中国科学技术大学计算机学院《计算机组成原理实验报告》

实验题目:运算器及其应用

学生姓名: 林宸昊

学生学号: PB20000034

完成日期: 2022.3.15

【实验题目】运算器及其应用

【实验内容】

【一: ALU模块的逻辑设计与仿真】

• 数据诵路:

• 状态图:

ALU 模块功能表

f	y	Z								
000	a + b	*								
001	a - b	*								
010	a & b	*								
011	a b	*								
100	a ^ b	*								
其他	0	1								

• 编写设计文件:

```
module alu_32(
   input [31:0] a, b,
   input [2:0] f,
   output reg [31:0] y,
   output reg z
   );
   always@(*)
   begin
       case(f) //通过case语句实现操作功能的选择
       3'b000:
          y = a + b;
       3'b001:
          y = a - b;
       3'b010:
           y = a \& b;
       3'b011:
           y = a \mid b;
       3'b100:
           y = a \wedge b;
       default:
           begin
               y = 0;
               z = 1;
           end
       endcase
   end
endmodule
```

• 仿真文件

```
module sim1(

);
reg [31:0] a,b;
reg [2:0] f;
wire [31:0] y;
wire z; //输出必须是线网型
alu_32 alu(a, b, f, y, z);
initial
begin
    a = 32'h8; b = 32'h2;
```

```
f = 3'b0; #20 f = 3'b1; #20 f = 3'b010; #20 f = 3'b011;
#20 f = 3'b100; #20 f = 3'b111; #20 $finish;
end
endmodule
```

• 仿真图象

【二:性能报告】

- 生成电路
 - o RTL电路:

。 综合电路:

• 资源使用情况

• 综合电路性能(由于32位ALU未烧在板子上故不做时间性能的特定分析)

	General Information									
	Timer Settings	Setup		Hold		Pulse Width				
	Design Timing Summary	Worst Negative Slack (WNS):	inf	Worst Hold Slack (WHS):	inf	Worst Pulse Width Slack (WPWS):	NA			
> 5	Check Timing (0)	Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	NA			
	Intra-Clock Paths	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	NA			
	Inter-Clock Paths	Total Number of Endpoints:	32	Total Number of Endpoints:	32	Total Number of Endpoints:	NA			
	Other Path Groups	There are no user specified timir	ng constraint	ts.						
	User Ignored Paths									
> 5	Unconstrained Paths									

【三: 6位ALU】

• 数据通路

• 状态图 (真值表)

•

en	sel	ea	eb	ef
1	00	1	0	0
1	01	0	1	0
1	10	0	0	1
0	XX	0	0	0

• 端口分配

端口	外设
c l k	100MHz
en	button
sel	sw[7:6]
X	sw[5:0]
у	led[5:0]
Z	led[7]

• 设计文件

```
module alu_6(
   input clk,
   input en,
   input [1:0] sel,
   input [5:0] x,
   output reg [5:0] y,
   output reg z
   );
   reg [2:0] f;
   reg [5:0] a, b;
   always@(posedge clk)
```

```
begin
        if(en)
        case(sel)
        2'b00:a <= x;
        2'b01:b <= x;
        2'b10:f \ll x[2:0];
        endcase
    end
    always@(posedge clk)
    begin
        case(f)
        3'b000:
            y <= a + b;
        3'b001:
             y \ll a - b;
        3'b010:
             y <= a \& b;
        3'b011:
             y \ll a \mid b;
        3'b100:
             y \ll a \wedge b;
        default:
             begin
                 y \ll 0;
                 z \ll 1;
             end
        endcase
    end
endmodule
```

• 约束文件

• FPGA运行结果 (设a = 1, b = 3)

```
6  ## Clock signal
 8 #create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100MHZ}];
10
11 ## FPGAOL LED (signle-digit-SEGPLAY)
12
21
23 ## FPGAOL SWITCH
24
25 | set_property -dict { PACKAGE_PIN D14 | IOSTANDARD LVCMOS33 } [get_ports { d[0] }];
27 | set_property -dict { PACKAGE_PIN G16 | IOSTANDARD LVCMOS33 } [get_ports { d[2] }];
30 | set_property -dict { PACKAGE_PIN F13 | IOSTANDARD LVCMOS33 } [get_ports { d[5] }];
31 | set_property -dict { PACKAGE_PIN G13 | IOSTANDARD LVCMOS33 } [get_ports { d[6] }];
```


测试与功能 (f赋值010)

• RTL电路图

• 资源使用情况

Specific Feature Primitives Black Boxes Instantiated Netlists

General Information	Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock
Timer Settings	3 Path 1	6.829	4	5	2	b_reg[1]/C	y_reg[5]/D	3.035	1.949	1.086	10.0	clk	clk
Design Timing Summary	3 Path 2	6.919	3	4	2	b_reg[1]/C	y_reg[3]/D	2.945	1.723	1.222	10.0	clk	clk
Clock Summary (1)	3 Path 3	6.946	4	5	2	b_reg[1]/C	y_reg[4]/D	2.918	1.833	1.085	10.0	clk	clk
→ Gheck Timing (16)	3 Path 4	6.986	3	4	2	b_reg[1]/C	y_reg[2]/D	2.878	1.652	1.226	10.0	clk	clk
□ Intra-Clock Paths	→ Path 5	7.469	3	4	2	b_reg[1]/C	y_reg[1]/D	2.395	1.309	1.086	10.0	clk	clk
∨ ⊑ clk	→ Path 6	7.574	1	2	7	f_reg[1]/C	z_reg/CE	2.044	0.773	1.271	10.0	clk	clk
Setup 6.829 ns (7) Hold 0.214 ns (7)	₁ Path 7	7.744	2	3	2	a_reg[0]/C	y_reg[0]/D	2.120	1.464	0.656	10.0	clk	clk
Pulse Width 4.500 ns (30)													
Inter-Clock Paths													
Other Path Groups													
User Ignored Paths													

> Unconstrained Paths													
General Information		01 1 61		Б.	10.15	-	-	T. 10.1				0 011	
General miormation	Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock
Timer Settings	3 Path 8	0.214	1	2	7	f_reg[1]/C	y_reg[0]/D	0.458	0.245	0.213	0.0	clk	clk
Design Timing Summary	3 Path 9	0.214	1	2	7	f_reg[1]/C	y_reg[1]/D	0.458	0.245	0.213	0.0	clk	clk
Clock Summary (1)	1₄ Path 10	0.214	1	2	7	f_reg[1]/C	y_reg[2]/D	0.458	0.245	0.213	0.0	clk	clk
> To Check Timing (16)	3 Path 11	0.214	1	2	7	f_reg[1]/C	y_reg[3]/D	0.458	0.245	0.213	0.0	clk	clk
∨ □ Intra-Clock Paths	1₄ Path 12	0.214	1	2	7	f_reg[1]/C	y_reg[4]/D	0.458	0.245	0.213	0.0	clk	clk
∨ ⊑ clk	1 Path 13	0.214	1	2	7	f_reg[1]/C	y_reg[5]/D	0.458	0.245	0.213	0.0	clk	clk
Setup 6.829 ns (7)	1₄ Path 14	0.482	1	2	7	f_reg[2]/C	z_reg/CE	0.590	0.245	0.345	0.0	clk	clk
Hold 0.214 ns (7)													
Pulse Width 4.500 ns (30)													
Inter-Clock Paths													

【四: FLS】

Other Path Groups >

Unconstrained Paths

• 数据通路

与后续得到的RTL电路比较大致一致

• 状态图


```
//信号模块用于取按钮边沿
module signal(
    input clk, button,
   output button_edge
);
   reg b1, b2;
    always@(posedge clk)
       b1 <= button;
    always @ (posedge clk)
       b2 \ll b1;
    assign button_edge = b1 & (~b2);
endmodule
module fls(
   input clk, rst,
    input en,
    input [6:0] d,
    output reg [6:0] f
    reg [6:0] d0, d1; //用于临时储存结果
    reg [1:0] cs; //共四个状态,故只需两位
    reg [1:0] ns;
   wire b_edge;
                  //按钮边沿
    signal signal(clk, en, b_edge);
   //next state
    always @ (*)
    begin
       case(cs)
           2'b00: ns = 2'b01;
           2'b01: ns = 2'b10;
           2'b10: ns = 2'b11;//转入状态二后即进行序列输出,在两个状态间来回切换
           2'b11: ns = 2'b10;
       endcase
    end
    //how current state change
    always @ (posedge clk or posedge rst)
       if(rst)
           cs <= 2'b00;
       else if(b_edge)
           cs <= ns;
    //output
    always @ (posedge clk or posedge rst)
    begin
       if(rst)
       begin
           d0 \ll 0;
           d1 <= 0;
       end
       else if(b_edge)
           case(cs)
               2'b00://状态零,赋值给f0
```

```
begin
                  d0 \ll d;
               end
               2'b01://状态一,赋值给f1
               begin
                  d1 \ll d;
               end
               2'b10://状态二,此时d0排序靠后,累加至d0
                  d0 \ll d1 + d0;
               end
               2'b11://状态三,此时d1排序靠后,累加至d1
               begin
                 d1 \ll d1 + d0;
               end
               endcase
   end
   always @ (posedge clk or posedge rst)
   begin
   if(rst)
       f \ll 0;
   else
       case(cs)
           2'b00:
           begin
            f <= d;
           end
           2'b01:
           begin
            f <= d;
           end
           2'b10:
           begin
            f \ll d0;
           end
           2'b11:
           begin
            f <= d1;
           end
       endcase
   end
endmodule
```

• 仿真文件

```
module sim1(

);
    reg clk, rst, en;
    reg [6:0] d;
    wire [6:0] f;
    fls fls(clk, rst, en, d, f);
    initial
    begin
    rst = 0;
    #4 rst = 1;
```

```
#4 rst = 0;
end
initial clk = 0;
always #1 clk = ~clk;
initial en = 0;
always #5 en = ~en;
initial
begin
    d = 1;#20 d = 2;
end
endmodule
```

• 仿真结果

可见在输入初始的两项之后f按照斐波那契序列输出。

• FPGA测试结果

o 输入a = 1, b = 2

。 此后每一次均输出斐波那契的下一项

【总结与思考】

• 实验总结

总体来说难度不高,主要用于复习上学期所学的模电实验内容——尤其是三段式有限状态机, 以及学习如何对当前电路性能进行查看和评测;

• 实验建议(吐槽)

作为一个复习模电的实验感觉没啥问题,确实花了蛮久复习代码怎么写(比如取边沿),但是 画数据通路略有些折磨。