Aggregated datasets for fast LCA tools

Presentation for Brightcon2020 October 20, 2020

Pascal Lesage pascal.lesage@gmail.com

Fast!

- Aim: make LCA fast to reduce deterrent
- Strategy, from perspective of someone used with commercial software:
 - Use aggregated datasets!
 - SimaPro: Gains ≈ 10x (from 19.5 to 2 seconds)

What are aggregated datasets

Aggregated AKA system terminated, System, S, LCI, cradle-to-gate

No inputs from the technosphere B matrix contains cradle-to-gate LCI

Some critiques of use of aggregated datasets

Loss of transparency

 Dependent sampling within a product system not possible (Don't believe the hype, it can matter)

Why are aggregated datasets fast?

Assumption:

 Heavy work (solving system of linear equations for large background LCI database) is done ahead of time

 What is left is solving a much more limited foreground system and some matrix multiplications Order of 10⁵ equations Order of 10¹ equations Brightcon2020 - Lesage 2020-10-19

Profiling an bw LCA calculation (w/o factorization)

Profiling an bw LCA calculation (w/ factorization)

Why are aggregated datasets fast?

 Maybe there is more than just "precalculating" → minimizing what gets loaded may also help

Objective of presentation

- Main objective:
 - Present some packages that help integrate aggregated datasets in brightway2:
 - bw2agg
 - Aggregate whole database
 - Save activities with LCIA scores only
 - bw2preagg
 - Generate dependently-sampled LCI arrays for whole databases for reuse in LCA
 - presamples
 - Integrate LCI arrays in LCA calculations
 - bw2tree
 - Minimize size of system and terminate in aggregated datasets
- Sidetracked objective:
 - Can we save even more time by having many smaller databases?

bw2agg

- conda install --channel pascallesage bw2agg
- pip install bw2agg
- https://brightway2aggregated.readthedocs.io/en/latest/quickstart.html

- Two main tasks:
 - Convert database of unit process datasets in database of aggregated datasets
 - Facilitate working with "unit impact"

bw2agg – aggregated LCI databases

Convert to LCI:

```
agg db = bw2agg.DatabaseAggregator(
   up db name="ecoinvent 3.6 cutoff - Unit process",
    agg db name="ecoinvent 3.6 cutoff - Aggregated (LCI)",
   database type="LCI",
   overwrite=False
agg db.generate()
Writing activities to SQLite3 database:
0% [#################### 100% | ETA: 00:00:00
Total time elapsed: 01:38:45
Title: Writing activities to SQLite3 database:
 Started: 10/19/2020 21:08:26
 Finished: 10/19/2020 22:47:12
 Total time elapsed: 01:38:45
 CPU %: 232.40
 Memory %: 2.26
```

You should probably NOT do this: the resulting biosphere matrix is dense, and brightway2 is not equipped to deal with dense matrices

Brightcon2020 - Lesage

bw2agg - Augmenting with unit impacts

bw2agg.scores.add_unit_score_exchange_and_cf(method_id)

- Adds:
 - a biosphere activity flow
 - a corresponding cf=1 to LCIA results
- Key: ('biosphere3', Method(method_id).get_abbreviation())
 E.g.

```
('IPCC 2013',
  'climate change',
  'ipcc-2013cg.bd5af3f67229a1cc291b8ecb7f316fcf')
```

bw2agg - aggregated score databases

Convert to LCIA scores:

```
agg db = bw2agg.DatabaseAggregator(
   up db name="ecoinvent 3.6 cutoff - Unit process",
   agg_db_name="ecoinvent 3.6 cutoff - Aggregated (scores)",
   database_type="LCIA",
   method list=[ipcc],
   overwrite=False
agg db.generate()
Writing activities to SQLite3 database:
0% [###################### 100% | ETA: 00:00:00
Total time elapsed: 00:06:13
Title: Writing activities to SQLite3 database:
 Started: 10/19/2020 10:31:24
 Finished: 10/19/2020 10:37:38
 Total time elapsed: 00:06:13
 CPU %: 387.70
 Memory %: 2.61
```

bw2agg and size of matrices

bw2agg and calculation time

Conclusion 1: Don't use datasets that are aggregated at the LCI level in brightway2!

Conclusion 2: We can cut time by about half with precalculated scores

What takes time with scores?

Testing multiple small matrix approach

- Can we cut time down more by saving aggregated activities in separate databases?
 - 1 database with 18k activities → 18k databases with 1 activity each
- This would allow us to cut down on:
 - Loading time (smaller matrices)
 - Calculation time (smaller system)

Speed of LCA with different databases

25 LCA with 5 random activities in demand Time calculated 5 times per LCA

Samples for aggregated datasets

- Uncertainty information lost when aggregating
- Solution: generate samples that can be reused
- Both the generation and the use of these samples is based on presamples

Creating presamples packages (LCA matrices)

How does by use presamples packages?

- LCA(demand, method, presamples=[dirpaths to presamples])
- MonteCarloLCA(demand, method, presamples=[dirpaths to presamples])

2020-10-19

For database-wide presamples – bw2preagg

- pip install bw2preagg
- 6 steps:
 - 1. Setup
 - 2. Create base presamples packages
 - 3. Create "balancing" presamples packages, for land transformation and water¹
 - 4. Generate LCI arrays
 - 5. Transform to LCIA arrays
 - 6. Concatenate

Takes weeks to run!

Code optimized for multiprocessing and distributing on clusters

What we get from bw2preagg

• LCI arrays:

- Dependently sampled
- As many arrays as there are activities in database
- Rows = elementary flows
- Columns = iterations
- Name = code.npy
- Need biosphere_dict for reuse
- 1.36 TB!
- LCIA arrays:
 - Characterized LCI arrays
 - Can be created on the fly

How to use these LCI arrays

Non-exhaustive list of ways I've used these arrays in projects

- 1. Streamlined LCA tool (linear combination)
- 2. Link to tree background
- 3. ParameterizedBrightwayModel ←Sacrificed from presentation for all that profiling

1) Use in streamlined LCA tools

- Defined here as "tool that creates linear combination of datasets"
 - Typically one level deep
 - Acyclic
- Super fast because can be vectorized
- Simulated:

•	5	upstream	datasets
---	---	----------	----------

• 10000 iterations for *demand*

• Load 10000 iteration LCIA arrays

• Scale (multiply)

• Sum

2) Link to tree background

Steps:

- 1. Convert network LCA to "pruned" acyclic tree
 - Nodes with impacts < cutoff criteria replaced by aggregated datasets
 - Uses bw2tree
- 2. Create presamples package for all "leaves" using LCI arrays
- 3. MonteCarloLCA = (demand=tree.root, presamples = [presamples from step 2])

Tree background	1:29
MonteCarloLCA	35:28
Ratio	24

Conclusion

- Aggregated datasets will make your models faster
 - Factor 2-4 for deterministic LCA

- Orders of magnitude for MonteCarloLCA
 - →<u>IF</u> you (or *someone*) invests the time to pre-emptively create required arrays

Packages available to incorporate in real tools