

Unit 6

——组合逻辑电路设计

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

- ■险象的判断
 - > 代数法
 - > 卡诺图法
- 险象的消除

1. 险象的判断——代数法

检查表达式中是否存在某个变量*X*,它同时以原变量和反变量的形式出现;并能在特定条件下简化成下面形式之一:

$$X+\overline{X}$$

$$X \cdot \overline{X}$$

例: 判断逻辑电路是否存在险象?

$$F = \overline{AC} + \overline{AB} + AC$$

检查变量A, C

C: $AB = 00 \qquad F = \overline{C}$ $AB = 01 \qquad F = 1$ $AB = 10 \qquad F = C$ $AB = 11 \qquad F = C$

没有险象

$$F = \bar{A}\bar{C} + \bar{A}B + AC$$

$$A:$$
 $BC = 00$ $F = \overline{A}$ $BC = 01$ $F = A$ $BC = 10$ $F = A$ $\overline{BC} = 11$ $F = A + \overline{A}$

例: 判断逻辑电路是否存在险象?

$$F=(A+B)(\overline{A}+C)(\overline{B}+C)$$

检查变量*A*, B

静态0冒险

$$X+\overline{X}$$

$$X \cdot \overline{X}$$

A:
$$BC = 00 \qquad F = \overline{A}A$$

$$BC = 01 \qquad F = A$$

$$BC = 10 \qquad F = 0$$

$$BC = 11 \qquad F = 1$$

B:
$$AC = 00 F = \overline{B}B$$

$$AC = 01 F = B$$

$$AC = 10 F = 0$$

$$AC = 11 F = 1$$

2. 险象的判断——卡诺图法

■ 化简后是否存在相切的卡诺圈

$$F = \overline{A}D + \overline{A}C + AB\overline{C}$$

$$F = \overline{A}C + B\overline{C}$$

$$F = (\overline{A} + C)(B + \overline{C})$$

AB=01时,存在险象

AB=10时,存在险象

3. 险象的消除

① 在切点处添加卡诺圈

AB	3			
c\	00	01	11	10
0	1	1	0	0
1	0	1	1	0

② 添加冗余项

$$F = \overline{A}C + AB$$

$$B \longrightarrow A \longrightarrow A$$

$$F = \overline{A}C + AB + \overline{B}C$$

BC=11时,添加的与门会先一步到达输出门

③ 添加吸收电容

④ 加封锁/选通脉冲

- ■险象的判断
 - > 代数法
 - > 卡诺图法
- ■险象的消除