Prevalence of STI Analysis

By: Rooney Odago

11/28/2022

1 Data Wrangling.

This ensures that the variables of interest have correct data type and format, ready for the analyses.

Importing data set from STATA (.dta file)

```
set.seed(1000)  # Package to help load .dta file
require(haven)  # load 'haven' package
library(foreign)
library(dplyr)
library(expss)
require(labelled)
stidata_unclean <- read_dta(
    "C:/Local Disk E_111920221553/STATA files/STATA TRAINING/stidata_unclean.dta"
)</pre>
```

Checking and dropping duplicates

```
duplct<-duplicated(stidata_unclean$idnumber)
# table(duplct)
# stidata_unclean$idnumber[duplicated(stidata_unclean$idnumber)]
stidata_unclean<- stidata_unclean[order(stidata_unclean$idnumber),]
# View(stidata_unclean[stidata_unclean$idnumber==51,])
stidata_unclean<-stidata_unclean[!(stidata_unclean$idnumber==51 & stidata_unclean$a1age ==23),]</pre>
```

Age Category Formulation

Categorizing sex as categorical variable with factor levels

Education Category

Occupation

Religion

Marital Status

Use of Condoms

Sex Partner in the last One year

CaseStatus

*** Checking and removing inconsistency

```
# class(stidata_unclean$casestatus)
# table(stidata_unclean$casestatus)
stidata_unclean<-stidata_unclean[order(-stidata_unclean$casestatus),]
# View(stidata_unclean[stidata_unclean$casestatus==3,])
stidata_unclean$casestatus[stidata_unclean$idnumber==1 & stidata_unclean$a1age==30]=1
stidata_unclean$casestatus[stidata_unclean$idnumber==31 & stidata_unclean$a1age==23]=1
# table(stidata_unclean$casestatus)</pre>
```

Generating STI variable and Applying labels

Apply appropriate variable labels

```
library(labelled)
var_label(stidata_unclean$AgeCat)<-"Age Category"
var_label(stidata_unclean$Sex_Cat)<-"Sex"
var_label(stidata_unclean$education_new)<-"Education"
var_label(stidata_unclean$Cocupation)<-"Employement Status"
var_label(stidata_unclean$Religion)<-"Religion"
var_label(stidata_unclean$Status_Marital)<-"Marital Status"
var_label(stidata_unclean$Used_Condom)<-"Ever Used Condom"
var_label(stidata_unclean$Sex_Partner_1_Yr)<-"Had Sex_Partner_in_last_1Yr"
var_label(stidata_unclean$Have_STI)<-"STI_Stat"</pre>
```

2. Descriptive Statistics

2.1 Influence of Socio-demographic factors on STI Prevalence

Table 1: Tabl 1: Demographic factors against STI prevalence

Factor	Overall, $N = 226$	Positive, $N = 113$	Negative, $N = 113$
Age Category			
Below 35 yrs	198 (100%)	101 (51%)	97 (49%)
Above 35 yrs	28 (100%)	12 (43%)	16 (57%)
Sex			
Female	$107 \ (100\%)$	53~(50%)	54 (50%)
Male	117 (100%)	59 (50%)	58 (50%)
Education			
Primary & Below	27 (100%)	15~(56%)	12~(44%)
Secondary & Above	199 (100%)	98 (49%)	101~(51%)
Employement Status			
Unemployed	$90 \ (100\%)$	52 (58%)	38 (42%)
Employed	$136 \ (100\%)$	61~(45%)	75~(55%)
Religion			
Catholic	$41\ (100\%)$	22~(54%)	19~(46%)
Non-Catholic	$117 \ (100\%)$	60 (51%)	57 (49%)
Marital Status			
Married	$149 \ (100\%)$	74~(50%)	75~(50%)
Not Married	77 (100%)	39 (51%)	38 (49%)
Ever Used Condom	49 (100%)	22~(45%)	27 (55%)
Had Sex Partner in last 1Yr	52 (100%)	42 (81%)	10 (19%)

Interpretation

The table 1 above shows a summary of a total of 226 people who participated in a study to determine the whether demographic factors influence prevalence of Sexually Transmitted Infections. We find that 51%,that is 101 of study participants above 35 years of age tested Positive while 49%, that is 97 of the same group tested Negative. The same interpretation follows for the rest of the factors except for Had Sex Partner in the last 1Yr which reveals that 81% of participants who had a sex partner in the last one year tested Positive while only 10% of the same cohort showed Negative results.

2.1 Influence of Socio-demographic factors on STI Prevalence

Table 2: Tabl 1: Test between Demographic factors against STI prevalence

Factor	Overall, $N = 226$	Positive, $N = 113$	Negative, $N = 113$	p-value
Age Category				0.4
Below 35 yrs	198 (100%)	101 (51%)	97~(49%)	
Above 35 yrs	28 (100%)	12 (43%)	16 (57%)	
Sex	, ,	, ,	, ,	0.9
Female	107 (100%)	53 (50%)	54 (50%)	
Male	117 (100%)	59 (50%)	58 (50%)	
Education	, ,	, ,	, ,	0.5
Primary & Below	27 (100%)	15~(56%)	12 (44%)	
Secondary & Above	199 (100%)	98 (49%)	101 (51%)	
Employement Status				0.057
Unemployed	90 (100%)	52 (58%)	38 (42%)	
Employed	136 (100%)	61~(45%)	75 (55%)	
Religion				0.8
Catholic	41 (100%)	22 (54%)	19~(46%)	
Non-Catholic	117 (100%)	60 (51%)	57 (49%)	
Marital Status	, ,	, ,	, ,	0.9
Married	149 (100%)	74 (50%)	75~(50%)	
Not Married	77 (100%)	39 (51%)	38 (49%)	
Ever Used Condom	49 (100%)	22~(45%)	27 (55%)	0.4
Had Sex Partner in last 1Yr	52 (100%)	42 (81%)	10 (19%)	< 0.001

2.2 Hypothesis Testing

 $H_o: \beta_j = 0$ (Demographic factors above do not have an influence on STI prevalence)

 $H_1: \beta_i \neq 0$ (Demographic factors above have an influence on STI prevalence)

2.2.2 Interpretation

Let $\alpha = 0.05$, the critical value.

From the Table 2 above the factor **Had Sex Partner in Last 1Yr** had a p-value of "< 0.001" which is less than critical value, therefore statistically significant in determining the STI prevalence. Hence, we conclude that there was no enough information to reject H_o for all the risk factors except for Had Sex Partner in Last 1Yr at 95% Level of significance. We therefore fit a generalized linear model to assist in determining the level of influence the factor had on STI prevalence.

2.3 Multivariate Regression Analysis of Risk Factors for STI(Using Backward method)

By picking only the statistically significant variable, we have:

equatiomatic::extract_eq(Model1)

$$\log \left[\frac{P(\text{Have_STI} = \text{Negative})}{1 - P(\text{Have_STI} = \text{Negative})} \right] = \alpha + \beta_1(\text{Sex_Partner_1_Yr}_{\text{Yes}})$$
(1)

equatiomatic ::extract_eq(Model1,use_coefs=TRUE)

$$\log \left[\frac{P(\text{Have_STI} = \text{Negative})}{1 - P(\text{Have_STI} = \text{Negative})} \right] = 0.37 - 1.81(\text{Sex_Partner_1_Yr}_{\text{Yes}})$$
 (2)

tbl regression(Model1, exponentiate = T, intercept = T)

Characteristic	OR	95% CI	p-value
(Intercept)	1.45	1.07, 1.97	0.016
Had Sex Partner in last 1Yr			
No		_	
Yes	0.16	0.07, 0.34	< 0.001

Conclusion

Since the reference group for whether a participant Had Sex Partner in the last 1 Year is No, the Odds Ratio of 0.16 reveals that people who have never had sex partner in the last 1 year are 0.16 less likely to contract STI.