파이썬으로 범죄 발생 장소별 통계의 데이터 분석

202144107 박인수

1. 배경

현대 사회에서 범죄는 공공 안전과 더불어 주요 사회 문제 중 하나로 여겨집니다. 범죄의 발생과 분포를 이해하고 분석함으로써, 효과적인 예방과 대응 정책을 수립하는 데 기여할 수 있습니다. 특히, 범죄 발생 장소에 초점을 맞추어 이러한 현상을 탐구함으로써, 우리는 범죄의 특성과 동향을 더욱 명확하게 파악할 수 있습니다.

1.1 연구의 필요성

이 연구에서는 파이썬을 활용하여 범죄 발생 장소별 통계를 분석함으로써, 특정 지역 또는 환경에서의 범죄 패턴을 도출하고자 합니다. 이는 정부 기관, 경찰, 그리고 지역 사회에게 범죄 예방 및 대응에 필요한 정보를 제공할 수 있는 중요한 자료로 활용될 것입니다.

1.2 목적 및 범위

본 보고서의 목적은 주어진 시간 동안의 범죄 발생 장소별 통계 데이터를 파이썬을 사용하여 분석하고, 그 결과를 통해 특정 지역 또는 환경에서 범죄의 특징을 도출하는 것입니다. 또한, 이 연구를 통해 얻은 인사이트는 지역 사회의 안전성 강화와 범죄 예방을 위한 논의에 기여할 것으로 기대됩니다.

1.3 연구의 중요성

본 연구는 범죄 관련 정책 및 대응 전략의 개발에 적극적으로 기여함으로써, 지역 사회의 안전을 높이고 공공 안전에 도움을 줄 수 있습니다. 또한 파이썬과 같은 데이터 분석 도구 의 활용은 향후 범죄 관련 연구 및 대응에서의 유용성을 제고할 것으로 기대됩니다.

2. 데이터 수집: 경찰청 범죄 통계 데이터 소개

연구에서 사용된 데이터는 경찰청이 제공하는 "경찰청_범죄 발생 장소별 통계_20221231"입니다. 이 데이터는 공공데이터포털에서 제공되며, 경찰청이 수집한 국내 범죄 발생 장소에 대한 통계 정보를 포함하고 있습니다.

2.1 데이터 수집 기간

데이터 수집은 2022년 12월 31일을 기점으로 하며, 현재까지의 최신 데이터를 확보하기 위해 2023년 9월 13일까지의 정보를 포함하였습니다. 이 데이터는 매년 9월 13일마다 업데이트가 이루어지므로, 연간 데이터 갱신을 통해 최신 동향을 파악할 수 있습니다.

2.2 데이터의 신뢰성과 정확성에 대한 고려 사항

이 데이터는 경찰청이 수집하고 관리하는 공식 통계 자료이므로 신뢰성과 정확성이 높다고 판단됩니다. 경찰청은 범죄 발생과 관련된 데이터를 철저하게 수집하고 정리하여 제공하고 있으며, 이러한 프로세스에서 품질 관리 및 검증 절차를 통해 데이터의 신뢰성을 유지하고 있습니다.

3. 데이터 전처리

데이터 필터링

violent_crimes = crime[crime['범죄대분류'] == '강력범죄']: 이 코드는 '범죄대분류' 열이 '강력범죄'인 행들만을 선택하여 violent_crimes에 저장합니다. 이는 주어진 데이터에서 '강력범죄'에 해당하는 부분만을 추출하는 과정으로, 필요한 정보에 집중할 수 있도록 데이터를 걸러내는 역할을 합니다.

데이터 집계

location_crime_counts = violent_crimes.sum()[2:]: 이 코드는 '강력범죄'에 해당하는 데이터를 사용하여 각 장소(컬럼)별로 범죄 수를 집계합니다. sum() 함수를 사용하여 각 열의 값을 모두 더한 후, [2:]를 사용하여 불필요한 첫 두 행(범죄대분류, 범죄소분류)을 제외하고 나머지데이터를 선택합니다.

이 두 단계를 통해 코드는 '강력범죄'에 해당하는 데이터를 추출하고, 해당 데이터에서 장소별 범죄 수를 계산하여 시각화할 수 있도록 데이터를 준비하고 있습니다.

4. 데이터 시각화

4.1 범죄 유형에 따른 장소별 범죄 수 시각화


```
# 1. 범죄 유형에 따른 장소별 범죄 수 시각화
plt.figure(figsize=(15, 8))
sns.barplot(x='범죄대문류', y='아파트_연립다세대', data=crime, palette='Set2')
plt.title('범죄 유형에 따른 아파트/연립다세대별 범죄 수')
plt.xlabel('범죄 유형')
plt.ylabel('범죄 수')
plt.xticks(rotation=45)
plt.show()
```

위 시각화에서 아파트/연립다세대 별 범죄유형에 따른 범죄수를 볼 수 있으며, y값을 병원, 편의점, 노상 등으로 변경하면 해당 위치에 대한 범죄유형별 범죄수를 알 수 있습니다.

4.2 범죄 유형에 따른 범죄 발생 빈도 시각화

위는 범죄 대분류에 있는 범죄별 발생빈도를 알기 위해 제작된 시각화 자료입니다. 지금까지 데이터를 수집하면서 쌓인 내역을 바탕으로 어떤 범죄의 발생빈도가 가장 높은지 알 수 있습니다.

```
# 2. 범죄 유형에 따른 범죄 발생 빈도 시각화
plt.figure(figsize=(15, 8))
sns.countplot(x='범죄대문류', data=crime, palette='Set2')
plt.title('범죄 유형에 따른 발생 빈도')
plt.xlabel('범죄 유형')
plt.ylabel('발생 빈도')
plt.yticks(rotation=45)
plt.show()
```

4.3 장소별 범죄 유형 비율 시각화


```
# 3. 장소별 범죄 유형 비율 시각화
plt.figure(figsize=(40, 40))
crime_location_counts = crime.iloc[:, 2:].sum()
crime_location_counts.plot.pie(autopct='%1.1f%%', startangle=90)
plt.title('장소별 범죄 유형 비율')
plt.ylabel('')
plt.show()
```

위 장소별 범죄 유형 비율 시각화는 각 장소에서 발생한 범죄유형의 총 빈도를 얻고, 퍼센트(#.#%)와 파이차트로 표현합니다. 현재 파이차트를 보면 노상이 범죄 유형이 1등이고 기타가 2등인 것을 쉽게 알 수 있습니다.

5. 통계 분석

5.1 주요 통계 분석

연립다세대의 평균, 중앙값, 표준편차를 알 수 있습니다.

- 아파트_연립다세대의 평균: 2850.0263157894738
- 아파트 연립다세대의 중앙값: 251.0
- 아파트_연립다세대의 표준편차: 6051.394230331257 연립다세대의 연평균 범죄율은 2850회, 중앙값은 251회 표준편차는 6051임을 알 수 있습니다.

5.2 주요 통계 분석 - 2

강력범죄의 평균, 중앙값, 표준편차를 알 수 있습니다.

- 강력범죄의 평균: 91.74264705882354
- 강력범죄의 중앙값: 2.0
- 강력범죄의 표준편차: 147.6807153826601

이를 통해 강력범죄의 평균은 91회, 중앙값은 2회, 표준편차는 147임을 알 수 있습니다.

6. 결과 해석

프로젝트 진행으로 범죄대분류별, 범죄중분류별, 장소별에 대한 범죄 횟수를 알 수 있으며, 위 시각화에서 특정 지역, 특정 시기에 따른 범죄율이 높은지 낮은지는 알 수가 없지만. 특정 장소에 따라 어떤 범죄율이 높은지 알 수 있기 때문에 그런 장소에 방문할 때 조심할 수 있습니다.

7. 프로젝트의 한계

정확히 말하면 프로젝트의 한계라기보다 데이터 값의 한계라고도 볼 수 있습니다. 데이터의 양이 적으므로 5.1과 5.2에 나온 평균, 중앙값, 표준편차처럼 0회와 100회가 넘어가는 범죄율이 같이 섞여 저렇게 높은 표준편차와 중앙값, 평균을 만들어내기 때문에 통계를 분석하기는 어렵습니다. 하지만 총 범죄율은 확인이 가능합니다.

8. 결론

프로젝트를 통해 범죄 정보를 시각적으로 전달하여 사람들이 위험한 지역을 쉽게 파악하고 예방할 수 있습니다. 이는 안전을 높이는 데 도움이 될 뿐만 아니라, 큰 규모의 정보를 효과적으로 다루는 능력을 키우게 됩니다. 앞으로 취업 시에도 이러한 기술과 경험을 활용하여 흥미로운 분야에서 일할 수 있을 것으로 기대됩니다.

9. 참고문헌

경찰청 – 경찰청 범죄 발생 장소별 통계 라이브러리 – pandas, numpy, matplotlib.pyplot 인하공업전문대학 민정혜 교수님 강의 자료