Inhaltsverzeichnis

Ι	Ei	nführung in die Quantenmechanik	4
1	Teil	lchen und Wellen	4
	1.1	Klassische Physik	4
		1.1.1 Mechanik (Teilchentheorie)	4
		1.1.2 Elektrodynamik ("Feldtheorie")	4
		1.1.3 Wellencharakter	4
		1.1.4 Bemerkungen	5
	1.2	Vorstufe der Quantenmechanik ("Ältere Quantentheorie")	5
		1.2.1 Teilchencharakter des Lichts (el-mag Strahlung)	5
		1.2.2 Vorstellung des Aufbaus von Atomen	6
	1.3	Materiewellen	7
2	We	ellenmechanik des freien Teilchens	7
	2.1	Wellengleichung	7
		2.1.1 <u>Motivation</u> einer Wellengleichung	7
	2.2	Wellenpaket	8
		2.2.1 Eindimensional	8
		2.2.2 Hilfsintegral	9
		2.2.3 Breite B des Wellenpakets	9
	2.3	Bedeutung der Wellenfunktion	10
		2.3.1 Doppelspaltexperiment	10
		2.3.2 Normierung	10
		2.3.3 Periodische Funktion	10
		2.3.4 Wellenpaket	10
	2.4	Quantenmechanische Erwartungswerte	11
		2.4.1 Grundbegriffe der Wahrscheinlichkeitsrechnung	11
		2.4.2 Quantenmechanik	11
	2.5	Wahrscheinlichkeitsdichte des Impulses	12
		2.5.1 Plausibilitätsbetrachtung	12
		2.5.2 Erwartungswert des Impulses	13
	2.6	Impulsoperator	14
3	Allg	gemeine Prinzipien der Quantenmechanik	15
	3.1	Schrödingergleichung	15
		3.1.1 Teilchen im Potential $V(\vec{r})$	16
	3.2	Operatoren und Kommutatoren	17
		3.2.1 Insgesamt	18
	3.3	Wahrscheinlichkeitsstromdichte	18
		3.3.1 Physikalische Bedeutung	19

6	5.3 5.4 Ope	Parität	60 63
	5.3		99
		Don:14:14	59
	5.2	Kommutierende Operatoren	57
	5.1	Unschärferelation	55
5	For	malismus der Quantenmechanik	55
	4.7	Wellenpakete an Potentialbarrieren	54
	4.6	Potentialwall	
	4.5	Streuzustände beim Potentialtopf	
	4.4	Allgemeine Aussagen über das zeitliche Verhalten von Erwartungswerten: die Ehrenfest-Gleichungen Streuzustände beim Petentieltenf	
	4.4	4.3.3 Zeitliches Verhalten des harmonischen Oszillators	
		· · · · · · · · · · · · · · · · · · ·	
		4.3.1 Losung der stationaren Schrödinger-Gielenung	
	4.0	4.3.1 Lösung der stationären Schrödinger-Gleichung	
	4.3	Harmonischer Oszillator	
		4.2.2 Auswertung der Losungsbedingung	
		4.2.1 Losungen in den Bereichen I, II, III	
	4.2	4.2.1 Lösungen in den Bereichen I, II, III	
	4.1	Gebundene Zustände beim Potentialtopf mit endlich hohen Wänden	
±	4.1	Stetigkeit der Wellenfunktion	
4	Λ	wendungen der Quantenmechanik in einer Dimension	33
	3.9	Postulate der Quantenmechanik	
	3.8	Vollständiges Orthogonalsystem (VONS)	
		3.7.3 Eigenschaften hermitescher Operatoren	30
		3.7.2 Speziell	29
		3.7.1 Adjungierter Operator \hat{O}^+	
	3.7	Hermitesche Operatoren	28
		3.6.1 Beispiel: Potentialrinne	
	3.6	Dreidimensionale Separable Potentiale	
		3.5.6 Beispiel	
		3.5.5 Lösung der zeitabhängigen Schrödingergleichung für Potentiale	
		3.5.4 Formale Aspekte	
		3.5.3 Physikalische Aspekte	
		3.5.2 Grafische Darstellung der Resultate	
		3.5.1 Forderung an Wellenfunktion	
	3.5	Potentialtopf mit unendlich hoher Wahrscheinlichkeit	22
		3.4.3 Beispiel Freies Teilchen	
		3.4.2 Stationäre Schrödingergleichungen	
		3.4.1 Hinweis	
	3.4	Stationäre Schrödingergleichung	20

7	\mathbf{Bev}	wegung in einem Zentralfeld	67
	7.1	Drehimpulsoperator	67
		7.1.1 Vorbemerkung: Drehimpuls in klassischer Physik	67
		7.1.2 Drehimpuls in Quantenmechanik	68
		7.1.3 Hamiltonoperator für kugelsymmetrisches Potential	69
		7.1.4 Eigenwerte des Drehimpulsoperators	71
		7.1.5 Eigenfunktion des Bahndrehimpulses	75
	7.2	Radiale Schrödingergleichung	77
	7.3	Bewegung im Coulombfeld	79
		7.3.1 Eigenwerte	79
		7.3.2 Wellenfunktion	82
	7.4	Das Wasserstoffatom als Zweikörperproblem	85
8	Teil	lchen im elektromagnetischem Feld	87
	8.1	Hamiltonoperator	87
	8.2	Wasserstoffatom im homogenen Magnetfeld	89
	8.3	Magnetisches Moment	90
9	Spir	n	91
	9.1	Spin des Elektrons und Pauli-Gleichung	91
	9.2	Spinpräzession	96
	9.3	Magnetische Resonanz	98

Teil I

Einführung in die Quantenmechanik

1 Teilchen und Wellen

1.1 Klassische Physik

1.1.1 Mechanik (Teilchentheorie)

(Abb 1)

Newton:

$$\begin{array}{rcl} \frac{d\vec{p}\left(t\right)}{dt} & = & \vec{F}\left(t\right) \\ \\ \vec{p}\left(t\right) & = & m\frac{d\vec{r}\left(t\right)}{dt} \end{array}$$

1.1.2 Elektrodynamik ("Feldtheorie")

 $\vec{\mathcal{E}}(\vec{r},t), \vec{B}(\vec{r},t), \varrho(\vec{r},t), \vec{j}(\vec{r},t)$

Verknüpfung durch die Maxwell-Gl.

$$\varrho\left(\vec{r},t\right) = \sum_{i=1}^{N} q_{i} \delta\left(\vec{r} - \vec{r}_{i}\left(t\right)\right)$$
 Ladungsdichte

$$\vec{j}\left(\vec{r},t\right)=\sum\limits_{i=1}^{N}q_{i}\vec{v}_{i}\delta\left(\vec{r}-\vec{r}_{i}\left(t\right)\right)$$
Stromdichte

Kraft auf Teilchen

$$\vec{F}_i = q_i \left(\vec{\mathcal{E}}_i + \vec{v}_i \times \vec{B}_i \right)$$

Wellenerscheinungen $\Rightarrow \left(\vec{\nabla}^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \vec{\mathcal{E}}(\vec{r}, t) = 0$ Wellengleichung im Vakuum

$$\vec{\nabla}^2 = \frac{\partial 2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \triangle$$

Analog für Magnetfeld $\vec{B}(\vec{r},t)$

"Einfache" Lösung: "ebene Welle"

$$\vec{\mathcal{E}}(\vec{r},t) = \vec{\mathcal{E}}_0 e^{i(\vec{k}\cdot\vec{r}-\omega(\vec{k})\cdot t)}$$

$$\omega(\vec{k}) = c |\vec{k}| = c \cdot k$$

Superposition (lineare Dgl)
$$\vec{\mathcal{E}}(\vec{r},t) = \int \underbrace{\tilde{\mathcal{E}}(\vec{k})}_{\text{folgt aus Bandbedingungen}} \cdot e^{i \left(\vec{k} \cdot \vec{r} - \underline{c} \cdot \underline{k} \cdot t\right)} d^3k$$

Wellenpaket

1.1.3 Wellencharakter

- Beugung
- Brechung
- Interferenz

1.1.4 Bemerkungen

- $\vec{\mathcal{E}}$ -Feld als ebene Welle $\rightarrow \vec{B}\left(\vec{r},t\right)=\frac{1}{\omega}\left(\vec{k}\times\vec{\mathcal{E}}\left(\vec{r},t\right)\right)$
- Allgemein:

Energie des Feldes im Volumen V

$$E = \frac{\varepsilon_0}{2} \int_V \left| \vec{\mathcal{E}} \left(\vec{r}, t \right) \right|^2 d^3 r + \frac{1}{\mu_0} \frac{1}{2} \int_V \left| \vec{B} \left(\vec{r}, t \right) \right|^2 d^3 r$$

Ebene Welle:
$$E = \varepsilon_0 \int_V \left| \vec{\mathcal{E}}(\vec{r},t) \right|^2 d^3r$$

"Energie ist proportional zu $\left| \vec{\mathcal{E}} \right|^2$ "

Impuls eines eltromag. Feldes

$$\vec{P}_{Feld} = \varepsilon_0 \int_V \left(\vec{\mathcal{E}}(\vec{r}, t) \times \vec{B}(\vec{r}, t) \right) d^3r$$

Ebene Welle:
$$\vec{P}_{Feld} = \frac{\vec{k}}{\omega} \varepsilon_0 \int_V \mathcal{E}^2(\vec{r}, t) d^3r$$

$$\vec{P}_{Feld} = \frac{\vec{k}}{\omega} E$$

1.2 Vorstufe der Quantenmechanik ("Ältere Quantentheorie")

(1900 - 1925)

1.2.1 Teilchencharakter des Lichts (el-mag Strahlung)

Hohlraumstrahlung (Abb 2)

"Schwarzer Körper" Strahlung wird Vollständig absorbiert

Energieverteilung
$$u\left(\nu,T\right)=\frac{8\pi}{c^2}\cdot h\cdot \frac{\nu^3}{e^{-\frac{h\nu}{k_BT}}-1}$$

 ν : Wellenfrequenz

T: Temperatur

 k_B : Boltzmann-Konstante

$$h = 6,626 \cdot 10^{-34} \text{Js}$$

Erklärung durch Planck mit folgender Annahme:

Elektromagnetische Strahlung wird (von den Atomen in den Wänden) in Form von "Quanten" der Energie $E=h\nu\cdot n\ (n=1,2,3,\ldots)$ abgegeben

5

"Quantenhypothese von Max Planck"

$$E = h\nu = \hbar\omega \text{ mit } \hbar = \frac{h}{2\pi}$$

Photoeffekt (1905) (Abb 3)

Energie pro Elektron

$$E = \underbrace{a}_{\text{universell}} \cdot \omega - \underbrace{W}_{\text{material spezifisch}} \text{ (exp Resultat) } a = \hbar$$

- Zahl der emitieren Elekronen proportional zur Intensität
- Kinetische Energie hängt von Frequenz ab
- Unterhalb einer Schwellfrequenz treten keine Elektronen aus

Einstein Licht $\hat{=}$ "Ansammlung" von Energiequanten mit $E = \hbar \omega$ (Lewis 1986: "Photon")

Festkörper: (Abb 4)

• Energie des Photon wird komplett an Elektron abgegeben

• Intensität des Lichts bestimmt die Anzahl der emitierten Elektronen

Impuls Feld:
$$\vec{P}_{Feld} = \frac{\vec{k}}{\omega} \underbrace{E}_{\text{Energie des Feldes}}$$

P von Photon:

$$\vec{P}_{Photon} = \frac{\vec{k}}{\omega}\hbar\omega = \hbar\vec{k}$$
Impuls eines Lichtquants

Vorstellung des Aufbaus von Atomen

Materie: "Summe" von Atomen

Atom: Kern + Elektronen

Experimentelle Beobachtung beim Wasserstoffatom Emission \(\hat{\text{E}} \) Linienspektrum

Energie: $\Delta E_{n,m} = \left(\frac{1}{n^2} - \frac{1}{m^2}\right) \cdot 13,6059 \text{eV}$

Rutherford-Modell (Abb 5)

|Zentrifugalkraft| = |Coulombkraft|

$$\frac{mv^2}{4\pi\varepsilon_0} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} \tag{1}$$

Energie: $E = \frac{1}{2}mv^2 - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r} = \frac{e^2}{8\pi\varepsilon_0}\frac{1}{r}$

Probleme:

• Ausdehnung der Atome (d.h. r) ist nicht bestimmbar

• Beschleunigte Elektronen (Kreisbahn) strahlen nach klassischer Elektrodynamik Energie ab

• Alle Energien sind möglich (Widerspruch zu Linienspektren)

Bohr'sches Atommodell Zusatzannahmen:

- Drehimpuls ist quantisiert: $\left|\vec{L}\right| = |\vec{r} \times \vec{p}| = n\hbar \ n = 1, 2, \dots$
- Bei festem n erfolgt Umlauf "strahlungslos"
- Beim Wechsel der Kreisbahn von $\left| \vec{L} \right| = n\hbar$ nach $\left| \vec{L} \right| = n'\hbar$ wird Energie $\Delta E = E_n E_{n'}$ abgegeben

6

$$\left| \vec{L} \right| = mvr \stackrel{!}{=} n\hbar \Rightarrow v$$
dann (1) mit $m \cdot r^3$ multipliziert

$$\Rightarrow E_n = -\frac{e^4}{\underbrace{(4\pi\varepsilon_0)^2 2\hbar^2}_{13.6059\text{eV}}} \frac{1}{n^2}$$

$$\Rightarrow \Delta E_{n,m} = \left(\frac{1}{n^2} - \frac{1}{m^2}\right) \cdot 13,6059 \text{eV}$$

1.3 Materiewellen

Problem: Klassische Physik beschreibt "Mikrowelt" nicht genau

Stand der Physik 1923

	Licht	Materie
"klassische" Experimente	Bei Ausbreitung Wellencharakter	Makroskopische Körper: <u>Teilchencharakter</u>
	\rightarrow Maxwell-Gl	\rightarrow Newton-Gl
"nicht klassische" Experimente	Bei Emission und Absorbtion:	Verhalten auf atomarer Ebene
	<u>Teilchencharakter</u>	Materiewelle?
	$E=\hbar\omega,ec{p}=\hbarec{k}$	de Broglie (1923)

 $[\]rightarrow$ "Welle-Teilchen-Dualismus"

Auch für massive, freie Teilchen sollen die von Einstein für Lichtquanten postulierten Zusammenhänge zwischen Energie und Frequenz, bzw. Impuls und Wellenvektor gelten:

$$E = \hbar \omega, \qquad \vec{p} = \hbar \vec{k}$$

Hypothese von de Broglie

Energie:
$$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{\text{de B.}} = \hbar \omega \Rightarrow$$

$$\omega(k) = \frac{\hbar k^2}{2m} \tag{2}$$

Ausbreitungsgeschwindigkeit

$$v_{Gruppe} = \frac{d\omega}{dk} = \frac{\hbar k}{m} = \frac{p}{m}$$

2 Wellenmechanik des freien Teilchens

2.1 Wellengleichung

Idee: Ordne Teilchen eine Wellenfunktion zu $\psi(\vec{r},t)$

Freies Teilchen

$$\psi\left(\vec{r},t\right) = \psi_0 e^{i\left(\vec{k}\cdot\vec{r}-\omega(k)t\right)} \tag{3}$$

mit $\omega = \frac{\hbar k^2}{2m}$

- Lässt sich eine Vorschrift zur Berechnung von $\psi(\vec{r},t)$ angeben?
- Welche physikalische Bedeutung hat $\psi(\vec{r},t)$?

2.1.1 <u>Motivation</u> einer Wellengleichung

Elektrodynamik: Wellengleichung $\left(\vec{\triangledown}^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\vec{\mathcal{E}}\left(\vec{r},t\right)=0$

Betrachte $\psi\left(\vec{r},t\right)=\psi_{0}e^{i\left(\vec{k}\cdot\vec{r}-\omega t\right)}$

$$\frac{\partial \psi}{\partial t} = -i\omega\psi\left(\vec{r},t\right),\; \vec{\nabla}\psi\left(\vec{r},t\right) = i\vec{k}\psi\left(\vec{r},t\right),\; \vec{\nabla}^2\psi\left(\vec{r},t\right) = -k^2\psi\left(\vec{r},t\right)$$

mit $\omega = \frac{\hbar k^2}{2m}$

$$\frac{\partial \psi}{\partial t} = -i \frac{\hbar k^2}{2m} \psi \left(\vec{r}, t \right) = \frac{i \hbar}{2m} \vec{\nabla}^2 \psi \left(\vec{r}, t \right)$$

 \Rightarrow

$$i\hbar \frac{\partial \psi\left(\vec{r},t\right)}{\partial t} = -\frac{\hbar^{2}\vec{\nabla}^{2}}{2m}\psi\left(\vec{r},t\right) \tag{4}$$

"Schrödinger-Gleichung für freies Teilchen" $\hat{=}$ Differentialgleichung

- 1. Ordnung in der Zeit
- 2. Ordnung im Ort
- \Rightarrow Angabe von $\psi(\vec{r}, t = t_0)$ legt Lösung vollständig fest
 - Die Wellengleichung ist linear in $\psi(\vec{r},t)$ \Rightarrow Superpositionsprinzip
 - ist homogen

Beachte: $\psi = \cos\left(\vec{k}\vec{r} - \omega t\right)$ oder $\psi = \sin\left(\vec{k}\vec{r} - \omega t\right)$ sind <u>keine</u> Lösungen der Wellengleichung

Bis auf den Spezialfall $i\hbar \frac{\partial \psi}{\partial t} = 0 = -\frac{\hbar^2 \vec{\tau}^2}{2m} \psi(\vec{r}, t)$ sind die Wellenfunktionen $\psi(\vec{r}, t)$ komplex.

 ψ komplex $\rightarrow \psi$ ist vermutlich nicht direkt mit physikalischer Größe verknüpft

 $|\psi\left(\vec{r},t\right)|^{2}$ reel \rightarrow Beschreibt $|\psi|^{2}$ die Dichte des Teilchens? (Idee von Schrödinger)

Ebene Welle $|\psi\left(\vec{r},t\right)|^2 = \left|\psi_0 e^{i\left(\vec{k}\vec{r}-\omega t\right)}\right|^2 = |\psi_0|^2$ = Teilchen wäre über den ganzen Raum gleichmäßig verschmiert Idee: Wellenpaket beschreibt Teilchen

$$\psi(\vec{r},t) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int f(\vec{k}) e^{i(\vec{k}\vec{r} - \omega(k)t)} d^3k$$
 (5)

2.2Wellenpaket

2.2.1 **Eindimensional**

Idee: Teilchen sei bei t=0 am Ort x=0

(Abb 5)

(ADD 5)
$$|\psi|^{2} = \delta(x) \to \psi = \sqrt{\delta(x)} \underbrace{e^{i\varphi}}_{\text{Phasenfaktor}}$$

 $\sqrt{\delta(x)}$ ist schlecht zum Rechnen. Daher:

$$\lim_{\gamma \to 0} \frac{1}{\sqrt{\pi \gamma}} e^{-\frac{x^2}{j^2}} = \delta(x)$$

Also:

$$\psi\left(\vec{r},t\right) = \frac{1}{\sqrt[4]{\pi}\sqrt{\gamma}}e^{-i\frac{x^2}{2\gamma^2}} \cdot e^{ik_0x}$$

Wie verändert sich $\psi(\vec{r},t)$ im Laufe der Zeit?

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(k) e^{i\left(kx - \frac{\hbar k^2}{2m}t\right)} dk$$
 (6)

Bei t = 0:

$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(k) e^{ikx} dk$$

$$\Rightarrow f(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x,0) e^{-idx} dx$$

(Umkehrung der Fouriertransformation)

2.2.2 Hilfsintegral

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha x^2} e^{i\beta x} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{\beta^2}{4\alpha}}$$

für $\alpha > 0$

$$\Rightarrow f(k) = \frac{\sqrt{j}}{\sqrt[4]{\pi}} e^{-\frac{(k-k_0)^2}{2}\gamma^2}$$

Einsetzen in (6) liefert (analog zu Aufgabe T2)

$$\psi\left(x,t\right) = \frac{\sqrt{\gamma}}{\sqrt[4]{\pi}} \frac{1}{\sqrt{2\alpha}} e^{-\frac{\left(x - \frac{\hbar k_0 t}{m}\right)^2}{4\alpha}} e^{ik_0\left(x - \frac{\hbar k_0}{2m}t\right)}$$

 $mit \ \alpha = \frac{\gamma^2}{2} + i \frac{\hbar}{2m} t$

 $\psi \sim$ Normierungsfaktor Gausfunktion: Ebene Welle

(Abb 7)

$$\left|\psi\left(x,t\right)\right|^{2} = \frac{\gamma}{\sqrt[4]{\pi}} \frac{1}{2\left|\alpha\right|} e^{-\frac{\left(x - \frac{\hbar k_{0}t}{m}\right)^{2}}{4}\left(\frac{1}{\alpha} + \frac{1}{\alpha^{\star}}\right)}$$
$$\frac{1}{\alpha} + \frac{1}{\alpha^{\star}} = \frac{\gamma^{2}}{\left|\alpha\right|^{2}}$$

2.2.3 Breite B des Wellenpakets

(Abb 8)

$$\left(x - \frac{\hbar k_0}{m}t\right) = \frac{4|\alpha|^2}{\gamma^2} \Rightarrow x_1, \ x_2$$

$$B = x_1 - x_2 = \frac{4|\alpha|}{\gamma} = \frac{4}{\gamma} \left(\frac{\gamma^4}{4} + \frac{\hbar^2 t^2}{4m^2}\right)^{\frac{1}{2}}$$

$$B=2\gamma\sqrt{1+\frac{\hbar^2t^2}{m^2\gamma^4}}$$

mit $T^2:=\frac{m^2\gamma^4}{\hbar^2}$ "Zerfallszeit"

$$B = 2\gamma \sqrt{1 + \frac{t^2}{T^2}}$$

(Abb 9)

- \rightarrow Wellenpaket läuft auseinander
- \rightarrow Interpretation von $|\psi\left(x,t\right)|^{2}$ als Materiedichte würde beudeten, dass das Teilchen zerfließt.

Widerspruch zu experimenteller Erfahrung

Idee: Born

 $\left|\psi\left(\vec{r},t\right)\right|^{2}$: Wahrscheinlichkeit dafür, das Teilchen am Ort \vec{r} zur Zeit t zu finden

- 1. Elektron: $m=9,1\cdot 10^{-31} {\rm kg},$ Radius: $r=2,8\cdot 10^{-15} {\rm m},$ $\gamma=r$ $T=6,8\cdot 10^{-23} {\rm s}$
- 2. Bleikugel: $m=0,1{\rm g},\,r=1,3\cdot 10^{-3}{\rm m},\,\gamma=r$ $T=1,6\cdot 10^{+24}{\rm s}=5,1\cdot 10^{16}{\rm Jahre}$

2.3 Bedeutung der Wellenfunktion

 $\left|\psi\left(\vec{r},t\right)\right|^{2} \neq \text{Materiedichte}$

2.3.1 Doppelspaltexperiment

(Abb 10)

(Folie Internet)

"Auftreffpunkte" einzelner Photonen sind zufällig.

Viele Photonen \rightarrow regelmäßiges Beugungsbild

Auftreffen erfolgt gemäß einer Wahrscheinlichkeitsverteilung

Betragsquadrat $\left|\psi\left(\vec{r},t\right)\right|^{2}$ ist die Aufenthaltwahrscheinlichkeit der Teilchen

Max Born (1926)

Wahrscheinlichkeit, das Teilchen im Volumen V zu finden

$$W(V) = \int_{V} |\psi(\vec{r}, t)|^{2} d^{3}r$$

2.3.2 Normierung

$$\int\limits_{\mathbb{R}^{3}}\left|\psi\left(\vec{r,}t\right)\right|^{2}d^{3}r=1$$

$$\Rightarrow \int_{\mathbb{R}^3} \stackrel{\star}{\psi}(\vec{r},t) \, \psi(\vec{r},t) \, d^3r = 1 \rightarrow \psi(\vec{r},t)$$
: quadratintegrable Funktion

⇒ Wellenfunktion fällt im "Unendlichen" schnell ab

2.3.3 Periodische Funktion

Normierung auf Volumen V

$$\int_{V} \left| \psi \left(\vec{r}, t \right)^{2} d^{3} r = 1 \right|$$

Ebene Welle: $\psi\left(\vec{r},t\right)=\psi_{0}e^{i\left(\vec{k}\vec{r}-\omega t\right)},\,\omega=\frac{\hbar k^{2}}{2m}$

$$\Rightarrow \left|\psi\left(\vec{r},t\right)\right|^2 = \left|\psi_0\right|^2 \cdot 1$$

Normierung auf Volumen $V \Rightarrow \psi_0 = \frac{1}{\sqrt{V}}$.

Phasenfaktor

wird typsicherweise zu "Eins" gewählt

$$\left|\psi\left(\vec{r},t\right)\right|^2 = \frac{1}{V}$$

2.3.4 Wellenpaket

Bei t=0 ist das Teilchen bei $\vec{r}=0$ lokalisiert

t>0: Wellenpaket zerfließt $\Rightarrow \left|\psi\left(\vec{r},t\right)\right|^2$ wird "breiter" \Rightarrow Kentniss über Aufenthaltsort wird immer ungenauer $i\hbar\frac{\partial}{\partial t}\psi\left(\vec{r},t\right)=-\frac{\hbar^2\nabla^2}{2m}\psi\left(\vec{r},t\right)\Rightarrow$ Zeitliches Verhalten von $\psi\left(\vec{r},t\right)$ ist streng deterministisch.

Ort und Impuls sind nicht gleichzeitig genau bestimmbar

2.4 Quantenmechanische Erwartungswerte

2.4.1 Grundbegriffe der Wahrscheinlichkeitsrechnung

Zufällige Größen $X_1, X_2, \dots X_N$ können N Werte annehmen Wahrscheinlichkeit, dass X_i auftritt: w_i

- 1. $0 \le w_i \le 1$
- 2. $w_i = 1$ (sicheres Ergebnis)
- 3. $\sum_{i=1}^{N} w_i = 1$ (Normierung)

Mittelwert (mathematischer Erwartungswert)

$$\langle x \rangle = \sum_{i=1}^{N} x_i w_i$$

 $\langle f(x) \rangle = \sum_{i}^{N} f(x_i) w_i$

Streuung

$$S = \left\langle \left(\left\langle x \right\rangle^2 - x \right)^2 \right\rangle$$
$$= \left\langle \left\langle x \right\rangle^2 - 2x \left\langle x \right\rangle + x^2 \right\rangle$$
$$= \left\langle x \right\rangle^2 - 2 \left\langle x \right\rangle \left\langle x \right\rangle + \left\langle x^2 \right\rangle$$
$$= \left\langle x^2 \right\rangle - \left\langle x \right\rangle^2$$

Unschärfe, Unsicherheit

$$\Delta x = \sqrt{S} = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

Wahrscheinlichkeitsdichte Zufällige Größe, deren Wertebereich kontinuierlich ist

Wahrscheinlichkeit für das Auftreten des Wertes x ist durch eine Wahrscheinlichkeitsdichte $w\left(x\right)$ bestimmt

- 1. $0 \le w(x) dx \le 1$
- 2. $w(x) = \delta(x x_0)$ d.h. x_0 tritt immer auf
- $3. \int_{-\infty}^{\infty} w(x) dx = 1$

$$\Rightarrow$$
 Mittelwert: $\langle x \rangle = \int\limits_{-\infty}^{\infty} x \cdot w(x) \, dx$ allg. $\langle f(x) \rangle = \int\limits_{-\infty}^{\infty} f(x) \, w(x) \, dx$. Streuung und unsicherheit wie oben

2.4.2 Quantenmechanik

$$\varrho\left(\vec{r},t\right) := \left|\psi\left(\vec{r},t\right)\right|^{2}$$
 Autor that the vectors have been in lich keite dichter

11

Erwartungswert des Ortes

$$\langle \vec{r} \rangle = \int_{\mathbb{R}^3} \vec{r} \varrho (\vec{r}, t) d^3 r$$

$$= \int_{\mathbb{R}^3} \vec{r} \psi^* (\vec{r}, t) \psi (\vec{r}, t) d^3 r$$

$$= \int_{\mathbb{R}^3} \psi^* (\vec{r}, t) \vec{r} \psi (\vec{r}, t) d^3 r$$

Allgemein

$$\langle f(\vec{r}) \rangle = \int_{\mathbb{R}^3}^{\star} \psi(\vec{r}, t) f(\vec{r}) \psi(\vec{r}, t) d^3r$$

2.5 Wahrscheinlichkeitsdichte des Impulses

2.5.1 Plausibilitätsbetrachtung

Freies Teilchen: $\vec{p} = \hbar \vec{k}$

Allg. Lösung der Schrödingergleichung mit $\omega = \omega\left(k\right) = \frac{\hbar k^2}{2m}$

$$\psi(\vec{r},t) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_{\tilde{\mathbb{R}}^3} f(\vec{k}) e^{i(\vec{k}\vec{r}-\omega t)} d^3k$$
$$= \frac{1}{(2\pi)^{\frac{2}{3}}} \int_{\tilde{\mathbb{R}}^3} \psi(\vec{k},t) e^{i\vec{k}\vec{r}} d^3r$$

$$\tilde{\psi}\left(\vec{k},t\right) = f\left(\vec{k}\right)e^{-i\frac{\hbar k^2}{2m}\cdot t}$$

Umkehrung

$$\tilde{\psi}\left(\vec{k},t\right) = \frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \int_{\mathbb{R}^{3}} \psi\left(\vec{r},t\right) e^{-i\vec{k}\vec{r}} d^{3}r$$

Annahme: $\left|\tilde{\psi}\left(\vec{k},t\right)\right|^2$ ist Wahrscheinlichkeitsdichte für Wellenvektor \vec{k}

 $\Rightarrow \left| \tilde{\psi} \left(\frac{\vec{p}}{\hbar}, t \right) \right|^2$ ist Aufenthaltswahrscheinlichkeit für Impuls

Es gilt
$$\left|\psi\left(\vec{r},t\right)\right|^{2}=1 \Rightarrow \left|\tilde{\psi}\left(\vec{k},t\right)\right|^{2}=1$$

Denn:

Betrachte $f\left(\vec{r}\right),\,g\left(\vec{r}\right)$ und ihre Fourier transformierten $\tilde{f}\left(\vec{k}\right),\,\tilde{g}\left(\vec{k}\right)$

Parsewalsches Theorem

Beweis

LS =
$$\int_{\mathbb{R}}^{\star} f(\vec{r}) g(\vec{r}) d^{3}r$$

$$\stackrel{=}{\underset{\text{Def. FT}}{=}} \int_{\mathbb{R}^{3}}^{\star} f(\vec{r}) \frac{1}{(2\pi)^{\frac{2}{3}}} \int_{\tilde{\mathbb{R}}^{3}} \tilde{g}(\vec{k}) e^{i\vec{k}\vec{r}} d^{3}k$$

$$RS = \int_{\tilde{\mathbb{R}}^{3}}^{\star} f(\vec{k}) \tilde{g}(\vec{k}) d^{3}k$$

$$\stackrel{=}{\underset{\text{Def. FT}}{=}} \int_{\tilde{\mathbb{R}}^{3}} \left(\frac{1}{(2\pi)^{\frac{2}{3}}} \int_{\mathbb{R}^{3}} f(\vec{r}) e^{-i\vec{k}\vec{r}} d^{3}r \right)^{\star} \tilde{g}(\vec{k}) d^{3}k$$

$$= \int_{\tilde{\mathbb{R}}^{3}} \int_{\mathbb{R}^{3}}^{\star} f(\vec{r}) \tilde{g}(\vec{k}) e^{+i\vec{k}\vec{r}} d^{3} \cdot d^{3}r$$

$$= LS$$

Mit $f = \psi$, $g = \psi$ folgt

und somit die gemeinsame Normierung

2.5.2 Erwartungswert des Impulses

$$\langle \vec{p} \rangle = \hbar \left\langle \vec{k} \right\rangle = \hbar \int_{\tilde{\mathbb{R}}^3}^{\star} \tilde{\psi} ...$$

 $,\,\vec{k}=rac{\vec{p}}{\hbar}$

$$d^{3}k = \frac{d^{3}p}{\hbar^{3}} = \hbar \int_{-\pi}^{\pi} \tilde{\psi}\left(\frac{\vec{p}}{\hbar}, t\right) \frac{\vec{p}}{\hbar} \tilde{\psi}\left(\frac{\vec{p}}{\hbar}, t\right) \frac{d^{3}p}{\hbar^{3}}$$
$$= \int_{-\pi}^{\pi} \tilde{\psi}\left(\frac{\vec{p}}{\hbar}, t\right) \vec{p} \tilde{\psi}\left(\frac{\vec{p}}{\hbar}, t\right) \frac{d^{3}p}{\hbar^{3}}$$

$$\varphi\left(\vec{r},t\right) = \frac{\tilde{\psi}\left(\frac{\vec{p}}{\hbar},t\right)}{\hbar^{\frac{3}{2}}}$$

"Wellenfunktion im Impulsraum"

$$\langle \vec{p} \rangle 0 \int_{\tilde{\mathbb{R}}^3}^{\star} (\vec{p}, t) \, \vec{p} \varphi (\vec{p}, t) \, d^3r$$

Erwartungswert des Ortes

$$\left\langle \vec{r}\right\rangle =\int\limits_{\scriptscriptstyle{\mathbb{R}^{3}}}^{\star}\psi\left(\vec{r},t\right)\vec{r}\psi\left(\vec{r},t\right)d^{3}r$$

Erwartungswert des Impulses

$$\langle \vec{p} \rangle = \hbar \int_{\tilde{\mathbb{R}}^3}^{\star} \tilde{\psi} \left(\vec{k}, t \right) \vec{k} \tilde{\psi} \left(\vec{k}, t \right) d^3 k$$

2.6 Impulsoperator

Frage: Lässt sich $\langle \vec{p} \rangle$ auch direkt im Ortsraum berechnen?

$$\begin{split} \psi\left(\vec{r},t\right) &= \frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \int\limits_{\tilde{\mathbb{R}}^{3}} \tilde{\psi}\left(\vec{k},t\right) e^{i\vec{k}\vec{r}} d^{3}k \\ \vec{\nabla}\psi\left(\vec{r},t\right) &= \frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \vec{\nabla} \int\limits_{\tilde{\mathbb{R}}^{3}} \tilde{\psi}\left(\vec{k},t\right) e^{i\vec{k}\vec{r}} d^{3}k \\ &= \frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \int\limits_{\tilde{\mathbb{R}}^{3}} \tilde{\psi}\left(\vec{k},t\right) i\vec{k} e^{i\vec{k}\vec{r}} d^{3}k \end{split}$$

Da

 $\begin{array}{l} \text{folgt mit } f=\psi, \ \tilde{f}=\tilde{\psi}, \ g=\left(\vec{\nabla}\psi\right)_{j}, \ \tilde{g}=\left(i\vec{k}\tilde{\psi}\right)_{j}, \ j=1,2,3 \\ \Rightarrow \end{array}$

 \Rightarrow

$$\langle \vec{p} \rangle = \int_{\mathbb{R}^3} \psi(\vec{r}, t) \frac{\hbar}{i} \vec{\nabla} \psi(\vec{r}, t) d^3r$$

Idee: Impuls wird im "Ortsraum" durch den <u>Operator</u> $\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla}$ dargestellt. Das ^ deutet Operator-Charakter an.

 $\hat{\vec{p}}$: Impulsoperator

Ortsoperator $\hat{\vec{r}}$

In "Ortsdartsellung" gilt $\hat{\vec{r}} = \vec{r}$

Lässt sich $\langle \vec{r} \rangle$ auch direkt aus $\tilde{\psi}(\vec{k},t)$ berechnen?

$$\begin{split} \tilde{\psi}\left(\vec{k},t\right) &= \frac{1}{(2\pi)^{\frac{3}{2}}} \int_{\mathbb{R}^{3}} \psi\left(\vec{r},t\right) e^{-i\vec{k}\vec{r}} d^{3}r \\ \vec{\nabla}_{\vec{k}} \tilde{\psi}\left(\vec{k},t\right) &= \frac{1}{(2\pi)^{\frac{3}{2}}} \vec{\nabla}_{\vec{k}} \int_{\mathbb{R}^{3}} \psi\left(\vec{r},t\right) e^{-i\vec{k}\vec{r}} d^{3}r \\ &= \frac{1}{(2\pi)^{\frac{3}{2}}} \int_{\mathbb{R}^{3}} \psi\left(\vec{r},t\right) \left(-i\vec{r}\right) e^{-i\vec{k}\vec{r}} d^{3}r \end{split}$$

Dann folgt

Mit
$$\vec{p} = \hbar \vec{k}$$
, $\phi(\vec{p}, t) = \frac{\tilde{\psi}(\frac{\vec{p}}{\hbar}, t)}{\hbar^{\frac{3}{2}}}$, $\vec{\nabla}_{\vec{k}} = \hbar \vec{\nabla}_{\vec{p}}$ folgt:

Idee: Ort ist im "Impulsraum" durch $\hat{\vec{r}} = -\frac{\hbar}{i} \vec{\nabla}_{\vec{p}}$ gegeben. $\vec{\nabla}_{\vec{p}} = \left(\frac{\partial}{\partial p_x}, \frac{\partial}{\partial p_y}, \frac{\partial}{\partial p_z}\right)$

Es gilt:

 $\Rightarrow \hat{\vec{p}} = \vec{p}$ in "Impulsdarstellung"

 $\phi(\vec{p},t)$: Wellenfunktion im Impulsraum

⇒ Quantenmechanische Erwartungswerte haben allgemein die Form

(Ortsdarstellung)

bzw.

(Impulsdarstellung)

Dabei bedeutet \hat{O} :

Physikalische Größe	Ortsdarstellung	Impulsdarstellung
Ort \vec{r}	$ec{r}$	$-\frac{\hbar}{i}\vec{\nabla}_{\vec{p}} = i\hbar\vec{\nabla}_{\vec{p}}$
Impuls \vec{p}	$rac{\hbar}{i} \vec{ abla} = \left(rac{\hbar}{i} \vec{ abla}_{ec{r}} ight)$	\vec{p}
Drehimpuls $\hat{\vec{L}} := \hat{\vec{r}} \times \hat{\vec{p}}$	$\vec{r} \times \left(\frac{\hbar}{i} \vec{\nabla}\right) = \frac{\hbar}{i} \left(\vec{r} \times \vec{\nabla}\right)$	$i\hbar \left(\vec{\nabla}_{\vec{p}} \times \vec{p} \right)$

Zentrale Idee für den Aufbau der Quantenmechanik:

Physikalische Größen werden durch Operatoren dargestellt

3 Allgemeine Prinzipien der Quantenmechanik

3.1 Schrödingergleichung

Bisher: freies Teilchen $i\hbar\frac{\partial}{\partial t}\psi\left(\vec{r},t\right)=-\frac{\hbar^{2}\vec{\triangledown}^{2}}{2m}\psi\left(\vec{r},t\right)$

Ebene Welle: $\psi(\vec{r},t) = \psi_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}$

LS:

$$i\hbar\frac{\partial}{\partial t}\psi=i\hbar\left(-i\omega\right)\psi=\underbrace{\hbar\omega}_{=\text{Energie }E}\psi\left(\vec{r},t\right)$$

Da $\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla}$ folgt

$$\left(\hat{\vec{p}}\right)^2 = \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 = -\hbar \vec{\nabla}^2 = (\hat{p})^2$$

folgt

$$RS = \frac{\hat{p}^2}{2m} \psi \left(\vec{r}, t \right)$$

Klassische Mechanik

$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m} = \frac{(\vec{p})^2}{2m}$$

Teilchen im Potential $V(\vec{r})$

Klassisch:
$$e = \frac{p^2}{2m} + V(\vec{r})$$

Darstellung der Energie durch \vec{p} und \vec{r} entspricht Hamiltonfunktion

$$H\left(\vec{p}, \vec{r}, t\right) = \frac{p^2}{2m} + V\left(\vec{r}\right)$$

Freies Teilchen:

$$H\left(\vec{p},\vec{r},t\right)=\frac{p^{2}}{2m}$$

Quantenmechanik

$$\hat{H} = \frac{\hat{p}^2}{2m}$$

 \Rightarrow

$$i\hbar \frac{\partial}{\partial t}\psi\left(\vec{r},t\right) = \hat{H}\psi\left(\vec{r},t\right)$$

\hat{H} : Hamiltonoperator

Schrödinger postulierte 1926, dass für ein freies Teilchen in einem Potential $V\left(\vec{r}\right)$ die Wellenfunktion durch folgende Gleichung bestimmt wird

$$\begin{split} i\hbar\frac{\partial}{\partial t}\psi\left(\vec{r},t\right) &=& \hat{H}\psi\left(\vec{r},t\right) \\ \hat{H} &=& \frac{\hat{p}^2}{2m} + V\left(\vec{r}\right) \\ &=& -\frac{\hbar^2\nabla^2}{2m} + V\left(\vec{r}\right) \end{split}$$

Schrödingergleichung für Teilchen im Potential $V(\vec{r})$

 \hat{H} ; "Hamiltonoperator"

Der Hamiltonoperator ensteht aus der Hamiltonfunktion durch "Ersetzen" der Koordinaten \vec{r} und \vec{p} durch Operatoren

$$\begin{array}{ccc} H(\vec{p},\vec{r}) & \longrightarrow & \hat{H}\left(\hat{\vec{p}},\hat{\vec{r}}\right) \\ \text{klassische Mechanik} & \text{Quantenmechanik} \\ & & (\text{Ortsdarstellung } \hat{\vec{r}} = \vec{r},\,\hat{\vec{p}} = \frac{\hbar}{i}\vec{\triangledown} \end{array}$$

Dies gilt z.B. auch für zeitlich veränderliches Potential $V(\vec{r},t) \Rightarrow$

$$i\hbar\frac{\partial}{\partial t}\psi\left(\vec{r},t\right)=\left(\frac{\hat{p}^{2}}{2m}+V\left(\vec{r},t\right)\right)\psi\left(\vec{r},t\right)$$

 \hat{H} kann folgende Formen annehmen

- 1. Abstrakte Darstellung: $\hat{H} = \frac{\hat{p}^2}{2m} + V(\vec{r}, t)$
- 2. Ortsdarstellung: $\hat{H} = -\frac{\hbar^2 \vec{\nabla}^2}{2m} + V(\vec{r}, t)$
- 3. Impulsdarstellung: $\hat{H}=\frac{\vec{p}^2}{2m}+V\left(i\hbar\vec{\nabla}\vec{p},t\right)$

Konzept:

- 1. Stelle Hamilton funtion H auf
- 2. Gehe von H zum Hamiltonoperator \hat{H}
- 3. Löse die Schrödingergleichung $\rightarrow \psi(\vec{r},t)$
- 4. Berechne Erwartungswerte der physikalischen Größen

3.2 Operatoren und Kommutatoren

Operator \hat{O} :

$$\hat{O}\psi\left(\vec{r},t\right) = \varphi\left(\vec{r},t\right)$$

Operator "verändert" die Funktion ψ nach φ Beispiele

- 1. Impulsoperator $\hat{O} = \hat{\vec{p}}: \hat{\vec{p}}\psi(\vec{r},t) = \frac{\hbar}{i} \vec{\nabla}\psi(\vec{r},t)$
- 2. Ortsoperator $\hat{O} = \hat{\vec{r}}: \hat{\vec{r}}\psi\left(\vec{r},t\right) = \vec{r}\psi\left(\vec{r},t\right)$
- 3. Einheitsoperator $\hat{O} = \hat{1}$: $\hat{1}\psi(\vec{r},t) = \psi(\vec{r},t)$
- 4. Inversions operator $\hat{O}=\hat{I}$: $\hat{I}\psi\left(\vec{r},t\right)=\psi\left(-\vec{r},t\right)$
- 5. Translation um Vektor \vec{d} $\hat{O} = \hat{T}_{\vec{d}}$: $\hat{T}_{\vec{d}} \psi \left(\vec{r}, t \right) = \psi \left(\vec{r} + \vec{d}, t \right)$

Achtung: in der Regel ist die Reihenfolge von Operatoren in Rechnungen wichtig Klassisch: Ort x und Impuls p_x in x-Richtung $xp_x=p_xx \Rightarrow xp_x-p_xx=0$ Quantenmechanik:

$$\hat{x}\hat{p}_{x}\psi(\vec{r},t) = x\frac{\hbar}{i}\frac{\partial}{\partial x}\psi(\vec{r},t)$$

$$\hat{p}_{x}\hat{x}\psi(\vec{r},t) = \hat{p}_{x}(\hat{x}\psi(\vec{r},t))$$

$$= \frac{\hbar}{i}\frac{\partial}{\partial x}(x\psi(\vec{r},t))$$

$$= \frac{\hbar}{i}\psi(\vec{r},t) + \frac{\hbar}{i}x\frac{\partial}{\partial x}\psi(\vec{r},t)$$

Operatoren wirken auf alles, was rechts von ihnen steht!

$$\hat{x}\hat{p}_{x}\psi\left(\vec{r},t\right) - \hat{p}_{x}\hat{x}\psi\left(\vec{r},t\right) = -\frac{\hbar}{i}\psi\left(\vec{r},t\right) = i\hbar\psi\left(\vec{r},t\right)$$

$$(\hat{x}\hat{p}_{r} - \hat{p}_{r}\hat{x})\,\psi\,(\vec{r},t) = i\hbar\psi\,(\vec{r},t)$$

Der Gehalt dieser Gleichung wird durch folgende Kurzschreibweise zum Ausdruck gebracht

$$\hat{x}\hat{p}_x - \hat{p}_x\hat{x} = i\hbar$$

Definition:

Für Operatorn \hat{A} und \hat{B} bezeichnet man

$$\left[\hat{A},\hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

als Kommutator von \hat{A} und \hat{B}

Erinnerung

$$i\hbar \frac{\partial}{\partial t} \underbrace{\psi\left(\vec{r},t\right)}_{\text{Wellenfkt. "Zustand"}} = \underbrace{\hat{H}}_{\text{Hamiltonoperator}} \psi\left(\vec{r},t\right)$$
$$\hat{H} = \frac{\hat{p}^2}{2m} + V\left(\hat{r},t\right)$$

Ortsdarstellung

$$\hat{\vec{r}} = \vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla} = \begin{pmatrix} \hat{p}_x \\ \hat{p}_y \\ \hat{p}_z \end{pmatrix} = \frac{\hbar}{i} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

$$\begin{aligned} [\hat{x}, \hat{p}_x] &= i\hbar \\ [\hat{y}, \hat{p}_x] &= 0 \\ [\hat{y}, \hat{p}_y] &= i\hbar \end{aligned}$$

Denn

$$\hat{y}\hat{p}_{x}\psi\left(\vec{r},t\right) = y\frac{\hbar}{i}\frac{\partial}{\partial x}\psi\left(\vec{r},t\right)$$

$$\hat{p}_{x}\hat{y}\psi\left(\vec{r},t\right) = \frac{\hbar}{i}\frac{\partial}{\partial x}\left(y\psi\left(\vec{r},t\right)\right) = \frac{\hbar}{i}y\frac{\partial}{\partial x}\psi\left(\vec{r},t\right)$$

$$\left(\hat{y}\hat{p}_{x} - \hat{p}_{x}\hat{y}\right)\psi\left(\vec{r},t\right) = 0$$

 \Rightarrow

 \Rightarrow

$$[\hat{y}, \hat{p}_x] = 0$$

3.2.1 Insgesamt

$$\left[\hat{\vec{r}}_j,\hat{\vec{p}}_k\right]=i\hbar\delta_{j,k}$$
mit $j,k=1,2,3$

Vertauschungsrelation für Ort und Impuls

3.3 Wahrscheinlichkeitsstromdichte

In einer Dimension:

$$\varrho(x,t) = \overset{\star}{\psi}(x,t) \,\psi(x,t)$$

$$i\hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x,t)\right) \psi(x,t) \tag{7}$$

$$-i\hbar \frac{\partial}{\partial t} \overset{\star}{\psi} = \overset{\star}{\hat{H}} \overset{\star}{\psi}(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \underbrace{V(x,t)}_{\text{recles Potential}}\right) \overset{\star}{\psi}(x,t)$$

$$\frac{\partial}{\partial t} \varrho(x,t) = \left(\frac{\partial}{\partial t} \overset{\star}{\psi}(x,t)\right) \psi(x,t) + \overset{\star}{\psi}(x,t) \frac{\partial}{\partial t} \psi(x,t)$$

Mit
$$(7) + (8)$$

$$\begin{split} \frac{\partial}{\partial t}\varrho\left(x,t\right) &= \left(-\frac{1}{i\hbar}\left(\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\left(x,t\right)\right)\overset{\star}{\psi}\left(x,t\right)\right)\psi\left(x,t\right)\right) \\ &+ \frac{1}{i\hbar}\left(\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\left(x,t\right)\right)\psi\left(x,t\right)\right)\overset{\star}{\psi}\left(x,t\right) \\ &= \frac{1}{i\hbar}\left(\overset{\star}{\psi}\left(x,t\right)\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right)\psi\left(x,t\right) - \psi\left(x,t\right)\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\right)\overset{\star}{\psi}\left(x,t\right)\right) \end{split}$$

Da

$$\psi \frac{\partial^2}{\partial x^2} \psi = \frac{\partial}{\partial x} \left(\psi \frac{\partial}{\partial x} \psi \right) - \frac{\partial^*}{\partial x} \frac{\partial \psi}{\partial x}
\psi \frac{\partial^2}{\partial x^2} \psi = \frac{\partial}{\partial x} \left(\psi \frac{\partial}{\partial x} \psi \right) - \frac{\partial \psi}{\partial x} \frac{\partial^*}{\partial x}$$

 \Rightarrow

$$\begin{split} \frac{\partial \varrho}{\partial t} &= \frac{1}{i\hbar} \frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\psi \frac{\partial}{\partial x} \overset{\star}{\psi} - \overset{\star}{\psi} \frac{\partial}{\partial x} \psi \right) \\ \\ \frac{\partial \varrho \left(r, t \right)}{\partial t} &+ \frac{\partial}{\partial x} \underbrace{\frac{\hbar}{i2m} \left(\overset{\star}{\psi} \frac{\partial}{\partial x} \psi - \psi \frac{\partial}{\partial x} \overset{\star}{\psi} \right)}_{j(x,t) \text{ Wahrscheinlichkeitsstromdichte}} = 0 \end{split}$$

$$\frac{\partial \varrho \left(x,t\right) }{\partial t}+\frac{\partial }{\partial x}j\left(x,t\right) =0$$

Kontinuitätsgleichung

In drei Dimensionen:

$$\frac{\partial \varrho \left(\vec{r},t \right)}{\partial t} + \operatorname{div} \vec{j} \left(\vec{r},t \right) = 0$$

$$\vec{j} \left(\vec{r},t \right) = \frac{\hbar}{i2m} \left(\stackrel{\star}{\psi} \left(\vec{r},t \right) \vec{\nabla} \psi \left(\vec{r},t \right) - \psi \left(\vec{r},t \right) \vec{\nabla} \stackrel{\star}{\psi} \left(\vec{r},t \right) \right)$$

3.3.1 Physikalische Bedeutung

Ein demensional:

$$\frac{\partial}{\partial t}\varrho\left(x,t\right) = -\frac{\partial}{\partial x}j\left(x,t\right)$$

Interpretation:

$$\frac{\partial}{\partial t} \int_{a}^{b} \varrho(x, t) dx = -\int_{a}^{b} \frac{\partial}{\partial x} j(x, t) dx = j(a, t) - j(b, t)$$

(Abb Q11)

In drei Dimensionen

$$\begin{split} \frac{\partial\varrho\left(\vec{r},t\right)}{\partial t} &= -\mathrm{div}\vec{j}\left(\vec{r},t\right) \\ \frac{\partial}{\partial t}\int_{V}\varrho\left(\vec{r},t\right)d^{3}r &= -\int_{V}\mathrm{div}j\left(\vec{r},t\right)d^{3}r = -\oint_{\mathrm{OF\ um\ }V}\vec{j}\left(\vec{r},t\right)\cdot d\vec{f} \end{split}$$

(Abb Q12)

Stationäre Schrödingergleichung

Sei \hat{H} zeitunabhängig (also $V(\vec{r})$ hängt nicht von t ab)

$$i\hbar\frac{\partial}{\partial t}\psi\left(\vec{r},t\right)=\hat{H}\psi\left(\vec{r},t\right)$$

Separationsansatz:

$$\psi\left(\vec{r},t\right) = f\left(t\right)\varphi\left(\vec{r}\right)$$

$$i\hbar\left(\frac{\partial}{\partial t}f\left(t\right)\right)\varphi\left(\vec{r}\right) = f\left(t\right)\hat{H}\varphi\left(\vec{r}\right) \mid : f\left(t\right)\varphi\left(\vec{r}\right)$$

Sei $f(t) \neq 0, \varphi(\vec{r}) \neq 0$

$$\frac{i\hbar\frac{\partial}{\partial t}f\left(t\right)}{f\left(t\right)} = \frac{\hat{H}\varphi\left(\vec{r}\right)}{\varphi\left(\vec{r}\right)}$$

Soll für alle t, \vec{r} gelten \Rightarrow

$$\frac{i\hbar\frac{\partial}{\partial t}f\left(t\right)}{f\left(t\right)} = \underbrace{\underbrace{E}}_{\text{Konstante mit Dimension Energie}} = \frac{\hat{H}\varphi\left(\vec{r}\right)}{\varphi\left(\vec{r}\right)}$$

 \Rightarrow

$$i\hbar \frac{\partial}{\partial t} f(t) = Ef(t)$$
 (9)
 $\hat{H}\varphi(\vec{r}) = E\varphi(\vec{r})$ (10)

$$\hat{H}\varphi\left(\vec{r}\right) = E\varphi\left(\vec{r}\right) \tag{10}$$

Stationäre Schrödingergleichung

gilt auch falls f(t) = 0 bzw. $\varphi(\vec{r}) = 0$

(9) ist direkt lösbar:

$$f(t) = e^{\frac{E}{i\hbar}t} \left(\cdot \text{Konstante} \right) \tag{11}$$

 \Rightarrow

$$\psi\left(\vec{r},t\right) = e^{\frac{E}{i\hbar}t} \cdot \varphi\left(\vec{r}\right)$$

3.4.1Hinweis

Häufig wird die Wellenfunktion $\varphi(\vec{r})$ auch mit $\psi(\vec{r})$ bezeichnet

$$\hat{H}\psi\left(\vec{r}\right) = E\psi\left(\vec{r}\right)$$

Im allgemeinen Fall ergibt sich die Lösung von $i\hbar \frac{\partial}{\partial t}\psi\left(\vec{r},t\right)=\hat{H}\psi\left(\vec{r},t\right)$ aus einer Überlagerung von Lösungen des "Types (11)"

3.4.2 Stationäre Schrödingergleichungen

$$\hat{H}\varphi_{n}\left(\vec{r}\right) = \underbrace{E_{n}}_{\text{Eigenwert Eigenfunktion}} \underbrace{\varphi_{n}\left(\vec{r}\right)}_{}$$

Eigenwertgleichung

n: Index, der die verschiedenen Lösungen der Gleichung "abzählt"

n wird als Quantenzahl bezeichnet

3.4.3 Beispiel Freies Teilchen

1. Eindimensional: $\hat{H} = \frac{\hat{p}_x^2}{2m} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$

$$\begin{split} \hat{H}\varphi\left(x\right) &= E\varphi\left(x\right) \\ -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\varphi\left(x\right) &= E\varphi\left(x\right) \\ &\Rightarrow \varphi\left(x\right) = Ae^{ikx} \\ &\Rightarrow \frac{\hbar^2k^2}{2m}\varphi\left(x\right) = E\varphi\left(x\right) \\ &E = \frac{\hbar^2}{2m}k^2 \end{split}$$

 \rightarrow Quantenzahl $\hat{=}\ k$

$$E_k = \frac{\hbar^2}{2m} k^2$$

$$\varphi_k(x) = Ae^{ikx}$$

$$\psi(x,t) = e^{\frac{\hbar^2 k^2}{2m} t \frac{1}{i\hbar}} \cdot Ae^{ikx}$$

$$-i \frac{\hbar k^2}{2m} t$$

$$= Ae^{ikx} e^{-ikx}$$

$$= Ae^{i(kx-\omega t)}$$

2. Dreidimensional $\hat{H}=\frac{\hat{\vec{p}}^2}{2m}=-\frac{\hbar^2\vec{\nabla}^2}{2m}$

$$\Rightarrow \varphi_{\vec{k}}(\vec{r}) = Ae^{i\vec{k}\vec{r}}$$

$$E_{\vec{k}} = \frac{\hbar^2 k^2}{2m}$$

$$k^2 = k_x^2 + k_y^2 + k_z^2$$

 $\hat{H}\varphi\left(\vec{r}\right) = E\varphi\left(\vec{r}\right)$

Quantenzahlen $\vec{k} = (k_x, k_y, k_z)$

Falls Eigenwerte $E_m = E_{m'}$ übereinstimmen, aber die zugehörigen Eigenfunktionen $\varphi_m\left(\vec{r}\right)$ und $\varphi_{m'}\left(\vec{r}\right)$ unterschiedlich sind, so liegt eine "Entartung" vor

$$E_m = E_{m'}$$
 , $\varphi_m(\vec{r}) \neq \varphi_{m'}(\vec{r})$

21

3.5 Potentialtopf mit unendlich hoher Wahrscheinlichkeit

Eindimendionales System $\hat{H} = \frac{\hat{p}_x^2}{2m} + V(x)$

(Abb Q13)

 $V_0 \to \infty$: Das Teilchen hält sich nur im Breich II auf

$$\Rightarrow \varphi^{\mathrm{I}}(x) = 0, \, \varphi^{\mathrm{III}}(x) = 0$$

3.5.1 Forderung an Wellenfunktion

- $\varphi(x)$ stetig (damit $\varphi'(x)$ definiert)
- $\varphi'(x)$ stetig (damit $\varphi''(x)$ definiert)

Gilt dies auch bei Unstetigkeitsstellen des Potentials?

- $\varphi(x)$ stetig
- $\varphi'(x)$ stetig bei endlichen Sprüngen von V(x)

 ${\bf Stetigkeit}$

 \Rightarrow

$$\varphi^{\text{II}}(0) = \varphi^{\text{I}}(0) = 0$$

$$\varphi^{\text{II}}(L) = \varphi^{\text{III}}(L) = 0$$

 \Rightarrow

$$\varphi^{\mathrm{II}}\left(0\right) = \varphi^{\mathrm{II}}\left(L\right)$$

Schrödingergleichung im Bereich ${\rm II}$

$$V(x) = 0 \Rightarrow \hat{H}^{II} = \frac{p_x^2}{2m}$$

$$\hat{H}^{\mathrm{II}}\varphi^{\mathrm{II}}\left(x\right) = E\varphi^{\mathrm{II}}\left(x\right)$$

 \Rightarrow Lösungen $\varphi(x) \sim e^{ikx}$ oder e^{-ikx}

 \Rightarrow

$$\begin{split} \varphi^{\mathrm{II}}\left(x\right) &=& ae^{ikx} + be^{-ikx} \\ \varphi^{\mathrm{II}}\left(0\right) &=& a\cdot 1 + b\cdot 1 \stackrel{!}{=} 0 \Rightarrow a = -b \end{split}$$

 \Rightarrow

$$\varphi^{\text{II}}(x) = a\left(e^{ikx} - e^{-ikx}\right)$$

$$\varphi^{\text{II}}(x) = 2ai\sin kx$$

x = L

$$\varphi^{\mathrm{II}}(L) = 2ai\sin(kL) \stackrel{!}{=} 0$$

 \Rightarrow

$$kL = n\pi$$

 \Rightarrow

$$k = \frac{n\pi}{L}$$

 \Rightarrow

$$E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} \cdot n^2$$

$$E_n \sim n^2, n = 1, 2, 3, \dots$$

Erinnerung

(Abb Q13)

$$\varphi^{\mathrm{I}}(x) = 0 = \varphi^{\mathrm{III}}(x)$$

$$\begin{split} \hat{H}\varphi\left(x\right) &= E\varphi\left(x\right)\\ \varphi^{\mathrm{II}}\left(0\right) &= 0 = \varphi^{\mathrm{II}}\left(L\right); \text{ im Bereich II: } V\left(x\right) = 0\\ \Rightarrow \hat{H} &= \frac{\hat{p}_{x}^{2}}{2m} = -\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}} \Rightarrow \varphi\left(x\right) = e^{ikx} \text{ bzw. } \varphi\left(x\right) = e^{-ikx} \end{split}$$

Linearkombinationen der Lösung \rightarrow erfüllen der Randbedingungen

$$\varphi\left(x\right) = ae^{ikx} + b^{-ikx}$$

Rand: $\varphi(0) = a + b \stackrel{!}{=} 0 \Rightarrow a = -b \Rightarrow$

$$\varphi(x) = a \left(e^{ikx} - e^{-ikx} \right)$$
$$= 2ai \sin(kx)$$

Rand: $\varphi(L) = 2ai\sin(kx) \stackrel{!}{=} 0 \Rightarrow \sin(kx) = 0 \Rightarrow$

$$\begin{array}{rcl} kL & = & n\pi & n \text{:ganze Zahl} \\ k & = & \frac{n\pi}{L} \end{array}$$

 \Rightarrow Im gesamten Gebiet:

$$\varphi(x) = \begin{cases} 2ai\sin\left(\frac{\pi}{L}nx\right) & \text{für } 0 \le x \le L\\ 0 & \text{sonst} \end{cases}$$

Normierung: A = 2ai

$$\int_{-\infty}^{\infty} |\varphi(x)|^2 dx = 1$$

 \Rightarrow

$$\int_{0}^{L} \left| A \sin \left(\frac{\pi}{L} nx \right) \right|^{2} dx \quad \stackrel{!}{=} \quad 1$$

$$|A|^{2} \int_{0}^{L} \sin^{2} \left(\frac{\pi}{L} nx \right) dx \quad \stackrel{!}{=} \quad 1$$

$$|A|^{2} \left(\frac{L}{2} - 0 \right) \quad \stackrel{!}{=} \quad 1$$

da
$$\int \sin^2(\alpha x) dx = \frac{x}{2} - \frac{1}{4\alpha} \sin(2\alpha x)$$

 $\Rightarrow |A|^2 = \frac{2}{L} \Rightarrow$

$$A = \sqrt{\frac{2}{L}} \cdot \underbrace{\text{Phasenfaktor}}_{=e^{i\vartheta}, \vartheta \text{ reel}}$$

Typischerweise wählt man als Phasenfaktor den Wert "Eins"

$$\varphi_n = \begin{cases} \sqrt{\frac{2}{L}} \sin\left(\frac{\pi}{L}nx\right) & 0 \le x \le L\\ 0 & \text{sonst} \end{cases}$$

n = 1, 2, 3, 4, ...

n=0ausgeschlossen, da $\varphi_{0}\left(x\right)=0$
 $\hat{=}$ physikalisch nicht sinnvoll

n=-1,-2,... $\sin\left(\frac{\pi}{L}\left(-n\right)x\right)=-\sin\left(\frac{\pi}{L}nx\right),\ \varphi_{-n}\left(x\right)=-\varphi_{n}\left(x\right).$ d.h. $\varphi_{-n}\left(x\right)$ und $\varphi_{n}\left(x\right)$ stimmen bis auf Phasenfaktor überein

$$\hat{H}\varphi_{n}\left(x\right) = -\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}\varphi_{n}\left(x\right) \stackrel{!}{=} E_{n}\varphi_{n}$$

Bereich II:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\sqrt{\frac{2}{L}}\sin\left(\frac{\pi}{L}nx\right) = -\frac{\hbar^2}{2m}\sqrt{\frac{2}{L}}\left(\frac{\pi}{L}n\right)^2(-)\sin\left(\frac{\pi}{2}nx\right)$$
$$= \frac{\hbar^2}{2m}\frac{\pi^2}{L^2}n^2\sqrt{\frac{2}{L}}\sin\left(\frac{\pi}{L}nx\right)$$
$$\stackrel{!}{=} E_n\sqrt{\frac{2}{L}}\sin\left(\frac{\pi}{L}nx\right)$$

 \Rightarrow

$$E_n = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} n^2$$

3.5.2 Grafische Darstellung der Resultate

(Abb Q14)

Oft findet man folgende Darstellung:

(Abb Q15)

3.5.3 Physikalische Aspekte

- Eigenzustände können (im Potentialtopf) nur bestimmte Energien haben (diskretes Energiespektrum)
- Aufenthaltswahrscheinlichkeitsdichte ist räumlich nicht konstant
- In allen Zuständen φ_n ist das Teilchen mit der größten Wahrscheinlichkeit in der Mitte des Topfes $(x = \frac{L}{2})$ zu finden: $\langle x \rangle = \frac{L}{2}$
- Erwartungswert des Impulses: $\langle \hat{p}_x \rangle = 0$

3.5.4 Formale Aspekte

1. Orthogonalität – Skalarprodukt zwischen Funktionen $\varphi(x)$ und $\chi(x)$

$$(\chi, \varphi) := \int_{-\infty}^{\infty} \mathring{\chi}(x) \varphi(x) dx$$

(Analog zu
$$\vec{b} \cdot \vec{a} = \sum_{j=1}^{n} \vec{b}_{j} a_{j}$$
 mit $\vec{a} = (a_{1}, a_{2}, ..), \vec{b} = (b_{1}, b_{2}, ..)$)

 $(\chi, \varphi) = 0 \Rightarrow$ Funktionen sind "orthogonal"

Hier:

$$(\varphi_{n}, \varphi_{n'}) = \int_{-\infty}^{\infty} \varphi_{n}^{\star}(x) \varphi_{n'}(x) dx$$

$$= \int_{0}^{L} \sqrt{\frac{2}{L}} sin\left(\frac{\pi}{L}nx\right) \sqrt{\frac{2}{L}} sin\left(\frac{\pi}{L}n'x\right) dx$$

$$= \delta_{n,n'} \text{ (analog zu Forierreihen)}$$

- \Rightarrow Eigenfunktionen sind orthogonal
- **2. Vollständigkeit** Jede Funktion f(x) mit f(0) = 0 und f(L) = 0 kann durch die $\varphi_n(x)$ dargestellt werden

$$f(x) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{L}} \left(\frac{\pi}{L} nx\right)$$

 c_n : Entwicklungskoeffizient (analog zu Fourierdarstellung)

3.5.5 Lösung der zeitabhängigen Schrödingergleichung für Potentiale

Bisher:

$$\psi(x,t) = e^{\frac{E_n t}{i\hbar}} \varphi_n(x) \quad \text{mit } \hat{H}\varphi_n = E_n \varphi_n$$
stationäre Zustände
$$\Rightarrow |\psi(x,t)|^2 = \underbrace{e^{-\frac{E_n t}{i\hbar}} e^{\frac{E_n t}{i\hbar}}}_{=1} \mathring{\varphi}_n(x) \varphi_n(x)$$

$$= |\varphi_n(x)|^2 \quad \text{unabhängig von } t$$

Allgemein

$$\psi\left(x,t\right) = \sum_{n=1}^{\infty} c_n e^{\frac{E_n t}{i\hbar}} \varphi_n\left(x\right)$$

erfüllt

$$i\hbar \frac{\partial}{\partial t}\psi\left(x,t\right) = \hat{H}\psi\left(x,t\right)$$

3.5.6 Beispiel

Wellenpaket

(Abb Q16)

Teilchen ist bei $x = \frac{L}{2}$ lokalisiert

$$\psi(x,0) = \frac{1}{\pi^{\frac{1}{4}}b^{\frac{1}{2}}}e^{-\frac{\left(x-\frac{L}{2}\right)^{2}}{2b^{2}}}e^{ik_{0}\left(x-\frac{L}{2}\right)}$$

$$\int_{-\infty}^{\infty} \varphi_{n'}(x) \psi(x,t) dx = \sum_{n=1}^{\infty} c_n e^{\frac{E_n t}{i\hbar}} \underbrace{\int_{-\infty}^{\infty} \varphi_{n'}(x) \varphi_n(x) dx}_{=\delta_{n,n'}}$$
$$= c_{n'} e^{\frac{E_{n'} t}{i\hbar}}$$

t = 0:

$$c_{n} = \int_{-\infty}^{\infty} \dot{\varphi}_{n'}(x) \psi(x, 0) dx$$

Mit: $\sin \beta x = \frac{1}{2i} \left(e^{i\beta x} - e^{-i\beta x} \right)$ und $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha x^2} e^{i\beta x} dx = \frac{1}{\sqrt{2\alpha}} e^{-\frac{\beta^2}{4\alpha}}$ für reele $\alpha > 0$

Dann gilt:

$$c_n = \frac{1}{\pi^{\frac{1}{4}}} \sqrt{b} \frac{1}{2i} \sqrt{\frac{2}{L}} \sqrt{2\pi} \left(e^{ik_0 \frac{L}{2}} e^{-(k_0 + k_n)^2 \frac{b^2}{2}} + e^{-ik_0 \frac{L}{2}} e^{-(-k_0 + k_n)^2 \frac{b^2}{2}} \right)$$

mit $k_n = \frac{n\pi}{L}$

Insgesamt:

$$\psi\left(x,t\right) = \sum_{n=1}^{\infty} c_n \sqrt{\frac{2}{L}} \sin\left(\frac{\pi}{L}nx\right) \cdot e^{\frac{1}{i\hbar} \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} n^2 t}$$

(Folie $\left|\psi\left(x,t\right)\right|^{2}$ für Teilchen im Potentialtopf)

Klassisch:

(Abb Q17)

3.6 Dreidimensionale Separable Potentiale

Schrödinger-Gleichung $\left(-\frac{\hbar^{2}\,\vec{\nabla}^{2}}{2m}+V\left(\vec{r}\right)\right)\varphi\left(\vec{r}\right)=E\varphi\left(\vec{r}\right)$

Seperables Potential: $V\left(\vec{r}\right)=V_{1}\left(x\right)+V_{2}\left(y\right)+V_{3}\left(z\right)$

 \Rightarrow

$$\left(\underbrace{\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V_{1}\left(x\right)\right)}_{\hat{H}_{1}\left(x\right)}+\underbrace{\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial y^{2}}+V_{2}\left(y\right)\right)}_{\hat{H}_{2}\left(y\right)}+\underbrace{\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}}+V_{3}\left(z\right)\right)}_{\hat{H}_{3}\left(z\right)}\right)\varphi\left(\vec{r}\right)=E\varphi\left(\vec{r}\right)$$

$$\left(\hat{H}_{1}\left(x\right)+\hat{H}_{2}\left(y\right)+\hat{H}_{3}\left(z\right)\right)=E\varphi\left(\vec{r}\right)$$

 \Rightarrow Separationsansatz: $\varphi(\vec{r}) = f(x) \cdot g(y) \cdot h(z)$

Einsetzen

$$\left(\hat{H}_{1}\left(x\right)f\left(x\right)\right)g\left(x\right)h\left(z\right) + \left(\hat{H}_{2}\left(y\right)g\left(y\right)\right)f\left(x\right)h\left(z\right) + \left(\hat{H}_{3}\left(z\right)h\left(z\right)\right)f\left(x\right)g\left(y\right) = Ef\left(x\right)g\left(y\right)h\left(z\right) \quad | \div f\left(x\right)g\left(y\right)h\left(z\right)$$

$$\frac{\hat{H}_{1}\left(x\right)f\left(x\right)}{f\left(x\right)} + \frac{\hat{H}_{2}\left(y\right)g\left(y\right)}{g\left(y\right)} + \frac{\hat{H}_{3}\left(z\right)h\left(z\right)}{h\left(z\right)} = Ef\left(x\right)g\left(y\right)h\left(z\right) \quad | \div f\left(x\right)g\left(y\right)h\left(z\right)$$

Soll für alle x, y, z gelten \Rightarrow Terme sind alle konstant

$$E^{(x)} + E^{(y)} + E^{(z)} = E$$

 \Rightarrow

$$\hat{H}_{1}(x) f_{n_{x}}(x) = E^{(x)} f_{n_{x}}(x)
\hat{H}_{2}(y) g_{n_{x}}(y) = E^{(y)} g_{n_{y}}(y)
\hat{H}_{3}(z) h_{n_{x}}(z) = E^{(z)} h_{n_{x}}(z)$$

 n_x, n_y, n_z : Quantenzahlen

Eigenzustände von $\hat{H}(\vec{r})$ haben die Form

$$\varphi_{n_x,n_y,n_z}(\vec{r}) = f_{n_x}(x) g_{n_y}(y) h_{n_z}(z)$$

Energien:

$$E_{n_x,n_y,n_z} = E_{n_x}^{(x)} + E_{n_y}^{(y)} + E_{n_z}^{(z)}$$

Dann ist es notwendig drei eindimensionale Schrödinger-Gleichungen zu lösen.

3.6.1 Beispiel: Potentialrinne

(Abb Q18)

 $V_0 \to \infty$

$$V\left(\vec{r}\right) = \begin{cases} 0 & \text{für } 0 \le x \le L \\ V_0 & \text{sonst} \end{cases}$$

ê

- $\bullet\,$ Teilchen ist in x-Richtung im Topf von 0 bis L eingesperrt
- Freies Teilchen in y- und z-Richtung

x-Richtung

$$\hat{H}_{1}(x) = -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} + V_{1}(x)$$

$$V_{1}(x) = \begin{cases} 0 & \text{für } 0 \leq x \leq L \\ V_{0} & \text{sonst} \end{cases}$$

$$f(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi}{L}xn_{x}\right)$$

$$E_{n_{x}}^{(x)} = \frac{\hbar^{2}}{2m} \left(\frac{\pi}{L}\right)^{2} n_{x}^{2}$$

y-Richtung

$$V_{2}(y) = 0$$

$$\hat{H}_{2}(y) = -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial y^{2}}$$

$$g_{k_{y}}(y) = N_{y}e^{ik_{y}y}$$

$$E_{k_{y}}^{(y)} = \frac{\hbar^{2}}{2m}k_{y}^{2}$$

Quantenzahl $-\infty \leq k_y \leq \infty$

 N_y : Normierungsfaktor

z-Richtung analog

$$h_{k_z}(z) = N_z e^{ik_z z}$$

$$E_{k_z}^{(z)} = \frac{\hbar^2}{2m} k_z^2$$

 \mathbf{Also}

$$\varphi_{n_x,k_y,k_z}(\vec{r}) = N \sin\left(\frac{\pi}{L}xn_x\right)e^{ik_yy}e^{ik_zz}$$

$$E_{n_x,k_y,k_z} = \frac{\hbar^2}{2m}\left(\left(\frac{\pi}{2}\right)^2n_x^2 + k_y^2 + k_z^2\right)$$

N: Normierungsfaktor

$$n_x = 1, 2, 3, ..., -\infty \le k_y \le \infty, -\infty \le k_z \le \infty$$

Ein solches Potential tritt näherungsweise bei Halbleiterquantenstrukturen auf (Abb $\mathbf{Q}19)$

3.7 Hermitesche Operatoren

Skalarprodukt zwischen $\chi(\vec{r})$ und $\hat{O}\varphi(\vec{r})$

 \hat{O} : Operator

$$\left(\chi\left(\vec{r}\right),\hat{O}\varphi\left(\vec{r}\right)\right) \equiv \int \overset{\star}{\chi}\left(\vec{r}\right)\hat{O}\varphi\left(\vec{r}\right)d^{3}r$$

 $\chi(\vec{r}), \varphi(\vec{r})$: diffenrierbar und quadratintegrabel (oder periodisch)

3.7.1 Adjungierter Operator \hat{O}^+

$$\int_{\mathbb{R}^{3}} \dot{\chi}(\vec{r}) \, \hat{O}\varphi(\vec{r}) \, d^{3}r \equiv \int_{\mathbb{R}^{3}} \left(\hat{O}^{+}\chi(\vec{r}) \right) \varphi(r) \, d^{3}r$$

 \hat{O}^+ ist der zu \hat{O} adjungierte Operator

Also

$$\left(\chi, \hat{O}\varphi\right) = \left(\hat{O}^+\chi, \varphi\right)$$

Beispiel $\hat{O} = \frac{d}{dx}$ (eindimensional)

$$\int_{-\infty}^{\infty} \overset{\star}{\chi}(x) \, \hat{O}\varphi(x) \, dx = \int_{-\infty}^{\infty} \underbrace{\overset{\star}{\chi}(x)}_{u} \underbrace{\frac{d}{dx}\varphi(x)}_{v'} \, dx$$
partielle Integration
$$= \underbrace{\left[\overset{\star}{\chi}(x) \underbrace{\varphi(x)}_{v}\right]_{-\infty}^{\infty}}_{0} - \int_{-\infty}^{\infty} \underbrace{\left(\overset{d}{x}\overset{\star}{\chi}(x)\right)}_{u'} \underbrace{\varphi(x)}_{v} \, dx$$

 $\overset{\star}{\chi}(\infty)=\overset{\star}{\chi}(-\infty)=0,\,\varphi\left(\infty\right)=\varphi\left(-\infty\right)=0,\,\mathrm{da}\,\,\chi,\,\varphi\,\,\mathrm{quadratine grabel}\\ \Rightarrow$

$$\int_{-\infty}^{\infty} \dot{\chi}(x) \frac{d}{dx} \varphi(x) dx = \int_{-\infty}^{\infty} \left(-\frac{d}{dx} \dot{\chi}(x) \right) \varphi(x) dx$$

Also

$$\hat{O}^+ = -\frac{d}{dx}$$

3.7.2 Speziell

$$\hat{O} = \hat{O}^+$$

Selbstadjungierter Operator (hermitescher Operator)

Diese Operatoren sind in der Quantenmnechanik von besonderer Bedeutung (Hermitescher Operator: Definitionbereich von \hat{O} und \hat{O}^+ können unterschiedlich sein)

Beispiele

1. Ortsoperator $\hat{\vec{r}}$

$$\int \overset{\star}{\chi} \left(\vec{r} \right) \vec{r} \varphi \left(\vec{r} \right) d^{3}r = \int \left(\vec{r} \chi \left(\vec{r} \right) \right)^{\star} \varphi \left(\vec{r} \right) d^{3}r$$

 $\Rightarrow \hat{\vec{r}}^{+} = \hat{\vec{r}}$ (hermitescher Operator)

2. Impulsoperator eindimensional: $\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$

$$\int_{-\infty}^{\infty} \dot{\chi}(x) \underbrace{\frac{\hbar}{i} \frac{d}{dx}}_{\hat{p}_x} \varphi(x) dx = \frac{\hbar}{i} \int_{-\infty}^{\infty} \dot{\chi}(x) \frac{d}{dx} \varphi(x) dx$$

$$= \frac{\hbar}{i} \int_{-\infty}^{\infty} \left(-\frac{d}{dx} \chi(x) \right)^* \varphi(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{\hbar}{i} \frac{d}{dx} \chi(x) \right)^* \varphi(x) dx$$

 $\hat{p}_x^+ = \hat{p}_x \Rightarrow \hat{p}_x$ ist ein hermitescher Operator Analog $\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla}$ ist ebenfalls hermitesch

3. Aus \hat{O} hermitesch folgt \hat{O}^2 ist ebenfalls hermitesch:

$$\int \chi (\vec{r}) \, \hat{O}^2 \varphi (\vec{r}) \, d^3 r = \int \chi (\vec{r}) \, \hat{O} \left(\hat{O} \varphi (\vec{r}) \right) d^3 r$$

$$= \int \left(\hat{O}^+ \chi (\vec{r}) \right)^* \left(\hat{O} \varphi (\vec{r}) \right) d^3 r$$

$$= \int \left(\hat{O} \chi (\vec{r}) \right)^* \left(\hat{O} \varphi (\vec{r}) \right) d^3 r$$

$$= \int \left(\hat{O}^+ \hat{O} \chi (\vec{r}) \right)^* \varphi (\vec{r}) d^3 r$$

$$= \int \left(\hat{O}^2 \chi (\vec{r}) \right)^* \varphi (\vec{r}) d^3 r$$

$$\begin{split} &\Rightarrow \left(\hat{O}^2\right)^+ = \hat{O}^2 \\ &\Rightarrow \hat{\vec{p}}^2 \text{ ist hermitesch (da } \hat{\vec{p}} \text{ hermitesch ist)} \\ &V\left(\hat{\vec{r}}\right) \text{ ist auch hermitesch } \Rightarrow \hat{H} = \frac{\hat{p}^2}{2m} + V\left(\vec{r}\right) \text{ ist ein hermitescher Operator} \end{split}$$

3.7.3 Eigenschaften hermitescher Operatoren

Erwartungswerte

$$\begin{split} \left\langle \hat{O} \right\rangle &= \int \overset{\star}{\varphi} (\vec{r}) \, \hat{O} \varphi \left(\vec{r} \right) d^3 r \\ &\stackrel{\mathrm{da}}{=} \overset{\hat{O}^+ = \hat{O}}{=} \int \left(\hat{O} \varphi \left(\vec{r} \right) \right)^{\star} \varphi \left(\vec{r} \right) d^3 r \\ &= \int \varphi \left(\vec{r} \right) \left(\hat{O} \varphi \left(\vec{r} \right) \right)^{\star} d^3 r \\ &= \left(\int \overset{\star}{\varphi} \left(\vec{r} \right) \hat{O} \varphi \left(\vec{r} \right) d^3 r \right)^{\star} \\ &= \left(\left\langle \hat{O} \right\rangle \right)^{\star} \end{split}$$

$$\Rightarrow \langle \hat{O} \rangle$$
 ist reel

Erwartungswerte hermitescher Operatoren sind immer reell

Eigenwerte

$$\underbrace{\int \dot{\varphi}_{n} (\vec{r}) \, \hat{O}\varphi_{n} d^{3}r}_{\text{reell}} = \lambda_{n} \varphi_{n} (\vec{r}) \\
\underbrace{\int \dot{\varphi}_{n} (\vec{r}) \, \hat{O}\varphi_{n} d^{3}r}_{\text{reell}} = \lambda_{n} \underbrace{\int \dot{\varphi}_{n} (\vec{r}) \, \varphi_{n} (\vec{r}) \, d^{3}r}_{\text{reell}}$$

 $\Rightarrow \lambda_n \text{ reell}$

Eigenwerte hermitescher Operatoren sind immer reell

Operthogonalität der Eigenfunktionen

$$\hat{O}\varphi_{1}(\vec{r}) = \lambda_{1}\varphi_{1}(\vec{r})
\hat{O}\varphi_{2}(\vec{r}) = \lambda_{2}\varphi_{2}(\vec{r})
\varphi_{1}(\vec{r}) \neq \varphi_{2}(\vec{r})$$

$$I = \int \overset{\star}{\varphi}_{2}(\vec{r}) \underbrace{\hat{O}\varphi_{1}(\vec{r})}_{\lambda_{1}\varphi_{1}(\vec{r})} d^{3}r = \lambda_{1} \int \overset{\star}{\varphi}_{2}(\vec{r}) \varphi_{1}(\vec{r}) d^{3}r$$

$$= \int \left(\underbrace{\hat{O}\varphi_{2}(\vec{r})}_{\lambda_{2}\varphi_{2}(\vec{r})} \right)^{\star} \varphi_{1}(\vec{r}) d^{3}r = \underbrace{\lambda_{2}^{\star}}_{=\lambda_{2}} \int \overset{\star}{\varphi}_{2}(\vec{r}) \varphi_{1}(\vec{r}) d^{3}r$$

Fallunterscheidung

1. $\lambda_1 \neq \lambda_2$ also keine Entartung $\Rightarrow \int_{0}^{\infty} \dot{\varphi}_2(\vec{r}) \varphi_1(\vec{r}) d^3r = 0$ d.h. φ_1 und φ_2 sind "Orthogonal" allg. $\lambda_n \neq \lambda_{n'}$

$$\int \dot{\varphi}_{n'} \varphi_n \left(\vec{r} \right) d^3 r = \delta_{n.n'}$$

2. $\lambda_{1} = \lambda_{2} \equiv \lambda$ "Entartung" $\Rightarrow \chi = c_{1}\varphi_{1}(\vec{r}) + c_{2}\varphi_{2}(\vec{r})$ ist Eigenfunktion $\hat{O}\chi = c_{1}\hat{O}\varphi_{1}(\vec{r}) + c_{2}\hat{O}\varphi_{2}(\vec{r}) = \lambda \left(c_{1}\varphi_{1}(\vec{r}) + c_{2}\varphi_{2}(\vec{r})\right) = \lambda \chi(\vec{r})$ Wähle dabei:

$$\tilde{\varphi}_{1}(\vec{r}) = \varphi_{1}(\vec{r})
\tilde{\varphi}_{2}(\vec{r}) = \left(\varphi_{2}(\vec{r}) - \varphi(\vec{r}) \int \dot{\varphi}_{1}(\vec{r}) \varphi_{2}(\vec{r}) d^{3}r \right) \cdot \underbrace{N_{2}}_{\text{Normierungsfaktor}}$$

 \Rightarrow

$$\int_{\tilde{\varphi}_{1}}^{\star} (\vec{r}) \, \tilde{\varphi}_{2} (\vec{r}) \, d^{3}r = \left(\int_{\tilde{\varphi}_{1}}^{\star} (\vec{r}) \, \varphi_{2} (\vec{r}) \, d^{3}r - \underbrace{\int_{\tilde{\varphi}_{1}}^{\star} (\vec{r}) \, \varphi_{1} (\vec{r}) \, d^{3}r}_{=1, \text{ da } \varphi_{1} \text{ normiert}} \int_{\tilde{\varphi}_{1}}^{\star} (\vec{r}) \, \varphi_{2} (\vec{r}) \, d^{3}r \right) N_{2}$$

$$= 0$$

Analog bei drei entarteten Eigenwerten $\lambda_1 = \lambda_2 = \lambda_3 \equiv \lambda$

$$\tilde{\varphi}_{3} = N_{3} \left(\varphi_{3} \left(\vec{r} \right) - \tilde{\varphi}_{2} \left(\vec{r} \right) \int_{0}^{t} \tilde{\varphi}_{2} \left(\vec{r} \right) \varphi_{3} \left(\vec{r} \right) d^{3}r - \tilde{\varphi}_{1} \left(\vec{r} \right) \int_{0}^{t} \tilde{\varphi}_{1} \left(\vec{r} \right) \varphi_{3} \left(\vec{r} \right) d^{3}r \right)$$

 \Rightarrow

Die Eigenfunktionen hermitescher Operatoren sind orthogonal zueinander (wählbar)

<u>^</u>

$$\int \dot{\varphi}_n(\vec{r}) \,\varphi_{n'}(\vec{r}) \,d^3r = \delta_{n,n'}$$

Orthogonalsystem von Eigenfunktionen

Beispiele

- Teilchen im Potentialtopf: Quantenzahl n = ganze Zahl (diskretes Spektrum)
- Freie Teilchen: Quantenzahl k=reelle Zahl (kontinuierliches Spektrum)

z.B. in einer Dimension

$$\varphi_k(x) = Ne^{ikx}$$

 $\varphi_{k'}(x) = Ne^{ik'x}$

Es gilt

$$\int_{-\infty}^{\infty} e^{ikx} e^{-ik'x} dx = 2\pi\delta (k - k')$$

Wähle $N = \frac{1}{\sqrt{2\pi}} \Rightarrow$

$$\int \overset{\star}{\varphi}_{k}(x) \, \varphi_{k'}(\vec{r}) \, dx = \delta(k - k')$$

"Normierung auf δ -Funktion"

Analog in drei Dimensionen:

$$\varphi_{\vec{k}}\left(\vec{r}\right) = \frac{1}{\left(2\pi\right)^{3/2}} e^{i\vec{k}\vec{r}}$$

 \Rightarrow

$$\int \overset{\star}{\varphi}_{\vec{k}}(\vec{r}) \, \varphi_{\vec{k}'}(\vec{r}) \, d^3r = \delta \left(\vec{k} - \vec{k}' \right)$$

3.8 Vollständiges Orthogonalsystem (VONS)

 $f(\vec{r})$ Funktion, die mit Randbedingungen verträglich ist

 $f(\vec{r}) = \sum_{n} c_n \varphi_n(\vec{r})$ ist beliebig genau darstellbar bzw. $f(r) = \int c_{\vec{k}} \varphi_{\vec{k}}(\vec{r}) d^3k$

Typischerweise sind Funktionensysteme der in der Quantenmechanik auftretenden hermiteschen Operatoren vollständig.

3.9 Postulate der Quantenmechanik

- 1. Für jedes physikalische System existiert eine Wellenfunktion $\psi(\vec{r},t)$. $\psi(\vec{r},t)$ beschreibt den "Zustand" des Systems. In $\psi(\vec{r},t)$ steckt unsere gesamte Information über das System.
- 2. Physikalisch beobachtbare Größen (Observable) werden durch hermitsche Operatoren dargestellt.
- 3. Die zeitliche Entwicklungg der Wellenfunktion wird durch die Schrödinger-Gleichung

$$i\hbar\frac{\partial\psi\left(\vec{r},t\right)}{\partial t}=\hat{H}\varphi\left(\vec{r},t\right)$$

beschrieben.

Der Hamiltonoperator \hat{H} ergibt sich aus der Hamiltonfunktion der klassischen Mechanik durch Ersetzen der Observablen durch hermitesche Operatoren.

4 Anwendungen der Quantenmechanik in einer Dimension

4.1 Stetigkeit der Wellenfunktion

$$\left(-\frac{\hbar^{2}}{2m}\underbrace{\frac{d^{2}}{dx^{2}}\varphi\left(x\right)}_{\varphi^{\prime\prime}\left(x\right)}+V\left(x\right)\varphi\left(x\right)\right)=E\varphi\left(x\right)$$

Was gilt für die Stetigkeit von $\varphi\left(x\right)$ und $\varphi'\left(x\right)$, wenn $V\left(x\right)$ unstetig ist? (Abb Q 20)

$$\varphi''(x) = \frac{2m}{\hbar^2} \left(V(x) - E \right) \varphi(x)$$

Falls $\varphi(x)$ bei x_0 einen Sprung hätte:

$$\varphi(x) = \underbrace{\tilde{\varphi}(x)}_{\text{stetiger Teil}} + \underbrace{A}_{\text{H\"{o}he des Sprungs}} \theta(x - x_0)$$

 \Rightarrow

$$\varphi'(x) = \tilde{\varphi}'(x) + A\delta(x - x_0)$$

 \Rightarrow

$$\varphi''(x) = \tilde{\varphi}''(x) + A\delta'(x - x_0)$$

Es gilt

$$\int f(x) \, \delta(x - x_0) \, dx = f(x_0)$$

$$\int f(x) \, \delta'(x - x_0) \, dx = -f'(x_0)$$

 \Rightarrow

$$\varphi''(x) = \tilde{\varphi}''(x) = A \underbrace{\delta'(x - x_0)}_{\text{tritt auf der rechten Seite nicht auf}}$$

$$= \frac{2m}{\hbar^2} \left(\underbrace{V(x)}_{\text{Sprung bei } x_0} - E\right) \left(\underbrace{\tilde{\varphi}(x)}_{\text{stetig}} + A\theta(x - x_0)\right)$$

 \Rightarrow

$$A = 0 \Rightarrow \varphi(x)$$
 ist stetig!

Was lässt sich über $\varphi'(x)$ aussagen?

Dann

$$\int_{x_{0}-d}^{x_{0}+d} \underbrace{\varphi''(x)}_{x_{0}-d} = \frac{2m}{\hbar^{2}} \int_{x_{0}-d}^{x_{0}+d} (V(x) - E) dx$$

$$= \varphi'(x_{0} + d) - \varphi'(x_{0} - d)$$

Endlicher Sprung in $V(x) \Rightarrow \underline{\text{endlicher}}$ Wert des Integrals

$$\lim_{d\to 0} \left(\varphi'\left(x_0+d\right) - \varphi'\left(x_0-d\right)\right) = 0$$

 $\Rightarrow \varphi'(x)$ ist bei x_0 stetig

Falls V(x) unendlich groß wird, ist <u>keine Aussage</u> möglich.

Bei Potentialen mit
 endlich großen Sprungstellen sind $\varphi\left(x\right)$ und
 $\varphi'\left(x\right)$ stetig.

4.2 Gebundene Zustände beim Potentialtopf mit endlich hohen Wänden

(Abb Q21)

$$V(x) = \begin{cases} 0 & -\infty < x < \le a \\ -V_0 & -a \le x \le a \\ 0 & a \le x \le \infty \end{cases}$$

Betrachte hier
 $\underline{\mathrm{nur}}$ Lösungen mit $-V_0 \leq E \leq 0$

4.2.1 Lösungen in den Bereichen I, II, III

Bereich I: $V\left(x\right)=0$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\varphi\left(x\right) = E\varphi\left(x\right)$$

Ansatz: $\varphi = e^{\pm ikx} \Rightarrow$

$$+\frac{\hbar^{2}}{2m}k^{2}\varphi\left(x\right)=E\varphi\left(x\right)\Rightarrow E=\frac{\hbar^{2}k^{2}}{2m}$$

Da $E \leq 0 \Rightarrow k$ ist imaginär

$$k = \sqrt{\frac{2m}{\hbar^2}E} = i\underbrace{\sqrt{\frac{2m}{\hbar^2}(-E)}}_{:=\kappa}$$

 \Rightarrow

$$\varphi^{(\mathrm{I})}(x) = Ae^{\kappa x} + Be^{-\kappa x}$$

mit
$$\kappa = \sqrt{\frac{2m}{\hbar^2} \left(-E\right)}$$

Da $e^{-\kappa x}$ für $x\to -\infty$ divergiert, ist aus physikalischen Gründen (Normierbarkeit) B=0 zu wählen

$$\varphi^{\mathrm{I}}(x) = Ae^{+\kappa x}$$

Bereich II: $V\left(x\right) = -V_0$

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - V_0\right)\varphi\left(x\right) = E\varphi\left(x\right)$$
$$-\frac{d^2}{dx^2}\varphi\left(x\right) = \frac{2m}{\hbar^2}\left(V_0 + E\right)\varphi\left(x\right)$$

 \Rightarrow

$$\varphi(x) = e^{\pm ikx}$$

$$k^{2} = \frac{2m}{\hbar^{2}} \underbrace{(V_{0} + E)}_{\geq 0}$$

$$\varphi^{\mathrm{II}}(x) = \tilde{C}e^{ikx} + \tilde{D}e^{-ikx}$$

oder

$$\varphi^{\mathrm{II}}(x) = C\cos(kx) + D\sin(kx)$$

(ist in diesem Fall günstiger, da $\varphi^{\mathrm{II}}(x)$ reell)

Bereich III: Analog zu I

$$\begin{split} \varphi^{\mathrm{III}}\left(x\right) &= Fe^{\kappa x} + G^{-\kappa x} \\ \kappa &= \sqrt{\frac{2m}{\hbar^2}\left(-E\right)} \\ F &= 0, \, \mathrm{da} \, e^{\kappa x} \to \infty \, \mathrm{f\"{u}r} \, x \to \infty \end{split}$$

 \Rightarrow

$$\begin{array}{rcl} \varphi^{\rm I}\left(x\right) & = & Ae^{\kappa x} \\ \varphi^{\rm II}\left(x\right) & = & C\cos\left(kx\right) + D\sin\left(kx\right) \\ \varphi^{\rm III}\left(x\right) & = & Ge^{-\kappa x} \end{array}$$

$$\varphi^{\mathrm{I}'}(x) = \kappa A e^{\kappa x}$$

$$\varphi^{\mathrm{II}'}(x) = -kC \sin(kx) + kD \cos(kx)$$

$$\varphi^{\mathrm{III}'}(x) = -\kappa G e^{-\kappa x}$$

Anpassung von $\varphi(x)$, $\varphi'(x)$ bei x = -a und x = a

1.
$$\varphi^{\mathrm{I}}(-a) = \varphi^{\mathrm{II}}(-a)$$

$$Ae^{-\kappa a} = C\cos(-ka) + D\sin(-ka)$$

= $C\cos(ka) - D\sin(ka)$ (12)

2.
$$\varphi^{\mathrm{I}'}(-a) = \varphi^{\mathrm{II}'}(-a)$$

$$\kappa A e^{-\kappa a} = -kC \sin(-ka) + kD \cos(-ka)
= kC \sin(ka) + kD \cos(ka)$$
(13)

3.
$$\varphi^{\text{II}}(a) = \varphi^{\text{III}}(a)$$

$$C\cos(ka) + D\sin(ka) = Ge^{-\kappa a} \tag{14}$$

4.
$$\varphi^{\mathrm{II}'}(a) = \varphi^{\mathrm{III}'}(a)$$

$$-kC\sin(ka) + kD\cos(ka) = -\kappa Ge^{\kappa x}$$
(15)

+ Normierung $\hat{=}5$ Gleichungen für 4 Unbekannte A, C, D, G

(12) + (14)

$$(A+G)e^{-\kappa a} = 2C\cos(ka) \tag{16}$$

(12) - (14)

$$(A - G)e^{-\kappa a} = -2D\sin(ka) \tag{17}$$

(13) + (15)

$$\kappa (A - G) e^{-\kappa a} = 2Dk \cos(ka) \tag{18}$$

(13) - (15)

$$\kappa (A+G) e^{-\kappa a} = 2Ck \sin(ka) \tag{19}$$

(16), (19)

$$\kappa 2C\cos\left(ka\right) = 2Ck\sin\left(ka\right) \tag{20}$$

 \Rightarrow

$$\frac{\kappa}{k} = \tan\left(ka\right)$$

(17), (18)

$$-\kappa 2D\sin(ka) = 2Dk\cos(ka) \tag{21}$$

$$-\frac{\kappa}{k} = \cot\left(ka\right)$$

Also: wir erhalten Lösungen des Gleichungssystems

 $\frac{\kappa}{k} = \tan{(ka)}$ \Rightarrow (21) ist nur erfüllbar für $D = 0 \stackrel{(17)}{\Rightarrow} A = G \stackrel{(16)}{\Rightarrow} 2A \cdot e^{-\kappa a} = 2G \cos{(ka)}$ 1. wenn

$$\varphi(x) = \begin{cases} Ae^{\kappa x} & -\infty \le x \le -a \\ A\frac{e^{-\kappa a}}{\cos(ka)} & -a \le x \le a \\ Ae^{-\kappa x} & a \le x \le \infty \end{cases}$$

 $\hat{=}$ gerade Funktion

 $C = 0 \stackrel{(16)}{\Rightarrow} G = -A \stackrel{(18)}{\Rightarrow} 2A\kappa e^{-\kappa a} = 2Dk\cos(ka)$ 2. wenn

$$-\frac{\kappa}{k} = \cot(ka)$$

$$\varphi(x) = \begin{cases} Ae^{+\kappa x} & -\infty \le x \le -a \\ A\frac{e^{-\kappa a}}{\cos(ka)}\sin(kx) = -A\frac{e^{-\kappa a}}{\sin(ka)}\sin(kx) & -a \le x \le a \\ -Ae^{-\kappa x} & a \le x \le \infty \end{cases}$$

^ˆ ungerade Funktion

4.2.2 Auswertung der Lösungsbedingung

$$\kappa^{2} = \frac{2m}{\hbar^{2}} |E| = \frac{2m}{\hbar^{2}} V_{0} - k^{2}$$

$$k^{2} = \frac{2m}{\hbar^{2}} (V_{0} - |E|) = \frac{2m}{\hbar^{2}} V_{0} - \kappa^{2}$$

Gerade Zustände

$$\tan(ka) = \frac{\kappa}{k} = \frac{\sqrt{\frac{2m}{\hbar^2}V_0 - k^2} \cdot a}{k \cdot a}$$
$$ka \tan(ka) = \sqrt{\frac{2m}{\hbar^2}V_0a^2 - (ka)^2}$$

$$y := ka, R^2 = \frac{2m}{\hbar^2} V_0 a^2 \Rightarrow$$

$$y \tan y = \sqrt{R^2 - y^2} \quad \leftarrow \text{Kreis}$$

(Abb Q22)

Je nach Größe von V_0 (und damit von R) gibt es neine der mehrere Lösungen k_n

$$k_n^2 = \frac{2m}{\hbar^2} \left(V_0 - |E_n| \right)$$

$$|E_n| = V_0 - \frac{\hbar^2 k_n^2}{2m}$$

Energie der Zustände mit gerader Wellenfunktion

$$E_n = -V_0 + \frac{\hbar^2 k_n^2}{2m}$$

Ungerade Zustände

$$\kappa = -k\cot\left(ka\right)$$

 \Rightarrow

$$-y\cdot\cot\left(y\right)=\sqrt{R^2-y^2}$$

Es gibt <u>nicht</u> für alle Werte von V_0 eine Lösung.

Nur Lösung für

$$V_0 \ge \frac{\hbar^2 \pi^2}{8ma^2}$$

(Abb Q23)

- Zustände mit gerader und ungerader Symmetrie wechseln sich ab
- Abstand zwischen den k_n ist nahezu konstant \Rightarrow Abstände zwischen den Energien E_n ist nahezu quadratisch bezüglich n

Grenzfall $V_0 \to \infty$ Schnittpunkte von $y \cdot \tan y$ (bzw. $-y \cdot \cot y$) liegen bei $y_n = n \frac{\pi}{2}$ n = 1, 2, 3, ...

$$k_n = \frac{y_n}{a} = \frac{\pi}{2a}n$$
 ($L = 2a = Breite des Topfes$)

Abstände der Energien vom Topfboden:

$$\Delta E_n = E_n + V_0 = \frac{\hbar^2}{2m} \left(\frac{\pi}{L} \cdot n\right)^2$$

Vergleiche mit Kapitel 3.5 auf Seite 22

4.2.3 Wellenfunktion im endlich hohen Topf

(Abb Q24)

4.3 Harmonischer Oszillator

(Abb Q25)

$$\frac{1}{2}kx^2 = V\left(x\right)$$

Klassisches System

z.B. Federpendel

(Abb Q26)

$$V(x) = \frac{1}{2}kx^2 \Rightarrow F(x) = -kx$$

Newton:

$$m\dot{x} = F(x) = -kx$$

 \Rightarrow

$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$

 $\omega = \sqrt{\frac{k}{m}}$

Energie

$$E = \frac{1}{2}m\dot{x}^2(t) + \frac{1}{2}kx^2(t)$$
$$E = \frac{1}{2}m\omega^2(A^2 + B^2)$$

Quantenmechanische Systeme

 Schwingungen von Atomen inMolekülen und Festkörpern Beispiel: H₂ Molekül (Abb Q27)

Potential zwischen Atomen:

(Abb Q28)

Harmonischer Oszillator ist sehr gute Näherung bei Schwingungen mit kleiner Auslenkung

• Photonen (Lichtquanten) verhalten sich wie quantenmechanische Oszillatoren

4.3.1 Lösung der stationären Schrödinger-Gleichung

$$\hat{H}\varphi(x) = E\varphi(x)$$

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(x) = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2$$

Lösung durch

- Potentenzreihenansatz
- "algebraische" Methode (Später)

1. Schritt: Transformation auf dimensions
lose Koordinaten | Idee: Substitution $y=\alpha \cdot x$ so, das
s $\frac{d^2}{dy^2}$ und y^2 gleiche Vorfaktoren haben

$$\Rightarrow x = \frac{1}{\alpha} y \to x^2 = \frac{1}{\alpha^2} y^2$$

$$\frac{d}{dx}=\alpha\frac{d}{dx},\,\frac{d^2}{dx^2}=\alpha^2\frac{d^2}{dy^2}$$

$$\hat{H} = \frac{-\hbar^2}{2m} \alpha^2 \frac{d^2}{du^2} + \frac{1}{2} k \frac{1}{\alpha^2} y^2$$

$$\frac{\alpha^2 \hbar^2}{m} = \frac{k}{\alpha^2} \Rightarrow \alpha^4 = \frac{km}{\hbar^2}$$

Abkürzung: $\omega := \sqrt{\frac{k}{m}} \ \alpha^4 = \frac{1}{\hbar^2} m^2 \omega^2$

$$\alpha = \sqrt{\frac{m\omega}{\hbar}}$$

$$\hat{H} = \frac{\hbar\omega}{2} \left(-\frac{d^2}{dy^2} + y^2 \right)$$

$$\hat{H}\varphi\left(x\right) = E\varphi\left(x\right)$$

$$\varphi(x) = \varphi\left(\frac{y}{\alpha}\right) := \phi(y)$$

 \Rightarrow

$$\frac{\hbar\omega}{2}\left(-\frac{d^{2}}{dy^{2}}+y^{2}\right)\phi\left(y\right)=E\phi\left(y\right)$$

 \Rightarrow

$$\left(-\frac{d^{2}}{dy^{2}}+y^{2}\right)\phi\left(y\right)=\lambda\phi\left(y\right)$$

$$\lambda = \frac{E \cdot 2}{\hbar \omega}$$

2. Schritt: Ansatz für $\phi(y)$

Zunächst Analyse für $y \to \pm \infty$ Sei $|y| \gg |\lambda|$:

Näherungsweise: $\left(\frac{d^2}{dy^2} - y^2\right)\phi\left(y\right) = 0$

Ansatz:

$$\phi(y) = e^{-\beta y^{2}}
\phi'(y) = -\beta 2ye^{-\beta y^{2}}
\phi''(y) = -\beta 2e^{-\beta y^{2}} + \beta^{2}4y^{2}e^{-\beta y^{2}}$$

Mit $\beta = \frac{1}{2}$ folgt:

$$\phi''(y) = (-1 + y^2) e^{-\frac{y^2}{2}}$$

 $y\to\pm\infty$: (–1) kann vernachlässigt werden

 $\Rightarrow \phi\left(y\right)=e^{-\frac{y^{2}}{2}}$ löst Differntialgleichung für $y\to\pm\infty$

 \Rightarrow Ansatz für alle y:

$$\phi(y) = \underbrace{f(y)}_{\text{gesuchte Funktion}} e^{-\frac{y^2}{2}}$$

 \Rightarrow

$$\begin{aligned} \phi'\left(y\right) &=& f'\left(y\right)e^{-\frac{y^{2}}{2}} + f\left(y\right)\left(-\frac{2y}{2}\right)e^{-\frac{y^{2}}{2}} \\ \phi''\left(y\right) &=& \left(f''\left(y\right) - f\left(y\right) - yf'\left(y\right)\right)e^{-\frac{y^{2}}{2}} + \left(-\frac{2y}{2}\right)\left(f'\left(y\right) - yf\left(y\right)\right)e^{-\frac{y^{2}}{2}} \\ &=& \left(f''\left(y\right) - 2yf'\left(y\right) + \left(y^{2} - 1\right)f\left(y\right)\right)e^{-\frac{y^{2}}{2}} \end{aligned}$$

Somit wird aus

$$\phi''(y) + (\lambda - y^2) \phi(y) = 0$$

folgende Differentialgleichung für f(y)

$$f''(y) - 2yf'(y) + (\lambda - 1) f(y) = 0$$

Hermitesche Differentialgleichung nach C. Hermite (1822 - 1901)

Einfache Ansätze

1.
$$f(y) = c$$
 (Konstante)
 $f'' = f' = 0 \Rightarrow (\lambda - 1) c = 0$
 \Rightarrow Eigenwert $\lambda = 1$, $f = \text{const}$

2.
$$f(y) = a \cdot y$$
, $f'(y) = a$, $f''(y) = 0$
 $0 - 2y \cdot a + (\lambda - 1) ay = 0$
 $(\lambda - 3) ay = 0$
 \Rightarrow Eigenwert $\lambda = 3$, $f(y) = ay$

3.
$$f(y) = by^2$$
 keine Lösung, aber $f(y) = by^2 + ay + c$ ist Lösung

3. Schritt Lösung der Differentialgleichung durch Potenzreihenansatz Idee: Setze

$$f\left(y\right) = \sum_{j=0}^{\infty} A_j y^j$$

Dazu:

$$f'(y) = \sum_{j=0}^{\infty} A_j j y^{j-1}$$

 $f''(y) = \sum_{j=0}^{\infty} A_j j (j-1) y^{j-2}$

Damit folgt:

$$\underbrace{\sum_{j=0}^{\infty} A_{j} j (j-1) y^{j-2}}_{f''(y)} - \underbrace{\sum_{j=0}^{\infty} 2 A_{j} j y^{j}}_{2yf'(y)} + \underbrace{\sum_{j=0}^{\infty} A_{j} (\lambda - 1) y^{j}}_{(\lambda - 1) f(y)} = 0$$

Umsummation

$$f''(y) = \sum_{j=0}^{\infty} A_j j(j-1) y^{j-2}$$

$$l := j - 2 \curvearrowright j = l + 2$$

$$f''(y) = \sum_{l=0}^{\infty} A_{l+2} (l+2) (l+1) y^{l}$$

Nenne l = j

$$f''(y) = \sum_{j=0}^{\infty} A_{j+2} (j+2) (j+1) y^{j}$$

$$\Rightarrow f''(y) - 2yf'(y) + (\lambda - 1)f(y) = 0$$

$$\sum_{j=0}^{\infty} \underbrace{(A_{j+2}(j+2)(j+1) + (\lambda - 1 - 2j)Aj)}_{\text{Soll für alle } y \text{ gelten!} \Rightarrow \sim = 0} y^{j} = 0$$

 $\sim = 0 \Rightarrow$

$$A_{j+2} = -\frac{\lambda - 1 - 2j}{(j+2)(j+1)} A_j \tag{22}$$

Rekursionsformel für die Koeffizienten

Starte z.B. mit $A_0 \Rightarrow A_2, A_4, A_6, \dots$

oder mit $A_1 \Rightarrow A_3, A_5, A_7, \dots$

Liefert für alle λ Lösungen

Aber $\phi(y) = f(y) e^{-\frac{y^2}{2}}$ muss normierbar bleiben

Wir überzeugen uns davon, dass f(y) wie e^{y^2} anwächst, falls die Potentzreihe <u>nicht</u> abbricht.

Zwischenrechnung Betrachte "große" Werte von j

 $j \to \infty$:

$$e^{y^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(y^2 \right)^n = \sum_{n=0}^{\infty} \frac{1}{n!} y^{2n}$$

$$j=2n,\,n=\tfrac{j}{2}$$

$$e^{y^{2}} = \sum_{\substack{j=0 \\ \text{mit } j \text{ gerade}}}^{\infty} \frac{1}{\left(\frac{j}{2}\right)!} y^{j} = \sum_{\substack{j=0 \\ \text{alle } j}}^{\infty} B_{j} y^{j}$$

$$B_{j} = \begin{cases} \frac{1}{\left(\frac{j}{2}\right)!} & j \text{ gerade} \\ 0 & j \text{ ungerade} \end{cases}$$

$$B_{j+2} = \frac{1}{\left(\frac{j+2}{2}\right)!} = \frac{1}{\left(\frac{j}{2}+1\right)!} = \frac{1}{\left(\frac{j}{2}\right)!} \frac{1}{\left(\frac{j}{2}+1\right)} = B_j \frac{1}{\left(\frac{j}{2}+1\right)}$$

$$\frac{B_{j+2}}{B_j} = \frac{1}{\frac{j}{2}+1} = \frac{1}{j\to\infty} \frac{1}{\frac{j}{2}} = \frac{2}{j} \left(\text{wie } \frac{A_{j+2}}{A_j}\right)$$

- \Rightarrow Potenzreihe verhält sich für große y wie e^{y^2} (für ungerade Potenzen Vergleich mit ye^{y^2})
- ⇒ Potenzreihe muss abbrechen!

Abbrechen bedeutet: Ab einem bestimmten Index n sind alle Koeffizienten mit j > n gleich null.

Also

 $A_0, A_2A_4, ...A_n \neq 0$ und $A_{n+2}, A_{n+4}, ... = 0$ (n gerade)

 $A_1,A_3A_5,...A_n\neq 0$ und $A_{n+2},A_{n+4},...=0$ (n ungerade)

Dies tritt nach (22) auf für:

$$(\lambda - 1 - 2n) = 0$$

 \Rightarrow

$$\lambda = 2n + 1$$
 $n = 0, 1, 2, ...$

 \Rightarrow

$$E = \frac{\hbar\omega}{2}\lambda = \frac{\hbar\omega}{2}(2n+1)$$

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right)$$

Energienieveaus des harmonischen Oszillators

(Abb Q29)

Grundzust and senergie

$$E_0 = \frac{\hbar\omega}{2}$$

 E_n :

- diskret
- äquidistant

Wellenfunktionen $\phi_n(x) = f_n(x) e^{-\frac{y^2}{2}}$

$$A_{j+2}^{(n)} = \frac{\left(2_j + 1 - \lambda^{(n)}\right)}{(j+2)(j+1)} A_j^{(n)} = \frac{2j - 2n}{(j+2)(j+1)} A_j^{(n)}$$

Gerade Werte von n-n=0: $A_0^{(0)}\neq 0 \Rightarrow A_2^{(0)}=0$

$$f_0(y) = A_0^{(0)}$$
$$\lambda^{(0)} = 1$$

$$n=2: (\lambda=5) \ A_0^{(2)} \neq 0$$

$$A_2^{(2)} = \frac{2 \cdot 0 - 2 \cdot 2}{2 \cdot 1} A_0^{(2)} = -2A_0^{(2)}$$
$$f_2(y) = A_0^{(2)} (-2y^2 + 1)$$

$$n=4: A_0^{(4)} \neq 0$$

$$\begin{split} A_2^{(4)} &= \frac{2 \cdot 0 - 2 \cdot 4}{2} A_0^{(4)} = -4 A_0^{(4)} \\ A_4^{(4)} &= \frac{2 \cdot 2 - 2 \cdot 4}{(2+2)(2+1)} A_2^{(4)} = \frac{-4}{4 \cdot 3} A_2^{(4)} = -\frac{1}{3} A_2^{(4)} \\ &= +\frac{4}{3} A_0^{(4)} \end{split}$$

$$f_4(y) = A_0^{(4)} \left(1 - 4y^2 + \frac{4}{3}y^4 \right)$$

und so weiter.

Ungerade Werte von n

$$f_1(y) = A_1^{(1)} = y$$

 $f_3(y) = A_1^{(3)} \left(y - \frac{2}{3}y^3\right)$
:

Konvention Wählt man die $A_0^{(n)}$ bzw. $A_1^{(n)}$ danach, dass vor der höchsten Potenz von y ein Faktor 2^n steht, so bezeichnet man die Lösung als Kermite Polynmoe.

$$H_0(y) = 1$$

$$H_1(y) = 2y$$

$$H_2(y) = 4y^2 - 2$$

$$H_3(y) = 8y^3 - 12y$$

$$H_4(y) = 16y^4 - 48y^2 + 12$$
:

Da $\varphi_n(x) = \phi_n(\alpha x), \ \alpha = \sqrt{\frac{m\omega}{\hbar}} \text{ und}$

$$\phi_n\left(\alpha x\right) = H_n\left(\alpha x\right) e^{-\frac{\left(\alpha x\right)^2}{2}} \underbrace{N_n}_{\text{Normierungsfaktor}}$$

folgt

$$\varphi_{n}\left(x\right)=N_{n}H_{n}\left(\sqrt{\frac{m\omega}{\hbar}}x\right)e^{-\frac{m\omega}{2\hbar}x^{2}}$$

Eigenzustände des harmonischen Oszillators

mit
$$N_n = \sqrt[4]{\frac{m\omega}{\hbar}} \sqrt{\frac{1}{2^n n! \sqrt{\pi}}}$$
 (hier ohne Rechnung)

Resultate

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) \quad n = 0, 1, 2,$$

$$\varphi_n(x) = N_n H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega}{2\hbar}x^2}$$

$$\alpha = \sqrt{\frac{m\omega}{\hbar}}$$

(Folie "Der harmonische Oszillator")

- $n \text{ gerade} \rightarrow \varphi_n(x) = \varphi_n(-x), n \text{ ungerade } \varphi_n(x) = -\varphi_n(-x)$
- $\varphi_n(x)$ besitzt $\underline{\mathbf{n}}$ Knoten
- Abfall von $e^{-\frac{m}{2\hbar}\sqrt{\frac{k}{m}}x^2} = e^{-\frac{\sqrt{m}\sqrt{k}}{2\hbar}x^2}$ Starker Abfall bei:
 - -großer Federkonstante \boldsymbol{k}
 - großer Masse

Quantenmechanische Aufenthaltswahrscheinlichkeitsdichte im Vergleich mit klassischer Aufenthaltswahrscheinlichkeitsdichte Quantenmechanik:

$$\varrho_{qm}(x) = \left| \psi_n(x, t) \right|^2 = \left| \varphi_n(x) \right|^2$$

da $\psi_{n}\left(x,t\right)=e^{\frac{E_{n}t}{i\hbar}}\varphi_{n}\left(x\right)$ stationärer Zustand

 $Klassisches\ Aufenthalt wahrscheinlich keits dichte$

(Abb Q30)

$$x(t) = x_0 \cos(\omega t)$$

$$\varrho_{kl}(x) = \frac{N}{|v(x)|}$$

N: Normierungskonstante $\rightarrow \int \varrho_{kl}(x) dx = 1$

v(x): Geschwindigkeit

$$\begin{aligned} \dot{x}\left(t\right) &= -x_0\omega\sin\left(\omega t\right) \\ |\dot{x}\left(t\right)| &= x_0\omega\sqrt{1-\cos^2\left(\omega t\right)} \\ &= \omega\sqrt{x_0^2-x_0^2\cos^2\left(\omega t\right)} \\ &= \omega\sqrt{x_0^2-x^2} \\ \varrho_{kl}\left(x\right) &= \frac{N}{\omega\sqrt{x_0^2-x^2}}, \text{ Es folgt dann } N = \frac{\omega}{\pi} \\ \varrho_{kl}\left(x\right) &= \frac{1}{\pi}\frac{1}{\sqrt{x_0^2-x^2}} \end{aligned}$$

(Abb Q31)

(Folie "Vergleich mit klassischer Aufenthaltswahrscheinlichkeitsdichte")

Beispiel klassischer Oszillator mit m=0,1kg, $\omega=10$ Hz, $x_0=1$ cm

 \Rightarrow

$$E = \frac{1}{2}kx_0^2 = \frac{1}{2} \cdot 10^{-3} \frac{\text{kgm}^2}{\text{s}^2}$$

quantenmechanischer Oszillator

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) = 1,054 \cdot 10^{-34} \frac{\text{kgm}^2}{\text{s}} \cdot 10 \cdot \frac{1}{\text{s}} \left(n + \frac{1}{2}\right)$$

 \Rightarrow

$$n + \frac{1}{2} = 4,7 \cdot 10^{29}$$

4.3.2 Eigenschaften der Hermite-Polynome

Hermite-Polynome zählen zu "speziellen Funktionen der mathematischen Physik" Diffenrentialgleichung

$$H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0$$

$$H_n(x) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(-1)^j n!}{j! (n-2j)!} (2x)^{n-2j}$$

$$\left\lfloor \frac{n}{2} \right\rfloor = \begin{cases} \frac{n}{2} & \text{für } n \text{ gerade} \\ \frac{n-1}{2} & \text{für } n \text{ ungerade} \end{cases}$$
(23)

(folgt aus Rekursionsformel)

Rodrigues Formel

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

Beweis z.B.

- Berechnung $H'_n(x)$, $H''_n(x)$
- Einsetzen in Differentialgleichung
- \bullet vollständige Induktion: n = 0, Schluss von n auf n + 1

${\bf Rekursions formeln}$

$$\frac{d}{dx}H_{n}\left(x\right) = 2nH_{n-1}\left(x\right)$$

folgt durch Ableitung von (23)

$$2xH_n(x) = H_{n+1}(x) + 2nH_{n-1}(x)$$

folgt aus (25) durch $\frac{d}{dx}$ (24)

 \Rightarrow

$$H_{n+1}\left(x\right) = 2xH_{n}\left(x\right) - 2nH_{n-1}\left(x\right)$$

Erzeugende Funktionen

$$F(x,s) = e^{x^{2} - (s - x)^{2}} = \sum_{n=0}^{\infty} H_{n}(x) \frac{s^{n}}{n!}$$

$$= \underbrace{1}_{H_{0}} + \underbrace{2x}_{H_{1}} s + \underbrace{(4x^{2} - 2)}_{H_{2}} \frac{s^{2}}{2} + \dots$$

Orthogonalität (bezüglich e^{-x^2})

$$\int_{-\infty}^{\infty} \dot{\varphi}_n(x) \, \varphi_{n'}(x) \, dx = \delta_{n,n'}$$

 \Rightarrow

$$\int_{-\infty}^{\infty} H_n(x) H_{n'}(x) e^{-x^2} dx = \delta_{n,n'} 2^n n! \sqrt{\pi}$$

4.3.3 Zeitliches Verhalten des harmonischen Oszillators

Bisher: stationäre Lösung

$$\psi_n(x,t) = e^{\frac{E_n t}{i\hbar}} \varphi_n(x)$$

Jetzt: Überlagerung:

$$\psi\left(x,t\right) = \sum_{n} c_{n} e^{\frac{E_{n}t}{i\hbar}} \varphi_{n}\left(x\right) \tag{26}$$

Beispiel I: Überlagerung von 3 Zuständen

$$\psi(x,t) = \frac{1}{2}\psi_1(x,t) + \frac{1}{2}\psi_2(x,t) + \frac{1}{\sqrt{2}}\psi_3(x,t)$$

$$1 \stackrel{!}{=} \int \left| \psi \left(x,t \right) \right| dx = \frac{1}{4} \int \left| \psi_1 \left(x,t \right) \right| dx + \frac{1}{4} \int \left| \psi_2 \left(x,t \right) \right| dx + \frac{1}{2} \int \left| \psi_3 \left(x,t \right) \right| dx \\ + \text{Mischterme, deren Integral verschwindet} \\ = \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1$$

 \Rightarrow

$$\begin{split} \psi\left(x,t\right) &= e^{-\frac{\alpha}{2}x^2} \left(\frac{\alpha^2}{\pi}\right)^{^{1/4}} \\ &\quad \cdot \left(\frac{1}{2} \cdot e^{-i\frac{3}{2}\omega t} \cdot \frac{2\alpha x}{\sqrt{2}} + \frac{1}{2} \cdot e^{-i\frac{5}{2}\omega t} \frac{4\alpha^2 x^2 - 2}{\sqrt{8}} + \frac{1}{\sqrt{2}} e^{-i\frac{7}{2}\omega t} \frac{8\alpha^3 x^3 - 12\alpha x}{\sqrt{48}}\right) \\ \alpha &= \sqrt{\frac{m\omega}{\hbar}} \end{split}$$

(Folie "Dynamik von Wellenpaketen" linke Spalte)

 $|\psi(x,t)|^2$ oszilliert mit $\cos(\omega t)$ und $\cos(2\omega t)$

 $\langle \hat{x} \rangle_t$ oszilliert <u>nur</u> mit $\cos(\omega t)$

Beispiel II: quasi klassischer Zustand Dazu: Wellenpaket $\psi(x,t)$ bei t=0

$$\psi(x,0) = \sqrt{\alpha} \left(\frac{1}{\pi}\right)^{1/4} e^{-\frac{\alpha^2}{2}(x-x_0)^2}$$

(1) Berechnung der c_n bei t = 0 aus (26)

$$\underbrace{(26)}_{\text{mit }t=0} \int \overset{\star}{\varphi}_{n}(x) \, dx \Rightarrow \int \overset{\star}{\varphi}_{n} \psi(x,0) \, dx = \sum_{n'} c_{n'} \underbrace{\int \overset{\star}{\psi}_{n}(x) \, \psi_{n'}(x) \, dx}_{\overset{\delta}{\delta_{n,n'}}}$$

 \Rightarrow

$$c_{n} = \int \overset{\star}{\varphi}_{n}(x) \, \psi(x, 0) \, dx$$

Die explizite Rechnung liefert (siehe w. Nolting, Quantenmechanik I, Aufabe 4.4.17)

$$c_n = \frac{e^{-\frac{\alpha^2}{4}x_0^2}}{\sqrt{n!2^n}}$$

Einsetzen in (26) liefert

$$\left|\psi\left(x,t\right)\right|^{2} = \sqrt{\frac{m\omega}{4\pi}}e^{-\frac{m\omega}{k}\left(x-x_{0} - \frac{\cos\left(\omega t\right)}{\cos\left(\omega t\right)}\right)^{2}}$$

(Folie "Dynamik von Wellenpaketen" rechte Spalten)

 $\rightarrow \varrho \left(x,t\right)$ ist formstabil und oszilliert mit Frequenz ω

→quasiklassischer Zustand (Glauber-Zustand) (kohärente Zustände)

 $\langle \hat{x} \rangle_t \sim \cos{(\omega t)}$

4.4 Allgemeine Aussagen über das zeitliche Verhalten von Erwartungswerten: die Ehrenfest-Gleichungen

Dann
$$\left\langle \hat{O} \right\rangle_t = \int \psi(x,t) \, \hat{O}\psi(x,t) \, dx$$

$$\begin{split} \frac{d}{dt} \left\langle \hat{O} \right\rangle_t &= \int \frac{\partial \overset{\star}{\psi} \left(x, t \right)}{\partial t} \hat{O} \psi \left(x, t \right) dx \\ &+ \int \overset{\star}{\psi} \left(x, t \right) \frac{\partial \hat{O}}{\partial t} \psi \left(x, t \right) dx \quad \left(\text{falls } \hat{O} \text{ von } t \text{ abhängt} \right) \\ &+ \int \overset{\star}{\psi} \left(x, t \right) \hat{O} \frac{\partial \psi \left(x, t \right)}{\partial t} dx \end{split}$$

$$\begin{split} i\hbar\frac{\partial\psi}{\partial t} &=& \hat{H}\psi\\ -i\hbar\frac{\partial\overset{\star}{\psi}}{\partial t} &=& \mathring{\hat{H}}\overset{\star}{\psi} &=& \hat{H}\overset{\star}{\psi}\\ &\text{für } \hat{H} \text{ reell} \end{split}$$

$$= \frac{1}{i\hbar} \int \left(-\hat{H}\overset{\star}{\psi}(x,t) \right) \hat{O}\psi(x,t) \, dx + \frac{1}{i\hbar} \int \overset{\star}{\psi}(x,t) \, \hat{O}\hat{H}\psi(x,t) \, dx + \underbrace{\int \overset{\star}{\psi}(x,t) \, \frac{\partial \hat{O}}{\partial t} \psi(x,t) \, dx}_{\left\langle \frac{\partial \hat{O}}{\partial t} \right\rangle_t}$$

$$= \frac{1}{-i\hbar} \int \left(\overset{\star}{\psi}(x,t) \, \hat{H}\hat{O}\psi(x,t) - \overset{\star}{\psi}(x,t) \, \hat{O}\hat{H}\psi(x,t) \right) d^3r + \left\langle \frac{\partial \hat{O}}{\partial t} \right\rangle_t}_{t}$$

$$= \frac{1}{-i\hbar} \int \overset{\star}{\psi}(x,t) \, \hat{H}\hat{O}\psi(x,t) + \frac{1}{2} \left(\overset{\star}{\psi}(x,t) \, \hat{O}\hat{H}\psi(x,t) \right) d^3r + \left\langle \frac{\partial \hat{O}}{\partial t} \right\rangle_t}_{t}$$

$$\frac{d}{dt} \left\langle \hat{O} \right\rangle_t = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{O} \right] \right\rangle_t + \left\langle \frac{\partial \hat{O}}{\partial t} \right\rangle_t$$

Heisenberg'sche Bewegungsgleichung

Anwendung

1.
$$\hat{O} = \hat{x}, \ \frac{\partial \hat{x}}{\partial t} = 0$$

$$\begin{split} \frac{d}{dt} \left\langle \hat{x} \right\rangle_t &= \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{x} \right] \right\rangle_t \\ \hat{H} &= \frac{\hat{p}^2}{2m} + V \left(\vec{r} \right) = \frac{\hat{p}_x^2}{2m} + \frac{\hat{p}_y^2}{2m} + \frac{\hat{p}_z^2}{2m} + V \left(\vec{r} \right) \\ \left[\hat{H}, \hat{x} \right] &= \underbrace{\left[\frac{\hat{p}_x^2}{2m}, \hat{x} \right]}_{\frac{1}{2m} \frac{2\hbar}{i} \hat{p}_x} + \underbrace{\left[\frac{\hat{p}_y^2}{2m}, \hat{x} \right]}_{=0} + \underbrace{\left[\frac{\hat{p}_z^2}{2m}, \hat{x} \right]}_{=0} + \underbrace{\left[V \left(\vec{r} \right), \hat{x} \right]}_{=0} \\ \Rightarrow \frac{d}{dt} \left\langle \hat{x} \right\rangle_t &= \frac{i}{\hbar} \frac{\hbar}{i} \frac{1}{m} \left\langle \hat{p}_x \right\rangle_t = \frac{\langle \hat{p}_x \rangle_t}{m} \end{split}$$

Analog
$$\frac{d}{dt} \langle \hat{y} \rangle_t = \frac{\langle \hat{p}_y \rangle_t}{m}, \ \frac{d}{dt} \langle \hat{z} \rangle_t = \frac{\langle \hat{p}_z \rangle_t}{m} \Rightarrow$$

$$m\frac{d}{dt}\left\langle \hat{\vec{r}}\right\rangle _{t}=\left\langle \hat{\vec{p}}\right\rangle _{t}$$

Klassische Physik:

$$m\frac{d}{dt}\vec{r}(t) = \vec{p}(t)$$

2.
$$\hat{O} = \hat{p}_x$$
, $\frac{\partial \hat{p}_x}{\partial t} = 0$
 $\Rightarrow \frac{d}{dt} \langle \hat{p}_x \rangle_t = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{p}_x \right] \right\rangle_t$

$$\begin{split} \left[\hat{H}, \hat{p}_x \right] &= \left[\frac{\hat{p}^2}{2m} + V\left(\vec{r} \right), \hat{p}_x \right] = \left[V\left(\vec{r} \right), \hat{p}_x \right] \\ \left[V\left(\vec{r} \right), \hat{p}_x \right] f\left(\vec{r} \right) &= \left(V\left(\vec{r} \right) \frac{\hbar}{i} \frac{\partial}{\partial x} - \frac{\hbar}{i} \frac{\partial}{\partial x} V\left(\vec{r} \right) \right) f\left(\vec{r} \right) \\ &= V\left(\vec{r} \right) \frac{\hbar}{i} \frac{\partial}{\partial x} f\left(\vec{r} \right) - \frac{\hbar}{i} \left(\frac{\partial}{\partial x} V\left(\vec{r} \right) \right) f\left(\vec{r} \right) - \frac{\hbar}{i} V\left(\vec{r} \right) \frac{\partial}{\partial x} f\left(\vec{r} \right) \\ \Rightarrow \left[V\left(\vec{r} \right), \hat{p}_x \right] &= -\frac{\hbar}{i} \frac{\partial}{\partial x} V\left(\vec{r} \right) = \frac{\hbar}{i} F_x \left(\vec{r} \right) \\ \Rightarrow \frac{d}{dt} \left\langle \hat{p}_x \right\rangle_t &= \left\langle F_x \left(\vec{r} \right) \right\rangle \end{split}$$

Kraft:
$$\vec{F}(\vec{r}) = -\vec{\nabla}V(\vec{r})$$

Analog für $\langle \hat{p}_y \rangle_t$ und $\langle \hat{p}_z \rangle_t$.

$$\frac{d}{dt} \left\langle \hat{\vec{p}} \right\rangle_t = \left\langle \vec{F} \left(\vec{r} \right) \right\rangle_t$$

$$\frac{d}{dt} \left\langle \hat{\vec{r}} \right\rangle_t = \frac{1}{m} \left\langle \hat{\vec{p}} \right\rangle_t$$

"Ehrenfest-Gleichungen"

Newton:

$$\begin{array}{lcl} \frac{d}{dt}\vec{p}\left(t\right) & = & \vec{F}\left(\vec{r}\right) = \vec{F}\left(\vec{r}\left(t\right)\right) \\ \frac{d}{dt}\vec{r}\left(t\right) & = & \frac{\vec{p}\left(t\right)}{m} \end{array}$$

Achtung Im Allgemeinen ist

$$\left\langle \vec{F}\left(\vec{r}\right)\right\rangle _{t}\neq\vec{F}\left(\left\langle \vec{r}\right\rangle _{t}\right)$$

Spezialfälle:

- $\vec{F} = \text{const} = V(x) = -\alpha x + c$ insbesondere $\vec{F} = 0 = V(x) = \text{const}$ (Siehe Teilchen im Potentialtopf, bis auf Sprungstellen des Topfes)
- $\vec{F} = \beta \vec{r}$ u.a. $F_x = \beta x \Rightarrow V(x) = -\frac{1}{2}\beta x^2 + c$ auch $F_x = \beta x + j \Rightarrow V(x) = -\frac{1}{2}\beta x^2 - jx + c$ $\langle F_x(\vec{r}) \rangle = \beta \langle x \rangle + j = F_x(\langle x \rangle)$

 \Rightarrow Beim harmonischen Oszillator verhält sich der Erwartungswert $\langle \vec{r} \rangle_t$ wie die klassische Bahnkurve Also: $\langle \vec{r} \rangle_t = A \cos{(\omega t)} + B \sin{(\omega t)}$

Auch für räumlich schwach veränderliche Kräfte gilt näherungsweise $\left\langle \vec{F}\left(\vec{r}\right)\right\rangle _{t}=\vec{F}\left(\left\langle \vec{r}\right\rangle _{t}\right)$

4.5 Streuzustände beim Potentialtopf

(Abb Q32)

$$\begin{split} & \underline{\text{Bereich I:}} \; V\left(x\right) = 0, \, -\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \varphi\left(x\right) = E \varphi\left(x\right) \\ & \varphi\left(x\right) \sim e^{\pm iqx}, \, q = \sqrt{\frac{2m}{\hbar^{2}}} \cdot E \; E > 0! \\ & \varphi^{\text{I}}\left(x\right) = A e^{iqx} + B e^{-iqx} \\ & \underline{\text{Bereich II:}} \; V\left(x\right) = -V_{0} \\ & \varphi^{\text{II}}\left(x\right) = C e^{ikx} + D^{-ikx}, \, k = \sqrt{\frac{2m}{\hbar^{2}} \left(E + V_{0}\right)} \end{split}$$

$$\begin{array}{l} \underline{\text{Bereich II}} \colon V\left(x\right) = 0 \\ \varphi^{\text{III}}\left(x\right) = Fe^{iqx} + Ge^{-iqx}, \ q = \sqrt{\frac{2m}{\hbar^2}E} \end{array}$$

Physikalische Überlegung

$$e^{iqx}$$
 $\hat{=}$ Ortsanteil von $\psi\left(x,t\right)=e^{\frac{Et}{i\hbar}}e^{iqx}$

$$=\underbrace{e^{i\left(qx-\frac{E}{\hbar}t\right)}}_{\text{Konstante Phase: größere Zeit \Rightarrow größere?" Ort$$

(Abb Q33)

 \rightarrow Welle läuft von "links" nach "rechts"

Bezeichnung:

 e^{iqx} ist "Welle", die von links einläuft

 Be^{-iqx} : Welle, die bei x = -a reflektiert wird

(Abb Q34)

Annahme: Für x>a tritt keine Reflexion auf $G\Rightarrow 0$

B, C, D und F folgen aus Stetigkeit von $\varphi(x)$ und $\varphi'(x)$ bei $x = \pm a$

Zunächst: Wahrscheinlichkeitsstromdichte

$$j\left(x\right) = \frac{\hbar}{i2m} \left(\stackrel{\star}{\psi} \left(x,t\right) \frac{\partial}{\partial t} \psi\left(x,t\right) - \stackrel{\star}{\psi} \left(x,t\right) \frac{\partial}{\partial x} \psi\left(x,t\right) \right)$$

Für $\psi(x,t) = e^{\frac{E}{i\hbar}t}\varphi(x)$

$$j\left(x\right) = \frac{\hbar}{i2m} \left(\stackrel{\star}{\varphi}\left(x\right) \frac{\partial}{\partial x} \varphi\left(x\right) - \underbrace{\varphi\left(x\right) \frac{\partial}{\partial t} \stackrel{\star}{\varphi}\left(x\right)}_{\left(\stackrel{\star}{\varphi}\left(x\right) \frac{\partial}{\partial t} \varphi\left(x\right)\right)^{\star}} \right)$$
$$j\left(x\right) = \frac{\hbar}{m} \Im\left(\stackrel{\star}{\varphi}\left(x\right) \frac{\partial}{\partial x} \varphi\left(x\right) \right)$$

Bereich I:

$$j(x) = \frac{\hbar}{m} \Im \left(\left(e^{-iqx} + \stackrel{\star}{B} e^{iqx} \right) \underbrace{\frac{\partial}{\partial x} \left(e^{iqx} + B e^{-iqx} \right)}_{iq(e^{iqx} - B e^{-iqx})} \right)$$

$$= \frac{\hbar}{m} q - \frac{\hbar}{m} q |B|^2$$

$$= \frac{j_{ein}}{\text{einfallende Welle}} + \frac{j_{ref}}{\text{reflektierte Welle}}$$

$$j_{ein} = \frac{\hbar}{m} q (= \text{const})$$

$$j_{ref} = \frac{\hbar}{m} q |B|^2 (= \text{const})$$

<u>Definition</u>: $R := \frac{|j_{ref}|}{|j_{ein}|}$ Reflexionskoeffizient

Hier:
$$R = \frac{\frac{\hbar}{m}q|B|^2}{\frac{\hbar}{m}q} = |B|^2$$

$$\underline{\text{Bereich III}} : \varphi^{\text{III}}(x) = Fe^{iqx}$$

$$j_{trans} = \frac{\hbar}{m} q |F|^2$$

$$T := \left| \frac{j_{trans}}{j_{ein}} \right|$$
 Transmissionskoeffizien

Hier:
$$T = |F|^2$$

Berechnung von B, C, D, G

1.
$$\varphi^{\mathrm{I}}(-a) = \varphi^{\mathrm{II}}(-a)$$

$$e^{-iqa} + Be^{iqa} = Ce^{-ika} + De^{+ika} (27)$$

$$\begin{array}{l} 2. \ \frac{d}{dx}\varphi^{\mathrm{I}}\left(-a\right) = \frac{d}{dx}\varphi^{\mathrm{II}}\left(-a\right) \\ \frac{d}{dx}\varphi^{\mathrm{I}}\left(x\right) = iq\left(e^{iqx} - Be^{-iqx}\right) \end{array}$$

$$iq\left(e^{-iqa} - Be^{iqa}\right) = ik\left(Ce^{-ika} - De^{+ika}\right) \tag{28}$$

3.
$$\varphi^{\text{II}}(a) = \varphi^{\text{III}}(a)$$

$$Ce^{ika} + D^{-ika} = Fe^{iqa} (29)$$

4.
$$\frac{d}{dx}\varphi^{\text{II}}(a) = \frac{d}{dx}\varphi^{\text{III}}(a)$$

$$ik\left(Ce^{ika} - De^{-ika}\right) = iqFe^{iqa} \tag{30}$$

5.
$$(27) + \frac{(28)}{iq}$$

$$2e^{-iqa} = \left(1 + \frac{k}{q}\right)Ce^{-ika} + \left(1 - \frac{k}{q}\right)De^{+ika} \tag{31}$$

6.
$$(29) + \frac{(30)}{ik}$$

$$2Ce^{ika} = F\left(1 + \frac{q}{k}\right)e^{iqa} \tag{32}$$

7.
$$(29) - \frac{(30)}{ik}$$

$$2De^{-ika} = F\left(1 - \frac{q}{k}\right)e^{iqa} \tag{33}$$

(32),(33) in (31) einsetzen und nach F auflösen

 \Rightarrow

$$F = e^{-2iqa} \left(\cos(2ka) - i\sin(2ka) \frac{k^2 + q^2}{2qk} \right)^{-1}$$

$$T = |F|^2 = \frac{1}{\cos^2(2ka) + \left(\frac{k^2 + q^2}{2qk}\right)^2 \sin^2(2ka)}$$

$$\cos^2(2ka) = 1 - \sin^2(2ka), (k^2 + q^2)^2 = k^4 + q^4 + 2k^2q^2 \Rightarrow$$

$$T = \frac{1}{1 + \left(\frac{k^2 + q^2}{2qk}\right)^2 \sin^2(2ka)}$$

Analog:

$$B = iF \frac{k^2 - q^2}{2kq} \sin(2ka)$$

$$R = |B|^2 = |F|^2 \left(\frac{k^2 - q^2}{2kq}\right)^2 \sin^2(2ka)$$

 \Rightarrow

$$R + T = 1$$

Diskussion von T

$$T(E) = \frac{1}{1 + \frac{V_0^2}{E(E+V_0)} \sin^2 \left(2a\sqrt{\frac{2m}{\hbar^2}(E+V_0)}\right)}$$

(Abb Q35)

(Abb Q36)

L = 2a

- \bullet Transmission hängt von E ab!
- T=1 für bestimmte Energien $\sin\left(2a\sqrt{\frac{2m}{\hbar^2}(E+V_0)}\right)=0$ $\Rightarrow 2a\sqrt{\frac{2m}{\hbar^2}(E+V_0)}=n\pi$ $(E+V_0)=\frac{n^2\pi^2}{(2a)^2}\cdot\frac{\hbar^2}{2m}=\frac{\hbar^2}{2m}\frac{1}{L^2}n^2\pi^2$

Energien des unendlich hohen Topfes

$$E_n = -V_0 + \frac{\hbar^2 n^2 \pi^2}{2nL^2}$$

 $E_n = \text{Energien mit } T = 1$ $\Rightarrow \text{Da } E_n > 0$

$$-V_0 + \frac{\hbar^2 n^2 \pi^2}{2nL^2} > 0$$

$$n^2 > \frac{V_0 2nL^2}{\hbar^2 \pi^2}$$

$$\hat{} = \text{minimaler Wert von } n$$

 $E_n = \text{Resonanzenergien}$ ("Streuresonanzen" bei diesen Energien = Tranmission = 1)

Zusammenfassung (Abb Q37)

4.6 Potentialwall

(Abb Q38)

$$V(x) = \begin{cases} V_0 & -a \le x \le a \\ 0 & \text{sonst} \end{cases}$$

 $0 < E < V_0$

Bereich I:

$$\varphi^{\mathrm{I}}\left(x\right)=e^{iqx}+Be^{-iqx},\,q=\sqrt{E\frac{2m}{\hbar^{2}}}$$

Bereich II: $V(x) = V_0$

Da $E < V_0$:

$$\varphi^{\mathrm{II}}\left(x\right) = Ce^{\kappa x} + De^{-\kappa x}, \ \kappa = \sqrt{\frac{2m}{\hbar^{2}}\left(V_{0} - E\right)}$$

Bereich III:

$$\varphi^{\text{III}}(x) = Fe^{iqx}$$

B, C, D, F folgen aus Stetigkeitsbedingungen

 \rightarrow Analoge Rechnung (siehe 4.5 auf Seite 49) mit κ statt ik, bzw. $-V_0$ statt V_0

$$T(E) = \frac{1}{1 + \frac{V_0^2}{4E(E - V_0)} \sin^2 \left(2a\sqrt{\frac{2m}{\hbar^2}(E - V_0)}\right)}$$

Da $E < V_0 \Rightarrow \sin \min \text{ imaginärem Argument}$

 $\sin\left(ix\right) = i\sinh\left(x\right)$

 \Rightarrow

$$T(E) = \frac{1}{1 - \frac{V_0^2}{4E(E - V_0)} \sinh^2\left(2a\sqrt{\frac{2m}{\hbar^2}}(V_0 - E)\right)}$$

T>0 für E>0 $\hat{=}$ endliche Transmission (im Gegensatz zur klassischen Physik) "Tunneleffekt"

Aufenthaltswahrscheinlichkeitsdichte (Abb Q39)

Betrachte Fall
$$2a\sqrt{\frac{2m}{\hbar^2}(V_0 - E)} \gg 1$$
 d.h. $E \ll V_0 - \frac{\hbar^2}{2m} \frac{1}{4a^2}$

$$\sinh(x) = \frac{1}{2} (e^x - e^{-x}) \stackrel{x \gg 1}{\approx} \frac{1}{2} e^x$$

Dann kann auch die "1" im Nenner von $T\left(E\right)$ vernachlässigt werden

$$T(E) \approx \frac{16(V_0 - E) \cdot E}{V_0^2} e^{-4a\sqrt{\frac{2m}{\hbar^2}(V_0 - E)}}$$

Tunneleffekt Sei $E \ll V_0$

$$T(E) = \frac{16(V_0 - E)E}{V_0}e^{-4a\sqrt{\frac{2m}{\hbar^2}(V_0 - E)}}$$

Exponentialer Abfall:

- Breite des Walls
- Wurzel der Masse
- Wurzel $(V_0 E)$

Allgemeine Form einer Barriere (Abb Q40)

Näherungsformel Transmission durch j-ten Wall

$$T_{j} = \frac{16(V_{j} - E)E}{V_{j}^{2}}e^{-2\Delta x \sqrt{\frac{2m}{\hbar^{2}}(V_{j} - E)}}$$

Näherungsweise

$$T_j \approx e^{-2\Delta x \sqrt{\frac{2m}{\hbar^2}(V_j - E)}}$$

Gesamte Transmission

$$T = T_1 \cdot T_2 \cdot \dots \cdot T_N = \prod_{j=1}^{N} T_j$$

$$= \prod_{j=1}^{N} e^{-2\Delta x \sqrt{\frac{2m}{h^2}(V_j - E)}}$$

$$= e^{-2\Delta x \sum_{j=1}^{N} \sqrt{\frac{2m}{h^2}(V_j - E)}}$$

Grenzfall $N \to \infty$ (unendlich feine Unterteilung)

$$T = e^{-2\int_{x_A}^{x_B} \sqrt{\frac{2m}{\hbar^2}(V(x) - E)} dx}$$

$$mit V(x_A) = E, V(x_B) = E$$

"Gamow-Faktor"

(Abb Q41)

Rechnung wie beim Potentialtopf 4.5 auf Seite 49 mit V_0 statt $(-V_0)$

$$T(E) = \frac{1}{1 + \frac{1}{4} \frac{V_0^2}{E(E - V_0)} \sin^2 \left(2a\sqrt{\frac{2m}{\hbar^2}(E - V_0)}\right)}$$

(Abb Q42)

4.7 Wellenpakete an Potentialbarrieren

Bisher: uneigentliche Eigenzustände

(Abb Q43)

Wellenpaket

$$\psi\left(x,t\right) = \int\limits_{0}^{\infty}g\left(q\right)\varphi_{q}\left(x\right)e^{\frac{E_{q}t}{i\hbar}}dq$$

$$g\left(q\right) \quad z.B. \quad e^{-j\left(q-q_{0}\right)^{2}} \quad \text{Qauß'sches Wellenpaket, zentriert um }q_{0}$$

Energie

$$E = \left\langle \hat{H} \right\rangle = \int_{-\infty}^{\infty} \psi(x, t) \, \hat{H} \psi(x, t) \, dx$$

$$\hat{H}\psi\left(x,t\right) = \int_{0}^{\infty} g\left(q\right) E_{q}\varphi_{q}\left(x\right) e^{\frac{E_{q}t}{i\hbar}} dq$$

$$E = \int_{-\infty}^{\infty} \psi(x,t) \, \hat{H}\psi(x,t) \, dx$$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} g(q') \, E_{q'} \varphi_{q'}(x) \, e^{\frac{E_{q'}t}{i\hbar}} dq' \int_{0}^{\infty} g(q) \, E_{q} \varphi_{q}(x) \, e^{\frac{E_{q}t}{i\hbar}} dq \, dx$$

$$\operatorname{Mit} \int_{-\infty}^{\infty} \varphi_{q'}(x) \, \varphi_{q}(x) \, dx = \delta \left(q - q' \right)$$

(Normierung der uneigentlichen Eigenfunktion) "auf δ -Funktion"

$$\Rightarrow E = \int_{0}^{\infty} g(q) \stackrel{\star}{g}(q) E_{q} dq = \int_{0}^{\infty} |g(q)|^{2} E_{q} dq$$

(Folie: "Wellepaket an einem Potentialberg", Folie: "Welle an einem Potentialtopf")

5 Formalismus der Quantenmechanik

5.1 Unschärferelation

(Abb Q44)

Dazu: Operator \hat{O}

Unschärfe (zum Quadrat):

$$(\Delta O)^2 = \left\langle \left(\hat{O} - \left\langle \hat{O} \right\rangle \right)^2 \right\rangle = \left\langle \hat{O}^2 \right\rangle - \left\langle \hat{O} \right\rangle^2$$

Betrachte zwei <u>hermitesche</u> Operatoren \hat{A} und \hat{B}

$$(\Delta A)^{2} = \left\langle \left(\hat{A} - \left\langle \hat{A} \right\rangle \right)^{2} \right\rangle$$
$$(\Delta B)^{2} = \left\langle \left(\hat{B} - \left\langle \hat{B} \right\rangle \right)^{2} \right\rangle$$

Dann gilt

$$\Delta A \cdot \Delta B \geq \frac{\left|\left\langle \left[\hat{A}, \hat{B}\right]\right\rangle\right|}{2}$$

Verallgemeinerte Unschärferealtion

z.B.
$$\hat{A} = \hat{x}$$
, $\hat{B} = \hat{p}_x$, $[\hat{x}, \hat{p}_x] = i\hbar$

$$\Rightarrow \Delta x \Delta p_x \ge \frac{|i\hbar|}{2} = \frac{\hbar}{2}$$

Beweis
$$\hat{a} = \hat{A} - \left\langle \hat{A} \right\rangle, \, \hat{b} = \hat{B} - \left\langle \hat{B} \right\rangle \Rightarrow \hat{a} = \hat{a}^+, \, \hat{b} = \hat{b}^+ \text{ da } \hat{A} = \hat{A}^+, \, \hat{B} = \hat{B}^+$$

$$\begin{split} (\Delta A)^2 &= \left\langle \hat{a}^2 \right\rangle \\ &= \int \overset{\star}{\psi} \left(\vec{r}, t \right) \hat{a}^2 \psi \left(\vec{r}, t \right) d^3 r \\ &= \int \overset{\star}{\psi} \left(\vec{r}, t \right) \hat{a} \hat{a} \psi \left(\vec{r}, t \right) d^3 r \\ \text{mit} & \hat{a} = \hat{a}^+ \\ &= \int \left(\hat{a} \psi \left(\vec{r}, t \right) \right)^{\star} \hat{a} \psi \left(\vec{r}, t \right) d^3 r \\ &= \int \left| \hat{a} \psi \left(\vec{r}, t \right) \right|^2 d^3 r \\ (\Delta B)^2 &= \int \left| \hat{b} \psi \left(\vec{r}, t \right) \right|^2 d^3 r \end{split}$$

Betrachte:

$$F(\lambda) = \int \left| \left(\hat{a} + i\lambda \hat{b} \right) \psi(\vec{r}, t) \right|^2 d^3r \ge 0$$

 λ : reell

Ausmultiplizieren

$$\int \left(\left(\hat{a} + i\lambda \hat{b} \right) \psi \right)^{*} \left(\hat{a} + i\hat{b} \right) \psi d^{3}r = \int \left(\left(\hat{a}\psi \right)^{*} - i\lambda \left(\hat{b}\psi \right)^{*} \right) \left(\hat{a}\psi + i\lambda \hat{b}\psi \right) d^{3}r$$

$$= \int \psi \left(\hat{a} - i\lambda \hat{b} \right) \left(\hat{a} + i\lambda \hat{b} \right) \psi d^{3}r$$

$$= \int \psi \left(\hat{a}^{2} + \lambda^{2} \hat{b}^{2} + i\lambda \underbrace{\left(\hat{a}\hat{b} - \hat{b}\hat{a} \right)}_{\left[\hat{a},\hat{b}\right]} \psi \right) d^{3}r$$

$$= \langle \hat{a}^{2} \rangle + \lambda^{2} \langle \hat{b}^{2} \rangle + i\lambda \langle \left[\hat{a}, \hat{b} \right] \rangle \geq 0$$

Es gilt $\left[\hat{a},\hat{b}\right]=\left[\hat{A},\hat{B}\right],\,i\left[\hat{a},\hat{b}\right]=:c$ (hermitesch)

Wähle speziell $\lambda = \lambda_0$ mit $\frac{dF(\lambda)}{d\lambda}\Big|_{\lambda = \lambda_0} = 0$

$$\begin{split} \frac{dF\left(\lambda\right)}{d\lambda}\bigg|_{\lambda_{0}} &= 2\lambda_{0}\left\langle \hat{b}^{2}\right\rangle + \underbrace{\left\langle i\left[\hat{a},\hat{b}\right]\right\rangle}_{\hat{c}} = 0 \\ \Rightarrow \lambda_{0} &= -\frac{\left\langle \hat{c}\right\rangle}{2\left\langle \hat{b}^{2}\right\rangle} \end{split}$$

$$F(\lambda_0) = \langle \hat{a}^2 \rangle + \left(\frac{\langle \hat{c} \rangle^2}{4 \left(\langle \hat{b}^2 \rangle \right)^2} \right) \langle \hat{b}^2 \rangle + \left(-\frac{\langle \hat{c} \rangle}{2 \left\langle \hat{b}^2 \rangle} \right) \langle \hat{c} \rangle$$
$$= \langle \hat{a}^2 \rangle - \frac{1}{4} \frac{\langle \hat{c} \rangle^2}{\langle \hat{b}^2 \rangle} \ge 0$$

$$\begin{split} \left\langle \hat{a}^2 \right\rangle \left\langle \hat{b}^2 \right\rangle & \geq & \frac{1}{4} \left\langle \hat{c} \right\rangle^2 \\ \left\langle \Delta A \right\rangle^2 \left(\Delta B \right)^2 & \geq & \frac{1}{4} \left\langle \hat{c} \right\rangle^2 \\ \Delta A \Delta B & \geq & \frac{1}{2} \left| \left\langle i \left[\hat{A}, \hat{B} \right] \right\rangle \right| = \frac{1}{2} \left| \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle \right| \end{split}$$

da $\hat{c}=i\left[\hat{A},\hat{B}\right]$

Folgerungen

1.
$$\left[\hat{A}, \hat{B}\right] = 0 \Rightarrow \Delta A \cdot \Delta B \ge 0$$

In einer Raumrichtung können Ort und Impuls nicht gleichzeitig genau bekannt sein

Beispiel: "klassisches Teilchen"

$$m = 10^{-6} \text{g} = 10^{-9} \text{kg}$$

$$\Delta x = 1 \text{Å} = 10^{-10} \text{m}$$

$$\Rightarrow \Delta v_x \geq 0, 5 \cdot 10^7 \frac{\mathrm{m}}{\mathrm{s}}$$

 \rightarrow extrem große Unschärfe

3. "Energie-Zeit-Unschärfe"

Energie \Leftrightarrow Hamiltonoperator \hat{H}

Zeit: spielt in der Quantenmechanik eine andere Rolle als z.B. Ort oder Geschwindigkeit. "Es gibt keinen Zeitoperator"

Betrachte Operator \hat{A} . (\hat{A} soll nicht explizit von t abhängen)

$$\frac{d}{dt} \left\langle \hat{A} \right\rangle = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{A} \right] \right\rangle + \underbrace{\left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle}_{=0}$$

Aus Unschärferelation

$$\Delta H \cdot \Delta A \geq \frac{1}{2} \left| \left\langle \left[\hat{H}, \hat{A} \right] \right\rangle \right| = \frac{1}{2} \left| \frac{\hbar}{i} \frac{d \left\langle \hat{A} \right\rangle}{dt} \right| = \frac{\hbar}{2} \left| \frac{d \left\langle \hat{A} \right\rangle}{dt} \right|$$

$$\Delta H = \sqrt{\left\langle \left(\hat{H} - \left\langle \hat{H} \right\rangle \right)^2 \right\rangle}$$

"Unschärfe der Energie": ΔE

$$\Delta E \cdot \frac{\Delta A}{\left| \frac{d\langle \hat{A} \rangle}{dt} \right|} \ge \frac{\hbar}{2}$$

 $\frac{\Delta A}{\left|\frac{d\langle\hat{A}\rangle}{dt}\right|}$ hat die Dimension einer Zeit $\hat{=}\Delta t$

 $\Delta \hat{t} \hat{=} \text{Zeitintervall}$ in dem sich $\left\langle \hat{A} \right\rangle$ um ΔA verändert $\vec{\rightarrow}$

 $\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$

mit

$$\Delta t = \frac{\Delta A}{\left| \frac{d\langle \hat{A} \rangle}{dt} \right|}$$

"Energie-Zeit-Unschärfe"

5.2 Kommutierende Operatoren

$$\hat{A}\varphi_n\left(\vec{r}\right) = a_n\varphi_n\left(\vec{r}\right)$$

Eigenzustandsgleichung

 $\hat{A} = \hat{A}^{+}$ hermitesch

Zunächst \hat{B} sei hermitescher Operator, der auch $\varphi_n(\vec{r})$ als Eigenfunktionen besitzt:

$$\hat{B}\varphi_n\left(\vec{r}\right) = b_n\varphi_n\left(\vec{r}\right)$$

Es gilt:

Zwei hermitsche Operatoren \hat{A} und \hat{B} , die gemeinsame Eigenfunktionen besitzen, vertauschen miteinander

Denn

$$f\left(\vec{r}\right) = \sum_{n} c_n \varphi_n\left(\vec{r}\right)$$

 c_n : Entwicklungskoeffizienten

$$\begin{aligned} \left[\hat{A}, \hat{B}\right] f\left(\vec{r}\right) &= \sum_{n} c_{n} \left(\hat{A}\hat{B} - \hat{B}\hat{A}\right) \varphi_{n}\left(\vec{r}\right) \\ &= \sum_{n} c_{n} \left(\hat{A}b_{n} - \hat{B}a_{n}\right) \varphi_{n}\left(\vec{r}\right) \\ &= \sum_{n} c_{n} \underbrace{\left(a_{n}b_{n} - b_{n}a_{n}\right)}_{=0} \varphi_{n}\left(\vec{r}\right) = 0 \end{aligned}$$

$$\Rightarrow \left[\hat{A}, \hat{B}\right] = 0$$

Umkehrung

Zwei hermitesche Operatoren \hat{A} und \hat{B} , die miteinander vertauschen, besitzen ein System von gemeinsa Eigenfunktionen

$$\rightarrow \left[\hat{A}, \hat{B}\right] = 0 \Rightarrow \hat{A}\varphi_n(x) = a_n\varphi_n(x), \, \hat{B}\varphi_n(x) = b_n\varphi_n(x)$$

Denn Starte von

$$\hat{A}\varphi_n\left(x\right) = a_n\varphi_n\left(x\right) \tag{34}$$

und

$$\left[\hat{A},\hat{B}\right] = 0\tag{35}$$

$$\hat{A}\underline{\hat{B}}\varphi_{n}(x) \stackrel{(35)}{=} \hat{B}\hat{A}\varphi_{n}(x)$$

$$\stackrel{(35)}{=} \hat{B}a_{n}\varphi_{n}(x)$$

$$= a_{n}\hat{B}\varphi_{n}(x)$$

Fall: keine Entartung zu a_n ehört eine Eigenfunktion φ_n , die bis auf multiplikativen Faktor eindeutig ist $\Rightarrow \hat{B}\varphi_n(x) = \underbrace{b_n}_{\text{Folton}} \varphi_n(x) \Rightarrow \varphi_n(x)$ ist auf Eigenfunktion von \hat{B}

Fall: Entartung

$$\hat{A}\varphi_n^{(j)}(x) = a_n \varphi_n^{(j)}(x)$$

j=1,2,...,g = g-fache Entartung des Eigenwertes a_n

Idee Man bildet Linearkombinationen der g entarteten Zustände

$$\chi_n^{(s)}(x) = \sum_{j=1}^g c_{j,s,n} \varphi_n^{(j)}(x)$$

$$s = 1, 2, ..., g$$

Man kann die Koeffizienten $c_{j,s,n}$ so wählen, dass $\chi_n^{(s)}(x)$ Eigenfunktionen von \hat{B} sind. Beweis siehe z.B. Merbacher "Quantum Mechanics"

5.3 Parität

Harmonischer Oszillator, Potentialtopf (gebundene Zustände)

 \rightarrow Zustände sind gerade bzw. ungerade

(Abb Q45)

Potential: V(x) = V(-x)

Vermutung: Symmetrie des Potentials ist verantwortlich für das Auftreten von geraden, bzw. ungeraden Zuständen

Dazu Definiere Operator $\hat{\Pi}$ (Paritätsoperator)

$$\hat{\Pi}f(x) = f(-x)$$

(bzw. $\hat{\Pi}f(\vec{r}) = f(-\vec{r})$ im Dreidimensionalen)

Hamiltonoperator:

$$\hat{H}(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

$$\hat{H}(-x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(-x)$$

$$= -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

$$= \hat{H}(x)$$

$$\Rightarrow \hat{\Pi}\hat{H} = \hat{H}\hat{\Pi} \Rightarrow \left[\hat{H}, \hat{\Pi}\right] = 0$$

 $\underset{5.2}{\Rightarrow}$ es gibt gemeinsame Eigenfunktionen

Eigenfunktionen von $\hat{\Pi}$

$$\hat{\Pi}\varphi_n(x) = \lambda_n\varphi_n(x) \tag{36}$$

$$\hat{\Pi}\varphi_n(x) = \varphi_n(-x) \tag{37}$$

 $\hat{\Pi}^{2}\varphi_{n}\left(x\right) = \hat{\Pi}\hat{\Pi}\varphi_{n}\left(x\right)$

$$\stackrel{(36)}{=} \hat{\Pi} \lambda_n \varphi_n (x)$$

$$\stackrel{(36)}{=} \lambda_n^2 \varphi_n(x) \tag{38}$$

$$\Pi^{2}\varphi_{n}(x) = \Pi\Pi\varphi_{n}(x)$$

$$\stackrel{(36)}{=} \hat{\Pi}\lambda_{n}\varphi_{n}(x)$$

$$\stackrel{(36)}{=} \lambda_{n}^{2}\varphi_{n}(x) \qquad (38)$$

$$\hat{\Pi}^{2}\varphi_{n}(x) \stackrel{(37)}{=} \hat{\Pi}\varphi_{n}(-x)$$

$$\stackrel{(37)}{=} \varphi_{n}(x) \qquad (40)$$

$$\stackrel{(37)}{=} \varphi_n(x) \tag{40}$$

 \Rightarrow

$$\lambda_n^2 \varphi_n(x) = \varphi_n(x)$$

$$\varphi_n^2 = 1$$

 \Rightarrow

$$\lambda_n = \pm 1$$

 $\lambda_n = +1$

$$\hat{\Pi}\varphi_{n}(x) \stackrel{(36)}{=} 1\varphi_{n}(x)$$

$$\hat{\Pi}\varphi_{n}(x) \stackrel{(37)}{=} \varphi_{n}(-x)$$

 \Rightarrow

$$\varphi_n(x) = \varphi_n(-x)$$

ê gerade Funktion

 $\lambda_n = -1$

$$\hat{\Pi}\varphi_n(x) \stackrel{(36)}{=} -1\varphi_n(x)
\hat{\Pi}\varphi_n(x) \stackrel{(37)}{=} \varphi_n(-x)$$

 \Rightarrow

$$-\varphi_n(x) = \varphi_n(-x)$$

$$\Rightarrow \varphi_n(x) = - \varphi_n(-x)$$

 $\hat{=}$ ungerade Funktion

 $\left[\hat{\Pi},\hat{H}\right]=0\Rightarrow\hat{H}$ besitzt auch gerade bzw. ungerade Eigenfunktionen

Eigenzustände lassen sich nach der Symmetrieeigenschaften des Potentials klassifizieren z.B.

- Potential mit Spiegelsymmetrie $V\left(x\right)=V\left(-x\right)\rightarrow\hat{\Pi}$ Paritätsoperator
- Potential mit "Drehsymmetrie" $V\left(\vec{r}\right) = V\left(\underbrace{\overline{D}}_{\text{Drehmatrix}}\vec{r}\right), \ \hat{R}_{\overline{D}}: \text{Drehoperator}, \ \hat{R}_{\overline{D}}f\left(\vec{r}\right) = f\left(\overline{D}\vec{r}\right)$
- Atome: kontinuierliche Drehungen (alle Winkel)
- Molekül: endliche Drehungen (nur für bestimmte Winkel bleibt $V\left(\overrightarrow{r}\right)$ unverändert)
- Periodische Potentiale $V\left(\vec{r}\right) = V\left(\vec{r} + \underbrace{\vec{t}}_{\text{Verschiebung um } \vec{t}}\right), \hat{T}_{\vec{t}}$ Translationsoperator, $\hat{T}_{\vec{t}}f\left(\vec{r}\right) = f\left(\vec{r} + \vec{t}\right)$

5.4 Dirac-Notation

Bisher: quantenmechanische Zustände als Wellenfunktion

Ortsdarstellung: $\psi(\vec{r},t)$

Impulsdarstellung: $\phi(\vec{p},t)$

Notation nach Dirac Skalarprodukt

$$(\chi, \psi) = \int_{-\infty}^{\infty} \chi(\vec{r}, t) \psi(\vec{r}, t) d^{3}r$$
$$= \langle \chi | \psi \rangle$$

bracket (englisch: Klammer)

 $|\psi>$ quantenmechanischer Zustand "ket"-Vektor ($\hat{=}$ abstrakte Darstellung der Wellenfunktion $\psi\left(\vec{r},t\right)$)

 $\sim \psi(\vec{r},t)$ ist Orstdarstellung von $|\psi>$

 $<\chi|$ quantenmechanischer Zustand im dualen Raum "bra"-Vektor

Erwartungswert des Operator \hat{O}

$$\left\langle \hat{O}\right\rangle =<\psi|\hat{O}|\psi>=\int\overset{\star}{\psi}\left(\vec{r},t\right)\hat{O}\psi\left(\vec{r},t\right)d^{3}r$$

Allgemein

$$<\chi|\hat{O}|\psi> = \int \mathring{\chi}(\vec{r},t)\,\hat{O}\psi(\vec{r},t)\,d^3r$$

Eigenschaften: (folgen direkt aus Definition)

$$\langle \chi | \varphi \rangle = \langle \varphi | \chi \rangle^*$$
 (41)

$$<\chi|\hat{O}|\varphi> = <\chi|\hat{O}\varphi> = <\hat{O}^{+}\chi|\varphi>$$
 (42)

$$<\chi|(\varphi+\phi)> = <\chi|\varphi> + <\chi|\phi>$$
 (43)

$$\langle \chi | c \cdot \psi \rangle = c \langle \chi | \varphi \rangle \quad c \in \mathbb{C}$$
 (44)

$$\langle c \cdot \chi | \varphi \rangle = c^* \langle \chi | \varphi \rangle \quad c \in \mathbb{C}$$
 (45)

Eigenwertgleichung

$$\hat{O}|\varphi_n>=\lambda|\varphi_n>$$

 $\hat{O} = \hat{O}^+$

 $<\varphi_n|\varphi_{n'}>=\delta_{n,n'}$ Orthogonalität

Entwicklung Ortsdarstellung

$$f\left(\vec{r}\right) = \sum_{n} c_n \varphi_n\left(\vec{r}\right)$$

Dirac-Notation

$$|f> = \sum_{n} c_n |\varphi_n> |\cdot < \varphi_{n'}|$$

 \Rightarrow

$$<\varphi_{n'}|f> = \sum_{n} c_n \underbrace{<\varphi_{n'}|\varphi_n>}_{\delta_{n,n'}} = c_{n'}$$

 \Rightarrow

$$c_n = \langle \varphi_n | f \rangle \tag{46}$$

Damit:

$$|f> = \sum_{n} |\varphi_n> c_n \stackrel{(46)}{=} \sum_{n} |\varphi_n> <\varphi_n|f>$$

 \Rightarrow

$$\sum_{n} |\varphi_n > < \varphi_n| = \hat{1}$$

"Vollständige Eins"

Projektionsoperator

$$\hat{P}_n = |\varphi_n > < \varphi_n|$$

Ortsraumdarstellung

$$\psi\left(\vec{r},t\right):=<\vec{r}|\psi>$$

 $|\vec{r}>$: Eigenzustände des Ortsraumoperators $\hat{\vec{r}}$

 $<\vec{r}|\vec{r}'>=\delta\left(\vec{r}-\vec{r}'\right)$ Orthogonalität

$$<\vec{r}|\vec{r}> = <\vec{r}|\hat{1}|\vec{r}'> = \sum_{n} \underbrace{<\vec{r}|\varphi_{n}>}_{\varphi_{n}(\vec{r}')} \underbrace{<\varphi_{n}|\vec{r}'>}_{\varphi_{n}^{\star}(\vec{r}')} = \delta\left(\vec{r}-\vec{r}'\right)$$

 \Rightarrow

$$\sum_{n} \varphi_{n} \left(\vec{r} \right) \varphi_{n}^{\star} \left(\vec{r}' \right) = \delta \left(\vec{r} - \vec{r}' \right)$$

៌ vollständiger Eins

Bemerkung: Die Zustände $|\psi\rangle$ sind mathematisch gesehen Elemente eines komplexen, linearen und vollständigen Vektorraums. Ein solcher Raum wird als Hilbert-Raum bezeichnet.

$\underline{\mathrm{QM}}$		<u>Lineare Algebra</u> (in drei Dimmensionen)	
Zustand	$ \psi>$ "bra"	<u>Vektor</u>	$ec{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}$
	$<\chi $ "ket"		$ec{b}^T = egin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$
Skalarprodukt			
	$<\chi \varphi>$		$\vec{b}^T \cdot a = \sum_{n=1}^3 b_i a_i$
Operator	Ô	Matrix	$\overline{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ & \ddots & \vdots \\ & & M_{33} \end{pmatrix}$
$\hat{O} \varphi_n>=\lambda_n \varphi_n>$			$\overline{M}\overline{d}^{(n)} = \lambda_n \overline{d}^{(n)}, \ n = 1, 2, 3$
gilt für $\hat{O} = \hat{O}^+$		gilt für $\overline{M} = \overline{M}$	$\overline{M}^+ = \left(\overline{M}^T\right)^*$ (hermitesche Matrix)
$<\varphi_n \varphi_{n'}>=\delta_{n,n'}$			$ \vec{d}^{(n)T} \cdot \vec{d}^{(n')} = \delta_{n,n'} $ $ \sum d_i^{(n)} d_j^{(n)} = \delta_{i,j} $
$\sum_{n} \varphi_n > \langle \varphi_n = \hat{1}$		$\sum_{n} d_i^{(n)} d_j^{(n)} = \delta_{i,j}$	
$ f> = \sum_{n} c_n f>$			$\vec{a} = \sum_{n=1}^{3} c_n \vec{d}^{(n)}$

Vergleich zwischen Quantenmechanik und linearer Algebra

6 Operatormethode zur Behandlung des harmonischen Oszilators

6.1 Eigenwerte

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}k\hat{x}^2$$

mit
$$\hat{p} = \hat{p}_x$$
, $\omega = \sqrt{\frac{k}{m}}$

$$\hat{H} = \frac{1}{2}m\omega^2 \left(\hat{x}^2 + \frac{\hat{p}^2}{m^2\omega^2}\right)$$

1. Schritt Faktorisurng (Idee von Schrödinger)

 $\underline{\text{Dazu}}$

$$\begin{pmatrix} \hat{x} + i\frac{\hat{p}}{m\omega} \end{pmatrix} \begin{pmatrix} \hat{x} - i\frac{\hat{p}}{m\omega} \end{pmatrix} = \begin{pmatrix} \hat{x}^2 + \frac{\hat{p}^2}{m^2\omega^2} - \frac{i}{m\omega} \underbrace{(\hat{x}\hat{p} - \hat{p}\hat{x})}_{=[\hat{x},\hat{p}] = i\hbar} \end{pmatrix}$$

$$= \hat{x}^2 + \frac{\hat{p}^2}{m^2\omega^2} + \frac{\hbar}{m\omega}$$

bzw.

$$\left(\hat{x}-i\frac{\hat{p}}{m\omega}\right)\left(\hat{x}+i\frac{\hat{p}}{m\omega}\right)=\hat{x}^2+\frac{\hat{p}^2}{m^2\omega^2}-\frac{\hbar}{m\omega}$$

 \Rightarrow

$$\begin{split} \hat{H} &= \frac{1}{2} m \omega^2 \left(\left(\hat{x} - i \frac{\hat{p}}{m \omega} \right) \left(\hat{x} + i \frac{\hat{p}}{m \omega} \right) + \frac{\hbar}{\omega} \right) \\ \hat{H} &= \hbar \omega \left(\frac{m \omega}{\hbar^2} \left(\hat{x} - i \frac{\hat{p}}{m \omega} \right) \left(\hat{x} + i \frac{\hat{p}}{m \omega} \right) + \frac{1}{2} \right) \end{split}$$

Definition

$$\hat{a} := \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + i \frac{\hat{p}}{2m} \right)$$

Adjungierter Operator

$$\hat{a}^{+} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - i \frac{\hat{p}}{m\omega} \right)$$

 \Rightarrow

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

Suche:
$$\hat{H}|\varphi_n>=E_n|\varphi_n>$$
 also $\hat{a}^+\hat{a}|\varphi_n>=\lambda_n|\varphi_n>$ mit $E_n=\hbar\omega\left(\lambda_n+\frac{1}{2}\right)$

Ziel: Berechnung der Eigenwerte von $\hat{a}^{+}\hat{a}=\hat{N}$

Dazu

$$\begin{aligned} \left[\hat{a}, \hat{a}^{+}\right] &= \hat{a}\hat{a}^{+} - \hat{a}^{+}\hat{a} = ? \\ &= \left[\hat{x} - i\frac{\hat{p}}{m\omega}, \hat{x} - i\frac{\hat{p}}{m\omega}\right] \frac{m\omega}{2\hbar} \\ &= \frac{i}{m\omega} \left(\underbrace{\left[\hat{p}, \hat{x}\right]}_{-i\hbar} - \underbrace{\left[\hat{x}, \hat{p}\right]}_{i\hbar}\right) \frac{m\omega}{2\hbar} \\ &= \frac{i}{m\omega} \left(2\left(-i\right)\hbar\right) \frac{m\omega}{2\hbar} = 1 \end{aligned}$$

$$\left[\hat{a}, \hat{a}^{+}\right] = 1 \tag{47}$$

2. Schritt Lösung der Eigenwertgleichung

$$\hat{a}^{\dagger}\hat{a}|\varphi_n\rangle = \lambda_n|\varphi_n\rangle \tag{48}$$

1. Die Eigenwerte λ_n haben die Eigenschaft $\lambda_n \geq 0$ Denn:

$$<\varphi_n|\hat{a}^+\hat{a}|\varphi_n> = <(\hat{a}^+)^+\varphi_n|\hat{a}\varphi_n>$$

= $<\hat{a}\varphi_n|\hat{a}\varphi_n>$

$$\int \left(\hat{a}\varphi_{n}\left(x\right)\right)^{\star}\left(\hat{a}\varphi_{n}\left(x\right)\right)dx = \int \left|\hat{a}\varphi_{n}\left(x\right)\right|^{2}dx \geq 0$$

$$<\varphi_n|\hat{a}^+\hat{a}|\varphi_n>\stackrel{(48)}{=}<\varphi_n|\lambda_n|\varphi_n>=\lambda_n\underbrace{<\varphi_n|\varphi_n>}_1=\lambda_n$$

 $\Rightarrow \lambda_n \ge 1$

$$\lambda_n = \langle \varphi_n | \hat{a}^+ \hat{a} | \varphi_n \rangle \ge 0 \tag{49}$$

2. Falls $|\varphi_n>$ ein Eigenzustand von $\hat{a}^+\hat{a}$ ist, so ist $\hat{a}|\varphi_n>$ auch Eigenwert von $\hat{a}^+\hat{a}$ Dazu:

$$\hat{a}^{+}\hat{a}\hat{a}|\varphi_{n}\rangle \stackrel{(47)}{=} (\hat{a}\hat{a}^{+}-1)\hat{a}|\varphi_{n}\rangle
= (\hat{a}\hat{a}^{+}\hat{a}-\hat{a})|\varphi_{n}\rangle
= \hat{a}(\hat{a}^{+}\hat{a}-1)|\varphi_{n}\rangle
\stackrel{(48)}{=} \hat{a}(\lambda_{n}-1)|\varphi_{n}\rangle
= (\lambda_{n}-1)\hat{a}|\varphi_{n}\rangle$$

 $\Rightarrow \hat{a}|\varphi_n >$ ist Eigenwert von $\hat{N} = \hat{a}^+\hat{a}$ mit Eigenwert $\lambda_n - 1$ Analog $\hat{a}^+|\varphi_n >$ ist Eigenwert von $\hat{N} = \hat{a}^+\hat{a}$ mit Eigenwert $\lambda_n + 1$

3. "Leiter" von Zuständen (Abb Q46)

$$\lambda_{n+1} = \lambda_n + 1$$

$$\lambda_{n-1} = \lambda_n - 1$$

$$\hat{a}^+ \text{ Aufsteigeoperator } \hat{a} \text{ Absteigeoperator } \right\}$$
"Leiteroperatoren"

Da $\lambda_n \geq 0$ kleinster Eigenwert λ_0 (n=0). Daher:

$$\hat{a}|\lambda_0>=0$$

 $da \lambda_0$ kleinster Wert ist.

 \Rightarrow

$$\hat{a}^+\hat{a}|\varphi_0>\stackrel{(48)}{=}\lambda_0|\varphi_0>$$

 \Rightarrow

$$\lambda_0 | \varphi_0 > = 0$$

 \Rightarrow

$$\lambda_0 = 0$$

 \Rightarrow

$$\lambda_1 = 1, \, \lambda_2 = 2, \, \lambda_n = n$$

$$E_n=\hbar\omega\left(\lambda_n+\frac{1}{2}\right)=\hbar\omega\left(n+\frac{1}{2}\right)$$

Eigenwertspektrum des harmonischen Oszillators

4. $\hat{a}|\underbrace{\varphi_n}_{\text{normiert}}>=\underbrace{c}_{\text{Normierungsfaktor}}|\underbrace{\varphi_{n-1}}_{\text{normiert}}>, <\varphi_n|\varphi_{n'}>=\delta_{n,n'}$

$$\lambda_{n} \stackrel{(48)}{=} < \hat{a}\lambda_{n}|\hat{a}\lambda_{n}>$$

$$= c^{*}c\underbrace{<\varphi_{n-1}|\lambda_{n-1}>}_{=1} = |c|^{2}$$

 \Rightarrow

$$c = \sqrt{\lambda_n} = \sqrt{n}$$
 (bis auf Phasenfaktor)

Analog

$$\hat{a}|\varphi_n> = \sqrt{n}|\varphi_{n-1}>$$

$$\hat{a}^+|\varphi_n> = \sqrt{n+1}|\varphi_{n+1}>$$

n = 0:

$$\hat{a}^+|\varphi_0>=\sqrt{1}|\varphi_1>$$

n = 1:

$$\hat{a}^{+}|\varphi_{1}\rangle = \sqrt{2}|\varphi_{2}\rangle$$

$$\Rightarrow |\varphi_{2}\rangle = \frac{\hat{a}^{+}}{\sqrt{2}}|\varphi_{1}\rangle = \frac{(\hat{a}^{+})^{2}}{\sqrt{2}}|\varphi_{0}\rangle$$

n = 2:

$$\hat{a}^{+}|\varphi_{2}\rangle = \sqrt{3}|\varphi_{3}\rangle$$

$$\Rightarrow |\varphi_{3}\rangle = \frac{(\hat{a}^{+})^{3}}{\sqrt{3\cdot 2}}|\varphi_{0}\rangle$$

Allgemein

$$|\varphi_n> = \frac{(\hat{a}^+)^n}{\sqrt{n!}}|\varphi_0>$$

Berechnung von $\varphi_0(x)$ Abbruchbedingung:

$$\hat{a}|\varphi_0>=0$$

Ortsdarstellung $\hat{p} = \frac{\hbar}{i} \frac{d}{dx}, \ \hat{x} = x$

$$\left(\frac{m\omega}{2\hbar}\right)^{\frac{1}{2}}\left(x+\frac{\hbar}{m\omega}\frac{d}{dx}\right)\varphi_{0}\left(x\right)=0$$

 \Rightarrow Differentialgleichung für $\varphi_0(x)$

$$\frac{\hbar}{m\omega}\frac{d}{dx}\varphi_{0}\left(x\right) = -x\varphi_{0}\left(x\right)$$

Ansatz

$$\varphi_{0}(x) = e^{-\beta \cdot x^{2}}$$

$$\frac{d}{dx}\varphi_{0}(x) = -2\beta x e^{-\beta x^{2}} \Rightarrow \beta = \frac{m\omega}{2\hbar}$$

$$\frac{\hbar}{m\omega}(-2\beta x)e^{-\beta x^{2}} = -xe^{-\beta x^{2}}$$

 \Rightarrow

$$\varphi_0\left(x\right) = e^{-\frac{m\omega}{2\hbar}x^2}$$

(bis auf Faktor)

Normierung

$$\varphi_{0}\left(x\right)=\left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2\hbar}x^{2}}$$

Alle anderen Zustände

$$\varphi_n\left(x\right) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{n!}} \left(\frac{m\omega}{2\hbar}\right)^{\frac{n}{2}} \left(x - \frac{\hbar}{m\omega} \frac{d}{dx}\right)^n e^{-\frac{m\omega}{2\hbar}x^2}$$

$$\alpha = \sqrt{\frac{m\omega}{\hbar}}$$

$$\varphi_n(x) = \underbrace{\left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \cdot \frac{1}{\sqrt{n! \cdot 2^n}}}_{=A_n} \left(\alpha x - \frac{1}{2} \frac{d}{dx}\right)^n e^{-\frac{\alpha^2}{2}x^2}$$

$$y = \alpha x$$

$$\varphi_n\left(\frac{y}{\alpha}\right) = A_n \left(y - \frac{d}{dy}\right)^n e^{-\frac{y^2}{2}}$$

Was liefert $\left(y - \frac{d}{dy}\right)^n e^{-\frac{y^2}{2}}$?

Dazu

$$\left(y - \frac{d}{dy} \right) e^{\frac{y^2}{2}} f(y) = \underbrace{y e^{\frac{y^2}{2}} f(y) - \frac{2y}{2} e^{\frac{y^2}{2}} f(y)}_{=0} - e^{\frac{y^2}{2}} \frac{d}{dy} f(y)$$

$$\Rightarrow \left(y - \frac{d}{dy} \right)^n e^{\frac{y^2}{2}} f(y) = (-1)^n e^{\frac{y^2}{2}} \frac{d^n}{dy^n} f(y)$$

Speziell $f(y) = e^{-y^2}$

$$\left(y - \frac{d}{dy} \right)^n e^{-\frac{y^2}{2}} = (-1)^n e^{\frac{y^2}{2}} \frac{d^n}{dy^n} e^{-y^2}$$

$$= e^{-\frac{y^n}{2}} \underbrace{(-1)^n e^{y^2} \frac{d^n}{dy^n} e^{-y^2}}_{H_n(y) \, n\text{-tes Hermite-Polynom}}$$

 $(H_n(y))$ wie in (24) auf Seite 45 in Rodriques-Darstellung)

 \Rightarrow

$$\varphi_n\left(x\right) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{n!2^n}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}$$

7 Bewegung in einem Zentralfeld

Potential $V\left(\vec{r}\right) = V\left(\left|\vec{r}\right|\right) = V\left(r\right)$

Feld $\vec{F}\left(\vec{r}\right) = -\text{grad}V\left(\vec{r}\right) = f\left(r\right)\vec{r}$

Speziell Coulomb-Potential $V\left(r\right)=-\frac{e^{2}}{4\pi\varepsilon_{0}}\frac{1}{r}$

7.1 Drehimpulsoperator

7.1.1 Vorbemerkung: Drehimpuls in klassischer Physik

Klassische Physik: Energiesatz bei kugelsymmetrischem Potential

$$E = \frac{1}{2}mv^{2} + V(r)$$

$$\vec{v} = \frac{d}{dt}\vec{r}$$

$$\dot{r} = \frac{d}{dt}|\vec{r}| \quad \text{(,,Radialgeschwindigkeit")}$$

liefert

$$E = \underbrace{\frac{1}{2}m\dot{r}^{2}}_{=\frac{p_{r}^{2}}{2m}} + \underbrace{\frac{L^{2}}{2mr^{2}} + V(r)}_{\text{effektives Potential}}$$

$$= \underbrace{\frac{p_{r}^{2}}{2m}}_{\text{Hamilton-Funktion}} + V(r)$$

$$= \underbrace{\frac{L^{2}}{2mr^{2}}}_{\text{Hamilton-Funktion}} + V(r)$$

 $p_r = m\dot{r}$: "Radialimpuls"

7.1.2 Drehimpuls in Quantenmechanik

Definition

$$\hat{\vec{L}} := \hat{\vec{r}} \times \hat{\vec{p}} = \frac{\hbar}{i} \vec{r} \times \vec{\nabla}$$
Ortsdarstellung

 $\vec{L} = \begin{pmatrix} \hat{L}_x \\ \hat{L}_y \\ \hat{L}_z \end{pmatrix}$, es gilt: $\vec{L} = \vec{L}^+$ d.h. Drehimpuls ist ein hermitscher Operator

$$\hat{\vec{L}} = \begin{pmatrix} \hat{y}\hat{p}_z - \hat{z}\hat{p}_y \\ \hat{z}\hat{p}_x - \hat{x}\hat{p}_z \\ \hat{x}\hat{p}_y - \hat{y}\hat{p}_x \end{pmatrix} = \frac{\hbar}{i} \begin{pmatrix} y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y} \\ z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z} \\ x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} \end{pmatrix}$$

Vertauschungsrelationen:

$$\begin{split} \left[\hat{L}_x,\hat{L}_y\right] &= \left[\hat{L}_x,\hat{z}\hat{p}_x - \hat{x}\hat{p}_z\right] \\ &= \left[\hat{L}_x,\hat{z}\hat{p}_x\right] - \left[\hat{L}_x,\hat{x}\hat{p}_z\right] \\ \left[\hat{A},\hat{B}\hat{C}\right] &= \left[\hat{A},\hat{B}\right]\hat{C} + \hat{B}\left[\hat{A},\hat{C}\right] \\ \left[\hat{L}_x,\hat{z}\right] &= \left[\hat{y}\hat{p}_z - \hat{z}\hat{p}_y,\hat{z}\right] \\ &= \hat{y}\left[\hat{p}_z,\hat{z}\right] \\ &= -i\hbar\hat{y} \\ \left[\hat{L}_x,\hat{p}_x\right] &= \left[\hat{y}\hat{p}_z - \hat{z}\hat{p}_y,\hat{p}_x\right] \\ &= 0 \\ \Rightarrow \left[\hat{L}_x,\hat{z}\hat{p}_x\right] &= -\hbar\hat{y}\hat{p}_x \\ \left[\hat{L}_x,\hat{x}\right] &= 0 \\ \left[\hat{L}_x,\hat{x}\right] &= 0 \\ \left[\hat{L}_x,\hat{x}\right] &= -i\hbar\hat{p}_y \\ \Rightarrow \left[\hat{L}_x,\hat{x}\hat{p}_z\right] &= -i\hbar\hat{x}\hat{p}_y \\ \Rightarrow \left[\hat{L}_x,\hat{L}_y\right] &= -\hbar\left(\hat{x}\hat{p}_y - \hat{y}\hat{p}_x\right) \end{split}$$

$$\left[\hat{L}_x, \hat{L}_y\right] = i\hbar \hat{L}_z$$

Analog

$$\begin{bmatrix} \hat{L}_y, \hat{L}_z \end{bmatrix} = i\hbar \hat{L}_x$$

$$\begin{bmatrix} \hat{L}_z, \hat{L}_x \end{bmatrix} = i\hbar \hat{L}_y$$

$$\left[\hat{L}_{x},\hat{L}_{x}\right]=0=\left[\hat{L}_{y},\hat{L}_{y}\right]=\left[\hat{L}_{z},\hat{L}_{z}\right]$$

Die verschiedenen Komponeneten von $\hat{\vec{L}}$ vertauschen <u>nicht</u> miteinander

 $\rightarrow \hat{L}_x$, \hat{L}_y , \hat{L}_z besitzen keine gemeinsamen Eigenfunktionen

 $\rightarrow \hat{L}_x,\,\hat{L}_y,\,\hat{L}_z$ sind nicht gleichzeitig genau messbar

Operator $\hat{\vec{L}}^2$ (in klassischer Hamiltonfunktion tritt \vec{L}^2 auf)

$$\hat{\vec{L}}^2 := \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

 $\mathbf{Vertauschung}\Big[\hat{\vec{L}}^2,\hat{L}_x\Big]=?\quad \mathrm{Dazu:}$

$$\begin{split} \left[\hat{L}_{x}^{2}, \hat{L}_{x} \right] &= 0 \\ \left[\hat{L}_{y}^{2}. \hat{L}_{x} \right] &= \left[\hat{L}_{y} \hat{L}_{y}, \hat{L}_{x} \right] \\ &= \left[\hat{L}_{y} \left[\hat{L}_{y}, \hat{L}_{x} \right] + \left[\hat{L}_{y} \hat{L}_{x} \right] \hat{L}_{y} \right] \\ &= -\hbar \hat{L}_{y} \hat{L}_{z} - i\hbar \hat{L}_{z} \hat{L}_{y} \\ \left[\hat{L}_{z}^{2}, \hat{L}_{x} \right] &= \left[\hat{L}_{z} \hat{L}_{z}, \hat{L}_{x} \right] \\ &= i\hbar \hat{L}_{z} \hat{L}_{y} + i\hbar \hat{L}_{y} \hat{L}_{z} \end{split}$$

 \Rightarrow

$$\left[\hat{L}_{x}^{2},\hat{L}_{x}\right]+\left[\hat{L}_{y}^{2},\hat{L}_{x}\right]+\left[\hat{L}_{z}^{2},\hat{L}_{x}\right]=0$$

 $\Rightarrow \hat{L}^2$ vertauscht mit \hat{L}_x

Analog:
$$\left[\hat{L}^2, \hat{L}_y\right] = 0, \, \left[\hat{L}^2, \hat{L}_z\right] = 0$$

 \Rightarrow

 \hat{L}^2 und \hat{L}_z (bzw. \hat{L}_x oder \hat{L}_y) haben ein System von gemeinsamen Eigenfunktionen

Es wird sich zeigen, dass \hat{L}^2 und \hat{L}_z mit \hat{H} vertauschen $\rightarrow \hat{H}, \hat{L}^2, \hat{L}_z$ haben gemeinsame Eigenfunktionen

7.1.3 Hamiltonoperator für kugelsymmetrisches Potential

Kugelkoordinaten (Abb Q47)

$$\vec{r} = \begin{pmatrix} r \sin \theta \cos \varphi \\ r \sin \theta \sin \varphi \\ r \cos \theta \end{pmatrix}$$

 $\textbf{Einheits vektoren} \quad g_j \hat{=} r, \theta, \varphi$

$$\vec{e}_{g_j} = rac{rac{\partial \vec{r}}{\partial g_j}}{\left|rac{\partial \vec{r}}{\partial g_j}
ight|}$$

$$\vec{e}_r = \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

$$\vec{e}_\theta = \begin{pmatrix} \cos \theta \cos \varphi \\ \cos \theta \sin \varphi \\ -\sin \theta \end{pmatrix}$$

$$\vec{e}_\varphi = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

 $\vec{e}_r,\,\vec{e}_\theta,\,\vec{e}_\varphi$ bilden Rechtssystem

Gradient

$$\vec{\nabla} = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_\varphi \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}$$

$$\begin{split} \hat{L} &= \left(\hat{r} \times \vec{\nabla} \right) \\ &= \frac{\hbar}{i} r \left(\vec{e_r} \times \vec{\nabla} \right) \\ &= \frac{\hbar}{i} r \left(0 + \vec{e_\varphi} \frac{1}{r} \frac{\partial}{\partial \theta} - \vec{e_\vartheta} \frac{\frac{\partial}{\partial \varphi}}{r \sin \theta} \right) \end{split}$$

$$\hat{\vec{L}} = \frac{\hbar}{i} \left(\vec{e}_{\varphi} \frac{\partial}{\partial \theta} - \frac{\vec{e}_{\theta}}{\sin \theta} \frac{\partial}{\partial \varphi} \right)$$

$$\hat{\vec{L}} = \frac{\hbar}{i} \left(\begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix} \frac{\partial}{\partial \theta} - \begin{pmatrix} \cot\theta\cos\varphi \\ \cot\theta\sin\varphi \\ -1 \end{pmatrix} \frac{\partial}{\partial \varphi} \right)$$

 \Rightarrow

$$\hat{L}_z = \frac{\hbar}{i} \frac{\partial}{\partial \varphi}$$

z-Komponente des Drehimpulsoperatpors in Kugelkoordinaten

Drehimpuls

$$\begin{split} \hat{\vec{L}} &= \hat{\vec{r}} \times \hat{\vec{p}} \\ &= \frac{\hbar}{i} \left(\vec{e_{\varphi}} \frac{\partial}{\partial \theta} - \vec{e_{\theta}} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \right) \\ \Rightarrow & \hat{\vec{L}}^2 &= \left(\frac{\hbar}{i} \right)^2 \left(\vec{e_{\varphi}} \frac{\partial}{\partial \theta} - \vec{e_{\theta}} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \right) \left(\vec{e_{\varphi}} \frac{\partial}{\partial \theta} - \vec{e_{\theta}} \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \right) \\ \text{(siehe Übung)} &= -\frac{\hbar^2}{\sin^2 \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial \varphi^2} \right) \end{split}$$

 \Rightarrow

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{\hat{\vec{L}}^2}{2mr^2} + V(r)$$

- $\hat{\vec{L}}$ hängt nur von θ und φ ab (nicht von r)
- $\hat{p}_r^2 = -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) = \hat{p}_r \hat{p}_r$ radialer Impuls \hat{p}_r

$$\hat{p}_r = \frac{\hbar}{i} \left(\frac{\partial}{\partial r} + \frac{1}{r} \right)$$

Denn:

$$\hat{p}_r \hat{p}_r f(\vec{r}) = -\hbar^2 \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) \left(\frac{\partial f}{\partial r} + \frac{1}{r} f \right)$$

$$= -\hbar^2 \left(\frac{\partial^2}{\partial r^2} f - \frac{1}{r^2} f + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r} f \right)$$

$$= -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) f$$

$$\hat{H}=\frac{\hat{p}_{r}^{2}}{2m}+\frac{\hat{L}^{2}}{2mr^{2}}+V\left(r\right)$$

 \hat{H} vertauscht mit \hat{L}^2 und \hat{L}_z

$$\left[\hat{H}, \hat{L}^{2}\right] = \underbrace{\left[\hat{p}_{r}^{2}, \hat{L}\right]}_{0} \frac{1}{2m} + \underbrace{\left[\hat{L}^{2}, \hat{L}^{2}\right]}_{0} \frac{1}{2mr^{2}} + \underbrace{\left[\hat{L}^{2}, V\left(r\right)\right]}_{0} = 0$$

Da \hat{p}_r nur von r abhängt, \hat{L}^2 nur von θ und φ abhängt und V(r) nur von r abhängt.

$$\left[\hat{H}, \hat{L}_z\right] = 0$$

, da $\hat{L}_z = \frac{\hbar}{i} \frac{\partial}{\partial \varphi}$

 \Rightarrow

 $\hat{H},\,\hat{L}^2$ und \hat{L}_z besitzen daher gemeinsame Eigenfunktionen

7.1.4 Eigenwerte des Drehimpulsoperators

$$\hat{L}^{2}Y(\theta,\varphi) = \hbar^{2}\lambda Y(\theta,\varphi)$$

 \hat{L} hat Dimension m kg $\frac{m}{s}$, \hbar hat ebenfalls diese Dimension \Rightarrow stelle Eigenwert als Vielfaches von \hbar^2 dar

$$\hat{L}_z Y\left(\theta, \varphi\right) = \hbar m Y\left(\theta, \varphi\right)$$

 $\lambda,\,m:$ "Quantenzahlen": $Y_{\lambda m}\left(\theta,\varphi\right)$

Dirac-Notation

$$\begin{array}{lcl} \hat{L}^2|Y_{\lambda m}>&=&\hbar^2\lambda|Y_{\lambda m}>\\ \hat{L}_z|Y_{\lambda m}>&=&\hbar m|Y_{\lambda m}> \end{array}$$

$$\langle Y_{\lambda m} | \hat{L}^{2} | Y_{\lambda m} \rangle \stackrel{(50)}{=} \langle Y_{\lambda m} | \hbar^{2} \lambda | Y_{\lambda m} \rangle$$

$$= \hbar^{2} \lambda \underbrace{\langle Y_{\lambda m} | Y_{\lambda m} \rangle}_{=1}$$

$$= \hbar^{2} \lambda$$

$$\begin{split} &= <\underbrace{\hat{L}^{+}}_{\hat{L}}Y_{\lambda m}|\hat{L}Y_{\lambda m}> \\ &= <\hat{L}Y_{\lambda m}|\hat{L}Y_{\lambda m}> \geq 0 \\ \Rightarrow \quad \lambda &\geq 0 \end{split}$$

Definition

$$\hat{L}_{+} := \hat{L}_{x} + i\hat{L}_{y}$$

$$\hat{L}_{-} := \hat{L}_{x} - i\hat{L}_{y}$$

$$\left(\hat{L}_{+}\right)^{+} = \hat{L}_{x} - i\hat{L}_{y} = \hat{L}_{-}$$

$$\left(\hat{L}_{-}\right)^{+} = \hat{L}_{+}$$

Wichtige Eigenschaften

1.

$$\begin{bmatrix}
\hat{L}_{z}, \hat{L}_{+} \end{bmatrix} = \begin{bmatrix}
\hat{L}_{z}, \hat{L}_{x} + i\hat{L}_{y} \end{bmatrix}
= \underbrace{\begin{bmatrix}
\hat{L}_{z}, \hat{L}_{x} \end{bmatrix}}_{i\hbar\hat{L}_{y}} + i\underbrace{\begin{bmatrix}
\hat{L}_{z}, \hat{L}_{y} \end{bmatrix}}_{-i\hbar\hat{L}_{x}}
= \hbar\hat{L}_{x} + i\hbar\hat{L}_{y}
= \hbar\left(\hat{L}_{x} + i\hat{L}_{y}\right)
\begin{bmatrix}
\hat{L}_{z}, \hat{L}_{+} \end{bmatrix} = \hbar\hat{L}_{+}$$
(52)

2.

$$\left[\hat{L}_z, \hat{L}_-\right] = -i\hbar \hat{L}_- \tag{53}$$

3.

$$\left[\hat{L}_{+},\hat{L}_{-}\right] = 2\hbar\hat{L}_{z} \tag{54}$$

4.

$$\hat{L}_{+}\hat{L}_{-} = \left(\hat{L}_{x} + i\hat{L}_{y}\right)\left(\hat{L}_{y} - i\hat{L}_{y}\right)
= \hat{L}_{x}^{2} + i\underbrace{\left(\hat{L}_{y}\hat{L}_{x} - \hat{L}_{x}\hat{L}_{y}\right)}_{\left[\hat{L}_{y},\hat{L}_{x}\right] = -i\hbar\hat{L}_{z}} + \hat{L}_{y}^{2}
= \hat{L}^{2} - \hat{L}_{z}^{2} + \hbar\hat{L}_{z}$$
(55)

5.

$$\hat{L}_{-}\hat{L}_{+} = \hat{L}^{2} - \hat{L}_{z}^{2} + \hbar \hat{L}_{z} \tag{56}$$

Aus diesen Relationen folgt

1. $\hat{L}_{+}|Y_{\lambda m}>$ ist Eigenfunktion von \hat{L}_{z} zum Eigenwert $\hbar\left(m+1\right)$

$$\hat{L}_{z}\underline{\hat{L}_{+}|Y_{\lambda m}>} = \left(\hat{L}_{+}\hat{L}_{z} + \hbar\hat{L}_{+}\right)|Y_{\lambda m}>$$

$$\stackrel{(51)}{=} \left(\hat{L}_{+}\hbar m + \hbar\hat{L}_{+}\right)|Y_{\lambda m}>$$

$$= \underbrace{\hbar\left(m+1\right)}_{\text{Eigenwert}}\underline{\hat{L}_{+}|Y_{\lambda m}>}$$

2. $\hat{L}_{-}|Y_{\lambda m}>$ ist Eigenfunktion von \hat{L}_{z} zum Eigenwert $\hbar\left(m-1\right)$ \Rightarrow

$$\hat{L}_z \hat{L}_- | Y_{\lambda m} \rangle = \hbar \left(m - 1 \right) \hat{L}_- | Y_{\lambda m} \rangle$$

(Abb Q48)

 \hat{L}_{+}, \hat{L}_{-} : Leiteroperatoren

3. Aus der Norm von $\hat{L}_{+}|Y_{\lambda m}>$ folgt

$$\langle \hat{L}_{+}Y_{\lambda m}|\hat{L}_{+}Y_{\lambda m}\rangle \geq 0
= \langle Y_{\lambda m}|(\hat{L}_{+})^{+}\hat{L}_{+}|Y_{\lambda m}\rangle
= \langle Y_{\lambda m}|\hat{L}_{-}\hat{L}_{+}|Y_{\lambda m}\rangle
\stackrel{(56)}{=} \langle Y_{\lambda m}|\hat{L}^{2}-\hat{L}_{z}-\hbar\hat{L}_{z}|Y_{\lambda m}\rangle
\stackrel{(50),(51)}{=} \langle Y_{\lambda m}|\hbar^{2}\lambda-(\hbar m)^{2}-\hbar\hbar m|Y_{\lambda m}\rangle
= \hbar^{2}(\lambda-m(m+1))
\geq 0$$
(57)

 \Rightarrow

$$\lambda \geq m (m+1)$$

4. Analog folgt aus der Norm von $\hat{L}_{-}|Y_{\lambda m}>$:

$$\lambda \geq m (m-1)$$

5. Aus 3. und 4. folgt

 $\lambda \geq m \, (m+1) \geq m \, (m-1)$ für m positiv

 $\lambda \ge m(m-1) \ge m(m+1)$ für m negativ

 \Rightarrow

$$\lambda \ge |m|(|m|+1)$$

 \Rightarrow Die möglichen Werte von |m| sind durch λ nach oben beschränkt

 \Rightarrow Es gibt einen maximalen Wert von $m \colon m_{max} := l$

 \Rightarrow

$$\hat{L}_{+}|Y_{\lambda l}>=0$$

da Zustand mit l+1 nicht existiert

Nach (57) mit m = l

$$h^{2}(\lambda - l(l+1)) \geq 0$$

$$= \langle \hat{L}_{+}Y_{\lambda l}|\hat{L}_{+}Y_{\lambda l} \rangle$$

$$= 0$$

(Abbruchbedingung)

$$\Rightarrow \lambda - l(l+1) = 0$$

 \Rightarrow

$$\lambda = l\left(l+1\right)$$

Es gibt einen minimalen Wert von $m: m_{min}$

$$\hat{L}_{-}|Y_{\lambda m_{min}}\rangle = 0$$

 $\lambda = m_{min} \left(m_{min} - 1 \right)$

 $m_{min} = -l$

 $\Rightarrow m$ "läuft" von -l bis +l:

$$\underbrace{-l,-l+1,...,l-1,l}_{\text{"Länge": }2l}$$

Da Schritte von m die "Länge" Eins haben: 2list ganze Zahl

 $\Rightarrow l$ ist halbzahlig oder ganzzahlig

$$\begin{array}{rcl} l & = & 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots \\ & \lambda & = & l \, (l+1) \\ \hat{L}^2 | Y_{\lambda m} > & = & \hbar^2 l \, (l+1) \, | Y_{\lambda m} > \end{array}$$

Konvention Man beschreibt die Zusände mit Hilfe der "Quantenzahl" l

$$\hat{L}^{2}|Y_{lm}>=\hbar^{2}l\left(l+1\right) |Y_{lm}>$$

(nicht $|Y_{l(l+1)m}>$)

$$l = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$$

$$\hat{L}_z|Y_{lm}>=\hbar m|Y_{lm}>$$
 mit $-l\leq m\leq l$

Bemerkung Leiteroperatoren

$$\hat{L}_{+}|Y_{lm}>=\underbrace{c_{lm}}_{\text{Normierungsfaktor}}|Y_{l\,m+1}>$$

$$<\hat{L}_{+}Y_{lm}|\hat{L}_{+}Y_{lm}> = |c_{lm}|^{2}$$

$$\stackrel{(57)}{=} \hbar^{2} (\lambda - m (m+1))$$

$$= \hbar^{2} (l (l+1) - m (m+1))$$

$$\begin{array}{lcl} \hat{L}_{+}|Y_{lm}> & = & \hbar\sqrt{l\left(l+1\right)-m\left(m+1\right)}|Y_{l\,m+1}> \\ & = & \hbar\sqrt{\left(l-m\right)\left(l+m+1\right)}|Y_{l\,m+1}> \end{array}$$

$$\begin{array}{lcl} \hat{L}_{-}|Y_{lm}> & = & \hbar\sqrt{l\left(l+1\right)-m\left(m-1\right)}|Y_{l\,m-1}> \\ & = & \hbar\sqrt{\left(l+m\right)\left(l-m+1\right)}|Y_{l\,m-1}> \end{array}$$

$$\begin{split} \hat{H} &= \frac{\hat{p}_r^2}{2m} + \frac{\hat{L}^2}{2mr^2} + V\left(r\right) \\ \hat{L}^2 Y_{lm}\left(\theta,\varphi\right) &= \hbar^2 l\left(l+1\right) Y_{lm}\left(\theta,\varphi\right) \\ \hat{L}_z Y_{lm}\left(\theta,\varphi\right) &= \hbar m Y_{lm}\left(\theta,\varphi\right) \\ l &= 0, \frac{1}{2}, 1, \frac{3}{2}, \dots \\ -l &\leq m \leq l \end{split}$$

Im Fall des Bahndrehimpulses sind die Werte von l auf ganze positive Zahlen beschränkt

Denn

$$\begin{array}{rcl} L_z & = & \hat{x}\hat{p}_y - \hat{y}\hat{p}_x \\ [\hat{x},\hat{p}_x] & = & i\hbar\left[\hat{y},\hat{p}_y\right] = i\hbar \end{array}$$

Dazu

$$\hat{a}_{1} = \frac{1}{2} \frac{1}{\sqrt{\pi}} (\hat{x} + i\hat{p}_{x} - i\hat{y} + \hat{p}_{y})$$

$$\hat{a}_{1}^{+} = \frac{1}{2} \frac{1}{\sqrt{\pi}} (\hat{x} - i\hat{p}_{x} + i\hat{y} + \hat{p}_{y})$$

$$\hat{a}_{2} = \frac{1}{2} \frac{1}{\sqrt{\pi}} (\hat{x} + i\hat{p}_{x} + i\hat{y} - \hat{p}_{y})$$

$$\hat{a}_{2}^{2} = \frac{1}{2} \frac{1}{\sqrt{\pi}} (\hat{x} - i\hat{p}_{x} - i\hat{y} - \hat{p}_{y})$$

1)

$$\begin{bmatrix}
\hat{a}_1, \hat{a}_1^+ \\
\hat{a}_2, \hat{a}_2^+ \\
\end{bmatrix} = 1
\begin{bmatrix}
\hat{a}_2, \hat{a}_2^+ \\
\end{bmatrix} = 0 = \begin{bmatrix}
\hat{a}_2, \hat{a}_1^+ \\
\end{bmatrix}$$

2)

$$\hat{a}_{1}^{+}\hat{a}_{1} - \hat{a}_{2}^{+} = \frac{1}{\hbar} \left(\hat{x}\hat{p}_{y} - \hat{y}\hat{p}_{x}\right)$$

 \Rightarrow

$$\hat{L}_z = \hbar \left(\hat{a}_1^+ \hat{a}_1 - \hat{a}_2^+ \hat{a}_2 \right)$$

 $\hat{N}_1 = \hat{a}_1^+ \hat{a}_1$ hat ganzzahlige Eigenwerte (analog zu den Operatoren $\hat{a}^+ \hat{a}$ beim harmonischen Oszillator) $\hat{N}_2 = \hat{a}_2^+ \hat{a}_2$ hat ganzzahlige Eigenwerte

 \Rightarrow

$$\hat{L}_{z}Y_{lm}\left(\theta,\varphi\right) = \hbar mY_{lm}\left(\theta,\varphi\right) \hbar \underbrace{\left(\hat{a}_{1}^{+}\hat{a}_{1} - \hat{a}_{2}^{+}\hat{a}_{2}\right)}_{\text{ganzzahlige EW}}Y_{lm}\left(\theta,\varphi\right)$$

 $\Rightarrow m$ ist ganzzahlig

 $\Rightarrow l$ ist ganzzahlig

 $\Rightarrow l=0,1,2,3,...,\,-l \leq m \leq l$ beim Bahndrehimpuls

7.1.5 Eigenfunktion des Bahndrehimpulses

Eigenfunktion für L_z :

$$\hat{L}_{z}Y_{lm}\left(\theta,\varphi\right) = \frac{\hbar}{i}\frac{\partial}{\partial\varphi}Y_{lm}\left(\theta,\varphi\right) = \hbar mY_{lm}$$

 \Rightarrow

$$Y_{lm}(\theta,\varphi) = e^{im\varphi} \underbrace{f_{l,m}(\theta)}$$

 $\varphi \to \varphi + 2\pi$

$$Y_{lm}(\theta, \varphi + 2\pi) = e^{im\varphi} \underbrace{e^{im2\pi}}_{=1} f_{l.m}(\theta)$$

= $Y_{lm}(\theta, \varphi)$

Eigenwertgleichung für \hat{L}^2

$$\begin{split} \hat{L}^2 &= -\hbar \frac{1}{\sin^2 \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial \varphi^2} \right) \\ \hat{L}^2 Y_{lm} \left(\theta, \varphi \right) &= \hbar^2 l \left(l + 1 \right) Y_{lm} \left(\theta, \varphi \right) \\ Y_{lm} \left(\theta, \varphi \right) &= e^{im\varphi} f_{l,m} \left(\theta \right) \end{split}$$

$$-\hbar \frac{1}{\sin^2 \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - m^2 \right) f_{l,m} (\theta) = \hbar l (l+1) f_{l,m} (\theta)$$

$$f_{l,m}\left(\theta\right) = f_{l,-m}\left(\theta\right)$$

Substitution

$$w = \cos \theta$$

$$\Rightarrow \sin \theta \frac{d}{d\theta} = (w^2 - 1) \frac{d}{dw}$$

$$f_{l,m}(\theta) \rightarrow \tilde{f}_{l,m}(w)$$

$$-\frac{1}{1-w^2}\left(\left(w^2-1\right)\frac{d}{dw}\left(\left(w^2-1\right)\frac{d}{dw}\right)-m^2\right)\tilde{f}_{l,m}\left(w\right) \ = \ l\left(l+1\right)\tilde{f}_{l,m}\left(w\right)$$

$$\left(\frac{d}{dw}\left(w^2 - 1\right)\frac{d}{dw} - \frac{m^2}{1 - w^2}\right)\tilde{f}_{l,m}\left(w\right) = -l\left(l + 1\right)\tilde{f}_{l,m}\left(w\right)$$

Differentialgleichung liefert als Lösungen: $\tilde{f}_{l,m}\left(w\right)=N_{l,m}P_{l}^{m}\left(w\right)$ zugeordnete Legendre-Funktion

Fall n = 0 $P_l^0(w) = P_l(w)$ Legendre-Polynome

Idee Löse die Differentiagleichung

$$\left(\frac{d}{dw}\left(w^{2}-1\right)\frac{d}{dw}+l\left(l+1\right)\right)P_{l}\left(w\right)=0$$

z.B. durch Potentzreihenansatz.

Bestimme die Polynome derart, dass $P_l(1) = 1$

 \Rightarrow

$$P_0(w) = 1$$

 $P_1(w) = w$
 $p_2(w) = \frac{1}{2}(3w^2 - 1)$
:

 $\hat{=}$ Legendre-Polynome

Hinweise

1.
$$\int P_l(w) P_{l'}(w) dw = \frac{\delta_{l,l'}}{l+\frac{1}{2}}$$

2.
$$P_l(w) = \frac{(-1)^l}{2^l l!} \frac{d^l}{dw^l} \left(1 - w^2\right)^l$$
 Rodrigues Formel

Damit

$$Y_{l,0}(\theta,\varphi) = N_{l,0}P_l(\cos\theta)$$

 $N_{l,0} = \sqrt{\frac{2l+1}{4\pi}}$

Berechnung der $Y_{l,m}$ für m > 0 Anwendung von \hat{L}_+ :

$$\hat{L}_{+}Y_{l,m}\left(\theta,\varphi\right) = \hbar\sqrt{l\left(l+1\right) - m\left(m+1\right)}Y_{l,m+1}\left(\theta,\varphi\right)$$

$$\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}$$

$$\vec{L} = \frac{\hbar}{i} \left(\underbrace{\begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix}}_{\vec{e}_{\varphi}} \frac{\partial}{\partial \theta} - \begin{pmatrix} \cot\theta\cos\varphi \\ \cot\theta\sin\varphi \\ -1 \end{pmatrix} \frac{\partial}{\partial \varphi} \right)$$

 $\mathrm{mit}\,\cos\varphi+i\sin\varphi=e^{i\varphi}$

 \Rightarrow

$$\hat{L}_{+} = \hbar e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right)$$

$$\hat{L}_{+}Y_{l,0}\left(\theta,\varphi\right) \to \hbar\sqrt{l\left(l+1\right)}Y_{l,1}\left(\theta,\varphi\right)$$

liefert

$$Y_{l,m}(\theta,\varphi) = N_{l,m}e^{im\varphi}P_l^m(\cos\theta)$$
mit $P_l^m(\cos\theta) = (\sin\theta)^m \frac{d^m}{d(\cos\theta)^m}P_l(\cos\theta)$

$$N_{l,m} = \sqrt{\frac{2l+1}{4\pi}} \cdot \sqrt{\frac{(l-m)!}{(l+m)!}}$$

(Folie "Explizite Form der Kugelflächenfunktion")

Grafische Darstellung: Polardiagramme

$$\left|Y_{l,m}\left(\theta,\varphi\right)\right|^{2} = \left|N_{l,m}P_{l}^{m}\left(\cos\theta\right)\right|^{2} = a_{l,m}\left(\theta\right)$$

Zeichne Vektor $\vec{a}_{l,m}(\theta) = \vec{e}_r a_{l,m}(\theta)$

Wähle z.B. x-z-Ebene

$$Y_{00}$$
: $|Y_{00}|^2 = \frac{1}{4\pi}$ (Abb Q49)

$$Y_{10}: |Y_{10}(\theta,\varphi)|^2 = \frac{3}{4\pi}\cos^2(\theta)$$
$$\vec{a}_{10} = \frac{3}{4\pi}\cos^2\theta \begin{pmatrix} \sin\theta\\ \cos\theta \end{pmatrix}$$

(Abb Q50)

(Folie "Darstellung von $|Y_{lm}|^2$ im Polardiagramm")

7.2 Radiale Schrödingergleichung

$$\hat{H}\chi(\vec{r}) = E\chi(\vec{r})$$

stationäre Schrödingergleichung

$$\hat{H} = \frac{\hat{p}_r^2}{2m} + V(r) + \frac{\hat{L}^2}{2mr^2}$$

$$\hat{p}_r = -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right)$$

Idee Separationsansatz: $\chi(\vec{r}) = R(r) Y_{l,m}(\theta, \varphi)$

$$\hat{H}\chi\left(\vec{r}\right) = \left(\left(\frac{\hat{p}_{r}^{2}}{2m} + V\left(r\right)\right)R\left(r\right) + \frac{R\left(r\right)}{2mr^{2}}\hbar^{2}l\left(l+1\right)\right)Y_{lm}\left(\theta,\varphi\right) = E \cdot R\left(r\right) \cdot Y_{lm}\left(\theta,\varphi\right)$$

 \Rightarrow

$$\left(\frac{\hat{p}_{r}^{2}}{2m}+V\left(r\right)+\frac{\hbar^{2}l\left(l+1\right)}{2mr^{2}}\right)R\left(r\right)=ER\left(r\right)$$

Radiale Schrödingergleichung

Da

$$\begin{split} \frac{\partial^2}{\partial r^2} r R\left(r\right) &= \frac{\partial}{\partial r} \left(R\left(r\right) + r \frac{\partial}{\partial r} R\left(r\right) \right) \\ &= 2 \frac{\partial}{\partial r} R\left(r\right) + r \frac{\partial^2}{\partial r^2} R\left(r\right) \\ &= r \left(\frac{2}{r} \frac{\partial}{\partial r} R\left(r\right) + \frac{\partial^2}{\partial r^2} R\left(r\right) \right) \end{split}$$

 \Rightarrow

$$\left(-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dr^{2}}+V\left(r\right)+\frac{\hbar^{2}l\left(l+1\right)}{2mr^{2}}\right)+R\left(r\right)=E\cdot r\cdot R\left(r\right)$$

 $u\left(r\right):=rR\left(r\right)$

$$\left(-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dr^{2}}+V\left(r\right)+\frac{\hbar^{2}l\left(l+1\right)}{2mr^{2}}\right)u\left(r\right)=Eu\left(r\right)$$

Bemerkungen

- 1. In dieser Form hat die radiale Schrödingergleichung für die "kinetische Energie" die gleiche Form wie im eindimensionalen Fall
- 2. Randbedingungen (für gebundene Zustände)
 - $R(r) \to 0$ für $r \to \infty$, damit Wellenfunktion normierbar $\Rightarrow u(r) = 0$ für $r \to \infty$
 - R(r) endlich für $r \to 0 \Rightarrow u\left(r\right) \to 0$ für $r \to 0$ (Abb Q51)
- 3. Normierung:

$$\int_{\mathbb{R}^{3}} \left| \chi \left(\overrightarrow{r} \right) \right|^{2} d^{3}r = 1$$

$$\Rightarrow \int_{0}^{\infty} \left| R \left(r \right) \right|^{2} \underbrace{\iint \left| Y \left(\theta, \varphi \right) \right|^{2} \sin \theta d\theta d\varphi}_{=1} r^{2} dr = 1$$

$$\Rightarrow \int_{0}^{\infty} \left| R \left(r \right) \right|^{2} r^{2} dr = 1$$

$$\int_{0}^{\infty} \left| u\left(r\right) \right|^{2} dr = 1$$

7.3 Bewegung im Coulombfeld

(Abb Q52)

$$V\left(r\right) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r}$$

$$\left(-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dr^{2}}-\frac{e^{2}}{4\pi\varepsilon_{0}}\frac{1}{r}+\frac{\hbar^{2}l\left(l+1\right)}{2mr^{2}}\right)u\left(r\right)=E\cdot u\left(r\right)$$

7.3.1 Eigenwerte

1. Schritt Dimmensionslose Einheiten: $r = \varrho a_B$, $a_B = \frac{4\pi\varepsilon_0}{e^2m}\hbar^2$ (Bohr'scher Radius) $\Rightarrow \frac{d}{dr} = \frac{1}{a_0}\frac{d}{d\varrho}$

$$\left(-\frac{1}{a_B^2}\frac{d^2}{dr^2} - \frac{2m}{\hbar^2}\frac{e^2}{4\pi\varepsilon_0}\frac{1}{\varrho}\frac{1}{a_B} + \frac{l(l+1)}{\varrho^2 a_B^2}\right)\underbrace{u(\varrho a_B)}_{:=a(\varrho)} = \frac{2m}{\hbar^2}E \cdot u(\varrho a_B)$$

 \Rightarrow

$$\begin{split} \left(-\frac{d^2}{d\varrho^2} - \frac{2}{\varrho} + \frac{l\left(l+1\right)}{\varrho^2}\right)g\left(\varrho\right) &= &\tilde{E}g\left(\varrho\right) \\ \tilde{E} &= &\frac{2m}{\hbar^2}a_B^2E \end{split}$$

2. Schritt Analyse des Verhaltens für $\varrho \to 0, \ \varrho \to \infty$

 $\varrho \to \infty$:

$$-\frac{d^{2}}{d\varrho^{2}}g\left(\varrho\right)=\tilde{E}\cdot g\left(\varrho\right)$$

(Abb Q53)

Hier $\tilde{E} < 0$

$$\frac{d^{2}}{d\varrho^{2}}g\left(\varrho\right) = -\tilde{E}g\left(\varrho\right)$$

 \Rightarrow

$$g\left(\varrho\right) = e^{-\sqrt{-\tilde{E}}\varrho}$$

 $\varrho \to 0$:

 $\frac{l(l+1)}{\rho^2}$ besonders wichtig!

$$\left(-\frac{d^2}{d\varrho^2} + \frac{l(l+1)}{\varrho^2}\right)g(\varrho) = 0$$

Ansatz $\varrho(\varrho) = \varrho^{\alpha}$

$$-\alpha (\alpha - 1) \varrho^{\alpha - 2} + l (l + 1) \frac{\varrho^{\alpha}}{\varrho^{2}} = 0$$

 \Rightarrow

$$-\alpha (\alpha - 1) + l (l + 1) = 0$$

$$\alpha (\alpha - 1) = l (l + 1)$$

 \Rightarrow

$$\alpha_1 = l+1$$
 $\alpha_2 = -l$

$$\varrho^{-l} = \frac{1}{\rho^l} \to \infty, \text{ für } \varrho \to \infty$$

Physikalisch Sinnvoll:

$$q(\rho) = \rho^{l+1}$$

 \Rightarrow Ansatz "für alle Werte von ϱ "

$$g(\varrho) = e^{-\sqrt{-\tilde{E}}\varrho} \cdot \varrho^{l+1} \cdot \tilde{f}(r)$$
$$\tilde{f}(r) = \sum_{i=0}^{\infty} \tilde{A}_i \varrho^i$$

Alternativ

$$g(\varrho) = e^{-\sqrt{-\tilde{E}}\varrho}f(\varrho)$$

 $f(\varrho) = \sum_{i=l+1}^{\infty} A_i \varrho^i$

3. Schritt Auswertung des Ansatzes

$$g\left(\varrho\right)=e^{-\sqrt{-\tilde{E}}\varrho}f\left(\varrho\right)$$

 $\text{mit } \sqrt{-\tilde{E}} = \lambda \Rightarrow$

$$g''\left(\varrho\right)=\lambda^{2}e^{-\lambda\varrho}f\left(\varrho\right)+e^{-\lambda\varrho}f''\left(\varrho\right)-2\lambda e^{-\lambda\varrho}f'\left(\varrho\right)$$

Einsetzen in Differentialgleichung \Rightarrow

$$\left(-\left(\lambda^{2} f\left(\varrho\right)+f^{\prime \prime}\left(\varrho\right)-2 \lambda f^{\prime}\left(\varrho\right)\right)+\left(\frac{l\left(l+1\right)}{\varrho^{2}}-\frac{2}{\varrho}\right) f\left(\varrho\right)\right) e^{-\lambda \varrho} \quad = \quad \tilde{E} f\left(\varrho\right) e^{-\lambda \varrho}$$

Dann $\div e^{-\lambda \varrho}$ und $+\underbrace{\lambda^2}_{=-\tilde{E}} f(\varrho)$:

$$f''\left(\varrho\right)-2\lambda f'\left(\varrho\right)+\left(\frac{2}{\varrho}-\frac{l\left(l+1\right)}{\varrho^{2}}\right)f\left(\varrho\right)=0$$

$$f\left(\varrho\right) = \sum_{i=l+1}^{\infty} A_i \varrho^i$$

$$\sum_{l=l+1}^{\infty} A_i (i (i-1) - l (l+1)) \varrho^{i-2} + A_i (-2\lambda i + 2) \varrho^{i-1} = 0$$

Umsummation

$$\sum_{j=l+1}^{\infty} A_{j+1} \left(\left(j+1 \right) j - l \left(l+1 \right) \right) \varrho^{j-1} + \sum_{j=l+1}^{\infty} A_{j} \left(-2 \lambda_{j} + 2 \right) \varrho^{j-1} = 0$$

Erste Summe beginnt bei j = l + 1, da der Term mit j = l keinen Beitrag liefert.

Dieses Soll für alle ϱ gelten \Rightarrow

$$A_{j+1}((j+1)j - l(l+1)) + A_j(-2\lambda j + 2) = 0$$

$$A_{j+1} = A_j \frac{2\lambda j - 2}{j(j+1) - l(l+1)}$$

für $j \ge l+1$

 \Rightarrow Reihe muss abbrechen (siehe Aufgabe T14) (sonst wächst $f\left(\varrho\right)$ wie $e^{2\lambda\varrho})$

Abbruch bei $j_{max} = n \Rightarrow$

$$\frac{2\lambda n - 1}{n(n+1) - l(l+1)} = 0$$

 \Rightarrow

$$\lambda = \frac{1}{n}$$

 \Rightarrow

$$\lambda^2 = \frac{1}{n^2}$$
$$-\tilde{E} = \frac{1}{n^2}$$

 \Rightarrow

$$\tilde{E} = -\frac{1}{n^2}$$

 \Rightarrow

$$E_{n} = -\frac{1}{n^{2}} \frac{\hbar^{2}}{2ma_{B}^{2}} = -\frac{1}{n^{2}} \underbrace{\frac{me^{4}}{(4\pi\varepsilon_{0})^{2} 2\hbar^{2}}}_{\stackrel{= 1 \text{Rydberg}}{\approx 13,605 \text{eV}}}$$

 \rightarrow

$$E_n = -\frac{1}{n^2} \cdot 1$$
Rydberg

(Energie hängt nicht von Quantenzahl l ab!!)

$$n = 1, 2, 3, \dots$$

$$0 \le l \le n - 1$$

$$-l \le m \le l$$

7.3.2 Wellenfunktion

Rekursionsformel: $\lambda = \frac{1}{n}$

$$A_{j+1}^{(n,l)} = A_j^{(n,l)} \frac{2 \cdot \frac{1}{n} \cdot j - 2}{j(j+1) - l(l+1)}$$

Für jedes n und l ergeben sich unterschiedliche Koeffizienten.

$$A_{j+1}^{(n,l)} = A_j^{(n,l)} \frac{2}{n} \frac{j-n}{j(j+1)-l(l+1)}$$

$$f_{n,l}(\varrho) = \sum_{j=l+1}^n \tilde{A}_j^{(n,l)} \cdot \left(\frac{2}{n}\varrho\right)^j$$

mit

$$\tilde{\tilde{A}}_{j+1}^{(n,l)} = \tilde{\tilde{A}}_{j}^{(n,l)} \frac{j-n}{j(j+1)-l(l+1)}$$

$$f_{n,l}(\varrho) = \left(\frac{2}{n}\varrho\right)^{l+1} \cdot \sum_{j=0}^{n-l-1} \tilde{\tilde{A}}_{j+l+1}^{(n,l)} \left(\frac{2}{n}\varrho\right)^{j}$$

$$:= L_{n+l}^{2l+1} \left(\frac{2\varrho}{n}\right) \cdot D_{n,l}$$
ruggerdnete Laguerre Polynome

Radiale Wellenfunktion

$$R(r) = \frac{u(r)}{r} = \frac{1}{r}g\left(\frac{r}{a_B}\right)$$
$$g(\varrho) = e^{-\lambda\varrho}f(\varrho)$$
$$\lambda = \frac{1}{n}$$

$$R(r) = \frac{1}{r}e^{-\frac{1}{n}\frac{r}{a_B}} \left(\frac{2}{n}\frac{r}{a_B}\right)^{l+1} \cdot L_{n+l}^{2l+1} \left(\frac{2}{n}\frac{r}{a_B}\right) \cdot D_{n,l}$$

$$= \underbrace{\frac{2}{na_B}D_{n,l}}_{:=N_{n,l}} \cdot e^{-\frac{r}{na_B}} \left(\frac{2r}{na_B}\right)^{l} L_{n+l}^{2l+1} \left(\frac{2}{n}\frac{r}{a_B}\right)$$
Normierungsfaktor
$$= R_{n,l}(r)$$

Normierungsfaktor

$$N_{n,l} = -\left(\frac{1}{a_B}\right)^{3/2} \frac{2}{n^2} \sqrt{\frac{(n-l-1)!}{((n+l)!)^3}}$$

Das Minuszeichen sorgt dafür, dass die Wellenfunktion für kleine Werte von r positiv ist. (Folie "Wasserstoffatom")

Laguerre Polynome

1. Aus Rekursionsformel folgt

$$L_{n+l}^{2l+1}\left(\varrho\right) = \left((n+l)!\right)^{2} \sum_{j=0}^{n-l-1} \frac{\left(-1\right)^{2l+1} \left(-1\right)^{j}}{\left(n-l-1-j\right)! \left(2l+1+j\right)!} \frac{\varrho^{j}}{j!}$$

2. Aus Rodrigues-Formel

$$L_{p}^{k}\left(\varrho\right)=\frac{d^{k}}{d\varrho^{k}}e^{\varrho}\frac{d^{p}}{d\varrho^{p}}\left(\varrho^{p}\cdot e^{-\varrho}\right)$$

Bezeichnung

$$L_{p}\left(\varrho\right) = L_{p}^{0}\left(\varrho\right) = e^{\varrho} \frac{d^{p}}{d\varrho^{p}} \left(\varrho^{p} e^{-\varrho}\right)$$
Laguerre-Polynom

$$L_{p}^{k}\left(\varrho\right) = \frac{d^{k}}{d\varrho^{k}} L_{p}\left(\varrho\right)$$

zugeordnetes Laguerre Polynom

Explizite Form

$$\begin{array}{rcl} L_0(\varrho) & = & 1 \\ L_1(\varrho) & = & 1 - \varrho \\ L_2(\varrho) & = & 2 - 4\varrho - \varrho^2 \\ L_1^1(\varrho) & = & -1 \\ L_2^1(\varrho) & = & -4 + 2\varrho \\ L_2^2(\varrho) & = & 2 \end{array}$$

Lösung der radialen Schrödingergleichung

$$g\left(\varrho\right) = e^{-\lambda\varrho}f\left(\varrho\right)$$

$$\lambda^2 = -\tilde{E} \quad \Rightarrow \quad \lambda = \frac{1}{n}$$

 \Rightarrow

$$f''\left(\varrho\right)-2\lambda f'\left(\varrho\right)+\left(\frac{2}{\varrho}-\frac{l\left(l+1\right)}{\varrho^{2}}\right)f\left(\varrho\right)=0$$

Laguerre Polynome $L_{p}^{k}(x)$

$$\left(x\frac{d^{2}}{dx^{2}}+\left(k+1-x\right)\frac{d}{dx}+\left(p-k\right)\right)L_{p}^{k}\left(x\right)=0$$

$$x = \frac{2}{n}\varrho, f(\varrho) = x^{l+1} \cdot h(x)$$

 \downarrow Einsetzen, rechnen

$$\left(x\frac{d^{2}}{dx^{2}} + (2l + 2 - x)\frac{d}{dx} + (n - l - 1)\right)h(x) = 0$$

$$\Rightarrow p-k=n+l-2l-1=n-l-1$$

$$k=2l+1$$

$$p=n+l$$

 $\Rightarrow L_{n+l}^{2l+1}(x)$, Polynom vom Grad n-l-1

Wellenfunktion $R\left(r\right) \sim e^{-\frac{1}{n}\frac{r}{a_{B}}} \cdot \text{Polynom von } r$

Physikalische Bedeutung

Energiespektrum

- 1. (Abb Q54)
- 2. Im Bereich $0 \le E \le +\infty$ existieren Streuzustände
- 3. Bezeichnungen

Hauptquantenzahl $n{:}\ n=1,2,3,\dots$

Nebenguantenzahl l: l = 0, 1, ..., n-1

magnetische Quantenzahl $m: -l \le m \le l$

l = 0: s, l = 1: p, l = 2: d, l = 3: f

Schalen

n=1: K-Schale, n=2: L-Schale, n=3: M-Schale

4. Entartung

(Abb Q55)

Entartung bezüglich l: für n fest: 0, 1, ..., n-1 = n Werte

Entartung bezüglich m: für l fest: $-l \le m \le l = (1l + 1)$ Werte

Insgesamt: $\sum_{l=0}^{n-1} (2l+1) = n^2$

Wellenfunktionen

1.

$$\chi_{n,l,m}(\vec{r}) = \chi_{n,l,m}(r,\theta,\varphi) = R_{n,l}(r) Y_{l,m}(\theta,\varphi)$$

$$\int_{\mathbb{R}^3} \chi_{n,l,m}^{\star}(\vec{r}) \chi_{n',l',m'}(\vec{r}) d^3r = \delta_{n,n'} \delta_{l,l'} \delta_{m,m'}$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_{l,m}^{\star}(\theta,\varphi) Y_{l',m'}(\theta,\varphi) \sin\theta d\theta d\varphi = \delta_{l,l'} \delta_{m,m'}$$

$$\int_{0}^{\infty} \underbrace{R_{n,l}^{\star}(r) R_{n',l}(r)}_{\text{gleiche Werte von } l} r^{2} dr = \delta_{n,n'}$$

- 2. Alle $R_{n,l}(r)$ enthalten Faktor r^l (bis auf l=0) $\Rightarrow R_{n,l}(0)=0$
- 3. Jede Wellenfunktion hat n-l-1 Knoten d.h. n-l-1 Nullstellen für r>0
- 4. Radiale Aufenthaltswahrscheinlichkeitsdichte $W_{n,l}\left(r\right):=\underbrace{r^2}_{\text{vom Volumenelement}}\left|R_{n,l}\left(r\right)\right|^2$ (Folie "Radiale Aufenthaltswahrscheinlichkeitsdichte")
 - mit steigender Quantenzahl n verlagert sich $W\left(r\right)$ nach außen $\sim \left|e^{-\frac{r}{na_B}}\right|^2$ fällt für große n schwächer ab
 - mit steigendem l (bei festem n) verlagert sich W(r) nach innen
- 5. <u>Kramers-Relation</u>

$$\frac{k+1}{n^2} \left< r^k \right> - (2k+1) a_B \left< r^{k-1} \right> + \frac{k}{4} \left((2l+1)^2 - k^2 \right) a_B^2 \left< r^{k-2} \right> = 0$$

k: ganzzahlig

Beweis: siehe Nolting Quantenmechanik, Band 2, Aufgabe 6.2.5

$$\langle r^k \rangle = \int \chi_{n,l,m}^{\star} (\vec{r}) r^k \chi_{n,l,m} (\vec{r}) d^3 r \equiv \langle r^k \rangle_{n,l,m}$$

$$k = 0$$
:

$$\frac{1}{n^2} \langle r^0 \rangle - 1a_B \langle r^{-1} \rangle + 0 = 0$$
$$\langle r^0 \rangle = \langle 1 \rangle = 1$$

 \Rightarrow

$$\frac{1}{n^2} - a_B \left\langle r^{-1} \right\rangle = 0 \quad \Rightarrow \quad \left\langle \frac{1}{r} \right\rangle = \frac{1}{n^2 a_B}$$

k = 1:

$$\langle r \rangle = \frac{a_B}{2} \left(3n^2 - l \left(l + 1 \right) \right)$$

$$\langle r^2 \rangle = \frac{n^2 a_B^2}{2} \left(5n^2 + 1 - 3l \left(l + 1 \right) \right)$$

Da
$$V(r) = -\frac{1}{4\pi\varepsilon_0} \frac{1}{r}$$
 folgt:

(Vivial-Theorem)

$$\left\langle \hat{T} \right\rangle = -\left\langle \hat{V} \right\rangle \frac{1}{2}$$

 $\textbf{Bohr'sches Atommodell} \quad \left| \vec{L} \right| = |\vec{r} \times \vec{p}| = n\hbar, \, n = 1, 2, 3, ...$

 \Rightarrow Bahnradius $r_n=a_B n^2,\, E_n=\frac{1}{n^2}1 {\rm Rydberd}$

Quantenmechanik $\langle r \rangle = \frac{3}{2} a_B n^2$ (bei l=0) (etwas größer als beim Bohr'schen Modell)

 $n=1\colon \left| \vec{L} \right| = \hbar$ (Bohr's ches Modell) Grundzustand

Quantenmechanik $\left\langle \vec{L} \right\rangle = 0$

Das Bohr'sche Atommodell beschreibt in keiner Weise die tatsächliche Physik eines Atoms

7.4 Das Wasserstoffatom als Zweikörperproblem

(Abb Q56)

$$\hat{H} = \frac{\vec{p}_E^2}{2m_E} + \frac{\vec{p}_K^2}{2m_K} - \frac{e^2}{2\pi\varepsilon_0} \frac{1}{|\vec{r}_E - \vec{r}_K|}$$

Impuls des Elektrons

$$\hat{ec{p}}_E = rac{\hbar}{i} ec{
abla}_{ec{r}_E} = rac{\hbar}{i} \left(egin{matrix} rac{\partial}{\partial x_E} \ rac{\partial}{\partial y_E} \ rac{\partial}{\partial z_E} \end{matrix}
ight)$$

Impuls des Kerns

$$\hat{\vec{p}}_K = \frac{\hbar}{i} \vec{\nabla}_{\vec{r}_K} = \frac{\hbar}{i} \begin{pmatrix} \frac{\partial}{\partial x_K} \\ \frac{\partial}{\partial y_K} \\ \frac{\partial}{\partial z_K} \end{pmatrix}$$

Idee Übergang zu Relativ- und Schwerpunktskoordinaten

$$\vec{r} = \vec{r}_E - \vec{r}_K \tag{58}$$

Relativkoordinate

$$\vec{R} = \frac{m_E \vec{r}_E + m_K \vec{r}_K}{M} \tag{59}$$

Schwerpunktskoordinate mit $M = m_E + m_K$ Gesamtmasse

$$\begin{split} \vec{p} &= \frac{m_K \vec{p}_E - m_E \vec{p}_K}{M} \\ \vec{P} &= \vec{p}_E + \vec{p}_K \end{split} \right\} \text{klassische Physik} \\ \Rightarrow \frac{\vec{p}_E^2}{2m_E} + \frac{\vec{p}^2}{2m_K} = \frac{\vec{P}^2}{2M} + \frac{\vec{P}^2}{2\mu}, \, \mu = \frac{m_E \cdot m_K}{m_E + m_K} \text{ (reduizierte Masse)} \end{split}$$

Gilt das auch in der Quantenmechanik?

Dazu:

$$\vec{\nabla}^2_{\vec{r}_E} = \frac{\partial^2}{\partial x_E^2} + \frac{\partial^2}{\partial y_E^2} + \frac{\partial^2}{\partial z_E^2}$$

$$(58): x = x_E - x_K$$

(59):

$$x_s = \frac{m_E x_E + m_K x_K}{M}$$

$$x_E \rightarrow x, x_s$$
 $x_E = x_E(x, x_s)$

$$\frac{\partial}{\partial x_E} = \frac{\partial}{\partial x} \underbrace{\frac{\partial x}{\partial x_E}}_{=1} + \frac{\partial}{\partial x_s} \underbrace{\frac{\partial x_s}{\partial x_E}}_{\frac{m_E}{M}}$$

$$\frac{\partial}{\partial x_E} = \frac{\partial}{\partial x} + \frac{m_E}{M} \frac{\partial}{\partial x_s}$$

$$\frac{\partial^2}{\partial x_E^2} = \frac{\partial}{\partial x_E} \left(\frac{\partial}{\partial x_E}\right)$$

$$= \frac{\partial}{\partial x_E} \left(\frac{\partial}{\partial x} + \frac{m_E}{M} \frac{\partial}{\partial x_s}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{m_E}{M} \frac{\partial}{\partial x_s}\right) \underbrace{\frac{\partial x}{\partial x_E}}_{1} + \frac{\partial}{\partial x_s} \left(\frac{\partial}{\partial x} + \frac{m_E}{M} \frac{\partial}{\partial x_s}\right) \underbrace{\frac{\partial x_s}{\partial x_E}}_{\frac{m_E}{M}}$$

$$= \left(\frac{\partial^2}{\partial x^2} + \left(\frac{m_E}{M}\right)^2 \frac{\partial^2}{\partial x_s^2} + 2\frac{m_E}{M} \frac{\partial^2}{\partial x \partial x_s}\right)$$

Analog

$$\frac{\partial^2}{\partial x_K^2} = \frac{\partial^2}{\partial x^2} - 2\frac{m_K}{M}\frac{\partial^2}{\partial x \partial x_K} + \left(\frac{m_K}{M}\right)^2 \frac{\partial^2}{\partial x_s^2}$$

$$\begin{split} \frac{1}{m_E} \frac{\partial^2}{\partial x_E^2} + \frac{1}{m_K} \frac{\partial^2}{\partial x_K^2} &= \left(\frac{1}{m_E} + \frac{1}{m} \right) \frac{\partial^2}{\partial x^2} + \left(\frac{1}{m_E} \frac{m_E^2}{M^2} + \frac{1}{m_K} \frac{m_K^2}{M^2} \right) \frac{\partial^2}{\partial x_s^2} + 0 \\ &= \frac{1}{\mu} \frac{\partial^2}{\partial x^2} + \frac{1}{M} \frac{\partial^2}{\partial x_s^2} \end{split}$$

y, z analog

$$\frac{\hat{p}_E^2}{2m_E} + \frac{\hat{p}_K^2}{2m_K} = -\frac{\hbar^2 \vec{\nabla}_{\vec{r}}^2}{2\mu} - \frac{\hbar^2 \vec{\nabla}_{\vec{R}}^2}{2M}$$

 \Rightarrow

$$\hat{H} = \underbrace{-\frac{\hbar^2}{2\mu}\vec{\nabla}_{\vec{r}}^2 - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}}_{\text{Relativbewegung}} - \underbrace{\frac{\hbar^2}{2M}\vec{\nabla}_{\vec{R}}^2}_{\text{Schwerpunktbewegung}}$$

$$\begin{array}{lcl} \hat{H}\phi\left(\vec{r},\vec{R}\right) & = & E\phi\left(\vec{r},\vec{R}\right) \\ \phi\left(\vec{r},\vec{R}\right) & = & \chi\left(\vec{r}\right)\cdot f\left(\vec{R}\right) \end{array}$$

$$\operatorname{mit}\left(-\frac{1}{2\mu}\vec{\nabla}_{r}^{2} - \frac{e^{2}}{4\pi\varepsilon_{0}}\frac{1}{r}\right)\chi\left(\vec{r}\right) = E^{rel}\chi\left(\vec{r}\right)$$

$$E_{rel} = -\frac{1}{n^2} \frac{\mu}{m_E} \cdot 1$$
Rydberg

$$\begin{split} &-\frac{\hbar^2}{2M} \vec{\nabla}_R^2 f\left(\vec{R}\right) = E^{Sch} f\left(\vec{R}\right) \\ &f\left(\vec{R}\right) = e^{i\vec{k}\vec{R}} \end{split}$$

$$E^{Sch} = \frac{\hbar^2 k^2}{2M}$$

$$E_{m,\vec{k}} = E_m^{Rel} + E_{\vec{k}}^{Sch}$$

(Folie mit Zusammenfassung u.A. der Unschärferelation, Heisenberg-Gleichung, Dirac Notation, Harmonischer Oszillator, ...)

8 Teilchen im elektromagnetischem Feld

8.1 Hamiltonoperator

Felder $\vec{E}\left(\vec{r},t\right),\,\vec{B}\left(\vec{r},t\right)$

Potentiale: $\operatorname{rot} \vec{A}\left(\vec{r},t\right) = \vec{B}\left(\vec{r},t\right), \; \vec{E}\left(\vec{r},t\right) = -\frac{\partial \vec{A}\left(\vec{r},t\right)}{\partial t} - \operatorname{grad} \phi\left(\vec{r},t\right)$

Klassische Physik Hamilton: $H\left(\vec{p},\vec{r}\right)$ z.B. $H\left(\vec{p},\vec{r}\right)=\frac{\vec{p}^{2}}{2m}+V\left(\vec{r}\right)$

$$\frac{\partial H}{\partial p_j} = \dot{r}_j \,,\, \frac{\partial H}{\partial r_j} = -\dot{p}_j$$

Hamilton-Gleichungen

 $\vec{\nabla}_{\vec{p}} H = \dot{\vec{r}}, \; \vec{\nabla}_{\vec{r}} H = -\dot{\vec{p}} \; \mathrm{mit} \; \dot{\vec{p}} = \vec{F}$

$$\vec{\nabla}_r \left(\frac{p^2}{2m} + V(\vec{r}) \right) = \vec{\nabla}V(\vec{r}) = -\vec{F}(\vec{r})$$

$$\vec{\nabla}_{p}\left(\frac{p^{2}}{2m}+V\left(\vec{r}\right)\right)=\frac{\vec{p}}{2m}=\dot{\vec{r}}$$

$$\vec{p} = m\dot{\vec{r}} = m\vec{v}$$

Einbau von \vec{A} und ϕ in <u>Hamiltonfunktion</u>: (Q: Ladung des Teilchens)

$$H\left(\vec{p},\vec{r}\right)=\frac{\left(\vec{p}-Q\vec{A}\right)^{2}}{2m}+Q\phi$$

beschreibt Teilchen mit Ladung Q im elektromagnetischen Feld $(\vec{E},\,\vec{B}).$ Die Hammilton-Gleichung liefern

$$m\ddot{\vec{r}} = \vec{F} = Q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

Beweis: durch Einsetzen

-

$$Q\phi\left(\vec{r},t\right) \hat{=} V\left(\vec{r},t\right)$$

$$\vec{p} \rightarrow \vec{p} - Q\vec{A}$$

Übertragung auf die Quantenmechanik Hamiltonoperator $\hat{=}$ Hamiltonfunktion mit \vec{r} und \vec{p} als Operatoren

$$\hat{H} = \frac{\left(\hat{\vec{p}} - Q\vec{A}\right)^2}{2m} + \underbrace{Q\phi\left(\hat{\vec{r}}, t\right)}_{:=V\left(\hat{\vec{r}}, t\right)}$$

Bemerkung Im Rahmen der Quantenelektrodynamik wird \vec{A} durch Operatoren beschrieben

Analyse des Terms $\left(\hat{\vec{p}} - Q \vec{A} \right)^2$

$$\vec{A} = \vec{A}(\vec{r}, t)$$

$$\left(\hat{\vec{p}} - Q \vec{A} \right)^2 = \hat{\vec{p}}^2 - \underbrace{Q \hat{\vec{p}} \vec{A} \left(\vec{r}, t \right)}_{\text{Reihenfolge beachten}} - \underbrace{Q \vec{A} \left(\vec{r}, t \right) \hat{\vec{p}}}_{\text{Reihenfolge beachten}} + Q^2 \vec{A}^2 \left(\vec{r}, t \right)$$

Im allgemeinen Fall vertauschen $\hat{\vec{p}}$ und \vec{A} nicht.

Wähle $\operatorname{div} \vec{A}(\vec{r},t) = 0$ Coulomb-Eichung

$$\hat{\vec{p}}\vec{A}f\left(\vec{r}\right) = \frac{\hbar}{i}\vec{\nabla}\vec{A}f\left(\vec{r}\right)$$

Rechenregel:

$$\operatorname{grad}\left(\vec{A}f\right) = \underbrace{\left(\operatorname{div}\vec{A}\right)}_{=0 \text{ laut. Eichung}} f + \vec{A}\operatorname{grad}f$$

 \Rightarrow

$$\hat{\vec{p}}\vec{A}f = \vec{A}\hat{\vec{p}}f$$

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m} - \frac{2Q\vec{A}\hat{\vec{p}}}{2m} + \frac{Q^2\vec{A}^2}{2m} + V\left(\vec{r},t\right)$$

$$\vec{H} = \frac{\hat{p}^2}{2m} + V(\vec{r}, t) - \frac{Q}{m} \vec{A} \cdot \hat{\vec{p}} + \frac{Q^2}{2m} \vec{A}^2$$

Hamiltonoperator für Teilchen im elektromagnetischen Feld (mit Coulomb-Eichung)

8.2 Wasserstoffatom im homogenen Magnetfeld

 \vec{B} sei homogen $\vec{B} = \vec{B}(t)$ (unabhängig von \vec{r})

$$\vec{A}\left(\vec{r},t\right)=\frac{1}{2}\left(\vec{r}\times\vec{B}\left(\vec{r}\right)\right)\Rightarrow\operatorname{rot}\vec{A}\left(\vec{r},t\right)=\vec{B}\left(t\right),\,\operatorname{div}\vec{A}\left(\vec{r},t\right)=0$$
 (Beweis durch Nachrechnen)

Speziell:

$$\vec{B}(t) = \begin{pmatrix} 0 \\ 0 \\ B(t) \end{pmatrix} \Rightarrow \vec{A}(\vec{r}, t) = \frac{1}{2} \begin{pmatrix} -By \\ +Bx \\ 0 \end{pmatrix} \Rightarrow \cot \vec{A} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$$

$$\vec{A} \cdot \hat{\vec{p}} = \frac{1}{2} \begin{pmatrix} -By \\ Bx \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \hat{p}_x \\ \hat{p}_y \\ \hat{p}_z \end{pmatrix} = \frac{1}{2} \left(-By\hat{p}_x + Bx\hat{p}_y \right) = \frac{1}{2} B \left(x\hat{p}_y - y\hat{p}_x \right) = \frac{1}{2} B \hat{L}_z$$

Für
$$\hat{A} = \frac{1}{2} \left(\vec{r} \times \vec{B} \right)$$
 folgt $\vec{A} \hat{\vec{p}} = \frac{1}{2} \vec{B} \cdot \hat{\vec{L}}$

Für
$$\vec{B} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$$
 folgt $\vec{A}^2 = \frac{1}{4} \begin{pmatrix} -By \\ Bx \\ 0 \end{pmatrix} \begin{pmatrix} -By \\ Bx \\ 0 \end{pmatrix} = \frac{1}{4}B^2 \left(x^2 + y^2\right)$

 \Rightarrow

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\vec{r}) - \frac{QB}{2m}\hat{L}_z + \frac{1}{8m}Q^2B^2(x^2 + y^2)$$

Wasserstoffatom (mit ruhendem Kern)

 $m=m_E$: Masse des Elektrons, Q=-e: Ladung des Elektrons, $V(r)=-\frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}$: Coulomb-Potential

$$\hat{H} = \underbrace{\frac{\hat{\vec{p}}^2}{2m} - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r}}_{\hat{H}^{(0)}} + \underbrace{\frac{eB}{2m_E} \hat{L}_z}_{\sim B} + \underbrace{\frac{e^2}{8m_E} B^2 \left(x^2 + y^2\right)}_{\text{ist für kleine Felder zu vernachlässigen}}$$

$$\hat{H} = \hat{H}^{(0)} + \frac{eB}{2m_E}\hat{L}_z$$

Gesucht:

$$\hat{H}\psi\left(\vec{r}\right) = E\psi\left(\vec{r}\right)$$

Bekannt:

$$\hat{H}^{(0)} \chi_{n,l,m} (\vec{r}) = E_n^{(0)} \chi_{n,l,m} (\vec{r})$$

$$E_n^{(0)} = \frac{1}{n^2} \cdot E_{Rydberg}$$

Da $\hat{H}^{(0)}$ und \hat{L}_z vertauschen:

$$\chi_{n,l,m}\left(\vec{r}\right) = R_{n,l}\left(r\right) Y_{l,m}\left(\theta,\varphi\right)$$

sind auch Eigenfunktionen von $\hat{H} = \hat{H}^{(0)} + \frac{eB}{2m_E}\hat{L}_z$

$$\frac{eB}{2m_E}\hat{L}_z\chi_{n,l,m}\left(\vec{r}\right) = \frac{eB}{2m_E}R\left(r\right)\underbrace{\hat{L}_zY_{l,m}\left(\theta,\varphi\right)}_{\hbar mY_{l,m}\left(\theta,\varphi\right)}$$

$$= \frac{eB}{2m_E}\hbar\chi_{n,l,m}\left(\vec{r}\right)$$

 \Rightarrow

$$\hat{H}\chi_{n,l,m}\left(\vec{r}\right) = \left(E_n^{(0)} + \frac{eB}{2m_E}\hbar m\right)\chi_{n,l,m}\left(\vec{r}\right)$$

 \Rightarrow

$$E_{n,m}=-\frac{1}{n^2}E_{Rydberg}+\frac{e\hbar}{2m_E}Bm$$
 $n=1,2,3,\ldots,\,l=0,\ldots,n-1,\,-l\leq m\leq l$ m : magnetische Quantenzahl

(Abb Q57 / normaler Zeeman-Effekt)

Der vernachlässigte Term mit B^2 hat bei einem Feld von $4,7\cdot 10^5\mathrm{T}$ den gleichen Effekt wie der Term $\sim B$.

8.3 Magnetisches Moment

Klassische Physik

(Abb Q58)

Definition Magnetisches Moment

$$\vec{M} = \frac{1}{2} \int \vec{r}' \times \vec{j} \left(\vec{r}', t \right) d^3 r'$$

 $\vec{r}(t)$:Bahnkurve eines Teilchens

$$\vec{j} = \underbrace{Q}_{\text{Ladung Geschwindigkeit}} \vec{v}(t) \quad \delta\left(\vec{r'} - \vec{r}(t)\right) = \vec{j}\left(\vec{r'}, t\right)$$

$$\vec{M} = \frac{1}{2} Q \vec{r}(t) \times \vec{v}(t) = \frac{Q}{2m} \vec{r}(t) \times \vec{p}(t)$$

$$\vec{M} = \frac{Q}{2m} \vec{L}$$

Magnetisches Moment in der klassichen Physik

Quantenmechanik

Operator des magnetischen Moments

$$\hat{\vec{M}} = \frac{Q}{2m}\hat{\vec{L}}$$

Elektron: $Q = -e, m = m_E$

$$\hat{\vec{M}} = -\frac{e}{2m_E}\hat{\vec{L}}$$

Wasserstoff

$$\hat{H} = \hat{H}^{(0)} + \frac{eB}{2m_E}\hat{L}_z = \hat{H}^{(0)} - \hat{M}_z B$$

$$\hat{H} = \hat{H}^{(0)} - \hat{\vec{M}} \vec{B}$$

⇒ Energieänderung:

$$\Delta E = - \left\langle \hat{\vec{M}} \vec{B} \right\rangle$$

Anmeldung zur Klausur für Diplom+LP2003: Heute ab 14:00~R~714 bis 15.07.2011

9 Spin

9.1 Spin des Elektrons und Pauli-Gleichung

Experimentelle Hinweise

- Aufspaltung der Zustände des H-Atoms im Magnetfeld (Abb Q59)
 Wodurch kommt diese Aufspaltung zustande?
- 2. Stern-Gerlach-Experiment (Abb Q60)

Klassich Kraft: $\vec{F} = -\vec{M} \cdot \vec{\nabla} \vec{B}$

Quantenmechanik: $\vec{M}=\frac{Q}{2m}\hat{\vec{L}};$ $\vec{F}=-\left<\hat{\vec{M}}\right>\cdot\vec{\triangledown}\vec{B}$

$$\left\langle \hat{\vec{M}}\right\rangle =\frac{Q}{2m}\left\langle \hat{\vec{L}}\right\rangle$$

Ag:
$$\left\langle \hat{\vec{L}} \right\rangle = 0$$

5s: e^- + kugelförmige Ladungsverteilung

Hypothese von Uhlenbeck und Gandsmit (1925) Das Elektron "dreht sich um sich selbst" (englisch: to spin) und erzeugt einen "inneren" Drehimpuls \vec{S} (Spin).

Mit \vec{S} ist ein magnetisches Moment \vec{M}_s verknüpft.

$$\vec{M}_s = g_E \frac{e}{2m_E} \vec{S}$$

 g_E : Landé-Faktor $g_E=2,0023\dots$

Theorie des Spins nach Pauli $\hat{\vec{S}}$: Operator des Spins

$$\hat{\vec{S}}$$
erfüllt: $\hat{\vec{S}} = \left(\hat{S}_x, \hat{S}_y, \hat{S}_z\right)$

$$\begin{split} \left[\hat{S}_x, \hat{S}_y \right] &= i\hbar \hat{S}_z \\ \left[\hat{S}_y, \hat{S}_z \right] &= i\hbar \hat{S}_x \\ \left[\hat{S}_z, \hat{S}_x \right] &= i\hbar \hat{S}_y \end{split}$$

2) Der Operator $\hat{\vec{S}}$ wirkt om Hilbertraum \mathcal{H}_S

Spinwellenfunktion: $\phi(t)$

Die Eigenzustände von $\hat{\vec{S}}^2$ und \hat{S}_z erfüllen

$$\hat{\vec{S}}^2 \phi_{s,m_s} = \hbar^2 s \left(s + 1 \right) \phi_{s,m_s}$$

$$\hat{S}_z \phi_{s,m_s} = \hbar m_s \phi_{s,m_s}$$

$$-s < m_s < s$$

 s,m_s : Quantenzahlen

Ein bestimmter Teilchentyp (z.B. Elektronen) ist durch einen festen Wert von s gekenzeischnet.

- 3) Elektronen und Protonen sind Teilchen mit $s = \frac{1}{2}$. Sie besitzen <u>unterschiedliche</u> Landé-Faktoren.
- 4) Die Operatoren $\hat{\vec{r}}$ und $\hat{\vec{p}}$ vertauschen mit $\hat{\vec{S}}.$

Spin des Elektrons

$$s = \frac{1}{2} \Rightarrow m_s = \pm \frac{1}{2}$$

Da s immer gleich $\frac{1}{2}$:

 ϕ_{m_s} : Spinwellenfunktion

 \Rightarrow Zwei "Basiszustände": $\phi_{-\frac{1}{2}},\,\phi_{\frac{1}{2}}$

Unterschiedliche Schreibweisen:

$$\begin{array}{cccc} \phi_{\frac{1}{2}} & := & \phi_{+} := \phi_{\uparrow} \\ \phi_{-\frac{1}{2}} & := & \phi_{-} := \phi_{\downarrow} \end{array}$$

oder:

$$\begin{array}{rcl} |\phi_{\frac{1}{2}}> & = & |\frac{1}{2}> = |+> = |\uparrow> \\ |\phi_{-\frac{1}{2}}> & = & |-\frac{1}{2}> = |-> = |\downarrow> \end{array}$$

Also

$$\hat{\vec{S}}\phi_{+} = \hbar^{2} \frac{1}{2} \left(\frac{1}{2} + 1 \right) \phi_{+} = \hbar^{2} \frac{3}{4} \phi_{+}$$

 $(da \ s = \frac{1}{2})$

$$\hat{\vec{S}}^{2}\phi_{-} = \hbar \frac{1}{2} \left(\frac{1}{2} + 1 \right) \phi_{1} = \hbar^{2} \frac{3}{4} \phi_{-}$$

$$\hat{S}_{z}\phi_{+} = \hbar \frac{1}{2} \phi_{+}$$

$$\hat{S}_{z}\phi_{-} = -\hbar \frac{1}{2} \phi_{-}$$

Allgemeine Spindefinition

$$\phi(t) = a(t) \phi_{+} + b(t) \phi_{-}$$

 Überlagerung der Eigenzustände Darstellung durch Zweiervektoren

$$\phi_{+} \quad \hat{=} \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\phi_{-} \quad \hat{=} \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

"Spinoren"

$$\phi(t) = a(t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$$

Darstellung der Operatoren durch 2×2 Matritzen:

$$\hat{S}_{x} = \frac{\hbar}{2} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{:=\varsigma_{x}}$$

$$\hat{S}_{y} = \frac{\hbar}{2} \underbrace{\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}}_{:=\varsigma_{y}}$$

$$\hat{S}_{z} = \frac{\hbar}{2} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{:=\varsigma_{z}}$$

 $\varsigma_x,\,\varsigma_y,\,\varsigma_z$: "Pauli-Matritzen"

Diese Matritzen erfüllen die Vertauschungsrelationen und die Eigenwertgleichungen

$$\begin{split} \left[\hat{S}_{x}, \hat{S}_{y} \right] &= \hat{S}_{x} \hat{S}_{y} - \hat{S}_{y} \hat{S}_{x} \\ &= \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \frac{\hbar^{2}}{4} \left(\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \right) \\ &= \frac{\hbar^{2}}{4} 2i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &= i\hbar \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i\hbar \hat{S}_{z} \end{split}$$

$$\hat{S}_{z}\phi_{+} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hbar \frac{1}{2}\phi_{+}$$

$$\hat{S}_{z}\phi_{-} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\hbar \frac{1}{2}\phi_{-}$$

$$\hat{S}^{2}\phi_{+} = \begin{pmatrix} \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \frac{\hbar^{2}}{4} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \frac{\hbar^{2}}{4} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3\frac{\hbar^{2}}{4} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \frac{3}{4}\hbar^{2}\phi_{+}$$

Wellenfunktion eines Teilchens mit $s = \frac{1}{2}$

$$\psi\left(\vec{r},t\right) = \psi_{+}\left(\vec{r},t\right)\phi_{+} + \psi_{-}\left(\vec{r},t\right)\phi_{-}$$

Hilbertraum

$$\mathcal{H} = \mathcal{H}_{\vec{r}} \otimes \mathcal{H}_S$$

 $\mathcal{H}_{\vec{r}}$: quadratinegrable Funktionen \mathcal{H}_{S} : zweidimensionaler Vektorraum

Dirac

$$|\psi>=|\psi_{+}>|\phi_{+}>+|\psi_{-}>|\phi_{-}>$$

Spinor

$$\psi(\vec{r},t) = \psi_{+}(\vec{r},t) \begin{pmatrix} 1\\0 \end{pmatrix} + \psi_{-}(\vec{r},t) \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$= \begin{pmatrix} \psi_{+}(\vec{r},t)\\\psi_{-}(\vec{r},t) \end{pmatrix}$$

Skalarprodukt ohne Spin:

$$<\chi|\psi> = \int \chi^{\star}\left(\vec{r},t\right)\psi\left(\vec{r},t\right)d^{3}r$$

mit Spin:

$$\langle \chi | \psi \rangle := \int \begin{pmatrix} \chi_{+}^{\star}(\vec{r},t) \\ \chi_{-}^{\star}(\vec{r},t) \end{pmatrix} \cdot \begin{pmatrix} \psi_{+}(\vec{r},t) \\ \psi_{-}(\vec{r},t) \end{pmatrix} d^{3}r$$

$$= \int \left(\chi_{+}^{\star}(\vec{r},t) \psi_{+}(\vec{r},t) + \chi_{-}^{\star}(\vec{r},t) \psi(\vec{r},t) \right) d^{3}r$$

Norm

$$<\psi|\psi> = \int \underbrace{\left(\left|\psi_{+}\left(\vec{r},t\right)\right|^{2}+\left|\psi_{-}\left(\vec{r},t\right)\right|^{2}\right)}_{=\varrho\left(\vec{r}\right)} d^{3}r$$

 $\varrho(\vec{r})$: "Aufenthaltswahrscheinlichkeitsdichte"

Erwartungswert $\langle \hat{\vec{S}} \rangle$: Vektor mit <u>drei</u> Komponenten

$$\begin{split} \left\langle \hat{\vec{S}} \right\rangle &:= &<\psi | \hat{\vec{S}} | \psi> \\ &= &\int \left(\psi_{-}^{\star} \left(\vec{r}, t \right) \right) \hat{\vec{S}} \left(\psi_{+} \left(\vec{r}, t \right) \right) d^{3}r \end{split}$$

$$\begin{split} \left\langle \hat{S}_{x} \right\rangle &= \int \left(\psi_{+}^{\star} \left(\vec{r}, t \right) \right) \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \psi_{+} \left(\vec{r}, t \right) \\ \psi_{-} \left(\vec{r}, t \right) \end{pmatrix} d^{3}r \\ &= \frac{\hbar}{2} \int \left(\psi_{+}^{\star} \left(\vec{r}, t \right) \right) \begin{pmatrix} \psi_{-} \left(\vec{r}, t \right) \\ \psi_{+} \left(\vec{r}, t \right) \end{pmatrix} d^{3}r \\ &= \frac{\hbar}{2} \int \left(\psi_{+}^{\star} \left(\vec{r}, t \right) \psi_{-} \left(\vec{r}, t \right) + \psi_{-}^{\star} \left(\vec{r}, t \right) \psi_{+} \left(\vec{r}, t \right) \right) d^{3}r \end{split}$$

$$a^*b + b^*a = a^*b + (a^*b)^*$$
$$= 2\Re (a^*b)$$

$$\left\langle \hat{S}_{x} \right\rangle = \hbar \cdot \Re \left(\int \left(\psi_{+}^{\star} \left(\vec{r}, t \right) \psi_{-} \left(\vec{r}, t \right) \right) d^{3}r \right)$$

$$\left\langle \hat{S}_{y} \right\rangle = \hbar \cdot \Im \left(\int \left(\psi_{+}^{\star} \left(\vec{r}, t \right) \psi_{-} \left(\vec{r}, t \right) \right) d^{3}r \right)$$

$$\left\langle \hat{S}_{z} \right\rangle = \frac{\hbar}{2} \int \left(\left| \psi_{+} \left(\vec{r}, t \right) \right|^{2} + \left| \psi_{-} \left(\vec{r}, t \right) \right|^{2} \right) d^{3}r$$

Hamiltonoperator

Ohne Spin

$$\hat{H} = \frac{\left(\hat{\vec{p}} - Q\vec{A}\right)^2}{2m} + V(\vec{r})$$

mit $V(\vec{r}) = Q\phi(\vec{r})$, Potential aus der Elektrodynamik

Homogenese Magnetfeld, Q = -e, $m = m_E$

$$\vec{A} = \frac{1}{2} \left(\vec{B} \times \vec{r} \right)$$

$$\hat{H} = \frac{\hat{p}^2}{2m_E} + V(\vec{r}) + \frac{e}{2m_E} \hat{\vec{L}} \cdot \vec{B} + \frac{1}{8m_E} \left(\vec{B} \times \vec{r} \right)^2$$

Mit Spin

$$\hat{H} = \frac{\left(\hat{\vec{p}} - Q\vec{A}\right)^2}{2m} + V\left(\vec{r}\right) - \frac{gQ}{2m}\vec{B}\cdot\hat{\vec{S}}$$

Pauli-Hamilton-Operator

Elektron:

$$g = g_E = 2, Q = -e, m = m_E$$

$$\hat{H} = \underbrace{\frac{\hat{p}^2}{2m_E} + V\left(\vec{r}\right) + \frac{e}{2m_E}\vec{B}\cdot(\hat{\vec{L}} + g_E\hat{\vec{S}}) + \left(\text{Term mit }B^2\right)}_{\hat{H}_r}$$

Wasserstoffatom: $V(\vec{r}) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r}, \vec{B} = (0, 0, B)$

Schrödinger-Gleichung

$$\hat{H}\chi(\vec{r}, \vec{s}) = E\chi(\vec{r}, \vec{s})$$

 \vec{s} : "Spinkoordinate"

$$\hat{H} = \hat{H}_r + \hat{H}_s, \, \hat{H}_s = \frac{eg_E}{2m_E} \underbrace{\vec{B} \cdot \hat{\vec{S}}}_{B \cdot \hat{S}_z}$$

$$\chi_{n,l,m,m_s} = R_{n,l}(r) Y_{l,m}(\theta,\varphi) \cdot \phi_{m_s}(\vec{s})$$

$$\hat{H}_{s}\phi_{m_{s}}(\vec{s}) = \frac{eg}{2m_{E}}\hat{S}_{z}\phi_{m_{s}}(\vec{s})$$

$$= \underbrace{\frac{eg}{2m_{E}}B\hbar m_{s}}_{\text{Eigenwert}}\phi_{m_{s}}(\vec{s})$$

 \Rightarrow

$$E_{n,m,m_s} = -\frac{1}{n^2} E_{Rydberg} + \frac{e}{2m_E} B\hbar m + \frac{eg_E}{2m_E} B\hbar m_s$$

$$\chi_{n,l,m,m_s} \left(\vec{r}, \vec{s} \right) = R_{n,l} \left(r \right) Y_{l,m} \left(\theta, \varphi \right) \phi_{m_s} \left(\vec{s} \right)$$

$$n = 1, 2, 3, \dots, l = 0, 1, \dots n - 1, -l \le m \le l, m_s \in \left\{ -\frac{1}{2}, \frac{1}{2} \right\}$$

 $g_E=2\Rightarrow \Delta E=\frac{e\hbar}{2m_E}B\,(m+2m_s),$ Notation $|n\,l\,m\,m_s>$ (Abb Q61)

9.2 Spinpräzession

Betrachte zeitliche Änderung von $\phi(\vec{s})$ und $\langle \vec{\hat{S}} \rangle$

$$i\hbar \frac{d}{dt}\psi\left(\vec{r},\vec{s},t\right) = \hat{H}\psi\left(\vec{r},\vec{s},t\right) = \left(\hat{H}_r + \hat{H}_s\right)\underbrace{\tilde{\psi}\left(\vec{r},t\right)}_{\text{Ortsanteil}}\phi\left(\vec{s},t\right)$$

 \Rightarrow

$$i\hbar \frac{d}{dt}\tilde{\psi}(\vec{r},t) = \hat{H}_r\tilde{\psi}(\vec{r},t)$$

$$i\hbar \frac{d}{dt}\phi(\vec{s},t) = \hat{H}_s\phi(\vec{s},t)$$

Wir wollen und mit der Lösung der zweiten Gleichung beschäftigen. Zunächst für $\vec{B}=(0,0,B)$.

$$\begin{split} \hat{H}_s &= \frac{g_E e}{2m_E} B \cdot \hat{S}_z \\ &= \frac{g_E e}{2m_E} B \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \phi \left(\vec{s}, t \right) &= \begin{pmatrix} a \left(t \right) \\ b \left(t \right) \end{pmatrix} \\ i\hbar \frac{d}{dt} \begin{pmatrix} a \left(t \right) \\ b \left(t \right) \end{pmatrix} &= \hat{H}_s \begin{pmatrix} a \left(t \right) \\ b \left(t \right) \end{pmatrix} \end{split}$$

Ansatz: $a(t) = e^{\frac{Et}{i\hbar}} \tilde{a}, b(t) = e^{\frac{Et}{i\hbar}} \tilde{b}$

$$E\begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} e^{\frac{Et}{i\hbar}} = \hat{H}_s \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} e^{\frac{Et}{i\hbar}}$$

$$\Rightarrow \hat{H}_s \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = E\begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix}$$

 \Rightarrow

$$\frac{g_E e}{4m_E} B\hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = E \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix}$$

 \Rightarrow

$$E_{1} = +\frac{g_{E}}{4m_{E}}eB\hbar \quad \Rightarrow \quad \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$E_{2} = -\frac{g_{E}}{4m_{E}}eB\hbar \quad \Rightarrow \quad \begin{pmatrix} \tilde{a} \\ \tilde{b} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $g_E = 2$

$$\frac{eB}{2m_E}\hbar = \omega_L \hbar$$

Larmor-Frequenz

$$\omega_L = \frac{eB}{2m_E}$$

 \Rightarrow

$$\phi(t) = a_0 e^{-i\omega_L t} \begin{pmatrix} 1\\0 \end{pmatrix} + b_0 e^{+i\omega_L t} \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\frac{E_1 t}{i\hbar} = \frac{1}{i} \frac{\hbar \omega_L}{\hbar} t = i\omega_L t$$

 a_0, b_0 werden durch Anfangsbedingungen festgelegt

Erwartungswert des Spins

$$\begin{split} \left\langle \hat{S}_{x} \right\rangle_{t} &= \frac{\hbar}{2} \begin{pmatrix} a^{\star}\left(t\right) \\ b^{\star}\left(t\right) \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a\left(t\right) \\ b\left(t\right) \end{pmatrix} \\ &= \frac{\hbar}{2} \begin{pmatrix} a^{\star}\left(t\right) \\ b^{\star}\left(t\right) \end{pmatrix} \begin{pmatrix} a\left(t\right) \\ b\left(t\right) \end{pmatrix} \\ &= \frac{\hbar}{2} \left(a^{\star}\left(t\right)b\left(t\right) + a\left(t\right)b^{\star}\left(t\right)\right) \end{split}$$

$$\begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \begin{pmatrix} a_0 e^{-i\omega_L t} \\ b_0 e^{+i\omega_L t} \end{pmatrix}$$

 \Rightarrow

$$\left\langle \hat{S}_x \right\rangle_t = \frac{\hbar}{2} \left(a_0^{\star} e^{+i\omega_L t} e^{+i\omega_L t} b_0 + a_0 b_0^{\star} e^{-i\omega_L t} e^{-i\omega_L t} \right)$$

Sind a_0 , b_0 reel:

$$\begin{split} \left\langle \hat{S}_{x} \right\rangle_{t} &= \hbar a_{0} b_{0} \cos \left(2 \omega_{L} t\right) \\ \left\langle \hat{S}_{y} \right\rangle_{t} &= \hbar a_{0} b_{0} \sin \left(2 \omega_{L} t\right) \\ \left\langle \hat{S}_{z} \right\rangle_{t} &= \frac{\hbar}{2} \left(a_{0}^{2} - b_{0}^{2}\right) \quad \text{zeitlich konstant} \end{split}$$

(Abb Q62)

Präzession des Erwartungswerts des Spins

$$\left<\hat{S}_z\right>=$$
konst, da $\left[\hat{H},\hat{S}_z\right]=0$ (folgt aus Heisenberggleichung)

9.3 Magnetische Resonanz

Betrachte Spin unter Einfluss von

$$\vec{B}_0 = (0, 0, B_0)$$
 zeitlich konstant $\vec{B}_1 = (B_1 \cos(\omega t), B_1 \sin(\omega t), 0)$

Gesucht

$$i\hbar \frac{d}{dt} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \hat{H}_s \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$$

$$\hat{H}_{s} = \frac{2e}{2m_{E}}\vec{B} \cdot \hat{\vec{S}}$$

$$= \frac{e}{m_{E}}B_{1}\cos(\omega t)\hat{S}_{x} + \frac{e}{m_{E}}B_{2}\sin(\omega t)\hat{S}_{y}$$

$$\begin{split} \hat{H} &= \frac{\hbar}{2m_E} e \left(B_0 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + B_1 \cos \left(\omega t\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + B_1 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right) \\ &= \frac{\hbar e}{2m_E} \begin{pmatrix} B_0 & B_1 \left(\cos \left(\omega t\right) - i \sin \left(\omega t\right)\right) \\ B_1 \left(\cos \left(\omega t\right) + i \sin \left(\omega t\right)\right) & -B_0 \end{pmatrix} \\ &= \frac{\hbar e}{2m_E} \begin{pmatrix} B_0 & B_1 e^{-i\omega t} \\ B_1 e^{+i\omega t} & -B_0 \end{pmatrix} \end{split}$$

$$\omega_L = \frac{e}{2m_E} B_0, \, \omega_1 = \frac{e}{2m_E} B_1$$

$$i\hbar\frac{d}{dt}\begin{pmatrix}a\left(t\right)\\b\left(t\right)\end{pmatrix} = \hbar\begin{pmatrix}\omega_{L} & \omega_{1}e^{-i\omega t}\\\omega_{1}e^{+i\omega t} & -\omega_{L}\end{pmatrix}\begin{pmatrix}a\left(t\right)\\b\left(t\right)\end{pmatrix}$$

Ansatz $a\left(t\right)=e^{-i\omega_{L}t}\cdot\tilde{a}\left(t\right),\,b\left(t\right)=e^{+i\omega_{L}t}\tilde{b}\left(t\right)$

 \Rightarrow

$$i\hbar \left((-i\omega_L) \underbrace{e^{-i\omega_L t} \tilde{a}(t)}_{a(t)} + e^{-i\omega_L t} \dot{\tilde{a}}(t) \right) = \hbar \omega_L a(t) + \hbar \omega_1 e^{-i\omega t} b(t)$$

$$i\hbar\dot{\tilde{a}}\left(t\right)e^{-i\omega_{L}t}=\hbar\omega_{1}e^{-i\omega t}\tilde{b}\left(t\right)e^{i\omega_{L}t}$$

$$i\dot{\tilde{a}}(t) = \omega_1 e^{i2\left(\omega_L - \frac{\omega}{2}\right)t} \tilde{b}(t)$$
$$i\dot{\tilde{b}}(t) = \omega_1 e^{-i2\left(\omega_L - \frac{\omega}{2}\right)t} \tilde{a}(t)$$

 $\Omega_0 = \omega_L - \frac{\omega}{2}$

$$i\dot{\tilde{a}}(t) = \omega_1 e^{i2\Omega_0 t} \tilde{b}(t)$$
$$i\dot{\tilde{b}}(t) = \omega_1 e^{-i2\Omega_0 t} \tilde{a}(t)$$

Ansatz:

$$\tilde{a}(t) = a_0 e^{i\Omega t} \cdot e^{i\Omega_0 t}$$

$$\tilde{b}(t) = b_0 e^{i\Omega t} \cdot e^{-i\Omega_0 t}$$

Einsetzen

$$ia_0i(\Omega + \Omega_0) = \omega_1b_0$$

$$b_0 = -a_0 \frac{\Omega + \Omega_0}{\omega_1}$$

$$ib_0 i (\Omega - \Omega_0) = \omega_1 a_0$$

$$a_0 \frac{\Omega + \Omega_0}{\omega_1} (\Omega - \Omega_0) = \omega_1 a_0$$

$$\Omega^2 - \Omega_0^2 = \omega_1^2$$

$$\Rightarrow \Omega^2 = \omega_1^2 + \Omega_0^2$$

 \Rightarrow

$$\Omega = \pm \underbrace{\sqrt{\omega_1^2 + \Omega_0^2}}_{=:\Omega_s}$$

$$a(t) = a_1 e^{-i\omega_L t} e^{i\Omega_S t} e^{i\Omega_0 t} + a_2 e^{-i\omega_L t} e^{-i\Omega_S t} e^{i\Omega_0 t}$$

$$a(t) = a_1 e^{-i\frac{\omega}{2}t} e^{i\Omega_s t} + a_2 e^{-i\frac{\omega}{2}t} e^{-\Omega_s t}$$

$$b(t) = -\frac{\Omega_0 + \Omega_s}{\omega_1} e^{+i\frac{\omega}{2}t} e^{i\Omega_s t} - \frac{\Omega_0 - \Omega_S}{\omega_1} e^{+i\frac{\omega}{2}t} e^{-i\Omega_s t}$$