MATH 272, Homework 8 Due April 6th

Problem 1. Plot each of the following vector fields.

(a)
$$\hat{r} = \frac{x}{\sqrt{x^2+y^2+z^2}}\hat{x} + \frac{y}{\sqrt{x^2+y^2+z^2}}\hat{y} + \frac{z}{\sqrt{x^2+y^2+z^2}}\hat{z}$$
.

(b)
$$\hat{\boldsymbol{\theta}} = \frac{-y}{\sqrt{x^2+y^2}}\hat{\boldsymbol{x}} + \frac{x}{\sqrt{x^2+y^2}}\hat{\boldsymbol{y}}.$$

(c)
$$\hat{\boldsymbol{\phi}} = \frac{xz}{\sqrt{x^2+y^2}\sqrt{x^2+y^2+z^2}}\hat{\boldsymbol{x}} + \frac{yz}{\sqrt{x^2+y^2}\sqrt{x^2+y^2+z^2}}\hat{\boldsymbol{y}} + \frac{-\sqrt{x^2+y^2}}{\sqrt{x^2+y^2+z^2}}\hat{\boldsymbol{z}}.$$

Problem 2. Consider the following vector field

$$\vec{E} = \frac{x}{(x^2 + y^2 + z^2)^{3/2}} \hat{x} + \frac{y}{(x^2 + y^2 + z^2)^{3/2}} \hat{y} + \frac{z}{(x^2 + y^2 + z^2)^{3/2}} \hat{z},$$

which you can think of as the electric field of a positive point charge. We argued that this field \vec{E} is conservative in a previous homework problem. Specifically, $\vec{E} = \vec{\nabla} \phi$, for some scalar field ϕ . This follows from Faraday's law for static charges.

(a) Compute the integral

$$T = \int_{\vec{\gamma}} \vec{E} \cdot d\vec{\gamma}$$
 where $\vec{\gamma}(t) = \begin{pmatrix} t \\ t \\ t \end{pmatrix}$,

and $a \leq t \leq b$. Note that this integral T describes the gain in kinetic energy of a charged particle that moved along the path $\vec{\gamma}$.

(b) Equivalently, since \vec{E} is conservative, we have

$$T = \int_{\vec{\gamma}} \vec{E} \cdot d\vec{\gamma} = \phi(\vec{\gamma}(b)) - \phi(\vec{\gamma}(a)).$$

Show that this is true for the given vector field and potential. This shows that the choice of path does not matter; only the endpoints $\vec{\gamma}(a)$ and $\vec{\gamma}(b)$ matter.

(c) Argue why the integral around any closed curve must be zero.

Problem 3. Let us see some of the benefit of using spherical coordinates.

(a) Using the fact that

$$\hat{m{r}} = rac{x}{\sqrt{x^2 + y^2 + z^2}} \hat{m{x}} + rac{y}{\sqrt{x^2 + y^2 + z^2}} \hat{m{y}} + rac{z}{\sqrt{x^2 + y^2 + z^2}} \hat{m{z}},$$

convert the vector field \vec{E} into spherical coordinates (i.e., only a function of r, θ , ϕ , and \hat{r} , $\hat{\theta}$, and $\hat{\phi}$).

- (b) Parameterize the surface of a sphere of radius R (which we'll call Σ) as well as the outward normal vector $\hat{\boldsymbol{n}}$ and in spherical coordinates.
- (c) Compute the following integral using spherical coordinates that we have found:

$$\iint_{\Sigma} \vec{E} \cdot \hat{n} d\Sigma,$$

where $d\Sigma$ will be the area form in spherical coordinates.

Problem 4. Note that the Laplacian Δ in cylindrical coordinates is given by

$$\Delta f(\rho, \theta, z) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}.$$

Compute the Laplacian of

$$f(\rho, \theta, z) = \sqrt{\rho^2 + z^2} z \cos(\theta).$$

Problem 5. Note that the Laplacian Δ in spherical coordinates is given by

$$\Delta f(r,\theta,\phi) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \phi^2}.$$

Compute the Laplacian of

$$f(r, \theta, \phi) = r^2 \cos(\theta) \cos(\phi).$$

Problem 6. (BONUS) The following problem is a somewhat pop-culture math paradox known as the *napkin ring problem* (see Vsauce for more). Consider the following problem. We want to compute the volume inside a ball of radius R after drilling out an inscribed cylinder of height h. See the following picture.

The question is, does the left over volume (of the napkin ring) depend on the radius R of the sphere. You have your choice of working in spherical or cylindrical coordinates. Use whichever helps you most.