

SATELLITE DATA IN AGRICULTURAL AND ENVIRONMENTAL ECONOMICS

DAVID WUEPPER, LISA BIBER-FREUDENBERGER, HADI, WYCLIFE AGUMBA OLUOCH

ABOUT ME

• Name: Wyclife Agumba Oluoch

• Bachelors: Geography

Masters: Geography

• **PhD:** Agricultural Sciences

• **Postdoc:** Land Economics Group

https://sites.google.com/view/agumbaoluoch/

LAND ECONOMICS GROUP

https://www.ilr1.uni-bonn.de/en/research/research-

© Land Economics Group

SESSION STRUCTURE

https://www.teaboard.or.ke/

AI, ML & DL

,the effort to **automate intellectual** tasks normally performed by humans'

Systems and algorithms that enable computers to "learn" and improve from experience over time without explicit programming

Subset of ML that uses neural networks

SESSION STRUCTURE

WHY ML IN AGRICULTURAL ECONOMICS

- Precision in Agricultural Monitoring & Policy Planning
- Cost-Effective Alternative to Traditional Surveys
- Land Use Change & Environmental Compliance
- Climate Resilience & Risk Management
- e.t.c

GOOGLE EARTH PRO - TOUR

TYPES OF ML

Supervised

Models are trained on labelled data.

Unsupervised

Models are trained on un-labelled data (without explicit output).

TYPES OF ML

Supervised

Yellow = Tea, Blue = Forest, and Red = Buildings

Unsupervised

e.g, group pixels into three classes (k = 3)

QGIS-TOUR

USE OF ML & DL IN AGRICULTURE

- Invasive species mapping
- Cropland mapping
- Weed detection
- Disease/pest detection
- Yield prediction
- Quality grading
- Weather monitoring/prediction
- Organic carbon prediction

USE OF ML & DL IN AGRICULTURE

USE OF ML & DL IN AGRICULTURE

Cropland mapping

Define region of interest | Obtain coordinates of known plantations | Obtain satellite and related variables | Build a model to associate the two | Evaluate the model | Make predictions

	longitude	latitude	B2	В3	В4	B5	В6	В7	В8	B8A	B11	B12
1	4168785	-39235	0.0301	0.0661	0.0325	0.1059	0.3268	0.4021	0.4462	0.4390	0.1834	0.0848
2	4168795	-39235	0.0308	0.0664	0.0331	0.1123	0.3264	0.4008	0.4367	0.4289	0.1897	0.0892
3	4168805	-39235	0.0305	0.0672	0.0330	0.1125	0.3273	0.4008	0.4395	0.4295	0.1902	0.0892
4	4168815	-39235	0.0299	0.0670	0.0331	0.1150	0.3363	0.4116	0.4461	0.4433	0.1936	0.0926
5	4168825	-39235	0.0302	0.0687	0.0336	0.1152	0.3375	0.4116	0.4502	0.4439	0.1939	0.0922
6	4168835	-39235	0.0298	0.0682	0.0349	0.1243	0.3264	0.3895	0.4527	0.4210	0.2034	0.1042
7	4168725	-39245	0.0311	0.0697	0.0336	0.1187	0.3577	0.4428	0.4641	0.4749	0.1795	0.0795
8	4168735	-39245	0.0303	0.0690	0.0310	0.1195	0.3627	0.4466	0.4606	0.4788	0.1771	0.0765
9	4168745	-39245	0.0295	0.0674	0.0303	0.1195	0.3627	0.4466	0.4566	0.4788	0.1771	0.0768
10	4168755	-39245	0.0289	0.0687	0.0292	0.1204	0.3623	0.4499	0.4678	0.4818	0.1725	0.0742

DATA

Clean the data/preprocess the data

Handle NA, duplicates, outliers

Partition the data
 (train-test, usually 80% - 20%)

- For 20 rows, testing will take 4 rows.
- 20% of 20 = 4
- Normalize the data

3	17	580	3	56	0
4	13	1292	5	50	0
5	23	1521	4	10	0
6	15	792	6	25	0
7	15	132	5	29	0
8	20	701	6	56	1
9	12	1267	3	57	1
10	26	1297	6	35	0
11	16	217	8	53	0
12	17	1278	1	45	0
13	26	1648	6	20	0
14	23	1742	3	29	1
15	28	1087	2	60	1
16	28	1427	5	59	0
17	27	1545	3	28	0
18	22	609	5	19	0
19	22	653	7	27	1
20	12	236	1	31	1

x1

12

x2

х3

х4

У

https://github.com/glorand/laravel-model-

MODEL FITTING

- Variable selection
- Multi-collinearity check
- Tuning model (e.g. for extrapolation)
- Variable importance
- Model selection strategy
- Ensemble procedure

MODEL ASSESSMENT

id	x1	x2	х3	х4	у
1	12	338	8	49	1
2	14	1687	8	30	1
3	17	580	3	56	0
4	13	1292	5	50	0
5	23	1521	4	10	0
6	15	792	6	25	0
7	15	132	5	29	0
8	20	701	6	56	1
9	12	1267	3	57	1
10	26	1297	6	35	0
11	16	217	8	53	0
12	17	1278	1	45	0
13	26	1648	6	20	0
14	23	1742	3	29	1
15	28	1087	2	60	1
16	28	1427	5	59	0
17	27	1545	3	28	0
18	22	609	5	19	0
19	22	653	7	27	1
20	12	236	1	31	1

ŷ	
	1
	0
	1
	0
	0
	1
	0
	1
	0
	0
	0
	1
	0
	1
	1
	0
	0
	1
	0
	1

	•	
У	ŷ	Prediction
1	1	TP
1	0	FN
0	1	FP
0	0	TN

rediction
TP
FN
FP
TN
TN
FP
TN
TP
FN
TN
TN
FP
TN
TP
TP
TN
TN
FP
FN
TP

MODEL ASSESSMENT

Precision Recall/Sensitivity /True positive rate		Loss	F1 Score		Confusion matrix				Accuracy
TP / (TP + FP)	TP / (TP + FN)	MSE MAE	2 * (Precision * Recall) / (Precision + Recall)			PP	PN		(TP + TN) / (TP + FP + TN + FN)
5 / (5 + 4) = 0.556	5/(5+3) = 0.625	Cross- entropy loss Hinge loss	2 * (0.556 * 0.625) / (0.556 + 0.625) = 0.588		AP AN	TP FP	FN TN		Overall correctness of the model

This can also come from actual field visits or use of experts.

PREDICTION

Training region, Study Area

Tea Map

https://github.com/Wycology/ml_tea_mapping

TUTORIAL

geodata terra tidyterra tidyverse sdm usdm forestdata

Land Economics Group

THANK YOU

Land Economics Group