DEVOIR DE MAISON N°3

EX1:

Soit la suite réelle $oldsymbol{U_n}$ définie par : $egin{dcases} oldsymbol{U_0=2} \ oldsymbol{U_{n+1}=2+rac{3}{U_n}} \end{cases}$ pour tout n de IN

- 1) Montrer que $U_n \ge 2$ pour tout n de IN
- 2) Déterminer le sens de variation de la fonction f définie sur IR*+ par $f(x) = 2 + \frac{3}{x}$
- 3) Soit $V_n = U_{2n}$ pour tout n de IN
 - a) Montrer par récurrence que la suite (V) est majorée par 3
 - b) Montrer par récurrence que la suite (V) est croissante
- 4) a) Montrer que pour tout n de IN : $|U_{n+1} 3| \le \frac{1}{2} |U_n 3|$
 - b) Déduire que pour tout n de IN : $|U_n 3| \le (\frac{1}{2})^n$
 - c) en déduire la limite de la suite (U) puis celle de (V)
- 5) Soit la suite (S_n) définie par : $S_n = \frac{1}{n} \sum_{k=1}^n U_k$ pour tout n de IN^* Montrer que S_n converge vers 3
- Montrer que S_n converge vers 3 6) Soit la suite (q_n) définie par : $q_n = \frac{U_{n-3}}{U_{n+1}}$
 - a) montrer que $\mathbf{q}_{\mathbf{n}}$ est une suite géométrique dont on précisera la raison
 - b) Exprimer U_n en fonction de n puis retrouver sa limite

EX2:

- 1) on considère l'équation E: 8x + 5y = 1 ou (x;y) est un couple de nombres relatifs.
 - a) Donner une solution particulière de l'équation E
 - b) Résoudre l'équation E
- 2) Soit N un nombre entier naturel tel qu'il existe un couple (a ;b) de nombres entiers

$$\mathsf{v\acute{e}rifiant} \, \big\{ \begin{matrix} N = 8 \ a + 1 \\ N = 5 \ b + 2 \end{matrix} \big\}$$

- a) Montrer que (a ;-b) est solution de E
- b) Quel est le reste de la division de N par 40 ?
- 3) a) Résoudre l'équation € : 8x + 5y = 100

HICHEM FARHATI@YAHOO.FR

b) Au VIIIème siècle, un groupe composé d'hommes et de femmes a dépensé 100 pièces de monnaie dans une auberge. Les hommes ont dépensé 13 pièces chacun et les femmes 5 pièces chacune. Combien pouvait-il y avoir d'homme et de femmes dans le groupe.

EX3:

On considère la suite (\boldsymbol{U}_n) définie par :

Pour tout x de IN et n ≥ 2 , $U_n = \sum_{k=2}^n \frac{1}{k \ln k}$

- a) donner le domaine de définition de f
- b) calculer la limite aux bornes
- c) montrer que f est strictement décroissante sur]1; +∞ [
- 2) a) montrer que pour tout entier $k \ge 2$ on a :

$$\frac{1}{k \ln k} \geq \int_{k}^{k+1} f(x) dx$$

- b) en déduire que pour tout $n \ge 2$, $U_n \ge \int_2^{n+1} f(x) dx$
- 3) a) calculer $I_n = \int_2^{n+1} f(x) dx$ pour $n \ge 2$
 - b) déterminer la limite de I_n en + ∞
 - c) en déduire la limite de U_{n} .

HICHEM FARHATI@YAHOO.FR

BON TRAVAIL