Slides for Chapter 1 Characterization of Distributed Systems

From Coulouris, Dollimore, Kindberg and Blair Distributed Systems:

Concepts and Design

Edition 5, © Addison-Wesley 2012

Figure 1.1 (see book for the full text)
Selected application domains and associated networked applications

Finance and commerce	eCommerce e.g. Amazon and eBay, PayPal, online banking and trading	
The information society	Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace.	
Creative industries and entertainment	online gaming, music and film in the home, user- generated content, e.g. YouTube, Flickr	
Healthcare	health informatics, on online patient records, monitoring patients	
Education	e-learning, virtual learning environments; distance learning	
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth	
Science	The Grid as an enabling technology for collaboration between scientists	
Environmental management	sensor technology to monitor earthquakes, floods or tsunamis	

Figure 1.2
An example financial trading system

Figure 1.3 A typical portion of the Internet

Figure 1.4
Portable and handheld devices in a distributed system

Figure 1.5 Cloud computing

Figure 1.6
Growth of the Internet (computers and web servers)

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
1997, July	19,540,000	1,203,096	6
1999, July	56,218,000	6,598,697	12
2001, July	125,888,197	31,299,592	25
2003, July	~200,000,000	42,298,371	21
2005, July	353,284,187	67,571,581	19

Section 1.5.7 Transparencies

- Access transparency: enables local and remote resources to be accessed using identical operations.
- Location transparency: enables resources to be accessed without knowledge of their physical or network location (for example, which building or IP address).
- Concurrency transparency: enables several processes to operate concurrently using shared resources without interference between them.
- *Replication transparency*: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.
- Failure transparency: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.
- *Mobility transparency*: allows the movement of resources and clients within a system without affecting the operation of users or programs.
- *Performance transparency*: allows the system to be reconfigured to improve performance as loads vary.
- Scaling transparency: allows the system and applications to expand in scale without change to the system structure or the application algorithms.

Figure 1.7
Web servers and web browsers

