Polynômes

Degré et coefficients des polynômes

▶ 1 Calcul de coefficients

Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme complexe.

Déterminer les coefficients des polynômes :

$$(X^2+1)P$$
, $XP'-P$, $P(X+1)$, P^2 .

▶ 2 Étude d'une suite de polynômes

On définit une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ par

$$P_0 = 1, P_1 = X$$
 et $\forall n \in \mathbb{N}, P_{n+2} = 2XP_{n+1} - P_n$.

- 1) Calculer P_2 et P_3 .
- 2) Déterminer le degré de P_n (conjecture puis démonstration).
- 3) Déterminer la parité de P_n en fonction de n. (le polynôme P_n est-il une fonction paire? impaire?)
- **4)** Calculer $P_n(1)$ et $P_n(-1)$.

► 3 Une autre

Considérons une suite de polynômes vérifiant

$$P_0 = 1$$
 et $\forall n \in \mathbb{N}, P'_{n+1} = (2n+1)P_n$.

Déterminer le degré de P_n et son coefficient dominant.

► 4 Équations dont l'inconnue est un polynôme

Il est de bon ton de raisonner par analyse-synthèse; dans la phase d'analyse on essaie d'obtenir des informations sur le degré des polynômes solutions.

1) Trouver tous les polynômes $P \in \mathbb{R}[X]$ vérifiant

$$(P(X))^2 = 9X^4 - 6X^3 + 25X^2 - 8X + 16.$$

2) Déterminer tous les polynômes $P \in \mathbb{K}[X]$ tels que

$$P'^2 = 4P$$

3) Déterminer tous les polynômes $P \in \mathbb{K}[X]$ tels que

$$(X^2+1)P''-6P=0.$$

4) Résoudre l'équation d'inconnue $P \in \mathbb{C}[X]$:

$$P(X^2) = (X^2 + 1)P(X).$$

Division euclidienne

▶ 5 Pratique de la division euclidienne

Effectuer les divisions euclidiennes de A par B lorsque :

1)
$$A = X^4 - X^3 + X - 2$$
 et $B = X^2 - 2X + 4$;

2)
$$A = 4X^5 + X^4 - 8X^3 + X^2 + 2X - 2$$
 et $B = X^2 + 2$;

3)
$$A = X^2 - 3iX - 5(1+i)$$
 et $B = X - 1 + i$;

4)
$$A = 2X + 1$$
 et $B = 3X^2 + 2X + 1$:

5)
$$A = X^5 + 1$$
 et $B = X^2 - 1$.

► 6 Évaluation astucieuse

Soit
$$P = 2X^4 - 4X^3 - 7X - 14$$
.

- 1) Déterminer un polynôme Q à coefficients **entiers**, de degré 2, tel que $Q(1+\sqrt{3})=0$.
- **2)** Effectuer la division euclidienne de P par Q. En déduire $P(1+\sqrt{3})$.

► 7 Divisons euclidiennes plus abstraites

- 1) Soit P un polynôme de $\mathbb{K}[X]$, a et b deux éléments distincts de \mathbb{K} . Déterminer le reste de la division euclidienne de P par (X-a)(X-b) en fonction de P(a) et P(b).
- 2) Soit $n \in \mathbb{N}^*$. Déterminer le reste de la division euclidienne de $(X^n+1)^2$ par $(X+1)^2$ (indication : s'inspirer du 1) et *dériver*).
- 3) Soit $\varphi \in \mathbb{R}$. Déterminer le reste de la division euclidienne de $(\cos \varphi + \sin \varphi X)^n$ par $X^2 + 1$ (indication : s'inspirer du 1) et travailler dans \mathbb{C}).

Racines d'un polynôme

► 8 Racines et divisibilité

- 1) Trouver $m \in \mathbb{R}$ pour que le polynôme $2X^5 3mX + 1$ admette 2 comme racine.
- 2) Soit $n \in \mathbb{N}^*$. Montrer que $(X-2)^{2n} + (X-1)^n 1$ est divisible par $X^2 3X + 2$ (facile) et déterminer le quotient (plus piquant).
- 3) Soit $\theta \in [0, \pi]$. Montrer que le polynôme

$$\sin(\theta)X^n - \sin(n\theta)X + \sin((n-1)\theta)$$

est divisible par $X^2 - 2\cos(\theta)X + 1$ (les complexes sont nos amis).

▶ 9 Celui qui avait une infinité de racines

♠ Montrer que les seuls polynômes $P \in \mathbb{C}[X]$ vérifiant la relation P(X) = P(X+1) sont les polynômes constants.

Ordre de multiplicité des racines

▶ 10 | Entraînement de base

- 1) Soit $P = X^5 + 3X^4 + 4X^3 + 4X^2 + 3X + 1$. Quel est l'ordre de multiplicité de la racine -1? Déterminer la décomposition primaire de P dans $\mathbb{R}[X]$.
- **2)** Déterminer a et b pour que $P = aX^3 + bX^2 + X + 1$ admette 1 comme racine double.

Déterminer dans ce cas la factorisation primaire de P.

3) Trouver m pour que $P = X^3 + mX + 2$ admette une racine double.

Donner la décomposition primaire de P.

4) Soit un entier $n \ge 4$. Déterminer l'ordre de multiplicité de la racine 1 pour le polynôme

$$P = X^{2n} - nX^{n+1} + nX^{n-1} - 1.$$

- **5)** Soit $n \in \mathbb{N}$. Montrer que $X^n X + 1$ n'admet que des racines simples.
- **6)** Même question pour $P = \sum_{k=0}^{n} \frac{X^k}{k!}$.
- 7) Soit $n \in \mathbb{N}^*$. Montrer que

$$P_n(X) = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$$

admet une unique racine d'ordre de multiplicité supérieur ou égal à 3.

▶ 11

On pose $P(X) = aX^{n+1} + bX^n + 1$ où $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$.

- 1) Déterminer a et b pour que P soit divisible par $(X-1)^2$.
- **2)** Démontrer que dans ce cas : $P = (X-1)^2 \sum_{k=1}^n kX^{k-1}$.

▶ 12 ♠ Poser le problème correctement

- 1) Déterminer tous les polynômes $Q \in \mathbb{K}[X]$ tels que Q(1) = 2 et Q'(1) = 1.
- 2) Déterminer tous les polynômes P tels que -1 et 2 soient racines de P et que P+4 soit divisible par $(X-1)^2$.

► 13 Incursion en analyse

Soit P un polynôme $r\acute{e}el$ de degré $n \ge 2$.

- 1) On suppose d'abord que P admet n racines distinctes. Montrer que P' admet n-1 racines distinctes et qu'il est scindé sur \mathbb{R} .
- 2) On suppose maintenant que P est scindé et admet exactement p racines distinctes $\alpha_1 < \alpha_2 < \ldots < \alpha_p$ d'ordres respectifs n_1, n_2, \ldots, n_p .
 - **a.** Déterminer $n_1 + n_2 + \cdots + n_p$.
 - **b.** Montrer que α_k est racine d'ordre $n_k 1$ de P'.
 - **c.** Montrer que P' est scindé sur IR.

Décomposition primaire de polynômes

▶ 14 | Entraînement de base

Déterminer les décompositions primaires dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ des polynômes suivants :

1)
$$(X^3-1)(2X^3-2X^2+2X-2)$$
 5) X^3-1+i

2)
$$2X^4 + X^2 + 1$$

6)
$$4\sqrt{2}X^5 + 1$$

3)
$$X^4 - 25$$

7)
$$X^8 + X^4 + 1$$

4)
$$X^4 + 16$$

8)
$$X^6 + 2X^4 + 2X^2 + 1$$
.

▶ 15

Soit $(\alpha, \beta) \in \mathbb{C}^2$ et $P = X^4 + 4X^3 + \alpha X^2 + \beta X + 2$.

- 1) Déterminer α et β pour que -1 soit racine de P d'ordre supérieur ou égal à 2.
- 2) Pour ces valeurs, décomposer P dans $\mathbb{R}[X]$ puis dans $\mathbb{C}[X]$.

▶ 16 Relations entre coefficients et racines

On considère le système suivant :

(S)
$$\begin{cases} 3x + 4xy + 3y = -5 \\ x - 2xy + y = 5. \end{cases}$$

- 1) Déterminer les valeurs de la somme $\sigma = x + y$ et du produit $\mu = xy$ de tout couple $(x,y) \in \mathbb{R}^2$ solution du système (S).
- **2)** Résoudre (*S*).

► 17 • Un produit de sinus

Soit $n \in \mathbb{N}$ tel que $n \ge 2$.

1) Factoriser dans $\mathbb{C}[X]$ le polynôme

$$P_{-}(X) = 1 + X + X^{2} + \dots + X^{n-1}$$
.

- **2)** Montrer que $\forall n \ge 2$, $\prod_{k=1}^{n-1} e^{-ik\pi/n} = (-i)^{n-1}$.
- 3) À l'aide des formules d'Euler et des questions précédentes, déterminer une expression simple de

$$\prod_{k=1}^{n-1} \sin\left(\frac{k\,\pi}{n}\right).$$

Soit n et p deux entiers naturels supérieurs ou égaux à 1.

1) Factoriser dans $\mathbb{C}[X]$ le polynôme

$$P_n(X) = (X+1)^n - (X-1)^n$$

2) En déduire que : $\prod_{k=1}^{p} \cot \left(\frac{k \pi}{2p+1}\right) = \frac{1}{\sqrt{2p+1}}.$