函数的连续性与间断点 高等数学 I-信息、统计外招

Weiwen Wang(王伟文)

暨南大学

2025 年秋季学期

课程网页

定义 (函数增量)

假设函数 y = f(x) 在点 x_0 的某一个邻域内有定义, 当自变量 x 在这邻域内从 x_0 变到 $x_0 + \Delta x$ 时, 函数值或因变量 f(x) 相应地从 $f(x_0)$ 变到 $f(x_0 + \Delta x)$, 此时函数值或因变量 f(x) 的对应的增量为

$$\Delta y = f(x_0 + \Delta x) - f(x_0),$$

习惯上称 Δy 为函数的增量.

• 保持 x_0 固定, Δy 随着 Δx 的变化而变化.

定义 (函数在 x_0 处连续)

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left[f(x_0 + \Delta x) - f(x_0) \right] = 0,$$

那么就称函数 y = f(x) 在点 x_0 连续.

令
$$x = x_0 + \Delta x$$
, 则 $\Delta x \to 0$ 等价于 $x \to x_0$.

令
$$x = x_0 + \Delta x$$
, 则 $\Delta x \to 0$ 等价于 $x \to x_0$. 又因为

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f(x) - f(x_0),$$

即

$$f(x) = f(x_0) + \Delta y.$$

令
$$x = x_0 + \Delta x$$
, 则 $\Delta x \to 0$ 等价于 $x \to x_0$. 又因为

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f(x) - f(x_0),$$

即

$$f(x) = f(x_0) + \Delta y.$$

当 $x \rightarrow x_0$ 时, Δy 为无穷小

$$\lim_{x\to x_0} f(x) = f(x_0)$$

定义 (函数在 x_0 处连续)

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x \to x_0} f(x) = f(x_0),$$

那么就称函数 y = f(x) 在点 x_0 连续.

定义 (函数在 x_0 处连续)

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x\to x_0} f(x) = f(x_0),$$

那么就称函数 y = f(x) 在点 x_0 连续.

• " $\epsilon - \delta$ " 语言: $\forall \epsilon > 0$, $\exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $|f(x) - f(x_0)| < \epsilon$.

定义 (函数左连续与右连续)

- 如果 $\lim_{x \to x_0^-} f(x) = f(x_0^-)$ 存在且 $f(x_0^-) = f(x_0)$, 则称函数 f(x) 在点 x_0 处**左连**续;
- 如果 $\lim_{x \to x_0^+} f(x) = f(x_0^+)$ 存在且 $f(x_0^+) = f(x_0)$, 则称函数 f(x) 在点 x_0 处**右连**续.

定义 (函数左连续与右连续)

- 如果 $\lim_{x \to x_0^-} f(x) = f(x_0^-)$ 存在且 $f(x_0^-) = f(x_0)$, 则称函数 f(x) 在点 x_0 处<u>左连续</u>;
- 如果 $\lim_{x \to x_0^+} f(x) = f(x_0^+)$ 存在且 $f(x_0^+) = f(x_0)$, 则称函数 f(x) 在点 x_0 处**有连**续.
- 在区间上每一点都连续的函数,叫做该区间上的连续函数,或 者说函数在该区间上连续.
- 函数在区间左端点上的连续是指右连续;在区间右端点上的连续是指左连续。
- 连续函数的图像是一条连续而不间断的曲线.

证明函数 $y = \sin x$ 在区间 $(-\infty, +\infty)$ 内是连续的.

证明.

设 x 为 $(-\infty, +\infty)$ 内的任意一点, 当 x 有增量 Δx 时, 对应的函数增量为

$$\Delta y = \underbrace{\sin(x + \Delta x) - \sin x = 2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x + \frac{\Delta x}{2}\right)}_{\text{和差化积公式}\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}}.$$

证明.

设 x 为 $(-\infty, +\infty)$ 内的任意一点, 当 x 有增量 Δx 时, 对应的函数增量为

$$\Delta y = \underbrace{\sin(x + \Delta x) - \sin x = 2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x + \frac{\Delta x}{2}\right)}_{\text{和差化积公式}\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}}.$$

又因为
$$|\sin \alpha| \le |\alpha|$$
, $\left|\cos\left(x + \frac{\Delta x}{2}\right)\right| \le 1$, 故

$$0 \le |\Delta y| \le \left| 2 \sin\left(\frac{\Delta x}{2}\right) \right| \le 2 \cdot \left| \frac{\Delta x}{2} \right| \le |\Delta x|.$$

证明.

设 x 为 $(-\infty, +\infty)$ 内的任意一点, 当 x 有增量 Δx 时, 对应的函数增量为

$$\Delta y = \underbrace{\sin(x + \Delta x) - \sin x = 2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x + \frac{\Delta x}{2}\right)}_{\text{和差化积公式}\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}}.$$

又因为 $|\sin \alpha| \le |\alpha|$, $\left|\cos\left(x + \frac{\Delta x}{2}\right)\right| \le 1$, 故

$$0 \le |\Delta y| \le \left| 2 \sin\left(\frac{\Delta x}{2}\right) \right| \le 2 \cdot \left| \frac{\Delta x}{2} \right| \le |\Delta x|.$$

由夹逼准则知, $\lim_{\Delta x \to 0} |\Delta y| = 0$, 因而 $\lim_{\Delta x \to 0} \Delta y = 0$, 故 $y = \sin x$ 在任意一点 $x \in (-\infty, +\infty)$ 连续.

推论 (函数分段点处连续性判断准则)

设函数 f(x) 在 x_0 的某一邻域内有定义, 函数 f(x) 在 x_0 处连续, 当且仅当 $f(x_0^-) = f(x_0^+) = f(x_0)$, 即函数在 x_0 处既是左连续也是右连续.

随学练习

判断函数 f(x) 在点 x=0 处是否连续

(1)
$$f(x) = \begin{cases} \frac{1}{2}, & x < 0 \\ e^x, & x \ge 0 \end{cases}$$

(2)
$$f(x) = \begin{cases} x^2, & x < 0 \\ x, & x \ge 0 \end{cases}$$

随堂练习

判断函数 f(x) 在点 x=0 处是否连续

(1)
$$f(x) = \begin{cases} \frac{1}{2}, & x < 0 \\ e^{x}, & x \ge 0 \end{cases}$$

$$f(0^{-}) = \frac{1}{2}, f(0^{+}) = 1, f(x) \stackrel{?}{\leftarrow} x = 0 \stackrel{?}{\leftarrow} x \stackrel{?}{\leftarrow} x$$

设函数 f(x) 在点 x_0 处的去心邻域内有定义, 如果函数 f(x) 有以下三种情形之一

- (1) 在 $x = x_0$ 处无定义;
- (2) 虽然在 $x = x_0$ 处有定义, 但 $\lim_{x \to x_0} f(x)$ 不存在;
- (3) 虽然在 $x = x_0$ 处有定义, 且 $\lim_{x \to x_0} f(x)$ 存在, 但 $\lim_{x \to x_0} f(x) \neq f(x_0)$.

那么函数 f(x) 在点 x_0 处不连续, 而点 x_0 称为函数 f(x) 的不连续点或间断点.

正切函数 $y = \tan x$ 在 $x = \frac{\pi}{2}$ 处无定义, 故 $x = \frac{\pi}{2}$ 为函数 $\tan x$ 的间断点.

正切函数 $y = \tan x$ 在 $x = \frac{\pi}{2}$ 处无定义, 故 $x = \frac{\pi}{2}$ 为函数 $\tan x$ 的间断点. 因为

$$\lim_{x\to\frac{\pi}{2}}\tan x=\infty.$$

我们称 $x = \frac{\pi}{2}$ 为函数 $\tan x$ 的无穷间断点.

函数 $y = \sin \frac{1}{x}$ 在 x = 0 处无定义, 函数极限 $\lim_{x \to 0} \sin \frac{1}{x}$ 不存在也不是 无穷大. 我们称 x = 0 为函数 $\sin \frac{1}{x}$ 的振荡间断点.

函数 $y = \frac{x^2 - 1}{x - 1}$ 在 x = 1 处无定义, 所以 x = 1 为该函数的间断点.

函数 $y = \frac{x^2-1}{x-1}$ 在 x = 1 处无定义, 所以 x = 1 为该函数的间断点. 因为

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2,$$

若补充定义 f(1) = 2, 则此时函数 $y = \frac{x^2 - 1}{x - 1}$ 在 x = 1 处连续, 故我们 称 x = 1 为该函数的**可去间断点**.

设
$$y = f(x) =$$

$$\begin{cases} x, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$
 函数在 $x = 1$ 处有定义,

设
$$y = f(x) = \begin{cases} x, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$
. 函数在 $x = 1$ 处有定义,但

 $\lim_{x\to 1} f(x) = \lim_{x\to 1} x = 1 \neq f(1) = \frac{1}{2}$, 故 x = 1 为该函数的间断点.

设
$$y = f(x) = \begin{cases} x, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$
. 函数在 $x = 1$ 处有定义, 但

 $\lim_{x\to 1} f(x) = \lim_{x\to 1} x = 1 \neq f(1) = \frac{1}{2}$,故 x=1 为该函数的间断点. 若改变函数在 x=1 处的值,使得 f(1)=1,此时函数 y=f(x) 在 x=1 处连续. 此类间断点 x=1 也称为该函数的可去间断点.

设
$$y = f(x) =$$

$$\begin{cases} x - 1, & x \neq 0 \\ 0, & x = 0. \text{ 因为 } f(0^-) = \lim_{x \to 0^-} (x - 1) = -1, \\ x + 1, & x > 0 \end{cases}$$

$$f(0^+) = \lim_{x \to 0^+} (x + 1) = 1,$$

设
$$y = f(x) = \begin{cases} x - 1, & x \neq 0 \\ 0, & x = 0. \end{cases}$$
 因为 $f(0^-) = \lim_{x \to 0^-} (x - 1) = -1,$ $x + 1, \quad x > 0$ $f(0^+) = \lim_{x \to 0^+} (x + 1) = 1,$ 即当 $x \to 0$ 时, 左右极限存在但不相等, 故 $x = 0$ 是该函数的间断点. 此间断点 $x = 0$ 称为该函数的跳跃间断点.

函数间断点的分类

• 如果 x_0 是函数的间断点, 但左右极限 $f(x_0^-)$ 和 $f(x_0^+)$ 均存在, 则称 x_0 为函数 y = f(x) 的第一类间断点; 不是第一类间断点 的任何间断点都是第二类间断点.

函数间断点的分类

- 如果 x_0 是函数的间断点, 但左右极限 $f(x_0^-)$ 和 $f(x_0^+)$ 均存在, 则称 x_0 为函数 y = f(x) 的第一类间断点; 不是第一类间断点 的任何间断点都是第二类间断点.
- 第一类间断点中, 左、右极限相等者称为可去间断点; 不相等者称为跳跃间断点;

函数间断点的分类

- 如果 x_0 是函数的间断点, 但左右极限 $f(x_0^-)$ 和 $f(x_0^+)$ 均存在, 则称 x_0 为函数 y = f(x) 的第一类间断点; 不是第一类间断点 的任何间断点都是第二类间断点.
- 第一类间断点中, 左、右极限相等者称为可去间断点; 不相等者称为跳跃间断点;
- 无穷间断点和振荡间断点均是第二类间断点.

随堂练习

判断 $x = x_0$ 处函数 f(x) 是否为函数的间断点, 若是, 请判断其间断点类型.

(1)
$$f(x) = \begin{cases} x-1, & x<0 \\ x+1, & x \ge 0 \end{cases}$$
 在 $x = 0$ 处;

(2)
$$f(x) = \frac{1}{x-1}$$
 在 $x = 1$ 处;

(3)
$$f(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x=1 \end{cases}$$
 $\text{ if } x = 1 \text{ if } x = 1 \text$

随堂练习

(1)
$$f(x) = \begin{cases} x-1, & x < 0 \\ x+1, & x \ge 0 \end{cases}$$
 在 $x = 0$ 处; $x = 0$ 是函数 $y = f(x)$ 的跳跃间断点

(2) $f(x) = \frac{1}{x-1}$ 在 x = 1 处; x = 1 是函数 y = f(x) 的无穷间断点

(3)
$$f(x) = \begin{cases} x+1, & x \neq 1 \\ 1, & x=1 \end{cases}$$
 在 $x = 1$ 处. $x = 1$ 是函数 $y = f(x)$ 的可去间 断点

作业

- 抄写教材 57 页函数连续的两个定义
- 教材习题 1-8: 1; 3(4); 5.

扩展

Thomae(爆米花) 函数: 在无理点处连续, 在有理点处间断.

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q} \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

