Sequence Data and File Formats

Sequence Readsets

What you get:

Millions to billions of reads - in one big file (or two!!)

... <--- 100 bp --->

 <- 1st read

<- last read

What you get:

Millions to billions of reads - in one big file (or two!!)

.. <--- 100 bp --->

 <- let road

<- 2nd read

<- last read

FASTA format

FASTA

FASTA components

Multi-FASTA

Concatenation of individual FASTA entries, using ">" as an entry separator

>read00001

TCTTGCGTCAAGACGGCCGTGCTGAGCGAATGCAGGCGACTTGCGAGCTGGGAGCGA

>read00002

TGGATTCCCCCGGCCTGGGTGGGGAGAGCGAGCTGGGTGCCCCCTAGATTCCCCGCC

>read00003

>read00004

TCTGGGAGCGGGGGGGGGGGAATCTGGAGCGAGCTGGGTGCCCCCTAGATTCCCC

>read00004

GCGGAATCTGGAGCGAGCTGGGTGCCCCCTAGATTCCCCGCATCGTAGATTAGATAT

FASTQ files

FASTQ

FASTQ sequence entry looks like this:

```
@read00179
AGTCTGATATGCTGTACCTATTATAATTCTAGGCGCTCAT
+
8;ACCCD?DD???@B9<9<871CAC@=A;0.-&*,(0**#</pre>
```

FASTQ components

Sequence Quality "base calls"

Phred Quality Scores

Quality Score	Chance of being wrong	Accuracy	Description
10	1 in 10	90%	Maybe
20	1 in 100	99%	ОК
30	1 in 1000	99.9%	Good
40	1 in 10,000	99.99%	Excellent

$$Q = -10 \log_{10} P <=> P = 10^{-Q/10}$$

Q = Phred quality score

P = probability of base call being incorrect

FASTQ quality encoding

Phred scores (1-40) each represented by a symbol/letter:

What's in a Readset?

Multi-FASTQ

Same as with multi-FASTA: concatenated Fastq

@M00267:3:15997:1501

 $\tt CTCGTGCTCTACTTTAGAAGCTAATGATTCTGTTTGTAGAACATTTTCTACCACTACATCTTTTTCTTGCTTCGCATCTT$

+

@M00267:3:15997:1505

GCCTATAGTAGAAGAAAAGAAGTGGCTCAAGAAATGAGTGCACCGCAGGAAGTTCCAGCGGCTGAATTACTTCATGAAA

+

<@@FFF?DHFHGHIIIFGIIGIGICDGEGCHIIIIIIIIIIIIIIFG<DA7=BHHGGIEHDBEBA@CECDD@CC>CCCAC

@M00267:3:14073:1508

GTCTTGCTAAATTTAAATAATCTGAAATAATTTGTTCTGCCCGGTCCAATTCAGCTAATACGAGACGCATATAATCCTTA

+

Reading from the End of the DNA

SAM/BAM file format

- Gives the reads plus alignment to a reference plus metadata
- BAM is a compressed form of SAM (smaller files)

SAM format

3808833 3808575

