

Volume Rendering

Volumetric Shading

Scientific Visualization Professor Eric Shaffer

Basic Idea

Shading allows viewers to perceive 3D shape and structure Can apply shading to the volumetric data
Use it to modify light emitted at a sample point

The Blinn-Phong Reflection Model

$$I_{
m p} = \underline{k_{
m a}i_{
m a}} + \sum_{m \; \in \; {
m lights}} (\underline{k_{
m d}(\hat{L}_m \cdot \hat{N})i_{m,
m d}} + k_{
m s}(\hat{R}_m \cdot \hat{V})^lpha i_{m,
m s})$$

The material values are generated by the transfer function

- k_a and $k_{m,s}$ and $k_{m,d}$
- Customary to use (1,1,1) for i_a and i_{m,s} and i_{m,d}

L is easy to compute given L_{pos} the light position: $L = \frac{L_{pos} - P}{\|L_{pos} - P\|}$

V can be computed using eyepoint E behind view plane: $V = \frac{E-P}{\|E-P\|}$

Can substitute H for R in the equation...with $H = \frac{V+L}{2}$ Need to compute the normal N....

The Gradient

$$\nabla f(p) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

Points in the direction of most rapid ascent in function values

Gradient of a function is normal to a contour of a function

Can use gradient as a normal...imagine point on the ray has been sampled from an isosurface

Approximating the Gradient

If the gradient cannot be determined analytically, can approximate it numerically e.g when function f is unknown

central difference formula

$$\nabla f(p) \approx \left| \frac{f(x+h,y,z) - f(x-h,y,z)}{2h}, \frac{f(x,y+h,z) - f(x,y-h,z)}{2h}, \frac{f(x,y,z+h) - f(x,y,z-h)}{2h} \right|$$

Use trilinear interpolation to sample scalar field values

Volumetric Shading

