1 Fourierjeva analiza

Naj bo funkcija $f: [-\pi, \pi]$ nezvezna v končno mnogo točkah, kjer obstajata levi in desni odvod, vmes pa je med tema točkama odvedljiva. Tedaj

$$FV(f)(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kjer $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$ ter $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$ in $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$. Za vsak $x \in [-\pi, \pi]$ Fourierjeva vrsta funkcije f konvergira proti

- f(x), če je f zvezna v x in
- $\frac{f(x-)+f(x+)}{2}$, če f ni zvezna v x.

Naj bo $f:[0,\pi]\to\mathbb{R}$ funkcija. Funkcijo f s predpisom f(x)=f(-x), x<0 lahko razširimo do sode funkcije ter s predpisom f(x) = -f(-x) do lihe. Tedaj

$$FV_{cos}(f)(x) = FV(f_{soda}(x))$$
 ter $FV_{sin}(f)(x) = FV(f_{liha}(x))$

Parsevalova enakost:

$$\int_{-\pi}^{\pi} f^2(x) dx = 2\pi a_0^2 + \pi \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

1.1 Nasveti

• Za izračun integralov z sin in cos lahko uporabljamo enakost

$$\cos(nx) + \sin(nx) = e^{inx}.$$

- Če je funkcija soda, potem $\forall n>1$. $b_n=0$; če je funkcija liha, potem $\forall n>0$. $a_n=0$.
- Če želimo sešteti številsko vrsto, najprej razvijemo funkcijo v vrsto, potem vzamemo vrednost v pravi točki.
- Vsak polinom v sin in cos ima končno Fourierjevo vrsto. Dobimo jo s pomočjo trigonometrije.

2 Vektorska analiza

Gradient, divergenca in rotor. Potencial.

- rot grad u = 0 in div rot $\vec{f} = 0$.
- Vektorsko polje \vec{f} na zvezdastem območju je potencialno natanko tedaj, ko rot $\vec{f} = 0$.
- Naj bo $f(\vec{r}) = \frac{1}{|\vec{r} \vec{a}|}$ skalarno polje. Velja:

$$\operatorname{grad} f = -\frac{\vec{r} - \vec{a}}{|\vec{r} - \vec{a}|^3} \quad \operatorname{ter} \quad \operatorname{div}(\operatorname{grad} f) = 0.$$

Torej je grad f solenoidalno polje, tj. div $\vec{f} = 0$.

- $\operatorname{rot}(\vec{r} \times \vec{a}) = -2\vec{a}$; $\operatorname{rot}(\vec{a} \times \vec{r}) = 2\vec{a}$.
- Vektorsko polje \vec{f} je **potencialno**, če obstaja skalarno polje u, da $\vec{f} = \operatorname{grad} u$. Potencial polja dobimo z unijo členov po integraciji parcialnih odvodov.
- Laplaceov operator: $\triangle u = \operatorname{div} \operatorname{grad} u$.

2.2 Krivuljni integral skalarnega polja

Naj bo K krivulja z regularno parametrizacijo $\vec{r}:[a,b]\to\mathbb{R}^3,\ \vec{r}=(x,y,z).$ Tedaj

$$ds = |\dot{\vec{r}}(t)|dt = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}.$$

Naj bo $u:D\subseteq\mathbb{R}^3\to\mathbb{R}$ skalarno polje. Definiramo

$$\int_{K} u \, ds = \int_{a}^{b} u(\vec{r}(t)) |\dot{\vec{r}}(t)| dt.$$

2.3 Ploskovni integral skalarnega polja

Naj bo S ploskev z regularno paramaterizacijo $\vec{r}: \triangle \subseteq \mathbb{R}^2 \to \mathbb{R}^3$. Tedaj

$$dS = ||\vec{r}_u \times \vec{r}_v||dudv = \sqrt{||\vec{r}_u||^2 \cdot ||\vec{r}_v||^2 - \langle r_u, r_v \rangle^2} \, dudv = \sqrt{EG - F^2} \, dudv.$$

Naj bo $\mu:D\subseteq\mathbb{R}^3\to\mathbb{R}$ skalarno polje. Definiramo

$$\int_{S} \mu \, dS = \int_{\Lambda} \mu(\vec{r}(u,v)) |\vec{r}_{u} \times \vec{r}_{v}| \, du dv.$$

• Če je $S \subseteq \mathbb{R} \times \mathbb{R} \times \{a\}$, potem

$$\int_{S} \mu \, dS = \int_{\triangle} \mu(x, y, a) \, dx dy,$$

kjer je \triangle projekcija v xy-ravnino. Podobno za poljubno permutacijo koordinat.

2.4 Krivuljni integral vektorskega polja

Naj bo K krivulja z regularno parametrizacijo $\vec{r}:[a,b]\to\mathbb{R}^3,\ \vec{r}=(x,y,z).$ Naj bo $\vec{f}:D\subseteq\mathbb{R}^3\to\mathbb{R}^3$ vektorsko polje. Definiramo

$$\int_{K} \vec{f} \cdot d\vec{r} = \int_{a}^{b} (\vec{f}(\vec{r}(t)) \cdot \dot{\vec{r}}(t)) dt.$$

- Parametrizacija krivulje določa tudi njeno orientacijo.
- Cirkulacija je integral vektorskega polja vzdolž sklenjene krivulje.
- Integral potencialnega polja je enak vrednosti potenciala v končni točki minus vrednosti potenciala v začetni točki.

2.5 Ploskovni integral vektorskega polja

Naj bo S ploskev z regularno paramaterizacijo $\vec{r}: \triangle \subseteq \mathbb{R}^2 \to \mathbb{R}^3$. Naj bo $\vec{f}: D \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ vektorsko polje. Definiramo

$$\int_{S} \vec{f} \cdot d\vec{S} = \int_{S} (\vec{f} \cdot \vec{n}) \, dS,$$

kjer je \vec{n} enotska normala. Orientacija ploskve je potem določna z smerjo normale. Za izračun uporabljamo formulo

$$\int_{S} \vec{f} \cdot d\vec{S} = \int_{\Delta} \vec{f}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv,$$

pri čemer smer $\vec{r}_u \times \vec{r}_v$ se mora ujemati s predpisano orientacijo.

- To je tudi **pretok** polja \vec{f} skozi ploskev S.
- Ravno ploskev lahko parametriziramo v obliki $\vec{n} \cdot dS$.

Integralski izreki

Naj bo $\vec{f}: D \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ vektorsko polje.

Izrek 2.1 (Gaussov izrek). Naj bo $\Omega^{odp} \subseteq D$ omejena množica, katere rob $\partial \Omega$ je sestavljen iz končnega števila gladkih ploskev. Rob $\partial\Omega$ orientiramo tako, da izberimo zunanjo normalo. Tedaj

$$\iint_{\partial\Omega} \vec{f} \cdot d\vec{S} = \iiint_{\Omega} \operatorname{div} \vec{f} \, dV.$$

Izrek 2.2 (Stokesov izrek). Naj bo $\Sigma \subseteq D$ odsekoma gladka orientirana omejena ploskev, katere rob $\partial \Sigma$ je sestavljen iz končnega števila gladkih krivulj. Rob $\partial \Sigma$ orientiramo skladno s Σ : Če hodimo po ∂S v smeri predpisane orientacije in je S na naši levi strani, glava $določa normalo \vec{n}$. Tedaj

$$\int_{\partial \Sigma} \vec{f} \cdot d\vec{r} = \iint_{S} \operatorname{rot} \vec{f} \cdot d\vec{S}.$$

Izrek 2.3 (Greenova formula). Naj bo $D^{odp} \subseteq \mathbb{R}^2$ omejena množica, katere rob ∂D je sestavljen iz končnega števila gladkih krivulj. Rob ∂D orientiramo skladno sD. Naj bosta $X, Y: D \to \mathbb{R}$ gladki funkciji. Tedaj

$$\int_{\partial D} X \, dx + Y \, dy = \iint_{D} (Y_x - X_y) \, dx dy.$$

2.7 Splošno

- Pri izračunu gradienta, divergence, rotorja itn. vektorji zapišemo v kartezičnih ko-
- Pri parametrizaciji lahko si pomagamo s sferični, cilindrični itn. koordinati.
- Problematične točke lahko izoliramo s krogli.

3 Splošno

Linearna algebra

- $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{c} \cdot \vec{a})\vec{b} (\vec{b} \cdot \vec{a})\vec{c}$.
- Ploščina trikotnika: $S = \frac{1}{2}||(\vec{r}_A \vec{r}_B) \times (\vec{r}_A \vec{r}_C)||$. Težišče: $\vec{r}_T = \frac{1}{3}(\vec{r}_A = \vec{r}_B + \vec{r}_C)$.
- Enačba ravnine: $\vec{a} \cdot \vec{n} = d$, kjer je \vec{n} normala.

3.2 Geometrija

TODO: enačbe v kartezičnih koordinatih

- Tetraedr: $V = \frac{1}{3}S_{\text{osn}}h$.

- Stožec: $V=\frac{1}{3}S_{\rm osn}h,\ S=\pi r^2+\pi r\sqrt{r^2+h^2}.$ Valj: $V=\pi r^2h,\ S=2\pi rh+2\pi r^2.$ Sfera: $V=\frac{4}{3}\pi r^3,\ S=4\pi r^2;$ Elipsoid: $V=\frac{4}{3}\pi abc.$
- Torus: $V = 2\pi^2 a^2 b$.

3.3 Račun integralov

3.3.1 Parametrizacije

Astroida $x^{2/3} + y^{2/3} = a^{2/3}$:

$$\vec{r}(t) = (a\cos^3 t, a\sin^3 t), t \in [0, 2\pi].$$

Sfera $x^2 + y^2 + z^2 = r^2$:

$$\vec{r}(\psi,\varphi) = (r\cos\psi\cos\varphi, r\cos\psi\sin\varphi, r\sin\psi), \ \varphi \in [0,2\pi], \ \psi \in [-\pi/2,\pi/2]$$

ter

$$\vec{r}_{\psi} \times \vec{r}_{\varphi} = -\vec{r}(\psi, \varphi) \cos \psi.$$

3.4 Površine

Površina grafa $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$:

$$S = \iint_D \sqrt{1 + f_x^2 + f_y^2} \, dx dy$$
 ter $dS = \sqrt{1 + f_x^2 + f_y^2} \, dx dy$

TODO:

- Ploščine n-kotnikov ter 2D likov. Volumne ter ploščine 3D figur. Formula ploščine s vektorskim produktom.
- Integrali, vpeljava novih spremenljivk. Sferične koordinate za elipsoid. Premiki.
- Normala na graf funkcije.
- Orientacija usklajena s paramterizacijo.
- Običajni vrstni red integraciji.
- Funkciji Gamma in Beta.
- Zamena spremenljivke pri odvodu.