Incontro 2024-05-29 Ricerca Operativa

Gli incontri avvengono sia in presenza che nella stanza Zoom:

https://univr.zoom.us/j/87547655553

E, quando disponibile, la loro registrazione è nel folder:

https://univr.cloud.panopto.eu/Panopto/Pages/Sessions/List.aspx?folderID=58ba7ced-73bd-4fd0-b01f-b12d0106957d

Massimo Flusso Minimo Taglio

E' un problema combinatorico di nascita in quanto, dove $\varphi: E \to \mathbb{R}$ fosse la soluzione desiderata, ossia quello che chiamiamo un flusso ammissibile, allora esisterebbe sembre una soluzione ottima intera.

Fact: data una qualsiasi istanza (G,s,t,c) con le capacità c intere $(c:E\to\mathbb{N})$ esiste sempre una soluzione ottima intera.

proof: Di fatto esiste sempre una soluzione se e solo se $c \geq 0$ (basti considerare $\varphi = 0$). La formulazione come problema di PL data la volta scorsa evidenzia che lo spazio delle soluzioni è un poliedro (compatto). Poichè tale poliedro è contenuto nella box $0 \leq x \leq c$ allora è un politopo (compatto), quindi esiste almeno una soluzione ottima (la regione ammissibile non è illimitata ed è compatta). Sia φ una qualsiasi soluzione ottima. Se è intera abbiamo vinto. Si prenda pertanto contezza dell'insieme degli archi $E' \subseteq E$ dove φ è frazionaria (= non intera). Si noti che in nessun nodo v può essere incidente un solo arco di E'. Quindi E' contiene un ciclo C. Gli archi di C possono essere partizionati come C^+ oppure C^- a seconda del verso di percorrenza. Sia $\varepsilon^+ = \min_{e \in C^+} c_e - \varphi_e$ e $\varepsilon^- = \min_{e \in C^+} \varphi_e$. Avremo che $\varepsilon := \min(\varepsilon^-, \varepsilon^+) > 0$ poichè φ_e è frazionario per ogni $e \in C \subset E'$. Sia $\varphi' : E \to \mathbb{R}$ definito da:

```
1. \varphi'_e \coloneqq \varphi_e \text{ se } e \notin C
```

2.
$$\varphi_e' \coloneqq \varphi_e + \varepsilon$$
 se $e \in C^+$

3.
$$\varphi'_e := \varphi_e - \varepsilon \text{ se } e \in C^-$$

è ancora un flusso, dello stesso valore di φ , e con meno archi su cui è frazionario che non φ . QED

Dimostrazione esistenziale che massimo flusso = minimo taglio

Se c è un intero, allora il minimo valore di taglio è intero. Se $c_e=0$ per un qualche arco e, allora si applichi induzione su $G\setminus e$. Se esiste un arco e che non appartiene ad alsun taglio minimo, si usi induzione su (G,s,t,c') dove c'=c eccetto che $c'_e=c_e-1$. Se esiste un arco e=(s,t), si usi induzione su $G\setminus e$ (sia il max-flow val che la min-cut capacity shiftano precisamente di c_e). Se esiste un arco e=(v,s) oppure e=(t,v), si usi induzione su $G\setminus e$ (quì sia il max-flow val che la min-cut capacity nemmeno cambiano). Se esiste un arco u,v con $u\neq s$ e $v\neq t$ che appartiene ad un min capacity s,t-cut $\delta^+(S)$, allora $s,u\in S$ e $v,t\notin S$. By induction on the graph G_S obtained by conceptually collapsing all nodes in S into a single node s', there exists a flow φ^S saturating the minimum capacity s',t-cut $\delta^+(s')$. Similarly, in the graph $G_{\bar{S}}$ obtained by conceptually collapsing all nodes in $\bar{S}:=V\setminus S$ into a single node t', there exists a flow $\varphi^{\bar{S}}$ saturating the minimum capacity s,t'-cut $\delta^-(t')$. Consider the flow φ definito da:

```
1. \varphi_e \coloneqq \varphi_e^{\bar{S}} se e è un arco di G_{\bar{S}} non contenuto nel taglio \delta^+(S) = \delta^-(t')
```

2.
$$\varphi_e:=\varphi_e^S$$
 se e è un arco di G_S non contenuto nel taglio $\delta^+(S)=\delta^+(s')$

3.
$$\varphi'_e := \varphi_e^{\bar{S}} = \varphi_e^S$$
 se $e \in \delta^+(S)$ ossia se e è un arco sia di $G_{\bar{S}}$ che di G_S .

Si noti che φ è un flusso di valore pari alla capacità del taglio $\delta^+(S)$ che esso satura.

Si assuma pertanto che ogni arco sia contenuto in un s,t-taglio di capacità minima, ma non esistano archi (u,v) appartenenti ad s,t-tagli di capacità minima aventi sia $u \neq s$ che $v \neq t$. Questo implica che per ogni arco (u,v) deve valere u=s oppure v=t. A questo punto è facilissimo concludere. QED