Университет ИТМО Физико-технический мегафакультет Физический факультет

ГруппаР3208	К работе допущен
Студент Ступин Т.Р. Петров В.М. Есоян В.С.	Работа выполнена
Преподаватель Сорокина Е.К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.03

Изучение центрального соударения двух тел. Проверка второго закона Ньютона

1. Цель работы.

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением
 - 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки

2. Задачи, решаемые при выполнении работы.

- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- 3. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

3. Объект исследования.

- 1. Упругие и неупругие соударения тележек
- 2. Движение тележки под действием постоянной силы.

4. Метод экспериментального исследования.

Замер таких величин как:

- масса тележек
- скорость тележек

5. Рабочие формулы и исходные данные.

• Импульсы тел

$$p_{10x} = m_1 v_{10x}, \qquad p_{1x} = m_1 v_{1x}, \qquad p_{2x} = m_2 v_{2x}$$

• Относительное изменение импульса системы при соударении

$$\delta_p = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$

• Относительное изменение кинетической энергии системы при соударении

$$\delta_W = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$

• Средние значения относительных изменений импульса и энергии

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N}; \ \overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N}$$

• Доверительный интервал для δ_p

$$\Delta \bar{\delta}_{p} = t_{\alpha_{\text{\tiny ДOB}},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}}$$

• Доверительный интервал для δ_W

$$\Delta \bar{\delta}_W = t_{\alpha_{\text{\tiny ДOB}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \bar{\delta}_W)^2}{N(N-1)}}$$

• Импульс системы до и после соударения

$$p_{10} = m_1 v_{10}$$
 $p = (m_1 + m_2)v$

• Относительное изменение импульса

$$\delta_p = \frac{p}{p_{10}} - 1$$

• Экспериментальное и теоретическое значения относительного изменения механической энергии

$$\delta_W^{(3)} = \frac{(m_1 + m_2)v_2^2}{m_1 v_{10}^2} - 1 \quad \delta_W^{(T)} = -\frac{m_2}{m_1 + m_2}$$

• Ускорение тележки

$$a = \frac{v_2^2 - v_1^2}{2(x_2 - x_1)}$$

• Сила натяжения нити

$$T = m(g - a)$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Линейка на рельсе	аналоговый	0-1,3 м	0,05 м
2	ПКЦ-3 в режиме измерения скорости	цифровой	0-1 м/с	0,01 м/с
3	Лабораторные весы	цифровой	0-10 г	0,01 г

7. Схема установки (перечень схем, которые составляют Приложение 1).

до соударения

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 Измерение скоростей тележек с рогатками без утяжелителя

N опыта	m_1 , г	m_2 , г	$v_{10x}, {\rm M/c}$	v_{1x} , M/c	v_{2x} , m/c
1			0,53	0	0,50
2			0,54	0	0,50
3	49,95	51,67	0,55	0	0,51
4			0,52	0	0,49
5			0,55	0	0,52

Таблица 2 Измерение скоростей тележек с рогатками с утяжелителем

N опыта	m_1 , Γ	m_2 , г	v_{10x} , m/c	v_{1x} , m/c	v_{2x} , m/c
1			0,56	-0,12	0,21
2	49,95	100,63	0,54	-0,13	0,23
3			0,53	-0,14	0,18

4	0,55	-0,17	0,23
5	0,54	-0,15	0,23

Таблица 3 Измерение скоростей тележек с липучками без утяжелителя

N опыта	m_1 , г	m_2 , г	v_{10} , M/C	υ, м/с
1			0,50	0,23
2			0,52	0,24
3	53,03	54,64	0,52	0,22
4			0,52	0,20
5			0,53	0,21

Таблица 4 Измерение скоростей тележек с липучками без утяжелителя

N опыта	m_1 , г	m_2 , г	v_{10} , m/c	ν, м/с
1			0,52	0,13
2			0,52	0,16
3	53,03	103,58	0,52	0,14
4			0,54	0,16
5			0,51	0,14

Таблица 5. Измерение скорости тележки без утяжелителя с разным числом грузов на нитке. Разгоняемое тело – тележка. $M_1=48,15\ \Gamma$

N опыта	Состав гирьки	т, г	v_1 , m/c	v ₂ , м/с
1	подвеска	1,76	0,22	0,53
2	подвеска + одна шайба	2,57	0,30	0,71
3	подвеска + две шайбы	3,43	0,35	0,83
4	подвеска + три шайбы	4,03	0,38	0,89
5	подвеска + четыре шайбы	4,90	0,42	0,99
6	подвеска + пять шайб	5,71	0,45	1,06
7	подвеска + шесть шайб	6,55	0,49	1,14

Таблица 6. Измерение скорости тележки с утяжелителем с разным числом грузов на нитке. Разгоняемое тело — тележка с утяжелителем. $M_2=97,10~\Gamma$

	2	<i>-</i>		
N опыта	Состав гирьки	т, г	v_1 , m/c	v ₂ ,м/с
1	подвеска	1,76	0,08	0,19
2	подвеска + одна шайба	2,57	0,15	0,34
3	подвеска + две шайбы	3,43	0,20	0,46
4	подвеска + три шайбы	4,03	0,24	0,54
5	подвеска + четыре шайбы	4,90	0,26	0,63
6	подвеска + пять шайб	5,71	0,34	0,79
7	подвеска + шесть шайб	6,55	0,36	0,84

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*). Задание 1

N опыта	p_{10x} , м $\mathrm{H}\cdot\mathrm{c}$	p_{1x} , м $H\cdotc$	p_{2x} , м $\mathbf{H}\cdot\mathbf{c}$	δ_p	δ_W
1	26,47	0,00	25,84	-0,024	-0,079

2	26,97	0,00	25,84	-0,042	-0,113
3	27,47	0,00	26,35	-0,041	-0,111
4	25,97	0,00	25,32	-0,025	-0,081
5	27,47	0,00	26,87	-0,022	-0,075

Рассчитаем $p_{10x}, p_{1x}, p_{2x}, \delta_p, \delta_W$ для первого измерения:

$$p_{10x} = m_1 v_{10x} = 49,95 \cdot 0,53 = 26,47 \text{ MH} \cdot \text{c}$$

$$p_{1x} = m_1 v_{1x} = 49,95 \cdot 0 = 0 \text{ MH} \cdot \text{c}$$

$$p_{2x} = m_2 v_{2x} = 51,67 \cdot 0,50 = 25,84 \text{ MH} \cdot \text{c}$$

$$\delta_p = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1 = \frac{(0 + 25,84)}{26,47} - 1 = -0,024$$

$$\delta_W = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1 = \frac{49,95 \cdot 0^2 + 51,67 \cdot 0,50^2}{49,95 \cdot 0,53^2} - 1 = -0,079$$

Также вычислим средние значения $\overline{\delta_p}$ и $\overline{\delta_W}$:

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = -0.031$$

$$\overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.092$$

Таблица 8

N опыта	p_{10x} м $\mathrm{H}\cdot\mathrm{c}$	p_{1x} , м $\mathbf{H}\cdot\mathbf{c}$	<i>р</i> _{2<i>x</i>} , мН ∗ с	δ_p	δ_W
1	27,97	-5,99	21,13	-0,459	-0,671
2	26,97	-6,49	23,14	-0,383	-0,577
3	26,47	-6,99	18,11	-0,580	-0,698
4	27,47	-8,49	23,14	-0,467	-0,552
5	26,97	-7,49	23,14	-0,420	-0,557

Рассчитаем p_{10x} , p_{1x} , p_{2x} , δ_{p} , δ_{W} для первого измерения:

$$\begin{split} p_{10x} &= \, m_1 v_{10x} = \, 49,\!95 \, \cdot \, 0,\!56 = 27,\!97 \, \mathrm{mH} \cdot \mathrm{c} \\ p_{1x} &= \, m_1 v_{1x} = \, 49,\!95 \cdot (-0,\!12) = -5,\!99 \, \mathrm{mH} \cdot \mathrm{c} \\ p_{2x} &= \, m_2 v_{2x} = \, 100,\!63 \cdot 0,\!21 = \, 21,\!13 \, \mathrm{mH} \cdot \mathrm{c} \\ \delta_p &= \frac{(p_{1x} + \, p_{2x})}{p_{10x}} - 1 = \frac{(-5,\!99 + \, 21,\!13)}{27,\!97} - 1 = -0,\!459 \\ \delta_W &= \frac{m_1 v_{1x}^2 + \, m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1 = \frac{49,\!95 \cdot (-0,\!12)^2 + \, 100,\!63 \cdot 0,\!21^2}{49,\!95 \cdot 0,\!56^2} - 1 = -0,\!671 \end{split}$$

Также вычислим средние значения $\overline{\delta_p}$ и $\overline{\delta_W}$:

$$\overline{\delta_p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.462$$

$$\overline{\delta_W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N} = -0.611$$

N опі	ыта	p_{10} , м $ ext{H} \cdot ext{c}$	<i>р</i> , мН·с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{ ext{(T)}}$
1		26,52	24,76	-0,066	-0,570	
2		27,58	25,84	-0,063	-0,567	-0,507
3		27,58	23,69	-0,141	-0,637	-0,307
4		27,58	21,53	-0,219	-0,700	

~	20.11	22.61	0.106	0.601	
1 5	1 28.11	22.61	-().196	-0.681	
5	20,11	22,01	0,170	0,001	

Рассчитаем p_{10} , p, δ_p , $\delta_W^{(\mathfrak{I})}$, $\delta_W^{(\mathfrak{T})}$ для первого измерения:

$$\begin{split} p_{10} &= m_1 v_{10} = 53,\!03 \cdot 0,\!5 = 26,\!52 \,\mathrm{mH} \cdot \mathrm{c} \\ p &= (m_1 + m_2) v = (53,\!03 + 54,\!64) \cdot 0,\!23 = 24,\!76 \,\mathrm{mH} \cdot \mathrm{c} \\ \delta_p &= \frac{p_1}{p_{10}} - 1 = \frac{24,\!76}{26,\!52} - 1 = -0,\!066 \\ \delta_W^{(3)} &= \frac{(m_1 + m_2) v_2^2}{m_1 v_{10}^2} - 1 = \frac{(53,\!03 + 54,\!64) \cdot 0,\!23^2}{53,\!03 \cdot 0,\!5^2} - 1 = -0,\!57 \\ \delta_W^{(T)} &= -\frac{m_2}{m_1 + m_2} = -\frac{54,\!64}{53,\!03 + 54,\!64} = -0,\!507 \end{split}$$

Также вычислим средние значения $\overline{\delta_n}$ и $\overline{\delta^{(9)}_W}$:

$$\frac{\overline{\delta_p}}{\delta_p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.137$$

$$\frac{\overline{\delta^{(3)}}_W}{\delta^{(3)}_W} = \frac{\sum_{i=1}^{N} \delta^{(3)}_{Wi}}{N} = -0.631$$

Таблица 10

N опыта	p_{10} , м $\mathrm{H}\cdot\mathrm{c}$	<i>р</i> , мН · с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{^{(\mathrm{T})}}$
1	27,58	20,36	-0,262	-0,815	
2	27,58	25,06	-0,091	-0,720	
3	27,58	21,93	-0,205	-0,786	-0,661
4	28,64	25,06	-0,125	-0,741	
5	27,05	21,93	-0,189	-0,777	

Рассчитаем p_{10} , p, δ_p , $\delta_W^{(\mathfrak{I})}$, $\delta_W^{(T)}$ для первого измерения:

$$\begin{split} p_{10} &= m_1 v_{10} = 53,\!03 \cdot 0,\!52 = 27,\!58 \, \mathrm{mH} \cdot \mathrm{c} \\ p &= (m_1 + m_2) v = (53,\!03 + 103,\!58) \cdot 0,\!13 = 20,\!36 \, \mathrm{mH} \cdot \mathrm{c} \\ \delta_p &= \frac{p}{p_{10}} - 1 = \frac{20,\!36}{27,\!58} - 1 = -0,\!262 \\ \delta_W^{(3)} &= \frac{(m_1 + m_2) v_2^2}{m_1 v_{10}^2} - 1 = \frac{(53,\!03 + 100,\!58) \cdot 0,\!13^2}{53,\!03 \cdot 0,\!52^2} - 1 = -0,\!815 \\ \delta_W^{(\mathrm{T})} &= -\frac{m_2}{m_1 + m_2} = -\frac{100,\!58}{53,\!03 + 100,\!58} = -0,\!661 \end{split}$$

Также вычислим средние значения $\overline{\delta_p}$ и $\overline{\delta^{(9)}_W}$:

$$\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N} = -0.174$$

$$\overline{\delta^{(3)}_W} = \frac{\sum_{i=1}^N \delta^{(3)}_{Wi}}{N} = -0.768$$

Задание 2

N опыта	т, г	а, м/с ²	Т, мН
1	1,76	0,179	16,951
2	2,57	0,319	24,393
3	3,43	0,436	32,154

4	4,03	0,498	37,526
5	4,9	0,618	45,040
6	5,71	0,709	51,969
7	6,55	0,815	58,917

Рассчитаем a, T для первого измерения ($x_2=0.8;\;x_1=0.15$):

$$a = \frac{v_2^2 - v_1^2}{2(x_2 - x_1)} = \frac{0.53^2 - 0.22^2}{2 \cdot (0.8 - 0.15)} = 0.179 \frac{M}{c^2}$$

$$T = m(g - a) = 1.76 \cdot (9.81 - 0.179) = 16.951 \text{ MH}$$

Методом наименьших квадратом рассчитаем силу трения и массу тележки как коэффициенты линейной зависимости $T = m(g - a) + F_{TD}$:

$$ar{T}=38,14$$
 мН
$$ar{a}=0,51~rac{ ext{M}}{ ext{c}^2} \ ext{M}_1=rac{\sum (a_i-ar{a})(T_i-ar{T})}{\sum (a_i-ar{a})^2}=67,30~ ext{f} \ ext{F}_{ ext{TD}}=38,14-0,51\cdot67,30=3,82~ ext{мH}$$

Таблица 12

N опыта	т, г	а, м/с ²	Т, мН
1	1,76	0,023	17,225
2	2,57	0,072	25,028
3	3,43	0,132	33,196
4	4,03	0,180	38,809
5	4,9	0,253	46,828
6	5,71	0,391	53,782
7	6,55	0,443	61,353

Рассчитаем
$$a$$
, T для первого измерения ($x_2=0.8$; $x_1=0.15$):
$$a=\frac{v_2^2-v_1^2}{2(x_2-x_1)}=\frac{0.19^2-0.08^2}{2\cdot(0.8-0.15)}=0.023~\frac{\text{м}}{\text{c}^2}$$
 $T=m(g-a)=1.76\cdot(9.81-0.023)=17.225~\text{мH}$

Методом наименьших квадратом рассчитаем силу трения и массу тележки как коэффициенты линейной зависимости $T = m(g - a) + F_{TD}$:

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Таблица 7:

$$\Delta \bar{\delta_p} = t_{\alpha_{\text{\tiny ДOB}}, \ N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta_p})^2}{N(N-1)}} = 0.01 \quad \Delta \bar{\delta_W} = t_{\alpha_{\text{\tiny ДOB}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \bar{\delta_W})^2}{N(N-1)}} = 0.02$$

Таблица 8:

$$\Delta \bar{\delta}_{p} = t_{\alpha_{\text{дов}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}} = 0.09 \quad \Delta \bar{\delta}_{W} = t_{\alpha_{\text{дов}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \bar{\delta}_{W})^{2}}{N(N-1)}} = 0.08$$

Таблица 9:

$$\Delta \bar{\delta}_{p} = t_{\alpha_{\text{ДОВ}}, \ N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}} = 0.09 \quad \Delta \overline{\delta^{(3)}}_{W} = t_{\alpha_{\text{ДОВ}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta^{3}_{Wi} - \overline{\delta^{(3)}}_{W})^{2}}{N(N-1)}} = 0.08$$

• Таблица 10:

$$\Delta \bar{\delta}_{p} = t_{\alpha_{\text{дов}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}} = 0.08 \quad \Delta \overline{\delta^{(9)}}_{W} = t_{\alpha_{\text{дов}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta^{9}_{Wi} - \overline{\delta^{(9)}}_{W})^{2}}{N(N-1)}} = 0.05$$

Таблица 11:

$$S_{M_1} = \sqrt{\frac{1}{\sum (a_i - \bar{a})^2} \frac{\sum_{i=1}^{N} \left(T_i - \left(F_{\text{Tp}} + M_1 a_i \right) \right)^2}{N - 2}} = 1,52 \text{ f}$$

$$\Delta M_1 = t_{\alpha_{\text{AOB}}, N} S_{M_1} = 2,88 \,\text{r} \quad \varepsilon_{M_1} = \frac{\Delta M_1}{M_1} = 4,28\%$$

Таблица 12:

$$S_{M_1} = \sqrt{\frac{1}{\sum (a_i - \bar{a})^2} \frac{\sum_{i=1}^{N} \left(T_i - \left(F_{\text{rp}} + M_1 a_i \right) \right)^2}{N - 2}} = 7,75 \text{ r}$$

$$\Delta M_1 = t_{\alpha_{\text{дов}}, N} S_{M_1} = 14,68 \text{ r} \quad \varepsilon_{M_1} = \frac{\Delta M_1}{M_1} = 15,01\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости силы натяжения нити от ускорения

12. Окончательные результаты.

$$\delta_p = -0.031 \pm 0.01$$
 $\delta_W = -0.092 \pm 0.02$

Таблица 8

$$\delta_p = -0.462 \pm 0.09$$
 $\delta_W = -0.611 \pm 0.08$

• Таблица 9

$$\delta_p = -0.137 \pm 0.09$$
 $\delta^{(3)}_W = -0.631 \pm 0.08$

• Таблица 10

$$\delta_p = -0.174 \pm 0.08$$
 $\delta^{(3)}_W = -0.768 \pm 0.05$

Таблица 11

$$M_1 = (67,30 \pm 2,88)$$
r $\varepsilon_{\rm M_1} = 4,28\%$ $\alpha = 0,95$

Таблица 12

$$M_1 = (97.82 \pm 14.68)$$
r $\varepsilon_{\rm M_1} = 15.01\%$ $\alpha = 0.95$

13. Выводы и анализ результатов работы.

В результате проделанной работы мы обнаружили, что теоретическое значение относительного изменения энергии близко к экспериментальному в задании 1, а также массы тележек, вычисленные методом наименьших квадратов близки к фактическим.