

#### Statistics in Healthcare

#### Unit 7 (optional):

Math details of ANOVA, Wilcoxon rank-sum test, and Log-rank test

# Optional material: math details of the ANOVA test

### How to calculate ANOVA's by hand...

| Treatment 1      | Treatment 2      | Treatment 3      | Treatment 4      |
|------------------|------------------|------------------|------------------|
| y <sub>11</sub>  | y <sub>21</sub>  | y <sub>31</sub>  | y <sub>41</sub>  |
| y <sub>12</sub>  | y <sub>22</sub>  | y <sub>32</sub>  | y <sub>42</sub>  |
| y <sub>13</sub>  | y <sub>23</sub>  | y <sub>33</sub>  | y <sub>43</sub>  |
| y <sub>14</sub>  | y <sub>24</sub>  | y <sub>34</sub>  | y <sub>44</sub>  |
| y <sub>15</sub>  | y <sub>25</sub>  | y <sub>35</sub>  | y <sub>45</sub>  |
| y <sub>16</sub>  | y <sub>26</sub>  | y <sub>36</sub>  | y <sub>46</sub>  |
| y <sub>17</sub>  | y <sub>27</sub>  | y <sub>37</sub>  | y <sub>47</sub>  |
| y <sub>18</sub>  | y <sub>28</sub>  | y <sub>38</sub>  | y <sub>48</sub>  |
| y <sub>19</sub>  | y <sub>29</sub>  | y <sub>39</sub>  | y <sub>49</sub>  |
| y <sub>110</sub> | y <sub>210</sub> | y <sub>310</sub> | y <sub>410</sub> |

$$n=10$$
 obs./group

*k*=4 groups

$$\overline{y}_{1\bullet} = \frac{\sum_{j=1}^{10} y_{1j}}{10}$$

$$\bar{y}_{2\bullet} = \frac{\sum_{j=1}^{10} y_{2j}}{10}$$

$$\overline{y}_{1\bullet} = \frac{\sum_{j=1}^{10} y_{1j}}{10} \qquad \overline{y}_{2\bullet} = \frac{\sum_{j=1}^{10} y_{2j}}{10} \qquad \overline{y}_{3\bullet} = \frac{\sum_{j=1}^{10} y_{3j}}{10} \qquad \overline{y}_{4\bullet} = \frac{\sum_{j=1}^{10} y_{4j}}{10}$$

$$\bar{y}_{4\bullet} = \frac{\sum_{j=1}^{10} y_{4j}}{10}$$

The group means

$$\sum_{j=1}^{10} (y_{1j} - \bar{y}_{1\bullet})^{2}$$

$$\frac{\sum_{j=1}^{10} (y_{1j} - \bar{y}_{1\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{2j} - \bar{y}_{2\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{3j} - \bar{y}_{3\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{4j} - \bar{y}_{4\bullet})^2}{10 - 1}$$

$$-\frac{\sum_{j=1}^{10}(y)}{y}$$

$$\frac{\sum_{j=1}^{10} (y_{4j} - \overline{y}_{4\bullet})^2}{10 - 1}$$

The (within) group variances

# Sum of Squares Within (SSW), or Sum of Squares Error (SSE)

$$\frac{\sum_{j=1}^{10} (y_{1j} - \bar{y}_{1\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{2j} - \bar{y}_{2\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{3j} - \bar{y}_{3\bullet})^2}{10 - 1} \qquad \frac{\sum_{j=1}^{10} (y_{4j} - \bar{y}_{4\bullet})^2}{10 - 1}$$

i=1 j=1

group variances

The (within)

$$\sum_{i=1}^{10} (y_{1j} - \overline{y}_{1\bullet})^2 + \sum_{j=1}^{10} (y_{2j} - \overline{y}_{2\bullet})^2 + \sum_{j=3}^{10} (y_{3j} - \overline{y}_{3\bullet})^2 + \sum_{j=1}^{10} (y_{4j} - \overline{y}_{4\bullet})^2$$

$$= \sum_{i=1}^{4} \sum_{j=1}^{10} (y_{ij} - \overline{y}_{i\bullet})^2$$

Sum of Squares Within (SSW) (or SSE, for chance error)

# Sum of Squares Between (SSB), or Sum of Squares Regression (SSR)

Overall mean of all 40 observations ("grand mean")

$$\overline{\overline{y}}_{\bullet\bullet} = \frac{\sum_{i=1}^{4} \sum_{j=1}^{10} y_{ij}}{40}$$

$$10x\sum_{i\bullet}^{4}(\overline{y}_{i\bullet}-\overline{\overline{y}}_{\bullet\bullet})^{2} \leftarrow \boxed{}$$

Sum of Squares Between (SSB). Variability of the group means compared to the grand mean (the variability due to the treatment).

### Total Sum of Squares (SST)

$$\sum_{i=1}^{4} \sum_{j=1}^{10} (y_{ij} - \overline{\overline{y}}_{\bullet \bullet})^2$$

Total sum of squares(TSS). Squared difference of every observation from the overall mean. (numerator of variance of Y!)

## 1

### Partitioning of Variance

$$\sum_{i=1}^{4} \sum_{j=1}^{10} (y_{ij} - \overline{y}_{i\bullet})^2 + 10 \sum_{i=1}^{4} (\overline{y}_{i\bullet} - \overline{\overline{y}}_{\bullet\bullet})^2 = \sum_{i=1}^{4} \sum_{j=1}^{10} (y_{ij} - \overline{\overline{y}}_{\bullet\bullet})^2$$

SSW + SSB = SST

## ANOVA Table

| Source of variation                    | d.f. | Sum of squares                                                             | Mean Sum<br>of Squares              |                                                        |                                                    |
|----------------------------------------|------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| Between<br>(k groups)                  | k-1  | SSB<br>(sum of squared<br>deviations of<br>group means from<br>grand mean) | SSB/k-1                             | F-statistic $\frac{\frac{SSB}{k-1}}{\frac{SSW}{nk-k}}$ | p-value<br>Go to<br>F <sub>k-1,nk-k</sub><br>chart |
| Within<br>(n individuals per<br>group) | nk-k | SSW (sum of squared deviations of observations from their group mean)      |                                     |                                                        |                                                    |
| Total variation                        | nk-1 | ` -                                                                        | ed deviations of<br>rom grand mean) | TSS=SSB +                                              | SSW                                                |

#### ANOVA=t-test

d.f.

Sum of squares

Sum of **Squares** 

Mean

(squared difference in means multiplied by

**SSB** 

n)

**Squared** difference in means

times n

**Pooled** variance  $SSB = n\sum_{n=1}^{\infty} (\overline{X}_n - (\frac{\overline{X}_n + \overline{Y}_n}{2}))^2 + n\sum_{n=1}^{\infty} (\overline{Y}_n - (\frac{\overline{X}_n + \overline{Y}_n}{2}))^2 =$  $\left| n \sum_{i=1}^{n} \left( \frac{\overline{X}_{n}}{2} - \frac{\overline{Y}_{n}}{2} \right)^{2} + n \sum_{i=1}^{n} \left( \frac{\overline{Y}_{n}}{2} - \frac{\overline{X}_{n}}{2} \right)^{2} \right|$  $n((\frac{\overline{X}_n}{2})^2 + (\frac{\overline{Y}_n}{2})^2 - 2\frac{\overline{X}_n * \overline{Y}_n}{2} + (\frac{\overline{Y}_n}{2})^2 + (\frac{\overline{X}_n}{2})^2 - 2\frac{\overline{X}_n * \overline{Y}_n}{2}) =$  $n(\overline{X}_{n}^{2}-2\overline{X}_{n}*\overline{Y}_{n}+\overline{Y}_{n}^{2})=n(\overline{X}_{n}-\overline{Y}_{n})^{2}$ 

$$\frac{n(\overline{X} - \overline{Y})^{2}}{s_{p}^{2}} = (\frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{s_{p}^{2} + s_{p}^{2}}{n}}})^{2} = (t_{2n-2})^{2}$$

$$\begin{array}{c} \mathbf{F}_{1, 2n-2} \\ \text{Chart} \rightarrow \\ \text{notice} \\ \text{values are} \\ \text{just } (\mathbf{t}_{2n-2})^{2} \end{array}$$

variance

**Total** variation

Within

2n-1 **TSS** 

## Example

| Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
|-------------|-------------|-------------|-------------|
| 60 inches   | 50          | 48          | 47          |
| 67          | 52          | 49          | 67          |
| 42          | 43          | 50          | 54          |
| 67          | 67          | 55          | 67          |
| 56          | 67          | 56          | 68          |
| 62          | 59          | 61          | 65          |
| 64          | 67          | 61          | 65          |
| 59          | 64          | 60          | 56          |
| 72          | 63          | 59          | 60          |
| 71          | 65          | 64          | 65          |

### Example

**Step 1)** calculate the sum of squares between groups:

Mean for group 1 = 62.0

Mean for group 2 = 59.7

Mean for group 3 = 56.3

Mean for group 4 = 61.4

Grand mean = 59.85

| Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
|-------------|-------------|-------------|-------------|
| 60 inches   | 50          | 48          | 47          |
| 67          | 52          | 49          | 67          |
| 42          | 43          | 50          | 54          |
| 67          | 67          | 55          | 67          |
| 56          | 67          | 56          | 68          |
| 62          | 59          | 61          | 65          |
| 64          | 67          | 61          | 65          |
| 59          | 64          | 60          | 56          |
| 72          | 63          | 59          | 60          |
| 71          | 65          | 64          | 65          |

SSB = 
$$[(62-59.85)^2 + (59.7-59.85)^2 + (56.3-59.85)^2 + (61.4-59.85)^2] xn per$$
  
 $group= 19.65x10 = 196.5$ 

## Example

### **Step 2)** calculate the sum of squares within groups:

deviations) = 2060.6

| Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
|-------------|-------------|-------------|-------------|
| 60 inches   | 50          | 48          | 47          |
| 67          | 52          | 49          | 67          |
| 42          | 43          | 50          | 54          |
| 67          | 67          | 55          | 67          |
| 56          | 67          | 56          | 68          |
| 62          | 59          | 61          | 65          |
| 64          | 67          | 61          | 65          |
| 59          | 64          | 60          | 56          |
| 72          | 63          | 59          | 60          |
| 71          | 65          | 64          | 65          |

## Step 3) Fill in the ANOVA table

| Source of variation | <u>d.f.</u> | Sum of squares | Mean Sum of<br>Squares | F-statistic | p-value |
|---------------------|-------------|----------------|------------------------|-------------|---------|
| Between             | 3           | 196.5          | 65.5                   | 1.14        | .344    |
| Within              | 36          | 2060.6         | 57.2                   | -           | -       |
| Total               | 39          | 2257.1         | _                      | _           | -       |

### Step 3) Fill in the ANOVA table

| Source of variation | <u>d.f.</u> | Sum of squares | Mean Sum of<br>Squares | F-statistic | p-value |
|---------------------|-------------|----------------|------------------------|-------------|---------|
| Between             | 3           | 196.5          | 65.5                   | 1.14        | .344    |
| Within              | 36          | 2060.6         | 57.2                   | -           | -       |
| Total               | 39          | 2257.1         | _                      | _           | _       |

#### **INTERPRETATION of ANOVA:**

How much of the variance in height is explained by treatment group?

 $R^2$ "Coefficient of Determination" = SSB/TSS = 196.5/2275.1=9%

## -

#### Coefficient of Determination

$$R^2 = \frac{SSB}{SSB + SSE} = \frac{SSB}{SST}$$

SSE: Sum of Squares Within (SSW) (or SSE, for chance error)

The amount of variation in the outcome variable (dependent variable) that is explained by the predictor (independent variable).

## 4

### **Beyond one-way ANOVA**

Often, you may want to test more than 1 treatment. ANOVA can accommodate more than 1 treatment or factor, so long as they are independent. Again, the variation partitions beautifully!

SST = SSB1 + SSB2 + SSW





# Optional material: math details for the Wilcoxon rank-sum test



#### Wilcoxon rank-sum test

Rank all of the observations in order from 1 to n.

 $T_1$  is the sum of the ranks from smaller population  $(n_1)$ 

 $T_2$  is the sum of the ranks from the larger population ( $n_2$ )

$$\mathbf{U}_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - T_1$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - T_2$$

Find 
$$P(U \le U_0)$$
 in Mann-Whitney U tables
$$U_0 = \min(U_1, U_2)$$
With  $n_2$  = the bigger of the 2 populations (or website)

$$Z = \frac{U_0 - \frac{n_1 n_2}{2}}{(n_1 + n_2 + 1)}$$

for  $n_1 > 10$ ,  $n_2 > 10$ ,

Table A5.07: Critical Values for the Wilcoxon/Mann-Whitney Test (U)

|                |      |     |    |    |        |      | None | direc | tion | ıl α= | .05 (0 | Direc | tiona | l a=. | 025) |    |     | 163 |     | 36 38 |
|----------------|------|-----|----|----|--------|------|------|-------|------|-------|--------|-------|-------|-------|------|----|-----|-----|-----|-------|
| 8              |      |     |    |    |        |      |      |       |      |       | r      | 12    |       |       | 220  |    |     |     |     |       |
| n <sub>1</sub> | 1    | 2   | 3  | 4  | 5      | 6    | 7    | 8     | 9    | 10    | 11     | 12    | 13    | 14    | 15   | 16 | 17  | 18  | 19  | 20    |
| 1              |      |     | -  | *  | 5.3    | 0.00 |      |       | *    | 5.5   |        |       |       | 20    | 0.0  |    | 2.5 | 55  |     | 50    |
| 2              |      | 1   | -  |    |        |      | -    | 0     | 0    | 0     | 0      | 1     | 1     | 1     | 1    | 1  | 2   | 2   | 2   | 2     |
| 3              | -    |     | 25 |    | 0      | 1    | 1    | 2     | 2    | 3     | 3      | 4     | 4     | 5     | 5    | 6  | 6   | 7   | 7   | 8     |
| 4              | -    | -   | -  | 0  | 1      | 2    | 3    | 4     | 4    | 5     | 6      | 7     | 8     | 9     | 10   | 11 | 11  | 12  | 13  | 13    |
| 5              |      |     | 0  | 1  | 2      | 3    | 5    | 6     | 7    | 8     | 9      | 11    | 12    | 13    | 14   | 15 | 17  | 18  | 19  | 20    |
| 6              |      |     | 1  | 2  | 3<br>5 | 5    | 6    | 8     | 10   | 11    | 13     | 14    | 16    | 17    | 19   | 21 | 22  | 24  | 25  | 27    |
| 7              | 0.00 | 3.5 | 1  | 3  | 5      | 6    | 8    | 10    | 12   | 14    | 16     | 18    | 20    | 22    | 24   | 26 | 28  | 30  | 32  | 34    |
| 8              | -    | 0   | 2  | 4  | 6      | 8    | 10   | 13    | 15   | 17    | 19     | 22    | 24    | 26    | 29   | 31 | 34  | 36  | 38  | 41    |
| 9              |      | 0   | 2  | 4  | 7      | 10   | 12   | 15    | 17   | 21    | 23     | 26    | 28    | 31    | 34   | 37 | 39  | 42  | 45  | 48    |
| 10             | -    | 0   | 3  | 5  | 8      | 11   | 14   | 17    | 20   | 23    | 26     | 29    | 33    | 36    | 39   | 42 | 45  | 48  | 52  | 55    |
| 11             |      | 0   | 3  | 6  | 9      | 13   | 16   | 19    | 23   | 26    | 30     | 33    | 37    | 40    | 44   | 47 | 51  | 55  | 58  | 62    |
| 12             |      | 1   | 4  | 7  | 11     | 14   | 18   | 22    | 26   | 29    | 33     | 37    | 41    | 45    | 49   | 53 | 57  | 61  | 65  | 69    |
| 13             |      | 1   | 4  | 8  | 12     | 16   | 20   | 24    | 28   | 33    | 37     | 41    | 45    | 50    | 54   | 59 | 63  | 67  | 72  | 76    |
| 14             | -    | 1   | 5  | 9  | 13     | 17   | 22   | 26    | 31   | 36    | 40     | 45    | 50    | 55    | 59   | 64 | 67  | 74  | 78  | 83    |
| 15             | -    | 1   | 5  | 10 | 14     | 19   | 24   | 29    | 34   | 39    | 44     | 49    | 54    | 59    | 64   | 70 | 75  | 80  | 85  | 90    |
| 16             |      | 1   | 6  | 11 | 15     | 21   | 26   | 31    | 37   | 42    | 47     | 53    | 59    | 64    | 70   | 75 | 81  | 86  | 92  | 98    |
| 17             |      | 2   | 6  | 11 | 17     | 22   | 28   | 34    | 39   | 45    | 51     | 57    | 63    | 67    | 75   | 81 | 87  | 93  | 99  | 105   |
| 18             | -    | 2   | 7  | 12 | 18     | 24   | 30   | 36    | 42   | 48    | 55     | 61    | 67    | 74    | 80   | 86 | 93  | 99  | 106 | 112   |
| 19             | _    | 2   | 7  | 13 | 19     | 25   | 32   | 38    | 45   | 52    | 58     | 65    | 72    | 78    | 85   | 92 | 99  | 106 | 113 | 119   |
| 20             |      | 2   | 8  | 14 | 20     | 27   | 34   | 41    | 48   | 55    | 62     | 69    | 76    | 83    | 90   | 98 | 105 | 112 | 119 | 127   |

$$U_o=18 < U_{crit} = 23$$
 $\rightarrow$  reject  $H_o$ 

 $U_{obt}$  is the lesser of the two calculated test statistics ( $U_1 \& U_2$ ). If  $U_{obt} \le U_{orit}$ , reject  $H_0$ . Dashes (-) indicate that the sample size is too small to reject the Null Hypothesis at the chosen  $\alpha$  level.

### Example...

• Example: if team 1 and team 2 (two gymnastic teams) are competing, and the judges rank all the individuals in the competition, how can you tell if team 1 has done significantly better than team 2 or vice versa (unequal team size)?

## -

#### U calculator online...

#### Wilcoxon-Mann-Whitney Test Calculator



The online calculator provides an insperientation to solve the exact permission of the Misconnillativi Whome, text using the Misconnillativi text Miscoles the correct bouton is also recurred to text amount.

To man the text you fill in your range data lighty spaces to separate the sements choose the text larger and of the "Ryo".

For now information resorted to the

http://www.ccb.uni-saarland.de/?page\_id=812

http://vassarstats.net/utest.html

http://www.socscistatistics.com/tests/signedranks/Default2.aspx

### Applying the test to real data:

Example: If the girls on the two gymnastics teams were ranked as follows:

Team 1: 1, 5, 7

Observed  $T_1 = 13$ 

Tedm 2: 2,3,4,6,8,9,10,11,12,13

Observed  $T_2 = 78$ 

Are the teams significantly different?

Total sum of ranks = 13+78 = 91

 $n_1 n_2 = 3*10 = 30$ 

$$U_1 = 30 + 6 - 13 = 23$$

$$U_2 = 30 + 55 - 78 = 7$$

$$\therefore U_0 = 7$$

Not quite statistically significant in U table...p=.1084 x2 for two-tailed test



Nondirectional a=.05 (Directional a=.025)

| -              |   |      |     |     |     |      |    |    |     |     | r   | 12 |    |    | 20 |    |      |     |     |     |
|----------------|---|------|-----|-----|-----|------|----|----|-----|-----|-----|----|----|----|----|----|------|-----|-----|-----|
| n <sub>1</sub> | 1 | 2    | 3   | 4   | 5   | 6    | 7  | 8  | 9   | 10  | 11  | 12 | 13 | 14 | 15 | 16 | 17   | 18  | 19  | 20  |
| 1              |   | . *  | -   | *   | 5.3 | 0.00 |    |    | 100 | 5.5 | 300 |    |    |    | -  |    | - 60 | 50  |     | 50  |
| 2              |   |      | -   |     |     |      |    | 0  | 0   | 0   | 0   | 1  | 1  | 1  | 1  | 1  | 2    | 2   | 2   | 2   |
| 3              | - | 100  | 200 | 363 | 0   | 1    | 1  | 2  | 2   | 3   | 3   | 4  | 4  | 5  | 5  | 6  | 6    | 7   | 7   | 8   |
| 4              | - | -    | _   | 0   | 1   | 2    | 3  | 2  | 4   | 5   | 6   | 7  | 8  | 9  | 10 | 11 | 11   | 12  | 13  | 13  |
| 5              |   | 2.0  | 0   | 1   | 2   | 3    | 5  | 6  | 7   | 8   | 9   | 11 | 12 | 13 | 14 | 15 | 17   | 18  | 19  | 20  |
| 6              |   |      | 1   | 2   | 3   | 5    | 6  | 8  | 10  | 11  | 13  | 14 | 16 | 17 | 19 | 21 | 22   | 24  | 25  | 27  |
| 7              |   | 2.25 | 1   | 3   | 5   | 6    | 8  | 10 | 12  | 14  | 16  | 18 | 20 | 22 | 24 | 26 | 28   | 30  | 32  | 34  |
| 8              | - | 0    | 2   | 4   | 6   | 8    | 10 | 13 | 15  | 17  | 19  | 22 | 24 | 26 | 29 | 31 | 34   | 36  | 38  | 41  |
| 9              |   | 0    | 2   | 4   | 7   | 10   | 12 | 15 | 17  | 21  | 23  | 26 | 28 | 31 | 34 | 37 | 39   | 42  | 45  | 48  |
| 10             |   | 0    | 3   | 5   | 8   | 11   | 14 | 17 | 20  | 23  | 26  | 29 | 33 | 36 | 39 | 42 | 45   | 48  | 52  | 55  |
| 11             |   | 0    | 3   | 6   | 9   | 13   | 16 | 19 | 23  | 26  | 30  | 33 | 37 | 40 | 44 | 47 | 51   | 55  | 58  | 62  |
| 12             |   | 1    | 4   | 7   | 11  | 14   | 18 | 22 | 26  | 29  | 33  | 37 | 41 | 45 | 49 | 53 | 57   | 61  | 65  | 69  |
| 13             |   | 1    | 4   | 8   | 12  | 16   | 20 | 24 | 28  | 33  | 37  | 41 | 45 | 50 | 54 | 59 | 63   | 67  | 72  | 76  |
| 14             | - | 1    | 5   | 9   | 13  | 17   | 22 | 26 | 31  | 36  | 40  | 45 | 50 | 55 | 59 | 64 | 67   | 74  | 78  | 83  |
| 15             |   | 1    | 5   | 10  | 14  | 19   | 24 | 29 | 34  | 39  | 44  | 49 | 54 | 59 | 64 | 70 | 75   | 80  | 85  | 90  |
| 16             | - | 1    | 6   | 11  | 15  | 21   | 26 | 31 | 37  | 42  | 47  | 53 | 59 | 64 | 70 | 75 | 81   | 86  | 92  | 98  |
| 17             |   | 2    | 6   | 11  | 17  | 22   | 28 | 34 | 39  | 45  | 51  | 57 | 63 | 67 | 75 | 81 | 87   | 93  | 99  | 105 |
| 18             | - | 2    | 7   | 12  | 18  | 24   | 30 | 36 | 42  | 48  | 55  | 61 | 67 | 74 | 80 | 86 | 93   | 99  | 106 | 112 |
| 19             |   | 2    | 7   | 13  | 19  | 25   | 32 | 38 | 45  | 52  | 58  | 65 | 72 | 78 | 85 | 92 | 99   | 106 | 113 | 119 |
| 20             |   | 2    | 8   | 14  | 20  | 27   | 34 | 41 | 48  | 55  | 62  | 69 | 76 | 83 | 90 | 98 | 105  | 112 | 119 | 127 |

$$U_o = 7 > U_{crit} = 3$$
  
 $\rightarrow$  fail to reject  $H_o$ 

 $U_{obt}$  is the lesser of the two calculated test statistics ( $U_1 \& U_2$ ). If  $U_{obt} \le U_{crit}$ , reject  $H_0$ . Dashes (-) indicate that the sample size is too small to reject the Null Hypothesis at the chosen  $\alpha$  level.

#### U calculator online...

#### Wilcoxon-Mann-Whitney Test Calculator



The online calculator provides an imperientation to other the exact persupport of the Microsoftenia Microsoftenia and the Control of the cont

To don't he had you fill in your sumple data looking spools to separate the elements choose the had larged and cloffs, or

For more information read the bundle

http://vassarstats.net/utest.html





### Optional: Math detail of logrank test

## 4

### Log-rank test example

Test of Equality over Strata

| Log-Rank | 4.6599     | 1  | 0.0309             |
|----------|------------|----|--------------------|
| Test     | Chi-Square | DF | Pr ><br>Chi-Square |

Chi-square test (with 1 degree of freedom) of the (overall) difference between the two groups.

Groups are significantly different.

### The log-rank test

| K Strata =   |         |
|--------------|---------|
| unique event | Group 1 |
| times        | Group 2 |

| Event | No Event |
|-------|----------|
| → a   | b        |
| С     | d        |

| $\left[\sum_{i=1}^{k} (a_k - E(a_k))\right]^2$  |
|-------------------------------------------------|
| $\frac{1}{\sum_{k=1}^{k} Var(a_k)} \sim \chi_1$ |

$$E(a_k) = \frac{row1_k * col1_k}{N_k}$$

$$Var(a_k) = \frac{row1_k * row2_k * col1_k * col2_k}{N_k^2 (N_k - 1)}$$

### Log-rank test

How do you know that this is a chi-square with 1 df?

|         | Event | No Event |
|---------|-------|----------|
| Froup 1 | a     | b        |
| Froup 2 | c     | d        |

$$\frac{\left[\sum_{i=1}^{k} (a_k - E(a_k))\right]^2}{\sum_{k=1}^{k} Var(a_k)} \sim \chi_1^2$$

$$E(a_k) = \frac{row1_k * col1_k}{N_k}$$

$$Var(a_k) = \frac{row1_k * row2_k * col1_k * col2_k}{N_k^2(N_k - 1)}$$

Variance is the variance of a hypergeometric distribution

#### Event time 1 (2 months), control group:

|          |                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                           |                                                                                                                                                                                                                              | Standard                                                                                                                                                                                                                                                                                                                                                      | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| time     | Survival                                                                                                                  | Failure                                                                                                                                                                                                                      | Error                                                                                                                                                                                                                                                                                                                                                         | Failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Left /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.000    | 1.0000                                                                                                                    | 0                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| → 2.000  | 0.9545                                                                                                                    | 0.0455                                                                                                                                                                                                                       | 0.0444                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.000    | 0.9091                                                                                                                    | 0.0909                                                                                                                                                                                                                       | 0.0613                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.000    | 0.8636                                                                                                                    | 0.1364                                                                                                                                                                                                                       | 0.0732                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.000    | 0.8182                                                                                                                    | 0.1818                                                                                                                                                                                                                       | 0.0822                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.000   | 0.7727                                                                                                                    | 0.2273                                                                                                                                                                                                                       | 0.0893                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22.000   | 0.7273                                                                                                                    | 0.2727                                                                                                                                                                                                                       | 0.0950                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28.000   | 0.6818                                                                                                                    | 0.3182                                                                                                                                                                                                                       | 0.0993                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29.000   | 0.6364                                                                                                                    | 0.3636                                                                                                                                                                                                                       | 0.1026                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32.000   | 0.5909                                                                                                                    | 0.4091                                                                                                                                                                                                                       | 0.1048                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37.000   | 0.5455                                                                                                                    | 0.4545                                                                                                                                                                                                                       | 0.1062                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40.000   | 0.5000                                                                                                                    | 0.5000                                                                                                                                                                                                                       | 0.1066                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 41.000   | 0.4545                                                                                                                    | 0.5455                                                                                                                                                                                                                       | 0.1062                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54.000   | 0.4091                                                                                                                    | 0.5909                                                                                                                                                                                                                       | 0.1048                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61.000   | 0.3636                                                                                                                    | 0.6364                                                                                                                                                                                                                       | 0.1026                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 63.000   | 0.3182                                                                                                                    | 0.6818                                                                                                                                                                                                                       | 0.0993                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 71.000   | 0.2727                                                                                                                    | 0.7273                                                                                                                                                                                                                       | 0.0950                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 127.000* |                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _        | 0.000  2.000  3.000  4.000  7.000  10.000  22.000  28.000  29.000  37.000  40.000  41.000  54.000  61.000  63.000  71.000 | 0.000 1.0000  → 2.000 0.9545  3.000 0.9091  4.000 0.8636  7.000 0.7727  22.000 0.7273  28.000 0.6818  29.000 0.6364  32.000 0.5455  40.000 0.5455  40.000 0.4545  54.000 0.4545  54.000 0.3636  63.000 0.3182  71.000 0.2727 | 0.000 1.0000 0  → 2.000 0.9545 0.0455 3.000 0.9091 0.0909 4.000 0.8636 0.1364 7.000 0.8182 0.1818 10.000 0.7727 0.2273 22.000 0.7273 0.2727 28.000 0.6818 0.3182 29.000 0.6364 0.3636 32.000 0.5909 0.4091 37.000 0.5455 0.4545 40.000 0.5000 0.5000 41.000 0.4545 0.5455 54.000 0.4091 0.5909 61.000 0.3636 0.6364 63.000 0.3182 0.6818 71.000 0.2727 0.7273 | time         Survival         Failure         Error           0.000         1.0000         0         0           → 2.000         0.9545         0.0455         0.0444           3.000         0.9091         0.0909         0.0613           4.000         0.8636         0.1364         0.0732           7.000         0.8182         0.1818         0.0822           10.000         0.7727         0.2273         0.0893           22.000         0.7273         0.2727         0.0950           28.000         0.6818         0.3182         0.0993           29.000         0.6364         0.3636         0.1026           32.000         0.5909         0.4091         0.1048           37.000         0.5455         0.4545         0.1062           40.000         0.5000         0.5000         0.1066           41.000         0.4545         0.5455         0.1062           54.000         0.4091         0.5909         0.1048           61.000         0.3636         0.6364         0.1026           63.000         0.3182         0.6818         0.0993           71.000         0.2727         0.7273         0.0950 </td <td>time Survival Failure Error Failed  0.000 1.0000 0 0 0 0  2.000 0.9545 0.0455 0.0444 1  3.000 0.9091 0.0909 0.0613 2  4.000 0.8636 0.1364 0.0732 3  7.000 0.8182 0.1818 0.0822 4  10.000 0.7727 0.2273 0.0893 5  22.000 0.7273 0.2727 0.0950 6  28.000 0.6818 0.3182 0.0993 7  29.000 0.6364 0.3636 0.1026 8  32.000 0.5909 0.4091 0.1048 9  37.000 0.5455 0.4545 0.1062 10  40.000 0.5000 0.5000 0.1066 11  41.000 0.4545 0.5455 0.1062 12  54.000 0.4091 0.5909 0.1048 13  61.000 0.3636 0.6364 0.1026 14  63.000 0.3182 0.6818 0.0993 15  71.000 0.2727 0.7273 0.0950 16</td> | time Survival Failure Error Failed  0.000 1.0000 0 0 0 0  2.000 0.9545 0.0455 0.0444 1  3.000 0.9091 0.0909 0.0613 2  4.000 0.8636 0.1364 0.0732 3  7.000 0.8182 0.1818 0.0822 4  10.000 0.7727 0.2273 0.0893 5  22.000 0.7273 0.2727 0.0950 6  28.000 0.6818 0.3182 0.0993 7  29.000 0.6364 0.3636 0.1026 8  32.000 0.5909 0.4091 0.1048 9  37.000 0.5455 0.4545 0.1062 10  40.000 0.5000 0.5000 0.1066 11  41.000 0.4545 0.5455 0.1062 12  54.000 0.4091 0.5909 0.1048 13  61.000 0.3636 0.6364 0.1026 14  63.000 0.3182 0.6818 0.0993 15  71.000 0.2727 0.7273 0.0950 16 |

Survival

#### Event time 1 (2 months), treated group:



## 4

#### Stratum 1= event time 1

#### Event time 1:

1 died from each group. (22 at risk in each group)

treated control

| Event | No Event |
|-------|----------|
| 1     | 21       |
| 1     | 21       |

$$a_{1} = 1$$

$$E(a_{1}) = \frac{(22) * (2)}{44} = 1$$

$$Var(a_{1}) = \frac{(22) * (22) * (2) * (42)}{44^{2} (43)} = .244$$

#### Event time 2 (3 months), control group:

|          |          |          |         | Survival<br>Standard | Number | risk=21        |
|----------|----------|----------|---------|----------------------|--------|----------------|
|          | time     | Survival | Failure | Error                | Failed | Number<br>Left |
| Next     | 0.000    | 1.0000   | 0       | 0                    | 0      | 22             |
| event at | 2.000    | 0.9545   | 0.0455  | 0.0444               | 1      | 21 🗸           |
| month    | → 3.000  | 0.9091   | 0.0909  | 0.0613               | 2      | 20             |
| 3.       | 4.000    | 0.8636   | 0.1364  | 0.0732               | 3      | 19             |
| 3.       | 7.000    | 0.8182   | 0.1818  | 0.0822               | 4      | 18             |
|          | 10.000   | 0.7727   | 0.2273  | 0.0893               | 5      | 17             |
|          | 22.000   | 0.7273   | 0.2727  | 0.0950               | 6      | 16             |
|          | 28.000   | 0.6818   | 0.3182  | 0.0993               | 7      | 15             |
|          | 29.000   | 0.6364   | 0.3636  | 0.1026               | 8      | 14             |
|          | 32.000   | 0.5909   | 0.4091  | 0.1048               | 9      | 13             |
|          | 37.000   | 0.5455   | 0.4545  | 0.1062               | 10     | 12             |
|          | 40.000   | 0.5000   | 0.5000  | 0.1066               | 11     | 11             |
|          | 41.000   | 0.4545   | 0.5455  | 0.1062               | 12     | 10             |
|          | 54.000   | 0.4091   | 0.5909  | 0.1048               | 13     | 9              |
|          | 61.000   | 0.3636   | 0.6364  | 0.1026               | 14     | 8              |
|          | 63.000   | 0.3182   | 0.6818  | 0.0993               | 15     | 7              |
|          | 71.000   | 0.2727   | 0.7273  | 0.0950               | 16     | 6              |
|          | 127.000* | •        | •       | •                    | 16     | 5              |

At

#### Event time 2 (3 months), treated group:

|                       | time                                                                                                     | Survival                                                                     | Failure                                                                 | Survival<br>Standard<br>Error                                           | Number<br>Failed                                              | Nun risk=21                                                                               |
|-----------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| No events at 3 months | 0.000 2.000 6.000 12.000 54.000 56.000* 68.000 89.000 96.000 125.000* 128.000* 131.000* 141.000* 143.000 | 1.0000<br>0.9545<br>0.9091<br>0.8636<br>0.8182<br>0.7701<br>0.7219<br>0.6257 | 0<br>0.0455<br>0.0909<br>0.1364<br>0.1818<br>0.2299<br>0.2781<br>0.3743 | 0<br>0.0444<br>0.0613<br>0.0732<br>0.0822<br>0.0904<br>0.0967<br>0.1051 | 0<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>8<br>8<br>8<br>8 | 22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12<br>11<br>10<br>9<br>8<br>7 |
|                       | 145.000*                                                                                                 | •                                                                            | •                                                                       | •                                                                       | 9                                                             | 6                                                                                         |

### Stratum 2= event time 2

Event time 2:

At 3 months, 1 died in the control group.

At that time 21 from each group were at risk

treated control

| Event | No Event |
|-------|----------|
| 0     | 21       |
| 1     | 20       |

 $a_{1} = 0$   $E(a_{1}) = \frac{(1) * (21)}{42} = .5$   $Var(a_{1}) = \frac{(21) * (21) * (1) * (41)}{42^{2} (41)} = .25$ 

#### Event time 3 (4 months), control group:

|            |                |          |         | Survival |        | <b>A</b> L |
|------------|----------------|----------|---------|----------|--------|------------|
|            |                |          |         | Standard | Number | Num At     |
|            | time           | Survival | Failure | Error    | Failed | Le risk=20 |
|            |                |          |         |          |        |            |
|            | 0.000          | 1.0000   | 0       | 0        | 0      | 22         |
|            | 2.000          | 0.9545   | 0.0455  | 0.0444   | 1      | 21 /       |
| 1 event at | 3.000          | 0.9091   | 0.0909  | 0.0613   | 2      | 20 🖟       |
| month 4.   | <b>→</b> 4.000 | 0.8636   | 0.1364  | 0.0732   | 3      | 19         |
|            | 7.000          | 0.8182   | 0.1818  | 0.0822   | 4      | 18         |
|            | 10.000         | 0.7727   | 0.2273  | 0.0893   | 5      | 17         |
|            | 22.000         | 0.7273   | 0.2727  | 0.0950   | 6      | 16         |
|            | 28.000         | 0.6818   | 0.3182  | 0.0993   | 7      | 15         |
|            | 29.000         | 0.6364   | 0.3636  | 0.1026   | 8      | 14         |
|            | 32.000         | 0.5909   | 0.4091  | 0.1048   | 9      | 13         |
|            | 37.000         | 0.5455   | 0.4545  | 0.1062   | 10     | 12         |
|            | 40.000         | 0.5000   | 0.5000  | 0.1066   | 11     | 11         |
|            | 41.000         | 0.4545   | 0.5455  | 0.1062   | 12     | 10         |
|            | 54.000         | 0.4091   | 0.5909  | 0.1048   | 13     | 9          |
|            | 61.000         | 0.3636   | 0.6364  | 0.1026   | 14     | 8          |
|            | 63.000         | 0.3182   | 0.6818  | 0.0993   | 15     | 7          |
|            | 71.000         | 0.2727   | 0.7273  | 0.0950   | 16     | 6          |
|            | 127.000*       | •        | •       |          | 16     | 5          |

#### Event time 3 (4 months), treated group:

|          |          |         | Survival<br>Standard | Number | At risk=21 |
|----------|----------|---------|----------------------|--------|------------|
| time     | Survival | Failure | Error                | Failed | Left       |
| 0.000    | 1.0000   | 0       | 0                    | 0      | 22         |
| 2.000    | 0.9545   | 0.0455  | 0.0444               | 1      | 21         |
| 6.000    | 0.9091   | 0.0909  | 0.0613               | 2      | 20         |
| 12.000   | 0.8636   | 0.1364  | 0.0732               | 3      | 19         |
| 54.000   | 0.8182   | 0.1818  | 0.0822               | 4      | 18         |
| 56.000*  |          | •       | •                    | 4      | 17         |
| 68.000   | 0.7701   | 0.2299  | 0.0904               | 5      | 16         |
| 89.000   | 0.7219   | 0.2781  | 0.0967               | 6      | 15         |
| 96.000   |          | •       | •                    | 7      | 14         |
| 96.000   | 0.6257   | 0.3743  | 0.1051               | 8      | 13         |
| 125.000* |          |         |                      | 8      | 12         |
| 128.000* |          | •       | •                    | 8      | 11         |
| 131.000* |          | •       | •                    | 8      | 10         |
| 140.000* |          | •       | •                    | 8      | 9          |
| 141.000* |          | •       |                      | 8      | 8          |
| 143.000  | 0.5475   | 0.4525  | 0.1175               | 9      | 7          |
| 145.000* | •        |         | •                    | 9      | 6          |

# Stratum 3= event time 3 (4 months)

Event time 3:

At 4 months, 1 died in the control group.

At that time 21 from the treated group and 20 from the control group were at-risk.

treated control

| Event | No Event |
|-------|----------|
| 0     | 21       |
| 1     | 19       |

$$a_{1} = 0$$

$$E(a_{1}) = \frac{(1) * (21)}{41} = .51$$

$$Var(a_{1}) = \frac{(21) * (20) * (1) * (40)}{41^{2} (40)} = .25$$

41

## 4

### Etc., 1 stratum per event time

$$\frac{\left[\sum_{i=1}^{22} (a_k - E(a_k))\right]^2}{\sum_{i=1}^{22} Var(a_k)} = \frac{\left[(1-1) + (0-.5) + (0-.51) + \dots \right]^2}{.244 + .25 + .25 + \dots} = 4.66$$

Then find P value  $\rightarrow$  P < 0.05  $\rightarrow$  Significant