15.094J: Robust Modeling, Optimization, Computation

Lecture 20: Robust Queueing Theory - Queueing Networks Analysis

Background

- Under assumption of Poisson arrivals and Exponential service times, performance analysis is tractable.
 - Jackson networks [1957]
 - Kelly networks [1975]
- Departing from exponentiality, steady-state performance analysis problems become difficult or intractable.
 - No tractable theory for networks of G/G/m queues
 Lack of Burke's theorem
 Approximations exist: QNA (Whitt [1983])

Queueing Network Analysis

- Need to understand
 - Queueing Node Operator (Output of a Queue)
 - Superposition Operator
 - Thinning Operator

- Need to understand
 - Queueing Node Operator (Output of a Queue)
 - Superposition Operator
 - Thinning Operator

Robust Burke Theorem

Main Result

"When the Arrival Process is a polytope and the Service Process is a polytope, the Departure Process is also a polytope identical to the arrival process polytope."

Implications

- Generalization of Burke's theorem beyond Markov arrival and service processes
- Exact analysis of a network of queues can be carried away by regarding the network as a collection of single queues

Robust Burke Theorem

Theorem

If $\{T_i\}_{i\geq 1} \in \mathcal{U}^a$, $\{X_i\}_{i\geq 1} \in \mathcal{U}^s_m$, $\alpha_a = \alpha_s = \alpha$ and $\rho = \lambda/m\mu < 1$, then the interdeparture times $\{D_i\}_{i\geq 1}$ belong to the uncertainty set

$$\mathcal{U}^d = \left\{ (D_1, D_2, \dots, D_n) \left| \frac{\left| \sum_{i=k+1}^n D_i - \frac{n-k}{\lambda} \right|}{(n-k)^{1/\alpha}} \le \Gamma_a + \mathcal{O}\left(\frac{1}{(n-k)^{1/\alpha}}\right), \ \forall k \le n-1 \right\}.$$

Proof (single-server case)

• The *n*th interdeparture time is expressed as

$$D_n = T_n + W_n - W_{n-1} + X_n - X_{n-1} = T_n + S_n - S_{n-1}.$$

This implies

$$\sum_{i=k+1}^{n} D_i = \sum_{i=k+1}^{n} T_i + S_n - S_k.$$
 (1)

• Since $S_{\ell} = W_{\ell} + X_{\ell}$, and by the Lindley recursion

$$W_{\ell} = \max_{1 \leq j \leq \ell-1} \left(\sum_{i=j}^{\ell-1} X_i - \sum_{i=j+1}^{\ell} T_i \right)$$

the sojourn time can be expressed as

$$S_{\ell} = \max_{1 \le j \le \ell-1} \left(\sum_{i=j}^{\ell} X_i - \sum_{i=j+1}^{\ell} T_i \right). \tag{2}$$

The sum of interdeparture times can be written as

$$\sum_{i=k+1}^{n} T_i - S_k \le \sum_{i=k+1}^{n} D_i \le \sum_{i=k+1}^{n} T_i + S_n.$$
 (3)

• We seek to minimize the left-hand-side and maximize the right-hand side of Eq. (3) over sets \mathcal{U}^s and \mathcal{U}^a . Given our assumption on the interarrival times uncertainty set, we can bound

$$\frac{n-k}{\lambda} - \Gamma_a(n-k)^{1/\alpha} \leq \sum_{i=k+1}^n T_i \leq \frac{n-k}{\lambda} + \Gamma_a(n-k)^{1/\alpha}$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

• Bounding the sum of interdepartures, and dividing by $(n-k)^{1/\alpha}$, we obtain

$$-\Gamma_{a} - \frac{\widehat{S}_{k}}{(n-k)^{1/\alpha}} \le \frac{\sum_{i=k+1}^{n} D_{i} - \frac{n-k}{\lambda}}{(n-k)^{1/\alpha}} \le \Gamma_{a} + \frac{\widehat{S}_{n}}{(n-k)^{1/\alpha}},\tag{4}$$

where

$$\widehat{S}_{\ell} = \max_{\mathbf{X} \in \mathcal{U}^{s}, \mathbf{T} \in \mathcal{U}^{s}} \left\{ \max_{1 \leq j \leq \ell-1} \left(\sum_{i=j}^{\ell} X_{i} - \sum_{i=j+1}^{\ell} T_{i} \right) \right\}.$$

• Bounding the sum of service and interarrival times given uncertainty sets \mathcal{U}^s and \mathcal{U}^a , widehat S_ℓ can therefore be expressed as

$$\widehat{S}_{\ell} = \max_{1 \leq j \leq \ell-1} \left\{ \Gamma_{\mathsf{a}} \left(\ell-j\right)^{1/\alpha} + \Gamma_{\mathsf{s}} (\ell-j+1)^{1/\alpha} - (\ell-j) \, \frac{1-\rho}{\lambda} \right\} + \frac{1}{\mu}. \tag{5}$$

The one-dimensional concave maximization problem in Eq. (5) is of the form

$$\max_{1 \le x \le \ell - 1} \beta \cdot x^{1/\alpha} + \delta (x + 1)^{1/\alpha} - \gamma \cdot x \leq \max_{1 \le x \le \ell - 1} (\beta + \delta)(x + 1)^{1/\alpha} - \gamma (x + 1) + \gamma,$$

$$\le \frac{\alpha - 1}{\alpha^{\alpha/(\alpha - 1)}} \frac{(\beta + \delta)^{\alpha/(\alpha - 1)}}{\gamma^{1/(\alpha - 1)}} + \gamma, \tag{6}$$

where $\beta = \Gamma_a$, $\delta = \Gamma_s$, $\gamma = (1 - \rho)/\lambda > 0$, given $\rho < 1$. Note that bound (6) is not tight unless $\ell > [(\beta + \delta)/\alpha \gamma]^{\alpha/(\alpha - 1)}$.

• For k < n where n is large, substituting β , δ and γ by their respective values vields

$$\begin{split} \frac{\widehat{S}_k}{(n-k)^{1/\alpha}} &\leq \frac{\widehat{S}_n}{(n-k)^{1/\alpha}} \leq \frac{1}{(n-k)^{1/\alpha}} \left(\frac{\alpha-1}{\alpha^{\alpha/(\alpha-1)}} \cdot \frac{\lambda^{1/(\alpha-1)} \cdot (\Gamma_{\mathfrak{d}} + \Gamma_{\mathfrak{s}})^{\alpha/(\alpha-1)}}{(1-\rho)^{1/(\alpha-1)}} + \frac{1}{\lambda} \right) \\ &= \mathcal{O}\left(\frac{1}{(n-k)^{1/\alpha}} \right). \end{split}$$

Applying the above bounds to Eq. (4) completes the proof.

イロト イ団ト イミト イミト 三国

Queueing Network Analysis

- Need to understand
 - Queueing Node Operator (Output of a Queue)
 - Superposition Operator
 - Thinning Operator

Superposition Operator

- Consider a queue *j* fed by *m* arrival processes.
- Let \mathcal{U}_j^a denote the uncertainty set representing the interarrival times $\{T_i^J\}_{i\geq 1}$ from arrival process $j=1,\ldots,J$.
- ullet Denote the uncertainty set of the combined arrival process by \mathcal{U}_{sup}^a .
- Given the primitives $(\lambda_j, \Gamma_{a,j}, \alpha)$, j = 1, ..., J, we define the superposition operator

$$(\lambda_{\mathit{sup}}, \mathsf{\Gamma}_{\mathit{a},\mathit{sup}}, lpha_{\mathit{sup}}) = \mathit{Combine}\Big\{\left(\lambda_{j}, \mathsf{\Gamma}_{\mathit{a},j}, lpha\right), j = 1, \ldots, J\Big\},$$

where $(\lambda_{sup}, \Gamma_{a,sup}, \alpha_{sup})$ characterize the merged arrival process $\{T_i\}_{i\geq 1}$.

←□ → ←□ → ← □ → ← □ → へへへ

Superposition Operator

Theorem (Superposition Operator)

The superposition of arrival processes characterized by the uncertainty sets

$$\mathcal{U}_{j}^{a} = \left\{ \left(T_{1}, \ldots, T_{n}\right) \middle| \begin{array}{c} \left| \sum_{i=k+1}^{n} T_{i} - \frac{n-k}{\lambda_{j}} \right| \\ \left(n-k\right)^{1/\alpha} \end{array} \right\} \leq \Gamma_{a,j}, \ \forall k \leq n-1 \end{array} \right\}, \ j = 1, \ldots, J,$$

results in a merged arrival process characterized by the uncertainty set

$$\mathcal{U}_{sup}^{a} = \left\{ (T_1, \ldots, T_n) \left| \begin{array}{l} \left| \sum_{i=k+1}^{n} T_i - \frac{n-k}{\lambda_{sup}} \right| \\ (n-k)^{1/\alpha} \end{array} \right| \leq \Gamma_{a,sup}, \forall k \leq n-1 \end{array} \right\},$$

where

$$\lambda_{sup} = \sum_{j=1}^{J} \lambda_{j}, \quad \alpha_{sup} = \alpha, \quad \Gamma_{a,sup} = \frac{\left(\sum_{j=1}^{J} \left(\lambda_{j} \Gamma_{a,j}\right)^{\alpha/(\alpha-1)}\right)^{(\alpha-1)/\alpha}}{\sum_{j=1}^{J} \lambda_{j}}.$$

Proof

Consider the case of superposing two arrival processes, and then generalize the result through induction.

- (a) Case where J=2
 - Let $\{T_i^j\}_{i\geq 1}\in\mathcal{U}_j^a$, j=1,2 with

$$\lambda_{j} \sum_{i=k_{j}+1}^{n_{j}} T_{i}^{j} \leq (n_{j}-k_{j}) + \lambda_{j} \Gamma_{a,j} (n_{j}-k_{j})^{1/\alpha}, \ j=1,2.$$

• Summing over index j = 1, 2, we obtain

$$\sum_{i=k_1+1}^{n_1} \lambda_1 T_i^{1} + \sum_{i=k_2+1}^{n_2} \lambda_2 T_i^{2} \le (n_1 - k_1 + n_2 - k_2) + \lambda_1 \Gamma_{a,1} (n_1 - k_1)^{1/\alpha} + \lambda_2 \Gamma_{a,2} (n_2 - k_2)^{1/\alpha}$$
 (7)

←ロ → ←回 → ← 三 → へ 三 → り へ ○

• Consider the time window T between the arrival of the k_1^{th} and the n_1^{th} jobs from arrival process 1, and assume that, within period T, the queue sees arrivals of jobs (k_2+1) up to (n_2-1) from arrival process 2

$$T = \sum_{i=k_1+1}^{n_1} T_i^{1} \le \sum_{i=k_2+1}^{n_2} T_i^{2}.$$
 (8)

- During time window T, the queue receives a total of $(n_1 k_1 + n_2 k_2)$ jobs, with $(n_1 k_1 + 1)$ arrivals detected from the first arrival process (including job k_1), and $(n_2 k_2 1)$ arrivals from second arrival process.
- Therefore, period T can also be written in terms of the combined interarrival times $\{T_i\}_{i>1}$ as

$$T = \sum_{i=k+1}^{n} T_i, \tag{9}$$

where $k = k_1 + k_2$ and $n = n_1 + n_2$.

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ かなべ

• Combining Eqs. (8) and (9) yields

$$(\lambda_1 + \lambda_2) \sum_{i=k+1}^n T_i \le \lambda_1 \sum_{i=k_1+1}^{n_1} T_i^1 + \lambda_2 \sum_{i=k_2+1}^{n_2} T_i^2$$

which by Eq. (7) can be written as

$$(\lambda_1 + \lambda_2) \sum_{i=k+1}^n T_i \leq (n-k) + \lambda_1 \Gamma_{a,1} (n_1 - k_1)^{1/\alpha} + \lambda_2 \Gamma_{a,2} (n_2 - k_2)^{1/\alpha}.$$

• Rearranging and dividing both sides by $(\lambda_1 + \lambda_2)$ and $(n-k)^{1/\alpha}$, we obtain

$$\frac{\sum_{i=k+1}^{n} T_{i} - \frac{n-k}{\lambda_{sup}}}{(n-k)^{1/\alpha}} \leq \Gamma_{a,sup}(n,k),$$

where $\lambda_{sup} = \lambda_1 + \lambda_2$, $\alpha_{sup} = \alpha$, and

$$\Gamma_{a,sup}(n,k) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \Gamma_{a,1} \left(\frac{n_1 - k_1}{n_1 - k_1 + n_2 - k_2} \right)^{1/\alpha} + \frac{\lambda_2}{\lambda_1 + \lambda_2} \Gamma_{a,2} \left(\frac{n_2 - k_2}{n_1 - k_1 + n_2 - k_2} \right)^{1/\alpha}$$

By letting

$$x = \frac{n_1 - k_1}{n_1 - k_1 + n_2 - k_2},\tag{10}$$

the maximum value that $\Gamma_{a,sup}(n,k)$ can achieve over the range of (n,k) can be determined by optimizing the following one-dimensional concave maximization problem over $x \in (0,1)$

$$\max_{\mathbf{x} \in (0,1)} \left\{ \beta \mathbf{x}^{1/\alpha} + \delta (1-\mathbf{x})^{1/\alpha} \right\} = \left(\beta^{\alpha/(\alpha-1)} + \delta^{\alpha/(\alpha-1)} \right)^{(\alpha-1)/\alpha}, \tag{11}$$

$$\beta = \frac{\lambda_1}{\lambda_1 + \lambda_2} \Gamma_{\mathbf{a},1}, \text{ and } \delta = \frac{\lambda_2}{\lambda_1 + \lambda_2} \Gamma_{\mathbf{a},2}.$$

where

$$\beta = \frac{\lambda_1}{\lambda_1 + \lambda_2} \Gamma_{a,1}, \text{ and } \delta = \frac{\lambda_2}{\lambda_1 + \lambda_2} \Gamma_{a,2}.$$

• Substituting β and δ by their respective values in Eq. (11) completes the proof for m = 2 with

$$\Gamma_{\textit{a,sup}} = \frac{\left[\left(\lambda_1 \Gamma_{\textit{a},1} \right)^{\alpha/(\alpha-1)} + \left(\lambda_2 \Gamma_{\textit{a},2} \right)^{\alpha/(\alpha-1)} \right]^{(\alpha-1)/\alpha}}{\lambda_1 + \lambda_2}.$$

We refer to this procedure of combining two arrival processes by the operator

$$(\lambda_{SUD}, \Gamma_{a,SUD}, \alpha_{SUD}) = Combine \{(\lambda_1, \Gamma_{a,1}, \alpha), (\lambda_2, \Gamma_{a,2}, \alpha)\}.$$

イロト イ団ト イミト 不足ト 一臣

(b) Case for J > 2

ullet Suppose that the arrivals to a queue come from arrival processes 1 through (m-1). We assume that the combined arrival process belongs to the proposed uncertainty set, with

$$\overline{\lambda} = \sum_{j=1}^{m-1} \lambda_j \text{ and } \overline{\Gamma}_{a} = \frac{\left(\sum_{j=1}^{m-1} \left(\lambda_j \Gamma_{a,j}\right)^{\alpha/(\alpha-1)}\right)^{(\alpha-1)/\alpha}}{\overline{\lambda}}$$

 Extending the proof to m sources can be easily done by repeating the procedure shown in part (a) through the operator

$$(\lambda_{\textit{sup}}, \Gamma_{\textit{a}, \textit{sup}}, \alpha_{\textit{sup}}) = \textit{Combine}\left\{\left(\overline{\lambda}, \overline{\Gamma}_{\textit{a}}, \alpha\right), (\lambda_{\textit{m}}, \Gamma_{\textit{a}, \textit{m}}, \alpha)\right\}.$$

◆ロト ◆個 > ◆差 > ◆差 > 差 めらぐ

Queueing Network Analysis

- Need to understand
 - Queueing Node Operator (Output of a Queue)
 - Superposition Operator
 - Thinning Operator

Thinning Operator

- Consider an arrival process $\{T_i\}_{i\geq 1}$ in which a fraction f of arrivals are classified as type I and the remaining are classified as type II.
- Given the primitives (λ, Γ_a) at the original process and the fraction f, we define the *thinning operator*

$$(\lambda_{split}, \Gamma_{a,split}, \alpha) = Split\{(\lambda, \Gamma_{a}, \alpha), f\}$$

where $(\lambda_{split}, \Gamma_{a,split}, \alpha)$ characterizes the thinned arrival process $\{T_i^{split}\}_{i\geq 1}$.

- ◆ロト ◆**部**ト ◆恵ト ◆恵ト 恵 めらぐ

Thinning Operator

Theorem (Thinning Operator)

The thinned arrival process of a fraction f of arrivals belonging to \mathcal{U}^a is described by the uncertainty set

$$\mathcal{U}_{split}^{a} = \left\{ \left(T_{1}^{split}, \dots, T_{n}^{split}\right) \middle| \frac{\left|\sum_{i=k+1}^{n} T_{i}^{split} - \frac{n-k}{\lambda_{split}}\right|}{\left(n-k\right)^{1/\alpha}} \leq \Gamma_{a, split}, \quad \forall k \leq n-1 \right\}, (12)$$

where
$$\lambda_{split} = \lambda \cdot f$$
 and $\Gamma_{a,split} = \Gamma_a \cdot \left(\frac{1}{f}\right)^{1/\alpha}$.

◆ロト ◆回ト ◆注ト ◆注ト 注 りへで

Overall Network analysis

Proof

• Consider an arrival process described by \mathcal{U}^a and consider the time window between the k^{th} arrival and the n^{th} arrival. Suppose that a fraction f of these arrivals are type I arrivals, i.e., out of the total of (n-k) arrivals excluding the k^{th} customer, $(n_{split}-k_{split})$ are type I arrivals, such that

$$f=\frac{n_{split}-k_{split}}{n-k}.$$

• Let $\{T_i^{split}\}_{i\geq 1}$ denote the interarrival times in the thinned arrival process. Note that

$$\sum_{i=k_{split}+1}^{n_{split}} T_i^{split} \leq \sum_{i=k+1}^n T_i \leq \frac{n-k}{\lambda} + (n-k)^{1/\alpha} \Gamma_{a}.$$

with the first inequality is tight when the k^{th} and n^{th} customers are both classified as type I. The upper bound in Eq. (12) is obtained by substituting (n-k) by $(n_{split}-k_{split})/f$. The lower bound is derived similarly, hence completing the proof.

←ロ → ←団 → ← 三 → りへで

Overall Network analysis

- Consider a network of J queues serving a single class of jobs. Each job enters
 the network through some queue j, and either leaves the network or departs
 towards another queue right after completion of his service.
- The primitive data in the queueing network are:
 - (a) External arrival processes with parameters $(\lambda_j, \Gamma_{a,j}, \alpha_{a,j})$ that arrive to each node $j = 1, \ldots, J$.
 - (b) Service processes with parameters $(\mu_j, \Gamma_{s,j}, \alpha_{s,j})$, and the number of servers $m_i, j = 1, \dots, J$.
 - (c) Routing matrix $\mathbf{F} = [f_{ij}], i, j = 1, \dots, J$, where f_{ij} denotes the fraction of jobs passing through queue i routed queue j. The fraction of jobs leaving the network from queue i is $1 \sum_{i} f_{ij}$.

- 4 ロ ト 4 回 ト 4 重 ト 4 重 ト 9 Q ()

Overall Network analysis

Theorem

The behavior of a single class queueing network is equivalent to that of a collection of independent queues, with the arrival process to node j characterized by the uncertainty set

$$\mathcal{U}_{j}^{a} = \left\{ \left(T_{1}^{j}, \ldots, T_{n}^{j}\right) \middle| \begin{array}{c} \left| \sum_{i=k+1}^{n} T_{i}^{j} - \frac{n-k}{\overline{\lambda}_{j}} \right| \\ (n-k)^{1/\alpha} \end{array} \right\} \leq \overline{\Gamma}_{a,j}, \quad \forall k \leq n-1 \end{array} \right\}, \ j = 1, \ldots, J,$$

where $\left\{\overline{\lambda}_1, \overline{\lambda}_2, \dots, \overline{\lambda}_J\right\}$ and $\left\{\overline{\Gamma}_{a,1}, \overline{\Gamma}_{a,2}, \dots, \overline{\Gamma}_{a,j}\right\}$ satisfy the set of equations for all $j=1,\dots,J$

$$\overline{\lambda}_j = \lambda_j + \sum_{i=1}^J (\overline{\lambda}_i f_{ij}),$$
 (13)

$$\overline{\Gamma}_{a,j} = \frac{\left[\left(\lambda_{j} \cdot \Gamma_{a,j} \right)^{\alpha/(\alpha-1)} + \sum_{i=1}^{J} \left(\overline{\lambda}_{i} \cdot \overline{\Gamma}_{a,i} \right)^{\alpha/(\alpha-1)} \cdot f_{ij} \right]^{(\alpha-1)/\alpha}}{\overline{\lambda}_{j}}.$$
(14)

Overall Network analysis (Proof)

Proof

- Consider a queue *j* receiving jobs from
 - (a) external arrivals described by parameters $(\lambda_i, \Gamma_{a,i}, \alpha)$, and
 - (b) internal arrivals routed from queues $i, i = 1, \ldots, J$ resulting from splitting the effective departure process from queue i by f_{ij} . By the Robust Burke theorem, the effective departure process from queue i has the same form as the effective arrival process to queue i described by the parameters $(\overline{\lambda}_i, \overline{\Gamma}_{a,i}, \alpha)$.
- ullet The effective arrival process to queue j can therefore be represented as

$$\left(\overline{\lambda}_{j}, \overline{\Gamma}_{a,j}, \alpha\right) = Combine\left\{\left(\lambda_{j}, \Gamma_{a,j}, \alpha\right), \left(Split\left\{\left(\overline{\lambda}_{i}, \overline{\Gamma}_{a,i}, \alpha\right), f_{ij}\right\}\right), i = 1, \dots, J\right\}$$
 (15)

ullet By the Splitting Operator, we substitute the split processes by their resulting parameters and obtain the superposition of J+1 arrival processes

$$\left(\overline{\lambda}_{j}, \overline{\Gamma}_{a,j}, \alpha\right) = Combine \left\{ \left(\lambda_{j}, \Gamma_{a,j}, \alpha\right), \left(f_{ij}\overline{\lambda}_{i}, \overline{\Gamma}_{a,i} \left(\frac{1}{f_{ij}}\right)^{1/\alpha}, \alpha\right), i = 1, \dots, J \right\}$$
 (16)

• Applying the Combine Operator yields Eqs. (13) and (14).

←□▶ ←□▶ ←□▶ ←□▶ □ ♥9<</p>

Overall Network analysis: Solving a Linear System

- Note that finding the overall network parameters (λ, Γ) amounts to solving a set of linear equations
- This could be achieved by defining

$$x_j = \left(\overline{\lambda}_j \overline{\Gamma}_{a,j}\right)^{\alpha/(\alpha-1)}$$

and rewriting the system as

$$\begin{cases} \overline{\lambda}_{j} = \lambda_{j} + \sum_{i=1}^{J} (\overline{\lambda}_{i} P_{ij}) & \forall j \\ \\ x_{j} = (\lambda_{j} \Gamma_{a,j})^{\alpha/(\alpha - 1)} + \sum_{i=1}^{J} P_{ij} x_{i} & \forall j \end{cases}$$

Computational Results

Objectives

- Compare the performance of RQNA to the Queueing Network Analyzer (QNA) proposed by Whitt [1983] and simulations
- Investigate the relative performance of RQNA with respect to
 - system's network size and degree of feedback
 - maximum traffic intensity
 - diversity of external arrival distributions

Primitive Data

- Consider instances of stochastic queueing networks
- External arrivals $(\lambda_j, \sigma_{a,j}, \alpha_{a,j})$ and $c_{a,j}^2 = \lambda_j^2 \sigma_{a,j}^2$
- Service processes $(\mu_j, \sigma_{s,j}, \alpha_{s,j}, m_j)$ and $c_{s,j}^2 = \mu_j^2 \sigma_{s,j}^2$
- Routing matrix $P = [P_{ij}]$

Precomputing Robust Variability Parameters

Similarly to QNA, we use simulation to construct the parameters (Γ_a, Γ_s)

• Consider a single queue with m servers characterized by $(\rho, \sigma_a, \sigma_s, \alpha_a, \alpha_s)$ and model

$$\Gamma_a = \sigma_a$$
 and $\Gamma_s = f(\rho, \sigma_a, \sigma_s, \alpha_a, \alpha_s)$.

• Motivated by Kingman's bound, we consider the functional form $f(\cdot)$

$$f\left(\rho,\sigma_{s},\sigma_{a},\alpha_{a},\alpha_{s}\right) = \left(\theta_{0} + \theta_{1} \cdot \sigma_{s}^{2}/m + \theta_{2} \cdot \sigma_{a}^{2}\rho^{2}m\right)^{(\alpha-1)/\alpha} - \sigma_{a}m^{(\alpha-1)/\alpha}$$

• For each service distribution, we run simulation over multiple instances of a single queue while varying parameters $(\rho, \sigma_a, \sigma_s, \alpha_a, \alpha_s)$ for different arrival distributions to compute corresponding coefficients $(\theta_0, \theta_1, \theta_2)$.

The RQNA Algorithm

ALGORITHM 1. Robust Queueing Network Analyzer

Input: External arrivals $(\lambda_j, \sigma_{a,j}, \alpha_{a,j})$, service parameters $(\mu_j, \sigma_{s,j}, \alpha_{s,j})$, and routing matrix $\mathbf{P} = [P_{ij}]$

Output: Waiting times \widehat{W} at each node $j, j = 1, \dots, J$.

- **1.** For each external arrival process *i* in the network, set $\Gamma_{a,i} = \sigma_{a,i}$.
- **2.** For each queue j in the network with parameters $(\mu_j, \sigma_{s,j}, \alpha_{s,j})$, compute
 - (a) the effective parameters $(\overline{\lambda}_j, \overline{\Gamma}_{a,j}, \overline{\alpha}_{a,j})$ and set $\rho_j = \overline{\lambda}_j/\mu_j$,
 - **(b)** the variability parameter $\Gamma_{s,j} = f\left(\rho_j, \overline{\Gamma}_{a,j}, \sigma_{s,j}, \overline{\alpha}_{a,j}, \alpha_{s,j}\right)$,
 - (c) the waiting time \widehat{W} at node j.

Performance of RQNA Compared to QNA and Simulation

- Kuehn Network with nine single-server queues
- Simulations run for normal and Pareto distributed service times

Performance of RQNA Compared to QNA and Simulation

- Kuehn Network with nine single-server queues
- Simulations run for normal and Pareto distributed service times

Case	Pareto Distribution		Normal [Distribution
$(c_{a,j}^2, c_{s,j}^2)$	QNA	RQNA	QNA	RQNA
(0.25,0)	22.78	3.291	15.28	1.389
(0.25, 1)	18.48	-3.478	12.08	3.869
(0.25, 4)	20.13	-3.052	11.57	-3.882
(1,0)	19.01	1.056	12.68	-3.797
(1, 1)	14.06	1.799	5.84	-2.555
(1,4)	10.15	2.893	-10.45	-0.681
(4,0)	21.82	-1.934	10.95	1.290
(4, 1)	23.71	-2.139	14.18	-3.508
(4,4)	17.51	-2.974	11.55	1.671

Table: Single-Server Network: Sojourn time percent errors relative to simulation.

Performance of RQNA as a Function of Network Parameters

- Randomly generated networks of queues.
- Queues in the network are randomly assigned 3, 6, or 10 servers independently of each other.

Performance with respect to networks size and degree of feedback

% Loops/Nodes	n=10	n=15	n=20	n=25	n=30
0%	3.594	3.546	3.756	3.432	3.846
20%	3.696	4.014	4.02	4.392	4.452
35%	4.32	4.776	4.956	5.034	4.878
50%	4.95	4.806	5.358	5.67	6.192
70%	5.016	5.556	5.934	5.958	6.03

Table: Multi-Server Networks: Percent error versus network size and degree of feedback

Performance of RQNA as a Function of Network Parameters

- Randomly generated networks of queues.
- Queues in the network are randomly assigned 3, 6, or 10 servers independently of each other.

Performance with respect to traffic intensity and arrival distributions

# Arr. Dist.	ho = 0.95	ho = 0.9	ho = 0.8	ho = 0.65	$\rho = 0.5$
1	4.05	4.092	3.618	3.678	3.228
2	5.082	7.104	6.42	6.108	3.714
3	5.916	6.318	6.9	7.344	5.676
4	7.672	8.644	7.284	6.852	5.37

Table: Multi-Server Networks: Percent error versus traffic intensity and arrival distributions.

Summary of Computational Results

- RQNA produces results that are often significantly closer to simulated values compared to QNA.
- RQNA is somewhat sensitive to the degree of diversity of external arrival disributions
- RQNA is to a large extent insensitive to the
 - number of servers per queue
 - heavy-tailed nature of services
 - network size
 - traffic intensity

Summary and Conclusions

- Explored an alternative approach to model single-class queues by modeling primitive data through uncertainty sets
- Robust approach yields closed-form solutions for the waiting times in multi-server queues for heavy-tailed arrival and service processes operating under both transient and steady-state domains
- Analysis extends to arbitrary networks of queues through the key principle:

 (a) the departure from a queue,
 (b) the superposition, and
 (c) the thinning of arrival processes have the same uncertainty set representation as the original arrival processes

Summary and Conclusions

- Modeling queues via Uncertainty Sets
 - Capture heavy tails
 - Model multi-servers
- We obtain the following benefits
 - Tractability: Closed form expressions and tractable optimization problems.
 - Generalizability: Multi server analysis, Robust Burke theorem, Transient analysis, etc.
 - Accuracy: Computational results errors within 8%.