Math 215 Fall 2018 Problem Set 3

Due: September 14, 2018

(19 points) Make sure you are familiar with the Academic Honesty policies for this class, as detailed on the syllabus. All work is due on the given day by the time lecture starts.

1	(4 points)	Below is	s the	proof	of the	statement
т.	(a homes)	DCIOW IS	5 0110	proor	OI UIIC	Statement

If a and b are both odd integers then a + b is an even integer.

I have deleted some pieces of the proof. Fill in each of the blank spaces to make the proof correct. Please underline or color differently the filled in blanks on your submitted answer.

Fix a and b as	odd integer	rs. By the definition of an odd number,
we know that a is	$\underline{}$ and b	is Then
$a+b = \underline{\hspace{1cm}}$	Since	is an integer we
conclude that $a + b$	is even by the definition of an even	n integer.

2. (4 points) Below is the proof of the statement

For all $a \in \mathbb{Z}$ we have $2a^5 + 6a^3 - 4a + 3$ is odd.

I have deleted some pieces of the proof. Fill in each of the blank spaces to make the proof correct. Please underline or color differently the filled in blanks on your submitted answer.

	. Then $2a^5 + 6a^3 - 4a + 3 = $	
Since	is an integer, then	by the def-
inition of odd number	s. Since a was arbitrary, we have proven the result.	

- 3. (6 points) Write the *contrapositive* of each of the following statements. Your final answer should not have any *not* in it. You should not discuss whether the statements are true or false as stated.
 - (a) If $|x| \neq -x$ then $x \leq 0$.
 - (b) For all real numbers a and b, if $a \neq 0$ and $b \neq 0$ then $ab \neq 0$.
 - (c) Let a be an integer. If there exists an $m \in \mathbb{Z}$ so that a = 4m + 1 then a is odd. (Hint: To get rid of the \neq symbol, maybe consider the number line.)
- 4. (5 points) Prove the following statement by (a) writing down its contrapositive and then (b) proving the contrapositive.

Let $a \in \mathbb{Z}$. If 3a + 2 is odd, then a is odd.