Modele i Wnioskowanie Statystyczne Laboratorium 2 Sprawozdanie

Igor Markiewicz

Zadanie 1

a) Parametr został wy
estymowany w następujący sposób $\lambda = \frac{1}{n} \sum_{i=1}^n x_i \approx 4,08$

Histogram i estymajcje g sto ci funkcji prawdopodobie stwa

Rys. 1: Histogram i estymowane funkcje gęstości

Wnioski :

- Możemy stwierdzić że w przybliżeniu histogram reprezentuje rozkład Poissona
- b) Oszacowane odchylenie $\sigma \approx 0, 13$

Zadanie 2

b) Estymatory

• metody momentów (wyprowadzenie na wykładzie) :

$$\hat{\alpha} = \frac{m_1^2}{m_2 - m_1^2}$$

$$\hat{\beta} = \frac{m_2 - m_1^2}{m_1}$$

$$m_1 = \frac{1}{n} \sum_{i=1}^n x_i$$

$$m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

• metody największej wiarygodności:

$$p(\alpha, \beta | x) = \frac{x^{\alpha - 1}}{\Gamma(\alpha)\beta^{\alpha}} \exp\left(-\frac{x}{\beta}\right)$$

$$p(\alpha, \beta | x_1, x_2, \dots, x_n) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^n (x_1 \cdot x_2 \cdot \dots \cdot x_n)^{\alpha - 1} \exp\left(-\frac{x_1 + x_2 + \dots + x_n}{\beta}\right)$$

$$l(\alpha, \beta | \boldsymbol{x}) = n(\alpha - 1)\overline{\ln \boldsymbol{x}} - n \ln \Gamma(\alpha) - n\alpha \ln \beta - \frac{n\overline{\boldsymbol{x}}}{\beta}$$

$$\frac{\partial l}{\partial \beta} = -\frac{n\alpha}{\beta} + \frac{n\overline{\boldsymbol{x}}}{\beta^2} \implies \hat{\beta} = \frac{\overline{\boldsymbol{x}}}{\hat{\alpha}}$$

$$\frac{\partial l}{\partial \alpha} = n\overline{\ln \boldsymbol{x}} - n\frac{\partial \ln \Gamma(\alpha)}{\partial \alpha} - n \ln \beta = n\overline{\ln \boldsymbol{x}} - n\frac{\partial \ln \Gamma(\alpha)}{\partial \alpha} - n \ln \overline{\boldsymbol{x}} + n \ln \alpha$$

Zadanie sprowadza się teraz do poszukiwania miejsca zerowego funkcji (używając np: metody uniroot):

$$\ln \alpha - \underbrace{\frac{\partial \ln \Gamma(\alpha)}{\partial \alpha}}_{\text{funkcia digamma}} + \underbrace{\overline{\ln \boldsymbol{x}} - \ln \overline{\boldsymbol{x}}}_{\text{const}}$$

	$\hat{\alpha}$	$\hat{\beta}$
metoda	1,03	77,93
momentów	1,00	11,55
metoda		
największej	1,02	78,49
wiarygodności		

Tab. 1: Porównanie wartości estymatorów

a), c)

Rys. 2: Histogram i estymowane funkcje gęstości (dla 100. koszyków)

Wnioski:

- Rozkład Γ z dużym prawdopodobieństwem może opisywać dane z Rys. 2 estymując rozkład wykładniczy postaci $\Gamma(1,\lambda)$ (co potwierdzają wyliczone współczynniki α)
- Oba estymatory dają podobne wyniki, a narysowane funkcje gęstości pokrywają się, poza niewielkim przedziałem dla małych wartości czasu między kolejnymi rejestracjami fotonów

 \mathbf{d}

	$\sigma_{\hat{lpha}}$	$\sigma_{\hat{eta}}$
metoda	0,03	2,71
momentów	0,03	2,11
metoda		
największej	0,02	1,94
wiarygodności		

Tab. 2: Porównanie odchyleń standardowych estymatorów

	$\sigma_{\hat{\alpha}}-2,5\%$	$\sigma_{\hat{\alpha}} - 97, 5 \%$	$\sigma_{\hat{\beta}} - 2,5 \%$	$\sigma_{\hat{\beta}} - 97,5 \%$
metoda	0,96	1,09	73,00	83,33
momentów	0,90	1,09	75,00	05,55
metoda				
największej	0,99	1,08	$74,\!27$	81,86
wiarygodności				

Tab. 3: Porównanie przedziałów ufności dla estymatorów

Wnioski:

• Estymator metody momentów charakteryzuje się większym odchyleniem standardowym (w szczególności dla parametru β) przez co posiada szersze przedziały ufności niż estymator metody największej wiarygodności

Zadzanie 3

a) Wyestymowane parametry:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \approx -4, 23$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 \approx 0, 71$$

b) Przedziały ufności dla μ gdy σ nie jest znane :

$$\left[\overline{X_n} - \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right), \ \overline{X_n} + \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right)\right]$$

gdzie ${\cal F}_{t_{n-1}}^{-1}$ jest funkcją kwantylową rozkładu t-Studenta on-1stopniach swobody

	lewy kraniec	prawy kraniec
90 %	-4,49	-3,98
95 %	-4,54	-3,93
99 %	-4,64	-3,83

Tab. 4: Przedziały ufności dla wartości średniej

c) Przedziały ufności dla σ^2 gd
y μ nie jest znane :

$$\left[\frac{(n-1)S^2}{F_{\chi_{n-1}^2}^{-1}(1-b)}, \frac{(n-1)S^2}{F_{\chi_{n-1}^2}^{-1}(a)}\right]$$

gdzie $F_{\chi^2_{n-1}}^{-1}$ jest funkcją kwantylową rozkładu χ^2 o n-1stopniach swobody oraz przyjęto $a=b=\frac{1+\gamma}{2}$

	lewy kraniec	prawy kraniec
90 %	0,49	1,14
95 %	0,46	1,25
99 %	0,40	1,52

Tab. 5: Przedziały ufności dla wariancji