Er11438

Report Do	Form Approved OMB No. 0704-0188					
reviewing instructions, searching reviewing the collection of inform information, including suggestion Operations and Reports, 1215 Jef	existing data sources, gath nation. Send comments reg as for reducing this burden ferson Davis Highway, Su ovision of law, no person s	hering and magarding this be, to Washingt ite 1204, Arlishall be subje	aintainin urden e on Head ington V ct to a p	I hour per response, including the time for ng the data needed, and completing and stimate or any other aspect of this collection of dquarters Services, Directorate for Information VA 22202-4302. Respondents should be aware benalty for failing to comply with a collection		
1. REPORT DATE 12 MAR 2003	2. REPORT TYPE N/A		3. Dz	ATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Mean Squared Error Performance Prediction of Maximum-Likelihood signal Parameter Estimation				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION Defense Advanced Research	A)	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABIL Approved for public rele		ılimited				
13. SUPPLEMENTARY NOTES Also see: ADM001520, T	The original docum	ent conta	ins co	lor images.		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. 1				3. 19a. NAME OF RESPONSIBLE		

a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	LIMITATION OF ABSTRACT UU	OF	PERSON Patricia Mawby, EM 1438 PHONE:(703) 767-9038 EMAIL:pmawby@dtic.mil
---------------------------	-----------------------------	------------------------------	------------------------------------	----	---

Standard
Form 298
(Rev.
8-98)
Prescribed
by ANSI
Std
Z39-18

pwd: cannot determine current directory!

Prediction of Maximum-Likelihood Mean Squared Error Performance Signal Parameter Estimation

Christ D. Richmond

Session III: Adaptive Detection and Estimation Adaptive Senor Array Processing Workshop

12th March 2003

*This work was sponsored by DARPA under Air Force contract F19628-95-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Outline

- Problem
- Previous Work
- 2002
- Numerica Results
- Concusions

Goals of Analysis

Problem:

- Likelihood (ML) signal parameter estimation unknown Mean Squared Error (MSE) performance of Maximum-
- 1. Colored Noise
- Finite Number of Colored Noise Only Training Samples

Goal:

- Develop robust theory for prediction of ML MSE
- **Proposed Method:**
- Use Interval Error based method proposed by Van Trees 1968
- Must derive/approximate probability of "interval error"

Typical Composite MSE Performance

- Three definitive regions of Signal-to-Noise-Ratio (SNR)
 - No Information, Threshold, and Asymptotic (CRB)
- Recall MSE = Estimator Variance + Estimator Bias

Previous Work

- K. Bell, Ph. D. George Mason University, 1995
- K. Bell, Y. Steinberg, Y. Ephraim, H. Van Trees, IEEE T-SP March 1997
- 4000 S. Pawlukiewie
- Colored Noise Allowed
- Colored Noise Only Finite training effects
- **Exact two point error probabilities used**

F. Athley, Territory

Ziv-Zakai Bounds

Method of Interval Error

- All previous work considered non-adaptive and white noise only case
- Error probabilities approximated via Chernoff Bounds

Outline

- Theory
- Maximum-Likelihood Estimation (MLE)
- Interval Error Based Method of MSE Prediction
- Numerical Results
- Conclusions

Signal Parameter Estimation **Maximum-Likelihood**

$$\pi^{-N} |\mathbf{R}|^{-1} \exp\left\{-\left[\mathbf{x} - S\mathbf{v}(\theta)\right]^H \mathbf{R}^{-1} \left[\mathbf{x} - S\mathbf{v}(\theta)\right]\right\}$$

$$\theta_{ML} = \operatorname{argmax} t_{MF}(\theta)$$

$$t_{\Lambda F}(\theta) = \frac{|\mathbf{v}^{H}(\theta)\mathbf{R}^{-1}\mathbf{x}|^{2}}{\mathbf{v}^{H}(\theta)\mathbf{R}^{-1}\mathbf{v}(\theta)}$$

Matched Filter

Clairvoyant

Data Model:
$$\pi^{-N(L+1)}|\mathbf{R}|^{-(L+1)}\exp\left\{-\left[\mathbf{x}-S\mathbf{v}(\theta)\right]^H\mathbf{R}^{-1}\left[\mathbf{x}-S\mathbf{v}(\theta)\right]\right]-\mathrm{tr}\left(\mathbf{R}^{-1}\mathbf{x}\mathbf{x}^H\right)\right\}$$

$$\mathbf{\hat{R}} = \frac{1}{1} \times \mathbf{\hat{X}}^{L}$$

$$heta_{_{M\!L}} = \operatorname{argmax} t_{_{A\!M\!F}}(heta) \;\;\; t_{_{A\!M\!F}}(heta)$$

ML Estimator:
$$\theta_{ML} = \operatorname{argmax} t_{AMF}(\theta) \quad t_{AMF}(\theta) = \frac{\mathbf{v}^H(\theta) \hat{\mathbf{R}}^{-1} \mathbf{x}|^2}{\mathbf{v}^H(\theta) \hat{\mathbf{R}}^{-1} \mathbf{v}(\theta)} \quad \hat{\mathbf{R}} = \frac{1}{L} \mathbf{x} \mathbf{x}^H \quad Adaptive$$

- Complex Gaussian data model: All snapshots Nx
- Arbitrary N x N Colored Covariance
- Deterministic Signal ("Conditional")
- Colored noise only training samples available
 - Single scalar signal parameter
- Joint signal parameter estimation not considered

Method of ML MSE Prediction: **Based on Interval Errors**

· In general MSE can be written as the sum of two terms

$$E\left\{\left(\hat{\theta}-\theta\right)^{2}\right\} = Pr(\text{No Interval Error})E\left\{\left(\hat{\theta}-\theta\right)^{2}\right\}$$
No Interval Error

MSE for Deterministic Signal Parameters

+Pr(Interval Error) $E \left| \left(\hat{\theta} - \theta \right)^2 \right|$ Interval Error

Challenge is accurate calculation of error probabilities given by

$$p(\hat{\theta} = \theta_n | \theta_k) + 2$$

Union Bound (UB) Approximation: Interval Error Probabilities

- Recall the ML approach: $\theta = \operatorname{argmax} t(\theta)$
- The probability of interval error is bounded by the relation

$$p(\hat{\theta} = \theta_n | \theta_k) = \Pr\left\{ \bigcup_{k=1}^K \left[t(\theta_n) > t(\theta_k) | \theta = \theta_k \right] \right\} \leq \sum_{k=1}^K \Pr\left[t(\theta_n) > t(\theta_k) | \theta = \theta_k \right]$$

- UB is a useful tool for computation of error probabilities in Digital Communication Schemes
- Approximation relies on two point error probabilities
- UB often over estimates error in "No Information" region of **MSE** curve

the Matched Filter: R known **Two Point Probabilities for**

• Let array responses for two points be given by $V = [v(\theta_n), v(\theta_k)]$

Define the following matrices

Defining the vector

$$\mathbf{m} = \begin{vmatrix} m_1 \\ m_2 \end{vmatrix} = \mathbf{Q}_{VX} \mathbf{R}_{VX}^{-1/2} \mathbf{W}^H \mathbf{v} (\theta_k)$$

The exact desired two point probabilities are given by

$$\Pr[\mathcal{L}_{MF}(\theta_{1}) > \mathcal{L}_{MF}(\theta_{1}|\theta = \theta_{1} = \Pr[\mathcal{L}_{1}(m_{1}|x) = \frac{1}{2}] \leq \frac{1}{2} \frac{\mathcal{L}_{VX,2}}{\mathcal{L}_{VX,1}}]$$

Expressible in terms of Marcum Q-function

the Adaptive Matched Filter: R unknown **Two Point Probabilities for**

• Let $t_{AMF}(heta_n) = \left| y_{AMF,1} \right|^2$; the desired probability can be written $t_{AMF}(heta_k) = \left| y_{AMF,2} \right|^2$; the desired probability can be written

$$\Pr \left[t_{_{AMF}}(\theta_{_{n}}) > t_{_{AMF}}(\theta_{_{k}}) \middle| \theta = \theta_{_{k}} \right] = \Pr \left\{ \left. \mathbf{y}_{_{AMF}}^{H} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \! \mathbf{y}_{_{AMF}} < 0 \right\}$$

• It can be shown that AMF outputs can be written equal in distribution
$$\mathbf{y}_{AMF} = \begin{bmatrix} y_{AMF,1} \end{bmatrix}_a^d \begin{bmatrix} \sqrt{a_{11}} & a_{12} \\ \sqrt{a_{22}} & \sqrt{a_{22}} \end{bmatrix} \begin{pmatrix} \mathbf{v}^H \mathbf{R}^{-1} \mathbf{v} \end{pmatrix}^{-1/2} \mathbf{x}_{AMF}$$
 where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \sim CW \left(L - N + 2, \mathbf{V}^H \mathbf{R}^{-1} \mathbf{V} \right) \text{ and } \mathbf{X}_{AMF} \sim CN_{2x1} \left(S \begin{bmatrix} \sqrt{\mathbf{V}(\theta_n)} \mathbf{R}^{-1} \mathbf{V}(\theta_n) \end{bmatrix}_{j=1}^{-1} \cdot \frac{1}{\beta_{L-N+3,N-2}} \right)$$

· The necessary two point probabilities can be thus obtained

Outline

- Introduction
- Theory Numerical Results
 - Conclusions

White Noise Example: R known

- N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs
- 0dB white noise

Colored Noise Example: R known

- N=18 element ULA, ($\lambda/2.25$) element spacing, broadside at 90 degs, endfire at 0 and 180 degs
 - 0dB white noise plus 30dB Jammer at 75 degs

White Noise Example: R unknown

N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs

odB white noise

Adaptive Training: L = 1.5N, 2N, and 3N

Colored Noise Example: R unknown

N=18 element ULA, (λ/2.25) element spacing, broadside at 90 degs, endfire at 0 and 180 degs endfire at 0 and 180 degs 0dB white noise plus 30dB Jammer at 75 degs

Adaptive Training: L = 1.5N, 2N, and 3N

Conclusions

Interval error method represents a viable and numerically efficient technique

Theory and simulation have very good match

UB overestimates MSE, however, in "No Information" region

Two point probabilities have been computed in closed form

Colored Noise

- Adaptive Finite Training Effects

Established a the notion of SINR Loss for the parameter estimation problem

Future Work

- Explore tighter bounds on probability of interval errors than that given by the Union Bound
- Expurgating terms of Union Bound, for example
- Extend to Stochastic / Unconditional signal models
- Generalize to vector signal parameters
- Comparisons with Bayesian Bound predictions
- Ziv-Zakai, Weiss-Weinstein, etc.

Backups

999999-19 XYZ 4/28/2003

Method of ML MSE Prediction: Based on Interval Errors

In general MSE can be written as the sum of two terms

$$E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big\} = \Pr(\text{No Interval Error}) E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big| \text{No Interval Error}\Big\} + \Pr(\text{Interval Error}) E\Big\{\Big(\hat{\theta} - \theta\Big)^2\Big| \text{Interval Error}\Big\}$$

Deterministic Signal Parameters

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta_k \Big\} = \Pr(\text{No Interval Error} | \theta_k) \text{ CRB}(\theta_k) + \sum_{n=1 \atop n=1}^K P(\hat{\theta} = \theta_n | \theta_k) (\theta_n - \theta_k)^2$$

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta \Big\} = \int_{\hat{\Theta}} (\hat{\theta} - \theta)^2 P(\hat{\theta} | \theta) d\theta + \int_{\hat{\Theta}} (\hat{\theta} - \theta)^2 P(\hat{\theta} | \theta) d\theta$$

$$E\Big\{ (\hat{\theta} - \theta)^2 \Big| \theta \Big\} = \int_{\hat{\Theta}} (\hat{\theta} - \theta)^2 P(\hat{\theta} | \theta) d\theta + \int_{\hat{\Theta}} (\hat{\theta} - \theta)^2 P(\hat{\theta} | \theta) d\theta$$

$$E\Big\{\Big(\hat{\theta}-\theta\Big)^2\Big|\theta\Big\} = \int\limits_{\hat{\Theta}:MAINLOBE}\Big(\hat{\theta}-\theta\Big)^2p\Big(\hat{\theta}\,|\,\theta\Big)d\hat{\theta} + \int\limits_{\hat{\Theta}:AMBIGUITIES}\Big(\hat{\theta}-\theta\Big)^2p\Big(\hat{\theta}\,|\,\theta\Big)d\hat{\theta}$$

Two Point Probabilities for the Matched Filter: R known

· These probabilities are expressible in terms of the Marcum Q-function:

$$\Pr\left[t_{AT}(\theta_{n}) > t_{AT}(\theta_{k}) \mid \theta = \theta_{k}\right] = \Pr\left[\frac{\chi^{2}(m_{1}|^{2})}{\chi^{2}(m_{2}|^{2})} \leq \frac{-\lambda_{YX,2}}{\lambda_{YX,1}}\right] = \frac{\lambda_{YX,2}}{\left[\frac{\lambda_{YX,2}}{\lambda_{YX,2}}\right]} + \left[\frac{\lambda_{YX,2}}{\left[\frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,1}}\right]}{\left[\frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,1}}\right]} + \left[\frac{2|m_{1}|^{2}\lambda_{YX,2}}{\left[\frac{2|m_{1}|^{2}\lambda_{YX,2}}{\lambda_{YX,1}}\right]}\right]$$

Re

Return