Math 122 Assignment 4 Solution Ideas

1. (a) We are given that $a_3 = b_3 = 1$ and that $a_4 = 2$ and $b_4 = 1$.

Let $n \geq 5$. Then $f_n = a_n f_2 + b_n f_1$ by definition. Since $n \geq 5$ we can use the Fibonacci recurrence to write

$$f_n = f_{n-1} + f_{n-2}$$

$$= (a_{n-1}f_2 + b_{n-1}f_1) + (a_{n-2}f_2 + b_{n-2}f_1)$$

$$= (a_{n-1} + a_{n-2})f_2 + (b_{n-1} + b_{n-2})f_1$$

Therefore, $a_n = a_{n-1} + a_{n-2}$ and $b_n = b_{n-1} + b_{n-2}$ for $n \ge 5$.

Our recursive definition then for a_n is: $a_3 = 1$, $a_4 = 2$, and $a_n = a_{n-1} + a_{n-2}$, $n \ge 5$, and our recursive definition for b_n is: $b_3 = 1$, $b_4 = 1$, and $b_n = b_{n-1} + b_{n-2}$, $n \ge 5$.

We claim that $a_n = f_{n-1}$. We can see this since $a_3 = f_2 = 1$ and $a_4 = f_3 = 2$ and a_n follows the same recurrence definition as the Fibonacci numbers.

By the same reasoning $b_n = f_{n-2}$ since $b_3 = f_1 = 1$, $b_4 = f_2 = 1$, and b_n follows the same recurrence definition as the Fibonacci numbers.

(b) We are given that $c_1 = c_2 = 0$. Now to calculate the value of f_n we can apply the recurrence definition once to arrive at $f_n = f_{n-1} + f_{n-2}$. Now to determine f_{n-1} we would need to apply the recurrence definition c_{n-1} times, and to determine f_{n-2} we would need

to apply the recurrence defintion c_{n-1} times, that to determine f_{n-2} we would need to apply the recurrence defintion c_{n-2} times. In total this gives that $c_n = c_{n-1} + c_{n-2} + 1$.

Thus, our recursive defintion is $c_1 = 0$, $c_2 = 0$, and $c_n = c_{n-1} + c_{n-2} + 1$, $n \ge 3$.

(c)

$$c_7 = c_6 + c_5 + 1$$

$$= (c_5 + c_4 + 1) + c_5 + 1$$

$$= 4 + 2 + 1 + 4 + 1$$

$$= 12$$

2. Basis: When n=6 we have $LHS=5^6=15625$ and $RHS=6^5=7776$ so indeed LHS>RHS

Induction Hypothesis: Suppose that $5^k > k^5$ for some integer $k \ge 6$.

Induction Step: We want to show that $5^{k+1} > (k+1)^5$.

$$LHS = 5^{k+1}$$

$$= 5 \cdot 5^{k}$$

$$> 5 \cdot k^{5}$$

$$= k^{5} + k^{5} + k^{5} + k^{5} + k^{5}$$

$$= k^{5} + k \cdot k^{4} + k^{2} \cdot k^{3} + k^{3} \cdot k^{2} + k^{4} \cdot k$$

$$> k^{5} + 5k^{4} + 5^{2} \cdot k^{3} + 5^{3} \cdot k^{2} + 5^{4} \cdot k$$

$$= k^{5} + 5k^{4} + 25k^{3} + 125k^{2} + 625k$$

$$= k^{5} + 5k^{4} + 25k^{3} + 125k^{2} + 624k + k$$

$$> k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1$$

$$= (k+1)^{5}$$

$$= RHS$$
(by the IH)
$$(since k > 5)$$

$$= k^{5} + 5k^{4} + 25k^{3} + 125k^{2} + 624k + k$$

$$= k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1$$

$$= (k+1)^{5}$$

$$= RHS$$

Conclusion: Therefore, by induction, we have that $5^n > n^5$ for all $n \ge 6$.

Now, we can say that n=6 is the smallest possible value n_0 for which $5^n > n^5$ for all $n \ge n_0$ since for n=5 we have that $LHS = 5^5$ and $RHS = 5^5$ so we have that $LHS \not\geqslant RHS$.

3. <u>Basis:</u> When n = 0 we have $a_0 = 5(-2)^0 + (-3)^0 = 6$. When n = 1 we have $a_1 = 5(-2)^1 + (-3)^1 = -13$. Therefore the statement is true when n = 0 and n = 1.

Induction Hypothesis: Suppose that there exists an integer $k \ge 1$ such that $a_n = 5(-2)^n + (-3)^n$ for all $n = 0, 1, \ldots, k$.

<u>Induction Step:</u> We want to show that $a_{k+1} = 5(-2)^{k+1} + (-3)^{k+1}$. Since $k \ge 1$ we know that $k+1 \ge 2$, and we can therefore use the recursion to write

$$a_{k+1} = (-5)a_k - 6a_{k-1}$$

$$= (-5)[5(-2)^k + (-3)^k] - 6[5(-2)^{k-1} + (-3)^{k-1}]$$
 (by the IH)
$$= -25(-2)^k - 5(-3)^k - 30(-2)^{k-1} - 6(-3)^{k-1}$$

$$= 50(-2)^{k-1} + 15(-3)^{k-1} - 30(-2)^{k-1} - 6(-3)^{k-1}$$

$$= 20(-2)^{k-1} + 9(-3)^{k-1}$$

$$= 5(-2)^2(-2)^{k-1} + (-3)^2(-3)^{k-1}$$

$$= 5(-2)^{k+1} + (-3)^{k+1}$$
 as wanted.

Conclusion: Therefore, by induction, $a_n = 5(-2)^n + (-3)^n$ for all integers $n \ge 0$.

4. <u>Basis:</u> When n = 1 we have $f_1^2 = (1)^2 = (1)(1) = f_1 f_2$. Therefore the statement is true when n = 1.

Induction Hypothesis: Suppose that there exists an integer $k \ge 1$ such that $f_1^2 + f_2^2 + \dots + f_k^2 = f_k f_{k+1}$.

<u>Induction Step:</u> We want to show that $f_1^2 + f_2^2 + \cdots + f_{k+1}^2 = f_{k+1}f_{k+2}$.

Now

$$LHS = f_1^2 + f_2^2 + \dots + f_{k+1}^2$$

$$= f_1^2 + f_2^2 + \dots + f_k^2 + f_{k+1}^2$$

$$= f_k f_{k+1} + f_{k+1}^2$$

$$= f_k f_{k+1} + f_{k+1} f_{k+1}$$

$$= f_{k+1} (f_k + f_{k+1})$$

$$= f_{k+1} f_{k+2} \qquad \text{(since } k \ge 1, \text{ and so } k + 2 \ge 3)$$

Conclusion: Therefore, by induction, $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$ for all integers $n \ge 1$.

5.
$$t_0 = b$$

 $t_1 = at_0 + b = a \cdot b + b$
 $t_2 = at_1 + b = a(a \cdot b + b) + b = a^2 \cdot b + a \cdot b + b$
 $t_3 = at_2 + b = a(a^2 \cdot b + a \cdot b + b) + b = a^3 \cdot b + a^2 \cdot b + a \cdot b + b$
 $t_4 = at_3 + b = a(a^3 \cdot b + a^2 \cdot b + a \cdot b + b) + b = a^4 \cdot b + a^3 \cdot b + a^2 \cdot b + a \cdot b + b$

From this we can guess that when $a \neq 1$

$$t_n = a^n \cdot b + a^{n-1} \cdot b + \dots + a^2 \cdot b + a \cdot b + b$$

= $b(a^n + a^{n-1} + \dots + a^2 + a + 1)$
= $b\left(\frac{a^{n+1} - 1}{a - 1}\right)$

When a = 1 we would have

$$t_n = a^n \cdot b + a^{n-1} \cdot b + \dots + a^2 \cdot b + a \cdot b + b$$

= $b + b + \dots + b + b + b$
= $(n+1)b$

Now we prove that our guess of t_n is correct. First consider the case when $a \neq 1$, so we have a guess of $t_n = b \left(\frac{a^{n+1} - 1}{a - 1} \right)$.

<u>Basis:</u> When n = 0 we have $t_0 = b\left(\frac{a^1 - 1}{a - 1}\right) = b$. Therefore the statement is true when n = 0.

<u>Induction Hypothesis:</u> Suppose that there exists an integer $k \ge 0$ such that $t_k = b\left(\frac{a^{k+1}-1}{a-1}\right)$.

<u>Induction Step:</u> We want to show that $t_{k+1} = b\left(\frac{a^{k+2}-1}{a-1}\right)$. Since $k \geq 0$ we know that $k+1 \geq 1$, and we can therefore use the recursion to write

$$\begin{array}{rcl} t_{k+1} & = & a \cdot t_k + b \\ & = & a \cdot b \left(\frac{a^{k+1} - 1}{a - 1} \right) + b & \text{(by the IH)} \\ & = & a \cdot b \left(\frac{a^{k+1} - 1}{a - 1} \right) + b \left(\frac{a - 1}{a - 1} \right) \\ & = & b \left(\frac{a^{k+2} - a}{a - 1} \right) + b \left(\frac{a - 1}{a - 1} \right) \\ & = & b \left(\frac{a^{k+2} - a + a - 1}{a - 1} \right) \\ & = & b \left(\frac{a^{k+2} - 1}{a - 1} \right) & \text{as wanted.} \end{array}$$

Conclusion: Therefore, by induction, $t_n = b\left(\frac{a^{n+1}-1}{a-1}\right)$ for all integers $n \ge 0$ when $a \ne 1$.

Now we consider the case when a=1 so our guess is $t_n=(n+1)b$. In this case, note that the recursive definition becomes $t_n=at_{n-1}+b=t_{n-1}+b$.

<u>Basis:</u> When n = 0 we have $t_0 = (0+1)b = b$. Therefore the statement is true when n = 0.

Induction Hypothesis: Suppose that there exists an integer $k \geq 0$ such that $t_k = (k+1)b$.

<u>Induction Step:</u> We want to show that $t_{k+1} = (k+2)b$. Since $k \ge 0$ we know that $k+1 \ge 1$, and we can therefore use the recursion to write

$$t_{k+1} = t_k + b$$

= $(k+1)b + b$ (by the IH)
= $(k+2)b$ as wanted.

<u>Conclusion</u>: Therefore, by induction, $t_n = (n+1)b$ for all integers $n \ge 0$ when a = 1.