These are our first tries to fit ERGM-models. First approach: Try to fit a model suggested for starting by Robins and Lusher. Model does degenerate quickly. Thus we try to find statistics which are responsible for degeneration by extracting each term in a seperate model and check perfomance via mcmc.diagnostics.

Tabelle 1: ERGM-Terms suggested by Robins and Lusher and the result of their mcmc.diagnostics

ergm-term	mcmc.diagnostics	
edges	works	
mutual	works	
gwidegree(decay, fixed = TRUE)	works only with decay near one	
gwodegree(decay, fixed = TRUE)	degenerates	
gwdsp(fixed = TRUE)	works, long computation time	
gwesp(fixed = TRUE)	works, long computation time	
ctriple	degenerates	

Now we try to find some terms which can replace the terms wich are degenerating or have long computational time. Idea is to combine alle terms which are working fine in new model.

Tabelle 2: Replacement for ERGM-Terms

	ergm-term	mcmc.diagnostics
	ostar(2)	degenerates
	dsp(1)	works fine in most years
	esp(1)	works fine in most years

- Combining statistics leads to long computing time
- thats why we try to estimate parameters for single statistics (formular: edge + ergm-term)
- time series(1992-2011) for parameter values of:
 - mutual,
 - gwindegree(decay = 0.9, fixed = T),
 - $\exp(1),$
 - $\operatorname{dsp}(1)$

