

Computação Gráfica

Fase 1 - Primitivas Gráficas Grupo 52

28 de Março de 2020MiEI - 3ºAno - 2ºSemestre

Beatriz Rocha A84003

Filipe Guimarães A85308 Gonçalo Ferreira A84073

José Mendes A75481

Conteúdo

1	Inti	rodução	3
2	Ger	nerator	4
	2.1	Estrutura do ficheiro	4
	2.2	Modo de uso	4
		2.2.1 Criar o executável	4
		2.2.2 Gerar os modelos	5
3	Eng	gine	6
	3.1	Modo de uso	6
		3.1.1 Copiar os modelos	6
	3.2	XML	6
	3.3	Exemplo XML	7
4	Mo	delos 3D	8
	4.1	Plano	8
	4.2		9
	4.3	Esfera	10
	4.4		11
5	Cor	nclusão e Análise de Resultados	12

Lista de Figuras

2.1	Exemplo de ficheiro $.3d$ criado para o plano de lado $2 \ \dots \ \dots$	4
	Exemplo de ficheiro xml	
3.2	Exemplo de ficheiro xml	7
4.1	Exemplo de plano de lado $2 \ldots \ldots \ldots \ldots \ldots$	8
4.2	Exemplo de caixa com lado 2, 3 e 4 e 5 divisões	ç
4.3	Exemplo de esfera com raio 2, 10 slices e 10 stacks	(
4.4	Exemplo de cone de altura 5 e raio 2 com 10 slices e 5 stacks 1	1

Introdução

O objetivo desta fase 1 passa pela criação de primitivas gráficas. Baseia-se em duas aplicações distintas para a criação de modelos 3D: o generator para criar ficheiros contendo todos os vértices precisos para desenhar, recorrendo a triangulos, cada modelo e a engine que tem como função processar ficheiros XML que contêm os caminhos para ficheiros gerados pelo generator que queremos desenhar.

Generator

2.1 Estrutura do ficheiro

Para dar início ao gerador de modelos começamos, à partida, por definir a estrutura do nosso ficheiro gerado. Decidimos colocar 3 pontos por linha, separados por virgulas, definindo assim um vértice. Cada 3 linhas consecutivas definem então um triângulo.

```
1 1.000000, 0.000000, 1.000000
2 1.000000, 0.000000, -1.000000
3 -1.000000, 0.000000, -1.000000
4 1.000000, 0.000000, 1.000000
5 -1.000000, 0.000000, -1.000000
6 -1.000000, 0.000000, 1.000000
```

Figura 2.1: Exemplo de ficheiro .3d criado para o plano de lado 2

2.2 Modo de uso

2.2.1 Criar o executável

Para gerar o executável pretendido corremos os seguintes comandos:

- \$ cd generator
- \$ mkdir build
- \$ cd build
- \$ cmake ..
- \$ make

2.2.2 Gerar os modelos

Depois do executável **generator** criado para gerar os ficheiros respetivos para os diversos modelos usamos os comandos:

Plano de lado 2

\$./generator plane 2 plane.3d

Caixa com dimensões x, y e z respetivamente 2,3 e 4 com 5 divisões

Cone de raio 1 e altura 2 com 10 slices e 5 stacks

 $\$./generator cone 1 2 10 5 cone.3d

Esfera de raio 1 com 10 slices e 5 stacks

 $\$./generator sphere 1 10 5 sphere.3d

Engine

3.1 Modo de uso

Para gerar o executável pretendido corremos os seguintes comandos:

```
$ cd engine
$ mkdir build
$ cd build
$ cmake ..
$ make
```

3.1.1 Copiar os modelos

Depois do executável **generator** criado é preciso que tenhamos os ficheiros .3d na pasta build, para isso podemos recorrer ao seguinte comando para cada ficheiro:

```
\ cp .../.../generator/build/ficheiro.3d .
```

3.2 XML

Para executar a *engine* temos de passar como parâmetro um ficheiro XML que, nesta fase do trabalho, tem todos os modelos que pretendemos desenhar. O formato é baseado na imagem abaixo.

```
<scene>
  <model file="box.3d" />
  <model file="sphere.3d" />
  <model file="cone.3d" />
  <model file="plane.3d" />
  </scene>
```

Figura 3.1: Exemplo de ficheiro xml

3.3 Exemplo XML

Criamos então um ficheiro (exemplo.xml) que desenha todas os modelos pretendidos nesta fase.

Figura 3.2: Exemplo de ficheiro xml

Modelos 3D

4.1 Plano

A abordagem para a realização do plano, especificada na função plane, que dado o tamanho da aresta lateral escreve para um ficheiro os pontos pertencentes aos triângulos que compõem o plano. Por exemplo dado um tamanho a função plane são usados os pontos:

$$\begin{split} A - (\frac{a}{2}, 0, \frac{a}{2}), B - (\frac{a}{2}, 0, \frac{-a}{2}) \\ C - (\frac{-a}{2}, 0, \frac{-a}{2}), D - (\frac{-a}{2}, 0, \frac{a}{2}) \end{split}$$

Escrevem-se pela ordem A,B,C,A,C,D.

Figura 4.1: Exemplo de plano de lado $2\,$

4.2 Caixa

Para estruturar a caixa com os dados de largura, altura, comprimento e divisões das faces, está implementada na função box que por sua vez usa as funções planeXY, planeXZ e planeYZ. Estas três funções auxiliares dado um ponto de partida, a variante respetiva ás divisões da face e o direção para a qual o plano é visível, desenha um plano dividido por em dois triângulos, paralelo respetivamente ao plano que a função representa. Assim com os ciclos a incrementarem em que ponto da face começa essa divisão da face possibilita o desenho das faces completas da caixa.

Figura 4.2: Exemplo de caixa com lado 2, 3 e 4 e 5 divisões

4.3 Esfera

Na construção da primitiva esfera optamos por utilizar coordenadas esféricas para encontrar o vértice e depois fizemos a devida conversão para coordenadas cartesianas. A escolha de coordenadas esféricas deveu-se à facilidade de encontrar o vértice com um ângulo alfa, beta e um raio, pois considerando o ponto de referencia o centro da esfera o raio será sempre constante para todos os vértices e o ângulo alfa e beta do vértice próximo é fácil de encontrar considerando uma contribuição conhecida á partida para estes ângulos (calculada a partir do número de slices e stacks).

O trabalho foi dividido em fatias, que dependem do número de slices, e cada fatia foi dividida em outros bocados dependentes do numero de stacks. Estes bocados foram diferenciados em topo, base e corpo pois cada uma destas tem características diferentes. Considerando uma fatia, o corpo é constituído por varias camadas, cada uma com 2 triângulos. O topo é constituído por um triângulo tal como a base. Os alfa_j e beta_i considerados no código permitem descobrir os ângulos a considerar para a descoberta dos vertices necessários à construção do triângulo.

Figura 4.3: Exemplo de esfera com raio 2, 10 slices e 10 stacks

4.4 Cone

A maneira que decidimos abordar o modelo do cone foi, à partida, saber não só o raio e a altura atual bem como a seguinte. Para conseguirmos ter estas informações usamos as seguintes funções:

$$altura_seguinte = altura_atual + \frac{altura_total}{stacks}$$

$$raio_seguinte = raio_atual - \frac{raio_total}{stacks}$$

Em que a altura começa em $-\frac{h}{2}$ e vai até $\frac{h}{2}$ e o raio de r, na base, até 0 que representa o vértice.

Para desenhar descobrimos então o ângulo que dividia cada "círculo"
no numero de slices pretendidas usando

$$\alpha = \frac{2*\pi}{slices}$$

e usamos os seguintes pontos para, iterativamente criar cada vértice usando coordenadas cartesianas em que a cada iteração escreve-se no ficheiro os dois triângulos consecutivos.

Figura 4.4: Exemplo de cone de altura 5 e raio 2 com 10 slices e 5 stacks

Conclusão e Análise de Resultados

Pode-se dizer que com realização desta primeira fase conseguimos obter conhecimentos a nível de primitivas gráficas, nomeadamente na construção de modelos complexos como uma caixa, uma esfera e um cone, usando figuras simples como triângulos.

De facto, conseguimos cumprir todos os objetivos propostos, alcançando conhecimentos que nos irão permitir avançar para as seguintes fases do projeto.