Асимптотическая сложности алгоритмов, О нотация. Элементы дискретной математики. Введение в теорию графов.

Хайрулин Сергей Сергеевич s.khayrulin@gmail.com

Overview

- О нотация
- Асимптотическая сложность алгоритмов
- Основные понятия теории графов, связанные с графами, орграфами и мультиграфами.
- Ориентированный граф.
- Изоморфизм графов.
- Способы задания графов.
- Матрицы смежности и инцидентности, их свойства.

Литература и др. источники

- Дональд Эрвин Кнут. Искусство программирования (Том 1, 2, 3) // Вильямс 2015.
- Альфред В. Ахо, Джон Э. Хопкрофт, Джеффри Д. Ульман. Структуры данных и алгоритмы // Вильямс 2000.
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов // М.: Наука, 1990.
- Харари Ф. Теория графов // М.: Мир, 1973.
- Косточка А. В. Дискретная математика. Часть 2 //Новосибирск: НГУ, 2001.
- Котов В. Е., Сабельфельд В. К. Теория схем программ // Наука 1991.
- http://algolist.manual.ru
-

О - нотация

- •Пусть f(x) и g(x) две функции, определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности g не обращается в ноль. Говорят, что:
- f является «O» большим от g при $x \to x_0$, если существует такая константа C > 0, что для всех x из некоторой окрестности точки x_0 имеет место неравенство

$$|f(x)| \le C|g(x)|;$$

• f является «о» малым от g при $x \to x_0$, если для любого C > 0 найдется такая проколотая окрестность U_{x_0} точки x_0 , что для всех $x \in U_{x_0}$ имеет место неравенство

$$|f(x)| < C|g(x)|$$
.

Иначе говоря, в первом случае отношение |f|/|g| в окрестности точки x_0 ограничено сверху, а во втором оно стремится к нулю при $x \to x_0$.

Асимптотическая сложность алгоритмов

Обозначение	Граница	Рост		
(Тета) О	Нижняя и верхняя границы, точная оценка	Равно		
(О - большое) О	Верхняя граница, точная оценка неизвестна	Меньше или равно		
(о-малое) о	Верхняя граница, не точная оценка	Меньше		
(Омега - большое) Ω	Нижняя граница, точная оценка неизвестна	Больше или равно		
(Омега - малое) ω	Нижняя граница, не точная оценка	Больше		

Асимптотическая сложность алгоритмов

Алгоритм	Эффективность			
o(n)	< n			
O(n)	≤n			
Θ(n)	= n			
Ω(n)	≥n			
ω(n)	> n			

Свойства

Транзитивность

$$egin{aligned} f(n) &= \Theta(g(n)) \wedge g(n) = \Theta(h(n)) &\Rightarrow f(n) = \Theta(h(n)) \ f(n) &= O(g(n)) \wedge g(n) = O(h(n)) &\Rightarrow f(n) = O(h(n)) \ f(n) &= \Omega(g(n)) \wedge g(n) = \Omega(h(n)) &\Rightarrow f(n) = \Omega(h(n)) \ f(n) &= o(g(n)) \wedge g(n) = o(h(n)) &\Rightarrow f(n) = o(h(n)) \ f(n) &= \omega(g(n)) \wedge g(n) = \omega(h(n)) &\Rightarrow f(n) = \omega(h(n)) \end{aligned}$$

Свойства

Рефлективность

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Симметричность

$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

Свойства

$$C \cdot o(f(n)) = o(f(n))$$

$$C \cdot o(f(n)) = o(f(n))$$

$$o(C \cdot f(n)) = o(f(n))$$

$$o(f(n)) = o(f(n))$$

$$o(f(n)) = o(f(n))$$

$$o(f(n)) = o(f(n))$$

$$o(f(n)) + o(f(n)) = o(f(n))$$

$$o(f(n)) + o(f(n)) = o(f(n))$$

$$o(f(n)) \cdot o(g(n)) = o(f(n) \cdot g(n))$$

$$o(f(n)) \cdot o(g(n)) = o(f(n)) \cdot o(g(n)) = o(f(n) \cdot g(n))$$

$$o(f(n)) \cdot o(f(n)) = o(f(n)) \cdot o(f(n)) = o(f(n))$$

$$o(f(n)) = o(f(n)) = o(f(n))$$

Асимптотическая сложность алгоритмов

O(1)

•Порядок роста O(1) означает, что вычислительная сложность алгоритма не зависит от размера входных данных.

O(n)

•Порядок роста O(n) означает, что сложность алгоритма линейно растет с увеличением входного массива.

 $O(n^2)$

Время работы алгоритма с порядком роста $O(n^2)$ зависит от квадрата размера входного массива.

O(log(n))

Порядок роста *O*(log *n*) означает, что время выполнения алгоритма растет логарифмически с увеличением размера входного массива.

$O(e^n)$

Временная сложность алгоритма экспоненциально зависит от данных.

O(n!)

Задачи связанные с полным перебором обычно обычно решаются за факториальное время. Например задача коммивояжёра решаемая метом полного перебора.

Поиск

Алгоритм	Структура данных	Временная	Сложность по памяти		
		В среднем	В худшем	В худшем	
Поиск в глубину (DFS)	Граф с V вершинами и E ребрами	*	O(E + V)	0(V)	
Поиск в ширину (BFS)	Граф с V вершинами и E ребрами	•	O(E + V)	0([V])	
Бинарный поиск	Отсортированный массив из n элементов	O(log(n))	O(log(n))	0(1)	
Линейный поиск	Массив	O(n)	O(n)	0(1)	
Кратчайшее расстояние по алгоритму Дейкстры используя двоичную кучу как очередь с приоритетом	Граф с V вершинами и E ребрами	O((V + E) log V)	O((V + E) log V)	O(V)	
Кратчайшее расстояние по алгоритму Дейкстры используя массив как очередь с приоритетом	Граф с V вершинами и E ребрами	O(V ^2)	O(V ^2)	0(V)	
Кратчайшее расстояние используя алгоритм Беллмана—Форда	Граф с V вершинами и E ребрами	O(V E)	O(V E)	0(V)	

https://habrahabr.ru/post/188010/

Сортировка

Алгоритм	Структура данных	Временная сложность			Вспомогательные данные	
		Лучшее	В среднем	В худшем	В худшем	
Быстрая сортировка	Массив	O(n log(n))	O(n log(n))	O(n^2)	O(n)	
Сортировка слиянием	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(n)	
Пирамидальная сортировка	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(1)	
Пузырьковая сортировка	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка вставками	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка выбором	Массив	O(n^2)	O(n^2)	O(n^2)	O(1)	
Блочная сортировка	Массив	O(n+k)	O(n+k)	O(n^2)	O(nk)	
Поразрядная сортировка	Массив	O(nk)	O(nk)	O(nk)	O(n+k)	

https://habrahabr.ru/post/188010/

Структуры данных

Структура данных	Временная сложность							Сложность по памяти	
	В среднем				В худшем				В худшем
	Индексация	Поиск	Вставка	Удаление	Индексация	Поиск	Вставка	Удаление	Ve.
Обычный массив	O(1)	O(n)			O(1)	O(n)	8	•	O(n)
Динамический массив	O(1)	O(n)	O(n)	O(n)	0(1)	O(n)	O(n)	O(n)	O(n)
Односвязный список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	0(1)	O(n)
Двусвя <mark>зный</mark> список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	0(1)	O(n)
Список с пропусками	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n log(n))
Хеш таблица	(¥)	0(1)	0(1)	0(1)	12	O(n)	O(n)	O(n)	O(n)
Бинарное дерево поиска	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n)
Декартово дерево	- 2	O(log(n))	O(log(n))	O(log(n))	-	O(n)	O(n)	O(n)	O(n)
Б-дере <mark>в</mark> о	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Красно-черное дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Расширяющееся дерево	1941	O(log(n))	O(log(n))	O(log(n))	:4	O(log(n))	O(log(n))	O(log(n))	O(n)
АВЛ-дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)

https://habrahabr.ru/post/188010/

Принцип Дирихле

При любом распределении nk+1 или более предметов по n ящикам в каком-нибудь ящике окажется не менее чем k+1 предмет.

Теорема. При любом выборе пяти точек внутри единичного квадрата, найдётся пара точек, удалённых одна от другой менее чем на $\frac{\sqrt{2}}{2}$.

Размещения

Теорема. Общее количество различных наборов при выборе k элементов из n без возвращения и с учётом порядка равняется

$$A_n^k = n(n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

и называется числом размещений из n элементов по k элементов.

Перестановки

Следствие. Если в множестве n элементов, то существует ровно n! перестановок этих элементов.

Доказательство. Перестановка — результат выбора без возвращения и с учётом порядка n элементов из n. Поэтому общее число перестановок равно $A_n^n = n!$

Сочетания

Теорема. Общее количество различных наборов при выборе k элементов из n без возвращения и без учёта порядка равняется

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k! (n-k)!}$$

и называется числом сочетаний из n элементов по k элементов.

Граф состоит из конечного множества вершин и некоторого множества неупорядоченных пар вершин называемые ребрами.

Маршрут в графе — это такая последовательность вершин и ребер в , что ребро соединяет вершины и при всех . Если , то говорят, что соединяет вершины вершины ; если к тому же все вершины в различны, то он называется путем

Граф называется *связным*, если каждая пара его вершин соединена путем (или, что равносильно, маршрутом).

Маршрут, в котором, называется *замкнутым*, а если при этом он не имеет других повторяющихся вершин, то называется *циклом*. Легко видеть, что любой минимальный по включению замкнутый маршрут есть цикл.

•Ребро (u, v) и вершина v инцидентны, а cmenehbo deg(v) вершины v в графе называют число ребер, инцидентных v. Вершина степени 0 называется изолированной, а вершина степени 1 — висячей.

Для графа G через V(G) и E(G) обозначим множества вершин и ребер G, соответственно. При работе с графами часто полезны следующих два факта.

Полный граф — граф, в котором для каждой пары вершин, существует ребро, инцидентное и инцидентное (каждая вершина соединена ребром с любой другой вершиной).

Клика — подмножество вершин графа, полностью соединённых друг с другом, то есть подграф, являющийся *полным графом*.

Лемма о рукопожатиях. Сумма степеней вершин любого графа равна удвоенному числу его ребер.

Лемма о цикле. Если в графе есть хотя бы одно ребро, но нет изолированных и висячих вершин, то в нем есть цикл.

Орграф

•Ориентированный

граф (сокращённо **орграф**) G — это граф $G \coloneqq (V, E)$, где V множество вершин графа, а E множество упорядоченных пар вершин $u, v \in V$.

Дуга (u, v) инцидентна вершинам u и v. При этом говорят, что u — начальная вершина дуги, а v — конечная вершина.

Орграф

Мультиграф

Мультиграф — граф, в котором может быть пара вершин, которая соединена более чем одним ребром (ненаправленным), либо более чем двумя дугами противоположных направлений.

Взвешенный граф

Взвешенный граф — граф, каждому *ребру* которого поставлено в соответствие некое значение (*вес ребра*).

Деревья

Связный граф без циклов называется *деревом*.

Деревья

- •Вернемся теперь к рассмотрению деревьев. Назовем граф 1-конструируемым, если его можно построить из одновершинного графа последовательным добавлением висячих вершин. **Теорема.** Следующие условия для графа G = (V, E) равносильны:
 - (1) *G* дерево;
 - (2) любые две вершины в G соединены ровно одним путем;
 - (3) G связен и $|E(G)| \le |V(G)| 1;$
- $(4) |E(G)| \ge |V(G)| 1 u G$ не имеет циклов;
- (5) G является 1-конструируемым.

Изоморфизм графов

Изоморфизм. Два графа называются изоморфными, если существует перестановка вершин, при которой они совпадают. Иначе говоря, два графа называются изоморфными, если существует взаимно-однозначное соответствие между их вершинами и рёбрами, которое сохраняет смежность и инцидентность (граф ы отличаются только названиями своих вершин).

Изоморфизм графов

Способы задания графов

«Матрица смежности G с конечным числом вершин n (пронумерованных числами от 1 до n) — это квадратная матрица A размера n, в которой значение элемента a_{ij} равно числу рёбер из i-й вершины графа в j-ю вершину.

Свойства матрицы смежности

- Матрица
 смежности неориентированного графа симметрична, а
 значит обладает действительными собственными
 значениями и ортогональным базисом из собственных
 векторов.
- Два графа G_1 и G_2 с матрицами смежности A_1 и A_2 являются изоморфными тогда и только тогда, когда существует перестановочная матрица P, такая что $PA_1P^{-1}=A_2$.
- Из этого следует, что матрицы A_1 и A_2 подобны, а значит имеют равные наборы собственных значений, определители и характеристические многочлены.

Способы задания графов

- •Матрица инцидентности графа G одна из форм представления графа, в которой указываются связи между инцидентными элементами графа (ребро(дуга) и вершина). Столбцы матрицы соответствуют ребрам, строки — вершинам. Ненулевое значение в ячейке матрицы указывает связь между вершиной и ребром (их инцидентность).
 - В случае ориентированного графа каждой дуге < x, y > ставится в соответствующем столбце: «-1» в строке вершины x и «1» в строке вершины y; если связи между вершиной и ребром нет, то в соответствующую ячейку ставится «0».

Для замера работы функции нужно использовать метод now() класса datetime модуля datetime

```
import datetime
array = [0] * N
array.insert(N,0)
                  def main():
                      t1 = datetime.datetime.now()
                      #You'r code here
                      print(datetime.datetime.now() - t1)
                  if name == ' main ':
                      main()
```

```
import numpy as np
# Generate numpy Array with N random numbers
array = np.random.rand(N)
#Sort Array by quick sort
sorted (array)
```


Задачи

- Реализовать алгоритм перемножения квадратных матриц. Матрицы могут задаваться как список списков. Считывать можно из файла потока ввода, или задавать случайным образом (используя функцию np.random.rand(N)). Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Найти все пифагоровы тройки ($c^2 = a^2 + b^2$) для заданного интервала. Интервал задается парой чисел через пробел считанных из входного потока (например: 10 100) помните, что верхняя грань отрезка должна быть больше нижней. Если задано одно число, то считаем, что ограничение снизу равно по умолчанию 1. Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Реализовать алгоритм факторизации числа (разложение числа как произведение двух других чисел). Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Реализовать алгоритм рассчитывающий сочетания и размещения.
- Факториал довольно емкостная функция, при расчете которого для больших значений может случится переполнение (т.е. полученное число будет больше чем максимально возможное число в вашей системе). Подумайте как преодолеть эту проблему.

Задачи

Написать оболочку для работы с графами:

- создавать графы
- Выводить граф (в виде таблицы смежности)
- Удалять ребра
- Ищет путь в графе для заданных вершин

Спасибо за внимание!