The number system **Z**_n

MTH 350 -- Module 5A

Agenda

- Daily Prep 5A review: Congruence classes mod n, equivalence relations
- The set \mathbf{Z}_n and addition, multiplication on this set
- Main activity: Constructing operation tables for Z_n
- What axioms are satisfied by the number system \mathbf{Z}_{n} ?

Below are some relations (all denoted \sim) on the set of integers. Which ones are REFLEXIVE? Select all that apply.

 $a \sim b$ if and only if a < b

 $a \sim b$ if and only if $a \leq b$

 $a \sim b$ if and only if a|b

 $a \sim b$ if and only if a and b have the same ones digit

Below are some relations (all denoted \sim) on the set of integers. Which ones are SYMMETRIC? Select all that apply.

$$a \sim b$$
 if and only if $a < b$

$$a \sim b$$
 if and only if $a \leq b$

$$a \sim b$$
 if and only if $a|b$

 $a \sim b$ if and only if a and b have the same ones digit

Below are some relations (all denoted \sim) on the set of integers. Which ones are TRANSITIVE? Select all that apply.

 $a \sim b$ if and only if a < b

 $a \sim b$ if and only if $a \leq b$

 $a \sim b$ if and only if a|b

 $a \sim b$ if and only if a and b have the same ones digit

Recall that $[a]_n$ means the congruence class of integers modulo n where n is a natural number. The congruence class $[7]_3$ is

Which of the following is/are equal to $[7]_3$? Select all that apply.

 $[1]_{3}$ $[7]_{6}$ $[13]_{3}$ (Select this if none of these are equal to $[7]_3$)

The set \mathbb{Z}_5 is

$$\{0,1,2,3,4\}$$
 $\{0,1,2,3,4,5\}$
 $\{[0]_5,[1]_5,[2]_5,[3]_5,[4]_5\}$
 $\{[0]_5,[1]_5,[2]_5,[3]_5,[4]_5,[5]_5\}$
 $\{\cdots,-15,-10,-5,0,5,10,15,\cdots\}$

SMQ's of note

Facts about equivalence relations

Definition 5.5. Let \sim be an equivalence relation on a nonempty set S, and let $a \in S$. The **equivalence class of** a (with respect to \sim), denoted $[a]_{\sim}$, is the set of all elements of S that are related to a by \sim . More precisely,

If a *belongs to* [b], then a and b have equal classes.

$$[a]_{\sim} = \{x \in S : x \sim a\}. \blacktriangleleft$$

The equivalence class of a is the <u>set</u> of <u>everything that is related to a</u>.

Theorem 5.6. Let S be a nonempty set, and let \sim be an equivalence relation on S. Then S can be written as the disjoint union of the distinct equivalence classes corresponding to \sim . That is, the equivalence classes corresponding to \sim are pairwise disjoint, and every element of S belongs to exactly one equivalence classes must class. In particular:

- (i) For all $a, b \in S$, if $[a] \neq [b]$, then $[a] \cap [b] = \emptyset$.
- (ii) For all $a \in S$, $a \in [a]$.

(iii) For all $a \in S$, if $a \in [b]$ for some $b \in S$, then [a] = [b].

either be <u>equal</u> or have <u>no</u> <u>elements in common</u>. ("disjoint")

There's no such thing as an "empty class" because [a] must always at least contain a itself.

Lemma 5.7. Let S be a nonempty set, and let \sim be an equivalence relation on S. Then for all $a, b \in S$, [a] = [b] if and only if $a \sim b$.

Example: Integer congruence modulo 5

If two objects are "related" then their classes are equal, and vice versa.

Arithmetic in **Z**_n

The number system \mathbf{Z}_{n}

Example: $\mathbf{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}$ or just $\{[0], [1], [2], [3], [4]\}$ if the context makes it clear

Definition 5.10. For every integer $n \geq 2$, the **integers modulo** n, denoted \mathbb{Z}_n , is the set of the n distinct congruence classes of \mathbb{Z} modulo n, *i.e.*,

$$\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, \dots, [n-1]_n\}.$$

We can make \mathbb{Z}_n into a number system by defining an addition and multiplication on the set. There is a seemingly natural way to do this:

$$[a] + [b] = [a + b]$$
 and $[a] \cdot [b] = [a \cdot b]$

Example: In **Z**₅:

[4] + [3] = [7] = [2]. \leftarrow The result can always be written as an element of \mathbf{Z}_5 [4] * [2] = [8] = [3] \leftarrow Ditto

Quick practice

Perform all the following calculations and reduce each answer appropriately:

[1] ₃ + [2] ₃	$[2]_{3} \cdot [2]_{3}$	
[1] ₁₀ + [2] ₁₀	[4] ₅ · [3] ₅	
[0] ₉ + [8] ₉	[9] ₁₀ · [8] ₁₀	
[1] ₉ + [8] ₉	[2] ₄ · [2] ₄	
[15] ₂₆ + [22] ₂₆	[13] ₂₆ · [5] ₂₆	

Operation tables

Question: Is this [1]+[2] or [2]+[1]? Does it matter? Will it ever matter?

Since \mathbf{Z}_n is finite, we can write down all possible sums and products in tables.

For Z_3 :

+	[0]	[1]	[2]	
[0]	[0]	[1]	[2]	
[1]	[1]	[2]	[0]	
[2]	[2]	[0]	[1]	

	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

Theorem: Addition and multiplication in \mathbf{Z}_n are commutative.

ACTIVITY: Write out the operation tables for \mathbf{Z}_n , n = 4, 5, ..., 11. \mathbf{Z}_2 and \mathbf{Z}_3 are provided.

Group 1:

What symmetries, patterns, etc. do you notice that might help?

ACTIVITY

Write out the operation tables for \mathbf{Z}_n , n = 4, 5, ..., 11 on the spreadsheet. \mathbf{Z}_2 and \mathbf{Z}_3 are provided.

- Group 1: n = 4 and 11
- Group 2: n = 5 and 10
- Group 3: n = 6 and 9
- Group 4: n = 7 and 8

This is a lot of typing (2) Do you notice any patterns or symmetries that could help?

What do you notice? What do you wonder about?