MATHEMATICS DEPARTMENT CALIFORNIA POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO

- You have 170 minutes to complete this exam.
- No notes, books, cell phones, or other references are allowed.
- In problems that require reasoning or algebraic calculation, it is not sufficient just to write the answers. You **must explain** how you arrived at your answers, and show your algebraic calculations.
- There are 13 pages, including this one, in this exam and **nine** numbered problems. Make sure you have them all before you begin!
- There are **three** additional blank pages at the end of the exam if you need more space to write down your solutions.
- You must show all work to receive credit. Answers for which no work is shown will receive no credit (unless specifically stated otherwise).
- Let me wholeheartedly wish you good luck!!

1.	(10)	
2.	(10)	
3.	(15)	
4.	(10)	
5.	(15)	
6.	(20)	
7.	(10)	
8.	(15)	
9.	(20)	
Total	. ,	

Perfect Paper \longrightarrow 125 Points.

1. (10 points) Determine whether the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n 3n^2}{n^3 + 1}$$

converges or diverges. Make sure you state which test you use.

2. (a) (7 points) Find the radius R and interval I of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{\sqrt{n}}.$$

Show all your work and state any tests you used.

(b) (3 points) Determine whether the series

$$\sum_{n=1}^{\infty} \frac{2^n 3^n}{n^n}$$

converges or diverges. Make sure you state which test you use.

- 3. (15 points) Consider the function $f(x) = e^x$ on the interval [0, 1/2].
 - (a) (5 points) Derive the Maclaurin series of the function $f(x) = e^x$. Write **separately** $P_k(x)$ and $R_k(x)$.

(b) (10 points) Estimate the error if k=4 is used to estimate the value of e^x at x=1/2. [Hint: You may use the fact that $e^{1/2}\approx 1.65$ and $e\approx 2.7$.]

4. (10 points) Consider a curve with parametrization given by

$$x = e^{\sin t}, \quad y = \cos t + t - \pi, \quad t \in [0, 2\pi].$$

(a) (5 points) Find the tangent line to the curve at the point (1, -1).

(b) (5 points) Find all the points where there is a vertical tangent line on $[0, 2\pi]$.

5. (a) (7 points) Write down the equation of the plane P containing the point A(1,2,3) and orthogonal/perpendicular to the line L with parametric equations

$$x = 15 + t$$
, $y = 2 + 2t$, $z = 3 + 3t$.

(b) (3 points) Find the point, call it B, of intersection of the plane P with the line L. [Hint: First find the time t_0 when the line crosses the plane.]

(c) (2 points) What is the distance from the point A(1,2,3) to the line L?

(d) (3 points) What is the distance D from the point C(-1,1,2) to the plane P?

- 6. (20 points) Consider the points A(2, -1, 1), B(4, 2, 1), and C(1, 2, 3).
 - (a) (5 points) Find the parametric equations of the line in \mathbb{R}^3 which contains the points A and B.

(b) (5 points) Find the cosine of the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} .

(c) (10 points) Find the parametric equations for the line L that passes through the point (2,4,6) and that is normal to the plane containing the points A, B, and C.

7. (10 points) Consider the points A(1,0,1), B(0,2,3) and C(-1,-1,0). Find the area of the triangle with corners the above points.

8. (a) (2 points) Suppose that $\vec{r}'(t) = \langle -\sin 2t, \cos 2t, 0 \rangle$ for $t \in [0, 1]$. If $\vec{r}(t = 0) = \langle 1/2, 0, 1 \rangle$, then determine $\vec{r}(t)$ for all t.

(b) (3 points) Find the curve's unit tangent vector.

(c) (5 points) Show that $\vec{r}(t)$ is **orthogonal** to $\vec{r}'(t)$ for all t.

(d) (5 points) Find the length L of the graph of the vector function $\vec{r}(t)$ on the interval $0 \le t \le 1$.

- 9. (20 points) The velocity of a space ship is specified by $\vec{r}'(t) = \langle t^2, 0, \cos t \rangle$.
 - (a) (10 points) Without finding \vec{T} (unit tangent vector) and \vec{N} (unit normal vector), write the acceleration vector of the space ship \vec{a} as $\vec{a} = a_T \vec{T} + a_N \vec{N}$. [Hint: Compute a_N via the formula relating the curvature κ and $|\vec{r}'(t)|$.]

(b) (10 points) The space ship approaches the Moon and it has to modify its trajectory. If now its position vector is given by $\vec{r}(t) = \langle 3\sin t, 3\cos t, 4t \rangle$, find the unit tangent vector \vec{T} , unit normal vector \vec{N} and unit binormal vector \vec{B} of the space ship's new trajectory.