Week 1 Summary Sheet

Wanrong Yang 27/09/2024

Before you start, make sure you understand the basic operation between sets including the Union (\cup), Intersection (\cap), Difference (-) and Complement (\bar{A})

Basic definitions

- 1. Alphabets
 - finite set of symbols
 - denoted as Σ , read as sigma
 - *examples* the binary alphabet, $\Sigma = \{0,1\}$ a set of all lower-case letters, $\Sigma = \{a,b,c,d,e,\ldots,x,y,z\}$

2. Strings

- finite sequence of symbols
- W, X, Y, Z
- examples

```
given an alphabet \Sigma = \{0,1\}, define a string as w = 010110 given an alphabet \Sigma = \{a,b,c\}, define a string as x = aabbcc all symbols must taken from a given alphabet
```

- 3. Empty strings
 - string with zero symbols, means nothing in the string
 - denoted as ε , read as epsilon
- 4. Length of a string
 - number of symbols in the string
 - length of w is |w|, read as the modulus of w
 - examples

```
a given alphabet \Sigma=\{0,1\}, a string w=010110, then |w|=6 for empty string, |\varepsilon|=0
```

- 5. Power of an alphabet
 - Σ^* is a set of all strings over an alphabet Σ , also known as kleene start operation
 - $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \cup \Sigma^{infinite}$
 - more specifically, Σ^k is a set of all strings of length k chosen from Σ
 - read as Σ to the power of k
 - $\Sigma^0 = \{\varepsilon\}$
 - given $\Sigma = \{0,1\}$, then we have $\Sigma^1 = \{0,1\}$ and $\Sigma^2 = \{00,01,10,11\}$
 - Σ^+ is a set of nonempty strings from Σ
 - $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \ldots \cup \Sigma^{infinite}$
 - $\Sigma^* = \Sigma^+ \cup \Sigma^0 = \Sigma^+ \cup \{\varepsilon\}$
 - powerset

a set of all possible subsets of the original set, including ε (\emptyset) and the set itself

- 6. Concatenation of strings
 - x = 1010, and y = 0111

- xy = 10100111
- guess what the concatenation of yx is
- $w\varepsilon = \varepsilon w = w$

7. Language

- a set of strings chosen from Σ^*
- denoted by L
- examples
 - 7.1 language of all strings consisting of n Os followed by n 1s, for $n \ge 0$ it can be denoted as $L = \{\varepsilon, 01, 0011, 000111...\}$
 - 7.2 a set of strings of Os and 1s with equal number of each

it can be denoted as $L = \{\varepsilon, 01, 10, 0011, 1100, 000111, 111000...\}$

7.3 a set of binary numbers whose value is a prime*

It can be denoted as $L = \{10,11,101,111,1011....\}$

- * A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. Number like 2, 3, 5, 7, 11, 13
- empty language, denoted by φ , read as phi, means no strings

Finite Automata (FA)

- 1. introduction
 - a mathematical model, and no memory
 - consists of a set of states, transitions among states based on input symbols
 - deterministic finite automate (DFA)
 - non-deterministic finite automata (NFA)
- 2. applications
 - digital circuits, lexical analyzer, pattern matching (searching for a webpage)
- 3. design a DFA to accept the strings start with 10
 - 3.1 transition diagram

3.2 list of transition functions

a DFA
$$D = \{Q, \Sigma, \delta, q_0, F\}$$

a set of states are denoted as $Q = \{q_0, q_1, q_2\}$

an alphabet is $\Sigma = \{0,1\}$

transition functions are as follows, δ , read as delta

- first transition is $\delta(q_0,1)=q_1$, then $\delta(q_1,0)=q_2$, then $\delta(q_2,0)=q_2$, and $\delta(q_2,1)=q_2$
- start state is q_0
- the final/ accept state is q₂

3.3 transition table

States	Input symbols	
	0	1
$\rightarrow q_0$	X	q_1
q_1	q_2	X
* q ₂	q_2	q_2