(11)特許出願公開番号 特開2002-173448

(P2002-173448A)

(43)公開日 平成14年6月21日(2002.6.21)

	· · · · · · · · · · · · · · · · · · ·		
(51) Int.Cl.7	謎別記 号	F 1	テーマコード(参考)
A61K 45/00		A61K 45/00	2 G 0 4 5
38/55		A61P 25/28	4 B 0 2 4
A 6 1 P 25/28		43/00 1	11 4C084
43/00	111	C12N 9/99	4 H O 4 5
C12N 9/99		G 0 1 N 33/15	Z
	審査請求	未開求 請求項の数20 OL (全	9 頁) 最終頁に続く
(21)出願番号	特願2000-367737(P2000-367737)	(71)出願人 000183370	
		住友製薬株式会社	
(22) 出願日	平成12年12月 1日(2000.12.1)	大阪府大阪市中央	区道修町2丁目2番8号
		(72)発明者 根來 尚温	·
	•	大阪市此花区春日	出中3-1-98 住友製
		菜株式会社内	
		(72)発明者 小島 深一	
	•	大阪市此花区春日	出中3-1-98 住友製
		菜株式会社内	
		(74)代理人 100107629	•
		弁理士 中村 敏力	Ę
			最終頁に続く

(54) 【発明の名称】 β-セクレターゼ活性阻害剤

(57)【要約】 (修正有)

【課題】β-アミロイド沈着性神経変性疾患治療剤の提供。

【解決手段】ペプシン・ファミリーの酸性プロテアーゼ 阻害剤を有効成分とする β -アミロイド沈着性神経変性 疾患治療剤。特に酸性プロテアーゼ阻害剤はペプスタチ ンA又は、式(1)で示される化合物等の提供。

[式中、R」、R3 はそれぞれ独立に直鎖又は分枝状の低級アルキル基を表し、R2 はアミノ基、水酸基、カルボキシル基又は、カルバモイル基で置換されていてもよい直鎖又は分枝状の低級アルキル基を表す。]

【特許請求の範囲】

【請求項1】 ベプシン・ファミリーの酸性プロテアーゼ阻害剤を有効成分とする β -セクレターゼ活性阻害剤。

【請求項2】 ペプシン・ファミリーの酸性プロテアーゼがペプシンである請求項1記載の β -セクレターゼ活性阻害剤。

【請求項3】 ベプシン・ファミリーの酸性プロテアーゼ阻害剤がベプスタチンAである請求項2記載の β -セクレターゼ活性阻害剤。

【請求項4】 β -セクレターゼがBACE-2のアミノ酸配列の蛋白である、請求項 $1\sim3$ のいずれか記載の β -セクレターゼ活性阻害剤。

【請求項5】 ペプシン・ファミリーの酸性プロテアーゼ阻害剤を有効成分とする β -アミロイド沈着性神経変性疾患治療剤。

【請求項6】 ペプシン・ファミリーの酸性プロテアーゼがペプシンである請求項5記載の β -アミロイド沈着性神経変性疾患治療剤。

【請求項 7 】 ペプシン・ファミリーの酸性プロテアーゼ阻害剤がペプスタチンAである請求項 6 記載の β -アミロイド沈着性神経変性疾患治療剤。

【請求項8】 β - アミロイド沈着性神経変性疾患がアルツハイマー病である、請求項5~7のいずれかの神経変性疾患治療剤。

【請求項9】 以下の部分構造①、②、③または④を有するペプチドを含有することを特徴とする β -セクレターゼ活性阻害剤、

①一般式(1)のC-末3アミノ酸残基アルデヒド

(化1)

[式中、R₁、R₃ はそれぞれ独立に直鎖または分枝状の低級アルキル基を表し、R₂ はアミノ基、水酸基、カルボキシル基または、カルバモイル基で置換されていてもよい直鎖または分枝状の低級アルキル基を表す。]

②一般式(2)の3アミノ酸残基からなるペプチド 【化2】

[式中、R4、R6はそれぞれ独立に直鎖または分枝状の低級アルキル基を表し、R5はアミノ基、水酸基、カルボキシル基、カルバモイル基あるいはメチルチオ基で 置換されていてもよい直鎖または分枝状の低級アルキル 基を表す。]

③一般式(3)のC-末3アミノ酸残基アルデヒド 【化3】

[式中、R₁、R₂、R₃はそれぞれ独立に前項と同じ意味を表す。]

④一般式(4)の3アミノ酸残基からなるペプチド 【化4】

[式中、R4、R5 、R6 はそれぞれ独立に前項と同じ意味を表す。]

【請求項10】 R₁、R₃、R₄、R₆がそれぞれメチル基、n-プロビル基、iso-プロビル基、1-メチルプロビル基、2-メチルプロビル基、n-プチル基あるいは2-メチルチオエチル基の何れかであり、R₂、R₅がメチル基、n-プロビル基、iso-プロビル基、1-メチルプロビル基、2-メチルプロビル基、2-メチルプロビル基、2-カルバモイルエチル基、2-カルボキシエチル基、4-アミノブチル基あるいは2-メチルチオエチル基の何れかである、請求項9記載の $\beta-$ セクレターゼ活性限零剤。

【請求項11】 R_1 、 R_3 、 R_4 、 R_6 がそれぞれ n ープロビル基、isoープロビル基、1 ーメチルプロビル基、2 ーメチルプロビル基あるいは n ープチル基の何れかであり、 R_2 、 R_5 がメチル基、2 ーカルバモイルエチル基、4 ーアミノブチル基あるいは 2 ーメチルチオエチル基の何れかである、請求項 9、1 0 記載の 6 - セクレターゼ活性阻害剤。

【請求項12】 請求項9、10または11記載のβ-セクレターゼ活性阻害剤を有効成分とするβ-アミロイ ド沈着性神経変性疾患治療剤。

【請求項13】 $\beta-$ アミロイド沈着性神経変性疾患がアルツハイマー病である、請求項12記載の治療剤。

【請求項14】 請求項9、10、11記載の β -セクレターゼ活性阻害剤を有効成分とする β -アミロイド生成抑制剤。

【請求項15】 以下の工程よりなる β -セクレターゼ活性阻害剤のスクリーニング方法。

(1)精製タグ付加可溶性BACE2と、合成蛍光基質MOCAc-SE VNLDAEFRK(Dnp)RR-NH2のバッファー溶液を混合する、

(2)次いで被験化合物の溶液を加えて保温する、(3)培養液の蛍光測定し、アミロイド前駆体の切断活性を測定する。

【請求項16】 ペプスタチンAを基準物質として使用し、ペプスタチンA以上の阻害活性を有するβ-セクレターゼ活性阻害剤を選別することを特徴とする、請求項15記載のスクリーニング方法。

【請求項17】 請求項16記載のスクリーニング方法 により得られるペプスタチンA以上の阻害活性を有する

β-セクレターゼ活性阻害剤。

【請求項18】 請求項17記載の β -セクレターゼ活性阻害剤を有効成分とする β アミロイド生成抑制剤。

【請求項19】 請求項17記載の β -セクレターゼ活性阻害剤を有効成分とする β -アミロイド沈奢性神経変性疾患治療剤。

【請求項20】 $\beta-$ アミロイド沈着性神経変性疾患がアルツハイマー病である、請求項19記載の治療剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、 β -セクレターゼ活性阻害剤に関する。即ち、本発明は、アルツハイマー病の治療剤等として有用な β -アミロイド生成抑制剤に関する。さらに本発明は、 β -アミロイド沈着性神経変性疾患治療剤に関するものである。

[0002]

【従来の技術】近年、老人人口の増加に伴い、老人性痴 呆症の治療に有効な医薬品の開発が強く望まれている。 老人性痴呆症の代表的疾患であるアルツハイマー病は、 脳の萎縮、老人斑の沈着および神経原線維の形成を特徴 20 とする変性疾患で、神経細胞の脱落が痴呆症状を引き起 こすと考えられている (Alzheimer, A. (1907) Central bl. Nervenheilk. Psychiatr. 30, 177-179)。アルツ ハイマー病発症の原因について未だ定説はないが、病理 組織学的研究により、老人斑が沈着しそれにより神経細 胞が脱落し脳の萎縮が生じると考えられている。老人斑 の主成分である β-アミロイドは細胞毒性作用を有して おり、アルツハイマー病における神経細胞死を引き起こ していると考えられている (Yankner, B. et al. Scienc e, 245, 417-420(1989); Cai, X., Gold, T. & Younkin, S. Science, <u>259</u>, 514-516(1993); Rose, A. Nature M ed. 2, 267-269(1996); Scheuner, D. et al. Nature Me d. 2, 864-869(1996))。β-アミロイドは39-43残基の アミノ酸からなる凝集しやすいペプタイドであり(Glen ner, G. G., and Wong, C. W. (1984) Biochem. Biophy s. Res. Commun. 120, 885-890) 、その前駆体であるア ミロイド前駆体蛋白質がプロセシングされることによ り、生成される (Haass, C., and Selkoe, D. Cell 75, 1039-1042(1993)); Roher, A. E., et al. Proc. Nat 1. Acad. Sci. USA 90, 10836-10840(1993))。アミロ イド前駆体蛋白質は膜貫通部位を持つ蛋白質(Kang, J. et al. Nature, 325, 733-736(1987))で、βアミロイド の17残基目付近 a 部位で切断を受け、N 末端を含む分子 量約120kDaの断片が細胞外に分泌される(Seubert, P. e t al. Nature, 361, 260-262(1993))。一方、βアミロ イドはアミロイド前駆体蛋白質のC末端領域に存在し、 βアミロイドの両端で切断を受け産生したβアミロイド が細胞外に分泌される。アミロイド前駆体蛋白質のプロ セシング及びβアミロイドの切断にはプロテアーゼが関 与していることが推定され、数種類の酵素が候補に挙げ 50

られてたが、同定されていなかった。ところが最近にな り、アミロイド前駆体蛋白質(APP)のβーサイトを 切断する酵素 (β-セクレターゼ) が発見され、クロー ニングされて、俄にβ-セクレターゼ性阻害剤の研究が 進展した。β-セクレターゼには、アミノ酸配列が異な る2種のサブタイプが存在し、BACE-1 (Vassar.R. et a 1. Science 286 (5440), 735-741 (1999)) . BACE-2 (Yan, R. et al. Nature 402, 533-537 (1999)) と名付 けられている。現在、このいずれの酵素を優先的に阻害 した方がβ-アミロイド沈豬性神経変性疾患、例えば、 アルツハイマー病の治療剤としてよいのかも分かってい ない。ごく最近、BACEIを直接阻害する化合物が見出さ れた (Sinha S. et al. Nature 402, 537-540 (199 Hong L, et al. Science 290 150-153(200 O))。ただし、BACE2に関しては、どのような性質のも のが阻害剤として有効であるかについてもほとんど分か っていなかった。

[0003]

【発明が解決しようとする課題】本発明が解決しようとする課題は、有効な β -セクレターゼ活性阻害剤またはこれに基づく β -アミロイド沈着性神経変性疾患治療剤を提供することである。また、本発明が解決しようとする他の課題は、 β アミロイド生成抑制剤等として有用な新規なアミド化合物を提供することにある。

[0004]

【課題を解決するための手段】本発明者らは、鋭意検討 の結果、ペプシン・ファミリーの酸性プロテアーゼ阻害 剤または後述の式(1)~式(4)で表される化合物がβ-セ クレターゼ活性を有効に阻害することを見出し、本発明 を完成した。さらに詳しくは、本発明では、ペプシン・ ファミリーの酸性プロテアーゼ阻害剤または本発明の式 (1)~式(4)で表される化合物(3アミノ酸残基を含有す るペプチド)が、β-セクレターゼのサブタイプであるB ACE-2に関して顕著な活性阻害作用を示すことを見出し た。最近のB-セクレターゼに関する報告(Sinha S.e t al. Nature 402, 537-540 (1999). Hong L, et a 1. Science 290 150-153(2000)) によれば、その活 性阻害剤はアルツハイマー病等のβ-アミロイド沈着性 の神経変性疾患の治療剤となることが示されている。一 方、これに対して別途の報告 (Bigl, M., et al. Neuro sci.Lett., 292, 107-110(2000)) では、ヒト型APP695 (アミロイド前駆体タンパク) のスウェーデン型変異体 を高発現するトランスジェニックマウス (Tg2576) を用 いて次のような知見を報告している。

①加齢に伴いアルツハイマー様のβ-アミロイドの沈着が見られること。

②Tg2576の13月齢及び17月齢の脳切片におけるBACE1 nR NAをin situにて検出したところ、様々な部位の神経細胞にはBACE1の発現が認められたが、これまで β -セクレターゼとの関連が指摘されてきたアストロサイトには

発現が認められなかったこと。

③アミロイド沈着部位をとりまく領域での発現が多いということはなく、部位特異的発現パターンもβ-アミロイド沈着に相関していなかったこと。

以上の事実から、本発明者等は、 β -アミロイド沈着にはBACE1以外の β -セクレターゼの関与、すなわちBACE2の関与が強いものと考えた。即ち、本発明者等は、これらの知見より、BACE-1よりもBACE-2を阻害する方が、より β -アミロイド沈着性神経変性疾患に有効な薬剤が提供できると考えた。本発明者らが見出した阻害剤は、 β -セクレターゼのサブタイプであるBACE-2に関して顕著な活性阻害作用を示すことから、本発明の β -セレクターゼ活性阻害剤は、より有効な β -アミロイド沈着性神経変性疾患治療剤であることが示された。

【0005】すなわち本発明の要旨は以下に示す通りである。

- (1) ペプシン・ファミリーの酸性プロテアーゼ阻害剤 を有効成分とする β -セクレターゼ活性阻害剤。
- (2) ペプシン・ファミリーの酸性プロテアーゼがペプシンである上記(1) 記載の β -セクレターゼ活性阻害 剤。
- (3) ペプシン・ファミリーの酸性プロテアーゼ阻害剤 がペプスタチンAである上記 (2) 記載の β -セクレター ゼ活性阻害剤。
- (4) β -セクレターゼがBACE-2のアミノ酸配列 の蛋白である、上記(1) \sim (3) のいずれか記載の β -セクレターゼ活性阻害剤。
- (5) ペプシン・ファミリーの酸性プロテアーゼ阻害剤 を有効成分とする β アミロイド沈着性神経変性疾患治療剤。
- (6) ペプシン・ファミリーの酸性プロテアーゼがペプシンである上記 (5) 記載の β -アミロイド沈着性神経変性疾患治療剤。
- (7) ペプシン・ファミリーの酸性プロテアーゼ阻害剤 がペプスタチンAである上記 (6) 記載の β -アミロイド沈着性神経変性疾患治療剤。
- (8) β アミロイド沈着性神経変性疾患がアルツハイ・マー病である、上記 (5) ~ (7) のいずれかの神経変性疾患治療剤。
- (9)以下の部分構造①、②、③または④のペプチドを 40 含有することを特徴とするβ-セクレターゼ活性阻害 31
- ①一般式(1)のCー末3アミノ酸残基アルデヒド 【0006】

[化5]

[式中、R1、R3 はそれぞれ独立に疎水性の直鎖または分枝状の低級アルキル基を表し、R2 はアミノ基、水 50

酸基、カルボキシル基またはカルバモイル基で置換されていてもよい直鎖または分枝状の低級アルキル基を表す。]

②一般式(2)の3アミノ酸残基からなるペプチド

(化6)

[式中、 R_4 、 R_6 はそれぞれ独立に疎水性の直鎖または分枝状の低級アルキル基を表し、 R_5 はアミノ基、水酸基、カルボキシル基、カルバモイル基あるいはメチルチオ基で置換されていてもよい直鎖または分枝状の低級アルキル基を表す。]

③一般式(3)のC-末3アミノ酸残基アルデヒド

[147]

$$\begin{array}{c|c} & R_1 & R_2 & OH \\ \hline & CNH & CNH & CHO \\ \hline & O & O & R_3 \end{array} \tag{3}$$

[式中、 R_1 、 R_2 、 R_3 はそれぞれ独立に前項と同じ意味を表す。]

④一般式(4)の3アミノ酸残基からなるペプチド

[化8]

[式中、R₄ 、R₅ 、R₆ はそれぞれ独立に前項と同じ意味を表す。]

(10) R_1 、 R_3 、 R_4 、 R_6 がそれぞれメチル基、n-プロピル基、iso-プロピル基、1-メチルプロピル基、2-メチルプロピル基、n-プチル基あるいは 2-メチルチオエチル基の何れかであり、 R_2 、 R_5 がメチル基、n-プロピル基、iso-プロピル基、1-メチルプロピル基、2-メチルプロピル基、1-メチルプロピル基、2-メチルプロピル基、n-プチル基、2-カルバモイルエチル基、2-カルボキシエチル基、4-アミノブチル基あるいは 2-メチルチオエチル基の何れかである、上記(9)記載の $\beta-$ セクレターゼ活性阻害剤。

(11) R_1 、 R_3 、 R_4 、 R_6 がそれぞれn-プロピル基、1-メチルプロピル基、2-メチルプロピル基あるいはn-ブチル基の何れかであり、 R_2 、 R_5 がメチル基、2-カルバモイルエチル基、4-アミノブチル基あるいは2-メチルチオエチル基の何れかである、上記(9)、(10)記載の $\beta-$ セクレターゼ活性阻害剤。

(12)上記(9)~(11)記載の化合物で、かつプロテアソーム阻害活性を有する化合物を有効成分とする β -セクレターゼ活性阻害剤。

(13)上記(9)~(12)記載の β -セクレターゼ 活性阻害剤を有効成分とする β -アミロイド沈着性神経 変性疾患治療剤。 (14) β -アミロイド沈着性神経変性疾患がアルツハイマー病である、上記(13)記載の治療剤。

(15) 上記(9) \sim (12) 記載の β -セクレターゼ 活性阻害剤を有効成分とする β -アミロイド生成抑制 剤。

(16)下の工程よりなる β -セクレターゼ活性阻害剤のスクリーニング方法。

(1)精製タグ付加可溶性BACE2を使用し、(2)合成蛍光基質MOCAc-SEVNLDAEFRK (Dnp) RR-NH2のバッファー溶液を混合し、次いで被験化合物の溶液を加えて保温する、(3)培養液の蛍光測定し、アミロイド前駆体の切断活性を測定する、

(17) ペプスタチンAを基準物質として使用し、ペプスタチンA以上の阻害活性を有する β - セクレターゼ活性阻害剤を選別することを特徴とする、上記(16) 載のスクリーニング方法。

(18)上記(16)及び(17) 載のスクリーニング 方法により得られるペプスタチンA以上の阻害活性を有 する β -セクレターゼ活性阻害剤。

(19)上記(18)記載の β -セクレターゼ活性阻害 20 剤を有効成分とする β アミロイド生成抑制剤。

(20)上記(18)記載の β -セクレターゼ活性阻害 剤を有効成分とする β -アミロイド沈着性神経変性疾患 治療剤。

(21) β -アミロイド沈着性神経変性疾患がアルツハイマー病である、上記(20) 記載の治療剤。

[0007]

【発明の実施形態】本発明の第1態様は、ペプシン・フ ァミリーの酸性プロテアーゼ阻害剤または後述の式(1) ~式(4)で表される化合物を有効成分とするβ-セレクタ 30 ーゼ活性阻害剤に関するものである。本発明におけるβ -セクレターゼには、BACE-1とBACE-2の2つのサブタイ プが存在し、それぞれの塩基配列、アミノ酸配列は報告 され公知となっている (Vassar, R. et al. Science 286 (5440), 735-741 (1999)) , BACE-2 (Yan, R. et al. Nature 402, 533-537 (1999))。本発明におけるペプ シン・ファミリーの酸性プロテアーゼとは、例えば、ペ プシン、カテプシンD、レニン等を挙げることができ る。好ましくは、ペプシンを挙げることができる。本発 明におけるペプシン・ファミリーの酸性プロテアーゼ阻 40 書剤とは、該酸性プロテアーゼに阻害活性を示す化合物 である。あるいは、以下の部分ペプチドを含有する化合 物であり、プロテアソーム阻害活性を有することが好ま しい。

①一般式(1)のC-末3アミノ酸残基アルデヒド 【0008】

【化9】

[式中、R1、R3 はそれぞれ独立に直鎖または分枝状の低級アルキル基を表し、R2 はアミノ基、水酸基、カルボキシル基、カルバモイル基で置換されていてもよい直鎖または分枝状の低級アルキル基を表す。] ②一般式(2)の3アミノ酸残基からなるペプチド

[化10]

[式中、R4、R6 はそれぞれ独立に疎水性の直鎖または分枝状の低級アルキル基を表し、R5 はアミノ基、水酸基、カルボキシル基、カルバモイル基あるいはメチルチオ基で置換されていてもよい直鎖または分枝状の低級アルキル基を表す。]

③一般式(3)のC-末3アミノ酸残基アルデヒド

【化11】

$$\begin{array}{c|c}
 & R_1 & R_2 & OH \\
 & R_1 & CNH & CHO \\
 & OH & OH & CHO
\end{array}$$

$$\begin{array}{c|c}
 & CNH & CHO \\
 & CNH & CHO
\end{array}$$

$$\begin{array}{c|c}
 & CNH & CHO
\end{array}$$

[式中、 R_1 、 R_2 、 R_3 はそれぞれ独立に前項と同じ意味を表す。]

④一般式(4)の3アミノ酸残基からなるペプチド

【化12】

[式中、R₄ 、R₅ 、R₆ はそれぞれ独立に前項と同じ意味を表す。]

本発明のR1、R3、R4、R6は、疎水性の直鎖また は分枝状の炭素数1~8の低級アルキル基を表し、例え ば、メチル基、エチル基、n-プロピル基、iso-プロ ピル基、1-メチルプロビル基、2-メチルプロビル 基、n-ブチル基、n-ペンチル基、n-ヘキシル基あ るいは2-メチルチオエチル基を挙げることができる。 好ましくはRı、Rs、R4、R6が、nープロピル 基、iso-プロピル基、1-メチルプロピル基、2-メ チルプロピル基あるいはカーブチル基を挙げることがで きる。本発明のR2、R5はアミノ基、水酸基、カルボ キシル基、カルバモイル基で置換されていてもよい直鎖 または分枝状の炭素数1~8の低級アルキル基を表し、 例えば、メチル基、n-プロピル基、iso-プロピル 基、1-メチルプロビル基、2-メチルプロビル基、n - ブチル基、2-カルバモイルエチル基、2-カルボキ シエチル基、4-アミノブチル基あるいは2-メチルチ オエチル基を挙げることができる。R2、R5として好 ましいものは、メチル基、2-カルバモイルエチル基、 4-アミノブチル基あるいは2-メチルチオエチル基を 挙げることができる。さらに詳しくは、ペプシン・ファ ミリーの酸性プロテアーゼ阻害剤として、例えばペプス タチンAおよびヒドロキシペプスタチン等を挙げること

条件としてはex=320nm、em=405nmで測定を行うことがで きる。これによりβセクレターゼのアミロイド前駆体切 断活性を測定することができる。

10

ができる。好ましくは、ペプスタチンAを挙げることが できる。疎水性アミノ酸3残基以上からなるペプタイド 性阻害剤とは、例えばLLL (MG-132) 、LLnV (MG-115) 等を挙げることができる。好ましくは、 LLL (MG-132) を挙げることができる。好ましくは、ペプスタチンA、 ヒドロキシペプスタチン等を挙げることができる。より 好ましくは、ペプスタチンAを挙げることができる。な お、上記で使用される阻害剤ペプチドの略号は以下の内 容を表すものである。

【0013】本発明の一般式(1)~(4)で表される β - セクレターゼ活性阻害剤は、それぞれのアミノ酸残 基に対応するものとして、天然のアミノ酸あるいは合成 アミノ酸を使用することができる。合成アミノ酸とし て、非天然型のアミノ酸は適宜公知の方法で得ることが でき、例えば、第4版実験化学講座22「有機合成Ⅰ V」(丸態)に準じて製造することができる。更には、 これらの文献、あるいは新生化学実験講座1「タンパク 質V」」(合成及び発現)(東京化学同人)に記載のペ

【0009】 [阻害剤略記]

プチド合成の方法に準じて製造することができる。 【0014】本発明のB-セクレターで活性阻害剤は、 酸性プロテアーゼ阻害剤を有効量含有する製剤であり、 以下のような導入方法、導入形態および導入量で使用さ れ得る。本発明のβ-セクレターゼ活性阻害剤は、経 口、非経口で患者に投与される。非経口投与としては、 静脈注射による投与、皮下注射、筋肉注射、局所注入、 腹腔内投与、坐薬としての投与などが行える。本発明の タンパク製剤は、上記の投与方法に依存して、種々の単 位投与形態で投与することができる。例えば静脈投与の ためには、本発明のタンパク質を、医薬として許容され 得る担体、好ましくは水性担体の中に溶解または懸濁さ せて用いることができる。水性担体としては、例えば、 水、緩衝化水、0. 4%の生理的食塩水などを使用する ことができる。このようにして作製された水溶液は、そ のまま包装するか、あるいは凍結乾燥することができ、 凍結乾燥した調製物は投与前に無菌の水溶液に溶解させ て使用することがある。以上の調製物は、医薬として許 容される補助剤、例えば、pll調節剤あるいは緩衝剤、張 度調節剤、浸潤剤などを、より具体的には、例えば酢酸 ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カ

DMQD: Ac-Asp-Met-Gln-Asp-H(aldehyde) LEHD: Ac-Leu-Glu-His-Asp-H(aldehyde)

> リウム、塩化カルシウム、ソルビタンモノラウレート、 トリエタノールアミンオレエートなどを含有することが できる。経口投与のためには、本発明のタンパク質を、 粉末、錠剤、ビル、カプセル剤及びシロップ剤の単位投 与形態にして用いることができる。皮下注射、筋肉注 射、局所注入、腹腔内投与のためには、本発明のタンパ ク質を水性または油担体の中に溶解または懸濁させて用 いることができる。あるいは、コラーゲン等の生体親和 性の材料を用いて、徐放性製剤として投与することもで きる。製剤中のタンパク質の含量は、治療目的の疾患、 患者の年齢、体重等により適宜調節することができる が、通常は0.001-100mg、好ましくは0.1-10mgであ る。

LL: Z-Leu-Leu-H (aldehyde)

LLL: Z-Leu-Leu-H(aldehyde)

LLnV: Z-Leu-Leu-Nva-H (aldehyde)

例えば家族性アルツハイマー病および弧発性アルツハイ マー病等を挙げることができる。 【0011】本発明の第3態様は、β-セクレターゼの 活性阻害剤に関するものである。本発明のβ-セクレタ

【0010】本発明の第2態様は、ペプシン・ファミリ

一の酸性プロテアーゼ阻害剤を有効成分とするβ-アミ

ロイド沈着性神経変性疾患治療剤に関するものである。

本発明の β -アミロイド沈着性神経変性疾患としては、

ーゼとは、BACE-1およびBACE-2の二つのサプタイプのこ とを表す (Science, 286 (5440), 735-741 (1999)、 Na ture 402, 533-537 (1999))。本発明のβ-セクレタ ーゼ活性阻害剤とは、上記BACE-1およびBACE-2の二つの サブタイプの酵素を阻害するものを表す。好ましいβー セクレターゼ活性阻害剤とは、サブタイプBACE-2をより 選択的に阻害するもの等が挙げられる。なお、本発明の β-セクレターゼ阻害剤とは、サブタイプBACE-2を阻害 していればそれでよく、サブタイプBACE-1を阻害しない ものを排除するものではない。

【0012】本発明の第4態様は、β-セクレターゼの 活性阻害剤のスクリーニング方法に関するものである。 本発明のスクリーニング方法において、タグ付加可溶性 BACE2とは、例えば、BACE2の膜貫通ドメイン以降の代わ りに6xHisタグやFcタグを有する融合タンパクを表す。 本発明のスクリーニング方法では、合成蛍光基質MOCAc-SEVNLDAEFRK (Dnp) RR-NH2溶液と精製タグ付加可溶性BACE 40 2溶液を混合し、次いで被験化合物の溶液を加えて保温 するが、その反応溶液、濃度、温度等に関しては適宜通 常の酵素反応実験における条件を選択することができ る。例えば、スクリーニングの反応液組成は0.2M NaOAc -HOAc buffer (pH4.6)、30 μ M 蛍光合成基質溶液、酵素液 **量最大40%(v/v)を選択することができ、反応温度は37℃** で14~18時間反応させることが望ましい。本発明におけ る反応の進捗については、培養液の蛍光測定により観測 することができ、適宜市販の蛍光測定器を使用すること ができる。例えば、フルオロスキャンIIを使用し、測定 50

[0015]

【実施例】以下、実施例により本発明を具体的に説明す るが、本発明はこれらの実施例により何ら限定されるも のではない。

【0016】実施例1

タグ付加可溶性BACE2の製造

1)発現プラスミドpMEBACE2の構築

ヒトBACE2 cDNA全長を含むプラスミドGenBank No. AI27 4802はNCBIより購入した。Sall及びNotl消化により切り出したcDNAインサート全長を、pUC19をベースとしてSRαプロモーター、EcoRI-Xhol-Notlリンカー及びSV40のpoly(A)付加配列を有する発現ベクターのXhol-Notl間に挿入した。得られたプラスミドをpMEBACE2と命名した。

2) 発現プラスミドpMEBACE2Kの構築

BACE2の発現効率を上昇させるために、BACE2にコザックのコンセンサス配列を導入した。まず、プライマー 5'-TCT GAA TTC CGC CAC CAT GGG CGC ACT GGC CCGGGC GC T-3'および5'-GCC CTT GGA GCG GTA TG-3'を用いてpMEBACE2を鋳型としてPCRを行って得た断片をEcoRIとBst XIで消化した後に電気泳動ゲルより約240bpのバンドを切り出し断片1とした。続いて、pMEBACE2をEcoRIおよびBstXIで消化して得たベクターを含む大断片2、およびpMEBACE2をBstXIで消化して得た約1kbの断片3を、いずれも電気泳動ゲルからの切り出しにより調製した。断片1、2及び3を結合することにより、BACE2の翻訳開始部位上流をコザックのコンセンサス配列に置換したpMEBAC E2Kを得た。PCRにより目的とする変異が導入されたこと、および目的外の変異が起きていないことをシークエンシングにより確認した。

3) 発現プラスミドpMEBACE2K_TMDの構築

合成オリコヌクレオチド5'-GTG GAT TGT GTC CTA TCA TCA TCA TCA CCA TCA CCA TTG AGT GC-3'及び5'-GGC CGC ACT CAA TGG TGA TGG TGA TGA TGA TAG GAC ACAATC CAC AAA-3'を、5'末端をリン酸化した後にアニーリングし、pMEBACE2KをPf1MIおよびNotIで消化して得た大断片と連結した。このようにして得たプラスミドは、 BACE2の膜質通ドメイン以降の代わりに6xHisタグを有する融合タンパクをコードする。本プラスミドをpMEBACE2K_TM Dと命名した。

4) <u>発現プラスミドpMEBACE2K_Fcの</u>構築

pBSK-hIgGFc-linker+はヒトIgGのFcドメイン(IgG-Fcのsequence: GENBANK ACCESSION、Y14735、756塩基目-1462塩基目)を含み、その5'側にEcoRI-HindIII-SphI-XhoIのマルチクローニングサイトを、3'側にNotI-SacIのサイトを有するプラスミドである。プライマー5'-CGCCAACTTCTTGGCCATGGTAGA-3'及び5'-TACGCTCGAGCATGGTAGA-3'及び5'-TACGCTCGAGCATGGTAGA-3'及び5'-TACGCTCGAGCATGGCATGGTAGA-3'及び5'-TACGCTCGAGCCATGGTAGA-3'を用いてpMEBACE2を鋳型としてPCRを行い得られた断片をEcoRI及びXhoIで消化して得た断片を、pBSK-hIgGFc-linker+のマルチクローニングサイト中のEcoRI-XhoI間に挿入した。PCRにより目的とする変異が導入されたこと、および目的外の変異が起きていないことをシークエンシングにより確認した。得られたプラスミドをPf1MI及びNotIで消化することにより約750bpの断片を得、pMEBACE2K 50

をPflMIおよびNotlで消化して得た大断片と連結した。 このようにして得たプラスミドはBACE2の膜貫通ドメイ ン以降の代わりにFcタグを有する融合タンパクをコード する。本プラスミドをpMEBACE2K_Fcと命名した。 5)タグ付加可溶性BACE2の発現および一段階精製 得られたタグ付加可溶性BACE2をコードするプラスミド をCOSI細胞に導入することにより一過性発現させた。CO S1細胞を150mmプレートに撒きこみ、50~70%コンフレ ントに達した時点でFuGene (ベーリンガーマンハイム) を用いてプラスミドを導入した。導入条件はFuGeneの取 扱説明書にしたがった。導入後1日目に無血清培地に交 換し、そのまま培養を継続した。7日目ないし8日目に培 養上清を回収し、3000回転、10分間遠心後、-20℃にて 凍結保存した。 6 x llisタグ付加品の一段階精製につい てはHisTrap(アマシャムファルマシア)を利用し、メ ーカーの取扱説明書の記載にしたがって、40mM、100mM 及び500mMイミダゾールにて溶出し、1m1づつフラクショ ネーションを行った。Fcタグ付加品一段階精製について はHiTrap Protein A (同)を利用し、メーカーの取扱説 明魯の記載にしたがって、0.2Mクエン酸-りん酸緩衝液 (pH3.6)により溶出し、1ml づつフラクショネーションを 行った。

【0017】実施例2

夕グ付加可溶性BACE2のアミロイド前駆体切断活性測定アミロイド前駆体として合成蛍光基質MOCAc-SEVNLDAEFR K (Dnp) RR-NH2を使用した。本合成蛍光基質はペプチド研究所より購入し、メーカーの取扱説明書の記載にしたがった。反応液組成は0.2M NaOAc-HOAc buffer (pH4.6)、30μM蛍光合成基質溶液、酵素液量最大40%(v/v)とした。37℃で14~18時間反応後、フルオロスキャンIIにてex=320nm、em=405nmで蛍光測定を行った。結果を以下に示す。

761日:				
[サンプル名]	[蛍光強度]			
6xHis精製品 フラクション2	121. 9			
フラクション5	46.7			
Pcタグ精製品 フラクション2	215.6			
フラクション3	143.1			
ネガティブコントロール	25. 7			
2回目:				
[サンプル名]	[蛍光強度]			
6xHi s精製品 フラクション2	112. 9			
フラクション5	44.48			
Mock導入培養上清の6xHis精製品				
フラクション2	42.71			
フラクション3	43.07			
Fcタグ精製品 フラクション2	77. 38			
フラクション3	26.07			
Mock導入培養上清のFc精製品				
フラクション2	21.44			
フラクション3	20.17			
ネガティブコントロール	26. 66			

【0018】 実施例3

16E .

タグ付加可溶性BACE2に対するペプスタチンAのβセクレターゼ阻害作用

実施例2と同様の反応系にてペプスタチンAの阻害作用 を検討した。50μM及び5μM ペプスタチンAは1mMメタノ ール溶液を調製し、5%及び0.5%(v/v)にて反応液に添加 した。比較のため5%及び0.5%メタノールのみの阻害効果 も検討した。反応は3連で行った。 ペプスタチンAは50 μMで明らかな阻害活性を、5μMでも約30%の阻害活性を 示した。結果を図1に示す。P10-P4'statVも1μMで明 らかなBACE2阻害活性を示したが、これはSinhaら (Sinh a, S. et al., Nature, 402, 537-540(1999)) がBACE1 をIC50=約30nMで阻害することを報告している基質アナ ログである。同文献ではペプスタチンはBACE1を阻害し ないことが報告されている。以上の結果から、ペプスタ チンAはBACE1を阻害せず、選択的にBACE2を阻害するこ とが示された。また、公知のβセクレターゼの阻害剤で あるP10-P4'statVはBACE 2 を阻害するものの、より選択 的にBACE 1 を阻害するものであることが示された。

【0019】 実施例4

タグ付加可溶性BACE2に対する種々の酵素阻害剤の β セクレターゼ活性阻害作用

実施例3と同様の反応系にて種々の酵素阻害剤の阻害作用を検討した。各種酵素阻害剤の50μM及び5μMについては1mM 溶液をDMSOにて調製した。ただし、Pepstatinはメタノールにて、PhosphoramidoneはdHz0にて1mM溶液を調製した。各々、5%及び0.5%(v/v)にて反応液に添加した。0.5μMについては1mM溶液をdHz0にて1/10希釈し、0.5%(v/v)にて反応液に添加した。LLLa1 (MG-132)、LLnVa1 (MG-115) についてはペプスタチンAと同等以上の阻害効果を認めた。なお、BACE1に対して同様の検討を行った結果、これらの阻害剤はいずれもBACE1に対して阻害効果を示さなかった。結果を図2に示す。

【0020】実施例5

タグ付加可溶性BACE2に対する他の酸性プロテアーゼ阻 <u>密剤のβセクレターゼ活性阻害作用とその再現性(LLL</u> (MG-132)、LLnV (MG-115)、HIV protease inhibitor の阻害効果)

実施例4と同様にしてLLL、LLnV及び酸性プロテアーゼ阻害剤であるHIV protease inhibitorのBACE2阻害効果を検討した。HIV protease inhibitorはDMSOにて1mM溶液とした。反応は3連で行った。その結果、以下に示すように、HIV protease inhibitorは阻害作用を示さなかったが、LLL、LLnVについては阻害効果の再現性を確認した。結果を図3に示す。以上の結果より、ペプスタチンA、LLL及びLLnVがBACE2活性を阻害することが明らかとなった。

[0021]

【発明の効果】本発明により、ペプシン・ファミリーの酸性プロテアーゼ阻害剤を有効成分とする β -セレクターゼ活性阻害剤が提供される。特に、本発明の β -セレクターゼ活性阻害剤はBACE-2の活性阻害剤として有効であり、優れた β -アミロイド沈着性神経変性疾患治療剤として有用である。

【図面の簡単な説明】

【図1】実施例3における可溶化BACE2のアミロイド前 駆体合成蛍光基質切断に対する阻害剤の効果を示すグラ フである。

【図2】実施例4におけるタグ付加可溶性BACE-2に対する種々の酵素阻害剤の β セクレターゼ活性阻害作用を示すグラフである。

【図3】実施例5におけるLLL、LLnV及び酸性プロテアーゼ阻害剤であるHIV protease inhibitorのBACE2阻害効果を示すグラフである。

[図2]

[図3]

フロントページの続き

(51) Int.Cl. ⁷			識別記号
C 1 2	N	15/09	ZNA
G 0 1	N	33/15	
		33/50	
		33/53	
// C07	'Κ	5/027	

FI

G 0 1 N 33/50

33/53

C 0 7 K 5/027 A 6 1 K 37/64

C 1 2 N 15/00

テーマコード(参考) Z

D

ZNAA

Fターム(参考) 2G045 AA35 BB10 BB41 BB46 BB48 BB51 DA77 FB01 FB02 GC15

4B024 AAO1 BA80 CAO1 GA11

4C084 AAO1 AAO2 AAO7 AA17 BAO1

BAO8 BAIO BAI4 BAI5 BA31

DC38 MAO1 NA14 ZA162

ZC202

4H045 AA10 BA12 BA13 CA11 DA55

EA20 EA28 FA74