Secure and anonymous messaging

Dario Pavllo

Introduction

Anonymou identities

Private messaging

root-ot-wor

Message exchange

Secure and anonymous messaging Project presentation

Dario Pavllo

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

January 10, 2018

Private messagir

Proof-of-wo

Message exchange

1 - Introduction

Goal: build a robust, scalable messaging system that provides end-to-end encryption, anonymity, and spam prevention.

Why? People are putting less trust into governments; increasing demands for privacy.

Short list of features:

- Public chat room and private messaging, with authentication and integrity.
- Anonymous identities using self-signing names.
- End-to-end encryption in private messages. Only end users can decrypt contents.
- Spam prevention through proof-of-work

Motivation: messaging services like Whatsapp or Telegram already implement some of these features, but they are **centralized**. We want to build our system in a decentralized setting.

Private messagir

Proof-of-wo

Message exchange

2 - Anonymous identities

- Idea borrowed from Tor hidden services (e.g. blockchainbdgpzk.onion) and Bitcoin wallet addresses.
- New user generates a public/private key pair (RSA-2048).
- Users are identified by a name derived from the public key (e.g. alice4jfj49dkalp). Base32 of the first 80 bits of the SHA-256 hash of the public key.
- Easy to verify identities (names are self-signing).
- No name system, no key directory, fully decentralized. Intrinsically resistant to MITM and impersonation.
- No consensus required for registering new names.

Private messaging

Proof-of-wo

Message exchange

3 - Private messaging

- alice4jfj49dkalp wants to send a message to bob3fk1f94olfpoz.
- Alice encrypts the message with Bob's public key, and signs it using her own private key.
- Nodes distribute the message without being able to see the content.
- Bob decrypts the message with his private key and verifies it with Alice's public key.
- Secure against attacks: all nodes validate signatures; public keys are verifiable.
- Additional privacy/security: RSA-OAEP padding scheme, conflict handling.

Private messagin

Proof-of-work

Message exchang

4 - Proof-of-work

- Clients must solve a crypto puzzle before sending a new message.
- This provides a rate-limiting mechanism against spam.
- A nonce is appended to the message. The SHA-256 of the message + nonce must start with N leading zeros.
- Only the original sender computes the nonce! Intermediary nodes verify it and store it along with the message.

Message ID	From	То	Content	Signature	PoW nonce
1234	alice4jfj49dkalp	bob3fk1f94olfpoz	Encrypted binary data	256 bytes	16 bytes

Secure and anonymous messaging

Dario Pavllo

Introductio

Anonymous

Private messagin

Proof-of-wo

Message exchange

5 - Message exchange

- Public key sent as public message (first message)
- Full nodes store the entire database of messages

Figure: Diagram that illustrates how users communicate.