CS3231 Tutorial 1

WANG Xiyu

August 18, 2024

Contents

 1
 1

 2
 2

 3
 3

 4
 5

 5
 8

 6
 9

1

Show by induction that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Solution:

To prove this by induction,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Step 1: Base Case

For n = 1:

$$\sum_{i=1}^{1} i^2 = 1^2 = 1$$

$$\frac{1(1+1)(2(1)+1)}{6} = \frac{1 \times 2 \times 3}{6} = 1$$

The base case holds.

Step 2: Inductive Hypothesis

Suppose that it holds for some n = k:

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Step 3: Inductive Step

We need to show the formula holds for n = k + 1:

$$\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2$$

Using the inductive hypothesis:

$$\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

Factor k + 1 from both terms:

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)}{6} \left[k(2k+1) + 6(k+1) \right]$$

Simplify the expression inside the brackets:

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

Step 4: Conclusion

Since the formula holds for n = 1 and assuming it holds for n = k implies it holds for n = k + 1, by the principle of mathematical induction, the formula

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

is true for all positive integers n.

2

For a particular alphabet set Σ , how many strings of length n are there in Σ^* ? How many strings in Σ^* have length \leq n?

2.1:
$$|s| = n$$

It is obvious that

$$\forall n \in \mathbb{N}, \forall s \in \Sigma^*, (|s| = n) \implies \forall i \in \{1, 2, \dots, n\}, \exists \sigma \in \Sigma \text{ such that } s_i = \sigma$$

The number of choices per postion is

$$|\Sigma|$$

The number of strings of length n is given by:

Number of strings of length $k = |\Sigma| \times |\Sigma| \times \cdots \times |\Sigma| = |\Sigma|^n$

2.2: $|s| \le n$

From (2.1),

Number of strings of length $k = |\Sigma| \times |\Sigma| \times \cdots \times |\Sigma| = |\Sigma|^n$

Number of strings of length
$$\leq k = |\Sigma|^0 \times |\Sigma|^1 \times \cdots \times |\Sigma|^n = \sum_{i=0}^n |\Sigma|^i$$

Simplifying this geometric series gives:

$$\sum_{i=0}^{n} |\Sigma|^{i} = \frac{|\Sigma|^{n+1} - 1}{|\Sigma| - 1}$$

3

Prove:

$$A \cdot \bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A \cdot B_i$$

Solution:

Suppose:

$$s \in A \cdot \bigcup_{i=1}^{\infty} B_i$$

By the definition of concatenation,

$$s = a \cdot b \implies \exists a, b (a \in A, b \in \bigcup_{i=1}^{\infty} B_i)$$

$$b \in \bigcup_{i=1}^{\infty} B_i \implies \exists j \in \mathbb{N} (b \in B_j)$$

$$s = a \cdot b \implies s \in \bigcup_{j=1}^{\infty} A \cdot B_j$$

Thus,

$$A \cdot \bigcup_{i=1}^{\infty} B_i \subseteq \bigcup_{i=1}^{\infty} A \cdot B_i$$
 (1)

Suppose:

$$s \in \bigcup_{i=1}^{\infty} A \cdot B_i$$

By the definition of union,

$$s = a \cdot b$$
$$\exists j \in \mathbb{N} (s \in A \cdot B_j)$$

By the definition of concatenation,

$$s = a \cdot b \implies \exists a, b (a \in A, b \in B_j)$$

$$b \in B_j \land B_j \in \bigcup_{i=1}^{\infty} B_i \implies b \in \bigcup_{i=1}^{\infty} B_i$$

Therefore,

$$s = a \cdot b \in A \cdot \bigcup_{i=1}^{\infty} B_i$$

Thus,

$$\bigcup_{i=1}^{\infty} A \cdot B_i \subseteq A \cdot \bigcup_{i=1}^{\infty} B_i (2)$$

From (1) and (2),

$$A \cdot \bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A \cdot B_i$$

Prove:

$$(A^*)^+ = (A^+)^*$$

Solution:

$$(A^*)^+ = A^* \cup (A^*)^2 \cup (A^*)^3 \cup \dots$$

= $(\{\epsilon\} \cup A \cup A^2 \cup A^3 \cup \dots) \cup (\{\epsilon\} \cup A \cup A^2 \cup A^3 \cup \dots) \cup \dots$
= $\{\epsilon\} \cup A \cup A^2 \cup A^3 \cup \dots \text{ (LHS)}$

$$(A^{+})^{*} = \{\epsilon\} \cup A^{+} \cup (A^{+})^{2} \cup \dots$$
$$= \{\epsilon\} \cup (A \cup A^{2} \cup A^{3} \cup \dots) \cup (A \cup A^{2} \cup A^{3} \cup \dots) \cup \dots$$
$$= \{\epsilon\} \cup A \cup A^{2} \cup A^{3} \cup \dots \text{ (RHS)}$$

I'm too lazy to do this drawing here please refer to the photo attached below.

Figure 1: Full-size image example

4. c)
$$\Sigma = \{a, b\}$$
.

 $A = \{\{2, k, \frac{1}{2}, \frac{1}$

5

This DFA contains 2 accepting states, suggesting the union of the language accepted at state 1 and state 2.

- The language accepted at state 1 is
 - Case 1-1: $a(aa)^*$.
- The language accepted at state 2 can be

- Case 2-1:
$$(aa)^*b$$
: $((0 - 1 - 0)^* - 2)$ $(Case\ 2 - 1 \subseteq Case\ 2 - 3)$

- Case 2-2:
$$(aa)*b(aa)*: ((0 - 1 - 0)* - (2 - 3 - 2)*) (Case 2 - 2 \subseteq Case 2 - 4)$$

– Case 2-3:
$$a^*(aa)^*b$$
: (0 - (1 - 0 - 1)* - 2) (Case 2 – 3 \subseteq Case 2 – 2)

– Case 2-4:
$$a^*(aa)^*b(aa)^*$$
: $(0 - (1 - 0 - 1)^* - (2 - 3 - 2)^*)$

– Case 2-5:
$$b(aa)^*$$
: $(0 - (2 - 3 - 2)^*)$ $(Case 2 - 5 \subseteq Case 2 - 2)$

All unioned together, language accepted by this DFA is

$$L = a(aa)^* \cup a^*(aa)^*b(aa)^*$$

6

- The language accepted at state 2 is
 - Case 1: Looping on q_0 , looping on q_1 , enter q_2 :

$$L_1 = b^*(a)(a)^*b$$

- Case 2: From q_2 , looping on q_1 and eventually go back to q_2 :

$$L_2 = b^*(a)(a)^*b(b(a)^*b)^*$$

Unioned together,

$$L = L_1 \cup L_2 = b^*aa^*b(ba^*b)^*$$

Acknowledgment

I acknowledge the assistance of generative AI tools, such as ChatGPT, in the formatting and preparation of this LaTeX document.