Notes for Mathematical Anaysis

Zhao Wenchuan

November 25, 2021

Contents

1	Metric Spaces and Normed Linear Spaces			
	1.1	Metric Spaces	2	
	1.2	Open Sets	2	
2	Diff	erentiation	3	

Chapter 1.

Metric Spaces and Normed Linear Spaces

§1.1 Metric Spaces

Definition 1.1.1. Let X be any non-empty set. A *metric on* X is a mapping $\rho: X \times X \to \mathbb{R}_{\geq 0}$ which satisfies the *metric axioms*. That is, for any $x, y, z \in X$,

M1.
$$\rho(x, y) = 0$$
 iff $x = y$;

M2.
$$\rho(x, y) = \rho(y, x);$$

M3.
$$\rho(x, y) \le \rho(x, z) + \rho(z, y)$$
.

The ordered pair (X, ρ) is called a *metric space*.

§1.2 Open Sets

Definition 1.2.1. Let $\mathbb{X} = (X, \rho)$ be a metric space. A set $A \subseteq X$ is said to be *open* iff

$egin{array}{ccc} Chapter & 2. \\ oldsymbol{Differentiation} \end{array}$