Machine Learning God Knows

${\rm Fduzjrqlw}$

目录

1	机器	学习理论	6
	1.1	简述机器学习问题	6
	1.2	误差分解公式	6
	1.3	偏差和方差 (6
	1.4	风险 (risk), 经验风险 (empirical risk) 的含义	6
	1.5	过拟合, 欠拟合和误差的关系	6
	1.6	估计的无偏, 有效, 一致分别在说什么?	6
	1.7	为什么样本方差的分母是 n-1?	6
2	数据	预处理 2	7
	2.1	归一化 (normalization) 和标准化 (standardization), 以及它	
		们的相同点和不同点	7
	2.2	为什么要使用归一化/标准化?	7
	2.3	什么时候用归一化,什么时候用标准化?	7
	2.4	一定要归一化吗? 举出一些不需要归一化的例子	7
	2.5	处理缺失值一般有哪些方法?	7
3	特征	三工程	7
	3.1	特征抽取的目的	7
	3.2	独热编码	7
	3.3	TF-IDF 的公式和含义?	7
4	类别	不均衡	7
	4.1	什么叫类别不平衡问题?	7
	4.2	类别不平衡问题用什么评估?	8

	4.3	解决不平衡问题有哪些方法?	8
	4.4	欠采样和过采样的缺点?	9
5	性能	度量指标 (metrics)	9
6 正则化			
	6.1	做正则化的原因	9
	6.2	模型复杂程度的评价指标	9
	6.3	线性回归需要对偏差项 (bias term) 做正则吗?	9
	6.4	限制经验风险最小化 (Constrained ERM) v.s. 惩罚项经验风	
		险最小化 (Penalized ERM) 的等价性	9
	6.5	L_1 正则的作用和原因	9
	6.6	L_2 正则的作用和原因	10
	6.7	为什么要引入 Elastic Net 中的 L_1 和 L_2 的组合正则	10
	6.8	dropout 的原理和过程?	10
	6.9	dropout 起到正则化作用和原因?	11
7 优化算法		算法	11
	7.1	GD,SGD 与 mini_batch GD 之间的区别和联系	11
	7.2	什么时候用 SGD?mini_batch GD 中 batch_size 的选择	11
	7.3	梯度下降算法的收敛率 (convergence rate)	11
	7.4	SGD 的使用技巧	11
	7.5	SGD 的理论依据	11
	7.6	如果测试集数据增加 100 倍,batch 大小 m 需要调整吗?	11
	7.7	在线学习的动机和方法	12
	7.8	次梯度和次梯度下降算法	12
	7.9	SMO 算法	12
	7.10	SGDM 算法	12
	7.11	NAG 算法	12
	7.12	AdaGrad 算法	12
	7.13	AdaDelta 算法	13
	7.14	Adam 算法	13
	7.15	Nadam 算法	13
	7 16	指数移动平均的偏差修正是什么?	14

	7.17	Adam	的缺点有哪些?	14
	7.18	如何解	决 Adam 的问题?	14
	7.19	优化算	法的常用 trick 有哪些?	15
8	模型			15
	8.1	支持向	量机 (Supported Vector Machine)	15
		8.1.1	SVM 的损失函数是什么?	15
		8.1.2	SVM 的推导过程?	15
		8.1.3	为什么要引入对偶问题? 为什么要引入松弛变量 ξ ?	15
		8.1.4	Slater 条件是什么, 如何验证 SVM 问题满足 Slater	
			条件?	15
		8.1.5	叙述 SVM 问题的 KKT 条件?	15
		8.1.6	模型偏置 bias term b 的作用?	16
		8.1.7	什么叫核方法?	16
		8.1.8	核化 (kernelized) 的好处有哪些?	16
		8.1.9	表示定理以及其作用?	16
		8.1.10	如何验证核函数?	16
		8.1.11	为什么叫径向基函数?	16
		8.1.12	RBF 核对应特征空间的维数	17
		8.1.13	正则化 RBF 核	17
		8.1.14	参数 γ 以及 C 的作用	17
		8.1.15	叙述 SVM 问题的 KKT 条件?	17
		8.1.16	什么是 SVM 的退化?	17
		8.1.17	如何构造新的输入数据, 使得一个线形可分的 SVM	
			问题退化?	17
		8.1.18	SVM 的优化算法	18
		8.1.19	核函数的选择	18
		8.1.20	SVM 的优缺点	18
	8.2	感知机	(perceotron)	19
		8.2.1	感知机的工作原理?	19
		8.2.2	感知机与 SVM 的异同点有哪些?	19
		8.2.3	感知机如何优化?	19
		8.2.4	感知机解的性质	19
	8.3	决策树	(Decision Tree)	19

	8.3.1	简述决策树的工作原理	19
	8.3.2	决策树区域的特性	20
	8.3.3	叙述决策树的建树过程?	20
	8.3.4	不纯度是什么?	20
	8.3.5	Gini 值的含义?	20
	8.3.6	Gini 值和熵的联系?	21
	8.3.7	什么是多变量决策树?	21
	8.3.8	ID3 决策树的特点有哪些?	21
	8.3.9	C4.5 决策树有哪些细节?	21
	8.3.10	CART 有哪些细节?	22
	8.3.11	决策树的缺失值问题和解决策略?	24
	8.3.12	决策树的剪枝策略有哪些?	24
	8.3.13	ID3,C4.5,CART 之间的差异有哪些?	24
	8.3.14	sklearn 关于决策树的缺失值策略如何实现的?	24
	8.3.15	关于决策树的调参, 有哪些技巧?	24
8.4	Baggir	ng	24
	8.4.1	统计量 (statistic) 与点估计 (point estimator)	24
	8.4.2	估计量的方差有什么含义?	24
	8.4.3	如何平衡每组的样本个数与组数	24
	8.4.4	自助采样 (bootstrap)	25
	8.4.5	Bagging 为什么用平均法? 原理是什么?	25
	8.4.6	包外误差估计 (Out-of-Bag Error Estimation) 是什么?	25
	8.4.7	Bagging 的适用性?	25
	8.4.8	bootstrap 的方差估计	25
8.5	随机森	林 (Random Forest)	26
8.6	Boosti	ng	26
	8.6.1	简单介绍下 boosting?	26
8.7	Adabo	ost	26
	8.7.1	Adaboost 算法的流程及其推导?	26
	8.7.2	Adaboost 的损失函数为什么是指数函数?	26
	8.7.3	分类替代函数	26
	8.7.4	Adaboost 中权重的含义?	27
	8.7.5	如何求加权最优化问题?	27

8.7.6	Adaboost 算法终止的条件?	27
8.7.7	Adaboost 训练集误差的上界估计?	27
8.7.8	为什么 Adaboost 当训练集上 error 变为 0 时, 继续训	
	练可以降低测试集上的 error?	27
8.7.9	Adaboost 什么情况下会过拟合严重?	27
8.7.10	如何缓解 Adaboost 的过拟合现象?	27
8.7.11	前向分布算法和坐标梯度下降法的联系和区别?	28