Complexidade Assintótica

Professores:

Norton T. Roman

Fátima L. S. Nunes

• Quais vocês já conhecem?

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

Qual é o melhor ???

- Quais vocês já conhecem?
 - Seleção (Selection Sort)
 - Inserção (Insertion Sort)
 - Bolha (Bubble Sort)

Qual é o melhor ???

Inserção

```
void insercaoDireta(int [] numeros)
 {
  for (int ivet=1; ivet < numeros.length; ivet++)
     int numalnserir = numeros[ivet];
     int isubv = ivet:
     while ((isubv > 0) &&
          (numeros [isubv -1] > numoAlnserir))
      numeros[isubv] = numeros[isubv - 1];
      isubv--;
     numeros[isubv] = numAlnserir;
```

Bolha

```
void bolha(int [] numeros)
{
   for (ivet = numeros.length - 1; ivet > 0; ivet--)
   {
      for (isubv = 0; isubv < ivet; isubv++)
      if (numeros[isubv] > numeros[isubv+1])
      {
        temp = numeros[isubv];
        numeros [isubv] = numeros [isubv+1];
        numeros [isubv+1] = temp;
      }
   }
}
```


Melhor em quê?

- tempo
- memória
- dificuldade

Recordando...

Algoritmo

O que é?

Recordando...

Algoritmo

Informalmente (Cormen et al., 2002):

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores com saída.
- Sequência de passos computacionais que transformam a entrada na saída.

O que é analisar um algoritmo?

- O que é analisar um algoritmo?
 - Prever os recursos de que o algoritmo necessitará.
 - Quais recursos?

- O que é analisar um algoritmo?
 - Prever os recursos de que o algoritmo necessitará.
 - Quais recursos?
 - memória, largura de banda de comunicação, hardware
 - principal: tempo de computação
- Análise de algoritmos:
 - permite escolher o algoritmo mais eficiente dentre um conjunto de candidatos para resolver um problema

- Em geral, tempo de duração de um algoritmo cresce com o tamanho da entrada
 - É usual descrever o tempo de execução de um programa como uma função do tamanho de sua entrada.

- Em geral, tempo de duração de um algoritmo cresce com o tamanho da entrada
 - Tamanho de entrada (*n*):
 - depende do problema estudado
 - maioria dos problemas: número de itens de entrada
 - exemplo: ordenação (quantidade de elementos do arranjo)
 - Tempo de execução:
 - quantidade de operações primitivas ou etapas executadas para uma determinada entrada
 - \triangleright vamos considerar que cada linha *i* leva um tempo constante c_i

- Função de custo de um algoritmo
 - representa o custo de tempo de cada instrução e o número de vezes que cada instrução é executada

custo vezes

Exemplo: *insertion-sort(A)* (entrada: array A que tem tamanho n)

	Custo	VCZCS
1 para j = 2 até tamanho[A] faça	C_1	n
2 chave = A[j]	C_2	n-1
3 // ordenando elementos à esquerda	0	n-1
4 i = j - 1	C_4	n-1
<pre>5 enquanto i > 0 e A[i] > chave faça</pre>	C ₅	$\sum_{j_{\overline{n}}^2}^n t_j$
A[i+1] = A[i]	C ₆	$\sum_{j=2}^{j\bar{n}^2} (t_j - 1)$
$7 \qquad \qquad i = i - 1$	C	$\sum_{n=1}^{\infty} (+ 1)$
8 fim enquanto	C ₇	$\sum_{j=2}^{n} (l_j - 1)$
9 A[i+1] = chave	_	4
10 fim para	C ₈	n-1

custo

vezes

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

			.0200
1 pa	ra j = 2 até tamanho[A] faça	C_1	n
2 0	chave = A[j]	C_2	n-1
3 //	ordenando elementos à esquerda	0	n-1
4	i = j - 1	C_4	n - 1
5	enquanto $i > 0$ e A[i] > chave faça	C ₅	$\sum_{j = n^2} t_j$
6	A[i+1] = A[i]	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i -1	C ₇	$\sum_{j=2}^{3n-} (t_j - 1)$
8	fim enquanto		j=2
9	A[i+1] = chave	C ₈	n-1

10 fim para

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c1n + c2(n-1) + c4(n-1) + c5 \sum_{j=2}^{n} t_j + c6 \sum_{j=2}^{n} (t_j-1) + c7 \sum_{j=2}^{n} (t_j-1) + c8 (n-1)$$

- ► Melhor caso: vetor já ordenado (A[i] ≤ chave na linha $5 \rightarrow t_j=1$ para j=2,3,...,n)
- $T(n)=c_1n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1) = (c_1+c_2+c_4+c_5+c_8)n (c_2+c_4+c_5+c_8)$
- Tempo de execução, neste caso, pode ser expresso como an + b para constantes $\mathbf{a} \in \mathbf{b}$ que dependem dos custos de instrução $\mathbf{c}_{i} \rightarrow \mathbf{função}$ linear de n

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^nt_j+c_6\sum_{j=2}^n(t_j-1)+c_7\sum_{j=2}^n(t_j-1)+c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] \rightarrow t_i=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - \left(c_2 + c_4 + c_5 + c_8\right)$$

Tempo de execução, neste caso, pode ser expresso como $an^2 + bn + c$ para constantes **a**, **b** e **c** que dependem dos custos de instrução $c_i \rightarrow função quadrática de <math>n$

- Em geral:
 - tempo de execução de um algoritmo é fixo para uma determinada entrada
 - analisamos apenas o **pior caso** dos algoritmos:
 - é um limite superior sobre o tempo de execução de qualquer entrada;
 - pior caso ocorre com muita frequência para alguns algoritmos. Exemplo: registro inexistente em um banco de dados;
 - muitas vezes, o *caso médio* é quase tão ruim quanto o pior caso

- Nas análises anteriores, foram feitas algumas simplificações em relação às constantes, chegando à função linear e à função quadrática
- Taxa de crescimento ou ordem de crescimento:
 - considera apenas o termo inicial de uma fórmula (exemplo: an²), pois os termos de mais baixa ordem são relativamente insignificantes para grandes valores de *n*;
 - ignora o coeficiente constante do termo inicial também por ser menos significativo para grandes entradas;
 - Portanto, dizemos que: a ordenação por inserção, por exemplo, tem um tempo de execução do pior caso igual a $\Theta(n^2)$ (*lê-se "theta de n ao quadrado"*);
 - Em geral, consideramos um algoritmo mais eficiente que outro se o tempo de execução do seu pior caso apresenta uma ordem de crescimento mais baixa.

Exercício

 Criar o gráfico do insertion sort, medindo o tempo médio, melhor e pior caso.

Exercício

 Criar o gráfico do insertion sort, medindo o tempo médio, melhor e pior caso.

Complexidade? Assintótica?

Complexidade

(cs) sf (complexo+dade) Qualidade do que é complexo.

Complexo

(cs) adj (lat complexu) 1 Que abrange ou encerra muitos elementos ou partes. 2 Que pode ser considerado sob vários pontos de vista. 3 Complicado.

Complexidade? Assintótica?

Assintótico

adj (assíntota+ico²) Geom 1 Pertencente ou relativo à assíntota. 2 Qualificativo do espaço compreendido entre uma curva e a sua assíntota. 3 Diz-se da direção paralela de uma assíntota. Var: assimptótico.

Assíntota

sf (gr asýmptotos) Geom Linha reta que se aproxima indefinidamente de uma curva sem nunca poder tocá-la. *Var:* assímptota.

Complexidade? Assintótica?

Assíntota

sf (gr asýmptotos) Geom Linha reta que se aproxima indefinidamente de uma curva sem nunca poder tocá-

la. Var: assímptota.

A função f(x)=1/x tem como assíntotas os eixos coordenados.

(Fonte: http://pt.wikipedia.org/wiki/Assímptota)

Complexidade assintótica

• Em ciência da computação e matemática aplicada, particularmente a análise de algoritmos, análise real, e engenharia, análise assintótica é um método de descrever o comportamento de limites. Exemplos incluem o desempenho de algoritmos quando aplicados a um volume muito grande de dados de entrada, ou o comportamento de sistemas físicos quando eles são muito grandes.

Crescimento Assintótico de Funções

- Escolha do algoritmo não é um problema crítico quando n é pequeno.
 - O problema é quando *n* cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande:
 - analisa-se o comportamento assintótico das funções de custo;
 - representa o limite do comportamento da função de custo quando n cresce.

Crescimento Assintótico de Funções

- Eficiência assintótica dos algoritmos:
 - estuda a maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite, à medida que o tamanho da entrada aumenta indefinidamente (sem limitação)
 - em geral, um algoritmo que é assintoticamente mais eficiente será a melhor escolha para toda as entradas, exceto as pequenas.

Quais funções "crescem mais"?

$$f(n) = n$$

$$f(n) = 2^n$$

$$f(n) = logn$$

$$f(n) = n^2$$

$$f(n) = 100n^2 + 15 n$$

$$f(n) = nlogn$$

Comportamento Assintótico

Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
n log n	200	3000	$4 \cdot 10^{4}$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Comportamento Assintótico

 Supondo uma máquina que execute 1 milhão (10⁶) de operações por segundo

Função de custo	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

Comportamento Assintótico

- Influência do aumento de velocidade dos computadores no tamanho do problema, considerando a complexidade assintótica
 - Exemplo: um aumento de 1000 vezes na velocidade do computador resolve, considerando o mesmo tempo, um problema dez vezes maior de complexidade $\Theta(n^3)$ e um problema 1000 vezes maior se a complexidade for $\Theta(n)$.

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C	
n	x	100 <i>x</i>	1000 <i>x</i>	
n ²	x	10 <i>x</i>	31.6 <i>x</i>	
n ³	x	4, 6 <i>x</i>	10 <i>x</i>	
2 ⁿ	x	x + 6, 6	x + 10	

Comportamento Assintótico - Resumindo...

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|f(n)| \le c$. |g(n)|.

- Exemplo:
- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - 355

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo:
- $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
- Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - 33.5

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - $|n| \le |-n^2|$ para todo n ∈ N.
 - Por ser módulo, o sinal não importa
 - Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - 333

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico
 - $|n^2| \le |(n+1)^2|$, para $n \ge 0$
 - g(n) domina f(n)

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Será somente isso?
 - Não há como f(n) dominar g(n)?

• 555

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Não há como f(n) dominar g(n)?

- Lembre que a definição envolve também uma constante.
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \leq |cn^2|$
- Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c} n)^2|$,
 - ou $|n+1| \leq |\sqrt{c} n|$
- Se \sqrt{c} = 2, ou seja, c=4, isso é verdade

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - $|(n+1)^2| \le |4n^2|$, para $n \ge 1$
 - f(n) domina g(n), para $n \ge 1$
- Nesse caso, dizemos que f(n) se e g(n) dominam assintoticamente uma a outra.

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o Bacharel em Sistemas de Informação?

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto ?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$

Informalmente, dizemos que, se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente quanto

g(n).

- Definição:
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais } que 0 \le f(n) \le cg(n), \text{ para todo } n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in O(n^2) ?$

???

- Definição:
 - $O(g(n)) = \{f(n): existem constantes positivas c e n_0 tais que$ $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
 - $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo c = 3/2, teremos

$$\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$$
 , para $n_0 \ge 2$

Outras constantes podem existir, mas o que importa é que <u>existe</u> alguma escolha para as constantes

Usamos a notação O para dar um limite superior sobre uma função, dentro de um fator constante.

- Com a notação O podemos descrever frequentemente o tempo de execução de um algoritmo apenas inspecionando a estrutura global do algoritmo.
 - Exemplo:
 - estrutura de laço duplamente aninhado no algoritmo *insertion-sort* (visto anteriormente) produz um limite superior $O(n^2)$ no pior caso:
 - custo do laço interno é limitado na parte superior por O(1) (constante)
 - índices i e j são no máximo n
 - laço interno é executado no máximo uma vez para cada um dos n^2 pares de valores correspondentes a i e j

Notação O - o pior caso

 Como a notação O dá um limite superior, quando empregado ao pior caso...

Notação O - o pior caso

- Como a notação O dá um limite superior, quando empregado ao pior caso...
 - indica que esse limite vale para qualquer instância daquele algoritmo.

Notação O - o pior caso

- Como a notação O dá um limite superior, quando empregado ao pior caso...
 - indica que esse limite vale para qualquer instância daquele algoritmo.
- Assim, o limite O(n²) do pior caso do insertion sort também se aplica a qualquer entrada
- Veremos que o mesmo não é verdadeiro para a notação Θ

Operações com a notação O

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```


Operações com a notação O

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - 555

Operações com a notação O

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), O(n²) e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho
 - $O(n) + O(n^2) + O(n\log n) = \max(O(n), O(n^2), O(n\log n)) = O(n^2)$

Notação Ω

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ $que \ 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).
 - Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

Notação Ω

- Definição:
 - $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0 \}$
 - $\frac{3}{2}n^2 2n \in \Omega(n^2) ?$

555

Notação Ω

Definição:

- $\Omega(g(n)) = \{f(n): existem constantes positivas c e n_0 tais que$ $0 \le \operatorname{cg}(n) \le f(n), \text{ para todo } n \ge n_0$ $\frac{3}{2} n^2 - 2n \in \Omega(n^2)$
 - - Fazendo c = 1/2, teremos

$$\frac{3}{2}n^2 - 2n \ge \frac{1}{2}n^2$$
, para $n_0 \ge 2$

Notação O e Ω

3/2 n² - 2n 3/2 n² 1/2 n²

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

• $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)_{?}$$

355

Definição:

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- $\frac{3}{2}n^2 2n \in \Theta(n^2)?$
 - Fazendo $c_1 = 1/2 e c_2 = 3/2 teremos$

$$\left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$$

para
$$n_0 \ge 2$$

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \rightarrow \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

-
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
 → $|\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n|$ e ...

■
$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$
 $\rightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$

- Será coincidência?
 - 333

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \rightarrow \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

-
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
 → $|\frac{1}{2}n^2| \le |\frac{3}{2}n^2 - 2n|$ e ...

■
$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$
 $\rightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \le \left|\frac{3}{2}n^2\right|$

- Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta g(n)$

Notação 0

- Mas:
 - Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

Notação \(\textit{\Theta} - \text{pior caso} \)

- O tempo limite de $\Theta(n^2)$ para o pior caso *do* insertion sort
- Não implica um tempo $\Theta(n^2)$ para qualquer entrada
- Por exemplo, se pegarmos o melhor caso, vemos que ele tem $\Theta(n)$

- Definição:
 - $o(g(n)) = \{f(n): para toda constante positiva <math>c$, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se f(n) ∈ o(g(n)), então f(n) cresce mais lentamente que g(n).
 - Intuitivamente, na notação o, a função f(n) tem crescimento muito menor que g(n) quando n tende para o infinito

- $^{\bullet}$ 1000 n^2 ∈ $o(n^3)$?
 - 555

- $1000 n^2 \in o(n^3)$?
 - Para todo valor de c, um n_o que satisfaz a definição é:

$$n_0 = \left| \frac{1000}{c} \right| + 1$$

- Qual a diferença entre *O* e *o*?
 - *O*: <u>existem</u> constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) \le cg(n)$ é válida para <u>alguma</u> constante c>0
 - o: para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) < cg(n)$ é válida para toda constante c>0

Notação ω

- Definição:
 - $\omega(g(n)) = \{f(n): \text{ para toda constante positiva } c, \text{ existe } uma \text{ constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se f(n) ∈ $\omega(g(n))$, então f(n) cresce mais rapidamente que g(n).
 - Intuitivamente, na notação ω, a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - lacksquare $oldsymbol{\Omega}$ são chamados de assintoticamente firmes
- $\left|\frac{1}{1000}n^2\right| \in \omega(n)^2$
 - 333

Notação ω

- ω está para Ω , da mesma forma que o está para O
 - lacksquare $oldsymbol{\Omega}$ são chamados de assintoticamente firmes

$$\left|\frac{1}{1000}n^2\right| \in \omega(n)?$$

• Para todo valor de c, um n_o que satisfaz a definição é:

$$n_0 = |1000 c| + 1$$

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

 $f(n) \in \Omega(f(n)).$
 $f(n) \in \Theta(f(n)).$

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

 $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```


Exercício

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f_1	f ₂	f ₃	f_4	f ₅	f ₆	f ₇	f ₈
f_1	Φ							
f_2		Θ						
f ₂ f ₃ f ₄			Θ					
f_4				Θ				
f ₅					Θ			
f ₅ f ₆ f ₇						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
 & Clifford Stein. Algoritmos Tradução da 2a. Edição
 Americana. Editora Campus, 2002 (Capítulo 3).
- Michael T. Goodrich & Roberto Tamassia. Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).
- Notas de aula dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder.

Complexidade Assintótica

Professores:

Norton T. Roman

Fátima L. S. Nunes

