Objectives

1 Obtain a sampling distribution of sample means

2 Determine the mean and standard error of a sampling distribution

3 Understand the Central Limit Theorem

In statistics, we take samples in order to gather information regarding a population.

In statistics, we take samples in order to gather information regarding a population.

For instance, let's say we have the following population prices of laptops: \$1000, \$1200, \$1600, and \$2000.

In statistics, we take samples in order to gather information regarding a population.

For instance, let's say we have the following population prices of laptops: \$1000, \$1200, \$1600, and \$2000.

We can take a simple random sample of, say 2 computers, and create a frequency distribution of each sample.

In statistics, we take samples in order to gather information regarding a population.

For instance, let's say we have the following population prices of laptops: \$1000, \$1200, \$1600, and \$2000.

We can take a simple random sample of, say 2 computers, and create a frequency distribution of each sample.

Note: We will sample with replacement. Differences in sampling with and without replacement become negligent as sample sizes increase.

Obtain a sampling distribution, taking 2 at a time, of the laptop prices \$1000, \$1200, \$1600, and \$2000. Then find the mean of each sample.

Obtain a sampling distribution, taking 2 at a time, of the laptop prices \$1000, \$1200, \$1600, and \$2000. Then find the mean of each sample.

Sample	Sample Mean	Sample	Sample Mean
1000, 1000	1000	1600, 1000	1300
1000, 1200	1100	1600, 1200	1400
1000, 1600	1300	1600, 1600	1600
1000, 2000	1500	1600, 2000	1800
1200, 1000	1100	2000, 1000	1500
1200, 1200	1200	2000, 1200	1600
1200, 1600	1400	2000, 1600	1800
1200, 2000	1600	2000, 2000	2000

Create a histogram of the sample means from Example 1.

Create a histogram of the sample means from Example 1.

Determine the mean and standard deviation of the sample means.

Determine the mean and standard deviation of the sample means.

Mean = \$1450

Determine the mean and standard deviation of the sample means.

Mean = \$1450

Std. Dev \approx \$271.57

Objectives

1 Obtain a sampling distribution of sample means

Determine the mean and standard error of a sampling distribution

3 Understand the Central Limit Theorem

What happens if we have a much larger population and take a larger sample size, such as 100?

What happens if we have a much larger population and take a larger sample size, such as 100?

Notice that the mean of the sample means targets the population mean.

What happens if we have a much larger population and take a larger sample size, such as 100?

Notice that the mean of the sample means targets the population mean.

$$\mu \approx \mu_{\overline{x}}$$

What happens if we have a much larger population and take a larger sample size, such as 100?

Notice that the mean of the sample means targets the population mean.

$$\mu \approx \mu_{\overline{x}}$$

Also, the standard deviation is around 1/10 the population standard deviation.

What happens if we have a much larger population and take a larger sample size, such as 100?

Notice that the mean of the sample means targets the population mean.

$$\mu \approx \mu_{\overline{x}}$$

Also, the standard deviation is around 1/10 the population standard deviation.

$$\sigma \approx \frac{\sigma_{\overline{x}}}{\sqrt{n}}$$

where $\frac{\sigma}{\sqrt{n}}$ is called the **standard error of the mean**.

 ${\sf IQ}$ scores are normally distributed with a mean of 100 and standard deviation of 16. A sample of 200 participants had their ${\sf IQs}$ measured.

 ${\sf IQ}$ scores are normally distributed with a mean of 100 and standard deviation of 16. A sample of 200 participants had their ${\sf IQs}$ measured.

IQ scores are normally distributed with a mean of 100 and standard deviation of 16. A sample of 200 participants had their IQs measured.

What are the approximate mean and standard error of the sample?

The mean of the sample will target the population mean of 100.

The mean of the sample will target the population mean of 100.

The standard error is

The mean of the sample will target the population mean of 100.

The standard error is

$$\frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{200}}$$

The mean of the sample will target the population mean of 100.

The standard error is

$$\frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{200}}$$

$$\approx 1.13$$

Objectives

1 Obtain a sampling distribution of sample means

2 Determine the mean and standard error of a sampling distribution

3 Understand the Central Limit Theorem

Sample Means of Any Distribution

We can create a histogram of a population, but how will our histograms of sample means look for various populations?

Sample Means of Any Distribution

We can create a histogram of a population, but how will our histograms of sample means look for various populations?

It turns out that the distributions of sample means for <u>any</u> population will be normal as our sample sizes increase.

Central Limit Theorem

Central Limit Theorem

As the sample size increases, the distribution of sample means becomes normal with a mean of \overline{x} and standard deviation $\frac{\sigma}{\sqrt{n}}$ (the standard error).

Objectives

1 Obtain a sampling distribution of sample means

2 Determine the mean and standard error of a sampling distribution

Understand the Central Limit Theorem

Objectives

1 Obtain a sampling distribution of sample means

2 Determine the mean and standard error of a sampling distribution

Understand the Central Limit Theorem