PYTHON CRASH COURSE 2ND EDITION

A Hands-On, Project-Based Introduction to Programming

by Eric Matthes

San Francisco

PYTHON CRASH COURSE, 2ND EDITION. Copyright © 2019 by Eric Matthes.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-928-0 ISBN-13: 978-1-59327-928-8

Publisher: William Pollock Production Editor: Riley Hoffman Cover Illustration: Josh Ellingson

Cover and Interior Design: Octopod Studios Developmental Editor: Liz Chadwick Technical Reviewer: Kenneth Love

Copyeditor: Anne Marie Walker

Compositors: Riley Hoffman and Happenstance Type-O-Rama

Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103 phone: 1.415.863.9900; info@nostarch.com www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Matthes, Eric, 1972-

Python crash course : a hands-on, project-based introduction to programming / by Eric Matthes. pages ${\sf cm}$

Includes index.

Summary: "A project-based introduction to programming in Python, with exercises. Covers general programming concepts, Python fundamentals, and problem solving. Includes three projects - how to create a simple video game, use data visualization techniques to make graphs and charts, and build an interactive web application"-- Provided by publisher.

ISBN 978-1-59327-603-4 -- ISBN 1-59327-603-6

1. Python (Computer program language) I. Title.

QA76.73.P98M38 2015

005.13'3--dc23

2015018135

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

NOTE

Your editor's syntax highlighting feature should help you spot some syntax errors quickly as you write your programs. If you see Python code highlighted as if it's English or English highlighted as if it's Python code, you probably have a mismatched quotation mark somewhere in your file.

TRY IT YOURSELF

Save each of the following exercises as a separate file with a name like name_cases.py. If you get stuck, take a break or see the suggestions in Appendix C.

- **2-3. Personal Message:** Use a variable to represent a person's name, and print a message to that person. Your message should be simple, such as, "Hello Eric, would you like to learn some Python today?"
- **2-4. Name Cases:** Use a variable to represent a person's name, and then print that person's name in lowercase, uppercase, and title case.
- **2-5. Famous Quote:** Find a quote from a famous person you admire. Print the quote and the name of its author. Your output should look something like the following, including the quotation marks:

Albert Einstein once said, "A person who never made a mistake never tried anything new."

- **2-6. Famous Quote 2:** Repeat Exercise 2-5, but this time, represent the famous person's name using a variable called famous_person. Then compose your message and represent it with a new variable called message. Print your message.
- **2-7. Stripping Names:** Use a variable to represent a person's name, and include some whitespace characters at the beginning and end of the name. Make sure you use each character combination, "\t" and "\n", at least once.

Print the name once, so the whitespace around the name is displayed. Then print the name using each of the three stripping functions, lstrip(), rstrip(), and strip().

Numbers

Numbers are used quite often in programming to keep score in games, represent data in visualizations, store information in web applications, and so on. Python treats numbers in several different ways, depending on how they're being used. Let's first look at how Python manages integers, because they're the simplest to work with.

Integers

You can add (+), subtract (-), multiply (*), and divide (/) integers in Python.

```
>>> 2 + 3
5
>>> 3 - 2
1
>>> 2 * 3
6
>>> 3 / 2
1.5
```

In a terminal session, Python simply returns the result of the operation. Python uses two multiplication symbols to represent exponents:

```
>>> 3 ** 2
9
>>> 3 ** 3
27
>>> 10 ** 6
1000000
```

Python supports the order of operations too, so you can use multiple operations in one expression. You can also use parentheses to modify the order of operations so Python can evaluate your expression in the order you specify. For example:

```
>>> 2 + 3*4
14
>>> (2 + 3) * 4
20
```

The spacing in these examples has no effect on how Python evaluates the expressions; it simply helps you more quickly spot the operations that have priority when you're reading through the code.

Floats

Python calls any number with a decimal point a *float*. This term is used in most programming languages, and it refers to the fact that a decimal point can appear at any position in a number. Every programming language must be carefully designed to properly manage decimal numbers so numbers behave appropriately no matter where the decimal point appears.

For the most part, you can use decimals without worrying about how they behave. Simply enter the numbers you want to use, and Python will most likely do what you expect:

```
>>> 0.1 + 0.1
0.2
>>> 0.2 + 0.2
0.4
>>> 2 * 0.1
0.2
>>> 2 * 0.2
```

But be aware that you can sometimes get an arbitrary number of decimal places in your answer:

This happens in all languages and is of little concern. Python tries to find a way to represent the result as precisely as possible, which is sometimes difficult given how computers have to represent numbers internally. Just ignore the extra decimal places for now; you'll learn ways to deal with the extra places when you need to in the projects in Part II.

Integers and Floats

When you divide any two numbers, even if they are integers that result in a whole number, you'll always get a float:

```
>>> 4/2
2.0
```

If you mix an integer and a float in any other operation, you'll get a float as well:

```
>>> 1 + 2.0
3.0
>>> 2 * 3.0
6.0
>>> 3.0 ** 2
9.0
```

Python defaults to a float in any operation that uses a float, even if the output is a whole number.

Underscores in Numbers

When you're writing long numbers, you can group digits using underscores to make large numbers more readable:

```
>>> universe_age = 14_000_000_000
```

When you print a number that was defined using underscores, Python prints only the digits:

```
>>> print(universe_age)
14000000000
```

Python ignores the underscores when storing these kinds of values. Even if you don't group the digits in threes, the value will still be unaffected. To Python, 1000 is the same as 1_000, which is the same as 10_00. This feature works for integers and floats, but it's only available in Python 3.6 and later.

Multiple Assignment

You can assign values to more than one variable using just a single line. This can help shorten your programs and make them easier to read; you'll use this technique most often when initializing a set of numbers.

For example, here's how you can initialize the variables x, y, and z to zero:

```
>>> x, y, z = 0, 0, 0
```

You need to separate the variable names with commas, and do the same with the values, and Python will assign each value to its respectively positioned variable. As long as the number of values matches the number of variables, Python will match them up correctly.

Constants

A *constant* is like a variable whose value stays the same throughout the life of a program. Python doesn't have built-in constant types, but Python programmers use all capital letters to indicate a variable should be treated as a constant and never be changed:

```
MAX_CONNECTIONS = 5000
```

When you want to treat a variable as a constant in your code, make the name of the variable all capital letters.