Chap. 5 Logic gates

- Decimal number : 0,19
- Binary number: using 0, and 1
 - Eg. binary 1101=> decimal $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 1 = 13$
- Hexadecimal: 0-9,A,B,C,D,E,F 16 number
- \blacksquare Eq. 2AC_H =2x16² +10x16+12=684
- BCD code: binary=> decimal for every digit
 - ◆ Eg. 345
 - **♦** 3->0011, 4->0100, 5 ->0101

Data structure :1 Byte= 8 bits

01001001

```
MSB(Most
Significant Bit
```

$$00000000=0$$

11111111=255

LSB (Least Significant Bit)

Logical level and voltage

- Voltage 5 V= "1" digitally
- Voltage 0 V="0" digitally

-

Logic gate (Inverter)

Input	Output
В	B'
0	1
1	0

Truth table

- -

Figure 5.9 The NOT (or inverter) gate.

Input and output waveforms of a transistor logic inverter

TTL and CMOS

- TTL: Bipolar transistor family
- CMOS: FET (Field Effect Transistor) family

Figure 2–69 Simplified diagrams of bipolar and field-effect transistors: (a) NPN bipolar transistor used in TTL ICs; (b) N-channel MOS-FET used in CMOS ICs.

TTL and CMOS

- Gate level: H=> N channel On, P channel Off
- Gate level: L=> N channel Off, P channel On

CMOS Gate

CMOS gate Logic

High input: P-ch Off

N-ch On

Low Input: P-ch On

N-ch Off

Figure 5.24 CMOS NAND gate (a) and its equivalent output circuit (b).

A=H, B=H : Vout=L

A=H, B=L: Vout=H

A=L, B=H: Vout=H

A=L, B=L: Vout=H

TTL level

┪ TTL 레벨

H level: 5V, L level: 0V

2. Notation

3. TTL level

Vol : L level output voltage ≤ 0.4 V

VIL: L level recognized input voltage ≤0.8 V

VoH : H level output voltage ≥ 2.4 V

VIH : H level recognized input voltage ≥2.0 V

4

TTL level and Noise margin

1. Noise margin

Recognizable Voltage difference between output and input signal

2. Adding noise to a low-level output=> recognizable signal due to noise margin

3. Voltage level

 V_{OL} : L level output voltage $\leq 0.4 \text{ V}$

V_{IL}: L level recognized input voltage ≤0.8 V

 V_{OH} : H level output voltage $\geq 2.4 \text{ V}$

V_{IH} : H level recognized input voltage ≥2.0 V

Noise margin

TTL voltage level

Figure 2–60 (a) Adding noise to a LOW-level output; (b) graphical illustration of the input/output voltage levels for the standard 74XX TTL series.

TTL & CMOS voltage level

Figure 2–71 Input and output voltage specifications: (a) 7400 series TTL; (b) 4000B series CMOS (5-V supply).

4

TTL Input Output Current

1. Output current: Source or sink current from TTL output gate in High or Low-level Output

 $I_{OH} \le 0.4 \text{ mA (source)}$

 $I_{OL} \le 16 \text{ mA}$ (sink)

2. Input Current: Source or sink current from TTL output gate in High or Low-level Output

 $I_{TH} \leq 0.04 \text{ mA}, \text{ (sink)}$

 $I_{IL} \le 1.6 \text{ mA}$ (source)

TTL Input Output Current

Figure 2–59 Totem pole HIGH output of a TTL gate sourcit rent to two gate inputs.

Fan-in, Fan-out

- Fan-out: 1 개의 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력 게이트 수
- Fan-in: 1 개의 게이트에 입력으로 접속할 수 있는 게이트 수

Fan-out

$$\frac{I_{OH}(\text{max})}{I_{IH}(\text{max})} = \frac{0.4mA}{0.02mA} = 20$$

4 bits comparator

XOR operation
If A=B output=0

- S-R Flip-Flop
 - Used for latch or memory

TABLE 5–2Function Table for Figure 5–2

s	R	a	ā	Comments
0 1 0 1	0 0 1 1	<i>Q</i> 1 0	<u>Q</u> 0 1	Hold condition Flip-flop Set Flip-flop Reset Not used

Eg. SN74L71 74HC74

RS flip flop application: Alarm circuit

(Flip-Flop:FF)

Application of RS FF

Chattering Free Circuit

After S/W is on

D-Latch (7475)

Latch input signal while enable signal is on

Function Table for a 7475^a

	Inp	uts	Outputs			
Operating mode	E	D	a	ā		
Data enabled	H	L	L	H		
Data latched		X	q	$\frac{L}{q}$		

 $[^]aq$ = State of Q before the HIGH-to-LOW edge of $E_i \times = \mathrm{don't}$ care.

Figure 5-13

D-latch examples

CONNECTION DIAGRAMS DIP (TOP VIEW)

74HC74 74HCT74

Transparent top view

Flip-Flop:FF

D flip flop Application

Pulse edge detection by synchronized clock

J-K Flip-Flop

- Toggle the output at J=K=High signal
- Operating Modes
 - J=0, K=0 => Data Hold
 - J=1, K=0 => Set
 - J=0, K=1 =>Reset
 - J=1, K=1 =>Toggle (output switch to opposite state)

4

Flip-Flop:FF

J-K structure

J-K Flip-Flop

- J = 1, K = 0 at the negative clock edge; Q is Set
- J = 0, K = 0 at the negative clock edge; Q is held (transitions in K before the edge are ignored)
- (3) J = 0, K = 1 at the negative clock edge; Q is Reset
- (4) J = 1, K = 1 at the negative clock edge; Q toggles
- (5) J = 0, K = 1 at the negative clock edge; Q is Reset
- 6 J = 0, K = 0 at the negative clock edge; Q is held

J-K Flip-Flop

- Toggle flip flop by J-K flip flop
- Used for a Frequency divider

Three state buffers, Latches, and **Transcivers**

- Three state buffers: sharing same data lines
- Buffer: data isolation without changing logic level

Input	ŌĒ	Output
1	0	1
0	0	0
1	1	Float
0	1	Float

TL/F/6388-1

Figure 5.33 A two-state noninverting buffer.

Three state buffers, Latches, and **Transcivers**

Octal Latches and flip flops: used in microprocessor to remember data

74LS374

(Octal data flip flops)

Three state buffers, Latches, and Transcivers

Transcivers: transmitter and receiver, bidirectional

Octal-Bus Transceiver

CD54AC245, CD54ACT245 (CERDIP) CD74AC245, CD74ACT245 (PDIP, SOIC, SSOP) TOP VIEW

Functional Diagram

TRUTH TABLE

CONTRO	LINPUTS	
ŌĒ	DIR	OPERATION
L	L	B Data to A Bus
L	Н	A Data to B Bus
Н	Х	Isolation

H = High Level, L = Low Level, X = Irrelevant

Decoders

Decoder: Convert some code into some number or character

Figure 4–4 A BCD decoder selects the correct decimal indicating lamp based on the BCD input.

Decoders

Output of an Octal Decoder

Truth Tables for an Octal Decoder (a) Active-HIGH outputs

	Input		Output								
2 ²	21	20	o	1	2	3	4	5	6		
	0	0	1	0	0	0	0	0	0	0	
ň	ň	ĭ	Ò	1	0	0	0	0	0	0	
ň	1	Ó	l ö	Ô	1	0	0	0	0	0	
ň	i	1	l ŏ	Õ	0	1	0	0	0	0	
1	'n	'n	l ŏ	ō	Ō	0	1	0	0	0	
1	ŏ	ĭ	ŏ	ŏ	Ō	Ō	0	1	0	0	
1	1	ò	ŏ	ŏ	Ŏ	Ō	Ō	0	1	0	
1	i	1	ŏ	ŏ	ŏ	Ö	Ō	0	0	1	

(b) Active-LOW outputs

	Input		Output								
2 ²	21	20	o	1	2	3	4	5	6	7	
0	0	0	0	1	1	1	1	1	1	1	
ñ	ň	1	1	0	1	1	1	1	1	1	
ñ	1	Ó	i	1	0	1	1	1	1	1	
ň	i	1	1 1	1	1	0	1	1	1	1	
1	'n	'n	l i	i	1	1	0	1	1	1	
1	ŏ	1	l i	i	1	i	1	0	1	1	
1	1	'n	1	i	i	i	1	1	0	1	
1	1	1	l i	i	i	i	i	1	1	0	

Decoders

Decoder ICs

74138: 1 0f 8 octal decoder

7442: 1 Of 10 BCD decoder

74154: 1 of 16 hex decoder

7447 : BCD to seven segment decoder

(b)

74138 decoder: 3 bits decoding

	INPUTS							0	UTI	PUT	S		
Ē,	Ē ₂	E ₃	A ₀	A ₁	A ₂	ō	1	2	3	Ā	3	ē	7
Н	X	Х	Х	х	Х	Н	Н	Н	H	Н	Н	Ξ	Н
X	H	X	Х	x	X	Н	Н	Н	н	Н	Н	н	н
X	X	L	Х	x	ΙX	н	н	н	Н.	Н	Н	Н	н
L	L	н	L	L	L	L	Н	Н	Н	Н	Н	н	н
L	L	Н	⊢ H →	L	L	H	L	Н	Н	Н	H,	н	н
L	L	Н	L	Н	L	н	Н	L	Н	Н	н	Н	Н
L	L	н	н	Н	L	Н	Н	Н	L	н	Н	Н	н
L	L	н	L	L	н	Н	Н	Н	H,	L	Н	н	н
L	L	Н	Н	L	Н	Н	н	Н	Н	Н	L	н	Н
L	L	н	L	н	Н	Н	н	H	н	н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	H	н	Н	Н	L

MOTES

H = HIGH voltage level

L = LOW voltage level

X = Don't care

(d)

Function Table of 74138 decoder

BCD-to-decimal decoder

Encoders

Encoder: generate a coded output from a numeric input

Figure 4–10 Typical block diagrams for encoders: (a) decimal-to-BCD encoder; (b) octal-to-binary encoder.

-

Encoders

74147 decimal-to-BCD encoder

INPUT						OUTPUT						
Ī,	Ī ₂	Ī ₃	Ĩ4	Īs	Ĩa	Ī7	į.	Ĩ,	Ā ₃	Ā ₂	Ã ₁	Ã
Н	Н	Н	Н	Н	Н	Ξ	Н	Н	Ξ	I	Ξ	Н
x	x	x	x	x	X	X	X	L	L	н	н	L
X	x	X	Х	X	X	X	L	н	L	H	Н	Н
X	х	X	Х	X	Х	L	н	н	H	L	L	L
X	x	X	Х	х	L	н	н	н	Н	L	L	Н
X	X	X	Х	L	Н	н	н	н	Н	L	Н	L
Х	X	X	L	Н	н	н	Н	н	Н	L	Н	H
X	X	L	н	Н	н	н	н	н	Н	Н	L	L
X	L	H	Н	н	H	Н	н	н	H	Н	L	н
L	Н	н	н	н	н	н	Ħ	Н	н	I	H	L

H = HIGH voltage level
L = LOW voltage level

(b)

Figure 4-11 The 74147 decimal-to-BCD (10-line-to-4-line) encoder: (a) logic symbol; (b) function table.

X = Don't care

4

Multiplex

 Multiplex: Funnel several data lines into a single line for transmission

connected to the output

$$S1=0$$
, $S0=0 => Do$ selected

$$S1=0$$
, $S0=1 => D1$ selected

$$S1=1$$
, $S0=0 => D2$ selected

$$S1=1$$
, $S0=1 => D3$ selected

Multiplex

■ E.g. 16-line multiplexer (74151) design: use 2 mutiplexers connected serially

Figure 4-19 Design solution for Example 4-4.

Eg. ABCD

1111

Low byte=disable

High byte=enable

D15 selected

4

Demutiplexers

 Demutiplexer: data distributor, opposite of multiplexer

Demultiplexer

Demultiplexer 응용 회로

디지털 앰프 게인 조정

- To fulfill Electric circuit timing requirement
 - Bistable: triggered by external source and remains in state, eg. R-S flip flop
 - Astable: free running oscillator, e.g. duty cycle
 - Monostable: one shot pulse

One-shot monostable Multivibrator

Vcc	=	pin	14
Gnd	=	pin	7

	INPUTS	OUTPUTS			
Ā ₁	Ā ₂	В	Q	ā	
L	×	Н	L	Н	
X	L	H	L	н	
X	X	L	L	Н	
Н	Н	×	L	Н	
/ H	↓	н	77	Ъ	
1	H⊸	Н	7	Ъ	
/†	↓	н	7	7	
L	X	†	T	J.	
Х	L	↑	7	ъ	

H = HIGH voltage level

L = LOW voltage level

X = Don't care

↑ = LOW-to-HIGH transition

↓ = HIGH-to-LOW transition

One-shot monostable Multivibrator
Input-output waveforms and those determination

Pulse width: tw=Rext *Cext * In2

One-shot monostable Multivibrator e.g. Generate pulse satisfying the conditions

- Circuit for generating output of 500ns

Sol.)

tw=Rext * Cext * In 2 = 500ns

So Rext * Cext = $0.722 \mu s$

Pick Cext=100 pF;

then

Rext=0.722 /0.0001 μ F =7.22 $k\Omega$

Astable mode pulse generator

Figure 5.39 Basic operating modes of the 555 timer: monostable mode (a) and astable mode (b)

4

Period

$$T = t_1 + t_2 = [0.693(R_1 + R_2)C_1] + [0.693R_2C_1] = 0.693(R_1 + 2R_2)C_1$$

Duty cycle=
$$\frac{t_1}{T} = \frac{1 + R_2/R_1}{1 + 2R_2/R_1}$$

Frequency
$$f = \frac{1}{T} = \frac{1.44}{(R_1 + 2R_2)C_1}$$

3 digits (BCD output) counter

Counting order:

0,1,2,3,4,5,6,7,8,9,0,1,2

Reset

8,9, Q3 0,1,2,3......

7490: decimal counters

7 segment LED display

- -seven separate LED in a single pack
- -convert 4bit BCD code into 7-segment code

Anode common LED

Numerical representation by LED

BCD to 7-segment decoder IC: 7447

3 digits decimal display

COUNTER / DECODER Application circuit

circuit

PHOTO COUPLER

: Photo Coupler입력 전기 신호와 출력 전기 신호를 "빛"으로써 전달하는 역할

: 일반적으로 발광소자와 수광 소자를 하나의 Package 에 결합하여 입출력 간을 전기적으로 절연시켜 광으로 신호를 전달하는 광결합 소자

Photo Coupler의 구조 및 구성

:연산 증폭기 또는 차동 증폭기로 불리며 두 단자의 전압을 뺄셈하여 증폭해주는 역할 즉, 작은 전압을 큰 전압으로 증폭해주는 용도로 사용

OP AMP의 전체 회로도 : 수 십개의 트렌지스터로 구 성되어 있다.

Op Amp의 회로

1. 반전 증폭기(Inverting Amplifier)

Op Amp의 회로

2. 비반전 증폭기(Non-Inverting Amplifier)

Op Amp의 회로

3. 차동 증폭기(Differential Amplifier)

$$i_{1} = \frac{v_{1} - v_{-}}{R_{1}}, i_{2} = \frac{v_{2} - v_{+}}{R_{3}}, i_{f} = \frac{v_{-} - v_{out}}{R_{2}}$$

$$V_{+} = V_{2} \frac{R_{4}}{R_{3} + R_{4}}$$

$$V_{+} \cong V_{-}$$

$$(2)$$

$$V_{+} \cong V_{-}$$

$$(3)$$

$$I_{1} = I_{f} = \frac{V_{1} - V_{-}}{R_{1}} = \frac{V_{-} - V_{out}}{R_{2}}$$

$$V_{out} = -\frac{R_{2}}{R_{1}} V_{1} + \frac{R_{4}}{R_{3} + R_{4}} \frac{R_{1} + R_{2}}{R_{1}} V_{2}$$

$$(5)$$
If $R_{1} = R_{3}$, $R_{2} = R_{4}$

$$V_{out} = \frac{R_{2}}{R_{1}} (V_{2} - V_{1})$$

$$(5)$$

Op Amp의 회로

4. 반전 가산기(Inverting Summing Amplifier)

Op Amp의 회로

5. 전압 팔로워(Voltage Follower) or 버퍼(buffer)

$$V_{in} = V_n = V_p$$

$$V_{in} = V_{out}$$
(1)

왜 Voltage Follower를 사용하는가?

- 1.입력단과 출력단의 분리
- 2.출력단이 새로운 전압원이 되기 때문에 노이즈로 부터 분리
- 3.신호의 전류가 약할 때, 버퍼를 통해 강한 전류를 생성