Taux d'accroissement et nombre dérivé

Soit I un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. Soit $x_0 \in I$.

Définition 1. On appelle taux d'accroissement de f entre x et x_0 le quotient $\frac{f(x)-f(x_0)}{x-x_0}$.

Exercice 1. – Si f est définie sur \mathbb{R} par $f(x) = x^2$, calculer le taux d'accroissement entre x et 1.

- Si g est définie sur \mathbb{R} par $f(x) = \sin x$, calculer le taux d'accroissement entre x et 0.

Définition 2. On dit que f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 .

La limite s'appelle alors le **nombre dérivé** de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Exercice 2. Si $f(x) = x^2$, que vaut f'(1)?

Fonction dérivée

Définition 3. f est **dérivable sur** I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la **fonction dérivée** de f, elle se note f' ou $\frac{df}{dx}$.

Exemple 1. La fonction définie par $f(x) = x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0 \xrightarrow[x \to x_0]{} 2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x. **Exemple 2** (**Difficile**). Montrons que la dérivée de $f(x) = \sin x$ est $f'(x) = \cos x$. Nous allons utiliser les deux assertions suivantes :

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \qquad \text{et} \qquad \sin p - \sin q = 2\sin\frac{p-q}{2} \cdot \cos\frac{p+q}{2}.$$

Remarquons déjà que la première assertion prouve $\frac{f(x)-f(0)}{x-0}=\frac{\sin x}{x}\to 1$ et donc f est dérivable en $x_0=0$ et f'(0)=1.

Pour x_0 quelconque on écrit :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sin x - \sin x_0}{x - x_0} = \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cdot \cos \frac{x + x_0}{2}.$$

Lorsque $x \to x_0$ alors d'une part $\cos \frac{x+x_0}{2} \to \cos x_0$ et d'autre part en posant $u = \frac{x-x_0}{2}$ alors $u \to 0$ et on a $\frac{\sin u}{u} \to 1$. Ainsi $\frac{f(x)-f(x_0)}{x-x_0} \to \cos x_0$ et donc $f'(x) = \cos x$.

Exercice 3. En appliquant la définition du nombre dérivé déterminer le nombre dérivé en 1, puis la fonction dérivée des fonctions définies sur \mathbb{R} par :

$$f(x) = 2x + 3,$$
 $q(x) = x^3.$

dérivées des fonctions usuelles à connaître:

Les dérivées à connaître sont :

$$f(x) = x^{n}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \sqrt{x}$$

$$f(x) = \sin(x)$$

$$f(x) = \cos(x)$$

$$f(x) = \exp(x)$$

$$f(x) = \ln x$$

$$f'(x) = nx^{n-1}$$

$$f'(x) = \frac{-1}{x^{2}}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = -\sin(x)$$

$$f(x) = \exp(x)$$

$$f'(x) = \exp(x)$$

$$f'(x) = \frac{1}{x}$$

Proposition 1. Soit $u,v:\mathbb{R}\longrightarrow\mathbb{R}$ deux fonctions dérivables sur I alors

$$(u+v)' = u' + v',$$

$$(\frac{1}{u})' = -\frac{u'}{u},$$

$$(u\times v)' = u'\times v + u\times v',$$

$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}.$$

Exercice 4. 1. Calculer la dérivée de tan x sur l'intervalle $]-\frac{\pi}{2};\frac{\pi}{2}].$

2. Calculer la dérivée de $\frac{x^2+x+1}{x+1}$ sur son ensemble de définition.

Application

Exercice 5. Démontrer les assertions suivantes:

- 1. On pose $f_1(x) = -3x^4 + 2x^2 + 7$, f_1 est définie sur \mathbb{R} et $f'_1(x) = -12x^3 + 4x$.
- 2. On pose $f_2(x) = -2x^3 + x + \frac{4}{x^2}$, f_2 est définie sur \mathbb{R}^* et $f_2'(x) = -6x^2 + 1 \frac{8}{x^3}$.
- 3. On pose $f_3(x) = \frac{x^2 + x 1}{x + 2}$, f_3 est définie pour tout $x \in \mathbb{R} \setminus \{-2\}$ et $f'_3(x) = \frac{x^2 + 4x + 3}{(x + 2)^2}$
- 4. On pose $f_4(x) = \frac{ax+b}{cx+d}$, avec $(a,b,d) \in \mathbb{R}^3, c \in \mathbb{R}^*$, f_4 est définie pour tout $x \in \mathbb{R} \{-\frac{d}{c}\}$ et $f'_4(x) = \frac{ad-bc}{(cx+d)^2}$.
- 5. On pose $f_5(x) = \frac{\cos(x)}{\sin(x)}$, f_5 est définie sur $]0,\pi[$ et $f_5'(x) = \frac{-1}{\sin^2(x)}$.
- 6. On pose $f_6(x) = \frac{x^2 5x + 1}{x^2 + x + 1}$, f_6 est définie sur \mathbb{R} et $f'_6(x) = \frac{6x^2 6}{(x^2 + x + 1)^2}$
- 7. On pose $f_7(x) = \frac{\sin(x)}{2 + \cos(x)}$, f_7 est définie sur \mathbb{R} et $f_7'(x) = \frac{2\cos(x) + 1}{(2 + \cos(x))^2}$.