Positive and Negative Relationships

Ana Paula Fabrício Benevenuto Virgílio Almeida

Redes com sinais

- Redes com relações positivas e negativas
- Considere um grafo completo não direcionado
- Cada aresta é rotulada como
 - Positiva: amigo, confiança, sentimento positivo
 - Negativa: inimigo, desconfiança, sentimento negativo
- Examine trios de nodos conectados

Structural Balance

(a) A, B, and C are mutual friends: balanced.

(b) A is friends with B and C, but they don't get along with each other: not balanced.

(c) A and B are friends with C as a mutual enemy: balanced.

(d) A, B, and C are mutual enemies: not balanced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

Theory of Structural Balance

Three-Node Signed Triads [Heider '46]

Balanced/unbalanced networks

 Graph is balanced if every connected triple of nodes has all 3 edges labeled +, or else exactly 1 edge is labeled +.

Balanced

Um grafo balanceado pode ser dividido em dois grupos antagônicos

Figure 5.3: If a complete graph can be divided into two sets of mutual friends, with complete mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only way for a complete graph to be balanced.

Local balance → Global factions

- Balance implies global coalitions [Cartwright-Harary]
 - If all triangles are balanced, then either:
 - The network contains only positive edges, or
 - Nodes can be split into 2 factions linked by negative edges

The Balance Theorem

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be other nodes not illustrated here.)

Analysis of balance

1872-1881

Balance in general networks

Balanced?

- Def 1: Local view
 - Fill in the missing edges to achieve balance

- Def 2: Global view
 - Divide the graph into two coalitions
- Defs are equivalent!

Is a signed network balanced?

- A graph is balanced if and only if it contains no cycle with an odd number of negative edges.
- How to compute this?
 - Find connected components on + edges
 - For each component create a super-node
 - Connect components A and B if there is a negative edge between the members
 - Assign super-nodes to sides using BFS

Signed Graph

Positive connected components

Reduced graph on super nodes

BFS on reduced graph

- Using BFS assign each node a side
- Graph is unbalanced if any two supernodes are assigned the same side

Real Large Signed Networks

- Each edge has a sign (+ or –)
- Meaning of signs can be:
 - Support/Oppose (Wikipedia)
 - Trust/Distrust (Epinions)
 - Friend/Foe (Slashdot)

	Epinions	Slashdot	Wikipedia
Nodes	119,217	82,144	7,118
Edges	841,200	549,202	103,747
+ edges	85.0%	77.4%	78.7%
edges	15.0%	22.6%	21.2%

• Questions:

- How do edge signs and network structure interact?
- What theories explain signs of edges?
- Can we accurately predict signs of edges?

Dataset - Statistics

Triad T_i	$ T_i $	$p(T_i)$	$p_0(T_i)$	$s(T_i)$		
Epinions						
$T_3 \mid ++++$	11,640,257	0.870	0.621	1881.1		
$T_1 \mid +$	947,855	0.071	0.055	249.4		
$T_2 \mid ++-$	698,023	0.052	0.321	-2104.8		
$T_0 \mid$	89,272	0.007	0.003	227.5		
Slashdot						
T_3 +++	1,266,646	0.840	0.464	926.5		
$T_1 \mid +$	109,303	0.072	0.119	-175.2		
$T_2 \mid ++-$	115,884	0.077	0.406	-823.5		
$T_0 \mid$	16,272	0.011	0.012	-8.7		
Wikipedia						
T_3 +++	555,300	0.702	0.489	379.6		
$T_1 \mid +$	163,328	0.207	0.106	289.1		
$T_2 \mid ++-$	63,425	0.080	0.395	-572.6		
$T_0 \mid$	8,479	0.011	0.010	10.8		

Table 3. Number of balanced and unbalanced undirected triads.

Prediction (Epinions)

Paper: Predicting Positive and Negative Links in Online Social Networks

Features

- predicting the sign of the edge from u to v
 - outgoing edge from $u : d^+_{out}(u), d^-_{out}(u)$
 - incoming edge to $v : d^+_{in}(v), d^-_{in}(v)$
 - embeddedness : C(u, v)
 - total out-degree of $u : d^+_{out}(u) + d^-_{out}(u)$
 - total in-degree of $v : d_{in}^+(v) + d_{in}^-(v)$

Features

- Triads involving (u,v)

Result

Figure 1: Accuracy of predicting a sign of edge (u,v) given signs of all other edges in the network. (a) Epinions, (b) Slashdot, (c) Wikipedia.

Generalization

All23	Epinions	Slashdot	Wikipedia
Epinions	0.9342	0.9289	0.7722
Slashdot	0.9249	0.9351	0.7717
Wikipedia	0.9272	0.9260	0.8021

Table 6: Predictive accuracy when training on the "row" dataset and evaluating the prediction on the "column" dataset.