微分積分学・同演習 A

演習問題 2

1[†] 詳しくは教科書 pp.15,16 を参照のこと.

考え方.使えるもの: $\forall \varepsilon_1>0$ $\exists N ext{ s.t. } n\geq N\Rightarrow |a_n-\alpha|<\varepsilon_1$ $\left|\frac{1}{a_n}-\frac{1}{\alpha}\right|=\frac{|a_n-\alpha|}{|a_n|\,|\alpha|}$ であるが, $a_n\to\alpha$ よりある番号 N_1 があって, $n\geq N_1$ のとき $|a_n-\alpha|<\frac{|\alpha|}{2}$,つまり $|a_n|>\frac{|\alpha|}{2}(>0)$ となる.よって

$$\left| \frac{1}{a_n} - \frac{1}{\alpha} \right| = \frac{|a_n - \alpha|}{|a_n| |\alpha|} < \frac{2\varepsilon_1}{|\alpha|^2}$$

なので,改めて $|a_n-lpha|<rac{|lpha|^2}{2}\;(n\geq N_2)$ を満たす $N_2(>N_1)$ をえらべばよい.

 2^{\dagger} 準備: $\left|\frac{1}{\sqrt{n}}-0\right|<\varepsilon$ を式変形すると $n\geq\frac{1}{arepsilon^2}$ なので, $N=\left[\frac{1}{arepsilon^2}
ight]+1$ とすれば十分.証明.arepsilon を任意にとる.このとき $N:=\left[\frac{1}{arepsilon^2}
ight]+1$ ととれば, $n\geq N$ のとき

$$\left| \frac{1}{\sqrt{n}} - 0 \right| = \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} < \varepsilon$$

とできるので, $\lim_{n o\infty}rac{1}{\sqrt{n}}=0$ である.

- 3. (1) 0 (2) $\frac{3}{2}$ (3) 1 (4) $\frac{1}{3}$ (5) $\frac{1}{2}$ (6) 0
 - (1) および(5) は,いわゆる無理化をする.

(3) If
$$\left(1 - \frac{1}{n^2}\right)^n = \left(1 + \frac{1}{n}\right)^n \cdot \left(1 - \frac{1}{n}\right)^n \to e \cdot e^{-1} = 1$$
.

- 4. (1) 1 (2) 1 (3) 0
 - (1) a=1 のときは明らか . a>1 のとき , $\sqrt[n]{a}=1+\lambda_n$ とおくと ,

$$a = (1 + \lambda_n)^n = 1 + n\lambda_n + \cdots$$
(正の数) $> n\lambda_n$

なので $0<\lambda_n<\frac{a}{n}$. はさみうちの定理より $\lambda_n\to 0$, すなわち $\sqrt[n]{a}\to 1$. 0< a< 1 のときは b=1/a が $\sqrt[n]{b}\to 1$ となることより , $\sqrt[n]{a}\to 1$.

(2) $\sqrt[n]{n} = 1 + \lambda_n$ とおくと,

$$n=(1+\lambda_n)^n=1+n\lambda_n+rac{n(n-1)}{2}\lambda^2\cdots$$
(正の数) $>1+rac{n(n-1)}{2}\lambda^2$

なので $0 < \lambda < \frac{2}{n}$. あとは (1) と同様 .

(3) a=0 のときは明らか . $b=\frac{1}{|a|}>0$ とおき , $b=1+\lambda$ とおく .

$$b^n=(1+\lambda)^n=1+n\lambda+rac{n(n-1)}{2}\lambda^2+($$
正の数 $)>rac{n(n-1)}{2}\lambda^2$

なので, $0<\frac{n}{h^n}=n|a|^n<\frac{2}{n-1}\frac{1}{\lambda^2}\to 0\;(n\to\infty)$.

5.† (1) 基本的には講義で扱った例題 2.8 と同様.

(準備) $\forall \varepsilon_1>0$ $\exists N_1$ s.t. $|a_n-\alpha|<\varepsilon_1$. 例題 2.8 で使った変形と , $\sum_{k=1}^n k=n(n+1)/2\leq n^2$ より ,

$$\left| \frac{\sum_{k=1}^{n} k a_n}{\sum_{k=1}^{n} k} - \alpha \right| \le \left(\sum_{k=1}^{n} k \right)^{-1} \sum_{k=1}^{n} k |a_n - \alpha| \le \frac{1}{n^2} \left(\sum_{k=1}^{N_1 - 1} k |a_n - \alpha| + \sum_{k=N_1}^{n} k |a_n - \alpha| \right).$$

ここで,一番目の総和は n に依存しないものなので M とおく. $\frac{M}{n^2} \to 0$ なので,ある番号 N_2 から先の n に対しては $\frac{M}{n^2} < \varepsilon_1$ とできる.これより

(前式)
$$\leq \frac{M}{n^2} + \frac{\sum_{k=1}^n k}{n^2} \varepsilon_1 < \varepsilon_1 + \varepsilon_1 = 2\varepsilon_1.$$

証明. ε が任意に与えられたとする.以上の議論を踏まえて, N_1 を, $n\geq N_1$ ならば $|a_n-\alpha|<rac{\varepsilon}{2}$ を満たす自然数とし, N_2 を, $n\geq N_2$ ならば $\sum_{k=1}^{N_1-1}k|a_n-\alpha|/n^2<rac{\varepsilon}{2}$ を満たす自然数とする.すると, $N=\max(N_1,N_2)$ とすれば, $n\geq N$ のとき

$$\left| \frac{\sum_{k=1}^{n} k a_n}{\sum_{k=1}^{n} k} - \alpha \right| < \varepsilon.$$

(2) 方針だけ.仮定は $\forall \varepsilon_1>0$ $\exists N_1$ s.t. $|a_n-\alpha|,\,|b_n-\beta|<\varepsilon_1\;(n\geq N_1)$.

$$\left| \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} - \alpha \beta \right| \le \frac{1}{n} \sum_{k=1}^n |a_k b_{n-k+1} - \alpha \beta|.$$

ここで総和の区間を (i) $k=1,\ldots,N_1-1$, (ii) $k=N_1,\ldots,n-N_1+1$, (iii) $k=n-N_1+2,\ldots,n$ にわける . また , $M_a:=\max(|a_1|,\ldots,|a_{N_1}|,|\alpha|+1)$, $M_b:=\max(|b_1|,\ldots,|b_{N_1}|,|\beta|+1)$ とおく .

- (i) においては $|b_k-eta|<arepsilon_1$ なので $\sum<(N_1-1)M_barepsilon_1$.
- (ii) においては $|a_k-\alpha|, |b_k-\beta|<\varepsilon_1$ なので命題 2.3 の三角不等式を用いると $\sum<(M_a+M_b)(n-2N_1+2)\varepsilon_1$.
- (iii) においては $|a_k-\alpha|<arepsilon_1$ なので $\sum<(N_1-1)M_aarepsilon_1$. 以上より ,

$$\frac{1}{n} \sum_{k=1}^{n} |a_k b_{n-k+1} - \alpha \beta| \le \frac{n - N_1 + 1}{n} (M_a + M_b) \varepsilon_1 < (M_a + M_b) \varepsilon_1$$

なので ,与えられた任意の $\varepsilon>0$ に対して , $k\geq N$ ならば $|a_k-\alpha|,\,|b_k-\beta|<\frac{\varepsilon}{M_a+M_b}$ となる自然数 N を選べばよい .

(3) 教科書の解答 (p.210) を参考のこと . ちなみに

$$\frac{1}{n^2} \sum_{k=1}^n a_k (n-k+1) = \sum_{k=1}^n \frac{a_k}{n} - \frac{1}{n^2} \sum_{k=1}^n a_k k + \frac{1}{n} \sum_{k=1}^n \frac{a_k}{n}$$

であり,例題 2.8 より一番目の総和は α に収束および三番目の総和は 0 に収束し,また二番目の総和は本問題 (1) を用いると

$$\frac{1}{n^2} \sum_{k=1}^{n} a_k k = \frac{\sum_{k=1}^{n} k}{n^2} \cdot \sum_{k=1}^{n} \frac{a_k k}{\sum_{k=1}^{n} k} \to \frac{\alpha}{2} \quad (n \to \infty)$$

となることからも与えられた極限が $\alpha - \frac{\alpha}{2} + 0 = \frac{\alpha}{2}$ になることが分かる.

 6^{\dagger} $1<\sqrt[3]{3}<2$ より $a_n:=(\sqrt[3]{3}-1)^n$ とすれば, $a_n>0$ であり,かつ $\lim_{n\to\infty}a_n=0$ とある.一方,二項定理より,各 a_n は整数 x_n,y_n,z_n を用いて

$$a_n = x_n + y_n \sqrt[3]{3} + z_n \sqrt[3]{9}$$

と表せる.ここで $\sqrt[3]{3} = \frac{p}{q} \; (p,q \; {\sf lb} {\it E} {\it N} {\it C} {\it E} {$

$$a_n = \frac{x_n q^2 + y_n pq + z_n p^2}{q^2}$$

であり , 分子 $x_nq^2+y_npq+z_np^2$ は整数でさらに $a_n>0$ より 0 でない . 特に $|x_nq^2+y_npq+z_np^2|\geq 1$. よって

$$|a_n| \ge \frac{1}{q^2}$$

となるはずだが,これは $a_n o 0 \; (n o \infty)$ に矛盾.よって a_n は有理数でない.

- 7. 教科書の解答 (p.210) を参考のこと.
- 8. $\lim_{n\to+\infty} \sqrt[n]{a^n+b^n+c^n}=c.$
- 9. 教科書の解答 (p.211) を参考のこと.