TECHNICAL UNIVERSITY OF KAISERSLAUTERN

Memory Protocol of

Machine Learning 1

Given by Prof. Marius Kloft

Written Exam

Date: 12.02.2018

1 General

	[3+3+3+3+3+3=18 Points]
	[3 Points]
Why is optimizing nice with convex functions?	
\Box They are easy to compute	
□ ???	
□ ???	
	[3 Points]
What is k-Means?	
\Box Unsupervised learning	
☐ Classification	
□ Regression	
	[3 Points]
The gradient of a function f goes in the directi	on.
\square Steepest ascent	
\square Steepest descent	
$\hfill\Box$ global Minimum	
	[3 Points]
What is Supervised learning?	
Explain Overfitting.	[3 Points]
	[3 Points]
Explain Random Forest.	

2 SVM

[5 + 5 + 5 = 15 Points]

a) Consider the following form of Regression:

$$\min_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n} \frac{1}{2} \parallel w \parallel^2 + \frac{C}{2n} \sum_{i=1}^n \xi^2$$

Calculate the dual Lagrangian Problem

[5 Points]

b) Calculate the derivations.

[5 Points]

c) What is the Lagrangian dual problem.

3 Kernels
[3+3+3+4+4=17 Points]
a) Explain the Kernel trick. [3 Points]
[3 Points] b) Given the polynomial Kernel with Input Data x_1, x_2 . What is roughly the dimension of the feature map if $d = 2$?
$ \Box log(d) $ $ \Box d^2 $ $ \Box d^3 $ $ \Box e^d $
(3 Points) c) Give an example but exact definition for a kernel of your choice.
[4 Points] d) Let $k(x,y)$ be a kernel. Further we define a function $\delta(x,y)=1$ if $x=y$ and $\delta(x,y)=0$ if $x\neq y$. Show that $k'(x,y)=k(x,y)+\delta(x,y)$ is also a kernel.
[4 Points] e) Until now, we only considered Kernels they map into the Euclidean space. Now we want to consider

e) Until now, we only considered Kernels they map into the Euclidean space. Now we want to consider a kernel with the mapping function $\phi:\{0,1\}\to\{0,1\}$ with the following Definition: k(0,0)=k(1,1)=1 and $k(0,0)=k(1,1)=\frac{1}{2}$. Show, k is also a kernel.

4 Regression

$$[? + ? + ? + 5 = ? Points]$$

[? Points]

a) Consider the following form of Regression:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \overrightarrow{w^T x_i})^2 = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^n (y_i - b)^2$$

Calculate the Optimal value of b.

[? Points]

b) Consider the following two Optimization Problems:

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

and

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n} |y_i - w^T x_i|$$

Give an advantage and disadvantage for each of those Regression forms.

[? Points]

c) ???

[5 Points]

d) Calculate a closed form solution for w^*

$$w^* \coloneqq \underset{w \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \| w \|^2 + \sum_{i=1}^n (y_i - w^T x_i)^2$$

5 k-Means Algorithm

[5 + 3 = 8 Points]

a) Given Pseudocode of the k-Means implementation. Find the error in the code.

```
Algorithm 1 Create_Cycle_Basis
```

```
1: procedure K_MEANS(Input Data x_1, x_2 ..., x_n; Clusters Center c_1, c_2, ..., c_m)
        index_set := \{1, 2, \dots m\}
        for i = 1 to m do
 3:
            j \( \text{Random_Entry(index_set)} \)
 4:
            c_i \leftarrow x_i
 5:
            index_set.remove(j)
 6:
        end for
 7:
        repeat
 8:
 9:
            for i = 1 to m do
                 \texttt{clusterAssignment[i]} \; = \; \leftarrow \mathop{\mathrm{argmin}}_{j} \, \| \, x_i - c_j \, \|^2
10:
            end for
11:
            for i = 1 to n do
12:
                 c_j \leftarrow average\{x_i | clusterAssignment[j] == i\}
13:
            end for
14:
            for i = 1 to m do
15:
                c_j' \leftarrow c_j
16:
            end for
17:
        until c'_{j} == c_{j} for all j \in \{1, 2, ..., m\}
18:
        return c_1, c_2, \ldots, c_m
19:
20: end procedure
```

b) Describe in detail how you would fix the bug.

6 Principle component analysis

[5 + 5 + 5 = 15 Points]

[5 Points]

a) Write in pseudocode how to reduce given input $x_1, ..., x_n$ with principle component vectors $v_1, ..., v_m$ into lower dimension m.

[5 Points]

b) ???

[5 Points]

c) Write **code** how to plot given input onto the Euclidean plane (scatter plot) in a language of your preference. Make sure to also import any library you may use.

7 Neural Networks

[3+4+4=11 Points]
[3? Points] a) A Neural Networks can calculate a function $f: \mathbb{R}^d \to \mathbb{R}$ that calculates for each given input $x \in \mathbb{R}^d$ the function value $f(x)$:
True \Box
False \Box
[4? Points] b) What does the learning rate do? How would you go about choosing a specific learning rate?
[4? Points] c) Describe in 2 or 3 sentences what backpropagation does.