Bloque I. Introducción a la electricidad y el magnetismo

Tema I. Electromagnetismo.

Mª Jesús Algar Díaz José San Martín Ángel Serrano Sánchez de León

Índice

- 3. Campo magnético.
 - Fuerzas magnéticas.
 - Creación de campo magnético.
 - Fuerza magnética entre dos conductores rectilíneos.
 - Ley de Ampere.
 - Campo eléctrico vs Campo magnético.
- 4. Inducción magnética.
 - Flujo magnético. Experimentos de Faraday.
 - Fuerza electromotriz inducida. Leyes Faraday-Lenz.
 - Inductancia.

Fuerzas magnéticas

- Campo magnético: cuando en una región interactúan fuerzas magnéticas.
 - Algunos cuerpos tienen características magnéticas.
- Polos magnéticos: máxima atracción en los extremos del cuerpo.
 - N-S (orientación según los polos geográficos de la Tierra).
- Propiedad fundamental:
 - polos del mismo tipo se repelen
 - polos contrarios se atraen.

Fuerzas magnéticas

- Líneas de campo:
 - Son líneas de fuerza.
 - Salen de N hasta S.
 - Son líneas cerradas.

Fuente: Blog "ensambledeideas.com"

- Fuentes del campo magnético
 corriente eléctrica (cargas en movimiento)
 - Fuentes del campo eléctrico ===> cargas eléctricas
- Unidad campo magnético: Teslas (T).

Fuerza magnética sobre una carga en movimiento (Fuerza de Lorentz)

• Fuerza de Lorentz: carga q con una velocidad v en el interior de un campo magnético, sufre una fuerza de origen magnético.

Fuerza magnética sobre una carga en movimiento (Fuerza de Lorentz)

- Propiedades:
 - \vec{F} es siempre $\perp \vec{B}$ y \vec{v} . Es proporcional a q y $|\vec{v}|$.
 - Depende de la dirección que lleve la carga $\overrightarrow{v} \mid \mid \overrightarrow{B} \Longrightarrow \overrightarrow{F} = \mathbf{0}$ $\overrightarrow{v} \perp \overrightarrow{B} \Longrightarrow \overrightarrow{F}$ máxima
 - En general, $|\vec{F}|$ dependerá del ángulo α de incidencia:

$$|\vec{F}| = q \ v \ B \ sen \alpha$$

Ejemplo: Levitación magnética

Ejemplo: Maglev

Fuerza magnética sobre un conductor rectilíneo

• Conductor por el que circula una I dentro de un campo magnético

• El conductor experimenta una fuerza proporcional a su longitud, su corriente y el ángulo α de la incidencia (segunda **Ley de Laplace**)

$$\vec{F} = I \ (\vec{l} \times \vec{B})$$
 $|\vec{F}| = I \ l \ B \ send$

Cambia la \vec{v} por la \vec{l} y la q por la I.

Fuerza magnética sobre una espira

- Espira rectangular por la que circula una *I* en un *B*.
- Momento de giro, M: aparece un momento de fuerzas que hace que el plano de la espira sea perpendicular al campo

Creación de campo magnético.

- 3.2.1 Por una carga en movimiento.
- Carga puntual q con velocidad \vec{v} , produce un campo magnético:

$$\vec{B} = \frac{\mu_0}{4\pi} \, \frac{q}{r^2} \, \vec{v} \, \times \, \overrightarrow{u_r}$$

$$|B| = K_1 \frac{q \cdot v}{r^2} sen \ \alpha; \ K_1 = \frac{\mu_0}{4\pi}; \ \mu_0 = 4\pi \ 10^{-7} \ \frac{T \cdot m}{A}; \ K_1 = 10^{-7}$$

- Propiedades:
 - \vec{B} es \perp a v y r.
 - $\vec{B} = 0$ cuando $\vec{v} | | \vec{r}$
 - $|\vec{B}|$ proporcional a q y v e inversamente proporcional a r^2

Por un conductor infinitesimal (Ley de Biot y Savart).

- Suponemos conductor infinitesimal, dl.
 - Cargas en movimiento $\longrightarrow \overline{B}$
- Ley de Biot-Savert:

$$d\vec{B} = \frac{\mu_0}{4\pi} I \frac{d\vec{l} \times \vec{u}_r}{r^2}$$

- Permite calcular el **campo magnético infinitesimal** creado por un elemento de corriente.
- Su integración a todo un circuito permite calcular el campo magnético creado.
- Regla de la mano derecha.

Por un conductor rectilíneo infinito.

Integrando la ecuación de Laplace:

$$\vec{B} = \int_{-\infty}^{+\infty} \frac{\mu_0}{4\pi} I \frac{dl}{r^2} sen\alpha = \frac{2\mu_0 I}{4\pi d} = \frac{\mu_0 I}{2\pi d}$$

• Demostración: https://www.fisicalab.com/apartado/campo-magnetico-creado-corriente-electrica

Por un conductor circular.

Integrando la ecuación de Laplace a lo largo del conductor

$$\vec{B} = \frac{2\pi\mu_0 I}{4\pi r} = \frac{\mu_0 I}{2r}$$

- Demostración: https://www.fisicalab.com/apartado/campo-magnetico-corriente-en-espira
- Generalizando para **N espiras**:

$$\vec{B} = \frac{\mu_0 NI}{2r}$$

Fuerza magnética entre dos conductores rectilíneos

• 2 conductores eléctricos por los que circulan I_1 e I_2 , separados una distancia $d \Longrightarrow$ cada uno ejerce sobre el otro una F magnética.

$$\left|\overrightarrow{B_1}\right| = \frac{\mu_0 I_1}{2\pi d}$$

$$F_{1-2} = l_2 B_1 I_2 = \frac{\mu_0}{2\pi d} I_1 I_2 l_2$$

$$\left|\overrightarrow{B_2}\right| = \frac{\mu_0 I_2}{2\pi d}$$

$$F_{2-1} = l_1 B_2 I_1 = \frac{\mu_0}{2\pi d} I_1 I_2 l_1$$

Ley de Ampere.

- La circulación del campo magnético a lo largo de una línea cerrada NO es cero como en los campos conservativos.
 - Es proporcional a la corriente eléctrica que encierra.
- Equivalente magnético de la ley de Gauss.

$$\oint B \cdot dl = \int_{0}^{2\pi d} B \cdot dl = \int_{0}^{2\pi d} B \cdot dl \cdot \cos \alpha = \frac{\mu_0 \cdot I}{2\pi d} \int_{0}^{2\pi d} dl = \frac{\mu_0 \cdot I}{2\pi d} 2\pi d = \mu_0 \cdot I$$

Ley de Ampere. Aplicación a un solenoide

- Solenoide: arrollamiento largo (radio despreciable frente a longitud).
 - Solenoide = N espiras iguales juntas
- Ley de Ampere a las N espiras del solenoide:

$$\oint B \cdot dl = \mu_0 \cdot \sum I = \mu_0 \cdot N \cdot I$$

$$B \cdot l = \mu_0 \cdot N \cdot I$$

$$B \cdot l = \mu_0 \cdot N \cdot I$$

$$B = \frac{\mu_0 \cdot N \cdot I}{l}$$

Campo eléctrico vs Campo magnético.

Campo eléctrico	Campo magnético
Una carga eléctrica crea un campo eléctrico	Una carga eléctrica en MOVIMIENTO crea un campo magnético
Una carga eléctrica en un campo eléctrico experimenta una fuerza de origen eléctrico ejercida por el campo	Una carga eléctrica en MOVIMIENTO en un campo magnético experimenta una fuerza de origen magnética ejercida por el campo
$\overrightarrow{F_{elec}} \mid \mid \overrightarrow{E}$	$\overrightarrow{F_{mag}} \perp \overrightarrow{B}$

Un campo magnético SOLO ACTÚA sobre CARGAS EN MOVIMIENTO o CORRIENTES, mientras que un campo eléctrico lo hace sobre cualquier carga eléctrica

Flujo magnético. Experimentos de Faraday

- Flujo magnético = número de líneas de \vec{B} que atraviesan una superficie.
 - Unidad: Weber (**Wb**) = $T m^2 = Vs$

• Líneas de \vec{B} son cerradas \Longrightarrow líneas que entran = líneas que salen en superficie cerrada.

$$\phi = \oint_{A} \vec{B} \cdot d\vec{S} = 0$$

(Ley de Gauss para el magnetismo)

• Consecuencia: ∄ monopolos magnéticos.

Flujo magnético. Experimentos de Faraday

- Elementos:
 - Espira sin alimentación.
 - Amperímetro.
 - Imán.
- Experimento:
 - La espira permanece quieta.
 - Imán se acerca y se aleja.

Flujo magnético. Experimentos de Faraday

- Resultados:
 - Imán se acerca: aparece \vec{l} (>> cuanto más rápido es el movimiento).
 - Imán se aleja: aparece \vec{I} (sentido contrario)
 - Imán quieto: desaparece \vec{I}
 - Giramos el imán: ocurre lo mismo (signos cambiados).
 - Si el imán se deja quieto y se mueve la espira: mismo resultado.

Flujo magnético. Experimentos de Faraday

- Conclusiones:
 - Movimiento del imán/espira variación flujo magnético

- Inductor: el que genera el fenómeno.
- Inducido: en el que aparece la corriente.

Fuerza electromotriz inducida. Leyes Faraday-Lenz.

- Campo magnético variable (flujo) per fem inducida per corriente
- Ley de Faraday: corriente inducida por una fem inducida es directamente proporcional a la velocidad con que varía el flujo y el número de espiras del inducido. Unidad: voltios (V).

$$\varepsilon = -N \frac{d\phi}{dt}$$

• Ley de Lenz: sentido de la corriente inducida tal que se opone a la causa que la origina.

Inductancia.

Circuito con interruptor, arrollamiento y pila.

Cerramos interruptor \Longrightarrow circula \vec{I} .

Generar un \overrightarrow{B} que atraviesa arrollamiento

Flujo magnético variable

Induce otra \vec{I} (sentido contrario \Longrightarrow signo -)

Autoinductancia, inductancia propia o inductancia: L

$$\varepsilon = -\frac{d\phi}{dt} = -L\frac{dI}{dt}$$

Unidad: Henrio (H).

Inductancia.

- Solenoide = N espiras.
 - Longitud I
 - Sección transversal S
 - Circula una corriente I

$$\phi = BS = \mu_0 \frac{N}{l} IS$$

Flujo que atraviesa cada espira

Flujo que atraviesa el solenoide (N espiras)

$$L = \frac{N\phi}{I} = \mu_0 \frac{N^2 S}{l} = \mu_0 n^2 S l$$

Inductancia del solenoide

Bibliografía

Vídeos:

https://www.youtube.com/watch?v=uj0DFDfQajw

<u>https://www.youtube.com/watch?v=wvRn-K1wT4A</u> (fuerzas sobre elementos de corriente)

https://www.youtube.com/watch?v=PT9bh BrX9M (experimento de Faraday)

Lectura recomendada:

https://www.fisicalab.com/apartado/ley-de-lorentz

- J.V. Míguez, F. Mur, M. A. Castro y J. Carpio, Fundamentos físicos de la ingeniería, e.d. McGraw Hill, capítulos 4 y 5.
- L. Montoto, Fundamentos Físicos de la Informática y las Comunicaciones, e.d. Thomson, capítulo 5.
- P.A. Tipler y G. Mosca, Física para la Ciencia y Tecnología, Vol. II, e.d. Reverté, 6º edición, parte IV.