DM Informatique Théorique

Marion Medeville Elias Rhouzlane

November 28, 2014

Abstract

Nous avons listé dans ce document toutes les signatures et axiomes des fonctions de notre programme.

Lexique

 ${\bf CMDBoisson}: Commande Boisson$

S, Stocks: Machine.Stocks

I, Ingredients: Machine. Ingredients

Signatures et Axiomes

 ${\it Machine}: {\it Monnaie} \times {\it CMDBoisson} \longrightarrow ({\it Monnaie} \times {\it Boisson}) \cup {\it Erreur}$

Fonction tarifs

Signature

 $\bullet \ \emptyset \longrightarrow E = (NomIngredient \times Prix)^{\#Ingredient}$

Axiomes

- \forall nom, prix $\in E$, get_prix(nom) = prix
- dimE = # Ingrédients

Fonction get_max_stock

Signature

• $Texte \longrightarrow Taille$

Axiomes

- $\forall \text{ nom } \in Texte \Rightarrow get_stock(nom) \in Stocks$
- \forall taille_max $\in Taille \Rightarrow$ taille_max $\in \mathbb{N}$
- $\forall stock \in C, \exists get_max_stock(nom) avec nom = get_nom(stock)$

Fonction get_stock_size

Signature

• $Texte \longrightarrow Taille$

Axiomes

- $nom \in Texte \Rightarrow get_stock(nom) \in Stocks$
- taille $\in Taille \Rightarrow taille \in \mathbb{N}$ et taille = longueur(get_stock(nom))
- $\forall stock \in C, \exists get_stock_size(nom) \text{ avec } nom = get_nom(stock)$

Fonction get_stock

Signature

• $Text \longrightarrow Stock$

Axiomes

• \forall nom $\in Text$, $\exists ! stock \in Stocks$ tel que $get_nom(stock) = nom$

MODE FONCTIONNEMENT

Fonction commander

Signature

• $Monnaie \times Cmd_{Boisson} \rightarrow (Monnaie \times Monnaie \times Boisson) \cup Monnaie$

Axiomes

```
• Soient, (a,b,c,d,e,f), (g,h,i,j,k,l), (m,n,o,p,q,r), (s,t,u,v,w,x) \in (\{0,1\}^6)^4 quatre tuples binaires de longueur 6. \exists (a,b,c,d,e,f) tel que mo = (a,b,c,d,e,f) avec mo \in Monnaie, \exists (g,h,i,j,k,l) tel que cmdb = (g,h,i,j,k,l) avec cmdb \in CMD_{Boisson}, Si commande impossible retourner mo, Sinon retourner mo_1, mo_2, boisson tel que \exists (m,n,o,p,q,r) tel que mo_1 = (m,n,o,p,q,r) avec mo_1 \in Monnaie, \exists (s,t,u,v,w,x) tel que mo_2 = (s,t,u,v,w,x) avec mo_2 \in Monnaie, mo_1 = mo - 2 \in mo_1 + mo_2 = mo - Prix(cmdb)
```

Fonction preparer_commande

Signature

• $Stocks \times (Ingr\'edient \times Quantit\'e)^{\#Ingredient} \longrightarrow Boisson$

Axiomes

• Soit (a,b,c,d,e,f) $\in N^6$, (g,h,i,j,k,l) $\in N^6$ et (m,n,o,p,q,r) $\in N^6$ trois tuples de binaire de 6 entiers.

```
Ingrédients = (a,b,c,d,e,f), Commande = (g,h,i,j,k,l), Boisson = (m,n,o,p,q,r)
```

 $BoissonCommand\'{e} = Boisson$

Fonction verifier commande

Signature

• $CMD_{boisson} \longrightarrow \{V, F\}$

Axiomes

• Soit $(a,b,c,d,e,f) \in N^6$ un tuple de binaire de 6 entiers. Commande = (a,b,c,d,e,f) $a,b,c,d,e,f \in \{0,1\}$ longueur(Commande) = nombre d'ingrédients + 1

Fonction verifier_stock_suffisant

Signature

 $\bullet \;\; Stocks \times (Ingr\'edient \times Quantit\'e)^{\#Ingredient} \longrightarrow \{V,F\}$

Axiomes

Soit (a,b,c,d,e,f) ∈ N⁶ un tuple de binaire de 6 entiers.
 Commande = (a,b,c,d,e,f)
 Soit Stock un dictionnaire contenant en clé le nom de l'ingrédient et en valeur le stock restant correspondant.
 Commande[i] ∈ Stock[i]

Fonction verifier monnaie

Signature

• $Monnaie \longrightarrow \{V, F\}$

Axiomes

• Soit $(a,b,c,d,e,f) \in N^6$ un tuple de binaire de 6 entiers. Monnaie = (a,b,c,d,e,f)Longueur(Monnaie) = nombre de pièces différentes

Fonction ramener_deux_euros

Signature

 $\bullet \ \ Monnaie \longrightarrow Monnaie \times Monnaie$

Axiomes

• Soit (a,b,c,d,e,f) $\in N^6$, (g,h,i,j,k,l) $\in N^6$ et (m,n,o,p,q,r) $\in N^6$ trois tuples de binaire de 6 entiers.

```
\begin{split} & Monnaie = (a,b,c,d,e,f),\, Monnaie 1 = (g,h,i,j,k,l),\, Monnaie 2 = (m,n,o,p,q,r)\\ & g \in a,\, h \in b,\, I \in c,\, j \in d,\, k \in e,\, l \in f,\\ & somme(m,n,o,p,q,r) = 2\\ & somme(a,b,c,d,e,f) = somme(g,h,I,j,k,l) + 2\\ & Monnaie[i] = Monnaie1[i] + Monnaie2[i] \end{split}
```

Fonction vérifier_rendu_monnaie_possible

Signature

• $Monnaie \times Prix \longrightarrow \{V, F\}$

Axiomes

Soit (a,b,c,d,e,f) ∈ N⁶ un tuple de binaire de 6 entiers.
 Monnaie = (a,b,c,d,e,f)
 Si ∃ (g,h,i,j,k,l) ∈ N⁶ un tuple de binaire de 6 entiers tel que (g,h,i,j,k,l) = Monnaie - PrixBoisson, alors retourner Vrai
 Sinon retourner Faux

Fonction rendre_monnaie

Signature

• $Monnaie \times Stocks \longrightarrow Monnaie$

Axiomes

• Soit (a,b,c,d,e,f) $\in N^6$ et (g,h,i,j,k,l) $\in N^6$ deux tuples de binaire de 6 entiers.

```
\begin{split} & Monnaie = (a,b,c,d,e,f), \, Monnaie2 = (g,h,i,j,k,l) \\ & Monnaie[i] \in Sotck[i] \\ & somme(a,b,c,d,e,f) = somme(g,h,I,j,k,l)\text{-prix}(commande) \end{split}
```

Fonction formater_commande

Signature

• $CMD_{Boisson} \longrightarrow (Ingredient \times Quantit\acute{e})^{\#Ingredients}$

Axiomes

Soit (a,b,c,d,e,f) ∈ N⁶ un tuple de binaire de 6 entiers. Soit (g,h,i,j,k) ∈ N⁵ un tuple de 5 entiers appartenant à [0, 3].
Commande = (a,b,c,d,e,f) et CommandeAjustée = (g,h,i,j,k) g = transformation du tuple (a,b) binaire en entier, h=c, i=d, j=e, k=f.

Fonction get_prix_boisson

Signature

• $(Ingredient \times Quantit\acute{e})^{\#Ingredients} \longrightarrow Prix$

Axiomes

• Soit $(a,b,c,d,e) \in N^5$ un tuple de binaire de 6 entiers. Commande = (a,b,c,d,e)Somme = prix[ingrédient] × Commande[ingrédient]

Fonction match

Signature

 $\bullet \ (Ingredient \times Quantit\'e)^{\#Ingredients} \longrightarrow TypeBoisson \times (TypeSupplement)^n$

Axiomes

• Pour i dans [0;5]: Si Ingrédients[i] \in composition d'une boisson α et α [Ingrédients] \in Ingrédients alors retourner Vrai Retourner Faux

MODE MAINTENANCE:

Fonction changer_prix_unitaire

Signature

• $Text \times (\mathbb{N} \cup (\mathbb{N} \times \mathbb{N})^n) \longrightarrow \emptyset$

Axiomes

 $\bullet \ \ Prix_Unitaire = Nouveau_Prix$

Fonction prix_unitaire

Signature

• $Text \longrightarrow Prix$

Axiomes

• Prix = Prix[Ingrédient]

$Fonction \ set_max_stock$

Signature

• $Text \times \mathbb{N} \longrightarrow \emptyset$

Axiomes

 $\bullet \ \ {\rm Max_Stock[Ingr\'edient]} = {\rm Nouveau_Max_Stock}$

Fonction reset

Signature

 $\bullet \quad \emptyset \longrightarrow \emptyset$

Axiomes

• ancien historique = nouvel historique

Fonction vider_caisse

Signature

 $\bullet \quad \emptyset \longrightarrow \emptyset$

Axiomes

- Soit (a,b,c,d,e,f) $\in\ N^6$ un tuple de binaire de 6 entiers.

$$Caisse = (a,b,c,d,e,f)$$

Caisse_vide = (0,0,0,0,0,0)

Fonction get_all_stock

Signature

• $\emptyset \longrightarrow Stocks$

Axiomes

• Soit Stock2 un dictionnaire ayant pour clé le nom de chaque ingrédients et pour valeur le stock correspondant.

nombre de clés du dictionnaire = nombre d'ingrédients

Fonction remplir_stock

Signature

 $\bullet \quad Text \longrightarrow \emptyset$

Axiomes

• $Stock(Ingrédient) = Max_stock$

Fonction remplir_tout_stock

Signature

 $\bullet \quad \emptyset \longrightarrow \emptyset$

Axiomes

• $Stocks[i] = Max_Stock[i]$

Fonction ajouter_stock

Signature

• $Text \times \mathbb{N} \longrightarrow \emptyset$

Axiomes

- Si Stock + quantité
 \in Max_Stock, alors Nouveau_Stock = Stock + Quantité, Sinon Nouveau_Stock = Stock

Fonction historique

Signature

• $\emptyset \longrightarrow Historique$

Axiomes

• Axiome:

COMPLEXITES/ORDRE DE GRANDEUR

Def tarifs : $\bullet \ \, \text{Complexit\'e}: \ \, 12 \\ \bullet \ \, \text{Ordre de grandeur}: \ \, \text{O(1)}$

• Complexité : 12

Def stocks :

• Ordre de grandeur : O(1)

$Def\ changer_prix_unitaire:$

- Complexité : 3n
- Ordre de grandeur : O(n)

Def prix_unitaire :

- Complexité : 2
- Ordre de grandeur : O(1)

$Def \ set_max_stock:$

- Complexité : n + 3

Def reset :

- Complexité : 2n + 25
- Ordre de grandeur : O(n)

$Def\ vider_caisse:$

- Ordre de grandeur : O(n)

${\bf Def~get_stock}:$

- Complexité : 3
- Ordre de grandeur : O(1)

Def get_stock_size :

- Complexité : 3
- Ordre de grandeur : O(1)

$Def~get_stock_max:$

- Complexité : 5
- Ordre de grandeur : O(1)

$Def get_all_stock:$

- Complexité : 5n

$Def\ remplir_stock:$

- Complexité : 3n + 10
- Ordre de grandeur : O(n)

$Def \ remplir_tout_stock:$

- Complexité : 3n + 17
- Ordre de grandeur : O(n)

$Def \ ajouter_stock:$

- Complexité: 19
- Ordre de grandeur : O(1)

Def get_historique :

- Complexité : 3
- Ordre de grandeur : O(1)

Def display_stats:

- Complexité : 5 + 6n

Def verifier_commande :

- Complexité : 11 + 4n
- Ordre de grandeur : O(n)

Def trad:

- Complexité : 23
- Ordre de grandeur : O(1)

${\bf Def} \ \underline{\quad} {\bf get_boites}:$

- Complexité : 4n + 5
- Ordre de grandeur : O(n)

Def ___verifier_monnaie :

- Complexité : $15 + 20n + 12n^2$
- Ordre de grandeur : $O(n^2)$

${\bf Def} \ \underline{\quad } \ verifier \underline{\quad } rendu \underline{\quad } monnaie \underline{\quad } possible:$

- Complexité : $6 + 20n + 13n^2$
- Ordre de grandeur : $O(n^2)$

Def match :

- Complexité : $8n^2 + 5n + 2$
- Ordre de grandeur : $O(n^2)$

${\bf Def_calculer_prix_boisson:}$

- Complexité : $3n^3$ $3n^2$
- Ordre de grandeur : $O(n^3)$

Def calculer_prix_boisson :

- Complexité : $24 + 3n^3 n^2$
- Ordre de grandeur : $O(n^3)$

$Def __verifier_stock-suffisant:$

- Complexité : 5n + 2
- Ordre de grandeur : O(n)

${\bf Def} \ \underline{\qquad} {\bf preparer_commande}:$

- Complexité : $22 + 17n + 8n^2$
- Ordre de grandeur : $O(n^2)$

$\ \, {\rm Def \ commander} \,:$

- Complexité : $91 + 80n + 41n^2 + n^3$
- Ordre de grandeur : $O(n^3)$