Heat Problems

specific heat of water = $4.18 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$ specific heat of ice = $2.10 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$ specific heat of steam = $2.00 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$ specific heat of steel = $4.50 \times 10^2 \text{ Jkg}^{-1}\text{K}^{-1}$

latent heat of vaporization water = $2.26 \times 10^6 \text{ Jkg}^{-1}$ latent heat of fusion water = $3.34 \times 10^5 \text{ Jkg}^{-1}$ specific heat of copper = $3.85 \times 10^2 \text{ Jkg}^{-1} \text{K}^{-1}$ specific heat of aluminium = $8.80 \times 10^2 \text{ J kg}^{-1} \text{ K}^{-1}$

NOTE: Value for Aluminium is $9.00 \times 10^2 \text{ J kg}^{-1} \text{ K}^{-1}$ in Exploring Physics.

1. 0.1 kg of an unknown metal is found to require 3.5 kJ to change its temperature from 25°C to 82°C. What is the specific heat of the metal?

2. The specific heat of copper is $3.85 \times 10^2 \, \mathrm{J \, kg^{\text{-}1} \, K^{\text{-}1}}$. A specific mass of copper has $1.74 \times 10^4 \, \mathrm{J}$ of energy added to it to change its temperature from $20^{\circ}\mathrm{C}$ to $80^{\circ}\mathrm{C}$. What was the mass of copper?

3. If 15.7 kJ of heat energy is added to 250 mL of water at 20°C, what will the new temperature be?

4. Over a period of 6 hours, a hot water bottle cools from 95°C to 20°C. If the hot water bottle held 2.5 L water, what is the rate of cooling in Js⁻¹?

5.	A kettle rated at 2000 W contains 1.8 L water at 15°C. If it runs for 3.5 minutes, will the water boil?
6.	How much heat energy is released when 423 g of steam at 100°C condenses to water also at 100°C ?
7.	4.87×10^5 J of heat are added to a mass of ice at 0° C. If the ice melts and becomes water at 21.5°C, what was the mass of ice?
8.	At what rate in Js^{-1} is a refrigerator absorbing heat if 2.15 kg of water at 21.5 $^{\circ}$ C is just frozen in 2.0 hours?

