复旦大学数学科学学院 2007~2008 学年第二学期期末考试试卷

A卷

课程名称: 高等数学_A_(下)						课程代码: <i>MATH</i> 120002					
开课院系:数学科学学院					考试	考试形式:					
姓 名: 学 号:					专业:						
题号	1	2 ,	3	4	5	6	7	8	总	分	
得分			2-3-								

- 1. (本题共四小题,每小题5分,共20分)
- (2) 求曲面 $e^z + z + xy = 3$ 在点(2, 1, 0)处的切平面方程;
- (3) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+4} (x-2)^n$ 的收敛半径和收敛域;
- (4) 求解微分方程 $(e^{x+y} e^x)dx + (e^{x+y} + e^y)dy = 0$ 。

- 2. (本题共四小题,每小题 5 分,共 20 分)
- (1) 计算二重积分 $\iint_D e^{x^2+y^2} dx dy$, 其中 D 为圆盘 $x^2+y^2 \le 4$;

(2) 设L是连接O(0,0,0)和P(2,1,2)的直线段, 计算积分 $\int_{L} (x+y+z)^2 ds$;

(3) 把积分 $\int_{0}^{1} dy \int_{y}^{\sqrt{2y-y^{2}}} f(x,y) dx$ 表示为先对 y 再对 x 的二次积分;

(4) 计算曲面积分 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$ 其中 Σ 是区域 $\{(x,y,z) | x^2 + y^2 \le 1, 1 \le z \le 2\}$ 边界曲面的外侧。

3. (本题 10 分) 在椭球面 $2x^2+2y^2+z^2=1$ 上求一点,使得函数 $u=x^2+y^2+z^2$ 在该点 处沿 l=(1,-1,0) 方向的方向导数最大。

4./(本题 10分) 计算三重积分

$$\iiint_{\Omega} \frac{z}{\sqrt{x^2 + y^2}} dx dy dz$$

$$\sharp \Phi \Omega = \left\{ (x, y, z) \mid x^2 + y^2 + z^2 \le 1, z \ge 2\sqrt{x^2 + y^2} - 1 \right\}$$

5. (本题 10 分)将 $f(x) = \ln(2+x-3x^2)$ 展开为 Maclaurin 级数,写出其收敛域,并求出 $f^{(4)}(0)$ 。

6. (本题 10 分)设
$$f(x) = \begin{cases} \pi, & \sqrt{\pi} < x < \pi \\ -\pi, & 0 \le x \le \sqrt{\pi} \end{cases}$$
, 将 $f(x)$ 展开为以 2π 为周期的余弦级数,

求其和函数在
$$x = \frac{\pi}{2}$$
 处的值,并分别求级数 $\sum_{n=1}^{\infty} \frac{\sin(n\sqrt{\pi})}{n}$ 与 $\sum_{n=1}^{\infty} \frac{\sin(2n\sqrt{\pi})}{n}$ 的和。

7. 本题
$$10$$
 分)设 Σ 为曲面 $\{(x,y,z) | y^2 = x^2 + z^2, x^2 + y^2 \le 1, x \ge 0, y \ge 0, z \ge 0 \}$, 计算 (1) $\iint_{\Sigma} z^2 dS$;

$$(2)$$
 $\iint_{\Sigma} z \, dy dz$, 其中 Σ 取上侧。

8. (本题 10 分) 设 φ 是二阶可导函数, φ (1) = -1, φ '(1) = -4 且存在二元函数u=u(x,y) 使 $du=4[\varphi(x)+2x^3]y\,dx+[3x\varphi(x)-x^2\varphi'(x)]dy$

求 $\varphi(x)$ 和 u(x,y)。