SMG: A Shuffling Gradient-Based Method with Momentum

Trang H. Tran¹ · Lam M. Nguyen² · Quoc Tran-Dinh³

¹ Cornell University, School of Operations Research and Information Engineering ² IBM Research, Thomas J. Watson Research Center ³ The Univerity of North Carolina at Chapel Hill

Problem Statement

We consider the following finite-sum minimization:

$$\min_{w \in \mathbb{R}^d} \left\{ F(w) := \frac{1}{n} \sum_{i=1}^n f(w; i) \right\},\tag{1}$$

where $f(\cdot; i) : \mathbb{R}^d \to \mathbb{R}$ is a given smooth function for $i \in [n] := \{1, \dots, n\}$.

Assume that we have access to the first order oracle of $f(\cdot;i)$. Below are some common sampling schemes:

- 1. Regular (Standard) Scheme: Uniformly at random: at each iteration i_t of epoch t, sample an index uniformly at random from [n].
- 2. Shuffling Schemes:

• Incremental Gradient: use a fixed permutation $\{1,\ldots,n\}$ for all epochs.

• Shuffle Once: random shuffle one permutation and use it for all epochs.

• Random Reshuffling: random shuffle a new permutation at every epoch.

Assumptions

Assumption 1. Problem (1) satisfies:

- (a) (Boundedness from below) $F_* := \inf_{w \in \mathbb{R}^d} F(w) > -\infty$, and dom $(F) \neq \emptyset$.
- (b) (L-smoothness) $f(\cdot;i)$ is L-smooth for all $i \in [n]$:

$$\|\nabla f(w;i) - \nabla f(w';i)\| \le L\|w - w'\|$$
, for all $w, w' \in \text{dom}(F)$

(c) (Generalized bounded variance) There exist two finite constants $\Theta, \sigma \geq 0$ such that for any $w \in \text{dom}(F)$:

$$\frac{1}{n} \sum_{i=1}^{n} \|\nabla f(w; i) - \nabla F(w)\|^2 \le \Theta \|\nabla F(w)\|^2 + \sigma^2.$$

Assumption 2. (Bounded gradient) There exists G > 0 such that $\|\nabla f(x;i)\| \le 1$ $G, \forall x \in \text{dom}(F) \text{ and } i \in [n].$

Key References

- [1] Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H., and van Dijk, M. A unified convergence analysis for shuffling-type gradient methods. arXivpreprint arXiv:2002.08246, 2020.
- [2] Mishchenko, K., Khaled Ragab Bayoumi, A., and Richtárik P. Random reshuffling: Simple analysis with vast improvements. Advances in Neural Information Processing Systems, 33, 2020.

Shuffling Momentum Gradient (SMG)

Algorithm 1: Shuffling Momentum Gradient (SMG)

- Initialization: Choose $\tilde{w}_0 \in \mathbb{R}^d$ and set $\tilde{m}_0 := \mathbf{0}$.
- 2: **for** $t := 1, 2, \cdots, T$ **do**
- Set $w_0^{(t)} := \tilde{w}_{t-1}; m_0^{(t)} := \tilde{m}_{t-1}; \text{ and } v_0^{(t)} := \mathbf{0};$
- Generate a deterministic or random permutation $\pi^{(t)}$ of [n];
- for $i := 0, \dots, n-1$ do

Query $g_i^{(t)} :=
abla f(w_i^{(t)}; \pi^{(t)}(i+1));$

General Query
$$g_i^{(t)} := \nabla f(w_i^{(t)}; \pi^{(t)}(i+1));$$

The Choose $\eta_i^{(t)} := \frac{\eta_t}{n}$ and update
$$\begin{cases} m_{i+1}^{(t)} := \beta m_0^{(t)} + (1-\beta)g_i^{(t)} \\ v_{i+1}^{(t)} := v_i^{(t)} + \frac{1}{n}g_i^{(t)} \\ w_{i+1}^{(t)} := w_i^{(t)} - \eta_i^{(t)}m_{i+1}^{(t)}; \end{cases}$$

and for

- end for
- 9: Set $ilde{w}_t := w_n^{(t)}$ and $ilde{m}_t := v_n^{(t)};$
- 10: **end for**
- 11: **Output:** Choose $\hat{w}_T \in \{\tilde{w}_0, \cdots, \tilde{w}_{T-1}\}$ at random with probability $\mathbb{P}[\hat{w}_T = \tilde{w}_{t-1}] = \frac{\eta_t}{\sum_{t=1}^T \eta_t}$.
- β is a hyperparameter and $\beta = 0.5$ works best in our experiments.
- $m_0^{(t)}$ is an average of all the gradients computed at different points in the previous epoch t-1.
- Illustration: the update term $m_{i+1}^{(t)}$ in SMG when $\beta = 0.5$:

Nonconvex Convergence Results

Theorem 1

Suppose that Assumption 1 holds for (1). Let $\{w_i^{(t)}\}_{t=1}^T$ be generated by Algorithm 1 with a fixed momentum weight $0 \le \beta < 1$ and an epoch learning rate $\eta_i^{(t)} := \frac{\eta_t}{\eta}$ for every $t \geq 1$. Assume that $\eta_0 = \eta_1, \eta_t \geq \eta_{t+1}$, and $0 < \eta_t \le \frac{1}{L\sqrt{K}} \text{ for } t \ge 1, \text{ where } K := \max\left\{\frac{5}{2}, \frac{9(5-3\beta)(\Theta+1)}{1-\beta}\right\}. \text{ Then }$

$$\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \le \frac{4[F(\tilde{w}_0) - F_*]}{(1 - \beta)\sum_{t=1}^T \eta_t} + \frac{9\sigma^2 L^2(5 - 3\beta)}{(1 - \beta)} \left(\frac{\sum_{t=1}^T \eta_{t-1}^3}{\sum_{t=1}^T \eta_t}\right).$$

- With a constant LR, the convergence rate of SMG is expressed as $\mathcal{O}\left(\frac{[F(\tilde{w}_0) - F_*] + \sigma^2}{T^{2/3}}\right)$, which matches the best known rate in the literature for general shuffling strategies.
- This rate also hold for exponential and cosine scheduled LR schemes, as well as diminishing LR (up to a logarithmic factor).
- With a randomized reshuffling strategy and constant learning rates, the convergence rate of SMG is improved to $\mathcal{O}\left(\frac{[F(\tilde{w}_0) - F_*] + \sigma^2}{n^{1/3}T^{2/3}}\right)$.

Single Shuffling Momentum Gradient

- Replacing the update in Step 7 of SMG by a traditional momentum update $m_{i+1}^{(t)} := \beta m_i^{(t)} + (1-\beta)g_i^{(t)}$, we get Algorithm 2: Single Shuffling Momentum Gradient.
- Illustration: the update term $m_{i+1}^{(t)}$ in Alg 2 when $\beta = 0.9$:

Theorem 2

Let $\{w_i^{(t)}\}_{t=1}^T$ be generated by Algorithm 2, using a single shuffling strategy (IG or SO) with $\eta_i^{(t)} := \frac{\eta_t}{\eta}$ and $0 < \eta_t \le \frac{1}{L}$ for $t \ge 1$. Then, under Assumption 1(a)-(b) and Assumption 2, we have

$$\mathbb{E}\left[\|\nabla F(\hat{w}_T)\|^2\right] \le \frac{\Delta_1}{\left(\sum_{t=1}^T \eta_t\right)(1-\beta^n)} + L^2 G^2 \left(\frac{\sum_{t=1}^T \xi_t^3}{\sum_{t=1}^T \eta_t}\right) + \frac{4\beta^n G^2}{1-\beta^n},$$
where $\xi_t := \max(\eta_t, \eta_{t-1})$ for $t \ge 2$, $\xi_1 = \eta_1$, and

$$\Delta_1 := 2[F(\tilde{w}_0) - F_*] + \left(\frac{1}{L} + \eta_1\right) \|\nabla F(\tilde{w}_0)\|^2 + 2L\eta_1^2 G^2.$$

Applying the previous LR schemes, this theorem leads to the same convergence rate $\mathcal{O}(T^{-2/3})$ for the traditional momentum update.

Experiments

We test SMG method with SGD algorithm, ADAM and SGD with momentum. The first problem is training a neural network to classify images.

For the second experiment, we test four methods on a non-convex logistic regression problem. Our tests have shown encouraging results for SMG.

