Capturing biological patterns from gene expression data of PCOS using unsupervised dimensionality reduction algorithms

CS6024 | Algorithmic Approaches to Computational Biology | Course Project

N Sowmya Manojna (BE17B007) A V Lakshmy (CS16B101)

December 14, 2020

Introduction

Gene expression analysis is a powerful technique with many applications:

Background

Gene expression data analysis is computationally expensive!!

Problem Statement

"Capturing biological patterns from gene expression data of Polycystic Ovarian Syndrome (PCOS) using unsupervised dimensionality reduction algorithms, particularly autoencoders"

What is PCOS? Why PCOS?

Datasets

PCOS and control gene expression data

NCBI GEO & EBI-EMBL ArrayExpress Preprocessing: Merging and imputation

Total 175 samples from 9 different datasets; 1671 gene expressions

Datasets: Initial Biological Inferences

Heterogeneous network analysis on merged PCOS dataset*

*Not all IDs are mapped

Most genes that play a role in PCOS are largely related to **immunological** datasets!

Techniques Used

PCA, ICA, NMF initial results

DAE, VAE parameters and reconstruction costs

Gene set coverage, stability and SVCCA

Biological interpretations

^{*} Way, Gregory P., Michael Zietz, Vincent Rubinetti, Daniel S. Himmelstein, and Casey S. Greene. "Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations." Genome Biology 21, no. 1 (2020): 1-27.

Techniques Used

PCA

ICA

- The dimensions used are "independent to each other"
- Like a rotation of PCA

NMF

- Like PCA, but, except the coefficients in the linear combination must be non-negative
- Dimensions that don't contribute much have a zero coefficient.

Techniques Used

DAE models in addition, set a random fraction of the input data to 0.

PCA, ICA, NMF - Reconstruction Cost

PCA, ICA, NMF - Strongly Associated Dimensions

PCA, ICA, NMF - SVCCA

PCA, ICA, NMF Correlation and Stability

DAE, VAE - Reconstruction Cost

Challenges and Future Work

Challenges

- Small dataset
- Absence of all gene mappings

Future Work

- Visualizing plots
- Modifications of autoencoder models

Thank you!

Any questions?