Assignment 4: Fourier Series and Transform*

Signals and Systems (ELC 321)
Department of Electrical and Computer Engineering
The College of New Jersey.

Instructions:

- 1. The assignment questions are extracted from the Text (Signals, Systems, and Transforms, Fifth edition)
- 2. When using MATLAB to plot signals, scale your time or frequency axis such as to allow sufficient amount of the signal to be plotted. Use subplot to give 3 or 4 plots per page; label the axes of your plots accordingly e.g Time (sec) on the x-axis and x(t) on the y-axis; the title should be the problem number, for example 2a).
- 3. No submission is required for this assignment.
- 4. Due Date: Not Applicable.

Problem 1 (50 Marks). The block diagram of Figure 1 is an electronic oscillator for generating pure sinusoidal signal of a particular frequency, say ω_o . The block comprises of a square wave generator and a filter. The square wave generator can be realized using the circuit in Figure 2.

Figure 1: Square Wave Generator

 $^{^*\}mathrm{Dr.}$ Ambrose A. Adegbege

Figure 2: Square Wave Generator

a) Simulate the square wave generator in Pspice to obtain a square wave output. Set $V_{CC} = 5V$ and use appropriate component values to obtain a period of 5 Secs. Include the plots of the capacitor voltage and the output voltage V_o in your report. Hint: The period T is given by the relation

$$T = 2RC \ln \left(\frac{1+\alpha}{1-\alpha}\right) \text{ with}$$

$$\alpha = \frac{R_1}{R_1 + R_2}$$
(2)

$$\alpha = \frac{R_1}{R_1 + R_2} \tag{2}$$

You may fix $\ln\left(\frac{1+\alpha}{1-\alpha}\right) = 1$ and then compute the values R_1, R_2, R and C to achieve your desired Period of 5 seconds.

- b) Express the square-wave obtained in step (a) into its exponential Fourier series.
- c) Use Matlab to plot truncated form of the Fourier series obtained in step (b) using the following number of harmonics:
 - (a) 3-Harmonics, i.e only include terms up to $3\omega_o$ in your Fourier series.
 - (b) 9-Harmonics
 - (c) 21-Harmonics, and
 - (d) 45-Harmonics

Problem 2 (50 Marks). Figure 3 shows a half-wave rectifer circuit with sinusoidal signal input $V_S(t) = A\sin(\omega t)$ as shown in Fig 4. The voltage measured across the load resistor R_L is shown in Fig 5 assuming ideal diode behavior.

Figure 3: Half-wave Rectifier Circuit

Figure 4: Sinusoidal Input

Figure 5: Half-wave rectified Signal

- a) Determine the period T_o of both the input and output signals shown in Figs 4 and 5.
- b) Express the input sinusoidal signal as an exponential Fourier series.
- c) Express the half-wave rectfied signal of Fig. 5 as an exponential Fourier series. Deduce the average value of the half-wave rectified signal.

Problem 3 (50 Marks). The pulsed sinusoid of Figure 6 is formed by multiplying a sinusoidal signal x(t) of Fig. 7 by a rectangular pulse of Fig. 8

sometimes called a window. This pulsed-waveform has many applications expecially in electronic communication systems and in detection systems such as radar and sonar.

Figure 6: Pulsed Cosine waveform

Figure 7: Cosine waveform

Figure 8: Rectangular Pulse

- a) Determine the Fourier transform of the cosine waveform $x(t) = cos(\omega_o t)$ shown in Fig. 7 and plot its magnitude spectrum.
- b) Find the Fourier transform of the rectangular pulse of Fig. 8 and plot its magnitude spectrum using Matlab
- c) Determine the Fourier tranform of the pulsed cosine waveform of Fig.6 and plot the magnitude spectrum using Matlab.