

# Adriely da Silva e Silva

!!! As respostas estão de marca texto azul!!!

# Rastreador de pacotes — Sub-rede de uma rede IPv4

## Tabela de Endereçamento

| Dispositivo             | Interface     | Endereço IP     | Máscara de<br>sub-rede | Gateway padrão  |
|-------------------------|---------------|-----------------|------------------------|-----------------|
| ClienteRouter           | G0/0          | 192.168.0.1     | 255.255.255.192        | N/D             |
|                         | G0/1          | 192.168.0.65    | 255.255.255.192        |                 |
|                         | S0/1/0        | 209.165.201.2   | 255.255.255.252        |                 |
| LAN-A Switch            | VLAN1         | 192.168.0.2     | 255.255.255.192        | 192.168.0.1     |
| LAN-B Switch            | VLAN1         | 192.168.0.66    | 255.255.255.192        | 192.168.0.65    |
| PC-A                    | NIC           | 192.168.0.62    | 255.255.255.192        | 192.168.0.1     |
| РС-В                    | NIC           | 192.168.0.126   |                        | 192.168.0.65    |
| ISPRouter               | G0/0          | 209.165.200.225 | 255.255.255.224        | N/D             |
|                         | S0/1/0        | 209.165.201.1   | 255.255.255.252        |                 |
| ISPSwitch               | VLAN1         | 209.165.200.226 | 255.255.255.224        | 209.165.200.225 |
| Estação de Trabalho ISP | Placa de rede | 209.165.200.235 | 255.255.255.224        | 209.165.200.225 |
| ISP Server              | Placa de rede | 209.165.200.240 | 255.255.255.224        | 209.165.200.225 |

# Objetivos

Parte 1: Projete um esquema de sub-rede de rede IPv4

Parte 2: Configurar os Dispositivos

Parte 3: Testar e Solucionar Problemas da Rede

#### Histórico/Cenário

Nesta atividade, você irá sub-rede da rede Cliente em várias sub-redes. O esquema de sub-redes deve ser baseado no número de computadores host necessários em cada sub-rede, bem como em outras considerações de rede, como a futura expansão de hosts da rede.

Depois de criar um esquema de sub-rede e concluir a tabela preenchendo os endereços IP do host e da interface ausentes, você configura os PCs do host, computadores e interfaces do roteador.

Após a configuração dos dispositivos de rede e dos PCs host, você usará o comando **ping** para testar a conectividade da rede.

# Instruções

#### Parte 1: Sub-rede da Rede Atribuída

# Etapa 1: Crie um esquema de divisão em sub-redes que atenda ao número necessário de sub-redes e ao número necessário de endereços de host.

Nesse cenário, você é um técnico de rede atribuído para instalar uma nova rede para um cliente. Você deve criar várias sub-redes do espaço de endereço de rede 192.168.0.0/24 para atender aos seguintes requisitos:

- a. A primeira sub-rede é a rede LAN-A. Você precisa de um mínimo de 50 endereços IP de host.
- b. A segunda sub-rede é a rede LAN-B. Você precisa de um mínimo de 40 endereços IP de host.
- c. Você também precisa de pelo menos duas sub-redes não utilizadas adicionais para futura expansão da rede.

**Nota**: Máscaras de sub-rede de comprimento variável não serão usadas. Todas as máscaras de sub-rede do dispositivo devem ter o mesmo comprimento.

d. Responda às perguntas a seguir para ajudar a criar um esquema de divisão em sub-redes que atenda aos requisitos de rede estabelecidos:

Quantos endereços de host são necessários na maior sub-rede necessária?

#### 50 hosts.

Qual é o número mínimo de sub-redes necessárias?

#### Quatro.

A rede que você está encarregado de subdividir é 192.168.0.0/24. Qual é a máscara de sub-rede /24 em binário?

e. A máscara de sub-rede é composta por uma parte de rede e uma parte de host. Isso é representado em binário pelos valores 1 e 0 na máscara de sub-rede.

Na máscara de rede, o que os valores 1 representam?

#### Parte da rede.

Na máscara de rede, o que os valores 0 representam?

#### Parte do host.

f. Para subdividir uma rede, os bits da parte de host da máscara de rede original são transformados em bits de sub-rede. O número de bits de sub-rede define o número de sub-redes.

Considerando cada uma das possíveis máscaras de sub-rede descritas no formato binário a seguir, quantas sub-redes e quantos hosts são criados em cada exemplo?

**Sugestão**: Lembre-se de que o número de bits do host (com potência de 2) define o número de hosts por sub-rede (menos 2) e o número de bits de sub-rede (com potência de dois) define o número de sub-redes. Os bits de sub-rede (mostrados em negrito) são os bits que foram emprestados além da

máscara de rede original de /24. O /24 é a notação de prefixo e corresponde a uma máscara decimal pontilhada de 255.255.255.0.

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| /25 | 255.255.255.128 | 11111111111111.11111111. <b>1</b> 0000000 |
|-----|-----------------|-------------------------------------------|
|     |                 |                                           |

Número de sub-redes? Número de hosts?

#### 2 sub-redes e 126 hosts

| Núm. de<br>Sub-redes | Núm. de Host             |
|----------------------|--------------------------|
| 2^1 = 2              | 2^7 - 2 => 128 - 2 = 126 |

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| /26 <b>255.255.255.192</b> 11111111111111111111111111111111111 |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

Número de sub-redes? Número de hosts?

#### 4 sub-redes e 62 hosts

| Núm. de<br>Sub-redes | Núm. de Host           |
|----------------------|------------------------|
| 2^2 = 4              | 2^6 - 2 => 64 - 2 = 62 |

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| /27 | 255.255.255.224 | 11111111111111.11111111.1 <b>11</b> 00000 |
|-----|-----------------|-------------------------------------------|
|     |                 |                                           |

Número de sub-redes? Número de hosts?

#### 8 sub-redes e 30 hosts

| Núm. de<br>Sub-redes | Núm. de Host           |
|----------------------|------------------------|
| 2^3 = 8              | 2^5 - 2 => 32 - 2 = 30 |

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| 255.255.255.240 111111111111111111111111111111111111 |
|------------------------------------------------------|
|------------------------------------------------------|

Número de sub-redes? Número de hosts?

#### 16 sub-redes e 14 hosts

| Núm. de<br>Sub-redes | Núm. de Host           |
|----------------------|------------------------|
| 2^4 = 16             | 2^4 - 2 => 16 - 2 = 14 |

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| <b>255.255.248</b> 111111111111111111111111111111111111 |
|---------------------------------------------------------|
|---------------------------------------------------------|

Número de sub-redes? Número de hosts?

#### 32 sub-redes e 6 hosts

| Núm. de<br>Sub-redes | Núm. de Host         |
|----------------------|----------------------|
| 2^5 = 32             | 2^3 - 2 => 8 - 2 = 6 |

#### 

Equivalente da máscara de sub-rede decimal pontilhada:

| /30 | 255.255.255.252 | 11111111111111111111111111111111111111 |
|-----|-----------------|----------------------------------------|
|-----|-----------------|----------------------------------------|

Número de sub-redes? Número de hosts?

#### 64 sub-redes e 2 hosts

| Núm. de<br>Sub-redes | Núm. de Host         |  |  |
|----------------------|----------------------|--|--|
| 2^6 = 64             | 2^2 - 2 => 4 - 2 = 2 |  |  |

Considerando suas respostas acima, quais máscaras de sub-rede atendem ao número necessário de endereços mínimos de host?

Considerando suas respostas acima, quais máscaras de sub-rede atendem ao número mínimo de sub-redes necessárias?

Considerando as respostas acima, qual máscara de sub-rede atende ao número mínimo necessário de hosts e ao número mínimo de sub-redes necessário?

#### /26

Quando você determinar qual máscara de sub-rede atende a todos os requisitos de rede declarados, derivar cada uma das sub-redes. Liste as sub-redes do primeiro ao último na tabela. Lembre-se de que a primeira sub-rede é 192.168.0.0 com a máscara de sub-rede escolhida.

| Endereço da Sub-Rede | Prefixo | Máscara de sub-rede |
|----------------------|---------|---------------------|
| 192.168.0.0          | /26     | 255.255.255.192     |
| 192.168.0.64         | /26     | 255.255.255.192     |
| 192.168.0.128        | /26     | 255.255.255.192     |
| 192.168.0.192        | /26     | 255.255.255.192     |

| Endereço de<br>rede | Primeiro<br>endereço IP<br>utilizável | Último<br>endereço IP<br>utilizável | Endereço de<br>transmissão | Núm. de<br>hosts<br>por<br>sub-rede | Prefix<br>o | Máscara de<br>sub-rede |
|---------------------|---------------------------------------|-------------------------------------|----------------------------|-------------------------------------|-------------|------------------------|
| 192.168.0.0         | 192.168.0.1                           | 192.168.0.62                        | 192.168.0.63               | 64                                  | /26         | 255.255.255.192        |
| 192.168.0.64        | 192.168.0.65                          | 192.168.0.126                       | 192.168.0.127              | 64                                  | /26         | 255.255.255.192        |
| 192.168.0.128       | 192.168.0.129                         | 192.168.0.190                       | 192.168.0.191              | 64                                  | /26         | 255.255.255.192        |
| 192.168.0.192       | 192.168.0.193                         | 192.168.0.254                       | 192.168.0.255              | 64                                  | /26         | 255.255.255.192        |

#### Etapa 2: Preencha os endereços IP ausentes na Tabela de Endereços

Atribuir endereços IP com base nos seguintes critérios: Use as configurações de rede ISP como exemplo.

- a. Atribua a primeira sub-rede à LAN-A.
  - 1) Use o primeiro endereço de host para a interface CustomerRouter conectada ao switch LAN-A.
  - 2) Use o segundo endereço de host para o switch LAN-A. Certifique-se de atribuir um endereço de gateway padrão para o switch.
  - 3) Use o último endereço de host para PC-A. Certifique-se de atribuir um endereço de gateway padrão para o PC.
- b. Atribua a segunda sub-rede à LAN-B.
  - 1) Use o primeiro endereço de host para a interface CustomerRouter conectada ao switch LAN-B.
  - 2) Use o segundo endereço de host para o switch LAN-B. Certifique-se de atribuir um endereço de gateway padrão para o switch.
  - 3) Use o último endereço de host para PC-B. Certifique-se de atribuir um endereço de gateway padrão para o PC.

As respostas estão na tabela de endereçamento!

## Parte 2: Configurar os Dispositivos

Defina as configurações básicas nos PCs, computadores e roteador. Consulte a Tabela de Endereçamento para obter os nomes dos dispositivos e as informações de endereço.

#### Etapa 1: Configurar o CustomerRouter.

- a. Defina a senha secreta de habilitação no CustomerRouter para Class123
- b. Defina a senha de login do console como Cisco123.
- c. Configure o **CustomerRouter** como o nome do host do roteador.
- d. Configure as interfaces G0/0 e G0/1 com endereços IP e máscaras de sub-rede e ative-as.
- e. Salve a configuração atual no arquivo de configuração inicial.



#### Etapa 2: Configure os dois switches LAN do cliente.

Configure os endereços IP na interface VLAN 1 nos dois switches LAN do cliente. Certifique-se de configurar o gateway padrão correto em cada switch.



### Etapa 3: Configure as interfaces do PC.

Defina as configurações de endereço IP, máscara de sub-rede e gateway padrão em PC-A e PC-B.



Parte 3: Testar e Solucionar Problemas da Rede

Na parte 3, você usará o comando **ping** para testar a conectividade de rede.

a. Determine se o PC-A pode se comunicar com seu gateway padrão. Você recebeu resposta?

```
Packet Tracer PC Command Line 1.0
C:\>ping 192.168.0.1

Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time=29ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255

Ping statistics for 192.168.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 29ms, Average = 7ms
```

b. Determine se o PC-B pode se comunicar com seu gateway padrão. Você recebeu resposta?

```
Packet Tracer PC Command Line 1.0
C:\>ping 192.168.0.65

Pinging 192.168.0.65 with 32 bytes of data:

Reply from 192.168.0.65: bytes=32 time<lms TTL=255
Ping statistics for 192.168.0.65:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

c. Determine se o PC-A pode se comunicar com o PC-B. Recebes uma resposta?

```
C:\>ping 192.168.0.126

Pinging 192.168.0.126 with 32 bytes of data:

Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Reply from 192.168.0.126: bytes=32 time<lms TTL=127
Reply from 192.168.0.126: bytes=32 time=28ms TTL=127

Ping statistics for 192.168.0.126:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 28ms, Average = 7ms</pre>
C:\>
```

Se você respondeu "não" a qualquer uma das perguntas anteriores, volte e verifique as configurações de endereço IP e máscara de sub-rede e verifique se os gateways padrão foram configurados corretamente no PC-A e PC-B.