▼ Bar Plot

▼ Bar Plot shows the relationship between a numerical variable and a categorical variable.

```
# Recover default matplotlib settings
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline
x1 = [1,2,3,4,5,6,7]
```

```
y1 = [10,20,30,40,50,60,65]
sns.barplot(x=x1,y=y1)
plt.show()
```


 \Box

Notice for x-value 3, the Y values have been aggregated by performing mean of 30,40,50

pokemon = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn
pokemon.head(10)

₽		#	Name	Type 1	Type 2	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary	Total
	0	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False	318
	1	2	lvysaur	Grass	Poison	60	62	63	80	80	60	1	False	405
	2	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False	525
	3	3	VenusaurMega Venusaur	Grass	Poison	80	100	123	122	120	80	1	False	625
	4	4	Charmander	Fire	NaN	39	52	43	60	50	65	1	False	309
	5	5	Charmeleon	Fire	NaN	58	64	58	80	65	80	1	False	405
	6	6	Charizard	Fire	Flying	78	84	78	109	85	100	1	False	534
	7	6	CharizardMega Charizard X	Fire	Dragon	78	130	111	130	85	100	1	False	634

```
plt.figure(figsize=(20,7))
sns.barplot(x=pokemon['Type 1'], y= pokemon['Attack'])
plt.show()
```

С⇒

As per the above Bar plot pokemon with Type-1 as Dragon are best attackers

```
plt.figure(figsize=(20,7))
sns.barplot(x=pokemon['Type 1'], y= pokemon['Defense'])
plt.show()

□→
```



```
# Sorted Bar plot
plt.figure(figsize=(20,7))
order = pokemon.groupby(['Type 1']).mean().sort_values('Defense' , ascending = False).i
sns.barplot(x=pokemon['Type 1'], y= pokemon['Defense'] , order=order)
plt.show()
```

C→

140

Pokemon with Type-2 as Steel have best defence

```
plt.figure(figsize=(20,7))
sns.barplot(x=pokemon['Type 1'], y= pokemon['Speed'])
plt.show()
```


Pokemons with Type-1 as Flying are the fastest

Horizontal Bar plot

nl+ figura/figgiza-(2 10))

predicting in the state of the state of


```
plt.figure(figsize=(20,7))
sns.countplot(x=pokemon['Type 1'])
plt.show()
```



```
plt.figure(figsize=(20,7))
sns.countplot(x=pokemon['Type 1'] , order = pokemon['Type 1'].value_counts().index)
plt.show()
```

C→


```
plt.figure(figsize=(20,7))
sns.barplot(x=pokemon['Type 1'], y= pokemon['Speed'],hue=pokemon['Legendary'])
sns.despine() # right and top lines can be removed
plt.show()
```


Pokemon with Type-1 as water & Normal are most common.

```
#Changing the background of bar plot
plt.figure(figsize=(20,7))
sns.set(rc={"axes.facecolor":"#283747", "axes.grid":False,'xtick.labelsize':14,'ytick.l
sns.countplot(x=pokemon['Type 1'], order = pokemon['Type 1'].value_counts().index)
plt.show()
```

₽


```
plt.figure(figsize=(20,7))
sns.set(rc={"axes.facecolor":"#283747", "axes.grid":False,'xtick.labelsize':14,'ytick.l
plt.gcf().text(.5, .93, "Bar Plot", fontsize = 60, color='Black', ha='center', va='cent
sns.countplot(x=pokemon['Type 1'], order = pokemon['Type 1'].value_counts().index , pa
plt.show()
```

C→

Bar Plot

```
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline
```

```
plt.figure(figsize=(20,7))
sns.countplot(x=pokemon['Type 2'])
plt.show()
```


As per above Count plot Type-2 Flying pokemon are most common

employment = pd.read_excel("/content/drive/My Drive/Python DataScience/Visualization/Se
employment.head(10)

₽		Age	Gender	Period	Unemployed
	0	16 to 19 years	Men	2005-01-01	91000
	1	20 to 24 years	Men	2005-01-01	175000
	2	25 to 34 years	Men	2005-01-01	194000
	3	35 to 44 years	Men	2005-01-01	201000
	4	45 to 54 years	Men	2005-01-01	207000
	5	55 to 64 years	Men	2005-01-01	101000
	6	65 years and over	Men	2005-01-01	33000
	7	16 to 19 years	Women	2005-01-01	38000
	8	20 to 24 years	Women	2005-01-01	90000
	9	25 to 34 years	Women	2005-01-01	142000

```
plt.figure(figsize=(11,7))
sns.barplot(x="Age",y="Unemployed", data=employment)
plt.show()
```

С→

exercise = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor
exercise.head(10)

С→		id	diet	pulse	time	kind	
	0	1	low fat	85	1 min	rest	
	1	1	low fat	85	15 min	rest	
	2	1	low fat	88	30 min	rest	
	3	2	low fat	90	1 min	rest	
	4	2	low fat	92	15 min	rest	
	5	2	low fat	93	30 min	rest	
	6	3	low fat	97	1 min	rest	
	7	3	low fat	97	15 min	rest	
	8	3	low fat	94	30 min	rest	
	9	4	low fat	80	1 min	rest	

#exercise.head()

Show groups with different colors using "hue"
plt.figure(figsize=(8,6))
sns.barplot(x=exercise.kind , y=exercise.pulse ,hue=exercise.diet)
plt.show()

helpdesk = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor helpdesk.head(10)

₽

	ticket	requestor	RequestorSeniority	ITOwner	FiledAgainst	TicketType	Severity	Priority	days0pen	Satisfacti
(1	1929	1 - Junior	50	Systems	Issue	2 - Normal	0 - Unassigned	3	1 - Unsatisfi
1	2	1587	2 - Regular	15	Software	Request	1 - Minor	1 - Low	5	1 - Unsatisfi
2	2 3	925	2 - Regular	15	Access/Login	Request	2 - Normal	0 - Unassigned	0	0 - Unknov
3	4	413	4 - Management	22	Systems	Request	2-	0-	20	0 - Unknov
#helpdesk.head()										
-		0.0			, 100000, E0g		Normal		•	

```
# Show groups with different colors using "hue"
plt.figure(figsize=(10,6))
sns.barplot(x=helpdesk.TicketType , y=helpdesk.daysOpen , hue=helpdesk.FiledAgainst)
#sns.despine() # right and top lines can be removed
plt.show()
```

С→

