Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EE3CO40 / EX3CO40 Power System -II

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

i.	Power flow equations are-					
	(a) Linear algebraic		(b) Non-Linear algebraic			
	(c) Linear Differential		(d) Non-Linear Differential			
ii.	Y bus is a-				1	
	(a) Sparse matrix(c) Unity matrix		(b) Dense matrix			
			(d) None of these			
iii.	Unit of loss coefficie	ent matrix is-			1	
	(a) MW (b) M	W inverse	(c) W	(d) kW		
iv.	Exact co-ordination equation consider-					
	(a) Line losses(c) Capacitance		(b) Inductance			
			(d) None of these			
v.	Time constant of turbine system, as compared to generator load system					
	time constant is-					
	(a) Lower	(b) Zero	(c) Greater	(d) None of these		
vi.	Z bus matrix is a-					
	(a) Sparse matrix		(b) Full matrix			
	(c) Unity matrix		(d) None of these			
vii.	. Two areas in load frequency control is connected through-					
	(a) Delta line	(b) Tie line	(c) Star line	(d) None of these		
viii.	i. Two area LFC control is analysed through-				1	
	(a) Thevenin theorem(c) State space analysis		(b) Norton theorem			
			(d) None of these			
ix.	Steady state stability limit is (in degree)-					
	(a) 90	(b) 45	(c) 30	(d) 100		

P.T.O.

1

[2]

	х.	Transient state stability analysis is do (a) Unequal area criterion (c) Star delta criterion	one by- (b) Equal area criterion (d) None of these	1	
Q.2 OR	i. ii. iii. iv.	Discuss per unit quantities with an example. Explain impedance diagram of a power system. Discuss Gauss-Seidel method of load flow analysis in detail. Explain Newton Raphson method of load flow analysis in detail.			
Q.3	i. ii.	Explain the economic dispatch of generators. Derive the coordination equation for the solution of economic dispatch problem.			
OR	iii.	What do you mean by economic load neglecting transmission losses?			
Q.4	i. ii.	Write and explain the transfer function for turbine system. Draw and explain the block diagram for a single area load frequency control system.			
OR	iii.	Illustrate the steady state analysis of single area load frequency control.			
Q.5	i. ii.	What do you mean by two area control? What is area control error (ACE)? Write ACE equations for two area load frequency control system.			
OR	iii.	Draw and explain the block diagram for two area load frequency control system.			
Q.6	i. ii. iii.	Attempt any two: Write and explain two methods of im Derive for the swing equation of a an infinite bus. Explain the equal area criterion.		5 5 5	
