

Characteristic Tables and Equations

J K	Q(t+1))
0 0	Q(t)	No change
0 1	0	Reset
1 0	1	Set
1 1	Q'(t)	Complement

$$Q(t+1) = JQ' + K'Q$$

$$Q(t+1) = D$$

 $D_{q_{n+1}} = D \setminus$

$$D_{q_{n+1}} = D$$
 $JK_{q_{n+1}} = J \cdot \overline{q_n} + \overline{K} \cdot q_n$
 $T_{q_{n+1}} = T \cdot \overline{q_n} + \overline{T} \cdot q_n / T \oplus q_n$

 $JK_{q_{n+1}} = J\cdot dot \operatorname{q_{n}} + \operatorname{K}\cdot q_{n}$

 $T_{q_{n+1}} = T \cdot q_{n} + \operatorname{q_{n}} + \operatorname{q_{n}} = T_{n}$

clk	j	k	q(n)	q(n+1)	Comments
↑	0	0	0	0	No change
↑	0	0	1	1	No change

$$Q(t)$$
 = present state
 $Q(t+1)$ = next state after one clock period

$$T$$
 $Q(t+1)$
0 $Q(t)$ No change
1 $Q'(t)$ Complement

$$Q(t+1) = T \oplus Q = TQ'+T'Q$$

clk	j	k	q(n)	q(n+1)	Comments
↑	0	1	0	0	Reset
↑	0	1	1	0	Reset
↑	1	0	0	1	Set
↑	1	0	1	1	Set
↑	1	1	0	1	Toggle
↑	1	1	1	0	Toggle

clk	t	q(n)	q(n+1)	Comments
↑	0	0	0	No change
↑	0	1	1	No change
↑	1	0	1	Toggle
1	1	1	0	Toggle

Laboratory

Entity	Inputs	Outputs	Description
d_ff_arst	clk, arst, d	q, q_bar	D type flip-flop with an async reset
d_ff_rst	clk, rst, d	q, q <u></u> bar	D type flip-flop with a sync reset
jk_ff_rst	clk, rst, j, k	q, q <u></u> bar	JK type flip-flop with a sync reset
t_ff_rst	clk, rst, t	q,q_bar	T type flip-flop with a sync reset

Port name	Direction	Туре	Description
BTNU	in	std_logic	Clock emulator
BTNC	in	std_logic	Synchronous reset
SW	in	<pre>std_logic_vector(1 - 1 downto 0)</pre>	Shift register serial input
LED	out	<pre>std_logic_vector(4 - 1 downto 0)</pre>	Shift register parallel outputs

d_latch.vhd

```
p_d_latch : process(en, d, arst)
    begin
    if (arst = '1') then
        q <= '0';
        q_bar <= '1';
    elsif (en = '1') then
        q <= d;
        q_bar <= not d;
    end if;
end process p_d_latch;</pre>
```

Testbench_d_latch.vhd

```
p_stimulus : process
   begin
        report "Stimulus process started" severity note;
       s_en
             <= '0'; s_d <= '0'; s_arst <= '0'; wait for 20 ns;</pre>
        s_d <= '1'; wait for 20 ns;</pre>
        s d <= '0'; wait for 20 ns;
             <= '1'; wait for 20 ns;
        s_d
        -- Test enable
       s en <= '1'; s_d <= '0'; wait for 20 ns;
        s d <= '0'; wait for 20 ns;
              <= '1'; wait for 20 ns;
        s d
        s_d
             <= '0'; wait for 20 ns;
        s_en <= '0'; wait for 20 ns;</pre>
        s_d <= '1'; wait for 20 ns;</pre>
       s_d
             <= '0'; wait for 20 ns;
        -- Test async-reset
             <= '1'; s d <= '1'; wait for 20 ns;
        s en
             <= '0'; wait for 20 ns;
        s d
              <= '1'; wait for 20 ns;
        s d
             <= '0'; wait for 20 ns;
        s d
              <= '1'; wait for 20 ns;
        s d
        s arst <= '1'; wait for 20 ns;
        s d
             <= '0'; wait for 20 ns;
        s d <= '1'; wait for 20 ns;
        s d
             <= '0'; wait for 20 ns;
             <= '1'; wait for 20 ns;
        s d
        s arst <= '0'; wait for 20 ns;
             <= '0'; wait for 20 ns;
        s d
        s_d <= '1'; wait for 20 ns;</pre>
        s d <= '0'; wait for 20 ns;
        s d <= '1'; wait for 20 ns;
              <= '0'; wait for 20 ns;
        s_en
```

```
report "Stimulus process finished" severity note;
wait;
end process p_stimulus;
```


d_arst.vhd

d_rst.vhd

jk_rst.vhd

t_rst.vhd

Testbench_d_arst.vhd

```
p_clk_gen : process
    begin
        while now < 750 ns loop
            s_clk <= '0';
            wait for c CLK 100MHZ PERIOD / 2;
            s clk <= '1';
            wait for c_CLK_100MHZ_PERIOD / 2;
        end loop;
        wait;
    end process p_clk_gen;
    p_reset_gen : process
    begin
        s_arst <= '0'; wait for 120 ns;</pre>
        s_arst <= '1'; wait for 100 ns;</pre>
        s_arst <= '0'; wait;</pre>
    end process p_reset_gen;
```

```
p_stimulus : process
begin
    report "Stimulus process started" severity note;
          <= '1'; wait for 20 ns;
    s_d
    s_d
          <= '0'; wait for 20 ns;
    s_d
          <= '1'; wait for 20 ns;
    s_d
          <= '0'; wait for 20 ns;
    s d
          <= '1'; wait for 20 ns;
    s d
          <= '0'; wait for 20 ns;
          <= '1'; wait for 20 ns;
    s d
          <= '0'; wait for 20 ns;
    s d
          <= '1'; wait for 20 ns;
    s d
    s d
          <= '0'; wait for 20 ns;
    s d
          <= '1'; wait for 20 ns;
          <= '0'; wait for 20 ns;
    s d
          <= '1'; wait for 20 ns;
    s d
    s d
          <= '0'; wait for 20 ns;
          <= '1'; wait for 20 ns;
    s d
    s d
          <= '0'; wait for 20 ns;
          <= '1'; wait for 20 ns;
    s d
          <= '0'; wait for 20 ns;
    s d
          <= '1'; wait for 20 ns;
    s d
          <= '0'; wait for 20 ns;
    s_d
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```

Testbench_d_rst.vhd

```
p_clk_gen : process
    begin
        while now < 750 ns loop
            s_clk <= '0';
            wait for c CLK 100MHZ PERIOD / 2;
            s clk <= '1';
            wait for c CLK 100MHZ PERIOD / 2;
        end loop;
        wait:
    end process p_clk_gen;
    p_reset_gen : process
    begin
        s_rst <= '0'; wait for 120 ns;</pre>
        s rst <= '1'; wait for 110 ns;
        s_rst <= '0'; wait;</pre>
    end process p_reset_gen;
    p_stimulus : process
    begin
        report "Stimulus process started" severity note;
```

```
s d <= '0'; wait for 20 ns;
    s d <= '1'; wait for 20 ns;
    s_d <= '0'; wait for 20 ns;</pre>
    s_d <= '1'; wait for 20 ns;</pre>
    s_d <= '0'; wait for 20 ns;</pre>
    s_d <= '1'; wait for 20 ns;</pre>
    s_d <= '0'; wait for 20 ns;</pre>
    s d <= '1'; wait for 20 ns;
    s d <= '0'; wait for 20 ns;
    s d <= '1'; wait for 20 ns;
    s d <= '0'; wait for 20 ns;
    s_d <= '1'; wait for 20 ns;</pre>
    s d <= '0'; wait for 20 ns;
    s d <= '1'; wait for 20 ns;
    s d <= '0'; wait for 20 ns;
    s_d <= '1'; wait for 20 ns;</pre>
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```

Testbench_jk_rst.vhd

```
p_clk_gen : process
    begin
        while now < 750 ns loop
            s clk <= '0';
            wait for c_CLK_100MHZ_PERIOD / 2;
            s clk <= '1';
            wait for c_CLK_100MHZ_PERIOD / 2;
        end loop;
        wait;
    end process p_clk_gen;
    p reset gen : process
    begin
        s_rst <= '1'; wait for 10 ns;</pre>
        s rst <= '0'; wait for 100 ns;
        s_rst <= '1'; wait for 100 ns;</pre>
        s rst <= '0'; wait;
    end process p reset gen;
    p_stimulus : process
    begin
        report "Stimulus process started" severity note;
        s_j <= '0'; s_k <= '0'; wait for 20 ns;
        s_j <= '0'; s_k <= '1'; wait for 20 ns;
        s j <= '1'; s k <= '0'; wait for 20 ns;
        s j \leftarrow '1'; s k \leftarrow '1'; wait for 20 ns;
        s_j <= '0'; s_k <= '0'; wait for 20 ns;
        s j \le '0'; s k \le '1'; wait for 20 ns;
```

```
s_j <= '1'; s_k <= '0'; wait for 20 ns;
s_j <= '1'; s_k <= '1'; wait for 20 ns;
s_j <= '0'; s_k <= '0'; wait for 20 ns;
s_j <= '0'; s_k <= '1'; wait for 20 ns;
s_j <= '1'; s_k <= '0'; wait for 20 ns;
s_j <= '1'; s_k <= '1'; wait for 20 ns;
s_j <= '1'; s_k <= '1'; wait for 20 ns;
s_j <= '0'; s_k <= '0'; wait for 20 ns;
s_j <= '0'; s_k <= '1'; wait for 20 ns;
s_j <= '1'; s_k <= '1'; wait for 20 ns;
s_j <= '1'; s_k <= '1'; wait for 20 ns;
report "Stimulus process finished" severity note;
wait;
end process p stimulus;</pre>
```

Testbench_t_rst.vhd

```
p_clk_gen : process
    begin
        while now < 750 ns loop
             s_clk <= '0';
            wait for c_CLK_100MHZ_PERIOD / 2;
             s_clk <= '1';
             wait for c_CLK_100MHZ_PERIOD / 2;
        end loop;
        wait;
    end process p_clk_gen;
    p_reset_gen : process
    begin
        s_rst <= '1'; wait for 10 ns;</pre>
        s_rst <= '0'; wait for 100 ns;</pre>
        s_rst <= '1'; wait for 100 ns;</pre>
        s_rst <= '0'; wait;</pre>
    end process p_reset_gen;
    p stimulus : process
    begin
        report "Stimulus process started" severity note;
        s t <= '0'; wait for 20 ns;
        s t <= '1'; wait for 20 ns;
        s t <= '0'; wait for 20 ns;
        s t <= '1'; wait for 20 ns;
        s_t <= '0'; wait for 20 ns;</pre>
        s_t <= '1'; wait for 20 ns;</pre>
        s t <= '0'; wait for 20 ns;
        s t <= '1'; wait for 20 ns;
        s_t <= '0'; wait for 20 ns;</pre>
        s t <= '1'; wait for 20 ns;
        s t <= '0'; wait for 20 ns;
        s_t <= '1'; wait for 20 ns;</pre>
        s t <= '0'; wait for 20 ns;
```

```
s_t <= '1'; wait for 20 ns;
s_t <= '0'; wait for 20 ns;
s_t <= '1'; wait for 20 ns;

report "Stimulus process finished" severity note;
wait;
end process p_stimulus;</pre>
```


Shift register

