THE FILE CURY

369

A D - A 955

BALLISTIC AND ENGINEERING DATA

FOR AMMUNITION

76-F-42 to 105-1-314 incl

Approved for Public Release; distribution is unlimited.

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MD.

Best Available Copy

TABLE OF CONTENTS

VOLUME II - 76-1-42 TO 105-1-314 INCL.

	BRLH No.	Paragrap	h Nos.
Shell, HE, 76-mm, M42A1	76-1-42		1-12
Projectile, APC, 76-mm (3-inch), M62A1	76-1-62		1-8
Shot, AP, 76-mm (3-inch), M79	76-1-79		1- 8
Shot, HVAP, 76-mm, M93	76-1-93		1- 8
Shell, HE, 81-mm, M43 and M43A1	81-1-43		1- 7
Shell, HE, 81-mm, M56	81-1-56		1- 9
Shell, Smoke, 81-mm, M57	81-1-57		1-8
Shot, AP, 90-mm, T33	90-1-T33		1- 8
Shell, HE, 90-mm, M58 and M58B1	90-1-58		1- 8
Shell, HE, 90-mm, M71	90-1-71		1-13
Shot, AP, 90-mm, M77	90-1-77		1-8
Projectile, APC, 90-mm, M82	90-1-82		1- 8
Shot, HVAP, 90-mm, M304	90-1-304		1- 8
Shell, HE, 105-mm, M1	105-1-1		1-12
Shell, HE, 105-mm, T12	105 - 1-T12		1- 6
Shell, HEAT, 105-min, M67	105-1-67		1- 9
Shell, Illuminating, 105-mm, M314	105-1-314	• • • • • •	1- 8

UNANNOUNCE

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 76-1-42 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 2 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 76-mm, M42Al

with

Fuzes, PD, M18, M48A1, M48A2 and M51A4; TSQ, M54 and M55A3; MT, M43A5; and CP, M78

Section		Paragraphs
I	General	1
n	Description	2 - 4
m	Interior ballistic data	5 - 6
IV	Exterior ballistic data	7 - 8
V	Effect data	9 - 12

SECTION I GENERAL

																																Paragraph	
Purnose -	 _	 	_	_	_	_	_	_	_	_	~	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	

1. Purpose. The purpose of this number of the mandbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 76-mm High Explosive Shell M42A1 with the Point Detonating Fuzes M48, M48A1, M48A2 and M51A4; the Time and Superquick Fuze M54; the Mechanical Time Fuze M43A5; and the Concrete Piercing Fuze M78. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

DIMENSIONS IN CALIBERS I CAL = 3.000"

SHELL, HE, 76-MM, M42AI FUZE, PD, M48, M48AI, M48A2 OR M5IA4; T SQ, M54; OR MT, M43A5

SHELL, HE, 76-MM, M42AI FUZE, CP, M78

SECTION II DESCRIPTION

	Paragraph
Drawings	
2. Drawings.	
Shell, M42A1: Metal parts assembly and details	75-18-33
Shell, M42B1: Metal parts assembly and details	75-18-37
Shell, M42B2: Metal parts assembly and details	75-18-38
Booster, M20A1: Assembly and details	73-2-112
Booster, M21A4: Assembly	73-2-154
Fuze, PD, M48, M48A1 and M48A2: Assembly	73-2-140
Fuze, PD, M51A4: Assembly	73-2-145
Fuze, TSQ, M54: Assembly	73-3-154
Fuze, MT, M43A5: Assembly and details	73-7-29
Fuze, CP, M78: Assembly and details	73-2-214

Note: The MT, PD, and TSQ Fuzes require one of the boosters; but the CP Fuze contains their working parts. The TSQ Fuze M54 and the Booster M21A4 are components of the TSQ Fuze M55A3, dwg 73-3-155.

3. Dimensions.

Band: Width Distance from base	0.34 cal 0.40 cal
Cylindrical body: Length	1.92 cal
Ogive: Length Radius of arc	0.87 cal 7.90 cal
Shell, unfuzed: Length	2.80 cal
Fuze, PD, TSQ or MT: Outside length Shell and fuze Ogive and fuze	1.25 cal 4.04 cal 2.12 cal
Fuze, CP: Outside length Radius of ogival arc Shell and fuze Ogive and fuze	0.86 cal 2.67 cal 3.68 cal 1.76 cal

4. Physical characteristics. The weight, location of center of gravity, and moments of inertia of the HE Shell M42A1 with any of the PD, TSQ or MT Fuzes are approximately the same as those of the HE Shell M42A1 with the CP Fuze is approximately the same as those of the HE Shell M42B2 with the inert Fuze T105 Type 6.

Shell Fuze		M42 M43A2	M42B2 T105 Type 6
Mean weight: Marking (Standard) Marking	lb lb	12.80 13.00	13.14 13.34
Warking	lb	13.20	13.54
Base to center f gravity cal 2		1.540	1.546
Axial moment of ineria lb.ft.		0.1105	0.1098
Transverse moment of nertia lb.ft		0.8092	0.8106

SECTION III INTERIOR BALLISTIC DATA

															Paragraph
Stresses	 		 -	 -	 -	-	 -	_	-	_	-	_	-	-	5
Theoretical yaw in bore	 	-		 -	 -	-	 -	-	_	_	-	_	_	_	6

5. Stresses. The following table and the graphical representation on page 5 show the longitudinal, radial and tangential resultant stresses at each of three sections: (A) the rear corner of the band seat, (B) the front of the band seat, and (C) immediately behind the bourrelet.

Gun 76-mm M1A2
Twist of rifling 1/32
Cross-sectional area of bore 7.2776 sq in.
Rated maximum pressure 43,000 psi
Total weight of projectile 12.80 lb
Muzzle Velccity 2,700 fps
Density of filler (TNT) 0.057 lb per cu in.

Resultant Stress*			
100 psi	A	В	C
Longitudinal	- 274	-736	-355
Radial	+ 630	+ 87	+ 59
Tangential	-1086	+480	+212

^{* +} denotes tension, - denotes compression

DIAGRAM OF RESULTANT STRESSES

6. Theoretical yaw in bore.

Minimum7 minMaximum12 min

SECTION IV

EXTERIOR BALLISTIC DATA

																												Paragraph
Aerodynamic data																												
Firing table data	-	-	-	_	-	-	-	 -	_	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	8

7. Aerodynamic data. The aerodynamic data obtained with any of the PD, TSQ and MT Fuzes are applicable to the CP Fuze M78. The form factor given in this paragraph for the PD Fuze M48 was determined from resistance and range firings of the HE Sheil M42 with the PD Fuze M48 and the MT Fuze M43A2. BRL Report No. 30, Stability Factors of Projectiles" (Rev. Sep 1940) gives the stability factors and moment coefficients that were determined for the HE Shell M42 with the MT Fuze M43. BRL Report No. 298, "Stability and Resistance of 3-inch HE Shell M42A1 with PD Fuze T105 Type 6", gives the form factor and stability factor that were obtained in developing the CP Fuze. BRL Report No. 408, "Loss of Spin and Skin Friction Drag of Projectiles", gives the axial couple coefficient obtained from firings of the HE Shell M42 with a radio spin sonde in a dummy fuze having the same shape as the MT Fuze M43A2.

a. Drag.

Shell Fuze		M42 M48	M42A1 Т105 Туре в
Drag function		G ₃	G ₆
Muzzle Velocity	fps	2,700	2,680
Form factor		1.04	1.37
Ballistic coefficient		1.368	1.066
Drag coefficient, $K_{\overline{I}}$)	0.123	0.163

b. Stability.

Shell	M42	M42A1
Fuze	M43	T105 Type 6
Muzzle Velocity fps	2800	2600
Mach number	2.50	2.39
Moment coefficient, K _M	0.991	0.794
Twist of rifling	1/32 1/40	1/32 1/40
Stability factor	2.03 1.30	2.45 1.57

c. Axial couple.

Shell
Fuze
Radio sonde

Average velocity
Reynolds' number (based on avg vel. and caliber)
Axial couple coefficient, KA
Surface (without base)
Skin friction drag coefficient,
CLA

8. Firing table data. FT 76-C-1

FT 76-A-6 (Range-elevation tables and Aiming Data charts). Gun, 76-mm, M1A2 on Medium Tank M4 or Gun Motor Carriage M18. Twist of rifling: 1/32.

OCM item 18656 standardized the HE Shell M42A1 for the 76-mm Gun M1. OCM item 25455 authorized the use of a reduced charge to give a muzzle velocity of approximately 1550 fps; the normal charge gives about 2700 fps. The 76-mm Guns M1 and M1A1, whose twist of rifling is 1/40, are now obsolete. FT 3-W-1 gives data for the 3-inch Gun M5, whose twist of rifling is 1/40, firing the HE Shell M42A1 at muzzle velocities of 1550 and 2800 fps.

SECTION V EFFECT DATA

																															Paragraph
Fragmentation																															•
Effectiveness	-	•	-	-	-	••	-	-	•	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	••	-	-	-	-	-	10
Ricochet data	-	-	-	-	-	13	-	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	11
Penetration -	-			-	-	-	-	_	~	_		-	_		_	-	-	-	_	_		-	_	_	_	_	_		_	_	12

9. Fragmentation. The data on fragmentation of the 76-mm HE Shell M42A1 were taken from TM9-1907, "Ballistic Data, Performance of Ammunition" (Sep 1944) and Vol. III of "Terminal Ballistic Data" (Sep 1945). The initial Iragment veloc' is 2,260 fps.

a. Casualties.

TABLE 40 CASUALTIES

f	Distance rom burst (ft)	Total number of effective fragments	Average number of effective frag- ments per sq ft	effective	e lightest e fragment Velocity (fps)
	r	N	В	m	v
	20	547	0.109	0.026	1510
	30	498	0.04 <u>4</u> 0	0.033	1340
	40	465	0.0231	0.040	1220
	60	409	0.0090	0.055	1040
	80	370	0.0046	0.067	943
	100	331	0.0026	0.080	862
	150	282	0.0010	0.108	742
	200	244	0.0005	0.137	660
	300	191	0.0002	0.197	549
	400	149	0.0001	0.275	466

INCLINATION O° HEIGHT OF BURST OFT REMAINING VELOCITY O FPS

PER 4 SQ FT PER IOSQFT

ATLEASTIHIT INCLINATION 30° HEIGHT OF BURST OFT REMAINING VELOCITY 815 FPS

HEIGHT OF BURST 30 FT REMAINING VELOCITY 815 FPS

b. Perforation of 1/8-inch Mild Steel.

TABLE 41
PERFORATION OF 1/8 IN. MILD STEEL

Distance from burst (ft)	Total number of effective fragments	Average number of effective frag- ments per sq ft		e lightest e fragment Velocity (fps)
r	N	В	m	v
20	284	0.0565	0.106	1,860
30	242	0.0214	0.139	1,740
40	205	0.0102	0.177	1,600
60	151	0.0033	0.270	1,400
80	113	0.0014	0.375	1,270
100	90	0.0007	0.480	1,180
130	64	0.0003	0.648	1,080
160	43	0.0001	0.825	1,020
190	28	0.0001	. 1.01	963

INCLINATION O°
HEIGHT OF BURST OFT
REMAINING VELOCITY OFPS

PERFORATION OF 1/8-INCH MILD STEEL

INCLINATION 30°
HEIGHT OF BURST 30 FT
REMAINING VELOCITY 815 FPS

10. Effectiveness. The following data were taken from Vol. III of "Terminal Ballistic Data". They pertain to the 76-mm HE Shell M42A1 with a PD, TSQ or MT Fuze, fired at a muzzle velocity of 2,700 fps.

NUMBER OF ROUNDS REQUIRED AGAINST ENEMY ARTILLERY FOR 90% PROBABILITY OF AT LEAST ONE EFFECTIVE HIT IN AIMED FIRE

Range		:	
yd	Impatt	Time	Time and Impact
2000	6	270	13
5000	5ถ้	430	87

11. Ricochet Data. The following data were taken from Vol. III of "Terminal Ballistic Data". They pertain to the 70-mm HE Shell M42A1 with the PD Fuze M48 set for 0.05 sec delay, fired at a muzzle velocity of 2,700 fps (the PL Fuzes M48A1, M48A2 and M51A4 have 0.15 sec delay).

T/.BLE 75

PE in Range Angle of Angle of Impact Height Height Fall Recovery to Burst of Burst of Burst

уd	mils	mils	yd	ft	ft
1,000	8	20	40	3	0
2,000	20	35	33	4	1
3,000	38	60	26	5	ì
4,000	65	100	21	6	í
5,000	106	150	16	7	1
6,000	163	210	12	. 7	· 2
7,000	233	260	9	7	2
8,000	315	300	6	6	1
9,000	407	315	4	4	1

12. Penetration. The data on penetration of concrete by the HE Shell M42B1 with the CP Fuze M78 were taken from TM9-1907, "Ballistic Data, Performance of Ammunition". The data on penetration into medium earth and logs by the HE Shell M42A1 with the DP or CP Fuze were taken from Vol. III of "Terminal Ballistic Data".

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for / mmunition, No. 76-1-62. Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 3 February 1949

BALLISTIC AND ENGINEERING DATA

for

Projectile, APC, 76-mm (3-inch), M62A1

with

Fuze, BD, M66A1

Section		Paragraph
I	General	1
П	Description	2 - 4
Ш	Interior ballistic data	5
W	Exterior ballistic data	6 - 7
V	Effect data	8

SECTION I GENERAL

																															Paragrap	h
Purpose ·	 . -	_	_	-	_	_	-	_	-	_	-	-	_	-	-	_	_	-	-	_	-	-	_	_	-	-	_	-	_	_	1	

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics, and effects of the 76-mm (3-inch) Armor-piercing Capped Projectile M62A1 with the Base Detonating Fuze M66A1, which contains a tracer composition. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

ALL DIMENSIONS IN CALIBERS I CAL= 3.000"

Projectile, apc, 76-mm, m62ai Fuze, BD, m66ai

SECTION II DESCRIPTION

	Paragraph
Drawings	
Dimensions	3
Physical characteristics	4
2. Drawings.	
Projectile: Metal parts assembly and details	75-2-292
Fuze: Assembly	73-2-178
Details	73-2-179
Details	73-2-180
3. Dimensions.	
Fuze: Length (outside)	0.42 cal
Band: Distance from base	0.274 cal
Width	0.346 cal
B⊙dy: Cylindrical length	1.82 cal
Ogival length (outside)	0.25 cal
Radius of ogival arc	1.273 cal
Cap: Length (outside)	0.40 cal
Radius of ogival arc	7.00 cal
Windshield: Length	1.92 cal
Radius of ogival arc	7.00 cal
Length: Ogive	2.57 cal
Projectile without fuze	4.39 cal
Projectile and fuze	4.81 cal
4. Physical characteristics.	
Weight (standard)	15.40 lb
Base of projectile to center of gravity	1.404 cal
Axial moment of inertia	16.97 lb. in. ²
Transverse moment of inertia	104.8 lb. in. ²

SECTION III INTERIOR BALLISTIC DATA

Theoretical yaw in bore	<u>Paragraph</u> 5
5. Theoretical yaw in bore.	
Minimum	8 min
Maximum	13 min

SECTION IV EXTERIOR BALLISTIC DATA

Aerodynamic data - - - - - - - - - - - 6 Firing table data - - - - - - - - 7

6. Aerodynamic data.

a. Drag. The following results were obtained from resistance firings.

Muzzle Velocity	Drag Function	Form Factor	Ballistic Coefficient	Drag Coef.
fps		i	C	KD
2000	G ₆	1.052	1.627	0.157
2600	G ₆	1.052	1.627	0.129

b. Stability. Ballistic Research Laboratory Report No. 427, "Stability of 3-inch Armor-piercing Projectiles", gives the results obtained from stability firings of the 3-inch APC Projectile M62 with BD Fuze M66A1 from the 3-inch Antitank Gun M5, whose twist of rifling is 1/40. The 76-mm Tank Gun M1A2 has a twist of rifling of 1/32.

Muzzle	Moment	Stability 1	
Velocity	Coefficient	Twist of I	Rifling
fps	K _M	1/40	1/32
1600	1.48	1.09	1.70
2600	1.41	1.14	1.78

7. Firing table data.

A SECTION AND AND ASSESSED ASS

Gun	76-mm M1A2 (Tank)	3-inch M5 (Antitank)
Twist of rifling	1/32	1/40
Muzzle Velocity	2600 fps	2600 fps
FT	76-C-1	3-W-1

OCM item 16167 standardized the 3-inch AP Projectile M62, which was later called an APC Projectile. OCM item 18656 authorized its use in the 76-mm Gun M1. The 76-mm Guns M1 and M1A1, with 1/40 twist, are now obsolete.

SECTION V EFFECT DATA

Penetration - - - - - - - - - - - - - - 8

8. Penetration.

a. Ballistic Limits of Armor Plate.

	Plate		Ballisti	Number	
Туре	Thickness inches	Obliquity degrees	Type	fps	in <u>Average</u>
Face Hardened	3 3	20 30	Navy Navy	1742 2027	26 1
Homo- geneous	3 3	20 20	Army Navy	1726 1852	2 2
	4	30	Navy	2391	1

b. Vulnerability of German Tanks (Panzerkampfwagen)

MV: 2600 fps. These data were taken from TM9-1907, "Ballistic Data, Performance of Ammunition".

Maximum Vulnerable Range - yd.

Tank Mo	del	I	I	ΓV	7	7	/I
Attack	Angle - deg	0	25	0	25	0	25
Frontal	Turret Sides Turret Rear Turret Front Upper Hull Front Lower Hull Front	5000+ 4020 3230 2600	5000+ 2930 1740 1180	5000+ 4220 3300 3040	5000+ 3080 1740 1600	2880 2880 * 1020	720 720 * *
Flank	Turret Sides Turret Rear Turret Front Upper Hull Sides Lower Hull Sides	5000+ 5000+ 4020 5000+ 5000+	5000+ 5000+ 2930 5000+ 5000+	5000+ 5000+ 4220 5000+ 5000+	5000 5000+ 3080 5000+ 5000+	2880 2880 * 2880 3980	720 720 * 720 3000
Rear	Turret Sides Turret Rear Turret Front Upper Hull Rear Lower Hull Rear	5000+ 5000+ 4020 3900 4220	5000+ 5000+ 2930 2860 3080	5000+ 5000+ 4220 5000+ 5000+	5000+ 5000+ 3080 5000+ 5000+	2880 2880 * 2200 2200	720 720 * 550 550

^{*}Not vulnerable.

f. Total Number of Rounds Necessary to Obtain 90% Probability of Enough Hits to Make a Breach 12 Ft Wide in a Concrete Wall 10 Ft High. From TM 9-1907, "Ballistic Data, Performance of Ammunition".

MV 2600 fps Range 1000 yd

Wall thickness 6 ft 10 ft No. of rounds 100 180

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 76-1-79 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 4 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shot, AP, 76-mm (3-inch), M79 with Tracer

Section		Paragraph
I	General	1
II	Description	2 - 4
Ш	Interior ballistic data	5
IV	Exterior ballistic data	6 - 7
V	Effect data	8

SECTION I GENERAL

Purpose - - - - - 1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 76-mm (3-inch) Armor-piercing Shot M79 with Tracer. This information is collected from the drawings, reports, and firing tables pertaining to this ammunition.

SECTION II DESCRIPTION

																									Paragraph
Drawing	_	-	-	_	-	-	-	-	_	-	-	-	_	-	_	-	_	-	-	_	-	_	-	-	2
Dimensions	-	-	-	-	-	-	-	-	-	_	-	-	JE.	-	-	-	-	-	-	-	-	-	-	_	3
Physical characteristics	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_		_	_	_	_	4

ALL MEASUREMENTS IN CALIBERS I CAL * 3.000"

SHOT, AP, 76-MM, M79

Z. Drawing.	
Shot: Metal parts assembly and details	75-18-45
3. Dimensions.	
Band: Distance from base Width	0.257 cal 0.336 cal
Cylindrical body: Length	1.844 cal
Ogive: Lengtn Radius of arc	1.189 cal 1.667 cal
Shot: Total Length	3.033 cal
4. Physical characteristics.	
Weight (standard) Base to center of gravity* Axial moment of inertia* Transverse moment of inertia*	15.00 lb 1.33 cal 15.90 lb.in ² 81.85 lb.in ²
*Estimated on the basis of measurements of the	e 37-mm AP Shot M80.
SECTION	ON III
TWPPDIC LAI	T TOTAL TAMA

INTERIC . BALLISTIC DATA

Theoretical yaw in bore	
5. Theoretical yaw in bore.	
Minimum 8 min Maximum 12 min	

SECTION IV

EXTERIOR BALLISTIC DATA

																												ند	Paragra	p
Aerodynamic data	-	-	-	-	-	-	_	-	_	-	-	-	_	-4		-	-	_	-	-	-	-	-	-	_	-	-	-	6	
Firing table data	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	7	

8. Aerodynamic data.

- a. Drag. A form factor of 1.05 relative to Projectile Type 1 was determined from resistance firings at a muzzle velocity of 2600 fps. The corresponding ballistic coefficient is 1.59 on the G_1 drag function. The drag coefficient is 0.229 at 2600 fps.
- b. Stability. No stability firings have been conducted with the 76-mm AP Shot M79. The stability factor estimated from that of the 37-mm Armor-piercing Shot M80 (Ballistic Research Laboratory Report 438, "Yaw and Drift of 37-mm Armor-piercing Shots") at a muzzle velocity of 2600 fps and a twist of rifling of one turn in 40 calibers is 3.4.

7. Firing table data.

Gun	76-mm M1A2 (Tank)	3-inch M5 (Antitank)
Twist of rifling	1/32	1/40
Muzzle velocity	2600 fps	2600 fps
FT	76-A-6 (p. 18)	3-T-1 (Abridged)

OCM items 17458 and 17523 recommended and approved calssification of the 3-inch AP Shot M79 as substitute standard (the APC Projectile M62, which is more difficult to manufacture, is standard). OCM items 19052 and 19204 recommended and approved its use in the 76-mm Gun M1. The 76-mm Guns M1 and M1A1, with 1/40 twist, are now obsolete.

- a. Form factor (Projectile Type 1): $i_1 = 1.05$.
- **b.** Ballistic coefficient (Projectile Type 1): $C_1 = 1.59$.

SECTION V EFFECT DATA

																														Paragrat	h
Penetration	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	8	

8. Penetration.

BALLISTIC LIMITS OF ARMOR PLATE

Homogeneo	ous Plate	Ballistic	Limit	Number
Thickness inches	Obliquity degrees	Type	fps	in Average
3	0	Army	1356	2
4	0	Army	1719	1
3	0	Navy	1512	2
4	0	Navy	1911	1

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 76-1-93.

The second of the second secon

Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 3 February 1949

PALLISTIC AND ENGINEERING DATA

for

Shot, HVAP, 76-mm, M93 with Tracer

Section		Paragraphs
I	General	1
П	Description	2 - 4
Ш	Interior ballistic data	5
IV	Exterior ballistic data	6 - 7
V	Effect data	8

SECTION I GENERAL

																													Paragraph
Purpose	-	v	_	_	~	_	40	_	_	-	_	-	_	_	-	-	-	_	 _	_	•	-	~	_	-	-	_	 _	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 76-mm Hypervelocity Armor-piercing Shot M93 with Tracer. This information is collected from the drawings, reports, and firing tables pertaining to this armunition and to earlier experimental models of the T4 series (the M93 Shot was designated T4F20).

SECTION TO DESCRIPTION

																									=	ar agra	Thi
Drawings	-	_	-	-	-	_	-	_	-	_	-	-	-	_	-	-	~	-	-	~	~	-	-	•	-	2	
Dimensions																										_	
Physical characteristics	_	•	••	~	-	-	-	-	-	•	-		_	-	-	-	-	-	_	-	-	1-4	-	-	-	4	

ALL DIMENSIONS IN CALIBERS I CAL = 3.000 IN.

SHOT, HVAP, 76-MM, M93

2. Drawings.

Metal parts ass Metal parts deta	*	75-2-361 75-2-362 and 363
3. Dimensions.		
Band: Distance Width	from base	0.40 cal 0.37 cal
Base and body:	Length of body and bourrelet Length of bourrelet ring Length of base, body and bourrelet	0.86 cal 0.83 cal 0.17 cal 1.69 cal
	ngth dius of arc rtical angle of cone	1.96 cal 0.83 cal 28.68 deg
Shot: Total leng	gth	3.65 cal
Core: Diameter		1.50 in
4. Physical cha	aracteristics.	
Weight of shot weight of core Base to center Axial moment of	vithout tracer of gravity* f inertia*	9.31 lb 9.30 lb 3.95 lb 1.178 cal 8.54 lb. in
Transverse mo	ment of inertia*	44.2 lb. in ²

^{*}Calculated from the dimensions of the HVAP Shot T4E1, which is approximately the same shape as the M93 Shot, but weighs 9.97 lb and has a 3.98-lb core.

SECTION III

INTERIOR BALLISTIC DATA

	Paragrap	h
Theoretical yaw in bore	5	
5. Theoretical yaw in b	ore.	
Minimum	8.5 min	
Maximum	13.6 min	

SECTION IV EXTERIOR BALLISTIC DATA

																												Paragraph
Aerodynamic data																												
Firing table data	-	-	-	-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7

6. Aerodynamic data.

a. Drag.

Shot	T4E17	M93
Drag function	G ₈	G ₈
Muzzle velocity	3400 fps	3400 fps
Form factor (i ₈)	1.175	1.165
Ballistic.coefficient (C ₈)	0.879	0.888
Drag coefficient (KD)	0.111	0.110

b. Stability

b. diability.		
Shot	T4E17 .	
Muzzle Velocity	3440 fps	
Moment coefficient (K _M)	0.67	
Ġun, 76-mm	M1A1	M1A2
Twist of rifling	1/40	1/32
Stability factor	1.44	2.25

7. Firing table data. FT 76-C-1. MV 3400 fps.

Gun, 76-mm, M1A2. Twist of rifling: 1/32. The 76-mm Guns M1 and M1A1, with 1/40 twist, are now obsolete.

Standardization of the 76-mm HVAP Shot M93 with Tracer was recommended by OCM item 26551 and approved by OCM item 26841.

a. Form factor (Projectile Type 8)· $i_8 = 1.175$

This value was determined by resistance firings of the AP Shot T4E17 with a mean instrumental velocity of 3337 fps. $\dot{}$

b. Ballistic coefficient (Proj Type 8): $C_8 = 0.879$.

SECTION V EFFECT DATA

																														Ī	Paragra	ıph
Penetration -	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	_	8	

8. Penetration. 'The chart on page 8 was taken from Ballistic Research Laboratory Report No. 533, "Penetration of Armor by 76-mm and 90-mm HVAP Projectiles".

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 81-1-43 Ballistic Research Lab. Aberdeen Proving Ground, Maryland 4 February 1949

BALLISTIC AND ENGINEE. ING DATA

for

Shell, HE, 81-mm, M43 and M43A1

with

Fuze, PD, M45, M52 and M52A1

Section		Paragraph
I	General	1
П	Description	2 - 4
m	Exterior ballistic data	5 - 6
W	Effect data	7

SECTION I GENERAL

																															Paragraph
Purpose -	 _	_	_	-	-	-	-	-	-	_	-	-	_	-	-	-	-	.,	_	-	-	_	-	-	_	-	-	_	-	-	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 81-mm High Explosive Shell M43 with the Point Detonating Fuze M45 and the 81-mm High Explosive Shell M43A1 with the Point Detonating Fuze M52 or M52A1. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

SECTION II DESCRIPTION

	Paragraph
Drawings	2
Dimensions	3
Physical characteristics	٠4

ALL DIMENSIONS IN CALIBERS I CALIBER = 3.189"

SHELL, HE, 81-MM, M43AI FUZE, PD, M52

2. Drawings.	
Complete round, HE Shell M43 with PD Fuze M45: Assembly and marking diagram Complete round, HE Shell M43A1 with PD Fuze M52:	75-1-47
Assembly and marking diagram	75-1-88
Shell: Metal parts assembly and details	75-2-261
Fins: Assembly and details	75-2-262
PD Fuze M45: Assembly	73-1-143
PD Fuze M52 or M52A1: Assembly and details	73-1-161
3. Dimensions.	
Fins: Number Length (omitting front slope) Length of assembly (outside)	6 0.66 cal 0.96 cal
Shell: Radius of arc behind bourrelet Radius of arc in front of bourrelet Length of rear part Length of bourrelet Length of front part Length of adapter (outside) Total length	8.78 cal 1.33 cal 1.64 cal 0.32 cal 0.36 cal 0.10 cal 2.42 cal
Fuze: M45, outside length M52, outside length	0.73 cal 0.74 cal
Length: Shell and fin assembly Shell, fin assembly, and fuze M45 Shell, fin assembly, and fuze M52	3.38 cal 4.11 cal 4.12 cal
4. Physical characteristics.	
Weight (standard) Center of gravity to point of fuze Transverse moment of inertia	6.92 lb 1.92 cal 68.97 lb.in ²

SECTION III

EXTERIOR BALLISTIC DATA

																													Paragraph	
Aerodynamic data	-	-	-	-	-	-	-	-	~	-	-	~	-	_	-	-	_	-	-	-	-	-	-	-	-	_	_	_	5	
Firing table data	-	-	-	-	-	-	-	-	~	-	-	_	-	-	-	-	-	_	_	_	-	-		_	-	_	_	_	6	

6. Firing table data.

FT 81-B-3 and FT 81-B-4 (abridged).

Mortars, 81-mm, M1 and M21; Mortar, Trench, 3-inch, Mark IA2. Smooth bore: muzzle loading. Projectile weight: 6.87 lb. OCM items 9909 and 10024 recommended and approved standardization of the HE Shell iM43 for the 81-mm Mortar M1. OCM items 11703 and 11767 recommended and approved standardization of the HE Shell iM43 for the 3-inch Trench Mortar Mark IA2 with charges 0 to 4, but not with the larger charges. OCM items 28162 and 28822 recommended and approved standardization of the HE Shell imm Mortar M21; OCM Item 31408 restandardized it after further development of the mortar. FT 81-R-1 (abridged) is a range-elevation table for the 81-mm Mortar T27, which is the M21 Mortar without the Extension Tube and is us d with charges 0 to 3 at snort ranges.

a. Form factor data. The following form factors relative to Projectile Type 1 were determined from the ranges tabulated in FT 81-B-2 for an elevation of 45°.

Charge	Muzzle Velocity	Form Factor
	fps	ⁱ 1
0	235	.55
1	332	.69
2	419	.78
3	499	.72
4	57 2	.75
5	63 8	.77
6	700	.84

b. Ballistic coefficient data. The following ballistic coefficients relative to Projectile Type 1 were determined from the ranges tabulated in FT 81-B-2 for an elevation of 45°.

Charge	Muzzle Velocity	Ballistic Coefficient
	fps	C ₁
Ü	235	1.230
1	332	0.984
2	419	0.861
3	499	0.944
4	572	0.906
5	638	0.881
6	700	0.802

SECTION IV EFFECT DATA

Paragraph

7. Fragmentation. The data on fragmentation of 81-mm HE Shell M43A1 were taken from "Terminal Ballistic Data", Vol. III. The initial fragment velocity is 3,930 fps.

a. Casualties.

'Fragmentation - - -

TABLE 42 CASUALTIES

Distance from burst (ft)	Total number of effective fragments	Average number of effective frag- ments per sq ft		lightest fragment Velocity (fps)
ŕ	N	В	m	v
20	818	0.163	0.009	2570
30	695	0.0615	0.014	2060
50	645	0.0321	0.017	1870
60	541	0.0120	0.027	1480
80	459	0.0057	0.038	1250
700	384	0.0031	0.051	1080
150	267	0.0009	0.077	880
200	169	0.0003	0.104	758
300	76	0.0001	0.159	611

b. Perforation of 1/8-inch mild steel.

TABLE 43
PERFORATION OF 1/8 IN. MILD STEEL

Distance	Total number	Average number of		e lightest e fragment
from burst (ft)	of effective fragments	effective frag- ments per sq ft	Weight (oz)	Velocity (fps)
r	N	В	m	v
20	541	0.108	0.027	2970
30 .	473	0.0418	0.036	2670
40	407	0.0202	0.047	2430
60	282	0.0062	0.073	2090
80	164	0.0020	0.105	1870
100	88	0.0007	0.146	1720
120	58	0.0003	0.197	1530
140	40	2000.0	0.258	1420
180	23	0.0001	0.399	1240

SHELL DENSITY REQUIRED IN AREA FIRE EXPECTED PERFORATIONS OF I/8-INCH MILD STEEL: 50% OF ELEMENTS 2 SQ FT IN AREA SUPERQUICK GROUND BURSTS - NO SHIELDING

WIDTH OF FRINGE AROUNT TARGET AREA TO BE INCLUDED IN FIRE AREA: 21 FT

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 81-1-56 Ballistic Research Lab. Aberdeen Proving Ground, Maryland 4 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 81-mm, M56

with

Fuze, PD, M53, M53A1 or M52A1, and Fuze, TSQ, M77

Section	<u> P</u>	aragraphs
I	General	1
П	Description	2 - 4
III	Exterior ballistic data	5 - 7
IV	Effect data	8 - 9

SECTION I GENERAL

																																Paragraph
Purpose -	_	_	_	_	-	_	_	_	_	-	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 81-mm High Explosive Shell M56 with the Point Detonating Fuze M53, M53A1 or M52A1, and with the Time and Superquick Fuze M77. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

SECTION II DESCRIPTION

																										Paragraph
Drawings	-	-	_	-	_	-	_	-	-	-	-	-	-	-	-	_	-	-		-	-	_	-	-	-	2
Dimensions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	3
Physical characteristics	-	-	-	-	_	_	-	_	_		-		-	-	-	-	-	-	-	-	-	_	-	-	-	4

SHELL, HE, 81-MM, M56 FUZE, PD, M53

SHELL, HE, 81-MM, M56 FUZE, T SQ, M77

ALL DIMENSIONS IN CALIBERS
I CALIBER = 3.189"

2. Drawings.

Shell: Metal parts assembly and details Fins: Assembly and details Increment, Propellant M2 or M2A1, and Holder:	75-2-283 75-2-277
Assembly and details	71-12-16
Fuze M53 or M53A1: Assembly and details	73-1-165
Fuze M52A1: Assembly and details	73-1-161
Fuze M77: Assembly	73-3-171
Complete Round: Assembly and marking diagram,	
With Fuze M53	75-1-97
With Fuze M77	75-1-197
Ring for adapting shell to Fuze M77	73-3 - 175M

3. Dimensions.

Fins: Number Length Length of assembly (outside)	12 0.549 cal 1.693 cal
Shell: Length of rear part Length of rear bourrelet Length of front bourrelet Length of ogival part Radius of ogival arc Total length	1.196 cal 0.395 cal 0.304 cal 0.684 cal 1.997 cal 4.539 cal
Adapter: Length (outside)	0.185 cal
Ring: Length	0.217 cal
Fuze: Length (outside) of M53 M53A1 M52A1 M77	0.740 cal 0.737 cal 0.753 cal 1.188 cal
Length: Shell, adapter, and fin assembly Same with Fuze M53 Same with Fuze M77	6.417 cal 7.157 cal 7.637 cal

4. Physical characteristics.

With Fuze M53: Weight (standard)	10.62 lb
CG to juncture of adapter and fuze	2.324 cal*
With Fuze M77: Weight (standard)	11.62 lb

*The National Bureau of Standards located the center of gravity of a projectile filled with carbon tetrachloride, whose specific gravity is 1.61 at 22°C (Lyman J. Briggs, "Report on Aerodynamic characteristics of the 60-mm Mortar Projectile M49A2 and the 81-mm Mortar Projectile M56", N.B. of S. VI-4/64, 1942).

5.6

SECTION III EXTERIOR BALLISTIC DATA

																									Paragrapi
Aerodynamic data		-	_	_	-	-	-	_	_	_	-	-	•	_	_	_		_	-	_		-	_	_	5
Firing table data:	PD Fuzes	-	-	-	-	-	-	_	-	_	-	-	_	-	-	_	-	-	-	-	_	_	_	-	6
Firing table data:	TSO Fuze	~	_	_	_	_	-		_	_	_	_	-	_	_	_	_	-	_	-	_	_	-	_	7

- 5. Aerodynamic data. The aerodynamic coefficients shown graphically on page 4 were computed from the forces and torques measured by the Bureau of Standards in a wind tunnel at a velocity of 100 fps (see par. 4).
 - 6. Firing table data: PD Fuzes.

FT 81-C-2. (Part I).

Mortars, 81-mm, M1 and M21; Smooth bore: Muzzle loading. Projectile weight: 10.62 lb. OCM items 15627 and 15674 recommended and approved standardization of the HE Shell M56 with PD Fuze M53 for the 81-mm Mortar M1. OCM items 28162 and 28822 recommended and approved standardization of this ammunition for the 81-mm Mortar M21; OCM item 31408 restandardized it after further development of the mortar. FT 81-Q-2 (abridged) is a range-elevation table for the 81-mm Mortar T27, which is the M21 Mortar without the Extension Tube and is used with charges 1 and 2 at short ranges. OCM items 24288 and 24598 recommended and approved the classification of the PD Fuze M52A1 as substitute standard for the HE Shell M56.

7. FIRING TABLE DATA; T. SQ. FUZE.FT 81-S-1 (ABRIDGED)

SECTION IV EFFECT DATA

																														Paragraph
Fragmentation	_	_	_		_	_	_	_	_	_	_	-	_	_	_	_	~	_	-	_	_	-	_	_	-	-	-	_	_	8
Penetration -	_	_	_	_	-	_	_	_	_	-	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9

8. Fragmentation. The data on fragmentation of the 81-mm HE Shell M56 were taken from TM9-1907, "Ballistic Data, Performance of Ammunition" (Sep 1944) and Vol. III of "Terminal Ballistic Data" (Sep 1945). The initial fragment velocity is 6,180 fps.

a. Casualties.

TABLE 44 CASUALTIES

Distance	Total number	Average		e lightest e fragment
from burst (ft)	of effective fragments	effective frag- ments per sq fi	Weight (oz)	Velocity (fps)
r	N	В	m	v
20	2580	0.513	0.004	3860
· 3C	2060	0.182	0.006	3150
40	1680	0.0836	0.008	2720
60	906	0.0200	0.014	2060
63	614	0.0076	0.021	1680
100	412	0.0033	0.029	1430
150	170	0,0006	0.056	1030
200	112	0.0002	0.080	862
300	63	0.0001	0.128	682

INCLINATION O*
HEIGHT OF BURST OFT
REMAINING VELOCITY OFPS

AT LEAST I HIT PER 4 SQ. FT.

AT LEAST I HIT PER 10 SQ. FT.

INCLINATION 69°
HEIGHT OF BURST OFT
REMAINING VELOCITY 459FPS

b. Perforation of 1/8-inch mild steel.

TABLE 45
PERFORATION OF 1/8 IN. MILD STEEL

Distance from burst	Total number of effective	Average number of effective frag-		e lightest e fragment Velocity
(ft)	fragments	ments per sq ft	(oz)	(fps)
r	N	В	m	v
20	1040	0.208	0.012	4060
30	762	0.0674	0.017	3580
40	583	0.0290	0.022	3200
60	314	0.0069	0.035	2700
80	193	0.0024	0.051	2360
100	130	0.0010	0.071	2110
120	76	0.0004	0.097	1900
140	63	0.0003	0.128	1780
170	4 0	0.0001	0.188	1560

PERFORATION OF 1/8-INCH MILD STEEL

INCLINATION OF HEIGHT OF BURST OFT REMAINING VELOCITY OFPS

INCLINATION 64° HEIGHT OF BURST O FT REMAINING VELOCITY 459 FPS

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 81-1-57 Ballistic Research Lab. Aberdeen Proving Ground, Maryland 8 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, Smoke, 81-mm, M57

with

Fuze, PD, M52 or M52A1, and Fuze, TSQ, M77

Section		Paragraphs
I	General	1
II	Description	2 - 4
III	Exterior ballistic data	5 - 8

SECTION I GENERAL

																															Paragraph
Purpose	-	_	_	_	_	_	_	_	_	_	•	_	_	_	_	_	 _	_	_	_	_	_	_	_		_	~	_	_	_	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics and ballistics of the 81-mm Smoke Shell M57 with the Point Detonating Fuze M52 or M52A1 and with the Time and Superquick Fuze M77. This information is collected from the drawings, reports, and firing tables pertaining to this ammunition.

SECTION II DESCRIPTION

																										Paragraph
Drawings	-	_	_	_	-	-	_	-	-	_	-	-	-	_	-	-	-	_	-	-	_		-	_	_	2
Dimensions																										
Physical characteristics	-	-	-	-	-	-	-	_	-	-	-	•	-	-	-	-	_	-	-	-	-	-	-	-	_	4

SHELL, SMOKE, 81-MM, M57 FUZE, PD, M52

SHELL, SMOKE, 81-MM, M57 FUZE, T SQ., M77

ALL DIMENSIONS IN CALIBERS
I CALIBER = 3.189"

2. Drawings.

Shell: Metal parts assembly and details	75-2-284
Fins: Assembly and details	75-2-277
Increment, Propellant, M2 or M2A1, and Holder:	
Assembly and details	71-12-16
Fuze: Assembly and details	73-1-161
Complete Rounds: Assembly and marking diagram,	
With Fuze M52 and FS	75~1~94
With Fuze M52 and WF	75-1-93
With Fuze M77 and FS	75-1-198
With Fuze M77 and WP	75-1-199
Ring for adapting she'll to Fuze M77	73-2-175M
3. Dimensions.	
Fins: Number	12
Length	0.549 cal
Length of assembly (outside)	1.693 cal
Shell: Length of rear part	1.196 cal
Length of rear bourrelet	0.395 cal
Length of front bourrelet	0.304 cal
Length of ogival part	0.684 cal
Radius of ogival arc	1.997 cal
Total length	4.539 cal
Adapter: Length (outside)	0.185 cal
Ring: Length	0.217 ca ¹
Fuze: Length (outside) of M52	0.740 cal
M52A1	0.753 cal
M77	1.188 cal
Length: Shell, adapter, and fin assembly	6 417 001
Same with Fuse M52	6.417 cal 7.157 cal
Same with Fuze M77	7.137 cal
Dame with Page Mill	1.001 cal

4. Physical characteristics.

a. Chemical charges.

- (1) Fuming Spray: A liquid, which turns to smoke when released.
- (2) White Phosphorus: A pale yellow solid. A layer of 1/8 inch of water is included in the charge. When released, this forms a white smoke, which is poisonous.
 - b. Weights. The standard weights of the fuzed projectiles are:

Charge	Fuze M52	Fuze M77
FS	11.86 lb	13.03 lb
$\mathbf{W}\mathbf{D}$	11.36 lb	12.53 lb

SECTION III EXTERIOR BALLISTIC DATA

										`												Paragraph
Aerodynamic data	_	-	-	_	-	-	_	_	-	-	-	-	-	_	-	_	-	-	-	-	_	5
Firing table data (FS) : PD Fuze	-	-	-	-	-	-	-	-	-	-	-	_	-	•	-	-	-	-	-	-	-	6
Firing table data (WP): PD Fuze	_	-	-	-	-	-		-	-	-	-	_	-	-	•	-	-	-	_	-	_	7
Firing table data (WP): TSQ Fuze	_	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	_	-	-	-	8

5. Aerodynamic data. Since the Smoke Shell M57 has the same shape as the High Explosive Shell M56, its drag coefficient and cross wind force coefficient should be the same. These are given in OH 81-1-56. The position of the center of gravity and consequently the moment coefficient may be different with the chemical charges from what they are with the high explosive charge; they have not been measured with the chemical charges.

6. Firing table data (FS): PD Fuze.

FT 81-C-2 (Part. 2)

A STATE OF THE PROPERTY OF THE

Mortars, 81-mm, M1 and M21. Smooth bore: muzzle loading. Projectile weight: 11.86 lb. OCM items 15627 and 15674 recommended and approved standardization of the Smoke Shell M57 with PD Fuze M52 for the 81-mm Mortar M1. OCM items 28162 and 28822 recommended and approved standardization of this ammunition for the 81-mm Mortar M21; OCM item 31408 restandardized it after further development of the mortar. FT 81-Q-2 (abridged) has a range-elevation table for the 81-mm Mortar T27, which is the M21 Mortar without the Extension Tube and is used with charges 1 and 2 at short ranges.

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-T33 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 11 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shot, AP, 90-mm, T33

with

Tracer

Section		Paragraphs
I	General	1
II	Description	2 - 4
Ш	Interior ballistic data	5
ΙŲ	Exterior ballistic data	6 - 7
v	Effect data	8

SECTION I GENERAL

																																Paragraph
Purpose	_	-	-	-	_	•	-	_	_	•	-	 -	_	-	-	-	-	-	_	_	_	-	_	-	_	_	_	_	_	-	_	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics, and effects of the 90-mm Armor-piercing Shot T33 with Tracer. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

SHOT, AP, 90-MM, T33

the first of the first of the first time the first on the second the second contract contract the first finite Contractors the first time the process on the contract of the contractors and the second contractors the first finite time.

SECTION II

DESCRIPTION

Drawings	0
2. Drawings.	
Shot: Metal parts assembly and details Body Windshield	75-2-388 75-18 <mark>-44</mark> A 75-18-51A
3. Dimensions.	
Band: Distance from base Width	0.282 cal 0.336 cal
Body: Cylindrical length Ogival length Radius of ogival arc	1.951 cal 0.829 cal 1.496 cal
Windshield: Length Radius of ogival arc	1.946 cal 9.015 cal
Length: Ogive Shot	2.207 cal 4.158 cal
4. Physical characteristics.	
Weight (standard) Base to center of gravity Axial moment of inertia Transverse moment of inertia	24.06 lb 1.241 cal 35.64 lb.in ² 191.4 lb.in ²

SECTION III

INTERIOR BALLISTIC DATA

	Peragraph
Theoretical yaw in bore	5
5. Theoretical yaw in bore.	
Minimum	3.0 min
Maximum	5.5 min

SECTION IV EXTERIOR BALLISTIC DATA

																												Paragraph
Aerodynamic data	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	_	6
Firing table data	_	-	-	-	-	_	_	-	-	-	_	-	-	_	-	-	-	_	-	_	-	~	_	_	-	-	-	7

6. Aerodynamic data.

a. Drag. The following data were obtained by resistance firings (see Ballistic Research Laboratory Memorandum Reports 336, "Ballistics of 90-mm AP Shot T33", and 347D, "Stability Factor of 90-mm Shot T30E15, and Form Factors of 90-mm Shot T30E15, APC Projectile M82, and AP Shot T33").

Velocity fps	Drag Function	Form Factor	Ballistic Coefficient	Drag Coefficient
2666	G ₆	1.01	1.90	.121
3029	G_7	1.81	1.81	.108

b. Stability. Ballistic Research Laboratory Memorandum Report 336, "Ballistics of 90-mm AP Shot T33", gives the results obtained from stability firings of this projectile from the 90-mm Cun M1

Muzzle velocity	2700 fps
Moment coefficient	1.24
Twist of rifling	1/32
Stability factor	2.12

7. Firing table data. FT 90-F-1

Guns, 90-mm, M1, M1A1, M2, M3 and M26.

Twist of rifling: 1/32. Muzzle velocity: 2800 fps. Projectile Weight: 24.0 lb.

OCM item 29999 recommended that the AP Shot T33 be classified as limited standard; by item 30181, it was made limited procurement type.

- a. Form factor (Proj Type 7). $i_{i7} = 0.97$.
- **b.** Ballistic coefficient (Proj Type 7): $C_{7} = 1.98$.

SECTION V EFFECT DATA

																																Para	gra	ph
Penetration	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	_	-	-	-	-	-	-		8	

8. Penetration. According to OCM item 26320, the 90-mm AP Shot T33 with a muzzle velocity of 2800 fps will penetrate the front glacis plate of the German 'Panther' Talk (Panzerkampfwagen V). The armor plate penetration — velocity curves, taken from Vol. III of "Terminal Ballistic Data", are shown on the next page.

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-58

ALTERNATION OF PARTICION OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 8 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 90-mm, M58 and M58B1

with

Fuze, MT, M43A5

Section		Paragraphs
I	General	. 1
п	Description	2 - 4
ш	Interior ballistic data	5 - 6
IV	Exterior ballistic data	7 - 8

SECTION I

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics and ballistics of the 90-mm High Explosive Shell M58 and M58B1 with the Mechanical Time Fuze M43A5. This information is collected from the drawings, reports and firing tables pertaining to this ammunition.

SHELL, HE, 90-MM, M58 AND M58BI FUZE, MT, M43A5

SECTION II DESCRIPTION

Drawings		<u>.</u>	Paragraph 2
Dimensions			3 4
2. Drawings.			
Shell: Metal parts assembly and details Booster M20: Assembly and details Fuze: Assembly and details		75-18-39 73-2-112 73-7-29	
3. Dimensions.			
Boattail: Angle Length		7°00' 0.50 cal	
Band: Width Distance from base Distance from boattail		0.34 cal 0.74 cal 0.24 cal	
Cylindrical body: Length		1.73 cal	
Ogive: Length Radius of arc		1.30 cal 8.95 cal	
Fuze: Outside length		1.05 cal	
Length: Shell Shell and fuze Ogive and fuze		3.53 cal 4.58 cal 2.35 cal	
4. Physical characteristics.			
Mean weight: Marking Marking Marking Marking Marking	(Standard)	20.67 lb 21.00 lb 21.33 lb	
Base to center of gravity* Axial moment of inertia* Transverse moment of inertia*		1.789 cal 0.2528 lb.ft ² 2.499 lb.ft ²	

DIAGRAM OF RESULTANT STRESSES

SECTION III

	INI	ERIOR B	ALLISTIC DATA		
				Paragraph	i.
Stresses Theoretical yaw in	n bore			5 6	
5. Stresse	es. The following table a	nd the gr	aphical representation	or. page 4 show t	he longitudinal,
	ial resultant stress at ea				
(B) the front of th			(2.7)	•	
,	Guns, 90-mm Twist of rifling Cross-sectional area of Rated maximum pressor Total weight of project Muzzle velocity Density of filler (TNT)	ire ile	M1, M1A1, M2 1/32 10.114 sq in. 38,000 psi 21.00 lb 2,800 fps 0.057 lb per cu in.		•
	Resultant Stress*	E. Se	ection B		
	Longitudinal Radial Tangential	-258 +521 -910	-512 - 56 +515		
	* + denotes tension,	- den	otes compression.		
6. Theore	tical yaw in bore.				
Minimum Maximum		3 min 5 min			
		SEC	TION IV		

EXTERIOR BALLISTIC DATA

																												Paragraph
Aerodynamic data	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	_	-	_	-	-	_	-	-	_	_	-	7
Firing table data -	_	-		_	-	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_	_	-	_	_	_	8

7. Aerodynamic data.

- a. Drag. The trajectories for the 90-mm Guns M1, M1A1 and M2, on antiaircraft mounts, were based on the G₂ drag function. The form factors, determined from range firings, are given in paragraph 8a.
- b. Stability. Ballistic Research Laboratories Report No. 165, "Stability of 90-mm Shell TC", gives the results of stability firings of the HE Shell M58 (T3) with inert Fuze M48 from the 90-mm Gun T2, which was rifled with a twist of one turn in 30 calibers. From these results, the following data were calculated for the HE Shell M58, with MT Fuze M43, fired from the 90-mm Guns M1, M1A1 and M2:

Muzzle Velocity	2800 fps
Twist of rifling	1/32
Stability factor	1.33
Moment coefficient, K _M	1.10

c. Drift. The deflection due to drift, for a muzzle velocity of 2700 fps and a twist of thing of one turn in 32 calibers, is tabulated in FT 90AA-A-1, Part 2, Tables C-1 and C-2.

8. Firing table data. FT 90AA-A-1

Guns, 90-mm, M1, M1A1 and M2 on antiaircraft mount.

Twist of rifling: uniform 1/32.

Muzzie velocity: 2700 fps.

GCM item 15646 standardized the 90-mm HE Shell M58 for the 90-mm Gun M1. OCM item 15676 standardized the complete round, including the HE Shell M58 and the Cartridge Case M19, for the 90-mm Gun M1. Reclassification of the HE Shell M58 as limited standard was recommended by OCM item 16844 and approved by OCM item 16962. The characteristics of the 90-mm Guns M1A1 and M2 are the same as those of the 90-mm Gun M1.

a. Trajectory data. Trajectory and fine sector curves for a muzzle velocity of 2700 fps are given on TC 90AA-A-1. With the ruze sat 'safe :

Maximum horizontal range 17,580 yd Maximum ordinate 12,376 yd

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-71

Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 8 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 90-mm, M71

with

Fuzes, MT, M43A5; PD, M48, M48A1, M48A2, and M51A4; TSQ, M54 and M55A3; and CP, M78

Section		Paragraphs
I	General	1
II	Description	2 - 4
III	Interior ballistic data	5 - 6
IV	Exterior ballistic data	7 - 9
V	Effect data	10 - 13

SECTION I

																																Paragraph
Purpose -	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	_	-	_	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 90-mm High Explosive Shell HTT with the Mechanical Time Fuze M43A5, the Point Detonating Fuze M48, M48A1, M48A2 or M51A4, the Time and Superquick Fuze M54, and the Concrete Piercing Fuze M78. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

SHELL, HE, 90MM, M7I FUZE, MT, M43A5; PD, M48, M48AI OR M48A2; OR TSQ,M54

ALL DIMENSIONS IN CALIBERS
I CALIBER = 3.543"

SECTION II DESCRIPTION

		Paragraph
Drawings	• • • • • • • • •	2
Dimensions		3
Physical characteristics		4
2. Drawings.		
Shell: Metal parts assembly	75-18-42	
Booster, M20A1: Assembly and details	73-2-112	
Booster, M21A4: Assembly	73-2-154	
Fuze, MT, M43A5: Assembly and details	73-7-29	
Fuze, PD, M48, M48A1 and M48A2: Assembly	73-2-140	
Fuze, PD, M51A4: Assembly	73-2-145	
Fuze, TSQ, M54: Assembly	73-3-154	
Fuze, CP, M78: Assembly and details	73-2-214	

Note: The MT, PD, and TSQ Fuzes require one of the Boosters; but the CP Fuze contains their working parts. The TSQ Fuze M54 and the Booster M21A4 are components of the TSQ Fuze M55A3, dwg 73-3-155.

3. Dimensions.

Boatțail: Angle Length	7°00' 0.50 cal
Band: Distance from boattail Distance from base Width	0.24 cal 0.74 cal 0.34 cal
Cylindrical body: Length	1.73 cal
Ogive: Length Radius of arc	1.30 cal 8.95 cal
Shell, unfuzed: Length	3.53 cal
Fuze, MT, M43A5; PD, M48, M48A1, M48A2 or M51A4; or TSQ, M54:	
Outside length Ogive and fuze Shell and fuze	1.05 cal 2.35 cal 4.58 cal
Fuze, CP, M78: Outside length Radius of arc Ogive and fuze Shell and fuze	0.75 cal 2.26 cal 2.05 cal 4.28 cal

- 4. Physical characteristics.
- a. MT, PD and TSQ Fuzes. The weight, location of center of gravity, and moments of inertia of the HE Shell M71 with any of these fuzes are approximately the same as those of the Shell M71 (T8) with the MT Fuze M43, which are tabulated below.

Mean weight: Marking Marking Marking Marking	(standard)	23.07 lb 23.40 lb 23.73 lb
Base to center of gravity Axial moment of inertia		1.742 cal 0.2753 lb.ft ²
Transverse moment of inertia		2.627 lb.ft ²

b. CP Fuze. The HE Shell M71 with the CP Fuze weighs 0.34 lb more than with the other fuzes. Its other characteristics would also be slightly different, but have not been measured.

SECTION III INTERIOR BALLISTIC DATA

																									Paragraph
Stresses																									•
Theoretical yaw in bore	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	 -	-	6

5. Stresses. The following table and the graphical representation on page 5 show the longitudinal, radial and tangential resultant stresses at each of three sections: (A) the rear corner of the band seat, (B) the front of the band seat, and (C) immediately behind the bourrelet.

Guns, 90-mm	M1, M1A1, M2, M3
Twist of rifling	1/32
Cross-sectional area of bore	10.114 sq in.
Rated maximum pressure	38,000 psi
Total weight of projectile	23.40 lb
Muzzle velocity	2,700 fps
Density of filler (TNT)	0.057 lb per cu in.

Resultant Stress*	Section							
100 psi	A	В	C					
Longitudinal Radial Tangential	-192 +328 -625	-345 - 53 +354	-310 - 19 +291					

^{* +} denotes tension, - denotes compression.

DIAGRAM OF RESULTANT STRESSES

6. Theoretical yaw in bore.

Minimum	3 min
Maximum	5 min

SECTION IV

EXTERIOR BALLISTIC DATA

	Paragraph
Aerodynamic data	7
Antiaircraft firing table data	
Ground firing table data	9

7. Aerodynamic data.

a. Drag.

- (1) The antiaircraft trajectories were computed with the drag coefficient shown on page 7, which was determined by AA range firings of the HE Shell M71 with the MT Fuze M43A3 as explained in BRL Report No. 507, "The Experimental Basis and Computing Methods used in the Preparation of Firing Table FT 90AA-B-3". The form factor relative to this drag coefficient is 1,000; hence the ballistic coefficient is 1.864.
- (2) The trajectories for the HE Shell M71 with the PD and TSQ Fuzes were based on the $\rm G_2$ drag function. The form factor and ballistic coefficient are shown in par. 9a and b; at the muzzle:

Velocity	2700 fps
Ballistic Coef. C ₂	1.79
Form Factor, i ₂	1.041
Drag Coef. K	0.109

(3) Comparative firings at 3° elevation showed that the range-elevation relation for the HE Shell M71 with the CP Fuze M78 could be obtained from that with the PD Fuze M48 by decreasing the muzzle velocity 27 fps and applying an effect equal to that of an increase of 12.16 per cent in air density. The numerical average of the effects due to an increase and a decrease in density (see par. 9n) was used for this purpose.

b. Stability. BRL Report No. 236, "Stability of 90-mm Shell T8", gives the results batained from stability firings of inert-loaded Shell M71 (T8) with the MT Fuze M43 from the 90-mm Gun M1:

Muzzle Velocity	2700 fps
Moment coef. $K_{\overline{M}}$	1.25
Twist of rifling	1/32
Stability factor	1.32

c. Axial couple. BRL Report No. 408, "Loss of Spin and Skin Friction Drag of Projectiles", gives the results obtained from firings of a 90-mm HE Shell M71 with a radio spin sonde in a dummy fuze having the same shape as the MT Fuze M43:

Average velocity	1640 fps _c
Reynolds' number (based on avg vel. and caliber)	1640 fps 2.95 x 10 ⁶
Axial couple coefficient, K	0.0059
Surface (without base)	149.3 sq in.
Skin friction drag coefficient, C	0.00198
υr	

8. Antiaircraft firing table data. FT 90AA-B-3.

Guns, 90-mm, M1, M1A1 and M2 on AA Mounts.

Twist of rifling: 1/32 Muzzle velocity: 2700 fps

Fuze: MT M43A5

OCM items 16844 and 16962 recommended and approved standardization of the HE Shell M71.

- a. Form factor. i = 1.000 relative to the drag coefficient for the 90-mm HE Shell M71 (see p. 7).
- b. Bailistic coefficient. C = 1.864 relative to the drag coefficient for the 90-mm HE Shell M71 (see p. 7).
- c. Trajectory data. A Trajectory and Fuze Setter Chart is included with the firing table. With the fuze set 'safe':

Maximum horizontal range	19,560 yd
Maximum vertical range	13,426 vd

9. Ground firing table data.

FT 90AA-B-3, FT 90-C-3, and FT 90-F-1.

Guns, 90-mm, M1, M1A1, M2, M3 and M26 on AA Mounts, Gun Motor Carriages, or Tanks.

Twist of rifling: 1/32.
Muzzle Velocity: 270% fps

Fuzes: PD, M48, M.3A1, M48A2 and M51A4; TSQ, M54: and CP, M78 (except as noted, the data in this paragraph do not pertain to the CP fuze).

OCM items 18696 and 18930 recommended and approved authorization of the HE Shell M71 with the PD Fuze M48 for use with the 90-mm Gun M1 on a self-propelled mount.

SECTION V EFFECT DATA

																														Paragraph
Fragmentation	-	_	_	-	-	-	~	•	-	-	-	-		-	-	-	-	_	-	-	-		_	_	_	-	-	_	-	10
Effectiveness	•	~	-	-	•	-	-	••	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	•	•		•	-	-	11
Ricochet data	~	-	-	-	-	-		-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	12
Penetration -	-	_	_	_	-	_	_	_	-	_	-	-	_	_	_	_	_	-	-	-	_	_	_	_	-	_	_	-	_	13

10. Fragmentation. The data on fragmentation of the 90-mm HE Shell M71 were to en from TM9-1907, "Ballistic Data, Performance of Ammunition" (Sep 1944) and Vol. III of "Terminal Ballistic Data" (Sep 1945). The initial fragment velocity is 2900 fps.

a. Casualties.

TABLE 46 CASUALTIES

Distance from burst (ft)	Total number of effective fragments	Average number of effective frag- ments per sq ft		lightest fragment Velocity (fps)
r	N	B	mı	v
20	668	0.133	0.015	1990
3∪	594	0.0525	0.022	1640
40	547	0.0272	0.328	1460
60	474	0.0105	0.041	1210
80	427	0.0053	0.055	1040
100	398	0.0032	0.067	943
150	347	0.0012	0.094	796
200	319	0.0006	0.120	705
300	264	0.0002	0.180	575
500	208	0.0001	0.340	418

INCLINATION OO HEIGHT OF BURST OFT REMAINING VELOCITY OFPS

AT LEAST I HIT PER 4 SQ FT

AT LEAST! HIT PER 10 SQ FT

INCLINATION 30°
HEIGHT OF BURST OFT
REMAINING VELOCITY 947 FPS

b. Perforation of 1/8-inch Mild Steel.

TABLE 47
PERFORATION OF 1/8 IN. MILD STEEL

Distance from burst	Total number of effective	Average number of	For the lightest effective fragment						
(ft)	fragments	effective frag- ments per sq ft	Weight (oz)	Velocity (fps)					
r	N	В	m	v					
20	424	0.0844	0.057	2,270					
30	380	0.0336	0.075	2,080					
40	345	0.0172	0.095	1,920					
60	288	0.0064	0.147	1,710					
80	243	0.0030	0.210	1,500					
100	222	0.0018	0.287	1,370					
120	203	0.0011	0.377	1,260					
150	163	0.0006	0.519	1,150					
200	113	0.0002	0.772	1,040					
275	59	0.0001	1.16	935					

PERFORATION 1/8-INCH MILD STEEL

INCLINATION O°
HEIGHT OF BURST OF?
REMAINING VELOCITY OF?S

AT LEAST I HIT PER 4 SQ FT

AT LEAST I HIT
PER 10 SQFT

INCLINATION 30°
HEIGHT OF BURST OFT
REMAINING VELOCITY 947FPS

11. Effectiveness. The following data were taken from Vol. III of "Terminal Ballistic Data". They pertain to the 90-mm HE Shell M71 with an MT, PD or TSQ Fuze, fired at a muzzle velocity of 2700 fps.

NUMBER OF ROUNDS REQUIRED AGAINST ENEMY ARTILLERY FOR 90% PROBABILITY OF AT LEAST ONE EFFECTIVE HIT IN AIMED FIRE

Range	Ţ	ype of Fi	re
yd	Impact	Time	Time and impact
2,000	3	260	7
5,000	42	360	68
10,000	770	1400	730

12. Ricochet Data. The following data were taken from Vol. III of "Terminal Ballistic Data". They pertain to the 90-mm HE Shell M71 with the PD Fuze M48 set for 0.05 sec delay, fired at a muzzle velocity of 2700 fps (the PD Fuzes M48A1, M48A2 and M51A4 have 0.15 sec delay).

TABLE 76

DE IN

					PE III
Range	Angle of	Angle of	Impact	Height	Height
	Fall	Recovery	to Burst	of Burst	of Burst
yd	mils	mils	yd	ft	ft
1,000	7	20	41	2	0
2,000	17	30	36	3	1
3,000	3 0	50	32	5	1
4,000	47	75	28	6	1
5,000	69	105	23	7	1
6,000	98	140	19	8	2
7,000	136	180	15	8	2
8,000	187	230	12	8	2
9,000	249	270	9	8	$\overline{2}$
10,000	314	300	7	6	2
,					

13. Penetration. The data on penetration of concrete by the HE Shell M71 with the CP Fuze M78, fired at a muzzle velocity of 2700 fps, were taken from TM 9-1907, "Ballistic Data, Performance of Ammunition". The data on penetration into medium earth and logs by the HE Shell M71 with any DP or CP Fuze, fired at a muzzle velocity of 2700 fps, were taken from Vol. III of "Terminal Ballistic Data".

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-77 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 10 February 1949

Paragraph

BALLISTIC AND ENGINEERING DATA

for

Shot, AP, 90-mm, M77

with Tracer

Section		Paragraph
I	General	. 1
п	Description	2 - 4
Ш	Interior ballistic data	. 5
IV	Exterior ballistic data	6 - 7
V	Effect data	. 8

SECTION I

GENERAL

Purpose	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	 -	-	-	-	~	-	-	-	-	-	-	-		1		

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics, and effects of the 90-mm Armor-piercing Shot M77 with Tracer. This information is collected from the drawings, reports, and firing tables pertaining to this ammunition.

SECTION II DESCRIPTION

	Paragraph
Drawings	- 2
Dimensions	- 3
Physical characteristics	. 4

ALL DIMENSIONS IN CALIBERS ICAL: 3.543"

SHOT, AP, 90-MM, M77

z.	Drawings.	
----	-----------	--

Shot: Metal parts assembly and details	75-18-14
3. Dimensions.	
Band: Distance from hase Width	0.282 cal 0.338 cal
Cylindrical body: Length	1.951 cal
Ogive: Length Radius of arc	0.829 cal 1.496 cal
Shot: Total length	2,780 cal
4. Physical characteristics.	
Weight (standard)	23.40 lb
Base to center of gravity*	1.22 cal 2
Axial moment of inertia*	34.6 lb.in
Transverge moment of inertia*	152 lb.in ²

^{*}Estimated on the basis of measurements of the 37-mm AP Shot M80.

SECTION III INTERIOR BALLISTIC DATA

	Pa	ragraph
Theoretical yaw in bore		5

3. Theoretical yaw in bore.

Minimum	3.0 min
Maximum	5.5 min

SECTION IV

EXTERIOR BALLISTIC DATA

																													Para	grap)
Aercaynamic data	-	••	-	_	_	-	_	-	_	-	-	_	-	-	_	-	_	-	_	-	_	_	-	-	-		_	_		6	
Firing table data	-	-	-		-	-			-	-	-	-	-	-	-	-	_	•	-	-	-	-	-	-	-	-	-	-	•	7	

- 6. Aerodynamic data.
- a. Diag. The form factor relative to Projectile Type 1, determined from resistance firings, is 1.19. The corresponding ballistic coefficient is 1.564 on the G_1 drag function. The drag coefficient is 0.256 at a velocity of 2700 fps.
- **b.** Stability. No stability firings have been done with this projectile. The stability factor, estimated from that of the 37-mm Armor-piercing Shot M80 (Ballistic Research Laboratory Report 438), at a muzzle velocity of 2700 fps and a twist of rifling of one turn in 32 calibers, is 6.4.
 - 7. Firing table data. FT 90-D-2 (Abridged).

Guns, 90-mm, M1, M1A1, M2, M3 and M26.

Twist of rifling: 1/32.

the second secon

Muzzle velocity: 2700 fps.

This Shot was standardized by OCM item 17528; its designation was changed from Semi-armorpiercing to Armor-piercing by OCM item 17699.

- a. Form factor (Proj Type 1). $i_1 = 1.19$.
- h. Ballistic coefficient (Proj Type 1). $C_1 = 1.564$.

SECTION V EFFECT DATA

																																Para		
Penetration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		8	

8. Penetration.

	mogeneous F	late	Ballistic	Limit	Number
Thickness inches	Brinnell Number	Obliquity degrees	Туре	fps	in Average
3	270	0	Army	1166	2
4		0	Army	1679	2
4		0	Navy	1763	2

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-82 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 10 February 1949

BALLISTIC AND ENGINEERING DATA

for

Projectile, APC, 90-mm, M82

with

Fuze, BD, M68

Section		Paragraph
I	General	1
II	Description	2 - 4
III	Interior ballistic data	5
IV	Exterior ballistic data	6 - 7
V	Effect data	8

SECTION I GENERAL

																																	Paragraph
Purpose	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	-	_	-	_	_	-	_	_	_	_	-	_	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics, and effects of the 90-mm Armor-piercing Capped Projectile M82 with the Base Detonating Fuze M68, which contains a tracer composition. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

ALL DIMENSIONS IN CALIBERS I CAL = 3.543"

PROJECTILE, APC, 90-MM, M82 FUZE, BD, M68

SECTION II DESCRIPTION

	Paragraph
Drawings	2
2. Drawings.	
Projectile: Metal parts assembly Details Details	75-18-46 75-18-47 75-18-51
fuze: Assembly Details	73-2-181 73-2-182
3. Dimensions.	
Fuze: Length (outside)	0.178 cal
Band: Distance from base Width	0.278 cal 0.355 cal
Body: Cylindrical length Ogival length (outside) Radius of ogival arc	1.017 cal 0.124 cal 1.296 cal
Cap. Length (outside)	0.651 cal
Windshield: Length Radius of ogival arc	1.946 cal 9.015 cal
Length: Ogive Projectile without fuze Projectile and fuze	2.721 cal 4.338 cal 4.516 cal

4. Physical characteristics.

Weight (standard)	24.11 lb
Base to center of gravity*	1.145 cal ,
Axial moment of inertia*	35.9 lb.in ²
Transverse moment of inertia*	198 lb.in ²

^{*}Estimated on the basis of measurements of the 3-Inch Armor-piercing Capped Projectile M62 with Base Detonating Fuze M66A1.

SECTION III

INTERIOR BALLISTIC DATA

Theoretical yaw in bore	<u>Paragraph</u> 5
5. Theoretical yaw in bo	e.
Minimum Maximum	4 min 7 min
	SECTION IV

EXTERIOR BALLISTIC DATA

																													Paragraph
Aerodynamic data		_	-	 _	-	-		•		-	-	-	-	-	-	-	-	~	_	-	-	_	-	_	-	_	-	_	6
Firing table data	_	_	-	 -	4	-	_	-	_	-	_	-	-	-	-	_	_	-	_	-	-	-	-	-	-	_	•	-	7

6. Aerodynamic data.

a. Drag. A form factor of 0.90 relative to the \mathbb{C}_6 drag function was determined from resistance firings at velocities from 2000 to 2660 lps. The corresponding ballistic coefficient is 2.134. The drag coefficient is 0.135 at 2000 fps and 0.108 at the standard muzzle velocity of 2670 fps.

b. Stability. No stability firings have been done with the 90-mm APC Projectile M82. The stability factor, estimated from that of the 3-inch Armor-piercing Capped Projectile M62 with Base Detonating Fuze M66A1 at a muzzle velocity of 2600 fps (Ballistic Research Laboratory Report 427), for a twist of rifling of one turn in 32 calibers is 1.58.

7. Firing table data. FT 90-F-1

Guns, 90-mm, M1, M1A1, M2, M3 and M26.

Twist of rifling: 1/32.

Muzzle velocity: 2670 fps and 2800 fps. Projective Weight: 24.06 lb

Standardization of the APC Projectile M82 with the BD Fuze M68 was recommended by OCM item 18386 and approved by OCM item 18496.

SECTION V EFFECT DATA

Penetration - - - - - - 8

8. Penetration.

a. Ballistic Limits of Armor Plate.

	Plate		Ballistic	Limit	Number
Type	Thickness inches	Obliquity degrees	Туре	fps	in Average
Face Hardened	3	20	Navy	1770	2
Homogeneous	1.5 2.5 2.5 3	55 45 55 45	Navy Navy Navy Navy	1775 1981 2504 2519	1 1 1 2

b. Vulnerability of German Tanks (Panzerkampfwagen)

Muzzle Velocity: 2670 fps. These data were taken from TM9-1907, "Ballistic Data, Performance of Ammunition".

Maximum Vulnerable Range - yards

Tank Mo	del	Ш		IV		VI				
Attack	Angle - deg	0	25	0	25	0	25			
Frontal	Turret Sides Turret Rear Turret Front Upper Hull Front Lower Hull Front	5000+ 5000+ 4300 3600	5000 4660 3250 2600	5000+ 5000+ 4300 4080	5000+ 4840 3250 3100	4800 4800 * 2900 1880	2680 2680 * 1200			
F'lank	Turret Sides Turret Rear Turret Front Upper Hull Sides Lower Hull Sides	5000+ 5000+ 5000+ 5000+ 5000+	5000+ 5000+ 4660 5000+ 5000+	5000+ 5000+ 5000+ 5000+ 5000+	5000+ 5000+ 4840 5000+ 5000+	4800 4800 * 4800 5000+	2680 2680 * 2680 4180			
Rear	Turret Sides Turret Rear Turret Front Upper Hull Rear Lower Hull Rear	5000+ 5000+ 5000+ 5000+ 5000+	5000+ 5000+ 4660 4580 4840	5000+ 5000+ 5000+ 5000+ 5000+	5000+ 5000+ 4840 5000+ 5000+	4800 4800 * 4320 4320	2680 2680 * 2600 2600			

^{*}Not vulnerable.

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 90-1-304 Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 11 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shot, HVAP, 90-mm, M304

with

Tracer

Section		Paragraph
I	General	1
П	Description	2 - 4
IΠ	Interior ballistic data	5
IV	Exterior ballistic data	6 - 7
V	Effect data	. 8

SECTION I GENERAL

																															Paragraph
Purpose	_	_	-	-	_	_	_	_	_	_	_	_	-	-	 _	-	_	_	_	-	-	-	-	-	_	-	-	_	_	_	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics, and effects of the 90-mm High Velocity Armor-piercing Shot M304 with Tracer. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

The state of the s

ALL DIMENSIONS IN CALIBERS 1 CAL = 3.543"

SHOT, HVAP, 90-MM, M304

SECTION II DESCRIPTION

Drawings	Paragraph - 2 - 3 - 4
2. Drawings.	
Metal parts assembly75-2-375Details75-2-376Details75-2-377	
3. Dimensions.	
Band: Distance from base 0.28 cal Width 0.34 cal	
Cylindrical parts: Bourrelet ring 0.17 cal Body and ring 0.92 cal Base 0.84 cal Base, body and ring 1.76 cal	
Windshield: Length 1.95 cal Radius of ogival arc 0.71 cal Conical angle 28°41'	
Shot: Length 3.71 cal	

4. Physical characteristics. The position of the center of gravity and the moments of inertia tabulated below pertain to the HVAP Shot T30E15, which is slightly different from the LVAP Shot M304 T30E16).

Weight (Standard)	16.80 lb
Base to center of gravity	1.168 cal 20.01 lb.in ²
Axial moment of inertia	
Transverse moment of inertia	93.89 lb.in ²

SECTION III INTERIOR BALLISTIC DATA

Theoretical yaw in bore		Paragraph 5
5. Theoretical yaw in bore.		
Minimum Max.mum	3.3 min 6.1 min	

SECTION IV

EXTERIOR BALLISTIC DATA

																													Para	grapi	h
Aerodynamic data	_	-	_	_	_	_	_	-	-	_	-	-	-	-	_	_	-	_	-	_	_	-	-	_	-	_	-	_		6	
Firing table data	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	-	-	-	_	-		7	

6. Aerodynamic data.

- a. Drag. A form factor of 1.16 relative to the G_8 drag function was determined from time-of-flight firings to a vertical target at ε range of 1500 yards. The ballistic coefficient is 1.15. The drag coefficient is 0.113 at the average muzzle velocity of 3262 fps obtained in these firings, and 0.111 at the standard muzzle velocity of 3350 fps.
- b. Stability. Ballistic Research Laboratory Memorandum Report 347D gives the following results obtained with the HVAP Shot T30E15, which is slightly different from the HVAP Shot M304 (T30E16):

Velocity	3325 fps
Twist of rifling	1/32
Stability factor	1.7
Moment coefficient	1.0

7. Firing table data. FT 90-F-1

Guns, 90-10m, M1, M1A1, M2, M3 and M26.

Twist of rifling: 1/32. Muzzle velocity, 3350 fps. Projectile Weight: 16.7 lb.

Standardization of the HVAP Shot M304 was recommended by CCM item 28147 and approved by CCM item 28461.

- a. Form Factor (Proj Type 7): $i_7 = 1.475$.
- **b.** Ballistic Coefficient (Proj Type 7): $C_{\eta} = 1.109$.

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 105-1-1 Ballistic Research Lab. Aberdeen Proving Ground Maryland. 11 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 105-mm, M1

witn

Fuzes, PD, M4SA2 and M51A4; TSQ, M55A3; and CP, M78

Section		Paragraph
I	General	1
II	Description	2 - 4
Ш	Interior ballistic data	5 - 6
W	Exterior ballistic data	7 - 8
V	Effect data	9 - 12

SECTION I GENERAL

																														Paragraph
Purpose	-	-	_	-	-	-	-	-	-	_	 -	•	-	_	-	-	-	~	-	-	-	_	-	-	_	_	_	-	 -	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 105-mm High Explosive Shell M1 with the Point Detonating Fuze M48A2 or M51A4, the Time and Superquick Fuze M55A3, or the Concrete-piercing Fuze M78. This information is collected from the drawings, reports, firing tables, and technical manuals pertaining to this ammunition.

ALL DIMENSIONS IN CALIBERS I CAL. = 4.134 IN

SHELL, HE, 105-MM, MI FUZE, PD, M48A2 OR M5IA4, OR TSQ, M55A3

SHELL, HE, 105-MM, MI FUZE, CP, M78

SECTION II DESCRIPTION

			Paragraph
Drawings	 		. 2
Dimensions	 	- ~ -	. 3
Physical characteristics	 		4

2. Drawings.

Shell: Metal parts shipping assembly, marking	
diagram and details	75-4-75
Booster, M20A1: Assembly and details	73-2-112
Booster, M21A4: Assembly	73-2-154
Fuze, PD, M48A2: Assembly	73-2-140
Fuze, PD, M51A4: Assembly	73-2-145
Fuze, TSQ, M54: Assembly	73-3-154
Fuze, TSQ, M55A3: Assembly	73-3-155
Fuze, CP, M78: Assembly and details	73-2-214

Note: The PD fuzes require one of the boosters. The TSQ Fuze M55A3 is the M54 Fuze with the M21A4 booster. The CP fuze contains the working parts of the boosters.

3. Dimensions.

Boattail: Angle Length	9°00' 0.49 cal
Pand: Distance from boattail Distance from base Width	0.25 cal 0.74 cal 0.19 cal
Cylindrical body: Length	1.84 cal
Ogive: Length Radius of arc	1.44 cal 6.17 cal
Shell, unfuzed: Length	3.77 cal
Fuze, PD, M48A2 or M51A4, or TSQ, M55A3: Outside length Ogive and fuze Shell and fuze	0.905 cal 2.345 cal 4.675 cal
Fuze, CP, M78:	
Outside length Radius of arc Ogive and fuze Shell and fuze	0.64 cal 1.935 cal 2.08 cal 4.41 cal

4. Physical characteristics.

		n Weigh lb Marking	.t	Base to Center of Gravity	Moments of Inertia							
Fuze		•		cal	Axial	Transverse						
TSQ M55	32.4	33.0	33.6	1.739	0.554	5.345						
Dummy M59	32.4	33.0	33.6	1.749	0.5506	5.399						
CP M78	33.0	33.6	34.2									

Note: The physical characteristics with all modifications of the PD and TSQ fuzes are approximately the same as with the TSQ Fuze M55. The Dummy Fuze M59 has the same contour as the TSQ Fuze M55.

SECTION III INTERIOR BALLISTIC DATA

																		Paragraph
Stresses	 -	 	_	_	 -	-	-	 	-	-	-	-	_	-	-	_	-	5
Theoretical yaw in bore	 -	 -	-	_	 -	-	-	 	-	-	-	-	-	-	-	-	-	6

5. Stresses. The following table and the graphical representation on page 5 show the longitudinal, radial and tangential resultant stresses at each of two sections: (A) the rear corner of the band seat and (B) the front of the band seat.

Howitzers	M2A1, M3, M4
Twist of rifling	1/20
Cross-sectional area of bore	13.65 sq in.
Rated maximum pressure	28,000 psi**
Total weight of projectile	33.00 lb
Muzzle Velocity	1550 fps
Density of filler (TNT)	0.957 lb per cu in.

Resultant Stress*	Sec	tion
100 psi	A	В
Longitudinal	-101	-320
Radial	+300	- 89
Tangential	-603	+400

^{* +} denotes tension, - denotes compression.

^{**} Since these stresses were calculated, the rated maximum pressure has been increased to 30,000 psi (OCM item 17072)

DIAGRAM OF RESULTANT STRESSES

6. Theoretical yaw in bore.

Minimum 2.7 min Maximum 5.0 min

SECTION IV EXTERIOR BALLISTIC DATA

																													Paragra	aph
Aerodynamic data	-	-	-	-	-	-	_	-	_	-	••	-	_	-	-	-	_	_	-		-	_	-	_	_	_	_	_	7	
Firing table data	-	-	-	-	_	-	_	_		-	~	_	_	-	-	_	-	_	•	_	-	-	-	-				-	9	

7. Aerodynamic data.

- a. Drag. The graph of drag coefficient vs. Mach number (p. 7) was determined by resistance fittings of the HE Shell M1 with the PD Fuze M48. The graph of drag coefficient vs. yaw (p. 8) was determined by measurements of a wooden model of the same projectile, made by the Eureau of Standards in an air stream with a speed of 45 fps. The form factor of the HE Shell M1 with the CP Fuze M78, determined by resistance firings, is 0.93 relative to G₅ at a velocity of 1519 fps; the corresponding drag coefficient is 0.161.
- b. Stability. The graph of moment coefficient vs. yaw (p. 9) was determined by measurements of a wooden model of the HE Shell M1 with the PD Fuze M48, made by the Bureau of Standards in an air stream with a speed of 45 fps. The data tabulated below were determined by stability firings of the HE Shell M1 with the Dummy Fuze M59, fired from the 105-mm Howitzer M2A1 (see BRL Memorandum Report No. 265, "Stability of 105-mm HE Shell M1"), and with the TSQ Fuze M55, fired from the 105-mm AA Gun T4.

Fuze	Dummy M59	TSQ M55
Muzzle Velocity	1550 fps	2675 fps
Moment coef. K _M	1.41	1.28
Twist of rifling	1/20	1/30
Stability factor	2.69	1.35

c. Drift. FT 105-H-3 and FT 105-L-2 give the drift for the 105-mm howitzers firing the HE Shell M1 with PD and TSQ fuzes. The graph of cross wind force coefficient vs. yaw (p.10) was determined by measurements of a wooden model of the shell with PD fuze, made by the Eureau of Standards in an air stream with a speed of 45 fps.

8. Firing table data.

FT 105-H-3 with C8 contains data for 105-mm Howitzer M2A1 on Carriage M2, firing HE Shell M1 with PD and TSQ fuzes, and FT 105-L-2 with C4, for 105-mm Howitzer M3 on Carriage M3, firing HE Shell M1 with PD and TSQ fuzes. FT 105-H-3 is also applicable to the 105-mm Howitzer M2A1 on Carriage M2A2 or Motor Carriage M7 or M7B1, and the Howitzer M4 in Medium Tank M4 or M4A3 or Motor Carriage T76, providing the corrections listed in C8 be applied to the elevation and drift. These tables may be used for the HE Shell M1 with the CP Fuze M78 providing corrections be made for weight and air resistance: the weight of the shell with the CP fuze is greater than that of one with the PD fuze with the same marking by the amount indicated by a difference of one square; the increase in air resistance is equivalent to one percent increase in air density.

The twist of rifling of all these howitzers is 1/20.

The semi-fixed rounds are assembled with charges to give the following muzzle velocities:

Charge	Howitzer M	2A1 or M4	Howitzer M3
	Round fo	or How	Round for
No.	<u>M2A1</u>	<u>M3</u>	How M3
1	650	695	650
2	710	755	710
3	780	. 825	780
4	875	925	875
5	1020	1080	1020
6	1235		
7	1550		

OCM item 11871 approved the recommendation by item 11820 that the HE Shell M1 be standardized for the 105-mm Howitzer M2 (later superseded by M2A1). OCM item 19910 approved the recommendations by item 19684 that the 105-mm Howitzer M3 and Carriage M3 be standardized, and that the HE Shell M1 with PD Fuze M48A1 be assembled as a semi-fixed round capable of being fired in this howitzer at the first five zone velocities of the M2A1 Howitzer. OCM item 23702 approved the recommendations by item 23180 that the semi-fixed round for the M3 Howitzer be made substitute standard for the M2 and M2A1 Howitzers, and that the round for the M2 and M2A1 Howitzers be not used in the M3 Howitzer except under conditions of extreme emergency, in which event only charges 1, 2 and 3 may be use 1. OCM item 22131 approved the recommendation of item 21869 that the 105-mm Howitzer M4 be standardized for use in the Medium Tank M4 or M4A3 (the ballistics of this howitzer are the same as those of the M2A1 Howitzer).

Consideration of the first of the second of

SECTION V EFFECT DATA

																														Paragraph
Fragmentation																													_	
Effectiver.ess																														. •
Ricochet data	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	11
Penetration -	-	-	-	~	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	_	-	_	_	_	_	_	12

9. Fragmentation. The data on fragmentation of the 105-mm HE Shell M1 were taken from TM9-1907 "Ballistic Data, Performance of Ammunition" (Sep 1944) and Vol. III of "Terminal Ballistic Data" (Sep 1945). The initial fragment velocity is 3500 fps.

a. Casualties.

TABLE 48 CASUALTIES

Distance from burst (ft)	Total number of effective fragments	Average number of effective frag- ments per sq ft		e lightest e fragment Velocity (fps)
r	N	В	m	v
20	1,160	0.231	0.010	2,440
30	1,115	0.0986	0.014	2,060
40	1,072	0.0533	0.019	1,770
60	996	0.0220	0.030	1,410
80	932	0.0220	0.030	1,410
100	875	0.0070	0.055	1,040
150	743	0.0026	0.083	846
200	642	0.0013	0.109	738
300	513	0.0004	0.166	598
400	423	0.0002	0.232	507
500	358	0.0001	0.312	438

MCLINATION OF
HEIGHT OF BURST OFT
REMAINING VELOCITY OFPS

AT LEAST INT
PER 4 SQ FT

AT LEAST INT
PER 4 SQ FT

AT LEAST INT
REMAINING VELOCITY 800 FPS
PER 10 SQ FT

INCLINATION 30°
HEIGHT OF BURST 30FT
REMAINING VELOCITY 800FPS

AT LEAST I HI'
PER 4 SQ FT

AT LEAST I HIT PER IOSQ FT

AT LEASTIHIT PER 25 SQ FT INCLINATION 30°
HEIGHT OF BURST 60 FT
REMAINING VELOCITY 800 FPS

30

b. Perforation of 1/8-inch Mild Steel.

TABLE 49
PERFORATION OF 1/8 IN. MILD STEEL

Distance from burst (ft)	Total number of effective fragments	Average number of effective frag-	For the lightest effective fragment Weight Velocity				
(20)	21 08 21 01	ments per sq ft	(oz)	(fps)			
r	N	В	m	v			
20	975	0.194	C.035	2,700			
30	923	0.0816	0.047	2,430			
40	853	0.0424	0.061	2,220			
60	700	0.0155	0.095	1,920			
80	570	0.0071	0.137	1,750			
100	470	0.0037	0.192	1,550			
120	403	0.0022	0.255	1,420			
140	341	0.0014	0.326	1,320			
170	262	0.0007	0.448	1,200			
200	210	0.0004	0.580	1,120			
300	88	0.0001	1.05	955			

PERFORATION OF 1/8-INCH MILD STEEL

INCLINATION O°
HEIGHT OF BURST O FT
REMAINING VELOCITY O FPS

AT LEAST HIT PER 4 SQ FT AT LEAST I HIT PER 10 SQ FT

INCLINATION 30°
HEIGHT OF BURST OFT
REMAINING VELOCITY 800 FPS

PERFORATION OF 1/8-INCH MILD STEEL

INCLINATION 30°
HEIGHT OF BURST 30 FT
REMAINING VELOCITY 800 FPS

10. Effectiveness. The following data were taken from Vol. III of "Terminal Ballistic Data". They pertain to the 105-mm HE Shell M1 with a PD or TSQ Fuze.

NUMBER OF ROUNDS REQUIRED AGAINST ENEMY ARTILLERY FOR 90% PROBABILITY OF AT LEAST ONE EFFECTIVE HIT IN AIMED FIRE

MV	Range		Type of F	ire
fps	yd	Impact	Time	Time and Impact
1020	2000	24	250	41
	5000	460	820	430
1550	2000	6	270	13
	5000	91	450	130

11. Ricochet Data. The following data were taken from Vol. III of "Termina! Ballistic Data". They pertain to the 105-mm HE Shell M1 with the PD Fuzes M48A2 and M51A4, which have 0.15-sec delay.

dispersion of the control of the con

TABLE 77

	Range	Fall	of Angle of Recovery			PE in Height of Burst
	yd	mils	mils	yd	ft	ft
Charge 1						
MV 650 fps	1,000	126	170	24	12	2
	2,000	272	285	15	13	3
Charge 2		· · · · · · · · · · · · · · · · · · ·				
MV 710 fps	1,000	104	145	27	12	2
101 / 10 1ps	2,000	226	260	19	15	3
						٠ •
	3,000	376	315	10	10	3
Charge 3 MV 780 fps	1,000	87	125	31	12	2
MIA 100 152		188	230	23		4
	2,000 3,000	304	230 295	23 15	16 14	3 3
Charge 4 MV 875 fps	1,000	69	105	36	11	2
MA CLO The						
	2,000	147	195	29	17	3
	3,000	237	265	21	17	4
	4,000	343	305	14	13	3
Charge 5	1 000		00		10	•
MV 1,020 fps	1,000	51	80	44	10	2
	2,000	109	155	37	17	* 3
	3,000	174	220	30	20	4
	4,000	247	270	23	19	4
	5,000	331	305	17	15	4
	6,000	430	315	10	9	3
Charge 6 MV 1,235 fps	1,000	39	65	51	10	2
WIV 1,230 1PS			125			
	2,000 3,000	86 138	125 185	43 36	17	3
				36 30	20	4
	4,000	198	235	30	21	4
	5,000	265	280	24	20	4
	6,000 7,000	339 422	305 315	17 10	16 10	4 4
Charge 7	7,000	406	210	10	10	
MV 1,500 fps	1,000	25	45	65	8	2
1111 11000 1h9	2,000	60	95	54	15	3
	3,000	104	145	44	19	4
	4,000	156	200	37	22	
	5,000	214	250 250	3 <i>1</i> 29	22 22	۲ ت
		278	285			E D
	6,000			23	20	4 5 5 4
	7,000	348	310	17	16	
	8,000	423	315	10	10	44

12. Penetration. The data on penetration of concrete by the HE Shell M1 with the CP Fuze M78 were taken from TM9-1907, "Ballistic Data, Performance of Ammunition". The data on penetration into medium earth and logs by the HE Shell M1 with any DP or CP fuze were taken from Vol. III of "Terminal Ballistic Data".

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Ammunition, No. 105-1-T12

Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 15 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HE, 105-mm, T12

with

Fuze, MT, M61A1

Section		Paragraphs
I	General	1
п	Description	2 - 4
Ш	Interior ballistic data	5
IV	Exterior ballistic data	6

SECTION I GENERAL

																															Paragraph
Purpose -	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics and allistics of the 105-mm High Explosive Shell T12 with the Mechanical Time Fuze M61A1. This information is collected from the drawings, reports and firing tables pertaining to this ammunition.

ALL DIMENSIONS IN CALIBERS I CAL = 4.134"

SHELL, HE, 105-MM, TI2 FUZE, MT, MGIAI

SECTION II DESCRIPTION

Drawings	0
2. Drawings.	
Shell: Metal parts assembly and details Fuze: Assembly Details	GA 2127 73-7-71 73-7-72, 74,75,76
3. Dimensions.	
Boattail: Angle Length	7°00° 0.455 cal
Band: Width Distance from base Distance from boattail	0.343 cal 0.709 cal 0.254 cal
Cylindrical body: Length	1.925 cal
Ogive: Length Radius of arc	1,221 cal 10,159 cal
Fuze: Outside length	1.857 cal
Length: Shell Shell and fuze Ogive and fuze	2.601 cal 5.458 cal 3.078 cal
4. Physical characteristics.	
Mean weight	38 lb

SECTION III INTERIOR BALLISTIC DATA

Theoretical yaw in bore		agraph 5
5. Theoretical yaw in bore.		
Minimum Maximum	2.7 min 5.0 min	

SECTION IV

EXTERIOR BALLISTIC DATA

												P	aragi	rap	'n
 													۵	•	

6. Cam da a

Cam data - - - -

Gun, 105-mm, T4 on antiaircraft mount. Twist of rifling: 1/30.

Twist of rifling: 1/30.

Muzzle velocity: 3000 fpr.

Projectile weight: 28 %.

a. Form factor (Proj Type 8): $i_2 = 0.882$.

b. Pallistic coefficient (Proj Type 2): $C_2 = 2.52$.

Ballistic Research Laboratories Hanábook of Ballistic and Engineering Data for Ammunition, No. 105-1-67 Ballistic Research Lab. Aberdeen Proving Ground. Maryland 14 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, HEAT, 105-mm, M67

with

Fuze, BD, M62

Section		Paragraphs
I	General	1
п	Description	2 - 4
иI	Interior ballistic data	5 - 6
IV	Exterior ballistic data	7 - 8
V	Effect data	9

SECTION I GENERAL

																															Paragraph
Purpose ·	 -	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	_	_	-	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 105-mm High Explosive Antitank Shell M67 with the Base Detonating Fuze M62. This information is collected from the drawings, reports, and firing tables pertaining to this ammunition.

SECTION II DESCRIPTION

																										Daragraph
Drawings	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	_	-	_	-	-	-	2
Dimensions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	••	-	-	-	-	-	-	-	3
Physical characteristics	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4

ALL DIMENSIONS IN CALIBERS I CALIBERS

SHELL, HEAT, 105-MM, M67

2. Drawings.

Shell:	Assembly	75-14-352
	Metal parts details	75 -4- 106
	Ogive and union assembly	75-4-107
Fuze:	Assembly	73-2-168
	Details	73-2-169
	Detai ¹ s	73-2-170
	Details	73-2-171

3. Dimensions.	
Boattail: Angle Length	9°00' 0.49 cal
Band: Distance from boattail Distance from base Width	0.25 cal 0.74 cal 0.19 cal
Body: Length of cylindrical part Length of ogival part Radius of arc	1.84 cal 0.34 cal 6.17 cal
Union: Length	0.14 cal
Ogive: Length Angle	1.86 cal 21°30'
Length: Body Ogive and union Shell Ogive, union and ogival part of body	2.67 cal 2.00 cal 4.67 cal 2.34 cal

NOTE: Fuze is entirely inside of shell body.

4. Physical characteristics.

Weight (standard)	29.29 lb
Base to center of gravity	1.497 cal s
Axial ament of inertia	0.515 lb.ft ²
Tran: se moment of inertia	4.18 lb.ft ²

DIAGRAM OF RESULTANT STRESSES

4

SECTION III INTERIOR BALLISTIC DATA

																										Paragraph
Stresses		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	_	5
Theoretical yaw in bore	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 6

5. Stresses. The following table and the graphical representation on page 4 show the longitudinal, radial and tangential resultant stresses at each of three sections: (A) the rear corner of the band seat, (B) the front of the band seat, and (C) immediately behind the bourrelet.

Howitzer	105-mm M2
Twist of rifling	1/20
Cross-sectional area of bore	13.65 sq in.
Rated maximum pressure	30,000 psi
Total weight of projectile	29.29 lb
Muzzle Velocity	1250 fps
Density of filler (pentolite)	0.0574 lb per cu in.

Resultant Stress*		SECTIO	N
100 psi	A	В	C
Longitudinal	-179	-4 15	-266
Radial	+395	0	+ 23
Tangential	-694	+342	+198

^{* +} denotes tension,

6. Theoretical yaw in bore.

Minimum	2.7 min
Maximum	5.0 min

SECTION IV

EXTERIOR BALLISTIC DATA

																													Paragraph
Aerodynamic data	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	_	-	-	-	7
Firing table data	-	-	-	-	-	_	_	-	-	-	_	-	-	-	-	_	-	_	_	_	_	_	-	-	-	_	_	_	8

⁻ denotes compression.

7. Aerodynamic data.

a. Drag. A form factor of 1.26 relative to the $\rm G_2$ drag function was determined from resistance firings at 1250 fps with short coil distances. Later, more accurate measurements were made, and a form factor of 1.06 determined by resistance firings at both 1020 and 1250 fps. This value has been confirmed by comparative firings with the HEAT Shell M67 and the HE Shell M1 against a vertical target at a muzzle velocity of 1020 fps. For the standard weight of 29.29 lb, the ballistic coefficient is 1.62 on $\rm G_2$. The drag coefficient is tabulated below.

Velocity	Drag Coefficient
fps	K_{D}
1000	070
1020	.0785
1250	.170

b. Stability. The stability factor of the HEAT Shell M67 has not been determined. However, it should be approximately the same as that of the 75-mm HEAT Shell M66, which is about 2.07 for a twist of rifling of 1/20 at a muzzle velocity of 1000 fps.

8. Firing table data.

Howitzer 105-mm	Firing Table	MV fps	Weight lb	Twist of Rifling
M2A1	105-H-3, C8	1250	28.8	1/20
M3	105-L-1	1020	28.8	1/20

The terminal velocity was taken from Ballistic Research Laboratory Memorandum Report 296, "Tables of Impact Velocities for Mobile Artillery Weapons". The HEAT Shell M67 was standardized by OCM item 17639.

SECTION V EFFECT DATA

•			<u> </u>	aragraph
Penetration				8
9 Denetration	The errores nonetwester	. Into homenous	comes plate to	. A E !u.ab

Ballistic Research Laboratories Handbook of Ballistic and Engineering Data for Amnunition, No. 105-1-314

was a before extensive the second control of the second control of

Ballistic Research Lab. Aberdeen Proving Ground, Maryland. 15 February 1949

BALLISTIC AND ENGINEERING DATA

for

Shell, Illuminating, 105-mm, M314

with

Fuze, TSQ, M54

Section		Paragraphs
I	General	1
п	Description	2 - 4
Ш	Interior ballistic data	5
IV	Exterior ballistic data	6 - 7
V	Effect data	8

SECTION I GENERAL

																																Paragraphs
Purpose -	-	-	•	-	•	-	~	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

1. Purpose. The purpose of this number of the handbook is to furnish a concise collection of information regarding the shape, dynamics, ballistics and effects of the 105-mm Illuminating Shell M314 with the Time and Superquick Fuze M54. This information is collected from the drawings, reports, firing tables and firing records pertaining to this ammunition.

SECTION II DESCRIPTION

	Para	graph
Drawings		2
Dimersions		
Physical characteristics		4

The state of the s

ALL DIMENSIONS IN CALIBERS 1 CAL = 4.134"

SHELL, ILLUMINATING, 105-MM, M314 FUZE, T SQ, M54

The state of the s

2-5

2. Dr	awings.	
Shell:	Metal parts assembly Details	75-4-128 75-4-129
Fuze:	Assembly	73-3-154
3. Dir	mensions.	
Band:	Width Distance from base	0.196 cal 0.399 cal
Body:	Length of base piece Length of cylindrical part Length of ogival part Radius of ogival arc Length of shell	0.145 cal 2.900 cal 0.835 cal 2.782 cal 3.735 cal
Fuze:	Length (outside) Length of shell and fuze Length of ogive and fuze	0.914 cal 4.649 cal 1.749 cal
4. Ph	reical characteristics.	
Base t	t (standard) o center of gravity moment of inertia verse moment of inertia	36.60 lb 1.180 cal 0.286 lb.ft ² 1.416 lb.ft ²

SECTION DI INTERIOR BALLISTIC DATA

			Paragraph
Theoretical yaw in bore			5
5. Theoretical yaw in bore.			
Minimum	8 min	٠	
Maximum	15 min		

SECTION IV EXTERIOR BAL-LISTIC DATA

																													Paragraph	
Aerodynamic data	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	••	-	-	-	-	-	-	-	-	-	-	-	-	6	
Firing table data	_	_	_	_	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	٠	-	7	

6. Aerodynamic data.

a. Drag. The following drag coefficients were computed from the ballistic coefficients tabulated in paragraph 6, which were determined by range firings.

Velocity	$\kappa_{_{ m D}}$
fps	
620	.0881
674	.0881
738	.0885
825	.0899
958	.0950
1158	.1829
1453	.1892

b. Stability.

Muzzle Velocity	1226 fps
Moment coefficient, K	1.37
Twist of rifling M	1/20
Stability factor	3.60

7. Firing table data. FT 105-H-3 (C-11)

105-mm Howitzer M2A1 and M4. Twist of rifling: 1/20.

OCM items 28809 and 29657 recommended and approved standardization of the Illuminating Shell M314.

a. Form Factor and Ballistic Coefficient.

The following form factors and ballistic coefficients on the drag function $G_{6.1}$ were determined by range firings and are independent of elevation.

Charge No.	MV fps	Form Factor	Ballistic Coefficient
	620	1.050	2.007
1			1.996
2	674	1.055	
3	738	1.063	1.981
4	825	1.075	1.959
5	958	1.101	1.914
6	1158	1.135	1.856
7	1453	1.097	1.920

SECTION V EFFECT DATA

																															Paragr	_
Illumination -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	

8. Illumination. When the fuze functions, the candle and parachute are released. A few seconds later, the parachute opens and slowly lowers the candle to the ground. In the functioning tests of this ammunition, the candles burned from 38 to 57 seconds.