Distribuciones Estadísticas

Mario Calvarro Marines

Índice general

1.	Dist	tribuci	iones Discretas	1
	1.1.	Degen	nerada	1
		1.1.1.	Función de masa	1
		1.1.2.	Función de distribución	1
		1.1.3.	Momentos	1
		1.1.4.	Función característica	2
	1.2.	Berno	ulli	2
		1.2.1.	Función de masa	2
		1.2.2.	Función de distribución	2
		1.2.3.	Momentos	2
		1.2.4.	Función característica	2
	1.3.	Binom	nial	3
		1.3.1.	Función de masa	3
		1.3.2.	Función de distribución	3
		1.3.3.	Momentos	3
		1.3.4.	Función característica	3
	1.4.	Poisso	on	3
		1.4.1.	Función de masa	4
		1.4.2.	Función de distribución	4
		1.4.3.	Momentos	4
		1.4.4.	Función característica	4
		1.4.5.	Otras características de interés	4
2	Dist	tribuci	iones Continuas	5
		Unifor		5
	Z.I.	CHHOF	11115	()

	2.1.1.	Función de masa	
	2.1.2.	Función de distribución	1
	2.1.3.	Momentos	1
	2.1.4.	Función característica	6
2.2.	Gamm	na	6
	2.2.1.	Función de masa	6
	2.2.2.	Función de distribución	6
	2.2.3.	Momentos	6
	2.2.4.	Función característica	6
	2.2.5.	Otras características de interés	7
2.3.	Expon	encial	7
	2.3.1.	Función de masa	7
	2.3.2.	Función de distribución	7
	2.3.3.	Momentos	7
	2.3.4.	Función característica	8
	2.3.5.	Otras características de interés	8
2.4.	Beta .		8
	2.4.1.	Función de masa	8
	2.4.2.	Función de distribución	8
	2.4.3.	Momentos	8
2.5.	Norma	al	ç
	2.5.1.	Función de masa	6
	2.5.2.	Función de distribución	ç
	2.5.3.	Momentos	ę
	2.5.4.	Función característica	ç
Dist	tribuci	ones Normales 1	L 1
3.1.	Chi Cı	uadrado	11
	3.1.1.	Función de masa	11
	3.1.2.	Función de distribución	11
	3.1.3.	Momentos	11
	3.1.4.	Función característica	12
2.0	T C+11	dont	1 (

3.

	3.2.1.	Función de masa	12
	3.2.2.	Función de distribución	12
	3.2.3.	Momentos	12
	3.2.4.	Función característica	12
3.3.	F-Sneo	lecor	12
	3.3.1.	Función de masa	13
	3.3.2.	Función de distribución	13
	3.3.3.	Momentos	13
	3.3.4.	Función característica	13

DISTRIBUCIONES DISCRETAS

DEGENERADA

Distribución que vale 1 en un solo punto h.

Deg(h)

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

$$V[X] = 0$$

La función característica de la distribución es:

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

BERNOULLI

Distribución que mide la probabilidad de que un experimento acabe en "éxito" ó "fracaso".

Función de masa

La función de masa de la distribución es:

$$p_X(x) = p^x (1-p)^{1-x}, x \in \{0, 1\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & 1 \ge x \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = p$$

y un momento genérico:

$$E\left[X^k\right] = p$$

Respecto del centro

La **varianza** es:

$$V[X] = p(1-p)$$

Función característica

$$\varphi\left(t\right) = \left(1 - p\right) + p \cdot \exp\left\{it\right\}$$

BINOMIAL

Distribución que mide la probabilidad de que x experimentos, con probabilidad p, en n intentos sean "éxitos".

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x \in \{0, \dots, n\}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \sum_{i=1}^{x} \binom{n}{i} p^i (1-p)^{n-i}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = np$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = np\left(1 - p\right)$$

Función característica

La función característica de la distribución es:

$$\varphi(t) = ((1-p) + p \exp\{it\})^n$$

POISSON

Distribución que mide la probabilidad de que ocurran x eventos, que tienen una "velocidad" λ , en un determinado intervalo de tiempo.

$$P(\lambda)$$

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \frac{\lambda^x \exp\{-\lambda\}}{x!}, \ x \in \mathbb{N}_0$$

Función de distribución

La función de distribución es:

$$F_X(x) = \exp\{-\lambda\} \sum_{j=0}^{\lfloor x \rfloor} \frac{\lambda^j}{j!}$$

Poco importante.

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda$$

Respecto del centro

La **varianza** es:

$$V[X] = \lambda$$

Función característica

La función característica de la distribución es:

$$\varphi(t) = \exp\left\{\lambda \left(e^{it} - 1\right)\right\}$$

Otras características de interés

■ Si tenemos $X_i \sim P(\lambda_i)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim P\left(\sum_{i=1}^{n} \lambda\right)$$

■ Si tenemos una binomial, con número de "éxitos" esperados se mantiene más o menos constante, y hacemos tender n, número de casos, a infinito, tenemos como resultado una Poisson con $\lambda = np$.

4

DISTRIBUCIONES CONTINUAS

UNIFORME

Distribución que mide la probabilidad de un suceso que puede estar de forma arbitraria en un intervalo con las mismas posibilidades.

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{1}{b-a} I_{(a,b)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{1}{2}b + a$$

Respecto del centro

$$V\left[X\right] = \frac{1}{12} \left(b - a\right)^2$$

La función característica de la distribución es:

$$\varphi\left(t\right) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & t \neq 0\\ 1 & t = 0 \end{cases}$$

GAMMA

Distribución que mide la probabilidad de que en un tiempo a ocurran p eventos. (Puede que el tiempo sea $\frac{1}{a}$)

$$\gamma(p,a)$$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{a^p}{\Gamma(p)} x^{p-1} e^{-ax}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \frac{1}{\Gamma(p)} \gamma(p, ax)$$

(Poco importante)

Momentos

Respecto del origen

La **esperanza** es:

$$E\left[X\right] = \frac{p}{a}$$

Respecto del centro

La **varianza** es:

$$V\left[X\right] = \frac{p}{a^2}$$

Función característica

$$\varphi\left(t\right) = \left(1 - \frac{it}{a}\right)^{-p}$$

Otras características de interés

■ Si tenemos $X_i \sim \gamma\left(p_i, a\right)$ para $i \in \{1, \dots, n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \gamma \left(\sum_{i=1}^{n} p_i, a \right)$$

• Si $X \sim \gamma(p, a) \Rightarrow$

$$cX \sim \gamma\left(p, \frac{a}{c}\right), \ c \in \mathbb{R}$$

EXPONENCIAL

Distribución que mide la probabilidad que una cantidad x de tiempo haya pasado entre dos eventos de una distribución Poisson λ .

 $\exp\left(a\right)$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \lambda e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Función de distribución

La función de distribución es:

$$F_X(x) = 1 - e^{-\lambda x} \cdot I_{(0,+\infty)}(x)$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \lambda^{-1}$$

y un momento genérico:

$$E\left[X^k\right] = \frac{k!}{\lambda^k}$$

Respecto del centro

$$V\left[X\right] = \lambda^{-2}$$

La función característica de la distribución es:

$$\varphi\left(t\right) = \frac{\lambda}{\lambda - it}$$

Otras características de interés

- Si tenemos $X_i \sim \exp(a)$ para $i \in \{1, ..., n\}$. Entonces:

$$\sum_{i=1}^{n} X_i \sim \exp\left(a\right)$$

BETA

Distribución que

$$\beta(\alpha,\beta)$$

Función de masa

La función de densidad de la distribución es:

$$f_X(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

donde $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

Función de distribución

La función de distribución es:

$$F_X(x) = I_x(\alpha, \beta)$$

que es la regularización incompleta de la función beta.

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = \frac{\alpha}{\alpha + \beta}$$

Respecto del centro

$$V[X] = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$

NORMAL

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

DISTRIBUCIONES NORMALES

CHI CUADRADO

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

$$V[X] = 0$$

La función característica de la distribución es:

$$\varphi(t) = \exp\{ith\}$$

T-STUDENT

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

La función característica de la distribución es:

$$\varphi(t) = \exp\{ith\}$$

F-SNEDECOR

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** es:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$