DEMAND FORECASTING OF A FIRST-TIER SUPPLIER IN AUTOMOTIVE INDUSTRY USING NONLINEAR AUTOREGRESSIVE NETWORK WITH PARSIMONIOUS VARIABLES

SCHOOL OF INDUSTRIAL ENGINEERING

MASTER OF SCIENCE

Kimchann Chon

20195840

CONTENTS

- 1. Problem Statement
- 2. Exiting Studies and Methods
- Method Trends and Importance of The Study
- 4. Purpose of The Study
- 5. Data Analyzing
- 6. Parsimonious Variables Selection
- 7. Method
- 8. Results
- 9. Conclusion

1. PROBLEM STATEMENT

Facing an issue in predicting future demands

- Dealing with a burden of inventory management
 - Carrying cost
 - direct and indirect cost

1. PROBLEM STATEMENT

Inconsistency orders causing "Bullwhip effect"

1. PROBLEM STATEMENT

- Design and build a Demand Forecasting model (planning)
 - Production management
 - Capability preparation
 - Inventory tracking
 - Commodity

- Prevent partners' distrust
- Narrow fluctuation interval

2. EXITING STUDIES AND METHODS

 A traditional method (Auto regressive integrated moving average (ARIMA) has been applied with a good performances (Box et al., 2015).

Previous Studies	Method	MAPE
Fattah et al., 2018	ARIMA (1, 0, 1)	13%
Sen et al., 2016	ARIMA (1,0,0) × (0,1,1)	22%
Udom and Phumchusri, 2014	ARIMA (1,0,1)	24%

- Artificial neural network (ANN) has been integrated for forecasting in most sectors to deal with big datasets (Hsu et al., 1995).
 - Ex. Kochak and Sharma (2015) studied the demand forecasting by applying ANN, and the forecasting resulted an effective performance and accuracy as 6% of MAPE

3. METHOD TRENDS AND IMPORTANCE OF THE STUDY

- Nonlinear autoregressive exogenous network (NARX)
 - Historical data
 - External variables

- Many studies have attempted using NARX (Cadenas et al., 2016; Pisoni et al., 2009; Ruslan et al., 2014; Boussaada et al., 2018; Taqvi et al., 2020)
 - Wind speed,
 - Air pollution level,
 - Flood water level,
 - Solar radiation, and
 - Fault detection
- Lacking studies in applying NARX in first-tier supplier in automotive industry

4. PURPOSE OF THE STUDY

- Build models
 - ARIMA
 - NARX
- Determine optimal parameters
- Analyze time-lag effects of the external variables and historical demands
- Selection parsimonious external variables
- Compare model performances

- Data sets in three sub-sets
 - Train (70%),
 - Validate (15%)
 - Test (15%)

Figure.4. The plot of the actual demand

Figure.5. The plot of Moving average (span = 30) of the pre-order and actual demand

Figure.8. The plot of the actual demand and sale volume in two weeks

- Parsimonious Variables Selection
 - Stepwise regression
 - o holiday number: p < 0.001
 - o pre-order amount: p < 0.001

- Correlation analysis
 - o holiday number : 0.734 to 0.725
 - o pre-order amount: 0.813 to 0.780

Correlation analysis

autocorrelation function (ACF)

partial autocorrelation function (PACF)

Auto Regression Integrated
 Moving Average (ARIMA)

- Proposing NARX Network
 - 3 layers (input, hidden, and output)
 - 2 inputs (pre-order amount and holiday number) with 2 time-lags
 - 4 nodes in the hidden layers

Artificial neural network with parsimonious variables (the image adapted from MathWorks, Inc.)

Neural network

Figure.16. A neural networks structure (Adapted from Yılmaz, Aci, and Aydin, 2015)

Figure.19. Series-Parallel architecture (Adapted from MathWorks, Inc.)

Training and validation performance

 RMSE of the proposed model was better than an ARIMA model in both training (18%) and testing (15%) sets

 R2 between the predicted demands and actual demands was 96% and 94% for the training and testing sets

	TRAINING			TESTING		
	MSE	RMSE	\mathbb{R}^2	MSE	RMSE	\mathbb{R}^2
ARIMA	7155	85	95%	5663	75	92%
NARX (4 Nodes)	4969	70	96%	4081	64	94%

 RMSE of the proposed model was better than an ARIMA model in both training (18%) and testing (15%) sets

 R2 between the predicted demands and actual demands was 96% and 94% for the training and testing sets

	TRAINING			TESTING		
	MSE	RMSE	\mathbb{R}^2	MSE	RMSE	\mathbb{R}^2
ARIMA	7155	85	95%	5663	75	92%
NARX (4 Nodes)	4969	70	96%	4081	64	94%

9. CONCLUSION

- Determined the inputs and parameters of proposed NARX in a systematical way
- Selected two parsimonious variables in order to avoid multicollinearity
- Decided the number of input-out delay as 2 based on ACF and PACF
- Determined the node number for the hidden layer as 4 by analyzing the learning performance
- Further study:
 - Transfer learning to adapt data characteristics
 - Alternation of availability of data sets

Q & A