

Progressive and Consistent Subword Regularization for Neural Machine Translation

Yongqi Gao¹, Yingfeng Luo¹, Qinghong Zhang¹, Huibo Shao¹, Tong Xiao^{1,2}* and Jingbo Zhu^{1,2}

小牛翻译 NiuTrans.com

NLP Lab, School of Computer Science and Engineering, Northeastern University¹
NiuTrans Research²

■ Motivation

- **□** Tokenization
 - Tokenizers with different granularity
 - Challenge: unique segmentation

- Subword Regularization
 - BPE-Dropout: multiple subwords from random dropout
 - Challenge: subwords with unclear semantics and poor morphology due to random dropout

Progressive and Consistent Subword Regularization

- ☐ Consistent Subword Regularization
 - \mathcal{L}_{CE} : cross-entropy loss for each segmentation
 - \mathcal{L}_{CON} : distance between each prediction distribution

• \mathcal{L} : total loss balancing \mathcal{L}_{CE} and \mathcal{L}_{CON} by λ , forcing the outputs to be **accurate and consistent**

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda \cdot \mathcal{L}_{CON}$$

☐ Progressive Subword Regularization

• Training with tokenization from fine to course

Training Process

Granularity variation during training

■ Main Results

- ☐ Naive Subword Regularization vs Baseline
 - BPEDrop and PSR > BPE and Character
- ☐ Consistent Subword Regularization vs Naive Regularization
 - Tokenization + \mathcal{L}_{CON} > Tokenization itself
- ☐ PCSR (Our Method) vs Consistent BPE-Dropout
 - PCSR > Consistent BPE-Dropout

Methods	IWSLT14		IWS	LT17	WMT14	WMT16
Wichiods	$\overline{\mathrm{DE} {\to} \mathrm{EN}}$	$EN \rightarrow DE$	$\overline{\text{FR} \rightarrow \text{EN}}$	$EN \rightarrow FR$	$\overline{\mathrm{EN} {\to} \mathrm{DE}}$	EN→RO
BPE	34.3	29.1	36.6	36.3	28.0	33.6
Character	32.7	27.6	36.0	36.3	27.1	31.9
BPEDrop	34.8	29.0	37.4	37.6	28.1	34.2
PSR	34.5	29.3	37.1	37.2	27.9	33.9
R-Drop	36.2	$\frac{1}{30.7}$	38.3	38.1	$\frac{1}{28.7}$	35.3
$\operatorname{Character} + \mathcal{L}_{CON}$	35.6	29.8	37.7	37.7	28.1	34.4
$\mathrm{BPEDrop} + \mathcal{L}_{CON}$	36.7	30.7	38.1	37.9	28.3	35.2
PCSR	36.7	30.9	38.3	38.6	28.9	35.5

Analysis

- ☐ Properties of Learned Embeddings
 - Nearest embedding neighbors

appoir	nt	similar		withdr	aw	invite	
PCSR	BPE	PCSR	BPE	PCSR	BPE	PCSR	BPE
appointing	wledge	Similarly	simil@@	withdrawn	wledge	invites	invites
appoin@@	社	comparable	ก	withdrawal	1	invitation	pite
adjust@@	»	simil@@	y-to-day	withdraw@@	^	inviting	ก

- Short embeddings distance between the rare and the common
- ☐ Training on Agglutinative Languages
- ☐ Robustness to Out-of-domain Input

Methods	FLORES	WMT18	Multi-domain				
	$\overline{\mathrm{SI} { ightarrow} \mathrm{EN}}$	$\overline{\text{TR} \rightarrow \text{EN}}$	IT	Koran	Law	Medical	Subtitles
BPE	6.5	19.1	14.1	8.9	27.4	24.6	14.9
BPEDrop	6.9	18.8	15.2	10.2	30.1	25.6	16.4
PSR	6.6	18.9	14.4	9.8	29.7	25.0	16.3
R-Drop	8.5	20.7	15.3	9.5	29.1	-7.1	16.1
$\text{BPEDrop} + \mathcal{L}_{CON}$	8.6	20.7	15.3	10.8	30.5	27.0	18.1
PCSR	8.6	21.0	15.5	10.0	30.9	27.3	18.2

■ Conclusion

- ✓ We propose PCSR, a simple subword regularization method based on **progressive granularity**.
- ✓ We highlight the critical role of **consistency constraints** in subword regulation for NMT.
- ✓ Future research could apply PCSR to other NLP tasks.

