Assignment 2

Suryaansh Jain cs21btech11057

Question 21(a) A product can be manufactured at a total cost $C(x) = \frac{x^2}{100} + 100x + 40$, where x is the number of units produced. The price at which each unit can be sold is given by $P = 200 - \frac{x}{400}$. Determine the production level x at which the profit is maximum. What is the price per unit and total profit at the level of production?

Solution. Let the total price p(x) = P.x

$$\implies \frac{p(x)}{x} = 200 - \frac{x}{400} \tag{1}$$

$$c(x) = \frac{x^2}{100} + 100x + 40 \tag{2}$$

$$Profit = p(x) - c(x) \tag{3}$$

For maximum profit $\frac{dProfit}{dx} = 0$

$$\implies 100 - \frac{x}{40} = 0 \tag{4}$$

$$\implies x = 4000 \tag{5}$$

(6)

The total production level x = 4000Price per unit = P(x) = 190

$$Profit = 199960$$

Total profit = 199960

Symbol	Description	Value
\overline{x}	Number of units	4000
P	Price per unit	190
P(x)	Total price	760000
C(x)	Total cost	560040
Profit	Total profit	199960

Fig. 1. Graph shows Total Profit, Total cost, Total profit with x