[560]

Time or Expence to make, and therefore might be fupplied by new ones, as often as they happen'd to break.

These Moulds seem to have been burnt or baked sufficiently to make them hard, but not so as to render them porous like Bricks, whereby they would have lost their smooth and even Surface; which in these is plainly fo close, that whatever Metal should be formed in them would have no Appearances like the Sand-Holes, by which counterfeit Coins or Medals are usually detected.

London, May 20. 1747.

XXVI. An extract of a letter from William Jones E/q; F. R. S. to Martin Folkes E/q; President of the Royal Society; containing a commodious disposition of equations for exhibiting the relations of goniometrical lines.

THEOREM.

Presented July 4. IN a circle whose radius is r, let there be two arcs, A the greater, a the less, each in the first quadrant; put s, t, s, and v, for the fine, tangent, secant, and versed sine of an arc; s', t', f', the sine, tangent, fecant of the complement, and v', the versed sine of the supplement of that arc; let $z = \frac{1}{2}\overline{A + a}, x = \frac{1}{2}\overline{A - a}$; or if z and x be put for the arcs, it will be A = z + x, a = z - x.

Then.will the terms in any column of the following table, be proportional to their corresponding ones

in any other column.

From

ATABLE of the Relations of Goniometrical Lines.

25,2	s, 2 z s, A + a	22 2Λ+a	s,A+s,a	s, a — s, Λ υΛ—υ a
2 S, X	s,A-s, a	s, a - s, A uA - 1; a	$\begin{array}{c} s. z \times \\ s. \overline{\Lambda - a} \end{array}$	//, 2 × //, A <u>a</u>
28,2	n/2 n n/Λ+n	s, 2 z s, A + a	s;\A+s;\a	s, A s, a
2 s. x	<i>s</i> ;Λ + <i>s</i> ;a	s,A+s,a	//, 2 × //, Λ <u>a</u>	s, 2 x s, A = a
r	s, z	s, 2	υ', x	s, x
1,2	J.	<i>t,</i> z		
1.2	s, z	.f.z-s,z		
S. 7.	l,z	r		
1,2+1,2	1,12	J. 7		
, f. x			r	/,x
/, x			δ, X .	∫,x_s}x

From hence, almost an infinite number of theorems may easily be derived; some of which are the following, given here as examples of the use of the table.

I.
$$s,z \times s,x = \frac{1}{2}r \times s,a-s,A = \frac{1}{2}r \times s,\overline{z-x-s},\overline{z+x} = \frac{s,z}{f,x}rr = \frac{s,x}{f,z}rr$$
.
 $s,z \times s,x = \frac{1}{2}r \times s,a+s,A = \frac{1}{2}r \times s,\overline{z-x+s},\overline{z+x} = \frac{s,z}{f,x}rr = \frac{s,x}{f,z}rr$.

II. If A, B, C, be any three angles;
$$Z = A + B$$
, $X = A - B$, $H = \frac{1}{2}A + B + C$.
Then $\frac{1}{2}r \times \overline{v}$, $C = \overline{v}$, $\frac{1}{2}C + \overline{X} \times s$, $\frac{1}{2}C - \overline{X} = s$, $\frac{1}{2}A + C - B \times s$, $\frac{1}{2}B + C - A = s$, $\overline{H} - B \times s$, $\overline{H} - A$.
And $\frac{1}{2}r \times \overline{v}$, $\overline{Z} - \overline{v}$, $\overline{C} = s$, $\frac{1}{2}\overline{Z} + C \times s$, $\frac{1}{2}\overline{Z} - \overline{C} = s$, $\frac{1}{2}\overline{A} + B + C \times s$, $\frac{1}{2}\overline{A} + B - \overline{C} = s$, $H \times s$, $\overline{H} - \overline{C}$.

III.
$$\frac{ss,z}{ss,z} = \frac{tt,z}{rr} = \frac{rr}{tt,z} = \frac{v,2z}{v,2z} = \frac{t,z}{t,z}$$
; Or $\frac{ss,\frac{1}{2}z}{ss,\frac{1}{2}z} = \frac{tt,\frac{1}{2}z}{rr} = \frac{rr}{tt,\frac{1}{2}z} = \frac{v,z}{v,z} = \frac{t,\frac{1}{2}z}{t,\frac{1}{2}z}$
IV.

IV.
$$\frac{1}{2}r = \frac{ss,z}{v,2z} = \frac{ss,\frac{1}{2}z}{v,z} = \frac{ss,\frac{1}{2}z}{v,2z} = \frac{ss,\frac{1}{2}z}{v,z}$$
; and $s,z = \frac{2ss,\frac{1}{2}z}{t,\frac{1}{2}z} = \frac{2ss,\frac{1}{2}z}{t,\frac{1}{2}z}$.

V.
$$\frac{s,2}{v,z} = \frac{r}{t,\frac{1}{2}z} = \frac{t,\frac{1}{2}z}{r} = \frac{v,z}{s,z}$$
.

VI.
$$\frac{t,z}{t,x} = \frac{s,A+s,a}{s,A-s,a} = \frac{t,x}{t,z}$$
, and $\frac{rr}{t,z\times t,x} = \frac{t,z}{t,x} = \frac{t,x}{t,z} = \frac{s,a+s,A}{s,a-s,A} = \frac{t,z\times t,x}{rr}$.

VII.
$$\frac{s, A}{s, a} = \frac{t, z + t, x}{t, z - t, x} = \frac{s, z + x}{s, z - x}$$
; if z and x are two arcs, then $A = z + x, a = z - x$.

VIII.
$$s,\overline{z+x} = \frac{s,z \times s, x+s, z \times s, x}{r} = \frac{t,z+t,x}{f,z \times f,x}$$
.

IX.
$$s, \overline{z\pm x} = \frac{s, z\times s, x\mp s, z\times s, x}{r} = \frac{rr\mp t, z\times t, x}{\int_{s} z\times \int_{s} x} r$$
.

X.
$$t, \overline{z+x} = \frac{t, z+t, x}{rr+t, z \times t, x} rr$$
; and $t, \overline{z+x} = \frac{rr+t, z \times t, x}{t, z+t, x}$.

XI.
$$f,\overline{z\pm x} = \frac{f,z\times f,x}{rr \mp t,z\times t,x}r$$
; and $f,\overline{z\pm z} = \frac{f,z\times f,x}{t,z\pm t,x}$.

XII. In three equidifferent arcs A, z, a; where z = (z + a) is the mean arc, and (z + a) their common difference; put p = (z + a) their common difference; put p = (z + a) their common difference; put p = (z + a) and p = (z + a) are p = (z + a).

XIII. Let
$$d=v$$
, $A=v$, $a=s$, $a=s$, $A=s$, $A=ss$, $a=\overline{2s}$, $A+d\times d=\overline{2s}$, $a-d\times d$.

Note, When an arc is terminated in the fecond, third, or fourth quadrant, fome of the figns (— and —) of the terms in the preceding theorems, will, by the known rules, become contrary to what they now are.

XIV. Let, A, B, C, &c. be the fines, a, b, c, &c. the co-fines, a', b', c', &c. the tangents, of the arcs, α , β , γ , ∂c . whose number is n; the radius being r_i put S for the product of the n co-fines, S', S'', S''', Cc. for the fum of the products made of every fine, every two, three, &c. fines, by the other (n-1, n-2, n-3, &c.) co-fines, where the co-fine noted by n-n is unity.

And the co-fine of
$$a+\beta+\gamma+\delta$$
, &c. = $S-S''+S''-S'$, &c. $\times \frac{1}{r^{n-1}}$.

XV. Also putting T' for the sum of the tangents of the arcs, α , β , γ , $\phi \epsilon$. T", T", T'v, &c. for the fum of the products of every two, three, four, Cc. tangents; and A=TB = AT'' - T''' $C = BT^{\parallel} - AT^{\parallel} + T^{\vee}$

 $D = CT^{1} - BT^{1} + AT^{1} - T^{1}$ Put $R = \frac{1}{2}$ E = DT'' - CT'' + BT'' - AT'''' + T'''

Then the tangent of $\overline{a+\beta+\gamma+\beta}$, $\varepsilon_c = A+BR+CR^2+DR^3+ER^4$; ε_c .

XVI. Hence, the fine, tangent, and secant, of any arc a, being represented by s, t, f, the co-sine, co-tangent, and co-secant, by s, t, f; those of the arc na are expressed as in the following theorems.

Putting
$$n! = n \cdot \frac{n-1}{2}$$
; $n!! = n! \cdot \frac{n-2}{3}$; $n!! = n!! \cdot \frac{n-3}{4}$; $n!v = n!! \cdot \frac{n-4}{5}$; &c.

Sine of
$$na = nA - n''AP + n''BP - n''CP + n'''DP$$
, &c. $\times \frac{i^n - 1}{r^n - 1}$;

where
$$P = \frac{ss}{is}$$
; $A = s$; $B = AP$; $C = BP$; $D = CP$; $\&c$.

$$P = \frac{ns - \frac{n-1}{2} \cdot \frac{n-2}{3}}{3} AP + \frac{n-3}{4} \cdot \frac{n-4}{5} BP - \frac{n-5}{6} \cdot \frac{n-6}{7} CP \&c \times \frac{s^2 - 1}{r^2 - 1};$$

where A, B, C, &c. stand for the respective preceding terms.

Or =
$$ns + \frac{1+n}{2} \cdot \frac{1-n}{3} A_2 + \frac{3+n}{4} \cdot \frac{3-n}{5} B_2 + \frac{5+n}{6} \cdot \frac{5-n}{7} C_2 + \frac{7+n}{8} \frac{7-n}{9} D_2$$
. So. where $2 = \frac{ss}{rr}$; $A, B, C, \&c$. ft and as before.

Dddd

XVII. Co-fine of
$$na = \frac{1}{1-n}P + n^{m}P^{2} - n^{p}P^{2} + n^{w}P^{3}$$
, $Gc. \times \frac{1}{r^{n}}$, where $P = \frac{n}{11}$

Or $= r + \frac{1}{1-2} \cdot \frac{n}{2} \cdot A + \frac{1}{3-4} \cdot \frac{n}{4} \cdot B + \frac{1}{3-4} \cdot \frac{n}{6} \cdot C + \frac{6+n}{7} \cdot \frac{6-n}{8} \cdot D \cdot C \cdot Gc.$

where $Q = \frac{1}{5}$; and $A, B, C, Gc.$ fland for the respective preceding terms.

Or put $M = \frac{2}{1} \cdot \frac{1}{3} \cdot \frac{n}{4} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{3$

 $= \frac{1}{n-n! N_1-n! N^2-n^2 N^2-n^2 N_1 \otimes c} \times M; \text{ where } N = \frac{n!}{r!} M = \frac{r^{n-2}}{(t-1)!}$

XX.

Or

XX. Let c be the chord of an arc (a) of the circumference of a circle, whose diameter is d. Put $N = \frac{cc}{dd}$.

The chord of $na=nc+\frac{1+n}{2}\cdot\frac{1-n}{3}AN+\frac{3+n}{4}\cdot\frac{3-n}{5}BN+\frac{5+n}{6}\cdot\frac{5-n}{7}CN+\frac{7+n}{8}\cdot\frac{7-n}{9}DN, \&c.$ where A, B, C, &c. fland for the respective preceding terms.

As the preceding theorems are easily deduced from the first, so the following are most readily seen to be the immediate consequences of these; and all depending upon no other principles than what are generally made use of in common computations.

XXI. Putting s, s, t, t, f, f, for the fine, co-fine, tangent, co-tangent, fecant, co-fecant, of an arc (a), and v its verfed fine; let $q' = \frac{1}{2}$; $q'' = \frac{1}{3}q'$; $q''' = \frac{1}{4}q''$; $q'' = \frac{1}{5}q'''$; $q'' = \frac{1}{6}q'''$; $\mathcal{C}c. N = \frac{\sigma a}{rr}$.

Then
$$s = \overline{1 - q''N + q'^{\vee}N^2 - q'^{\vee}N^3 + q''''N^4 + q'^{\times}N^5}$$
, &c. × a.

$$= a - q''a^3r^{-2} + q'^{\vee}a^5r^{-4} - q'^{\vee}a^7r^{-6} + q''''a^9r^{-8}$$
, &c.

$$= a - \frac{1}{2 \cdot 3}AN + \frac{1}{4 \cdot 5}BN - \frac{1}{6 \cdot 7}CN + \frac{1}{8 \cdot 9}DN$$
, &c. where A,B,C, &c.

stand for the respective preceding terms.

And
$$s = r - q'a^2r^{-1} + q'''a^4r^{-3} - q^{v}a^{6}r^{-5} + q^{v''}a^{8}r^{-7}$$
, &c.

$$= \overline{1 - q'N + q'''N^2 - q^{v}N^3 + q^{v''}N^4 - q^{v}N^5}, &c. \times r.$$

$$= r - \frac{1}{1.2}a^2r^{-1} + \frac{1}{3.4}AN - \frac{1}{5.6}BN + \frac{1}{7.8}CN, &c. A,B,C, &c. as before.$$

XXII. Also
$$v = q'a^2r^{-1} - q''a^4r^{-3} + q''a^6r^{-5} - q'''a^8r^{-7}$$
, &c.

$$= \frac{1}{1.2}a^2r^{-1} - \frac{1}{3.4}AN - \frac{1}{5.6}BN - \frac{1}{7.8}CN - \frac{1}{9.10}DN$$
, &c.

$$= \frac{1}{1.2}N - \frac{1}{3.4}AN - \frac{1}{5.9}BN - \frac{1}{7.8}CN$$
, &c. × r. A,B,C, &c. as before.

XXIII. Let
$$A = +q' - q''$$
 And $A = -A$

$$B = -q''' + q'' + Aq' \qquad B' = -B - AA'$$

$$C = +q'' - q'' + Bq' - Aq''' \qquad C' = -C - BA' - AB'$$

$$D = -q''' + q'''' + Cq' - Bq''' + Aq'' \qquad D = -D - CA' - BB' - AC'.$$

$$\mathcal{E}_{c}.$$

Tangent $t = a + Aa^3r^{-2} + Ba^5r^{-4} + Ca^7r^{-6} + Da^9r^{-8}$, &c.

Or
$$= \overline{1 + AN + BN^2 - CN^3 + DN^4 + EN^5}, \mathcal{G}_c. \times a.$$

Co-tangent $t = a^{-1}r^2 + Aa + B'a^3r^{-2} + C'a^5r^{-4} + D'a^7r^{-6}$, &c.

Or
$$= \overline{rr + Aa^2 + B'Na^2 + CN^2a^2 + D'N^3a^2}, \, \mathcal{C}c. \, \gamma_a^{\frac{1}{a}}.$$

XXIV

XXIV. Alfolet
$$\alpha = +q'$$
 And $\alpha' = +q''$

$$\beta = -q''' + \alpha q'$$

$$\gamma = +q'' - \alpha q''' + \beta q'$$

$$\beta' = -q''' - \alpha' q'' + \beta' q''$$

$$\beta' = -q''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q'''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q''' + \alpha' q'' - \beta' q'' + \beta' q''$$

$$\beta' = -q''' + \alpha' q'' - \beta' q'' + \beta' q'' - \beta' q'' + \beta' q'' - \beta' q'' + \beta' q'' + \beta' q'' - \beta' q'' + \beta' q'' + \beta' q'' + \beta' q'' - \beta' q'' + \beta' q'' + \beta' q'' - \beta' q'' - \beta' q'' + \beta' q'' - \beta' q'' + \beta' q'' - \beta' q$$

Secant $f = r + aa^2r^{-1} + \beta a^4r^{-3} + \gamma a^6r^{-5} + \delta a^8r^{-7}$, &c.

Or = $\overline{1 + \alpha N + \beta N^2 + \gamma N^3 + \beta N^4}$, &c. $\times r$.

Co-fecant
$$\hat{f} = a^{-1}r^2 + a'a + \beta'a^3r^{-2} + \gamma'a^5r^{-4} + \delta'a^7r^{-6}$$
, $\mathcal{C}c$.

Or
$$= \overline{rr + a'aa + \beta'Naa + \gamma'N^2aa + \delta'N^3aa}, \mathcal{C}c. \times \frac{1}{a}. \text{ where } N = \frac{aa}{a}$$

XXV. Putting $p' = \frac{1}{2}$; $p'' = \frac{3}{4}p$; $p''' = \frac{5}{6}p''$; $p'' = \frac{7}{8}p'''$; $p'' = \frac{9}{16}p'''$; $\mathcal{C}c.N = \frac{n}{n}$ Then arc $a = 1 + \frac{1}{2}p'N + \frac{1}{6}p''N^2 + \frac{1}{6}p'''N^3 + \frac{1}{6}p'''N^4$, $\mathcal{C}c. \times s$.

Or = $s + \frac{1}{3}p'AN + \frac{1}{3}p''BN + \frac{1}{3}p'''CN + \frac{1}{3}p''DN$, &c.

Or $= s + \frac{7.7}{2.3} AN + \frac{3.3}{4.5} BN + \frac{5.5}{6.7} CN + \frac{7.7}{8.9} DN$, &c. where A, B, C, &c. fland for the respective preceding terms.

XXVI. If v is the versed sine of an arc a, diameter being d, $M = \frac{v}{d}$, $R = \sqrt{dv}$.

Then arc $a = 1 + \frac{1.1}{2.3} M + \frac{3.3}{4.5} AM + \frac{3.3}{6.7} BM + \frac{7.7}{8.9} CM$, &c. $\times R$; A, B, C, &c. are as before.

XXVII. And putting $N = \frac{n}{r}$, A = t, B = AN, C = BN, D = CN, &c.

Then are $a = t - \frac{1}{3}AN + \frac{1}{5}BN - \frac{1}{7}CN + \frac{1}{9}DN + \frac{1}{11}EN$, &c.

Or = $\frac{1 - \frac{1}{3}N + \frac{1}{5}N^2 - \frac{1}{7}N^3 + \frac{1}{9}N^4 + \frac{1}{11}N^5}{8c. \times t.}$

XXVIII. Also, if c is the chord of an arc (a); and $N = \frac{cc}{dd}$

Then are $a=c+\frac{1.7}{2.3}AN+\frac{3.3}{4.5}BN+\frac{5.7}{6.7}CN+\frac{7.7}{6.7}DN$, &c. where A, B, C_2 &c. fland for the respective preceding terms.