1 Lezione del 28-04-25

1.1 Approssimazione di integrali

Vorremo quindi approssimare funzioni del tipo:

$$I(\rho \cdot f) = \int_{a}^{b} f(x) \cdot \rho(x) \, dx$$

dove $f:[a,b]\to\mathbb{R}$ continua $\in C([a,b])$, mentre $\rho(x):[a,b]\to\mathbb{R}$ sempre continua $\in C([a,b])$ è una funzione particolare, spesso la funzione unitaria o comunque una funzione detta **funzione peso** tale che:

• $\rho(x)$ è positiva:

$$\rho(x) \ge 0$$

• $\rho(x)$ rispetta le condizioni:

$$m_k = \int_a^b x^k \rho(x) dx < +\infty, \quad \forall k = 0, 1, \dots$$

Veniamo alle motivazioni dell'approssimazione di integrali. Potremmo voler approssimare integrali del tipo:

$$\int_{a}^{b} f(x) dx \quad (\rho(x) = 1)$$

per una serie di motivi:

- Di molte funzioni non si può trovare un'espressione semplice della primitiva di *f* (funzioni ellittiche, funzioni su più variabili, ecc...);
- Anche se esiste la primitiva potrebbe essere particolarmente oneroso in termini di risorse computazioniali calcolarla o valutarla in un punto per ottenere l'integrale;
- Come nel caso dell'approssimazione e dell'interpolazione, ci sono casi in cui della *f* si conoscono solo alcuni punti, cioè non se ne ha un'espressione esplicita che possiamo integrare. Vedremo che sarà questo il caso più comune.

Prendiamo quindi il caso dove conosciamo una serie di punti $(x_i, f(x_i))$ di f(x). L'idea per approssimare l'integrale sarà di considerare una formula del tipo:

$$\int_{a}^{b} f(x)\rho(x) dx \approx \sum_{i=0}^{n} f(x_i) \cdot a_i$$

con:

$$a \le x_0 < x_1 < \dots < x_n \le b$$

In questo caso chiamiamo gli x_i **nodi** e gli a_i **pesi**, e la formula **formula di quadratura**. Si ha quindi che una formula di quadratura è univocamente determinata una volta decisi nodi e pesi.

Definiamo quindi formalmente:

Definizione 1.1: Formula di quadratura

Dati un intervallo [a,b] e $\rho(x)$, definiamo $J_n(\circ)$ formula di quadratura su (n+1) nodi $x_0,...,x_n$ con pesi $a_0,...,a_n$ la funzione:

• Di questa forma:

$$J_n: C([a,b]) \to \mathbb{R}$$

tale che:

$$f \to \sum_{i=0}^{n} f(x_i) \cdot a_i$$

• O equivalentemente:

$$J_n: \mathbb{R}^{n+1} \to \mathbb{R}$$

tale che:

$$\begin{pmatrix} f_0 \\ \vdots \\ f_n \end{pmatrix} \to \sum_{i=0}^n f_i \cdot a_i$$

Possiamo quindi definire l'errore:

Definizione 1.2: Errore della formula di quadratura

L'errore della formula di quadratura $J_n(\circ)$ si definisce come:

$$E_n(f) = \int_a^b f(x)\rho(x) \, dx - J_n(f) = \int_a^b f(x)\rho(x) \, dx - \sum_{i=0}^n f(x_i) \cdot a_i$$

anche questa tale che:

$$E_n:C([a,b])\to\mathbb{R}$$

con:

$$f \to E_n(f)$$

Ossserviamo che sia J_n che E_n sono funzioni lineari, in quanto date $f_1, f_2 \in C([a,b])$ e $c_1, c_2 \in \mathbb{R}$:

$$J_n(c_1f_1 + c_2f_2) = \sum_{i=0}^n a_i(c_1f_1 + c_2f_2)(x_i) = \sum_{i=0}^n a_i(c_1f_1(x_i) + c_2f_2(x_i))$$

$$= \sum_{i=0}^{n} \left(a_i c_1 f_1(x_i) + a_i c_2 f_2(x_i) \right) = c_1 \sum_{i=0}^{n} a_i f_1(x_i) + c_2 \sum_{i=0}^{n} a_i f_2(x_i) = c_1 J_n(f_1) + c_2 J_n(f_2)$$

e analogamente con E_n .

Potremmo quindi chiederci quando una formula di quadratura è accurata. Potremmo definire un primo indicatore detto **grado di precisione**.

Definizione 1.3: Grado di precisione

Data J_n formula di quadratura definiamo grado di precisione (a volte detto grado di precisione algebrico) il naturale $m \in \mathbb{N}$ tale che:

$$E_n(1) = E_n(x) = \dots = E_n(x^m) = 0$$

presi i monomi $x_0, ..., x^m$, cioè per cui:

$$E_n(x^{m+1}) \neq 0$$

Osserviamo che per la proprietà di linearità di E_n e J_n appena dimostrata, si ha che J_n ha grado di precisione m se e solo se J_n integra esattamente tutti i polinomi di grado $\leq m$ (che altro non sono che combinazioni lineari dei monomi $x_0,...,x^m$ appena considerati).

1.1.1 Formula dei trapezi

Prendiamo ad esempio $\rho=1$, l'intervallo [a,b]=[-1,1] con n=1, per cui consideriamo solo gli estremi $x_0=-1$, $x_1=1$. In questo caso avremo la formula di quadratura:

$$J_1(f) = a_0 f(-1) + a_1 f(1) \approx \int_{-1}^{1} f(x) dx$$

Potremmo chiederci qual'è la migliore scelta dei coefficienti di peso a_i . Questi saranno chiaramente quelli che massimizzano il grado di precisione m della formula di quadratura J_m . Vorremmo quindi imporre due condizioni:

$$\begin{cases} E_n(1) = 0 \\ E_n(x) = 0 \end{cases} \rightarrow \begin{cases} \int_{-1}^1 1 \, dx - (a_0 + a_1) = 0 \\ \int_{-1}^1 x \, dx - (-a_0 + a_1) = 0 \end{cases} \rightarrow \begin{cases} 2 - a_0 - a_1 = 0 \\ 0 + a_0 - a_1 = 0 \end{cases}$$

i da cui risolvendo il sistema si ha:

$$a_0, a_1 = 1$$

Il risultato sarà quindi che la formula di quadratura è:

$$J_1(f) = f(-1) + f(1)$$

con grado di precisione almeno 1 ($m \ge 1$).

Verifichiamo infatti cosa accade per gradi > m, ad esempio grado 2:

$$E_n(x^2) = \int_{-1}^1 x^2 dx - (1+1) = \frac{2}{3} - 2 \neq 0$$

per cui m è esattamente 1.

Graficamente, questo non significherà altro che approssimare l'integrale fra -1 e 1 attraverso l'area sottesa alla retta passante per i punti (-1, f(-1)), (1, f(1)), cosa che chiaramente risulta inadeguata quando f è di grado maggiore a 1 (come ad esempio una parabola).

Quest'area è effettivamente un trapezio, motivo per cui la formula J_1 sul generico intervallo [a,b] viene detta **formula dei trapezi**:

$$(f(a) + f(b)) \frac{b-a}{2}$$

1.1.2 Formula di Simpson

Vediamo di raffinare la formula dei trapezi aggiungendo un nodo in più, ad esempio il punto intermedio fra gli estremi dell'intervallo [a,b]. Nel caso [-1,1], questo non sarà altro che 0, per cui $x_0=-1$, $x_1=0$, $x_2=1$. Avremo che la formula di quadratura è:

$$J_2(f) = a_0 f(-1) + a_1 f(0) + a_2 f(1)$$

e scegliamo gli $a_0, a_1, a_2 \in \mathbb{R}$ per massimizzare il grado di precisione, con procedimento analogo a prima:

$$\begin{cases} E_n(1) = 0 \\ E_n(x) = 0 \\ E_n(x^2) = 0 \end{cases} \rightarrow \begin{cases} 2 = a_0 + a_1 + a_2 \\ 0 = -a_0 + a_2 \\ \frac{2}{3} = a_0 + a_2 \end{cases}$$

da cui:

$$a_0 = a_2 = \frac{1}{3}, \quad a_1 = \frac{4}{3}$$

Il risultato sarà quindi che la formula di quadratura è:

$$J_2(f) = \frac{1}{3} \left(f(-1) + 4f(0) + f(1) \right)$$

detta anche **formula di Simpson** o di *Cavalieri-Simpson*.

Vediamo cosa succede per l'integrale del monomio di grado 3 attraverso la formula di Simpson:

$$E_2(x^3) = \int_{-1}^{1} x^3 dx - \frac{1}{3} (-1 + 4 \cdot 0 + 1) = 0$$

cioè abbiamo grado non solo ≥ 2 , ma anche ≥ 3 , per cui consideriamo il grado 4:

$$E_2(x^4) = \int_{-1}^{1} x^4 dx - \frac{1}{3} (1 + 4 \cdot 0 + 1) = \frac{2}{5} - \frac{2}{3} \neq 0$$

per cui abbiamo che il grado di precisione della formula di Simpson è esattamente m=3.

Infine generalizziamo la formula di Simspon all'intervallo [a, b]:

$$\frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right)$$

Abbiamo quindi che anche Simspon si basa sul trovare implicitamente il polinomio interpolante e poi integrare quello, con la caratteristica aggiunta che anche al grado 3 l'integrale risulta esatto (anche se non lo è l'interpolante).

Rivediamo quindi il problema di massimizzare il grado di precisione dati i nodi $x_0, ..., x_n$. Questo significherà imporre:

$$\begin{cases} E_n(1) = 0 \\ E_n(x) = 0 \\ \vdots \\ E_n(x^{m+1}) = 0 \end{cases}$$

cioè m+1 equazioni per $a_0,...,a_m$, cioè m+1 incognite. Questo porta a:

$$\implies \begin{cases} m_0 = a_0 + a_1 + \dots + a_n \\ m_1 = a_0 x_0 + a_1 x_i + \dots + a_n x_n \\ \vdots \\ m_n = a_0 x_0^n + a_1 x_1^n + \dots + a_n x_n^n \end{cases}$$

dove gli m_i sono i risultati degli integrali dei monimoi x^i sull'intervallo [a,b] da cui:

$$\implies \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ x_0^2 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_n^n & x_1^n & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} m_0 \\ \vdots \\ m_n \end{pmatrix} = V^T \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} m_0 \\ \vdots \\ m_n \end{pmatrix}$$

Questo non è altro che un sistema lineare $(n+1) \times (n+1)$ con matrice di Vandermonde, da cui $\det(V) \neq 0$ e quindi se $x_i \neq x_j$ per ogni $i \neq j$, la soluzione del sistema è unica ed esiste un'unica formula di quadratura sui nodi $x_0, ..., x_n$ che ha grado di precisione $m \geq n$.

Potremmo considerare il problema diverso (e più difficile) di cercare sia i nodi che i pesi in modo da massimizzare il grado di precisione m. In questo caso la formula di quadratura è sempre:

$$J_n(f) = \sum_{i=0}^{n} a_i f(x_i)$$

e le incognite sono 2n + 2, cioe gli n + 1 nodi $x_0, ..., x_n$ e gli n + 1 pesi $a_0, ..., a_n$. Si impongono quindi 2n + 2 equazioni del tipo:

$$\begin{cases} E_n(1) = 0 \\ E_n(x) = 0 \\ \vdots \\ E_n(x^{2n+1}) = 0 \end{cases}$$

L'unica cosa che sarà data sarà l'intervallo [a,b] (non gli x_i), per cui otterremo un sistema non lineare:

$$\begin{cases} a_0 + a_1 + \dots + a_n = m_0 \\ a_0 x_0 + a_1 x_1 + \dots + a_n x_n = m_1 \\ \vdots \\ a_0 x_0^{2n+1} + a_1 x_1^{2n+1} + \dots + a_n x_n^{2n+1} = m_{2n+1} \end{cases}$$

Fortunatamente esiste un teorema, che diamo senza dimostrazione:

Teorema 1.1: Unicità della formula Gaussiana

Il sistema:

$$\begin{cases} a_0 + a_1 + \dots + a_n = m_0 \\ a_0 x_0 + a_1 x_1 + \dots + a_n x_n = m_1 \\ \vdots \\ a_0 x_0^{2n+1} + a_1 x_1^{2n+1} + \dots + a_n x_n^{2n+1} = m_{2n+1} \end{cases}$$

ammette sempre, dato $x_i \neq x_j$ per ogni $i \neq j$, un'unica soluzione per ogni scelta di [a, b], $n \in \rho(x)$, con grado di precisione $\geq 2n + 1$.

Definiamo tale formula di quadratura come:

Definizione 1.4: Formula Gaussiana

L'unica formula di quadratura su [a,b] che verifica il sistema del teorema 16.1 (ovvero che massimizza il grado di precisione ottimizzando sia gli x_i che gli a_i) si dice **formula Gaussiana** su [a,b] con n+1 nodi.

Prendiamo ad esempio il caso $\rho=1$, n=1, e [a,b]=[-1,1] (analogamente a prima ma con i nodi liberi).

$$\int_{-1}^{1} f(x) dx \approx a_0 f(x_0) + a_1 f(x_1)$$

con:

$$a < x_0 < x_1 < b$$

Imponiamo quindi:

$$\begin{cases} E_1(1) = 0 \\ E_1(x) = 0 \\ E_1(x^2) = 0 \\ E_1(x^3) = 0 \end{cases} \rightarrow \begin{cases} a_0 + a_1 = 2 \\ a_0 x_0 + a_1 x_1 = 0 \\ a_0 x_0^2 + a_1 x_1^2 = \frac{2}{3} \\ a_0 x_0^3 + a_1 x_1^3 = 0 \end{cases}$$

da cui si ottiene risolvendo:

$$a_0, a_1 = 1, \quad x_0, x_1 = \pm \frac{\sqrt{3}}{3}$$

cioè la formula Gaussiana:

$$J_1(f) = f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

che vale fino al grado 3, in quanto al grado 4 si ha:

$$E_1(x^4) = \frac{2}{5} - \frac{2}{9} \neq 0$$

da cui il grado di precisione è esattamente 3.

1.1.3 Errore nelle formule di quadratura

Riguardo all'errore già definito nella definizione 16.2, vale il seguente teorema:

Teorema 1.2: Teorema di Peano

Data una funzione $f(x) \in \mathbb{C}^{n+1}([a,b])$, cioè derivabile n+1 volte, con m grado di precisione della formula di quadratura J_n , allora l'errore E_n (vedi definizione 16.2) si può scrivere come:

$$E_n(f) = I(\rho, f) - J_n(f) = \frac{1}{m!} \int_a^b f^{(m+1)}(t) \cdot G(t) dt$$

dove la G(t) è:

$$G(t) = E_n(s_m(x-t)) = I(\rho \cdot s_m(x-t)) - J_n(s_m(x-t))$$

e la $s_m(x)$ è:

$$s_m(x) = \begin{cases} x^m, & x \ge 0\\ 0, & x < 0 \end{cases}$$

cioè la $s_m(x-t)$ non è altro che la $s_m(x)$ spostata a destra di t.

Vale la definizione:

Definizione 1.5: Nucleo di Peano

La funzione G(t) del terema 16.2 è detta **nucleo di Peano**.