9) Highest XOTR values for > 000000 & 111111 > without having more than 3 consecutive 1's

4011011,100110

5(1)20 10111111101 e supriliad vo (6(0)4 Given num > 10110/11/01 is not It we satisfy 4 60) to 1 (or) Palindrome because when reversed it is in number of moves - 3 1011001101 0123456789 S (1) to 0 we get

Sequence > Root (6)

tright (1)

Left (0)

Right (1)

Right (1)

Rlyht(1)

Has 4 1's seven number

5) Binary tree

1 -> Move to right 0 -> move to left

Given num= 10111

Start at root

Root(R)

Root(R

4) 1001 - 9 1111-315	
1100-12 1101713	
1110-14 1011-11	F
1010-10 0110-6 Unknown weight	Ø.
0111570010100000	4
0101-5 001092	1
00101-3 0 0001-31	
OVEROLITO LE COLOR	(
First divide into two parts and weigh using	
the digital balance consider the heavier side	1
and again divide it into further pasts and	
at last we will be left with the heaviest weight	

10) The modulo algorithm is used to check if the binary is divisible by 7 rem = (remxz + current bit) mod 7 First rem = 0 For 1st bit rem = (0x2+1) mod 7 = 1 2 nd = rem = (1x2+1) mod 7 = 3 3rd = rem = (3x2+0) nod 7 = 6 4th -9 vem = (6x2+1) mod 7 = 13 mod 7 = 6 5th > yem = (6x2 to) mod 7 = 12 mod 7 = 5 6th -> Yem = (5x2+1) mod 7 = 11 mod 7 = 4 7th -> vem = (4x2+0) mad 7 = 8 mod 7 - 1 Final remainder = 1 Since final remainder is not equal to O the binary number is not divisible by >