МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.4.2

Закон Кюри-Вейса

Б03-102 Куланов Александр

- **Цель работы:** изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри
- В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медьконстантан

1 Экспериментальная установка

Исследуемый ферромагнитный образец из гадолиния расположен внутри пустотелой катушки 1, которая помещена в сосуд 2 с трансформаторным маслом. Оно предохраняет образец от окисления и улучшает теплопередачу с рабочей жидкостью 3. Ртутный термометр 4 используется для приблизительной оценки температуры. Температура регулируется термостатом 5. Разность температур образца и жидкости измеряется при помощи термопары 6.

Рис. 1: Схема установки

2 Теоретические сведения

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L - L_0) \propto \chi. \tag{1}$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{2}$$

где C – ёмкость контура автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}. (3)$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{4}$$

3 Ход работы

Измерения проводятся в интервале температур от 10 °C до 40 °C. С целью экономии времени следует начинать измерения с низких температур.

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается.

Величина стабилизируемой температуры задаётся на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке. Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный (нагреватель то включается, то выключается) - начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится < 0.5°C. Чувствительность термопары k = 24 град/мВ.

4 Обработка результатов

Оценим допустимую ЭДС термопары:

$$\varepsilon = \frac{\Delta T}{k} \approx 0.02 \text{ MB} \tag{5}$$

Проведем измерения и запишем результаты в таблицу:

Т, град.	τ , MKC	Т, град.	τ , MKC
10	10,176	26	8,62
12	10,138	28	8,54
14	10,073	30	8,48
16	9,96	32	8,454
18	9,78	34	8,43
20	9,44	36	8,41
22	9,07	38	8,395
24	8,76	40	8,384

Таблица 1: Данные

В нашем случае $\tau_0 = 8,252$ мкс. Построим графики $\tau^2 - \tau_0^2 = f(T)$ (рис. 2) и $\frac{1}{\tau^2 - \tau_0^2} = f(T)$ (рис. 3): На втором графике экстраполируем прямую к оси абсцисс и получим парамагитную точку Кюри (см. рис. 3) Таким образом, парамагнитная точка Кюри для гадолиния:

$$\Theta_p = 18.41 \pm 0.5^{\circ} C$$
 (6)

Это близко к табличному значению, которое равно $18.85^{\circ}C$.

5 Приложение

Рис. 2:
$$\tau^2 - \tau_0^2 = f(T)$$

Рис. 3: $\frac{1}{\tau^2 - \tau_0^2} = f(T)$