

Специализированные технологии машинного обучения / Advanced Machine learning Technologies

Lecture 7 – Attention Models and Transformers

Outline

- 1. Seq2Seq problems challenges
- 2. RNN and LSTM
- 3. Attention mechanism
- 4. Transformers: "Attention is all you need"
- 5. Vision Transformers

Attention history

Attention mechanism was first proposed in the NLP field and still actively researched.

Key milestoned are the following, including developing Transformers ("Attention is All you need") in 2017 and Vision Transformers in 2020:

- ➤ Seq2Seq, or RNN Encoder-Decoder (<u>Cho et al. (2014)</u>, <u>Sutskever et al. (2014)</u>)
- ➤ Alignment models (<u>Bahdanau et al. (2015)</u>, <u>Luong et al. (2015)</u>)
- ➤ Visual attention (Xu et al. (2015))
- ➤ Hierarchical attention (Yang et al. (2016))
- > Transformer (<u>Vaswani et al. (2017)</u>)

Long-sequence problem

Example:

- I have been to Paris!
- And how was it?
- It was wonderful! In childhood I spent a lot of time there.

 I have a perfect opportunity to learn _____ language.

23 words later - "Paris"

- it is the only reason to put "French" into the gap.

- The model should 'remember' old (and very old) inputs to be able to use them when it is the reason for it
- In classic dense networks the weights of "early" words is exponentially small.
- We should capture long- (and very long-) term dependencies!

Parameters of RNN

 $\ensuremath{W_{\text{ax}}}$ - matrix of parameters for "input gate"

W_{ay} - matrix of parameters for "output gate"

W_{aa} - matrix of parameters for "hidden state"

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

- Shared weights for every state of a cell.
- We have T_x copies of the RNN cell

Problems with "classic" RNN

- Exploding gradients

Gradients increase exponentially with the number of layers (length of the sequence)

Solution:

→ Clipping values of gradients

- Vanishing gradients

Gradients decrease exponentially with the number of layers (length of the sequence)

Solution - ?

Plane Deep Network

May be smth like residual connections like in plane deep networks (ResNet)?...

Long Short-Term Memory (LSTM) cell

$$\begin{array}{lll} c_t' &= \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_{c'} \right) & \textit{candidate cell state} \\ i_t &= \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + b_i \right) & \textit{input gate} \\ f_t &= \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + b_f \right) & \textit{forget gate} \\ o_t &= \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + b_o \right) & \textit{output gate} \\ c_t &= f_t \odot c_{t-1} + i_t \odot c_t', & \textit{cell state} \\ h_t &= o_t \odot \tanh(c_t) & \textit{block output} \end{array}$$

"Constant error carousel": (assuming $f_t=1$):

$$c_t = c_{t-1} + i_t \odot c_t'.$$

$$\frac{\partial c_t}{\partial c_{t-1}} = 1.$$

Vectorization:

$$\begin{pmatrix} W_{xc} & W_{hc} & & & \\ & W_{xi} & & & & \\ & & W_{xf} & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

There is no non-linearity ın dependence c_t from c_{t-1} so it provides gradient propagation through time without vanishing;

- Problems with exploding gradients => shrinking and bordering the absolute values of gradients

Machine Translation

Machine Translation

Machine Translation

Attention mechanism

Diagram derived from Fig. 3 of Bahdanau, et al. 2014

The strength of connections depends on the magnitude of dependence on each word

"Show and tell" (2015)

• Image captioning model with attention module

"Show, attend and tell" (2015)

Xu et.al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015

"Show, attend and tell" (2015)

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Advantages of Attention Mechanism

- Attention significantly improves performance in many applications
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on

Problems with RNNs - still remains...

- > RNNs involve sequential computation can't parallelize => time-consuming;
- RNNs "forget" past information;
- ➤ No explicit modeling of long and short range dependencies;

Convolution?

- ➤ Trivial to parallelize (per layer);
- > Exploits local dependencies; models local context;
- ➤ Long-distance dependencies require many layers;

Transformers

"Attention is All You Need"

Basic concepts of Transformer model

- 1. Encoding-decoding architecture;
- 2. Self-attention mechanism: query, key and value;
- 3. Positional Encoding;
- 4. Multi-head Attention;
- 5. Masked Multi-head attention;
- 6. Residual connections

Encoder

Encoder

Encoder

Self-attention

For each input embedding vector:

$$x_i \rightarrow (q_i, k_i, v_i)$$
 $\uparrow \uparrow \uparrow$
Query Key Value

Self-attention

For each input embedding vector:

$$x_i \rightarrow (q_i, k_i, v_i)$$
 $\uparrow \uparrow \uparrow$
Query Key Value

$$\rightarrow a_{ij} = (q_i^T \ k_j)$$
 - how much (in current state) x_i relates to x_j - or "relevance" – how much j is relevant to i .

Self-attention

For each input embedding vector:

$$x_i \rightarrow (q_i, k_i, v_i)$$
 $\uparrow \uparrow \uparrow$
Query Key Value

$$a_{ij} = (q_i^T \ k_j)$$
 - how much (in current state) x_i relates to x_j - or "relevance" – how much j is relevant to i .

We go through all the keys of the input vector with query q_i :

$$x_n \to (q_n, k_n, v_n) \to (q_i^T k_n)$$

$$x_2 \rightarrow (q_2, k_2, v_2) \rightarrow (q_i^T k_2)$$

$$x_1 \rightarrow (q_1, k_1, v_1) \rightarrow (q_i^T k_1)$$

Self-attention

 X_1

For each input embedding vector:

$$x_i \rightarrow (q_i, k_i, v_i)$$
 $\uparrow \uparrow \uparrow$
Query Key Value

$$\rightarrow a_{ij} = (q_i^T \ k_j)$$
 - how much (in current state) x_i relates to x_j - or "relevance" – how much j is relevant to i .

We go through all the keys of the input vector with query q_i :

$$x_n \to (q_n, k_n, v_n) \to (q_i^T k_n)$$

$$x_2 \rightarrow (q_2, k_2, v_2) \rightarrow (q_i^T k_2)$$

$$x_1 \rightarrow (q_1, \ k_1, \ v_1) \ \rightarrow \ \left(q_i^T \ k_1\right)$$

Evaluating a final weighted and normalized output of the layer

$$x_i \rightarrow (q_i, k_i, v_i) \rightarrow y_i = \sum_{j=1}^n Softmax(\frac{1}{\sqrt{d}} q_i^T k_j) v_j$$

Self-attention

$$x_i \rightarrow (q_i, k_i, v_i)$$
 $\uparrow \uparrow \uparrow$
Query Key Value

$$\rightarrow a_{ij} = (q_i^T \ k_j)$$
 - how much (in current state) x_i relates to x_j - or "relevance" – how much j is relevant to i .

We go through all the keys of the input vector with query q_i :

$$x_n \to (q_n, \ k_n, \ v_n) \to (q_i^T \ k_n)$$

$$x_2 \to (q_2, \ k_2, \ v_2) \to (q_i^T \ k_2)$$

$$x_1 \to (q_1, \ k_1, \ v_1) \to (q_i^T \ k_1)$$
Evaluating a final weighted and normalized output of the layer
$$x_i \to (q_i, \ k_i, \ v_i) \to y_i = \sum_{i=1}^n Softmax(\frac{1}{\sqrt{d}} \ q_i^T \ k_j) \ v_j$$

$$x_{i} \in R^{d}, q_{i} \in R^{m}, k_{i} \in R^{m}, v_{i} \in R^{l}$$

$$W_{Q}^{(1)}X \rightarrow Q^{(1)}$$

$$W_{K}^{(1)}X \rightarrow K^{(1)} \longrightarrow Y^{(1)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V$$

$$W_{V}^{(1)}X \rightarrow V^{(1)}$$

$$x_i \in R^d, q_i \in R^m, \ k_i \in R^m, \ v_i \in R^l$$

$$w_q^{\scriptscriptstyle (1)} X \rightarrow Q^{\scriptscriptstyle (1)}$$

$$W_{K}^{(1)}X \to K^{(1)} \longrightarrow Y^{(1)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V$$

$$W_{V}^{(1)}X \to V^{(1)}$$

$$W_{Q}^{(2)}X \to Q^{(2)}$$

$$W_{K}^{(2)}X \to K^{(2)} \longrightarrow Y^{(2)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V$$

$$W_{V}^{(2)}X \to V^{(2)}$$

$$x_i \in \mathbb{R}^d$$
, $q_i \in \mathbb{R}^m$, $k_i \in \mathbb{R}^m$, $v_i \in \mathbb{R}^l$

$$(1) \begin{array}{c} W_{Q}^{(1)}X \rightarrow Q^{(1)} \\ W_{K}^{(1)}X \rightarrow K^{(1)} \longrightarrow Y^{(1)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V \\ W_{V}^{(2)}X \rightarrow V^{(1)} \longrightarrow Y^{(2)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V \\ W_{V}^{(2)}X \rightarrow K^{(2)} \longrightarrow Y^{(2)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V \\ W_{V}^{(2)}X \rightarrow V^{(2)} \longrightarrow W_{V}^{(n)}X \rightarrow V^{(n)} \longrightarrow Y^{(n)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V \\ (S) \begin{array}{c} W_{K}^{(n)}X \rightarrow K^{(n)} \longrightarrow Y^{(n)} = Softmax(\frac{1}{\sqrt{m}}QK^{T})V \\ W_{V}^{(n)}X \rightarrow V^{(n)} \end{array}$$

Apply the same operations S times in different branches – "heads". Each heads learn some specific information from embedding

S branches

Concatenation

$$x_i \in R^d, q_i \in R^m, \ k_i \in R^m, \ v_i \in R^l$$

Apply the same operations S times in different branches - "heads". Each heads learn some specific information from embedding

$$\begin{array}{c|c} Y^{(1)} \\ Y^{(2)} \\ \dots \end{array} \quad X \quad W_O = Z_O$$

Multi-head module

S branches

Concatenation

Multi-head Attention

ITMO UNIVERSITY

- ➤ Multi-head Attention is a module for attention mechanisms which runs through an attention mechanism several times in parallel. (in 1st paper 8 attention heads and 6 encoder/decoder layers);
- ➤ The independent attention outputs are then concatenated and linearly transformed into the expected dimension.
- ➤ Intuitively, multiple attention heads allows for attending to parts of the sequence differently (e.g. longer-term dependencies versus shorter-term dependencies).

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Above **W** are all learnable parameter matrices.

Display attention from different layers and heads:

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hellot2t.ipynb#scrollTo=OJKU36QAfqOC

Encoder: summary

Decoder

Decoder

Decoder takes **Q** and **K** from encoder, and **V** from corresponding candidate embedding.

Positional Encoding

ITMO UNIVERSITY

Each word in the input sequence is assigned a vector:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

i – index of the dimensional index of word embedding;

pos – position of the current word in the sequence;d model – word embedding dimension;

In order to capture positional information, each element of the positional embedding varies according to a word's position and the index of the element within the dimension of the word embedding *d*. This is achieved by varying frequencies.

That's how transformer learns positions of each word.

PE is added to initial embedding of the word: $\mathbf{Z}_{new}^w = Z^w + \mathbf{PE}$

Positional Encoding

Each word in the input sequence is assigned a vector:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

i- index of the dimensional index of word embedding;

pos – position of the current word in the sequence;d_model – word embedding dimension;

In order to capture positional information, each element of the positional embedding varies according to a word's position and the index of the element within the dimension of the word embedding *d*. This is achieved by varying frequencies.

That's how transformer learns positions of each word.

PE is added to initial embedding of the word: $Z_{new}^w = Z^w + PE$

For the case of 4-dimensional embedding:

$$\mathbf{Z_{new}^w} = Z^w + [\sin(pos/10000^{\frac{2*0}{4}}), \cos(pos/10000^{\frac{2*0}{4}}), \sin(pos/10000^{\frac{2*1}{4}}), \cos(pos/10000^{\frac{2*1}{4}})]$$

Attention is cheap

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O(n^2 \cdot d)$	O(1)
Recurrent	$O(n\cdot d^2)$	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)

n – the length of the input vector;

d – the length of latent representation (embedding);

r - radius of restricted-length attention.

- Cheaper when n < d
- No long-range dependencies;
- No sequential operations;

... and IT WORKS!

Transformer-based models for text problems

Transformers (Encoder + Decoder)

GPT

(Generative Pretrained Transformer) models

Decoder

-language models-

Examples of GPT models

BERT

(Bidirectional Encoder Representations from Transformers) models

Encoder

- text-related tasks -

Masking random words (N-gramms/sentences) inside input sentence and try to predict it (fill in the gaps)

Vision Transformers

ViT model

It was published in early December 2020 (implementation).

Dosovitsky et.al., 2020

ViT model

Lx

+

MLP

Norm

+

Multi-Head Attention

Norm

Embedded

Patches

It was published in early December 2020 (implementation).

Dosovitsky et.al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020

- The picture is divided into mini-sections 16 * 16.
- > Each section is fed into the transformer as a "word", supplemented by a positional encoder.
- > And, suddenly, it all worked!
- ➤ Deit improvement of ViT from Facebook greatly simplified training and inference.
- > On large datasets, this approach still holds the almost all classifications first places in https://paperswithcode.com/paper/going-deeperwith-image-transformers
- ➤ But, with a dataset of ~ 2-3 thousand pictures, doesn't work very well - classic ResNet more stable and better.

Dosovitsky et.al., 2020

Key advantages of transformers

- > Easier to train, more efficient;
- > Transfer learning works (pre-trained models can be fine-tuning for new tasks)
- ➤ Can be trained on unsupervised texts (all the world text data is now valid training data)

LSTM still good when:

- \triangleright Sequence length long or infinite (Transformers are O(N²))
- Need real-time control for robotics
- Can't pretrain on a large corpus.

Links to additional resources & tutorials

https://jalammar.github.io/illustrated-transformer/

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/2010.11929.pdf

