

Famous Last Question

Wenn die Abtastorte zufällig sind, wieso sieht man noch die niedrigen Frequenzen?

Bildrestauration

- Wiederherstellung eines ungestörten Bildes aus einem gestörten Bild
- Voraussetzungen
 - Gestörtes Bild ist bekannt
 - Störung kann in einer invertierbaren Form beschrieben werden
- Fragestellungen
 - Geeignete Repräsentation der Störung
 - Bestimmung der Störung
 - Invertierung der Störung

Störoperator

- Störung wird als linearer Operator A beschrieben
 - Modell: Af = g
 - Falls Störung $\bf A$ bekannt und invertierbar ist, kann das ungestörte Bild $\bf f$ aus $\bf f=A^{-1}g$ aus dem gestörten Bild $\bf g$ berechnet werden
- Weitere Eigenschaft des Störoperators: Verschiebungsinvarianz
 - leicht regularisierbar und invertierbar
 - Ein verschiebungsinvarianter Operator wirkt im gesamten Bild gleich

$$A \circ f(x+a, y+b) = [A \circ f](x+a, y+b)$$

Verschiebungsinvarianz und Konvolution

Verschiebungsinvarianz bedeutet, dass die Zeilen von $\bf A$ durch zyklische Verschiebung aus einer Zeile gewonnen werden können, z.B. bei einer Bildzeile (1-D Bild):

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_M \\ a_M & a_1 & a_2 & & a_{M-1} \\ a_{M-1} & a_M & a_1 & & & \\ & \dots & & \dots & & \\ a_2 & & & a_1 \end{pmatrix}$$

Wegen der zyklischen Verschiebung der Zeile in ${f A}$ kann die Störung als Faltung des Bildes ${f f}$ mit einem Störoperator ${f h}$ ausgeführt werden

$$(h * f)(m,n) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h(i,j) \cdot f(i-m,j-n)$$

Beispiel I: Bewegungsunschärfe

- Über einen Zeitraum Δt wird ein Objektpunkt ${\bf p}$ auf immer andere Punkte auf dem CCD-Chip abgebildet.
- Bei unbewegter Kamera sei die Bildhelligkeit des abgebildeten Punkts h.
- ... dann ist sie bei bewegter Kamera $h/\Delta s$, wobei Δs die zurückgelegte Strecke ist.
- Wenn Δs für alle Punkte gleich ist, dann lässt sich die Veränderung durch eine Faltung beschreiben.

Bewegungsunschärfe

- Faltungskern ist eine Funktion w mit $w(t \cdot \cos \alpha, t \cdot \sin \alpha) = \begin{cases} \frac{1}{\Delta s} & \left| \frac{t}{2} \right| < \Delta s \\ 0 & sonst \end{cases}$
- Der Winkel α gibt die Bewegungsrichtung an.
- Die Strecke Δs gibt die Strecke an, um die sich der Punkt bewegt hat:

$$\Delta s = \frac{f}{Z} \cdot \frac{\Delta S}{p}$$

f: Brennweite

Z: Objektabstand

 Δs : Bewegung in der *X-Y*-Ebene

p: Pixelgröße

Bewegungsunschärfe

Repräsentation linearer Störungen

- Jede verschiebungsinvariante, lineare Operation wird vollständig durch die Faltungsfunktion beschrieben.
- Die Faltungsfunktion beschreibt die Operation f
 ür beliebige Bilder
- Die Faltungsfunktion kann als Resultat der Veränderung eines Punkts erzeugt werden
- Punktantwort = Point Spread Function (PSF)

Beispiel II: Fokussierungsunschärfe

• Maß der Unschärfe hängt vom Punktabstand z, der Brennweite der Linse f und der Kammerkonstante f_k ab.

• Linsengesetz
$$\frac{1}{z} = \frac{1}{f} + \frac{1}{f_k} \Leftrightarrow f_k = \frac{zf}{f - z}$$

• Größe des Unschärfekreises:

$$\frac{d}{f} = \frac{s}{f_k - f} \iff s = \frac{(f_k - f)d}{f} = \frac{f_k d}{f} - d = \frac{z}{f - z} - d$$

• Unschärfe kann durch Aufnahme eines punktförmigen Testobjekts angenähert werden.

Beispiel – Mikroskopische Aufnahmen

Mikroskopische Aufnahmen

Aufnahmen mit unterschiedlicher Fokustiefe generieren = Schichtstapel

3d-Rekonstruktion

• Einzelbilder mit unterschiedlicher Fokussierung

• Ursprung der PSF wird in z-Richtung verschoben, um die unterschiedlichen

Ebenen zu restaurieren

Bestimmung einer unbekannten PSF

PSF von Testbildern

Annahme: Störung ist unveränderlich und Testaufnahme ist möglich.

Aufnahme ist eine Näherung für die PSF.

PSF aus dem aufgenommenen Bild

Testaufnahme ist nicht möglich: Näherungsweise Bestimmung der PSF durch Betrachtung von Punkten oder Linien im gestörten Bild. Approximation aus verschiedenen Richtungen

Kanten

Die meisten Bilder weisen wenige Linien oder Punkte auf, aber Kanten können in fast jedem Bild gefunden werden.

Kante

- Was sind Kanten?
- Wie können Kanten zur Bestimmung der PSF benutzt werden?

1D-Kanten

Die Stärke einer Kante hängt von der Steigung der Funktion ab:

• Betrag der ersten Ableitung bestimmen.

Für diskrete Funktionen:

• Ableitung wird durch Differenz angenähert

Approximation der Ableitung

Aus Differentialen werden Differenzen:

$$\partial f(x)/\partial x \approx [f(x)-f(x-1)]/[x-(x-1)]$$

oder

$$\partial f(x)/\partial x \approx [f(x+1)-f(x)]/[(x+1)-x]$$

Auch andere Näherungsverfahren sind möglich.

Bsp.:
$$\partial f(x)/\partial x \approx [f(x)+f(x+1)-f(x-1)-f(x-2)] / [x+x+1-(x-1)-(x-2)]$$

Kanten im 2-D Raum: Gradienten

Gradient im kontinuierlichen Raum (x,y): Vektor der partiellen Ableitungen der Bildfunktion in x- und y-Richtung:

$$\vec{G}(f(x,y)) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}$$

Richtung: Richtung der größten Steigung.

Länge: Stärke der stärksten Steigung.

Approximation des Gradienten: Differential wird durch Differenz approximiert:

z.B.
$$\vec{G}(f(m,n)) \approx (G_x(m,n) - G_y(m,n)) = (f(m,n) - f(m-1,n) - f(m,n) - f(m,n-1))$$

Die Länge des Gradienten ist sein Betrag oder näherungsweise $|G_\chi| + |G_\gamma|$.

Elemente des Gradienten

Betrag : $\sqrt{(Gx^2 + Gy^2)}$

Richtung: $tan^{-1}(Gy/G_x)$

Gradientenlänge

PSF aus Kanten

Invertierung der Störung

• Störeinfluss auf ein Bild mit NxN Pixeln lässt sich als lineares Gleichungssystem mit NxN Unbekannten repräsentieren.

- Invertierung: Lösung großer Gleichungssysteme
- Besser: Dekonvolution im Frequenzraum

Invertierung der Störung

Überführung der Repräsentation in den Frequenzraum:

$$G(u,v) = \mathbf{FT} \big[g(m,n) \big] = \mathbf{FT} \big[[h * f](m,n) \big] = H(u,v) \cdot F(u,v)$$

• Invertierung:

$$f(m,n) = \mathbf{F} \mathbf{T}^{-1} [G(u,v)/H(u,v)]$$
 (Inverse Filterung)

Inverse Filterung

Vollständige Rückgewinnung der Information aus den gestörten Daten

Bewegungsunschärfe

Bewegungsunschärfe

Resultat der Inversen Filterung $\mathbf{FT}^{-1}[\mathbf{FT}(g(u,v))/\mathbf{FT}(PSF(u,v))]$

Was ist geschehen?

Rauschen als Störeinfluss

Bild hat ein (geringes) Rauschen n überlagert (SNR in diesem Fall besser als 100:1):

$$g(m.n) = [h * f](m,n) + n(m,n) | G(u,v) = H(u,v) \cdot F(u,v) + N(u,v)$$

Inverse Filterung:

$$G_f(u,v) = G(u,v)/H(u,v) = (H(u,v) \cdot F(u,v) + N(u,v)) / H(u,v)$$

= $F(u,v) + N(u,v)/H(u,v)$

Bildrauschen

• nicht-deterministischer (nicht wiederholbarer) Einfluß

• Beschreibbar als Wahrscheinlichkeit, wie ein Pixel gestört ist.

Quantenrauschen

• Impulsrauschen

Normalverteiltes Rauschen

- Modell für Quantenrauschen (Wahrscheinlichkeit, dass Lichtquant geradlinig ausbreitend auf den Sensor trifft).
- Gauß'sche Normalverteilung

$$n(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\left(\frac{x - x_0}{\sigma}\right)^2\right)$$

- Erwartungswert x_0 wird mit $x_0 = 0$ angenommen.
- Varianz σ^2 ist der Grad des Rauschens

Beispiel

Signal-Rausch-Verhältnis

- Charakterisierung des Grads des Rauschens.
- Signal: Unterschied zwischen Objekt und Hintergrund. Falls das Objekt nicht bekannt ist:
 - Maximaler Grauwert
 - Durchschnittlicher Grauwert
- Rauschen ist über Standardabweichung σ gegeben
- SNR-Maße z.B.

$$SNR_{\max}(f) = \frac{f_{\max}}{\sigma} \qquad SNR_{avg} = \frac{\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-2} f(m,n)}{\sigma}$$

Was taugt das SNR

- Signalabstand muss für das erkennende Objekt bestimmt werden.
- Wahrnehmung hängt von Kontrast und Größe eines Objekts ab

"Weißes Rauschen"+Signal

Weißes Rauschen ist auch im Frequenzraum gleichverteilt.

Amplitude des Signals fällt rasch mit steigender Frequenz

Weißes vs. "farbiges" Rauschen

Inverse Filterung: verrauscht vs. unverrauscht

Wiener Filter

Optimale Rekonstruktion des Erwartungswerts der Bildfunktion
$$H(u,v)^{-1} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \gamma \binom{S_{\eta}(u,v)}{S_f(u,v)}}$$

mit $S_{\eta}(u, v)$ - Spektrum des Rauschen

 $S_f(u,v)$ - Spektrum des ungestörten und unverrauschten Bildes

 γ - Steuerungsparameter für die Dämpfung

 $(\gamma = 1)$: Wiener Filter, $\gamma \neq 1$: parametrisches Wiener Filter)

Für $S_n(u, v) = 0$ wird aus dem Filter ein Inverses Filter $H(u, v)^{-1}$.

Heuristische Variante:

$$H(u,v)^{-1} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}$$

(falls Spektren von Rauschen und ungestörtem Bildes unbekannt sind)

Beispiel

gestörtes Bild

durch Inverse Filterung "restauriert"

Heuristisches Wiener Filter

Was sollten Sie heute gelernt haben?

- Lineares Modell der Bildrestauration
- Point Spread Function und dessen Berechnung
- Kanten und Gradienten
- Rauschen: Repräsentation, Messung, Auswirkungen
- Inverse Filterung, Wiener Filter

Famous Last Question

Unbekannte Störung

Was tun??