HOG library

Создано системой Doxygen 1.9.7

HOG-feature-descriptor

Course work for "OOP" 2023 class in NUST MISIS

Алфавитный указатель классов

2.1 Классы

Классы с их кратким описанием.

HOGDescriptor	
Класс для работы с дескриптором НОС (Гистограмма направленных градиентов)	??
HOGSettings	??
texHOG	
Класс для создания .tex файлов для визуализации процесса	??

	Алфавитный	указатель	классов
--	------------	-----------	---------

Список файлов

3.1 Файлы

Полный список файлов.

src/example/main.cpp
src/lib/hogdescriptor/hogdescriptor.cpp
src/lib/hogdescriptor/include/hogdescriptor/hogdescriptor.hpp
src/lib/texvisualization/texvisualization.cpp
src/lib/texvisualization/include/texvisualization/texvisualization.hpp
src/tests/hogtest.cpp

6 Список файлов

Классы

4.1 Kласс HOGDescriptor

Класс для работы с дескриптором НОС (Гистограмма направленных градиентов)

#include <hogdescriptor.hpp>

Открытые члены

• HOGDescriptor ()

Конструктор для инициализации объекта класса HOGDescriptor с параметрами по умолчанию

• HOGDescriptor (const size_t blockSize, const size_t cellSize, const size_t stride, const size_t binNumber, const size_t gradType)

Конструктор для класса HOGDescriptor со всеми параметрами

• HOGDescriptor (const size t blockSize, const size t cellSize)

Конструктор для создания нового объекта HOGDescriptor.

• ~HOGDescriptor ()

Деструктор для класса HOGDescriptor.

• void visualizeHOG (float scale, bool imposed)

Метод для визуализации гистограмм ячеек HOGDescriptor в виде стрелок внутри каждой ячейки на изображении

• void HOGgrid (cv::Mat &image, float thickness, int cellSize)

Метод для отображения сетки ячеек на изображении

• void computeHOG (cv::Mat &image)

Метод для вычисления гистограмм HOG.

• std::vector< float > getHOGFeatureVector ()

Метод для получения вектора гистограммы HOG.

• std::vector< float > getCellHistogram (int y, int x)

Получение гистограммы ячейки

• std::vector< std::vector< float >> getBlockHistogram (int y, int x)

Получение гистограммы блока

• void saveVectorData (const std::string &executablePath, const std::string &vectorName)

Сохранение вектора НОС в файл

Статические открытые данные

• static const size t GRADIENT SIGNED = 360

Разброс градиента на 360 градусов

• static const size t GRADIENT UNSIGNED = 180

Разброс градиента на 180 градусов

Закрытые члены

• void computeGradientFeatures (cv::Mat &image)

Функция для вычисления амплитуды и ориентации градиента каждого пикселя

• std::vector< std::vector< float >>> computeCellHistograms (cv::Mat magnitude, cv::Mat orientation, std::vector< std::vector< float >>> &cell_histograms)

Вычисление гистограмм НОС для каждой ячейки изображения.

 $\bullet \ \, \mathrm{std::vector} < \mathrm{float} > \mathrm{cellHistogram} \ (\mathrm{const} \ \mathrm{cv::Mat} \ \& \mathrm{cellMagnitude}, \, \mathrm{const} \ \mathrm{cv::Mat} \ \& \mathrm{cellOrientation})$

Метод для вычисления гистограммы для данной ячейки

• void normalizeBlockHistogram (std::vector< float > &block histogram)

Функция для нормализации значений из гистограмм НОС для объедененных ячеек из блока

• const std::vector< float > calculateHOGVector (const std::vector< std::vector< std::vector< float > > &cell histograms)

Метод для вычисления вектора гистограммы HOG.

Закрытые данные

• int blockSize

Размер блока скользящего окна в пикселях

• int cellSize

Размер ячейки в пикселях

• int binNumber_

Количество корзин в гистограмме каждой ячейки

• int binWidth

Ширина корзин в гистограмме каждой ячейки

• int stride

Шаг скользящего окна в пикселях

• int gradType_

Тип вычисления градиента (беззнаковый или со знаком)

• bool hogFlag = false

Флаг, указывающий, был ли вычислен вектор гистограммы HOG.

• cv::Mat imageMagnitude

Амплитуда градиента изображения

• cv::Mat imageOrientation

Ориентация градиента изображения

• std::vector< std::vector< float >>> cellHistograms

Вектор гистограмм ячеек

• std::vector< float > hogFeatureVector

Финальный вектор гистограммы HOG.

4.1.1 Подробное описание

Класс для работы с дескриптором НОС (Гистограмма направленных градиентов)

4.1.2 Конструктор(ы)

4.1.2.1 HOGDescriptor() [1/3]

```
HOGDescriptor::HOGDescriptor ( )
```

Конструктор для инициализации объекта класса HOGDescriptor с параметрами по умолчанию

4.1.2.2 HOGDescriptor() [2/3]

```
\begin{split} & HOGDescriptor::HOGDescriptor \; (\\ & const \; size\_t \; blockSize, \\ & const \; size\_t \; cellSize, \\ & const \; size\_t \; stride, \\ & const \; size\_t \; binNumber, \\ & const \; size\_t \; gradType \; ) \end{split}
```

Конструктор для класса HOGDescriptor со всеми параметрами

Конструктор для класса HOGDescriptor со всеми параметрами

Аргументы

blockSize	Размер блока скользящего окна в пикселях
cellSize	Размер ячейки в пикселях
stride	Шаг скользящего окна в пикселях
binNumber	Количество корзин в гистограмме каждой ячейки
gradType	Тип вычисления градиента (беззнаковый или со знаком)

Граф вызовов:

4.1.2.3 HOGDescriptor() [3/3]

```
\begin{split} & \mbox{HOGDescriptor::HOGDescriptor (} \\ & \mbox{const size\_t blockSize,} \\ & \mbox{const size\_t cellSize )} \end{split}
```

Конструктор для создания нового объекта HOGDescriptor.

Аргументы

blockSize	Размер блока скользящего окна в пикселях
cellSize	Размер ячейки в пикселях

Граф вызовов:

4.1.2.4 ∼HOGDescriptor()

HOGDescriptor::~HOGDescriptor ()

Деструктор для класса HOGDescriptor.

4.1.3 Методы

4.1.3.1 calculateHOGVector()

Метод для вычисления вектора гистограммы HOG.

Аргументы

cell_histograms 3D-вектор гистограмм ячеек

Возвращает

Финальный вектор

Граф вызовов:

Граф вызова функции:

4.1.3.2 cellHistogram()

```
std::vector< float > HOGDescriptor::cellHistogram (  {\rm const~cv::Mat~\&~cellMagnitude,}   {\rm const~cv::Mat~\&~cellOrientation~)} \quad [{\rm private}]
```

Метод для вычисления гистограммы для данной ячейки

Аргументы

cellMagnitude	Матрица амплитуд ячейки
cellOrientation	Матрица ориентаций ячейки

Граф вызова функции:

4.1.3.3 computeCellHistograms()

Вычисление гистограмм НОС для каждой ячейки изображения.

Аргументы

magnitude	Амплитуда градиента, вычисленная с помощью computeGradient()
orientation	Ориентация градиента, вычисленная с помощью computeGradient()
cell_histograms	Выходной вектор гистограмм НОС для каждой ячейки

Возвращает

3D-вектор гистограмм ячеек

Граф вызовов:

Граф вызова функции:

4.1.3.4 computeGradientFeatures()

```
\label{eq:computeGradientFeatures} \mbox{ void HOGDescriptor::computeGradientFeatures (} \\ \mbox{ cv::Mat \& image )} \mbox{ [private]}
```

Функция для вычисления амплитуды и ориентации градиента каждого пикселя

Аргументы

image	Входное изображение
-------	---------------------

Граф вызова функции:

4.1.3.5 computeHOG()

```
void HOGDescriptor::compute
HOG ( {\rm cv::Mat}\ \&\ {\rm image}\ )
```

Метод для вычисления гистограмм HOG.

Аргументы

image Входное изображени	е
--------------------------	---

Возвращает

std::vector<float> - Вектор гистограммы НОС для изображения

Граф вызовов:

Граф вызова функции:

4.1.3.6 getBlockHistogram()

```
std::vector< std::vector< float >> HOGDescriptor::getBlockHistogram ( \inf \ y, \inf \ x \ )
```

Получение гистограммы блока

Аргументы

У	Позиция первой ячейки блока по вертикали
X	Позиция первой ячееки блока по горизонали

Возвращает

```
std::vector{<}std::vector{<}float{>}{>}
```

Граф вызовов:

Граф вызова функции:

4.1.3.7 getCellHistogram()

Получение гистограммы ячейки

Аргументы

У	Позиция ячейки по вертикали
X	Позиция ячейки по горизонтали

Возвращает

std::vector<float> Вектор гистограммы для ячейки

Граф вызова функции:

4.1.3.8 getHOGFeatureVector()

```
{\tt std::vector} < {\tt float} > {\tt HOGDescriptor::getHOGFeatureVector} \ ( \ )
```

Метод для получения вектора гистограммы HOG.

Возвращает

std::vector < float >

Граф вызова функции:

4.1.3.9 HOGgrid()

Метод для отображения сетки ячеек на изображении

Аргументы

thickness	Толщина линий сетки
cellSize	Размер ячейки в пикселях

Граф вызова функции:

4.1.3.10 normalizeBlockHistogram()

```
void HOGDescriptor::normalizeBlockHistogram ( {\rm std::vector} < {\rm float} > \& \ {\rm block\_histogram} \ ) \quad [{\rm private}]
```

Функция для нормализации значений из гистограмм НОС для объедененных ячеек из блока

Аргументы

```
block Вектор значений, представляющих гистограммы ячеек для всего блока
```

Граф вызова функции:

4.1.3.11 saveVectorData()

```
void HOGDescriptor::saveVectorData ( {\rm const~std::string~\&~executablePath,} {\rm const~std::string~\&~vectorName~)}
```

Сохранение вектора НОС в файл

Аргументы

executablePath	Путь, где будет сохранен файл
vectorName	Имя вектора

Граф вызовов:

Граф вызова функции:

4.1.3.12 visualizeHOG()

```
\begin{tabular}{ll} {\bf void\ HOGDescriptor::} visualize HOG\ (\\ & {\bf float\ scale,}\\ & {\bf bool\ imposed\ )} \end{tabular}
```

Метод для визуализации гистограмм ячеек HOGDescriptor в виде стрелок внутри каждой ячейки на изображении

Аргументы

scale	Масштаб стрелок
imposed	Изображение фона для справки по амплитуде

Граф вызовов:

Граф вызова функции:

4.1.4 Данные класса

4.1.4.1 binNumber

 $int\ HOGDescriptor::binNumber_\quad [private]$

Количество корзин в гистограмме каждой ячейки

4.1.4.2 binWidth

 $int\ HOGDescriptor::binWidth_\quad [private]$

Ширина корзин в гистограмме каждой ячейки

4.1.4.3 blockSize_

 $int\ HOGDescriptor::blockSize_\quad [private]$

Размер блока скользящего окна в пикселях

4.1.4.4 cellHistograms_

 $std::vector < std::vector < std::vector < float >> HOGDescriptor::cellHistograms \ \ \, [private]$

Вектор гистограмм ячеек

4.1.4.5 cellSize_

int HOGDescriptor::cellSize_ [private]

Размер ячейки в пикселях

 $4.1.4.6 \quad {\tt GRADIENT_SIGNED}$

 $const\ size_t\ HOGDescriptor::GRADIENT_SIGNED = 360\quad [static]$

Разброс градиента на 360 градусов

```
4.1.4.7 GRADIENT UNSIGNED
const size t HOGDescriptor::GRADIENT UNSIGNED = 180 [static]
Разброс градиента на 180 градусов
4.1.4.8 gradType
int HOGDescriptor::gradType_ [private]
Тип вычисления градиента (беззнаковый или со знаком)
4.1.4.9 hogFeatureVector_
std::vector < float > HOGDescriptor::hogFeatureVector\_ \quad [private]
Финальный вектор гистограммы HOG.
4.1.4.10 hogFlag
bool\ HOGDescriptor::hogFlag\_=false\quad [private]
Флаг, указывающий, был ли вычислен вектор гистограммы HOG.
4.1.4.11 imageMagnitude
cv:: Mat\ HOGDescriptor:: imageMagnitude\_\quad [private]
Амплитуда градиента изображения
4.1.4.12 imageOrientation_
cv::Mat HOGDescriptor::imageOrientation_ [private]
Ориентация градиента изображения
4.1.4.13 stride
int\ HOGDescriptor::stride\_\quad [private]
Шаг скользящего окна в пикселях
```

Объявления и описания членов классов находятся в файлах:

- src/lib/hogdescriptor/include/hogdescriptor/hogdescriptor.hpp
- $\bullet \ src/lib/hogdescriptor/hogdescriptor.cpp$

4.2 Структура HOGSettings

Открытые атрибуты

- int blockSize
- int cellSize
- int stride
- \bullet int binNumber
- int gradType
- \bullet int binWidth
- std::string folderPath
- \bullet std::string saveVectorData

4.2.1 Данные класса

4.2.1.1 binNumber

 $int\ HOGS ettings:: bin Number$

4.2.1.2 binWidth

 $int\ HOGS ettings:: binWidth$

4.2.1.3 blockSize

 $int\ HOGS ettings:: block Size$

4.2.1.4 cellSize

int HOGSettings::cellSize

4.2.1.5 folderPath

 ${\it std::} {\it string HOGSettings::} folder Path$

$4.2.1.6 \quad {\rm gradType}$

 $int\ HOGS ettings:: grad Type$

4.2.1.7 saveVectorData

std::string HOGSettings::saveVectorData

4.3 Kласс texHOG 21

4.2.1.8 stride

int HOGSettings::stride

Объявления и описания членов структуры находятся в файле:

• src/example/main.cpp

4.3 Kласс texHOG

Класс для создания .tex файлов для визуализации процесса

```
#include <texvisualization.hpp>
```

Открытые члены

• texHOG ()=default

Конструктор класса

• void cell HistogramPlot (std::vector< float > cell Histogram, int binWidth, const std::string &executablePath)

Метод для создания .tex файла с графиком гистограммы ячейки

• void blockHistogramPlot (std::vector< std::vector< float > > blockHistogram, int binWidth, const std::string &executablePath)

Метод для создания файла .tex с гистограммами ячеек в заданном блоке

4.3.1 Подробное описание

Класс для создания .tex файлов для визуализации процесса

```
4.3.2 Конструктор(ы)
```

```
4.3.2.1 \text{ texHOG()}
```

```
texHOG::texHOG ( ) [default]
```

Конструктор класса

4.3.3 Методы

4.3.3.1 blockHistogramPlot()

```
\label{lockHistogramPlot} $$ void texHOG::blockHistogramPlot ($$ std::vector< std::vector< float >> blockHistogram, int binWidth, $$ const std::string \& executablePath )$
```

Метод для создания файла .tex с гистограммами ячеек в заданном блоке

Аргументы

blockHistogram	Матрица гистограмм ячеек
blockWidth	Ширина блока гистограммы
executablePath	Путь к файлу .tex

Граф вызова функции:

4.3.3.2 cellHistogramPlot()

```
\label{eq:condition} $$\operatorname{void}$ \ \operatorname{texHOG::cellHistogramPlot} ($$ \operatorname{std::vector} < \operatorname{float} > \operatorname{cellHistogram}, $$ \operatorname{int}$ \ \operatorname{binWidth}, $$ \operatorname{const}$ \ \operatorname{std::string} \& \ \operatorname{executablePath} )$
```

Метод для создания .tex файла с графиком гистограммы ячейки

Аргументы

cellHistogram	Гистограмма ячейки
blockWidth	Ширина блока гистограммы
executablePath	Путь к файлу .tex

Граф вызова функции:

Объявления и описания членов классов находятся в файлах:

- $\bullet \ src/lib/texvisualization/include/texvisualization/texvisualization.hpp$
- $\bullet \ src/lib/texvisualization/texvisualization.cpp$

Файлы

5.1 Файл README.md

5.2 Файл src/example/main.cpp

```
#include <hogdescriptor/hogdescriptor.hpp>
#include <texvisualization/texvisualization.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
Граф включаемых заголовочных файлов для main.cpp:
```


Классы

• struct HOGSettings

Функции

- void save Settings
To File (const HOGS
ettings &
settings)
- HOGSettings loadSettingsFromFile ()
- int main (int argc, char **argv)

24 Файлы

5.2.1 Функции

5.2.1.1 loadSettingsFromFile()

HOGSettings loadSettingsFromFile ()

Граф вызова функции:


```
5.2.1.2 \operatorname{main}() int main ( \operatorname{int \ argc}, \\ \operatorname{char} ** \operatorname{argv})
```

Граф вызовов:

5.2.1.3 saveSettingsToFile()

```
void save
SettingsToFile ( {\rm const~HOGSettings~\&~settings~)}
```

5.3 Файл src/lib/hogdescriptor/hogdescriptor.cpp

```
#include <hogdescriptor/hogdescriptor.hpp>
#include <iostream>
#include <fstream>
#include <filesystem>
```

Граф включаемых заголовочных файлов для hogdescriptor.cpp:

Функции

• void check_ctor_params (size_t blockSize, size_t cellSize, size_t stride, size_t binNumber, size← _t gradType)

5.3.1 Функции

5.3.1.1 check_ctor_params()

Граф вызова функции:

26 Файлы

5.4 Файл src/lib/hogdescriptor/include/hogdescriptor/hogdescriptor.hpp

```
#include <opencv2/opencv.hpp>
#include <iostream>
#include <numeric>
#include <algorithm>
#include <memory>
#include <vector>
#include <functional>
#include <math.h>
```

Граф включаемых заголовочных файлов для hogdescriptor.hpp:

Граф файлов, в которые включается этот файл:

Классы

• class HOGDescriptor

Класс для работы с дескриптором НОС (Гистограмма направленных градиентов)

5.5 hogdescriptor.hpp

```
Cм. документацию.

00001 #ifndef HOGDESCRIPTOR_H

00002 #define HOGDESCRIPTOR_H

00003

00004 #include <opencv2/opencv.hpp>

00005 #include <iostream>

00006 #include <numeric>

00007 #include <algorithm>

00008 #include <memory>

00009 #include <vector>

00009 #include <functional>
```

```
00011 \#include <math.h>
00016 class HOGDescriptor {
00017 public:
                            HOGDescriptor();
00021
                            HOGDescriptor(const size_t blockSize, const size_t cellSize,
00032
                                      const size_t stride, const size_t binNumber, const size_t gradType);
00033
00041
                            HOGDescriptor(const size_t blockSize, const size_t cellSize);
00042
                             ~HOGDescriptor();
00046
00047
00048 public: // Публичные методы для визуализации
00055
                            void visualizeHOG(float scale, bool imposed);
00056
00063
                            void HOGgrid(cv::Mat& image, float thickness, int cellSize);
00064
00065 public:
                            static const size t GRADIENT SIGNED = 360; static const size t GRADIENT UNSIGNED = 180;
00066
00067
00068
00075
                            void computeHOG(cv::Mat& image);
00076
00082
                            std::vector<float> getHOGFeatureVector();
00083
00091
                            std::vector<float> getCellHistogram(int y, int x);
00092
00100
                            std::vector<std::vector<float» getBlockHistogram(int y, int x);
00101
                            void saveVectorData(const std::string& executablePath, const std::string& vectorName);
00108
00109
00110 private:
00116
                            void computeGradientFeatures(cv::Mat& image);
00117
                            std::vector < std::vector < float >> compute Cell Histograms (cv::Mat magnitude, cv::Mat orientation, float == float =
00126
                    std::vector<std::vector<float»>& cell_histograms);
00127
00134
                            std::vector < float > \\ cellHistogram(const~cv::Mat\&~cellMagnitude,~const~cv::Mat\&~cellOrientation);
00135
00141
                            void normalizeBlockHistogram(std::vector<float>& block histogram);
00142
00149
                            const\ std::vector < float > \\ calculate HOGVector (const\ std::vector < std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const\ std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ \&\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ const std::vector < float > \\ &\ cell\_histograms); \\ con
00150
00151 private:
00152
                            int blockSize_;
                            int cellSize_;
00153
00154
                            int binNumber ;
00155
                            int binWidth ;
00156
                            int stride ;
00157
                            int gradType_;
00158
00159
                            bool hogFlag = false;
00160
00161
                            cv::Mat imageMagnitude_;
00162
                            cv::Mat imageOrientation_;
00163
00164
                            std::vector<std::vector<float»> cellHistograms ;
                            std::vector<float> hogFeatureVector
00166
00167 };
00168
00169 #endif //HOGDESCRIPTOR H
```

5.6 Файл

src/lib/texvisualization/include/texvisualization/texvisualization.hpp

```
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
#include <opencv2/opencv.hpp>
```

28 Файлы

Граф включаемых заголовочных файлов для texvisualization.hpp:

Граф файлов, в которые включается этот файл:

Классы

• class texHOG

Класс для создания .tex файлов для визуализации процесса

5.7 texvisualization.hpp

```
См. документацию.
00001 #ifndef TEXHOG
00002~\# define~TEXHOG
00003
00004 #include <iostream>
00005 #include <vector>
00006 #include <fstream>
00007 #include <string>
00008 #include <opencv2/opencv.hpp>
00009
00013 class texHOG\{
00014 public:
00019
                                        texHOG() = default;
00020
00028
                                        void cellHistogramPlot(std::vector<float> cellHistogram, int binWidth, const std::string& executablePath);
00029
                                        {\tt void} \ \frac{\tt blockHistogramPlot(std::vector{<}std::vector{<}float*)} \ blockHistogram, int \ binWidth, \ const \ std::string\& \ blockHistogram, \ blockH
00037
                              executablePath);
00038 };
00039
00040~\#\mathrm{endif}
```

5.8 Файл src/lib/texvisualization/texvisualization.cpp

```
#include <texvisualization/texvisualization.hpp>
#include <opencv2/opencv.hpp>
#include <string>
#include <iostream>
#include <vector>
#include <fstream>
#include <fistream>
#include <fistream>
```

Граф включаемых заголовочных файлов для texvisualization.cpp:

5.9 Файл src/tests/hogtest.cpp

```
#include <doctest/doctest.h>
#include <hogdescriptor/hogdescriptor.hpp>
Граф включаемых заголовочных файлов для hogtest.cpp:
```


Макросы

• #define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN

5.9.1 Макросы

5.9.1.1 DOCTEST CONFIG IMPLEMENT WITH MAIN

 $\# define\ DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN$

30 Файлы