

Report No: CCISE180806201

FCC REPORT

(UNII)

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE UE

Model No.: u4G-UE1000

Trade mark: BaiCells

FCC ID: 2AG32U4GUE1000

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 15 Aug., 2018

Date of Test: 15 Aug., to 20 Aug., 2018

Date of report issued: 21 Aug., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Aug., 2018	Original

Tested by: Quen (hen Date: 21 Aug., 2018

Test Engineer

Reviewed by: Date: 21 Aug., 2018

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
	TEST SUMMARY	
-		
5	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T	5
5.3	B TEST ENVIRONMENT AND MODE	6
5.4		
5.5	MEASUREMENT UNCERTAINTY	6
5.6		
5.7	7 LABORATORY FACILITY	6
5.8		
5.9	TEST INSTRUMENTS LIST	7
6	TEST RESULTS ANDMEASUREMENT DATA	8
6.1	ANTENNA REQUIREMENT	8
6.2		
6.3	3 CONDUCTED OUTPUT POWER	12
6.4	OCCUPY BANDWIDTH	16
6.5		
6.6	BAND EDGE	24
6.7	7 Spurious Emission	27
(6.7.1 Restricted Band	27
(6.7.2 Unwanted Emissions out of the Restricted Bands	30
6.8	FREQUENCY STABILITY	36
7	TEST SETUP PHOTO	39
8	FUT CONSTRUCTIONAL DETAILS	41

4 Test Summary

407 (a) Pass
Pass Pass
(3)(iii) Pass
a)(5) Pass
(3)(iii) Pass
p)(1) Pass
200 Page
5.209 Pass
`

5 General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer:	Baicells Technologies Co., Ltd.
Address of Manufacture:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	LTE UE
Model No.:	u4G-UE1000
Operation Frequency:	5150MHz-5250MHz
Operation mode:	Fixed point-to-point operation(1TX*2RX)
Modulation type:	QPSK, 16-QAM, 64-QAM
Antenna type:	Internal Antenna
Antenna gain:	15 dBi
Power supply:	DC 48
AC adapter:	Model: GRT-4800625AL Input: AC100-240V, 50/60Hz, 1A Output: DC 48V, 625mA

Test Frequency List			
10MHz Bandwidth		20MHz Bandwidth	
Test Channel	Frequency	Test Channel	Frequency
Lowest channel	5155 MHz	Lowest channel	5160 MHz
Middle channel	5200 MHz	Middle channel	5200 MHz
Highest channel	5245 MHz	Highest channel	5240 MHz

Report No: CCISE180806201

5.3 Test environment and mode

Operating Environment:		
Temperature:	Normal: 15°C ~ 35°C, Extreme: -30°C ~ +50°C	
Humidity:	20 % ~ 75 % RH	
Atmospheric Pressure:	1008 mbar	
Voltage:	Nominal: 120Vac, Extreme: Low 102Vac, High 138Vac	
Test mode:		
QPSK mode	Keep the EUT communication with simulated station in QPSK mode	
16-QAM mode	Keep the EUT communication with simulated station in 16-QAM mode	
64-QAM mode	Keep the EUT communication with simulated station in 64-QAM mode	
	·	

Remark:

- The EUT has been tested under continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes with power adaptor, earphone and Data cable. Just the worst case position (H mode) shown in report.
- 2. Pre-scan all modulation mode (QPSK, 16QAM, 64QAM), and found the QPSK and 64QAM modulation mode are the worst case. So the worst case shown in report.

5.4 Description of Support Units

Test Equipment	Manufacturer	Model No.	Serial No.
/	/	/	/

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-10-2017	11-09- 2018
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-07-2018	03-06-2019
Signal Generator	R&S	SMR20	1008100050	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2017	10-30-2018
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2017	09-23-2018
Simulated Station	Rohde & Schwarz	CMW500	140493	06-24-2017	06-23-2018

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The EUT antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 15 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15.207			
Test Method:	ANSI C63.4: 2014			
TestFrequencyRange:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Limit (dRu\/)			
	Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test procedure	* Decreases with the logarith 1. The E.U.T and simulate			
	 a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			
1 001 1000 1100				

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15.407 (a) (3)(iii)	
Test Method:	ANSI C63.10: 2013 and KDB789033	
Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.	
Test setup:		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test Channel	Bandwidth (MHz)	Modulation	Conducted Output power (dBm)	Limit (dBm)	Result
Lowoot	10	QPSK	26.76	30.00	Pass
Lowest	10	64QAM	26.95	30.00	F d 5 5
Middle	10	QPSK	26.09	20.00	Door
Middle	Middle 10	64QAM 25.89		30.00	Pass
Highoot	Ll'al ant	QPSK	25.38	20.00	Pass
Highest	10	64QAM	25.46	30.00	Fa55
Louvoot	20	QPSK	26.76	20.00	Door
Lowest	20	64QAM	26.92	30.00	Pass
N 4: -1 -11 -	00	QPSK	26.25	20.00	Dana
Middle	20	64QAM	25.88	30.00	Pass
I limb a at	QPSK 26.46		26.46	20.00	Pass
Highest	20	20 64QAM 26.51 30.		30.00	

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15.407 (a)(5)						
Test Method:	ANSI C63.10:2013 and KDB 789033						
Limit:	I/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data:

leasurement Data.								
Test Channel	Bandwidth (MHz)	Modulation	26dB Occupy bandwidth (MHz)	99% Occupy bandwidth (MHz)				
Louroat	10	QPSK	17.34	8.9854				
Lowest	10	64QAM	19.95	9.1142				
Middle	10	QPSK	18.83	9.0209				
	10	64QAM	19.09	9.0555				
Highoot	10	QPSK	14.13	8.9630				
Highest	10	64QAM	15.99	8.9876				
Lawaat	20	QPSK	37.24	18.027				
Lowest	20	64QAM	35.71	18.016				
Mi al all a	20	QPSK	40.00	19.042				
Middle	20	64QAM	39.54	18.437				
Lliaboot	20	QPSK	35.66	18.328				
Highest	20	64QAM	34.31	18.072				

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15.407 (a) (3)(iii)					
Test Method:	ANSI C63.10:2013, KDB789033					
Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectric density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 2 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-N device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Mcasarcin						
Test Channel	Bandwidth (MHz)	Modulation	PSD (dBm)	Limit (dBm)	Result	
Lowest	Laurent 10	QPSK	16.708	17.00	Door	
Lowest	10	64QAM	16.852	17.00	Pass	
Middle	10	QPSK	16.355	17.00	Door	
ivildale	Middle 10	64QAM	16.622		Pass	
Llighoot	Llighant 40	10	QPSK	16.641	17.00	Door
Highest	10	64QAM	16.737		Pass	
Lawaat	20	QPSK	13.854	17.00	Door	
Lowest	20	64QAM	14.974		Pass	
Middle	20	QPSK	14.343	17.00	Door	
Middle	20	64QAM	14.309		Pass	
Himbook	20	QPSK	14.589	17.00	Dees	
Highest	20	64QAM	14.540		Pass	

6.6 Band Edge

6.6 Band Edge									
Test Requirement:	FCC Part 15.407 (b)(1)								
Test Method:	ANSI C63.10:2013 and KDB789033								
Receiver setup:	Detector	RBW	VBW	Remark					
	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	RMS	1MHz	3MHz	Average Value					
Limit:	Limit (dBu\			Remark					
	68.2			eak Value					
	54.00 Average Value Remark: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dE								
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	150cm	(Turntable) Ground Test Receiver	Horn Antenna Antenna Antenna Reference Plane Pre- Amplifer Controll	tenna Tower					
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3	3 for details							
Test results:	Passed								
Remark:									
	-								

Measurement Data (worst case):

<u> Measuremen</u>	t Data (wors	t case):								
	Bandwidth=10MHz - QPSK									
			Test char	nnel: Lowest	channel,					
	Detector: Peak									
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit	Over			
Frequency	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization		
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)			
5150.00	54.15	36.23	7.05	41.93	55.50	68.20	-12.70	Horizontal		
5150.00	55.64	36.23	7.05	41.93	56.99	68.20	-11.21	Vertical		
			Det	tector: Avera	ge					
Eroguenev	Read	Antenna	Cable	Preamp	Level	Limit	Over			
Frequency (MHz)	Level	Factor	Loss	Factor		Line	Limit	Polarization		
(1011-12)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
5150.00	44.36	36.23	7.05	41.93	45.71	54.00	-8.29	Horizontal		
5150.00	44.28	36.23	7.05	41.93	45.63	54.00	-8.37	Vertical		
			Test char	nnel: Highest	channel					
			D	etector: Peal	<					
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over			
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization		
(1011 12)	(dBuV/m)	(dB)	(dB)	(dB)	(dbd v/III)	(dBuV/m)	(dB)			
5350.00	50.41	35.37	7.11	41.89	51.00	68.20	-17.20	Horizontal		
5350.00	50.72	35.37	7.11	41.89	51.31	68.20	-16.89	Vertical		
			Det	tector: Avera	ge					
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over			
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization		
(1011 12)	(dBuV/m)	(dB)	(dB)	(dB)	(dbd v/III)	(dBuV/m)	(dB)			
5350.00	39.46	35.37	7.11	41.89	40.05	54.00	-13.95	Horizontal		
5350.00	39.92	35.37	7.11	41.89	40.51	54.00	-13.49	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

	Bandwidth=20MHz - QPSK								
	Test channel: Lowest channel,								
	Detector: Peak								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	56.42	36.23	7.05	41.93	57.77	68.20	-10.43	Horizontal	
5150.00	56.25	36.23	7.05	41.93	57.60	68.20	-10.60	Vertical	
			Det	ector: Avera	ge				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	45.75	36.23	7.05	41.93	47.10	54.00	-6.90	Horizontal	
5150.00	45.54	36.23	7.05	41.93	46.89	54.00	-7.11	Vertical	
			Test char	nnel: Highest	channel				
			D	etector: Peal	<				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	50.36	35.37	7.11	41.89	50.95	68.20	-17.25	Horizontal	
5350.00	50.06	35.37	7.11	41.89	50.65	68.20	-17.55	Vertical	
			Det	ector: Avera	ge				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	39.86	35.37	7.11	41.89	40.45	54.00	-13.55	Horizontal	
5350.00	39.52	35.37	7.11	41.89	40.11	54.00	-13.89	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band									
	Test Requirement:	FCC Part 15.407 (b)(1)								
	Test Method:	ANSI C	63.10:201	3 and I	KDB78	39033				
	Test Frequency Range:	4.50 GH	Iz to 5.46	GHz						
	Test site:	Measur	ement Dis	tance:	3m					
	Receiver setup:	Frequ	uency	Dete	ctor			3W	Remark	
		Ahove	1GHz	Pe		1MHz 1MHz		1Hz	Peak Value	
				RM		1Hz	Average Value			
	Limit:	F	requency		Limi	t (dBuV/m @	23m)		Remark	
		Above 1GHz 74.00 Peak Value								
	T . D					54.00			Average Value	
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 								
	Test setup:		150cm	AE E	UT	3m Ground Reference Plane	orn Antenna Pre- Ampulier Co	Antenna	Tower	
	Test Instruments:	Refer to	section 5	.9 for c	letails					
	Test mode:		section 5	5.3 for c	letails					
	Test results:	Passed								

Measurement Data (worst case):

<u>vieasuremen</u>	leasurement Data (worst case):									
	Bandwidth=10MHz - QPSK									
Test channel: Lowest channel,										
	Detector: Peak									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	46.88	34.50	6.80	42.05	46.13	74.00	-27.87	Horizontal		
4500.00	46.78	34.50	6.80	42.05	46.03	74.00	-27.97	Vertical		
			Det	ector: Avera	ge					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	36.64	34.50	6.80	42.05	35.89	54.00	-18.11	Horizontal		
4500.00	36.31	34.50	6.80	42.05	35.56	54.00	-18.44	Vertical		
			Test char	nnel: Highest	channel					
				etector: Peal						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	45.53	34.90	7.18	41.85	45.76	74.00	-28.24	Horizontal		
5460.00	45.92	34.90	7.18	41.85	46.15	74.00	-27.85	Vertical		
			Det	ector: Avera	ge					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.12	34.90	7.18	41.85	36.35	54.00	-17.65	Horizontal		
5460.00	36.92	34.90	7.18	41.85	37.15	54.00	-16.85	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

Bandwidth=20MHz - QPSK									
	Test channel: Lowest channel,								
	Detector: Peak								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	46.97	34.50	6.80	42.05	46.22	74.00	-27.78	Horizontal	
4500.00	46.26	34.50	6.80	42.05	45.51	74.00	-28.49	Vertical	
			Det	tector: Avera	ge				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.46	34.50	6.80	42.05	35.71	54.00	-18.29	Horizontal	
4500.00	36.15	34.50	6.80	42.05	35.40	54.00	-18.60	Vertical	
				nnel: Highest					
			D	etector: Peal	<	T	T		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	45.41	34.90	7.18	41.85	45.64	74.00	-28.36	Horizontal	
5460.00	45.47	34.90	7.18	41.85	45.70	74.00	-28.30	Vertical	
			Det	tector: Avera	ge				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	36.25	34.90	7.18	41.85	36.48	54.00	-17.52	Horizontal	
5460.00	36.66	34.90	7.18	41.85	36.89	54.00	-17.11	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part 15.209, 15.407(b)(1)							
Test Method:	ANSI C63.10:2013 and KDB789033							
TestFrequencyRange:	30MHz to 40GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark		
•	30MHz-1GHz	Quasi-peal	k 100kHz	300	kHz Quasi-peak Valu			
	Above 1GHz	Peak	1MHz	3M	Hz Peak Value			
Limit:	Frequency		Limit (dBuV/m @	3m)		Remark		
	30MHz-88M	lHz	40.0			Quasi-peak Value		
	88MHz-216N	ИHz	43.5		C	Quasi-peak Value		
	216MHz-960I	MHz	46.0		C	Quasi-peak Value		
	960MHz-1G	Hz	54.0		C	Quasi-peak Value		
	Frequency	y	Limit (dBm/MH	z)		Remark		
	Abaya 4Cl	1-	68.20			Peak Value		
	Above 1GF	12	54.00			Average Value		
Test Procedure:	1. The EUT w /1.5m(abov was rotated radiation. 2. The EUT w antenna, w tower. 3. The antenn ground to d horizontal a measureme 4. For each si and thenthe and the rota maximum r 5. The test-re SpecifiedBa 6. If the emiss limitspecifie EUT would 10dB marg	= EIRP[dBm] as placed of the 1GHz) abited as set 3 methichwas motion as height is well at the set of the set o	ove the groundars todetermine the ters away from the ters away from the top waried from one remaximum value to larizations of the terminant of the terminant to heigh masses to Perich Maximum Hold the EUT in peaking could be stop Otherwise the estance of the terminant to the terminant to the terminant term	ating tate a 3 mme position he interest of a variable was are hts from rees to ak Detect Mode mode poped are mission one us	able 0.8 eter cation of ference ariable of four refield senna ar ranged n 1 me a 360 d ett Fund the mas that ing pearing pearing that ing pearing the fetter of the mas that ing pearing the etter of the mas that ing pearing the etter of the mas that ing pearing the etter of the	Bm(below 1GHz) amber. The table the highest ee-receiving -height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters egrees to find the action and OdB lower than the peak values of the d did not have ak, quasi-peak or		

Measurement Data (worst case):

Below 1GHz:

Remark: Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

Remark: Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

Above 1GHz:

Above 1GHz:	<u> </u>		Pandwie	dth=10MHz -	OBSK			
				nnel: Lowest etector: Peal				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10310.00	47.85	40.10	9.82	41.97	55.80	68.20	-12.40	Horizontal
10310.00	49.88	40.10	9.82	41.97	57.83	68.20	-10.37	Vertical
			Det	tector: Avera				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10310.00	35.22	40.10	9.82	41.97	43.17	54.00	-10.83	Horizontal
10310.00	35.35	40.10	9.82	41.97	43.30	54.00	-10.70	Vertical
				nnel: Middle				
	T = .			etector: Peal	<	Г	_	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	47.36	40.00	9.85	41.95	55.26	68.20	-12.94	Horizontal
10400.00	47.92	40.00	9.85	41.95	55.82	68.20	-12.38	Vertical
			Det	tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	35.39	40.00	9.85	41.95	43.29	54.00	-10.71	Horizontal
10400.00	35.78	40.00	9.85	41.95	43.68	54.00	-10.32	Vertical
				nnel: Highest				
	T -			etector: Peal	<		_	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10490.00	47.41	39.70	9.96	41.88	55.19	68.20	-13.01	Horizontal
10490.00	47.18	39.70	9.96	41.88	54.96	68.20	-13.24	Vertical
				tector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10490.00	35.99	39.70	9.96	41.88	43.77	54.00	-10.23	Horizontal
10490.00	35.02	39.70	9.96	41.88	42.80	54.00	-11.20	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

			Bandwid	dth=20MHz -	- QPSK			
				nel: Lowest				
				etector: Peal	•			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10310.00	47.42	40.10	9.82	41.97	55.37	68.20	-12.83	Horizontal
10310.00	47.54	40.10	9.82	41.97	55.49	68.20	-12.71	Vertical
			Det	ector: Avera	ge			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10310.00	35.28	40.10	9.82	41.97	43.23	54.00	-10.77	Horizontal
10310.00	35.19	40.10	9.82	41.97	43.14	54.00	-10.86	Vertical
				nnel: Middle				
	Dand	A t		etector: Peal	΄ Ι	Limeit	0	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	47.39	40.00	9.85	41.95	55.29	68.20	-12.91	Horizontal
10400.00	47.86	40.00	9.85	41.95	55.76	68.20	-12.44	Vertical
				tector: Avera				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	35.56	40.00	9.85	41.95	43.46	54.00	-10.54	Horizontal
10400.00	35.74	40.00	9.85	41.95	43.64	54.00	-10.36	Vertical
				nel: Highest				
Frequency	Read	Antenna	Cable	etector: Peal Preamp	Level	Limit	Over	5.1
(MHz)	Level (dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	Line (dBuV/m)	Limit (dB)	Polarization
10490.00	47.78	39.70	9.96	41.88	55.56	68.20	-12.64	Horizontal
10490.00	47.35	39.70	9.96	41.88	55.13	68.20	-13.07	Vertical
				tector: Avera	ge			ı
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10490.00	35.99	39.70	9.96	41.88	43.77	54.00	-10.23	Horizontal
10490.00	35.39	39.70	9.96	41.88	43.17	54.00	-10.83	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Pre-scan QPSK and 64QAM modulation mode, and found the QPSK modulation mode is the worst case. So the worst case shown in report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.
Test setup:	Temperature Chamber
	Spectrum analyzer EUT Att. Variable Power Supply
	Note: Measurement setup for testing on Antenna connector
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.
Test results:	Passed

Measurement Data (the worst channel):

Voltage vs. Frequency Stability:

Voltage vs. Frequency	Stability:		
Refe	erence Frequency: Lowes	st channel=5155MHz(10MHz f	or QPSK)
Test c	onditions	[Man Davistian (nam)
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5154.995146	-0.94
20	120V	5154.993628	-1.24
	138V	5154.998241	-0.34
Refe	erence Frequency: Lowes	st channel=5160MHz(20MHz f	or QPSK)
Test c	onditions	(A411)	Man Davidian (com)
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5159.995314	-0.91
20	120V	5159.994826	-1.00
	138V	5159.996242	-0.73
Refe	rence Frequency: Lowes	t channel=5155MHz(10MHz fo	or 64QAM)
	onditions	,	,
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5154.996824	-0.62
20	120V	5154.997416	-0.50
	138V	5154.996256	-0.73
Refe	rence Frequency: Lowes	t channel=5160MHz(20MHz fo	or 64QAM)
Test c	onditions	Fraguenov/MHz)	Max Davistion (nam)
Temp(°C)	Voltage(AC/60Hz)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5159.996826	-0.62
20	120V	5159.996721	-0.64
	138V	5159.994635	-1.04

Ref	erence Frequency:	Lowest channel=5155MHz(10	MHz for QPSK)
Test con			
Voltage(AC/60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
,	-30	5154.995292	-0.91
	-20	5154.996224	-0.73
	-10	5154.993927	-1.18
	0	5154.998975	-0.20
120V	10	5154.995465	-0.88
	20	5154.996874	-0.61
	30	5154.994544	-1.06
	40	5154.992348	-1.48
	50	5154.996942	-0.59
Ref	erence Frequency:	Lowest channel=5160MHz(20	MHz for QPSK)
Test con			
Voltage(AC/60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
3 (************************************	-30	5159.996525	-0.67
	-20	5159.992692	-1.42
	-10	5159.997316	-0.52
	0	5159.993642	-1.23
120V	10	5159.995845	-0.81
	20	5159.996341	-0.71
	30	5159.999435	-0.11
		5159.995124	-0.94
	40	0109.990124	-0.94
	50	5159.996315	-0.71
	50 erence Frequency: L		-0.71
Test con	50 erence Frequency: L ditions	5159.996315	-0.71
	50 erence Frequency: L ditions Temp(°C)	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm)
Test con	50 erence Frequency: Loditions Temp(°C) -30	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) 5154.996872	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61
Test con	erence Frequency: Leditions Temp(°C) -30 -20	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) 5154.996872 5154.992345	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48
Test con	erence Frequency: Leditions Temp(°C) -30 -20 -10	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) 5154.996872 5154.992345 5154.998765	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24
Test con Voltage(AC/60Hz)	Frence Frequency: Legitions Temp(°C) -30 -20 -10 0	5159.996315 Lowest channel=5155MHz(10M Frequency(MHz) 5154.996872 5154.992345 5154.998765 5154.996412	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70
Test con	50 erence Frequency: L ditions Temp(°C) -30 -20 -10 0 10	5159.996315 -owest channel=5155MHz(10M Frequency(MHz) 5154.996872 5154.992345 5154.998765 5154.996412 5154.994522	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06
Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) - 5154.996872 - 5154.992345 - 5154.998765 - 5154.996412 - 5154.994522 - 5154.996424	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69
Test con Voltage(AC/60Hz)	50 erence Frequency: L ditions Temp(°C) -30 -20 -10 0 10 20 30	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) - 5154.996872 - 5154.992345 - 5154.998765 - 5154.996412 - 5154.994522 - 5154.996424 - 5154.991548	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64
Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) - 5154.996872 - 5154.998765 - 5154.996412 - 5154.996424 - 5154.991548 - 5154.993456	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27
Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99
Test con Voltage(AC/60Hz) 120V	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) - 5154.996872 - 5154.998765 - 5154.996412 - 5154.996424 - 5154.991548 - 5154.993456	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99
Test con Voltage(AC/60Hz) 120V Refe Test con	rence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 rence Frequency: Leditions	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99
Test con Voltage(AC/60Hz) 120V	rence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 rence Frequency: Leditions Temp(°C)	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm)
Test con Voltage(AC/60Hz) 120V Reference Test con	rence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 rence Frequency: Leditions Temp(°C) -30	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07
Test con Voltage(AC/60Hz) 120V Reference Test con	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08
Test con Voltage(AC/60Hz) 120V Reference Test con	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20 -10	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08 -0.88
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0	5159.996315 -owest channel=5155MHz(10M Frequency(MHz) 5154.996872 5154.998765 5154.998765 5154.996412 5154.994522 5154.994522 5154.991548 5154.993456 5154.993456 5154.994872 -owest channel=5160MHz(20M Frequency(MHz) 5159.999645 5159.999462 5159.994567	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08 -0.88 -1.05
Test con Voltage(AC/60Hz) 120V Refe Test con	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) 5154.996872 5154.998765 5154.998765 5154.996412 5154.994522 5154.994524 5154.993456 5154.993456 5154.994872 -owest channel=5160MHz(20M - Frequency(MHz) 5159.999645 5159.994423 5159.994567 5159.997663	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08 -0.88 -1.05 -0.45
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 20	5159.996315 -owest channel=5155MHz(10M	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08 -0.88 -1.05 -0.45 -0.63
Test con Voltage(AC/60Hz) 120V Refe Test con Voltage(AC/60Hz)	50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10 20 30 40 50 erence Frequency: Leditions Temp(°C) -30 -20 -10 0 10	5159.996315 -owest channel=5155MHz(10M - Frequency(MHz) 5154.996872 5154.998765 5154.998765 5154.996412 5154.994522 5154.994524 5154.993456 5154.993456 5154.994872 -owest channel=5160MHz(20M - Frequency(MHz) 5159.999645 5159.994423 5159.994567 5159.997663	-0.71 MHz for 64QAM) Max. Deviation (ppm) -0.61 -1.48 -0.24 -0.70 -1.06 -0.69 -1.64 -1.27 -0.99 MHz for 64QAM) Max. Deviation (ppm) -0.07 -1.08 -0.88 -1.05 -0.45