Aufgabe 7

(i) Seien X, Y topologische Räume, E ein normierter Raum mit Norm $\|\cdot\|$ und $f: X \times Y \to E$ stetig. Die Stetigkeit von f bedeutet für beliebige Punkte $(p_x, p_y) \in X \times Y$:

$$\forall$$
 Umgebung W von $f(p_x, p_y)$, \exists Umgebung T von (p_x, p_y) : $f(T) \subset W$ (1)

Sei $K \subset Y$ kompakt, r > 0 und $x \in X$. Wir suchen U, V, wie in der Aufgabe angegeben. Sei $y \in K$. Betrachte die Menge

$$U_r(f(x,y)) := \{q \in E : ||q - f(x,y)|| < \frac{r}{2}\},$$

wobei diese Menge eine Umgebung um f(x,y) darstellt (U_r ist ein ϵ -Ball mit $\epsilon = r$ und somit per Definition eine Umgebung im metrischen Raum E). Da $U_r(f(x,y))$ eine Umgebung von f(x,y) ist und f stetig in (x,y) ist, können wir (1) anwenden. Es gibt also eine Umgebung T_v von (x,y), sodass

$$f(T_y) \subset U_r(f(x,y)).$$

Da T_y eine Umgebung von (x,y) ist, gibt es eine offene Umgebung $O_y \subset T_y$ mit $(x,y) \in O_y$. Für sie gilt wegen $f(O_y) \subset f(T_y)$:

$$f(O_y) \subset U_r(f(x,y)).$$
 (2)

Bezeichne π_1 die Projektion der ersten Koordinate und π_2 die der zweiten Koordinate. Also für alle $(x,y) \in X \times Y$:

$$\pi_1(x,y) := x, \quad \pi_2(x,y) := y.$$

Sei $\Pi_{\nu} := \pi_2(O_{\nu})$. Die Menge Π_{ν} ist offen, da O_{ν} offen ist. Sei

$$\tilde{V} := \bigcup_{y \in K} \Pi_y.$$

Als Vereinigung von beliebig vielen offenen Mengen Π_y ist \tilde{V} auch offen und \tilde{V} überdeckt K. Denn sei $k \in K$. Dann ist $(x,k) \in O_y$ und somit $k \in \Pi_y \subset \tilde{V}$. Wegen der Kompaktheit von K finden wir für die offene Überdeckung \tilde{V} eine endliche Teilüberdeckung von K, die wir als unser V definieren. Das heißt, es gibt eine endliche Menge $Q \subset K$, sodass

$$V := (\bigcup_{y \in Q} \Pi_y) \supset K.$$

Nun wählen wir das X als

$$U := \bigcap_{y \in Q} \pi_1(O_y).$$

Insbesondere ist U offen, denn der Schnitt ist aufgrund der endlichen Menge Q ein Schnitt über endliche Mengen.

Seien nun $(u,v) \in U \times V$. Das heißt, $(u,v) \in O_{\gamma}$ für ein $\gamma \in K$. Nach (2) gilt

$$f(u,v) \in U_r(f(x,\gamma)) = ||f(u,v) - f(x,\gamma)|| < \frac{r}{2}.$$
 (3)

Andererseits ist auch $(x, v) \in O_{\gamma}$ und damit

$$||f(x,v) - f(x,\gamma)|| = ||f(x,\gamma) - f(x,v)|| < \frac{r}{2}.$$
 (4)

Addition von (3) und (4) sowie Dreiecksungleichung ergibt

$$||f(u,v) - f(x,v)|| \le ||f(u,v) - f(x,\gamma)|| + ||f(x,\gamma) - f(x,v)|| < r.$$

Aufgabe 8

Die Funktion f ist stetig, da das Produkt von endlich vielen stetigen Funktionen wieder stetig ist. Der Träger von f ist $\Gamma := \Pi_{i=1}^d \operatorname{supp}(\varphi_i)$, denn sei $x = (x_1,...,x_d) \in \Gamma$. Dann ist $f(x) = \varphi_1(x_1) \cdot ... \cdot \varphi_d(x_d) \neq 0$, da $x_i \in \operatorname{supp}(\varphi_i)$ für alle i = 1,...,d und somit $\varphi_i(x_i) \neq 0$. Falls $f(y_1,...,y_d) = 0$, so sind die $\varphi(y_i) \neq 0$ für alle i = 1,...,d. Also $(y_1,...,y_d) \in \Gamma$. Da wir uns in $\mathbb R$ befinden, sind die kompakten einzelnen Träger von φ_i für i = 1,...,d abgeschlossen und beschränkte Intervalle. Aus Analysis 2 wissen wir, dass der Quader $\Gamma = \Pi_{i=1}^d \operatorname{supp}(\varphi_i)$ kompakt ist. Also ist der Träger tatsächlich kompakt. Wir können daher über den Quader Γ integrieren:

$$\begin{split} \int_{\mathbb{R}^d} f(x) dx &= \int_{\text{supp}(\varphi_d)} \dots \int_{\text{supp}(\varphi_i)} \varphi_1(x_1) \cdot \dots \cdot \varphi_d(x_d) dx_1 \dots dx_d \\ &= \int_{\text{supp}(\varphi_d)} \varphi_d(x_d) dx_d \cdot \dots \cdot \int_{\text{supp}(\varphi_1)} \varphi_1(x_1) dx_1 \\ &= \prod \int_{\mathbb{R}} \varphi_i(x_i) dx_i. \end{split}$$

Wir können die Integrale auseinanderziehen, da die Integrale sozusagen entkoppelt sind und nur von einer Veränderlichen abhängig sind.