Goal: 23 Total: 34

- 1. Given a triangle with side lengths 3, 4, 5, find the radius of its incircle. (1)
- 2. Consider acute $\triangle ABC$ with $\overline{AB}=6$, $\overline{AC}=8$, and $\overline{BC}=9$. Find the sum of all of its altitudes. (2)
- 3. Consider $\triangle ABC$ with integer side lengths a,b,c such that $\overline{AB}=c$, $\overline{AC}=b$, and $\overline{BC}=a$. The inradius is 2, and $ab\cdot\sin(C)=48$. Find the side lengths of the triangle. (3)
- 4. A triangle has side lengths 4 and 8, and it has an area of $\sqrt{15}$. Find the length of the third side. (3)
- 5. A circle with area 9π is inscribed within $\triangle ABC$, and a circle with area 72.25π intersects all of the vertices of $\triangle ABC$. Provided that $\triangle ABC$ has an area of 60, find its side lengths. (2)
- 6. A semicircle is inscribed within a right triangle with an area of 30 such that its diameter lies on a leg of the triangle and its area is maximized. Provided that the hypotenuse of the triangle is 13, find the area of the semicircle. (3)
- 7. Prove that for parallelogram ABCD with the lengths of AB and BC fixed, that [ABCD] is maximized when ABCD is a rectangle. (4)
- 8. If two side lengths of a triangle are given to be 10 and 11, what is the maximum possible area of this triangle? $(\star 5)$
- 9. In the diagram, relative lengths of some line segments are as follows:

CE = AE

DB = 2AD

CF = 3BF

If the area of $\triangle ABC$ is 24, what is the area of $\triangle DEF$? (3)

10. Prove that $[ABC] = \frac{a^2 \sin B \sin C}{2 \sin A}$. (3)

11. Point O is the center of the circle circumscribed about isosceles $\triangle ABC$. If AB = AC = 7 and BC = 2, find AO. (2)

12. Given right $\triangle ABC$, with AB as hypotenuse, prove that 2r = a + b - c where c denotes hypotenuse length, and r denotes inradius. (3)