Preliminares matemáticos

Inversos modulares
Teorema chino del resto
Cifrado afín II

Inversos modulares

 $(\mathbb{Z}_n,+,\cdot)$ es un anillo conmutativo unitario. ¿Es $(\mathbb{Z}_n,+,\cdot)$ cuerpo?

Un anillo conmutativo unitario ($\mathbb{F},+,\cdot$) es *cuerpo* si todo elemento distinto de 0 tiene simétrico para el producto (inverso):

$$0 \neq a \in \mathbb{F} \Rightarrow \exists a^{-1} \in \mathbb{F} \text{ tal que } a \cdot a^{-1} = 1.$$

Es decir, $(\mathbb{F}\setminus\{0\},\cdot)$ es un grupo conmutativo.

Ejemplos de cuerpos: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

 \mathbb{Z} no es cuerpo: no existe $2^{-1} \in \mathbb{Z}$.

$$\mathbb{Z}_6=\{0,1,2,3,4,5\}.$$

	0	1	2	3	4	5	
0							$1^{-1}\equiv 1\mod 6,$
1		1	2	3	4	5	$5^{-1} \equiv 5 \mod 6$
2		2	4	0	2	4	No existen $2^{-1}, 3^{-1}, 4^{-1}$ mód 6.
3		3	0	3	0	3	
4		4	2	0	4	2	$(\mathbb{Z}_6,+,\cdot)$ no es cuerpo.
5		5	4	3	2	1	· ,

Teorema (Existencia de inversos modulares)

Existe $a^{-1} \mod n$ si y sólo si mcd(a, n) = 1.

El conjunto de elementos invertibles en \mathbb{Z}_n se llama conjunto reducido de residuos módulo n y se representa \mathbb{Z}_n^* .

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : \operatorname{mcd}(a, n) = 1 \}$$

 (\mathbb{Z}_n^*,\cdot) es grupo conmutativo.

Ejemplo

$$\mathbb{Z}_2^* = \{1\}, \quad \mathbb{Z}_5^* = \{1, 2, 3, 4\}, \quad \mathbb{Z}_6^* = \{1, 5\}.$$

Corolario

 $(\mathbb{Z}_n,+,\cdot)$ es cuerpo si y sólo si n primo.

Inversos modulares Teorema chino del resto Cifrado afín II

Definición

Dado un entero n > 1, se llama función (indicatriz) de Euler de n y se representa $\phi(n)$ al número de elementos del conjunto de residuos reducido de n.

$$\phi(n) = \operatorname{card}(\mathbb{Z}_n^*)$$

= $n \text{úmero de enteros a t. q. } 0 < a < n \text{ y } \operatorname{mcd}(a, n) = 1.$

- Si *n* primo, $\phi(n) = n 1$.
- Si n = pq, p, q primos distintos, $\phi(n) = (p-1)(q-1)$.
- Si $n = p_1^{e_1} \cdots p_r^{e_r}, p_1, \dots, p_r$ primos distintos,

$$\phi(n) = p_1^{e_1-1}(p_1-1)\cdots p_r^{e_r-1}(p_r-1)$$

= $\frac{n}{p_1\cdots p_r}(p_1-1)\cdots (p_r-1).$

5 primo,
$$\phi(5) = 4$$
, $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$.

$$6 = 2 \cdot 3$$
, $\phi(6) = (2-1)(3-1) = 2$, $\mathbb{Z}_6^* = \{1, 5\}$.

$$100 = 2^2 \cdot 5^2, \quad \phi(100) = \frac{100}{2 \cdot 5} (2 - 1)(5 - 1) = 40.$$

Cálculo de inversos modulares

Existe $a^{-1} \mod n$ si y sólo si mcd(a, n) = 1.

Si mcd(a, n) = 1, veremos dos métodos para calcular $a^{-1} \mod n$:

- A partir del Algoritmo extendido de Euclides.
- A partir del Teorema de Euler-Fermat.

A partir del Algoritmo extendido de Euclides

 $mcd(a, n) = 1 \Leftrightarrow existen enteros u, v tales que <math>au + nv = 1$.

$$au + nv = 1 \Rightarrow au = 1 + (-v)n \Rightarrow au \equiv 1 \mod n$$

 $\Rightarrow \boxed{a^{-1} \equiv u \mod n}.$

Podemos calcular u con el Algoritmo extendido de Euclides.

Ejemplo

$$1 = (-1) \cdot 26 + 3 \cdot 9 \Rightarrow 9^{-1} \equiv 3 \mod 26.$$

$$9 \cdot 3 \equiv 1 \mod 26$$
.

Inversos modulares Teorema chino del resto Cifrado afín II

A partir del Teorema de Euler-Fermat

Teorema (Pequeño Teorema de Fermat)

Sea n un número primo. Entonces, para cualquier entero positivo a tal que mcd(a, n) = 1,

$$a^{n-1} \equiv 1 \mod n$$
.

Teorema (Teorema de Euler-Fermat)

Sean a, n números enteros positivos tales que mcd(a, n) = 1. Entonces,

$$a^{\phi(n)} \equiv 1 \mod n$$
.

Consecuencia

$$a \cdot a^{\phi(n)-1} \equiv 1 \mod n \Rightarrow a^{-1} \equiv a^{\phi(n)-1} \mod n.$$

<u>Observación</u>: Para calcular inversos por este método debemos ser capaces de calcular $\phi(n)$.

Inversos modulares Teorema chino del resto Cifrado afín II

Teorema chino del resto

El Teorema chino del resto permite resolver ciertos sistemas de congruencias.

Teorema (Teorema chino del resto)

Sea $n = p_1 \cdots p_r$ con p_1, \dots, p_r primos entre sí y sean a_1, \dots, a_r números enteros. Entonces existe un único (mód n)* entero x tal que

$$x \equiv a_i \mod p_i, \quad i = 1, \ldots, r.$$

Este entero x es:

$$x \equiv \sum_{i=1}^{r} \frac{n}{p_i} y_i a_i \mod n,$$

donde
$$y_i \equiv (\frac{n}{p_i})^{-1} \mod p_i$$
, $i = 1, \ldots, r$.

*La unicidad (mód n) significa que existe una única solución en \mathbb{Z}_n y, que si x es una solución entonces también lo es x + kn para cuaquier entero k.

$$x \equiv 5 \mod 8 x \equiv 4 \mod 5 x \equiv 2 \mod 3$$

$$n = 8 \cdot 5 \cdot 3 = 120,$$

$$x \equiv 2 \mod 3$$

$$\frac{120}{8} = 15, \quad y_1 \equiv 15^{-1} \equiv 7 \mod 8,$$

$$\frac{120}{5} = 24, \quad y_2 \equiv 24^{-1} \equiv 4 \mod 5,$$

$$\frac{120}{3} = 40, \quad y_3 \equiv 40^{-1} \equiv 1 \mod 3,$$

$$15 \cdot 7 \cdot 5 + 24 \cdot 4 \cdot 4 + 40 \cdot 1 \cdot 2 = 989 \equiv 29 \mod{120}$$
.

Solución:

$$x \equiv 29 \mod 120$$
.

Efectivamente:

$$29 \equiv 5 \mod 8$$
, $29 \equiv 4 \mod 5$, $29 \equiv 2 \mod 3$, $149 \equiv 5 \mod 8$, $149 \equiv 4 \mod 5$, $149 \equiv 2 \mod 3$, :

Caso particular: r = 2

Sea n = pq con p, q primos relativos y sean a, b números enteros. Existe un único (mód n) entero x tal que

$$x \equiv a \mod p$$
, $x \equiv b \mod q$.

Este entero x es:

$$x \equiv (qq_1a + pp_1b) \mod n,$$

donde

$$q_1 \equiv q^{-1} \mod p,$$

 $p_1 \equiv p^{-1} \mod q.$

Ejemplo

$$\left. \begin{array}{c} x \equiv 4 \mod 7 \\ x \equiv 2 \mod 3 \end{array} \right\} \quad n = 7 \cdot 3 = 21,$$

$$q_1 \equiv 3^{-1} \equiv 5 \mod 7, \qquad p_1 \equiv 7^{-1} \equiv 1 \mod 3.$$

Solución:

$$x \equiv (3 \cdot 5 \cdot 4 + 7 \cdot 1 \cdot 2) \equiv 11 \mod 21.$$

Cifrado afín II

Cifrado afín sobre letras

Recordemos la transformación afín: a cada letra del alfabeto le asignamos un número.

Si el número de letras del alfabeto es N, entonces

$$\mathcal{M} = \mathcal{C} = \mathbb{Z}_N$$
.

La función de cifrado es

$$C \equiv aM + b \mod N$$
, con $mcd(a, N) = 1$.

Clave de cifrado: (a, b).

Como mcd(a, N) = 1, existe $a^{-1} \mod N$ y la función de descifrado es $M \equiv a^{-1}C - a^{-1}b \mod N$

 $M \equiv a^{-1}C - a^{-1}b \mod N$ $\equiv a'C + b' \mod N$,

donde

$$a' \equiv a^{-1} \mod N$$
; $b' \equiv -a^{-1}b \mod N$.

Clave de descifrado: (a', b').

El cifrado afín es fácil de romper:

- Probando todas las claves posibles hasta encontrar un mensaje que tenga sentido.
- Con análisis de frecuencias.

Inversos modulares Teorema chino del resto Cifrado afín II

Cifrado afín sobre k-gramas

Transformación afín (k-gramas): $\mathcal{M} = \mathcal{C} = \mathbb{Z}_{N^k}$.

Las funciones de cifrado y descifrado son como en el caso de la transformación afín sobre las letras, pero módulo N^k .

Función de cifrado:

$$C \equiv aM + b \mod N^k \mod \gcd(a, N) = 1.$$

 $\operatorname{mcd}(a, N) = 1 \Rightarrow \operatorname{mcd}(a, N^k) = 1 \Rightarrow \operatorname{existe} a^{-1} \mod N^k.$

Función de descifrado:

$$M \equiv a'C + b' \mod N^k$$
,

donde

$$a' \equiv a^{-1} \mod N^k$$
; $b' \equiv -a^{-1}b \mod N^k$.

$$N = 26, \quad k = 2, \quad a = 159, \quad b = 580$$

"ADIOS" \rightarrow "AD", "IO", "SQ"

"AD" \rightarrow (0,3) \rightarrow 26 \cdot 0 + 3 = 3

"ADIOS" \rightarrow (3, 222, 484)

 $159 \cdot 3 + 580 = 1057 \equiv 381 \mod 676$

(3, 222, 484) \rightarrow (381, 50, 472)

 $381 = 26 \cdot 14 + 17, \quad (14,17) \rightarrow \text{"OR"}$
 $50 = 26 \cdot 1 + 24, \quad (1,24) \rightarrow \text{"BY"}$
 $472 = 26 \cdot 18 + 4, \quad (18,4) \rightarrow \text{"SE"}$

"ADIOS" \rightarrow "ORBYSE"

$$N = 26, \quad k = 2, \quad a = 159, \quad b = 580$$

$$a'\equiv 159^{-1}\equiv 659 \mod 676, \quad b'\equiv -580\cdot 659\equiv 396 \mod 676$$

$$\text{"YYDI"}\to \text{"YY", "DI"}$$

$$\text{"YY"}\to (24,24)\to 26\cdot 24+24=648$$

$$\text{"YYDI"}\to (648,86)$$

$$659\cdot 648+396=427428\equiv 196\mod 676$$

$$(648,86)\to (196,286)$$

$$196=26\cdot 7+14,\quad (7,14)\to \text{"HO"}$$

$$286=26\cdot 11+0,\quad (11,0)\to \text{"LA"}$$

$$\text{"YYDI"}\to \text{"HOLA"}$$

Fin de la sección