GLYCERYL OLIGONUCLEOTIDE

Patent number:

JP8208687

Publication date:

1996-08-13

Inventor:

HOTODA HITOSHI; KOIZUMI MAKOTO; OMINE HISANORI; FURUKAWA HIDEHIKO; NISHIGAKI

TAKASHI; ABE YASUSHI; KANEKO MASAKATSU

Applicant:

SANKYO CO LTD

Classification:

- international:

C07H21/04

- european:

Application number: JP 19950301020 19951120

Priority number(s):

Abstract of JP8208687

PURPOSE: To obtain a new compound, a specific glyceryl oligonucleotide, useful as an anti-HIV agent having excellent anti-HIV activity and improved stability in blood by partially substituting deoxyribose with glycerol.

CONSTITUTION: This glyceryl oligonucleotide is shown by formula I [DBB is 3,4-(dibenzyloxy)benzyl; R<1> is guanin-9-yl or adenin-9-yl; R<2> is adenin-9-yl, guanin-9-yl, cytosin-1-yl, thymin-1-yl or uracil-1-yl; (m) is integer of 0 or 1-6; (n) is an integer of 1-6; m+n is 2-10], has excellent anti-HIV activity and improved stability in blood). The compound is obtained by introducing a nucleic acid base into a protected glycerol of formula II, reacting the resultant substance with 4,4'-dimethoxytrityl chloride, reacting the resulting substance with succinic anhydride to give a compound of formula III (R<3> is a nucleic acid base; DMT is 4,4'-dimethoxytrityl), subjecting the compound to extension reaction by phosphoamidite method and deprotecting.

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-208687

(43)公開日 平成8年(1996)8月13日

(51) Int.Cl. 6

識別記号 庁内整理番号 FΙ

技術表示箇所

CO7H 21/04

Z

// A61K 31/70

ADY

審査請求 未請求 請求項の数4 OL (全 16 頁)

(21)出顯番号	特願平7-301020	(71)出願人	000001856
()			三共株式会社
(22)出願日	平成7年(1995)11月20日		東京都中央区日本橋本町3丁目5番1号
/——) (micros) (m.		(72)発明者	穂戸田 仁
(31)優先権主張番号	特願平6-291207		東京都品川区広町1丁目2番58号 三共株
(32)優先日	平6 (1994)11月25日		式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	小泉 誠
			東京都品川区広町1丁目2番58号 三共株
		www.	式会社内
		(72)発明者	大峰 寿典
			東京都品川区広町1丁目2番58号 三共株
			式会社内
		(74)代理人	弁理士 大野 彰夫 (外2名)
			最終頁に続く

(54) 【発明の名称】 グリセリルオリゴヌクレオチド

(57)【要約】

*目的とする。

【課題】本発明は、優れた抗HIV活性を有し、しか

【解決手段】一般式

も、優れた安定性も有する抗HIV剤を提供することを*

[化1]

(1)

[式中、DBBは3、4-(ジベンジルオキシ) ペンジ ル基: R1 はグアニル又はアデニル基; R2 はアデニ ル、グアニル、シトシル、チミニル又はウラシリル基;

mは0又は1乃至6;nは1乃至6。但し、m及びnの 和は2乃至10]で表される化合物及びその塩。

【特許請求の範囲】 【請求項1】一般式 *【化1】

(1)

「式中、DBBは3、4-(ジベンジルオキシ) ベンジ ル基を示し、R1 はそれぞれ独立にグアニンー9ーイル 又はアデニンー9-イル基を示し、R² はそれぞれ独立 にアデニン-9-イル、グアニン-9-イル、シトシン - 1 - イル、チミン- 1 - イル又はウラシル- 1 - イル 基を示し、mは0又は1乃至6の整数を示し、nは1乃 ある。] で表される化合物及びその塩。

【請求項2】請求項1において、R2 がグアニン-1-イル基である化合物及びその塩。

【請求項3】 請求項1において、m及びnの和が5であ り、塩基配列がTGGGGGTはTGGGAGである化 合物及びその塩。

【請求項4】請求項1において、m及びnの和が6であ り、塩基配列がTGGGAGGである化合物及びその 塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、抗HIV活性を有 するオリゴデオキシリボヌクレオチド誘導体で、一部の デオキシリボースをグリセロールに置き換え、血中安定 性を向上させた、グリセリルオリゴヌクレオチド誘導体 に関する。

[0002]

【従来の技術】近年、オリゴヌクレオチド誘導体が、種 々の生物活性を示すことがわかってきた。例えば、Cala brettaらは、慢性骨髄性白血病に対する18量体のアン チセンスオリゴヌクレオチドを報告した (B. Calabretta et al., Proc. Natl. Acad. Sci. USA, 88, 2351-2355(1991))。また、Griffin らは、15量体のオリゴヌクレオ チドがトロンピン阻害剤として作用することを報告した (L.C. Griffin et al, Gene, 137, 25-31(1994))。しか し、これらのオリゴヌクレオチド誘導体は天然型の構造 であり、天然型のオリゴヌクレオチドは、血中での分解 が非常に早いことが知られている(S. Akbtar et al, Li

手段として、リン酸ジエステル結合をチオエートに変換 する方法が知られている。例えば、Agrawal らは、抗H IV-1活性を有するホスホロチオエート型の25量体 のオリゴヌクレオチドを報告した(A. Agrawal et al, Cl in. Res., 42, 282A(1994))。 しかし、ホスホロチオエー ト型のオリゴヌクレオチドは非常に多くのジアステレオ 至6の整数を示す。但し、m及びnの和は2乃至10で 20 マーの混合物となり、単一の化合物を得ることが困難で あった。

2

【0004】一方、本発明者らは、5'一末端が修飾さ れた短鎖のオリゴヌクレオチドが、抗HIV-1活性を 示すことを報告した(特開平5-138517号)。

[0005]

【発明が解決しようとする課題】生理活性を有するオリ ゴヌクレオチド誘導体として、オリゴヌクレオチド部分 が天然型の化合物は、血中安定性が低いことが知られて いる。また、血中安定性を向上させるために、オリゴヌ 30 クレオチド部分をホスホロチオエート型にした化合物は 非常に多くのジアステレオマーの混合物になってしま う。従って、オリゴヌクレオチド部分がジアステレオマ 一の混合物とならない形で修飾することにより、血中安 定性が向上するような、生理活性を有するオリゴヌクレ オチド誘導体の開発が望まれている。

[0006]

【課題を解決するための手段】本発明者らは、前記の課 題を解決すべく鋭意研究の結果、抗HIV-1活性を有 するオリゴヌクレオチド誘導体のリポース部分をグリセ ロールに置き換えた化合物が血中のヌクレアーゼによる 分解に対して非常に安定で、ジアステレオマーの混合物 とならず、強い抗HIV-1活性を有することを見出し た。また、これらのオリゴヌクレオチド誘導体の合成に あたっては、グリセリルヌクレオシドホスホロアミダイ ト中間体が有用であることを見出した。

[0007] 本発明のグリセリルオリゴヌクレオチド は、一般式

[0008]

(1)

[0009] [式中、DBBは3、4-(ジベンジルオ キシ) ベンジル基を示し、R1 はグアニン-9-イル又 はアデニン-9-イル基を示し、R² はアデニン-9-イル、グアニン-9-イル、シトシン-1-イル、チミ ン-1-イル又はウラシル-1-イル基を示し、mは0 又は1乃至6の整数を示し、nは1乃至6の整数を示 す。但し、m及びnの和は2乃至10である。]で表さ

アニンー9-イル基であり、m及びnの和は好適には 5、6又は7であり、さらに好適には5又は6である。

れる化合物及びその塩である。

【0011】また、R®の「イミド基に保護基を有して いてもよいチミンー1ーイル若しくはウラシルー1ーイ ル基」の保護基としては、アシル型の保護基であれば特 に限定はないが、好適にはベンゾイル基又はアニソイル 基である。

【0012】一般式(1)の化合物のうち、好適な化合 物としては、下記の [A群] に示す塩基配列をもつ化合 物があげられ、さらに好適には [B群] に示す塩基配列 をもつ化合物があげられる。なお、Tはチミン残基を、 Gはグアニン残基を、Aはアデニン残基を示す。

[0013] [A群] TGGGGG、TGGGAG、T GGGAGG, TGGGGGGG, TGGGGAG, TG GGGTG, TGGGGGTG, TGGGGGCG, TG GGGUG, TGGGAGGG, TGGGAGTG, T GGGTGGG, TGGGGTGGG, TGGGGTT [0010] 一般式 (1) において、R2 は好適にはグ 20 GGG、TGGGGAGG、TGGGGAAGG、TGG GGTTGGTG, TGGGGTTGGGG.

> [B群] TGGGGG、TGGGAG、TGGGAG G.

[0014]

【発明の実施の形態】

(製造方法) 次に本発明のグリセリルオリゴヌクレオシ チドの製造方法について説明する。

[0015]

[化3]

[0016]

* * 【化4】

(1a)

[0018] 工程表中、R¹、R²、R⁸、m及びnは 前述のものを示し、R4 は2-アミノー6-クロロブリ ン-9-イル基を示し、R⁵ はアデニン-9-イル、シ トシン-1-イル、チミン-1-イル又はウラシル-1 ーイル基を示し、Msはメタンスルホニル基を示し、i Prはイソプロピル基を示し、DMTは4、4'ージメ トキシトリチル基を示し、CPGはコントロールドポア

【0019】以下に、各工程について、詳しく説明す る。

[0020] (第1工程) メシル化

グラスを示す。

本工程は、不活性溶剤中、化合物(3)に、塩基の存在 下、メタンスルホニルクロリドを反応させて、化合物 (4) を得る工程である。

[0021]使用される溶剤としては、反応を阻害せ ず、原料化合物をある程度溶解するものであれば特に限 定はないが、好適には、メチレンクロリド、クロロホル ム、ジクロロエタンのようなハロゲン化炭化水素類(特 にメチレンクロリド)である。使用される塩基として は、トリエチルアミン、ピリジン等の有機アミン(特に トリエチルアミン) があげられる。

[0022] 反応温度及び反応時間は、原料、試薬によ り異なるが、0乃至40℃で、30分乃至5時間であ る。

[0023] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

グネシウムで乾燥する。乾燥剤を濾去し、減圧下、溶剤 を留去することにより得ることができる。

[0025]得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

[0026] (第2工程) 2-アミノー6-クロロブリ ンの導入

30 本工程は、不活性溶剤中、化合物(4)に、塩基の存在 下、2ーアミノー6ークロロプリンを反応させて、化合 物(5)を得る工程である。

[0027] 使用される溶剤としては、反応を阻害せ ず、原料化合物をある程度溶解するものであれば特に限 定はないが、好適には、ジメチルホルムアミドである。

[0028] 使用される塩基は、好適には、炭酸ナトリ ウム、炭酸カリウムのようなアルカリ金属炭酸塩であ

【0029】反応温度及び反応時間は、原料、試薬によ り異なるが、50乃至150℃で、10乃至48時間で ある。

[0030] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0031] 例えば、溶剤を減圧下留去し、残渣に酢酸 エチルを加えて溶解し、飽和重曹水で洗浄し、無水硫酸 マグネシウムで乾燥し、溶剤を減圧下留去することによ り得ることができる。

【0032】得られた目的化合物は必要ならば、常法、

[0033] (第3工程) クロルの加水分解、アミノ基 の保護、ジメトキシトリチル化

本工程は、連続する3工程からなる。

3 a) 不活性溶剤中、化合物(5)に、希塩酸等の無機 酸を加え、80乃至150℃で、30分乃至2時間、反 応させる。終了後、氷冷下、水酸化ナトリウム水溶液で 中和し、溶剤を減圧下留去する。残渣をピリジンを用い て、3回共沸して乾燥させ、そのまま、次工程に用い る。

[0034] 3b) 3aで得られる化合物を無水ピリジ 10 ンに懸濁させて、−20乃至5℃で提拌しながら、トリ メチルシリルクロリド (TMSC1) を滴下する。滴下 が終了してから30分後に無水イソブチリル酸を加え、 10乃至40℃で、30分乃至4時間攪拌する。その 後、-20乃至5℃で、水を加え、さらに10乃至30 分間攪拌し、濃アンモニア水を加えて30分乃至2時間 提拌する。

[0035] 反応終了後、溶剤を減圧下に留去し、水を 加えて溶解後、エーテル等の水と混和しない溶剤で洗浄 する。水を減圧下に留去し、ピリジンを用いて共沸によ 20 本工程は、塩化メチレン中、化合物(6)に、1H-テ り乾燥して、目的化合物を得ることができる。

[0036] 通常、目的化合物は、精製せずに次の工程 に用いる。

[0037] 3c) 3bで得られる化合物を無水ピリジ ンに溶解し、4、4'-ジメトキシトリチルクロリドを 加え、10万至40℃で、1万至10時間攪拌する。反 応終了後、塩化メチレンで希釈し、飽和重曹水で洗浄す る。有機層を乾燥剤で乾燥後、溶剤を留去し、残渣をク ロマトグラフィーにて精製して、目的化合物を得ること ができる。

[0038] (第4工程) TMS化、ペンゾイル化、加 水分解

本工程は、化合物(9)を原料として、化合物(10) を得る工程である。

【0039】本工程は、連続した3工程からなる。

【0040】4a) ピリジン中、化合物(9) に、トリ メチルシリルクロリドを反応させ、10万至40℃で、 30分乃至2時間攪拌する。

【0041】4b) 終了後、反応液へ、ベンゾイルクロ リドを加え、10乃至40℃で、30分乃至5時間攪拌 40 する。

[0042] 4c)終了後、反応液へ水を加え、10乃 至40℃で、5分乃至2時間攪拌する。

[0043] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

【0044】例えば、溶剤を減圧下留去し、残渣に塩化 メチレンを加えて溶解し、飽和重曹水で洗浄し、無水硫 酸マグネシウムで乾燥し、溶剤を減圧下留去することに

10

例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

【0046】 (第5工程) ジメトキシトリチル化 本工程は、ピリジン中、化合物(10)に、ジメトキシ トリチルクロリドを反応させて、化合物(6)を得る工 程である。

[0047] 反応温度及び反応時間は、原料、試薬によ り異なるが、10万至40℃で、3万至12時間であ る。

[0048] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

【0049】例えば、溶剤を減圧下留去し、残渣に塩化 メチレンを加えて溶解し、飽和重曹水で洗浄し、無水硫 酸マグネシウムで乾燥し、溶剤を減圧下留去することに より得ることができる。

[0050] 得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

[0051] (第6工程) 3価のリンの導入

トラゾールジイソプロビルアミン塩の存在下、2-シア ノエチルーN. N. N', N'ーテトライソプロピルホ スホロジアミダイトを反応させて、本発明の目的中間体 (2) を得る工程である。

[0052] 反応温度及び反応時間は、原料により異な るが、0万至40℃で、10分乃至48時間である。

【0053】 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

【0054】例えば、溶媒を減圧下留去し、水と混和し 30 ない溶剤、例えば酢酸エチルを加え、残さを溶解し、氷 冷した炭酸ナトリウム水溶液及び飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥した。乾燥剤を滷去し、減 圧下、溶剤を留去することにより得ることができる。

[0055]得られた目的化合物は必要ならば、常法、 例えば再結晶、再沈殿又はクロマトグラフィー等によっ て更に精製できる。

[0056] (第7工程) コハク酸残基の導入 本工程は、ビリジン中、化合物(6)に、ジメチルアミ フピリジンの存在下、無水コハク酸を反応させて、化合 物(7)を得る工程である。

[0057] 反応温度及び反応時間は、原料により異な るが、0乃至40℃で、10乃至48時間である。

[0058] 反応終了後、目的化合物は、常法に従い、 反応混合物から採取される。

[0059] 例えば、溶媒を減圧下留去し、水と混和し ない溶剤、例えば酢酸エチルを加え、残さを溶解し、1 0 %クエン酸水溶液及び水で洗浄し、無水硫酸マグネシ ウムで乾燥した。乾燥剤を減去し、減圧下、溶剤を留去

例えば再結晶 (特にアセトニトリルを用いて) 等によって更に精製できる。

【0061】(第8工程) CPGとの結合 本工程は、化合物(7)を原料として、化合物(8)を 得る工程である。

[0062] 本工程は、連続した3工程からなる。

[0063] 8 a) 化合物(7)を、テトラヒドロフランとピリジンに溶解し、ペンタクロロフェノール及びジシクロヘキシルカルボジイミド(DCC)を加え、-20乃至5℃で30分乃至2時間攪拌した後に、10乃至 1040℃で12乃至24時間攪拌する。反応終了後、不溶物を濾過して除き、溶剤を滅圧下に留去する。

【0064】得られた目的化合物は必要ならば、常法、 例えばクロマトグラフィー等によって更に精製できる。

【0065】8b)8aで得られたら化合物を、ピリジンを用いて共沸して乾燥させた後に、ジメチルホルムアミド (DMF) に溶解し、アミノプロピルCPG (CPGINC: $AMP00500B;521A;120/200;85.7\mumo1/g)$ 及びトリエチルアミンを加え、10万至40℃で10万至24時間放置する。得られる不溶物を濾過して集め、DMF及び塩化メチレンで洗浄する。

【0066】8c)8bで得られる化合物に無水酢酸と ピリジンを加え、ジメチルアミノピリジンを加え、10 乃至40℃で1時間放置する。得られる不溶物を濾過し て集め、ピリジンと塩化メチレンで洗浄し、乾燥させる ことにより、目的化合物(8)を得ることができる。

[0067] (第9工程) 伸長反応、脱保護、脱CPG 本工程は、通常のDNA合成機を用いた通常のオリゴデオキシヌクレオチドの合成に準じて行うことができる。

[0068] 例えば、バイオサーチ(日本ミリボア・リミテッド)のCycloneTM Plus DNA/R NAシンセサイザーに、プログラムとしてアミダイトカートリッジを用いて伸長反応を行っていく。

[0069] この際、所望に応じ使用する各ユニット試 薬としては、通常のアデニン及びグアニンに対応するβ ーシアノエチルアミダイト溶液 (35mMアセトニトリ ル溶液)、5′-O-(3,4-ジベンジルオキシベン*

*ジル) チミジン-3'-O-(2-シアノエチル N, N-ジイソプロピル) ホスホロアミダイト (穂戸田ら、 Nucleotide s, 13, 1375-1395 (1994)) のアセトニトリル溶液 (35mM)、所望の化合物 (2) のアセトニトリル溶液 (35mM) である。

12

[0070] 固相担体としては、5 μmol の化合物 (8) を用いる。

[0071] 最後のユニットを縮合した後には酸処理を 行なわない設定にしておき、コントロールドポアグラス (CPG) 上に、保護されたオリゴヌクレオチドが構築 された誘導体を得ることができる。これを滅圧下乾燥 し、カラムからとり出し、濃アンモニア水にひたして密 閉し、10万至40℃で2日間反応する。切断されたC PGを濾過により除き、水で洗浄し、ろ液と洗浄液を合 わせて、ジエチルエーテルで洗浄し、減圧下にアンモニ アとジエチルエーテルを除いた後、水溶液を濃縮する。 これをミリポアフィルターで濾過した後に、逆相HPL C (Inertsil PREP-ODS, 20×25 20 0 mm: 0. 1 M酢酸トリエチルアミン水溶液 (TEA) A), pH7; 25→55% CH; CN/30mi n, linear gradient;7mL/mi n; 254nm) にアプライし、16、9分に溶出する 画分を集める。減圧下、アセトニトリルを留去し、凍結 乾燥することにより本発明の目的化合物(1)を得るこ とができる。

[0072] 化合物(3) 又は(9)の光学活性体を用いることにより、所望の逆配位の本発明の化合物(1)を同様にして製造することができる。化合物(3)の光 30 学活性体は、市販のものを用いることができる。化合物(9)の光学活性体は、公知の方法により製造することができる(A. Holy, Collection Czechoslov. Chem. Commun., 40, 187(1975)。)。

[0073]

【実施例】

(実施例1)

[0074]

[化6]

[0075] (1a) (R) - (2, 2-ジメチル-1, 3-ジオキソラン-4-イル) メチル メタンスル ホネート

1. 32g (10mmol) の(S) - (+) - (2, 2-ジメチルー1, 3-ジオキソラン-4-イル) メタ チレンに溶解し、0 ℃にて提拌した。ここに、2.12 mL (15.2 mmol) のトリエチルアミンを加え、0.854 mL (11 mmol) のメシルクロリドを滴下して加えた。1 時間後に50 mL の水を加え、さらに10 分間提拌した。有機層を分取し、50 mL づつの飽

標記目的化合物 (o i l) を得た。

[0 0 7 6] ¹ H - NMR (270MHz, CDCl₃) δ ppm : 4.38 (m, 1H); 4.22(d, 2H, J=5.28Hz); 4.11 (dd, 1H, J=6.60, 8.58Hz); 3.83(dd, 1H, J=5.94, 8.58Hz); 3.06(s, 3H); 1.45 (s, 3H); 1.37(s, 3H).

(1b) <u>2-アミノー6-クロロー9-[(2, 2-ジ</u> メチルー1, 3-ジオキソラン-4-イル) メチル] ブ リン

(1a) で得られた化合物1.051g(5mmo1)を90mLのジメチルホルムアミド(DMF)に溶か 10 し、1.059g(6.25mmo1)の2-アミノー6-クロロプリンと0.888g(6.43mmo1)のK2 CO。を加え、90℃にて一夜攪拌した。溶媒を減圧下留去した後に、100mLの酢酸エチルに溶解し、100mLの飽和重曹水で洗浄した。水層を100mLの酢酸エチルで2回抽出し、前の有機層と合わせて無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去した後に、100g(230-400mesh)のシリカゲルカラムにアプライし、2乃至3%メタノールー塩化メチレンで溶出して、0.9622g(68%)の標記 20目的化合物を得た。

[0 0 7 7] ¹ H - N M R (270MHz, DMSO-d₆) δ ppm : 8. 08(s, 1H); 6. 92(s, 2H); 4. 52-4. 43(m, 1H); 4. 20-4. 10 (m, 2H); 4. 01(dd, 1H, J=6. 60, 8. 57Hz); 3. 77(dd, 1H, J=5. 28, 8. 57Hz); 1. 29(s, 3H); 1. 24(s, 3H).

MASS: 283

IR (KBr, cm⁻¹):3430, 3312, 3186, 2984, 2941, 2860, 1642, 1616, 1560, 1517, 1429.

UV (MeOH) ε : 223(22300), 248(4800), 310(6000).

(1c)

[0078]

【化7】

【0079】(1b)で得られた化合物925mg (3.26mmol)に2.75mLの水と0.55m 40 Lの12N-HC1を加え、75分間加熱還流した。反 応容器を氷水浴にて冷却しながら、約2.6mLの2. 5N-NaOHにて中和した。溶媒を減圧下留去した後 に、ピリジンで3回共沸して乾燥させた。33mLの乾燥ピリジンに懸濁させて、反応容器を氷水浴にて冷却しながら攪拌し、2.1mLのTMSC1を滴下して加えた。30分後に2.8mLの無水イソブチリル酸を加え、室温にもどして2時間攪拌した。反応容器を氷水浴 14

間攪拌した。溶媒を減圧下に留去し、100mLの水に溶かした後に、100mLのエーテルで洗浄した。溶媒を減圧下に留去した後に、ピリジンで2回共沸して乾燥させた。33mLの乾燥ピリジンに溶かし、1 267g(3.26mmo1)のジメトキシトリチルクロリドを加えて攪拌した。3時間後に200mgのジメトキシトリチルクロリドを追加し、さらに2時間攪拌した。200mLの塩化メチレンで希釈して、100mLの飽和重曹水で3回洗浄した後に、無水硫酸マグネシウムにて乾燥させた。溶媒を留去した後に、100g(70-230mesh)のシリカゲルカラムにアプライし、1-4%メタノールを含む塩化メチレンにて溶出し、標記目的化合物を924.7mg(47%)得た。

¹ H - N M R (270MHz, CDCl_s) δ ppm:11.81(s, 1H); 8.55 (s, 1H); 7.54(s, 1H); 7.47-6.81(m, 13H); 4.90(brs, 1 H); 4.40-3.98(m, 3H); 3.79(s, 6H); 3.35-3.20(m, 2H); 2.70-2.55(m, 1H); 1.27-1.22(m, 6H).

(1d)

[0080]

[化8]

【0081】(1c)で得られた化合物690mg (1. 15mmol) をピリジンで1回共沸して乾燥さ 30 せた後に6mLの塩化メチレンに溶かし、98.8mg (0.577mmo1) の1H-テトラゾールジイソブ ロピルアミン塩と404μL (1.27mmol) の2 -シアノエチルー<math>N, N, N', N' ーテトライソプロ ピルホスホロジアミダイトを加え、室温で7時間20分 攪拌した。100μLの2-シアノエチル-N, N, N', N'-テトライソプロビルホスホロジアミダイト と10mgの1Hーテトラゾールジイソプロピルアミン 塩を追加して、さらに室温で14時間挽拌した。溶媒を 留去した後に、50mしの酢酸エチルに溶かし、50m Lの氷冷した10%炭酸ナトリウム水で2回洗浄し、5 0 ml,の飽和食塩水で洗浄した。無水硫酸ナトリウムで 乾燥後溶媒を留去し、40g(70-230mesh) のシリカゲルカラムにアプライし、酢酸エチルで溶出し て標記目的化合物を806.5mg(88%)得た。

[0082] 1 H-NMR (270MHz, CDCl₁, mixture of d iastereomers) δ ppm: 11.90, 11.85(2s, 1H); 8.65, 8.31 (2s, 1H); 7.54, 7.49(2s, 1H); 7.45-6.79(m, 13H); 4.50 (brs, 1H); 4.33 (d, 2H, I=5.93Hz); 3.79(s, 6H); 3.70-

(1 e) [0 0 8 3] [化9]

[0084] (1d) で得られた化合物179mg (0.3mmol)をピリジンで1回共沸して乾燥させ た後に、4.5mLの乾燥ピリジンに溶かし、12mg (0、1mmol) のジメチルアミノビリジン(DMA P) と30mg (0.3mmol) の無水コハク酸を加 え、室温で攪拌した。3時間後に12mgのDMAPを 追加し、さらに15時間30分後に41µL(0.3m mo1) のトリエチルアミンを加えた。さらに90分後 に30mgの無水コハク酸を加え、さらに2時間30分 後に60mgの無水コハク酸を加え、さらに2時間後に 60mgの無水コハク酸を加えて、さらに16時間30 分攪拌した。溶媒を減圧下に留去して、20mLの酢酸 エチルに溶かし、20mLの10%クエン酸水溶液で2 回洗浄し、20mLの水で1回洗浄した。無水硫酸マグ ネシウムで乾燥させた後に、溶媒を減圧下に留去して、 アセトニトリルから再結晶して、若干無水コハク酸を含 む標記目的化合物を151.8mg (72.5%) 得 た。

[0 0 8 5] 1 H - NMR (270MHz, CDCl₃) δ : 9.49(s, 1 H); 7.56(s, 1H); 5.22(brs, 1H); 4.52-4.30(m, 2H); 3.7 9(s, 6H); 3.27-2.40(m, 7H); 1.17(d, 6H, J=7.26Hz).

(1 f)

[0086]

[化10]

CH₃O CPG

【0087】(1e)で得られた化合物151.8mg (0. 217mmol) をピリジンで2回共沸して乾燥 させた後に、2mLのテトラヒドロフランと50μLの 10 ピリジンに溶かし、58mg (0.217mmol)の ペンタクロロフェノールと113mg(0.55mmo 1) のDCCを加え、氷水浴中で攪拌した。1時間後に 室温にもどし、さらに16時間攪拌した。不溶物を濾過 して除き、溶媒を減圧下に留去し、10g(70-23 Omesh) のシリカゲルカラムにアプライし、3%メ タノールを含む塩化メチレンで溶出することにより23 9. 4mgの若干ジシクロヘキシルウレアを含む活性エ ステル誘導体を得た。これをピリジンで2回共沸して乾 燥させた後に、1.2gのアミノプロピルCPG(CP 20 GINC.; AMP00500B; 521A; 120/ $200:85.7 \mu mol/g) \geq 5 m L O D M F \geq 2$ 8 u L (0.2 mm o 1) のトリエチルアミンを加え、 室温で放置した。19時間後に不溶物を濾過して集め、 DMFと塩化メチレンで洗浄した。9mLのピリジンと 1mLの無水酢酸と122mg (1mmol) のジメチ ルアミノビリジンを加え、室温で放置した。1時間後に 不溶物を濾過して集め、ピリジンと塩化メチレンで洗浄 し、乾燥させて、目的とする標記目的化合物を得た。グ リセリルグアニン導入量をジメトキシトリチル基で定量 30 したところ、46.7μmol/gであった。

[0088] (1g)

[0089]

[化11]

【0090】ミリジェン/パイオサーチ(日本ミリボア・リミテッド)のCycloneTMPlus DNA/RNAシンセサイザーに、付属する合成用試薬類と、プログラムとして $15.0\mu moleアミダイトカートリッジを接続した。ただしこのとき、チミジンに対応する<math>\beta$ ーシアノエチルアミダイト溶液のかわりに、35mMに調製した5'-O-(3,4-ジベンジルオキシベンジル)チミジン-<math>3'-O-(2-シアノエチルN、Nージイソプロピル)ホスホロアミダイト(穂戸田ら、Nucleosides & Nucleotide

シアノエチルアミダイト溶液のかわりに、35mMに調製した(1d)で得られた化合物のアセトニトリル溶液を用いた。固相担体として5μmol分のグリセリルグアニン誘導体が結合した、(1f)で得られた化合物を用い、プログラムにTGGGAGCという塩基配列を入力し、最後のTを縮合した後には酸処理を行なわない設定のプログラムを作動させることにより、コントロールドボアグラス(CPG)上に、保護されたオリゴヌクレオチドが構築された誘導体を得た。これを減圧下乾燥したのちにカラムからとり出し、10mLの濃アンモニア

洗浄液を合わせて、 $30 \, \mathrm{mL}$ づつのジエチルエーテルで $3 \, \mathrm{m}$ 法海液を $30 \, \mathrm{mL}$ 式で、 $30 \, \mathrm{mL}$ 工で、 $30 \, \mathrm{mL}$ 式で、 $30 \, \mathrm{mL}$ 工で、 $30 \, \mathrm{mL}$ 工で、 30

in, linear gradient;7mL/min;254nm)に、3回に分けてアプライし、16.*

*9分に溶出する画分を集めた。減圧下にアセトニトリルを留去したのちに凍結乾燥し、50mLの水にとかしてから再度凍結乾燥して、アモルファス状の標記目的化合物を85units (A260)得た。

18

[0091] UVmax: 254nm

(実施例2)

[0092]

[化12]

[0093] 実施例1と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGACという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を124units (A260) 得た。

※ [0094] UVmax:255nm (実施例3) [0095] [化13]

【0096】実施例1と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGCCという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を48units(A 260)得た。

★ [0097] UVmax:253nm (実施例4) [0098] [化14]

【0099】実施例1と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGCCCという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を74units(A

☆ [0100] UVmax:253nm (実施例5) [0101]

foror.

【化15】

260) 得た。

[0102] 実施例1と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTGCCCCという塩基配列を入力した。その結果、 [0103] UVmax:253nm

(実施例6)

[0104]

[0105] 実施例1と同様にして合成した。ただし、 プログラムにはTGGGAGCという塩基配列のかわり にTCCCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を75units (A 10 260) 得た。

* [0106] UVmax:253nm (実施例7) [0107]

20

[0108] (7a)

[0109]

[化18]

[0110] (R) - (-) - (2, 2-ジメチルー 1,3-ジオキソラン-4-イル)メタン(和光純薬) を用いて、実施例1 (1 a) と同様にして合成した。

[0111] (7b)

[0112]

[化19]

【0113】7aで得られた化合物を用いて、実施例1

(1b) と同様にして合成した。

[0114] (7c)

[0115]

[化20]

[0124]

[化23]

【0116】7bで得られた化合物を用いて、実施例1

[化17]

[0118] [化21]

[0119] 7 c で得られた化合物を用いて、実施例1

(1 d) と同様にして合成した。

[0120] (7e)

[0121]

30 [化22]

(1e) と同様にして合成した。

40 [0123] (7f)

21

[0126] (7g)

[0127]

* [化24]

[0128] (7d) で得られた化合物及び (7f) で ※ [0129] UVmax: 253nm 得られた化合物を、 (1d) で得られた化合物及び (1 (実施例8)

f) で得られた化合物のかわりに用いて、実施例1 (1 10 【0130】

g) と同様にして合成し、アモルファス状の標記目的化 【化25】

合物を64units (A260) 得た。

[0131] 実施例7と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGACという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を68units(A 260)得た。

★ [0132] UVmax:255nm (実施例9)

20 [0133][化26]

【0134】実施例7と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTGGGCCという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を54units(A 260)得た。

☆【0135】UVmax:252nm (実施例10) 0 【0136】 【化27】

【0137】実施例7と同様にして合成した。ただし、

♦ [0138] UVmax: 252nm

プログラムにはTGGGAGCという塩基配列のかわり にTGGCCCという塩基配列を入力した。その結果、 アモルファス状の標記目的化合物を48units(A 260)得た。 (実施例11) 【0139】 【化28】

260) 得た。

[0141] UVmax: 252nm

* [0142] [化29]

(実施例12)

[0143] 実施例7と同様にして合成した。ただし、プログラムにはTGGGAGCという塩基配列のかわりにTCCCCCという塩基配列を入力した。その結果、アモルファス状の標記目的化合物を83units(A 260)得た。

[0144] UVmax: 252nm

(実施例13)

[0145]

[化30]

[0146] (13a)

[0147]

[化31]

[0148] 9-(R)-(2, 3-シヒドロキシプロ

ビル) アデニン (A. Holy, Collection Czechoslov. Chem. Commun., 40, 187(1975).) 496mg (2.37mm o 1) をピリジンで共沸して乾燥させた後に、25mLのピリジンに溶解した。1、6mLのトリメチルシリルクロリドを加えて室温で30分間提拌した後に、1.5mLの塩化ペンゾイルを加え、室温で一夜提拌した。反応容器を氷水浴中で冷却しながら5mLの水を加えて15分間提拌した後に、5mLの29%アンモニア水を加えて1時間提拌した。溶媒を減圧下に留去した後に、残渣を25mLのH2 Oに溶かし、20mLのジエチルエ

10 塩化メチレンでトリチュレートし、2.545gの粗結晶を得た。これをピリジンで共沸して乾燥させた後に、50mLのピリジンに溶かし、4,4'ージメトキシトリチルクロリド813mg(2.4mmol)を加えて室温で18時間攪拌した。813mgの4,4'ージメトキシトリチルクロリドを追加した後に、さらに6時間攪拌した。1mLのH2 Oを加えて反応を停止させ、200mLのクロロホルムで希釈した後に、200mLづつの5%NaHCO。水で2回洗浄した。有機層をNa2SO4で乾燥した後に溶媒を減圧下留去し、残渣を100g(70-230mesh)のシリカゲルカラムにアプライし、0~3%メタノールー塩化メチレンで溶出することにより、980.3mg(67%)の目的物を得た。

24

[0 1 4 9] 1 H - N M R (270MHz, CDCl ${}_{3}$) δ : 9.14(s, 1 H); 8.74(s, 1H); 8.06-6.80(m, 19H); 4.52-4.15(m, 3H); 3.78(s, 6H); 3.25-3.12(m, 2H).

(13b)

[0150]

[化32]

30

【0151】 (13a) で得られた化合物 123mg (0.2mmol)をピリジンで共沸して乾燥させた後に、1mLのテトラヒドロフランに溶かし、ジイソプロピルエチルアミン140μLと2ーシアノエチルN,Nージイソプロピルクロロホスホロアミダイト70μLを加え、室温で攪拌した。1時間後に溶媒を留去し、残渣を50mLの酢酸エチルに溶かし、50mLづつの10%Na2COs水で2回洗浄し、Na2SO。で乾燥した。減圧下に溶媒を留去した後に、残渣を40g(70-230mesh)のシリカゲルカラムにアプライし、

[0.152] ¹H-NMR (270MHz, CDCl₃) δ :9.07,9.06 (2s, 1H); 8.80, 8.79(2s, 1H); 8.08-6.79(m, 19H); 4.63-4.30 (m, 3H); 3.79 (s, 3H); 3.78 (s, 3H); 3.72-3.40 (m, 4 H); 3.33-3.12(m, 2H); 2.51-2.36(m, 2H); 1.12-0.97(m, 12H).

[0153]

【製剤例】

(製剤例1)(ハードカプセル剤)

標準二分式ハードゼラチンカプセルの各々に、100 嘘の 粉末状の実施例化合物1、150 嘘のラクトース、50 嘘 のセルロース及び6 mgのステアリン酸マグネシウムを充 填することにより、単位カプセルを製造し、洗浄後、乾 燥する。

【0154】(製剤例2) (ソフトカプセル剤)

消化性油状物、例えば、大豆油、綿実油又はオリーブ油 中に入れた、実施例化合物1の混合物を調製し、正置換 ポンプでゼラチン中に注入して、100 嘘の活性成分を含 有するソフトカブセルを得、洗浄後、乾燥する。

【0155】(製剤例3)(錠剤)

常法に従って、100 嘘の実施例化合物 1、0.2 嘘のコロ 20 イド性二酸化珪素、5mgのステアリン酸マグネシウム、2 75 嘘の微結晶性セルロース、11 嘘 のデンプン及び98。 8 或 のラクトースを用いて製造する。

[0156]尚、所望により、剤皮を墜布する。

[0157] (製剤例4) (注射剤)

1.5 重量% の実施例化合物 1、10容量% のプロピレング リコール中で撹拌し、次いで、注射用水で一定容量にし た後、滅菌して製造する。

[0158] (製剤例5) (懸濁剤)

5 ml中に、100 mgの微粉化した実施例化合物 1、100 mg * 30

*のナトリウムカルボキシメチルセルロース、5 mgの安息 香酸ナトリウム、1.0g のソルビトール溶液(日本薬局 方) 及び0.025 mlのパニリンを含有するように製造す **ఫ్**.

[0159]

【試験例】

(試験例1) 安定性試験

血液は、ヘパリン存在下、SD系雄性ラット腹部大助脈 より採取した。採取後、速やかに4℃、3,000 rpm 、1 5分間遠心分離して血漿を得た。得られた血漿 1. 4m 上添加し、37℃で4分間プレインキュペートした後、 濃度300μg/mLの各基質を100μL添加し、3 7℃でインキュペートしながら経時的に100μLをサ ンプリングした。この時、1サンプル当たりの血漿及び 基質濃度は、それぞれ93.3%及び20µg/mLと なっている。

【0160】得られたサンプル100 μ L に、ライシス パッファー100μL, 等張リン酸塩緩衝液 (pH7. 4、PBS) 70 μL、200 mMトリスー塩酸緩衝液 (pH8) 10 μL、プロテイネースK (25mg/m L) 10 μL、液クロ定量のための内部標準物質(下記 化35に示す、200μg/mL) 10μLを添加し、 60℃、30分間加温した。室温まで冷却した後、フェ ノール/クロロホルム/イソアミルアルコール混液(2 5/24/1) 300 µ L で2回抽出した。さらに上清 の水層にクロロホルム300μLを添加し、余分なフェ ノールを除去した。上清の水層をHPLCにて分析し た。

[0161]

[化33]

【0162】なお、対照化合物として、下記に示す化合 ※ [0163] 物a (特願平6-9772号) を用いた。 [化34]

[0164] HPLC条件は以下の通りである。

[0165] 装置: 島津LC-10A

カラム:Wakopak-WS-DNA(4/6×15

 $0 \, \text{mm}$

7):アセトニトリル= 74:26 感度: 0.005~0.01AUFS

注入量:10~20μL

[表1]

実施例	5分	3 0分	1時間
2	92.89±1.26 °	80.96±1.83	79.19±2.64
3	99.41±2.54	97.57±1.58	129.11 ± 26.41
6	98.16±1.24	92.92±9.37	109.66 ± 15.63
8	96.75±2.84	83.33 ± 1.68	73.91 ± 1.94
9	99.16 \pm 7.91	103.60 ± 6.49	127.24±28.87
12	100.45 ± 2.70	102.72±6.67	102.90±17.17
合物a	52, 29±3, 24	5. 79±1. 77	2. 93±1. 52

*n=3

本発明の化合物は、血漿中での高い安定性を示した。

【0167】 (試験例2) <u>修飾オリゴデオキシリボヌク</u> レオチドの抗HV-1 活性の測定

27

抗HIV-1 活性はパウエルらの方法によって測定した (R. Pauel et al., J. Virological Methods 20, 309-321(1988))。すなわち,対数増殖期にあるMT-4細胞を150×gで5分間遠心し,得られた細胞沈澱を培地にて懸濁したのちHIV-1(IIIB型)を10 CCIDs。の濃度で37℃で1時間感染させた。その後,牛胎児血清10%を含むRPMI-1640培地(以下「血清培地」と称する)で遠心し、洗浄することによりHIV-1 感染MT-4細胞を得た。

【0.168】HIV-1 感染MT-4細胞およびHIV-1 非感染MT-4細胞をそれぞれ 4×10^5 細胞/ mIになるように血清培地に懸濁した。96穴プラスチックマイクロタイタープレート中にあらかじめ段階希釈した検体化合物溶液(血清 30 培地に溶解したもの)を各穴に 100μ I づつ入れ,次いでこの各穴に上記細胞懸濁液を各々 100μ I づつ添加し、58の炭酸ガス存在下で6 日間静置培棄した。

[0169] 同様に、検体化合物添加のHIV-1 感染MI-4 細胞および検体化合物無添加のHIV-1 非感染MT-4細胞を 培養した。

[0170] 培養終了後、MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoliumbromide)法に基づき、

生細胞数を測定し(L.M. Green et al., J. lmmnol. Methods, 70, 257-268(1984)), HIV-1 による細胞障害活性を求めた。検体化合物無添加のHIV-1 感染MT-4細胞の細胞障害活性を100%とし、検体化合物無添加のHIV-1(II

IB 型)非感染MT-4細胞の細胞障害活性を0%として、HIV-1 感染MT-4細胞の細胞障害活性を50%抑制しうる検体の濃度(ICso)を求めた。また、検体化合物の細胞毒性活性として、HIV-1 非感染MT-4細胞の増殖を50%抑制する濃度(CCso)を求めた。これらの測定結果を表2に示す。

28

[0171] [表2]

实施例	I C ₅₀ (μg/ml)	CCsο (μg/ml)
1	5, 3	>50
2	1.2	>50
3	1.0	>50
5	9.1	>50
7	3.8	>50
8	2. 0	>50
9	4. 3	>50
11	4.3	>50

その結果、表2にあげた修飾オリゴデオキシリボヌクレオチドはいずれも、特に高い抗HIV-1 活性を有すること

が明らかとなった。

「0172] これらの化合物はいずれも10μg/m1 以下の濃度で抗IIV-1 活性を示した。

フロントページの続き

(72) 発明者 古川 秀比古 東京都品川区広町1丁目2番58号 三共株 (72)発明者 西垣 隆

(16)

(72)発明者 安部 康司 東京都品川区広町1丁目2番58号 三共株

式会社内

(72)発明者 金子 正勝

東京都品川区広町1丁目2番58号 三共株

式会社内