数据科学与工程数学基础 作业提交规范及第2次作业

教师: 黄定江

助教: 陈诺、刘文辉

2022年10月22日

作业提交规范

- 1. 作业提交形式: 使用 Word 或 LATEX 编写所得到的电子文档。若使用 Word 编写,将其另 存为 PDF 形式, 然后提交 PDF 文档。若使用 L^MT_FX 编写, 将其编译成 PDF 形式, 然后提 交 Tex 和 PDF 两个文档。
- 2. 作业命名规范: 提交的电子文档必须命名为: "**学号 姓名**"。命名示例: 52200000000 刘 某某。
- 3. 作业提交途径:点击打开每次作业的传送门网址:第2次作业提交传送门,无需注册和登 录,直接上传作业文档即可。注意:传送门将会在截至时间点到达后自动关闭。
- 4. 作业更改说明:如果需要修改已经提交的作业、只要在截至日期前、再次上传更改后的作 业(切记保持同名),即可覆盖已有作业。
- 5. 作业评分说明: 正常提交作业的按照实际评分记录; 逾期补交作业的根据逾期情况在实际 评分基础上酌情扣分; 未交作业的当次作业记为 0 分。

第2次作业

! 提交截至时间: **2022/10/14 周五 12:00** (中午)

习题 1. 假设 $M, P \in \mathbb{R}^{n \times n}$ 为对称阵, P 为正交阵,

$$A = \left(\begin{array}{c|c} M & PM \\ \hline MP & PMP \end{array}\right) \in \mathbb{R}^{2n \times 2n}.$$

- (i) 证明 $A^{T} = A$.
- (ii) 假设 $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ 是正交矩阵, $D \in \mathbb{R}^{m \times n}$, 证明 $\|UDV\|_2 = \|D\|_2, \|UDV\|_F = \|D\|_F$.
- (iii) 证明 $||A||_F = 2||M||_F$. $||A||_2 \le 2||M||_2$. (提示:将 A 分解,并利用 (ii) 结论)
- (iv) 假设 $n=4, M=\mathrm{diag}_{4\times 4}(-2,1,0,0), P=(e_4|e_3|e_2|e_1)$. 证明 $\|A\|_p=2 \ \forall p\in [1,\infty)$.

解. (i) 解法 1: 分解 A

$$A = \left(\begin{array}{c} I \\ P \end{array}\right) M \left(\begin{array}{cc} I & P \end{array}\right) = \left(\begin{array}{cc} I & \\ & P \end{array}\right) \left(\begin{array}{cc} M & M \\ M & M \end{array}\right) \left(\begin{array}{cc} I & \\ & P \end{array}\right) = A^{\mathrm{T}}$$

解法 2: 不分解 A

$$A^{\mathsf{T}} = \left(\begin{array}{c|c|c} M^{\mathsf{T}} & (MP)^{\mathsf{T}} \\ \hline (PM)^{\mathsf{T}} & (PMP)^{\mathsf{T}} \end{array} \right) = \left(\begin{array}{c|c|c} M^{\mathsf{T}} & P^{\mathsf{T}}M^{\mathsf{T}} \\ \hline M^{\mathsf{T}}P^{\mathsf{T}} & P^{\mathsf{T}}M^{\mathsf{T}}P^{\mathsf{T}} \end{array} \right) = \left(\begin{array}{c|c|c} M & PM \\ \hline MP & PMP \end{array} \right) = A$$

(ii) 即证明 2 范数与 F 范数满足正交不变性

对 2 范数,即证 $||UD||_2 = ||D||_2, ||DV||_2 = ||D||_2$

$$\begin{split} &\|UD\|_2 = \sqrt{\lambda_{\max}\left(D^{\mathsf{T}}U^{\mathsf{T}}UD\right)} = \sqrt{\lambda_{\max}\left(D^{\mathsf{T}}D\right)} = \|D\|_2 \\ &\mathcal{R} + \|Vx\|_2 = \sqrt{x^{\mathsf{T}}V^{\mathsf{T}}Vx} = \sqrt{x^{\mathsf{T}}x} = \|x\|_2 \\ &\|DV\|_2 = \sup_{\|x\|_2 = 1} \|DVx\|_2 = \sup_{\|Vx\|_2 = 1} \|DVx\|_2 = \|D\|_2 \end{split}$$

对F范数,

$$\begin{split} \|UDV\|_F &= \sqrt{\text{tr}\left(V^TD^TU^TUDV\right)} = \sqrt{\text{tr}\left(VV^TD^TD\right)} = \sqrt{\text{tr}\left(V^TVD^TD\right)} = \sqrt{\text{tr}\left(D^TD\right)} = \|D\|_F \\ \text{(iii)} 解法 1: 分解 A, 由于 $\begin{pmatrix} I \\ P \end{pmatrix}$ 为正交阵,由 (ii) 得
$$\|A\|_F &= \left\| \begin{pmatrix} M & M \\ M & M \end{pmatrix} \right\|_F \qquad \|A\|_2 &= \left\| \begin{pmatrix} M & M \\ M & M \end{pmatrix} \right\|_2 \\ \|A\|_F^2 &= \|M\|_F^2 + \|M\|_F^2 + \|M\|_F^2 + \|M\|_F^2 = 4\|M\|_F^2 \end{split}$$$$

或

$$\begin{split} \|A\|_F &= \left\| \begin{pmatrix} M & M \\ M & M \end{pmatrix} \right\|_F = \left\| \begin{pmatrix} I \\ I \end{pmatrix} M \begin{pmatrix} I & I \end{pmatrix} \right\|_F \\ &= \sqrt{\operatorname{tr} \left(\begin{pmatrix} I \\ I \end{pmatrix} M \begin{pmatrix} I & I \end{pmatrix} \begin{pmatrix} I \\ I \end{pmatrix} M \begin{pmatrix} I & I \end{pmatrix} \right)} \\ &= \sqrt{2 \operatorname{tr} \left(M \begin{pmatrix} I & I \end{pmatrix} \begin{pmatrix} I \\ I \end{pmatrix} M \right)} \\ &= 2\sqrt{\operatorname{tr} \left(M^2 \right)} = 2\|M\|_F \end{split}$$

$$i \c B = \left(\begin{array}{c} M & M \\ M & M \end{array} \right), w = \left(\begin{array}{c} x \\ y \end{array} \right), \|A\|_2 = \|B\|_2 = \sup_{\|w\|_2 \neq 0} \frac{\|Bw\|_2}{\|w\|_2} = \sup_{\|w\|_2 = 1} \|Bw\|_2$$

$$\left\| B \left(\begin{array}{c} x \\ y \end{array} \right) \right\|_2^2 = \left\| \left(\begin{array}{c} Mx + My \\ Mx + My \end{array} \right) \right\|_2^2$$

$$= 2\|Mx + My\|_2^2$$

$$\leq 2\left(\|Mx\|_2 + \|My\|_2 \right)^2$$

$$\leq 4\|Mx\|_2^2 + 4\|My\|_2^2$$

$$\leq 4\|M\|_2^2 \|x\|_2^2 + 4\|M\|_2^2 \|y\|_2^2 \left(\ensuremath{\operatorname{HF}} \otimes \operatorname{PL} \right)$$

$$= 4\|M\|_2^2 \|w\|_2^2 = 4\|M\|_2^2$$

因此 $||A||_2 = \sup_{\|w\|_2=1} ||Bw||_2 = 2||M||_2$

解法 2: 不分解 A

$$\begin{split} \|A\|_F^2 &= \|M\|_F^2 + \|MP\|_F^2 + \|PM\|_F^2 + \|PMP\|_F^2 = 4\|M\|_F^2 \\ \|Aw\|_2^2 &= \left\| \begin{pmatrix} Mx + PMy \\ MPx + PMPy \end{pmatrix} \right\|_2^2 \\ &= \|Mx + PMy\|_2^2 + \|MPx + PMPy\|_2^2 \\ &\leq (\|Mx\|_2 + \|PMy\|_2)^2 + (\|MPx\|_2 + \|PMPy\|_2)^2 \\ &\leq 2\|Mx\|_2^2 + 2\|PMy\|_2^2 + 2\|MPx\|_2^2 + 2\|PMPy\|_2^2 \\ &\leq 2\|M\|_2^2\|x\|_2^2 + 2\|PM\|_2^2\|y\|_2^2 + 2\|MP\|_2^2\|x\|_2^2 + 2\|PMP\|_2^2\|y\|_2^2 \\ &= 2\|M\|_2^2\|x\|_2^2 + 2\|M\|_2^2\|y\|_2^2 + 2\|M\|_2^2\|x\|_2^2 + 2\|M\|_2^2\|y\|_2^2 \\ &= 2\|M\|_2^2\|x\|_2^2 + 2\|M\|_2^2\|y\|_2^2 + 2\|M\|_2^2\|x\|_2^2 + 2\|M\|_2^2\|y\|_2^2 \\ &= 4\|M\|_2^2\left(\|x\|_2^2 + \|y\|_2^2\right) \\ &= 4\|M\|_2^2\|w\|_2^2 \end{split}$$

$$||Ax||_{p}^{p} = ||(-2x_{1}, x_{2}, x_{6}, -2x_{5}, -2x_{4}, x_{3}, x_{7}, -2x_{8})^{\mathsf{T}}||_{p}^{p}$$

$$= |-2x_{1}|^{p} + |x_{2}|^{p} + |x_{6}|^{p} + |-2x_{5}|^{p} + |-2x_{4}|^{p} + |x_{3}|^{p} + |x_{7}|^{p} + |-2x_{8}|^{p}$$

$$= 2^{p} |x_{1}|^{p} + |x_{2}|^{p} + |x_{3}|^{p} + 2^{p} |x_{4}|^{p} + 2^{p} |x_{5}|^{p} + |x_{6}|^{p} + |x_{7}|^{p} + 2^{p} |x_{8}|^{p}$$

$$\leq 2^{p} (|x_{1}|^{p} + |x_{2}|^{p} + |x_{3}|^{p} + |x_{4}|^{p} + |x_{5}|^{p} + |x_{6}|^{p} + |x_{7}|^{p} + |x_{8}|^{p})$$

$$= 2^{p} ||x||_{p}^{p}.$$

因此 $||A||_p = \sup_{||x||_p=1} ||Ax||_p = 2$

(即如果一个变换只将某些维度倍乘并交换顺序,不作维度间相加的操作,那矩阵范数即最大拉伸倍数)

习题 2. 假设 $P \in \mathbb{R}^{n \times n} \setminus \{0\}$ 是一个投影矩阵.

(i) 证明 $Py = y \ \forall y \in \mathcal{R}(P)$. $Px - x \in \mathcal{N}(P) \ \forall x \in \mathbb{R}^n$.

(即证明投影P沿着零空间 $\mathcal{N}(P)$ 投影到列空间 $\mathcal{R}(P)$)

- (ii) 证明 P 的特征值 $\lambda \in \Lambda(P) \subseteq \{0,1\}$. 假设 $\mathcal{R}(P) = \operatorname{span}(u_1,\ldots,u_r)$, $\mathcal{N}(P) = \operatorname{span}(v_{r+1},\ldots,v_n)$, 试找到 P 的特征分解 $P = XDX^{-1}$ 并证明 $\operatorname{tr}(P) = \operatorname{rank}(P)$. (提示: 利用 (i) 结论.)
- (iii) 证明当 $P \neq I_n$, det(P) = 0.
- (iv) 证明当 P 是正交投影矩阵 $(P^2 = P = P^T)$ 时, $I_n 2P$ 是正交矩阵.
- (v) 假设 $A \in \mathbb{R}^{n \times m}$, $m \leq n$, $\operatorname{rank}(A) = m$. $P = A \left(A^{\mathsf{T}}A\right)^{-1} A^{\mathsf{T}}$ 证明 P 是正交投影矩阵, $\operatorname{rank}(P) = m$. (提示: 利用 (ii) 结论.)

解. (i) $\forall y \in \mathcal{R}(P)$ 即对 $x \in \mathbb{R}^n$, y = Px, $Py = P^2x = Px = y$.

 $\forall x \in \mathbb{R}^n, P(Px - x) = P^2x - Px = Px - Px = 0.$

(ii) 对 $\lambda \in \Lambda(P), x \in \mathbb{R}^n \setminus \{0\}$, 有 $Px = \lambda x$. 由于 $P = P^2$, $\lambda x = Px = P(Px) = P(\lambda x) = \lambda Px = \lambda^2 x$. 因为 $x \neq 0 \in \mathbb{R}^n$, 故 $\lambda = \lambda^2$, $\lambda \in \{0,1\}$. 因此 $\Lambda(P) \subset \{0,1\}$.

由 (i) 可知, $\forall i = 1, ..., r, u_i \in \mathcal{R}(P), Pu_i = u_i. \forall j = r+1, ..., n, v_j \in \mathcal{N}(P), Pv_j = 0.$

故令 $X:=(u_1|\cdots|u_r|v_{r+1}|\cdots|v_n)\in\mathbb{R}^{n\times n}$, $D:=\mathrm{diag}_{n\times n}(\underbrace{1,\ldots,1},0\ldots,0)\in\mathbb{R}^{n\times n}$,此时

$$P = XDX^{-1}$$

- (注: 也可理解为 SVD(后续课程会讲), 即 $P = UDV^{T}, U \in \mathcal{R}(P), V \in \mathcal{N}(P)$)
- $tr(P) = tr(XDX^{-1}) = tr(D) = r.$
- (iii) 反证 $\det(P) \neq 0 \Longrightarrow P = I_n$. 由于 $\det(P) \neq 0$, P 可逆. 故由 $P^2 = P$, 得 $P^{-1}P^2 = P^{-1}P$. $P = I_n$.
- (iv) 由于 P 是正交投影矩阵, $P^2 = P = P^T$. 令 $Q := I_n 2P$, $Q^T = I_n 2P^T = Q$, $Q^2 = I_n 2P$ $I_n - 4P + 4P^2 = I_n$. 因此, $Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I_n$.

$$(v)P^{2} = A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T} = A(A^{T}A)^{-1}A^{T} = P$$

$$P^{T} = A \left(A^{T} A \right)^{-1} A^{T} A \left(A^{T} A \right)^{-1} A^{T} = A \left(A^{T} A \right)^{-1} A^{T} = P$$

$$P^{T} = A \left(\left(A^{T} A \right)^{-1} \right)^{T} A^{T} = A \left(\left(A^{T} A \right)^{T} \right)^{-1} A^{T} = A \left(A^{T} A \right)^{-1} A^{T} = P.$$

$$rac{1}{4}(ii)$$
, $rank(P) = tr(P) = tr(A(A^{T}A)^{-1}A^{T}) = tr((A^{T}A)^{-1}A^{T}A) = tr(I_{m}) = m.$