```
(4). (9): Linear Program with new constraints (141: X=1, 7=24) has no feasible solution.

(3). (7): Find an integer solution set.
(8) i Z=8 is smaller than (3) Z=13 7 5 = 3 cur-lower
```

max $Z = \chi_1 + 4\chi_2 = 0$ objective function (b)

Decision variables: X1, X2.

X1, X2 > 0

21 x1+ x2 - M.y1 5

x3- x4- M·y2 ≤ 4

y1+ y2=1

xj=0, for j=1,2

yi= 0 or 1, for i=1,2

M: large positive number

yni whether or not & aigx 5 bi is used, for i=1,2.

x3- X454

MIN ES E (a) Kaj St St Xij=1, VjeV ie{Vij} EXij=1, VieV je{Vij}

V= $\{1.3,9\}$ the set of all cities A:1 C=3Cij: the cost needed to go from city itoj Xij < 1, if the salesman goes from city itoj 0, otherwise.

 $\sum_{j \in \{V \mid i\}} x_{i,j} = 1, \ \forall i \in V$ $u_{i} - u_{j} + N \cdot x_{i,j} \leq N - 1, \ \forall i, j \in \{V \mid N\} \text{ and } i \neq j$ $u_{i} - u_{j} + N \cdot x_{i,j} \leq N - 1, \ \forall i, j \in \{V \mid N\} \text{ and } i \neq j$ $u_{i} \geq 0, \ \forall i \in \{V \mid N\}$ $v_{i} \geq 0, \ \forall i \in \{V \mid N\}$ v

D D B J A J C J D

3 the final cost is 48 *

(b) min & Cijxij

aije U

st. & Xij=1, Y(i,j) ∈ U

i ε {ν) }

Σ χι j = 1, ∀ (i, j) ∈ V

 $V=\{1,2,3,4,5,6,73\}$: the set of all cities (a=1, b=2, ..., g=7)

Cij: the cost needed to go from city i to j

Xij (, if the salesman goes from city i to j

o , otherwise

ui-uj+N·xij $\leq N-1$, $\forall i,j \in \{V \mid I\}$ and $i \neq j$ and $(i,j) \in U$ ui=0, $\forall i \in \{V \mid I\}$ and $(i,j) \in U$

xij binary, ti,jeV and (iii)eU C= |
a+b+d+f+g→e+c→a

3) the final cost is 63

- 12 11 - 11 10 -- - 3 11 - 6 7 - - - 10 6 - 9 12 - 9 - 7 9 -

12-812---

U= {(i, j) where cij exists }

Denote the set of all cities by V and let 101 denote the number of cities $\sum_{i \in U, j \in U} \chi_{ij} \leq |U| - 1$ for all U with $2 \leq |U| \leq |V| - 2$

a. eliminates the subtour solution |V| = 5 and $2 \le |V| \le |V| - 2 = 3$ if |U|= 2, x2+ x32 5 |U|-1= 1

b. allows the tour solution

512543 > 11-2=3, tour solution is not eliminated by the 512543: TOWN 1+2+5+4+3

Ui-Uj+N·Xij = N-1, Vi,j \{V\N} and i+j Ui=0, fie {V/N}

a. eliminates the subtour solution

Assume 2-13-12 forms a subtour 523 42-13+5×23 55-1=4

43-42+5×32 54

By summing the above equations together:

5.2 ≤ (5-1).2 7 contradictory

523 will never be formed with these constraints in place = 1. 523 is

b. allows the tour solution Assume 4+3+1+2 forms a subtour 54312 $44-43+5743 \le 5-1=4$ $u_3 - u_1 + 5 x_{31} \le 4$ $U_1 - U_2 + 5x_{12} \le 4$ Uf, Uz to satisfy $U_4 - U_2 + 5.3 \le 4.3 \Rightarrow \text{there exist}$ U4-U2 5 -3 5. (a) Ui is fixed at non-negative multiplier We assume that the constraints of the original problem (P) have been partitioned into several sets so that (P) is relatively easy to solve if the constraint set (\(\sum_{j=1}^{\infty}, \in_{j=1}^{\infty}, \in_{j=1}^{\infty}, \in_{j}^{\infty} \)) is removed. (b) Zd(U)= min Zi Zi {divj + Ui } Xij - Zi div st. Xij < xij, iny=1, ..., N S Nisk xij = {0,13, inj=1,..., N where uk+1 = max {0, uk-tk(b-Axx)} $t_k = \frac{\lambda k \left(\frac{Zp(u^k) - Z^*}{2} \right)}{\sum_{i=1}^{m} (bi - \sum_{j=1}^{n} a_{ij} \chi_j^k)^2}$, 2k is chosen to be a scalar between 0 and 2 Z* is initially set to 0 and later (c) if $|-\Sigma_{j=1}^{N}\chi_{ij}^{k}>0$ kH \neq We try to make this <0updated by a solution from Zb(uk) that is also feasible to original y we want th >0 problem. if 1- 5/2 xij <0 , the will be positive = we try to make Ui >0 = We