ΘΕΜΑ 2

2.1. Σημειακό αντικείμενο μάζας m κινείται με ταχύτητα \vec{v} και συγκρούεται μετωπικά και πλαστικά με άλλο, ακίνητο σημειακό αντικείμενο, μάζας $3 \cdot m$. Η κρούση διαρκεί μικρό χρονικό διάστημα Δt . Κατά τη διάρκεια αυτού του χρονικού διαστήματος, το μέτρο της μέσης δύναμης που δέχεται το σημειακό αντικείμενο μάζας m από το σημειακό αντικείμενο μάζας m από το σημειακό αντικείμενο μάζας m είναι:

(a)
$$-\frac{3 \cdot m \cdot |v|}{4 \cdot \Delta t}$$
 , (b) $\frac{4 \cdot m \cdot |v|}{3 \cdot \Delta t}$, (c) $\frac{3 \cdot m \cdot |v|}{4 \cdot \Delta t}$

όπου |v| το μέτρο της ταχύτητας \vec{v} .

2.1.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Ορισμένη ποσότητα ιδανικού, μονοατομικού, αερίου θερμαίνεται κατά ΔT (όπου ΔT η μεταβολή της θερμοκρασίας) με δύο τρόπους: διατηρώντας σταθερό τον όγκο του (αντιστρεπτή ισόχωρη θέρμανση) και διατηρώντας σταθερή την πίεσή του (αντιστρεπτή ισοβαρής θέρμανση). Αν Q_V και Q_P είναι τα ποσά της θερμότητας που πρέπει να απορροφήσει η συγκεκριμένη ποσότητα του ιδανικού μονοατομικού αερίου, για να θερμανθεί κατά ΔT , κατά την αντιστρεπτή ισόχωρη και κατά την αντιστρεπτή ισοβαρή θέρμανση αντίστοιχα, τότε:

(
$$\alpha$$
) $\frac{Q_P}{Q_V} = \frac{3}{5}$, (β) $\frac{Q_P}{Q_V} = \frac{5}{3}$, (γ) $\frac{Q_P}{Q_V} = 1$

2.2.Α. Να επιλέξετε την ορθή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9