Three perspectives on Bochner's theorem: from Herglotz representation to Pontryagin duality

Ikhan Choi April 18, 2022

Abstract

The Bochner theorem states that the image of finite Borel measures on an abelian topological group under the Fourier-Stieltjes transform is the set of continuous positive definite functions. This thesis will describe, prove, and investigate several examples of the Bochner theorem in its historical contexts within three different fields of mathematics, complex analysis, probability theory, and representation theory.

Contents

1	Intr	oduction	3
2	On the group \mathbb{Z} : complex analysis		6
	2.1	The Carathéodory coefficient problem	6
		Toeplitz's algebraic condition	
	2.3	The Herglotz-Riesz representation theorem	14
3 On the group \mathbb{R} : probability theory		the group $\mathbb R$: probability theory	19
	3.1	Topologies on the space of probability measures	19
	3.2	The Levy continuity theorem	19
	3.3	Bochner's theorem in infinite dimensions	24
	3.4	Examples: Polya's criterion	24
4	On locally compact groups: representation theory		25
	4.1	Dual group and Fourier transform	25
		The Pontryagin duality	
	4.3	Examples: topological groups in number theory	25
	4.4	Why not non-abelian?	25

Acknowledgement

1 Introduction

Definition 1.1. Let G be a group. A function $f: G \to \mathbb{C}$ is called *positive definite* if for each positive integer n a non-negativity condition

$$\sum_{k,l=1}^{n} f(x_l^{-1} x_k) \xi_k \overline{\xi}_l \ge 0$$

is satisfied for every *n*-tuple $(x_1, \dots, x_n) \in G^n$ and every vector $(\xi_1, \dots, \xi_n) \in \mathbb{C}^n$.

A function f is positive definite if and only if bilinear forms defined by matrices $(f(x_l^{-1}x_k))_{k,l=1}^n$ for each positive integer n are hermitian, and even more, positive *semi-*definite, regardless of any choices of $(x_1, \dots, x_n) \in G^n$.

We give some several remarkable properties and examples of positive definite functions as follows:

Proposition 1.1 (Algebraic properties). *Let G be a group. For the set of all positive definite functions, the following properties hold:*

- (a) It is closed under complex conjugation. Furthermore, $\overline{f(x)} = f(x^{-1})$.
- (b) It is closed under positive scalar multiplication.
- (c) It is closed under pointwise summation.
- (d) It is closed under pointwise product.

Proof. (a) Let n=1 and $\xi_1 \neq 0$. Then, $0 \leq f(e)|\xi_1|^2$ implies $f(e) \in \mathbb{R}$. Let n=2 with $x_1=e$ and $x_2=x$, and let $\xi_2=1$. Then,

$$0 \le f(e)|\xi_1|^2 + f(x^{-1})\xi_1\overline{\xi}_2 + f(x)\xi_2\overline{\xi}_1 + f(e)|\xi_2|^2$$

= $f(e)(1 + |\xi_1|^2) + f(x^{-1})\xi_1 + f(x)\overline{\xi}_1,$

SO

$$0 = \operatorname{Im}(f(x^{-1})\xi_1 + f(x)\overline{\xi}_1)$$

= $(\operatorname{Re} f(x^{-1}) - \operatorname{Re} f(x))\operatorname{Im} \xi_1 + (\operatorname{Im} f(x^{-1}) + \operatorname{Im} f(x))\operatorname{Re} \xi_1$

for all $\xi_1 \in \mathbb{C}$. Therefore, $\overline{f}(x) = f(x^{-1})$.

- (b) and (c) are clearly true by definition.
- (d) It follows from the Schur product theorem, which states that the Hadamard product(componentwise product) of two positive semi-definite matrices is also positive semi-definite.

Proposition 1.2 (Analytic properties). *Let G be a group with identity e.*

- (a) If f is positive definite, then $\sup_{x \in G} |f(x)| \le f(e)$.
- (b) If f_n is a sequence of positive definite functions, then the pointwise limit $\lim_{n\to\infty} f_n$ is also positive definite.
- (c) Let G be a locally compact group. If f_n is a sequence of positive definite functions that converges to f pointwisely and $f_n(e) = 1$, then f_n converges to f compactly.
- (d) Let G be a locally compact group. If f is positive definite and continuous at the e, then it is both-sided uniformly continuous. (It holds for $G = \mathbb{R}$, but I have not checked for arbitrary G. I suspect it holds.)

Proof. (a) Let n=2 with $x_1=e$ and $x_2=x$, and let $|\xi_1|=|\xi_2|=1$. Then,

$$0 \le f(e)|\xi_1|^2 + f(x^{-1})\xi_1\overline{\xi}_2 + f(x)\xi_2\overline{\xi}_1 + f(e)|\xi_2|^2 = 2f(e) + 2f(x)\xi_2\overline{\xi}_1.$$

Taking ξ_1 and ξ_2 such that $\xi_2\overline{\xi}_1$ has the same argument with $\overline{f}(x)$, we obtain $|f(x)| \le f(e)$.

- (b) The defining property of positive definite functions is purely algebriac, so that it is preserved by pointwise limit.
 - (c) and (d) are too difficult to prove at this point, we will be proved later. \Box

Example 1.1.

This thesis follows the historical flows to extract mathematical ideas behind the positive definite functions. In particular, we are concerned with the results like the following *Bochner-type theorems*:

Theorem 1.3. A function $c: \mathbb{Z} \to \mathbb{C}$ is positive definite if and only if there is a unique finite regular Borel measure μ on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ such that

$$c(k) = \int_0^{2\pi} e^{-ik\theta} d\mu(\theta)$$

for all $k \in \mathbb{Z}$.

Theorem 1.4. A continuous function $\varphi : \mathbb{R} \to \mathbb{C}$ is positive definite if and only if there is a unique finite regular Borel measure μ on \mathbb{R} such that

$$\varphi(t) = \int e^{itx} \, d\mu(x)$$

for all $t \in \mathbb{R}$.

They have similar forms in that they describe the necessary and sufficient conditions for a function to have a Fourier-Stieltjes integral representation of a finite regular Borel measure. One of our primary goals is to investigate the nature of positive definite functions and their harmonic-analytic relation to Borel measures within more familiar cases of $G = \mathbb{Z}$ or \mathbb{R} . Now then, we finally extend the Bochner-type results in the more general setting, where G is a locally compact group, and assign a new perspective of measures in terms of the representation theory of groups.

Each theorem above has its own taste in different subfields of mathematics. Theorem 1.1, which is a corollary of the celebrated Herglotz-Riesz representation theorem, is related to a classical problem in complex analysis that asks to give a characterization of a special class of analytic functions on the open unit disk $\mathbb D$ called the Carathéodory class. The positive definiteness arises as a property of coefficients of functions in the Caracthéodory class, and their connection to Fourier coefficients leads the complex analysis problem into harmonic analysis. In Section 2, with the methods of elementary complex variable function theory, our first Bochner-type theorem will be proved, giving a geometric description of the space of positive definite functions in addition.

In Section 3, we review the well-known results of the positive definite functions on the real line and their "weak convergence". They have been studied by probabilists, to attack the weak convergence of probability measures. Recall that a probability distribution of a real-valued random variable is defined by a probability measure on \mathbb{R} . The extended Fourier transform, but reversing the sign convention on the phase term, with respect to not only integrable functions but also finte measures, called Fourier-Stieltjes transform, of a probability measure μ is called a characteristic function of the distribution μ . In terms of probability theory, it is nothing but the function defined by the expectation $\varphi(t) := Ee^{itX}$, where X is a random variable of law μ . The Bochner theorem states that the necessary and sufficient condition for being a characteristic function is the positive definiteness and continuity.

2 On the group \mathbb{Z} : complex analysis

In this section, we are going to investigate the origin of positive definiteness that occurs in the context of complex analysis via establishing the following one-to-one correspondences:

The vertical, left, and right arrows are discussed in Section 2.1, 2.2, and 2.3 respectively. The definition of each term will be given throughout this section, and Bochner's theorem on the additivie group $\mathbb Z$ will be finally deduced as a corollary of the above correspondences.

2.1 The Carathéodory coefficient problem

The concept of positive definiteness of functions were originally inspired by the "Carathéodory coefficient problem" in early complex analysis. The problem asks the condition on the power series coefficients for an analytic function defined on the open unit disk to have values of positive real part. In other words, the Carathéodory coefficient problem describes the power series coefficients of some special functions precisely defined as follows:

Definition 2.1. The *Carathéodory class* is the set of all analytic functions f that map the open unit disk into the region of positive real part, with normalization condition f(0) = 1. A function in the Carathéodory class will be often called a *Carathéodory function*.

Example 2.1 (Möbius transforms). Typical examples of functions in the Carathéodory class are given by the family of functions

$$f_{\theta}(z) = \frac{e^{i\theta} + z}{e^{i\theta} - z} = 1 + \sum_{k=1}^{\infty} 2e^{-ik\theta} z^k$$

parametrized by $\theta \in [0, 2\pi)$. We can check they are eactly the Möbius transformations that map the unit disk to the right half space having normalization f(0) = 1. This family of examples play a crucial role in the representation problem of functions in the Carathéodory class.

Example 2.2 (Convex combinations). Note the Carathéodory class is convex; if f_0 and f_1 belong to the Carathéodory class, then the real part of the image of the function

$$f_t(z) = (1-t)f_0(z) + tf_1(z)$$

is also positive for 0 < t < 1 and $f_t(0) = (1 - t) + t = 1$, so f_t also belongs to the Carathéodory class.

Example 2.3 (Positive harmonic functions). Let f be in the Carathéodory class. By definition, the real part $\operatorname{Re} f: \mathbb{D} \to \mathbb{R}$ is a positive harmonic function such that f(0)=1. Conversely, since there is a unique harmonic conjugate up to constant, we can recover f from its real part by letting $\operatorname{Im} f(0)=0$. In other words, there is a one-to-one correspondence between the Carathódory class and the positive harmonic functions on the open uni disk that has the value one at zero.

Carathéodory's result intuitively tells us that every function in the Carathéodory class can be constructed by convex combinations the Möbius transforms f_{θ} . As a result, they can be viewed as "extreme points" in the Carathéodory class. We discuss about the extreme points after the proof of the Carathéodory theorem.

Before the discussion, we develop a lemma as a preparation for the interplay between complex analysis and Fourier analysis.

Lemma 2.1 (Fourier coefficient of analytic functions). *Let* f *be an analytic function on the open unit disk* \mathbb{D} *with* $f(0) \in \mathbb{R}$ *with*

$$f(z) = c_0 + \sum_{k=1}^{\infty} 2c_k z^k,$$

the power series expansion of f at z = 0. Then, for $0 \le r < 1$ and $k \in \mathbb{Z}$ we have

$$c_k r^{|k|} = rac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-ik\theta} d\theta,$$

where we use the notation $c_{-k} := \overline{c}_k$.

Proof. Suppose k > 0 first. The Cauchy integral formula writes

$$2c_k k! = \frac{\partial^k f}{\partial z^k}(0) = \frac{k!}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{k+1}} dz = \frac{k!}{2\pi i} \int_0^{2\pi} \frac{f(re^{i\theta})}{(re^{i\theta})^{k+1}} ire^{i\theta} d\theta,$$

and it implies

$$2c_k r^k = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-ik\theta} d\theta.$$

Since $f(z)z^k$ is analytic, the Cauchy theorem is applied to have

$$0 = \frac{1}{2\pi i} \int_{|z|=r} f(z) z^k dz = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) r^k e^{ik\theta} d\theta,$$

and it implies

$$0 = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{f(re^{i\theta})} e^{-ik\theta} d\theta.$$

By combining the above equations, we obtain the formula. For k = 0, applying the Cauchy theorem for f, we have

$$c_0 = f(0) = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z} dz = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) d\theta.$$

For k < 0, we can obtain the same formula by taking complex conjugation on the case k > 0.

Alternaively, we can show the same result using the orthogonal relation of complex exponential functions. Easy computation shows the identity

$$\operatorname{Re} f(re^{i\theta}) = \frac{1}{2} [f(re^{i\theta}) + \overline{f(re^{i\theta})}]$$

$$= \frac{1}{2} \left[\left(1 + \sum_{k=1}^{\infty} 2c_k (re^{i\theta})^k \right) + \overline{\left(1 + \sum_{k=1}^{\infty} 2c_k (re^{i\theta})^k \right)} \right]$$

$$= \frac{1}{2} \left[\left(1 + \sum_{k=1}^{\infty} 2c_k r^k e^{ik\theta} \right) + \left(1 + \sum_{k=1}^{\infty} 2\overline{c_k} r^k e^{-ik\theta} \right) \right]$$

$$= \sum_{k=-\infty}^{\infty} c_k r^{|k|} e^{ik\theta}.$$

From the uniform convergence of the power series on the compact set $\{z : |z| \le (r+1)/2\}$ and the orthogonality

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-ik\theta} e^{il\theta} d\theta = \begin{cases} 1 & \text{if } k = l \\ 0 & \text{if } k \neq l \end{cases},$$

it follows that

$$\frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-ik\theta} d\theta = \sum_{l=-\infty}^{\infty} c_l r^{|l|} \frac{1}{2\pi} \int_0^{2\pi} e^{il\theta} e^{-ik\theta} d\theta = c_k r^{|k|}. \qquad \Box$$

Now, we prove the theorem. The original paper of Carathéodory deals with the functions analytic on a neighborhood of the closed unit disk, but the same idea is extended well to the functions that may have harsh behavior on the boundary. Furthermore, by loosening the regularity requirement at boundary, we can establish the exact description of Carathéodory functions in terms of their coefficients.

Theorem 2.2 (Carathéodory). Let f be an analytic function on the open unit disk with the power series expansion

$$f(z) = 1 + \sum_{k=1}^{\infty} 2c_k z^k.$$

Then, f belongs to the Carathéodory class if and only if for each n the point $(c_1, \dots, c_n) \in \mathbb{C}^n$ belongs to the convex hull of the curve $(e^{-i\theta}, \dots, e^{-in\theta}) \in \mathbb{C}^n$ parametrized by $\theta \in [0, 2\pi)$.

Proof. (\Leftarrow) Denote by K_n the convex hull of the curve $\theta \mapsto (e^{-i\theta}, \dots, e^{-in\theta}) \in \mathbb{C}^n$. Suppose first that $(c_1, \dots, c_n) \in K_n$. For each n, there exists a finite sequence of pairs $(\lambda_{n,j}, \theta_{n,j})_j$ having the following convex combination

$$(c_1,\cdots,c_n)=\sum_j\lambda_{n,j}(e^{-i\theta_{n,j}},\cdots,e^{-in\theta_{n,j}})$$

with coefficients $\lambda_{n,j} \ge 0$ such that $\sum_{i} \lambda_{n,j} = 1$. Define

$$f_n(z) := \sum_i \lambda_{n,j} \frac{e^{i\theta_{n,j}} + z}{e^{i\theta_{n,j}} - z},$$

which has positive real part on |z| < 1 because $\text{Re}(e^{i\theta_{n,j}} + z)/(e^{i\theta_{n,j}} - z) > 0$ for |z| < 1. Then,

$$f_n(z) = \sum_{j} \lambda_{n,j} (1 + \sum_{k=1}^{\infty} 2e^{-ik\theta_{n,j}} z^k)$$

$$= 1 + \sum_{k=1}^{n} 2c_k z^k + \sum_{k=n+1}^{\infty} \left(\sum_{j} 2\lambda_{n,j} e^{-ik\theta_{n,j}} \right) z^k$$

implies

$$|f_n(z) - f(z)| = \left| \sum_{k=n+1}^{\infty} \left(\sum_{j} 2\lambda_{n,j} e^{-ik\theta_{n,j}} \right) z^k - \sum_{k=n+1}^{\infty} 2c_k z^k \right|$$

$$\leq \sum_{k=n+1}^{\infty} \left| \left(\sum_{j} 2\lambda_{n,j} e^{-ik\theta_{n,j}} \right) - 2c_k \right| |z|^k$$

$$\leq \sum_{k=n+1}^{\infty} 4|z|^k$$

converges to zero for |z| < 1. Therefore, f has non-negative real part on the open unit disk. The non-negativity is strengthen to the positivity by the open mapping theorem so that f belongs to the Carathéodory class.

(⇒) Conversely, suppose that f is in the Carathéodory class. Let $(\gamma_1, \dots, \gamma_n)$ be any point on the surface ∂K_n of K_n and S any supporting hyperplane of K_n tangent at $(\gamma_1, \dots, \gamma_n)$. Let (u_1, \dots, u_n) be the outward unit normal vector of the supporting hyperplane S. Note that this unit normal vector is uniquely determined with respect to the induced real inner product structure on 2n-dimensional space \mathbb{C}^n described by

$$\langle (z_1, \dots, z_n), (w_1, \dots, w_n) \rangle = \sum_{k=1}^n (\operatorname{Re} z_k \operatorname{Re} w_k + \operatorname{Im} z_k \operatorname{Im} w_k) = \operatorname{Re} \sum_{k=1}^n z_k \overline{w}_k.$$

Then, $\sum_{k=1}^{n} |u_k|^2 = 1$ and further that the maximum

$$M := \max_{(x_1, \dots, x_n) \in K_n} \operatorname{Re} \sum_{k=1}^n x_k \overline{u}_k > 0$$

is attained at $(\gamma_1, \dots, \gamma_n)$. Our goal is to verify the bound

$$\operatorname{Re} \sum_{k=1}^{n} c_{k} \overline{u}_{k} \leq M,$$

which implies that (c_1, \dots, c_n) is contained in every half space tangent to K_n so that we finally obtain $(c_1, \dots, c_n) \in K_n$.

Since for any $\theta \in [0, 2\pi)$ the point $(e^{-i\theta}, \dots, e^{-in\theta})$ is in K_n so that

$$\operatorname{Re} \sum_{k=1}^{n} e^{-ik\theta} \overline{u}_{k} \leq M,$$

we have for arbitrarily small $\varepsilon > 0$ that

$$\operatorname{Re} \sum_{k=1}^{n} \frac{1}{r^{k}} e^{-ik\theta} \overline{u}_{k} \leq M + \varepsilon$$

for any 0 < r < 1 sufficiently close to 1, thus we can write

$$\operatorname{Re} \sum_{k=1}^{n} c_{k} \overline{u}_{k} = \operatorname{Re} \sum_{k=1}^{n} \frac{1}{2\pi r^{k}} \int_{0}^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-ik\theta} \overline{u}_{k} d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} f(re^{i\theta}) \operatorname{Re} \sum_{k=1}^{n} \frac{1}{r^{k}} e^{-ik\theta} \overline{u}_{k} d\theta$$

$$\leq \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} f(re^{i\theta}) d\theta \cdot (M + \varepsilon)$$

$$= M + \varepsilon$$

thanks to the positivity of Re f, and by limiting $r \to 1$ from left we get the bound

$$\operatorname{Re} \sum_{k=1}^{n} c_{k} \overline{u}_{k} \leq M.$$

Here we introduce an infinite-dimentional version of this theorem.

Proposition 2.3. Consider a sequence space $\mathbb{C}^{\mathbb{N}}$, endowed with the standard product topology. Then, the condition addressed in Caracthéodory's theorem is equivalent to the following: the point $(c_1, c_2, \cdots) \in \mathbb{C}^{\mathbb{N}}$ belongs to the closed convex hull of the curve $(e^{-i\theta}, e^{-i2\theta}, \cdots) \in \mathbb{C}^{\mathbb{N}}$ parametrized by $\theta \in [0, 2\pi)$.

Furthermore, the curve $(e^{-i\theta}, e^{-i2\theta}, \cdots) \in \mathbb{C}^{\mathbb{N}}$ is the set of extreme points of its closed convex hull.

Proof. Denote by K_n the convex hull of the curve $\theta \mapsto (e^{-i\theta}, \dots, e^{-in\theta}) \in \mathbb{C}^n$, and by K the closed convex hull of the curve $\theta \mapsto (e^{-i\theta}, e^{-i2\theta}, \dots) \in \mathbb{C}^{\mathbb{N}}$. If we assume the

Carathéodory coefficient condition is true, then since for each n we have a convex combination

$$(c_1,\cdots,c_n)=\sum_j\lambda_{n,j}(e^{-i\theta_{n,j}},\cdots,e^{-in\theta_{n,j}})$$

with coefficients such that $\lambda_{n,j} \geq 0$ and $\sum_{j} \lambda_{n,j} = 1$, the sequence

$$(c_{1}, \dots, c_{n}, \sum_{j} \lambda_{n,j} e^{-i(n+1)\theta_{n,j}}, \sum_{j} \lambda_{n,j} e^{-i(n+2)\theta_{n,j}} \dots)$$

$$= \sum_{j} \lambda_{n,j} (e^{-i\theta_{n,j}}, \dots, e^{-in\theta_{n,j}}, e^{-i(n+1)\theta_{n,j}}, e^{-i(n+2)\theta_{n,j}}, \dots)$$

is contained in and converges to the point (c_1, c_2, \cdots) in the product topology as $n \to \infty$, so we are done with the desired result. For the opposite direction, let $(c_1, c_2, \cdots) \in K$. By definition of K we have an expression

$$c_k = \lim_{m \to \infty} \sum_{j=1}^m \lambda_{m,j} e^{-ik\theta_{m,j}}$$

with $\lambda_{m,j} \geq 0$ and $\sum_{j=1}^{m} \lambda_{m,j} = 1$, for each k. Then,

$$(c_1, \cdots, c_n) = \lim_{m \to \infty} \sum_{j=1}^m \lambda_{m,j} (e^{-i\theta_{m,j}}, \cdots, e^{-in\theta_{m,j}})$$

belongs to K_n because K_n is closed.

Fix $\theta \in [0, 2\pi)$ and suppose two complex sequences (c_1, c_2, \cdots) and (d_1, d_2, \cdots) in $\mathbb{C}^{\mathbb{N}}$ are contained in K and satisfy

$$\frac{c_k + d_k}{2} = e^{-ik\theta}$$

for all $k \in \mathbb{N}$. For each k, since all components of K are bounded by one so that $|c_k| \le 1$ and $|d_k| \le 1$, and since $e^{-ik\theta}$ is an extreme point of the closed unit disk $\overline{\mathbb{D}} \subset \mathbb{C}$, we have $c_k = d_k = e^{-ik\theta}$, we deduce that $(e^{-i\theta}, e^{-i2\theta}, \cdots)$ is an extreme point of K. Conversely, every extreme point of K is contained in the curve $(e^{-i\theta}, e^{-i2\theta}, \cdots)$ by Milman's "converse" theorem of the Krein-Milman theorem citation: Phelps].

2.2 Toeplitz's algebraic condition

Toeplitz discovered the coefficient condition addressed in the Carathéodory's paper which regards convex bodies enveloped by a curve can be equivalently described in

terms of an algebraic condition that the hermitian matrices

$$H_n := (c_{k-l})_{k,l=1}^n = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{-1} & c_0 & c_1 & \cdots & c_{n-2} \\ c_{-2} & c_{-1} & c_0 & \cdots & c_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{-n+1} & c_{-n+2} & c_{-n+3} & \cdots & c_0 \end{pmatrix}$$

of size $n \times n$ always have non-negative determinant for any n. This algebraic condition is equivalent to that H_n are all positive semi-definite matrices. Since the principal minors of a positive semi-definite matrix is positive semi-definite, and since a hermitian matrix such that every leading principal minor has non-negative determinant is positive semi-definite, the bilateral sequence $(c_k)_{k=-\infty}^{\infty}$ is positive definite function when we consider it as a complex-valued function on \mathbb{Z} that maps an integer k to c_k if and only if it is a positive definite *sequence* in the following sense:

Definition 2.2. A bilateral complex sequence $(c_k)_{k=-\infty}^{\infty}$ is said to be *positive definite* if

$$\sum_{k,l=1}^{n} c_{k-l} \xi_k \overline{\xi}_l \ge 0$$

for each n and $(\xi_1, \dots, \xi_n) \in \mathbb{C}^n$.

Theorem 2.4 (Carathéodory-Toeplitz). *Let f be an analytic function on the open unit disk with the power series expansion*

$$f(z) = 1 + \sum_{k=1}^{\infty} 2c_k z^k.$$

Then, f belongs to the Carathéodory class if and only if the sequence $(c_k)_{k=-\infty}^{\infty}$ is positive definite, where we use the notations $c_0 = 1$ and $c_{-k} = \overline{c_k}$.

Proof. (\Rightarrow) If f is in the Carathéodory class, then because

$$c_{k-l}r^{|k-l|} = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) e^{-i(k-l)\theta} d\theta,$$

we have

$$\sum_{k,l=1}^{n} c_{k-l} \xi_k \overline{\xi}_l = \lim_{r \uparrow 1} \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} f(re^{i\theta}) \left| \sum_{k=1}^{n} e^{-ik\theta} \xi_k \right|^2 d\theta \ge 0$$

for each n.

 (\Leftarrow) Conversely, assume that the coefficient sequence $(c_k)_{k=-\infty}^{\infty}$ is positive definite. Put $\xi_k = z^{k-1}$ and $z = re^{i\theta}$ to write

$$\begin{split} 0 & \leq \sum_{k,l=1}^{n+1} c_{k-l} z^{k-1} (\overline{z})^{l-1} \\ & = \sum_{k,l=0}^{n} c_{k-l} r^{k+l} e^{i(k-l)\theta} \\ & = \sum_{k,l=0}^{n} c_{k-l} r^{|k-l|} r^{2\min\{k,l\}} e^{i(k-l)\theta} \\ & = \sum_{k=-n}^{n} c_{k} r^{|k|} e^{ik\theta} \sum_{l=0}^{n-|k|} r^{2l} \\ & = \sum_{k=-n}^{n} c_{k} r^{|k|} e^{ik\theta} \frac{1 - r^{2(n-|k|+1)}}{1 - r^{2}} \\ & = \frac{1}{1 - r^{2}} \sum_{k=-n}^{n} c_{k} r^{|k|} e^{ik\theta} - \frac{r^{n+2}}{1 - r^{2}} \sum_{k=-n}^{n} c_{k} r^{n-|k|} e^{ik\theta}. \end{split}$$

For r = |z| < 1 the first term tends to

$$\lim_{n \to \infty} \frac{1}{1 - r^2} \sum_{k = -n}^{n} c_k r^{|k|} e^{ik\theta} = \frac{1}{1 - |z|^2} \operatorname{Re} f(z),$$

and $|c_k| \le c_0 = 1$ implies the second term vanishes as

$$\left| \frac{r^{n+2}}{1 - r^2} \sum_{k=-n}^{n} c_k r^{n-|k|} e^{ik\theta} \right| \le \frac{r^{n+2}}{1 - r^2} (2n + 1) \to 0$$

as $n \to \infty$. It proves Re $f(z) \ge 0$ for |z| < 1, and we obtain Re f(z) > 0 by the open mapping theorem.

2.3 The Herglotz-Riesz representation theorem

Herglotz proved another equivalent condition for the Carathéodory class in 1911, considered as the first Bochner-type theorem, which states the correspondence between the Carathéodory class and probability Borel measure on the unit circle. The Carathéodory theorem states that the function f in the Carathéodory class is a limit

of convex combinations of Möbius transforms $z \mapsto (e^{i\theta} + z)/(e^{i\theta} - z)$. Herglotz's theorem, which we now also often call as the Herglotz-Riesz representation theorem, states that in fact f is directly represented by the integral of the Möbius transforms with respect to a newly constructed probability measure, instead of limiting process of convex sums.

The essential difficulty comes from the construction of a measure, and here we resolve this in the aid of either Helly's selection theorem or the Riesz-Markov-Kakutani representation theorem. Suppose the function f is analytic on a neighborhood of the closed unit disk $\overline{\mathbb{D}}$. In this case, by appropriately manipulate the identities for r=1 in Lemma 2.1, or by using the Cauchy integral formula along the unit circle, we can get

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \operatorname{Re} f(e^{i\theta}) d\theta.$$

Based on this representation of f, we will try to approximate the measure $d\mu$ with the absolutely continuous measures $(2\pi)^{-1} \operatorname{Re} f(re^{i\theta}) d\theta$ by limiting $r \uparrow 1$. More precisely, we will use the following lemma:

Lemma 2.5. Let f be an analytic function on the open unit disk. For |z| < 1,

$$f(z) = \lim_{r \uparrow 1} \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \operatorname{Re} f(re^{i\theta}) d\theta.$$

Proof. By

$$\lim_{r \uparrow 1} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \operatorname{Re} f(re^{i\theta}) d\theta = \lim_{r \uparrow 1} \frac{1}{2\pi} \int_{0}^{2\pi} \left(1 + \sum_{k=1}^{\infty} 2e^{-ik\theta} z^{k} \right) \operatorname{Re} f(re^{i\theta}) d\theta$$

$$= 1 + \lim_{r \uparrow 1} \sum_{k=1}^{\infty} 2 \left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{-ik\theta} \operatorname{Re} f(re^{-i\theta}) d\theta \right) z^{k}$$

$$= 1 + \lim_{r \uparrow 1} \sum_{k=1}^{\infty} 2c_{k} r^{k} z^{k}$$

$$= f(z).$$

Theorem 2.6 (The Herglotz-Riesz representation theorem). Let f be a complex-valued function defined on the open unit disk. Then, f belongs to the Carathéodory class if and only if f is represented as the following Stieltjes integral

$$f(z) = \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta),$$

where μ is a probability Borel measure on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

First proof: using Helly's selection theorem. (\Leftarrow) Take a probability Borel measure μ on \mathbb{T} . Then, we can check the function defined by

$$f(z) := \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)$$

is analytic on the open unit disk easily by using Morera's theorem and Fubini's theorem. Recall that $z \mapsto (e^{i\theta} + z)/(e^{i\theta} - z)$ has positive real part since it is a conformal mapping that maps open unit disk onto the right half plane. The function f belongs to the Carathéodory class by the open mapping theorem since

$$\operatorname{Re} f(z) = \int_0^{2\pi} \operatorname{Re} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) \ge 0.$$

 (\Rightarrow) Fix z in the open unit disk \mathbb{D} . Define $f_n(\theta) := (2\pi)^{-1} \operatorname{Re} f((1-n^{-1})e^{i\theta})$ and

$$F_n(\theta) := \int_0^\theta \operatorname{Re} f_n(\psi) \, d\psi$$

for $\theta \in [0, 2\pi]$. Note $F_n(0) = 0$ and $F_n(2\pi) = 1$ for all n. Since $\operatorname{Re} f \geq 0$, F_n is also monotonically increasing. Therefore, the sequence $(F_n)_n$ has a pointwise convergent subsequence $(F_{n_i})_j$ on $[0, 2\pi]$ by the Helly's selection theorem. Let

$$F(\theta) := \lim_{\psi \downarrow \theta} \lim_{j \to \infty} F_{n_j}(\psi).$$

Then, we have F(0) = 0 and $F(2\pi) = 1$, and F_{n_j} converges to F at every continuity point θ of F. It means F_{n_j} converges to F weakly as $j \to \infty$, so by the Portemanteau theorem, we get

$$\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} dF_{n_j}(\theta) \to \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} dF(\theta)$$

as $j \to \infty$ since $\theta \mapsto (e^{i\theta} + z)/(e^{i\theta} - z)$ is continuous and bounded on \mathbb{T} . On the other hand,

$$\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} dF_{n_j}(\theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \operatorname{Re} f((1 - n_j^{-1})e^{i\theta}) d\theta \to f(z)$$

as $j \to \infty$. Therefore, by the uniqueness of limit, we have

$$f(z) = \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} dF(\theta) = \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta),$$

where μ is the probability measure on \mathbb{T} defined by the distribution function F as $\mu([0,\theta]) = F(\theta)$.

Second proof: using the Riesz representation theorem. As we have seen in the first proof that uses Helly's selection theorem, one direction is trivial. Suppose f is a Carathéodory function. Let $g \in C(\mathbb{T})$ be a complex-valued test function. Define a sequence of complex linear functionals l_n on $C(\mathbb{T})$ as

$$l_n[g] := \frac{1}{2\pi} \int_0^{2\pi} g(\theta) \operatorname{Re} f((1-n^{-1})e^{i\theta}) d\theta.$$

It is positive and bounded since $\operatorname{Re} f \geq 0$ and $||l_r|| = l_r[1] = 1$. By the Alaoglu theorem, the sequence has $(l_n)_n$ a subsequence $(l_{n_j})_j$ that converges in the weak* topology of $C(\mathbb{T})^*$. If we let l be the limit, then $l[1] = \lim_{j \to \infty} l_{n_j}[1] = 1$ because $1 \in C(\mathbb{T})$. (Notice that it does not valid if the domain space, \mathbb{T} here, is not compact, and we will see this problem more carefully in the next chapter.)

By the Riesz-Markov-Kakutani representation theorem, there is a probability Borel measure μ on $\mathbb T$ such that

$$l[g] = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\mu(\theta)$$

for all $g \in C(\mathbb{T})$. Then, for each fixed z in the open unit disk it follows from Lemma 2.5 that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) = l[g_z] = \lim_{j \to \infty} l_{n_j}[g_z] = f(z)$$

since $g_z(\theta) := (e^{i\theta} + z)/(e^{i\theta} - z)$ belongs to $C(\mathbb{T})$.

As a corollary of Herglotz' theorem, we finally arrive at:

Corollary 2.7 (Bochner's theorem on \mathbb{Z}). A function $c: \mathbb{Z} \to \mathbb{C}$ is positive-definite and $c_0 = 1$ if and only if there is a probability Borel measure μ on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ such that

$$c_k = \int_0^{2\pi} e^{-ik\theta} d\mu(\theta).$$

Proof. Let μ be a probability Borel measure on \mathbb{T} . Then, the sequence defined in the statement is positive definite because

$$\sum_{k,l=1}^{n} c_{k-l} \xi_k \overline{\xi}_l = \sum_{k,l=1}^{n} \int_0^{2\pi} e^{-i(k-l)\theta} d\mu(\theta) \xi_k \overline{\xi}_l$$
$$= \int_0^{2\pi} \left| \sum_{k=1}^{n} e^{-ik\theta} \xi_k \right|^2 d\mu(\theta) \ge 0$$

for any $(\xi_1, \dots, \xi_n) \in \mathbb{C}^n$, and $c_0 = 1$ is clear.

On the other hand, if the sequence $(c_k)_{k=-\infty}^{\infty}$ is positive definite and $c_0=1$, then the function $z\mapsto 1+\sum_{k=1}^{\infty}2c_kz^k$ is in the Carathéodory class. By the Herglotz-Riesz representation theorem, there is a probability regular Borel measure μ on $\mathbb T$ such that

$$1 + \sum_{k=1}^{\infty} 2c_k z^k = \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)$$

$$= \int_0^{2\pi} \left(1 + \sum_{k=1}^{\infty} 2e^{-ik\theta} z^k \right) d\mu(t)$$

$$= 1 + \sum_{k=1}^{\infty} 2\left(\int_0^{2\pi} e^{-ik\theta} d\mu(\theta) \right) z^k$$

in $z \in \mathbb{D}$, hence the desired result follows.

Example 2.4 (Dirac measures).

Example 2.5 (Continuous restrictions).

3 On the group \mathbb{R} : probability theory

We have seen the relation of positive definite sequences and measures on the unit circle \mathbb{T} . On the real line \mathbb{R} , predictably, we can also prove that there exists a correspondence between measures and positive definite functions. The previous chapter used measures to characterize certain complex functions and positive definite sequences, but from this section, we will see how the positive functions are used in studying measures.

The systematic study of positive definite functions to study measures virtually starts in probability theory by Paul Lévy. Recall that a probability distribution is defined as a measure of norm one on a "state space", which is \mathbb{R} for usual random variables. Some classical problems including central limit problems and laws of large numbers arisen in probability theory want to describe limit behaviors of probability distributions. Lévy's discovery was that it is easier to verify the convergence of probability distributions via the *Fourier transforms* of probability measures, instead of the measures themselves.

The Fourier transform(often called as *Fourier-Stieltjes* transform when we emphasize the *measures*, the objects transformed) of a probability measure is called a *characteristic function*. One of possible statement of Bochner's theorem is that a complex function on a real line is a characteristic function of a probability measure if and only if it is continuous and positive definite, i.e. the theorem gives the one-to-one correspondence of probability measures on \mathbb{R} and the continuous positive definite functions on \mathbb{R} , under the Fourier-Stieltjes transform.

3.1 Topologies on the space of probability measures

Definition 3.1 (Weak convergence). Let $(\mu_n)_n$ and μ be probability Borel measures on a metric space S. We say μ_n weakly converges to μ if

$$\int g d\mu_n \to \int g d\mu$$

as $n \to \infty$ for any $g \in C_b(S)$, where $C_b(S)$ denotes the space of continuous and bounded functions.

3.2 The Levy continuity theorem

The direct connection between convergences in two different realms, measures and positive definite functions, is encoded in the Lévy continuity theorem. In this sec-

tion, we will prove Bochner's theorem on \mathbb{R} with the aid of the Lévy continuity theorem. This theorem connects the weak convergence of probability measures and pointwise convergence of *characteristic functions*. A characteristic function is defined as the Fourier transform, but conventionally reversed the sign on the phase term, of a probability measure, and is the place where the positive definiteness comes.

Definition 3.2 (Characteristic functions). Let μ be a probability measure on \mathbb{R} and X a random variable of distribution μ . Note that such random variable always exists. The *characteristic function* of X is a function $\varphi : \mathbb{R} \to \mathbb{C}$ defined by $\varphi(t) := Ee^{itX}$. Equilvalently, φ is given by

$$\varphi(t) := \int e^{itx} d\mu(x).$$

Proposition 3.1 (Basic properties of characteristic functions). Let φ be a characteristic function of a probability Borel measure μ on \mathbb{R} .

- (a) φ is positive definite.
- (b) φ is uniformly continuous.

 \square

Example 3.1 (Mathias' examples).

Example 3.2 (Polya).

Characteristic functions take an advantage that we can learn the information about probability measures by investigating the continuous functions instead of studying measures directly.

Definition 3.3 (Tight measures).

In order for a family of probability measures to be tight, their tail probabilities ought to be uniformly controlled. The following lemma is useful in bounding tail probabilities in terms of characteristic functions; the averaging of $1-\varphi$ near zero provides with a reasonable estimate of the tail probability.

Lemma 3.2. Let μ be a probability Borel measure on \mathbb{R} and φ be its characteristic function. Then,

$$\mu(\left[-\frac{2}{\delta}, \frac{2}{\delta}\right]^{c}) \leq 2 \cdot \frac{1}{2\delta} \int_{-\delta}^{\delta} (1 - \varphi(t)) dt$$

for any $\delta > 0$. In particular, a single measure is tight.

Proof. Write the average with the sinc function as

$$\begin{split} \frac{1}{2\delta} \int_{-\delta}^{\delta} \varphi(t) \, dt &= \int \frac{1}{2\delta} \int_{-\delta}^{\delta} e^{itx} \, dt \, d\mu(x) \\ &= \int \frac{1}{2\delta} \cdot \frac{e^{i\delta x} - e^{-i\delta x}}{ix} \, d\mu(x) \\ &= \int \frac{\sin \delta x}{\delta x} \, d\mu(x). \end{split}$$

Then, for appropriate constant R > 0 we have the following estimate of the sinc function term

$$\begin{split} \int \frac{\sin \delta x}{\delta x} \, d\mu(x) &\leq \int_{|x| \leq R} 1 d\mu(x) + \int_{|x| > R} \frac{1}{|\delta x|} \, d\mu(x) \\ &= 1 - \int_{|x| > R} \left(1 - \frac{1}{|\delta x|} \right) d\mu(x). \end{split}$$

If we take $R = \frac{2}{\delta}$, then the Chebyshev inequality has

$$\frac{1}{2}\mu(\left[-\frac{2}{\delta},\frac{2}{\delta}\right]^{c}) \leq \int_{|x|>\frac{2}{\delta}} \left(1 - \frac{1}{|\delta x|}\right) d\mu(x) \leq 1 - \frac{1}{2\delta} \int_{-\delta}^{\delta} \varphi(t) dt,$$

so we are done. \Box

Theorem 3.3 (The Lévy continuity theorem). Let $(\mu_n)_{n=1}^{\infty}$ be a sequence of probability Borel measures on \mathbb{R} and φ_n their characteristic functions. Then, μ_n converges weakly to a probability Borel measure μ if and only if φ_n converges pointwise to a function φ that is continuous at zero.

Proof. (\Rightarrow)

(\Leftarrow) For ε > 0, take δ > 0 using the continuity of φ such that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} (1 - \varphi(t)) dt < \frac{\varepsilon}{4}.$$

By the bounded convergence theorem, there is N > 0 such that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} |\varphi_n(t) - \varphi(t)| \, dt < \frac{\varepsilon}{4}$$

so that we have

$$\mu_n([-\frac{2}{\delta},\frac{2}{\delta}]^c) \leq 2 \cdot \frac{1}{2\delta} \int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt < \varepsilon$$

for all n > N. For each $n \le N$, since every single measure is tight, there is compact $K_n \subset \mathbb{R}$ such that $\mu(K_n^c) < \varepsilon$. If we define a compact set $K := [-\frac{2}{\delta}, \frac{2}{\delta}] \cup \bigcup_{n=1}^N K_n$, then $\mu_n(K^c) < \varepsilon$ for all n, so the sequence μ_n is tight.

Let $(\mu_{n_j})_j$ be any subsequence that converges weakly to a probability measure. The limit of this subsequence is independent on the choice of the subsequence since its characteristic function is given by the pointwise limit $\lim_{j\to\infty} \varphi_{n_j} = \varphi$, by the first half of this theorem. Let μ be this unique limit. Then, μ_n converges weakly to μ since the tightness guarantees that every subsequence of μ_n has a further subsequence, which converges to μ weakly.

There are various ways to prove Bochner's theorem on \mathbb{R} . For example, we can prove it using either Helly's selection theorem or the Riesz-Markov-Kakutani representation theorem in the same manner as we did in the previous chapter. We introduce a new proof that follows from the Herglotz representation theorem, in order to see the relation of two Bochner's theorem on \mathbb{Z} and \mathbb{R} . In this proof, the Lévy continuity theorem is used as a key lemma.

Corollary 3.4 (Bochner's theorem on \mathbb{R}). A function $\varphi : \mathbb{R} \to \mathbb{C}$ is continuous and positive-definite such that $\varphi(0) = 1$ if and only if there is a probability Borel measure μ on \mathbb{R} such that

$$\varphi(t) = \int e^{itx} d\mu(x).$$

Proof. Let μ be a probability Borel measure on \mathbb{R} . Then, the function φ defined in the statement is positive definite because

$$\begin{split} \sum_{k,l=1}^n \varphi(t_k - t_l) \xi_k \overline{\xi}_l &= \sum_{k,l=1}^n \int e^{i(t_k - t_l)x} \, d\mu(x) \xi_k \overline{\xi}_l \\ &= \int \left| \sum_{k=1}^n e^{it_k x} \xi_k \right|^2 \, d\mu(x) \ge 0. \end{split}$$

It is continuous because a single probability measure μ is tight so that for every

 $\varepsilon > 0$ there is M > 0 such that

$$\begin{aligned} |\varphi(t) - \varphi(s)| &\leq \int |e^{itx} - e^{isx}| \, d\mu(x) = \int |2\sin(\frac{t-s}{2}x)| \, d\mu(x) \\ &\leq \int_{|x| \leq M} |(t-s)x| \, d\mu(x) + \int_{|x| > M} d\mu(x) \\ &\leq M|t-s| + \frac{\varepsilon}{2} < \varepsilon \end{aligned}$$

whenever $|t-s| < \varepsilon/2M$. The normalization condition f(0) = 1 is clear.

Conversely, suppose φ is continuous and positive definite. For each small u > 0, since the sequence $(\varphi(uk))_{k \in \mathbb{Z}}$ is positive definite, by the Herglotz-Riesz representation theorem, there is a finite regular Borel measure v_u on $[-\pi, \pi)$ such that

$$\varphi(uk) = \int_{-\pi}^{\pi} e^{-ik\theta} \, d\, \nu_u(\theta)$$

for every $k \in \mathbb{Z}$. If we define a measure μ_u on \mathbb{R} such that the support is contained in $[-\pi/u, \pi/u]$ and $\mu_u(E) := \nu_u(-uE)$ for Borel sets $E \subset [-\pi/u, \pi/u]$, then

$$\varphi(uk) = \int_{-\pi/u}^{\pi/u} e^{iukx} d\mu_u(x) = \varphi_u(uk)$$

for every $k \in \mathbb{Z}$, where φ_u is the characteristic function of μ_n .

Note that v_u converges to the Dirac measure δ_0 as $u \to 0$ in weak* topology of $C(\mathbb{T})^*$ where \mathbb{T} is identified with the interval $[-\pi,\pi)$. This is because trigonometric polynomials are uniformly dense in $C(\mathbb{T})$ and v_u are uniformly bounded in norm; for any $\varepsilon > 0$ and $g \in C(\mathbb{T})$, there is a trigonometric polynomial $h = \sum_k c_k e^{-ik\theta}$ such that $\|g - h\|_{C(\mathbb{T})} < \varepsilon/2$, which implies

$$\begin{aligned} |\langle g, \nu_u \rangle - g(0)| &\leq |\langle g - h, \nu_u \rangle| + |\langle h, \nu_u \rangle - h(0)| + |h(0) - g(0)| \\ &\leq \varepsilon + |\sum_k c_k \varphi(uk) - h(0)| \end{aligned}$$

and

$$\sum_{k} c_{k} \varphi(uk) \to \sum_{k} c_{k} = h(0)$$

as $u \rightarrow 0$.

For each $t \in \mathbb{R}$ and u > 0, take t_u such that $|t - t_u| < u/2$ and $t_u \in u\mathbb{Z}$. Then, we get

$$\begin{aligned} |\varphi_{u}(t) - \varphi_{u}(t_{u})| &= |\int (e^{itx} - e^{it_{u}x}) d\mu_{u}(x)| \\ &= |\int_{-\pi}^{\pi} (e^{i\frac{t}{u}\theta} - e^{i\frac{tu}{u}\theta}) d\nu_{u}(\theta)| \\ &\leq \int_{-\pi}^{\pi} \left| \left(\frac{t}{u} - \frac{t_{u}}{u}\right) \theta \right| d\nu_{u}(\theta) \\ &\leq \frac{1}{2} \int_{-\pi}^{\pi} |\theta| d\nu_{u}(\theta) \to 0 \end{aligned}$$

as $u \to 0$ since the function $\theta \mapsto |\theta|$ is continuous function on \mathbb{T} if we view it as $[-\pi, \pi)$. Therefore, the pointwise convergence is verified as

$$|\varphi_u(t) - \varphi(t)| \le |\varphi_u(t) - \varphi_u(t_u)| + 0 + |\varphi(t_u) - \varphi(t)| \to 0$$

as $u \to 0$, and since φ is continuous at zero, we can conclude that φ is a characteristic function by the Lévy continuity theorem.

3.3 Bochner's theorem in infinite dimensions

bochner measure <=> pos def continuous

schwarts bochner (finite condition removed) tempered measure <=> pos def tempered dist

on hilbert space measure <=> pos def continuous + trace class

3.4 Examples: Polya's criterion

Mathias' examples

4 On locally compact groups: representation theory

- 4.1 Dual group and Fourier transform
- 4.2 The Pontryagin duality
- 4.3 Examples: topological groups in number theory

p-adic integer \mathbb{Z}_p and the Prüfer p-subgroup. Profinite integers and \mathbb{Q}/\mathbb{Z} . Tate thesis: locally compact group of adeles.

4.4 Why not non-abelian?

References