MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

7^a Lista de Exercícios

Para entregar: exercícios 15, 23, 37 e 42 do capítulo 10 do Elonzão; exercícios 1 e 2 abaixo.

1-) Seja:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0, & x \leq 0 \\ \exp(-1/x), & x > 0 \end{cases}$$

Mostre que f é de classe C^{∞} e não é analítica.

- **2-)** Sejam $a, b \in \mathbb{R}$, a < b. Mostre que existe $\phi : \mathbb{R} \to \mathbb{R}$ de classe C^{∞} tal que: (i) $0 \le \phi \le 1$; (ii) $\phi \equiv 0$ em $(-\infty, a]$ e $\phi \equiv 1$ em $[b, +\infty)$. Sugestão: use a questão anterior.
- **3-)** Exercícios do capítulo 12 do Elonzinho.
- 4-) (PRODUTO DE SÉRIES DE POTÊNCIAS) Sejam $\sum a_n$ e $\sum b_n$ séries absolutamente convergentes de números reais. Mostre que a série $\sum c_n$ dada por $(\forall n \ge 0)$ $c_n \doteq \sum_{k=0}^n a_k b_{n-k}$ é absolutamente convergente e $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$. Conclua que, se $\sum a_n x^n$ e $\sum b_n x^n$ são séries de potências convergentes em (-r,r), então a série de potências $\sum c_n x^n$ dada por $(\forall n \ge 0)$ $c_n \doteq \sum_{k=0}^n a_k b_{n-k}$ é convergente em (-r,r) e, para todo $x \in (-r,r)$, $\sum_{n=0}^{\infty} c_n x^n = (\sum_{n=0}^{\infty} a_n x^n)(\sum_{n=0}^{\infty} b_n x^n)$.
- **5-)** Exercícios 2, 4, 9, 10, 11, 15, 16, 21, 23, 26, 29, 30^* , 31, 33, 35, 37, 40, 42 e 43^{**} do capítulo 10 do Elonzão.

Observação:

- * O exercício 30 é opcional e não faz parte do conteúdo que será cobrado nas provas. Uma sugestão para o mesmo é a seguinte: use o critério de Dirichlet para convergência uniforme (questão 29); para mostrar que a seqüência das reduzidas de $\sum \text{sen}(nx)$ é uniformemente limitada em $[\epsilon, 2\pi \epsilon]$, use a exponencial complexa (vide definição no Rudin, caso não conheça) e a identidade $e^{ix} = \cos x + i \sin x$.
- ** Para fazer o exercício 43, imite a demonstração (página 397 do Elonzão) de que, se $f(x) = \sum a_n x^n$ em (-r,r), e se $a_0 = f(0) \neq 0$, então existe uma série de potências $\sum b_n x^n$, convergente num intervalo $(-s,s) \subset (-r,r)$ tal que, para todo $x \in (-s,s)$, tem-se $1/f(x) = \sum b_n x^n$.