Computational Intelligence Laboratory

Lecture 3

Matrix Approximation & Reconstruction

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

8 March 2019

Section 1

Collaborative Filtering

Collaborative Filtering

- ► Recommender systems
 - ▶ analyze patterns of interest in items (products, movies, ...)
 - provide personalized recommendations for users
- ► Collaborative Filtering
 - exploit collective data from many users
 - generalize across users and possibly across items
- Applications:
 - Amazon, Netflix, Pandora, online advertising, etc.
 - special case of algorithmic selection

Netflix Data

- Input: user-item preferences stored in a matrix
 - ► rows = users, columns = items

- ▶ 1-5 star rating of movies. x denotes a missing value.
- predict missing values = matrix completion

Matrix Completion

- How can we fill in missing values?
- ▶ Statistical model with $k \ll m \cdot n$ parameters
 - ightharpoonup m imes n: dimensionality of rating matrix
 - introduces coupling between entries
 - infer missing entries from observed ones
- Low Rank decomposition
 - find best approximation with low rank r
 - entries in decomposition: $k \le r \cdot (m+n)$

Section 2

Matrix Approximation via SVD

Frobenius Norm: revisted

► Definition: Frobenis norm

$$\|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^M \sum_{j=1}^N a_{ij}^2} = \|\mathrm{vec}(\mathbf{A})\|_2 = \sqrt{\mathrm{trace}(\mathbf{A}^{\top}\mathbf{A})}$$

Frobenius norm only depends on singular values of A

$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^k \sigma_i^2, \quad k = \min\{m, n\}$$

▶ follows from cyclic property: trace(XYZ) = trace(ZXY)

$$\begin{split} \operatorname{trace}(\mathbf{A}^{\top}\mathbf{A}) &= \operatorname{trace}(\mathbf{V}\mathbf{D}^{\top}\mathbf{U}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) = \operatorname{trace}(\mathbf{V}^{\top}\mathbf{V}\mathbf{D}^{\top}\mathbf{D}) \\ &= \operatorname{trace}(\mathbf{D}^{\top}\mathbf{D}) = \operatorname{trace}(\operatorname{diag}(\sigma_{1}^{2}\ldots,\sigma_{k}^{2})) = \sum_{i=1}^{k} \sigma_{i}^{2} \end{split}$$

Singular Values and Matrix Norms

► Induced *p*-norms

$$\|\mathbf{A}\|_p := \sup\{\|\mathbf{A}\mathbf{x}\|_p : \|\mathbf{x}\|_p = 1\}, \quad \|\mathbf{x}\|_p := \left(\sum_i |x_i|^p\right)^{1/p}$$

ightharpoonup Matrix 2-norm (spectral norm) = largest singular value

$$\|\mathbf{A}\|_{2} = \sup\{\|\mathbf{A}\mathbf{x}\|_{2} : \|\mathbf{x}\|_{2} = 1\} = \sigma_{1}$$

- ightharpoonup assume $\|\mathbf{x}\|_2 = 1$, define $\mathbf{y} := \mathbf{V}^{\top}\mathbf{x}$, then $\|\mathbf{y}\|_2 = 1$ (\mathbf{V} orthogonal)
- ▶ define $\mathbf{z} := \mathbf{D}\mathbf{y}$, then $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{U}\mathbf{z}\|_2 = \|\mathbf{z}\|_2$ (U orthogonal)
- ▶ hence: $\|\mathbf{A}\mathbf{x}\|_2^2 = \|\mathbf{D}\mathbf{y}\|_2^2 = \sum_{i=1}^k \sigma_i^2 y_i^2$
- ightharpoonup maximized for $\mathbf{y}=(1,0,\ldots,0)^{\top}$, maximum σ_1

Eckart-Young Theorem: revisted

- Reduced rank SVD: optimal low rank approximation in Frobenius norm
 - ▶ SVD of $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$, define for $k \leq \operatorname{rank}(\mathbf{A})$

$$\mathbf{A}_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^\top, \quad \mathsf{rank}(\mathbf{A}_k) = k$$

lacktriangle then ${f A}_k$ is best Frobenius norm approximation in the sense that

$$\min_{\mathsf{rank}(\mathbf{B})=k} \left\| \mathbf{A} - \mathbf{B} \right\|_F^2 = \left\| \mathbf{A} - \mathbf{A_k} \right\|_F^2 = \sum_{r=k+1}^{\mathsf{rank}(\mathbf{A})} \sigma_r^2$$

Spectral Norm Approximation

ightharpoonup A $_k$ an optimal approximation in the sense of the spectral norm

$$\min_{\mathrm{rank}(\mathbf{B})=k} \left\|\mathbf{A} - \mathbf{B}\right\|_2 = \left\|\mathbf{A} - \mathbf{A_k}\right\|_2 = \sigma_{k+1}$$

Section 3

SVD for Collaborative Filtering

SVD of Rating Matrix: Interpretation

A = rating matrix, then ...

- ▶ k dimensional ($k \le \text{rank}(\mathbf{A})$) number of latent factors
- ▶ U: users-to-factor association matrix
- ▶ V: items-to-factor association matrix
- ▶ D: level of strength of each factor

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$$
:

1	5	5	5	0	0	
	4	4	4	0	0	11
	5	5	5	0	0	
	3	3	3	0	0	
	0	0	0	4	4	Ш
	0	0	0	5	5	
	0	0	0	4	4	1

	1	0.57	0	-0.80	0.06	-0.04	-0.06	0.04	1
	1	0.46	0	0.43	0.68	-0.19	-0.23	-0.19	١
		0.57	0	0.37	-0.70	-0.08	-0.11	-0.08	1
=		0.34	0	0.15	0.14	9.48	0.60	0.48	-
		0	0.52	0	9	-0.71	0.35	0.28	-
	Ш	0	0.66	0 _	0	0.35	-0.56	0.35	-
	/	0	0.52	-0	0	0.28	0.35	0.71	1

7	15	0	0	0	0 /
11	0	10.67	0	0	0
	0	0	Q	0	0/
	0	0	0	0	1 N
Ш	0	0	0	W	0
Ш	0	0	0	∕ 0`	0
	0	0	9/	0	0 /

Factors: Horror, Comedy

U: users-to-factors association matrix.

Q: What is the affinity between user1 and horror? 0.57

Factors: Horror, Comedy

D: weight of different factors in the data.

Q: What is the expression of the comedy concept in the data? 10.67

Factors: Horror, Comedy

V: Movies-to-factor association matrix.

Q: What is the similarity between Clerks and Horror? 0 What is the similarity between Clerks and Comedy? 0.7

Collaborative Filtering Example II

Characterization of the users and movies using two axes - male vs. female and serious vs. escapist.

^{*} Ref: "Matrix factorization techniques for recommender systems"

Section 4

Alternating Least Squares

Beyond Singular Value Decomposition

- ▶ Is SVD the final answer for (low-rank) matrix decomposition?
 - **Eckart-Young theorem** guarantees:

$$\mathbf{A}_k = \underset{\mathsf{rank}(\mathbf{B})=k}{\operatorname{arg\,min}} \|\mathbf{A} - \mathbf{B}\|_F^2$$

- surprisingly: not a convex optimization problem!
- convex combination of k-rank matrices is generally not rank k

$$\frac{1}{2} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}_{\text{rank 1}} + \frac{1}{2} \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{rank 1}} = \frac{1}{2} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{rank 2}}$$

Beyond Singular Value Decomposition

- ▶ Problem: entries which are unobserved not zero!
 - should optimize

$$\min_{\mathsf{rank}(\mathbf{B})=k} \left[\sum_{(i,j)\in\mathcal{I}} (a_{ij} - b_{ij})^2 \right], \quad \mathcal{I} = \{(i,j) : \mathsf{observed}\}$$

instead of

$$\min_{\mathsf{rank}(\mathbf{B})=k} \left[\sum_{i,j} (a_{ij} - b_{ij})^2 \right] = \min_{\mathsf{rank}(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_F^2$$

• usually: mean zero $a_{ij} \leftarrow a_{ij} - \frac{1}{|\mathcal{I}|} \sum_{\mathcal{I}} a_{ij}$

Hardness of Matrix Reconstruction

lacktriangle Define weighted Frobenius norm with regard to matrix ${f G} \geq {f 0}.$

$$\|\mathbf{X}\|_{\mathbf{G}} := \sqrt{\sum_{i,j} g_{ij} x_{ij}^2}$$

- ▶ special case: $g_{ij} \in \{0,1\}$ (Boolean, partially observed matrix)
- Low-rank approximations are (in general) intrinsically hard

$$\mathbf{B}^* \stackrel{\min}{\longrightarrow} \ell(\mathbf{B}) = \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2$$
, s.t. $\operatorname{rank}(\mathbf{B}) \leq k$

- ▶ is NP-hard (Gillis & Glineur, 2011) even for k = 1.
- ... also holds for approximations with prescribed accuracy
- ... also holds for binary G

Matrix Factorization: Non-Convex Problem

- ► Singular Value Decomposition is not enough!
- ▶ Non-convex optimization problem
 - variant A: non-convex domain $\text{minimize convex objective over domain } \mathcal{Q}_k := \{\mathbf{B}: \mathsf{rank}(\mathbf{B}) = k\}$
 - variant B: non-convex objective

re-parametrize
$$\mathbf{B}=\mathbf{U}\mathbf{V},\quad \mathbf{U}\in\mathbb{R}^{m\times k}, \mathbf{V}\in\mathbb{R}^{k\times n}$$
 then $\mathrm{rank}(\mathbf{B})\leq k$ by definition

e.g.
$$f(u,v) = (a - uv)^2$$
, $u_1v_1 = u_2v_2 = a \land u_1 \neq u_2$
 $\implies f(u_1,v_1) = f(u_2,v_2) = 0 \land f\left(\frac{u_1 + u_2}{2}, \frac{v_1 + v_2}{2}\right) > 0$

Alternating Minimization

Is there something convex about the non-convex objective?

$$f(\mathbf{U}, \mathbf{V}) = \frac{1}{|\mathcal{I}|} \sum_{(i,j)\in\mathcal{I}} (a_{ij} - \langle \mathbf{u}_i, \mathbf{v}_j \rangle)^2$$

- ightharpoonup for fixed \mathbf{U} , f is convex in \mathbf{U} for fixed \mathbf{V} , f is convex in \mathbf{U}
- lacktriangle ... which does not mean f is jointly convex in ${f U}$ and ${f V}$
- ► Idea: perform alternating minimization

$$\mathbf{U} \leftarrow rg \min_{\mathbf{U}} f(\mathbf{U}, \mathbf{V})$$

$$\mathbf{V} \leftarrow rg \min_{\mathbf{V}} f(\mathbf{U}, \mathbf{V}), \quad \text{repeat until convergence}$$

ightharpoonup f is never increased and lower bounded by 0

Alternating Least Squares

- Alternating minimization for low-rank matrix factorization = alternating least squares
 - lacktriangle decompose f into subproblems for columns of ${f V}$

$$f(\mathbf{U}, \mathbf{V}) = \sum_{i} \underbrace{\left[\sum_{j:(i,j)\in\mathcal{I}} (a_{ij} - \langle \mathbf{u}_{j}, \mathbf{v}_{i} \rangle)^{2} \right]}_{=:f(\mathbf{U}, \mathbf{v}_{i})}$$

- lacktriangle least squares problem $f(\mathbf{U}, \mathbf{v}_i)$ for column \mathbf{v}_i of \mathbf{V}
 - each of which can be solved independently!
- lacktriangle by symmetry: also holds for ${f U}\leftrightarrow {f V}$

Frobenius Norm Regularization

- lacktriangle Typically: regularize matrix factors ${f U},{f V}$
- (squared) Frobenius norm regularizer

$$\Omega(\mathbf{U}, \mathbf{V}) = \|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2$$

then

minimize
$$\rightarrow f(\mathbf{U}, \mathbf{V}) + \mu \Omega(\mathbf{U}, \mathbf{V}), \quad \mu > 0$$

does not change separability structure of problem

- given low-dimensional representations for items
- compute for each user independently the best representation

- given low-dimensional representations for users
- compute for each item independently the best representation

 all optimization problems are least-square problems of small dimension

Section 5

Convex Relaxation

Nuclear Norm

▶ Nuclear norm

$$\|\mathbf{A}\|_* = \sum_i \sigma_i, \quad \sigma_i$$
 : singular values of \mathbf{A}

- lacktriangle Compare with Frobenius norm $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$
- lacktriangle Or, alternatively, if we define $m{\sigma}(\mathbf{A})=(\sigma_1,\ldots,\sigma_n)$, then

$$\|\mathbf{A}\|_F = \|\boldsymbol{\sigma}(\mathbf{A})\|_{\mathbf{2}}$$
 whereas $\|\mathbf{A}\|_{*} = \|\boldsymbol{\sigma}(\mathbf{A})\|_{\mathbf{1}}$

▶ For a diagonal matrix \mathbf{D} , $\|\mathbf{D}\|_* = \mathsf{Tr}(\mathbf{D})$.

Nuclear Norm Minimization

► Exact reconstruction (Boolean G)

$$\min_{\mathbf{B}} \|\mathbf{B}\|_* \quad \text{subject to } \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}} = 0$$

► Approximate reconstruction

$$\min_{\mathbf{B}}\|\mathbf{A}-\mathbf{B}\|_{\mathbf{G}}^2,\quad \text{s.t. } \|\mathbf{B}\|_* \leq r$$

► Lagrangian formulation

$$\min_{\mathbf{B}} \left[\frac{1}{2\tau} \| \mathbf{A} - \mathbf{B} \|_{\mathbf{G}}^2 + \| \mathbf{B} \|_* \right]$$

Nuclear Norm vs. Rank

- ▶ How does this relate to low rank approximation?
- Lower bound

$$\mathsf{rank}(\mathbf{B}) \geq \|\mathbf{B}\|_*, \quad \mathsf{for} \quad \|\mathbf{B}\|_2 \leq 1$$

- ▶ in fact: tightest convex lower bound (Fazel 2002)
- ► Convex relaxation

$$\min_{\mathbf{B}\in\mathcal{P}_k} \|\mathbf{A} - \mathbf{B}\|_{\mathbf{G}}^2, \quad \mathcal{P}_k := \{\mathbf{B} : \|\mathbf{B}\|_* \le k\}$$

where

$$\mathcal{P}_k \supseteq \mathcal{Q}_k = \{ \mathbf{B} : \mathsf{rank}(\mathbf{B}) \le k \}$$

SVD Thresholding

- ▶ How to solve optimization problems involving the nuclear norm?
- Fundamental result (due to Cai, Candès & Shen, 2008)

$$\mathbf{B}^* = \mathsf{shrink}_{\tau}(\mathbf{A}) := \arg\min_{\mathbf{B}} \left\{ \frac{1}{2} \|\mathbf{A} - \mathbf{B}\|_F^2 + \tau \|\mathbf{B}\|_* \right\}$$

then with SVD $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$, $\mathbf{D} = \mathsf{diag}(\sigma_i)$, it holds that

$$\mathbf{B}^* = \mathbf{U} \mathbf{D}_{\tau} \mathbf{V}^{\top}, \quad \mathbf{D}_{\tau} = \operatorname{diag} \left(\max\{0, \sigma_i - \tau\} \right)$$

lacktriangleright note: all singular values are reduced by at least au

SVD Shrinkage Iterations

- ► SVD thresholding + projection = Shrinkage iterations (due to Cai, Candès & Shen, 2008)
- lacktriangle Define projection operator with regard to index set ${\mathcal I}$

$$\Pi(\mathbf{X}) = \begin{cases} x_{ij} & (i,j) \in \mathcal{I} \\ 0 & \text{otherwise} \end{cases}$$

ightharpoonup Iterative algorithm, initialized with ${f B}_0={f 0}$

$$\mathbf{B}_{t+1} = \mathbf{B}_t + \eta_t \, \Pi(\mathbf{A} - \mathsf{shrink}_{\tau}(\mathbf{B}_t))$$

 $> \eta_t > 0$: learning rate sequence

SVD Shrinkage Iterations: Analysis

- $ightharpoonup \mathbf{B}_t$ is a sequence of sparse matrices (efficiency!)
- lacktriangle It can be shown that $\lim_{t o\infty}$ shrink $_{ au}({f B}_t)={f B}^*$, the minimizer of

$$\mathbf{B}^* = \operatorname*{arg\,min}_{\mathbf{B}} \left\{ \|\mathbf{B}\|_* + \frac{1}{2\tau} \|\mathbf{B}\|_F^2 \right\}, \quad \text{s.t. } \Pi(\mathbf{A} - \mathbf{B}) = \mathbf{0}$$

- For large enough τ one finds a minimal nuclear-norm approximation to **A** that agrees on all observed entires.
- ▶ Can be extented to $\|\mathbf{A} \mathbf{B}\|_{\mathbf{G}}$ residuals (by modifying Π)

Exact Matrix Recovery

- Can use SVD-shrinkage iterations to solve convex relaxations.
- ▶ But: can we get any "generalization" guarantees $(\Pi(\mathbf{A}^*) = \mathbf{A})$?

$$\mathbf{B}^* = \mathop{\arg\min}_{\mathbf{B}} \left\{ \|\mathbf{B}\|_* \right\}, \quad \text{s.t. } \Pi(\mathbf{A} - \mathbf{B}) = \mathbf{0}$$

- suprising (deep) result: yes!
- ▶ **Theorem**: Exact reconstruction of rank k matrix A^* w.h.p., if it is strongly incoherent (parameter μ , spread of singular values), if

$$|\mathcal{I}| \geq C \mu^4 k^2 n (\log n)^2 \in \tilde{\mathbf{O}}(n), \quad \text{typically} \quad \mu = \mathbf{O}(\sqrt{\log n})$$

- ▶ due to Candes & Tao, 2010
- ightharpoonup explains, why $\|\cdot\|_*$ minimization works well in practice!

