Semestrální zkouška ISS, řádný termín, 12.1.2017, skupina D

Login: Příjmení a jméno: Podpis: Podpis: (čitelně!)

Příklad 1 Určete střední výkon periodického signálu se spojitým časem s periodou $T_1 = 4$ s. Jedna perioda je dána jako

$$x(t) = \begin{cases} 10 & \text{pro } 0 \le t < 1s \\ 4 & \text{pro } 1s \le t < 2s \\ 10 & \text{pro } 2s \le t < 3s \\ 0 & \text{pro } 3s \le t < 4s \end{cases}$$

viz A

Příklad 2 Ve 2D-signálu (obrázku) o rozměrech 256×256 pixelů má pixel x[0,0] hodnotu 0.5, všechny ostatní jsou nulové. Určete hodnoty všech koeficientů jeho 2D diskrétní Fourierovy transformace X[m,n]pro $m \in 0...255$ a $n \in 0...255$

> Viz A vilding X[m, n] = 0,5

Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$.

 $x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \le t \le 0.5 \\ 0 & \text{jinde} \end{cases}$

 $x_2(t) = \begin{cases} -1 & \text{pro } 1 \le t \le 2\\ 0 & \text{jinde} \end{cases}$

Označte prosím pečlivě hodnoty na obou osách.

 \mathbf{P} říklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FŘ) signálu x(t). Do stejného obrázku nakreslete moduly koeficientů FR signálu y(t) = x(t + 3 ms).

Viz A

Příklad 5 Spektrální funkce signálu x(t) je $X(j\omega) = \begin{cases} 50 & \text{pro } -5000 \le \omega \le 5000 \\ 0 & \text{jinde} \end{cases}$

Napište a nakreslete spektrální funkci $Y(j\omega)$ signálu y(t) = x(5t). $M = \int_{-\infty}^{\infty} \frac{1}{m} = \frac{1}{n} = \frac{1}{n}$

		D
Příklad 6	Signál je ideálně vzorkován na vzorkovací frekvenci $F_s=\!\!32~\mathrm{kHz}.$	Napište vztah pro impulsní
odezvu ideál	ního rekonstrukčního filtru $h_r(t)$ a nakreslete ji.	
		Ser.

$$h_r(t) = \dots$$

Příklad 7 Systém se spojitým časem je popsán diferenciální rovnicí $A\frac{dy(t)}{dt} + y(t) = x(t)$, kde x(t) je vstup a y(t) je výstup.

Napište přenosovou funkci systému H(s).

vit A

$$H(s) = \dots$$

Příklad 8 Přenosová funkce systému se spojitým časem má nulový bod $n_1 = 0$, dva komplexně sdružené nulové body a dva komplexně sdružené póly:

 $n_{2,3} = \pm 12000j$, $p_{1,2} = -10 \pm 6000j$.

Nakreslete přibližně modulovou frekvenční charakteristiku $|H(j\omega)|$ pro kruhové frekvence $\omega \in [0, 15000]$ rad/s.

Příklad 9 Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce N=4:

n	0	1	2	3
$x_1[n]$	4	3	1	2
$x_2[n]$	-1	1	0	-1
$x_1[n] \otimes x_2[n]$	-5	0	0	-5

Příklad 10 Hodnoty dvou vzorků signálu s diskrétním časem x[n] jsou: x[0] = 1, x[1] = -1, ostatní jsou nulové. Vypočtěte hodnotu Fourierovy transformace s diskrétním časem (DTFT) $\tilde{X}(e^{j\omega})$ tohoto signálu pro kruhovou frekvenci $\omega = 2\pi$ rad

 $\tilde{X}(e^{j2\pi}) = \frac{1}{2} \left(\frac{1}{2} \right) \cdot \frac{1}{2\pi} + \left(-1 \right) \cdot \frac{1}{2\pi} = 1 - 1 = 0$

Příklad 11 Provádíme výpočet spektra pomocí diskrétní Fourierovy transformace (DFT). Počet vzorků je $N=256$, vzorkovací frekvence je $F_s=64$ kHz. Zajímá nás frekvence 30 kHz. Který koeficient $X[k]$
budeme zobrazovat?
$k = \frac{256.30}{69} = \frac{120}{}$
Příklad 12 Diskrétní signál $x[n]$ má délku $N=8$ vzorků. Hodnoty jsou následující: $x[n]=1$ –1 0 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT): $X[2]=1+j$. Určete hodnotu koeficientu DFT $Y[2]$ signálu $y[n]$, který je kruhově posunutou verzí signálu $x[n]$: $y[n]=0$ 0 0 0 1 –1 0 0.
m=4 1, beel andry!
$Y[2] = (1+i)e^{-i\frac{4\cdot 2}{8}\cdot 2\pi} = (1+i)e^{-i\frac{2\pi}{8}} = 1+i$
Příklad 13 Diskrétní signál $x[n]$ má délku $N=8$ vzorků. Jeho hodnoty jsou $x[0]=1, x[1]=\sqrt{2}, x[7]=\sqrt{2},$ ostatní jsou nulové. Spočítejte koeficient $X[3]$ diskrétní Fourierovy transformace (DFT). $\frac{24}{8}3m$ $\frac{3}{8}m$
$N = 7 \Rightarrow e^{-\frac{1}{2}} = e^{-\frac{1}{2}$
Příklad 14 Napište přenosovou funkci IIR filtru podle schématu. y[n]
$x[n]$ Σ z^{-1} z^{-1}
$H(z) =1 + 0.62 + 0.32^{-2}$
Příklad 15 Na obrázku je rozložení nulových bodů a pólů číslicového filtru. Číslo 4 v počátku značí, že se jedná o čtyřnásobný pól. Nakreslete přibližně modulovou frekvenční charakteristiku $ H(e^{j\omega}) $ pro normované kruhové frekvence $\omega \in [0, \pi]$ rad.
tred the property of the prope
-1 -0.5 0 0.5 1 Real Part

Tonou

Příklad 16 Máte k disposici záznam $\Omega = 10^6$ šachových partií. Popište, jak odhadnete sdraženou pravděpodobnost toho, že v té samé partii jel v 5. tahu bílý pěšcem a v 7. tahu černý věží.

Viz A

Příklad 17 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	0.53	1.83	-2.25	0.86	0.31	-1.30	-0.43	0.34	3.57	2.76

Provedte souborový odhad distribuční funkce F(x,7) a nakreslete ji.

Wiz A

Příklad 18 Na Ω 4000realizacích naměřena náhodného procesu byla tabulka (sdružený histogram) hodnot mezi časy n_1 a Spočítejte korelační koeficient $R[n_1, n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	intervaly x_2					
$\underline{}$ x_1	[-20, -10]	[-10, 0]	[0, 10]	[10, 20]		
[10, 20]	0	0	0	0		
[0, 10]	0	1000	0	0		
[-10, 0]	0	0	1000	0		
[-20, -10]	0	0	0	2000		

Viz

A

 $R[n_1, n_2] = \dots$

Příklad 19 V jazyce C máte v poli Xr o velikosti N/2+1 uložené hodnoty reálné složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$ a v poli Xi o stejné velikosti imaginární složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$. Napište kód pro odhad spektrální hustoty výkonu, výsledek nechť je v poli PSD o stejné velikosti.

viz A

Příklad 20 Korelační koeficienty náhodného signálu R[k] jsou: R[0] = 10, R[1] = 3, ostatní jsou nulové. Určete, zda se jedná o bílý šum a svou odpověď zdůvodněte.

Bílý šum: ANO / NE, zdůvodnění:

~ (~ / ·