Logical Agents Chapter 7

ARTIFICIAL INTELLIGENCE

Announcements

- Class test 2
 - Thursday, 11 November 2021
 - Chapters 8 and 9
- Practical Assignment 3 uploaded

Overview of lecture

Forward and backward chaining

- Full power of resolution not always needed
- Real world knowledge bases contain Horn clauses
- Horn clause is disjunction of literals of which at most one is positive

 $Shoot \lor \neg WumpusAlive \lor \neg WumpusAhead$

 $\neg Shoot \lor \neg WumpusAlive \lor \neg WumpusAhead$

Each Horn clause written as implication

 $Shoot \lor \neg WumpusAlive \lor \neg WumpusAhead$

 $WumpusAlive \land WumpusAhead \Rightarrow Shoot$

 A horn clause with exactly one positive literal is called a definitive clause

WumpusAlive

 $True \Rightarrow WumpusAlive$

Fact

 $\neg W_{1,1} \lor \neg W_{1,2}$

 $W_{1,1} \wedge W_{1,2} \Longrightarrow False$

Goal clause

Horn Claus	ses								
Definitive clause									
	Α	В	С	D	!A	!B	!C	!A V !B V !C V D	A ^ B ^ C => D
	0	0	0	0	1	1	1	1	1
	0	0	0	1	1	1	0	1	1
	0	0	1	0	1	1	1	1	1
	0	0	1	1	1	1	0	1	1
	0	1	0	0	1	0	1	1	1
	0	1	0	1	1	0	0	1	1
	0	1	1	0	1	0	1	1	1
	0	1	1	1	1	0	0	1	1
	1	0	0	0	0	1	1	1	1
	1	0	0	1	0	1	0	1	1
	1	0	1	0	0	1	1	1	1
	1	0	1	1	0	1	0	1	1
	1	1	0	0	0	0	1	1	1
	1	1	0	1	0	0	0	1	1
	1	1	1	0	0	0	1	0	0
	1	1	1	1	0	0	0	1	1
Goal Clause									
	Α	В	!A	!B	!A V !B	A ^ B =>False			
	0	0	1	1	1	1			
	0	1	1	0	1	1			
	1	0	0	1	1	1			
	1	1	0	0	0	0			
Fact									
	Α	True => A							
	0	0							
	1	1							

- Inference with Horn clauses performed by forward and backward chaining
- Decision if sentences follow logically from knowledge bases is linear in the size of the knowledge base

- Determine if single propositional symbol Q follows logically from knowledge base of Horn clauses
- Start with known facts in the knowledge base
- If all conditions of implication is known then consequence can be added to the knowledge base

- Process continues until Q is added or no further conclusions can be made
- An example of data driven reasoning

 Forward chaining is sound and complete for Horn clauses

$$P\Rightarrow Q$$
 $L\wedge M\Rightarrow P$
 $B\wedge L\Rightarrow M$
 $A\wedge P\Rightarrow L$
 $A\wedge B\Rightarrow L$
 A

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

- Work backwards from query
- If query Q is true, no work has to be done
- Otherwise, algorithm finds implications that leads to Q
- If all conditions of one such implication can be proved true, then Q is true
- An example of goal driven reasoning

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

Assignment

- Study today's work
 - Section 7.5.4
- Please do Practical assignment 3 for Wednesday, 15 September 2021
- Theory quiz 3 on today's work will be on Thursday, 16 September 2021

