MAC0329 – Álgebra booleana e circuitos digitais (Nina)

 DCC / IME-USP — Primeiro semestre de 2016

Lista de exercícios 2 (Data para entrega: até 20/04/2016)

OBS.: Procure mostrar/explicar de forma completa o seu raciocínio (e não apenas apresentar a resposta).

- 1. Quantos produtos canônicos em n variáveis existem? Liste todos os produtos canônicos em 4 variáveis. Escreva esses produtos canônicos considerando a ordem lexicográfica das respectivas entradas (i.e., elementos em $\{0,1\}^4$).
- 2. Para quais valores de a, b, c, d o produto $a \, \overline{b} \, d$ toma valor 1? Escreva a resposta em forma de intervalo (isto é, na forma [A, B] na qual $A, B \in \{0, 1\}^4$) e na forma de cubo (isto é, na forma XXXX na qual $X \in \{0, 1, X\}$).
- 3. Minimize, usando o mapa de Karnaugh, as funções a seguir. Escreva a expressão na forma SOP minimal. Caso exista mais de uma solução minimal, mostre todas. Indique de forma clara qual o produto associado a cada um dos cubos marcados no mapa.

a)
$$f(a, b, c, d) = \sum m(0, 1, 4, 6, 7, 9, 13, 14, 15)$$

b)
$$f(a, b, c, d) = \sum m(0, 7, 8, 10, 12) + d(2, 6, 11)$$

- 4. Calcular a expressão minimal na forma POS para a função $f(a,b,c) = \prod M(0,2,3,4)$. Escreva a expressão na forma POS minimal.
- 5. Seja $f(a, b, c) = ab + \overline{c}$.
 - a) quais são os implicantes de f?
 - b) quais são os implicantes primos de f?
- 6. Calcule todos os implicantes primos de $f(a, b, c, d) = \sum m(0, 1, 2, 7, 8, 9, 10, 15)$ usando o algoritmo QM.

7. Sejam dois números inteiros a e n. Em computação, a operação a mod n é o resto da divisão euclidiana de a por n. Dados três inteiros a, b e n, podemos dedinir a adição módulo n de a e b por (a+b) mod n.

Sejam dois números binários $x_1 x_0$ e $y_1 y_0$ de 2 bits cada. Denote por $z_1 z_0$ o resultado da adição módulo 4 de $x_1 x_0$ e $y_1 y_0$. Por exemplo, como $(3+3) \mod 4 = 2$, para $x_1 x_0 = 11$ e $y_1 y_0 = 11$ temos $z_1 z_0 = 10$.

- a) escreva z_1 e z_0 na forma compacta $(\sum m(\))$. A tabela ao final mostra a definição parcial dessas saídas.
- b) Minimize-as na forma SOP, individualmente
- c) Minimize-as conjuntamente na forma SOP (isto é, encontre uma realização das duas funções na forma SOP que, dentre todas as realizações na forma SOP, utiliza o menor número possível de portas E e, dentre as que utilizam o menor número de portas E, o menor número possível de entradas em cada porta).

OBS.: este item pode ser resolvido usando o programa "espresso" (binário para linux no PACA)

d) Compare e discuta as soluções obtidas em (b) e (c).

$x_1 x_0 y_1 y_0$	$z_1 z_0$	Significado
00 00	00	(0+0) mod 4 = 0
00 01		
00 10		
00 11		
01 00		
01 01		
01 10	11	$(1+2) \bmod 4 = 3$
01 11		
10 00		
10 01		
10 10		
10 11		
11 00		
11 01		
11 10		
11 11	10	$(3+3) \bmod 4 = 2$