Random Matrix

Spectrum estimation for large dimensional covariance matrices using random matrix theory

Yuheng Ma

Xinyi Wu

Keyu Zhang

August 23, 2020

- 1 Background introduction
- 2 Algorithm
- 3 Consistency
- 4 Simulations
- 5 Conclusion

Background introduction

- 1 Background introduction
 - Background introduction
 - Random Matrix
- 2 Algorithm
- 3 Consistency
- 4 Simulations
- 5 Conclusion

Xinyi Wu

Background introduction

Background introduction

For i.i.d random vector $X_1 \dots, X_n \in \mathbb{R}^p$, and that the covariance of X_i is Σ_p . We call X the data matrix whose rows are the X_i 's. How to estimate the eigenvalues of the population covariance matrix?

When p is fixed, n goes to ∞ :

(Anderson,1963):Eigenvalues of the sample covariance matrix $S_p=(X-\overline{X})'(X-\overline{X})/(n-1)$ are good estimators of eigenvalues of Σ_p

when comes to to "large n, large p":

For example, we consider $p/n \to r$, $\Sigma_p = Id_p$, if X_i i.i.d and have a forth moment, we know that

$$l_1 \to (1 + \sqrt{r})^2 a.s.$$

Suppose we have a vector (y_1, \ldots, y_p) in R_p . We can associate to it the following measure:

$$dG_p(x) = \frac{1}{p} \sum_{i=1}^{p} \delta_{y_i}(x)$$

We denote by H_p the spectral distribution of the population covariance matrix Σ_p , i.e the measure associated with the vector of eigenvalues of Σ_p .

Similarly, we denote by F_n the measure associated with the eigenvalues of the sample covariance matrix S_n .

Background introduction

0000 Random Matrix Background introduction

Random Matrix: Convergence

Notion of convergence: Weak convergence of probability measures.

The Stielties transform of a measure G on R is defined as

$$m_G(z) = \int \frac{dG(x)}{x - z}, z \in C^+$$

Properties:

If G_n is a sequence of probability measures and $m_{G_n}(z)$ has a (pointwise) limit m(z) for all $z \in C^+$, then there exists a probability measure G with Stieltjes transform $m_G = m$ if and only if $\lim_{y\to\infty} -iym(iy) = 1$. If it is the case, G_n converges weakly to G.

Background introduction

Random Matrix: the Marčenko-Pastur equation

X:n×p data matrix. $S_p = X'X/n$ H_p : the population spectral distribution m_{F_n} : the Stieltjes transform of the spectral distribution, F_p , of S_p . $v_{F_{-}}(z) = (1 - p/n)^{-1} + \frac{p}{n} m_{F_{-}}(z)$, which is actually the Stieltjes transform of the spectral distribution XX'/n

Theorem

Suppose the data matrix X can be written $X=Y\Sigma_p^{\frac{n}{2}}$, where Σ_p is a p×p positive definite matrix and Y is an $n \times p$ matrix whose entries are i.i.d (real or complex), with $E(Y_{i,j}) = 0$, $E(|Y_{i,j}|^2) = 1$ and $E(|Y_{i,j}|^4) < \infty$. Assume that H_p converges weakly to a limit denoted H_{∞} .

Random Matrix: the Marčenko-Pastur equation

Then, when $p, n \rightarrow$, and $p/n \rightarrow r$, $r \in (0, \infty)$,

- $1.v_{F_n}(z) \to v_{\infty}(z)$ a.s, where $v_{\infty}(z)$ is a deterministic function.
- 2. $v_{\infty}(z)$ satisfies the equation

$$-\frac{1}{v_{\infty}(z)} = z - r \int \frac{\lambda dH_{\infty}(\lambda)}{1 + \lambda v_{\infty}(z)}, \forall z \in C^{+}$$

3. The previous equation has one and only one solution which is the Stielties transform of a measure.

Background introduction

0000 Random Matrix

- 1 Background introduction
 - Background introduction
 - Random Matrix
- 2 Algorithm
- 3 Consistency
- 4 Simulations
- 5 Conclusion

Xinyi Wu

Formulation of the estimation problem

Algorithm 0000000

Goal:

estimate the population eigenvalues

Strategy:

Xinvi Wu

- 1. use the Marčenko-Pastur equation to estimate the measure $H_{\infty}(\hat{H})$
- 2. estimate λ_i as the i-th quantile of our estimated distribution \hat{H}_{∞} .

Fact:

since we are considering fixed distribution asymptotics, our estimate of H_{∞} will serve as our estimate of H_n , so $\hat{H}_{\infty} = \hat{H}_n$.

Formulation of the estimation problem

$$-\frac{1}{v_{\infty}(z)} = z - r \int \frac{\lambda dH_{\infty}(\lambda)}{1 + \lambda v_{\infty}(z)}, \forall z \in C^{+}$$

Step 1:Estiamte H_{∞} from F_p .

Compute eigenvalue of
$$S_p \to F_p \to v_{F_p}(z) \stackrel{\{z_j\}_{j=1}^{J_n}}{\longrightarrow} \{v_{F_p}(z_j)\}_{j=1}^{J_n}$$

$$\hat{H}_{\infty} = \operatorname*{arg\,min}_{H} L(\{\frac{1}{v_{F_{p}}(z_{j})} + z_{j} - \frac{p}{n} \int \frac{\lambda dH(\lambda)}{1 + \lambda v_{F_{p}}(z_{j})}\}_{j=1}^{J_{n}})$$

Step 2:Discretization.

Naturally, dH can be simply approximated by a weighted sum of point masses:

$$dH(x) \approx \sum_{k=i}^{K} w_k \delta_{t_k}(x)$$

where $\{t_k\}_{k=1}^K$ is a grid of points, chosen by us, and w_k 's are weights, which satisfies

$$\sum_{k=1}^{K} w_k = 1, w_k \ge 0$$

Discretization

Hence finding a measure that approximately satisfies Equation (M-P) is equivalent to finding a set of weights $\{w_k\}_{k=1}^K$, for which we have

$$-\frac{1}{v_{F_{\infty}}(z_j)} \approx z_j - \frac{p}{n} \sum_{k=1}^{K} \frac{w_k t_k}{1 + t_k v_{F_{\infty}}(z_j)}, \forall j$$

Replace v_{∞} by v_{F_p} . Our problem is thus to find $\{w_k\}_{k=1}^K$ such taht,

$$-\frac{1}{v_{F_p}(z_j)} \approx z_j - \frac{p}{n} \sum_{k=1}^{K} \frac{w_k t_k}{1 + t_k v_{F_p}(z_j)}, \forall j$$

Convex Optimization formulation

Approximation errors

$$e_j = \frac{1}{v_{F_p}(z_j)} + z_j - \frac{p}{n} \sum_{k=1}^K \frac{w_k t_k}{1 + t_k v_{F_p}(z_j)}$$

Step 3:Formulating our problem as a convex optimization problem. " L_{∞} " version: Find w_k 's to

$$Minimize \max_{j=1,...,J_n} max\{|Re(e_j)|, |Im(e_j)|\}$$

The "translation" of the problem into a convex optimization problem is

$$\min_{(w_1, \dots, w_K, u)} u$$

$$\forall j, -u \le Re(e_j) \le u$$

$$\forall j, -u \le Im(e_j) \le u$$

$$\sum_{k=1}^{K} w_k = 1$$

$$w_k \ge 0, \forall j$$

Consistency 0000000

- 1 Background introduction
 - Background introduction
 - Random Matrix
- 3 Consistency

Xinyi Wu

Consistency

Our estimate is consistent in L^{∞} sense. The general result is as follows.

Theorem

Under setups in previous thm, $H_p \Rightarrow H_\infty$ and $\frac{p}{p} \to \gamma$. $J_1 \cdots \in \mathbb{Z}$ with limit ∞ and $z_1, \dots \in \mathbb{C}^+$ bounded and convergent, \hat{H}_n is the solution to

$$\widehat{H}_{p} = \arg\min_{H} \max_{j \leq J_{n}} \left| \frac{1}{v_{F_{p}}(z_{j})} + z_{j} - \frac{p}{n} \int \frac{\lambda dH(\lambda)}{1 + \lambda v_{F_{p}}(z_{j})} \right|$$

Consistency

Then

$$\hat{H}_p \Rightarrow H_\infty \quad a.s.$$

Same thing holds for our estimation which is made over a mixture of diracs.

Idea of Proof

$$\Delta = \frac{1}{v_{F_p}(z_j)} + z_j - \frac{p}{n} \int \frac{\lambda dH(\lambda)}{1 + \lambda v_{F_p}(z_j)}$$

Consistency 0000000

Recall Thm1, when $H_n \Rightarrow H_{\infty}$

- $v_{F_p} \to v_{\infty}$ a.s. (Thm 1)
- $v_{F_n} \to v_{\infty}$ uniformly (Prop 1)
- $Im(v_{F_n})$ bounded away from 0 (Prop 2)
- $|\Delta| \downarrow 0$ (Prop 3)
- $\hat{H}_n \Rightarrow H_{\infty}$ (Lemma)
- \hat{H}_n is fine to be sum of atoms (Cor)

Find convergent \hat{H}_n over constraint over convergent sequence of z_i .

Lemma

With $\epsilon_n \downarrow 0$ and

$$\forall j \leq J_n \quad \left| \frac{1}{v_{F_p}(z_j)} + z_j - \frac{p}{n} \int \frac{\lambda d\tilde{H}_p(\lambda)}{1 + \lambda v_{F_p}(z_j)} \right| < \varepsilon_n$$

Consistency 0000000

Also, $v_{F_n}(z_i) \to v_{\infty}(z_i)$ and both analytic as well as bounded away from reals, then we have convergence of $\tilde{H}_n(\lambda)$ to H_{∞} .

Proposition

Proposition

Stieltjes transform S_H is Lipschitz by $\frac{1}{u_{min}^2}$ on $\mathbb{C}^+ \cap \{Im(z) > u_{min}\}$

Proposition

Population spectral distribution H_p has a limit H_{∞} , where all spectra uniformly bounded, then for a ball in \mathbb{C}^+ ,

Consistency

$$\exists N \quad n > N \quad \Rightarrow \quad \inf_{n,z \in B(z_0,r)} \operatorname{Im} \left(v_{F_p}(z) \right) = \delta > 0$$

where v_{F_p} is the Stieltjes transform of F_p .

Proposition

If \exists N s.t. any n¿N, $|v_{F_p}(z)-v_{\infty}(z)|<\epsilon$, and $|Im(v_{\infty}(z))|>u_{min}$, then for $\epsilon<\frac{u_{min}}{2}, \exists N'\in\mathbb{N}, \forall z\in B\left(z_0,r\right), \forall n>N'$.

$$\left| \frac{1}{v_{F_p}(z)} + z - \frac{p}{n} \int \frac{\lambda dH_{\infty}(\lambda)}{1 + \lambda v_{F_p}(z)} \right| < 2\varepsilon \frac{1 + 2\gamma}{u_{\min}^2}$$

Consistency

Consistency of Proposed Algorithm

Only need to show Proposition 3 holds for sum of atoms.

Corollary

Restrict \hat{H}_p over measures which are sums of atoms, the locations of which are restricted to belong to a grid (depending on n) whose step size is going to 0 as $n\to\infty$

Simulations •000000000

- 1 Background introduction
 - Background introduction
 - Random Matrix
- 3 Consistency
- **Simulations**

Case 1:Identity covariance: $\Sigma = Id$

Case 2: "Two spike" spectrum: Σ has d/2 eigenvalues equal to 1 and d/2 equal to 2

Case 2:covariance $\Sigma = T$ where $T_{i,j} = 0.3^{|i-j|}$ is a d×d Toeplitz matrix

Casez

Optimal time

(p) case1,Average optimal time

- 1 Background introduction
 - Background introduction
 - Random Matrix
- 3 Consistency
- Conclusion

Xinyi Wu

Advantages:

- 1. The method turn the problem of estimating the population spectrum distribution to a convex optimal problem, which is much easier to solve.
- 2. The algorithm is free to add some regularization and constraints to make the estimator have more good properties.
- 3. The method provide us a non-linear shrinkage of eigenvalues.
- 4. This method does not requie strong assumptions, so it is capable to deal with nonstructured issues.

Limitations:

1. The algorithm implement over $z \in C^+$. The deeper we go into C^+ , the more "smoothed-out" is the Stieltjes transform, as it is an analytic function; therefore, the more information is lost. And another available method which optimized over the Marcenko-Pastur law on the real line was propose by Ledoit and Wolf(2012).

2.

Conclusion

Thanks for watching

Xinyi Wu