P525/1 Chemistry Paper 1 July - August 2024 23/4 hours

UGANDA MUSLIM TEACHERS'ASSOCIATION UMTA JOINT MOCK EXAMINATIONS - 2024

NAME	
INDEX NO	

UGANDA ADVANCED CERTIFICATE OF EDUCATION Chemistry Paper 1

Paper I

2 hour 45 minutes

INSTRUCTIONS TO CANDIDATES

- 1 atmosphere = 101325Nm⁻².
- All questions must be answered in the spaces provided.
- Answer all questions in Section A and six questions in Section B.
- * Illustrate your answers with equations where applicable
- Molar gas constant R=8.314 jK⁻¹ mol⁻¹.
- Molar volume of a gas at s.t.p is 22400 cm³
- Standard temperature = 273K
- Standard pressure = 101325 Nm⁻²
- The periodic table with relative atomic masses will be provided.

						F	or	E	xam	ine	rs t	Jse	On	ly			
1	2	3	4	5	6	7	8	9	10	11	12	13]4	15	16	17	TOTAL
												1	, i				

© UMTA Joint Mocks 2024

Page 1 of 18

SECTION A

Answer all questions from this section

Answer all questions y	a uning equation
Answer an question M according to give element M according to M acc	ng to the foliations
$^{216}_{64}P_0 \longrightarrow M + \infty$	
State (i) The atomic number of M	(¼ mark)
(ii) The mass number of M	(½ mark)
(b) M decays further to form R as shown below $M \longrightarrow R + \beta$	
State (i) The atomic number of R	(½ mark)
(ii) The mass number of R	(½ mark)
State what would be observed and write equation(s) for the reaction(s) to when the following pairs of substances are mixed. (a) CH ₃ and bromine water	
Observation	(01 mark)
Equation	(01 mark)

Observation						(½ mark)
Equation						(01 mark)
(c) CH ₃ CHNH ₂ and sodi		in concer	arrated hyd	ochloric ac	id	
CH_3 and sodi	om mane	: III CONCCI	in a record			
Observation						(½ mark)
						(01 mark)
Equation						(U. mark)
				447	diavides	
The table below shows t	he trend is	n the melti	ing points o	f group IV	dioxidos.	
Formula of oxide	CO_2	SiO ₂	GeO2	SnO2	PbC2	
				1830	752	
		1700	1120 .	1 1030	, , , , ,	
Melting points (°C)	-18	1700	1120	1030		
Melting points (°C)					1 7 3 2	 (415 m
						(4½ m
Melting points (°C)						(4½ m
Melting points (°C)						(4½ m
Melting points (°C)						(4½ m
Melting points (°C)						(445 m
Melting points (°C)						(445 m
Melting points (°C)						(455 m
Melting points (°C)	melting po		e dioxides.			(455 m
Melting points (°C)	melting po	pints of th	e dioxides.			(455 m

(b) Write equation for the reaction between lea	(1½ mar
1.38g of a compound Q made up of carbon, ox 672cm ³ of carbondioxide measured at s.t.p an	kygen and hydrogen atoms only was burnt, and 0.54g of water were formed.
(a) (i) Calculate the arm of the control of the con	
(a) (i) Calculate the empirical formula of Q.	(03 m

(ii) Determine the molecular formula of Q.	given that its relative molecular mass is 46.
	(01 mar

(b) C-	
(b) Compound Q reacts with a saturated solution carbondioxide gas. Identify Q.	on of sodium hydrogon and
Sada racinity Q.	Comparing
	(½ mar
(c) A hot solution of Q was added to acidified (i) State what was observed.	
(i) State what	potassium manganate (VII) solution.
(i) State what was observed.	
	(½ ma
. The Property of the Control of the	
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••

(ii) Write equation for the reaction that took place.	(1½ marks)
The standard electrode potentials for some half cells are shown below;	
$O_{2(g)} + 4H_{(aq)}^{+} + 4e \longrightarrow 2H_2O_{(i)}$	E^{θ}/V + 1.23
$FeO_{4(aq)}^{2} + 8H_{(aq)}^{+} + 3e \longrightarrow Fe_{(aq)}^{3+} + 4H_2O_{(i)}$	+2.20
(a) Write (i) The cell notation for the cell formed when the half cells are combin	ed. (1½ mark)
(1) The centrolation for the control	
(ii) The equation for overall cell reaction.	(01 mark)
(II) The equalistres	
(b) (i) Calculate Gibb's free energy for the cell in (a).	(01 mark)
	your answer (01 mark
(ii) State whether the cell reaction is feasible or not. Give a reason for	
Using equations show how the following conversion can be brought about	
(a) CH ₃ CH ₂ OH to CH ₃ CHCOOH OH	(2½ mark
011	

(2½ ma
(2½ ma
(2½ ma
•••••
(1½ mark
(1½ marks
(172 marks
(1½ marks)
 ow;

(a)	Identify the energy changes	
	A	(½ mark)
	В	
	C	
	D	(½ mark)
(b)	Calculate the enthalpy change for the reaction	(2½ marks)
	(The H - H, Cl - Cl and H - Cl bond energies are 435	.9, 241.8 and 431.0 kJmol ⁻¹)

the empi	Exygen, 31.55 g of Carbondioxide and 10.76, rical formula of W .	g of water were formed. Determine
and empl	rical formula of W .	(0)
0.970 Dy	am distilled at 70°C and 760 mmHg and the mass of water. Calculate the formula mass	he distillate was found to contain of W. (Vapour pressure of water at
0.970 Dy	am distilled at 70°C and 760 mmHg and the mass of water. Calculate the formula mass 234 mmHg)	ne distillate was found to contain of <i>W</i> . (Vapour pressure of water at
0.970 Dy	mass of water. Calculate the formula mass	of W. (Vapour pressure of water at
0.970 Dy	mass of water. Calculate the formula mass	of W. (Vapour pressure of water at
0.970 Dy	mass of water. Calculate the formula mass	of W. (Vapour pressure of water at
0.970 Dy	mass of water. Calculate the formula mass	of W. (Vapour pressure of water at

SECTION P

Answer six questions from this section

!0. W	rite a mechanism to show how each of the following conversions can be effected.	
	(a) to $C(CH_3)_3$	(03 marks)
	(h) CH COCH (CH-)-C NOU	(4½ marks)
4	(b) CH_3COCH_3 to $(CH_3)_2C = NOH$	
•		
	Po.	
(6	$(CH_3)_2C = CH_2 \text{ to } (CH_3)_2CCH_3$	(1½ marks)
	71.	

 (a) (i) Sketch a graph to show the pH changes that Sodium Hydroxide Solution. 	take place wh	hen Benz	oicacid is titr	ated into (1½ marks)
• ,				
(ii) Explain the shape of your sketch graph in (a) (i)				(3½ marks)
			•••••	
		· · · · · · · · · · · · · · · · · · ·		
	• • • • • • • • • • • • • • • • • • • •			
(b) Calculate the nH of the resultant at the				
(b) Calculate the pH of the resultant solution formed when	n 20cm³ of 0.	1M potas	sium hydrox	ride
solution was added to 40cm3 of 0.05M benzoic acid at	25° C, $(ka =$	6.3 × 10	-5 moldm ⁻³)
			(0	4 marks)
		•••••		
			••••••••	
		•••••		
(A) (A)				

Briefly explain what would be observed when the following are mixed. (a) Chlorine and Sulphurous acid.	(03 marks)
b) Hydrogen sulphide gas and acidified potassium dichromate (VI) solution.	(03 marks)
c) Acidified solution of hydrogen peroxide and iodine solution.	(03 marks)
•••••••••••••••••••••••••••••••••••••••	
a) State why transition elements form complexes.	(1½ marks
	(1½ marks
	(1½ marks
a) State why transition elements form complexes.	
a) State why transition elements form complexes.	
a) State why transition elements form complexes.	
a) State why transition elements form complexes.	
a) State why transition elements form complexes.	

(b) Iron (III) sulphate was dissolved in water and the r	esultant solution tested with litinus
(b) Then (111) sulphate was dissolved in water and the r	(3½ marks)
paper. State what was observed and explain your ans	swer.
•••••	

(c) State what would be observed and write equation for	the reaction that would take place when
the following solutions are added to the solution in (b	o).
() A service this connects solution	(02 marks)
(i) Ammonium thiocyanate solution.	
	(02 marks
(ii) Potassium hexacyanoferrate (II) solution.	
	•••••
. (a) A mixture of 86cm³ of a gaseous hydro carbon Y wa	as exploded with 1015cm ³ of oxygen
which was in excess. The volume after explosion	and cooling to room temperature was
800cm ³ . After addition of concentrated potassium hyd	droxide solution there was a contraction in
	aroxide solution there was a comment
volume of 774cm ³ .	
(i) Determine the molecular formula of Y.	(03 mark
(1) Determine the morecanic remains	
42 LIMTA Joint Mocks 2024	Page 12 of

DIMIA Joint Mocks 2024

(ii) Y burns with a sooty flame. Write the structural formulae and isomers of Y.	(03 marks
(b) When treated with concentrated sulphuric acid at 25°C compound Z. When warmed with water compound Z gave compound X th when treated with hot acidified potassium dichromate solution.	nd Y formed another compound at gave no observable change
Identify (i) Y	01 mark
(ii) Z	(01 mark
c) Name a reagent that can be used to identify the functional grou	ip in compound X and state (03 marks)
what is observed when this reagent is reacted with X.	
Define the term solubility product.	(01 mark
,	

CS CamScanner

Page 13 of 18

 (b) Manganese (II) sulphide is a sparingly soluble salt. Write the expression for (i) the solubility of manganese (II) sulphide in water. 	(01 mark
······································	
(ii) the solubility product of manganese (II) sulphide.	(01 mark)
•••••••••••••••••••••••••••••••	
c) The solubility product of manganese (II) sulphide is $2.5 \times 10^{-13} mol^2 dm^{-6}$ a its solubility in water.	t 25°C. Calculate (02 marks)
······································	······
······································	*****************
 19cm³ of 0.01M silver nitrate solution was mixed with 20cm³ of 0.0005M of chloride solution. (i) Determine whether precipitation of silver chloride will take place or not. (Ksp of AgCl at that temp is 1.7 × 10⁻¹⁶mol²dm⁻⁶) 	potassium (2½ marks)
	•••••
······································	
······································	
······································	
(ii) State any two applications of solubility product.	(01 mark)
······································	(01 mark)
······································	(01 mark)
······································	(01 mark)

Page 14 of 18

16.

In Casis Sirves

- Polyphenylethene and nylon 6,6 are both synthetic polymers.
 - (a) In each case write the structural formula(e) of the monomer(s); indicate whether the polymer is formed by addition or condensation polymerization and write the structural formula of the polymer. (03 marks)

Polymer	Structural formula of monomer	Method of formation of polymer	Structural formula of polymer
Polyphenylethene			
Nylon – 6, 6			

(b) State one use of

/'\	
(i) polyphenylethene	(½ mark)
	1904 (1904)

(ii) Nylon = 6,6	(½ mark)

(c) Neoprene is an addition polymer of structure

$$\begin{cases}
CH_1 - CH_2 \\
CH_2 - CH_2
\end{cases}$$

(i) Define the term addition polymer.	(01 mark)

(ii) A solution containing 1.4% 3.5×10^{-4} atmospheres at 25	of neoprene was found to exert an osm 5°C.	oolicpressure of
Calculate the relative molec $(R = 8.314JK^{-1}mol^{-1})$	ular mass of neoprene.	(2½ marks)
(111) Determine the number of m	enomers(n) that formed neoprene.	(1½ marks)
	······································	
7. Nitrogen monoxide combines with oxyg	en to form nitrogen dioxide according to	the equation
$^{2NO}(g) + O_2(g) =$	$ \geq 2NO_{2(g)} $	
(a) Write the expression for the equilibr	rium constant, Ke.	(01 mark)
(b) (i) 3 moles of nitrogen monoxide an heated to 40°C. When equilibrium of oxygen. Calculate the value of	was coldulished the vessel tound to accomp	el which was stain 0.5 moles (02 marks)
······································		

of the initial ni	perature was raised to 500% trogen monoxide. Calculate	e me equinorium c) was found to constant at this to	ontain 25% emperature (03 mark

From your answer to exothermic and exp	to (b) (i) and (ii) deduce what lain how you arrive at this	nether the process i deduction.	s endothermic c	or (02 mar)
	•••••			
What would be the e	effect on Kc when a catalys	t is added to the re	action mixture?	(0) mar
	effect on <i>Ke</i> when a catalys		action mixture?	(01 mar
				(01 mer
				(01 mar
				(01 mar
				(01 mer
				(01 mar)
				(01 mar)
				(01 mer)
				(01 mer)
				(01 mar)
				(01 mer

THE PERIODIC TABLE

H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0	3	4	5	6 7	1
Li Be 3	H 1				H	4.0 H 2
Na Mg 11 12 27.0 28.1 31.0 32.1 35.4 40	Li Be	E	C	N	0 F	20. N
S5.5 87.6 88.9 91.2 92.9 95.9 98.9 101 103 106 108 112 115 119 122 128 127 131 37 38 39 40 41 42 43 44 45 45 46 47 48 49 50 51 52 53 54 33 137 139 178 181 184 186 190 192 195 107 231 48 49 50 51 52 53 54	Na Mg 11 12	Al 3	Si	P 5	C	A
Rb Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I 131 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 33 137 139 178 181 184 186 190 192 195 107 131 184 184 186 190 192 195 107 131 184 184 186 190 192 195 107 131 184 184 186 190 192 195 107 131 184 184 186 190 192 195 107 131 184 184 184 186 190 192 195 107 131 184 186 190 192 195 107 131 184 186 186 190 192 195 107 131 184 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 <	20 21 22 23 24 25 26 27 28 29 30 3	Ga	Ge ,	45 3	e Br	Kr
53 137 139 178 181 184 186 190 192 195 197 381 484 186	37 38 39 40 41 42 43 44 45 46 47 48 49	n S	Sn S	b Te	127 1	31 Xe
C3 Ba L2 HI T2 W Re Os Ir Pt Au Hg T1 Pb Bi P6 At Rt S5 83 84 85 86	Cs Ba La Hf T2 W Re Os Ir Pt Au Hg T 75 76 77 78 79 80 81	I F	p B	i Po	210 2 A1	22 Rin

139 140 152 157 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Yb Lu Tm 232 231 257 256 Th Pa AcU Np Pu Am CmBk Cf Es Fm Md No Lw 100 101 102

END