2.5 V/3.3 V SiGe Selectable Differential Clock and Data D Flip-Flop/Clock Divider with Reset and OLS*

The NBSG53A is a multi-function differential D flip-flop (DFF) or fixed divide by two (DIV/2) clock generator. This is a part of the GigaComm $^{\text{m}}$ family of high performance Silicon Germanium products. A strappable control pin is provided to select between the two functions. The device is housed in a low profile 4x4 mm 16-pin Flip-Chip BGA (FCBGA) or a 3x3 mm 16 pin QFN package.

The NBSG53A is a device with data, clock, OLS*, reset, and select inputs. Differential inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS* input is used to program the peak-to-peak output amplitude between 0 and 800 mV in five discrete steps. The RESET and SELECT inputs are single-ended and can be driven with either LVECL or LVCMOS/LVTTL input levels.

Data is transferred to the outputs on the positive edge of the clock. The differential clock inputs of the NBSG53A allow the device to also be used as a negative edge triggered device.

Features

- Maximum Input Clock Frequency (DFF) > 8 GHz Typical (See Figures 3, 5, 7, 9, and 10)
- Maximum Input Clock Frequency (DIV/2) > 10 GHz Typical (See Figures 4, 6, 8, 9, and 10)
- 210 ps Typical Propagation Delay (OLS = FLOAT)
- 45 ps Typical Rise and Fall Times (OLS = FLOAT)
- DIV/2 Mode (Active with Select Low)
- DFF Mode (Active with Select High)
- Selectable Swing PECL Output with Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$
- Selectable Swing NECL Output with NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- Selectable Output Level (0 V, 200 mV, 400 mV, 600 mV, or 800 mV Peak-to-Peak Output)
- 50 Ω Internal Input Termination Resistors on all Differential Inputs
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

QFN-16 MN SUFFIX CASE 485G

MARKING DIAGRAM*

A = Assembly Location

L = Wafer Lot Y = Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet.

^{*}Output Level Select

Figure 1. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VTCLK	-	Internal 50 Ω Termination Pin. See Table 4.
2	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input.
3	CLK	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input.
4	VTCLK	-	Internal 50 Ω Termination Pin. See Table 4.
5	VTD	-	Internal 50 Ω termination pin. See Table 4.
6	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input.
7	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted Differential Input.
8	VTD	-	Internal 50 Ω Termination Pin. See Table 4.
9,16	V _{CC}	-	Positive Supply Voltage
10	Q	RSECL Output	NonInverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{TT} = V_{CC} – 2 V.
11	Q	RSECL Output	Inverted Differential Output. Typically Terminated with 50 Ω Resistor to V_{TT} = V_{CC} – 2 V .
12	V _{EE}	-	Negative Supply Voltage
13	OLS*	Input	Input Pin for the Output Level Select (OLS). See Table 2.
14	SEL	LVECL, LVCMOS, LVTTL Input	Select Logic Input. Internal 75 k Ω to V _{EE} .
15	R	LVECL, LVCMOS, LVTTL Input	Reset D Flip-Flop. Internal 75 k Ω to V _{EE} .
-	EP		The Exposed Pad (EP) on the QFN–16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is not electrically connected to the die but may be electrically and thermally connected to V _{EE} on the PC board.

^{1.} All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad (EP) on

package bottom (see case drawing) must be attached to a heat-sinking conduit.
 In the differential configuration when the input termination pins (VTD, VTCLK, VTCLK) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.
 When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, 2 kΩ resistor should be connected from OLS pin to V_{EE}.

Figure 2. Simplified Logic Diagram

Table 2. OUTPUT LEVEL SELECT (OLS)

OLS	Q/Q VPP	OLS Sensitivity
V _{CC}	800 mV	OLS - 75 mV
V _{CC} – 0.4 V	200 mV	OLS ± 150 mV
V _{CC} – 0.8 V	600 mV	OLS ± 100 mV
V _{CC} – 1.2 V	0	OLS \pm 75 mV
V _{EE} (Note 4)	400 mV	OLS + 100 mV
Float	600 mV	N/A

^{4.} When an output level of 400 mV is desired and $\rm V_{CC}$ – $\rm V_{EE}$ > 3.0 V, 2.0 k Ω resistor should be connected from OLS to $\rm V_{EE}$.

Table 3. TRUTH TABLE

R	SEL	D	CLK	Q	Function
Н	х	х	х	L	Reset
L	Н	L	Z	L	DFF
L	Н	Н	Z	Н	DFF
L	L	Х	Z	Q	DIV/2

Z = LOW to HIGH Transition

Table 4. INTERFACING OPTIONS

INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTCLK, VTD and VTCLK, VTD to V _{CC}
LVDS	Connect VTCLK, VTD and VTCLK, VTD Together
AC-COUPLED	Bias VTCLK, VTD and VTCLK, VTD Inputs within Common Mode Range (V _{IHCMR})
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL, LVCMOS	An External Voltage (V_{th}) should be Applied to the Unused Complementary Differential Input. Nominal V_{th} is 1.5 V for LVTTL and $V_{CC}/2$ for LVCMOS Inputs. This Voltage must be within the V_{th} Specification.

Table 5. ATTRIBUTES

Characteristi	ics	Value
Positive Operating Voltage Range for	V _{CC} (V _{EE} = 0 V)	2.375 V to 3.465 V
Negative Operating Voltage Range for	· V _{EE} (V _{CC} = 0 V)	−2.375 V to −3.465 V
Internal Input Pulldown Resistor (R, S	75 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 1.5 kV > 50 V > 4 kV
Moisture Sensitivity (Note 5)		Level 1
Flammability Rating		UL 94 V-0 @ 0.125 in
Oxygen Index		28 to 34
Transistor Count	482	
Meets or exceeds JEDEC Spec EIA/J	ESD78 IC Latchup Test	

^{5.} For additional information, refer to Application Note AND8003/D.

Table 6. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V
V _{EE}	Negative Power Supply	V _{CC} = 0 V		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	3.6 -3.6	V
V _{INPP}	Differential Input Voltage $ D - \overline{D} $	$V_{CC} - V_{EE} \ge 2.8 \text{ V}$ $V_{CC} - V_{EE} < 2.8 \text{ V}$		2.8 V _{CC} – V _{EE}	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA
Іоит	Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 6)	0 lfpm 500 lfpm		41.6 35.2	°C/W
θJC	Thermal Resistance (Junction-to-Case)	2S2P (Note 6)		4.0	°C/W
T _{sol}	Wave Solder Pb-Free	< 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

6. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT (V_{CC} = 2.5 V; V_{EE} = 0 V) (Note 7)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT		•		•		•		•	•	
I _{EE}	Negative Power Supply Current	33	45	57	33	45	57	33	45	57	mA
PECL OL	JTPUTS (Note 8)										
V _{OH}	Output HIGH Voltage	1460	1510	1560	1490	1540	1590	1515	1565	1615	mV
V _{OL}	Output LOW Voltage $ (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \text{ V}) \\ (OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT) \\ (OLS = V_{CC} - 1.2 \text{ V}) \\ (OLS = V_{EE}) $	555 1235 775 1455 1005	705 1295 895 1505 1095	855 1385 1015 1585 1215	595 1270 810 1490 1040	745 1330 930 1540 1130	895 1420 1050 1620 1250	625 1295 840 1510 1065	775 1355 960 1560 1155	925 1445 1080 1640 1275	mV
V _{OUTPP}	$\label{eq:output_voltage_amplitude} \begin{split} &\text{(OLS = V_{CC})} \\ &\text{(OLS = V_{CC} - 0.4 V)} \\ &\text{(OLS = V_{CC} - 0.8 V, OLS = FLOAT)} \\ &\text{(OLS = V_{CC} - 1.2 V)} \\ &\text{(OLS = V_{EE})} \end{split}$	670 125 510 0 325	800 215 615 5 415		660 120 505 0 320	795 210 610 0 410		655 120 500 0 320	790 210 605 0 410		mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SINGI	E-ENDE	D (Figure		5) (Note	9)			•	•	
V _{IH}	Input HIGH CLK, invCLK, D, D Voltage R, SEL	1200 1290		V _{CC}	1200 1355		V _{CC}	1200 1415		V _{CC}	mV
V _{IL}	Input LOW CLK, invCLK, D, \overline{D} Voltage R, SEL	0		V _{IH} – 150 890	0		V _{IH} – 150 955	0		V _{IH} – 150 1015	mV
V_{th}	Input Threshold Voltage Range (Note 10)	1125		V _{CC} – 75	1125		V _{CC} – 75	1125		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} – V _{IL})	150		2600	150		2600	150		260	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIA	LLY (Fig	ures 14 8	(16) (No	te 11)						
V_{IHD}	Differential Input HIGH Voltage	1200		V_{CC}	1200		V_{CC}	1200		V_{CC}	mV
V _{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 12) (Figure 17)	1200		2500	1200		2500	1200		2500	mV
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, inv_CLK, D, inv_D		35 5	100 50		35 5	100 50		35 5	100 50	μΑ
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, inv_CLK, D, inv_D		20 5	100 50		20 5	100 50		20 5	100 50	μΑ
TERMINA	ATION RESISTORS	-	-	-	-	-	-	-	-	-	
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 7. Input and output parameters vary 1:1 with V_{CC}.
- 8. All outputs loaded with 50 Ω to V_{CC} 2.0 V.
- 9. V_{th} , V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously.
- 10. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} V_{IL}) / 2$.
- 11. V_{IHD}, V_{ILD}, V_{ID} and V_{IHCMR} parameters must be complied with simultaneously.
- 12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT ($V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0 \text{ V}$) (Note 13)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT										
I _{EE}	Negative Power Supply Current	35	47	59	35	47	59	35	47	59	mA
PECL OL	JTPUTS (Note 14)										
V_{OH}	Output HIGH Voltage	2260	2310	2360	2290	2340	2390	2315	2365	2415	mV
V _{OL}	Output LOW Voltage $(OLS = V_{CC})$ $(OLS = V_{CC} - 0.4 \text{ V})$ $(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$ $(OLS = V_{CC} - 1.2 \text{ V})$	1320 2030 1550 2260 1785	1470 2090 1670 2310 1875	1620 2180 1790 2390 1995	1360 2065 1585 2290 1820	1510 2125 1705 2340 2030	1660 2215 1825 2420 2030	1390 2090 1615 2315 1850	1540 2150 1735 2365 1940	1690 2240 1855 2445 2060	mV
V _{OUTPP}	$\begin{tabular}{lll} **(OLS = V_{EE}) \\ \hline Output Voltage Amplitude & (OLS = V_{CC}) \\ (OLS = V_{CC} - 0.4 \ V) \\ (OLS = V_{CC} - 0.8 \ V, OLS = FLOAT) \\ (OLS = V_{CC} - 1.2 \ V) \\ **(OLS = V_{EE}) \\ \hline \end{tabular}$	705 130 535 0 345	815 220 640 0 435	1995	695 125 530 0 340	805 215 635 0 430	2030	590 125 525 0 335	800 215 630 0 425	2000	mV
DIFFERE	NTIAL CLOCK INPUTS DRIVEN SINGL	E-ENDE	D (Figure	es 13 & 1	5) (Note	15)					
V _{IH}	Input HIGH CLK, invCLK, D, D Voltage (Single-Ended) R, SEL	1200 2090		V _{CC}	1200 2155		V _{CC}	1200 2215		V _{CC}	mV
V _{IL}	Input LOW CLK, invCLK, D, D Voltage (Single-Ended)	0		V _{IH} – 150 1690	0		V _{IH} – 150 1755	0		V _{IH} – 150 1815	mV
V_{th}	Input Threshold Voltage Range (Note 16)	1125		V _{CC} – 75	1125		V _{CC} – 75	1125		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} – V _{IL})	150		2600	150		2600	150		260	mV
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIA	LLY (Fig	ures 14 8	k 16) (No	te 17)						
V_{IHD}	Differential Input HIGH Voltage	1200		V_{CC}	1200		V_{CC}	1200		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage	0		V _{IHD} – 75	0		V _{IHD} – 75	0		V _{IHD} – 75	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 18) (Figure 17)	1200		3300	1200		3300	1200		3300	mV
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, inv_CLK, D, inv_D		35 5	100 50		35 5	100 50		35 5	100 50	μΑ
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, inv_CLK, D, inv_D		20 5	100 50		20 5	100 50		20 5	100 50	μΑ
TERMINA	ATION RESISTORS			-	-	-	-	-	-	-	
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{**}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

^{13.} Input and output parameters vary 1:1 with V_{CC}.

^{14.} All outputs loaded with 50 Ω to V_{CC} – 2.0 V.

^{15.} V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.

^{16.} V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL}) / 2$.

^{17.} V_{IHD}, V_{ILD}, V_{ID} and V_{IHCMR} parameters must be complied with simultaneously.

18. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT

 $(V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V to } -2.375 \text{ V}) \text{ (Note 19)}$

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT		•	•	•	•		•		•	-
I _{EE}	Negative Power Supply Current	35	47	59	35	47	59	35	47	59	mA
NECL OL	JTPUTS (Note 20)										
V _{OH}	Output HIGH Voltage	-1040	-990	-940	-1010	-960	-910	-985	-935	-885	mV
V _{OL}	Output LOW Voltage $-3.465 \text{ V} \le \text{V}_{\text{EE}} \le -3.0 \text{ V}$										mV
	$(OLS = V_{CC})$	-1980	-1830	-1680	-1940	-1790	-1640	-1910	-1760	-1610	
	$(OLS = V_{CC} - 0.4 \text{ V})$	-1270	-1210	-1120	-1235	-1175	-1085	-1210	-1150	-1060	
	$(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$	-1750 1040	-1630	-1510 010	-1715 1010	-1595 060	-1475	-1685	-1565	-1445	
	$(OLS = V_{CC} - 1.2 V)$	-1040 -1515	-990 -1425	-910 -1305	-1010 -1480	-960 -1390	-880 -1270	-985	-935 -1360	-855 -1240	
	$^{**}(OLS = V_{EE})$ -3.0 V < $V_{EE} \le -2.375$ V	-1313	-1423	-1303	-1460	-1390	-1270	-1450	-1360	-1240	
	(OLS = V _{CC})	-1945	-1795	-1645	-1905	-1755	-1605	-1875	-1725	-1575	
	$(OLS = V_{CC} - 0.4 \text{ V})$	-1265	-1205	-1115	-1230	-1170	-1080	-1205	-1145	-1055	
	$(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$	-1725	-1605	-1485	-1690	-1570	-1450	-1660	-1540	-1420	
	$(OLS = V_{CC} - 1.2 \text{ V})$	-1045	-995	-915	-1010	-960	-880	-900	-940	-860	
	(OLS = V _{EE})	-1495	-1405	-1285	-1460	-1370	-1250	-1435	-1345	-1225	
V _{OUTPP}	Output Voltage Amplitude $-3.465 \text{ V} \le \text{V}_{EE} \le -3.0 \text{ V}$										mV
	(OLS = V _{CC})	705	815		695	805		690	800		
	$(OLS = V_{CC} - 0.4 V)$	130	220		125	215		125	215		
	$(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$	535	640		530	635		525	630		ľ
	$(OLS = V_{CC} - 1.2 V)$	0	0		0	0		0	0		
	**(OLS = V _{EE})	345	435		340	430		335	425		
	$-3.0 \text{ V} < \text{V}_{\text{EE}} \le -2.375 \text{ V}$										
	$(OLS = V_{CC})$	670	800		660	795		655	790		ľ
	$(OLS = V_{CC} - 0.4 V)$	125	215		120	210		120	210		ľ
	$(OLS = V_{CC} - 0.8 \text{ V}, OLS = FLOAT)$	510	615		505	610		500	605		ľ
	$(OLS = V_{CC} - 1.2 V)$ $(OLS = V_{EE})$	0 325	5 415		0 320	0 410		0 320	5 410		
DIFFERE	INTIAL CLOCK INPUTS DRIVEN SINGL			s 13 & 15	l .	l.		320	410		
V _{IH}	Input HIGH CLK, invCLK, D, D	V _{EE} +		V _{CC}	V _{EE} +	, 	V _{CC}	V _{EE} +		V _{CC}	mV
* 1111	Voltage (Single-Ended)	1200		• 66	1200			1200			
	R, SEL	-1210		V_{CC}	-1145		V_{CC}	-1085		V_{CC}	
V _{IL}	Input LOW CLK, invCLK, D, D	V _{EE}		V _{IH} –	V _{EE}		V _{IH} –	V _{EE}		V _{IH} –	mV
	Voltage (Single-Ended)			150			150			150	
	R, SEL	V_{EE}		-1690	V_{EE}		-1545	V_{EE}		-1485	
V _{th}	Input Threshold Voltage (Note 22)	V _{EE} + 1125		V _{CC} – 75	V _{EE} + 1125		V _{CC} – 75	V _{EE} + 1125		V _{CC} – 75	mV
V _{ISE}	Single-Ended Input Voltage	150		2600	150		2600	150		260	mV
	(V _{IH} – V _{IL})						2000	100		200	
DIFFERE	NTIAL INPUTS DRIVEN DIFFERENTIAL	· · ·	res 14 &	16) (Note	e 23)		•		•		
V_{IHD}	Differential Input HIGH Voltage	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	V _{EE} + 1200		V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	V _{EE}		V _{IHD} – 75	mV
V _{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75		2600	75		2600	75		2600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 24) (Figure 17)	V _{EE} + 1200		0.0	V _{EE} + 1200		0.0	V _{EE} + 1200		0.0	mV
I _{IH}	Input HIGH Current (@V _{IH}) R, SEL CLK, inv_CLK, D, inv_D		35 5	100 50		35 5	100 50		35 5	100 50	μΑ

Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT (continued)

 $(V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V to } -2.375 \text{ V}) \text{ (Note 19)}$

•			-40°C	•		25°C	•		85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
DIFFERE	IFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 14 & 16) (Note 23)										
I _{IL}	Input LOW Current (@V _{IL}) R, SEL CLK, inv_CLK, D, inv_D		20 5	100 50		20 5	100 50		20 5	100 50	μА
lols	$\begin{array}{c} \text{OLS Input Current (see Figure 11)} \\ & (\text{OLS} = \text{V}_{CC}) \\ & (\text{OLS} = \text{V}_{CC} - 0.4 \text{ V}) \\ & (\text{OLS} = \text{V}_{CC} - 0.8 \text{ V}, \text{OLS} = \text{FLOAT}) \\ & (\text{OLS} = \text{V}_{CC} - 1.2 \text{ V}) \\ & -3.465 \text{ V} \leq \text{V}_{EE} \leq -3.0 \text{ V} \\ & *(\text{OLS} = \text{V}_{EE}) \\ & -3.0 \text{ V} < \text{V}_{EE} \leq -2.375 \text{ V} \\ & (\text{OLS} = \text{V}_{EE}) \end{array}$	-1500	300 100 5 -100 -600	900 300 100	-300 -1500 -1000	300 100 5 -100 -600	900 300 100	-300 -1500 -1000	300 100 5 -100 -600	900 300 100	μΑ
TERMINA	ATION RESISTORS										
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{*}Typicals used for testing purposes.

^{**}When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} .

^{19.} Input and output parameters vary 1:1 with V_{CC} .

20. All outputs loaded with 50 Ω to V_{CC} – 2.0 V.

21. V_{th} , V_{IH} , V_{IL} , and V_{ISE} parameters must be complied with simultaneously.

22. V_{th} is applied to the complementary input when operating in single-ended mode. $V_{th} = (V_{IH} - V_{IL}) / 2$.

^{23.} V_{IHD}, V_{ILD}, V_{ID} and V_{IHCMR} parameters must be complied with simultaneously.

24. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 10. AC CHARACTERISTICS

 $(V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V} \text{ to } -2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V})$

			-40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Input Clock Frequency (See Figures 3, 5, 7, 9, and 10) DFF (See Figures 4, 6, 8, 9, and 10)		8			8			8		GHz
	(Note 25) DIV/2		10			10			10		
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Note 29) CLK \rightarrow Q, $\overline{\mathbb{Q}}$ SEL \rightarrow Q, $\overline{\mathbb{Q}}$ R \rightarrow Q, $\overline{\mathbb{Q}}$ DFF	150 100 215 195	215 190 280 270	285 280 375 345	150 100 215 195	215 190 280 270	285 280 375 345	150 100 215 195	215 190 280 270	285 280 375 345	ps
t _{SKEW}	Duty Cycle Skew (Notes 26 and 28) DFF		5	20		5	20		5	20	ps
tJITTER	RMS Random Clock Jitter $f_{in} \leq 8 \text{ GHz}$ (See Figures 3 and 5) (Note 25) Peak–to–Peak Data Dependent Jitter		0.5	1		0.5	1		0.5	1	ps
	f _{in} = 8 Gb/s		TBD			TBD			TBD		
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 27)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times (20% – 80%) @ 1 GHz Q, Q										ps
		28 15 25 20	40 40 35 35	65 65 65 65	28 15 25 20	40 40 35 35	65 65 65 65	28 15 25 20	40 40 35 35	65 65 65 65	
t _s	Setup Time D→CLK	30	14		30	10		30	13		ps
t _h	Hold Time D→CLK	25	12		25	7		25	0		ps
t _{rr}	Reset Recovery DFF, DIV/2	40	9		40	12		40	10		ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{25.} Measured using a 500 mV source, 50% duty cycle clock source. Repetitive 1010 input data pattern. All outputs loaded with 50 Ω to V_{CC} – 2.0 V. Input edge rates is 40 ps (20% – 80%).

26. See Figure 18. t_{SKEW} = |t_{PLH} – t_{PHL}| for a nominal 50% differential clock input waveform.

27. V_{INPP} (MAX) cannot exceed V_{CC} – V_{EE} (Applicable only when V_{CC} – V_{EE} < 2600 mV).

28. See Figure 9. Duty Cycle % vs. Frequency.

^{29.} For all OLS Configuration. **When an output level of 400 mV is desired and $V_{CC} - V_{EE} > 3.0 \text{ V}$, a 2 k Ω resistor should be connected from OLS to V_{EE} .

Figure 3. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DFF Mode (V_{CC} – V_{EE} = 3.3 V @ 25°C; Repetitive 1010 Input Data Pattern)

Figure 4. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DIV/2 Mode (V_{CC} – V_{EE} = 3.3 V @ 25°C)

^{*}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

Figure 5. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DFF Mode (V_{CC} – V_{EE} = 2.5 V @ 25°C; Repetitive 1010 Input Data Pattern)

Figure 6. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) for DIV/2 Mode (V_{CC} – V_{EE} = 2.5 V @ 25°C)

^{*}When an output level of 400 mV is desired and V_{CC} – V_{EE} > 3.0 V, a 2 k Ω resistor should be connected from OLS to V_{EE} .

Figure 7. V_{OH}/V_{OL} (Q/Q) vs. Input Frequency (f_{in}) for DFF Mode ($V_{CC}-V_{EE}=3.3~V~@~25^{\circ}C$ and OLS = $V_{CC}-0.8~V$, OLS = FLOAT)

Figure 8. V_{OH}/V_{OL} (Q/Q) vs. Input Frequency (f_{in}) for DIV/2 Mode ($V_{CC}-V_{EE}=3.3~V~@~25^{\circ}C$ and OLS = $V_{CC}-0.8~V$, OLS = FLOAT)

Figure 9. Duty Cycle % vs. Input Frequency (f_{in}) ($V_{CC} - V_{EE} = 3.3 \ V @ 25^{\circ}C$)

Figure 10. Duty Cycle % vs. Input Frequency (f_{in}) ($V_{CC} - V_{EE} = 2.5 \text{ V } @ 70^{\circ}\text{C}$)

Figure 11. Typical OLS Input Current vs. OLS Input Voltage (V_{CC} – V_{EE} = 3.3 V @ 25°C)

Figure 12. OLS Operating Area

Figure 13. Differential Input Driven Single-Ended

Figure 14. Differential Inputs Driven Differentially

Figure 15. V_{th} Diagram

Figure 16. Differential Inputs Driven Differentially

Figure 17. V_{IHCMR} Diagram

Figure 18. AC Reference Measurement

Figure 19. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020/D – Termination of ECL Logic Devices)

ORDERING INFORMATION

Device	Package Type	Shipping [†]
NBSG53AMNG	QFN-16, 3x3 mm (Pb-Free / Halide-Free)	123 Units / Tube
NBSG53AMNR2G	QFN-16, 3x3 mm (Pb-Free / Halide-Free)	3000 / Tape & Reel
NBSG53AMNHTBG	QFN-16 (Pb-Free / Halide-Free)	100 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

The products described herein (NBSG53A), may be covered by U.S. patents including 6,362,644. There may be other patents pending. GigaComm is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsciliaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Oppor

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative