# Lab 3 for uC/OS-II: Ceiling Priority Protocol

Prof. Li-Pin Chang ESSLab@NCTU

## Objective

To implement Ceiling Priority Protocol for ucOS's mutex locks

#### ucOS Mutex Locks

- Mutex lock is assigned to a priority upon creation
  - Its priority is higher than the priorities of all the tasks sharing the mutex lock
  - E.g., the lock's priority will be 2 if T<sub>3</sub> and T<sub>4</sub> share the lock
  - When a task blocks another task via a mutex lock,
     the task inherits the priority of the lock

#### Disadvantages of PIP

- The "PIP" avoids uncontrolled priority inversion, but it has two disadvantages
  - A high priority task can be blocked multiple times
  - Deadlocks are possible

# Scenario 1: Multiple blocking in ucOS2 PIP



Task H is in turn blocked by task L1 and task L2

#### Scenario 2: Deadlock in uCOS-2 PIP



### Ceiling Priority Protocol

- Highest Locker's Priority Protocol
- The priority of the mutex lock is higher than the priorities of all the tasks sharing the lock
- Differently, when a task acquires a mutex lock, the task's priority boosts to the priority of the lock

#### S1 CPP: Removing Multiple Blockings



The result of applying CPP

### S2 CPP: Avoiding Deadlocks



Deadlocks are avoided by using CPP

#### Implementation

- Reuse your code of Lab 1 (do not use EDF)
- Modify the two functions
  - OSMutexPend
    - Boost the locker's priority to the mutex priority
  - OSMutexPost
    - Restore the original priority of the locker
- Do not use OSTaskChangePrio to boost tasks' priorities
  - It calls OS\_Sched() and results in unexpected behaviors

#### Implementation

- All tasks should add proper OSTimeDly() at their beginning to emulate their arrival times
- Emulate durations of CPU execution and resource use with your code from Lab 0
  - 2 ticks → lock R1 → 6 ticks → lock R2 → 2 ticks → unlock R2 → 2 ticks → unlock R1

#### Output

- Similar to those in prior labs, but add lock/unlock events
- Output the results of using CPP for Scenarios 1 and 2

### Output Example of S1

 $20^{\circ}$ 

1 - a - b

#### Priority initialization:

R1: 1

R2: 2

Task1: 3

Task2: 4

Task3: 5

#### Task arrival time:

Task1: 8

Task2: 4

Task3: 0

| 20  | TOUK     | ΝI | (1110=) | Changes | UU=1 ) |
|-----|----------|----|---------|---------|--------|
| 90  | unlock   | R1 | (Prio=1 | changes | to=5)  |
| 90  | complete |    | 5       | 3       |        |
| 110 | lock     | R1 | (Prio=3 | changes | to=1)  |
| 130 | lock     | R2 | (Prio=1 | changes | to=1)  |

(Prio-5, observed to-1)

D1

170 lock R2 (Prio=4 changes to=2)
210 unlock R2 (Prio=2 changes to=4)

**210** complete 4 19

#### Task execution time and resource used:

unlock R1

Task1:

lock R1 lock R2 unlock R2 unlock R1
2 4

Task2: R2

Task3: R1 unlock R1

lockR1

