KHÔLLE Nº 10

Exercice 1

1. On pose x=1. L'intégrale $I=\int_0^\pi \ln(2-2\cos t) \;\mathrm{d}t$ est impropre en 0 et en π . Elle converge si, et seulement si les intégrales $\int_0^{\frac{\pi}{2}} \ln(2-2\cos t) \;\mathrm{d}t$ et $\int_{\frac{\pi}{2}}^\pi \ln(2-2\cos t) \;\mathrm{d}t$ convergent.

 $\ln(2 - 2\cos t) = (\ln 2)\ln(1 - \cos t) = -\ln 2 + \mathfrak{S}(1).$

L'intégrale $\int_0^{\frac{\pi}{2}} \ln(2-2\cos t) \, \mathrm{d}t$ est donc faussement impropre en 0. Et, avec le changement de variable strictement monotone $u=t-\frac{\pi}{2}$, on a $\int_{\pi/2}^{\pi} \ln(2-2\cos t) \, \mathrm{d}t = \int_0^{\pi/2} \ln(2-2\cos u) \, \mathrm{d}u$, qui est faussement impropre en 0. On en déduit que l'intégrale I converge, la fonction F est bien définie en x=1.

- 2. On a, pour $x \in [0,1[$ et $t \in [0,\pi], -2x \cos t \geqslant -2x$ donc $x^2 2x \cos t + 1 \geqslant x^2 2x + 1 = (x-1)^2 > 0$ car x < 1. Ainsi, la fonction f est définie sur $[0,1[\times [0,\pi].$
- 3. On pose X = [0, 1[.
 - Pour $t \in [0,\pi]$, la fonction $x \mapsto f(x,t) = \ln(x^2 2x\cos t + 1)$ est de classe \mathscr{C}^1 sur X comme composée de fonctions de classe \mathscr{C}^1 .
 - Pour $x \in X$, la fonction $t \mapsto f(x,t) = \ln(x^2 2x\cos t + 1)$ est continue par morceaux sur $[0,\pi]$, et intégrable sur $[0,\pi]$ (d'après la question 1).
 - Pour $x \in X$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $[0,\pi]$:

$$\frac{\partial f}{\partial x}(x,t) = \frac{2x - 2\cos t}{x^2 - 2x\cos t + 1}.$$

— Pour $x \in X$, pour $t \in [0, \pi]$,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant .$$