Unified classification and risk-stratification in Acute Myeloid Leukemia

Tutorial for Bayesian Dirichlet Process for finding molecular clusters:

This notebook is independent of the paper and can be used for clustering any dataset

```
In [8]: library(hdp)
library(ggplot2)
library('ggrepel')
library(dplyr)

library('IRdisplay')
source('src/tools.R')
source('src/hdp_tools.R') ## containing useful functions for HDP
library(gridExtra)
```

```
In [9]: df_hdp1 <- read.table("data/aml_bdp1.tsv")

df_molecular <- read.table("data/aml_molecular_bdp.tsv")

genes_columns <-colnames(df_molecular)[grep1("^[[:upper:]]", colnames(df_molecular))]

cytos_columns <- colnames(df_molecular)[!grep1("^[[:upper:]]", colnames(df_molecular))]</pre>
```

BDP: A clustering tool to identify dominant molecular drivers

I) BDP1: BDP algorithm applied on 2150 Patients and 153 genes and cytos

```
In [10]: # HDP Parameters

data <- df_hdp1
posterior_samples <- 250
initial_clusters <- 17
burn <- 7000
chains <- 3
base_dist <- prepare_distributions(df_hdp1)$gaussian
aa <- 0.5
ab <-1.5</pre>
```

Number of components: 10 Number of NA rows : 51

A data.frame: 13×3

	values	count	freq
	<fct></fct>	<int></int>	<chr></chr>
2	1	833	38.7441860465116
3	2	418	19.4418604651163
4	3	229	10.6511627906977
5	4	128	5.95348837209302
6	5	114	5.30232558139535
7	6	114	5.30232558139535
1	0	96	4.46511627906977
9	8	61	2.83720930232558
12	NaN	51	2.37209302325581
8	7	50	2.32558139534884
11	10	29	1.34883720930233
10	9	27	1.25581395348837
13	total	2150	100%


```
In [33]: # png("figures/figures miscellaneous/bdp1 comp.png", width=8000, height=8000, res=200)
         dd predicted 10 components <- get prediction result dataframe(multi output cluster 10, df hdpl)
         tab <- get table(dd predicted 10 components[,'predicted component'])</pre>
         tab
         # par(mfrow=c(12,1))
         # plot components size(multi output cluster 10,8,4.5)
         # plot comp distn(multi output cluster 10,
                            cat names = colnames(df hdp1),
                                       = "skyblue3",
                            col nonsig = "black",
                           plot title=c("Component 0 (going to HDP 2)", "Component 1 (NPM1)", "Component 2 (goin
           to HDP 2)", "Component 3 (TP53-Complex)", "Component 4 (going to HDP 2)",
                                         "Component 5 (t(8;21))", "Component 6 (inv(16))", "Component 7 (CEBPA b
         i)", "Component 8 (t(15;17) & t(11))", "Component 9 (additions)", "Component 10 (inv(3))")
         # dev.off()
         # png("figures/figures miscellaneous/bdp1 proba.png",width=3000,height=800,res=140)
         plot assignement probability by component(dd predicted 10 components) #+#+scale fill manual(values="bl
         ue")
         # ylab("Max Proba of assignment")+xlab("Predicted Component") +
                theme(plot.title=element text(size=30, face="bold", hjust=0.5), axis.text=element text(size=20), ax
         is.title=element text(size=25,face="bold")) +
               ggtitle("Assignment probability of Top Component")
         # dev.off()
```

Number of components: 10 Number of NA rows : 51

A data.frame: 13×3

	values	count	freq
	<fct></fct>	<int></int>	<chr></chr>
2	1	833	38.7441860465116
3	2	418	19.4418604651163
4	3	229	10.6511627906977
5	4	128	5.95348837209302
6	5	114	5.30232558139535
7	6	114	5.30232558139535
1	0	96	4.46511627906977
9	8	61	2.83720930232558
12	NaN	51	2.37209302325581
8	7	50	2.32558139534884
11	10	29	1.34883720930233
10	9	27	1.25581395348837
13	total	2150	100%

Rules: Patients that do not have molecular drivers defined by HDP will be going to HDP 2

Step 1: Defining feature in each component

```
In [16]: tmp <- read.table("data/initial components with proba.tsv")</pre>
         tmp$initial refined component <- "not assigned"</pre>
          tmp[tmp$NPM1==1,]$initial refined component <- "NPM1"</pre>
          tmp[tmp$initial refined component=="not assigned" & (tmp$TP53==1 & tmp$complex==1), |$initial refined
          component <- "TP53 complex"
         tmp[tmp$initial_refined_component=="not_assigned" & tmp$initial_predicted_component==3 & (tmp$TP53==1
          tmp$complex==1), |$initial refined component <- "TP53 complex"</pre>
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==5 & tmp$t 8 21==
         1,]$initial_refined_component <- "t_8_21"</pre>
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==6 & tmp$inv 16==
         1, | $initial refined component <- "inv 16"
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==7 & tmp$CEBPA bi
         ==1, |$initial refined component <- "CEBPA bi"
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==8 & (tmp$t v 11=
          =1 | tmp$t 9 11==1),|$initial refined component <- "t 11"
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==8 & tmp$t 15 17=
         =1, |$initial refined component <- "t 15 17"
         tmp[tmp$initial refined component=="not assigned" & tmp$initial predicted component==9 & (tmp$add 8==
         1 | tmp$add 11==1 | tmp$add 13==1 | tmp$add 21==1 | tmp$add 22==1), |$initial refined component <- "ad
         ditions"
         tmp[tmp$initial_refined_component=="not_assigned" & tmp$initial_predicted_component==10 & tmp$inv 3==
         1,|$initial refined component <- "inv 3"</pre>
         tmp[is.na(tmp$max proba), |$initial refined component <- "no events"</pre>
```

```
In [17]: t(data.frame(table(tmp$initial_refined_component)))

A matrix: 2 × 11 of type chr

Var1 additions CEBPA_bi inv_16 inv_3 no_events not_assigned NPM1 t_11 t_15_17 t_8_21 TP53_complex

Freq 21 35 85 13 51 915 682 31 19 99 199
```

Patients that did not pass the first test (not defining feature of their component)

Step 2: Second Max Proba with defining features

In [19]: ### Get Min Proba for each component min_proba_NPM1 = min(tmp[tmp\$initial_predicted_component==1,]\$max_proba,na.rm=T) min_proba_TP53_complex = min(tmp[tmp\$initial_predicted_component==3,]\$max_proba,na.rm=T) min_proba_t_8_21 = min(tmp[tmp\$initial_predicted_component==5,]\$max_proba,na.rm=T) min_proba_inv_16 = min(tmp[tmp\$initial_predicted_component==6,]\$max_proba,na.rm=T) min_proba_CEBPA_bi = min(tmp[tmp\$initial_predicted_component==7,]\$max_proba,na.rm=T) min_proba_transloc = min(tmp[tmp\$initial_predicted_component==8,]\$max_proba,na.rm=T) min_proba_additions = min(tmp[tmp\$initial_predicted_component==9,]\$max_proba,na.rm=T) min_proba_inv_3 = min(tmp[tmp\$initial_predicted_component==10,]\$max_proba,na.rm=T)

```
In [20]: ## Refine patients with second max proba
         threshold <- 0.75
         tmp[tmp$initial refined component=="not assigned" , ]$initial refined component <- apply(tmp[tmp$ini</pre>
         tial_refined_component=="not_assigned" , ], 1, function(x) {
                 if (all(is.na(x['second predicted component'])))
                     return(NaN)
                 else
                     return(ifelse(x['second predicted component']==3 & x['second max proba']>=threshold*min p
         roba TP53 complex & (x['complex']==1 | x["TP53"]==1), "TP53 complex",
                            ifelse(x['second predicted component']==5 & x['second max proba']>=threshold*min p
         roba_t_8_21 & x['t_8_21']==1 ,"t_8_21",
                            ifelse(x['second predicted component']==6 & x['second max proba']>=threshold*min p
         roba inv 16 & x['inv 16']==1, "inv 16",
                            ifelse(x['second predicted component']==7 & x['second max proba']>=threshold*min
         proba CEBPA bi & x['CEBPA bi']==1, "CEBPA bi",
                            ifelse(x['second predicted component']==8 & x['second max proba']>=threshold*min p
         roba transloc & (x['t v 11']==1 | x['t 9 11']==1),"t 11",
                            ifelse(x['second predicted component']==8 & x['second max proba']>=threshold*min p
         roba transloc & x['t 15 17']==1 ,"t 15 17",
                            ifelse(x['second predicted component']==9 & x['second max proba']>=threshold*min p
         roba additions & (x['add 8']==1 | x['add 11']==1 | x['add 13']==1 | x['add 21']==1 | x['add 22']==1
         ), "additions",
                            ifelse(x['second predicted component']==10 & x['second max proba']>=threshold*min
         proba inv 3 & x['inv 3']==1, "inv 3",
                             "not assigned")))))))))
             })
         t(data.frame(table(tmp$initial refined component)))
```

A matrix: 2 × 11 of type chr

```
        Var1
        additions
        CEBPA_bi
        inv_16
        inv_3
        no_events
        not_assigned
        NPM1
        t_11
        t_15_17
        t_8_21
        TP53_complex

        Freq
        24
        39
        88
        13
        51
        888
        682
        41
        20
        99
        205
```

```
In [21]: write.table(tmp, "data/bdp1_assignment.tsv", sep='\t')
```

Patients in category not assigned do not have defining features of their component nor of their second predicted component. They will also go in BDP 2.

II- BDP2: BDP reapplied on 888 Patients

888 Patients from Component 0,2 and 4 + Patients from other components that do not have defining features from their component.

```
In [22]: hdp1_assignment <- read.table('data/bdp1_assignment.tsv')

# We reapply HDP to those patients:

df_to_recluster <- hdp1_assignment[hdp1_assignment$initial_refined_component=="not_assigned",c(genes_columns,cytos_columns)] ## Reapply HDP only on not assigned patients and keep only gene and cyto columns</pre>
```

```
In [23]: num cols = ncol(df to recluster[colSums(df to recluster) > 0]) ## keep only column that have at leas
         t a mutation (otherwise HDP is not applicable)
         num cols
         bin <- function(x){</pre>
              set.seed(123)
            (rbinom(1, num cols, mean(x))+1)/num cols
         ###Normal
         normal <- function(x){</pre>
             set.seed(123)
            abs(rnorm(1,mean(x),sd(x)))
          ###Poisson
         poisson <- function(x){</pre>
              set.seed(123)
           (rpois(num_cols,1)+1)/num_cols
         ###Uniform equally over all columns
         equally <- function(x){
              set.seed(123)
            1/num cols
         ###Repet 1
         repet <- function(x){</pre>
              set.seed(123)
           1
         }
         binomial <- unlist(sapply(df to recluster[colSums(df to recluster) > 0],bin))
         gaussian <- unlist(sapply(df to recluster[colSums(df to recluster) > 0],normal))
         pois <- as.numeric(unlist(sapply(df to recluster[colSums(df to recluster) > 0],poisson)))
         unif <- unlist(sapply(df to recluster[colSums(df to recluster) > 0],equally))
```

129

```
In [24]: # HDP2 Parameters

data <- df_to_recluster[colSums(df_to_recluster) > 0]
    posterior_samples <- 150
    initial_clusters <- 5
    burn <- 5000
    chains <- 3
    base_dist <- prepare_distributions(df_to_recluster[colSums(df_to_recluster) > 0])$gaussian
    aa <- 2
    ab <-6</pre>
```

```
Initialise HDP on a 888 x 129 dataframe
  → create HDP structure... done!
  → add DP node for each patient... done!
  → assign the data to the nodes... done!
### Experiment 1 (seed = 100) ###
Activate HDP nodes and run posterior sampling
  → activate HDP nodes... done!
  → run posterior sampling...
[1] "5000 burn-in iterations in 0.2 mins"
### Experiment 2 (seed = 200) ###
Activate HDP nodes and run posterior sampling
  → activate HDP nodes... done!
  → run posterior sampling...
[1] "5000 burn-in iterations in 0.2 mins"
### Experiment 3 (seed = 300) ###
Activate HDP nodes and run posterior sampling
  → activate HDP nodes... done!
  → run posterior sampling...
[1] "5000 burn-in iterations in 0.2 mins"
Object of class hdpSampleMulti
Number of chains: 3
Total posterior samples: 450
Components: NO. Run hdp_extract_components
Final hdpState from first chain:
Object of class hdpState
Number of DP nodes: 889
Index of parent DP: 0 1 1 1 1 1 1 1 1 ...
Number of data items per DP: 0 8 6 5 4 3 4 4 7 4 ...
Index of conparam per DP: 1 1 1 1 1 1 1 1 1 ...
Conparam hyperparameters and current value:
           Shape Rate Value
Conparam 1
               2
                    6 2.65891
Number of data categories: 129
Number of clusters: 34
Initialised with 5 clusters, using random seed 100
Extract HDP components from posterior sampling
  → extract components... done!
* 5 components found
```

Number of components: 5
Number of NA rows : 0

A data.frame: 7 × 3

	values	count	freq
	<fct></fct>	<int></int>	<chr></chr>
2	1	319	35.9234234234234
3	2	228	25.6756756756757
1	0	144	16.2162162162162
4	3	101	11.3738738738739
6	5	62	6.98198198198198
5	4	34	3.82882882882883
11	total	888	100%

Component 0 (mix)

Component 5 (WT1 and t(6;9))


```
In [27]: # png("figures/figures miscellaneous/bdp2 comp.png", width=8000, height=8000, res=200)
         dd predicted 5 components <- get prediction result dataframe(multi output recluster 5, df final)
         tab <- get table(dd predicted 5 components[,'predicted component'])</pre>
         tab
         # par(mfrow=c(12,1))
         # plot components size(multi output recluster 5,8,4.5)
         # plot comp distn(multi output recluster 5,
         #
                                cat names = colnames(df to recluster[colSums(df to recluster) > 0]),
          #
                                col
                                           = "skyblue3",
                                col nonsig = "black",
                                plot title=c("Component 0 (mix)", "Component 1 (chr splicing)", "Component 2 (chr
         splicing)", "Component 3 (DNMT3A IDH1-2)", "Component 4 (chr splicing)", "Component 5 (WT1 and t(6;
         9))"))
         # dev.off()
         # png("figures/figures miscellaneous/bdp2 proba.png",width=3000,height=800,res=140)
         # plot assignement probability by component(dd predicted 5 components)+#+scale fill manual(values="bl
         ue")
         # ylab("Max Proba of assignment")+xlab("Predicted Component") +
               theme(plot.title=element text(size=30, face="bold", hjust=0.5), axis.text=element text(size=20), ax
         is.title=element text(size=25,face="bold")) +
               ggtitle("Assignment probability of Top Component")
         # dev.off()
```

Number of components: 5
Number of NA rows : 0

A data.frame: 7 × 3

	values	count	freq
	<fct></fct>	<int></int>	<chr></chr>
2	1	319	35.9234234234234
3	2	228	25.6756756756757
1	0	144	16.2162162162162
4	3	101	11.3738738738739
6	5	62	6.98198198198198
5	4	34	3.82882882882883
11	total	888	100%

In [28]: plot_assignement_probability_by_component(dd_predicted_5_components)

notch went outside hinges. Try setting notch=FALSE.

