

Національний Технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського»

Лабораторна робота №01_DC_02

Дослідження розгалужених електричних кіл постійного струму методом вузлових потенціалів

Виконав ст. групи AA-00 Коваленко К.К. Перевірив

Іваненко І.І.

Лабораторна робота №01_DC_02. "Дослідження розгалужених електричних кіл постійного струму методом вузлових потенціалів"

Мета роботи: Оволодіти методами аналізу і отримати навички експериментального дослідження розгалужених електричних кіл постійного струму.

Завдання

Розрахувати, користуючись методом вузлових потенціалів, струми у вітках кола. Розрахунки перевірити числовим експериментом комп'ютерними стимуляторами *Electronic Workbench*, *Multisim*.

Послідовність виконання

Вибрати електричне коло відповідно до заданого викладачем варіанту N, який визначається номером студента у журналі групи.

Варіанти індивідуального завдання

Задати параметри елементів заданого електричного поля відповідно до свого варіанта:

$$R1 = 22\,\Omega$$
 $R2 = 28\,\Omega$ $R3 = 34\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R4 = 40\,\Omega$ $R5 = 46\,\Omega$ $R6 = 52\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R1 = 24\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R2 = 31\,\Omega$ $R3 = 38\,\Omega$ $R4 = 45\,\Omega$ $R4 = 45\,\Omega$ $R5 = 52\,\Omega$ $R5 = 52\,\Omega$ $R6 = 59\,\Omega$ $R1 = 4\,\Omega$ $R1 =$

$$R1 = 26 \Omega \qquad R2 = 34 \Omega \qquad R3 = 42 \Omega \qquad \qquad R1 = 28 \Omega \qquad R2 = 37 \Omega \qquad R3 = 46 \Omega$$

$$R4 = 50 \Omega \qquad R5 = 58 \Omega \qquad R6 = 66 \Omega \qquad \qquad R4 = 55 \Omega \qquad R5 = 64 \Omega \qquad R6 = 73 \Omega$$

$$E1 = 8 V \qquad E2 = 11 V \qquad J_1 = 5 \text{ mA}$$

$$E1 = 9 V \qquad E2 = 12 V \qquad J_1 = 6 \text{ mA}$$

$$Bapiaht 3,13,23,33 \qquad \qquad Bapiaht 4,14,24,34$$

$$R1 = 30\Omega$$
 $R2 = 40\Omega$
 $R3 = 50\Omega$
 $R1 = 32\Omega$
 $R2 = 43\Omega$
 $R3 = 54\Omega$
 $R4 = 60\Omega$
 $R5 = 70\Omega$
 $R6 = 80\Omega$
 $R6 = 80\Omega$
 $R6 = 87\Omega$
 $E1 = 10V$
 $E2 = 13V$
 $I_1 = 7mA$
 $I_1 = 11V$
 $I_2 = 14V$
 $I_3 = 8mA$
 $I_4 = 65\Omega$
 $I_5 = 76\Omega$
 $I_6 = 87\Omega$
 $I_7 = 8mA$
 $I_7 = 8mA$

$$R1 = 34 \,\Omega \qquad R2 = 46 \,\Omega \qquad R3 = 58 \,\Omega \qquad \qquad R1 = 36 \,\Omega \qquad R2 = 49 \,\Omega \qquad R3 = 62 \,\Omega$$

$$R4 = 70 \,\Omega \qquad R5 = 82 \,\Omega \qquad R6 = 94 \,\Omega \qquad \qquad R4 = 75 \,\Omega \qquad R5 = 88 \,\Omega \qquad R6 = 101 \,\Omega$$

$$E1 = 12 \,V \qquad E2 = 15 \,V \qquad J_1 = 9 \,\text{mA} \qquad \qquad E1 = 13 \,V \qquad E2 = 16 \,V \qquad J_1 = 10 \,\text{mA}$$

$$Bapiaht 7,17,27,37 \qquad \qquad Bapiaht 8,18,28,38$$

Розрахункова частина

Метод вузлових потенціалів

Визначити струми у вітках заданого електричного кола методом вузлових потенціалів у такій послідовності:

- розрахувати значення вузлових струмів;
- розрахувати значення власних і взаємних провідностей вузлів;
- обчислити значення визначника матриці власних і взаємних провідностей вузлів;
- визначити потенціали вузлів кола, прийнявши за нульовий потенціал одного з вузлів;
- визначити струми у вітках кола за законом Ома, скориставшись отриманими значеннями потенціалів вузлів.

Результати розрахунків занести у табл. 2.2.

Таблиця 2.2

Метод вузлових потенціалів											
Вузлові струми											
J_{11}		J_{22}		J_{33}		J_{44}					
	Власні і взаємні провідності вузлів										
G_{11}	G_{22}	G_{33}	G_{44}	G_{12}	G_{13}	G_{14}	G_{23}	G_{24}	G_{34}		
Визначник матриці власних і					$\Delta_G =$						
взаємних провідностей вузлів											
Потенціали вузлів											
V_{11}		V_{22}			V_{33}			V_{44}			

Струми у вітках								
I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	

Для розрахунків доцільно скористатися комп'ютерною програмою MathCAD

Експериментальна частина

Послідовність виконання роботи

Побудувати засобами *Electronics Workbench* електричне коло, приклад якого наведене на рис. 02-DC.01.

На рис. 02-DC.01 показані:

E1, E2, — джерела постійної напруги. Джерела напруги і струму знаходяться на вкладці *Sources*;

J1 — джерело постійного струму

R1, R2, R3, R4, R5, R6 — резистори. Резистори знаходяться на

Рис. 02-DC.01

Рис. 01-DC.02

вкладці Basic;

PV1, PV2, PV3 — вольтметри у режимі вимірювання постійної напруги (режим DC). Вольтметри знаходяться на вкладці *Indicator*;

PA1, PA2, PA3, PA4, PA5, PA6 — амперметри у режимі вимірювання постійного струму (режим DC) Амперметри знаходяться на вкладці *Indicators*.

Задати значення параметрів елементів кола, відповідно до варіанту. Щоб задати параметри елементу кола потрібно подвійним клацанням на елементі викликати вікно параметрів елемента (рис. 01-DC.02) і на вкладці *Value* задати значення і одиницю вимірювання. На вкладці *Label* задати позначення елемента на принципових електричних схемах згідно вітчизняних стандартів.

Запустити процес моделювання, натиснувши на кнопку І/О у верхньому правому куті екрану.

Зняти покази амперметрів і вольтметрів і занести їх у відповідні клітинки табл. 2.3.

Порівняти результати обчислень і вимірювань і зробити висновки.

Таблиця 3

	Вітки кола						
	R1	R2	R3	R4	R5	R6	
Струми віток	Струми віток						
Результати обчислень							
Результати вимірювань							
Потенціали вузлів	V1	V2	V3	V	1	V5	
Результати обчислень							
Результати вимірювань							

На захист представити паперовий і електронний варіанти.

Національний Технічний університет України (КРІ)

Кафедра теоретичної електротехніки

Лабораторна робота №01_DC_02

з дисципліни "Основи електротехніки та електроніки"

" Дослідження розгалужених електричних кіл постійного струму методом вузлових потенціалів "

Виконав: Студент групи ЕЕ-00 Петренко П.П. Перевірив: доц. Коваленко К.К. **Мета роботи**: Оволодіти методами аналізу і отримати навички експериментального дослідження розгалужених електричних кіл постійного струму з одним джерелом енергії

Завдання

Розрахувати, користуючись методом вузлових потенціалів, струми у вітках кола і напруги на елементах кола. Розрахунки перевірити числовим експериментом комп'ютерними стимуляторами *Electronic Workbench*, *Multisim*.

Завдання для варіанту 00

Розрахункова частина

Розрахунок струмів у вітках кола і напруг на елементах кола виконуємо методом вузлових потенціалів, використовуючи математичну комп'ютерну програму **Mathcad**.

Визначаємо струми у вітках заданого електричного кола за індивідуальним варіантом методом вузлових потенціалів у такій послідовності:

- 1. Нумеруємо вузли заданого електричного кола
- 2. Потенціал вузла 0 приймаємо рівним нулю
- 3. Складаємо систему рівнянь відносно невідомих потенціалів вузлів 1, 2, 3

$$G_{11} \cdot V_{11} + G_{12} \cdot V_{22} + G_{13} \cdot V_{33} = J_{11}$$
 $G_{21} \cdot V_{11} + G_{22} \cdot V_{22} + G_{23} \cdot V_{33} = J_{22}$
 $G_{31} \cdot V_{11} + G_{32} \cdot V_{22} + G_{33} \cdot V_{33} = J_{33}$

4. Записуємо систему рівнянь у матричному виді

$$\begin{pmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{pmatrix} \cdot \begin{pmatrix} V_{11} \\ V_{22} \\ V_{33} \end{pmatrix} = \begin{pmatrix} J_{11} \\ J_{22} \\ J_{33} \end{pmatrix}$$

5. Визначаємо власні провідності вузлів і обчислюємо їх значення

$$G_{11} := \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} = 0.038 \frac{1}{\Omega}$$

$$G_{22} := \frac{1}{R1} + \frac{1}{R4} + \frac{1}{R5} = 0.033 \frac{1}{\Omega}$$

$$G_{33} := \frac{1}{R2} + \frac{1}{R4} + \frac{1}{R6} = 0.031 \frac{1}{\Omega}$$

6. Визначаємо взаємні провідності вузлів і обчислюємо їх значення

$$G_{12} = G_{21} = -\frac{1}{R1} = -0.014 \frac{1}{\Omega}$$
 $G_{23} = G_{32} = -\frac{1}{R4} = -0.01 \frac{1}{\Omega}$
 $G_{31} = G_{13} = -\frac{1}{R2} = -0.013 \frac{1}{\Omega}$

7. Визначаємо струми вузлів і обчислюємо їх значення

$$J_{11} := \frac{-E1}{R1} + J_1 = 34.286 \cdot mA$$
 $J_{22} := \frac{E1}{R1} = 0.714 \cdot mA$
 $J_{33} := \frac{E6}{R1} - J_1 = -34.071 \cdot mA$

8. Записуємо розв'язок системи рівнянь через обернену матрицю

$$\begin{aligned} \mathbf{V}_{11} &= \mathbf{R}_{11} \cdot \mathbf{J}_{11} + \mathbf{R}_{12} \cdot \mathbf{J}_{22} + \mathbf{R}_{13} \cdot \mathbf{J}_{33} \\ \mathbf{V}_{22} &= \mathbf{R}_{21} \cdot \mathbf{J}_{11} + \mathbf{R}_{22} \cdot \mathbf{J}_{22} + \mathbf{R}_{23} \cdot \mathbf{J}_{33} \\ \mathbf{V}_{33} &= \mathbf{R}_{31} \cdot \mathbf{J}_{11} + \mathbf{R}_{32} \cdot \mathbf{J}_{22} + \mathbf{R}_{33} \cdot \mathbf{J}_{33} \end{aligned}$$

9. Передавальні опори виражаються через визначник матриці власних і взаємних провідностей вузлів та алгебраїчні доповнення

$$R_{11} = \frac{(-1)^{1+1} \cdot M_{11}}{\Delta G} \qquad R_{12} = \frac{(-1)^{1+2} \cdot M_{12}}{\Delta G} \qquad R_{13} = \frac{(-1)^{1+3} \cdot M_{13}}{\Delta G}$$

$$R_{21} = \frac{(-1)^{2+1} \cdot M_{21}}{\Delta G} \qquad R_{22} = \frac{(-1)^{2+2} \cdot M_{22}}{\Delta G} \qquad R_{23} = \frac{(-1)^{2+3} \cdot M_{23}}{\Delta G}$$

$$R_{31} = \frac{(-1)^{3+1} \cdot M_{31}}{\Delta G} \qquad R_{32} = \frac{(-1)^{3+2} \cdot M_{32}}{\Delta G} \qquad R_{33} = \frac{(-1)^{3+3} \cdot M_{33}}{\Delta G}$$

10.Обчислимо значення визначника матриці власних і взаємних провідностей вузлів

$$\Delta G = \begin{pmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{pmatrix} = 2.013 \times 10^{-5} \frac{1}{\Omega^3}$$

11. Обчислюємо значення передавальних опорів

$$R_{11} = \frac{(-1)^{1+1} \cdot M_{11}}{\Delta G} \qquad R_{12} = \frac{(-1)^{1+2} \cdot M_{12}}{\Delta G} \qquad R_{13} = \frac{(-1)^{1+3} \cdot M_{13}}{\Delta G}$$

$$R_{21} = \frac{(-1)^{2+1} \cdot M_{21}}{\Delta G} \qquad R_{22} = \frac{(-1)^{2+2} \cdot M_{22}}{\Delta G} \qquad R_{23} = \frac{(-1)^{2+3} \cdot M_{23}}{\Delta G}$$

$$R_{31} = \frac{(-1)^{3+1} \cdot M_{31}}{\Delta G} \qquad R_{32} = \frac{(-1)^{3+2} \cdot M_{32}}{\Delta G} \qquad R_{33} = \frac{(-1)^{3+3} \cdot M_{33}}{\Delta G}$$

$$R_{11} = 46.155 \Omega \qquad R_{12} = 28.092 \Omega \qquad R_{13} = 27.824 \Omega$$

$$R_{21} = 28.092 \Omega \qquad R_{22} = 50.273 \Omega \qquad R_{23} = 27.695 \Omega$$

$$R_{31} = 27.824 \Omega \qquad R_{32} = 27.695 \Omega$$

$$R_{31} = 27.824 \Omega \qquad R_{32} = 27.695 \Omega$$

12. Обчислюємо значення часткових потенціалів

$$\begin{array}{l} - \\ \text{V11}_{11} \coloneqq \text{R}_{11} \cdot \text{J}_{11} = 1.582 \text{ V} & \text{V11}_{12} \coloneqq \text{R}_{12} \cdot \text{J}_{22} = 0.02 \text{ V} & \text{V11}_{13} \coloneqq \text{R}_{13} \cdot \text{J}_{33} = -0.959 \text{ V} \\ \text{V22}_{21} \coloneqq \text{R}_{21} \cdot \text{J}_{11} = 0.963 \text{ V} & \text{V22}_{22} \coloneqq \text{R}_{22} \cdot \text{J}_{22} = 0.036 \text{ V} & \text{V22}_{23} \coloneqq \text{R}_{23} \cdot \text{J}_{33} = -0.954 \text{ V} \\ \text{V33}_{31} \coloneqq \text{R}_{31} \cdot \text{J}_{11} = 0.954 \text{ V} & \text{V33}_{32} \coloneqq \text{R}_{32} \cdot \text{J}_{22} = 0.02 \text{ V} & \text{V33}_{33} \coloneqq \text{R}_{33} \cdot \text{J}_{33} = -1.816 \text{ V} \\ \end{array}$$

13.Обчислюємо значення потенціалів вузлів через часткові потенціали

$$V_{11} := V_{11}_{11} + V_{11}_{12} + V_{11}_{13} = 0.644 \text{ V}$$

$$V_{22} := V_{22}_{21} + V_{22}_{22} + V_{22}_{23} = 0.045 \text{ V}$$

$$V_{33} := V_{33}_{31} + V_{33}_{32} + V_{33}_{33} = -0.842 \text{ V}$$

14. Визначаємо струми у вітках через потенціали вузлів за законом Ома і обчислюємо їх значення

$$I_{1} := \frac{V_{11} - V_{22} + E1}{R1} = 9.271 \cdot mA$$

$$I_{2} := \frac{V_{11} - V_{33}}{R2} = 18.578 \cdot mA$$

$$I_{3} := \frac{V_{11} - V_{00}}{R3} = 7.153 \cdot mA$$

$$I_{4} := \frac{V_{22} - V_{33}}{R4} = 8.872 \cdot mA$$

$$I_{5} := \frac{V_{22} - V_{00}}{R5} = 0.407 \cdot mA$$

$$I_{6} := \frac{V_{00} - V_{33} + E6}{R6} = 7.562 \cdot mA$$

15. Для перевірки правильності розрахунків складемо баланс потужностей

$$P_1 := -I_1 \cdot E1 + I_6 \cdot E6 + J_1 \cdot R2 \cdot I_2 = 52.045 \cdot mW$$

$$P_2 := I_1^2 \cdot R1 + I_2^2 \cdot R2 + I_3^2 \cdot R3 + I_4^2 \cdot R4 + I_5^2 \cdot R5 + I_6^2 \cdot R6 = 52.984 \cdot mW$$

- 16. Потужність джерел енергії P_1 дорівнює потужності P_2 споживачів енергії, що свідчить, що розрахунок струмів у колі методом вузлових потенціалів виконаний правильно
- 17. Результати розрахунків занести у табл. 2.2.

Таблиця 2.2

Метод вузлових потенціалів									
Вузлові струми, тА									
J	11	$J_{\underline{j}}$	22	J_{33}					
34	1.3	0.7	14	-34.0					
Власні і взаємні провідності вузлів, Ω^{-1}									
G_{11}	G_{11} G_{22}		G_{12}	G_{13}	G_{23}				
0.038	0.033	0.031	0.014	0.014 0.01					
	чник матриг ровідностей в		$\Delta_G = {}_{2.013 \times 10^{-5}}$						
Потенціали вузлів, V									
V_{11}		V_{22}		V_{33}	V_{33}				
0.644		0.045	— 0.842						
Струми у вітках, тА									
I_1	I_2	I_3	I_4	I_5	I_6				
9.271	18.578	7.153	8.872	0.407	7.562				

Експериментальна частина

Послідовність виконання роботи

Побудуємо засобами *Electronic Workbench* електричне коло, вибране у відповідності до варіанту 00 індивідуального завдання.

Задаємо значення параметрів елементів кола, обчислені у пункті 1

Рис. 1.2

розрахункової частини.

Запускаємо процес моделювання, натиснувши на кнопку I/O у верхньому правому куті екрану.

Знімаємо покази амперметрів і вольтметрів і заносимо їх у відповідні клітинки табл. 2.2.

Теоретичні відомості

Метод вузлових потенціалів (вузлових напруг)

Знаходження струмів у вітках заданого електричного кола за методом вузлових потенціалів (вузлових напруг) полягає у тому, що спочатку визначають потенціали вузлів кола.

Щоб визначити потенціали вузлів, у систему рівнянь складених за першим законом Кірхгофа

підставляємо вирази для струмів I_1 , I_1 , ... , I_n ,складені за законом Ома

$$I_n = \frac{V_k - V_m \pm E_n}{R_n} \tag{T.2}$$

Виконавши потрібні еквівалентні перетворення, можна звести систему рівнянь (Т.1) до такого виду

$$+ G_{11} \cdot V_{1} - G_{12} \cdot V_{2} - G_{13} \cdot V_{3} - \dots - G_{1n} \cdot V_{n} - \dots - G_{1N} \cdot V_{N} = J_{11}$$

$$- G_{21} \cdot V_{1} + G_{22} \cdot V_{2} - G_{23} \cdot V_{3} - \dots - G_{2n} \cdot V_{n} - \dots - G_{2N} \cdot V_{N} = J_{22}$$

$$- G_{31} \cdot V_{1} - G_{32} \cdot V_{2} + G_{33} \cdot V_{3} - \dots - G_{3n} \cdot V_{n} - \dots - G_{3N} \cdot V_{N} = J_{33}$$

$$- G_{m1} \cdot V_{1} - G_{m2} \cdot V_{2} - G_{m3} \cdot V_{3} - \dots - G_{mn} \cdot V_{n} - \dots - G_{mN} \cdot V_{N} = J_{mm}$$

$$- G_{N1} \cdot V_{1} - G_{N2} \cdot V_{2} - G_{N3} \cdot V_{3} - \dots - G_{Nn} \cdot V_{n} - \dots + G_{NN} \cdot V_{N} = J_{NN}$$

$$- G_{N1} \cdot V_{1} - G_{N2} \cdot V_{2} - G_{N3} \cdot V_{3} - \dots - G_{Nn} \cdot V_{n} - \dots + G_{NN} \cdot V_{N} = J_{NN}$$

Якщо задане електричне коло має (N+1) вузлів, то система (T.3) міститиме N рівнянь.

У систему рівнянь (Т.3) входять N потенціалів вузлів $V_1, V_2, V_3, ..., V_N$, значення яких підлягають визначенню. Потенціал одного з вузлів приймається рівним нулю (V_0 =0).

Крім потенціалів вузлів кола у систему рівнянь (Т.3) входять величини G_{11} , G_{22} , G_{33} ,..., G_{NN} , які називаються власними провідностями вузлів.

Власною провідністью вузла G_{nn} називається сума провідностей віток, що входять у цей вузол. Власні провідності вузлів входять у рівняння (Т.3) зі знаком "+".

Взаємною провідністю G_{nm} **вузлів** m і n називається сума провідностей віток, які безпосередньо з'єднують ці два вузла, тобто віток, які одночасно входять як в один, так і у інший вузли. Якщо жодна вітка не з'єднує певні два вузла, то взаємна провідність у такому разі дорівнює нулю. Для взаємних провідностей справедливе твердження

$$G_{mn} = G_{nm} \tag{T.4}$$

Взаємні провідності входять у рівняння (Т.3) зі знаком "-".

Величини J_{II} , J_{II} , J_{II} , J_{II} , ..., J_{II} , у правій частині рівнянь (Т.3) називаються струмами вузлів. *Струмом вузла* називається алгебраїчна сума струмів джерел віток. Струм джерела вітки входить у суму зі знаком «+», якщо джерело струму спрямоване до вузла, і зі знаком «-», якщо джерело струму вітки спрямоване від вузла. Якщо вітка заданого електричного кола містить не джерело струму, а джерело напруги, то за допомогою еквівалентного перетворення його перетворюють у джерело струму. Якщо вітка не містить джерел енергії, то відповідний доданок в алгебраїчній сумі дорівнює нулю.

Відомо, що розв'язок системи лінійних рівнянь (Т.3) має вигляд

$$\begin{cases} V_{1} = \frac{1}{\Delta_{G}} \left(\Delta_{11} \cdot J_{11} + \Delta_{12} \cdot J_{22} + \dots + \Delta_{1n} \cdot J_{nn} + \dots + \Delta_{1N} \cdot J_{NN} \right) \\ V_{2} = \frac{1}{\Delta_{G}} \left(\Delta_{21} \cdot J_{11} + \Delta_{22} \cdot J_{22} + \dots + \Delta_{2n} \cdot J_{nn} + \dots + \Delta_{2N} \cdot J_{NN} \right) \\ V_{m} = \frac{1}{\Delta_{G}} \left(\Delta_{m1} \cdot J_{11} + \Delta_{m2} \cdot J_{22} + \dots + \Delta_{mn} \cdot J_{nn} + \dots + \Delta_{mN} \cdot J_{NN} \right) \\ \vdots \\ V_{N} = \frac{1}{\Delta_{G}} \left(\Delta_{N1} \cdot J_{11} + \Delta_{N2} \cdot J_{22} + \dots + \Delta_{Nn} \cdot J_{nn} + \dots + \Delta_{NN} \cdot J_{NN} \right) \end{cases}$$

$$(T.5)$$

Величина Δ_G , що входить в (1.56), називається *визначником матриці власних і взаємних провідностей кола* і визначається через власні і взаємні провідності вузлів за формулою

$$\Delta_{G} = \begin{vmatrix} G_{11} & G_{12} & G_{13} & \dots & G_{1N} \\ G_{21} & G_{22} & G_{23} & \dots & G_{2N} \\ \dots & \dots & \dots & \dots \\ G_{N1} & G_{N2} & G_{N3} & \dots & G_{NN} \end{vmatrix}$$
 (T.6)

 Δ_{mn} є *алгебраїчне доповнення визначника* Δ , яке можна отримати, якщо викреслити у визначнику m-тий стовпчик і n-тий рядок і помноживши отриманий таким чином визначник на $(-1)^{(m+n)}$.

Якщо розкрити дужки у рівняннях (1.56), то отримаємо величини Δ_{mn}/Δ_G , що мають розмірність опору, називаються *передаточними опорами* вузлів і позначаються R_{mn} . Передаточний опір зв'язує потенціал m-того вузла зі струмом J_n і показує як діє n-те джерело струму на потенціал m-того вузла.

Якщо підставити передаточні опори у систему рівнянь (Т.5), то вона набуде вигляду

$$\begin{cases} V_{1} = R_{11} \cdot J_{11} + R_{12} \cdot J_{22} + \dots + R_{1n} \cdot J_{nn} + \dots + R_{1N} \cdot J_{NN} \\ V_{2} = R_{21} \cdot J_{11} + R_{22} \cdot J_{22} + \dots + R_{2n} \cdot J_{nn} + \dots + R_{2N} \cdot J_{NN} \\ \\ V_{m} = R_{m1} \cdot J_{11} + R_{m2} \cdot J_{22} + \dots + R_{mn} \cdot J_{nn} + \dots + R_{mN} \cdot J_{NN} \\ \\ \\ V_{N} = R_{N1} \cdot J_{11} + R_{N2} \cdot J_{22} + \dots + R_{Nn} \cdot J_{nn} + \dots + R_{NN} \cdot J_{NN} \end{cases}$$

$$(T.7)$$

Величини $R_{mn}J_{nn}$ мають розмірність потенціалу, називаються **частковими потенціалами** вузла і позначаються V_{I-1} . Частковий потенціал показує, яку частку у потенціал m-того вузла вносить дія n-того вузлового струму J_{nn} .

Таким чином, потенціали вузлів виражаються через суму часткових потенціалів

$$\begin{cases} V_{1} = V_{1-1} + V_{1-2} + \dots + V_{1-n} + \dots + V_{1-N} \\ V_{2} = V_{2-1} + V_{2-2} + \dots + V_{2-n} + \dots + V_{2-N} \\ \\ V_{m} = V_{m-1} + V_{m-2} + \dots + V_{m-n} + \dots + V_{m-N} \\ \\ V_{N} = V_{N-1} + V_{N-2} + \dots + V_{N-n} + \dots + V_{N-N} \end{cases}$$
 (T.8)

Отримавши із розв'язку системи рівнянь (Т.5) значення потенціалів N вузлів заданого електричного кола і врахувавши, що потенціал (N+1) вузла прийнятий рівним нулю, визначаємо струми у вітках кола за законом Ома

$$I_k = \frac{V_m - V_n \pm E_k}{R_k} \tag{T.9}$$

Приклад Т.1. Розрахувати струми у вітках електричного кола

Рис. Т.1

(рис.Т.1) методом вузлових потенціалів.

Параметри елементів кола мають такі значення:

EI=9.0 V, JI=6.0 mA, RI=1.2 kΩ, R2=1.6 kΩ, R3=2.7 kΩ, R4=3.6 kΩ, R5=1.8 kΩ.

Розв'язок

Для зручності розрахунків перетворимо джерело постійної електричної напруги у еквівалентне джерело струму (рис. Т.1)

$$J_5 = \frac{E_1}{R_5} = \frac{9.0}{1.8 \cdot 10^3} = 5.0 \,\text{mA}$$
 (T.10)

Потенціал вузла 0 приймаємо рівний нулю V_0 =0, а відносно потенціалів решти вузлів складаємо систему рівнянь

$$+G_{11} \cdot V_1 - G_{12} \cdot V_2 - G_{13} \cdot V_3 = J_{11}$$

$$-G_{21} \cdot V_1 + G_{22} \cdot V_2 - G_{23} \cdot V_3 = J_{22}$$

$$-G_{31} \cdot V_1 - G_{32} \cdot V_2 + G_{33} \cdot V_3 = J_{33}$$
(T.11)

Визначаємо власні і взаємні провідності вузлів і обчислюємо їх значення

$$G_{11} := \frac{1}{R_1} + \frac{1}{R_3} = 1.204 \times 10^{-3} \cdot S$$
 (T.12)

$$G_{22} := \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_5} = 2.014 \times 10^{-3} \cdot S$$

$$G_{33} := \frac{1}{R_2} + \frac{1}{R_4} = 9.028 \times 10^{-4} \cdot S$$

$$G_{23} := \frac{1}{R_2} = 6.25 \times 10^{-4} \, S \qquad G_{32} := G_{23}$$

$$G_{12} := \frac{1}{R_1} = 8.333 \times 10^{-4} \, S \qquad G_{21} := G_{12}$$

$$G_{13} := 0 \cdot S \qquad G_{31} := G_{13} = 0$$

Визначаємо струми вузлів і обчислюємо їх значення

$$J_{11} := J_1$$
 $J_{22} := \frac{E_1}{R_5} = 5 \times 10^{-3} \,\text{A}$ $J_{33} := -J_1$ (T.13)

Підставляємо обчисленні значення власних і взаємних провідностей вузлів, а також значення струмів джерел віток у систему рівнянь і розв'язуємо її за допомогою системи MathCAD

Given

$$G_{11} \cdot V_1 - G_{12} \cdot V_2 - G_{13} \cdot V_3 = J_{11}$$

$$-G_{21} \cdot V_1 + G_{22} \cdot V_2 - G_{23} \cdot V_3 = J_{22}$$

$$-G_{31} \cdot V_1 - G_{32} \cdot V_2 + G_{33} \cdot V_3 = J_{22}$$

$$\text{T.14}$$

$$\text{Find} \left(V_1, V_2, V_3\right) = \begin{pmatrix} 13.681 \\ 12.562 \\ 14.235 \end{pmatrix} V$$

Таким чином потенціали вузлів кола матимуть такі значення:

$$V_1 = 13.681V$$

 $V_2 = 12.562V$ (T.15)
 $V_3 = 14.235V$

Маючи значення потенціалів вузлів кола (нагадаємо, що потенціал вузла 0 прийнятий рівним нулю V_0 =0), знаходимо струми у вітках кола за законом Ома

$$I_{1} := \frac{V_{1} - V_{2}}{R_{1}} = 0.932 \text{ mA} \qquad I_{2} := \frac{V_{2} - V_{3}}{R_{2}} = -1.046 \text{ mA}$$

$$I_{3} := \frac{V_{1} - V_{0}}{R_{3}} = 5.067 \text{ mA} \qquad I_{4} := \frac{V_{0} - V_{3}}{R_{4}} = -3.954 \text{ mA}$$

$$I_{5} := \frac{V_{2} - V_{0} + E_{1}}{R_{5}} = 11.979 \text{ mA}$$

$$(T.16)$$

Приклад Т.2. У заданому електричному колі (рис Т.2) розрахувати струми у вітках методом вузлових потенціалів.

Параметри елементів кола мають такі значення:

$$EI$$
=12.0 V, JI =9.0 mA, RI =1.2 k Ω , $R2$ =2.7 k Ω , $R3$ =3.6 k Ω , $R4$ =4.3 k Ω .

Рис. Т.2

Розв'язок

Задане електричне коло має 4 вузла. Особливістю заданого електричного кола є наявність вітки між 3 і 4 вузлами вітки з нульовим опором, або нескінченно великою провідністю. Цей факт унеможливлює складання рівняння вузлових потенціалів для 3 і 4 вузла.

Щоб розв'язати цю проблему, потенціал одного з цих вузлів, наприклад четвертого, приймаємо рівним нулю (V_4 =0). Тоді потенціал третього вузла буде відомий (V_4 = E_1) і складати для нього рівняння не потрібно.

Отже, складаємо рівняння тільки для 1 і 2 вузлів

$$+G_{11} \cdot V_1 - G_{12} \cdot V_2 - G_{13} \cdot V_3 = J_{11} -G_{21} \cdot V_1 + G_{22} \cdot V_2 - G_{23} \cdot V_3 = J_{22}$$
 (T.17)

Визначаємо власні і взаємні провідності вузлів і обчислюємо їх значення

$$G_{11} := \frac{1}{R_1} + \frac{1}{R_2} = 1.204 \times 10^{-3} \cdot S \quad G_{22} := \frac{1}{R_3} + \frac{1}{R_4} = 5.103 \times 10^{-4} \cdot S$$

$$G_{13} := \frac{1}{R_1} = 8.333 \times 10^{-4} \cdot S \qquad G_{31} := G_{13} = 8.333 \times 10^{-4} \cdot \frac{1}{\Omega}$$

$$G_{23} := \frac{1}{R_3} = 2.778 \times 10^{-4} \cdot S \quad G_{32} := G_{23}$$

$$G_{12} := 0 \cdot S \qquad G_{21} := G_{12}$$

$$(T.18)$$

Визначаємо струми вузлів і обчислюємо їх значення

$$J_{11} := -J_1 = -9 \text{ mA}$$
 $J_{22} := J_1 = 9 \cdot \text{mA}$ (T.19)

Підставляємо обчисленні значення власних і взаємних провідностей вузлів, а також значення струмів джерел віток у систему рівнянь і розв'язуємо її за допомогою системи MathCAD

Given

$$G_{11} \cdot V_1 - G_{12} \cdot V_2 - G_{13} \cdot V_3 = J_{11}$$

$$-G_{21} \cdot V_1 + G_{22} \cdot V_2 - G_{23} \cdot V_3 = J_{22}$$

$$Find(V_1, V_2) = \begin{pmatrix} 0.831 \\ 24.167 \end{pmatrix} V$$
(T.20)

Розв'язок системи рівнянь дає такі значення потенціалів вузлів V_1 =0.831V, V_2 =24.167V.

Врахувавши, що потенціал четвертого вузла прийнято рівним нулю $(V_4=0)$, а потенціал третього вузла рівний $(V_4=E_1)$, обчислюємо струми у вітках кола за законами Ома і Кірхгофа

$$I_{1} := \frac{V_{1} - V_{3}}{R_{1}} = -9.307 \cdot \text{mA} \quad I_{2} := \frac{V_{1} - V_{4}}{R_{2}} = 0.308 \cdot \text{mA}$$

$$I_{3} := \frac{V_{3} - V_{2}}{R_{3}} = -3.38 \cdot \text{mA} \quad I_{4} := \frac{V_{4} - V_{2}}{R_{4}} = -5.62 \cdot \text{mA}$$

$$I_{5} := I_{4} - I_{2} = -5.928 \cdot \text{mA}$$

$$(T.21)$$