

https://iedib.net/

Matemàtiques II

Lliurament 1: Matrius i determinants

Josep Mulet Àmbit Científic IEDIB

Aquesta obra està subjecta a les condicions de llicència CREATIVE COMMONS no comercial i compartir igual.

Edició LATEX:

B Josep Mulet

Versió: 08-09-2020

Reconeixement-NoComercial-CompartirIgual 4.0 Internacional

Índex

1	Matrius	3
2	Operacions amb matrius	5
3	La matriu inversa	9
4	Determinants	11
5	Propietats dels determinants	13
6	Determinant d'ordre qualsevol	16
7	Matriu inversa per determinants	20

1. Matrius

Les matrius són una de les eines més usades dins de l'àlgebra lineal i estan associades a un conjunt de dades numèriques ordenades. Trobem les matrius en moltes ciències: Sociologia, Economia, Física, Biologia ... La idea intuïtiva de matriu és molt senzilla. Una matriu es pot definir com un taula de nombres ordenats en files i columnes, nombres que poden provenir d'experiments, enquestes, anàlisis econòmiques, etc.

Considereu dues comunitats autònomes, la comunitat A té 2 aeroports A_1 i A_2 i la comunitat B té 3 aeroports B_1 , B_2 , B_3 . Cada fletxa en aquest diagrama representa un vol diari entre els aeroports. El sentit de la fletxa indica la ciutat origen i destí.

Figura 1: Cada fletxa representa un vol entre aeroports.

Aquesta informació es pot descriure perfectament com una matriu

Definicions

Es defineix una matriu de n files i m columnes ($n \times m$) com

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$
 (2)

Les matrius es representen per lletres majúscules A, B, C,... Els **elements** de la matriu (els números) es representen en general per a_{ij} , on els subíndexs (i, j) ens donen la posició que ocupa el terme. Per exemple l'element $a_{3\,2}$ és el que es troba a la tercera fila i segona columna.

Dimensió

El nombre de files (n) i el nombre de columnes (m) ens dóna la **dimensió de la matriu** que expressam com $n \times m$.

Per exemple, la matriu
$$B=\left(\begin{array}{ccc} 3 & -1 & 4 \\ 1 & 5 & -9 \end{array}\right)$$
 té dimensió 2×3 . L'element $b_{22}=5$ i $b_{13}=4$.

Igualtat de matrius

Dues matrius són iguals si tenen la mateixa dimensió i si els elements que ocupen la mateixa posició són iguals.

Tipus de matrius

Si el nombre de files és diferent del nombre de columnes, la matriu es diu rectangular. Dins de les matrius rectangulars tenim els següents tipus:

- Matriu o vector fila: És aquella que només té una fila. Per exemple, la matriu $C=(1\ 2\ -4)$ és un vector fila de dimensió 1×3
- Matriu o vector columna: És la que només té una columna. Per exemple, la matriu $D=\begin{pmatrix} -3\\1 \end{pmatrix}$ és un vector columna de dimensió 2×1

Si el número de files és igual al nombre de columnes (n=m) es parla d'una **matriu quadrada**. Anomenam n a l'ordre de la matriu.

Dins de les matrius quadrades és important destacar que els elements a_{ij} en què els dos subíndexs són iguals formen la **diagonal principal**. Aquells elements en què i+j=n+1 (on n és l'ordre de la matriu) formen la **diagonal secundària**.

En el conjunt M_n de les matrius quadrades d'ordre n, cal destacar els següents tipus de matrius:

• Matriu triangular: És aquella matriu en la qual els elements situats per damunt o per davall de la diagonal principal són zero.

• Matriu Diagonal: És aquella matriu en la qual els elements que no estan en la diagonal principal són zero:

- Matriu Escalar: És aquella matriu diagonal en la qual els elements de la diagonal principal són tots iguals. $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- Matriu Unitat (Identitat): És la matriu escalar en la qual els elements no nuls són iguals a 1. Es representa per I.

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Les matrius escalars es poden escriure com un múltiple de la identitat kI.

• Matriu Nul·la: És aquella en la qual tots els seus elements són zero.

Matriu nul·la d'ordre 3. $O_3=\begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix}$. No confoneu el nombre zero amb la matriu zero.

2. Operacions amb matrius

Suma o resta

Donades dues matrius A i B de la mateixa dimensió $n \times m$, es defineix la suma de matrius (A+B) com aquella matriu de la mateixa dimensió, els elements de la qual són la suma dels elements que ocupen la mateixa posició.

$$A = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 3 & 2 \\ 0 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & -1 & 3 \\ -2 & 3 & 4 \\ -3 & -1 & 5 \end{pmatrix} \quad A + B = \begin{pmatrix} 3 & 1 & 7 \\ -3 & 6 & 6 \\ -3 & -3 & 6 \end{pmatrix}$$
 (3)

Producte per un escalar (o nombre)

El producte d'un nombre real k per una matriu $A=(a_{ij})$ és una altra matriu de la mateixa dimensió els elements de la qual són els productes dels elements de la matriu pel número k.

XEMPLE 6

Donada la matriu
$$A=\left(\begin{array}{ccc}1&2&4\\-1&3&2\\0&-2&1\end{array}\right)$$
, el producte de la matriu pel nombre 5 és

$$5A = \left(\begin{array}{ccc} 5 & 10 & 20 \\ -5 & 15 & 10 \\ 0 & -10 & 5 \end{array}\right)$$

El producte d'un nombre per una matriu té les següents propietats:

- Propietat Distributiva respecte de la suma de matrius. k(A+B)=kA+kB
- Propietat Distributiva respecte de la suma de nombres: (k+l)A = kA + lA
- Propietat Associativa mixta: k(lA) = (kl)A
- Element neutre: 1A = A
- -A = -1A és la **matriu oposada** que compleix que A + (-A) = O on O és la matriu nul·la de la mateixa dimensió que A.

Producte de matrius

El producte de matrius no és una operació tan senzilla com la suma de matrius o el producte d'una matriu per un nombre real. Per a poder multiplicar dues matrius, les seves dimensions han de complir unes determinades condicions.

Considerem les matrius A i B de dimensions $n_1 \times m_1$ i $n_2 \times m_2$. Per poder efectuar el producte de les dues matrius ha de passar que $m_1 = n_2$ (és a dir, el nombre de columnes de la matriu A és igual al nombre de files de la matriu B). A més, la dimensió de la matriu producte és $n_1 \times m_2$.

Figura 2: Condició per poder multiplicar dues matrius

Es defineix el producte $A \cdot B$, i en aquest ordre, com una matriu C de dimensions $n_1 \times m_2$ els elements de les quals s'obtenen de:

$$c_{ij} = \sum_{k=1}^{m_1} a_{ik} b_{kj} \tag{4}$$

Anem a entendre millor aquesta fórmula amb un exemple:

Volem efectuar el producte de les matrius $A=\begin{pmatrix}1&2&3\\4&5&6\end{pmatrix}$ $B=\begin{pmatrix}2&1\\3&2\\4&1\end{pmatrix}$. Veim que és

possible fer el producte $A \cdot B$ i que la dimensió del producte serà 2×2 . Aleshores, anem ara a calcular els 4 elements de la matriu producte:

$$C = A \cdot B = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 & 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 \\ 4 \cdot 2 + 5 \cdot 3 + 6 \cdot 4 & 4 \cdot 1 + 5 \cdot 2 + 6 \cdot 1 \end{pmatrix} = \begin{pmatrix} 20 & 8 \\ 47 & 20 \end{pmatrix}$$
 (5)

Per exemple, per calcular l'element c_{12} agafam la primera fila de la matriu A i la segona columna de la matriu B. Multiplicam element a element i efectuam la suma de tots els productes.

$$c_{12} = \sum_{k=1}^{3} a_{1k} b_{k2} = a_{11} b_{12} + a_{12} b_{22} + a_{13} b_{32} =$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 = 8$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 20 & 8 \\ 47 & 20 \end{pmatrix}$$

$$(6)$$

Figura 3

Anam repetint aquest càlcul per la resta d'elements de la matriu producte.

Notau que, en aquest exemple, el producte $B \cdot A$ també és possible però dóna una matriu 3×3

Aleshores, el producte de matrius **no és commutatiu** $A \cdot B \neq B \cdot A$

Si donades dues matrius es compleix que $A \cdot B = B \cdot A$, direm que les matrius A i B commuten.

Vídeo 1.1: Matrius: Definició i operacions https://www.youtube.com/watch?v=O6Ya7GrySXw

EXERCICI RESOLT 1

Calculau el producte $B \cdot A$ per a les matrius anteriors.

$$B \cdot A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \\ 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 6 & 9 & 12 \\ 11 & 16 & 21 \\ 8 & 13 & 18 \end{pmatrix}$$
 (7)

Si les matrius són quadrades, el producte de matrius té les següents propietats:

- Propietat Associativa: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ però seria diferent a $C \cdot (A \cdot B)$ pel fet que el producte de matrius no és commutatiu.
- Element neutre (I): Si I és la matriu identitat, $I \cdot A = A \cdot I = A$
- Propietat distributiva respecte de la suma de matrius: $A \cdot (B+C) = A \cdot B + A \cdot C$ itambé $(A+B) \cdot C = A \cdot C + B \cdot C$. Però notau que mai canviam l'ordre dels productes.

Producte d'un vector fila per un vector columna El producte d'un vector fila per un vector columna dóna un escalar (un nombre real). Per exemple:

$$\begin{pmatrix} 2 & 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -2 \\ 5 \end{pmatrix} = 2 \cdot 0 + 1 \cdot (-2) - 3 \cdot 5 = -17$$
 (8)

■ Potència de matrius Aⁿ

Si a A és una **matriu quadrada** d'ordre qualsevol, podem definir la potència d'aquesta matriu com:

- $A^0 = I$
- $A^1 = A$
- $A^2 = A \cdot A$
- . . .
- $A^n = A \cdot \cdot \cdot \cdot \cdot (n) \cdot A$

EXERCICI RESOLT 2

Donada la matriu $\left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right)$ calcula A^n .

Calculam A^2 , A^3 , A^4 , ...

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
 (9)

$$A^{3} = A^{2} \cdot A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix}$$
 (10)

$$A^{4} = A^{3} \cdot A = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 8 & -8 \\ -8 & 8 \end{pmatrix}$$
 (11)

En general deduïm que els elements de la matriu són potències de 2

$$A^n = \begin{pmatrix} 2^n & -2^n \\ -2^n & 2^n \end{pmatrix} \tag{12}$$

Matriu transposada A^t

Donada una matriu A de dimensions $n \times m$, es diu matriu transposada A^t a la matriu que s'obté en canviar les files per les seves columnes, per la qual cosa la matriu A^t tindrà dimensió $m \times n$.

Exemple:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \to A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
 (13)

Una matriu quadrada es diu que és **simètrica** quan coincideix amb la seva transposada: $A^t = A$

Exemple:
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 3 & 4 & 5 \end{pmatrix} \rightarrow A^t = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

Si una matriu quadrada és igual a l'oposada de la seva transposada, $A^t=-A$ es diu que és **antisimètrica**.

$$A = \begin{pmatrix} 0 & 1 & -3 \\ -1 & 0 & -4 \\ 3 & 4 & 0 \end{pmatrix} \to A^t = \begin{pmatrix} 0 & -1 & 3 \\ 1 & 0 & 4 \\ -3 & -4 & 0 \end{pmatrix}$$
 (14)

La transposició de matrius compleix les següents propietats:

- La transposada de la transposada és la mateixa matriu: $(A^t)^t = A$
- La transposada d'una suma de matrius és igual a la suma de les matrius transposades: $(A+B)^t=A^t+B^t$
- La transposada d'un producte de matrius és igual al producte **en ordre invers** de les matrius transposades: $(A \cdot B)^t = B^t \cdot A^t$

EXERCICIS PROPOSATS

1. Donades les matrius
$$A = \begin{pmatrix} 2 & -1 & 5 \\ -3 & 4 & 7 \\ -1 & 0 & 8 \end{pmatrix}$$
 i $B = \begin{pmatrix} 2 & 1 & 0 \\ -3 & 0 & 1 \\ 0 & 5 & -4 \end{pmatrix}$, calculau: a) $A + B$ b) $5 \cdot A - B$ calculated by a continuous continuous calculation $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ -1 & 5 \end{pmatrix}$ i $B = \begin{pmatrix} 6 & 7 \\ -2 & 1 \end{pmatrix}$ calcula tots els productes possibles.

3. La matriu inversa

Imagina't que et donen un nombre, per exemple 2 i et demanen quin nombre x multiplicat per 2 dóna 1? És a dir, 2x=1, fàcil $x=\frac{1}{2}$. Efectivament, el nombre $\frac{1}{2}$ s'anomena la inversa de 2 perquè $2\cdot\frac{1}{2}=1$.

Ara ens feim la mateixa pregunta amb matrius quadrades. Si A és una matriu quadrada $n \times n$, ens demanam quina matriu A^{-1} de la mateixa dimensió compleix

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

on I és la matriu identitat de dimensió n. Si la matriu A^{-1} existeix, l'anomenam la **inversa de la matriu** A.

No totes les matrius quadrades tenen inversa.

En aquest apartat ens limitam a calcular la inversa de matrius 2×2 senzilles mitjançant sistemes d'equacions. Quan haguem après el concepte de determinant, tindrem una forma és ràpida de calcular inverses.

Vídeo 1.2: La matriu inversa

https://www.youtube.com/watch?v=SDKv-u7DqUQ

EXERCICI RESOLT 3

Sigui la matriu $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$.

Troba la inversa A^{-1} mitjançant un sistema d'equacions

Plantejam la matriu inversa com $A^{-1}=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$ i trobem el producte:

$$A \cdot A^{-1} = \left(\begin{array}{cc} 0 & 1 \\ 2 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} c & d \\ 2a & 2b \end{array}\right)$$

Ha de complir-se que $A \cdot A^{-1} = I$, per tant: $A \cdot A^{-1} = I \Rightarrow \begin{pmatrix} c & d \\ 2a & 2b \end{pmatrix} =$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Recordem que dues matrius són iguals i ho són tots els seus elements $\int \ c = 1 \qquad d = 0$

$$\begin{cases} 2a = 0 & 2b = 1 \end{cases}$$

Resolent per a
$$a,b,c$$
 i d :
$$\left\{ \begin{array}{ll} a=0 & b=1/2 \\ c=1 & d=0 \end{array} \right. \rightarrow A^{-1} = \left(\begin{array}{ll} 0 & 1/2 \\ 1 & 0 \end{array} \right)$$

EXERCICI RESOLT 4

Comprova que la matriu

$$\left(\begin{array}{cc}
0 & -1/4 \\
1 & 1/2
\end{array}\right)$$

és la inversa de

$$\left(\begin{array}{cc} 2 & 1 \\ -4 & 0 \end{array}\right)$$

Si ja ens donen la inversa basta comprova que $A\cdot A^{-1}=A^{-1}\cdot A=I.$ S'han de comprovar els dos productes perquè el producte de matrius no és en general commutatiu.

Efectivament:

$$\begin{pmatrix} 2 & 1 \\ -4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1/4 \\ 1 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{15}$$

i també

$$\begin{pmatrix} 0 & -1/4 \\ 1 & 1/2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{16}$$

Per tant són inverses una de l'altra.

PBAU

Matrius ortogonals

Es diu que una matriu quadrada és **ortogonal** si la seva inversa coincideix amb la transposada: $A^{-1}=A^t$

EXERCICIS PROPOSATS

3. Comprovau si la matriu $M=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ és la inversa de la matriu $N=\begin{pmatrix}1&0\\1&-1\end{pmatrix}$.

4. Determinants

Com la mateixa paraula indica, un determinant ajuda a determinar. Però, a determinar què? Doncs, com veurem al llarg d'aquest i proper lliuraments, els determinants ajuden a saber

- · Si una matriu té inversa i com calcular-la
- · Si un sistema d'equacions té solució
- Si un conjunt de vectors tenen alguna relació de dependència

Determinants de matrius 2x2

Donada una matriu quadrada d'ordre 2, $A=\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right)$, es diu **determinant de la matriu** A, i s'indica com $\det(A)=|A|=\left|\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right|$ al número: $|A|=a_{11}a_{22}-a_{12}a_{21}$

És a dir, es multipliquen els elements de la diagonal principal i se li resta el producte dels elements de la diagonal secundària.

EXERCICI RESOLT 5

Calcula el determinant de les matrius
$$A=\begin{pmatrix}2&5\\1&4\end{pmatrix}$$
 i $B=\begin{pmatrix}-1&-2\\-4&3\end{pmatrix}$

$$|A| = \begin{vmatrix} 2 & 5 \\ 1 & 4 \end{vmatrix} = 2 \cdot 4 - 5 \cdot 1 = 8 - 5 = 3$$
 (17)

$$|B| = \begin{vmatrix} -1 & -2 \\ -4 & 3 \end{vmatrix} = -1 \cdot 3 - (-2) \cdot (-4) = -3 - 8 = -11$$
 (18)

Determinants de matrius 3x3

Donada una matriu quadrada d'ordre 3, $A=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{array}\right)$ es diu determinant de la matriu

A al número:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{vmatrix}$$
(19)

Aquest desenvolupament pot recordar-se fàcilment amb aquest diagrama, conegut com la **regla** de Sarrus:

Figura 4: Productes en la regla de Sarrus

Exemple:
$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 5 & 1 \\ 3 & 6 & -2 \end{vmatrix} = 1 \cdot 5 \cdot (-2) + 2 \cdot 1 \cdot 3 + (-1) \cdot 3 \cdot 6 - 3 \cdot 5 \cdot 3 - 1 \cdot 6 \cdot 1 - 2(-2) \cdot (-1)$$

$$= -10 + 6 - 18 - 45 - 6 - 4 = -77$$

Vídeo 1.3: Determinants 2x2 i 3x3

https://www.youtube.com/watch?v=xM0_-wvVrRs

EXERCICIS PROPOSATS

5. Calculau $\begin{bmatrix} 5 & -2 \\ 4 & 3 \end{bmatrix}$.

6. Calculau $\begin{vmatrix} 5 & -2 & 1 \\ 4 & 3 & 0 \\ 1 & -1 & 2 \end{vmatrix}.$

5. Propietats dels determinants

Tot seguit donam una sèrie de propietats dels determinants que són certes per qualsevol ordre però, per simplicitat, donarem exemples per a matrius 2×2 . Mostram les propietats per columnes tot i que també són certes per files.

0a) El determinant de la matriu identitat és 1: |I| = 1

Exemple:

$$|A| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - (0 \cdot 0) = 1$$
 (20)

1a) El determinant d'una matriu A és igual al determinant de la seva transposada $|A^t| = |A|$:

Exemple:

$$|A| = \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} = 2 \cdot 3 - (1 \cdot (-4)) = 10$$
 (21)

i també

$$|A^t| = \begin{vmatrix} 2 & -4 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - ((-4) \cdot 1) = 10$$
 (22)

2a) Si els elements d'una fila o d'una columna es multipliquen tots per un número, el determinant queda multiplicat per aquest número:

Exemple:

$$\begin{vmatrix} 2k & 1 \\ -4k & 3 \end{vmatrix} = 2k \cdot 3 - (1 \cdot (-4k)) = 10k$$
 (23)

i també

$$k \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} = k [2 \cdot 3 - (1 \cdot (-4))] = 10k$$
 (24)

3a) Si els elements d'una línia es poden descompondre en suma de dos o més sumands, el determinant serà igual a la suma de dos (o més) determinants que tenen totes les restants línies iguals i en aquesta línia tenen els primers, segons, etc. sumands:

Exemple:

$$\begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} = \begin{vmatrix} 6-4 & 1 \\ -1-3 & 3 \end{vmatrix} = \begin{vmatrix} 6 & 1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} -4 & 1 \\ -3 & 3 \end{vmatrix} = 19 - 9 = 10$$
 (25)

4a) Si en un determinant els elements d'una línia o columna són nuls, el determinant és nul:

Exemple:

$$\begin{vmatrix} 0 & 1 \\ 0 & 3 \end{vmatrix} = 0 \cdot 3 - (1 \cdot 0) = 0 \tag{26}$$

5a) Si en una matriu es permuten dues files (o dues columnes), el determinant canvia de signe.

Exemple:

$$\begin{vmatrix} 1 & 2 \\ 3 & -4 \end{vmatrix} = 1 \cdot (-4) - (2 \cdot (3)) = -10$$
 (27)

6a) Si un determinant té dues files o columnes paral·leles iguals, el determinant és nul:

Exemple:

$$\begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} = 1 \cdot 3 - (1 \cdot 3) = 0 \tag{28}$$

7a) Si una matriu quadrada té dues files o dues columnes proporcionals, el seu determinant és nul.

Exemple:

$$\begin{vmatrix} 1 & 1 \cdot k \\ 3 & 3 \cdot k \end{vmatrix} = 1 \cdot 3 \cdot k - (1 \cdot 3 \cdot k) = 0$$
 (29)

8a) Si els elements d'una línia són combinació lineal de les restants línies paral·leles, el determinant és nul.

Exemple:

Aquesta propietat per matrius 2×2 és igual que la propietat 7a). Per això, veurem un exemple amb matrius d'ordre 3. Si a la matriu $\begin{pmatrix} 2 & 1 & ? \\ -4 & 3 & ? \\ 5 & 2 & ? \end{pmatrix}$ construïm la tercera columna com una combinació de les altre dues, per exemple: $C_3 \to C_2 - 2C_1$ trobam el determinant

$$\begin{vmatrix} 2 & 1 & -3 \\ -4 & 3 & 11 \\ 5 & 2 & -8 \end{vmatrix} = \begin{vmatrix} 2 \cdot 3 \cdot (-8) + (-4) \cdot 2 \cdot (-3) + 1 \cdot 11 \cdot 5 \\ -5 \cdot 3 \cdot (-3) - (-4) \cdot 1 \cdot (-8) - 2 \cdot 2 \cdot 11 \end{vmatrix} = 0$$
 (30)

que comprovam que és nul així com assegura la propietat.

9a) Si als elements d'una línia se li suma una combinació lineal de les restants línies, el determinant no varia:

Exemple: Si a la matriu $\begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$ a la segona columna li sumam 3 vegades la primera $C_2 \rightarrow C_2 + 3C_1$ trobam $\begin{vmatrix} 2 & 7 \\ -4 & -9 \end{vmatrix} = 2 \cdot (-9) - 7 \cdot (-4) = -18 + 28 = 10 \tag{31}$

comprovam que el valor del determinant no canvia així com assegura la propietat.

10a) El determinant del producte de dues matrius quadrades és igual al producte dels determinants de les matrius: $|A \cdot B| = |A| \cdot |B|$

Exemple: $A=\left(\begin{array}{cc}2&1\\-4&3\end{array}\right)$, $B=\left(\begin{array}{cc}0&5\\1&-1\end{array}\right)$ tenen determinant |A|=10 i |B|=-5. El producte de les dues matrius és $A\cdot B=\left(\begin{array}{cc}1&9\\3&-23\end{array}\right)$ que té determinant $|A\cdot B|=-50$ que coincideix amb $|A|\cdot |B|=10\cdot (-5)=-50$.

D'aquesta darrera propietat deduïm una propietat molt important. Si prenem la matriu B com la inversa de A i recordam que per condició d'inversa $A\cdot A^{-1}=I$ i aplicam la propietat 10a)

Condició d'existència de la inversa $A \cdot A^{-1} = I \rightarrow |A| \cdot |A^{-1}| = |I| = 1$

Tenim el producte de dos determinant igualat a 1. Per força, cap dels dos termes pot ésser igual a zero.

Una matriu té inversa (és regular o invertible) si i només si el seu determinant és diferent de zero $|A| \neq 0$.

Vídeo 1.4: Propietats dels determinants
https://www.youtube.com/watch?v=vSeu-8R0r3U

EXERCICI RESOLT 6

Cadascun dels següents determinants és nul

a)
$$\begin{vmatrix} 3 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
b)
$$\begin{vmatrix} 1 & -1 & a \\ 1 & 0 & a \\ 1 & 2 & a \end{vmatrix}$$
c)
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
d)

b) La tercera columna és proporcional a la primera. Si treim a defora del -1 1 determinant, queda el determinant a amb dues columnes 1 0 1

a) Un determinant amb una línia de zeros és nul.

iguals que també és zero.

- c) La tercera fila és una combinació lineal de les dues primeres, per això el determinant és nul. La combinació és $(789) = -(123) + 2 \cdot (456)$, és a dir $F_3 = 2F_2 - F_1$.
- d) La segona fila és una combinació lineal de la primera i la tercera, per això el determinant és nul. La combinació és $F_2 = F_1 + F_3$.

3 4 a5 6 7

Justifica, sense desenvolupar els determinants, el motiu o motius que fan que siguin nuls.

6. Determinant d'ordre qualsevol

Hem calculat determinants d'ordre 2 i 3 emprant la definició de determinant (regla de Sarrus). Intentar aplicar aquestes tècniques a determinants d'orde major que 3 és molt complicat, per la qual cosa s'han dissenyat altres mètodes. Començam definit una sèrie de conceptes que necessitarem.

Menor complementari

Donada una matriu quadrada A, d'ordre n, es diu menor complementari de l'element a_{ij} , al determinant d'ordre (n-1) que s'obté d'eliminar la fila i i la columna j.

Exemple:

La matriu $A = \begin{pmatrix} 2 & 0 & 3 \\ 5 & 7 & 2 \end{pmatrix}$ té com element $a_{21} = 2$, el seu menor complementari s'indica com

 α_{21} és el determinant d'ordre 2 que s'obté eliminar la fila 2 i columna 1

$$\alpha_{21} = \begin{vmatrix} 1 & 5 \\ 7 & 2 \end{vmatrix} = -33 \tag{32}$$

Podeu comprovar que el menor $\alpha_{22} = -19$ i $\alpha_{13} = 14$.

Adjunt d'un element

Donada una matriu quadrada A, anomenam **adjunt de l'element** a_{ij} , escrit com A_{ij} , al menor complementari α_{ij} , precedit del signe + o – segons que la suma de els subíndexs (i+j) sigui parell o imparell:

$$A_{ij} = (-1)^{i+j} \alpha_{ij} \tag{33}$$

Una forma senzilla de recordar-se dels signes és escriure una matriu començant amb + en el primer element i anar alternant els signes com es mostra en aquesta imatge:

$$\begin{bmatrix} + & - \\ - & + \end{bmatrix} \qquad \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \qquad \begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix} \qquad \dots$$

Figura 5: Signe dels adjunts

Exemple:

La matriu $A=\left(\begin{array}{ccc} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 5 & 7 & 2 \end{array}\right)$ té com element $a_{21}=2.$

Podeu comprovar els adjunts $A_{21}=-\alpha_{21}=-(-33)=33, A_{22}=+\alpha_{22}=-19$ i $A_{13}=+\alpha_{13}=-(-33)=33$

Vídeo 1.5: *Menors i adjunts d'una matriu* https://www.youtube.com/watch?v=7WGnW0l-oKk

Desenvolupament d'un determinant per files o columnes

El determinant d'una matriu és igual a la suma dels productes dels elements d'una fila o columna pels seus adjunts corresponents.

Aquesta tècnica permet reduir un determinant d'ordre n a n determinats d'ordre n-1. Anem a veure com s'aplica amb un exemple en concret.

Si desenvolupam pels adjunts de la primera fila: $\begin{vmatrix} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 5 & 7 & 2 \end{vmatrix} = +3 \cdot \begin{vmatrix} 0 & 3 \\ 7 & 2 \end{vmatrix} -1 \cdot \begin{vmatrix} 2 & 3 \\ 5 & 2 \end{vmatrix} +5 \cdot$

$$\left|\begin{array}{cc} 2 & 0 \\ 5 & 7 \end{array}\right| = 18$$

Però també podem desenvolupar pel adjunts de la segona fila i obtenim el mateix resultat

$$\begin{vmatrix} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 5 & 7 & 2 \end{vmatrix} = -2 \cdot \begin{vmatrix} 1 & 5 \\ 7 & 2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 3 & 5 \\ 5 & 2 \end{vmatrix} - 3 \cdot \begin{vmatrix} 3 & 1 \\ 5 & 7 \end{vmatrix} = 18$$

L'avantatge d'agafar la segona fila és que un element és zero i per tant ens simplifica els càlculs. Aleshores,

A l'hora de desenvolupar un determinant per files o columnes triarem aquella línia que contingui més zeros.

Vídeo 1.6: Càlcul de determinants desenvolupant per files o columnes https://www.youtube.com/watch?v=tBjLFXRx8EE

Exemple:

Ens demanen calcular el determinant 4×4

$$\begin{vmatrix}
1 & 2 & 3 & 4 \\
2 & -1 & -2 & -3 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & -2
\end{vmatrix}$$
(34)

Triam desenvolupar per la darrera fila perquè té el màxim de zeros.

$$= -2 \begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & -2 \\ 0 & 0 & 2 \end{vmatrix}$$
 (35)

Donat que ara ja és un determinant d'ordre 3, podríem aplicar la Regla de Sarrus, però seguirem desenvolupant per la darrera fila

$$= -\frac{2}{2} \cdot 2 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -2 \cdot 2 \cdot (-5) = 20$$
 (36)

De la tècnica de desenvolupament d'un determinant per línies deduïm:

 Si una matriu és diagonal o triangular, el determinant és simplement multiplicar els elements de la diagonal.

$$\begin{vmatrix} 3 & 1 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{vmatrix} = 3 \cdot 2 \cdot 5 = 30 \tag{37}$$

Desgraciadament no totes les matrius són triangular o no tenen cap element igual a zero. Tot i que el desenvolupament fer files o columnes simplifica el càlcul del determinant, encara el càlculs es fan bastant llargs.

Per solucionar aquest problema, cal recordar una altra propietat dels determinants: "Si a una fila o columna li sumam o restam una combinació lineal de de les altres, el valor del determinant no canvia."

Abans de desenvolupar un determinant per files o columnes, intentarem **fer zeros**, és a dir, canviar alguna fila o columna per una combinació de les altres per així aconseguir més termes que siguin zero.

Si repetint aquest procés arribam a una matriu triangular, sabem que el determinant és sim-

plement el producte dels elements de la diagonal principal.

Vídeo 1.7: Determinant 4x4 aplicant les propietats (1) https://www.youtube.com/watch?v=iavUQW-pKkE

Vídeo 1.8: Determinant 4x4 aplicant les propietats (2)
https://www.youtube.com/watch?v=TcTWSz_efTA

EXERCICI RESOLT 7

Calcula el valor del determinant

Per fer zeros, a la tercera fila li restam la el doble de la primera i a la quarta li restam la primera

$$\begin{vmatrix} 1 & 1 & 5 & -2 \\ 2 & 0 & 3 & -1 \\ -1 & 2 & 1 & 5 \\ 1 & 1 & 0 & 3 \end{vmatrix} \xrightarrow{F_3 - 2F_1 \to} = \begin{vmatrix} 1 & 1 & 5 & -2 \\ 2 & 0 & 3 & -1 \\ -3 & 0 & -9 & 9 \\ 0 & 0 & -5 & 5 \end{vmatrix}$$
(38)

Ara desenvolupam pels adjunts de la segona columna

desenvolupant per la darrera fila

$$= -1 \cdot 5 \begin{vmatrix} 2 & 2 \\ -3 & 0 \end{vmatrix} = -30 \tag{40}$$

EXERCICI RESOLT 8

Resol l'equació

$$\begin{vmatrix} a & a & a & a \\ 2 & a & a & a \\ 3 & 2 & a & a \\ 4 & 3 & 2 & a \end{vmatrix} = 0$$

Hem de calcular el determinant 4x4. Començam traient el factor comú a de la primera fila. Després, a la 2a, 3a i 4a columnes li restam la 1a columna

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & a & a & a \\ 3 & 2 & a & a \\ 4 & 3 & 2 & a \end{bmatrix} = a \begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & a - 2 & a - 2 & a - 2 \\ 3 & -1 & a - 3 & a - 3 \\ 4 & -1 & -2 & a - 4 \end{vmatrix} = (41)$$

Desenvolupam per adjunts de la 1a fila i treim el factor comú (a-2)

$$\begin{vmatrix} a-2 & a-2 & a-2 \\ -1 & a-3 & a-3 \\ -1 & -2 & a-4 \end{vmatrix} = a(a-2) \begin{vmatrix} 1 & 1 & 1 \\ -1 & a-3 & a-3 \\ -1 & -2 & a-4 \end{vmatrix} = (42)$$

A la segona i tercera files, li sumam la primera fila, i desenvolupam per la 1a columna

$$a(a-2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & a-2 & a-2 \\ 0 & -1 & a-3 \end{vmatrix} = a(a-2) \begin{vmatrix} a-2 & a-2 \\ -1 & a-3 \end{vmatrix} = a(a-2)^3$$

L'equació factoritzada $a \cdot (a-2)^3 = 0$ té solucions a=0 i a=2.

7. Matriu inversa per determinants

Matriu d'adjunts

Donada una matriu quadrada A, es defineix com **matriu d'adjunts** adj (A) com la matriu formada per tots els adjunts dels elements de la matriu A.

Exemple:

Començarem trobam tots els menors de la matriu $A=\left(\begin{array}{ccc} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 5 & 7 & 2 \end{array}\right)$.

$$\begin{array}{lll} \alpha_{11} = -21 & \alpha_{12} = -11 & \alpha_{13} = 14 \\ \alpha_{21} = -33 & \alpha_{22} = -19 & \alpha_{23} = 16 \\ \alpha_{31} = 3 & \alpha_{32} = -1 & \alpha_{33} = -2 \end{array}.$$

Finalment, formam els adjunts corregim el signe dels menors i donam la resposta en forma de matriu $adj\ (A) = \left(\begin{array}{ccc} -21 & 11 & 14 \\ 33 & -19 & -16 \\ 3 & 1 & -2 \end{array} \right)$.

Matriu inversa

Definim la inversa d'una matriu quadrada A com la matriu d'adjunts de la transposada de A dividit pel determinant de A

$$A^{-1} = \frac{1}{|A|} adj A^t \tag{44}$$

Una condició necessària i suficient perquè la matriu tingui inversa és que $|A| \neq 0$

Nota: És indiferent calcular primer la matriu d'adjunts i després transposar o fer-ho al revés.

Vídeo 1.9: Càlcul de la matriu inversa per determinants https://www.youtube.com/watch?v=VmvmA4yCrcg

EXERCICI RESOLT 9

Calcula la inversa de $A=\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$

Començam cercant el determinant, $|A|=-1\neq 0$ aleshores existeix la inversa.

Transposam la matriu $A^t=\left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right)$. Calculam la matriu d'adjunts

 $adj\left(A^{t}
ight)=\left(egin{array}{cc}1&-1\\-2&1\end{array}
ight)$ i finalment, dividim tot pel valor del determi-

$$\mathsf{nant} \; |A| = -1 \; A^{-1} = \left(\begin{array}{cc} -1 & 1 \\ 2 & -1 \end{array} \right)$$

EXERCICI RESOLT 10

Calcula la inversa de $B=\begin{pmatrix} 1 & 2 & 3 \\ -1 & 5 & 1 \\ \end{pmatrix}$

Començam calculant el determinant de $|B|= egin{array}{cccc} 1 & 2 & 3 \\ -1 & 5 & 1 \\ 3 & 6 & -2 \end{array} =$

=-10-18+6-45-4-6=-77. Atès que el determinant és diferent de zero, la matriu B té inversa.

Transposam la matriu $B^t=\left(\begin{array}{ccc} 1 & -1 & 3\\ 2 & 5 & 6\\ 3 & 1 & -2 \end{array}\right)$

Cercam la matriu d'adjunts $adj\left(B^t\right)=\left(\begin{array}{ccc} -16 & 22 & -13 \\ 1 & -11 & -4 \\ -21 & 0 & 7 \end{array}\right)$

Finalment, dividim pel determinant de B

$$B^{-1} = \frac{1}{-77} \begin{pmatrix} -16 & +22 & -13 \\ +1 & -11 & -4 \\ -21 & 0 & +7 \end{pmatrix} = \begin{pmatrix} 16/77 & -2/7 & 13/77 \\ -1/77 & 1/7 & 4/77 \\ 3/11 & 0 & -1/11 \end{pmatrix}$$
(45)

Es deixa pel lector comprovar que efectivament $B \cdot B^{-1} = B^{-1} \cdot B = I$.

EXERCICI RESOLT 11

Determina la matriu X que verifica $A\cdot X\cdot A-B=\begin{pmatrix}0&0\\0&0\end{pmatrix}$ Essent les matrius $A=\begin{pmatrix}3&1\\-2&-1\end{pmatrix}$ i $B=\begin{pmatrix}5&-2\\1&3\end{pmatrix}$

En primer lloc comprovam si la matriu A té inversa. El seu determinant

$$|A|=\left|\begin{array}{cc} 3 & 1 \\ -2 & -1 \end{array}\right|=-1
eq 0$$
, llavors té inversa.

$$A^{t} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix} \Rightarrow adj(A^{t}) = \begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$$

La inversa de A és
$$A^{-1}=\left(\begin{array}{cc} 1 & 1 \\ -2 & -3 \end{array}\right)$$

A l'equació $A\cdot X\cdot A=B,$ multiplicam per la dreta i per l'esquerra per la inversa de A

 $A^{-1} \cdot A \cdot X \cdot A \cdot A^{-1} = A^{-1} \cdot B \cdot A^{-1}$, és a dir $X = A^{-1} \cdot B \cdot A^{-1}$ Nomes queda efectuar els productes de matrius

$$\begin{pmatrix} 1 & 1 \\ -2 & -3 \end{pmatrix} \cdot \begin{pmatrix} 5 & -2 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ -3 & 2 \end{pmatrix}$$

EXERCICIS PROPOSATS

7.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \\ 5 & 0 & 4 \end{pmatrix}$$

- a) Trobau el menor de l'element $a_{2,3}$.
- b) Trobau l'adjunt de l'element $a_{3,1}$.
- **8.** Considerau la matriu $M=\left(\begin{array}{ccc}1&1&2\\0&-1&1\\-2&0&2\end{array}\right)$
 - a) Calculau el seu determinant.
 - b) Calculau la matriu d'adjunts.
 - c) Calculau la inversa de la matriu M.