CC1 Analyse 4, durée : 2h. Barème sur 24 pts.

Les calculettes et téléphones portables ne sont pas autorisés.

Toute réponse doit être soigneusement justifiée.

Exercice 1. Soit (f_n) la suite de fonctions définie sur [-1,1] par

$$f_n(x) = (1 - x^2)^n$$
.

- 1. Etudier la limite simple de la suite (f_n) .
- 2. Montrer que (f_n) converge uniformément sur $[-1,1]/[-\varepsilon,\varepsilon]$ pour tout $\varepsilon \in]0,1[$.
- 3. Montrer que (f_n) ne converge pas uniformément sur [-1,1].
- 4. A-t-on la convergence uniforme de (f_n) sur]0,1[?

Exercice 2. Soit la série de fonctions $\sum_{n\geq 1} f_n$ où

$$f_n: \mathbb{R}_+ \to \mathbb{R}, \quad x \mapsto xe^{-n^2x}$$
.

1. Montrer que $\sum_{n\geq 0} f_n$ converge simplement sur \mathbb{R}_+ .

On note S sa fonction somme.

- 2. Pour $n \geq 1$, étudier les variations de f_n sur \mathbb{R}_+ .
- 3. Montrer que S est continue sur \mathbb{R}_+ .

Exercice 3. Etudier la nature des séries numériques :

(a)
$$\sum_{n\geq 0} \frac{e^{in^3} + n}{1 + in^3}$$
, (b) $\sum_{n\geq 0} e^{n(-\frac{1}{2} + 2i)}$ et (c) $\sum_{n\geq 2} \frac{e^{2in}}{\ln n}$.

Tournez, SVP

Exercice 4. Soit (f_n) la suite de fonctions continues définie sur [0,1] par

$$f_n(x) = \begin{cases} n^3 x^2 (1 - nx) & \text{si } x \in [0, 1/n] \\ 0 & \text{si } x \in [1/n, 1] \end{cases}$$

- 1. Etudier la limite simple de la suite (f_n) .
- 2. Calculer $\int_0^1 f_n(t) dt$. Que peut-on en déduire comme résultat sur la convergence uniforme de (f_n) ?
- 3. Etudier la convergence uniforme de (f_n) sur [a, 1] pour $a \in]0, 1[$.
- 4. A-t-on

$$\lim_{a \to 0^+} \lim_{n \to +\infty} \int_a^1 f_n(t) dt = \lim_{n \to +\infty} \lim_{a \to 0^+} \int_a^1 f_n(t) dt ?$$

Exercice 5. On considère la série de fonctions $\sum_{n\geq 1} f_n$ où

$$f_n(x) = \frac{x}{n(1+n^2x)}, \quad x \ge 0.$$

- 1. Montrer que $\sum_{n\geq 1} f_n$ converge simplement sur \mathbb{R}_+ . On note S sa fonction somme.
- 2. Pour $n \ge 1$, étudier les variations de f_n sur \mathbb{R}_+ . En déduire que $\sum_{n\ge 1} f_n$ converge uniformément sur \mathbb{R}_+ .
- 3. Montrer que la fonction somme S est dérivable sur \mathbb{R}_+^* .
- 4 On s'intéresse maintenant au comportement de S en $+\infty$.

On pose
$$\alpha = \sum_{n=1}^{+\infty} \frac{1}{n^3}$$
. Montrer que pour $x > 0$,

$$S(x) - \alpha = -\sum_{1}^{+\infty} \frac{1}{n^3(1+n^2x)}$$
.

5 En déduire que $\lim_{x\to +\infty} S(x) = \alpha$.