浙江工业大学 2018 - 2019 学年第一学期 概率论与数理统计试卷

姓名:	学号:	班级:	任课教师:	
-----	-----	-----	-------	--

题号	_	 三.1	三.2	三.3	三.4	三.5	三.6	总分
得分								

分位点数据

$$\Phi(1) = 0.8413$$
, $\Phi(2) = 0.9773$, $\Phi(1.65) = 0.95$, $\Phi(1.96) = 0.975$.

- 一. 填空题, 共 22 分, 每空 2 分。
 - 1. 随机投掷一枚骰子,随机事件 A 表示"点数是偶数",随机事件 B 表示"点数不是 3 的倍数",则"点数为 6"可用 A, B 表示为 _____。
 - 2. 已知三枚不同的硬币经投掷后正面朝上的概率分别为 0.4, 0.5, 0.7。独立地投掷这三枚硬币,则"正面朝上的硬币数是偶数"的概率为 ____。
 - 3. 己知随机事件 A, B 满足 P(A) = 2P(B),且 $P(A \cup B) = 3P(AB)$,则 P(B|A) =_____。
 - 4. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} A + Be^{-2x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

则常数 *A* = _____, *B* = _____。

- 5. 己知随机变量 X 服从泊松分布 $P(\lambda)$, EX(X+1)=8,则 $\lambda=$ _____。
- 7. 设每箱货物的重量是独立的,且期望均为 100 (单位: 千克),标准差均为 5 (单位: 千克),则根据中心极限定理,100 箱货物的总重量不低于 9900 千克的概率大约是 ____。
- 8. 已知总体 X 的一组样本观测值为 9,11,14,15,12,11,则样本均值的观测值 $\bar{x} = ____$,二阶样本中心矩的观测值 $b_2 = ____$ 。
- 9. 设总体 $X \sim N(0,\sigma^2)$, X_1,X_2,X_3,X_4 是其样本,若 $C\frac{(X_1+X_2+X_3)^2}{X_4^2}$ 服从 F-分布,则常数 C=_____。

二. 选择题, 共18分, 每题3分。

1. 设离散型随机变量 X 的分布表为

X	1	2	3	,其中 $-\frac{1}{3} < t < \frac{1}{3}$ 。当 t 变大时,(
p	$\frac{1}{3}$	$\frac{1}{3}-t$	$\frac{1}{3} + t$	$\frac{3}{3}$

)

- A) EX 变大, Var(X) 变大
- B) EX 变大, Var(X) 变小
- C) EX 变小, Var(X) 变大
- D) EX 变小, Var(X) 变小
- 2. 设随机变量 X,Y 相互独立,且分别服从指数分布 $Exp(\lambda), Exp(\mu)$,则 (
 - A) $X + Y \sim Exp(\lambda + \mu)$
- B) $XY \sim Exp(\lambda + \mu)$
- C) $\min\{X,Y\} \sim Exp(\lambda + \mu)$
- D) $\max\{X,Y\} \sim Exp(\lambda + \mu)$
- 3. 已知随机变量 X, Y 满足 $EX = 1, EY = -1, \ E(XY) = 1, \ EX^2 = EY^2 = 5$ 。 若 X + tY 与 X Y 不 相关,则()
 - A) t = -1
- B) t = 1
- C) $t = \frac{1}{2}$ D) t = 2
- 4. 设 X_1, X_2, X_3, \cdots 相互独立,均服从泊松分布 P(2),对任意 $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\frac{1}{n}(X_1X_2 + X_3X_4 + \dots + X_{2n-1}X_{2n}) - a| > \epsilon) = 0,$$

则 a 的值为 ()

- A) 2
- B) 4
- C) 6
- D) 8
- 5. 已知总体 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知。设 X_1, X_2, \cdots, X_n 是 X 的一组样本,令

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n),$$

则 σ^2 的一个无偏估计可以是 (

A) $\frac{1}{n} \sum_{k=1}^{n} (X_i - \mu)^2$

C) $\frac{1}{n} \sum_{k=1}^{n} (X_i - \bar{X})^2$

- B) $\frac{1}{n-1} \sum_{k=1}^{n} (X_i \mu)^2$ D) $\frac{1}{n-1} \sum_{k=1}^{n} (X_i \bar{X})^2$
- 6. 假设检验中,已知取显著水平为 α 时,拒绝原假设,则(
 - A) 取显著水平 $\alpha' < \alpha$ 时,接受原假设
 - B) 取显著水平 $\alpha' < \alpha$ 时, 拒绝原假设
 - C) 取显著水平 $\alpha' > \alpha$ 时,接受原假设
 - D) 取显著水平 $\alpha' > \alpha$ 时, 拒绝原假设

三. 解答题, 共6题, 60分。

1. (8分)设离散型随机变量 X 的分布表为

X	1	2	3	4	$\exists EX = 2.6$
p	0.2	a	b	0.3	$\begin{bmatrix} 1 & L & L & L & L & L & L & L & L & L &$

- 1) 求常数 a,b;
- 2) 若 $Y = (X-2)^2 + |X-3|$, 求Y的概率函数(分布律)。

2. $(6\, \mathcal{H})$ 已知一传输信道,发送的信号为 0 时,经过信道后接收到信号为 0 的概率是 0.8,接收到信号为 1 的概率是 0.2;发送的信号为 1 时,经过该信道后接收到信号为 1 的概率是 0.6,接收到信号为 0 的概率是 0.4。根据经验,发送的信号为 0.1 的概率均为 $\frac{1}{2}$ 。若接收到的信号为 0,发送的信号为 0 的概率是 3 多少?

3.(10分) 设连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} Cx(3-x), & 0 \le x \le 2, \\ 0, & \text{ 其他 } . \end{cases}$$

- 1) 求常数 C;
- 2) 求期望 EX、方差 Var(X) 和 E|X-1|。

4. (14 分)设二维连续型随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} Cx + \frac{1}{2}y, & 0 < x < 2, 0 < y < 1, \\ 0, & \text{ 其他 } . \end{cases}$$

- 1) 验证常数 $C = \frac{1}{4}$;
- 2) 求 P(X < Y);
- 3) 求 X,Y 的协方差 Cov(X,Y)。

5. (10分)已知总体 X 的密度函数为

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

其中 $\lambda > 0$ 为未知参数。设 X_1, X_2, \cdots, X_n 是X的样本,求 λ 的矩估计和极大似然估计。

- 6. (12分)用自动包装机装箱,假设每箱产品的重量服从正态分布 $N(\mu,4^2)$ (单位:千克)。现随机抽取 16箱,测得样本均值 $\bar{x}=98.5$ 千克。
 - 1) 求均值 μ 的置信水平为 0.95 的双侧置信区间;
 - 2) 取显著水平 $\alpha = 0.05$,问能否认为该包装机包装的一箱产品的平均重量为 100 千克?