CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

How might we try to show that this language is not computable:

 $Infinite = \{w \mid L(\mathcal{M}(w)) \text{ is infinite}\}\$

How to show things aren't computable

- 1. Ask "can I have an always-halting Turing machine M_p for language/function/problem P?"
- 2. Show that, if M_p exists, it can be used to make an impossible machine M_{imp}

How do we know a machine is impossible?

Option 1: It contradicts itself (e.g. M_{SR})

Option 2: Someone has done this before (e.g. M_{acc})

Proving Other Problems are Uncomputable

Reduction

- Convert some problem into a known uncomputable one (using only computable steps)
- Show how you can use a solution to one problem to help you to solve another

Non-Computable Problems

MacGyver's Reduction

Problem **know** is impossible

Opening a door

Solution for AKeg cannon battering ram

Problem we **think** is impossible

Solution for **B** Alcohol, wood, matches

Example: FINITE

•
$$FINITE(w) = \begin{cases} 1 \text{ if } L(\mathcal{M}(w)) \text{ is finite} \\ 0 \text{ if } L(\mathcal{M}(w)) \text{ is infinite} \end{cases}$$

- To show *FINITE* is uncomputable
 - Show how to use a TM for FINITE to solve HALT
 - $FINITE \ge HALT$
 - *HALT* reduces to *FINITE*

FINITE Reduction

Problem **know** is impossible

 \overbrace{A}

HALT

Does $\mathcal{M}(w)$ halt on input x?

 M_{HALT} computes HALT

What's the Language of M_{wx} ?

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ always returns 1
 - $-L(M_{wx}) = \Sigma^*$ (all strings)
 - $-L(M_{wx})$ is infinite
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 1 and never returns
 - $-L(M_{wx}) = \emptyset$
 - $-|L(M_{wx})|=0$

Build this machine:

- 1) run $\mathcal{M}(w)(x)$
- 2) return 1

Using FINITE to build HALT

Assume we have M_{FINITE} which computes *FINITE*:

which computes *HALT* like

M_{FINITE} $L(\mathcal{M}(w))$ is/isn't Is $L(\mathcal{M}(w))$ finite? finite We could then build M_{HALT}

Showing *INFINITE* is not computable

• Use _____ to build _____.

INFINITE Reduction

FINITEIs $L(\mathcal{M}(w))$ finite?

 M_{FINITE} computes FINITE

BINFINITE

Is $L(\mathcal{M}(w))$ infinite?

Assume

 M_{∞} computes *INFINITE*

INFINITE Reduction

INFINITE

Is $L(\mathcal{M}(w))$ infinite?

 M_{∞} computes *INFINITE*

Using INFINITE to build FINITE

Assume we have M_{∞} which computes INFINITE:

We could then build M_{FINITE} which computes FINITE like

Language NonReg

- $NonReg = \{w \mid L(\mathcal{M}(w)) \text{ is not regular}\}$
- We will show this is not computable by using NonReg to compute HALT
- Idea: given an input for HALT, w and x, build a machine M_{wx} such that $L(M_{wx})$ is regular if and only if $\mathcal{M}(w)(x)$ runs forever.

Building M_{wx}

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ returns 1 if XOR(y) = 1
 - $-L(M_{wx}) = XOR(y)$, which is not regular
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 2 and never returns 1
 - $-L(M_{wx}) = \emptyset$, which is regular

Build this machine: $M_{wx}(y)$:

- 1) run $\mathcal{M}(w)(x)$ 2) return XOR(y)

Using NonReg to build HALT

Assume we have M_{NR} which computes *NonReg*:

We could then build M_{HALT} which computes *HALT* like

 M_{NR} $L(\mathcal{M}(w))$ is/isn't Is $L(\mathcal{M}(w))$ nonnon-regular regular?

Language Rejects 101

- $Rejects101 = \{w \mid \mathcal{M}(w)(101) = 0\}$
- We will show this is not computable by using Rejects101 to compute HALT
- Idea: given an input for HALT, w and x, build a machine M_{wx} such that $101 \in L(m_{wx})$ if and only if $\mathcal{M}(w)(x)$ runs forever.

Building M_{wx}

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ returns 1 if y == 101
 - $-L(M_{wx}) = \{101\}$, so it does not reject 101
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 2 and never returns 1
 - $-L(M_{wx}) = \emptyset$, so it does reject 101

Build this machine:

 $M_{wx}(y)$:

- 1) run $\mathcal{M}(w)(x)$
- 2) return y == 101

Using Rejects 101 to build HALT

 M_{R101}

 $\mathcal{M}(w)$ does/doesn't

Assume we have M_{R101} which computes *NonReg*:

which computes *HALT* like

Does $\mathcal{M}(w)$ reject reject 101 101? We could then build M_{HALT} this: M_{HALT} Does $\mathcal{M}(w)(x)$ halt?

Sematic Property

- Turing machines M, M' are **Functionally Equivalent** if $\forall x \in \Sigma^*, M(x) == M(x')$
 - i.e. they compute the same function/language
- A Semantic Property of a Turing machine is one that depends only on the input/output behavior of the machine
 - Formally, if P is semantic, then for machine M, M' that are functionally equivalent, P(M) == P(M')
 - If M, M' have the same input/output behavior, and P is a semantic property, then either bother M and M' have property P, or neither of them do.

Examples

- These properties are Semantic:
 - Is the language of this machine finite?
 - Is the language of this machine Regular?
 - Does this machine reject 101?
 - Does this machine return 1001 for input 001?
 - Does this machine only ever return odd numbers?
 - Is the language of this machine computable?
- These properties are not Semantic:
 - Does this machine ever overwrite cell 204 of its tape?
 - Does this machine use more than 3102 cells of its tape on input 101?
 - Does this machine take at least 2020 transitions for input ε ?
 - Does this machine ever overwrite the ∇ symbol?

Rice's Theorem

- For any Semantic property P of Turing Machines, either:
 - Every Turing machine has property P
 - No Turing machines have property P
 - -P is uncomputable
- In other words:
 - If P is semantic, and computable, then one of these two machines computes it:

Return 1

Return 0

Proof of Rice's Theorem

- Let P be a semantic property of a Turing machine
- Assume M_{\emptyset} (a machine whose language is \emptyset) has property P (otherwise substitute $\neg P$, then answer opposite)
- Let M_{FALSE} be a machine that doesn't have property P
- Idea:
 - If $\mathcal{M}(w)(x)$ halts, $L(M_{wx}) = L(M_{FALSE})$
 - If $\mathcal{M}(w)(x)$ doesn't halt, $L(M_{wx}) = L(M_{\emptyset}) = \emptyset$
 - $L(M_{wx})$ has property P if and only if $\mathcal{M}(w)(x)$ runs forever

Build this machine:

```
M_{wx}(y):
```

- 1) run $\mathcal{M}(w)(x)$ 2) return $M_{False}(y)$

Using P to build HALT

 M_{P}

Does $\mathcal{M}(w)$ have

property P?

 $\mathcal{M}(w)$ does/doesn't

have property P

Assume we have M_P which computes P:

We could then build M_{HALT} which computes HALT like

this: M_{HALT} Does $\mathcal{M}(w)(x)$ halt? $M_{wx}(y):$ Build this machine: $M_{wx}(y):$ Does $\mathcal{M}(w)$ have $M_{wx}(y):$ does/doesn't have property P? $M_{wx}(y):$ have property P?

What if *P* is "trivial"?

- If P applies to no Turing machines:
 - $-M_{False}$ can't exist
- If P applies to all Turing machines:
 - It applies to M_{\emptyset} , $\neg P$ applies to all machines

```
Build this machine:
```

- 1) run $\mathcal{M}(w)(x)$ 2) return $M_{False}(y)$

Using Rice's Theorem

- These properties are Semantic:
 - Is the language of this machine finite?
 - Is the language of this machine Regular?
 - Does this machine reject 101?
 - Does this machine return 1001 for input 001?
 - Does this machine only ever return odd numbers?
 - Is the language of this machine computable?
- These properties are not Semantic:
 - Does this machine ever overwrite cell 204 of its tape?
 - Does this machine use more than 3102 cells of its tape on input 101?
 - Does this machine take at least 2020 transitions for input ε ?
 - Does this machine ever overwrite the ∇ symbol on input ε ?

Steps2020

- Steps2020 = $\{w | \mathcal{M}(w) \text{ takes at least } 2020 \text{ steps}\}$
- Is *Steps*2020 computable?

$Overwrite\nabla$

- $Overwrite \nabla = \{ w \mid \mathcal{M}(w) \text{ overwrites } \nabla \text{ on input } \epsilon \}$
- Is $Overwrite \nabla$ computable?