

Predicting Employee Attrition with ML

Using machine learning to predict employee attrition.

Leveraging HR data and advanced models to identify at-risk employees.

Objective: reduce attrition and improve employee retention.

Data Cleaning and Preparation

Data Cleaning

- Remove irrelevant columns.
- Handle missing values.
- Ensure data quality.

Label Encoding

- Convert categories to numbers.
- Prepare for model training.
- Improve model compatibility.

550 149 4.5 11.0 10.0 12,5 771 689 184 184 13.3 169 37% 10.5 194 157 835 10.8 767 15.2 10.0 224 721 100 123 20.6 334 275 115 7.9 20.7 228 925 209 75% 20/00 20/00 19,08 29/00 112/00

☐ Fariniamedescire

Exploratory Data Analysis (EDA)

Correlation Matrix

Visualize feature correlations.

Multicollinearity Detection

Reduce redundant variables.

Key Insights

Age vs. Monthly Income.

Keep Attrition as Dependent variable and Run the models

Machine Learning Models

Logistic Regression

Binary classification baseline.

SVM

Separating hyperplanes.

Decision Tree

Interpretable rules.

Random Forest

Ensemble accuracy.

MACHINE LEARNING

LOGISTIC REGRESSION

Binary classifier that models the probability of class membership

DECISION TREE

Tree-like model of decisions based on feature values

SUPPORT VECTOR MACHINE

Classifies data by finding the hyperplane that best separates the classes

RANDOM FOREST

Ensemble of decision trees that improves classification accuracy

Model Evaluation Metrics

Accuracy

Confusion Matrix

ROC-AUC

Comprehensive metrics to compare models.

Key Results and Insights


```
[ ] # Fit logistic regression model
    log_model = LogisticRegression(max_iter=1000)
    log_model.fit(X_train, y_train)

# Predictions
    y_pred = log_model.predict(X_test)
    y_prob = log_model.predict_proba(X_test)[:, 1]
```

Logistic regression

Accuracy: 89%

```
[ ] # Train SVM model
    svm_model = SVC(kernel="rbf", random_state=42)
    svm_model.fit(X_train, y_train)

# Predictions
    y_pred = svm_model.predict(X_test)
```

Support Vector Machine

Accuracy: 89%

```
# Train Decision Tree model
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)

# Predictions
y_pred_dt = dt_model.predict(X_test)

# Evaluate model
accuracy_dt = accuracy_score(y_test, y_pred_dt)
report_dt = classification_report(y_test, y_pred_dt)
accuracy_dt, report_dt

print(accuracy_dt)
print(report_dt)
```

Decision tree Classifier

Accuracy: 80%

```
# Train Random Forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# Predictions
y_pred = rf_model.predict(X_test)

# Evaluate model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
accuracy, report
print(accuracy)
print(report)
```

Random Forest Classifier

Accuracy: 89%

ROC Curve

Visualizes the trade-off between true positive rate and false positive rate across thresholds.

Feature Importance graph

Shows which features have the greatest impact on the model's predictions.

Confusion Matrix

Summarizes the model's classification performance by showing correct and incorrect predictions.

Conclusion and Future Steps

Impact

Precise attrition prediction.

Integration

HR dashboards ready.

Next Steps

- Hyperparameter tuning.
- XGBoost for boost.
- Real-time deployment.