ESP32-C3Series

Datasheesatn1.9

Ultra-Low-Power SoC with RISC-V Single-Core CPU 2. 4 GHz Wi-Fi (802.11 🖁 🗗 (LnE)) and Bluetooth Optional 4 MB fash in the chip's package QFN32 (5×5 mm) package

Including:

ESP32-C3

ESP32-C3FN4-End of Life

ESP32-C3FH4

ESP32-C3FNHo4RAeZcommenfodNeedvDesi(gNsRND)

ESP32-C3FH4X-Recommended

Product Overview

ESP32-C3 is an low-power and highly-integrated MCU-based sol Blue $t^{\text{\tiny 8}}$ & on twhEnergy (Bluetooth LE).

The functional block diagram of the SoCis shown below.

Power consumption

Normal

Low power consumption components capable of working in Deep-sleep mode

ESP32-C3 Functional Block Diagram

For more information on power4c.o1nPs@suvmoeprt1Maoma, gseeneeSnetcUtniiotn

Features

Wi - Fi

- I E E E 8 O 2 . 1 1 b / g / n c o mp I i a n t
- Supports 20 MHz, 40 MHz bandwidthin 2.4 GHz band
- 1 T 1 R mode with datarate up to 150 Mbps
- Wi Fi Multimedia (WMM)
- TX/RXA-MPDU, TX/RXA-MSDU
- I mmediate Block ACK
- Fragmentation and defragmentation
- Transmit opportunity (TXOP)
- Automatic Beacon monitoring (hardware TSF)
- Four virtual Wi-Fi interfaces
- Si mul taneous support for Infrastructure BSS in Station mo promiscuous mode
 Note that when ESP32-C3 scans in Station mode, the SoftAP cl channel
- Antenna di versi ty
- 802.11 mc FTM

Bluet®ooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- High power mode (20 dBm)
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm # 2
- Internal co-existence mechanism between Wi-Fi and Blueto

CPU and Memory

- 32 bit RISC V single core processor, up to 160 MHz
- Core Marche:
 - 1 core at 160 MHz: 407. 22 Core Mark; 2. 55 Core Mark / MHz
- 384 KB ROM
- 400 KB SRAM (16 KB for cache)

- 8 KB SRAMin RTC
- In package fash (sed EdSePt 3a2i-ICs3 i Sne Chiae pst Ceormparison
- SPI, Dual SPI, Quad SPI, and QPI interfaces that allowconn
- Access to fash accel erated by cache
- Supports fash in Circuit Programming (ICP)

Advanced Peripheral Interfaces

- 22 or 16 programmable GPI Os
- Digital interfaces:
 - Three SPI
 - Two UART
 - I 2 C
 - I 2 S
 - Remote control peripheral, with 2 transmit channels and
 - LED P W M controller, with up to 6 channels
 - Full speed USB Serial / JTAG controller
 - General DMA controller (GDMA), with 3 transmit channels
 - TWA controller compatible with ISO 11898-1 (CAN Specific
- Analoginterfaces:
 - Two 12 bit SAR ADCs, up to 6 channels
 - Temperature sensor
- Ti mers:
 - Two 54-bit general purpose timers
 - Three digital watchdog timers
 - Analog watchdog ti mer
 - 52 bit system timer

Power Management

- Fine-resolution power control through a selection of clocand individual power control of internal components
- Four power modes designed for typical scenarios: Active, N
- ullet Power consumption in $De\mu\!Ap$ sleep mode is 5
- RTC memory remains powered on in Deep-sleep mode

Security

- Secure boot permission control on accessing internal and
- Flash encryption memory encryption and decryption
- 4096-bit OTP, up to 1792 bits for users
- Cryptographic hardware accel eration:
 - AES 128 / 256 (FIPS PUB 197)
 - SHA Accel erator (FIPS PUB 180 4)
 - RSA Accel erator
 - Random Number Generator (RNG)
 - HMAC
 - Digital signature

RF Module

- Antenna switches, RF balun, power amplifer, low-noise rec
- Up to +21 dBmof power for an 802.11b transmission
- Up to +20 dBmof power for an 802.11n transmission
- Up to 105 dBmof sensitivity for Bluetooth LE receiver (12)

Applications

With low power consumption, ESP32-C3 is an ideal choice for lo

- Smart Home
- Industrial Automation
- Heal th Care
- Consumer Electronics
- Smart Agriculture

- POS Machines
- Service Robot
- Audi o Devi ces
- Generic Low-power LoT Sensor H
- Generic Low-power I o T Data Log

Note:

Check the link or the QR code to make sure that you us that ps://www.espressif.com/documentation/esp32

t est ver

Contents

Product Overview Features Applications	2 3 5
1 ESP32-C3 Series Comparison Nomenclature Comparison	1 1 1 1 1 1
<pre>Pins 2.1 PinLayout 2.2 PinOverview 2.3 IOPins</pre>	1 2 1 2 1 4 1 7
2.3.1 I O MU X Functions2.3.2 Analog Functions2.3.3 Restrictions for GPI Os	1 7 1 9 2 0
2. 4 Analog Pins2. 5 Power Supply2. 5. 1 Power Pins	2 1 2 2 2 2
2. 5. 2 Power Scheme2. 5. 3 Chip Power - up and Reset2. 6 Pin Mapping Between Chip and Flash	2 2 2 3 2 5
3 Boot Confgurations 3.1 Chip Boot Mode Control 3.2 ROM Messages Printing Control	2 6 2 7 2 7
4 Functional Description 4.1 System	2 9
4.1.1 Microprocessor and Master 4.1.1.1 High-Performance CPU 4.1.1.2 GDMA Controller	2 9 2 9 2 9
4. 1. 2 Memory Organization 4. 1. 2. 1 Internal Memory	2 9 3 0
4.1.2.2 Off-packageFlash 4.1.2.3 Cache	3 1 3 1
4.1.2.4 eFuseController	3 1

```
3 2
   4.1.3 SystemComponents
       4.1.3.1 I O MU X and GPI O Matrix
                                                       3 2
       4.1.3.2
                 Reset
                                                       3 2
       4.1.3.3
               Clock
                                                      3 3
       4.1.3.4 Interrupt Matrix
                                                      3 3
       4.1.3.5
                SystemTimer
                                                       3 4
       4.1.3.6
                                                       3 4
                Power Management Unit
       4.1.3.7 Timer Group
                                                      3 6
       4.1.3.8 Watchdog Timers
                                                       3 6
       4.1.3.9 Permission Control
                                                       3 7
       4.1.3.10 SystemRegisters
                                                       3 7
       4.1.3.11 Debug Assistant
                                                      38
                                                      38
   4.1.4 Cryptography and Security Component
       4 . 1 . 4 . 1
                 AES Accel erator
                                                       38
       4.1.4.2
                 HMAC Accel erator
                                                       3 9
       4.1.4.3 RSA Accelerator
                                                       3 9
       4.1.4.4
                SHA Accel erator
                                                       3 9
       4.1.4.5 Digital Signature
                                                       4 0
       4.1.4.6 External Memory Encryption and Decryption
       4.1.4.7 Random Number Generator
                                                       4 1
                                                       4 2
4.2 Peripherals
                                                       4 2
   4.2.1 Connectivity Interface
       4.2.1.1
                UART Controller
                                                       4 2
       4.2.1.2
                SPI Controller
                                                       4 2
       4. 2. 1. 3 | 1 2 C Controller
                                                       4 3
       4.2.1.4 I 2 S Controller
                                                       4 4
       4.2.1.5
                USB Serial/JTAG Controller
                                                       4 4
       4.2.1.6
                                                       4 4
                Two-wire Automotive Interface
       4.2.1.7 LEDPWMController
                                                       4 5
       4.2.1.8 Remote Control Peripheral
                                                       4 5
   4.2.2 Analog Signal Processing
                                                       4 6
       4. 2. 2. 1 SARADC
                                                       4 6
       4.2.2.2
                 Temperature Sensor
                                                       4 6
4.3 Wireless Communication
                                                       4 7
   4.3.1 Radio
                                                       4 7
                2. 4 GHz Receiver
                                                       4 7
       4.3.1.1
               2. 4 GHz Transmitter
       4.3.1.2
                                                       4 7
       4.3.1.3 Clock Generator
                                                       4 7
   4.3.2 Wi - Fi
                                                       48
       4.3.2.1 Wi-Fi Radio and Baseband
                                                       48
       4.3.2.2
                 Wi - Fi MAC
                                                       48
       4.3.2.3 Networking Features
                                                       4 9
   4.3.3 Bluetooth LE
                                                       4 9
       4.3.3.1
                Bluetooth LE PHY
                                                       4 9
       4.3.3.2 Bluetooth LE Link Controller
                                                       49
```

5 Electrical Characterist	i C S 50
5.1 Absolute Maximum Ratings	5 0
5. 2 Recommended Operating Conditions	5 0
5.3 VDD_SPI Output Characteristics	5 1
5.4 DC Characteristics (3.3 V, 25 °C)	5 1
5.5 ADC Characteristics	5 2
5.6 Current Consumption	5 2
5.6.1 RF Current Consumption in Active Mod	d e 52
5.6.2 Current Consumption in Other Modes	5 3
5.7 Reliability	5 3
6 RF Characteristics	5 5
6.1 Wi-Fi Radio	5 5
6.1.1 Wi-Fi RF Transmitter (TX) Character	istics55
6.1.2 Wi-Fi RF Receiver (RX) Characterist	i c s 5 6
6.2 Bluetooth 5 (LE) Radio	5 7
6.2.1 Bluetooth LE RF Transmitter (TX) Cha	ıracter 5 % ti cs
6.2.2 Bluetooth LE RF Receiver (RX) Charac	terist 59s
7 Packaging	6 2
Appendix A - ESP32-C3 Conso	l i dasted
Related Documentation and	Resoource
Revision History	6 5

List of Tables

```
1-1 ESP32-C3 Series Comparison
                                                     1 1
2-1 Pin Overview
                                                     1 4
2-2 Power-Up Glitches on Pins
                                                     16
2-3 Peripheral Signals Routed vial OMUX
                                                     1 7
2-4 IOMUX Pin Functions
                                                     1 7
2-5 Analog Signals Routed to Analog Functions
                                                     19
2-6 Analog Functions
                                                     19
2-7 Analog Pins
                                                     2 1
2-8 Power Pins
                                                     2 2
2-9 Voltage Regulators
                                                     22
2-10 Description of Timing Parameters for Power-up 24d Rese
2-11 Pin Mapping Between Chip and In-package Flash 25
3-1 Default Confguration of Strapping Pins
3-2 Description of Timing Parameters for the Strapp26ng Pin
3-3 Chip Boot Mode Control
                                                     27
3 - 4 UARTOROM Message Printing Control
                                                     28
3-5 USB Serial / JTAG ROM Message Printing Control
                                                     28
4-1 Components and Power Domains
                                                     3 5
5-1 Absolute Maximum Ratings
                                                     5.0
5 - 2 Recommended Operating Conditions
                                                     50
5-3 VDD_SPI Internal and Output Characteristics
                                                     5 1
5-4 DC Characteristics (3.3 V, 25°C)
                                                     5 1
5-5 ADC Characteristics
                                                     5 2
5-6 ADC Calibration Results
                                                     5 2
5-7 Wi-Fi Current Consumption Depending on RF Modes 52
5-8 Current Consumption in Modem-sleep Mode
                                                     5 3
5-9 Current Consumption in Low-Power Modes
                                                     5 3
5-10 Reliability Qualifcations
                                                     5 3
6-1 Wi-Fi Frequency
                                                     5 5
6-2 TX Power with Spectral Mask and EVM Meeting 802. 1515 Stand
6-3 TXEVMTest
                                                     5 5
6-4 RX Sensitivity
                                                     5 6
6-5 Maximum RX Level
                                                     5 7
6-6 RX Adjacent Channel Rejection
                                                     5 7
6-7 Bluetooth LE Frequency
6-8 Transmitter Characteristics - Bluetooth LE 1 Mb $578
6-9 Transmitter Characteristics - Bluetooth LE 2 Mb 50 &
6-10 Transmitter Characteristics - Bluetooth LE 125518bps
6-11 Transmitter Characteristics - Bluetooth LE 5059 bps
6-12 Receiver Characteristics - Bluetooth LE 1 Mbps 59
6-13 Receiver Characteristics - Bluetooth LE 2 Mbps60
6-14 Receiver Characteristics - Bluetooth LE 125 Kb 69
6-15 Receiver Characteristics - Bluetooth LE 500 Kb p64
```

List of Figures

1 - 1	ESP32-C3 Seri es Nomenclature	1 1
2 - 1	ESPB2SP32-C3FH4, and ESP32-C3FN4 Pin L	ayout (T b 2 <mark>)</mark> View
2 - 2	ESP32-C3FH4X and ESP32-C3FH4AZ Pin Lay	out (Top 1/3 ew)
2 - 3	ESP32-C3 Power Scheme	2 3
2 - 4	Visualization of Timing Parameters for	Power-u 203and Re
3 - 1	Visualization of Timing Parameters for	the Stra2p7ping F
4 - 1	Address Mapping Structure	3 0
4 - 2	Components and Power Domains	3 5
7 - 1	QFN32 (5×5 mm) Package	6 2

1 ESP32 - C3 Seri es Compari son

1. Nomenclature

Figure 1 - 1. ESP32 - C3 Series Nomenclature

1. Zomparison

labl	e 1 -	- 1.	ESP	32-	C 3	Ser	ıes	Com	par	I S	o n
------	-------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----

Orderi n g Code	In-Packag	Ambient 社(e°m	Package	GPI O ₦	Chip Re∜i
E S P 3 2 ³ C 3	_	40~105	QFN32 (5 * 25 2	v O . 4
ESP32-C3FN4 (End 4 fMB i f 6) 40~85	QFN32 (5 * 2 2	v O . 4
ESP32-C3FH4	4 MB	40~105	QFN32 (5 * 2 2	v O . 4
ESP32-C3(FNHR4MA	Z) 4 MB	40~105	QFN32 (5 * 5)6	v O . 4
ESP32-C3FH4X	4 MB	4 0~ 1 0 5	QFN32(5 * 5 K	v 1 . 1
(Recommended) - 1015	700103	21 1132 (ט ש ט	V 1 . 1

¹For details on chip marking 7aP **a d** kpaa.og ik niong, see Section

detai <u>Ceodhpiant Ablivilis obEnySyP32 ClCiRR</u>pevis<u>ril</u>. o Fhor how to identify chiprto<u>ESP32-C3Series SoCErrata</u>

 $^{^2\}mbox{A}\,\mbox{mbi ent temperature specifes the recommended temperature}$ Espressif chip.

³ESP32-C3 requires an SPI fash off the chip's pack 2g Rei. nFMdar polpei Between Chip. and Flash

⁴SPI O/SPI 1 pins for fash connection are not bonded for variar ⁵AII chip revisions have the same SRAM size, but chip revision available space for users than chip revision vO. 4. Chip re

⁶For information about in - pac4k.a1gle2tft ats Impals & Beeymandores fyoa Suetottitohne SP chip operates at a maximum clock frequency of 80 MHz and does a requirement for a higher fash clock frequency of 120 MHz or contact us.

2 Pins

2. Pin Layout

Figure 2-1.rESP32-C3FH4, and ESP32-C3FN4 Pin Layout (

Figure 2 - 2. ESP32 - C3FH4X and ESP32 - C3FH4AZ Pin Lay α

2. 2Pin Overview

The ESP32-C3 chip integrates multiple peripherals that r the chip package size reasonably small, the number of avaroute all the incoming and outgoing signals is through piprogrammable resign 3s 2t-e 0r 3s T(escehenical Re-eCf hear ple tOe 0MeU XVI as mod a GIPIO Mat)r.ix

All in all, the ESP32-C3 chip has the following types of pi

- I O p iwin s h the following predefned sets of functions to a
 - EaclhOpin has plr @ dMeJfXnfeudn-csteieon 18 bl4 @ MUX Functions
 - Somle Opins have pone bleoginfeu-choscetei To 2a ks Ab neal og Functions

Predefined fmuena ontsitohnast each I O pin has a set of direct con on-chip peripherals. During run-time, the user can co set to connect to a certain pin at a certain time via mem

- An alogt phiant shave exclus ainvælloyg- fle-disceteia TaalstATnealog Pins
- Power phas supply power to the chip componen 2 s Raonwde m o Pni-

Tab2t-ePlin Ovegriv vieeswan overview of all the pins. For more infeach pin typel poet no odvi, xo At - ESP32-C3 Cons.olidated Pin Overv

Ρi	Pin	Pin	Pin Providing	Pin	n Set ⁵ tin	Ρi	n F	unc†	t 1 c	n
No	Name	Туре	Power ⁴	At Res	AfterR	10	MU X	Ana	ılo	g
1	LNA_IN	Anal	o g]
2	V D D 3 P 3	Powe	r							1
3	V D D 3 P 3	Powe	r							1
4	X T A L _ 3 2	K _ IP O	V D D 3 P 3 _ R T C			10	MU X	Ana	ılo	g
5	X T A L _ 3 2	K _ IN O	V D D 3 P 3 _ R T C			1 0	MU X	Ana	ılo	g
6	GPI 02	10	V D D 3 P 3 _ R T C	ΙE	I E	1 0	MU X	Ana	ılo	g
7	CHIP_EN	Anal	o g							
8	GPI O 3	1 0	V D D 3 P 3 _ R T C	ΙE	I E	1 0	MU X	Ana	ılo	g
9	MT MS	1 0	V D D 3 P 3 _ R T C		I E	1 0	MUX	Ana	ılo	g
1 0	MT D I	1 0	V D D 3 P 3 _ R T C		I E	10	MU X	Ana	ılo	g
1 1	V D D 3 P 3 _	RPT 6Cwe	r]
1 2	MT C K	10	V D D 3 P 3 _ C P U		ΙÉ	10	MUX]
1 3	MT D O	1 0	V D D 3 P 3 _ C P U		I E	10	MUX			
1 4	GPI 08	10	V D D 3 P 3 _ C P U	I E	I E	10	MU X			
1 5	GPI 09	1 0	V D D 3 P 3 _ C P U	IE, W	PIUE, WPU	10	MU X			
1 6	GPI 010	10	V D D 3 P 3 _ C P U		I E	10	MU X]
1 7		C ₽ oUwe	r]
1 8	VDD_&Pj	Powe	rV D D 3 P 3 _ C P U			1 0	MUX			
1 9	SPIHD	1 0	VDD_SPI / VDD	PWD UCP	UE, WPU	1 0	MUX			
2 0	SPI WP	10	VDD_SPI / VDD	RWD UCP	UE, WPU	1 0	MUX			

Table 2 - 1. Pin Overview

Cont'd on next p

Se

			lable 2 - 1 - c	ont'a	rrompre	evious	page	_
Ρi	Pin	Pin	Pin Providing	Pin	Set ⁵ tin	PinF	unct1c	n Se
No	Name 9	Туре	Power ⁴	At Res	AfterR	I O MU X	Analo	g
2 1	SPICS0	10	VDD_SPI / VDD	PWDP_UCP	UE, WPL	I O MU X		
2 2	SPICLK	10	VDD_SPI / VDD	RWDP_UCP	UE, WPL	J I O MU X]
2 3	SPID	10	VDD_SPI / VDD	RWDP_UCP	UE, WPL	J I O MU X]
2 4	SPIQ	10	VDD_SPI / VDD	RWDP_UCP	UE, WPL	J I O MU X]
2 5	GPI 018	10	V D D 3 P 3 _ C P U			I O MU X	Analo	g
2 6	GPI 019	10	V D D 3 P 3 _ C P U		U S B _ P U	I O MU X	Analo	g
2 7	UORXD	10	V D D 3 P 3 _ C P U		IE, WPL	J I O MU X]
2 8	UOTXD	10	V D D 3 P 3 _ C P U		WP U	I O MU X]
2 9	X T A L _ N	Anal	o g]
3 0	XTAL_P	Anal	o g]
3 1	VDDA	Powe	r					
3 2	VDDA	Powe	r					1
3 3	G N D	Powe	r					1

- 1.Bolmdarks the pin function set in which a pin has its defa3u.C1b if pu Bookt ol/no Control
- 2. In colPumnProvid, in gr@Paorwaeirng pins powered by VDD_SPI:
 - Power actually comes from the internal power rail su2p.p5P.yo2vmeg powe
- 3. In colPuimnProvid, in g gPaorwaeirn g pins powered by VDD3P3_CPU / VDD_SPI:
 - Pin Providing Power (either VDD3P3_CPU or VDD_SPI) can be confqu ESP32-C3 Technical ReCfhearpletOetMeUXMaamudaGIP.IO Matrix
- 4. The default drive strength for each pin is as follows:
 - GPI O2, GPI O3, MT MS, and MT DI: 10 mA
 - GPI 018, GPI 019: 40 mA
 - All other pins: 20 mA
- 5.ColuPrinn Setsthionwasspredefned settings at reset and after reset with th
 - I E i nput enabled
 - WPU internal weak pull upresistor enabled
 - WPD internal weak pull down resistor enabled
 - USB_PU USB pull upresistor enabled
 - By default, the USB function is enabled for USB pins (i.e., GPI $\verb|USBpull-upresistor|. The \verb|USBpull-upresistor| is controlled | |$ value is controlled by USB_SERIAL_JTAGPB01LC01PTeVcAhLnUEc.aFoRredet Chaput Se Br Serial / JT) A.G. Controller
 - When the USB function is disabled, USB pins are used as regular pull-down resistors are disabled by default (conf qurable by I WPU/WPD). For dle Paliz Is 3 steehnical ReoChearphetCoeMoNd Mammod a GIP.I O Matrix
- 6.Depends on the value of EFUSE_DIS_PAD_JTAG
 - O-default value. Input enabled, and internal weak pull-upresis
 - 1 input enabled (IE)
- 7.Output enabled
- 8.By default VDD_SPI is the power supply pin for in-package and off-pa is connected to an off-package fash, and this fash is powered by an e: please rEeSfPe3r2toC3 Technical Re-eOfhearphettoDedtMeal XMaamoudaGIP.IO Matrix
- 9. For ESP32-C3FH4AZ and ESP32-C3FH4X, pi和psiwni 24的) art en er of trab one of en da, meah pd connected".

Some pins have glitches during p2o.w2er-up. See details in T

Table 2 - 2. Power - Up Glitches on Pins

Pin	Gli ¹ t ch	Typical	Ti me	Period(ns)
MT C K	Low-level gli	t c h	5	
MT D O	Low-level gli	t c h	5	
GPI 010	Low-level gli	tch	5	
UORXD	Low-level gli	t c h	5	
GPI 018	High-level gl	itch	5000	0

¹Low-level glitch: the pinis at a low level out period;

High-level glitch: the pin is at a high level time period;

Pull-down glitch: the pin is at an internal w during the time period;

Pull-up glitch: the pin is at an internal weak the time period.

Please ref δ rf4toor Tdaebtlaei led parameters about lov and pull-down/up.

2.3 O Pins

2.3110 MUX Functions

The IO MUX allows multiple input/output signals to be con ESP32-C3 can be connected to one of the three signals (2FQ/IIO MUX Functions

Among the three sets of signals:

- Some are routed via GtPhleO (5) P, I GOP M (4) tWr, hi ext (5). incorporates into circuitry for mapping signals programmatically. It g However, the fexibility of programmatic mapping comes signals. For details about connecting to peripheral s ESP32-C3 Technical ReC fhear plet (0) et Med X (4) and a GIP. I O Matrix
- Some are directly routed fUrO of XX 10 ,e nMT &O) iK, n, i pendeccliup dhienrga UAs R(TO, and SPI2 s2e-el3 TO aMbUIX e Functions

Table 2 - 3. Peripheral Signals Routed via

PinFun	Signal	Description	
UOTXD	Transmit (lata UARTO i nterface	
UORXD	Received	ata	
MT C K	Test clock		
MT D O	Test Data	Out	
MT D I	Test Data	TTAGinterface for debugging In	
MT MS	Test Mode	Select	
SPIQ	Dataout		
SPID	Datain	3.3 V SPI 0 / 1 i nterface for connection	n + o i
SPIHD	Hold	via the SPI bus. It supports 1-, 2-, 4	
S P I WP	Writepro	t e c t	- 1 1 11 6
SPICLK	Clock	Ž.Roin Mapping Between Chip and Flash	
SPICS	Chipsele	c t	
FSPIQ	Dataout		
FSPID	Datain		
FSPIHD	Hold	SPI 2 i nterface for fast SPI connecti	on. I
F S P I WP	Writepro	enodes	
FSPICLE	Clock		
FSPICSO	Chipsele	c t	

Tab2-el40 MUX Funschtowsnthe IO MUX functions of IO pins.

Table 2 - 4. IO MUX Pin Functions

Ρi	I O MU X	I O MUX Funde t ² ir o ³ n					
No	GPIO Nam ² e	F O	Ту р ³ е	F 1	Тур	F 2	Туре
4	GPI 00	GPI 00	1/0/	TGPIO	01 / 0	/ T	

Cont'd on next page

	Table 2 - 4 - Cont dilonprevious p							
Ρi	I O MU X		1	O MU X	Func	t ² i o ³ n		
Νο	GPIO Nam ² e	FO	Тур ³ е	F 1	Тур	F 2	Туре	
5	GPI 01	GPI 01	1/0/	TGPIO	11 / 0	/ T		
6	GPI 02	GPI 02	1/0/	TGPIO	21 / 0	/FISPIQ	I 1 / 0 /	
8	GPI 03	GPI 03	1/0/	TG P I O	31 / 0	/ T		
9	GPI 0 4	MT MS	I 1	GPI O	41 / 0	/FTSPIHD	11/0/	
1 0	GPI 05	MT D I	I 1	GPI O	51 / 0	/FISPIWP	11/0/	
1 2	GPI06	MT C K	I 1	GPI O	61 / 0	/FISPICL	K 1 / 0 /	
1 3	GPI 07	MT D O	0 / T	GPI O	71 / 0	/FISPID	11/0/	
1 4	GPI 08	GPI 08	1/0/	TGPIO	81 / 0	/ T		
1 5	GPI 09	GPI 09	1/0/	TGPIO	91 / 0	/ T		
1 6	GPI 01	0G P I O 1 O	1/0/	TGPIO	110/0	/FISPICS	01/0/	
1 8	GPI 01	1GPI 011	1/0/	TGPIO	1 1 / 0	/ T		
1 9	GPI 01	SPIHD	I 1 / 0	/GTP I O	112/0	/ T		
20	GPI 01	S P I WP	I 1 / 0	/GTP I O	1 13 / 0	/ T		
2 1	GPI 01	SPICSO	0 / T	GPI O	1 14 / 0	/ T		
2 2	GPI 01	SPICLK	0 / T	GPI O	115/0	/ T		
2 3	GPI 01	SPID	I 1 / 0	/GTP I O	116/0	/ T		
2 4	GPI 01	SPIQ	I 1 / 0	/GTP I O	1 17 / 0	/ T		
2 5	GPI 01	8G P I O 1 8	1/0/	TGPIO	1 18 / 0	/ T		
26	GPI 01	9G P I O 1 9	1/0/	TGPIO	119/0	/ T		
2 7	GPI 02	UORXD	I 1	GPI O	210/0	/ T		
2 8	GPI 02	UOTXD	0	GPI O	211 / 0	/ T		

Table 2 - 4 - cont'd fromprevious page

- •I input. O output. T highimpedance.
- •I1 input; if the pin is assin, g the diarf punto \$ i g n a o It b & r Fn is a I 1 ways
- •IO input; if the pin is assing note detain pount to ii og maalt ho & r Fnis al Ovays

¹Bolmdarks the default pin functions in the 1default bo Chip Boot Mode Control

²Regar<mark>highli</mark>cgehitlesd, se <u>2</u>2.S32R@31sitornictio.nsforGPIOs

³Each I O MUX f n, n ∈ f0i~o2n) (iFs as soctiyap teTe holewd et shcar i ption of typies as follows:

2.3.A2nalog Functions

Some I O pins aan las lookga fv uenf cotri ao maas I o g peri phera Is (such as A D (ana I o g si gna Is are routed to the 2s- 455 na na lab op of to to to to to ss, see

Table 2 - 5. Analog Signals Routed to Analog

Pi n Fun	Signal	Description	
A D C C H	A.DC1/2channe	A D.Cs1i/g2nianlterface	
U S B _ D -		USB Serial /JTAG functi	0 n
U S B _ D +	Data +	USB Serrar/STAGRUNCTI	0 11
X T A L _ 3 2	KN <u>e</u> Knjative clod	8.2skbgznælxternal clock in	put/οι
X T A L _ 3 2	P.o.Bitive cloo	krosningen catled to ESP32-C3′	scryst

Tab2l-eA6nalog Fushbcd wiso this e analog functions of IO pins.

Table 2 - 6. Analog Functions

	Analog		og Fu ² nct	ion
No.	Name ^{, 2}	F O	F 1	
4	GPI 00	X T A L _ 3 2	KA_DPC1_C	ΗО
5	GPI 01	X T A L _ 3 2	KA_DNC1_C	H 1
6	GPI 02		A D C 1 _ C	H 2
8	GPI 03		A D C 1 _ C	H 3
9	GPI O 4		A D C 1 _ C	H 4
1 0	GPI 05		A D C 2 _ C	ΗО
2 5	GPI 018	U S B _ D -		
2 6	GPI 019	U S B _ D +		

¹Bolmoarks the default pin functions in the def boot mode. Se3e.CSheicpt Broomt Mode Con-

tr.ol ²Regar<mark>highli</mark>cgehltlesd, se £2.S £2.c 3tion Restrictio.nsfor GPIOs

2. 3.R3e strictions for GPLOs

All I Opins of ESP32-C3 have GPI Opin functions. However, for different purposes based on the requirements. Some I consider the multiplexed nature and the limitations wher I n tables of this chapter highlip Thhhteef rollonnoc-thioghhslairgented GPI C recommended for use frst. If more pins are needed, the high

The highlighted I Opins have the following important pin

avoid conficts with important pin functions.

- GPI -Oallocated for communication within-package fas details, s2e.ePoS en cMtaipopning Between Chip and Flash
- GPI Ohave one of the following important functions:
 - Strappi n g ep ei on so be at certain logic l & B e b s & b rsft gaurnta.
 - USB_D+by default, connected to the USB Serial / JTAG pins need to be reconfigured.
 - JTAG in t-e of tare nerus ed for de bu2g-oßiOnMogJ.X Steuen tall boldfenr se e the sup, the pin function <u>Ess DS 12 D3 /Tercollintihoeal</u> RJeSfBeSreennicael MaJ Controval ni bererus ed in stead.
 - UART in ten of all en used for debu2g tBiOnMtJJ.X SFeuen Tablo en s
 - ADC-2 no restrictions, unleWsiscFohnenreecitsi220.16.Ho.A.D.G.a.ing fu (see T2a-bAbnealog Fu)nccatrinoonts be used with Wi-Fi simultar

See a Alps poendix A - ESP32 - C3 Cons.olidated Pin Overview

2.4Analog Pins

Table 2 - 7. Analog Pins

Ρi	Pin	Pin	Pin
No	Name	Тур	Function
1	LNA_IN	1/0	Low Noise Amplifer (RFLNA) input / out
7	CHIP_EN		High: on, enables the chip (power ed up
'		!	Low: off, disables the chip (powered d
			Note: Donotleave the CHIP_ENpin foat
2 9	XTAL_N	_	External clock input/output connecte
3 0	XTAL_P	_	oscillator. P/N means differential cl

2.5Power Supply

2.5PbwerPins

The chip is powered via the pow2e #8 po wirens. Relie is scribed in Table

Table 2 - 8. Power Pins

Ρi	Pin		Power Supply
No	Name	Direc	Power Domain / Other I O Pi ³ ns
2	V D D 3 P 3	Input	Analog power domain
3	V D D 3 P 3	Input	Analog power domain
1 1	V D D 3 P 3 _	RITnCput	RTC and part of Digit & T Op b Over doma
1 7	V D D 3 P 3 _	Cl PnUp u t	Digital power domai nDigit al IO
1 0	VDD_\$ ⁴ PI	Input	ln-package fash (backup power li
1 0	V D D _ 3 P I	Outpu	tln-package and off-pSaPclkla@gefash
3 1	VDDA	Input	Analog power domain
3 2	VDDA	Input	Analog power domain
3 3	G N D	_	External ground connection

¹See in conjuncti2o.n5PVb2tvh:rS & c.h e on a

2.5.P2owerScheme

The power scheme is 2 h E 3 SWPh 3 i 2 n- 1E i 3 g Puorveer Scheme

The components on the chip are powered via voltage regula

Table 2-9. Voltage Regulators

Voltage Re	Outp Power Supply
Digital	1.1 VDigital power domair
Low-power	1.1 VRTC power domain

 $^{^2}$ For recommended and maximum volta5g. At 1basncdl α uutrer Meanxt-,

i mum Raand \$ se c5t R2 o no mmended Operating Conditions

³Digital I Opins are those powered by VDD3P3_CPU, a ered by VDD3P3_RTC and so on2,- 23SsPs3h2o-w2n3iPno Fwie.g uSrceh em See als o2 T2albh eve ≯ v2 be w2 minm Provid.ing Power

⁴To conf gure VDD_SPI as <u>iEns prus t2 o C 3o Tuet op hunti, csaele</u>Referen > Chaptoewr-power Management

Figure 2-3. ESP32-C3 Power Scheme

2.5.C3nip Power-up and Reset

Once the power is supplied to the chip, its power rails neep in used for power-up and reset - is pulled high to activat power-up and reset t2i-main nd gT, a2b- e1 e0 Figure

Figure 2 - 4. Visualization of Timing Parameters

Table 2-10. Description of Timing Parameters f

Param	Description	Mi nus()
	Time reserved for the power ra	
t_{STBL}	VDD3P3_RTC, and VDD3P3_CPU to sta	bil5iOzebefo
	pinis pulled high to activate the	
+	Time reserved for CHI P_{IL} , E_R N_T t o s t s t	to et In_e w V
t_{RST}	chip (se5e-)T4able	5 0

2. 6Pin Mapping Between Chip and Flash

Tab21-ellilsts the pin mapping between the chip and fash for a For chip variants with in 1 pC 260 cmkp aa gr) ei, fs tahseh p(is mese a Tlalbob ceated for in - package fash can be identifed depending on the SPI mod For off-package fash, these are the recommended pin mapp For more information on SPI count 2 pS OPII 200 cornst, r so et et at so Section

Notice:

It is not recommended to use the pins connected to fash for any

Table 2 - 11. Pin Mapping Between Chip and In - p

Ρi	Pin	Singl	Dual	Quad SPI	/ QPI
No	Name	Flas	Flas	Flash	
2 2	SPICL	K CLK	CLK	CLK	
2 1	SPI C ¹ S	O CS#	C S #	C S #	
2 3	SPID	DΙ	DΙ	DI	
2 4	SPIQ	DO	DΟ	DO	
2 0	SPIW	WP#	WP#	WP#	
1 9	SPIH	HOLD#	HOLD	# HOLD#	

¹CSO is for in-package fash

3 Boot Confgurations

The chipallows for confguring the following boot paramet power-up or a hardware reset, without microcontroller in

- Chipboot mode
 - Strapping pins: GPI 02, GPI 08, and GPI 09
- ROMmessage printing
 - Strapping pin: GPI 08
 - eFuse parameters: EFUSE_UART_PRINT_CONTROL and EF

The default values of all the above eFuse bits are O, which one-time programmable, once an eFuse bit is programmed to program eFuse bit \$\overline{\mathbb{E}_i\overline{\mathbb{B}_i\overline{\mathbb

The default values of the strapping pins, namely the logical pull-up/pull-down resistors at reset if the pins are not high-impedance circuit.

Table 3-1. Default Confguration of Strapp

Strappi	Default Con Bit Va	tliuoen
GPI 02	Floating –	
GPI 08	Floating -	
GPI 09	Weak pull - upl	

To change the bit values, the strapping pins should be conthe ESP32-C3 is used as a device by a host MCU, the strappil the host MCU.

All strapping pins have latches. At system reset, the later pins and store the muntil the chip is powered down or shut (any other way. It makes the strapping pin values available freed up to be used as regular IO pins after reset.

Table 3 - 2. Description of Timing Parameters fo

Param	Description	Min (ms)
	Setupits Inheetimereserved for the	
	fore the CHIP_ENpinis pulled hig	htoactivat
t_H	Hold tismtehe time reserved for the	chip t o read
	pin values after CHIP_EN is alrea	dy hßgh and
	start operating as regular I O pin	S .

Figure 3 - 1. Visualization of Timing Parameter

3. 1Chip Boot Mode Control

GPI 02, GPI 08, and GPI 09 control the boot mod3e- @fitprB to b te Me Control

Table 3 - 3. Chip Boot Mode Control

Boot Mode	GPI 🖯 :	GPIO	GPIC	9
SPI Boot	1	Any va	l u1e	
Joint Downl ³ (a d1B o	ot 1	0	

¹Bolmdarks the default value and conf guratio ²GPI O2 actually does not determine SPI Boot Download Boot mode, but it is recommended this pin up due to glitches.

³Joint Download Boot mode supports the fo download methods:

- •USB-Serial-JTAG Download Boot
- •UART Download Boot

In SPI Boot mode, the ROMbootloader loads and executes the system.

In Joint Download Boot mode, users can download binary flalsopossible to download binary fles into SRAM and execu In addition to SPI Boot and Joint Download Boot modes, ESF For details <u>ESPR 3e2a-s@3sTeeechnical</u> ReOfhearp@theicrpe_BMaontu.&bontrol

3. 2ROM Messages Printing Control

During the boot process, the messages by the ROMcode can I

• (Default) UARTO and USB Serial/JTAG controller

- UARTO
- USB Serial / JTAG controller

EFUSE_UART_PRINT_CONTROL and GPIO8 cold At R Ta Os Rs On Mol more si 3sn-a Tega eb UARTO ROM Message Printing Control

Table 3 - 4. UARTO ROMMessage Printing Cont

UARTO ROMCode	EFUSE_UART_PRIN	GPIO	BROL
	0	Ignoi	e d
Enabled	1	0	
	2	1	
	1	1	
Disabled	2	0	
	3	Ignoi	e d

 $^{^{1}\}mbox{Bolmdarks}$ the default value and configuration.

EFUSE_USB_PRINT_CHANNEL c**b/s**n/B/nScelrsi **a** h é JpTr**A**iGnet bi on togntoio&n-l TogarbBl € Serial/JTAG ROM Message Printing Control

Table 3 - 5. USB Serial / JTAG ROM Message Print

USB Serial ROMCode Pr	EFUSE_DIS_USB_S ² E		- CHAN
ROMCode Pr		E F U S E _ U S B _ P K I N I	_ C H A N
Enabled	0	0	
Disabled	0	1	
DISABIEU	1	Ignored	

¹Bolmdarks the default value and conf guration.

 $^{^2 {\}sf EFUSE_DIS_USB_SERIAL_JTAG}$ controls whether to di

4 Functional Description

4.15 y s t e m

This section describes the core of the chip's operation, system components, and security features.

4.1 Mil croprocessor and Master

This subsection describes the core processing units with

4.1.H1i.glh-Performance CPU

ESP32-C3 has alow-power 32-bit RISC-V single-core micro

- four stage pipeline that supports a clock frequency o
- R V 3 2 I MC I S A
- 32 bit multiplier and 32 bit divider
- up to 32 vectored interrupts at seven priority levels
- up to 8 hardware breakpoints/watchpoints
- up to 16 PMP regions
- JTAG for debugging

For deta ESS32s-eCe3 Technical ReCfhearphetinegche-MPaenrufaolr.mance CPU

4.1. GD M2A Controller

ESP32-C3 has a general DMA controller (GDMA) with six ind and three receive channels. These six channels are share controller implements a fxed-priority scheme among thes The GDMA controller controls data transfer using linked memory-to-memory data transfer at a high speed. All chan Peripherals on ESP32-C3 with DMA feature are SPI2, UHCIO For detall \$ 1832-eCe3 Technical ReCfhearp@tDetaller@tDetaller(DMA)

4.1 M2 mory Organization

This subsection describes the memory arrangement to expl for effcient operation.

Figuriell ustrates the address mapping structure of ESP32

Figure 4-1. Address Mapping Structure

Note:

The memory space with gray background is not available for use

4.1.12ntlernal Memory

ESP32-C3's internal memory includes:

- \bullet 384 KB of. RF @ M/l booting and core functions
- 400 KB of on chfi cpr ScRaAtMa and instructions, running at a c
 MHz. Of the 400 KB SRAM, 16 KB is configured for cache
- RTC FAST mærðtokrBy of SRAM that can be accessed by the main Deep-sleep mode
- 4 Kbit of: e1F7u9s2ebits are reserved for your data, such as (

- In package fash
 - See fash size1E & PC3h2a-pOt3e & eries Comparison
 - More than 100, 000 program/erase cycles
 - More than 20 years of data retention time
 - Clock frequency up to 80 MHz by default

For deta <u>ESS32s-eCe3 Technical</u> Re-eCfhear pSe tynescnte eMna an nu da. Me mory

4.1. Of 2-package Flash

ESP32-C3 supports SPI, Dual SPI, Quad SPI, and QPI interffash, i.e. fash outside the chip's pacakge.

CPU's instruction memory space and read-only data memory ESP32-C3, whose size can be 16 MB at most. ESP32-C3 suppor XTS-AES to protect developers' programs and data in fash.

Through high-speed caches, ESP32-C3 can support at a tim

- 8 MB of instruction memory space which can map into fas and 32-bit reads are supported.
- 8 MB of data memory space which can map into fash as indi 32-bit reads are supported.

Note:

After ESP32-C3 is initialized, software can customize the map

For detaESS32s-eCe3 Technical ReCThearpSetynescriteeMhaan nu da. Me mory

4.1.2a3he

ESP32-C3 has an eight-way set associative cache. This cafeatures:

• size: 16 KB

• block size: 32 bytes

- pre-load function
- lock function
- critical word frst and early restart

For detaEt\$ Rs 3, 2s-eCe3 Technical Rs-eCfhearpSctynescnteeMnaan nuda. Me mory

4.1. 2 F4se Controller

The eFuse memory is a one-time programmable memory that s controller of ESP32-C3 is used to program and read this eF

Feature List

- Conf gurable write protection
- Conf gurable read protection
- Various hardware encoding schemes against data corruș

For deta El\$ 18:3, 2s-eCe3 Technical Re-eCfhearpoethneucros eMa on nutario II er

4.1S%stemComponents

This subsection describes the essential components that the system.

4.1.130 MUX and GPI O Matrix

ESP32-C3 has 22 or 16 GPI Opins which can be assigned various registers. Besides digital signals, some GPI Os can be al:

All GPI Os have selectable internal pull-up or pull-down, are configured as an input, the input value can be read by sobe set to generate edge-triggered or level-triggered CPU non-inverting and tristate, including input and output be multiplexed with other functions, such as the UART, SPI, to holding state.

The IO MUX and the GPIO matrix are used to route signals from provide highly configurable I/O. Using GPIO Matrix, periputal experipheral output signals can be configured to any I

For deta ESS 32s-eCe3 Technical Re-eCfhearple-tOpe-tMeUXMaamudaGIP.IO Matrix

4.1. Re2et

The ESP32-C3 chip provides four types of reset that occur SystemReset, and Chip Reset. Except for Chip Reset, all r memory.

Feature List

- Support four reset levels:
 - CPU Reset: Only resets CPU core. Once such reset is r vector will be executed
 - Core Reset: Resets the whole digital system except R Blue t[®] Φ. Φ. †, hand digital GPIOs
 - System Reset: Resets the whole digital system, incl
 - Chip Reset: Resets the whole chip
- Support soft ware reset and hardware reset:

- Software Reset: The CPU can trigger a software reset
- Hardware Reset: Hardware reset is directly trigger

For deta <u>ESS32s-eCe3 Technical</u> Re-eCfhear pRe-tenescree tMaarm du & Iock

4.1.313ck

For detaESB32s-eCe3 Technical ReCfhearpRetenescreetManmodu&lock

CPU CI ock

The CPU clock has three possible sources:

- external main crystal clock
- fast RC oscillator (typically about 17.5 MHz, and adju
- PLL clock

The application can select the clock source from the thre the CPU clock directly, or after division, depending on t clock source would be the external main crystal clock div

Note:

ESP32-C3 is unable to operate without an external main crystal

RTCCIock

The RTC slowclock is used for RTC counter, RTC watchdog an sources:

- external low-speed (32 kHz) crystal clock
- internal slow RC oscillator (typically about 136 kHz,
- internal fast RC oscillator divided clock (derived fr

The RTC fast clock is used for RTC peripherals and sensor (

- external main crystal clock divided by 2
- internal fast RC oscillator divide by N clock (typic)

4.1. Bn # errupt Matrix

The Interrupt Matrix in the ESP32-C3 chip independently CPU's peripheral interrupts, to timely inform CPU to proceed to the composition of the com

Feature List

- Accept 62 peripheral interrupt sources as input
- Generate 31 CPU peripheral interrupts to CPU as output
- Query current interrupt status of peripheral interrul

• Configure priority, type, threshold, and enable signal For deta ESS 32s-eCe3 Technical ReCfhear pletmetcree rMfaunputa Matrix

4.1. **3** y **5** t e m T i me r

ESP32-C3 integrates a 52-bit system timer, which has two timer has the following features:

- counters with a fxed clock frequency of 16 MHz
- three types of independent interrupts generated accor
- two alarmmodes: target mode and period mode
- 52 bit target alarmvalue and 26 bit periodic alarmva
- automatic reload of counter value
- counters can be stalled if the CPU is stalled or in OCD n

 For detaE\$ R\$ 3 2s-eCe3 Technical R\$ eCfhearp& tynescrite eMha.Thiu maetr

4.1. Bower Management Unit

The ESP32-C3 has an advanced Power Management Unit (PMU) different power domains of the chip to achieve the best baconsumption, and wakeuplatency.

Confguring the PMU is a complex procedure. To simplify pot the fold rowd enfgned powtehra in opcobewser up different combinations

- Active-mδble CPU, RF circuits, and all peripherals are c transmit, and listen.
- Modem-slee-pTrhoedCePU is on, but the clock frequency can b connections can be configured to remain active as RF cir required.
- Light-sleeTph menoCoPeU stops running, and can be optionally upvia all wake up mechanisms: MAC, RTC timer, or exter active. Some groups of digital peripherals can be opti
- Deep-slee-pOmolodyeRTC is powered on. Wireless connection
 For power consumption in differ 5 n Obsuprorweent n Coochessu, m spele (Sine ct)
 Fig 4 r @ omponents and Poave d Dibenation shows 1 hnogw Ttahbel deistributic components power do an an power subdomains

Figure 4 - 2. Components and Power Domains

Table 4-1. Components and Power Domains

Pow	e rRT (Dig	ital			An	alog				
D o m	ı İ			Optic	Wirel		F 0 C C	V T A I		R F	
Power			CPU	Digi	Digi	1		XTAL	PLL		
Mo d e				Peri	Circu	ı	CLK	CLK		Circ	uits
Active	ON	ON	ΟN	O N	ON	ON	O N	ΟN	ΟN	ΟN	
Modem-s	I e ŒNp	ON	ΟN	O N	ΟN	ON	O N	ΟN	ΟN	OF₹	
Light-s	I e Œ Np	ON	of F	οŃ	0 F F	ON	OFF	OFF	O F F	OF₹	
Deep-sl	e e Op N	OFF	OFF	OFF	OFF	ON	OFF	OFF	O F F	OFF	

¹Confgurable, see the TRM.

For deta ESS 3 2s-eCe3 Technical ReCfhear ple tonewore PN bawneura Manageme.nt (R

²If Wireless Digital Circuits are on, RF circuits are period to keep active wireless connections running.

4.1. Bi. Ther Group

ESP32-C3 has two 54-bit general-purpose timers, which arauto-reload-capable up/down-timers.

The timers' features are summarized as follows:

- a 16-bit clock prescaler, from 1 to 65536
- a 54-bit time-base counter programmable to be increme
- able to read real time value of the time base counter
- halting and resuming the time base counter
- programmable alarm generation
- level interrupt generation

For detaEss32s-eCe3 Technical ReCfhearpEtinerorreerMarnouutp (TIMG)

4.1. Wa 8 chdog Timers

For deta <u>ESS32s-eCe3 Technical</u> Re-eCfhear pMa/tanetcrae hMalaongu Tail mers

Di gi tal Watchdog Ti mers

ESP32-C3 contains three digital watchdog timers: one in Watchdog Timers, or MWDT) and one in the RTC module (calle During the fash boot process, RWDT and the MWDT in timer grorder to detect and recover from booting errors.

Digital watchdog timers have the following features:

- four stages, each with a programmable timeout value. E disabled separately
- interrupt, CPU reset, or core reset for MWDT upon expir or system reset for RWDT upon expiry of each stage
- 32 bit expiry counter
- write protection, to prevent RWDT and MWDT confgurati
- fash boot protection

If the boot process from an SPI fash does not complete w watchdog will reboot the entire main system.

Analog Watchdog Timer

ESP32-C3 also has one analog watchdog timer: RTC super wa circuit in analog domain that helps to prevent the system system if required.

SWD has the following features:

• UItra-lowpower

- Interrupt to indicate that the SWD timeout period is cl
- Various dedicated methods for soft ware to feed SWD, whof the whole operating system

4.1. Be 9 mission Control

 $\begin{center} ESP32-C3 includes a Permission Controller (PMS), which appears pherals) to two isolated environments, thereby real environments. \\ \end{center}$

Feature List

- Independent access management in a privileged enviro
- Independent access management to internal memory, in
 - CPU access to internal memory
 - GDMA access to internal memory
- Independent access management to external memory, inc
 - CPU to external memory via SPI 1
 - CPU to external memory via Cache
- Independent access management to peripheral regions,
 - CPU access to peripheral regions
 - Interrupt upon unsupported access alignment
- Address splitting for more fexible access management
- Register Locks to secure the integrity of access manag
- Interrupt upon unauthorized access

For detall \$18:3 2s-eCe3 Technical Re-eCfhear pte tenercmeni Msasniu oan I Control (PMS

4.1.35.y1sOtemRegisters

The SystemRegisters in the ESP32 - C3 chip are used to conf

Feature List

- Control system and memory
- Control clock
- Control software interrupt
- Control low-power management
- Control peripheral clock gating and reset

For deta ESS 32s-eCe3 Technical ReoChearpStynescrteeMhaRneugailster.s (HP_SY

4.1. Bebug Assistant

The Debug Assistant provides a set of functions to help lo offers various monitoring capabilities and logging feat effciently.

Feature List

- Read/write:moMno in totro ir us gwhether the CPU bus has read from space. A detected read or write will trigger an interru
- Stack pointer (:S PM)o mnio th oint so rwith reginer the SP exceeds the sp bounds violation will trigger an interrupt.
- Program counter (RPeCc) o **rot** sp dPiCnvgalue. The developer can ge recent CPU reset.
- Bus access: I Roegcgoirndgs the information about bus access. 'specifed value, the Debug Assistant module will record and push the data to the SRAM.

For deta<u>E\$R32s-eCe3Technical</u>Re-eOfhearp@tenebcnue.gtMasnsuiastant (.ASSIST

4. 1.C.4 yptography and Security Component

This subsection describes the security features incorpo operations.

4.1. ALESI Accel erator

ESP32-C3 integrates an Advanced Encryption Standard (AE speeds up computation using AES algorithms ignificantly, software. The AES accelerator integrated in ESP32-C3 has DMA-AES.

Featurelist

- Typical AES working mode
 - AES 128/AES 256 encryption and decryption
- DMA AES working mode
 - AES-128/AES-256 encryption and decryption
 - Block cipher mode
 - * ECB (Electronic Codebook)
 - * CBC (Cipher Block Chaining)
 - * OFB (Output Feedback)
 - * CTR (Counter)
 - * CFB8 (8-bit Cipher Feedback)

* CFB128 (128-bit Cipher Feedback)

- Interrupt on completion of computation

For detaESS32s-eCe3 Technical Re-eCfhearpAttnessreAcMaenluearlator (AES).

4.1. AMAC Accel erator

The HMAC Accelerator (HMAC) module is designed to compute the SHA-256 Hash algorithm and keys as described in RFC 21 computations, significantly reducing software complexi

Feature List

- Standard HMAC SHA 256 algorithm
- Hash result only accessible by confgurable hardware p
- Compatible to challenge response authentication alg
- Generates required keys for the Digital Signature (DS
- Re enables soft disabled JTAG (in downstreammode)

For detailEsS, Ps3 e2 e C Bi e7 e chnical ReCfhearphetth/bear@ Al/caon eulaeirator

4.1. RSB Accelerator

The RSA accelerator provides hardware support for high-pasymmetric cipher algorithms, significantly improving t Compared with RSA algorithms implemented solely in soft valgorithms significantly.

Feature List

- Large number modular exponentiation with two option a 3072 bits
- Large number modular multiplication, operands width
- Large number multiplication, operands width up to 15
- Operands of different widths
- Interrupt on completion of computation

For detail<u>EsS, Ps2ee Ctatechnical</u> ReCfhear pRetSneAcreA. dVaa en.luearfator

4.1. SHA Accelerator

The SHA Accelerator (SHA) is a hardware device that speed algorithmimplemented solely in soft ware. The SHA accelemodes, which are Typical SHA and DMA - SHA.

Feature List

- The following has halg Folr IPSU Blook SOSipotetor oduced in
 - SHA 1
 - SHA 224
 - SHA 256
- Two working modes
 - Typical SHA
 - DMA SHA
- \bullet Interleaved function when working in Typical SHA work
- Interrupt function when working in DMA SHA working mo For more deta $\underline{\text{E.S.B.3.2s-eCe3tTheec}}$ hnical ReOfhear $\underline{\text{ps-th-ex-ra}}$ th detail at or (SI)

4.1. Di 5i tal Signature

The Digital Signature (DS) module in the ESP32-C3 chip ge hardware acceleration.

Feature List

- RSA digital signatures with key length up to 3072 bits
- Encrypted private key data, only decryptable by DS mod
- SHA 256 digest to protect private key data against tam For more de tall \$ 18 3 2s-eCe3 tTheec hnical R-eCf hear pB tineocrie tMaaln \$\sia \dag{\text{q}} nature (

4.1. 🛮 x b ernal Memory Encryption and Decryption

The External Memory Encryption and Decryption (XTS_AES) for users' application code and data stored in the extern

Feature List

- General XTS_AES algorithm, compliant with IEEE Std 16
- Software based manual encryption
- High-speed auto decryption, without soft ware's parti
- Encryption and decryption functions jointly determined and boot mode

For more deta <u>ESR32s-eCe3tTheechnical</u> ReeCfhear ple txnetcree rMhaanlu Made mory En (Decryption.(XTS_AES)

4.1. Random Number Generator

The Random Number Generator (RNG) in the ESP32-C3 is a tru 32-bit random numbers for cryptographic operations from

Feature List

- RNG entropy source
 - Thermal noise from high-speed ADC or SAR ADC
 - An asynchronous clock mismatch

For more details about the Random <u>N N Ph B 2 r CG3e Thee crhantiocrair</u> & fe fe fe Chap Rem dom N u mber Generator (R N G)

4. 2Peripherals

This section describes the chip's peripheral capabilitithat extendits functionality.

4. 2Connectivity Interface

This subsection describes the connectivity interfaces o with external devices and networks.

4. 2. UIARIT Controller

ESP32-C3 has two UART interfaces, i.e. UARTO and UART1, w communication (RS232 and RS485) at a speed of up to 5 Mbps. control (CTS and RTS signals) and software fow control (XGDMA via UHCIO, and can be accessed by the GDMA controller For detall \$1832s-eCe3 Technical ReCfhearphtMacRife CV/Dammtura of ller (UART, L

Pin Assignment

The pins connected to transmit and recelia Reda Griegmmual Itsi (plu Ge Ta Xel GPIO21 ~ GPIO20 via IO MUX. Other signals can be routed to For more information about the 2p. il 3nO aP sia snist gnment, see Sectine SP32-C3 Technical Re-eCf hear plet to eMed What mode a GIP. IO Matrix

4. 2. \$PP Controller

ESP32-C3 has the following SPI interfaces:

- SPluOs ed by ESP32 C3's GDMA controller and cache to acce
- SP lu % ed by the CPU to access in package or off package 1
- SPIi 2s a general purpose SPI controller with access to a

Features of SPI O and SPI 1

- Supports Single SPI, Dual SPI, and Quad SPI, QPI modes
- Confgurable clock frequency with a maximum of 120 MHz i
- Datatransmission is in bytes

Features of SPI 2

- Supports operation as a master or slave
- Connects to a DMA channel allocated by the GDMA control
- Supports Single SPI, Dual SPI, and Quad SPI, QPI
- Conf gurable clock polarity (CPOL) and phase (CPHA)

- Conf qurable clock frequency
- Datatransmission is in bytes
- Conf gurable read and write data bit order: most-signi frst
- As a master
 - Supports 2 line full duplex communication with cl
 - Supports 1-, 2-, 4-line half-duplex communication
 - Provides six SPI_CS pins for connection with six inc
 - Conf gurable CS set up time and hold time
- As a slave
 - Supports 2 line full duplex communication with cl
 - Supports 1-, 2-, 4-line half-duplex communication

For deta ESS32s-eCe3 Technical ReCfhearp&tPhetcreCoMathrugalller (SPI)

Pin Assignment

For SPI 0/1, the pins are multiplexed with GPI 012 \sim GPI 017 For SPI 2, the pins are multiplexed with GPI 02, GPI 04 \sim GPI MUX.

For more information about the 2p. il 3nO aP sia snist gnment, see Secti <u>ESP32-C3 Technical</u> Re-eOf hear ple tOe tMeU XVI aa mod a GIP. IO Matrix

4.2.1126 Controller

ESP32-C3 has an I2C bus interface which is used for I2C masconf guration. The I2C interface supports:

- standard mode (100 Kbit/s)
- fast mode (400 Kbit/s)
- up to 800 Kbit/s (constrained by SCL and SDA pull up st
- 7 bit and 10 bit addressing mode
- double addressing mode
- 7 bit broadcast address

For deta ES & 3 2s-eCe3 Technical Re-eCfhearplet2beCr @ oMatrualler (I2C)

Pin Assignment

The pins for I 2 C can be chosen from any GPIOs via the GPION.

For more information about the 2p. il 3nO aP sa sn is Ignment, see Secti
ESP32-C3 Technical Re-eCf hear plet to et to MeJ XV/ as mod a GIP. I O Matrix

4. 2. 11 2 St Controller

ESP32-C3 includes a standard I 2S interface. This interface mode or half-duplex mode, and can be configured for 8-bit, clock frequency, from 10 kHz up to 40 MHz, is supported.

The I 2S interface connects to the GDMA controller. The in TDMs tandard, and PDMs tandard.

For deta ESS32s-eCe3 Technical ReCfhearplet2eScreCoMatrualler (I2S)

Pin Assignment

The pins for the I2S Controller can be chosen from any GPI (
For more information about the 2p. il3nO aP sasnist gnment, see Secti
ESP32-C3 Technical R-eOf hear plet t0e tMeJ XM as mod a GIP. IO Matrix

4. 2. USB Serial / JTAG Controller

ESP32-C3integrates a USB Serial/JTAG controller. This c

- CDC ACM virtual serial port and JTAG adapter function
- USB 2. Of ull speed compliant, capable of up to 12 Mbit/ not support the faster 480 Mbit/s high-speed transfer
- programmi ng i n package / off package fash
- CPU debugging with compact JTAG instructions
- a full speed USB PHY integrated in the chip

For deta<u>E\$ R\$ 3 2s-eCe3 Technical</u> R> eOfhear pdetSneBcreS eMna in au la // JTAG Control (USB_SERIAL_JTAG)

Pin Assignment

The pins for the USB Serial / JTAG Controller are multiple:
For more information about the 2p. il3rO aP sasnist gnment, see Secti
ESP32-C3 Technical R-eCf hear plet t0et MeJ XM as mod aGIP. I O Matrix

4. 2. Two-wire Automotive Interface

ESP32-C3ha®scanTtWfAdller with the following features:

- compatible with ISO 11898-1 protocol (CAN Specificati
- standard frame format (11-bit ID) and extended frame f
- bit rates from 1 Kbit/s to 1 Mbit/s
- multiple modes of operation: Normal, Listen Only, and
- 64 bytereceive FIFO

- acceptance flter (single and dual flter modes)
- error detection and handling: error counters, confguar bitration lost capture

For deta <u>ESB32s-eCe3 Technical</u> Re-eOf hear pte two excreviblar neu Aaultomotive Int

Pin Assignment

4.2.11 ED PWM Controller

The LED PWM controller can generate independent digital controller:

- Can generate digital waveform with confgurable periodican be up to 14 bits.
- Has multiple clock sources, including APB clock and ex
- Can operate when the CPU is in Light-sleep mode.
- Supports gradual increase or decrease of duty cycle, w generator.

For deta<u>E\$R\$32s-eCe3Technical</u>R>eCfhearpletEneOcrePWMMcoomaltroller

Pin Assignment

The pins for the LED PWM Controller can be chosen from any

For more information about the 2p. il 3nO aP sia snistly nment, see Secti

ESP32-C3 Technical Re-eCf hear plet to eMe Whe What mud a GIP. I O Matrix

4. 2. Remote Control Peripheral

The Remote Control Peripheral (RMT) supports two channel channels of infrared remote reception. By controlling puinfrared and other single wire protocols. All four channor receive waveform.

For more de EasiPl3 🛭 , Cs 3e e e chnical Re eOf hear pRe tenerorme t Mea Coou na tirol Perip

Pin Assignment

The pins for the Remote Control Peripheral can be chosen for more information about the 2p.il3nO aP sia snist gnment, see Secti ESP32-C3 Technical Re-eCf hear ptet to et MeJ XV/aa mod aGIP.I O Matrix

4. 2.A2nalog Signal Processing

This subsection describes components on the chip that se

4.2. SARADC

ESP32-C3 integrates two 12-bit SAR ADCs.

- ADC1 supports measurements on 5 channels, and is facto
- ADC2 supports measurements on 1 channel, and is not fac

Note:

ADC2 of some chiprevisions is not op & 62 b 12 6 c r Boer & drer taatials, p

For ADC characteristics5, p6D & aCshear a c.e entiosSteicctsion

For more de <u>EasiPi3 & r</u> <u>Gaetechnical</u> Re-eCfhearp@tmecr@hMlapnSienhsors and A Processing

Pin Assignment

The pins for the SAR ADC are multiplexed with GPI 00 \sim GPI 0! external crystal or oscillator.

For more information about the 2p.il3nOaP sia snistlg nment, see Secti ESP32-C3 Technical Re-eOf hear pletOeOMeU XVI as mod aGIP.IO Matrix

4. 2. Ze 2nperature Sensor

The temperature sensor generates a voltage that varies wivia an ADC into a digital value.

The temperature sens400r°hCatsoa1r2a5n°g@c.olft is designed primarichanges inside the chip. The temperature value depends o I/Oload. Generally, the chip's internal temperature is I

For more de <u>£asiPl3 & r</u> <u>Gaetechnical</u> Reofhearp@tmecr@hMlapnSienhsors and A Processing

4. 3Wireless Communication

This section describes the chip's wireless communication Bluetooth, and 802.15.4.

4.3Radio

This subsection describes the fundamental radio technol communication and data exchange. ESP32-C3 radio consist

- 2. 4 GHz receiver
- 2. 4 GHz transmitter
- bi as and regulators
- bal un and transmit-receive switch
- clock generator

4.3.21..4 GHz Receiver

The 2. 4 GHz receiver demodulates the 2. 4 GHz RF signal to q to the digital domain with two high-resolution, high-spe conditions, ESP32-C3 integrates RF flters, Automatic Ga baseband flters.

4.3.2.2 GHz Transmitter

The 2.4 GHz transmitter modulates the quadrature baseban antenna with a high-powered CMOS power amplifer. The use of the power amplifer.

Additional calibrations are integrated to cancel any rad

- carrier leakage
- I / Q amplitude / phase matching
- baseband nonlinearities
- RF nonlinearities
- antenna matchi ng

These built-in calibration routines reduce the cost, tim testing.

4.3.Cl ack Generator

The clock generator produces quadrature clock signals of components of the clock generator are integrated into the regulators and dividers.

The clock generator has built-in calibration and self-teare optimized on chip with patented calibration algorithand the transmitter.

4.3.W2 - Fi

This subsection describes the chip's Wi-Fi capabilities rate.

4.3. Will Fi Radio and Baseband

ESP32-C3 Wi-Firadio and baseband support the following

- 802.11b/g/n
- 802.11n MCSO-7 that supports 20 MHz and 40 MHz bandwidt
- 802.11n MCS32
- 802.11 µsn Q0 u a4 r d i n t e r v a l
- datarate up to 150 Mbps
- RX STBC (single spatial stream)
- adjustable transmitting power
- antenna di versi ty
 ESP32 C3 supports antenna di versi ty wi than external more GPI Os, and used to select the best antenna to mi ni

4.3.2Wi2 Fi MAC

ESP32-C3 implements the full 802.11 b/g/n Wi - Fi MAC protocand Soft AP operations under the Distributed Control Funcautomatically with minimal host interaction to minimize ESP32-C3 Wi - Fi MAC applies the following low-level protocal strain terms of the control of the contro

- 4 × virtual Wi Fi interfaces
- infrastructure BSS in Station mode, Soft AP mode, Stat
- RTS protection, CTS protection, I mmediate Block ACK
- fragmentation and defragmentation
- TX/RXA-MPDU, TX/RXA-MSDU
- transmit opportunity (TXOP)
- Wi Fi multimedia (WMM)
- GCMP, CCMP, TKIP, WAPI, WEP, BIP, WPA2-PSK/WPA2-Enter
- automatic beacon monitoring (hardware TSF)
- 802.11 mc FTM

4.3. Ne3 working Features

Espressif provides libraries for TCP/IP networking, ESP protocols over Wi - Fi. TLS 1. O, 1. 1 and 1. 2 is also support

4.3.B3 uetooth LF

This subsection describes the chip's Bluetooth capabililow-power, short-range applications. ESP32-C3 include: hardware link layer controller, an RF/modemblock and a fore features of Bluetooth 5 and Bluetooth mesh.

4.3. Bl. Letooth LEPHY

Bluetooth Low Energy radio and PHY in ESP32 - C3 support:

- 1 Mbps PHY
- 2 Mbps PHY for higher datarates
- coded PHY for Longer range (125 Kbps and 500 Kbps)
- HWLi sten before talk (LBT)

4.3. 33.1 24 etooth LE Link Controller

Bluetooth Low Energy Link Layer Controller in ESP32 - C3 s

- LE advertising extensions, to enhance broadcasting co
- multiple advertisement sets
- si mul taneous advertising and scanning
- multiple connections in simultaneous central and per
- adaptive frequency hopping and channel assessment
- LE channel selection algorithm # 2
- connecti on parameter update
- high duty cycle non-connectable advertising
- LE privacy 1. 2
- LE data packet length extension
- link layer extended scanner flter policies
- I owduty cycle directed advertising
- link layer encryption
- LE Ping

5 Electrical Characteristics

5. 1Absolute Maximum Ratings

Stresses above tho 5s-eA1b is os It ve tlei MaTxaib mae yn & a tuis e go sermanent dan device. These are stress ratings only and normal operatibe yond those india aR2 ecodoimm Seed to ido Orperatiisn ng o Ctoin not piltii eo oh.s Expabsolute-maxi mum-rated conditions for extended period:

Table 5 - 1. Absolute Maximum Ratings

Parameter	Description	Min Max Unit
I nput powe	nAlplion wsved in put v	ol Ot.a Ot e 3.6 V
l _{output} ²	Cumulative I O o	utp—ut 1:00000mAt
T_{STORE}	Storagetemper	atu4r0e 150°C

 $^{^1}F$ or more information on inpu2t P500 wweer Spui pnps1, ysee Se 2T he product proved to be fully functional after while being connected to ground for 24 consecutiature of 25 $^\circ$ C.

5. 2Recommended Operating Conditions

For recommended ambient tefnEpSePr3a2t-u0r3e\$ esreieeSse0cotrinpoanris on

Table 5 - 2. Recommended Operating Conditi

Parameter	Description	Min Typ Max Unit
VDDA, VDD3P3, VI	DR 8 P 8 <u>m</u> Rn Te 6 de din p	ou3t.vDoB.t 2ig3e. 6 V
V D D 3 P 3 _2C P3U	Recommendedin	ou3t.vDoB.t 21 g3e. 6 V
VDD_SPI (asinpu	t-)	3.03.33.6V
I_{VDD}	Cumulativeinp	utOcu5rr—ent— A

¹See in conjuncti2o.nP5wviwte h Section

²If writing to eFuses, the voltage on VDD3P3_CPU sho responsible for burning eFuses are sensitive to hig
³If VDD3P3_CPU is used to powe 2.V5DPDv2wSePrIS(c)sh,eetm(6 ex vto)I dra

drop gan sRhould be a c c o u n t e d f o5r. \\S IS Re_e SaPIIs @ uStepcutti @ lm a r a с

5. 3V D D _ S P I Output Characteristics

Table 5 - 3. VDD_SPI Internal and Output Char

Paramo	Descri ¹ ption	Typ Unit
D	VDD_SPI powered by VD_SP_I3	P3_CPU via R
R_{SPI}	for 3.3 V fåsh_CPU	7. 5.12

¹See in conjuncti 2o.n5PV b2tv b rS 6 c. h e on a

- •VDD_fash_mminni mumoperating voltage of fash_
- •I _fash-_ maxi mumoperating current of fash_CF

5. 4D C Characteristics (3.3 V, 25 °C)

Table 5 - 4. DC Characteristics (3.3 V, 25

Parame	Description	Mi n	Тур	Ma x	Uni
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input volta	g@.75× ¹ V	D D —	V D Ď + Ο.	3 V
V_{IL}	Low-level input voltag	е О.	3 —	0.25 × ¹ V	D DV
I_{IH}	High-level input curre	nt —	_	5 0	n A
I_{IL}	Low-level input curren	t —	_	5 0	n A
V_{OH}^{2}	High-level output volt	ag0e8×∜l	D —	_	V
V_{OL} 2	Low-level output volta	g e —	_	0.1 × ∜	DDV
I_{OH}	High-level sour 1 c=e 2 c. 1 c 2 c 2 c. 2	_	4 0	_	m A
I_{OL}	Low-levelsink ¹ € 03 r 8 A/Ln=tV O. 495 V, PAD_DRIVER = 3)	_	2 8	_	m A
R_{PU}	Internal weak pull-upr	esisto-r	4 5	_	kΩ
R_{PD}	Internal weak pull-dow	nresis—t	or 45		kΩ
V_{IH_nRST}	Chipreset release volt is within the specifed r	a g e C H I F O . 75 × 1V a n g e)	DD —	voltage VDD+0.	3 V
V_{IL_nRST}	Chipreset voltage (CHI the specifed range)	P_ENvol	t a g e 3 —	i s wi t h 0.25 × V	i n D DV

¹VDD - voltage from a power pin of a respective power doma

 $^{^2}$ V D D 3 P 3 _ C P U must bVeDr \bar{D} o_rf eash a min + I _sf_Iash _ max * R where

 $^{^{2}}V_{OH}$ and $_{O}$ Vare measured using high-impedance load.

5. 5ADC Characteristics

Table 5 - 5. ADC Characteristics

Symbol	Parameter	Mi n	Мах	Unit
DNL (Different 1 a	ADC connected to an e I nonlinearity) 100 nF capacitor; DC	xter 7 sign	nal 7 alin	L S B p u t ;
INL (Integral nor	Ambient temperature nlinearity) Wi-Fi off	a t 2 12	5 ° C; ! 12	LSB
Samplingrate	_	_		Ok S P ² S

¹To get better DNL results, you can sample multiple tin value.

The calibrated ADC results a <u>6 to 6 ft throat ried la</u>vasararete ischard wirdo to a off Factor the an higher accuracy, you may implement your own calibration.

Table 5 - 6. ADC Calibration Results

Parameter	Description	Mi n	Мах	Unit
	ATTENO, effective meas 10 5 0	me n1t 0	ran1g0	e omfV O
Totalorro	ATTEN1, effective mea~s1u0r5e0	me n1t0	ran1gO	e omfVO
	ATTEN2, effective measus@0	ne n1t0	ran1g0∈	e omfVO
	ATTEN3, effective meas205000	nen3t5	ram3g5e	e omfVO

5.6Current Consumption

5. 6RF Current Consumption in Active Mode

The current consumption measurements are taken with a 3. RF port. All transmitters' measurements are based on a 10

Table 5 - 7. Wi - Fi Current Consumption Dependi

Work Måde	Description	Peak (mA)
	802.11b, 1 Mbps, 0	
	802.11g, 54 Mbps,	@192d885m
Activo (DE	T X 802.11g, 54 Mbps, 802.11n, HT20, MC 802.11n, HT40, MC	S7, @21786.5dBm
ACTIVE (RI	802.911n, HT40, MC	S 7, @21788. 5 d B m
	R X 802.11b/g/n, HT2 802.11n, HT40	0 84
	802.11n, HT40	8 7

²k S P S means kilo samples - per - second.

5. 6.C2urrent Consumption in Other Modes

Table 5 - 8. Current Consumption in Modem-slee

Mo d e	CPU Frequ	Descrip	All Periphe	yp All Peripherals (Enabled (mA)
	160	CPUisru	nning 23	2 8
Modem-s ² I		CPUisid	l e 1 6	2 1
ivio d e iii- s i	80	CPUisru	nning 17	2 2
	00	CPUisid	l e 13	1 8

 $^{^{1}}$ In practice, the current consumption might be differen

Table 5 - 9. Current Consumption in Low-Power

Mo d e	Description	T y pμA()
Light-	sVIDeDe_pSPI and Wi-Fi are powered down, ar	od a 11 B 0G P I O s
Deep-s	IReTeCptimer + RTC me mory	5
Powero	fCfHIP_ENisset to low level, the chipi	s powlered o

5. TReliability

Table 5-10. Reliability Qualifcations

Testltem	Test Conditions	Test Standard
HTOL (High Ten Operating Lif	perature 1,25°C, 1000 hours e)	J E S D 2 2 - A 1 O 8
ESD (Electro-	SHtBaMt (i Hetuman Body 1210000)V	J S - 001
Di scharge Sen	sCiDtM (vCihtayr)ge Dev ² i≟deOMOdve)	J S - 002
Latchup	Current trigger ± 200 mA Voltage trig _n g _x er 1.5 × VDD	J E S D 7 8
Precondition	Bake 24 hours @125°C Mogisture soak (level 3: 192 I Rrefowsolder: 260 + 0°C, 2	J-STD-020, JES hours @30°C 60 JESD22-A113 Oseconds, thr
TCT (Temperat Test)	ure Cycling 65°C/150°C, 500 cycles	J E S D 2 2 - A 1 O 4
uHAST (Highly Accelerated S unbiased)	t1r3e0s °s CT, e 8 5 % R H , 9 6 h o u r s	JESD22-A118
HTSL (High Ten Storage Life)	perature 150°C, 1000 hours	J E S D 2 2 - A 1 O 3

Cont'donne

²In Modem-sleep mode, Wi-Fiis clock gated.

³In Modem-sleep mode, the consumption might be higher w 80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.

Table 5 - 10 - cont'd fromprevious page

	Test Conditions	Test Standard
LTSL (LowTemp	erature 40°C, 1000 hours	J E S D 2 2 - A 1 1 9
Storage Life)		JESDZZ-AII9

 ^1J EDEC document JEP155 states that 500 V HBMallows safe man ^2J EDEC document JEP157 states that 250 V CDMallows safe man

6 RF Characteristics

This section contains tables with RF characteristics of t

The RF data is measured at the antenna port, where RF cable front - end c Ω measurist tios ra 0

Devices should operate in the center frequency range all (center frequency range and the target transm<u>EiStRpFToewsetroalm</u>de TesCtuitdoer instructions.

Unless otherwise stated, the RF tests are conducted with

6. Wi - Fi Radio

Table 6 - 1. Wi - Fi Frequency

	Min Typ Max
Parameter	(MHz (MHz (MHz)
Center frequency of	op 2e4r1a2t i—ng 02 h4 a8 n4 ne l

6.1WII-Fi RF Transmitter (TX) Characteristics

Table 6-2. TX Power with Spectral Mask and EVM Mee

	Mi n	Тур	Ma x
Rate	(dBn	(dBn	(d B m)
802.11b, 1 Mbps	_	21.	0 —
802.11b, 11 Mbps	_	21.	0 —
802.11g, 6 Mbps	_	21.	0 —
802.11g, 54 Mbps	_	19.	0 —
802.11n, HT20, MCS0	_	20.	0 —
802.11n, HT20, MCS7	_	18.	5 —
802.11n, HT40, MCS0	_	20.	0 —
802.11n, HT40, MCS7	_	18.	5 —

Table 6 - 3. TX EVMTest

	Mi n	Тур	s Ľ
Rate	(dB	(dB	(d B
802.11b, 1 Mbps, @21	dBm-	24.	5 10
802.11b, 11 Mbps, @2	1 d B - m	25.	0 10
802.11g, 6 Mbps, @21	dBm-	23.	0 5
802.11g, 54 Mbps, @1	9 dB - m	27.	5 25
802.11n, HT20, MCS0,	@2 0	d B2m2 .	5 5

Cont'd on next page

Table 6-3 - cont'd from previous page

			s l
Rate	(d B	(dB	(d B)
802.11n, HT20, MCS7,	@1 8 .	5 2d 9B. r	m0 27
802.11n, HT40, MCS0,	@ 2 0	d B2m2 .	5 5
802.11n, HT40, MCS7,	@1 8 .	5 2d 8B.r	mO 27

 $^{^{1}}$ SL stands for standard I i mi t value.

6.1.W2-Fi RF Receiver (RX) Characteristics

Table 6 - 4. RX Sensitivity

	Mi n	Тур	Ma x
Rate	(dBn	(dBn	(d B m)
802.11b, 1 Mbps	_	98.	4 —
802.11b, 2 Mb p s	_	96.	0 —
802.11b, 5.5 Mbps	_	93.	0 —
802.11b, 11 Mbps	_	88.	6 —
802.11g, 6 Mbps	_	93.	8 —
802.11g, 9 Mbps	_	92.	2 —
802.11g, 12 Mbps	_	91.	0 —
802.11g, 18 Mbps	_	88.	4 —
802.11g, 24 Mbps	_	85.	8 —
802.11g, 36 Mbps	_	82.	0 —
802.11g, 48 Mbps	_	78.	0 —
802.11g, 54 Mbps	_	76.	6 —
802.11n, HT20, MCS0	_	93.	6 —
802.11n, HT20, MCS1	_	90.	8 —
802.11n, HT20, MCS2	_	88.	4 —
802.11n, HT20, MCS3	_	85.	0 —
802.11n, HT20, MCS4	_	81.	8 —
802.11n, HT20, MCS5	_	77.	8 —
802.11n, HT20, MCS6	_	76.	0 —
802.11n, HT20, MCS7	_	74.	8 —
802.11n, HT40, MCS0	_	90.	0 —
802.11n, HT40, MCS1	_	88.	0 —
802.11n, HT40, MCS2	_	85.	2 —
802.11n, HT40, MCS3	_	82.	0 —
802.11n, HT40, MCS4	_	78.	8 —
802.11n, HT40, MCS5	_	74.	6 —
802.11n, HT40, MCS6	_	73.	0 —
802.11n, HT40, MCS7	_	71.	4 —

Table 6 - 5. Maxi mum R X Level

	Mi n	Тур	Мах
Rate	(dBn	(dBn	(d B m)
802.11b, 1 Mbps		5	_
802.11b, 11 Mbps		5	_
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7	_	0	_
802.11n, HT40, MCS0	_	5	_
802.11n, HT40, MCS7	_	0	_

Table 6 - 6. RX Adjacent Channel Rejectio

	Mi n	Тур	Мах
Rate	(d B	(d B	(d B
802.11b, 1 Mbps	_	3 5	_
802.11b, 11 Mbps	_	3 5	_
802.11g, 6 Mbps	_	3 1	_
802.11g, 54 Mbps	_	2 0	_
802.11n, HT20, MCS0	_	3 1	_
802.11n, HT20, MCS7	_	1 6	_
802.11n, HT40, MCS0	_	2 5	_
802.11n, HT40, MCS7	_	1 1	_

6. 2Bluetooth 5 (LE) Radio

Table 6-7. Bluetooth LE Frequency

Parameter	Min Typ Max (MHz(MHz(MHz)
Center frequency of	op2e4r0a2ti—ng 2214a8n0ne l

6. 2B1 uetooth LE RF Transmitter (TX) Characteri

Table 6 - 8. Transmitter Characteristics - Blı

Parameter	Description	Mi n	Тур	Мах	Unit
DE transmit nowo	RF power contro	ol 22-4a.n (g (e O	20.0	Od B m
RF transmit powe	Gain control st	ер —	3.0	0 —	d B
	$\mid Ma \hspace{0.1cm} \not f_n \mid_{n=0,\;1,\;2,\;k}$	_	17.	00 —	k H z
Carrier frequen	Ma $xf_0 = f_0 _{0 = 0}$		1. 7	75 —	k H z
Carrier riequen	Ma $ f_n-f_{n-5} $		1. 4	6 —	k H z

Cont'donnext

Table 6 - 8 - cont'd from previous page

Parameter	Description	Mi n	Тур	Ma x	Unit
	$ f_1 - f_0 $	_	0.8	0 —	k H z
	$\Delta f 1_{a \; v \; g}$	_	250.	00 —	k H z
Modulation char	$\begin{array}{c} \text{Mi } \text{M} f_{2}^{\text{max}} \text{(for at acteristics} \\ \text{acteristics} \\ \text{99.9} \text{0} \text{0} $	l eas	t 190.	00 —	k H z
	$\Delta f 2_{a \; v} /_{\!$	_	0.8	3 —	_
In-band spurious:	± 2 MHz offset	_	37.	62 —	d B m
	s±e3mMblzsioofnfsset	_	41.	95 —	d B m
	> ± 3 MHz offset	_	44.	48 —	d B m

Table 6 - 9. Transmitter Characteristics - Blu

Parameter	Description	Mi n	Тур	Мах	Unit
RF transmit powe	RF power contro	l 224a.n () (e O	20.0	Od Bm
Ki ti ali siii t powe	Gain control st	ер —	3.0	0 —	d B
	$Ma \ k f_n _{n=0,\ 1,\ 2,\k}$		20.8	80 —	k H z
Carrier frequen	Ma $f_0 = f_n$		1.3	0 —	k H z
Carrierriequen	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.3	3 —	k H z
	$ f_1 - f_0 $	_	0.7	0 —	k H z
	$\Delta f 1_{a v g}$	_	498.	00 —	k H z
Modulation char	$\begin{array}{c} \text{Mi } \text{n} \Delta f_{2\text{max}}^2(\text{ for at a C teristics} \\ 99.9\% \Delta f_{2\text{mb}}^2) \end{array}$	leas —	t 430.	00 —	k H z
	$\Delta f 2_{a \ v} /_{\!\!\!\! 2} \!\!\! \Delta f 1_{a \ v \ g}$	_	0.9	3 —	_
In-band spuriou	± 4 MHz offset	_	43.	55 —	d B m
	s±e5mMblzsioofnfsset	_	45.	26 —	d B m
	> ± 5 MHz offset	_	45.	26 —	d B m

Table 6-10. Transmitter Characteristics - Bl

Parameter	Description	Mi n	Тур	Мах	Unit
RF transmit powe	RF power contro	l 224a.n (g (e O	20.0	Od B m
	Gain control st	ер —	3.0	0 —	d B
	Ma $ f_n _{n=0, 1, 2,k}$	_	17.	50 —	k H z
 Carrier frequen	Ma $\not f_0 = f_n \mid$ c $\not y$ of f s e t and dr		0.4	5 —	k H z
Carrrer rrequen	$ f_{n}-f_{n-3} $		0.7	0 —	k H z
	$ f_0 - f_3 $	_	0.3	0 —	k H z
	$\Delta f 1_{a \; v \; g}$	_	250.	00 —	k H z
Modulation char	aMditnAsrfilms,‡(ifcosrat 99.9% oAsf2aya),l	l e a s	t 235.	00 —	k H z
In-band spuriou	± 2 MHz offset	_	37.	90 —	d B m
	s±e3mMblzsioofnfsset	_	41.	00 —	d B m
	> ± 3 MHz offset	_	42.	50 —	d B m

Table 6-11. Transmitter Characteristics - Bl

Parameter	Description	Mi n	Тур	Мах	Uni
RF transmit powe	RF power contro) 1 22 4ai.n (9 © O	20.0	Od B m
	Gain control st	ер —	3.0	0 —	d B
	Ma $xf_n _{n=0, 1, 2,k}$	_	17.	00 —	k H z
Carrier frequen	Ma $f_0 = f_0$		0.8	8 —	k H z
Carrier frequen	$\begin{bmatrix} f_{n}-f_{n-3} \end{bmatrix}$		1.0	0 —	k H z
	$ f_0-f_3 $	_	0.2	0 —	k H z
	$\Delta f 2_{\sf a \ v \ g}$	_	208.	00 —	k H z
Modulation char	aMolitnnArf2ms,√t(ifcosr at	leas	t 190.	0.0	k H z
	99.9% oΔff2amla),l	_	1 9 0 .	00 —	KIIZ
In-band spuriou	± 2 MHz offset	_	37.	90 —	d B m
	s±e3mMblzsioofnfsset	_	41.	30 —	d B m
	> ± 3 MHz offset	_	42.	80 —	d B m

6. 2.B2 uetooth LE RF Receiver (RX) Characteristi

Table 6-12. Receiver Characteristics - Blue

Parameter	Description	Mi n	Тур	Мах	Unit
Sensitivity @30.8%	P E R	_	9 7	_	d B m
Maxi mumrecei ved si 🤉	n-al @30.8% PER	-	5	_	d B m
Co-channel C/I	_	_	8	_	d B
	F = FO + 1 MHz	_	3	_	d B
	F = FO - 1 MHz	_	4	_	d B
	F = FO + 2MHz	_	2 9	_	d B
Adjacent channel se	F = F O - 2 MH z e c t i v i t y C / I F = F O + 3 MH z	_	3 1	_	d B
	F = FO + 3 MHz	_	3 3	_	d B
	F = FO - 3 MHz	_	2 7	_	d B
	$F \ge F O + 4 MH z$	_	2 9	_	d B
	$F \le F O - 4 MH z$	_	3 8	_	d B
I mage frequency	_	_	2 9	_	d B
Adiacontohannalta	$F = iF_{mage} + 1 MHz$		4 1	_	d B
Adjacent channel to	F = iF _{nage} + 1 MHz i mage freguenc F = iF _{nage} - 1 MHz	, <u>, , , , , , , , , , , , , , , , , , </u>	3 3	_	d B
	3 0 MH-z2 0 0 0 MH z	_	5	_	d B m
Out of bandblackin	2003 MH2z399 MH		1 8	_	d B m
Out-of-band blockin	gperformance 2484 MH2z997 MH;	z —	1 5	_	d B m
	3000 MH1z2.75 G	H z —	5	_	d B m
Intermodulation	_	_	3 0	_	d B m

Table 6-13. Receiver Characteristics - Blue

Parameter	Description	Mi n	Тур	Мах	Uni
Sensitivity@30.8%	P E R	_	9 3	_	d B m
Maxi mumrecei ved si q	n-al @30.8%PER	-	3	_	d B m
Co-channel C/I	_	_	1 0	_	d B
	F = FO + 2MHz	_	7	_	d B
	F = F O - 2 MHz	_	7	_	d B
	F = FO + 4MHz	_	2 8	_	d B
Adjacent channel se	F = FO - 4 MHz	_	2 6	_	d B
Auj acent channer se	F = FO + 6 MHz	_	2 6	_	d B
	F = F O - 6 MH z	_	2 7	_	d B
	$F \ge F O + 8 MH z$	_	2 9	_	d B
	$F \le F O - 8 MH z$	_	2 8	_	d B
I mage frequency	_	_	2 8	_	d B
Adiacent channel to	$F = i F_{mage} + 2 MHz$	_	2 6	_	d B
Adjacent channel to	$F = i f_{mage} - 2 MHz$, y 	7	_	d B
	3 0 MH-z2 0 0 0 MH z	_	5	_	d B m
Out of handblockin	2003 MH2z399 MH	z —	1 9	_	d B m
Out-of-band blockir	gperformance 2484 MH2z997 MH;	z —	1 6	_	d B m
	3000 MH1z2.75 G	Hz —	5	_	d B m
Intermodulation	_	_	2 9	_	d B m

Table 6-14. Receiver Characteristics - Bluet

Parameter	Description	Mi n	Тур	Мах	Unit
Sensitivity@30.8%	P E R	_	10	5 —	d B m
Maxi mumrecei ved si	g n-a l @ 3 O . 8 % P E R	-	5	_	d B m
Co-channel C/I	_	_	3	_	d B
	F = F O + 1 MH z	_	6	_	d B
	F = F O - 1 MH z	_	6	_	d B
	F = FO + 2MHz	_	3 3	_	d B
Adjacent channel se	F = F O - 2 MH z e c t i v i t y C / I F = F O + 3 MH z	_	4 3	_	d B
Auj acent channer se	F = F O + 3 MHz	_	3 7	_	d B
	F = FO - 3MHz	_	4 7	_	d B
	$F \ge F O + 4 MH z$	_	4 0	_	d B
	$F \le F O - 4 MHz$	_	5 0	_	d B
I mage frequency	_	_	4 0	_	d B
Adj acent channel to	$F = iF_{mage} + 1 \text{ MHz}$	_	5 0	_	d B
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, y —	3 7	_	d B

Table 6-15. Receiver Characteristics - Bluet

Parameter	Description	Mi n	Тур	Мах	Unit
Sensitivity@30.8%	P E R	_	100) —	d B m
Maxi mumrecei ved si 🤉	n-al @30.8% PER	! _	5	_	d B m
Co-channel C/I	_	_	3	_	d B
	F = F O + 1 MH z	_	2	_	d B
	F = F O - 1 MH z	_	3	_	d B
	F = F O + 2 MHz	_	3 2	_	d B
Adjacent channel se	F = F O - 2 MHz	_	3 3	_	d B
Aujacent channer se	F = FO + 3 MHz	_	2 3	_	d B
	F = F O - 3 MHz	_	4 0	_	d B
	$F \ge F O + 4 MH z$	_	3 4	_	d B
	$F \le F O - 4 MHz$	_	4 4	_	d B
I mage frequency	_	_	3 4	_	d B
Adj acent channel to	$F = iF_{mage} + 1 MHz$	_	4 6	_	d B
	F = iF _{mage} + 1 MH z i mage freguenc F = iF _{mage} - 1 MH z	, y _	2 3	_	d B

7 Packaging

- For information about tape, reel <u>,EsapordecshsiipfmCahrikpi Pragckpal</u>(
- The pins of the chip are numbered in anti-clock wise orc numbers and pin name s2,-E3SePe3a2I-EC63FF312g-u0r3eFH4, and ESP32-C (Top V.iew)
- The recommended <u>deadt</u>itse) anailable for download. You
 AutodVeisekwer
- For reference PCBI a yEoSuPt3, 2.pH &CeSal srDaerrs eeGrguerird ted in es

Figure 7 - 1. QFN32 (5×5 mm) Package

 D

Appendix A - ESP32-C3 Consolidated Pin Overview

S P 3 2 - C

 \circ

0

Pi Pin Pin Providing				og Func	-			J X F u	nctio	n	
No Name Type Power	At Re	After F	0	1	0	Туре	1	Тур	2	Турє	ł
1 LNA_IN Analog											
2 VDD3P3 Power											
3 VDD3P3 Power											
4 X T A L _ 3 2 K _ I PO			X T A L _ 3 2								
5 XTAL_32K_INO VDD3P3_RTC			X T A L _ 3 2								
6 GPI O 2 I O V D D 3 P 3 _ R T C	I E	ΙE		A D C 1 _ C	GPI O	1/0/	GPI O	1/0	FSPI (11/() /
7 CHIP_EN Analog											
8 GPIO3 IO VDD3P3_RTC	ΙE	ΙE		A D C 1 _ C							
9 MT MS I O V D D 3 P 3 _ R T C		ΙE		A D C 1 _ C					FSPI		
10 MTDI IO VDD3P3_RTC		I E		A D C 2 _ C	MT D I	I 1	GPI O	1/0	FSPIV	11/0) /
1 1 V D D 3 P 3 _ RPToCwe r											
12 MT C K I O V D D 3 P 3 _ C P U		ΙE							FSPI (
13 MT DO IO V D D 3 P 3 _ C P U		ΙE							FSPI	11/0	þ /
14 GPI 08 I O V D D 3 P 3 _ C P U		ΙE					GPI O				
15 GPI 09 I O V D D 3 P 3 _ C P U	IE, W	IE, WPI			GPIO	1/0/	GPIO	1/0			
16 GPI 010		I E			GPIO	110/0/	GPI O	1I O/ O	/FTS P I (S 0 / 0	þ /
17 VDD3P3_CPPoUwer											1
18 VDD_SPI Powe NDD3P3_CPU					GPI O	111/0/	GPI O	111/0	/ T		
19 SPIHD IO VDD_SPI/VDD		IE, WPI					GPI O				
20 SPIWP IO VDD_SPI/VDD	WPU	IE, WPI			SPIW	11/0	GPI O	1/0			
21 SPICSO IO VDD_SPI/VDD	WP U	IE, WPI			SPIC	0 / T	GPI O	1/0			
22 SPICLK IO VDD_SPI/VDD	WPU	IE, WPI			SPIC	0 / T	GPIO	1/0			
23 SPID IO VDD_SPI/VDD	WP U	IE, WPI			SPID	I 1 / (GPIO	1/0			
24 SPIQ IO VDD_SPI/VDD	WP U	IE, WPI	j		SPIQ	I 1 / (GPIO	1/0			
25 GPI 018			USB_D-		GPI O	1/0/	GPIO	1/0			
26 GPI 019 I O V D D 3 P 3 _ C P U			U S B _ D +				GPIO				
27 U O R X D		IE, WPI			UORX	I 1	GPIO	1/0			
28 UOTXD		WP U			UOTX		GPIO				
29 X T A L _ N A n a l o g											1
30 XTAL_P Analog											1
31 V D D A Power											1
32 V D D A P o we r											1
33 GND Power								†			1

^{*}For details,28° **e.e. s**8.e.**g.ta. <mark>highli</mark>cgehltlesd, se.2e..S38R.0e.31s itornic tio.ns for GPIOs**

Related Documentation and Resour

Related Documentation

- <u>ESP32TeCc3h nRiecfaelr Man noue</u>-aD le taile dinformation on how to use the erals.
- <u>ESP32 HaCr3d vDaerseiGguni de</u> + Gluniedse lines on how to integrate the ESF uct.
- Certifcates
 - https://espressif.com/en/support/documents/certif
- ESP32-C3 Product/Process Change Notifications (PCN) https://espressif.com/en/support/documents/pcns?k
- ESP32-C3 Ad-vin sor maetsi on on security, bugs, compatibility, https://espressif.com/en/support/documents/adviso
- Documentation Updates and Update Notification Subscrihttps://espressif.com/en/support/download/documen

Developer Zone

- ESP-PrDofgra 69 cm i follogerSP32-ECx3tensive documentation for the ESF
- ESP- and other development frameworks on Git Hub.
 - https://github.com/espressif
- ESP32 BBS FEonrguim eer to Engineer (E2E) Community for Espre share knowledge, explore ideas, and help solve problems wit https://esp32.com/
- The ESP JeBuersntaPlractices, Articles, and Notes from Espressihttps://blog.espressif.com/
- See theStDaKbssand DAepmpoTssoo, A \$ Firmware https://espressif.com/en/support/download/sdks-de

Products

- ESP32-C3Ser-BeoswSsoe Otshroughall ESP32-C3SoCs.
- https://espressif.com/en/products/socs?id=ESP32-C
- ESP32-C3 Seri-eBsr Moovsdeut hersough all ESP32-C3-based modules. https://espressif.com/en/products/modules?id=ESP3
- ESP32-C3 Seri-&s oDwesve Ktihtr so ugh all ESP32-C3-based devkits. https://espressif.com/en/products/devkits?id=ESP3
- ESP Product-Sienlæacnt Expressif hardware product suitable for https://products.espressif.com/#/product-selector

Contact Us

- See the Staal bess QueTsetcihonniscal, Ceinropouiuir tesshe matic & PGCeBt DSeasmipg (Online Bsetocormens) Dur Souopmpmheinetrs & Suggestions
 - https://espressif.com/en/contact-us/sales-questio

Revision History

Date Ve	rsi	Release notes
2024-09 v 1	19	Updated pin layout and the number of GPI Os PCN20241079201ESP32-C19F161411X1ct
2024-07+2	98	 Removed the ESP32-C3FH4XAZ @voampiaatnitbia Advi soErSyP326 KoiRpevi soil ion ChalpetSePr32-C3 Sel Comparison Updated the default driving sotPitiennOgytehr fvoi > Note 4 Added fash erase cycles, retention tim Sect4.01nl 2ternal Memory Improved the formatting, structure, an - Sect2Poinns Sect3 Romot Confg (uuseidotrosbe named as Pins") Sect4Founnctional Description Other minor updates
2024-04 + 0	1 7	 Marked the ESP32-C3FN4 variant as end o Marked the ESP32-C3NNA DZ variant as Marked the ESP32-C3FH4X variant as reco
2024-01 ¥ 1	96	 Added the new ESP32 - C3FH4X and ESP32 - C: te1ÆSP32 - C3 Series Comparison Corrected the PWM duty resol4u.t2iLoÆnD f7PoW1M4 Controller

Cont'd on next

Cont'd from previous page

Date	Versi	Releasenotes
2023-08	3 v 1 .1 5	Marked ESP32-NGR3NFDN4 as Improved the content in the followings - SectR roand uct Overview - Sect2 Poinns - Sect4.01nP30.wer Management Unit - Sect4.02nSP.I 2Controller - Sect5.641b solute Maximum Ratings - Sect5.642b commended Operating Conditi - Sect5.043b D_SPI Output Characteristic - Sect5.043b C Characteristics Add Appendix A Updated the maximum value of "RF power (Sect6.033h uetooth 5 (LE) Radio Other minor updates
2022-12	2 v 1 5 4	 Deleted feature "Antennáld3 Ry Reur its tict cyt" inflrii Deleted feature "Supports external pow Updated the glitch type of GPIO18Pitoh Overview
2022-11	l v 1 5 3	 Updated noteRsifno@rvTearbylieew Added links to the Technical Reference fgurations4iFmu@thaipoteal Description Added a note about ADC42.e2r.Sr2oRr1AiDnCS ection Updated S4e.clt.W2aotn8 hdog Timers Added TAaDb@tharacteristics Updated S5e.c6ti2onent Consumptionin Othe Updated RF transmit6p 22 weetiono Stehc5t (bolin) R Updated the typ Baionk Saegoitnigon Updated CRheal patteerd Documentation and Res
2022-04	4 v 1 3 2	 Added a newchip variant ESP32 - C3FH4AZ; Updated F\$ Rg & 2 eC3 Function; al Block Diag Added the wake up source for De & p1- Rs 8 we de rp Management Unit

Cont'd on next

Cont'd fromprevious page

Doto	\\ o = - '	Delega a pata a
Date	Versi	Releasenotes
2021-10) ∀ 2 6 1	 Updated ES @ G 2 e C 3 Functionations how with pool was modes; Added Core Mark score in Features; Updated Table Pin Description to show die Updated FS @ G 2 e C 3 Powearn Sdcrheelmaeted descriented Added Table SPI Signals; Added note 3R teor Transmissione ended Operating Condother updates to wording.
2021-05	5 √ 2 8 0	 Updated power modes; Updated S3eBcotoitoChonfg;urations Updated some clock names and the4i.r1 f Be Clo;ck Added clarifcation about A4D C21S 28 fR 61A;AD DC C 2 Updated the default confguration of UO Table IO MUX; Updated samplinAgDrCaCtheair na T;athe rèstics UpdatedRTealbilaebility Added the link to recommended P7 C 88 d kaangdipna
2021-04	v 2 038	UpdatWedFi & a Bli we tooth 5 q(aLtEa).Radio
2021-04		 Updated infor bin SaBt is earn ia ab lo úJt T; AG Control I e Added GPIO2 t3cB Soe cttCiocnif g; urations Updated AF diobjruer ses Mappi; ng Structure Added Table IO MD X na 60 vdeTiranb Stee cAt. i1 b 63 M1 U X and GPIO M; atrix Updated information a4b.o2uStPS 120 o2ni; trr Soe ctei Updated fxed - priority ch4a ni 6a Be MAS Cobine bried i Updated RTeal bil aeb i I ity
2021-01	v 1086	Clarifed that of the 400 KB SRAM, 16 KB i Updated maximum value to sta Wida Frid R Fr mitter (TX) Chianr Saecostei Wöins Frii R Fr Transmitt acter.i stics

Cont'd on next

Cont'd fromprevious page

		<u> </u>
Date	Versi	Releasenotes
2021-01	V 1035	 Updated information about Wi-Fi; Added connection between in - package fanotes in Section Pin Defnitions; Updated IFS Rg Su 2-eC3 Powe, raSdocheedm Weigunae iz at Timing Parameters for a Phodw Teal be Isueprain pdt Reosne ing Parameters for Pionw Siec 2 tip 5 Band 2 where Sice, here Added F V gistael iz ation of Timing Parametand Tabbels ecription of Timing Paramet Sies fti Banoot Confg; urations Updated Table Peripheral Pin Confg urat Added Ch 5 a Eplteecrtrical C; haracteristics Added Ch 7 a Ppatcekra.ging
2020-11	v Ø 7 4	Preli mi nary versi on.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject tALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NO PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, All liability, including liability for infringement of any propriet licenses express or implied, by estoppel or otherwise, to any intelle The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. TALL trade names, trademarks and registered trademarks mentioned in hereby acknowledged.

Copyright © 2024 Espressif Systems (Shanghai) Co., Ltd. All rights rew. espressif.com