Geneva Graduate Institute (IHEID) Econometrics I (EI035), Fall 2024 Marko Mlikota

Problem Set 4

Due: Sunday, 10 November, 23:59

- Prepare concise answers.
- State clearly any additional assumptions, if needed.
- Submit your solutions, along with any code (if applicable), in a **single pdf file** through **Moodle**. If you choose to write your solutions by hand, please make sure your scanned answers are legible.

• Grading scale:

default grade
absolutely no mistakes and particularly appealing write-up
(clear and concise answers, decent formatting, etc.)
more than a few mistakes,
or single mistake and particularly long, wordy answers
numerous mistakes,
or clear lack of effort (e.g. parts not solved or not really attempted)
no submission by due date

Problem 1

You can find the data set for this question and a description of the variables on Moodle. The data spreadsheet contains four variables: average hourly earnings *ahe*, age *age*, gender *female*, and education *bachelor*. To answer the questions, use the asymptotic distribution of the OLS/ML estimator to conduct hypothesis tests or generate 95% confidence intervals.

(a) Run a regression of the logarithm of earnings on age, age^2 , female, and bachelor. Based on your results, what are the predicted log-earnings of a 30 year old female with a bachelor degree? Note that you can write the quantity of interest as

$$\mathbb{E}[y_i|age = 30, female = 1, bachelor = 1] = \tilde{x}_i'\beta$$
, where $\tilde{x}_i = [1, 30, 30^2, 1, 1]'$.

- (b) Using a t-test and a significance level of $\alpha = 0.05$, can you reject the null hypoothesis that the expected hourly earnings of a 30 year old female with a bachelor degree are equal to 20 dollars per hour (i.e. that the expected log-earnings are equal to $\ln 20 \approx 2.99$)?

 Hint: Note that we can write $\mathcal{H}_0: \tilde{x}_i'\beta = 2.99$, with \tilde{x}_i as defined above. Based on the (asymptotic) distribution of β , you can find that of $\tilde{x}_i'\beta$, which allows you to construct a t-test for that quantity.
- (c) Using your t-test, construct a 95%-confidence interval for the expected log-earnings of a 30 year old female with a bachelor degree.
- (d) Redo exercises (a) and (c) as a function of age. Concretely, plot the regression relation (the so-called age-earnings profile) between expected age (on the x-axis) and log ahe (on the y-axis) for the age range 20-65 for females with a bachelor degree, i.e. plot

$$\mathbb{E}[\log ahe \mid age, male, bachelor]$$

as a function of age. Also, overlay confidence bands around the age-earnings profile by plotting the 95% confidence interval for the above quantity as a function of age.

- (e) Can you interpret the coefficient in front of *bachelor* as the causal effect of obtaining a bachelor degree on earnings? Discuss.
- (f) By virtue of including both age and age^2 , the regression you interpreted so far assumes a non-linear relationship between age and log-earnings, and this relationship is assumed to be the same for males and females. Keeping the assumption of such a non-linear relationship between age and log-earnings, test whether this relationship is different for males and females. Hint: construct two covariates as the interactions female * age and female * age², and test whether they are jointly (!) significantly different from zero.