IP et Masque de sous réseau

Qu'est-ce que l'IP?

Une IP identifie une machine sur un réseau IP et permet l'acheminement des paquets entre hôtes.

Composée de deux parties :

ID Réseau : identifie le réseau (ex : une rue)
 ID Hôte : identifie l'appareil (ex : une maison)

Qu'est-ce que l'IPv4 et l'IPv6 ?

> IPv4 : format classique en quatre octets, le plus utilisé.

➤ IPv6 : solution à la pénurie d'adresses IPv4 (2¹28 adresses possibles).

Structure d'un paquet IP (champ IPv4)

Champ	Fonction principale		
Version	Indique la version IP (v4 ou v6)		
IHL	Longueur de l'en-tête		
ToS (DSCP)	Priorité du paquet		
Total Length	Taille totale du paquet (données + en-tête)		
Fragment ID	Gestion de la fragmentation		
Flags / Offset	Fragmentation et position		
TTL	L Durée de vie du paquet (nombre de routeurs autorisés)		
Protocole	Type de données transportées (ex : TCP, UDP)		
Checksum	Vérification d'intégrité		
Source / Dest IP	IP d'origine et de destination		
Option / Data	Paramètres facultatifs / Données transmises		

Qui a une adresse IP ? Pourquoi ?

Tout appareil connecté au réseau : ordinateurs, smartphones, serveurs, objets IoT, VM...

Une adresse IP est essentielle pour :

> Identifier chaque machine

- > Acheminer les données
- Sécuriser les accès
- > Diagnostiquer les problèmes réseau

Calcul et Binaire

Une adresse IP: 4 octets séparés par des points (0-255).

Chaque octet = $8 \text{ bits} \rightarrow \text{interprétation en binaire}$.

Exemples:

 $255.0.0.0 \rightarrow 111111111.00000000.000000000.00000000$

Quel lien entre l'IP et le masque de sous réseau?

Le masque délimite la partie réseau et la partie hôte d'une adresse IP.

Exemple:

IP: 192.168.1.10

Masque : 255.255.255.0 → Réseau : 192.168.1 / Hôte : 10

Classes IP

Classe	Plage	Octets Réseau	Hôtes	Usage
Α	0-127	1	+16 millions	Très grands réseaux
В	128-191	2	+65 000	Réseaux moyens
С	192-223	3	254 max	Réseaux locaux
D	224-239	•	Multicast	Diffusion audio/vidéo
Е	240-255		Réservé	Expérimental

Adresses spéciales!

Loopback: $127.0.0.1 \rightarrow Test local$

Broadcast local: 255.255.255.255 → Tous les hôtes du même réseau

Adresse réseau : tous les bits hôtes à 0

Broadcast réseau : tous les bits hôtes à 1

0.0.0.0 → route par défaut ou adresse inconnue

Exemple:

> Adresse de réseau :

IP: 11000000.10101000.0000001.00001010
Masque: 11111111.11111111111111111100000000

- Les 24 premiers bits sont pour le réseau, les 8 derniers pour l'hôte.
- En mettant tous les bits hôtes à 0, on obtient : 192.168.1.0
- ➤ Broadcast :
 - Même configuration : IP : 192.168.1.10 Masque : 255.255.255.0
 - En mettant tous les bits hôtes à 1, on obtient : 192.168.1.255

Masque de sous-réseau

Sert à séparer la partie réseau / hôte.

Deux adresses non utilisables:

- Adresse réseau (bits hôte à 0)
- Adresse broadcast (bits hôte à 1)

Exemple: IP 192.168.1.10 avec masque 255.255.255.0, on compte toujours par 8 (octet) pour les 4 parties d'une adresse IP, jusqu'à arriver une des 4 parties comprenant que des 0.

> Adresse IP: 192.168.1.10

➤ Masque de sous-réseau : 255.255.255.0 → notation CIDR : /24

Interprétation :

- Le masque 255.255.255.0 signifie que les **24 premiers bits** sont réservés à la partie **réseau**, et les **8 derniers bits** à la partie **hôte**.
- > Cela donne:

 $\circ \quad \textbf{Adresse r\'eseau}: 192.168.1.0$

o Adresse de broadcast : 192.168.1.255

Plage d'adresses utilisables : de 192.168.1.1 à 192.168.1.254

 Nombre d'hôtes possibles : 2^8 - 2 = 254 (on retire l'adresse réseau et l'adresse de broadcast)

IP privées vs publiques

Туре	Routable sur Internet	Utilisation
IP Privée	Non	Réseaux locaux (LAN, entreprise)
IP Publique	Oui	Serveurs web, routeurs internet

CIDR

CIDR = Classless Inter-Domain Routing

Notation simplifiée : ex : 192.168.0.0/24

Permet de créer des sous-réseaux flexibles

C'est quoi la passerelle par défaut?

IP du routeur qui connecte le réseau local à internet.

Permet à un appareil de communiquer hors de son réseau.

Quels sont les contraintes d'adressage réseaux?

Lors de la conception réseau, il faut tenir compte :

- Nombre d'hôtes ;
- Evolutivité (scalabilité);
- Sécurité ;
- Coût matériel ;
- Organisation topologique.

IPv6: Pourquoi c'est essentiel?

- Remplace IPv4 (épuisement des adresses)
 - o Grande capacité: 2^128
- Connexion directe sans NAT
- Sécurité et compatibilité avec l'IoT

Subnetting binaire

Permet de diviser un réseau en plusieurs sous-réseaux.

À chaque bit emprunté aux hôtes, on double le nombre de sous-réseaux :

- \triangleright 1 bit \rightarrow 2 sous-réseaux
- \triangleright 2 bits \rightarrow 4
- \rightarrow 3 bits \rightarrow 8
- > etc.

Méthode magique

Permet de calculer facilement les plages IP :

- Nombre magique : 256 octet significatif du masque
- Ex: masque 255.224.0.0 \rightarrow octet = 224 \rightarrow nombre magique = 32
- Plage IP = entre deux multiples du nombre magique

Exemple:

- IP: 192.168.0.1 → deuxième octet = 168
- Multiples de 32 : ...160, 192...
- Plage: 192.160.0.0 à 192.191.255.255