Introduction to Data Science - 1MS041

Benny Avelin

Department of Mathematics

HT 2023

Recap

- 1. The volume of the unit ball decreases rapidly as dimension increases
- 2. The volume is mostly concentrated in a thin shell close to the surface of the ball
- 3. This is one interpretation why concentration of measure holds
- 4. The Gaussian annulus theorem says that for the spherical Gaussian most of the volume is on a ball of size \sqrt{d} , where d is the dimension.
- 5. The random projection theorem tells us that length is preserved with high probability if we project onto random Gaussian vectors (follows from the Gaussian annulus theorem / concentration)
- 6. This allows us to project multiple data points and preserve the pairwise distances with high probability.

- 1. SVD
- 2. PCA and SVD
- 3. Whitening etc.
- 4. Bla di bla?

Projections

Projection

The projection of a point x onto a line with direction v is

$$(v \cdot x)v$$

PCA the beginning

Let $\{X_1, \dots, X_n\} \in \mathbb{R}^m$ be IID. Let $v \in \mathbb{R}^m$ be a unit vector and define $Y_i = (X_i \cdot v)$, then consider the minimization problem

$$v_1 := \arg\max_{\|v\|=1} \frac{1}{n} \sum_i (Y_i - \overline{Y}_n)^2.$$

Projections

Projection

The projection of a point x onto a line with direction v is

$$(v \cdot x)v$$

PCA the beginning

Let $\{X_1, \dots, X_n\} \in \mathbb{R}^m$ be IID. Let $v \in \mathbb{R}^m$ be a unit vector and define $Y_i = (X_i \cdot v)$, then consider the minimization problem

$$v_1 := \arg\max_{\|v\|=1} \frac{1}{n} \sum_i (Y_i - \overline{Y}_n)^2.$$

If $\overline{Y}_n = 0$ we get

$$v_1 = \arg\max_{\|v\|=1} \sum_{i=1}^n |X_i \cdot v|^2.$$

PCA first steps

Gram matrix

Define the Gram matrix as a matrix A of size $n \times m$ with rows given by X_i .

Then we can rewrite

$$\sum_{j=1}^{n} |X_i \cdot v|^2 = |Av|^2$$

Note

For A being the Gram matrix for Data $\{X_1,\ldots,X_n\}$ the vector v_1 satisfies

$$v_1 = \arg\max_{\|v\|=1} |Av|.$$

PCA first steps

Gram matrix

Define the Gram matrix as a matrix A of size $n \times m$ with rows given by X_i .

Then we can rewrite

$$\sum_{i=1}^{n} |X_i \cdot v|^2 = |Av|^2$$

Note

For A being the Gram matrix for Data $\{X_1,\ldots,X_n\}$ the vector v_1 satisfies

$$v_1 = \arg\max_{\|v\|=1} |Av|.$$

The vector v_1 is called the *first singular vector* of A. The singular value is defined as

$$\sigma_1(A) := |Av_1|.$$

What is the second singular vector

The second singular vector

$$v_2 := \arg \max_{\|v\|=1, v \perp v_1} |Av|.$$

We can continue this process to get more vectors by looking for the next vector orthogonal to the previous 2 etc. There are as many singular vectors as there are dimensions, i.e. m and they form a basis.

What is the second singular vector

The second singular vector

$$v_2 := \arg \max_{\|v\|=1, v \perp v_1} |Av|.$$

We can continue this process to get more vectors by looking for the next vector orthogonal to the previous 2 etc. There are as many singular vectors as there are dimensions, i.e. m and they form a basis.

Lemma

Let A be an $(n \times m)$ matrix, and let v_1 be the first singular vector of A and let $\sigma_1(A)$ be the first singular value (with $\sigma_2(A) < \sigma_1(A)$), then v_1 is an eigenvector of the $m \times m$ matrix A^TA , and

$$\max_{\|v\|=1} |Av| = |Av_1| = \sqrt{\lambda_1} = \sigma_1(A)$$

where λ_1 is the first eigenvalue of A^TA .

Singular Value Decomposition

We can write each row in A as $X_i = \sum_{j=1}^m (X_i \cdot v_j)v_j$ which we can now rewrite as

$$A = \sum_{j=1}^{m} A v_j v_j^T$$

denoting $u_i := \frac{Av_i}{\sigma_i}$ we see that the above expression becomes

$$A = \sum_{j=1}^{m} \sigma_j u_j v_j^T$$

We call the vectors u_i the *left singular vectors* That is

$$A = UDV^T$$
.

What is PCA

PCA

Let A be the Gram matrix for $\{X_1, \ldots, X_n\}$ (empirical mean zero), decompose using SVD, $A = UDV^T$, and define the PCA transform as

$$PCA(X_1,...,X_n) = AV = UDV^TV = UD.$$