

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Mon Nov 05 14:34:49 EST 2007

=====

Application No: 10584742 Version No: 1.0

Input Set:

Output Set:

Started: 2007-10-22 16:39:27.631
Finished: 2007-10-22 16:39:30.349
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 718 ms
Total Warnings: 11
Total Errors: 0
No. of SeqIDs Defined: 43
Actual SeqID Count: 43

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (43)

SEQUENCE LISTING

<110> HIRANO, Toshio
YAMASHITA, Susumu

<120> EMT-Inducing Agents

<130> SPO-128

<140> 10584742

<141> 2007-10-22

<150> PCT/JP2004/019246

<151> 2004-12-22

<150> JP 2003-435122

<151> 2003-12-26

<160> 43

<170> PatentIn version 3.3

<210> 1

<211> 742

<212> PRT

<213> Danio rerio

<400> 1

Met Met Thr Phe Leu Cys Thr Arg Ser Gly Arg Arg Ala Ser Gly Val
1 5 10 15

Glu Cys Arg Ile Ala Ala Glu Arg Ala Tyr Phe Arg Val Arg Gly Leu
20 25 30

Pro Val Ala Asn Met Ile Gly Trp Trp Pro Arg Leu Cys Pro Val Met
35 40 45

Ser Leu Ala Leu Leu Trp Ala Cys Ser Val Gly Ala Gly Ser Asp Cys
50 55 60

Lys Ser Val Ala Ile Glu Thr Asp Ser Arg Ile Ala Glu Gln Thr Gln
65 70 75 80

Gln Arg His Leu Gln Ala Leu Phe Asp Lys Tyr Gly Gln Asn Gly Ser
85 90 95

Ile Ser Leu Glu Gly Leu Phe Asn Leu Leu Lys Gly Val Gly Leu Asp
100 105 110

Arg Ile Arg Lys Val Met Val His His Pro Gly Asn Ala His Asn His
115 120 125

Thr His Thr His Asp His Thr His Thr His Val Asp Lys Leu Thr Ala
130 135 140

His Thr His Pro Val Thr Thr Lys Lys Gly Asp Met Asp His Ser Val
145 150 155 160

Glu Lys Ser Asp Pro Val Pro Lys Ala Gln Pro Asp Pro Ala Ser Gly
165 170 175

Lys Lys Ser Gln Ser Asp Ala His His Asn Leu Tyr Met Lys Met Asn
180 185 190

Gln Glu Ser Thr Thr Ala Leu Thr Thr Pro Ser Tyr Val Thr Arg Ser
195 200 205

Arg Arg Thr Asn Arg Ser Ala Asp Tyr Asp Phe Thr Gln Asp His Ala
210 215 220

Ser Phe Ser Pro Ser Gln Pro Asn Val Thr His Ser Asn His Thr His
225 230 235 240

His Asp Glu Asp Thr Pro Thr His Gln His Asp Asp His Asp Glu His
245 250 255

Glu His Ala Arg Ala Ser Leu Gly Cys Gln Asn Ala Ser Thr Ile Leu
260 265 270

Gln Thr His Gly Met Arg Lys Glu Ala Ser Leu Ser Val Lys Asp Phe
275 280 285

Ser Phe Leu Cys Pro Ala Leu Leu Met Gln Ile Asp Ser Lys Ser Cys
290 295 300

Ile Val His Glu Asp Glu Asp Glu His Ser Asp His Ser His His His
305 310 315 320

Lys His His His His His Asp His Gln His Leu Gln His Pro His
325 330 335

Asn His Thr Asn Gly Arg Gly Gln Arg Asn Thr Pro Val Tyr Ile Ala
340 345 350

Trp Leu Gly Gly Phe Leu Ser Ile Thr Leu Ile Ser Leu Leu Ala Leu
355 360 365

Val Gly Val Val Leu Ile Pro Leu Met Asn Arg Val Cys Phe Asn Phe
370 375 380

Leu Leu Ser Phe Leu Val Ala Leu Ala Val Gly Thr Leu Ser Gly Asp
385 390 395 400

Ala Leu Leu His Leu Ile Pro His Ser Gln Gly His His His His Gly
405 410 415

His Ser Glu Glu His Ala Glu Glu Asp Ser Leu Arg Pro Val Trp
420 425 430

Thr Gly Leu Thr Ala Leu Ser Gly Val Tyr Ile Met Phe Leu Ile Glu
435 440 445

His Phe Leu Thr Leu Gly Lys Met Tyr Lys Asp Lys Asn Gln Lys Val
450 455 460

Gln Lys Arg Val Asp Leu Thr Thr Glu Val Leu Glu Ser Glu Lys Leu
465 470 475 480

Pro Ser Leu Glu Glu Asn Asp Val Lys Ile Glu Ala Ala Glu Thr Asn
485 490 495

Gly Gly Arg Ala Leu Ala Glu Glu Glu Val Met Leu Gly Ala Glu
500 505 510

Leu Tyr Asn Asp Ile Asp Cys Glu Asn Lys Cys His Ser His Phe His
515 520 525

Asp Thr Val Gly Gln Ser Asp Glu Gln His His His His His Asp Tyr
530 535 540

His His Ile Leu His His His His Ser Gln Asn His His Pro His Thr
545 550 555 560

His Thr His Arg His Thr His Ser Tyr Ser Gln Gln His Phe Glu Gln

565 570 575

Ala Gly Val Ala Thr Leu Ala Trp Met Val Ile Met Gly Asp Gly Leu
580 585 590

His Asn Phe Ser Asp Gly Leu Ala Ile Gly Ala Ala Phe Thr Glu Gly
595 600 605

Leu Ser Ser Gly Leu Ser Thr Ser Val Ala Val Phe Cys His Glu Leu
610 615 620

Pro His Glu Leu Gly Asp Phe Ala Val Leu Leu Lys Ala Gly Met Ser
625 630 635 640

Val Arg Gln Ala Met Leu Tyr Asn Leu Leu Ser Ala Leu Met Gly Tyr
645 650 655

Leu Gly Met Ile Ile Gly Ile Leu Ile Gly His Tyr Ala Glu Asn Val
660 665 670

Ala Thr Trp Ile Phe Ala Leu Thr Ala Gly Leu Phe Met Tyr Val Ala
675 680 685

Leu Val Asp Met Val Pro Glu Met Leu His Asn Asp Ala Ser Glu Ala
690 695 700

Gly Phe Ser His Tyr Gly Phe Phe Leu Leu Gln Asn Ala Gly Ile Leu
705 710 715 720

Leu Gly Phe Gly Ile Met Leu Ile Ile Ala Val Phe Glu Asp Arg Ile
725 730 735

Gln Leu Asp Leu Gly Tyr
740

<210> 2
<211> 749
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Arg Lys Leu Ser Val Ile Leu Ile Leu Thr Phe Ala Leu Ser
1 5 10 15

Val Thr Asn Pro Leu His Glu Leu Lys Ala Ala Ala Phe Pro Gln Thr
20 25 30

Thr Glu Lys Ile Ser Pro Asn Trp Glu Ser Gly Ile Asn Val Asp Leu
35 40 45

Ala Ile Ser Thr Arg Gln Tyr His Leu Gln Gln Leu Phe Tyr Arg Tyr
50 55 60

Gly Glu Asn Asn Ser Leu Ser Val Glu Gly Phe Arg Lys Leu Leu Gln
65 70 75 80

Asn Ile Gly Ile Asp Lys Ile Lys Arg Ile His Ile His His Asp His
85 90 95

Asp His His Ser Asp His Glu His His Ser Asp His Glu Arg His Ser
100 105 110

Asp His Glu His His Ser Asp His Glu His His Ser Asp His Asn His
115 120 125

Ala Ala Ser Gly Lys Asn Lys Arg Lys Ala Leu Cys Pro Asp His Asp
130 135 140

Ser Asp Ser Ser Gly Lys Asp Pro Arg Asn Ser Gln Gly Lys Gly Ala
145 150 155 160

His Arg Pro Glu His Ala Ser Gly Arg Arg Asn Val Lys Asp Ser Val
165 170 175

Ser Ala Ser Glu Val Thr Ser Thr Val Tyr Asn Thr Val Ser Glu Gly
180 185 190

Thr His Phe Leu Glu Thr Ile Glu Thr Pro Arg Pro Gly Lys Leu Phe
195 200 205

Pro Lys Asp Val Ser Ser Thr Pro Pro Ser Val Thr Ser Lys Ser
210 215 220

Arg Val Ser Arg Leu Ala Gly Arg Lys Thr Asn Glu Ser Val Ser Glu
225 230 235 240

Pro Arg Lys Gly Phe Met Tyr Ser Arg Asn Thr Asn Glu Asn Pro Gln
245 250 255

Glu Cys Phe Asn Ala Ser Lys Leu Leu Thr Ser His Gly Met Gly Ile
260 265 270

Gln Val Pro Leu Asn Ala Thr Glu Phe Asn Tyr Leu Cys Pro Ala Ile
275 280 285

Ile Asn Gln Ile Asp Ala Arg Ser Cys Leu Ile His Thr Ser Glu Lys
290 295 300

Lys Ala Glu Ile Pro Pro Lys Thr Tyr Ser Leu Gln Ile Ala Trp Val
305 310 315 320

Gly Gly Phe Ile Ala Ile Ser Ile Ile Ser Phe Leu Ser Leu Leu Gly
325 330 335

Val Ile Leu Val Pro Leu Met Asn Arg Val Phe Phe Lys Phe Leu Leu
340 345 350

Ser Phe Leu Val Ala Leu Ala Val Gly Thr Leu Ser Gly Asp Ala Phe
355 360 365

Leu His Leu Leu Pro His Ser His Ala Ser His His His Ser His Ser
370 375 380

His Glu Glu Pro Ala Met Glu Met Lys Arg Gly Pro Leu Phe Ser His
385 390 395 400

Leu Ser Ser Gln Asn Ile Glu Glu Ser Ala Tyr Phe Asp Ser Thr Trp
405 410 415

Lys Gly Leu Thr Ala Leu Gly Gly Leu Tyr Phe Met Phe Leu Val Glu
420 425 430

His Val Leu Thr Leu Ile Lys Gln Phe Lys Asp Lys Lys Lys Lys Asn
435 440 445

Gln Lys Lys Pro Glu Asn Asp Asp Asp Val Glu Ile Lys Lys Gln Leu
450 455 460

Ser Lys Tyr Glu Ser Gln Leu Ser Thr Asn Glu Glu Lys Val Asp Thr

465

470

475

480

Asp Asp Arg Thr Glu Gly Tyr Leu Arg Ala Asp Ser Gln Glu Pro Ser
485 490 495

His Phe Asp Ser Gln Gln Pro Ala Val Leu Glu Glu Glu Val Met
500 505 510

Ile Ala His Ala His Pro Gln Glu Val Tyr Asn Glu Tyr Val Pro Arg
515 520 525

Gly Cys Lys Asn Lys Cys His Ser His Phe His Asp Thr Leu Gly Gln
530 535 540

Ser Asp Asp Leu Ile His His His Asp Tyr His His Ile Leu His
545 550 555 560

His His His Gln Asn His His Pro His Ser His Ser Gln Arg Tyr
565 570 575

Ser Arg Glu Glu Leu Lys Asp Ala Gly Val Ala Thr Leu Ala Trp Met
580 585 590

Val Ile Met Gly Asp Gly Leu His Asn Phe Ser Asp Gly Leu Ala Ile
595 600 605

Gly Ala Ala Phe Thr Glu Gly Leu Ser Ser Gly Leu Ser Thr Ser Val
610 615 620

Ala Val Phe Cys His Glu Leu Pro His Glu Leu Gly Asp Phe Ala Val
625 630 635 640

Leu Leu Lys Ala Gly Met Thr Val Lys Gln Ala Val Leu Tyr Asn Ala
645 650 655

Leu Ser Ala Met Leu Ala Tyr Leu Gly Met Ala Thr Gly Ile Phe Ile
660 665 670

Gly His Tyr Ala Glu Asn Val Ser Met Trp Ile Phe Ala Leu Thr Ala
675 680 685

Gly Leu Phe Met Tyr Val Ala Leu Val Asp Met Val Pro Glu Met Leu
690 695 700

His Asn Asp Ala Ser Asp His Gly Cys Ser Arg Trp Gly Tyr Phe Phe
705 710 715 720

Leu Gln Asn Ala Gly Met Leu Leu Gly Phe Gly Ile Met Leu Leu Ile
725 730 735

Ser Ile Phe Glu His Lys Ile Val Phe Arg Ile Asn Phe
740 745

<210> 3
<211> 2229
<212> DNA
<213> Danio rerio

<400> 3
atgatgacgt ttcttgcac acggctcggt cgccgtgcta gtggtgtgga gtgcagaatc 60
gccgctgaac gcgcttactt tcgagtgcgt ggactcccggttggcaatat gattggctgg 120
tggccacgcc tctgcccagt gatgtcactg gcactgtgt gggcgtgttc agtggggcg 180
ggttcagact gcaaatactgt ggccatttagag actgacagaccgcatacaca acaaacacag 240
cagcgtcacc tacaggctct gttcgacaag tatggccaga acggcagcat ctccctagaa 300
ggcctttca acctacttaa aggggtcggtt cttgaccgca tccggaaagt gatggtgcat 360
catcctggaa atgcccataa tcacacacac acgcatgatc acacacacac tcatgtggac 420
aaactcacgg cgcacacaca tccggtcacc accaagaagg gagacatgga tcacagcgtg 480
gagaagagtg accctgtccc aaaagcacag ccagatctg cctctggaa gaaaagccag 540
tcagatgcgc atcacaacct gtacatgaag atgaaccagg aatccaccac agctttgact 600
acgccccat atgttaccag atcacggcg accaatcgca gcgccgatta tgattttaca 660
caggaccacg cctcctttag ccccaagttag cccaatgtga cacactcaaa ccacacccat 720
catgatgagg acacgcccac acaccaggcat gatgaccatg atgagcacga acatgcccgt 780
gctagtttag ggtgtcaaaa tgcctccacg atcctgcaga cgcacatggcat gagaaaggaa 840
gcaagtctct cagttaaagga cttcagtttc ctctgccttg ctcttcat gcagattgt 900
tccaagtctt gcatcgtgca tgaagacgag gacgagcatt cagatcattc ccatcatcac 960
aaacaccacc accatcatca tgatcaccaa cacctgcagc atccacataa ccacaccaat 1020
ggaagaggcc agaggaacac tccagttcac atcgcatggc ttggagggtt tctctccatc 1080
actctgatca gtttgcgtggc gttgggttgggt gtgggtttga tcccaactcat gaacagagtt 1140

tgcttcaact	tcctgctgag	cttcctggtg	gcccttgcag	tggcactct	gagcggagac	1200
gctctccccc	acctataacc	acattctcag	ggtcatcacc	atcacggcca	ctctgaagag	1260
cacgctgaag	aggaggactc	cttcgccct	gtgtggaccg	gactcacagc	tctaagtgga	1320
gtttacatca	tgttcctcat	cgaacacttc	ctgacccttg	gcaaaatgta	caaagacaaa	1380
aaccagaagg	tgcagaagag	ggttgatctc	accacagaag	tttggagtc	tgagaaactg	1440
ccatcattag	aagaaaatga	tgtcaaaatt	gaagctgctg	aaacgaatgg	tggcggtgca	1500
ctggcagagg	aggaggaggt	gatgttgggg	gccccggct	acaacgacat	agactgcgag	1560
aacaaatgcc	actcccaactt	ccatgacacccg	gtcgcccaat	cgatgagca	gcatcatcat	1620
catcactgact	accaccacat	actgcacat	caccactccc	agaaccacca	cccgacacaca	1680
cacacgcaca	gacacacaca	ctcctactcg	cagcagcact	ttgagcaggc	tgggtgtggcc	1740
acactcgccct	ggatggtcat	catggagac	ggactgcaca	acttcagtga	tggacttgcc	1800
atagggggcg	cttccacaga	aggtttgtcc	agtggctta	gtacctcagt	cgctgtgttc	1860
tgccatgagc	ttcctcatga	actcggtat	tttgcgtcc	tactgaaagc	cggtatgtca	1920
tttcgacagg	ccatgctgta	taatctgctg	tcagcactga	tggatatct	gggcatgatc	1980
atcgggattc	tcatcgaca	ttatgctgaa	aatgttgcca	catggatctt	tgctctcaca	2040
gctgggttat	tcatgtacgt	cgcgtcg	gacatggta	ctgagatgt	gcacaatgac	2100
gcgagcgaag	caggttcag	tcactacggc	ttttccctcc	tgcaaacgc	tggatactc	2160
ctaggcttcg	gcatcatgct	tatcattgct	gtctttgagg	acaggatcca	actggactta	2220
ggttactga						2229

<210> 4
 <211> 2744
 <212> DNA
 <213> Homo sapiens

<400>	4					
ctcggtccga	attcggcaccg	agaccgcgtg	ttcgccctg	gttagagattt	ctcgaagaca	60
ccagtgggcc	cgtgtggAAC	caaaccctgcg	cgcgtggccg	ggccgtggga	caacgaggcc	120
gcggagacga	aggcgcaatg	gcgaggaagt	tatctgtaat	cttgcgtcc	acctttgccc	180
tctctgtcac	aaatcccctt	catgaactaa	aagcagctgc	tttccccag	accactgaga	240
aaatttagtcc	gaattggaa	tctggcatta	atgttgactt	ggcaatttcc	acacggcaat	300
atcatctaca	acagctttc	taccgctatg	gagaaaataa	ttctttgtca	gttgaagggt	360

tcagaaaatt acttcaaaat ataggcatag ataagattaa aagaatccat atacaccatg 420
accacgacca tcactcagac cacgagcatac actcagacca tgagcgtaac tcagaccatg 480
agcatcactc agaccacgag catcactctg accataatca tgctgcttct ggtaaaaata 540
agcgaaaagc tcttgcccc gaccatgact cagatagttc aggtaaagat cctagaaaca 600
gccaggggaa aggagctcac cgaccagaac atgccagtgg tagaaggaat gtcaaggaca 660
gtgttagtgc tagtgaagtg acctaactg tgtacaacac tgtctctgaa ggaactcact 720
ttcttagagac aatagagact ccaagacctg gaaaactctt ccccaaagat gtaaggagct 780
ccactccacc cagtgtcaca tcaaagagcc gggtgagccg gctggctggt aggaaaacaa 840
atgaatctgt gagtgagccc cgaaaaggct ttatgtattc cagaaacaca aatgaaaatc 900
ctcaggagtg tttcaatgca tcaaagctac tgacatctca tggcatgggc atccaggttc 960
cgctgaatgc aacagagttc aactatctct gtccagccat catcaaccaa attgatgcta 1020
gatcttgtct gattcataca agtggaaaga aggctgaaat ccctccaaag acctattcat 1080
tacaaatagc ctgggttggt ggtttatag ccatttccat catcagttc ctgtctctgc 1140
tgggggttat cttagtgccc ctcataatc gggtgttttt caaatttctc ctgagttcc 1200
ttgtggcact ggccgttggg actttgagtg gtgatgcttt tt