Rattrapage

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independants. Seules les reponses soigneusement justifiées seront prises en compte.]

Exercice 1. Soit $(X_n)_{n\geq 0}$ la chaîne de Markov sur $\mathcal{M}=\{1,2,3,4,5\}$ de matrice de transition

$$P = \left(\begin{array}{ccccc} \frac{1}{2} & \frac{1}{3} & 0 & 0 & \frac{1}{6} \\ 0 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & \frac{2}{3} & 0 \end{array}\right)$$

- a) Dessiner le graphe associé à cette matrice de transition.
- b) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- c) La chaîne est-elle irréductible?
- d) Soit $T_x = \inf\{n \ge 0 : X_n = x\}$. Calculer $\mathbb{P}(X_3 = 1 | X_0 = 2)$ et $\mathbb{P}(T_2 < T_5 | X_0 = 1)$.
- e) Soit $u(x) = \mathbb{P}(T_2 < T_5 | X_0 = x)$ pour tout $x \in \mathcal{M}$. Déterminer l'équation linéaire satisfaite par u (sans la résoudre).
- f) Soit $\lambda \geqslant 0$. Déterminer l'équation lineaire satisfaite par $v(x) = \mathbb{E}[e^{-\lambda T_5}|X_0 = x]$ (sans la résoudre).

Exercice 2. On imagine le jeux suivante: en chaque instant de temps $n \ge 0$ et chaque point i de \mathbb{Z} on tire une v.a. $U_{n,i}$ qu'avec probabilité 1/2 vaut +1 et avec probabilité 1/2 vaut -1. On considère maintenant deux marches aléatoires (X_n, Y_n) définies par les recurrences

$$\begin{cases} X_{n+1} = X_n + U_{n+1,X_n} \\ Y_{n+1} = Y_n + U_{n+1,Y_n} \end{cases}$$

On remarque que la suite $(U_{n,i})_{n,i}$ est la même pour les deux marches aléatoires. Etant donnée par une recurrence aléatoire la suite $(Z_n)_{n\geqslant 0}$ à valeurs dans \mathbb{Z}^2 donnée pas $Z_n=(X_n,Y_n)$, est une chaîne de Markov avec ensemble d'états $\mathcal{M}=\mathbb{Z}^2$.

- a) Donner la matrice de transition $P: \mathbb{Z}^2 \times \mathbb{Z}^2 \to [0,1]$ de la chaîne $(Z_n)_{n \geq 0}$.
- b) Determiner $\mathbb{P}(X_n = Y_n | X_0 = Y_0 = x)$ pour tout $n \ge 1$ et tout $x \in \mathbb{Z}$.
- c) Montrer que le processus $D_n = X_n Y_n$ est une chaîne de Markov sur \mathbb{Z} . Donner sa matrice de transition et classifier ses états.
- d) Soit $T = \inf (n \ge 0$: $X_n = Y_n)$ (avec $T = +\infty$ si $X_n \ne Y_n$ pour tout $n \ge 1$). Montrer que pour tout fonction $f: \mathbb{Z} \to \mathbb{R}$ bornée on a que

$$\mathbb{E}[|f(X_n) - f(Y_n)|] \leqslant 2C \mathbb{P}(T > n)$$

où $C = \sup_{x \in \mathbb{Z}} |f(x)|$. (Sugg: considérer la différence $f(X_n) - f(Y_n)$ dans les deux cas: $\{T \leq n\}$ et $\{T > n\}$)

Exercice 3. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur un espace d'états discret \mathcal{M} avec matrice de transition $P\colon \mathcal{M}\times \mathcal{M}\to [0,1]$. Soit $(\mathcal{F}_n=\sigma(X_0,\ldots,X_n))_{n\geqslant 0}$ la filtration des $(X_n)_{n\geqslant 0}$. Toutes les martingales sont considerées par rapport à cette filtration. On suppose aussi que $X_0=x_0$ est un état fixé. Soit $f\colon \mathcal{M}\to \mathbb{R}$ une fonction bornée. On rappelle que $(P\ f)(x)=\sum_{y\in \mathcal{M}}P(x,y)f(y)$.

a) Montrer que le processus $(M_n)_{n\geqslant 1}$

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)]$$

est une martingale.

b) Montrer que le processus $(V_n)_{n\geqslant 1}$

$$V_n = M_n^2 - \sum_{k=0}^{n-1} [(P(f^2))(X_k) - ((Pf)(X_k))^2]$$

est une martingale.

c) Soit N un entier positif. Montrer que le processus $(Q_n)_{n\geqslant 0}$ defini par

$$Q_n = \sum_{k=1}^n \left[(P^{N-k}f)(X_k) - (P^{N-k+1}f)(X_{k-1}) \right]$$

si $n \leq N$ et avec $Q_n = Q_N$ si n > N et $Q_0 = 0$ est une martingale telle que $Q_N = f(X_N) - \mathbb{E}[f(X_N)]$. Ici on utilise la convention que $P^0 f(x) = f(x)$.

d) On suppose maintenant que la fonction f satisfait $|f(x) - f(y)| \leq |x - y|$, que $(Y_n)_{n \geqslant 1}$ est une suite iid avec $\mathbb{P}(Y_n = \pm 1) = 1/2$ et $(X_n)_{n \geqslant 0}$ la marche aléatoire simple $X_n = Y_1 + \cdots + Y_n$ avec $X_0 = 0$. Soit $(Q_n)_{n \geqslant 0}$ la martingale introduite à la question (c). Montrer que $|Q_n - Q_{n-1}| \leq 2$ pour tout $n \geqslant 1$.

Exercice 4. Soit $(M_n)_{n\geqslant 0}$ une martingale pour une filtration $(\mathcal{F}_n)_{n\geqslant 0}$ donnée. On suppose que $M_0=0$ et que les increments $\Delta M_n=M_n-M_{n-1}$ (pour $n\geqslant 1$) de cette martingale sont bornées: $|\Delta M_n|\leqslant 1$ pour tout $n\geqslant 1$. Le but de l'exercice est de prouver l'inégalité suivante (appelée inégalité de Hoeffding):

$$\mathbb{P}(|M_n| \geqslant x\sqrt{n}) \leqslant 2e^{-x^2/2} \tag{1}$$

pour tout $x \ge 0$ et $n \ge 0$. On va proceder par differentes étapes:

a) Soit H une v.a. \mathcal{F}_{n-1} mesurable, positive et bornée par 1. Montrer que

$$h(\lambda) = \log \mathbb{E}[H \exp(\lambda \Delta M_n)] \leq \lambda^2/2$$

pour tout $\lambda \in \mathbb{R}$. Suggestion: utiliser la formule de Taylor avec reste integrale

$$g(x) = g(0) + g'(0)x + \frac{x^2}{2} \int_0^1 g''(x s) ds$$

pour développer $h(\lambda)$ et l'hypothese de bornitude de ΔM_n .

- b) En déduire que $\mathbb{E}\left[\exp\left(\lambda\Delta M_n\right)|\mathcal{F}_{n-1}\right] \leqslant \exp\left(\lambda^2/2\right)$ pour tout $n\geqslant 1$.
- c) Montrer que $\mathbb{E}[\exp{(\lambda M_n)}] \leq \exp{(\lambda^2 n/2)}$ et donc que $\mathbb{P}(M_n \geqslant x\sqrt{n}/K) \leq e^{-x^2/2}$ pour tout $x \in \mathbb{R}$ et $n \geqslant 0$.
- d) Conclure que $\mathbb{P}(|M_n| \geqslant x\sqrt{n}/K) \leqslant 2e^{-x^2/2}$ pour tout $x \geqslant 0$ et $n \geqslant 0$.