STA035B Midterm Practice

Spencer Frei

Instructions

Problem 1

Consider the following code.

For each of the following, explain if the code is a valid command. If it is, describe what the output of the command is (if it is a tibble, draw the tibble). If it not, explain why.

```
a.
scores %>%
 mutate(a = wage * hours)
# A tibble: 4 x 4
        wage hours
 name
  <chr> <dbl> <dbl> <dbl>
1 Mary
        25
                40 1000
2 Jose
          35
                38 1330
3 Ali
          37
                NA
                      NA
4 Pat
                42
                      NA
          NA
  b.
scores %>%
 mutate(b = product(wage, hours, na.rm=TRUE))
  c.
cleaned_scores %>%
 mutate(c = wage * hours)
# A tibble: 4 x 4
 name
        wage hours
  <chr> <dbl> <dbl> <dbl>
                40 1000
          25
1 Mary
2 Jose
          35
                38 1330
3 Ali
          37
              0
                       0
4 Pat
          0
                42
                       0
```

Problem 2

Suppose we have a tibble weather whose first few rows look like this:

origin	temp	dewp	humid	${\rm wind_dir}$	wind_spe	eedwind_g	gust precip	pressure	visib	$time_hour$
EWR	39.02	26.06	59.37	270	10.35702	N.	A 0	1012.0	10	2013-01-01 01:00:00

origin	temp	dewp	humid	wind_dir	wind_spee	dwind_gust pr	ecip	pressure	visib	time_hour
EWR	39.02	26.96	61.63	250	8.05546	NA	0	1012.3	10	2013-01-01
FILE	20.02	20.04	0.4.40	2.40	44 20200	37.4	0	1010 5	4.0	02:00:00
EWR	39.02	28.04	64.43	240	11.50780	NA	0	1012.5	10	2013-01-01
EWR.	39.92	28.04	62.21	250	12.65858	NA	0	1012.2	10	03:00:00 2013-01-01
ĽWΙ	39.92	20.04	02.21	250	12.00000	IVA	U	1012.2	10	04:00:00
EWR	39.02	28.04	64.43	260	12.65858	NA	0	1011.9	10	2013-01-01
										05:00:00
EWR	37.94	28.04	67.21	240	11.50780	NA	0	1012.4	10	2013-01-01
										06:00:00

For each of the following, explain if the code is a valid command. If it is, describe what the output of the command is. If it not, explain why.

Problem 3

Consider the following vector of strings.

```
strings <- c("William; Grade: A", "Jenny; Grade: B-", "Alex; Grade: B+")
```

- a. Suppose we want to use regex to return a vector containing strings that indicate only the student's grades (i.e., A, B-, B+ for the vector strings). Which of the following options correctly does this task?
- (A) str_replace(strings, $"^[A-Za-z]+: (.*)", "\1")$
- $(B) str_replace(strings, ".*: .*", "\\2")$
- (C) str_replace(strings, "(.*): (.*)", "\\2")
- (D) str_replace(strings, "^[A-Za-z]*: (.*)", "\\2")