Proyecto Final

Entrega: 8 de Enero de 2021 (fecha examen)

- ✓ Todo el material a entregar debe estar en GitHub
- ✓ Presentación y demostración presencial

Próxima semana: colgare en ALUD requerimientos y evaluación

Agenda

Hoy

- 1. Repaso breve semana 1
- 2. Continuación de Linux y aclaración ejercicios para hoy
- 3. Actividad de clase

Mañana

- 1. Corrección ejercicios
- 2. Introducción a **Python**
- 3. Actividad de clase con Python

(EMBEDED SYSTEMS)

Grado Dual en Industria Digital

Campus Vitoria

Curso 2020-2021

Que sabemos hasta ahora?

• Que es y para que sirve un sistema embebido?

DEFINICION

Los sistemas embebidos son sistemas electrónicos con una funcionalidad muy particular/concreta, y no de propósito general.

Estos sistemas tipicamente requiren un riguroso rendimiento, potencia, coste, espacio, y restricciones de tiempo real.

Los sistemas embebidos estan dominando, cada vez más, casi todos los aspectos de nuestras vidas.

Sistema Embebido

Que sabemos hasta ahora?

• Que es y para que sirve un sistema embebido?

Que aplicaciones (+industriales) tiene?

Ejemplo Escenario B

Ejemplo Escenario C

Ejemplo D

Una empresa líder internacional en componentes de fundición de acero inoxidable y alta aleación, y que realiza válvulas de alto valor tecnológico para las aplicaciones e industrias más exigentes.

El proceso de fabricación de válvulas de alto valor tecnológico consiste en la recepción de las materias primas, montaje, pintura, banco de Pruebas, Embalaje y Distribución

Ejemplo D

El proceso de fabricación de válvulas de alto valor tecnológico consiste en la recepción de las materias primas, montaje, pintura, banco de Pruebas, Embalaje y Distribución

Que sabemos hasta ahora?

- Que es y para que sirve un sistema embebido?
- Que aplicaciones (+industriales) tiene?
- Elementos hardware principales de un SE (continuaremos cuando tengáis la RPi)

Componentes de un Sistema Embebido

Que sabemos hasta ahora?

- Que es y para que sirve un sistema embebido?
- Que aplicaciones (+industriales) tiene?
- Elementos hardware principales de un SE (continuaremos cuando tengáis la RPi)
- Elementos software: programación de un sistema embebido (Linux ->Python)

Semana 2:Linux Embebido (continuación)

Grado Dual en Industria Digital

Campus Vitoria

Curso 2020-2021

Que es Windows Subsystem for Linux (WSL) ??

El WSL permite tener un ambiente de desarrollo en Linux, incluyendo todas las herramientas, utilidades y aplicaciones, directamente en Windows

Evita el "overhead" de usar un dual-boot o una maquina virtual

Permite usar GIT desde la ventana de comandos!

Windows Subsystem for Linux (WSL)

Done están mis archivos que creo con WSL en Windows??

Acceder a los archivos de WSL desde Windows

 WSL instala un nuevo gestor de ficheros, separado del sistema de Windows NTFS C:\

- EN Linux, a los discos no se les asignan letras. Se les dan "mount points"
- El directorio raíz es \

\\wsl\$\UbuntuVersion\home\username

Abre el explorador de ficheros de Windows, y escribe esta dirección

En mi caso: UbuntuVersion = Ubuntu username = laura

Acceder a los archivos de Windows desde la terminal WSL

Desde la terminal de Ubuntu:

```
$cd ~
$ cd /mnt/c/Users/username
```

username es tu nombre de usuario en Windows.
En mi caso username = laura

Comandos Linux gestion ficheros

Ejemplo con \$grep

\$grep palabra archivo

- •palabra: la palabra que estás buscando
- •archivo: el archivo en el que estás buscando la palabra

Ignorar mayúsculas y minúsculas

\$grep -i palabra archivo

Contar veces que aparece palabra

\$grep -c palabra archivo

Comandos Linux gestion Ficheros

Ejemplo con \$find

find . -name "my-file"

Buscar archivo por nombre en directorio actual

find . -type f -name "fichero"

Buscar archivo por **tipo** en directorio actual Tipos:

f – archivo normal

d – directorio o carpeta

I – enlace simbólico

c – dispositivos de caracteres

b – dispositivos de bloque

Commandos linux

Instalar paquetes

```
$ sudo apt-get update
```

\$ sudo apt-get install git

• El intérprete de comandos o shell es un programa que permite a los usuarios interactuar con el sistema, procesando las órdenes que se le indican.

• Además de comandos, los shells ofrecen otros elementos para mejorar su funcionalidad, tales como variables, funciones o estructuras de control

Que es un shell-script?

Un shell-script o "guión de órdenes" es un fichero de texto que contiene un conjunto de comandos y órdenes interpretables por el shell.

Que es un shell-script?

Ejemplos

```
#!/bin/dash
#Esto no se interpreta
echo Hola
ps w
echo "Proceso lee el script: $$"
```


Variables

Sólo Definición	VAR="" VAR=
Definición y/o Inicialización/Modificación	VAR=valor
Expansión (Acceso a Valor)	\$VAR \${VAR}
Eliminación de la variable	unset VAR

□Variables

- Case-sensitive
- Es importante no incluir ningún espacio ni antes ni después del signo =.
- El valor de una variable siempre es tomado por el shell como una cadena de caracteres.
- Expansión de una variable: el uso de las llaves {}

□Expresion aritmetica

- Permite evaluar las cadenas indicadas en la expresión como enteros, admitiendo gran parte de los operadores usados en el lenguaje C
- Si se usan variables en la expresión, no es necesario que vayan precedidas por el carácter \$ si ya contienen un valor entero válido (sí es necesario para los parámetros posicionales y especiales).

Programa VS Proceso (Linux)

• Programa: colección de instrucciones y datos almacenados e un archivo ejecutable.

 Proceso: programa es leído del disco por el kernel y cargado en memoria para ejecutarse. No solo hay una copia del programa – el kernel además añade información para manejarlo.

- Proceso en ejecución:
 - Asignarle memoria para el código, los datos y la pila
 - Inicializar los registros de la CPU para que se empiece a ejecutar
 - Ofrecer acceso a los dispositivos (ya que necesitan acceso en modo kernel)
 - Muchas más cosas que iremos viendo

 En UNIX los procesos se identifican con un número entero denominado ID de proceso o PID

PCB: Process Control Block
Contiene toda la información
del proceso

- Comando \$ps
 - Lista de procesos que se están ejecutando

Campo	Significado
UID	ID del usuario propietario del proceso
PID	ID del proceso
PPID	ID del padre del proceso
С	Utilización del preprocesador de C para la administración de procesos
STIME	Hora de comienzo
TTY	terminal de control
TIME	Tiempo acumulado de CPU
CMD	Nombre del comando

- Comando \$top
 - Muestra información de procesador, procesos, y memoria

- Comando \$kill -9 PID
 - Cierra el proceso PID. -9 corresponde al termino SIGKILL
 - Terminacion inmediata del proceso por el kernel de Linux

Actividad

Realizaremos alguna actividad practica sobre gestión de procesos en Linux cuando tengamos las Raspberry Pi (1-2 semanas)

