8. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Oszthatóság

Ha a és b racionális számok $(b \neq 0)$, akkor az a/b osztás mindig elvégezhető (és az eredmény szintén racionális).

Ha a és b egész számok, az a/b osztás nem mindig végezhető el (a hányados nem feltétlenül lesz egész).

Definíció

Az a egész osztja a b egészet (b osztható a-val): a | b, ha létezik olyan c egész, mellyel $a \cdot c = b$ (azaz $a \neq 0$ esetén b/a szintén egész).

Példák

- 1 | 13, mert $1 \cdot 13 = 13$;
- $1 \mid n$, mert $1 \cdot n = n$:
- 6 | 12, mert $6 \cdot 2 = 12$;
- $-6 \mid 12$, mert $(-6) \cdot (-2) = 12$.

A definíció kiterjeszthető például a Gauss-egészekre: $\{a + bi : a, b \in \mathbb{Z}\}$. Példák

- $i \mid 13$, mert $i \cdot (-13i) = 13$;
- $1+i \mid 2$, mert $(1+i) \cdot (1-i) = 2$.

Oszthatóság tulajdonságai

Állítás (HF)

Minden $a, b, c, \ldots \in \mathbb{Z}$ esetén

- a | a;
- 2 $a \mid b \text{ és } b \mid c \Rightarrow a \mid c;$

- $ac \mid bc$ és $c \neq 0 \Rightarrow a \mid b$;
- **8** $a \mid 0$, u.i. $a \cdot 0 = 0$;
- 0 1 | a és -1 | a;

Példák

- **1** 6 | 6;
- 2 | 6 és 6 | 12 \Rightarrow 2 | 12;
- **3** $a \mid 3 \text{ és } 3 \mid a \Rightarrow a = \pm 3;$
- **4** $2 \mid 4 \text{ és } 3 \mid 9 \Rightarrow 2 \cdot 3 \mid 4 \cdot 9;$
- **3** $| 6 \Rightarrow 5 \cdot 3 | 5 \cdot 6;$
- **o** $3 \cdot 5 \mid 6 \cdot 5 \text{ és } 5 \neq 0 \Rightarrow 3 \mid 6$;

Egységek

Definíció

Ha egy ε szám bármely másiknak osztója, akkor ε -t egységnek nevezzük.

Állítás

Az egész számok körében két egység van: 1, -1.

Bizonyítás

A ±1 nyilván egység.

Megfordítva: ha ε egység, akkor $1 = \varepsilon \cdot q$ valamely q egész számra. Mivel $|\varepsilon| \geq 1, \ |q| \geq 1 \Rightarrow |\varepsilon| = 1$, azaz $\varepsilon = \pm 1$.

Példa A Gauss-egészek körében az i is egység: a + bi = i(b - ai).

Megjegyzés

Pontosan 1 osztói az egységek.

Asszociáltak

Oszthatóság szempontjából nincs különbség a 12 ill. -12 között.

Definíció

Két szám asszociált, ha egymás egységszeresei.

Megjegyzés (HF)

a és b pontosan akkor asszociált, ha $a \mid b$ és $b \mid a$.

Definíció

Egy számnak az asszociáltjai és az egységek a triviális osztói.

Prímek, felbonthatatlanok

Definíció

Ha egy nem-nulla, nem egység számnak a triviális osztóin kívül nincs más osztója, akkor felbonthatatlannak (irreducibilisnek) nevezzük.

Példa 2, -2, 3, -3, 5, -5 felbonthatatalnok. 6 nem felbonthatatlan, mert $6 = 2 \cdot 3$.

Definíció

Egy nem-nulla, nem egység p számot prímszámnak nevezünk, ha $p \mid ab \Rightarrow p \mid a$ vagy $p \mid b$.

Példa 2, -2, 3, -3, 5, -5. 6 nem prímszám, mert $6 \mid 2 \cdot 3$ de $6 \nmid 2$ és $6 \nmid 3$.

Prímek, felbonthatatlanok

Állítás

Minden prímszám felbonthatatlan.

Bizonyítás

Legyen p prímszám és legyen p=ab egy felbontás. Igazolnunk kell, hogy a vagy b egység.

Mivel p = ab, így $p \mid ab$, ahonnan például $p \mid a$. Ekkor a = pk = a(bk), azaz bk = 1, ahonnan következik, hogy b és k is egység.

A fordított irány nem feltétlenül igaz:

- Z-ben igaz, (lásd később);
- $\{a + bi\sqrt{5} : a, b \in \mathbb{Z}\}$ -ben nem igaz.

Maradékos osztás

A számelméletben a fő eszközünk a maradékos osztás lesz:

Tétel

Tetszőleges $a, b \neq 0$ egész számokhoz egyértelműen léteznek q, r egészek, hogy

$$a = bq + r$$
 és $0 \le r < |b|$.

Bizonyítás

A tételt csak nemnegatív számok esetében bizonyítjuk.

- Létezés: a szerinti indukcióval.
 - Ha a < b, akkor $a = b \cdot 0 + a$ (q = 0, r = a).
 - Ha $a \ge b$, akkor tegyük fel, hogy a-nál kisebb számok már felírhatók ilyen alakban. Legyen $a b = bq^* + r^*$. Ekkor $a = b(q^* + 1) + r^*$ és legyen $q = q^* + 1$, $r = r^*$.
- ② Egyértelműség: legyen $a = bq + r = bq^* + r^*$. Ekkor $b(q q^*) = r^* r$. Ez csak akkor lehet, ha $q = q^*$ és $r = r^*$.

Maradékos osztás

Definíció

Legyenek a,b egész számok ($b \neq 0$). Legyen $a = b \cdot q + r$ ($0 \leq r < |b|$). Ekkor $a \mod b = r$.

Megjegyzés:

$$q = \lfloor a/b \rfloor$$
, ha $b > 0$, és $q = \lceil a/b \rceil$, ha $b < 0$.

Példa

- $123 \mod 10 = 3$, $123 \mod 100 = 23$, $123 \mod 1000 = 123$;
- $123 \mod -10 = 3, \ldots$
- $-123 \mod 10 = 7$, $-123 \mod 100 = 77$, $-123 \mod 1000 = 877$;
- $-123 \mod -10 = 7, \ldots$

Maradékos osztás

Példa

- ① Ha most 9 óra van, hány óra lesz 123 óra múlva? Osszuk el maradékosan 123-at 24-gyel: $123=24\cdot 5+3$. Tehát 9+3=12: déli 12 óra lesz!
- ⓐ Ha most 9 óra van, hány óra lesz 116 óra múlva? Osszuk el maradékosan 116-ot 24-gyel: $116 = 24 \cdot 4 + 20$. Tehát 9 + 20 = 29. Újabb redukció: $29 = 24 \cdot 1 + 5$: hajnali 5 óra lesz!
- Milyen napra fog esni jövőre november 11-e? Milyen napra esett három éve november 15-e?

```
\begin{array}{lll} & \text{h\'et}f\Ho \mapsto 0 \\ & \text{kedd} \mapsto 1 \\ & \text{szerda} \mapsto 2 \\ & \text{cs\"ut\"ort\"ok} \mapsto 3 \\ & \text{p\'entek} \mapsto 4 \\ & \text{szombat} \mapsto 5 \\ & \text{vas\'arnap} \mapsto 6 \end{array} \qquad \begin{array}{ll} \text{Osszuk el marad\'ekosan } 365-\Hot \ 7\text{-tel} \colon \ 365 = 7 \cdot 52 + 1. \\ & \text{kedd} + 1 \text{ nap} \leftrightarrow 1 + 1 = 2 \leftrightarrow \text{szerda} \\ & \text{Szerda}
```

Számrendszerek

10-es számrendszerben a 123:

$$123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$$

2-es számrendszerben a 123:

$$1111011_{(2)} = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}_{(10)}$$
$$= 1 \cdot 64 + 1 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1_{(10)}$$

Tétel

Legyen q>1 rögzített egész. Ekkor bármely n pozitív egész

egyértelműen felírható $n = \sum_{i=0}^{\infty} a_i q^i$ alakban, ahol $0 \le a_i < q$ egészek,

 $a_k \neq 0$.

- Ez a felírás *n q* számrendszerben történő felírása.
- q a számrendszer alapja.
- a_0, \ldots, a_k az n jegyei.
- $k = \lfloor \log_a n \rfloor$.

Számrendszerek

n felírása a q alapú számrendszerben: $n = \sum_{i=0}^{k} a_i q^i$.

Bizonyítás

A tételt indukcióval bizonyítjuk.

- ② Tfh minden n-nél kisebb számot fel tudunk írni egyértelműen q alapú számrendszerben. A maradékos osztás tétele alapján létezik egyértelműen $0 \le a_0 < q$ egész, hogy $q \mid n a_0$. Indukció alapján írjuk fel q alapú számrendszerben $\frac{n-a_0}{q} = \sum_{i=1}^k a_i q^{i-1}$, indukció

alapján a felírás egyértelmű. Ekkor $n = \sum_{i=0}^{k} a_i q^i$.

Számrendszerek

Az előbbi bizonyítás módszert is ad a felírásra: Példa Írjuk fel az $n=123\,$ 10-es számrendszerben felírt számot 2-es számrendszerben.

i	n	<i>n</i> mod 2	$\frac{n-a_i}{2}$	jegyek
0	123	1	<u>123-1</u> 2	1
1	61	1	<u>61-1</u> 2	11
2	30	0	<u>30-0</u> 2	011
3	15	1	<u>15-1</u> 2	1 011
4	7	1	7-1 2	1 1011
5	3	1	$\frac{3-1}{2}$	1 10011
6	1	1	$\frac{1-1}{2}$	1 110011

13.

Legnagyobb közös osztó

Definíció

Az a és b számoknak a d szám kitüntetett közös osztója (legnagyobb közös osztója), ha : $d \mid a, d \mid b$, és $c \mid a, c \mid b \Rightarrow c \mid d$.

Figyelem! Itt a "legnagyobb" nem a szokásos rendezésre utal: 12-nek és 9-nek legnagyobb közös osztója lesz a -3 is.

A legnagyobb közös osztó csak asszociáltság erejéig egyértelmű.

Definíció

Legyen (a, b) = lnko(a, b) a nemnegatív kitüntetett közös osztó!

Definíció

Az a és b számoknak az m szám kitüntetett közös többszöröse (legkisebb közös töbszöröse), ha : $a \mid m$, $b \mid m$, és $a \mid c$, $b \mid c \Rightarrow m \mid c$. Legyen [a,b] = lkkt(a,b) a nemnegatív kitüntetett közös többszörös!

14.

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Tétel

Bármely két egész számnak létezik legnagyobb közös osztója, és ez meghatározható az euklideszi algoritmussal.

Bizonyítás

Ha valamelyik szám 0, akkor a legnagyobb közös osztó a másik szám. Tfh a, b nem-nulla számok. Végezzük el a következő osztásokat:

$$a = bq_1 + r_1, \quad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}.$$

Ekkor az Inko az utolsó nem-nulla maradék: $(a, b) = r_n$. Itt $a = r_{-1}$, $b = r_0$.

Euklideszi algoritmus helyessége

Bizonyítás (folyt.)

$$a = bq_1 + r_1, \quad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}.$$

Az algoritmus véges sok lépésben véget ér: $|b| > r_1 > r_2 > \dots$ Az r_n maradék közös osztó: $r_n \mid r_{n-1} \Rightarrow r_n \mid r_{n-1}q_n + r_n = r_{n-2} \Rightarrow \dots \Rightarrow$

Az r_n maradék közös ösztő: $r_n \mid r_{n-1} \Rightarrow r_n \mid r_{n-1}q_n + r_n = r_{n-2} \Rightarrow \ldots = \Rightarrow r_n \mid b \Rightarrow r_n \mid a$.

Az r_n maradék a legnagyobb közös osztó: legyen $c \mid a, c \mid b \Rightarrow c \mid a - bq_1 = r_1 \Rightarrow c \mid b - r_1q_2 = r_2 \Rightarrow \ldots \Rightarrow c \mid r_{n-2} - r_{n-1}q_n = r_n$. \square

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Példa Számítsuk ki (172,62) értékét!

i	ri	qi	$r_{i-2}=r_{i-1}q_i+r_i$
-1	172	_	_
0	62	_	_
1	48	2	$172 = 62 \cdot 2 + 48$
2	14	1	$62 = 48 \cdot 1 + 14$
3	6	3	$48 = 14 \cdot 3 + 6$
4	2	2	$14 = 6 \cdot 2 + 2$
5	0	3	$6 = 2 \cdot 3 + 0$

A legnagyobb közös osztó: (172, 62) = 2

2014. ősz

Legnagyobb közös osztó kiszámolása rekurzióval

Tétel

Legyen $a \neq 0$. Ha b = 0, akkor (a, b) = a. Ha $b \neq 0$, akkor $(a, b) = (|b|, a \mod |b|)$.

Bizonyítás

Ha b=0, akkor a tétel nyilvánvaló. Mivel (a,b)=(|a|,|b|), feltehető, hogy a,b>0. Ha $b\neq 0$, osszuk el maradékosan a-t b-vel: $a=b\cdot q+(a\bmod b)$. Ez az euklideszi algoritmus első sora.

Példa

Számítsuk ki (172,62) értékét!

(a, b)	<i>a</i> mod <i>b</i>
(172, 62)	48
(62, 48)	14
(48, 14)	6
(14, 6)	2
(6, 2)	0

A legnagyobb közös osztó: (172, 62) = 2.

Legnagyobb közös osztó, további észrevételek

Hasonló módon definiálható több szám legnagyobb közös osztója is (HF): (a_1, a_2, \ldots, a_n) .

Állítás (HF)

Bármely a_1, a_2, \ldots, a_n egész számokra létezik (a_1, a_2, \ldots, a_n) és $(a_1, a_2, \ldots, a_n) = ((\ldots (a_1, a_2), \ldots, a_{n-1}), a_n)$.

Állítás (HF)

Bármely a, b, c egész számokra (ca, cb) = c(a, b).

19.

Bővített euklideszi algoritmus

Tétel

Minden a, b egész számok esetén léteznek x, y egészek, hogy $(a,b)=x\cdot a+y\cdot b$.

Bizonyítás

Legyenek q_i , r_i az euklideszi algoritmussal megkapott hányadosok, maradékok.

Legyen $x_{-1}=1$, $x_0=0$ és $i\geq 1$ esetén legyen $x_i=x_{i-2}-q_ix_{i-1}$. Hasonlóan legyen $y_{-1}=0$, $y_0=1$ és $i\geq 1$ esetén legyen

$$y_i = y_{i-2} - q_i y_{i-1}$$
.

Ekkor $i \ge 1$ esetén $x_i a + y_i b = r_i$. (Biz.: HF, indukcióval)

Speciálisan
$$x_n a + y_n b = r_n = (a, b)$$
.

21.

Bővitett euklideszi algoritmus

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x_{-1} = 1$, $x_0 = 0$, $x_i = x_{i-2} - q_ix_{i-1}$, $y_{-1} = 0$, $y_0 = -1$, $y_i = y_{i-2} - q_iy_{i-1}$.

Példa

Számítsuk ki (172,62) értékét, és oldjuk meg a 172x + 62y = (172,62) egyenletet!

i	r _n	q_n	Xi	Уi	$r_i = 172x_i + 62y_i$
-1	172	_	1	0	$172 = 172 \cdot 1 + 62 \cdot 0$
0	62	_	0	1	$62 = 172 \cdot 0 + 62 \cdot 1$
1	48	2	1	-2	$48 = 172 \cdot 1 + 62 \cdot (-2)$
2	14	1	-1	3	$14 = 172 \cdot (-1) + 62 \cdot 3$
3	6	3	4	-11	$6 = 172 \cdot 4 + 62 \cdot (-11)$
4	2	2	<u>-9</u>	25	$2 = 172 \cdot (-9) + 62 \cdot 25$
5	0	3	_	_	_

A felírás: $2 = 172 \cdot (-9) + 62 \cdot 25$, x = -9, y = 25.