stochastics and probability

Lecture 3

Dr. Johannes Pahlke

accept-reject sampling

want:

X with PDF $f_X(x)$

use:

$$f_X(x) \le \alpha \quad Range(X) \subseteq [\beta_1, \beta_2]$$

algorithm:

- 1.) draw $U_1 \sim \mathcal{U}(\beta_1, \beta_2)$, $U_2 \sim \mathcal{U}(0, \alpha)$
- 2.) if $U_2 \le f_X(U_1)$, then $X = U_1$, else go to 1.)

inefficient:

- peaky densities
- high dimensions
- long tails/infinite Range

accept-reject sampling

want:

X with PDF $f_X(x)$

use:

 $G \sim \mathcal{G}$ with PDF $g_G(x)$ and $f_X(x) \leq c g_G(x)$ for all x

algorithm:

1.) draw G from \mathcal{G} and U from $\mathcal{U}(0,1)$

2.) if
$$U \leq \frac{f_X(G)}{c g_G(G)}$$
, then $X = G$, else go to 1.)

discrete-time stochastic processes

 $n \in \mathbb{N}$

discrete Time

 X_0, X_1, X_2, \dots "sequence of random variables"

 $\neq x_0, x_1, x_2, \dots$ "sequence of random numbers"

 $\{X_n:n\in\mathbb{N}\}$

discrete-time stochastic process

 X_n

value of random variable X_n

 $X_n:\Omega\to\mathbb{S}$

 $x_n \in \mathbb{S}$

state space S (discrete or continuous)

Examples:

population

rolling dice

1st

2nd

3rd

independent identical distributed (i.i.d.) process

$$\{X_n:n\in\mathbb{N}\}$$

stochastic process

$$F_{X_0}(x) = F_{X_1}(x) = F_{X_2}(x) = \dots$$

identical distributed

$$F_{X_0,...,X_n}(x_0,\ldots,x_n) = F_{X_0}(x_0)\cdot\ldots\cdot F_{X_n}(x_n)$$

independent

exercise:

Which system can be captured by an i.i.d. process?

population development

rolling dice

**The state of the state of th

Markov chains

$$\{X_n:n\in\mathbb{N}\}$$

$P(X_{n+1} = x_j | X_n = x_i, X_{n-1} = x_{i-1}, \dots, X_0 = x_0)$ $= P(X_{n+1} = x_j | X_n = x_i) \implies P_{ij}$ (one-step transition probability)

$$P_{ij}^{(n)} := P\left(X_{n+m} = x_j | X_m = x_i\right)$$

(*n*-step transition probability)

$$\underline{\underline{P}} := (P_{ij}) = \begin{pmatrix} P_{00} & \dots & P_{0n} \\ \vdots & \ddots & \vdots \\ P_{n0} & \dots & P_{nn} \end{pmatrix} \quad \text{for } |S| < \infty$$
 (one-step transition matrix)

stochastic process

Markov property

 $(X_{n+1} \text{ only depends on } X_n)$

example:

Markov chains as recursions

theorem 1:

Let $g(x,u) \in \mathbb{R}$ be a function and $\{U_n : n \in \mathbb{N}\}$ an i.i.d. process, then the recursion $X_{n+1} = g(X_n, U_n)$ is a Markov chain.

theorem 2:

Every Markov chain can be represented as recursion $X_{n+1} = g(X_n, U_n)$ where $\{U_n : n \in \mathbb{N}\}$ is an i.i.d. process with $U_n \sim \mathcal{U}(0,1)$.

theorem 3:

Given a Markov chain $\{X_n : n \in \mathbb{N}\}$ and its one-step transition matrix $\underline{\underline{P}}^{(n)}$, then its n-step transition matrix $\underline{\underline{P}}^{(n)} = \underline{\underline{P}}^n = \underline{\underline{P}} \cdot \dots \cdot \underline{\underline{P}}$.

def.: Given a Markov chain $\{X_n : n \in \mathbb{N}\}$ with $X_n : \Omega \to \mathbb{S}$.

Let $\mathbb{C} \subseteq \mathbb{S}$, then \mathbb{C} is closed iff $\forall x_i \in \mathbb{C} \ \forall x_j \in \mathbb{S} \setminus \mathbb{C} : P_{ij} = 0$.

(form a state of $\mathbb C$ no state outside of $\mathbb C$ can be reached)

If
$$\{x_i\} = \mathbb{C}$$
, then x_i is absorbing state. $\longrightarrow P_{ii} = 1$

exercise:

consier: 0.25 0 0.32 0 0.32 0 0.37

What are the closed sets? $\mathbb{C}' = \{x_0, x_1\}, \ \mathbb{C}'' = \{x_1\}, \ \mathbb{C}'' = \mathbb{S}$

What are the absorbing states? x_1

def.: A Markov chain $\{X_n : n \in \mathbb{N}\}$ with $X_n : \Omega \to \mathbb{S}$

is irreducible iff $\nexists \mathbb{C} \subset \mathbb{S} : \mathbb{C} \text{ is closed} \quad (\mathbb{S} \text{ is the only closed set})$

exercise: Which Markov chain is irreducible?

def.: Given a Markov chain $\{X_n : n \in \mathbb{N}\}$ with $X_n : \Omega \to \mathbb{S}$.

Be $N_i := \{n \in \mathbb{N}_{>0} : P_{ii}^{(n)} > 0\}$ set of number of transitions to reach x_i from x_i ,

then $d_i := gcd(N_i)$ period of x_i .

(greatest common divisor)

If
$$1 < d_i < \infty$$
, then x_i is periodic, if $d_i = 1$, then x_i is aperiodic.

If
$$\forall x_i, x_j \in \mathbb{S} : 1 < d_i = d_j < \infty$$
,
then $\{X_n : n \in \mathbb{N}\}$ is periodic,

(The Markov chain is periodic if all states are periodic with the same period.)

if $\forall x_i \in \mathbb{S} : 1 = d_i$, then $\{X_n : n \in \mathbb{N}\}$ is aperiodic. (The Markov chain is aperiodic if all states are aperiodic.)

exercise:

Which states/ Markov chains are periodic?

 x_0, x_2 are periodic d-2

 x_1 is aperiodic

all x_i are aperiodic

all x_i are periodic $d_i = 4$

def.: Given a Markov chain $\{X_n : n \in \mathbb{N}\}$ with $X_n : \Omega \to \mathbb{S}$.

If $\sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$ then x_i is transient, (A state is transient iff there is a non-zero probability that it is never reached again and recurrent otherwise.)

if
$$\sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$$
 then x_i is recurrent.

If x_i is recurrent and aperiodic, then x_i is ergodic,

if $\forall x_i \in \mathbb{S} : x_i$ is ergodic, then $\{X_n : n \in \mathbb{N}\}$ is ergodic.

(The Markov chain is ergodic if all states are ergodic.)

def.: Given a Markov chain $\{X_n : n \in \mathbb{N}\}$ with $X_n : \Omega \to \mathbb{S}$.

stationary distribution:

$$P_k := \lim_{n \to \infty} P_{jk}^{(n)} \quad \forall x_j \in \mathbb{S}$$

$$\sum_{x_i \in \mathbb{S}} P_i = 1$$

theorem 4:

A Markov chain has a stationary distribution iff it is ergodic.

example:

Every i.i.d. process is a Markov chain with g(x, U) := U $U \sim \mathcal{U}(0,1)$ and the stationary distribution is $\mathcal{U}(0,1)$.

Markov chains for random number gernation

praxis:

n > 1 \rightarrow "mixing time"

(In praxis, statistical tests decide if the stationary distribution is reached.)

example:

Random Walk

Increments $\{D_n : n \in \mathbb{N}\}$ is i.i.d. process

$$X_n := \sum_{i=1}^n D_i,$$

$$x_0 := 0$$

$$\rightarrow$$

$$X_n := \sum_{i=0}^n D_i, \qquad x_0 := 0 \qquad \rightarrow \qquad X_{n+1} = g(X_n, D_n) := X_n + D_n \text{ is a Markov chain.}$$

1d discreat space

$$P(D_i = 1) = P(D_i = -1) = \frac{1}{2}$$

→ stionary distribution is Gausian

Markov chain

$$\{X_n:n\in\mathbb{N}\}\qquad X_n:\Omega\to\mathbb{S}$$

$$X_n:\Omega o \mathbb{S}$$

stationary distribution

$$P_k := \lim_{n \to \infty} P_{jk}^{(n)} \quad \forall x_j \in \mathbb{S}$$

$$\forall x_j \in \mathbb{S}$$

end