Page 2

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1-7 Cancelled

Claim 8. (Amended). A process of producing a purified compressed gas comprising:

- a) providing a gas feed;
- b) providing at least one rotary adsorber having a multiplicity of passages through which a compressed gas can flow for adsorbing impurities therefrom, the rotary adsorber capable of adsorption of impurities from said compressed gases and of regeneration on a continuous basis as the wheel rotates;
- c) after said gas feed has been compressed to produce a compressed gas feed, sending said compressed gas feed through a regeneration sector of said rotary adsorber wherein said compressed gas feed removes impurities from said regeneration sector of said rotary adsorber and produces a contaminated stream of compressed gas containing said impurities;
- d) then cooling said contaminated stream of compressed gas and condensing condensable impurities from said contaminated stream of compressed gas within a condensing means, removing a quantity of condensed impurities from said condensing means and thereby producing a cooled stream of compressed gas; and

2004

Appl. No. 10/755,453 Reply to Office action of March 13, 2006

Page 3

- e) then passing said cooled stream of compressed gas to an adsorption sector of said rotary adsorber wherein a further quantity of impurities are removed from said compressed gas to produce a cooled purified compressed gas product and then a minor portion of said cooled purified compressed gas product, having been cooled to a desired temperature, is sent to a cooling sector of said rotary adsorber to cool said cooling sector..
- Claim 9. The process of claim 8 wherein after said minor portion of cooled compressed purified gas cools said cooling sector, said minor portion of cooled compressed purified gas is combined with said compressed gas feed.
- Claim 10. The process of claim 9 wherein said minor portion of cooled compressed purified gas is returned to said compressed gas feed after compression of said gas feed and before said compressed gas feed passes through said regeneration sector of said rotary adsorber.
- Claim 11. The process of claim 8 wherein said minor portion of cooled compressed purified gas is returned to said gas feed before compression of said gas feed.
- Claim 12. The process of claim 9 wherein said minor portion of cooled compressed purified gas is boosted in pressure by a pressure boosting means and then returned to said gas feed after said gas feed is compressed.
- Claim 13. The process of claim 8 wherein said minor portion is returned to said gas feed prior to said gas feed passing to said compressor.

Claims 14 to 18 (Cancelled)

Page 4

- Claim 19. The process of claim 8 wherein said minor portion of said purified compressed gas product travels co-current to said compressed gas feed in said rotary adsorber.
- Claim 20. The process of claim 8 wherein said minor portion comprises about 3 to 15% by volume of said purified compressed gas product.
 - Claim 21. (Cancelled).
 - Claim 22. A process of producing dry compressed air comprising:
 - a) first sending a stream of air to at least one air compressor to produce a stream of heated, compressed air;
 - b) then passing said heated compressed air through a regeneration sector of a rotary adsorber to remove water from said regeneration sector of said rotary adsorber and thereby producing a cooled wet stream of compressed air;
 - c) then passing said cooled wet stream of compressed gas through a heat
 exchanger to produce a cooler stream of compressed gas and to condense and
 remove a portion of water from said cooled wet stream;
 - d) after said portion of water is removed, passing said cooler stream of compressed air to an adsorption sector of said rotary adsorber wherein a further quantity of water is removed from said cooler stream of compressed air to produce a dried compressed air product stream and wherein said adsorption sector adsorbs water from said cooler stream of compressed air;
 - e) passing said purified compressed gas product through a second heat exchanger to cool said purified compressed gas product to a desired temperature; and

Page 5

Appl. No. 10/755,453 Reply to Office action of March 13, 2006

> f) removing from said cooled purified compressed gas product a minor portion of cooled purified compressed gas, wherein said minor portion is sent to a cooling sector of said rotary adsorber to cool said cooling sector.

Claims 23 to 27 (Cancelled)

Claim 28. A process of producing purified compressed gases in a two rotary contactor system wherein said two rotary contactor system comprises a first rotary adsorber and a second rotary adsorber, each of said first and second rotary adsorbers comprising a regeneration sector, an adsorption sector and a cooling sector, said process comprising:

- a) providing a flow of compressed gas feed;
- b) providing a first rotary adsorber and a second rotary adsorber, wherein each of said rotary adsorbers comprises a regeneration sector, an adsorption sector and a cooling sector;
- c) first sending said compressed gas feed through said regeneration sector of said first rotary adsorber to remove impurities from said regeneration sector of said first rotary adsorber and producing a contaminated stream of compressed gas containing said impurities;
- d) then cooling said contaminated stream of compressed gas and condensing a portion of impurities from said contaminated stream of compressed gas, removing a quantity of said condensed impurities and thereby producing a cooled stream of compressed gas;
- e) then passing said cooled stream of compressed gas to an adsorption sector of said first rotary adsorber wherein a further quantity of contaminants are

Page 6

- removed from said compressed gas to produce a purified compressed gas product;
- f) then passing said purified compressed gas product to an adsorption sector of said second rotary adsorber wherein said adsorption sector removes a majority of remaining condensable impurities and producing a final product gas stream; and
- g) diverting a minor portion of said final product gas streams into at least two recycle gas streams;

wherein one of said recycle gas streams is heated and then sent through a regeneration sector of said second rotary adsorber and a second of said recycle gas streams is cooled and is sent through a cooling sector of said second rotary adsorber, and then the two recycle streams are reintroduced into the gas stream either prior to sending the compressed gas feed to the regeneration zone of the first rotary adsorber, or prior to sending the cooled stream of compressed gas to the adsorption sector of the first rotary adsorber, or at both points.

- Claim 29. The process of claim 28 wherein the two recycle streams are combined prior to being reintroduced into the gas stream.
- Claim 30. The process of claim 28 wherein the combined recycle stream passes through the cooling sector of the first rotary adsorber.
- Claim 31. The process of claim 28 wherein after exiting the cooling sector of the first rotary adsorber, the combined recycle stream is boosted in pressure, and combined with the compressed gas feed prior to said stream being sent to the regeneration zone of the first rotary adsorber.

Page 7

- Claim 32. The process of claim 28 wherein after exiting the cooling sector of the first rotary adsorber, the combined recycle stream is boosted in pressure, and combined with the cooled stream of compressed gas prior to said stream being sent to the adsorption zone of the first rotary adsorber.
- Claim 33. The process of claim 28 wherein the regeneration stream for said second rotary adsorber travels in a direction counter-current to the direction of flow in said second rotary adsorber adsorption sector.
- Claim 34. The process of claim 28 wherein the second rotary adsorber cooling stream travels in a direction counter-current to the direction of the flow in the second rotary adsorption sector.
- Claim 35. The process of claim 28 wherein the second rotary regeneration effluent stream is combined with the second rotary cooling sector effluent stream prior to boosting the pressure.
- Claim 36. The process of claim 35 wherein the combined stream passes through the cooling sector of the first rotary adsorber, and is combined with the main process flow upstream of the regeneration sector of the first rotary adsorber.
- Claim 37. The process of claim 35 wherein the combined stream flows through the first rotary adsorber cooling sector in a direction counter-current to the flow through the first rotary adsorber adsorption sector.
- Claim 38. The process of claim 35 wherein said combined recycle streams are sent through a pressure booster and then pass through the cooling sector of said first rotary adsorber.

Page 8

Claim 39. The process of claim 28 wherein said there is a sharing of heat between said contaminated flow and said compressed gas feed.

UOP PATENT DPT.

- Claim 40. A two-stage dryer for producing a low moisture gas stream comprising:
 - a) at least two rotary contactors, each rotary contactor having a multiplicity of passages, through which compressed gas can flow, for adsorbing impurities therefrom, the rotary contactors being capable of adsorption of impurities from said compressed gases and of regeneration on a continuous basis as the wheel rotates and each of said rotary contactors comprising at least one adsorbent, regeneration and cooling sector;
 - b) means to provide a compressed flow of a moisture containing gas to said regeneration sector of a first of said two rotary contactors;
 - c) means to send said compressed flow of a moisture containing gas from said regeneration sector to a condensing means wherein condensed impurities are removed to produce a dried flow of gas;
 - d) means to send said dried flow of gas through an adsorption zone of said first rotary contactor;
 - e) means to send said dried flow of gas from said adsorption zone of said first rotary contactor through an adsorption zone of said second rotary contactor to produce a very dry gas product stream;
 - f) means to send a majority portion of said very dry gas stream to be used as product; and

2010

Appl. No. 10/755,453 Reply to Office action of March 13, 2006 Page 9

- g) means to send two minority portions of said very dry gas stream, a first of said minority portions to be first heated to a desired temperature and then to be sent to a regeneration zone of said second rotary contactor and a second of said minority portions to be cooled to a desired temperature and then to be sent to a cooling zone of said rotary contactor.
- Claim 41. The two-stage dryer of claim 40 wherein said first of said minority portions passes through a pressure boosting means after passing through said regeneration sector and then is returned to said moisture containing gas.
- Claim 42. The two-stage dryer of claim 40 wherein said second of said minority portions passes through a pressure boosting means after passing through said cooling sector and then is returned to said moisture containing gas.