Contents

1	\mathbf{Pre}	sentation	1
	1.1	Logistics:	1
	1.2	Grading	1
	1.3	Work	2
	1.4	Health excuses	2
2	Intr	roduction to Computer Vision	2
	2.1	what is vision?	2
	2.2	what information to extract?	2
	2.3	what is color?	2
	2.4	two types of light sensitive receptors	3
	2.5	trichromacy	3
	2.6	RGB v. HSV	3
	2.7	white balance:	3
		2.7.1 Film cameras:	3
		2.7.2 digital cmeras	3
		2.7.3 Von Kries adaptation	3
		2.7.4 Best way: gray card	4
		2.7.5 Brightest pixel assumption (non-saturated)	4
		2.7.6 Gamut mapping	4
3	Sca	le-invariant	4
4	Det	ectors	4
3	4.1	Harris detector	4
		4.1.1 mathematics	4
		4.1.2 cornerness	5
	4.2		5

1 Presentation

1.1 Logistics:

Tuesday 8:15 - 9:30 Friday 9:45 - 11:00

1.2 Grading

• Homework 60%

- Final exam 20%
- Midterm exam 20%

1.3 Work

- Regular quizzes
- Homework/ project -> pre-requisite to take the final exam
 - won't accept any homework if it is late.

1.4 Health excuses

Not accepting health excuses.

2 Introduction to Computer Vision

The goal of computer vision to bridging the gap between pixels and meaning.

2.1 what is vision?

- humans: -> images -> sensing devices -> iterpreting device -> interpretations
- computers: -> images -> cameras -> computers -> interpretation

2.2 what information to extract?

- Metric 3D information
- Semantics

2.3 what is color?

- the result of ityeraction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.

2.4 two types of light sensitive receptors

- cones: cone-shaped, less sensitive, operate in high light, color vision
- Rods: rod-shaped, highly snesitive, operate at night, gray-scala vision

2.5 trichromacy

- three numbers seem to be sufficient for encoding color
- dates back to 18th centuary.
- don't have to be always RGB

2.6 RGB v. HSV

- RGB: component
- HSV: hue, saturation, value

2.7 white balance:

- it is the process of removing unrealistic color casts, so that objects which appear white in person are rendered white in you photo.
- when the white balance is not correct, the picture will have n unnatural color "cast".

2.7.1 Film cameras:

different types of film or different filteres for different illumination condition

2.7.2 digital cmeras

- automatic white balance
- custom white balancing using a reference objects

2.7.3 Von Kries adaptation

- multiply each channel by a gain factor
- A more general approach would correspond to an arbitrary 3x3 matrix

2.7.4 Best way: gray card

- take a poiture of a neutral object (gray/white)
- deduct the weight of each channel, use the inverse of the weight to calibrate each channel.
- without gray card, we need to guess
 - using the average of the image, assume it is gray

2.7.5 Brightest pixel assumption (non-saturated)

- highlights usually have the color of the light source
- Use weights inversely proportional to the values of the pixel

2.7.6 Gamut mapping

3 Scale-invariant

4 Detectors

4.1 Harris detector

4.1.1 mathematics

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]$$

This equation is computational expensive, so we can use the first order Taylor

$$\begin{split} & \sum_{x,y} [I(x+u,y+v) - I(x,y)] \\ & = \sum_{x,y} [I(x,v) + uI_x + vI_y - I(x,y)] \\ & = u^2 I_x^2 2uv I_x I_y + v^2 I_y^2 \\ & = [uv] (\sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}) [uv]' \end{split}$$

Thus, we can have a bilinear approximation

$$M = \left(\sum w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}\right)$$

and

$$E(u, v) \approx [u, v] M[u, v]'$$

4.1.2 cornerness

We look at the two eigen value of the M matrix. With two big eigenvalues, it means it is a corner. If one is significantly bigger than the other, it is a edge. If both small, it is plain images. We write

$$R = det(M) - k \cdot tr(M)^2$$

, where
$$det(M)=\lambda_1\lambda_2,\,tr(M)=\lambda_1+\lambda_2$$

4.2