FOLHAR - EXPLORANDO FOLHAS DE PLANTAS COM REALIDADE AUMENTADA

Aluno(a): Bruno Geisler Vigentas

Orientador: Dalton Solano dos Reis

Coorientador: Mauricio Capobianco Lopes

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Visão Geral
- Implementação
- Resultados
- Conclusões
- Sugestões

Introdução

- Aulas de campo são uma maneira de diversificar a aula.
- Alunos compreendem o ecossistema, aprendendo sobre flora e fauna.
- Realidade Aumentada trás informações virtuais ao mundo real.
- Na educação pode enriquecer o material didático.
- Auxilia no conhecimento de folhas, permitindo a visualização de informações em 3D a partir da digitalização das folhas.
- Amplia a possibilidade de interação dos alunos em suas saídas a campo.
- Facilità o conhecimento sobre folhas.

Objetivos

 Auxiliar no conhecimento de folhas de plantas, por intermédio da Realidade Aumentada Imersiva.

- Os objetivos específicos são:
 - utilizar as folhas das plantas como marcadores para apresentação do conteúdo em Realidade Aumentada.
 - analisar a eficácia do aplicativo com usuários da área da Biologia.

Fundamentação Teórica

Fundamentação Teórica

Realidade Aumentada

- Possibilita estender o mundo real, complementando este com informações virtuais para auxiliar usuários.
- Combinação do mundo real e virtual executada de forma interativa em tempo real.
- Apresentada por meio de equipamentos tecnológicos.
- Realidade Aumentada Imersiva x Realidade Aumentada Não Imersiva.
- Marcadores.

Fundamentação Teórica AR Foundation

Unity's AR Foundation

Supported Features

Functionality	ARCore	ARKit	Magic Leap	HoloLens
Device tracking	✓	~	~	~
Plane tracking	~	~	~	
Point clouds	~	~		
Anchors	~	~	~	~
Light estimation	~	~		
Environment probes	~	~		
Face tracking	~	~		
Meshing			✓	~
2D Image tracking	~	~		
Raycast	~	~	~	
Pass-through video	~	~		
Session management	~	~	~	/

- Package Unity para Realidade Aumentada.
- Cria aplicações para Android e iOS.
- Interfaces para que as bibliotecas ARCore e ARKit funcionem iguais.
- API multiplataforma.

Fundamentação Teórica Barracuda

- Package para redes neurais no Unity.
- Permite o uso de redes pré treinadas em consoles, desktop e mobiles.
- Suporta modelos de aprendizado de máquina do tipo ONNX.
- Possibilita o intercâmbio de vários frameworks de aprendizado de máquina.
- Permite a execução em GPU e em CPU.
- Utilizada para fazer a detecção dos formatos das folhas, para servirem como marcadores.

Fundamentação Teórica

Morfologia das folhas

- Diferença morfológica ocorre devido ao poder da vegetação de se adaptar a diferentes condições e ambientes.
- Morfologia é estuda para reconhecimento de espécies.
- Identificação por observação de componentes como limbo, pecíolo, pulvino, nervura entre outros.
- Variedade morfológica pode ser dar na forma do limbo e nas nervuras.

Trabalhos Correlatos (1/3) Plantarum (BORTOLON, 2014)

- Interação com um webservice para realizar o cadastro e classificação de espécies de plantas utilizando a API Plantarum.
- Permite capturar uma foto e enviar ao servidor para realizar a classificação da espécie ou cadastrar uma nova.
- Construído em Java Android e C#.
- Em testes feitos com 32 fotos de espécies locais, todas foram detectadas apenas uma apresentou falso positivo.

Trabalhos Correlatos (1/3)

Plantarum (BORTOLON, 2014)

Bortolon (2014)

Trabalhos Correlatos (2/3) Gaia (OLIVEIRA; PRADO 2018)

- Oferece informações necessárias e confiáveis para auxiliar pessoas na escolha de flores e plantas.
- Utiliza realidade aumentada para trazer informações para auxiliar o cliente na compra da planta, como a quantidade diária de água e luz necessária.
- Utiliza marcadores com símbolo gráfico para ancorar objeto 3D.
- Desenvolvido em Unity com C# e SDK Vuforia.

Trabalhos Correlatos (2/3)

Gaia (OLIVEIRA; PRADO 2018)

Oliveira e Prado (2018)

Trabalhos Correlatos (3/3) PlantSnap (2020)

- Aplicativo para identificação de plantas de forma rápida.
- Faz a identificação da planta e conta com interações por meio da Realidade Aumentada.
- Permite a identificação de mais de 620 mil espécies de plantas com seu algoritmo de aprendizado de máquina.

Trabalhos Correlatos (3/3)

PlantSnap (2020)

PlantSnap (2020)

Requisitos Funcionais

- RF01: permitir ao usuário iniciar o scan no modo quiz
- RF02: permitir ao usuário identificar os componentes da folha
- RF03: permitir ao usuário iniciar o scan no modo normal
- RF04: permitir ao usuário realizar o reconhecimento da folha
- RF05: renderizar um modelo 3D da folha
- RF06: exibir informações sobre a folha detectada
- RF07: permitir ao usuário validar as informações inseridas no modo quiz
- RF08: permitir ao usuário capturar uma foto do conteúdo sendo mostrado em sua tela e salvar em sua galeria
- RF09: permitir ao usuário consultar as folhas detectáveis pelo aplicativo

Requisitos Não Funcionais

- RNF01: utilizar as folhas de plantas como marcador para ancoragem do conteúdo virtual
- RNF02: utilizar o ambiente de desenvolvimento Unity
- RNF03: ser desenvolvido para plataforma Android
- RNF04: utilizar o pacote Barracuda para a detecção das folhas
- RNF05: utilizar o framework AR Foundation para a apresentação da realidade aumentada

Especificação: Diagrama de Casos de Uso

Tela inicial e tela de folhas detectáveis.

Objeto 3D da folha renderizado no modo normal e no modo quiz.

Fluxograma detecção da folha

Fluxograma criação do objeto 3D da folha

Implementação

Criação e importação do dataset no Barracuda

LabelImg

Implementação

Rotina de detecção

```
public IEnumerator Detect(Color32[] picture, System.Action<IList<BoundingBox>> callback)
    using (var tensor = BarracudaHelper.CreateTensorFromPicuture(picture, IMAGE SIZE, IMAGE SIZE))
       var inputs = new Dictionary<string, Tensor>();
       inputs.Add(INPUT NAME, tensor);
       yield return StartCoroutine(worker.StartManualSchedule(inputs));
       var output 1 = worker.PeekOutput(OUTPUT NAME L);
       var output m = worker.PeekOutput(OUTPUT NAME M);
       var results 1 = ParseOutputs(output 1, MINIMUM CONFIDENCE, params 1);
        var results m = ParseOutputs(output m, MINIMUM CONFIDENCE, params m);
       var results = results 1.Concat(results m).ToList();
       var boxes = FilterBoundingBoxes(results, 1, MINIMUM CONFIDENCE);
       callback(boxes);
```


Implementação

União de bounding boxes

Método intersect over union.

IOU > Trashhold = Combina as bounding boxes

Implementação Criação do objeto 3D

- Inicia após detecção do mesmo objeto por 5 quadros seguidos
- Seleciona-se os pontos X e Y centrais da bounding box com maior grau de confiança.
- Verifica-se se os pontos estão em um plano.

```
private bool VerifyIfPointIntersectsWithPlanes(float x, float y, TrackableType trackableTypes)
{
    return m_RaycastManager.Raycast(new Vector2(x, y), resultHits, trackableTypes);
}
```

 E se adiciona uma ancora com o prefab correspondente a folha detectada.

```
m_AnchorManager.anchorPrefab = prefab[dicPreFab.IndexOf(aRCamera.foundedLeafString)];
anchor = m_AnchorManager.AttachAnchor(plane, hit.pose);
```


Implementação Prefab da folha

Exemplo de prefab da folha.

- Testes de ferramenta
- Testes funcionais
- Teste com acadêmico e especialista
- Submissão do artigo para evento

Testes de ferramenta

- Realizado testes para garantir que ferramentas fossem capaz de atender ao objetivo.
- OpenCV for Unity por Barracuda para detecção.
 - Média de 15 fps no dispositivo móvel.
- OpenCV for Unity por AR Foundation para ancoragem do objeto 3D.
 - Objeto 3D ficava instável, se movendo e girando.

Testes funcionais

- Dispositivo que suporte tecnologia ARCore.
- Garantir funcionalidade continua após implementações novas.
- Testes em diferentes cenários.

Influência da cor do fundo na detecção

Status detecção	Cor do fundo
Detectou	branco
Não detectou	vermelho, verde, amarelo, preto, azul, cinza, marrom, colorido

Testes funcionais

Influência da iluminação na detecção

Status detecção	Luz natural em ambiente exterior	Sombra de luz natural em ambiente exterior	Luz artificial em ambiente interior	Sombra de luz artificial em ambiente interior
Linear	Detectou	Detectou	Detectou	Detectou
Elíptica	Detectou	Não detectou	Detectou	Não detectou
Trifoliolada	Detectou	Não detectou	Detectou	Não detectou
Palmatífida	Detectou	Detectou	Detectou	Detectou
Pinulada	Detectou	Detectou	Detectou	Não detectou

- Teste com acadêmico e especialista
- Formulário com passo a passo da aplicação.
- Ajuda em 3 ou menos etapas de 10.

Usabilidade do aplicativo	5	100%
Cumpriu o objetivo de auxiliar no conhecimento de folhas de plantas com auxílio da Realidade Aumentada	5	100%
Recomendaria o aplicativo para quem deseja aprender mais sobre folhas de plantas	5	100%

- Ótimo forma para o ensino de folhas de uma maneira mais dinâmica
- Ajustes nos nomes e descrições de alguns formatos de folha.

- Submissão do artigo para evento
- Envio para o Congresso Brasileiro de Informática na Educação (CBIE) 2021
- Limite 10 páginas
- Envio até 26/07

Conclusões

- Alcançou o objetivo principal.
- O objetivo específico de utilizar a folha da plantas como marcador foi alcançado, porém necessitando de um fundo controlado para detecção da folha.
- O objetivo específico de analisar a eficácia do aplicativo com usuários da área de Biologia foi alcançado
- Barracuda se mostrou eficiente na detecção de objetos de forma rápida e performática em dispositivos móveis.
- AR Foundation se mostrou eficiente nas rotinas de Realidade Aumentada.
- Contribuições técnicas e sociais.
 - Tutoriais no Apêndice e README

Sugestões

- Melhorar a detecção das folhas, evitando a necessidade de um fundo controlado atrás das folhas das plantas possibilitando inclusive que a detecção diretamente nas folhas presas às plantas.
- Ampliar o dataset de modo a possibilitar o reconhecimento de um maior número de folhas.
- Realizar não apenas a classificação de formatos das folhas, mas sim da espécie.
- Salvar os resultados do modo quiz e criar um ranking entre os usuários.
- Possibilitar a abertura da galeria de fotos diretamente pelo aplicativo.
- Testar o aplicativo com um maior número de usuários em situação de campo.

Demonstração

