

Your SELECT statement is:
s gate and (alumina or aluminum(w)oxide or aluminate or sapphire) and
(silicon(w)monoxide or SiO) and (sputter? or evaporat? or cosputter? or
coevaporat?)

Items	File
7	2: INSPEC_1969-2002/Feb W3
1	6: NTIS_1964-2002/Mar W1
2	8: Ei Compendex(R)_1970-2002/Feb W3
1	35: Dissertation Abs Online_1861-2002/Feb
1	95: TEME-Technology & Management_1989-2002Jan W3
Examined	50 files
3	340: CLAIMS(R)/US Patent_1950-02/Feb 19
8	347: JAPIO_Oct/1976-2001/Oct (Updated 020204)
195	348: EUROPEAN PATENTS_1978-2002/Feb W02
59	349: PCT FULLTEXT_1983-2002/UB=20020214, UT=20020207

Status: Break Sent.

?b 2,8,35,340
21feb02 20:27:38 User264704 Session D99.4
\$3.96 2.265 DialUnits File411
\$3.96 Estimated cost File411
\$0.26 TYMNET
\$4.22 Estimated cost this search
\$21.99 Estimated total session cost 4.306 DialUnits

SYSTEM:OS - DIALOG OneSearch
File 2:INSPEC 1969-2002/Feb W3
(c) 2002 Institution of Electrical Engineers
File 8:Ei Compendex(R) 1970-2002/Feb W3
(c) 2002 Engineering Info. Inc.
File 35:Dissertation Abs Online 1861-2002/Feb
(c) 2002 ProQuest Info&Learning
File 340:CLAIMS(R)/US Patent 1950-02/Feb 19
(c) 2002 IFI/CLAIMS(R)

*File 340: has been reloaded. Published applications are available.
See HELP NEWS 340 for details.

Set	Items	Description
	---	-----
?s	gate and (alumina or aluminum(w)oxide or aluminate or sapphire) and (silicon(w)monoxide or SiO) and (sputter? or evaporat? or cosputter? or coevaporat?)	
	228422	GATE
	98357	ALUMINA
	289892	ALUMINUM
	491883	OXIDE
	18266	ALUMINUM(W)OXIDE
	8292	ALUMINATE
	26447	SAPPHIRE
	556876	SILICON
	39302	MONOXIDE
	1192	SILICON(W)MONOXIDE
	116757	SIO
	114764	SPUTTER?
	138692	EVAPORAT?
	913	COSPUTTER?
	1647	COEVAPORAT?
S1	13	GATE AND (ALUMINA OR ALUMINUM(W)OXIDE OR ALUMINATE OR SAPPHIRE) AND (SILICON(W)MONOXIDE OR SIO) AND (SPUTTER? OR EVAPORAT? OR COSPUTTER? OR COEVAPORAT?)

?rd
>>>Duplicate detection is not supported for File 340.

>>>Records from unsupported files will be retained in the RD set.

none
relevant
all Al₂O₃ above
as gate dielectric.

Your SELECT statement is:
s (doped or dopant) (2n)oxide? and gate and (si or silicon) and (aluminum
or alumina)

Items	File
2	INSPEC_1969-2002/Feb W3
1	NTIS_1964-2002/Mar W1
4	Ei Compendex(R) 1970-2002/Feb W3
1	SciSearch(R) Cited Ref Sci_1990-2002/Feb W4
2	AEROSPACE DATABASE_1962-2001/DEC

Examined 50 files

Status: Break Sent.

?b 2,8,108;s (doped or dopant) (2n)oxide? and gate and (si or silicon) and (aluminum or
alumina)

21feb02 20:18:02 User264704 Session D99.2
\$2.15 1.226 DialUnits File411
\$2.15 Estimated cost File411
\$0.26 TYMNET
\$2.41 Estimated cost this search
\$2.42 Estimated total session cost 1.462 DialUnits

SYSTEM:OS - DIALOG OneSearch
File 2:INSPEC 1969-2002/Feb W3
(c) 2002 Institution of Electrical Engineers
File 8:Ei Compendex(R) 1970-2002/Feb W3
(c) 2002 Engineering Info. Inc.
File 108:AEROSPACE DATABASE 1962-2001/DEC
(c) 2002 AIAA

*File 108: For update information please see Help News108.

Set	Items	Description
	177732	DOPED
	27428	DOPANT
	378377	OXIDE?
	4820	(DOPED OR DOPANT) (2N)OXIDE?
	122366	GATE
	378434	SI
	497090	SILICON
	249132	ALUMINUM
	69149	ALUMINA
S1	8	(DOPED OR DOPANT) (2N)OXIDE? AND GATE AND (SI OR SILICON) AND (ALUMINUM OR ALUMINA)

?rd

...completed examining records
S2 5 RD (unique items)

?t s2/full/all

2/9/1 (Item 1 from page: 2)

DIALOG(R) File 2:INSPEC

(c) 2002 Institution of Electrical Engineers. All rights reserved.

6874409 INSPEC Abstract Number: B2001-04-2570D-029

Title: Si -doped aluminates for high temperature metal-gate CMOS:
Zr-Al-Si-O, a novel gate dielectric for low power applications

Author(s): Manchanda, L.; Green, M.L.; van Dover, R.B.; Morris, M.D.;
Kerber, A.; Hu, Y.; Han, J.-P.; Silverman, P.J.; Sorsch, T.W.; Weber, G.;
Donnelly, V.; Pelhos, K.; Klemens, F.; Ciampa, N.A.; Kornblit, A.; Kim,
Y.O.; Bower, J.E.; Barr, D.; Ferry, E.; Jacobson, D.; Eng, J.; Busch, B.;
Schulte, H.

Author Affiliation: Lucent Technol. Bell Labs., Murray Hill, NJ, USA
Conference Title: International Electron Devices Meeting 2000. Technical
Digest. IEDM (Cat. No.00CH37138) p.23-6

Publisher: IEEE, Piscataway, NJ, USA
Publication Date: 2000 Country of Publication: USA 871 pp.
ISBN: 0 7803 6438 4 Material Identity Number: XX-2001-00191
U.S. Copyright Clearance Center Code: 0 7803 6438 4/2000/\$10.00

Conference Title: International Electron Devices Meeting. Technical
Digest. IEDM

Conference Sponsor: Electron Devices Soc. IEEE
Conference Date: 10-13 Dec. 2000 Conference Location: San Francisco,
CA, USA

Medium: Also available on CD-ROM in PDF format
Language: English Document Type: Conference Paper (PA)
Treatment: Applications (A); Practical (P); Experimental (X)
Abstract: We have investigated a new class of high K **gate** dielectric
materials, Si -doped aluminates. These dielectrics, with TiN gates, can
withstand high temperature CMOS processing and therefore do not require
replacement **gate** technology. In this paper we focus on Si -doped
zirconium aluminate (Zr-Al- Si -O), with K~20. With the TiN **gate** stack
subjected to the standard CMOS thermal budget, we have scaled this
dielectric to t/sub eq/ ~1.2 nm with leakage current <50 mA/cm² and
gate power budget <50 mW/cm², at IV. For high performance, low
power CMOS, beyond SiO₂, doped - aluminum oxide (with K~10) may
be a viable alternate **gate** dielectric. Beyond aluminum oxide,
aluminates (with K>15) may be viable alternate **gate** dielectrics. (7
Refs)

Subfile: B
Descriptors: CMOS integrated circuits; dielectric thin films; leakage
currents; low-power electronics; zirconium compounds

Identifiers: high temperature metal- **gate** CMOS; **gate** dielectric; low
power applications; **gate** stack; leakage current; **gate** power budget; 1 V
; 1.2 nm; ZrAlSiO

Class Codes: B2570D (CMOS integrated circuits); B2810 (Dielectric
materials and properties)

Chemical Indexing:
ZrAlSiO int - Al int - Si int - Zr int - O int - ZrAlSiO ss - Al ss - Si
ss - Zr ss - O ss (Elements - 4)

Numerical Indexing: voltage 1.0E+00 V; size 1.2E-09 m

Copyright 2001, IEE

2/9/2 (Item 2 from file: 2)

DIALOG(R) File 2:INSPEC

(c) 2002 Institution of Electrical Engineers. All rights reserved.

01558362 INSPEC Abstract Number: B80039984

Title: A silicon and aluminum dynamic memory technology

Author(s): Larsen, R.A.

Author Affiliation: IBM General Technol. Div. Lab., Essex Junction, VT,
USA

Journal: IBM Journal of Research and Development vol.24, no.3 p.
268-82

Publication Date: May 1980 Country of Publication: USA

CODEN: IBMJAE ISSN: 0018-8646

Language: English Document Type: Journal Paper (JP)

Treatment: General, Review (G); Experimental (X)

Abstract: The Silicon and Aluminum Metal Oxide Semiconductor (SAMOS) technology is presented as a high-yield, low-cost process to make one-device-cell random access memories. The characteristics of the process are a multilayer dielectric gate insulator (oxide-nitride), a p-type polysilicon field shield, and a doped oxide diffusion source. Added yield-enhancing features are backside ion implant gettering, dual dielectric insulators between metal layers, and circuit redundancy. A family of chips is produced using SAMOS, ranging from 18K bits to 64K bits. System features such as on-chip data registers are designed on some chips. The chip technology is merged with 'flip-chip' packaging to provide one-inch-square modules from 72K bits through 512K bits, with typical access times from 90 ns to 300 ns. (49 Refs)

Subfile: B

Descriptors: field effect integrated circuits; integrated circuit technology; integrated memory circuits; large scale integration; random-access storage

Identifiers: SAMOS; multilayer dielectric gate insulator; doped oxide diffusion source; backside ion implant gettering; dual dielectric insulators between metal layers; circuit redundancy; dynamic RAM technology ; IBM; Si and Al MOS; one device per cell RAM; p-type poly- Si field shield; 18K to 64K RAM; flip chip packaging

Class Codes: B1265D (Memory circuits); B2570F (Other MOS integrated circuits)

2/9/3 (Item 1 from page: 8)
DIALOG(R) File 8:Ei Compendex(R)
(c) 2002 Engineering Info. Inc. All rts. reserv.

02354168 E.I. Monthly No: EIM8711-080403

Title: HYDROGEN DIFFUSION IN PLASMA DEPOSITED SILICON NITRIDE- ALUMINUM INTERFACE UNDER PLASMA PROCESSING AND ITS EFFECT ON FET DEVICE V//T SHIFT.

Author: Nguyen, S. V.; Kim, S. U.

Corporate Source: IBM, Essex Junction, VT, USA

Conference Title: Extended Abstracts - Fall Meeting (168th Society Meeting), the Electrochemical Society.

Conference Location: Las Vegas, NV, USA Conference Date: 19851013

Sponsor: Electrochemical Soc, Pennington, NJ, USA

E.I. Conference No.: 09038

Source: Electrochemical Society Extended Abstracts v 85-2. Publ by Electrochemical Soc, Pennington, NJ, USA p 437-438

Publication Year: 1985

CODEN: ESABB6 ISSN: 0160-4619

Language: English

Document Type: PA; (Conference Paper)

Journal Announcement: 8711

Abstract: The presence of hydrogen in thin silicon nitride films has a dramatic effect on the physical, chemical, and electrical properties of the films. During microelectronic circuit fabrication, processing cycles such as dopant drive-in, annealing, and plasma etching in the presence of high hydrogen content plasma silicon nitride layers may cause hydrogen bonding rearrangement and hydrogen atom diffusion, and thus generate adverse effects on the films and device properties. In a recent study, negative V//T shift encountered in the RIE etching of passivated plasma silicon nitride layers were found to be dependent on etching process condition and the gate oxide thickness. However, the qualitative of V//T shift is also found to be strongly dependent on the deposited silicon nitride films. In an effort to understand this dependency, we have investigated the hydrogen bonding and diffusion between the plasma deposited and after-plasma RIE (reactive ion etching) using the Fourier transformed infrared (FTIR) and Nuclear Reaction Analysis techniques. silicon nitride films were deposited on 100 mm bare silicon, p-type wafers. (Edited author abstract) 8 refs.

Descriptors: SEMICONDUCTING SILICON --*Coatings; SILICON NITRIDE--Thin Films; HYDROGEN--Diffusion; MICROELECTRONICS--Materials

Identifiers: GATE OXIDE ; DOPANT DRIVE-IN; HYDROGEN BONDING; P-TYPE WAFERS; EXTENDED ABSTRACT

Classification Codes:

712 (Electronic & Thermionic Materials); 813 (Coatings & Finishes); 812 (Ceramics & Refractories); 714 (Electronic Components); 804 (Chemical Products); 931 (Applied Physics)

71 (ELECTRONICS & COMMUNICATIONS); 81 (CHEMICAL PROCESS INDUSTRIES); 80 (CHEMICAL ENGINEERING); 93 (ENGINEERING PHYSICS)

2/9/4 (Item 2 from page: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2002 Engineering Info. Inc. All rights reserved.

00741662 E.I. Monthly No: EI7809069256 E.I. Yearly No: EI78075694
Title: C-MOS Processes for Integrated Circuits.
Title: HALBLEITERPROZESSE FUER KOMPLEMENTAERSCHALTUNGEN.
Author: Splittergerber, Heinz
Corporate Source: Siemens, Munich, Ger
Source: Bundesministerium fuer Forschung und Technologie,
Forschungsbericht, Technologische Forschung und Entwicklung n T 77-30 Dec
1977 50 p
Publication Year: 1977
CODEN: BFTEAJ **ISSN:** 0340-7608
Language: GERMAN
Journal Announcement: 7809
Abstract: Various complementary ESFI-SOS processes are described. First, a simple process is shown in the aluminum - gate technology. Furthermore the process with selective doping and the so-called ESFION process (selfalignment by ion implantation) are given. A self-aligned silicon gate process is explained. The laser scribing for dividing the sapphire substrates, the use of undoped and doped pyrolytic oxides is described. 33 refs. In German with English abstract.
Descriptors: *SEMICONDUCTOR DEVICE MANUFACTURE
Classification Codes:
714 (Electronic Components)
71 (ELECTRONICS & COMMUNICATIONS)

2/9/5 (Item 1 from File: 108)
DIALOG(R) File 108:AEROSPACE DATABASE
(c) 2002 AIAA. All rts. reserv.

00745605 N75-11782

Investigation of chromium-doped oxides
Final Report, 1 Nov. 1971 - 1 Nov. 1973

KJAR, R. A.

Rockwell International Corp., Anaheim, CA. Electronics Research Div.

CORPORATE CODE: RY230143

Nov. 1973 155P.

REPORT NO.: AD-783988; C71-1063/501

CONTRACT NO.: N00014-72-C-0017

LANGUAGE: English

COUNTRY OF ORIGIN: United States COUNTRY OF PUBLICATION: United States

DOCUMENT TYPE: REPORT

DOCUMENTS AVAILABLE FROM AIAA Technical Library

OTHER AVAILABILITY: NTIS

JOURNAL ANNOUNCEMENT: STAR7502

Part I of the report describes results obtained during the investigation of the mechanisms by which chromium-doping of a silicon-dioxide gate insulator may improve the radiation resistance of MOS devices. Part II details the fabrication and testing of a CMOS/SOS 4-bit adder that employed chrome-doped and aluminum ion-implanted gate oxides to provide improved radiation hardness. (DTIC)

SOURCE OF ABSTRACT/SUBFILE: DTIC

DESCRIPTORS: *ADDING CIRCUITS; *INTEGRATED CIRCUITS; *METAL OXIDE SEMICONDUCTORS; *RADIATION HARDENING; CHROMIUM ISOTOPES; ELECTRICAL PROPERTIES; MATERIALS TESTS; SAPPHIRE; SILICON COMPOUNDS

SUBJECT CLASSIFICATION: 7576 Solid-State Physics (1975-)

COSATI CODE: 20L Solid-state Physics