1 Плоская монохроматическая волна

Волна — изменение состояния среды, распространяющееся в данной среде и переносящее с собой энергию. С понятием волны тесно связано понятие физического поля. Поле характеризуется некоторой функцией, определенной в заданной области пространства и времени. Изменение в пространстве и времени большинства полей представляют собой волновой процесс

Монохроматической волной уазывается волна, в которой поле зависит от времени t

 $U(\vec{r},t) = Acos(\omega t - \vec{k}\vec{r} + \varphi)$, где A - действительная амплитуда, ω - циклическая частота, φ - начальная фаза, \vec{k} - заданный волновой вектор ($\vec{k} = k_x \vec{e}_x + k_y \vec{e}_y + k_z \vec{e}_z$), $\theta = (\omega t - \vec{k}\vec{r} + \varphi)$ - полная фаза поля

2 Волновое уравнение

$$\triangle U - rac{1}{c^2}rac{\partial^2 ec{U}}{\partial t^2} = 0$$
 - волновое уравнение без поглощения

$$\Delta U - \beta \frac{\partial \vec{U}}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \vec{U}}{\partial t^2} = 0$$
 - волновое уравнение с поглощением

Описывает распространение волн различной природы в среде без диссипации. U - компонента электрического поля / магнитоного поля / скорость / потенциал, c - имеет смысл фазовой скорости волны, β - коэффициент диссипации (учитывает, например, потери в вязкой среди или на нагрев)

Решение - в виде плоской монохроматической волны $U = U_0 e^{(i\omega t - ik\vec{r})}$, если выполнено $\frac{\omega^2}{k^2} = c^2$

3 Фазовая и групповая скорости

$$ec{V_{\Phi}} = rac{\omega}{k^2} ec{k} = rac{\omega}{k}$$
 - фазовая скорость (скорость перемещения поверхности постоянной фазы)

$$\vec{V_{
m rp}} = rac{\partial \omega}{\partial \vec{k}}igg|_{\vec{k_0}}$$
 - групповая скорость в точке $\vec{k_0}$ (скорость расширения огибающей квазимонохрома-

тического волнового пакета); $\vec{k_0}$ - несущий волновой вектор - максимум спектра квазимонохроматического сигнала

Сигнал перемещается как целое со скоростью $\vec{V_{\rm rp}}$?check?, скорость движения огибающей этого импульса - $\vec{V_{\rm rp}}$

4 Уравнение непрерывности и уравнение Эйлера

 $\frac{\partial \rho}{\partial t} + div(\rho \vec{V}) = 0$ - уравнение непрерывности (выражает закон сохранения массы)

 $\overset{\hookrightarrow}{V}^\iota(\vec{r},t)$ - поле скоростей среды, ${f V}=rac{1}{
ho}$ - объем на единицу массы, $[
ho]=\left[rac{{f K}\Gamma}{{f M}^3}
ight]$

$$ho\left(\frac{\partial \vec{V}}{\partial t} + (\vec{V}\nabla)\vec{V}\right) = -\nabla p$$
 - уравн. Эйлера (движение идеал. жидкости в поле внешней силы)

ho - плотность жидкости, p - давление, $ec{V}$ - вектор скорости

5 Скорость звука. Вектор Умнова. Плотность энергии в звуковой волне

$$\sqrt{\frac{\gamma k T_0}{m}} = \sqrt{\frac{dp}{d\rho}}\Big|_{
ho_0} = C_s = \sqrt{\frac{\gamma R T_0}{M}}$$
 - адиабатическая скорость звука (V_Φ для звуковой волны)

 $\gamma = \frac{C_p}{C_V}$ - показатель адиобаты для идеального газа, T_0 - равновесное значение температуры,

M - молярная масса, R - универсальная газовая постоянная $\left(8.31\left[\frac{\text{Дж}}{\text{моль}\cdot\text{K}}\right]\right),\,k$ - постоянная

Больцмана $(1.38 \cdot 10^{-23} \, [Дж \cdot K])$

$$W = \frac{\rho_0 V^2}{2} + \frac{p_1^2}{2\rho_0 s^2}$$
 - плотность энергии звуковых волн в единице объема СИ: $\left[\frac{\text{Дж}^2}{\text{м}^3}\right]$

 ho_0 - равновесное значение плотности, p_1 - добавочное значение давления: $p=p_0+p_1,\,\vec{V}$ - скорость распространения возмущения

 $\Pi = p_1 \vec{V}$ - плотность потока энергии (вектор Умнова) СИ: $\left[\frac{\mathcal{L}_{\mathbf{ж}}}{\mathbf{c} \cdot \mathbf{m}^2}\right] = \left[\frac{\mathbf{B}_{\mathbf{T}}}{\mathbf{m}^2}\right]$

 Π - количество энергии, переносимое акустической волной через единичную площадку, перепендикулярную направлению переноса энергии $(\bot \vec{k}$ или $\bot \vec{V})$ в единицу времени (закон сохранения

энергии в дифференциальном виде). Направление вектора Умнова - вдоль переноса энергии Абсолютная величина p равна количеству энергии, переносимому за единицу времени через единичную площадку, перпендикулярную направлению потока энергии.

6 Уравнение Ламэ

 $ho_0 rac{\partial^2 \vec{U}}{\partial t^2} = (\lambda + \mu) \nabla div \vec{U} + \mu \bigtriangleup \vec{U}$ - уравнение движения физически бесконечно малого объема изотропного (движение в любых направлениях) упругого тела при малых деформациях ho_0 - плотность до деформации, μ - модуль сдвига, $\lambda = K - \frac{2}{3}\mu$ - коэффициент Ламэ, K - модуль всестороннего сжатия, $\vec{U}(\vec{r},t)$ - вектор смещения элемента сплошной среды при деформации μ и K - переобозначения модулей упругости Юнга и Пуассона

7 Уравнения Максвелла в дифференциальной и интегральной формах

- 1. Вихревое электрическое поле поражается переменным магнитным полем.
- 2. Вихревое магнитное поле порождается токами проводимости и переменным электрическим полем.
- 3. Потенциальное электрическое поле порождается электрическими зарядами.
- Магнитное поле имеет чисто вихревой характер и не имеет сосредоточенных зарядов как источников поля.

8 Граничные условия для векторов ЭМ поля

Для нормали из среды 1 в среду 2:

$$\begin{bmatrix} \vec{n}_{12} \times (\vec{E}_1 - \vec{E}_2) \end{bmatrix} = 0$$

$$\begin{bmatrix} \vec{n}_{12} \times (\vec{H}_1 - \vec{H}_2) \end{bmatrix} = \frac{4\pi}{c} \vec{j}_{\text{пов}}$$

$$\begin{bmatrix} (\vec{n}_{12} \cdot (\vec{H}_1 - \vec{H}_2)) = 0 \\ (\vec{n}_{12} \cdot (\vec{H}_1 - \vec{H}_2)) = 4\pi \vec{\rho}_{\text{пов}} \end{bmatrix}$$

9 Вектор Пойнтинга. Плотность энергии ЭМ поля в вакууме

 $rac{\partial W}{\partial t} + div \vec{S} = -(\vec{j} \vec{E})$ - теорема Пойнтинга

$$W = \frac{1}{8\pi} (\mathcal{E}E^2 + \mu H^2)$$
 - плотность энергии ЭМ поля в вакууме СГС: $\left[\frac{\text{эрг}}{\text{см}^{-3}}\right]$?check? СИ: $\left[\frac{\Pi_{\text{ж}}}{M^3}\right]$

$$S = \frac{c}{4\pi} \left[\vec{E} \times \vec{H} \right]$$
 - плотность потока энергии СГС: $\left[\frac{\text{эрг}}{\text{с} \cdot \text{см}^2} \right]$ СИ: $\left[\frac{\text{Дж}}{\text{с} \cdot \text{м}^2} \right] = \left[\frac{\text{Вт}}{\text{м}^2} \right]$

|S| - энергия, переносимая ЭМ волной через единичную площадку ($\bot S$) в единицу времени ??? проверить + физ смысл

10 Основные параметры плазмы (плазменная частота и дебаевский радиус)

$$r_{De} = \sqrt{\frac{kT_eT_i}{4\pi Ne^2(T_e+T_i)}} = \sqrt{\frac{kT}{4\pi Ne^2}}$$
 - расстояние, за которое волна спадет в e раз при прохождении через плазму / расстояние, которое проходит \overline{e} в плазме за время, порядка $\tau_p = \frac{2\pi}{\omega_p}$ СИ: $[\mathbf{K}\cdot\mathbf{Д}\mathbf{x}]\ T_e$ - температура электронного газа, T_i - температура ионного газа, $N,\ e$ и m - концетрация электронов а также их заряд и масса, k - постоянная Больцмана $k = \frac{R}{N_e}, N_a = \frac{m}{M}$??????????????????

$$\omega_p = rac{4\pi e^2 N}{m}$$
 - плазменная частота, СИ: $\left[rac{\mathrm{pag}}{\mathrm{c}}
ight]$???

Это частота собственных продольных колебаний пространственного заряда в однородной плазме в отсутствие магнитного поля

11 Комплексная диэлектрическая проницаемость холодной изотропной плазмы

Диэлектрическая проницаемость показывает, во сколько раз сила взаимодействия двух электрических зарядов в конкретной среде меньше, чем в вакууме, для которого она равна 1

$$\mathcal{E}(\omega)=1-\frac{\omega_{pe}^2}{\omega(\omega-i\nu_e)}-\chi$$
, где $\chi=\frac{\omega_{pi}^2}{\omega(\omega-i\nu_i)}$ - ионная составляющая, которой можно пренебречь, ν_e - частота соударений электронов

Вводятся абсолютная (\mathcal{E}_a) и относительная (\mathcal{E}_r) проницаемости. Величина \mathcal{E}_r безразмерна, а \mathcal{E}_a

по размерности совпадает с электрической постоянной
$$\mathcal{E}_0$$
 - СИ: $\left[\frac{\mathrm{фарад}}{\mathrm{M}}\right]$ Эта величина связывет напряженность и индукцию поля: $D=\mathcal{E}E$