The physics package

Leedehai

https://github.com/leedehai/typst-physics

Version 0.5, March 31, 2023 Document updated: March 31, 2023

NOTE (2023-03-31): <u>Typst</u> is in beta and evolving, and this package evolves with it. Also, the package itself is under development and fine-tuning. As a result, no backward compatibility is guaranteed yet, until the major version becomes a positive number.

Contents

1.	Introduction	1
2.	Using physics	1
3.	The symbols	2
	3.1. Braces	. 2
	3.2. Vector notations	2
	3.3. Matrix notations	3
	3.4. Dirac braket notations	3
	3.5. Math functions	
	3.6. Differentials and derivatives	
	3.6.1. Differentials	5
	3.6.2. Ordinary derivatives	5
	3.6.3. Partial derivatives	6
	3.7. Miscellaneous	7
	3.7.1. Reduced Planck constant (hbar)	
	3.7.2. Tensors	7
	3.7.3. Isotopes	8
4.	Acknowledgement	8

1. Introduction

The physics package provides handy <u>Typst</u> typesetting functions that make academic writing for physics simpler and faster by simplifying otherwise very complex expressions.

This manual itself was generated using the Typst CLI and the physics package, so hopefully the manual source code is able to provide you with a sufficiently self evident demonstration of how this package shall be used.

2. Using physics

• To use the physics package, you may import names specifically:

```
#import "physics.typ": curl, grad
The expression $op("curl")(op("grad") f) ident curl (grad f) = 0$ is not foreign to any trained eye in physical mathematics.
```

• or you may simply import all names:

```
#import "physics.typ": *
```

The expression p("curl")(op("grad") f) ident curl (grad f)\$ is not foreign to any trained eye in physical mathematics.

• sometimes you may want to import the names under a name space:

```
#import "physics.typ"
```

The expression \$op("curl")(op("grad") f) ident physics.curl (physics.grad f)\$ is not foreign to any trained eye in physical mathematics.

3. The symbols

Some symbols are already provided as a Typst built-in (TBI). They are listed here just for completeness, as users coming from LATEX's physics package might not know they are already available in Typst out of box.

All symbols need to be used in **math mode** \$...\$.

3.1. Braces

Symbol	Abbr.	Example	Notes
abs (content)		$\mathrm{abs}(\mathrm{phi}(\mathrm{x})) \to \varphi(x) $	absolute, TBI
norm(content)		$\mathrm{norm}(\mathrm{phi}(\mathbf{x})) \longrightarrow \ \varphi(x)\ $	norm, TBI
order(content)		order(x^2) $ ightarrow \mathcal{O}ig(x^2ig)$	order of magnitude
Set		Set(a_n) $\to \{a_n\}$ Set(integral u, forall u) $\to \{\int u \mid \forall u\}$	math set, use Set not set since the latter is a Typst keyword
evaluated	eval	$\begin{array}{l} \operatorname{eval}(f(x))_\mathtt{0}^{\text{o}} & \operatorname{infinity} \\ \to f(x)\big _0^\infty & \\ \operatorname{eval}(f(x)/g(x))_\mathtt{0}^{\text{o}} & \\ \to \frac{f(x)}{g(x)}\big _0^1 & \end{array}$	attach a vertical bar on the right to denote evaluation boundaries
expectationvalue	expval	expval(u) $ ightarrow \langle u angle$	expectation value

3.2. Vector notations

Symbol	Abbr	. Example	Notes
vec		$\operatorname{vec}(1,2) \to \binom{1}{2}$	column vector, TBI
vecrow		$\mathrm{vecrow}(1,2) \to (1,2)$	row vector
		vecrow(sum_0^n a_i, b)	
		$\rightarrow \left(\sum_{i=0}^{n} a_i, b\right)$	
TT		$v^{TT}, \ A^{T} T \to v^{T}, A^{T}$	transpose (same for matrices)
<pre>vectorbold(content)</pre>	vb	vb(a),va(mu_1) $ ightarrow a, \mu_1$	vector, bold
<pre>vectorarrow(content)</pre>	va	va(a),va(mu_1) $ ightarrow ec{a}, \overrightarrow{\mu_1}$	vector, arrow
<pre>vectorunit(content)</pre>	vu	vu(a),vu(mu_1) $ ightarrow \widehat{a},\widehat{\mu_1}$	unit vector
gradient	grad	grad f $ ightarrow oldsymbol{ abla} f$	gradient
divergence	div	div vb(E) $ ightarrow oldsymbol{ abla} \cdot oldsymbol{E}$	divergence
curl		curl vb(B) $ ightarrow oldsymbol{ abla} imes oldsymbol{B}$	curl

laplacian	diaer(u) = c^2 laplacian u $ ightarrow \ddot{u} = c^2 abla^2 u$	laplacian
dotproduct	a dotproduct b $\longrightarrow a\cdot b$	dot product
crossproduct	a crossproduct b $ ightarrow a imes b$	cross product

3.3. Matrix notations

Symbol	Abbr.Example	Notes
TT	$v^TT,\ A^TT \longrightarrow v^T, A^T$	transpose (same for vectors)
mat		matrix, TBI
<pre>matrixdet()</pre>	$mdet\ mdet(1,x;1,y) \to \left egin{smallmatrix} 1 & x \\ 1 & y \end{matrix} \right $	matrix determinant
diagonalmatrix()	dmat dmat(1,2) $ ightarrow \left(egin{smallmatrix} 1 & 0 \\ 0 & 2 \end{smallmatrix}\right)$	diagonal matrix
antidiagonalmatrix()	$\begin{aligned} & \operatorname{dmat}(1,a,xi,\operatorname{delim}:"["]) \\ & \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & \xi \end{bmatrix} \\ & \operatorname{admat}\operatorname{admat}(1,2) \to \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \\ & \operatorname{admat}(1,a,xi,\operatorname{delim}:"["]) \\ & \to \begin{bmatrix} 0 & 0 & 1 \\ 0 & a & 0 \\ \xi & 0 & 0 \end{bmatrix} \end{aligned}$	anti-diagonal matrix
identitymatrix()	imat imat(#2) $\rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	identity matrix, note: Typst
	$\operatorname{imat}(\#3,\operatorname{delim}:"["]) \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
zeromatrix()	zmat zmat(#2) $\rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	zero matrix, note: Typst
	zmat zmat(#2) $\rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ zmat(#3,delim:"[") $\rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	needs # to parse input as a number

3.4. Dirac braket notations

Symbol	Abbr.	Example	Notes
bra(content)		$bra(u) \to \langle u $	bra
		bra(limits(sum)_(i=0)^n i)	
		$\rightarrow \left\langle \sum_{i=0}^{n} i \right $	
ket(content)		$ket(u) \to \ket{u}$	ket
		<pre>ket(limits(sum)_(i=0)^n i)</pre>	
		$\rightarrow \left \sum_{i=0}^{n} i\right\rangle$	
braket(a, b)		braket(u, v)	braket
		$\rightarrow \langle u v\rangle$	
		<pre>braket(limits(sum)_(i=0)^n i, b)</pre>	
		$ ightarrow \left\langle \sum_{i=0}^{n} i b \right angle$	
ketbra(a, b)		ketbra(u, v)	ketbra
		$\rightarrow u\rangle\langle v $	

3.5. Math functions

Expressions

Typst built-in (TBI) math operators: source code.

<pre>sin(x), sinh(x), arcsin(x</pre>), asin(x) \sin	$\mathbf{a}(x), \sinh(x), \arcsin(x), \mathrm{asin}(x)$	
cos(x), $cosh(x)$, $arccos(x)$), acos(x) cos	$s(x), \cosh(x), \arccos(x), \cos(x)$	
tan(x), $tanh(x)$, $arctan(x)$), atan(x) tan	$\operatorname{an}(x), \operatorname{tanh}(x), \operatorname{arctan}(x), \operatorname{atan}(x)$	
<pre>sec(x), sech(x), arcsec(x</pre>), asec(x) sec	$\sec(x), \operatorname{sech}(x), \operatorname{arcsec}(x), \operatorname{asec}(x)$	
csc(x), $csch(x)$, $arccsc(x)$), acsc(x) csc	$c(x), \operatorname{csch}(x), \operatorname{arccsc}(x), \operatorname{acsc}(x)$	
<pre>cot(x), coth(x), arccot(x</pre>), acot(x) con	$t(x), \coth(x), \operatorname{arccot}(x), \operatorname{acot}(x)$	
Expressions	Results	Notes	
Pr(x)	Pr(x)	probability, TBI	
exp x, log x, lg x, ln x	$\exp x, \log x, \lg x, \ln x$	exponential and logarithmic, TBI	
det A	$\det A$	matrix determinant, TBI	
diag(-1,1,1,1)	$\operatorname{diag}(-1,1,1,1)$	diagonal matrix, compact form (use dmat for the "real" matrix form)	
trace A, tr A	$\operatorname{trace} A,\operatorname{tr} A$	matrix trace	
Trace A, Tr A	$\operatorname{Trace} A,\operatorname{Tr} A$	matrix trace, alt.	
rank A	$\operatorname{rank} A$	matrix rank	
erf(x)	$\operatorname{erf}(x)$	Gauss error function	
Res A	$\operatorname{Res} A$	residue	
Re z, Im z	${\rm Re}z, {\rm Im}z$	real, imaginary parts of a complex number	
sgn x	$\operatorname{sgn} x$	sign function	

Results

3.6. Differentials and derivatives

Symbol		r.Example	Notes
<pre>differential()</pre>	dd	e.g. $\mathrm{d}f, \mathrm{d}x\mathrm{d}y, \mathrm{d}^3x, \mathrm{d}x \wedge \mathrm{d}y$ See Section 3.6.1	differential
variation()	var	$ extsf{var(f)} o \delta f$ $ extsf{var(x,y)} o \delta x \delta y$	variation, shorthand of dd(, d: delta)
derivative()	dv	e.g. $\frac{\mathrm{d}}{\mathrm{d}x}, \frac{\mathrm{d}f}{\mathrm{d}x}, \frac{\Delta^k f}{\Delta x^k}, \mathrm{d}f/\mathrm{d}x$ See Section 3.6.2	derivative
partialderivative()	pdv	e.g. $\frac{\partial}{\partial x}$, $\frac{\partial f}{\partial x}$, $\frac{\partial^4 f}{\partial x^2 \partial y^2}$, $\frac{\partial^5 f}{\partial x^2 \partial y^3}$, $\frac{\partial}{\partial f} / \partial x$ See Section 3.6.3	partial derivative, could be mixed order

3.6.1. Differentials

Functions: differential(*args, **kwargs), abbreviated as dd(...).

- positional *args*: the variable names,
- named kwargs:
 - n: an order number an order number array [default: none],
 - d: the differential symbol [default: upright(d)].
 - p: the product symbol connecting the components [default: none].

Order assignment algorithm:

- If there is no order number or order number array, all variables has order 1.
- If there is an order number (not an array), then this order number is assigned to *every* variable, e.g. dd(x,y,n:2) assigns $x \leftarrow 2, y \leftarrow 2$.
- If there is an order number array, then the order numbers therein are assigned to the variables in order, e.g. dd(f,x,y,n:(2,3)) assigns $x \leftarrow 2, y \leftarrow 3$.
- If the order number array holds fewer numbers than the number of variables, then the orders of the remaining variables are 1, e.g. dd(x,y,z,n:(2,3)) assigns $x \leftarrow 2, y \leftarrow 3, z \leftarrow 1$.
- If a variable x has order 1, it is rendered as dx not $d^{1}x$.

Examples

3.6.2. Ordinary derivatives

Function: derivative(f, *args, **kwargs), abbreviated as dv(...).

- f: the function, which can be #none or omitted,
- positional args: the variable name, **optionally** followed by an order number,
- named *kwargs*:
 - d: the differential symbol [default: upright(d)].

• s: the "slash" separating the numerator and denominator [default: none], by default it produces the normal fraction form $\frac{df}{dx}$. The most common non-default is slash or simply \/, so as to create a flat form df/dx that fits inline.

Order assignment algorithm: there is just one variable, so the assignment is trivial: simply assign the order number (default to 1) to the variable. If a variable x has order 1, it is rendered as x not x^1 .

Examples

(1)
$$dv(,x)$$
, $dv(,x,2)$, $dv(,x,k+1)$ (2) $dv(,vb(r))$, $dv(,vb(r),2)$
$$\frac{d}{dx}, \frac{d^2}{dx^2}, \frac{d^{k+1}}{dx^{k+1}}$$
 (2) $dv(,vb(r))$, $dv(,vb(r),2)$
$$\frac{d}{dr}, \frac{d^2}{dr^2}$$
 (3) $dv(f,x)$, $dv(f,x,2)$, $dv(f,xi,k+1)$ (4) $dv(f,vb(r))$, $dv(f,vb(r),2)$
$$\frac{df}{dx}, \frac{d^2f}{dx^2}, \frac{d^{k+1}f}{dx^{k+1}}$$
 (6) $dv(,x,d)$: $delta)$, $dv(,x,2)$

3.6.3. Partial derivatives

Function: partialderivative(f, *args, **kwargs), abbreviated as pdv(...).

- *f*: the function, which can be #none or omitted,
- positional *args*: the variable names, **optionally** followed by an order number e.g. #2, or an order number array e.g. #(2,3).
 - Note # is important, since Typst constructs a number or array in **code mode** without #, what follows will just be parsed as a sequence of generic symbols (not numbers) that are not operable in the numeric computation of the total order.
- named kwargs:
 - s: the "slash" separating the numerator and denominator [default: none], by default it produces the normal fraction form $\frac{\partial f}{\partial x}$. The most common non-default is slash or simply \/, so as to create a flat form $\partial f/\partial x$ that fits inline.

Order assignment algorithm:

- If there is no order number or order number array, all variables has order 1.
- If there is an order number (not an array), then this order number is assigned to *every* variable, e.g. pdv(f,x,y,#2) assigns $x \leftarrow 2, y \leftarrow 2$.
- If there is an order number array, then the order numbers therein are assigned to the variables in order, e.g. pdv(f,x,y,#(2,3)) assigns $x \leftarrow 2, y \leftarrow 3$.
- If the order number array holds fewer numbers than the number of variables, then the orders of the remaining variables are 1, e.g. pdv(f,x,y,z,#(2,3)) assigns $x \leftarrow 2, y \leftarrow 3, z \leftarrow 1$.
- If a variable x has order 1, it is rendered as x, not x^1 .

The total order applied to the function differential is automatically calculated by adding the order numbers of the variables. Examples:

- pdv(f, x) has total order 1,
- pdv(f, x, #2) has total order 2,
- pdv(f, x, y, #2) has total order 2 + 2 = 4,
- pdv(f, x, y, #(2, 3)) has total order 2 + 3 = 5,
- pdv(f, x, y, z, #(2, 3)) has total order 2 + 3 + 1 = 6,

Examples

(4) pdv(f,x,y,#2), pdv(f,x,y,#3)

(6) pdv(,t,#2,s:\/), pdv(f,x,y,s:slash)

(8) pdv(phi,x,y,z,tau, #(2,2,2,1))

$$rac{\partial^2}{\partial t^2} \qquad \qquad rac{\partial arphi}{\partial m{r}}, rac{\partial^2}{\partial m{r}}$$

$$\frac{\partial^2}{\partial x \partial y}, \frac{\partial^4}{\partial x^2 \partial y^2}, \frac{\partial^6 \varphi}{\partial x^3 \partial y^3}$$

(5)
$$pdv(,x,y,\#(2,)), pdv(,x,y,\#(1,2))$$

$$\frac{\partial^3}{\partial x^2 \partial y}, \frac{\partial^3}{\partial x \partial y^2}$$
 $\frac{\partial^2}{\partial t^2}, \frac{\partial^2}{\partial t^2} f/\partial x \partial y$

(7)
$$pdv(, (x^1), (x^2), (x^3), \#(1,3))$$

$$\frac{\partial^5}{\partial (x^1)\partial (x^2)^3\partial (x^3)} \qquad \qquad \frac{\partial^7 \varphi}{\partial x^2 \partial y^2 \partial z^2 \partial \tau}$$

(9) integral_V
$$dd(V)$$
 (pdv(cal(L), phi) - diff_mu (pdv(cal(L), (diff_mu phi)))) = 0

$$\int_{V} \mathrm{d}V \left(\frac{\partial \mathcal{L}}{\partial \varphi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \varphi \right)} \right) \right) = 0$$

3.7. Miscellaneous

3.7.1. Reduced Planck constant (hbar)

Due to the default font, the built-in symbol planck.reduce \hbar looks a bit off: on letter "h" there is a slash instead of a horizontal bar, contrary to the symbol's colloquial name "h-bar". This package offers hbar to render the symbol in the familiar form: \hbar . Contrast:

Typst's planck.reduce
$$E=\hbar\omega$$
 $\frac{\pi G^2}{\hbar c^4}$ $Ae^{\frac{i(px-Et)}{\hbar}}$ $i\hbar\frac{\partial}{\partial t}\psi=-\frac{\hbar^2}{2m}\nabla^2\psi$ this package's hbar $E=\hbar\omega$ $\frac{\pi G^2}{\hbar c^4}$ $Ae^{\frac{i(px-Et)}{\hbar}}$ $i\hbar\frac{\partial}{\partial t}\psi=-\frac{\hbar^2}{2m}\nabla^2\psi$

3.7.2. Tensors

Tensors are often expressed using the <u>abstract index notation</u>, which makes the contravariant and covariant "slots" explicit. The intuitive solution of using superscripts and subscripts do not suffice if both upper (contravariant) and lower (covariant) indices exist, because the notation rules require the

indices be vertically separated: e.g. T^a_b and T_a^b , which are of different shapes. " T^a_b " is flatly wrong, and T^(space w)_(i space j) produces a weird-looking " T^w_i " (note w, j vertically overlap).

Function: tensor(symbol, *args).

- *symbol*: the tensor symbol,
- positional args: comma-separated list taking the form of +... or -..., where a + prefix denotes an upper index and a prefix denotes a lower index.

Examples

(5) tensor((dd(x^lambda)),-a)
 (6) tensor(AA,+a,+b,-c,-d,+e,-f,+g,-h)
$$(dx^{\lambda})$$

$$\mathbb{A}^{ab} \stackrel{e}{\underset{od}{=}} \stackrel{g}{\underset{b}{=}}$$

(9) grad_mu A^nu = diff_mu A^nu + tensor(Gamma,+nu,-mu,-lambda) A^lambda

$$\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + \Gamma^{\nu}_{\ \mu\lambda}A^{\lambda}$$

3.7.3. Isotopes

Function: isotope(element, a: ..., z: ...).

- *element*: the chemical element (use "..." for multi-letter symbols)
- *a*: the mass number *A* [default: none].
- z: the atomic number Z [default: none].

Examples

4. Acknowledgement

Huge thanks to Sergio C. de la Barrera's LATEX physics package and Simon Jensen's LATEX derivative package, which lit the way for physics typesetting.

[©] Copyright 2023 Leedehai. The document is shared under Creative Commons Attribution-NoDerivatives 4.0 license (CC BY-ND 4.0).