Convex Sets

Yuanming Shi

ShanghaiTech University

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- **5** Separating and Supporting Hyperplanes

Definition of Affine Set

Line: through x_1, x_2 : all points

$$\boldsymbol{x} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \quad (\theta \in \mathbb{R})$$

- Affine set: contains the line through any two distinct points in the set
- **Example:** solution set of linear equations $\{x|Ax = b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Definition of Convex Set

Line segment: between x_1 and x_2 : all points

$$\boldsymbol{x} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2$$

with $0 < \theta < 1$

Convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

Examples (one convex, two nonconvex sets)

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- **5** Separating and Supporting Hyperplanes

Examples: Hyperplanes and Halfspaces

Hyperplane: set of the form $\{x|a^Tx=b\}(a\neq 0)$

Halfspace: set of the form $\{x|a^Tx \leq b\}(a \neq 0)$

- \boldsymbol{a} is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Example: Polyhedra

Solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Examples: Euclidean Balls and Ellipsoids

(Euclidean) Ball with center x_c and radius r:

$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\}$$

Ellipsoid: set of the form

$$E(\boldsymbol{x}_c, \boldsymbol{P}) = \{\boldsymbol{x} | (\boldsymbol{x} - \boldsymbol{x}_c)^T \boldsymbol{P}^{-1} (\boldsymbol{x} - \boldsymbol{x}_c) \le 1\}$$
$$= \{\boldsymbol{x}_c + \boldsymbol{A} \boldsymbol{u} | || \boldsymbol{u} ||_2 \le 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite), A square and nonsingular

Convex Combination and Convex Hull

Convex combination of x_1, \dots, x_k : any point x of the form

$$\boldsymbol{x} = \theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2 + \dots + \theta_k \boldsymbol{x}_k$$

with $\theta_1 + \cdots + \theta_k = 1, \theta_i > 0$

Convex hull conv S: set of all convex combinations of points in S

Conic Combination and Convex Cone

ightharpoonup Conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$\boldsymbol{x} = \theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2$$

with $\theta_1 \geq 0, \theta_2 \geq 0$

Convex cone: set that contains all conic combinations of points in the set

Convex Cones: Norm Balls and Norm Cones

- Norm: a function $\|\cdot\|$ that satisfies
 - $\|\boldsymbol{x}\| \ge 0$; $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
 - $\|t\boldsymbol{x}\| = |t|\|\boldsymbol{x}\| \text{ for } t \in \mathbb{R}$
 - $\|x + y\| \le \|x\| + \|y\|$

notation: $\|\cdot\|$ general (unspecified) norm; $\|\cdot\|_{symb}$ a particular norm

- Norm ball with center x_c and radius r: $\{x|||x-x_c|| \le r\}$
- Norm cone: $\{(\boldsymbol{x},t)\in\mathbb{R}^{n+1}|\|\boldsymbol{x}\|\leq t\}$

Euclidean norm cone or second-order cone (aka ice-cream cone)

Positive Semidefinite Cone

Notation

- \mathbb{S}^n is set of symmetric $n \times n$ matrices
- $\mathbb{S}^n_+ = \{ \mathbf{X} \in \mathbb{S}^n | \mathbf{X} \succeq 0 \}$: positive semidefinite $n \times n$ matrices

$$m{X} \in \mathbb{S}^n_+ \quad \Longleftrightarrow \quad m{z}^{ op} m{X} m{z} \geq 0 \text{ for all } m{z}$$

 \mathbb{S}^n_+ is a convex cone

Example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Operations that Preserve Convexity

How to establish the convexity of a given set *C*

Apply the definition (can be cumbersome)

$$x_1, x_2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- Show that C is obtained from simple convex sets(hyperplanes, halfspaces, norm balls, \cdots) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

- **Intersection:** if S_1, S_2, \ldots, S_k are convex, then $S_1 \cap S_2 \cap \cdots \cap S_k$ is convex (k can be any positive integer)
- Example 1: a polyhedron is the intersection of halfspaces and hyperplanes
- Example 2:

$$S = \{ \boldsymbol{x} \in \mathbb{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2

Affine Function

suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(\boldsymbol{x}) | \boldsymbol{x} \in S\} \text{ convex}$$

the inverse image $f^{-1}(C)$ a convex set under f is convex $C \subseteq \mathbb{R}^m$ convex $\implies f^{-1}(C) = \{x \in \mathbb{R}^n | f(x) \in C\}$ convex

Examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x|x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbb{S}^p$)
- $\{(\boldsymbol{x},t)\in\mathbb{R}^{n+1}|\|\boldsymbol{x}\|\leq t\}$ is convex, so is

$$\{ \boldsymbol{x} \in \mathbb{R}^n | \| \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b} \| \le \boldsymbol{c}^T \boldsymbol{x} + d \}$$

Perspective and Linear-fractional Function I

Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(x,t) = x/t$$
, $dom P = \{(x,t)|t > 0\}$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom} f = \{x | c^T x + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

Perspective and Linear-fractional Function II

Examples of a linear-fractional function

$$f(\boldsymbol{x}) = \frac{1}{x_1 + x_2 + 1} \boldsymbol{x}$$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Generalized Inequalities I

- A convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if
 - K is closed (contains its boundary)
 - * *K* is solid (has nonempty interior)
 - * *K* is pointed (contains no line)

Examples

nonnegative orthant

$$K = \mathbb{R}^{n}_{+} = \{ \boldsymbol{x} \in \mathbb{R}^{n} | x_{i} \geq 0, i = 1, \dots, n \}$$

positive semidefinite cone

$$K = \mathbb{S}_+^n = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} | \boldsymbol{X} = \boldsymbol{X}^T \succeq \mathbf{0} \}$$

 \bullet nonnegative polynomials on [0,1]:

$$K = \{ \boldsymbol{x} \in \mathbb{R}^n | x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

Generalized Inequalities II

Generalized inequality defined by a proper cone *K*:

$$y \succeq_K x \iff y - x \succeq_K 0 \text{ or } y - x \in K$$

Examples

Componentwise inequality $(K = \mathbb{R}^n_+)$

$$\boldsymbol{y} \succeq_{\mathbb{R}^n_+} \boldsymbol{x} \iff y_i \geq x_i, \quad i = 1, \cdots, n$$

 \bullet Matrix inequality $(K = \mathbb{S}^n_+)$

$$Y \succeq_{\mathbb{S}^n_+} X \iff Y - X$$
 positive semidefinite

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- **5** Separating and Supporting Hyperplanes

Separating Hyperplane Theorem

If *C* and *D* are nonempty disjoint convex sets, there exist $a \neq 0$ and b, such that

$$a^T x \le b \text{ for } x \in C, \quad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x|a^Tx=b\}$ separates C and D

Supporting Hyperplane Theorem

Supporting hyperplane to set C at boundary point x_0 :

$$\{\boldsymbol{x}|\boldsymbol{a}^T\boldsymbol{x}=\boldsymbol{a}^T\boldsymbol{x}_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual Cones and Generalized Inequalities

Dual cone of a cone K:

$$K^* = \{ \boldsymbol{y} | \boldsymbol{y}^T \boldsymbol{x} \ge 0 \text{ for all } \boldsymbol{x} \in K \}$$

Examples

```
 \begin{array}{l} \mathbf{i} \quad K = \mathbb{R}_+^n \colon K^* = \mathbb{R}_+^n \\ \mathbf{i} \quad K = \mathbb{S}_+^n \colon K^* = \mathbb{S}_+^n \\ \mathbf{i} \quad K = \{(\boldsymbol{x},t) | || \boldsymbol{x} ||_2 \leq t\} \colon K^* = \{(\boldsymbol{x},t) | || \boldsymbol{x} ||_2 \leq t\} \\ \mathbf{i} \quad K = \{(\boldsymbol{x},t) | || \boldsymbol{x} ||_1 \leq t\} \colon K^* = \{(\boldsymbol{x},t) | || \boldsymbol{x} ||_\infty \leq t\} \\ \end{array}
```

First three examples are self-dual cones

Dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} \mathbf{0} \iff y^T x \ge 0 \text{ for all } x \succeq_K \mathbf{0}$$

Reference

Chapter 2 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.