Fun with Prime Numbers (3)

Invitation to the Mysterious World of Mathematics

Tetsushi Ito

Department of Mathematics,

Kyoto University

Pythagoras' Theorem

Theorem

For a right triangle with side length X,Y,Z, where X,Y are the legs and Z is the hypotenuse, we have: $X^2 + Y^2 = 7^2$

Pythagoras of Samos (570-495 BC)

Reference https://en.wikipedia.org/wiki/Pythagoras

Pythagoras' Theorem (2)

 Let us interpret Fermat's theorem on sums of two squares

 $P\equiv 1 \pmod{4} \Leftrightarrow There exists a right triangle with hypotenuse <math>\sqrt{P}$ whose legs are integers.

Mystery of Triangles

Problem (Congruent Number Problem)
For a prime number P, does there exist a right triangle with area P whose sides are rational numbers? (P is called a congruent number.)

Mystery of Triangles (2)

(P=5) Does there exist a 5-triangle? Can we take the length of a leg = 3?

Mystery of Triangles (3)

Does there exist a 5-triangle?

Can we take the length of a leg = 3?

- The answer is 'No'.
- Assume X=3, Y,Z be the sides of a 5-triangle.

$$XY \div 2 = 5$$
 $3^2 + Y^2 = Z^2$.

$$\rightarrow$$
 Y = 10/3 $Z^2 = 9 + 100/9 = 181/9$

$$\Rightarrow$$
 Z = $\sqrt{181}$ /3 : not rational number!

Mystery of Triangles (4)

Does there exist a 5-triangle?

- The answer is 'Yes'.
- It is not so easy to find 5-triangles.
- There are infinitely many 5-triangles.

Mystery of Triangles (5)

Problem (Congruent Number Problem)
For a prime number P, does there exist
a P-triangle? (A right triangle with area P whose sides are rational numbers.)

- Very difficult problem.
- There is a 'conjectural answer' related to certain Reciprocity Laws.