

```
lista mezda (Elista x listas, int n)
      thistal; thista auxs, auxz; inti;
     if In==2) l=mezcla2 (listan [0], listan [1]);
     else f
            aux1 = mezcla 2 (listas [0], listas [1]); /x mezcla de
            for lizz; i Ln-1; i++) /* mezela de los restautes
                                                 menos el altimo #/
                if (i/2) \ /* impai */
                             aux 1 = mezula 2 (listas [i], aux2);
                            destruir (aux2);
                else 1 (1 par 1/
aux 2 = mezcla 2 (listas [i], aux 1);
                        destruir (aux 1);
                           /x mercla del sitimo 1/
            if ((n-1)%2)
                    (= mezclaz (listos [(4-1)], aux 2);
                    destruir (aux Z);
            else
                    l=mezclaz (listos [(4-1)], aux1);
                    destruir (aux 1);
    return 1;
```

I sou vailidus estas funciona hash?

h (1<)= [</n]

h (1<)= 1

h (1<)= (</n>
h (1<)= 1/n) % n

Construir un aux que constença como etignetes les enteres del 1 al 12 y que tença la mayor prefendidad posible.

Juny Sole

5 51

Los empleados de una empresa se representante au una base de dibe por su unabre , DNF y Driman de identificación personal como identificación personal como identificación personal como de información adicional del empleado. Construir una estecha de tablas hasta que permita acceder en un humpo o (1) en media al registro de un empleado por malquiera de esos 3 campos teniendo en menta que un hay especio per luplicar los registros.

Monde

Mo

Febren 2013

Problema 5

en lada subeta de AVL en Ingar de listas

- of ilual re la eficiencia (peur caso) de la función buscar?
 - v Mushar la table hash multiate de inverter

×						The second second		The second secon		
hr)	6	2	6	6	2	2	3	2	2	lh(x) {

Tysertar (es claves 412, 41, 8, 34, 51, 20, 43, 39)
en una table hash comada de tamaño 11
usando como fumisio hash hash hash sembling doble
mando como funcion hash semudana:
h (K)=7-(K/,7) i Rendimento?

	12	144	18	134	1 5/	1 20	1 43	1391
4 L/C)	4	8	8	1	1		10	1
holics	2	1	6	1	5	1	6	3
1		'		,	t		-	

	0	7
	1 12	7,1
2	34	7,2
3	8	1>2
4		1
5		†
6	39	1 2
7	51 -	1
8	44	1,1
9	20 -	1
(0	43 -	91
	The state of the s	

Rend = 10 = 1.25 int/lan

revenue la tabla con la eficiencia de les operaciones de les files en les solnectues de datos de les columnes. (T-> 141)

Con Congression	veil or	list.ord	ABB	SUL	Pila	THAL
Encourter usuimo						4
Eulouha unstimo						
# [9.5] 965						
Imprimir ordered.				\rightarrow	-	

	Veder	Lista	ABB	DUL	Pila	Valle Mark
Eurouhas un sujuro	0(1)	0(1)	orn	0(bzu)	o(n)	orm
Emouhar máximo	0(1)	0(1)	∂(n)	Ollyon)	0(n)	alnj
#Ca,57 acs	o(logus)	0(n)		**	o(n)	0(n)
Imprimer induced	0(n)	O(h)	oln)	0(n)	olnly	Olalan 1

+ Si'u algniture especial + + 0 (work (logge, # Ca. 5])) + + + con heapsort P. ej.

Junio 2010 5. 42

l'une de la s signientes funcionen hash te parce mai apropiada para interter elementes en una rasles hash abiente / remare ? i Re qu?

a) h(K)= K mod (MxN) M, N primes
b) h(K)= K² mod M M prime
c) h(K)= (M- (K mod M)) -d M prime

(a) MXN uves primo

(b) OK

(1) OK

Aqui beden la posiciones son validas

k/s M=0 -> h(k)= M-2

k/s M=M-1 -> h(k)= (M-(M-1))-d=0 J

Rango [0, M-1]

Sep - 2010

5.6 se afine el india madial de una table hash atierta como el número de cubetas de la table table multiplicado per el tamaño e la cubeta con mayor número de elementes. Construir un algoritmo para calculer dicho sudie medial

Agontino

- 1. reterminar el tamaño del vector (minuero de cubetas): n (v. size(1)
- 2. sutivar la fruccion size () para cada una de las listas VIII y aucontra el maxsize 3 multiplicar næ maxsize

93, 10, 29, 66, 1275

h, (K)=K%7
h; (K)= [h;-1 (1c)+ho(K)] %7 (=2,3.ho(K)=1+K%5

	3	10	29	66	123	
h.(K)	3	3	1	3	(
ho (K)	4	1	5	2	3	

h, (3)= 3%, 2=3
h, (10)=10%, 2=3
h, (24)=29%, 2=1
h, (8)=(6%, 2=3
h, (123)=(27%, 2=1

ho (3)= 1+3% S= 4
ho (16)= 1+10%, S= 1
ho (29)= 1+29% S= 5
ho (61)= 1+66% S= 2
ho (124)= 1+127 % S= 3

Colisiones $h_{2}(10) = [h, (10) + h_{0}(10)) / 37 = (3+1) / 37 = 9$ $h_{2}(66) = [h, (166) + h_{0}(66)) / 37 = (3+2) / 37 = 5$ $h_{2}(127) = [h, (127) + h_{0}(127)] / 37 = (1+3) / 37 = 9$ $h_{3}(127) = [h_{2}(127) + h_{0}(127)] / 37 = (9+3) / 37 = 9$

- 1. El TOS cola con prioridad us es más que un laso porticular del TOS cola
- 2. El orden en que les hojas se listan en los recomides pre, in y post en un stron Binant es el mismo en los 3 casos
- 3 Un sul priede reconstruirse de Journa univo a dado su reconido en inorden
- 4. Es imposible que un orbol Binario sea DVL g DPO a la vez
- 5. Bu un squema de hashing doble una prede ourrir que para 2 clava Kd \$102 ourra simulamente que [4(4)=4(102)

 (ho(102)=4(102)
- 6. Un analista tiene que resolver un problema de tamaño 200 y para ello utiliza un algoritmo 0(n²). Uno de sur volaboradores consigne obtene una solucion que es 0(n). El analista debe olvitarse de su primera solucion y usar la de su volaborador de mejor eficiencia en trempo

- 7. Si la ejicuencia de un algoritmo viene dada por la funcioù f(n)=1+2+··+n, ese algoritmo es o(max 41,?...44) es devir o(n)
- 8. Puede haurse esta définition stack zint >: iterator P:
- 9 Un spo puede reconstruirse de forma univola dedo su reconido en portorden
- 10. Eu un orgnema de hashing dobte a cowedo usar como funcion hash secundaria La funcion:
 ho (3)=[(B-1)-(x/6B)]/6 B B primo

1. Falso

2. Verdadero. El orden en que los hijos se listan en los 3 recomidos es el mismo y en particular el orden de las hojas (simpre de hajda a droha)

3. Falsu.

4. Verdadoro salvo casos degenorados (to des les claves i gnales o avboles de profundidad 1). Las condiciones de definicions de los 2 árboles dem lugar a una contradicción:

5 falso, si que puede ocumir:

4 (K) = K/, 5 40 (K) = 3 - 15/03

K	8	18
4 (K)	3	3
4000	3	3
		7

Lickick/07

K	70	35
4(K)	0	0
40111	1	4

6 Falso. La élicienda en espanos las constantes pueden influir en njemplos de tamaño pequeño

- 7. Falso. El algoritus el 0 (n2)
- 8 Falso. Una pila no tiene iteradores
- 9. Verdadero. Por la condicion geométria us los APO
- 16. No 15 una funcion conceta pague puede llegar a touver el valor Ø.

4. Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamaño de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, $f(n) \times 10^{-6}$ sg.)

			t		
f(n)	1 sg.	1 h.	1 semana	1 año	1000 años
$\log_2 n$	$\approx 10^{300000}$	10 1012	10 1.82 1000	1094.9104	
n	106	3.6 108	6048 108	$\approx 3.15 \times 10^{\frac{2}{5}}$	3.151015
$n \log_2 n$	62.74	$\approx 1.33 \times 10^8$	1.77 1010	7-98-1011	6.41.1014
n^3	3.3 -105	1533	8457	146645	3:1594-105
2^n	19	31.7	39,1	44.8	54.8
n!	10	12	15	17	19