Consider the following string of ASCII characters that were captured by *Wireshark* when the browser sent an HTTP GET message (i.e., this is the actual content of an HTTP GET message). The characters <CR><LF> are carriage-return and line-feed characters. Answer the following questions, indicating where in the HTTP GET message below you find the answer.

```
 \begin{tabular}{ll} GET /classes/spring17/cs118/project-1.html HTTP/1.1 < CR> < LF> \\ Host: web.cs.ucla.edu < CR> < LF> \\ Connection: keep-alive < CR> < LF> \\ Upgrade-Insecure-Requests: 1 < CR> < LF> \\ User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36 < CR> < LF> \\ Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 < CR> < LF> \\ Referer: http://web.cs.ucla.edu/classes/spring17/cs118/homeworks.html < CR> < LF> \\ Accept-Encoding: gzip, deflate, sdch < CR> < LF> \\ Accept-Language: en-US,en;q=0.8,lv;q=0.6,ru;q=0.4 < CR> < LF> \\ If-None-Match: "5a17-54c4847c4f640-gzip" < CR> < LF> \\ If-Modified-Since: Mon, 03 Apr 2017 19:36:49 GMT < CR> < LF> \\ If-Modified-Since: Mon, 03 Apr 2017 19:36:49 GMT < CR> < LF> \\ \end{tabular}
```

- 1. What is the **full** URL of the document requested by the browser?
- 2. What version of HTTP is the browser running?
- 3. What type of browser initiates this message? Why is the browser type needed in an HTTP request message?
- 4. Can you find the IP Address of the host on which the browser is running from the captured HTTP request?

Write your answer here		

For each of the questions below, describe answer in terms of low-level packet sequences, drops, or network-level packet reordering.

- 1. A specific case where $\mathrm{HTTP}/1.1$ wins in performance compared to $\mathrm{HTTP}/1.0$
- 2. A specific case where HTTP with web caching wins in performance compared to HTTP without caching

Write your answer here

Suppose within your Web browser you click on a link to obtain a Web page. The IP address for the associated URL is cached in your local host, so a DNS look-up is not needed. Suppose that the Web page associated with the link is a small HTML file, consisting only of references to 100 very small objects on the same server. Let RTT_0 denote the RTT between the local host and the server containing the object. How much time elapses (in terms of RTT_0) from when you click on the link until your host receives all of the objects, if you are using:

- 1. HTTP/1.0 without parallel TCP connections?
- 2. HTTP/1.0 with parallel TCP connections?
- 3. HTTP/1.1 without parallel connections, but with pipelining?

Ignore any processing, transmission, or queuing delays in your calculation.

Write your answer here	

BitTorrent is a communication protocol for peer-to-peer file sharing which is used to distribute data (or files) over the Internet.

- 1. Consider a new peer A that joins BitTorrent swarm without possessing any chunks. Since peer A has nothing to upload, peer A cannot become a top uploader for any of the other peers. How then will peer A get the first chunk?
- 2. Explain why BitTorrent is primarily useful for popular files but not for unpopular files.
- 3. Consider two DHTs (Distributed Hash Table) with a mesh overlay topology and a circular overlay topology, respectively. What are the advantages and disadvantages of each design?

Write your answer here

The server tries to distribute a file of F = 15Gbits to N clients (peers). The server has an upload rate of $u_s = 30Mbps$, and each peer has a download rate of $d_p = 2Mbps$ and upload rate of $u_p = 1Mbps$. How long does it take to distribute if there are 1,000 peers for both client-server distribution and **P2P** distribution.

Vrite your answer here	