Fixed Point Arithmetic With Scaled Integers

CS 330

August 23, 2010

Fixed Point Numbers as Scaled Integers

- We can a approximate a *real number* x by storing it as a (binary) integer scaled by 2^n where n is the number of bits representing the fractional portion of the number.
- Approximating π by storing $\lfloor \pi \times 2^{16} \rfloor$ as a 32-bit integer. The *binary point* is fixed between bit 15 and 16 (Q16.16):

(review binary and hex number systems; 2's complement)

Motivation

- May not have access to FPU (e.g., embedded DSP).
- Integer operations faster than FPU.
- Consistent results between platforms.
- Unique value of zero (using 2's complement).
- Common in embedded systems

Downside

- Numbers need to be of roughly the same order of magnitude.
- FPU's may provide more operations (e.g., sin, cos, exp, sqrt).
- More tedious: need to manually manage overflow and rescale numbers after multiplication and division.
- No representation for $\pm \infty$ or NaN's.

Decimal and Binary Fractions

frac	decimal	binary
$\overline{1/1}$	1 or 0.9999	1 or 0.1111
1/2	0.5	0.1
1/3	0.3333	0.010101
1/4	0.25	0.01
1/5	0.2	0.00110011
1/6	0.1666	0.0010101
1/7	0.142857142857	0.001001
1/8	0.25	0.001
1/9	0.111	0.000111000111
1/10	0.1	0.000110011

Note: x/n terminates in binary iff $n = 2^i$

1/10 in Fixed Point

$$0.1_{10} \approx 0.0001100110011001_2$$

$$= 0.F999_{16}$$

$$= 0.0999908447_{10}$$
error $\approx 9.15 \times 10^{-6}$
 $0.1 \times 10 = 0.1 \times (2^3 + 2^1)$

$$\approx 0.1100110011001_000 + 0.00110011001_0$$

$$= 0.111111111111111010$$

Addition and Subtraction

$$(x \times 2^n) + (y \times 2^n) = (x + y) \times 2^n$$

 $(x \times 2^n) - (y \times 2^n) = (x - y) \times 2^n$

- We assume binary point at same spot.
- Straight forward use of integer addition and subtraction.

$$\pi + e$$

$$3.141586 + 2.718277 = 5.859863$$

000000000000101.110111000010000

$$0003.243F_{16} \\ +0002.B7E1_{16} \\ \hline 0005.DC20_{16}$$

Multiplying Two Fixed-Point Numbers

$$(x \times 2^n) \times (y \times 2^n) = (x \times y) \times 2^{2n}$$

- Note that resulting scaling factor requires twice as many bits for the fraction!
- Will overflow when $|x \cdot y| \ge 1$.
- For our 32-bit integers (n = 16) we capture the result into a 64-bit number:

$$(x \times 2^{16}) \times (y \times 2^{16}) = (x \times y) \times 2^{32}$$

- Upper 32 bits contain whole portion;
- Lower 32 bits contain fraction.

$$\pi \times e$$

3.141586 * 2.718277 = 8.539701

$$\begin{array}{c} 0003.243F_{16} \\ *0002.B7E1_{16} \\ \hline 00000008.8A29E45F_{16} \\ \hline \\ \text{upper 32-bits} & \text{lower 32-bits} \\ \text{whole part} & \text{fraction} \\ \end{array}$$

rescale to 32-bits $0008.8A29_{16}$ round to nearest $0008.8A2A_{16}$

Rescale after multiplication

• A 32-bit machine will save the 64-bit result into two 32-bit registers:

```
movl $0x0003243F, %eax /* EAX <-- pi */
movl $0x0002B7E1, %ebx /* EBX <-- e */
imull %eax, %ebx /* EDX:EAX <-- pi * e */
```

• Rescale to 32-bits

```
shll $16, %edx /* EDX <<= 16 */
shrl $16, %eax /* EAX >>= 16 */
orl %edx, %eax /* EAX = 32-bit result */
```

 Not transparent to C. Instead we force the compiler to use 64-bit a multiply and rescale:

```
((int64_t) pi * e) >> 16;
```

Division of two Fixed-Point Numbers

Naïve division

$$(x \times 2^n) \div (y \times 2^n) = (x \div y) \times 2^0$$

We have zero bits of fraction left!

ullet We first scale the dividend by 2^n

$$(x \times 2^{2n}) \div (y \times 2^n) = (x \div y) \times 2^n$$

 \bullet For our 32-bit fixed-point numbers we scale the dividend by 2^{16} and store it as a 64-bit number.

$$(x \times 2^{32}) \div (y \times 2^{16}) = (x \div y) \times 2^{16}$$

$$\pi \div e$$

$3.141586 \div 2.718277 = 1.155727$

upper 32-bits lower 32-bits whole part fraction
$$|\leftarrow > |$$
 $|\leftarrow > |$ $|\leftarrow > |$

Pre-scale dividend before division

• For a machine with 32-bit registers we store the 64-bit dividend in two registers for a 32-bit divide operation:

```
movl $0x0003243F, %eax /* EAX <-- pi */
movl $0x0002B7E1, %ebx /* EBX <-- e */
movl %eax, %edx
sarl $16, %edx /* EDX <-- whole part of pi */
sall $16, %eax /* EAX <-- fraction of pi */
idivl %ebx /* EAX <-- quotient pi / e */
```

 Not transparent to C. Instead we scale the dividend by 2¹⁶ and perform a 64-bit divide:

```
((int64_t) pi << 16) / e
```

• Digits of precision for 16-bit fraction:

$$2^{16} = 10^{d}$$

$$\log 2^{16} = \log 10^{d}$$

$$16 \log 2 = b \log 10$$

$$d = 16 \frac{\log 2}{\log 10} \approx 4.816 \text{ decimal digits}$$

 $\log 10^{\circ}$ log 10 ϵ = smallest positive integer we can store

$$\epsilon = 2^{-16} \approx 0.00001526 = 0.1526 \times 10^{-4}$$

Minimum and Maximum

$$8000.0000_{16} = -2^{15} = -32,768_{10}$$

 $7FFF.FFFF_{16} = 2^{15} - \epsilon \approx 32,767.9999847_{10}$

Fixed Point Line Rasterization

drawLine(x_0, y_0, x_1, y_1)

$$\Delta y = y_1 - y_0$$
 $\Delta x = x_1 - x_0$
if $|\Delta y| \ge |\Delta x|$ (vertical)
 $m = \Delta x/\Delta y$
 $y_{\text{start}} = \text{round}(y_0)$
 $y_{\text{end}} = \text{round}(y_1)$
 $x = x_0$
for $y = y_{\text{start}} \cdots y_{\text{end}}$
 $\text{setpixel(round}(x), y)$
 $x = x + m$
else ... (horizontal)

drawLine(int x0, int y0, int x1, int y1) (fixed-point coordinates, n = 16)

```
int dy = y1 - y0;
int dx = x1 - x0;
if (abs(dy) > abs(dx)) {
   int m = ((int64_t) dx << 16) / dy;
   int y = (y0 + 0x08000) >> 16;
   int yend = (y1 + 0x08000) >> 16;
   int yinc = (dy < 0) ? -1 : +1;
   int x = x0 + 0x08000;
   for (; y != yend; y += yinc) {
      setpixel(x >> 16, y);
      x += m;
   }
} else ...
```