Assignment 8

Chirag Mehta - AI20BTECH11006

Download all python codes from

https://github.com/cmapsi/AI1103-Probability-and -random-variables/tree/main/Assignment-8/ codes

and latex-tikz codes from

https://github.com/cmapsi/AI1103-Probability-and -random-variables/blob/main/Assignment-8/ main.tex

1 Problem

(CSIR UGC NET EXAM (Dec 2015), Q.106) Let $X_1, X_2, ..., X_n$ be independent and identically distributed, each having a uniform distribution on (0, 1). Let $S_n = \sum_{i=1}^n X_i$ for $n \ge 1$. Then, which of the following statements are true?

- A) $\frac{S_n}{n \log n} \to 0$ as $n \to \infty$ with probability 1.
- B) $\Pr\left(\left(S_n > \frac{2n}{3}\right) \text{ occurs for infinitely many n}\right) = 1$
- C) $\frac{S_n}{\log n} \to 0$ as $n \to \infty$ with probability 1.
- D) $\Pr\left(\left(S_n > \frac{n}{3}\right) \text{ occurs for infinitely many n}\right) = 1$

2 solution

Symbol	expression/definition
S_n	$\sum_{i=1}^n X_i$
μ_n	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$
	Independent continuous random
X	variable identical to $X_1, X_2,, X_n$

TABLE 4: Variables and their definitions

Given

$$S_n = \sum_{i=1}^n X_i, n \ge 1$$
 (2.0.1)

Dividing by *n* on both sides

$$\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i = \mu_n \tag{2.0.2}$$

It can be said that $X_1, X_2, ..., X_n$ are the trials of X. By definition

$$E[X] = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \lim_{n \to \infty} \frac{S_n}{n}$$
 (2.0.3)

$$\lim_{n \to \infty} \frac{S_n}{n} = E[X] = \frac{1}{2}$$
 (2.0.4)

$$\lim_{n \to \infty} \frac{S_n}{n} = E[X] = \frac{1}{2}$$

$$\therefore \lim_{n \to \infty} \frac{S_n}{n \log n} = 0$$
(2.0.4)

It is easy to observe from (2.0.4) that option C is false.

Using weak law, (2.0.4), and table (4)

$$\lim_{n \to \infty} \Pr(|\mu_n - E[X]| > \epsilon) = 0, \forall \epsilon > 0 \qquad (2.0.6)$$

∴
$$\Pr\left(\left(S_n > \frac{n}{3}\right) \text{ occurs for infinitely many n}\right) = 1$$
(2.0.7)

It can be easily implied from (2.0.6) that option B is false.

Fig. 4: Mean simulation with n=100