Topics in High-Dimensional Statistics

Lecture 4: Empirical Risk Minimization II $Concentration,\ Symmetrization\ and\ Contraction$

Contents

1	Empirical processes	2
2	First connection between ERM and empirical processes	2
3	Concentration	4
4	Symmetrization	5
5	Contraction	7
6	Chaining: General result	7
7	Chaining for Rademacher processes	10

1 Empirical processes

Let \mathcal{Z} be a measurable space, P be a probability measure on \mathcal{Z} and $\{Z_i\}_{i=1}^n$ be i.i.d. with distribution P. Given a collection \mathcal{F} of measurable functions $f: \mathcal{Z} \to \mathbb{R}$, the empirical process of P indexed by \mathcal{F} is the stochastic process

$$(X_f)_{f\in\mathcal{F}},$$

defined by

$$X_f := \int f \, \mathrm{d}P - \frac{1}{n} \sum_{i=1}^n f(Z_i).$$

In the sequel, we will use a convenient and commonly used notation to simplify computations. Namely, given two probability measures μ, ν over \mathcal{Z} , we will denote

$$(\mu - \nu)f := \int f d\mu - \int f d\nu.$$

With this convention, the empirical process of P indexed by f writes

$$X_f = (P - P_n)f,$$

where P_n refers to the empirical measure

$$P_n := \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}.$$

As will be clarified in this lecture, and the following, the study of empirical processes is central to the analysis of empirical risk minimization. In particular, the supremum

$$|P - P_n|_{\mathfrak{F}} := \sup_{f \in \mathfrak{F}} (P - P_n)f,$$

plays a central role as described next.

2 First connection between ERM and empirical processes

Consider the problem of empirical risk minimization introduced in the previous lecture. Using the notation previously introduced, suppose for simplicity that there exists

$$\bar{\theta} \in \underset{\theta \in \Theta}{\operatorname{arg\,min}} R(\theta).$$

Then, we have the following lemma.

Lemma 2.1. The excess risk $\mathcal{E}(\theta_n)$ of the empirical risk minimizer θ_n over the parameter set Θ satisfies

$$\mathcal{E}(\theta_n) \le |P - P_n|_{\mathcal{F}},$$

where

$$\mathcal{F} := \{ \gamma(\theta, .) - \gamma(\bar{\theta}, .) : \theta \in \Theta \},\$$

where $\gamma(\theta,.) - \gamma(\bar{\theta},.)$ refers to the function $z \in \mathcal{Z} \mapsto \gamma(\theta,z) - \gamma(\bar{\theta},z)$.

Proof. First, observe that using the notation introduced in Section 1 and the remarks made in Section 2 of the previous lecture, we have that for any $\theta \in \Theta$, possibly depending on the data,

$$R(\theta) = P\gamma(\theta, .)$$
 and $R_n(\theta) = P_n\gamma(\theta, .)$.

By definition of the excess risk and $\bar{\theta}$, we have

$$\mathcal{E}(\theta_n) = R(\theta_n) - R(\bar{\theta})$$

= $P(\gamma(\theta_n, .) - \gamma(\bar{\theta}, .)).$

Now, observe that by definition of the empirical risk minimizer θ_n , we have for all $\theta \in \Theta$ that $R_n(\theta_n) \leq R_n(\theta)$, which can be written equivalently as

$$P_n(\gamma(\theta_n,.) - \gamma(\theta,.)) \le 0.$$

Using this observation for $\theta = \bar{\theta}$ implies that

$$\mathcal{E}(\theta_n) = P(\gamma(\theta_n, .) - \gamma(\bar{\theta}, .))$$

$$\leq (P - P_n)(\gamma(\theta_n, .) - \gamma(\bar{\theta}, .))$$

$$\leq \sup_{\theta \in \Theta} (P - P_n)(\gamma(\theta, .) - \gamma(\bar{\theta}, .))$$

$$= |P - P_n|_{\mathcal{F}}, \tag{2.1}$$

which concludes the proof.

The rest of the lecture will present tools to further control the quantity

$$|P-P_n|_{\mathcal{F}}$$

in the context of general empirical processes.

3 Concentration

The first result we present follows from an application of McDiarmid's inequality. Below, \mathcal{F} denotes an arbitrary collection of measurable functions $f:\mathcal{Z}\to\mathbb{R}$.

Theorem 3.1. Suppose that all functions in \mathcal{F} are [a,b]-valued, for some a < b. Then, for all $n \ge 1$ and all $\delta \in (0,1)$, the inequality

$$|P - P_n|_{\mathcal{F}} \le \mathbb{E}|P - P_n|_{\mathcal{F}} + (b - a)\sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)},$$

hold with probability larger than $1 - \delta$.

Proof. Introduce the function $g: \mathbb{Z}^n \to \mathbb{R}$ defined by

$$g(z_1,\ldots,z_n) = \sup_{f \in \mathcal{F}} \left(Pf - \frac{1}{n} \sum_{i=1}^n f(z_i) \right).$$

Then, for all $1 \leq i \leq n$ and all $z_1, \ldots, z_{i-1}, z_i, z'_i, z_{i+1}, \ldots, z_n \in \mathbb{Z}$, it may be easily verified that

$$|g(z_1, \dots, z_{i-1}, z_i, z_{i+1}, \dots, z_n) - g(z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_n)|$$

$$\leq \frac{1}{n} \sup_{f \in \mathcal{F}} |f(z_i) - f(z'_i)|$$

$$\leq \frac{b-a}{n}.$$

The result therefore follows from an application of McDiarmid's inequality. $\hfill\Box$

The last result exploits only the boundedness property of the functions in \mathcal{F} . Building upon the pioneering work of Talagrand, Bousquet provides in [2] a major improvement of the previous result which involves a notion of variance of the empirical process defined by

$$\sigma^2(\mathcal{F}) := \sup_{f \in \mathcal{F}} \operatorname{Var}_P f \quad \text{where} \quad \operatorname{Var}_P f := P(f - Pf)^2.$$
 (3.1)

The term $\sigma^2(\mathcal{F})$ is sometimes called the wimpy variance of the empirical process and appears as one of the natural means to define the variance of the empirical process [see, for instance, page 305 in 1, for alternative definitions and dicussions].

Theorem 3.2 (2). Suppose that all functions in \mathcal{F} are [a,b]-valued, for some a < b. Then, for all $n \ge 1$ and all t > 0,

$$|P - P_n|_{\mathcal{F}} \le \mathbb{E}|P - P_n|_{\mathcal{F}} + \sqrt{\frac{2t}{n}\left(\sigma^2(\mathcal{F}) + 2(b-a)\,\mathbb{E}|P - P_n|_{\mathcal{F}}\right)} + \frac{(b-a)t}{3n},$$

with probability larger than $1 - e^{-t}$.

4 Symmetrization

Concentration properties of the supremum $|P - P_n|_{\mathcal{F}}$ allow essentially to reduce its control to that of its expectation. The rest of the lecture will therefore focus on bounding the quantity

$$\mathbb{E}|P-P_n|_{\mathfrak{F}}.$$

To this aim, an important result is know as the symmetrization principle that draws a link between the expected suprema of empirical processes and that of Rademacher processes which, via conditionning, happen to be sub-gaussian processes as discussed below.

To discuss this principle, introduce independent random signs $\sigma_1, \ldots, \sigma_n$ (also referred to as Rademacher random variables), i.e., random variables such that $\mathbb{P}(\sigma_i = -1) = \mathbb{P}(\sigma_i = 1) = 1/2$, supposed independent from the Z_i 's. The stochastic process

$$(\mathfrak{R}_n(f))_{f\in\mathcal{F}},$$

defined by

$$\mathfrak{R}_n(f) := \frac{1}{n} \sum_{i=1}^n \sigma_i f(Z_i), \tag{4.1}$$

is called the Rademacher process indexed by \mathcal{F} .

By the symmetrization principle, one usually refers to a set of results relating the supremum of the empirical process to that of the Rademacher process. While early forms of the symmetrization principle where developed in the works of [6], modern versions of the principle find their roots in the influential work of [3]. A general variant of the principle may be stated as follows.

Theorem 4.1. For any convex and non-decreasing function $G : \mathbb{R} \to \mathbb{R}$ and all $n \ge 1$,

$$\mathbb{E}G\left[\sup_{f\in\mathcal{F}}(P-P_n)f\right] \le \mathbb{E}G\left[2\sup_{f\in\mathcal{F}}\mathfrak{R}_n(f)\right]. \tag{4.2}$$

Proof. Consider an artificial set (or ghost sample) Z'_1, \ldots, Z'_n of independent random variables with same distribution P as (and independent from) the original sample Z_1, \ldots, Z_n . Suppose, without loss of generality, that the variables Z'_1, \ldots, Z'_n are also independent from the random signs $\sigma_1, \ldots, \sigma_n$. For brevity, define the notation $\mathbb{E}_z[.] = \mathbb{E}[.|Z_1, \ldots, Z_n]$ and set, for all $f \in \mathcal{F}$,

$$P'_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{Z'_{i}}$$
 and $\mathfrak{R}'_{n}(f) = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(Z'_{i}).$

Then, since $Pf = \mathbb{E}_z[P'_n f]$, we obtain

$$\mathbb{E}G\left[\sup_{f\in\mathcal{F}}(P-P_n)f\right] = \mathbb{E}G\left[\sup_{f\in\mathcal{F}}\mathbb{E}_z(P'_n-P_n)f\right]$$

$$\leq \mathbb{E}G\left[\mathbb{E}_z\sup_{f\in\mathcal{F}}(P'_n-P_n)f\right]$$

$$\leq \mathbb{E}G\left[\sup_{f\in\mathcal{F}}(P'_n-P_n)f\right],$$
(4.3)

where (4.3) follows by monotonicity of G and where (4.4) follows from Jensen's inequality. Next, since for all $f \in \mathcal{F}$ the variables $(P'_n - P_n)f$ and $\mathfrak{R}'_n(f) - \mathfrak{R}_n(f)$, have same distribution, we deduce from (4.4) that

$$\mathbb{E}G\left[\sup_{f\in\mathcal{F}}(P-P_n)f\right]$$

$$\leq \mathbb{E}G\left[\sup_{f\in\mathcal{F}}(\mathfrak{R}'_n(f)-\mathfrak{R}_n(f))\right]$$

$$\leq \mathbb{E}G\left[\sup_{f\in\mathcal{F}}\mathfrak{R}'_n(f)+\sup_{f\in\mathcal{F}}(-\mathfrak{R}_n(f))\right]$$

$$\leq \frac{1}{2}\mathbb{E}G\left[2\sup_{f\in\mathcal{F}}\mathfrak{R}'_n(f)\right]+\frac{1}{2}\mathbb{E}G\left[2\sup_{f\in\mathcal{F}}(-\mathfrak{R}_n(f))\right]$$

$$(4.5)$$

$$= \mathbb{E}G\left[2\sup_{f\in\mathcal{F}}\mathfrak{R}_n(f)\right],\tag{4.7}$$

where (4.5) follows from the monotonicity of G, where (4.6) follows from the convexity of G and where finally (4.7) derives from the fact that, for all $f \in \mathcal{F}$, both the variables $\mathfrak{R}'_n(f)$ and $-\mathfrak{R}_n(f)$ have the same distribution as $\mathfrak{R}_n(f)$. This concludes the proof of the first statement.

5 Contraction

Theorem 5.1. Let $T \subset \mathbb{R}^n$ and L > 0 be fixed. For i = 1, ..., n, let $\varphi_i : \mathbb{R} \to \mathbb{R}$ be L-Lipschitz functions satisfying $\varphi_i(0) = 0$. Let $G : \mathbb{R} \to \mathbb{R}$ be convex and non-decreasing. Then, for any function $F : \mathbb{R}^n \to \mathbb{R}$,

$$\mathbb{E} G \left[\sup_{t \in T} \left\{ F(t) + \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \varphi_{i}(t_{i}) \right\} \right] \leq \mathbb{E} G \left[\sup_{t \in T} \left\{ F(t) + \frac{L}{n} \sum_{i=1}^{n} \sigma_{i} t_{i} \right\} \right],$$

where t_i denotes the i-th coordinate of $t \in \mathbb{R}^n$.

The proof may be found, for instance, in [5] (Theorem 4.12) or in [4] (Theorem 2.2). A typical application of the previous result is the following.

Corollary 5.2. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be L-Lipschitz and such that $\varphi(0) = 0$. Then, for any collection \mathfrak{F} of measurable functions $f : \mathfrak{Z} \to \mathbb{R}$, we have

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathfrak{R}_n(\varphi\circ f)\right]\leq L\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathfrak{R}_n(f)\right].$$

Proof. Conditioning on the data $\{Z_i\}_{i=1}^n$ and applying the previous Theorem with F(t) = 0 and G(t) = t implies

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathfrak{R}_n(\varphi\circ f)|\{Z_i\}_{i=1}^n\right]\leq L\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathfrak{R}_n(f)|\{Z_i\}_{i=1}^n\right].$$

Taking the expectation on both sides gives the desired result.

6 Chaining: General result

A classical result states that if X_1, \ldots, X_n are all sub-gaussian with variance proxy at most σ^2 , we have

$$\mathbb{E}\max_{1 \le i \le n} X_i \le \sqrt{2\sigma^2 \log n}. \tag{6.1}$$

The chaining method can be understood as an important tool to generalize the above classical result to the case of a more general sub-gaussian process $(X_t)_{t\in T}$. The main insight of the chaining method is that, if $(X_t)_{t\in T}$ is a sub-gaussian process as defined below, the quantity

$$\mathbb{E}\sup_{t\in T}X_t,$$

can be controlled in terms of a complexity measure of the index set T.

We first recall the definition of covering numbers. Let (E,d) be a pseudometric¹ space and $T \subset E$. For any $\varepsilon > 0$, define an ε -net for T as any collection \mathbb{N} of points in E such that

$$T \subset \bigcup_{t \in \mathcal{N}} B(t, \varepsilon),$$
 (6.2)

where $B(t,\varepsilon) := \{s \in E : d(s,t) \le \varepsilon\}$. Finally, the ε -covering number of T in E is defined

$$N(T, d, \varepsilon) := \inf\{|\mathcal{N}| : \mathcal{N} \text{ is an } \varepsilon\text{-net for } T \text{ in } E\}.$$

Definition 6.1. Let (E,d) be a pseudo-metric space. A centered stochastic process $(X_t)_{t\in E}$ be is said to be sub-gaussian if

$$\forall s, t \in E, \forall \lambda \in \mathbb{R} : \log \mathbb{E}\left[e^{\lambda(X_s - X_t)}\right] \le \frac{\lambda^2 d^2(s, t)}{2},$$

i.e., if $X_s - X_t$ is sub-gaussian with variance proxy at most $d^2(s,t)$.

Theorem 6.2. Let (E,d) be a pseudo-metric space and $(X_t)_{t\in E}$ be a centered sub-gaussian stochastic process. Let $T \subset E$ and denote D(T) its diameter. Then, for all $T \subset E$ and all $0 \le \varepsilon \le D(T)/2$,

$$\mathbb{E} \sup_{t \in T} X_t \leq \mathbb{E} \left[\sup_{d(s,t) \leq 4\epsilon} |X_s - X_t| \right] + 12 \int_{\varepsilon}^{\frac{D(T)}{2}} \sqrt{\log N(T,d,u)} \, \mathrm{d}u.$$

Proof. Fix $t_0 \in T$. For all integers $j \geq 0$, denote $\delta_j = 2^{-j}D(T)$. For $j \geq 0$, let \mathcal{N}_j be a δ_j -net of T in E of minimum cardinality, with the convention that $\mathcal{N}_0 = \{t_0\}$. For all $j \geq 0$, let $\pi_j : T \to \mathcal{N}_j$ be any function such that, for all $t \in \mathcal{T}$,

$$d(t, \pi_j(t)) \le \delta_j. \tag{6.3}$$

Finally, denote

$$\Delta(u) := \sup_{d(s,t) \le u} |X_s - X_t|.$$

Then, for any integer $J \geq 1$ and any $t \in T$, write

$$X_{t} - X_{t_{0}} = X_{t} - X_{\pi_{J}(t)} + \sum_{j=1}^{J} (X_{\pi_{j}(t)} - X_{\pi_{j-1}(t)})$$

$$\leq \Delta(\delta_{J}) + \sum_{j=1}^{J} \sup_{t \in T} (X_{\pi_{j}(t)} - X_{\pi_{j-1}(t)}).$$

¹All the properties of a metric space are satisfied except that different points may be at zero distance from each other.

Taking the expectation on both sides of the last inequality, and recalling that X_{t_0} is centered, we obtain

$$\mathbb{E}\sup_{t\in T} X_t \le \mathbb{E}\Delta(\delta_J) + \sum_{j=1}^J \mathbb{E}\sup_t \left(X_{\pi_j(t)} - X_{\pi_{j-1}(t)}\right). \tag{6.4}$$

By definition of the \mathcal{N}_i 's, we have, for all $j \geq 1$,

$$|\{(\pi_j(t), \pi_{j-1}(t)) : t \in T\}| \le N(T, d, \delta_j) N(T, d, \delta_{j-1})$$

$$\le N(T, d, \delta_j)^2,$$

since the $\delta \mapsto N(T, d, \delta)$ is non-increasing. Now observe that, for all $t \in T$, we have $d(\pi_j(t), \pi_{j-1}(t)) \leq 3\delta_j$ by the triangle inequality. Therefore, the subgaussian assumption, together with the basic inequality (6.1), imply that, for all $j \geq 1$,

$$\mathbb{E}\sup_{t\in T} \left(X_{\pi_{j}(t)} - X_{\pi_{j-1}(t)}\right) \le 6\delta_{j}\sqrt{\log N(T, d, \delta_{j})}$$

$$= 12(\delta_{j} - \delta_{j+1})\sqrt{\log N(T, d, \delta_{j})}. \tag{6.5}$$

Hence, combining (6.4) and (6.5) leads to

$$\mathbb{E} \sup_{t \in T} X_t \leq \mathbb{E}\Delta(\delta_J) + 12 \sum_{j=1}^J (\delta_j - \delta_{j+1}) \sqrt{\log N(T, d, \delta_j)}$$

$$\leq \mathbb{E}\Delta(\delta_J) + 12 \sum_{j=1}^J \int_{\delta_{j+1}}^{\delta_j} \sqrt{\log N(T, d, u)} \, du$$

$$= \mathbb{E}\Delta(\delta_J) + 12 \int_{\delta_{J+1}}^{\frac{D(T)}{2}} \sqrt{\log N(T, d, u)} \, du. \tag{6.6}$$

Now, take $0 < \varepsilon < D(T)/4$ and let J be the largest integer such that $\varepsilon \le \delta_{J+1}$. Then, since $\delta_{J+2} < \varepsilon$, we have $\delta_J \le 4\varepsilon$. As a result, applying inequality (6.6) for this value of J implies that

$$\mathbb{E} \sup_{t \in T} X_t \le \mathbb{E} \Delta(4\epsilon) + 12 \int_{\epsilon}^{\frac{D(T)}{2}} \sqrt{\log N(T, d, u)} \, \mathrm{d}u,$$

which is the desired result. Note finally that the bound of the Theorem is trivially true if $D(T)/4 \le \varepsilon \le D(T)/2$.

7 Chaining for Rademacher processes

Let (E, d) be the pseudo metric space $L^2(P_n)$, i.e., the set of measurable functions $f: \mathcal{Z} \to \mathbb{R}$ such that $P_n f^2 < +\infty$, endowed with the pseudo-metric

$$d^{2}(f,g) := P_{n}(f-g)^{2} = \frac{1}{n} \sum_{i=1}^{n} (f(Z_{i}) - g(Z_{i}))^{2}.$$

Lemma 7.1. Conditionally on the data $\{Z_i\}_{i=1}^n$, the rescaled Rademacher process

$$(\sqrt{n}\,\mathfrak{R}_n(f))_{f\in L^2(P_n)},$$

is (centered and) sub-gaussian. That is, for all $f, g \in L^2(P_n)$, the variable $\sqrt{n}(\mathfrak{R}_n(f) - \mathfrak{R}_n(g))$ is sub-gaussian with variance proxy at most $P_n(f-g)^2$.

Corollary 7.2. For any collection \mathfrak{F} of measurable functions $f: \mathfrak{Z} \to \mathbb{R}$, we have for any $0 < \varepsilon \leq D_n(\mathfrak{F})/2$,

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mathfrak{R}_n(f)|\{Z_i\}_{i=1}^n\right] \le 4\varepsilon + \frac{12}{\sqrt{n}}\int_{\varepsilon}^{\frac{D_n(\mathcal{F})}{2}}\sqrt{\log N(\mathcal{F}, \|.-.\|_{L^2(P_n)}, u)}\,\mathrm{d}u,$$

where $D_n(\mathfrak{F})$ denotes the diameter of \mathfrak{F} in $L^2(P_n)$.

References

- [1] S. Boucheron, G. Lugosi, and P. Massart. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press, 2013.
- [2] O. Bousquet. A bennett concentration inequality and its application to suprema of empirical processes. *Comptes Rendus de l'Académie des Sciences de Paris*, 334:495–500, 2002.
- [3] E. Giné and J. Zinn. Some limit theorems for empirical processes. *The Annals of Probability*, 12:929–989, 1984.
- [4] V. Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery problems. In *Lectures from the 38th Summer School on Probability Theory held in Saint-Flour in July, 2008.* Springer, 2011.
- [5] M. Ledoux and M. Talagrand. *Probability in Banach Spaces*. Springer, 1991.

[6] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. *Theory of Probability and its Applications*, 16:264–280, 1971.