Student ID:

Name:

(a). The continuous random variable X is exponentially distributed with parameter λ . Its cumulative distribution function is

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

Another random variable Y is defined as Y = 8X. Please find E[Y].

$$E[Y] = E[8X] = \int_0^\infty 8x\lambda e^{-\lambda} dx = 8 \int_0^\infty x\lambda e^{-\lambda x} dx$$
$$= 8[x(-e^{-\lambda})]_0^\infty - \int_0^\infty (-e^{-\lambda x}) dx] = 8 \int_0^\infty e^{-\lambda x} dx = \frac{8}{\lambda}$$

(b). Suppose X has the following probability mass function:

$$p(0) = 0.1$$
, $p(1) = 0.6$, $p(2) = 0.3$

Please Calculate $E[X^2]$.

Letting $Y = X^2$, we have that Y is a random variable that can take on one of the values 0^2 , 1^2 , 2^2 with respective probabilities

$$p_Y(0) = P\{Y = 0^2\} = 0.1$$

$$p_Y(1) = P\{Y = 1^2\} = 0.6$$

$$p_Y(4) = P\{Y = 2^2\} = 0.3$$

Hence,

$$E[Y] = E[X^2] = 0 \cdot (0.1) + 1 \cdot (0.6) + 4 \cdot (0.3) = 1.8$$

Student ID:

Name:

For an exponential random variable X, $X \sim Exp(\lambda)$, we know its moment generating function is $\varphi(t) = \frac{\lambda}{\lambda - t}$ for $t < \lambda$. What is the third moment of X? (That is, what is $E[X^3]$?)

$$\phi(t) = E[e^{tx}] = \int_0^\infty e^{tx} \cdot \lambda e^{-\lambda x} dx = \int_0^\infty \lambda \cdot e^{-(\lambda - t)x} dx$$

$$= -(\frac{\lambda}{\lambda - t}) e^{-(\lambda - t)x} \Big|_0^\infty = \frac{\lambda}{\lambda - t} , \qquad t < \lambda$$

$$\phi'(t) = \frac{\lambda}{(\lambda - t)^2}$$

$$\phi''(t) = \frac{2\lambda}{(\lambda - t)^3}$$

$$\phi'''(t) = \frac{6\lambda}{(\lambda - t)^4}$$

$$E[X^3] = \phi'''(0) = \frac{6}{\lambda^3}$$

Student ID:

Name:

1. X_1 and X_2 are independent exponential random variables, each with rate λ . The random variable Y is defined as $Y = \min(X_1, X_2)$. Please find E[Y].

$$Y \sim Exp(\lambda + \lambda) = Exp(2\lambda)$$

 $E[Y] = \frac{1}{2\lambda}$

2. Let $X \sim \text{Exponential}(\lambda)$. Use Chebyshev's inequality to find an upper bound of $P(|X - E[X]| \ge b)$.

Since $X \sim \text{Exponential}(\lambda)$, we have $E[X] = \frac{1}{\lambda}$ and $Var[X] = \frac{1}{\lambda^2}$.

Using Chebyshev's inequality, we have

$$P(|X - E[X]| \ge b) \le \frac{Var(X)}{b^2}$$
$$= \frac{1}{\lambda^2 b^2}$$

Student ID:

Name:

1. Let $\{N(t), t \ge 0\}$ be a Poisson process with $P\{N(1) = 0\} = e^{-3}$. Let S_n denote the time of the n-th event. Find E[N(4) - N(2)|N(1) = 3].

$$e^{-\lambda \times 1} \frac{(\lambda \times 1)^0}{0!} = e^{-3} \Longrightarrow \lambda = 3$$

$$E[N(4) - N(2)|N(1) = 3] = E[N(2)] = \lambda \times t = 3 \times 2 = 6$$

- 2. On Friday night, the number of customers arriving at a lounge bar can be modeled by a Poisson process with intensity that twelve customers per hour.
 - (a) Find the probability that there are 2 customers between 21:00 and 21:40.
 - (b) Find the probability that there are 4 customers between 21:00 and 21:40 and 6 customers between 21:40 and 22:00.
 - (a) We know that $\lambda=12$ and the interval between 21:00 and 21:40 has the length $\tau=\frac{2}{3}$ hours. If X is the number of arrivals in that interval, we can write $X\sim Poisson(8)$. Therefore,

$$P(X = 2) = \frac{e^{-8}(8)^2}{2!}$$

(b) Here, we have two non-overlapping intervals $I_1 = (21:00,21:40]$ and $I_2 = (21:40,22:00]$. Thus, we can write

P(4 arrivals in I_1 and 6 arrivals in I_2)

= P(4 arrivals in I_1) · P(6 arrivals in I_2)

$$=\frac{e^{-8}(8)^4}{4!}\cdot\frac{e^{-4}(4)^6}{6!}$$