$$f(n) = n^{2} - 5, \quad f'(n) = 2x$$

$$2x - \frac{f(xn)}{f'(xn)}$$

$$= x_{n} - \frac{f(xn)}{f'(xn)}$$

$$= x_{n} - \frac{\chi^{2} - 5}{2xn}$$
line: $y = mx + c$ formal admirative of f .

$$x_{n} = f'(3) = 6$$

$$y = 6x + c$$

$$x_{n} = 3$$

$$x$$

=)
$$6.3+c=4$$

=) $18+c=4$
=) $c=-14$
So this targent line has
equation $y=6x-14$.
and a root at.
 $y=0=)$ $6x-14=0$
=) $x=\frac{14}{6}$ $\frac{4}{3}$
 $x=x_0-\frac{x_0^2-5}{2\cdot x_0}$
= $3-\frac{4}{6}=\frac{9}{3}-\frac{2}{3}=\frac{4}{3}$

$$\begin{aligned}
&\mathcal{Z}_{n+1} = \mathcal{Z}_{n} - \frac{\mathcal{Z}_{n}^{2} - S}{2\mathcal{Z}_{n}} \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(2\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left(\mathcal{Z}_{n}^{2} - \mathcal{Z}_{n}^{2} + S \right) \\
&= \frac{1}{2\mathcal{Z}_{n}} \left($$

$$\chi_{n+1} = \chi_n - \frac{\chi_n^2 - 5}{2\chi_n}$$

$$= \chi_{n+1} = \chi_n^2 - 2 \cdot \chi_n \left(\chi_n^2 - 5\right)$$

$$+ \left(\frac{\chi_n^2 - 5}{2\chi_n}\right)^2$$

$$= 5 + \left(\frac{\chi_n^2 - 5}{2\chi_n}\right)^2$$

$$= 5$$

$$= \chi_{n+1} > \sqrt{5} \quad \text{or} \leq -\sqrt{5}$$

$$= \chi_{n+1} > \sqrt{5}, \quad \text{one} \chi_{n+2} > 0$$

