13 Grafické rozhraní, GPU, zobrazovací jednotky, zvukový podsystém PC

13.1 Grafické rozhraní

Funkce grafického rozhraní:

- Zajišťuje tvorbu obrazu z určité aplikace, který vidíme na zobrazovací jednotce
- Spolu se zobrazovací jednotkou tvoří zobrazovací soustavu PC

Režim grafického výstupu:

- Textový režim zobrazuje pouze předem definované znakové sady uložené v paměti grafiky
- Grafický režim informace zobrazovány po pixelech, z pixelů vykreslený jakýkoliv obraz v
 daném rozlišení a hloubce barev

Výsledný obraz pro zobrazení je uložen do paměti grafiky, ze které je odesílán do zobrazovací jednotky. Její velikost ovlivňuje počet pixelů (rozlišení) a hloubka barev.

Pixel - nejmenší jednotka digitální bitmapové grafiky, představuje jeden svítící bod na monitoru charakterizovaný jasem a barvou (RGB – subpixely)

Texel-jákladní jednotka textury(tapety) používané v 2D grafice

Voxel – pravidelné částice objemu představující hodnotu v mřížce 3D prostoru

Rozlišení

- Počet pixelů v jedné řádce x počet řádek 4:3(PAL), 5:4(DVDPAL720x576), 16:9, 16:10
- Poměr stran monitoru poměr počtu pixelů, neplatí pro anamorfní formát (pixel potom nemá poměr stran 1:1)

Barevná hloubka

- Počet bitů pro vyjádření barvy pixelu
- 1 bitová barva = 2^1 = 2 barvy (monocolor)
- 4 bitová barva = 16 barev
- 24 bitová barva = 3x8 bit RGB (truecolor)
- 32 bitová barva = 3x8 bit RGB, alfa kanál průhlednost
- S větším počtem barev vzrůstají nároky na výkon grafické karty

Velikost videopaměti

- Primárně je v ní uložen vytvořený obraz
- Velikost je dána počtem bodů a barevnou hloubkou
- Pro výpočty v grafickém akcelerátoru uchová mezivýsledek, doplňující informace a textury
- Záleží na složitosti objektů, způsobu vykreslování, stínování a dalších parametrech použité v 2d a 3d akcelerátoru

Obnovovací frekvence

Určuje kolikrát za vteřinu je grafická karta (spolu s monitorem) schopna aktualizovat snímek obrazu

- Progressive (značeno "p") pro zobrazení úplných snímků
- Interlace (značeno "i") pro zobrazení lichých a sudých půlsnímků
 Při vyšším rozlišení je vyšší počet vykreslovaných bodů a tím je vyšší datový tok
- Levnější karty při vyšším rozlišení nepodporují vyšší obnovovací frekvence

Výstupy grafického rozhraní

Analogový – VGA - např. pro CRTmonitor, LCD s analogovým vstupem

Digitální – DVI-I (má analogové piny v kříži), DVI-D, HDMI, Display Port - např. pro LCD s digitálním vstupem, plazmový monitor

13.2 Grafický procesor - GPU (Graphics Processing Unit)

Specializovaný mikroprocesor pro paralelní výpočty – SIMD (single instruction, multiple date), např. zpracování jednou instrukcí všech složek pixelu (subpixely RGB).

Vlastnosti GPU

- rychlé grafické paralelní výpočty, používané i k jiným výpočtům, než pro zobrazování dat (např. kryptoanalýza)
- Vysoce výkonná gpu obsahuje stovky jader GPU (miliony tranzistorů => intenzivní chlazení a výkonný el. zdroj)
- GPU se vůči CPU chová jako další paralelní koprocesor
- Je určen především na vektorové výpočty (pro vytvoření grafických scén)

Základním stavebním prvkem každého 3D modelu je trojúhelník umístěný v prostoru resp. celý model je tvořen množstvím trojúhelníků

- Každý kompletně popsaný bod v 3D prostoru je dále nazýván vertex (vrchol).
- Každý vertex má celou řadu parametrů (umístění v prostoru, barvu, měřítko a umístění textury, osvětlení, vazbu na další vertexy)
- GPU vykresluje grafické procesy rychleji než CPU a uvolňuje jeho výpočetní výkon (udává se v počtu vykreslených snímků za čas - FPS - Frame per second)
- Urychlovací techniky se označují jako grafická akcelerace
- Obsahují funkce pro renderování (tvorba reálného obrazu na základě počítačového modelu), podporu kodeků digitálního videa a další

GPU frameworky:

GPGPU (General Purpose computing on Graphics Processing Units) - paralelní výpočty na GPU

CUDA(Compute Unified Device Architecture) – proprietární - Nvidia

OpenCL(Open Computing Language) - otevřený standard pro paralelní výpočty

Microsoft DirectX - sada proprietárních knihoven, poskytujících API pro přímé ovládání příslušných HW. Dříve samostatně (Direct3D, DirectDraw, DirectMusic, ...). Knihovny jsou vydávány pro konkrétní OS.

13.3 Zobrazovací jednotky

CRT – Cathode Ray Tube – obrazovka s katodovou trubicí

Princip

- Na přední části (stínítku) se vytváří obraz pomocí dopadu proudu elektronů na vrstvu luminoforu, které vytváří viditelné světlo
- Uvnitř skleněné obrazovky je vakuum
- Obrazovka je z fyzikálního hlediska elektronka s anodou na stínítku a vychylovacími cívkami pro nasměrování paprsku toku elektronů
- Černobílé obrazovky používají pouze jediný paprsek elektronů
- Barvené obrazovky používají 3 paprsky, ty pomocí sčítání rgb barev vytvoří jakoukoliv barvu
- 1. Elektronové dělo
- 2. Svazky elektronů
- 3. Zaostřovací cívky
- 4. Vychylovací cívky
- 5. Připojení anody
- Část pro oddělení paprsků pro RGB subpixely
- 7. Luminoforová vrstva s rgb oblastmi
- 8. Detail luminoforové vrstvy, nanesené z vnitřní stany obrazovky

Norma Tco označuje šetrnost osobních počítačů (původně jen CRT monitorů vyzařujících rentgenové záření) k životnímu prostředí.

LCD - liquid crystal diplay

Displej z tekutých krystalů je tenké a ploché zobrazovací zařízení, které vytlačilo technologii CRT

- Každý pixel se zde skládá z molekul tekutých krystalů uložených mezi dvěma průhlednými elektrodami a mezi dvěma polarizačními filtry, přičemž osy polarizace jsou na sebe kolmé
- Tekuté krystaly mají stále krystalickou mřížku a zároveň se chovají podobně jako kapalina.
 Světlo procházející krystalem je rotováno, což mu umožňuje projít i druhým kolmým filtrem

TN (Twisted Nematic) LCD

nejčastější technologie, obraz se vytváří **stáčením tekutých krystalů**, které v klidovém stavu propouští světlo. Vlastnosti:

- nízká cena
- malá doba odezvy panel se rychle překresluje a není zpožděný
- horší podání barev méně hluboké barvy
- horší pozorovací úhly z boku na monitor dobře neuvidíte
- při chybě pixel svítí

VA (Vertical Alignment) LCD

- vylepšená varianta TN jednotlivé body rozděleny do více zón a tím zvládají lepší kontrast a podání barev. Vlastnosti:
- dobrý poměr ceny a kvality
- malá doba odezvy
- barvy, pozorovací úhly a kontrast se liší podle výrobce (existuje několik variant)
- při chybě pixel zčerná neaktivní pixely nepropouští světlo

IPS (In-plane-switching) LCD

Založeny na principu TFT, vlastnosti:

- nejvěrnější barvy
- malá doba odezvy
- dobrý kontrast a velké pozorovací úhly
- vyšší cena složité na výrobu, (princip TFT)

TFT LCD (Thin Film Transistor Liquid Crystal Display)

• udržení kontrastu zobrazení LCD displeje

 pro každý bod je tranzistor (FET) s vřazeným kondenzátorem, který udržuje napětí pro příslušné buňky obnovuje ve vhodných intervalech

Podsvícení LCD

Plazmové displeje

- aktivní zobrazovač
- plošná matice doutnavek s nanesenou vrstvou luminoforu v barevném spektru RGB, do kterých jdou adresovací elektrody
- inertní plyn po zažehnutí vytvoří plazmatickou strukturu s doprovodným světelným efektem
- jas je regulován pomocí délky trvajícího výboje
- vysoký jas a kontrast barev
- omezená životnost vyhoření luminoforu, ztráta intenzity barvy

LED

- aktivní zobrazovač
- plošné matice z obrazových RGB LED buněk

OLED (Organic Light Emitting Diodes)

- aktivní zobrazovač
- k LED přidán organický luminofor, který provádí vlastní emisi světla - vzájemně přitahovaný energetický excitovaný pár elektron-díra zrekombinuje, nadbytek energie se vyzáří v podobě fotonu

- vyobrazí vyšší pocty barev
- velký vyzařovací úhel obrazu (160°), vysoký jas a ostrost, nízká spotřeba

Dataprojektory - pasivní zobrazovač - vnější svetelný zdroj (lampa)

LCD projektor

- rozložení bílého paprsku z lampy se rozloží filtry na RGB základní barvy
- každá barva prochází skrze LCD panel
- barvy se pomocí hranolu skládají v konečný obraz, který se pres optiku promítá na promítací plátno
- nenáročné na údržbu a seřízení
- Obraz je jasně zřetelný a vybarvený s jemnými barevnými přechody a menšími kontrasty vhodné pro video

DLP projektor

- mikrokontroler DMD (Digital Micromirror Device) s mikroskopickým zrcátkem pro každý pixel
- jednoprocesorový DLP projektor tvoří obraz díky průchodu paprsku skrze rotujícího segmentového kotoučku, na kterém se střídají barevné výseče
- barvy spektra se pak odrážejí od mikro zrcátek na procesoru DMD a procházejí optikou projektoru ven
- Výsledný obraz dosahuje vysoký poměr kontrastu mezi nejsvětlejší (bílou) a nejtmavší (černou)
- barvou a solidní světelný výkonu a kontrast
- tří procesorová alternativa bez segmentových kotoučů má ještě kvalitnější, čistější a detailnější obraz, bílý paprsek pomocí filtru se rozděluje na tři barvy, které se zpracovávají současně, každá jedním cipem DMD. Odstíny barev se následně sloučí

ICC profil - international color consortium

- Charakterizuje barvový gamut (dosažitelná oblast barev v určitém prostoru) a vlastnosti reprodukčního zařízení či média
- Slouží jako přenos mezi barvovými prostory RGB a CMYK k zajištění barevné shody při reprodukci barev
- Je to v podstatě tabulka, která převádí RGB čísla na barvy vyjádřené pomocí nezávislého a normalizovaného barevného prostoru (podle CIE XYZ)
- Zobrazení barev např. v tiskárně, monitoru, skeneru, TV

13.4 Zvukový podsystém PC

Zvukové rozhraní

Hlavní funkce - vstup a výstup zvukového signálu, ovládaný softwarově

- integrované součástí základní desky
- rozšiřující karty
- USB zvuková karta, mikrofon, sluchátka
- Bluetooth sluchátka, mikrofon
- HDMI

Signály zvukové karty:

Barva		Funkce
	Pink	Analogový mikrofonní vstup.
	Light blue	Analogový vstup.
	Lime green	Analogový výstup pro hlavní stereo signál (přední reproduktory nebo sluchátka).
	Black	Analogový výstup pro zadní reproduktory.
	Silver	Analogový výstup pro boční reproduktory.
	Orange	S/PDIF digitální výstup. Sony/Philips Digital InterFace

Zvukové formáty – audiokodeky

Jeden kanál – mono, nebo vícekanálová stereofonie L+P, 5+1

Bezeztrátové:

WAV - zvukový formát Waveform audio file format, který vytvořily firmy IBM a Microsoft pro ukládání zvuku na PC.

Kontejner obsahuje nekomprimovaný jedno nebo vícekanálový zvuk kódovaný pomocí pulzně kódové modulace s lineárním kvantováním (LPCM), často DOLBY® Digital 5. shodný se záznamem na audio CD

Ztrátové – nelze po kompresi znovu rekonstruovat původní signál

MPEG layer 1 až layer 3 (mp3)

- AAC zvuk videoformátů mp4
- WMA proprietární Microsoft

Plnorozsahové kanály od 20 Hz do 20 kHz, LFE kanál má rozsah do 120 Hz

Digitální záznam

Analogový signál protíná v čase vzorkování úrovně signálu vyznačené červenými body, které jsou v převodníku kvantovány na zelené body, odpovídající nejbližšímu číselnému vyjádření.

Vzorkovací frekvence – počet vzorků za čas, audio CD 44,1 kHz, DVD 48 kHz

Bitová hloubka – počet bitů v jednom vzorku, audio CD 16b, DVD 24b

Datový tok – množství přenesených dat v čase při on-line přenosu, např kbit/s

Shannonův-Nyquistův-Kotělnikův teorém:

Rekonstrukce spojitého, frekvenčně omezeného signálu z jeho vzorků je možná tehdy, pokud byla vzorkovací frekvence vyšší než dvojnásobek nejvyšší harmonické složky vzorkovaného signálu.