Python

Introduction

Edgar Rios Linares

Features

Powerful

Easy to learn

Efficient high-level data structures

Object-oriented programming

Elegant syntax

Interpreted nature

Extensive collection of free libraries

Rapid application development

Most platforms.

Business with Python

Google

Facebook

Instagram

Spotify

Quora

Netflix

Dropbox

Reddit

Platfforms

https://www.zepl.com/product/

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html

https://observablehq.com

https://deepnote.com

https://www.ibm.com/cloud/watson-studio

https://codeocean.com

https://www.kaggle.com/code

https://visualstudio.microsoft.com/es/

https://cloud.google.com/datalab/docs/how-to/working-with-notebooks/

https://mybinder.org

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html

https://colab.research.google.com

https://gradient.paperspace.com

https://databricks.com/product/collaborative-notebooks

Learning

Kaggle Learn Courses

Cloud certification programs (AWS, Azure, GCP)

Fast.ai

Datacamp

Udacity

LinkedIn

edX

Coursera

University Courses

Udemy

IDE

PyScripter

PyCharm

Spyder

Pydev

Idle

Wing

Sublime Text

Visual Studio Code

Anaconda

Python vs Jupyter Notebook

Python is contained in a .pyt file it only contains code to be executed.

Jupyter Notebook is an open source web application that you can use to create and share documents containing live code, equations, visualizations, and text.

Python vs Jupyter Notebook

```
test.py ×
              my_file = open("C:/Documents/Python/binaryf.dll", "wb+")
              message = "Hello Python"
              file encode = message.encode("ASCII")
              my_file.write(file_encode)
                                                                                                                                                   Jupyter Lorenz Differential Equations (autosaved)
              my_file.seek(0)
                                                                                                                                                                                                                      Python 3 O
              bdata = my_file.read()
                                                                                                                                                                   ↑ ↓ ► ■ C Code 

Cell Toolbar: None 

              print("Binary Data:", bdata)
                                                                                                                                                             Exploring the Lorenz System
                                                                                                                  Jupyter Welcome to P
              ntext = bdata.decode("ASCII")
                                                                                                                                                             In this Notebook we explore the Lorenz system of differential equations:
                                                                                                                                                                                       \dot{x} = \sigma(y - x)
              print("Normal data:", ntext)
                                                                                                                                                                                       \dot{y} = \rho x - y - xz
                                                                                                                                                                                       \dot{z} = -\beta z + xy
                                                                                                                                                              This is one of the classic systems in non-linear differential equations. It exhibits a range of
                                                                                                                             jupyter
                                                                                                                                                              complex behaviors as the parameters (\sigma, \beta, \rho) are varied, including what are known as chaotic
                                                                                                                                                              solutions. The system was originally developed as a simplified mathematical model for
                                                                                                                              Welcome to the
                                                                                                                                                      In [7]: interact(Lorenz, N=fixed(10), angle=(0.,360.),
                                                                                                                                                                     \sigma = (0.0, 50.0), \beta = (0., 5), \rho = (0.0, 50.0))
                                                                                                                              This Notebook Server wa
                                                                                                                                WARNING
                                                                                                                                Don't rely on this sen
                                                                                                                              Your server is hosted than
                                                                                                                              Run some Python
                                                                                                                              To run the code below:
                                                                                                                               1. Click on the cell to se
                                                                                                                              Press SHIFT+ENTER
                                                                                                                              A full tutorial for using the
                                                                                                                      In [ ]: {matplotlib inline
                                                                                                                              import pandas as pd
                                                                                                                              import numpy as np
                                                                                                                              import matplotlib
```


Create aacount in Colab

Go https://colab.research.google.com/ Use Gmail account

Creación de cuenta en Colab

New notebook

Entorno

Name of notebook

- + Texto (text) -> Allows you to create a text cell
- + Código (code) -> Allows you to create a code cell

Variables

Create a code cell and create variables a and b, assign them a numeric value and add both variables assigning the result to variable c, use the **print()** function to display the result

```
Ejercicio1.ipynb Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se guardaron todos los cambios

+ Código + Texto

Funciones básicas de Python

Variables

a = 3
b = 2
c = a + b
print[[c]]

5
```


Libraries

Create a code cell, import the numpy library, create two arrays b and c and multiply them and display the result.

```
[5] import numpy as np
    a = np.arange(15) #Return evenly spaced values within a given interval
    print(a)
                      6 7 8 9 10 11 12 13 14]
[7] c = a.argmax()
    print(c)
    14
b = np.array([3, 4, 5])
    c = np.array([2, 2, 2])
    print(b*c)
    [6 8 10]
```


Load the wine.csv file into your Colab environment.

Import the pandas library using the alias pd, and using the read_csv method, read the wine.csv file

Display the first 5 records of the dataset and the last 5. Use the head() and tail() methods

Use the info() method to display the number of records, number of variables, and data type of each variable

Use the describe() method to display the statistical description of each variable (column)

		_								↑ ↓	co 🗏 🌣	
lataset	.describe()										
	V1	V2	V3	V4	V5	V6	v 7	v8	V9	V10	V 11	V12
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000

Use the hist() method to display the distribution of each variable.

Resources

- https://www.python.org/doc/
- https://realpython.com/world-class-companies-using-python/
- https://www.anaconda.com
- https://jupyter.org
- https://numpy.org
- https://pandas.pydata.org

¿Was it helpful to you??

i Save it!

¡Share it!

¡Follow me for more!

Edgar Rios Linares

- Tinkedin —> https://www.linkedin.com/in/erlinares/
- Follow us on X: https://x.com/erlinares
- GitHub: https://github.com/erlinares/365_AI_Journey/
- Discord: https://discord.gg/5fFM2zh8