# U Wroclaw, Fall 2015 Applied Stats

#### **DISCUSSION/LAB 8: MULTIPLE LINEAR REGRESSION**

Influential observations and multicollinearity

You will work with data in MINITAB project: wastedata.MPJ. The data contains information on y= energy content of waste (in kcal.kg), and three composition variables for waste: Plastics=% plastics by weight, Paper=%paper by weight, Garbage=%garbage by weight, and Water=% water content per weight. We will look for the best MLR model for energy as a linear function of the explanatory variables: plastic, paper, garbage and water.

1. For all measures of leverage, outliers and influence (standardized and deleted-t residuals, h-leverages, Cooks' D and DFFITS), find the "critical" values of those measures that separate OK values from the high ones. Use the table format below.

| Measure                  | Critical number |
|--------------------------|-----------------|
| Standardized residuals   |                 |
| deleted t-residuals      |                 |
| leverages h <sub>i</sub> |                 |
| Cook's distance          |                 |
| DFITTS                   |                 |

There is an influential observation in this data set. Which one is it? Explain why do you think this observation is influential

- 2. Is there multicollinearity in the data set? If yes, explain why you think so and which variables seem to be problematic. If no, explain why you think so.
- 3. Remove the influential observation.
- 4. Run Forward selection and Backward elimination procedures on this data (with removed influential obs) with no forcing of variables in/out of the regression equation. Do you get the same "best" models? Why?
- 5. If necessary, reduce the data further by removing variable(s) that might be collinear with other variable(s). Be careful with removing too many variables at a time, I would suggest to start with one, see if that improved the model. If not, try another etc. Write what you did, be very concise. Write the final set of variables you decided to keep in the reduced set.
- 6. Find the best model for the reduced (if you reduced it) or original data set with influential obs removed (if you did not find multicollinearity present). Use any method you like. Report the method you used and the results.
- 7. Explain why the model you decided is best is good from (a) practical i.e. prediction/fit and from (b) statistical i.e. inference point of views.

#### **Solution**

1. Influential observation?

### Regression Analysis: Energy versus Plastics, Paper, Garbage, Water

Coefficients

| Term     | Coef   | SE Coef | T-Value | P-Value | VIF   |
|----------|--------|---------|---------|---------|-------|
| Constant | 2526   | 138     | 18.29   | 0.000   |       |
| Plastics | 27.85  | 2.94    | 9.47    | 0.000   | 1.11  |
| Paper    | 4.87   | 9.35    | 0.52    | 0.607   | 26.46 |
| Garbage  | -0.64  | 8.93    | -0.07   | 0.944   | 46.09 |
| Water    | -36.91 | 8.72    | -4.23   | 0.000   | 22.20 |

Regression Equation

Energy = 2526 + 27.85 Plastics + 4.87 Paper - 0.64 Garbage - 36.91 Water

Fits and Diagnostics for Unusual Observations

```
Obs Energy Fit Resid Std Resid
7 1466.0 1401.6 64.4 2.01 R
30 1155.0 1158.7 -3.7 -0.92 X
```

R Large residual
X Unusual X

Leverage and influence stats for observation number 19:

|         | SRES      | TRES      | HI        | COOK      | DFIT     |
|---------|-----------|-----------|-----------|-----------|----------|
| Obs 7:  | 2.00850   | 2.14892   | 0.0811835 | 0.0712873 | 0.638763 |
| Obs 30: | -0.920519 | -0.917605 | 0.985747  | 11.7207   | -7.63105 |

In the table below fill the "critical numbers" for the leverage and influence statistics.

n=30, k=4

| Measure                  | Critical number |
|--------------------------|-----------------|
| Standardized residuals   |                 |
| deleted t-residuals      |                 |
| leverages h <sub>i</sub> |                 |
| Cook's distance          |                 |
| DFITTS                   |                 |

Do we have an influential observation? Why? Which one?

2. Is there multicollinearity in the data set? If yes, explain why you think so and which variables seem to be problematic. If no, explain why you think so.

VIFinfo:

#### Correlations: Plastics, Paper, Garbage, Water

| Paper   | Plastics<br>-0.163<br>0.390 | Paper           | Garbage |
|---------|-----------------------------|-----------------|---------|
| Garbage | -0.286<br>0.126             | 0.716<br>0.000  |         |
| Water   | -0.207<br>0.272             | -0.045<br>0.812 | 0.649   |

3. Remove influential observation

**4.** Because there is multicollinearity in the data, stepwise procedures may give different results. Here are the results of forward selection and backward elimination.

## Stepwise Regression (forward selection)

| F-to-Ente           | er: 4           | .00 F        | -to-Remove:     | 0.00     |    |
|---------------------|-----------------|--------------|-----------------|----------|----|
| Response            | is Energy       | c on 4       | predictors,     | with N = | 29 |
| Step<br>Constant    | 1<br>3410       | 2<br>2653    | 3<br>2523       |          |    |
| Water<br>T-Value    | -42.1<br>-10.73 |              | -37.5<br>-19.14 |          |    |
| Plastics<br>T-Value |                 | 26.9<br>8.60 |                 |          |    |
| Paper<br>T-Value    |                 |              | 4.2<br>2.25     |          |    |
| S<br>R-Sq           | 69.2<br>80.99   |              | 33.5<br>95.89   |          |    |

# **Stepwise Regression (backward elimination)**

| F-to-Enter          | : 1000         | .00 F           | -to-Remove: | 4.00       |    |
|---------------------|----------------|-----------------|-------------|------------|----|
| Response is         | s Energy       | c on 4          | predictors, | with N $=$ | 29 |
| Step<br>Constant    | 1<br>2500      | 2<br>2511       |             |            |    |
| Plastics<br>T-Value | 27.9<br>9.46   | 27.9<br>9.62    |             |            |    |
| Paper<br>T-Value    | 68.8<br>0.98   |                 |             |            |    |
| Garbage<br>T-Value  | -64.5<br>-0.92 | -37.3<br>-19.43 |             |            |    |
| Water<br>T-Value    | 27<br>0.39     |                 |             |            |    |
| S<br>R-Sq           | 33.6<br>96.03  | 33.0<br>96.00   |             |            |    |

Conclusion? Same or different models? Is there collinearity?

#### **5. REMOVE GARBAGE!**

# Regression Analysis without GARBAGE variable AND without observation 30

The regression equation is Energy c = 2523 + 27.9 Plastics - 37.5 Water + 4.20 Paper 
 StDev
 T
 P

 138.8
 18.18
 0.000

 2.943
 9.48
 0.000

 1.959
 -19.14
 0.000

 1.864
 2.25
 0.033
 Т Coef VIF Predictor 2523.4 Constant 27.906 Plastics 1.1 -37.496 Water 1.1 Paper 4.202 1.0 R-Sq = 95.9% R-Sq(adj) = 95.4%

How are the results now? Check the diagnostics.



**6. Find the best model.** I used Best Subsets Regression to find the best model because it compares all models for the given data.

Response is Energy c

7. The model Energy c = 2523 + 27.9 Plastics - 37.5 Water + 4.20 Paper is good from the stat point of view because: