CIS507: Design & Analysis of Algorithms $Quiz\ 1,\ Spring\ 2014$ Version with answers

Duration: 15 minutes Total weight: 5%

Student Name:	 	
Student ID: $$	 	

Problem	Points Obtained	Points Possible
1		4
2		1
Total		5

Cheat Sheet: Master Method

For T(n) = aT(n/b) + f(n), with $a \ge 1$, b > 1, compare f(n) with $n^{\log_b a}$.

Case	Condition, for $\epsilon > 0$	Solution
1	$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$	$T(n) = \Theta(n^{\log_b a})$
		Number of leafs dominates
2	$f(n) = \Theta(n^{\log_b a})$	$T(n) = \Theta(n^{\log_b a} \log n)$
		All rows have same asymptotic sum
3	$f(n) = \Omega(n^{\log_b a + \epsilon})$	$T(n) = \Theta(f(n))$ provided
		that $af(n/b) \le cf(n)$ for some $c < 1$
2	$f(n) = \Theta(n^{\log_b a} \log^k n)$	$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
(general)	or some constant $k \ge 0$	They grow at 'similar' rate

1 Multiple Choice (4 points)

For each of the following, circle the correct answer(s). Note that there may be more than one in each question.

1. **(0.5 point)**
$$f(n) = (n^8 + 5)^{0.5}$$
, and $g(n) = n^4$. $f = \mathcal{O}(g)$ $f = \Theta(g)$ $f = \Omega(g^2)$ $f = o(g)$

2. **(0.5 point)** Let
$$f(n) = \log(\sqrt{n})$$
 and $g(n) = \mathcal{O}(\log n)$.
 $f = \mathcal{O}(\sqrt{g})$ $f = \Theta(g)$ $f = \Omega(g)$ $f = o(g)$

3. **(0.5 point)** Let
$$f(n) = n^{\log n}$$
, and $g(n) = n^{2\log n}$. $f = \mathcal{O}(g)$ $f = \Theta(g^2)$ $f = \Omega(g)$ $f = o(\log g)$ $f = \omega(g)$

4. **(0.5 point)**
$$f(n) = 2^{\sqrt{n}}$$
, and $g(n) = \sqrt{2^n}$. $f = \mathcal{O}(g)$ $f = \Theta(g)$ $f = \Omega(g)$ $f = o(g)$

5. **(0.5 point)**
$$f(n) = \sum_{i=0}^{\infty} \left(\frac{1}{n}\right)^{i}$$
, and $g(n) = \frac{1}{\log n}$.
 $f = \mathcal{O}(g)$ $f = \Theta(g)$ $f = \Omega(g)$ $f = o(g)$

6. **(0.5 point)**
$$f(n) = (\log(n!))^2$$
, and $g(n) = n^2 \log n$.
 $f = \mathcal{O}(g)$ $f = \Theta(g)$ $f = \Theta(g \log g)$ $f = o(g)$ $f = \omega(g)$

- 7. **(0.5 point)** Suppose the running time of an algorithm follows the recurrence $T(n) = 2T(n-1) + \Theta(1)$, and $T(n) = \Theta(1)$ for $n \le 10$. What is the asymptotic running time? $\Theta(n^2)$ $\Theta(2^n)$ $\Theta(\log n)$ $\Theta(1)$
- 8. **(0.5 point)** Suppose the running time of an algorithm follows the recurrence $T(n) = 2T(\frac{n}{4}) + T(\frac{n}{2}) + \Theta(n)$, and $T(n) = \Theta(1)$ for $n \le 10$. What is the asymptotic running time? $\Theta(n) \qquad \Theta(n^{0.75}) \qquad \Theta(\log n) \qquad \Theta(n \log n)$

ANSWER:

- 1. $f = O(g); f = \Theta(g)$.
- 2. $f = \Omega(g)$.
- 3. f = O(q).
- 4. f = O(g); f = o(g).
- 5. $f = \Omega(g)$; $f = \omega(g)$.
- 6. $f = \Theta(g \log g)$; $f = \omega(g)$.

- 7. $T(n) = \Theta(2^n)$.
- 8. $T(n) = \Theta(n \log n)$.

2 Recurrences (1.0 point)

Give asymptotic upper and lower bounds (using Θ -notation) for T(n) for each of the following recurrences. Assume that T(n) is a non-negative constant for $n \leq 10$. Justify your answers. (*Hint:* Use the Master Method).

- 1. **(0.5 point)** $T(n) = 8T(n/2) + (n \log n)^3$
- 2. **(0.5 point)** $T(n) = T(n/7) + \Theta(1)$

ANSWER:

- 1. $f(n) = \Theta(n^{\log_2 8} \log^3 n)$. Case 2 (general): $T(n) = \Theta(n^3 \log^4 n)$.
- 2. $f(n) = \Theta(n^{\log_7 1})$. Case 2: $T(n) = \Theta(\log n)$.