Door-to-Door Charity Collection

Richard Warwick - 30th May 2016

What is the problem

- The charity marketplace is extremely competitive in AU
- Accentuated by diminishing government and corporate funding
- Large-scale fundraising campaigns essential to maintain viability
- Although largely executed by volunteers, there are significant costs involved in the administration and promotion of door-to-door fundraising
- To efficiently target resources (including marketing) and maximise ROI, need to:
 - Understand profile of collectors
 - Are there any defining characteristics or distinct groups?
 - Identify key geographic areas for targeted messaging
 - Understand key factors that predict whether a collector is 'profitable'

What data do I have?

- 2015 collection data from *anonymous* national charity
 - Postcode, age, number of streets covered, new or existing volunteer, total collected, total donated (by the individual collector), total received (collected + donated), profitability (binary whether or not return exceeds average cost)
 - Private
- 2013/14 ATO Postcode Data
 - No. of individuals, salary, income, tax deductible donations
 - Public
- 2011 ABS Census Community Profile Postcode level
 - Comprehensive demographic information to build out postcode level data
 - Public

What data do I have?

Collectors profile skews towards older people, women, and new collectors
Inherent limitations/bias - bleeding between postcodes, houses per street etc.

	postcode	num_streets	collection_amount	donation_amount	total_received	age	gender	weekends	profitable	Acq
count	26523	26523.000000	26523.000000	26523.000000	26523.000000	26523.000000	26523.000000	26523.000000	26523.000000	26523.000000
unique	1728	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	4350	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	230	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	2.883610	77.820176	3.724618	81.544794	62.458621	0.653998	3.352298	0.413377	0.614372
std	NaN	2.548894	70.843846	18.707591	70.658179	14.072699	0.475703	0.871464	0.492449	0.486752
min	NaN	0.000000	-414.950000	-150.000000	-500.000000	0.000000	0.000000	2.000000	0.000000	0.000000
25%	NaN	1.000000	37.000000	0.000000	40.000000	54.000000	0.000000	2.000000	0.000000	0.000000
50%	NaN	2.000000	61.000000	0.000000	64.000000	65.000000	1.000000	4.000000	0.000000	1.000000
75%	NaN	3.000000	100.000000	0.000000	101.000000	72.000000	1.000000	4.000000	1.000000	1.000000
max	NaN	40.000000	2123.000000	1000.000000	2123.000000	103.000000	1.000000	4.000000	1.000000	1.000000

What did I do?

- Collated and prepared the data for testing/analysis
 - Needed to create a business relevant metric not present in the data 'profitability'
- Tried the following models:
 - K-means clustering
 - o PCA
 - Linear Regression
 - Logistic Regression
 - Decision Trees
 - Random Forest
- Transformed clustering and predictions into features for further analysis

What Were the Results?

- Clustered collectors into 5 distinct groups
 - Gave them descriptive labels
 - Mapped them
 - Ready to send to outbound call centre/media agency
- Model that predicts profitability at an individual level
 - o 5 key features:
 - Age, Number of streets, Postcode, New or returning collector, Gender
 - .97 accuracy on training data (tick), generalises at .57 (cross)
- Model that predicts profitability at a postcode level
 - Evenly distributed feature importance
 - Income and correlated features dominant
 - 1.0 accuracy training, generalises at .68 (better)

Collector Clusters

- #0 = heart and soul above average incomes, okay returns
- #1 = old money high avg incomes, avg charity donations \$5.5k each year, older & newer collecters, fewer streets
- #2 = scraping by collectors in low affluence neighbourhoods often having to chip in themselves to be profitable
- #3 = blue collar collectors average volunteers, average returns
- #4 = underperformers well populated, high incomes, modest returns

Collector Clusters - Maps (Tableau)

Profitability Prediction - Postcode

- Averages profitability across all collectors in an area
- Useful for identifying problem/interesting areas
- Highly correlative features
 - o Demographic data
 - Duplication between ATO and ABS data
- Even spread of feature importance within model
 - .08 highest value
- OOB score of 0.68

Profitability Prediction - Individuals

- Same analysis at an individual level
- Feature importance helps identify key levers
- Individual features more important
 - o Age, Gender, Num Streets, etc.
- OOB score of 0.57
- Potential for improvement

Did I Achieve What I Set Out To Do?

- In a way...
 - Near minimum viable product
 - Clustering interesting and potentially useful
 - Successfully implemented some DS techniques
 - Established a potential use case
- Would have liked to produce a more accurate model
- Overall confident have added value to the dataset through unsupervised and supervised learning techniques

What Did I Learn?

- Not to lose the wood for the (decision) trees
 - Desire to build a model that predicts nicely moved me away from actionable business insights
- Better understanding of characteristics of data and at what level DS techniques can be employed
- How to wrangle Python effectively (VCR last thing I've ever programmed)
- Balancing preparation, experimentation, and time (resources)

I Took an All Too Familiar Path

Dunning-Kruger effect

http://www.understandinginnovation.wordpress.com

What I Will Do Next

- Go back to the data
- Refine the feature set further
- Look to improve prediction model
 - Try xgboost
- Try and enrich individual-level data (I've stripped all the PII out)
- Present results internally (workplace)
- Maybe implement some recommendations off the back
- Potentially create searchable map (dashboard)