Last fine ...

$$A(aq) \rightleftharpoons 2B(aq)$$
 $[A]_0 = 1.0M$
 $I = 1.0$ $[B]_0 = 0.0M$
 $C = x + 2x$ $K_c = 3.3 \times 10^{-5}$ (small!)
 $E(1.0-x)$ $(2x)$ $[A]_{eq}$? $[B]_{eq}$?

$$K_c = 3.3 \times 10^{-5} = [B]^2 = (2x)^2$$
 Quadrahic?

--- because $K_{c} \ll 1$, we know that x will be small then we can assume $(1.0-x) \approx 1.0$

then:
$$3.3 \times 10^{-5} \approx (2 \times)^2 \approx 4 \times^2$$

$$1.0$$

$$x = \sqrt{3.3 \times 10^{-5}} = 2.87 \times 10^{-3}$$

$$[A]_{ee} = 1.0 - x = 1.0 - 0.00287 = 1.0 M$$

$$[B]_{ea} = 2x = 2 \times 2.87 \times 10^{-3} = 5.74 \times 10^{-3} M$$
2sf. 2sf.

Rule of thumb: 5% rule

$$\frac{2.87 \times 10^{-3} \times 100 = 0.287\%}{1.0}$$

Le Châtelier's Principle
"When we stress a dynamic ease, it shifts to remove the stress"
Homeostasis: too hot? Sweat (rools us down)
STRESS ~ RELIEF
too rold? Shiver (warms us up)
etc.
Stresses: conc ? Relief: counteract
Dressure raise/lower stress
temp)
$e_x: N_2O_4g) \rightleftharpoons 2NO_2g$
-add Nozgi (Stress) Relief: [NOz] Shift to LHS
- add N2041g) (Stress) Peliof: [N204] I, Shift to RHS
ex: $(Ca_3(Po_4)_2(s)) = 3(Ca^2(ag) + 2Po_4^3(ag))$
calcium phosphat
if we lower Cat come, need in increase Catronc, shift to RH
(stress) (relief)

(osteo porosis)

	Pressure changes: Boyle's law: p & 1/v
	VI, PT/ V1, pl
	ex: $N_2(g) + 3H_2(g) = 2NH_3(g)$
	Stress: decreasing V (PT) More molecules Relief: need to decrease p (pl) -more they hit walls
	Relief: need to decrease p (pl) -more truey hit walls
	=) shift to RHS, fewer molecules / - more pressure!
	of gas, lowering of pressur!
	Temp. changes
	AHKO (-ve), exothermic, heat is lost by rxn: A=B+heat
	ΔH > 0, (+ve), endothermic, heat is gained by rxn: had + A ≥ B
	If we rave T, we must have added heat ? stresses " lower T, " — " removed heat ?
	" lower T, " " removed hoct)
	ex: 57.2KJ+N2O4(g) = 2NO2(g) 3 AH° = +57.2KJ
	endothermic
	increase T (stress) relief is to
	increase T (stress) relief is to remove heat
	So, we mut shift
	to RHS
exothermic n	us So, we make more NO2 @ equ! less N204!
as TT, KJ	
	- other stresses (rome, pressure) do not change K

Ch 16 Acids + Bases

Acids: taste sour

turn litmus RED

Bases: taste bitter

turn litmu BLUE

feel slippery

Definitions

18805

Arrhenins: Acids: form H+ ions in ag. sol

ev: Hydrochloric acid: HC(rag) -> H (rag) + Cl (rag)

Sodium hydroxide: Na OH (rag) -> Na + (rag) + OH (rag)