Advanced Programming Languages for AI H02A8

Gerda Janssens Departement computerwetenschappen 200A.01.26

http://people.cs.kuleuven.be/~gerda

APLAI 15-16

Overview Lecture 1

About APLAI

- Intro: Constraint (Logic) Programming
 - with ECLiPSe
 - 2. Prolog
 - 3. Constraint programming terminology
 - 4. Running examples

Starting Point

- Knowledge of Prolog
- Background in AI
 constraint propagation
 search
 condition-action rules

Aim

Study more programming languages and tools useful in the AI context

Selection for 15-16

Constraint (Logic) Programming

ECLiPSe (ILOG (IBM), OPL, Cosytec)

Rule Based Systems

Constraint Handling Rules (CHR)

Jess (rule engine, Java, Business rules)

(Local search)

Format 15-16

- Lectures (2 studypoints)
 - Different systems/languages
 - Different approaches
 - APLAI slides + wiki on Toledo
 - Additional material: How to use it??
 http://4c.ucc.ie/~hsimonis/ELearning/index.htm
- Assignment (2 studypoints)
 - □ Groups of 2
 - Minimal requirements + optional part

15-16 Assignment

- For the problems at hand,
- Given the different approaches studied in APLAI,
- Explore !!!
- Minimal requirements: some tasks
- Optional: an additional task

Constraint (Logic) Programming

with ECLiPSe

http://eclipseclp.org

constraints embedded in Prolog

Topics

- What constraint satisfaction problems and constrained optimisation problems are and how they are solved using constraint programming techniques.
- How to deal with these problems in ECLiPSe
- What support ECLiPSe provides for general and domain specific methods
- How to solve constraint satisfaction and constrained optimisation problems in ECLiPSe

xkcd problem

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

ECLiPSe subset-sum program

```
:- lib(ic).
solve(Amounts) :-
   Total = 1505,
   Prices = [215, 275, 335, 355, 420, 580],
   length(Prices, N), length(Amounts, N),

Amounts::0..Total//min(Prices),
   Amounts * Prices #= Total,

labeling(Amounts).
```

Impact

- Siemens: configuration of an Railway Interlocking system
- Use of CLP:
 - 60% reduction of the intitial development cost
 - 88% reduction of the yearly maintenance cost
- Declarative reading of the constraints

Starting Point

- Prolog issues
 - Unification, backtracking search, arithmetic
 - Passive vs Active constraints
- Constraint issues
 - Constraint propagation: again Passive/Active
 - Search: backtracking search and branch and bound search

1. ECLIPSE

ECLiPSe history

- European Computer-Industry Research Center ECRC Munich (1984): development of advanced reasoning techniques for practical problems
- CHIP (1988) incorporated constraint satisfaction into Linear Programming by using finite domain variables and relying on topdown search techniques
- ECLiPSe (1991) = CHIP + (database and parallel programming facilities)

ECLiPSe history

- 1997 interface to an external linear and mixed integer programming package
- 1999 commercial rights to IC-Parc (London)
- 2004 bought by Cisco Systems
- Still freely available for teaching and research (production planning, transportation, scheduling, bioinformatics, optimisation of contracts ...);
 commercial optimisation SW by Cisco

Motivation

ECLiPSe attempts to support - in some form or other - the most common techniques used in solving Constraint (Optimization) Problems:

- CP Constraint Programming
- MP Mathematical Programming(also LP,IP)
- LS Local Search
- and combinations of those

ECLiPSe is built around the CLP (Constraint Logic Programming) paradigm

ECLiPSe for Modelling and Solving

ECLiPSe Usage: www.eclipseclp.org

Applications

- Developing problem solvers
- Embedding and delivery

Research

- Teaching
- Prototyping solution techniques

CLP Books

- Constraint Logic Programming using ECLiPSe, Krzysztof Apt and Mark Wallace. Cambridge University Press, 2007. ISBN-13 978-0-521-86628-6
 Plaatsingsnummer: 6 681.3*D32 ECLI/2007 A practical introduction to constraint programming and to ECLiPSe
- Principles of Constraint Programming,
 Krzysztof R. Apt, Cambridge University
 Press, 2003. ISBN 0 521 82583 0

Online material

- Explore the website: examples, manuals (tutorial, reference, libraries)
- http://eclipseclp.org/reports/index.html mentions books, introductory material, applications
- ECLiPSe from LP to CLP by Joachim Schimpf and Kish Shen. Theory and Practice of Logic Programming / Volume 12 / Special Issue on Prolog Systems 1-2, pp 127 - 156. Copyright Cambridge University Press 2011,

CLP Books

- Programming with Constraints: an Introduction, Kim Marriott and Peter J. Stuckey, MIT Press, 1998.
- The OPL Optimization Programming Language, Pascal Van Hentenryck, MIT Press, 1999. An industrial implementation of OPL is available from the international software company ILOG. http://www.ilog.fr/products/optimization

Books

Constraint-Based Local Search, Pascal Van Hentenryck and Laurent Michel, MIT Press, 2005. ISBN-10:0-262-22077-6 combinatorial optimization problems; combines constraint programming and local search; a programming language, COMET, that supports both modeling and search abstractions in the spirit of constraint programming.

2. PROLOG

Some Prolog links

- FAQ van Prolog: http://www.logic.at/prolog/faq/faq.html
- Online tutorials:
 Bartak, Fisher, and P. Blackburn et al.
- Books on Prolog
- The World Wide Web Virtual Library: Logic Programming

Back to Prolog: unification

```
[eclipse 2]: p(k(z,f(x,b,z)))=p(k(h(x),f(g(a),Y,z))).

[eclipse 3]: p(k(z,f(x,b,z)))=p(k(h(x),f(g(z),Y,z))).
```

Use Martelli-Montanari algorithm What with occur check?? What on failure of unification?

append.pl

```
% app(Xs, Ys, Zs) :- Zs is the result of
% concatenating the lists Xs and Ys.
app([], Ys, Ys).
app([X | Xs], Ys, [X | Zs]) :- app(Xs, Ys, Zs).
```

Backtracking

```
[eclipse 1]: [append].
append.pl compiled traceable 276 bytes in 0.00 seconds
Yes (0.00s cpu)
[eclipse 2]: append(Xs,Ys,[1,2,3]).
Xs = []
Ys = [1, 2, 3]
Yes (0.00s cpu, solution 1, maybe more) ?;
Xs = [1]
Ys = [2, 3]
Yes (0.00s cpu, solution 2, maybe more) ?;
Xs = [1, 2]
Ys = [3]
Yes (0.00s cpu, solution 3, maybe more) ?;
Xs = [1, 2, 3]
Ys = []
Yes (0.00s cpu, solution 4)
[eclipse 3]:
```

Pure Prolog and declarative programming

- Declarative interpretation (what is being computed;meaning): a Prolog program is a set of formulas (first order logic; semantics)
- Procedural interpretation (how computation takes place; method): mgu, SLD resolution
- Declarative programming: Programs can be interpreted in a natural way as formulas in some logic. Then the results of the program computations follow logically from the program. Towards executable specifications.

Arithmetic in Prolog

Infinitely many integer constants, also floats

```
0 -3 19 0.0 -1.344 3.333
```

 Given a tree (node/3, empty): sum of its values

- is/2 the arithmetic evaluator
 - evaluates the operand at the rhs
 - unifies the result with the operand at the lhs
 - has to be at the right place

=/2 and is/2

Arithmetic comparison predicates

- Less than
- Less than or equal =<</p>
- Equality =:=
- Disequality =\=
- Greater than or equal >=
- Greater than

Ordered/2

```
% ordered(Xs) :- Xs is an =<-ordered list of numbers.</pre>
ordered([]).
ordered([H | Ts]) :- ordered(H, Ts).
% ordered(H, Ts) :- [H|Ts] is an =<-ordered list of numbers.
ordered(_, []).
ordered(H, [Y \mid Ts]) :- H =< Y, ordered(Y, Ts).
[eclipse 3]: ordered([1, x, 6]).
instantiation fault in 1 = < X
Abort
```

Arithmetic constraints: passive

- Compare f(a,X) = f(Y,b) with 3*X < Y + 2
- Constraints: restrict the values of variables
- Using comparison predicates: </2 is an arithmetic constraint
- Evaluation of a constraint
 - =/2 : can affect the variables in the constraint: active
 - </2 : cannot affect them/only for testting: passive</p>

What if </2 were an active arithmetic constraint???

```
[eclipse 3]: ordered([2,X,2]). X = 2
```

This behaviour is possible when using the ECLiPSe's ic library.

Constraint Programming: a primer

- What constraints do you already know?
- A constraint is an atomic formula.
- We assume that each constraint has at least one variable.
- Each interpretation associates with a constraint a subset of the Cartesian product of the domains of its variables.
- The constraint X < Y over the set of integers with as interpretation { (a,b) | a,b ∈ Z and a < b}</p>

Satisfiable and solved constraints

- An assignment of values to the constraint variables satisfies a constraint (is a solution to a constraint) if the used sequence of values belongs to its interpretation.
- A constraint is satisfiable if some assignment to its variables satisfies it and is unsatisfiable if no such assignment exists.
- Over the set of reals, X > X+Y is satisfiable; over the set of natural numbers, it is unsatisfiable.
- A constraint is solved if all assignments of values to its variables satisfy it. X + Y > 0 over the natural numbers.

Constraint satisfaction problem

- A constraint satisfaction problem, a CSP, is a finite sequence of variables, each ranging over a possibly different domain, and a finite set of constraints, each on a subsequence of the considered variables.
- The variables in a CSP: decision variables.
- CSPs are considered in the context of an interpretation.
- A solution to a CSP is an assignment of values to its variables that satisfies each constraint.

Consistent and solved CSPs

- A CSP is consistent (or feasible) if it has a solution and is inconsistent (or infeasible) if it does not.
- A CSP is solved if each of its constraints is solved.
- A CSP is failed if one of its domains is empty or one of its constraints is unsatisfiable.
- If a CSP is failed then it is inconsistent, but not necessarily the other way around.
- Two CSPs are equivalent if they have the same set of solutions.

Common classes of constraints

- Uniquely determined by the considered predicates and function symbols.
- Interpretation is clear from the context.
- Classes:
 - Equality, disequality
 - Boolean
 - Linear
 - Arithmetic

Equality and disequality

- Two predicate symbols, equality = and disequality ≠
- Variables are interpreted over arbitrary domains
- What do you know about the constraints (solved? (un)satisfiable?)

```
x = x and x \neq x

x = y and x \neq y
```

What is the solution(s) of the CSP

```
x = y, y \neq z, z \neq u;
 x \in \{a,b,c\}, y \in \{a,b,d\}, z \in \{a,b\}, u \in \{b\}>
```

Boolean constraints

- Constants: true and false
- Function symbols: negation ~, conjunction ^, disjunction V.
- The resulting terms (s♦t) are Boolean expressions
- Predicate symbol: =/2 s,t Boolean expressions
 s = t
 s (shorthand for s = true)
- The variables are interpreted over the set of truth values {0,1}; the interpretation of the connectives is given by the standard truth tables.
- (~x) ^ (y V z) = true with as interpretation ...

Linear constraints

- Over the set of integers, or the set of reals, or over a subset of one of these sets (usually an interval).
- A fixed set of numeric constants representing reals or integers.
- Linear constraint, s op t, where op either <, ≤, =, ≠, ≥, or > (for reals) s and t linear expressions such as

$$4.x + 3.y - y$$

Arithmetic constraints

- Only difference w.r.t. linear constraints lies in the use of the multiplication symbol.
- Now also 4.x + x.y x < y.(z+3) 3.u

CSP examples: todo model them

- Map colouring
- SEND+MORE = MONEY
- N-queens problem

Map colouring

- A finite set of regions
- A (smaller) set of colours
- A neighbour relation between pairs of regions

Associate a colour with each region so that no two neighbours have the same colour!

Decision variables? Domains? Constraints?

SEND+MORE = MONEY

- Cryptarithmetic problem: digits are replaced by letters ...
- Replace each letter by a different digit such that the sum is ok.
- Modeled by which kind of constraints???

SMM: representation 1

1 equality constraint

```
1000.S + 100.E + 10.N + D
+ 1000.M + 100.O + 10.R + E
= 10000.M + 1000.O + 100.N + 10.E + Y,
```

- 2 disequality constraints: S ≠ 0, M ≠ 0
- And 28 disequality constraints x ≠ y for x,y ranging over the set {S,E,N,D,M,O,R,Y}

SMM representation 2

- Instead of 1 equality: five simpler ones
- Introducing per column a carry variable ranging over {0,1}

$$D + E = 10.C1 + Y,$$
 $C1 + N + R = 10.C2 + E,$
 $C2 + E + O = 10.C3 + N,$
 $C3 + S + M = 10.C4 + O,$
 $C4 = M$

SMM representation 3

- Instead of the 28 disequality constraints
- alldifferent([S,E,N,D,M,O,R,Y]).
- Book p. 196: built-in of the ic_library
- From within ECLiPse: query help(alldifferent).
 help(ic:alldifferent/1).

SMM as Integer Linear Programming

- Finding (optimal) integer solutions to linear constraints over the reals.
- For each variable x in {S,E,N,D,M,O,R,Y} and each digit d: a 0/1 variable is_xd
- Each variable x from {S,E,N,D,M,O,R,Y} takes one value: ∑_d is_xd = 1 (d from 0 to 9)
- All different values: for all d $\sum_{x} is_xd \le 1$ ($x \in \{S,E,N,D,M,O,R,Y\}$)
- $\mathbf{x} = \sum_{d} (\mathbf{d} \cdot \mathbf{is} \mathbf{xd})$ (d from 0 to 9)

N-queens problem

- Place n queens on the n x n chess board, where n ≥ 3, so that they do not attack each other.
- Representation 1: using n² 0/1 variables x_ij, where i,j ∈ [1..n], representing one field
- Representation 2: using linear constraints and n variables x_i with domain [1..n]. x_i denotes the position of the queen in the ith column.

Representation 1

- Exactly one queen per row: for each i $\sum_{i} x_{i} = 1$ (j from 1 to n)
- Exactly one queen per column: for each j $\sum_{i} x_{i} = 1$ (i from 1 to n)
- At most one queen per diagonal: x_ij + x_kl ≤ 1 for i,j,k,l ∈ [1..n] such that i ≠ k and |i-k| = |j-l|
- Disadvantage??

Representation 2

- n variables x_i with domain [1..n], denoting the position of the queen in the ith column.
- Implies : no two queens in the same column.
- For i ∈ [1..n] and j ∈ [1..i-1]
 - At most one queen per row: x_i ≠ x_j
 - At most one queen per SE-NW diagonal
 x_i x_j ≠ i j
 - At most one queen per SW-NE diagonal
 x_i x_j ≠ j i

Constraint Optimization Problems: examples

- Also a cost function mapping the values of the x_i variables to a real number
- Optimal: here minimal
- Huge area:
 - The knapsack problem
 - A coins problem
 - The facility location problem

Solving CSPs and COPs

- Domain specific methods are preferred
 - Systems of linear equations over reals : methods from linear algebra
 - Systems of linear inequalities over reals: methods from the area of Linear Programming
- Also general methods are needed
 - Developed in area of Constraint Programming
 - Based on search
 - Local search
 - Top-down search

Exploring search spaces

CLP Tree search:

- constructive
- partial/total assignments
- systematic
- complete or incomplete

"Local" search:

- move-based (trajectories)
- only total assignments
- usually random element
- incomplete

Top-down search for CSPs

- Combined with a branching (splitting) strategy and constraint propagation.
- Role of branching?
- To split a CSP into 2 or more CSP's whose union is equivalent to the initial CSP
- Role of propagation?
- To transform a CSP into one that is equivalent but simpler
- Alternating propagation and branching

Search tree generated on the fly

Leaves: CSP's that are solved or obviously inconsistent (e.g. empty domain)

Backtracking search

Organisation of backtracking search

- Ordering the decision variables according to some variable choice heuristics
- Branching through splitting the domain of a variable, e.g. labelling splits a finite domain into the singleton domains
- Some value choice heuristics for the ordering of the values in each domain, e.g. bisection which is used for interval domains or finite set domains.

Domain reduction by propagation

- Removal of values that do not participate in any solution
- One reduction can trigger other reductions such that reduction can be further improved.
- Implied constraints: do not alter the set of solutions, but can lead to a smaller search tree as they can be used during propagation
- Complete seach

Branch and bound search for COPs

- Wanted: solution with a minimal value of the cost function
- During backtracking search keep the currently best value of the cost function
- Prune the seach tree by identifying nodes under which no solution with a smaller cost can be present

Towards Constraint Programming

- Programming language with support for generating and solving CSPs and COPs.
- Support for CSP variables, unknowns as in mathematics, and their domains by built-in facilities
- Support for general methods such as backtracking and branch and bound search, various variable and value choice heuristics.
- Specialised, domain specific methods in the form of constraint solvers integrated with the general methods