138 6 Semaphores

Exercises

1. Consider the following algorithm:

Algorithm 6.15: Semaphore algorithm A		
semaphore $S \leftarrow 1, T \leftarrow 0$		
р	q	
p1: wait(S)	q1: wait(T)	
p2: write("p")	q2: write("q")	
p3: signal(T)	q3: signal(S)	

- (a) What are the possible outputs of this algorithm?
- (b) What are the possible outputs if we erase the statement wait(S)?
- (c) What are the possible outputs if we erase the statement wait(T)?
- 2. What are the possible outputs of the following algorithm?

Algorithm 6.16: Semaphore algorithm B		
semaphore S1 \leftarrow 0, S2 \leftarrow 0		
р	q	r
p1: write("p")	q1: wait(S1)	r1: wait(S2)
p2: signal(S1)	q2: write("q")	r2: write("r")
p3: signal(S2)	q3:	r3:

3. What are the possible outputs of the following algorithm?

Algorithm 6.17: Semaphore algorithm with a loop		
semaphore $S \leftarrow 1$		
boolean B ← false		
р	q	
p1: wait(S)	q1: wait(S)	
p2: B ← true	q1: wait(S) q2: while not B	
p3: signal(S)	q3: write("*") q4: signal(S)	
p4:	q4: signal(S)	

4. Show that if the initial value of S.V in Algorithm 6.3 is k, at most k processes can be in the critical section at any time.