Ejercicios de Análisis Matemático II

Relación 1

1. Se considera la sucesión $\{f_n\}$ de funciones de \mathbb{R} en \mathbb{R} dada por:

$$f_n(x) = \frac{x}{n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que $\{f_n\}$ converge uniformemente en un conjunto no vacío $C \subset \mathbb{R}$ si, y sólo si, C está acotado.

2. Para cada $n \in \mathbb{N}$, sea $g_n : \mathbb{R}_0^+ \to \mathbb{R}$ la función definida por

$$g_n(x) = \frac{\log(1 + nx)}{1 + nx} \quad \forall x \in \mathbb{R}_0^+$$

Fijado un $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de la sucesión $\{g_n\}$ en el intervalo $[0, \rho]$, y en la semirrecta $[\rho, +\infty[$.

3. Probar que la sucesión $\{h_n\}$ converge uniformemente en $\mathbb R$, siendo

$$h_n(x) = \sqrt[n]{1 + x^{2n}} \qquad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

4. Sea $\{f_n\}$ la sucesión de funciones de \mathbb{R}^+_0 en \mathbb{R} definida por:

$$f_n(x) = \frac{2 n x^2}{1 + n^2 x^4} \quad \forall x \in \mathbb{R}_0^+, \quad \forall n \in \mathbb{N}$$

- a) Estudiar la convergencia puntual de $\{f_n\}$
- **b)** Dado $\delta \in \mathbb{R}^+$, probar que $\{f_n\}$ converge uniformemente en $[\delta, +\infty[$, pero no en el intervalo $[0, \delta]$.

5. Para cada $n \in \mathbb{N}$ sea $g_n : [0, \pi/2] \to \mathbb{R}$ la función definida por

$$g_n(x) = n (\cos x)^n \sin x \qquad \forall x \in [0, \pi/2]$$

Fijado un $\rho \in \mathbb{R}$ con $0 < \rho < \pi/2$, probar que la sucesión $\{g_n\}$ converge uniformemente en el intervalo $[\rho, \pi/2]$, pero no en el intervalo $[0, \rho]$.