(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-188346

(43)公開日 平成6年(1994)7月8日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

H01L 23/48

F

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平4-338640

(22)出願日

平成 4年(1992)12月18日

(71)出願人 000116024

ローム株式会社

京都府京都市右京区西院溝崎町21番地

(72)発明者 三村 徹也

京都市右京区西院溝崎町21番地 ローム株

式会补内

(72) 発明者 今井 寛

京都市右京区西院溝崎町21番地 ローム株

式会社内

(72)発明者 山本 雅夫

京都市右京区西院溝崎町21番地 ローム株

式会社内

(74)代理人 弁理士 石井 暁夫 (外2名)

(54)【発明の名称】 電子部品の製造方法

(57)【要約】

(修正有)

【目的】 電子部品をリードフレーム11を使用して連 続的に製造する場合に各リード端子12,13の相互間 における平行度と、高さ寸法の精度を向上する。

【構成】 リードフレーム11に、複数本の第1リード 端子12を造形すると共に、この端子と対をなす第2リ ード端子13を、その長手方向と略直角の方向に延びる 細幅片15を介してのみ11と一体的に連接するように 造形し、端子12に半導体チップ16をダイボンディン グレ、端子13を、その細幅片15を捩じり変形しなが ら端子12に向かって裏返し状に反転して、端子12に 重ね合わせ、次いで、合成樹脂製のモールド部にてパッ ケージする製造方法において、端子13のうち端子12 と反対側の他端部に、尻尾片20を、端子13の長手方 向に延びるように一体的に造形する一方、裏返し状に反 転したあと、11の下面を、平面板21に対して当接す る。

【特許請求の範囲】

【請求項1】リードフレームに、第1リード端子を長手 方向に沿って適宜ピッチの間隔で一体的に造形すると共 に、この第1リード端子と対をなす第2リード端子を、 当該第2リード端子がその長手方向と略直角の方向に延 びる細幅片を介してのみリードフレームと一体的に連接 するように造形し、前記第1リード端子又は第2リード 端子の先端に半導体チップをダイボンディングしたの ち、前記第2リード端子を、その細幅片を捩じり変形し ながら前記第1リード端子に向かって裏返し状に反転し て、前記第1リード端子に対してその間に半導体チップ を挟んで重ね合わせ、次いで、前記両リード端子の先端 部を合成樹脂製のモールド部にてパッケージしたのち、 前記両リード端子をリードフレームから切り離すように した製造方法において、前記第2リード端子のうち第1 リード端子と反対側の他端部に、尻尾片を、当該尻尾片 が第2リード端子の長手方向に延びるように一体的に造 形する一方、前記第2リード端子を裏返し状に反転した あと、前記リードフレームの下面を、平面板に対して接 当することを特徴とする電子部品の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば、ダイオード等のように、一つの半導体チップに対する少なくとも左右一対の二本のリード端子を、当該半導体チップを挟むように接続し、全体を合成樹脂製のモールド部にてパッケージして成る電子部品において、この電子部品を製造する方法に関するものである。

[0002]

【従来の技術】本発明者達は、この種の電子部品を連続 的に製造する方法について、先の特許出願(特開平4-22642号公報)において、図4~図6に示すよう に、フープ状のリードフレーム1に、第1リード端子2 を長手方向に沿って適宜ピッチの間隔で一体的に造形す ると共に、この各第1リード端子2と対をなす第2リー ド端子3を、当該第2リード端子3が前記各第1リード 端子2の間の部位において両サイドフレーム1a、1b の相互間を連結するセクションバー4に対して細幅片5 を介してのみ一体的に連接するように造形し、このリー ドフレーム1を、その長手方向に沿って移送する途中に おいて、先づ、第1リード端子2の先端上面に、半導体 チップ6を導電性ペースト7にて接合し、次いで、第2 リード端子3を、その細幅片5を捩じり変形しながら前 記第1リード端子2に向かって裏返し状に反転すること によって、前記第1リード端子2に対してその間に半導 体チップ6を挟んだ状態に重ね合わせて、この第2リー ド端子3を半導体チップ6に導電性ペースト8にて接合 し、そして、前記各導電性ペースト7、8を乾燥したあ とにおいて、半導体チップ6の部分を、合成樹脂のモー ルド部9にてパッケージしたのち、リードフレーム1か ら切り離すようにした方法を提案した。

[0003]

【発明が解決しようとする課題】ところで、この先願の 製造方法は、第2リード端子3を、その細幅片5を捩じ り変形ながら裏返し状に反転して、第1リード端子2に 対して重ね合わせるものであって、前記細幅片5の捩じ り変形に際しては、当該細幅片5にスプリングバックが 発生するから、前記のように裏返し状に反転した第2リ ード端子3は、前記細幅片5におけるスプリングバック によって、半導体チップ6より浮き上がることになる。 【0004】そして、この浮き上がりにより、第2リー ド端子3が第1リード端子2に対して非平行になると共 に、第1リード端子2の下面から第2リード端子3の上 面までの高さ寸法Hが変化することになって、両リード 端子2,3の相互間における平行度、及び両リード端子 2, 3の相互間における高さ寸法Hに大きなバラツキが 発生するから、前記平行度及び高さ寸法Hの精度が低い と言う問題があった。

【0005】本発明は、前記先願の製造方法が有する前 記の問題を解消することを技術的課題とするものであ る。

[0006]

【課題を解決するための手段】この技術的課題を達成す るため本発明は、リードフレームに、第1リード端子を 長手方向に沿って適宜ピッチの間隔で一体的に造形する と共に、この第1リード端子と対をなす第2リード端子 を、当該第2リード端子がその長手方向と略直角の方向 に延びる細幅片を介してのみリードフレームと一体的に 連接するように造形し、前記第1リード端子又は第2リ ード端子の先端に半導体チップをダイボンディングした のち、前記第2リード端子を、その細幅片を捩じり変形 しながら前記第1リード端子に向かって裏返し状に反転 して、前記第1リード端子に対してその間に半導体チッ プを挟んで重ね合わせ、次いで、前記両リード端子の先 端部を合成樹脂製のモールド部にてパッケージしたの ち、前記両リード端子をリードフレームから切り離すよ うにした製造方法において、前記第2リード端子のうち 第1リード端子と反対側の他端部に、尻尾片を、当該尻 尾片が第2リード端子の長手方向に延びるように一体的 に造形する一方、前記第2リード端子を裏返し状に反転 したあと、前記リードフレームの下面を、平面板に対し て接当することにした。

[0007]

【作 用】第2リード端子を裏返し状に反転したあとにおいて、当該第2リード端子が細幅片の捩じり変形に際して発生するスプリングバックによって浮き上がると、この第2リード端子の他端部に造形した尻尾片が、リードフレームの下面から突出した状態になる。

【0008】そこで、第2リード端子の裏返し状の反転を行ったあとにおいてリードフレームの下面に対して平

面板を接当すると、前記尻尾片が平面板に接当することにより、この尻尾片を介してこれと一体の第2リード端子を、前記細幅片のスプリングバックに抗する方向に回動できて、この第2リード端子を第1リード端子に対して平行な状態に近付けることができるから、前記細幅片におけるスプリングバックに起因して発生する両リード端子の平行度のバラツキを大幅に低減できると共に、第1リード端子と第2リード端子との間の高さ寸法のバラツキを大幅に低減できるのである。

[0009]

【発明の効果】従って、本発明によると、一つのモールド部に対して少なくとも左右一対のリード端子を有する電子部品をリードフレームを使用して連続的に製造する場合において、各リード端子の相互間における平行度、及び各リード端子の相互間における高さ寸法の精度を確実に向上できる効果を有する。

[0010]

【実施例】以下、本発明の実施例を、図1~図3の図面について説明する。これらの図において符号11は、適宜幅のフープ状のリードフレームを示し、該リードフレーム11における左右一対のサイドフレーム11a, 11bは、リードフレーム11の長手方向に沿って適宜ピッチの間隔で配設したセクションバー14にて互いに一体的に連結されており、この両サイドフレーム11a, 11bのうち一方のサイドフレーム11aには、前記各セクションバー14の間の部位に電子部品における第1リード端子12を、内向きに突出するように一体的に造形する。

【0011】また、前記リードフレーム11における各セクションバー14の間の部位には、前記第1リード端子12に対する第2リード端子13を、当該第2リード端子13が前記第1リード端子12と略一直線状に並ぶように配設して、この各第2リード端子13を、前記セクションバー14に対してのみリードフレーム11の長手方向に延びる細幅片15を介して一体的に連接するように構成する。

【0012】更にまた、前記各第2リード端子13のうち第1リード端子12と反対側の他端部には、尻尾片20を、当該尻尾片20が第2リード端子13の長手方向に延びるように一体的に造形するのである。そして、このリードフレーム11を、矢印Aで示すように、その長手方向に移送する途中において、先づ、各第2リード端子13の先端部を段付き状に曲げ加工したのち、各第1リード端子12の先端部上面に、半導体チップ16を、導電性ペースト17を介してダイボンディングする。

【0013】次いで、前配各第2リード端子13の先端部上面に、導電性ペースト18を塗着したのち、この各第2リード端子13を、図1及び図2に矢印Bで示すように、前記細幅片15を捩じり変形しながら第1リード端子12の方向に向かって裏返し状に反転することよっ

て、前記第1リード端子12に対してその間に前記半導 体チップ16を挟んで重ね合わせる。

【0014】このようにして各第2リード端子13を裏返し状に反転すると、この第2リード端子13は、その細幅片15の捩じり変形に際して発生するスプリングバックによって、半導体チップ16から浮き上がることになる。しかし、各第2リード端子13がその細幅片15のスプリングバックによって浮き上がると、この第2リード端子13の他端部に造形した尻尾片20が、リードフレーム11の下面から突出した状態になる。

【0015】そこで、前配各第2リード端子13の裏返し状の反転を行ったあとにおいて、リードフレーム11の下面に対して、図3に示すように、平面板21を接当するのである。すると、リードフレーム11の下面から突出する前記尻尾片20が平面板20に接当することにより、この尻尾片20を介してこれと一体の第2リード端子13を第1リード端子13に対して平行な状態に近付けることができるから、前記細幅片15におけるスプリングバックに起因して発生する両リード端子12、13の平行度のバラツキを小さくできると共に、第1リード端子12と第2リード端子13との間の高さ寸法Hのバラツキを小さくできるのである。

【0016】そして、この状態で、前記各導館ペースト16,17を乾燥したのち、両リード端子12,13の先端部を、合成樹脂製のモールド部19にてパッケージし、その後において、前記各細幅片15及び尻尾片20を打ち抜いて切除すると共に、第1リード端子12を切断することによって、リードフレーム11から切り離すのである。

【図面の簡単な説明】

【図1】本発明の実施例に使用するリードフレームの斜 視図である。

- 【図2】図1のIIーII視拡大断面図である。
- 【図3】図1のIII ーIII 視拡大断面図である。

【図4】従来の例に使用するリードフレームの斜視図である。

- 【図5】図4のV-V視拡大断面図である。
- 【図6】図4のVI-VI視拡大断面図である。

【符号の説明】

1 1	リードフレーム
11a, 11b	サイドフレーム
1 2	第1リード端子
1 3	第2リード端子
1 4	セクションバー
1 5	細幅片
1 6	半導体チップ
17, 18	導電性ペースト
1 9	モールド部

【図1】

【図2】

【図3】

【図4】

【図6】

