66.70 Estructura del Computador

BIESTABLES

Circuitos de la electrónica digital:

Combinacionales vs Secuenciales

¿Cómo puedo crear circuitos que tengan capacidad de memorizar?

Circuitos secuenciales

Salida: depende de la entrada actual **y** de la historia pasada de las entradas

Estado: contiene toda la información acerca del pasado necesaria para predecir la salida actual basada en la entrada actual.

Variables de Estado: uno o más bits de información.

Modelo de circuito secuencial

Circuito secuencial simple

- Analizar evolución temporal
- · Respuesta a todas las condiciones de entrada
- Entrada prohibida R=S=1

Latch RS o FlipFlop RS <u>a</u>sincrónico

- Capacidad para memorizar 1 bit
- Entradas de control
- ❖ Salidas Q y ~Q

Implementación con NOR

Implementación con NAND

Latch RS

o Flip-Flop RS asincrónico

Símbolo

Circuito

Ecuación característica:

$$Q^{n+1} = S + R'.Q^n$$

Tabla de estados

S	R	Q	$\bar{\overline{Q}}$
0	0	Q	Q
0	1	0	1
1	0	1	0
1	1		_

Prohibido

1	1	
1	0	1
0	1	0
0	0	Q
S	R	Q

Prohibido

Expresiones formales de la lógica de un biestable

- Tabla de estados
- Tabla de estados reducida
- Ecuación característica
- Diagrama de estados

Biestables

- "latch"
- "cerrojo"
- "flip-flop"
- "báscula"
- "flip-flop asincrónico"
- "flip-flop sincrónico"
- "enclavador" ...

Varias nomenclaturas, sólo dos dispositivos básicos

Latch D (Delay)

o Flip-Flop D asincrónico

? Posibles aplicaciones prácticas

Tabla de estados reducida

✓ Una implementación de la lógica del FF-D

FlipFlop "J-K"

J	К	Q
0	0	Q
0	1	0
1	0	1
1	1	Q

✓ Define un comportamiento para el estado que está prohibido para el FF-RS (R=S=1)

? Dinámica de la salida cuando J=K=1

VS. LÓGICA BOOLEANA

Ec.característica

$$Q^{n+l} = J\overline{Q} + \overline{K}Q$$

FlipFlop JK asincrónico

diagrama circuital

FlipFlop "T" (Toggle)

Tabla de estados reducida

- ✓ Comportamiento idéntico a FF-JK con J=K=1
- ? Dinámica de la salida cuando T=1

Circuitos sincrónicos

- Qué es un circuito digital sincrónico? Para qué puede servir?
 - El tiempo transcurre según marcan los pulsos de reloj
 - Qué es un pulso de reloj?
 - Velocidad del reloj vs. retardo de respuesta del circuito

Funciona sobre los siguientes supuestos

- ✓ El estado cambia solo una vez por ciclo de reloj
- ✓ El cambio es simultáneo en todos los flip-flops
- ✓ Tras un cambio de estado las entradas se estabilizan antes del siguiente cambio de estado

Sincrónicos vs Asincrónicos

Algunos problemas de los Flip-Flops <u>a</u>sincrónicos:

↓ Referencia de tiempo en el Latch tipo "D"

↓ Oscilaciones del Latch tipo "JK" (con J=K=1) y del tipo "T" (con T=1)

> ¿Qué quisiéramos obtener de los FF sincrónicos si esperamos que solucionen estos problemas?

Flip-Flops sincrónicos activados por nivel

Flip-Flops sincrónicos activados por nivel

Flip-Flop JK

Flip-Flops sincrónicos activados por nivel

Debemos asegurar que

- ✓ el pulso de reloj sea más corto que el retardo del latch
- ✓ el pulso de reloj sea lo suficientemente ancho para que genere una respuesta a la salida de la compuerta
- ✓ las entradas se mantengan constantes mientras el pulso reloj esta en alto

Flip-Flop JK sincrónico del tipo maestro-esclavo

- Se lee la entrada en un flanco del reloj
- Se actualiza la salida en el flanco del siguiente reloj

- Analizar en un diagrama de tiempos
- Modificar para que sea activo por flanco positivo/negativo

Flip-Flop JK sincrónico del tipo maestro-esclavo

Implementando con compuertas NAND los FF-RS "internos" al FF-JK M-E

Características **temporales** de los Flip-Flops

- Retardo de propagación tiempo entre el cambio de la entrada y el cambio de la salida
- Tiempo de establecimiento tiempo mínimo que la entrada debe permanecer estable antes del reloj
- Tiempo de mantenimiento tiempo mínimo que la entrada debe permanecer estable después del reloj
- Frecuencia máxima de reloj
- Relación entre la frecuencia del reloj y la velocidad de los cambios en las señales lógicas

Entradas asincrónicas

- "Preset"
- "Clear"

Activo a nivel alto

Entradas de habilitación

- Entrada "Chip-Select"
- Salida "Tri-state"
- Estado de "alta impedancia"
- Como se vincula con la lógica del FF?

Circuitos integrados comerciales

Preset	Clear	CLK	J	K	Q _t
1	1		0	0	Q _{t-1}
1	1		0	1	0
1	1		1	0	1
1	1	T .	1	1	Q _{t-1}
1	0	Х	Χ	Χ	0
0	1	Х	Χ	Χ	1