

The University of Aizu

Research Progress Seminar

Power-aware 3D-stacking-memory Neuromorphic Architecture with Layerwise Voltage Scaling

Ngo-Doanh NGUYEN - m5262108

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Motivation

*Y. Du. Decentralized Smart IoT. Encyclopedia

Computational Power for Edge Devices

AI Enabled Devices

- Improve Data Transfer

Efficiency

- + Reduce Latency
- + Reduce Power

*S. H. Tsang. Towards Data Science
High Complexity
for Edge Devices

Spiking Neural Net.

- Lightweight Inference
- Reduce Power Consumption
- Reduce Memory Footprint
- Reduce Hardware Area

*J.Hennessy, D. Patterson 2019 CACM

End of Moore's Law

3-D Stacking Arch.

- Reduce Latency
- Reduce Power Consumption
- Reduce Hardware Area

=> Low-power Spiking Neural Network with 3D-stacking-memory

- 1. Motivation
- 2. Approach
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Approaches (1)

- From 2D Architecture to 3D Architecture
 - Reduce hardware footprint
 - Shorten data movement
- Reduce power delivery

 (2n + a) x (2m + b)

 Mem 1

 Mem 0

 2nd Memory Die

 Mem 2

 Processing
 Elements

 Logic Die

 Package Substrate

2D hardware architecture

Package Substrate

3D hardware architecture

Approaches (2)

- Each layer in 3D architecture can have isolated power rails
 - Power-gating, voltage-scaling differently for each layer
 - Reduce supply voltage for low-priority layer or power-gate it
 - Maintain supply voltage for high-priority layer

Power management for each layer

Approaches (3)

- Spike Neural Network is spatial and temporal sparse
 - Lightweight inference
 - Low power delivery
- SNN has noise resilience
 - Against the affection of power-gate & voltage-scaling

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Proposal Hardware Architecture

- 3D Neuromorphic Computing Core (3D-NCC)
 - Split memory into subsets placed in multiple layers
 - Power-gate & under-voltage are applied separately to each memory layer => Lower power consumption
 - In-situ dynamic quantization for synaptic weightsMaintain accuracy

Weight operation (1)

Operation of 3D-NCC under normal condition

Operation of 3D-NCC with under-volting top layer

Weight operation (2)

Operation of 3D-NCC under power-gating top layer

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Accuracy vs. Power (1)

- Dataset: MNIST; SNN config. = 784:48:10 (1 3D-NCC)
- Power extraction with PrimeTime Synopsys
- Undervolt each layer (one-by-one) with the same volt.

Accuracy per Volt.

5/26/2023

Energy per Volt.
Ngo-Doanh Nguyen

Bit Error Rate per Volt.

Accuracy vs. Power (2)

Using both power-gating or under-volting for each layer

UV two top layers

PG top layer & UV second top layer

PG two top layers & UV two bottom layers

Hardware Complexity of 3D-NCC

- SNN config. = 784:48:10 (1 3D-NCC)
- Lib: NANGATE 45nm + OpenRAM + FreePDK 3D45 TSV
- Synthesize with Synopsis Design Compiler

	Technology	45nm		
	Frequency	100MHz		
	# LIF	48 LIFs		
	# Stacking Memory	4 layers		
#	bit of Synaptic Wegihts	8 bits		
Bit Co	nfiguration in Memory Layer	2-2-2-2		
	Total (3D-NCC)	809.98KGEs		
Gate	Memory Blocks	791.76KGEs		
Count	Crossbar & Address Decoder	9.68 <i>KGEs</i>		
	LIFs	8.52KGEs		

Hardware complexity of 1 3D-NCC

Comparison

Pick two random combinations to compare results

Parameters	Seo et al.	Kim et	TrueNorth	Loihi	ODIN	Ikechukwu	Karimi et	3D-NCC (This work)		
	[56]	al. [57]	[6]	[1]	[46]	et al. [58]	al. [59]	Nom. Case	Case 1 ¹	Case 2
Benchmark	MNIST	MNIST	MNIST	MNIST	MNIST	MNIST	MNIST	MNIST		
Accuracy (%)	77.2	84.5	91.94	96	84	79.4	99.2	95.35	94.84	88.77
Neuron Model	LIF	IF	IF	DenMem	LIF & Izhikevicz	LIF	LIF	LIF		
Synaptic Weight Storage	1-bit SRAM	4, 5, 14-bit SRAM	1-bit SRAM	1-to-9-bit SRAM	4-bit SRAM	8-bit SRAM	CTT twin-cell	8-bit SRAM		
Interconnect	2D	2D	2D	2D	2D	3D	2D	3D		
Implementation	Digital	Digital	Digital	Digital	Digital	Digital	Mix-signal	Digital		
Learning Rule	On-chip STDP	Stochastic Gradient Descent	Un- supervised	On-chip STDP	On-chip Stochastic SDSP	On-chip STDP	Off-chip	Off-chip		
Technology	45nm SOI	65nm	28nm	14nm FinFET	28nm FD-SOI	45nm	22nm FD-SOI	45nm		
Supply Voltage	0.55-1 V	0.45 V	0.7-1.05V	0.5-1.2 V	0.55-1 V	1.1 V	0.8 V	0.65V - 1.1V		
Energy per SOP (pJ)	N/A	N/A	26 (0.775V)	23.6 (0.75V)	8.4	189.3	8	244.28	191.46	81.16
Energy per SOP (pJ) (in 14nm)	N/A	N/A	4.902	23.6	1.078	10.86	4.32	14.02	10.98	4.65

likely same energy with difference in technology

 $^{^1}$ Case 1: $\{V_{m_0}=1.1V; V_{m_1}=1.1V; V_{m_2}=0.8V; V_{m_3}=0.8V\}$ (Low-power Mode I) 2 Case 2: $\{V_{m_0}=0.825V; V_{m_1}=0.8V; V_{m_2}=0V; V_{m_3}=0V\}$ (Low-power Mode III)

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Conclusion

- 3D SNN architecture called 3D-NCC
- Split memory word into subsets placed in separated layer
 - Apply power-gating & voltage-scaling to memory layer(s)
 - Reduce power consumption while maintaining accuracy
 - In-situ dynamic quantization
- UV two top layer reduces 21.62% power consumption with 0.51% accuracy loss
- PG two top layer & UV two bottom layers reduce
 66.77% power consumption with 6.58% accuracy loss

Schedule

- 29/05 11/06: Submit the 1st journal paper extended from conference paper
- 05/06 18/06: Submit the 2nd journal paper
- 19/06 01/09: Start working on FPGA implementation for SNN
- 19/06 01/08: Write draft for conference (MCSoC)

The University of Aizu

Thank you for your attention.

Signal Noise Margin

- SNM is to get the Bit Error Rate of memory (SNM<0.1)
- 6T SRAM (FreePDK NANGATE 45nm)
- HSPICE simulation + mathematical computations
- Monte Carlo simulation

