Лабораторна робота 7

ТЕОРІЯ ІГОР. РІШЕННЯ МАТРИЧНИХ ІГОР У ЗМІШАНИХ СТРАТЕГІЯХ

Мета: ознайомлення з теорією ігор, змішані стратегії.

Основні теоретичні відомості

Рішення матричних ігор у змішаних стратегіях

Рішення матричних ігор у змішаних стратегіях може бути знайдено або графічно, або методами лінійного програмування. Графічний метод можна застосовувати для вирішення ігор, в яких хоч один гравець має дві *чисті стратегії*. Цей метод графічно пояснює поняття *сідлової точки*. Методами лінійного програмування може бути вирішена будь-яка гра двох осіб з нульовою сумою.

Графічне рішення ігор.

Розглянемо гру 2 × n, в якій гравець А має дві стратегії.

	<i>y</i> ₁	<i>y</i> ₂	2000	Уn
	B ₁	B ₂	3499	B_n
x ₁ : A ₁	a ₁₁	a ₁₂	2444	a _{1n}
- x ₁ : A ₂	a ₂₁	a ₂₂		a _{2n}

Гра передбачає, що гравець А змішує стратегії A_1 і A_2 з відповідними можливостями x_1 і $1-x_1$, $0 \le x_1 \le 1$. Гравець В змішує стратегії B_1 , B_2 , ..., B_n з вірогідністю y_1 , y_2 , ..., y_n , де $y_j \ge 0$, j=1,2,...,n, і $y_1+y_2+...+y_n=1$. В цьому випадку очікуваний виграш гравця A, що відповідає j-й чистій стратегії гравця B, обчислюється у вигляді $(a_{1j}-a_{2j})\,x_1-a_{2j},\,j=1,2,...,n$.

Отже, гравець A шукає величину x_1 , яка максимізує мінімум очікуваних виграшів

Приклад: Розглянемо наступну гру 2 × 4, в якій платежі виплачуються гравцеві А.

	B ₁	B ₂	B ₃	B ₄
A_1	2	2	3	-1
A_2	4	3	2	6

Гра не має рішення в чистих стратегіях, і, отже, стратегії повинні бути змішаними. Очікувані виграші гравця А, відповідні чистим стратегіям гравця В, наведені в наступній таблиці.

Чистые стратегии игрока В	Ожидаемые выигрыши игрока А	
1	-2x ₁ + 4	
2	-x ₁ + 3	
3	x ₁ + 2	
4	$-7x_1 + 6$	

На рис. 7.1 зображені чотири прямі лінії, відповідні чистим стратегіям гравця В. Щоб визначити найкращий результат з найгірших, побудована нижня пряма огинає чотири зазначені прямі (вона позначена на малюнку товстими лінійними сегментами), яка представляє мінімальний (найгірший) виграш для гравця А незалежно від того, що робить гравець В. Максимум (найкраще) нижньої прямої, що огинає, відповідає максиміному рішенню в точці $x_1^* = 0,5$. Ця точка визначається перетином прямих 3 та 4. Отже, оптимальним рішенням для гравця А є змішування стратегій A_1 і A_2 з вірогідністю 0,5 і 0,5 відповідно. Відповідна ціна гри у визначається підстановкою $x_1 = 0,5$ в рівняння або прямої 3, або 4, що приводить до наступного.

$$v = \begin{cases} \frac{1}{2} + 2 = \frac{5}{2} & \text{из уравнения прямой 3,} \\ -7\left(\frac{1}{2}\right) + 6 = \frac{5}{2} & \text{из уравнения прямой 4.} \end{cases}$$

Рис. 7.1. Графічне рішення гри двох осіб з нульовою сумою

Оптимальна змішана стратегія гравця В визначається двома стратегіями, які формують нижню пряму, що огибає. Це означає, що гравець В може змішувати стратегії B_3 і B_4 , в цьому випадку $y_1 = y_2 = 0$ і $y_4 = 1-y_3$. Відповідно, платежі що очікуються гравцем B, та відповідають чистим стратегіям гравця A, мають наступний вид.

Чистые стратегии игрока А	Ожидаемые платежи игрока В	
t	4 <i>y</i> ₃ – 1	
2	$-4y_3 + 6$	

Найкраще рішення з найгірших для гравця В ϵ точкою мінімуму верхньої прямої, що огібає заданих двох прямих. Ця процедура еквівалентна рішенням рівняння:

$$4y_3 - 1 = -4y_3 + 6$$
.

Його рішенням є $y_3 = 7/8$, що визначає ціну гри $v = 4 \times (7/8) - 1 = 5/2$.

Таким чином, рішенням гри для гравця A ϵ змішування стратегій A_1 і A_2 з рівними можливостями 0.5 і 0.5, а для гравця B змішування стратегій B_3 і B_4 з вірогідністю 7/8 і 1/8. (Насправді гра має альтернативне рішення для гравця B, так як Максиміна точка на рис.7.1 визначається більш ніж двома прямими. Будь-яка опукла лінійна комбінація цих альтернативних рішень також ϵ рішенням задачі.)

Для гри, в якій гравець A має m стратегій, а гравець B тільки дві, рішення знаходиться аналогічно. Головна відмінність полягає в тому, що тут будуються графіки функцій, що представляють очікувані платежі другого гравця, відповідні чистим стратегіям гравця A. B результаті ведеться пошук мінімаксної точки верхньої обвідної побудованих прямих.

Задачі до лабораторної роботи

Свій варіант задачі слід отримати у викладача. До отриманої задачі написати програму її рішення, в звіті навести код програми, вивести результат (оптимальна альтернатива).

- 1. Вирішіть графічно гру з підкиданням монет (приклад з лабораторної роботи 6).
- **2.** Робін часто їздить між двома містами. При цьому ϵ можливість вибрати один з двох маршрутів: маршрут A явля ϵ собою швидкісне шосе в чотири смуги, маршрут B довгу дорогу, що обдувається вітром.

Патрулювання доріг здійснюється обмеженим числом поліцейських.

Якщо все поліцейські розташовані на одному маршруті, Робін з її пристрасним бажанням їздити дуже швидко, без сумніву, отримає штраф у 100 дол. За перевищення швидкості.

Якщо поліцейські патрулюють на двох маршрутах в співвідношенні 50 на 50, то ε 50% -ва ймовірність, що Робін отримає штраф у 100 дол. На маршруті А і 30% -ва ймовірність, що вона отримає такий же штраф на маршруті В. Крім того, маршрут В довше, тому бензину витрачається на 15 дол. більше, ніж на маршруті А. Визначте стратегію як для Робін, так і для поліції.

3. Вирішіть графічно наступні ігри, в яких платежі виплачують гравцеві А.

a)					
	B ₁		B_2	B ₃	
	A ₁ 1		-3	7	
	A ₂ 2		4	-6	
b)					
		B ₁		B ₂	
	A ₁	5		8	
	A ₂ A ₃	6		5	
	A ₃	5		7	

4. Дана наступна гра двох осіб з нульовою сумою.

	B ₁	B ₂	B ₃	
A_1	5,0	50,0	50,0	
A_2	1,0	1,0	0,1	
A_3	10,0	1,0	10,0	

Перевірте, що змішані стратегії з можливостями (1/6, 0, 5/6) для гравця A і з вірогідністю (49/54, 5/54, 0) для гравця B ϵ оптимальними, та визначте ціну гри.

Контрольні питання:

- 1. Дати визначення поняттю змішана стратегія.
- 2. Графічний метод.
- 3. Метод лінійного програмування.
- 4. Дати визначення: чиста стратегія.
- 5. Поясніть теорію ігор.
- 6. Що таке стратегія?