National University of Computer and Emerging Sciences Lahore Campus

Database Systems (CS2005) Midterm1 Exam

Date: September 21 st 2024	Total Time (Hrs.): 1
Course Instructor(s)	Total Marks: 35
M. Ishaq Raza Sana Fatima Hina Iqbal Mamoona Majid	Total Questions: 3
Roll No Section Oo not write below this line.	Student Signature

Note: Please ensure that you attempt all questions and their respective parts in the given order.

Consider the following simplified database schema for a part-supply system.

In the DB schema given below:

- The supplier table stores information about suppliers and *sno* is the primary key.
- The part table stores information about parts and *pno* is the primary key.
- The catalog table stores information about parts supplied by suppliers. Primary key of this table is a composite of *sno* and *pno* columns.

CREATE TABLE Supplier (CREATE TABLE Part (CREATE TABLE Catalog (
sno VARCHAR(255) Not Null Pimary Key,	pno VARCHAR(255),	sno VARCHAR(255),
sname VARCHAR(255) Not Null,	pname VARCHAR(255),	Pno VARCHAR(255),
address VARCHAR(255));	color VARCHAR(255));	cost INT);

CLO # 4: Use SQL for database definition and manipulation in any DBMS.

Q. No 1: Add the following constraints in the above-mentioned DB schema [1+2+2=5]

- Primary Key constraint on part table.
 - ALTER Table part ALTER COLUMN pno VARCHAR(255) NOT NULL; ALTER TABLE part ADD CONSTRAINT PK_part PRIMARY KEY(pno);
- Primary Key constraint on catalog table.

ALTER Table catalog ALTER COLUMN sno VARCHAR(255) NOT NULL;
ALTER Table catalog ALTER COLUMN pno VARCHAR(255) NOT NULL;
ALTER TABLE catalog ADD CONSTRAINT PK_catalog PRIMARY KEY(sno, pno);

• Foreign key constraints on catalog table (*The columns sno and pno in catalog table are the foreign keys*) and referential integrity constraint is on delete cascade.

ALTER TABLE catalog ADD CONSTRAINT FK_sno_catalog FOREIGN KEY(sno) REFERENCES supplier(sno) ON DELETE CASCADE; ALTER TABLE catalog ADD CONSTRAINT FK_pno_catalog FOREIGN KEY(pno) REFERENCES part(pno) ON DELETE CASCADE;

National University of Computer and Emerging Sciences Lahore Campus

CLO # 4: Use SQL for database definition and manipulation in any DBMS.

Q. No 2: Consider the above-mentioned DB schema, write the following queries in SQL [15]

a. List the sno of suppliers who supply some red parts and some blue parts.
SELECT C.sno FROM part P JOIN catalog C ON P.pno = C.pno WHERE P.color = 'red' INTERSECT
SELECT C.sno FROM part P JOIN catalog C ON P.pno = C.pno WHERE P.color = 'blue';

b. List all the suppliers who supply at most one part or do not supply any part.
 SELECT sno FROM catalog GROUP BY sno HAVING COUNT(*)= 1
 UNION
 (SELECT sno FROM supplier EXCEPT SELECT sno FROM catalog);

Alternate Solution:
SELECT sno FROM supplier
EXCEPT
(SELECT sno FROM catalog GROUP BY sno HAVING COUNT(*)>1);

c. List the pno with the sno of parts supplied by at least two different suppliers. SELECT DISTINCT C1.pid, C1.sid FROM catalog C1 JOIN catalog C2 ON C1.pid = C2.pid WHERE C1.sid <> C2.sid;

National University of Computer and Emerging Sciences Lahore Campus

CLO # 4: Use SQL for database definition and manipulation in any DBMS.

Q. No 3: Write the result of the following queries for database state given below. [15]

Supplier			
<u>Sno</u>	Sname	address	
S1	Smith	London	
S2	Jones	Paris	
S3	Blake	Paris	
S4	Clark	London	
S5	Adams	Athens	
Part			
<u>Pno</u>	Pname	Color	
P1	Nut	Red	
P2	Bolt	Green	
P3	Screw	Blue	
P4	Screw	Red	
P5	Cam	Blue	
P6	Cog	Red	

Catalog			
<u>Sno</u>	<u>Pno</u>	Cost	
S1	P1	3000	
S1	P2	2000	
S1	P3	4000	
S1	P4	2000	
S1	P5	1000	
S1	P6	1000	
S2	P1	3000	
S2	P2	4000	
S3	P2	2000	
S4	P2	2000	
S4	P4	3000	
S3	Р3	1000	
S3	P4	2000	
S4	P5	4000	

a. SELECT DISTINCT pname FROM part P JOIN catalog C ON P.pno=C.pno;

pname
Bolt
Cam
Cog
Nut
Screw

b. SELECT sno, MAX(cost) AS MAC FROM catalog C JOIN part P ON C.pno=P.pno WHERE color IN ('Red', 'Green') GROUP BY sno;

sno	MAC
S1	3000
S2	4000
S3	2000
S4	3000

c. SELECT C.pno FROM supplier S JOIN catalog C ON S.sno = C.sno EXCEPT SELECT C.pno FROM supplier S JOIN catalog C ON S.sno = C.sno WHERE sname <> 'Smith';

pno	
P6	