Fundamentals of Cryptography Homework 7

周书予

2000013060@stu.pku.edu.cn

December 3, 2022

Problem 1

$$\mathsf{Aggregate}(m_1,\sigma_1,\cdots,m_\ell,\sigma_\ell) = \prod_{i=1}^\ell \sigma_i$$

$$\mathsf{Verify}(pk,m_1,\cdots,m_\ell,\sigma) = \left[\sigma^e \equiv \prod_{i=1}^\ell H(m_i) \bmod N\right]$$

Assume there is a PPT adversary (the forger) \mathcal{A} who braks this aggregate signature scheme, we'll show that we can construct another PPT adversary \mathcal{A}' who breaks RSA assumption.

 \mathcal{A}' works as follows:

- \mathcal{A}' is given N, y, e as described in RSA assumption. The goal of \mathcal{A}' is to find x such that $x^e \equiv y \mod N$.
- \mathcal{A}' prepares the answer for the oracle queries that \mathcal{A} will ask, by choosing at random $r_1, \dots, r_{p(n)} \in \mathbb{Z}_n^*$ and an index $j \in \{1, \dots, p(n)\}$, and let the answer to the *i*-th query to H be

$$H(m_i) = \begin{cases} y \cdot r_i^e, & i = j \\ r_i^e, & i \neq j \end{cases}$$

where p(n) is some polynomial.

Intuitively, \mathcal{A}' is betting on the chance that \mathcal{A} will include its j-th oracle query in its output (the forgery).

- \mathcal{A}' prepares the answer for the signature queries that \mathcal{A} will ask. Typically when asked $\mathsf{Sign}(sk, m_i)$ for some $i \neq j$, \mathcal{A}' simply returns r_i . When asked $\mathsf{Sign}(sk, m_i)$, \mathcal{A}' fails.
- \mathcal{A}' runs the forger algorithm \mathcal{A} , and answer its both oracle and signature queries.
- \mathcal{A}' retrieves the output $(m_{i_1}, \dots, m_{i_\ell}, \sigma)$ of \mathcal{A} . If $j \notin \{i_1, \dots, i_\ell\}$ it fails, otherwise \mathcal{A}' knows that w.p. at least 1/poly(n),

$$\sigma^e = \prod_{k=1}^{\ell} H(m_{i_k}) = y \cdot \prod_{k=1}^{\ell} r_{i_k}^e$$

then it simply outputs $x = \sigma \cdot \prod_{k=1}^{\ell} r_{i_k}^{-1}$ such that $x^e = y$.

One can see that

 $\Pr[\mathcal{A}' \text{ breaks RSA assumption}] \geqslant \frac{1}{p(n)} \Pr[\mathcal{A} \text{ breaks this aggregate signature scheme}] = \frac{1}{\text{poly}(n)}$ So \mathcal{A}' indeed breaks RSA assumption.

Problem 2

Part A

The signature algorithm Sign first finds $H(m)^{-1} \mod \varphi(N)$, which is efficient via 辗转相除. Then it uses the fast power algorithm to calculate $g^{H(m)^{-1}} \mod N$.

Notice that addition and multiplication operation of \mathbb{Z}_N elements can be down in poly(n) time, and only poly(n) operations are needed in the above process, thus all thins can be done in poly(n)-time.

Part B

Assume there is a PPT adversary \mathcal{A} who braks Gennaro-Halevi-Rabin signature scheme, we'll show that we can construct another PPT adversary \mathcal{A}' who breaks RSA assumption.

 \mathcal{A}' works as follows:

- \mathcal{A}' is given N, y, e as described in RSA assumption. The goal of \mathcal{A}' is to find x such that $x^e \equiv y \mod N$.
- \mathcal{A}' prepares the answer for the oracle queries that \mathcal{A} will ask, by choosing at random $e_1, \dots, e_{p(n)} \in \mathbb{Z}_n^*$ (except e_j , it sets $e_j = e$ without sampling) and an index $j \in \{1, \dots, p(n)\}$, and let the answer to the *i*-th query to H be $H(m_i) = e_i$. Let $E = \prod_{i \neq j} e_i$, \mathcal{A}' sets $g = y^E \mod N$ as public key and sends it to \mathcal{A} .

For simplicity, we suppose that \mathcal{A}' chooses such e_i -s that $gcd(e_i, e) = 1$ for all $i \neq j$, which means that gcd(E, e) = 1. In the real world, this succeeds with probability at least 1/poly(n).

Intuitively, \mathcal{A}' is betting on the chance that \mathcal{A} will use its j-th oracle query as its output (the forgery).

- \mathcal{A}' prepares the answer for the signature queries that \mathcal{A} will ask. Typically when asked $\mathsf{Sign}(sk, m_i)$ for some $i \neq j$, \mathcal{A}' simply returns y^{E/e_i} (notice that E/e_i is an integer when $i \neq j$). When asked $\mathsf{Sign}(sk, m_j)$, \mathcal{A}' fails.
- \mathcal{A}' runs the forger algorithm \mathcal{A} , and answer its both oracle and signature queries.
- \mathcal{A}' retrieves the output (m, σ) of \mathcal{A} . If $m \neq m_j$ it fails, otherwise \mathcal{A}' knows that w.p. at least 1/poly(n),

$$\sigma^e = y^E$$

now \mathcal{A}' computes two integer a, b such that ae + bE = 1 by extended Euclidean algorithm, and outputs

$$x = \sigma^b \cdot y^a$$

such that

$$x^e = (\sigma^e)^b \cdot y^{ae} = y^{bE} \cdot y^{ae} = y$$

Part C

$$\mathsf{Verify'}(pk, m_1, \cdots, m_\ell, \sigma) = \left[\sigma^{\prod_i H(m_i)} = g^{\sum_i \prod_{j \neq i} H(m_j)}\right]$$

Part D

(We assume that m_1, \dots, m_ℓ be a sequence of distinct messages such that all $H(m_i)$ -s are pairwise-coprime.)

With aggregate signature σ and messages m_1, \dots, m_ℓ given, one can calculate $\sigma^{\prod_{i \neq 1} H(m_i)}$ which gives the value

$$v_1 = \sigma^{\prod_{i \neq 1} H(m_i)} = g^{\frac{\prod_{i \neq 1} H(m_i)}{H(m_1)} + \sum_{j=2}^{\ell} \prod_{i \neq 1, i \neq j} H(m_i)}$$

Since for all $j \in \{2, \dots, \ell\}$, the value $g^{\prod_{i \neq 1, i \neq j} H(m_i)}$ can be calculated efficiently, one can further obtain the value

$$v_2 = v_1 / \prod_{j=2}^{\ell} g^{\prod_{i \neq 1, i \neq j} H(m_i)} = g^{\frac{\prod_{i \neq 1} H(m_i)}{H(m_1)}}$$

Notice that by our assumption, $\gcd\left(H(m_1),\prod_{i\neq 1}H(m_i)\right)=1$, thus we can compute two integer a,b such that $aH(m_1)+b\prod_{i\neq 1}H(m_i)=1$, and it follows

$$v_3 = g^a v_2^b = g^{\frac{aH(m_1) + b \prod_{i \neq 1} H(m_i)}{H(m_1)}} = g^{1/H(m_1)}$$

which gives the signature of message m_1 .

Problem 3

Notice that the equation

$$x^e = q \bmod N$$

has and only has one solution

$$x = q^d \bmod N$$

for some $g \in \mathbb{Z}_N^*$, and $ed = 1 \mod \varphi(N)$. This suggests that Verify-s in the RSA signature and the Gennaro-Halevi-Rabin Signature are both canonical.

And since both Sign-s are deterministic, existential unforgeability implies strong unforgeability.