$$\mathbf{V\acute{y}po\check{c}et} \ \binom{N}{K} \ (\bmod \ M)$$

Kombinační číslo
$$\binom{N}{K} = \frac{N!}{K!(N-K)!} = \frac{N(N-1)(N-2)\dots(N-K+1)}{K!}, K = min(K,(N-K))$$

je **přirozené číslo** definované pro
$$N \ge K, \ N, K \in \mathbb{N} \cup \{0\}$$
 a platí: $\binom{N}{0} = \binom{0}{0} = 1$.

Podle toho, zda N je větší nebo menší než M a podle toho, zda M je nebo není prvočíslo volíme různé způsoby výpočtu. Princip výpočtu v každé situaci je založen na vytvoření binomického koeficientu ve tvaru součinu jednotlivých prvků výsledku [4].

- 1. Je li M číslo složené, rozložíme M na součin nesoudělných mocnin prvočinitelů, použijeme čínskou větu o zbytcích [1] a výsledek vytváříme z dílčích výpočtů N nad K modulo jednotlivými mocninami prvočinitelů.
- 2. Jestliže M je prvočíslo a je menší než N, potom pro výpočet použijeme Lucasovu větu. [2]
- 3. Pokud je M prvočíslo, ale není větší než N, použijeme postup [4].

1.1 M není prvočíslo

Pokud máme počítat modulo M, kde M není prvočíslo, rozložíme M na prvočísla a použijeme Čínskou větu o zbytcích [1] k výpočtu binomického koeficientu modulo M.

 $M = p_1^{\ell_1} \dots p_m^{\ell_m}$, kde $p_1^{\ell_1} \dots p_m^{\ell_m}$ jsou nesoudělná, určíme $x_1, \dots x_m$:

$$\binom{n}{k} \pmod{p_1^{\ell_1}} = x_1$$

$$\begin{pmatrix} n \\ k \end{pmatrix} \pmod{p_1^{\ell_1}} = x_1$$

$$\vdots$$

$$\begin{pmatrix} n \\ k \end{pmatrix} \pmod{p_m^{\ell_m}} = x_m$$

Potom $\binom{n}{k}\pmod{M}=x_1q_1+\cdots+x_mq_m$, kde $q_i\equiv 1\pmod{p_i^{\ell_i}}\wedge q_i\equiv 0\pmod{p_j^{\ell_j}}$ pro $j\neq i$. Čísla q_1,\ldots,q_m nalezneme například takto : vytvoříme číslo $P_i=\prod_{i\in I}p_j^{\ell_j}$ a položíme $q_i=P_it_i$, kde t_i je

inverzní prvek k číslu P_i v $(\mathbb{Z}_{p_i^{\ell_i}}\odot))$. Platí $p_i^{\ell_i}\alpha+P_it_i=1$. Inverzní prvek můžeme určit rozšířeným Eukleidovým algoritmem, kterým najdeme vyjádření největšího společného dělitele dvou čísel jejich lineární kombinací.

1.2 M je prvočíslo

V roce 1878 Lucas navrhl metodu výpočtu binomických koeficientů modulo prvočíslo p (např. [2]):

$$\binom{n}{k} \equiv \prod_{i=0}^{\ell} \binom{n_i}{k_i} \pmod{p},$$

kde $n=n_\ell p^\ell+n_{\ell-1}p^{\ell-1}+\cdots+n_1p+n_0$ a $k=k_\ell p^\ell+k_{\ell-1}p^{\ell-1}+\cdots+k_1p+k_0$ jsou koeficienty rozkladu na kv p-kové číselné soustavě, (reprezentace na kv tělese $\mathbb{Z}_p).$

Pokud se v součinu vyskytuje aspoň jedna dvojice n_i , k_i taková, že $n_i < k_i$, výsledek je nula.

To znamená, že je nutné spočítat binomické koeficienty pro čísla menší nebo rovna p.

1.3 M je mocnina prvočísla

Po více než sta letech mnozí autoři zobecnili Lucasovu větu na mocniny prvočísla, např. K.S.Davis a W.A.Webb nebo A. Granville [3, 2]:

$$\binom{np^{\ell+s}+n_0}{kp^{\ell+s}+k_0} \equiv \prod_{i=0}^\ell \binom{n_i}{k_i} \pmod{p^{\ell+1}},$$

kde ℓ, n, k, n_0, k_0 a s jsou přirozená čísla, taková, že $0 < n_0, k_0 < p^s$

Princip výpočtu [4]

A. Vytvoření výsledku ve tvaru součinu mocnin prvočísel.

Binomický koeficient zapíšeme ve tvaru $\binom{N}{K} = N^1 \cdot (N-1)^1 \cdot \dots \cdot (N-K+1)^1 \cdot K^{-1} \cdot (K-1)^{-1} \cdot \dots \cdot 2^{-1}$. Výsledek je přirozené číslo, takže (pro $N \geq K$) při dělení K!=K(K-1)...2 se nám všechna čísla ze

Výsledek je přirozené číslo, takže (pro $N \geq K$) při dělení K!=K(K-1)...2 se nám všechna čísla ze jmenovatele vykrátí, takže rozklad výsledku na součin bude obsahovat pouze kladné mocniny. Rozklad výsledku budeme udržovat v poli, kde hodnota i-tého prvku je rovna exponentu E takovému, že i E je přítomno v rozkladu výsledku. K tomu použijeme Eratosthenovo síto, ve kterém u složených čísel ještě označíme, jaké největší prvočíslo je dělí.

Např. síto pro N=19

1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
) ()	0	2	0	3	0	2	3	5	0	3	0	7	5	2	0	3	0

použijeme pro výpočet $\binom{19}{9} = \frac{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} = 19 \cdot 17 \cdot 13 \cdot 11 \cdot 2.$

Nejprve vytvoříme pole rozklad:

_			-	-		_			-	-	-		-	-		3		
1	1	1	1	1	1	1	1	1	0	-1	-1	-1	-1	-1	-1	-1	-1	

Potom sestupně prozkoumáme čísla od 19 do 2:

je-li zpracovávané číslo (i) prvočíslo (sito[i]==0), neupravujeme ho. Vezmeme další neprobraný základ i a odpovídající exponent E (i=18,E=1).

Je-li i číslo složené, pak v sítě najdeme největší prvočíslo P, které i dělí (18 = $3 \cdot 6$, tj.sito[18] je 3; [i/sito[i]] je 6). Tím se nám rozloží i E na $P^E \cdot (i/P)$ E (18 na $3^1 \cdot (18/3)^1$. Obě čísla jsou menší než i, přidáme je tedy s odpovídajícím exponentem do rozkladu a dále rozkládáme.

Postupně pro všechna složená čísla upravíme popsaným způsobem mocniny v rozkladu: rozklad[sito[i]]=rozklad[sito[i]]+rozklad[i]; rozklad[i/sito[i]]=rozklad[i/sito[i]]+rozklad[i]; je li číslo prvočíslo, není čím ho krátit.

Až projdeme všechna čísla od N do 2, budeme mít v rozkladu na prvočíselných místech p_i mocniny těchto prvočísel, ve kterých se vyskytují ve výsledku, tj. budeme mít připravený prvočíselný rozklad $\binom{N}{K}$ jako $p_1^{l_1} \cdot p_2^{l_2} \cdot \dots \cdot p_k^{l_k}$. Na obrázku je znázorněno pole rozklad pro příklad $\binom{19}{9}$.

B. Násobení modulo M

V poli rozklad je: rozklad[j] = 0 pro $j \neq p_i$, rozklad[p_i] = ℓ_i , $i=1,\ldots,k,\ j=0,\ldots,N$. Rozložíme ℓ_i na součet mocnin dvojky, kde se každá vyskytuje nejvýše jednou, $p^{\ell_i} = p^{2^a+2^b+2^c\dots 2^z} = p^{2^a}\cdot p^{2^b}\dots p^{2^z}$, kde $0 \leq a < b < c < d \cdots < z \leq \log_2 \ell_i$ Násobit budeme tak, že začneme od $a=0,\ p^{2^0} \mod M$ uložíme jako základ. Pak v každém kroku přistoupíme k další mocnině. Nejprve si ověříme, jestli tato mocnina zrovna v našem rozkladu figuruje, a pokud ano, číslo, kterým máme přinásobit výsledek, vypočítáme z předchozího: $p^{2^a} \pmod{M} = (p^{2^{a-1}} \pmod{M}) \cdot p^{2^{a-1}} \pmod{M}$ mod M.

Realizace

Jsou realizovány 3 způsoby výpočtu:

- 1. pro složené M pomocí Čínské věty o zbytcích
- 2. pro prvočíselné M < N podle Lucasovy věty
- 3. v případě, že M je mocnina prvočísla nebo N < M používáme způsob [4].

V případě výpočtu podle Lucasovy věty potřebujeme vytvořit Eratosthenovo síto pro čísla $2 \dots p-1$. Do pole rozklad budeme postupně pro jednotlivé n_i a k_i (zbytky po dělení n a k prvočíslem p) **přidávat** resp. **ubírat** jedničku, výsledně budeme mít v poli rozklad mocniny čísel $n_0, n_1, ...n_d$ a $k_0, k_1, ...k_d$, $0 < k_i < n_i < p-1$, ve kterých se vyskytují ve výslednem binomickém koeficientu.

Tento rozklad upravíme popsaným způsobem na součin mocnin prvočísel a násobením určíme výsledek.

Program je vytvořen v C.

Ve funkci main se provádí načtení vstupu (N,K,M), kontrola smysluplnosti zadaných N,K,M, určení výsledku pro triviální případy $(K=0,\ K=1,\ N=K)$. Dále funkce main zavolá funkci, která vytvoří síto pro větší z hodnot $N,\ M$ a podle zadaných N,M zavolá jednu z funkcí crt, Lucas, n_nad_k, ve kterých se provede výpočet. Podle jednotlivých mocnin prvočinitelů se z funkce crt zavolají funkce Lucas nebo n_nad_k. Výpočet inverzního prvku je realizován rozšířeným Eukliedovym algoritmem.

Časová a paměťová složitost

Realizace vyžaduje:

- 1. vytvoření Eratosthenova síta
- 2. vytvoření pole rozklad
- 3. zpracování rozkladu průběžné krácení
- 4. násobení modulo M

Na rozklad na prvočísla potřebujeme dvě pole (sito a rozklad) o N resp. M prvcích. Ostatní operace vyžadují několik proměnných typu integer. Paměťová složitost je tedy $\mathcal{O}(N)$ resp. $\mathcal{O}(M)$.

Hledání prvočísel Eratosthenovým sítem má složitost $\mathcal{O}(N \log \log N)$, resp. $\mathcal{O}(M \log \log M)$.

Vytvoření pole rozklad pro N < M vyžaduje jeden průchod polem velikosti N tj. $\mathcal{O}(N)$.

Pro M < N v podstatě převádíme N do M-kové soustavy, což vyžaduje $\mathcal{O}(\log_M(N))$ dělení. Takže vytvoření pole rozklad byde v tomto případě mít složitost $\mathcal{O}(M\log_M(N))$.

Průběžné zkrácení vyžaduje jeden průchod polem rozklad, tj. $\mathcal{O}(N)$ resp. $\mathcal{O}(M)$.

Násobení. Složitost úpravy exponentů ℓ_1, \ldots, ℓ_k pro prvočíselné M je $\mathcal{O}(N)$, výpočet Eulerovy funkce $\varphi(M)$ má složitost $\mathcal{O}(N \log M)$, přepočet použitím rozkladu na mocniny dvojky $\mathcal{O}(N \log N)$. Druhá část algoritmu bude asymptoticky alespoň $\mathcal{O}(N \log N)$.

Testování

Program jsem testoval pro $N, K, M \in \langle 2, 100000 \rangle$. Výsledky výpočtu funkce crt a Lucas jsem porovnával s výsledky funkce n_nad_k.

Literatura

- [1] D. KNUTH, The art of Programming, vol. II
- [2] A. GRANVILLE, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in Organic mathematics (Burnaby, BC, 1995), 253–276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
- [3] K. S. DAVIS and W. A. WEBB, A binomial coefficient congruence modulo prime powers, J. Number Theory. 43 (1993), 20–23.
- [4] Vzorové řešení KSP 21-4-3