Math Notes

Olivier Bitter

October 2024

Contents

1 Relations												1											
	1.1	Notions of Symmetry																					1

1 Relations

1.1 Notions of Symmetry

Definition 1.1: Notions of Symmetry

Let $U \neq \emptyset$ and $\rho \subseteq U^2$ be a relation on U.

- 1. ρ is asymmetric $\Leftrightarrow \forall x, y \in U : x \rho y \to y \rho x$
- 2. ρ is anti-symmetric $\Leftrightarrow \forall x, y \in U : x \rho y \land y \rho x \rightarrow x = y$
- 3. ρ is not symmetric $\Leftrightarrow \exists x, y \in U : x \rho y \land y \not \in x$
- 4. ρ is symmetric $\Leftrightarrow \forall x, y \in U : x \rho y \to y \rho x$

We will show that asymmetry implies both anti-symmetry and non-symmetry and is therefore a "stronger" condition.

Claim 1.1

Let $U \neq \emptyset$ and $\rho \neq \emptyset$.

 ρ is asymmetric $\Rightarrow \rho$ is anti-symmetric.

Proof. Let ρ be asymmetric. Let $x,y\in U$. If $x\ \rho\ y$ then $x\not\rho y$ due to asymmetry of ρ . Hence $x\ \rho\ y\wedge x\not\rho y$ will never hold, making the implication in 2 of definition 1.1 vacuously true.

Claim 1.2

Let $U \neq \emptyset$ and $\rho \neq \emptyset$.

 ρ is asymmetric $\Rightarrow \rho$ is not symmetric.

Proof. Let ρ be asymmetric. Let $x, y \in U$. If $x \rho y$ then $x \not \rho y$ due to asymmetry of ρ . Hence, there exists $x, y \in U$ s.t. $x \rho y \wedge y \not \rho x$.

Claim 1.3: Symmetry of the Empty Relation

Let $U \neq \emptyset$ and $\rho = \emptyset$.

- 1. ρ is asymmetric.
- 2. ρ anti-symmetric.
- 3. ρ is symmetric.

Proof. As all three properties are defined as logical implications, their antedecents will never hold because:

$$x \ \rho \ y \Leftrightarrow (x,y) \in \rho = \emptyset$$

Let in the following $U = \{1, 2, 3\}$

• $\rho = \{(1,2),(2,1)\}$ is symmetric but not anti-symmetric.

- $\rho = \{(1,2)\}$ is anti-symmetric but not symmetric.
- $\rho = \{(1,1)\}$ is both anti-symmetric and symmetric.
- $\rho = \{(1,2),(2,1),(1,3)\}$ is neither anti-symmetric nor symmetric.