Trigonometry & Analysis

James Lamberg

if
$$y = \log_a x$$
 then $x = a^y \left[\log_a (M \ N) = \log_a M + \log_a N \right] \left[\log_a (a^x) = x \right]$

$$\frac{\cos^2 x + \sin^2 x = 1}{\tan(2\theta)} \left[\log_a \frac{M}{N} = \log_a M - \log_a N \right] \left[\log_a (M^p) = P \log_a M \right]$$

$$\frac{\log_a (M^p) = P \log_a M}{\sin(2\alpha) = 2\sin(\alpha) \cos(\alpha)} \left[\frac{x^{\log_b x} = b}{x^{\log_b x} = b} \right]$$

$$S_x = \left[x - (a + bi) \right] \left[x - (a - bi) \right] = x^2 - 2ax + \left(a^2 + b^2 \right)$$

$$\log_a x = \frac{\ln x}{\ln a} \left[\frac{M}{N} = \sqrt[n]{a} \right]$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \left[\tan\frac{\theta}{2} = \frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta} \right] \left[\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}} \right]$$

$$\cos(2\alpha) = 2\cos^2\alpha - 1$$

$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

$$\cos\alpha - \cos\beta = 2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

$$\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta \qquad ax^2 + bx + c = 0$$

$$-b \pm \sqrt{b^2 - 4ac}$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta \qquad \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\cos \frac{1}{2} + x = -\sin x$$

$$\cos \frac{1}{2} - x = \sin x$$

$$\cos \left(\frac{1}{2} + x\right) = -\cos x$$

$$\cos \left(\frac{1}{2} + x\right) = -\cos x$$

$$\tan \left(\frac{1}{2} + x\right) = \cot x$$

$$\tan \left(\frac{1}{2} + x\right) = -\cot x$$

$$\cos \frac{\pi}{2} + x = -\sin x
\cos \frac{\pi}{2} - x = \sin x
\cos \left(\frac{\pi}{2} + x\right) = -\cos x
\cos \left(\frac{\pi}{2} + x\right) = -\cos x
\cos \frac{3\pi}{2} + x = \sin x
\cos \frac{3\pi}{2} - x = -\sin x
\tan \frac{3\pi}{2} - x = \cot x
\tan \frac{3\pi}{$$

$$\sin \frac{1}{2} \pm x = \cos x$$

$$\sin \left(+ x \right) = -\sin x$$

$$\sin \left(-x \right) = \sin x$$

$$\sin \frac{3}{2} \pm x = -\cos x$$

→ precedes

such that

≻ follows

therefore ∵ since ¬ not and or

subset superset proper subset propor superset

Q.E.D: Quod Erat Demonstandum "that which was to be proved"

$$\frac{1}{\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}}$$

$$Mid = \frac{x_2 - x_1}{2}, \frac{y_2 - y_1}{2}$$

$$Dist = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$A = \frac{1}{2}r^2\theta, \text{ sector area}$$

double implication

or negation (or
$$\neg$$
)

or every
element of
there exists

double implication

or negation (or \neg)

integrate

integrate

 $|a|_{x=a}$ evaluate with $|a|_{x=a}$

$$\Big|_{x=a}$$
 evaluate with $x = a$ proportional to

C (fancy) compliment

implies

Trigonometry & Analysis

James Lamberg

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

Peri od = $\frac{2}{}$

Frequency =
$$\frac{1}{\text{peri od}} = \frac{\omega}{2}$$

Phase Shift =
$$\frac{\beta}{\omega}$$
 $K = \frac{1}{2}bc \sin \alpha$

Critical Points =
$$\frac{\text{period}}{4}$$

$$y = A \sin(\omega x - \beta) + K, \quad \omega > 0$$

Amplitude =
$$|A| = \frac{M - m}{2}$$

$$0, 0^{\circ} = \begin{pmatrix} 1, 0 \end{pmatrix}$$

$$\left| \frac{1}{6}, 30^{\circ} \right| = \frac{\sqrt{3}}{2}, \frac{1}{2}$$

$$\frac{1}{3}$$
, $60^{\circ} = \frac{1}{2}$, $\frac{\sqrt{3}}{2}$

$$\boxed{\frac{2}{2}, 90^{\circ} = (0, 1)}$$

$$\frac{1}{3}, 60^{\circ} = \frac{1}{2}, \frac{\sqrt{3}}{2} \left[\frac{1}{2}, 90^{\circ} = (0, 1) \right] \frac{2}{3}, 120^{\circ} = -\frac{1}{2}, \frac{\sqrt{3}}{2} \left[\frac{3}{4}, 135^{\circ} = -\frac{\sqrt{2}}{2}, \frac{1}{2} \right] \frac{1}{2}$$

$$\left| \frac{3}{4} , 135^{\circ} \right| = -\frac{\sqrt{2}}{2} , \frac{\sqrt{2}}{2}$$

$$\frac{5}{6}$$
, $150^{\circ} = -\frac{\sqrt{3}}{2}$, $\frac{1}{2}$

$$\left| \frac{5}{6}, 150^{\circ} \right| = -\frac{\sqrt{3}}{2}, \frac{1}{2} \left[, 180^{\circ} = \left(-1, 0 \right) \right] \left| \frac{7}{6}, 210^{\circ} = -\frac{\sqrt{3}}{2}, -\frac{1}{2} \right|$$

$$\boxed{\frac{5}{4} \; , \; 2 \; 2 \; \mathring{5} \; = \; -\frac{\sqrt{2}}{2} \; , \; -\frac{\sqrt{2}}{2}} \quad \boxed{\frac{4}{3} \; , \; 2 \; 4 \; \mathring{0} \; = \; -\frac{1}{2} \; , \; -\frac{\sqrt{3}}{2}} \quad \boxed{\frac{5}{3} \; , \; 3 \; 0 \; \mathring{0} \; = \; \frac{1}{2} \; , \; -\frac{\sqrt{3}}{2}}$$

$$\left| \frac{4}{3}, 240 \right| = -\frac{1}{2}, -\frac{\sqrt{3}}{2} \right|$$

$$\left| \frac{5}{3} \right|$$
, $300 = \frac{1}{2}$, $-\frac{\sqrt{3}}{2}$

$$\boxed{\frac{3}{4} , 270 = \begin{pmatrix} 0 & -1 \end{pmatrix}}$$

$$\frac{3}{4}, 270^{\circ} = (0, -1)$$

$$\frac{11}{6}, 330^{\circ} = \frac{\sqrt{3}}{2}, -\frac{1}{2}$$

Calculus

James Lamberg

$$| \ln(x) = \frac{1}{t} \frac{1}{t} dt, x > 0 | \ln(x) = 0 | \ln(a b) = \ln(a) + \ln(b) | \ln(e) = \frac{1}{t} dt = 1 | \ln(a) = n \ln(a) | \ln(e^x) = x | \ln(a) - \ln(b) | \ln(e) = \frac{1}{t} dt = 1 | \ln(a) = n \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{e^b}{dx} = e^{ax - b} | \frac{1}{dx} \ln(a) = \frac{du}{dx} \ln|a| = \frac{du}{u} | \ln(x) dx = C - \ln|\cos(x)| = 1 \pi|\cos(x)| + C | e^a - e^b = e^{ax - b} | \frac{e^b}{dx} = e^{ax - b} | \frac{1}{u} du = \ln(u) + C | e^a - e^b = e^{ax - b} | \frac{e^b}{dx} = e^{ax - b} | \frac{1}{u} du = \ln(u) + C | e^a - e^b = e^{ax - b} | \frac{e^b}{dx} = e^{ax - b} | \frac{1}{u} du = \ln(u) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - e^b = e^{ax - b} | \frac{1}{u} dx = 1 | \ln(a) - \ln(a) + C | e^a - \ln(a$$

Page 2

Calculus

James Lamberg

$$arcsin h(x) = ln(x + \sqrt{x^2 + 1}), D: (-,)$$

$$\operatorname{arccos} h(x) = \ln(x + \sqrt{x^2 - 1}), D: (1,)$$

$$\arctan h(x) = \frac{1}{2} \ln \frac{1+x}{1-X}, D: (-1,1)$$

$$arc \coth(x) = \frac{1}{2} \ln \frac{x+1}{x-1}, D: (-,-1)$$
 (1,)

$$arc \sec h(x) = \ln \frac{1 + \sqrt{1 - x^2}}{x}, D: (0, 1]$$

$$arc \sec h(x) = \ln \frac{1 + \sqrt{1 - x^{2}}}{x}, D: (0, 1]$$

$$arc \csc h(x) = \ln \frac{1}{x} + \frac{\sqrt{1 + x^{2}}}{|x|}, D: (-0, 0) \quad (0, 0)$$

$$\frac{d}{dx} \operatorname{arc sech}(u) = \frac{-du}{\sqrt{1 - x^{2}}} \quad \frac{d}{dx} \operatorname{ar$$

$$\frac{d}{dx}\arccos h(u) = \frac{du}{\sqrt{u^2 - 1}}$$

$$\frac{d}{dx}\arctan h(u) = \frac{d}{dx}\operatorname{arc}\coth(u) = \frac{du}{1-u^2}$$

$$\frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \frac{a + u}{a - u} + C$$

$$u dv = uv - v du$$

$$\frac{d}{dx}\arcsin h(u) = \frac{du}{\sqrt{u^2 + 1}}$$

$$\frac{du}{u\sqrt{a^2 \pm u^2}} = C - \frac{1}{a} \ln \frac{a + \sqrt{a^2 \pm u^2}}{|u|}$$

of revoluition,
$$\int_{a}^{b} f(x)^{2} dx$$

$$\frac{d}{dx} \operatorname{arc} \operatorname{sech}(u) = \frac{-du}{u\sqrt{1 - u^2}} \qquad \frac{d}{dx} \operatorname{arc} \operatorname{csc} h(u) = \frac{-du}{|u|\sqrt{1 + u^2}} \qquad \text{of revolution,} \qquad \int_{a}^{b} f(x)^2 dx$$

$$\frac{du}{\sqrt{u^2 \pm a^2}} = \ln\left(u + \sqrt{u^2 \pm a^2}\right) + C$$
Washer:
$$f(x)^2 - g(x)^2 dx, f(x) \qquad g(x)$$
Shell: Line || to axis
$$\operatorname{Arc} \operatorname{Length} : s = \int_{a}^{b} \sqrt{1 + f'(x)^2} dx \qquad W = F(x) dx$$

$$\operatorname{Arc} \operatorname{Length} : s = \int_{a}^{b} \sqrt{1 + f'(x)^2} dx \qquad W = F(x) dx$$

$$\int_{a} f(x) - g(x) dx$$

$$S = 2 \int_{a}^{b} r(x)\sqrt{1 + f(x)^2} dx$$

Shell: Line || to axis of revolution,
$$2 - r(x)h(x)dx$$
, $r = radius$, he height || Arc Length: $s = \sqrt{1 + f'(x)^2} dx$ || $W = F(x)dx$ || W

= radius, h= height
$$|F = k \quad \frac{q_1 \quad q_2}{d^2}$$

Gas Pressure:
$$F = \frac{k}{v}$$
,

Force needed to strech a spring d distance from

Hooke's Law: F = k d Law of Universal Gravitation:

$$F = k = \frac{m_1 m_2}{d^2}$$
, m₁ and m₂ are masses $x = \frac{m_1 m_2}{d^2}$, $x = \frac{m_1 m_2}{d^2}$, $x = \frac{m_1 m_2}{d^2}$

Force of Gravity: $F = \frac{c}{r^2}$,

Weight = Volume Density δ (Cross Section Area Distance)dy = Workits natural length Fluid Force F = Pressure Area

$$F = \delta$$
 Depth Area

Work = Force Distance over which the force is applied

Fluid Pressure P = Weight Density h, Force Exerted by a Fluid : Center of Mass(\bar{x}, \bar{y}): h = depth below surface

Force = Mass Acceleration

Moment = m x

Moments & Center of Mass of

a Planar Lamina:

$$M_{x} = \rho^{b} \frac{f(x) + g(x)}{2} (f(x) - g(x)) dx$$

$$M_{y} = \rho^{b} x (f(x) - g(x)) dx$$

$$M_{y} = \rho^{b} x (f(x) - g(x)) dx$$

$$M_{y} = \rho^{b} x (f(x) - g(x)) dx$$

$$A = \text{Area of Region R}$$

$$\sin^{2k+1}(x) \cos^{n}(x) dx = (1 - \cos^{2}(x))^{k} \cos^{n}(x) \sin(x) dx$$

$$\sin^{m}(x) \cos^{2k+1}(x) dx = \sin^{m}(x) (1 - \sin^{2}(x))^{k} \cos(x) dx$$

Force Exerted by a Fluid
$$F = w \left(h(y) \ l(y) \right) dy$$

$$F = w \int_{a}^{b} (h(y) l(y)) dy$$

$$F = w \left(h(y) \ l(y) \right) dy$$
Theorem of Pappus:
$$\bar{x} = \frac{M_y}{m}, \bar{y} = \frac{M_x}{m}$$

Theorem of Pappus:

$$V=2$$
 r A ,

A = Area of Region R

$$\sin^{2k+1}(x)\cos^{n}(x)dx = (1-\cos^{2}(x))^{k}\cos^{n}(x)\sin(x)dx$$

$$\sin^{m}(x)\cos^{2x+1}(x)dx = \sin^{m}(x)(1-\sin^{2}(x))^{k}\cos(x)dx$$

Calculus

James Lamberg

$$\int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx = \frac{2}{3} + \frac{4}{5} + \frac{6}{7} + \dots + \frac{n-1}{n}, \text{ n is odd, } n + 3 = \int_{0}^{\frac{\pi}{2}} \cos^{n}(x) dx = \frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{n-1}{n} + \frac{\pi}{2}, \text{ n is even, } n + 2 = \frac{\pi}{2}$$

$$\sec^{2k}(x)\tan^{n}(x)dx = (\sec^{2}(x))^{k-1}\tan^{n}(x)\sec^{2}(x)dx$$

$$\sec^{m}(x)\tan^{2k+1}(x)dx = \sec^{m-1}\tan^{2k}(x)\sec(x)\tan(x)dx$$

$$tan^{n}(x)dx = tan^{n-2}(x)tan^{2}(x)dx$$
For Integrals Invloving $\sqrt{a^{2} + u^{2}}$,
$$u = atan(\theta), \sqrt{a^{2} + u^{2}} = asec(\theta)$$
For Integrals Invloving $\sqrt{u^{2} - a^{2}}$,
$$u = atan(\theta), \sqrt{a^{2} + u^{2}} = asec(\theta), \sqrt{u^{2} - a^{2}} = atan(\theta)$$

$$u = a\sin(\theta), \sqrt{a^2 - u^2} = a\cos(\theta)$$

$$\sqrt{a^2 - u^2} du = \frac{1}{2} a^2 \arcsin \frac{u}{a} + u\sqrt{a^2 - u^2} + C, a > 0$$

$$\sqrt{a^{2} - u^{2}} du = \frac{1}{2} a^{2} \arcsin \frac{u}{a} + u\sqrt{a^{2} - u^{2}} + C, a > 0$$

$$\sqrt{u^{2} - a^{2}} du = \frac{1}{2} \left(u\sqrt{u^{2} - a^{2}} - a^{2} \ln \left| u + \sqrt{u^{2} - a^{2}} \right| \right) + C, u > a > 0$$
Indeterminate form, L'H

$$\sqrt{u^2 + a^2} du = \frac{1}{2} \left(u \sqrt{u^2 + a^2} + a^2 \ln \left| u + \sqrt{u^2 + a^2} \right| \right) + C, a > 0$$

$$\int_{a}^{b} f(x)dx = \lim_{a \to a}^{b} f(x)dx$$

$$f(x)dx = \lim_{b} f(x)dx$$

Indeterminate form, L'Hôpital's Rule

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

$$f(x)dx = \lim_{a \to a} f(x)dx + \lim_{b \to a} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \lim_{c \to a}^{c} f(x)dx$$
 Discontinuity at c in (a, b)

$$\lim (C \ a_n) = C \ L$$

$$f(x)dx = \lim_{a \to a} f(x)dx + \lim_{b \to c} f(x)dx$$
Discontinuity at b on [a, b)
$$f(x)dx = \lim_{a \to a} f(x)dx + \lim_{b \to c} f(x)dx$$
Discontinuity at b on [a, b)
$$f(x)dx = \lim_{a \to a} f(x)dx$$
Discontinuity at c in (a, b)
$$f(x)dx = \lim_{a \to a} f(x)dx$$
Discontinuity at a on (a, b)
$$f(x)dx = \lim_{a \to a} f(x)dx$$

$$f(x)dx = \lim_{a \to a} f(x)dx$$

$$\frac{|a|}{\lim_{n} (C \ a_n) = C \ L} \qquad |b| f(x)dx = \lim_{c \ b^{-}} f(x)dx + \lim_{c \ a^{+}} f(x)dx$$

nth - term test
$$a_n$$
, Diverges if $\lim_{n \to \infty} a_n = 0$ $\lim_{n \to \infty} \left(a_n \cdot b_n\right) = L \cdot K$

Discontinuity at a on (a, b)

$$\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx$$

$$\overline{\lim_{n} \left(a_n \pm b_n \right) = L \pm K}$$

$$\lim_{n} \frac{a_n}{b_n} = \frac{L}{K}, b_n = 0, k = 0$$

 ar^n , Converges if |r| < 1, Diverges if |r| = 1Geometric

Sum is $S_n = \frac{a}{1-r}$, if it converges

p-series, $\frac{1}{n^p}$, Converges if p > 1 Diverges if p = 1

Telescoping, $(b_n - b_{n+1})$, Converges if $\lim_{n} b_n = L$

Sum is $S_n = b_1 - L$

Absolute Convergence, $|a_n|$ Converges

Conditional Convergence, a_n Converges,

but $|a_n|$ Diverges

Alternating, $(-1)^{n-1}a_n$, Converges if $0 < a_{n+1} \quad a_n$, $\lim_n a_n = 0$

Remainder $R_n = a_{n+1}$

Root,
$$a_n$$
, Converges if $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$, Diverges if $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$
Fails if $\lim_{n \to \infty} 1$

Definition of Taylor Series

$$\int_{0}^{\infty} \frac{f^{n}(c)}{n!} (x-c)^{n}$$

if $\lim_{n} |a_n| = 0$, then $\lim_{n} a_n = 0$

Power Series,
$$f(x) = a_n (x - c)^n$$

Radius is x about c : $c \pm x$

Calculus

James Lamberg

Integral (Constant, Positive, Decreasing),

$$a_n, a_n = f(n)$$
 0, Converges if $f(n)dn$ Converges

Diverges if
$$f(n)dn$$
 Diverges, Remainder $0 < R_n < f(n)dn$

$$f(x)dx = C + \frac{a_n(x-c)^{n+1}}{n+1}$$
Fails if $\lim_{n \to \infty} |a_n| = 1$

Fails if $\lim_{n \to \infty} |a_n| = 1$

Fails if $\lim_{n \to \infty} |a_n| = 1$

Fails if **lim** = 1

Power Series,
$$f(x) = a_n (x - c)^n$$

 $f'(x) = n \ a_n (x - c)^{n-1}$
 $f(x)dx = C + \frac{a_n (x - c)^{n+1}}{n+1}$

$$e^{x} = 1 + x + ... + \frac{x^{n}}{n!} + ...$$
Converges (- ,)

Direct
$$(b_n > 0)$$
, a_n ,

Diverges if 0 b_n a_n , b_n Diverges

Limit
$$(b_n > 0)$$
, a_n ,

Converges if 0 a_n b_n , b_n Converges, $\left| \text{Converges if } \lim_{n} \frac{a_n}{b_n} = L > 0, \quad b_n$ Converges,

Diverges if, $\lim_{n} \frac{a_n}{b} = L > 0$, b_n Diverges

$$f(x) = P_n(x) + R_n, R_n(x) = (f(x) - P_n(x))$$

$$P_{n}(x) = f(c) + \frac{f'(c)(x-c)}{1} + \frac{f'(c)(x-c)^{2}}{2!} + \frac{f^{n}(c)(x-c)^{n}}{n!} + R_{n}(x) \begin{vmatrix} d\theta \\ \frac{dy}{d\theta} = \cos\theta & f(\theta) + f'(\theta)\sin\theta \end{vmatrix}$$

 $R_n(x) = \frac{f^{n+1}(z)(x-c)^{n+1}}{(x-1)!}$, z is between x and c

$$\frac{dx}{d\theta} = \cos\theta \ f'(\theta) - f(\theta)\sin\theta$$

$$\frac{dy}{d\theta} = \cos\theta \ f(\theta) + f'(\theta)\sin\theta$$

$$\frac{dy}{dx} = \frac{\cos\theta \ f(\theta) + f'(\theta)\sin\theta}{\cos\theta \ f'(\theta) - f(\theta)\sin\theta}$$

If f has n derivatives at x = c, then the polynomial

$$P_n(x) = f(c) + \frac{f'(c)(x-c)}{1} + \frac{f'(c)(x-c)^2}{2!} + \frac{f^n(c)(x-c)^n}{n!} + \dots$$

$$r(t) = (v_0 \cos \theta)ti + h + (v_0 \sin \theta)t - \frac{1}{2}gt^2$$
 j

This is the *n* - th Taylor polynomial for *f* at *c*

If c = 0, then the polynomial is called Maclaurin

$$\frac{1}{x} = 1 - (x - 1) + ... + (-1)^n (x - 1)^n + ... \text{Converges } (0, 2)$$

Position Function for a Projectile

$$r(t) = (v_0 \cos\theta)ti + h + (v_0 \sin\theta)t - \frac{1}{2}gt^2$$

g = gravitational constant

h = initial height

 $|\mathbf{v}_0|$ = initial velocity

 θ = angle of elevation

$$\frac{1}{1+x} = 1-x + ... + (-1)^n x^n + ... \text{Converges } (-1,1)$$

$$\frac{1}{1+x} = 1 - x + \dots + (-1)^n x^n + \dots \text{Converges } (-1,1)$$

$$\arcsin x = x + \frac{x^3}{2 \cdot 3} + \dots + \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)} + \dots \text{Converges } [-1,1]$$

$$\sin x = x - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots \text{Converges } (-,)$$

$$x = r \cos \theta, y = r \sin \theta$$

$$\ln x = (x-1) + ... + \frac{(-1)^{n+1}(x-1)^n}{n} + ... \text{Converges (0,2)}$$

$$\tan \theta = \frac{y}{x}, x^2 + y^2 = r^2$$

$$\tan \theta = \frac{y}{x}, x^2 + y^2 = r^2$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots \text{Converges (-,)}$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots \text{Converges (-,)} \quad \text{arctan } x = x - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots \text{Converges [-1,1]}$$

Smooth Curve C, x = f(t), y = g(t)

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} & & \frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \frac{dy}{dx}}{\frac{dx}{dt}}, \frac{dx}{dt}$$

Calculus

James Lamberg

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

$$||\vec{v}|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \text{Norm}$$

Horizontal Tangent Lines
$$\frac{dy}{dx} = 0, \frac{dy}{d\theta} = 0, \frac{dx}{d\theta} = 0$$
Vertical Tangent Lines
$$\frac{dy}{dx} = DNE, \frac{dx}{d\theta} = 0, \frac{dy}{d\theta} = 0$$

Angle between two Vector

Rose Curve : $r = a \cos(n \theta), r = a \sin(n \theta)$ if n is odd, n petals; even, 2n petals

if a > b, limaçon; if ⊲ b, limaçon w/loop;

Circles and Lemniscates

if a = b, cardioid

Limaçon : $r = a \pm b \cos \theta$

$$r = a \cos(\theta), r = a \sin(\theta)$$

 $\vec{u} =$

Unit Vector in the Direction of v

$$r(t)dt = (f(t)dt)i + (g(t)dt)j$$

 $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$

Circles and Lemniscates
$$r = a \cos(\theta), r = a \sin(\theta)$$

$$r^2 = a^2 \sin(2\theta), r^2 = a^2 \cos(2\theta)$$

$$r(t) = f(t)i + g(t)j$$

$$r_1(t) \pm r_2(t) = (f_1(t)i + g_1(t)j) \pm (f_2(t)i + g_2(t)j)$$

$$\lim_{t \to a} (r(t)) = \lim_{t \to a} (f(t))i + \lim_{t \to a} (g(t))j$$
Continuous at resist to res

Continuous at point t = a if

 $\lim(r(t))$ exists and $\lim(r(t)) = r(a)$

$$Arc = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt$$

$$SurfaceX = 2 \int_{a}^{b} g(t) \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt$$

$$SurfaceY = 2 \int_{a}^{b} f(t) \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt$$

$$\vec{u} \cdot \vec{v} = u_{1} v_{1} + u_{2} v_{2} | r'(t) = f'(t)i + g'(t)j$$

POLAR

Area =
$$\frac{1}{2} {}^{\beta} (f(\theta))^2 d\theta$$

$$Arc = \int_{\alpha}^{\beta} \sqrt{(f(\theta))^{2} + (f(\theta))^{2}} d\theta$$

$$Surface X = 2 \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{(f(\theta))^{2} + (f'(\theta))^{2}} d\theta$$
$$Surface Y = 2 \int_{\beta}^{\beta} f(\theta) \cos \theta \sqrt{(f(\theta))^{2} + (f'(\theta))^{2}} d\theta$$

$$Surface Y = 2 \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{(f(\theta))^{2} + (f'(\theta))^{2}} d\theta$$

Linear Algebra & Differential Equations Math Reference James Lamberg

Square Matrix

Rows = # ColsSquare with all entries not on

Diagonal Matrix

Matrix Elements Rows X Columns

the main diagonal being zero Transpose $A: A^t$ or A'Switch rows and columns

positions with eachother

Upper Triangular Lower left triangle from main diagonal is all zeros

Lower Triangular Upper right triangle from main diagonal is all zeros

Row Vector

Column Vector $A 1 \times n \text{ Matrix} | A m \times 1 \text{ Matrix} | A \text{ real number}$

Scalar

Identity Matrix: I

Length (Norm)

Diagonal matrix with ones on main diagonal

Angle Between Two Vectors

Length (Norm)
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \quad \cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

Dot Product

Sum of elements in two or more matrices multiplied by each corresponding element

$$I \cdot A = A = A \cdot I$$

Matrix Multiplication

Multiply rows of A and columns of B to get an entry of the product C i^{th} row of $A \cdot j^{th}$ column of $B = C_{ij}$

$$\mathbf{C}_{ij} = \sum_{k=1}^{N} A_{ik} \cdot B_{kj}$$

How to solve a system

- 1) Add a multiple of one equation to another equation
- 2) Multiply an equation by a non zero scalar (constant)
- 3) Switch the orger of the equations

Gaussian Elimination

$$\left(A \mid b\right) \rightarrow \left(\Omega \mid c\right)$$

Using Elementary Row Ops Into Row Echelon Form

Back Substitution

Solving from row echelon form to row reduced echelon form

Pivot

A one on the main diagonal used as a reference point for solving a system of equations and for determining the number of equations in the system

Every Linear Equations is given by a Matrix Multiplication $\int_{-\infty}^{\infty} f\left(x\right) = A\left(x\right)$

Free Variables

Columns without pivots

Basic Variables

Columns with pivots

Superposition Principle of Homogenous Systems If x and y are solutions, so is x + y

Matrices define linear functions $\left| f \left(\begin{array}{c} x + y \\ \tilde{z} \end{array} \right) = f \left(\begin{array}{c} x \\ \tilde{z} \end{array} \right) + f \left(\begin{array}{c} y \end{array} \right)$

Every Linear Function

 $f: \mathfrak{R}^N \to \mathfrak{R}^M$ $x \to f(x)$

Rank =# of Pivots $\exists A^{-1} \Leftrightarrow \det A \neq 0$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$A^{-1} = \frac{1}{a \cdot d - b \cdot c} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Composition = Matrix Multiplication | Gauss - Jordan Method for A^{-1} | A is invertible (A^{-1} exists) iff

 $(A | I) \rightarrow \text{Row Ops} \rightarrow (I | A^{-1}) | A \text{ has N pivots } (rank A = N)$

Equilibrium

 $\begin{vmatrix} A = \begin{pmatrix} c & d \end{pmatrix} \\ A^{-1} = \frac{1}{a \cdot d - b \cdot c} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{vmatrix} Determinant \text{ of } A \\ A = \begin{pmatrix} a & b \\ c & d \end{vmatrix} \end{vmatrix}$

 $\left| \det \right| d = f = aej + bfg + cdh - ceg - afh - bdj$ g h

Solve Initial Value Problem

- 1) Solve the differential equation
- 2) Plug in initial conditions

Autonomous Differential Equations

$$\left| \frac{dx}{dt} = f(x) \right|$$

 $\det A = a \cdot d - b \cdot c$

Equilibrium Point

Autonomous Ordinary Differential Equations

$$\frac{dx}{dt} = g(x)$$

Equilibrium Solutions x(t) = constant $\frac{dx}{dt} = 0$

If $\lim x(t) = x^*$ then x^* is an equilibrium point

 $Stable \rightarrow f'(x^*) < 0$ $Unstable \rightarrow f'(x^*) > 0$ *Need More Info* $\rightarrow f'(x^*) = 0$

Linear Algebra & Differential Equations Uncoupled Linear Systems | Sink: a < 0, b < 0

James Lamberg

$$\frac{dx}{dt} = F(t, x, y)$$
$$\frac{dy}{dt} = G(t, x, y)$$

Uncoupled Linear Systems
$$\frac{dx}{dt} = a \cdot x, \ x(t_0) = x_0$$

$$\frac{dy}{dt} = b \cdot y, \ y(t_0) = y_0$$

Source : a > 0, b > 0

Saddle: a < 0, b > 0Crucial Equation $x(t) = e^{\lambda \cdot t} \cdot v$ $A \cdot v = \lambda \cdot v$

> If 0 ∉ V then V is not a subspace

 $\left| \frac{1}{dt} = A \cdot x, \ x(t_0) = x \right|$

 λ is an eigenvalue of A

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 is an eigenvector
$$\begin{pmatrix} x \\ y \end{pmatrix} = e^{\lambda \cdot t} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

A set of vectors $v_1...v_k$ is linearly dependent if there are scalars $c_1 ... c_k = 0$

$$e^{i\cdot\pi}+1=0$$

 λ is a scalar called an eigenvalue of the matrix A and v is the corresponding $\|\lambda\|$ is an eigenvalue of A eigenvector and is not equal to 0

Characteristic Equation $iff \det(A - \lambda \cdot I) = 0$

Eigenspace

All multiples of an eigenvector

1) If x and y are two vectors in w,

2) If x is a vector in w, then $c \cdot x$ is

a vector in w for any scalar c

then x+y is a vector in w

Subspace w (Linearity)

(x(t), y(t)) parametrize the curve

 $=\lambda$. d (v_2)

Characteristic Polynomial $\det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = 0$ $(a-\lambda)(d-\lambda)-b\cdot c=0$

Vectors span a plane (all linear combinations)

Let A be an $m \times n$ matrix, the null space (kernel) of A is the set of solutions to the homogenous system of linear equations

A set of vectors $v_1...v_k$ is a basis for a subspace $v^{C}\Re^{n}$ if they span v and are linearly independent

Dimension of v The number of vectors in any basis of v

Homogenous Linear Systems of First Order Differential Equations

$$\frac{dx}{dt} = A \cdot x, \ x(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Solving Systems

1) Compute eigenvalues & eigenvectors

2) Solve Equation (Real of Imaginary)

3) Find General Solutions

4) Solve the Initial Conditions

If A is real and $\lambda = a + i \cdot b$ is an eigenvalue, then so is its complex conjugate $\lambda = a - i \cdot b$

Euler's Formula

Euler's Formula $e^{i \cdot x} = \cos(x) + i \cdot \sin(x)$ $e^{(a+i \cdot b) \cdot t} = e^{a \cdot t} \cdot \cos(b \cdot t) + e^{(i \cdot b \cdot t)} \cdot \sin(b \cdot t)$ Independent if $\det A \neq 0$

Classification of planar hyperbolic equilibria for given eigenvalues

Real and of opposite sign: Saddle

Complex with negative real part : Spiral Sink Complex with positive real part : Spiral Source

Real, unequal, and negative: Nodal Sink Real, unequal, and positive: Nodal Source

Real, equal, negative, only one: Improper Nodal Sink

Real, equal, positive, only one: Improper Nodal Source

Real, equal, negative, two: Focus Sink Real, equal, positive, two: Focus Source Spring Equation

$$F_{\text{ext}}(t) = m \cdot \frac{d^2x}{dt^2} + \mu \cdot \frac{dx}{dt} + k \cdot x$$

m = mass, $\mu = friction$, k = spring constant

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\lambda = \frac{tr(A) \pm \sqrt{tr(A)^2 - 4 \cdot \det(A)}}{2}$$

$$tr \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$$

Trace is the sum of the diagonal elements of a matrix

Spring Equation $F_{\rm ext}(t) = 0$, homogenous $F_{\rm ext}(t) \neq 0$, inhomogenous

Linear Algebra & Differential Equations James Lamberg

$$a \cdot \frac{\mathrm{d}^2 x}{dt^2} + b \cdot \frac{dx}{dt} + c \cdot x = d$$

Second Order Scalar ODEs General Solution to Inhomogenous

$$x(t) = x_{\text{particular}}(t) + c_1 \cdot x_{ind \# 1}(t) + c_2 \cdot x_{ind \# 2}(t)$$
 $\mu^2 > 4 \cdot m \cdot k$, Overdamped

Spring (or RCL Circuit)

$$\mu^{2} > 4 \cdot m \cdot k, \ \mathbf{x}_{1} = e^{\lambda_{1} \cdot t}, \ \mathbf{x}_{2} = e^{\lambda_{2} \cdot t}$$

$$\mu^{2} = 4 \cdot m \cdot k, \ \mathbf{x}_{1} = e^{\lambda_{1} \cdot t}, \ \mathbf{x}_{2} = t \cdot e^{\lambda_{2} \cdot t}$$

$$\mu^{2} < 4 \cdot m \cdot k, \ \mathbf{x}_{1} = e^{\alpha \cdot t} \cos(\beta \cdot t), \ \mathbf{x}_{2} = e^{\alpha \cdot t} \sin(\beta \cdot t)$$
solution, to increasing power of the power of th

If you are unable to solve the particular solution, try increasing the

Spring (or RCL Circuit) $\mu^2 = 4 \cdot m \cdot k$, Critically Damped $\mu^2 < 4 \cdot m \cdot k$, Underdamped

For Spring, $B = \sqrt{k/m}$ If $\omega \approx B$, Beats Occurs If $\omega = B$, Resonance Occurs

Solving 2nd Order ODEs | Quasi - Periodic

- 1) Solve Homogenous
- 2) Find Particular Solution
- 3) Find General Solution
- 4) Solve Initial Conditions
- 5) Combine for Solution

Close to periodic

Laplace Transforms

$$F(s) = \int_{0}^{\infty} e^{-s t} \cdot f(t) dt$$

Laplace Derivatives

$$\mathbf{1}(f'(t)) = s \cdot F(s) - f(0)$$

$$\mathbf{1}(f''(t)) = s^2 \cdot F(s) - s \cdot f(0) - f'(0)$$

Laplace Transforms

$$f(t) = 1, \ F(s) = \frac{1}{s}$$

$$f(t) = t^n, F(s) = \frac{n!}{s^{n+1}}$$

$$f(t) = e^{a \cdot t}, F(s) = \frac{1}{s - a}$$

$$f(t) = \cos(\tau \cdot t), F(s) = \frac{s}{s^2 + \tau^2}$$

$$f(t) = \sin(\tau \cdot t), \ F(s) = \frac{\tau}{s^2 + \tau^2}$$

$$f(t) = H_C(t), F(s) = \frac{e^{-c \cdot s}}{s}$$

$$f(t) = \delta_C(t), F(s) = e^{-c \cdot s}$$

$$H_{C}(t) = \begin{cases} 0 & \text{for } 0 \le t < c \\ 1 & \text{for } t \ge c \end{cases}$$

Dirac Delta Function

$$\delta_{C}(t) = \begin{cases} \infty & \text{for } t = c \\ 0 & \text{for } t < c - \delta \\ 1/2\delta & \text{for } c - \delta < t < c + \delta \\ 0 & \text{for } t > c + \delta \end{cases}$$

Jacobian Matrix

Jacobian Matrix
$$f(t) = e^{a \cdot t}, F(s) = \frac{1}{s - a}$$

$$f(t) = \cos(\tau \cdot t), F(s) = \frac{s}{s^2 + \tau^2}$$

$$f(t) = \sin(\tau \cdot t), F(s) = \frac{\tau}{s^2 + \tau^2}$$
Jacobian Matrix
$$F(x) = F(x_0) + dF(x_0) \cdot (x - x_0)$$

$$dF(x) = \frac{\partial f}{\partial x}(x_0, y_0) \cdot \frac{\partial f}{\partial y}(x_0, y_0)$$

$$\frac{\partial g}{\partial x}(x_0, y_0) \cdot \frac{\partial g}{\partial y}(x_0, y_0)$$
If you are near a hyperbolic fixed point, the phase portrait of the nonlinear system is essentially the same as its linearization.

The fixed point z = 0 is called hyperbolic if no eigenvalue of the jacobian has 0 as a real part (no 0 or purely imaginary)

same as its linearization

Multivariable

James Lamberg

$$\lim_{(x,y) (a,b)} f(x,y) = f(a,b) \frac{dz}{dx} = \lim_{x \to 0} \frac{z}{x}$$

$$\lim_{(x,y) = (a,b)} f(x,y) = f(a,b) \qquad \boxed{\frac{dz}{dx} = \lim_{x \to 0} \frac{z}{x}} \qquad \boxed{\frac{dz}{dy} = \lim_{y \to 0} \frac{z}{y}} \qquad \boxed{z = f(x,b) \quad y = b \quad (x-curve)}$$

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_{x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$z(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$z(x,y) = \frac{z}{x} = \frac{f}{x} = f_{x}(x,y) = \frac{z}{x} = f(x,y) = D_{x}[f(x,y)] = D_{x}[f(x,y)]$$

$$f_{y}(x,y) = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

$$\frac{\int_{x}^{x} \int_{x}^{y} (x,y) = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}}{\int_{x}^{y} \int_{x}^{y} \int_{x}^{y$$

Plane Tangent to the surface z = f(x,y) at the Normal Vector to Tangent Plane point P = (a, b, f(a, b)) has the equation: $z - f(a,b) = f_x(a,b)(x-a) + f_y(a,b)(y-b)$

Normal Vector to Tangent Plane
$$\mathbf{n} = f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j} - \mathbf{k} = \left\langle \frac{z}{x}, \frac{z}{y}, -1 \right\rangle$$

$$\left[\left(f_x \right)_x = f_{xx} = \frac{f_x}{x} = \frac{f}{x} = \frac{2f}{x^2} \right]$$

$$(f_x)_x = f_{xx} = \frac{f_x}{x} = \frac{f}{x} = \frac{2f}{x}$$

$$(f_x)_x = f_{xx} = \frac{f_x}{x} = \frac{2f}{x}$$

$$(f_x)_x = \frac{2f}{x} = \frac{2f}{x}$$

$$(f_x)_x = \frac{2f}{x}$$

$$(f_x)_x$$

$$\left| \left(f_{y} \right)_{y} = f_{yy} = \frac{f_{y}}{y} = \frac{f}{y} = \frac{2f}{y^{2}}$$

$$\left| \left(f_y \right)_y = f_{yy} = \frac{f_y}{y} = \frac{f}{y} = \frac{2f}{y^2} \right| \left| \frac{df = f_x(x, y) \ x + f_y(x, y) \ y}{f(x + x, y + y) = f(x, y) + f \text{ (exact)}} \right|$$

$$(f_y)_y = f_{yy} = \frac{J_y}{y} = \frac{J}{y} = \frac{J}{y} = \frac{J}{y}$$

$$(f_x)_y = f_{xy} = \frac{f_x}{y} = \frac{f}{y} = \frac{f}{x} =$$

$$f(a + x,b + y) \quad f(a,b) + f_x(a,b) \quad x + f_y(a,b) \quad y$$

$$\left| \left(f_y \right)_x = f_{yx} = \frac{f_y}{x} = \frac{f}{x} = \frac{f}{y} = \frac{{}^2f}{yx}$$

$$\left(f_{y}\right)_{x} = f_{yx} = \frac{f_{y}}{x} = \frac{f}{x} = \frac{f}{y} = \frac{2f}{y}$$

$$dz = \frac{z}{x} + \frac{z}{y} = \frac{z}{x} dx + \frac{z}{y} dy$$

$$dw = \frac{w}{x} dx + \frac{w}{y} dy + \frac{w}{z} dz$$

$$x = f(x, y, z) = f(g(u, v), h(u, v),$$

x = f(x, y, z) = f(g(u, v), h(u, v), k(u, v)) wis a funtion of $x_1, x_2, ..., x_n$ and each is $D_u f(P) = f(P) \mathbf{u}, \mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$ a funtion of the variables t_1, t_2, \dots, t_n

a function of the variables
$$t_1, t_2, \dots, t_n$$

$$\frac{w}{t_i} = \frac{w}{x_1} \frac{x_1}{t_i} + \frac{w}{x_2} \frac{x_2}{t_i} + \dots + \frac{w}{x_m} \frac{x_m}{t_i}$$
for each i , 1 i n

$$D_1 f(r(t)) = f(r(t)) \mathbf{r'}(t)$$

$$\int_{0}^{D_{u}J(I)-I} \int_{0}^{I} (I) \, \mathbf{u}, \, \mathbf{u} - \frac{1}{|\mathbf{v}|}$$

$$D_{l}f(r(t)) = f(r(t)) \mathbf{r'}(t)$$

$$\frac{x}{r} = \cos\theta, \frac{y}{r} = \sin\theta, \frac{x}{\theta} = -r\sin\theta, \frac{y}{\theta} = r\cos\theta$$

$$\frac{w}{r} = \frac{w}{x} \frac{x}{r} + \frac{w}{y} \frac{y}{r} = \frac{w}{x} \cos \theta + \frac{w}{y} \sin \theta$$

$$\frac{w}{\theta} = \frac{w}{x} \frac{x}{\theta} + \frac{w}{y} \frac{y}{\theta} = r \frac{w}{x} \sin \theta + r \frac{w}{y} \cos \theta$$

$$\frac{{}^{2}w}{r^{2}} = \frac{{}^{2}w}{x^{2}}\cos^{2}\theta + 2\frac{{}^{2}w}{xy}\cos\theta\sin\theta + \frac{{}^{2}w}{y^{2}}\sin^{2}\theta$$

s\theta
$$f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$
$$f = \left\langle \frac{f}{x}, \frac{f}{y}, \frac{f}{y} \right\rangle = \frac{f}{x}\mathbf{i} + \frac{f}{y}\mathbf{j} + \frac{f}{z}\mathbf{k}$$
$$w \qquad f(P) \quad \mathbf{v}, \mathbf{v} = \overline{PQ} = \left\langle x, y, z \right\rangle$$

Tangent Plane to a Surfave F(x, y, z) at P = (a, b, c) $F_x(x,y,z)(x - y + F_y(x,y,z)(y - y + F_z(x,y,z)(z - y = 0)$

$$A = f_{xx}(a,b), B = f_{xy}(a,b), C = f_{yy}(a,b)$$
$$= D = AC - B^{2} = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

If
$$> 0$$
 and $A > 0$, then f has a local minimum at (a, b)

If
$$> 0$$
 and $A < 0$, then f has a local maximum at (a, b)

If
$$< 0$$
, then f has a saddle point at (a, b)

If
$$= 0$$
, no information is known for f at point (a,b)

$$Volume = V = \int_{R} f(x, y) dA$$

$$\int_{R}^{b} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y)dx dy$$

Multivariable

James Lamberg

LaGrange Multipliers

Check Critical Points of $F(x, y, \lambda) = f(x, y) - \lambda g(x, y)$ $\left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right| = 1$ Ellipsoid

$$\frac{f}{x}, \frac{f}{y} = \lambda \frac{g}{x}, \frac{g}{y}$$

$$V = \int_{a}^{b} \int_{y_1(x)}^{y_2(x)} f(x, y) dy dx$$

$$V = \int_{c}^{d} \int_{x_1(y)}^{x_2(y)} f(x, y) dx dy$$

 $x^2 + y^2 + z^2 = a^2$ Sphere w/ Radius a

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Ellipsoid

 $\left| \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} \right| = 1$ Hyperboloid, 1 Sheet, z - a x i s

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Hyperboloid, 1 Sheet, y - a x i s

Vertically Simple:
$$_{R} f(x, y) dA$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$
Horizontally Simple: $_{R} f(x, y) dA$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dy dx$$

$$V = \int_{a y_{1}(x)}^{b y_{2}(x)} f(x, y) dx$$

$$V = \int_{a$$

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Hyperboloid, 2 Sheets, xy-pla

Polar: $a r b \alpha \theta \beta$

$$\begin{vmatrix} A = \frac{1}{2}(a+b)(a-b)(\beta - \alpha) = \overline{r} & r & \theta \\ V = {}_{R}(z_{top} - z_{bottom})dA \\ V = {}_{R}(x,y)dA \end{vmatrix} = \overline{r} \begin{vmatrix} \overline{r} & \overline{r} & \overline{r} \\ \overline{r} & \overline{r} \end{vmatrix} = \overline{r} \begin{vmatrix} \overline{r} & \overline{r} \\ \overline{r} & \overline{r} \end{vmatrix} = \overline{r} \begin{vmatrix} \overline{r} & \overline{r} \\ \overline{r} & \overline{r} \end{vmatrix}$$

$$| \overline{r} = \frac{1}{m} \quad {}_{R}x\delta(x,y)dA$$

$$| \overline{r} = \frac{1}{m} \quad {}_{R}x\delta(x,y)dA$$

$$| \overline{r} = \frac{1}{m} \quad {}_{R}x\delta(x,y)dA$$

 $V = \int_{0}^{\beta} f(r\cos\theta, r\sin\theta) r dr d\theta$

| Volume Between Two Surfaces | Centroid: (\bar{x}, \bar{y})

$$V = {}_{R} \left(z_{top} - z_{bottom} \right) dA$$

$$\bar{x} = \frac{1}{m} \sum_{R} x \delta(x, y) dA$$

Polar Moments of Inertia

$$I_x = \int_R y^2 \delta(x, y) dA$$

$$I_{y} = \int_{R}^{R} x^{2} \delta(x, y) dA$$

Kinetic Energy due to Rotation Radius of Gyration

$$\left| KE_{rot} = \frac{1}{2} \omega^2 r^2 \delta dA = \frac{1}{2} I_0 \omega^2 \right| \left| \hat{r} = \sqrt{\frac{I}{m}} \right|$$

 ω is angular speed

$$\hat{r} = \sqrt{\frac{I}{m}}$$

I is moment of inertia, m is mass around axis

$$\hat{x} = \sqrt{\frac{I_x}{m}} \qquad \hat{y} = \sqrt{\frac{I_y}{m}}$$

 $I_0 = m\hat{r}^2 \quad \text{KE} = \frac{1}{2}m(\hat{r}\omega)^2 \left| \frac{\partial}{|\text{Cylindrical } x = r\cos\theta, \ y = r\sin\theta, \ z = z|} \right| \frac{\partial}{|\text{mass} = m = -\frac{\delta(x, y, z)dV}{\delta(x, y, z)dV}}$

Sphererical $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

$$V = \int_{U} f(\rho \sin\phi \cos\theta, \rho \sin\phi \sin\theta, \rho \cos\phi) \rho^{2} \sin\phi d\rho d\phi d\theta$$

 $V = \underbrace{\int_{U} f(r\cos\theta, r\sin\theta, z) r dz dr d\theta}_{Volume} = V = \underbrace{\int_{U} dV}_{T}$

Centroid: $(\bar{x}, \bar{y}\bar{z})$

$$\overline{\mathbf{x}} = \frac{1}{m}$$
 $x\delta(x, y, z)dA$

$$z = \frac{1}{m} \int_{T}^{T} z \delta(x, y, z) dA$$

Parametric

Parametric
$$\vec{x} = \frac{1}{m} \quad {}_{T} x\delta(x, y, z) dA$$

$$\vec{y} = \frac{1}{m} \quad {}_{T} y\delta(x, y, z) dA$$

$$\vec{z} = \frac{1}{m} \quad {}_{T} z\delta(x, y, z) dA$$
Parametric
$$\vec{r}_{u} = \frac{\vec{r}}{u} = \langle x_{u}, y_{u}, z_{u} \rangle = \frac{x}{u} \mathbf{i} + \frac{y}{u} \mathbf{j} + \frac{z}{u} \mathbf{k}$$

$$\vec{r}_{v} = \frac{\vec{r}}{v} = \langle x_{v}, y_{v}, z_{v} \rangle = \frac{x}{v} \mathbf{i} + \frac{y}{v} \mathbf{j} + \frac{z}{v} \mathbf{k}$$
| Moments of Inertia
$$I_{x} = I_{y} (y^{2} + z^{2}) \delta(x, y, z) dA$$

$$I_{y} = I_{y} (x^{2} + z^{2}) \delta(x, y, z) dA$$
| I_{z} = I_{y} (x^{2} + y^{2}) \delta(x, y, z) dA

| Cylindrical Surface Area

$$\mathbf{r}_{v} = \frac{\mathbf{r}}{v} = \langle x_{v}, y_{v}, z_{v} \rangle = \frac{x}{v} \mathbf{i} + \frac{y}{v} \mathbf{j} + \frac{z}{v}$$

$$I_x = \int_T (y^2 + z^2) \delta(x, y, z) dA$$

$$I_{y} = \int_{T} (x^{2} + z^{2}) \delta(x, y, z) dA$$

$$I_z = \int_{T} (x^2 + y^2) \delta(x, y, z) dA$$

Surface Area

$$A = a(S) = \sqrt{1 + \frac{f^2}{x^2} + \frac{f^2}{y^2}} dxdy$$

Cylindrical Surface Area

$$A = a(S) = \sqrt{1 + \frac{f^2}{x^2} + \frac{f^2}{y^2}} dxdy$$

$$A = a(S) = \sqrt{r^2 + r\frac{f^2}{r^2} + \frac{f^2}{\theta}} drd\theta$$

Change of Variable $_{R}F(x,y)dxdy$ x = f(u,v) y = g(u,v)u = h(x, y) v = k(x, y)Jacobian: $J_T(u,v) = \begin{vmatrix} f_u(u,v) & f_v(u,v) \\ g(u,v) & g(u,v) \end{vmatrix} = \frac{(x,y)}{(u,v)}$ $\int_{\mathbb{R}} F(x,y) dx dy = \int_{\mathbb{R}} F(f(u,v),g(u,v)) |J_T(u,v)| du dv$ $_{R}F(x,y)dxdy = _{S}G(u,v)\frac{(x,y)}{(u,v)}dudv$

x = f(u, v, w) y = g(u, v, w) z = h(u, v, w)Jacobian: $J_T(u,v) = \frac{(x,y,z)}{(u,v,w)} = \begin{vmatrix} \frac{x}{u} & \frac{x}{v} & \frac{w}{w} \\ \frac{y}{u} & \frac{y}{v} & \frac{y}{w} \\ \frac{z}{v} & \frac{z}{w} & \frac{z}{w} \end{vmatrix}$ $_{T}F(x,y,z)dxdydz = \int_{S}G(u,v,w)\left|\frac{(x,y,z)}{(u,v,w)}\right|dudvdw$ $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$

Force Field
$$\mathbf{F}(x, y, z) = \frac{k\mathbf{r}}{r^3}$$

$$(af + bg) = a \quad f + b \quad g$$

$$\mathbf{v}(x, y) = \omega(-y\mathbf{i} + y)$$

$$\mathbf{v}(x, y) = \omega(-y\mathbf{i} + y)$$

Velocity Vector
$$\mathbf{v}(x,y) = \omega(-y\mathbf{i} + x\mathbf{j})$$

Force Field
$$\mathbf{F}(x,y,z) = \frac{k\mathbf{r}}{r^3} \begin{bmatrix} (af + bg) = a & f + b & g \\ (fg) = f & g + g & f \end{bmatrix} Velocity Vector
$$\mathbf{v}(x,y) = \omega(-y\mathbf{i} + x\mathbf{j}) \begin{bmatrix} \mathbf{F}(x,y) | = |x\mathbf{i} + y\mathbf{j}| = \sqrt{x^2 + y^2} = r \\ y(x,y) = \omega(-y\mathbf{i} + x\mathbf{j}) \end{bmatrix}$$

$$div \mathbf{F} = \mathbf{F} = \frac{P}{x} + \frac{Q}{y} + \frac{R}{z} \begin{bmatrix} \times (a\mathbf{F} + b\mathbf{G}) = a(\times \mathbf{F}) + b(\times \mathbf{G}), & mass = \delta(x,y,z)ds \end{bmatrix}$$$$

 $curl \mathbf{F} =$

$$curl \mathbf{F} = \frac{R}{y} - \frac{Q}{z} \mathbf{i} + \frac{P}{z} - \frac{R}{x} \mathbf{j} + \frac{Q}{x} - \frac{P}{y} \mathbf{k}$$

$$\begin{bmatrix} k = G & M \\ \end{bmatrix} \begin{bmatrix} div \mathbf{F} = & \mathbf{F} = \frac{P}{x} + \frac{Q}{y} + \frac{R}{z} \\ \hline k & \mathbf{j} & \mathbf{k} \\ \hline curl \mathbf{F} = & \mathbf{K} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \hline x & y & z \\ P & Q & R \end{bmatrix} \\ curl \mathbf{F} = \frac{R}{y} - \frac{Q}{z} \mathbf{i} + \frac{P}{z} - \frac{R}{x} \mathbf{j} + \frac{Q}{x} - \frac{P}{y} \mathbf{k} \end{bmatrix} \begin{bmatrix} \times (a\mathbf{F} + b\mathbf{G}) = a(\times \mathbf{F}) + b(\times \mathbf{G}), \\ \times (f\mathbf{G}) = (f)(\times \mathbf{G}) + (f) \times \mathbf{G} \end{bmatrix} \begin{bmatrix} mass = \delta(x, y, z)ds \\ \hline x = \frac{1}{m} & s\delta(x, y, z)ds \\ \hline (f\mathbf{G}) = (f)(\mathbf{G}) + (f)\mathbf{G} \end{bmatrix} \begin{bmatrix} mass = \delta(x, y, z)ds \\ \hline x = \frac{1}{m} & s\delta(x, y, z)ds \\ \hline y = \frac{1}{m} & s\delta(x, y, z)ds \end{bmatrix} \begin{bmatrix} mass = \delta(x, y, z)ds \\ \hline x = \frac{1}{m} & s\delta(x, y, z)ds \\ \hline x$$

$$|mass| = \delta(x,y,z)ds$$

$$|\overline{x}| = \frac{1}{m} \sum_{C} x\delta(x,y,z)ds$$

$$|\overline{y}| = \frac{1}{m} \sum_{C} y\delta(x,y,z)ds$$

$$|\overline{z}| = \frac{1}{m} \sum_{C} z\delta(x,y,z)ds$$
Centroid: $(\overline{x},\overline{y},\overline{z})$

 $\int_{C} f(x,y,z)ds = \int_{a}^{b} f(x(t),y(t),z(t))\sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}}dt$ $P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = \begin{bmatrix} \mathbf{F} & \mathbf{T}ds = \mathbf{F} & \mathbf{T}ds \\ \mathbf{F} & \mathbf{T}ds = \mathbf{F} \end{bmatrix}$

 $\mathbf{w} = \text{velocity vector}$

$$\int_{C} \mathbf{F} \ \mathbf{T} ds = \int_{A}^{B} \mathbf{F} \ \mathbf{T} ds$$

$$\mathbf{F} \cdot \mathbf{T} ds = \mathbf{F} d\mathbf{r} = P dx + Q dy + R dz$$

P(x(t),y(t),z(t)) x'(t)dt +Q(x(t),y(t),z(t)) y'(t)dt +R(x(t),y(t),z(t)) z'(t)dt

$$f(x,y,z)dx = \int_{a}^{b} f(x(t),y(t),z(t)) x'(t)dt$$

$$f(x,y,z)dy = \int_{b}^{a} f(x(t),y(t),z(t)) y'(t)dt$$

$$f(x,y,z)dy = \int_{a}^{b} f(x(t),y(t),z(t)) y'(t)dt$$

$$f(x,y,z)dz = \int_{a}^{b} f(x(t),y(t),z(t)) z'(t)dt$$
Flux of a Vector Field across C

$$\mathbf{F} = \int_{c}^{c} \mathbf{F} = \int_{c}^{c} \mathbf{F}$$

Flux of a Vector
Field across C
OF n ds

$$c$$

$$\mathbf{n} = \frac{dy}{ds} \mathbf{i} - \frac{dx}{ds} \mathbf{j}$$

Work $W = {}^{\upsilon} \mathbf{F} \mathbf{T} ds$ W = Pdx + Qdy + Rdz

$$f(x,y,z)ds = f(x,y,z)ds$$

$$-C$$

$$Pdx + Qdy + Rdz = - Pdx + Qdy + Rdz$$

$$-C$$

$$f \quad d\mathbf{r} = f(r(b)) - f(r(a)) = f(B) - f(A)$$
 from $(x, y,)$ zto axis

$$W = \mathbf{F} \quad \mathbf{T} ds = k \quad \mathbf{w} \quad \mathbf{T} ds$$

$$C \quad C$$

$$\mathbf{W} = \text{velocity vector}$$

$$W = \mathbf{F} \quad d\mathbf{r} = V(A) - V(B)$$

Moment of Inertia
$$I = \underset{C}{w^2 \delta(x, y, z)} ds$$

$$w = w(x, y, z) = \text{distance}$$
from (x, y, z) axis

Multivariable

James Lamberg

The Line Integral **F** Tds is independent of path in the region D iff $\mathbf{F} = f$ for some funtion *f* defined on D

$$\mathbf{F} \quad \mathbf{T} ds = \int_{A}^{B} f d\mathbf{r} = f(B) - f(A)$$

Continuous funtions P(x,y) and Q(x,y) have continuous 1st order partials in $R = \{(x, y) \mid$ a < x < b, c < y < d Then the vector field $\mathbf{F} = \mathbf{P} + \mathbf{Q} \mathbf{j}$ is conservative in R and has a potential funtions f(x, y) on R irr at each point of R

$$\frac{P}{y} = \frac{Q}{x}$$

The vector field **F** defined on region D is conservative provided that there exists a scalar funtion f defined on D such that

$$\mathbf{F} = \mathbf{f}$$

at each point of D, f is a potential funtion for \mathbf{F}

Newton's First Law gives
$$\mathbf{F}(\mathbf{r}(t)) = m\mathbf{r}''(t) = m\mathbf{v}'(t)$$

$$d\mathbf{r} = \mathbf{r}'(t) \quad dt = \mathbf{v}(t)$$

$$\mathbf{F} \quad d\mathbf{r} = \frac{1}{2}m(v_B)^2 - \frac{1}{2}m(v_A)^2$$

$$div \mathbf{F} = \mathbf{F} = \frac{M}{r}$$

$$\begin{array}{ccc}
O P dx &=& - & \frac{P}{y} dA \\
O Q dy &=& + & \frac{Q}{x} dA
\end{array}$$

$$\frac{1}{2}m(v_A)^2 + V(A) = \frac{1}{2}m(v_B)^2 + V(B)$$

$$A = \frac{1}{2} \bigcirc -ydx + xdy = -\bigcirc ydx = \bigcirc xdy$$

$$\bigcirc \mathbf{F} \quad \mathbf{n} ds = \mathbf{F} dA$$

Green's Theorem

$$\bigcirc_C P dx + Q dy = \qquad \qquad \frac{Q}{x} - \frac{P}{y} dA$$

$$\mathbf{F}$$
\(\(\begin{aligned} (x_0, y_0) &= \lim_{r=0}^{\quad 1} \frac{1}{r^2} \cdots \mathbf{F} \quad \mathbf{n} \, \dslimes \right\)

$$\mathbf{N} = \frac{\mathbf{r}}{\mathbf{u}} \times \frac{\mathbf{r}}{\mathbf{v}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{x}{u} & \frac{y}{u} & \frac{z}{u} \\ \frac{x}{v} & \frac{y}{v} & \frac{z}{v} \end{vmatrix}$$

$$\mathbf{N} = \frac{\mathbf{r}}{\mathbf{u}} \times \frac{\mathbf{r}}{\mathbf{v}} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{x}{u} & \frac{y}{u} & \frac{z}{u} \\ \frac{x}{v} & \frac{y}{v} & \frac{z}{v} \end{bmatrix} = \int_{D}^{D} f(\mathbf{r}(u_{i}, v_{i})) |\mathbf{N}(u_{i}, v_{i})| dudv$$

$$dS = |\mathbf{N}(u_{i}, v_{i})| dudv = |\mathbf{r} \times \mathbf{r}| dudv$$

$$dS = |\mathbf{N}(u_{i}, v_{i})| dudv = |\mathbf{r} \times \mathbf{r}| dudv$$
Flux ϕ across S in the direction of \mathbf{n}

$$z = h(x, y) \text{ in xy -plane}$$

$$dS = \sqrt{1 + \frac{h^2}{x^2} + \frac{h^2}{y^2}} dxdy$$

 $\int_{1}^{\infty} f(\mathbf{r}(u_{i},v_{i}))|\mathbf{N}(u_{i},v_{i})| u v \int_{S}^{\infty} f(x,y,z)dS$

$$\mathbf{N} = \frac{\mathbf{r}}{u} \times \frac{\mathbf{r}}{v} = \frac{(y,z)}{(u,v)}\mathbf{i} + \frac{(z,x)}{(u,v)}\mathbf{j} + \frac{(x,y)}{(u,v)}\mathbf{k}$$

 \mathbf{F} ndS

$$R(\mathbf{r}(u_i, v_i)) \cos \gamma |\mathbf{N}(u_i, v_i)| \quad u \quad v$$

$$R(\mathbf{r}(u_i, v_i)) |\mathbf{N}(u_i, v_i)| dudv$$

$$\frac{f(\mathbf{r}(u_i,v_i))|\mathbf{N}(u_i,v_i)| \ u \ v}{R(\mathbf{r}(u_i,v_i))\cos\gamma|\mathbf{N}(u_i,v_i)| \ u \ v} = \int_{S} f(x,y,z)dS$$

$$= \int_{S} f(x(u,v),y(u,v),z(u,v))\sqrt{\frac{(y,z)^2}{(u,v)^2} + \frac{(z,x)^2}{(u,v)^2} + \frac{(x,y)^2}{(u,v)^2}} dudv$$

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (\cos\alpha)\mathbf{i} + (\cos\beta)\mathbf{j} + (\cos\gamma)\mathbf{k}$$

Divergence Theorem $\mathbf{F} \quad \mathbf{n} dS =$

$$\frac{\{div \ \mathbf{F}\}(P) = \lim_{r \to 0} \frac{1}{V_r} \quad \mathbf{F} \quad \mathbf{n}dS}{\mathbf{S} = v \mathbf{r} \circ d \cdot div \mathbf{F}\}(P) \circ 0}$$

 $\mathbf{n} = P \cos \alpha + Q \cos \beta + R \cos \gamma$

Source
$$\{div \mathbf{F}\}(P) > 0$$

Sink $\{div \mathbf{F}\}(P) < 0$

$$\bigcap_{C} \mathbf{F} \ \mathbf{T} dS = \left(curl \mathbf{F} \right) \ \mathbf{k} dA$$

Multivariable

James Lamberg

$$\cos \alpha = \mathbf{n} \quad \mathbf{i} = \frac{\mathbf{N} \quad \mathbf{i}}{|\mathbf{N}|} = \frac{1}{|\mathbf{N}|} \frac{(y,z)}{(u,v)}$$

$$\cos \beta = \mathbf{n} \quad \mathbf{j} = \frac{\mathbf{N} \quad \mathbf{i}}{|\mathbf{N}|} = \frac{1}{|\mathbf{N}|} \frac{(z,x)}{(u,v)}$$

$$\cos \beta = \mathbf{n} \quad \mathbf{k} = \frac{\mathbf{N} \quad \mathbf{i}}{|\mathbf{N}|} = \frac{1}{|\mathbf{N}|} \frac{(z,x)}{(u,v)}$$

$$\cos \gamma = \mathbf{n} \quad \mathbf{k} = \frac{\mathbf{N} \quad \mathbf{i}}{|\mathbf{N}|} = \frac{1}{|\mathbf{N}|} \frac{(x,y)}{(u,v)}$$

$$R(x,y,z)dxdy = R(x,y,z)\cos \beta dS = R(\mathbf{r}(u,v)) \frac{(z,x)}{(u,v)}dudv$$

$$R(x,y,z)dxdy = R(x,y,z)\cos \gamma dS = R(\mathbf{r}(u,v)) \frac{(x,y)}{(u,v)}dudv$$

$$R(x,y,z)dxdy = R(x,y,z)\cos \gamma dS = R(x,y,z)\cos \gamma d$$

$$Pdydz + Qdzdx + Rdxdy$$

$$= (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS$$

$$= P\frac{(y,z)}{(u,v)} + Q\frac{(z,x)}{(u,v)} + R\frac{(x,y)}{(u,v)} dudv$$

$$\mathbf{F} \mathbf{n}dS = Pdydz + Qdzdx + Rdxdy$$

$$\phi = \int_{S} \mathbf{r} \, \mathbf{n} dS = 4 \, GM$$
Gauss' Law for electric fields
$$\phi = \int_{S} \mathbf{E} \, \mathbf{n} dS = \frac{Q}{\varepsilon_0}$$

(Pdydz + Qdzdx + Rdxdy)

Heat-Flow Vector
$$\mathbf{q} = -K \quad u$$

$$K = \text{Heat Conductivity}$$

$$\mathbf{q} \quad \mathbf{n} dS = -K \quad u \quad \mathbf{n} dS$$

$$= \frac{P}{x} + \frac{Q}{y} + \frac{R}{z} dV$$

$$= \mathbf{F} dV = \mathbf{F} \mathbf{n} dS$$

$$= \mathbf{F} \mathbf{n}_{2} dS - \mathbf{F} \mathbf{n}_{1} dS$$

$$= \frac{S}{S_{2}} \frac{GMr}{|\mathbf{r}|^{3}}$$

$$\bigcirc Pdx = - \qquad \frac{P}{y} \frac{y}{y} + \frac{P}{z} \frac{z}{y} dxdy$$

$$\bigcirc \mathbf{F} \quad \mathbf{T}dS = \qquad \left(curl\mathbf{F} \right) \quad \mathbf{n}dA$$

$$\begin{bmatrix}
OPdx + Qdy + Rdz = \frac{R}{s} \frac{Q}{y} - \frac{Q}{z} dydz + \frac{P}{z} - \frac{R}{x} dzdx + \frac{Q}{x} - \frac{P}{y} dxdy \\
\{(curl\mathbf{F}) \mathbf{n}\}(P) = \lim_{r \to 0} \frac{1}{r^2} O\mathbf{F} \mathbf{T}ds \\
\{(curl\mathbf{F}) \mathbf{n}\}(P^*) \frac{(C_r)}{r^2}
\end{bmatrix} = \frac{P}{z} dzdy - \frac{P}{z} dxdy$$

$$= \frac{P}{z} \frac{dzdy - \frac{P}{z} dxdy}{-\frac{P}{z} \frac{z}{y} - \frac{P}{y} \frac{y}{y} dxdy}$$

$$(C) = \underset{C}{\bigcirc} \mathbf{F} \quad \mathbf{T} ds \qquad \phi(x, y, z) = \underset{C_1}{\mathbf{F}} \quad \mathbf{T} ds \qquad div \mathbf{v} dV = \underset{S}{\mathbf{v}} \quad \mathbf{n} dS = 0$$

$$div \mathbf{v} dV = \mathbf{v} \mathbf{n} dS = 0$$

$$div(\varphi) = \frac{{}^2\varphi}{dx^2} + \frac{{}^2\varphi}{dy^2} + \frac{{}^2\varphi}{dz^2} = 0$$

$$\frac{{}^2u}{dx^2} + \frac{{}^2u}{dy^2} + \frac{{}^2u}{dz^2} = 0$$

A vector field is irrotational iff
It is conservative and
$$\mathbf{F} = \phi$$
 for some scalar ϕ

Physics Reference

Electricity & Magnetism

James Lamberg

Electric Charge

Charges with the same electrical sign repel each other, and charges with opposite electrical sign attract

$$F = \frac{q_1 \ q_2}{4 \ \epsilon_0 \ r^2} \begin{bmatrix} e^- \ 1.6 \times 10^{-19} C \\ \hline q = n \ e, \ n = \pm 1, \pm 2, .. \end{bmatrix}.$$

$$k = \frac{1}{4 \ \epsilon_0} \ 9 \times 10^9 \frac{N \ m^2}{C} \begin{bmatrix} \text{Point Charge} \\ E = k \frac{q}{r^2} \end{bmatrix}$$
tend

Electric Fields | Electric field lines extend

away from positive charge and toward negative charge

Torque $|\mathbf{t} = \mathbf{p} \times \mathbf{E}|$

Electric Dipole

p = Dipole Moment

$$\mathbf{E} = k \frac{2\mathbf{p}}{z^3} \quad \frac{3(\mathbf{p} \quad \hat{r}) - \mathbf{p}}{4 \quad \epsilon_0 \quad z^3}$$

A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell's charge were concentrated at its center A shell of uniform charge exerts no electrostatic force $\mathbf{E} = k \frac{2\mathbf{p}}{z^3} \quad \frac{3(\mathbf{p} \quad \hat{r}) - \mathbf{p}}{4 \quad \epsilon_0 \quad z^3} \quad \text{on a charged particle that is located inside the shell.}$

Charged Ring

$$\mathbf{E} = \frac{q z}{4 \quad \epsilon_0 (z^2 + R^2)^{3/2}} \mathbf{E} = \frac{\sigma}{2\epsilon_0} \quad 1 - \frac{z}{\sqrt{z^2 + R^2}}$$

$$\mathbf{E} = \frac{q z}{z^3} \quad \frac{1}{4 \quad \epsilon_0 \quad z^3} \quad \frac{|\text{located inside the shell.}}{|\text{Conducting Surface of Charge of Charge$$

Charged Disk

$$\mathbf{E} = \frac{\sigma}{2\varepsilon_0} \ 1 - \frac{z}{\sqrt{z^2 + R^2}}$$

$$=\frac{\sigma}{\varepsilon_0} \qquad \qquad \mathbf{E} = \frac{2}{2}$$

$$\mathbf{E} = \frac{\sigma}{\varepsilon_0} \qquad \mathbf{E} = \frac{\lambda}{2 - \varepsilon_0 - r} \qquad \mathbf{E} = \frac{\sigma}{2\varepsilon_0}$$

$$\boxed{\mathbf{Electric Potential}} \qquad \boxed{\mathbf{Electric Potential}} \qquad \boxed{\mathbf{E}}$$

Potential Energy Gauss' Law: ε₀ Of A Dipole

Of A Dipole
$$U = \mathbf{p} \mathbf{E}$$

$$| \mathbf{E} | \mathbf{E}$$

Field At r R

Field At
$$r < R$$

$$\mathbf{E} = 0$$

$$V = k \frac{q}{r} = k \int_{i=1}^{n} \frac{q_i}{r_i}$$

$$\mathbf{E} = \frac{q}{4 - \epsilon_0 r^2}$$

$$\mathbf{E} = -V$$

Capacitance

 $C = \frac{\varepsilon_0 A}{d} \qquad C = 2 \qquad \varepsilon_0 \frac{L}{\ln(b/a)} \qquad \text{Capacitor}$

Parallel

Current
$$i = \frac{dq}{dq}$$

Potential Energy | Energy Density

 $\boxed{\rho - \rho_0 = \rho_0 \quad \alpha (T - T_0)}$ Resistivity is a property of a material

Energy Density $U = \frac{Q^2}{2C} = \frac{1}{2}C V^2$ $U = \frac{Q^2}{2C} = \frac{1}{2}E_0 E^2$ Energy Density $U = \frac{Q^2}{2C} = \frac{1}{2}E_0 E^2$ Dielectric $C = K C_{air}$ $E = K C_{air}$

Power, Rate Of Transfer Of Electrical Energy P = i V

Resistive Dissapation
$$P = i^{2} R = \frac{V^{2}}{R}$$
(Such As Me)
$$\rho = \frac{m}{e^{2} n \tau}$$

Resistive Dissapation $P = i^{2} R = \frac{V^{2}}{R}$ Resistivity Of A Conductor (Such As Metal) Resistive Dissapation (Such As Metal) Resistivity Of A Conductor (Such As Metal) Resistivity Of A Conductor (Such As Metal) Resistivity Of A Conductor (Such As Metal)

EMF Power

Kirchoff's Loop Rule

The sum of the changes in potential in a loops of a circuit must be zero

Kirchoff's Junction Rule

The sum of the currents entering any junction must equal the sum of the currents leaving that junction

Series

Charging A Capacitor

$$q(t) = C \mathcal{E}(1 - e^{-t/R C})$$

$$i(t) = \frac{\mathcal{E}}{R} e^{-t|R|C}$$

Charging A Capacitor $V_C = \mathcal{E}(1 - e^{-t|R|C})$

Discharging A Capacitor $q(t) = q_0 e^{-t/R C}$

$$i(t) = \frac{q_0}{R C} e^{-t|R|C}$$

Physics Reference

Electricity & Magnetism

James Lamberg

Thysics were reference	Electri	v		
Magnetic Fields, B Opposite in				meter
$\mathbf{F}_{B} = q \mathbf{v} \times \mathbf{B}$ Like magn	netic poles repel	$\begin{vmatrix} a & v & B = \frac{m \cdot v^2}{n} \end{vmatrix}$	$v = \sqrt{2 q V}$	
Thumb Up, Pointer Pointing	V = E d	esonance Condition	$m = \frac{B^2 \ q \ x^2}{8V}$	
and Middle Finger Perpendicu	$\lim_{n \to \infty} \frac{B i}{n} f$	$= f_{osc}$	"" 8V	
Thumb = Magnetic Force Dire	ection $V l e$	$=\frac{\omega}{a}=\frac{1}{a}=\frac{q}{a}$	Force On A Current	Parallel currents
Thumb Up, Pointer Pointing and Middle Finger Perpendicu Thumb = Magnetic Force Direction Pointer = Velocity Direction		2 T 2 m	$d\mathbf{F}_{B} = i \ d\mathbf{L} \times \mathbf{B}$	attract and
Middle = Magnetic Field Dire	ction Magnetic Dipo	ole Moment Magne	etic Potential Energy	AntiParallel
Biot -Savart Law	$\mu = N \ i \ A, M$	foment $U(\theta) =$		currents repel
Like "Leo Bazaar"	$\mathbf{t} = \mathbf{\mu} \times \mathbf{B}$		D: 1. II 13	D 1
$d\mathbf{B} = \frac{\mu_0}{4} \frac{i \ d\mathbf{s} \times \mathbf{r}}{r^3}$ $\boxed{\mu_0 = 4 \times 1}$ Center Of Circular Arc	$\frac{1}{10^{-7}} \frac{T}{m}$ Long Strain	ght Wire Torid	Right Hand	Kule
$\begin{array}{c c} & 4 & r^3 & \\ \hline & & & \\ & & & \end{array}$	$\mathbf{R} = \frac{\mu_0 \ i}{\mathbf{R}}$	$\mathbf{R} = \frac{\mu_0}{i}$	N_{turns} Grasp the ele	anent with thumb
		2	,	
$\mathbf{B} = \frac{\mu_0 i \phi}{4 R}$ Ideal S	Solenoid F	Force Between Two		ers curl in the
	rns per unit length	Parallel Wires		he magnetic field
Current Carrying Coil $\mathbf{B} = \mu_0$		$E = \underbrace{\mu_0}_{i_1} \underbrace{i_1}_{i_2} \underbrace{i_2}_{I}$	Ampére's Law	
1 3		$F = \frac{\mu_0 i_1 i_2}{2} L$	$\mathbf{OB} \ d\mathbf{s} = \mathbf{\mu}_0 \ i_{enclose}$	$_{d}$ $_{B} = \mathbf{B} d\mathbf{A}$
produces an electric field Faraday's Law Coil Of N Turns Faraday's Law				
Current Loop + Magnetic Field Torque $\mathcal{E} = \frac{d}{dt}$ $\mathcal{E} = -N \frac{d}{dt}$ $\mathcal{E} = $				
Inductance Solenoid Self Induced emf Rise Of Current (Inductor) Decay Of Current (Inductor)				
$ \left L = \frac{N}{i} \right \left L = \mu_0 n^2 A l \right \mathcal{L}_L = -L \frac{di}{dt} \qquad \left i = \frac{\mathcal{E}}{R} \left(1 - e^{-i \eta \tau_L} \right), \tau_L = \frac{L}{R} \qquad \left i = \frac{\mathcal{E}}{R} e^{-i \eta \tau_L} = i_0 e^{-i \eta \tau_L}, \tau_L = \frac{L}{R} \right $				
Magnetic Energy Magnetic Energy Density Mutual Inductance Gauss' Law, Magnetic Fields				
$\begin{bmatrix} 1 & 1 & i^2 \end{bmatrix}$ $\begin{bmatrix} B^2 & B^2 \end{bmatrix}$		$\int di_1$, $\int di$	$\begin{bmatrix} \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} & \mathbf{R} \end{bmatrix}$	n letter i felds
$U_B = \frac{1}{2}L i^2 \qquad u_B = \frac{B^2}{2\mu_0}$	ℓ ₂ = ·	$-M \frac{d}{dt} = \mathcal{E}_1 = -M \frac{d}{dt}$	$\frac{1}{t}$ $B - OB uA - O$,
Maxwell's Equations	Spin Magnetic Dipol	le Moment Bohr N	Magneton	
Gauss' Law For Electricity	$\mu_s = -\frac{e}{m} \mathbf{S}$ Potential Energy	$ \mu_B = -$	$ \begin{array}{c cccc} e & h \\ \hline 4 & m \\ \end{array} $ 9.27 × 10 ⁻²⁴ $ \begin{array}{c cccc} y \\ = +u & B \\ \end{array} $	$\frac{J}{T}$ Speed Of Light
$OE dA = \frac{q_{enc}}{\rho_{e}}$	Potential Energy	Potential Energ	<u>y</u>	
Gauss' Law For Magnetism	$U = \mu_s \mathbf{B}_{ext} = \mu_{s,z}$	- Frorb ext	r oro,z ext	
$\bigcirc \mathbf{B} d\mathbf{A} = 0$			pacitor Outside A C	Circular Capacitor
Faraday's Law	Dipole Moment $\mu_{orb} = \frac{e}{2m} \mathbf{L}_{orb}$	$\mathbf{B} = \frac{\mu_0 i_d}{2 R^2} r$	$\mathbf{B} = \frac{\mu_0 i_d}{2 r}$	
$OE ds = \frac{d}{dt}$	$\mu_{orb} = -\frac{1}{2m} \mathbf{L}_{orb}$	Potential Po	otential LC Circu	ıit
Ampére-Maxwell Law	$\frac{\mu_{orb} - \frac{1}{2m} \mathbf{L}_{orb}}{\text{Displacement Curren}}$	nt Grential 1	L_i	
$O\mathbf{B} d\mathbf{s} = \mu_0 \ \epsilon_0 \frac{d_E}{dt} + \mu_0 \ i_{enc}$	$i_d = \varepsilon_0 \frac{d_E}{dt}$	$U_E = \frac{q}{2C}$	$U_B = \frac{L}{2}$ $\omega_{LC} = \sqrt{L}$	L C
dt dt	$i = i_d$, Capacitor			Page 2
				rage &

Physics Reference

Electricity & Magnetism

James Lamberg

LC Circuit

$$L\frac{d^{2}q}{dt^{2}} + \frac{q}{C} = 0$$

$$q(t) = Q \cos(\omega t + \phi)$$

$$i(t) = \pi Q \sin(\omega t + \phi)$$

$$U_E = \frac{Q^2}{2C} \cos^2(\omega t + \phi)$$

$$U_B = \frac{Q^2}{2C} \sin^2(\omega t + \phi)$$

$$\begin{bmatrix} LC \text{ Circuit} \\ L\frac{d^2q}{dt^2} + \frac{q}{C} = 0 \\ q(t) = Q \cos(\omega \ t + \phi) \\ i(t) = -\omega \ Q \sin(\omega \ t + \phi) \end{bmatrix} \begin{bmatrix} U_E = \frac{Q^2}{2C} \cos^2(\omega \ t + \phi) \\ U_B = \frac{Q^2}{2C} \sin^2(\omega \ t + \phi) \end{bmatrix} \begin{bmatrix} RLC \text{ Circuit} \\ L\frac{di}{dt} + i \ R + \frac{Q}{C} = 0 \\ q(t) = A \ e^{-it/2\tau_{LR}} \cos(\omega_{LC} \ t - \phi) \end{bmatrix} \begin{bmatrix} \omega = \sqrt{\omega_{LC}^2 - \frac{1}{2\tau_{LR}}} \end{bmatrix}$$

$$\boxed{\tau_{LR} = \frac{L}{R}} \begin{bmatrix} U = \frac{Q^2}{2C} e^{-it/\tau_{LR}} \end{bmatrix}$$

$$\omega = \sqrt{\omega_{LC}^2 - \frac{1}{2\tau_{LR}}^2}$$

$$\tau_{LR} = \frac{L}{R} U = \frac{Q^2}{2C} e^{-t/\tau_{LR}}$$

rms current

$$X_C = \frac{1}{\omega_d C}$$
Current Amplitude

$$X_{C} = \frac{1}{\omega_{d} C}$$
Current Amplitude
$$i = \frac{\mathcal{E}_{B}}{Z}$$

 $X_L = \omega_d L$ Average Power

Transformer Voltage
$$V_{2nd} = V_{1st} \frac{N_{2nd}}{N_{1st}}$$

$$i_{2nd} = i_{1st} \frac{N_{1st}}{N_{2nd}}$$

 $\begin{vmatrix} V_{rms} = \frac{V}{\sqrt{2}}, \mathcal{E}_{rms} = \frac{\mathcal{E}_B}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} P_{av} = \mathcal{E}_{rms} & i_{rms} & \cos(\phi) \\ \hline \text{Transformer Voltage} \end{vmatrix}$ $\begin{vmatrix} P_{av} = \mathcal{E}_{rms} & i_{rms} & \cos(\phi) \\ \hline \text{Transformer Current} \\ \vdots & \vdots & N_{1m} \end{vmatrix}$

Average Power relates to the heating effect RMS Power, while it can be calculated is worthless

 $R_{eq} = \frac{N_{1st}}{N_{2nd}} R$

Phase Constant

 $\tan(\phi) = \frac{X_L - X_C}{R}$

Maxwell's Equations (Integral)

$$OE dA = \frac{q_{enc}}{\varepsilon_0}$$

$$\mathbf{OB} \ d\mathbf{A} = 0$$

$$\bigcirc \mathbf{E} \ d\mathbf{s} = \frac{d}{dt} \ \mathbf{B} \ d\mathbf{A}$$

$$\mathbf{O} \mathbf{B} \ d\mathbf{s} = \mathbf{\mu}_0 \ i_{enc} + \frac{1}{c^2} \frac{d}{dt} \ \mathbf{E} \ d\mathbf{A}$$

Maxwell's Equations (Derviative

•
$$\mathbf{E} = \frac{\rho}{\varepsilon_0}$$

• **B** =
$$0$$

$$\times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

•
$$\mathbf{E} = \frac{\rho}{\varepsilon_0}$$

• $\mathbf{B} = 0$
× $\mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$
× $\mathbf{B} = \mu_0$ $\mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$

Sequences & Series

or for some n

James Lamberg

P and Q is P P or Q is P Qnot P is $\neg P$ if P then Q is P P if and only if Q is P

Existential Quantifier: x: for all/every xUniversal Quantifier: x: there exists x: element of

 $\neg P$ is contrapositive of Pand these are equivalent P is converse of P and these may not be equivalent

The set A is finite if A =

N = Set of positive int egers $\mathbf{Z} = Set of all integers$ $\mathbf{Q} = Set of rational numbers$ \mathbf{R} = Set of real numbers

A has exactly n members. The set A is infinite if A is not finite. Well Ordering Property of N:

Every nonempty subset of N has a smallest memeber

N. Mathematical Induction: 1) n N, P ve Base Case that P(1) is true 2) Assume P(n) and n = N, show P(n) P(n+1)

Principle of Mathematical Induction Let P(n) be a mathematical statement, if a) P(1) is true, and b) for every $n extbf{N}$ P(n) P(n+1) is true, then P(n) is true for every n

Strong Induction 1) P(1) is true, and 2) for each n N, if [each P(1),...,P(n) is true], then P(n+1) is true, then P(n) is true n

P is a necessary condition for Q:QP is a sufficient condition for Q: P

Q) is $P \neg Q$

The least upper bound, r, of A is the supremum Archimedean Property of N: of and is denoted sup A, that is $r = \sup A$ if: a) r is an upper bound of A, and b) r r' for every upper bound r' of A The greatest lower bound, r, of A is the infimum a least upper bound of and is denoted inf A, that is $r = \inf A$ if: a) r is a lower bound of A, and b) r r' for every upper bound r' of A sup A exists if A has a least upper bound and

N is not bounded above Completeness Axiom: Every nonempty subset of **R** which is bounded above has

For every positive real number x, there is some positive in teger n such that $0 < \frac{1}{x} < x$

For all real numbers x and y such that x < y, there is a rational number r such that x < r < y

Bounds: Suppose A is a set of real numbers 1) r **R** is an upper bound of A if no member of A is bigger than r: x A[x r]

inf A exists if A has a greatest lower bound

2) r **R** is a lower bound of A if no member of A is smaller than r: x A[r x]

3) A is bounded above if $r \in \mathbf{R}$ which is an upper bound of A

A is bounded below if $r \in \mathbf{R}$ which is a lower bound of A

A is bounded if if is bounded above and below

For all real numbers x and y such that x < y, there is an irrational number i_x such that $x < i_x < y$

There is no rational number r such that $r^2 = 2$ There is a real number x such that $x^2 = 2$

Let n N. For every real number y > 0there is a real number x > 0 such that $x^n = y$

Completeness Axiom Corollary: Every nonempty subset of **R** which is bounded below has a greatest lower bound

Sequences & Series

James Lamberg

A sequence is a function whose domain is a set of the form $\{n \mid Z : n \mid k\}$, where k If s is a sequence, s_n is the value of the sequence at arg ument n.

Given $\{a_n\}$ and $\{b_n\}$ with domain D: $\{a_n + b_n\}$ is $s_n = a_n + b_n$ n D $\{a_n - b_n\}$ is $s_n = a_n - b_n$ n D $\left\{ \left\{ a_{n} \quad b_{n} \right\} \text{ is } s_{n} = a_{n} \quad b_{n} \quad n \quad D \right\}$ $\frac{a_n}{b_n} \quad is \ s_n = \frac{a_n}{b_n} \quad n \quad D, b_n \quad 0$

 $\begin{cases} c & a_n \end{cases} \text{ is } s_n = c \quad a_n \quad n \quad D$ If a sequence is convergent, then it is bounded

Definition of a Limit:

Let L be a real number.

 $\lim s_n = L$ iff

R.

$$\lim_{n} s_{n} = L \quad iff$$

$$\varepsilon > 0 \quad n_{0} \quad n \quad n_{0} \left[\left| s_{n} - L \right| < \varepsilon \right]$$

The sequence s converges to L if $\lim s_n = L$.

The sequence s is convergent if there is some L such that s converges to L.

The sequence s is divergent if is is not convergent

If $\lim s_n = L_0$ and $s_n = L_1$, then $L_0 = L_1$

The sequence $\{s_n\}$ is bounded if there is some r \mathbf{R} such that $|\mathbf{s}_n|$ r

for all n in the domain of $\{s_n\}$.

Suppose $\lim_{n \to \infty} L_1$, and $\lim_{n \to \infty} L_2$, and c

- a) $\lim(s_n + t_n) = L_1 + L_2$
- $|b\rangle \lim (c s_n) = c L$
- $|c\rangle \lim (s_n \ t_n) = L_1 \ L_2$
- d) $\lim \frac{s_n}{t_n} = \frac{L_1}{L_2}$, $L_2 = 0$ and $n[t_n = 0]$

Suppose that for all sufficiently large n,

If $\lim a_n = L$ and $\lim a_n = L$ then $\lim b_n = L$

 $|If \lim |s_n| = 0$, then $\lim_{n \to \infty} |s_n| = 0$

Suppose: 1 i $\mathbf{m}_{a} = L$, and f is a function which is continuous at L, and for each n, a_n is in the domain of f. Then $\lim f(a_n) = f(L)$

f is continuous at x if for any $\varepsilon > 0$ there exists some $\delta > 0$ so that if $|z - x| < \delta$, then $|f(z) - f(x)| < \varepsilon ||of in tegers$ **Q**. Or**R** $= {sup <math>A | A$

The set of reals **R** is the completion of the set

Let $s_n = f(n)$. If $\lim_{x} f(x) = L$, then $\lim_{x} s_n = L$ Let $s_n = f(n)$. If $\lim_{x \to 0^+} f(x) = L$, then $\lim_{x \to 0^+} s_n = L$ $\lim_{x \to 0^+} f(x) = L$, then $\lim_{x \to 0^+} s_n = L$ $\lim_{x \to 0^+} s_n = L$

The sequence $\{s_n\}$ is: increasing if for all n, s_n s_{n+1} strictly increasin g if for all n, $s_n < s_{n+1}$ decreasing if for all n, s_n s_{n+1} strictly decreasing if for all n, $s_n > s_{n+1}$ monotonic if any of the above are true

 $\{s_n\}$ converges iff it is bounded.

Suppose $\{s_n\}$ is monotonic. Then Recursively Defined Sequence is defined in terms of s_n for each n.

The sequence $\{s_n\}$ is a Cauchy sequence *if for every* $\varepsilon > 0$, there is some n_0 such that $|s_m - s_n| < \varepsilon$ for all m, $n - n_0$

f is continuous and x a If $\int_{a} |f(x)| dx$ converges then f(x)dx converges

Cauchy sequences are bounded and converge

 $f(x)dx = \lim_{n \to \infty} s_n = \lim_{n \to \infty} f(x)dx$ Geometric Series: a and r are real

 $a r^i$, with r being the ratio

If $\lim a_i = 0$, then a_i is divergent

Comparison Test

$$0 \quad f(x) \quad g(x), x \quad a$$

i) If f(x)dx converges, then g(x)dx converges

and
$$f(x)dx = g(x)dx$$

ii) If f(x)dx diverges, then g(x)dx diverges

i) Suppose a_i is convergent, for $c \in R$,

$$\begin{array}{ccc}
c & a_i = c & a_i \\
 & & & i=1
\end{array}$$

ii) If a_i is convergent, and b_i is convergent

then $(a_i + b_i)$ is convergent and:

$$(a_i + b_i) = a_i + b_i$$

Integral Test

f is continuous and decreasing on the interval [1] and f(x) = 0 for x = 1

f(n) converges iff f(n) converges.

 a_n is absolutely convergent if

 $|a_n|$ is convergent

So a_n is convergent

 $\frac{1}{x^{p}}dx \ converges \ if \ p > 1$ and diverges if p = 1

 $\frac{1}{x^p} converges if p > 1$ and diverges if p = 1

Comparison Test 0 a_n b_n $\{a_n\}$ and $\{b_n\}$ are sequences

If b_n converges then a_n converges

If a_n diverges then b_n diverges

Given a sequence $\{A_n\}$ we form $\{S_n\}$ by:

$$S_n = \int_{1}^{n} a_i$$

i) If $\{S_n\}$ converges, we say the infinite series:

 a_i converges to $a_i = \lim_{i=1}^n S_i$, the value of the series

ii) If $\{S_n\}$ diverges, we say the infinite series:

 a_i diverges also.

iii) If $\lim_{n} = we$ say: $\prod_{i=1}^{n} a_i = and$

the series diverges to inf inity.

 $|iv\rangle$ If $\lim S_n = we say: \prod_{i=1}^n a_i = -and$

the series diverges to min us in finity.

i) If r<1 then the geometric series

 $a r^{i}$ converges to $\frac{a}{1-r}$

ii) If r 1 and a 0 then

 $a r^{i}$ diverges

Ratio Test For all $n, 0 < a_n$

If $\lim \frac{a_{n+1}}{a_n} = L < 1$ then a_n converges

If $\lim \frac{a_{n+1}}{a_n} = L > 1$ or then a_n diverges

Root Test For all $n, 0 < a_n$

If $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = L < 1$ then a_n converges

If $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = L > 1$ or then a_n diverges

n – th term test for divergence

If $\lim_{n \to \infty} 0$, then a_n is divergent

Sequences & Series

James Lamberg

Limit - Comparison Test

For all n, $0 < a_n$ and $0 < b_n$

$$If \lim \frac{a_n}{b_n} = L > 0, L$$

 a_n converges then b_n converges

$$If \lim \frac{a_n}{b_n} = 0$$

If
$$\lim \frac{a_n}{b_n}$$

 b_n diverges then a_n diverges

Alternating - Series Test

For all $n, a_n > 0$

 $\{a_n\}$ is a strictly decreasin g sequence

Then $(-1)^{n+1}a_n$ is convergent

The int erval of convergence

of the power series $a_n x^n$

is the set

 $x: a_n x^n$ is convergent at x

The power series $a_n x^n$ converges at the

real number x_1 if $a_n x_1^n$ converges and

diverges at x_1 if $a_n x_1^n$ diverges

Differentiation and Integration of power series can be done term by term

 $a_n x^n$, one of For a given power series

the following is true:

The power series converges only at x = 0The power series absolutely converges at all xThere is a number r > 0 such that the power series converges absolutely at all x such that |x| < r and diverges at all x such that |x| > r

If the power series $a_n x^n$ is:

convergent only at x = 0 then the radius of convergence is 0

Absolutely convergent at all x, then the radius of convergence is

Converges absolutely at all x such that |x| < r and diverges at all x such that |x| > r, then the radius of convergence is r

Abel' s Theorem

Suppose
$$f(x) = a_n x^n$$

$$for |x| < 1$$

$$f(x) = a_n x^n \text{ for } |x| < r$$

$$Then for all \ n = 0, \ a_n = \frac{f^{(n)}(0)}{n!}$$

If a_n converges, then

$$\lim_{x \to 1} f(x) = a_n$$

Suppose that r > 0, and

$$f(x) = a_n x^n \text{ for } |x| < r$$

$$Iff(x) = a_0 + a_1 x + \dots + a_n x^n + \dots for |x| < r$$

$$f(x) = f(0) + f'(0)x + f^{(n)}(0) \frac{x^n}{n!} + \dots$$

Assume that f has continous derivatives of order n + 1 on [0, x], then

$$R_{n}(x) = \frac{1}{n!} \int_{0}^{x} f^{(n+1)}(t)(x-t)^{n} dt$$

SAT IIC

James Lamberg

Repeated Percent Increase

Final Amount = Original $(1 + rate)^{\# changes}$

Repeated Percent Decrease

Final Amount = Original $(1 - rate)^{\#changes} \left| \log_b(x^n) \right| = n \log_b(x)$

Change $\frac{\text{Change}}{\text{Original}} = \frac{x}{100}$

Percent Change $\log_b(xy) = \log_b(x) + \log_b(y)$ $\log_b \frac{x}{y} = \log_b(x) - \log_b(y)$

30-60-90 Triangle 1: $\sqrt{3}$: 2 45-45-90 Triangle $1:1\sqrt{2}$

 $\ln n = x$ $\left| (x + y)^2 = x^2 + 2xy + y^2 \right| \sqrt{y = ax^2 + bx + c}$

 $\begin{vmatrix} \log_e n = x \\ e^x = n \end{vmatrix} \begin{vmatrix} (x - y)^2 = x^2 - 2xy + y^2 \\ (x + y)(x - y) = x^2 - y^2 \end{vmatrix} \begin{vmatrix} y - ax + bx + c \\ x = -b \pm \sqrt{b^2 - 4ac} \\ 2a \end{vmatrix}$

 $AverageSpeed = \frac{TotalDistance}{TotalDistance}$ TotalTime

distance = rate time

Area of Square $A = s^2 \text{ or } A = \frac{d^2}{2}$

TriangleInternalAngles = 180°

Freds Theorem

2 II lines intersected make only 2 unique angles 3rd triangle side between sum and difference of other two

 $a^2 + b^2 = c^2$

Triagle Area

 $A = \frac{1}{2}bh$

Equilateral Triagle Area

 $A = \frac{s^2 \sqrt{3}}{4}$

Domain: x-valuesRange: v - values Roots: f(x) = 0

 $\log_b n = x$

Sum Internal Polygon w/n Sides $SumAngles = (n-2)180^{\circ}$

v = mx + b $|y-y_1|=m(x-x_1)$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Area of Trapezoid $midpt = \frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2} \quad | A = \frac{b_1 + b_2}{2} h$

Rect Solid Surface Area SA = 2lw + 2wh + 2lhLong Diagonal

 $a^2 + b^2 + c^2 = d^2$

deg rees radians Parabola $y = a(x - h)^2 + k$ Circle $r^2 = (x - h)^2 + (y - k)^2$

Ellipse $1 = \frac{\left(x - h\right)^2}{a^2} + \frac{\left(y - k\right)^2}{b^2}$

Hyperbola $1 = \frac{(x-h)^2}{g^2} - \frac{(y-k)^2}{h^2}$

 $\sin = \frac{opp}{hyp}$ $\cos = \frac{adj}{hyp}$ $\tan = \frac{opp}{adj} = \frac{\sin}{\cos}$ $\csc = \frac{1}{\sin} \sec = \frac{1}{\cos} \cot = \frac{1}{\cos}$ $\sin^2 x + \cos^2 x = 1$

 $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$ $|c^2 = a^2 + b^2 - 2ab\cos\gamma$

Work Done=rate of workime $r^2 = x^2 + v^2$

 $\tan\theta = \frac{x}{}$

x-axis symmetry $x = r\cos\theta \quad y = r\sin\theta \left| \int f(x) \text{ and } -f(x) \right| x$ Infinite Geometric

 $Sum = \frac{a_1}{1-r}, -1 < r < 1$

Arithmetic Series $a_n = a_1 + (n-1)d$ Arithmetic Sum $Sum = n \frac{a_1 + a_n}{2}$

Even: f(x) = f(-x), y - axis | Contrapositive

|Odd:-f(x)=f(-x),origin| $|A B \sim B$

Standard Deviation = $\sigma = \sqrt{1}$

Find the mean of the set

Find difference between each value and mean

Square differences

Average results

Square root the average

Probability(x) = $\frac{\text{Number of outcomes that are x}}{\text{--}}$ Total possible outcomes

Probabilty of Multiple Events

 $P(x_n) = P(x_1) P(x_2) P(x_3) P(x_4)...$

Group Problem

 $Total = Group_1 + Group_2 + Neither - Both$

Mean: Average of set elements

Mode: Most Often

Range: Highest-Lowest

Geometric Series $a_n = a_1 r^{(n-1)}$ Geometric Sum

 $Sum = \frac{a_1(1-r^n)}{1}$

Median: Middle Value

 $V = s^3$ $SA = 6s^2$ Cube $LongDiagonal = s\sqrt{3}$ Cylinder $V = r^2 h$ $SA = 2 r^2 + 2 rh$

Page 1