SVD, PCA, and dimension

reduction

Roadmap

- Dimension reduction
- Absolute essentials of eigenvectors and eigenvalues
- SVD and PCA
- Examples

Genetic loci (few 100k)

Consider genotype data

Individuals (few 1000s)

	HGDP00448	HGDP00479	HGDP00985	HGDP00611	HGDP00623	HGDP00557	HGDP00569	HGDP00581
MitoA10045G	AA	AA						
MitoA10551G	AA	AA	AA	AA	AA	AA		
MitoA11252G	AA	AA	AA	AA	GG	AA	AA	AA
MitoA11468G	AA	AA	AA	AA	AA	AA	GG	GG
MitoA11813G	AA	AA						
MitoA12309G	AA	AA	AA	AA	AA	AA		GG
MitoA13106G	GG	GG	GG	AA	AA	AA	AA	AA
MitoA13264G	AA	AA						
MitoA13781G	AA	AA						
rs10000543	CC	CC	TC	CC	CC	CC	TT	CC
rs10000918	GG	AG	GG	AG	AG	AG	AA	AG
rs10000929	AG	AA	AA	AA	AA	AG	AA	AA
rs10001378	TT	CC	TT	TC	TC	TT	TT	TC
rs10001548	TC	TT	TC	TT	TC	TC	TT	CC
rs10002472	GG	AG	GG	GG	AG	GG	GG	GG
rs10004399	AA	AA	AA	AG	AG	AA	ΔΔ	ΔG
rs1000459	TT	TC	TC	CC	CC	CC http	s://hagsc.org	/hgdp/files.h
1000EEE0	00	00	00	00	00	00	00	00

Genetic loci (few 100k)

Consider genotype data

Individuals (few 1000s)

HGDP00448 HGDP00479 HGDP00985 HGDP00611 HGDP00623 HGDP00557 HGDP00569 HGDP00581

	11001 00440	11001 00473	11001 00000	TIODI 00011	11001 00020	11001 00001	11001 00000	11001 00001					
MitoA10045G	AA	AA	AA	AA	AA	AA	AA	AA					
MitoA10551G	AA	AA	AA	AA	AA	AA							
MitoA11252G	AA	AA	AA	AA	GG	AA	AA	AA					
MitoA11468G	AA	AA	AA	AA	AA	AA	GG	GG					
MitoA11813G	AA	AA	AA	AA	AA	AA	AA	AA					
MitoA12309G	AA	AA	AA	AA	AA	AA		GG					
MitoA13106G	GG	GG	GG	AA	AA	AA	AA	AA					
MitoA13264G	AA	AA	AA	^^	^ ^	۸۸	^ ^	A A					
MitoA13781G	AA	AA	AA	 Convert to numbers 									
rs10000543	CC	CC	TC	compa	re columi	ns 2							
rs10000918	GG	AG	GG	•									
rs10000929	AG	AA	AA	Would	like to vis	sualize in	2 dimesion	ons:					
rs10001378	TT	CC	TT	• 10	000 x 2 ?								
rs10001548	TC	TT	TC	1 1	16	10	1 1	CC					
rs10002472	GG	AG	GG	GG	AG	GG	GG	GG					
rs10004399	AA	AA	AA	AG	AG	AA	AA	AG					
rs1000459	TT	TC	TC	CC	CC	CC	TC	CC					
rs10005550	GG	GG	GG	GG	GG	GG	GG	GG					

Suppose your data looks like genotype data

Individuals (few 1000s)

	HGDP00448	HGDP00479	HGDP00985	HGDP00611	HGDP00623	HGDP00557	HGDP00569	HGDP00581
MitoA10045G	AA							
MitoA10551G	AA	AA	AA	AA	AA	AA		
MitoA11252G	AA	AA	AA	AA	GG	AA	AA	AA
MitoA11468G	AA	AA	AA	AA	AA	AA	GG	GG
MitoA11813G	AA							
MitoA12309G	AA	AA	AA	AA	AA	AA		GG
MitoA13106G	GG	GG	GG	AA	AA	AA	AA	AA
MitoA13264G	AA							
MitoA13781G	AA							
rs10000543	CC	CC	TC	CC	CC	CC	TT	cc
rs10000918	GG	AG	GG	AG	AG	AG	AA	AG
rs10000929	AG	AA	AA	AA	AA	AG	AA	AA
rs10001378	TT	cc	TT	TC	TC	TT	TT	TC
rs10001548	TC	TT	TC	TT	TC	TC	TT	СС
rs10002472	GG	AG	GG	GG	AG	GG	GG	GG
rs10004399	AA	AA	AA	AG	AG	AA	AA	AG
rs1000459	TT	TC	TC	CC	CC	CC	TC	CC
rs10005550	GG							

Genetic loci (few 100k)

Individuals

 Some rows are similar to each other, some columns are similar to each other

- The data are in some way "predictable"
- Can we build a lowcomplexity object that explains most of the data matrix.

enetic loci

Now that looks like structure

Individuals

- Reorder rows and columns to put similar rows next to each other?
- Libraries to make exactly this sort of eye-candy are mature.
 This one is sanborn.clustermap
- Organizing data like this is deeply satisfying—it makes us think we have discovered truth.
- What if I told you linear algebra could do this?

Why Reduce dimensions?

В

Example:

Genes mirror

geography within

Europe

 $m \times n = 200k$ genetic loci x 1400 individuals

10.1038/nature07331

How many dimensions again?

n x m can be large (compared to our computers and our displays):

> Twitter (500M tweets / day, May 2020) Youtube (2.5 billion views / day)

Natural Language processing (10⁴-10⁶ words)

Netflix prize was 500K users x 20K movies

Biochemical or genetic assays (10⁴-10⁷ features of interest)

Image processing (10⁷ pixels easy)

Definition of eigenvectors and eigenvalues

Eigenvalue decomposition

These vectors can be constructed orthogonal (zero inner products) and normal (x dot x = 1)

 $\mathbf{A} = \operatorname{Sum}_{i} \ \mathbf{e}_{i}^{\mathrm{T}} \lambda_{i} \mathbf{e}_{i}$ n n A square eigenvectors eigenvalues eigenvectors matrix (orthogonal) (diagonal) (orthogonal)

Eigenvalue decomposition

```
import numpy as np
from numpy import linalg as LA
# A library function will take a square matrix and give
# back a vector of eigenvalues and a matrix of eigenvectors.
A=np.array([16, 2, 3, 13],[5, 11, 10, 8],[9, 7, 6, 12],
[4, 14, 15, 1]
evalues, evectors = LA.eig(A)
print(evalues)
print(evectors)
B=np.dot(np.dot(evectors , evalues * np.eye(4)) ,
LA.inv(evectors))
```

Singular Value Decomposition (SVD)

- Eigenvalue decomposition is very nice, but only applies to square data matrices.
- Singular Value Decomposition (SVD) is a generalization for rectangular matrices

Singular Value Decomposition (SVD)

- Eigenvalue decomposition is very nice, but only applies to square data matrices.
- Singular Value Decomposition (SVD) is a generalization for rectangular matrices

Recipe for building SVD:

This is the matrix of inner products between rows; summed over all the samples

Now take the eigenvalue decomposition of AA^T

- Now take the eigenvalue decomposition of AA^T
- I have a bunch of zero eigenvalues, so I have a bunch of eigenvectors that can't contribute to the sum

- ullet Now take the eigenvalue decomposition of AA^T
- $U(n \times r)$, $\sigma(r)$, $U^{T}(r \times n)$

Constructing SVD - columns

• This matrix has dimensions n_samples x n_samples.

Constructing SVD - columns

Eigenvalue decomposition again

- Because of the relationship between A^TA and AA^T these two matrices have the same eigenvalues.
- Some of the eigenvalues have to be zero in the larger matrix

Singular Value Decomposition (SVD)

- I have two sets of basis vectors and one set of r singular values.
- Two powers of A -> elements of Σ are square roots of eigenvalues

Singular Value Decomposition (SVD)

- I have two sets of basis vectors and one set of r singular values.
- Two powers of A -> elements of Σ are square roots of eigenvalues

SVD

```
import numpy as np
from numpy import linalg as LA

#
https://numpy.org/doc/stable/refe
rence/generated/numpy.linalg.svd.
html
U, SIGMA, VT = LA.svd(A)
```

We could calculate SVD ourselves in two lines –

but we shouldn't

Approximate, truncated SVD

```
import numpy as np
from numpy import linalg as LA
from sklearn.utils.extmath import
randomized_svd
```

```
# https://scikit-
learn.org/stable/modules/generate
d/sklearn.utils.extmath.randomize
d_svd.html
```

U, SIGMA, VT = randomized_svd(A,
n_components=50)

The library functions use convergence or optimization to find approximate matrix factorizations.

Does not actually build or store A^TA

Approximate and truncated decompositions are cheaper to compute.

Principal Component analysis

- SVD is a just linear algebra + geometry interpretation of the columnwise & rowwise inner products.
- PCA is the doctrine of using vectors derived from SVD to interpret data.
- The data points are rotated onto the singular vectors, renamed PCA coordinates
- AV = T (new coordinates)
- Can make pretty pictures

Principal Component analysis

This is the dimension reduction we might have asked for

Table 1
Principal Components Analysis of BIS-11 Items (Oblique Rotation)

		First-order factors								
BIS-	11 items	1	2	3	4	5	6			
11.	I "squirm" at plays or lectures.	.84	.17	08	03	.03	.02			
32.	I am restless at the theater or lectures.	.84	.19	12	06	00	03			
5.	I don't "pay attention."	.57	.04	.16	02	.27	.02			
17.	I act "on impulse."	.15	.74	.08	02	20	.06			
20.	I act on the spur of the moment.	.12	.72	.19	10	19	.01			
23.	I buy things on impulse.	08	.59	−.04	.28	.10	.11			
12.	I am a careful thinker. ^a	.17	13	.64	.17	18	.05			
1.	I plan tasks carefully. ^a	05	.16	.64	04	.11	10			
8.	I am self-controlled.a	.10	.00	.63	24	.08	17			

Patton et al. 1995 Factor structure of the Barratt Impulsiveness Scale doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1

Table 1
Principal Components Analysis of BIS-11 Items (Oblique Rotation)

	First-order factors								
BIS-11 items	1	2	3	4	5	6			
11. I "squirm" at plays or lectures.	.84	.17	08	03	.03	.02			
32. I am restless at the theater or lectures.	.84	.19	12	06	00	03			
5. I don't "pay attention."	.57	.04	.16	02	.27	.02			
17. I act "on impulse."	.15	.74	.08	02	20	.06			
20. I act on the spur of the moment.	.12	.72	.19	10	19	.01			
23. I buy things on impulse.	08	.59	04	.28	.10	.11			
12. I am a careful thinker. ^a	.17	13	.64	.17	18	.05			
1. I plan tasks carefully.a	05	.16	.64	04	.11	10			
8. I am self-controlled. ^a	.10	.00	.63	24	.08	17			

Patton et al. 1995 Factor structure of the Barratt Impulsiveness Scale doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1

Table 1
Principal Components Analysis of BIS-11 Items (Oblique Rotation)

		First-order factors								
BIS-	11 items	1	2	3	4	5	6			
11.	I "squirm" at plays or lectures.	.84	.17	08	03	.03	.02			
32.	I am restless at the theater or lectures.	.84	.19	12	06	00	03			
5.	I don't "pay attention."	.57	.04	.16	02	.27	.02			
17.	I act "on impulse."	.15	.74	.08	02	20	.06			
20.	I act on the spur of the moment.	.12	.72	.19	10	19	.01			
23.	I buy things on impulse.	08	.59	04	.28	.10	.11			
12.	I am a careful thinker.a	.17	13	.64	.17	18	.05			
1.	I plan tasks carefully.a	05	.16	.64	04	.11	10			
8.	I am self-controlled.a	.10	.00	.63	24	.08	17			

Data correlations here used to inform reduction of dimension from 35-question survey to 6 scores.

Genes mirror geography within Europe

 $m \times n = 200k$ genetic loci x 1400 individuals

10.1038/nature07331

Genes mirror geography within Europe

Principal components and eigenvalues come back from largest to smallest magnitude.

It is conventional to report principal components along with the fraction of variance explained by each

FEDERALIST: A COLLECTION OF E S S A Y S,

- 85 documents, initially published anonymously 1787-1788
- Authors' reminiscences disagree about authorship of some of the essays
- 85 documents parsed into vocabulary of ~10000 "words"

What if your data looks like this?

NEW	7	3	2	1	1	2	11	3	7	2	2	4	4	6	3	2	1	3	2	2
SO	3	4	4	5	3	4	4	5	5	4	4	6	3	6	2	3	4	2	4	2
THEY	6	22	5	17	11	11	7	13	20	11	9	8	3	17	15	14	7	12	9	7
AGAINST	2	1	3	6	5	4	1	5	5	6	1	3	1	4	4	6	2	4	6	C
ANY	6	1	4	5	3	0	6	2	4	4	4	7	3	2	3	11	2	2	6	C
EITHER	2	0	5	4	1	5	3	1	3	1	3	0	0	1	1	3	1	0	1	C
FOR	13	14	11	12	8	14	15	9	11	18	19	8	2	19	18	9	12	8	8	17
GOVERNMENT	5	4	5	11	2	1	1	1	8	4	2	6	7	7	4	10	4	3	1	2
GUARANTY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
NATIONAL	1	3	14	7	0	4	2	2	2	2	4	4	4	2	9	9	8	0	2	C
NATURE	0	0	0	0	0	1	0	1	0	2	1	2	0	2	2	1	3	0	1	2
NC	9	8	6	11	5	2	13	11	9	18	5	12	3	17	10	4	2	16	17	7
OTHER	3	3	7	10	2	5	4	4	4	16	6	11	1	6	3	2	7	2	5	4
NWC	4	1	0	4	0	0	4	0	2	3	4	1	1	4	2	2	0	2	3	1
STATES,	0	0	6	0	1	3	4	4	4	1	5	1	3	3	1	2	1	1	1	2
JPON	6	1	0	0	0	4	11	3	4	0	6	7	2	0	10	6	6	1	0	1
COULD	1	1	1	2	0	0	2	3	3	2	3	2	0	1	3	12	1	2	2	1
KIND	0	2	1	0	1	0	0	0	3	0	1	1	0	0	5	4	1	0	0	C
SHALL	7	1	0	6	1	1	1	0	4	2	3	1	3	0	1	1	1	0	2	C
SHOULD	1	3	4	1	4	2	7	4	4	0	3	4	0	2	6	6	2	1	0	C
STATES	2	1	4	1	0	4	25	7	5	1	7	8	5	8	8	6	2	0	2	C
ΓΟΤΑL	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	C
VALUE	0	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	C
WANT	0	0	2	1	0	1	0	1	0	0	0	1	0	1	1	0	0	0	0	1
WHO	8	7	1	3	3	7	2	0	3	9	4	1	3	1	6	5	2	8	5	3
ΑT	8	9	1	2	4	6	11	11	10	8	11	13	1	7	24	11	7	4	5	8
BETWEEN	0	0	0	2	3	8	9	3	3	3	4	5	1	4	2	3	4	2	4	1
DUTIES	0	0	0	1	0	0	2	0	0	0	0	6	0	0	0	0	0	0	1	2
EACH	0	5	0	2	6	4	4	2	0	4	7	4	4	0	5	1	2	2	2	4
LANDS	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	C

FEDERALIST:

A COLLECTION OF

ESSAYS,

- Sometimes $\sum (x \bar{x})(y \bar{y})$ is not an appropriate distance score for your data.
- You can run PCA on an n x n distance matrix evaluated using a domain-specific columnwise comparison.
- Resulting low-dimensional coordinates visualize vocabulary/style relationships

Caveats

- SVD/PCA don't know anything but the cloud of points and its correlations.
- Each new sample builds a different set of basis vectors
- Hard to interpret: positive and negative values in the eigenvectors
- Does not handle non-numerical values—have to change the objective function for that (Netflix)

Linear algebra objects

Matrix multiplication

2d matrix

Transformation of x1, x2 using A

Dimension reduction

For a general matrix representing n observations of m traits:

A(mxn)

It is unlikely that all of the elements in this matrix are independent; there is likely some "structure"

If I could replace A with an approximation of A that has fewer than n x m numbers, A will be cheaper to store, faster to copy, can run on computers with less memory.

Eigenvalue decomposition

$A(n \times m)$

(rows x columns)

(n "samples" by m "features")

	Hydrozoa	Sphingobacteriia	Marattiopsida	Pedinophyceae	Chrysiogenetes (class)	Fusobacteria (class)	Amphibia	•
(Index,)								
mgm4703051.3.mg	2	354	0	0	0	0	0	
mgm4755207.3.mg	3430	0	25	14	33111	101765	5094	
mgm4473196.3.mg	150	0	0	10	1265	487614	11598	
mgm4679127.3.mg	0	245	0	0	0	0	0	
mgm4529798.3.mg	2	4588	0	0	25	0	56	

Now this looks like "structure"

Organizing data like this is deeply satisfying—it makes us think we have discovered truth.

Mature libraries to make exactly this sort of eye-candy graphs. This one is sanborn.clustermap

What if I told you linear algebra could do this?

