CS 225

Data Structures

April 12 – Graphs
G Carl Evans

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

Linked

- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

Linked

- Doubly Linked List
- Skip List
- Trees

Graphs

- BTree
- Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

The Internet 2003

The OPTE Project (2003)

Map of the entire internet; nodes are routers; edges are connections.

This graph can be used to quickly calculate whether a given number is divisible by 7.

- 1. Start at the circle node at the top.
- 2. For each digit **d** in the given number, follow **d** blue (solid) edges in succession. As you move from one digit to the next, follow **1** red (dashed) edge.
- 3. If you end up back at the circle node, your number is divisible by 7.

3703

"Rule of 7"

Unknown Source Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign

A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

HAMLET

TROILUS AND CRESSIDA

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

Graph Vocabulary

```
G = (V, E)
|V| = n
|E| = m
                     (2, 5)
```

Degree(v): ||

Adjacent Vertices: A(v) = { x : {x, v} in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary


```
Subgraph(G):

G' = (V', E'):

V' \in V, E' \in E, and

(u, v) \in E' \rightarrow u \in V', v \in V'
```

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? Minimum edges:

Not Connected:

Connected*:

Maximum edges:

Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$

Connected Graphs

Proving the size of a minimally connected graph

Theorem:

Every connected graph **G=(V, E)** has at least **|V|-1** edges.

Thm: Every connected graph **G=(V, E)** has at least **|V|-1** edges.

Proof: Consider an arbitrary, connected graph **G=(V, E)**.

Suppose |**V**| = **1**:

Definition: A connected graph of 1 vertex has 0 edges.

Theorem: $|V|-1 \text{ edges } \to 1-1 = 0.$

Inductive Hypothesis: For any j < |V|, any connected graph of j vertices has at least j-1 edges.

Suppose |**V**| > **1**:

1. Choose any vertex:

2. Partition:

Suppose |**V**| > **1**:

3. Count the edges

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

Graph Implementation Idea

Vertex Collection:

u v a
v w b
w c
z w z d

Edge Collection:

insertVertex(K key):

 u
 u
 v
 a

 v
 w
 b

 u
 w
 c

 z
 w
 z
 d

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

insertEdge(Vertex v1, Vertex v2, K key):

u	u	V	а
v	v	w	b
w	u	w	С
Z	w	Z	d

	u	V	W	z
u				
V				
w				
Z				

u	u	v	а
v	v	w	b
w	u	w	С
Z	w	Z	d

	u	V	w	Z
u	-	1	1	0
v		-	1	0
w			-	1
z				-

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n²	n+m
insertVertex(v)	1	n	1
removeVertex(v)	m	n	deg(v)
insertEdge(v, w, k)	1	1	1
removeEdge(v, w)	1	1	1
incidentEdges(v)	m	n	deg(v)
areAdjacent(v, w)	m	1	min(deg(v), deg(w))

Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We've seen traversal beforebut it's different:

- Ordered
- Obvious Start
- •

- •
- •
- •

Traversal: BFS

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

Graph Implementation Idea

Vertex Collection:

u v a
v w b
w c
z w z d

Edge Collection:

insertVertex(K key):

 u
 u
 v
 a

 v
 w
 b

 u
 w
 c

 z
 w
 z
 d

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

insertEdge(Vertex v1, Vertex v2, K key):

u	u	V	а
v	v	w	b
w	u	w	С
Z	w	Z	d

	u	V	W	z
u				
V				
w				
Z				

u	u	v	а
v	v	w	b
w	u	w	С
Z	w	Z	d

	u	V	w	Z
u	-	1	1	0
v		-	1	0
w			-	1
z				-

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n²	n+m
insertVertex(v)	1	n	1
removeVertex(v)	m	n	deg(v)
insertEdge(v, w, k)	1	1	1
removeEdge(v, w)	1	1	1
incidentEdges(v)	m	n	deg(v)
areAdjacent(v, w)	m	1	min(deg(v), deg(w))

Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We've seen traversal beforebut it's different:

- Ordered
- Obvious Start
- •

- •
- •
- •

Traversal: BFS

