Machine Learning

Representation learning

Dan Goldwasser

dgoldwas@purdue.edu

Language Models

 A language model over a given vocabulary V assigns probabilities to strings drawn from V*

Can we actually do it?

$$P_{ngram}(w_1...w_i) := P(w_1)P(w_2|w_1)...P(\underbrace{w_i}_{nth\ word} |\underbrace{w_{i-n-1}...w_{i-1}}_{prev.\ n-1\ words})$$

```
        Unigram
        P(w_1)P(w_2)...P(w_i)

        Bigram
        P(w_1)P(w_2|w_1)...P(w_i|w_{i-1})

        Trigram
        P(w_1)P(w_2|w_1)...P(w_i|w_{i-2}|w_{i-1})
```

Example: Trigram language model

Consider the sentence:

Mr. Smith goes

```
p(Mr. Smith goes STOP) = p(Mr. | *, *)
p(Smith | *, Mr.) p(goes | Mr., Smith) p(STOP | Smith, goes)
```

Language Models


```
        Unigram
        P(w_1)P(w_2)...P(w_i)

        Bigram
        P(w_1)P(w_2|w_1)...P(w_i|w_{i-1})

        Trigram
        P(w_1)P(w_2|w_1)...P(w_i|w_{i-2}|w_{i-1})
```

Our goal is to assess whether

P(Private Customer... Be Toad)

>?<

P(Private Customer... Be Towed)

What would be the answer if we use – (1) a *Unigram* model? (2) a *Bigram* model?

Language Models

Unigram

- To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
- Every enter now severally so, let
- Hill he late speaks; or! a more to leg less first you enter
- Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Sigram

- What means, sir. I confess she? then all sorts, he is trim, captain.
- •Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- •What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
- •Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt

rigram

- Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
- This shall forbid it should be branded, if renown made it empty.
- Indeed the duke; and had a very good friend.
- Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

uadrigrar

- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- Will you not tell me who I am?
- It cannot be but so.
- Indeed the short and the long. Marry, 'tis a noble Lepidus.

So how did we get here?

After my fiancé died, my mother told me to "get out there again." She wanted me to go to a singles bar. I told her I'd rather go to the dentist.

"Just once," she said. "Just to see what it's like."

One day, early last year, I found myself driving to a singles bar in winter snow. I sat in my car for 15 minutes, then drove away. The next day, I went back and sat in my car for another 15 minutes. I did this for a couple of weeks, until I finally mustered up the nerve to walk in.

Word Embedding (no context)

• Is this the same as an Auto-Encoder?

word2vec model architecture

Neural Language Model – fixed context

Recurrent Neural Networks (one/bi <u>directional</u> unbounded context)

Input is a word (vectors) sequence: $x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n$

At any given time step i : $h_i = \sigma \left(W^{hh} h_{i-1} + W^{hx} x_i \right)$ $\hat{y} = \operatorname{softmax}(W^s \ h_i)$

$$P(x_{i+1} = v_i | x_i, ..., x_1) = \hat{y}_{i,j}$$

RNN Extensions

- Key issue: long range dependencies between inputs.
 - "how can we know which word is important to keep around, when predicting the i+1 word?"
- Solution idea: complex hidden units that implement a "memory"
 - Maintain "old memories" representing relevant long range dependencies
 - Error updates can be back-propagated at different strengths.

Gated Recurrent Units (GRU)

$$h_i = \sigma \left(W^{hh} h_{i-1} + W^{hx} x_i \right)$$
 Original RNN

GRU:

Update Gate:
$$z_i = \sigma \left(W^z x_i + U^z h_{i-1} \right)$$

Reset Gate:
$$r_i = \sigma \left(W^r x_i + U^r h_{i-1} \right)$$

New memory
$$\tilde{h_i} = anh\left(Wx_i + r_i \circ Uh_{i-1}\right)$$

Final memory (aka hidden
$$h_i = z_t \circ h_{i-1} + (1-z_i) \circ h_i$$

(Very) Modern Love

After my fiancé died, my mother told me to "get out there again." She wanted me to go to a singles bar. I told her I'd rather go to the dentist.

"Just once," she said. "Just to see what it's like."

One day, early last year, I found myself driving to a singles bar in winter snow. I sat in my car for 15 minutes, then drove away. The next day, I went back and sat in my car for another 15 minutes. I did this for a couple of weeks, until I finally mustered up the nerve to walk in.

Attention based "reading"

- Many of the challenges introduced by machine comprehension can be addressed using a general solution based on attention
- A general tool, currently used in all NLP tasks
 - Essentially, learn meaningful associations between inputs and outputs which can represent structural dependencies.

Attention

 Attention: at each decoder state computes a distribution over the source inputs based on the current decoder state

Attention

• For each decoder state compute the weighted sum of input states

Decision at step i:

$$P(y_i|\mathbf{x},y_1,\ldots,y_{i-1}) = \operatorname{softmax}(W[c_i;\bar{h}_i])$$

$$c_i = \sum_j \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{j'} \exp(e_{ij'})}$$

$$e_{ij} = f(\bar{h}_i, h_j)$$

 Weighted sum of input hidden states (vector)

Unnormalized scalar weight

Attention

We can identify the source word context for output predictions

Self-attention

- A new way to represent structure
 - Each word forms a query which computes attention over each word

The representation of each word is a function of its neighbors.

Does that sound familiar?

Transformers

- The idea of self attention was extremely influential in NLP
 - No fixed position representation as in LSTM instead structure is represented the attention assignments.

I like bananas but not carrots.
Vs.
I like carrots but not bananas

 In reality, position information is needed, but it is used differently compared to an LSTM, by encoding it as part of the input

BERT

- Transformer-based approach instead of an LSTM-based like ELMo.
 - Transformer vs. LSTM
 - Masked language objective instead of usual LM
 - Fine-tuned at test time

Next sentence

• BERT objective: masked LM + next sentence

BERT in practice

Very flexible, can be used for NLI, classification, tagging, etc.

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

(b) Single Sentence Classification Tasks: SST-2, CoLA

What does BERT learn?

Still way worse than what supervised systems can do, but interesting that this is learned organically

Discussion

- Current NLP trend: train a very complex neural language model using massive amounts of data
- The learned representation should capture "language understanding capability"
 - Word meaning
 - Linguistic structure
 - World knowledge
 - Bad stuff expressed through language.

Language Modeling

- Impossible, **but**.. Bigger models do better and better
 - Limit not yet reached
 - NVIDIA: trained 8.3B parameter GPT model (5.6x the size of GPT-2)
 - Arguable these models are still underfit: larger models still get better held-out perplexities

NVIDIA blog (Narasimhan, August 2019)

Open Questions

- Language modeling as a pre-training, and transformer-based architectures are now SoTA for all major NLP task.
 - GPT-3 uses 175 Billion parameters.

That's a lot!

Is this a sustainable direction? Currently all models developed in industry

Building these models in academia would require a collective effort, might require changing how research is done.

Open Questions

- What is really learned by a language model and how should we think about them?
 - It's clear that our original definition was too simplistic (capture word-patterns for tasks like context sensitive spelling correction)
 - Do we still need symbolic knowledge graphs? Can everything "just" be learned from raw text using a language model?

Evaluating Learned Representations

Q: What is human life expectancy in the United States?

A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955?

A: Dwight D. Eisenhower was president of the United States in 1955.

Q: What party did he belong to?

A: He belonged to the Republican Party.

GPT 3 Generated Answers

Q: Which is heavier, a mouse or an elephant?

A: An elephant is heavier than a mouse.

Q: Which is heavier, a mouse or a toaster?

A: A toaster is heavier than a mouse.

Q: Which is heavier, a toaster or a pencil?

A: A pencil is heavier than a toaster.

Evaluating Machine Comprehension

- The models we discussed are very flexible.
 - Highly expressive models, trained over massive amounts of text.
 - What do they actually learn?
 - Memorize facts, capture common-sense judgements, world knowledge, etc.
- Many tasks can be formulated as LM
 - Question answering, discourse relation, etc.

GPT3: new directions

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

GPT3: new directions

Key observation: few-shot learning only works with the very largest models!

Brown et al. (2020)

Summary

- Machine learning has gone through a remarkable transformation over the last decade.
 - Learning from "clean" labels \rightarrow learn from weak/indirect/self supervision
 - Generalization for one task → One shot learning relying on representation
 - Feature engineering \rightarrow learned representation, at massive scale
 - Connect modalities: vision and language, text and speech,...
 - Perform real world tasks...

- Similar in scope to the mid-term.
- Bring pens + calculator.
- Cheatsheet (1 page, 2 sides).

- Short questions ("true/false", draw lines, etc.)
 - Always explain your answers!
- Pick one: We can use AdaBoost to help reduce bias/variance/both/neither, when comparing the final classifier to the original base classifier.
- Pick one: We can use Bagging to help reduce the bias/variance/both/ when comparing the final classifier to the original base classifier.
- Which of the following.. Will provide a different vectorized representation to the two phrases "I like A but not B" and "I like B but not A" (1) Averaged word embedding (2) LSTM (3) RNN (4) Unigram BoW (5) Bigram BoW

- Theory Question:
 - How many examples would we need to ensure an error no greater than ε , with probability of no more than δ , given that we learn functions of the class monotone conjunctions over N variables?
 - We define a rectangle using two points (x1,y1) and (x2,y2). Any points contained within the rectangle are classified as positive. What would be the number of examples now?

- Algorithm Question
- The AdaBoost algorithm requires base models that can be trained w.r.t a distribution of examples, updated throughout the run of the algorithm.
 - Suggest and justify your choice of a base model.
 - Explain how you would modify the algorithm to take the distribution of the data into account.

Final Exam

- You are given the following dataset.
 - Write down the initial distribution over the examples
 - Draw the classifier that would be trained by your model
 - What is the distribution at the next step?

