Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

José Mª Chacón Íñigo IES Llanes, Sevilla

Te explicamos como realizar la operación de distribución de probabilidad discreta y continua en las calculadoras científicas Classwiz FX-570/991 SP XII.

DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: DISTRIBUCIÓN BINOMIAL.

Recordemos:

- Un experimento sigue el modelo de la distribución binomial si:
 - 1. En cada prueba del experimento sólo son posibles dos resultados: el suceso $m{A}$ (éxito) y su contrario $m{ar{A}}$
 - 2. La probabilidad del suceso \boldsymbol{A} es constante, es decir, que no varía de una prueba a otra. Se representa por \boldsymbol{p} .
 - 3. El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.
- ulletLa variable aleatoria binomial, X expresa el número de éxitos obtenidos en cada prueba del experimento.
- ullet La variable binomial es una variable aleatoria discreta, sólo puede tomar los valores 0, 1, 2, 3, 4,..., $oldsymbol{n}$ suponiendo que se han realizado $oldsymbol{n}$ pruebas.
- La distribución binomial se suele representar por B(n, p), donde n es el número de pruebas de que consta el experimento y p es la probabilidad de éxito. La probabilidad de \bar{A} es 1-p, y la representamos por q.

Veamos cómo utilizar la aplicación **7: Distribución** de la calculadora para realizar cálculos con distribuciones binomiales:

Elegimos 4: DP Binomial. Este comando calcula la probabilidad de que una variable aleatoria que sigue una distribución binomial sea un valor \boldsymbol{x} dado. Determina la probabilidad de \boldsymbol{x} éxitos cuando se realizan \boldsymbol{N} intentos con probabilidad (posibilidad) de éxito \boldsymbol{p} .

Vamos a trabajar con 2: Variable.

DP	Binomial	
X	:0	
N	:0	
p	:0	

1

Una máquina produce determinadas piezas de las cuales se ha comprobado que el 5% son defectuosas. Tomamos 10 piezas al azar. Calcula la probabilidad de que:

- a) No haya ninguna defectuosa.
- b) Haya exactamente dos piezas defectuosas entre las 10 elegidas.

Si generamos el código QR con [HIFT] (IPTN) y lo escaneamos con la aplicación adecuada en un dispositivo móvil obtenemos los datos y el gráfico de la distribución.

b) 2 = 1 0 = 0 · 0 5 = =

Para calcular la probabilidad de que una variable aleatoria que sigue una distribución binomial sea un valor \boldsymbol{x} dado o menor, o sea, para determinar la probabilidad de \boldsymbol{x} o menos éxitos cuando se realizan \boldsymbol{n} intentos con probabilidad de éxito \boldsymbol{p} , se utiliza:

1: DA Binomial (Distribución acumulada o acumulativa Binomial)

(2

La probabilidad de que el equipo A gane al equipo B un partido de tenis es 2/3. Si se juegan 6 partidos, calcula la probabilidad de que el equipo A gane más de la mitad de los partidos al equipo B.

Este ejercicio puede realizarse directamente con la calculadora teniendo en cuenta que para que A gane más de la mitad ha de ganar 4, 5 o 6 partidos; o sea, debe perder como máximo 2. Por tanto cambiamos a probabilidad (acumulativa).

Para cambiar el tipo de cálculo de distribución o volver a la pantalla de inicio de distribuciones se pulsa (PTN) 1

y calculamos $P[x \le 2]$ (tomando p como probabilidad de perder).

DISTRIBUCIÓN DE PROBABILIDAD CONTINUA: DISTRIBUCIÓN NORMAL.

Recordemos:

- Una variable aleatoria continua sigue una distribución normal de media μ y desviación típica σ , y se designa por $N(\mu, \sigma)$, si se cumplen las siguientes condiciones:
 - 1. La variable puede tomar cualquier valor: $(-\infty, +\infty)$.
 - 2. La función de densidad, es: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

Esta distribución permite describir probabilísticamente fenómenos estadísticos donde los valores más usuales se agrupan en torno a uno central y los valores extremos son escasos.

Veamos cómo utilizar la aplicación 7: **Distribución** de la calculadora para realizar cálculos con distribuciones normales. Es sumamente sencillo y proporciona resultados inmediatos sin necesidad de utilizar engorrosas tablas de distribuciones ni tipificar la variable. Además permite calcular probabilidades de cualquier tipo P(x < a), P(x > a), P(x > a), P(x < a). También permite visualizar las gráficas correspondientes.

1:DP Normal 2:DA Normal 3:Normal Inversa 4:DP Binomial

Elegimos 2: DA Normal.

(4)

Las estaturas del alumnado de un Instituto se distribuyen normalmente con media 175 cm y desviación típica 10 cm. Calcula:

(a) Probabilidad de que un alumno tenga una estatura mayor que 180 cm.

DA Normal Inf. :180 Sup. :1000 σ :10 μ :175 P= 0.3085375383

b) Probabilidad de que una alumna tenga una estatura menor que 170 cm.

DA Normal
Inf.:-1000
Sup.:170
σ:10
μ:175

c) ¿Qué proporción del alumnado tiene una estatura comprendida entre 172 cm y 180 cm?

DA Normal Inf. :172 Sup. :180 σ :10 μ :175

d) Si el Instituto tiene 850 alumnos, ¿cuántas personas miden al menos 175?

DA Normal Inf. :175 Sup. :1000 σ :10 μ :175

Te regalamos una licencia anual del emulador CASIO ClassWiz para PC*

Una herramienta de apoyo para la docencia en el aula y la preparación de materiales educativos.

* Con sistema operativo Windows® Windows8/8.1 (32-bit/64-bit). Funciona también con Linux bajo Wine.

Consigue tu licencia. Registrate ahora en www.edu-casio.es