ALGEBRA Y GEOMETRÍA ANALÍTICA I MÓDULO 4 – ESPACIOS VECTORIALES – PRIMERA CLASE

Lee las páginas 230 a 237 de Apunte III TEJIENDO EL ÁLGEBRA LINEAL.

Realiza todos los ejercicios y actividades propuestas en esas páginas.

En este apunte encontrarás otras explicaciones y ejemplos correspondientes a estos temas.

Realiza todos los ejercicios y actividades propuestas en el archivo llamado M4. PRIMERA

CLASE, EJERCITACIÓN COMPLEMENTARIA

ESPACIOS VECTORIALES

En los módulos anteriores hemos trabajado con elementos de un conjunto en él definíamos una operación entre ellos (por lo general llamada suma) y el resultado nos daba otro elemento del mismo conjunto. También definíamos otra operación que involucraba a un elemento de dicho conjunto con un escalar (un número perteneciente a un cuerpo) y el resultado de dicha operación (por lo general llamada producto por un escalar) era un elemento del mismo conjunto. Esto pasaba con las matrices y su definición de suma y producto por un escalar, vectores en el plano o el espacio con iguales operaciones.

Muchas veces en Matemática o en otras ciencias nos encontramos con la siguiente situación: contamos con objetos de cierta clase (conjunto) que por algún mecanismo podemos sumar y el resultado es un objeto de la misma clase. Además, dado un objeto de la clase en cuestión y un escalar (por el momento un escalar es un número real) podemos operar entre ambos y obtenemos un objeto de la clase mencionada. **Si las propiedades algebraicas de estas operaciones son las mismas que las propiedades algebraicas de las operaciones análogas entre vectores geométricos**, a estos objetos los llamaremos vectores (generalizamos el concepto) y al conjunto de estos objetos, con las operaciones suma y producto y el cuerpo de escalares lo llamamos **espacio vectorial**. Los espacios vectoriales son una abstracción de lo que conocemos como vectores geométricos en el plano o en el espacio. Entonces contaremos con una "cuaterna" de elementos a saber, un conjunto V de vectores, un cuerpo K de números y dos operaciones llamadas respectivamente + y.

 $\{V, +, K, ..\}$

Formalmente, diremos que un conjunto V es un K-espacio vectorial si tenemos definida en V una ley de composición interna (suma) y una ley de composición externa (producto de un escalar k ($k \in K$) por un vector) que verifican las propiedades indicadas en los apartados siguientes I y II.

Si trabajamos con la máxima generalidad, en el conjunto de escalares K tenemos que tener definida una estructura de cuerpo. En la mayoría de las aplicaciones de nuestro curso K es el conjunto de los números reales (que es un cuerpo). Como los aspectos fundamentales de la teoría no cambian con el cuerpo de escalares utilizado supondremos en estas notas que $K = \mathbf{R}$.

I. La operación suma verifica:

I-1 Ley de composición interna: $\forall \vec{u}, \vec{v} \in V \Rightarrow \vec{u} + \vec{v} \in V$

I-2 Asociatividad: $\forall \vec{u}, \vec{v}, \vec{w} \in V \Rightarrow \vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$

I-3 Conmutatividad: $\forall \vec{u}, \vec{v} \in V \Rightarrow \vec{u} + \vec{v} = \vec{v} + \vec{u}$

I-5 Existencia de Elemento inverso aditivo u opuesto:

$$\forall \vec{u} \in V \Rightarrow \exists \vec{u'} \in V / \vec{u} + \vec{u'} = \vec{u'} + \vec{u} = \vec{0}$$

2

 $\vec{0}$ es el vector nulo y el elemento inverso \vec{u} se puede notar con $-\vec{u}$.

II. El producto de un escalar por un vector satisface las siguientes propiedades:

- II-1 Ley de composición externa: $\forall \vec{u} \in V, \forall k \in K \Rightarrow \vec{k.u} \in V$
- II-2 distributividad respecto a la suma de vectores:

$$\forall k \in K; \forall \vec{u}, \vec{v} \in V \Longrightarrow k.(\vec{u} + \vec{v}) = k.\vec{u} + k.\vec{v}$$

II-3 distributividad respecto a la suma de escalares:

$$\forall k, k' \in K, \forall \vec{u} \in V \Rightarrow (k + k') \cdot \vec{u} = k \cdot \vec{u} + k' \cdot \vec{u}$$

II-4 asociatividad del producto de los escalares:

$$\forall k, h \in K; \forall \vec{u} \in V \Longrightarrow (k.h).\vec{u} = k.(\vec{h.u}) = h.(\vec{k.u})$$

II-5 elemento unidad $\forall \vec{u} \in V; \exists l \in k/1.\vec{u} = \vec{u}$ siendo 1 el neutro para la multiplicación en el cuerpo K

Ejemplo 1:

Las operaciones básicas (suma y producto de un escalar por un vector) definidas en el conjunto de los vectores geométricos verifican las propiedades indicadas en I y II. Por lo tanto, el conjunto de los vectores geométricos junto con la operaciones de suma y producto de un escalar por un vector, es un ejemplo de espacio vectorial.

$$\left\{\mathbb{R}^2,+,\mathbb{R},\cdot\right\}$$
 y $\left\{\mathbb{R}^3,+,\mathbb{R},\cdot\right\}$ son E.V.

Ejemplo 2

Cuando estudiamos las matrices definimos operaciones de suma de matrices y de producto de un escalar por una matriz que también verifican las propiedades I y II. Entonces, el conjunto de las matrices R^{nxm} , es otro ejemplo de espacio vectorial. En este ejemplo, los vectores son las matrices, aunque su naturaleza no es geométrica.

$$\{\mathbb{R}^{mxn}, +, \mathbb{R}, \cdot\}$$
 son E.V. para m y n números naturales

Ejemplo 3

Llamaremos $R^n = \{(x_1, x_2, ..., x_n) \ con \ x_i \in R \ para1 \le i \le n\}$. En R^n podemos definir la suma y el producto de un escalar por un vector en la forma:

$$(x_1, x_2,..., x_n) + (y_1, y_2,..., y_n) = (x_1 + y_1, x_2 + y_2,..., x_n + y_n)$$

 $k \cdot (x_1, x_2,..., x_n) = (kx_1, kx_2,..., kx_n)$

Con estas operaciones R^n es un espacio vectorial, los podemos pensar como matrices de una fila.

Ejemplo 4

El conjunto de los polinomios definiendo para ellos las mismas dos operaciones que hemos definido en el curso de ingreso de suma de polinomios y multiplicación por un número real cumple todas las propiedades de I y II, Recordemos que la suma de polinomios y la multiplicación de un polinomio por un número real da por resultado otro polinomio; esto, conjuntamente con el hecho de que $\theta(x) = 0$ es un polinomio nulo y que el opuesto de un polinomio es un polinomio, nos aseguran que el conjunto P de polinomios con coeficientes reales, con las operaciones de suma y producto definidas, resulta un espacio vectorial.

Ejemplo 5

Sea W el subconjunto de R^2 formado por los puntos que pertenecen a la recta de ecuación $(x, y) = \lambda(1,1)$. Definimos en W las mismas operaciones de suma y producto por escalar que en R^2 .

El gráfico de W es una recta por el origen, y a partir de aquí: la suma de vectores en W pertenece a W, los múltiplos de un vector de W pertenecen a W, el vector nulo está en W y el opuesto de un vector de W pertenece a W. El resto de los axiomas se verifican automáticamente dado que W está contenido R^2 .

Si la recta no pasa por el origen de coordenadas ¿es W un espacio vectorial?

Ejemplo 6

El subconjunto B de R^2 formado por los vectores (x, y) tales que $x \le 0$, con las operaciones de suma y multiplicación por escalar usuales de R^2 , no constituye un espacio vectorial, pues no se verifica el axioma II-1. El vector (-1,1) pertenece a B, pues su primera coordenada es -1 que es menor o igual a 0; pero si lo multiplicamos por -1 obtenemos el vector (1,-1) que no pertenece a B.

La principal utilidad del concepto de espacio vectorial es la de desligarnos de las características de los elementos de *V* para demostrar propiedades fundamentales en él, con lo cual estas propiedades quedan verificadas para cualquier conjunto que sea un espacio vectorial. Veamos algunas de estas propiedades:

Propiedades de EV

Sea V cualquier espacio vectorial, entonces valen las siguientes propiedades:

- a) $k \cdot \vec{0} = \vec{0}$, $\forall k \in R$
- b) $0 \cdot \vec{v} = \vec{0}$, $\forall \vec{v} \in V, 0 \in K$
- c) $(-1) \cdot \vec{v} = -\vec{v}, \ \forall \vec{v} \in V$
- d) $k \cdot \vec{v} = \vec{0} \implies k = 0 \text{ f } \vec{v} = \vec{0}$

Nota: donde $\vec{0}$ indica el vector nulo y $-\vec{v}$ el opuesto o inverso aditivo.

Demostraciones:

a)

Siendo k cualquier número real y \vec{v} cualquier vector de V se verifica que:

 $k \cdot \vec{v} = k \cdot (\vec{v} + \vec{0})$ ya que $\vec{0}$ es neutro en V axioma I-4

$$k \cdot (\vec{v} + \vec{0}) = k \cdot \vec{v} + k \cdot \vec{0}$$
 por II-2

$$\rightarrow k \cdot \vec{v} = k \cdot \vec{v} + k \cdot \vec{0}$$

Como el neutro es único entonces $\vec{k}.\vec{0}$ es el neutro, es el vector nulo $\vec{k}\cdot\vec{0}=\vec{0}$ que es lo que se quería demostrar

b) La demostración es similar

Siendo k cualquier número real y \vec{v} cualquier vector de V se verifica que

$$\vec{k} \cdot \vec{v} = (k+0) \cdot \vec{v}$$
 porque 0 es el neutro en R
 $(k+0) \cdot \vec{v} = \vec{k} \cdot \vec{v} + 0 \cdot \vec{v}$ por distributividad II-3
 $\rightarrow \vec{k} \cdot \vec{v} = \vec{k} \cdot \vec{v} + 0 \cdot \vec{v}$

Como el neutro es único, $0.\vec{v}$ es el neutro para la suma de vectores, entonces:

$$0.\vec{v} = \vec{0}$$

c)

Demostrar que $(-1) \cdot \vec{v} = -\vec{v}$, $\forall \vec{v} \in V$ significa probar que $(-1) \cdot \vec{v}$ es el opuesto del vector \vec{v} .

Entonces sumaremos $(-1)\cdot\vec{v}$ al vector \vec{v} , si obtenemos el vector nulo, habremos demostrado la propiedad.

$$(-1) \cdot \vec{v} + \vec{v} = (-1+1)\vec{v}$$
 por distributividad II-3
 $(-1+1)\vec{v} = 0.\vec{v}$ por propiedad b)

Hemos probado que $(-1)\cdot\vec{v}$ es el opuesto del vector \vec{v} entonces $(-1)\cdot\vec{v} = -\vec{v}$ $\forall \vec{v} \in V$ que es la tesis.

$$(-1) \cdot \vec{v} = -\vec{v}, \quad \forall \vec{v} \in V$$

d) Como hipótesis tenemos que $k \cdot \vec{v} = \vec{0}$, si k = 0 queda probada la tesis,

Si $k \neq 0$, entonces tiene inverso multiplicativo, existe $k^{-1} = \frac{1}{k}$

$$k \cdot \vec{v} = \vec{0}$$
 multiplicamos por $\frac{1}{k}$

$$\frac{1}{k}(k.\vec{v}) = \frac{1}{k} \cdot \vec{0} \qquad \text{por II-4}$$

$$\left(\frac{1}{k}k\right) \cdot \vec{v} = \frac{1}{k} \cdot \vec{0}$$
 por ser inversos multiplicativos

$$1.\vec{v} = \vec{0}$$
, por axiomas II-5 y la propiedad b)

$$\vec{v} = \vec{0}$$

Entonces demostramos la propiedad, $k \cdot \vec{v} = \vec{0} \implies k = 0$ ó $\vec{v} = \vec{0}$

Hemos demostrado las propiedades anteriores utilizando solamente las propiedades algebraicas de las operaciones definidas en un espacio vectorial. A partir de aquí, estas

propiedades valen en cualquier espacio vectorial independientemente de la naturaleza de los objetos que lo componen.

SUBESPACIOS

Hemos visto que el conjunto R^2 es un espacio vectorial; en el ejemplo 5 vimos que algunos subconjuntos de él provistos de las operaciones de R^2 pueden a su vez ser ellos mismos espacios vectoriales.

Esta situación puede darse en cualquiera espacio vectorial V y los subconjuntos no vacíos de V que son espacios vectoriales se denominan subespacios de V.

Sea un espacio vectorial V, y consideremos un subconjunto S; debido a que consideramos en él las mismas operaciones de suma y producto por escalar definidas en V, se verificarán la mayoría de los axiomas constitutivos de un espacio vectorial, como por ejemplo, los de asociatividad y conmutatividad de la suma; sólo hay cuatro axiomas que eventualmente pueden no verificarse, a pesar de tratarse de un subconjunto de un espacio vectorial; ellos son:

I-1, puesto que la suma de dos vectores del subconjunto no necesariamente vuelve a caer en él.

I-4, puesto que el vector nulo no tiene por qué pertenecer a S.

I-5, es posible que, dado un vector v en S, su vector opuesto no pertenezca a S.

II-1, por una razón similar a la del axioma I-1.

Sin embargo, si vale el axioma II-1, entonces también valdrá el I-4, puesto que si v pertenece a S, entonces también $0.\vec{v} = \vec{0}$ y también si vale el axioma II-1, entonces también valdrá el I-5, puesto que si v pertenece a S, entonces también (-1).v= - v.

Por lo tanto, para que S sea efectivamente un espacio vectorial, alcanza con verificar que es no vacío y se cumplen en él los axiomas I-1, II-1. En tal caso, diremos que S es un *subespacio* del espacio vectorial V.

De la discusión anterior se deduce que los subespacios de V son los subconjuntos de V que verifican:

1)
$$S \neq \{ \}$$
 conviene probar $\vec{0} \in S$
2) $\forall \vec{u}, \forall \vec{v} : \vec{u} \in S \land \vec{v} \in S \Rightarrow \vec{u} + \vec{v} \in S$
3) $\forall k, \forall \vec{v} : k \in K \land \vec{v} \in S \Rightarrow k \cdot \vec{v} \in S$

La anterior es la condición necesaria y suficiente para probar que S es un subespacio de V

$$S \subset V$$
 es un subespacio de $V \Leftrightarrow \begin{cases} 1) \ S \neq \{ \} \ , \quad \vec{0} \in S \\ 2) \ \forall \vec{u}, \ \forall \vec{v} \colon \vec{u} \in S \ \land \ \vec{v} \in S \Rightarrow \vec{u} + \vec{v} \in S \\ 3) \ \forall k, \ \forall \vec{v} \colon k \in K \ \land \ \vec{v} \in S \Rightarrow k \cdot \vec{v} \in S \end{cases}$

Ejemplo 7

Dentro de R^3 , consideremos el conjunto S formado por los vectores (x,y,z) de R^3 que satisfacen la ecuación 2x - y + 3z = 0; de acuerdo a lo visto en una unidad anterior, se trata de un plano que pasa por el origen de coordenadas (0,0,0). Verifiquemos que es de un subespacio de R^3 :

1) Queremos ver si el vector 0 = (0,0,0) pertenece a S, pero eso significa que el vector satisface la ecuación que define a S, lo cual es cierto debido a que 2.0-0+3.0=0

2): sean $a = (x_1, y_1, z_1), b = (x_2, y_2, z_2)$ dos vectores de S; entonces tenemos que ver que: $a + b = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in S$.

Sabemos que,

$$2x_1 - y_1 + 3z_1 = 0$$
, $2x_2 - y_2 + 3z_2 = 0$.

de donde sumando miembro a miembro se obtiene:

$$2(x_1+x_2)-(y_1+y_2)+3(z_1+z_2)=0$$
.

Pero esto equivale a que el vector a+b pertenezca a S.

3): sea $k \in \mathbb{R}$, $a = (x, y, z) \in S$; como a pertenece a S, tenemos que: 2x - y + 3z = 0,

de donde multiplicando esta ecuación por \boldsymbol{k} resulta que

$$2kx - ky + 3kz = 0,$$

pero eso significa que el vector $k \cdot a$ pertenece a S.

De todo esto concluimos que S es un subespacio del espacio vectorial R^3 .

Ejemplo 8:

Verificar que el subconjunto S_I no es subespacio de R^2 .

$$S_1 = \{(x_1, x_2) \in \mathbb{R}^2 \ tq. \ x_1 - 2x_2 = 1\}$$

 $(0,0) \notin S_1$, pues $0-2 \cdot 0 = 0 \neq 1$, no se verifica 1).

Ejemplo 9

Todo espacio vectorial V siempre es un subespacio de sí mismo, pues todos los axiomas se verifican en él dado que ya es un espacio vectorial.

Ejemplo 10

Dado un espacio vectorial V, el conjunto formado por el vector nulo es un subespacio de V.

1) Es claro que $\vec{0} \in \{\vec{0}\}$.

- 2) Dado que su único elemento es $\vec{0}$, la suma de dos elementos de $\{\vec{0}\}$ no es otra cosa que sumar $\vec{0}+\vec{0}$, cuyo resultado es $\vec{0}$.
- 3) Análogamente, multiplicar un elemento de $\{\vec{0}\}$ por un escalar k es efectuar k. $\vec{0} = \vec{0}$ por propiedad 1.

Todo esto muestra que $\{\vec{0}\}$ es un subespacio de V, llamado *subespacio nulo*.

Estos dos últimos subespacios que se encuentran presentes en cualquier espacio vectorial, (S = V (el mismo espacio vectorial) y S = $\{\vec{0}\ \}$ el subespacio formado solo por el vector nulo) se llaman subespacios triviales.

Ejemplo 11

Dado el espacio vectorial \mathbb{R}^n , el subconjunto S formado los vectores cuya primera coordenada es igual a 0 forma un subespacio de \mathbb{R}^n :

- 1) el vector $\vec{0} = (0,0,...,0)$ de \mathbb{R}^n tiene su primera coordenada nula, por lo tanto pertenece a S.
- 2)Sean $a = (0, x_2, ..., x_n)$ y $b = (0, y_2, ..., y_n)$ dos vectores de S. El vector suma será $a + b = (0, x_2 + y_2, ..., x_n + y_n)$, que claramente pertenece a S.
- 3) Sea k un número real, $a = (0, x_2, ..., x_n)s$, entonces el vector $k.a = (0, k.a_2, ..., k.a_n)$ pertenece a S.

Ejemplo12

El conjunto de las soluciones de un sistema lineal homogéneo forman un subespacio de R^n Un sistema lineal homogéneo puede escribirse en la forma:

$$A \cdot X = 0$$

A Matríz del sistema

AX = 0, $A \in \mathbb{R}^{mxn}$ y $X \in \mathbb{R}^{nx^1}$, conjunto de matrices columna de n filas, que lo consideraremos equivalente a \mathbb{R}^n .

• 0 es solución, ya que:

$$A \cdot 0 = 0$$

• Si X e Y son soluciones $(A \cdot X = 0 \ y \ A \cdot Y = 0)$, entonces X + Y es solución:

$$A \cdot (X + Y) = A \cdot X + A \cdot Y = 0 + 0 = 0$$

• Si X es solución $(A \cdot X = 0)$, entonces $\alpha \cdot X$ es solución

$$A \cdot (\alpha \cdot X) = \alpha \cdot (A \cdot X) = \alpha \cdot 0 = 0$$

Ejemplo 13

Usando el ejemplo anterior verificar que S es un subespacio.

$$S = \{(x, y, z) / 2x - y = z, x - y + z = 0\}$$

S es un subespacio, ya que está formado por las soluciones del sistema lineal homogéneo siguiente:

$$\begin{cases} 2x - y - z = 0 \\ x - y + z = 0 \end{cases} \quad 0 \quad \begin{pmatrix} 2 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Observación: como ya hemos dicho, el axioma II-1 garantiza el cumplimiento del axioma I-5, y entonces si x pertenece a S, también pertenece -x. Ahora por el axioma I-1 0 el vector nulo también pertenece a S. Por lo tanto, parece superfluo la verificación de que el vector nulo pertenezca a S, lo cual es cierto, a menos que el subconjunto S sea vacío (recordemos el conjunto vacío es subconjunto de cualquier conjunto). En realidad, el único requisito es probar que S no es vacío.

Ejemplo 14

Sea
$$V = R^4$$
 y $S = \{(x, y, z, w) \in R^4 / \exists s, t \in R : (x, y, z, w) = s(1, -1, 2, 3) + t(4, -1, -2, 0)\}$

El subconjunto S se forma con la suma de múltiplos de los vectores (1,-1,2,3) y (4,-1,-2,0). Verifiquemos que S es un subespacio de R^4 .

1) el vector nulo $\vec{0} = 0(1,-1,2,3,) + 0(4,-1,2,0)$. Esto último muestra que $\vec{0}$ pertenece a S porque es suma de múltiplos de los vectores (1,-1,2,3) y (4,-1,-2,0).

2) sean
$$\vec{a} = s_1(1,-1,2,3) + t_1(4,-1,2,0)$$
, $\vec{b} = s_2(1,-1,2,3) + t_2(4,-1,2,0)$ vectores de S ; luego,

$$\vec{a} + \vec{b} = (s_1 + s_2)(1, -1, 2, 3) + (t_1 + t_2)(4, -1, 2, 0)$$
 también pertenece a S.

Observar que $\vec{a} + \vec{b}$

es una suma de múltiplos de los vectores (1,-1,2,3) y (4,-1,-2,0).

3) dado
$$k$$
 número real y $\vec{a} = s(1, -1, 2, 3) + t(4, -1, 2, 0)$, $k \cdot \vec{a} = (ks)(1, -1, 2, 3) + (kt)(4, -1, 2, 0)$. Entonces $k \cdot \vec{a}$ pertenece a S .