CO250 Spring 2020

Jacky Zhao

June 8, 2020

1 Introduction

1.1 Abstract Optimization Problem

An abstract optimization problem (P) is of the following form:

- Given: a set $\mathbf{A} \subseteq \mathbb{R}^n$ and a function $f: \mathbf{A} \to \mathbb{R}$
- Goal: find $x \in \mathbf{A}$ that minimizes/maximizes f
- Bad news: Hard to solve & may not be well defined

We look at 3 special cases of (P) in this course:

- 1. Linear Programming (LP)
 - A is simply given by *linear* constrains, and f is a *linear* function
- 2. Integer Programming (IP)
 - Same as above, but now we want max/min over the *integer* points in A
- 3. Non-linear Programming (NLP)
 - A is given by non-linear constrains, and f is a non-linear function

1.1.1 Example: Water Tech

WaterTech produces 4 products, $P = \{1, 2, 3, 4\}$, from the following resources:

- time on two machines
- skilled and unskilled labour

The following table gives precise requirements:

Product	Machine 1	Machine 2	Skilled Labour	Unskilled Labour	Unit Sale Price
1	11	4	8	7	300
2	7	6	5	8	260
3	6	5	5	7	220
4	5	4	6	4	180

Restrictions:

- WaterTech has 700h on machine 1 and 500h on machine 2 available
- it can purchase 600h of skilled labour at \$8 per hour and at most 650h of unskilled labour at \$6 per hour

Question:

How much of each product should WaterTech produce in order to maximize profit?

1.2 Ingredients of a math model:

- Decision variables: Capture unknown information
- Constraints: Describe which assignments to variables are feasible
- Objective function: A function of the variables that we would like to maximize/minimize

1.3 Variables

WaterTech needs to decide how many units of each product to produce, so introduce some variables:

- x_i for number of labour to purchase
- y_s , y_u for number of hours of skilled/unskilled labour to purchase

1.4 Constrains

What makes an assignment to $\{x_i\} \in P, y_s, y_u$ a feasible assignment?

For example, a production plan described by an assignment may not use more than 700h of time on machine 1

$$11x_1 + 7x_2 + 6x_3 + 5x_4 \le 700$$

Similarly, we may not use more than 500h of machine 2 time

$$4x_1 + 6x_2 + 5x_3 + 4x_4 \le 500$$

Producing x_i units of product $i \in P$ must require less than y_s units of skilled labour

$$8x_1 + 5x_2 + 5x_3 + 6x_4 \le y_s$$

Similar story for unskilled labour:

$$7x_1 + 8x_2 + 7x_3 + 5x_4 \le y_u$$

Since amount of labour that can be purchased is limited, we also have

$$y_s \le 600$$

$$y_u \le 650$$

1.5 Objective Function

Revenue from sales:

$$300x_1 + 260x_2 + 220x_3 + 180x_4$$

Cost of labour:

$$8y_s + 6y_u$$

Objective Function:

maximize
$$300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_s - 6y_u$$

The complete model for WaterTech problem is:

$$\begin{array}{ll} \max & 300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_s - 6y_u \\ \text{s.t} & 11x_1 + 7x_2 + 6x_3 + 5x_4 \leq 700 \\ & 4x_1 + 6x_2 + 5x_3 + 4x_4 \leq 500 \\ & 8x_1 + 5x_2 + 5x_3 + 6x_4 \leq y_s \\ & 7x_1 + 8x_2 + 7x_3 + 5x_4 \leq y_u \\ & y_s \leq 600 \\ & y_u \leq 650 \\ & x_1, x_2, x_3, x_4, y_u, y_s \geq 0 \end{array}$$

Solution obtained via CPLEX is:

$$x = (16 + \frac{2}{3}, 50, 0, 33 + \frac{1}{3})^{T}$$

$$y_{s} = 583 + \frac{1}{3}$$

$$y_{u} = 650$$

$$Profit = 15433 + \frac{1}{3}$$

Notice that the solution is fractional, which may or may not be correct depending on the question

1.6 Correctness of Model

First, define some terminologies:

- Word description of problem
 - Similarly, a solution to the word description is an assignment to the unknowns
- Formulation
 - A solution to the formulation is an assignment to all of its variables

A solution feasible if all constrains are satisfied, optimal if no other feasible solution exists

One way to show correctness is to define a mapping between feasible solutions to the word description, and feasible solutions to the model, and vice versa.

2 Linear Program Model (LP)

2.1 Linear Functions

Affine Functions

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if $f(x) = \alpha^T x + \beta$ for $\alpha \in \mathbb{R}^n, \beta \in \mathbb{R}$

Linear Functions

• An affine function with $\beta = 0$

2.2 Linear Program

Linear Program

• the optimization problem

$$max/min\{f(x): f_i(x) \le b_i, \forall 1 \le i \le m, x \in \mathbb{R}^n\}$$

is a linear program if f is affine and $g_1, ..., g_m$ is finite number of linear functions

Some notes:

- dividing by variables is not allowed in LP
- can NOT have strict inequalities
- must have FINITE number of constraints

Example:

$$\max \quad \frac{-1}{x_1} - x_3$$
s.t.
$$2x_1 + x_3 < 3$$

$$x_1 + \alpha x_2 = 2 \qquad \forall \alpha \in \mathbb{R}$$

Going back to the WaterTech problem, the model we created was in fact a linear program!

2.3 LP Models: Multiperiod Models

A multiperiod model is a problem where:

- time is split into periods
- we have to make a decision in each period
- all decisions influences the final outcome

Example:

KW Oil is a local supplier of heating oil, it needs to decide how much oil to purchase in order to satisfy demand of its customers.

Month	1	2	3	4
Demand(l)	5000	8000	9000	6000
Price(\$/l)	0.75	0.72	0.92	0.90

Question: When should we purchase how much oil when the goal is to min overall total cost?

Additional Complication: The company has a storage tank that

- has a capacity of 4000 litres of oil
- currently (beginning of month 1) contains 2000 litres of oil

Assumption: Oil is delivered at the beginning of the month, and consumption occurs int he middle of the month

Variables

- Need to decide how many litres of oil to purchase in each month i
 - make variable p_i for $i \in [4]$
- How much oil is stored in the tank at the beginning of month *i*?
 - make variable t_i for $i \in [4]$

Objective Function

Minimize cost of oil purchased

$$min 0.75p_1 + 0.72p_2 + 0.92p_3 + 0.90p_4$$

Constrains

We need

$$p_i + t_i \ge (\text{demand in month } i)$$

Balancing equation we get

$$p_i + t_i = (\text{demand in month } i) + t_{i+1}$$

So we have the following four constrains

$$p_1 + 2000 = 5000 + t_2$$
$$p_2 + t2 = 5000 + t_3$$
$$p_3 + t3 = 5000 + t_4$$
$$p_4 + t4 \ge 6000$$

Complete LP for KW Oil

$$\begin{array}{ll} \min & 0.75p_1+0.72p_2+0.92p_3+0.90p_4\\ \mathrm{s.t.} & p_1+2000=5000+t_2\\ & p_2+t2=5000+t_3\\ & p_3+t3=5000+t_4\\ & p_4+t4\geq 6000\\ & t_1=2000\\ & t_i\leq 4000 \qquad (i=2,3,4)\\ & t_1,p_i\geq 0 \qquad (i=1,2,3,4) \end{array}$$

Solving the LP gives the solution: $p = (3000, 12000, 5000, 6000)^T$ $t = (2000, 0, 4000, 0)^T$

3 Integer Program (IP)

Recall the WaterTech problem

$$\max 300x_1 + 260x_2 + 220x_3 + 180x_4 - 8y_s - 6y_u$$
s.t
$$11x_1 + 7x_2 + 6x_3 + 5x_4 \le 700$$

$$4x_1 + 6x_2 + 5x_3 + 4x_4 \le 500$$

$$8x_1 + 5x_2 + 5x_3 + 6x_4 \le y_s$$

$$7x_1 + 8x_2 + 7x_3 + 5x_4 \le y_u$$

$$y_s \le 600$$

$$y_u \le 650$$

$$x_1, x_2, x_3, x_4, y_u, y_s \ge 0$$

$$x = (16 + \frac{2}{3}, 50, 0, 33 + \frac{1}{3})^T$$

$$y_s = 583 + \frac{1}{3}$$

$$y_u = 650$$

$$Profit = 15433 + \frac{1}{3}$$

Fractional solutions are often not desirable! Can we force the solution to be integer?

Integer Program

- an integer program is a linear program with added integrality constraints for some/all the variables
- we call an IP mixed if there are integer and fractional variables, and pure otherwise
- the difference between LPs and IPs is subtle, but LPs are easy to solve, IPs are not!

Integer program is provably difficult to solve!

- An algorithm is efficient if its running can be bounded by a polynomial of the input size of the instance
- LPs can be solved efficiently
- IPs are very unlikely to have efficient algorithms!

3.1 IP Models: Knapsack

Example:

KitchTech Shipping is a company wishes to ship crates from Toronto to Kitchener. Each crate type has a weight and value, and the total weight of crates shipped must not exceed 10,000 lbs.

Goal: Maximize the total value of shipped goods.

Type	1	2	3	4	5	6
weight (lbs)	30	20	30	90	30	70
value (\$)	60	70	40	70	20	90

Variables:

One variable x_i for the number of crates of type i to pack.

Constraints:

The total weight of crates picked must not exceed 10000 lbs.

$$30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$$

Objective function:

Maximize the total value

$$max$$
 $60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$

Complete IP model for KitchTech Shipping:

max
$$60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$$

s.t. $30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$
 $x_i \ge 0$ $(i \in [6])$
 $x_i \text{ integer } (i \in [6])$

Let's make this shit more complicated with more rules... Suppose that:

- 1. we must not send more than 10 crates of the same type
- 2. we can only send crates of type 3, if we send at least 1 crate of type 4

Note that we can send at most 10 crates of type 3 by the previous constraints! By adding the following constraint, the added requirements is fulfilled:

$$x_3 \le 10x_4$$

proving correctness of the added constraint:

- $x_4 \ge 1 \rightarrow \text{new constraint is redundant}$
- $x_4 = 0 \rightarrow \text{new constraint becomes } x_3 \leq 0$

Suppose we add another rule where we must:

- 1. take a total of at least 4 crates of type 1 or 2, or
- 2. take at least 4 crates of type 5 or 6

strategy:

Create a new variable y such that:

- $y = 1 \to x_1 + x_2 \ge 4$
- $y = 0 \rightarrow x_5 + x_6 \ge 4$
- and force y to take on value 0 or 1

So we add the following constraints:

- $x_1 + x_2 \ge 4y$
- $x_5 + x_6 \ge 4(1 y)$
- $0 \le y \le 1$
- y integer

The variable y we added is called a binary variable. These are very useful for modelling logical constraints of the form:

• Condition (A or B) and $C \to D$

So the finalized model would be:

$$\max \quad 60x_1 + 70x_2 + 40x_3 + 70x_4 + 20x_5 + 90x_6$$
s.t.
$$30x_1 + 20x_2 + 30x_3 + 90x_4 + 30x_5 + 70x_6 \le 10000$$

$$x_3 \le 10x_4$$

$$x_1 + x_2 \ge 4y$$

$$x_5 + x_6 \ge 4(1 - y)$$

$$x_i \ge 0 \qquad (i \in [6])$$

$$0 \le y \le 1$$

$$y \text{ integer}$$

$$x_i \text{ integer} \quad (i \in [6])$$

3.2 IP Models: Scheduling

Example:

The neighborhood coffee shop is open on workdays. The daily demand for workers is given in the table. Each worker works for 4 consecutive days and has one day off.

Goal: Hire the smallest number of workers so that the demand can be met

Mon	Tues	Wed	Thurs	Fri
3	5	9	2	7

Variables:

Introduce variable x_d for every $d \in \{M, T, W, Th, F\}$ counting the number of people to hire with starting day d

Objective function:

Minimize the total number of people hired:

$$min$$
 $x_M + x_T + x_W + x_{Th} + x_F$

Constraints:

We need to ensure that enough people work on each of the days.

Question: Given a solution, how many people work on Monday?

Answer: All but those that start on Tuesday, i.e.

$$x_M + x_W + x_{Th} + x_F$$

And it must be greater than or equal to the number of workers required So the complete LP is:

$$\begin{array}{ll} \min & x_M + x_T + x_W + x_{Th} + x_F \\ \mathrm{s.t.} & x_M + x_W + x_{Th} + x_F \geq 3 \\ & x_M + x_T + x_{Th} + x_F \geq 5 \\ & x_M + x_T + x_W + x_F \geq 9 \\ & x_M + x_T + x_W + x_{Th} \geq 2 \\ & x_T + x_W + x_{Th} + x_F \geq 7 \\ & x \geq 0, x \text{ integer} \end{array}$$

4 Optimization on graphs

4.1 Graph Theory 101:

A graph G consist of:

- vertices $u, w, ... \in V$ (circles)
- edges $uw, wz, ... \in E$ (lines connecting circles)

Two vertices u and v are adjacent if $uv \in E$. Vertices u and v are the endpoints of edge $uv \in E$

An edge $e \in E$ is incident to $u \in V$ if u is an endpoint of e.

The eage e \(\mathcal{D} \) is incident to \(a \in \colon \) if \(a \text{ is all chapoling} \)

An s, t - path in G = (V, E) is a sequence

$$v_1v_2, v_2v_3, v_3v_4, ..., v_{k-2}v_{k-1}, v_{k-1}v_k$$

Where

- $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and
- $v_1 = s, v_k = t$ and $v_i \neq v_j$ for all $i \neq j$ Without this, it is called an s,t-walk

The length of a path $P = v_1v_2, v_2v_3, v_3v_4, ..., v_{k-1}v_k$ is the sum of the lengths of the edges on P

$$c(P) = \sum (c_e : e \in P)$$

4.2 IP Models: Matchings

Example:

WaterTech has a collection of important jobs that it needs to handle urgently.

It also has 4 employees that need to handle these jobs.

Employees have different skill-sets and may take different amount of times to execute a job, note that some workers are not able to handle certain jobs!

Goal: Assign each worker to exactly one task so that the total execution time is smallest! We will rephrase this in the language of graphs.

Employees	Jobs				
Employees	1'	2'	3'	4'	
1	-	5	-	7	
2	8	-	-	4	
3	-	1	_	_	
4	8	-	3	-	

Create a graph with one vertex for each employee and job.

Add an edge ij with cost c_{ij} for $i \in E$ and $j \in J$ if employee i can handle job j in time c_{ij}

Matching

- A collection $M \subseteq E$ is matching if no two edges $ij, i'j' \in M(ij \neq i'j')$ share an endpoint.
- i.e. $\{ij\} \cap \{i'j'\} = 0$

For example:

- $M = \{14', 21', 32', 43'\}$ is a matching
- $M = \{14', 32', 41', 43'\}$ is NOT a matching

The cost of a matching M is the sum of costs of its edges:

$$c(M) = \sum (c_e : e \in M)$$

A matching M is perfect if every vertex v in the graph is incident to an edge in M Note: a perfect matching correspond to feasible assignments of workers to jobs!

More notations:

Use $\delta(v)$ to denote the set of edges incident to v, i.e.:

$$\delta(v) = \{e \in E : e = vu \text{ for some } u \in V\}$$

This definition is improved later!

For example:

- $\delta(2) = \{21', 24'\}$
- $\delta(3') = \{43'\}$

So another definition of a perfect matching is:

• Given $G = (V, E), M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$

So the IP will have a binary variable x_e for every edge $e \in E$, the idea is:

•
$$x_e = 1 \longleftrightarrow e \in M$$

So the constraints for perfect matching is:

For all $v \in V$, we need

$$\sum (x_e : e \in \delta(v)) = 1$$

The objective function would be:

$$\sum (c_e x_e : e \in E)$$

Complete IP for any perfect matching problem:

min
$$\sum (c_e x_e : e \in E)$$

s.t $\sum (x_e : e \in \delta(v)) = 1(v \in V)$
 $x \ge 0$, x is integer

For the example question, we have:

4.3 Shortest Path Problem

Input:

- Graph G = (V, E)
- Non-negative edge lengts c_e for all $e \in E$
- Vertices $s, t \in V$

Goal: Compute an s, t-path of the smallest total length

The shortest path problem is:

• Given: Graph G = (V, E), lengths $c_e \ge 0$ for all $e \in E$, and $s, t \in V$, compute an s, t-path of smallest total length

Useful Observation:

• Let $C \in E$ be a set of edges whose removal disconnects s and t

For example:

Let $C = \{sb, ab, at\}$, notice that removing all edges in C eliminates all paths from s to t. Therefore, every s, t-path must have at least one edge in C

A more precise definition of notation δ :

For $S \in V$, we let $\delta(S)$ be the set of edges with exactly one endpoint in S

$$\delta(S) = \{ uv \in E : u \in S, v \notin S \}$$

Examples:

1.
$$S = \{s\} \to \{sa, ab\}$$

2.
$$S = \{s, a\} \rightarrow \{ab, at, sb\}$$

3.
$$S = \{a, b\} \rightarrow \{sa, sb, at, bt\}$$

Definition of s, t-cut:

• $\delta(S)$ is an s, t-cut if $s \in S$ and $t \notin S$

Using the 3 $\delta(S)$ examples above, 1 and 2 are s,t-cuts, 3 is not

Remark:

- 1. if P is an s, t-path and $\delta(S)$ is an s, t-cut, then P must have an edge from $\delta(S)$
- 2. if $S \subseteq E$ contains at least one edge from every s, t-cut, then S contains an s, t-path

Prove #2 by contradiction:

- suppose S has an edge from every s, t-cut, but S has no s, t-path
- Let R be the set of vertices reachable from s in S: $R = \{u \in V : S \text{ has an } s, u \text{ path}\}\$
- $\delta(R)$ is an s, t-cut since $s \in R$ and $t \notin R$
- Note: there cannot be an edge $uv \in S$ with $u \in R$ and $v \notin R$. Otherwise v should have been in R!
- So $\delta(R) \cap S = \emptyset$
- Contradiction!

Generic IP for Shortest Path problem:

Variables:

We have one binary variable x_e for each edge $e \in E$. We want:

$$x_e = \begin{cases} 1 & : e \in P \\ 0 & : \text{ otherwise} \end{cases}$$

Constraints:

We have one constraint for each s, t-cut $\delta(U)$, forcing P to have an edge from $\delta(S)$

$$\sum x_e : e \in \delta(U)) \ge 1 \qquad \text{for all } s, t\text{-cuts } \delta(U)$$
 (1)

Objective Function:

$$\sum (c_e x_e : e \in E)$$

Complete Model:

min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(U)) \ge 1(U \subseteq V, s \in U, t \notin U)$
 $x_e \ge 0, x_e \text{ integer}$

Suppose $c_e > 0$ for all $e \in E$, then in an optimal solution, $x_e \le 1$ for all $e \in E$

- Suppose $x_e \ge 1$
- Then let $x_e = 1$. This is cheaper and maintains feasibility!

For binary solution x, define

$$S_x = \{e \in E : x_e = 1\}$$

Note: If x is a feasible for an IP, then S_x has at least one edge from every s, t-cut and S_x has a s, t-path, but S_x may contain more than just an s, t-path! Consider this diagram

again:

Let $x_e = 1$ for $e \in \{sa, ab, at\}$, and $x_e = 0$ otherwise. So $S_x = \{sa, ab, at\}$

x cannot be optimal for the IP because we can reduce S_x and get a better solution! i.e. let $x_ab=0$ and the solution is more efficient

So if x is an optimal solution for the IP and $c_e \geq 0$ for all $e \in E$ then S_x contains the edges of a shortest s, t-path

5 Nonlinear Programs (NLP)

A nonlinear program (NLP) is of the form:

min
$$f(x)$$

s.t. $g_1(x) \le 0$
 $g_2(x) \le 0$
...
 $g_m(x) \le 0$