1. [3 pts] If $\mathbf{a} = \langle 2, -1, 2 \rangle$ and $\mathbf{b} = \langle 1, -1, 2 \rangle$, find a non-zero vector \mathbf{c} such that $\mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} = 0$.

2. [3 pts] Determine the projection vector $\mathsf{proj}_{\mathbf{a}}(\mathbf{b})$ of \mathbf{b} onto \mathbf{a} where $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 1, 2, 2 \rangle$.

3. [3 pts] If the scalar projection of \mathbf{b} onto \mathbf{a} is $\|\mathsf{proj}_{\mathbf{a}}(\mathbf{b})\| = 1$, determine the value of $\|\mathsf{proj}_{2\mathbf{a}}(3\mathbf{b})\|$.

- 4. True/False. If the statement is true, give an explanation why you think so. If a statement is false, provide a counter-example.
 - (a) [3 pts] The cross product of two unit vectors is a unit vector.

(b) [3 pts] If \mathbf{u} is a scalar multiple of \mathbf{v} , then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

(c) [3 pts] If \mathbf{u} , \mathbf{v} , and \mathbf{w} are all non-zero vectors in space and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

(d) [3 pts] The vector equation

$$\langle x,y,z\rangle \times \langle 1,1,1\rangle = \langle 0,1,0\rangle$$

has a solution in \mathbb{R}^3 .

- 5. Consider the points P(3,1,1), Q(4,1,2), and R(4,4,1) in \mathbb{R}^3 .
 - (a) [3 pts] Find an equation for the plane containing the points P, Q, and R.

(b) [2 pts] Find the area of the triangle with vertices P, Q, and R.

6. [4 pts] Find an equation of the plane which passes through the points (2,2,1) and (-1,1,-1) and is perpendicular to the plane 2x - 3y + z = 3.

7. [4 pts] Find a set of parametric equations for the line of intersection of the planes:

$$\begin{cases} 6x - 3y + z = 5\\ -x + y + 5z = 5 \end{cases}$$

8. [4 pts] Find an equation of the plane containing both the point P(1, -1, 5) and the line L parametrized by:

$$\mathbf{r}(t) = \begin{cases} x(t) = 1 + 2t \\ y(t) = -1 + 3t \\ z(t) = 4 + t \end{cases}$$

9. Suppose that a plane P passes through the points (4,2,1) and (-3,5,7), and suppose that P is parallel to the z-axis. Find an equation for the plane P.