

Prof. Vitor Cardoso (responsável) Prof. Pedro Sacramento (práticas) Prof. Rúben Conceição (práticas) Prof. Diogo Bragança (laboratório) Prof. Manuel Alonso (laboratório) Prof. Sofia Freitas (laboratório)

ENG. INFORMÁTICA E DE COMPUTADORES (LEIC) ELECTROMAGNETISMO E ÓPTICA: EXAME 2 (1 JULHO 2017)

Duração: 1:30+1:30 horas

Justifique cuidadosamente todas as respostas e raciocínios Exprima as unidades no sistema S.I. no final de cada resposta Não é permitido o uso de formulários ou calculadoras

Teste I

Problema 1 Usando a lei de Gauss, calcule o campo eléctrico criado por

- a) (1.0 val.) Um fio rectílineo infinito, uniformemente carregado com uma densidade linear de carga $\lambda = -1C/m$, num ponto à distância ${\bf r}$ do fio. Se colocarmos um electrão nesse ponto, o que vai acontecer?
- b) (1.0 val.) Um plano infinito, uniformemente carregado com uma densidade superficial de carga $\sigma=1C/m^2$, num ponto à distância **r**.
- c) (1.0 val.) Refaça a) usando a lei de Coulomb.

PROBLEMA 2 Considere dois cilindros condutores, (1) e (2), com raios $\mathbf{R_1}$ e $\mathbf{R_2}$ e comprimento $\mathbf{L_1}$ e $\mathbf{L_2}$, colocados em série como na figura, com os eixos coincidentes. Ambos os cilindros apresentam uma condutividade, $\sigma_{\mathbf{c}}$. Sabendo que o sistema é atravessado por uma corrente $\mathbf{I_0}$, distribuída uniformemente.

- a) (1.0 val.) Determine a densidade de corrente que atravessa cada um dos cilindros.
- b) (1.0 val.) Qual a resistência de cada um dos cilindros?
- c) (1.0 val.) Qual a diferença de potencial e o campo eléctrico em cada um dos cilindros?
- d) (1.0 val.) Determine a resistência total do sistema e a diferença de potencial total.

PROBLEMA 3 Um condutor esférico oco, de raio $\mathbf{R_2}$ tem no seu interior uma esfera maciça condutora de raio $\mathbf{R_1}$. Foi colocada uma carga \mathbf{Q} na esfera interior.

- a) (1.0 val.) Determine o campo eléctrico em toda a parte. Qual a distribuição da carga na esfera maciça?
- b) (1.0 val.) Determine o potencial eléctrico em toda a parte.
- c) (1.0 val.) As duas esferas foram de seguida ligadas por um fio condutor. Retirou-se o fio condutor. Determine agora o potencial eléctrico em toda a parte, e a distribuição de carga na situação final.

Teste II

Problema 4 Numa espira quadrada de lado L e resistência R circula uma corrente I.

Figura 1: Espira quadrada percorrida por uma corrente I.

- a) (1.0 val.) Qual a direcção e sentido do campo magnético gerado por esta corrente no centro da espira?
- b) (1.0 val.) Determine, utilizando a lei de Biot-Savart, o campo magnético gerado por esta corrente no centro da espira. Sugestão: comece por considerar um único lado. Nota: $\int \frac{1}{(x^2+a^2)^{3/2}} dx = \frac{x}{a^2 \sqrt{a^2+x^2}}.$
- c) (1.0 val.) Indique a potência dissipada por efeito Joule devido à passagem de corrente pela espira.
- d) (1.0 val.) Admita agora que a corrente na espira foi originalmente induzida por um campo magnético orientado na direcção z tal que $\mathbf{B}(\mathbf{t}) = \mathbf{B_0}\mathbf{t}$. Neste caso qual seria o sentido do campo magnético e qual o valor de B_0 para que a corrente \mathbf{I} tenha o sentido apresentado na figura 1.

Problema 5 Um solenóide bastante comprido de raio a, com N espiras por metro é percorrido

- a) (1.0 val.) Determine o campo magnético B no interior do solenóide.
- b) (1.0 val.) Determine o fluxo do campo magnético que atravessa uma espira quadrada de lado ℓ e outra circular de radio ${\bf r}$ colocada concêntricas com o eixo do solenoide, sendo ℓ e ${\bf r}$ maiores do que o raio do solenoide.
- c) (1.0 val.) Determine a corrente eléctrica induzida na espira circular, de resistência \mathbf{R} , quando o plano da espira é posto a oscilar em relação à normal ao eixo do solenóide (como se mostra na figura) com um ângulo $\alpha = \alpha_0 \cos \omega t$.

Problema 6 Considere uma onda plana monocromática que se propaga no vácuo com campo eléctrico \vec{E} dado por:

$$E_x = E_0 \sin \left[\omega t - \beta \left(\frac{3}{5} x - \frac{4}{5} y \right) \right]$$

$$E_y = \alpha E_0 \sin \left[\omega t - \beta \left(\frac{3}{5} x - \frac{4}{5} y \right) \right]$$

$$E_z = 0.$$

Determine, detalhando os cálculos:

- a) (1.0 val.) A direcção de propagação da onda.
- b) (1.0 val.) Qual a relação entre β e ω ?
- c) (0.5 val.) O valor da constante $\alpha > 0$ para que se trate de uma onda plana monocromática.
- d) (0.5 val.) A polarização da onda (linear, circular ou elíptica). Se não conseguiu determinar a constante α na alínea anterior, use $\alpha = 1$.

Tabela 1: Formulário

Electrostática:	Magnetostática:	Campos variáveis e indução:
$ec{E}=rac{1}{4\piarepsilon_0}rac{q}{r^2}ec{u}_r$	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{u}_r}{r^2}$	$\oint_{\Gamma} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \vec{n} dS$
$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{Nm}^2 \text{C}^{-2}$	$\frac{\mu_0}{4\pi} = 10^{-7} \text{Hm}^{-1}$	$ec{ abla} imesec{E}=-rac{\partialec{B}}{\partial t}$
$\oint \vec{E} \cdot d\vec{l} = 0$	$\oint \vec{B} \cdot \vec{n} dS = 0$	$\Phi_i = L_i I_i + M_{ij} I_j$
$\nabla \times \vec{E} = 0$	$d\vec{F} = Id\vec{l} \times \vec{B}$	$U_M = \frac{1}{2} \sum_i \Phi_i I_i$
$\oint \vec{D} \cdot \vec{n} dS = Q_{\text{livre}}$	$\vec{\nabla} \cdot \vec{B} = 0$	$u_M = \frac{B^2}{2\mu}$
$\vec{\nabla} \cdot \vec{D} = \rho_{\mathrm{livre}}$	$\oint_{\Gamma} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot \vec{n} dS$	$\oint_{\Gamma} \vec{H} d\vec{l} = \int_{S} \vec{J} \cdot \vec{n} dS + \frac{d}{dt} \int_{S} \vec{D} \cdot \vec{n} dS$
$\sigma_{\rm pol} = \vec{P} \cdot \vec{n}_{\rm ext}$	$\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu \vec{H}$	$ec{ abla} imesec{H}=ec{J}+rac{\partialec{D}}{\partial t}$
$\vec{D} = \vec{P} + \varepsilon_0 \vec{E} = \varepsilon \vec{E}$	$ec{B} = \mu_0(ec{M} + ec{H})$	Interacção de partículas e campos:
$V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$	$ec{J}_M = ec{ abla} imes ec{M}$	$ec{F} = q \left(ec{E} + ec{v} imes ec{B} ight)$
Q = CV	Ondas electromagnéticas:	Óptica:
$u_E = \frac{1}{2}\varepsilon E^2$	$ec{S} = ec{E} imes ec{H}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
	$ec{n} = rac{ec{k}}{k} = rac{ec{E}}{E} imes rac{ec{B}}{B}$	$\tan \theta_B = \frac{n_2}{n_1}$
Corrente elétrica estacionária:	$\vec{E} = v\vec{B} \times \vec{u}_k, \vec{B} = \frac{\vec{u}_k \times \vec{E}}{v}$	Interferência entre ondas:
$ec{J}=Nqec{v}$	$v = \frac{1}{\sqrt{\varepsilon \mu}}$	$d\sin\theta_{\rm max} = m\lambda$
$ec{J}=\sigma_cec{E}$	$u = u_E + u_M$	$d\sin\theta_{\min} = m\lambda + \frac{\lambda}{m'}$
$I = \frac{dQ}{dt} = \int_{S} \vec{J} \cdot \vec{n} dS$	$\tan \theta_B = n_2/n_1$	$a\sin\theta_{\min} = m\lambda \text{ (difracção)}$
$P = \frac{V^2}{R} = RI^2 = VI$	Circuitos eléctricos: $V = RI$	
$\vec{J} = -\frac{1}{R} - I\vec{\Omega} - \vec{V}\vec{I}$ $\vec{J} = \sigma_c \vec{E}$	$U = \frac{1}{2}CV^2 = \frac{1}{2}QV$	$R_{comic} \equiv \sum R_i$
$\frac{1}{R_{\text{paralelo}}} = \sum_{i} \frac{1}{R_i}$	$V_C = rac{Q}{C}$	$R_{serie} = \sum_{i} R_{i}$ $V_{L} = L \frac{dI}{dt}$
Geometria:		
$A_{\rm esfera} = 4\pi r^2$	$V_{\text{esfera}} = \frac{4}{3}\pi r^3$	$A_{\rm circulo} = \pi r^2$