ARITHMETIC

2° GRADE OF SECONDARY

Retroalimentación Tomo 4

01

1. Cuántos divisores múltiplos de 28 tiene el número $20^4 \times 56^3$?

Resolución

*
$$20^4 = (2^2 x 5)^4 = 2^8 x 5^4$$

*
$$56^3 = (2^3 x^7)^3 = 2^9 x^{73}$$

$$20^4 \times 56^3 = 2^8 \times 5^4 \times 2^9 \times 7^3$$

$$20^4 \times 56^3 = 2^{17} \times 5^4 \times 7^3$$

Múltiplos de 28 = $2^2 x^7$

Para calcular los divisores múltiplos de 28

$$CD_{28} = (16). (5).(3)$$

$$CD_{28} = 240$$

$$CD_{28} = 240$$

Calcule el valor de "a", si N = 6^3x21^a tiene 216 divisores

Resolución

$$N = 6^3 \times 21^a$$

$$N = (2x3)^3 .(7x3)^a$$

$$N = 2^3 \times 3^3 \times 7^3 \times 3^3$$

$$N = 2^3 \times 3^{3+a} \times 7^a$$

$$+1$$
 +1 +1
N = 2^{3} $\times 3^{3}$ $\times 7^{3}$

$$CD_N = (4) (4+a) (a+1) = 216$$

$$(4+a) (a+1) = 54$$

$$9 6$$

$$a = 5$$

Calcule la cantidad de divisores de: $7^{20}+7^{18}$

Resolución

Se realiza la
$$7^{18} \times 50$$
 descomposición canónica $7^{18} \times 2 \times 5^2$

$$CD = (19). (2) .(3)$$

Al calcular el MCD(A;B) por el algoritmo de Euclides se obtuvo los siguientes cocientes sucesivos: 3; 2 y 2. Calcule el mayor número si A + B = 198

Del dato tenemos:

$$17X + 5X = 198$$

$$22X = 198$$

$$X = 9$$

$$A = 17(9) = 153$$

Resolución

Cocientes sucesivos	3	2	2
17X	5X	2X	X MCD(A; B)
Residuos sucesivos	2X	X	0

HELICO | PRACTICE

5. (

La suma de dos números es 156 y su MCD es 13, ¿cuántas parejas de números cumplen con esa condición?

Resolución

Sean los números: A y B

De los datos: A + B = 156

MCD(A;B) = 13

por propiedad:

Reemplazando

•

Solo dos parejas de números

HELICO | PRACTICE

6. Si el MCD de $\overline{ab4}$ y $\overline{ab5}$ es a-3, calcula el mayor valor de: a + b.

Resolución

Observación: $\overline{ab4}$ y $\overline{ab5}$

Son números consecutivos

Dos números consecutivos son PESI

7.

Sea: A = MCM(24k; 8k); B = MCM(2k; 3k)
Calcule
$$k^2 + 1$$
, si A+B = 240

Resolución

$$A = MCM(24K; 8K)$$

$$A = K.MCM(24; 8)$$

24

$$A = 24K$$

$$B = 6K$$

$$A + B = 24K + 6K = 240$$

 $30K = 240 \longrightarrow K = 8$

$$8^2 + 1 = 65$$

8. SEA: A = $2^4 \times 3^5 \times 7^2$; B = $2^2 \times 3^7 \times 5^1$ CALCULE $CD_{MCM(A;B)}$

Resolución

 $A = 2^4 \times 3^5 \times 7^2$

$$B = 2^2 \times 3^7 \times 5^1$$

Tomamos los factores comunes y no comunes con mayor exponente.

240

¿Cuántos múltiplos comunes tiene 8; 12 y 24, comprendidos entre 500 y 2500?

Resolución

TODO MÚLTIPLO
DE 24 ES
MÚLTIPLO
COMÚN DE 8, 12 Y
24

500 < 24k < 2500 500 < k < 2500 24

k : 21,22,23...,104

20,8

 N° de valores de = 104 - 21 +1

84 múltiplos comunes

104,1

10.

Jorge desea conocer la menor capacidad de un recipiente que se puede llenar en un número exacto de minutos por cualquiera de 3 llaves que vierten; la primera 12 litros por minuto, la segunda 18 litros por minuto y la tercera, 20 litros por minuto.

Resolución

18 litros

MCM(12;18;20)

la menor cantidad de litros del recipiente

MCM(12; 18; 20) = 180

180 litros