Databázový systém MySQL

1. MYSQL	2
1.1 SQL	2
1.1.1SQL základní příkazy	2
Příkazy pro manipulaci s daty	2
Příkazy pro definici dat	
Příkazy pro řízení dat	
1.2 SŘBD	
2. RELAČNÍ DATABÁZE	2
2.1 Relační tabulka	2
2.2 Základní operace relační algebry	3
1.1.2Projekce	3
1.1.3Selekce	3
1.1.4Spojení	3
spojení na rovnost (vnitřní)	3
Theta spojení (vnitřní)	3
Vnější spojení (outer join)	
2.3 Datové typy relační databáze	4
1.1.5Celá čísla	4
1.1.6Čísla s pohyblivou desetinou čárkou	
1.1.7Řetězce	
1.1.8Datum a čas	4
3. PŘÍKAZY MYSQL	5
3.1 Databáze	5
1.1.9Založení databáze	5
1.1.10Výpis databází MySQL	5
1.1.11Nastavení aktivní databáze	5
1.1.12Název aktuální databáze	5
1.1.13Smazání databáze	5
3.2 Tabulky	5
1.1.14Vytvoření tabulky	5
1.1.15Vytvoření dočasné tabulky	5
1.1.16Výpis popisu tabulky	5
1.1.17Změny v tabulce	6
Nový sloupec	6
Smazání sloupce	6
1.1.18Přejmenování tabulky	6
3.3 Práce s daty	7
1.1.19Vkládání záznamů	7
1.1.20Výpis záznamů	
1.1.21Mazání záznamů	7

1. MySQL

- o je multiplatformní databázový systém
- komunikuje s databází pomocí jazyka SQL

1.1 SQL

- Structured Query Language (strukturovaný dotazovací jazyk)
- o umožňuje ovládat databázi pomocí příkazů dotazů

1.1.1SQL základní příkazy

Příkazy pro manipulaci s daty

- SELECT vybírá data z databáze, umožňuje výběr podmnožiny a řazení dat
- INSERT vkládá do databáze nová data
- UPDATE mění data v databázi (editace)
- o DELETE odstraňuje data (záznamy) z databáze

Příkazy pro definici dat

- CREATE vytváření nových objektů
- ALTER změny existujících objektů
- DROP odstraňování objektů

Příkazy pro řízení dat

- o GRANT příkaz pro přidělení oprávnění uživateli k určitým objektům.
- REVOKE příkaz pro odnětí práv uživateli.
- BEGIN zahájení transakce.
- COMMIT potvrzení transakce.
- o ROLLBACK zrušení transakce, návrat do původního stavu.

1.2 SŘBD

- je softwarové vybavení, které zajišťuje práci s databází (tvoří rozhraní mezi aplikačními programy a uloženými daty)
- o řeší zejména ukládání dat, hledání v datech, souběžný přístup a vzájemnou provázanost dat.
- o musí být schopno efektivně pracovat s velkým množstvím dat
- nejčastější dnes používané SŘBD jsou relační databáze například MySQL

2. Relační databáze

- o je databázový systém založený na relačním modelu dat a relační algebře
- o relační databázi tvoří kolekce více tabulek, jejich funkčních vztahů, indexů a dalších součástí
- o data jsou uspořádána do tabulek (relací), nad kterými jsou definovány přípustné operace
- o software pro řízení databáze je právě SŘBD

2.1 Relační tabulka

- o je struktura záznamů s pevně stanovenými položkami (sloupce řádky)
- o tabulky (relace) tvoří základ relační databáze
- o každý sloupec má definován jednoznačný název, typ a rozsah, neboli doménu

Záznam se stává n-ticí (řádkem) tabulky, pokud jsou v různých tabulkách sloupce stejného typu, pak tyto sloupce mohou vytvářet vazby mezi jednotlivými tabulkami. Tabulky se poté naplňují vlastním obsahem - konkrétními daty.

2.2 Základní operace relační algebry

1.1.2Projekce

- o z původní množiny záznamů vrátí pouze vybrané atributy
- o za SELECT je uveden seznam polí (atributů), která se zahrnou do výsledné množiny záznamů
- klausule ORDER BY uspořádá data abecedně podle pole Zákazník_Příjmení a následně podle pole Zákazník Jméno

```
SELECT Zakaznik_Prijmeni, Zakaznik_Jmeno
FROM Tab_Zakaznici
WHERE Zakaznik_Prijmeni = 'Vomáčka'
ORDER BY Zakaznik_Prijmeni, Zakaznik_Jmeno;
```

1.1.3Selekce

o vytvoření relace s týmž schématem a ponechání prvků z původní relace splňující podmínku

1.1.4Spojení

- nejběžnější případ relačních operací
- o propojuje množiny záznamů na základě porovnání polí

spojení na rovnost (vnitřní)

- o spojení na základě operátoru rovnosti
- vrátí pouze ty záznamy, ve kterých si vzájemně odpovídají hodnoty

```
SELECT Tab_Objednavky.IDObjednavka,

Tab_Vyrobky_Na_Objednavkach.IDVyrobek,

Tab_Vyrobky_Na_Objednavkach.Mnozstvi_Vyrobku,

Tab_Vyrobky_Na_Objednavkach.Jednotkova_Cena

FROM Tab_Objednavky

INNER JOIN Tab_Vyrobky_Na_Objednavkach

ON Tab_Objednavky.IDObjednavka = Tab_Vyrobky_Na_Objednavkach.IDObjednavka

WHERE (((Tab_Objednavky.IDObjednavka)=4));
```

Theta spojení (vnitřní)

- spojení na základě operátorů <>, >, >=, <, <=</p>
- o používají se většinou při porovnávání záznamů, jejichž nějaká hodnota je např. větší než průměr hodnot všech záznamů

Vnější spojení (outer join)

- vrátí všechny záznamy, které by vrátilo spojení vnitřní plus všechny záznamy z jedné nebo obou výchozích množin záznamů, přičemž místo chybějících hodnot (vzájemně neodpovídajících) se vypíší hodnoty Null
- existují vnější spojení levá, pravá a plná, směr spojení se rozlišuje podle pořadí v jakém jsou množiny uvedeny v příkazu SELECT
- plné vnější spojení vrátí všechny záznamy z obou zadaných množin, a spojí vzájemně záznamy, které splňují podmínky

 následující příklad tedy v obou případech vrací všechny záznamy z množiny A a z množiny B jen ty, které splňují podmínky uvedené v <podmínka>

SELECT * FROM A LEFT OUTER JOIN B ON <podminka> SELECT * FROM B RIGHT OUTER JOIN A ON <podminka>

 plné vnější spojení vrátí všechny záznamy z obou zadaných množin, a spojí vzájemně záznamy, které splňují podmínky v <podmínka>

SELECT * FROM A FULL OUTER JOIN B ON <podminka>

Projekce vybírá sloupce, operace **selekce** vybírá řádky (záznamy) a operace **spojení** provádí spojení dvou tabulek přes zvolenou položku nebo skupinu položek.

2.3 Datové typy relační databáze

1.1.5Celá čísla

Název	Rozsah hodnot	Bez znaménka	Místo v paměti
TINYINT	± 128	0 – 255	1 bajty
SMALLINT	± 32 tisíc	0 – 65 535	2 bajty
MEDIUMINT	± 8 mil	0 – 16 mil	3 bajty
INT (INTEGER)	± 2 miliardy	0 – 4 miliardy	4 bajty
BIGINT	± 9*10 ¹⁸	0 - 18*1018	8 bajty
BIT (BOOL)	Synonymum pro TINYINT		

1.1.6Čísla s pohyblivou desetinou čárkou

Název	Rozsah hodnot	Místo v paměti
FLOAT	± 3,402823466E+38	4 bajty
DOUBLE	±1,17976931348623157E+308	8 bajty
DOUBLE PRECESION (REAL)	- II -	
DECIMAL (M, D)	Rozsah nastavíme parametry M a D	M + 2 bajtů
DEC (NUMERIC)	- II -	

1.1.7Řetězce

Název	Délka	Místo v paměti
CHAR	0 – M (0 - 255) znaků	1 bajt
VARCHAR	0 – M (0 - 255) znaků	1 + 1 bajt
TINYBLOB/ TINYTEXT	255 znaků	1 bajtů
BLOB/ TEXT	65 535 znaků	2 + 2 bajty
MEDIUMBLOB/ MEDIUMTEXT	16 mil znaků	3 + 3 bajty
LONGBLOB/ LONGTEXT	4 miliardy znaků	4 + 4 bajty
ENUM	65 535 znaků	2 bajty
SET	64 znaků	8 bajtů

1.1.8Datum a čas

Název	Formát	Místo v paměti
DATE	RRRR-MM-DD	3 bajty
TIME	HH:MM:SS	3 bajty
DATETIME	RRR-MM-DD HH:MM:SS	8 bajty
TIMESTAMP	RRR-MM-DD HH:MM:SS	4 bajty
YEAR	RRRR	1 bajty

3. Příkazy MySQL

3.1 Databáze

1.1.9Založení databáze

CREATE DATABASE nazev_databaze;

- příkaz vytvoří databázi se jménem "nazev databaze" (délka názvu může být max. 65 znaků)
- abychom mohli databázi používat, musíme v ní vytvořit jednu či více tabulek příkazem
 CREATE TABLE (viz níže)
- při práci v příkazovém řádku, musíme určit aktivní databázi příkazem USE (viz níže)

1.1.10Výpis databází MySQL

SHOW DATABASES;

o příkaz vám zobrazí jména databází ve vašem spuštěném MySQL

1.1.11Nastavení aktivní databáze

USE nazev_databaze;

databázi "nazev_databaze" nastavíme takto jako aktivní a můžeme s ní pracovat

1.1.12Název aktuální databáze

SELECT DATABASE();

vrací název aktuální databáze

1.1.13Smazání databáze

DROP DATABASE nazev_databaze;

 vymaže celou databázi se jménem "nazev_databaze", tedy všechny tabulky a data v nich uložená

3.2 Tabulky

1.1.14Vytvoření tabulky

CREATE TABLE nazev_tabulky (nazev_sloupce datovy_typ,...);

- v databázi, která je právě aktivní, vytvoříme novou tabulku
- délka názvu tabulky (a sloupců) může být max. 65 znaků

1.1.15 Vytvoření dočasné tabulky

CREATE TEMPORARY TABLE nazev_tabulky (nazev_sloupce datovy_typ,...);

takto vytvoříme dočasnou, která po uzavření spojení s databází zanikne

1.1.16Výpis popisu tabulky

DESCRIBE nazev_tabulky;

SHOW COLUMNS FROM nazev_tabulky;

příkaz nám zobrazí definici požadované tabulky (názvy + datové typy + modifikátory)

1.1.17Změny v tabulce

ALTER TABLE nazev_tabulky prikaz1, prikaz2, prikaz3, prik...;

o provede nějaký příkaz/příkazy s tabulkou "nazev_tabulky", viz dále...

Nový sloupec

- .. ADD nazev_noveho_sloupce datovy_typ;
- .. ADD COLUMN nazev_noveho_sloupce datovy_typ;
- o příkaz přidá do tabulky nový sloupec

ALTER TABLE knihovna ADD COLUMN vydavatel VARCHAR(10);

Smazání sloupce

- .. DROP nazev_odstranovaneho_sloupce;
- .. DROP COLUMN nazev_odstranovaneho_sloupce;
- o příkaz odebere požadovaný sloupec

ALTER TABLE knihovna DROP vydavatel;

1.1.18Přejmenování tabulky

.. RENAME novy nazev tabulky;

o příkaz přejmenuje požadovanou tabulk

ALTER TABLE knihovna RENAME knihovnicka;

3.3 Práce s daty

1.1.19Vkládání záznamů

```
INSERT INTO nazev_tabulky VALUES (seznam_hodnot);
```

1.1.20Výpis záznamů

```
SELECT pozadavky FROM podminky vyberu;
```

1.1.21Mazání záznamů

```
DELETE FROM nazev tabulky WHERE podminka;
```

4. Výpis SQL tabulky pomocí PHP

```
$spojeni = mysql_connect (localhost, "jmeno", "heslo");
mysql_select_db(noviny, $spojeni);
$vysledek = mysql_query(
"SELECT * FROM clanky ORDER BY datum",
$spojeni);
/* Konec přímé práce s databází. */
/* Cyklem procházím řádky výsledku a vytahuju z něj hodnoty do nového pole $zaznam*/
while ($zaznam = mysql fetch array($vysledek)):
echo "<a href='vypisclanku.php?id=";
echo $zaznam["id"];
echo "'>";
echo $zaznam["titulek"];
echo "<br> ";
echo $zaznam["uvod"];
echo "<br>";
echo "Autor: ";
echo $zaznam["autor"];
echo "";
endwhile;
?>
```

- Jméno a heslo
- Zápis SQL příkazu
- Název tabulky "clanky"
- Jména polí v tabulce