16, Given streaming data, design an algorithm to get approximate median of all previous data, use constant memory.

Box 1

P² Algorithm: To calculate the *p*-quantile of $\{x_1, \ldots, x_n\}$

A. Initialization: Sort the first five observations $\{x_1, x_2, x_3, x_4, x_5\}$ and set

Marker heights $q_i \leftarrow x_{(i)}; i = 1, ..., 5$ Marker positions $n_i \leftarrow i; i = 1, ..., 5$ Desired marker positions

$$n'_{1} \leftarrow 1; \quad n'_{2} \leftarrow 1 + 2p; \quad n'_{3} \leftarrow 1 + 4p; n'_{4} \leftarrow 3 + 2p; \quad n'_{5} \leftarrow 5;$$

Note that n_i' are real variables, while n_i are integers.

To reduce CPU overhead, calculate and store the increment dn'_i in the desired marker positions:

$$dn'_1 \leftarrow 0; \quad dn'_2 \leftarrow p/2; \quad dn'_3 \leftarrow p;$$

 $dn'_4 \leftarrow (1+p)/2; \quad dn'_5 \leftarrow 1;$

- B. For each subsequent observation x_j , $j \ge 6$, perform the following:
 - 1. Find cell k such that $q_k \le x_j < q_{k+1}$ and adjust extreme values $(q_1 \text{ and } q_5)$ if necessary, that is,

CASE of x_i

2. Increment positions of markers k + 1 through 5:

$$n_i \leftarrow n_i + 1 \quad i = k, \ldots, 5$$

Update desired positions for all markers:

$$n_i' \leftarrow n_i' + dn_i' \quad i = 1, \ldots, 5$$

3. Adjust heights of markers 2-4 if necessary:

FOR
$$i = 2$$
 TO 4 DO

BEGIN

$$d_{i} \leftarrow n'_{i} - n_{i}$$
IF $\{(d_{i} \ge 1 \text{ and } n_{i+1} - n_{i} > 1) \text{ or } (d_{i} \le -1 \text{ and } n_{i-1} - n_{i} < -1)\}$
BEGIN

$$d_{i} \leftarrow \text{sign}(d_{i})$$
Try adjusting q_{i} using P^{2} formula:

 $q_i' \leftarrow q_i$ from parabolic formula

```
IF \{q_{i-1} < q_i' < q_{i+1}\}

THEN q_i \leftarrow q_i

ELSE use linear formula:

q_i \leftarrow q_i from linear formula;

n_i \leftarrow n_i + d_i,

END IF;

END DO;
C. Return q_3 as the current estimate of p-quantile.
```