ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 08 giugno 2017

Esercizio A

$\begin{split} R_1 &= 20 \; k\Omega \\ R_2 &= 10 \; k\Omega \\ R_3 &= 20 \; k\Omega \\ R_4 &= 500 \; \Omega \\ R_6 &= 15 \; k\Omega \\ R_7 &= 500 \; \Omega \\ R_8 &= 56.5 \; k\Omega \\ R_9 &= 6.7 \; k\Omega \\ R_{10} &= 3.5 \; k\Omega \end{split}$	$R_{11} = 500 \Omega$ $R_{12} = 2.5 \text{ k}\Omega$ $R_{13} = 1 \text{ k}\Omega$ $R_{14} = 15 \text{ k}\Omega$ $C_1 = 1 \mu\text{F}$ $C_2 = 47 \text{ nF}$ $C_3 = 330 \text{ pF}$ $V_{CC} = 18 \text{ V}$	V_{cc} R_2 R_1 R_3 R_3 R_3	R_{s}	V_{cc} V_{cc} $= C_1 R_8$ R_7 R_9	V_{cc} R_{10} R_{13} R_{13} R_{12} R_{12} R_{12}	C ₃	+ V _u
---	--	--	---------	---	--	----------------	------------------

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=-1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₅ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 11 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₅ = 4500 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 4.7$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =35 Hz; f_{p1} =177 Hz; f_{z2} =1354 Hz; f_{p2} =7740 Hz; f_{z3} = 0 Hz; f_{p3} =24733 Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{C+D}\right)\left(\overline{A} + \overline{\overline{B}E}\right) + \left(\overline{AE}\right)\left(\overline{\overline{C}} + D\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 50 \Omega$	$R_6 = 10 \text{ k}\Omega$
$R_2 = 4 \text{ k}\Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 200 \Omega$	C = 33 nF
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 6 \text{ V}$
$R_5 = 1 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC}=6$ V; Q_1 ha una $R_{on}=0$ e $V_T=-1$ V. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f=79226 Hz)