

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Компьютерные системы и сети»

НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»

ОТЧЕТ по лабораторной работе №1

Название: <u>Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью</u>

Дисциплина: Архитектура ЭВМ

Студент:	<u>ИУ7-43Б</u>		<u>31.03.2020</u>	А. В. Романов
	группа	подпись	дата	(И. О. Фамилия)
Преподаватель:				А. Ю. Попов
		подпись	дата	(И. О. Фамилия)

1. Цель работы

Изучить схемы асихнроного RS-тригера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

2. Асинхроный RS-тригер с инверсными входами в статическом режиме

Таблица переходов:

S	R	Q_n	Q_{n+1}	Режим
0	0	0	0	Vnavanna
0	0	1	1	Хранение
0	1	0	0	0
0	1	1	0	U
1	0	0	1	1
1	0	1	1	
1	1	0	X	201100110010000000000000000000000000000
1	1	1	X	Запрещённое состояние

Можно заметить, что S устанавливает тригер в состояние единицы, а R устанавливает в состояние нуля. Одновременая подача S и R запрещена.

Файл: 1.ms12

3. Синхроный RS-тригер в статическом режиме

Таблица переходов:

C	S	R	Q_n	Q_{n+1}	Режим
0	*	*	0	0	V
0	*	*	1	1	Хранение
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	0
1	0	1	1	0	U
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	X	Запрещённое состояние
1	1	1	1	X	Запрещенное состояние

Вход C позволяет внести контроль над сигналом, входящим в триггер.

Файл: 2.ms12

4. D-триггер в статическом режиме

Таблица переходов:

C	D	Q_n	Q_{n+1}	Режим
0	*	0	0	Vnouverne
0	*	1	1	Хранение
1	0	0	0	0
1	0	1	0	U
1	1	0	1	1
1	1	1	1	1

Сигналы на входе D до переключения и на выходе после переключения совпадают.

Файл: 3.ms12

5. Синхронный D-триггер с динамическим управлением

Таблица переходов:

D	C	Q
0	0	0
0	1	U
1	0	1
1	1	1
X	X	Хранение

Прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на C-входе из 0 в I или из I в 0, т.е. особенностью синхронных триггеров с динамическим управлением является перепад синхросигнала.

Файл: 4.ms12

6. Синхронный DV-триггер с динамическим управлением

При C=0 имеем $Q_t=Q_{t-1}$ (сохраняется предыдущее состояние). При C=1 и V=0 триггер сохраняет предыдущее внутреннее состояние. При C=V=1 триггер принимает сигнал на входе D.

Файл: 5.ms12

7. DV-триггер, включенный по схеме TV-триггера

Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. T-триггер реализует счет по модулю 2: $Q_{n+1} = T \oplus Q_n$. Синхронный **Т-триггер** имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует единичный сигнал.

Файлы: 6.ms и 7.ms

8. Вывод

При выполнении этой лабораторной работы я познакомился с принципом работы, минусами и плюсами, нуждой в какой-либо ситуации и схемами различных триггеров.

9. Контрольные вопросы

1. Что называется триггером?

Триггер – запоминающее устройство, имеющие два устойчивых состояния, которые кодируются двоичными цифрами 0 и 1

2. Какова структурная схема триггера?

Структурная схема триггера состоит из запоминающей ячейки и схемы управления.

- 3. По каким основным признакам классифицируют триггеры?
- 1) По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени t_n до его срабатывания и в момент t_{n+1} после его срабатывания, различают триггеры:
 - **a)** с раздельной установкой состояний 0 и 1 (*RS*-триггеры)
 - б) со счетным входом (-триггеры)
 - в) универсальные с раздельной установкой состояний 0 и 1 (JK-триггеры)
 - **г)** с приемом информации по одному входу (*D* триггеры)
- **д)** универсальные с управляемым приемом информации по одному входу (DV-триггеры)
 - e) комбинированные (например, RST-, JKRS, DRS-триггеры) и т.д.
- 2) По способу запаси информации различают триггеры:
 - а) асинхронные (не синхронизируемые).
 - б) синхронные (синхронизируемые), или тактируемые.
- 3) По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.
- 4) По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.
- 4. Каково функциональное назначение входов триггеров?

S-вход – вход для раздельной установки триггера в состояние "1".

R-вход – вход для раздельной установки триггера в состояние "0".

Ј-вход – вход для установки состояния "1"в универсальном JK-триггере.

К-вход – вход для установки состояния "0"в универсальном ЈК-триггере.

D-вход – информационный вход для установки триггера в состояния "1"или "0".

V-вход – подготовительный управляющий вход для разрешения приема информации.

С-вход – исполнительный управляющий вход для осуществления приема информации,

вход синхронизации.

5. Что такое асинхронный и синхронный триггеры?

Ассинхронный RS-триггер – простейший триггер, использующийся как запоминающая ячейка.

Синхроный RS-триггер – имеет два информационных входа R и S и вход синхронизации C.

6. Что такое таблица переходов?

Таблица переходов – отображает зависимость выходного сигнала триггера в момент времени t_{n+1} от входных сигналов и от состояния триггера в предыдущий момент времени t_n

7. Как работает асинхронный RS-триггер?

При S=0 и R=I триггер устанавливается в состояние 0, а при S=1 и R=0 - в состояние 1. Если S=0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние. При S=R=1 состояние триггера является неопределенным (после снятия входных сигналов S и R). Такая комбинация входных сигналов S=R=1 является недопустимой (запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR=0.

8. Как работает синхронный RS-триггер? Какова его таблица переходов?

Как и все синхронные триггеры, синхронный RS-триггер при C=0 сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1}=Q_n$. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации . При =1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов =S=R=1 запрещена. При S=R=0 триггер не изменяет своего состояния.

Таблица переходов находится в разделе RS-триггеров.

9. Что такое D-триггер?

Синхронный D-триггер — имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D-триггер — элемент задержки входных сигналов на один такт.

10. Объясните работу синхронного *D*-триггера.

Схему синхронного **D-триггера** можно получить из схемы синхронного RS-триггера, подавая сигнал D на вход S, а сигнал D-, т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR=01 при D=0 или SR=10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхрон-

ного D-триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

11. Что такое DV-триггер?

Синхронный DV-триггер – имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера.

DV-триггер, при C=0, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1}=Q_n$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. $Q_{n+1}=Q_n$

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход T, называемый счетным входом. Асинхронный T-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. Таким образом T-триггер реализует счет по модулю 2: $Q_t = T_{t-1} \oplus Q_{t-1}$. Синхронный T-триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует сигнал логической 1.

14. Объясните работу схемы синхронного RS-триггера со статическим управлением.

При C=0 триггеры переходят в режим хранения, запоминая последнее состояние.

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что приём информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на C-входе из 0 в 1 или из 1 в 0, т.е. перепадом синхросигнала.

16. Как работает схема синхронного D-триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы S_a и R_a начальной установки в состояния 1 и 0. Если схему D-триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграмы D-триггера соответствуют временным диаграммам DV-триггера при V=1

17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

Временные диаграмы находятся в разделе D-триггеры.

18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + VQ_{t-1} = DVC + (V+C)Q_{t-1}$$

При $C=0\ DV$ -триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние.

При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D.

При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

19. Составьте временные диаграммы синхронного DV-триггера.

Временные диаграммы находятся в разделе DV-триггеры.

20. Объясните режимы работы D-триггера.

Синхронный D-триггер – имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.