

NCERT solutions for class 9 Maths Lines and Angles Ex 6.1

Q1. In Fig. 6.13, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

Ans. We are given that $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$.

We need to find $\angle BOE$ and reflex $\angle COE$.

From the given figure, we can conclude that $\angle COB$ and $\angle COE$ form a linear pair.

We know that sum of the angles of a linear pair is 180° .

$$\therefore \angle COB + \angle COE = 180^{\circ}$$

$$\therefore \angle COB = \angle AOC + \angle BOE$$
, or

$$\therefore \angle AOC + \angle BOE + \angle COE = 180^{\circ}$$

$$\Rightarrow$$
 70° + $\angle COE = 180°$

$$\Rightarrow \angle COE = 180^{\circ} - 70^{\circ}$$

Reflex
$$\angle COE = 360^{\circ} - \angle COE$$

$$=360^{\circ}-110^{\circ}$$

$$= 250^{\circ}$$
.

 $\angle AOC = \angle BOD$ (Vertically opposite angles), or

$$\angle BOD + \angle BOE = 70^{\circ}$$
.

But, we are given that $\angle BOD = 40^{\circ}$.

$$40^{\circ} + \angle BOE = 70^{\circ}$$

$$\angle BOE = 70^{\circ} - 40^{\circ}$$

$$=30^{\circ}$$
.

Therefore, we can conclude that

Reflex $\angle COE = 250^{\circ}$ and $\angle BOE = 30^{\circ}$.

Q2. In Fig. 6.14, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a:b=2:3, find c.

Ans. We are given that $\angle POY = 90^{\circ}$ and

$$a: b = 2:3$$
.

We need find the value of c in the given figure.

Let a be equal to 2x and b be equal to 3x.

$$\therefore a+b=90^{\circ} \Rightarrow 2x+3x=90^{\circ} \Rightarrow 5x=90^{\circ}$$

$$\Rightarrow x = 18^{\circ}$$

Therefore $b = 3 \times 18^{\circ} = 54^{\circ}$

Now $b + c = 180^{\circ}$ [Linear pair]

$$\Rightarrow 54^{\circ} + c = 180^{\circ}$$

$$\Rightarrow c = 180^{\circ} - 54^{\circ} = 126^{\circ}$$

Q3. In the given figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Ans. We need to prove that $\angle PQS = \angle PRT$.

We are given that $\angle PQR = \angle PRQ$.

From the given figure, we can conclude that $\angle PQS$ and $\angle PQR$, and $\angle PRS$ and $\angle PRT$ form a linear pair.

We know that sum of the angles of a linear pair is 180° .

$$\therefore \angle PQS + \angle PQR = 180^{\circ}$$
, and (i)

$$\angle PRQ + \angle PRT = 180^{\circ}$$
. (ii)

From equations (i) and (ii), we can conclude that

$$\angle PQS + \angle PQR = \angle PRQ + \angle PRT$$
.

But,
$$\angle PQR = \angle PRQ$$
.

$$\therefore \angle PQS = \angle PRT.$$

Therefore, the desired result is proved.

Q4. In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.

Ans. We need to prove that AOB is a line.

We are given that x + y = w + z.

We know that the sum of all the angles around a fixed point is 360° .

Thus, we can conclude that

$$\angle AOC + \angle BOC + \angle AOD + \angle BOD = 360^{\circ}$$
, or

$$y + x + z + w = 360^{\circ}$$
.

But,
$$x+y=w+z$$
 (Given).

$$2(y+x) = 360^{\circ}$$
.

$$y + x = 180^{\circ}$$
.

From the given figure, we can conclude that y and x form a linear pair.

We know that if a ray stands on a straight line, then the sum of the angles of linear pair formed by the ray with respect to the line is ^{180°}.

$$y + x = 180^{\circ}$$

Therefore, we can conclude that *AOB* is a line.

Q5. In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$$

Ans. We need to prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$$
.

We are given that OR is perpendicular to PQ, or

$$\angle QOR = 90^{\circ}$$
.

From the given figure, we can conclude that $\angle POR$ and $\angle QOR$ form a linear pair.

We know that sum of the angles of a linear pair is 180°.

$$\therefore \angle POR + \angle QOR = 180^{\circ}$$
, or

$$\angle POR = 90^{\circ}$$

From the figure, we can conclude that

$$\angle POR = \angle POS + \angle ROS$$
.

$$\Rightarrow \angle POS + \angle ROS = 90^{\circ}, \text{ or}$$

$$\angle ROS = 90^{\circ} - \angle POS \cdot (i)$$

From the given figure, we can conclude that $\angle QOS$ and $\angle POS$ form a linear pair.

We know that sum of the angles of a linear pair is 180°.

$$\angle QOS + \angle POS = 180^{\circ}$$
, or

$$\frac{1}{2}(\angle QOS + \angle POS) = 90^{\circ}.(ii)$$

Substitute (ii) in (i), to get

$$\angle ROS = \frac{1}{2} (\angle QOS + \angle POS) - \angle POS$$

$$=\frac{1}{2}(\angle QOS - \angle POS).$$

Therefore, the desired result is proved.

Q6. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$

Ans. We are given that $\angle XYZ = 64^{\circ}$, XY is produced to P and YQ bisects $\angle ZYP$.

We can conclude the given below figure for the given situation:

We need to find $\angle XYQ$ and reflex $\angle QYP$.

From the given figure, we can conclude that $\angle XYZ$ and $\angle ZYP$ form a linear pair.

We know that sum of the angles of a linear pair is 180° .

$$\angle XYZ + \angle ZYP = 180^{\circ}$$

But
$$\angle XYZ = 64^{\circ}$$
.

$$\Rightarrow$$
 64° + $\angle ZYP = 180°$

$$\Rightarrow \angle ZYP = 116^{\circ}$$
.

Ray YQ bisects $\angle ZYP$, or

$$\angle QYZ = \angle QYP = \frac{116^{\circ}}{2} = 58^{\circ}$$

$$\angle XYQ = \angle QYZ + \angle XYZ$$

$$=58^{\circ}+64^{\circ}=122^{\circ}.$$

Reflex
$$\angle QYP = 360^{\circ} - \angle QYP$$

$$=360^{\circ}-58^{\circ}$$

$$=302^{\circ}$$
.

Therefore, we can conclude that $\angle XYQ = 122^{\circ}$ and Reflex $\angle QYP = 302^{\circ}$

********* END *******