

G53FIV: Fundamentals of Information Visualization <u>Lecture 14: Review</u>

Ke Zhou School of Computer Science Ke.Zhou@nottingham.ac.uk

https://moodle.nottingham.ac.uk/course/view.php?id=68644

A Bit About the Exam

What to Learn

- Lecture slides
- Selected chapters from the core text books and additional reading papers (all available on Moodle)
 - The Visual Display of Quantitative Information (2nd Edition). E. Tufte. Graphics Press, 2001 [available in the library].
 - R Graphics Cookbook, Winston Chang, O'Reilly Media,
 2013 [you can find it online by googling].
 - Paper handouts.

Lecture Schedule

Week	Topic	Topic	
1 (w19)	Introduction	The Value of Visualization	
2 (w20)	Data and Image Models	Graphs and Charts	
3 (w21)	Multivariate Data Visualization	Visualization with R - Fundamentals	
4 (w22)	Visualization with R - Advanced	Visualization Tools and Visual Perception	
5 (w24)	Interaction	Evaluation	
6 (w25)	Visualizing Text and Documents	Visualizing Time Series, Trees and Graphs	
7 (w26)	Recap of Fundamentals	Review	
Break			
8 (w33)	Demo	Demo	

Exam Format

- Two hours
- The written exam accounts for 75% of the whole module
- 4 questions relating to different aspects of information visualization (learned within the module)
 - Different sub-questions
- Bring your pen

Question Types

- Examples
 - Describe the definition or the key concept

Compare and assess different information visualizations

- How to manipulate data
- And others...

Past Paper

The past paper is available on Moodle.

You should practice with it after the revision.

Practice Questions

Describe a Key Concept

 Describe the three basic data types. Assess each column of the table on the corresponding data type.

	Student 1	Student 2	Student 3	Student 4
Name	Tom	Jim	Mary	Jane
Age	20	19	22	21
Grade	А	В	A-	B+
Course	Math	Math	Art	Sport
Entry Year	1997	1998	1995	1996

Nominal, Ordinal & Quantitative

- N Nominal (labels or categories)
 - Operations: =, ≠

e.g. math, art (course)

- O Ordered
 - Operations: =, ≠, <, >

e.g. A, A-, B+, B (grade)

- Q Interval (location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

e.g. (3.23, -1.2) (GPS)

- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

e.g. 20, 19, 22, 21 (age)

Expected Answer

- There are three basic data types: nominal (N), ordinal (O) and quantitative (Q).
- With respect to the data in the table, each row represents a data case. The column "name" denotes nominal (N) data; "age" represents quantitative (Q) data; "grade" denotes ordinal (O) data; "course" represents nominal (N) data; and "entry year" denotes quantitative (Q) data.

	Student 1	Student 2	Student 3	Student 4
Name (N)	Tom	Jim	Mary	Jane
Age (Q)	20	19	22	21
Grade (O)	А	В	A-	B+
Course (N)	Math	Math	Art	Sport
Entry Year (Q)	1997	1998	1995	1996

Compare Different Visualizations

- Compare and contrast two common techniques for visualizing multivariate data: Chernoff Faces and Parallel coordinates.
 - Explain Chernoff Faces and Parallel coordinates.
 - Identify the strengths and weaknesses in terms of "Find value of data case"

Chernoff Faces

 Observation: We have evolved a sophisticated ability to interpret faces.

 Idea: Encode different variables' values in characteristics of human face

Chernoff, Herman. "The use of faces to represent points in k-dimensional space graphically." Journal of the American Statistical Association 68.342 (1973): 361-368.

Parallel Coordinates

- Encode variables along a horizontal row
- Vertical line specifies different values that variable can take
- Data point represented as a polyline

Expected Answer

- Explain Chernoff Faces and Parallel coordinates
 - Chernoff faces exploits the individual parts, such as eyes, ears, and nose of the face to represent values of the variables.
 - In a parallel coordinates plot, the axes are placed in parallel and each data point is represented as a series of line segments intersecting the axes at the corresponding values.
- Find value of data case
 - Parallel coordinates are more suitable for finding value of data case when the data is of high dimension;
 - It is more difficult to find value in Chernoff faces, but it is easier to recognize differences between data cases.

Data Manipulations

 List and describe the five most common data manipulation techniques.

5 Basic Verbs

• FILTE Rows

SELECT Column Types

ArRange Rows (SORT)

Mutate (into something new)

• Summarize by Groups

dplyr

- dplyr takes the %>% operator and uses it to great effect for manipulating data frames
 - Works only with data frames
 - 5 basic "verbs" work for 90% of data manipulations

Verbs	What does it do?
filter()	Select a subset of ROWS by conditions
arrange()	Reorders ROWS in a data frame
select()	Select the COLUMNS of interest
mutate()	Create new columns based on existing columns (mutations!)
summarise()	Aggregate values for each group, reduces to single value

Expected Answer

- Filter: select a subset of data cases by a given condition.
- Arrange: reorder the data cases.
- Select: select a subset of the variables of interest.
- Mutate: create new variables of interest based on existing variables.
- Summarize: aggregate values for each group, reducing to single value.
- (Other answers may be correct as well, such as joining, etc.)

Visualization

 List and explain the visual encodings and their corresponding data types in this visualization.

Visual Encoding Variables

Bertin's Semiology of Graphics (1967)

Levels of Organization

	Nominal	Ordinal	Quantitative
Position	✓	✓	✓
Size	√	✓	~
(Grey)Value	√	✓	~
Texture	√	~	×
Color	✓	×	×
Orientation	√	×	×
Shape	✓	×	×

√ = Good

~ = OK

X = Bad

Expected Answer

- Two visual encodings are used in this visualization: position and color.
- The x and y positions represent respectively the school (nominal data) and annual salary (quantitative data).
- The color Hue demonstrates different gender, which is of nominal data type.

Review Tips

- You can find most of the key concepts or visualizations in the "recap of fundamentals" slides (Lecture 13).
 - A quick overview

 Review the lecture slides, the core texts and paper handouts.

Past Paper

The past paper is available on Moodle.

 Let us go over it to see how you can get 100%.

Information Visualization

- Fundamental understanding on how visualizations convey information and how humans perceive
- Master an essential set of visualization techniques
- Practical experience in visualizing real-world data

SET/SEM Survey

SET/SEM Survey

- Official campus course evaluation
- Distributed and completed online. Your opinion is valued!

Module	Survey Type
Fundamentals of Information Visualisation	SET 🕹
Fundamentals of Information Visualisation	SEM 🎓

Thanks for a great semester!

Next Lecture

- Topic:
 - Demo

- The Monday on 13 May
 - -12:00 14:00
 - A25, Business South, Jubilee
 Campus

