Génétique Science qui a pour objet l'étude des mécanismes qui aboutissent l'apparition d'un nouvel individu.

Espèce (biologie) groupe d'individus potentiellement interféconds qui se reproduisent entre eux.

La génétique est composée de plusieurs domaines d'études

Formelle	Moléculaire
L'étude des lois de transmissions	Mécanismes moléculaires de
des caractères.	conservation et transmission des
	gènes

On distingue les caractères en deux catégories :

Acquis	Innés
Lié à l'environnement et son vécu	D'origine génétique

Les dernières découvertes en épigénétique suggèrent que la frontière entre l'inné et l'acquis n'est pas aussi tranchée qu'elle n'y parait.

Présentation et caractère indépendant

L'origine des caractères

Aujourd'hui, on sait que les gènes sont le support de l'information génétique. Ils permettent de fabriquer des protéines qui possèdent des propriétés qui se traduisent <u>parfois</u> par l'apparition de caractères.

C'est grâce à l'apparition d'une mutation que l'on détermine l'existence d'un gène.

Individu Somme des caractères d'un être vivant.

Lois de Mendel

Uniformité	Chaque individu possède deux caractères.
Indépendance	Les caractères sont indépendants.
	(Brassage interchromosomique)

Disjonction	Une seule version du caractère possédée par chaque
	parent est transmise (durant la méiose).

Les ratios pour justifier les gènes dominance/récidivité

Monohybridisme	Dihybridisme
3:1	9 :3 :3 :1

Type d'expérience

Nbre de caractères	1 (Monohybridisme)	2 (Dihybridisme)
étudiés		

Nbre d'allèles	Hétérozygote	Homozygote
Lors de l'autofécondation	Hybride (non obs)	Lignée pure

Facteur héréditaire/Trait	Gène	Caractère
Version	Allèle	État de caractère
Ensemble	Génotype (visible	Phénotype
	ou non)	

Un allèle peut être par rapport un autre

Récessif	Codominance	Dominance	Dominance
		incomplète	
Information	État obs de	État	Impose son
génétique n'apparait	deux	intermédiaire	phénotype.
pas	caractères	Blanc + noir = gris	

Phénotype dominant phénotype produit par l'allèle dominante.

Syntaxe de la génétique

Sauvage	a+	Mutation	a-
Dominant	Α	Récessif	а
Pour les gènes sur les gonosomes		(X^b/Y)	

	Phénotype	Génotype
Monohybridisme	[A]	(A/A)

Dihybridisme hétérozygote		
 Gènes indépendants 	[A,B]	(A/a ; B/b)
 Gènes liés 	[A,B]	(AB/ab) ou (Ab/aB)

Génération homogène tous les individus d'une génération possèdent le même phénotype.

Paire incomplète (en opposition à paire complète) c'est notamment les case des Y/X.

Chromosomes sexuels

Hérédité en zigzague Elle	6 9
concerne uniquement les	$F_{\bullet}(X^{A}) \times (X^{a}/X^{a})$
caractères sexuels le caractère	- (va) (va/va)
dépend d'un seul parent.	$F. (X^a) (X^b/X^a)$

<u>NB</u>: C'est souvent le mâle ne transmet pas de gènes pour le caractère étudié.

Liaison génétique

Lorsque les gènes sont sur deux chromosomes distincts, la présence de l'un est indépendante par rapport à l'autre.

Mais lorsqu'ils se situent sur le même chromosome, il peut exister un lien.

Cette probabilité vari et est directement lié à un mécanisme de recombinaison appelé brassage génétique qui a lieu durant la méiose.

Liaison génétique deux gènes proches sur un chromosome ont tendance à être transmis ensemble lors brassage génétique.

<u>Remarque</u>: Si deux gènes sont indépendants alors il se peut qu'ils soient sur :

Deux chromosomes dif	terents Sur	ie meme chrom	osome
Lorsqu'ils sont sur le mêi	me chromosome,	cela peut être d	û aux faites que

les recombinaisons génétiques séparent les gènes comme s'ils étaient indépendants.

<u>NB</u> Si les deux gènes sont indépendants, on peut se ramener à des tableaux de croisement de type monohybridisme.

Distance génétique

On mesure cette distance génétique entre deux gènes par la probabilité de recombinaison. Cela correspond à la somme des génotypes recombinés. Elle se mesure en cM.

Cartes des liaisons génétiques représentation graphique de la distance génétique.

Croissement test

Croisement test la fécondation entre un individu hétérozygote avec un individu homozygote possédant l'état récessif.

La distance génétique est ici égale à la somme des fréquences des phénotypes recombinés.

<u>Autofécondation en F1</u>

Pour trouver la distance génétique, dans le cas d'une autofécondation, on a besoin de partir de l'individu double récessif.

Phénotype double dominant/récessif	Recombiné	Parental
F0 homozygote	[A,b]x[a,B]	[A,B]x[a,b]
F1	(Ab/aB)	(AB/ab)
Autofécondation F1		

Double récessif	Entre 0% et 6.25%	
Distance génétique	$\sqrt{\%} \times 2$	$1-\sqrt{\%}\times 2$

Information complémentaire sur la recombinaison

La recombinaison génétique, un processus contrôlé par la cellule

Descendant exceptionnel individu avec une hétéro surnuméraire. Cette anomalie génétique qui a lieu durant la méiose.

Transduction transfert de matériel génétique d'une bactérie à une autre par l'intermédiaire d'un vecteur viral.

Transfert horizontal (opposition de transfert vertical) transfert d'ADN venant d'un autre organisme sans en être le descendant.

Point méthodologie

L'idée est de formuler des hypothèses en expliquant les résultats qui devraient être obtenus. Il faut ensuite les justifier avec un tableau de croisement et conclure en que les résultats attendus correspondent avec ceux obtenus.

- 1. Identifier le périmètre de l'étude :
 - Un caractère étudié = monohybridisme
 - Deux caractères étudiés = dihybridisme
- 2. Identifier pour chaque gène, les relations de dominance entre les allèles. On raisonne indépendamment pour chaque gène. Si un croisement donne des descendants homogènes alors on peut en déduire la dominance.

Méthodologie

- 1. Poser sous forme d'un schéma les données de l'énoncé
- 2. Formuler des hypothèses
- 3. Écrire les gamètes obtenues pour les générations F1 et F0

4. Vérifier et justifier en utilisant des tableaux de croisements. Chaque case devra contenir le génotype, le phénotype et la probabilité.

Pour les questions liées au génotype en dihybridisme, on ne raisonne qu'à partir du phénotype double récessif.

Prouver l'existence de deux gènes ⇔ montrer l'existence de phénotype recombiné.