Факторизация натуральных чисел

Михаил Иванов

10 марта 2020 г.

Центральные множества

- $ightharpoonup \mathbb{N} = \{1, 2, 3, 4, 5 \ldots\}$
- $ightharpoonup \mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}$

Основные задачи

- $ightharpoonup n \in \mathbb{N} \setminus \{1\}$
- ► Тест непростоты: $n \notin \mathbb{P}$
- ▶ Переформулировка:

$$\exists n_1, n_2 \in \{2, \ldots, n-1\} : n = n_1 n_2$$

• Факторизация:

найти
$$p_1,\ldots,p_k\in\mathbb{P}\colon n=\prod\limits_{i=1}^{\kappa}p_i$$

Сведение

- lacktriangle тест простоты ightarrow факторизация
- $n \in \mathbb{P} \iff \\ \iff \left(p_1, \dots, p_k \in \mathbb{P} \colon n = \prod_{i=1}^k p_i \Rightarrow k = 1\right)$
- Обязательно ли факторизовывать?

Отсутствие необходимости факторизации

- lacktriangle Малая теорема Ферма: если $n\in \mathbb{P},\ a
 ot\equiv 0$, то $a^{n-1}\equiv 1$
- ▶ Возьмём много случайных а и проверим это
- $ightharpoonup a^{n-1}$ вычисляется двоичным возведением в степень
- Победа?

Тест Ферма не работает

▶ Не победа

Числа Кармайкла

- Описанная процедура называется тестом Ферма
- ▶ Число Кармайкла n, такое что $n \notin \mathbb{P} \land (a,n) \equiv 1 \Longleftrightarrow a^{n-1} \equiv 1$
- На числах Кармайкла тест Ферма не работает

Тест Миллера-Рабина

- Действуем аккуратнее
- $lacksymbol{ iny} x^2 \equiv 1 \Rightarrow x \in \{-1_n, 1_n\}$ только при $n \in \{1\} \cup \mathbb{P}$
- ▶ Пусть $n 1 = 2^k m$
- $lackbox{
 ightharpoonup}$ Малая теорема Ферма: если $n\in \mathbb{P}$, $a
 ot\equiv 0$, то $a^{n-1}\equiv 1$
- lacktriangle Малая теорема Ферма: если $n\in \mathbb{P}$, $a
 ot\equiv 0$, то $\left(a^m
 ight)^{2^k}\equiv 1$

Тест Миллера-Рабина

- ightharpoonup Найдём $a^m, (a^m)^2, (a^m)^4, (a^m)^8, \dots, (a^m)^{2^k}$
- lacktriangle Если в конце не получилось 1, то $n
 otin \mathbb{P}$
- Рассмотрим первый момент, когда получилось 1
- ightharpoonup Если это $\left(a^{m}
 ight)^{2^{t}},\; t>0$, посмотрим на шаг назад
- lacktriangle Если $\left(a^m\right)^{2^{t-1}}
 ot\equiv -1$, то $n
 ot\in\mathbb{P}$

Тест простоты лежит в классе Р

- ightharpoonup Для составных n случайное a обнаружит непростоту с вероятностью 75%
- ightharpoonup Одна итерация работает за $\mathcal{O}\left(\log^2 n \log \log n \log \log \log n\right)$
- ightharpoonup Рандомизированно $\mathcal{O}\left(\log^3 n\right)$
- ▶ Тест Агравала Каяла Саксены (2004), модификация Ленстры и Померанса (2005) детерминированно $\mathcal{O}\left(\log^6\right)$
- Тест простоты имеет полиномиальную сложность (от длины числа на входе)

Факторизация

Нахождение нетривиального делителя

- Вернёмся к факторизации
- lackbox Ищем $p_1,\ldots,p_k\in\mathbb{P}\colon n=\prod\limits_{i=1}^kp_i$
- lacktriangle Пусть $n
 otin \mathbb{P}$ умеем представлять в виде n_1n_2 , $n_1,n_2\in\{2,\ldots,n-1\}$
- Процедура факторизации рекурсивна:
 - ightharpoonup Если n простое, вернуть n
 - ightharpoonup Иначе представить $n = n_1 n_2$
 - lacktriangle Рекурсивно представить $n_1 = \prod\limits_{i=1}^k p_i, \; n_2 = \prod\limits_{i=k+1}^\ell p_i$
 - lacktriangle Склеить: $n=\prod_{i=1}^\ell p_i$

Факторизация

Тривиальные алгоритмы

- Достаточно научиться находить нетривиальный делитель у составного числа
- $m{ ilde{ ilde{O}}}(n)$: перебрать $n_1 \in \{2,3,\ldots,n-1\}$, проверить $n_2 = rac{n}{n_1} \in \mathbb{N}$
- $\mathcal{O}\left(\sqrt{n}\right)$: так как min $(n_1,n_2)\leqslant \sqrt{n}$, перебрать $n_1\in\{2,3,\ldots,\left[\sqrt{n}\right]\}$, проверить $n_2=rac{n}{n_1}\in\mathbb{N}$
- $ightharpoonup \mathcal{O}\left(\sqrt[4]{n}\log n
 ight)ho$ -алгоритм Полларда

Парадокс дней рождения

- ightharpoonup C детей в классе, D дней в году, $C \ll D$
- \triangleright D^C способов
- $ightharpoonup D(D-1)\dots(D-C+1)$ способов с разными днями
- $ightharpoonup \mathbb{P}\left\{$ разных дней рождения $ight\} = rac{D(D-1)...(D-C+1)}{D^C}$
- $1\left(1-\frac{1}{D}\right)\ldots\left(1-\frac{C-1}{D}\right)<\varepsilon$

Продолжение парадокса дней рождения

$$\blacktriangleright \ln 1 \left(1 - \frac{1}{D} \right) \dots \left(1 - \frac{C - 1}{D} \right) < \ln \varepsilon$$

▶
$$ln(1+x) \approx x$$

$$\sum_{i=0}^{C-1} -\frac{i}{D} < -E$$

$$\sum_{i=0}^{n-1} i \approx \frac{n^2}{2}$$

$$-\frac{C^2}{2D} < -E$$

$$ightharpoonup C > \sqrt{2DE}$$

Применение к факторизации, метод за $\mathcal{O}\left(\sqrt{n}\log n\right)$

- lacktriangle Рассмотрим случайные a_1,\ldots,a_C
- ightharpoonup Пусть $D=n_1$
- $lacksymbol{a}_1, \dots, lacksymbol{a}_C =$ «дети» с днями рождения $lacksymbol{a}_i$ mod D среди $\{0, 1, \dots, D-1\}$
- ▶ Если $C \approx \sqrt{\mathrm{Const}D} \leqslant \sqrt[4]{n}$, то есть $a_i \mod D = a_i \mod D$
- \triangleright $(a_i a_i, n)$ кратно D.

Применение к факторизации, метод за $\mathcal{O}\left(\sqrt{n}\log n\right)$

- ▶ $\mathbb{P}\{(a_i a_j, n) = n\} = \frac{1}{n_2} < \frac{1}{\sqrt{n}}$
- lacktriangle Итого, при достаточно большом Const число (a_i-a_j,n) с большой вероятностью нетривиальный делитель n
- ightharpoonup Алгоритм Евклида $\mathcal{O}(\log n)$
- $ightharpoonup \forall i,j$ сравнить (a_i-a_j,n) с 1 и n
- $ightharpoonup \mathcal{O}\left(\sqrt{n}\log n\right)$ медленно

Применение к факторизации, метод за $\mathcal{O}\left(\sqrt[4]{n}\log n\right)$

- lacktriangle Не любая последовательность $\{a_i\}_{i\in\mathbb{N}}$ хороша
- lacktriangle Свойство остатков: $a_i \equiv a_j \Rightarrow a_{i+1} \equiv a_{j+1}$
- ► Например, $a_{i+1} = f(a_i)$, $f(x) = x^2 + 1$
- lacktriangle Эвристика: $\{a_i\}_{i\in\mathbb{N}}$ всё ещё достаточно случайна для парадокса дней рождения
- ightharpoonup Почему ho-алгоритм Полларда?

ρ -алгоритм Полларда Метод за $\mathcal{O}(\sqrt[4]{n}\log n)$

- $ightharpoonup a_i \equiv a_j$ с наименьшим j>i
- ▶ В среднем $j \approx \text{Const}\sqrt[4]{n}$
- lacktriangle Предпериод P=i, период Q=j-i
- ▶ P+Q порядка $\mathrm{Const}\sqrt[4]{n}$
- lacktriangle Хотим два элемента a_x , a_y , где x < y, $y x \ dots \ Q$, $x \geqslant P$

Метод за $\mathcal{O}\left(\sqrt[4]{n}\log n\right)$

- ightharpoonup Будем брать (a_i, a_{2i})
- ▶ Условия для x = i, y = 2i:
 - x < y: i < 2i
 - ▶ y x : Q: надо i : Q
 - \triangleright $x \ge P$: $i \ge P$
- ▶ Достаточно $i \in \{1, 2, ..., P + Q\}$

Итоговый алгоритм

- $f(x) = x^2 + 1$ (можно $x^2 + c$, где c случайное)
- Инициализируем a, b одинаковым случайным числом
- ▶ Повторяем $Const \sqrt[4]{n}$ раз:
 - ightharpoonup a := f(a), b := f(f(b)), g := (a, b)
 - ightharpoonup Если $g \notin \{1, n\}$, вернуть нетривиальный делитель g
- lacktriangle Повторить с другими случайными a=b и c

- lacktriangle Опять вспомним малую теорему Ферма (сегодня без неё никуда): если $p\in \mathbb{P}$, (a,p)=1, то $a^{p-1} \equiv 1$.
- lacktriangle Следствие: если ещё и M : p-1, то $a^M \equiv 1$.
- ightharpoonup Пусть $M(i) = \operatorname{lcm}(1, 2, \dots, i)$
- lacktriangle Возьмём некоторое B и M=M(B)
- lacktriangle Если p-1 кратно маленьким степеням простых, то $a^M \equiv 1$.

Алгоритм

- ▶ Выбрать планку В
- Решетом Эратосфена найти все простые $p_1 \dots, p_m \leqslant B$ в максимальных степенях $p_i^{\alpha_i} \leqslant B$
- ▶ Для нескольких случайных с повторять:
 - ▶ Для каждого i заменить c на $c^{p_i^{\alpha_i}}$ (α_i раз возвести c в степень p_i)
 - ightharpoonup g := (c 1, n)
 - ► Если $g \notin \{1, n\}$, вернуть нетривиальный делитель g

p-1-алгоритм Полларда

- ightharpoonup Если для всех ho, делящих ho, ho-1 кратно маленьким степеням простых, то ho будет равно ho
- ightharpoonup Брать нечётное ядро M(B)

Вторая фаза

- ightharpoonup Если для всех ho, делящих ho, ho-1 кратно большим степеням простых, то ho будет равно 1
- Нужна вторая фаза
- ► Рассмотрим $B' \approx B \ln B$
- lackbox Пусть $Q_1 < Q_2 < \ldots < Q_t$ все простые в (B;B')
- ightharpoonup Пробуем $M_i = Q_i M(B)$

Перебор всех M_i

- ▶ Чтобы перейти от a^{M_i} к $a^{M_{i+1}}$, нужно домножить на $a^{M_{i+1}-M_i}$
- $ightharpoonup a^{Q_{i+1}M(B)-Q_iM(B)}$
- $\qquad \qquad \left(a^{M(B)}\right)^{Q_{i+1}-Q_i}$
- $ightharpoonup Q_{i+1} Q_i$ малы
- lacktriangle Предподсчитаем $\left(a^{M(B)}
 ight)^e$ для малых e
- lacktriangle Пересчитываем $a^{M_{i+1}}$ через a^{M_i} за $\mathcal{O}(1)$
- ▶ При $B' \approx B \ln B$ первая и вторая фаза займут равное число времени

Быстрая факторизация

- lacktriangle Всё предыдущее работало за $\mathcal{O}\left(n^{lpha}
 ight)$
- ightharpoonup Перепишем: за $\mathcal{O}\left(e^{c\ln n}\right)$

L-нотация

- $lackbox{igspace}{igspace}$ Обозначим $L_n[lpha,c]=\expig((c+o(1))\ln^lpha n\ln^{1-lpha}\ln nig)$ при $n o +\infty$, $c\in(0;+\infty)$, $lpha\in[0;1]$
- lacktriangle Тривиальная факторизация: $L_n\left[1,rac{1}{2}
 ight]$
- ightharpoonup -алгоритм Полларда: $L_n\left[1,rac{1}{4}
 ight]$
- ▶ Метод Ленстры факторизации с помощью эллиптических кривых: $L_p\left[\frac{1}{2},\sqrt{2}\right]$, где p наименьший простой делитель n
- lacktriangle С помощью оценки $p\leqslant \sqrt{n}$: $L_n\left[rac{1}{2},1
 ight]$

Эллиптические кривые

- ▶ Пусть F кубический многочлен от двух переменных (формально, кубический однородный от трёх, не кратный z)
- Проективная плоскость множество (x, y, z), $x^2 + y^2 + z^2 \neq 0$, с точностью до домножения
- F(x,y) = 0 кривая Γ на проективной плоскости
- ▶ Предположим, что класса C^{∞} (без самопересечений и точек с нулевой производной)
- ▶ Тогда кривая называется эллиптической

Эллиптические кривые

- После проективного преобразования:
- $F(x,y) = y^2 (x^3 + ax + b)$
- Заведём операцию + на кривой:
 - коммутативная
 - ассоциативная
 - ightharpoonup a+b+c=0 для коллинеарных точек
- Заведём операцию —, противоположную +
- Получилась абелева группа

Умножение

- ▶ Заведём операцию [n]a, $n \in \mathbb{N}_0$, $a \in \Gamma$ умножение на целое
- ▶ Бинарное умножение:

 - ▶ иначе $[n]a = \left[\frac{n-1}{2}\right]a + \left[\frac{n-1}{2}\right]a + a$

Эллиптическая псевдокривая

- lacktriangle Определим всё сказанное в кольце \mathbb{Z}_n
- ▶ (n,6) = 1, $(4a^3 + 27b^2, n) = 1$, $E_{a,b}(\mathbb{Z}_n) = \{(x,y) \in \mathbb{Z}_n \times \mathbb{Z}_n \mid y^2 = x^3 + ax + b\} \cup \{\infty\}$
- Будем выполнять некоторые операции
- Если произойдёт что-то странное (пытаемся попасть в бесконечно удалённую точку относительно нетривиального делителя n, но не относительно n), то только во время деления на некоторое a
- ► $(a, n) \notin \{1, n\}$
- Можно сразу прекращать и возвращать делитель

Метод Ленстры. Начало

- ▶ Проверить, не является ли п точной степенью
- ▶ Выбрать планку B_1
- lacktriangle Выбрать случайную точку $(x,y)\in\{(x,y)\in\mathbb{Z}_n imes\mathbb{Z}_n\}$
- lacktriangle Выбрать случайный параметр $a\in\mathbb{Z}_n$
- lacktriangle Получилась случайная эллиптическая кривая: $b = y^2 x^3 ax \mod n$

Валидация кривой

- $ightharpoonup g = (4a^3 + 27b^2, n)$
- ightharpoonup Если g=n, то вернуться на предыдущий слайд
- ightharpoonup Если $g \in \{2, \dots, n-1\}$, нашли нетривиальный делитель
- ightharpoonup Если g=1, зафиксируем кривую $E=E_{a,b}\left(Z_{n}
 ight)$ и точку $P=\left(x,y
 ight)$

Попытка сломать эллиптическую арифметику

- lacktriangle Перебираем $p\in\mathbb{P}$, $p\leqslant B_1$
 - ▶ Пусть α наибольшая степень, что $p^{\alpha} \leqslant B_1$
 - ightharpoonup Заменим P на $[p^{\alpha}]P$ (α раз умножим P на p)
 - Возвращаем нетривиальный делитель, если какое-то эллиптическое сложение не удалось
- Если ничего не нашлось, ищем другую случайную кривую (возможно, с увеличением планки)

Оценка сложности

- ightharpoonup Пусть p < q два наименьших простых делителя n
- lacktriangle Хотим: $[k]P=\infty$ в $E_{a,b}\left(\mathbb{Z}_p
 ight)$, но $[k]P
 eq\infty$ в $E_{a,b}\left(\mathbb{Z}_q
 ight)$
- Второе событие гораздо вероятнее, чем первое
- Не будем обращать внимание на второе событие

Гладкость

- ▶ $x \in \mathbb{N}$ y-гладкое, если все простые в x не превосходят y
- lacksquare $\psi(x,y)$ число y-гладких чисел в $\{1,\ldots,x\}$
- $ightharpoonup \# E_{a,b}\left(\mathbb{Z}_p
 ight)$ порядок эллиптической группы
- Если порядок B_1 -гладкий, разумно ожидать, что случайный элемент обнулится от умножения на $\operatorname{lcm}(1,2,\ldots,B_1)$

- ► Теорема Хассе: $\#E_{a,b}(\mathbb{Z}_p) \in (p+1-2\sqrt{p}; p+1+2\sqrt{p})$
- ► Количество B_1 -гладких чисел в промежутке: $\psi\left(p+1+2\sqrt{p},B_1\right)-\psi\left(p+1-2\sqrt{p},B_1\right)$
- ► Плотность B_1 -гладких чисел в промежутке: $\frac{\psi(\rho+1+2\sqrt{\rho},B_1)-\psi(\rho+1-2\sqrt{\rho},B_1)}{4\sqrt{\rho}}$
- ▶ Теорема Ленстры: вероятность $\mathbb{P}(B_1)$, что $\#E_{a,b}(\mathbb{Z}_p)$ B_1 -гладкое, не меньше $c\frac{\psi(p+1+2\sqrt{p},B_1)-\psi(p+1-2\sqrt{p},B_1)}{\sqrt{p}\ln p}$

- lackbox Одна попытка тратит $\mathcal{O}\left(B_1
 ight)$ арифметических операций и срабатывает с вероятностью $\mathbb{P}\left(B_1
 ight)pprox crac{\psi\left(p+1+2\sqrt{p},B_1
 ight)-\psi\left(p+1-2\sqrt{p},B_1
 ight)}{\sqrt{p}\ln p}$
- ► Минимизируем $\frac{B_1}{\mathbb{P}(B_1)}$
- lacktriangle Минимальное число операций достигается при $B_1 = \exp\left(\left(rac{1}{\sqrt{2}} + o(1)
 ight)\sqrt{\ln p \ln \ln p}
 ight)$
- ightharpoonup Соответствующая асимптотика $\exp\left(\left(\sqrt{2}+o(1)\right)\sqrt{\ln p \ln \ln p}\right)$
- $ightharpoonup L_p\left[\frac{1}{2},\sqrt{2}\right]$

Спасибо!