1. 设四维随机变量
$$\mathbf{X} = (X_1, X_2, X_3, X_4) \sim N(\mu, C)$$
, 其中 $\mu = (2, 1, 1, 0), C = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & 3 & 4 & 3 \\ 3 & 4 & 3 & 2 \\ 3 & 3 & 2 & 1 \end{bmatrix}$, 试求 $\mathbf{Y} = (2X_1, X_1 + 2X_2, 2X_3 + X_4)$ 的分布。

- 2. 设 X 和 Y 是相互统计独立的 Gauss 随机变量,均服从 $N(0,\sigma^2)$,设 Z=|X-Y|,求 E(Z) 和 $E(Z^2)$ 。
- 3. n 维正态分布随机矢量 $\xi^T = (\xi_1, \xi_2, ..., \xi_n)$,分量的均值 $E(\xi_i) = i, i = 1, 2, 3, ..., n$ 。分量间的协方差为 $b_{m,i} = n |m i|, m, i = 1, 2, 3, ..., n$ 。设有随机变量 $\eta = \sum_{i=1}^n \xi_i$,求 η 的特征函数。
- 4. 设 ξ_1, ξ_2 为相互独立、均值为 0、方差为 1 的正态分布随机变量。定义二维随机矢量 $\eta^T = (\eta_1, \eta_2) = \left\{ \begin{array}{l} (\xi_1, |\xi_2|), & \xi_1 \geqslant 0 \\ (\xi_1, -|\xi_2|, & \xi_2 < 0 \end{array} \right., \ \text{试证:}$
 - (1) η_1 和 η_2 都是正态分布的
 - (2) $\eta^{T} = (\eta_{1}, \eta_{2})$ 不是二维正态分布
- 5. 设 $\{X_k, k=1,\cdots,2n\}$ 为独立同分布的 Gauss 随机变量,均服从 $N(0,\sigma^2)$,若

$$Z = \frac{\sqrt{\pi}}{2n} \sum_{k=1}^{n} |X_{2k} - X_{2k-1}|$$

求 E(Z) 和 $E(Z^2)$ 。

6. X,Y 服从二元高斯分布,

$$(X,Y) \sim N\left(0, \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}\right)$$

若 Z = X - rY, 证明 Y 和 Z 独立, 并写出 Y, Z 的联合分布 $f_{YZ}(y,z)$ 。

- 7. 设 X,Y 相互独立,均服从标准正态分布,求:
 - $(1)E[(X-3Y)^3|(2X+Y=3)]$
 - $(2)E[(X-3Y)^2(2X+Y)]$
- 8. 设 X,Y 为独立高斯 $N(0,\sigma^2)$ 随机变量,对随机过程 X(t) 求随机变量 X_1,X_2 的数学期望。其中,X(t)=Xt+Y, $X_1=\max_{0\le t\le 1}X(t), X_2=\int_0^1X^2(t)dt$ 。
- 9. 设 X(t) 是均值为零的平稳高斯过程, 用 $Y(t) = X^2(t)$ 定义一个新的随机这程, 求证:

$$R_Y(\tau) = R_X^2(0) + 2R_X^2(\tau)$$

(提示: 利用特征函数来计算随机变量的矩,可证明若 $X = (X_1, X_2, X_3, X_4)^{\mathrm{T}}$ 服从联合 Gauss 分布, 且各分量的均值均为 0 ,则有 $E(X_1X_2X_3X_4) = E(X_1X_2)E(X_3X_4) + E(X_1X_3)E(X_2X_4) + E(X_1X_4)E(X_2X_3)$)

10. 设 X(t) 为平稳高斯过程, 其均值为零, 自相关函数 $R(\tau)=e^{-1\tau 1}$, 求随机变量 Y

$$Y = \int_0^1 X(t)dt$$

的概率密度函数 $p_Y(y)$ 。

- 11. 设 X(t) 为一平稳高斯过程, $X(t) \sim N(0,1)$, 试求一无记忆系统 g(x), 使它的输出 Y(t) = g(X(t)) 服从 (a,b) 上的均匀分布.
- 12. 设 $X(t) = A\cos\omega_0 t + B\sin\omega_0 t (-\infty < t < +\infty)$. 其中 A 和 B 是相互独立都服从 $N(0,\sigma^2)$ 的随机变量.
 - (1) 证明 $\{X(t), -\infty < t < +\infty\}$ 为高斯过程
 - (2) 写出 X(t) 的概率密度函数和特征函数