Grundlagen der Betriebssysteme Blatt 01 Gruppe 055

Marco Deuscher Ibrahem Hasan

Mai 2019

1 Festkomma Darstellung

(a)

$$7,75_{10} = 4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 001111110_2$$

Da die Zahl aus zweier Potenzen zusammengesetzt werden kann, ist sie exakt darstellbar.

(b)

$$2,71_{10}\approx 2+\frac{1}{2}+\frac{1}{4}=00010110_2=2.75_{10}$$

Die Zahl ist nicht exakt darstellbar. $|Z_{orginal} - Z_{Umwandlung}| = 0,04$

(c)

$$5,375_{10} = 4 + 1 + \frac{1}{4} + \frac{1}{8} = 00101011_2$$

Da die Zahl aus zweier Potenzen zusammengesetzt werden kann, ist sie exakt darstellbar.

(d)

$$9,12_{10} \approx 01001001_2 = 9,125_{10}$$

Die Zahl ist nicht exakt darstellbar. $|Z_{orginal} - Z_{Umwandlung}| = 0,005$

2 Gleitkomma Darstellung

Ergebnisse werden im folgenden in drei Gruppen unterteilt

1. Vorzeichen

- 2. Exponent
- 3. Mantisse

Außerdem ist der Bias mit B=127 gegeben. Es wird ein Vorzeichenbit verwendet, der Exponent hat eine Länge von 8bit und die Mantisse eine Länge von 23bit.

(a)

$$x = (-1)^v \cdot m \cdot 2^{e-B} \Rightarrow m = \frac{x}{2^{e-B}} = 1,109375$$

Der Exponent ist gegegeben durch 127+4=131 was in binär Darstellung wiederum 10000011 entspricht. Durch Umwandeln Nachkommastellen der Mantisse in binäre Darstellung erhält man dann die folgende Darstellung

$$0 \quad 10000011 \quad 00011100...0$$

(b) Analoges Vorgehen wie in der (a) liefert dann

$$m = \frac{x}{2} = 1,8125$$

Für den Exponenten erhält man 127+1=128. Durch Umwandeln in die binäre Darstellung erhält man dann

$$0 \quad 10000000 \quad 110100...0$$

3 Gleitkomma Operationen

Noch zu bearbeiten

(a)

Addition:

$$\begin{aligned} &2^{128-127} \cdot 1,0010111 + 2^{128-127} \cdot 1,1001011 \\ =&2^{128-127} (1,0010111 + 1,1001011) \\ =&2^{129-127} \cdot 1,01100010 \end{aligned}$$

Multiplikation

$$\begin{aligned} & 2^{128-127} \cdot 1,0010111 \cdot 2^{128-127} \cdot 1,1001011 \\ = & 2^{129-127} \cdot (1,0010111 \cdot 1,1001011) \\ = & 2^{129-127} \cdot 1,11011110111101 \end{aligned}$$

(b)

Addition Nutze zweier Komplement um die beiden Zahlen zu addieren

$$\begin{aligned} &(-1)^1 \cdot 2^{131-127} \cdot 1,1011 + 2^{127-127} \cdot 1,000011 \\ =& 2^{131-127} \cdot (-1,1011 + 0,0001000011) \\ =& (-1)^1 \cdot 2^{131-127} \cdot 1,1001111101 \end{aligned}$$

Multiplikation

$$(-1)^{1} \cdot 2^{131-127} \cdot 1,1011 \cdot 2^{127-127} \cdot 1,000011$$

$$= (-1)^{1} \cdot 2^{131-127} \cdot (1,1011 \cdot 1,000011)$$

$$= (-1)^{1} \cdot 2^{131-127} \cdot 1,1100010001$$

(c)

Addition

$$\begin{aligned} &(-1)^1 \cdot 2^{128-127} \cdot 1,1010011 + (-1)^1 \cdot 2^{133-127} \cdot 1,0101011 \\ = &(-1)^1 \cdot 2^{133-127} \cdot (0,000011010011 + 1,0101011) \\ = &(-1)^1 \cdot 2^{133-127} \cdot 1,011000110011 \end{aligned}$$

Multiplikation

$$(-1)^1 * 2^{128-127} \cdot (-1)^1 \cdot 2^{133-127} \cdot 1,1010011 \cdot 1,0101011$$

= $2^{135-127} \cdot 1,000110011110001$

4 UTF8 Darstellung

Hierbei ist die Startsequenz, Data, Beginn eines neues Bytes jeweils markiert.

(a)

$$202e = 0010\ 0000\ 0010\ 1110$$

$$1110\ 0010\ 1000\ 0000\ 1010\ 1110$$

(b)

$11110\ 000\ 10\ 0111111\ 10\ 011000\ 10\ 001000$

Wandelt man die cyan markierten Daten in Hex. Darstellung um, erhält man den Unicode Character U+1F608.

5 Bitinterpretation

(a) Umwandeln von 0x447b7d00 in die binäre Darstellung. Hierbei markiert sind Vorzeichen "Exponent, Mantisse.

0100 0100 0111 1011 0111 1101 0000 0000

Vorzeichen lässt sich direkt ablesen \rightarrow Zahl ist positiv

Exponent ist gegeben durch 0b10001000 = 128 + 8 = 136. Mit dem Bias ergibt sich dann e = 9.

Für die Mantisse erhält man durch die Stufenzahlendarstellung den folgenden Wert

$$m_2 = 1111\ 0110\ 1111\ 1010_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128} + \frac{1}{512} + + \frac{1}{1024} + \frac{1}{2048} + \frac{1}{4096} + \frac{1}{8192} + \frac{1}{32768} = 0.9647521973_{10}$$

Dann erhält man für die Gleitkommazahl den folgenden Wert

$$z_{IEEE754} = (-1)^0 \cdot 1.9647521973_10 * 2^{136-127} = 1005,953125_{10}$$

(b) Die hexadezimal Darstellung der ersten 16bit Integer ist 0x447b. Umwandlung in binäre liefert dann 0b0100 0100 0111 1011. Mit dem Stufenzahlenverfahren erhält man dann einen Wert von $z_{16bit,1}=17531$.

Für die zweite Zahl ergibt sich dann $0x7d00 = 0b0111\ 1101\ 0000\ 0000 = 32000_{10}$

(c) Interpretiert man 00447b7d00 als ASCII bzw. UTF-8 erhält man die folgende Darstellung.

In ASCII entspricht 0x44 = D, $0x7b = \{, 0x7d = \}$ und $0x00 = \setminus 0$.

Interpretiert man 00447b7d00 in UTF-8 erhält man das gleiche Ergenis wie in ASCII, da UTF-8 die ersten 128 Zeichen aus dem ASCII-Code übernommen hat.