

17. $\int \sinh x \cdot dx = \cosh x + c$

15. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + c$

Test 30 soru 60 dk.

Test 30 soru 60 dk.

$$= 2 \cdot \left(\frac{1}{3}\right)^{x} dx$$

$$= 2 \cdot \left(\frac{1}{3}\right)^{x} dx$$

DEGISKEN DEGISTIZME

$$\lim_{x \to 1} \int_{15}^{15} dx = \int_{16}^{15} \int_{16}^{15} \int_{16}^{15} dx = \int$$

$$\int (x^{2}+1)^{2} dx = \int (x^{4}+2x^{2}+1) dx = \frac{x^{5}}{5} + \frac{2x^{3}}{3} + x + c$$

$$\int (x^{2}+1)^{12} x^{3} dx = \int (|x^{1}|^{2}+1)^{12} dx$$

$$\int (x^{2}+1)^{12} x^{3} dx = \int |x^{2}+1| dx$$

$$\int (x^{2}+1)^{12} x^{3} dx = \int |x^{2}+1| dx$$

$$\int (x^{2}+1)^{12} x^{3} dx = \int |x^{2}+1| dx$$

$$\int (x^{2}+1)^{12} x^{3} dx = \int (x^{4}+2x^{2}+1)^{2} x^{3} dx$$

$$= \frac{x^{8}}{8} + \frac{2x^{6}}{6} + \frac{x^{4}}{4} + c$$

$$= \frac{x^{8}}{8} + \frac{2x^{6}}{6} + \frac{x^{4}}{4} + c$$

$$= \frac{x^{8}}{8} + \frac{2x^{6}}{6} + \frac{x^{4}}{4} + c$$

$$= \frac{x^{1}}{8} + \frac{2x^{1}}{6} + \frac{x^{1}}{4} + c$$

$$= \frac{x^{1}}{8} + \frac{x^{1}}{6} + \frac{x^{$$

$$\frac{1}{4} \int \frac{\frac{f'}{4 \times^3 dx}}{\frac{1+x^4}{f(x)}} = \frac{1}{4} \ln (1+x^4) + c$$

a)
$$arsin(x)+c$$
 b) $ln(1+x^4)+c$

$$\int \frac{dx}{x} = \ln x + c$$

 $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} arc + a \frac{x}{a}$

 $\frac{1}{f(x)} \int \frac{f'(x)}{f(x)} dx = \ln f(x)$

c) arctor(
$$x^2$$
)+c d) $\frac{\ln(1+x^4)}{4}$ +c

$$4 U=1+x^4 \rightarrow du=4 \times^3 dx$$

$$\int \frac{dy}{4.U} = \frac{1}{4} \ln |u| + C$$

$$\int \frac{x dx}{1 + x^{\frac{1}{4}}} = 7$$

$$\int \frac{1 + x^{\frac{1}{4}}}{1 + x^{\frac{1}{4}}} = 7$$

$$\int \frac{u = f(x)}{1 + x^{\frac{1}{4}}} dx$$

a)
$$\frac{1}{4}$$
 $\ln(1+x^4)+c$ b) arcta(x)+c

c)
$$\frac{\arctan(1+x^4)}{4}$$
 d) $\arctan(x^1)+c$

e)
$$\frac{\arctan(x^2)}{2} + c$$
 $u = x^2$ $du = 2xdx$

$$\int \frac{du}{2} = Larctoluf$$

$$\sqrt{\frac{2\pi dx}{9 + x^4}} = \int \frac{du}{9 + LL^2} = \frac{1}{3} \arctan(\frac{LL}{3}) + C$$

$$L = x^2$$

$$du = 2x dx$$

three; $\frac{\cot x - \sin x}{\cot x + \sin x} dx$ a) $\sin x - \cos x + \cos x$ b) $\cos x - \sin x + c$ d) $\ln(\cos x + \sin x) + c$