

TEST REPORT

Product NAVIGATION MULTIMEDIA

RECEIVER

Trade mark : Stinger

Model/Type reference : UN1880, UN1880X

Serial Number : N/A

Report Number : EED32K00161901

FCC ID : XBDUN1880 Date of Issue : Jul. 26, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

AAMP of Florida, Inc. dba AAMP Global 15500 Lightwave Dr. Suite 202, Clearwater, FL 33760

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Jul. 26, 2018

Max liang

Max Liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3096305697

2 Version

Version No.	Date	(Description	·)
00	Jul. 26, 2018		Original	
	195	12	793	/3
((3)	(6,70)	(65)

Report No. : EED32K00161901 Page 3 of 53

3 Test Summary

163t Summary	10.			
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

N/A: The power supply of the tested sample is DC 12V in the vehicle, therefore it is not applicable.

Model No.:UN1880, UN1880X

Only the model of UN1880 is tested, since their electrical circuit design, layout, components used and internal wiring are identical, the shape and the material are identical, only the outer decoration is different.

Report No.: EED32K00161901 Page 4 of 53

4 Content

	VER PAGE					1
2 VEF	RSION	•••••		•••••		2
3 TES	ST SUMMARY	•••••	•••••	•••••	•••••	3
4 CO	NTENT					4
5 TES	ST REQUIREMENT				•••••	5
5.2 5.3 6 GEI 6.1	Test setup	setup ons test setup sions test setup				5 6 6 7
6.3 6.4 6.5 6.6 6.7 6.8	Product Specification of Product Specification of Product Specification of Product Specification of Support Test Location	SUBJECTIVE TO THIS UNITSRDSRDSNDARD CONDITION UESTED BY THE CL	S STANDARD			7 8 8 8 8
7 EQI	UIPMENT LIST					10
	DIO TECHNICAL REQUIR					
10	Appendix A): 6dB Occupie	ed Bandwidth	er			13 15
9	Appendix B): Conducted P Appendix C): Band-edge for Appendix D): RF Conducter Appendix E): Power Spect Appendix F): Antenna Req Appendix G): Restricted bat Appendix H): Radiated Spi	or RF Conducted ed Spurious Emiss ral Density juirement ands around funds	Emissionssions	(Radiated)		17 19 22 24
9	Appendix C): Band-edge for Appendix D): RF Conducted Appendix E): Power Spect Appendix F): Antenna Requipmendix G): Restricted by Appendix H): Radiated Specific Restricted Restricted Specific Restricted Rest	or RF Conducted ed Spurious Emissiral Density	Emissionssionsamental frequency	(Radiated)		
PHOT	Appendix C): Band-edge for Appendix D): RF Conducted Appendix E): Power Spect Appendix F): Antenna Requestricted by Appendix G): Restricted B):	or RF Conducted ed Spurious Emissional Density	Emissionssionsamental frequency	(Radiated)		
PHOT	Appendix C): Band-edge for Appendix D): RF Conducter Appendix E): Power Spect Appendix F): Antenna Requipment Appendix G): Restricted bath Appendix H): Radiated Spectographs OF TEST SE	or RF Conducted ed Spurious Emissional Density	Emissionssionsamental frequency	(Radiated)		171922242528
PHOT	Appendix C): Band-edge for Appendix D): RF Conducter Appendix E): Power Spect Appendix F): Antenna Requipment Appendix G): Restricted bath Appendix H): Radiated Spectographs OF TEST SE	or RF Conducted ed Spurious Emissional Density	Emissionssionsamental frequency	(Radiated)		171922242528

Report No. : EED32K00161901 Page 5 of 53

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:			(6)
Temperature:	25.9 °C		
Humidity:	56 % RH	16.2	Lacino .
Atmospheric Pressure:	1010mbar		30

5.3 Test Condition

Test channel:

Toot Mode	Tv/Dv		RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
0501	0.400.441 0.400.441	Channel 1	Channel 20	Channel 40		
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).					

6 General Information

6.1 Client Information

Applicant:	AAMP of Florida, Inc. dba AAMP Global
Address of Applicant:	15500 Lightwave Dr. Suite 202, Clearwater, FL 33760
Manufacturer:	SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
Address of Manufacturer:	A1 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City, Guangdong Province, China
Factory:	SKYPINE ELECTRONICS (SHEN ZHEN) CO., LTD.
Address of Factory:	A1 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	NAVIGATION MULTIMEDIA RECEIVER		
Model No.(EUT):	UN1880, UN1880X		
Test Model No.:	UN1880		707
Trade mark:	Stinger		(4)
EUT Supports Radios application:	4.2 BT Dual mode, 2402-2480MHz		(0)
Power Supply:	Supply by DC 12V		
Firmware version:	AJ0107(manufacturer declare)	(3)	
Hardware version:	R1(manufacturer declare)	(67)	
Sample Received Date:	Jun. 25, 2018		
Sample tested Date:	Jun. 25, 2018 to Jul. 25, 2018		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.2		
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40	(0,2)	
Antenna Type and Gain:	Type: 2.4GHz Inverted-F Antenna Gain: 0dBi		
Test Voltage:	AC 120V, 60Hz	705	/05

Report No.: EED32K00161901 Page 8 of 53

Operation F	_		_		/ <u>_</u>		/i_
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32K00161901 Page 9 of 53

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadiated Sourious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

Report No. : EED32K00161901

78 7 28 8 2 2 2					2.77.7
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019		
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019		

Page 11 of 53

	31	/I Semi/full-anechoid	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	06-05-2018	06-04-2019
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-12-2015 07-10-2018	07-10-2018 07-08-2021
Double Ridge Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-07-2015 06-05-2018	06-05-2018 06-03-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	<u>(j)</u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	/	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002	/	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

-	out iteration for				7.70
	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
	Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00161901 Page 13 of 53

Appendix A): 6dB Occupied Bandwidth

Test Result

1,100					
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6933	1.0451	PASS	
BLE	MCH	0.6885	1.0378	PASS	Peak
BLE	нсн	0.6892	1.0472	PASS	detector

Page 14 of 53

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	5.084	PASS
BLE	MCH	6.775	PASS
BLE	НСН	7.102	PASS

Test Graphs

Report No. : EED32K00161901 Page 17 of 53

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	4.846	-61.318	-15.15	PASS
9	BLE	нсн	7.052	-52.840	-12.95	PASS

Page 18 of 53

Report No. : EED32K00161901 Page 19 of 53

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	4.75	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	6.524	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	6.846	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32K00161901 Page 20 of 53

Test Graphs

Puw/BLE/MCH

Report No.: EED32K00161901

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-10.662	8	PASS
BLE	MCH	-8.682	8	PASS
BLE	нсн	-8.115	8	PASS

Test Graphs

Report No.: EED32K00161901

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is 2.4GHz Inverted-F Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)					76.2	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2112 40115	Peak	1MHz	3MHz	Peak	105
Toot Procedure:	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the antenna was tuned was turned from 0 deg e. The test-receiver systems and the maximus was turned from the maximus was turned from the antenna was turned from the test-receiver systems and width with Maxim	ire as below: on the top of a rotechoic camber. The of the highest raceters away from the pof a variable-he waried from one removalue of the fiesenna are set to mission, the EUT to heights from rees to 360 degreem was set to Peasenna set	ating table e table wadiation. The interfere to foold strength nake the mas arrand meter to foold strength nake the mas arrand meter to bees to find	e 0.8 meters rotated 3 ence-receinna tower. ur meters n. Both horneasurement ged to its value of the maxim	rs above the gaston and vent. worst case around the rotate and the rotate and reading.	to , which ound the ertical
	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest	npliance. Also me rum analyzer plot	easure any	emissions	s in the restri	
	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axi	change from table 0.8 e is 1.5 met med in X, s positioni	om Semi- meter to 1 er). channel Y, Z axis p	s in the restriction of the control	dulation nambe ove
.imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest incomparison of the radiation measure that Transmitting mode, an j. Repeat above procedure.	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perford found the X axiones until all frequents	change fr table 0.8 is 1.5 met ne Highest med in X, s positioni encies me	emissions or each por each por semi-meter to 1 er). channel Y, Z axis por grant water to asured water to the second control of the s	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dulation nambe ove
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is how it is the radiation measured that the first transmitting mode, and green in the lower transmitting mode, and green is requency	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, ber change form 1 meter and table owest channel, the ments are perford found the X axistes until all frequence.	change fr table 0.8 is 1.5 met ne Highest med in X, s positioni encies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dulation nambe ove
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is how in the EUT in the left in the radiation measure that Transmitting mode, and green in the Intervention in the Int	npliance. Also me rum analyzer plot channel ure as below: ye is the test site, ber change form 1 meter and table owest channel, the ments are performed found the X axiones until all frequence. Limit (dBµV/r 40.0	change from table 0.8 exis 1.5 met med in X, s positioni encies me	om Semi- meter to 1 er). channel Y, Z axis p ng which is asured wa	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 6 meter (About 15 meter) Anechoic Ch. 7 m	dulation nambe ove
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the let i. The radiation measure Transmitting mode, an j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are performed found the X axistres until all frequences. Limit (dBµV/r 40.0 43.5	change from table 0.8 is 1.5 met in E Highest med in X, is positioning encies media (23m)	om Semi- meter to 1 rer). channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulation nambe ove
imit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how the fully Anechoic Chamaland 18GHz the distance is how to fully Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18GHz the distance is how the full Anechoic Chamaland 18G	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, ber change form 1 meter and table owest channel, the ments are perform d found the X axistres until all frequences. Limit (dBµV/r 40.0 43.5 46.0	change from table 0.8 eris 1.5 met med in X, is positioning encies mem @3m)	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value	dulation nambe ove
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the let i. The radiation measure Transmitting mode, an j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are performed found the X axistres until all frequences. Limit (dBµV/r 40.0 43.5	change fr table 0.8 is 1.5 met he Highest med in X, s positioni encies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	dulation nambe ove

Page 26 of 53

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2390 0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Page 27 of 53

Worse case mode:	GFSK	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Ant Freq Factor			Preamp Factor						Remark	
-	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
									Horizontal Horizontal	

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Abovo 1CHz	Peak	1MHz	3MHz	Peak	
(0,0)	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

		• •	
	ш	mit:	
ь	-11	HIIL.	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	2°5	30
1.705MHz-30MHz	30	-	(4.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Suspected List

	Suspec	leu List						
	NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity
9	1	70.5541	48.26	26.06	-22.20	40.00	13.94	Vertical
9	2	90.5401	49.74	28.24	-21.50	43.50	15.26	Vertical
	3	136.1392	47.23	23.99	-23.24	43.50	19.51	Vertical
	4	251.7864	39.11	21.34	-17.77	46.00	24.66	Vertical
	5	414.3909	39.31	25.53	-13.78	46.00	20.47	Vertical
	6	796.4533	32.22	24.45	-7.77	46.00	21.55	Vertical

Suspected List

	otou Liot						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity
1	59.4939	51.21	31.74	-19.47	40.00	8.26	Horizontal
2	96.9434	52.76	32.34	-20.42	43.50	11.16	Horizontal
3	136.9154	46.15	22.88	-23.27	43.50	20.62	Horizontal
4	248.4877	38.81	20.94	-17.87	46.00	25.06	Horizontal
5	409.9280	41.40	27.54	-13.86	46.00	18.46	Horizontal
6	624.9230	33.00	23.19	-9.81	46.00	22.81	Horizontal

Report No. : EED32K00161901 Page 31 of 53

Transmitter Emission above 1GHz

	Worse	case mode:	GFSK	Test cha	annel:	Lowest	Remark	: Peak
3	NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity
4	1	4804.0000	43.55	44.16	0.61	74.00	29.84	Horizontal
	2	7206.0000	38.04	44.23	6.19	74.00	29.77	Horizontal
	3	8433.2433	41.33	49.51	8.18	74.00	24.49	Horizontal
	4	9608.0000	39.39	48.05	8.66	74.00	25.95	Horizontal
	5	11171.3171	38.08	50.01	11.93	74.00	23.99	Horizontal
	6	12010.0000	33.84	45.00	11.16	74.00	29.00	Horizontal
	1	4804.0000	42.37	42.98	0.61	74.00	31.02	Vertical
	2	5760.5011	41.67	43.93	2.26	74.00	30.07	Vertical
Ž	3	7206.0000	37.51	43.70	6.19	74.00	30.30	Vertical
9	4	8372.7873	40.88	48.78	7.90	74.00	25.22	Vertical
	5	9608.0000	38.67	47.33	8.66	74.00	26.67	Vertical
	6	12010.0000	33.79	44.95	11.16	74.00	29.05	Vertical

Worse	e case mode:	GFSK	Test cha	annel:	Middle	Remarl	k: Peak
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity
1	3404.6655	42.45	39.81	-2.64	74.00	34.19	Horizontal
2	4880.0000	45.01	46.07	1.06	74.00	27.93	Horizontal
3	7320.0000	38.05	44.50	6.45	74.00	29.50	Horizontal
4	8822.3072	40.82	48.95	8.13	74.00	25.05	Horizontal
5	9760.0000	39.88	48.72	8.84	74.00	25.28	Horizontal
6	12200.0000	34.97	46.38	11.41	74.00	27.62	Horizontal
1	3190.1440	45.76	42.97	-2.79	74.00	31.03	Vertical
2	4880.0000	45.41	46.47	1.06	74.00	27.53	Vertical
3	7320.0000	37.44	43.89	6.45	74.00	30.11	Vertical
4	8463.4713	40.94	49.12	8.18	74.00	24.88	Vertical
5	9760.0000	39.75	48.59	8.84	74.00	25.41	Vertical
6	12200.0000	34.17	45.58	11.41	74.00	28.42	Vertical
	.//	Sec. 1.		F -			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 32 of 53

Report No	. :	EED32K00161901
-----------	-----	----------------

		1,000	TO SECURITY OF THE PROPERTY OF	107			
Worse	e case mode:	GFSK	Test cha	innel:	Highest	Remark	:: Peak
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity
1	3101.4101	42.21	39.37	-2.84	74.00	34.63	Horizontal
2	4960.000	41.33	42.46	1.13	74.00	31.54	Horizontal
3	7440.000	35.71	42.38	6.67	74.00	31.62	Horizontal
4	9920.000	37.26	46.27	9.01	74.00	27.73	Horizontal
5	11146.9397	38.25	50.18	11.93	74.00	23.82	Horizontal
6	12400.000	34.14	45.54	11.40	74.00	28.46	Horizontal
1	3136.5137	44.78	41.75	-3.03	74.00	32.25	Vertical
2	4960.000	44.87	46.00	1.13	74.00	28.00	Vertical
3	7440.000	37.06	43.73	6.67	74.00	30.27	Vertical
4	9920.000	36.80	45.81	9.01	74.00	28.19	Vertical
5	11010.4260	38.87	50.91	12.04	74.00	23.09	Vertical
6	12400.000	35.48	46.88	11.40	74.00	27.12	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: UN1880

Radiated spurious emission Test Setup-1(9K-30M)

Radiated spurious emission Test Setup-2(30-1G)

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: UN1880

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-10

Report No. : EED32K00161901 Page 40 of 53

View of Product-11

View of Product-12

Report No. : EED32K00161901 Page 41 of 53

View of Product-13

View of Product-14

View of Product-15

View of Product-16

View of Product-17

View of Product-18

View of Product-19

View of Product-20

View of Product-21

View of Product-22

(CL)

View of Product-23

View of Product-24

View of Product-25

View of Product-26

View of Product-27

View of Product-28

Report No. : EED32K00161901 Page 49 of 53

View of Product-29

View of Product-30

View of Product-31

View of Product-32

View of Product-33

View of Product-34

Report No. : EED32K00161901 Page 52 of 53

View of Product-35

View of Product-36

Report No. : EED32K00161901 Page 53 of 53

View of Product-37

View of Product-38

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com