アルゴリズム 2A 第 4 回レポート

61908697 佐々木良輔

1 結果

bubble sort, heap sort, counting sort について比較した. また計算時間は他のプロセスの CPU 使用率によって変化するため、コピー回数、比較回数で評価した. 交換 1 回はコピー 3 回とした.

1.1 データ数による比較

rand10000.txt のデータの上から 7500, 5000, 2500 行を抽出し rand7500.txt, rand5000.txt, rand2500.txt を作成した. それぞれについて bubble sort, heap sort, counting sort を行い比較した. 表 1 に結果を示す.

bubble sort counting sort heap sort 行数 copy compare compare compare copy copy 1.50×10^{8} 2.49×10^{7} 1.74×10^{5} 2.35×10^5 2.00×10^{4} 10000 0.00 8.43×10^7 7500 1.39×10^{7} 1.28×10^{5} 1.70×10^{5} 1.50×10^{4} 0.00 3.74×10^{7} 8.21×10^4 1.00×10^{4} 5000 6.34×10^{6} 1.08×10^{5} 0.00 9.35×10^{6} 1.56×10^6 3.86×10^{4} 5.00×10^{3} 2500 4.89×10^{4} 0.00

表 1 データ数による比較

1.2 昇順, 降順, ランダム入力の比較

表 2 に結果を示す.

表 2 昇順, 降順, ランダム入力の比較

	bubble sort		heap sort		counting sort	
	copy	compare	copy	compare	copy	compare
descend	1.50×10^{8}	5.00×10^{7}	1.67×10^{5}	2.27×10^5	2.00×10^{4}	0.00
ascend	0.00	1.00×10^4	1.79×10^{5}	2.40×10^{5}	2.00×10^4	0.00
random	1.50×10^{8}	2.49×10^7	1.74×10^5	2.35×10^5	2.00×10^4	0.00

2 考察

2.1 データ数による比較

図 1, 図, 図に bubble sort, heap sort, counting sort それぞれの計算量のデータ数依存性を示す. またそれぞれの図に $y=ax^2,\ y=ax\log x,\ y=ax$ でフィットした曲線を示している. これらから bubble sort の計算量は $y=ax^2$, heap sort の計算量は $y=ax\log x$, counting sort の計算量は y=ax でよくフィットしていることがわかる.

図 1 bubble sort のコピー, 比較回数

図 2 heap sort のコピー, 比較回数

図 3 counting sort のコピー, 比較回数

2.2 昇順. 降順. ランダム入力の比較

2.2.1 bubble sort について

表 1 から descend, random の場合の計算量は 10^8 程度のオーダーになっているのに対し, ascend の場合は 10^4 程度のオーダーになっていることがわかる. これは ascend が既に sort されており, 交換が発生しなかった時点でループを抜けたためである. これは bubble sort の計算量が最悪で $O(n^2)\sim 10^8$, 平均で $O(n^2)\sim 10^8$, 最良で $O(n)\sim 10^4$ であることに整合する.

2.2.2 heap sort について

表 1 から descend, ascend, random 全ての場合において計算量は 10^5 程度のオーダーである. これは heap sort が全ての場合において $O(n\log_2 n)\sim 10^5$ となることに整合する.

2.2.3 counting sort について

表 1 から descend, ascend, random 全ての場合において計算量は 10^4 程度のオーダーである. これは counting sort が全ての場合において $O(n)\sim 10^4$ となることに整合する.