RECEIVED CENTRAL FAX CENTER OCT 3 0 2006

IN THE CLAIMS:

The pending claims are set forth below and have been amended and/or cancelled, without prejudice, where noted:

1. (Currently Amended) A olefin polymerization catalyst characterized by the formula

 $B(FluA)MO_n$ (3)

- a. Flu is a fluorenyl group substituted at at least one both of the 4,5 positions by a bulky hydrocarbyl group containing a cyclic compound having from 3 to 30 carbon atoms;
- b. A is a substituted or an unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group, or a heteroorgano group XR in which X is a heteroatom from Group 15 or 16 of the Periodic Table, and R is an alkyl group, a cycloalkyl group or an aryl group containing from 1 to 20 carbon atoms;
- c. B is a structural bridge between A and Flu imparting stereorigidity to the ligand structure (FluA);
- d. M is a Group 4 or Group 5 transition metal;
- e. Q is selected from the group consisting of Cl, Br, I, an alkyl group, an amino group, an aromatic group and mixtures thereof; and
- f. n is 1 or 2.
- 2. (Cancelled) The catalyst composition of claim 1 wherein Flu is substituted at both of the 4 and 5 positions with a bulky hydrocarbyl group containing a cyclic compound having from 3 to 30 carbon atoms.
- 3. (Cancelled) The catalyst composition of claim 1 wherein Flu is monosubstituted at the 4 or 5 position and is otherwise unsubstituted.
- 4. (Cancelled) The catalyst composition of claim 1 wherein Flu is monosubstituted at the 4 or 5 position and is di-substituted at the 2,7 positions with alkyl groups, phenyl or substituted phenyl groups, which may be the same or different.

- 5. (Cancelled) The catalyst composition of claim 4 wherein the fluorenyl group. Flu is di-substituted at the 2,7 positions with substituents of a lower molecular weight than the substituent at the 4 or 5 position.
- 6. (Cancelled) The catalyst composition of claim 4 wherein the fluorenyl group Flu is di-substituted at the 3,6 position with alkyl groups of a lower molecular weight than the substituent at the 4 or 5 position.
- 7. (Original) The catalyst composition of claim 1 wherein A is a heteroorgano group XR and X is N, P, O or S.
- 8. (Cancelled) The composition of claim 6 wherein 7 is N and R is a mononuclear aromatic group or an alkyl group or cycloalkyl group containing from 1 20 carbon atoms.
- 9. (Original) The composition of claim 1 wherein said structural bridge B is characterized by the formula ER'R" wherein E is C, Si or Ge and R' and R" are each independently an alky group, an aromatic group or a cycloalkyl group.
- 10. (Original) The composition of claim 1 wherein A is a substituted or unsubstituted cyclopentadienyl group.
- 11. (Original) The composition of claim 10 wherein M is titanium, zirconium or hafnium.
- 12. (Original) The composition of claim 11 wherein Flu is substituted at one of the 4 or 5 positions with a phenyl group which is substituted or unsubstituted.
- 13. (Original) The composition of claim 12 wherein A is cyclopentadienyl group substituted at the 3 position with a tertiary butyl group.

- 14. (Original) The composition of claim 10 wherein said cyclopentadicarl group is substituted at the 5 position with a methyl group.
- 15. (Original) The composition of claim 13 wherein said fluorenyl group is disubstituted at the 2,7 positions with isopropyl or tertiary butyl groups.
- 16. (Withdrawn) An olefin polymerization catalyst characterized by the formula

$$R'n'$$
 $R''n''$
 $R''n''$
 R_3
 R_5
 R_5
 R_6
 R_7
 R_4

- a. R' is a $C_1 C_4$ alkyl group or an aryl group;
- b. R" is a methyl group or an ethyl group;
- c. n' is 0 or 1;
- d. n" is 0 or 1;
- e. B is a structural bridge between the fluorenyl and cyclopentadicnyl groups;
- f. M is titanium, zirconium or hafnium;
- g. Q is selected from the group consisting of Cl, Br, I, an alkyl group, an amino group, an aromatic group and mixtures thereof;
- h. R₃ and R₄ are the same or different and are each a hydrogen or an isopropyl group or a tertiary butyl group, or phenyl, or substituted phenyl group; and
- i. R_5 is an alkyl or aromatic group which has a higher molecular weight than R_3 or R_4 .

- 17. (Withdrawn) The catalyst of claim 16 wherein R' is a tertiary butyl group and n' is 1, R₃ and R₄ are each textiary butyl groups and R₅ is a substituted or unsubstituted phenyl group.
- 18. (Withdrawn) The catalyst composition of claim 17 wherein n' is 1.
- 19. (Withdrawn) The catalyst of claim 18 wherein R" is a methyl group.
- 20. (Withdrawn) The composition of claim 17 wherein R_5 is a 4-tertiary butyl phenyl group.
- 21. (Withdrawn) An olefin polymerization catalyst characterized by the formula

$$R_3$$
 R_3
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5

- a. R is a mononuclear aromatic group, or an alkyl group or cycloalkyl group containing from 1 20 carbon atoms;
- b. B is a structural bridge between the fluorenyl group and the heteroatom group NR;
- c. M is titanium, zirconium or hafnium;
- d. Q is selected from the group consisting of Cl, Br, I, an alkyl group, an amino group, an aromatic group and mixtures thereof;
- e. R_3 and R_4 are the same or different and are each a hydrogen or a $C_1 C_4$ alkyl group, or phenyl, or substituted phenyl group;
- f. R'_3 and R'_4 are each hydrogen or a $C_1 C_4$ alkyl group providing that when R_3 and R_4 are hydrogen, R'_3 and R'_4 are hydrogen; and

- g. R_5 is an alkyl or aromatic group which has a higher molecular weight than R_5 or R_4 .
- 22. (Withhaven) The costaly of claim 21 whorein R_5 and R_4 are each a $C_1 C_4$ alkyl group and R_5 is a substituted or unsubstituted phenyl group.
- 23. (Withdrawn) The composition of claim 22 wherein R is tertiary butyl group.
- 24. (Withdrawn) The catalyst of claim 21 wherein R_3 and R_4 are each hydrogen and R_5 is a tertiary butyl group, a phenyl group, or a substituted phenyl group.
- 25. (Withdrawn) An olefin polymerization catalyst characterized by the formula

$$R_1$$
 R'_1 R'_1 R''_1 R''_1 R''_2 R''_3 R''_5 R''_4 R''_5 R''_4 R''_5 R''_4

- a. R' is a $C_1 C_4$ alkyl group or an aryl group;
- b. n' is from 0 to 3;
- c. R" is an alkyl group of a lower molecular weight than R';
- d. n" is 0 or 1;
- e. E is -C- or -Si-;
- f. R_1 and R_2 are the same or different and are each a methyl group, a phenyl group or a substituted phenyl group;
- g. M is titanium, zirconium or hafnium;
- h. Q is a chlorine, a methyl group or a phenyl group;

- i. R_3 and R_4 are the same or different and are each a hydrogen or a $C_1 C_4$ alkyl group, or phenyl, or substituted phenyl group;
- j. R'_3 and R'_4 are each hydrogen or a $C_1 C_4$ alkyl group provided that when R_3 and R_4 are hydrogen, R'_3 and R'_4 are hydrogen; and
- k. R₅ is an alkyl group or aromatic group which has a higher molecular weight than R₃ or R₄.
- 26. (Withdrawn) The catalyst of claim 25 wherein n' and n' are 0, R, and R₄ are cach hydrogen, and R₅ is a tertiary butyl group or a substituted or unsubstituted phonyl group.
- 27. (Withdrawn) The catalyst of claim 25 wherein R_3 and R_4 are each independently a $C_1 C_4$ alkyl group and R_5 is a substituted or unsubstituted phenyl group.
- 28. (Withdrawn) The catalyst composition of claim 25 wherein R₃ and R₄ are tertiary butyl groups, R₅ is a substituted or unsubstituted phenyl group and n' and n' are each 0.
- 29. (Withdrawn) The catalyst composition of claim 25 wherein n' is 1 and R' is a tertiary butyl group substituted on said cyclopentadienyl group at the 3 position.
- 30. (Withdrawn) The catalyst composition of claim 29 wherein R_3 and R_4 are tertiary butyl groups and R_5 is a phenyl group or a 4-tertiary butyl phenyl group.
- 31. (Withdrawn) The catalyst composition of claim 29 wherein n" is 1 and R" is a methyl group substituted on said cyclopentadienyl group at the 5 position.
- 32. (Withdrawn) A process for the polymerization of an ethylenically unsaturated monomer comprising:
- a. providing a transition metal catalyst characterized by the formula $B(FlA)MQ_n$ (3)

- i. Flu is a fluorenyl group substituted at at least one of the 4,5 positions by a bulky hydrocarbyl group containing at least four carbon atoms;
- ii. A is a substituted or an unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group, or a heteroorgano group XR in which X is a heteroatom from Group 15 or 16 of the Periodic Table, and R is an alkyl group, a cycloalkyl group or an aryl group containing from 1 to 20 carbon atoms;
- iii. B is a structural bridge between A and Flu, imparting stereorigidity to the ligand structure (FlA);
 - iv. M is a Group 4 or Group 5 transition metal;
- v. Q is selected from the group consisting of Cl, Br, I, an alkyl group, an aromatic group and mixtures thereof; and
 - vi. n is 1 or 2;
- b. providing an activating cocatalyst component;
- c. contacting said catalyst component and said cocatalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product by polymerization of said monomer; and
- d. recovering said polymer product from said reaction zone.
- 33. (Withdrawn) The process of claim 32 wherein said monomer comprises propylene and said polymer product is a polypropylene homopolymer or copolymer.
- 34. (Withdrawn) The process of claim 33 wherein said transition metal catalyst is characterized by the formula

$$R''$$
 R''
 R''

- a. R' is a $C_1 C_4$ alkyl group or an aryl group;
- b. n' is from 0 to 3;
- c. R" is an alkyl group of a lower molecular weight than R';
- d. n" is 0 or 1;
- e. E is -C- or -Si-:
- f. R_1 and R_2 are the same or different and are each a methyl group, a phenyl group or a substituted phenyl group;
- g. M is titanium, zirconium or hafnium;
- h. Q is a chlorine, a methyl group or a phenyl group;
- i. R_3 and R_4 are the same or different and are each a hydrogen or a $C_1 C_4$ alkyl group or phenyl, or substituted phenyl group;
- j. R'_2 and R'_4 are each hydrogen or a $C_1 C_2$ alkyl group provided that when R_2 and R_4 are hydrogen, R'_3 and R'_4 are hydrogen;
- k. R_5 is an alkyl group or aromatic group which has a higher molecular weight than R_3 or R_4 ;
- I. and said polymer product is an isotactic polypropylene.
- 35. (Withdrawn) The process of claim 33 wherein n' is 1 and R' is a tertiary butyl group substituted on said cyclopentadienyl group at the 3 position.
- 36. (Withdrawn) The process of claim 34 wherein R₃ and R₄ are tertiary butyl groups and R₅ is a phenyl group or a 4-tertiary butyl phenyl group.

- 37. (Withdrawn) The process of claim 35 wherein n" is 1 and R" is a methyl group substituted on said cyclopentadienyl group at the 5 position.
- 38. (Withdrawn) The entalyst of claim 1 whomin the bulky hydrocarbyl group is an aromatic group.
- 39. (Withdrawn) The catalyst of claim 1 wherein the bulky hydrocarbyl group is a multi-ring aromatic group.
- 40. (Withdrawn) The catalyst of claim 1 wherein the bulky hydrocarbyl group is a contiguous multi-ring aromatic group.
- 41. (New) A olefin polymerization catalyst characterized by the formula B(FluA)MQ_n

wherein Flu is a fluorenyl group substituted at in at least one of the 4 or 5 positions by a bulky hydrocarbyl group containing a compound selected from C₃ to C₃₀ cyclic or aromatic compounds, A is an unsubstituted cyclopentadionyl group or a cyclopentadionyl group substituted with one or more substituents selected from C₁ to C₄ alkyls, C₁ to C₄ aryls or combinations thereof, a substituted or unsubstituted indenyl group, or a heteroorgano group XR in which X is a heteroatom from Group 15 or 16 of the Periodic Table, R is an alkyl group, a cycloalkyl group or an aryl group containing from 1 to 20 carbon atoms, B is a structural bridge between A and Flu imparting stereorigidity to the ligand structure (FluA), M is a Group 4 or Group 5 transition metal, Q is selected from the group consisting of Cl, Br, I, an alkyl group, an amino group, an aromatic group and mixtures thereof and n is 1 or 2.