Lecture Three

Section 3.1 – Inner Products

Definition

An *inner product* on a real vector space V is a function that associates a real number $\langle \vec{u}, \vec{v} \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfies for all vectors \vec{u} , \vec{v} , and \vec{w} in V and all scalars k.

1. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ Symmetry axiom

2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ Additivity axiom

3. $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$ Homogeneity axiom

4. $\langle \vec{v}, \vec{v} \rangle \ge 0$ and $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = 0$ **Positivity axiom**

A real vector space with an inner product is called a *real inner product space*.

$$\langle \vec{u}, \vec{u} \rangle = \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \cdots u_n v_n$$

This is called the *Euclidean inner product* (or the *standard inner product*)

Definition

If V is a real inner product space, then the norm (or length) of a vector \vec{v} in V is denoted by $\|\vec{v}\|$ and is defined by

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

And the *distance* between two vectors is denoted by $d(\vec{u}, \vec{v})$ and is defined by

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\| = \sqrt{\langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle}$$

A vector of norm 1 is called a *unit vector*.

Theorem

If u and v are vectors in a real inner product space V, and if k is a scalar, then:

- a) $\|\vec{v}\| \ge 0$ with equality iff $\vec{v} = 0$
- **b**) $||k\vec{v}|| = |k|||\vec{v}||$
- c) $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$
- d) $d(\vec{u}, \vec{v}) \ge 0$ with equality iff $\vec{u} = \vec{v}$

Although the Euclidean inner product is the most important inner product on \mathbb{R}^n , there are various applications in which is desirable to modify it by weighing each term differently. More precisely, if $w_1, w_2, ..., w_n$ are positive real numbers, which we will call weighs, and if $\vec{u} = (u_1, u_2, ..., u_n)$ and are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle \vec{u}, \vec{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

Defines an inner product on \mathbb{R}^n that we call the **weighted Euclidean inner product** with weights $w_1, w_2, ..., w_n$

Example

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 , verify that the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.

Solution

Axiom 1:
$$\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 2u_2v_2$$

 $= 3v_1u_1 + 2v_2u_2$
 $= \langle \vec{v}, \vec{u} \rangle$
Axiom 2: $\langle \vec{u} + \vec{v}, \vec{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$

Axiom 2:
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$$

$$= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$$

$$= 3u_1w_1 + 3v_1w_1 + 2u_2w_2 + 2v_2w_2$$

$$= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$$

$$= \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

Axiom 3:
$$\langle k\vec{u}, \vec{v} \rangle = 3(ku_1)v_1 + 2(ku_2)v_2$$

$$= k(3u_1v_1 + 2u_2v_2)$$

$$= k\langle \vec{u}, \vec{v} \rangle$$

Axiom 4:
$$\langle \vec{v}, \vec{v} \rangle = 3v_1v_1 + 2v_2v_2$$

= $3v_1^2 + 2v_2^2 \ge 0$
 $v_1 = v_2 = 0$ iff $\vec{v} = \vec{0}$

Exercises Section 3.1 – Inner Products

1. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$, and k = 3. Compute the following.

a)
$$\langle \vec{u}, \vec{v} \rangle$$

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle$$

$$e)$$
 $d(\vec{u}, \vec{v})$

b)
$$\langle k\vec{v}, \vec{w} \rangle$$

$$d$$
) $\|\vec{v}\|$

$$f$$
) $\|\vec{u} - k\vec{v}\|$

2. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$ and k = 3. Compute the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 2u_1v_1 + 3u_2v_2$.

a)
$$\langle \vec{u}, \vec{v} \rangle$$

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle$$

$$e)$$
 $d(\vec{u}, \vec{v})$

b)
$$\langle k\vec{v}, \vec{w} \rangle$$

$$d$$
) $\|\vec{v}\|$

$$f$$
) $\|\vec{u} - k\vec{v}\|$

3. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following.

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

$$e$$
) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

4. Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 4u_1v_1 + 5u_2v_2$

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

$$e$$
) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

5. Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^2 by verifying that the inner product axioms hold. $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$

6. Show that the following identity holds for the vectors in any inner product space

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

7. Show that the following identity holds for the vectors in any inner product space

$$\langle \vec{u}, \vec{v} \rangle = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

8. Prove that $||k\vec{v}|| = |k| ||\vec{v}||$