# Lecture21: CMOS amplifiers (5)

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

# CMOS amplifiers (1/2)

- Select one input. Then, select one output.
  - What are possible topologies?



# CMOS amplifiers (2/2)

- Only three are possible.
  - Each of them has own name.



#### Common-source

Source terminal is grounded.



# **Small-signal model**

Let's draw the small-signal model together!



#### Gain

- Now, calculate the  $v_{out}$ .
  - KCL for the  $v_{out}$  node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$



#### Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance



#### **Current-source load**

- When  $R_D \to \infty$ ,
  - The gain can be maximized.



#### Biasing of PMOS devices

- Use a PMOS as a current source
  - The amount of "gate overdrive" is 1.2 V.
  - It is not 0.6 V.



#### Real current-source load

- Use a PMOS as a current source.
  - It is not an ideal current source.

$$v_{out} = -g_{m1}(r_{01}||r_{02})v_{in}$$

$$A_{v} = -g_{m1}(r_{01}||r_{02})$$



#### **Self-biasing**

- Already covered in Example 6.13.
  - Always in the saturation region.



Gate and drain are tied.

#### In this case,

- Use a diode-connected load.
  - It is not an ideal current source.

$$v_{out} = -g_{m1} \left( r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left( r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$



## Source degeneration (1/2)

A resistor placed in series with the source terminal



# Source degeneration (2/2)

- Now we have to find the source voltage.
  - (Saturation current of the MOSFET) = (Current flowing through  $R_S$ )
  - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

# Effect of $R_S$ (1/2)

- Reduction of the gate-source voltage
  - Therefore, also reduction of the gain.
- For a while, neglect the channel-length modulation.



# Effect of $R_S$ (2/2)

After a simple manipulation,

$$A_v = -\frac{g_m R_D}{1 + g_m R_S}$$



# **Example 17.20**

CS with degeneration

$$A_{v} = -\frac{R_{D}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$



## Output impedance of CS (1/2)

- Still neglecting the channel-length modulation
  - No current!



## Output impedance of CS (2/2)

- Now considering the channel-length modulation
  - Output resistance is  $r_0 + (g_m r_0 + 1)R_S$ .



#### **Examples 17.23 and 17.24**

- Compute the output resistance.
  - What is the difference?





#### **CS** stage with biasing

We need capacitive coupling at the input and output.



#### Low load impedance

- Example 17.27
  - With the load impedance,  $R_L$ , the gain becomes



Low load impedance drops the gain drastically!

## Common-gate amplifier

- Why do we study other amplification topologies?
  - Different circuit properties
- Common-gate amplifier



# **Small-signal model**

Let's draw the small-signal model together!



#### Gain and input impedance

- Neglect the output resistance,  $r_0$ .
  - Voltage gain

$$A_v = +g_m R_D$$

Input impedance



#### **Output impedance**

Same with the CS stage

$$R_{out} = r_O ||R_D|$$



Generic form of CS and CG stages

Setting for calculating  $R_{out}$ 

#### Source follower

- Also called the "common-drain" stage
  - The drain is ac ground.
- Wait a minute!
  - Is it a real amplifier?





#### Its core

Gain is less than 1??

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$



You should be able to draw the small-signal model.

#### **Useless?**

- Calculate the input and output impedances.
  - Since the gate is the input terminal, the input impedance is very high at low frequencies.
  - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
  - They can serve as good "buffers."

