(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号

$1 - 1 \ 2 \ 6 \ 0 \ 1 \ 7$

(43)公開日 平成1-1-年-(-1-9-9-9-9-)--5-月-1-1百

(51) Int. Cl. 6	識別記号	庁内整理番号	FI	技術表示箇所
G09B 9/00			G09B 9/00	2
A63F 9/22			A63F 9/22	н
				М
G06F 17/00			G06F 15/20	2

審査請求 未請求 請求項の数69 〇L (全22頁)

特願平10-30793 (21)出願番号

(22)出顧日 平成10年(1998)2月13日

(31) 優先権主張番号 特願平9-226055 (32)優先日 平9 (1997) 8月22日

(33)優先権主張国 日本 (JP) (71)出願人 0 0 0 0 0 2 1 8 5 ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 横尾 直弘

東京都品川区北品川6丁目7番35号 ソ

二一株式会社内

(72) 発明者 加藤 靖彦

東京都品川区北品川6丁目7番35号 ソ

二一株式会社内

服部 雅一 (72)発明者

東京都品川区北品川6丁目7番35号 ソ

二一株式会社内

(74)代理人 弁理士 稲本 義雄

最終頁に続く

(54)【発明の名称】記憶媒体、ロポット、情報処理装置、並びに電子ペットシステム

(57)【要約】

【課題】 種々の装置で、リアリティのある電子ペット を実現する。

【解決手段】 ICカード21は、電子ペットの感情を 含む、その内部状態を表す内部状態パラメータであっ て、その内部状態パラメータに基づいて、電子ペットが アクションを起こした場合に、そのアクションに対応し て更新されるものを記憶し、電子ペットの肉体として機 能する装置に着脱可能なようになされている。仮想ペッ ト装置22は、電子ペットの肉体として機能する、電子 ペットを表示するための処理を行うもので、ICカード 21が着脱可能なスロット22Aを有している。ペット 型ロボット23は、電子ペットの肉体として機能し、I Cカード21が着脱可能なスロット23Aを有してい

【特許請求の範囲】

【請求項1】 生命体のオプジェクトである生命体オブ ジェクトの感情を含む、その内部状態を表す内部状態パ ラメータであって、その内部状態パラメータに基づい て、前記生命体オブジェクトがアクションを起こした場 合に、そのアクションに対応して更新されるものを記憶

前記生命体オブジェクトの肉体としての肉体装置に着脱 可能になされていることを特徴とする記憶媒体。

【請求項2】 前記肉体装置は、ロポット、または前記 生命体オプジェクトを表示するための処理を行う情報処 理装置であることを特徴とする請求項1に記載の記憶媒 体。

【請求項3】 前記内部状態パラメータは、外部からの 入力にも対応して更新されることを特徴とする請求項1 に記載の記憶媒体。

【請求項4】 前記内部状態パラメータは、時間の経過 にも対応して更新されることを特徴とする請求項1に記 載の記憶媒体。

【請求項5】 動傾向を規定するための性格/行動傾向情報も記憶し、 前記生命体オブジェクトは、前記性格/行動傾向情報お よび内部状態パラメータに基づいて、アクションを起こ すことを特徴とする請求項1に記載の記憶媒体。

【請求項6】 前記性格/行動傾向情報は、前記内部状 態パラメータを、前配生命体オブジェクトのアクション に対応して更新するときの更新量に関する更新量情報を 有することを特徴とする請求項5に記載の記憶媒体。

前記性格/行動傾向情報は、前記生命体 【請求項7】 オブジェクトが所定のアクションを起こすのに、前記内 30 し、 部状態パラメータが満たすべき条件に関する条件情報を 有することを特徴とする請求項5に記載の記憶媒体。

【請求項8】 前記生命体オブジェクトは、前記内部状 態パラメータが所定のアクションに対応する前記条件情 報を満たすとき、そのアクションを起こすことを特徴と する請求項7に記載の記憶媒体。

【請求項9】 前配性格/行動傾向情報は、前配内部状 態パラメータを、前記生命体オブジェクトのアクション に対応して更新するときの更新型に関する更新量情報を 有し、

前記内部状態パラメータが所定のアクションに対応する 前記条件情報を満たすことにより、前記生命体オブジェ クトがアクションを起した場合、前配内部状態パラメー 夕は、前記生命体オブジェクトが起こしたアクションに 対応する前記更新量情報に基づいて更新されることを特 徴とする請求項8に記載の記憶媒体。

【 請 求 項 1 0 】 前記内部状態パラメータが複数のアク ションに対応する前記条件情報を満たすとき、前記生命 体オプジェクトは、その複数のアクションのうちの 1 を 選択し、選択したアクションを起こすことを特徴とする 50 るものを記憶する記憶媒体が着脱可能になされているこ

請求項8に記載の記憶媒体。

【請求項11】 前記内部状態パラメータが複数のアク ションに対応する前配条件情報を満たす場合において、 その複数のアクションのうちの2以上を同時に行うこと ができるとき、前記生命体オプジェクトは、その2以上 のアクションを同時に起こすことを特徴とする請求項8 に記載の記憶媒体。

【請求項12】 前記性格/行動傾向情報は、外部から の入力に対応して更新されることを特徴とする請求項5 10 に記載の記憶媒体。

【請求項13】 前記性格/行動傾向情報は、前記生命 体オブジェクトが所定のアクションを起こすのに、前記 内部状態パラメータが満たすべき条件に関する条件情報

前記条件情報のうち、芸としてのアクションに関するも のが、外部からの入力に対応して更新されることを特徴 とする請求項12に記載の記憶媒体。

【請求項14】 前記性格/行動傾向情報は、前記生命 体オブジェクトが所定のアクションを起こすのに、前記 前記生命体オブジェクトの性格または行 20 内部状態パラメータが満たすべき条件に関する条件情報 を有し、

> 新たなアクションに対応する前配条件情報が、外部から の入力に対応して追加されることを特徴とする請求項1 2 に記載の記憶媒体。

> 【請求項15】 前記生命体オブジェクトにアクション を起こさせるのに用いる前記性格/行動傾向情報が、時 間の経過に対応して更新されることを特徴とする請求項 5 に記載の記憶媒体。

【請求項16】 複数の前記性格/行動傾向情報を記憶

複数の前記性格/行動傾向情報の中から、前記生命体オ プジェクトにアクションを起こさせるのに用いるもの が、時間の経過に対応して選択されることを特徴とする 請求項15に記載の記憶媒体。

【請求項17】 複数の前記性格/行動傾向情報を記憶

複数の前記性格/行動傾向情報に基づいて補間を行うこ とにより、各時刻において用いる前記性格/行動傾向情 報が生成されることを特徴とする請求項15に記載の記 40 億媒体。

【請求項18】 I C (Integrated Curcuit) カードま たは磁気ディスクであることを特徴とする請求項1に記 載の記憶媒体。

【請求項19】 生命体のオブジェクトである生命体オ プジェクトの肉体として機能するロボットにおいて、 前記生命体オプジェクトの感情を含む、その内部状態を 表す内部状態パラメータであって、その内部状態パラメ ータに基づいて、前記生命体オブジェクトがアクション を起こした場合に、そのアクションに対応して更新され

とを特徴とするロボット。

【節求項20】 前配内部状態パラメータは、外部からの入力にも対応して更新されることを特徴とする節求項19に記載のロボット。

【節求項21】 前配内部状態パラメータは、時間の経過にも対応して更新されることを特徴とする請求項19に配載のロボット。

【請求項22】 前配配憶媒体は、前記生命体オブジェクトの性格または行動傾向を規定するための性格/行動傾向情報も記憶し、

前記生命体オブジェクトは、前記性格/行動傾向情報および内部状態パラメータに基づいて、アクションを起こすことを特徴とする前求項19に記載のロボット。

【前求項23】 前配性格/行動傾向情報は、前配内部 状態パラメータを、前配生命体オブジェクトのアクションに対応して更新するときの更新量に関する更新量情報 を有することを特徴とする請求項22に記載のロボット。

【請求項24】 前記性格/行動傾向情報は、前記生命体オプジェクトが所定のアクションを起こすのに、前記内部状態パラメータが満たすべき条件に関する条件情報を有することを特徴とする請求項22に記載のロボット

【請求項25】 前記生命体オブジェクトは、前記内部 状態パラメータが所定のアクションに対応する前記条件 情報を満たすとき、そのアクションを起こすことを特徴 とする請求項24に記載のロボット。

【請求項26】 前記性格/行動傾向情報は、前記内部 状態パラメータを、前記生命体オブジェクトのアクショ ンに対応して更新するときの更新型に関する更新型情報 を有し、

前記内部状態パラメータが所定のアクションに対応する 前記条件情報を満たすことにより、前記生命体オブジェ クトがアクションを起した場合、前記内部状態パラメー タは、前記生命体オブジェクトが起こしたアクションに 対応する前記更新量情報に基づいて更新されることを特 徴とする請求項25に記載のロポット。

【請求項27】 前記内部状態パラメータが複数のアクションに対応する前記条件情報を満たすとき、前記生命体オブジェクトは、その複数のアクションのうちの1を選択し、選択したアクションを起こすことを特徴とする 請求項25 に記載のロボット。

【簡求項28】 前記内部状態パラメータが複数のアクションに対応する前記条件情報を満たす場合において、その複数のアクションのうちの2以上を同時に行うことができるとき、前記生命体オブジェクトは、その2以上のアクションを同時に起こすことを特徴とする前求項25に配載のロボット。

【請求項29】 前配性格/行動傾向情報は、外部からの入力に対応して更新されることを特徴とする請求項2

2に配載のロボット。

【請求項30】 前配性格/行動傾向情報は、前配生命体オプジェクトが所定のアクションを起こすのに、前配内部状態パラメータが満たすべき条件に関する条件情報を有し、

前記条件情報のうち、芸としてのアクションに関するものが、外部からの入力に対応して更新されることを特徴とする請求項29に記載のロボット。

【請求項31】 前配性格/行動傾向情報は、前配生命 体オプジェクトが所定のアクションを起こすのに、前記 内部状態パラメータが満たすべき条件に関する条件情報 を有し、

新たなアクションに対応する前記条件情報が、外部からの入力に対応して追加されることを特徴とする請求項29に記載のロボット。

【簡求項32】 前記生命体オブジェクトにアクションを起こさせるのに用いる前記性格/行動傾向情報が、時間の経過に対応して更新されることを特徴とする前求項22に記載のロボット。

20 【請求項33】 前記記憶媒体は、複数の前記性格/行動傾向情報を記憶し、

複数の前記性格/行動傾向情報の中から、前記生命体オプジェクトにアクションを起こさせるのに用いるものが、時間の経過に対応して選択されることを特徴とする 請求項32に記載のロボット。

【請求項34】 前記記憶媒体は、複数の前記性格/行 動傾向情報を記憶し、

複数の前記性格/行動傾向情報に基づいて補間を行うことにより、各時刻において用いる前配性格/行動傾向情 30 報が生成されることを特徴とする請求項32に配載のロボット。

【請求項35】 前記記憶媒体は、IC (Integrated Curcuit) カードまたは磁気ディスクであることを特徴とする請求項19に記載のロボット。

【節求項36】 生命体のオブジェクトである生命体オブジェクトの肉体として機能する、前記生命体オブジェクトを表示するための処理を行う情報処理装置において

前記生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、前記生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶する記憶媒体が着脱可能になされていることを特徴とする情報処理装置。

【請求項37】 前配内部状態パラメータは、外部からの入力にも対応して更新されることを特徴とする請求項36に記載の情報処理装置。

【請求項38】 前記内部状態パラメータは、時間の経過にも対応して更新されることを特徴とする請求項36に記載の情報処理装置。

【請求項39】 前配配憶媒体は、前配生命体オブジェクトの性格または行動傾向を規定するための性格/行動傾向情報も記憶し、

前記生命体オブジェクトは、前配性格/行動傾向情報および内部状態パラメータに基づいて、アクションを起こすことを特徴とする請求項36に記載の情報処理装置。

【請求項41】 前配性格/行動傾向情報は、前配生命体オプジェクトが所定のアクションを起こすのに、前配内部状態パラメータが満たすべき条件に関する条件情報を有することを特徴とする請求項39に記載の情報処理装置。

【簡求項42】 前配生命体オブジェクトは、前記内部状態パラメータが所定のアクションに対応する前記条件情報を満たすとき、そのアクションを起こすことを特徴とする請求項41に記載の情報処理装置。

【前求項43】 前配性格/行動傾向情報は、前配内部 状態パラメータを、前配生命体オブジェクトのアクショ ンに対応して更新するときの更新量に関する更新量情報 を有し、

前記内部状態パラメータが所定のアクションに対応する 前記条件情報を満たすことにより、前記生命体オブジェ クトがアクションを起した場合、前記内部状態パラメー タは、前記生命体オブジェクトが起こしたアクションに 対応する前記更新量情報に基づいて更新されることを特 徴とする請求項42に記載の情報処理装置。

【簡求項44】 前記内部状態パラメータが複数のアクションに対応する前記条件情報を満たすとき、前記生命体オブジェクトは、その複数のアクションのうちの1を選択し、選択したアクションを起こすことを特徴とする 請求項42に記載の情報処理装置。

【請求項45】 前記内部状態パラメータが複数のアクションに対応する前記条件情報を満たす場合において、その複数のアクションのうちの2以上を同時に行うことができるとき、前記生命体オブジェクトは、その2以上のアクションを同時に起こすことを特徴とする請求項42に記載の情報処理装置。

【 前求項46】 前配性格/行動傾向情報は、外部からの入力に対応して更新されることを特徴とする請求項39に記載の情報処理装置。

【 前求項47】 前記性格/行動傾向情報は、前記生命体オプジェクトが所定のアクションを起こすのに、前記内部状態パラメータが満たすべき条件に関する条件情報を有し、

前記条件情報のうち、芸としてのアクションに関するものが、外部からの入力に対応して更新されることを特徴 50

とする請求項46に記載の情報処理装置。

【請求項48】 前配性格/行動傾向情報は、前配生命体オブジェクトが所定のアクションを起こすのに、前配内部状態パラメータが満たすべき条件に関する条件情報を有し、

新たなアクションに対応する前配条件情報が、外部からの入力に対応して追加されることを特徴とする請求項46に記載の情報処理装置。

【請求項49】 前記生命体オブジェクトにアクション 10 を起こさせるのに用いる前記性格/行動傾向情報が、時間の経過に対応して更新されることを特徴とする請求項 39に記載の情報処理装置。

【 請求項 5 0 】 前記記憶媒体は、複数の前記性格/行動傾向情報を記憶し、

複数の前配性格/行動傾向情報の中から、前配生命体オブジェクトにアクションを起こさせるのに用いるものが、時間の経過に対応して選択されることを特徴とする前求項49に記載の情報処理装置。

【請求項51】 前記記憶媒体は、複数の前記性格/行20 動傾向情報を記憶し、

複数の前記性格/行助傾向情報に基づいて補間を行うことにより、各時刻において用いる前記性格/行助傾向情報が生成されることを特徴とする簡求項49に記載の情報処理装置。

【請求項 5 2】 前記記憶媒体は、 I C (Integrated Curcuit) カードまたは磁気ディスクであることを特徴とする請求項 3 6 に記載の情報処理装置。

【簡求項53】 電子ペットの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パ 30 ラメータに基づいて、前記電子ペットがアクションを起 こした場合に、そのアクションに対応して更新されるも のを記憶する、前記電子ペットの肉体として機能する装置に着脱可能な記憶媒体と、

前記電子ペットの肉体として機能する、前記記憶媒体が 着脱可能なロポットと、

前記電子ペットの肉体として機能する、前記電子ペットを表示するための処理を行う情報処理装置であって、前記記憶媒体が着脱可能なものとを備えることを特徴とする電子ペットシステム。

0 【請求項54】 前記内部状態パラメータは、外部からの入力にも対応して更新されることを特徴とする請求項53に記載の電子ペットシステム。

【請求項55】 前記内部状態パラメータは、時間の経過にも対応して更新されることを特徴とする請求項53に記載の電子ペットシステム。

【請求項56】 前記記憶媒体は、前記生命体オブジェクトの性格または行動傾向を規定するための性格/行動傾向情報も記憶し、

前配生命体オブジェクトは、前配性格/行動傾向情報および内部状態パラメータに基づいて、アクションを起こ

すことを特徴とする前求項53に記載の電子ベットシステム。

【節求項57】 前配性格/行動傾向情報は、前配内部状態パラメータを、前配生命体オブジェクトのアクションに対応して更新するときの更新型に関する更新型情報を有することを特徴とする請求項56に記載の電子ペットシステム。

【請求項58】 前配性格/行動傾向情報は、前配生命体オプジェクトが所定のアクションを起こすのに、前配内部状態パラメータが満たすべき条件に関する条件情報を有することを特徴とする請求項56に配載の電子ペットシステム。

【簡求項59】 前配生命体オブジェクトは、前配内部 状態パラメータが所定のアクションに対応する前配条件 情報を満たすとき、そのアクションを起こすことを特徴 とする前求項58に配載の電子ペットシステム。

【請求項60】 前配性格/行動傾向情報は、前配内部 状態パラメータを、前記生命体オブジェクトのアクショ ンに対応して更新するときの更新型に関する更新型情報 を有し、

前記内部状態パラメータが所定のアクションに対応する 前記条件情報を満たすことにより、前記生命体オブジェ クトがアクションを起した場合、前記内部状態パラメー タは、前記生命体オブジェクトが起こしたアクションに 対応する前記更新匱情報に基づいて更新されることを特 徴とする前求項59に記載の電子ペットシステム。

【簡求項61】 前記内部状態パラメータが複数のアクションに対応する前記条件情報を満たすとき、前記生命体オブジェクトは、その複数のアクションのうちの1を選択し、選択したアクションを起こすことを特徴とする 節求項59に記載の電子ペットシステム。

【請求項62】 前配内部状態パラメータが複数のアクションに対応する前配条件情報を満たす場合において、その複数のアクションのうちの2以上を同時に行うことができるとき、前配生命体オブジェクトは、その2以上のアクションを同時に起こすことを特徴とする請求項59に配載の電子ペットシステム。

【請求項63】 前配性格/行動傾向情報は、外部からの入力に対応して更新されることを特徴とする請求項56に配載の電子ペットシステム。

【請求項64】 前記性格/行動傾向情報は、前記生命体オプジェクトが所定のアクションを起こすのに、前記内部状態パラメータが満たすべき条件に関する条件情報を有し、

前配条件情報のうち、芸としてのアクションに関するものが、外部からの入力に対応して更新されることを特徴とする請求項63に配載の電子ペットシステム。

【 請求項 6 5 】 前記性格/行動傾向情報は、前記生命 体オブジェクトが所定のアクションを起こすのに、前記 内部状態パラメータが満たすべき条件に関する条件情報 50 を有し、

新たなアクションに対応する前記条件情報が、外部からの入力に対応して追加されることを特徴とする額求項 63 に配載の電子ペットシステム。

【請求項66】 前配生命体オブジェクトにアクションを起こさせるのに用いる前配性格/行動傾向情報が、時間の経過に対応して更新されることを特徴とする請求項56に配載の電子ペットシステム。

【請求項67】 前記記憶媒体は、複数の前記性格/行動傾向情報を記憶し、

複数の前記性格/行動傾向情報の中から、前記生命体オプジェクトにアクションを起こさせるのに用いるものが、時間の経過に対応して選択されることを特徴とする 請求項66に記載の電子ペットシステム。

【請求項68】 前配配億媒体は、複数の前記性格/行動傾向情報を記憶し、

複数の前記性格/行動傾向情報に基づいて補間を行うことにより、各時刻において用いる前記性格/行動傾向情報が生成されることを特徴とする請求項 6 6 に記載の電 20 子ペットシステム。

【請求項69】 前記記憶媒体は、IC (Integrated Curcuit) カードまたは磁気ディスクであることを特徴とする請求項53に記載の電子ペットシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、記憶媒体、ロボット、情報処理装留、並びに電子ペットシステムに関し、特に、例えば、電子ペットを、各種の装置で実現することができるようにする記憶媒体、ロボット、情報処理装置、並びに電子ペットシステムに関する。

[0002]

30

【従来の技術】 最近、 実際の動物をベットとして飼うよりも手軽であること等の理由から、 いわゆる電子ベット 装置 (あるいは、 育成シミュレーションゲーム機) が流行している。

【0003】電子ベット装置では、ベットとなる生命体のオブジェクトである生命体オブジェクトが、電子ベットとして表示され、飢え(空腹)や、疲れの程度などの、電子ベットの状態が、飼い主(電子ベットを置の、電子ベットの状態に応じて、電子ベット装置を操作する。それであげたり、餌を与えたり、遊んであげたりする。そして、このような飼い主の対応に基づいて、電子ベットは、時間の経過とともに成長し、従って、その状態は、時間の経過によっても変化していく。

[0004]

【発明が解決しようとする課題】ところで、電子ベット 装置では、電子ベットは表示されるだけであるから、い わば仮想的な存在である。

【0005】一方、電子ペットを、実際の存在としての、例えば、ロボットで実現した場合、電子ペットとしてのロボットが実在するのであるから、電子ペット装置よりも、実際にペットを飼っている場合に近い感覚を、ユーザに与えることができる。

【0006】 しかしながら、電子ペットを、ロポットで 実現した場合においては、例えば、旅行するときなどに おいて、持ち運びに不便である。従って、例えば、電子 ペットを、ある場合は、実際の存在としてのロボットで 実現し、他の場合は、携帯可能な電子ペット装置におい て仮想的な存在として実現することができれば便利であ

【0007】また、従来の電子ベット装置などで実現される電子ベットは、一般に、ユーザからの入力か、または時間の経過に対応して、状態が変化し、アクションを起こすため、リアリティに欠けることがあった。

【0008】即ち、実際のベットである、例えば、犬であれば、遊んでほしい場合に、吠えたり、尻尾を振ったりして、飼い主の注意を引こうとすることがあるが、この場合に、飼い主が無視していれば、ベットは疲れて、吠えたり、尻尾を振ったりするのをやめ、例えば、寝るなどの行動をとる。そして、例えば、ベットは、寝たことにより機嫌が良くなることがある。

【0010】本発明は、このような状況に鑑みてなされたものであり、よりリアリティのある電子ペットなどを、各種の装置で実現することができるようにするものである。

[0011]

【課題を解決するための手段】 請求項1 に記載の記憶媒体は、生命体のオブジェクトである生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶し、生命体オブジェクトの肉体としての肉体装置に着脱可能になされていることを特徴とする。

【0012】 請求項19に記載のロポットは、生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づい 50

て、生命体オブジェクトがアクションを起こした場合 に、そのアクションに対応して更新されるものを配憶す る配憶媒体が着脱可能になされていることを特徴とす る-

【0013】 請求項36に記載の情報処理装置は、生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶10 する記憶媒体が着脱可能になされていることを特徴とする。

【0014】 請求項53に記載の電子ベットシステムは、電子ベットの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、電子ベットがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶する、電子ベットの肉体として機能する、配管媒体が着脱可能なロボットと、電子ベットの肉体として機能する、電子ベットを表示するための処理を行う情報処理装置であって、記憶媒体が着脱可能なものとを備えることを特徴とする。

【0015】 請求項1に記載の記憶媒体においては、生命体のオブジェクトである生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものが記憶され、生命体オブジェクトの肉体としての肉体装置に着脱可能になされている。

【0016】 請求項19に記載のロボットにおいては、 生命体オブジェクトの感情を含む、その内部状態を表す 内部状態パラメータであって、その内部状態パラメータ に基づいて、生命体オブジェクトがアクションを起こし た場合に、そのアクションに対応して更新されるものを 記憶する記憶媒体が着脱可能になされている。

【0017】 請求項36に記載の情報処理装置においては、生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶する記憶媒体が着脱可能になされている。

【0018】 請求項53に記載の電子ペットシステムにおいては、記憶媒体は、電子ペットの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、電子ペットがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶し、電子ペットの肉体として機能する装置に着脱可能なようになされている。ロボットは、電子ペットの肉体として機能し、記憶媒体が着脱可能なようにな

20

12

されている。情報処理装置は、電子ペットの肉体として 機能する、電子ペットを表示するための処理を行う情報 処理装置であって、記憶媒体が着脱可能なようになされ ている。

[0019]

【発明の実施の形態】図1は、本発明を適用した電子ベットシステム(本明細書中において、システムとは、複数の装置が論理的に集合した物をいい、各構成の装置が同一筐体中にあるか否かは問わない)の一実施の形態の概要を示している。

【0020】例えば、生命体である動物は、一説には、 肉体と、その肉体に宿って心の働きを司る魂とからなる といわれる。図1における電子ペットシステムは、その 魂または肉体にそれぞれ対応する魂部1または肉体部2 で構成されている。

【0021】即ち、魂部1は、電子ペットの魂として機能するもので、電子ペットの特徴を表現する。肉体部2は、電子ペットの肉体として機能するもので、電子ペットのアクション(行動)を表現する。そして、肉体部2のアクションは、魂部1が有する電子ペットの特徴に基づいて行われ、従って、魂部1は、電子ペットのコア(core)ということができる。

【0022】また、魂部1は、肉体部2から抜き出し、他の肉体部2,、2,、・・・に宿すことができるようになされている。この場合、魂部1の抜き出された肉体部2は、いわば抜け殻となり、電子ペットとしては機能しなくなる。一方、魂部1が宿された他の肉体部は、元の特徴をそのまま有する電子ペットとして機能するようになる。即ち、いわば、電子ペットの魂は、肉体の乗り換えが可能になっている。

【0023】図2は、図1の電子ペットシステムの、より具体的な構成例を示している。

【0024】図1の魂部1は、例えば、IC(Integrated curcuit)カード(魂カード)21などで実現される。ICカード21は、例えば、フラッシュメモリなどを内蔵し、後述するような遺伝子データを記憶する。

【0025】図1の肉体部2は、例えば、仮想ベット装置22や、ベット型ロボット23などで実現される。仮想ペット装置22は、仮想的な電子ベットを表示するための処理を行う携帯型の情報処理装置などでなり、ICカード21を装着するためのスロット22Aを有している。また、ベット型ロボット23は、電子ベットの形状をしたロボットで、やはり、ICカード21を装着するためのスロット23Aを有している。

【0026】 仮想ペット装置 2 2 およびペット型ロボット 2 3 は、いずれも、電子ペットの肉体として機能する装置 (肉体装置) で、それだけでは、アクションを起こさない。即ち、肉体たる仮想ペット装置 2 2 およびペット型ロボット 2 3 は、魂たる I C カード 2 1 を装着することで、電子ペットとして機能するようになる。つま

り、仮想ペット装置 2.2 では、そのモニタに、電子ペットが表示され、I C カード 2.1 に配憶された遺伝子データに基づいてアクションを起こす。また、ペット型ロポット 2.3 も、I C カード 2.1 に配憶された遺伝子データに基づいてアクションを起こす。

【0027】従って、例えば、ユーザは、在宅中においては、ICカード21を、ペット型ロボット23のスロット23Aに装着することで、実際にペットを飼っている場合に、より近い感覚を享受することができる。また、ユーザは、例えば、旅行中などにおいては、ICカード21を、ペット型ロボット23から取り外し、仮想ペット装置22に装着することで、旅行先に、容易に携帯することができる。

【0028】次に、図3は、図1の肉体部2の電気的構成例を示している。

【0029】 I / F (Interface) 10は、図2における仮想ペット装置22のスロット22Aや、ペット型ロボット23のスロット23Aに相当し、魂部1と肉体部2との間でデータをやりとりするためのインターフェイスとして機能する。即ち、I / F 10は、魂部1から、電子ペットの特徴を表現する情報(遺伝子データ)を読み出し、内部状態計算部11に供給する。また、I / F 10は、内部状態計算部11における所定の計算の結果得られる情報を、魂部1に書き込み、その記憶内容を更新する。

【0030】内部状態計算部11には、上述したよう に、I/F10から遺伝子データが供給される他、外的 入力部12および時間入力部13からも、入力が与えら れるようになされている。さらに、内部状態計算部11 には、行動変換部15において得られる、電子ペットの 具体的なアクションもフィードバックされるようになさ れている。内部状態計算部11は、モデル記憶部14に 記憶されている感情と状態のモデルを、I/F10、外 的入力部12、時間入力部13、または行動変換部15 からの入力に対応して駆動し、電子ペットの内部状態を 更新する。電子ペットの内部状態は、後述するように、 I/F10からの遺伝子データに含まれるものであり、 更新された内部状態は、 I / F 1 0 を介して、魂部 1 に 書き込まれる。また、内部状態計算部11は、更新後の 内部状態に基づいて、電子ペットに行わせる概念的な動 40 作を決定し、その概念的な動作を行うように指示する命 令(動作命令)を、行動変換部15に出力する。

【0031】外的入力部12は、ユーザ、さらには環境などの外部から与えられる刺激を、内部状態計算部11に供給するようになされている。即ち、肉体部2が、例えば、仮想ペット装置22である場合には、外的入力部12は、キーボード(またはスイッチやボタン)や、マイク(マイクロフォン)および音声認識装置などでなり、例えば、ユーザが電子ペットの世話をするために行った操作や、発した音声を、電気信号にして、内部状態

計算部 1 1 に供給する。また、肉体部 2 が、例えば、ベット型ロボット 2 3 である場合には、外的入力部 1 2 は、キーボードや、マイクおよび音声認識装置、光電変換素子および画像認識装置、センサ(例えば、温度センサなど)などでなり、やはり、ユーザが電子ベットの世話をするために行った操作や、発した音声を、電気信号にして、内部状態計算部 1 1 に供給する物や温度などの情報を、内部状態計算部 1 1 に供給する。

【0032】時間入力部13は、時刻(年月日を含む) を計時しており、その時刻(現在時刻)を、内部状態計算部11に供給するようになされている。

【0033】モデル記憶部14は、電子ベットの感情と状態のモデルを記憶している。即ち、電子ベットの感情としては、例えば、怒り、悲しみ、楽しみ、恐れ、懲き、嫌悪などが設定されており、モデル記憶部14は、これらの感情のモデル(例えば、これらの感情を表すパラメータを求めるための計算式)を記憶している。また、電子ベットの状態としては、例えば、疲れ、飢え、乾き、眠気、排泄感などが設定されており、モデル記憶 20部14は、これらの状態のモデルも記憶している。

【0034】なお、肉体部2は、それが、仮想ベット装置22であると、ベット型ロボット23であるとにかかわらず、同一構成の感情と状態のモデルを有しており、これにより、ICカード21を、仮想ペット装置22とペット型ロボット23との間で、相互に入れ替えても、電子ベットの特徴やアクションが、異なった電子ベットのものに変化しないようになっている。

【0035】ここで、本実施の形態では、電子ペットの 感情と状態の両方をあわせて、電子ペットの内部状態と 呼んでいる。

【0036】行動変換部15は、内部状態計算部11からの概念的な動作命令を、肉体部2に応じた、具体的なアクションを指示する命令(アクション命令)に変換し、出力部16に供給するとともに、内部状態計算部11にフィードパックするようになされている。

【0037】出力部16は、行動変換部15からのアクカーでは、行動変換部15からのアクカーでは、行動変換部15からのアクカーでは、た出力を行うといったがったといったが、のアクションを、でで行わせるようになったのででである。即ち、肉体部2が、例えば、モニタケスさせたりする。また、肉体では、関野子ペットを変化でできたりは、手、足、胴、頭などに相当するの材を駆かるでは、手、足、胴、頭などに相当するのは、手、足、胴、頭などに相当するのは、でのモータを回転させたり、鳴き声などを回転させたり、鳴き声などを回転させたり、鳴き声などを回転させたり、鳴き声をしている。

【0038】次に、図4は、魂部1 (ICカード21) に記憶された遺伝子データのフォーマットの例を示して いる。

【0039】遺伝子データの最初の32パイトには、電子ペットの名前と主人の名前(飼い主(ユーザ)の名前)が配置される。主人の名前の後には、4パイトの成長した時間が配置される。ここには、電子ペットが生まれてから現在までの経過時間が配置される。その後には、60パイトの内部状態が配置される。この内部状態には、60パイトの現在の状態と感情に関するパラメータ(状態と感情を数値化したもの)が配置される。

【0040】内部状態の後には、1パイトの転生輪廻残数が配置される。即ち、本実施の形態では、電子ペット(の魂)は、死んでも、生き返ることができるようになされており、転生輪廻残数には、生き返ることのできる残りの回数が配置される。その後には、1パイトの種族が配置され、そこには、電子ペットが、例えば、犬であるとか、猫であるとか、鳥であるとかなどの、電子ペットの種類が配置される。なお、電子ペットの種類は、必ずしも、実在する動物である必要はない。

【0041】さらに、その後には、660パイトのフィードパックデータ(更新量情報)が配置される。ここで、上述したように、肉体部2(図3)では、内部状態計算部11において、行動変換部15からのフィードパックに対応して、内部状態(に関するパラメータ)が更新されるが、その内部状態を更新するときの更新量が、フィードパックデータとして配置されている。なお、内部状態計算部11では、外的入力部12や時間入力部13からの入力にも対応して、内部状態が更新されるようになされているが、この場合の更新量も、フィードパックデータとして配置されている。

【0042】フィードバックデータの後には、2ビット の寿命因子、2ビットの色、8ビットの大きさの最大 値、8ビットの動作スピード、2000ビットの学習情 報が、順次配置される。寿命因子には、5.と5.の2つ があり、この2つの寿命因子51, 51によって、魂部1 の寿命、即ち、ICカード21の使用期限が決定され る。ここで、 ICカード21の使用期限の経過が、電子 ペット(の魂)の死に相当する。色には、電子ペットの 色が配置される。大きさの最大値には、電子ペットが成 長していったときの、その大きさを制限するための値が 配置される。動作スピードには、電子ペットの動作速度 を決めるための値が配置される。学習情報には、電子ペ ットが所定の芸をすることができるかどうかに関する情 報が配置される。即ち、本実施の形態では、電子ペット に、幾つかの芸を学習させることができるようになされ ており、学習情報には、各芸をすることができるかどう かを示すフラグが配置される。

【0043】学習情報の後には、240ビットのアクシ 50 ョン発火条件(条件情報)がN個配置される。即ち、本

実施の形態では、内部状態のパラメータが、所定の条件 を満たしたときに、電子ペットが所定のアクションを起 こすようになされており、その条件が、アクション発火 条件に記述されている。また、本実施の形態では、N個 のアクション k , k , ・・・, k , が規定されてお り、その各アクションについてのアクション発火条件が 配置されている。

【0044】N個のアクション発火条件の後には、8ビ ットの音声継続時間、16ビットのピッチ、8ビットの アクセント、3Nビットのアクション音声フラグ、3N ビットのアクション画像フラグが、順次配置される。音 声継続時間、ピッチ、またはアクセントには、電子ペッ トの鳴き声の最大継続時間、ピッチ、またはアクセント を規定する情報がそれぞれ配置される。アクション音声 フラグおよびアクション画像フラグには、N個のアクシ ョンそれぞれが可能かどうかを示すフラグが配置されて いる。即ち、ここには、例えば、犬は走ることができる が、空を飛ぶことはできないなどといったことを表すフ ラグが配置される。

【0045】図5は、図4の遺伝子データの中の内部状 態の詳細を示している。

【0046】図5の実施の形態では、内部状態は、怒 り、楽しみ、驚き、恐れ、悲しみの感情を表す5つのパ ラメータと、飢え、排便、従順、疲れ、渇き、眠気、食 べ物、飲み物、芸、成長の状態を表す10のパラメータ との合計15のパラメータから構成されている。ここ で、飢え、排便、従順、疲れ、渇き、眠気、芸、成長 は、電子ペットの状態のうちの身体的な状態を表し、食 べ物、飲み物は、電子ペットの状態のうちの環境的な状 態を表す。即ち、本実施の形態では、電子ペットを、食 べ物や飲み物のある環境におくことができるようになさ れており、食べ物、飲み物の状態は、電子ペットがおか れている環境によって変化する。また、電子ペットは、 食べ物や飲み物のある環境においては、飢えや渇きの状 態に基づき、自ら(ユーザの操作によって、食べ物や飲 み物を与えられなくても)、食べ物を食べたり、飲み物 を飲むことができるようになされている。

【0047】なお、本実施の形態では、内部状態に関す る各パラメータは、0が最小値となるようにされてい る。

【0048】また、内部状態を表すパラメータは、上述 の15に限定されるものではない。

【0049】図6は、図4の遺伝子データの中のフィー ドバックデータの詳細を示している。

【0050】フィードバックデータとしては、外的入力 部12から与えられる外的入力(ユーザの操作や音声な ど)、時間入力部13から与えられる時間入力(時間の 経過)、電子ペット自身が起こしたアクションに基づい て行助変換部15から与えられる内的入力に対応して、 内部状態を更新するときの更新畳が、内部状態の各項目 50

について、各入力ごとに規定されている。なお、時間の 経過に対応する更新量は、所定の単位時間が経過した場 合のものとなっている。

【0051】これにより、電子ペットの内部状態のうち の、例えば「怒り」の感情に注目した場合、外的入力と して、例えば「誉める」に該当する入力があったときに は(例えば、ユーザが、電子ペットを誉めるような音声 を発したときには)、電子ペットの「怒り」は、一20 0000だけ増加、即ち、200000だけ減少する (ここでは、「怒り」の数値の減少は、怒りの感情の減 少に対応するものとする)。また、例えば、単位時間が 経過すると、それに対応して、電子ペットの「怒り」 は、1000だけ減少する。さらに、例えば、内的入力 として、例えば、「吠える」に該当する入力があったと きには(電子ペットが、吠えるアクションを行ったとき には)、電子ペットの「怒り」は、10000だけ減少 する。

【0052】即ち、電子ペットの「怒り」の感情は、飼 い主が誉めてやったり、時間が経過することによって収 まっていく。さらに、電子ペットの「怒り」の感情は、 電子ペットが吠えること、つまり、電子ペット自身の行 動によっても収まっていく。これは、電子ペットが怒っ ている場合に、吠えることで、その怒りが発散され、怒 りの感情が抑制されていくことを意味する。

【0053】図7は、図4の遺伝子データの中のアクシ ョン発火条件の詳細を示している。

【0054】アクション発火条件は、内部状態のパラメ ータが、所定の条件を満たしたときに起こすべきアクシ ョン(例えば、「噛み付く」や、「吠える」、「走 る」、「歩く」、「泣く」、「放心状態になる」、「寝 る」など)と、その条件を規定している。即ち、あるア クションについてのアクション発火条件は、そのアクシ ョンを起こすときに満たすべき内部状態の各パラメータ の下限値(Min)と上限値(Max)とを規定してい る。具体的には、図7の実施の形態では、例えば「噛み 付く」というアクションは、電子ペットの内部状態の 「怒り」の感情が90乃至100、「楽しみ」の感情が 0乃至100、・・・、「飢え」の状態が0乃至10 0、「従順」の状態が0乃至20、・・・の各範囲の値 40 になった場合に起こる。

【0055】次に、図8のフローチャートを参照して、 図3の肉体部2の動作について説明する。

【0056】まず最初に、ステップS1において、内部 状態計算部11は、魂部1に配憶された内部状態を更新 する。

【0057】即ち、内部状態を表すパラメータとして、 P個のパラメータE₁, E₁, ···, E₁がある場合に おいて、ある時刻(ここでは、例えば、電子ペットが生 まれたときを基準とする時刻(電子ペットが生まれてか らの経過時間))tにおける、ある内部状態のパラメー

P)、内部状態計算部11は、例えば、次式にしたがっ

夕を、E。(t)と表すとき(p=1,2,・・・,

て、内部状態を更新する。

[0058]

 $E_{r}(t) = E_{r}(t-1) + A_{t}(p, t) + I_{l}(p, t)$

 $\cdot \cdot \cdot (1)$

但し、A₁(p, t) は、あるアクションkが起きたと きおける、パラメータE,の更新量で、これは、行動変 換部15からのフィードバックに基づき、魂部1に記憶

されているフィードバックデータ (図4) にしたがって 決定される。また、I, (p, t) は、外的入力部12 から、ある入力」が与えられたときにおける、パラメー 10 tの関数になっているのと同様の理由からである。 タ E 。の 更新 量で、これは、その入力 j に基づき、 魂部

1 に記憶されているフィードバックデータにしたがって 決定される。

【0059】なお、ここでは、更新型A₁(p, t) は、時刻tの関数になっているが、これは、更新型Ai (p, t) を、時刻の経過、即ち、電子ペットの成長に したがって、更新量を変化させることができるようにす るためである。具体的には、例えば、ある刺激に対し て、赤ちゃんの頃は、敏感に反応し、成長するにつれ て、反応が鈍くなる場合がある。このような、成長に伴 20 う変化を実現するために、更新畳A、(p,t)は時刻 t の関数になっている。なお、ある時刻 t における更新 鼠A、(p, t)は、その値そのものを、魂部1に記憶 させておかなくても、例えば、所定の幾つかの時刻T 1, T 2, · · · における更新量 A · (p, T 1), A · (p, T2),・・・を、魂部1に記憶させておき、そ れらを用いた線形補間などを行うことにより求める (生 成する)ようにすることが可能である。また、更新量A 1(p, t)を、時刻tについて連続的に変化させる必 要のない場合には、時刻 t が 0 乃至T1の範囲では、更 30 新量としてA₁(p, T1)を用い、時刻 t が T 1 乃至

T2の範囲では、更新量としてA1(p, T2)を用 い、以下、同様にして、用いる更新量を、時刻 t によっ て選択し、変化させるようにしても良い。

【0060】更新量 I; (p, t) も、時刻 t の関数に

【0061】なお、本実施の形態では、時刻tは、例え ば、100msを1として(単位時間として)変化する ようになされている。

【0062】内部状態計算部11は、魂部1に記憶され た内部状態を更新すると、ステップS2に進み、その更 新後の内部状態が、魂部1に記憶されたN個のアクショ ン発火条件のうちのいずれかを満たすかどうかを判定す る。ここで、この判定は、例えば、次のようにして行わ **カ**る。

【0063】即ち、魂部1に記憶されたアクション発火 条件においては、図7に示したように、そのアクション が行われるための内部状態の最小値および最大値が規定 されている。いま、あるアクションkについてのアクシ ョン発火条件において規定されている、内部状態のパラ メータE,についての最小値または最大値を、それぞれ cmin, (k) またはcmax, (k) と表すと、アク ションkについてのアクション発火条件は、例えば、次 式で表される関数 f (E₁, E₂, ・・・, E₁) が 1 の ときに満たされる。

[0064]

 $f(E_1, E_2, \cdots, E_r) = (c m i n_1 (k) < E_1 < c m a x_1 (k))$

& $(cmin_1(k) < E_1 < cmax_1(k))$

& (cmin, (k) < E, < cmax, (k))

. . . (2)

但し、上式において、&は、論理積を表す。また、上式 における右辺の (cmin, (k) <E, <cmax 。(k))は、括弧内の条件が満たされるとき、または 満たされないとき、それぞれ1または0になるものとす 40 る。

【0065】ステップS2において、式(2)を1にす るアクション発火条件があると判定された場合、ステッ プS3に進み、内部状態計算部11は、そのアクション 発火条件に対応するアクションを、電子ペットに行わせ るように、行動変換部15に命令を出力し、ステップS 1に戻る。なお、式(2)を1にするアクション発火条 件が複数存在する場合は、例えば、そのうちの1つがラ ンダムに選択され、その選択されたアクション発火条件

動変換部15に出力される。但し、複数のアクション発 火条件に対応するアクションのうちの2以上を、同時に 行うことが可能な場合は、その2以上のアクションを行 うように指示する命令を、行動変換部15に出力するこ とも可能である。具体的には、例えば、「歩く」と「吠 える」というアクションは、そのいずれか一方だけでな く、両方を同時に行わせることもできる。

【0066】一方、ステップS2において、式 (2)を 1にするアクション発火条件がないと判定された場合、 ステップS3をスキップして、ステップS1に戻り、ス テップS1からの処理が繰り返される。即ち、この場 合、電子ペットは、何のアクションも行わない(待つと いうアクションを行わせる命令が、内部状態計算部11

に対応するアクションを行うように指示する命令が、行 50 から行動変換部15に出力される)。

19

【0067】ここで、以上のように、内部状態が、フィ内部状態が、アクデータに基づいて更新され、その更新でれ、その更新され、アクションが決定される。このため、更タの内部状態が同一であっても、フィードバックデータとは、ロードバックデータとは、ロードバックデータとは、ロードバックデータとは、ロードバックデータとは行動傾向を規定するを条件のでは、ロードがリークションを外外には、ロードバックデータとは行動傾向を規定するを条件のでは、ロードがリークションを外外には、ロードがリーの性格または行動傾向規定するを集めの情報(性格/行動傾向規定情報)といきを表に、アクション発火条件のである。「0068】なお、アクション発火条件も、上述に、時報には、ロー、は、および I、(p、は、ともに変化させることが可能である。

【0069】次に、図9は、図2の仮想ペット装置22 のハードウェア構成例を示している。

[0070] CPU (Central Processing Unit) 31 は、ROM (Read Only Memory) 32に記憶されたプロ グラムにしたがって各種の処理を行うようになされてい る。タイマ回路31Aは、図示せぬクロックをカウント し、そのカウント値に基づき、CPU31に対して、所 定の単位時間(例えば、上述したように、100ms) ごとにタイマ割り込みを発生するようになされている。 【0071】ROM32は、CPU31が実行すべきプ ログラムや、そのプログラムを実行するにあたって必要 なデータを記憶している。 R A M (Random Access Memo ry) 33は、CPU31の動作上必要なデータを記憶す るようになされている。 I / F 3 4 は、 C P U 3 1 と、 A/D変換器36、操作部37、ICカード用コネクタ 38, D/A変換器39、液晶コントローラ41それぞ れとの間のインターフェイスとして機能するようになさ れている。

2、 R A M 3 3、 I / F 3 4 は、相互にバス(アドレスバスやデータバスなど)を介して接続されている。 【 0 0 7 3】 マイク(マイクロフォン) 3 5 は、そこに入力される音声(例えば、笛の音その他の音を含む)を、アナログの電気信号としての音声信号に変換し、A

【0072】なお、以上のうちのCPU31, ROM3

大力される音声(例えば、歯の音をの他の音を含む) を、アナログの電気信号としての音声信号に変換し、 A / D 変換器 3 6 に供給するようになされている。 A / D 変換器 3 6 は、マイク 3 5 からのアナログの音声信号を A / D 変換し、ディジタルの音声信号として、 I / F 3 4 を介して、 C P U 3 1 に出力するようになされている。ここで、 C P U 3 1 は、このよにして音声信号を 信した場合、 例えば、 その特徴量を抽出し、 さらに、 例えば、 H M M (Hidden Markov Model) 法に基づいて音声認識を 行うようになされている。ここで、 C P U 3 1 が音 路 識を行うために実行するプログラム、 および音声認識の 対象とする単語のモデルは、 例えば、 R O M 3 2 に配値 されている。また、ここでは、音声認識の対象とする単 語のモデルとして、特に、飼い主がペットに対して話しかけるのに用いる単語(例えば、「こら」、「良い子だね」、「おはよう」、「おやすみ」、「お手」、「お座り」、「なにやっているの」など)のモデルが記憶されている。

【0074】なお、音響分析の手法は線形予測分析に、 音声認識の手法はHMM法に、それぞれ限定されるもの ではない。

【0075】操作部37は、各種のボタンやキーから構 成され、ユーザが操作すると、その操作に対応した信号が、I/F34からCPU31に供給され、これにより、CPU31において、ユーザが操作したボタンやキーなどを認識することができるようになされている。 なお、操作部37は、例えば、電子ペットを叱るときに操作される「叱る」ボタンや、答めるときに操作される「答める」ボタン、「おはよう」や「おやすみ」などの声をかけることに相当する「挨拶」ボタン、芸としての、例えば、お手やお座りを命令するときに操作される「お手」ボタンや「お座り」ボタンなどの、電子ペット20に対して各種の入力を与えるためのボタンを有している。

【0076】ICカード用コネクタ38は、仮想ベット装置22のスロット22A(図2)の中に設けられており、ICカード21がスロット22Aに装着されたときに、ICカード21とCPU31とを、I/F34を介して、電気的に接続するようになされている。ここで、CPU31は、I/F34およびICカード用コネクタ38を介して、ICカード21に対して、データを読み書きするようになされている。また、CPU31は、ICカード21の装着の有無を検出することができるようになされている。

【0077】 D/A変換器39は、CPU31からI/F34を介して供給されるディジタルの音声信号をD/A変換し、アナログの音声信号として、スピーカ40に供給するようになされている。スピーカ40は、アンプを内蔵し、D/A変換器39からの音声を増幅して、出力するようになされている。ここで、CPU31は、必要な場合には、電子ペットの鳴き声その他の必要な音声を、例えば音声合成により生成し、I/F34を介して、D/A変換器39に出力するようになされている。なお、音声合成を行うためのプログラム、および音声合成に必要なデータは、例えば、ROM32に記憶されている。

【0078】液晶コントローラ41は、I/F34を介して、CPU31に制御され、液晶表示部42に、各種の画像(例えば、電子ペットの画像など)や文字などを表示させるようになされている。液晶表示部42は、液晶コントローラ41の制御にしたがって、画像や文字などを表示するようになされている。なお、ROM32 50 は、液晶コントローラ41を制御することにより液晶表 ムを テす

示部42に画像や文字を表示させるためのプログラムを 記憶しており、CPU31は、このプログラムを実行す ることで、被晶表示部42に、画像や文字などを表示さ せるようになされている。

【0079】次に、図10は、図2のベット型ロボット23のハードウェア構成例を示している。なお、図中、図9の仮想ベット装置22における場合と対応する部分については、同一の符号を付してある。即ち、ベット型ロボット23は、液晶コントローラ41および液晶表示部42に替えて、モータ51および駆動機構52が設けられている他は、仮想ベット装置22と、基本的に同様に構成されている。

【0080】モータ51は、I/F34を介して、CPU31に制御され、駆動機構52を駆動するようになされている。駆動機構52は、例えば、ペット型ロポット23の可動部分としての頭や手足、胴体などを構成し、モータ51によって駆動されるようになされている。

【0081】なお、図3のI/F10は、図9および図10のI/F34およびICカード用コネクタ38に対応し、図3の内部状態計算部11および行動変換部15は、図9および図10のCPU31およびROM32に対応する。また、図3の外的入力部12は、図9および図10のマイク35およびA/D変換器36や操作部37に対応する。また、図3の時間入力部13は、図9および図10のタイマ回路31Aに対応し、図3のモデル記憶部14は、図9および図10のROM32に対応する。さらに、図3の出力部16は、図9および図10のD/A変換器39およびスピーカ40や、図9の液晶コントローラ41および液晶表示部42、または図10のモータ51および駆動機構52に対応する。

【0082】次に、図11のフローチャートを参照して、肉体部としての、図9に示した仮想ペット装置22 および図10に示したペット型ロボット23を構成する CPU31の処理について説明する。

【0083】 I Cカード用コネクタ38に、 I Cカード21が装着され、電源がオンにされると、 C P U 3 1では、電子ペットのアクションを制御するためのアクション制御処理が行われる。

【0084】即ち、CPU31は、各ブロックを初期状態にリセットする。これにより、例えば、RAM33の記憶値はクリアされ、タイマ回路31Aのカウント値はリセットされる。

【0085】その後、タイマ国路31Aによるクロックのカウントが開始され、ステップS11において、所定の単位時間(上述したように、ここでは、例えば、100ms)が経過したかどうかが判定される。ここで、タイマ回路31Aは、クロックをカウントし、そのカウント値が所定の単位時間に相当する値となると、CPU31にタイマ割り込みを発生し、さらに、カウント値をリセットしてクロックをカウントすることを繰り返すよう

になされており、ステップS11では、タイマ回路31 Aによるタイマ割り込みに基づいて、所定の単位時間が 経過したかどうかが判定される。

【0086】ステップS11において、所定の単位時間が経過していないと判定された場合、ステップS11に 戻る。また、ステップS11において、所定の単位時間が経過したと判定された場合、ステップS12に進み、 CPU31は、外的入力および内的入力を認識する。

【0087】即ち、マイク35に、音声が入力された場合、その音声信号は、A/D変換器36においてA/D変換され、I/F34を介し、外的入力として、CPU31は、その音声信号を受信し、ステップS12において、上述したようにして、その音声認識を行う。また、操作部37を構成するいずれかのボタンが操作された場合、その操作に対応する操作信号が、外的入力として、I/F34からCPU31に供給される。CPU31は、その操作信号を受信し、ステップS12において、どのボタンが操作されたのかを認識する。

【0088】ここで、音声認識の対象となっている単語 と、操作部37を構成する各ポタンとは、その概念によ って対応付けられている。即ち、例えば、上述したよう に、「こら」、「良い子だね」、「おはよう」、「おや すみ」、「お手」、「お座り」、「なにやっているの」 が音声認識の対象とされているとともに、操作部37 が、「叱る」ポタン、「誉める」ポタン、「抉拶」ポタ ン、「お手」ボタン、「お座り」ボタンを有している場 合においては、等価の概念の入力を与えるための単語 「こら」と「叱る」ボタン、単語「良い子だね」と「答 30 める」ボタン、単語「おはよう」および「おやすみ」と 「挨拶」ポタン、単語「お手」と「お手」ポタン、単語 「お座り」と「お座り」ポタンは、それぞれ対応付けら れており、この対応付けられている単語とボタンどうし については、その単語が入力されても、また、ポタンが 操作されても、同一の入力がなされたと認識されるよう になされている。即ち、CPU31では、例えば、音声 「こら」が入力されても、また、「叱る」ポタンが操作 されても、いずれの場合も、電子ペットを叱るための入 力が与えられたと認識される。

【0089】ステップS12では、以上のようにして外的入力が認識される他、内的入力も認識される。即ち、後述するステップS19では、電子ペットが、あるアクションを起こしたときに、そのアクションを識別するための識別情報が、RAM33の所定のアドレスに書き込まれるようになされており、CPU31は、そのアドレスにアクセスすることで、識別情報を受信し、これに基づいて、電子ペットが起こしたアクションを、内的入力として認識する。

1にタイマ割り込みを発生し、さらに、カウント値をリ 【0090】なお、図11の実施の形態では、説明の都 セットしてクロックをカウントすることを繰り返すよう 50 合上、CPU31において、各処理ステップがシーケン

20

40

24

シャルに行われるように、フローチャートを図示してあ るが、実際には、CPU31では、例えば、各種の処理 が、その処理に割り当てられたスレッドにおいて並列に 行われるようになされている。これにより、音声の入力 や、操作部37の操作は、常時行うことができるように なされており、また、ステップS12における外的入力 および内的入力の認識処理は、その処理に割り当てられ たスレッドで行われるようになされている。

【0091】外的入力および内的入力の認識後は、ステ ップS13に進み、内部状態(図5)が、外的入力、内 的入力、および時間入力に対応して更新される。

【0092】即ち、CPU31は、I/F34およびI Cカード用コネクタ38を介して、ICカード21に記 憶されている遺伝子データを参照し、ステップS12で 認識された外的入力または内的入力それぞれに対応す る、内部状態の各項目についてのフィードバックデータ を認識する。さらに、CPU31は、時間入力に対応す る、内部状態の各項目についてのフィードバックデータ を認識する。そして、CPU31は、例えば、外的入 カ、内的入力、または時間的入力それぞれに対応する、 内部状態の各項目についてのフィードバックデータ(図 6) を、対応する内部状態の項目のパラメータに加算 し、その加算値を、内部状態の各項目のパラメータの更 新値として、 I Cカード21に供給して記憶させる。 【0093】なお、前回のタイマ割り込みから今回のタ イマ割り込みまでの間に、外的入力がなかった場合に は、外的入力に対応するフィードバックデータは0とさ れる。また、前回のタイマ割り込みから今回のタイマ割 り込みまでの間に、電子ペットが何のアクションも起こ さなかった場合には、後述するステップS15におい て、内的入力はなしとされ、内的入力に対応するフィー ドバックデータも0とされる。但し、外的入力および内 的入力のいずれもなかった場合でも、内部状態は、時間 入力に対応するフィードバックデータによって更新され る。即ち、内部状態は、タイマ割り込みが発生するごと に、少なくとも、時間の経過に対応して更新される。

【0094】内部状態の更新後は、ステップS14に進 み、CPU31は、再び、遺伝子データを参照し、更新 後の内部状態が、いずれかのアクション発火条件(図 7) を満たすかどうかを判定する。ステップS14にお いて、更新後の内部状態が、いずれのアクション発火条 件も満たさないと判定された場合、ステップS15に進 み、次回のタイマ割り込み時における内的入力はなしと され、ステップS11に戻る。

【0095】また、ステップS14において、更新後の 内部状態が、いずれかのアクション発火条件を満たすと 判定された場合、ステップS16に進み、更新後の内部 状態が、複数のアクション発火条件を満たすかどうかが 判定される。ステップS16において、更新後の内部状 態が、複数のアクション発火条件を満たすと判定された

場合、ステップS17に進み、その複数のアクション発 火条件に対応するアクションのうちのいずれか1つがラ ンダムに選択され、ステップS18に進む。ステップS 18では、その選択されたアクションを起こすように、 必要なブロックが制御され、ステップS19に進む。 【0096】即ち、ステップS17で選択されたアクシ ョンが、例えば、「吠える」であった場合、CPU31 は、電子ペットの鳴き声に対応する音声信号を生成し、 I/F34およびD/A変換器39を介して、スピーカ 40から出力させる。さらに、CPU31は、吠えた状 態の電子ペットのグラフィックスデータを生成し、液晶 コントローラ41に供給することにより、液晶表示部4 2 に、吠えた状態の電子ペットを表示させる。 あるい は、CPU31は、モータ51を制御することにより、 口に対応する駆動機構52を、電子ペットが吠えている ように見えるように動かせる。

【0097】一方、ステップS16において、更新後の 内部状態が、複数のアクション発火条件を満たさないと 判定された場合、即ち、内部状態が、ある1のアクショ ン発火条件を満たす場合、ステップS17をスキップし て、ステップS18に進み、内部状態が満たすアクショ ン発火条件に対応するアクションを起こすように、必要 なプロックが制御され、ステップS19に進む。

【0098】ステップS19では、ステップS18にお いて起こした電子ペットのアクションの識別情報が、R AM33の所定のアドレスに書き込まれ、ステップS1 1に戻る。

【0099】なお、図11の実施の形態では、内部状態 が、複数のアクション発火条件を満たす場合、そのうち の1に対応するアクションをランダムに選択し、そのア クションを、電子ペットに行わせるようにしたが、その 他、例えば、アクションに優先順位をつけておき、最も 優先順位の高いアクションを行わせるようにすることな ども可能である。さらに、内部状態が、複数のアクショ ン発火条件を満たす場合においては、上述したように、 その複数のアクション発火条件に対応するアクションの 2以上を同時に行うことができるのであれば、その同時 に行うことのできるアクションのすべてを同時に行わせ るようにしても良い。

【0100】また、図11の実施の形態では、ステップ S13において、更新後の内部状態を、ICカード21 に書き込むようにしたが、その他、例えば、ICカード 用コネクタ38に、ICカード21が装着された後は、 そこに記憶されている遺伝子データを、RAM33にコ ピーし、RAM33に記憶された遺伝子データ(内部状 態)を書き換えるようにしても良い。但し、この場合、 ICカード21が、ICカード用コネクタ38からはず される前に、RAM33上の遺伝子データを、ICカー ド21に書き込む (ICカード21に配憶されている遺 50 伝子データを更新する) 必要がある。

【0101】次に、上述したように、フィードバックデ ータおよびアクション発火条件は、電子ペットの性格ま たは行動傾向を規定するための性格/行動傾向規定情報 であり、従って、これらを変更した場合、電子ペットの 性格または行動傾向も変化する。即ち、例えば、吠える というアクションのアクション発火条件を綴くすれば、 その電子ペットは、頻繁に吠えるようになる。一方、吠 えるというアクションのアクション発火条件を厳しくす れば、その電子ペットは、あまり吠えなくなる。

において、飼い主(ユーザ)が咎めたときには、吠える というアクションのアクション発火条件を綴くするよう に変更し、逆に、飼い主が怒ったときには、吠えるとい うアクションのアクション発火条件を厳しくするように 変更すれば、飼い主のとった態度によって、電子ペット の性格または行動傾向を変えることができる。即ち、電 子ペットの学習を行うことができる。

【0103】図12のフローチャートは、電子ペットを 学習させるためにCPU31が行う学習処理を示してい

【0104】この学習処理は、電子ペットがアクション を起こした場合に行われる。

【0105】即ち、電子ペットがアクションを起こす と、具体的には、図11のステップS18において電子 ペットが起こしたアクションの識別情報が、ステップS 19において、RAM33の所定のアドレスに書き込ま れると、学習処理が開始され、ステップS21におい て、そのアクションに対して、ユーザから、何らかの入 カ(外的入力)があったか否かが判定される。ステップ S21において、何の入力もなかったと判定された場 合、学習処理を終了する。

【0106】また、ステップS21において、電子ペッ トが起こしたアクションに対して、ユーザから、何らか の入力があったと判定された場合、ステップS22に進 み、その入力が、アクションの抑制を指令するものであ るかどうかが判定される。ステップS22において、ユ ーザからの入力が、アクションの抑制を指令するもので あると判定された場合、即ち、ユーザからの入力が、例 えば、「こら」という音声であったり、「叱る」ボタン に対応する操作信号であった場合、ステップS23に進 40 み、電子ペットが起こしたアクション(RAM33上に 記憶されている識別情報によって特定されるアクショ ン)に対応するアクション発火条件が、そのアクション の起こる可能性が低くなるように変更され(アクション 発火条件が厳しくされ)、学習処理を終了する。

【0107】一方、ステップS22において、ユーザか らの入力が、アクションの抑制を指令するものではない と判定された場合、ステップS24に進み、その入力 が、アクションを奨励するものであったかどうかが判定 される。ステップS24において、ユーザからの入力

が、アクションを奨励するものでないと判定された場 合、即ち、ユーザからの入力が、アクションを抑制する ものでも、奨励するものでもない場合、学習処理を終了

【0108】また、ステップS24において、ユーザか らの入力が、アクションを奨励するものであると判定さ れた場合、即ち、ユーザからの入力が、例えば、「良い 子だね」という音声であったり、「莟める」ポタンに対 応する操作信号であった場合、ステップS25に進み、 【0102】従って、例えば、電子ペットが吠えた場合 10 電子ペットが起こしたアクションに対応するアクション 発火条件が、そのアクションの起こる可能性が高くなる ように変更され(アクション発火条件が綴くされ)、学 習処理を終了する。

> 【0109】以上のような学習処理によれば、例えば、 **電子ペットのしつけを行うことができる。**

【0110】即ち、例えば、電子ペットが吠えた場合 に、その吠えるというアクションを抑制する、叱るとい う外的入力を、ユーザが与えることによって、学習処理 では、図13のフローチャートに示すように、ユーザの 入力があったと判定される(ステップS31)。さら に、ユーザからの、叱るという外的入力が、アクション を抑制するものであると判定される(ステップS3 2)。そして、吠えるというアクションのアクション発 火条件が、吠えるというアクションの起こる可能性が低 くなるように変更される(ステップS33)。

【0111】その結果、電子ペットは、あまり吠えなく なる。

【0112】なお、ユーザからの外的入力が、アクショ ンを抑制するものであるか、または奨励するものである 30 かの判定は、例えば、図6に示した外的入力の各項目 に、その入力がどちらを表すものであるかを示す1ビッ トのフラグを付しておくようにし、そのフラグに基づい て行うようにすれば良い。また、アクション発火条件 を、そのアクションが起こる可能性が低く、または高く なるように変更するというのは、基本的には、図6に示 した下限値と上限値との差を小さく、または大きくする ことを意味するが、厳密には、内部状態の項目や、アク ションによって、アクション発火条件の変更方法は異な

【0113】次に、以上の学習処理によれば、例えば、 電子ペットに芸を覚えさせることもできる。

【0114】即ち、電子ペットの内部状態としては、図 5 で説明したように、その項目の1つとして「芸」があ るが、この項目「芸」は、図14に示すように、より具 体的な芸の項目に細分化されている。ここで、図14の 実施の形態では、項目「芸」は、具体的な芸である「お 手」、「お座り」、・・・に細分化されている。

【0115】これに対応して、フィードバックデータ も、図15に示すように、外的入力、時間入力、内的入 50 力のそれぞれごとに、具体的な芸(内部状態)「お

2.0

40

28

手」、「お座り」、・・・に対するものが規定されてい る。さらに、外的入力には、ユーザが、芸「お手」や 「お座り」を要求する入力に関する項目が設けられてお り、内的入力にも、芸(アクション)「お手」や「お座 り」についてのものが設けられている。

【0116】また、アクション発火条件についても、図 16に示すように、具体的な芸(アクション)「お手」 や「お座り」をするべき場合のものが設けられている。 【0117】図15の実施の形態によれば、例えば、内 部状態「お手」のパラメータは、外的入力「お手」があ ると、即ち、ユーザが音声「お手」を発すると、100 0単位で増加する。そして、図16の実施の形態に示す ように、内部状態「お手」が90000以上10000 0以下の値となり、さらに、他の内部状態も所定の値と なり、すべての内部状態が、アクション「お手」のアク ション発火条件を満たすようになると、電子ペットは、 アクション「お手」をするようになる。

【0118】即ち、内部状態が「お手」だけだと仮定し た場合、ユーザが、音声「お手」を繰り返し発生する と、内部状態「お手」のパラメータが1000ずつ増加 していき、それが、90000以上となると、電子ペッ トは、「お手」をするようになる。なお、「お手」をし 統けると、図15に示したように、内的入力「お手」に 対応するフィードバックデータに基づいて、内部状態 「お手」のパラメータは、100単位で減少していくの で、その値が、アクション「お手」のアクション発火条 件を満たさなくなると、即ち、90000未満となる と、電子ペットは、「お手」をするのをやめることにな

【0119】なお、芸に関する項目は、内部状態、フィ ードバックデータ、およびアクション発火条件にあらか じめ設けておくのではなく、学習によって、後から追加 するようにすることも可能である。

【0120】即ち、例えば、仮想電子ペット装置22に おいて、「お手」という外的入力と、「お手」に関する 内部状態、フィードバックデータ、およびアクション発 火条件を対応付けて、所定のテーブルに登録しておくと ともに、各種のアクションを行った状態の電子ペットの グラフィックスデータを登録しておく。さらに、例え ば、仮想電子ペット装置22では、外的入力「お手」が 入力された場合には、各種のアクションを行った状態の 電子ペットのグラフィックスデータをランダムに選択し て表示するようにし、ユーザは、アクション「お手」を している状態の電子ペットが表示されたときには、誉め るための外的入力を与え、それ以外の状態の電子ペット が表示されたときには、叱るための外的入力を与えるよ うにする。そして、仮想電子ペット装置22において、 このようなユーザの外的入力に基づいて学習を行い、外 的入力「お手」と、電子ペットが「お手」をしている状 態のグラフィックスデータとを対応付け、その後に、芸 50 の遺伝子データが、ICカード121Cに転送されて記

「お手」に関する項目を、内部状態、フィードバックデ ータ、およびアクション発火条件に追加するようにすれ ば良い。

【0121】また、図12の学習処理では、電子ペット がアクションを起こし、ユーザから外的入力があった場 合に、その直前のアクションを奨励または抑制するよう にしたが、その他、例えば、電子ペットが起こしたアク ションの風歴を記憶しておき、過去に行われた複数のア クションの1以上を選択して、そのアクションを奨励ま 10 たは抑制するようにすることも可能である。

【0122】次に、魂部1に記憶されている遺伝子デー 夕は、実際の生物の遺伝子に相当し、従って、親として の電子ペットどうしを交配させ、その親の特徴を備える 子としての電子ペットを生ませる(作成する)ことがで きる。

【0123】交配は、例えば、図17(A)に示すよう に、親(例えば、父親)Aとしての電子ペットの遺伝子 データの一部と、親(例えば、母親)Bとしての電子ペ ットの遺伝子データの一部とを取り出し、それらを、子 Cとしての電子ペットの遺伝子データとすることにより 行うことができる。また、例えば、図17(B)に示す ように、親Aとしての電子ペットの遺伝子データと、親 Bとしての電子ペットの遺伝子データとの重み付け加算 をし、その加算結果を、子Cとしての電子ペットの遺伝 子データとすることもできる。さらに、例えば、図17 (C) に示すように、子Cとしての電子ペットの遺伝子 データの一部を、親AおよびBとしての電子ペットの遺 伝子データで構成し、残りを、親AやBとは無関係のデ ータで構成することもできる。この場合、子Cとしての 30 電子ペットは、いわゆる突然変異となる。

【0124】交配は、例えば、図18に示すようにして 行うことができる。

【0125】即ち、仮想ペット装置122は、図2の仮 想ペット装置22と同様に構成される。但し、仮想ペッ ト装置122には、スロット22Aと同様のスロットが 2 つ設けられており、そこに、親AまたはBそれぞれの 魂たるICカード121Aまたは121Bを装着する。 この場合、仮想ペット装置122では、ICカード12 1 A または 1 2 1 B に 記憶された遺伝子データから、 図 17で説明したようにして、子Cの遺伝子データが作成 される。この遺伝子データは、例えば、親AまたはBが それぞれ父親または母親とすると、母親である親BのI Cカード121Bや、仮想ペット装置122が内蔵する メモリに記憶される。

【0126】その後、親AのICカード121Aを、仮 想ペット装置122のスロットから取り出し、そのスロ ットに、子Cの魂となるICカード121Cを装着す る。これにより、親BのICカード121B、または仮 想ペット装置122が内蔵するメモリに配憶された子C

憶される。

【0127】また、交配は、例えば、図19に示すよう にして行うこともできる。

【0128】即ち、仮想ペット装置122の他に、それ と同様に構成される仮想ペット装置222(但し、仮想 ペット装置222のスロットは1つでも良い)を用意す る。そして、例えば、仮想ペット装置122に、親Aの ICカード121Aと、子Cの魂となるICカード12 1 Cを装着し、仮想ペット装置222に、親BのICカ ード121Bを装着する。そして、仮想ペット装置12 2 および 2 2 2 を、所定の通信回線で接続し、親Bの I Cカード121Bに記憶された遺伝子データを、仮想ペ ット装置222から、通信回線122を介して、仮想ペ ット装置122に転送する。仮想ペット装置122で は、仮想ペット装置122から転送されてきた親Bの遺 伝子データと、ICカード121Aに記憶された親Aの 遺伝子データとから、図17で説明したようにして、子 Cの遺伝子データが作成され、子CのICカード121 Cに記憶される。

たな電子ペットを誕生させることができる。

【0130】なお、図19における通信回線は、有線で あっても、無線であっても良い。また、通信回線は、例 えば、数メートルのケーブルであっても良いし、公衆回 線や、インターネット、CATV (Cable Television) 網などであっても良い。

【0131】また、上述の場合においては、肉体部2と して、仮想ペット装置を用いて、交配を行うようにした が、交配においては、肉体部2として、ペット型ロポッ トを用いることも可能である。

【0132】以上のように、内部状態に、電子ペットの 感情に対応するパラメータを含ませるようにしたので、 怒り易い電子ペットや、泣き虫の電子ペットなどを実現 することができる。そして、電子ペットに、そのような 感情を加味したアクションを起こさせ、さらに、その自 分自身が行ったアクションによって感情を変化させるこ とが可能となる。

【0133】具体的には、例えば、電子ペットが、空腹 な状態で、それに伴って、怒りの感情が高ぶっている場 合に、電子ペットに、泣いたり、眠らせるアクションを 40 行わせ、そのアクションによって、怒りの感情の高ぶり を静めさせるようなことが可能となる。

【0134】その結果、リアリティのある電子ペットを 実現することが可能となる。

【0135】また、内部状態などを、仮想ペット装置2 2 やペット型ロポット 2 3 に対して着脱可能な I Cカー ド21に記憶させるようにしたので、ユーザの環境にあ った形で、電子ペットを楽しむことが可能となる。

【0136】なお、本実施の形態では、ICカード21 を、仮想ペット装置22や、ペット型ロポット23に装 50 応して更新されるものが配憶され、生命体オブジェクト

着し、電子ペットとして機能させるようにしたが、IC カード21は、その他、例えば、一般的なコンピュータ などに装着するようにすることもでき、それにより、コ ンピュータを電子ペットとして機能させることも可能で ある。

【0137】さらに、上述の場合においては、更新量A ı(p, t)や、Iı(p, t)、アクション発火条件 を、電子ペットの成長、即ち、時間の経過とともに変化 させることが可能としたが、その他の遺伝子データ、例 10 えば、音声継続時間や、ピッチ、アクセント、色、動作 スピードなども、電子ペットの成長とともに変化させる ようにすることが可能である。

【0138】また、本実施の形態では、本発明を、電子 ペットを対象として説明したが、本発明は、電子ペット 以外の生命体オブジェクト(例えば、植物のオブジェク トなど)も対象とすることが可能である。

【0139】さらに、本実施の形態においては、遺伝子 データを、ICカードに記憶させるようにしたが、遺伝 子データを記憶させる記憶媒体としては、その他、例え 【0129】以上のようにして、親の特徴を継承する新 20 ば、メモリカード、光カード、光磁気ディスク、磁気デ ィスクなどの、携帯に便利で、装置に着脱可能なものを 採用することができる。

> 【0140】また、本実施の形態では、アクション制御 処理(図11)および学習処理(図12)を、CPU3 1に行わせるようにしたが、これらの処理は、例えば、 ICカード21がプロセッサを内蔵している場合には、 そのプロセッサに行わせることも可能である。

【0141】さらに、本実施の形態では、遺伝子データ を記憶する魂部1を、肉体部2に対して着脱可能とした 30 が、遺伝子データは、肉体部2に、着脱不可能なメモリ を設け、そのメモリに記憶させても良い。

【0142】なお、仮想ペット装置22では、電子ペッ トは、モニタに表示される仮想的な存在であるから、そ の外観の変更は容易であるが、ペット型ロポット23 が、その外観の変更を自身で行うのは困難である。従っ て、ペット型ロボット23では、遺伝子データのうち、 外観に関するものは、基本的に無視される。但し、例え ば、ペット型ロボット23が、犬型のものである場合 に、遺伝子データの種族が、鳥になっているときなどに おいては、ペット型ロポット23に、パーツを、鳥型の ものに変更するように要求させる(例えば、合成音など により要求させる)ようにすることなどは、可能であ る。

[0143]

【発明の効果】 請求項1に記載の記憶媒体には、生命体 のオブジェクトである生命体オブジェクトの感情を含 む、その内部状態を表す内部状態パラメータであって、 その内部状態パラメータに基づいて、生命体オブジェク トがアクションを起こした場合に、そのアクションに対

の肉体としての肉体装置に着脱可能になされている。従って、種々の肉体装置に装着して、その肉体装置を、生命体オブジェクトとして機能させることが可能となる。

【0144】 節求項19に配載のロボットによれば、生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶する記憶媒体が着脱可能になされている。従って、その記憶媒体に対応してアクションを起こす生命体オブジ 10ェクトを、ロボットで実現することが可能となる。

【0145】 請求項36に記載の情報処理装置によれば、生命体オブジェクトの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、生命体オブジェクトがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶する記憶媒体が発脱可能になされている。 従って、その記憶媒体に対応してアクションを起こす生命体オブジェクトを、情報処理装置で実現することが可能となる。

【0146】 請求項53に記載の電子ペットシステムによれば、記憶媒体は、電子ペットの感情を含む、その内部状態を表す内部状態パラメータであって、その内部状態パラメータに基づいて、電子ペットがアクションを起こした場合に、そのアクションに対応して更新されるものを記憶し、電子ペットの肉体として機能する装置に対ったない。電子ペットの肉体として機能しておいる。情報処理装置は、電子ペットの肉体として機能する、電子ペットを表示するための処理を行う情報処理装置であって、記憶媒体が着脱可能なようになされている。であって、記憶媒体が着脱可能なようになって、記憶媒体が着脱可能なようになられている。であって、記憶媒体が着脱可能なようになられている。であって、記憶媒体が着脱可能なようになられている。であって、記憶媒体が増脱可能なようになられている。では、同一内容の電子ペットを、ロボットおよび情報処理装置のいずれによっても実現することが可能となる。

【図面の簡単な説明】

【図1】本発明を適用した電子ペットシステムの一実施の形態の概要を示すブロック図である。

【図2】 電子ペットシステムの、より具体的な構成例を 示す図である。

【図3】図1の肉体部2の構成例を示すプロック図であ 40

る.

【図4】 魂部1 (ICカード21) に記憶される遺伝子 データのフォーマットを示す図である。

【図 5 】図 4 の遺伝子データの中の内部状態の詳細を示す図である。

【図 6 】図 4 の遺伝子データの中のフィードバックデータの詳細を示す図である。

【図7】図4の遺伝子データの中のアクション発火条件 の詳細を示す図である。

10 【図8】図3の肉体部2の処理を説明するためのフロー チャートである。

【図9】図2の仮想ペット装置22のハードウェア構成例を示すブロック図である。

【図10】図2のペット型ロボット23のハードウェア 構成例を示すブロック図である。

【図11】図9および図10のCPU31が行うアクション制御処理を説明するためのフローチャートである。

【図12】図9および図10のCPU31が行う学習処理を説明するためのフローチャートである。

20 【図13】学習処理によって電子ペットのしつけを行う ことを説明するためのフローチャートである。

【図14】図4の遺伝子データの中の内部状態の詳細を 示す図である。

【図15】図4の遺伝子データの中のフィードバックデータの詳細を示す図である。

【図16】図4の遺伝子データの中のアクション発火条件の詳細を示す図である。

【図17】交配の方法を説明するための図である。

【図18】交配を行う方法を説明するための図である。

0 【図19】交配を行う方法を説明するための図である。 【符号の説明】

 1 魂部.
 2,2,2,...
 2,0
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 2,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...
 3,...

122,222 仮想ペット装置

【図14】

[図4]

遺伝子データのデータ構造

内部状態

【図6】

			-					入力					
					外的人力			時間入力	内的人力				
			叱る	強める	餌をやる		名前呼ぶ	時間	吠える	走る	Ţ	寝る	
7		起り		-200000	•••		•••	-1000	-10000		1		
		楽しみ]	650000	•••			-200	5	•••			
	日	覧き	1	10000				-600	-200000	•••			
		恐れ		-100000	•••			-200	-20000		•••	•••	
ļ		登しみ		-200000	•••		•••	-400	-2		1		
	7	飢丸]	0	•••	•••	•••	0	10		• • •	•••	
热		物便		0	•••		•••	0	3		1	•••	
内部状態		遊順		60000	•••		•••	2	1000	•••		•••	
7		置れ		0	•••	•••	•••	1	1000	•••	1	•••	
- 1		湿仓		0	•••			1	4	•••	•••	****	
	쑈	熙気][0	•••	•••	•••	0	2	•••	•••	•••	
ı		食べ物		0		•••	•••	0	0	•••	1	•••	
		飲み物		0	•••	•••	•••	0	0	•••	1	•••	
1	١	益				•••							
J		成長		a		•••		0	0			•••	

フィードバックデータ

【図7】

	ŀ	アクション発火条件										
	t	怒	,	楽し	a		机	ì	槌			
	ſ	Max	Min	Max	Min		Max	Min	Max	Min		
1	購み付く	100	90	100	0	•••	100	0	20	0		
ァ	吠える				•••	•••	•••			•••		
3	走る				•••	•••						
3	• • • • • • • • • • • • • • • • • • • •										\vdash	
	寝る	•••			•••				•••	•••		

アクション発火条件

【図15】

											入力								
					-		スカ		時間入力	内的入力									
					化る	苦める	•••	お手	お座り	•••	時間	吹える	•••	芸(お手)	芸(お座り)				
7	•	1	恕	9)	•••	-200000	•••	0	0		-1000	-10000	• • •	0	٥				
			楽しみ		•••	850000		0	0	• • •	-200	5	•••	0	0				
	層			\$	•••	10000	•••	0	0	• • •	-600	-200000	•••	0	0	•••			
			æ	ħ.	** *	-100000	•••	0	0		-200	-20000	•••	0	0				
		<u> </u>	遊しみ		•••	-200000	•••	0	0	•••	-400	-2	• • •	0	0	•••			
		1	旗文			0	•••	0	0	•••	0	10	•••	0	0				
			掛	便	•••	0	•••	a	0	•••	0	3	•••	0	0				
内		l	從順		•••	60000	•••	0	0	•••	-2	1000		O	0				
内部状態		l	æれ			0	•••	0	0	• • •		1000	• • • •	C	0	•••			
				お手		-500	•••	1000	0	•••	0	-100	•••	-100	o	•••			
	林鄉		#				お座り	•••	0	•••	0	1000		0	0	••••	0	100	
				:	:	:	:			:	:		:	:	•	•			
			ĺ																
4			皮	A		0	•••	0	0	•••	0	0	• • •	٥	٥				

フィードバックデータ

【図16】

			<u> </u>				内部状态		·				
		18)	楽し	. D		至(老	(手)	芸(お)	塩リ)	成長		
		Mex	Mtn	Mex	Min	1	Mex	Min	Max	Min	Max	Min	
↟	噛み付く	100000	90000	100000	0	•••	100000	0	100000	. 0	100000	(
ı	肤える												
	走る	***************************************											
·		111001000100100100100100											
要る お手する 100000 0 100000 50000 ··· 100000 90000 100000 0 10													
!	お手する	100000	٥	100000	50000	•••	100000	90000	100000	٥	100000		
1	出版りする	100000	0	100000	50000		100000	0	100000	90000	100000		
	:												

アクション発火条件

フロントページの続き

(72)発明者 藤田 雅博

東京都品川区北品川6丁目7番35号 ソ

二一株式会社内

(72)発明者 北野 宏明

東京都品川区北品川6丁目7番35号 ソ

二一株式会社内