Санкт-Петербургский политехнический университет Петра Великого Институт компьютерный наук и кибербезопасности Высшая школа программной инженерии

ОТЧЁТ

«Объектно-Ориентированное Моделирование в AnyDynamics»

по дисциплине «Основы объектно-ориентированного моделирования»

Выполнила студентка гр. 5140904/30202

Ли Ицзя

Руководитель

Сениченков Ю. Б.

1 Описание решаемой задачи

Задание 4: Построить библиотеку классов, с помощью которой можно одновременно рисовать фазовые портреты систем и этих же систем, записанных в векторно-матричной форме. Абстрактный класс должен содержать все нужные параметры. Родительский класс должен работать с уравнениями в скалярной форме. Класс-наследник — с уравнениями в матричной форме. Отдельный класс должен искать неподвижные точки.

$$egin{aligned} x_{n+1} &= rac{x_n \left(a - x_n - y_n
ight)}{3} \ y_{n+1} &= rac{y_n \left(b y_n - x_n
ight)}{3} \ \mathrm{a} &= \{5.0, 5.1\}, \ \mathrm{b} &= \{3.0, 3.1\}; \end{aligned}$$

2 Реализация модели в среде AnyDynamics

Нам необходимо реализовать следующие части согласно требованиям темы:

- 1. Абстрактный класс (AbstractDynamicSystem)
- 2. Родительский класс (ScalarDS)
- 3. Класс-наследник (MatrixDS)

2.1 Абстрактный класс

Этот абстрактный класс определяет базовый набор свойств и методов для построения фазовых графиков и системного анализа.

2.2 Родительский класс (ScalarDS)

Родительский класс, реализующий уравнения в скалярной форме.

2.3 Класс-наследник (MatrixDS)

Реализуйте подкласс (MatrixDS), унаследованный от родительского класса ScalarDS: этот подкласс специализируется на обработке уравнений в матричной форме (векторно-матричной форме). Это означает, что по сравнению с родительским классом он может обрабатывать более сложные математические модели, особенно те системы, которые требуют матричных и векторных вычислений. Подклассы должны расширять функциональность родительского класса для поддержки анализа уравнений в матричной форме.

3 Анализ результата

3.1 Фазовые портреты

Из анализа заданных точек траектории мы знаем, что при каждом наборе параметров и начальном состоянии траектория системы со временем приближается к определенному значению, и эти конкретные значения могут быть неподвижными точками системы. Фиксированная точка — это точка, в которой состояние больше не меняется во время последовательных итераций, а именно $x_{n+1}=x_n$ и $y_{n+1}=y_n$.

Для каждого заданного начального состояния мы наблюдаем, что траектория постепенно стабилизируется и стремится к определенной точке. В случае a=5,0 траектория со временем приближается к точке (2,0). В случае a=5,1 траектория со временем приближается к точке (2.1,0).

а	b	Приблизительная точка
5.0	3.0	(2.00000011, 1.85622657e-07)
5.0	3.1	(1.99998634, -2.04587005e-05)
5.1	3.0	(2.10001208, 1.72693965e-05)
5.1	3.1	(2.09997589, -3.44286818e-05)

3.2 Анализ неподвижных точек

Неподвижные точки — это точки, удовлетворяющие условиям $x_{n+1} = x_n$ и $y_{n+1} = y_n$, что означает, что система больше не будет меняться после достижения этих точек.

Из данного уравнения мы можем проанализировать фиксированную точку, установив $x_{n+1}=x_n=x$ и $y_{n+1}=y_n=y$, чтобы получить:

$$x=rac{x(a-x-y)}{3} \ y=rac{y(by-x)}{3}$$

Рассматривая случай неподвижных точки y, мы можем обнаружить, что если y=0, то второе уравнение может быть удовлетворено (обратите внимание, что если $b\neq 0$, то y=0 является решением). Затем, подставив y=0 в первое уравнение, мы можем найти (x). Первое уравнение упрощается до:

$$x=rac{x(a-x)}{3}$$

Чтобы это уравнение выполнялось, помимо x=0, х также может быть таким значением, что a-x=3, то есть x=a-3.

для (а = 5.0) Когда а = 5.0, решением является x = 5.0–3 = 2, поэтому фиксированной точкой является (2, 0).

для (а = 5.1) Когда a = 5.1, решением является x = 5.1 - 3 = 2.1, поэтому фиксированной точкой является (2.1, 0).

Следовательно, разные значения а приводят к разным точкам устойчивого состояния системы. Такие тонкие изменения параметров приводят к изменениям в динамическом поведении системы, особенно в положении фиксированной точки динамической системы, подчеркивая чувствительную зависимость динамической системы от параметров.

4 Заключение

В ходе выполнения данного задания была разработана и успешно реализована библиотека классов для построения фазовых портретов динамических систем, включая обработку систем, описываемых как в скалярной, так и в векторно-матричной форме. Разработка библиотеки осуществлялась согласно заданию, включающему в себя создание абстрактного класса, родительского класса для работы с уравнениями в скалярной форме и класса-наследника для работы с уравнениями в векторно-матричной форме.

Развитие проекта в среде AnyDynamics демонстрирует значимость и преимущества объектно-ориентированного подхода в моделировании и анализе сложных динамических систем. Реализация представленных классов и методов позволяет глубже анализировать системы, предоставляя инструменты для построения фазовых портретов и нахождения неподвижных точек, что является ключевым аспектом при исследовании поведения динамических систем.