

INSPIRING CREATIVE AND INNOVATIVE MINDS

www.utm.my

- In computer science, we study different types of computer languages, such as Basic, Pascal, and C++.
- We will discuss a type of a language that can be recognized by special types of machines.

www.utm.my

A deterministic finite automaton (pl. automata) is a mathematical model of a machine that accepts languages of some alphabet.

www.utm.my

- Deterministic Finite Automaton is a quintuple M= { S, I, q₀, f_s, F} where,
 - S is a finite nonempty set of states
 - I is the input alphabet (a finite nonempty set of symbols)
 - q₀ is the initial state
 - f_s is the state transition function
 - F is the set of final states, subset of S.

www.utm.my

Let M={ $\{q_0,q_1,q_2\}, \{0,1\}, q_0, f_s, \{q_2\}\}$ where f_s is defined as follows:

$$f_s(q_0,0) = q_1, \quad f_s(q_1,1) = q_2$$

 $f_s(q_0,1) = q_0, \quad f_s(q_2,0) = q_0$
 $f_s(q_1,0) = q_2, \quad f_s(q_2,1) = q_1$

Note that for M:

$$S=\{q_0,q_1,q_2\}$$
, $I=\{0,1\}$, $F=\{q_2\}$
 q_0 is the initial state

www.utm.my

The state transition function of a DFA is often described by means of a table, called a transition table.

f _s	0	1
q_0	q_1	q_0
q_1	q_2	q_2
q_2	q_0	q_1

www.utm.my

The transition diagram of this DFA is,

Initial state with incoming unlabeled arrow not originating from any vertex

Each state represented by a small circle labeled with the state

Final state with a double circle

www.utm.my

Let $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},q_0,f_s,\{q_1,q_2\})$ where f_s is given by the table

f _s	а	b
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

யயய்.utm.my

The transition diagram of this DFA is,

www.utm.my

- Let $M = \{ S, I, q_0, f_s, F \}$ be a DFA and w is an input string,
- w is said to be accepted by M if $f_s^*(q_0, w) \in F$
- f_s* extended transition function for M

யயய்.utm.my

w= abb

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2$$
 accepted by M

www.utm.my

w= abba

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0$$

not accepted by M

www.utm.my

• What are the states of M?

$$q_0,q_1,q_2$$

Write the set of input symbols.

$$I = \{0, 1\}$$

• Which is the initial state?

$$q_0$$

www.utm.my

• Write the set of final states.

$$F = \{q_2\}$$

Write the transition table for this DFA

www.utm.my

The transition table, fs

0	1
q_0	q_1
q_2	q_1
q_0	q_1
	q ₀ q ₂

www.utm.my

Which of the strings are accepted by M?

0111010,

00111,

111010,

0100,

1110

www.utm.my

0111010

$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

00111

$$q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1$$

not accepted by M

www.utm.my

111010

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

0100

$$q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{0} q_0$$

not accepted by M

www.utm.my

1110

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{1} q_1 \xrightarrow{0} q_2$$

accepted by M

www.utm.my

Construct a state transition diagram of a DFA that accepts on {a,b} that contain an even number of a's and an odd number of b's.

Example of accepted strings:

aab, baa, baaabba

www.utm.my

4 states,

q₀ even num. of a's & even num. of b's.

q₁ even num. of a's & odd num. of b's.

q₂ odd num. of a's & odd num. of b's.

q₃ odd num. of a's & even num. of b's.

$$S = \{q_0, q_1, q_2, q_3\}$$

www.utm.my

set of states, $S = \{q_0, q_1, q_2, q_3\}$

set of input symbols, I= {a, b}

initial state, q₀

final state, q_1

www.utm.my

State transition function

f _s	a	b	
q_0	q_3	q ₁	
q_1	q_2	q_0	
q_2	q_1	q_3	
q_3	q_0	q_2	

www.utm.my

State transition diagram

exercise

www.utm.my

Let M=(S, I, q_0 , f_s , F) be the DFA such that S={ q_0 , q_1 , q_2 }, I={a,b}, F={ q_2 }, q_0 =initial state, and f_s is given by,

f_s	а	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_0

Draw the state diagram of M.

Which of the strings abaa, bbbabb, bbbaa dan bababa are accepted by M?

exercise

www.utm.my

The transition diagram of M is,

Construct the transition table of M. Which of the strings baba, baab, abab dan abaab are accepted by M?

prepared by Razana Alwee

28

exercise

www.utm.my

Construct a state transition diagram of a DFA M with the input set {0,1} such that M accepts only the string 101.

solution

www.utm.my

Exercise

www.utm.my

Construct a deterministic finite automaton (DFA) that accepts the set of all bit strings that contain string '0101'.

Solution

www.utm.my

Exercise

www.utm.my

Construct a deterministic finite automaton (DFA) that accepts all string over {a,b} that contain ab and end in bbb

Solution

www.utm.my

Final 2018/2019

www.utm.my

Construct a state transition diagram of a DFA that accepts all string over {a,b, ..., z, 0, 1, ..., 9} that start with a letter (a-z) and end with a digit (0-9).

Example of accepted strings are a9, xy12, a1b2c3 ect.

www.utm.my

Finite State Machines (FSM)

- Automata with input as well as output.
- Every state has an input and corresponding to the input the state also has an output.
- These types of automata are commonly called finite state machines.

Finite State Machines (FSM)

- A finite state machine is a sextuple,
 - M= { S, I, O, q_0 , f_s , f_o } where,
 - S is a finite nonempty set of states
 - I is the input alphabet
 - O is the output alphabet
 - q₀ is the initial state
 - f_s is the state transition function
 - f₀ is the output function.

- Let M= $\{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

$$S = \{q_0, q_1, q_2\},\$$
 $I = \{a,b\},\$
 $O = \{0,1\},\$
 $q_0 = initial state,$

www.utm.my

f_s and f₀

	f _s		f_{o}	
	а	b	а	b
q_0	q_1	q_0	0	1
q_1	q_2	q_2	1	0
q_2	q_0	q_1	0	1

www.utm.my

Input string: bbab

$$q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2$$
1 1 0 0

Output string: 1100

Output: 0

www.utm.my

Input string: bababaa

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2$$
1 0 0 1 0 1

Output string: 1000101

Output: 1

- Let $M = \{ S, I, O, q_0, f_s, f_o \}$ be the FSM
- where,

S ={
$$q_0, q_1, q_2, q_3$$
},
I ={ a,b },
O ={ $0,1$ },
 q_0 = initial state,

www.utm.my

 f_s f_sand f₀

	f_s		f_{o}	
	a	b	a	b
q_0	q_0	q_2	0	1
q_1	q_1	q_2	1	0
q_2	q_3	q_1	1	1
q_3	q_3	q_3	1	1

www.utm.my

Draw the transition diagram of M.

www.utm.my

What is the output string if the input string is abbabab?

abbabab

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 1 \qquad 1 \qquad 0 \qquad 1 \qquad 1$$

www.utm.my

What is the output of abbabab?

Output: 1

Finite State Machines (FSM)

www.utm.my

- Let M be a FSM.
- Let x be a nonempty string in M.
- We say that x is accepted by M if and only if the output of x is 1.

www.utm.my

www.utm.my

- Write the transition table of M.
- What is the output string if the input string is aaabbbb?
- What is the output if the input string is bbbaaaa?

- Is the string aaa accepted by M?
- Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

யயய.utm.my

The transition table of M.

	f_s		f_{o}	
	а	b	а	b
q_0	q_1	q_3	0	0
q_1	q_3	q_2	0	1
q_2	q_2	q_2	1	1
q_3	q_4	q_3	1	0
q_4	q_4	q_4	1	1

www.utm.my

What is the output string if the input string is aaabbbb?

aaabbbb

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output string: 0011111

a/1,b/1

www.utm.my

What is the output if the input string is bbbaaaa?

bbbaaaa

www.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1$$

$$a/1,b/1$$

Output: 1

58

www.utm.my

Is the string aaa accepted by M?

aaa

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 1$$

Output: 1, accepted

a/1,b/1

www.utm.my

Which of the strings ba, aabbba, bbbb, aaabbbb are accepted by M?

ba

யயய்.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{a} q_4$$
0 1

Output: 1, accepted

a/1,b/1

aabbba

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{a} q_4$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 1$$

Output: 1, accepted

a/1,b/1

bbbb

www.utm.my

$$q_0 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{b} q_3$$

$$0 \qquad 0 \qquad 0$$

a/1,b/1

Output: 0, not accepted

aaabbbb

www.utm.my

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \xrightarrow{b} q_4$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

Output: 1, accepted

a/1,b/1

- Consider a vending machine that sells candy and the cost of a candy is 50 cents.
- The machine accepts any sequence of 10-, 20-, or 50 cent coins.
- After inserting at least 50 cents, the customer can press the button to release the candy.

www.utm.my

- If the customer inputs more than 50 cents, the machine does not return the change.
- After selling the candy, the machine returns to initial state.
- Construct a finite state machine that models this vending machine.

67

www.utm.my

States,

 q_0 , initial state (0)

 q_1 , 10 cents

q₂, 20 cents

 q_3 , 30 cents

q₄, 40 cents

 q_5 , ≥ 50 cents

www.utm.my

$$S = \{q_0, q_1, q_2, q_3, q_4, q_5\},\$$

$$I = \{10,20,50,B\},\$$

$$O = \{0,1\},\$$

$$q_0$$
 = initial state,

www.utm.my

	10	f _s 20	50	В	10	20	f _o 50	В
q_0	q_1	q_2	q ₅	q_0	0	0	0	0
q_1	q_2	q_3	q_5	q_1	0	0	0	0
q_2	q_3	q_4	q_5	q_2	0	0	0	0
q_3	q_4	q_5	q_5	q_3	0	0	0	0
q_4	q_5	q_5	q_5	q_4	0	0	0	0
q_5	q_5	q_5	q_5	q_0	0	0	0	1

www.utm.my

Design a FSM, with input alphabet I={a, b}, that outputs a 1 if the number of input symbols read so far is divisible by 3.

example

www.utm.my

www.utm.my

Let M= { S, I, O,
$$q_0$$
, f_s , f_o } be a FSM where,
 S ={ q_0 , q_1 , q_2 },
 I ={a,b},
 O ={0,1},
 q_0 = initial state,

www.utm.my

f_s and f₀

	f _s a	b	f _o a	b
q_0	q_2	q_1	1	1
q_1	q_2	q_2	0	0
q_2	q_1	q_2	1	1

www.utm.my

- Draw the transition diagram of M.
- What is the output string if the input string is aabbb?
- What is the output string if the input string is ababab?
- What is the output if the input string is abbbaba?
- What is the output if the input string is bbbababa?

76

www.utm.my

- Design a FSM that accepts all string over {a,b} that begin with aa.
- For example: aaab, aabba, aababab

solution

www.utm.my

Exercise

www.utm.my

- Design a FSM that accepts all string over {a,b} that end with aba.
- For example: aaba, aababa, bbbaba

Solution

www.utm.my

Exercise

www.utm.my

Design a FSM that accepts all string over {a,b} that contain bbb and end in ab

Solution

யயய்.utm.my

Final 2018/2019

www.utm.my

In a standard washing machine operation, there are four phases which start with Idle/Stop, Wash, Rinse and Spin. When the start/stop button is pressed, the door will be automatically locked, timer will start and the washing machine will begin to wash. After the timer end, the washing machine starts the rinse phase and timer for rinsing phase will begin. After the timer is end, the spin phase will begin. At this point, the timer will start again and after it end, operation of the washing machine is finish and it returns to Idle/Stop condition. At any time during the operation, if the start/stop button is pressed again, the washing machine will stop the operation and return to Idle/Stop condition. The door will always remain locked during the operation unless it is in Idle/Stop condition.

Based on the above washing machine operation,

- a) define all the states, inputs and outputs.
- b) construct a transition diagram.

www.utm.my

States : Idle/Stop, Wash, Rinse, Spin

Inputs : Start/Stop button pressed, Timer start, Timer stop

Outputs: Door Locked, Door Unlocked

Inputs	В	Start/Stop button pressed	
	TS	Timer start	
	TE	Timer end	
Outputs	DL	Door locked	
	DU	Door Unlocked	

