

FIG. 1

1 ATGGCCGCTCGGGGTGCTGAAACGGGGGGGGAGACGGTGGGAGGGACAGCGT
 1 ▶ MetAlaAlaArgGlyAlaGluAlaAlaGlyAlaAspGlyAlaArgGlyGlnArg

 64 CGTCATCTACGACGGGACCTCTGCTCTGCTCTACGGGTCTGCAACGGCTGGCGCCGGC
 22 ▶ ArgGlyAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla

 127 GCCGGCCGGCGCTAGCCGCTGCTGCTATGCCGACCGTGGCCCTGCTGCTGCGCCGGCG
 43 ▶ GlyAlaAlaArgAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla

 190 CCCGGGGGGGACAAACGG
 64 ▶ ProAlaAlaAlaGlyAlaGlyAlaProAlaProAlaProAlaProAlaLeuAlaAlaSerPro

 253 GCCCCCCCCGGGAGCCCCGGGACCCCCGGGACGGGAGCGGAGCCCCGGGAGCCCCGGGAG
 85 ▶ AlaProProAlaSerProSerProSerProGlyProAspAlaAlaSerProAspAspAsp

 316 AGCACAGACGCTGGGGCTCCGGCTCGGCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 106 ▶ SerThrAspValAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAla

 379 CTGTCGGGGGGCTCGGGCACGGGACTACACGGGGCATGGCGTCAATTACAGGAGAACATCCGGCG
 127 ▶ ValCysProProSerGlyAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaPro

 442 TACGGGCTCGGGGGAACTACACGGGGCATGGCGTCAATTACAGGAGAACATCCGGCG
 148 ▶ TyrGlyLeuGlyAlaAspTyrThrGlyLeuGlyValIleTyrGlyLeuAsnIleAlaPro

 505 TACACGTTCAAGGCCTACATTACAAAACGTTGATCTGACACGACCTGGGGAGGACG
 169 ▶ TyrThrPhenylsAlaArgTyrTleTyrTlyAsnValIleValIleThrThrTyrTlyAsnValIle

FIG. 2A

568 TACGGCGCCATTACAAACCGTACACGGACCCGGTCCCCGATGGGCATGGCCACATACGGAC
 190 ▶ TyrAlaAlaLeuIleSerGlyTyrThrAspArgValProValGlyMetGlyGluIleIleAsp
 631 CTCGGACAGGAAGTGGCGCTGCCTTTCGAAAGCCAGTACCTGGCAGCCGGCCAAAGGTC
 211 ▶ LeuValAlaAspLysIlePheArgCysLeuSerIleSerGlyAlaGluIleIleAspGlyVal
 694 GTGGCCRTTGACGGGACCCCTGGAGGGCCCTGAAAGCCTGCGGCTGAGCCCTGAGCCG
 232 ▶ ValAlaPheAspAlaAspAspAspAspProIlePheAlaProLeuIleLysPheAlaGlySerAla
 757 CCCGGCTGCCGGCTGCCACACGGACCGGACCATGTTGACACGGCCCTGGCTCGGGGGCTC
 253 ▶ ProGlyValArgGlyTyrPheAspValIleSerAspValIleSerAspValIleSerAlaGlyLeu
 820 TACCGCACGGCACCTCTGTGAACCTGCAACTGGAAAGTGGACGGCCCTGGCTTACCCG
 274 ▶ TyrArgThrGlyIleSerValAlaLeuIleAspIleCysIleValGluIleGluAlaArgSerValIleTyrPro
 883 TACGACTCGTTCGCCCTCTCGACCGGGACATTATCTACATGTCGCCCTTACGGCTGGC
 295 ▶ TyrAspSerPheAlaLeuIleSerIleGlyAspIleIleSerAspIleTyrMetSerProPheTyrGlyLeuAla
 946 CAGGGCGCACGGCACACGGCTACTCGCCGGAGCCGTTCCAGCAGATCCAGGGCTA
 316 ▶ GluGlyAlaHisArgGluHisSerArgLeuIleAlaGlyAlaLeuProAlaAspArgGlyLeu
 1009 CTACAAAGGGCACATGGCCACGGGCGCCCTCAAGGAGCCGGTCTCGCCGAACCTTTGCG
 337 ▶ LeuGlnAlaAlaArgHisGlyHisGlyIleGluIleAlaGlyLeuAlaGlyLeuAlaGlyLeuPheAla
 1072 TACACACCACGTGACCGTAGCCCTGGCACTGGCTGCCAACGGCAAACGTTGCTCCGCTGCG
 358 ▶ TyrThrAlaAlaArgAspGlySerLeuGlyLeuGlyIleGlyAlaGlnAlaGlnAlaGlnAlaGly

FIG. 2B

1135 CAACTGGCCGACCAAATGCTTCCGAGACGAGCCCCGGAACTTCCCTTCACGGC
 379 ▶ GluValAlaArgGlyArgAsnAlaAlaArgArgGluLeuProLeuIleIleGly
 1198 CCGCTCGCCGACCTTCTGAGCCACACCTTCCGCTTGAGAAATGTCGCCCT
 400 ▶ ProLeuAlaLeuGlyAspLeuIleGluArgGlyAsnProHisLeuArgValAlaGluCysAlaAla
 1261 GAGCCACTGCGCTGATCGAAGAGGGCCGAGCCGGCTTACCGCCAGCCTACAA
 421 ▶ GluArgLeuArgAspAlaArgGlyArgGlyArgGlyAlaArgLeuProAlaLeuGly
 1324 CGGCACGCACGCTGCTGCTCGCCAGCTGAGACGTACCTGGCCGGCTTGTGCTGGC
 442 ▶ ArgHisAlaArgAlaValGlyGlnLeuGlyAspValProGlyAlaAlaArgLeuCysArgGly
 1387 CTTCCGGCGATGCTCAGCAACCGAGCTGGCCAAAGCTTACCTGAGGAGCTGGCCGGCTGGC
 463 ▶ LeuProAlaMetLeuSerAsnGluLeuAlaLysLeuGlyLeuGluLeuAlaArgSerAsn
 1450 CCCACGGCTGGGGCTGCTGGCCAAAGGCCGGCCGGCCGGCCGGCCGGCC
 484 ▶ GlyThrLeuGluGlyLeuPheAlaAlaAlaProLysProGlyProArgArgAlaArgArg
 1513 GCGGGCCGCTGCCCCGGCCGCCCCGGCCAAACGGCCGACGGGGACGCC
 505 ▶ AlaAlaProSerAlaProGlyArgGlyArgGlyAlaLysGlyAlaLysGlyAspAla
 1576 GCGGGCCGCTGACTTACCGCTGGCCGAGTTGCGCCGGCTGAGTTACCTACGCCAC
 526 ▶ GlyGlyArgValThrValSerSerAlaGluPheAlaAlaLeuGlnPheSerIleAspHis
 1639 ATCCAGGACCACTGGTTCAAGCCGCCTGGCCACGTCCCTGGCTGCAAGAAC
 547 ▶ IleGlnAspHisValAsnSerArgLeuAlaThrSerArgLeuSerIleGlnAsn

FIG. 2C

1702 AAGGAGCCCCCTGTTGGCCGAGGGGCTTAAGCTCAACCCCGGGCCAGCCGCTGG
 568 ► LysGluArgAlaLeuIlePheAlaGluAlaAlaLysLeuAsnProSerAlaAlaAla

 1765 CTGGCACCCGGCCGGCGCATGCTGGGGACCCATGGCCCGTGAACCTACTGCCACCGAG
 589 ► LeuAspPheArgAlaAlaAlaArgMetLeuGlyAspAlaMetAlaValThrTyrSerGlu

 1828 CTGGCCGAGGGGGCGCTTTCATCCGAGAACCTCGATGGCCGGCCGGCTTGCTACAGC
 610 ► LeuGlyGluGlyArgValPheAlaPheGluAsnSerMetArgAlaPheGlyGluIleGlyGlu

 1891 CGCCCGCCGGTCTCCCTTGCCTTCCGCAACGAGACCCAGCCGGTGGAGGCCAGCTCCGCCAG
 631 ► ArgProProValSerPheAlaPheGlyAspGluSerGluProValGluGlyGluLeuGlyGlu

 1954 GACAACCGAGCTGCTGCCGGCCAGCTCCTGCACCCGCCAACACAAGCCGCTAC
 652 ► AspAsnGluLeuIleuProGlyAlaAspTyrValIlePheAlaAsnGluLeuProValProLeu

 2017 TTCCGGCTTGGGGACTACCGTGTACTACCGAGAACTACCGGTACCTGCGGGTCCGGCTC
 673 ► PheArgPheGlyAlaAspTyrValIlePheAlaAsnGluAspTyrValAsnGluLeuAspTyr

 2080 GGGGAGCTGGAGGTGATCAGCACCTTGTGGACCTAAACTCACGGTTCTGGAGGACCGGAG
 694 ► AlaGluLeuGluValIleSerThrPheValAspLeuAsnLeuSerValLeuGluAspArgGlu

 2143 TTCTTGCCGCTAGAACTGTAACACGGCTCGCCGACACGGTCTGCTGACTACAGC
 715 ► PheLeuProLeuGluValIleThrArgAlaGluLeuAlaAspTyrGlyLeuLeuAspTyrSer

 2206 GACATAACGGCAACCAAGCTGGCACGGCTCCGGTTCTACGACATTGACCCGGTCTCAAG
 736 ► GluIleGlnArgArgAspGlnLeuIleSerArgPheTyrAspIleAspArgValValValLys

FIG. 2D

2269 ACGGACGGCAATAATGCCCATATGCCAGGGCTGCCAACTTCTAGGGCCTGGGCCCGTC
 757 ▶ The AspGlyAsnMetAlaIleMetArgGlyLeuAlaAsnProPheGlyLeuGlyAlaVal

 2332 CCCAACGGGTGGCACGGTGGCTGGCGCCGGTGGCTCGACCGTGTGGCC
 778 ▶ GlyGlnAlaValGlyThrValValGlyAlaAlaGlyAlaAlaLeuSerThrValSerGly

 2395 ATCGCCCTCGTTATTGCGAACCCGTTGGCGCTGGCCACGGCCGCTCGCTCGCCGG
 799 ▶ IleAlaSerPheIleAlaAsnProPheGlyAlaLeuAlaThrGlyLeuValLeuAlaGly

 2458 CTGGCTGGCCGCTTCTGGCTACCGGTACATTCCGGCTCCGCAACCCATGAAAGGG
 820 ▶ LeuValAlaAlaAlaPheLeuAlaTyrTyrTyrIleSerArgLeuArgSerAsnProMetLysAla

 2521 CTGTACCCGATCACCCACGGCGGCTCAAGCACGGACGGCCGGCCAACGGCCGGCGAG
 841 ▶ LeuTyrProIleThrIleAlaLeuIleAspAspAlaAlaArgGlyAlaThrAlaProGlyGlu

 2584 GAAGAGGAGGACTTGACGGAGGCCAAACTGGAGGAGCCGGAGATCATCAAGTATAATGTCG
 852 ▶ GluGluGluGluPheAspAlaAlaLysLeuGluGlnAlaArgGluMetIleLysTyrMetSer

 2647 CTCGTGTCAAGCGCAAGAGCAACAGGCAAAAGAGCAACAGGGCGCCGGCTG
 883 ▶ LeuValSerAlaValGluArgGluLysAlaLysSerAspGlyLysSerGlyProLeu

 2710 CTGGCGACCCGGCTGACGCACGCTGGCGCTGGCGAGCCGGACTACCCAGCAGCTT
 904 ▶ LeuAlaIleThrArgLeuThrGlnLeuAlaLeuAlaArgGlyIleGluGlnLeu

 2773 CCGATGCCGACGTCGGGGCATGAA
 925 ▶ ProMetAlaAspValGlyGlyAla...

FIG. 2E

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11