

Introduction

• A circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre).

• In the above diagram, the point O is the centre of circle, OP is the radius of circle and AOB is the diameter of the circle.

Some Basic Terms:

(1) Circumference of a Circle:

Circumference of the circle or perimeter of the circle is the measurement of the boundary of the circle. It is calculated by the formula $2\pi r$, where r is the radius of the circle.

(2) Chord of a Circle:

The line segment within the circle joining any two points on the circumference of the circle is called "chord of the circle". Diameter is the longest chord of a circle.

A line intersecting a circle in two distinct points is called "Secant of circle".

(4) Tangent of a Circle:

A tangent to a circle is a line that intersects or touches the circle at only one

point.

(5) Point of Contact:

The common point of the tangent and the circle is called the 'point of contact' and the tangent is said to 'touch' the circle at the common point.

THEOREM 10.1:

The tangent at any point of a circle is perpendicular to the radius through the point of contact. reaksh

Given: A circle with Centre O and a tangent XY at a point P to the circle.

To Prove: OP is perpendicular to XY

Construction: Take a point Q on XY and join OQ.

Proof: We need to show that line OP is the shortest of all other lines joined from 0 to XY.

> OP = OM (radii of same circle) We see,

$$OQ = OM + MQ$$

$$OQ > OP \quad (OP = OM)$$

Example: A tangent PQ at a point P of a circle of radius 5cm meets a line through the centre O at a point Q so that OQ = 12cm. Find the length PQ?

SOLUTION: By theorem 10.1, we know that OP IPQ

By applying Pythagoras theorem in Δ OPQ, we have

$$OP^{2} + PQ^{2} = OQ^{2}$$

 $(5)^{2} + PQ^{2} = (12)^{2}$
 $PQ^{2} = 144 - 25 = 119$
 $PQ = \sqrt{119} cm$

THEOREM 10.2:

The lengths of tangents drawn from an external point to a circle are equal.

Given: A circle with centre O have two tangents PQ and PR drawn from an external point P.

To Prove : PQ = PR

Construction: Join OP, OQ and OR.

Proof: In △POQ & △POR

$$\angle$$
 OQP = \angle ORP (each 90° from theorem 10.1)

$$\therefore$$
 $\triangle POQ \cong \triangle POR$ by RHS Criterion

Example: In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then $\angle PYQ$ is equal to

SOLUTION: From the figure, OP \perp TP and OQ \perp TQ (By theorem 10.1) i.e \angle OPT = 90° and \angle OQT = 90°

Now, OQTP is a Quadrilateral and Sum of all its interior angles is 360°

<u>Example:</u> Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Given: PQ and RS are two tangents and AB is the diameter.

To Prove : PQ || RS

Proof: LOAQ = 90° and LOBR = 90° LOBR = 90° [By theorem 10.1]

Also, LOAQ = LOBR [Alternate interior angles are equal]

=> PQ || RS.

Example: Two concentric circles are of radii 5cm and 3cm. Find the length of the chord of the larger circle which touches the smaller circle.

SOLUTION: We observe that PQ is a tangent to the smaller circle.

Now, In DOMA applying Pythagoras theorem, we have

$$OM^{2} + AM^{2} = OA^{2}$$
 $AM^{2} = 25 - 9 = 16$
 $(3)^{2} + AM^{2} = (5)^{2}$ $AM = (4)^{2}$
 $9 + AM^{2} = 25$ $AM = 4cm$

Now, In △OAB, OM⊥AB

MA = MB (perpendicular from centre of the circle bisects the chord)

$$AB = 2MA = 2 \times 4 = 8cm$$

Therefore, the length of the chord of the larger circle is 8cm.

Example: A quadrilateral ABCD is drawn to circumscribe a circle. Prove that

$$AB + CD = AD + BC$$

SOLUTION: It can be observed that

AP = AS (tangents from point A to circle)

BP = BQ (tangents from point B to circle)

CR = CQ (tangents from point C to circle)

DR = DS (tangents from point D to circle)

$$\Rightarrow$$
 AB + CD = AD + BC

Given: ABCD is a parallelogram i.e. AB = CD & AD = BC

To Prove: ABCD is a rhombus i.e. AB = BC = CD = DA

Proof: From the figure, AP = AS [By theorem 10.2](1)

BP = BQ [By theorem 10.2](2)

CR = CQ [By theorem 10.2](3)

DR = DS [By theorem 10.2](4)

Adding all these above 4 equations, we get

$$AP + BP + CR + DR = As + BQ + CQ + Ds$$

$$\Rightarrow$$
 AB + CD = AD + BC

$$\Rightarrow$$
 AB + AB = BC + BC [AB = CD & AD = BC]

$$=>$$
 2AB = 2BC

$$..$$
 AB = BC = CD = AD

So, ABCD is a rhombus.

Hence proved.

*After studying from these notes

*Note: Worksheet important questions of all typology with answers is provided as a separate PDF on website padhleakshay.com

