东南大学考试卷(A卷)

课	程	名	称	算法分析与设计	考	试学期		得分		
适	用	专	业		考试形式	t iz	刊卷	考试时间长度	120	分钟
(10)

- 1. (10 分)假设我们要比较同一台机器上两个排序算法的性能。对于规模为n(n)为正整数)的输入,排序算法 A 要运行 $3n^2$ 步,排序算法 B 要运行 $8n\log_2 n$ 步。
 - (1) 请分别写出算法 A 和算法 B 的时间复杂度渐进表达式 O(*)。(5分)
 - (2) 说明当 n 取怎样的值时,算法 A 的性能要优于算法 B 的性能。(5分)
- 2. (10 分)设 T[1:n]是一个含有 n 个元素的数组。当 $\{i|T[i]=x\}\}$ >n/2 时,称元素 x 是数组 T 的主元素。那么针对 $T[7]=\{3,2,3,2,3,3,5\}$,请写出判断其是否有主元素的蒙特卡罗算法 MC(T),并分析该算法的正确率(即运行 k 次后的正确率)。
- 3. (20 分)比特币是当今虚拟货币股票市场的宠儿。假设比特币在过去n 天中的股票价格记录在数组 a[1..n]中。为分析比特币股票市场的走势,证券公司希望从中找出两天的价格,其价格的增幅最大。也就是说,希望找到 a[i]和 a[j],i < j 使得 M=a[j]-a[i] 的值最大,即 $M=Max\{a[j]-a[i]$ $1 \le i < j \le n\}$ (注意,M 有可能为负数)。
 - (1) 请试设计一个分治算法求解该问题,并写出伪代码。(8分);
 - (2) 请给出所设计算法的递推方程,并分析其时间复杂度。(12分)。
- 4. (20分)如下图所示,顺序放好的 n 根钢管的重量各为 $w[i],1 \le i \le n$ 。

将他们按顺序焊成一根钢管,每次可任意选两根**相邻的**钢管来焊接。每次焊接的代价为被焊两段钢管中**较重的一根的重量**。例如,假设w[1]=5,w[2]=1,w[3]=2,如果先把w[1]和w[2]焊好,代价为 5,再把w[3]焊上,又要代价 6,总代价是 5+6=11。但如果先焊w[2]和w[3],再焊w[1],则总代价为 2+5=7。

- (1) 请设计一个动态规划算法计算出最优的焊接顺序使总代价最小,并给出归纳公式(10分);
- (2) 请应用所设计的算法,求出以下 5 根钢管的最优焊接顺序和总代价: w[1]=6, w[2]=2,w[3]=7,w[4]=5,w[5]=8,并写出具体的求解过程(10 分)。

- 5. (20 分)一架飞机需要从城市 C_1 出发,并把乘客送到 C_2 , C_3 , C_4 三个城市,任意两个城市间的飞行时间如表 1 所示,城市 C_1 和 C_1 之间所需的飞行时间记为 $\{I_i\}I_i\}$ 。请为飞机安排一条飞行时间最短的线路,使飞机从 C_1 出发并回到 C_1 ,且每个城市只在线路中出现 1 次。
 - (1) 画出该问题的分支限界法求解的解空间树,并说明如何设计界限函数。
 - (2) 写出优先级队列式分支限界法求解该问题的过程, 画出被剪掉的分支, 说明被剪枝的原因。

t[/][/]	1	2	3	4
1	. 0	30	8	7
2	30	0	4	5
3	8	4	0	10
4	7	5	10	0

- 6. (20 分)设某一机器由 3 个部件 x_1 、 x_2 、 x_3 组成,每一个部件都可以从 3 个不同的供应商处购得。设 w_{ij} 是从供应商 j 处购得的部件 x_i 的重量, c_{ij} 是相应的价格。机器部件重量 w_{ij} 和价格 c_{ij} 分别如下表所示,求总价格不超过 15 的最小重量机器设计。
 - (1) 阐述回溯法和分支限界法的区别。(6分)
 - (2) 令解向量为<x₁、x₂、x₃>,以回溯法求解该问题,写出最优解与其对应的总价格和重量:写出可行性约束函数和限界函数,并画出剪枝后的解空间树。(7分)
 - (3) 令解向量为<x₁、x₂、x₃>,以基于优先级队列的分支限界法求解该问题,写出优先级函数,画出剪枝后的解空间树,并注明分支限界法生成树结点的先后顺序。(7分)

Wij	j=1	<i>j</i> =2	j=3
i=1	4	2	8
i=2	5	2	1
i=3	2	2	3

Cy	<i>j</i> =1	j=2	j=3
<i>i</i> =1	10	6	12
<i>i</i> =2	8	9	5
i=3	2	5	4