Exercises 02 - Data Representation

0.0.1 Data Representation Exercises

Exercise 1 – What is the largest 32-bit binary number that can be represented with:

- (a) Unsigned numbers
- (b) Two's complement numbers
- (c) Sign/magnitude numbers

Exercise 2 – What is the smallest (most negative) 16-bit binary number that can be represented with:

- (a) Unsigned numbers
- (b) Two's complement numbers
- (c) Sign/magnitude numbers

Exercise 3 – What is the smallest (most negative) 32-bit binary number that can be represented with:

- (a) Unsigned numbers
- (b) Two's complement numbers
- (c) Sign/magnitude numbers

Exercise 4 – Convert the following unsigned binary numbers to decimal and to hexadecimal:

- (a) 1110₂
- (b) 100100₂
- (c) 11010111₂
- (d) 011101010100100₂
- (e) 0110₂
- (f) 101101₂
- (g) 10010101₂
- (h) 110101001001₂

Exercise 5 – Convert the following hexadecimal numbers to decimal and to unsigned binary:

- (a) $4E_{16}$
- (b) $7C_{16}$

- (c) ED3A₁₆
- (d) 403FB001₁₆
- (e) 2B₁₆
- (f) $9F_{16}$
- (g) 42CE₁₆
- (h) E34F₁₆

Exercise 6 – Convert the following two's complement binary numbers to decimal:

- (a) 1110₂ (4-bit)
- (b) 100011₂ (6-bit)
- (c) 01001110₂ (8-bit)
- (d) 10110101₂ (8-bit)
- (e) 1001₂ (4-bit)
- (f) 110101₂ (6-bit)
- (g) 01100010₂ (8-bit)
- (h) 10111000₂ (8-bit)

Exercise 7 – Convert the following decimal numbers to unsigned binary and to hexadecimal:

- (a) 42_{10}
- (b) 63₁₀
- (c) 229₁₀
- (d) 845₁₀
- (e) 56₁₀
- (f) 75₁₀
- (g) 183₁₀
- (h) 754₁₀

Exercise 8 – Convert the following decimal numbers to 8-bit two's complement numbers or indicate overflow. Range of 8-bit two's complement: $-128 \le N \le +127$.

- (a) 24
- (b) −59

- (c) 128
- (d) -150
- (e) 127
- (f) 48
- (g) -34
- (h) 133
- (i) −129

Exercise 9 How many bytes are in a 32-bit word? How many nibbles are in the 32-bit word? How many bytes are in a 64-bit word? How many nibbles are in the 64-bit word? How many bits are in 2 bytes? How many bits are in 6 bytes?

Exercise 10 Convert the following decimal numbers to IEEE 754 single-precision format:

- (a) 45.375₁₀
- (b) -13.25_{10}
- (c) 0.1_{10}
- $(d) -0.125_{10}$

Exercise 11 Convert the following IEEE 754 single-precision numbers into decimal values:

- (a) 0 10000010 011000000000000000000000

Exercise 12 – A particular modem operates at 768 Kb/sec. How many bytes can it receive in 1 minute?

Exercise 13 USB 3.0 can send data at 5 Gb/sec. How many bytes can it send in 1 minute?