Tarea #1

"El misterio de los números aleatorios"

Nombre: Abdiel Morales Cedula: 8-915-1475

1. Genere un programa que genere números aleatorios del 1 al 32000, Grafique el resultado

R/= El archivo de los números aleatorios está en el archivo: num_aleatorio_Normal.py

Código en Python	Grafica
import numpy as np mu, sigma = 0.1, 32000 s = np.random.normal(mu, sigma, 1000) print (s)	0.000014 -
<pre>import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s, 30, density=True) plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (bins - mu)**2 / (2 * sigma**2)), linewidth=2, color='r') plt.show()</pre>	0.000010 - 0.000008 - 0.000004 - 0.000002 - 0.000002 - 0.000000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.0000 - 0.

2. Genere un programa que genere números aleatorios Uniformes del 1 al 32000, Grafique el resultado

R/= El archivo de los números aleatorios está en el archivo: num_aleatorio_Uniforme.py

¿Qué puede decir sobre ambas graficas?

- En la primera grafica vemos que los números aleatorio siguen una distribución normal o gaussiana y corresponde a una variable aleatoria continua, vemos que su forma es la de una campana por lo tanto los números arrojados por el programa en ejecución son simétricos.
- En la segunda grafica vemos que los números arrojados en la ejecución tiene una distribución uniforme por lo tanto todos sus valores tendrás la misma longitud.

¿Como es el comportamiento de los números aleatorios?

- ✓ El comportamiento de los números aleatorio es similar a la de la naturaleza.
- ✓ Un numero puede repetirse en varias ocasiones, pero aun así sigue siendo aleatorio.
- ✓ El comportamiento de los números aleatorio es determinístico.
- ✓ Una secuencia aleatoria de números no se puede predecir. Su comportamiento se puede describir únicamente por sus propiedades estadísticas.