A sample of elderly patients were given a psychiatric examination to determine whether symptoms of senility are present. One explanatory variable is a patient's score on the Wechsler Adult Intelligence Scale (WAIS).

- 1. Define the logistic regression model, including notation for the input matrix X, the response vector y, the parameter vector β , and the probability vector $\pi(\beta)$.
 - 2.
 - (a) State the likelihood equation for the MLE $\hat{\beta}$ as a normal equation.
 - (b) State the equation for $\widehat{V} = \widehat{Cov}(\widehat{\beta})$, the estimated covariance matrix for $\widehat{\beta}$.
 - (c) Compute $\widehat{\beta}$ and \widehat{V} from the WAIS data.
 - 3.
 - (a) State the equations for a 95% confidence interval for β_j .
- (b) Compute a 95% confidence interval for β_1 from the WAIS data, and provide an interpretation in the context of the problem.
 - 4.
 - (a) State the equations for a 95% confidence interval for the odds ratio θ .
 - (b) Compute a 95% confidence interval for θ from the WAIS data.
 - 5.
 - (a) State the equations for a 95% confidence interval for the logit L_o at input level x_o .
 - (b) Compute a 95% confidence interval for L_o at input level $x_o = 10$ from the WAIS data.
 - 6.
 - (a) State the equations for a 95% confidence interval for the probability π_o at input level x_o .
- (b) Compute a 95% confidence interval for π_o at input level $x_o = 10$ from the WAIS data, and provide an interpretation in the context of the problem.

wais	\mathbf{n}	senil
4	2	1
5	1	1
6	2	1
7	3	2
8	2	2
9	6	2
10	6	2
11	6	1
12	2	0
13	6	1
14	7	2
15	3	0
16	4	0
17	1	0
18	1	0

Applicants for graduate school are classified according to department, sex, and admission status. A goal of the study is to determine the role an applicant's sex plays in the determination of admission status.

- 1. Define a main effects logistic regression model M having two binary input variables. Include notation for the design matrix X, and the parameter vector β . Provide an interpretation for each of the effect parameters in β , stated in the context of the problem.
- 2. Provide notation for the design matrix X_S and parameter vector β_S for the saturated model M_S . Provide a brief description of an interaction effect.
- 3. For each of the models M_O , M_1 , M_2 , provide notation for the design matrix and a brief description of the model effects, stated in the context of the problem.
- 4. Compute the deviance statistic D, and give degrees of freedom Δdf , for each of the models M_O , M_1 , M_2 , M, M_S from the grad school data. Provide a general form for the statistic G^2 , and the degrees of freedom for the reference chi-square distribution, for testing a reduced model M_R against a full model M_F .
- 5. Compute the likelihood statistic G^2 for testing reduced model M against full model M_S from the grad school data, and provide an interpretation in the context of the problem.
- 6. Compute the likelihood statistic G^2 for testing reduced model M_O against full model M_2 from the grad school data, and provide an interpretation in the context of the problem.
- 7. Compute the likelihood statistic G^2 for testing reduced model M_1 against full model M from the grad school data, and provide an interpretation in the context of the problem. Include an explanation of how this test differs from that of the previous problem.
- 8. Compute estimates of the response probabilities based on model M_1 from the grad school data, and provide an interpretation in the context of the problem.

department	sex	(x_1,x_2)	admit yes	admit no
science	\mathbf{male}	(0,0)	235	35
	female	(0, 1)	38	7
nonscience	\mathbf{male}	(1,0)	122	93
	female	(1,1)	103	69