numéro de page

Titre du concours (ecricome, EDHEC, ...)

Mathématiques

Partie B

On souhaite dans cette partie étudier les suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ définies par les conditions initiales $a_0=1,\ b_0=0,\ c_0=0$ et les relations de récurrence suivantes :

$$\begin{cases} a_{n+1} = 3a_n + 4b_n - c_n \\ b_{n+1} = -4a_n - 5b_n + c_n \\ c_{n+1} = -6a_n - 8b_n + 2c_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$.

- 9. Que vaut X_0 ?
- 10. Déterminer une matrice C telle que pour tout $n \in \mathbb{N}$, on ait

$$X_{n+1} = CX_n$$

Déterminer ensuite deux réels x et y tels que C = M(x, y).

- 11. Montrer que, pour tout $n \in \mathbb{N}$, $X_n = C^n X_0$.
- 12. À l'aide des résultats de la partie A, exprimer a_n , b_n et c_n en fonction de n.

EXERCICE 2

1. Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [0, +\infty[\to \mathbb{R} \text{ par } :$

$$g_n(x) = \frac{(\ln(1+x))^n}{(1+x)^2}$$

- a) Étudier les variations de la fonction g_0 , définie sur $[0, +\infty[$ par : $g_0(x) = \frac{1}{(1+x)^2}$. Préciser la limite de g_0 en $+\infty$, donner l'équation de la tangente en 0, et donner l'allure de la courbe représentative de g_0 .
- b) Pour $n \ge 1$, justifier que g_n est dérivable sur $[0, +\infty[$ et montrer que :

$$\forall x \in [0, +\infty[, g'_n(x) \ge 0 \Leftrightarrow n \ge 2\ln(1+x)]$$

En déduire les variations de la fonction g_n lorsque $n \ge 1$. Calculer soigneusement $\lim_{x \to +\infty} g_n(x)$.

c) Montrer que, pour $n \ge 1$, g_n admet un maximum sur $[0, +\infty[$ qui vaut :

$$M_n = \left(\frac{n}{2e}\right)^n$$

et déterminer $\lim_{n\to\infty} M_n$.

d) Montrer enfin que pour tout $n \ge 1$:

$$g_n(x) = \mathop{o}_{x \to +\infty} \left(\frac{1}{m_2^{\frac{3}{2}}} \right)$$

ECE2

2. On pose pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{+\infty} g_n(t)dt$$

- a) Montrer que l'intégrale I_0 est convergente et la calculer.
- b) Montrer que pour tout entier $n \ge 1$, l'intégrale I_n est convergente.
- c) À l'aide d'une intégration par parties, montrer que

$$\forall n \in \mathbb{N}, \ I_{n+1} = (n+1)I_n$$

d) En déduire que :

$$\forall n \in \mathbb{N}, I_n = n!$$

3. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \left\{ \begin{array}{cc} 0 & \text{si } x < 0 \\ \frac{1}{n!} \ g_n(x) & \text{si } x \geqslant 0 \end{array} \right.$$

a) Montrer que pour tout $n \in \mathbb{N}$, f_n est une densité de probabilité.

On considère à présent, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire réelle admettant f_n pour densité. On notera F_n la fonction de répartition de X_n .

- b) La variable aléatoire X_n admet-elle une espérance?
- c) Que vaut $F_n(x)$ pour x < 0 et $n \in \mathbb{N}$?
- d) Calculer $F_0(x)$ pour $x \ge 0$.
- e) Soit $x \ge 0$ et $k \in \mathbb{N}^*$. Montrer que :

$$F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x}$$

- f) En déduire une expression de $F_n(x)$ pour $x \ge 0$ et $n \in \mathbb{N}^*$ faisant intervenir une somme (on ne cherchera pas à calculer cette somme).
- g) Pour $x \in \mathbb{R}$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- h) La suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ converge-t-elle en loi ?
- 4. Pour tout $n \in \mathbb{N}$, on note $Y_n = \ln(1 + X_n)$.
- a) Justifier que Y_n est bien définie. Quelles sont les valeurs prises par Y_n ?
- b) Justifier que Y_n admet une espérance et la calculer.
- c) Justifier que Y_n admet une variance et la calculer.
- d) On note H_n la fonction de répartition de Y_n . Montrer que :

$$\forall x \in \mathbb{R}, \ H_n(x) = F_n(e^x - 1)$$

- e) Montrer que Y_n est une variable aléatoire à densité et donner une densité de Y_n .
- f) Reconnaître la loi de Y_0 . À l'aide de ce qui précède, déterminer le moment d'ordre k de Y_0 pour tout $k \in \mathbb{N}^*$.

