Analysis

Jonathan Mayer

12.01.2023

1 Begriffe

Tabelle 1: Grundbegriffe

Symbol	ymbol Bedeutung		
R	Relation		
∈ / ∉	Element / kein Element von		
\forall/\nexists	für alle / für kein		
3	Existenzquantor, mindestens ein		
∃!	Anzahlquantor, genau ein		
$A \subset B$	echte Teilmenge, $a \in A \land a, b \in B : \exists b \notin A$		
$A \subseteq B$	Teilmenge $a \in A \land a, b \in B$		
]1,3[, (1,3)	1 < x < 3		
[1,3]	$1 \le x \le 3$		
\Rightarrow	genau dann wenn		
\Leftrightarrow	aus Aussage A folg B und umgekehrt		
\rightarrow	Abbildungsvorschrift für Mengen		
\mapsto	Abbildungsvorschrift für Elemente		
0	Komposition / Verkettung von Funktionen		
^ / V	und / oder		
Lemma	Hilfssatz		
\overline{z}, z^*	konjungiert komplexe Zahl		
\preccurlyeq	beliebiges Symbol		
?	zu zeigen		
<u>!</u>	soll erfüllt sein um zu zeigen		
:=, ≡	definiere		
\cup,\cap,\setminus	Vereinigung, Durchschnitt, Subtrahiert		
disjunkt	$A \cap B = \{\}$		
infimum			

Continued on next page

Symbol Bedeutung supremum notwendiges Kriterium muss immer erfüllt sein, reicht aber nicht aus hinreichendes Kriterium wenn erfüllt dann ... $(a_k)_k$ ist eine Nullfolge wenn $\lim_{k\to\infty} a_k = 0$ Nullfolge $\forall y \in Y : \exists \ x \in X : f(x) = y \ 3.0.1$ surjektiv $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ 3.0.2$ injektiv $\forall y \in Y : \exists ! \ x \in X : f(x) = y \ 3.0.3$ bijektiv beschränkte Folge $\exists b, c : \forall n : b < a_n < c$

Tabelle 1: Grundbegriffe (Continued)

Zwischenwertsatz:

Eine im Intervall [a, b] stetige Funktion nimmt jeden Wert zwischen f(a) und f(a) mindestens einmal an.

 $\exists b : \forall n : a_n < b$

 $\exists b : \forall n : b < a_n$

Satz von Rolle:

Es sei $u, v \in \mathbb{R}$ mit u < v und $f : [u, v] \to \mathbb{R}$ eine differenzierbare Funktion mit f(u) = f(v). fann gibt es ein $x \in]u, v[\to \mathbb{R}$ mit f'(x) = 0.

Mittelwertsatz der Differentialrechnung:

nach oben beschränkte Folge

nach unten beschränkte Folge

Es sei $u, v \in \mathbb{R}$ mit u < v und $f : [u, v] \to \mathbb{R}$ eine differenzierbare Funktion. Dann gibt es ein $x \in]u, v[$ mit $f'(x) = \frac{f(v) - f(u)}{v - u}$.

veralgemeinerter Mittelwertsatz der Differentialrechnung:

Es sei $u,v \in \mathbb{R}$ mit u < v und $f,g : [u,v] \to \mathbb{R}$ eine differenzierbare Funktionen und $\forall x : g'(x) \neq 0$. Dann gibt es ein $x \in]u,v[$ mit $\frac{f'(x)}{g'(x)} = \frac{f(v)-f(u)}{g(v)-g(u)}$.

invertierbarkeit Induktion

2 Mengen

explizite Angabe: $A = \{1, 2, 3, 4, ...\}$

spezifikation über charakteristische Eigenschften: $B = \{a \in A : \varphi(a)\}$

 $\{b \in A' : \text{ es gibt ein } a \in A \text{ mit } b = t(a)\}: \{t(a) : a \in A\}$

Definition 1.1.4:

- 1. Zwie Mengen A und B sehen wir als gleich an, wenn sie dieselben Elemente enthalten.
- 2. Eine Menge A heißt Teilmenge einer Menge B $(a \subseteq B)$ falls $\forall a : a \in B$. Echte Teilmenge $(A \subseteq B)$: $\{\exists b \in B : b \notin A\}$
- 3. Die Menge aller Tielmengen einerm Menge A heißt Potenzmenge von A und wird mit P(a) bezeichnet.

Definition 1.1.7:

- 1. Durchschnitt: $A \cap B = \{x \in U : x \in A \land x \in B\}$
- 2. Vereinigung: $A \cup B = \{x \in U : x \in A \lor x \in B\}$
- 3. Differenz: $A \setminus B = \{x \in U : x \in A \land x \notin B\}$
- 4. Komplement: $CA = U \setminus A$

disjunkt: $a \cap B = \{\}$

Kartesisches Produkt: $A \times B = A^2 = \{(a, b) : a \in A \text{ und } b \in B\}$ Die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$.

3 Relationen und Funktionen

3.0.1 surjektivität:

 $\forall y \in Y : \exists x \in X : f(x) = y$ wenn es für jedes y aus Y mindestens ein $x \in X$ mit f(x) = y gibt.

wenn es auf jeder gedachten Horizontalen in der Zielmenge **mindestens** einen Schnittpunkt mit der Funktion gibt.

3.0.2 injektivität

$$\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

 $\forall b \in B : \exists \text{ h\"ochstens ein } a \in A : f(a) = b$

wenn es für jedes $y \in \text{vom Wertebereich } Y$ höchstens ein $x \in \text{der Definitionsmenge } X$ gibt. Für jede gedachte Horizontale gibt es höchstens einen Schnittpunkt mit der Funktion.

3.0.3 bijektivität

$$\forall y \in Y : \exists ! \ x \in X : f(x) = y$$

Injektiv und surjektiv

wenn es für jedes $y \in Y$ genau ein $x \in X$ gibt.

wenn es auf jeder gedachten Horizontalen in der Zielmenge **genau einen Schnittpunkt** mit der Funktion gibt.

3.1 **Funktionen**

Bei stetigen Funktionen darf der Grenzwert und die Funktion vertauscht werten $\lim_{x\to 0} e^{x \cdot \ln(x)} =$ $e^{\lim_{x\to 0} x \cdot \ln(x)}$).

Folgen 4

beschränkte Folge: $(a_n)_n$ ist beschränkt wenn $\exists b, c : \forall n : b < a_n < c$.

nach oben beschränkte Folge: $(a_n)_n$ ist nach oben beschränkt wenn $\exists b : \forall n : a_n < b$. nach unten beschränkte Folge: $(a_n)_n$ ist nach unten beschränkt wenn $\exists b : \forall n : b < a_n$.

Reihen 5

Definition: Eine Reihe ist eine Partialsumme einer Folge

$$(p_n)_n = \left(\sum_{i=0}^n a_i\right)_n$$
, p_n ... Reihe, a_i ... Folge

geometrische Reihe: $\sum_{i=0}^{\infty} q^i$ mit |q| < 1 konvergent, $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$

harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ ist divergent

... Reihe $\sum_{k=1}^{\infty} \frac{1}{k^r}$ konvergiert für $r \geq 2$

Rechenregeln für konvergente Reihen:
$$\sum_{i=0}^{\infty}(a_i+b_i)=\sum_{i=0}^{\infty}a_i+\sum_{i=0}^{\infty}b_i$$

$$\sum_{i=0}^{\infty}\gamma a_i=\gamma\sum_{i=0}^{\infty}a_i$$

Konvergenzkriterien für Reihen 5.1

absolute Konvergenz: Eine Reihe $\sum_{i=0}^{\infty} a_i$ in \mathbb{R} oder \mathbb{C} heißt absolut konvergent, falls $\sum_{i=0}^{\infty} |a_i|$ konvergiert. i=0 |ai| konvergiert. Es gilt: $|\sum_{i=0}^{\infty} a_i| \leq \sum_{i=0}^{\infty} |a_i|$.

Eine Komplexe Reihe $\sum_{i=0}^{\infty} a_i$ konvergiert/konvergiert absolut wenn $\sum_{i=0}^{\infty} \Re(a_i)$ und $\sum_{i=0}^{\infty} \Im(a_i)$ konvergieren/absolut konvergieren.

konvergiert die Reihe $\sum_{i=0}^{\infty} a_i$ muss ($\lim_{i\to\infty} a_i = 0$) sein (notwendiges aber nicht hinreichendes Kriterium).

 $\sum_{k=0}^{\infty} a_k$ konvergiert genau dann, wenn die Folge von Partialsummen beschränkt ist.

5.1.1 Leibnitz Kriterium

Sei $(a_k)_k$ eine monoton fallende Nullfolge positiver reeller Zahlen dann konvergiert

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

zeigt Konvergenz aber nicht absolute Konvergenz.

5.1.2 Minoranten- Majoranten Kriterium

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} b_i$ konvergent, dann konvergiert auch $\sum_{i=0}^{\infty} a_i$

falls $\forall n: 0 \leq a_n \leq b_n \wedge \sum_{i=0}^{\infty} a_i$ divergent, dann divergiert auch $\sum_{i=0}^{\infty} b_i$

5.1.3 Quotientenkriterium

Sei $(a_n)_n$ eine Folge in $\mathbb R$ oder $\mathbb C$ und $\forall n: a_n \neq 0$ dann ist $\sum_{i=0}^\infty a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$$

divergent wenn obiges > 1 ist.

5.1.4 Wurzelkriterium

Sei $(a_n)_n$ eine beschränkte Folge in $\mathbb R$ oder $\mathbb C$ dann ist $\sum_{i=0}^\infty a_i$ absolut konvergent wenn:

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} < 1$$

divergent wenn obiges > 1.

6 Stetigkeit

Definition Stetigkeit:

 $\forall \epsilon > 0 : \exists \delta > 0 : |x - a| < \delta : |f(x) - f(a)| < \epsilon$

 $\forall \epsilon > 0 : \exists \delta > 0 : f(U_{\delta}(a) \subseteq U_{\epsilon}(f(a)))$

 $\forall \epsilon > 0 \; \exists \delta > 0 : \text{sodass aus } |x - a| < \delta \; \text{stets } |f(x) - f(a)| < \epsilon \; \text{folgt}$

 $\textbf{Definition Unstetigkeit: } \exists \epsilon > 0 \forall \ \delta > 0 : \exists x \in D : |x - x_0| < \delta \wedge |f(x) - f(x_0)| > \epsilon$

6.1 links-rechtsseitiger Grenzwetz:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

 x_0 wird von rechts und links angenähert. Sind beide Grenzwerte gleich, ist die Funktion stetig.

6.2 $\epsilon - \delta$ Kriterium

Abbildung 5.1: Stetigkeit einer Funktion $f: \mathbb{R} \to \mathbb{R}$ an der Stelle a: Zu jeder (noch so kleinen) ε -Umgebung von f(a) gibt es eine δ -Umgebung von a, dessen Bild vollständig in ersterer liegt.

Stetigkeit zeigen:

- $|f(x) f(a)| < \epsilon$ aufstellen
- alle x rausbringen $(x a = \delta, \text{ manchmal einfügen einer geschickten Null } (+a a))$
- Formel auf $\delta = \text{umformen}$
- \bullet das berechnete δ in d
ne Beweis einsetzen
- Wahre Aussage

7 l'Hospital

	Funktion $\varphi(x)$	$\lim_{x \to x_0} \varphi\left(x\right)$	Umformung
(A)	$u\left(x\right)\cdot v\left(x\right)$	$0\cdot\infty$	$\frac{u(x)}{1/v(x)} \text{ oder } \frac{v(x)}{1/u(x)}$
(B)	$u\left(x\right)-v\left(x\right)$	$\infty - \infty$	$\frac{1/v(x) - 1/u(x)}{1/(u(x) \cdot v(x))}$
(C)	$u\left(x\right)^{v\left(x\right)}$	$0^0, \infty^0, 1^\infty$	$\exp(v(x)\ln(u(x)))$

Abbildung 1: Umformung für l'Hospital