On Compositional Compiler Correctness and Fully Abstract Compilation

Daniel Patterson and Amal Ahmed

January 13, 2018

Northeastern University

What is compiler correctness?

What is compiler correctness?

If s compiles to t, then s has the same behavior as t.

$$s \rightsquigarrow t \implies s \approx t$$

What is compiler correctness?

If s compiles to t, then s has the same behavior as t.

$$s \rightsquigarrow t \implies s \approx t$$

How is this expressed?

For whole-program compilers: if running s produces behavior \mathcal{O} , then running t should also produce \mathcal{O} .

$$s \Downarrow \mathcal{O} \implies t \Downarrow \mathcal{O}$$

How is s ≈ t expressed?

How is s ≈ t expressed?

How is s ≈ t expressed?

$$c \ltimes s \Downarrow \mathcal{O} \implies c \ltimes t \Downarrow \mathcal{O}$$

Survey of some recent results

Survey of some recent results

Neis, Hur, Kaiser, McLaughlin, Dreyer, Vafeiadis. ICFP 2015. *Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language.*

Neis, Hur, Kaiser, McLaughlin, Dreyer, Vafeiadis. ICFP 2015. *Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language.*

Neis, Hur, Kaiser, McLaughlin, Dreyer, Vafeiadis. ICFP 2015. *Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language.*

Correctness Theorem:

$$\forall s \rightsquigarrow t. \forall c_S s \approx_T c_T.$$

$$\mathsf{c}_\mathsf{S} \ltimes \mathsf{s} \Downarrow \mathcal{O} \implies$$

$$c_T \ltimes t \Downarrow \mathcal{O}$$
.

Neis, Hur, Kaiser, McLaughlin, Dreyer, Vafeiadis. ICFP 2015. *Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language.*

To link with target language c_T , need to produce related source language c_S .

Survey of some recent results

Perconti, Ahmed. ESOP 2014. Fully Abstract Compilation via Universal Embedding.

Specify semantics of source-target interoperability:

STt TSS

Multi-language semantics:
a la Matthews-Findler '07

Perconti, Ahmed. ESOP 2014. Fully Abstract Compilation via Universal Embedding.

Specify semantics of source-target interoperability:

 \mathcal{T} t $\mathcal{T}\mathcal{S}$ s

Multi-language semantics: a la Matthews-Findler '07

Perconti, Ahmed. ESOP 2014. Fully Abstract Compilation via Universal Embedding.

Correctness Theorem:

 $\forall s \rightsquigarrow t. \forall c.$

$$\mathcal{ST}c \ltimes s \Downarrow \mathcal{O} \implies$$

 \mathbf{c} $\mathbf{c} \ltimes \mathbf{t} \Downarrow \mathcal{O}$.

Perconti, Ahmed. ESOP 2014. Fully Abstract Compilation via Universal Embedding.

To add compiler passes, new multi-language must be created & formalized.

Survey of some recent results

Stewart, Beringer, Cuellar, Appel. POPL 2015. Compositional CompCert.

Language-independent linking of C-like langs.

Figure 2. Interaction semantics interface. The types G (global environment), C (core state), and M (memory) are parameters to the interface. F is the type of external function identifiers. $\mathcal V$ is the type of CompCert values.

Stewart, Beringer, Cuellar, Appel. POPL 2015. Compositional CompCert.

Stewart, Beringer, Cuellar, Appel. POPL 2015. Compositional CompCert.

Stewart, Beringer, Cuellar, Appel. POPL 2015. Compositional CompCert.

Correctness Theorem:

 $\forall s \leadsto t. \forall c.$

$$\mathsf{c} \ltimes \mathsf{s} \Downarrow \mathcal{O} \implies$$

 $c \ltimes t \Downarrow \mathcal{O}$.

Problem this research addresses

To understand if Theorem is correct...

Pilsner source-target PILS relation

CompComp interaction semantics

Multi-lang source-target multi-language

Problem this research addresses

To understand if Theorem is correct...

Pilsner source-target PILS relation

CompComp interaction semantics

Multi-lang source-target multi-language

Is there a generic CCC theorem?

 $\exists \uparrow.s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$

$$\exists \uparrow.s \rightsquigarrow t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \emptyset \Longrightarrow c \ltimes t \Downarrow \emptyset$$

Instantiated by particular formalisms:

- ok_{\bowtie} determines what is linkable.
- Source-like linking medium \widehat{S} .
- \uparrow lift from target to S.

Using CCC to understand results

Theorem (CCC: Pilsner)

$$\exists \uparrow . s \leadsto t. ok_{\ltimes}(c, t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

• ok_{\bowtie} — c must be PILS-related to a c'.

Using CCC to understand results

Theorem (CCC: Pilsner)

$$\exists \uparrow . s \leadsto t. ok_{\ltimes}(c, t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\times} c must be PILS-related to a c'.
- Linking medium \widehat{S} is source language.

Theorem (CCC: Pilsner)

$$\exists \uparrow .s \rightsquigarrow t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\times} c must be PILS-related to a c'.
- Linking medium \widehat{S} is source language.
- ↑ lifts c to c' in source language.

Theorem (CCC: Pilsner)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c must be PILS-related to a c'.
- Linking medium \widehat{S} is source language.
- ↑ lifts c to c' in source language.

Weakness: ok_{\bowtie} tells us we can only link with terms relatable to source.

Theorem (CCC: Multi-language)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

• ok_{\ltimes} — c is any well-typed target code.

Theorem (CCC: Multi-language)

$$\exists \uparrow.s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is any well-typed target code.
- Linking medium \widehat{S} is ST multi-language.

Theorem (CCC: Multi-language)

$$\exists \uparrow.s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is any well-typed target code.
- Linking medium \widehat{S} is ST multi-language.
- † embeds c into multi-language.

Theorem (CCC: Multi-language)

$$\exists \uparrow.s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is any well-typed target code.
- Linking medium \widehat{S} is ST multi-language.
- † embeds c into multi-language.

Weakness: linking medium is hard to create, formalize, and understand.

Theorem (CCC: CompComp)

$$\exists \uparrow .s \rightsquigarrow t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

• ok_{\bowtie} — c obeys interaction semantics.

Theorem (CCC: CompComp)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\bowtie} c obeys interaction semantics.
- Linking medium \widehat{S} described in Coq.

Theorem (CCC: CompComp)

$$\exists \uparrow . s \leadsto t. ok_{\bowtie}(c, t). \uparrow c \bowtie s \Downarrow \mathcal{O} \Longrightarrow c \bowtie t \Downarrow \mathcal{O}$$

- ok_{\bowtie} c obeys interaction semantics.
- Linking medium \widehat{S} described in Coq.
- † embeds c in *semantic* "multi-lang".

Theorem (CCC: CompComp)

$$\exists \uparrow.s \rightsquigarrow t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c obeys interaction semantics.
- Linking medium \widehat{S} described in Coq.
- † embeds c in *semantic* "multi-lang".

Weakness: like multi-lang, \widehat{S} hard to understand, may need to change.

Fully abstract compilation

Theorem (CCC: Fabs w/ back-trans)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

• ok_{\ltimes} — c is target code of translation type.

Theorem (CCC: Fabs w/ back-trans)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is target code of translation type.
- Linking medium \widehat{S} is source language.

Theorem (CCC: Fabs w/ back-trans)

$$\exists \uparrow . s \leadsto t. ok_{\bowtie}(c, t). \uparrow c \bowtie s \Downarrow \mathcal{O} \Longrightarrow c \bowtie t \Downarrow \mathcal{O}$$

- ok_{\bowtie} c is target code of translation type.
- Linking medium \widehat{S} is source language.
- † back-translates c to source.

Theorem (CCC: Fabs w/ back-trans)

$$\exists \uparrow .s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is target code of translation type.
- Linking medium \widehat{S} is source language.
- ↑ back-translates c to source.

Weakness: building fully abstract compilers is hard.

Theorem (CCC: Fabs w/ back-trans)

$$\exists \uparrow.s \leadsto t.ok_{\ltimes}(c,t). \uparrow c \ltimes s \Downarrow \mathcal{O} \Longrightarrow c \ltimes t \Downarrow \mathcal{O}$$

- ok_{\ltimes} c is target code of translation type.
- Linking medium \widehat{S} is source language.
- ↑ back-translates c to source.

Strength: linking medium is just source, lift enables linking with code of arbitrary provenance.

Aside: vertical compositionality

Fully abstract + CCC = Vertical compositionality

Requires back-translations, i.e., [New, Bowman, Ahmed, Patrignani, Piessens, POPL 2016]

Recap: what CCC gives us

 $ok_{\kappa}(c,\cdot)$, \uparrow , and \widehat{S} help us understand results.

Takeaways

Theorem (CCC)

$$\exists \uparrow . s \leadsto t. ok_{\bowtie}(c, t). \uparrow c \bowtie s \Downarrow \mathcal{O} \Longrightarrow c \bowtie t \Downarrow \mathcal{O}$$

- Secure compilation needs definition of compositional compiler correctness.
- Fully abstract compilers

 vertical compositionality for free!