Note on Computational Elliptic Curves

Lei Bichang

March 13, 2025

These notes are based the course taught by Prof. Benjamin Wesolowski at ENS Lyon in 2025.

Basics

In \mathbb{Z} and \mathbb{F}_p^{-1} , addition and multiplication are "easy"².

Extended GCD algorithm

```
Algorithm 1: Extended GCD
```

```
\begin{aligned} &\textbf{Input:}\ a,b:\mathbb{Z}_{\geq 0}\\ &\textbf{Output:}\ \gcd(a,b),u,v:\mathbb{Z}\ \text{s.t.}\ \gcd(a,b)=ua+vb\\ &(x,u,v,y,u',v')\leftarrow(a,1,0,b,0,1)\\ &\textbf{while}\ y>0\ \textbf{do}\\ & \left\lfloor \begin{array}{c} (x,y)\leftarrow\left(x\ \mathrm{mod}\ y,\left\lfloor\frac{x}{y}\right\rfloor\right)\\ &\textbf{if}\ r< y-r\ \textbf{then}\\ &\mid (x,u,v,y,u',v')\leftarrow(y,u',v',r,u-qu',v-qv')\\ &\textbf{else}\\ & \left\lfloor \begin{array}{c} (x,u,v,y,u',v')\leftarrow(y,u',v',y-r,(q+1)u'-u,(q+1)v'-v) \end{array} \right. \end{aligned}
```

return (x, u, v)

- Complexity = $O(\log(a)\log(b))$.
- It applies to k[X], so it applies to general \mathbb{F}_{p^r} ; the output is up to a factor in \mathbb{F}_p^{\times} .

Exponentiation

Let G be a group.

Algorithm 2: Square and Multiply

 ${f return} \,\, z$

• Complexity = $O(\log(m))$, depending on the complexity of multiplication in G.

¹Any $x \in \mathbb{F}_p$ can be represented by $\log(p)$ bits.

 $^{^2\}exists$ polynomial (in length of input) time algorithm.

Elliptic Curves

1 Factoring polynomials over a finite field

Problem 1.1. Factorize $f(X) \in \mathbb{F}_q[X]$.

Let's start with a simpler question: how to find linear factors of f? This is equivalent to factorize

$$g(X) := \gcd(f(X), X^q - X) = \prod_{\substack{r \in \mathbb{F}_q \\ f(r) = 0}} (X - r).$$

Note that the map $(\cdot)^{\frac{q-1}{2}}$ on $\mathbb{F}_q^7 \times$ is the Legendre symbol $\left(\frac{\cdot}{q}\right)$. Hence for $u(X) \in \mathbb{F}_q[X]$, we have

$$g_u(X) := \gcd(g(X), u(X)^{\frac{q-1}{2}} - 1) = \prod_{\substack{f(r) = 0 \\ u(r) \in (\mathbb{F}_q^{\times})^2}} (X - r).$$

If we take a linear polynomial $u(X) = X + \delta$, then $g_u(X)$ is a nontrivial factor of g(X) if and only if there are roots $\alpha \neq \beta$ of f(X) such that $\alpha + \delta \in (\mathbb{F}_q^{\times})^2$ and $\beta + \delta \notin (\mathbb{F}_q^{\times})^2$.

Theorem 1 (Robin). If $\alpha \neq \beta \in \mathbb{F}_q$, then

$$\#\{\delta\in\mathbb{F}_q\mid\alpha+\delta\neq0,\beta+\delta\neq0;\text{ one is a square, the other isn't}\}=\frac{q-1}{2}.$$

Proof. Let

$$\psi: \mathbb{F}_q \setminus \{-\beta\} \to \mathbb{F}_q \setminus \{1\} \quad \delta \mapsto \frac{\alpha + \delta}{\beta + \delta}.$$

 ψ is injective, hence bijective. Meanwhile, so the condition on LHS is equivalent to

$$\psi(\delta)^{\frac{q-1}{2}} = -1.$$

There are $\frac{q-1}{2}$ elements in $\mathbb{F}_q \smallsetminus \{1\}$ has this property.

Corollary 1.1. For a uniformly random $\delta \in \mathbb{F}_q$,

$$\Pr\left[\gcd(g(X),(X+\delta)^{\frac{q-1}{2}}-1)\text{ is a nontrivial factor of }g(X)\right]\geq \frac{(q-1)/2}{q}\geq \frac{1}{3}.$$

Algorithm 3: Partial Factorization

Input: $g(X) : \mathbb{F}_q[X], \deg(g) > 1$, only different linear factors over \mathbb{F}_q

Output: one nontrivial factorization of g(X)

repeat

$$\delta \leftarrow \text{uniformly random in } \mathbb{F}_q$$

$$g_1(X) \leftarrow \gcd(g(X), (X+\delta)^{\frac{q-1}{2}} - 1) \text{ if } 0 < \deg g_1(X) < \deg g \text{ then }$$

$$\left[\text{ return } \left(g_1(X), \frac{g(X)}{g_1(X)} \right) \right]$$

until;

Algorithm 4: Factorization

```
Input: g(X) : \mathbb{F}_q[X], only different linear factors over \mathbb{F}_q

Output: Complete factorization of g(X)

if \deg g = 1 then

| return g

else

| (g_1, g_2) \leftarrow \operatorname{PartialFactorization}(g)

| return (Factorization(g_1), Factorization(g_2))
```

- # of calls to "PartialFactorization" is deg(g) 1.
- It is hard to analyze the precise complexity, as it is affected by the pattern of g.

How to get higher degree factors? We can get the multiplicity of linear factors³ then consider

$$f_{\geq 2}(X) := \frac{f(X)}{\prod \text{linear factor}}.$$

Now

$$\gcd(f_{\geq 2}(X), X^{\frac{q^2-1}{2}} - 1)$$

is the product of all quadratic factors, because quadratic factors are linear factors over \mathbb{F}_{q^2} . Continuely raise the degree until we get the factorization.

2 Counting rational points of an elliptic curve over a finite field

Problem 2.1. Calculate $\#E(\mathbb{F}_q)$ for an elliptic curve E over \mathbb{F}_q .

³A naïve way: divide the factor until it is not a root.