



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A141 701



# PILOT FIELD TESTING OF ARCTIC **ENGINE OIL IN ARMY COMBAT/** TACTICAL VEHICLES AT FT. CARSON, CO AND FT. LEWIS, WA

INTERIM REPORT AFLRL No. 157

By

J. D. Tosh

R. A. Alvarez

W. E. Butler

E. C. Owens



T. C. Bowen

OU.S. Army Belvoir Research and Development Center

Materials, Fuels and Lubricants Laborators

Fort Policy

Contract No. DAAK70-82-C-0001

Approved for public release; distribution unlimited

July 1982

095

#### **Disclaimers**

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

## **DTIC Availability Notice**

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

## **Disposition Instructions**

Destroy this report when no longer needed. Do not return it to the originator.

| SECURITY CLASSIFICATION OF THIS PAGE (When                                                                                          | Data Enteredi                   |                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| REPORT DOCUMENTATI                                                                                                                  |                                 | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                             |
| 1. REPORT NUMBER                                                                                                                    | 2. GOVT ACCESSION NO.           | 3. RECIPIENT'S CATALOG NUMBER                                                                                           |
| AFLRL No. 157                                                                                                                       | AD-A141701                      |                                                                                                                         |
| 4. TITLE (and Subtitle) PILOT FIELD TESTING OF ARCTIC EN COMBAT/TACTICAL VEHICLES AT FT. FT. LEWIS, WA                              |                                 | 5. TYPE OF REPORT & PERIOD COVERED Interim Report January 1977-June 1981 6. PERFORMING ORG. REPORT NUMBER 05-6800-210/1 |
| 7. AUTHOR(s)  J.D. Tosh  R.A. Alvarez  W.E. Butler  T.C. Bowen  (Belvoir R&I                                                        |                                 | 8. CONTRACT OR GRANT NUMBER(s) DAAK70-80-C-0001 DAAK70-82-C-0001                                                        |
| 9. PERFORMING ORGANIZATION NAME AND AU<br>U.S. Army Fuels & Lubricants Res<br>Southwest Research Institute<br>San Antonio, TX 78284 |                                 | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Belvoir Research and I                                                            |                                 | 12. REPORT DATE July 1982                                                                                               |
| Center, Materials, Fuels and I                                                                                                      | ubricants Lab.                  | 13. NUMBER OF PAGES                                                                                                     |
| Ft. Belvoir, VA 22060                                                                                                               |                                 | 37                                                                                                                      |
| 14. MONITORING AGENCY NAME & ADDRESS (ij different from Controlling Office)                                                         |                                 | 15. SECURITY CLASS. (of this report) Unclassified                                                                       |
|                                                                                                                                     |                                 | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                                                                           |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                         |                                 |                                                                                                                         |
| Approved for public release; dis                                                                                                    | stribution unlimi               | ted                                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abstract en                                                                                      | tered in Block 20, if different | from Report)                                                                                                            |

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

OEA Arctic Engine Synthetic Lubricant

Combat/Tactical Equipment

Multiviscosity **Blowby** Synthetic Engine Oil Field Test

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Military lube orders for combat and tactical equipment specify use of a single-viscosity grade lubricant with the grade depending on seasonal or climatic conditions. The use of this oil results in seasonal oil changes, regardless of the condition of the oil. Also, standard issue oils do not offer sufficient lubrication and engine protection over a wide range of ambient temperatures such as those experienced at Fort Carson, CO, and Fort Lewis, WA. To address lubrication problems experienced at these bases, a

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

### 20. ABSTRACT (Cont'd)

pilot field test was initiated utilizing two multiviscosity lubricants qualified under MIL-L-46167 (OEA). Data derived from the test were also to be used as a basis for developing multigrade engine oils for Army tactical/combat equipment and to gain supplemental information covering the use of arctic engine oil (OEA) over expanded temperature ranges. This report covers the field test initially utilizing three M60Al tanks at Fort Carson, CO, later expanding in scope to five additional M60Al tanks and four M151A2 jeeps at Fort Carson. The M151A2 jeeps (1/4-ton trucks) were equipped with specially manufactured low blowby pistons and piston rings and were added to the test to evaluate the durability of the piston and piston ring package. Also added to the test were six M60Al tanks located at Fort Lewis, WA.

Subjective comments by operating and maintenance personnel indicated that all the engines lubricated by the MIL-L-46167 oil started easier, and that the M60Al tank engines appeared to develop more power. In addition, maintenance personnel at Fort Carson noted that the M60Al tank engines lubricated with the MIL-L-46167 oil experienced a much lower usage rate for lead-acid (6TN) storage batteries and main engine generators and starters.

Concern was expressed by operating personnel at Fort Carson about the AVDS-1790 engines overheating when being lubricated by the MIL-L-46167 oil. However, this concern abated after a field test comparing the change in crankcase temperatures between vehicles lubricated with the MIL-L-2104C oils and those lubricated with the MIL-L-46167 oil indicated no significant differences or adverse effects.

Transmissions and final drives could be successfully lubricated with the MIL-L-46167 arctic engine oil as could the modified M151A2 jeep engines, although leaking gaskets and seals were more prevalent for those engines. Further study and testing are indicated for resolving the questions raised.

#### FOR EWORD

This report was prepared by the U.S. Army Fuels and Lubricants Research Laboratory (AFLRL) located at Southwest Research Institute, San Antonio, Texas, under Contracts No. DAAK70-80-C-0001 and DAAK70-82-C-0001. The work was sponsored by U.S. Army Belvoir Research and Development Center, Materials, Fuels, and Lubricants Laboratory, Fort Belvoir, Virginia. The Project Monitor and Contractor Officer's Representative was Mr. F.W. Schaekel, Belvoir R&D Center, STRBE-VF, Fort Belvoir, Virginia. Acknowledgement is given to Mr. M.E. LePera of Belvoir R&D Center and Messrs. S.J. Lestz and A.A. Johnson of AFLRL for their participation, encouragement, and suggestions. Special acknowledgement is given to Mr. Chester Johnson of Fort Carson, Colorado, and Mr. Joseph Geraci of Fort Lewis, Washington, for assistance provided throughout the program.



AI

1

## TABLE OF CONTENTS

| Section |                                    | Page           |
|---------|------------------------------------|----------------|
| ı.      | 1NTRODUCTION                       | 5              |
| II.     | FORT CARSON TESTING                | 6              |
|         | A. DETAILS OF TEST                 | 6              |
|         | 1. TEST MATERIALS                  | 6<br>7<br>9    |
| III.    | FORT LEWIS TESTING                 | 19             |
|         | A. DETAILS OF TEST                 | 19             |
|         | 1. TEST MATERIALS                  | 19<br>19<br>19 |
|         | B. RESULTS OF TEST                 | 21             |
| IV.     | CONCLUSIONS                        | 21             |
| v.      | RECOMMENDATIONS                    | 23             |
| VI.     | REFERENCES                         | 24             |
|         | APPENDIX A (PILOT FLEET TEST PLAN) |                |

## LIST OF TABLES

| Table  |                                                           | Page |
|--------|-----------------------------------------------------------|------|
| 1      | Description of Test Lubricants                            | 6    |
| 2      | Engine History for Test and Control Vehicles              | 7    |
| 3      | Description of Five Additional Tanks Added 10 August 1977 | 8    |
| 4      | Description of Test and Control M151A2 Jeeps              | 9    |
| 5      | Summary of Vehicle Operational Data, January 1977,        |      |
|        | Through 20 April 1977                                     | 10   |
| 6      | Fort Carson M60Al Vehicle Operational Data                | 14   |
| 7      | Breakdown Analysis of Fort Carson M60Al Engine            |      |
|        | and Transmission Replacements                             | 15   |
| 8      | Summary of M151A2 Vehicle Operational Data                | 17   |
| 9      | Fort Lewis M60Al Vehicle Operational Data                 | 20   |
| 10     | Breakdown Analysis of M60Al Engines and Transmission      |      |
|        | Replacements, Fort Lewis, WA                              | 22   |
|        |                                                           |      |
|        | LIST OF FIGURES                                           |      |
| Figure |                                                           | Page |
| 1      | Engine Oil Temperature Vs. Test Time for Non-Rise Engines | 11   |
| 2      | Engine Oil Temperature Vs. Test Time for RISE Engines     | 12   |

#### I. INTRODUCTION

Engine crankcase oils, presently furnished under Military specifications for use in combat and tactical ground equipment, are predominantly single viscosity-grade lubricants. Application of these oils is governed by equipment lubrication orders which require the use of individual grade products over specific ambient temperature ranges. (1)\* This method of application has resulted in frequent lubricant changes solely in response to seasonal/climatic temperatures and has led to the disposal of significant quantities of otherwise usable oil. To minimize the disposal problems and reduce maintenance associated with oil changes, attempts have been made to expand usage of individual grade products to temperatures lower than those recommended by the equipment lubrication orders. These attempts, although occasionally successful, have resulted in operational problems and equipment malfunctions.

The aforementioned problems were highlighted by occurrences associated with the operation of M60 tanks at Fort Carson, Colorado. (2,3) Because of the altitude and locale, Fort Carson experiences wide temperature fluctuation during the year. This is especially evident in the early spring and autumn when daily ambients can change by as much as 28°C (50°F). These temperature fluctuations require frequent oil changes and excessive maintenance to comply with vehicle lubrication orders. Attempts to avoid oil changes by servicing equipment with higher viscosity Grade 30 and 50 MIL-L-2104C (4) products resulted in severe startability problems. Also, there was an indication that a portion of the equipment malfunctions being experienced were related to use of the higher viscosity lubricant.

Pilot field testing was conducted at Fort Carson, CO and Fort Lewis, WA. The objective of the testing was to evaluate the capability of MIL-L-46167 (5) arctic oil (OEA) to provide an interim solution to the lubrication problems being encountered. In addition, the data derived from the test were to be used as a basis for developing multigrade engine oils for Army tactical and combat equipment and to gain supplemental information covering the use of OEA lubricant over expanded temperature ranges.

\*Underscored numbers in parentheses refer to the list of references at the end of this report.

#### II. FORT CARSON TESTING

## A. <u>Details of Test</u>

#### 1. Test Materials

Two types of lubricants were used throughout the test. The test oil was a multiviscosity, synthetic lubricant qualified for military use according to MIL-L-46167 specification. This OW-20 grade engine lubricant was developed for use in the arctic and was previously identified by Aberdeen Proving Ground Purchase Description No. 1 (APG PD-1). It has been successfully tested in high-output diesel engines under arctic conditions (-55°C to +5°C) and is currently in use by the Military during arctic operations.

The second lubricant was stock issue MIL-L-2104C OE/HDO 30 or 50 grade, depending on seasonal requirements and applicable lubrication orders. Since the standard issue oil was and is supplied by different companies and manufactured within specification tolerances, it was referred to simply as MIL-L-2104C. Table I gives a description of the two lubricants and some of their properties. The data for the MIL-L-2104C oil are represented as "typical" for standard issues of that oil.

TABLE 1. DESCRIPTION OF TEST LUBRICANTS

| Description          | ASTM<br>Method No. | Oil A        | Oil B (Typical) |
|----------------------|--------------------|--------------|-----------------|
| Specification        |                    | MIL-L-46167* | MIL-L-2104C     |
| Grade                |                    | Arctic, OEA  | OE/HDO-30       |
| Properties           |                    |              |                 |
| Viscosity, cSt       | D 445              |              |                 |
| at 99°C (210°F)      |                    | 6.14         | 11.90           |
| at 38°C (100°F)      |                    | 29.3         | 120.0           |
| Viscosity Index      | D 2270             | 185          | 96              |
| TAN                  | D 664              | 0.2          | 2.0             |
| TBN                  | D 2896             | 7.8          | 12.0            |
| Flash Point, °C (°F) | D 92               | 238 (460)    | 227 (440)       |

<sup>\*</sup>Formerly designated APG PD-1.

The fuel used during the program was that available through the military supply system and was procured against VV-F-800B specification.

## 2. Test Fleet

#### a. M60Al Tanks

The initial pilot fleet consisted of three M60Al tanks at Fort Carson CO. These vehicles were powered by the AVDS-1790-2A, a twelve-cylinder, air-cooled diesel engine. Two of the test vehicles (HQ-67 and HQ-68) were lubricated with MIL-L-46167 arctic oil. Initially, one vehicle (HQ-66) was operated as a control vehicle using a typical MIL-L-2104C OE/HDO-30 lubricant. Only the crankcase of each engine was charged with the test lubricants.

The three vehicles were operated by the 1/77 Armor, which also provided organizational maintenance and repair work. If more than organizational maintenance was required, the engine was removed and forwarded to the DIO Maintenance Division for rebuild. The condition of the engine oil was monitored by the Army Oil Analysis Program laboratories, initially at Tracy, CA, then later at Fort Carson. Table 2 gives the prior engine history for each of the three engines that was used in the test from January 1977 through 20 April 1977.

TABLE 2. ENGINE HISTORY FOR TEST AND CONTROL VEHICLES

| Bumper | Type of       | Engine     | Engine | Engine | Type        |           |
|--------|---------------|------------|--------|--------|-------------|-----------|
| No.    | <u>Engine</u> | Order      | Hours  | Miles  | 011         | Remarks_  |
| Hq. 66 | AVDS-1790-2A  | Original   | 181    | 1433   | OE/HDO-30   |           |
| Hq. 67 | AVDS-1790-2A  | 3rd Engine | 68     | 541    | MIL-L-46167 |           |
| Hq. 68 | AVDS-1790-2A  | 4th Engine | 69     | 383    | MIL-L-46167 | Repaired* |

<sup>\*</sup> Maintenance Division - 11 Mar 76 - 1 cylinder & piston replaced. Other cylinder 7300 psi Dyno run - 675 HP + 108 = 783 hp issued.)

Because no adverse results were observed during this brief test period for the AVDS-1790-2 engines, it was decided to evaluate the test oils' effectiveness in lubricating/protecting M60Al tank transmissions and final drives as well. Until arrangements could be made, the original vehicles remained operational on their

respective lubricants. However, little operational data were reported during this period due to changes in personnel and the fact that the program had not yet been officially extended. On 10 August 1977, the program was expanded to include five additional M60Al vehicles. These vehicles were identified as vehicles Nos. A-31, A-32, A-33, A-34, and A-35. All five vehicles were converted to the arctic engine oil for a total of seven M60Al's operating on synthetic arctic engine oil, and one M60Al using MIL-L-2104C lubricant being designated as a control vehicle. Table 3 gives the description of the five additional M60Al tanks.

TABLE 3. DESCRIPTION OF FIVE ADDITIONAL TANKS ADDED 10 AUC . .977

| Bumper | Vehicle   | Engine    | Engine         |             |
|--------|-----------|-----------|----------------|-------------|
| No.    | <u>SN</u> | <u>SN</u> | <u>Mileage</u> | Type 011    |
| A-31   | 5747      | 8860      | 169            | MIL-L-46167 |
| A-32   | 6990      | 21027     | 1979           | MIL-L-46167 |
| A-33   | 3632      | 6546      | 1657           | MIL-L-46167 |
| A-34   | 5924      | 2508      | 668            | MIL-L-46167 |
| A-35   | 2894      | 3313      | 311            | MIL-L-46167 |
|        |           |           |                |             |

At this time, it was reported that the control vehicle originally identified as Hq. 66 had now become B-11. This was a record change only since the bumper number had been changed, not the vehicle itself. On 9 June 1978, the plan to include the transmissions of all the M60Al tanks and the final drives for Hq. 67 only was put into effect. In October 1978, data began to appear in monthly data and evaluation reports prepared by the test unit's battalion maintenance officer about an M60 tank with a bumper number of Hq. 66. This vehicle was not the same Hq. 66 identified at the beginning of the test which was redesignated as B-11. Data on the new Hq. 66 was sketchy until June 1979 from which time it appeared regularly until the end of the test. Since it was operated with MIL-L-2104C, it became a reliably observed control vehicle in addition to B-11 for the period June 1979 through February 1981.

### b. M151A2 Jeep

Four M151A2 jeeps were placed in the pilot test program. The engines in the jeeps were provided with specially machined low blowby pistons and piston rings. The purpose of having the jeeps in the test was to evaluate the durability of the piston and piston ring package. In April 1977, the first of the four jeeps was started in the test program. Test data for this vehicle, Hq-9, began to arrive on a regular basis in September 1977. The remaining three jeeps were started in the test on 24 February 1978. Test data for the three jeeps began to arrive on a regular basis in April 1978. Table 4 gives a description of the four jeeps used in the pilot fleet test.

TABLE 4. DESCRIPTION OF TEST M151A2 JEEPS

| Unit       | Vehicle<br>Type | Vehicle<br>SN | Bumper<br>No. | Engine<br>SN | Engine<br>Mileage | 011         |
|------------|-----------------|---------------|---------------|--------------|-------------------|-------------|
| 1/77 Armor | M151A2          | Unknown       | Hq-9          | Unknown      | 1888              | MIL-L-46167 |
| 19th MP Bn | M151A2          | 92D94572      | P-7           | 5004337      | 13120             | MIL-L-46167 |
| 19th MP Bn | M151A2          | 02E58172      | P-17          | 5004614      | 18725             | MIL-L-46167 |
| 19th MP Bn | M151A2          | 02G48172      | P-73          | 5006562      | 25395             | MIL-L-2104C |

In September 1980, vehicle P-7 was involved in an accident which totalled the vehicle. However, there was no damage to the engine, and it was installed in vehicle P-41 for the remainder of the test.

#### Fleet Operations

#### a. M60Al Tanks

All the M60Al tanks in the test were operated in accordance with normal mission/training requirements. Table 5 shows a summary of vehicle operation for the period January 1977 through 20 April 1977.

During the period 15 September to 15 November 1977, the vehicles were involved in extensive training maneuvers. Tank commanders reported that vehicles operating on the arctic engine oil tended to operate at a higher engine temperature than experienced with vehicles using OE/HDO-30 oil. The situation was described

as serious as the AVDS-1790-2A (non-RISE) engines ran in the "red" zone of the temperature gage after only 3-5 miles of operation and had to be cooled down before further operation. The AVDS-1790-2D (RISE) engines also ran hotter than normal but not in the "red" zone. This potential overheating was investigated during August 1979 at Fort Carson. (6,7) Two M60Al non-RISE and two M60Al RISE\* engines were instrumented to measure the engine oil temperatures at the oil filter bypass valve and within the oil pan. For each engine configuration, one vehicle used a conventional MIL-L-2104C OE/HDO-50 lubricant, while the other vehicle of the pair was lubricated with the MIL-L-46167 test lubricant. vehicles were then operated simultaneously over a test course which produced high engine temperatures. Figure 1 shows that the non-RISE configuration had an observed 5°  $\pm$  1°C average increase in oil temperature with the MIL-L-46167 arctic oil; the maximum sump temperature measured was 149°C during a hot soak with the engine stopped. Figure 2 shows that the RISE engines had no significant differences in oil temperature with the maximum oil sump temperature achieved being 121°C. The two large drops in temperature experienced during the test are a result of the two scheduled maintenance stops at 10 and 20 miles into the test. As Figures 1 and 2 illustrate, the temperature difference between mineral and synthetic lubricants is small, taking into account the different starting temperatures of the vehicles. This slight difference would not be expected to result in any operational difficulties, since this represents only 3 percent of the peak temperatures encountered during vehicle operation.

| TABLE | 5.    | SUM | IMARY | OF  | VEHIC | CLE | OPERAT | CIONAL | DATA |
|-------|-------|-----|-------|-----|-------|-----|--------|--------|------|
|       | Janua | ırv | 1977  | Thi | ough  | 20  | April  | 1977   |      |

| Bumper<br>No. | Type<br>Oil | 0il<br><u>Used (Qts)</u> | Fuel<br><u>Used (Gal)</u> | Miles<br><u>Traveled</u> | Hours<br><u>Operated</u> |
|---------------|-------------|--------------------------|---------------------------|--------------------------|--------------------------|
| Hq. 66        | OE/HDO-30   | 28                       | 350                       | 286                      | 54                       |
| Hq. 67        | MIL-L-46167 | 20                       | 330                       | 302                      | 49                       |
| Hq. 68        | MIL-L-46167 | 20                       | 513                       | 478                      | 82                       |

A major problem arose during the test concerning the air filtration system for the M60's. The performance of this system was inadequate and allowed the engines to injest large quantities of dust, dirt and silicon as to damage the

<sup>\*</sup>Reliability-Improved Selected Equipment



FIGURE 1. ENGINE OIL TEMPERATURE VS TEST TIME FOR NON-RISE ENGINES

The second secon



FIGURE 2. ENGINE OIL TEMPERATURE VS TEST TIME FOR RISE ENGINES

engines. This resulted in a high turnover rate for the tank engines. Table 6 shows a summary of vehicle miles (km), hours of operation, number of engine and transmission oil additions, and number of engine and transmission failures and replacements that occurred throughout the test program. There were no final drive failures or replacements for HQ-67 during the test.

As indicated in Table 6, there were fourteen engine and four transmission replacements during this test program. However, in their failure analysis, Fort Carson maintenance personnel have not charged the lubricant as being responsible for any of the failures. Table 7 provides a breakdown of engine and transmission replacements. Where possible, the cause of the replacement is shown. Although some of the engine failures could possibly be ascribed to oil-related problems, the maintenance personnel who disassembled the engines did not indicate that any of them were. After comparing, where possible, the performance of the MIL-L-2104C lubricants with that of the MIL-L-46167 arctic engine oil, it was determined that there were no statistically meaningful differences between the two. Each performed about as well as the other. It is unfortunate that only one M60Al tank at Fort Carson was designated as a control vehicle since there were other tanks available. More useful data would have been generated and statistical manipulation of the data versus the test vehicle results would have been made possible. Even though the tank, HQ-66, generated some data, it was insufficient to allow computation of sample statistics. Thus, no statistical inferences could be made. However, it was possible to compare results derived at Fort Carson for the engines operated on MIL-L-46167 oil with those for the test and control groups at Fort Lewis. Because of the limited time factors imposed on organizational and support personnel to keep the tanks "combat ready," it was not feasible to hold an engine or transmission for disassembly and inspection by research personnel to determine the exact cause of failure for the affected components. Two separate comparisons were made during the test between the vehicles operated with the MIL-L-46167 engine oil and the other M60Al tanks in the battalion operated with MIL-L-2104C oil as to failure rates of main engine generators and starters and lead-acid storage batteries (6TN). In the first comparison, data were extracted from material readiness reports for the period 1 November 1977 through 31 July 1978. A change in responsibilities for maintaining a prescribed load list (PLL) from battalion level to company

TABLE 6. FORT CARSON M60Al VEHICLE OPERATIONAL DATA (January 1977 - May 1979)

|                |            |                            |                               | 3                             | (Jammary 17))                | l                                               | 11dy 13/3) |          |     |      |                  |                                             |            |                                                         |
|----------------|------------|----------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------------------------|------------|----------|-----|------|------------------|---------------------------------------------|------------|---------------------------------------------------------|
| Vehicle<br>No. | Total      | Total<br>Miles (km)        | Total<br>Fuel,<br>Gal (Liter) | Engine<br>Make up<br>(Quarts) | Trans<br>Make up<br>(Quarts) | Final Drive<br>Make up<br>(Quarts)              | MPQ 011    | KPL      | MPG | Fuel | Number<br>Change | Number of Oil<br>Change/Quarts<br>Eng Trans | Componen   | Number<br>Component Replacements<br>Engine Transmission |
| HQ-67          | 154        | 1264 (2034)                | 1502 (5685)                   | 711                           | 460                          | 10                                              | 10.8       | 18.4     | 8.0 | 0.3  | 1/66             | 66                                          | 0 -        | <b>o</b> c                                              |
| A-31           | 310        | 1249 (2010)                | 1617 (6120)                   | , r,                          | ° 8                          |                                                 | 29.0       | 49.3     | 8.0 |      | , 0              | 1/68                                        |            | . 0                                                     |
| A-32           | 263        | 1436 (2311)                | 2168 (8206)                   | 27                            | 111                          |                                                 | 53.2       | 90.5     | 0.7 | 0.3  | 4/564            | 2,136                                       | -          | 0                                                       |
| A-33           | 201        | 1505 (2422)                | 1822 (6896)                   | 102                           | 152                          |                                                 | 14.8       | 25.2     | 0.8 | 0.3  | 2/132            | 3/204                                       | 0          | 0 (                                                     |
| A-34<br>A-35   | 300        | 599 ( 964)<br>1866 (3003)  | 459 1737)<br>1670 (6321)      | 37                            | 117                          |                                                 | 16.2       | 27.5     | 1:1 | 0.5  | 2/132<br>2/132   | 2/136<br>1/68                               | ~ ~        | 0 7                                                     |
|                |            |                            |                               |                               | COM                          | CONTROL VEHICLE                                 |            |          |     |      |                  |                                             |            |                                                         |
| B-11<br>BQ-66  | 534<br>19  | 2519 (4054)<br>168 (270.4) | 3321 (12570)<br>230 (870.6)   | 96<br>0                       | 58<br>77                     |                                                 | 26.2       | 44.6     | 0.8 | 0.3  | 1/66             | 00                                          | <b>-</b> 0 | 00                                                      |
|                |            |                            |                               | OPERATIO                      | NAL DATA PR                  | OPERATIONAL DATA PROM JUNE 1979 - FEBRUARY 1981 | - FEBR     | UARY 198 | 7   |      |                  |                                             |            |                                                         |
| HQ-67          | 02         | _                          |                               | 80                            | 70                           | 0                                               | 2.7        | 4.6      | 0.2 | 0.1  | 2/132            | 4/272                                       | 1          | 0                                                       |
| HQ-68          | 120        | _                          |                               | 68                            | 77                           |                                                 | 0.4        | 6.8      | 0,3 | 1.0  | 3/198            | 2/136                                       |            | ~                                                       |
| A-31           | 76.<br>79. | 906 (1458)                 | 1428 (8573)                   | \$ 5                          | m 0°                         |                                                 | 2.0        | 7.7      | 0 0 | 0.05 | 3/198            | 3/204                                       | 7 0        | 0 0                                                     |
| ¥-33           | 18         | _                          |                               | 76                            | 27                           |                                                 | 16.4       | 27.9     | 0   | 0.1  | 1/66             | 1/68                                        | • 0        |                                                         |
| A-34           | 102        | _                          |                               | 79                            | 27                           |                                                 | 7.1        | 12.1     | 0.2 | 0.1  | 2/132            | 4/272                                       | 0          |                                                         |
| A-35           | 229        | _                          | 1918 (7260)                   | <b>5</b> 7                    | 28                           |                                                 | 9.5        | 16.2     | 0.2 | 0.1  | 96€/9            | 9/4/2                                       | 7          | 0                                                       |
|                |            |                            |                               |                               | ZN00                         | CONTROL VEHICLES                                |            |          |     |      |                  |                                             |            |                                                         |
| 7              | 92         | 744 (1197)                 | 1055 (5993)                   | 36                            | 87                           |                                                 | 20.7       | 35.10    | 0.7 | 0.3  | 0                | 0                                           | 0          | 0                                                       |
| #Ç-66          | 170        | 797 (1282)                 |                               | 38                            | 82                           |                                                 | 21.0       | 35.6     | 7.0 | 0.2  | 1/66             | 1/68                                        | -          | 0                                                       |

TABLE 7. BREAKDOWN ANALYSIS OF FORT CARSON M60A1 ENGINE AND TRANSMISSION REPLACEMENTS

| Vehicle No.     | No. of Engine<br>Replacements/Date       | Reason for Removal                                                |
|-----------------|------------------------------------------|-------------------------------------------------------------------|
| B-11 (Control)  | 1 (Sep 78)                               | High silicon content and metal wear. Aoap directed. New S/N 8218. |
| A-34 (Test)     | 1 (16 Dec 77 -<br>20 Mar 78)             | Leaking injector pump shaft seal.<br>New S/N 304.                 |
| A-31 (Test)     | 1 (21 Mar -<br>20 May 78)                | Low compression of three cylinders.<br>New S/N A0654.             |
| A-35 (Test)     | 1 (21 Mar ~<br>30 Jun 78)                | Low compression of three cylinders. New S/N A0809.                |
| HQ-68 (Test)    | 1 (21 May ~<br>30 Jun 78)                | Two rod bearings broke through crankcase. New S/N 6817.           |
| A-34 (Test)     | 1 (1-30 Sep 78)                          | High silicon content and metal wear. AOAP directed. New S/N 6817. |
| A-32 (Test)     | 1 (1-30 Apr 79)                          | Leaking cooling fan seal. New S/N A0005.                          |
| A-35 (Test)     | 1 (1-30 May 79)                          | Rod broke through engine crankcase.<br>New S/N 0283.              |
| HQ-66 (Control) | 1 (1-31 Jul 79)                          | Fan tower seal leaking.                                           |
| HQ-67 (Test)    | 1 (1-30 Nov 80)                          | Rod broke through engine crankcase.                               |
| A-35 (Test)     | 1 (1-31 Dec 80)                          | Low compression in three cylinders. New S/N A02440.               |
| A-31 (Test)     | 1 (1-31 Jan 81)                          | Reason unknown.                                                   |
| A-31 (Test)     | 1 (1-28 Feb 81)                          | Transmission drain plug fell out.                                 |
| HQ-68 (Test)    | 1 (1-28 Feb 81)                          | Loss of Power.                                                    |
|                 | No. of Transmission<br>Replacements/Date |                                                                   |
| A-34 (Test)     | 1 (1-30 Sep 78)                          | Internal failure. New S/N 29227.                                  |
| A-34 (Test)     | 1 (1-31 May 79)                          | Cracked case. New S/N 7630T.                                      |
| A-34 (Test)     | 1 (1-31 Jan 81)                          | Loss of steering on right side.<br>New S/N 42587.                 |
| HQ-68 (Test)    | 1 (1-28 Feb 81)                          | Loss of Power. New S/N 40813T.                                    |

level rendered much of the old data useless. However, enough data were retrieved so it appears that the vehicles operated with the MIL-L-46167 arctic oil used fewer lead-acid batteries, starters and generators. The second comparison compared the usage rate for the components stated above between the vehicles operated on MIL-L-46167 and two platoons of tanks using MIL-L-2104C for the period 15 December 1979 through 29 February 1980. The results of this comparison were the same as the results of the first comparison and tended to reinforce the conclusion reached in that case.

## b. M151A2 Jeeps

These vehicles were operated in accordance with normal mission/training requirements. This test was straightforward and contained no unexpected results. The vehicles operated satisfactorily throughout the test period with little maintenance. Table 8 provides a summary of the operational data for the three test vehicles and the one control vehicle. The remarks made above about having only one vehicle designated as a control vehicle apply here.

## B. Results of Test

## 1. M60Al Tanks

During the first phase of the pilot fleet test, January 1977 through 20 April 1977, both the MIL-L-46167 arctic engine oil and the MIL-L-2104C OE/HDO 30 or 50 grade oils performed in a similar manner and appeared to operate as an engine lubricant equally well except there were subjective comments made by user personnel to the effect that those engines operated with the MIL-L-46167 oil started easier and seemed to have more power (8). There was some comment in the beginning about engines overheating; however, after the engine oil temperatures were compared (Figures 1 and 2) in the field test performed for that purpose, the factor of overheating did not come up again during any other phase of testing. The period September 1977 through May 1979 resulted in the M60's being operated in different environments such as fire and maneuver exercises, which resulted in the largest accumulation of miles and hours of operation and search-light detail which resulted in low mileage but a large number of hours of operation. Throughout this period, both lubricants appeared to perform equally well except that, again, subjective comments indicated that the engines operated with

TABLE 8. SUMMARY OF MISIA2 VEHICLE OPERATIONAL DATA

| Maintenance Performed             |               | Seven oil changes directed by the AOAP laboratory. | 1) Rocker arm cover gasket replaced. 2) Oil change due to unit personnel erroneously adding 1 qt. OE/HDO30. 3) Transmission repaired. 4) Clutch repaired. 5) Oil change directed by AOAP lab. 6) Clutch repaired. | 1) R/R engine assembly, pump assembly, engine oil, gasket set, oil pan gasket. 5 qts. test oil added. 2) Read crank shaft seal, rocker arm cover gasket, oil pan gasket replaced. 3) Head gasket replaced. 4) Oil change directed by AOAP lab. |                 | <ol> <li>Flywheel parts kit installed;</li> <li>rocker arm gasket, oil pan gasket, rear main seal replaced, engine tuned.</li> <li>Clutch repaired. 3) oil change directed by AOAP lab.</li> </ol> |
|-----------------------------------|---------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Serial<br>No.                     |               | 5029116                                            | 5029165                                                                                                                                                                                                           | 5028906                                                                                                                                                                                                                                        |                 | 5029136                                                                                                                                                                                            |
| MPQ<br>(KPL)                      | TEST VEHICLES | 2378<br>(4044)                                     | 1958<br>(3330)                                                                                                                                                                                                    | 1248<br>(2122)                                                                                                                                                                                                                                 | CONTROL VEHICLE | 2472<br>(4204)                                                                                                                                                                                     |
| Make up<br>011<br>Quarts          | TEST          | o                                                  | m                                                                                                                                                                                                                 | 'n                                                                                                                                                                                                                                             | CONTRO          | e                                                                                                                                                                                                  |
| Number<br>011<br>Changes          |               | 7                                                  | 7                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                              |                 | 7                                                                                                                                                                                                  |
| MPG<br>(KPL)                      |               | 12.2 (5.2)                                         | 8.7                                                                                                                                                                                                               | 10.7                                                                                                                                                                                                                                           |                 | 10.4 (4.4)                                                                                                                                                                                         |
| Total<br>Fuel<br>Gal.<br>(liters) |               | 1750<br>(6624)                                     | 672<br>(2544)                                                                                                                                                                                                     | 582<br>(2203)                                                                                                                                                                                                                                  |                 | 716<br>(2710)                                                                                                                                                                                      |
| Total<br>Miles<br>(km)            |               | 21404 (34446)                                      | 5874<br>(9453)                                                                                                                                                                                                    | 6241<br>(10044)                                                                                                                                                                                                                                |                 | 7416<br>(11935)                                                                                                                                                                                    |
| Veh.                              |               | 6-ÒH                                               | P-7/                                                                                                                                                                                                              | P-17                                                                                                                                                                                                                                           |                 | P-73                                                                                                                                                                                               |

the MIL-L-46167 arctic engine oil tended to start easier in all weather conditions and appeared to use fewer main engine generators and starters and 6TN lead-storage batteries. In the monthly informational reports submitted by maintenance personnel, it was mentioned several times that the vehicles operated with the MIL-L-2104C lubricants used more generators, starters, and 6TN batteries than the vehicles operated with MIL-L-46167. The third phase of the pilot fleet test, June 1979 through February 1981, was relatively inactive for the test units involved with a greatly reduced number of operating miles and hours. The records indicated that engine and transmission replacements continued to occur at the same rate. B-ll, operated with MIL-L-2104C oil, had charging problems throughout the month of November 1980. It burned up two generators and required several voltage regulators and six new batteries.

## b. M151A2 Jeeps

There were three comments prevalent throughout the test period for the M151A2 vehicles. These were that the vehicles operated with MIL-L-46167 arctic engine oil required fewer tune-ups, started easier in all weather conditions, and were more likely to develop leaking gaskets and seals than those vehicles operated with the MIL-L-2104C lubricants. There did not appear to be, nor were any specific comments made about, any change in component failures for engines operated on the control or test oils. There were no statistical differences between the results achieved by either the MIL-L-46167 or the MIL-L-2104C oils.

#### III. FORT LEWIS TESTING

## A. Details of Test

## Test Materials

The lubricants used in this portion of the pilot fleet test were the same as those used at Fort Carson, a second MIL-L-46167 arctic engine oil and the standard issue MIL-L-2104C OE/HDO 30 grade or 50 grade, depending on changes directed by the pertinent lubrication orders due to seasonal temperature ranges.

## 2. Test Fleet

In March 1979, six M60Al tanks at Fort Lewis, WA were placed in the pilot fleet test. The test plan utilized for the Fort Carson pilot fleet test was also utilized for the Fort Lewis vehicles. The vehicles were divided into two groups of three vehicles each; the three test vehicles used MIL-L-46167 arctic engine synthetic oil, and the three control vehicles used MIL-L-2104C OE/HDO 30 grade or OE/HDO 50 grade, depending on seasonal temperatures and applicable lube orders. The three test vehicles were totally converted to the MIL-L-46167, i.e., engines, transmission, and final drives.

## Fleet Operations

The test and designated control vehicles were operated in accordance with normal mission/training requirements. The activities and use for the test period March 1979 through July 1981 corresponded to the activities and use at Fort Carson for the test periods January 1977 through April 1977 and September 1977 through May 1979.

Table 9 presents operational data reported on those vehicles involved in the evaluation. The disparity in oil changes between the test and control vehicles is due to contamination of the test lubricant during a major field exercise at Yakima Firing Range. The tank crews, by mistake, used aircraft turbine oil as make up lubricant, thereby necessitating oil changes in most of the components on the test vehicles.

TABLE 9. FORT LEWIS M60Al VEHICLE OPERATIONAL DATA (March 1979 - August 1983)

|              |                 |                            | F.                          | e e                 | e<br>F              | D4.1.1           |                               |                          |                         |                 | i         |                                                         |
|--------------|-----------------|----------------------------|-----------------------------|---------------------|---------------------|------------------|-------------------------------|--------------------------|-------------------------|-----------------|-----------|---------------------------------------------------------|
| Vehicle      | Tot al<br>Hours | Total<br>Miles (km)        | Fuel,<br>Cal (Liter)        | Make up<br>(Quarts) | Make up<br>(Quarts) | Make up (Quarts) | O11<br>MPQ KPL                | Fuel<br>MPG KPL          | Change/Quarts Eng Trans | Or Oll<br>Trans | Component | Number<br>Component Replacements<br>Engine Transmission |
|              |                 |                            |                             |                     |                     | TEST             |                               |                          |                         |                 |           |                                                         |
| <b>1</b>     | 142             | 830 (1336)                 | 1834 (6942)                 | 80                  | 16                  |                  | 103.7 (176.4)                 | 0.5 (0.2)                | 5/330                   | 3/204           | 0         | က                                                       |
| B-22<br>B-34 | 287<br>205      | 1477 (2377)<br>1028 (1654) | 3225 (12207)<br>2367 (8959) | 14<br>13            | 12<br>8             |                  | 105.5 (179.4)<br>79.0 (134.3) | 3/198 (0.2)<br>0.4 (0.2) | 5/330                   | 3/204 6/408     | 1         |                                                         |
|              |                 |                            |                             |                     |                     | CONTROL          |                               |                          |                         |                 |           |                                                         |
| A-12         | 345             | 1799 (2895)                | 2181 (8255)                 | 18                  | 16                  |                  | 99.9 (169.9)                  | 0.8 (0.3)                | 5/330                   | 4/340           | 1         | 2                                                       |
| A-15         | 241             | 1128 (1815)                | 1490 (2640)                 | 12                  | 20                  |                  | 94.0 (159.9)                  | 0.8 (0.3)                | 4/264                   | 3/204           | 0         | 0                                                       |
| A-33         | 332             | 1907 (3069)                | 2883 (10912)                | 16                  | 24                  |                  | 119.1 (202.5)                 | 0.7 (0.3)                | 2/134                   | 1/68            | 0         | 0                                                       |

Table 10 provides a breakdown analysis of engine and transmission replacements and shows that all of the test vehicles, B-13, B-22, and B-34, and one control vehicle, A-12, experienced maintenance problems leading to component replacement during the evaluation period. However, the causes of replacements of these components were not considered related to the use of the MIL-L-46167 lubricant. In the case of the transmission replacement on vehicle B-34, in September 1980, the unit did not follow established reporting procedures; consequently, the failed transmission was not inspected by the quality assurance branch of the maintenance division.

## B. Results of Tests

There were four engine replacements, seven transmission replacements, and two final drives changed during the test period at Fort Lewis. There were no subjective comments received from user personnel or maintenance personnel about any improvement in operation of the M60 tanks. Based solely on the statistical analysis of the two small samples (three M60Al tanks in each group), there were no differences in the operation of the test vehicles when compared to the control vehicles. By default, then, it could be inferred that one oil performed as well as the other.

### IV. CONCLUSIONS

The MIL-L-46167 arctic engine oil apparently performed as well as the MIL-L-2104C OE/HDO 30 grade or OE/HDO 50 grade oils during the test period with the added commendations of user and maintenance personnel at Fort Carson, CO that those engines lubricated with the OEA started easier in all weather conditions and used less main engine generators and starters and lead-acid (6TN) batteries.

No oil-related failures could be positively identified as the causes for replacements of engines, transmissions, and final drives. No final drive failures of any kind were reported at Fort Carson during the almost 3-year period that they were included in the test (Hq. 67 only), and only two final drives were replaced during the 29 months that Fort Lewis was included in the test. M151A2 jeeps lubricated with the MIL-L-46167 lubricant required fewer tune-ups and started easier in all weather conditions than those operated with the MIL-L-

## TABLE 10. BREAKDOWN ANALYSIS OF M60A1 ENGINE AND TRANSMISSION REPLACEMENTS

## Fort Lewis, Washington

| Vehicle No.    | Date   | Component    | Reason for Replacement                  |
|----------------|--------|--------------|-----------------------------------------|
| A-12 (Control) | Jun 80 | Engine       | Fuel dilution in left cylinder bank.    |
| B-34 (Test)    | Sep 80 | Engine       | High silicon content.                   |
| B-22 (Test)    | May 81 | Engine       | High silicon content.                   |
| B-34 Test)     | Jul 81 | Engine       | High metal wear.                        |
| B-13 (Test     | May 79 | Transmission | Loose torque converter nut.             |
| B-13 (Test)    | Oct 79 | Transmission | Bands improperly adjusted.              |
| A-12 (Control) | Jun 80 | Transmission | Excessive leading and over-<br>heating. |
| B-34 (Test)    | Sep 80 | Transmission | Reason unknown.                         |
| A-12 (Control) | Apr 81 | Transmission | Rear band inoperative.                  |
| B-13 (Test)    | Jul 81 | Transmission | Low range inoperative.                  |
| B-22 (Test)    | Jul 81 | Transmission | Slippage in low and reverse ranges.     |

2104C oils. However, leaking gaskets and seals were more prevalent in the test vehicles than the control vehicles.

- The MIL-L-46167 arctic engine oil may be used to lubricate the engines, transmissions, and final drives in M60Al tanks.
- The MIL-L-46167 OEA may be used to lubricate the modified engines in the M151A2 jeeps.
- Caution should be used to ensure that engine overheating does not become a problem in the M60Al tanks, especially those equipped with non-RISE engines.
- Caution should be observed to prevent oil loss in the modified M151A2 jeep engines due to leaking gaskets and seals.
- Insufficient information concerning the exact number of accessory engine components (main engine generators, starters, and lead-storage batteries) replaced on test and control engines was documented to allow any meaningful conclusions.
- An insufficient number of control vehicles were designated at Fort Carson to allow a statistical comparison of data generated by the test vehicle group and the control vehicle group.

#### V. RECOMMENDATIONS

Based on information generated in this evaluation, the following actions are recommended:

- Expand program to include all operational vehicles in an entire battalion.
- Designate a sufficient number of control vehicles in future field tests so that statistical comparisons may be made between data generated by test and control groups.
- Include in the operating instructions for future field tests the requirement that designated accessory engine components be tracked through the prescribed load list (PLL) for real usage data so that comparisons may be made between test vehicle groups and control vehicle groups.

#### REFERENCES

- 1. U.S. Military Specification, MIL-M-63004B(TM), "Manuals, Technical: Preparation of Lubrication Orders," Amendment 2, May 1980.
- 2. DRCPM-M-60 TD letter dated 3 April 1976 to 4th Inf. Div. (Mech) at Fort Carson, Colorado.
- 3. USAMSAA Final Report of R and D Field Liaison Visit to Fort Carson and 4th Infantry Division (Mech), (Trip No. 75L04) dated 19-23 May 1975.
- 4. U.S. Military Specification, MIL-L-2104C, Lubricating Oil, Internal Combustion Engine, Tactical Service, November 1970.
- 5. U.S. Military Specification, MIL-L-46167, Lubricating Oil, Internal Combustion Engine, Arctic, Amendment 1, May 1978.
- 6. Interim Report AFLRL No. 118 "Use of Multiviscosity/Synthetic Engine Oil in Army Combat/Tactical Vehicles," ADAO81444, dated September 1979.
- 7. "Engine Oil Operating Temperatures--Mineral vs Synthetic," DF Report from Maintenance Tech, 1/77 Armor (WAN6AA), to Commander, 4th Inf. Div. (M), 19 October 1979.
- 8. Fort Carson Final Report on Synthetic Arctic Engine Oil, 12 April 1977.
- 9. "Used Oil Analyses-Fort Carson Pilot Fleet Test W/APG PD-1," Letter Report, AFLRL to DRDME-GL, 15 May 1978.

APPENDIX A
PILOT FLEET TEST PLAN

PILOT FIELD TEST PLAN
FOR FT. CARSON, CO

JANUARY - APRIL 1977

## Purpose

To determine feasibility of using synthetic arctic engine oils in outside arctic operated combat/tactical vehicles.

### Scope

Three M60 vehicles, powered by TCM AVDS 1790-2A engines, will be subjected to normal mission/training operations. Two vehicles will use APG PD-1 synthetic arctic engine oil provided by USAMERADCOM/AFLRL and one vehicle will provide a baseline (or reference case) operating using MIL-L-2104C OE/HDO-30 provided from Ft. Carson Supply.

## Procedure

## I. Pretest Vehicle and Engine Inspection/Preparation

## A. Inspection

Review engines' operational/maintenance history for three selected vehicles. If a potential problem area is noted for a given engine, the engine will be replaced with another provided by DIO; see engine list attached.

## B. Preparation

Before draining the original MIL-L-2104C, record oil pressure under fully warmed-up operating conditions for each engine. Drain the MIL-L-2104C single grade engine oil from the three test vehicle engines while the oil is warm. Retain a 12-oz. sample from each engine. Change engine oil filters and charge two engines with APG PD-1 test oil and one engine with MIL-L-2104C OE/HDO-30. A flush of the previous oil is not required. Warm-up the engines and obtain a 9-oz. sample from each engine using a suitable syringe and tubing to extract

the oil through the dip-stick tube. Repeat the oil pressure measurement for all three engines in the same manner as described above. The oil samples must be identified with same information described in Section IIC.

### II. Lubricant Testing

### A. Duration

Subject the test vehicles to normal mission/training operation during period January through April 1977. No engine oil changes are to be made except as covered in Section III.

## B. Information To Be Recorded

The following information should be maintained during course of the test in the form of a "Test Diary":

- 1. Oil Consumption: Date, hours, miles and quantity added.
- 2. Fuel Consumption: Date, hours, miles and quantity added.
- 3. Engine Maintenance: Date, action, reason; i.e., scheduled or unscheduled.
- Changes in engine power/performance (i.e., good, better or worse).
- 5. Indications, if any, of oil leakage, and continuous observations of such leakage as long as it continues.

NOTE: For items 4 and 5, observations of both the operating crew and maintenance personnel should be made and recorded in the Test Diary. Comments relating to any of the above items or any unusual operations which may be of significance should also be recorded in the Test Diary.

## C. Oil Sampling and Identification

After the initial oil sample is taken at start of test, a 9-oz. sample of warm oil should be taken from the engine every month or 25 hours of engine operation. Each sample must be identified as follows:

- 1. Vehicle USA No.
- 2. Engine S/N
- Vehicle miles (total on vehicle).
- 4. Engine hours (total on vehicle).
- 5. Date of Sample.

## Samples should be mailed to:

U.S. Army Fuels and Lubricants Research Laboratory % Southwest Research Institute, Attn: S.J. Lestz P. O. Box 28510 San Antonio, Texas 78284

## D. Conclusion of Test

On completion of test, a final oil sample of two gallons should be taken from each engine when the oil is drained. This sample should also be identified in the same manner as the other samples. All oil filters from each engine should be removed, packaged, and marked in same manner as the final oil drain sample.

## III. Supplementary Information

#### A. Lower Oil Pressure

It is expected that due to its lower viscosity, the arctic engine lubricant will cause the engine-oil low pressure light/alarm to be activated during idle speeds. Operating personnel should be advised of this condition and that the engines will operate at lower oil pressure over the entire speed range.

## B. Oil Changes

Since it is the intention of this field test to determine if the engine oil can reduce routine maintenance and improve vehicle readiness, there will be no oil changes during the test. Exceptions to the above are as follows:

1. If the DIO and Commander decide that the one vehicle using the OE/HDO-30 should be changed to the next higher viscosity grade due to expected

temperature warming, then in accordance with the LO, the OE/HDO-30 will be changed. However, it would be highly desirable to use only OE/HDO-30 through the winter, and change the oil only if its condition indicates a change is needed.

2. If laboratory analyses of the OE/HDO-30 or the arctic engine oil indicate an oil change is merited, then notification for a change will be issued.

## C. Engine Maintenance

Maintenance Division, DIO will provide maintenance support above organization level.

## 1/77 ARMORED BATTALION ENGINE HISTORY

HQ-66

Use MIL-L-2104C, OE/HDO-30

Mfg. in 1975 Original Engine 181 Hours 1433 Miles

HQ-67

Use APG PD-1

Mfg. in 1975 3rd Engine SN 1074 68 Hours 541 Miles

HQ-68

Use APG PD-1

Mfg. in 1975 4th Engine SN 8962 69 Hours 383 Miles

(Repaired - Maint. Div. - 11 March 1976 1 Cylinder & Piston Replaced Other Cylinder > 300 psi Dyno Run - 675 hp + 108 = 783 hp issued.)

APPENDIX B
M-151A2 TEST PLAN

#### M-151A2 FIELD TEST PLAN

FOR FT. CARSON, CO

### Purpose

To assess the feasibility of using multiviscosity synthetic arctic oil in conjunction with low-blowby piston rings developed for the M-151 vehicle, to allow extended drain intervals or no-oil-drain operation of the M-151 vehicle.

## Scope

Four M-151 vehicles, equipped with modified pistons and low-blowby piston rings will be subjected to normal post operation. Two vehicles will use the APG PD-1 synthetic arctic engine oil as specified by USAMERADCOM and one vehicle will use MIL-L-2104C OE/HDO-30 from Ft. Carson supply, to provide a baseline or reference case.

### Procedure

## I. Pretest Vehicle and Engine Inspection/Preparation

#### A. Installation

The four engines fitted with special low-blowby piston rings and provided by the Army Fuels and Lubricants Research Laboratory (AFLRL) should be installed in the M-151 vehicles, with the standard engines removed and stored for later replacement. It is suggested that these engines be stored in the engine-shipping crates, which will be required at test completion.

## B. Preparation

The cooling systems should be filled according to normal operating procedures for the climatic conditions. The three test engines should be charged with the APG PD-1 test oil. The vehicle to be used as a reference should be drained of oil while warm. An 8-oz. sample of this drain should be taken.

Change the engine oil filter and charge the engine with MIL-L-2104C OE/HDO-30.

Warm up the engines and obtain a 3-oz. sample from each engine using a suitable syringe and tubing to extract the oil through the dip-stick tube.

The oil samples must be identified with the same information described in Section IIC.

## II. Lubricant Testing

### A. Duration

Subject the test vehicles to normal mission/training operation. No engine oil changes are to be made except as covered in Section III.

## B. Information To Be Recorded

The following information should be maintained during course of the test in the form of a "Test Diary":

- 1. Oil Consumption: Date, hours, miles and quantity added
- 2. Fuel Consumption: Date, hours, miles and quantity added
- Engine Maintenance: Date, action, reason; i.e., scheduled or unscheduled.
- 4. Changes in engine power/performance (i.e., good, better or worse).
- 5. Indications, if any of oil leakage, and continuous observations of such leakage as long as it continues.

NOTE: For items 4 and 5, observations of both the operating crew and maintenance personnel should be made and recorded in the Test Diary. Comments relating to any of the above items or any unusual operation which may be of significance should be recorded in the Test Diary.

#### C. Oil Sampling and Identification

After the initial oil sample is taken at start of test, a 3-oz. sample of warm oil should be taken from the engine every month or 3000 miles of operation. Each sample must be identified as follows:

- 1. Vehicle USA No.
- 2. Engine S/N.

- 3. Vehicle miles (total on vehicle).
- 4. Date of Sample.

Samples should be mailed to:

U.S. Army Fuels and Lubricants Research Laboratory % Southwest Research Institute Attn: J.D. Tosh 6220 Culebra San Antonio, Texas 78284

### D. Conclusion of Test

On completion of test, a final oil sample of approximately one gallon should be taken from each engine when the oil is drained. This sample should also be identified in the same manner as the other samples. All oil filters from each engine should be removed, packaged, and marked in same manner as the final oil drain sample. The four test engines should be drained of all fluids and removed from the vehicles. The engines should then be crated and shipped to AFLRL for post-test disassembly and inspection.

### III. Supplementary Information

#### A. Lower Oil Pressure

It is expected that due to its lower viscosity, the arctic engine lubricant may cause the engine-oil low pressure light/alarm to be activated during idle speeds. Operating personnel should be advised of this condition and that the engines will operate at lower oil pressure over the entire speed range.

#### B. Oil Changes

Since it is the intention of this field test to determine if the engine oil can help reduce routine maintenance and improve vehicle readiness, there will be no oil changes during the test. Exceptions to the above are as follows:

1. If the DIO and Commander decide that the one vehicle using the OE/HDO-30 should be changed to the next higher viscosity grade due to expected temperature warming, then in accordance with the LO, the OE/HDO-30 will

be changed. However, it would be highly desirable to use only OE/HDO-30 through the winter, and change the oil only if its condition indicates a change is needed.

2. If laboratory analyses of the OE/HDO-30 or the arctic engine oil indicate amoil change is merited, then notification for a change will be issued.

## C. Engine Maintenance

Maintenance Division, DIO will provide maintenance support above organization level.

## DISTRIBUTION LIST

| DEPARTMENT OF DEFENSE            |    | CDR                                |
|----------------------------------|----|------------------------------------|
|                                  |    | US ARMY TANK-AUTOMOTIVE CMD        |
| DEFENSE DOCUMENTATION CTR        |    | ATTN: DRSTA-RG (MR W. WHEELOCK) 1  |
| CAMERON STATION                  | 12 | DRSTA-NS (DR H. DOBBS) 1           |
| ALEXANDRIA VA 22314              |    | DRSTA-G 1                          |
|                                  |    | · DRSTA-MTC 1                      |
| DEPT. OF DEFENSE                 |    | DRSTA-GBP (MR MCCARTNEY) 1         |
| ATTN: DASD-LMM (MR DYCKMAN)      | 1  | WARREN MI 48090                    |
| WASHINGTON DC 20301              |    |                                    |
|                                  |    | DIRECTOR                           |
| CDR                              |    | US ARMY MATERIEL SYSTEMS           |
| DEFENSE FUEL SUPPLY CTR          |    | ANALYSIS ACTIVITY                  |
| ATTN: DFSC-T (MR. MARTIN)        | 1  | ATTN: DRXSY-CM 1                   |
| CAMERON STA                      |    | DRXSY-FA 1                         |
| ALEXANDRIA VA 22314              |    | ABERDEEN PROVING GROUND MD 21005   |
|                                  |    |                                    |
| CDR                              |    | HQ, 172D INFANTRY BRIGADE (ALASKA) |
| DEFENSE GENERAL SUPPLY CTR       |    | ATTN: AFZT-DI-L 1                  |
| ATTN: DGSC-SSA                   | 1  | AFZT-DI-M 1                        |
| RICHMOND VA 23297                |    | DIRECTORATE OF INDUSTRIAL          |
|                                  |    | OPERATIONS                         |
| DEFENSE ADVANCED RES PROJ AGENCY |    | FT RICHARDSON AK 99505             |
| DEFENSE SCIENCES OFC             | 1  |                                    |
| 1400 WILSON BLVD                 |    | CDR                                |
| ARLINGTON VA 22209               |    | US ARMY GENERAL MATERIAL &         |
|                                  |    | PETROLEUM ACTIVITY                 |
| DEPARTMENT OF THE ARMY           |    | ATTN: STSGP-F 1                    |
|                                  |    | STSGP-PE, BLDG 85-3 1              |
| HG, DEPT OF ARMY                 |    | OFFICE COLUMN 1                    |
| ATTN: DALO-TSE (COL NAJERA)      | 1  | NEW CUMBERLAND ARMY DEPOT          |
| DALO-SMZ-E                       | 1  | NEW CUMBERLAND PA 17070            |
| DAMA-ART (MS BONIN)              | 1  |                                    |
| DAMA-ARA (DR CHURCH)             | 1  | CDR                                |
| WASHINGTON DC 20310              |    | US ARMY MATERIEL ARMAMEMT          |
|                                  |    | READINESS CMD                      |
| CDR                              |    | ATTN: DRSAR-LEM 1                  |
| U.S. ARMY BELVOIR RESEARCH AND   |    | ROCK ISLAND ARSENAL IL 61299       |
| DEVELOPMENT CENTER               |    |                                    |
| ATTN: STRBE-VF                   | 10 | CDR                                |
| STRBE-WC                         | 2  | US ARMY COLD REGION TEST CENTER    |
| FORT BELVOIR VA 22060            |    | ATTN: STECR-TA 1                   |
|                                  |    | APO SEATTLE 98733                  |
| CDR                              |    |                                    |
| US ARMY MATERIEL DEVEL &         |    | CDR                                |
| READINESS COMMAND                |    | US ARMY RES & STDZN GROUP          |
| ATTN: DRCLD (DR GONANO)          | 1  | (EUROPE)                           |
| DRCDMR (MR GREINER)              | 1  | ATTN: DRXSN-UK-RA 1                |
| DRCMD-ST (DR HALEY)              | 1  | DRXSN-UK-SE (LTC NICHOLS) 1        |
| DRCQA-E                          | 1  | BOX 65                             |
| DRCDE-SS                         | 1  | FPO NEW YORK 09510                 |
| DRCSM-WCS (CPT DAILY)            | 1  |                                    |
| 5001 EISENHOWER AVE              |    |                                    |
| ALEXANDRIA VA 22333              |    |                                    |

AFLRL NO. 157 5/84 Page 1 of 5

|                                                                               | 1<br>1 | CDR US ARMY RESEARCH OFC ATTN: DRXRO-EG (DR MANN) P O BOX 12211         | 1 |
|-------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|---|
| FORT MCPHERSON GA 30330                                                       |        | RSCH TRIANGLE PARK NC 27709                                             |   |
| CDR US ARMY YUMA PROVING GROUND ATTN: STEYP-MLS-M (MR DOEBBLER) YUMA AZ 85364 | 1      | CDR TRADOC COMBINED ARMS TEST ACTIVITY ATTN: ATCT-CA FORT HOOD TX 76544 |   |
| PROJ MGR, ABRAMS TANK SYS                                                     | •      | CDR                                                                     |   |
| ATTN: DRCPM-GCM-S<br>DRCPM-GCM-LF<br>WARREN MI 48090                          | 1      | TOBYHANNA ARMY DEPOT<br>ATTN: SDSTO-TP-S<br>TOBYHANNA PA 18466          | 1 |
| PROJ MGR, FIGHTING VEHICLE SYS                                                |        | TODIEMINE IN TOTO                                                       |   |
| ATTN: DRCPM-FVS-SE<br>WARREN MI 48090                                         | 1      | CDR US ARMY DEPOT SYSTEMS CMD ATTN: DRSDS                               | 1 |
| PROJ MGR, M60 TANK DEVELOPMENT                                                |        | CHAMBERSBURG PA 17201                                                   |   |
| USMC-LNO, MAJ. VARELLA                                                        | 1      | CDR                                                                     |   |
| US ARMY TANK-AUTOMOTIVE CMD (TAC<br>WARREN MI 48090                           | .UM)   | US ARMY WATERVLIET ARSENAL ATTN: SARWY-RDD                              | 1 |
| PROG MGR, M113/M113A1 FAMILY VEHICLES                                         |        | WATERVLIET NY 12189                                                     |   |
| ATTN: DRCPM-M113<br>WARREN MI 48090                                           | 1      | CDR<br>US ARMY LEA<br>ATTN: DALO-LEP                                    | 1 |
| PROJ MGR, MOBILE ELECTRIC POWER ATTN: DRCPM-MEP-TM 7500 BACKLICK ROAD         | 1      | NEW CUMBERLAND ARMY DEPOT<br>NEW CUMBERLAND PA 17070                    |   |
| SPRINGFIELD VA 22150                                                          |        | CDR<br>US ARMY GENERAL MATERIAL &                                       |   |
| PROJ OFF, AMPHIBIOUS AND WATER CRAFT                                          |        | PETROLEUM ACTIVITY ATTN: STSGP-PW (MR PRICE)                            | 1 |
| ATTN: DRCOP-AWC-R<br>4300 GOODFELLOW BLVD<br>ST LOUIS MO 63120                | 1      | BLDG 247, DEFENSE DEPOT TRACY<br>TRACY CA 95376                         |   |
| PROJ MGR, PATRIOT PROJ OFC<br>ATTN: DRCPM-MD-T-G                              | 1      | CDR US ARMY FOREIGN SCIENCE & TECH CENTER                               |   |
| US ARMY DARCOM<br>REDSTONE ARSENAL AL 35809                                   |        | ATTN: DRXST-MT-I<br>FEDERAL BLDG<br>CHARLOTTESVILLE VA 22901            | 1 |
| CDR<br>THEATER ARMY MATERIAL MGMT<br>CENTER (200TH)                           |        | CDR<br>DARCOM MATERIEL READINESS                                        |   |
| DIRECTORATE FOR PETROL MGMT<br>ATTN: AEAGD-MM-PT-Q<br>ZWEIBRUCKEN             | 1      | SUPPORT ACTIVITY (MRSA)<br>ATTN: DRXMD-MO<br>LEXINGTON KY 40511         | 1 |
| APO NY 09052  AFLRL NO. 157                                                   |        |                                                                         |   |

5/84

Page 2 of 5

| AVIATION MATERIAL READINESS COMMAND ATTN: DRSTS-MEG (2) DRSTS-WJ (LTC FOSTER) 4300 GOODFELLOW BLVD ST LOUIS MO 63120 | 1        | CDR US ARMY ARMOR & ENGINEER BOARD ATTN: ATZK-AE-PD ATZK-AE-CV FORT KNOX KY 40121  CHIEF, U.S. ARMY LOGISTICS ASSISTANCE OFFICE, FORSCOM | 1 |
|----------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| HQ US ARMY TRAINING & DOCTRINE CMD ATTN: ATCD-SL FORT MONROE VA 23651                                                | 1        |                                                                                                                                          | 1 |
| CDR US ARMY TRANSPORTATION SCHOOL ATTN: ATSP-CD-MS FORT EUSTIS VA 23604 CDR                                          | 1        | CDR NAVAL AIR PROPULSION CENTER ATTN: PE-32 (MR D'ORAZIO) P O BOX 7176 TRENTON NJ 06828                                                  | 1 |
| US ARMY QUARTERMASTER SCHOOL<br>ATTN: ATSM-CD<br>FORT LEE VA 23801                                                   | 1        | CDR NAVAL SEA SYSTEMS CMD ATTN: CODE 05M4 (MR R LAYNE) WASHINGTON DC 20362                                                               | 1 |
| HQ, US ARMY ARMOR CENTER ATTN: ATZK-CD-SB FORT KNOX KY 40121                                                         | 1        | CDR<br>DAVID TAYLOR NAVAL SHIP R&D CTR<br>ATTN: CODE 2830 (MR G BOSMAJIAN)                                                               | 1 |
| CDR US ARMY LOGISTICS CTR ATTN: ATCL-MS (MR A MARSHALL) FORT LEE VA 23801                                            | 1        | CODE 2705.1 (MR STRUCKO) ANNAPOLIS MD 21402  JOINT OIL ANALYSIS PROGRAM -                                                                | 1 |
| CDR US ARMY FIELD ARTILLERY SCHOOL ATTN: ATSF-CD                                                                     | 1        | TECHNICAL SUPPORT CTR BLDG 780 NAVAL AIR STATION PENSACOLA FL 32508                                                                      | 1 |
| FORT SILL OK 73503  CDR US ARMY ORDNANCE CTR & SCHOOL ATTN: ATSL-CTD-MS ABERDEEN PROVING GROUND MD 210               | 1<br>005 | DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP (MAJ WALLER) LMM/3 (MAJ WESTERN) WASHINGTON DC 20380                                | 1 |
| CDR US ARMY INFANTRY SCHOOL ATTN: ATSH-CD-MS-M FORT BENNING GA 31905                                                 | 1        | CDR NAVAL AIR SYSTEMS CMD ATTN: CODE 5304C1 (MR WEINBURG) WASHINGTON DC 20361                                                            | 1 |
| PROJ MGR M60 TANK DEVELOP.<br>ATTN: DRCPM-M60-E<br>WARREN MI 48090                                                   | 1        | CDR NAVAL AIR DEVELOPMENT CTR ATTN CODE 60612 (MR L STALLINGS) WARMINSTER PA 18974                                                       | 1 |

AFLRL NO. 157 5/84 Page 3 of 5

| CDR                                       |     | CDR                                                       |   |
|-------------------------------------------|-----|-----------------------------------------------------------|---|
| NAVAL RESEARCH LABORATORY ATTN: CODE 6180 | 1   | US AIR FORCE WRIGHT AERONAUTICAL LAB                      |   |
| WASHINGTON DC 20375                       |     | ATTN: AFWAL/POSL (MR JONES) WRIGHT-PATTERSON AFB OH 45433 | 1 |
| CDR                                       |     | WALGET - THILD MAN MED ON 43433                           |   |
| NAVAL FACILITIES ENGR CTR                 |     | CDR                                                       |   |
| ATTN: CODE 120 (MR R BURRIS)              | 1   | SAN ANTONIO AIR LOGISTICS                                 |   |
| 200 STOVWALL ST                           | •   | CTR                                                       |   |
| ALEXANDRIA VA 22322                       |     | ATTN: SAALC/SFT (MR MAKRIS)                               | 1 |
| INDUMENTAL VICTORIA                       |     | SAALC/MMPRR                                               | 1 |
| CHIEF OF NAVAL RESEARCH                   |     | KELLY AIR FORCE BASE TX 78241                             | _ |
| ATTN: CODE 473                            | 1   |                                                           |   |
| ARLINGTON VA 22217                        | -   | CDR                                                       |   |
|                                           |     | WARNER ROBINS AIR LOGISTIC                                |   |
| CDR                                       |     | CTR                                                       | , |
| NAVAL AIR ENGR CENTER                     | _   | ATTN WR-ALC/MMTV (MR GRAHAM)                              | I |
| ATTN: CODE 92727                          | 1   | ROBINS AFB GA 31098                                       |   |
| LAKEHURST NJ 08733                        |     |                                                           |   |
|                                           |     | CDR                                                       |   |
| COMMANDING GENERAL                        |     | USAF 3902 TRANSPORTATION                                  |   |
| US MARINE CORPS DEVELOPMENT               |     | SQUADRON                                                  | 1 |
| & EDUCATION COMMAND                       |     | ATTN: LGTVP (MR VAUGHN)                                   | 1 |
| ATTN: DO74 (LTC WOODHEAD)                 | 1   | OFFUTT AIR FORCE BASE NE 68113                            |   |
| QUANTICO VA 22134                         |     | OTHER GOVERNMENT AGENCIES                                 |   |
| CDR. NAVAL MATERIEL COMMAND               |     |                                                           |   |
| ATTN: MAT-08E (DR A ROBERTS)              | 1   | NATIONAL AERONAUTICS AND                                  |   |
| MAT-08E (MR ZIEM)                         | 1   | SPACE ADMINISTRATION                                      |   |
| CP6, RM 606                               |     | LEWIS RESEARCH CENTER                                     |   |
| WASHINGTON DC 20360                       |     | MAIL STOP 5420                                            |   |
|                                           |     | (ATTN: MR. GROBMAN)                                       | 1 |
| CDR                                       |     | CLEVELAND OH 44135                                        |   |
| NAVY PETROLEUM OFC                        |     |                                                           |   |
| ATTN: CODE 40                             | 1   | NATIONAL AERONAUTICS AND                                  |   |
| CAMERON STATION                           |     | SPACE ADMINISTRATION                                      |   |
| ALEXANDRIA VA 22314                       |     | VEHICLE SYSTEMS AND ALTERNATE<br>FUELS PROJECT OFFICE     |   |
| CDR                                       |     | ATTN: MR CLARK                                            | 1 |
| MARINE CORPS LOGISTICS SUPPORT            |     | LEWIS RESEARCH CENTER                                     |   |
| BASE ATLANTIC                             |     | CLEVELAND OH 44135                                        |   |
| ATTN: CODE P841                           | 1   |                                                           |   |
| ALBANY GA 31704                           |     | US DEPARTMENT OF ENERGY                                   |   |
|                                           |     | CE-1312, GB-096                                           |   |
| DEPARTMENT OF THE AIR FORCE               |     | ATTN: MR ECKLUND                                          | ì |
|                                           |     | FORRESTAL BLDG.                                           |   |
| HQ, USAF                                  |     | 1000 INDEPENDENCE AVE, SW                                 |   |
| ATTN: LEYSF (COL CUSTER)                  | 1   | WASHINGTON DC 20585                                       |   |
| WASHINGTON DC 20330                       | *** |                                                           |   |

AFLRL NO. 157 5/84 Page 4 of 5

ENVIRONMENTAL PROTECTION AGCY OFFICE OF MOBILE SOURCES MAIL CODE ANR-455 (MR. G. KITTREDGE) 1 401 M ST., SW WASHINGTON DC 20460 DIRECTOR NATL MAINTENANCE TECH SUPPORT CTR 2 US POSTAL SERVICE NORMAN OK 73069 SCIENCE & TECH INFO FACILITY ATTN: NASA REP (SAK/DL) 1 P O BOX 8757

BALTIMORE/WASH INT AIRPORT MD 21240