MA204: Mathematical Statistics

Assignment 2

You have a total of 15 questions in Assignment 2.

Submit your solutions to 7 questions randomly chosen from Q2.1–Q2.10 in Exercise 2 on pages 99–101 of the Textbook "Mathematical Statistics", plus 3 questions chosen from the following Q2.11–Q2.15, plus the last 5 questions (i.e., Q2.16–Q2.20).

- **2.11** Let $X_1 \sim \text{Poisson}(\lambda_1)$, $X_2 \sim \text{Poisson}(\lambda_2)$ and $X_1 \perp \!\!\! \perp X_2$, where $\lambda_1 > 0$ and $\lambda_2 > 0$.
 - (a) Find the pmf of $Y = X_2 X_1$.
 - (b) Calculate E(Y) and Var(Y).
- **2.12** Let $X_1, X_2 \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ with pdf $\lambda \exp(-\lambda x), x \ge 0$.
 - (a) Find the joint pdf of $Y_1 = X_1 + X_2$ and $Y_2 = X_1/X_2$.
 - (b) Find the marginal pdf of Y_1 .
 - (c) Find the marginal pdf of Y_2 .
- **2.13** Let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics of a random sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F(x)$, where F(x) is the population cdf and f(x) is the population pdf. The sample range and sample mid-range are respectively defined to be

$$R = X_{(n)} - X_{(1)}$$
 and $T = \frac{X_{(1)} + X_{(n)}}{2}$.

(a) Find the joint pdf of R and T.

- (b) Find the marginal pdf of R.
- (c) Find the marginal pdf of T.
- **2.14** (a) Find the cdf of the Bernoulli(p) distribution with $p \in (0,1)$.
 - (b) Let the mgf of the random variable X is $M_X(t) = \exp(ct)$, where c is a constant, what is the distribution of X?
- **2.15** Let Y be a positive continuous random variable cdf $F_Y(y)$ or pdf $f_Y(y)$. Define a discrete random variable $X = \lceil Y \rceil$, which denotes the largest integer less than or equal to Y. Find the pmf of X for the following cdf or pdf of Y.
 - (a) Half logistic distribution:

$$F_{Y}(y) = 1 - \frac{2}{1 + \exp(y/\sigma)}, \quad y > 0, \ \sigma > 0.$$

(b) Gamma distribution:

$$f_Y(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}, \quad y > 0, \quad \alpha > 0, \ \beta > 0.$$

(c) Lindley distribution:

$$F_Y(y) = 1 - \frac{(1+\theta+\theta y)\exp(-\theta y)}{1+\theta}, \quad y > 0, \ \theta > 0.$$

- **2.16** Let $X \sim N(0,1)$. Use the moment generating function (mgf) technique to find the distribution of $Y = X^2$.
- **2.17** Let $X_1, X_2 \stackrel{\text{iid}}{\sim} U(0,1)$. Use the mixture technique,
 - (a) Find the pdf of $Y = X_1 X_2$.
 - (b) Find the pdf of $Z = X_1/X_2$.

2.18 In Example 2.10 on page 69 of the Textbook, we rewrite (2.5) in the following vector form

$$\mathbf{x} = egin{pmatrix} X_1 \ dots \ X_d \end{pmatrix} = oldsymbol{\mu} + rac{\mathbf{y}}{\sqrt{Z/
u}}$$

where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^{\mathsf{T}}$, $\mathbf{y} = (Y_1, \dots, Y_d)^{\mathsf{T}} \sim N_d(\mathbf{0}, \boldsymbol{\Sigma})$, $Z \sim \chi^2(\nu)$ and $Z \perp \mathbf{y}$. Use the mixture technique, find the joint pdf of \mathbf{x} .

- **2.19** Let $F(\cdot)$ and $f(\cdot)$ be a cdf and pdf of a continuous random variable. Prove that
 - (a) For any $\alpha > 0$, $\alpha f(x)[F(x)]^{\alpha-1}$ is a pdf of some random variable, X say.
 - (b) Find the stochastic representation (SR) of X via the uniform random variable $U \sim U(0, 1)$.
- **2.20** Let $X \sim t(\mu, \sigma^2, \nu)$, then X can be stochastically represented by

$$X \stackrel{\mathrm{d}}{=} \mu + \frac{Z}{\sqrt{\xi/\nu}},$$

where $Z \sim N(0, \sigma^2)$, $\xi \sim \chi^2(\nu)$, and $Z \perp \!\!\! \perp \xi$. Now assume that

$$Y \stackrel{\mathrm{d}}{=} \mu + \frac{Z}{\sqrt{\tau}},$$

where $Z \sim N(0, \sigma^2)$, $\tau \sim \text{Gamma}(\alpha, \beta)$ and $Z \perp \!\!\! \perp \tau$. Use the SR technique to prove that $Y \sim t(\mu, \sigma_*^2, \nu_*)$ and find the expressions of σ_*^2 and ν_* .

[Hint: (1) Gamma($\nu/2,1/2$) = $\chi^2(\nu)$. (2) If the r.v. $\xi \sim \text{Gamma}(\alpha,\beta)$ and c > 0 is a constant, then $\eta \triangleq c \xi \sim \text{Gamma}(\alpha,\beta/c)$.]