

SESSION - 5 MULTI LAYER GRAPH

Learning Outcomes:

- Remember: The students will recall about Coordinate System.
- Understand: They will focus on understanding:
 - Different types of graph
 - Multi layer representation
 - Data Handling
- Apply: They will learn to apply the Library pygal to generate graphs in the output.
- Analyze: They will check their understanding by developing a code.
- Create: They will create the code in EduBlocks

Remember & Understanding MULTI-LAYER GRAPH

In Multilevel Graph, each layer of the graph is a subset of the original network (nodes and intra-edges)

The inter-edges only connect the same nodes on different layers.

Apply & Create

TASK 01:-

1 #Start code here
2 import pygal
3


```
# Start code here
import pygal

name  = pygal. Line  0
```

```
1 #Start code here
2 import pygal
3 name = pygal.Line()
4
```



```
# Start code here
import pygal

name = pygal. Line = 0

name .title = "Marks"
```

```
1 #Start code here
2 import pygal
3 name = pygal.Line()
4 name.title = "Marks"
5
```



```
# Start code here
import pygal
name ▼ = pygal. Line ▼ ()
name ▼ .title = "Marks"
name ▼ .add( "Amit" , ( [ ⊕ ⊖ 34 , 65 , 88 ] )
name \checkmark .add( "Suhani" , ([\Theta \ominus 56, 65, 97])
name ▼ .add( "Shubham") , [ ⊕ ⊖ 66 , 77 , 88 ]
```

Code

```
1 #Start code here
2 import pygal
3 name = pygal.Line()
4 name.title = "Marks"
5 name.add("Amit", [34, 65, 88])
6 name.add("Suhani", [56, 65, 97])
7 name.add("Shubham", [66, 77, 88])
8
```

Program


```
# Start code here
import pygal
name ▼ = pygal. Line ▼ ()
name .title = "Marks"
name ▼ .add( "Amit" , [ ⊕ ⊖ 34 , 65 , 88 ] )
name ▼ .add( "Suhani" , [[ ⊕ ⊝ 56 , 65 , 97 ] )
name ▼ .add( "Shubham") , ([ ⊕ ⊝ 66 , 77 , 88 ] ))
name ▼ .x_labels = ( ⊕ ( "English ") , ( "Maths ") , ( "Science ")
name ▼ .render()
```

Code

```
#Start code here
import pygal
name = pygal.Line()
name.title = "Marks"
name.add("Amit", [34, 65, 88])
name.add("Suhani", [56, 65, 97])
name.add("Shubham", [66, 77, 88])
name.x labels = "English", "Maths", "Science"
name.render()
```


Code

Output

Homework

Plot the graph for the following data

Crop	Economic produce	Area (Mha)			Crop production (Mt)		
		2010/11	2020/21	2030/31	2010/11	2020/21	2030/31
Rice	Foodgrains	42.9	48.1	50.3	96.0	109.9	123.2
Wheat	Foodgrains	29.1	33.7	36.6	87.0	108.2	121.1
Jowar (Sweet Sorghum)	Foodgrains	7.4	5.2	3.4	7.0	6.0	5.7
Bajra	Foodgrains	9.6	9.3	8.8	10.4	11.4	12.3
Maize	Foodgrains	8.6	8.4	9.0	21.7	24.8	28.3
Other cereals	Foodgrains	2.9	2.1	1.5	4.6	3.9	3.8
Gram	Foodgrains	9.2	8.9	8.7	8.2	8.4	8.6
Tur (Arhar)	Foodgrains	4.4	4.4	4.7	2.9	3.1	3.3
Lentil (Masur)	Foodgrains	1.6	1.7	1.9	0.9	1.2	1.4
Other pulses	Foodgrains	11.2	12.8	13.2	6.2	6.3	6.8