HAMILTONSche Quaternionen

Proseminar Mathematik

Leon Richardt

7. Juli 2020

Universität Osnabrück

Überblick

Reelle Algebren

Historisches

Die Quaternionenalgebra H

Der Imaginärraum von H

Zentrum von H

Endomorphismen von \mathbb{H}

Fundamentalsatz der Algebra für Quaternionen

Anmerkung

In dieser Präsentation stehen kleine griechische Buchstaben stets für reelle Zahlen; lateinische Buchstaben stehen für Elemente der momentan betrachteten Algebra.

Ein Vektorraum V über $\mathbb R$ mit einer Produktabbildung

$$V \times V \to V, (x, y) \mapsto xy$$

heißt Algebra über $\mathbb R$ (oder reelle Algebra), wenn die beiden Distributivgesetze

$$(\alpha x + \beta y)z = \alpha \cdot xz + \beta \cdot yz,$$

$$x(\alpha y + \beta z) = \alpha \cdot xy + \beta \cdot xz$$

für alle $\alpha, \beta \in \mathbb{R}$ und $x, y, z \in V$ erfüllt sind.

Ein Element x einer Algebra \mathcal{A} heißt Nullteiler, falls es ein Element $0 \neq y \in \mathcal{A}$ mit xy = 0 oder yx = 0 gibt.

Konsequenterweise heißt eine Algebra nullteilerfrei, falls sie keine Nullteiler $\neq 0$ besitzt.

Eine Algebra $A = (V, \cdot)$ heißt ...

- · ... assoziativ, wenn x(yz) = (xy)z für alle $x, y, z \in V$ gilt.
- · ... kommutativ, wenn xy = xy für alle $x, y \in V$ gilt.
- ... mit Einselement, wenn es ein Element $e \in V$ mit ex = xe = x für alle $x \in V$ gibt.
- · ... Divisionsalgebra, falls $A \neq 0$ und die Gleichungen

$$ax = b$$
 und $ya = b$

für alle $a, b \in V$, $a \neq 0$, eindeutig lösbar sind.

Lemma

Folgende Aussagen über eine endlichdimensionale Algebra ${\mathcal A}$ sind äquivalent:

- i) A ist Divisionsalgebra.
- ii) A ist nullteilerfrei.

- i) \implies ii) ist klar.
- $ii) \implies i)$:

Sei $a \in \mathcal{A} \setminus \{0\}$. Die Abbildung $\varphi \colon \mathcal{A} \to \mathcal{A}$, $x \mapsto ax$ ist ein VR-Endomorphismus. Wegen der Nullteilerfreiheit ist $\operatorname{kern}(\varphi) = \{0\}$, was aufgrund des Kernkriteriums die Injektivität bedeutet. Da weiterhin $\dim(\mathcal{A}) < \infty$, folgt aus der Dimensionsformel die Bijektivität. Damit ist jede Gleichung der Form ax = b eindeutig lösbar.

Die eindeutige Lösbarkeit von ya = b ergibt sich durch analoge Betrachtung der Abbildung $y \mapsto ya$.

Liegt ein VR V mit einer Basis e_1, \dots, e_n vor, so lässt sich durch die Festlegung der n^2 Basisprodukte

$$e_u e_v$$
, $1 \le u, v \le n$,

eine Algebra eindeutig bestimmen. Denn sind $x = \sum_{u=1}^{n} \alpha_u e_u$ und $y = \sum_{v=1}^{n} \beta_v e_v$ beliebige Elemente in V, so gilt wegen der Distributivgesetze

$$xy = \sum_{u,v=1}^{n} (\alpha_u \beta_v) e_u e_v.$$

Assoziativität und Kommutativität lassen sich dann einfach anhand der Basisprodukte überprüfen.

1805 Geboren in Dublin

1827 Berufung zum Professor der Astronomie

1835 Ritterschlag

1837–1845 Präsident der Royal Irish Academy

1843 Erfindung der Quaternionen

1865 Gestorben in Dunsink

Sir William Rowan HAMILTON [4]

- Hamilton beschäftigt sich 1835 mit der geometrischen Bedeutung der komplexen Zahlen im \mathbb{R}^2
- Er fragt sich: "Gibt es eine ähnliche Interpretation im \mathbb{R}^3 ?"

Geometrische Interpretation der komplexen Multiplikation [3]

 Hamilton sucht eine Multiplikation, die die bisherigen Regeln und Beziehungen weiterhin erfüllt. "Well, Papa, can you multiply triplets?" "No, I can only add and subtract them."

— Gespräch zwischen Hamilton und seinem Sohn

- Hamilton sucht eine Multiplikation, die die bisherigen Regeln und Beziehungen weiterhin erfüllt.
- Erster Ansatz: $x = \alpha + \beta i + \gamma j$ mit $i^2 = j^2 = -1$.

— Gespräch zwischen Hamilton und seinem Sohn

- Hamilton sucht eine Multiplikation, die die bisherigen Regeln und Beziehungen weiterhin erfüllt.
- Erster Ansatz: $x = \alpha + \beta i + \gamma j$ mit $i^2 = j^2 = -1$.
- Er stellt fest, dass für die Gültigkeit der Produktregel ij + ji = 0 gelten muss. Unter Erhaltung der Kommutativität hieße dies:
 2ij = 0 ⇒ ij = 0, was ihm aber nicht gefällt.

— Gespräch zwischen Hamilton und seinem Sohn

- Hamilton sucht eine Multiplikation, die die bisherigen Regeln und Beziehungen weiterhin erfüllt.
- Erster Ansatz: $x = \alpha + \beta i + \gamma j$ mit $i^2 = j^2 = -1$.
- Er stellt fest, dass für die Gültigkeit der Produktregel ij + ji = 0 gelten muss. Unter Erhaltung der Kommutativität hieße dies:
 2ij = 0 ⇒ ij = 0, was ihm aber nicht gefällt.

- Gespräch zwischen Hamilton und seinem Sohn
- Stattdessen gibt Hamilton lieber die Kommutativität auf, was $ji=-ij\neq 0$ erlaubt.

- Hamilton sucht eine Multiplikation, die die bisherigen Regeln und Beziehungen weiterhin erfüllt.
- Erster Ansatz: $x = \alpha + \beta i + \gamma j$ mit $i^2 = j^2 = -1$.
- Er stellt fest, dass für die Gültigkeit der Produktregel ij + ji = 0 gelten muss. Unter Erhaltung der Kommutativität hieße dies:
 2ij = 0 ⇒ ij = 0, was ihm aber nicht gefällt.

- Gespräch zwischen Hamilton und seinem Sohn
- Stattdessen gibt Hamilton lieber die Kommutativität auf, was $ji=-ij\neq 0$ erlaubt.
- Die entscheidende Idee kommt ihm 1843:

Er setzt ij := k, ji = -k und nimmt k als linear unabhängig von i und j an.

Gedenktafel an der Broome Bridge in Dublin [2]

Hamilton definiert die *Quaternionen-Algebra* H durch die Festlegung der Produkte der Basiselemente

$$e_1 := (1,0,0,0), \, e_2 := (0,1,0,0), \, e_3 := (0,0,1,0), \, e_4 := (0,0,0,1):$$

$$\begin{array}{c|ccccc} & e_2 & e_3 & e_4 \\ \hline e_2 & -e_1 & e_4 & -e_3 \\ e_3 & -e_4 & -e_1 & e_2 \\ e_4 & e_3 & -e_2 & -e_1 \\ \end{array}$$

(Es sei e_1 das Einselement.)

Man sieht direkt, dass ℍ nicht kommutativ ist. Die Assoziativität lässt sich wie im Einführungsabschnitt besprochen überprüfen.

Neben dieser klassischen Konstruktion von \mathbb{H} gibt es noch einen eleganteren Weg, der uns viele Eigenschaften der Quaternionen-Algebra direkter liefert:

Theorem

Die Menge
$$\mathcal{H}:=\left\{\begin{pmatrix} w & -z \\ \bar{z} & \bar{w} \end{pmatrix}: w,z\in\mathbb{C}\right\}$$
 ist eine \mathbb{R} -Unteralgebra von $\mathrm{Mat}(2,\mathbb{C})$ mit Einselement E_2 . \mathcal{H} ist eine vierdimensionale, assoziative Divisionsalgebra.

Man verifiziert durch Nachrechnen, dass \mathcal{H} ein vierdimensionaler \mathbb{R} -UVR von $\mathrm{Mat}(2,\mathbb{C})$ ist. Auch die Abgeschlossenheit bezüglich der Matrizenmultiplikation überprüft man auf diese Weise.

Die Assoziativität ist klar, da $Mat(2, \mathbb{C})$ assoziativ ist.

Um einzusehen, dass \mathcal{H} auch eine Divisionsalgebra ist, benutzen wir das eingangs bewiesene Nullteilerkriterium:

Seien also $A, B \in \mathcal{H}$ mit AB = 0. Wegen des Determinantenmultiplikationsatzes gilt $\det(A) \cdot \det(B) = 0$, also $\det(A) = 0$ oder $\det(B) = 0$. Aus

$$\det\begin{pmatrix} w & -z\\ \bar{z} & \bar{w} \end{pmatrix} = |w|^2 + |z|^2 = 0 \iff w = z = 0$$

folgt

$$AB = 0 \iff A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ oder } B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Das bedeutet, dass $\mathcal H$ keine Nullteiler eq 0 besitzt. Damit ist $\mathcal H$ eine Divisionsalgebra.

Lemma

Die Abbildung

$$F \colon \mathbb{H} \to \mathcal{H}, \quad (\alpha, \beta, \gamma, \delta) \mapsto \begin{pmatrix} \alpha + \beta i & -\gamma - \delta i \\ \gamma - \delta i & \alpha - \beta i \end{pmatrix},$$

ist ein \mathbb{R} -Algebra-Isomorphismus und es gilt:

$$F(e_1) = E_2 =: E, \quad F(e_2) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} =: I,$$
 $F(e_3) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =: J, \quad F(e_4) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} =: K.$

Korollar

Die Hamiltonsche Algebra $\mathbb H$ ist eine assoziative Divisionsalgebra.

Korollar

Die Hamiltonsche Algebra H ist eine assoziative Divisionsalgebra.

Beweis.

Wir haben gezeigt, dass $\mathcal H$ eine assoziative Divisionsalgebra ist.

Durch den oben beschriebenen Isomorphismus F ist also auch $\mathbb H$ eine assoziative Divisionsalgebra.

Man muss also "nur" mit komplexen Matrizen rechnen können, um den Umgang mit der Quaternionen-Algebra zu beherrschen.

Der Imaginärraum von ⊞

Der Untervektorraum

$$\mathfrak{I}(\mathbb{H}) := \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$$

heißt *Imaginärraum*. Seine Elemente werden auch als vektorielle Quaternionen bezeichnet.

Äquivalent zu dieser (basisabhängigen) Darstellung ist die Form

$$\mathfrak{I}(\mathbb{H}) = \left\{ x \in \mathbb{H} \colon x^2 \in \mathbb{R}e \text{ und } x \notin \mathbb{R}e \setminus \{0\} \right\}.$$

Der Untervektorraum

$$\mathfrak{I}(\mathbb{H}) := \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$$

heißt *Imaginärraum*. Seine Elemente werden auch als vektorielle Quaternionen bezeichnet.

Äquivalent zu dieser (basisabhängigen) Darstellung ist die Form

$$\mathfrak{I}(\mathbb{H}) = \left\{ x \in \mathbb{H} \colon x^2 \in \mathbb{R}e \text{ und } x \notin \mathbb{R}e \setminus \{0\} \right\}.$$

Wegen $x^2 \in \mathbb{R}e \nsubseteq \mathfrak{I}(\mathbb{H})$ ist $\mathfrak{I}(\mathbb{H})$ keine \mathbb{R} -Unteralgebra von \mathbb{H} .

Aus dieser Darstellung folgert man, dass es zu jedem $u \in \mathfrak{I}(\mathbb{H}), u \neq 0$, einen Skalar ϱ mit $(\varrho u)^2 = -e$ gibt. (Man kann also normieren.)

Seien $u = \beta i + \gamma j + \delta k$, $v = \varrho i + \sigma j + \tau k$. Durch Ausmultiplizieren ergibt sich $uv = -(\beta \varrho + \gamma \sigma + \delta \tau) \varrho + (\gamma \tau - \delta \sigma) i + (\delta \varrho - \beta \tau) j + (\beta \sigma - \gamma \varrho) k.$

Dies kann man auch schreiben als

$$uv = -\langle u, v \rangle e + u \times v,$$

und gewinnt so auf natürliche Weise Skalar- und Kreuzprodukt aus der Quaternionenmultiplikation.

Für $u, v, w \in \mathfrak{I}(\mathbb{H})$ bestätigt man durch einfaches Nachrechnen:

$$\cdot \ u \times v = \frac{1}{2}(uv - vu)$$

$$\cdot \langle v, u \rangle e = -\frac{1}{2}(uv + vu)$$

$$u \times (v \times w) = \frac{1}{2}(uvw - vwu)$$

$$|u,v|^2 + |u \times v|^2 = |u|^2 |v|^2$$

$$\cdot \langle u \times v, w \rangle = \langle u, v \times w \rangle$$

(Vertauschungsregel)

$$\cdot \ u \times (v \times w) = \langle u, w \rangle v - \langle u, v \rangle w$$

(GRASSMANN-Identität)

$$\cdot \ u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0$$

(JACOBI-Identität)

Theorem

Für die Algebra H gilt:

$$Z(\mathbb{H}) = \mathbb{R}e = \{x \in \mathbb{H} : xu = ux \text{ für alle } u \in \mathfrak{I}(\mathbb{H})\}.$$

Es ist klar, dass $\mathbb{R}e\subseteq Z$ (\mathbb{H}); denn e ist neutrales Element, also per Definition mit allen Elementen aus \mathbb{H} kommutativ. Die Skalare sind natürlich ebenfalls kommutativ zueinander.

Zur Umkehrung.

Sei $x = \alpha e + \beta i + \gamma j + \delta k \in Z(\mathbb{H})$, das heißt, x kommutiert mit allen Elementen aus \mathbb{H} . Insbesondere kommutiert x mit den Basiselementen $i, j \in \mathbb{H}$, es muss also ix = xi und jx = xj gelten.

Wir wollen zeigen, dass dann bereits $x \in \mathbb{R}e$ ist.

Ausmultiplizieren der ersten Gleichung ergibt

$$xi = ix$$

$$\iff \alpha i - \beta + \gamma k - \delta j = \alpha i - \beta - \gamma k + \delta j$$

$$\iff \gamma k - \delta j = -\gamma k + \delta j$$

$$\iff \gamma k - \delta j = -(\gamma k - \delta j)$$

$$\iff 2\gamma k - 2\delta j = 0$$

$$\iff \gamma = \delta = 0.$$

Analog ergibt sich aus der zweiten Gleichung $\beta = \delta = 0$. Damit ist $\beta = \gamma = \delta = 0$. x ist demnach von der Form $x = \alpha e$, also $x \in \mathbb{R}e$. Das bedeutet $Z(\mathbb{H}) \subseteq \mathbb{R}e$, und damit folgt aus dem ersten Teil wie gewünscht

$$Z(\mathbb{H}) = \mathbb{R}e.$$

Fundamentalsatz der Algebra für Quaternionen

Literatur

- H.D. Ebbinghaus u.a. Zahlen. Grundwissen Mathematik. Springer Berlin Heidelberg, 1992. ISBN: 978-3-540-55654-1. URL: https://books.google.de/books?id=c1j0fh4CxhoC.
- JP. William Rowan Hamilton Plaque Plaque on Broome Bridge on the Royal Canal commemorating William Rowan Hamilton's discovery. The plaque reads: 25. Feb. 2007. URL: https://commons.wikimedia.org/wiki/File: William_Rowan_Hamilton_Plaque_-_geograph.org.uk_-_347941.jpg (besucht am 03.07.2020).
- Kmhkmh. Multiplication of complex numbers. 29. Dez. 2016. URL: https://commons.wikimedia.org/wiki/File:Komplexe_multiplikation.svg (besucht am 03.07.2020).

William Powan Hamilton painting ing (hosucht am 03 07 2020)

Unknown Artist. Painting of Sir William Rowan Hamilton. URL: https://commons.wikimedia.org/wiki/File: