Assignment 2 MAT 267

Q4a: Suppose that $x(t) = t^{\gamma}$ solves $\sum_{k=0}^{n} a_k t^k x^{(k)}$. Then it must be that $\sum_{k=0}^{n} a_k t^k (t^{\gamma})^{(k)} = 0$. Evaluating, we see that

$$0 = \sum_{k=0}^{n} a_k t^k (t^{\gamma})^{(k)}$$

$$= \sum_{k=0}^{n} a_k t^k t^{\gamma-k} \cdot (\gamma - 1) \cdot \dots (\gamma - k)$$

$$= \sum_{k=0}^{n} a_k t^{\gamma} \frac{\gamma!}{(\gamma - k)!}$$

$$= \sum_{k=0}^{n} a_k \frac{\gamma!}{(\gamma - k)!}$$

$$= \sum_{k=0}^{n} b_k \gamma^k \qquad (for some b_k)$$

We see that $x(t) = t^{\gamma}$ is a solution to our ODE if and only if it is a root to the polynomial $\sum_{k=0}^{n} b_k x^k$, where each $b_k = \sum_{j=0}^{k} (-1)^j \cdot j! \cdot a_{k+j}$

Q4b: Let $y(t) = t^{\gamma}Q(\log t)$ where Q is a polynomial of degree m. We compute

$$t \cdot y' - \alpha y = \gamma t^{\gamma} Q(\log t) + t^{\gamma} Q'(\log t) - \alpha t^{\gamma} Q(\log t)$$

If $\alpha = \gamma$ we see that this expression evaluates to $t^{\gamma}Q'(\log t)$, with Q' being of degree m-1. If $\alpha \neq \gamma$, then this will be of the form $t^{\gamma}P(\log t)$ for some polynomial P.

Q4c: Suppose that γ is a root to $\sum_{k=0}^{n} b_k \gamma^k$. It suffices to check that $t^{\gamma_j} Q_j(\log t)$ satisfies our ODE, since it is linear and so any sum of functions of that form will work. We see that

$$\sum_{k=0}^{n} a_k \cdot t^k \left(\frac{d}{dt}\right)^k y(t) = \sum_{k=0}^{n} b_k \left(t \frac{d}{dt}\right)^k (y(t))$$

$$= \sum_{k=0}^{n} b_k \left(\left(t^{\gamma} Q_j'(\log t) + \alpha t^{\gamma} Q_j(\log t)\right)^k\right)$$

$$= \sum_{k=0}^{n} b_k \left(t^{\gamma} Q_j'(\log t)\right)^k + \alpha \sum_{k=0}^{n} b_k \left(t^{\gamma} Q_j(\log t)\right)^k$$

$$= \alpha \sum_{k=0}^{n} (Q_j(\log t))^k \sum_{k=0}^{n} b^k \gamma^k$$

$$= 0$$
(by 4b)