What is claimed is:

1	1.	A method for communicating over a time-division duplex channel, comprising:
2		(a) receiving a first packet at a first frequency from a first slave device
3		via the channel, wherein said first packet is received beginning at a
4		first slot; and
5		(b) determining whether said first packet is a multi-slot packet, and if so,
6		transmitting a second packet to a second slave device via the channel
7		at a second frequency different from said first frequency, wherein
8		said second packet is transmitted after said first slot and prior to the
9		end of said first packet.
1	2.	The method of claim 1, wherein said first packet comprises a header having a
2		packet type code indicative of the slot length of said first packet, and said
3		determining comprises inferring whether said first packet is a multi-slot packet
4		based on said packet type code.
1	3.	The method of claim 1, wherein said second packet is transmitted during the first
2		available transmit slot.
1	4.	A computer readable media embodying a method for communicating over a
2		time-division duplex channel, the method comprising:
3		(a) receiving a first packet at a first frequency from a first slave device
4		via the channel, wherein said first packet is received beginning at a
5		first slot; and
6		(b) determining whether said first packet is a multi-slot packet, and if so
7		transmitting a second packet to a second slave device via the channel
8		at a second frequency different from said first frequency, wherein
9		said second packet is transmitted after said first slot and prior to the
10		end of said first packet.
1	5.	The computer readable media of claim 4, wherein said first packet comprises a
2		header having a packet type code indicative of the slot length of said first packet
3		and said determining comprises inferring whether said first packet is a multi-slo
4		packet based on said packet type code.

- 1 6. The computer readable media of claim 4, wherein said second packet is transmitted during the first available transmit slot.
- 1 7. A wireless device for communicating over a time-division duplex channel, said wireless device comprising:
- a first radio configured to receive a multi-slot packet at a first frequency from a first slave via the channel, wherein said multi-slot packet is received during a first slot;
- 5 means for determining whether said first packet is a multi-slot packet; and
- a second radio configured to transmit a second packet to a second slave
- 7 responsive to said means making a positive determination, wherein said second packet
- 8 is transmitted via the channel at a second frequency different from said first frequency
- 9 after said first slot and prior to the end of said first packet.
- 1 8. The wireless device of claim 7, wherein said wireless device acts as a master to said first slave and said second slave.
- 1 9. The wireless device of claim 7, wherein said wireless device comprises a network access point coupled to a network.
- 1 10. The wireless device of claim 7, wherein said first radio comprises a receive-only radio.
- 1 11. The wireless device of claim 7, wherein said first and second radios comprise 2.4 GHz Bluetooth radios.
- 1 12. The wireless device of claim 7, wherein said first packet comprises a header 2 having a packet type code indicative of the slot length of said first packet, and
- 3 said means for determining comprises means for inferring whether said first
- 4 packet is a multi-slot packet based on said packet type code.
- 1 13. The wireless device of claim 7, wherein said second packet is transmitted during the first available transmit slot.
- 1 14. A method for selectively utilizing a plurality of transceivers to facilitate
- 2 communications between a primary device and a plurality of secondary devices
- in a network, the method comprising:

	- 19 -	
4	(a) defining a duplex communication channel using a plurality of time	
5	slots and a plurality of communication frequencies, each time slot	
6	having an associated communication frequency;	
7	(b) tuning a first transceiver to a sequence of frequencies based on the	
8	passing of time slots;	
9	(c) detecting a first portion of a multi-slot packet in a first time slot;	
10	(d) timing said first transceiver to the communication frequency	
11	associated with said first slot for a number of slots needed to	
12	correspond to said multi-slot packet; and	
13	(e) during said number of slots, tuning a second transceiver to	
14	communication frequencies in accordance with the defined duplex	
15	communication channel.	
1	15. A method for communicating between a primary device and a plurality of	
2	secondary devices in a network, the method comprising:	
3	(a) defining a duplex communication channel using a plurality of time	
4	slots and a plurality of communication frequencies, each time slot	
5	having an associated communication frequency;	
6	(b) receiving a first portion of a packet from a secondary device in a first	
7	time slot at a first communication frequency; and	
8	(c) during a second time slot,	
9	transmitting a packet using the communication frequency	
10	associated with said second time slot in the definition of the	
11	duplex communication channel, and	
12	receiving a second portion of said packet from said	
13	secondary device at said first communication frequency.	
1	16. A system comprising:	
2	a time-division duplex channel;	
3	a first slave device configured to transmit a first packet over said time-division	
4	duplex channel at a first frequency during a first time slot;	
5	a master device, configured to receive said first packet, to determine whether	
6	said first packet is a multi-slot packet, and if so, to transmit a second packet over said	
7	time-division duplex channel at a second frequency different from said first frequency,	

- 8 wherein said second packet is transmitted after said first slot and prior to the end of said
- 9 first packet; and
- a second slave device configured to receive said second packet.
- 1 17. The system of claim 16, wherein said master device is master of a piconet that
- 2 includes said first slave and said second slave.
- 1 18. The system of claim 16, wherein said master device comprises a network access
- 2 point coupled to a network.
- 1 19. The system of claim 16, wherein said first packet comprises a header having a
- 2 packet type code indicative of the slot length of said first packet, and wherein
- 3 said master device is configured to infer whether said first packet is a multi-slot
- 4 packet based on said packet type code.
- 1 20. The system of claim 16, wherein said second packet is transmitted during the
- 2 first available transmit slot.