

Maestría en Ciencias Naturales y Matemáticas

Clase 8 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

17 de julio de 2023

Topología en \mathbb{R}^n - Conjuntos compactos.

Definición (tipos de cubrimiento y compacidad).

Sea $X \subseteq \mathbb{R}^n$. Un cubrimiento de X es una colección de subconjuntos $\{U_\alpha\}_{\alpha \in J}$ de \mathbb{R}^n tal que

$$X \subseteq \bigcup_{\alpha \in J} U_{\alpha}$$

Además diremos que:

- (\checkmark) Si $I \subseteq J$ y $\{U_{\alpha}\}_{\alpha \in I}$ es también un cubrimiento de X, entonces diremos que $\{U_{\alpha}\}_{\alpha \in I}$ es un subcubriento de $\{U_{\alpha}\}_{\alpha \in J}$ que cubre a X.
- (\checkmark) Si $\{U_a\}_{a\in I}$ es un subcubriento de $\{U_a\}_{a\in J}$ que cubre a X con finitos elementos, entonces diremos que $\{U_a\}_{a\in I}$ es un subcubrimiento finito de $\{U_a\}_{a\in J}$ que cubre a X.
- (\checkmark) En el caso de que para cada $\alpha \in J$ el conjunto U_{α} es abierto en \mathbb{R}^n , llamaremos $\{U_{\alpha}\}_{\alpha \in J}$ un cubrimiento abierto de X.
- (\checkmark) Diremos que X es un conjunto compacto, si para todo cubrimiento abierto $\{U_a\}_{a\in J}$ de X, existe un subcubrimiento finito $\{U_{a_1},\ldots,U_{a_m}\}$ que cubre a X. Es decir que

$$\begin{cases} X \subseteq \bigcup_{\alpha \in J} U_{\alpha}, \\ \\ U_{\alpha} \text{ es abierto para cada } \alpha \in J \end{cases} \Rightarrow \text{ Existe } \{U_{\alpha_{1}}, \dots, U_{\alpha_{m}}\} \subseteq \{U_{\alpha}\}_{\alpha \in J} \text{ con } X \subseteq \bigcup_{i=1}^{m} U_{\alpha_{i}}.$$

Teorema (Heine - Borel).

El intervalo cerrado [a, b] es compacto.

Demostración:

Si $U = \{U_{\alpha}\}_{\alpha \in I}$ es un cubrimiento abierto de [a, b], entonces definimos el conjunto A como:

 $A = \{x \in [a, b] : [a, x] \text{ es cubierto por un número finito de elementos en } U\}$.

Entonces es fácil notar que

- (\checkmark) $A \neq \emptyset$, ya que $a \in A$.
- (\checkmark) A es acotado superiormente por b.

Así A tiene una mínima cota superior (supremo) que denotaremos por c. Para finalizar esta prueba, vamos a verificar las siguientes cosas:

- (1) Si c = Supremo(A), entonces $c \in A$.
- (2) c = b.

De esta manera, por (1), (2) y la definición de A tendremos que [a,b] es compacto.

Prueba de (1): Como $c \in [a,b] \subseteq \bigcup U_{\alpha}$, entonces existe $U_{\beta} \in \{U_{\alpha}\}_{\alpha \in J}$ tal que $c \in U_{\beta}$. Así, existe $\varepsilon > 0$ tal que $c \in B(c; \varepsilon) = (c - \varepsilon, c + \varepsilon) \subseteq U_B$. De esto podemos notar que

- (\checkmark) c > a, ya que $(c \varepsilon, c + \varepsilon) \subseteq U_{\beta}$.
- (\checkmark) Sin perdida de generalidad, podemos suponer que $a \le c \varepsilon$ y de esta manera, por caracterización del supremo existe $x \in A$ tal que $c \varepsilon < x$. Por lo tanto, existe $\{U_{\alpha_1}, \ldots, U_{\alpha_m}\} \subseteq \{U_{\alpha_1}\}_{\alpha \in J}$ tal que $[0,x] \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_m}$ y así

$$[a,c] = [a,x] \cup [x,c] \subseteq [a,x] \cup (c-\varepsilon,c+\varepsilon) = [a,c+\varepsilon) \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_m} \cup U_{\beta}$$

lo cual muestra que $c \in A$.

Prueba de (2): Debido a que $[a,c+\varepsilon)\subseteq U_{\alpha_1}\cup\cdots\cup U_{\alpha_m}\cup U_{\beta}$, entonces de la definición de A y c, es necesario que c=b.

Definición (conjunto acotado en \mathbb{R}^n).

Sea A un conjunto en \mathbb{R}^n . Decimos que A es un conjunto acotado en \mathbb{R}^n , si existe $a \in A$ y $\varepsilon > 0$ tal que:

$$A \subseteq B(a; \varepsilon)$$

Nota (definición anterior).

Podemos interpretar a un conjunto acotado en \mathbb{R}^n , como un conjunto que "no se extiende infinitamente" y por este mismo motivo lo podemos "atrapar" en una bola abierta con un radio lo suficientemente grande.

Lema (equivalencia de conjuntos acotados).

Sea A un conjunto en \mathbb{R}^n , entonces

$$A \text{ es acotado en } \mathbb{R}^n \iff \begin{cases} \text{Existe } M > 0 \text{ tal que para todo} \\ \\ x \in A \text{ se tiene que } \|x\| < M. \end{cases}$$

Demostración:

" \Rightarrow " Supongamos que A es acotado en \mathbb{R}^n . Entonces existen $\varepsilon > 0$ y $a \in A$ tales que $A \subseteq B(a; \varepsilon)$. Es decir que para cada $x \in A$, tenemos que

$$||x-a|| < \varepsilon$$

De esta forma, para cada $x \in A$ podemos decir que

$$||x|| = ||(x-a) + a|| \le ||x-a|| + ||a|| < \varepsilon + ||a||.$$

De esta manera al tomar $M := \varepsilon + ||a||$, obtenemos que ||x|| < M para cada $x \in A$.

" \leftarrow " Supongamos que existe M > 0 tal que para todo $x \in A$ se tiene que ||x|| < M. Entonces dado $a \in A$ un punto fijo, tenemos que para todo $x \in A$

$$||x-a|| \le ||x|| + ||a|| < M + ||a||$$

Así, al tomar $\varepsilon := M + ||a||$ tenemos que para todo $x \in A$

$$||x-a|| < \varepsilon$$

Lo cual prueba que $A \subseteq B(a; \varepsilon)$ y así A es acotado en \mathbb{R}^n .

Lema (\mathbb{R}^n es un espacio topológico Hausdorff).

Dados $a, b \in \mathbb{R}^n$ con $a \neq b$, tenemos que existe $\delta > 0$ tal que $B(a; \delta) \cap B(b; \delta) = \emptyset$.

Demostración:

Sea $\delta = \frac{\|a-b\|}{2}$, entonces $B(a;\delta) \cap B(b;\delta) = \emptyset$, ya que de lo contrario existiría $c \in B(a;\delta) \cap B(b;\delta)$ y así

$$||a-b|| = ||(a-c)+(c-b)|| \le ||a-c|| + ||c-b|| < \frac{||a-b||}{2} + \frac{||a-b||}{2} = ||a-b||$$

lo muestra que ||a-b|| < ||a-b||, pero esto es imposible.

Mg: Julián Uribe Castañeda (UPB)

Maestría en Ciencias Naturales y Matemátic

Teorema (compacto en $\mathbb{R}^n \Rightarrow cerrado y acotado)$.

Sea A un subconjunto de \mathbb{R}^n , entonces

A es compacto \Rightarrow A es cerrado y acotado en \mathbb{R}^n .

Demostración:

Supongamos que A es compacto, entonces deseamos probar las siguientes cosas:

- (1) A es acotado en \mathbb{R}^n .
- (2) A es cerrado.

Prueba de (1): Consideremos la colección de conjuntos $\{B(O; m) : m \in \mathbb{N}\}$. Entonces esta colección es un cubrimiento abierto de R^n (en particular es un cubrimiento abierto de A). Entonces por la compacidad de A, existen $m_1, \ldots, m_k \in \mathbb{N}$ tales que:

$$A\subseteq \bigcup_{i=1}^k B(O;m_i)$$

Ahora, si tomamos $M = \max\{m_1, ..., m_k\}$, tenemos que

$$A\subseteq \bigcup_{i=1}^k B(O;m_i)=B(O;M)$$

lo cual prueba que A es un conjunto acotado.

Prueba de (2): Para verificar que A es cerrado, se probará que A^c es abierto. Dado $a \in A^c$ fijo, tenemos que para todo $x \in A$, existe $\delta_x > 0$ tal que $B(a; \delta_x) \cap B(x; \delta_x) = \emptyset$ (lema previo). Por otro lado, es fácil notar que

$$A\subseteq \bigcup_{x\in A}B(x;\delta_x)$$

y por compacidad de A, tenemos que existe $x_1, \ldots, x_m \in A$ tal que

$$A \subseteq B(x_1; \delta_{x_1}) \cup \cdots \cup B(x_m; \delta_{x_m}).$$

De esta manera, al tomar $\varepsilon:=\min\{\delta_{x_1},\ldots,\delta_{x_m}\}$, se tiene que

- $(\checkmark) B(a;\varepsilon) \cap B(x_i;\delta_{x_i}) = \emptyset \text{ para } 1 \le i \le m.$
- $(\checkmark) B(a;\varepsilon) \cap [B(x_1;\delta_{x_1}) \cup \cdots \cup B(x_m;\delta_{x_m})] = \emptyset.$
- $(\checkmark) \ B(a;\varepsilon) \cap A \subseteq B(a;\varepsilon) \cap \big[B(x_1;\delta_{x_1}) \cup \cdots \cup B(x_m;\delta_{x_m})\big] = \emptyset, \text{ lo cual implica que } B(a;\varepsilon) \cap A = \emptyset.$

De esta manera, tenemos que $B(a;\varepsilon)\subseteq A^c$ y como a es un punto arbitrario de A^c , concluimos que A^c es abierto.

Recordar (caracterización de supremo e infimo).

Sea A un conjunto no vacío de números reales, entonces:

(1) Si A es un conjunto acotado superiormente, tenemos que

$$L = \operatorname{supremo}(A) \iff \begin{cases} \operatorname{para\ todo\ } \varepsilon > 0 \text{\ existe\ } a \in A \text{\ tal\ que} \\ \\ \star \ x \leq L \text{\ para\ todo\ } x \in A, \\ \\ \star \ L - \varepsilon < a. \end{cases}$$

(2) Si A es un conjunto acotado inferiormente, tenemos que

$$M = \mathsf{infimo}(A) \iff \begin{cases} \mathsf{para} \ \mathsf{todo} \ \varepsilon > 0 \ \mathsf{existe} \ b \in A \ \mathsf{tal} \ \mathsf{que} \\ \star \ M \le x \ \mathsf{para} \ \mathsf{todo} \ x \in A, \\ \star \ b < M + \varepsilon. \end{cases}$$

Nota (siguiente lema).

El siguiente lema, muestra que el supremo y el infimo de un conjunto lo podemos interpretar en términos de sucesiones. La demostración de este lema se deja como ejercicio al lector.

Lema (caracterización del supremo e infimo).

(1) Si A es un conjunto acotado superiormente, entonces

$$L = \operatorname{supremo}(A) \iff \begin{cases} \operatorname{Existe} \left\{ x_n \right\}_{n=1}^{+\infty} \subseteq A & \text{tal que} \\ \\ \star & x \le L & \text{para todo } x \in A, \\ \star & \lim_{n \to +\infty} x_n = L. \end{cases}$$

(2) Si A es un conjunto acotado inferiormente, entonces

$$M = \inf \mathsf{mo}(A) \iff \begin{cases} \mathsf{Existe} \ \{x_n\}_{n=1}^{+\infty} \subseteq A \ \mathsf{tal} \ \mathsf{que} \\ \star \ M \le x \ \mathsf{para} \ \mathsf{todo} \ x \in A, \\ \star \ \lim_{n \to +\infty} x_n = L. \end{cases}$$

Lema (caracterización de la clausura en términos de sucesiones).

Sea $A \subseteq \mathbb{R}^n$, entonces:

$$a \in \overline{A} \iff \text{existe una sucesión } \{x_n\}_{n=1}^{+\infty} \subseteq A \quad \text{tal que } \lim_{n \to +\infty} x_n = a.$$

Demostración:

- " \Rightarrow " Supongamos que $a \in \overline{A}$, entonces para todo $\varepsilon > 0$ tenemos que $B(a;\varepsilon) \cap A \neq \emptyset$. En particular, tenemos que $B\left(a;\frac{1}{n}\right) \cap A \neq \emptyset$ para todo $n \in \mathbb{N}$. Así, para cada $n \in \mathbb{N}$, existe $x_n \in B\left(a;\frac{1}{n}\right) \cap A$ y es sencillo notar que
- $(\checkmark) \{x_n\}_{n=1}^{+\infty} \subseteq A$
- (\checkmark) $\lim_{n\to+\infty} x_n = a$.
- " \Leftarrow " Supongamos que existe $\{x_n\}_{n=1}^{+\infty} \subseteq A$ tal que $\lim_{n \to +\infty} x_n = a$. Entonces para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que

$$x_n \in B(a; \varepsilon) \cap A$$

para todo $n \ge N$. En particular $B(a; \varepsilon) \cap A \ne \emptyset$ y así $a \in \overline{A}$.

Teorema (existencia de valores extremos en conjuntos compactos en \mathbb{R}).

Sean $A \subseteq \mathbb{R}$ un conjunto compacto, L = supremo(A) y M = infimo(A), entonces $L, M \in A$.

Demostración:

Como A es compacto, entonces por teorema anterior tenemos que A es acotado y así L= supremo(A) y M= infimo(A) son números reales fijos. Además, por el lema anterior existen sucesiones $\{x_n\}_{n=1}^{+\infty}\subseteq A$, $\{y_n\}_{n=1}^{+\infty}\subseteq A$ tales que

$$\lim_{n \to +\infty} x_n = L \text{ y } \lim_{n \to +\infty} y_n = M.$$

Por otro lado, como A es compacto, entonces por teorema anterior A es cerrado y así $\overline{A} = A$. De esta manera, el lema anterior nos dice que $L, M \in \overline{A} = A$.

Teorema (las funciones continuas envian compactos en compactos).

Sea $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ una función que satisface las siguientes condiciones:

- (\checkmark) f es continua en A
- (\checkmark) A es compacto.

Entonces $f(A) = \{y \in \mathbb{R}^m : y = f(x) \text{ para algún } x \in A\}$ es compacto en \mathbb{R}^m .

Demostración:

Sea $\{U_{\alpha}\}_{\alpha\in J}$ una colección de conjuntos abiertos en \mathbb{R}^m tal que $f(A)\subseteq\bigcup_{\alpha\in J}U_{\alpha}$. Entonces

por la continuidad de f tenemos que

$$f^{-1}(U_{\alpha})$$
 es abierto en A

para cada $\alpha \in J$. Así, existe una colección de abiertos $\{V_\alpha\}_{\alpha \in J}$ en \mathbb{R}^n tales que

$$f^{-1}(U_{\alpha}) = V_{\alpha} \cap A$$

para cada $j \in J$. Además es fácil notar que $\{f^{-1}(U_{\alpha})\}_{\alpha \in J}$ es un cubrimiento de A. En particular $\{V_{\alpha}\}_{\alpha \in J}$ es un cubrimiento abierto de A y por compacidad de A existen $\alpha_1,\ldots,\alpha_k \in J$ (finitos) tales que

$$A \subseteq V_{\alpha_1} \cup \cdots \cup V_{\alpha_k}$$

De esta manera $A = [V_{a_1} \cap A] \cup \cdots \cup [V_{a_k} \cap A] = f^{-1}(U_{a_1}) \cup \cdots \cup f^{-1}(U_{a_k})$ y por tanto

$$f(A) = f(f^{-1}(U_{\alpha_1}) \cup \dots \cup f^{-1}(U_{\alpha_k})) = f(f^{-1}(U_{\alpha_1})) \cup \dots \cup f(f^{-1}(U_{\alpha_k})) \subseteq U_{\alpha_1} \cup \dots \cup U_{\alpha_k}$$

lo cual prueba que $f(A) \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$ y así f(A) es compacto.

4D> 4A> 4B> 4B> B 900

Corolario (valor extremo).

Sea $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}$ una función continua sobre A que es compacto. Si $L=\operatorname{supremo}(f(A))$ y $M=\operatorname{infimo}(f(A))$, entonces $L,M\in f(A)$.

Demostración:

Se tiene de los dos teoremas previos.

Observación (corolario anterior).

El teorema anterior nos dice que dado un conjunto compacto $A \subseteq \mathbb{R}^n$ y una función continua $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, entonces existen $a, b \in A$ tales que

$$f(a) \le f(x) \le f(b)$$

para todo $x \in A$

Problemas.

(1) Sea $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ un punto fijo y sea $d_a:\mathbb{R}^n\longrightarrow\mathbb{R}$ la función definida por

$$d_a(x) := ||x - a|| = \sqrt{\sum_{i=1}^n (x_i - a_i)^2}$$

para cada $x=(x_1,...,x_n)\in\mathbb{R}^n$. Demostrar que d_a es una función continua en \mathbb{R}^n .

Ayuda: Demostrar que $|d_a(x)-d_a(y)|=|||x-a||-||y-a||| \le ||x-y||$ para cada $x,y \in \mathbb{R}^n$.

(2) Sea A un subconjunto no vacío de \mathbb{R}^n y $d_A: \mathbb{R}^n \longrightarrow \mathbb{R}$ la función definida como

$$d_A(x) = \inf \mathsf{mo}\{||x - a|| \in \mathbb{R} : a \in A\}$$

para cada $x \in \mathbb{R}^n$. Demostrar que d_A es continua en \mathbb{R}^n .

Ayudas:

- (\checkmark) Para cada $x \in \mathbb{R}^n$ y para cada $\varepsilon > 0$, existe $a \in A$ tal que $d_A(x) > ||x a|| \varepsilon$.
- (\checkmark) Para cada $x, y \in \mathbb{R}^n$ y para cada $\varepsilon > 0$ se tiene que

$$|d_A(x)-d_A(y)|<||x-y||+\varepsilon$$

lo cual implica que $|d_A(x)-d_A(y)| < ||x-y||$.

(3) Supongamos que A es un subconjunto compacto de \mathbb{R}^n . Probar que para todo $x \in \mathbb{R}^n$, existe $a_x \in A$ tal que

$$d_A(x) = ||x - a_x||$$

donde d_A es la función definida en el problema anterior.

Ayudas:

- (\checkmark) Usar el hecho de que $d_A(x) = \inf \{ ||x-a|| \in \mathbb{R} : a \in A \}$ es continua.
- (4) Sean $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}$ funciones continuas en \mathbb{R}^n . Si A y B son conjuntos definidos como
- $(\checkmark) A = \{x \in \mathbb{R}^n : f(x) \ge g(x)\}.$
- $(\checkmark) B = \{x \in \mathbb{R}^n : f(x) \le g(x)\}.$

Demostrar que A y B son conjuntos cerrados en \mathbb{R}^n .

Ayudas:

- (\checkmark) Si f y g son continuas en a, entonces f-g es una función continua en a.
- (\checkmark) $[0,+\infty)$ y $(-\infty,0]$ son conjuntos cerrados en \mathbb{R}^n .
- $(\checkmark) (f-g)^{-1}[0,+\infty) = A = \{x \in \mathbb{R}^n : f(x) \ge g(x)\} \text{ y } (f-g)^{-1}(-\infty,0] = B = \{x \in \mathbb{R}^n : f(x) \le g(x)\}.$

900

(5) Sea $A \subseteq \mathbb{R}^n$ y $a \in \mathbb{R}^n$. Demostrar que si $a \in ac(A)$, entonces $B^*(a; \varepsilon) \cap A$ tiene infinitos puntos.

Ayuda:

Suponer por reducción al absurdo que existe $\varepsilon > 0$ tal que $B^*(a;\varepsilon) \cap A = \{x_1,...,x_k\}$ (finitos), tomar $\delta = \min_{1 \le i \le k} \|x_i - a\|$ y luego demostrar que $B^*(a;\delta) \cap A = \emptyset$.

- (6) Sea $A \subseteq \mathbb{R}^n$ y $a \in \mathbb{R}^n$. Demostrar que
 - $a \in ac(A) \iff \text{Existe una sucesión } \{x_n\}_{n=1}^{+\infty} \subseteq A \{a\} \text{ tal que } \lim_{n \to +\infty} x_n = a$
- (7) Sea $A \subseteq \mathbb{R}^n$ un conjunto compacto y $B \subseteq A$ es un conjunto cerrado en \mathbb{R}^n . Demostrar que B es un conjunto compacto en \mathbb{R}^n .

Ayuda:

Si $\{U_{\alpha}\}_{\alpha\in J}$ es un cubrimiento abierto de B, entonces $A\subseteq \left(\bigcup_{\alpha\in J}U_{\alpha}\right)\cup B^{c}$ y por compacidad de A, existen $\alpha_{1},\ldots,\alpha_{k}\in J$ (finitos), tales que $A\subseteq \left(\bigcup_{i=1}^{k}U_{\alpha_{i}}\right)\cup B^{c}$.

- (8) Sea $A \subseteq \mathbb{R}^n$ un conjunto compacto y $B \subseteq A$. Demostrar que si $ac(B) = \emptyset$, entonces B es un conjunto finito.
 - →ロト 4回ト 4 差ト 4 差ト 差 めなべ

Ayudas:

- (\checkmark) Para cada $b \in B$, existe $\varepsilon_b > 0$ tal que $B^*(b; \varepsilon_b) \cap B = \emptyset$, lo cual implica que $B(b; \varepsilon_b) \cap B = \{b\}.$
- (\checkmark) B es cerrado y como $B \subseteq A$, entonces B es compacto (problema 7).
- (\checkmark) $B \subseteq \bigcup B(b;\varepsilon)$, lo cual implica por compacidad de B que existen $b_1,\ldots,b_k \in B$ (finitos) tales que $B \subseteq \bigcup_{i=1}^k B(b_i; \varepsilon_{b_i})$.
- $(\checkmark) B = \bigcup_{i=1}^k B(b_i; \varepsilon_{b_i}) \cap B = \{b_1, \dots, b_k\}.$
- (9) Sea $A \subseteq \mathbb{R}^n$ compacto y $\{x_m\}_{m=1}^{+\infty} \subseteq A$. Demostrar que existe una subsucesión $\{x_{m_k}\}_{k=1}^{+\infty}$ de $\{x_m\}_{m=1}^{+\infty}$ que converge a un punto $a \in A$.

Ayudas:

Sea $B = \{x_m\}_{m=1}^{+\infty}$, entonces

(a) Si B es finito, entonces $B = \{b_1, ..., b_p\}$ De esta manera, para cada $i \in \{1, ..., p\}$ definimos

$$L_i = \{m \in \mathbb{N} : x_m = b_i\}$$

Y debe de existir $j \in \{1,...,p\}$ tal que L_i es infinito. Con los indices de L_i formamos la subsucesión que converge (la convergencia es a b_i).

(b) Si B es infinito, entonces $ac(B) \neq \emptyset$ (problema 8). Si $a \in ac(B) \subseteq A$, entonces construimos la subsucesión $\{x_{m_k}\}_{k=1}^{+\infty} \subseteq B$ de la siguiente manera:

$$\begin{cases} x_{m_1} \in B^*(a,1) \cap B, \\ x_{m_2} \in B^*\left(a,\frac{1}{n}\right) \cap B, \text{ con } m_2 > m_1, \\ \vdots \\ x_{m_{k+1}} \in B^*\left(a,\frac{1}{k+1}\right) \cap B, \text{ con } m_{k+1} > m_k. \end{cases}$$

La construcción anterior es posible por el problema (5).

- (c) $\lim_{k \to +\infty} x_{m_k} = a$
- (10) Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función que satisface las siguientes condiciones:
- (\checkmark) f es continua en [a,b].
- (\checkmark) f(x) = 0 para todo $x \in [a, b] \cap \mathbb{Q}$.

Demostrar que f(x) = 0 para todo $x \in [a, b]$.

Ayudas:

- (\checkmark) Recordar la densidad de los racionales en los reales. Por lo tanto, para cada $x_0 \in [a,b] \cap \mathbb{Q}^c$, existe una sucesión $\{x_n\}_{n=1}^{+\infty} \subseteq [a,b] \cap \mathbb{Q}$ tal que $\lim_{n \to +\infty} x_n = x_0$.
- (\checkmark) Si $\{x_n\}_{n=1}^{+\infty} \subseteq [a,b] \cap \mathbb{Q}$ satisface que $\lim_{n \to +\infty} x_n = x_0$, entonces $\lim_{n \to +\infty} f(x_n) = f(x_0)$, ya que f es continua en x_0 .
- (11) Sea $f:[0,1] \longrightarrow \mathbb{R}$ la función definida como

$$f(x) = \begin{cases} x & \text{si } x \in [0,1] \cap \mathbb{Q}, \\ \\ 1 - x & \text{si } x \in [0,1] \cap \mathbb{Q}^c. \end{cases}$$

Probar que

- (a) f(f(x)) = x para todo $x \in [0,1]$.
- (b) f(x) + f(1-x) = x para todo $x \in [0,1]$.
- (c) f es continua solo en $x = \frac{1}{2}$.
- (d) $f([0,1]) = \{y \in \mathbb{R} : y = f(x) \text{ con } x \in [0,1]\} = [0,1]$. Es decir que f toma todos los valores en el intervalo [0,1].
- (e) f(x+y)-f(x)-f(y) es racional para todo $x,y \in [0,1]$.

(12) Sea $f:[a,b]\longrightarrow \mathbb{R}$ una función continua en [a,b] y $g:[a,b]\longrightarrow \mathbb{R}$ es la función definida por

$$g(x) = \max_{y \in [a,x]} f(y)$$

para $x \in [a, b]$. Demostrar que g es continua en [a, b].

Ayuda:

Si $x_1, x_2 \in [a, b]$ con $x_1 \le x_2$, entonces

$$\begin{split} & \max_{y \in [a, x_2]} f(y) - \max_{y \in [a, x_1]} f(y) = \max \left\{ \max_{y \in [a, x_1]} f(y), \max_{y \in [x_1, x_2]} f(y) \right\} - \max_{y \in [a, x_1]} f(y) = \\ & = \max \left\{ 0, \max_{y \in [x_1, x_2]} f(y) - \max_{y \in [a, x_1]} f(y) \right\} \leq \max \left\{ 0, \max_{y \in [x_1, x_2]} f(y) - f(x_1) \right\}. \end{split}$$