

Chimie

Chapitre 4 – Equilibres de dissolution et de précipitation

1) Définitions

L'apparition d'une phase solide, à partir des ions en solution, constitue une réaction de précipitation. A l'inverse, si un solide se dissout en solution pour former des ions, la réaction est une réaction de dissolution.

La solubilité s d'un composé est la concentration maximale (en mol/L) que l'on peut dissoudre dans un volume donné de solvant et à une température donnée. La solution obtenue est dite saturée. Le soluté qui est en excès est en équilibre avec la solution saturée.

La solubilité dépend de la nature du soluté, du solvant et de la température.

2) Produit de solubilité K_s

Soit un solide A_mB_{n (solide)} en très grande quantité qui se dissocie dans l'eau selon l'équation suivante :

Dissolution
$$A_m B_n(solide) <=> mA^{x+}(aqueu) + nB^{y-}(aqueu)$$
Précipitation

Constante d'équilibre d'un équilibre de solubilité = produit de solubilité K_s :

$$K_{s} = \frac{a(A^{x+})^{m} \times a(B^{y-})^{n}}{a(A_{m}B_{n})}$$

- o $a(A^{x+})^m$, $a(B^{y-})^n$ et $a(A_mB_n)$ les activités de A^{x+} , B^{y-} et A_mB_n respectivement.
- o m et n les coefficients stœchiométriques de A^{x+} et B^{y-} respectivement.
- Or $A_m B_n$ est un solide donc $a(A_m B_n) = 1$.

3) Prévision d'une réaction de dissolution ou précipitation

Pour prévoir si un précipité aura tendance à se former ou au contraire à se dissoudre, il faut calculer le quotient réactionnel Q_r et le comparer au produit de solubilité K_s :

$Q_r = [A^{x+}]_t^m \times [B^{y-}]_t^n \ge K_s$	Formation du précipité, la solution est saturée.
$Q_r = [A^{x+}]_t^m \times [B^{y-}]_t^n < K_s$	Le précipité se dissout, la solution est limpide.