УДК 621.039.51: 536.248.2

ИСПОЛЬЗОВАНИЕ МОДЕЛИ КРИЗИСА КИПЕНИЯ ДЛЯ СБОРОК С КВАДРАТНЫМ РАСПОЛОЖЕНИЕМ СТЕРЖНЕЙ

А.А. Ивашкевич

ГНЦ РФ-Физико-энергетический институт им. А.И. Лейпунского, г. Обнинск

Предложенная ранее модель кризиса кипения использована для обобщения опытных данных, полученных при вынужденном течении воды в пучках с квадратным расположением стержней. Для обобщения использовался массив из 954 опытов, полученных при давлениях 4,1–16,6 МПа. Результаты обработки опытных данных показали, что модель может быть использована для обобщения опытных данных.

ВВЕДЕНИЕ

В настоящее время для теплогидравлических расчетов активных зон ядерных энергетических реакторов используются коды RELAP, KOPCAP и др. [1]. В этих кодах расчет кризиса кипения выполняется в два этапа: сначала рассчитывается величина критического теплового потока $(q_{\rm kp})$ при равномерном тепловыделении, которая затем пересчитывается для условий неравномерного тепловыделения по длине, используя так называемый фактор формы. Рекомендации для его расчета предложены в ряде работ, например, в справочнике [2].

Рекомендации по расчету $q_{\rm kp}$ в пучках равномерно обогреваемых стержней, расположенных по квадратной упаковке, приведены в [3-8]. В работе [3] рассмотрены результаты исследований [4, 5]; в работе [4] для расчета $q_{\kappa p}$ предложено эмпирическое соотношение; в [3, 5, 6] предложены методы пересчета значений $q_{\rm KD}$, взятых из скелетных таблиц для труб диаметром 8 мм, на пучки стержней; в [7, 8] предложены скелетные таблицы для пучков с квадратным расположением стержней. Поиски соотношений, обобщающих опытные данные по кризису кипения, продолжаются в [9]; в [10] была предложена упрощенная модель кризиса кипения. Однако эта модель не учитывает теплогидравлическую неравноценность сборок стержней, турбулизирующее влияние дистанционирующих решеток, относительную длину обогрева $(l_{
m o}/d_{
m T})$ и относительный шаг стержней. По оценке авторов [8] влияние каждого из этих параметров составляет 0,82-1; 1-1,34; 1-1,4; и 0,88-1.36 соответственно для использованного массива опытных данных [13]. Цель настоящей работы – проверить идею, заложенную в упомянутой упрощенной модели [10], на опытных данных, полученных на сборках с квадратным расположением стержней, в части зависимости от режимных параметров (давления, массовой скорости, относительной балансной энтальпии). Естественно, что учет влияния указанных выше геометрических параметров позволил бы снизить погрешность описания критического теплового потока в рамках данной модели.

ВИД ЗАВИСИМОСТИ ДЛЯ КРИТИЧЕСКОГО ТЕПЛОВОГО ПОТОКА

В работе [10] была предложена упрощенная модель кризиса кипения при вынужденном течении воды в каналах. Для критического теплового потока получено приближенное выражение

$$\frac{q_{\kappa p}}{\rho wr} = \frac{B_2 - x_{\kappa p} + \left[\left(B_2 - x_{\kappa p} \right) \left(B_2 - x_{\kappa p} \right) + 4B_1 B_3 \left(1 - x_{\kappa p} \right) \right]^{0.5}}{2B_1},\tag{1}$$

где $B_1 = 8/\xi$, $B_2 = 1/(a_1+B_4)$, $B_3 = [\xi(1-B_2)v^{-1,33}]/16$, $B_4=(a_2We)/(Re^{0.75}v^{-0.333})$, Re = $(\rho w d_T)/\mu'$, We = $[d_T v'(\rho w)^2]/\sigma$, $d_T = (4F)/\Pi_0$, v = v'/v'', x_{KD} — относительная балансная энтальпия (паросодержание) в сечении кризиса (на выходе из пучка), ри – массовая скорость, Π_0 -обогреваемый периметр пучка, F - площадь проходного сечения пучка для воды, x – коэффициент гидравлического сопротивления, r – теплота парообразования, v' и v'' – удельный объем жидкости и пара, μ' – вязкость жидкости, σ – поверхностное натяжение, a_1 , a_2 – коэффициенты (теоретически a_1 = 1).

В модели [10] при получении формулы (1) был сделан ряд допущений и упрощений, поэтому формула (1) является приближенной и к ней следует относиться как к рабочей гипотезе.

ФОРМУЛА ДЛЯ КРИТИЧЕСКОГО ТЕПЛОВОГО ПОТОКА

В уравнение (1) входит коэффициент гидравлического сопротивления х при течении кипящего потока. Рекомендации для его расчета при течении кипящей воды в пучках с квадратным расположением стержней нам не известны. Поэтому используем следующий прием – применим формулу для гидравлического сопротивления при кипении воды в кольцевом канале и введем поправки на геометрию канала, предложенные для однофазного потока. Для расчета коэффициента гидравлического сопротивления при кипении воды используем формулу типа

$$\xi_{\rm K} = a_0 \,{\rm Re}^{-0.386} + a_{00},$$
 (2)

где ξ_{κ} – коэффициент гидравлического сопротивления кольцевого канала. Согласно работе [11], для кипения воды в кольцевых каналах эмпирические значения коэффициентов равны $a_0 = 2,78$ и $a_{00} = 0$.

Для учета геометрии канала подойдут рекомендации, предложенные в справочнике [2] для однофазного потока

$$\xi = \kappa \, \xi_{\tau}$$
 (3)

 $\xi = \kappa \, \xi_{\scriptscriptstyle T}$, где κ – коэффициент, учитывающий геометрию канала, $\xi_{\scriptscriptstyle T}$ – коэффициент гидравлического сопротивления для круглой трубы. Для труб $\kappa = 1$, для кольцевых каналов κ = 1,08, для пучков стержней, расположенных по квадратной упаковке,

$$\kappa = 0.59 + 0.19(s_o - 1) + 0.52\{1 - \exp[-10(s_o - 1)]\},$$
 (4)

где $s_0 = s/d_C$, s — шаг стержней, d_C — диаметр стержней. 0 правомерности использования формул (3) и (4) можно будет судить по результатам обработки опытных данных.

Заменим в комплексах B_1 и B_3 , входящих в формулу (1), величину х по формулам (2)- (4). Получаем приближенное выражение для критического теплового потока

$$\frac{q_{\text{kp}}}{\rho wr} = \frac{B_2 - x_{\text{kp}} + \left[\left(B_2 - x_{\text{kp}} \right) \left(B_2 - x_{\text{kp}} \right) + 4B_1 B_3 \left(1 - x_{\text{kp}} \right) \right]^{0.5}}{2B_1},$$
 (5)

где $B_1 = 8/[k(a_3/\text{Re}^{0,386} + a_5)]$, $B_2 = 1/(a_1 + B_4)$ (если $B_2 > 1$, то $B_2 = 1$), $B_3 = [kv^{1,33}(1-B_2)(a_4/\text{Re}^{0,386}+a_6)]/16$, $B_4 = (a_2\text{We})/(\text{Re}^{0,75}v^{-0,333})$, $a_1 = 1$, $a_3 = a_0/1,08 = 2,57$, $a_5 \approx 0$, теоретически $a_1 = 1$, $a_4 = a_3$ и $a_6 = a_5$.

Особенностью проведения опытов по нахождению критических тепловых потоков при вынужденном течении воды в пучках стержней (так же, как и в трубах) является то, что обычно (при $x_{\rm kp} > 0$ всегда) величина $x_{\rm kp}$ не измеряется, а рассчитывается через относительную энтальпию на входе в пучок $x_{\rm Bx}$ по уравнению баланса тепла ($x_{\rm Bx}$ — относительная энтальпия на входе в пучок стержней). Вследствие этого погрешность $x_{\rm kp}$ больше погрешности $x_{\rm Bx}$. Исходя из этого, опытные данные по кризису кипения целесообразно обобщать, используя в качестве одного из параметров $x_{\rm Bx}$, а не $x_{\rm kp}$ [12]. Заменив в формуле (5) $x_{\rm kp}$ на $x_{\rm Bx}$ по уравнению баланса тепла, получаем

$$\frac{q_{\text{kp}}}{\rho wr} = \frac{B_7 - X_{\text{BX}} + \left[(B_7 - X_{\text{BX}})(B_7 - X_{\text{BX}}) + 4B_3B_6(1 - X_{\text{BX}}) \right]^{0.5}}{2B_6},$$
(6)

где $B_5 = (P_0 l_0)/F$, $B_6 = B_1 + B_5$, $B_7 = B_2 - B_3 B_5$.

ПРОВЕРКА ФОРМУЛЫ (6)

Формула (6) позволит обобщить опытные данные с меньшей погрешностью по сравнению с формулой (5). Для проверки и оптимизации формулы (6) использовался массив опытных данных по кризису кипения в равномерно обогреваемых пучках стержней, расположенных по квадратной упаковке, из банка данных [13]. Банк содержит данные 965 опытов. Использовались данные 954 опытов, для которых $x_{\rm Bx} < 0$. Данные 11 опытов не использовались, т.к. они получены при $x_{\rm Bx} > 0$. Основные параметры массива данных приведены в табл. 1, из которой видно, что опыты проведены в широких диапазонах изменения давления, массовой скорости, относительной энтальпии (паросодержания) и размеров пучков стержней.

В формулу (6) входят шесть эмпирических коэффициентов, поэтому может возникнуть сомнение в том, что при большом числе коэффициентов можно любой формулой описать опытные данные. Чтобы развеять это сомнение была проведена проверка формулы (6) в частных случаях, когда число коэффициентов можно сократить.

Первый случай. Проверка проводилась при одном оптимизируемом коэффициенте a_2 , остальные коэффициенты были взяты постоянными: $a_1=1$, $a_3=a_0/1$,08=2,57; $a_4=a_3$, $a_5=a_{00}=0$ и $a_6=a_5$. Результаты обработки опытных данных приведены в табл. 1, из которой видно, что формула (6) при a_2 =1,21 согласуется с опытными данными с погрешностями $\delta_{\rm ap}=-0$,0161 и $s_{\rm ck}=0$,0854 (где $\delta_{\rm ap}-$ среднеарифметическая погрешность, $\sigma_{\rm ck}-$ среднеквадратичная погрешность). Относительная погрешность находится в пределах -0,280÷0,260 (где $\delta=(q_{\rm кpp}/q_{\rm kpo})-1$, $q_{\rm kpp}$ и $q_{\rm kpo}-$ расчетное и опытное значения $q_{\rm kpo}$).

Второй случай. Проверка проводилась при трех оптимизируемых коэффициентах a_2 , a_3 и a_4 , остальные коэффициенты были приняты равными: $a_1=1$, $a_5=a_{00}$ и $a_6=a_5$. Результаты обработки опытных данных также приведены в табл. 1, из которой видно, что формула (6) согласуется с опытными данными с погрешностями $\delta_{\rm ap}=-0{,}0055$ и $\sigma_{\rm ck}=0{,}0682$. Относительная погрешность δ находится в пределах $-0{,}188{\div}0{,}210$.

То, что формула (6) с тремя и даже с одним эмпирическим коэффициентом описывает влияние на $q_{\rm кр}$ пяти параметров (массовой скорости, относительной энтальпии, диаметра и шага стержней и давления) можно рассматривать как подтверждение обоснованности допущений, принятых при получении формулы (6).

ОПТИМИЗАЦИЯ ФОРМУЛЫ (6)

С целью уменьшения погрешности формулы (6) была проведена ее оптимизация при шести коэффициентах $a_1 - a_6$. Результаты обработки опытных данных также приведены в табл. 1, из которой видно, что формула (6) с шестью оптимизированными

Таблица 1

Диапазоны параметров, число опытов и погрешности, с которыми формула (6) обобщает опытные данные

Параметры	x _{BX} < -0,01		
Число опытов <i>N</i>	954		
Давление р, МПа	4,1 ÷ 15,6		
Массовая скорость ρw, кг/(м²-с)	112 ÷ 4810		
Относительная энтальпия на входе хвх	-0,888 ÷ -0,012		
Относительная энтальпия на выходе хкр	-0,175 ÷ 0,955		
Диаметр стержней <i>d</i> _с , мм	10,2 ÷ 15,0		
Тепловой диаметр $d_{\scriptscriptstyle { m T}}$, мм	12,2 ÷ 48,2		
Относительный шаг стержней s₀	1,15 ÷ 1,88		
Длина стержней <i>l</i> ₀, мм	760 ÷ 7000		
Относительная длина стержней <i>L</i> ₀	35,2 ÷ 503		
Число стержней <i>п</i> с	4 ÷ 20		
Критический тепловой поток $q_{\mbox{\tiny KP}}$, МВт/м 2	0,213 ÷ 3,45		
Число коэффициентов	1	3	6
Коэффициент <i>a</i> ₁	1*	1*	0,815
Коэффициент <i>a</i> ₂	1,21	1,76	1,95
Коэффициент <i>а</i> з	2,57*	3,57	2,16
Коэффициент <i>а</i> 4	2,57*	1,84	1,20
Коэффициент <i>а</i> 5	0*	0*	0,00833
Коэффициент <i>а</i> ₆	0*	0*	0,00859
Относительная погрешность δ	-0,280 ÷ 0,260	-0,188 ÷ 0,210	-0,197 ÷ 0,210
Среднеарифметическая погрешность $\delta_{ ext{ap}}$	-0,0161	-0,0055	-0,0025
Среднеквадратичная погрешность σск	0,0854	0,0682	0,0595

Примечание: * - значение коэффициента принято постоянным.

Рис. 1. Гистограмма распределения погрешностей

коэффициентами обобщает 954 опытных значения $q_{\rm KP}$ в широких диапазонах изменения параметров с погрешностями $\delta_{\rm ap} = -0,0025$ и $\sigma_{\rm CK} = 0,0595$. Относительная погрешность δ находится в пределах $-0,197\div0,210$. Гистограмма погрешностей приведена на рис. 1. В интервале $\delta/\sigma_{\rm CK} = \pm 3$ находится 99,6% опытных данных.

УМЕНЬШЕНИЕ ПОГРЕШНОСТИ ФОРМУЛЫ (6)

С целью уменьшения погрешности формулы (6) весь диапазон изменения давления был разделен на три поддиапазона 4–8, 8–12 и 12–16 МПа. Для каждого поддиапазона была проведена оптимизация коэффициентов, входящих в формулу (6). Результаты приведены в табл. 2, из которой видно, что погрешность формулы (6) несколько уменьшилась и находится в пределах σ_{ck} = 0,0502÷0,0525.

Таблица 2 Диапазоны параметров, числа опытов, значения коэффициентов и погрешности, с которыми формула (6) обобщает опытные данные по $q_{\rm кр}$ в различных поддиапазонах давлений

Давление р, МПа	4,1 ÷ 7,9	8,0 ÷ 11,9	12,2 ÷ 15,6
Число опытов <i>N</i>	407	169	378
Массовая скорость ρ w, кг/ (м²-с)	112 ÷ 4100	344 ÷ 2550	209 ÷ 4810
Относительная энтальпия на входе $x_{\text{вх}}$	-0,539 ÷ -0,012	-0,369÷ -0,012	-0.888 ÷ -0,050
Относительная энтальпия на выходе $x_{\kappa p}$	0,012 ÷ 0,955	-0,018 ÷ 0,610	-0,175 ÷ 0,692
Диаметр стержней <i>d</i> _c , мм	10,2 ÷ 15,0	10,2 ÷ 14,3	10,2 ÷ 13,5
Тепловой диаметр <i>d</i> _т , мм	13,4 ÷ 48,2	12,2 ÷ 48,2	12,2 ÷ 22,1
Относительный шаг стержней <i>s</i> ₀	1,15 ÷ 1,88	1,15÷1,88	1,15÷1,33
Длина стержней <i>l</i> ₀, мм	760 ÷ 7000	1180 ÷ 7000	1180 ÷ 7000
Относительная длина стержней <i>L</i> ₀	35,2 ÷ 503	35,2 ÷ 503	53,4 ÷ 503
Число стержней n _c	4 ÷ 16	4 ÷ 20	4 ÷ 20
Критический тепловой поток $q_{\kappa p}$, МВт/м 2	0,213 ÷ 3,45	0,390 ÷ 2,79	0,307 ÷ 2,79
Коэффициент а1	0,860	0,848	0,815
Коэффициент <i>a</i> ₂	1,72	2,35	2,51
Коэффициент <i>а</i> ₃	2,08	2,74	2,39
Коэффициент <i>а</i> 4	1,22	1,00	1,39
Коэффициент <i>а</i> ₅	0,00786	0,0102	0,00763
Коэффициент <i>а</i> 6	0,00884	0,00632	0,0111
Относительная погрешность δ	-0,230 ÷ 0,200	-0,128 ÷ 0,152	-0,150 ÷ 0,167
Среднеарифметическая погрешность $\delta_{\!\scriptscriptstyle ap}$	-0,0027	0,0011	-0,0036
Среднеквадратичная погрешность σск	0,0524	0,0523	0,0510

СРАВНЕНИЕ ПОГРЕШНОСТЕЙ ФОРМУЛЫ (6) С ПОГРЕШНОСТЯМИ ДРУГИХ МЕТОДОВ

В работах [3, 5-7] были предложены методы пересчета значений $q_{\rm кp}$, из скелетной таблицы для круглых труб диаметром 8 мм на пучки стержней. Проведенная в работе [3] проверка показала, что предложенные в [3, 5] методы обобщают 7652 значения $q_{\rm kp}$, полученные в равномерно обогреваемых пучках стержней с квадратной упаковкой, со среднеквадратичными погрешностями 0,105 и 0,132 соответственно. В работе [8] была проведена проверка, которая показала, что предложенные в

работах [3, 4, 8] методы обобщают 963 значения $q_{\rm кр}$ из банка [13] со среднеквадратичными погрешностями 0,102, 0,10 и 0,07 соответственно. Таким образом, формула (6) по точности не уступает методам [3–8].

ОБСУЖДЕНИЕ

Недостатком формулы (6) является то, что она не учитывает влияние дистанционирующих решеток на $q_{\rm кр}$. Отметим, что это влияние не учитывается в формуле, предложенной в работе [4] для пучков с квадратным расположением стержней, и в формулах, предложенных в работах [14–18] для пучков с треугольных расположением стержней. Однако в работах [3, 5, 6–8] предложено учитывать влияние дистанционирующих решеток. Естественно, что степень влияния дистанционирующей решетки на критический тепловой поток зависит от ее конструкции, режимных параметров и т.д.

Модель [10] применима для бесконечной решетки длинных стержней. Выше отмечалось, что эта модель не учитывает ряд факторов, влияющих на кризис кипения (теплогидравлическую неравноценность сборок стержней, длину стержней и т.д.). Тем не менее формула (6), вид которой был получен на основании модели, а значения коэффициентов (число которых равно 1–6) найдены из обработки опытных данных, обобщает опытные данные в широких пределах изменения параметров с удовлетворительной погрешностью (см. табл. 1). Это можно рассматривать как подтверждение правильности основных положений модели.

ЗАКЛЮЧЕНИЕ

- 1. Предложенная в работе [10] модель кризиса может служить основой для обобщения опытных данных по критическим тепловым потокам при течении воды в пучках с расположением стержней по квадратной упаковке в части зависимости от режимных параметров.
- 2. На основании предложенной в работе [10] модели кризиса кипения получена приближенная формула (6) для критического теплового потока при вынужденном течении воды в равномерно обогреваемых пучках стержней, расположенных по квадратной упаковке.
- 3. Формула (6) обобщает 954 опытных значения $q_{\rm кp}$ со среднеквадратичной погрешностью от 0,0595 до 0,0854 в зависимости от числа эмпирических коэффициентов (см. табл. 1).
- 4. Формула (6) с шестью эмпирическими коэффициентами и разбиением всего диапазона изменения давления на три поддиапазона описывает опытные данные со среднеквадратичной погрешностью от 0,0510 до 0,0524 (см. табл. 2).

Литература

- 1. *Хабенский В.Б., Зейгарник Ю.А., Малкин С.Д.* Расчетные формулы для кризиса теплоотдачи при кипении в пучках стержней для контурных теплогидравлических кодов// Теплоэнергетика. 2003. № 11. С. 73-77.
- 2. Кириллов П.Л., Юрьев Ю.С., Бобков В.П. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990. 360 с.
- 3. *Min Lee*. A critical heat flux approach for square rod bundles using the 1995 Groeneveld CHF table and bundle data of heat transfer research facility//Nuclear Engineering and Design. 2000. V. 197. № 3. P. 357-374.
- 4. *Reddy D.C., Fighetti C.F.* Parametric study of CHF data V.2 Generalised subchannel CHF correlation PWR and fuel assembles/EPRI-NP-2609. 1983.
- 5. *Groeneweld D.C., Kirillov P.L. et al.* A general prediction method for advanced water-cooled reactors (AWCR's)/Techdoc IAEA. Chapter 3. Sept. 3, 1997.

- 6. Бобков В.П., Смогалев И.П. Табличный метод описания критических тепловых потоков в сборках твэлов в квадратной упаковке//Атомная энергия. 2003. Т. 94. Вып. 5. С. 407-410.
- 7. Бобков В.П. Таблица для критических тепловых потоков в сборках тепловыделяющих стержней в квадратной упаковке//Теплоэнергетика. -2003. -№ 11. C. 68-72.
- 8. Бобков В.П., Ефанов А.Д. Смогалев И.П., Пометько Р.С. Таблица для критических тепловых потоков в сборках твэлов в квадратной упаковке//Атомная энергия. 2005. Т. 99. Вып. 1. С. 33-42.
- 9. *Сергеев В.В.* Обобщение данных по кризису кипения при подъемном движении воды в каналах//Теплоэнергетика. 2000. № 3. С. 67-69.
- 10. Ивашкевич А.А. Приближенная модель кризиса кипения воды в длинных равномерно обогреваемых трубах (нелинейное приближение)/Препринт ФЭИ-2352: Обнинск, 1994. 18 с.
- 11. *Торгерсон Е.Дж., Нэбел Д.Х., Джиббонс Дж.Х.* Модель кризиса теплоотдачи при кипении с недогревом в условиях вынужденной конвекции//Теплопередача. 1974. Т. 96. № 1. С. 82-86.
- 12. Ивашкевич А.А. Выбор параметров для обобщения опытных данных по критической плотности теплового потока при течении воды в трубах//Теплоэнергетика. 2000. № 5. С. 43-45.
- 13. Бобков В.П., Блохин А.И., Ивашкевич А.А. и др. Центр теплофизических данных для ядерных энергетических установок//Атомная энергия. 1982. Т. 53. Вып. 3. С. 183-184.
- 14. С*молин В.Н., Поляков В.К*. Критический тепловой поток при продольном обтекании пучка стержней//Теплоэнергетика. 1967. № 4. С. 54-58.
- 15. Осмачкин В.С., Лысцова Н.Н. Сравнение опытных данных по условиям кризиса теплообмена в моделях топливных сборок реакторов ВВЭР с результатами расчета по методике ИАЭ/Препринт ИАЭ-2558. 1975.
- 16. *Безруков Ю.А., Астахов В.И., Брантов В.Г. и др.* Экспериментальное исследование и аналитический анализ данных по кризису теплообмена в пучках стержней для реакторов ВВЭР//Теплоэнергетика. 1976. № 2. С. 80-82.
- 17. Вампола Й., Коштеляк Я. Кризис теплообмена при вынужденном течении воды в вертикальных каналах с равномерным тепловыделением по высоте/Сб. докладов семинара СЭВ «Теплофизика — 82». — Т. 4. — Карловы Вары, 1982. — С. 11-16.
- 18. *Перница Р., Чижек И*. Соотношение для кризиса теплоотдачи в пучках стержней/ Теплофизические аспекты безопасности ВВЭР. «Теплофизика 90». Т. 2. Обнинск, 1991. С. 244-249.

Поступила в редакцию 1.09.2006