0010]

【課題を解決するための手段】本発明のインクジェットプリントヘッドの基体の第1の形態は、複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドの基体であって、前記複数のインク吐出口のそれぞれに対して複数備わる発熱素子と、前記発熱素子のそれぞれの一端側に接続され、かつプリントすべき画像に対応する画像データに基づいて、前記発熱素子のそれぞれを駆動可能な駆動回路と、前記画像データを、それに対応する前記複数のインク吐出口毎の駆動回路のそれぞれに供給する画像データ供給回路と、前記発熱素子のそれぞれの他端側に接続された電力供給用の共通配線とを備えたことを特徴とする

【0011】本発明のインクジェットプリントヘッドの基体の第2の形態は、複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドの一部を構成するインクジェットプリントヘッドの基体であって、前記複数のインク吐出口のそれぞれに対して複数備わる発熱素子と、前記発熱素子と複数対1に対応し、かつプリントすべき画像に対応する画像データに基づいて、前記発熱素子を駆動可能な駆動回路と、前記画像データを、それに対応する前記複数のインク吐出口毎の駆動回路のそれぞれに供給する画像データ供給回路と、前記発熱素子のそれぞれの一端側に、該発熱素子に対応する共通の駆動回路を接続する共通配線と、前記発熱素子のそれぞれの他端側に接続された電力供給用の配線とを備えたことを特徴とする。

【0012】本発明のインクジェットプリントヘッド

は、複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントヘッドであって、前記本発明の第1または第2の形態のインクジェットプリントヘッドの基体と、前記基体との間にて、前記インク吐出口と該インク吐出口に連通するインクの流路を形成する天板とを備えたことを特徴とする。

【0013】本発明のインクジェットプリント装置は、複数のインク吐出口のそれぞれに連通する流路に備わる発熱素子からの熱エネルギーを利用して、前記インク吐出口からインクを吐出させるインクジェットプリントへッドを用いて、プリント媒体に画像をプリントするインクジェットプリントへッドを置であって、前記インクジェットプリントへッドとして前記本発明のインクジェットプリントへッドを開い、前記インクジェットプリントへッドを前記プリント媒体とを相対移動させる手段を備えたことを特徴とする。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて説明する。

【0015】(第1の実施形態)図1は、本発明のインクジェットプリントヘッド用基体100のインク路に相当する基本的な構成部分の断面図を示すものである。図1において、101はシリコン基板、102は蓄熱層としての熱酸化膜を示す。103は蓄熱層を兼ねる層間膜としてのSiO2膜またはSi3N4膜、104は抵抗層、105はA1またはA1-Si, A1-Cu等のA1合金配線、106は保護膜としてのSiO2膜またはSi3N4膜を示す。107は、抵抗層104の発熱に伴う化学的・物理的衝撃から保護膜106を守るための耐キャビテーション膜である。また、108は、電極配線105が形成されていない抵抗層104の領域からの熱の作用を受ける熱作用部である。

【0016】抵抗層104は、電極としての配線105 間に、発熱素子としての発熱抵抗体(電気熱変換体)を 形成しており、その発熱抵抗体は無論のこと、抵抗層1 04全体がTaNo.a を含む構成となっている。このT a No. 8 を含む発熱抵抗体は、製造上のばらつきが少な く、同一基体に多数形成しても機能の安定性が得られ た。さらに、その発熱抵抗体への通電を各種の条件で行 っても、その抵抗変化が少なく、多数の発熱抵抗体各々 の機能が安定して同等の作用を発揮することができた。 【0017】図2は、図1の基体100の構成を応用し て多値ヒーターをレイアウトしたインクジェットプリン トヘッド用基体の要部の平面図であり、2ノズル分のイ ンク流路に相当する部分を示している。多値ヒーター は、図1の構成部分を発熱抵抗体201として備えてお り、その発熱抵抗体201としての201(1),20 1 (2), …, 201 (n) のn個の発熱素子(以下、

「ヒータ」ともいう)が1組のセグメントSを成し、そのセグメントSが1ノズル分となっている。多値ヒーターを構成するn個の発熱素子201(1), 201(2), $\cdots 201(n)$ の相互間は、数 μ mとされている。素子201(1), 201(2), $\cdots 201(n)$ のそれぞれは、後述する駆動トランジスタに接続されている。203は、各々の素子201(1), \cdots , 201(n)に電力を供給する電極配線である。

【0018】図3は、図2におけるヘッド基体にて構成 される電気回路の等価回路であり、1ノズルを形成する インク流路内の多値ヒーターと、その多値ヒーターを成 す素子201(1), 201(2), …, 201(n) を個別に駆動させる駆動トランジスタとしてのN-Mo sトランジスタ301の他、C-Mosトランジスタ構 成される駆動信号処理のためのシフトレジスタ302 と、データを保持するラッチ回路303と、各トランジ スタ301のそれぞれに接続されるAND回路307か ら構成されている。そのAND回路307は、ノズルを 形成するインク流路をブロック分割するためのブロック 選択信号(Block ENB)304. セレクト信号 (Select) 305およびそれらのデータと駆動パ ルス信号 (Heat ENB) 306を論理演算し、そ の演算結果に基づいて対応するトランジスタ301を駆 動する。ここで、セグメントSは、インク流路の形成数 mに対応するようにS(1)~S(m)形成されてい

【0019】203は前述した電極配線であり、1ノズル内に構成されるn個の多値ヒーターとしての素子201(1),201(2),…201(n)の一端に対して個別に電力を供給する。また多値ヒータのそれぞれの他端は、共通の電源309に接続されている。さらに、温度調整用サブヒーター311、温度センサー312、ヒーターの抵抗値モニター用ヒーター313などが構成されている。

【0020】図3において、VDDはロジック電源、H -GNDはヒータ駆動電源309(VH)用のGND、 L-GNDはロジック電源VDD用のGNDである。ヒ ータ駆動電源309は、共通配線L1を介して、セグメ ントS(1)~S(m)の全ての素子201(1)…2 01(n)の端部に接続される。また、シフトレジスタ 302は、セグメントS(1), S(2), ..., S (m) 毎に対応するシリアルの画像データ入力信号(I data)と、シフトレジスタ駆動用のクロック入力信 号(Clock)を入力し、その画像データをパラレル 信号としてラッチ回路303に出力する。ラッチ回路3 03には、リセット信号(Reset)とラッチ信号 (LTCLK)が入力され、シフトレジスタ302から 入力した画像データを一時記憶してから、対応するセグ メントS(1), S(2), …, S(m)毎のAND回 路307に出力する。駆動パルス信号(Heat EN B) 306は、セグメントS(1)~S(m)のそれぞれのヒータ201(1), 201(2), …, 201(n)に入力される。

【0021】図3におけるセレクト信号305は、セグメントS(1)~S(m)に共通に対応する入力端子1~n(Select1~n)から入力される。したがって、このセレクト信号305によって、各セグメントS(1)~S(m)における発熱対象のヒータが選択できることになる。

【0022】また、図3において314はデコーダであ り、その入力端子1,2,3に対して、図7のようにブ ロック選択信号304が入力される。その5つの出力端 子は、セグメントS(1)~S(m)毎のAND回路3 07のそれぞれに分けて接続されている。例えば、セグ メントSの数がS(1)~S(200)の200である 場合、つまりノズル数が200の場合に、5つの出力端 子の内、第1の出力端子をノズル番号1~40に対応す るセグメントS(1)~S(40)のAND回路307 のそれぞれに接続し、第2の出力端子をノズル番号41 ~80に対応するセグメントS(41)~S(80)の AND回路307のそれぞれに接続し、第3の出力端子 をノズル番号81~120に対応するセグメントS(8 1)~S(120)のAND回路307のそれぞれに接 続し、第4の出力端子をノズル番号121~160に対 応するセグメントS(121)~S(160)のAND 回路307のそれぞれに接続し、また第5の出力端子を ノズル番号161~200に対応するセグメントS(1) 61)~S(200)のAND回路307のそれぞれに 接続する。

【0023】このようにデコーダ314を接続した場合には、ブロック選択信号304に応じて、デコーダ314の同一の出力端子に接続される5ブロックのノズル群がインクを吐出するヒートノズルとして選択され、それらの5ブロックのノズル群からのインクの吐出タイミングが制御できることになる。

【0024】図3における駆動素子は、半導体技術によりSi基板に形成され、さらに図1のような熱作用部108が同一基板に形成される。

【0025】図4に、図3中の主要素子を縦断するように切断した基板の模式的断面図を示す。

【0026】P導電体のSi基板401に、一般的なMosプロセスを用いたイオンプランテーション等の不純物導入および拡散により、N型ウェル領域402にPーMos450が構成され、P型ウェル領域403にNーMos451が構成されている。PーMos450およびNーMos451は、それぞれ厚さ数百Åのゲート絶縁膜408を介して、4000Å以上5000Å以下の厚さにCVD法で堆積したpoly-Siによるゲート配線415、およびN型あるいはP型の不純物導入をしたソース領域405、ドレイン領域406等で構成さ

れ、それらP-Mos450とN-Mos451により C-Mosロジックが構成されている。

【0027】また、素子駆動用のN-Mosトランジスタ301は、やはり不純物導入および拡散等の工程により、P型ウェル基板402上のドレイン領域411、ソース領域412およびゲート配線413等で構成されている。

【0028】ここで、素子駆動ドライバとしてN-Mosトランジスタ301を行うと、1つのトランジスタを構成するドレインゲート間の距離Lは、最小値で約10 μ mとなる。その 10μ mの内訳の1つは、y-スとドレインのコンタクト417の幅であり、それらの幅分は $2\times2\mu$ mであるが、実際は、その半分が隣のトランジスタとの兼用となるため、その1/2の 2μ mである。内訳の他は、コンタクト417とゲート413の距離分の $2\times2\mu$ mの 4μ mと、ゲート413の幅分の 4μ mであり、合計 10μ mとなる。

【0029】また、各素子間には、5000Å以上10000Å以下の厚さのフィールド酸化により酸化膜分離領域453が形成され、素子分離されている。このフィールド酸化膜は、熱作用部108の下においては一層目の蓄熱層414として作用する。

【0030】各素子が形成された後、層間絶縁膜416が約7000Åの厚さにCVD法によるPSG、BPSG膜等で堆積され、熱処理により平坦化処理等をされてから、コンタクトホールを介して、第1の配線層となるA1電極417により配線が行われている。その後、プラズマCVD法によるSiO2膜等の層間絶縁膜418を10000Å以上15000Å以下の厚さに堆積し、更にスルーホールを介して、抵抗層104として約100Åの厚さの $TaN_{0.8,hex}$ 膜をDCスパッタ法により形成した。その後、抵抗層104によって形成される各素子201(1)、201(2)、…、201(n)への配線となる第2の配線層A1電極105を形成した。

【0031】次に、保護膜106としては、プラズマC VDによる Si_3N_4 膜が約10000Åの厚さに成膜される。さらに最上層には、耐キャビテーション膜107がTa等で約2500Åの厚さに堆積される。

【0032】プリントヘッド基体100の完成後は、図5に示すように、インクの吐出のための吐出口500等が形成されてインクジェットプリントヘッド510となる。すなわち、基板100上に液路壁501が形成され、その基板100と天板502からプリントヘッド510が構成されている。

【0033】プリント用のインクは図示していない貯蔵室から供給管503を通してプリントヘッド510の共通液室504内に供給される。共通液室504内に供給されたインクは、毛管現象によりインク流路505内に供給され、その先端の吐出口500でメニスカスを形成

することにより安定に保持される。そして、そのインク 流路505内の発熱部108に位置する素子201 (1),201(2),…,201(n)に通電することにより、その発熱部108上のインクが加熱され、発 泡現象が発生し、その発泡のエネルギーにより吐出口5 00からインク滴が吐出される。このような構成により、吐出口を400dpiといった高密度に配置して、マルチ吐出口のインクジェットプリントヘッド510が 構成される。

【0034】図6は、上述したインクジェットプリント ヘッド510を装着して利用することのできるインクジェットプリント装置600の一例を示す概略斜視図である。

【0035】図6において601は、上述したインクジェットプリントへッドと同様に構成されたプリントへッドである。このヘッド601はキャリッジ607上に搭載され、そのキャリッジ607は、駆動モータ602の正逆回転に連動して駆動力伝達ギア603および604を介して回転するリードスクリュ605の螺旋溝606に対して係合している。そして、駆動モータ602の動力によって、キャリッジ607とともにヘッド601がガイド608に沿って矢印aおよびb方向に往復移動されるようになっている。また、図示しないプリント媒体供給装置によってプラテン609上に搬送されるプリント用紙Pは、紙押さえ板610によって、キャリッジ607の移動方向にわたってプラテン609に押圧される

【0036】リードスクリュ605の一端の近傍には、 フォトカプラ611および612が配設されている。こ れらは、それらの配設位置において、キャリッジ607 のレバー607aの存在を確認して、駆動モータ602 の回転方向切り換え等を行うためのホームポジション検 知手段を構成している。図において613は、インクジ ェットプリントヘッド601の吐出口のある前面を覆う キャップ部材614を支持する支持部材である。また、 615は、キャップ部材614の内部にヘッド601か ら空吐出等されて溜ったインクを吸引するインク吸引手 段である。この吸引手段615により、キャップ内開口 部616を介してヘッド601の吸引回復が行われる。 617はクリーニングブレードであり、618はブレー ド617を前後方向(上記キャリッジ607の移動方向 と直交する方向) に移動可能にする移動部材であり、ブ レード617および移動部材618は本体支持体619 に支持されている。ブレード617は、この形態に限ら ず、他の周知のクリーニングブレードであってもよい。 620は、吸引回復の吸引を開始させるためのレバーで あり、キャリッジ607と係合するカム621の移動に 伴って移動し、駆動モータ602からの駆動力がクラッ チ切り換え等の公知の伝達手段で移動制御される。ヘッ ド601の液路505内の発熱素子201(1),20 2(2),…,202(n)に信号を付与したり、前述した各機構の駆動制御を司ったりするインクジェットプリント制御部は、装置本体側に設けられており、ここには図示しない。

【0037】このように構成されたインクジェットプリント装置600は、図示しないプリント媒体給送装置によりプラテン609上に搬送されるプリント用紙Pに対し、ヘッド601が用紙Pの全幅にわたって往復移動しながらプリントを行う。

【0038】(第2の実施形態)図8は、図1の基体1 00の構成を応用して多値ヒーターをレイアウトした本 発明の第2の実施形態としてのインクジェットプリント ヘッド用基体の要部の平面図であり、2ノズル分のイン ク流路に相当する部分を示している。多値ヒーターは、 図1の構成部分を発熱抵抗体701として備えており、 その発熱抵抗体701としての701(1),701 (2), …, 701(n)のn個の発熱素子が1組のセ グメントSを成し、そのセグメントSが1ノズル分とな っている。多値ヒーターを構成する n 個の発熱素子70 1(1), 701(2), …, 701(n)の相互間 は、数μmとされている。それぞれのセグメントS (1)…S(m)において、素子701(1),701 (2), …, 701(n)の一端は、図9のように、ダ イオードDを介して同一の駆動トランジスタ702 (1), 702(2), …, 702(m) に接続されて いる。703(1)…703(n)は、それぞれの素子 701(1)…701(n)に電力を供給する電極配線

【0039】図9は、図8におけるヘッド基体にて構成される電気回路の等価回路であり、前述した図3と同様の部分には同一符号を付して説明を省略する。704(1)…704(n)は制御信号Cによって動作するトランジスタであり、セグメントS(1)…S(m)のそれぞれにおける素子701(1)…701(n)に対して、ヒータ駆動電圧VH1…VH(n)を印加できるようになっている。電圧VH1…VH(n)は、対応する素子701(1)…701(n)の発熱量などに応じた電圧に設定されている。

である。

【0040】(第3の実施形態)本例では、前述した図3の実施形態において、セレクト信号305をSelectl, 2とし、またデコーダ314の出力端子に対する配線を変更して、大小2つずつの発熱素子としてのヒータ2a, 2bを備えた計160ノズルのプリントヘッドを制御する。

【0041】セレクト信号305のSelect1は、セグメントS(1) \sim S(m)のそれぞれのヒータ2aに対応するAND回路307に入力され、Select2は、セグメントS(1) \sim S(m)のそれぞれのヒータ2bに対応するAND回路307に入力される。 【0042】また、デコーダ314は、その入力端子

1,2,3に対して図10のようにブロック選択信号3 04が入力される。その5つの出力端子は、セグメント S(1)~S(m)毎のAND回路307のそれぞれに 分けて接続されている。5つの出力端子の内、第1の出 力端子は、ノズル番号1~8,41~48,81~8 8,121~128に対応するセグメントSのAND回 路307のそれぞれに接続され、以下同様に、第2の出 力端子はノズル番号9~16,49~56,89~9 6,129~136、第3の出力端子はノズル番号17 \sim 24, 57 \sim 64, 97 \sim 104, 137 \sim 144, 第4の出力端子はノズル番号25~32,65~72, 105~112, 145~152、第5の出力端子はノ ズル番号33~40,73~80,113~120,1 53~160のそれぞれに対応するAND回路307に 接続されている。このようにデコーダ314を接続する ことによって、ブロック選択信号304に応じて、デコ ーダ314の同一の出力端子に接続された5ブロックの ノズル群がインクを吐出するヒートノズルとして選択さ れ、それら5ブロックのノズル群からのインクの吐出タ イミングが制御できることになる。

【0043】図11はインクの吐出例を示し、本例では、1ノズル当たりのヒータ201として、発熱量が異なるヒータ2a,2bが備えられている。以下、大発熱量のヒータ2aを「大吐出ヒータ」といい、小発熱量のヒータ2bを「小吐出ヒータ」という。

【0044】図11において、ノズル壁19で挟まれた 吐出ノズルにはインクが満たされており、同図(b)~ (c)のように、吐出ヒータ2a,2bによりインクを 加熱発泡させると、その発泡圧力によりオリフィス40 によりインクが吐出される。図11(b)は、小吐出ヒ ータ2bによりインクが加熱発泡され、インクの小発泡 13により小ドロップ14が吐出された状態を示す。こ のときの吐出量を約20ngとする。図11(c)は、 小吐出ヒータ2bと大吐出ヒータ2aとによってインク を加熱発泡した状態を示す。このときの吐出量は80ngとなる。

【0045】インクの吐出量20ngは、720dpi の高記録密度に適し、また吐出量80ngは、360d piの記録密度に適している。

【0046】図12および図13は、それぞれスキャン方式によって、360dpiおよび720dpiの記録密度で画像をプリントする場合におけるインク滴のプリント媒体S上の着弾位置の説明図である。これらの図においてHはプリントヘッドであり、矢印方向に走査することによってプリント媒体S上に画像を形成する。図13、図14においては、説明の便宜上、ノズル数を80とし、それを10ブロックに分けてインクの吐出タイミングを制御するものである。

【0047】図12のような360dpiの記録密度によるプリントの場合には、前述した図11(c)のよう

に、その記録密度に適した吐出量80ngを確保するよう制御する。また、図13のような720dpiの記録密度によるプリントの場合には、前述した図11(b)のように、その記録密度に適した吐出量20ngを確保するよう制御する。なお、図13において、プリント媒体S上の白丸は往走査時に吐出されるインク滴の着弾位置、黒丸は復走査時に吐出されるインク滴の着弾位置を示す。

【0048】図14は、発熱素子の配置形態の他の例を示す。本例では、前述したヒータ2a,2bがインクの吐出方向(図14中の上方)に沿って並び、それらの一端側の共通配線が電源電圧VHのヒータ駆動電源309(図3参照)側に接続され、それらの他端側は、対応する駆動トランジスタ201(図14中では「Tr」と表記する)側に接続される。したがって、本例の場合は、発熱素子の並び方向(図14中の上下方向)と、トランジスタ201の並び方向(図14中の左右方向)が直交することになる。ちなみに、前述した図11のような配置形態の場合には、発熱素子の並び方向と、トランジスタ201の並び方向が平行となる。

【0049】(その他)なお、本発明は、特にインクジェット記録方式の中でも、インク吐出を行わせるために利用されるエネルギとして熱エネルギを発生する手段(例えば電気熱変換体やレーザ光等)を備え、前記熱エネルギによりインクの状態変化を生起させる方式のプリントへッド(以下、「記録、マド」ともいう)、プリント装置(以下、「記録装置」ともいう)において優れた効果をもたらすものである。かかる方式によれば記録の高密度化、高精細化が達成できるからである。

【0050】その代表的な構成や原理については、例え ば、米国特許第4723129号明細書, 同第4740 796号明細書に開示されている基本的な原理を用いて 行うものが好ましい。この方式は所謂オンデマンド型、 コンティニュアス型のいずれにも適用可能であるが、特 に、オンデマンド型の場合には、液体(インク)が保持 されているシートや液路に対応して配置されている電気 熱変換体に、記録情報に対応していて核沸騰を越える急 速な温度上昇を与える少なくとも1つの駆動信号を印加 することによって、電気熱変換体に熱エネルギを発生せ しめ、記録ヘッドの熱作用面に膜沸騰を生じさせて、結 果的にこの駆動信号に一対一で対応した液体(インク) 内の気泡を形成できるので有効である。この気泡の成 長、収縮により吐出用開口を介して液体(インク)を吐 出させて、少なくとも1つの滴を形成する。この駆動信 号をパルス形状とすると、即時適切に気泡の成長収縮が 行われるので、特に応答性に優れた液体(インク)の吐 出が達成でき、より好ましい。このパルス形状の駆動信 号としては、米国特許第4463359号明細書、同第 4345262号明細書に記載されているようなものが 適している。なお、上記熱作用面の温度上昇率に関する

発明の米国特許第4313124号明細書に記載されている条件を採用すると、さらに優れた記録を行うことができる。

【0051】記録ヘッドの構成としては、上述の各明細書に開示されているような吐出口、液路、電気熱変換体の組合せ構成(直線状液流路または直角液流路)の他に熱作用部が屈曲する領域に配置されている構成を開示する米国特許第4558333号明細書、米国特許第4459600号明細書を用いた構成も本発明に含まれるものである。加えて、複数の電気熱変換体に対して、共通するスリットを電気熱変換体の吐出部とする構成を開示する特開昭59-123670号公報や熱エネルギの圧力波を吸収する開孔を吐出部に対応させる構成を開示する特開昭59-138461号公報に基いた構成としても本発明の効果は有効である。すなわち、記録ヘッドの形態がどのようなものであっても、本発明によれば記録を確実に効率よく行うことができるようになるからである。

【0052】さらに、記録装置が記録できる記録媒体の 最大幅に対応した長さを有するフルラインタイプの記録 ヘッドに対しても本発明は有効に適用できる。そのよう な記録ヘッドとしては、複数記録ヘッドの組合せによっ てその長さを満たす構成や、一体的に形成された1個の 記録ヘッドとしての構成のいずれでもよい。

【0053】加えて、上例のようなシリアルタイプのものでも、装置本体に固定された記録ヘッド、あるいは装置本体に装着されることで装置本体との電気的な接続や装置本体からのインクの供給が可能になる交換自在のチップタイプの記録ヘッド、あるいは記録ヘッド自体に一体的にインクタンクが設けられたカートリッジタイプの記録ヘッドを用いた場合にも本発明は有効である。

【0054】また、本発明の記録装置の構成として、記録ヘッドの吐出回復手段、予備的な補助手段等を付加することは本発明の効果を一層安定できるので、好ましいものである。これらを具体的に挙げれば、記録ヘッドに対してのキャッピング手段、クリーニング手段、加圧或は吸引手段、電気熱変換体或はこれとは別の加熱素子或はこれらの組み合わせを用いて加熱を行う予備加熱手段、記録とは別の吐出を行なう予備吐出手段を挙げることができる。

【0055】また、搭載される記録へッドの種類ないし個数についても、例えば単色のインクに対応して1個のみが設けられたものの他、記録色や濃度を異にする複数のインクに対応して複数個数設けられるものであってもよい。すなわち、例えば記録装置の記録モードとしては黒色等の主流色のみの記録モードだけではなく、記録へッドを一体的に構成するか複数個の組み合わせによるかいずれでもよいが、異なる色の複色カラー、または混色によるフルカラーの各記録モードの少なくとも一つを備えた装置にも本発明は極めて有効である。

【0056】さらに加えて、以上説明した本発明の実施 形態においては、インクを液体として説明しているが、 室温やそれ以下で固化するインクであって、室温で軟化 もしくは液化するものを用いてもよく、あるいはインク ジェット方式ではインク自体を30℃以上70℃以下の 範囲内で温度調整を行ってインクの粘性を安定吐出範囲 にあるように温度制御するものが一般的であるから、使 用記録信号付与時にインクが液状をなすものを用いても よい。加えて、熱エネルギによる昇温を、インクの固形 状態から液体状態への状態変化のエネルギとして使用せ しめることで積極的に防止するため、またはインクの蒸 発を防止するため、放置状態で固化し加熱によって液化 するインクを用いてもよい。いずれにしても熱エネルギ の記録信号に応じた付与によってインクが液化し、液状 インクが吐出されるものや、記録媒体に到達する時点で はすでに固化し始めるもの等のような、熱エネルギの付 与によって初めて液化する性質のインクを使用する場合 も本発明は適用可能である。本発明においては、上述し た各インクに対して最も有効なものは、上述した膜沸騰 方式を実行するものである。

【0057】さらに加えて、本発明インクジェット記録 装置の形態としては、コンピュータ等の情報処理機器の 画像出力端末として用いられるものの他、リーダ等と組 合せた複写装置、さらには送受信機能を有するファクシ ミリ装置の形態を採るもの等であってもよい。

[0058]

【発明の効果】以上説明したように、本発明は、1つのインク吐出口に対して複数の発熱素子を備えて、それらを選択的に駆動させることによって高い階調性を得ることができる上、複数の発熱素子に対する配線を共通化して、回路構成の簡素化、およびヘッドの小型化を図ることができる。

【0059】また、発熱素子を選択的に動作可能とすることにより、記録密度に適したインクの吐出量を確保することもできる。

【図面の簡単な説明】

【図1】本発明のインクジェットプリントヘッドの基体 のインク流路部分の基本的な構成を説明するための断面 図である。

【図2】本発明の一実施形態としてのインクジェットプリントへッドの基体の要部の平面図である。

【図3】図2に示す基体に構成される電気回路の等価回路図である。

【図4】図2に示す基体の要部の断面図である。

【図5】本発明の実施形態としてのインクジェットプリントヘッドの一部切欠きの斜視図である。

【図6】本発明の実施形態としてのインクジェットプリント装置の斜視図である。

【図7】図3に示すデコーダの入出力関係の説明図である。

【図8】本発明の他の実施形態としてのインクジェット プリントヘッドの基体の要部の平面図である。

【図9】図8に示す基体に構成される電気回路の等価回路図である。

【図10】図8に示すデコーダの入出力関係の説明図で ぁぁ

【図11】本発明の実施形態としてのインクジェットプリントへッドのインクの吐出形態の説明図である。

【図12】図11(c)のインクの吐出形態と記録濃度との関係の説明図である。

【図13】図11(b)のインクの吐出形態と記録密度との関係の説明図である。

【図14】本発明の実施形態としてのインクジェットプリントヘッドにおける発熱素子の他の配置形態の説明図である。

【符号の説明】

- 100 基体
- 101 シリコン基板
- 201 発熱抵抗体
- 301 駆動トランジスタ
- 302 シフトレジスタ
- 303 ラッチ回路
- 304 選択信号
- 305 セレクト信号
- 306 駆動パルス信号
- 307 AND回路

【図4】

【図3】

【図7】

入力端子 1 ヒートノズル 入力蜥子 2 入力増予 3 1~40 1 0 0 41~80 O 0 81~120 1 1 0 121~160 0 0 1 0 1 $161 \sim 200$

【図8】

【図10】

入力端子 3	入力端子 2	入力増子 1	ヒートノス・ル
0	0	1	1~8,41~48, 81~88, 121~128
. 0	1	0	9~16, 49~56, 89~96, 129~136
0	1	1	17~24, 57~64, 97~104, 137~144
1	0	0	25~32, 65~72, 105~112, 145~152
t	0	1	33~40, 73~80, 113~120, 153~160

【図9】

フロントページの続き

(72)発明者 泉田 昌明

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 金子 肇

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 池田 雅実

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 笠本 雅己

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 阿部 力

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 松尾 圭介

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内