

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Parallel and series multi-bed pressure swing adsorption processes for H₂ recovery from a lean hydrogen mixture

Yongha Park ^{a,b,1}, Jun-Ho Kang ^{a,1}, Dong-Kyu Moon ^a, Young Suk Jo ^b, Chang-Ha Lee ^{a,*}

- ^a Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- b Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

ARTICLE INFO

Keywords: Hydrogen Pressure swing adsorption Activated carbon Zeolite 13X Dynamic simulation

ABSTRACT

The demand for clean energy sources has made $\rm H_2$ recovery from various lean hydrogen mixtures increasingly attractive. In this study, parallel and series pressure swing adsorption (PSA) processes were investigated experimentally and theoretically, and > 99% pure $\rm H_2$ was produced from a lean hydrogen mixture ($\rm H_2$:CO:N₂: $\rm CO_2 = 19.9:0.1:44.6:35.4$ mol%) at 10 bar. A mathematical model for a PSA process using activated carbon and zeolite 13X was simultaneously validated with results from breakthrough experiments and a parallel two-bed PSA process. The parallel two-bed PSA process using a layered bed (lower bed: activated carbon, upper bed: zeolite 13X) experimentally produced $\rm H_2$ with a purity of 94.6–98.3% and a recovery of 33.5–63.2%; CO was not detected in the $\rm H_2$ product. In the parallel four-bed PSA process, the $\rm H_2$ recovery was drastically increased to 77.3% due to an additional pressure equalization step, but the increase in $\rm H_2$ purity was minute. The series PSA process, which was divided into the bulk separator and the purifier, was theoretically studied under various operating conditions. The series three- and four-bed PSA processes could produce $\rm H_2$ with over > 99% purity and a recovery of 62.478% and 82.643%, respectively, due to the additional pressure equalization step and the utilization of blowdown gas. The parallel four-bed PSA process showed the highest $\rm H_2$ productivity (33.58 mol $\rm H_2$ kg $^{-1}_{ab}$ day $^{-1}$), while the series four-bed PSA process achieved an $\rm H_2$ productivity of 23.96 mol $\rm H_2$ kg $^{-1}_{ab}$ day $^{-1}$ with > 99% $\rm H_2$ purity.

1. Introduction

Hydrogen (H_2) is one of the most important chemicals used in numerous important industrial applications, such as hydrotreating, hydrocracking, and hydrogenation [1]. Furthermore, due to the fact that the combustion of fossil fuel induces global warming, H_2 has become a more attractive and important clean energy source for fuel cells and power generation. Therefore, H_2 has the potential to provide economically feasible, socially advantageous, and energetically efficient solutions to the ever-increasing global demand for clean energy [2].

Currently, most industrial H_2 production is achieved through the catalytic steam reforming of natural gas [3] and naphtha cracking [4]. Large amounts of H_2 can also be produced from syngas from coal

gasification [5,6] and coke oven gas in the iron and steel industries [7]. However, the need for alternative routes of H_2 production has become more urgent with the increasing demand for H_2 as a clean energy source in industry and society to achieve a more sustainable future [8]. Furthermore, due to the expansion of natural gas production, H_2 production via steam methane reforming is rapidly increasing to meet the demands of hydrogen vehicles [9,10].

Pressure swing adsorption (PSA) gas separation processes are widely applied for the production of $\rm H_2$ from various $\rm H_2$ -rich mixtures in industry because of its energy-saving and economical feasibility. Furthermore, in many $\rm H_2$ PSA processes, no compressor and vacuum facility are needed when feeds are supplied from high-pressure reactors. Multi-bed PSA processes that can recover over 80–95% of $\rm H_2$ have been reported [11–13]. Naturally, a tail gas (lean hydrogen mixture)

Abbreviations: AC, activated carbon; BPR, back pressure regulator; BFDM, backward finite difference method; BFG, blast furnace gas; CFDM, centered finite difference method; CO-IR, IR analyzer for CO; DSL, dual-site Langmuir; FFDM, forward finite difference method; L/D ratio, length/diameter ratio; LDF, linear driving force; MFC, mass flow controller; MTZ, mass transfer zone; P/F ratio, purge to feed flowrate ratio; PSA, pressure swing adsorption; SRK, Soave-Redlich-Kwong; TSA, temperature swing adsorption; VSA, vacuum swing adsorption; WGM, wet gas meter; TEG, triethylene glycol dehydration.

E-mail address: leech@yonsei.ac.kr (C.-H. Lee).

^{*} Corresponding author.

¹ These authors contributed equally.