

AFGL-TR-86-0272

Molecular Transmission Band Models for LOWTRAN

Joseph H. Pierluissi Christo E. Maragoudakis

University of Texas at El Paso Electrical Engineering Department El Paso, TX 79968-0523

31 December 1986

Final Report May 1982-December 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

REST AUG 2 1 1987

"This technical report has been reviewed and is approved for publication"

(Signature)

LEONARD W. ABREU

.... Contract Manager

(Signature)

GEORGE A. VANASSE

Branch Chief

FOR THE COMMANDER

(Signature)

R. EARL GOOD

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

| REPORT DOCUMENTATION PAGE  I. REPORT NUMBER  AFGL-TR-86-0272  I. TITLE (and Subilite)  Molecular Transmission Band Models for I  I. AUTHOR(**)  Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  II. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu / OP    III. MONITORING AGENCY NAME & ADDRESS(II dillorent from Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | READ INSTRUCTIONS BEFORE COMPLETING FORM  CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER  5. TYPE OF REPORT & PERIOD COVERE May 1982 - December 1986 Final Report 6. PERFORMING ORG. REPORT NUMBER FR-86-AF-152 9. CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101F 767009AQ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AFGL-TR-86-0272  TITLE (and Subilile)  Molecular Transmission Band Models for I  AUTHOR(s)  Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. TYPE OF REPORT & PERIOD COVERE  May 1982- December 1986  Final Report  6. PERFORMING ORG. REPORT NUMBER  FR-86-AF-152  6. CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK  AREA & WORK UNIT NUMBERS  62101F                                                                                          |
| Molecular Transmission Band Models for I  AUTHOR(*)  Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May 1982- December 1986 Final Report  6. PERFORMING ORG. REPORT NUMBER FR-86-AF-152  6. CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  62101F                                                                                                                                |
| Molecular Transmission Band Models for I  AUTHOR(*)  Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May 1982- December 1986 Final Report  6. PERFORMING ORG. REPORT NUMBER FR-86-AF-152  6. CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  62101F                                                                                                                                |
| Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Report  6. PERFORMING ORG. REPORT NUMBER FR-86-AF-152  6. CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  62101F                                                                                                                                                        |
| Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6. PERFORMING ORG. REPORT NUMBER FR-86-AF-152 6. CONTRACT OR GRANT NUMBER(*) F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101F                                                                                                                                                                         |
| Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FR-86-AF-152  CONTRACT OR GRANT NUMBER(*)  F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  62101F                                                                                                                                                                                                          |
| Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F19628-82-C-0078.  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS  62101F                                                                                                                                                                                                                                                    |
| Joseph H. Pierluissi Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F19628-82-C-0078  10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101F                                                                                                                                                                                                                                                      |
| Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                                                                                                            |
| Christos E. Maragoudakis  PERFORMING ORGANIZATION NAME AND ADDRESS  The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                                                                                                            |
| The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  1. Controlling Office Name and Address Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62101F                                                                                                                                                                                                                                                                                                                                    |
| The University of Texas at El Paso Electrical Engineering Department El Paso, Texas 79968-0523  1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62101F                                                                                                                                                                                                                                                                                                                                    |
| Electrical Engineering Department El Paso, Texas 79968-0523  1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                           |
| El Paso, Texas 79968-0523  1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu / OP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                           |
| 1. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 707003/10                                                                                                                                                                                                                                                                                                                                 |
| Air Force Geophysics Laboratory<br>Hanscom AFB, Massachusetts 01731<br>Monitor: L.W. Abreu /0P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |
| Hanscom AFB, Massachusetts 01731<br>Monitor: L.W. Abreu /OPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12. REPORT DATE                                                                                                                                                                                                                                                                                                                           |
| Monitor: L.W. Abreu /OPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 December 1986                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. NUMBER OF PAGES 192                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassified                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154. DECLASSIFICATION/DOWNGRADING                                                                                                                                                                                                                                                                                                         |
| 6. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                         |
| Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n unlimited.                                                                                                                                                                                                                                                                                                                              |
| , and a second of the second o |                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                           |

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IL SUPPLEMENTARY NOTES

13. KEY WORDS (Continue on severee side if necessary and identity by block number)

Molecular Absorption, Infrared, Band Models, Concetration Profiles, Uniformly Mixed Gases, Trace Gases.

29. ABSTRACT (Continue on reverse side II necessary and identify by block member)

This report discusses proposed molecular transmittance band models for the uniformly mixed gases (N<sub>2</sub>0, CH<sub>4</sub>,CO, O<sub>2</sub> and CO<sub>2</sub>), the trace gases (NO, NO<sub>2</sub>, NH<sub>3</sub> and SO<sub>2</sub>), water vapor, and ozone in the infrared. The models are specifically designed for direct incorporation into LOWTRAN 6 atmospheric transmission code.

## Molecular Absorption Band Models for LOWTRAN

## Summary

This is the final report on a five year effort to develop validate molecular transmittance band models for uniformly mixed gases (N<sub>2</sub>O, CH<sub>4</sub>, CO, O<sub>2</sub> and CO<sub>2</sub>), the trace gases (ND, ND, NH, and SD,),  $H_2D$  vapor and infrared  $D_3$ . These models are specifically designed for direct incorporation into a future revision of LOWTRAN 6. The model parameters are provided at 5 cm intervals throughout the associated absorption bands, and allow for calculations of 20 cm resolution transmittance spectra. The transmission function consists of a simple exponential with the physical variables elevated to some powers, and defined by four parameters, one of which is spectrally dependent. most part the models were developed with synthetic spectra, and validated with laboratory measurements. This report presents comparisons between line-by-line calculated spectra and measured laboratory spectra, degraded line-by-line and band model calculated transmittances, and calculations using LOWTRAN 6 and the proposed models. Included are all the model parameters and equations necessary for transmittance calculations along any type of path in the atmospheric environment.

# TABLE OF CONTENTS

|                                                                                    | Page #  |
|------------------------------------------------------------------------------------|---------|
| 1. Introduction                                                                    | 1       |
| 2. The Transmission Function                                                       | 4       |
| 3. Developing Data                                                                 | 6       |
| 4. Model Development                                                               | 11      |
| 5. Transmittance Comparisons                                                       | 18      |
| 6. Discussion and Conclusions                                                      | 19      |
| References                                                                         | 27-29   |
| Appendix A: Tables of Spectral Parameters                                          | 33-79   |
| Appendix B Plots of Spectral Parameters                                            | 81-92   |
| Appendix C Transmission Functions                                                  | 93-102  |
| Appendix D Comparisons of Measurements for H <sub>2</sub> O                        | 103-113 |
| Appendix E Comparison Calculated Transmittance H <sub>2</sub> O and O <sub>3</sub> | 115-133 |
| Appendix F Comparison Calculated Transmittance 0-350cm <sup>-1</sup>               | 135-142 |
| Appendix G Comparison LOWTRAN Transmittance for Gases                              | 143-146 |
| Appendix H Transmittance Through All Gases                                         | 147-158 |
| Appendix   Published Papers                                                        | 159-185 |

#### I. Introduction

In a previous scientific report under this contract the present authors discussed to a large extent the history of the  ${\color{red} \textbf{LOWTRAN}}^{\,2}$  transmission code, origin and justification for the proposed exponential transmission function 3. numerical methods used in the determination of the model parameters. sources of the laboratory measurements, method for generating line-by-line transmittance data using FASCODE  $^{5}$ . and modeling results for the uniformly mixed and the trace gases. All but the last item remained identical in the work that followed that effort, and led to the development of new models for water vapor and ozone. Several meaningful modifications were made to the previously developed models for the uniformly mixed and the trace gases. Hence, this report concentrates on the presentation of primarily the final results for all the molecular absorption band models. A large percentage of these results have already appeared in the open literature 6-12.

The present effort may be best summarized with reference to Tables I and II. Table I shows that the current LOWTRAN 6 model for water vapor extends from 350 to 14520 cm<sup>-1</sup>, with two gaps inbetween for which calculations are not permissible. Ozone extends continuously from 575 to 3270 cm<sup>-1</sup> in the infrared region. Likewise, the single model for all the uniformly mixed gases extends from 500 to 13245 cm<sup>-1</sup>, with a wide spectral gap in between. Table II shows that the water vapor model has been extended continuously from 0 to 17860 cm<sup>-1</sup>, while ozone has been corrected by eliminating some spectral regions for which calcula-

| ABSORBER | SPECTRAL   | RANGE   | $(cM^{-1})$ |
|----------|------------|---------|-------------|
| ADSCRUEN | 31 LOTTICE | 11/11/4 | (01)        |

| •                                                                                             |                         |
|-----------------------------------------------------------------------------------------------|-------------------------|
| Water Vapor                                                                                   | 350- 9195, 9878-12795,  |
| (H <sub>2</sub> 0)                                                                            | 13400-14520             |
| 0zone                                                                                         | 575- 3270, 13000-24200, |
| (0 <sub>3</sub> )                                                                             | 27500-50000             |
| Uniformly Mixed Gases (CH <sub>4</sub> ,N <sub>2</sub> 0,0 <sub>2</sub> ,C0,C0 <sub>2</sub> ) | 500- 8070, 12950-13245  |

Table I. Summary of the Molecular Absorption Band Models In LOWTRAN 6.

| Water Vapor<br>(H <sub>2</sub> 0)      | 0-17860                                              |                                                       |                                         |
|----------------------------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|
| 0zone<br>(0 <sub>3</sub> )             | 0- 200,<br>2670-3260,                                | 515- 1275,<br>13000-24200,                            | 1630- 2295,<br>27500-50000              |
| Uniformly Mixed Gases:                 |                                                      |                                                       |                                         |
| Methane<br>(CH <sub>4</sub> )          | 1065- 1775,<br>5865- 6135                            | 2345- 3230,                                           | 4110- 4690,                             |
| Nitrous Oxide<br>(N <sub>2</sub> 0)    | 0- 120,<br>1065- 1385,<br>2705- 2865,<br>4540- 4785, | 490- 775,<br>1545- 2040,<br>3245- 3925,<br>4910- 5165 | 865- 995,<br>2090- 2655,<br>4260- 4470, |
| Oxygen<br>(O <sub>2</sub> )            | 0- 265,<br>12850-13220,                              | 7650- 8080,<br>14300-14600,                           | 9235- 9490,<br>15695-15955              |
| Carbon Monoxide<br>(CO)                | 0- 175,                                              | 1940- 2285,                                           | 4040- 4370                              |
| Carbon Dioxide<br>(CO <sub>2</sub> )   | 425- 1440,<br>4530- 5380,<br>8030- 8335,             | 1805- 2855,<br>5905- 7025,<br>9340- 9670              | 3070- 4065,<br>7395- 7785,              |
| Trace Gases:                           |                                                      |                                                       |                                         |
| Nitric Oxide<br>(NO)                   | 1700- 2005                                           |                                                       |                                         |
| Nitrogen Dioxide<br>(NO <sub>2</sub> ) | 580- 925,                                            | 1515- 1695,                                           | 2800- 2970                              |
| Ammonia<br>(NH <sub>3</sub> )          | 0- 2150                                              |                                                       |                                         |
| Sulphur Dioxide<br>(SO <sub>2</sub> )  | 0- 185,<br>2415- 2580                                | 400- 650,                                             | 950- 1460,                              |

Table II. Summary of the new Molecular Absorption Band Models

tions were unnecessary. The five individual models for the uniformly mixed gases allow for the use of different combinations of absorber concentrations, and extend the spectral coverage from 0 to 15955 cm<sup>-1</sup>. Finally, Table II shows that models for four trace gases have been included for the calculation of total molecular transmittance, which were nonexistent in LOWTRAN.

#### II. The Transmission Function

The molecular transmittance  $\tau$  averaged over a spectral interval  $\Delta\nu$  with a triangular instrument response function of 20 cm  $^{-1}$  full-width at half intensity, was approximated by the exponential function  $^3$ 

$$\tau = \exp \left(-\left(CW\right)^{a}\right) , \qquad (1)$$

where

$$W = (P/Po)^{n} (To/T)^{m} U , \qquad (2)$$

$$C = 10 C', (3)$$

$$U = 0.7732 \times 10^{-4} \text{ Mp}_a$$
 Z for all absorbers, except  $H_2D$ . (4)

$$U = 0.1 \rho_{u} Z$$
 for  $H_{2}D_{s}$  (5)

In these equations P(atm), T(K), M(ppmv),  $\rho_W$   $(g/m^3)$  and  $\rho_a(g/m^3)$  are vertical profiles of pressure, temperature, volume mixing ratio, water vapor density, and air density, respectively,  $U(atm\ cm)$  is the absorber amount in Eq. (4),  $U(g/cm^2)$  is the absorber amount in Eq. (5), Z(km) is the path length, and the subscript "o" denotes conditions at a standard temperature and pressure (viz. one atm and 273.16 K, respectively). The model is further defined by the absorber parameters set a, n, and m, and by a set of C values at 5 cm<sup>-1</sup> spectral intervals. In Eq. (3), C is

redefined in terms of  $C^*$  for computational convenience. The complete parameter set a, n, m, and  $C^*$ , i = 1,2,...I, for I spectral intervals, was obtained from the equation

$$\varepsilon = \sum_{i=1}^{\infty} \left\{ \tau(i,j) - \tau_{m}(i,j) \right\}^{2}$$
 (6)

where  $\epsilon$  is the least-squares error, minimized using the conjugate gradient descent,  $j=1,2,\ldots,J$  is an index for the data values,  $\tau$  is a transmittance datum, and  $\tau_m$  is the band model in Eq. (1).

Equation (1) is appealing for use as a transmission function: because it is analytically simple and asymptotic to one and zero, respectively, as the argument ranges from zero to infinity. It was used earlier in curve-fitting to the empirical transmission tables in LOWTRAN for water vapor, the uniformly mixed gases, and ozone. More recently, it was adopted in an extensive development effort leading to individual models for the uniformly mixed and trace gases. Although not much physical significance may be attributed to this function, it has been shown that in some cases empirical approximations outperformed theoretically based band models such as the regular  $^{15}$ and the random  $^{16}$  . It does not approach the functional form of any of such classical models in either the limiting weak-line or strong-line conditions (i.e., U/P very small or very large, It has been shown  $^3$  that it leads to a respectively). transmittance polynomial proposed earlier for use with water vapor and carbon dioxide, which, in turn, originated as an approximation to the strong-line limit to the random model. The classical models were derived mostly for homogeneous paths, Lorentzian specific absorption line configurations, and broadening conditions. Equation (1) is generally proposed for

use along inhomogeneous paths, for nonspecific absorption line configurations, and for combinations of Lorentzian and Doppler broadening conditions.

## III. Developing Data

The transmittance data used in connection with Eq. (6) in the determination of the complete set of the model parameters, consisted primarily of a combination of laboratory measurements and averaged line-by-line spectra. The line-by-line spectra was generated through calculations with FASCODIC, which in turn uses standard atmospheric profiles  $^{18}$  and the AFGL line parameter compilation  $^{19,20}$ . Details on the calculational process and range of variables representing these data were already covered in the previously cited report  $^1$ . The efforts for  $\rm H_2$ 0 involved laboratory measurements  $^{21,22}$  which had not been considered in the previous modeling. Table III summarizes the range of all of the transmittance data parameters adopted in the development.

7

The absorber vertical concentrations for each one of the gases modeled consisted of the profiles proposed by M.S. H. Smith $^{30}$ , extrapolated so as to match the 33 altitude increments in the standard atmospheric models. After the modeling was completed, each one of the resulting band model was incorporated into LOWTRAN. The latter code was also updated with the new 51-level atmospheric profiles recently generated by AFGL $^{31}$ . A composite plot of the concentration profiles for all the absorbers considered in the Tropical Atmosphere is shown in Fig. 1.

## RANGE OF MODEL DATA

| ABSORBER                             | SPECTRAL<br>RANGE<br>(CM <sup>-1</sup> )                                                            | PRES<br>(AT<br>MEAS.       | SSURE<br>[M)<br>CALC.      |                  | ERATURE<br>(K)<br>CALC. |                            | ER AMOUNT<br>1 CM)<br>CALC. | REFERENCES<br>FOR<br>MEASURMENTS |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------|-------------------------|----------------------------|-----------------------------|----------------------------------|
| Ammonia<br>(NH <sub>3</sub> )        | 0-2150                                                                                              | 0.163E+0<br>to<br>0.824E+0 | 0.102E+0<br>to<br>1.000E+0 | 300              | 217<br>to<br>300        | 0.935E-2<br>to<br>0.308E+0 | 0.962E-2<br>to<br>0.316E-1  | 23                               |
| Carbon Dioxide<br>(CO <sub>2</sub> ) | 425-1440<br>1805-2855<br>3070-4065<br>4530-5380<br>5905-7025<br>7395-7785<br>8030-8335<br>9340-9670 | 0.100E-1<br>to<br>1.000E+0 | 0.117E-1<br>to<br>1.000E+0 | 216<br>to<br>310 | 217<br>to<br>288        | 0.804E-1<br>to<br>0.235E+5 | 0.856E-2<br>to<br>0.300E+5  | 21,26,27,28                      |
| Carbon Monoxide<br>(CO)              | 0- 175<br>1940-2285<br>4040-4370                                                                    | 0.304E+0<br>to<br>1.000E+0 | 0.102E+0<br>to<br>1.000E+0 | 300              | 230<br>to<br>300        | 0.730E-1<br>to<br>0.143E+3 | 0.350E-1<br>to<br>0.275E+3  | 21                               |
| Methàne<br>(СН <sub>Ц</sub> )        | 1065-1775<br>2345-3230<br>4110-4690<br>5865-6135                                                    | 0.100E+0<br>to<br>1.000E+0 | 0.102E+0<br>to<br>1.000E+0 | 302<br>to<br>310 | 217<br>to<br>300        | 0.922E-1<br>to<br>1.375E-1 | 0.997E-1<br>to<br>1.359E+2  | 21                               |
| Nitric Oxide<br>(NO)                 | 1700-2005                                                                                           | 0.136E-1<br>to<br>0.966E+0 | 0.546E-1<br>to<br>1.000E+0 | 300              | 217<br>to<br>288        | 0.722E-1<br>to<br>0.310E+0 | 0.619E-3<br>to<br>0.310E+0  | 24                               |

Table III. Range of Calculated and Measured Transmittance Data Used in the Validation of the Band Models for Molecular Absorption

|                                        | SPECTRAL<br>RANGE                                                                                                                      | ( A <sup>-</sup>           | SSURE<br>TM)               |                  | ERATURE<br>K)    | (ATI                       | ER AMOUNT<br>M CM)         | REFERENCES<br>FOR |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------|------------------|----------------------------|----------------------------|-------------------|
| ABSORBER                               | (CM-1)                                                                                                                                 | MEAS.                      | CALC.                      | MEAS.            | CALC.            | MEAS.                      | CALC.                      | MEASUREMENTS      |
| Nitrogen Dioxide<br>(NO <sub>2</sub> ) | 580- 925<br>1515-1695<br>2800-2970                                                                                                     | 0.663E-1<br>to<br>1.000E+0 | 0.551E-1<br>to<br>1.000E+0 | 298<br>to<br>328 | 217<br>to<br>288 | 0.823E-2<br>to<br>0.919E+0 | 0.948E-3<br>to<br>0.119E+0 | 22                |
| Nitrous Oxide<br>(N <sub>2</sub> O)    | 0- 120<br>490- 775<br>865- 995<br>1065-1385<br>1545-2040<br>2090-2655<br>2705-2865<br>3245-3925<br>4260-4470<br>4540-4785<br>4910-5165 | 0.515E-4<br>to<br>0.484E+0 | 0.102E+0<br>to<br>1.000E+0 | 296<br>to<br>301 | 217<br>to<br>300 | 0.686E-3<br>to<br>0.387E+3 | 0.962E-3<br>to<br>0.829E+2 | 21                |
| 0xygen<br>(0 <sub>2</sub> )            | 0 - 265<br>7650 - 8080<br>9235 - 9490<br>12850 - 13220<br>14300 - 14600<br>15695 - 15955                                               | 0.940E+0                   | 0.102E+0<br>to<br>1.000E+0 | 300              | 217<br>to<br>300 | 0.274E+4<br>to<br>0.219E+6 | 0.489E+3<br>to<br>0.256E+9 | 25                |
| 0zone<br>(0 <sub>3</sub> )             | 0- 200<br>515-1275<br>1630-2295<br>2670-3560                                                                                           |                            | 0.102E+0<br>to<br>1.000E+0 | 300              | 217<br>to<br>288 |                            | 0.992E-3<br>to<br>0.992E+1 |                   |

Table III. Range of Calculated and Measured Transmittance Data Used in the Validation of the Band Models for Molecular Absorption (Continued)

٠, ,

## RANGE OF MODEL DATA

|                                   | SPECTRAL<br>RANGE                         |                            | SSURE<br>TM)               | TEMPE<br>( )     | RATURE           |                            | ER AMOUNT<br>1 CM)         | REFERENCES<br>FOR |
|-----------------------------------|-------------------------------------------|----------------------------|----------------------------|------------------|------------------|----------------------------|----------------------------|-------------------|
| ABSORBER                          | (CM <sup>-1</sup> )                       | MEAS.                      | CALC.                      | MEAS.            | CALC.            | MEAS.                      | CALC.                      | MEASUREMENTS      |
| Sulfur Dioxide (SO <sub>2</sub> ) | 0-185<br>400-650<br>950-1460<br>2415-2580 | 0.500E-1<br>to<br>1.000E+0 | 0.102E+0<br>to<br>1.000E+0 | 296<br>to<br>298 | 217<br>to<br>300 | 0.186E-1<br>to<br>0.584E+1 | 0.987E-2<br>to<br>0.290E+2 | 29                |
| Water Vapor<br>(H <sub>2</sub> 0) | 0-1000                                    |                            | 0.102E+0<br>to<br>1.000E+0 |                  | 217<br>to<br>288 |                            | 0.964E-3<br>to<br>0.483E+4 |                   |
|                                   | 1005-16045<br>16340-17860                 |                            | 0.102E+0<br>to<br>1.000E+0 |                  | 217<br>to<br>288 |                            | 0.254E+3<br>to<br>0.255E+6 | 22                |

Table III. Range of Calculated and Measured Transmittance Data Used in the Validation of the Band Models for Molecular Absorption (continued)

9

\_

TROPICAL ATMOSPHERE VERTICAL DISTRIBUTION PROFILES IN PPMV: NH3 CO2 CO CH4 NO NO2 N20 O2 O3 SO2 H20



Fig. 1. Vertical Mixing Ratio Profiles for the Absorbers Modeled (Tropical Atmosphere)

## IV. Model Development

The numerical procedures discussed briefly in a previous section, and extensively in the earlier cited report . were used with the available data to determine the parameters a, n, m, and C'for the 11 absorbers. In Eqs. (1) through (3) the parameters a, n, m are normally expected to be spectrally independent for a given absorber. The parameter C' is, then, expected to assume all the spectral variability of the band absorption. Although this was the case in general for all the gases having a small number of bands, a few required the use of different sets of parameters throughout the absorption spectrum. Table IV summarizes the results derived from the modeling efforts. The criterion used for deciding on the number of bands to be modeled with a single parameter set, was that the rms transmittance deviation between the model and the modeling data remained below 2 percent. The resulting spectral parameters C\* at 5 cm intervals are tabulated in Appendix A.

It is worth noting at this point that in the process of determining the band model parameters in the region from zero to  $20~\rm cm^{-1}$ , it was necessary to mimic the lines in this region into the region from zero to  $-20~\rm cm^{-1}$ . This allowed for the calculation of mean transmittances at 5 cm<sup>-1</sup> intervals using a triangular scanning function of  $20~\rm cm^{-1}$  full-width at half intensity on the monochromatic transmittance spectra.

Plots of the transmission functions (i.e. T versus CW) for each absorber are also of interest when comparing the relative behavior of the different absorbers. Figures (2) through (5) depict the composite transmission functions for the uniformly

| ABSORBER                     | SPECTRAL<br>RANGE                                                                                                                              | ABSORBER                                                                                         | MODEL PARA                                                                                       | METERS                                                                                                  | RMS<br>ERROR                                                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| ADSORDIA                     | (1/CM)                                                                                                                                         | A                                                                                                | N                                                                                                | M                                                                                                       | (%)                                                                  |
|                              |                                                                                                                                                |                                                                                                  |                                                                                                  |                                                                                                         | ~~~~~~                                                               |
| AMMONIA<br>(NH3)             | 0- 385<br>390- 2150                                                                                                                            | 0.4704<br>0.6035                                                                                 | 0.8023<br>0.6968                                                                                 | -0.9111<br>9.3377                                                                                       | 1.41                                                                 |
| CARBON<br>DIOXIDE<br>(CO2)   | 425- 835<br>840- 1440<br>1805- 2855<br>3070- 3755<br>3760- 4065<br>4530- 5380<br>5905- 7025<br>7395- 7785<br>8030- 8335<br>9340- 9670          | 0.6176<br>0.6810<br>0.6033<br>0.6146<br>0.6513<br>0.6050<br>0.6160<br>0.7070<br>0.7070           | 0.6705<br>0.7038<br>0.7258<br>0.6982<br>0.8867<br>0.7883<br>0.6899<br>0.6035<br>0.6035           | -2.2560<br>-5.0768<br>-1.6740<br>-1.8107<br>-0.5327<br>-1.3244<br>-0.8152<br>0.6026<br>0.6026<br>0.6026 | 1.84<br>2.18<br>2.27<br>1.95<br>2.49<br>3.33<br>1.28<br>0.30<br>0.30 |
| CARBON<br>MONOXIDE<br>(CO)   | 0- 175<br>1940- 2285<br>4040- 4370                                                                                                             | 0.6397<br>0.6133<br>0.6133                                                                       | 0.7589<br>0.9267<br>0.9267                                                                       | 0.6911<br>0.1716<br>0.1716                                                                              | 0.28<br>0.71<br>0.71                                                 |
| METHANE<br>(CH4)             | 1065- 1775<br>2345- 3230<br>4110- 4690<br>5865- 6135                                                                                           | 0.5844<br>0.5844<br>0.5844<br>0.5844                                                             | 0.7139<br>0.7139<br>0.7139<br>0.7139                                                             | -0.4185<br>-0.4185<br>-0.4185<br>-0.4185                                                                | 1.56<br>1.56<br>1.56<br>1.56                                         |
| NITRIC<br>OXIDE<br>(NO)      | 1700- 2005                                                                                                                                     | 0.6613                                                                                           | 0.5265                                                                                           | -0.4702                                                                                                 | 0.31                                                                 |
| NITROGEN<br>DIOXIDE<br>(NO2) | 580- 925<br>1515- 1695<br>2800- 2970                                                                                                           | 0.7249<br>0.7249<br>0.7249                                                                       | 0.3956<br>0.3956<br>0.3956                                                                       | -0.0545<br>-0.0545<br>-0.0545                                                                           | 1.49<br>1.49<br>1.49                                                 |
| NITROUS<br>OXIDE<br>(N2O)    | 0- 120<br>490- 775<br>865- 995<br>1065- 1385<br>1545- 2040<br>2090- 2655<br>2705- 2865<br>3245- 3925<br>4260- 4470<br>4540- 4785<br>4910- 5165 | 0.8997<br>0.7201<br>0.7201<br>0.7201<br>0.7201<br>0.7201<br>6.6933<br>0.6933<br>0.6933<br>0.6933 | 0.3783<br>0.7203<br>0.7203<br>0.7203<br>0.7203<br>0.7203<br>0.7764<br>0.7764<br>0.7764<br>0.7764 | 0.9399<br>-0.1836<br>-0.1836<br>-0.1836<br>-0.1836<br>-0.1836<br>1.1931<br>1.1931<br>1.1931<br>1.1931   | 0.24<br>1.49<br>1.49<br>1.49<br>1.49<br>1.23<br>1.23<br>1.23         |

Table IV. Summary of Absorber Parameters for the Band Models Developed under the Effort Reported.

| I D COS DUT | SPECTRAL<br>RANGE | ABSOEBER | MODEL P         | ARAMETERS | RMS<br>Erpor |
|-------------|-------------------|----------|-----------------|-----------|--------------|
| ABSORBEE    | (1/CM)            | Α        | N               | М         | (%)          |
|             |                   |          |                 |           |              |
| OXYGEN      | 0- 265            | 0.6011   | 1.1879          | 2.9738    | 1.42         |
| (02)        | 7650- 8080        | 0.5641   | 0.9353          | 0.1936    | 0.96         |
|             | 9235- 9490        | J.5641   | 0.9353          | 1.1936    | 1.46         |
|             | 12850-13220       | U.5641   | 0.4353          |           | 3.96         |
| ,           | 14300-14600       | 0.5641   | 0.9353          |           | J.95         |
|             | 15695-15955       | 0.5641   | 0.9353          | 3.1936    | 0.96         |
| OZONE       | 9- 200            | v.8559   | J. 4263         | 1.3909    | 1.34         |
| (03)        | 515- 1275         | 0.7593   | 0.4221          | 0.7678    | 2.25         |
| , ,         | 1630- 2295        | 0.7819   | 0.3739          | 0.1225    | 1.13         |
|             | 2670- 2845        | 0.9175   | e. 1770         | 0.0927    | 1.32         |
|             | 2850- 3260        | J.77e3   | 0.3921          | 0.1942    | 9,25         |
| SULPHUR     | 0 <b>-</b> 185    | 0.3907   | 0.2943          | 1.2316    | 1.24         |
| DIOXIDE     | 400- 650          | 0.8466   | 0.2135          | J.0733    | 2.38         |
| (502)       | 950- 1460         | J.8466   | 0.2135          | 0.0733    | 2.39         |
| ,           | 2415- 2580        | 0.8466   | 9.2 <b>1</b> 35 | 0.6733    | 2.39         |
| WATER       | 0- 345            | 0.4703   | 1.0043          | J.4502    | 3.30         |
| VAPOR       | 350- 1000         | 0.5848   | 0.8642          |           | 1.19         |
| (1120)      | 1005- 1640        | 0.6380   | 0.7254          | -3.9725   | 1.43         |
| •           | 1645- 2530        | 0.6412   | 0.8435          | -1.4883   | 2.93         |
|             | 2535- 3420        | 0.7938   | 0.6820          | 0.4222    | 2.30         |
|             | 3425- 4310        | 9.6126   | J. 7262         | -0.2273   | 1.93         |
|             | 4315- 6150        | 0.6394   | 0.7986          | -3.4933   | 2.19         |
|             | 6 155- 8000       | 0.6296   | 0.8549          |           | 2.91         |
|             | 8005- 9615        | 0.6458   | 0.7805          |           | 2.39         |
|             | 9620-11540        | 0.6485   | 0.7745          |           | 1.36         |
|             | 11545-13070       | 0.6668   | 0.7634          |           | 1.93         |
|             | 13075-14860       | 0.7297   | v.6368          |           | 1.62         |
|             | 14865-16045       | J. 7630  | 0.5785          |           | 7.04         |
|             | 16340-17860       | U.7729   | 0.5492          | 1.3681    | 1.14         |

Table IV Continued



Fig. 2. Composite Plot of the Transmission Functions (Eq. 1) for the Uniformly Mixed Gases



Fig. 3. Composite Plot of the Transmission Functions (Eq. 1) for the Trace Gases

Fig. 4. Composite Plot of the Transmission Functions (Eq. 1) for Water Vapor



Fig. 5. Composite Plot of the Transmission Functions (Eq. 1) for Ozone

mixed gases, the trace gases, water vapor, and ozone. Plots of the spectral parameter C' for each absorber are included in Appendix B. Individual transmission curves for each model are included in Appendix C.

#### V. Transmittance Comparisons

Prior to the determination of the model parameters, the line-by-line data were compared with available measurements. Magnetic tapes containing measured spectra for  $\mathrm{CO}_2$ ,  $\mathrm{CH}_4$ ,  $\mathrm{NO}_2$ ,  $\mathrm{N}_2\mathrm{O}$ ,  $\mathrm{SO}_2$ , and  $\mathrm{H}_2\mathrm{O}$  were obtained from AFGL. Only graphical data were available for  $\mathrm{NH}_3$ ,  $\mathrm{CO}$ ,  $\mathrm{NO}$ ,  $\mathrm{O}_2$ , and  $\mathrm{O}_3$ . The results of these type of comparisons were already presented in the earlier cited report for all gases except  $\mathrm{O}_3$  and  $\mathrm{H}_2\mathrm{O}$ . Graphical comparisons of ozone spectra were made only over a narrow spectral region and, hence, are not worthy of further discussion. However,  $\mathrm{H}_2\mathrm{O}$  comparisons were made over nearly the entire infrared region and were included in two separate reports. Appendix D shows some representative plots of both the nearly monochromatic spectra and of the correspondent degraded values.

Once the spectral comparisons were completed and the band model parameters determined, comparisons were then made between the degraded line-by-line and model calculated transmittances. Appendix E shows typical comparisons for  $H_2$ 0 and  $O_3$ , while similar comparisons for the remaining gases may be found in Reference 1. Special calculations were made for several bands for the remaining gases which were modeled after Reference 1 was completed. Such cases included bands in the spectral region from 0 to 350 cm<sup>-1</sup> of  $NH_3$ , CO,  $N_2$ 0,  $O_2$ ,  $O_3$ ,  $SO_2$ , and  $H_2$ 0, as well as

several others primarily in the infrared region. The extent of the remodeling can best be appreciated by examining the summary shown in Table V. Sample comparisons between the degraded line-by-line and band model calculations for the gases absorbing in the region from 0 to 350  $\,\mathrm{cm}^{-1}$  are shown separately in Appendix F.

Upon completion of the modeling of all the absorbing specie, the resulting band models were incorporated into LOWTRAN 6. primary purpose of this was to be able to ascertain the differences between the existing LOWTRAN models and those being proposed. Figures (6) through (8) show the spectral differences between the transmittances from LOWTRAN and those calculated with the proposed models for the combined uniformly mixed gases, water vapor and ozone, respectively. They are for a path tangent to the earth's surface, extending from one end of the U.S. Standard Atmosphere to the other. They indicate that, in general, transmittance is overestimated in LOWTRAN. This difference may be attributed to inaccuracies in the band models, as well as to absorption bands not modeled in the original LOWTRAN development. More examples of these types of comparisons are shown in Appendix Additional transmittance plots for those paths using the proposed band models are included in Appendeix H.

## VI. Discussion & Conclusions

The main purpose of the research effort reported here was to develop and validate low-resolution band models from line-by-line calculated transmittance data and laboratory measurements. The gaseous species included in the study were the uniformly mixed gases (N<sub>2</sub>O<sub>1</sub>, CH<sub>4</sub>, CO<sub>1</sub>, O<sub>2</sub>, and CO<sub>2</sub>), the trace gases (NO<sub>1</sub>, NO<sub>2</sub>, NH<sub>3</sub>, and SO<sub>2</sub>), H<sub>2</sub>O<sub>1</sub>, and O<sub>3</sub>. The models were designed for 20 cm

Table V. Difference Between Models in Previous Report and Final Versions

# SPECTRAL RANGE (cm-1)

| ABSORBER                            | REFERENCE 1                                                                                                     | THIS REPORT                                                                                                                 |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Ammonia (NH <sub>3</sub> )          | 660-1260<br>1300-1900                                                                                           | 0-385<br>390-2150                                                                                                           |
| Carbon Dioxide (CO <sub>2</sub> )   | 425- 850<br>855-1460<br>1820-2830<br>3070-3755<br>3760-4105<br>4535-5375<br>5920-7025<br>7395-7820<br>8000-8345 | 425-835<br>840-1440<br>1805-2855<br>3070-3755<br>3760-4065<br>4530-5380<br>5905-7025<br>7395-7785<br>8030-8335<br>9340-9670 |
| Carbon Monoxide (CO)                | 1955-228 <b>0</b><br>4 <b>0</b> 55-4365                                                                         | 0-175<br>1940-2285<br>4040-4370                                                                                             |
| Methane (CH <sub>4</sub> )          | 1075-1775<br>2370-3230<br>4175-4730                                                                             | 1065-1775<br>2345-3230<br>4110-4690<br>5865-6135                                                                            |
| Nitric Oxide (NO)                   | 1700-1995                                                                                                       | 1700-2005                                                                                                                   |
| Nitrogen Dioxide (NO <sub>2</sub> ) | 1540-1670<br>2840-2950                                                                                          | 580-925<br>1515-1695<br>2800-2970                                                                                           |
| Nitrous Oxide (N <sub>2</sub> O)    | 500-755<br>1100-1370<br>2105-2630                                                                               | 0-120<br>490-775<br>865-995<br>1065-1385<br>1545-2040<br>2090-2655<br>2705-2865<br>3245-3925<br>4260-4470<br>4540-4785      |

# Table V. (continued)

| Oxygen (O <sub>2</sub> )           | 7760-8020<br>12930-13190          | 0-265<br>7650-8080<br>9235-9490<br>12850-13220<br>14300-14600<br>15695-15955 |
|------------------------------------|-----------------------------------|------------------------------------------------------------------------------|
| Ozone (O <sub>3</sub> )            | (Not Modeled)                     | 0-200<br>515-1275<br>1630-2295<br>2670-3260                                  |
| Sulphur Dioxide (SO <sub>2</sub> ) | 420-635<br>1050-1440<br>2430-2565 | 0-185<br>400-650<br>950-1460<br>2415-2580                                    |
| Water Vapor (H <sub>2</sub> O)     | (Not Modeled)                     | 0-17860                                                                      |

TRANSMITTANCE DIFFERENCE FOR CO2+ T(OLD MODEL) - T(NEW MODEL) RMS DIFFERENCE IS 17.98% TANGENT PATH



Fig. 6. Transmittance Difference Between LOWTRAN 6 Calculations and the Proposed Models for the Uniformly Mixed Gases Along a Path Tangent to the Earth's Surface in the U.S. Standard Atmosphere.

TRANSMITTANCE DIFFERENCE FOR H20 T (OLD MODEL) - T (NEW MODEL) RMS DIFFERENCE IS 31.67% TANGENT PATH



Fig. 7. Transmittance Difference Between LOWTRAN 6 Calculations and the Proposed Model for Water Vapor Along a Path Tangent to the Earth's Surface in the U.S. Standard Atmosphere.

TRANSMITTANCE DIFFERENCE FOR 03 T (OLD MODEL) - T (NEW MODEL) RMS DIFFERENCE IS 9.02% TANGENT PATH



Fig. 8. Transmittance Difference Between LOWTRAN 6 Calculations and the Proposed Model for Ozone Along a Path Tangent to the Earth's Surface in the U.S. Standard Atmosphere.

intervals and the spectral parameters repeated at 5 cm for easy incorporation into the latest version of LOWTRAN. The transmission function consisted of an exponential, defined by one spectral and three absorber parameters, representating a simple power relation between the pressure, temperature, and absorber amount along a slant atmospheric path. The determination of the parameters was accomplished through the use of non-linear numerical techniques.

Initially, the available measured data for  $\mathrm{CO}_2$ ,  $\mathrm{CH}_4$ ,  $\mathrm{NO}_2$ ,  $\mathrm{N}_2$  O,  $\mathrm{SO}_2$ , and  $\mathrm{H}_2\mathrm{O}$  were compared for accuracy with line-by-line calculations using FASCODIC. Graphical data in the form of spectral curves were available for comparison for  $\mathrm{NH}_3$ ,  $\mathrm{CO}$ ,  $\mathrm{NO}$ ,  $\mathrm{O}_2$ , and  $\mathrm{O}_3$ . Following this form of validation the line-by-line data, and in some cases the transmittance measurements, were used in the determination of all the band model parameters for all the gases of interest. Comparisons were then made between the degraded measurements, the degraded transmittance calculations, and the recalculated transmittances using the resulting band models. The last step in the procedure consisted of incorporating the new models into LOWTRAN 6 and comparing the original LOWTRAN 6 with the modified version.

As a result of all the transmittance comparisons made in the process of the development and validation of the band models for molecular absorption, the following conclusions may be made.

1. The high-resolution transmittance measurements available in magnetic tape form for  ${\rm CO}_2$ ,  ${\rm CH}_L$ ,

- $NO_2$ ,  $N_2O_1$  SO, and  $H_2O_2$ , and in graphical form for  $NH_3$ ,  $CO_2$ ,  $NO_3$ ,  $O_2$ , and  $O_3$ , agreed reasonably well with line-by-line calculations using FASCODIC.
- 2. Calculations using the band model parameters determined as a result of the work reported here, agreed within a mean (over all wavenumbers and gases) rms transmittance difference of 2.0% with the degraded line-by-line data used in their determination.
- 3. Calculations using these proposed band models with the corresponding transmittances computed with LOWTRAN agreed within 2.85% for the uniformly-mixed gases, 16.36% for  $H_2$  0 and 1.84% for  $D_3$  along a vertical path from sea level to the top of the U.S. Standard Atmosphere.

For the most part it may be concluded that the inclusion of the band models proposed here into LOWTRAN will significantly improve the capabilities of the code to accurately predict molecular transmittance. These improvements will be primarily the result of the use of more accurate band models, better spectral coverage, more recent transmittance data, and the inclusion of additional absorbers for non-standard environments.

#### References

- 1. J.H. Pierluissi and C.E. Maragoudakis, "Molecular Transmission Band Models for the Uniformly Mixed and the Trace Gases", AFGL-TR-84-0320 (AFGL, Hanscom AFB, MA, (1984). ADA160442
- 2. F.X. Kneizys et al., "Atmospheric/Radiance: Computer Code LOWTRAN 6," AFGL-TR-83-0187 (AFGL, Hanscom AFB, MA, 1983). ADA137786
- 3. J.H. Pierluissi, K. Tomiyama, and R.B. Gomez, "Analysis of the LOWTRAN Transmission Functions," Appl. Opt. 18, 1607 (1979).
- 4. J.M. Jarem, J.H. Pierluissi, and M.E. Maragoudakis, "Numerical Methods of Band Modeling and their Application to Atmospheric Nitrous Oxide," Appl. Opt. 23, 406 (1984).
- 5. S.A. Clough, F.X. Kneizys, L.S. Rothman, and W.O. Gallery, "Atmospheric Spectral Transmittance and Radiance: FASCOD-1B," Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152 (1981).
- J.H. Pierluissi, K. Tomiyama, and F.X. Kneizys, "Validated Band Model for the NO Fundamental," Appl. Opt. 20, 2517, (1981).
- 7. J.H. Pierluissi, and K. Tomiyama, "Validated Band Model for NO<sub>2</sub> Molecular Transmittance in the Infrared," Appl. Opt. 22, 1628 (1983).
- 8. J.H. Pierluissi, J.M. Jarem, and C.E. Maragoudakis, "Validated Transmittance Band Model for SO in the Infrared," Appl. Opt. 23, 3325 (1984).
- 9. J.H. Pierluissi, R.D. Hippenstiel, and C.E. Maragoudakis, "Validated Infrared Transmittance Band Model for Methane in the Atmosphere: Corrigenda," Appl. Opt. 24, 1729 (1985).
- 10. J.H. Pierluissi and C.E. Maragoudakis, "Molecular Transmittance Band Model for Ammonia," Appl. Opt. 25, 1145 (1986).
- 11. J.H. Pierluissi and C.E. Maragoudakis, "Molecular Transmittance Band Model for Oxygen in the Infrared", Appl. Opt. 25, 1538 (1986).
- 12. J.H. Pierluissi and C.E. Maragoudakis, "Band Model for Molecular Transmittance of Carbon Monoxide" To appear in Applied Optics (1987).

- 13. R.R. Gruenzel, "Mathematical Expressions for Molecular Absorption in LOWTRAN 3B", Appl. Opt. 17, 2591 (1978).
- 14. J.H. Pierluissi and R.B. Gomez, "Study of Transmittance Models for the 15 micron-CO<sub>2</sub> Band", Proceedings of the Sixth Conference on Aerospace and Aeronautical Meteorology (American Meteorological Society; Boston, MA, 1984).
- 15. W.M. Elsasser, "Heat Transfer by Infrared Radiation in the Atmosphere", Harvard Meteorological Studies 6 (Howard U.P., Cambridge, MA 1942).
- 16. R.M. Goody, "A Statistical Model for Water Vapor Absorption", Q.J.R. Meteorological Society, 78, 165 (1952).
- 17. W.L. Smith, "Polynomial Representation of Carbon Dioxide and Water Vapor Transmission", NESC-47 (National Environmental Satellite Center, Washington, D.C. 1969).
- 18. S.L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).
- 19. L.S. Rothman, "AFGL Atmospheric Line Parameters Compilation: 1980 Version," Appl. Opt. 20, 791 (1981).
- 20. L.S. Rothman, et al., "AFGL Atmospheric Trace Gas Compilation: 1982 Version," Appl. Opt. 22, 1616 (1983).
- 21. D.E. Burch, et al., "Infrared Absorption by Carbon Dioxide, Water Vapor, and Minor Atmospheric Constituents," AFCRL-TR-62-698, Air Force Cambridge Research Laboratories, Hanscom AFB, MA (1962).
- 22. D.E. Burch, et al., "Infrared Absorption by  $\rm H_2O$ ,  $\rm NO_2$ , and N  $_2$  O  $_4$  ", .AFCRL-TR-75-0420, Air Force Cambridge Research Laboratories, Hanscom AFB (1975), ADA019686.
- 23. W.L. France and D. Williams, "Total Absorptance of Ammonia in the Infrared", J. Opt. Soc Am., 56, 70 (1966).
- 24. D.L. Ford and J.H. Shaw, "Total Absorptance of the NO Fundamental Band", Appl. Opts., 4, 1114, 1965.
- 25. D.E. Burch and D.A. Gryvnak, "Strengths, Widths and Shapes of the Oxygen Lines Near 7600 Angstroms", U-4076, Philco-Ford Corp., Newport Beach, CA (1976).
- 26. D.E. Burch, D.A. Gryvnak and D. Williams, "Total Absorptance of Carbon Dioxide in the Infrared", Appl. Opts., 1, 759 (1962).
- 27. D.E. Burch, D.A. Gryvnak and R.R. Patty, "Absorption of

- Infrared Radiation by  $CO_2$  and  $H_2O_3$ , II. Absorption by CO Between 8,000 and 10,000 cm<sup>-1</sup> (1-1.25 microns)", J. Opt. Soc. of Am. 158, 335 (1968).
- 28. D.E. Burch et al., "Absorption of Infrared Radiant Energy by  ${\rm CO}_2$  and  ${\rm H}_2{\rm O}_1$ . IV. Shapes of Collisioned Broadened  ${\rm CO}_2$  Lines ", J. Opt. Soc. of Am., 59, 267 (1969).
- 29. D.E. Burch, J.D. Pembrook, and D.A. Gryvnak, "Absorption and Emission by SD Between 1050 and 1800 cm<sup>-1</sup> (9.5 7 m)", U-4947, Philoo-Ford Corp., Newport Beach, CA (1971).
- 30. M.S.H. Smith, Private communication.
- 31. G.P. Anderson, et al., "AFGL Atmospheric Constituent Profiles (0-120 km)", AFGL-TR-86-0110 (AFGL, Hanscom AFB, MA, 1986). ADA175173

## **APPENDICES**

- A. Spectral Parameter C' for NH $_3$ , CO $_2$ , CO, CH $_4$ , NO, NO $_2$ , N $_2$ O, O $_2$ , O $_3$ , SO $_2$ , and H $_2$ O for use in Equation 1.
- B. Spectral Plots of the Parameter C' for NH $_3$ , CO $_2$ , CO, CH $_4$ , NO, NO $_2$ , N $_2$ O, O $_2$ , O $_3$ , SO $_2$ , and H $_2$ O from Tables in Appendix A.
- C. Transmission Functions ( $\tau$  versus CW) for NH  $_3$ , CO  $_2$ , CO, CH  $_4$ , NO, NO  $_2$ , N  $_2$ O, O  $_2$ , and SO  $_2$ .
- D. Comparison Between High Resolution and Degraded Line-By-Line Calculations with Measurements for  $\rm H_2O$ .
- E. Comparison Between Degraded Line-By-Line and Proposed Model Calculated Transmittance for  $\rm H_2O$  and  $\rm O_3$ .
- F. Comparison Between Degraded Line-By-Line and Proposed Model Calculated Transmittance in the Spectral Region From 0 to 350 cm $^{-1}$  for NH $_3$ , CO, N $_2$ O, O $_2$ , O $_3$ , SO $_2$ , and H $_2$ O.
- G. Comparison Between LOWTRAN and Proposed Model Transmittance Calculations for the Uniformly Mixed Gases (N $_2$ 0, CH $_4$ , CO, O $_2$ , and CO $_2$  combined), H $_2$ 0, and O $_3$ .
- H. Transmittance Through NH<sub>3</sub>, CO<sub>2</sub>, CO, CH<sub>4</sub>, NO, NO<sub>2</sub>, N<sub>2</sub>O, O<sub>2</sub>, O<sub>3</sub>, SO<sub>2</sub>, and H<sub>2</sub>O in the U.S. Standard Atmosphere Along Atmospheric Paths Discussed in Texts.
- Papers published under this contractual effort.

# APPENDIX A

Spectral Parameter C' for NH $_3$ , CO $_2$ , CO, CH $_4$ , NO, NO $_2$ , N $_2$ O, O $_2$ , O $_3$ , SO $_2$ , and H $_2$ O for use in Equation 1.

TABLE A1

## C' VALUE FOR NH3

| WAVE #       | C*                 | WAVE #      | C*                 | WAVE #     | C *                | WAVE #      | C.                 |
|--------------|--------------------|-------------|--------------------|------------|--------------------|-------------|--------------------|
| o            | -5.7142            | 240         | -1.4920            | 480        | -4.3961            | 720         | -2.4372            |
| 5            | -5.2854            | 245         | -1.5403            | 4 85       | -4.2607            | 725         | -2.3035            |
| 10           | -4.5163            | 250         | -1.5848            | 490        | -4.1705            | 730         | -2.1696            |
| 15           | -3.9795            | 255         | -1.6498            | 495        | -4.1294            | 735         | -2.0302            |
| 20           | -3.4393            | 260         | -1.7382            | 500        | -4.0611            | 740         | -1.9166            |
| 25           | -2.8735            | 265         | -1.8294            | 505        | -3.9538            | 745         | -1.8071            |
| 30           | -2.4947            | 270         | -1.9203            | 5 10       | -3.8821            | 750         | -1.7221            |
| 35           | -2.2290            | 275         | -2.0694            | 515        | -3.7592            | <b>7</b> 55 | -1.6370            |
| 40           | -2.0624            | 280         | -2.2134            | 520        | -3.6754            | 760         | -1.5453            |
| 45           | -1.9616            | 285         | -2.3622            | 525        | -3.6830            | 765         | -1.4487            |
| 5 <b>0</b>   | -1.8707            | 290         | -2.5516            | 5 30       | -3.6977            | 770         | <b>-1.</b> 3539    |
| 55           | -1.7712            | 295         | -2.7633            | 535        | -3.6925            | 775         | -1.2570            |
| 60           | -1.6473            | 300         | -2.9344            | 540        | -3.6632            | 780         | -1.1618            |
| 65           | -1.5376            | 305         | -3.1172            | 545        | -3.5899            | 785         | -1.1131            |
| 70           | -1.4315            | 310         | -3.3543            | 550        | -3.5218            | 790         | -1.0824            |
| 75           | -1.3328            | 315         | -3.5671            | 555        | -3.5265            | 795         | -1.0559            |
| 80           | -1.2391            | 320         | -3.7504            | 560        | -3.6535            | 800         | -1.0190            |
| 85           | -1.1768            | 325         | -3.9884            | 565        | -3.8068            | 805         | -0.9721            |
| 90           | -1.1302            | 330         | -4.2633            | 570        | -3.9818            | 810         | -0.9218            |
| 95           | -1.0755            | 335         | -4.5505            | 575        | -4.0574            | 815         | -0.8680            |
| 100          | -1.0272            | 340         | -4.7837            | 580        | -3.9789            | 820         | -0.8556            |
| 105          | -0.9884            | 345         | -5.0350            | 585        | -3.8958            | 825         | -0.8568            |
| 110<br>115   | -0.9501            | 350         | -5.3733            | 590        | -3.8120            | 830         | -0.8713            |
| 120          | -0.9287<br>-0.9101 | 355<br>360  | -5.6478<br>-5.8856 | 595<br>600 | -3.8927<br>-3.8799 | 835<br>840  | -0.8984<br>-0.9076 |
| 125          | -0.8982            | 365         | -6.1041            | 605        | -3.8623            | - 845       | -0.9024            |
| 130          | -0.8888            | 370         | -6.3375            | 610        | -3.3984            | 850         | -0.8882            |
| 135          | -0.8709            | 375         | -6.5709            | 6 15       | -2.8857            | 855         | -0.8968            |
| 140          | -0.8620            | 380         | -6.8043            | 620        | -2.5814            | 860         | -0.9492            |
| 145          | -0.8645            | 385         | -7.0377            | 625        | -2.4066            | 865         | -1.0089            |
| 150          | -0.8676            | 390         | -7.2620            | 630        | -2.3850            | 870         | -1.0846            |
| 155          | -0.8910            | 3 9 5       | -7.0950            | 635        | -2.5415            | 875         | -1.1556            |
| 160          | -0.9084            | 400         | -6.9279            | 640        | -2.8161            | 88 <b>0</b> | -1.1792            |
| 165          | -0.9328            | <b>40</b> 5 | -6.7608            | 645        | -3.2265            | 885         | -1.1946            |
| 170          | -0.9546            | 410         | -6.5938            | 650        | -3,7177            | 890         | -1.1964            |
| 175          | -0.9743            | 415         | -6.4267            | 655        | -3.9932            | 895         | -1.2173            |
| 180          | -0.9983            | 420         | -6.2597            | 660        | -4.0683            | 900         | -1.2424            |
| 185          | -1.0202            | 425         | -6.0926            | 665        | -4.0785            | 905         | -1.1744            |
| 190          | -1.0569            | 430         | -5.8842            | 670        | -3.9912            | 910         | -0.9743            |
| 195          | -1.0824            | 435         | -5.7560            | 675        | -3.7418            | 915         | -0.6350            |
| 200          | -1.1086            | 440         | -5.5844            | 680        | -3.4742            | 920         | -0.2975            |
| 205          | -1.1475            | 445         | -5.4248            | 685        | -3.2651            | 925         | -0.0705            |
| 210          | -1.1790            | 450         | -5.2573            | 690        | -3.0715            | 930         | 0.0144             |
| 2 15         | -1.2059            | 455         | -5.0771            | 695        | -2.9500            | 935         | -0.0978            |
| 220<br>225   | -1.2668            | 460         | -4.9244            | 700        | -2.8669            | 940         | -0.3536            |
| 230          | -1.3237<br>-1.3801 | 465<br>470  | -4.7903<br>-4.6512 | 705        | -2.7723<br>-2.6614 | 945         | -0.5630            |
| 235          | -1.4271            | 475         | -4.5169            | 710<br>715 | -2.5613            | 950<br>955  | -0.5479            |
| <i>L. J.</i> | 1074/1             | 4/3         | - 7 . J 10 7       | 7 10       | -2.0013            | 955         | -0.3784            |

# C' VALUE POR NH3

| WAVE #       | C!                 | WAVE #       | C.                 | WAVE #        | C *                | WAVE #       | C'                 |
|--------------|--------------------|--------------|--------------------|---------------|--------------------|--------------|--------------------|
| 960          | -0.1797            | 1200         | -2.3724            | 1440          | -3.0384            | 1680         | -1.2949            |
| 965          | -0.1151            | 1205         | -2.4917            | 1445          | -2.9243            | 1685         | -1.2708            |
| 970          | -0.3085            | 1210         | -2.6218            | 1450          | -2.7755            | 1690         | -1.1896            |
| 975          | -0.6180            | 1215         | -2.8056            | 1455          | -2.5809            | 1695         | -1.1467            |
| 980          | -0.9718            | 1220         | -2.9693            | 1460          | -2.4726            | 1700         | -1.1187            |
| 985          | -1.2926            | 1225         | -3.1101            | 1465          | -2.3206            | 1705         | -1.0700            |
| 990          | -1.2748            | 1230         | -3.2790            | 1470          | -2.1209            | 1710         | -1.0392            |
| 995          | -1,1217            | 1235         | -3.5315            | 1475          | -2.0331            | 1715         | -1.0227            |
| 1000         | -1.0197            | 1240         | -3.7011            | 1480          | -1.9016            | 1720         | -1.0178            |
| 1005         | -0.9300            | 1245         | -3.8952            | 1485          | -1.7458            | 1725         | -1.0089            |
| 10 10        | -0.8817            | 1250         | -4.1527            | 1490          | -1.6927            | 1730         | -1.0021            |
| 1015         | -0.8723            | 1255         | -4.4121            | 1495          | -1.5958            | 1735         | -0.9706            |
| 10 20        | -0.8309            | 1260         | -4.5244            | 1500          | -1.4863            | 1740         | -0.9569            |
| 1025         | -0.7804            | 1265         | -4.8599            | 1505          | -1.4492            | 1745         | -0.9928            |
| 10 30        | -0.7075            | 1270         | -5.1940            | 15 10         | -1.3730            | 1750         | -1.0310            |
| 1035         | -0.6431            | 1275         | -5.5589            | <b>15 1</b> 5 | -1.2859            | 1755         | -1.0767            |
| 10 40        | -0.6176            | 1280         | -5.8 <b>170</b>    | 1520          | -1.2554            | 1760         | -1.1053            |
| 1045         | -0.6012            | 1285         | -6.1402            | 1525          | -1.2129            | 1765         | -1.1241            |
| 10 50        | -0.6079            | 1290         | -6.4633            | 1530          | -1.1689            | 1770         | -1.1717            |
| 1055         | -0.6272            | 1295         | -6.7865            | <b>1535</b>   | -1.1802            | 1775         | -1.2203            |
| 1060         | -0.6304            | 1300         | -7.1096            | 1540          | -1.1948            | 1780         | -1.2772            |
| 1065         | -0.6193            | 1305         | -7.4328            | 1545          | -1.1882            | 1785         | -1.3356            |
| 1070         | -0.6026            | 1310         | -7.7559            | 1550          | -1.2185            | 1790         | -1.3955            |
| 1075         | -0.5882            | 1315         | -8.0000            | 1555          | -1.2464            | 1795         | -1.4734            |
| 1080         | -0.6029            | 1320         | -7.8199            | 1560          | -1.2522            | 1800         | <b>-1.</b> 5701    |
| 1085         | -0.6317            | 1325         | -7.5988            | 1565          | -1.2946            | 1805         | -1.6572            |
| 1090         | -0.6862            | 1330         | -7.3778            | 15 <b>7</b> 0 | -1.3587            | 1810         | -1.7639            |
| 1095         | -0.7447            | 1335         | -7.1567            | 1575          | -1.3971            | 1815         | <b>-1.</b> 8652    |
| 1100         | -0.7921            | 1340         | -6.9357            | 1580          | -1.4488            | 1820         | <b>-1.991</b> 8    |
| 1105         | -0.8275            | 1345         | -6.7146            | 1585          | -1.5261            | 1825         | -2.1449            |
| 1110         | -0.8595            | 1350         | -6.4936            | 1590          | -1.5495            | 1830         | -2.2388            |
| 1115         | -0.8856            | 1355         | -6.2725            | 1595          | -1.5478            | 1835         | -2.3251            |
| 1120         | -0.9236            | 1360         | -6.0515            | 1600          | -1.4926            | 1840         | -2.3936            |
| 1125         | -0.9934            | 1365         | -5.8304            | 1605          | -1.3115            | 1845         | -2.4525            |
| 1130         | -1.0693            | 1370         | -5.5963            | 16 10         | -1.0455            | 1850         | -2.5998            |
|              | -1.1460            |              | -5.3883            |               | -0.7987            |              | -2.7147            |
| 1140         | -1.2100            | 1380         | -5.2319            | 1620          | -0.5972            | 1860         | -2.7704            |
| 1145         | -1.2863            | 1385         | -5.0536            | 1625          | -0.4664            | 1865         | -2.7852<br>-2.7530 |
| 1150         | -1.3593            | 1390         | -4.9029            | 16.30         | -0.4244            | 1870         | -2.7524<br>-2.7546 |
| 1155         | -1.4292            | 1395         | -4.7789            | 1635          | -0.4426            | 1875         | -2.7646<br>-2.9507 |
| 1160         | -1.5029            | 1400<br>1405 | -4.5867<br>-4.3414 | 1640          | -0.4952<br>-0.5772 | 1880<br>1885 | -2.8507<br>-3.0422 |
| 1165<br>1170 | -1.6054<br>-1.7067 | 1410         | -4.3414<br>-4.1399 | 1645<br>1650  | -0.5772            | 1890         | -3.2642            |
| 1175         | -1.8110            | 1415         | -3.9784            | 1655          | -0.8097            | 1895         | -3.5201            |
| 1180         | -1.9350            | 1413         | -3.7553            | 1660          | -0.9443            | 1900         | -3.6328            |
| 1185         | -2.0346            | 1425         | -3.7333<br>-3.5773 | 1665          | -1.0904            | 1905         | -3.7624            |
| 1190         | -2.1305            | 1430         | -3.4123            | 1670          | -1.2232            | 1910         | -3.9505            |
| 1195         | -2.2294            | 1435         | -3.2254            | 1675          | -1.2853            | 1915         | -4.1399            |
|              |                    |              |                    |               |                    | • -          | •                  |

## C' VALUE FOR NH3

| WAVE # | C*      | WAVE # | . C •   | WAVE # | C •     | WAVE # | C •     |
|--------|---------|--------|---------|--------|---------|--------|---------|
| 19 20  | -4.3087 | 1980   | -4.0997 | 2040   | -4.8370 | 2100   | -6.5415 |
| 1925   | -4.3859 | 1985   | -4.0659 | 2045   | -5.0041 | 2105   | -6.6886 |
| 1930   | -4.4295 | 1990   | -4.0264 | 2050   | -5.1644 | 2110   | -6.8358 |
| 1935   | -4.4493 | 1995   | -4.0893 | 2055   | -5.2101 | 2115   | -6.9829 |
| 19 40  | -4.3317 | 2000   | -4.1832 | 2060   | -5.4145 | 2120   | -7.1301 |
| 1945   | -4.1892 | 2005   | -4.2522 | 2065   | -5.5114 | 2125   | -7.2772 |
| 1950   | -4.0545 | 2010   | -4.3182 | 2070   | -5.6986 | 2130   | -7.4244 |
| 1955   | -3.9356 | 2015   | -4.3949 | 2075   | -5.8057 | 2135   | -7.5715 |
| 1960   | -3.9117 | 2020   | -4.4191 | 2080   | -5.9529 | 2140   | -7.7187 |
| 1965   | -4.0001 | 2025   | -4.4580 | 2085   | -6.1000 | 2145   | -7.8658 |
| 1970   | -4.0627 | 2030   | -4.5997 | 2090   | -6.2472 | 2150   | -8.0000 |
| 1975   | -4.0833 | 2035   | -4.7282 | 2095   | -6.3943 |        |         |

TABLE A2

## C\* VALUE FOR CO2

| WAVE #      | C a                | WAVE #                     | C *                | WAVE #       | C.f.               | # SVAK       | C.i                |
|-------------|--------------------|----------------------------|--------------------|--------------|--------------------|--------------|--------------------|
| 425         | -9.8495            | 665                        | 0.1114             | 905          | -5.2028            | 1145         | -9.1413            |
| 430         | -9.6484            | 670                        | 0.1367             | 910          | -5.0799            | 1150         | -9.1221            |
| 435         | -9.4472            | 675                        | 0.0910             | 915          | -4.9628            | 1155         | -9,1882            |
| 440         | -9.2461            | 680                        | 0.0066             | 920          | -4.8379            | 1160         | -9.2752            |
| 445         | -9.0449            | 685                        | -0.1269            | 925          | -4.7032            | 1165         | -9.2237            |
| 450         | -8.9544            | 690                        | -0.2994            | 930          | -4.5584            | 1170         | -9.3604            |
| 455         | -8.6127            | 695                        | -0.4934            | 935          | -4.4213            | 1175         | -9.3058            |
| 460         | -8.4076            | 700                        | -0.7101            | 940          | -4.3198            | 1180         | -9.5455            |
| 465         | -8.2710            | 705                        | -0.9087            | 945          | -4.2786            | 1185         | -9.5567            |
| 470         | -8.0391            | 710                        | -1.1004            | 950          | -4.2843            | 1190         | -9.3754            |
| 475         | <b>-7.9</b> 485    | 715                        | -1.2694            | 955          | -4.3099            | 1195         | -8.7756            |
| 480         | -7.9638            | 720                        | -1.4064            | 960          | -4.3210            | 1200         | -8.0904            |
| 485         | -7.7849            | 725                        | -1.5622            | 965          | -4.2769            | 1205         | <b>-7.</b> 4827    |
| 490         | -7.6278            | 730                        | -1.6810            | 970          | -4.2229            | 1210         | -6.9585            |
| 495         | -7.1418            | 735                        | -1.7841            | 9 <b>7</b> 5 | -4.2179            | 1215         | -6.5095            |
| 500         | -6.7823            | 740                        | -1.8973            | 98 <b>0</b>  | -4.2950            | 1220         | -6.1194            |
| 505         | -6.3826            | 745                        | -2.0274            | 985          | -4.4789            | 1225         | -5.7824            |
| 510         | -6.0323            | 750                        | -2.2079            | 990          | -4.7550            | 1230         | -5.4910            |
| <b>515</b>  | -5.7501            | 755                        | -2.4264            | 995          | -5.0902            | 1235         | -5.2532            |
| 520         | -5.5249            | 760                        | -2.6763            | 1000         | -5.4329            | 1240         | -5.0840            |
| 5 25        | -5.3304            | 765                        | -2.9312            | 1005         | -5.6689            | 1245         | -4.9920            |
| 530         | -5.0105            | 770                        | -3.1896            | 1010         | -5.6608            | 1250         | -4.9577            |
| 535         | -4.7703            | 775                        | -3.4262            | 1015         | -5.4582            | 1255         | -4.9638            |
| 540         | -4.5714            | 78 <b>0</b>                | -3.5979            | 10 20        | -5.1969            | 1260         | -4.9741            |
| 545         | -4.3919            | 785                        | -3.7051            | 1025         | -4.9419            | 1265         | -4.9555            |
| 550         | -4.2974            | 790                        | -3.7372            | 1030         | -4.7106            | 1270         | -4.9466            |
| 555         | -4.1370            | 795                        | -3.7983            | 1035         | -4.5084            | 1275         | -4.9774            |
| 560         | -3.8761            | 800                        | -3.9154            | 1040         | -4.3409            | 1280         | -5.0719            |
| 56.5        | -3.5936            | 805                        | -4.0520            | 1045         | ÷4.2211            | 1285         | -5.2558            |
| 570         | -3.2852            | 810                        | -4.2567            | 1050         | -4.1563            | 1290         | -5.5213            |
| 575         | -3.0016            | 815                        | -4.4661            | 1055         | -4.1259            | 1295         | -5.8633            |
| 580         | -2.7303            | 82 <b>0</b>                | -4.6670            | 1060         | -4.1108            | 1300         | -6.2877            |
| 585         | -2.4868            | 825                        | -4.9226            | 1065         | -4.0803            | 1305         | -6.7878            |
| 59 <b>0</b> | -2.2741            | 830                        | -5.2203            | 1070         | -4.0211            | 1310         | <b>-7.</b> 2602    |
| 595         | -2.0936            | 835                        | -5.5597            | 1075         | -3.9824            | 1315         | -7. 2940           |
|             | -1.9424            | 840                        | -5.6403            | 1080         | -4.0053            |              | -6.8524            |
| 605         | -1.8092<br>-1.6843 | 845                        | -5.7039            | 1085         | -4.1221<br>-4.3504 | 1325<br>1330 | <b>-6.337</b> 2    |
| 610         | -1.5372            | 850<br>95.5                | -5.7674            | 1090<br>1095 | -4.6741            |              | -5.8854<br>-5.5065 |
| 615<br>620  | -1.3372            | 85 <b>5</b><br>86 <b>0</b> | -5.8310<br>-5.8948 | 1103         | -5.0826            | 1335<br>1340 | -5.2011            |
| 625         | -1.2043            | 865                        |                    | 1105         | -5.5857            | 1345         | -4.9776            |
| 630         | -0.9930            | 87 <b>0</b>                | -5.9503<br>-6.0217 | 1110         | -6.2301            | 1350         | -4.8471            |
| 635         | -0.7724            | 875                        | -6.0392            | 1115         | <b>-7.0</b> 829    | 1355         | -4.7885            |
| 640         | -0.5509            | 880                        | -5.9855            | 1120         | -8.1344            | 1360         | -4.7783            |
| 645         | -0.3465            | 885                        | -5.8620            | 1125         | -8.8601            | 1365         | -4.7815            |
| 650         | -0.1785            | 89 <b>0</b>                | -5.6834            | 1130         | -9.0457            | 1370         | -4.7538            |
| 655         | -0.0470            | 895                        | - 5. 5083          | 1135         | -9.1231            | 1375         | -4.7228            |
| 660         | 0.0449             | 900                        | -5.3473            | 1140         | -9.0728            | 1380         | -4.7259            |
| 300         | VOVTT              | 200                        | J. J. T. J.        | ,,,,         | 2000               | . 3 . 3      | · · · · · · · · ·  |

#### C' VALUE FOR CO2

| WAVE #        | C*              | WAVE #        | C¹      | WAVE #        | C 1              | WAVE #       | C.               |
|---------------|-----------------|---------------|---------|---------------|------------------|--------------|------------------|
| 1385          | -4.7860         | 1985          | -5.8862 | 2225          | -2.6127          | 2465         | -4.3369          |
| 1390          | -4.9231         | 1990          | -6.0581 | 2230          | -2.3212          | 2470         | -4.4329          |
| 1395          | -5.1270         | -1995         | -6.0274 | 2235          | -2.0435          | 2475         | -4.5305          |
| 1400          | -5.3831         | 2000          | -5.8356 | 2240          | -1.7894          | 2480         | -4.6264          |
| 1405          | -5.6849         | 2005          | -5.5989 | 2245          | -1.5531          | 2485         | -4.7438          |
| 14 10         | -6.0351         | 2010          | -5.3738 | 2250          | -1.3382          | 2490         | -4.8842          |
| 1415          | -6.4437         | 2015          | -5.1661 | 2255          | -1.1515          | 2495         | -5.0248          |
| 1420          | -6.9160         | 2020          | -4.9472 | 2260          | -0.9990          | 2500         | -5.1448          |
| 1425          | -7.4815         | 2025          | -4.7020 | 2265          | -0.8833          | 2505         | -5.2371          |
| 1430          | -8.1437         | 2030          | -4.4354 | 2270          | -0.8006          | 2510         | -5.2781          |
| 1435          | -8.9449         | 2035          | -4.1439 | 2275          | -0.7227          | 2515         | -5.3299          |
| 1440          | -9.8564         | 2040          | -3.8561 | 2280          | -0.6288          | 2520         | -5.3766          |
| 1805          | -9.8903         | 2045          | -3.5944 | 2285          | - <b>0.</b> 4977 | 2525         | -5.4233          |
| 18 10         | -9.4365         | 2050          | -3.3694 | 2290          | -0.3249          | 2530         | -5.4699          |
| 1815          | -8.9826         | 2055          | -3.2100 | 22 95         | -0.1349          | 2535         | <b>-5.516</b> 6  |
| 1820          | -8.5288         | 2060          | -3.1041 | 2300          | 0.0576           | 2540         | -5.5633          |
| 1825          | -8.1184         | 2065          | -3.0411 | 2305          | 0.2487           | 2545         | -5.6646          |
| 18 <b>30</b>  | <b>-7.6</b> 555 | 2070          | -3.0471 | 23 10         | 0.4386           | 2550         | <b>-5.7</b> 593  |
| 18 <b>3</b> 5 | -7.1673         | 2075          | -3.1077 | 2315          | 0.6260           | 2555         | -5.8461          |
| 1840          | -6.7226         | 2080          | -3.2305 | 2320          | 0.8081           | 2560         | <b>-</b> 5.9229  |
| 1845          | -6.3423         | 2085          | -3.4274 | 2325          | v.9681           | 2565         | -5.9818          |
| 18 50         | -6.0410         | 2090          | -3.6115 | 2330          | 1.0859           | 2570         | -6.0065          |
| 1855          | -5.8154         | 2095          | -3.7542 | 2335          | 1.1522           | 2575         | -5.9747          |
| 1860          | -5.6519         | 2100          | -3.8666 | 2340          | 1.1861           | 2580         | -5.8741          |
| 1865          | -5.5186         | 2105          | -3.9338 | 2345          | 1.2039           | 258 <b>5</b> | -5.7230          |
| 1870          | -5.3859         | 2110          | -4.0079 | 2350          | 1.2255           | 2 5 9 0      | -5.5620          |
| 1875          | -5.2279         | 2115          | -4.0962 | 2355          | 1.2587           | 2595         | -5.4389          |
| 1880          | -5.0238         | 2120          | -4.2142 | 2 <b>3</b> 60 | 1.2473           | 2600         | <b>-5.3788</b>   |
| 1885          | -4.7865         | 2125          | -4.1433 | 2365          | 1.1457           | 2605         | -5.3679          |
| 1890          | -4.5343         | 2 <b>1</b> 30 | -4.2870 | 2370          | 0.9139           | 2610         | -5.382 <b>7</b>  |
| 1895          | -4.2846         | 2135          | -4.4796 | 2375          | 0.5250           | 2615         | -5.3837          |
| 1900          | -4.0560         | 2140          | -4.6618 | 2380          | 0.0173           | 2620         | -5.3460          |
| 1905          | -3.8717         | 2145          | -4.8204 | 2385          | -0.5796          | 2625         | -5.3186          |
| 19 10         | -3.7624         | 2150          | -4.9499 | 2390          | -1.3944          | 2630         | -5.3394          |
| 1915          | -3.7231         | 2155          | -4.9862 | 2395          | -2.3841          | 2635         | -5.4320          |
|               | -3.7335         |               | -5.0171 |               | -2.7244          |              | -5.6095          |
| 1925          | -3.8312         | 2165          | -5.0282 | 2405          | -2.9264          | 2645         | -5.8446          |
| 19 30         | -3.9854         | 2170          | -5.0580 | 2410          | -3.0689          | 2650         | -6.0992          |
| 1935          | -4.1930         | 2175          | -5.0398 | 24 15         | -3.2120          | 2655         | -6.3399          |
| 1940          | -4.4895         | 2180          | -4.9465 | 2420          | -3.3353          | 2660         | -6.5499          |
| 1945          | -4.7394         | 2185          | -4.7816 | 2425          | -3.4510          | 2665         | -6.7434          |
| 19 50         | -4.8892         | 2190          | -4.5538 | 2430          | -3.5566          | 2670         | -6.9359          |
| 1955          | -4.9499         | 2195          | -4.2975 | 2435          | -3.6518          | 2675         | -7.1219          |
| 1960          | -4.9392         | 2200          | -4.0286 | 2440          | -3.7460          | 2680         | <b>-7.</b> 28 18 |
| 1965          | -4.9787         | 2205          | -3.7528 | 2445          | -3.8500          | 2685         | -7.3984          |
| 1970          | -5.1129         | 2210          | -3.4715 | 2450          | -3.9680          | 2690         | -7.4881          |
| 1975          | -5.3330         | 2215          | -3.1899 | 2455          | -4.0981          | 2695         | -7.5452          |
| 1980          | -5.6093         | 2220          | -2.9041 | 246 <b>0</b>  | -4.2259          | 2700         | <b>-7.</b> 5994  |

# C' VALUE FOR CO2

| WAVE #        | C •                 | WAVE # | C 1             | WAVE #        | C.      | WAVE #        | C.              |
|---------------|---------------------|--------|-----------------|---------------|---------|---------------|-----------------|
| 2705          | -7.6445             | 3155   | -5.9088         | 3395          | -6.6681 | 3635          | -0.9908         |
| 27 10         | -7.6734             | 3160   | -5.8590         | 3400          | -6.9127 | 3640          | <b>-1.</b> 2503 |
| 27:15         | -7.6422             | 3 165  | -5.8890         | 3405          | -6.8919 | 3645          | -1.5347         |
| 27 20         | -7.5057             | 3170   | -5.9850         | 3410          | -6.6972 | 3650          | -1.7934         |
| 2725          | -7.2650             | 3175   | -6.0949         | 3415          | -6.5012 | 3655          | -1.9837         |
| 2730          | -6.9975             | 3180   | -6.1164         | 3420          | -6.3123 | 3660          | -2.0715         |
| 2735          | -6.7749             | 3185   | -6.0207         | 3425          | -6.1091 | 3665          | -2.0375         |
| 27 40         | -6.6398             | 3190   | -5.8592         | 3430          | -5.8641 | 3670          | -1.8975         |
| 2745          | -6.5875             | 3195   | -5.7110         | 3435          | -5.5889 | 3675          | -1.6906         |
| 2 <b>7</b> 50 | -6.5912             | 3200   | -5.6328         | 3440          | -5.3057 | 3680          | -1.4497         |
| 2755          | -6.6192             | 3205   | -5.6369         | 3445          | -5.0340 | 3685          | -1.2048         |
| 2760          | -6.6155             | 3210   | -5.7274         | 3450          | -4.7826 | 3690          | -0.9831         |
| 2765          | -6.5866             | 3215   | -5.9069         | 3455          | -4.5476 | 3695          | -0.8125         |
| 2770          | -6.5851             | 3220   | -6.1720         | 3460          | -4.3277 | 3700          | -0.7157         |
| 2775          | -6.6382             | 3225   | -6.5203         | 3465          | -4.1224 | 3705          | -0.6707         |
| 2780          | -6.7736             | 3230   | -6.9586         | 3470          | -3.9333 | 3710          | -0.6532         |
| 2785          | -7.0009             | 3235   | -7.4776         | 3475          | -3.7675 | 3715          | -0.6297         |
| 2790          | -7.2896             | 3240   | -8.0607         | 3480          | -3.6324 | 3720          | -0.5706         |
| 2795          | -7.6327             | 3245   | -8.5514         | 3485          | -3.5163 | 3725          | -0.5263         |
| 2800          | -7.9767             | 3250   | -8.7011         | 3490          | -3.4043 | 3730          | -0.5489         |
| 2805          | -8.2633             | 3255   | -8.4232         | 3495          | -3.2744 | 3735          | -0.6857         |
| 2810          | -8.4744             | 3260   | -7.9274         | 3500          | -3.1180 | 3740          | -0.9793         |
| 2815          | -8.5455             | 3265   | -7.6159         | 3505          | -2.9557 | 3745          | -1.3962         |
| 28 20         | -8.5813             | 3270   | -7.3836         | 3510          | -2.8254 | 3750          | -1.8673         |
| 2825          | -8.6025             | 3275   | -7.1969         | 35 15         | -2.7359 | 3755          | -2.3655         |
| 2830          | -8.6459             | 3280   | -7.0523         | 3520          | -2.6721 | 3760          | -3.5436         |
| 2835          | -8.8948             | 3285   | -6.7685         | 35.25         | -2.6084 | 3765          | -4.3424         |
| 28 40         | -9.1436             | 3290   | -6.4022         | 3530          | -2.5105 | 3770          | -4.4084         |
| 2845          | -9.3925             | 3295   | -6.0354         | 3535          | -2.3772 | 3775          | -4.6843         |
| 285 <b>0</b>  | -9.6413             | 3300   | <b>-5.71</b> 25 | 3540          | -2.2317 | 3780          | -4.8663         |
| 2855          | -9.8902             | 3305   | -5.4659         | 3545          | -2.0866 | <b>37</b> 85  | -4.9516         |
| 3070          | -9.8006             | 3.3 10 | -5.3088         | 3550          | -1.9521 | 3790          | -4.9790         |
| 30 75         | -9.5049             | 3315   | -5.2546         | 3555          | -1.8292 | 3795          | -4.9923         |
| 3080          | -9.1947             | 3320   | -5.2991         | 3560          | -1.7110 | 3800          | -5.0207         |
| 3085          | -8.7254             | 3325   | -5.3819         | 3565          | -1.5992 | 38 <b>v</b> 5 | -5.0596         |
| 3090          | -8.4410             | 3330   | -5.4615         | 35 <b>7</b> 0 | -1.4873 | 38 <b>10</b>  | -5.0958         |
| 3095          | -8.1781             | 3335   | -5.4117         | 35 <i>7</i> 5 | -1.3646 | 3815          | -5.1018         |
| 3100          | -8.0182             | 3340   | -5.210 <b>7</b> | 3580          | -1.2260 | 3820          | -5.0636         |
| 3105          | <del>-</del> 7.9381 | 3345   | -5.0103         | 3585          | -1.0721 | 3825          | -5.0354         |
| 3110          | <b>-7.</b> 8793     | 3350   | -4.8232         | 3590          | -0.9281 | 3830          | -5.0546         |
| 3115          | -7.7636             | 3355   | -4.7071         | 3595          | -0.8379 | 3835          | -5.1454         |
| 3120          | -7.5549             | 3360   | -4.6850         | 3600          | -0.8123 | 3840          | -5.3274         |
| 3125          | -7.2962             | 3365   | -4.7385         | 3605.         | -0.8261 | 3845          | -5.5863         |
| 3130          | -7.0244             | 3370   | -4.8797         | 3610          | -0.8483 | 3850          | -5.8389         |
| 3135          | <b>-6.7</b> 556     | 3375   | -5.1024         | 3615          | -0.8305 | 3855          | -6. 1770        |
| 3140          | -6.4888             | 3380   | -5.4015         | 3620          | -0.7792 | 3860          | -6.3555         |
| 3145          | -6.2443             | 3385   | -5.7758         | 3625          | -0.7626 | 3865          | -6.4096         |
| 3150          | -6.0422             | 3390   | -6.2225         | 3630          | -0.8228 | 3870          | -6.4371         |

#### C. VALUE FOR CO2

| WAVE #        | C1                 | WAVE #       | C *                | WAVE # | C *              | WAVE #        | C'               |
|---------------|--------------------|--------------|--------------------|--------|------------------|---------------|------------------|
| 38 <b>7</b> 5 | -6.5112            | 4575         | -7.5942            | 4815   | -3.4912          | 5055          | -4.0891          |
| 3880          | -6.6680            | <b>4580</b>  | -7.5256            | 482C   | -3.3444          | 5060          | -3.8565          |
| 3885          | -6.9183            | 4585         | <b>-7.</b> 3190    | 4825   | -3.1983          | 5065          | -3.6218          |
| 389 <b>0</b>  | -7.2418            | 4590         | -6.9986            | 4830   | -3.07 <b>3</b> 2 | 5 <b>07</b> 0 | -3.3909          |
| <b>3</b> 895  | <b>-7.</b> 5827    | 4595         | -6.6884            | 4835   | -3.0262          | 5075          | -3.1785          |
| 3900          | -7.8704            | 4600         | -6.4102            | 4840   | -3.0078          | 5080          | -3.0100          |
| 3905          | -8.0551            | 4605         | -6.1769            | 4845   | -3.0123          | 5085          | -2.9105          |
| 3910          | -8.1705            | 4610         | -5.9882            | 4850   | -3.0213          | 5090          | -2.8588          |
| 39 15         | -8.2500            | 4615         | -5.8421            | . 4855 | -2.9957          | 5095          | -2.8286          |
| 3920          | -8.3554            | 4620         | -5.7499            | 4860   | -2.9261          | 5100          | -2.7912          |
| 3925          | -8.3961            | 4625         | -5.7201            | 4865   | -2.8770          | 5105          | -2.7207          |
| 3930          | -8.4354            | 4630         | -5.7189            | 4870   | -2.8887          | 5110          | -2.6729          |
| 39 35         | -8.3920            | 4635         | -5.7108            | 4875   | -2.9853          | 5115          | -2.6858          |
| 3940          | -8.2785            | 4640         | -5.6669            | 4880   | -3.1609          | 5120          | -2.7745          |
| 3945          | -8.0499            | 4645         | - 5. 5955          | 4885   | -3.3643          | 5125          | -2.9414          |
| 3950          | -7.7437            | 4650         | -5.5686            | 4890   | -3.5468          | 5130          | -3.1445          |
| 3955          | -7.4130            | 4655         | -5.6287            | 4895   | -3.6759          | 5135          | -3.3617          |
| 3960          | -7.1153            | 4660         | -5.8000            | 4900   | -3.7488          | 5140          | -3.5954          |
| <b>3</b> 965  | -6.8861            | 4665         | -6.0355            | 4905   | -3.7704          | 5145          | ~3.8508          |
| 39 <b>70</b>  | -6.7422            | 4670         | -6.4398            | 4910   | <b>-</b> 3.7535  | 5150          | -4.1739          |
| <b>397</b> 5  | -6.6786            | 4675         | -6.7793            | 4915   | -3.7113          | 5155          | -4.5122          |
| 3980          | -6.6774            | 4680         | -6.9427            | 4920   | -3.6368          | 5160          | -4.8985          |
| 3985          | -6.7053            | 4685         | -6.9205            | 4925   | -3.5277          | 5165          | -5.3426          |
| . <b>3990</b> | -6.7090            | 4690         | -6.8363            | 4930   | -3.3812          | 5170          | -5.8737          |
| 3995          | -6.6794            | 4695         | -6.7059            | 4935   | -3.2020          | 5175          | -6.4734          |
| 4000          | -6.6055            | 4700         | -6.5272            | 4940   | -3.0043          | 5180          | -7.0715          |
| 4005          | -6.4827            | 4705         | -6.2903            | 4945   | -2.8020          | 5 <b>1</b> 85 | <b>-7.</b> 50 42 |
| 4010          | -6.3454            | 4710         | -6.0085            | 4950   | -2.6122          | 5190          | -7.6034          |
| 40 15         | -6.2401            | 4715         | -5.7224            | 4955   | -2.4524          | 5195          | -7.5143          |
| 4020          | -6.1992            | 4720         | -5.4722            | 4960   | -2.3405          | 5200          | -7.4358          |
| 4025          | -6.2676            | 4725         | -5.2772            | 4965   | -2.2838          | 5205          | -7.4089          |
| 4030          | -6.4833            | 4730         | -5.1501            | 4970   | -2.2521          | 5210          | <b>-7.</b> 3969  |
| 4035          | -6.8490            | 4735         | -5.0768            | 4975   | -2.2319          | 5215          | -7.3813          |
| 4040          | -7.4310            | 4740         | -5.0219            | 4980   | -2.1960          | 5220          | -7.3018          |
| 4045          | -8.4606            | 4745         | -4.9579            | 4985   | -2.1562          | 5225          | -7.1858          |
| 4050          | -9.7364            | 4750         | -4.8555            | 4990   | -2.1732          |               | -7.0633          |
| 4055          | -9.8771            | 4755         | -4.7213            | 4995   | -2.2913          | 5235          | -6.9962          |
| 4060          | -9.8840            | 4760         | -4.5868            | 5000   | -2.5476          | 5240          | -6.9905          |
| 4065          | -9.9559            | 4765         | -4.4594            | 5005   | -2.9382          | 5245          | -7.0319          |
| 4530          | -9.9489            | 4770         | -4.3387            | 50 10  | -3.3966          | 5250          | -7.1331          |
| 4535<br>4540  | <b>-9.6003</b>     | 4775<br>#700 | -4.2219            | 5015   | -3.8525          | 5255          | -7.2054          |
| 4545          | -9.0910            | 4780         | -4.1002            | 5020   | -4.2541          | 5260          | -7.1856          |
| 4545<br>4550  | -8.5793            | 4785<br>4786 | -3.9812            | 5025   | -4.5682          | 5265          | -7.0561          |
| 4550<br>4555  | -8.2059            | 4790<br>#705 | -3.8876            | 5030   | -4.7376          | 5270          | -6.7966          |
| 4555<br>4560  | -7.9099<br>-7.7157 | 4795         | -3.8207            | 5035   | -4.7524          | 5275          | -6-4771          |
| 45 <b>6</b> 5 | -7.7157<br>-7.6145 | 4800<br>#805 | -3.7673<br>-3.7120 | 5040   | -4.6733          | 5280          | -6.1996          |
| 4570          | -7.5964            | 4805         | -3.7120            | 5045   | -4.5170          | 5285          | -5.9593          |
| 47/0          | -1.0204            | 4810         | -3.6223            | 5050   | -4.3123          | 5290          | -5.7560          |

## C VALUE FOR CO2

| 5295         -5,5370         6055         -5,4023         6295         -6,0793         6535         -5,5600           5300         -5,2386         6060         -5,3292         6300         -5,7404         6540         -5,7977           5315         -4,9583         6070         -5,3171         6310         -5,1265         6550         -6,1720           5315         -4,9126         6075         -5,3193         6315         -4,6378         6550         -6,6371           5320         -5,0022         6080         -5,2705         6320         -4,6378         6550         -6,6371           5330         -5,3465         6090         -5,1835         6335         -4,4559         6565         -6,6371           5330         -5,3465         6090         -5,1835         6335         -4,2752         6575         -8,1628           5340         -5,9364         6100         -5,3367         6345         -4,2461         6580         -8,9951           5355         -6,3695         6105         -5,5305         6345         -4,2257         6585         -3,8931           5350         -6,3622         6115         -6,2857         6350         -4,1768         6599         <                                                                                                                                 | WAVE #       | C •             | WAVE #  | C*      | WAVE # | C .             | VAVE # | C a              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------|---------|--------|-----------------|--------|------------------|
| 5305         -5,0966         6065         -5,3090         6305         -5,4204         6545         -5,936           5310         -4,9583         6070         -5,3171         6310         -5,1265         6550         -6,1729           5315         -4,9126         6075         -5,3171         6315         -4,86374         6555         -6,3801           5320         -5,0022         6080         -5,2705         6320         -4,6378         6560         -6,6371           5330         -5,3465         6090         -5,1835         6335         -4,4559         6575         -8,1628           5340         -5,9364         6100         -5,3367         6340         -4,2267         6585         -9,8951           5345         -6,3602         6110         -5,7725         6350         -4,1768         6590         -10,0000           5365         -8,6427         6125         -6,2857         6355         -4,1068         6595         -10,0000           5370         -9,0728         6130         -6,2150         6360         -4,0743         6600         -10,0000           5370         -9,9728         6130         -6,2250         6375         -4,546         6610                                                                                                                                         | 5295         | -5.5370         | 6055    | -5.4023 | 6295   | -6.0793         | 6535   | <b>-5.</b> 5600. |
| 5310         -4,9583         6070         -5,3171         6310         -5,1265         6550         -6,1720           5315         -4,9126         6075         -5,3193         6315         -4,8634         6555         -6,3811           5320         -5,1370         6085         -5,2085         6320         -4,6378         6566         -6,994           5330         -5,3465         6090         -5,1885         6330         -4,3360         6570         -7,5010           5335         -5,6279         6095         -5,2186         6335         -4,2752         6575         -8,1628           5340         -5,9364         6100         -5,3305         6345         -4,2257         6585         -3,8931           5350         -6,9602         6110         -5,7725         6350         -4,1768         6590         -10,0000           5355         -7,6823         6115         -6,2250         6355         -4,1768         6590         -10,0000           5350         -8,82701         6120         -6,2150         6360         -4,0743         6600         -10,0000           5375         -9,5366         6135         -6,2250         6375         -4,5464         6615                                                                                                                                        | 5300         | -5.2836         | 6060    | -5.3292 | 6300   | -5.7404         | 6540   | -5.7977          |
| 5315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5305         | -5.0966         | 6065    | -5.3090 | 6305   | -5.4204         | 6545   | -5.9936          |
| 5320         -5,0022         6080         -5,2705         6320         -4,4559         6560         -6,6371           5330         -5,3465         6090         -5,1835         6330         -4,4559         6565         -6,9964           5340         -5,9364         6100         -5,3367         6340         -4,2461         6580         -8,9951           5340         -5,9364         6100         -5,3367         6340         -4,2461         6580         -8,9951           5345         -6,3695         6105         -5,5305         6345         -4,2257         6585         -3,8931           5350         -6,9602         6110         -5,7725         6350         -4,1768         6590         -10,0000           5360         -8,2701         6120         -6,2150         6360         -4,0743         6600         -10,0000           5370         -9,0728         6130         -6,2634         6370         -4,1193         6605         -10,0000           5375         -9,5366         6135         -6,2250         6375         -4,5464         6615         -10,0000           5390         -9,9881         6145         -6,2616         6385         -5,4996         6625                                                                                                                                       | 5310         | -4.9583         | 6070    | -5.3171 | 6310   | -5.1265         |        | -6.1720          |
| 5325         -5.1370         6085         -5.2085         6325         -4.3569         6565         -6.9944           5330         -5.3465         6090         -5.1835         6330         -4.3752         6575         -8.1628           5340         -5.9364         6100         -5.3367         6340         -4.2461         6580         -8.9951           5345         -6.3695         6105         -5.5305         6345         -4.2257         6585         -3.8931           5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.000           5365         -7.6823         6115         -6.0228         6355         -4.1068         6595         -10.0000           5360         -8.2701         6120         -6.2857         6365         -4.1193         6605         -10.0000           5370         -9.9728         6130         -6.2857         6365         -4.1193         6605         -10.0000           5380         -9.9888         6140         -6.2234         6380         -4.9256         6620         -10.0000           5390         -9.9871         6145         -6.2616         6385         -5.4090         6625                                                                                                                                       | 5315         | -4.9126         | 6075    | -5.3193 | 6315   | -4.8634         | 6555   | -6.3801          |
| 5330         -5.3465         6090         -5.1835         6330         -4.3360         6570         -7.5010           5336         -5.6279         6095         -5.2186         6335         -4.2752         6575         -8.1628           5340         -5.3695         6105         -5.5305         6345         -4.2257         6585         -8.9951           5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.0000           5355         -7.6823         6115         -6.0228         6355         -4.1068         6595         -10.0000           5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5370         -9.9728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5391         -9.9888         6140         -6.2931         6390         -6.0184         6630                                                                                                                                     | 5320         | -5.0022         | 6080    | -5.2705 | 6320   | -4.6378         | 6560   |                  |
| 5335         -5.6279         6095         -5.2186         6335         -4.2752         6575         -8.1628           5340         -6.3695         6105         -5.5335         6345         -4.2257         6585         -9.8931           5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.0003           5355         -7.6823         6115         -6.0228         6355         -4.1068         6595         -10.0003           5360         -8.2701         6120         -6.2250         6360         -4.0743         6600         -10.0000           5376         -8.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5915         -9.3358         6150         -6.2931         6390         -6.184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635                                                                                                                                      | 5325         | -5.1370         | 6085    | -5.2085 | 6325   | -4.4559         | 6565   |                  |
| 5340         -5.9364         6100         -5.3367         6340         -4.2461         6580         -8.9951           5345         -6.3695         6105         -5.53305         6345         -4.2257         6585         -9.8931           5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.0000           5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5365         -8.6427         6125         -6.2887         6365         -4.1193         6605         -10.0000           5370         -9.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2250         6375         -4.5464         6617         -10.000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635                                                                                                                                     | 5330         | -5.3465         | 6090    |         | 6330   | -4.3360         | 6570   |                  |
| 5345         -6.3695         6105         -5.5305         6345         -4.2257         6585         -3.8931           5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.0000           5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5365         -8.6427         6125         -6.2857         6365         -4.1193         6605         -10.0000           5370         -9.9538         6130         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7985         6635         -8.9198           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645                                                                                                                                      | 5335         | -5.6279         | 6095    | -5.2186 | 6335   |                 | 6575   |                  |
| 5350         -6.9602         6110         -5.7725         6350         -4.1768         6590         -10.0000           5355         -7.6823         6115         -6.0228         6355         -4.1068         6595         -10.0000           5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5375         -9.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6355         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6645                                                                                                                                    | 5340         |                 | 6100    | -5.3367 | 6340   | -4.2461         |        | -8.9951          |
| 5355         -7.6823         6115         -6.0228         6355         -4.1068         6595         -10.0000           5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5370         -9.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2234         6380         -4.9256         6620         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6655                                                                                                                                     | 5345         |                 |         | -5.5305 | 6345   |                 |        |                  |
| 5360         -8.2701         6120         -6.2150         6360         -4.0743         6600         -10.0000           5365         -8.6427         6125         -6.2857         6365         -4.1193         6605         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6645         -8.5081           5930         -9.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660                                                                                                                                      | 5350         | -6.9602         | 6 1 1 0 | -5.7725 | 6350   |                 |        |                  |
| 5365         -8.6427         6125         -6.2857         6365         -4.1193         6605         -10.0000           5370         -9.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5915         -9.9875         6150         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.6879         6405         -8.3457         6645         -8.1255           5930         -9.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.396         6415         -8.1125         6665                                                                                                                                       | 5355         | <b>-7.</b> 6823 | 6115    | -6.0228 | 6355   |                 |        |                  |
| 5370         -9.0728         6130         -6.2634         6370         -4.2732         6610         -10.0000           5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9199           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8073         6185         -5.0216         6425         -9.1922         6665                                                                                                                                        | 5360         |                 | 6120    | -6.2150 |        |                 |        |                  |
| 5375         -9.5366         6135         -6.2250         6375         -4.5464         6615         -10.0000           5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8799         6180         -5.0216         6425         -9.1922         6665                                                                                                                                        | 5365         | -8.6427         | 6125    | -6.2857 | 6365   | -4.1193         |        |                  |
| 5380         -9.9588         6140         -6.2234         6380         -4.9256         6620         -10.0000           5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6655         -7.5478           5940         -7.8742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5945         -7.8944         6190         -4.8566         6420         -8.8175         6660         -7.1487           5945         -7.7894         6190         -4.8566         6430         -9.6775         6675                                                                                                                                         | 5370         | -9.0728         | 6130    | -6.2634 | 6370   | -4.2732         |        |                  |
| 5905         -9.9871         6145         -6.2616         6385         -5.4090         6625         -10.0000           5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6655         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.4878           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1478           5945         -7.8894         6190         -4.8566         6430         -9.6775         6665         -6.7853           5950         -7.7466         6195         -4.8566         6430         -9.7423         6675                                                                                                                                          | 5375         | -9.5366         | 6135    | -6.2250 | 6375   |                 |        |                  |
| 5910         -9.6762         6150         -6.2931         6390         -6.0184         6630         -9.4967           5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1487           5945         -7.8073         6185         -5.0216         6425         -9.1922         6665         -6.7853           5950         -7.7894         6190         -4.8566         6430         -9.6775         6670         -6.5537           5955         -7.7466         6195         -4.6919         6435         -9.1980         6680         <                                                                                                                                 | 5380         |                 | 6140    | -6.2234 | 6380   | -4.9256         |        |                  |
| 5915         -9.3358         6155         -6.2508         6395         -6.7985         6635         -8.9198           5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1487           5945         -7.8073         6185         -5.0216         6425         -9.1922         6665         -6.7853           5950         -7.7894         6190         -4.8566         6430         -9.6775         6670         -6.5537           5955         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.3931           5960         -7.7009         6200         -4.2879         6445         -8.4120         6685         <                                                                                                                                 | 5905         | -9.9871         | 6145    | -6.2616 | 6385   | -5.4090         |        |                  |
| 5920         -8.9954         6160         -6.0971         6400         -7.7078         6640         -8.5081           5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -9.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1487           5945         -7.8073         6185         -5.0216         6425         -9.1922         6665         -6.7853           5950         -7.7894         6190         -4.8566         6430         -9.6775         6670         -6.5537           5955         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.3931           5960         -7.7009         6200         -4.5255         6440         -9.1980         6680         -6.4107           5975         -7.6393         6205         -4.2879         6455         -7.1499         6690         <                                                                                                                                 | 5910         | <b>-9.6762</b>  | ó 150   | -6.2931 | 6390   |                 | 6630   |                  |
| 5925         -8.5140         6165         -5.8679         6405         -8.3457         6645         -8.1255           5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1487           5945         -7.8073         6185         -5.0216         6425         -9.1922         6665         -6.7853           5950         -7.7894         6190         -4.8566         6430         -9.6775         6670         -6.5537           5955         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.3931           5960         -7.7009         6200         -4.5255         6440         -9.1980         6680         -6.4107           5965         -7.6393         6205         -4.2879         6450         -7.7499         6690         -6.6607           5975         -7.5899         6210         -4.2879         6450         -7.1685         6695         <                                                                                                                                 | 5915         |                 | 6155    | -6.2508 | 6395   | -6.7985         |        |                  |
| 5930         -8.2066         6170         -5.6195         6410         -8.5160         6650         -7.8286           5935         -7.9742         6175         -5.3906         6415         -8.6106         6655         -7.5478           5940         -7.8579         6180         -5.1944         6420         -8.8175         6660         -7.1487           5945         -7.894         6190         -4.8566         6425         -9.1922         6665         -6.7853           5950         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.5937           5955         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.3931           5960         -7.7009         6200         -4.5255         6440         -9.1980         6680         -6.4107           5965         -7.6393         6205         -4.3785         6445         -8.4120         6685         -6.5087           5970         -7.5889         6210         -4.2879         6450         -7.7499         6690         -6.6607           5975         -7.5997         6215         -4.2636         6455         -6.2701         6705 <t< td=""><td>592<b>0</b></td><td>-8.9954</td><td>6160</td><td>-6.0971</td><td>6400</td><td><b>-7.7</b>078</td><td>6640</td><td></td></t<> | 592 <b>0</b> | -8.9954         | 6160    | -6.0971 | 6400   | <b>-7.7</b> 078 | 6640   |                  |
| 5935       -7.9742       6175       -5.3906       6415       -8.6106       6655       -7.5478         5940       -7.8579       6180       -5.1944       6420       -8.8175       6660       -7.1487         5945       -7.8073       6185       -5.0216       6425       -9.1922       6665       -6.7853         5950       -7.7894       6190       -4.8566       6430       -9.6775       6670       -6.5537         5955       -7.7466       6195       -4.6919       6435       -9.7423       6675       -6.3931         5960       -7.7009       6200       -4.5255       6440       -9.1980       6680       -6.4107         5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5995       -7.3908       6225       -4.2788       6445       -6.2701       6705       -7.4444         5990       -7.1796       6230       -4.2484       6470 <td< td=""><td>5925</td><td></td><td>6165</td><td>-5.8679</td><td>6405</td><td>-8.3457</td><td>6645</td><td></td></td<>                                                                                                  | 5925         |                 | 6165    | -5.8679 | 6405   | -8.3457         | 6645   |                  |
| 5940       -7.8579       6180       -5.1944       6420       -8.8175       6660       -7.1487         5945       -7.8073       6185       -5.0216       6425       -9.1922       6665       -6.7853         5950       -7.7894       6190       -4.8566       6430       -9.6775       6670       -6.5537         5955       -7.7466       6195       -4.6919       6435       -9.7423       6675       -6.3931         5960       -7.7009       6200       -4.5255       6440       -9.1980       6680       -6.4107         5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6346         6000       -6.7869       6240       -4.1586       6480 <td< td=""><td>5930</td><td>-8.2066</td><td></td><td>-5.6195</td><td></td><td></td><td></td><td></td></td<>                                                                                                              | 5930         | -8.2066         |         | -5.6195 |        |                 |        |                  |
| 5945         -7.8073         6185         -5.0216         6425         -9.1922         6665         -6.7853           5950         -7.7894         6190         -4.8566         6430         -9.6775         6670         -6.5537           5955         -7.7466         6195         -4.6919         6435         -9.7423         6675         -6.3931           5960         -7.7009         6200         -4.5255         6440         -9.1980         6680         -6.4107           5965         -7.6393         6205         -4.3785         6445         -8.4120         6685         -6.5087           5970         -7.5889         6210         -4.2879         6450         -7.7499         6690         -6.6607           5975         -7.5697         6215         -4.2583         6455         -7.1685         6695         -6.6007           5975         -7.5200         6220         -4.2636         6460         -6.6817         6700         -7.2104           5980         -7.5200         6220         -4.2768         6465         -6.2701         6705         -7.4445           5990         -7.1796         6230         -4.2484         6470         -5.9301         6710         <                                                                                                                                 | 5935         | <b>-7.97</b> 42 |         |         |        |                 |        |                  |
| 5950       -7.7894       6190       -4.8566       6430       -9.6775       6670       -6.5537         5955       -7.7466       6195       -4.6919       6435       -9.7423       6675       -6.3931         5960       -7.7009       6200       -4.5255       6440       -9.1980       6680       -6.4107         5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.2211         6005       -6.6972       6245       -4.2079       6485 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5955       -7.7466       6195       -4.6919       6435       -9.7423       6675       -6.3931         5960       -7.7009       6200       -4.5255       6440       -9.1980       6680       -6.4107         5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6015       -6.6775       6255       -4.6407       6495 <td< td=""><td>5945</td><td>-7.8073</td><td>6185</td><td>-5.0216</td><td>6425</td><td></td><td></td><td></td></td<>                                                                                                      | 5945         | -7.8073         | 6185    | -5.0216 | 6425   |                 |        |                  |
| 5960       -7.7009       6200       -4.5255       6440       -9.1980       6680       -6.4107         5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6015       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6015       -6.6775       6255       -4.6407       6495 <td< td=""><td></td><td><b>-7.</b>7894</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                  |              | <b>-7.</b> 7894 |         |         |        |                 |        |                  |
| 5965       -7.6393       6205       -4.3785       6445       -8.4120       6685       -6.5087         5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6015       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6025       -6.6495       6260       -5.0141       6500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5970       -7.5889       6210       -4.2879       6450       -7.7499       6690       -6.6607         5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6025       -6.5292       6265       -5.4719       6505 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5975       -7.5697       6215       -4.2583       6455       -7.1685       6695       -6.9026         5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5980       -7.5200       6220       -4.2636       6460       -6.6817       6700       -7.2104         5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6035       -6.1371       6275       -6.5173       6515 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5985       -7.3908       6225       -4.2768       6465       -6.2701       6705       -7.4445         5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.5173       6510       -5.1296       6750       -6.1534         6040       -5.9268       6280       -6.7829       6520 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5990       -7.1796       6230       -4.2484       6470       -5.9301       6710       -7.6303         5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                |              |                 |         |         |        |                 |        |                  |
| 5995       -6.9610       6235       -4.1853       6475       -5.6567       6715       -7.6346         6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                         |              |                 |         |         |        |                 |        |                  |
| 6000       -6.7869       6240       -4.1586       6480       -5.4521       6720       -7.4521         6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                         |              |                 |         |         |        |                 |        |                  |
| 6005       -6.6972       6245       -4.2079       6485       -5.3289       6725       -7.2211         6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                                                                                                                               |              |                 |         |         |        |                 |        |                  |
| 6010       -6.6735       6250       -4.3651       6490       -5.2776       6730       -7.0043         6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |         |         |        |                 |        |                  |
| 6015       -6.6775       6255       -4.6407       6495       -5.2630       6735       -6.7903         6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                 |         |         |        |                 |        |                  |
| 6020       -6.6495       6260       -5.0141       6500       -5.2547       6740       -6.5666         6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                 |         |         |        |                 |        |                  |
| 6025       -6.5292       6265       -5.4719       6505       -5.2083       6745       -6.3499         6030       -6.3435       6270       -6.0015       6510       -5.1296       6750       -6.1534         6035       -6.1371       6275       -6.5173       6515       -5.0823       6755       -5.9988         6040       -5.9268       6280       -6.7829       6520       -5.0914       6760       -5.9033         6045       -5.7254       6285       -6.6805       6525       -5.1806       6765       -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |         |         |        |                 |        |                  |
| 6030     -6.3435     6270     -6.0015     6510     -5.1296     6750     -6.1534       6035     -6.1371     6275     -6.5173     6515     -5.0823     6755     -5.9988       6040     -5.9268     6280     -6.7829     6520     -5.0914     6760     -5.9033       6045     -5.7254     6285     -6.6805     6525     -5.1806     6765     -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                 |         |         |        |                 |        |                  |
| 6035 -6.1371 6275 -6.5173 6515 -5.0823 6755 -5.9988 6040 -5.9268 6280 -6.7829 6520 -5.0914 6760 -5.9033 6045 -5.7254 6285 -6.6805 6525 -5.1806 6765 -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                 |         |         |        |                 |        |                  |
| 6040 -5.9268 6280 -6.7829 6520 -5.0914 6760 -5.9033 6045 -5.7254 6285 -6.6805 6525 -5.1806 6765 -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 |         |         |        |                 |        |                  |
| 6045 -5.7254 6285 -6.6805 6525 -5.1806 6765 -5.8760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                 |         |         |        |                 |        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                 |         |         |        |                 |        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6050         | -5.5433         | 6290    | -6.4180 | 6530   | -5.3503         | 6770   | -5.8693          |

#### C. VALUE FOR CO2

| WAVE # | C*              | WAVE # | C'       | WAVE # | C'                  | WAVE #         | C*              |
|--------|-----------------|--------|----------|--------|---------------------|----------------|-----------------|
| 6775   | -5.8277         | 7015   | -9.0451  | 7620   | -6.2234             | 8100           | -6.6818         |
| 6780   | <b>-5.7</b> 282 | 7020   | -9.5326  | 7625   | -6.6646             | 8105           | -6.6144         |
| 6785   | -5.6262         | 7025   | -9.8301  | 7630   | <del>-</del> 7.2957 | 8 1 1 0        | -6.5643         |
| 6790   | -5.5865         | 7395   | -9.9472  | 7635   | -8.2799             | 8115           | -6.5183         |
| 6795   | -5.6665         | 7400   | -9.8274  | 7640   | -9.9457             | 8 <b>1 2 0</b> | -6.4910         |
| 6800   | -5.9228         | 7405   | -8.9797  |        | -10.0000            | 8125           | -6.4481         |
| 6805   | -6.3399         | 7410   | -8.4298  |        | -10.0000            | 8130           | -6.3567         |
| 6810   | -7.0180         | 74.15  | -7.8906  |        | -10.0000            | 8135           | -6.2177         |
| 6815   | -8.4230         | 7420   | -7.4477  | 7660   | -10.0000            | 8140           | -6.0566         |
|        | -10.0000        | 7425   | -7.0750  | 7665   |                     | 8 145          | -5.9096         |
|        | -10.0000        | 7430   | -6.7698  | 7670   | -10.0000            | 8 150          | -5.7975         |
|        | -10.0000        | 7435   | -6,5338  | 76 75  |                     | 8155           | -5.7093         |
| 6835   | -9.4090         | 7440   | -6.3739  | 7680   | -9.2766             | 8160           | -5.6165         |
| 6840   | -8.8272         | 7445   | -6.2980  | 76 85  | -8.6201             | 8165           | -5.5127         |
| 6845   | -8.3057         | 7450   | -6.2739  | 7690   |                     | 8170           | -5.4124         |
| 6850   | <b>-7.</b> 8885 | 7455   | -6.2726  | 7695   | -7.6374             | 8175           | -5.3426         |
| 6855   | -7.5044         | 7460   | -6.2555  | 7700   | -7.2752             | 8180           | -5.3061         |
| 6860   | -7.1560         | 7465   | -6.1989  | 7705   | -6.9892             | 8185           | -5.2648         |
| 6865   | -6.8292         | 7470   | -6.1529  | 7710   | - <b>6.7</b> 578    | 8 19 0         | -5.1864         |
| 6870   | -6.5250         | 7475   | -6.1654  | 7715   | -6.6163             | 8195           | -5.0876         |
| 6875   | -6.2461         | 7480   | -6.2584  | 7720   | -6.5546             | 8200           | -5.0226         |
| 6880   | -5.9904         | 7485   | -6.4610  | 7725   | -6.5392             | 8205           | -5.0397         |
| 6885   | -5.7533         | 7490   | -6.7805  | 7730   | -6.5397             | 8210           | -5. 1905        |
| 6890   | -5.5295         | 7495   | -7.2235  | 7735   | -6.5132             | 8215           | -5.4858         |
| 6895   | -5.3135         | 7500   | -7.8191  | 7740   | -6.4531             | 8220           | -5.9101         |
| 6900   | -5.1058         | 7505   | -8.5850  | 7745   | -6.4161             | 8225           | -6,4851         |
| 6905   | -4.9152         | 7510   | -9.6084  | 7750   |                     | 8230           | -6.7862         |
| 6910   | -4.7463         |        | -10.0000 | 7755   | -6.5683             | 8235           | -6.5368         |
| 69 15  | -4.6054         |        | -10.0000 | 7760   | -6.8086             | 8240           | -6.2765         |
| 6920   | -4.4937         | 7525   | -9.9199  | 7765   | -7.1762             | 8245           | -6.0398         |
| 6925   | -4.3928         | 7530   | -9.1093  | 7770   | -7.6772             | 8250           | -5.8260         |
| 6930   | -4.2838         | 7535   | -8.4490  | 7775   | -8.3574             | 8255           | -5.6397         |
| 6935   | -4.1626         | 7540   | -7.9158  | 7780   | -9.2188             | 8260           | -5.4799         |
| 6940   | -4.0387         | 7545   | -7.4364  |        | -10.0000            | 8265           | -5.3438         |
| 6945   | -3.9295         | 7550   | -7.0400  |        | -10.0000            | 8270           | -5.2274         |
| 6950   |                 | 7555   |          |        | -9.5350             | 8275           | -5.1411         |
| 6955   | -3.8501         | 7560   | -6.4131  | 8040   | -8.9686             | 8280           | -5.0917         |
| 6960   | -3.8647         | 7565   | -6.1855  | 8045   | -8.5329             | 8285           | -5.0473         |
| 6965   | -3.8625         | 7570   | -6.0158  | 8050   | -8.1920             | 8.290          | -4.9820         |
| 6970   | -3.8099         | 7575   | -5.9123  | 8055   | -7.9237             | 8295           | -4.9114         |
| 6975   | -3.7351         | 7580   | -5.8700  | 8060   | -7.6797             | 8300           | -4.8634         |
| 6980   | -3.7179         | 7585   | -5.8530  | 8065   | -7.5039             | 8305           | -4.8844         |
| 6985   | -3.8549         | 7590   | -5.8340  | 8070   | -7.3667             | 8310           | -5.0363         |
| 6990   | -4.2312         | 7595   | -5.7866  | 80 75  | -7.2856             | 8315           | -5.3351         |
| 6995   | -4.7632         | 7600   | -5.7224  | 8080   | -7.1969             | 8320           | -5.7802         |
| 7000   | -5.4270         | 7605   | -5.7048  | 8085   | -7.0745             | 8325           | <b>-6.</b> 5387 |
| 7005   | -6.4200         | 7610   | -5.7653  | 8090   | -6.9330             | 8330           | -8.3735         |
| 7010   | -8.1414         | 7615   | -5.9281  | 8095   | -6.7926             | 8335           | -9.9977         |

# C' VALUE FOR CO2

| WAVE # | C.      | WAVE # | C•       | WAVE # | C *      | WAVE # | C'              |
|--------|---------|--------|----------|--------|----------|--------|-----------------|
| 9340   | -9.7506 | 9425   | -10.0000 | 9510   | -6.6303  | 9595   | -7.8567         |
| 9345   | -9.1887 | 9430   | -10.0000 | 9515   | -6.5406  | 9600   | -7.6177         |
| 9350   | -8.6824 | 9435   | -10.0000 | 9520   | -6.4509  | 9605   | -7.4249         |
| 9355   | -8.3488 | 9440   | -10.0000 | 95.25  | -6.3950  | 9610   | <b>-7.</b> 2876 |
| 9360   | -8.0533 | 9445   | -10.0000 | 9530   | -6.4345  | 9615   | -7.2206         |
| 9365   | -7.8664 | 9450   | -9.7234  | 9535   | -6.6270  | 9620   | -7.1948         |
| 9370   | -7.7346 | 9455   | -8.9969  | 9540   | -6.9507  | 9625   | -7.1552         |
| 9375   | -7.6934 | 9460   | -8.5776  | 9545   | -7.5028  | 9630   | <b>-7.</b> 0773 |
| 9380   | -7.6674 | 9465   | -8.1737  | 9550   | -8.6428  | 9635   | -6.9884         |
| 9385   | -7.6268 | 9470   | -7.8640  | 9555   | -10.0000 | 9640   | -6.9402         |
| 9390   | -7.5451 | 9475   | -7.5729  | 9560   | -10.0000 | 9645   | -6.9839         |
| 9395   | -7.4677 | 9480   | -7.3186  | 9565   | -10.0000 | 9650   | -7.1773         |
| 9400   | -7.4520 | 9485   | -7.0973  | 9570   | -10.0000 | 9655   | -7.4999         |
| 9405   | -7.5471 | 9490   | -6.9131  | 9575   | -9.5303  | 9660   | -8.0643         |
| 9410   | -7.7913 | 9495   | -6.7782  | 95.80  | -8.9369  | 9665   | -9.1480         |
| 9415   | -8.1917 | 9500   | -6.7073  | 95.85  | -8.4952  | 9670   | -10.0000        |
| 9420   | -8.8835 | 9505   | -6.6768  | 9590   | -8.1465  |        |                 |

TABLE A3

## C. VALUE FOR CO

| WAVE #     | C •                | WAVE #       | . C1               | WAVE #       | C •                | WAVE #       | C*                 |
|------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|
| 0          | -4.6868            | 1980         | -5.6734            | 2200         | -0.8052            | 4170         | -3.7984            |
| 5          | -4.4127            | 1985         | -5.2658            | 2205         | -0.9690            | 4175         | -3.6314            |
| 10         | -3.9461            | 1990         | -4.8686            | 2210         | -1.1506            | 4180         | -3.4757            |
| 15         | -3.5662            | 1995         | -4.4918            | 2215         | -1.3522            | 4185         | -3.3408            |
| 20         | -3.2921            | 2000         | -4.1423            | 2229         | -1.5791            | 4190         | -3.2237            |
| 25         | -3.1081            | 2005         | -3.8133            | 2225         | -1.8248            | 4195         | -3.1219            |
| 30         | -2.9807            | 2010         | -3.4998            | 22 30        | -2.1073            | 4200         | -3.0325            |
| 35         | -2.8977            | 20 15        | -3.2104            | 2235         | -2.4246            | 4205         | -2.9494            |
| 40         | -2.8580            | 2020         | -2.9443            | 22 40        | -2.7877            | 4210         | -2.8765            |
| 45         | -2.8461            | 2025         | -2.7138            | 2245         | -3.2152            | 4215         | -2.8117            |
| 50         | -2.8587            | 20 30        | -2.5084            | 2250         | -3.7089            | 4220         | -2.7531            |
| 55         | -2.9029            | 2035         | -2.3109            | 2255         | -4.2832            | 4225         | -2.7023            |
| 60         | -2.9646            | 2040         | -2.1245            | 2260         | -4.9518            | 4230         | -2.6635            |
| 65         | -3.0480            | 2045         | -1.9387            | 2265         | -5.7251            | 4235         | -2.6440            |
| 70         | -3.1589            | 2050         | -1.7608            | 2270         | -6.5319            | 4240         | -2.6550            |
| 75         | -3.2836            | 2055         | -1.6054            | 2275         | -7.4879            | 4245         | -2.7225            |
| 80         | -3.4277            | 2060         | -1.4733            | 2280         | -9.0885            | 4250         | -2.8161            |
| 85         | -3.5993            | 2065         | -1.3594            | 2285         | -10.0000           | 4255         | -2.9015            |
| 90         | -3.7963            | 2070         | -1.2540            | 4040         | -10.0000           | 4260         | -2.9241            |
| 95         | -4.0164            | 2075         | -1.1480            | 4045         | -9.5611            | 4265         | -2.8228            |
| 100        | -4.2799            | 2080         | -1.0341            | 4050         | -9.0875            | 4270         | -2.6726            |
| 105        | -4.5750            | 2085         | -0.9216            | 4055         | -8.6139            | 4275         | -2.5320            |
| 110        | -4.8722            | 2090         | -0.8189            | 4060         | -7.9747            | 4280         | -2.4291            |
| 115        | -5.2741            | 2095         | -0.7235            | 4065         | -7.5250            | 4285         | -2.3772            |
| 120        | -5.6819<br>-6.0799 | 2100         | -0.6362            | 4070         | -7.1931            | 4290         | -2.3732            |
| 125<br>130 |                    | 2105         | -0.5549            | 4075         | -6.8596            | 4295         | -2.3995            |
| 135        | -6.4828<br>-6.8857 | 2110<br>2115 | -0.4856            | 4080         | -6.5741            | 4300         | -2.4574            |
| 140        | -7.2886            | 2113         | -0.4401<br>-0.4268 | 4085<br>4090 | -6.2922            | 4305         | -2.5486            |
| 145        | <b>-7.</b> 6915    | 2125         | -0.4657            | 4095         | -6.0098<br>-5.7669 | 4310<br>4315 | -2.6664<br>-2.8209 |
| 150        | -8.0944            | 2130         | -0.5571            | 4100         | -5.5345            | 4313         | -3.0129            |
| 155        | -8.4973            | 2135         | -0.6573            | 4105         | -5.3229            | 4325         | -3.2516            |
| 160        | -8.9002            | 2140         | -0.7404            | 4110         | -5.1461            | 4330         | -3.5482            |
| 165        | -9.3031            | 2145         | -0.7523            | 4115         | -4.9882            | 4335         | -3.9165            |
| 170        | -9.7060            | 2150         | -0.6601            | 4120         | -4.8493            | 4340         | -4.3714            |
|            | -10.0000           | 2155         | -0.5380            | 4125         | -4.7239            | 4345         | -4.9326            |
|            | -10.0000           | 2160         | -0.4211            | 4130         | -4.6064            | 4350         | -5.6394            |
| 19 45      | -9.5312            | 2165         | -0.3367            | 4135         | -4.5009            | 4355         | -6.5163            |
| 1950       | -8.8977            | 2170         | -0.3167            | 4140         | -4.4071            | 4360         | -7.6063            |
| 1955       | -8.2642            | 2175         | -0.3320            | 4145         | -4.3322            | 4365         | -9.3575            |
| 1960       | -7.5767            | 2180         | -0.3753            | 4150         | -4.2661            |              | -10.0000           |
| 1965       | -6.9972            | 2185         | -0.4489            | 4155         | -4.1926            |              |                    |
| 1970       | -6.5408            | 2190         | -0.5438            | 4160         | -4.0956            |              |                    |
| 1975       | -6.1219            | 2195         | -0.6653            | 4165         | -3.9611            |              |                    |

TABLE A4

# C' VALUE FOR CH4

| WAVE #               | C •                | WAVE #       | C3                 | WAVE #       | C ·                      | WAVE #         | C4                  |
|----------------------|--------------------|--------------|--------------------|--------------|--------------------------|----------------|---------------------|
| 1065                 | -10.0000           | 1305         | -0.5027            | 1545         | -2.1488                  | 2350           | -9.3577             |
| 1070                 | -9.4577            | 1310         | -0.7628            | 1550         | -2.3261                  | 2355           | -8.5950             |
| 1075                 | -8.8866            | 1315         | -0.9625            | 1555         | -2.6448                  | 2360           | -7.8323             |
| 1080                 | -8.2246            | 1320         | -1.0431            | 1560         | -3.0446                  | 2365           | -7.0696             |
| 10 85                | -7.7940            | 1325         | -1.0068            | 1565         | -3.3958                  | 2370           | -6.3069             |
| 1090                 | -7.1734            | 1330         | -0.8781            | 1570         | -3.6510                  | 2375           | -5.5442             |
| 1095                 | -6.7965            | 1335         | -0.7559            |              | -3.7049                  | 2380           | -5.1501             |
| 1100                 | -6.5695            | 1340         | -0.6628            | 1580         | -3.7240                  | 2385           | -4.8853             |
| 1105                 | -6.1929            | 1345         | -0.6128            | 1585         | -3.5992                  | 2390           | -4.6900             |
| 1110                 | -5.9169            | 1350         | -0.6118            | 1590         | -3.4937                  | 2395           | -4.5262             |
| 1115                 | -5.7452            | 1355         | -0.6575            | 1595         | -3.3676                  | 2400           | -4.3957             |
| 1120                 | -5.4731            | 1360         | -0.7620            | 1600         | -3.2230                  | 2405           | -4.2823             |
| 1125                 | -5.3001            | 1365         | -9.9217            | 1605         | -3.1630                  | 2410           | -4.2736             |
| 11,30                | -5.1872            | 1370         | -1.1264            | 1610         | -3.0691                  | 2415           | -4.2054             |
| 1135                 | -4.9672            | 1375         | -1.3660            | 1615         | -3.0776                  | 2420           | -4.1168             |
| 1140                 | -4.8474            | 1380         | -1.6352            | 1620         | -3.0872                  | 2425           | -3.9986             |
| . 1145               | -4.6939            | 1385         | -1.9264            | 16 25        | -3.0974                  | 2430           | -3.8712             |
| 1150                 | -4.5210            | 1390         | -2.2266            | 1630         | -3.1223                  | 2435           | -3.8692             |
| 1155                 | -4.3377            | 1395         | -2.5123            | 1635         | -3.1285                  | . 2440         | -3.8777             |
| 1160                 | -4.1346            | 1400         | -2.7472            | 1640         | -3.1212                  | 2445           | -3.8965             |
| 1165                 | -3.9322            | 1405         | -2.8820            | 1645         | -3.1333                  | 2450           | -3.9092             |
| 1170                 | -3.7339            | 1410         | -2.9129            | 1650         | -3.1674                  | 2455           | <b>-3.87</b> 88     |
| 1175                 | -3.5077            | 1415         | -2.9145            | 1655         | -3.1668                  | 2460           | -3.7661             |
| 1180                 | -3.2719            | 1420         | -2.8854            | 1660         | -3.2433                  | 2465           | -3.6900             |
| 1185                 | -3.0296            | 1425         | -2.8508            | 1665         | -3.2398                  | 2470           | <del>-</del> 3.6239 |
| 1190                 | -2.8124            | 1430         | -2.8512            | 1670         | <b>-</b> 3 <b>.313</b> 5 | 24 <b>7</b> 5  | <del>-</del> 3.5597 |
| 1195                 | -2.6199            | 1435         | -2.8202            | 1675         | -3.3975                  | 248 <b>0</b> - | -3.5193             |
| 1200                 | -2.4479            | 1440         | -2.8023            | <b>1680</b>  | -3.4427                  | 2485           | -3.4906             |
| 1205                 | -2.2502            | 1445         | -2.8004            | 1685         | -3.6434                  | 2490           | -3.4415             |
| 1210                 | -2.0541            | 1450         | -2.7800            | 1690         | -3.7528                  | 2495           | -3.3730             |
| 1215                 | -1.8800            | 1455         | -2.8175            | 1695         | -3.9466                  | 2500           | <b>-3.357</b> 9     |
| 1220                 | -1.7092            | 1460         | -2.8413            | 1700         | -4.1940                  | 2505           | -3.3427             |
| 1225                 | -1.5791            | 1465         | -2.8943            | 1705         | -4.3362                  | 2510           | -3.3208             |
| 1230                 | -1.4379            | 1470         | -2.9876            | 1710         | -4.5539                  | 2515           | -3.3048             |
| 1235                 | -1.2992            | 1475         | -3.0688            | 1715         | -4.7410                  | 2520           | -3.3136             |
| 1240                 | -1. 1735           | 1480         | -3.2424            | 1720         | -4.9155                  | 2525           | -3.2904             |
| 1245                 | -1.0510            | 1485         | -3.4064            | 1725         | -5.1345                  | 2530           | -3.2545             |
| 1250                 | -0.9646            | 1490         | -3.5759            | 1730         | -5.3908                  | 2535           | -3.2241             |
| 1255                 | -0.8779            | 1495         | -3.7630            | 1735         | -5.5592<br>5.9370        | 2540<br>2545   | -3.1453<br>-3.0187  |
| 1260                 | -0.8002            | 1500         | -3.8925            | 1740         | -5.8270                  | 2550           | -2.9427             |
| 1265                 | -0.7574            | 1505         | -4.0774            | 1745         | -6.0289<br>-6.2365       | 2555           | -2.8630             |
| 1270<br>1275         | -0.7356<br>-0.7478 | 1510<br>1515 | -4.3243<br>-4.5964 | 1750<br>1755 | <b>-6.6730</b>           | 2555<br>2560   | -2.8146             |
|                      | -0.7512            | 1515<br>1520 | -3.8654            | 1755         | <b>-7.0</b> 538          | 2565           | -2.8604             |
| 128 <b>0</b><br>1285 | -0.6906            | 1525         | -3.0034            | 1765         | <b>-7.6216</b>           | 2570           | -2.8922             |
| 1290                 | -0.5594            | 1530         | -2.5967            | 1770         | -8.5697                  | 2575           | -2.9650             |
| 1295                 | -0.4417            | 1535         | -2.2482            | 1775         | -9.8483                  | 2580           | -2.9959             |
| 1300                 | -0.4019            | 1540         | -2.1016            |              | -10.0000                 | 2585           | -2.8920             |

| WAVE #                | c •                | WAVE #       | C•                 | WAVE #       | C •                 | WAVE #       | C*                 |
|-----------------------|--------------------|--------------|--------------------|--------------|---------------------|--------------|--------------------|
| 2590                  | -2.7989            | 2830         | -1.6545            | 30 70        | <del>-</del> 0.9578 | 4185         | -1.8750            |
| 2595                  | -2.7028            | 2835         | -1.7742            | 3075         | -0.9299             | 4190         | -1.8700            |
| 2600                  | -2.6506            | 2840         | -1.8937            | 3080         | -0.9207             | 4195         | -1.8476            |
| 2605                  | -2.7285            | 2845         | -1.9544            | 3085         | -0.9292             | 4200         | -1.7390            |
| 26 10                 | -2.8420            | 2850         | -1.8942            | 3090         | -0.9725             | 4205         | -1.5724            |
| 26 15                 | -2.9304            | 2855         | -1.7761            | 3095         | -1.0126             | 4210         | -1.4284            |
| 2620                  | -2.9622            | 2860         | -1.6392            | 3100         | -1.0750             | 4215         | -1.3425            |
| 2625                  | -2.8726            | 2865         | -1.5236            | 3105         | -1.1149             | 4220         | -1.3791            |
| 2630                  | -2.7566            | 2870         | -1.4551            | 3110         | -1.1636             | 4225         | <b>-1.5132</b>     |
| 2635                  | -2.6745            | 2875         | -1.4221            | 3115         | -1.2059             | 4230         | <b>-1.650</b> 8    |
| 26 40                 | -2.6337            | 288 <b>0</b> | -1.4245            | 3120         | -1.2638             | 4235         | -1.7283            |
| 2645                  | -2.6533            | 2885         | -1.4174            | 3125         | -1.3327             | 4240         | -1.6684            |
| 2650                  | -2.6800            | 289 <b>0</b> | -1.4177            | 3130         | -1.4079             | 4245         | -1.5432            |
| 2655                  | -2.7098            | 28 <b>95</b> | -1.3776            | 3135         | -1.4983             | 4250         | -1.4447            |
| 2660                  | -2.7479            | 2900         | -1.3349            | 3140         | -1.5711             | 4255         | -1.3773            |
| 2665                  | -2.6859            | 2905         | -1.2909            | 3145         | -1.6872             | 4260         | <b>-1.</b> 3490    |
| 2670                  | -2.6216            | 2910         | -1.2470            | 3150         | -1.7870             | 4265         | -1.3642            |
| 2675                  | -2.5701            | 2915         | -1.2162            | 3155         | -1.9266             | 4270         | -1.4016            |
| 2680                  | -2.4683            | 2920         | -1.1850            | 3160         | -2.0774             | 4275         | -1.4713            |
| 2685                  | -2.4426            | 2925         | -1.1677            | 3165         | -2.2119             | 4280         | <b>-1.</b> 5836    |
| 2690                  | -2.4463            | 2930         | -1.1449            | 3170         | -2.3875             | 4285         | <b>-1.6</b> 984    |
| 26 <b>9</b> 5         | -2.4194            | 2935         | -1.1229            | 3175         | -2.5155             | 4290         | <b>-1.</b> 8085    |
| 2700                  | -2.4578            | 2940         | -1.1031            | 3180         | -2.6822             | 4295         | -1.8486            |
| 2705                  | -2.4894            | 2945         | -1.0795            | 3185         | -2.8372             | 4300         | -1.7464            |
| 2710                  | -2.4639            | 2950         | -1.0687            | 3190         | -3.0032             | 4305         | <b>-1.633</b> 8    |
| 27 15                 | -2.4825            | 2955         | -1.0692            | 3195         | -3.2413             | 4310         | <b>-1.</b> 5555    |
| 2720                  | -2.4998            | 2960         | -1.0904            | 3200         | -3.5058             | 4315         | <b>-1.</b> 5552    |
| 2725                  | -2.4381            | 2965         | -1.1166            | 3205         | -3.9508             | 4320         | <b>-1.</b> 6935    |
| 2730                  | -2.4123            | 2970         | -1.1511            | 3210         | -4.5133             | 4325         | -1.8165            |
| 27.35                 | -2.3654            | 2975         | -1.1951            | 3215         | -5.3536             | 4330         | -1.8417            |
| 2740                  | -2.2698            | 298 <b>0</b> | -1.2321            | 3220         | -8.0815             | 4335         | -1.7697            |
| 2745                  | -2.2387            | 2985         | -1.2831            | 3225         | -8.9081             | 4340         | -1.6346            |
| 2750                  | -2.2364            | 2990         | -1.2716            | 3230         | -9.8155             | 4345         | -1.5589            |
| 2755                  | -2.2029            | 2995         | -1.1902            |              | -10.0000            | 4350         | -1.5466            |
| 2760                  | -2.1780            | 3000         | -0.9715            | 4115         | -7.4757             | 4355         | -1.5604            |
|                       | -2.1433            | 3005         | -0.6654            |              | -5.1602             | 4360         |                    |
| 2770                  | -2.0355            | 3010         | -0.4103            | 4125         | -4.2454             | 4365         | -1.6867            |
| 2775                  | -1.9458            | 3015         | -0.3011            | 4130         | -3.7640             | 4370         | -1.7593            |
|                       | 1.8723             | 3020         | -0.5049            | 4135         | -3.3256             | 4.375        | -1.8051            |
| 2785                  | -1.7936            | 3025         | -0.8659            | 4140         | -3.0103             | 4380         | -1.8167            |
| 2790                  | -1.7639            | 3030         | -1.1777            | 4145         | -2.7726             | 4385         | -1.8518            |
| 2795<br>2800          | <b>-1.7782</b>     | 3035         | -1.3847            | 4150         | -2.5510             | 4390         | -1.8559            |
| 2800<br>28 <b>0</b> 5 | -1.8022            | 3040         | -1.4359            | 4155         | -2.3849             | 4395         | -1.8547            |
| 2810                  | -1.8115            | 3045         | -1.3908            | 4160.        | -2.2318             | 4400         | -1.8907            |
| 28 15                 | -1.7818<br>-1.6986 | 3050<br>3055 | -1.2992            | 4165         | -2.1080             | 4405         | -1.8851            |
| 2820                  | -1.6169            | 3055<br>3060 | -1.1923<br>-1.0951 | 4170<br>4175 | -2.0086<br>-1.9290  | 4410         | -1.8933            |
| 2825                  | -1.5975            | 3065         | -1.0931            | 4173         | -1.8902             | 4415<br>4420 | -1.9081<br>-1.9025 |
|                       | **                 | 2003         | 1.0213             | 7100         | * I • O 7 V Z       | 4420         | - 10 70 20         |

## C' VALUE FOR CH4

| WAVE # | C,      | WAVE #       | C1       | WAVE #       | C 1     | WAVE #        | C.      |
|--------|---------|--------------|----------|--------------|---------|---------------|---------|
| 4425   | -1.9451 | 4565         | -3.9311  | 5875         | -6.0815 | 6015          | -3.8750 |
| 4430   | -1.9924 | 4570         | -4.1470  | 5880         | -5.4397 | 6020          | -4.2645 |
| 44.35  | -2.0321 | 4575         | -3.9351  | 5885         | -4.9875 | 6025          | -4.4786 |
| 4440   | -2.0816 | 4580         | -3.7471  | 5890         | -4.6154 | 6030          | -4.4293 |
| 4445   | -2.1026 | 4585         | -3.6245  | 58 <b>95</b> | -4.4846 | 6035          | -4.3183 |
| 4450   | -2.1137 | 459 <b>0</b> | -3.4791  | 5900         | -4.3541 | 6040          | -4.1996 |
| 4455   | -2.1351 | 4595         | -3.4710  | 5905         | -4.3037 | 6045          | -4.0879 |
| 4460   | -2.1629 | 4600         | -3.4210  | 5910         | -4.3073 | 6050          | -4.0169 |
| 4465   | -2.1876 | 4605         | -3.4125  | 5915         | -4.2471 | 6055          | -3.9787 |
| 4470   | -2.2340 | 4610         | -3.4475  | 5920         | -4.2593 | 6060          | -3.9536 |
| 4475   | -2.2960 | 46 15        | -3.4140  | 5925         | -4.1984 | 6065          | -3.9454 |
| 4480   | -2.3747 | 4620         | -3.4908  | 5930         | -4.1895 | 6 <b>07</b> 0 | -3.9283 |
| 4485   | -2.4970 | 4625         | -3.5164  | 5935         | -4.1697 | 6075          | -3.9166 |
| 4490   | -2.6244 | 4630         | -3.5944  | 5940         | -4.1578 | 6080          | -3.9152 |
| 4495   | -2.7641 | 4635         | -3.7403  | 5945         | -4.1950 | 6085          | -3.9336 |
| 4500   | -2.8912 | 4640         | -3.8192  | 5950         | -4.1878 | 6090          | ~3.9561 |
| 4505   | -3.0328 | 4645         | -4.0177  | 5955         | -4.2299 | 6095          | -3.9932 |
| 45 10  | -3.1944 | 46 50        | -4.1833  | 5960         | -4.2209 | 6100          | -4.0934 |
| 45 15  | -3.3877 | 4655         | -4.3518  | 5965         | -4.2646 | 6105          | -4.2317 |
| 45.20  | -3.4566 | 4660         | -4.6486  | 59 <b>70</b> | -4.3123 | 6110          | -4.5084 |
| 4525   | -3.1662 | 4665         | -4.8778  | 5975         | -4.3911 | 6115          | -4.9460 |
| 4530   | -2.7253 | 4670         | -5.2542  | <b>5980</b>  | -4.4588 | 6120          | -5.4958 |
| 4535   | -2.3992 | 4675         | -5.7834  | 5985         | -4.1873 | 6125          | -6.5492 |
| 4540   | -2.2214 | 4680         | -6.3451  | 5990         | -3.8353 | 6130          | -8.5604 |
| 4545   | -2.2022 | 4685         | -7.7212  | 5995         | -3.5282 | 6135          | -9.6202 |
| 4550   | -2.3978 | 4690         | -10.0000 | 6000         | -3.3055 |               |         |
| 4555   | -2.7449 | 5865         | -9.9134  | 6905         | -3.3351 |               |         |
| 4560   | -3.2639 | 58 <b>70</b> | -7.9181  | 60 10        | -3.5671 |               |         |

TABLE A5

## C. VALUE FOR NO

| WAVE # | C!              | WAVE # | . C t   | WAVE # | C •     | WAVE # | C •     |
|--------|-----------------|--------|---------|--------|---------|--------|---------|
| 1700   | <b>-7.9</b> 265 | 1780   | -2.7282 | 1860   | -0.6076 | 1940   | -1.3406 |
| 1705   | -7.5649         | 1785   | -2.4448 | 1865   | -0.6791 | 1945   | -1.6473 |
| 1710   | -7.2033         | 1790   | -2.1791 | 1870   | -0.7553 | 1950   | -2.0068 |
| 1715   | -6.8418         | 1795   | -1.9315 | 1875   | -0.7811 | 1955   | -2.4335 |
| 1720   | -6.4802         | 1800   | -1.7046 | 1880   | -0.7711 | 1960   | -2.9068 |
| 1725   | -6.0647         | 1805   | -1.4984 | 1885   | -0.6840 | 1965   | -3.4595 |
| 1730   | -5.7193         | 18 10  | -1.3133 | 1890   | -0.5704 | 1970   | -4.0370 |
| 1735   | -5.3955         | 1815   | -1.1486 | 1895   | -0.4791 | 1975   | -4.6795 |
| 17 40  | -5.1475         | 1820   | -1.0036 | 1900   | -0.4138 | 1980   | -5.2704 |
| 1745   | -4.8233         | 1825   | -0.8776 | 1905   | -0.3950 | 1985   | -5.8613 |
| 1750   | -4.5194         | 1830   | -0.7699 | 1910   | -0.4189 | 1990   | -6.4522 |
| 1755   | -4.3184         | 1835   | -0.6811 | 1915   | -0.4794 | 1995   | -7.0431 |
| 1760   | -3.9664         | 1840   | -0.6124 | 1920   | -0.5751 | 2000   | -7.6340 |
| 1765   | -3.7045         | 1845   | -0.5663 | 1925   | -0.7062 | 2005   | -8.0000 |
| 1770   | -3.3398         | 1850   | -0.5488 | 1930   | -0.8751 |        |         |
| 1775   | -3.0368         | 1855   | -0.5673 | 1935   | -1.0852 |        |         |

TABLE A6

## C' VALUE FOR NO2

| WAVE #      | C,      | WAVE #       | C.              | WAVE # | C       | WAVE # | C*              |
|-------------|---------|--------------|-----------------|--------|---------|--------|-----------------|
| 5 80        | -6.0000 | 760          | -1.3284         | 1525   | -4.8964 | 2905   | -5.7606         |
| 585         | -5.8419 | 765          | -1.2804         | 1530   | -4.2513 | 2810   | -5.3422         |
| 590         | -5.5313 | 770          | -1.2497         | 1535   | -3.6063 | 2815   | -4.9238         |
| 595         | -5.1048 | 775          | -1.2519         | 1540   | -2.9612 | 2820   | -4.5055         |
| 600         | -4.9512 | 780          | -1.3123         | 1545   | -2.1733 | 2825   | -4.0871         |
| 605         | -4.5830 | <b>7</b> 85  | -1.3704         | 1550   | -1.5514 | 2830   | -3.6687         |
| 610         | -4.2676 | 790          | -1.4192         | 1555   | -1.0260 | 2835   | -3.2504         |
| 615         | -3.9783 | 795          | -1.4878         | 1560   | -0.5817 | 2840   | -2.8320         |
| 6 20        | -3.7150 | 800          | -1.5301         | 1565   | -0.2030 | 2845   | -2.3736         |
| 625         | -3.4782 | 805          | -1.5575         | 1570   | 0.1231  | 2850   | -1.9565         |
| 630         | -3.2541 | 810          | <b>-1.</b> 5912 | 1575   | 0.4098  | 2855   | <b>-1.</b> 5769 |
| 635         | -3.0597 | 815          | -1,6250         | 1580   | 0.6653  | 2860   | -1.2400         |
| 640         | -2.8625 | 820          | -1.6544         | 1585   | 0.8885  | 2865   | -0.9384         |
| 645         | -2.6989 | 825          | -1.6849         | 1590   | 1.0716  | 2870   | -0.6781         |
| 6 5 0       | -2.5323 | 830          | -1.7340         | 1595   | 1.2025  | 2875   | -0.4630         |
| 655         | -2.3904 | 835          | -1.7748         | 1600   | 1.2697  | 2880   | -0.2944         |
| 660         | -2.2561 | 840          | -1.8171         | 1605   | 1.2926  | 2885   | -0.1783         |
| 665         | -2.1346 | 845          | -1.8679         | 16 10  | 1.3006  | 2890   | -0.1213         |
| 670         | -2.0320 | 8 <b>50</b>  | -1.9256         | 1615   | 1.3128  | 2895   | -0.1033         |
| 675         | -1.9284 | 855          | -1.9809         | 1620   | 1.3449  | 2900   | -0.0934         |
| 680         | -1.8584 | 86 <b>0</b>  | -2.0386         | 16 25  | 1.3656  | 2905   | -0.0723         |
| 6 8 5       | -1.7778 | 865          | -2.1112         | 1630   | 1.3245  | 2910   | -0.0267         |
| 6 <b>90</b> | -1.7222 | 870          | -2.1769         | 1635   | 1.1868  | 2915   | 0.0016          |
| 695         | -1.6776 | 8 <b>7</b> 5 | -2.2462         | 1640   | 0.9310  | 2920   | -0.0394         |
| 700         | -1.6024 | 88 <b>0</b>  | -2.3199         | 1645   | 0.5907  | 2925   | -0.1700         |
| 705         | -1.5658 | 885          | -2.4129         | 1650   | 0.2056  | 2930   | -0.4141         |
| 710         | -1.4917 | 890          | <b>-2.</b> 5156 | 16 55· | -0.2337 | 2935   | -0.7861         |
| 715         | -1.4117 | 895          | -2.6575         | 1660   | -0.7633 | 2940   | -1.2951         |
| 7 20        | -1.3706 | 900          | -2.8825         | 1665   | -1.4541 | 2945   | -2.0379         |
| 725         | -1.3045 | 905          | -3.1831         | 1670   | -2.4451 | 2950   | -3.0984         |
| 730         | -1.2914 | 9 10         | -3.6209         | 1675   | -3.1822 | 2955   | -3.8692         |
| 735         | -1.3292 | 915          | -4.2271         | 1680   | -3.9193 | 2960   | -4.6399         |
| 7 40        | -1.3666 | 920          | -5.5290         | 1685   | -4.6565 | 2965   | -5.4107         |
| 745         | -1.4268 | 925          | -6.0000         | 16 90  | -5.3936 | 2970   | -6.0000         |
| 750         | -1.4564 | 1515         | -6.0000         | 16 95  | -6.0000 |        |                 |
| 755         | -1.4076 | 1520         | -5.5415         | 2800   | -6.0000 |        |                 |

TABLE A7

## C. VALUE FOR N20

| WAVE #     | C.                 | WAVE #     | C•                 | WAVE #       | C.                 | WAVE #       | C.                 |
|------------|--------------------|------------|--------------------|--------------|--------------------|--------------|--------------------|
| 0          | -2.8003            | 605        | -0.6521            | 9 30         | -4.0307            | 1235         | -1.2186            |
| 5          | -2.6628            | 6 10       | -0.8148            | 935          | -4.0492            | 1240         | -0.9270            |
| 10         | -2.4313            | 615        | -1.0186            | 940          | -4.0333            | 1245         | -0.6326            |
| 15         | -2.2579            |            | -1.2764            | 945          | -3.9710            | 1250         | -0.3429            |
| 20         | -2.1700            | 625        | -1.5873            | 950          | -3.9249            | 1255         | -0.0768            |
| 25         | -2.1702            | 630        | -1.9638            | 955          | -3.9360            | 1260         | 0.1500             |
| 30         | -2.2490            | 635        | -2.3881            | 960          | -4.0316            | 1265         | 0.3215             |
| <b>3</b> 5 | -2.4003            | 640        | -2.8083            | 965          | -4.2317            | 1270         | 0.4104             |
| 40         | -2.6264            | 645        | -3.2392            | 970          | -4.5414            | 1275         | 0.4385             |
| 45         | -2.9219            | 650        | -3.6934            | 975          | -4.9787            | 1280         | 0.4288             |
| 50         | -3.2954            | 655        | -4.0682            | 98 <b>0</b>  | -5.5623            | 1285         | 0.4185             |
| 55         | -3.7684            | 660        | - 4. 1366          | 985          | -6.3335            | 1290         | 0.4570             |
| 60         | -4.2621            | 665        | -3.9423            | 990          | <b>-7.</b> 9968    | 1295         | 0.4972             |
| 65         | -4.7558            | 670        | -3.7143            | 995          | -9.6601            | 1300         | 0.4987             |
| 70         | -5.2495            | 675        | -3.4975            | 1065         | -9.5486            | 1.30 5       | 0.4216             |
| 75         | -5.7432            | 680        | -3.2602            | 1070         | -8.8517            | 1310         | 0.2360             |
| 80         | -6.2369            | 685        | -3.0976            | 10 75        | -8.1548            | 1315         | -0.0319            |
| 85         | -6.7306            | 690        | -2.9815            | 1080         | -7.4579            | 1320         | -0.3714            |
| 90         | -7.2243            | 695        | -2.9153            | 1085         | -6.7610            | 1325         | -0.7539            |
| 95         | -7.7180            | 700        | -2.9596            | 1090         | -6.0641            | 1330         | -1.1534            |
| 100        | -8.2117            | 705        | -3.0281            | 1095         | -5.3672            | 1335         | -1.5855            |
| 105        | -8.7054            | 7 10       | -3.1264            | 1100         | -4.6703            | 1340         | -2.0610            |
| 110        | -9.1991            | 715        | -3.2650            | 1105         | -3.6918            | 1345         | -2.6068            |
| 115        | -9.6928            | 720        | -3.3906            | 1110         | -3.0656            | 1350         | -3.2635            |
| 120        | -10.0000           | 725        | -3.5717            | 1115         | -2.5796            | 1355         | -4.1038            |
| 490        | -9.7185            | 730        | -3.8312            | 1120         | -2.1876            | 1360         | -5.2761            |
| 495        | -8.8926            | 735        | -4.1706            | 1125         | -1.8646            | 1365         | -6.1437            |
| 500        | -8.0667            | 740        | -4.6077            | 1130         | -1.5919            | 1370         | -7.0079            |
| 505        | -7.2307            | 745        | -5.1839            | 1135         | -1.3587            | 1375         | -7.9440            |
| 5 10       | -6.4149            | 750        | -5.9224            | 1140         | -1.1684            | 1380         | -8.8801            |
| 515        | -5.4872            | 755        | -6.9862            | 1145         | -1.0286            | 1385         | -9.8162            |
| 520        | -4.7083            | 760        | -7.6901            | 1150         | -0.9470            |              | -10.0000           |
| 525        | -4.0319            | 765<br>770 | -8.3940            | 11.55        | -0.9271            | 1550         | -9.5951            |
| 530<br>535 | -3.4752<br>-3.0155 | 770<br>775 | -9.0979<br>-9.8018 | 1160<br>1165 | -0.9442<br>-0.9695 | 1555<br>1560 | -9.1305<br>-8.6659 |
| 540        | -2.6046            | 865        | -9.9154            | 1170         | -0.9753            | 1565         |                    |
| 545        | -2.2057            | 870        | -9.2271            | 1175         | -0.9573            | 1570         | -8.2013<br>-7.7367 |
| 550        | -1.8137            | 875        | -8.5388            | 1180         | -0.9550            | 1575         | -7.2721            |
| 555        | -1.4741            | 880        | -7.8504            | 1185         | -1.0000            | 1580         | -6.8075            |
| 560        | -1.1914            | 885        | -7.1621            | 1190         | -1.1070            | 1585         | -6.1598            |
| 565        | -0.9603            | 890        | -6.2428            | 1195         | -1.2791            | 1590         | -5.8695            |
| 570        | -0.7923            | 895        | -5.6051            | 1200         | -1.4976            | 1595         | -5.3510            |
| 575        | -0.6629            | 900        | -5.0971            | 1205         | -1.7281            | 1600         | -4.9491            |
| 580        | -0.5849            | 905        | -4.7237            | 1210         | -1.9277            | 1605         | -4.6310            |
| 585        | -0.5402            | 910        | -4.4104            | 1215         | -2.0227            | 16 10        | -4.3846            |
| 590        | -0.4975            | 915        | -4.2050            | 1220         | -1.9577            | 1615         | -4.0784            |
| 595        | -0.5148            | 920        | -4.0681            | 1225         | -1.7625            | 1620         | -3.7763            |
| 600        | -0.5592            | 925        | -4.0278            | 1230         | -1.5020            | 1625         | -3.5901            |

# C. VALUE FOR N20

| WAVE #       | C.                   | WAVE #       | C.                  | MIAE #               | C.                 | WAVE #       | C1                 |
|--------------|----------------------|--------------|---------------------|----------------------|--------------------|--------------|--------------------|
| 1630         | -3.4607              | 1870         | -2.5615             | 2155                 | -1.1580            | 2395         | -7.3571            |
| 1635         | -3.4386              | 1875         | -2.4382             | 2160                 | -0.8445            | 2400         | -5.0287            |
| 1640         | -3.5481              | 1880         | -2.3523             | 2165                 | -0.5455            | 2405         | -4.3047            |
| 16 45        | -3.7014              | 1885         | -2.3774             | 2170                 | -0.2506            | 2410         | -3.6431            |
| 1650         | -3.9310              | 1890         | -2.4508             | 2175                 | 0.0234             | 2415         | -3.1026            |
| 16 55        | -4.2251              | 1895         | <del>-</del> 2.5755 | 2180                 | 0.2775             | 2420         | -2.6122            |
| 1660         | -4.4593              | 1900         | <del>-</del> 2.7757 | 2185                 | 0.5113             | 2425         | -2.1941            |
| 1665         | -4.8210              | 1905         | -2.9904             | 2190                 | 0.7154             | 2430         | -1.8454            |
| 1670         | -5.3494              | 19 10        | -3.2733             | 2195                 | 0.8929             | 2435         | -1.5726            |
| 1675         | -6.1286              | 1915         | -3.6524             | 2200                 | 1.0359             | 2440         | -1.3829            |
| 1680         | -7.5981              | 1920         | -4.1599             | 2205                 | 1.1306             | 2445         | -1.2818            |
| 16.85        | -10.0000             | 1925         | -4.7952             | 2210                 | 1.1697             | 2450         | -1.2505            |
| 1695         | -10.0000<br>-10.0000 | 1930<br>1935 | -5.7004             | 2215                 | 1.1807             | 2455         | -1.2579            |
|              | -10.6000             | 1935         | -6.8762<br>-6.9822  | 222 <b>0</b><br>2225 | 1.1803             | 2460<br>2465 | -1.2731<br>-1.2502 |
| 1705         | -6.3743              | 1945         | -6.2484             | 2230                 | 1.2466             | 2463         | -1.2092            |
| 1710         | -5.5592              | 1950         | -5.7613             | 2235                 | 1.2629             | 2475         | -1.2044            |
| 1715         | -5.0129              | 1955         | -5.2586             | 2240                 | 1.2068             | 2480         | -1.2577            |
| 1720         | -4.6075              | 1960         | -4.8674             | 2245                 | 1.0472             | 2485         | -1.3942            |
| 1725         | -4.3171              | 1965         | -4.6633             | 2250                 | 0.7695             | 2490         | -1.6262            |
| 1730         | -4.0928              | 1970         | -4.5332             | 2255                 | 0.4083             | 2495         | -1.9347            |
| 1735         | -3.7537              | 1975         | -4.5158             | 2260                 | -0.0244            | 2500         | -2.2830            |
| 1740         | -3.5406              | 1980         | -4.6593             | 2265                 | -0.5477            | 2505         | -2.5386            |
| 1745         | -3.3869              | 1985         | -4.8427             | 2270                 | -1.2202            | 2510         | -2.4801            |
| 1750         | -3.2913              | 1990         | -5.0917             | 2275                 | -2.1067            | 2515         | -2.1671            |
| 1755         | -3.3633              | 1995         | -5.5781             | 2280                 | -2.9508            | 2520         | -1.8061            |
| 1760         | -3.4932              | 2000         | -6.0645             | 2285                 | -3.2107            | 2525         | -1.4726            |
| 1765         | -3.6924              | 2005         | -6.5509             | 2290                 | -3.1587            | 2530         | -1.1797            |
| 1770         | -4.0074              | 20 10        | -7.0373             | 2295                 | -2.9600            | 2535         | -0.9377            |
| 1775         | -4.2504              | 2015         | -7.5237             | 2300                 | -2.7641            | 2540         | -0.7542            |
| 1780         | -4.5389              | 2020         | -8.0101             | 2305                 | -2.6324            | 2545         | -0.6392            |
| 1785         | -4.9425              | 2025         | -8.4965             | 2310                 | -2.5671            | 2550         | -0.5899            |
| 1790<br>1795 | -5.4741              | 2030         | -8.9829             | 2315                 | -2.5664            | 2555<br>2560 | -0.5743            |
| 1800         | -6.2069<br>-7.5981   | 2035<br>2040 | -9.4693<br>-9.9557  | 2320<br>2325         | -2.6088<br>-2.6425 | 2565         | -0.5669<br>-0.5339 |
|              | -10.0000             | 2090         | <b>-9.7130</b>      | 2330                 | -2.6606            | 2570         | -0.4745            |
|              | -10.0000             | 2095         | -8.6609             | 2335                 | -2.6895            | 2575         | -0.4471            |
|              |                      | 2100         | -7.6089             | 2340                 | -2.7551            | 2580         | -0.4779            |
| 1820         | -6.9215              | 2105         | -6.5568             | 2345                 | -2.8837            | 2585         | -0.5877            |
| 18 25        | -6.0798              | 2110         | -5.0880             | 2350                 | -3.0884            | 2590         | -0.7964            |
| 1830         | -5.1934              | 2115         | -4.4527             | 2355                 | -3.3746            | 2595         | -1.0942            |
| 1835         | -4.6288              | 2120         | -3.9302             | 2360                 | -3.7078            | 2600         | -1.4812            |
| 1840         | -4.1316              | 2125         | -3.4438             | 2365                 | -4.0975            | 2605         | -1.9593            |
| 18 45        | <b>-3.7</b> 322      | 2130         | -2.9701             | 2370                 | -4.6272            | 2610         | -2.5140            |
| 1850         | -3.4089              | 2135         | -2.5423             | 2375                 | -5.2484            | 2615         | -3.1350            |
| 1855         | -3.1573              | 2140         | -2.1616             |                      | -10.0000           | 2620         | -3.8102            |
| 1860         | -2.9573              | 2145         | -1.8076             |                      | -10.0000           | 2625         | -4.5825            |
| 1865         | -2.7298              | 2150         | -1.4763             | 2390                 | -10.0000           | 2630         | -5.5982            |

## C' VALUE FOR N20

| MAAE #               | C 1                | WAVE #       | . C1               | WAVE #       | C 1                | WAVE #        | C,                 |
|----------------------|--------------------|--------------|--------------------|--------------|--------------------|---------------|--------------------|
| 2635                 | -6.4193            | 3295         | -4.4643            | 3535         | -6.0119            | 3775          | -2.3366            |
| 2640                 | -7.2403            | 3300         | -3.9624            | 3540         | -6.9457            | <b>37</b> 80  | -2.6293            |
| 2645                 | -8.0614            | 3305         | -3.5231            | 3545         | -10.0000           | 3785          | -2.8922            |
| 2650                 | -8.8825            | 33 10        | -3.1395            | 3550         | -10.0000           | 3 <b>7</b> 90 | -2.9474            |
| 2655                 | -9.7035            | 3315         | -2.8067            | 3555         | -10.0000           | 3795          | -2.7627            |
| 2705                 | -9.8910            | 3320         | -2.5232            | 3560         | -10.0000           | 3800          | -2.4999            |
| 2710                 | -8.9876            | 3325         | -2.2858            | 3565         | -7.0394            | 3805          | -2.2554            |
| 2715                 | -8.0843            | 3330         | -2.0820            | 3570         | -5.9637            | 38 10         | -2.0537            |
| 2720                 | -7.1809            | 3335         | -1.9049            | 3575         | -5.2317            | 3815          | -1.9062            |
| 27 25                | -6. 1501           | 3340         | -1.7554            | 3580         | -4.6419            | 3820          | -1.8268            |
| 2730                 | -5.3742            | 3345         | -1.6485            | 3585         | -4.1663            | 3825          | -1.7941            |
| 27 35                | -4.7352            | 3350         | -1.5959            | 3590         | -3.7874            | 3830          | -1.7766            |
| 2740                 | -4.2051            | 3355         | -1.5838            | 3595         | -3.5000            | 3835          | -1.7468            |
| 2745                 | -3.7525            | 3360         | -1.5961            | 3600         | -3.3086            | 3840          | -1,6767            |
| 2750                 | -3.3562            | 3365         | -1.5997            | 3605         | -3.2143            | 3845          | -1.6130            |
| 2755                 | -2.9916            | 3370         | -1.5734            | 3610         | -3.1926            | 3850          | -1.6035            |
| 2760                 | -2.6649            | 3375         | -1.5615            | 36 15        | -3.2105            | 3855          | -1.6849            |
| 2765                 | -2.3872            | 3380         | -1.5974            | 3620         | -3.2308            | 3860          | -1.8599            |
| 2770                 | -2.1499            | 3385         | -1.7059            | 36 25        | -3.1971            | 3865          | -2.1258            |
| 2775                 | -1.9747            | 3390         | -1.9034            | 3630         | -3.1510            | 3870          | -2.4538            |
| 2780<br>2785         | -1.7982            | 3395         | -2.1631            | 36 35        | -3.1402            | 3875          | -2.8205            |
| 2790                 | -1.6518<br>-1.5582 | 3400         | -2.4181            | 3640         | -3.1969            | 3880          | -3.2028            |
| 2795                 | -1.4838            | 3405<br>3410 | -2.5427            | 3645         | -3.3477            | 3885          | -3.5988            |
| 2800                 | -1.5004            | 3410         | -2.4592<br>-2.2513 | 3650<br>3655 | -3.6005<br>-3.9534 | 3890          | -4.0691            |
| 2805                 | -1.5821            | 3413         | -2.0187            | 3660         | -4.4117            | 3895<br>3900  | -4.7117<br>-5.6320 |
| 2810                 | -1.6912            | 3425         | -1.7879            | 3665         | -4.9729            | 3905          | -6.4806            |
| 2815                 | -1.8673            | 3430         | -1.5612            | 3670         | -5.6009            | 3910          | -7.3731            |
| 28 20                | -2.0756            | 3435         | -1.3399            | 3675         | -6.2179            | 3915          | -8.2602            |
| 2825                 | -2.3351            | 3440         | -1.1265            | 3680         | -5.9845            | 3920          | -9.1474            |
| 2830                 | -2.7020            | 3445         | -0.9226            | 36 85        | -5.5502            | 3925          | -10.0000           |
| 2835                 | -3.1921            | 3450         | -0.7379            | 3690         | -4.9010            | 4260          | -10.0000           |
| 2840                 | -3.8409            | 3455         | -0.5790            | 3695         | -4.3401            | 4265          | -9.5340            |
| 28 45                | -4.7085            | 3460         | -0.4573            | 3700         | -3.8232            | 4270          | -9.0282            |
| 2850                 | -5.9588            | 3465         | -0.3952            | 3705         | -3.3802            | 4275          | -8.5224            |
| 2855                 | -6.5829            | 3470         | -0.3683            | 3710-        |                    | 4280          | -8.0166            |
| <b>2</b> 86 <b>0</b> | -8.5585            | 3475         | -0.3511            | 3715         | -2.6747            | 4285          | -7.5109            |
| 28 <b>6</b> 5        | -9.8584            | 3480         | -0.3216            | 37 20        | -2.4143            | 4290          | -7.0051            |
| 3245                 | -9.9723            | 3485         | -0.2556            | 3725         | -2.2209            | 4295          | -6.4117            |
| 3250                 | -9.4215            | 3490         | -0.2126            | 3730         | -2.1080            | 4300          | -6.0148            |
| 3255                 | -8.8707            | 3495         | -0.2593            | 3735         | -2.0682            | 4305          | -5.4878            |
| 3260                 | -8.3199            | 3500         | -0.4361            | 3740         | -2.0687            | 4310          | -5.1742            |
| 3265                 | -7.7691            | 3505         | -0.7702            | 3745         | -2.0775            | 4315          | -4.8859            |
| 3270                 | -7.2183            | 3510         | -1.2089            | 3750         | -2.0485            | 4320          | -4.4873            |
| 3275                 | -6.5567            | 3515         | -1.7060            | 3755         | -1.9847            | 4325          | -4.2249            |
| 3280                 | -6.4345            | 3520         | -2.2937            | 3760         | -1.9531            | 4330          | -4.0285            |
| 32 85<br>32 90       | -5.6448            | 3525         | -3.1133            | 3765         | -1.9870            | 4335          | -3.8669            |
| 32 7U                | -5.0529            | 3530         | -4.4419            | 3770         | -2.1110            | 4340          | -3.8247            |

#### C. VALUE FOR N20

| WAVE #       | C 4             | WAVE #       | C+                  | WAVE #        | C'                  | WAVE #       | C.              |
|--------------|-----------------|--------------|---------------------|---------------|---------------------|--------------|-----------------|
|              |                 |              |                     |               |                     |              |                 |
| 4345         | -3.7652         | 4570         | -6.2415             | 4730          | -2.0142             | 5010         | -3.6435         |
| 4350         | -3.6521         | 4575         | <del>-</del> 5.5829 | <b>473</b> 5  | <del>-</del> 1.9239 | 5015         | -3.6326         |
| 4355         | -3.4906         | 4580         | -5.0296             | 4740          | -1.8618             | 5020         | -3.6339         |
| 4360         | -3.2613         | 4585         | -4.5660             | <b>47</b> 45  | -1.8813             | 5025         | -3.6157         |
| 4365         | -3.0307         | 459 <b>0</b> | -4.1722             | 4750          | -2.0099             | 5030         | -3.5478         |
| 4370         | -2.8156         | 4595         | -3.8364             | 4755          | -2.2825             | 5035         | -3.4826         |
| 4375         | -2.6172         | 4600         | -3.5551             | 4760          | -2.7071             | 5040         | -3.4807         |
| 4380         | -2.4264         | 4605         | -3.3398             | 4765          | -3.3277             | 5045         | -3.5665         |
| 4385         | -2.2442         | 4610         | -3.1970             | 4770          | -4.3300             | 5050         | -3.7650         |
| 4390         | -2.0775         | 46 15        | -3.1363             | 4775          | -6.2151             | 5055         | -4.0718         |
| 4395         | -1.9432         | 4620         | -3.1232             | 4780          | -8.3543             | 5060         | -4.3980         |
| 4400         | -1.8703         | 4625         | -3.1257             | 4 <b>7</b> 85 | -10.0000            | 5065         | -4.5075         |
| 4405         | -1.8523         | 4630         | -3.0999             | 4910          | -9.7275             | 5070         | -4.3358         |
| 4410         | <b>-1.</b> 8552 | 4635         | -3.0288             | 4915          | -9.1257             | 5075         | -4.0765         |
| 4415         | -1.8443         | 4640         | -2.9746             | 4920          | -8.5239             | 5080         | -3,8674         |
| 4420         | -1.7814         | 4645         | -2.9875             | 4925          | -7.9221             | 5085         | -3.7221         |
| 4425         | -1.7104         | 4650         | -3.0925             | 4930          | -7.3203             | 5090         | -3.6588         |
| 4430         | -1.7043         | 4655         | -3.3137             | 4935          | -6.7185             | 5095         | -3.6429         |
| 4435         | -1.7952         | 4660         | -3.6496             | 4940          | -6.6089             | 5100         | -3.6371         |
| 4440         | -2.0205         | 4665         | -4.0276             | 4945          | -5.8877             | 5 <b>105</b> | -3.6014         |
| 4445         | -2.3968         | 4670         | -4.1958             | 4950          | -5.4527             | 5110         | -3.5209         |
| 4450         | -2.9374         | 4675         | -3.9760             | 4955          | -5.0879             | 5115         | -3.4616         |
| 4455         | -3.7689         | 4680         | -3.6179             | 4960          | -4.6598             | 5120         | -3.4774         |
| 4460         | -5.3159         | 4685         | -3.2725             | 4965          | -4.3806             | 5125         | -3.595 <b>7</b> |
| 4465         | -7.4139         | 4690         | -2.9653             | 4970          | -4.1830             | 5130         | -3.8481         |
| 4470         | -9.5119         | 4695         | -2.6962             | 4975          | -4.0426             | 5135         | -4.2598         |
| 4540         | -9.7965         | 4700         | -2.4677             | 49 80         | -4.0175             | 5140         | -4.8784         |
| 4545         | -9.1511         | 4705         | -2.2828             | 4985          | -4.0178             | 5145         | -5.8266         |
| 4550         | -8.5057         | 4710         | -2.1547             | 4990          | -3.9811             | 5150         | -6.7468         |
| 4555         | -7.8603         | 47 15        | -2.0949             | 4995          | -3.9244             | 5155         | -8.1352         |
| 4560         | -7.2149         | 4720         | -2.0763             | 5000          | -3.8056             | 5160         | -9.2208         |
| 456 <b>5</b> | <b>-6.</b> 5695 | 4725         | -2.0606             | 5005          | -3.6968             |              | -10.0000        |

TABLE A8

## C. VALUE FOR 02

| WAVE *     | C.                   | WAVE #               | c•                   | WAVE #                     | C¹                 | WAVE #       | C+                 |
|------------|----------------------|----------------------|----------------------|----------------------------|--------------------|--------------|--------------------|
| 0          | -6.1363              |                      | -12.4360             | 7860                       | -7.4194            |              | -13.3447           |
| 5          | -6.1794              |                      | -12.7437             | 7865                       | -7.2688            |              | -13.1523           |
| 10         | -6.2538              |                      | -13.0514             | 78 <b>70</b>               | -7.0722            |              | -12.9600           |
| 15         | <b>-6.</b> 3705      |                      | -13.3591             | 7875                       | -6.8815            |              | -12.7677           |
| 20         | -6.5110              |                      | -13.6668             | 7880                       | -6.7627            |              | -12.5754           |
| 25         | <b>-6.6162</b>       |                      | -13.9745             | 7885                       | -6.8055            |              | -12.3839           |
| 30         | -6.7505              |                      | 13.9458              | 7890                       | -6.9114            |              | -12.1907           |
| 35         | -6.7896              |                      | -13.7692             | 7895                       | -6.9936            |              | -11.9948           |
| 40         | -6.8305              |                      | -13.5048             | 7900                       | -7.0519            |              | -11.7759           |
| 45         | -6.8471              |                      | -13.1422             | 7905                       | -7.0597            |              | -11.5926           |
| 50         | -6.8282              |                      | -13.0242             | 7910                       | -7.0680            |              | -11.4214           |
| 55         | -6.8772              |                      | -12.6684             | 79 15                      | -7.1242            |              | -11.2493           |
| 60         | -6.8680              |                      | -12.3571             | 7920                       | -7.2088            |              | -11.1094           |
| 65         | -6.9332              |                      | -12.2428             | 7925                       | -7.3265            |              | -10.9477           |
| 70         | -6.9511              |                      | -11.8492             | 7930                       | -7.4673            |              | -10.8332           |
| 75         | -7.0048              |                      | -11.6427             | 7935                       | -7.6326            |              | -10.7323           |
| 80         | -7.0662              |                      | -11.5173             | 7940                       | -7.8110            |              | -10.6380           |
| 85         | -7.1043              |                      | -11.2108             | 7945                       | -8.0096            |              | -10.5725           |
| 90         | -7.2055              |                      | -11.1584             | 7950                       |                    |              | -10.4409           |
| 95         | -7.2443              |                      | -11.0196             | 7955                       | -8.4036            |              | -10.2013           |
| 100        | -7.3520              |                      | -10.8040             | 7960                       | -8.5853            | 9350         | -9.8839            |
| 105        | -7.4079              |                      | -10.8059             | 7965                       | -8.7252            | 9355         | -9.6546            |
| 110        | <b>-7.499</b> 8      |                      | -10.5828<br>-10.4580 | 7970                       | -8.8511            | 9360         | -9.5053            |
| 115        | -7.5924              |                      |                      | 7975                       | -8.9427            | 9365         | -9.4638            |
| 120<br>125 | -7.6682<br>-7.7993   |                      | -10.4170<br>-10.1823 | <b>7980</b><br><b>7985</b> | -9.0375<br>-9.1338 | 9370<br>9375 | -9.5526<br>-0.6559 |
| 130        | -7.7993<br>-7.8712   |                      | -10.1823             | 7990.                      | -9.1228<br>-9.2246 | 9375         | -9.6558<br>-9.7430 |
| 135        | -8.0161              |                      | -10.0030             | 7995                       | -9.3291            | 9385         | <b>-9.7958</b>     |
| 140        | -8.1102              | 7760                 | -9.8136              | 8000                       | -9.4436            | 9390         | <b>-9.7</b> 896    |
| 145        | -8.2485              | 7765                 | -9.7772              | 8005                       | -9.5716            | 9395         | -9.8320            |
| 150        |                      | 7770                 | -9.5680              | 8010                       | -9.6951            | 9400         | -9.9447            |
| 155        | -8.4942              | 7775                 | -9.4595              | 80 15                      | -9.8408            |              | -10.1221           |
| 160        | -8.6532              | 7780                 | -9.3502              | 8020                       | -9.9759            |              | -10.3707           |
| 165        | -8.7554              | 7785                 | -9.1411              |                            | -10.1489           |              | -10.6623           |
| 170        | -8.9453              | <b>7790</b>          | -9.0476              | 8030                       | -10.3027           |              | -10.9761           |
| 175        | -9.0665              | 7795                 | -8.8628              | 8 <b>0 35</b>              | -10.5178           | 9425         | -11.2271           |
| 180        | -9.2631              | 7800                 | -8.7051              | 8040.                      | -10.7265           | 9430         | -11.4091           |
| 185        | -9.4387              | 78 <b>0</b> 5        | -8.5838              |                            | -10.9787           | 9435         | -11.4921           |
| 190        | -9.6325              | 78 10                | -8.4282              |                            | -11.2939           | 3440         | -11.6015           |
| 195        |                      | 7815                 | -8.3271              |                            | -11.5552           |              | -11.6945           |
|            | -10.0628             | 7820                 | -8.1958              |                            | -11.9595           |              | -11.8333           |
|            | -10.3761             | 7825                 | -8.0838              |                            | -12.2436           |              | -11.9985           |
|            | -10.5478             | 7830                 | -7.9652              |                            | -12.6942           |              | -12.1788           |
|            | -10.9147             | 7835                 | -7.8371              |                            | -13.2011           |              | -12.3822           |
|            | <b>-11.</b> 2052     | 7840                 | -7.7476<br>-7.6431   |                            | -13.8191           |              | -12.6605           |
|            | -11.5129<br>-11.8206 | 7845<br>785 <b>0</b> | -7.6431<br>-7.5736   |                            | -13.9216           |              | -13.0796           |
|            | -12.1283             | 785 <b>0</b><br>7855 | -7.513a<br>-7.5149   |                            | -13.7293           |              | -13.3528           |
| 233        | 14. 1403             | 7000                 | -/*2143              | 7240                       | -13.5370           | 7485         | -13.6463           |

# C\* VALUE FOR 02

| WAVE #         | C.                 | WAVE # | C*                   | WAVE #         | C *                         | WAVE #         | C¹                 |
|----------------|--------------------|--------|----------------------|----------------|-----------------------------|----------------|--------------------|
|                | -13.9398           | 13085  | -5.4002              | 14400          | -8.8060                     |                | -12.2852           |
|                | -13.7034           | 13090  | -5.3413              | 14405          | -8.654 <b>3</b>             | 15735          | <b>-11.</b> 9331   |
|                | <b>- 13.</b> 3150  | 13095  | -5.2826              | 14410          | -8.5441                     |                | -11.7575           |
|                | -13.1177           | 13100  | -5.2459              | 14415          | -8.3556                     |                | -11.6297           |
|                | -12.6462           | 13105  | -5.2877              | 14420          | -8.2557                     |                | <b>-11.329</b> 0   |
|                | -12.4868           | 13110  | -5.3743              | 14425          | -8.0959                     |                | -11.1205           |
|                | -12.2205           | 13115  | -5.4654              | 14430          | -7.9717                     |                | -11.0084           |
|                | -11.9650           | 13120  | -5.5262              | 14435          | -7.8453                     |                | -10.7243           |
|                | -11.6941           | 13125  | -5.4429              | 14440          | -7.7076                     |                | -10.5543           |
|                | -11.4377           | 13130  | -5.2430              | 14445          | -7.5910                     |                | -10.4485           |
|                | -11.2136           | 13135  | -5.0284              | 14450          | -7.4567                     |                | -10.1764           |
|                | -10.9567           | 13140  | -4.8464              | 14455          | -7.3439                     |                | -10.0759           |
|                | -10.7980           | 13145  | -4.7534              | 14460          | -7.2248                     | 15790          | -9.9304            |
|                | -10.5546           | 13150  | -4.7825              | 14465          | -7.1236                     | 15795          | -9.7196            |
|                | -10.3952           | 13155  | -4.9462              | 14470          | -7.0209                     | 15800          | -9.6630            |
|                | -10.2403           | 13160  | -5.2290              | 14475          | -6.9345                     | 15805          | -9.4774            |
|                | -10.0491           | 13165  | -5.6440              | 14480          | -6.8404                     | 15810          | -9.3638            |
| 12930          | -9.9226            | 13170  | -6.1889              | 14485          | -6.7560                     | 15815          | -9.2675            |
| 12935          | -9.7871            | 13175  | -6.8427              | 14490          | -6.6744                     | 15820          | -9.1121            |
| 12940          | -9.6557            | 13180  | -7.7731              | 14495          | -6.5870                     | 15825          | -9.0368            |
| 12945          | -9.6106            | 13185  | -9.1688              | 14500          | -6.5278                     | 15830          | -8.9025            |
| 12950          | -9.5142            | 13190  | -9.6893              | 14505          | -6.4809                     | 15835          | -8.8028            |
| 12955          | -9.4763            |        | -10.1853             | 14510          | -6.5042                     | 15840          | -8.7012<br>-9.5000 |
| 12960          | -9.4163            |        | -10.7670             | 14515          | -6.5797                     | 15845<br>15850 | -8.5909<br>-8.5121 |
| 12965          | -9.2348            |        | -11.4611             | 14520          | -6.6564<br>-6.69 <b>3</b> 9 | 15855          | -8.4141            |
| 12970          | -9.1088            |        | -12.3081             | 14525          | -6.5912                     | 15860          | -8.3444            |
| 12975          | -8.7946            |        | -13.1476             | 14530          | -6.3776                     | 15865          | -8.2687            |
| 12980<br>12985 | -8.5876<br>-8.3128 |        | -13.8192<br>-13.5871 | 14535<br>14540 | -6.1438                     | 15870          | -8.2003            |
| 12990          | -8.0945            |        | -13.2189             | 14545          | -6.0062                     | 15875          | -8.1571            |
| 12995          | -7.9127            |        | -12.9705             | 14550          | -6.0469                     | 15880          | -8.1141            |
| 13000          | -7.7229            |        | -12.4825             | 14555          | -6.3081                     | 15885          | -8.1261            |
| 13005          | -7.5860            |        | -12.1301             | 14560          | -6.8199                     | 15890          | -8.1848            |
| 130 10         | -7.4215            |        | -11.9430             | 14565          | -7.4307                     | 15895          | -8.2395            |
| 130 15         | -7.2726            |        | -11.6636             | 14570          | -8.1345                     | 15900          | -8.2478            |
| 13020          | -7.1179            |        | -11.3197             | 14575          | -9.1190                     | 15905          | -8.0877            |
| 13025          | -6.9516            |        | -11.1678             |                | -10.4203                    | 15910          | -7.7980            |
| 130 30         | -6.8075            |        | -10.8967             |                | -11.4698                    | 15915          | -7.5611            |
| 13035          | -6.6413            |        | -10.6002             |                | -12.5942                    | 15920          | -7.4437            |
| 13040          | -6.5043            |        | -10.4857             | 14595          | -13.5316                    | 15925          | <b>-7.</b> 4880    |
| 13045          | -6.3519            |        | -10.1986             | 14600          | -13.8693                    | 15930          | -7.7644            |
| 130 50         | -6.2112            | 14365  | -9.9731              | 15695          | -13.9392                    | 15935          | -8.2142            |
| 13055          | -6.0839            | 14370  | -9.8547              | 15700          | -13.6885                    | 15940          | -8.8765            |
| 13060          | -5.9337            | 14375  | -9.5817              |                | -13.4377                    | 15945          | -10.1091           |
| 13065          | -5.8321            | 14380  | -9.4382              |                | -13.1869                    | 15950          | -12.4493           |
| 13070          | -5.6969            | 14385  | -9.3042              |                | -12.9362                    | 15955          | <b>-13.7</b> 228   |
| 13075          | -5.5923            | 14390  | -9.0755              |                | -12.6854                    |                |                    |
| 13080          | -5.5076            | 14395  | -8.9944              | 15725          | -12.3720                    |                |                    |
|                |                    |        |                      |                |                             |                |                    |

TABLE A9

#### C' VALUE FOR 03

| WAVE #     | C •                | WAVE #      | C •                | WAVE #       | C.                 | WAVE #       | C.                 |
|------------|--------------------|-------------|--------------------|--------------|--------------------|--------------|--------------------|
| 0          | -2.0427            | 550         | -5.9282            | 790          | -1.9051            | 1030         | 0.7752             |
| 5          | -1.8966            | 555         | -5.6426            | 795          | -2.0383            | 1035         | 0.7826             |
| 10         | -1.6263            | 56 <b>0</b> | -5.3570            | 800          | <b>-2.17</b> 96    | 1040         | 0.7874             |
| 15         | <b>-1.</b> 3896    | 56 <b>5</b> | -5.0714            | 805          | -2.3312            | 1045         | 0.8006             |
| 20         | -1.2170            | 570         | -4.7858            | 810          |                    | 1050         | 0.8241             |
| 25         | -1.0996            | 575         | -4.5002            | 815          | -2.6569            | 1055         | 0.7614             |
| 30         | -1.0214            | <b>580</b>  | -4.2146            | 82 <b>0</b>  | -2.8354            | 1060         | 0.5662             |
| 35         | -0.9673            | 585         | <b>-3.9290</b>     | 825          | -3.0179            | 1065         | 0.1949             |
| 40         | -0.9249            | 590         | -3.6213            | 830          | -3.2121            | 1070         | -0.2770            |
| 45         | -0.8896            | 595         | -3.3407            | 835          | -3.4106            | 1075         | -0.6199            |
| 50         | -0.8612            | 600         | -3.0722            | 840          | -3.6208            | 1080         | -0.8347            |
| 55         | -0.8417            | 605         | -2.8226            | 845          | -3.8332            | 1085         | -0.9586            |
| 60         | -0.8360            | 6 10        | -2.5914            | 850          | -4.0584            | 1090         | -1.0168            |
| 65         | -0.8483            | 615         | -2.3778            | 855          | -4.2854            | 1095         | -1.0501            |
| 70         | -0.8785            | 620         | -2.1823            | 860          | -4.4979            | 1100         | -1.0816            |
| 75         | -0.9273            | 625         | -2.0057            | 865          | -4.7175            | 1105         | -1.0980            |
| 80         | -0.9932            | 630         | -1.8456            | 87 <b>0</b>  | -4.9109            | 1110         | -1.0833            |
| 85         | -1.0720            | 635         | -1.6991            | 8 <b>7</b> 5 | -5.1246            | 1115         | -1.0424            |
| 90         | -1.1639            | 640         | -1.5659            | 880          | -5.3344            | 1120         | -0.9972            |
| 95         | -1.2662            | 645         | -1.4436            | 885          | -5.5442            | 1125         | -0.9724            |
| 100        | -1.3771            | 650         | -1.3323            | 890          | -5.7540            | 1130         | -0.9855            |
| 105        | -1.4976            | 655         | -1.2319            | 895          | -5.9638            | 1135         | -1.0365            |
| 110        | -1.6274            | 660         | -1.1407            | 900          | -6.1736            | 1140         | -1.1187            |
| 115        | -1.7712            | 665         | -1.0550            | 905          | -6.3834            | 1145         | -1.2150            |
| 120        | -1.9289            | 670         | -0.9733            | 910          | -6.5932            | 1150         | -1.3142            |
| 125        | -2.1027            | 675         | -0.9033            | 915          | -6.8030            | 1155         | -1.4103            |
| 130        | -2.2948            | 680         | -0.8584            | 920          | -7.0128            | 1160         | -1.4998            |
| 135        | -2.4987            | 685         | -0.8527            | 925          | -6.9011            | 1165         | -1.5933            |
| 140<br>145 | -2.7321<br>-2.9992 | 690         | -0.8838            | 930          | -6.2590            | 1170         | -1.6938            |
| 150        | -3.3045            | 695         | -0.9219            | 935          | -5.8119            | 1175         | -1.8061            |
| 155        | -3.6994            | 700<br>705  | -0.9360            | 940          | -5.1603            | 1180         | -1.9332            |
| 160        | -4.1022            | 710         | -0.9025<br>-0.8402 | 945<br>950   | -4.3327            | 1185<br>1190 | -2.0737            |
| 165        | -4.6467            | 715         | -0.7913            | 955          | -3.6849<br>-3.1253 | 1190         | -2.2279            |
| 170        | -5.1328            | 720         | -0.7794            | 960          | -2.6304            | 1200         | -2.3966<br>-2.5787 |
| 175        | -5.6481            | 725         | -0.8123            | 965          | -2.1903            | 1205         | -2.7755            |
| 180        | -6.1634            | 730         | -0.8750            | 970          | -1.8019            | 1210         | -2.9855            |
| 185        | -6.6787            | 735         | -0.9484            | 975          | -1.4585            | 1215         | -3.2090            |
| 190        | -7.1940            | 740         | -1.0206            | 980          | -1.1533            | 1220         | -3.4465            |
| 195        | -7.7093            | 745         | -1.0864            | 985          | -0.8770            | 1225         | -3.6967            |
| 200        | -8.0000            | 750         | -1.1520            | 990          | -0.6166            | 1230         | -3.9633            |
| 515        | -7.9274            | 755         | -1.2202            | 995          | -0.3630            | 1235         | -4.2461            |
| 520        | -7.6418            | 760         | -1.2928            | 1000         | -0.1102            | 1240         | -4.5502            |
| 525        | -7.3562            | 765         | -1.3745            | 1005         | 0.1336             | 1245         | -4.8912            |
| 530        | -7.0706            | 770         | -1.4641            | 1010         | 0.3525             | 1250         | -5.2845            |
| 535        | -6.7850            | 775         | -1.5611            | 1015         | 0.5326             | 1255         | -5.7654            |
| 540        | -6.4994            | 780         | -1.6669            | 1020         | 0.6678             | 1260         | -6.4194            |
| 545        | -6.2138            | 785         | -1.7816            | 1025         | 0.7510             | 1265         | -6.9288            |

#### C VALUE FOR 03

| WAVE #       | C'               | WAVE #               | C1                 | WAVE #       | C.                 | WAVE #        | C •                |
|--------------|------------------|----------------------|--------------------|--------------|--------------------|---------------|--------------------|
| 1270         | -7.4382          | 1860                 | -3.0973            | 2100         | -0.3274            | 2710          | -5.0899            |
| 1275         | -7.9476          | 1865                 | -3.1844            | 2105         | -0.3133            | 2715          | -4.7297            |
| 1630         | -8.0000          | 1870                 | -3.2929            | 2110         | -0.3023            | 2720          | -4.3694            |
| 1635         | <b>-7.</b> 5432  | 1875                 | -3.4158            | 2115         | -0.2859            | 2725          | -3.9462            |
| 1640         | -6.9273          | 1880                 | -3.5361            | 2120         | -0.3055            | 2730          | -3.6022            |
| 1645         | -6.3115          | 1885                 | -3.6710            | 2125         | -0.4374            | 2735          | -3.2886            |
| 1650         | -5.5431          | 1890                 | -3.8062            | 2130         | -0.6972            | 2740          | -3.3234            |
| 1655         | -4.9563          | 1895                 | -3.9520            | 2135         | -1.1064            | 2745          | -2.7863            |
| 1660         | -4.4640          | 1900                 | -4.1140            | 2140         | -1.4904            | 2750          | -2.5797            |
| 1665         | -4.0371          | 1905                 | -4.2635            | 2145         | -1.9687            | 2 <b>7</b> 55 | -2.4073            |
| 1670         | -3.6533          | 1910                 | -4.4395            | 2150         | -2.4498            | 2760          | -2.2760            |
| 1675         | -3.3069          | 1915                 | -4.6138            | 2155         | -2.5971            | 2765          | -2.1894            |
| 1680         | -2.9877          | 1920                 | -4.8372            | 2160         | -2.5220            | 2770          | -2.1359            |
| 1685         | -2.7042          | 1925                 | -5.0837            | 2165         | -2.4301            | 2775          | -2.1160            |
| 1690         | -2.4507          | 1930                 | -5.3302            | 2170         | -2.3467            | 2780          | -2.0808            |
| 1695         | -2.2355          | 1935                 | -5.3665            | 2175         | -2.2901            | 2785          | -2.0151            |
| 1700         | -2.0651          | 1940                 | -5.4358            | 2180         | -2.2746            | 2790          | -1.9666            |
| 1705         | -1.9477          | 1945                 | -5.0651            | 2185         | -2.3021            | 2795          | -1.9409            |
| 1710         | -1.8705          | 1950                 | -4.8416            | 2190         | -2.3635            | 2800          | -1.9868            |
| 1715         | -1.8422          | 1955                 | -4.5293            | 2195         | -2.4420            | 2805          | -2.1450            |
| 1720         | -1.8235          | 1960                 | -4.2547            | 2200         | -2.5088            | 2810          | -2.3965            |
| 1725         | -1.7782          | 1965                 | -4.0039            | 2205         | -2.5485            | 2815          | -2.8042            |
| 1730         | -1.7367          | 1970                 | -3.7818            | 2210         | -2.5617            | 28 <b>2</b> 0 | -3.5500            |
| 1735         | -1.7012          | 1975                 | -3.585 <b>0</b>    | 2215         | -2.5556            | 2825          | -4.8275            |
| 1740         | -1.7208          | 1980                 | -3,4091            | 2220         | -2.5771            | 2830          | -5.6378            |
| 1745         | -1.8353          | 1985                 | -3.2509            | 2225         | -2.6134            | 2835          | -6.4482            |
| 1750         | -2.0331          | 199Ù                 | -3.0934            | 2230         | -2.6822            | 2840          | -7.2585            |
| <b>175</b> 5 | -2.3077          | 1995                 | -2.9485            | 2235         | -2.7885            | 2845          | -8.0000            |
| 1760         | -2.5996          | 20ũ0                 | -2.8055            | 2240         | -2.9379            | 285 <b>0</b>  | -8.0000            |
| 1765         | -2.7517          | 2005                 | -2.6705            | 2245         | -3.1200            | 2855          | -7.6278            |
| 1770         | -2.7263          | 2010                 | -2.5482            | 2250         | -3.3260            | 2860          | <b>-7.</b> 2556    |
| 1775         | -2.6671          | 2015                 | -2.4362            | 2255         | -3.5464            | 2865          | -6.8834            |
| 1780         | -2.6415          | 2020                 | -2.3380            | 2260         | -3.7736            | 2870          | -6.5111            |
| 1785         | -2.6449          | 2025                 | -2.2486            | 2265         | -4.0311            | 2875          | -6.1389            |
| 179 <b>0</b> | -2.6613          | 2030                 | -2.1645            | 2270         | -4.3651            | 288 <b>0</b>  | -5.7667            |
| 1795         | -2.6589          | 2035                 | -2.0834            | <b>227</b> 5 | -4.7794            | 2885          | -5.3945            |
| 1800         | -2.6083          | 2040                 | -2.0035            | 2280         | -5.5152            | 2890          | -5.0223            |
| 1805         | <b>-2.</b> 52 50 | 2045                 | -1.9081            | 2285         | -6.1240            | 2895          | -4.6501            |
| 1810         | -2.4529          | 2050                 | -1.7681            | 2290         | <b>-7.</b> 2193    | 2900          | -4.2779            |
| 1815         | -2.4157          | 2055                 | -1.5768            | 2295         | -8.0000            | 2905          | -3.9056            |
| 1820         | -2.4298          | 2060                 | -1.3615            | 2670         | -7.9721            | 2910          | -3.5334            |
| 1825         | -2.4906          | 2065                 | -1.1463            | 2675         | <b>-7.6118</b>     | 2915          | -3.3828            |
| 1830         | -2.5823          | 2070                 | -0.9482            | 2680         | -7.2515            | 2920          | -3.2452            |
| 1835         | -2.6873          | 2075                 | -0.7800            | 2685         | -6.8913            | 2925          | -3.1411            |
| 1840         | -2.7808          | 2080                 | -0.6336            | 2690         | -6.5310<br>-6.1707 | 2930          | -3.0403            |
| 1845         | -2.8612          | 2085                 | -0.5092            | 2695<br>2700 | -6.1707<br>-5.8105 | 2935<br>2940  | -2.9428<br>-2.8436 |
| 1850<br>1855 | -2.9303          | 209 <b>0</b><br>2095 | -0.4105<br>-0.3495 | 2700<br>2705 | -5.4502            | 2940<br>2945  | -2.7573            |
| 1023         | -3.0022          | ムリブン                 | ーひ・コサフコ            | 2103         | 7 + 7 7 7 7 2      | & 2 4 J       | 401313             |

## C. VALUE FOR O3

| WAVE #       | C*               | WAVE # | C*      | WAVE # | C'      | WAVE # | C.      |
|--------------|------------------|--------|---------|--------|---------|--------|---------|
| 2950         | -2.6853          | 3030   | -1.1707 | 3110   | -2.6154 | 3190   | -2.6499 |
| 2955         | -2.6040          | 3035   | -1.1609 | 3115   | -2.5570 | 3195   | -2.7694 |
| 2960         | -2.5218          | 3040   | -1.1609 | 3120   | -2.4983 | 3200   | -2.9057 |
| 2965         | -2.4121          | 3045   | -1.1805 | 3125   | -2.4480 | 3205   | -3.0286 |
| 2970         | -2.3547          | 3050   | -1.1999 | 3130   | -2.3890 | 3210   | -3.1543 |
| 2975         | -2.1970          | 3055   | -1.4214 | 3135   | -2.3663 | 3215   | -3.3696 |
| 298 <b>0</b> | -2.0668          | 3060   | -1.6348 | 3140   | -2.3431 | 3220   | -3.6053 |
| 2985         | -1.9121          | 3065   | -1.7519 | 3145   | -2.3314 | 3225   | -4.1977 |
| 299 <b>0</b> | -1.7617          | 3070   | -1.9730 | 3150   | -2.3200 | 3230   | -4.7811 |
| 2995         | -1.6153          | 3075   | -2.2078 | 3155   | -2.3200 | 3235   | -5.2933 |
| 3000         | -1.4688          | 3080   | -2.4608 | 3160   | -2.3314 | 3240   | -5.7554 |
| 3005         | <b>-1.</b> 40 22 | 3085   | -2.5337 | 3165   | -2.3431 | 3245   | -6.4542 |
| 3010         | -1.3447          | 3090   | -2.5923 | 3170   | -2.3547 | 3250   | -7.0239 |
| 3015         | -1.2669          | 3095   | -2.6616 | 3175   | -2.3777 | 3255   | -7.5937 |
| 3020         | -1.1902          | 3100   | -2.6384 | 3180   | -2.4004 | 3260   | -8.0000 |
| 3025         | -1.1805          | 3105   | -2.6271 | 3185   | -2.5218 |        |         |

## TABLE A10

## C' VALUE FOR SO2

| WAVE #     | c•                 | WAVE #       | C*                 | WAVE #       | C t              | WAVE #       | C†                 |
|------------|--------------------|--------------|--------------------|--------------|------------------|--------------|--------------------|
| 0          | -0.9312            | 450          | -1,6307            | 985          | -6.0129          | 1225         | -1.1305            |
| 5          | -0.8101            | 455          | -1.3056            | 990          | -5.7390          | 1230         | -1.3036            |
| 10         | -0.5729            | 460          | -1.0373            | 995          | -5.4651          | 1235         | -1.4924            |
| 15         | -0.3590            | 465          | -0.8189            | 1000         | -5.1912          | 1240         | -1.7000            |
| 20         | -0.2016            | 470          | -0.6395            | 1005         | -4.9173          | 1245         | -1.9306            |
| 25         | -0.0971            | 475          | -0.4880            | 1010         | -4.6434          | 1250         | -2.1906            |
| 30         | -0.0333            | 480          | -0.3574            | 10 15        | -4.3695          | 1255         | -2.4959            |
| 35         | 0.0048             | 485          | -0.2369            | 1020         | -4.0956          | 1260         | -2.8613            |
| 40         | 0.0228             | 490          | -0.1237            | 1025         | -3.8217          | 1265         | -3.3176            |
| 45         | 0.0214             | 495          | -0.0261            | 1030         | -3.5478          | 1270         | -3.9236            |
| 50         | -0.0044            | 500          | 0.0250             | 1035         | -3.2739          | 1275         | -4.6847            |
| 55         | -0.0567            | 5 <b>0</b> 5 | 0.0186             | 1040         | -3.0000          | 1280         | -5.2561            |
| 60         | -0.1334            | 5 10         | -0.0194            | 1045         | -2.7261          | 1285         | -4.7082            |
| 65         | -0.2315            | 515          | -0.0659            | 10 50        | -2.4522          | 1290         | -4.1110            |
| 70         | -0.3451            | 520          | -0.0638            | 1055         | -2.1783          | 1295         | -3.6582            |
| <b>7</b> 5 | -0.4741            | 525          | -0.0065            | 1060         | -1.9317          | 1300         | -3.1963            |
| 80         | -0.6198            | 530          | 0.0468             | 1065         | -1.7073          | 1305         | -2.7063            |
| 85         | -0.7854            | 535          | 0.0682             | 1070         | -1.5004          | 1310         | -1.9643            |
| 90         | -0.9764            | 540          | 0.0355             | 1075         | -1.3136          | 1315         | -1.3089            |
| 95         | -1.1922            | 545          | -0.0431            | 1080         | -1.1444          | 1320         | -0.6856            |
| 100        | -1.4326            | 550          | -0.1334            | 1085         | -0.9901          | 1325         | -0.0412            |
| 105        | -1.6951            | 555          | -0.2175            | 1090         | -0.8505          | 1330         | 0.3678             |
| 110        | -1.9687            | 560          | -0.2954            | 1095         | -0.7238          | 1335         | 0.6712             |
| 115        | -2.2788            | 565          | -0.3738            | 1100         | -0.6083          | 1340         | 0.9031             |
| 120        | -2.6034            | 570          | -0.4588            | 1105         | -0.5025          | 1345         | 1.0577             |
| 125        | -2.9398            | 5 <b>7</b> 5 | -0.5571            | 1110         | -0.4016          | <b>13</b> 50 | 1. 1145            |
| 130        | -3.3551            | 580          | -0.6729            | 1115         | -0.3047          | 1355         | 1.1272             |
| 135        | -3.7704            | 585          | -0.8131            | 1120         | -0.2112          | 1360         | 1.1300             |
| 140        | -4.1857            | 590          | -0.9805            | 1125         | -0.1263          | 1365         | 1.1237             |
| 145        | -4.6010            | 595          | - 1. 1831          | 1130         | -0.0656          | 1370         | 1. 1459            |
| 150        | -5.0163            | 600          | -1.4334            | 1135         | -0.0414          | 1375         | 1. 1047            |
| 155        | -5.4316            | 605          | -1.7354            | 1140         | -0.0509          | 1380         | 0.9617             |
| 160        | -5.8469            | 6 10         | -2.1065            | 1145         | -0.3731          | 1385         | 0.7107             |
| 165        | -6.2622            | 615          | -2.5705            | 1150         | -0.0802          | 1390         | 0.3254             |
| 170        | -6.6775            | 620          | -3.1238            | 1155         | -0.0483          | 1395         | -0.2322            |
| 175        | -7.0928<br>7.5001  | 625          | -3.7691            | 1160         | 0.0032           | 1400         | -1.0612            |
| 180<br>185 | -7.5081<br>-7.9234 | 630<br>635   | -4.5793<br>-5.7012 | 1165<br>1170 | 0.0339<br>0.0249 | 1405<br>1410 | -1.7715<br>-2.6089 |
| 400        | -8.0000            | 640          | -6.5603            | 1175         | -0.0249          | 1415         | -3.0225            |
| 405        | -7.4209            | 645          | <b>-7.</b> 4195    | 1180         | -0.1170          | 1420         | -3.3542            |
| 410        | -6.6994            | 650          | -8.0000            | 1185         | -0.2141          | 1425         | -3.7339            |
| 415        | -5.9778            | 950          | -7.9302            | 1190         | -0.3069          | 1430         | -4.1986            |
| 420        | -5.2563            | 955          | -7.6563            | 1195         | -0.3968          | 1435         | -4.7352            |
| 425        | -4.4248            | 960          | -7.3824            | 1200         | -0.4881          | 1440         | -5.6390            |
| 430        | -3.7369            | 965          | -7.1085            | 1205         | -0.5881          | 1445         | -6.2740            |
| 435        | -3.0917            | 970          | -5.8346            | 1210         | -0.7019          | 1450         | -6.9091            |
| 440        | -2.5200            | 975          | -6.5607            | 1215         | -0.8299          | 1455         | -7.5441            |
| 445        | -2.0303            | 980          | -6.2868            | 1220         | -0.9729          | 1460         | -8.0000            |

#### C. VALUE FOR SO2

| WAVE # | C*      | WAVE # | . C.    | WAVE #       | C 1     | WAVE #       | C i             |
|--------|---------|--------|---------|--------------|---------|--------------|-----------------|
| 2415   | -8.0000 | 2460   | -1.8905 | 2505         | -0.7097 | 2550         | -4.5337         |
| 2420   | -7.5698 | 2465   | -1.5178 | 2510         | -0.7297 | 2555         | -4.9481         |
| 2425   | -6.8815 | 2470   | -1.2295 | 2515         | -0.8391 | 2560         | -5.4542         |
| 2430   | -6.1933 | 2475   | -1.0082 | 252 <b>0</b> | -1.0472 | <b>256</b> 5 | -6.2445         |
| 2435   | -5.3530 | 2480   | -0.8484 | 2525         | -1.3607 | 2570         | -6.3148         |
| 2440   | -4.8602 | 2485   | -0.7634 | 25 <b>30</b> | -1.7720 | 2575         | -7.3850         |
| 2445   | -4.1286 | 2490   | -0.7340 | 2535         | -2.2957 | 2580         | <b>-7.</b> 9553 |
| 2450   | -2.9922 | 2495   | -0.7203 | 2540         | -3.0566 |              |                 |
| 2455   | -2.3525 | 2500   | -0.7167 | 2545         | -4.1073 |              |                 |

TABLE A11

# C' VALUE FOR H20

| WAVE #     | C a              | WAVE #      | c'               | WAVE #       | C.               | WAVE #      | C•                 |
|------------|------------------|-------------|------------------|--------------|------------------|-------------|--------------------|
| 0          | -0.1812          | 240         | 2.9144           | 480          | 1.1549           | 729         | -0.7673            |
| 5          | 0.0202           | 245         | 2.9820           | 485          | 1.0855           | <b>7</b> 25 | -0.8627            |
| 10         | 0.5738           | 250         | 3.0141           | 490          | 1.0370           | 730         | -0.8810            |
| 15         | 1.3103           | 255         | 2.9369           | 495          | 1.0201           | 735         | -0.8535            |
| 20         | 1.8408           | 260         | 2.7647           | 500          | 1.0326           | 740         | -0.8190            |
| 25         | 2.1739           | 265         | 2.6901           | 505          | 1.0567           | 745         | -0.8184            |
| 30         | 2.4195           | 2 <b>70</b> | 2.6808           | 510          | 1.0674           | 750         | -0.8670            |
| 35         | 2.6435           | 275         | 2.7956           | 5 15         | 1.0462           | 755         | -0.9506            |
| . 40       | 2.8203           | 280         | 2.8998           | 520          | 0.9866           | 760         | -1.0473            |
| 45         | 2.9426           | 285         | 2.8561           | 525          | 0.9005           | 765         | -1.1151            |
| 50         | 3.0497           | 290         | 2.7943           | 530          | 0.8133           | 770         | -1.1266            |
| 55         | 3.1566           | 295         | 2.6376           | 5.35         | 0.7440           | 775         | -1.1087            |
| 60         | 3.2306           | 300         | 2.5537           | 540          | 0.6976           | 780         | -1.0190            |
| 65         | 3.3001           | 305         | 2.4656           | 545          | 0.6699           | 785         | -0.9068            |
| 70         | 3.3654           | 310         | 2.3975           | 550          | 0.6545           | 790         | -0.8274            |
| 75         | 3.4323           | 315         | 2.4036           | 555          | 0.6476           | 795         | -1.0239            |
| 80         | 3.4937           | 320         | 2.4184           | 560          | 0.6505           | 800         | -1.0421            |
| 85         | 3.5737           | 325         | 2.4813           | 565          | 0.6626           | 805         | -1.1135            |
| 90         | 3.6597           | 330         | 2.4778           | 570          | 0.6724           | 810         | -1.2245            |
| 95         | 3.6817           | 335         | 2.4619           | 5 <b>7</b> 5 | 0.6687           | 815         | -1.4214            |
| 100        | 3.6664           | 340         | 2.4524           | 580          | 0.6410           | 820         | -1.6264            |
| 105        | 3.6078           | 345         | 2.4104           | 585          | 0.5816           | 825         | -1.7876            |
| 110        | 3.5217           | 350         | 2.4563           | 590          | 0.4967           | 830         | -1.8697            |
| 115        | 3.4886           | 355         | 2.3814           | 595          | 0.3972           | 835         | -1.8564            |
| 120        | 3.5312           | 360         | 2.2934           | 600          | 0.3012           | 840         | -1.7853            |
| - 125      | 3.5855           | 365         | 2.2038           | 605          | 0.2288           | 845         | -1.7172            |
| 130        | 3.6005           | 370         | 2.1221           | 610          | 0.1913           | 850         | -1.6768            |
| 135        | 3.6211           | 375         | 2.0643           | 615          | 0.1865           | 855         | <b>-1.</b> 6839    |
| 140        | 3.6278           | 380         | 2.0180           | 620          | 0.1997           | 860         | -1.7372            |
| 145<br>150 | 3.6015<br>3.6091 | 385         | 1.9674           | 625<br>630   | 0.2101           | 865<br>870  | -1.8104<br>-1.8849 |
| 155        | 3.5655           | 390<br>395  | 1.8933           | 635          | 0.1967<br>0.1491 | 875         | -1.9426            |
| 160        | 3.5014           | 400         | 1.8008<br>1.7047 | 640          | 0.0685           | 880         | -1.9420            |
| 165        | 3.4901           | 405         | 1.6289           | 645          | -0.0292          | 885         | -2.0341            |
| 170        | 3.4855           | 410         | 1.5929           | 650          | -0.1222          | 890         | -2.0990            |
| 175        | 3.4514           | 415         | 1.5910           | 655          | -0.1926          |             | -2.1701            |
| 180        | 3.3832           | 420         | 1.6015           | 660          | -0.2366          | 900         | -2.2294            |
| 185        | 3.3033           | 425         | 1.6018           | 665          | -0.2629          | 905         | -2.2558            |
| 190        | 3.2753           | 430         | 1.5815           | 670          | -0.2760          | 910         | -2.2557            |
| 195        | 3.3323           | 435         | 1.5451           | 675          | -0.2748          | 915         | -2.2620            |
| 200        | 3.4165           | 440         | 1.5096           | 680          | -0.2532          | 920         | -2.2932            |
| 205        | 3.4647           | 445         | 1.4836           | 685          | -0.2122          | 925         | -2.3605            |
| 210        | 3.4603           | 450         | 1.4633           | 690          | -0.1691          | 930         | -2.4517            |
| 215        | 3.4175           | 455         | 1.4456           | 695          | -0.1534          | 935         | -2.5284            |
| 220        | 3.3429           | 460         | 1.4164           | 700          | -0.1891          | 940         | -2.5687            |
| 225        | 3.2359           | 465         | 1.3699           | 705          | -0.2863          | 945         | -2.5663            |
| 230        | 3.0783           | 470         | 1.3099           | 710          | -0.4382          | 950         | -2.5417            |
| 235        | 2.9270           | 475         | 1.2347           | 715          | -0.6116          | 955         | -2.5218            |

#### C. VALUE FOR H20

| WAVE #       | C •               | WAVE #               | C*             | WAVE #       | . C4   | WAVE #       | C.                     |
|--------------|-------------------|----------------------|----------------|--------------|--------|--------------|------------------------|
| 960          | -2.5128           | 1200                 | -0.8589        | 1440         | 2.1936 | 1680         | 2.8355                 |
| 9 <b>6</b> 5 | -2.5207           | 1205                 | -0.7779        | 1445         | 2.2215 | <b>1</b> 685 | 2.8975                 |
| 970          | -2.5498           | 1210                 | -0.6124        | 1450         | 2.3229 | 1690         | 2.9124                 |
| 975          | -2.6072           | 1215                 | -0.5062        | 1455         | 2.4535 | 1695         | 2.9340                 |
| 980          | -2.6971           | 1220                 | -0.4934        | 1460         | 2.5987 | 1700         | 2.9397                 |
| 985          | -2.7889           | 1225                 | -0.5213        | 1465         | 2.6517 | <b>170</b> 5 | 2.868 <b>7</b>         |
| 990          | -2.8701           | 1230                 | -0.6033        | 1470         | 2.6369 | 1710         | 2.7487                 |
| 995          | -2.8612           | 1235                 | -0.6177        | 1475         | 2.5501 | 1715         | 2.6408                 |
| 1000         | -2.7079           | 1240                 | -0.5314        | 1480         | 2.5073 | 1720         | 2.5413                 |
| 1005         | -2.2373           | 1245                 | -0.3988        | 1485         | 2.5454 | 1725         | 2.4900                 |
| 1010         | -2.1353           | 1250                 | -0.2325        | 1490         | 2.6488 | 1730         | 2,5476                 |
| 1015         | -2.0589           | 1255                 | -0.0223        | 1495         | 2.7779 | 1735         | 2.6212                 |
| 1020         | -2.0761           | <b>1</b> 26 <b>0</b> | 0.1658         | 1500         | 2.9508 | 1740         | 2.6458                 |
| 1025         | -2.0976           | 1265                 | 0.2794         | 1505         | 3.0812 | 1745         | 2,6382                 |
| 1030         | -2.1193           | 1270                 | 0.3447         | 1510         | 3.1293 | 1750         | 2.5578                 |
| 1035         | -2.1870           | 1275                 | 0.2978         | 1515         | 3.1473 | 1755         | 2.4572                 |
| 1040         | -2.1906           | 1280                 | 0.2324         | 1520         | 3.1603 | 1760         | 2.4157                 |
| 1045         | -2.1541           | <b>1</b> 285         | 0.1817         | 1525         | 3.1636 | 1765         | 2.3863                 |
| 1050         | -2.0511           | 1290                 | 0.1171         | 1530         | 3.1455 | 1770         | 2.3703                 |
| 1055         | -1.9449           | 1295                 | 0.1042         | 1535         | 3.1314 | 1775         | 2.3307                 |
| 1060         | -1.8520           | 1300                 | 0.1604         | 1540         | 3.1069 | 1780         | 2.2677                 |
| 1065         | -1.8165           | 1305                 | 0.3383         | 1545         | 3.0830 | 1785         | 2.2263                 |
| 1070         | -1.8710           | 1310                 | 0.6034         | 1550         | 3.0801 | 179ŭ         | 2.1962                 |
| 1075         | -1.9205           | 13 15                | 0.8261         | <b>15</b> 55 | 3.1026 | 1795         | 2.1682                 |
| 1080         | -2.0066           | 1320                 | 0.9331         | 1560         | 3.1182 | 1800         | 2.0764                 |
| 1085         | <b>-1.</b> 9934   | 1325                 | 0.9452         | 1565         | 3.0153 | 1805         | 1.9140                 |
| 1090         | -1.8779           | 1330                 | 0.9447         | 1570         | 2.7484 | 1810         | 1.7779                 |
| 1095         | -1.7336           | 1335                 | <b>0.</b> 9885 | 1575         | 2.4735 | 1815         | 1.6895                 |
| 1100         | -1.5641           | 1340                 | 1.0526         | 1580         | 2.2296 | 1820         | 1.6970                 |
| 1105         | -1.4584           | 4345                 | 1.1066         | 1585         | 2.0281 | 1825         | 1.7978                 |
| 1110         | -1.4326           | 1350                 | 1.1858         | 15 90        | 1.9419 | 1830         | <b>1.</b> 88 <b>77</b> |
| 1115         | -1.4831           | 1355                 | 1.2809         | 1595         | 1.9389 | 1835         | 1.8981                 |
| 1120         | -1.5065           | 1360                 | 1.4259         | 1600         | 2.0049 | 1340         | 1.8411                 |
| 1125         | -1.5260           | 1365                 | 1.5778         | 1605         | 2.1689 | 1845         | 1.7072                 |
| 1130         | -1.5148           | 1370                 | 1.6746         | 16 10        | 2.3618 | 1850         | 1.5191                 |
| 1135         | -1.4096           | 1375                 | 1.7412         | 1615         | 2.5624 | 1855         | 1.4207                 |
| 1140         | -1.3963           | 1380                 | 1.7669         | 16 20        | 2.7584 | 1860         | 1.3802                 |
| 1145         | -1.4136           | 1385                 | 1.8424         | 1625         | 2.8735 | 1865         | 1.3628                 |
| 1150         | ` <b>-1.37</b> 45 | 1390                 | 1.9466         | 1630         | 2.9155 | 1870         | 1.3484                 |
| 1155         | -1.3824           | 1.395                | 2.0051         | 1635         | 2.9490 | 1875         | 1.2677                 |
| 1160         | -1.2888           | 1400                 | 2.0258         | 1640         | 2.9768 | 1880         | 1.2088                 |
| 1165         | -1.1300           | 1405                 | 2.0099         | 1645         | 2.8228 | 1885         | 1.1792                 |
| 1170         | -1.0185           | 1410                 | 1.9954         | 1650         | 2.8676 | 1890         | 1.1786                 |
| 1175         | -0.9049           | 1415                 | 2.0521         | 16 55        | 2.8259 | 189.5        | 1. 1889                |
| 1180         | -0.8683           | 1420                 | 2.1616         | 1660         | 2.7703 | 1900         | 1.1723                 |
| 1185         | -0.8533           | 1425                 | 2.2325         | 1665         | 2.7396 | 1905         | 1.2219                 |
| 1190         | -0.8743           | 1430                 | 2.2586         | 1670         | 2.7622 | 1910         | 1. 2835                |
| 1195         | -0.8807           | 1435                 | 2.2371         | 1675         | 2.7882 | 1915         | 1.3027                 |

#### C. VALUE FOR H20

| WAVE # | C 1     | WAVE # | C'      | WAVE #        | C •     | WAVE #        | C.              |
|--------|---------|--------|---------|---------------|---------|---------------|-----------------|
| 1920   | 1.2724  | 2160   | -1.1347 | 2400          | -3.4784 | 2640          | -1.2368         |
| 1925   | 1.1222  | 2165   | -1.2487 | 2405          | -3.5179 | 2645          | -1.2071         |
| 1930   | 0.9763  | 2170   | -1.3328 | 24 10         | -3.5954 | 2650          | -1.1583         |
| 19.35  | 0.9030  | 2175   | -1.3925 | 2415          | -3.6811 | 2655          | -1.1502         |
| 1940   | 0.8984  | 2180   | -1.4254 | 2420          | -3.6902 | 2660          | -1.1491         |
| 1945   | 0.9075  | 2185   | -1.4462 | 2425          | -3.7158 | 2665          | <b>-1.1</b> 583 |
| 1950   | 0.8475  | 2190   | -1.4826 | 2430          | -3.7440 | 2670          | -1.2062         |
| 1955   | 0.7778  | 2195   | -1.4922 | 2435          | -3.8080 | 2675          | -1.2342         |
| 1960   | 0.6639  | 2200   | -1.4747 | 2440          | -3.9454 | 2680          | -1.2814         |
| 1965   | 0.5555  | 2205   | -1.4477 | 2445          | -4.0750 | 2685          | <b>-1.</b> 3596 |
| 1970   | 0.4399  | 2210   | -1.4281 | 2450          | -4.1232 | 2690          | <b>-1.3</b> 993 |
| 1975   | 0.3555  | 2215   | -1.4645 | 2455          | -4.0834 | 2695          | -1.4457         |
| 1980   | 0.3809  | 2220   | -1.5379 | 2460          | -4.0210 | 2700          | -1.4487         |
| 1985   | 0.4663  | 2225   | -1.6089 | 2465          | -3.9803 | 2705          | -1.3074         |
| 1990   | 0.5763  | 2230   | -1.6550 | 2470          | -3.9693 | 2710          | -1.1318         |
| 1995   | 0.5542  | 2235   | -1.6587 | 2475          | -3.9799 | 2715          | -0.9833         |
| 2000   | 0.4549  | 2240   | -1.6093 | 2480          | -3.9665 | 2720          | -0.8937         |
| 2005   | 0.3635  | 2245   | -1.5565 | 2485          | -3.9105 | 2725          | -0.9452         |
| 2010   | 0.2992  | 2250   | -1.5470 | 2490          | -3.8659 | 2730          | -1,1131         |
| 20 15  | 0.3214  | 2255   | -1.5633 | 2495          | -3.8038 | 2735          | -1.2956         |
| 2020   | 0.2997  | 2260   | -1.6438 | 2500          | -3.7031 | 2740          | -1.4321         |
| 2025   | 0.1952  | 2265   | -1.7559 | 2505          | -3.6094 | 2745          | -1.4390         |
| 2030   | 0.0734  | 2270   | -1.8229 | 2510          | -3.5248 | 2750          | -1.4138         |
| 20 35  | -0.0526 | 2275   | -1.8647 | 2515          | -3.4132 | 2755          | -1.3189         |
| 2040   | -0.1049 | 2280   | -1.9081 | 2520          | -3.2989 | 2760          | -1.2662         |
| 2045   | -0.1447 | 2285   | -1.3476 | 2525          | -3.2165 | 2765          | -1.1834         |
| 2050   | -0.1788 | 2290   | -2.0064 | 25 30         | -3.0805 | 2770          | -1.1272         |
| 2055   | -0.1817 | 2295   | -2.0967 | 2535          | -3.0800 | 2775          | -1.0914         |
| 2060   | -0.1573 | 2300   | -2.1711 | 2540          | -2.9658 | 2780          | -1.0402         |
| 2065   | -0.1355 | 2305   | -2.2407 | 2545          | -2.8356 | 2785          | -1.0080         |
| 2070   | -0.2217 | 2310   | -2.3196 | 2550          | -2.6892 | 2790          | -1.0092         |
| 2075   | -0.2999 | 2315   | -2.3823 | 2555          | -2.5946 | 2795          | -1.0217         |
| 2080   | -0.4285 | 2320   | -2.4395 | 2560          | -2.4680 | 2800          | -1.0300         |
| 20 85  | -0.5174 | 2325   | -2.5094 | 2565          | -2.3255 | 2805          | -1.0631         |
| 2090   | -0.5425 | 2330   | -2.5981 | 2570          | -2.2386 | 2819          | -1.0633         |
| 2095   | -0.6269 |        | -2.6998 | 2575          | -2.1120 | 2815          | -1.0600         |
| 2100   | -0.6940 | 2340   | -2.8310 | 25 80         | -1.9958 | 2820          | -1.0917         |
| 2105   | -0.7630 | 2345   | -2.9712 | 2585          | -1.9284 | 2825          | <b>-1.119</b> 9 |
| 2110   | -0.8325 | 2350   | -3.0659 | 2590          | -1.8215 | 2830          | <b>-1.178</b> 0 |
| 2115   | -0.8799 | 2355   | -3.1552 | 2595          | -1.7405 | 2835          | -1.2524         |
| 2120   | -0.9237 | 2360   | -3.2044 | 2600          | -1.7019 | 284)          | -1.3197         |
| 2125   | -0.9430 | 2365   | -3.2098 | 2605          | -1.6182 | 2845          | -1.3969         |
| 2130   | -0.9490 | 2370   | -3.2412 | 26 <b>1</b> 0 | -1.5500 | 2850          | -1.4720         |
| 2135   | -0.8967 | 2375   | -3.2654 | 2615          | -1.5154 | 2855          | -1.5325         |
| 2140   | -0.8642 | 2380   | -3.3011 | 2620          | -1.4337 | 2860          | -1.5855         |
| 2145   | -0.8769 | 2385   | -3.3602 | 2625          | -1.3733 | 2865          | -1.6046         |
| 2150   | -0.9212 | 2390   | -3.4004 | 2630          | -1.3477 | 2870          | -1.6302         |
| 2155   | -1.0212 | 2395   | -3.4293 | 2635          | -1.2816 | 28 <b>7</b> 5 | -1.6342         |

# C' VALUE FOR H20

| WAVE #       | C •     | WAVE #       | C*      | WAVE #        | C¹     | WAVE #        | C'     |
|--------------|---------|--------------|---------|---------------|--------|---------------|--------|
| 2880         | -1.6003 | 3120         | 0.7843  | 3360          | 0.5952 | 3600          | 2.2863 |
| 2885         | -1.5817 | 3125         | 0.6878  | 3365          | 0.6307 | 3605          | 2.3442 |
| 2890         | -1.5099 | 3130         | 0.4881  | 3370          | 0.5729 | 3610          | 2.4226 |
| 2895         | -1.4588 | 3135         | 0.1939  | 3375          | 0.4916 | 3615          | 2.4938 |
| 2900         | -1.4607 | 3140         | -0.1260 | 3380          | 0.4877 | 3620          | 2.5036 |
| 2905         | -1.4726 | 3145         | -0.4038 | <b>33</b> 85  | 0.5374 | 3625          | 2.4550 |
| 2910         | -1.5401 | 3150         | -0.6162 | 3390          | 0.5917 | 3630          | 2.4014 |
| 2915         | -1.5617 | <b>315</b> 5 | -0.7033 | 3395          | 0.6156 | 3635          | 2.3544 |
| 2920         | -1.4417 | 3160         | -0.6072 | 3400          | 0.5613 | 3640          | 2.3625 |
| 2925         | -1.2813 | 3165         | -0.3760 | 3405          | 0.5069 | 3645          | 2.4073 |
| 2930         | -1.0989 | 3170         | -0.1323 | 3410          | 0.4860 | 3650          | 2.4083 |
| 2935         | -0.9890 | 3175         | 0.0608  | 3415          | 0.5262 | 3655          | 2.3863 |
| 2940         | -0.9765 | 3180         | 0.1940  | 3420          | 0.6093 | 3660          | 2.3705 |
| 2945         | -0.9608 | <b>31</b> 85 | 0.2359  | 3425          | 0.6230 | 3665          | 2.3947 |
| 2950         | -0.9102 | 3190         | 0.2122  | 3430          | 0.6855 | 3670          | 2.4874 |
| 2955         | -0.7801 | 3195         | 0.2445  | 3435          | 0.7186 | 3675          | 2.5942 |
| 2960         | -0.6030 | 3200         | 0.3004  | 3440          | 0.7375 | 3680          | 2.6116 |
| 2965         | -0.4232 | 3205         | 0.3824  | 3445          | 0.7834 | 3685          | 2.5623 |
| 29 <b>70</b> | -0.2750 | 3210         | 0.5177  | 3450          | 0.7697 | 3690          | 2.4782 |
| 2975         | -0.1549 | 3215         | 0.6033  | 3455          | 0.7498 | 3695          | 2.3890 |
| 298 <b>0</b> | 0.0616  | 3220         | 0.6400  | 3460          | 0.7579 | 3700          | 2.3658 |
| <b>29</b> 85 | 0.0694  | 3225         | 0.6460  | 3465          | 0.7765 | 3705          | 2.3850 |
| 2990         | 0.0736  | 3230         | 0.6386  | 3470          | 0.8418 | 3710          | 2.4360 |
| 2995         | 0.0717  | 3235         | 0.6019  | 3475          | 0.9196 | 3715          | 2.4871 |
| 3000         | 0.1036  | 3240         | 0.5836  | 3480          | 0.9842 | 3720          | 2.5590 |
| 3005         | 0.1845  | 3245         | 0.5731  | 3485          | 1.0502 | 3725          | 2.6496 |
| 30 10        | 0.2599  | 3250         | 0.5299  | 3490          | 1.1139 | 3730          | 2.7477 |
| 30 1 5       | 0.3217  | 3255         | 0.5235  | 3495          | 1.2044 | 3735          | 2.8995 |
| 3020         | 0.3621  | 3260         | 0.5294  | 3500          | 1.2824 | 3740          | 3.0062 |
| <b>30</b> 25 | 0.3685  | 3265         | 0.5445. | 3505          | 1.3438 | 3745          | 3.0534 |
| 3030         | 0.3313  | 3270         | 0.5840  | 3510          | 1.3947 | 3750          | 3.0079 |
| 3035         | 0.2441  | 3275         | 0.6286  | 35 <b>1</b> 5 | 1.4195 | 3755          | 2.8611 |
| 3040         | 0.1339  | 3280         | 0.6362  | <b>3520</b>   | 1.4521 | 3760          | 2.6608 |
| 30 45        | 0.1127  | 3285         | 0.6145  | 3525          | 1.4787 | 3765          | 2.4672 |
| 3050         | 0.2022  | 3290         | 0.5761  | 3530          | 1.4903 | 3770          | 2.2972 |
| 3055         | 0.3100  | 3295         | 0.5270  | 3535          | 1.5011 |               | 2.1281 |
| 3060         | 0.4004  | 3300         | 0.4846  | 3540          | 1.5363 | 3 <b>7</b> 80 | 2.0523 |
| 3065         | 0.4447  | 3305         | 0.4544  | 3545          | 1.6117 | 3785          | 2.0368 |
| 3070         | 0.3886  | 3310         | 0.4538  | 3550          | 1.7140 | 3790          | 2.0972 |
| 3075         | 0.3323  | 3315         | 0.4161  | 3555          | 1.8143 | 3795          | 2.2719 |
| 30 80        | 0.3469  | 3320         | 0.3936  | 3560          | 1.8965 | 3800          | 2.4604 |
| 30 8 5       | 0.3633  | 3325         | 0.3947  | 3565          | 1.9480 | 3805          | 2.6112 |
| 3090         | 0.4400  | 3330         | 0.3409  | 3570          | 1.9574 | 3810          | 2.6919 |
| 3095         | 0.5638  | 3335         | 0.3039  | 3575          | 1.9688 | 3815          | 2.7361 |
| 3100         | 0.6559  | 3340         | 0.2707  | 3580          | 2.0002 | 3820          | 2.7702 |
| 3105         | 0.7300  | 3345         | 0.2557  | 3585          | 2.0637 | 3825          | 2.7963 |
| 3110         | 0.7886  | 3350         | 0.3515  | 359 <b>0</b>  | 2.1363 | 3830          | 2.8127 |
| 3115         | 0.8096  | <b>335</b> 5 | 0.4930  | 3595          | 2.2138 | 3835          | 2.8175 |

| WAVE #                | C*      | WAVE # | C i     | WAVE #       | C *     | WAVE # | C t             |
|-----------------------|---------|--------|---------|--------------|---------|--------|-----------------|
| 3840                  | 2.8054  | 4080   | -0.0480 | 4320         | -2.2748 | 4560   | -1.7812         |
| 38 4 5                | 2.7632  | 4085   | -0.0594 | 4325         | -2.4543 | 4565   | -1.7303         |
| 3850                  | 2.7557  | 4090   | -0.1054 | 4330         | -2.5521 | 4570   | -1.6674         |
| <b>3</b> 8 5 <b>5</b> | 2.7527  | 4095   | -0.2084 | 4335         | -2.6429 | 4575   | -1.6190         |
| 3860                  | 2.7065  | 4100   | -0.2799 | 4340         | -2.6534 | 4580   | -1.6117         |
| 3865                  | 2.6817  | 4105   | -0.2851 | 4345         | -2.6040 | 4585   | -1.6904         |
| <b>3</b> 8 <b>70</b>  | 2.6119  | 4110   | -0.4101 | 4350         | -2.5259 | 4590   | -1.7948         |
| <b>3</b> 8 <b>7</b> 5 | 2.5255  | 4115   | -0.5642 | 4355         | -2.4537 | 4595   | -1.8709         |
| 3880                  | 2.4680  | 4120   | -0.6380 | 4360         | -2.4754 | 4600   | -1.9462         |
| 3885                  | 2.4262  | 4125   | -0.6410 | 4365         | -2.5795 | 4605   | -1.9896         |
| 38 <b>90</b>          | 2.4004  | 4130   | -0.5093 | 4370         | -2.7782 | 4610   | -1.9585         |
| 3895                  | 2.3348  | 4135   | -0.3854 | 4375         | -3.0371 | 4615   | -1.9314         |
| 3900                  | 2.2415  | 4140   | -0.3935 | 4380         | -3.2926 | 4620   | -1.8934         |
| 3905                  | 2.0865  | 4145   | -0.4981 | 4385         | -3.5513 | 4625   | -1.8665         |
| 39 10                 | 1.9026  | 4150   | -0.6514 | 4390         | -3.6189 | 4630   | -1.8546         |
| 39 <b>1</b> 5         | 1.8354  | 4155   | -0.8405 | 4395         | -3.5123 | 4635   | -1.8362         |
| 3920                  | 1.8106  | 4160   | -1.0160 | 4400         | -3.3512 | 4640   | -1.8207         |
| 3925                  | 1.7872  | 4165   | -1.1354 | - 4405       | -3.1818 | 4645   | -1.8340         |
| 3930                  | 1.7687  | 4170   | -1.1827 | 4410         | -3.1300 | 4650   | -1.9708         |
| 39 35                 | 1.6945  | 4175   | -1.1794 | 4415         | -3.2108 | 4655   | -2.2230         |
| 3940                  | 1.6097  | 4180   | -1.0947 | 4420         | -3.3498 | 4660   | -2.5549         |
| 3945                  | 1.5427  | 4185   | -1.0332 | 4425         | -3.5574 | 4665   | -2.9104         |
| 3950                  | 1.4509  | 4190   | -1.0044 | 4430         | -3.7446 | 4670   | -3.0760         |
| 39 55                 | 1.3339  | 4195   | -1.0331 | 4435         | -3.7564 | 4675   | -3.0220         |
| 3960                  | 1.2150  | 4200   | -1.1371 | 4440         | -3.6491 | 4680   | -2.9075         |
| 3965                  | 1.0902  | 4205   | -1.2312 | 4445         | -3.4898 | 4685   | -2.7605         |
| 3970                  | 1.0034  | 4210   | -1.3956 | 4450         | -3.3607 | 4690   | -2.5879         |
| 3975                  | 0.9350  | 4215   | -1.5400 | 4455         | -3.2850 | 4695   | -2.3978         |
| 3980                  | 0.3475  | 4220   | -1.6670 | 4460         | -3.2740 | 4700   | -2.2069         |
| 3985                  | 0.7437  | 4225   | -1.8652 | 4465         | -3.3166 | 4705   | -2.0652         |
| 3990                  | 0.6354  | 4230   | -2.0261 | 4470         | -3.3505 | 4710   | <b>-1.9</b> 918 |
| 3995                  | 0.5578  | 4235   | -2.1237 | 4475         | -3.3637 | 4715   | -1.9610         |
| 4000                  | 0.4968  | 4240   | -2.0987 | 4480         | -3.2713 | 4720   | -1.9613         |
| 4005                  | 0.5122  | 4245   | -2.0102 | 4485         | -3.1116 | 4725   | -2.0232         |
| 4010                  | 0.5500  | 4250   | -1.9064 | 4490         | -2.9310 | 4730   | -2.0977         |
| 40 15                 | 0.5507  | 4255   | -1.9116 | 4495         | -2.7493 |        | -2.1689         |
| 4020                  | 0.5383  | 4260   | -2.0148 | 4500         | -2.5970 | 4740   | -2.2567         |
| 4025                  | 0.4530  | 4265   | -2.1396 | 4505         | -2.4937 | 4745   | -2.2269         |
| 40 30                 | 0.3475  | 4270   | -2.3154 | 45 <b>10</b> | -2.4121 | 4750   | -2.0923         |
| 40 35                 | 0.2335  | 4275   | -2.5129 | 4515         | -2.3368 | 4755   | -1.9772         |
| 4040                  | 0.1392  | 4280   | -2.7133 | 4520         | -2.2675 | 4760   | -1.8954         |
| 4045                  | 0.1004  | 4285   | -2.9431 | 4525         | -2.1725 | 4765   | -1.8721         |
| 4050                  | -0.0271 | 4290   | -3.0428 | 4530         | -2.0526 | 4770   | -1.9508         |
| 4055                  | -0.1543 | 4295   | -2.9565 | 4535         | -1.9267 | 4775   | -2.0404         |
| 4060                  | -0.2606 | 4300   | -2.7965 | 4540         | -1.8282 | 4780   | -2.1519         |
| 4065                  | -0.3604 | 4305   | -2.7101 | 4545         | -1.7601 | 4785   | -2.1996         |
| 4070                  | -0.2689 | 4310   | -2.7825 | 4550<br>#555 | -1.7430 | 4790   | -2.2079         |
| 4075                  | -0.1187 | 4315   | -2.1281 | 4555         | -1.7702 | 4795   | -2.1740         |

## C\* VALUE FOR H20

| WAVE #       | C*                 | WAVE #               | C1               | WAVE #       | C •              | WAVE #        | C*                 |
|--------------|--------------------|----------------------|------------------|--------------|------------------|---------------|--------------------|
| 4800         | -2.1228.           | 5040                 | -0.7216          | 5280         | 1.4514           | 5520          | <b>0.</b> 8750     |
| 4805         | -2.0883            | 5045                 | -0.6994          | 5285         | 1.4270           | 5525          | 0.7804             |
| 48 10        | -2.0262            | 5050                 | -0.6446          | 52 <b>90</b> | 1.4035           | 5530          | 0.7032             |
| 4815         | -1.9735            | 5055                 | -0.6109          | 5295         | 1.3592           | 5535          | 0.6731             |
| 4820         | -1.9496            | 5060                 | -0.5699          | 5300         | 1.3440           | 5540          | 0.6372             |
| 4825         | -1.9094            | 5065                 | -0.5378          | 5305         | 1.3459           | 5545          | 0.6141             |
| 4830         | -1.8769            | 5070                 | -0.5293          | 5310 °       | 1.3618           | 5550          | 0.5692             |
| 4835         | -1.8540            | 5075                 | -0.5118          | 5315         | 1.4228           | 5555          | 0.4426             |
| 4840         | -1.8075            | 5080                 | -0.4455          | 5320         | 1.4984           | 5560          | 0.3017             |
| 4845         | -1.7551            | 5085                 | -0.3259          | 5325         | 1.6324           | <b>556</b> 5  | 0.1976             |
| 4850         | -1.7087            | 5090                 | -0.1429          | 5330         | 1.8170           | 55 <b>7</b> 0 | 0.1022             |
| 4855         | -1.6977            | 5095                 | 0.0518           | 5.335        | 1.9833           | 5575          | 0.0053             |
| 4860         | -1.7196            | 5100                 | 0.1805           | 534 <b>0</b> | 2.0737           | 5580          | -0.1103            |
| 4865         | -1.7996            | 5105                 | 0.2580           | 5345         | 2.0026           | 5585          | -0.2324            |
| 4870         | -1.9347            | 5110                 | <b>0.</b> 2652   | 5350         | 1.8365           | <b>5590</b>   | -0.3154            |
| 4875         | -2.0480            | 5115                 | 0.2526           | 5355         | 1.6397           | 5595          | -0.3316            |
| 4880         | -2.1313            | 5120                 | 0.2650           | 5360         | 1.5105           | 5600          | -0.3127            |
| 4885         | -2.1162            | 5125                 | 0.2998           | 5365         | 1.4770           | 5605          | -0.3188            |
| 4890         | -1.9964            | 5130                 | 0.3825           | 5370         | 1.4995           | 56 <b>10</b>  | -0.3562            |
| 4895         | -1.9319            | 5135                 | 0.4740           | 5375         | 1.5981           | 5615          | -0.3932            |
| 4900         | -1.9029            | 5140                 | 0.5743           | 5380         | 1.6983           | 5620          | -0.4384            |
| 4905         | -1.9137            | 5145                 | 0.6771           | 5385         | 1.7494           | 5625          | -0.5005            |
| 4910         | <b>-1.</b> 9554    | 5150                 | 0.7611           | 5390         | 1.7691           | 5630          | -0.5742            |
| 4915         | -1.8788            | 5155                 | 0.8454           | 5395         | 1.7738           | 5635          | -0.6720            |
| 4920         | -1.7774            | 5160                 | 0.8949           | 5400         | 1.7719           | 5640          | -0.8017            |
| 4925         | -1.6724            | 5165                 | 0.9252           | 5405         | 1.7662           | 5645          | -0.8676            |
| 4930         | -1.5862            | 5 <b>170</b>         | 0.9732           | 5410         | 1.7548           | 5650          | -0.8873            |
| 4935         | -1.5612            | 5175                 | 1.0286           | 5415         | 1.7173           | 5655          | -0.8974            |
| 49 40        | -1.4869            | 5180                 | 1.0920           | 5420         | 1.6871           | 5660          | -0.8562            |
| 4945         | -1.3837            | 5185                 | 1.1340           | 5425         | 1.7242           | 5665          | -0.8729            |
| 4950         | -1.2600            | 5190                 | 1.1587           | 5430         | 1.7985           | 5670          | -0.9816            |
| 4955         | -1.1770            | 5195                 | 1.1751           | 5435         | 1.8625           | 5675          | -1.0595            |
| 4960         | -1.2091            | 5200                 | 1.1881           | 5440         | 1.8882           | 5680          | -1.1460            |
| 4965         | -1.3207            | 5205                 | 1.2115           | 5445         | 1.8360           | 5685          | -1.1951            |
| 4970         | -1.4417            | 5210                 | 1.2762           | 5450         | 1.7371           | 5690          | -1.1660            |
| 4975         | -1.4593            | 5215                 | 1.3556           | 5455         | 1.6493           | 5695          | -1.1642            |
| 4980         | -1.3271            | 5220                 | 1.4626           | 5460         | 1.5947           | 5700          | -1.2226            |
| 4985         | -1.1473            | 5225                 | 1.5203           | 5465         | 1.5057           | 5705          | -1.2796            |
| 4990         | -1.0126            | 5230                 | 1.5608           | 5470         | 1.3886           | 5710          | -1.3061            |
| 4995<br>5000 | -0.9516<br>-0.9540 | 5235<br>524 <b>0</b> | 1.5800           | 5475         | 1.2943           | 5715          | -1.3282            |
| 5005         |                    | 5240                 | 1.5940           | 5480         | 1.2026           | 5720          | -1.2827            |
| 50 10        | -0.9498<br>-0.9200 | 5245<br>5250         | 1.6573           | 5485<br>5485 | 1.1664           | 5725          | -1.2379            |
| 50 10        | -0.8852            | 5250<br>5255         | 1.7306           | 549 <b>0</b> | 1.1828           | 5730          | -1.2567            |
| 50 20        | -0.8348            | 5255<br>5260         | 1.7761           | 5495<br>5500 | 1.1511           | 5735          | -1.2823            |
| 5025         | -0.8348            | 5260<br>5265         | 1.7430           | 5500<br>5505 | 1.1018           | 5740          | -1.3229            |
| 5030         | -0.7758            | 52 <b>7</b> 0        | 1.6531<br>1.5449 | 5510         | 1.0582<br>0.9817 | 5745<br>5750  | -1.3478            |
| 5035         | -0.7393            | 5275                 | 1.4752           | 55 <b>15</b> | 0.9207           | 5750<br>5755  | -1.4042<br>-1.4345 |
| 5033         | O 0 1 3 / 3        | 5613                 | 144134           | 77 17        | ひ・プムロイ           | 2 (22         | - 1. 4545          |

# C' VALUE FOR H20

| WAVE #               | C¹                 | WAVE #       | C1                 | WAVE #                        | C *                | WAVE #       | C¹                 |
|----------------------|--------------------|--------------|--------------------|-------------------------------|--------------------|--------------|--------------------|
| 5760                 | -1.4501            | 6000         | -3.0510            | 6240                          | -3.6892            | 6480         | -2.9952            |
| 5765                 | -1.5426            | 6005         | -2.9799            | 6245                          | -3.5292            | 6485         | -2.9804            |
| 5 <b>77</b> 0        | -1.5757            | 6010         | -2.9262            | 6250                          | -3.4135            | 6490         | -2.9631            |
| 5775                 | -1.6509            | 6015         | -2.8780            | 6255                          | -3.2729            | 6495         | -2.9150            |
| 5 <b>7</b> 80        | -1.7601            | 6020         | -2.8825            | 6260                          | -3.1545            | 6500         | -2.8917            |
| 5 <b>7</b> 85        | -1.7475            | 6025         | -2.9399            | 6265                          | -3.0808            | 6505         | -2.8080            |
| 5790                 | -1.7471            | 6030         | -2.9648            | 6270                          | -3.0437            | 6510         | -2.7462            |
| 5795                 | -1.6807            | 6035         | -2.9459            | 6275                          | -3.0735            | 6515         | -2.6699            |
| 5800                 | -1.6324            | 6040         | -2.9234            | 6280                          | -3.1559            | 6520         | -2.5810            |
| 5805                 | -1.7177            | 6045         | -2.8859            | 6285                          | -3.2438            | 6525         | -2.4573            |
| 58 10                | -1.8331            | 6050         | -2.8845            | 6290                          | -3.3310            | 6530         | -2.3079            |
| 5815                 | -2.0050            | 6055         | -2.9687            | 62 95                         | -3.3990            | 6535         | -2.1794            |
| 5820                 | -2.1013            | 6060         | -3.0524            | 6300                          | -3.3832            | 6540         | -2.0624            |
| 5825                 | -2.0825            | 6065         | -3.1229            | 6305                          | -3.3894            | 6545         | -1.9589            |
| 58 30                | -2.0526            | 6070         | -3.2078            | 6310                          | -3.4428            | 6550         | -1.8933            |
| 58.35                | -2.0389            | 6075         | -3.2354            | 6315                          | -3.4864            | 6555         | -1.8723            |
| 5840                 | -2.0690            | 6080         | -3.3260            | 6320                          | -3.5912            | 6560         | -1.8909            |
| 5845                 | -2.0776            | 6085         | -3.4116            | 6325                          | -3.7099            | 6565         | -1.8993            |
| 5850                 | -2.0697            | 6090         | -3.4687            | 6330                          | -3.7305            | 6570         | -1.8386            |
| 5855                 | -2.0709            | 6095         | -3.5201            | 6335                          | -3.7546            | 6575         | -1.7049            |
| 5860                 | -2.1350            | 6 100        | -3.5011            | 6340                          | -3.7941            | 6580         | -1.5411            |
| 5865                 | -2.2453            | 6105         | -3.5843            | 6345                          | -3.8032            | 6585         | -1.4188            |
| 58 <b>70</b>         | -2.3595            | 6110         | -3.6238            | 6350                          | -3.8671            | 6590         | -1.3350            |
| 58 <b>75</b>         | -2.4143            | 6115         | -3.6553            | 6355                          | -3.9228            | 6595         | -1.2903            |
| 5880                 | -2.3557            | 6120         | -3.7240            | 6360                          |                    | 6600         | -1.2705            |
| 5885                 | -2.3393            | 6125         | -3.7314            | 6365                          | -3.8213            | 6605         | -1,2406            |
| 5890<br>5005         | -2.3489<br>-2.3935 | 6130         | -3.9200            | 63 <b>70</b><br>63 <b>7</b> 5 | -3,6965            | 6610         | -1.2254<br>-1.1921 |
| 5895<br>59 <b>00</b> | -2.4614            | 6135<br>6140 | -4.2182<br>-4.5097 | 6380                          | -3.5644<br>-3.4629 | 6615<br>6620 | -1.1476            |
| 5905                 | -2.4734            | 6145         | -4.8044            | 6385                          | -3.3858            | 6625         | -1.1106            |
| 59 <b>10</b>         | -2.4674            | 6150         | -4.7433            | 6390                          | -3.3538            | 6630         | -1.0510            |
| 5915                 | -2.4937            | 6155         | -4.5018            | 6395                          | -3.3630            | 6635         | -0.9902            |
| 59 2 <b>0</b>        | -2.6043            | 6160         | -4.4148            | 6400                          | -3.3923            | 6640         | -0.8986            |
| 5925                 | -2.7309            | 6165         | -4.2497            | 6405                          | -3.4927            | 6645         | -0.8020            |
| 5930                 | -2.8902            | 6170         | -4.0153            | 6410                          | -3.5769            | 6650         | -0.7716            |
| 5935                 | -3.0170            | 6175         | -3.8073            | 6415                          | -3.6556            | 6655         | -0.7973            |
| 5940                 | -3.0463            | 6 180        | -3.6608            | 6420                          | -3.7219            | 6660         | -0.8522            |
| 5945                 | -3.0961            | 6185         | -3.5756            | 6425                          | -3.6760            | 6665         | -0.8769            |
| 59 50                | -3.0726            | 6190         | -3.5980            | 6430                          | -3.5758            | 6670         | -0.8032            |
| 5955                 | -3.0056            | 6195         | -3.6166            | 6435                          | -3.4598            | 6675         | -0.6811            |
| 5960                 | -2.9444            | 6200         | -3.6411            | 6440                          | -3.3814            | 6680         | -0.5664            |
| 5965                 | -2.9159            | 6205         | -3.6763            | 6445                          | -3.3548            | 6685         | -0.4570            |
| 59 <b>70</b>         | -2.9462            | 6210         | -3.6744            | 6450                          | -3.3902            | 6690         | -0.4098            |
| 5975                 | -3.0184            | 6215         | -3.7474            | 6455                          | -3.4396            | 6695         | -0.4002            |
| 598 <b>0</b>         | -3.0960            | 6220         | -3.8744            | 6460                          | -3.3918            | 6 <b>700</b> | -0.3658            |
| 598 <b>5</b>         | -3.1167            | 6225         | -3.9759            | 6465                          | -3.2910            | 6705         | -0.3344            |
| 5990                 | -3.1174            | 6230         | -3.9628            | 6470                          | -3.1629            | 6710         | -0.2544            |
| 5995                 | -3.1139            | 6235         | -3.8595            | 6475                          | -3.0484            | 6715         | -0.1090            |
|                      |                    |              |                    |                               |                    |              |                    |

## C' VALUE FOR H20

| WAVE #        | c'            | WAVE #       | . C1    | WAVE #       | C '    | WAVE #               | C'              |
|---------------|---------------|--------------|---------|--------------|--------|----------------------|-----------------|
| 6720          | 0.0315        | 6960         | 0.6894  | 7200         | 1.3181 | 7440                 | 0.0515          |
| 6725          | 0.1313        | 6965         | 0.7111  | 7205         | 1.4155 | 7445                 | -0.0663         |
| 6730          | 0.1650        | 6970         | 0.7474  | 7210         | 1.5003 | 7450                 | -0.1258         |
| 6735          | 0.1674        | 6975         | 0.7357  | 7215         | 1.5996 | 7455                 | -0.1273         |
| 6740          | 0.1752        | 698 <b>0</b> | 0.7378  | 7220         | 1.6975 | 7460                 | -0.0923         |
| 6745          | 0.2167        | 6985         | 0.7248  | 7225         | 1.7811 | 7465                 | -0.0500         |
| 6750          | 0.2905        | 6990         | 0.6909  | 7230         | 1.8699 | 7470                 | -0.0044         |
| 6755          | 0.3583        | 6995         | 0.6918  | 7235         | 1.8685 | 7475                 | 0.0332          |
| 6760          | 0.3791        | 7000         | 0.7169  | 7240         | 1.8037 | 7480                 | 0.0373          |
| 6765          | 0.3377        | 7005         | 0.7398  | 7245         | 1.6796 | <b>7</b> 48 <b>5</b> | 0.0497          |
| 6770          | 0.2823        | 7010         | 0.7659  | 7250         | 1.5376 | 7490                 | 0.0693          |
| 6775          | 0.2339        | 7015         | 0.7719  | 7255         | 1.4114 | 7495                 | 0.1115          |
| 6780          | 0.2325        | 7020         | 0.7478  | 7260         | 1.3161 | 7500                 | 0.1668          |
| 6785          | 0.3497        | 7025         | U.7474  | <b>726</b> 5 | 1.2558 | 7505                 | 0.2004          |
| 6790          | 0.5023        | 7030         | 0.7553  | 7270         | 1.2253 | 7510                 | 0.2092          |
| 6795          | 0.6087        | 7035         | 0.7983  | <b>727</b> 5 | 1.2508 | 7515                 | 0.1640          |
| 6800          | <b>0.6732</b> | 7040         | 0.8667  | 7280         | 1.3163 | 7520                 | 0.0995          |
| 6805          | V.6506        | 7045         | 0.8921  | 7285         | 1.4383 | <b>7525</b>          | 0.0224          |
| 6810          | 0.5871        | 7050         | 0.8905  | 7290         | 1.5988 | 7530                 | -0.0983         |
| 6815          | 0.5496        | 7055         | 0.8936  | <b>7</b> 295 | 1.7430 | 7535                 | -0.2420         |
| 6820          | 0.5164        | 7060         | 0.8921  | 7300         | 1.8374 | 7540                 | -0.3874         |
| 682 <b>5</b>  | 0.4552        | 7065         | 0.9393  | 7305         | 1.8591 | 7545                 | -0.4794         |
| 6830          | 0.4046        | 7070         | 0.9821  | 7310         | 1.8598 | 7550                 | -0.5028         |
| 6835          | 0.3669        | 7075         | 0.9696  | 7315         | 1.8277 | 7555                 | -0.4573         |
| 68 4 <b>0</b> | 0.2945        | 7080         | 0.9787  | 7320         | 1.7929 | 7560                 | -0.3756         |
| 6845          | 0.2565        | 7085         | 0.9841  | 7325         | 1.8132 | 7565                 | -0.3220         |
| 6850          | 0.1979        | 7090         | 1.0548  | 7330         | 1.8258 | 7570                 | -0.3010         |
| 6855          | 0.1417        | 7095         | 1.1648  | 7335         | 1.8543 | 7575                 | -0.3421         |
| 6860          | 0.1459        | 7100         | 1.2342  | 7340         | 1.9203 | <b>7</b> 58 <b>0</b> | -0.4472         |
| 6865          | 0.1603        | 7105         | 1.3103  | 7345         | 1.9137 | 7585                 | -0.5660         |
| 6870          | 0.2321        | 7110         | 1.3090  | 7350         | 1.8697 | 7590                 | -0.6560         |
| 6875          | 0.3198        | 7115         | 1.2764  | 7355         | 1.7893 | 7595                 | -0.6686         |
| 688 <b>0</b>  | 0.4272        | 7120         | 1.2694  | 7360         | 1.6736 | 760 <b>0</b>         | -0.6241         |
| 6885          | 0.5379        | 7125         | 1.2528  | 7365         | 1.5887 | 7605                 | -0.5759         |
| 6890          | 0.5917        | 7130         | 1.2951  | 7370         | 1.5199 | 76 10                | -0.5929         |
| 6895          | 0.5977        | 7135         | 1.3662  | 7375         | 1.4920 | 76 <b>15</b>         | -0.6651         |
| 6900          | 0.5479        | 7140         | 1.3821  | 7380         | 1.4607 | 7620                 | -0.7538         |
| 6905          | 0.5184        | 7145         | 1.3688  | 7385         | 1.4013 | 7625                 | -0.8310         |
| 6910          | 0.5177        | 7150         | 1.3387  | 7390         | 1.3084 | 7630                 | -0.8275         |
| 6915          | 0.5543        | 7155         | 1.3547  | 7395         | 1.1831 | 7635                 | <b>-0.</b> 8259 |
| 6920          | 0.5948        | 7160         | 1.4353  | 7400         | 1.0698 | 7640                 | <b>-0.</b> 8523 |
| 6925          | 0.6026        | 7165         | 1.5294  | 74 05        | 0.9747 | 7645                 | -0.8954         |
| 6930          | 0.6161        | 7170         | 1.5617  | 7410         | 0.8584 | 7650                 | -0.9631         |
| 6935          | 0.5950        | 7175         | 1.4882  | 7415         | 0.7723 | 7655                 | -1.0003         |
| 6940          | 0.5957        | 7180         | 1.3935  | 7420         | 0.6534 | 766 <b>0</b>         | -1.0299         |
| 6945          | 0.6117        | 7185         | 1. 2927 | 7425         | 0.5116 | 7665                 | -1.0615         |
| 6950          | 0.6189        | 7 190        | 1.2499  | 7430         | 0.3601 | 7670                 | <b>-1.1136</b>  |
| 6955          | 0.6695        | 7195         | 1.2684  | 7435         | 0.1920 | 7675                 | -1.1917         |

| WAVE #               | C†             | WAVE #        | C1             | WAVE # | C.      | WAVE #       | C*              |
|----------------------|----------------|---------------|----------------|--------|---------|--------------|-----------------|
| 7680                 | -1.2607        | 7920          | -3.2658        | 8160   | -2.0501 | 8400         | -1.2358         |
| 76 85                | -1.3097        | 7925          | -3.3804        | 8165   | -2.0157 | 8405         | -1.1408         |
| 7690                 | -1.3247        | 7930          | -3.5208        | 8170   | -1.9539 | 8410         | -1.0532         |
| 76 95                | -1.3361        | 7935          | -3.6808        | 8175   | -1.9083 | 8415         | -0.9992         |
| 7700                 | -1.3472        | 7940          | -3.8519        | 8180   | -1.8867 | 8420         | -1.0228         |
| 7705                 | -1.3440        | 7945          | -3.9173        | 8185   | -1.8695 | 8425         | -1.0750         |
| 77 10                | -1.3975        | 7950          | -3.9464        | 8190   | -1.8926 | 8430         | -1.1285         |
| 7715                 | -1.5031        | 7955          | -3.9351        | 8195   | -1.8978 | 8435         | -1.1560         |
| 7720                 | -1.6398        | 7960          | -3.8324        | 8200   | -1.9072 | 8440         | -1.1115         |
| 7725                 | -1.7914        | 7965          | -3.7503        | 8205   | -1.9070 | 8445         | -1.0570         |
| 7730                 | -1.8962        | 7970          | -3.7687        | 8210   | -1.8690 | 8450         | -1.0217         |
| 7735                 | -1.9073        | 7975          | -3.8546        | 8215   | -1.7832 | 8455         | -1.0038         |
| 7740                 | -1.8532        |               | -4.0527        | 8220   | -1.6506 | 8460         | -1.0159         |
| 7745                 | -1.8097        | 7985          | -4.2924        | 8225   | -1.5626 | 8465         | -1.0808         |
| 7750                 | -1.7846        | 7990          | -4.4755        | 8230   | -1.5017 | 8470         | -1.1500         |
| 7755                 | -1.8067        | <b>7</b> 995  | -4.5014        | 8235   | -1.4799 | 8475         | -1.1618         |
| <b>7</b> 760         | -1.9020        | 8000          | -4.3497        | 8240   | -1.4978 | 8480         | -1.1736         |
| 7765                 | -2.0791        | 8005          | -4.0053        | 8245   | -1.4739 | 8485         | -1.1780         |
| 7770                 | -2.2674        | 8010          | -3.9150        | 8250   | -1.4260 | 8490         | -1.1916         |
| 77 <b>7</b> 5        | -2.4321        | 8015          | -3.9090        | 8255   | -1.3968 | 8495         | -1.2840         |
| 7780                 | -2.5341        | 8020          | -3.9456        | 8260   | -1.3911 | 8500         | -1.3486         |
| 7785                 | -2.5431        | 8025          | -3,9489        | 8265   | -1.4190 | 8505         | -1.3178         |
| 7790                 | -2.5783        | 8030          | -3.9853        | 8270   | -1.4788 | 8510         | -1.2495         |
| 7795                 | -2.6134        | 8035          | -3.9860        | 8275   | -1.5357 | 8515         | -1.1526         |
| 7800                 | -2.5846        | 8040          | -4.0059        | 8280   | -1.5726 | 8520         | -1.1067         |
| 7805                 | -2.5087        | 8045          | -4.0570        | 8285   | -1.5777 | 8525         | -1.1336         |
| 78 10                | -2.4441        | 8050          | -4.0754        | 8290   | -1.5332 | 8530         | -1.1710         |
| 7815                 | -2.4012        | 8055          | -4.0837        | 8295   | -1.4385 | 8535         | -1.2055         |
| 7820                 | -2.4571        | 8060          | -4.0709        | 8300   | -1.3399 | 8540         | <b>-1.</b> 1921 |
| 7825                 | -2.5694        | 8065          | -4.0609        | 8305   | -1.2606 | 8545         | -1.1551         |
| <b>7</b> 8 <b>30</b> | -2.6774        | 8070          | -3.9349        | 8310   | -1.2255 | 8550         | -1.1369         |
| 7835                 | -2.7645        | 8 <b>07</b> 5 | -3.7690        | 8315   | -1.2344 | 8555         | -1:1210         |
| 7840                 | -2.8964        | 8080          | -3.6130        | 8320   | -1.2268 | 8560         | -1.1314         |
| 7845                 | -2.9762        | 8085          | -3.4684        | 8325   | -1.2020 | 8565         | -1.1413         |
| 78 50                | -2.9754        | 8090          | -3.3967        | 8330   | -1.1812 | 8 <b>570</b> | -1.1284         |
| <b>785</b> 5         | -2.8633        | 8095          | -3.2429        | 8335   | -1.1583 | 8575         | -1.1215         |
| <b>7</b> 86 <b>0</b> | <b>-2.7881</b> | 8 100         | -3.0787        | 8340   | -1.1570 | 858 <b>0</b> | -1.1006         |
| 7865                 | -2.7935        | 8105          | <b>-2.9151</b> | 8345   | -1.2054 | 8585         | -1.1009         |
| 7870                 | -2.9067        | 8110          | -2.7695        | 8350   | -1.2319 | 8 <b>590</b> | -1.0901         |
| <b>7875</b>          | -3.0354        | 8115          | -2.7110        | 8355   | -1.2622 | 8595         | -1.0485         |
| 7880                 | -3.1019        | 8120          | -2.6564        | 8360   | -1.2879 | 8600         | -0.9921         |
| 7885                 | -3.1016        | 8125          | -2.6147        | 8365   | -1.2835 | 8605         | -0.8816         |
| 7890                 | -3.0746        | 8130          | -2.5360        | 8370   | -1.3272 | 8610         | -0.7763         |
| 7895                 | -3.1460        | 8 135         | -2.4059        | 8375   | -1.3664 | 8615         | -0.6930         |
| 7900                 | -3.2617        | 8140          | -2.2978        | 8380   | -1.3884 | 8620         | -0.6244         |
| 7905                 | -3.3269        | 8145          | -2.1854        | 8385   | -1.4100 | 8625         | -0.5831         |
| 79 10                | -3.3442        | 8150          | -2.1156        | 8390   | -1.3683 | 8630         | -0.5556         |
| 7915                 | -3.2819        | 8 <b>15</b> 5 | -2.0899        | 8395   | -1.3080 | 8635         | -0.5009         |

### C' VALUE FOR H20

| WAVE #                        | C*               | WAVE #       | C¹                 | WAVE #       | C •                | WAVE #                | C!                 |
|-------------------------------|------------------|--------------|--------------------|--------------|--------------------|-----------------------|--------------------|
| 8640                          | -0.4097          | 8880         | 0.5808             | 9120         | -1.2032            | 9360                  | -2.9042            |
| 8645                          | -0.3050          | 8885         | 0.5650             | 9125         | -1.1965            | 9365                  | -3.0708            |
| 8650                          | -0.1616          | 8890         | 0.5246             | 9130         | -1.1929            | 9370                  | -3. 2315           |
| 8655                          | -0.0558          | 8895         | 0.5586             | 9135         | -1.1556            | 9375                  | -3.3218            |
| 8660                          | -0.0061          | 8900         | 0.6055             | 9140         | -1.1794            | 9380                  | -3.3626            |
| 8665                          | 0.0314           | 8905         | 0.6360             | 9145         | -1.2390            | 9385                  | -3.3695            |
| 8670                          | 0.0201           | 8 <b>910</b> | 0.6737             | 9150         | -1.3134            | 9390                  | -3.4587            |
| 8675                          | 0.0337           | 8915         | 0.6267             | 9155         | -1.4104            | 9395                  | -3.5631            |
| 8680                          | 0.0695           | 8920         | 0.5656             | 9160         | <b>-1.</b> 4922    | 9400                  | -3.6065            |
| 86 85                         | 0.0985           | 8925         | 0.5352             | 9165         | -1.5037            | 9405                  | -3.6277            |
| 8690                          | 0.1357           | 8930         | 0.4868             | 9170         | -1.4742            | 9410                  | <b>-3.</b> 5866    |
| 8695                          | 0.1406           | 8935         | 0.4455             | 9175         | -1.4820            | 9415                  | -3.6487            |
| 8700                          | 0.1529           | 8940         | 0.3754             | 9180         | -1.5228            | 9420                  | -3.8281            |
| 8705                          | 0.1885           | 8945         | 0.2792             | 9185         | -1.6500            | 9425                  | -4.0460            |
| 8710                          | 0.2263           | 8950         | 0.2035             | 9190         | -1.7488            | 9430                  | -4.0380            |
| 8715                          | 0.2722           | 8955         | 0.1116             | 9195         | -1.7480            | 9435                  | -3.7419            |
| 87 20                         | 0.3575           | 8960         | -0.0045            | 9200         | -1.6859            | 9440                  | -3.4772            |
| 8725                          | 0.4079           | 8965         | -0.1001            | 9205         | -1.5721            | 9445                  | -3.3053            |
| 8730                          | 0.4469           | 8970         | -0.1921            | 9210         | -1.5343            | 9450                  | -3.3228            |
| 8735                          | 0.3991           | 8975         | -0.2621            | 9215         | -1.5476            | 9455                  | -3.5127            |
| 87 40                         | 0.3184           | 8980         | -0.2954            | 9220         | -1.6031            | 9460                  | -3.8038            |
| 8745                          | 0.2206           | 8985         | -0.3604            | 9225         | -1.7029            | 9465                  | -4.2514            |
| 8750                          | 0.1564           | 8990         | -0.4452            | 9230         | -1.7905            | 9470                  | -4.5804            |
| 8755                          | 0.1294           | 8995         | -0.5171            | 9235         | -1.8831            | 9475                  | -4.5544            |
| 8760                          | 0.1034           | 9000         | -0.5865            | 9240         | -1.8878            | 9480                  | -4.5713            |
| 8765                          | 0.0673           | 9005         | -0.6313            | 9245         | -1.8372            | 9485                  | -4.6920            |
| 8770                          | 0.0029           | 9010         | -0.6487            | 9250         | -1.8162            | 9490                  | -4.8163            |
| 8775                          | -0.0588          | 9015         | -0.6574            | 9255         | -1.8256            | 9495                  | -4.8501            |
| 8780                          | -0.0836          | 9020         | -0.6422            | 9260         | -1.9236            | 9500                  | -4.8011            |
| 8785                          | -0.0424          | 9025         | -0.6147            | 9265         | -2.0376            | 9505                  | -4.5647            |
| 8790                          | 0.0267           | 9030         | -0.6052            | 9270         | -2.0825            | 9510                  | -4.6219            |
| 8795                          | 0.1478           | 9035         | -0.5969            | 9275         | -2.0945            | 9515                  | -4.8562            |
| 88 <b>00</b><br>88 <b>0</b> 5 | 0.3468           | 9040         | -0.5977            | 9280         | -2.0993            | 9520                  | -5.1914            |
| 8810                          | 0.5413<br>0.7077 | 9045<br>9050 | -0.6579            | 9285<br>9290 | -2.1896            | 9525                  | -5.7005            |
| 8815                          | 0.7386           | 9055         | -0.7036<br>-0.7265 | 9290         | -2.3027<br>-2.3798 | 95 <b>3</b> 0<br>9535 | -5.7670<br>-5.4617 |
| 8820                          | 0.6075           | 9060         | -0.7657            | 9300         | -2.4116            | 9540                  | * · · · •          |
| 8825                          | 0.3988           | 9065         | -0.7476            | 9305         | -2.3392            | 9545                  | -5.2340<br>-5.1208 |
| 8830                          | 0.1846           | 9070         | -0.7263            | 9303         | -2.3184            | 9545                  | -5.0644            |
| 8835                          | 0.0665           | 9075         | -0.7339            | 9315         | <b>-2.3154</b>     | 9555                  | -5.0739            |
| 8840                          | 0.0539           | 9080         | -0.7209            | 9320         | -2.3080            | 9560                  | -5.1788            |
| 8845                          | 0.1505           | 9085         | -0.7045            | 9325         | -2.3553            | 9565                  | -5.3526            |
| 8850                          | 0.3267           | 9090         | -0.6978            | 9330         | -2.4219            | 9570                  | -5.6469            |
| 8855                          | 0.4598           | 9095         | -0.6960            | 9335         | -2.5069            | 9575                  | -5.8194            |
| 8860                          | 0.5379           | 9100         | -0.7640            | 9340         | -2.6066            | 9580                  | -5.8408            |
| 8865                          | 0.5810           | 9105         | -0.8850            | 9345         | -2.6786            | 9585                  | -5.7263            |
| 8870                          | 0.5851           | 9110         | -1.0211            | 9350         | -2.7094            | 959 <b>0</b>          | -5.5654            |
| 8875                          | 0.5739           | 9115         | -1.1685            | 9355         | -2.7788            | 9595                  | -5.5283            |

### C\* VALUE FOR H20

| WAVE #                       | C*                 | WAVE #        | C.                 | WAVE #                  | C •                | WAVE #          | C'                 |
|------------------------------|--------------------|---------------|--------------------|-------------------------|--------------------|-----------------|--------------------|
| 9600                         | -5.5125            | 9840          | -3, 1753           | 10080                   | -3.0211            | 10320           | -1.3276            |
| 9605                         | -5.4942            | 9845          | -3.0810            | 10085                   | -2.9846            | 10325           | -1.2547            |
| 96 10                        | -5.4902            | 9850          | -3.0792            | 10090                   | -2.9500            | 10330           | -1.1312            |
| 9615                         | -5.5985            | 9855          | -3.0675            | 10095                   | -2.8264            | 10335           | -0.9723            |
| 9620                         | -5.9373            | 9860          | -3.0913            | 10100                   | -2.7190            | 10340           | -0.7965            |
| 9625                         | -6.1143            | .9865         | -3.0959            | 10105                   | -2.7057            | 10345           | -0.6925            |
| 9630                         | -6.5729            | 9870          | -3.0159            | 10110                   | -2.6532            | 10350           | -0.6449            |
| 9635                         | -6.1453            | 9875          | -2.9528            | 10115                   | -2.6247            | 10 355          | -0.6369            |
| 9640                         | -5 <b>.7</b> 287   | 9880          | -2.8692            | 10120                   | -2.5861            | 10360           | -0.6328            |
| 9645                         | -5.4382            | 9885          | -2.8246            | 10125                   | -2.5280            | 10365           | -0.6503            |
| 965 <b>0</b><br>96 <b>55</b> | -5,2161<br>-5,1721 | 9890<br>9895  | -2.7110            | 10130<br>10135          | -2.5268<br>-2.4800 | 10370<br>10375  | -0.6500<br>-0.6527 |
| 9660                         | -5.0168            | 9900          | -2.5400<br>-2.3937 | 10140                   | -2.4899<br>-2.3716 | 10375           | -0.6316            |
| 9665                         | -4.8174            | 9905          | -2.2799            | 10145                   | -2.2297            | 10385           | -0.5527            |
| 9670                         | -4.6582            | 9910          | -2.2794            | 10150                   | -2.0726            | 10390           | -0.4624            |
| 9675                         | -4.4759            | 9915          | -2.3728            | 10155                   | -1.9632            | 10 395          | -0.4202            |
| 9680                         | -4.3208            | 9920          | -2.4972            | 10160                   | -1.8709            | 10400           | -0.3970            |
| 9685                         | -4.2009            | 9925          | -2.6596            | 10 165                  | -1.7544            | 19405           | -0.4079            |
| 9690                         | -4.0669            | 9930          | -2.7850            | 10170                   | -1.6283            | 10410           | -0.4306            |
| 9695                         | -3.9462            | 9935          | -2.8225            | 10175                   | -1.5185            | 10415           | -0.4454            |
| 9700                         | -3.8890            | 9940          | -2.8443            | 10180                   | -1.4807            | 10420           | -0.4352            |
| 9705                         | -3.7572            | 9945          | -2.7861            | 10185                   | <b>-1.</b> 5093    | 10425           | -0.4592            |
| 97 10                        | -3.6198            | 9950          | -2.7905            | 10190                   | -1.5612            | 10430           | -0.5078            |
| 9715                         | -3.4448            | 9955          | -2.7637            | 10195                   | -1.5542            | 10435           | -0.5107            |
| 9720                         | -3.2444            | 9960          | -2.7097            | 10200                   | -1.4693            | 10440           | -0.5239            |
| 9725                         | <b>-3.</b> 1556    | 9965          | -2.6686            | 10205                   | -1.3401            | 10445           | -0.4572            |
| 9730                         | -3.0826            | 9970          | -2.5763            | 10210                   | -1.2031            | 10450           | -0.3372            |
| 9735                         | -3.0728            | 9975          | -2.5127            | 10215                   | -1.1485            | 10455           | -0.2717            |
| 9740                         | -3.1429            | 9980          | -2.5399            | 10220                   | -1.1473            | 10460           | -0.1938            |
| 9745                         | -3.1816            | 9985          | -2.6477            | 10225                   | -1.1692            | 10465           | -0.1735            |
| 9750                         | -3.1276            | 9990          | -2.8155            | 10230                   | -1.2003            | 10470           | -0.2161            |
| 9755<br>9 <b>7</b> 60        | -2.9983<br>-2.8298 | 9995<br>10000 | -2.9931<br>-3.0699 | 102 <b>3</b> 5<br>10240 | -1.1651<br>-1.0637 | 10475.<br>10480 | -0.2484<br>-0.3011 |
| 9765                         | -2.6909            | 10005         | -3.0338            | 10240                   | -0.9679            | 10485           | -0.3003            |
| 9770                         | -2.6752            | 10003         | -3.0361            | 10243                   | -0.8965            | 10490           | -0.2165            |
| 9775                         | -2.7387            | 10015         | -3.0428            |                         | -0.8603            |                 | -0.1511            |
| 9780                         | -2.8795            | 10020         | -3.1213            | 10260                   | -0.8928            | 10500           | -0.1365            |
| 9785                         | -3.0367            | 10025         | -3.2751            | 10265                   | -0.9454            | 10505           | -0.1921            |
| 9790                         | -3.1487            | 10030         | -3.4031            | 10270                   | -1.0129            | 10510           | -0.2745            |
| 9795                         | -3.1190            | 10035         | -3.5863            | 10275                   | -1.0956            | 10515           | -0.2771            |
| 9800                         | -3.0156            | 10040         | -3.6839            | 10280                   | -1.1511            | 10520           | -0.2079            |
| 9805                         | -2.9613            | 10045         | -3.6814            | 10285                   | -1.2139            | 10525           | -0.1183            |
| 98 10                        | -2.9140            | 10050         | -3.6658            | 10290                   | -1.2396            | 10530           | -0.0640            |
| 9815                         | -2.9915            | 10055         | -3.4679            | 10295                   | -1.2673            | 10535           | -0.0925            |
| 9820                         | -3.1025            | 10060         | -3.3080            | 10300                   | -1.2955            | 10540           | -0.1183            |
| 9825                         | -3.2070            | 10065         | -3.1545            | 10305                   | -1.3041            | 10545           | -0.1304            |
| 9830                         | -3.2590            | 10070         | -3.0139            | 10310                   | -1.3326            | 10550           | -0.1392<br>-0.0006 |
| 9835                         | -3.2280            | 10075         | -3.0036            | 10315                   | -1.3359            | 10555           | -0.0926            |

#### C' VALUE FOR H20

| WAVE # | C*      | WAVE # | . C 1           | WAVE # | CT      | WAVE #        | C 1     |
|--------|---------|--------|-----------------|--------|---------|---------------|---------|
| 10560  | -0.0478 | 10800  | -1.1665         | 11040  | -1.2002 | 11280         | -3.1574 |
| 10565  | -0.0227 | 10805  | -1.1424         | 11045  | -1.2692 | 11285         | -3.0905 |
| 10570  | 0.0177  | 108 10 | <b>-1.</b> 1128 | 11050  | -1.3419 | 11290         | -3.1861 |
| 10575  | 0.0401  | 10815  | -1.1085         | 11055  | -1.3403 | 11295         | -3.3799 |
| 10580  | 0.0404  | 10820  | -1.1048         | 11060  | -1.2988 | 11300         | -3.5730 |
| 10585  | 0.0874  | 10825  | -1.1489         | 11065  | -1.1947 | 11305         | -3.7820 |
| 10590  | 0.1493  | 10830  | -1.2112         | 11070  | -1.0029 | -11310        | -3.8224 |
| 10595  | 0.1512  | 10835  | -1.2573         | 11075  | -0.8295 | 11315         | -3.7847 |
| 10600  | 0.1534  | 10840  | -1.2700         | 11080  | -0.7039 | 11320         | -3.7525 |
| 10605  | 0.0950  | 10845  | -1.2548         | 11085  | -0.6416 | 11325         | -3.7628 |
| 10610  | -0.0296 | 10850  | <b>-1.</b> 2573 | 11090  | -0.6214 | 11330         | -3.7344 |
| 10615  | -0.1489 | 10855  | -1.2843         | 11095  | -0.6387 | 11335         | -3.7182 |
| 10620  | -0.2654 | 10860  | -1.3043         | 11100  | -0.6690 | 11340         | -3.7536 |
| 10625  | -0.3741 | 10865  | -1.3358         | 11105  | -0.6673 | 11345         | -3.7424 |
| 10630  | -0.4674 | 10870  | -1.2830         | 11110  | -0.6801 | 11350         | -3.8073 |
| 10635  | -0.4887 | 10875  | -1.2053         | 11115  | -0.6778 | 11355         | -3.8745 |
| 106 40 | -0.4761 | 10880  | <b>-1.</b> 1132 | 11120  | -0.6581 | 11360         | -3.9514 |
| 10645  | -0.3783 | 10885  | -0.9810         | 11125  | -0.7090 | 11365         | -4.1133 |
| 10650  | -0.1797 | 10890  | -0.9083         | 11130  | -0.7799 | 11370         | -4.2154 |
| 10655  | 0.0289  | 10895  | -0.8525         | 11135  | -0.8319 | 11375         | -4.3096 |
| 10660  | 0.2048  | 10900  | -0.8496         | 11140  | -0.8738 | 11380         | -4.3514 |
| 10665  | 0.2932  | 10905  | -0.8660         | 11145  | -0.9123 | <b>113</b> 85 | -4.3748 |
| 10670  | 0.3509  | 10910  | -0.8486         | 11150  | -0.9340 | 11390         | -4.5165 |
| 10675  | 0.3408  | 10915  | -0.8333         | 11155  | -0.9993 | 11395         | -4.6868 |
| 10680  | 0.3200  | 10920  | -0.8123         | 11160  | -1.1041 | 11400         | -4.8253 |
| 10685  | 0.3526  | 10925  | -0.8288         | 11165  | -1.1964 | 11405         | -4.9403 |
| 10690  | 0.3487  | 10930  | -0.8501         | 11170  | -1.3394 | 11410         | -4.9352 |
| 10695  | 0.3800  | 10935  | -0.8131         | 11175  | -1.4823 | 11415         | -4.9954 |
| 10700  | 0.4055  | 10940  | -0.7490         | 11180  | -1.5989 | 11420         | -5.1703 |
| 10705  | 0.3578  | 10945  | -0.6845         | 11185  | -1.7308 | 11425         | -5.3415 |
| 10710  | 0.2909  | 10950  | -0.6513         | 11190  | -1.8317 | 11430         | -5.4462 |
| 10715  | 0.2137  | 10955  | -0.7208         | 11195  | -1.9372 | 11435         | -5.4937 |
| 107 20 | 0.1407  | 10960  | -0.8005         | 11200  | -2.1201 | 11440         | -5.4519 |
| 10725  | 0.0771  | 10965  | -0.8438         | 11205  | -2.3207 | 11445         | -5.4889 |
| 10730  | 0.0244  | 10970  | -0.8835         | 11210  | -2.5255 | 11450         | -5.7043 |
| 10735  | -0.0615 | 10975  | -0.8402         | 11215  | -2.7657 | 11455         | -5.9860 |
| 10740  | -0.1503 | 10980  | -0.7846         | 11220  | -2.9086 | 11460         | -6.4149 |
| 10745  | -0.2530 | 10985  | -0.7422         | 11225  | -2.9959 | 11465         | -6.8287 |
| 10750  | -0.3686 | 10990  | -0.7010         | 11230  | -3.1038 | 11470         | -6.6025 |
| 10755  | -0.4845 | 10995  | -0.6819         | 11235  | -3.1739 | 11475         | -6.2881 |
| 10760  | -0.5994 | 11000  | -0.6880         | 11240  | -3.2620 | 11480         | -6.0586 |
| 10765  | -0.6928 | 11005  | -0.6822         | 11245  | -3.3152 | 11485         | -5.9478 |
| 10770  | -0.7726 | 11010  | -0.6683         | 11250  | -3.3272 | 11490         | -6.0163 |
| 10775  | -0.8515 | 11015  | -0.6827         | 11255  | -3.2994 | 11495         | -6.1264 |
| 10780  | -0.9362 | 11020  | -0.6998         | 11260  | -3.2325 | 11500         | -6.3798 |
| 10785  | -1.0397 | 11025  | -0.7983         | 11265  | -3.2389 | 11505         | -6.5110 |
| 10790  | -1.1208 | 11030  | -0.9223         | 11270  | -3.2154 | 11510         | -6.6422 |
| 10795  | -1.1493 | 11035  | -1.0680         | 11275  | -3.1722 | 11515         | -6.7734 |

| 11520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WAVE #        | C *     | WAVE # | C.      | WAVE # | C ·     | WAVE #         | C.               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|--------|---------|--------|---------|----------------|------------------|
| 11530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         | 11760  | -2.7175 | 12000  | -1.7207 |                | -1.0714          |
| 11535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1</b> 1525 | -7.0359 | 11765  | -2.7841 | 12005  | -1.6893 | 12245          | -1.0542          |
| 11540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11530         | -7.1671 |        | -2.8210 | 12010  | -1.6496 | 12250          | -1.0579          |
| 11545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | -7.2983 | 11775  |         | 12015  | -1.5994 | 12255          | -1.1101          |
| 11550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11540         | -7.4295 | 11780  | -2.7847 | 12020  | -1.5847 | 12260          | <b>-1.17</b> 48  |
| 11555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11545         | -7.5607 | 11785  | -2.7994 | 12025  | -1.5897 | 12265          | -1.2521          |
| 11560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11550         | -7.9419 |        | -2.8397 | 12030  | -1.6099 | 122 <b>7</b> 0 | -1.3314          |
| 11565         -6.1009         11805         -3.1513         12045         -1.5782         12285         -1.4741           11570         -5.2579         11815         -2.9961         12055         -1.4904         12295         -1.5978           11580         -5.0834         11820         -2.9395         12060         -1.4373         12300         -1.7196           11585         -5.1056         11825         -2.8723         12065         -1.3379         12305         -1.7925           11590         -5.2344         11830         -2.8098         12070         -1.3316         12310         -1.8652           11595         -5.1786         11835         -2.7851         12075         -1.3360         12315         -1.9267           11600         -5.0282         11840         -2.7321         12080         -1.4025         12320         -1.9667           11600         -4.6420         11850         -2.6661         12090         -1.6387         12330         -2.1376           11625         -4.6779         11865         -2.4588         12105         -1.6769         12345         -2.2177           11620         -4.975         11860         -2.3535         12100         -1.676           | 11555         | -8.3688 | 11795  | -2.9935 | 12035  | -1.6241 | 12275          | - <b>1.</b> 3848 |
| 11570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | -7.0920 | 11800  | -3.1212 | 12040  | -1.6075 | 12280          | -1.4153          |
| 11575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |        | -3.1513 | 12045  | -1.5782 |                | -1.4741          |
| 11580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |        |         |        |         |                | <b>-1.</b> 5152  |
| 11585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |        | -2.9961 |        |         | 12295          | <b>-1.</b> 5978  |
| 11590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |        |         |        |         |                |                  |
| 11595         -5.1786         11835         -2.7851         12075         -1.3360         12315         -1.9267           11600         -5.0282         11840         -2.7321         12080         -1.4025         12325         -2.0443           11615         -4.8109         11850         -2.6661         12090         -1.6387         12330         -2.1376           11615         -4.6779         11850         -2.6107         12095         -1.6387         12330         -2.1376           11620         -4.6975         11860         -2.5305         12100         -1.6743         12345         -2.2377           11630         -4.4013         11870         -2.3692         12110         -1.6966         12356         -2.3622           11635         -4.2154         11875         -2.2492         12115         -1.7563         12355         -2.3622           11640         -4.1050         11880         -2.1824         12120         -1.7966         12356         -2.4848           11655         -3.6154         11895         -2.1824         12120         -1.5876         12370         -2.5458           11665         -3.4820         11990         -2.2450         12440         -1.58           |               |         |        |         |        |         |                |                  |
| 11600       -5.0282       11840       -2.7321       12080       -1.4025       12320       -1.9649         11605       -4.8109       11845       -2.7001       12085       -1.5084       12325       -2.0443         11610       -4.6420       11850       -2.6661       12990       -1.6387       12330       -2.1376         11615       -4.6779       11855       -2.6107       12095       -1.6836       12335       -2.2177         11620       -4.6975       11860       -2.5305       12100       -1.6769       12345       -2.2177         11625       -4.5550       11867       -2.4588       12105       -1.6769       12345       -2.3622         11630       -4.4013       11870       -2.3692       12110       -1.6966       12355       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7663       12355       -2.4338         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.37680       11890       -2.1394       12130       -1.5876       12375       -2.5459         11650       -3.4758       11890 <td< td=""><td></td><td></td><td></td><td></td><td>12070</td><td></td><td></td><td></td></td<> |               |         |        |         | 12070  |         |                |                  |
| 11605       -4.8109       11845       -2.7001       12085       -1.5084       12325       -2.0443         11610       -4.6420       11850       -2.6661       1299       -1.6387       12330       -2.1376         11615       -4.6779       11855       -2.6107       12095       -1.6386       12335       -2.2177         11620       -4.6975       11860       -2.5305       12100       -1.6743       12340       -2.2956         11625       -4.5550       11865       -2.4588       12105       -1.6769       12345       -2.3373         11630       -4.4013       11870       -2.3692       12110       -1.6966       12350       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4338         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11665       -3.4820       11900       -                                                                                          |               |         |        |         |        |         |                |                  |
| 11610       -4.6420       11850       -2.6661       12090       -1.6387       12330       -2.1376         11615       -4.6779       11855       -2.6107       12095       -1.6836       12335       -2.2177         11620       -4.6975       11860       -2.5305       12100       -1.6743       12340       -2.2956         11625       -4.5550       11865       -2.4588       12105       -1.6769       12345       -2.3373         11630       -4.4013       11870       -2.3692       12110       -1.6966       12350       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4323         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11655       -3.7680       11890       -2.1894       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4758       11905       -2.2450       12140       -1.1593       12380       -2.6434         11675       -3.3988       11915                                                                                                 |               |         |        |         |        |         |                |                  |
| 11615       -4.6779       11855       -2.6107       12095       -1.6836       12335       -2.2177         11620       -4.6975       11860       -2.5305       12100       -1.6743       12349       -2.2956         11625       -4.5550       11865       -2.4588       12105       -1.6769       12345       -2.3373         11630       -4.4013       11875       -2.2492       12110       -1.6966       12350       -2.4322         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4328         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11665       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11670       -3.4607       11910       -2.2377       12150       -0.9612       12385       -2.6830         11675       -3.398       11915       -                                                                                          |               |         |        |         |        |         |                |                  |
| 11620       -4.6975       11860       -2.5305       12100       -1.6743       12340       -2.2956         11625       -4.5550       11865       -2.4588       12105       -1.6769       12345       -2.3373         11630       -4.4013       11870       -2.3692       12110       -1.6966       12350       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4038         11640       -4.1050       11880       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4758       11900       -2.2450       12140       -1.1593       12380       -2.6843         11675       -3.3988       11915       -2.2377       12150       -0.9612       12390       -2.6830         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925                                                                                                 |               |         |        |         |        |         |                |                  |
| 11625       -4.5550       11865       -2.4588       12105       -1.6769       12345       -2.3373         11630       -4.4013       11870       -2.3692       12110       -1.6966       12350       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4338         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11655       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       1190       -2.2493       12145       -1.0022       12385       -2.6833         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.015       11920       -2                                                                                          |               |         |        |         |        |         |                |                  |
| 11630       -4.4013       11870       -2.3692       12110       -1.6966       12350       -2.3622         11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4338         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11665       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11675       -3.3988       11915       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0603       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925                                                                                                 |               |         |        |         |        |         |                |                  |
| 11635       -4.2154       11875       -2.2492       12115       -1.7563       12355       -2.4038         11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6830         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.0253       11920       -2.1734       12160       -1.6751       12400       -2.6594         11695       -2.9222       11935                                                                                                 |               |         |        |         | 12105  |         |                |                  |
| 11640       -4.1050       11880       -2.1824       12120       -1.7966       12360       -2.4422         11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6830         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1697       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930                                                                                                 |               |         |        |         |        |         |                |                  |
| 11645       -3.9551       11885       -2.1507       12125       -1.7317       12365       -2.4846         11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6830         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.4884         11700       -2.8394       11940                                                                                                 |               |         |        |         |        |         |                |                  |
| 11650       -3.7680       11890       -2.1394       12130       -1.5876       12370       -2.5459         11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6830         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12400       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940                                                                                                 |               |         |        |         |        |         |                |                  |
| 11655       -3.6154       11895       -2.1832       12135       -1.3855       12375       -2.5863         11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6830         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1669       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945                                                                                                 |               |         |        |         |        |         |                |                  |
| 11660       -3.4820       11900       -2.2450       12140       -1.1593       12380       -2.6434         11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6839         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11715       -2.7976       11955                                                                                                 |               |         |        |         |        |         |                |                  |
| 11665       -3.4758       11905       -2.2493       12145       -1.0022       12385       -2.6839         11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11725       -2.8092       11960                                                                                                 |               |         |        |         |        |         |                |                  |
| 11670       -3.4607       11910       -2.2377       12150       -0.9612       12390       -2.6846         11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9530       12195       -1.3743       12430       -2.2621         11725       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965                                                                                                 |               |         |        |         |        |         |                |                  |
| 11675       -3.3988       11915       -2.2385       12155       -1.0693       12395       -2.6912         11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12440       -2.2476         11725       -2.7905       11960       -1.9682       12200       -1.1588       12445       -2.2303         11730       -2.7043       11970                                                                                                 |               |         |        |         |        |         |                |                  |
| 11680       -3.3012       11920       -2.1734       12160       -1.2620       12400       -2.6594         11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11735       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11740       -2.5730       11980                                                                                                 |               |         |        |         |        |         |                |                  |
| 11685       -3.1415       11925       -2.1597       12165       -1.4807       12405       -2.6645         11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11735       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11745       -2.5476       11985                                                                                                 |               |         |        |         |        |         |                |                  |
| 11690       -3.0253       11930       -2.1609       12170       -1.6751       12410       -2.6487         11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1148       12450       -2.1964         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11750       -2.5970       11990                                                                                                 |               |         |        |         |        |         |                |                  |
| 11695       -2.9222       11935       -2.0867       12175       -1.7804       12415       -2.5691         11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11745       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11745       -2.5476       11985       -1.9355       12220       -1.0861       12465       -2.1569         11750       -2.5970       11990                                                                                                 |               |         |        |         |        |         |                |                  |
| 11700       -2.8394       11940       -2.0515       12180       -1.8200       12420       -2.4884         11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11750       -2.5970       11990       -1.8605       12230       -1.1093       12470       -2.1683                                                                                                                                         |               |         |        |         |        |         |                |                  |
| 11705       -2.7932       11945       -1.9962       12185       -1.7499       12425       -2.3527         11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11750       -2.5476       11985       -1.9355       12225       -1.0861       12465       -2.1569         11750       -2.5970       11990       -1.8605       12230       -1.1093       12470       -2.1683                                                                                                                                         |               |         |        |         |        |         |                |                  |
| 11710       -2.7797       11950       -1.9406       12190       -1.5670       12430       -2.2621         11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11750       -2.5970       11990       -1.8605       12230       -1.1093       12470       -2.1683                                                                                                                                                                                                                                                                                                                                                             |               |         |        |         |        |         |                |                  |
| 11715       -2.7976       11955       -1.9530       12195       -1.3743       12435       -2.2743         11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11745       -2.5476       11985       -1.9355       12225       -1.0861       12465       -2.1569         11750       -2.5970       11990       -1.8605       12230       -1.1093       12470       -2.1683                                                                                                                                                                                                                                                                                                                                                             |               |         |        |         |        |         |                |                  |
| 11720       -2.8092       11960       -1.9682       12200       -1.2439       12440       -2.2476         11725       -2.7905       11965       -2.0178       12205       -1.1588       12445       -2.2303         11730       -2.7043       11970       -2.0710       12210       -1.1149       12450       -2.1964         11735       -2.6252       11975       -2.0776       12215       -1.1148       12455       -2.1496         11740       -2.5730       11980       -2.0457       12220       -1.0906       12460       -2.1304         11745       -2.5476       11985       -1.9355       12225       -1.0861       12465       -2.1569         11750       -2.5970       11990       -1.8605       12230       -1.1093       12470       -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |        |         |        |         |                |                  |
| 11725     -2.7905     11965     -2.0178     12205     -1.1588     12445     -2.2303       11730     -2.7043     11970     -2.0710     12210     -1.1149     12450     -2.1964       11735     -2.6252     11975     -2.0776     12215     -1.1148     12455     -2.1496       11740     -2.5730     11980     -2.0457     12220     -1.0906     12460     -2.1304       11745     -2.5476     11985     -1.9355     12225     -1.0861     12465     -2.1569       11750     -2.5970     11990     -1.8605     12230     -1.1093     12470     -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |        |         |        |         |                |                  |
| 11730     -2.7043     11970     -2.0710     12210     -1.1149     12450     -2.1964       11735     -2.6252     11975     -2.0776     12215     -1.1148     12455     -2.1496       11740     -2.5730     11980     -2.0457     12220     -1.0906     12460     -2.1304       11745     -2.5476     11985     -1.9355     12225     -1.0861     12465     -2.1569       11750     -2.5970     11990     -1.8605     12230     -1.1093     12470     -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |         |        |         |        |         |                |                  |
| 11735     -2.6252     11975     -2.0776     12215     -1.1148     12455     -2.1496       11740     -2.5730     11980     -2.0457     12220     -1.0906     12460     -2.1304       11745     -2.5476     11985     -1.9355     12225     -1.0861     12465     -2.1569       11750     -2.5970     11990     -1.8605     12230     -1.1093     12470     -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         |        |         |        |         |                |                  |
| 11740     -2.5730     11980     -2.0457     12220     -1.0906     12460     -2.1304       11745     -2.5476     11985     -1.9355     12225     -1.0861     12465     -2.1569       11750     -2.5970     11990     -1.8605     12230     -1.1093     12470     -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |        |         |        |         |                |                  |
| 11745 -2.5476 11985 -1.9355 12225 -1.0861 12465 -2.1569<br>11750 -2.5970 11990 -1.8605 12230 -1.1093 12470 -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |         |        |         |        |         |                |                  |
| 11750 -2.5970 11990 -1.8605 12230 -1.1093 12470 -2.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         |        |         |        |         |                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         |        |         |        |         |                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         |        |         |        |         |                |                  |

### C VALUE FOR H20

| WAVE #         | C*                 | WAVE #                  | C1                 | WAVE # | C ·                  | WAVE #         | C1                 |
|----------------|--------------------|-------------------------|--------------------|--------|----------------------|----------------|--------------------|
| 12480          | -2.1365            | 12720                   | -3.2122            | 12960  | -8.6529              | 13200          | -7.8713            |
| 12485          | -2.0897            | 12725                   | -3.4561            | 12965  | -8.7824              | 13205          | <b>-7.726</b> 5    |
| 12490          | -2.0923            | 12730                   | -3.6838            | 12970  | -8.9118              | 13210          | -7.5816            |
| 12495          | -2.1267            | 12735                   | -3.8338            | 12975  | -9.0413              | 13215          | <b>-7.</b> 4368    |
| 12500          | -2.1941            | 12740                   | -3.9046            | 12980  | -9.1707              | 13220          | -7.2919            |
| 12505          | -2.2762            | 12745                   | -4.0929            | 12985  | -9.3002              | 13225          | -7.1471            |
| 12510          | -2.3215            | 12750                   | -4.3552            | 12990  | -9.4297              | 13230          | -7.0022            |
| 12515          | -2.3569            | 12755                   | -4.6098            | 12995  | -9.5591              | 13235          | -6.8574            |
| 12520          | -2.3726            | 12760                   | -4.8878            | 13000  | -9.6886              | 13240          | -6.7125            |
| 12525          | -2.3992            | 12765                   | -4.9972            | 13005  | -9.8180              | 13245          | -6.5677            |
| 12530          | -2.4136            | 12770                   | -5.0897            | 130 10 | -9.9475              | 13250          | -6.4228            |
| 12535          | -2.3742            | 12775                   | -5.1819            |        | -10.0770             | 13255          | -6.2780            |
| 12540          | -2.2423            | 12780                   | -5.2493            |        | -10.2065             | 13260          | -6.1331            |
| 12545          | -2.0783            | 12785                   | -5.3592            |        | -10.3360             | 13265          | -5.9883            |
| 12550          | -1.9591            | 12790                   | -5.4721            |        | -10.4655             | 13270          | -5.8434            |
| 12555          | -1.8949            | 12795                   | -5.5599            |        | -10.5950             | 13275          | -5.6986            |
| 12560          | -1.9383            | 12800                   | -5.5613            |        | -10.7245             | 13280          | -5.5537            |
| 12565          | -2.0752            | 12805                   | -5.4614            |        | -10.8540             | 13285          | -5.4089            |
| 12570          | -2.2512            | 12810                   | -5.2616            | 13050  |                      | 13290          | -5.2640            |
| 12575          | -2.4541            | 12815                   | -5.1237            |        | -11.1130             | 13295          | -5.1192            |
| 12580          | -2.6506            | 12820                   | -5.0902            |        | -11.2425             | 13300          | -4.9743            |
| 12585          | -2.8067            | 12825                   | -5.0818            |        | -11.3720             | 13305          | -4.7853            |
| 12590          | -2.8574            | 12830                   | -5.1220            |        | -11.5015             | 13310          | -4.6276            |
| 12595          | -2.7901            | 12835                   | -5.2792            |        | -11.4924             | 13315          | -4.4743            |
| 12600          | -2.6216            | 12840                   | -5.3872            |        | -11.3476             | 13320          | -4.3949            |
| 12605          | -2.4060            | 12845                   | -5.4629            |        | -11.2027             | 13325          | -4.3965            |
| 12610          | -2.2524            | 12850                   | -5.5365            |        | -11.0579             | 13330          | -4.4788            |
| 126 15         | -2.1698            | 12855                   | -5.4766            |        | -10.9130             | 13335          | -4.6282            |
| 12620          | -2.1278            | 12860                   | -5.5520            |        | -10.7682             | 13340          | -4.8132            |
| 12625          | -2.1038<br>-2.1139 | 12865                   | -5.7170            |        | -10.6233             | 13345          | -4.9466            |
| 12630<br>12635 | -2.1139<br>-2.1060 |                         | -6.0034<br>-6.2934 |        | -10.4785<br>-10.3336 | 13350          | -4.9381            |
| 12633          | -2.1060            | 128 <b>7</b> 5<br>12880 | -6.5816            |        | -10.3336             | 13355<br>13360 | -4.8432<br>-4.7264 |
| 12645          | -2.1014            | 12885                   | -6.7111            |        | -10.0439             | 13365          | -4.6342            |
| 12650          | -2.0499            | 12890                   | -6.8405            | 13123  | -9.8992              | 13370          | -4.4883            |
| 126 55         | -2.0154            | 12895                   | -6.9700            | 13135  | -9.7544              | 13375          | -4.3480            |
| 12660          | -1.9920            | 12900                   | -7.0994            | 13140  | -9.6095              | 13380          | -4.2424            |
| 12665          | -1.9883            | 12905                   | -7.2289            | 13145  | -9.4647              | 13385          | -4. 1553           |
| 12670          | -2.0677            | 12910                   | -7.3583            | 13150  | -9.3198              | 13390          | -4.1234            |
| 12675          | -2.1657            | 12915                   | -7.4878            | 13155  | -9.1749              | 13395          | -4.1334            |
| 12680          | -2.2940            | 12920                   | -7.6173            | 13160  | -9.0301              | 13400          | -4.0693            |
| 12685          | -2.4044            | 12925                   | -7.7467            | 13165  | -8.8853              | 13405          | -3.9846            |
| 12690          | -2.4715            | 12930                   | -7.8762            | 13170  | -8.7404              | 13410          | -3.9327            |
| 12695          | -2.5209            | 12935                   | -8.0056            | 13175  | -8.5956              | 13415          | -3.8731            |
| 12700          | -2.5711            | 12940                   | -8.1351            | 13180  | -8.4507              | 13420          | <b>-3. 7</b> 905   |
| 12705          | -2.6539            | 12945                   | -8.2645            | 13185  | -8.3059              | 13425          | -3.7085            |
| 12710          | -2.7723            | 12950                   | -8.3940            | 13190  | -8.1610              | 13430          | -3.6036            |
| 127 15         | -2.9634            | 12955                   | -8.5235            | 13195  | -8.0162              | 13435          | -3.5197            |

### C' VALUE FOR H20

| WAVE #         | C I                | WAVE #         | C.                 | WAVE #         | C.                 | WAVE #         | C*                 |
|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|
| 13440          | -3.5289            |                | -1.2121            | 13920          | -0.9412            | 14160          | -1.9941            |
| 13445          | -3.5123            | 13685          | -1.2156            | 13925          | -0.9678            | 14165          | -1.9499            |
| 13450          | -3.3943            | 13690          | -1.2090            | 13930          | -0.9991            | 14170          | -1.9277            |
| 13455          | -3.2240            | 13695          | -1.2139            | 13935          | -1.0494            | 14175          | -1.9157            |
| 13460          | -3.0505            | 13700          | -1.1827            | 13940          | -1.1302            | 14180          | -1.9599            |
| 13465          | -2.9175            | 13705          | -1.1431            | 13945          | -1.2590            | 14185          | -2.0141            |
| 13470          | -2.8605            | 13710          | -1.1432            | 13950          | -1.4233            | 14190          | -2.0187            |
| 13475          | -2.8163            | 13715          | - 1. 1747          | 13955          | -1.5992            | 14195          | -2.0436            |
| 13480          | -2.7655            | 13720          | -1.2269            | 13960          | -1.7714            | 14200          | -2.0504            |
| 13485          | -2.7264            | 13725          | -1.2435            | 13965          | -1.9028            | 14205          | -2.1010            |
| 13490          | -2.6882            | 13730          | -1.1822            | 13970          | -1.9952            | 14210          | -2.1587            |
| 13495          | -2.6885            | 13735          | -1.0976            | 13975          | -2.0440            | 14215          | -2.1415            |
| 13500          | -2.6430            | 13740          | -1.0516            | 13980          | -2.0500            | 14220          | -2.0313            |
| 13505          | -2.5743            | 13745          | -1.0266            | 13985          | -2.0681            | 14225          | -1.8741            |
| 13510          | -2.4456            | 13750          | -1.0715            | 13990          | -2.1030            | 14230          | -1.7627            |
| 13515          | -2.3017            | 13755          | -1.1101            | 13995          | -2.1541            | 14235          | -1.6906            |
| 13520          | -2.2448            | 13760          | -1.1043            | 14000          | -2.2225            | 14240          | -1.6868            |
| 13525<br>13530 | -2.1719<br>-2.1000 | 13765          | -1.1055            | 14005          | -2.2764            | 14245          | -1.6974<br>-1.7025 |
| 13530          | -2.1494<br>-2.1401 | 13770<br>13775 | -1.1001<br>-1.1024 | 14010          | -2.3081            | 14250          | -1.7025            |
| 13540          | -2.0956            | 13775          | -1.1024            | 14015<br>14020 | -2.3320            | 14255<br>14260 | -1.6862            |
| 13545          | -2.1025            | 13785          | -1.0883            | 14020          | -2.3535<br>-2.3980 | 14265          | -1.6843            |
| 13550          | -2.1023            | 13790          | -1.0746            | 14025          | -2.4621            | 14270          | -1.6685            |
| 13555          | -2.0359            | 13795          | -1.0569            | 14035          | -2.5113            | 14275          | <b>-1.69</b> 58    |
| 13560          | -1.9697            | 13800          | -1.0333            | 14040          |                    | 14273          | -1.7216            |
| 13565          | -1.8637            | 13805          | -1.0062            | 14045          | -2.5382            | 14285          | -1.7392            |
| 13570          | -1.7893            | 13810          | -0.9901            | 14050          | -2.5060            | 14290          | -1.6895            |
| 13575          | -1.7288            | 13815          | -1.0002            | 14055          | -2.4525            | 14295          | -1.6110            |
| 13580          | -1.7116            | 13820          | -1.0558            | 14060          | -2.3871            | 14300          | -1.5836            |
| 13585          | -1.7417            | 13825          | -1.1944            | 14065          | -2.3238            | 14305          | -1.6081            |
| 13590          | -1.7760            | 13830          | -1.3615            | 14070          | -2.2655            | 14310          | -1.6905            |
| 13595          | -1.8218            | 13835          | -1.5049            | 14075          | -2.2369            | 14315          | -1.8453            |
| 13600          | -1.8525            | 13840          | -1.6034            | 14080          | -2.2399            | 14320          | -1.9987            |
| 13605          | -1.8785            | 13845.         | -1.6630            | 14085          | -2.2724            | 14325          | -2.1305            |
| 13610          | -1.9282            | 13850          | -1.6291            | 14090          | -2.3092            | 14330          | -2.2354            |
| 13615          | -1.9501            | <b>13</b> 855  | -1.5692            | 14095          | -2.3522            | 14335          | <b>-2.311</b> 2    |
| 13620          | -1.9530            | 13860          | -1.4728            | 14100          | -2.3796            | 14340          | <b>-2.31</b> 89    |
| 1.36 25        | -1.9066            | 13865          | -1.3006            | 14105          | -2.3700            | 14345          | -2.2844            |
| 13630          | -1.8088            | 13870          | -1.1289            | 14110          | -2.3377            | 14350          | -2.1477            |
| 13635          | -1.7525            | 13875          | -0.9655            | 14115          | -2.2718            | 14355          | -1.9411            |
| 13640          | -1.7281            | 13880          | -0.8559            | 14120          | -2.1896            | 14360          | -1.7699            |
| 13645          | -1.6901            | 13885          | -0.7959            | 14125          | -2.1454            | 14365          | -1.6468            |
| 13650          | -1.6417            | 13890          | -0.8011            | 14130          | -2.1377            | 14370          | -1.5784            |
| 13655          | -1.5481            | 13895          | -0.8121            | 14135          | -2.1362            | 14375          | -1.5671            |
| 13660          | -1.3996            | 13900          | -0.8139            | 14140          | -2.1430            | 14380          | -1.5894            |
| 13665          | -1.3048            | 13905          | -0.8489            | 14145          | -2.1193            | 14385          | -1.5803            |
| 13670          | -1.2475            | 13910          | -0.8585            | 14150          | -2.0681            | 14390          | -1.5540<br>-1.536# |
| 13675          | -1.2003            | 13915          | -0.8914            | 14155          | -2.0372            | 14395          | <b>-1.</b> 5264    |

#### C' VALUE FOR H20

| WAVE # | C'      | WAVE # | - C.            | WAVE # | C.      | WAVE #        | C'               |
|--------|---------|--------|-----------------|--------|---------|---------------|------------------|
| 14400  | -1.4872 | 14640  | -4.0518         | 14880  | -8.2860 | 15120         | -3.5076          |
| 14405  | -1.4934 | 14645  | -4.0297         | 14885  | -7.2151 | 15125         | -3.4241          |
| 14410  | -1.5390 | 14650  | -4.0636         | 14890  | -7.3121 | 15130         | -3.3014          |
| 14415  | -1.6005 | 14655  | -4.1378         | 14895  | -6.7320 | 15135         | -3.1565          |
| 14420  | -1.6782 | 14660  | -4.1849         | 14900  | -6.6154 | 15140         | -3.0579          |
| 14425  | -1.7528 | 14665  | -4.1956         | 14905  | -6.2962 | 15145         | -2.9789          |
| 14430  | -1.8533 | 14670  | -4.1931         | 14910  | -6.0271 | 15150         | -2.9530          |
| 14435  | -1.9809 | 14675  | -4.2088         | 14915  | -5.8367 | 15155         | -2.9890          |
| 14440  | -2.1349 | 14680  | -4.3019         | 14920  | -5.6451 | 15160         | -2.9876          |
| 14445  | -2.3590 | 14685  | -4.4145         | 14925  | -5.5293 | 15165         | -2.9416          |
| 14450  | -2.5890 | 14690  | -4.5336         | 14930  | -5.4937 | 15170         | -2.85 <b>7</b> 0 |
| 14455  | -2.8218 | 14695  | -4.6296         | 14935  | -5.5236 | 15 <b>175</b> | -2.7266          |
| 14460  | -3.0549 | 14700  | -4.7032         | 14940  | -5.4386 | 15180         | -2.6485          |
| 14465  | -3.1783 | 14705  | -4.7988         | 14945  | -5.2572 | 15185         | -2.6412          |
| 14470  | -3.2700 | 14710  | -4.9771         | 14950  | -5.0886 | 15190         | -2.6301          |
| 14475  | -3.3418 | 14715  | -5.2093         | 14955  | -4.9568 | 15195         | -2.6226          |
| 14480  | -3.4918 | 14720  | -5.4659         | 14960  | -4.9341 | 15200         | -2.5743          |
| 14485  | -3.7140 | 14725  | -5.7205         | 14965  | -4.9975 | 15205         | -2.4779          |
| 14490  | -3.9236 | 14730  | -5.8938         | 14970  | -4.9005 | 15210         | -2.4374          |
| 14495  | -4.0763 | 14735  | -5.9757         | 14975  | -4.7778 | 15215         | -2.4126          |
| 14500  | -4.0468 | 14743  | -6.1228         | 14980  | -4.6105 | 15220         | -2.4090          |
| 14505  | -3.8950 | 14745  | -6.3138         | 14985  | -4.4267 | 15225         | -2.4162          |
| 14510  | -3.8151 | 14750  | -6.5047         | 14990  | -4.3241 | 15230         | -2.3643          |
| 14515  | -3.8794 | 14755  | -6.6957         | 14995  | -4.1922 | 15235         | -2.3288          |
| 14520  | -3.9883 | 14760  | -6.8866         | 15000  | -4.1032 | 15240         | -2.2784          |
| 14525  | -4.1436 | 14765  | -7.0776         | 15005  | -4.0698 | 15245         | -2.2373          |
| 14530  | -4.3060 | 14770  | <b>-7.</b> 2685 | 150 10 | -4.0564 | 15250         | -2.2223          |
| 14535  | -4.3293 | 14775  | -7.4595         | 15015  | -4.1142 | 15255         | -2.1926          |
| 14540  | -4.3949 | 14780  | -7.6504         | 15020  | -4.1251 | 15260         | -2.1908          |
| 14545  | -4.3828 | 14785  | -7.8414         | 15025  | -4.0964 | 15265         | -2.1699          |
| 14550  | -4.2459 | 14790  | -8.0323         | 15030  | -4.0356 | 15270         | -2.1787          |
| 14555  | -4.0702 | 14795  | -8.2233         | 15035  | -3.8750 | 15275         | -2.2266          |
| 14560  | -3.8880 | 14800  | -8.4142         | 15040  | -3.7780 | 15280         | -2.2849          |
| 14565  | -3.8147 | 14805  | -8.6052         | 15045  | -3.7034 | 15285         | -2.3693          |
| 14570  | -3.7961 | 14810  | -8.7961         | 15050  | -3.6681 | 15290         | -2.3966          |
| 14575  | -3.8097 | 14815  | -8.9871         | 15055  | -3.7193 | 15295         | -2.3833          |
| 14580  | -3.8575 | 14820  | -9.1780         | 15060  | -3.7592 | 15300         | -2.3803          |
| 14585  | -3.8560 | 14825  | -9.3689         | 15065  | -3.7759 | 15305         | -2.4113          |
| 14590  | -3.8818 | 14830  | -9.5599         | 15070  | -3.7260 | 15310         | -2.4648          |
| 14595  | -3.8974 | 14835  | -9.7509         | 15075  | -3.6716 | 15315         | -2.5176          |
| 14600  | -3.8521 | 14840  | -9.9418         | 15080  | -3.6394 | 15320         | -2.4713          |
| 14605  | -3.8157 |        | -10.3316        | 15085  | -3.6363 | 15325         | -2.3637          |
| 146 10 | -3.7836 |        | -10.7209        | 15090  | -3.7066 | 15330         | -2.1887          |
| 146 15 | -3.7971 |        | -11.1105        | 15095  | -3.7636 | 15335         | -2.0256          |
| 14620  | -3.8945 |        | -11.5000        | 15100  | -3.8181 | 15340         | -1.9446          |
| 14625  | -4.0326 |        | -11.4987        | 15105  | -3.7928 | 15345         | -1.9722          |
| 14630  | -4.1214 |        | -10.4278        | 15110  | -3.7108 | 15350         | -2.0928          |
| 14635  | -4.0940 | 14875  | -9.3569         | 15115  | -3.6242 | 15355         | -2.2590          |

| WAVE #         | C *                    | WAVE #         | C.                 | WAVE #         | c i                  | WAVE #         | C.                 |
|----------------|------------------------|----------------|--------------------|----------------|----------------------|----------------|--------------------|
| 15360          | -2.3989                | 15600          | -3.7291            | 15840          | -3.1947              | 16370          | -10.3971           |
| 15365          | -2.5171                | 15605          | -3.7732            | 15845          | -3.3998              | 16375          | -10.1940           |
| 15370          | -2.5361                | 15610          | -3.8016            | 15850          | -3.5939              | 16380          | -9.9909            |
| 15375          | -2.4923                | 15615          | -3.8328            | 15855          | -3.7096              | 16385          | <b>-9.787</b> 8    |
| 15380          | -2.4177                | 15620          | -3.8766            | 15860          | -3.6964              | 16390          | -9.5847            |
| 15385          | -2.2713                | 15625          | -3.9027            | <b>1</b> 5865  | -3.5455              | 16395          | -9.3816            |
| 15390          | -2.1349                | 15630          | -3.8584            | 15870          | -3.2841              | 16400          | -9.1786            |
| 15395          | -2.0347                | 15635          | -3.7926            | 15875          | -3.0479              | 16405          | -8.9755            |
| 15400          | -1.9625                | 15640          | -3.7301            | 15880          | -2.9037              | 16410          | -8.7724            |
| 15405          | -1.9222                | 15645          | -3.6545            | 15885          | -2.8080              | 16415          | -8.5€93            |
| 15410          | -1.8976                | 15650          | -3.6340            | 15890          | -2.7595              | 16420          | -8.3662            |
| 15415          | -1.8729                | 15655          | -3.6267            | 15895          | -2.7540              | 16425          | -8.1632            |
| 15420          | -1.8536                | 15660          | -3.6339            | 15900          | -2.7410              | 16430          | -7.9601            |
| 15425          | -1.8413                | 15665          | -3.6752            | 15905          | -2.7670              | 16435          | -7.7570            |
| 15430          | -1.8331                | 15670          | -3.6983            | 15910          | -2.8532              | 16440          | -7.5539            |
| 15435          | -1.8414                | 15675          | -3.6336            | 15915          | -2.9589              | 16445          | -7.3503            |
| 15440          | -1.8648                | 15680          | -3.5028            | 15920          | -3.1259              | 16450          | -7.1494<br>-6.8180 |
| 15445          | -1.9214                | 15685          | -3.3554<br>-3.2589 | 15925          | -3.2298              | 16455          | -6.5302            |
| 15450          | -1.9908                | 15690          | -                  | 15930          | -3.2180              | 16460          | -6.4543            |
| 15455<br>15460 | -2.0536<br>-2.1152     | 15695<br>15700 | -3.2685<br>-3.3195 | 15935<br>15940 | -3.1654<br>-3.0998   | 16465<br>16470 | -6.2863            |
| 15465          | <b>-2.1152 -2.1657</b> | 15705          | -3.3793<br>-3.3702 | 15945          | -3.1091              | 16475          | -6.1938            |
| 15470          | -2.2331                | 15705          | -3.3702<br>-3.3635 | 15950          | -3.1760              | 16480          | -5.9299            |
| 15475          | -2.3124                | 15715          | -3.2840            | 15955          | -3.3378              | 16485          | -5.6915            |
| 15480          | -2.4290                | 15720          | -3.2428            | 15960          | -3.5663              | 16490          | -5.5198            |
| 15485          | -2.5760                | 15725          | -3.2209            | 15965          | -3.8598              | 16495          | -5.3782            |
| 15490          | -2.7079                | 15730          | -3.2296            | 15970          | -4.3120              | 16500          | -5.3306            |
| 15495          | -2.8624                | 15735          | -3.2096            | 15975          | -4.7891              | 16505          | -5.3272            |
| 15500          | -2.9450                | 15740          | -3.1454            | 15980          | -5.4739              | 16510          | -5.2921            |
| 15505          | -2.9724                | 15745          | -3.1022            | 15985          | -6.6385              | 16515          | -5.2649            |
| 15510          | -3.0229                | 15750          | -3.0435            | 15990          | -7.1646              | 16520          | -5.1700            |
| 15515          | -3.0727                | 15755          | -3.0620            | 15995          | -7.1831              | 16525          | -4.9871            |
| 15520          | -3.1800                | 15760          | -3.1078            | 16000          | -7.2015              | 16530          | -4.8256            |
| 15525          | -3.2782                | 15765          | -3.1722            | 160 <b>0</b> 5 | -7.6789              | 16535          | -4.6473            |
| 15530          | -3.3245                | 15770          | -3.2437            | 16010          | -8.1563              | 16540          | -4.5012            |
| 15535          | -3.3020                | 15775          | -3.2598            | 16015          | -8.6337              |                | -4.4097            |
| 15540          | -3.2575                | 15780          | -3.2653            | 16020          | -9.1110              | 16550          | -4.3642            |
| 15545          | -3.2617                | <b>157</b> 85  | -3.2445            | 16025          | -9.5884              | 16555          | -4.3866            |
| 15550          | -3.3008                | 15790          | -3.2066            |                | -10.0658             | 16560          | -4.3796            |
| 15555          | -3.3894                | 15795          | -3.1768            |                | -10.5432             | 16565          | -4.3202            |
| 15560          | -3.4953                | 15800          | -3.1040            |                | -11.0206             | 16570          | -4.1629            |
| 15565          | -3.6454                | 15805          | -2.9940            |                | -11.4980             | 16575          | -3.9797<br>-3.9595 |
| 15570          | -3.7816                | 15810          | -2.8571            |                | -11.5000             | 16580          | -3.8505            |
| 15575          | -3.8712                | 15815          | -2.7624            |                | -11.4125             | 16585<br>16590 | -3.7752<br>-3.7734 |
| 15580          | -3,9231                | 15820          | -2.7229            |                | -11.2094             | 16595          | -3.7734<br>-3.7790 |
| 15585          | -3.8201                | 15825          | -2.7428            |                | -11.0063<br>-10.8032 | 16600          | -3.7421            |
| 15590          | -3.7773<br>-3.7557     | 15830          | -2.8473            |                | -10.6001             | 16605          | -3.5869            |
| 15595          | <del>-</del> 3./35/    | 15835          | -3.0083            | 10303          | - 10.0001            | 10000          | J. J. 00           |

#### C. VALUE FOR H20

| WAVE #         | C.                 | WAVE #         | C*                          | WAVE #         | C*                 | WAVE #         | C,                 |
|----------------|--------------------|----------------|-----------------------------|----------------|--------------------|----------------|--------------------|
| 16610          | -3.4319            | 16850          | -2.1535                     | 17090          | -3.4614            | 17330          | -3, 1324           |
| <b>166 15</b>  | -3.3139            | 16855          | -2.1496                     | 17095          | -3.5044            | 17335          | <b>-3.</b> 1573    |
| 16620          | -3.2366            | 16860          | -2.1247                     | 17100          | -3.5299            | 17.340         | -3.1683            |
| 16625          | -3.2492            | 16865          | -2.0934                     | 17105          | -3.5671            | 17345          | -3.1012            |
| 16630          | -3.2553            | 16870          | -2.0452                     | 17110          | -3.5872            | 17350          | -3.0393            |
| 16635          | -3.2157            | 16875          | -1.9288                     | 17115          | -3.6023            | 17355          | -2.9982            |
| 16640          | -3.1457            | 16880          | -1.8641                     | 17120          | -3.6128            | 17360          | -2.9382            |
| 166 45         | -3.0382            | 16885          | -1.8167                     | 17125          | -3.6375            | 17365          | -2.9067            |
| 16650          | -2.9328            | 16890          | -1.7871                     | 17130          | -3,6652            | 17370          | -2.8859            |
| 16655          | -2.8650            | 16895          | -1.8406                     | 17135          | -3.6693            | <b>1737</b> 5  | <b>-2.</b> 8928    |
| 16660          | -2.8171            | 16900          | -1.8713                     | 17140          | -3.6805            | 17380          | -2.9370            |
| 16665          | -2.7648            | 16905          | -1.8991                     | 17145          | -3.7041            | 17385          | -2.9384            |
| 16670          | -2.7038            | 16910          | -1.9382                     | 17150          | -3.7406            | 17390          | -2.8955            |
| 16675          | -2.6191            | 16915          | -1.9489                     | 17155          | -3.7928            | 17395          | -2.8042            |
| 16680          | -2.5253            | 16920          | -1.9700                     | 17160          | -3.8926            | 17400          | -2.7350            |
| 16685          | -2.4558            | 16925          | -1.9817                     | 17165          | -3.9455            | 17405          | <b>-2.7382</b>     |
| 16690          | -2.4194            | 16930          | -1.9454                     | 17170          | -3.9704            | 17410          | <b>-2.7618</b>     |
| 16695          | -2.4273            | 16935          | -1.8680                     | 17175          | -4.0274            | 17415          | -2.8307            |
| 16700          | -2.4535            | 16940          | -1.7761                     | 17180 .        | -4.0047            | 17420          | -2.8677            |
| 16705          | -2.4835            | 16945          | -1.7178                     | 17185          | -4.0230            | 17425          | -2.8744            |
| 16713          | -2.4693            | 16950          | -1.7020                     | 17190          | -4.0500            | 17430          | -2.9168            |
| 16715          | -2.3987            | 16955          | -1.7234                     | 17195          | -4.0411            | 17435          | -2.9015            |
| 16720          | -2.3405            | 16960          | -1.7460                     | 17200          | -4.0877            | 17440          | -2.8804            |
| 16725          | -2.2767            | 16965          | -1.7333                     | 17205          | -4.0696            | 17445          | -2.8460            |
| 16730          | -2.2560            | 16970          | -1.7178                     | 172 10         | -4.0102            | 1745ŭ          | -2.7933            |
| 16735          | -2.2480            | 16975          | -1.7226                     | 17215          | -3.9533            | 17455          | -2.790ŭ            |
| 16740          | -2.1899            | 16980          | -1.7481                     | 17220          | -3.8587            | 17460          | -2.7844            |
| 16745          | -2. 1422           | 16985          | -1.8160                     | 17225          | -3.8176            | 17465          | -2 <b>.7</b> 386   |
| 16750          | -2.1155            | 16990          | -1.9163                     | 17230          | -3.7969            | 17470          | -2.6726            |
| 16755<br>16760 | -2.1503<br>-2.2432 | 16995          | -2.0151                     | 17235          | -3.7735            | 17475          | -2.6238            |
| 16765          |                    | 17000<br>17005 | -2.1207                     | 17240          | -3.7503            | 17480          | -2.6204            |
| 16770          | -2.2885<br>-2.2678 | 17003          | -2.23 <b>7</b> 9<br>-2.3387 | 17245<br>17250 | -3.7458<br>-3.7737 | 17485<br>17490 | -2.6922<br>-2.8118 |
| 16775          | -2.1986            | 170 15         | -2.4333                     | 17255          | -3.7964            | 17495          | -2.9318            |
| 16780          | -2.1390            | 17020          | -2.5587                     | 17260          | -3.8398            | 17500          | -3.0400            |
| 16785          | -2.1304            | 17025          | -2.6642                     | 17265          | -3.8484            | 17505          | -3.1086            |
| 16790          | -2.1259            | 17030          | -2.7601                     | 17270          | -3.7913            | 17510          | -3.1766            |
| 16795          | -2.0807            | 17035          | -2.8876                     | 17275          | -3.6943            | 17515          | -3.1939            |
| 16800          | -1.9659            | 17040          | -2.9658                     | 17280          | -3.6055            | 17520          | -3.1433            |
| 16805          | -1.8532            | 17045          | -3.0382                     | 17285          | -3.5359            | 17525          | -2.9930            |
| 16810          | -1.7543            | 17050          | -3.1464                     | 17290          | -3.5310            | 17530          | -2.7925            |
| 16815          | -1.7036            | 17055          | -3.2188                     | 17295          | -3.5351            | 17535          | -2.6357            |
| 16820          | -1.7391            | 17060          | -3.3008                     | 17300          | -3.5028            | 17540          | -2.5308            |
| 16825          | -1.7958            | 17065          | -3.4338                     | 17305          | -3.3825            | 17545          | -2.4897            |
| 16830          | -1.9187            | 17070          | -3.5032                     | 17310          | -3.2586            | 17550          | -2.5063            |
| 16835          | -2.0420            | 17075          | -3.5154                     | 17315          | -3.1416            | 17555          | -2.5127            |
| 16840          | -2.1133            | 17080          | -3.5297                     | 17320          | -3.0686            | 17560          | -2.4907            |
| 16845          | -2.1677            | 17085          | -3.4718                     | 17325          | -3.0889            | 17565          | -2.4713            |

#### C' VALUE FOR H20

| WAVE # | C٦      | WAVE # | . C1    | WAVE #        | C.      | WAVE #        | C1             |
|--------|---------|--------|---------|---------------|---------|---------------|----------------|
| 17570  | -2.4414 | 17645  | -4.1353 | 17720         | -4.6453 | 17795         | -4.7458        |
| 17575  | -2.4524 | 17650  | -4.2313 | 17725         | -4.6761 | 17800         | -4.9024        |
| 17580  | -2.5034 | 17655  | -4.3517 | 17730         | -4.7557 | 17805         | -5.1362        |
| 17585  | -2.5649 | 17660  | -4.4721 | 17735         | -4.885C | 17810         | -5.5333        |
| 17590  | -2.6616 | 17665  | -4.6368 | 17740         | -5.0655 | 17815         | -6.2253        |
| 17595  | -2.7854 | 17670  | -4.7221 | 17745         | -5.2044 | 17820         | -6.8532        |
| 17600  | -2.9377 | 17675  | -4.7259 | 17750         | -5.1841 | 17825         | <b>-7.3187</b> |
| 17605  | -3.1122 | 17680  | -4.6961 | <b>1775</b> 5 | -5.0356 | 17830         | -7.9138        |
| 176 10 | -3.2798 | 17685  | -4.6329 | 17760         | -4.8843 | 17835         | -8.5089        |
| 176 15 | -3.4184 | 17690  | -4.5754 | 17765         | -4.8221 | 17840         | -9.1040        |
| 17620  | -3.5391 | 17695  | -4.5205 | 17770         | -4.8165 | 17845         | -9.6991        |
| 17625  | -3.6975 | 17700  | -4.5280 | <b>1777</b> 5 | -4.8373 | <b>17</b> 850 | -10.2942       |
| 17630  | -3.8446 | 17705  | -4.5682 | 17780         | -4.8186 | 17855         | -10.8893       |
| 17635  | -3.9992 | 17710  | -4.5978 | 17785         | -4.7781 | 17860         | -11.4844       |
| 17640  | -4.1215 | 17715  | -4.6235 | 17790         | -4.7470 |               |                |

#### APPENDIX B

Spectral Plots of the Parameter C' for NH  $_{3'}$  CO  $_2$ , CO, CH  $_{4'}$  NO, NO  $_2$  N  $_2$  O, O  $_2$ , O  $_3$ , SO  $_2$ , and H  $_2$ O from the Tables in Appendix A.

### SPECTRAL PARAMETER C FOR NH3



Figure B1

## SPECTRAL PARAMETER C FOR CO2



Figure B2

### SPECTRAL PARAMETER C FOR CO



Figure B3

### SPECTRAL PARAMETER C FOR CH4



Figure B4

### SPECTRAL PARAMETER C FOR NO



Figure B5

# SPECTRAL PARAMETER C FOR NO2



Figure B6

# SPECTRAL PARAMETER C FOR N20



Figure B7

### SPECTRAL PARAMETER C FOR 02



Figure B8

### SPECTRAL PARAMETER C FOR 03



Figure B9

### SPECTRAL PARAMETER C FOR S02



Figure B10

### SPECTRAL PARAMETER C FOR H20



Figure B11

#### APPENDIX C

Transmission Functions (  $\tau$  versus CW) for NH  $_3$  , CO  $_2$  , CO, CH  $_4$  , NO, NO  $_2$  , N  $_2$  O, O  $_2$  , and SO  $_2$  .

Transmission Functions for  $\mathbf{D}_3$  and  $\mathbf{H}_2\mathbf{D}$  appear on pages 16 and 17, respectively.

The top transmittance curve, in the region where log (cw) is negative, corresponds to the largest value of A, while the lower curves correspond to values of A is descending order.



Figure C1



Figure C2



Figure C3

TRANSMISSION FUNCTION FOR CH4: T=EXP(-(CW\*\*A))
SPECTRAL REGION (1/CM):
1065- 1775, 2345- 3230; 4110- 4690, 5865- 6135,
(A=0.5844).



Figure C4

```
TRANSMISSION FUNCTION FOR NO: T=EXP(-(CW**A)) SPECTRAL REGION (1/CM): 1700- 2005, (A=0.6613).
TRANSMITTANCE
0.25 0.50 0.75
                                                        -2.0 -1
LØG10 (CW)
   -5.0
                                                                                                                                 2.0
                     -4.0
                                                                                                               1.0
                                       -3.0
                                                                           -1.0
```

Figure C5



Figure C6

```
TRANSMISSION FUNCTION FOR N20: T=EXP(-(CW**A))
               SPECTRAL REGION (1/CM):

0- 120, (A=0.8997); 490- 775, 865- 995, 1065- 1385, 1545- 2040, 2090- 2655, (A=0.7201); 2705- 2865, 3245- 3925, 4260- 4470, 4540- 4785, 4910- 5165, (A=0.6933).
TRANSMITTANCE
0.25 0.50 0.75
    -5.0
                        -4.0
                                           -3.0
                                                             -2.0
                                                                                                                                           0.5
                                                                                -1.0
                                                                                                                       1.0
                                                             LOGIO (CW)
```

Figure C7

```
TRANSMISSION FUNCTION FOR 02: T=EXP(-(CW**A))
            SPECTRAL REGION (1/CM):

0- 265, (A=0.6011); 7650- 8080, 9235- 9490,

12850-13220,14300-14600,15695-15955, (A=0.5641).
TRANSMITTANCE
0.25 0.50 0.
                                 -3.0
                                                -2.0
                  -4.0
                                                               -1.0
   -5.0
                                                                                             1.0
                                                                                                            2.0
                                                LOG10 (CW)
```

Figure C8

```
TRANSMISSION FUNCTION FOR SO2: T=EXP(-(CW**A))
           SPECTRAL REGION (1/CM);

0- 185, (A=0.8907);

2415- 2580, (A=0.8466).
                                                   400- 650, 950- 1460,
  1,00
TRANSMITTANCE
25 0.50 0.75
  9.
   -5.0
                 -4.0
                              -3.0
                                           -2.0
                                                        -1.0
                                                                                   1.0
                                                                                                 2.0
                                           LOG10 (CW)
```

Figure C9

#### APPENDIX D

Comparisons Between High Resolution and Degraded Line-By-Line Calculations with Measurements of  ${\rm H_2\,O}$ .

COMPARISON OF MONOCHROMATIC BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 1.0500 (ATM), TEMP=296 (K), U= 0.4272 (GR/CM\*\*2) SPECTRAL WIDTH= 0.3 WN



Figure D1a

COMPARISON OF DEGRADED BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 1.0500 (ATM), TEMP=296 (K), U= 0.4272 (GR/CM\*\*2)



Figure D1b

COMPARISON OF MONOCHROMATIC BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.2500 (ATM), TEMP=428 (K), U= 0.0107(GR/CM\*\*2) SPECTRAL WIDTH= 0.6 WN



Figure D2a

COMPARISON OF DEGRADED BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.2500 (ATM), TEMP=428 (K), U= 0.0107(GR/CM\*\*2)



Figure D2b

COMPARISON OF MONOCHROMATIC BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.9890 (ATM), TEMP=296 (K), U= 0.0866 (GR/CM\*\*2) SPECTRAL WIDTH= 0.6 WN



Figure D3a

COMPARISON OF DEGRADED BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.9890 (ATM), TEMP=296 (K), U= 0.0866 (GR/CM\*\*2)



Figure D3b

COMPARISON OF MONOCHROMATIC BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.3080 (ATM), TEMP=296 (K), U= 0.0052 (GR/CM\*\*2) SPECTRAL WIDTH= 0.3 WN



Figure D4a

COMPARISON OF DEGRADED BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.3080 (ATM) TEMP=296 (K), U= 0.0052(GR/CM\*\*2)



Figure D4b

COMPARISON OF MONOCHROMATIC BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.3050 (ATM), TEMP=296 (K), U= 0.0409 (GR/CM\*\*2) SPECTRAL WIDTH= 0.3 WN



Figure D5a

COMPARISON OF DEGRADED BURCH AND FASCODIC CIRCLE=BURCH, TRIANGLE=FASCODIC PEFF= 0.3050 (ATM), TEMP=296 (K), U= 0.0409(GR/CM\*\*2)



Figure D5b

## APPENDIX E

Comparison Between Degraded Line-By-Line and Proposed Model Calculated Transmittance for  ${\rm H}_2{\rm O}$  and  ${\rm O}_3$ .

```
H20 SPECTRA COMPARISON: LINE-BY-LINE (-) VS MODEL (0)

1)P1= 616.60MILJBARS, T1= 262.20K, U1= 0.03GR/CM**2

2)P2= 616.60MJLJBARS, T2= 262.20K, U1= 0.12GR/CM**2

3)P3= 616.60MJLJBARS, T3= 262.20K, U1= 0.49GR/CM**2

4)P4= 616.60MJLJBARS, T4= 262.20K, U1= 1.95GR/CM**2
```



Figure E1



Figure E2

```
H20 SPECTRA COMPARISON: LINE-BY-LINE (-) VS MODEL (0)
                   795.00MILIBARS, T1= 275.10K, U1= 795.00MILIBARS, T2= 275.10K, U2= 795.00MILIBARS, T3= 275.10K, U3= 795.00MILIBARS, T4= 275.10K, U4=
                                                                               0.47GM/CM××2
                                                                               1.86GM/CM**2
        2) P2=
                                                                          7.41GM/CM**2
        3) P3 =
        4) P4 =
                                                                             29.50GM/CM**2
  00
                    0
  0.80
  0.60
TTANCE
0.40
TRANSMI
0.20
                                  1069. 1085. 1100. 1116. 1132. 1148. 1164. 1180. 1195.
   1005. 1021. 1037. 1053.
                                       WAVENUMBER
```

Figure E3



Figure E4

1,00

0.80

0.60

TRANSMITTANCE 0.20 0.40

Ø

o് o o

3127.

3017. 3054. 3090.

```
H20 SPECTRA COMPARISON: LINE-BY-LINE (-) VS MODEL (0)

1) P1= 265.00MILIBARS, T1= 223.20K, U1= 0.47GM/CM**2

2) P2= 265.00MILIBARS, T2= 223.20K, U2= 1.86GM/CM**2

3) P3= 265.00MILIBARS, T3= 223.20K, U3= 7.41GM/CM**2

4) P4= 265.00MILIBARS, T4= 223.20K, U4= 29.50GM/CM**2
```

Ø

O

3347. 3384.

Figure E5

3200.

3237. 3274. 3310.

3164.

WAVENUMBER

```
H20 SPECTRA COMPARISON: LINE-BY-LINE P1= 1013.00MILIBARS, T1= 288.10K, U1= P2= 1013.00MILIBARS, T2= 288.10K, U2= P3= 1013.00MILIBARS, T3= 288.10K, U3= P4= 1013.00MILIBARS, T4= 288.10K, U4=
                                                                                                      VS MODEL (0)
                                                                                                      0.00GM/CM**2
                                                                                                      0.01GM/CM**2
                                                                                                      0.03GM/CM**2
                                                                                                      0.10GM/CM**2
   1,00
   0.80
   0.60
TIBNCE
TRANSMI 0.20
    3870.0 3910.0 3950.0 3990.0 4030.0 4070.0 4110.0 4150.0 4190.0 4230.0 4270.0 4310.0
                                                  WAVENUMBER
```

Figure E6



Figure E7



Figure E8



Figure E9

```
H20 SPECTRA COMPARISON: LINE-BY-LINE (-)
                                                                               VS MODEL (0)
                   616.60MILIBARS, T1= 262.20K, U1= 616.60MILIBARS, T2= 262.20K, U2= 616.60MILIBARS, T3= 262.20K, U3= 616.60MILIBARS, T4= 262.20K, U4=
                                                                               0.58GM/CM**2
                                                                                2.31GM/CM**2
                                                                                9.19GM/CM**2
                                                                              36.60GM/CM**2
  80
                                                                                                0 0 0
  ö
  60
TTANCE
TRANSMI
0.20
            9970.
                    10010. 10050. 10090. 10130. 10170. 10210. 10250. 10290. 10330. 10370.
   9930.
                                        WAVENUMBER
```

Figure E10



Figure E11



Figure E12



Figure E13



Figure E14



Figure E15



Figure E16



Figure E17

```
SPECTRA COMPARISON: LINE-BY-LINE (-) VS MODEL (0)
       1) P1= 1013.00MILIBARS, T1= 288.10K, U1=
                                                                       0.08 ATM-CM
       2) P2= 1013.00MILIBARS, T2= 288.10K, U2=
3) P3= 1013.00MILIBARS, T3= 288.10K, U3=
4) P4= 1013.00MILIBARS, T4= 288.10K, U4=
                                                                         0.31
                                                                        1.25
                                            0 0 0
                                          O
  80
                                              თ თ
  9
                                               3
ANCE
TRANSM
0.20
       1949. 1979. 2009. 2038. 2068. 2097. 2127. 2157. 2186. 2216. 2245. 2275. 2305.
                                    WAVENUMBER
```

Figure E18

## APPENDIX F

Comparison Between Degraded Line-By-Line and Proposed Model Calculated Transmittance in the Spectral Region From 0 to 350  $\,\mathrm{cm}^{-1}$  for NH<sub>3</sub>, CO, N<sub>2</sub>O, O<sub>2</sub>, O<sub>3</sub>, SO<sub>2</sub>, and H<sub>2</sub>O.

```
NH3 SPECTRA COMPARISON: LINE-BY-LINE (-) VS MODEL (0)
         1) P1= 1013.00 MILIBARS, T1= 288.10K, U1= 2) P2= 1013.00 MILIBARS, T2= 288.10K, U2= 3) P3= 1013.00 MILIBARS, T3= 288.10K, U3= 4) P4= 1013.00 MILIBARS, T4= 288.10K, U4=
                                                                                               0.05
                                                                                                            ATM-CM
                                                                                                0.20
                                                                                                            ATM-CM
                                                                                                0.80
                                                                                                           ATM-CM
                                                                                                3.16
  0.80
   9
   0.
TRANSMITTANCE
0.20 0.40
               40.0
                          80.0
                                     120.0
                                                160.0
                                                                                  280.0
                                                                                              320.0
                                                                                                         360.0
                                                                                                                    400.0
                                                            200.0
                                                                       240.0
                                              WAVENUMBER
```

· Figure F1

CO SPECTRA COMPARISON  $0-170 \ 1/CM :$ LINE-BY-LINE DATA(-) VS DOUBLE EXPONENTIAL MODEL(0) P1=1013.00MILIBARS, T1=288.10K, U1= 0.631ATM.CM P2=1013.00MILIBARS, T2=288.10K, U2= 2.512ATM.CM P3=1013.00MILIBARS, T3=288.10K, U3=10.000ATM.CM P4=1013.00MILIBARS, T4=288.10K, U4=39.810ATM.CM



Figure F2



Figure F3



Figure F4



Figure F5



Figure F6

```
H20 SPECTRA COMPARISON 0-345 1/CM:
LINE-BY-LINE DATA(-) VS DOUBLE EXPONENTIAL MODEL(0)

1) P1= 898.60MILIBARS, T1=281.60K, U1=0.4033E-04GR/CM**2

2) P2= 898.60MILIBARS, T2=281.60K, U2=0.1605E-03GR/CM**2

3) P3= 898.60MILIBARS, T3=281.60K, U3=0.6393E-03GR/CM**2

4) P4= 898.60MILIBARS, T4=281.60K, U4=0.2545E-02GR/CM**2
```



Figure F7

## APPENDIX G

Comparison Between LOWTRAN and Proposed Model Transmittance Calculations for the Uniformly Mixed Gases (N $_2$ O, CH $_4$ , CO, O $_2$ , and CO $_2$  combined), H $_2$ O and O $_3$ .

TRANSMITTANCE DIFFERENCE FOR CO2+ T(OLD MODEL) - T(NEW MODEL) RMS DIFFERENCE IS 2.85% VERTICAL PATH



Figure G1

TRANSMITTANCE DIFFERENCE FOR H20 T (OLD MODEL) - T (NEW MODEL) RMS DIFFERENCE IS 16.36% VERTICAL PATH



Figure G2

TRANSMITTANCE DIFFERENCE FOR 03
T (OLD MODEL) - T (NEW MODEL)
RMS DIFFERENCE IS 1.84%
VERTICAL PATH



Figure G3

### APPENDIX H

Transmittance Through NH $_3$ , CO $_2$ , CO, CH $_4$ , NO, NO $_2$ , N $_2$ O, O $_2$ , O $_3$ , SO  $_2$  and H $_2$ O in the U.S. Standard Atmosphere Along Atmospheric Paths Discussed in Texts.

The top curve represents transmittance through a vertical path, while the middle and bottom curves represent transmittances through a horizontal and tangent path, respectively.

# TRANSMITTANCE THROUGH NH3 (50 LAYERS) HORIZONTAL, VERTICAL AND TANGENT PATHS



Figure H1





Figure H2





Figure H3





Figure H4

# TRANSMITTANCE THROUGH NO (50 LAYERS) HORIZONTAL, VERTICAL AND TANGENT PATHS



Figure H5

# TRANSMITTANCE THROUGH NO2 (50 LAYERS) HORIZONTAL, VERTICAL AND TANGENT PATHS



Figure H6



Figure H7



Figure H8

# TRANSMITTANCE THRU 03 (NEW MODEL) HORIZONTAL, VERTICAL AND TANGENT PATHS



Figure H9



Figure H10



Figure H11

### APPENDIX I

Papers published under this contractual effort.

Reprinted from **APPLIED OPTICS**, Vol. 20, page 2517, July 15, 1981 Copyright © 1981 by the Optical Society of America and reprinted by permission of the copyright owner

### Validated band model for the NO fundamental

Joseph H. Pierluissi, Ken Tomiyama, and Francis X. Kneizys

A previously reported transmission model for the 5.3-µm band of NO, whose defining parameters had been developed with line-by-line calculated spectra, is now presented in validated and upgraded form through the use of measured transmittance data. The model consists of a double-exponential function, which approximates homogeneous-path transmittance at 5-cm<sup>-1</sup> intervals with a sepctral resolution of 20 cm<sup>-1</sup>. The use of the proposed model parameters in transmittance calculations yielded an average standard deviation of 0.28% and an overall maximum deviation of 1.48% from the measured transmittance data. This compares favorably with the results obtained with the use of the previous parameters to predict the measurements, which resulted in an average deviation of 1.05% and overall maximum transmittance deviation of 4.94%.

#### I. Introduction

Nitric oxide is an atmospheric trace gas constituent which reaches typical concentration of  $\sim 0.50$  ppbv,¹ attaining much higher values in polluted environments. The intensity of its fundamental absorption band centered at  $5.3~\mu m$  has been thoroughly studied by at least fifteen independent laboratories.² On the other hand, relatively few measurements³,5,6 are found in the literature on the behavior of the spectral transmittance as a function of absorber concentration for typical atmospheric conditions. These latter measurements greatly facilitate the validation and development of transmission band models, which are extensively used in a variety of applications such as electrooptical systems design, atmospheric physics, combustion, and air pollution.

Very recently two of the present authors? developed a band model for NO from line-by-line transmittance data calculated with the use of the Air Force Geophysics Laboratory line-parameter tape for the trace gases.8 Instead of adopting a classical band model, as previous workers have, 5,9 use was made of a general transmission function which had been successfully tested earlier with the major atmospheric absorbers. To increase its usefulness, the model was designed for compatibility with the widely accepted computer code LOWTRAN. 11

However, before the model can be fully accepted for realistic prediction schemes, it is mandatory that it be compared (and possibly upgraded) with measured transmittance spectra. The purpose of this paper is to provide the results of such an effort using the measurements of Ford and Shaw.<sup>4</sup>

#### II. Background of Band Model

The monochromatic transmittance  $\tau_{\nu}$  at wave number  $\nu$ , governing the passage of IR radiation through a path of length Z along a homogeneous medium at pressure P and temperature T, is given by Beer's law in the form

$$\tau_{\nu} = \exp[-K_{\nu}(P, T)U(P, T, Z)], \tag{1}$$

where  $K_{\nu}$  is the absorption coefficient for all contributing lines of a given absorber, and U is the absorber amount. For broadband radiation detected by an instrument of spectral response  $\Phi_{\nu}$ , the variable of interest is the weighted mean transmittance  $\tau$  defined as

$$\tau_{\nu} = \int \tau_{\nu} \Phi_{\nu} d\nu / \int \Phi_{\nu} d\nu, \tag{2}$$

where the integration is to be carried over the spectral response of the instrument. The evaluation of Eq. (2) through the introduction of various types of assumptions has led to the numerous so-called band models found in the literature.

In a recent study<sup>7,10</sup> Eq. (2) was approximated by a double-exponential function of the form

$$\tau = \exp(-10^{a_1 + a_2 X + a_3 X^2}),\tag{3}$$

in which

$$X = C' + \log_{10} W, \tag{4}$$

Francis Kneizys is with U. S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01781; the other authors are with University of Texas at El Paso, Department of Electrical Engineering, El Paso, Texas 79968.

Received 7 March 1981.

<sup>0003-6935/81/142517-05\$00.50/0.</sup> 

<sup>@ 1981</sup> Optical Society of America.

$$W = \left(\frac{T_0}{T}\right)^m \left(\frac{P}{P_0}\right)^n U. \tag{5}$$

Here  $a_1$ ,  $a_2$ ,  $a_3$ , m, and n are constants which depend on the absorber type, C' is a parameter defined over the spectral interval  $\Delta \nu$ ,  $T_0$  and  $P_0$  are the standard temprature and pressure, respectively, and W is the equivalent or effective absorber amount. This model was thoroughly tested for the principal absorbers  $H_2O$  vapor,  $CO_2$ , and  $O_3$ , as well as for the trace gases  $SO_2$ ,  $NH_3$ , NO, and  $NO_2$ , and found to be in close conformity with the empirical transmission functions extracted numerically from the same data.

In modeling of the trace gases the data were generated with the AFGL line-parameter tape using Eqs. (1) and (2) through the use of a triangular instrument response function of 20-cm<sup>-1</sup> FWHM and the Lorentz line shape.





Fig. 1. Spectral transmittance curves at 300 K obtained by degrading the NO measurements of Ford and Shaw<sup>4</sup> at 5-cm<sup>-1</sup> intervals using a triangular slit functions of 20-cm<sup>-1</sup> halfwidth.

The atmospheric profiles allowed for temperature variations in the 257.1–288.1 K range and pressure variations in the 616.0–1013-mbar range for horizontal paths along the various pressure levels of sufficient length as to yield nearly complete transmission curves (i.e.,  $\tau$  vs  $\log_{10}U$ ). The absorber parameters were determined with the data at the band centers for each species, while the spectral parameters were obtained at 5 cm<sup>-1</sup> with those parameters and the remaining data throughout the entire bands. The parameters for NO were provided in the 1760–1970-cm<sup>-1</sup> spectral range, which, when substituted in Eqs. (3), (4), and (5), yield an overall standard transmittance deviation of 0.9% from the original synthetic spectra.

#### III. Application to Experimental Data

Of the transmittance measurements for NO available in the literature, the results of Ford and Shaw<sup>4</sup> were adopted in the present study. The data exhibited a total of twelve medium-resolution spectral transmittance curves at 300 K, ranging in pressure from 13.73 to 978.58 mbar for two absorber amounts of 0.0772 and 0.3100 atm cm. For use in the analysis, the curves were enlarged, digitized, and degraded to 20-cm<sup>-1</sup> halfwidth. The results are shown in Fig. 1.

Calculations were then made using the previously reported NO model for the same conditions as in the experimental data. The results of the comparisons between this model predicted transmittances, and the measurements are shown in Table I. The standard deviations were computed from the difference between the percent transmittance predicted and those measured for all the curves at a given wave number interval. The peak deviations represent the maximum absolute transmittance difference as observed from among all the curves at a given wave number interval. The statistics at the bottom of the table are the simple averages of the values listed under the corresponding columns.

In an effort to upgrade the model, the absorber parameters were redetermined with the use of the experimental data. The numerical techniques adopted were identical to those applied to the earlier model, except that the absorber parameters were obtained from the data in the high absorption region at 1845, 1865, 1975, and 1910 cm<sup>-1</sup>. In the original development only the transmittance data at 1905 cm<sup>-1</sup> had been used. Furthermore, it was found that the quadratic term in the exponent of Eq. (3) was no longer needed to guarantee accurate predictive capabilities. Calculations were then made using the new model for the same meteorological conditions as in the experimental data. The results of comparisons between the new model predicted transmittances and the measurements are shown in Table I together with the new spectral parameters. The new values for the absorber parameters are  $a_1 = -0.39912$ ,  $a_2 = 0.69057$ , and n = 0.5521, which should be used in Eqs. (3), (4), and (5) together with the previous value of m = 1.08785 and with the new spectral parameters.

2518 APPLIED OPTICS / Vol. 20, No. 14 / 15 July 1981

Table I. Summary of the Results of Comparisons Between an Earlier Model Development with Synthetic Spectra and the Proposed Development, Which Involves Measured NO Transmittance Data; the Spectral Parameters C' shown in the Rightmost Column is to be Used with Eqs. (3)–(5) with  $a_1=-0.39912,\ a_2=0.69057,\ a_3=0,\ n=0.5521,\ {\rm and}\ m=1.08785$ 

| NUMBER (CM-1)  1700  0.00  0.01  1705  0.00  0.01  1710  0.00  1715  0.00  0.01  1720  0.00  0.01  1720  0.00  0.01  1725  0.00  0.01  1730  0.00  0.01  1735  0.00  0.01  1745  0.00  0.01  1740  0.01  1745  0.00  0.01  1755  0.08  0.01  1755  0.18  0.40  0.11  1760  0.26  0.52  0.20  1765  0.43  0.86  0.32  1770  0.65  1.29  0.36  1775  0.88  1.76  0.37  1785  1.38  2.69  0.32  1790  1.58  2.99  0.30  1.795  1.73  3.09  1.29  1800  1.81  3.07  0.28  1810  1.77  2.90  0.29  1825  1.51  2.60  0.32  1830  1.43  2.38  0.34  1835  1.39  2.07  0.36  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.30  1.43  2.38  0.34  1835  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39  1.39                                                                                                                                                | 0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.67 | PARAMETER<br>FOR PRESE<br>MODEL, C ^ - 4.108<br>-4.108<br>-4.108<br>-4.108<br>-4.108<br>-4.108<br>-4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202<br>-1.776 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1705         0.00         0.01         0.01           1710         0.00         0.01         0.01           1715         0.00         0.01         0.01           1720         0.00         0.01         0.01           1725         0.00         0.01         0.01           1730         0.00         0.01         0.01           1735         0.00         0.01         0.01           1740         0.01         0.02         0.01           1745         0.03         0.08         0.01           1750         0.08         0.19         0.03           1755         0.18         0.40         0.11           1760         0.26         0.52         0.20           1765         0.43         0.86         0.32           1770         0.65         1.29         0.36           1775         0.88         1.76         0.37           1780         1.14         2.25         0.35           1785         1.38         2.69         0.32           1790         1.58         2.99         0.30           1795         1.73         3.09         0.29 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67 | -4.108 -4.108 -4.108 -4.108 -4.108 -4.108 -4.108 -4.108 -3.988 -3.408 -2.917 -2.869 -2.526 -2.202                                                                              |
| 1710       0.00       0.01       0.01         1715       0.00       0.01       0.01         1720       0.00       0.01       0.01         1725       0.00       0.01       0.01         1730       0.00       0.01       0.01         1735       0.00       0.01       0.01         1740       0.01       0.02       0.01         1745       0.03       0.08       0.01         1750       0.08       0.19       0.03         1755       0.18       0.40       0.11         1760       0.26       0.52       0.20         1770       0.65       1.29       0.36         1775       0.88       1.76       0.37         1780       1.14       2.25       0.35         1785       1.38       2.69       0.32         1790       1.58       2.99       0.30         1795       1.73       3.09       0.29         1800       1.81       3.14       0.29         1800       1.81       3.14       0.29         1815       1.69       2.80       0.29         1820       1.60                                                                                 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67         | -4.108<br>-4.108<br>-4.108<br>-4.108<br>-4.108<br>-4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                           |
| 1715       0.00       0.01       0.01         1720       0.00       0.01       0.01         1725       0.00       0.01       0.01         1730       0.00       0.01       0.01         1735       0.00       0.01       0.01         1740       0.01       0.02       0.01         1745       0.03       0.08       0.01         1750       0.08       0.19       0.03         1755       0.18       0.40       0.11         1760       0.26       0.52       0.20         1765       0.43       0.86       0.32         1770       0.65       1.29       0.36         1775       0.88       1.76       0.37         1780       1.14       2.25       0.35         1785       1.38       2.69       0.32         1790       1.58       2.99       0.30         1795       1.73       3.09       0.29         1800       1.81       3.14       0.29         1805       1.81       3.07       0.28         1815       1.69       2.80       0.29         1820       1.60                                                                                 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67         | -4.108 -4.108 -4.108 -4.108 -4.108 -3.988 -3.408 -2.917 -2.869 -2.526 -2.202                                                                                                   |
| 1720       0.00       0.01       0.01         1725       0.00       0.01       0.01         1730       0.00       0.01       0.01         1735       0.00       0.01       0.01         1740       0.01       0.02       0.01         1745       0.03       0.08       0.01         1750       0.08       0.19       0.03         1755       0.18       0.40       0.11         1760       0.26       0.52       0.20         1765       0.43       0.86       0.32         1770       0.65       1.29       0.36         1775       0.68       1.76       0.37         1780       1.14       2.25       0.35         1785       1.38       2.69       0.32         1790       1.58       2.99       0.30         1795       1.73       3.09       0.29         1800       1.81       3.14       0.29         1805       1.81       3.07       0.28         1810       1.77       2.90       0.29         1820       1.60       2.73       0.30         1825       1.51                                                                                 | 0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67                 | -4.108<br>-4.108<br>-4.108<br>-4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                                               |
| 1725       0.00       0.01       0.01         1730       0.00       0.01       0.01         1735       0.00       0.01       0.01         1740       0.01       0.02       0.01         1745       0.03       0.08       0.01         1750       0.08       0.19       0.03         1755       0.18       0.40       0.11         1760       0.26       0.52       0.20         1765       0.43       0.86       0.32         1770       0.65       1.29       0.36         1775       0.88       1.76       0.37         1780       1.14       2.25       0.35         1785       1.38       2.69       0.32         1790       1.58       2.99       0.30         1795       1.73       3.09       0.29         1800       1.81       3.14       0.29         1805       1.81       3.07       0.28         1810       1.77       2.90       0.29         1820       1.60       2.73       0.30         1825       1.51       2.60       0.32         1830       1.43                                                                                 | 0.02<br>0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67                         | -4.108<br>-4.108<br>-4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526                                                                                                   |
| 1730         0.00         0.01         0.01           1735         0.00         0.01         0.01           1740         0.01         0.02         0.01           1745         0.03         0.08         0.01           1750         0.08         0.19         0.03           1755         0.18         0.40         0.11           1760         0.26         0.52         0.20           1765         0.43         0.86         0.32           1770         0.65         1.29         0.36           1775         0.88         1.76         0.37           1780         1.14         2.25         0.35           1785         1.38         2.69         0.32           1790         1.58         2.99         0.30           1795         1.73         3.09         0.29           1800         1.81         3.14         0.29           1805         1.81         3.07         0.28           1810         1.77         2.90         0.29           1820         1.60         2.73         0.30           1825         1.51         2.60         0.32 | 0.02<br>0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.67<br>0.72                                 | -4.108<br>-4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                                                                   |
| 1735       0.00       0.01       0.01         1740       0.01       0.02       0.01         1745       0.03       0.08       0.01         1750       0.08       0.19       0.03         1755       0.18       0.40       0.11         1760       0.26       0.52       0.20         1770       0.65       1.29       0.36         1775       0.88       1.76       0.37         1780       1.14       2.25       0.35         1785       1.38       2.69       0.32         1790       1.58       2.99       0.30         1795       1.73       3.09       0.29         1800       1.81       3.14       0.29         1805       1.81       3.07       0.28         1810       1.77       2.90       0.29         1815       1.69       2.80       0.29         1820       1.60       2.73       0.30         1825       1.51       2.60       0.32         1830       1.43       2.38       0.34         1835       1.39       2.07       0.36                                                                                                         | 0.02<br>0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67                                         | -4.108<br>-3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                                                                             |
| 1740     0.01     0.02     0.01       1745     0.03     0.08     0.01       1750     0.08     0.19     0.03       1755     0.18     0.40     0.11       1760     0.26     0.52     0.20       1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1833     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                             | 0.01<br>0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67<br>0.58                                         | -3.988<br>-3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                                                                                       |
| 1745     0.03     0.08     0.01       1750     0.08     0.19     0.03       1755     0.18     0.40     0.11       1760     0.26     0.52     0.20       1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1833     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                         | 0.03<br>0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67<br>0.58                                                 | -3.408<br>-2.917<br>-2.869<br>-2.526<br>-2.202                                                                                                                                 |
| 1750     0.08     0.19     0.03       1755     0.18     0.40     0.11       1760     0.26     0.52     0.20       1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1825     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06<br>0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67<br>0.58                                                         | -2.917<br>-2.869<br>-2.526<br>-2.202                                                                                                                                           |
| 1755     0.18     0.40     0.11       1760     0.26     0.52     0.20       1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                         | 0.24<br>0.42<br>0.64<br>0.72<br>0.72<br>0.67<br>0.58                                                                 | -2.869<br>-2.526<br>-2.202                                                                                                                                                     |
| 1760     0.26     0.52     0.20       1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1833     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.42<br>0.64<br>0.72<br>0.72<br>0.67<br>0.58                                                                         | -2.526<br>-2.202                                                                                                                                                               |
| 1765     0.43     0.86     0.32       1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.64<br>0.72<br>0.72<br>0.67<br>0.58                                                                                 | -2,202                                                                                                                                                                         |
| 1770     0.65     1.29     0.36       1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72<br>0.72<br>0.67<br>0.58                                                                                         |                                                                                                                                                                                |
| 1775     0.88     1.76     0.37       1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.72<br>0.67<br>0.58                                                                                                 | 1.770                                                                                                                                                                          |
| 1780     1.14     2.25     0.35       1785     1.38     2.69     0.32       1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.67<br>0.58                                                                                                         | -1.435                                                                                                                                                                         |
| 1790     1.58     2.99     0.30       1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | -1.171                                                                                                                                                                         |
| 1795     1.73     3.09     0.29       1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      | -0.964                                                                                                                                                                         |
| 1800     1.81     3.14     0.29       1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51                                                                                                                 | -0.801                                                                                                                                                                         |
| 1805     1.81     3.07     0.28       1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                 | -0.669                                                                                                                                                                         |
| 1810     1.77     2.90     0.29       1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.68                                                                                                                 | -0.558                                                                                                                                                                         |
| 1815     1.69     2.80     0.29       1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.78                                                                                                                 | -0.455                                                                                                                                                                         |
| 1820     1.60     2.73     0.30       1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.86                                                                                                                 | -0.362                                                                                                                                                                         |
| 1825     1.51     2.60     0.32       1830     1.43     2.38     0.34       1835     1.39     2.07     0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90                                                                                                                 | -0.275                                                                                                                                                                         |
| 1830 1.43 2.38 0.34<br>1835 1.39 2.07 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.90                                                                                                                 | -0.197                                                                                                                                                                         |
| 1835 1.39 2.07 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.86<br>0.77                                                                                                         | -0.130<br>-0.074                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.67                                                                                                                 | -0.031                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.68                                                                                                                 | -0.006                                                                                                                                                                         |
| 1845 1.50 3.27 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69                                                                                                                 | -0.001                                                                                                                                                                         |
| 1850 1.61 3.87 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.65                                                                                                                 | -0.012                                                                                                                                                                         |
| 1855 1.59 3.73 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.58                                                                                                                 | -0.039                                                                                                                                                                         |
| 1860 1.62 3.64 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.83                                                                                                                 | -0.074                                                                                                                                                                         |
| 1865 1.58 2.65 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.27                                                                                                                 | -0.111                                                                                                                                                                         |
| 1870 1.70 2.88 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.48                                                                                                                 | -0.137                                                                                                                                                                         |
| 1875 1.81 3.16 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.40                                                                                                                 | -0.141                                                                                                                                                                         |
| 1880 2.03 3.49 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.39                                                                                                                 | ~0.113                                                                                                                                                                         |
| 1885 2.01 3.44 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.33                                                                                                                 | -0.056                                                                                                                                                                         |
| 1890 1.82 3.03 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.19                                                                                                                 | ~0.008                                                                                                                                                                         |
| 1895 1.65 2.46 0.38<br>1900 1.68 3.42 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96                                                                                                                 | 0.062                                                                                                                                                                          |
| 1900 1.68 3.42 0.42<br>1905 1.85 4.26 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.71<br>0.82                                                                                                         | 0.097<br>0.107                                                                                                                                                                 |
| 1910 1.98 4.81 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.89                                                                                                                 | 0.107                                                                                                                                                                          |
| 1915 1.96 4.94 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.95                                                                                                                 | 0.063                                                                                                                                                                          |
| 1920 1.76 4.49 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.98                                                                                                                 | 0.013                                                                                                                                                                          |
| 1925 1.47 3.45 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93                                                                                                                 | -0.054                                                                                                                                                                         |
| 1930 1.27 2.22 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.82                                                                                                                 | -0.138                                                                                                                                                                         |
| 1935 1.26 1.95 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.76                                                                                                                 | -0.243                                                                                                                                                                         |
| 1940 1.32 2.12 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.92                                                                                                                 | -0.371                                                                                                                                                                         |
| 1945 1.36 2.10 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                 | -0.521                                                                                                                                                                         |
| 1950 1.29 2.06 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.92                                                                                                                 | -0.698                                                                                                                                                                         |
| 1955 1.12 1.83 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.72                                                                                                                 | -0.905                                                                                                                                                                         |
| 1960 0.91 1.49 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45                                                                                                                 | -1.145                                                                                                                                                                         |
| 1965 0.70 1.15 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.35                                                                                                                 | -1.429                                                                                                                                                                         |
| 1970 0.50 0.83 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37                                                                                                                 | -1.798                                                                                                                                                                         |
| 1975 0.35 0.63 0.16<br>1980 0.20 0.38 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.31                                                                                                                 | -2.228                                                                                                                                                                         |
| 1980 0.20 0.38 0.14<br>1985 0.10 0.19 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.23<br>0.07                                                                                                         | -2.895<br>-2.850                                                                                                                                                               |
| 1990 0.04 0.08 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                 | -3.192                                                                                                                                                                         |
| 1995 0.01 0.03 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                                 | -3.192<br>-4.079                                                                                                                                                               |
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                 | -4.0/9                                                                                                                                                                         |
| AVERAGE 1.05 1.98 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.61                                                                                                                 |                                                                                                                                                                                |





Fig. 2. Spectral transmittance curves at 300 K obtained from the NO model in Eqs. (3), (4), and (5) together with the newly proposed absorber and spectral parameters.

Spectral curves for conditions corresponding to those in Fig. 1 were plotted and depicted in Fig. 2.

#### IV. Discussion and Conclusions

Validation and upgrading have been presented of a double-exponential model proposed in an earlier paper for gaseous transmittance in the fundamental absorption band of NO. The model had been developed with line-by-line calculated transmittance data, and the parameters had been provided to allow for predictions at 5-cm<sup>-1</sup> intervals with a 20-cm<sup>-1</sup> spectral resolution. Although the modeling resulted in a standard deviation of 0.8%, the data itself were only for pressures in the 257.1–288.1 K range.

The validation was accomplished by comparisons with the well-known medium-resolution transmittance measurements of Ford and Shaw.<sup>4</sup> The data consisted of twelve spectral curves at room temperature at pressures ranging from 13.73 to 978.58 mbar for two NO amounts of 0.0772 and 0.3100 atm cm. After spectrally degrading the data, they were compared with the model

calculated transmittance yielding an average standard deviation of 1.05% and an average maximum deviation of 1.98%. On a statistical basis, therefore, the model may be considered to be of sufficient accuracy for predictions in real life environments. On a point-by-point comparison, however, it was found that at 1915 cm<sup>-1</sup> the bottom curve on Fig. 1(b) differed by 4.94% from the predictions. This may be deemed as a relatively large difference considering that the measured absorption at that wave number is only 16.66%. Assuming that the functional form of the model adopted is the appropriate choice for NO, some factors which, acting either individually or collectively, may be suggested as having a major influence on the observed results are:

- (1) The relatively high statistical accuracy of the model was not sufficient for insuring correspondingly small individual transmittance differences.
- (2) The model was applied to conditions significantly beyond the range of the data used in its development. (Measurements are mostly in the linear region after being degraded.)





Fig. 3. Spectral curves representing a comparison between the measurements, the degraded line-by-line calculations, and the previously published model for (a) U=0.0772 atm cm and (b) U=0.310 atm cm.

2520 APPLIED OPTICS / Vol. 20, No. 14 / 15 July 1981

- (3) The adoption of the Lorentz line shape in the data generation may not have been sufficiently justified.<sup>12</sup>
- (4) The error tolerances of the line parameters adopted may not have allowed for transmittance calculations with any higher degree of certainty than those observed in the comparison with the measurements for long paths.

(5) The measured transmittance may possess uncertainities comparable to the observed differences.

Since the first four possible justifications listed are inherent to the model development and to the developing data, it was decided to redevelop the model parameters with the available measurements. Even though the temperature dependence of the original model was assumed, the numerical procedures were improved with the simultaneous use of four spectral intervals in the determination of the remaining model parameters. As seen in Table I, the adoption of the new parameters allows on the average for a reduction of the transmittance differences by a factor of nearly 4. The overall peak deviation was found to be 1.48% at 1870 cm<sup>-1</sup> for the same meteorological conditions as those associated with the previous model overall peak deviation.

With respect to the factors listed above it should be realized that the spectral curve where the 4.94% error was observed corresponds to an absorber amount 700 times larger than that expected for a vertical path through the entire atmosphere at typical NO concentrations. To investigate the closeness of the line-by-line calculations to the measured transmittances, four transmittance curves were computed and compared with the measurements as well as with the previously published model. The results of this comparison are shown in Fig. 3, where the curves represent the conditions for the measurements shown as the top and bottom curves of Figs. 1(a) and (b), respectively. It may be proposed that the differences between the model and the measurements for lower pressures are due to the fact that the model was being applied to conditions far beyond the range of the developing data. On the other hand, the corresponding differences at the higher pressures may be attributed to differences between the measurements and the degraded line-by-line calculations. These latter differences should not be of any

concern to model users because they are easily justified in terms of the exceedingly abnormal atmospheric conditions they represent. In any event, the mean standard deviation for the four curves amounted to 0.91%, with an overall peak of 5.15% at 1910 cm<sup>-1</sup>.

In summary, a model has been presented whose parameters have been determined by a combination of measured spectra (for  $a_1$ ,  $a_2$ , n, and C') and synthetic spectra (for m only). Since the model is more accurate, requires fewer parameters, and was developed with improved numerical techniques using primarily experimental data, it is recommended for adoption in place of the earlier version.

The authors wish to express their sincere gratitude to S. H. Lau and E. Gurrola, Electrical Engineering students at the University of Texas at El Paso, who assisted with data acquisition and computer programming. Our appreciation is also extended to Lori McQuien who so expertly typed the original manuscript.

#### References

- 1976 National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere (U.S. Air Force, Washington, D.C., 1976).
- K. Kumimori, H. Horiguchi, and S. Tsuchiya, J. Quant. Spectrosc. Radiat. Transfer 192, 127 (1978).
- S. A. Clough, B. Schurin, and F. Kneizys, J. Chem. Phys. 43, 3410 (1965).
- 4. D. L. Ford and J. H. Shaw, Appl. Opt. 4, 1113 (1965).
- R. M. Green and C. L. Tien, J. Quant. Spectrosc. Radiat. Transfer 10, 805 (1970).
- A. Goldman and S. C. Schmidt, J. Quant. Spectrosc. Radiat. Transfer 15, 127 (1975).
- 7. J. H. Pierluissi and K. Tomiyama, Appl. Opt. 19, 2298 (1980).
- L. S. Rothman, A. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, and A. Goldman, Appl. Opt. 17, 507 (1978).
- 9. U. P. Oppenheim, Y. Aviv, and A. Goldman, Appl. Opt. 6, 1305
- J. H. Pierluissi, K. Tomiyama, and R. B. Gomez, Appl. Opt. 18, 1607 (1979).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance Computer Code LOWTRAN 5," AFGL Environmental Research Paper 697 (AFGL, Hanscom AFB, Mass., 1980).
- L. L. Abels and L. M. DeBall, J. Quant. Spectrosc. Radiat. Transfer 13, 663 (1973).

Reprinted from Applied Optics, Vol. 22, page 1628, June 1, 1983 Copyright © 1983 by the Optical Society of America and reprinted by permission of the copyright owner.

## Validated band model for NO<sub>2</sub> molecular transmittance in the infrared

Joseph H. Pierluissi and Ken Tomiyama

A previously reported transmittance model for nitrogen dioxide in the two fundamental bands  $\nu_2$  and  $\nu_3$ , plus the combination band  $\nu_1 + \nu_3$ , is now presented using upgraded synthetic spectra and measured data. The model consists of a well-established double-exponential function which approximates homogeneous path transmittance at 5-cm<sup>-1</sup> intervals with a spectral resolution of 20 cm<sup>-1</sup>. Its parameters and other computational features are developed for direct compatibility with the widely used AFGL LOWTRAN code. Transmittance calculations in the range from zero to unity deviate on the average ~0.84% from a combination of synthetic and measured spectra, which constitutes an improvement over the previously reported model.

#### Introduction

Nitrogen dioxide (NO<sub>2</sub>) is an atmospheric trace gas which reaches typical concentrations of 1 ppmv (parts/million by volume) near the earth's surface1 and higher values near polluted environments<sup>2</sup> and at stratospheric heights.3 Of the two fundamental bands,  $\nu_2$  at 750 cm<sup>-1</sup> and  $\nu_3$  at 1617 cm<sup>-1</sup>, the latter is the strongest and also overlaps a region of water-vapor absorption. The combination band  $\nu_1 + \nu_3$  is located at 2910 cm<sup>-1</sup> in the 3.4- $\mu$ m atmospheric window region. Although a comprehensive tabulation of the line parameters for these absorption bands has been available for some time,4 neither transmittance calculations using these parameters nor comparisons with measurements have been reported to any significant extent in the literature. With regard to the measurements, very few are found in the literature<sup>5-7</sup> depicting the spectral transmittance as a function of the absorber amount. These latter types of data greatly facilitate the validation and development of transmission band models such as LOWTRAN8 for use in a variety of scientific, industrial, and military applications.

Very recently the present authors9 proposed a band model for NO2, which was developed using strictly synthetic spectra as obtained with the use of the AFGL compilation. In the work reported now the authors reexamined the algorithm adopted earlier in the lineby-line calculations and redeveloped the NO<sub>2</sub> band model using a combination of synthetic and measured spectra. The measurements adopted were those of Burch et al.7 for 1617 cm<sup>-1</sup> at pressures of 1 atm or below. The mathematical expression for the new model itself is simpler than the one proposed earlier, and its computational accuracy is higher. The results are presented for a resolution of 20 cm<sup>-1</sup>, with spectral parameters provided at 5-cm<sup>-1</sup> intervals in a manner suitable for incorporation into the LOWTRAN code.

#### **Band Model Concept**

The monochromatic transmittance  $\tau_{\nu}$  at wave number v governing the passage of IR radiation through a path of length Z along a homogeneous medium at pressure P and temperature T is given by Beer's law in the form

$$\tau_{\nu} = \exp[-K_{\nu}(P,T)U(P,T,Z)], \tag{1}$$

where  $K_{\nu}$  is the absorption coefficient for all contributing lines of a given absorber, and U is the absorber amount. For broadband radiation detected by an instrument of spectral response  $\Phi_{\nu}$ , the variable of interest is the weighted mean transmittance  $\tau$  defined as

$$\tau = \int \tau_{\nu} \Phi_{\nu} d\nu / \int \Phi_{\nu} d\nu, \qquad (2)$$

where the integration is to be carried over the spectral response of the instrument. The evaluation of Eq. (2) through the introduction of various types of assumption concerning the line structures has led to the numerous so-called band models found in the literature. A rigorous numerical evaluation of Eq. (2) summing up all significant lines contributing to the transmittances within the integration limits is called the line-by-line<sup>10</sup> method. The data thus generated are of essential value in the determination of band model parameters. In the

Received 4 November 1982 0003-6935/83/111628-05\$01.00/0. © 1983 Optical Society of America.

Joseph Pieruluissi is with University of Texas at El Paso, Department of Electrical Engineering, El Paso, Texas 79968, and K. Tomiyama is with Penn State University, Department of Electrical Engineering, University Park, Pennsylvania 16802.

calculation of  $\tau_i$  use is commonly made of a triangular response function  $\Phi_{\nu}$  of full width  $\Delta \nu$  at the half-intensity level centered at  $\nu_i$ , and all significant lines within  $\pm 40~{\rm cm}^{-1}$  of  $\nu_i$  are included. The calculations are repeated at intervals of 5 cm<sup>-1</sup> throughout the band spectrum.

A series of recent studies<sup>9,11-13</sup> has indicated that the atmospheric transmittance averaged over a spectral interval  $\Delta\nu$  within an absorption band can be accurately represented by the double-exponential function

$$\tau = \exp[-10^{a_1 + a_2 X + a_3 X^2}],\tag{3}$$

where

$$X = C'(\Delta \nu) + \log_{10} W, \tag{4}$$

$$W = \left(\frac{P}{P_o}\right)^n \left(\frac{T_o}{T}\right)^m U. \tag{5}$$

Here  $a_1$ ,  $a_2$ ,  $a_3$ , n, and m are model constants which depend only on the absorber type; C' is a spectral parameter which depends on  $\Delta \nu$ ; W is the equivalent absorber amount; and the subscript o denotes standard conditions of the meteorological parameters. This function has been successfully applied o to the principal bands of o vapor, o, a combination of o and the uniformly mixed gases, as well as to the trace gases o, o, o, o, o and o o. The latter model was very recently validated o using the measurements of Ford and Shaw. o

Since the model parameters for a given absorber are to be spectrally independent, the numerical procedures used in their determination not only must include data from all bands of interest but also must generate all the parameters simultaneously. For this purpose the square difference error  $E_{ik}$  for the ith spectral interval and the kth datum may be defined as

$$E_{ik} = [\tau_{ik} - \exp(-10^{a_1 + a_2 X_{ik} + a_3 X_{2ik}})]^2, \tag{6}$$

in which

$$X_{ik} = n \log_{10} \left( \frac{P_{ik}}{P_o} \right) + m \log_{10} \left( \frac{T_o}{T_{ik}} \right) + \log_{10} U_{ik}$$

$$+ v_{1,ik} C'(\Delta \nu_1) + v_{2,ik} C'(\Delta \nu_2)$$

$$+ \dots + v_{I,ik} C'(\Delta \nu_I).$$
(7)

Here, the various v are auxiliary variables which attain the value of either one or zero depending on whether the developing data are for that spectral interval. In addition, I represents the total number of spectral intervals used in the simultaneous extraction of the model parameters. The grand total error E over all the data E and the E spectral intervals follows from Eq. (6) as

$$E = \sum_{i=1}^{I} \sum_{k=1}^{K} E_{ik}.$$
 (8)

The minimization of E in the solution of Eq. (8) for the optimal parameters set  $[n,m,C'(\Delta\nu),\ldots,C'(\Delta\nu_I),a_1,a_2,a_3]$  may be accomplished with the use of the conjugate gradient algorithm available as a package subroutine in the IBM SSP library. This optimal parameter set may then be used in the determination of the various C' for each remaining spectral interval within all the absorption bands. Taking the logarithm of Eq. (3) twice leads to the quadratic equation

$$a_3 X_{ik}^2 + a_2 X_{ik} + a_1 - \log_{10}(-\ln \tau_{ik}) = 0,$$
 (9)

the smaller root if  $a_3 < 0$  and the larger one if  $a_3 > 0$ , which gives the desired solution for  $X_{ik}$ . Using this  $X_{ik}$ , solving Eq. (4) for  $C'(\Delta \nu_i)$ , and computing the average over all the data for that spectral interval yield

$$C'(\Delta v_i) = \frac{1}{K} \sum_{k=1}^{K} [X_{ik} - \log_{10} W_{ik}].$$
 (10)

In the event that sufficient accuracy is obtained conserving only up to the linear term in the X polynomial of Eq. (3),  $a_3 = 0$  and the optimal parameters may be easily determined through the use of least-squares methods.

#### III. Transmittance Data

Because of the ready availability of the line parameter compilation of atmospheric gases and of user-oriented computational codes, synthetic spectra are commonly used in the development of molecular transmission models. Generally speaking, the transmittance data are generated using Eqs. (1) and (2), with a triangular instrument function  $\phi_{\nu}$  of halfwidth  $\Delta \nu$ , and adopting an absorption coefficient  $K_{\nu}$ , which corresponds to the atmospheric region of interest. Horizontal paths are then selected along several pressure levels of some model atmosphere 16 at typical absorber concentrations in such a way that complete curves-of-growth (i.e.,  $\tau$  vs  $\log_{10}U$ ) are generated at each  $\Delta\nu$ . For the purpose of reducing the computation time and the memory storage requirements, some lines are frequently excluded through constraining algorithms based on the line intensities or on their spectral separation from the frequency  $\nu$ , at which time the calculations are made. However, for the models to be of significant value to electrooptical designers it is imperative that they be validated with experimental data.

In the previously published model for NO2 these authors used strictly line-by-line spectral data generated with a modified version of the LASER<sup>17</sup> code and incorporating an earlier version of the AFGL line parameter tape for the trace gases.4 This code restricted the number of contributing lines based on the line intensities and excluded the remaining lines, which were located further than  $\pm 20 \text{ cm}^{-1}$  from the wave number of interest. The data were then spectrally degraded with a filter function of 20-cm<sup>-1</sup> full width at half-intensity before they were used in transmittance modeling, and in this paper they are referred to as the old line-by-line data. In the present analysis these data were compared with the spectral measurements of Burch et al. 7 in the fundamental band centered at 1617 cm<sup>-1</sup> for pressures ranging from 0.1 to 1 atm. The measurements were spectrally degraded to the same resolution as the calculated data. Figure 1 depicts several of the original spectral curves before degrading which were measured with a slit width varying from  $\sim$ 0.61 to 0.67 cm<sup>-1</sup>.

Figure 2 shows spectrally degraded transmittance samples establishing a comparison between two types of line-by-line calculation and the measured data for sample 4 of Fig. 1. The new line-by-line curve repre-



Fig. 1. Samples of measured monochromatic transmittance data<sup>7</sup> for NO<sub>2</sub> at a total pressure of 1 atm and a temperature of 320 K for various absorber amounts.

sents calculations with a computer code that accepts all contributing lines regardless of their intensities within ±40 cm<sup>-1</sup> of the wave number of interest and uses the most recent version of the AFGL line parameter compilation.<sup>18</sup> To reduce computer storage requirements this code makes use of a line processing algorithm similar to the one incorporated into the AFGL code called FASCODE.<sup>10</sup> The latter was not used because, being a general atmospheric transmission code, it accounts for a wide variety of attenuation effects other than molecular transmittance, and the output was not in a form desirable for modeling. The old line-by-line data were found to be within an overall rms deviation of 4.3% from the measurements, with a peak deviation of 9.79%, while the new line-by-line data were within 1.19%, with a peak of 2.45%. Since the major discrepancy between the two calculated transmittance data was in the wings of the band, it may be reasonably postulated that it was caused by the previous exclusion of weak lines in the calculations. Although not shown, the other two bands manifested a very analogous behavior.

#### IV. Band Model for NO<sub>2</sub>

The proposed model and associated numerical methods were applied to the new synthetic spectra as well as to the measured spectra. The ten samples used were those from the Burch  $et~al.^7$  data for the 1617-cm<sup>-1</sup> band measured at pressures ranging from 0.1 to 1 atm. In Eq. (5) the absorber amount U may be computed from the definition  $U=\rho_g Z$ , where  $\rho_g$  is the absorbing gas density, and Z is the path length which, with the proper changes of units,  $^{12}$  becomes

 $U(\text{atm cm}) = 0.7732 \times 10^{-4} \text{ ppmv } \rho_a(\text{gm/m}^3) Z(\text{km}), \quad (11)$  with  $\rho_a$  being the air density.

The optimal model parameters  $a_1$ ,  $a_2$ , n, and m were determined simultaneously with C' for wave numbers 730, 1620, 1625, and 2900 cm<sup>-1</sup> using a mixture of synthetic and measured spectral data. Several trials were made with other spectral intervals, but the trial for these intervals and with  $a_3$  set equal to zero gave the best results. The values of the optimal parameters obtained are  $a_1 = -0.25653$ ,  $a_2 = 0.88674$ , n = 0.14859, and m = 0.55832. Their determination was made first using least-squares techniques, and the results thus obtained were treated as initial guesses for the nonlinear minimization established by Eq. (6). The remaining C' for

all three bands were then determined with these optimal parameters and with the use of Eqs. (9) and (10).

The optimal spectral parameters at 5 cm<sup>-1</sup> over the entire bands are tabulated in Table I. The table also includes the rms deviations of the transmittances computed using the present model from a mixture of the new synthetic spectra and the measurements on the 1617-cm<sup>-1</sup> fundamental. The overall rms transmittance deviation is 0.84%. Figures 3–5 show spectral curves generated with the present model and compared with the mixed data for the three bands at the meteorological conditions stipulated.

To use the absorption model coefficients and the transmittance function provided in atmospheric calculations it is necessary to employ a vertical altitude profile of the absorber concentration. These profiles may provide the ppmv needed in Eq. (11) to compute the absorber amount along a given path. Although a more precise analysis would require knowledge of latitudinal and seasonal variations,<sup>3</sup> for general transmittance estimates an average profile may be sufficient. For the layered atmospheres of LOWTRAN the authors recommend the vertical profile for NO<sub>2</sub> listed in Table II, which was obtained from Ref. 19 through linear scaling to the desired altitudes.

#### V. Conclusion

A revised model has been presented for the calculation of transmittance through atmospheric NO<sub>2</sub> in the 750-, 1617-, and 2906-cm<sup>-1</sup> bands at 20-cm<sup>-1</sup> resolution. A double-exponential function has been assumed with a single spectral parameter in a manner suitable for immediate adoption into the LOWTRAN code.8 overall rms deviation of <1% is obtained when the model is compared to the developing data. The developing data themselves are a mixture of line-by-line data computed using the latest AFGL line parameter tape including all lines within ±40 cm<sup>-1</sup> of the frequency of interest and extensive measurements in the 1617-cm<sup>-1</sup> band by Burch et al. <sup>7</sup> The revised model replaces a version published earlier which had been developed strictly with synthetic spectra and which excluded weak lines as well as new lines which appeared in later versions of the AFGL line parameter compilation.



Fig. 2. Spectral transmittance calculations compared with a measured  $NO_2$  sample<sup>7</sup> at a total pressure of 1 atm and a temperature of 328 K for an absorber amount of  $0.4538 \times 10^{-1}$  atm cm.

168

Table I. Summary of the Results of Comparisons Between a Mixture of Line-by-Line and Measured Transmittance Data and the Proposed Model; Spectral Parameter C' Given is to be

Used with Eqs. (3)–(5) with  $a_1 = -0.25653$ ,  $a_2 = 0.88674$ ,  $a_3 = 0$ , n = 0.14859, and m = 0.55832

| WAVE NUMBER (CM <sup>-1</sup> ) | SPECTRAL PARAMETER C'<br>(ATM.CM) <sup>-1</sup> | RMS TRANSMITTANCE DEVIATIONS FROM MIXED DATA (%) | WAVE NUMBER<br>(CM <sup>-1</sup> ) | SPECTRAL PARAMETER C'<br>(ATM.CM) <sup>-1</sup> | RMS TRANSMITTANCE DEVIATIONS<br>FROM MIXED DATA (%) |
|---------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| 655                             | -2.455                                          | 0,610                                            | 1550                               | -2.222                                          | 0.400                                               |
| 660                             | -2.358                                          | 0.613                                            | 1555                               | -1.744                                          | 0.456                                               |
| 665                             | -2.269                                          | 0.620                                            | 1560                               | -1.370                                          | 0.421                                               |
| 670                             | -2.199                                          | 0,572                                            | 1565                               | -1.061                                          | 0.438                                               |
| 675                             | -2.125                                          | 0.503                                            | 1570                               | -0.804                                          | 0.490                                               |
| 680                             | -2.082                                          | 0.456                                            | 1575                               | -0.584                                          | 0,490                                               |
| 685                             | -2,026                                          | 0.545                                            | 1580                               | -0.396                                          | 0.569                                               |
| 690                             | -1.988                                          | 0.715                                            | 1585                               | -0.243                                          | 0.673                                               |
| 695                             | -1.961                                          | 0.829                                            | 1590                               | -0.129                                          | 0.832                                               |
| 700                             | -1.900                                          | 1,228                                            | 1595                               | -0.056                                          | 1.179                                               |
| 705                             | -1,875                                          | 1.111                                            | 1600                               | -0.031                                          | 1.500                                               |
| 710                             | -1.814                                          | 1.079                                            | 1605                               | -0.041                                          | 1.586                                               |
| 715                             | -1.743                                          | 1.082                                            | 1610                               | -0.057                                          | 1.597                                               |
| 720                             | -1.709                                          | 0.806                                            | 1615                               | -0.056                                          | 1.651                                               |
| 725                             | -1.649                                          | 0.856                                            | 1620                               | 0.0                                             | 1,039                                               |
| 730                             | -1,637                                          | 0.933                                            | 1625                               | 0.043                                           | 1.288                                               |
| 735                             | -1.673                                          | 0.938                                            | 1630                               | 0.029                                           | 2.082                                               |
| 740                             | -1.707                                          | 1.096                                            | 1635                               | -0.023                                          | 1.431                                               |
| 745                             | -1.763                                          | 1.157                                            | 1640                               | -0.147                                          | 1.095                                               |
| 750                             | -1.791                                          | 1.145                                            | 1645                               | -0.352                                          | 0.821                                               |
| 755                             | -1.751                                          | 1.356                                            | 1650                               | -0,638                                          | 0.389                                               |
| 760                             | -1.680                                          | 1.488                                            | 1655                               | -1.016                                          | 0.364                                               |
| 765                             | -1.636                                          | 1.375                                            | 1660                               | -1.506                                          | 0.338                                               |
| 770                             | -1.608                                          | 1.206                                            | 1665                               | -2.219                                          | 0.243                                               |
| 775                             | -1.607                                          | 1.120                                            | 1670                               | -2.619                                          | 0.062                                               |
| 780                             | -1.661                                          | 1.024                                            | 2840                               | -3.575                                          | 0.077                                               |
| 785                             | -1.710                                          | 1.090                                            | 2845                               | -3.220                                          | 0.145                                               |
| 790                             | -1.751                                          | 1.390                                            | 2850                               | -2.891                                          | 0.248                                               |
| 795                             | -1.814                                          | 1.333                                            | 2855                               | -2.589                                          | 0.390                                               |
| 800                             | -1.849                                          | 1.314                                            | 2860                               | -2.314                                          | 0.561                                               |
| 805                             | -1.873                                          | 1.347                                            | 2865                               | -2.068                                          | 0.743                                               |
| 810                             | -1899                                           | 1.259                                            | 2870                               | -1.856                                          | 0.743                                               |
| 815                             | -1.919                                          | 1.109                                            | 2875                               | -1.680                                          | 1.095                                               |
| 820                             | -1.940                                          | 0.974                                            | 2880                               | -1.544                                          | 1.093                                               |
| 825                             | -1.957                                          | 0.914                                            | 2885                               | -1.454                                          | 1.273                                               |
| 830                             | -1.995                                          | 0.671                                            | 2890                               | -1.416                                          | 1.619                                               |
| 835                             | -2.023                                          | 0.605                                            | 2895                               | -1.413                                          | 1.519                                               |
| 840                             | -2.054                                          | 0.561                                            | 2900                               | -1.413                                          | 1.393                                               |
| 845                             | -2.090                                          | 0.493                                            | 2905                               | -1,413                                          |                                                     |
| 850                             | -2.130                                          | 0.493                                            |                                    |                                                 | 1.006                                               |
| 855                             | -2.171                                          | 0.433                                            | 2910                               | -1.346                                          | 0.832                                               |
| 860                             | -2.171                                          | 0.430                                            | 2915                               | -1.308                                          | 0.827                                               |
| 865                             |                                                 | 0.429                                            | 2920                               | -1,329                                          | 0.923                                               |
|                                 | -2.264                                          | 0.423                                            | 2925                               | -1.427                                          | 1.108                                               |
| 870                             | -2.310                                          |                                                  | 2930                               | -1.620                                          | 1.063                                               |
| 875                             | -2.359                                          | 0.436                                            | 2935                               | -1.922                                          | 0.678                                               |
| 880                             | -2.406                                          | 0.456                                            | 2940                               | -2.344                                          | 0.390                                               |
| 1540                            | -2.666                                          | 0.036                                            | 2945                               | -2.943                                          | 0.129                                               |
| 1545                            | -2.975                                          | 0.280                                            | 2950                               | -3.832                                          | 0.034                                               |

1 June 1983 / Vol. 22, No. 11 / APPLIED OPTICS



Fig. 3. Spectral transmittance comparisons between the new line-by-line calculations (—) and the proposed optimal model ( $\times\times$ ) for the NO<sub>2</sub> $\nu_2$  band at 1 atm of total pressure and a temperature of 288.1 K for various absorber amounts.



Fig. 4. Spectral transmittance comparisons between a mixture of new line-by-line calculations and measurements<sup>7</sup> (—) and the proposed optimal model ( $\times\times$ ) for the NO<sub>2</sub> $\nu_3$  band at 1 atm of total pressure and a temperature of 328 K for various absorber amounts.

Table II. Recommended Vertical Mixing Ratio Profile for NO₂ for the Atmospheric Layers in LOWTRAN<sup>21</sup>

| HEIGHT | PARTS PER MILLION | HEIGHT | PARTS PER MILLION |
|--------|-------------------|--------|-------------------|
|        | BY VOLUME         |        | BY VOLUME         |
| (KM)   | (PPMV)            | (KM)   | (PPMV)            |
| 0      | 0.3000E-03        | 17     | 0.3750E-03        |
| 1      | 0.3000E-03        | 18     | 0.4000E-03        |
| 2      | 0.3000E-03        | 19     | 0.6500E-03        |
| 3      | 0.3000E-03        | 20     | 0.9000E-03        |
| 4      | 0.3000E-03        | 21     | 0.1050E-02        |
| 5      | 0.3000E-03        | 22     | 0.1200E-02        |
| 6      | 0.3000E-03        | 23     | 0.1700E-02        |
| 7      | 0.3000E-03        | 24     | 0.2200E-02        |
| 8      | 0.3000E-03        | 25     | 0.2650E-02        |
| 9      | 0.3000E-03        | 30     | 0.7500E-02        |
| 10     | 0.3000E-03        | 35     | .0,5250E-02       |
| 11     | 0.3000E-03        | 40     | 0.3500E-02        |
| 12     | 0.3000E-03        | 45     | 0.2250E-02        |
| 13     | 0.3150E-03        | 50     | 0.1000E-02        |
| 14     | 0.3300E-03        | 70     | 0.1000E-02        |
| 15     | 0.3400E-03        | 100    | 0.1000E-02        |
| 16     | 0.3500E-03        |        |                   |

The authors wish to express their sincere gratitude to Adel A. Fahmy from the Electrical Engineering Department at the University of Texas at El Paso for his assistance with the model development and related calculations. This work was supported in part by the Air Force Geophysics Laboratory, Hanscom Air Force



Fig. 5. Spectral transmittance comparisons between the new line-by-line calculations (—) and the proposed optimal model ( $\times\times$ ) for the NO<sub>2</sub> $\nu_1 + \nu_3$  band at 1 atm of total pressure and a temperature of 288.1 K for various absorber amounts.

Base, Bedford, Mass. The assistance of William O. Gallery from AFGL is gratefully acknowledged.

#### References

- 1. 1976 National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere (U.S. Air Force, Washington, D.C., 1976)
- E. Robinson and R. C. Robbins, "Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants Supplement," SRI PR-6755 (Stanford Research Institute, Menlo Park, Calif., 1969).
- R. D. Hudson, E. I. Reed, and R. D. Bojkov, Eds., "The Stratosphere 1981: Theory and Measurements," World Meteorological Organization (NASA/Goddard Space Flight Center, Greenbelt, Md., 1982).
- L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, and A. Goldman, Appl. Opt. 17, 507 (1978).
- 5. A. Guttman, J. Quant. Spectrosc. Radiat. Transfer 2, 1 (1962).
- A. Goldman, F. S. Bonoma, W. J. Williams, D. G. Murcray, and D. E. Snider, J. Quant. Spectrosc. Radiat. Transfer 15, 107 (1975).
- D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, "Infrared Absorption by H<sub>2</sub>O, NO, and NO<sub>2</sub>," AFCRL-TR-75-0420 (AFCRL, Hanscom AFB, Mass., 1975).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance Computer Code LOWTRAN 5," AFGL Environmental Research Paper 697 (AFGL, Hanscom AFB, Mass., 1980).
- 9. J. H. Pierluissi and K. Tomiyama, Appl. Opt. 19, 2298 (1980).
- H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, "FASCODE-Fast Atmospheric Signature Code," AFGL-TR-78-0081 (AFGL, Bedford, Mass., 1978).
- 11. R. R. Gruenzel, Appl. Opt. 17, 2591 (1978).
- J. H. Pierluissi, K. Tomiyama, and R. B. Gomez, Appl. Opt. 18, 1607 (1979).
- J. H. Pierluissi, K. Tomiyama, and F. X. Kneizys, Appl. Opt. 20, 2517 (1981).
- 14. D. I. Ford and J. H. Shaw, Appl. Opt. 4, 1113 (1965).
- IBM Manual System/360, "Scientific Subroutine Package H20-0205-3" (IBM, New York, 1968).
- S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).
- R. A. McClatchey and A. P. D'Agati, "Atmospheric Transmission of Laser Radiation: Computer Code LASER," AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).
- 18. L. S. Rothman et al., Appl. Opt. 20, 1323 (1981).
- M. A. H. Smith, "Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km," NASA Tech. Memo. 83289 (NASA, Langley Research Center, Hampton, Va. 1982).

Reprinted from Applied Optics, Vol. 23, page 3325, October 1, 1984 Copyright © 1984 by the Optical Society of America and reprinted by permission of the copyright owner.

# Validated transmittance band model for SO<sub>2</sub> in the infrared

Joseph H. Pierluissi, John M. Jarem, and Christos Maragoudakis

A band model is presented for the calculation of atmospheric molecular transmittance through sulfur dioxide (SO<sub>2</sub>) in the infrared region. It consists of a well-established double-exponential function defined by three absorber-dependent parameters and a single spectrally dependent parameter. The parameters are determined by an optimal numerical procedure which incorporates a mixture of line-by-line calculated transmittance data and laboratory measurements. The developing data are degraded to 20-cm<sup>-1</sup> resolution spectral averages repeated at 5-cm<sup>-1</sup> intervals for easy adaptability with the LOWTRAN code. A diurnally and seasonally averaged mixing ratio profile for SO<sub>2</sub> is proposed for use with the thirty-three layer standard atmosphere models. The proposed band model reproduces the developing data with an average rms error of 2.37%.

#### I. Introduction

The study of atmospheric sulfur dioxide (SO<sub>2</sub>) is rapidly expanding because it is a pollutant of primarily anthropogenic origin. It is brought into the earth's atmosphere mainly by the burning of fossil fuels and by certain smelting and refining industries.1 For this reason it has been singled out as an industrial pollutant of concern, and great efforts are being made to measure its vertical atmospheric concentration.2 In the atmosphere it may be converted, for example, into sulfatecontaining aerosol particles which can modify the earth's radiation balance as well as the precipitation forming ability and optical properties of the air. Because of its absorptive characteristics in the infrared. it has been included as one of the four trace gases whose parameters are listed in the Air Force Geophysics Laboratory Line Parameter Compilation.<sup>3</sup> These data include the three fundamental bands  $v_1$  at 1152 cm<sup>-1</sup>,  $\nu_2$  at 517 cm<sup>-1</sup>, and  $\nu_3$  at 1362 cm<sup>-1</sup> as well as the combination band  $\nu_1 + \nu_3$  at 2500 cm<sup>-1</sup>. The latter band, although the weakest, is of interest because of its isolation from other absorption bands, thus offering itself for possible remote sensing applications.

In earlier modeling efforts,<sup>4</sup> use was made of a double-exponential function, together with a somewhat

limited numerical procedure for parametrization, to arrive at a band model for SO2 transmittance. The numerical procedures involved the determination of the absorber parameters using strictly line-by-line calculated transmittances at only four spectral intervals, one from each of the four absorption bands. The spectral location of the intervals within the individual bands was chosen by trial and error on the basis of minimum absolute deviation between the model recalculations and the original transmittance data. The remaining spectral parameters were then determined using the absorber parameters available and taking averages from the data at each wave-number interval. In the present work the transmittance function was slightly modified, the parametrization was replaced with a recently proposed numerical method,<sup>5</sup> and the developing data were made to include laboratory measurements by Burch et al.6

#### II. Fundamental Equations

Since the discovery of the infrared region of the spectrum by Herschel,<sup>7</sup> an ever increasing number of instruments and systems have been conceived which depend on a knowledge of atmospheric transmittance for design and implementation. The physical and chemical processes involved in the absorption of infrared energy by the molecules of the gases in the atmosphere are generally well understood. Monochromatic absorption is governed by Beer's<sup>8</sup> law, and the broadening of the absorption lines is described by functions such as Doppler,<sup>9</sup> Lorentz,<sup>10</sup> and Voigt<sup>11</sup> shapes. Hence, the method of synthesizing atmospheric molecular absorption along a specified path reduces itself to basically the application of those

Received 16 April 1984.

0003-6935/84/193325-06\$02.00/0.

The authors are with University of Texas at El Paso, Electrical Engineering Department, El Paso, Texas 79968.

<sup>© 1984</sup> Optical Society of America.

functions to known or assumed information on the absorbing gas types, their concentration, the meteorological conditions, the path geometry, the instrument spectral response, and the line parameters.

According to Beer's law the monochromatic transmittance  $\tau_{\nu}$  at wave number  $\nu$  governing the passage of infrared radiation through a path of length Z along an inhomogeneous medium with pressure and temperature distributions P(Z) and T(Z), respectively, is given by

$$\tau_{\nu} = \exp[-\int K(P, T)dU(Z)], \tag{1}$$

where the integration is to be carried over the path length, K is the absorption coefficient for all contributing lines of a given absorber, and U is its absorber amount expressible as

$$dU = \rho(Z)dZ,\tag{2}$$

where  $\rho$  is the absorber density. For broadband radiation detected by an instrument of spectral response  $\phi_{\nu}$ , the quantity of interest is the weighted mean transmittance  $\tau$  defined as

$$\tau = \int \tau_{\nu} \phi_{\nu} d\nu / \int \phi_{\nu} d\nu, \tag{3}$$

in which the integration is to be carried over the limits of  $\phi$ . In line-by-line monochromatic calculations of  $\tau_{\nu}$  in Eq. (1), the approximation is commonly made of a horizontally stratified atmosphere throughout each layer of which uniformity of all parameters may be assumed, such that Eq. (1) becomes

$$\tau_{\nu} = \exp[-K(P,T)U(Z)]. \tag{4}$$

Equations (3) and (4) have been evaluated over the years for spectral intervals containing from one<sup>12</sup> to numerous lines with assumed line shapes and distributions of intensities and spectral positions.<sup>13–15</sup> Numerous analytical and empirical variations of these classical approaches may be found in the literature,<sup>16</sup> most of which express  $\tau$  in terms of absorber and spectral parameters, as well as meteorological variables, a notable form of these being the King model<sup>17</sup> given by

$$\tau = g(S\alpha^n U),\tag{5}$$

where g is a function and n is a constant which are determined empirically, while S is the mean line intensity and  $\alpha$  is the mean line halfwidth over the band. The argument of g in Eq. (5) may be interpreted as a form of the scaling approximation used in the calculation of heating rates by an earlier worker. <sup>18</sup> The path inhomogeneity may be approximately accounted for through the Curtis-Godson equivalence relations <sup>19,20</sup>

$$S\alpha^n U = \int S(Z)\alpha^n(Z)dU(Z), \tag{6}$$

in which n may be assumed to be zero or unity in the weak-line and strong-line limits, respectively.

For practical considerations it is often desirable to transform the argument in Eq. (5) with the assistance of the commonly used relations

$$S = S_0(T_0/T)^b, \tag{7}$$

$$\alpha = \alpha_0 (P/P_0) (T_0/T)^{1/2}, \tag{8}$$

3326 APPLIED OPTICS / Vol. 23, No. 19 / 1 October 1984

where b is an absorber constant, and the subscript 0 denotes standard conditions, which leads to the expression

$$\tau = g[C(P/P_0)^n (T_0/T)^m U]. \tag{9}$$

Here C is a spectral parameter defined over the spectral interval  $\Delta \nu$  and combining  $S_0$  and  $\alpha_0^n$ , and m is an absorber parameter representing all the temperature-dependent powers. For computational convenience Eq. (9) may be rewritten as

$$\tau = f[X],\tag{10}$$

where

$$X = C' + \log_{10} W, \tag{11}$$

$$C' = \log_{10}C,\tag{12}$$

$$W = (P/P_0)^n (T_0/T)^m U, (13)$$

and f is the transmittance function, C' is a spectral parameter, W is the equivalent absorber amount, and n and m are the absorber parameters.

From the numerous forms of f in Eq. (10), a function that has been found<sup>4</sup> to approximate reasonably well the transmittance of a variety of gases over a wide range of meteorological conditions is the double exponential

$$\tau = \exp(-10^{\alpha X}),\tag{14}$$

where a is an absorber parameter. This function is appealing for use as a universal transmission function because it is asymptotic to one and zero as the argument ranges from  $-\infty$  to  $\infty$ . With Eqs. (11)–(13) it provides a general band model function defined by three absorber parameters (a,n,m) and a single spectral parameter (C'). It has been shown in the literature<sup>21</sup> that Eq. (14) leads to a transmittance polynomial proposed earlier<sup>22</sup> for carbon dioxide and water vapor, which, in turn, arose from the strong-line limit to the random model. However, because of the substantive number of empirical adjustments made to the theory, not much physical significance may be attributed to the values for the parameter set.

The parameters a, n, and m for the combined spectral bands of an absorber and the C' for each spectral interval may be obtained numerically from transmittance data  $\tau$  and the meteorological conditions by minimizing the square error  $\epsilon$  as given by

$$\epsilon = \sum_{i} \sum_{j} [\tau(i,j) - \tau_{M}(i,j)]^{2}, \tag{15}$$

where  $i=1,2,\ldots,I$  is the number of spectral intervals,  $j=1,2,\ldots,J$  is the number of data values, and  $\tau_M$  is defined by Eq. (14). The method adopted in connection with Eq. (15) consisted first of minimizing  $\epsilon$  with respect to a, n, and m and then using the results to minimize  $\epsilon$  again with respect to the  $C_i$ . Since the equations are nonlinear, the method of conjugate gradient descent was used in the minimization, as provided by the IBM SSP library routines. The results from a linearized version of Eq. (15) were used as initial guesses in the nonlinear determination of the model parameters. The mathematical details of the procedures involved

Table I. Spectral Parameters for SO<sub>2</sub> for Use with Eqs. (11)–(14), as Determined with a Mixture of Line-by-Line and Measured Transmittance Spectra of 20-cm<sup>-1</sup> Resolution

| VAVENUMBER          | SPECTRAL<br>PARAMETER | WAVENUMBER          | SPECTRAL<br>PARAMETER | WAVENUMBER          | SPECTRAL<br>PARAMETER |
|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|
| (CM <sup>-1</sup> ) | C¹                    | (CM <sup>-1</sup> ) | c'                    | (OM <sup>-1</sup> ) | c'                    |
|                     |                       |                     |                       |                     |                       |
| 400                 | -5.820                | 540                 | 0.036                 | 1075                | -1.765                |
| 405                 | -5.820                | 545                 | -0.043                | 1080                | -1.549                |
| 410                 | -5.820                | 550                 | -0.133                | 1085                | -1.341                |
| 415                 | -5.820                | 555                 | -0.217                | 1090                | -1.141                |
| 420                 | -5.174                | 560                 | -0.295                | 1095                | -0.952                |
| 425                 | -4.422                | 565                 | -0.374                | 1100                | -0.774                |
| 430                 | -3.737                | 570                 | -0.459                | 1105                | -0.609                |
| 435                 | -3.092                | 575                 | -0.557                | 1110                | -0.461                |
| 440                 | -2.520                | 580                 | -0.673                | 1115                | -0.334                |
| 445                 | ~2.030                | 585                 | -0.813                | 1120                | -0.224                |
| 450                 | -1.631                | 590                 | -0.980                | 1125                | -0.131                |
| 455                 | -1.306                | 595                 | -1.183                | 1130                | -0.068                |
| 460                 | -1.037                | 600                 | -1.433                | 1135                | -0.042                |
| 465                 | -0.819                | 605                 | -1.735                | 1140                | -0.051                |
| 470                 | -0.639                | 610                 | -2.106                | 1145                | -0.073                |
| 475                 | -0.488                | 615                 | -2.570                | 1150                | -0.080                |
| 480                 | -0.357                | 620                 | -3,124                | 1155                | -0.048                |
| 485                 | -0.237                | 625                 | -3.769                | 1160                | 0.003                 |
| 490                 | -0.124                | 630                 | -4.572                | 1165                | 0.034                 |
| 495                 | -0.026                | 635                 | -5.462                | 1170                | 0.025                 |
| 500                 | 0.025                 | 640                 | -5.820                | 1175                | -0.030                |
| 505                 | 0.019                 | 645                 | -5.820                | 1180                | -0.117                |
| 510                 | -0.019                | 650                 | -5.820                | 1185                | -0.212                |
| 515                 | -0.066                | 1050                | -3.231                | . 1190              | -0.301                |
| 520                 | -0.064                | 1055                | -2.846                | 1195                | -0.383                |
| 525                 | -0.006                | 1060                | -2.520                | 1200                | -0.461                |
| 530                 | 0.047                 | 1065                | -2.241                | 1205                | -0.539                |
| 535                 | 0.068                 | 1070                | -1.994                | 1210                | -0.618                |

Table II. Spectral Parameters for SO<sub>2</sub> for Use with Eqs. (11)-(14), As Determined with a Mixture of Line-by-Line and Measured Transmittance Spectra of 20-cm<sup>-1</sup> Resolution

| <b>NAVENUMB</b> ER  | SPECTRAL<br>PARAMETER | WAVENUMBER          | SPECTRAL<br>PARAMETER | WAVENUMBER          | SPECTRAI<br>PARAMETEI |
|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|
| (OM <sup>-1</sup> ) | C,                    | (OM <sup>-1</sup> ) | <u>c'</u>             | (OM <sup>-1</sup> ) | <u>c'</u>             |
| 1215                | -0.699                | 1355                | 1.127                 | 2440                | -4.854                |
| 1220                | -0,782                | 1360                | 1.130                 | 2445                | -4.128                |
| 1225                | -0.869                | 1365                | 1.124                 | 2450                | -2.992                |
| 1230                | -0.963                | 1370                | 1.146                 | 2455                | -2.352                |
| 1235                | -1,068                | 1375                | 1.105                 | 2460                | -1.890                |
| 1240                | -1,196                | 1380                | 0.962                 | 2465                | -1.518                |
| 1245                | -1.357                | 1385                | 0.711                 | 2470                | -1.230                |
| 1250                | -1.566                | 1390                | 0.325                 | 2475                | -1.008                |
| 1255                | -1.856                | 1395                | -0.232                | 2480                | -0.848                |
| 1260                | -2.233                | 1400                | -1.061                | 2485                | -0.763                |
| 1265                | -2.755                | 1405                | -1.771                | 2490                | -0.734                |
| 1270                | -3,605                | 1410                | -2.609                | 2495                | -0.720                |
| 1275                | -4.639                | 1415                | -3.022                | 2500                | -0.717                |
| 1280                | -5.105                | 1420                | -3.354                | 2505                | -0.710                |
| 1285                | -4.672                | 1425                | -3.732                | 2510                | -0.730                |
| 1290                | -4.105                | 1430                | -4.192                | 2515                | -0.839                |
| 1295                | -3,657                | 1435                | -4.740                | 2520                | -1.047                |
| 1300                | -3,196                | 1440                | -5.353                | 2525                | -1.361                |
| 1305                | -2.706                | 1445                | -5.668                | 2530                | -1.772                |
| 1310                | -1.964                | 1450                | -5.668                | 2535                | -2.296                |
| 1315                | -1.309                | 2400                | -6.390                | 2540                | -3.056                |
| 1320                | -0.686                | 2405                | -6.390                | 2545                | -4.107                |
| 1325                | -0.041                | 2410                | -6.390                | 2550                | -4.531                |
| 1330                | 0.368                 | 2415                | -6.390                | 2555                | -4.940                |
| 1335                | 0.671                 | 2420                | -6.390                | 2560                | -5.422                |
| 1340                | 0.903                 | 2425                | -6.390                | 2565                | -6.018                |
| 1345                | 1.058                 | 2430                | -5.991                | 2570                | -6.390                |
| 1350                | 1.114                 | 2435                | -5.327                | 2575                | -6.390                |
|                     |                       |                     |                       | 2580                | -6.390                |

were recently made available in the literature,<sup>5</sup> as they were applied to nitrous oxide.

#### III. Application to SO<sub>2</sub>

The parameters of the proposed band model for sulfur dioxide were determined through the use of a mixture of synthetic and measured spectra. The former transmittance data were generated with FASCODE 1C<sup>23</sup> and consisted of ten spectral curves for homogeneous paths within each of ten pressure levels of several standard atmospheric profiles.<sup>24</sup> Calculations of

monochromatic transmittances are performed by this code through the use of Eq. (4), the classical line-broadening profiles, and the AFGL Line Parameters Compilation. The spectral degrading is accomplished through Eq. (3) in which use is made of a triangular filter function of 20-cm<sup>-1</sup> full width at half-intensity. In the present effort these mean transmittance calculations were repeated at 5-cm<sup>-1</sup> intervals throughout the bands of SO<sub>2</sub> in the infrared.

Prior to the model development, the line-by-line data were compared with the available measurements.



Fig. 1. Comparisons between line-by-line (unmarked) and model (O) calculated transmittances in the  $\nu_2$  band of  $SO_2$  at a pressure of 0.887 atm, at a temperature of 281.6 K, and for the absorber amounts indicated in the figure.



Fig. 2. Comparisons between line-by-line (Unmarked) and model (O) calculated transmittances in the  $\nu_1$  and  $\nu_3$  bands of SO<sub>2</sub> at a pressure of 0.5334 atm, at a temperature of 255.1 K, and for the absorber amounts indicated in the figure.



Fig. 3. Comparisons between line-by-line (unmarked) and model (O) calculated transmittances in the  $\nu_1 + \nu_3$  band of  $SO_2$  at a pressure of 0.3040 atm, at a temperature of 229.7 K, and for the absorber amounts indicated in the figure.

Laboratory spectra for  $SO_2$  by Burch  $et~al.^6$  were made available by AFGL in tape form. The measurements extend primarily from 991 to 1446 cm $^{-1}$  and cover the  $\nu_1$  and  $\nu_3$  absorption bands. The data set contains forty-six samples at a resolution of  $\sim 1~\rm cm^{-1}$  varying in temperature from 296 to 575 K, in pressure from 0.05 to 15.8 atm, and in absorber amount from 0.018 to 5.91 atm cm. Only the samples at temperatures <298 K, pressures below 1 atm, and absorber amounts <5.86 atm cm were selected for the analysis reported here. The measured transmittances were degraded to the same



Fig. 4. Comparisons between line-by-line (unmarked), model (O), and measured<sup>6</sup> ( $\Delta$ ) transmittances in the  $\nu_1$  band of SO<sub>2</sub> at a temperature of 298 K and the conditions lised in the figure.



Fig. 5. Comparisons between line-by-line (unmarked), model (O), and measured<sup>6</sup> ( $\Delta$ ) transmittances in the  $\nu_3$  band of SO<sub>2</sub> at 296 K and the conditions listed in the figure.

resolution as the calculations, and equivalent pressures were determined through the use of the relation

$$P = (B - 1)p + P_T, (16)$$

where P is the equivalent (total) air pressure, B is a constant representing the ratio of the self-broadening ability of  $SO_2$  to the broadening ability of  $N_2$ , p is the  $SO_2$  partial pressure in the absorption cell, and  $P_T$  is the total gaseous pressure of the gas mixture. A value for B of 4.0 was adopted in this equation.

For the purpose of strengthening the validity of the model development for SO<sub>2</sub>, both the line-by-line and the measured transmittance data were incorporated in the minimization procedure dictated by Eqs. (14) and (15). The absorber and the spectral parameters were determined simultaneously for all the four spectral regions combined. The values for the resulting absorber parameters a, n, and m were 0.8466, 0.2135, and 0.0733, respectively. A listing of the spectral parameters at 5-cm<sup>-1</sup> intervals throughout the bands is provided in Tables I and II. Figures 1-3 show a comparison between the line-by-line developing data and the model calculations. Figures 4 and 5 compare the model with the line-by-line and the measurements. Although reasonable agreement is observed in these figures, Fig. 5 shows that the line-by-line and the measurements disagree noticeably near the edge of the band. Since the proposed band model was developed using the

Table III. Average Vertical Concentration Profile for Atmospheric SO<sub>2</sub> As Modified from Ref. 26 for Use with Proposed Band Model

| HEIGHT<br>(KM) | MIXING RATIO<br>(PPMV) | HEIGHT<br>(KM) | MIXING RATIO<br>(PPMV) |
|----------------|------------------------|----------------|------------------------|
| 0              | 0.30E-03               | 17             | 0.55E-04               |
| 1              | 0.27E-03               | 18             | 0.50E-04               |
| 2              | 0.2SE-03               | 19             | 0.41E-04               |
| 3              | 0.20E-03               | 20             | 0.31E-04               |
| 4              | 0.14E-03               | 21             | 0.26E-04               |
| 5              | 0.12E-03               | 22             | 0.22E-04               |
| 6              | 0.95E-04               | 23             | 0.20E-04               |
| 7              | 0.83E-04               | 24             | 0.19E-04               |
| 8              | 0.70E-04               | 25             | 0.18E-04               |
| 9              | 0.6SE-04               | 30             | 0.13E-04               |
| 10             | 0.60E-04               | 35             | 0.11E-04               |
| 11             | 0.58E-04               | 40             | 0.13E-04               |
| 12             | 0.55E-04               | 45             | 0.20E-04               |
| 13             | 0.56E-04               | 50             | 0.35E-04               |
| 14             | 0.56E-04               | 70             | 0.35E-04               |
| 15             | 0.58E-04               | 100            | 0.35E-04               |
| 16             | 0.60E-04               | >100           | 0.35E-04               |

mixture of transmittance data for the four bands combined, this disagreement affected the overall accuracy of the model. The overall rms error was found to be 2.37%. When the measured data were excluded in the minimization, the error dropped to 0.96%.

The parameters of the proposed model were determined in the form presented for easy adaptability with the LOWTRAN code.<sup>25</sup> A diurnally and seasonally averaged mixing ratio profile26 for SO2 is shown in Table III, which may be useful for slant path calculations through the thirty-three-layer standard atmosphere models. Along any one of the layers the absorber amount is given by

$$U(\text{atm cm}) = 0.7732 \times 10^{-4} \text{ ppmv } \rho_a(g/m^3)Z(km),$$
 (17)

where ppmy is the absorber concentration in parts per million by volume, and  $\rho_a$  is the air density. It is to be noted, however, that the use of the proposed model and mixing ratio profile on a vertical path through the entire atmosphere would not show any significant amount of absorption. The model is of far greater value in applications to polluted environments, in which cases it is not unusual to encounter values for the mixing ratios over a 1000 times larger than those on the profile provided. The LOWTRAN code could still be valuable with the band model in it if it is run on mode MODEL 7, which involves the inclusion of vertical profiles by the user.

In the interest of illustrating the use of the equations and parameters provided in the present work, consider a 100-km horizontal path at 2-km altitude in the U.S. Standard Atmosphere (P = 795 mbar, T = 275.1 K, and  $\rho_a = 7.364 \times 10^2 \,\mathrm{g/m^3}$ ). Assuming a polluted environment with a  $SO_2$  concentration of  $30 \times 10^{-3}$  ppmv, Eq. (17) gives

$$U = 0.7732 \times 10^{-4} \times 30 \times 10^{-4} \times 7.364 \times 10^{2} \times 100$$
  
= 0.1708 atm cm.

According to Eq. (13) the equivalent absorber amount

$$W = \left(\frac{795.0}{1013.0}\right)^{0.2135} \left(\frac{273.15}{275.1}\right)^{0.0733} \times 0.1708$$
  
= 0.1621 atm cm.

At a wave number of 530 cm<sup>-1</sup>, Table I gives a C' value of 0.0470, such that X in Eq. (11) yields

$$X = 0.0470 + \log_{10}(0.1621) = -0.7432.$$

The transmittance for these conditions follows from Eq. (14) as

$$\tau = \exp[-10^{0.8466(-0.7432)}] = 0.7907.$$

#### **Discussion and Conclusions**

A band model has been presented for the calculation of atmospheric SO<sub>2</sub> molecular transmittance of 20-cm<sup>-1</sup> resolution, at 5-cm<sup>-1</sup> intervals throughout four infrared bands extended from 400 to 650, 1050 to 1450, and 2400 to 2580 cm<sup>-1</sup>. A well-established double-exponential function was assumed, in connection with a recently developed numerical procedure, for determining three absorber parameters and a single spectral parameter at 5-cm<sup>-1</sup> intervals. The resulting model is LOWTRAN compatible. A mixture of line-by-line data computed with FASCODE 1C and laboratory measurements by Burch et al. was used in the model development. An average vertical concentration profile of SO<sub>2</sub> is proposed for use with the standard atmospheres. The model reproduces the developing data throughout all the bands within an average rms error of 2.37%.

This work was supported by a contract with the Air Force Geophysics Laboratory, Hanscom AFB, Bedford, Mass. The authors wish to express their sincere gratitude to Frank X. Kneizys from AFGL for his technical assistance in this project.

#### References

- 1. H. P. Friend, "The Global Sulphur Cycle" in Chemistry of the Lower Atmosphere, S. I. Rasool, Ed. (Plenum, New York,
- 2. R. D. Hudson, E. I. Reed, and R. D. Bojkov, Eds., "The Stratosphere 1981: Theory and Measurements," World Meteorological Organization (NASA/Goddard Space Flight Center, Greenbelt, Md., 1982).
- 3. L. S. Rothman, A. Goldman, J. R. Gillis, R. R. Gamache, H. M. Pickett, R. L. Poynter, N. Husson, and A. Chedin, "AFGL Trace Gas Compilation: 1982 Version," Appl. Opt. 22, 1616 (1983).
- 4. J. H. Pierluissi and K. Tomiyama, "Numerical Methods for the Generation of Empirical and Analytical Transmittance Functions with Applications to Atmospheric Trace Gases," Appl. Opt. 19, 2298 (1980).
- 5. J. M. Jarem, J. H. Pierluissi, and M. Maragoudakis, "Numerical Methods of Band Modeling and Their Application to Atmospheric Nitrous Oxide," Appl. Opt. 23, 406 (1984).

1 October 1984 / Vol. 23, No. 19 / APPLIED OPTICS 3329

- D. E. Burch, J. D. Pembrook, and D. A. Gryvnak, "Absorption and Emission by SO<sub>2</sub> Between 1050 and 1400 cm<sup>-1</sup> (9.5-7.1 μm)," Philco-Ford Corp., Aeronutronic Division U-4947, Newport Beach, Calif. 92663 (1971).
- W. Herschel, "Investigation of the Powers of the Prismatic Colours to Heat and Illuminate Objects with Remarks that Prove the Different Refrangibility of Radiant Heat," Philos. Trans. R. Soc. London 90, 284 (1800).
- 8. A. Beer, Ann. Phys. (Poggendorf) 86, 78 (1852).
- J. C. Doppler, Abhandlungen der Konige, Bohmischen Gesellschaft der Wissenschaften. 5th ser. 2, 465 (1842).
- H. A. Lorentz, "The Absorption and Emission Lines of Gaseous Bodies," Proc. R. Acad. Sci. 8, 591 (1906).
- W. Voigt, "Über das Gesets der Intensitätsverteilung innerhalb der Linien eines Gasspektrums," Sitzungsber Akad. Muenchen, 602 (1912).
- 12. R. Ladenberg and F. Reiche, "Über Selektive Absorption," Ann. Phys. 42, 181 (1913).
- W. M. Elsasser, "Heat Transfer by Infrared Radiation in the Atmosphere," Harvard Meteorological Studies No. 6 (Harvard U. P., Cambridge 1942).
- H. Mayer, "Methods of Opacity Calculations," Los Alamos, N.M., Report LA-647 (1947).
- R. Goody, "A Statistical Model for Water Vapour Absorption,"
   Q. J. R. Meteorol. Soc. 78, 165 (1952).
- A. J. La Rocca, "Methods of Calculating Atmospheric Transmittance and Radiance in the Infrared," Proc. IEEE 63, 75

- (1975).
- J. I. F. King, "Statistical Transmission Models of Arbitrary Variance," Proc. IRIS 4 (1959).
- F. Schnaidt, "Über die Absorption Von Wasserdampf und Kohlensäure mit besonderen Berücksichtigung der Druck-und Temperatur-Abhängigkeit," Beitr. Geophys. 54, 203 (1939).
- A. R. Curtis, "Discussion of a Statistical Model for Water Vapor Absorption," Q. J. R. Meteorol. Soc. 78, 638 (1952).
- 20. W. L. Godson, Q. J. R. Meteorol. Soc. 79, 367 (1953).
- J. H. Pierluissi, K. Tomiyama, and R. B. Gomez, "Analysis of the LOWTRAN Transmission Functions," Appl. Opt. 18, 1607 (1979).
- W. L. Smith, "Polynomial Representation of Carbon Dioxide and Water Vapor Transmission," NESC-47 (National Environmental Satellite Center Washington, D.C., 1969).
- H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, "FASCODE-Fast Atmospheric Signature Code," AFGL-TR-78-0081 (AFGL, Hanscom AFB, Mass., 1978).
- S. L. Valley, Ed. Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1956).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6," AFGL-TR-83-0187 (AFGL, Hanscom AFB, Mass., 1983).
- M. S. H. Smith, "Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km," NASA Tech. Memo. 83239 (NASA Langley Research Center, Hampton, Va., 1982).

Reprinted from Applied Optics, Vol. 25, Page 1145, April 1, 1986 Copyright © 1986 by the Optical Society of America and reprinted by permission of the copyright owner.

### Molecular transmittance band model for ammonia

Joseph H. Pierluissi and Christos E. Maragoudakis

A validated band model for atmospheric ammonia in the spectral region from 600 to 1960 cm<sup>-1</sup> (5.10–16.67  $\mu$ m) is presented. An exponential transmission function parameter is provided at 5-cm<sup>-1</sup> intervals for 20-cm<sup>-1</sup> spectral resolution transmittance calculations. A vertical profile of the ammonia volume mixing ratio is also proposed for use with the 33-layer standard atmospheres.

Ammonia (NH<sub>3</sub>) was first identified as an atmospheric gaseous constituent1 through the study of ammonium containing aerosol particles in precipitation water. Considerable evidence<sup>2</sup> suggests that a major part of atmospheric NH<sub>3</sub> is of biospheric origin as a result of the decomposition of nitrogeneous organic matter in aquatic and terrestrial ecosystems. Its near-IR spectrum consists of three major absorption regions<sup>3</sup>: (1) the 950-cm<sup>-1</sup> region due primarily to the fundamental  $\nu_2$  band but overlapped at low frequencies by the combination  $2\nu_2-\nu_2$  band; (2) the 1828-cm<sup>-1</sup> region due primarily to the fundamental  $\nu_4$  band but overlapped at low frequencies by the  $\nu_2$  band and at high frequencies by the  $2\nu_2$  band; (3) the 3300-cm<sup>-1</sup> region associated with the  $\nu_1$ ,  $\nu_3$ , and  $2\nu_4$  bands. Normally, the first two absorption regions are considered sufficiently intense to warrant their development into band models.

In an earlier publication<sup>4</sup> use was made of an analytical function together with a numerical procedure for parametrization to develop a band model for atmospheric NH<sub>3</sub>. A double exponential function was adopted, as described by four absorber dependent and a single spectral parameter, determined at successive intervals within the absorption region. The modeling procedure involved the nonlinear determination of the absorber parameters using strictly line-by-line calculated transmittance data for only four spectral intervals within the 690–1230-cm<sup>-1</sup> region (i.e., the  $\nu_2$  band). The spectral locations of these intervals were chosen by trial and error depending on the minimiza-

tion of the deviation between the transmittance data and the model calculations at the same conditions of the data. The remaining spectral parameters were then individually obtained through use of the absorber parameters already available and averages of the transmittance data at each spectral interval.

The work presented here represents a substantial revision of the earlier effort on the modeling of NH<sub>3</sub>. The principal revisions are as follows: (1) the transmission function was simplified to one with three absorber-type parameters and one spectral parameter; (2) the parametrization procedure procedure was replaced with a more recent version which optimizes all the model parameters simultaneously<sup>5</sup>; (3) the transmittance averages used as data in the modeling were calculated with an updated version of FASCODE,<sup>6</sup> validated with laboratory measurements,<sup>7</sup> and also extended at 5-cm<sup>-1</sup> intervals to the 600–1960-cm<sup>-1</sup> spectral region (thus adding the  $\nu_4$  band); (4) an average vertical mixing ratio profile for NH<sub>3</sub> in the atmosphere is provided with the proposed band model.

A mathematically simple, computationally fast, and accurate function representing the average transmittance  $\tau$  over a broad spectral interval that was adopted earlier may be slightly modified to the form

$$\tau = \exp(-10^{aX}),\tag{1}$$

with

$$X = C' + \log_{10} W, \tag{2}$$

$$W = (P/P_0)^n (T_0/T)^m U. (3)$$

Here a, n, and m are absorber parameters, C' is a spectral parameter, U is the absorber amount, W is the equivalent absorber amount, P and T are, respectively, the pressure and temperature,  $P_0 = 1013.25$  mbar, and  $T_0 = 273.16$  K. Letting

$$C' = \log_{10}C,\tag{4}$$

in Eq. (2), Eq. (1) may be more compactly expressed as

Received 3 September 1985. 0003-6935/86/071145-04\$02.00/0. © 1986 Optical Society of America.

The authors are with University of Texas at El Paso, Electrical Engineering Department, El Paso, Texas 79968.

Table I. Spectral Parameter C' for Ammonia to be used with Eqs. (1)-(8) in the Calculation of 20-cm<sup>-1</sup> Resolution Atmospheric Transmittance

| WAVE-<br>NUMBER     | C'                 | WAVE~<br>NUMBER | C'      | WAVE-<br>NUMBER | C'        |
|---------------------|--------------------|-----------------|---------|-----------------|-----------|
| (CM <sup>-1</sup> ) |                    | $(CM^{-1})$     |         | $(CM^{-1})$     |           |
| 630                 | -4.0686            | 825             | -0.8568 | IJ 50           | ~0.6079   |
| 605                 | -3.8623            | 830             | -0.8713 | 1055            | ~0.6272   |
| 610                 | -3.3984            | 835             | -0.8984 | 1060            | -0.6304   |
| 615                 | -2.8857            | 840             | -0.9076 | 1065            | ~C.6193   |
| 620                 | -2.5814            | 845             | -0.9024 | 1070            | ~0.6026   |
| 625                 | -2.4066            | 850             | -0.8882 | 1075            | ~0.5882   |
| 630                 | -2.3850            | 855             | -0.8968 | 1080            | ~6.6029   |
| 635                 | -2.5415            | 660             | -0.9492 | 1085            | -6.6317   |
| 640                 | -2.8161            | 865             | -1.0089 | 1090            | -0.6862   |
| 645                 | -3.2265            | 870             | -1.0846 | 1095            | -C.7447   |
| 65J                 | -3.7177            | 875             | -1.1556 | ن 110           | ~0.7921   |
| 655                 | -3.9932            | 880             | -1.1792 | 1105            | -C. 8275  |
| 660                 | -4.0683            | 885             | -1.1946 | 1110            | ~ 6.8595  |
| 665                 | -4.0785            | 890             | -1.1964 | 1115            | -0.8856   |
| 670                 | -3.9912            | 895             | -1.2173 | 1123            | -0.9236   |
| 675                 | -3.7418            | 900             | -1.2424 | 1125            | -C. 9934  |
| 680                 | -3.4742            | 935             | -1.1744 | 1135            | -1.0693   |
| 685                 | -3.2651            | 910             | -0.9743 | 1135            | - 1. 1460 |
| 690                 | -3.0715            | 915             | -G.635C | 1140            | -1.2100   |
| 695                 | -2.9500            | 920             | -0.2975 | 1145            | -1.2863   |
| 700                 | -2.8669            | 925             | -0.0705 | 1150            | - 1. 3593 |
| 705                 | -2.7723            | 930             | 0.0144  | 1155            | -1.4292   |
| 710                 | -2.6614            | 935             | -0.0978 | 1160            | -1.5029   |
| 715                 | -2.5613            | 940             | -0.3536 | 1165            | -1.6054   |
| 720                 | -2.4372            | 945             | -0.5630 | 1170            | -1.7067   |
| 725                 | -2.3085            | 950             | -0.5479 | 1175            | -1.8110   |
| 730                 | -2.1636            | 955             | -0.3784 | 1183            | -1.9350   |
| 735                 | -2.0302            | 960             | -0.1797 | 1185            | -2.0346   |
| 740                 | -1.9166            | 965             | -0.1151 | 1190            | -2.1305   |
| 745                 | -1.8071            | 970             | -0.3085 | 1195            | -2.2294   |
| 753                 | -1.7221            | 975             | -0.6180 | 1200            | -2.3724   |
| 755                 | -1.6370            | 980             | -0.9718 | 1205            | -2.4917   |
| 760                 | -1.5453            | 985             | -1.2926 | 12 10           | -2.6218   |
| 765                 | -1.4487            | 996             | -1.2748 | 1215            | -2.8056   |
| 770                 | -1.3539            | 995             | -1.1217 | 1223            | -2.9693   |
| 775                 | -1.2570            | 1000            | -1.0197 | 1225            | -3.1101   |
| 780                 | -1.1618            | 1605            | -0.9300 | 1230            | -3.2790   |
| 785                 | -1.1131            | 1010            | -0.8817 | 1235            | ~3.5315   |
| 790                 | -1.0324            | 1015            | -0.8723 | 1240            | -3.7011   |
| 795                 | -1.0559<br>-1.0193 | 1020<br>1025    | -0.8309 | 1245            | -3.8952   |
| 800                 |                    |                 | -0.7804 | 1250            | -4. 1527  |
| 805                 | -0.9721            | 1030            | -0.7075 | 1255            | -4.4121   |
| 810                 | -0.9218            | 1035            | -0.6431 | 1260            | -4.5244   |
| 815                 | -0.8680            | 1040            | -0.6176 | 1265            | -4. 8599  |
| 820                 | -0.8556            | 1045            | -0.6012 | 1270            | -5.1940   |

Table II. Spectral Parameter C for Ammonia to be used with Eqs. (1)-(8) in the Calculation of 20-cm<sup>-1</sup> Resolution Atmospheric Transmittance

| WAVE-NLMBER         C¹         MAVE-NLMBER         C¹         MAVE-NLMBER <th>י Cי</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | י Cי              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1275 -5.5589 1565 -1.4492 1735 1280 -5.8170 1510 -1.3730 1740 1285 -7.6686 1515 -1.2859 1745 1290 -10.0000 1520 -1.2554 1750 1300 -10.0000 1525 -1.2129 1755 1300 -10.0000 1530 -1.1689 1760 1305 -10.0000 1535 -1.1802 1765 1310 -10.0000 1540 -1.1948 1770 1315 -10.0000 1540 -1.1948 1770 1315 -10.0000 1550 -1.2105 1780 1320 -10.0000 1550 -1.2105 1780 1325 -8.4265 1555 -1.2464 1785 1330 -10.0000 1560 -1.2522 1790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                 |
| 1280 -5.8170 1510 -1.3730 1740 1285 -7.6686 1515 -1.2859 1745 1290 -10.0000 1520 -1.2554 1750 1295 -10.0000 1525 -1.2129 1755 1300 -10.0000 1530 -1.1689 1760 1305 -10.0000 1535 -1.1802 1765 1310 -10.0000 1536 -1.1802 1765 1310 -10.0000 1540 -1.1948 1770 1315 -10.0000 1555 -1.2862 1775 1320 -10.0000 1550 -1.2185 1780 1325 -8.4265 1555 -1.2464 1785 1330 -10.0000 1560 -1.2522 1790 1335 -7.3660 1565 -1.2946 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                 |
| 1280         -5,8170         1510         -1.3730         1740           1285         -7.6686         1515         -1.2859         1745           1290         -10.0000         1520         -1.2554         1750           1295         -10.0000         1525         -1.2129         1755           1305         -10.0000         1530         -1.1669         1765           1310         -10.0000         1535         -1.1802         1765           1310         -10.0000         1540         -1.1948         1770           1325         -10.0000         1555         -1.2185         1780           1325         -8.4265         1555         -1.2464         1785           1330         -10.0000         1560         -1.2522         1790           1335         -7.3660         1565         -1.2946         1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.970            |
| 1285     -7.6686     1515     -1.2859     1745       1290     -10.0000     1520     -1.2554     1750       1301     -10.0000     1525     -1.2129     1755       1305     -10.0000     1530     -1.1689     1760       1310     -10.0000     1535     -1.1802     1765       1315     -10.0000     1540     -1.1948     1770       1320     -10.0000     1554     -1.2182     1780       1320     -10.0000     1550     -1.2105     1780       1325     -8.4265     1555     -1.2464     1785       1330     -10.0000     1560     -1.2522     1790       1335     -7.3660     1565     -1.2946     1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.956            |
| 1290         -10.0000         1520         -1.2554         1750           1295         -10.0000         1525         -1.2129         1755           1300         -10.0000         1530         -1.1689         1760           1305         -10.0000         1535         -1.1802         1765           1310         -10.0000         1540         -1.1948         1770           1315         -10.0000         1545         -1.2185         1780           1320         -10.0000         1550         -1.2185         1780           1325         -8.4265         1555         -1.2464         1785           1330         -10.0000         1560         -1.2522         1790           1335         -7.3660         1565         -1.2946         1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.992            |
| 1295   -10.0000   1525   -1.2129   1755   1330   -10.0000   1530   -1.1669   1760   1305   -10.0000   1535   -1.1802   1765   1310   -10.0000   1540   -1.1948   1770   1315   -10.0000   1545   -1.1882   1775   1320   -10.0000   1550   -1.2185   1780   1325   -8.4265   1555   -1.2464   1785   1330   -7.3663   1565   -1.2946   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   1795   17 | -1.031            |
| 1330     -10,0000     1530     -1,1689     1760       1305     -10,0000     1535     -1,1802     1765       1310     -10,0000     1540     -1,1948     1770       1315     -10,0000     1545     -1,1882     1775       1320     -10,0000     1550     -1,2185     1780       1325     -8,4265     1555     -1,2464     1785       1330     -10,0000     1560     -1,2522     1790       1335     -7,3660     1565     -1,2946     1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.076            |
| 1305     -10.0000     1535     -1.1802     1765       1310     -10.0000     1540     -1.1948     1770       1315     -10.0000     1545     -1.1802     1775       1320     -10.0000     1550     -1.2185     1780       1325     -8.4265     1555     -1.2464     1785       1330     -10.0000     1560     -1.2522     1790       1335     -7.3660     1565     -1.2946     1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1. 105          |
| 1315     -10.000     1545     -1.1882     1775       1320     -10.0000     1550     -1.2185     1780       1325     -8.4265     1555     -1.2464     1785       1330     -10.0000     1560     -1.2522     1790       1335     -7.3660     1565     -1.2946     1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1. 124          |
| 1320 -10.0000 1550 -1.2185 1780<br>1325 -8.4265 1555 -1.2464 1785<br>1330 -10.0000 1560 -1.2522 1790<br>1335 -7.3660 1565 -1.2946 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1. 171           |
| 1325 -8. 9265 1555 -1.2464 1785<br>1330 -10.0000 1560 -1.2522 1790<br>1335 -7.3660 1565 -1.2946 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1. 220          |
| 1325 -8.4265 1555 -1.2464 1785<br>1330 -10.0000 1560 -1.2522 1790<br>1335 -7.3680 1565 -1.2946 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1. 277          |
| 1335 -7.3660 1565 -1.2946 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1. 335          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1, 385          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.473            |
| 1340 -7.4862 1570 -1.3587 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1. 570          |
| 1345 -6.8246 1575 -1.3971 1805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1.657           |
| 1350 -6.6102 1580 -1.4488 1810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1. 763          |
| 1355 -6.3264 1585 -1.5261 1815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1. 865          |
| 1360 -6.0751 1590 -1.5495 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1. 991          |
| 1365 -5.8304 1595 -1.547å 1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.144            |
| 1370 -5.5963 1600 -1.4926 1830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +2.238            |
| 1375 -5.3863 1605 -1.3115 1835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.325            |
| 1380 -5.2319 1610 -1.0455 1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.393            |
| 1385 -5.0536 1615 -0.7987 1845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.452            |
| 1390 -4.9029 1620 -0.5972 1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.599            |
| 1395 -4.7789 1625 -0.4664 1855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.714            |
| 1400 -4.5867 1630 -0.4244 1860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.770            |
| 1405 -4.3414 1635 -0.4426 1865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.785            |
| 1410 -4.1399 1640 -0.4952 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 2. 752          |
| 1415 -3.9764 1645 -0.5772 1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| 1420 -3.7553 1650 -0.6845 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.850            |
| 1425 -3.5773 1655 -0.8097 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.042            |
| 1430 -3.4123 1660 -0.9443 1890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.264            |
| 1435 -3.2254 1665 -1.0904 1895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.520            |
| 1440 -3.0384 1670 -1.2232 19JJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.777            |
| 1445 -2.9243 1675 -1.2853 1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.930            |
| 1450 -2.7755 1680 -1.2949 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4. 112           |
| 1455 -2.5909 1685 -1.2708 1915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.307            |
| 1460 -2.4726 1690 -1.1896 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.457            |
| 1465 -2.3206 1695 -1.1467 1925<br>1470 -2.1209 17JJ -1.1187 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.538°<br>-4.577 |
| 1470 -2.1269 1733 -1.1187 1930<br>1475 -2.0331 1705 -1.0700 1935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.636            |
| 1480 -1.9016 1710 -1.0392 1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.483            |
| 1485 -1.7458 1715 -1.0227 1945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4. 292           |
| 1490 -1.6927 1720 -1.0176 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4. 178           |
| 1490 -1.6927 1720 -1.0178 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4. 336           |
| 1500 -1.4863 1730 -1.0021 1760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.033            |

$$\tau = \exp\{-(CW)^a\}. \tag{5}$$

Equation (5) is appealing for use as a transmission function because it is analytically simple and asymptotic to one and zero, respectively, as the argument ranges from zero to infinity. It was used earlier8 in curve-fitting to the empirical transmission tables in LOWTRAN<sup>9</sup> for water vapor, uniformly mixed gases, and ozone. More recently, it was adopted in an extensive development effort<sup>10</sup> leading to individual models for the uniformly mixed and trace gases. Although not much physical significance may be attributed to this function, it has been shown<sup>11</sup> that in some cases empirical approximations have outperformed theoretically based band models such as the regular 12 and the random.<sup>13</sup> It does not approach the functional form of any of such classical models in either the limiting weak-line or strong-line conditions (i.e., U/P very small or very large, respectively). It has been shown<sup>14</sup> that it leads to a transmittance polynomial proposed earlier<sup>15</sup> for use with water vapor and carbon dioxide, which, in turn, originated as an approximation to the strong-line limit to the random model. The classical models were derived mostly for homogeneous paths. specific absorption line configurations, and Lorentzian broadening conditions. Equation (5) is generally proposed for use along inhomogeneous paths, for nonspecific absorption line configurations, and for combinations of Lorentzian and Doppler broadening conditions.

In atmospheric applications the absorber amount U may be computed from the definition  $U = \rho_g Z$ , where  $\rho_g$  is the absorber density and Z is the path length. In atmospheric centimeters (atm cm), it becomes

$$U = 0.7732 \times 10^{-4} M \rho_{\sigma} Z, \tag{6}$$

where M is the absorber concentration in parts per million by volume,  $\rho_a$  is the air density in grams per meter cube, and Z is expressed in kilometers. The model parameters a, n, and m for the absorption regions and the C' for each spectral interval within such regions may be determined from minimization of the square error  $\epsilon$  given by

$$\epsilon = \sum_{i} \sum_{j} \left[ \tau(i,j) - \tau_{M}(i,j) \right]^{2}, \tag{7}$$

where  $\tau(i,j)$  is a transmittance datum,  $\tau_M$  is defined by either Eq. (1) or (5),  $i=1,2,\ldots,I$  is the number of spectral intervals, and  $j=1,2,\ldots,J$  is the number of data values.



### DEPARTMENT OF THE AIR FORCE

# AIR FORCE GEOPHYSICS LABORATORY (AFSC) HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

REPLY TO OPI/S. A. Clough

1 May 1987

SUBJECT: Errors in FASCOD2

ro: FASCOD2 Users

#### Dear Colleague:

A serious error has been discovered in the implementation of the nitrogen continuum in FASCOD2. This error gives incorrect optical depths in the spectral region from 2385 cm-l to 2500 cm-l for all versions of FASCOD2. The lines flagged with a ? in the following list will correct this error as well as an error in the temperature correction for the diffuse ozone.

| C**    | *****             | NITROGEN                                             | *****                                                 | 500820<br>500830                                                      |
|--------|-------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|
| CCC    | UNITH2<br>IF (NMC | GEN CONTINU<br>=1.0E-05<br>L.GE.22) TH<br>N2=WK (22) | UM IS IN UNITS OF (CM**2/MOL)*(1/CM-1)*(CM/KM)        | 7500840<br>7500845<br>7500850<br>500850<br>500860<br>500870<br>500880 |
|        |                   | N2=WBROAD                                            |                                                       | ?500890 ·                                                             |
| c<br>C | ENDIF<br>WXN2 =   | ( WN2 ) *                                            | RHOAVE * UNITN2                                       | 500900<br>500910<br>500920                                            |
|        | CALL              | IZCONT (VIC, V                                       | 2C, DVC, NPTC, CN2TØ)                                 | 500930                                                                |
| C*1    | *****             | DIFFUSE OZ                                           | ONE ******                                            | 501020<br>501030                                                      |
| С      |                   | DO 135 J=<br>C(J)=CØ(J                               |                                                       | 501220<br>501230<br>?501240                                           |
|        |                   | IF (JRAD .                                           | VC *FLOAT(J-1) EQ. 1) C(J) =C(J) *RADFN(VJ,XKT,V1TST) | 501250<br>501260                                                      |
| 135    | 5                 | C(J)=C(J)<br>CONTINUE                                | *(1.+CT1(J)*TC+CT2(J)*TC*TC)                          | ?501270<br>501280                                                     |
|        | C<br>END          | · g * * * * * * *                                    | ******',10X, 'CORRECTED 1 MAY 87')                    | ?501505<br>501510                                                     |
|        |                   | DATA BN2                                             |                                                       | > 519160                                                              |
| C)     | BLOCK<br>IMPLIC   |                                                      | RECISION (V)                                          | > 519170<br>[ 519180<br>519190                                        |
| c<br>c |                   | UNITS O                                              | F (CM**2/MOL)*(1/CM-1)*(CM/KM)                        | 7519200<br>7519205                                                    |

Sheyra A. Clough

Infrared Physics Branch Optical Physics Division



Fig. 1. Transmittance comparison between the proposed band model for ammonia (X) and line-by-line spectra used in the development (-) for various atmospheric conditions.



Fig. 2. Transmittance calculations for ammonia using the proposed model and vertical concentration profile as incorporated into LOWTRAN 6 for (1) a vertical path from sea level to the top of the atmosphere; (2) a 100-km horizontal path at sea level; (3) a path tangent to earth's surface and extending from one end of the atmosphere to the other.

In the present modeling of NH<sub>3</sub> transmittance, the parameter set a, n, and m, and the spectral parameter C' at 5-cm<sup>-1</sup> intervals were obtained with the use of Eqs. (1)-(7). The transmittance data were generated with FASCOD 1C and consisted of 20-cm<sup>-1</sup> resolution averages repeated at 5 cm<sup>-1</sup> throughout the absorption bands, for homogeneous paths at the conditions of ten pressure levels within five of the standard atmosphere models.<sup>16</sup> In the generation of the transmittance data use was made of a triangular filter function of 20-cm<sup>-1</sup> full width at half-intensity. To extend the applicable range of the model to polluted environments, the path length at each pressure level was increased to include absorber amounts of the order of 100× the amount found in a vertical path from sea level to the atmospheric top at 100-km altitude. Special transmittance calculations were also performed at the conditions of available measurements<sup>7</sup> in the  $\nu_2$  region to validate the synthetic spectra with measured laboratory data. The resulting values of the absorber parameters are a = 0.6035, n = 0.6968, and m = 0.3377, while the values of the spectral parameters are listed in Tables I and II. It is noted that this parameter set supersedes the set published in Ref. 10. The model reproduced the original data used in its development within a mean rms deviation of 0.95%. Figure 1 depicts spectral curves comparing model calculations to representative 20-

Table III. Average Vertical Concentration Profile for Atmospheric Ammonia as Modified from Ref. 19 for use with the Proposed Band Model

| HEIGHT<br>(KM) | MIXING RATIO<br>(PPMV) | HEIGHT<br>(KM) | MIXING RATIO<br>(PPMV) |
|----------------|------------------------|----------------|------------------------|
| 0              | 0.130E-02              | 17             | 0.550E-04              |
| 1              | 0.125E-02              | 18             | 0.100E-04              |
| 2              | 0.120E-02              | 19             | 0.550E-05              |
| 3              | 0.110E-02              | 20             | 0.100E-05              |
| 4              | 0.100E-02              | 21             | 0.550E-06              |
| 5              | 0.925E-03              | 22 `           | 0.100E-06              |
| 6              | 0.850E-03              | 23             | 0.100E-06              |
| 7              | 0.775E-03              | 24             | 0.100E-06              |
| 8              | 0.700E-03              | 25             | 0.100E-06              |
| 9              | 0.625E-03              | 30             | 0.100E-06              |
| 10             | 0.550E-03              | 35             | 0.100E-06              |
| 11             | 0.475E-03              | 40             | 0.100E-06              |
| 12             | 0.400E-03              | 45             | 0.100E-06              |
| 13             | 0.350E-03              | 50             | 0.100E-06              |
| 14             | 0.300E-03              | 70             | 0.100E-06              |
| 15             | 0.200E-03              | 100            | 0.100E-06              |
| 16             | 0.100E-03              | >100           | 0.100E-06              |

cm<sup>-1</sup> degraded line-by-line spectra for the  $\nu_2$  and  $\nu_4$  regions together, which were used in the model development.

Shown in Fig. 2 are transmittance calculations obtained from the proposed model after its incorporation into LOWTRAN 6. The calculations were made assuming the vertical ammonia concentration profile of Table III together with the U.S. Standard Atmosphere model. In this figure, curve 1 represents the transmittance for a vertical inhomogeneous path from sea level to the top of the atmosphere. Curve 2 represents a 100-km horizontal homogeneous path at sea level altitude and atmospheric conditions. This curve is valuable, for example, in showing the transmittance spectra for a 1-km, sea level, horizontal path in a polluted environment having an ammonia concentration 100X higher than the value given in Table III. Curve 3 represents an inhomogeneous path tangent to the earth's surface and extending in both directions from one end of the atmosphere to the other. This curve illustrates the transmittance spectra along the path originally chosen as a guide by AFGL in the selection of absorption lines for inclusion in the line parameter compilations.<sup>17,18</sup> Table III provides a diurnally and seasonally averaged vertical concentration profile of ammonia, as modified from the one proposed by Smith<sup>19</sup> to accommodate the thirty-three atmospheric levels used in LOWTRAN.

The authors express their thanks to the Air Force Geophysics Laboratory at Hanscom Air Force Base, Bedford, MA, for providing the funds to support the work reported here.

#### References

- C. E. Junge, Air Chemistry and Radioactivity (Academic, New York, 1963).
- E. Meszaros, Atmospheric Chemistry: Fundamental Aspects (Elsevier, New York, 1981).
- G. Herzberg, Molecular Spectra and Molecular Structure. II: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
- J. H. Pierluissi and K. Tomiyama, "Numerical Methods for the Generation of Empirical and Analytical Transmittance Functions with Applications to Atmospheric Trace Gases," Appl. Opt. 19, 2298 (1980).
- J. M. Jarem, J. H. Pierluissi, and M. E. Maragoudakis, "Numerical Methods of Band Modeling and their Application to Atmospheric Nitrous Oxide," Appl. Opt. 23, 406 (1984).
- S. A. Clough, F. X. Kneizys, L. S. Rothman, and W. O. Gallery, "Atmospheric Spectral Transmittance and Radiance: FASCOD-1B," Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152 (1981).
- W. L. France and D. Williams, "Total Absorptance of Ammonia in the Infrared," J. Opt. Soc. Am. 56, 70 (1966).
- 8. R. R. Gruenzel, "Mathematical Expressions for Molecular Absorption in Lowtran 3B," Appl. Opt. 17, 2591 (1978).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN6," AFGL-TR-83-0187 (AFGL, Hanscom AFB, MA, 1983).

- J. H. Pierluissi and C. E. Maragoudakis, "Molecular Transmission Band Models for the Uniformly Mixed and the Trace Gases," AFGL-TR-84-0320 (AFGL, Hanscom AFB, MA, 1984).
- J. H. Pierluissi and R. B. Gomez, "Study of Transmittance Models for the 15 Micron-CO<sub>2</sub> Band," in Proceedings, Sixth Conference on Aerospace and Aeronautical Meteorology (American Meteorological Society, Boston, 1984).
- W. M. Elsasser, "Heat Transfer by Infrared Radiation in the Atmosphere," Harvard Meteorological Studies 6 (Harvard U. P., Cambridge, 1942).
- 13. R. M. Goody, "A Statistical Model for Water Vapor Absorption," Q. J. R. Meteorol. Soc. 78, 165 (1952).
- J. H. Pierluissi, K. Tomiyama, and R. B. Gomez, "Analysis of the Lowtran Transmission Functions," Appl. Opt. 18, 1607 (1979).
- W. L. Smith, "Polynomial Representation of Carbon Dioxide and Water Vapor Transmission," NESC-47 (National Environmental Satellite Center, Washington, D.C., 1969).
- S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1956).
- L. S. Rothman, "AFGL Atmospheric Line Parameters Compilation: 1980 Version," Appl. Opt. 20, 791 (1981).
- L. S. Rothman et al., "AFGL Atmospheric Trace Gas Compilation: 1982 Version," Appl. Opt. 22, 1616 (1983).
- M. S. H. Smith, "Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km," NASA Tech. Memo. 83239 (NASA Langley Research Center, Hampton, VA, 1982).

# Validated infrared transmittance band model for methane in the atmosphere: corrigenda

Joseph H. Pierluissi, Ralph D. Hippenstiel, and Christos E. Maragoudakis

University of Texas at El Paso, Electrical Engineering Department, El Paso, Texas 79968.

Received 22 January 1985.
0003-6935/85/121729-02\$02.00/0.
© 1985 Optical Society of America.

In a recent paper¹ on development and validation of a molecular transmittance band model for atmospheric methane (CH<sub>4</sub>), one of the three significant IR bands (from 4105 to 4730 cm<sup>-1</sup>) was unintentionally ignored, and an error in the vertical concentration profile was accidentally introduced. The purpose of this Letter is to make the necessary corrections and provide illustrative transmittance spectra for this band. These corrections are deemed important because methane forms part of the group of five gases originally modeled in LOWTRAN as a single model for the so-called uniformly-mixed gases.

In the earlier cited reference use was made of a double exponential transmission function together with nonlinear optimization techniques to develop a band model for the methane bands from 1085 to 1755 cm<sup>-1</sup> and from 2370 to 3215 cm<sup>-1</sup>. The data consisted of line-by-line calculations computed using FASCODIC<sup>2</sup> and of laboratory measurements made

by Gryvnak et al.<sup>3</sup> The model parameters were determined at 5 cm<sup>-1</sup> for the 20-cm<sup>-1</sup> spectral resolution for LOWTRAN.<sup>4</sup> Since there were no laboratory measurements for the band being presented here, its modeling was done using the same transmission function and numerical methods used with the other bands but with degraded line-by-line data only.

Briefly stated, the band model is given by

$$\tau = \exp[-10^{\alpha}[C_i(\Delta \nu) + \log W]] \tag{1}$$

with

$$W = \left(\frac{P}{P_o}\right)^n \left(\frac{T_o}{T}\right)^m U , \qquad (2)$$

$$U = 0.7732 \times 10^{-4} M \rho_{a} z, \tag{3}$$

where a, n, and m are absorber-type parameters,  $C_i(\Delta \nu)$ ,  $i=1,2,\ldots I$ , is a spectral parameter, I is the number of spectral intervals, P is the total atmospheric pressure, T is the atmospheric temperature, U (atm cm) is the absorber amount, M (ppmv) is the absorber concentration in parts per million by volume,  $\rho_a$  (g/m³) is the air density, Z (km) is the path length, and the subscript o represents standard temperature and pressure (STP) conditions. In the determination of the  $C_i(\Delta \nu)$  parameters listed in Table I, use was made of the absorber parameter obtained from the model development of the two earlier bands, i.e., a=0.5845, n=0.7140, and m=0.4186. The resulting  $C_i(\Delta \nu)$  value at 5-cm<sup>-1</sup> intervals are given in Table I. An overall rms transmittance deviation of

Table I. Spectral Parameter for Methane to be Used with Eqs. (1)–(3) for the Calculation of 20-cm<sup>-1</sup>
Resolution Transmittance Supplementing the Band Model in Ref. 1

| WAVE-<br>NUMBER<br>(CM <sup>-1</sup> ) | C'      | WAVE-<br>NUMBER<br>(CM <sup>-1</sup> ) | C'              | WAVE-<br>NUMBER<br>(CM <sup>-1</sup> ) | c'      | WAVE-<br>NUMBER<br>(CM <sup>-1</sup> ) | C'      |
|----------------------------------------|---------|----------------------------------------|-----------------|----------------------------------------|---------|----------------------------------------|---------|
|                                        | -8.7367 | 4255                                   | -1.3642         |                                        | ~1.9451 |                                        | -3.6245 |
|                                        | 10.0000 | 4270                                   | -1.4016         |                                        | -1.9924 |                                        | -3.4791 |
| 4115                                   | -7.4757 | 4275                                   | -1.4713         |                                        | -2.0321 |                                        | -3.4710 |
|                                        | -5.1602 | 4280                                   | -1.5836         |                                        | -2.0816 |                                        | -3.4210 |
| 4125                                   | -4.2454 | 4285                                   | -1.6984         |                                        | -2.1026 |                                        | -3.4125 |
| 4130                                   | -3.7640 | 4290                                   | -1.8085         | 4450                                   | -2.1137 |                                        | -3.4475 |
| 4135                                   | -3.3256 | 4295                                   | -1.8486         | 4455                                   | -2.1351 |                                        | -3.4140 |
| 4140                                   | -3.0103 | 4300                                   | -1.7464         | 4460                                   | -2.1629 | 4620                                   | -3.4908 |
| 4145                                   | -2.7726 | 4 30 5                                 | -1.6338         | 4465                                   | -2.1876 |                                        | -3.5164 |
| 4150                                   | -2.5510 | 4310                                   | -1.5555         | 4470                                   | -2.2340 | 4630                                   | -3.5944 |
| 4155                                   | -2.3849 | 4315                                   | <b>-1.</b> 5552 | 4475                                   | -2.2960 |                                        | -3.7403 |
| 4160                                   | -2.2318 | 4320                                   | -1.6935         | 4480                                   | -2.3747 | 4640                                   | -3.8192 |
| 4165                                   | -2.1080 | 4325                                   | -1.8165         | 4485                                   | -2.4970 | 4645 -                                 | -4.0177 |
| 4170                                   | -2.0086 | 4330                                   | -1.3417         | 4490                                   | -2.6244 | 4650                                   | -4.1833 |
| 4175                                   | -1.9290 | 4335                                   | -1.7697         | 4495                                   | -2.7641 |                                        | -4.3518 |
| 4180                                   | -1.8902 | 4340                                   | -1.6346         | 4500                                   | -2.8912 |                                        | -4.6486 |
| 4195                                   | -1.8750 | 4345                                   | -1.5589         | 4505                                   | -3.0328 |                                        | -4.8778 |
| 4190                                   | -1.8700 | 4350                                   | -1.5466         | 4510                                   | -3.1944 |                                        | -5.2542 |
| 4195                                   | -1.8476 | 4355                                   | -1.5604         | 45 15                                  | -3.3877 |                                        | -5.7834 |
| 4200                                   | -1.7390 | 4360                                   | -1.6307         | 4520                                   | -3.4566 |                                        | -6.3451 |
| 4205                                   | -1.5724 | 4365                                   | -1.6867         | 4525                                   | -3.1662 |                                        | -7.7212 |
| 4210                                   | -1.4284 | 4370                                   | <b>-1.</b> 7593 | 4530                                   | -2.7253 | 4690 -                                 |         |
| 4215                                   | -1.3425 | 4375                                   | -1.8051         | 4535                                   | -2.3992 |                                        | 10.0000 |
| 4220                                   | -1.3791 | 4380                                   | -1.8167         | 4540                                   | -2.2214 |                                        | 10.0000 |
| 4225                                   | -1.5132 | 4385                                   | <b>-1.</b> 3518 | 4545                                   | -2.2022 |                                        | 10.0000 |
| 4230                                   | -1.6508 | 4300                                   | -1.3559         | 4550                                   | -2.3978 | 4710 -                                 | 10.0000 |
| 4235                                   | -1.7283 | 4395                                   | -1.8547         | 4555                                   | -2.7449 | 4715 -                                 | 10.0000 |
| 4240                                   | -1.6684 | 4400                                   | -1.8907         | 4560                                   | -3.2639 | 4720                                   | -7.733  |
| 4245                                   | -1.5432 | 4405                                   | -1.8851         | 4565                                   | -3.9311 | 4725                                   | -7.9729 |
| 4250                                   | -1.4447 | 4410                                   | -1.8933         | 4570                                   | -4.1470 | 4730                                   | -7.797  |
| 4255                                   | -1,3773 | 4415                                   | -1.9381         | 4575                                   | -3.9351 |                                        |         |
| 4260                                   | -1.3490 | 4420                                   | -1.9025         | 4580                                   | -3.7471 |                                        |         |



Fig. 1. Transmittance comparison between line-by-line (-) data degraded to 20 cm<sup>-1</sup> and the proposed methane band model (×) for various absorber amounts.



Fig. 2. Transmittance calculations for methane using a proposed model and vertical concentration profile as incorporated into LOW-TRAN 6 for (1) a vertical path from sea level to the top of the atmosphere; (2) 100-km horizontal path at sea level; and (3) path tangent to earth's surface and extending from one end of the atmosphere to the other.

1.45% was obtained between the line-by-line data and the calculations made with the development model.

Shown in Fig. 1 are spectral curves comparing model calculations as well as the 20-cm<sup>-1</sup> degraded line-by-line spectra from FASCODIC used in the model development for the third band of methane. Figure 2 depicts transmittance calculations obtained from the proposed model after its incorporation into LOWTRAN 6. The calculations were made assuming the vertical methane concentration profile of Table II together with the U.S. Standard Atmosphere. In this figure, curve 1 represents the transmittance for a vertical inhomogeneous path from sea level to the top of the atmosphere at 100-km altitude. Curve 2 represents a 100-km horizontal homogeneous path at sea level altitude and atmospheric conditions. This curve is of value, for example, in showing the transmittance spectra for a 1-km, sea level horizontal path in a polluted environment with a methane concentration 100 times higher than the value given in Table II. Curve 3 represents an inhomogeneous path tangent to the earth's surface and extending in both directions from one end of the atmosphere (altitude of 100 km) to the other. This curve illustrates the

Table II. Average Vertical Concentration Profile for Atmospheric

Methane as Modified from Ref. 7 for Use with a Proposed Band Model and

Correcting an Error in Ref. 1

| ALTITUDE<br>(KM) | MIXING RATIO<br>(PPMV) | ALTITUDE<br>(KM) | MIXING RATIO<br>(PPMV) |
|------------------|------------------------|------------------|------------------------|
| 0                | 1.70                   | 17               | 1.45                   |
| 1                | 1.70                   | 18               | 1.40                   |
| 2                | 1.70                   | 19               | 1.35                   |
| 3                | 1.70                   | 20               | 1.30                   |
| 4                | 1.70                   | 21               | 1.20                   |
| 5                | 1.70                   | 22               | 1.10                   |
| 6                | 1.70                   | 23               | 1.05                   |
| 7                | 1.65                   | 23               | 1.00                   |
| 8                | 1.65                   | 25               | 0.97                   |
| 9                | 1.65                   | 30               | 0.80                   |
| 10               | 1.65                   | 35               | 0.62                   |
| 11               | 1.65                   | . 40             | 0.40                   |
| 12               | 1.65                   | 45               | 0.23                   |
| 13               | 1.55                   | 50               | 0,10                   |
| 14               | 1.50                   | 70               | 0.10                   |
| 15               | 1.50                   | 100              | 0.10                   |
| 16               | 1.50                   | >100             | 0.10                   |

transmittance spectra along the path originally chosen as guide by AFGL in the selection of lines for inclusion in the line parameter compilations.<sup>5,6</sup> Table II provides a diurnally and seasonally averaged vertical concentration profile of methane, as corrected from the earlier referenced publication dealing with the other IR bands of methane.<sup>1</sup> The profile in this table is a modification of the one proposed by Smith,<sup>7</sup> as designed for use with the proposed model.

The authors thank the Air Force Geophysics Laboratory at Hanscom Air Force Base, Bedford, Mass., for providing the funds to support the work reported here.

#### References

- J. M. Jarem, J. H. Pierluissi, and W.-L. W. Ng, "Validated Infrared Transmittance Band Model for Methane in the Atmosphere," Appl. Opt. 23, 3331 (1984).
- H. J. P. Smith, et al.; "FASCODE-Fast Atmospheric Signature Code," AFGL-TR-78-0081, Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass. (1978).
- D. A. Gryvnak et al., "Infrared Absorption by CH<sub>4</sub>, H<sub>2</sub>O, and CO<sub>2</sub>,"
  AFGL TR-76-0246, Air Force Geophysics Laboratory, Hanscom
  Air Force Base, Mass. (1976).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6, AFGL-TR-83-0187," Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass. (1983).
- L. S. Rothman, "AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version," Appl. Opt. 20, 791 (1981).
- L. S. Rothman et al., "AFGL Atmospheric Trace Gas Compilation: 1982 Version," Appl. Opt. 22, 1616 (1983).
- M. S. H. Smith, "Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km," NASA Tech. Memo. 83239, NASA Langley Research Center, Hampton, Va. (1982).

The U.S. Government is authorized to reproduce and self this report. Permission for further reproduction by others must be obtained from the copyright owner.

Reprinted from Applied Optics, Vol. 25, Page 1538, May 15, 1986 Copyright © 1986 by the Optical Society of America and reprinted by permission of the copyright owner.

## Molecular transmittance band model for oxygen in the infrared

Joseph H. Pierluissi and Christos E. Maragoudakis

University of Texas at El Paso, Electrical Engineering Department, El Paso, Texas 79968.

Received 27 November 1985.
0003-6935/86/101538-03\$02.00/0.
© 1986 Optical Society of America.

Molecular oxygen is one of the main constituents of the atmosphere and is second only to nitrogen in relative concentration near the earth's surface. Only a small percent of its present level may be explained by the photodissociation of water vapor in the prebiologic atmosphere. Substantial documentation in the literature indicates that the major part of the level increase was due to photosynthetic activity of the biosphere. An assumption currently made<sup>2</sup> is that oxygen is uniformly mixed in the atmosphere with an average value of  $\sim 2.09 \times 10^5$  ppmv. Its most significant infrared absorption band near  $7874 \text{ cm}^{-1} (1.27 \mu\text{m})$  was first made readily apparent from measurements of the solar spectrum.<sup>3</sup> There is a much weaker, less important infrared band near 9369 cm<sup>-1</sup> (1.07 µm). Although earlier studies4 have dealt with modeling of the first of these bands independent of other absorbing gases, the widely used computer code LOWTRAN<sup>5</sup> combines at present oxygen and other uniformly mixed gases in a single-band model.

In this Letter use was made of an empirical expression with three absorber-type parameters, and a single spectral parameters, to represent the transmission function for each oxygen band individually. The parametrization involved a nonlinear numerical procedure which optimized all the parameters simultaneously. The transmittance data consisted of 20-cm<sup>-1</sup> resolution averages, computed with FASCODIC<sup>6</sup>

Table I. Spectral Parameter C' for Oxygen to be Used with Eqs. (1)-(4) In the Calculation of 20-cm<sup>-1</sup> Resolution Atmospheric Transmittance in the infrared.

| WAVE-<br>NUMBER              | WAVE-<br>NUMBER               | WAVE-<br>NUMBER |
|------------------------------|-------------------------------|-----------------|
| (CM -1) C'                   | (CM -1) C'                    | (CM -1) C*      |
| 7650 -13.9458                | 7885 -6.8055                  | 9270 -12,575    |
| 7655 -13,7672                | 7820 -6.9114                  | 4275 -12,393    |
| 7660 -11,504K                | 7445 -6.9436                  | 9299 -12.190    |
| 7665 - 13, 1472              | 730) -7.0514                  | 4265 -11.194    |
| 7670 -13.3242                | 7905 -7.0597                  | 9290 -11.775    |
| 7675 -12.0658                | 7910 -7.0689                  | 7205 -11.592    |
| 768) -12.3571                | 79 15 -7. 1242                | 930) -11.421    |
| 7645 -12.2428                | 7920 -7.2094                  | 9305 -11,249    |
| 7676 - 1124492               | 7925 -7.3265                  | 9310 -11.109    |
| 7635 -11.0427                | 7710 -7.4671                  | 4315 - 10.947   |
| 77 W -11.5173                | 7935 -7.6326                  | 9320 -13.833    |
| 7725 -11.2105                | 7943 -7.8113                  | 9325 -10.732    |
| 7710 -11.1554                | 7945 -8,0036                  | 9330 -10.638    |
| 7715 11, 2196                | 7950 -8.2104                  | 9335 - 10.572   |
| 7729 -10.0040                | 7955 -8. 40.36                | 9349 -10.449    |
| 7725 - 12.8754               | 7900 -8.5853                  | 9345 -10.201    |
| 771a -1u.512k                | 7965 -8.7257                  | 9.450 -9.843    |
| 7735 -10.4562                | 7972 -8.8511                  | 2355 -2.654     |
| 7740 -10.4172                | 7975 -8.9427                  | 9360 -4.505     |
| 7745 -11.1823                | 7980 -4.3375                  | 9365 -9.467     |
| 175) -10.1435                | 7985 -9.1229 .                | 9 370 -9.554    |
| 1755 -10.3030                | 799) -9.2246                  | 3175 -1.055     |
| 7/60 -9.4146                 | 7995 -9.3291                  | 93на -9.743     |
| 7765 -1.7772                 | 8000 -9.4436                  | 9385 -2.725     |
| 777) -4.5640                 | 80US -9.5715                  | 9 390 -9. 789   |
| 7775 -4.4545                 | 83 lv -9,6451                 | 9 195 - 9, 4 32 |
| 7780 -9.3592                 | 8315 -9.8408                  | 9430 -9.944     |
| 7785 -9.1411<br>7785 -9.0476 | 8J2) -9.9759<br>8D25 -10.1489 | 9405 -10.122    |
|                              | 3930 -10.1489                 | 9410 -10.370    |
| 7795 -3.3528<br>7830 -8.7351 | 8015 -10.5027                 | 9420 -10.976    |
| 7835 -3.5818                 | 8049 -10.7265                 |                 |
| 7810 -9.4287                 | 8345 -10.9717                 | 9425 -11,227    |
| 7415 -8.3271                 | HU5U -11.2939                 | 9435 -11.492    |
| 7823 -8.1958                 | 9355 -11.5552                 | 9440 -11.601    |
| 1925 -8.0438                 | 8360 -11.9595                 | 7445 -11.694    |
| 7833 -7.9652                 | 8065 -12.2435                 | 9450 -11.83     |
| 7835 -7.4371                 | 8.77 -12.6942                 | 9455 +11.99     |
| 7840 -7.7476                 | 6075 -13, 2011                | 9460 -12.178    |
| 7945 -7,6431                 | 4380 -13.31+1                 | 1465 -12.382    |
| 7853 -7.57%                  | 9235 -13.9216                 | 9470 -12.660    |
| 7455 -7.0149                 | 9247 ~13.7293                 | 9475 - 13.479   |
| 7869 -7.4194                 | 9245 -13.5370                 | 9480 -11.352    |
| 7965 -7.3088                 | 9250 -13.3947                 | 9495 -13.046    |
| 7870 -7.0722                 | 9255 -13.1523                 | 9490 -13.939    |
| 7875 -5.8315                 | 9260 ~12.9630                 | . 470           |
| 788J -6.7627                 | 9265 -12.7677                 |                 |

and the Air Force line parameters<sup>7</sup> at ten pressure levels for several model atmospheres.<sup>8</sup> These were carried out at 5-cm<sup>-1</sup> spectral intervals throughout the two bands of oxygen, from 7650 to 8080 cm<sup>-1</sup> and from 9280 to 9480 cm<sup>-1</sup>.

The molecular transmittance  $\tau$  over a spectral interval within an absorption band of an atmosphere gas may be reasonably well approximated by the function<sup>9</sup>

$$\tau = \exp[-(CW)^a],\tag{1}$$

where

$$W = (P/P_o)^n (T_o/T)^m U, (2)$$

$$C = 10^{C'},\tag{3}$$

$$U = 0.7732 \times 10^4 \, M \rho_a Z. \tag{4}$$

Here P (atm), T (K), M (ppmv), and  $\rho_a$  ( $g/m^3$ ) are, respectively, vertical profiles of pressure, temperature, absorber concentration, and air density, U (atm cm) is the absorber amount, Z (km) is the path length, and the subscript o denotes conditions at a standard temperature and pressure (namely, 1 atm and 273.16 K, respectively). Furthermore, the model in Eqs. (1)–(4) is defined by the absorber parameters set a, n, and m, and by a set of C' values for the spectral intervals within the absorption bands. In Eq. (3) C is redefined in terms of C' for computational convenience. The complete parameter set a, n, m, and C,  $i = 1, 2, \ldots, I$ , for I spectral intervals, may be obtained from the equation<sup>10</sup>



Fig. 1. Transmittance comparisons in the 7874-cm<sup>-1</sup> band of oxygen between the proposed model for oxygen (X), and line-by-line spectra used in the development of the model (—) for various atmospheric conditions.



Fig. 2. Transmittance calculations for oxygen using the proposed band model with a vertical concentration of 2.09 × 10<sup>5</sup> ppmv as incorporated into LOWTRAN 6 for (1) a vertical path from sea level to the top of the atmosphere; (2) a 100-km horizontal path at sea level; and (3) a path tangent to the earth's surface and extending from one end of the atmosphere to the other.

$$\epsilon = \sum_{i} \sum_{j} \left[ \tau(i,j) - \tau_{m}(i,j) \right]^{2}, \tag{5}$$

where  $\epsilon$  is the least-squares error to be minimized using a standard method, such as the conjugate gradient descent,  $J = 1, 2, \ldots, J$  is an index for the data values, and the subscript m denotes the band model.

In the present modeling of the two oxygen bands use was made of  $\tau_m$  in Eqs. (1)–(5), and of the data  $\tau$  discussed above, to obtain the values a=0.5641, n=0.9353, m=0.1936, and the values of C' listed in Table I. The developed model reproduced the original transmittance data used in the minimization within a spectral mean rms deviation of 1.37%. Figure 1 depicts spectral curves comparing model calculations with representative  $20\text{-cm}^{-1}$  degraded line-by-line spectra for the  $7874\text{-cm}^{-1}$  band.

Shown in Fig. 2 are transmittance calculations obtained from the proposed band model after its incorporation into LOWTRAN 6. They were made assuming an oxygen concentration of  $2.09 \times 10^5$  ppmv, in combination with the U.S. Standard Atmosphere. In this figure, curve 1 represents the transmittance for a vertical inhomogeneous path from sea level to the top of the atmosphere at 100-km altitude. Curve 2 represents a 100-km horizontal homogeneous path at sealevel altitude and atmospheric conditions. This curve may be valuable, for example, in showing the transmittance spectra for a 10-km sea-level horizontal path in an environment having an oxygen concentration 10 times higher than the

assumed value. Curve 3 represents an inhomogeneous path tangent to the earth's surface and extending in both directions from one end of the atmosphere (100-km altitude) to the other. This curve illustrates the transmittance spectra along the path originally chosen as a guide by the Air Force Geophysics Laboratory in the selection of absorption lines for inclusion in their line parameter compilations.

The authors express their gratitude to the Air Force Geophysics Laboratory at Hanscom Air Force Base, Bedford, MA, for providing the funds in support of the work reported here.

#### References

- 1. E. Meszaros, Atmospheric Chemistry: Fundamental Aspects (Elsevier, New York, 1981).
- M. A. H. Smith, "Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km," NASA Tech. Memo. 83239 (NASA Langley Research Center, Hampton, VA, 1982).
- 3. L. Herzberg and G. Herzberg, "Fine Structure of the Infrared Atmospheric Oxygen Bands," Astrophys. J. 105, 353 (1947).

- W. F. J. Evans, H. C. Wood, and E. J. Llewellyn, "Transmission of the Infrared Oxygen Emission at 1.27 m in the Atmosphere," Can J. Phys. 48, 747 (1970).
- F. X. Kneizys et al., "Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6," AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, 1983), ADA-137786.
- S. A. Clough, F. X. Kneizys, L. S. Rothman, and W. O. Gallery, "Atmospheric Spectral Transmittance and Radiance: FAS-COD1B," Proc. Soc. Photo-Opt. Instrum. Eng. 277, 152 (1981).
- L. S. Rothman et al., "AFGL Trace Gas Compilation: 1982 Version," Appl. Opt. 22, 1616 (1983).
- 8. S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).
- J. H. Pierluissi, R. D. Hippenstiel, and C. E. Maragoudakis, "Validated Infrared Transmittance Band Model for Methane in the Atmosphere: Corrigenda," Appl. Opt. 24, 1729 (1985).
- J. M. Jarem, J. H. Pierluissi, and M. E. Maragoudakis, "Numerical Methods of Band Modeling and Their Application to Atmospheric Nitrous Oxide," Appl. Opt. 23, 406 (1984).