

Miniproject:

Neural Network-Based Image Recognition with Multilayer Perceptron

Project Title:

Cat Image Recognition using Backpropagation in a Multilayer Perceptron

Objective

Introduce students to the concepts of neural networks, including the **multilayer perceptron** (**MLP**) and the **backpropagation algorithm** (**BPA**), by implementing a basic image recognition system that distinguishes between **cat images** and **non-cat images**.

Project Overview

- 1. **Task**:
 - o Train a simple neural network using the backpropagation algorithm to classify images as either "Cat" or "Not a Cat."
 - Use a **Multilayer Perceptron** (**MLP**) with one hidden layer.
- 2. Input:
 - o Grayscale images of cats and non-cats, resized to 64×64 pixels (4096 features).
- 3. **Output**:
 - o Binary classification: y=1 (Cat), y=0 (Not a Cat).
- 4. Steps:
 - Preprocess the dataset (resize, normalize images).
 - o Design an MLP with one hidden layer.
 - o Implement forward propagation, calculate loss, and update weights using backpropagation.
 - o Train the network on the dataset.
 - Evaluate its performance on test images.

Tasks

1. Dataset Preparation

- Collect and preprocess a small dataset of cat and non-cat images.
- Resize images to 64×64 .
- Normalize pixel values to the range [0, 1].

• Label the images: 1 for "Cat" and 0 for "Not a Cat."

2. Neural Network Design

• Architecture:

- o Input layer: 4096 neurons (one for each pixel).
- Hidden layer: 16 neurons.
- Output layer: 11 neurons (Sigmoid activation).

• Learning Parameters:

- o Learning rate: 0.01.
- o Loss function: Binary Cross-Entropy.

3. Implementation in MATLAB

- Write code to:
 - 1. Initialize weights and biases.
 - 2. Perform forward propagation.
 - 3. Compute the loss and gradients using backpropagation.
 - 4. Update weights using gradient descent.
 - 5. Train the network over multiple epochs (up to 1,000).

4. Evaluate and Test

- Test the trained network on unseen images
 - What's the initial loss?
 - o What's the final loss (after 1,000 epochs)?
 - What's the test accuracy (in %)?
- Display predictions alongside the original images.