Epistemic Action Logic

Yudai Kubono

JAIST

February 11, 2022

Yudai Kubono (JAIST) February 11, 2022 1/11

Epistemic Action Logic

- ► Epistemic Action Logic (EAL) is a kind of dynamic epistemic logic to describe updating agents' epistemic states.
- ▶ An action are described by an action model, which is a structure of the action.
- ► An action model makes it possible to treat more complex communicative actions than PAI

Yudai Kubono (JAIST) February 11, 2022 2/11

Example: Misleading Private Announcement

Example 1

Agent a is secretly informed that p is true, but the other agents misunderstand that a secretly received the information that p is false.

Yudai Kubono (JAIST) February 11, 2022 3/11

Syntax

▶ Let \mathcal{P} be a set of atomic propositions, and \mathcal{G} be a set of agents. The language \mathcal{L} of EAL is the set of formulas generated by the following grammar:

$$\mathcal{L} \ni \varphi := p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid [A, e] \varphi,$$

where $p \in \mathcal{P}$, $i \in \mathcal{G}$, and (A, e) is a pointed action model with

- (1) a finite domain E, and
- (2) for all $e \in E$, pre(e) is in \mathcal{L} that is already constructed in the previous stage of the inductively defined hierarchy.

Other connectives \vee , \rightarrow , and \leftrightarrow are defined in the usual manner.

Yudai Kubono (JAIST) February 11, 2022 4/11

Semantics

- ▶ A Kripke model and an action model give semantics.
- ▶ A Kripke model is a tuple $\langle W, \{R_i\}_{i \in \mathcal{G}}, V \rangle$ where a non-empty set of possible worlds W, an accessibility relation R on W, and a valuation V.

Yudai Kubono (JAIST) February 11, 2022 5/11

Action Model

Definition 1

An action model is a tuple $A = \langle E, \{R_i\}_{\mathcal{G}}, \operatorname{pre} \rangle$, where:

- E is a non-empty finite set of possible communicative events;
- R_i is a binary possibility relation on E;
- pre : $E \to \mathcal{L}$ is a function that assign a precondition to each event.
- ightharpoonup A pair (A, e) is called a pointed action model. It refers to an action itself.
- \blacktriangleright {E, { R_i } $_{i \in \mathcal{G}}$, pre} in A is denoted by { E^A , { R_i^A } $_{i \in \mathcal{G}}$, preA}.

Yudai Kubono (JAIST) February 11, 2022 6/11

Satisfaction Relation

Definition 2

For any Kripke model M and possible worlds $w \in W$, the satisfaction relation \vDash is given as follows:

$$\begin{split} M,w \vDash p :&\Leftrightarrow w \in V(p); \\ M,w \vDash \neg \varphi :&\Leftrightarrow M,w \nvDash \varphi; \\ M,w \vDash \varphi \wedge \psi :&\Leftrightarrow M,w \vDash \varphi \text{ and } M,w \vDash \psi; \\ M,w \vDash K_i\varphi :&\Leftrightarrow \text{ for all } v \text{ such that } (w,v) \in R_i,M,v \vDash \varphi; \\ M,w \vDash [A,e]\varphi :&\Leftrightarrow (M,w \vDash \operatorname{pre}^A(e) \Rightarrow M[A],(w,e) \vDash \varphi). \end{split}$$

Yudai Kubono (JAIST) February 11, 2022

7/11

Product Update

Definition 3

The Kripke model $M[A] = \langle W', \{R'_i\}_{i \in \mathcal{P}}, V' \rangle$ via the product update operation is defined as follows:

- $W' := \{(w, e) \in W \times E \mid M, w \models \operatorname{pre}^A(e)\};$
- $((w,e),(w',e')) \in R'_i :\Leftrightarrow (w,w') \in R_i \text{ and } ((e,e')) \in R^A_i$;
- $V'(p) := V(p) \times E$.

Yudai Kubono (JAIST) February 11, 2022

8/11

Representation of the Example

Example 1

Agent a is secretly informed that p is true, but the other agents misunderstand that a secretly received the information that p is false.

Figure: The pointed action model (MPria(p), g) (Baltag and Renne, 2016).

Yudai Kubono (JAIST) February 11, 2022 9/11

Proof System **EAL**

Table: Axiom schemas and inference rules of EAL.

Axiom schemas		
TAUT	The set of propositional tautologies	
K	$K_i(\varphi \to \psi) \to (K_i \varphi \to K_i \psi)$	
${ m T}$	$K_i \varphi o \varphi$	
5	$\neg K_i \varphi \to K_i \neg K_i \varphi$	
AP	$[A, e]p \leftrightarrow (\operatorname{pre}(e) \rightarrow p)$	
AN	$[A, e] \neg \varphi \leftrightarrow (\operatorname{pre}(e) \rightarrow \neg [A, e] \varphi)$	
ACN	$[A,e](\varphi \wedge \psi) \leftrightarrow ([A,e]\varphi \wedge [A,e]\psi)$	

AK	$[A, e]K_i\varphi \leftrightarrow (\operatorname{pre}(e)$	
	$\rightarrow \bigwedge_{(e,f)\in R_i^A} K_i[A,f]\varphi$	
ACM	$[A,e][B,f]\varphi \leftrightarrow [(A,e);(B,f)]\varphi$	
Inference rules		
MP	If $\vdash \varphi$ and $\vdash \varphi \rightarrow \psi$, then $\vdash \psi$	
KG	If $dasharphi$ then $dash K_iarphi$	
AG	If $dash arphi$ then $dash [A,e]arphi$	

10 / 11

Yudai Kubono (JAIST) February 11, 2022

- [1] A. Baltag and B. Renne. (2016). Dynamic epistemic logic. https://plato.stanford.edu/entries/dynamic-epistemic.
- [2] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. (2007). *Dynamic epistemic logic*. Springer Science & Business Media.

Yudai Kubono (JAIST) February 11, 2022

11 / 11