

94693 Big Data Engineering - Assignment 3

# Building ELT Data Pipelines with Airflow and dbt for Airbnb and Census Data: A Comprehensive Report



Github Repo: <a href="https://github.com/kirandas-dev/bde\_airbnb">https://github.com/kirandas-dev/bde\_airbnb</a>

## **Executive Summary:**

The assignment's primary objective was to build an ELT (**Extract, Load, Transform**) data pipeline using Apache Airflow and dbt (data build tool) to process, analyze, and present insights from Airbnb and Census data. The assignment successfully accomplished this goal, and this executive summary provides an overview of the key highlights and outcomes of the report.

## Introduction:

We have designed and implemented an Apache Airflow DAG (Directed Acyclic Graph) to manage the extraction and loading of various datasets. This report aims to give a brief walkthrough of how data flow is handled within this Airflow workflow.

#### **Overall Data Flow**

Data is initially extracted from CSV files residing in Google Drive directories. These files are then uploaded to a GCP bucket, making them accessible in a centralized location. The Airflow environment was set up to manage the flow of data from GCP to a SQL PostgreSQL instance. This instance was remotely managed by DBeaver, installed on our local macOS machine. The extracted and transformed data was then efficiently loaded into the PostgreSQL database, ensuring data integrity and consistency.

Our aim is to shed light on the significance of each step and its role in ensuring high-quality data for analysis.

### **Key Components of the DAG**

The DAG consists of the following key components:

**Data Extraction and Upload:** Data extraction tasks are executed by PythonOperators, responsible for loading data from different CSV files. The **import\_listings** task extracts **listing** data, the **import\_2016Census\_G01\_NSW\_LGA** task extracts **2016 Census demographic** data, and additional tasks focus on extracting other datasets related to Local Government Areas (LGA)

and suburbs. After extraction, the data is uploaded to a GCP bucket, facilitating centralized data storage.

**Data Transformation:** Each extraction task processes the extracted data, which includes data type conversion and cleaning. Data types of numeric columns are cast to integers or floats to ensure data integrity, and in one specific task (**import\_NSW\_LGA\_SUBURB**), columns are selectively chosen for data loading.



Figure 1

**Data Loading:** Data is loaded into the PostgreSQL database using the execute\_values function, ensuring efficient and high-performance data insertion.

**Automation and Consistency:** The DAG's automation of data extraction, upload, transformation, and loading establishes a consistent and reliable workflow, reducing the potential for human errors.

**Data Consistency and Integrity:** Transformation processes, like data type conversion, maintain data consistency and integrity by casting columns into appropriate data types.

**Selective Data Loading:** Multiple tasks were set up to enable data export from GCP, for eg **import\_NSW\_LGA\_SUBURB** task selectively loads specific columns, ensuring the insertion of only relevant data into the database, aligning with data relevance principles.

**Detailed Logging:** The DAG includes detailed logging, offering insights into the data extraction and loading process, which aids in monitoring and troubleshooting.

**Data Source Diversity:** The fact that DAG can accommodate data from various sources, is interesting. Although we had a unified data source, DAG can seamlessly integrate data from multiple touch points.

## **Snapshot Creation and SCD Handling for Staging Layer**

After loading data from GCP into the raw schema of the PostgreSQL database, the process involves creating snapshots of key tables, including the host, property\_type, and room\_type tables. These snapshots serve as historical records and are essential for tracking changes over time.

Data Cleaning in 'staging' Schema: Data cleaning and standardization are carried out in the 'staging' schema to ensure data quality and consistency. Specifically, data type casting is applied to columns like 'lga\_code\_2016' in the '2016Census\_G01\_NSW\_LGA' and '2016Census\_G02\_NSW\_LGA' tables. This consistency is crucial for reliable analysis and reporting. Null or NaN values are thoughtfully addressed to enhance data completeness and accuracy.

**Slowly Changing Dimensions (SCD) Handling:** Slowly Changing Dimensions (SCD) are managed to monitor changes over time. This is observed in the **'staging'** schema update of the **'raw.host\_snapshot'** table, where **'dbt\_valid\_to'** values are set based on the lead date, and the

'dbt\_scd\_id' is used to track changes. SCD handling is vital for maintaining a historical record of data while ensuring data consistency.

Data Cleaning came with some challenges: Within the 'staging' schema, an important aspect of data cleaning involves standardizing the Local Government Area (LGA) names and codes in the 'nsw\_lga\_code' data. This standardization process is crucial as it ensures that proper joins and data integration can be carried out effectively in the subsequent data warehousing layer. Consistent LGA names and codes are essential for maintaining data integrity and facilitating seamless analysis and reporting in the data mart environment.

**Standardizing 'host\_since' Column:** The **'host\_since'** date column presented issues with invalid values, including NaN entries. To address this, we employed a transformation that checked for null or non-standard date formats and standardized them. The transformation can be described as:

```
WHEN host_since IS NULL OR host_since !~ '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{4}$'
THEN '01/01/1900' ELSE host_since END as host_since,

Scraped_date,

--Next Step was to change it to 'YYYY-MM-DD' format

TO_CHAR(TO_DATE(host_since, 'DD/MM/YYYY'), 'YYYY-MM-DD') as host_since,
```

Figure 2. Code Snippet

**Host\_ids conundrum:** In the data, we noticed cases where multiple listings belong to multiple host ids.

|    | 123 host_id 🔻 | 126 listing_count          |    | 123 listing_id | 176 host_count | • |
|----|---------------|----------------------------|----|----------------|----------------|---|
| 1  | 15,030        | 2                          | 1  | 249,158        |                | 2 |
| 2  | listing_      | count: int8 (Read-only: No | 2  | 1,051,911      |                | 2 |
| 3  | corresp       | onding table column)       | 3  | 1,226,451      |                | 2 |
| 4  | 19,082        | 2                          | 4  | 1,352,336      |                | 2 |
| 5  | 20,258        | 2                          | 5  | 1,765,417      |                | 2 |
| 6  | 52,279        | 3                          | 6  | 2,000,728      |                | 2 |
| 7  | 55,948        | 2                          | 7  | 2,811,738      |                | 2 |
| 8  | 57,949        | 2                          | 8  | 3,055,867      |                | 2 |
| 9  | 67,766        | 2                          | 9  | 3,327,165      |                | 2 |
| 10 | 106,591       | 2                          | 10 | 3,911,220      |                | 2 |
| 11 | 113,874       | 74                         | 11 | 5,041,030      |                | 2 |

Figure 3. Hos\_ids vs Listing-ids

**Managing Duplicate host\_names:** Similar to host\_ids, we observed instances where the same host\_id had multiple associated host\_names.

This situation posed potential data integrity concerns. However, given the lack of contextual information, making transformative decisions was a delicate endeavor, as it carried the risk of inadvertently generating inaccurate reports.

Dealing with Missing host\_neighbourhood: 'host\_neighbourhood,' which represents a suburb, was missing from numerous entries. To address this, we aimed to approximate missing host\_neighbourhood values. We initially attempted a more complex approach by estimating missing host\_neighbourhoods based on the distribution of the number of host\_ids residing in respective suburbs within the 'listing\_neighbourhood' (an LGA). This distribution would have allowed us to select the suburb with the maximum number of hosts as a replacement for null host\_neighbourhood entries. However, this approach proved computationally expensive, leading us to opt for a simpler solution. In the simpler approach, we selected the first suburb within the 'listing\_neighbourhood' (LGA) that had a list of suburbs. This decision helped us maintain consistency in the absence of better reference data.

```
COALESCE (
```

```
WHEN h.host_neighbourhood = '' THEN s.suburb_name

ELSE h.host_neighbourhood

END,

s.suburb_name

) AS host_neighbourhood
```

Figure 4. Code Snippet

**Transformation of Listing Statistics:** In the **'listings'** data, the process involves calculating mean and standard deviation statistics for the 'price' column. The purpose is to identify and address outliers within the dataset. A threshold is set at 1.5 times the standard deviation, ensuring that approximately 80% of the data falls within this range, effectively filtering out extreme values that could compromise data integrity.

Handling listing\_id with different listing\_neighbourhood values: In the 'stg\_property' table, a data transformation step was applied to ensure data integrity and consistency. Specifically, the FIRST\_VALUE function, combined with the PARTITION BY listing\_id ORDER BY SCRAPED\_DATE clause, was used to select the first non-null value of the 'listing\_neighbourhood' column for each unique 'listing\_id,' effectively resolving cases where multiple entries for the same 'listing\_id' had different 'listing\_neighbourhood' values. This approach eliminated redundancy and enhanced data consistency, contributing to the overall quality of the dataset.

```
stg_property AS (
    SELECT

-- Cast host_id to integer

    CAST(listing_id AS INT) as listing_id, -- Cast listing_id to integer

    FIRST_VALUE(listing_neighbourhood) OVER (PARTITION BY listing_id ORDER BY SCRAPED_DATE) AS listing_neighbourhood,

FROM source....
```

Figure 5. Code Snippet

**Property\_type naming discrepancy**- The **property\_type** naming within the dataset displays inconsistencies when compared to the standardized property types provided by Airbnb's official website(<a href="https://help.hostfully.com/en/articles/4823898-airbnb-property-type-room-type-how-to-manage-correctly-from-hostfully-pmp">hostfully.com/en/articles/4823898-airbnb-property-type-room-type-how-to-manage-correctly-from-hostfully-pmp</a>). These discrepancies pose challenges when attempting to match the dataset's property\_type values with the officially recognized property types.



One intriguing observation is the property\_type "shared room in tiny house," which corresponds to "Entire Home/apt" in the room\_type. This inconsistency in the dataset leaves room for interpretation, making it difficult to definitively categorize the listings. To ensure data accuracy, these instances were retained as-is, as contextual information was insufficient to make a clear determination. This highlights the importance of maintaining standardized and consistent naming conventions in data collection and analysis to avoid such ambiguities.

## **Data Warehouse Layer:**

In the data warehouse layer, we bring together the dimensions that have been processed and cleaned in the staging layer to create a comprehensive and integrated view of the data. This is where the actual data integration takes place, allowing for meaningful analyses and reporting

on Airbnb listings, their hosts, and their respective neighborhoods which we are going to discuss in the Datamart section.

#### **Dimension Tables:**

These tables contain essential dimensions that provide context to the fact table.

dim\_G01: This dimension table includes data from 'stg\_G01' and serves as a reference for government statistics in New South Wales.

dim\_G02: It includes data from 'stg\_G02' and provides additional government statistics relevant to our analysis.

dim\_host: This dimension table contains information about Airbnb hosts, such as host names, registration dates, superhost status, and neighborhood affiliations.

dim\_lga: It includes data from 'stg\_lga' and represents Local Government Area information.

dim\_property: This dimension table encompasses data related to Airbnb property listings, including neighborhood, property type, room type, and accommodation details.

dim\_suburb: This dimension table offers insights into suburban data, which is crucial for understanding neighborhood dynamics.

**Fact Table:** The fact table is the centerpiece of the data warehouse layer, where data from various dimensions is joined to create a comprehensive view of Airbnb listings. This fact table is the foundation for analyses and reporting.

## **Datamart Layer**

In the data mart layer, a set of SQL queries was executed to derive insightful metrics from the Airbnb listings. The first query focuses on host neighborhoods, calculating metrics such as the number of distinct hosts, estimated revenue, and estimated revenue per distinct host for various host neighborhoods and month/year combinations.

| host_neighbourhood_lga | ▼ 🧶 month/year 🔻              | 123 Number of Distinct Hosts | 123 Estimated Revenue | 123 Estimated Revenue per Host (distinct) |
|------------------------|-------------------------------|------------------------------|-----------------------|-------------------------------------------|
| Northern Beaches       | 2020-12-01 00:00:00.000 +1100 | 3,909                        | 1,830,506.5191919192  | 468.2799997933                            |
| Northern Beaches       | 2021-01-01 00:00:00.000 +1100 | 3,860                        | 1,827,856.1234126984  | 473.5378558064                            |
| Northern Beaches       | 2020-09-01 00:00:00.000 +1000 | 3,908                        | 1,784,571.0527777778  | 456.6456122768                            |
| Northern Beaches       | 2021-02-01 00:00:00.000 +1100 | 3,849                        | 1,765,249.9664141414  | 458.6256083175                            |
| Northern Beaches       | 2021-04-01 00:00:00.000 +1100 | 3,774                        | 1,764,014.5490620491  | 467.412440133                             |
| Northern Beaches       | 2021-03-01 00:00:00.000 +1100 | 3,819                        | 1,746,501.4862193362  | 457.3190589734                            |
| Northern Beaches       | 2020-05-01 00:00:00.000 +1000 | 4,079                        | 1,672,874.1404401154  | 410.1186909638                            |
| Sydney                 | 2020-09-01 00:00:00.000 +1000 | 5,481                        | 1,671,726.896031746   | 305.0039948972                            |
| Northern Beaches       | 2020-11-01 00:00:00.000 +1100 | 3,826                        | 1,668,403.5101010101  | 436.069919001                             |
| Northern Beaches       | 2020-06-01 00:00:00.000 +1000 | 4,041                        | 1,654,127.0168831169  | 409.336059609                             |
| Northern Beaches       | 2020-10-01 00:00:00.000 +1000 | 3,837                        | 1,647,995.9818542569  | 429.501168062°                            |
| Sydney                 | 2020-05-01 00:00:00.000 +1000 | 5,855                        | 1,611,092.2927128427  | 275.1652079783                            |
| Sydney                 | 2020-06-01 00:00:00.000 +1000 | 5,795                        | 1,600,647.6521645022  | 276.2118467928                            |
| Sydney                 | 2021-01-01 00:00:00.000 +1100 | 5,296                        | 1,508,935.425036075   | 284.919831011                             |
| Northern Beaches       | 2020-08-01 00:00:00.000 +1000 | 3,582                        | 1,499,137.8148629149  | 418.519769643                             |
| Sydney                 | 2020-12-01 00:00:00.000 +1100 | 5,330                        | 1,482,147.3305916306  | 278.076422249                             |
| Sydney                 | 2021-02-01 00:00:00.000 +1100 | 5,261                        | 1,476,738.0268398268  | 280.695310176                             |
| Sydney                 | 2021-03-01 00:00:00.000 +1100 | 5,216                        | 1,455,320.2811327561  | 279.010790094                             |
| Northern Beaches       | 2020-07-01 00:00:00.000 +1000 | 3,524                        | 1,447,219.3831529582  | 410.675193857                             |
| Sydney                 | 2020-11-01 00:00:00.000 +1100 | 5,384                        | 1,427,076.7531746032  | 265.058832313                             |
| Sydney                 | 2020-10-01 00:00:00.000 +1000 | 5,420                        | 1,425,642.3341991342  | 263.033640996                             |
| Sydney                 | 2021-04-01 00:00:00.000 +1100 | 5,132                        | 1,412,793.8410533911  | 275.291083603                             |
| Sydney                 | 2020-07-01 00:00:00.000 +1000 | 4,903                        | 1,265,082.0377705628  | 258.022035033                             |
| Sydney                 | 2020-08-01 00:00:00.000 +1000 | 4,895                        | 1,247,342.1831168831  | 254.819649257                             |
| Waverley               | 2020-05-01 00:00:00.000 +1000 | 4,117                        | 1,205,113.8641414141  | 292.716508171                             |
| Waverley               | 2020-09-01 00:00:00.000 +1000 | 3,896                        | 1,180,123.7882034632  | 302.906516479                             |
| Waverley               | 2020-06-01 00:00:00.000 +1000 | 4,069                        | 1,178,891.7838023088  | 289.725186483                             |
| Overseas               | 2020-07-01 00:00:00.000 +1000 | 76                           | 1,123,824.3041125541  | 14,787.161896217                          |
| Waverley               | 2020-12-01 00:00:00.000 +1100 | 3,894                        | 1,047,952.1193362193  | 269.119701935                             |
| Randwick               | 2020-05-01 00:00:00.000 +1000 | 2,510                        | 1,032,461.51504329    | 411.339249021                             |
| Waverley               | 2021-01-01 00:00:00.000 +1100 | 3,859                        | 1,029,517.7287518038  | 266.783552410                             |
| Waverley               | 2021-02-01 00:00:00.000 +1100 | 3,838                        | 1,021,946.1106060606  | 266.270482179                             |
| Waverley               | 2021-03-01 00:00:00.000 +1100 | 3,799                        | 1,003,929,3962121212  | 264.261488868                             |
| Waverley               | 2020-10-01 00:00:00.000 +1000 | 3,868                        | 1,002,649.032972583   | 259.216399424                             |
| Waverley               | 2020-11-01 00:00:00.000 +1100 | 3,851                        | 1,000,139.0349206349  | 259.708915845                             |
| Waverley               | 2021-04-01 00:00:00.000 +1100 | 3,741                        | 987,098.5795454545    | 263.859550800                             |
| Waverley               | 2020-08-01 00:00:00.000 +1000 | 3,443                        | 977,521.0228715729    | 283.915487328                             |
| Waverley               | 2020-07-01 00:00:00.000 +1000 | 3,411                        | 961,372.8306637807    | 281.8448638709                            |

Table 1. Data Snippet



Figure 7

The data mart reveals the top 5 host\_neighbourhood\_lga areas, showcasing their strengths in the Airbnb market. Northern Beaches stands out with 46,008 distinct hosts and an impressive estimated revenue of \$20,308,460, resulting in \$5,296 in estimated revenue per host. Sydney, Waverley, Randwick, and Inner West also feature prominently with notable host counts and substantial estimated revenues, making them appealing regions for Airbnb hosting. These insights provide valuable guidance for hosts and industry stakeholders in understanding the performance of different host neighborhoods.



Figure 8

The data reveals the top 5 host\_neighbourhood\_lga areas with the highest estimated revenue per host, highlighting their lucrative potential for Airbnb hosts. Overseas leads the list with an exceptional revenue per host of \$4,140, reflecting the strong earning capacity of these international locations. Bathurst Regional, Woollahra, Mosman, and Northern Beaches also stand out as attractive destinations for hosts, offering competitive revenue per host ratios. This information can guide hosts in selecting locations with high earning potential and optimizing their Airbnb listings.

The second query delves into neighborhood-level metrics, including the active listings rate, minimum and maximum prices, median price, average price, number of distinct hosts, superhost rate, average review scores rating, percentage changes in active and inactive listings, total stays, and average estimated revenue per active listing. These metrics provide a detailed analysis of Airbnb listings' performance in different neighborhoods.

| REC listing_ne 🔻 | mont ▼      | 123 Active List 🔻 | 123 Minimum P 🔻 | 123 Maximum Price 🔻 | 123 Median P 🔻 | 123 Average Pric 🔻 | 123 Number of Distinc 🔻 | 123 Superhost Rate | 123 Average Review Scores | 123 Percentage c |
|------------------|-------------|-------------------|-----------------|---------------------|----------------|--------------------|-------------------------|--------------------|---------------------------|------------------|
| Bayside          | -01 00:00:0 | 100               | 17.8333333333   | 3,872.666666667     | 85             | 152.6733862002     | 1,220                   | 11.5573770492      | 59.416460396              | [NUI             |
| Bayside          | -01 00:00:0 | 100               | 17.8333333333   | 3,872.666666667     | 84             | 151.4845688919     | 1,201                   | 11.3238967527      | 59.000630517              | -1.85643564      |
| Bayside          | -01 00:00:0 | 100               | 17.8333333333   | 3,872.666666667     | 84.7765151515  | 161.8244128404     | 1,041                   | 13.2564841499      |                           | -14.12358133     |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 79             | 111.1071307276     | 1,051                   | 12.9400570885      | 58.2724637681             | 1.32158590       |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 78             | 107.7814222327     | 1,157                   | 12.1002592913      | 58.3851937536             | 25.28985507      |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 78             | 109.0993842908     | 1,140                   | 11.6666666667      | 57.962962963              | -12.55060728     |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 78             | 111.7926655987     | 1,119                   | 11.528150134       | 57.8690396239             | -1.5211640       |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 80             | 114.7179784184     | 1,132                   | 11.3074204947      | 56.5363091272             | 0.80591000       |
| Bayside          | -01 00:00:0 | 100               |                 | 2,904               | 80             | 127.6352323309     | 1,133                   | 10.6796116505      | 55.6302910053             | 0.73284477       |
| Bayside          | -01 00:00:0 | 99.7317236754     |                 | 2,904               | 80             | 123.6231404496     | 1,110                   | 10.592459605       | 56.3221250841             | -1.65343915      |
| Bayside          | -01 00:00:0 | 99.6572995202     |                 | 2,904               | 80             | 120.8845105109     | 1,104                   | 10.2795311091      | 56.5474552957             | -2.21923335      |
| Bayside          | -01 00:00:0 | 99.1672449688     |                 | 2,904               | 80             | 119.2929310853     | 1,080                   | 10.0917431193      | 56.6836948915             | -1.7193947       |
| Blacktown        | -01 00:00:0 | 100               | 23              | 881                 | 65             | 89.516304555       | 239                     | 12.9707112971      | 56.8364779874             |                  |
| Blacktown        | -01 00:00:0 | 100               |                 | 880                 | 65             | 89.7209477276      | 234                     | 13.6752136752      | 55.6872964169             | -3.45911949      |
| Blacktown        | -01 00:00:0 | 100               | 23              | 2,164               | 66             | 122.523168959      | 212                     | 14.6226415094      | 54.0073800738             | -11.72638436     |
| Blacktown        | -01 00:00:0 | 100               | 20              | 2,000               | 60             | 94.5661938534      | 216                     | 13.4259259259      | 54.5815602837             | 4.05904059       |
| Blacktown        | -01 00:00:0 | 100               | 20              | 2,000               | 60             | 92.2978056426      | 220                     | 13.6363636364      | 54.8495297806             | 13.12056737      |
| Blacktown        | -01 00:00:0 | 100               | 18              | 2,000               | 61             | 96.8560060442      | 216                     | 11.5740740741      | 54.8647686833             | -11.91222570     |
| Blacktown        | -01 00:00:0 | 100               | 18              | 2,000               | 61             | 92.4326900585      | 221                     | 11.3122171946      | 53.9438596491             | 1.42348754       |
| Blacktown        | -01 00:00:0 | 99.649122807      |                 | 2,000               | 61             | 92.7336267606      | 217                     | 11.5207373272      | 55.0598591549             | -0.3508771       |
| Blacktown        | -01 00:00:0 | 100               | 22              | 2,228               | 61             | 106.5790935673     | 213                     | 10.3286384977      | 55.8947368421             | 0.35211267       |
| Blacktown        | -01 00:00:0 | 99.6376811594     |                 | 2,000               | 63             | 93.5847107438      | 215                     | 10.1851851852      | 55.12                     | -3.50877192      |
| Blacktown        | -01 00:00:0 | 98.1684981685     | 22              | 2,000               | 65             | 97.6173507463      | 214                     | 10.6481481481      | 54.776119403              | -2.54545454      |
| Blacktown        | -01 00:00:0 | 96                |                 | 2,000               | 66             | 99.9362373737      | 213                     | 10.0917431193      | 53.2916666667             | -1.49253731      |
| Burwood          | -01 00:00:0 | 100               |                 | 2,440               | 70             | 127.4624020916     | 169                     | 11.2426035503      | 59.7638376384             |                  |
| Burwood          | -01 00:00:0 | 100               |                 | 2,440               | 69             | 109.595072397      | 165                     | 10.9090909091      | 59.8897338403             | -2.95202952      |
| Burwood          | -01 00:00:0 | 100               | 14              | 2,164               | 70             | 121.7392770809     | 149                     | 12.0805369128      | 57.8760683761             | -11.02661596     |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 | 66             | 92.2948752834      | 152                     | 10.5263157895      | 61.4367346939             | 4.70085470       |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 | 68.5           | 92.8884353741      | 158                     | 10.1265822785      | 63.8197278912             |                  |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 | 67             | 90.280098832       | 162                     | 9.2592592593       | 61.9396226415             | -9.86394557      |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 | 68.5           | 91.4901515152      | 162                     | 9.2592592593       | 57.1363636364             | -0.37735849      |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 | 69.5           | 95.3030919886      | 159                     | 9.4339622642       | 60.3435114504             | -0.7575757       |
| Burwood          | -01 00:00:0 | 100               | 16              | 530                 | 69             | 94.3773290598      | 156                     | 9.6153846154       | 62.0961538462             | -0.7633587       |
| Burwood          | -01 00:00:0 | 100               |                 | 530                 |                | 95.3619246862      | 152                     | 9.2105263158       | 64.870292887              | -8.0769230       |
| Burwood          | -01 00:00:0 | 100               | 16              | 530                 | 70             | 96.9126811594      | 150                     | 10                 | 66.4                      | -3.7656903       |
| Burwood          | -01 00:00:0 | 99.5633187773     |                 | 530                 | 75             | 100.6086744639     | 149                     | 10.6666666667      | 66.0701754386             | -0.8695652       |
| Camden           | -01 00:00:0 | 100               | 35              | 406.25              | 91.1666666667  | 107.1392084106     | 41                      | 24.3902439024      | 57.7755102041             |                  |
|                  |             |                   |                 |                     |                |                    |                         |                    | CAAD                      | 2 0400462        |

Table 2

|                       | Average Review Scores Rating | <b>Median Price</b> | Total Number of Stays |
|-----------------------|------------------------------|---------------------|-----------------------|
| listing_neighbourhood |                              |                     |                       |
| Sutherland Shire      | 72.192267                    | 139.909091          | 126649                |
| Hornsby               | 71.578543                    | 90.000000           | 94215                 |
| Campbelltown          | 69.033799                    | 80.386364           | 21320                 |
| Sydney                | 67.699841                    | 120.000000          | 2227151               |
| Penrith               | 67.491493                    | 107.687500          | 28427                 |
|                       |                              |                     |                       |

Table 3

This table presents a balance between the **top 5 listing\_neighbourhoods**, taking into account both high **review scores** and **reasonable pricing** alongside the total number of stays. Sutherland Shire leads with an impressive average review score of 72.19, a median price of \$139.91, and a substantial 126,649 stays. Hornsby offers competitive ratings, with a score of 71.58, a median price of \$90, and 94,215 stays. Campbelltown, Sydney, and Penrith round out the list with their unique combinations of ratings, prices, and total stays. This information empowers both hosts

and travelers, enabling them to find neighborhoods that strike a balance between quality reviews and budget-friendly accommodations with a range of stay options.

The third query further refines the analysis by considering property type, room type, and accommodates. It evaluates metrics akin to the second query but categorizes the data by these specific dimensions, allowing for a more granular understanding of listing performance based on distinct attributes.



Table 4. Data Snippet



Table 5- top and bottom 5 categories for property types, room types, and accommodates

The table highlights the top and bottom 5 categories for property types, room types, and accommodations based on minimum and maximum prices for active listings. Notable findings

include high minimum prices for boats and entire home/apartment rentals, while shared rooms and tiny houses offer more budget-friendly options. Boats and apartments also command high maximum prices, whereas shared rooms in bed and breakfasts and hotels offer more affordable choices. This information is valuable for both hosts and guests when making pricing and booking decisions.

Collectively, these data mart queries furnish a comprehensive evaluation of Airbnb listings, facilitating data-driven insights and strategic decision-making in the short-term rental market.



Figure 9

## **Ad-Hoc Analysis**

1. We aimed to extract demographic information for the best and worst-performing "listing\_neighbourhoods" in terms of estimated revenue per active listings over the last 12 months.

The analysis reveals intriguing insights into the disparities between the best and worst-performing "listing\_neighbourhoods" from an estimated revenue perspective over the past year. While the analysis is based on factual data, it's essential to consider potential factors contributing to the observed differences critically.

In the competition of neighborhoods, **Mosman** takes the lead with a thriving population, age diversity, and youthful energy. Its sizable population and balanced age groups create a broad customer base, while the presence of young adults aged 25-29 fuels Airbnb demand and revenue.



Table 6. Best Neighbourhood

**Fairfield**, on the other hand, is the underdog with a cozier population and age variance. Although it has its share of youthful potential, its smaller size and diverse age groups might be influencing factors, limiting its Airbnb revenue growth.

2. To optimize revenue and stays in the top-performing "listing\_neighbourhoods," focusing on specific listing attributes is essential. Our analysis found that the property type, room type, and accommodation capacity can significantly impact the number of stays. The order of results was determined by the average review scores and the number of reviews. These factors are vital in attracting guests and promoting longer stays. A higher average review score and a greater number of reviews indicate guest satisfaction and reliability, driving more bookings and stays.

In the top 5 "**listing\_neighbourhoods**" with high estimated revenue per active listing, the following listing attributes stood out: Northern Beaches offers an "Entire floor" property for two guests with a 100 average review score, 134 reviews, and an estimated revenue of \$20,114.25

#### (201 nights of stays).



Table 6. Data Snippet

Since we lack detailed information about the individual profitability of each listing, taking the average of review scores and the sum of the number of reviews in the order by clause strikes a balance between maximizing profitability and ensuring reliability.

3. In our analysis, we sought to determine whether hosts with multiple listings tend to place those listings within the same Local Government Area (LGA) as their place of residence. To address this question, we identified hosts with more than one listing and examined whether their "host\_neighbourhood\_lga\_name" (the LGA where the host's property is located) matched the "listing\_neighbourhood" (the neighborhood where the listing is situated).

The partial results indicated that many hosts with multiple listings indeed placed those listings within the same LGA as their residence. Here are a few sample records that demonstrate this alignment:

| 123 host_id ↑▼ | 123 listing_id 🔻 | <sup>ABC</sup> host_neighbourhood_lga_name ▼ | REC listing_neighbourhood |
|----------------|------------------|----------------------------------------------|---------------------------|
| 15,030         | 32,124,043       | Cumberland                                   | Cumberland                |
| 15,030         | 28,720,008       | Cumberland                                   | Cumberland                |
| 17,061         | 73,639           | Sydney                                       | Sydney                    |
| 17,061         | 12,351           | Sydney                                       | Sydney                    |
| 17,331         | 26,430,130       | Waverley                                     | Waverley                  |
| 17,331         | 21,283,213       | Waverley                                     | Waverley                  |
| 19,082         | 48,673,525       | Sydney                                       | Inner West                |
| 19,082         | 7,824,130        | Sydney                                       | Sydney                    |
| 20,258         | 30,094,181       | Sydney                                       | Sydney                    |
| 20,258         | 39,581,614       | Sydney                                       | Sydney                    |
| 52,279         | 24,956,575       | Sydney                                       | Sydney                    |
| 52,279         | 23,398,484       | Sydney                                       | Sydney                    |
| 52,279         | 23,525,381       | Sydney                                       | Sydney                    |
| 55,948         | 4,590,307        | Northern Beaches                             | Northern Beaches          |
| 55,948         | 14,250           | Northern Beaches                             | Northern Beaches          |
| 57,949         | 5,491,278        | Sydney                                       | Sydney                    |
| 57,949         | 2,426,786        | Sydney                                       | Sydney                    |
| 67,766         | 21,652,732       | Sydney                                       | Sydney                    |
| 67,766         | 4,832,426        | Sydney                                       | Sydney                    |
| 106,591        | 20,559,017       | Northern Beaches                             | Northern Beaches          |

Table 8. Data Snippet

Calculating the percentage of hosts with multiple listings who choose to have their listings in the same LGA as their residence revealed that approximately **94.94**% of hosts exhibit this behavior. It suggests that most hosts opt for the convenience and familiarity of managing listings in their local area.

4. We wanted to plot a graph to show whether hosts' estimated revenue can cover their listing neighborhood's median mortgage which is looked up from census data. We'll distinguish between 'Yes' and 'No'."



Figure 10. Can Cover Mortgage

The analysis reveals that only 45.02% of hosts' estimated revenue can cover their listing neighborhood's median mortgage. This finding suggests that for a substantial portion of hosts, the revenue they generate from renting out their properties may fall short of covering the annualized median mortgage expenses in their respective listing neighborhoods. Hosts in these areas may be faced with a financial challenge, as they might need to rely on other sources of

income to bridge the gap. Understanding the dynamics of this balance between estimated revenue and mortgage costs is essential for both hosts and potential property investors to make informed decisions about their short-term rental endeavors in various neighborhoods.

## **Conclusion:**

In summary, the development and implementation of an ELT data pipeline using Apache Airflow and dbt have successfully processed and analyzed Airbnb and Census data. This report has covered the data flow, key components, and challenges encountered in the pipeline.

The data pipeline has automated data extraction, transformation, and loading, ensuring data integrity and consistency. Slowly Changing Dimensions (SCD) handling and data cleaning in the 'staging' schema have further enhanced data quality.

The data mart layer has provided valuable insights through SQL queries, offering a comprehensive view of host neighborhoods, neighborhood performance, and listing attributes. The ad-hoc analysis has shed light on the best and worst-performing neighborhoods and the factors influencing host revenue and stays.

While this project has yielded significant insights, it's important to note that data analysis is an evolving process. As market dynamics change, so should the data pipeline and analysis methods. This project underscores the importance of data-driven decision-making in the short-term rental and demographic analysis domains.

## **Appendix**

 SQL script to calculate the distribution of host\_ids per suburb in a given listing neighborhood.

```
WITH max_frequency_per_listing AS (
     SELECT
          listing_neighbourhood,
          host_neighbourhood,
         MAX(frequency) AS max_frequency
     FROM (
          SELECT
               listing_neighbourhood,
              host_neighbourhood,
COUNT(host_id) AS frequency
          FROM listings
          WHERE host_neighbourhood IS NOT NULL AND host_neighbourhood <> ''
         GROUP BY listing_neighbourhood, host_neighbourhood
     ) AS subquery
     GROUP BY listing_neighbourhood, host_neighbourhood
UPDATE public.listings AS t1
SET host_neighbourhood = t2.host_neighbourhood
FROM (
         l.listing_neighbourhood,
l.host_neighbourhood,
         m.max_frequency
     FROM listings l
   JOIN max_frequency_per_listing m
ON l.listing_neighbourhood = m.listing_neighbourhood
WHERE l.host_neighbourhood IS NOT DISTINCT FROM 'NaN' OR l.host_neighbourhood IS NULL
```

2. Host ids having multiple listing id and vice versa.

```
SELECT host_id, COUNT(DISTINCT listing_id) AS listing_count
FROM public.listings
GROUP BY host_id
HAVING COUNT(DISTINCT listing_id) > 1;

SELECT listing_id, COUNT(DISTINCT host_id) AS host_count
FROM public.listings
GROUP BY listing_id
HAVING COUNT(DISTINCT host_id) > 1;
```

3. The code extracts and summarizes the top 5 listing neighborhoods with the highest average review scores, along with their median prices and total stays from a DataFrame.

```
df = dfs[0]
```

```
grouped_df = df.groupby('listing_neighbourhood').agg({'Average Review
Scores Rating': 'mean', 'Median Price': 'median', 'Total Number of Stays':
'sum'})
```

```
top 5 neighbourhoods = sorted df.head(5)
                 result = top 5 neighbourhoods[['Average Review Scores Rating', 'Median
Price', 'Total Number of Stays']]
               return {'type': 'dataframe', 'value': result}
4. The code analyzes and presents the top and bottom 5 combinations of property types, room
types, and accommodates based on average minimum and maximum prices in a DataFrame.
grouped_data
'accommodates'])
                                                                    = dfs[0].groupby(['property type', 'room type',
    avg min price = grouped data['Minimum Price'].mean()
    avg max price = grouped data['Maximum Price'].mean()
     top min price = avg min price.nlargest(5)
          top max price = avg max price.nlargest(5)
          bottom min price = avg min price.nsmallest(5)
               bottom max price = avg max price.nsmallest(5)
result_df = pd.DataFrame({'Top 5 Property Types (Min Price)':
top_min_price.index.get_level_values('property_type'), 'Top 5 Room Types
(Min Price)': top_min_price.index.get_level_values('room_type'), 'Top 5
(Min Price)':

top_min_price.index.get_level_values('accommodates'), 'Top 5 Minimum

Prices': top_min_price.values, 'Top 5 Property Types (Max Price)':

top_max_price.index.get_level_values('property_type'), 'Top 5 Room Types

(Max Price)': top_max_price.index.get_level_values('room_type'), 'Top 5

Accommodates

top_max_price.index_get_level_values('loos_values('room_type'));

top_max_price.index_get_level_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loos_values('loo
top_max_price.index.get_level_values('accommodates'), 'Top 5 Maximum Prices': top_max_price.values, 'Bottom 5 Property Types (Min Price)': bottom_min_price.index.get_level_values('property_type'), 'Bottom 5 Room Types (Min Price)': bottom_min_price.index.get_level_values('room_type'), 'Bottom 5 Accommodates (Min Price)': bottom_min_price_index_get_level_values('accommodates') | Price | P
bottom max_price.index.get_level_values('accommodates'), 'Bottom 5 Maximum Prices': bottom max price.values})
    return { 'type': 'dataframe', 'value': result df}
5. The code calculates the percentage of distinct host IDs with matching
"host neighbourhood Iga name" and "listing neighbourhood" values in the DataFrame.
total host ids = dfs[0]['host id'].nunique()
                      matching host ids = dfs[0][dfs[0]['host neighbourhood lga name'] ==
dfs[0]['listing neighbourhood']]['host id'].nunique()
```

sorted df = grouped df.sort values('Average Review Scores Rating',

ascending=False)

# percentage = matching host ids / total host ids \* 100

result = {'type': 'string', 'value': f'The percentage of distinct host\_id who have host\_neighbourhood\_lga\_name = listing\_neighbourhood\_is {percentage:.2f}%.'}

return result

5.

The code generates a bar chart showing the count of hosts categorized by whether they can cover their listing neighborhood's median mortgage with their estimated revenue. The chart is saved as an image file.

```
grouped = dfs[0].groupby('can cover mortgage').count()
   fig, ax = plt.subplots()
   grouped['host id'].plot(kind='bar', ax=ax)
   ax.set xlabel('Can Cover Mortgage')
 ax.set ylabel('Count')
      ax.set title("Hosts' Estimated Revenue vs Listing Neighborhood's
Median Mortgage")
   plt.savefig('/content/temp chart.png')
   plt.close(fig)
   return {'type': 'plot', 'value': '/content/temp chart.png'}
```