

www.vishay.com

Vishay Semiconductors

Standard Recovery Diodes (MAGN-A-PAK Power Modules), 250 A to 320 A

MAGN-A-PAK

PRIMARY CHARACTERISTICS							
I _{F(AV)}	250 A to 320 A						
Type	Modules - diode, high voltage						
Package	MAGN-A-PAK						
Circuit configuration	Two diodes doubler circuit, two diodes common cathode, single diode						

FEATURES

- · High voltage
- · Electrically isolated base plate
- 3000 V_{RMS} isolating voltage
- Industrial standard package
- · Simplified mechanical designs, rapid assembly
- · High surge capability
- · Large creepage distances
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

This VS-VSK series of MAGN-A-PAKs uses high voltage power diodes in two basic configurations. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built. They can be interconnected to form single phase or three phase bridges and the single diode module can be used in conjunction with the thyristor modules as a freewheel diode.

These modules are intended for general purpose applications such as battery chargers, welders and plating equipment and where high voltage and high current are required (motor drives, etc.)

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	ERISTICS VSK.250		VSK.320	UNITS		
1		250	270	320	Α		
I _{F(AV)}	T _C	100	100	100	°C		
I _{F(RMS)}		393	424	502			
	50 Hz	7015	8920	10 110	Α		
IFSM	60 Hz	7345	9430	10 580			
l ² t	50 Hz	246	398	511	1.42-		
1-1	60 Hz	225	363	466	kA ² s		
I ² √t		2460	3980	5110	kA²√s		
V _{RRM}		400 to 2000	400 to 3000	400 to 2000	V		
TJ			-40 to +150	•	°C		

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS										
TYPE NUMBER	VOLTAGE CODE	V _{RRM,} MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT 150 °C mA						
VS-VSK.270 VS-VSK.320	04	400	500							
	08	800	900							
VS-VSK.250 VS-VSK.270	12	1200	1300	50						
VS-VSK.270 VS-VSK.320	16	1600	1700							
20		2000	2100							
VS-VSK.270	30	3000	3100							

FORWARD CONDUCTION								
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES			UNITS
PANAMETER	STWIBOL	SE TEST CONDITIONS		VSK.250	VSK.270	VSK.320	ONTO	
Maximum average forward	I _{F(AV)}	180° cond	uction, half sin	e wave	250	270	320	Α
current at case temperature	. (/ (*/		,		100	100	100	°C
Maximum RMS forward current	I _{F(RMS)}	As AC swit	tch		393	424	502	
		t = 10 ms	No voltage		7015	8920	10 110	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied	Sinusoidal half wave,	7345	9340	10 580	Α
non-repetitive surge current	I _{FSM}	t = 10 ms	100 %		5900	7500	8500	
		t = 8.3 ms	V _{RRM} reapplied		6180	7850	8900	
	l ² t	t = 10 ms	No voltage	initial $T_J = T_J maximum$	246	398	511	- kA ² s
NA - view ver 124 favr fi veire e		t = 8.3 ms	reapplied		225	363	466	
Maximum I ² t for fusing	1-1	t = 10 ms	100 %		174	281	361	
		t = 8.3 ms	V _{RRM} reapplied		159	257	330	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms	to 10 ms, no v	oltage reapplied	2460	3980	5110	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	$(16.7 \% x)^2$ $T_J = T_J ma$	$\pi \times I_{F(AV)} < I < \pi$ eximum	0.79	0.74	0.69	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.92	0.87	0.86	
Low level forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum			0.63	0.94	0.59	mΩ
High level forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.49	0.81	0.44	
Maximum forward voltage drop	V _{FM}			ximum, 180° conduction : I _{F(AV)} + r _f x (I _{F(RMS)}) ²	1.29	1.48	1.28	V

BLOCKING										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	50	mA						
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, t = 1 s	3000	V						

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS									
DADAMETED		SYMBOL	TEST CONDITIONS		UNITS				
PARAMETER			VSK.250	VSK.270	VSK.320	UNITS			
Maximum junction operating and storage temperature range		T _J , T _{Stg}		-40 to +150		°C			
	Maximum thermal resistance, junction to case per junction R _{thJC}		DC operation	0.16	0.125	0.125	K/W		
Maximum resistance, case to heat sink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.035		1000			
Mounting MA	AGN-A-PAK to heatsink	A mounting compound is recommended and the torque should be rechecked		4 to 6		Nm			
4	usbar to MAGN-A-PAK		after a period of about 3 hours to allow for the spread of the compound.		4 10 0		INIII		
Approximate weight					800		g		
Approximate we	Approximate weight				30		oz.		
Case style	style MAGN-A-PAK		A-PAK						

AR CONDUCTION PER JUNCTION											
DEVICE			DAL COND					ULAR CON	NDUCTION UM		UNITS
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VSK.250	0.009	0.010	0.014	0.020	0.032	0.007	0.011	0.015	0.021	0.033	
VSK.270	0.008	0.012	0.014	0.020	0.032	0.007	0.011	0.015	0.020	0.033	K/W
VSK.320	0.008	0.010	0.013	0.020	0.032	0.007	0.011	0.015	0.020	0.033	

Note

The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Forward Power Loss Characteristics

Fig. 4 - Forward Power Loss Characteristics

Fig. 5 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Forward Power Loss Characteristics

Fig. 8 - Maximum Non-Repetitive Surge Current

Fig. 9 - Maximum Non-Repetitive Surge Current

Fig. 10 - Forward Voltage Drop Characteristics

Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

Fig. 12 - Current Ratings Characteristics

Fig. 13 - Current Ratings Characteristics

Fig. 14 - Forward Power Loss Characteristics

Fig. 15 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

Fig. 16 - Forward Power Loss Characteristics

Fig. 17 - Forward Power Loss Characteristics

Fig. 18 - Forward Power Loss Characteristics

Fig. 19 - Maximum Non-Repetitive Surge Current

Pulse Train Duration (s)
Fig. 20 - Maximum Non-Repetitive Surge Current

Fig. 21 - Forward Voltage Drop Characteristics

Fig. 22 - Thermal Impedance ZthJC Characteristics

Fig. 23 - Current Ratings Characteristics

Fig. 24 - Current Ratings Characteristics

Fig. 25 - Forward Power Loss Characteristics

Fig. 26 - Forward Power Loss Characteristics

Fig. 27 - Forward Power Loss Characteristics

Fig. 28 - Forward Power Loss Characteristics

Fig. 29 - Forward Power Loss Characteristics

Fig. 30 - Maximum Non-Repetitive Surge Current

Fig. 32 - Forward Voltage Drop Characteristics

Fig. 31 - Maximum Non-Repetitive Surge Current

Fig. 33 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Circuit configuration (see Circuit Configuration table)
- 3 Current rating: I_{F(AV)} rounded
- 4 Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- 5 Lead (Pb)-free

CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
		VSKD
		õ †
wo diodes doubler circuit	KD	~ 0 + - 0
		VSKC
		+
Two diodes common cathode	KC	+ 9 9
		VSKE
		÷ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Single diode	KE	0 + - 9

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95086				

Vishay Semiconductors

MAGN-A-PAK

DIMENSIONS in millimeters (inches)

Notes

- Dimensions are nominal
- Full engineering drawings are available on request
- UL identification number for gate and cathode wire: UL 1385
- UL identification number for package: UL 94 V-0

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.