Resume : Description Logic

December 6, 2017

C is the set of concept names and R the set of role names. Every concept names is a concept description (CD).

Formal notation:

$$C \sqcap D \to \text{conjonction}$$

 $C \sqcup D \to \text{disjonction}$
 $\neg C \to \text{negation}$
 $\exists r.C \to \text{existential restriction}$
 $\forall r.C \to \text{value restriction}$

An interpretation $I = (\Delta, \cdot)$ such that $\Delta \neq \emptyset$, (Δ is called the domain of the interpretation) and with the following:

$$\begin{split} A \in C \to A^I \subseteq \Delta \\ r \in R \to r^I \subseteq \Delta \times \Delta \\ \top^I &= \Delta \\ \bot^I &= \Delta \\ (C \sqcap D)^I &= C^I \cap D^I \\ (C \sqcup D)^I &= C^I \cup D^I \\ (\neg C)^I &= \Delta \setminus C^I \\ (\exists r.C)^I &= \{d \in \Delta \mid \exists e \in \Delta \text{ with } (d,e) \in r^I \text{ and } e \in C^I \} \\ (\forall r.C)^I &= \{d \in \Delta \mid \forall e \in \Delta, \text{ if } (d,e) \in r^I, \text{ then } e \in C^I \} \end{split}$$

We call C^I the extension of C in I and $b \in \Delta^I$ an r - filler of a in I if $(a, b) \in r^I$.

Lemma 1. Let I be an interpretation, C, D concepts and r a role. Then

$$\begin{split} & \top^I = (C \sqcup \neg C)^I \\ & \bot^I = (C \sqcap \neg C)^I \\ & (\neg \neg C)^I = C^I \\ & (\neg (C \sqcap D))^I = (\neg C \sqcup \neg D)^I \\ & (\neg (C \sqcup D))^I = (\neg C \sqcap \neg D)^I \\ & (\neg (\exists r.C))^I = (\forall r. \neg C)^I \\ & (\neg (\forall r.C))^I = (\exists r. \neg C)^I \end{split}$$

Because the \sqcup operator can be tricky sometimes, we use the following relation to replace the \sqcup by $\sqcap: C \sqcup D \to \neg(\neg C \sqcap \neg D)$.

ALC TBoxes

For C and D possibly compound ALC concepts, an expression of form $C \sqsubseteq D$ is called an ALC general concept inclusion (GCI). We use $C \equiv D$ has an abbreviation for $C\tau \sqsubseteq D, D \sqsubseteq C$. A finite set of GCI is called an ALC TBox and noted τ .

Lemma 2. If $\tau \in \tau'$ for two TBox τ and τ' , then each model of τ' is also a model of τ .

Example of a $TBox\ T_{ex}$:

```
T_{ex} = \{Course \sqsubseteq \neg Person, \ UGC \sqsubseteq Course, \ PGC \sqsubseteq Course, \ Teacher \equiv Person \sqcap \exists teaches.Course, \ \exists teaches.T \sqsubseteq Person, \ Student \equiv Person \sqcap \exists attends.Course, \ \exists attends.T \sqsubseteq Person \}
```

ALC ABoxes

Let I be a set of individual names disjoint from R and C. For $a,b \in I$ individual names, C a possibly compound ALC concept, and $r \in R$ a role name, an expression of the form a:C is called an ALC concept assertion and (a,b):r is called and ALC role assertion.

A finite set of concept and role assertion is called an ALC ABox. An interpretation function \cdot^I is additionally required to map every individual name $a \in I$ to an element a^I $in\Delta^I$. An interpretation I satisfies a concept assertion a:C if $a^I \in C^I$ and a role assertion (a,b):r if $(a^I,b^I)\in r^I$.

An interpretation that satisfies each concept assertion and each role assertion in a $ABox\ A$ is called a model of A.

Example of a $ABox A_{ex}$:

```
A_{ex} = \{Mary : Person, \\ CS600 : Course, \\ Ph456 : Course \sqcap PGC, \\ Hugo : Person, \\ Betty : Person \sqcap Teacher, \\ (Mary, CS600) : teaches, \\ (Hugo, Ph456) : teaches, \\ (Betty, Ph456) : attends, \\ (Mary, Ph456) : attends \}
```

Then we can create an interpretation I of this ABox which is a model:

$$\Delta^{I} = \{h, m, c6, p4\},\ Mary^{I} = m\ Betty^{I} = Hugo^{I} = h,\ CS600^{I} = c6,\ Ph456^{I} = p4,\ Person^{I} = \{h, m, c6, p4\},\ Teacher^{I} = \{h, m\},\ Course^{I} = \{c6, p4\},\ PGC^{I} = \{p4\},\ UGC^{I} = \{cs\},\ Student^{I} = \emptyset,\ teaches^{I} = \{(m, c6), (h, p4)\},\ attends^{I} = \{(h, p4), (m, p4)\}$$

Note that isn't a model of the previous example of a *TBox*.

Chapter 1

A Basic Description Logic

1.1 TBox

Definition 1.1.1. For C and D possibly compound \mathcal{ALC} concepts, an expression of the form $C \sqsubseteq D$ is called an \mathcal{ALC} general concept inclusion and abbreviated GCI. We use $C \equiv D$ for $C \sqsubseteq D, D \sqsubseteq C$.

- A finite set of GCI is called an ALC TBox.
- An interpretation I satisfies a GCI $C \subseteq D$ if $C^I \subseteq D^I$.
- ullet An interpretation that satisfies each GCI in a TBox $\mathcal T$ is called a model of $\mathcal T$.

Lemma 3. If $\mathcal{T} \subseteq \mathcal{T}'$ for two TBoxes \mathcal{T} and \mathcal{T}' , then each model of \mathcal{T}' is a model of \mathcal{T} .

1.2 ABox

Definition 1.2.1. Let **I** be a set of individual names disjoint from **R** and **C**. For $a, b \in \mathbf{I}$ individual names, C a possibly compound \mathcal{ALC} concept, and $r \in \mathbf{R}$ a role name, an expression of the form :

- a: C is called an ALC concept assertion
- (a,b): r is called an ALC role assertion

A finite set if \mathcal{ALC} concept and role assertion is called an \mathcal{ALC} ABox.

An interpretation function \cdot^I is additionally required to map every individual name $a \in \mathbf{I}$ ti and element $a^I \in \Delta^I$. An interpretation I satisfies

- a concept assertion a:C if $a^I \in C^I$
- a role assertion (a,b): r if $(a^I,b^I) \in r^I$

Definition 1.2.1. An \mathcal{ALC} knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ consists of an \mathcal{ALC} TBox \mathcal{T} and an \mathcal{ALC} ABox \mathcal{A} . An interpretation that is both a model of \mathcal{T} and \mathcal{A} is called a model of \mathcal{K} .