ENGLISH OF COMPRES

P. W. Ontoniano, Chi

MONTHLY

WEATER REVIEW

MARCH 1941

CONTENTS

A Store Burg Puli Deminstrate Millio Poor Presents. Manuscra	
(1.4c.) F. B. Policia and R. A. Mandalland.	
An University Hand Depleter B. Rey Mark C. Cooks 12 - Chinal	
Amoromous Member Winds	
Marsononoma Are Charles of the Date:	
Accelegand Option Continues of the Conti	

		LOGIGAL DAYA	-Comband.
	and Floods		diger-
	AND BURNING	DATA:	
Reim Facilet Envisional 1	lon Charvelli Palation Summ	et Numbers	**********

CENTRAL PROPERTY.

version and the control of the contr

MONTHLY WEATHER REVIEW

Editor, EDGAR W. WOOLARD

Vol. 69, No. 3 W. B. No. 1319

MARCH 1941

CLOSED MAY 3, 1941 ISSUED JUNE 13, 1941

A SLIDE RULE FOR DETERMINING 10,000-FOOT PRESSURE

By J. R. Fulks* and R. A. DIGHTMAN

[Weather Bureau Airport station, Seattle, Wash., March 1940]

One of the many problems confronting meteorologists engaged in airway forecasting arises from the frequent lack, during adverse weather, of current wind-aloft data. It is during such periods that accurate data concerning upper-air circulation are most important in properly planning instrument flights.

Some excellent work has recently been done by Vernon and Ashburn, and by Haynes on methods of computing winds aloft when actual observations are missing.

It is felt that the method now employed at the Seattle Airport Station of the Weather Bureau may be used to advantage in regions where there is a scarcity of reports of winds and/or pressures aloft, and in particular, when there is a limited amount of time available for such determinations.

At Seattle a chart of 10,000-foot pressures is constructed daily for the United States, western Canada, Alaska, and, as far as ship reports are available, the section of the Pacific Ocean adjoining the Pacific coast.

A network of radiosonde observations is available from the United States and Alaska, and an airplane sounding is received from Edmonton, Alberta, Canada. These reports do not normally provide sufficient information for construction of an accurate upper-air map along the immediate Pacific coast line, and particularly between Seattle and Juneau.

In order to provide a close network of pressure values, it has been the practice at Seattle during the past two years to estimate upper-air temperatures at a number of coastal and Canadian stations and ships in the adjacent Pacific Ocean, and use the reported sea-level pressures to obtain the 10,000-foot pressures.

The pressure reduction may be accomplished by means of various tables available; however, it is the purpose of this paper to describe the construction of a simple slide rule which is found very convenient for the purpose.

The hypsometric equation may be written:

$$z = \frac{RT_{\bullet}}{Ma} \log_{10} \frac{P_0}{P} \tag{1}$$

where:

z=Difference of height, in centimeters, between upper and lower station. $R=2.8703\times10^{6}.$

 T_{\bullet} =Absolute virtual temperature (centigrade). = (1+.605q) $T=\left(1+\frac{.376e}{P}\right)T$, Approx.

$$=(1+.605q) T=(1+\frac{.376e}{P})T$$
, Approx.

in which q=Specific humidity, $\frac{0.6221e}{P-38e}$, e=Vapor pres-

sure, mb., and T=Absolute centigrade temperature. M=Modulus of common logarithms=0.434294. g=Acceleration of gravity, c.g.s. units, average value (with respect to height) between upper and lower levels. P_0 =Pressure at lower level measured in any units, provided P_0 and P are in same units; P_0 will here be used for sea-level pres-

sure. P=Pressure at higher level.

If, instead of constructing our pressure map for a surface of equal geometric height, we construct it for a surface of equal geopotential, the gradient or geostrophic wind equations for motion within this surface will apply more exactly. By definition it is only within a surface of equal geopotential that no work is done against gravity, since the average value of gravity from sea-level up to the surface of equal geopotential will always be the same.

With g and z defined exactly as in the hypsometric equation, and the lower point taken at sea-level, geopotential may be defined as follows: geopotential=gz,

(g=average value).

We may express geopotential in terms of dynamic meters, defined (after V. Bjerknes) as

$$Z_4$$
=height, dynamic meters= $Z \frac{g(average)}{1,000}$

where Z = height, geometric meters.

In radiosonde observational work, the Weather Bureau uses as a unit of height 0.98 dynamic meter, which is equivalent to exactly 1 geometric meter when average g=980 dynes.

To adopt a unit of 0.98 dynamic meter, it is merely necessary to substitute a value of 980 for g in the hypsometric equation.

Substituting for R, M, and g, the hypsometric equation becomes:

$$\frac{Z_d}{.98} = Z \text{ (meters)} = 67.439 \ T_s \log_{10} \frac{P_0}{P}$$
 (2)

At 10,000 feet (3,048 geometric meters),

$$\log P - \log P_0 = -\frac{1}{022126T_0}.$$
 (3)

Since the average value of gravity from sea-level to 10,000 feet=980 dynes at approximately 38°35' latitude, the surface will be exactly 10,000 geometric feet (3,048 meters) at this latitude. Geometric height will be less toward the Poles and greater toward the Equator.

From an inspection of equation (3) it is evident that, if log P and log Po are plotted on the same logarithmic scale, the difference between any two corresponding

³ See for instance, Smithsonian Meteorological Tables, Fifth Revised Edition, pp. LIU-LV.

^{*}Now at Weather Bureau Airport station, Salt Lake City, Utah.

1 Vernon, Edward M., and Ashburn, Edward V. A practical method for computing winds aloft from pressure and temperature fields. MONTHLY WEATHER REVIEW, September 1938, 66: 267-274.

4 Haynes, B. C. Upper-wind forecasting. MONTHLY WEATHER REVIEW, January

ADMINED STATES OF AMERICA

values of $\log P$ and $\log P_0$, as measured linearly along the scale, will be a function of T_{\bullet} only. For any given value of T_{\bullet} , the difference $\log P - \log P_0$ will be constant. However, a plot of P and P_0 on an extended \log scale would either be inconveniently long, or the consecutive

values of pressure too crowded for practical use. The following arbitrary changes reduce the scale to a practical size, using inches for linear measure:

$$(100 \log P - 277) - (100 \log P_0 - 300) = 23 - \frac{100}{.022126T_e}$$
 (4)

Suppose we label the terms as follows:

"A" scale=100
$$\log P_0$$
-300,

"B" scale=
$$100 \log P - 277$$
,

"C" scale=
$$23 - \frac{100}{.022126 \ T_{\bullet}}$$

Arbitrary changes made in the equation above give the "A" and "B" scales a common zero point at 1,000 mb. on the "A" scale. The "A" and "B" scales are measured to the right, for convenience, of the common zero point along the same straight line, except that, on the "A" scale, values of pressure below 1,000 mb. are negative, and must be measured to the left.

The "A" and "B" scales constitute the stationary part of the rule. The "C" scale is the sliding portion, and is measured to the right of its own zero point.

Equation (4) is in a form convenient for use with pressure measured in millibars, and linear distance along the scale in inches. If it is desired to use other units, corresponding changes may be made. With the units here

used the rule will be about 14 inches long.
In tables 1, 2, 3, the values of the "A", "B," and "C" scales are given.

 $[P_0=\text{sea-level pressure, mb.}]$

P_{\emptyset}	A	Po	A	Po	A
	Inches		Inches	11	Inches
948	-2.319	984	-0.700	1018	0. 778
950	-2.228	986	612	1020	. 860
952	-2.136	988	524	1022	. 945
954	-2.045	990	436	1024	1, 030
956	-1.954	992	349	1026	1. 115
958	-1.863	994	-, 261	1028	1, 199
960	-1.773	996	174	1030	1, 284
962	-1.682	998	087	1032	1. 368
964	-1.592	1000	. 000	1034	1, 452
966	-1.502	1002	. 087	1036	1, 536
968	-1.412	1004	. 173	1038	1.620
970	-1.323	1006	, 260	1040	1, 703
972	-1.233	1008	. 346	1042	1. 787
974	-1.144	1010	. 432	1044	1.870
976	-1.055	1012	. 518	1046	1, 953
978	966	1014	. 604	1048	2. 036
980	877	1016	. 689	1050	2, 100
982	789				

TABLE 2.-"B" scale, B=100 log P -277 [P=pressure at 10,000 feet, mb.]

P	В	P	В	P	В
	Inches		Inches		Inches
622	2.379	666	5. 347	710	8, 126
624	2.518	668	5, 478	712	8. 248
626	2.657	670	5, 607	714	8. 370
628	2,796	672	5, 737	716	8, 491
630	2.934	674	5, 866	718	8, 612
632	3.072	676	5. 995	720	8. 733
634	3. 209	678	6. 123	722	8, 854
636	3. 346	680	6. 251	724	8. 974
638	3.482	682	6.378	726	9, 094
640	3, 618	684	6. 506	728	9, 213
642	3.754	686	6, 632	730	9. 332
644	3.889	688	6. 759	732	9, 451
646	4. 023	690	6. 885	734	9, 570
648	4. 158	692	7. 011	736	9. 688
650	4. 291	694	7. 136	738	9, 806
652	4. 425	696	7. 261	740	9, 923
654	4, 558	698	7. 386	742	10.040
656	4. 690	700	7. 510	744	10. 157
658	4.823	702	7.634	746	10, 274
660	4. 954	704	7.757	748	10. 390
662	5, 086	706	7.880	750	10. 506
664	5. 217	708	8, 003		

Table 3.—"C" scale;
$$C=23-\frac{100}{.022126}$$
 T.

T_{\bullet}	°C.	"C"	T.	°C.	"C"	T.	°C.	"C"
		Inches			Inches			Inches
233	-40	3.603	257	-16	5. 414	281	8	6, 916
234	-39	3. 686	258	-15	5. 482	282	9	6, 973
235	-38	3.768	259	-14	5. 550	283	10	7,030
236	-37	3.849	260	-13	5. 617	284	11	7.086
237	-36	3. 930	261	-12	5.684	285	12	7. 141
238	-35	4.010	262	-11	5.750	286	13	7. 197
239	-34	4.090	263	-10	5. 815	287	14	7. 252
240	-33	4. 168	264	-9	5. 880	288	15	7. 307
241	-32	4. 247	265	-8	5. 945	289	16	7.361
242	-31	4. 324	266	-7	6.009	290	17	7.415
243	-30	4. 401	267	-6	6.073	291	18	7.469
244	-29	4, 477	268	-5	6. 136	292	19	7. 522
245	-28	4. 553	269	-4	6. 198	293	20	7. 575
246	-27	4. 628	270	-3	6. 261	294	21	7.627
247	-26	4. 702	271	-2	6. 323	295	22	7.679
248	-25	4.776	272	-1	6. 384	296	23	7. 731
249	-24	4.849	273	0	6. 445	297	24	7. 783
250	-23	4.922	274	1	6. 505	298	25	7.834
251	-22	4. 994	275	2	6. 565	299	26	7.884
252	-21	5.065	276	3	6. 625	300	27	7. 934
253	-20	5. 136	277	4	6. 684	301	28	7. 984
254	-19	5. 206	278	5	6.742	302	29	8. 034
255	-18	5. 276	279	6	6. 801	303	30	8.084
256	-17	5. 345	280	7	6.859			-7.1.1.0

The accompanying diagram (fig. 1) illustrates the rule. The 10,000-foot pressure calculations are made thereon simply by setting the zero point of the "C" scale on the sea-level pressure, and reading the 10,000-foot pressure opposite the determined mean virtual temperature.

"C" Scale ("A) "C" Scale (Tu) Zero Point 38552 " Scale (Pe mb.)

Stationary Scale FIGURE 1 .- Plan of 10,000-foot slide rule

In preparing a pressure map it is of course necessary to estimate upper-air temperatures where they are not available from actual observations. This might at first appear difficult. However, surface temperature serves as a starting point for the estimated curve. A careful study of the meteorological factors involved, particularly the history and trajectory of air masses will give a fair picture of temperature conditions aloft. It is especially necessary to check estimates against such actual temperatures as are available when a radiosonde observation falls within the same air mass. With experience, considerable accuracy is possible.

If the pressure map is extended to land areas of any considerable elevation, and the reductions are made from reported sea-level pressure, it becomes necessary in determining T, to use a fictitious temperature for that portion of the 10,000-foot column which is below the level of the station. This fictitious value is the mean of the current surface temperature and that 12 hours previously. It is that used in reducing station pressure to sealevel. On the assumption that reduction to sea level has been made exactly according to this temperature by means of the hypsometric equation, we may without appreciable error construct a temperature curve, which, from sea level to the station level follows the above fictitious temperature, and from the surface level to 10,000 feet, follows the estimated free-air temperatures. The mean

of this total curve, with a small correction for water vapor content, gives the value of T.

In areas north of Seattle, including the north Pacific, it is usually necessary to apply only slight corrections for moisture content, and as a result, the difference between virtual and actual temperature is small. Using Hann's empirical vapor pressure equation $\left(\log \frac{e}{e_0} = \frac{-Z}{6200}\right)$, the value of average vapor pressure for the 10,000-foot column becomes roughly 0.6 that of the surface vapor pressure. If the dew point is 5° C. (a representative winter value in the north Pacific), the difference between T and T, is about 0.6° C. (T, higher than T). In summer the difference may be as much as 1.0° C. or slightly higher. In more southerly latitudes, $T_{\bullet}-T$ is often considerably greater.

It is recognized that, at times, noticeable error may result in the above pressure determinations where it is difficult to estimate temperatures, but such errors will usually smooth out in drawing isobars on the pressure map. Experience at Seattle in the use of maps so constructed indicates that quite accurate average values of

upper winds may be determined from them.

Acknowledgment is due L. P. Harrison of the Weather Bureau Aerological Division for helpful suggestions.

AN UNUSUAL HALO DISPLAY

By D. B. O. SAVILE

[Control Experimental Farm, Department of Agriculture, Ottawa, Ontario, February 1941]

Most of the individual arcs, halos, and parhelia that are associated with an abundance of ice crystals in the atmosphere are not so rare as to merit repeated description, but highly complex displays are far from common. For this reason, and because it seems to throw some light on the precise cause of the sun pillar, the display witnessed at Ottawa, Canada, on January 27, 1941, is worthy of

The common 22° halo started to develop before the sun was 3° above the horizon, and was almost continuously distinguishable until sunset. About 10 a. m., E. S. T the 46° halo became faintly visible to eyes fully adapted to bright light. By 2 p. m. both halos, the horizontal parhelic circle, and the 22° parhelia were all well defined. Developments were then watched from open ground, and notes were taken for some time. During the next hour there were frequent variations in the intensity and extent of some of the components, but those shown in figure 1, and described below, were several times simultaneously

visible at approximately 2.30 p. m.

The horizontal parhelic circle, LSM, generally extending

about 30° beyond the point of intersection with the 46° halo; occasionally slightly exceeding a semicircle in extent.

The sun pillar, UV, frequently extending about 8° above and below the sun; maximum extent about 10° above and 12° below the sun; scarcely wider at the extremities than at the sun; rare with the sun high in the

Complete 22° halo, ABC; not as bright or as well colored

as earlier in the day; the inner edge red-brown. Upper tangent arc of the 22° halo, DAE; brilliant near point of contact, and better colored than the halo; not distinct to the point where it curves downward.

The 46° halo, GFH; brilliant and strongly colored above the parhelic circle, but faint below and never visible quite to the horizon; both color and brightness generally exceeding those of the small halo during the height of the display.

Circumzenithal arc, JK; taken at first for the contact arc of the large halo-indeed the confusion is often made in print; at solar altitudes between 15° and 25° this arc is practically tangent to the halo and is chiefly distinguished by its brilliant coloring; on this occasion the color sensations predominating were violet, yellow-green, orange, and red; the colors were approximately saturated, and were pure in sharp contrast to the broken colors of the other arcs; generally about 60° of arc distinctly visible, but occasionally slightly more.

The parhelia or mock-suns, P and Q, of the small halo were sometimes extremely brilliant, but the presence of the horizontal circle made their colors indistinct. The extremely rare mock-suns, N and R, of the large halo were distinctly visible several times; they were never brilliant and the horizontal circle rendered both color and extent indefinite; lacking accurate means of measurement, it can only be said that they were in approximately the calculated position several degrees outside the halo. Pernter 1 estimates about seven authentic records of this phenomenon, some early descriptions evidently referring merely to the enhancement of light at the intersection of halo and horizontal circle. The counter-sun, T, was visible for a short time as a diffuse light patch, too inconspicuous to be seen by anyone not looking for it.

Pernter, J. M., Meteorologische Optik, Dritter Abschnitt. 1902.

Pernter gives the observers' descriptions and sketches of the three great classical halo displays: The Rome display of 1630, the Danzig display of 1661, and the St. Petersburg display of 1794. The last named, in particular, included a somewhat more prolific display of arcs (some of them inaccurately recorded), but only the Rome display included, doubtfully, parhelia of the 46° halo. None of these displays included a sun pillar. Several other relatively complete displays, accounts of which i have seen, have included certain arcs or mock-suns other than those here described. (See, e. g., Monthly Weather Review, 48: 330-331, 1920.) The Ottawa display appears, however, to have been one of the few with a definite sun pillar. The distinction is explained by the fact that the pillar is seldom seen when the sun is more than a few degrees above the horizon, whereas most of the other phenomena are best seen when the sun is high. The pillar, which, with the horizontal circle, formed a cross through the sun, was a striking feature of the Ottawa display.

Curiously enough, the sun pillar, although it may be seen dozens of times a year at sunrise or sunset, has never been satisfactorily explained. Minnaert 2 sums up such explanations as have been put forward, and chal-

lenges the reader to complete the solution.

It is clear that a pillar formed with a solar altitude of about 25° cannot possibly be explained by the supposition of reflection from ice plates oscillating only slightly from a predominantly horizontal position. My own observations suggest that a distinct pillar is usually observed, other conditions permitting, when there is a steady wind, evident either from its local effect or from cloud forms, blowing approximately at right angles to the line connecting the sun and the observer. Such a wind might cause a preponderance of long hexagonal ice prisms to lie with their axes of symmetry horizontal and in the direction of the wind. This effect could produce a distinct pillar with high solar altitudes. It may well have been the explanation in the case under discussion, for the presence of the parhelia of the large halo proves that there was at times a preponderance of crystals with their 90° refracting edges vertical. Moreover, the wind at ground level was blowing steadily from the southeast; and, since the barometer was falling steadily, the same direction probably prevailed at high altitudes.

A complication arises from the brilliance of the large

the small ring during the height of the display indicates

Minnaert, M. Light and Colour in the Open Air. London, 1940. Cf. MONTHLY
WEATHER REVIEW. 63: 57-58, 1935.

The fact that it was considerably brighter than

an abundance of platelike crystals to account for refraction through the 90° faces outweighing that through the 60° faces of the randomly arranged crystals. It is doubtful whether such forms could have been predominantly oriented in the position required to give rise to either mock-suns or pillar. Possibly the explanation lies in the umbrella-shaped crystals that give rise to the mock-suns of the small halo. Such forms might lie with their principal axes horizontal in a strong wind and yet refract predominantly through their 90° faces. An alternative explanation is suggested by the occasional observation of a vague lattice structure in the cirro-nebula, which suggests that there were actually two distinct layers of cloud involved. Possibly there were different crystals forms and even different directions of movement in the two sheets.

It was hoped that some upper-air observations might be obtainable for the time of this display; but the clouds were far above the levels commonly utilized in commercial aviation, and no pertinent information was available. I have, however, to thank Mr. Jefferson, of Trans-Canada Air Lines, for his offer to make balloon observations, should future displays warrant the attempt.

AEROLOGICAL NORMAL DATA

Monthly tables, showing normal values of temperature and relative humidity for standard levels up to 5 kilometers, were recently printed by the Weather Bureau. These tables include all available kite, airplane, and radiosonde records for the United States as well as for St.

Thomas, V. I., Coco Solo, C. Z., and Pearl Harbor, T. H., through June 1939.

A limited supply of these tables are available for distribution and may be secured by applying to the Chief, United States Weather Bureau, Washington, D. C.

METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR MARCH 1941

[Climate and Crop Weather Division, J. B. KINCER in charge]

AEROLOGICAL OBSERVATIONS

By EARL C. THOM

Mean surface temperatures for March were below normal over about two-thirds of the United States (chart I). Surface temperatures were above normal west of the Great Divide and over the extreme North Central States with the largest positive departures, slightly over 8° F., occurring along the Washington and Oregon coastal Temperatures were lower than normal over the rest of the country with mean monthly surface tempera-tures as much as 8° below normal in a small area of the Centra! Atlantic States.

At the 1,500 m. level the 5 a. m. resultant winds were from directions to the north of the corresponding normals over the eastern two thirds of the country with an opposite shift at this level over most stations to the westward. At the 3,000 m. level the morning resultant winds were from directions to the north of normal over most of the country. Over the southwest and over the extreme west central areas, however, a turning to the south of normal occurred at this level. At 5,000 meters the 5 p. m. resultant winds were from directions to the north of the 5 a.m. normals at nearly all stations for which this comparison could be

At both the 1,500 m. and the 3,000 m. levels the 5 a. m. resultant velocities for the month were above normal over most stations in the extreme eastern part of the United States and were below normal quite generally to the westward. At 5,000 meters the 5 p. m. resultant velocities were higher than the corresponding 5 a. m. normals over most of the country; below normal velocities being noted only over the northwest and extreme west central areas.

The directions of the 5 p. m. resultant winds were to the south of the corresponding 5 a. m. winds for March at the 1,500-meter level over most of the country. A shifting of resultant winds to the northward during the day occurred, however over the extreme northeast, over the Gulf coast and over a considerable area in the middle plateau and west central states. At 3,000 meters the evening resultant winds for the month were from directions to the south of the corresponding morning normals over most stations in the western half of the country and over about half of those to the eastward. The resultant winds shifted to the northward during the day at this level over scattered stations in the northeast, the Gulf coast, the

Upper Mississippi Valley and the Pacific Northwest.

At the 1,500 m. level the 5 p. m. resultant velocities were lower than the corresponding 5 a. m. velocities over most of the United States. Velocities higher in the afternoon than those in the morning were, however, recorded at this level over the extreme southeast coastal region, over the southwest and over an area in the northwest. At 3,000 m. the increases and decreases in resultant velocity over the various stations during the day were evenly divided, with no well defined areas separating such diurnal

changes in resultant velocities.

It is noted that again in March the area of below normal surface temperatures corresponded closely with the area over which at 1,500 meters, the directions of the resultants were to the north of normal.

The upper air data discussed above are based on 5 a.m. (E. S. T.) pilot-balloon observations (charts VIII and IX)

as well as on the observations made at 5 p. m. (table 2

and charts X and XI).

At radiosonde and airplane stations in the United States proper the highest mean monthly pressure was recorded over Brownsville, Tex., at the 4,000-, 6,000-, and 16,000-meter levels, over Miami, Fla., at the 9,000-, 10,000-, 12,000- and 13,000-meter levels, while the corresponding maximum value was recorded over both Brownsville and Miami at all the other standard levels from 1,500 to 16,000 meters, inclusive. The lowest mean monthly pressure was recorded over Portland, Maine, at each of the standard levels from 1,500 to 6,000 meters, over Sault Ste. Marie, Mich., at each of the levels from 8,000 to 16,000 meters, inclusive, while the corresponding minimum, 395 mb., occurred over both Portland and Sault Ste. Marie at 7,000 meters.

At each of the standard levels from 1,000 to 14,000 meters, inclusive, the mean monthly pressures over all Alaskan stations north of 60°N. latitude were lower than the corresponding minimum pressures over the United States proper. At Juneau and Ketchikan the mean pressures at these levels were lower than the corresponding mean monthly pressures recorded over most stations of the United States but were higher than the minima. At all standard levels from 1,000 to 18,000 meters the mean monthly pressures over San Juan were higher than the corresponding maxima for stations in the United States.

The mean monthly pressures were higher than those of last month over most stations of the United States at each of the standard levels from the surface to 11,000 meters while the pressures were generally lower at higher levels. Pressures were, however, lower than last month at some of the levels up to 11,000 meters over a small area in the southwest and were slightly higher than last month at the higher levels over Portland, Maine, over the Great Lakes and over a small area in the middle Mississippi Valley.

In Alaska the mean monthly pressures were higher than last month at all levels over Ketchikan, and were also higher at levels above 1,000 meters over Juneau. Pressures were lower than last month at all levels over Fairbanks and over Anchorage. Over Bethel pressures were the same or higher than in February at levels up to 4,000 meters and were lower at all higher levels, while over Nome pressures were the same or higher this month at all levels up to 15,000 meters and slightly lower at higher levels.

The largest difference between the maximum and minimum mean monthly pressures at any of the standard levels for stations in the United States was 31 mb. at 8,000 meters. Steep pressure gradients appear on the mean pressure charts from north to south over the eastern third of the country, being steepest at the 6,000-, 7,000-, 8,000-, and 9,000-meter levels. At both 7,000 and 8,000 meters, for example, a change of 1 mb. was recorded for each 46 miles of horizontal distance between Buffalo, N. Y., and Washington, D. C., while a similar pressure change was noted at these two levels for a horizontal distance of 50 miles or less between Sault Ste. Marie and Nashville and between Sault Ste. Marie and Pensacola.

Mean monthly temperatures over the United States were generally higher for March than for February at levels from the surface up to and including 3,000 meters. This increase in temperature at the lower levels was especially marked over an area in the North Central States

where the mean temperature of the lowest 1,000 meters of free air averaged about 5° C. higher than last month. At the 5,000-, 6,000-, and 7,000-meter levels temperatures were higher than last month over most stations in the northern third of the country, were lower than last month over the Southwest and West Central States, while the areas of corresponding temperature changes were not well defined at these levels over the balance of the country. At levels above 8,000 meters temperatures were generally lower than last month over stations in the northern third of the country and along the Pacific coast with areas of temperature change not well defined over the remainder of the United States.

Alaskan stations north of 60° N. latitude reported mean temperatures lower than those of last month at most of the standard levels below 10,000 meters while an increase in temperature occurred at these levels over Alaskan stations south of this line. At all levels above 10,000 meters temperatures were lower than those of last month

over all Alaskan stations.

Comparison of the mean temperature charts for March 1941 with those for March 1940 show that temperatures at most of the standard levels from the surface up to and including 6,000 meters were higher than those of last year over stations in the United States north of 40° N. latitude and were generally lower than last year at these levels over all stations to the southward. At higher levels the corresponding changes were well distributed, temperatures at most stations being higher than last year at some upper levels and lower at others so that areas of distinct change in temperature from those reported last year cannot be defined for the upper levels.

Only two of the Alaskan stations, Juneau and Fairbanks, were making radiosonde observations during March of last year. At both of these stations tempera-tures were higher than last year at all levels up to 8 kilometers and were lower than last year at the higher

levels for which temperatures were reported.

With the issuance of a Climate and Crop Weather Division publication, Mean Values of Upper-Air Data, by C. L. Rock under date of April 1, 1941, there are available normal data with which the mean monthly upperair values can be compared. The following discussion of such departures from normal is based on mean values computed by Rock comparing radiosonde data for March 1941 as taken from radiosonde observations with normals for either the same stations or with normals for nearby stations which should be representative of the free-air

conditions in each particular area.

At 1,000 meters the mean temperatures were above normal at all stations north and west of a line drawn across the country through Williston and Los Angeles while the opposite departure was recorded at all other stations. emperatures at Spokane and at Seattle were nearly 3° C. above normal at 1,000 meters while temperatures over an area in the Central Mississippi Valley averaged nearly 7° below normal. At 3,000 meters the areas of departures from normal temperature were the same as at 1,000 meters except that a positive temperature departure occurred at Bismarck, N. Dak., at the higher level. At 5,000 meters free-air temperatures were above normal over the North Central, the Northwest and the West Central sections with negative departures indicated over the remainder of the country.

At 1,000 meters relative humidities were somewhat below normal over the Northwest, the West Central, the extreme Northeast, also over Nashville and Norfolk and were above normal at this level over the rest of the country. At 3,000 meters relative humidities were below normal

over San Francisco, Great Falls, Bismarck, and Norfolk and were above normal over all other stations. At 5,000 meters the relative humidity was somewhat below normal over Bismarck, and over the southern Atlantic coast and over the Southwest and was considerably above nor-

mal over most other sections of the country.

There is but little apparent connection between the areas of above normal precipitation for the month and the areas of above normal relative humidities. It was noted, however, that the average departure of relative humidity at the 3,000-meter level for the four stations, Denver, Oklahoma City, El Paso, and San Diego was plus 11 percent and that these four cities roughly border an area in which the precipitation averaged about 225 percent above normal. This apparent relationship for this area at this level however does not hold in other sections of the country, for example, at St. Louis the relative humidity was 18 percent above normal while the precipitation for the two States of Missouri and Illinois averaged

69 percent below normal for the month.

A more consistent relation appears to be that shown by the resultant winds blowing from directions more southerly than is normal for March over the southwestern part of the country at both the 1,500- and 3,000-meter levels. It appears likely that this mass transport of air moving from over the Pacific Ocean waters which are quite warm, resulted in more than the normal amount of moisture over this area. At Phoenix, for example, the normal resultant direction for the month is 285° (WNW) at 1,500 meters and 270° (W) at 3,000 meters while the corresponding resultant directions for March this year were 255° (WSW) and 237° (SW), respectively. Assuming a considerable trajectory over the ocean it appears likely from the values shown on chart 117 of the Atlas of the Climatic Charts of the Oceans that the temperatures of the waters over which these winds moved were about 5° F. higher than the temperatures of the waters over which these winds normally move during March.

The mean surface temperature for March as recorded by radiosonde observations was 0° C. or lower over that part of the northern third of the United States which lies east of Montana. Over other parts of the country this level of freezing temperature occurred at levels varying from 700 meters (m. s. l.) over Omaha to 3,900 meters over Brownsville. Except at three stations the level at which mean freezing occurred was either the same or

higher than last month.

The lowest temperature recorded in the free air over the United States was -84.0° C. (-119.2° F.) recorded on March 25 at a height of 17,400 meters (about 11 miles) above sea level over Miami, Fla. A lower temperature -86.4° C. (-123.4°F.) was, however, recorded at 17,400

meters over San Juan on March 18.

Table 3 shows the maximum free-air wind velocities and their directions for various sections of the United States during March as determined by pilot-balloon observations. The highest wind velocity reported for the month was 73.8 m. p. s. (165 m. p. h.) observed over Jacksonville, Fla., on March 12. This wind was blowing from the west-northwest at an altitude of 9,580 meters (about 6 miles) above sea level.

The highest wind velocity observed in the free-air layer below 2,500 meters during March in the last 5 years was 53.0 m. p. s. over Phoenix, Ariz., in March this year. In the free-air layer from 2,500 to 5,000 meters the highest March wind velocity during this period was 70.0 m. p. s. over Albany, N. Y., in 1938, while at levels above 5,000 meters the corresponding extreme 80.0 m. p. s.

occurred over Las Vegas in 1939.

CORRECTIONS

1. The data, appearing as a late report for Juneau, Alaska in table 1 in the November 1940 issue of the Monthly Weather Review were for October 1940.

MONTHLY WEATHER REVIEW were for October 1940.

2. The third paragraph of the annual summary of aerological observations which appears on page 355 of the December issue of the Monthly Weather Review

should be corrected to show that pilot-balloon and radiosonde observations were started at the two Atlantic Stations in February 1940 instead of in May as stated.

Observations taken prior to May 1940 on board the Coast Guard cutters located as Atlantic Stations No. 1 and No. 2 have not as yet, however, been summarized and published.

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during March 1941

							a	irpl	anes	and	radio	oson	des	durin	g Mo	arch	194	1					Ц					
											Station	ns wi	th ele	evation	s in m	eters	abov	e sea l	evel									
	Al 2	buqu Mex.	erque, (1,620 n	N.	An	chora (4)	ge, Ala	aska		Atlan (30	ta, Ga	ı.	1	tlanti No. 1	c Stati	on)	A	tlantic No. 2	Statie (3 m.	on .)	I	Barrow (6	, Alas m.)	ka	1	Bethel,	Alasi m.)	ka
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface	177 177 177 177 177 177 177 177 177 177	7997 755 700 62 544 477 411 366 3116 222 199 166 144 12 12 12 100 888 77 64	8 5. 2 0 2. 4 4 -1. 1 1 -8 0 5 -15. 2 6 -22. 5 30. 38. 4 0 -44. 6 5 -57. 3 8 -56. 1 5 -57. 3 8 -56. 6 1 -60. 0 4 -61. 6 6 -1. 7 5 -60. 3	7 66 7 62 1 64 5 56 5 58 3 50	31 31 31 31 31 31 31 31 29 28 28 28	999 948 888 833 773 733 685 597 52 451 339 287 246 211 181 1181 1181 198 84 72 61	8 0.0 -2.7 0 -6.6 0 -10.1 0 -13.5 3 -16.8 7 -22.8 0 -29.8 1 -37.2 0 -43.6 6 -49.6 6 -49.6 1 -52.9 3 -53.3 -51.6 6 -49.9 4 -49.8 -50.2 -50.2	70 70 73 78 76 77 78 77 78 77 78 74 72 72 72 72 72 72 72 72 72 72 72 72 72	31 31 31 31 31 31 30 30	983 959 902 848 797 748 702 619 543 475 414 350 310 267 229 196 167 142 120 102 87 73	4.0 2.8 9.1.9 9.1.9 9.1.5 9.2 15.2 1.2 15.2 1.2 1.3 1.4 1.4 1.4 1.5 1.4 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	66 61 58 52 49 45 46 44 41 39	25 25 25 25 25 25 25 24	1,011 952 895 841 790 695 695 610 834 466 404 350 301 259 222 190 162 138 118 101 86 73 62	2.3 -1.0 -3.4 -6.0 -8.3 -14.4 -20.7.5 -34.1 -40.8 -52.0 -55.3 -56.5 -55.8 -56.5 -56.9 -57.6	84 79 72 67 58 56 53 51	22 22 22 22 22 22 22 22 22 22 22 22 22	954	15. 4 11. 1 7. 6 4. 6 1. 8 -3. 3 -8. 5 -15. 1 -21. 8 -28. 7 -35. 3 -50. 9 -59. 1 -58. 5 -57. 5 -59. 2 -60. 5 -61. 1	82 83 79 75 70 58 52 50 49 45	31 31 31 31 31 31 31 31 31 30 30	1, 024 957 894 836 781 729 681 592 514 445 383 328 222 207 178 153 131 113 96 82	-22. (-20. (88 81 76 71 65 63 63 63 65 59	31 31 31 31 31 31 31	516 448 387 332 285 244 210 180 154 132 114 97	-5. -6. -9. -15. -15. -24. -31. -37. -43. -49. -52. -50. -49	6 74 8 74 75 2 75 74 74 3 74 75 68 66 61 61
	Bisa	marek (508	r, N. D	ak.	Bro		rille, Te	ex.	В		, N. Y	-			on, S. (sea lev	, C. Z	,19	I	Denver	, Cole		1	El Pas (1,193	o, Tex	
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	9	5	Number of ob- servations	Pressure	ture	Relative hu-	Number of ob- servations	Pressure		Relative hu- midity	Number of ob- servations	Pressure		Relative hu- midity	Number of ob- servations	Pressure	rature	Relative hu-	Number of ob- servations	Pressure		Relative hu- midity	Number of ob- servations	Pressure	p	Relative hu-
Surface	30 30 30 30 30 30 29 29 29 29 29 29 29 29 29 29 28 28 27 27 23 20 11	960 902 846 793 745 698 612 535 466 404 349 300 257 160 137 117 100 86 73	-4.8 -5.9 -7.6 -10.4 -16.6 -22.9 -29.8 -37.1 -44.4 -57.1 -58.9 -55.0 -55.0 -55.4 -56.7	75 72 63 57 57 56	31 31 31 31 31 31 31 31 31 31 31 31 32 28 27 27 26 25 23 19 15	1, 016 959 904 852 755 710 628 853 485 425 371 321 278 240 205 175 149 126 107 91	8. 2 5. 5 -0. 5 -7. 4 -14. 5 -21. 3 -27. 6 -34. 2 -40. 9 -47. 4 -53. 6 -58. 7	51 48 44 41 39 38 37	31 31 31 31 30 30 30 30 30 29 29 29 28 28 22 25 21 18	216 184 158 135 116 98 84	-4. 6 -5. 1 -7. 6 -9. 4 -10. 6 -12. 5 -14. 6 -19. 6 -25. 6 -32. 3 -39. 4 -45. 8 -51. 3 -54. 0 -53. 8 -52. 7 -53. 3 -55. 0 -54. 7	83 83 78 76 72 68 63 58	31 31 31 31 31 31 31 31 31 31 31 31 31 3	1, 016 958 901 847 796 618 543 310 266 228 195 167 142 103 87 74 63	7. 9 8. 0 5. 2 2. 9 1. 0 -3. 5 -8. 6 -15. 2 -21. 8 -28. 9 -36. 1 -43. 1 -9. 6 -57. 7 -59. 6 -63. 9 -63. 1 -62. 7 -61. 6	55 51 46	23 23 23 23 23 22 21 21 14	1, 013 958 904 853 804 758 714 633	26. 7 23. 6 20. 5 17. 3 14. 9 13. 9 10. 0	82 91 79 78 87 71 45 29 19	31 30 30 30 31 31 31 31 31 31 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	798 749 703 618 542 473 411 355 306 262 224 191 163 139 119 102 87 74 63	0. 7 -2. 4 -5. 5 -12. 0 -33. 6 -41. 8 -41. 8 -41. 8 -58. 3 -58. 3 -56. 5 -56. 1 -57. 0 -58. 9 -59. 8 -59. 8	73 70 67 68 60 58	30 30 30 30 30 30 30 30 30 30 30 30 30 3	881 799 752 707 623 548 480 418 363 314 270 232 198 169 144 123 105 88 75 63	10. 1 7. 5 4. 2 -6. 7 -13. 6 -6. 7 -27. 9 -35. 1 -42. 3 -58. 3 -58. 3 -58. 3 -65. 3 -64. 3 -65. 5 -64. 6	47 48 42 38 37 35

See footnotes at end of table,

TABLE 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during March 1941—Continued

		01.4	CO SUR			1				St	ations	with	eleva	ations	in met	ers al	bove	sea lev	el									
	Ely	y, Nev	. (1908	m.)	F	irbank (153	s, Ala m.)	ska	Gr	eat Fa (1,11	lls, Me 7 m.)	ont.	Jol	iet, III	. (178 r	n.)	J	uneau, (49	Alask m.)	8	Ke	tehika (26	n, Ala m.)	ska	La	kehur (39	st, N m.)	J.1
Altitude (meters) m. s. I.	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-
Surface .00 .000 .000 .500 .500 .500 .000 .500 .000	31 31 31 31 31 31 31 31 31 30 20 29 29 29 29 29 27 24	264 226 193 165 141 120 103 87	3 1.0 0.1 -16.6 -24.1 -32.1 -40.1 -47.6 -53.8 -56.1 -56.6 -57.7 -58.8	6 700 11 66 88 66 4 59 6 53 3 50 1 49 1 6 6	30 30 30 30 30 30 30 28 28	246 211 180 154 132 114 97	-13.8 -17.4 -23.6 -29.8 -36.8 -43.6 -49.6 -53.8	0 60 77 62 77 65 77 65 88 68 88 68 84 68 64 68 64 68 62	31	888 796 747 701 616 539 470 408 352 303 260 222 190 162 138 118 101 87	0.7 -1.4 -4.6 -8.1 -14.7 -21.1 -28.1 -35.3 -42.5 -49.3 -55.4 -58.0 -57.2 -55.2	63 60 60 61 61 57 54 52	30 30 30 30	998 959 900 844 792 742 696 610 533 464 402 348 299 256 220 187 117 110 85 72	-9, 1 -11, 2 -16, 6 -22, 6 -29, 1 -36, 2 -43, 4 -49, 8 -54, 2 -55, 6 -54, 7 -53, 3 -53, 7 -54, 0	83 75 67 63 59 61 58 54 51	30 30 30 29 27 25 24 21 16 14 12 111 9 6 6 6 6	346 296 254 217 185 156	-25.2	85 86 82 80 77 72 72	29 28 28 28 28	1, 011 953 896 842 790 741 695 610 534 465 403 349 300 256 220 187 160 136 117	-4, 7 -7, 1 -9, 8 -15, 4 -21, 4 -28, 3 -35, 8 -43, 0 -50, 1 -56, 0 -57, 3 -57, 3 -54, 7 -55, 8	79 777 775 700 64 558 56 54 52	30 30 30 29 29	1, 009 953 895 839 787 737 691 605 5299 461 399 345 219 255 219 187 160 137 117	-10.1 -12.2 -17.6 -23.7 -30.9 -43.8 -50.1 -54.1 -55.9 -54.9 -55.0 -56.4 -57.3	69 67 63 60 58 55 55 52 53 56
		ledfor	d, Ore	g.	Mi	ami, F	la (4	m \	N	ashvill	e, Ten			Nome,	Alaska	-		sea lev	, Va.1	,	0	akland	i, Cal	ır.	0	klabor	na Cit	y.
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu-	-qe				-qo	Pressure	m.)		Number of ob- servations	Pressure	ture		Number of ob- servations	Pressure (10)	Temperature	1.	Number of ob- servations	Pressure (5)	m)	hu-	À	Pressure	391 m.)	Relative hu-
5urface	30 30 30 30 30 30 30 30 30 30 30 30 30 3	967 956 900 847 796 748 703 618 543 474 412 357 308 264 226 192 164 140 119	-3. 1 -9. 6 -16. 8 -24. 6 -31. 7 -47. 8 -59. 3 -59. 3 -57. 8 -57. 8 -57. 8	66 61 62 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65	31 31 31 29	1, 017 959 904 882 802 755 710 627 563 485 371 322 279 240 206 176 149 126 106	15. 6 15. 0 11. 7 9. 6 8. 6 4. 1 -1. 3 -7. 3 -20. 6 -26. 4 -33. 3 -41. 1 -48. 4 -54. 8 -65. 6 -70. 0 -73. 0	78 79 68 56 46 44 40 36 34 34 34 34	311 311 311 311 311 311 310 300 300 300	998 959 902 847 795 747 701 616 540 471 410 355 306 263 226 193 164 141 120 102 87	-2. 1 -4. 0 -6. 0 -11. 9 -18. 3 -25. 2 -31. 7 -39. 0 -45. 7 -51. 7 -55. 8 -57. 0 -56. 4 -58. 1	67 66 65 61 60 58 56 53 51 49	31 31 31 31 31 31 31 31 31	1, 008 946 886 830 7777 727 680 593 515 446 385 331 283 243 208 178 153 131 113 96 83	-45. 4 -50. 3 -52. 9 -52. 5 -51. 0 -49. 7 -49. 5 -49. 9 -50. 3 -50. 9	72 70 67 66 62	23 23 23 23 23 23 23 22 21	1, 019 959 901 846 795 746 699 613 538	3, 0 3, 0 0, 6 -1, 9 -3, 8 -5, 7 -7, 9 -12, 8 -18, 2	63 52 48 46 45 42 42 40	31	1, 014 956 900 847 797 749 703 619 543 475 414 359 266 227 194 165 141 120 102	12. 3 10. 8 8. 4 5. 9 3. 0 0. 2 -2. 6 -8. 7 -15. 7 -23. 0 -30. 9 -38. 7 -46. 0 -52. 8 -57. 7 -58. 5 -57. 5	80 73 67 61 57 52 49 46 42 41 41 41	30 30 30 30 30 30 30 29 29 29 29	973 959 903 849 750 704 620 544 475 414 358 309 266 228 194 1120 102 87	5. 4 6. 1 4. 8 3. 3 1. 7 -0. 6 -3. 1 -9. 2 -15. 8 -22. 9 -30. 5 -38. 0 -45. 4 -51. 6 -56. 1 -57. 8 -57. 5 -58. 9	71 70 64 61 59 58 56 56 51 45 41 41

See footnotes at end of table.

TABLE 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during March 1941—Continued

	1									Sta	tions v	with o	elevat	tions i	n mete	ers ab	ove s	sea lev	el									
	0)maha (301	, Nebr		Pear	1 Harb (6 m.	or, T.	н.	Per	nsacols (24 r	n, Fla.		P	hoenix (339 i	, Ariz. m.)	30	Po	rtland (9 n	, Main	ie	Sai	nt Los (171	nis, M m.)	0.	Sain	t Pau (214 n	l, Mir	m.
Altitude (meters), m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	Temperature	Relative bu- midity	Number of ob-	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	#	2	Number of ob-	Pressure	Temperature	Relative hu- midity	Number of ob-	Pressure	Temperature	Relative hu-
urface		118 101	-8.3 -13.6 -20.8 -27. -34.7 -49.1 -54.6 -57.2 -55.5 -56.5 -56.5	7 72 66 65 6 65 7 62 8 60 8 60 5 53 8 60 8 60 8 60 8 60 8 60 8 60 8 60 8 60		1, 018 962 907 856 806 759 715 633	20. 2 18. 0 14. 9 12. 3 11. 5 10. 6 9. 0 4. 3	79 84 82 57	31 31 31 31 31 31 31 31 31 29 25 24 21 19 17 15 10 7	1, 017 961 904 851 801 753 708 624 480 419 315 272 234 200 170	12. 3 10. 7 8. 6 6. 9 5. 1 12. 6 0. 1 -5. 5 -11. 9 -18. 7 -26. 0 -33. 8 -46. 4 -53. 0 -58. 1 -61. 3	58 58 58 50 48 51 56 56 56 56	31 31 31 31 31 31 31 30 30 30 30 30 29 28 27 25 24 24 19 13	974 956 900 848 798 751 705 622 546 478 416 361 312 268 230 197 168 143 122 104 88 75 64	12. 0 15. 4 13. 2 9. 7 5. 9 2. 3 -1. 2 -7. 3 -14. 4 -21. 7 -29. 3 -37. 0 -44. 1 -50. 2 -56. 9 -58. 3 -62. 7 -63. 2 -63. 2	61 51 50 51 53 54 45 41 38 38 37	31 31 31 31 31 31 31 30 30 30 29 27 26 21 19 14 10 5	1,008 948 890 834 782 733 686 601 524 456 395 341 293 251 216 185 117 100 85	-4. 4 -3. 9 -6. 4 -8. 4 -9. 6 -11. 4 -14. 1 -19. 5 -25. 0 -31. 6 -46. 1 -50. 0 -50. 2 -50. 2 -50. 2 -50. 9 -54. 1 -55. 9	57 56 57	31 31 31 31 31 31 31 31 30 30 29 28 24 24 24 23 21 18 17 15 12	909 959 901 846 794 745 699 614 537 468 406 352 259 222 189 162 138 118 100 85 73	2. 7 1. 6 -0. 9 -2. 8 -4. 0 -5. 9 -8. 3 -20. 8 -27. 6 -34. 5 -41. 9 -49. 1 -54. 7 -58. 6 -57. 1 -57. 0 -58. 2 -58. 6	56 83 50	31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	992 959 900 844 792 743 606 610 533 464 403 348 298 255 219 136 116 100 85 72 62	-85.6 -86.8 -56.8	1 8 7 7 7 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		115										Stat	-			-		ers abo		1	-					1	***	
					St	. Thon (8 r		11	Sar	Diego (19	o, Cali m.)	£.1 &	84	n Jua (15	n, P. 1 m.)	R.	Sa	ult Ste Mich.	221 m.	ie,	S	eattle, (27	m.)	11	S	ookane (598	m.)	ıh.
Altitude (i	neters) m. s.	1.		Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	B	Number of ob-	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface					30 30 30 30 30 30 30	1, 017 961 908 856 807 761 717 636	25. 6 22. 4 19. 3 16. 2 13. 4 12. 4 8. 7	39	27 27 27 27 27 27 27 27 25 24 22 22 22 22 20 20 17		13.3 10.7 8.6 5.1 1.6 -0.8 -13.6 -21.6 -28.3 -35.7 -43.1 -57.3 -57.6	8 70 7 66 6 60 1 55 9 53 7 47 8 38 32 9 33 8 29	31 31 31 31 31 31 30 30 29 28 28 28 28 28 28 28 28 28 28 28 28 28	1, 014 959 906 854 805 759 715 634 560 494 434 380 331 288 248 214 183	6.3 0.7 -8.6 -12.6 -19.6 -27.8 -35.6 -43.6 -51.6 -58.8	8 83 8 83 8 80 8 68 8 68 9 45 1 36 1 36 2 22 2 22 2 21 4 21 4 21	31 31 31 31 31 31 31 31 31 31 31 31 31 3	991 956 897 840 787 737 690 603 526 457 395 340 292 250 214 183 134	-11. 1 -12. 7 -14. 4 -16. 8 -21. 6 -27. 8 -34. 4 -41. 1 -52. 6 -53. 8 -52. 6 -52. 6	77 73 70 69 68 66 64 61	31 31 31 31	1, 013 956 901 847 796 747 701 616 539 471 409 354 261 223 190 190 139	-19.1 -26.6 -34.6 -41.1 -49.1 -56.1 -60.1 -57.1	1 64 0 62 6 63 7 64 5 63 6 61 3 62 6 63 6 63 7 7	31 31 31 31 31 31	946 901 847 796 747 700 615 539 470 407 352 303 259 222 189 181 137	-1. -4. -7. -13. -20. -27. -38. -42. -50. -56. -60. -59. -56. -56.	29 66 8 9 9 5 66 22 9 1

See footnotes at end of table.

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during March 1941—Continued

		Statio	ons wit	h ele ove s	vatio sea le	ns in i	meters		Collins of the Collin		Static	ons wit	h ele	vatio sea lev	ns in r	neters	
100 (100) All 100 (100)	W	ashingt (5 1	on, D.	c.	Barra (L	row, A aterer	laska ort for 41.)	(6 m.) r Feb-	Table 1 Table 1	Wa		ton, D	C.	Barr (La rus	ow, A te rep ry 194	laska ort for 1.)	6 m. Feb
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	ve	Number of ob- servations	Pressure	Temperature	Relative hu- midity	Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-
Surface	31 31 31 31 31 31 31 31	955 897 842 790 741 695 609 533 465	1. 2 -1. 6 -3. 7 -5. 8 -8. 1 -9. 9 -15. 4 -21. 3	63 65 67 66 64 62 60 57	25 25 25 25 25 25 25 25 25 25 25 25 25 2	956 894 836 782 731 683 595 517 448	-17. -19. -22.	9 89 4 85 1 77 3 72 5 69 2 66 1 63 7 61	8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000 18,000	31 31 30 30 29 28 23 21 15	300 258 221 188 161 138 118 101 86	-52, 4 -55, 1 -54, 2 -53, 2 -53, 8 -54, 9 -56, 2		28 27 26 25 25 21 18 11	283 242 208 178 153 132 113	-52. -53. -51. -48. -48. -47. -48. -48. -50.	8 8 7 5

N. J., where they are taken near 5 a. m., E. S. T., at Norfolk, Va., where they are taken at about 6 a. m., and at Pearl Harbor, T. H., after sunrise.

None of the means included in this table are based on less than 15 surface or 5 standard level observations.

Number of observations refers to pressure only as temperature and humidity data are missing for some observations at certain levels; also, the humidity data are not used in daily observations when the temperature is below -40.0° C.

Table 2.—Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during March 1941. Directions given in degrees from North ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$)—velocities in meters per second

		Tex 537		que	buq ,N.1 ,630	Mex.		Ga. 299 n		1	illin Mon 095	t.	1	isma V. Di 512 n	ak.	Bol (se, I 866 n	daho	vi	lie, T	'ex.		uffa N. Y 20 п		-	vt.			arles S. C 18 m			icago 192 n			ncin Ohi 152 r	0		Denv Col I, 627	0.
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity
Surface	29 26 21 20 18 15 13	278 284 286	0.7 2.8 5.7 7.7	31 30 28 21 18	239 253 287 286 297	3. 8 3. 1 4. 3	27 26 26 22 22 16 14 13 11	299 298	3.2 4.0 4.7 8.7	28 27 26 22 13 12	308 302 290 280 296 288 282	4. 1 4. 5 6. 6 5. 7 6. 7	30 26 18 14 14 13 12 10	326 306 306 313 308 312 306	6.4	31 31 31 31 31 329 326 325	290 287 216 264 314 311 313 319 341	1.1 0.9 1.0 2.6 5.6	26 14 10	70 324 332	1.3	30 26 22 19 18 11 11	298 303	4.5 5.2 6.1 7.1 9.1 12.2 15.0 16.6	28 26 23 19 17 15	314	5.4 7.1 8.0	28 28 23 22 14	269 275	3.9 4.8 8.3 10.5 11.0 12.3	27 27 22 20 18 15 13 10	269 281 297 301	1.7 3.4 3.2 5.1 6.1	30 29 28 22 17	296 279 269 297 307 308	3.8 6.3 7.7	3 3 2 4 2	1 34 5 34 7 29 4 30	2. 1. 1. 2. 5. 1. 2. 5. 3. 8. 8.
N1		Tex			ly, N		tio	andJ n, C			eensl N. C			Havi Mon 767 r	t.	vi	acks lle, l	Fla.	1	s Ve Nev 570 n			tle R Ark 79 m		1	edfo Oreg		Mi (ami, 10 m	Fla.	lis	inner , Mi	nn.		Mob		1	Ten (194	n.
Altitude (meters) m. s. l.		Tex					tio	n, C	olo.		N. C			Mon	t.	vi	lle, l	Fla.	1	Nev 570 n			Ark		1	Oreg		Observations	Direction	Velocity Velocity	lis	, Mi	nn.				lons	Ter (194	n.

¹ U. S. Navy.

² Airplane observations.

³ Observations made on Coast Guard vessels in or near the 5° square: Lat. 35°00′ N to 40°00′ N. Long. 55°00′ W. to 60° 00′ W.

⁴ Observations made on Coast Guard vessels in or near the 5° square: Lat. 35°00′ N. to 40.00′ N. Long. 45.00′ W. to 50°00′ W.

⁵ Radiosonde and airplane observations.

Note.—All observations taken at 12:30 a. m. 75th meridian time, except at Lakehurst,

Table 2.—Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during March 1941. Directions given in degrees from North (N=360°, E=90°, S=180°, W=270°)—velocities in meters per second—Continued

		w Y N. Y 15 m	ork,		akla Cali (8 m.		Ci	rlaho ty, O 402 n	kla.	3	Meb Neb 306 n	r.		hoer Ariz 338 n		Ra	pid (8. Da 982 r	City, ik. n.)	St	Mo. 181 n		s tor	an Anio, 7	Tex.	Sa	n Di Cali	ego,		Mari Mari Miel 230 n	1.	1	Was 14 m	h.	S ₁	pokas Wasi 803 m	ne, h. 1.)	to	ashin n, D. 10 m.
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
surface	28 26 22 20 19 16	300 298 301 320 309 302 298	7. 9 9. 9 9. 1 11. 5 13. 7 15. 7	31 31 29 28 26 26 23 22 20 20 17 13	221 207 251 266 211 307 10 2 354 351 327 313	3.8 0.8 0.3 0.4 0.8 1.0 2.7 3.6 4.0 6.4 9.7	29 29 29 28 27 23 20 18 17 15	31 60 312 248 251 263 273 279 280 282	1. 2 1. 2 0. 8 3. 2 5. 4 6. 5 8. 6 12. 0 16. 2 20. 8	31 31 30 27 22 20 18 16 15 14	320 333 317 293 291 302 305 311 308 306	1.7 2.1 2.4 4.1 6.5 7.4 8.2 11.7 14.9 18.4	31 31 31 30 29 28 23 21 19 17	237 234 221 212 228 242 238 276 282 296 288	1.0 1.2 1.7 2.3 2.2 2.6 2.6 3.8 5.2 7.3 14.7 23.8	27 27 22 19 19 16 13	3 334 298 297 292 299 300	4.9 5.1 5.4 3.8 7.5 8.7 11.1 12.7 14.7	30 28 27 25 24 21 18 17	303	1.3 2.0 2.7 5.0 8.1 9.8 10.3 13.4 14.5 16.9	17 13 11	62 61 17 308 265 268 277	1.1 1.4 1.5 0.8 4.5 5.6 4.6		253 242 212 186 137 142 293 292 305	2.9 3.0 2.4 2.5 2.1 0.5 1.3 4.2 7.1	28 28 28 25 24 23 20 19 17 14 10	305 317 325 330 333 334 327 322 317 318 323 295	3.7 4.8 3.7 5.9 6.7 7.1 9.7 11.8 13.3 12.6 16.9	30 30 29 26 22	2777 168 167 186 196	2.5 0.3 2.2 4.0 4.0	30 30 30 29 27 26 24 22 18 13 10	207 217 224 244 284 304 309 306 316 318 307	0.9 1.1 2.0 2.2 1.9 3.7 5.4 6.4 8.7 11.2	29 29 27 26 24 20 16 10	288 289 286 288 290 207 207 209

Table 3.—Maximum free-air wind velocities (M. P. S.), for different sections of the United States, based on pilot-balloon observations during March 1941

The state of the state of	daha	Surface	to 2,500) met	ers (m. s. l.)	lon	Between	2,500 an	d 5,0	00 meters (m. s. l.)	Vi sh	Abov	e 5,000 r	neter	s (m. s. l.)
Section	Maximum ve- locity	Direction	Altitude (m.) m. 8. l.	Date	Station III	Maximum ve-	Direction	Altitude (m.) m.s. l.	Date	Station	Maximum ve-	Direction	Altitude (m.) m. s. l.	Date	Station
Northeast 1. East Central 2. Southeast 3. North Central 4. Central 5. South Central 6. Northwest 7. West Central 8. Southwest 6.	50. 2 37. 1 34. 4 35. 7 43. 0 39. 2 30. 2 41. 0 53. 0	WSW WNW NNW WSW WNW WSW SW	2,080 424 2,190 1,594 1,350 1,770 1,570 2,420 2,500	4 18 17 9 3 3 8 1 31	New York, N. Y	49. 2 55. 8 46. 0 37. 4 52. 0 46. 9 50. 7 43. 1 65. 0	W WNW NW NW NW WNW WNW	4, 250 4, 570 5, 000 3, 620 4, 860 5, 000 3, 559 4, 090 2, 768	3 17 14 18 17 10 18 23 31	Caribou, Maine Louisville, Ky Tampa, Fla Muskegon, Mich St. Louis, Mo Abilene, Tex Great Falls, Mont Reno, Nev Phoenix, Ariz	66.0 68.4 73.8 59.2 61.0 65.8 59.0 67.2 68.2	NW WNW WNW WNW WNW	8, 620 9, 840 9, 580 7, 310 10, 360 7, 910 12, 461 11, 890 11, 480	20 3 12 7 14 10 8 31 30	Portland, Maine. Greensboro, N. C. Jacksonville, Fia. Detroit, Mich. Moline, Ill. Abilene, Tex. Boise, Idaho. Pueblo, Ceie. Winslow, Ariz.

Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio.
 Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina.
 South Carolina, Georgia, Florida, and Alabama.
 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota.
 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri.

Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except extreme west Texas) and western Tennessee.
 Montana, Idaho, Washington, and Oregon.
 Wyoming, Colorado, Utah, northern Nevada, and northern California.
 Southern California, southern Nevada, Arizona, New Mexico, and extreme west Texas.

WEATHER ON THE NORTH ATLANTIC OCEAN

By H. C. HUNTER

Atmospheric pressure.—March 1941, was the third successive month with pressure usually averaging lower than normal over such North Atlantic waters as are covered by reports received here. The deficiency was marked over the ocean areas near Newfoundland, Nova Scotia, and New England; the readings received from Halifax are computed to show an average pressure 6.9 millibars (0.20 inch) less than that station's normal for March.

Near the Azores the pressure deficiency was considerably smaller. On the coast of Portugal the average pressure was very close to normal, while some northern Gulf of Mexico and northern West Indies stations computed slightly above normal.

The pressure extremes in available vessel reports were 1,031.5 and 984.1 millibars (30.46 and 29.06 inches). The high mark was noted near 35° N., 46° W., at a late hour of the 9th, by the American liner Siboney; while the low was recorded about 200 miles to eastward of Hatteras, soon after noon of the 28th, on the American liner Boringuen.

Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Atlantic Ocean and its shores, March 1941

Station	Average pressure	Depar- ture from normal	Highest	Date	Lowest	Date
	Millibars	Millibars	Millibars		Millibars	
Lisbon, Portugal	1, 016. 0	+0.1	1,027	1	999	12
Horta, Azores	1, 020. 4	-1.6	1,029		1,002	31
Belle Isle, Newfoundland	1,005.1	-5.1	1,028	9	976	15
Halifax, Nova Scotia	1, 007. 7	-6.9	1,027	8	992 992	15
Nantucket	1,010.5	-4.7	1,030	1	996	8
	1, 015. 9	-1.4	1,028	6		28
Turks Island	1, 016. 7	+0.1	1,022	3	1,010	20
Key West	1, 016. 6	-1.0	1,026	2	1,008	26
New Orleans	1, 017. 6	+0.3	1,030	18	1,005	

Note.—All data based on available observations, departures compiled from best available normals related to time of observation, except Hatteras, Key West, Nantucket, and New Orleans, which are 24-hour corrected means.

Cyclones and gales.—Those portions of the North Atlantic from which plenty of reports have come seem to have been somewhat less affected by vigorous storms than during an average March. No advices indicating hurricane winds (force 12) have come to hand, but several vessels met force 11, only one of these encounters, however, being after the 18th. The least disturbed periods were apparently the 10th to 12th and the 21st to 23d.

At the beginning of March a Low of considerable energy was centered to southeastward of Nantucket, whence it moved toward the east-northeast, causing high winds over a large ocean area, though there was apparently some decrease of strength within the next day or two.

Soon afterward a vigorous storm of rapid motion came eastward from the Lake region, where it was located on the morning of the 3d, to the New England coast, then turned more toward the northeast till beyond the field of observation. The American steamship West Kyska and the cutter Cayuga reported force 11 winds as connected with this storm.

A Low of moderate strength a few days afterward traveled nearly along the coast line to northeastward from a position over South Carolina early on the 8th to a location not far from Nantucket on the morning of the 9th, whence it continued northeastward. This Low appears to have been the cause of the winds and waves which led to the foundering off Hatteras, probably during the night of the 7-8th, of the American schooner George E. Klinck, lumber laden. The crew was rescued.

On the 13th a strong Low was central over the Carolinas, whence it took an unusual course toward the east-southeast for about 500 miles, then slowly turned more toward the northeast with increase in energy. Beyond the forty-fifth meridian this Low was lost to observation, after three vessels, the American liner Excambion and the Coast Guard cutters Bibb and Spencer, had experienced winds estimated of force 11.

The steamship Mahukona, recently transferred to the Brazilian flag as the Santa Clara, while bound from Newport News to Rio de Janeiro, when between Bermuda and the northern Bahamas, in about 30°48′ N., 68°42′ W., radioed a distress call, probably early on the 15th. The vessels which responded found a little wreckage but no sign of any survivor. This ship may have been lost as a result of the strong weather in the Low just mentioned, and another result of the Low was a duststorm reported in a later paragraph, at a position far to the south-south-eastward of the scene of the Santa Clara disaster.

The final important storm of the month was centered near the Carolina coast during the latter part of the 27th, and advanced till near Newfoundland on the morning of the 31st. This storm was notable for considerable wind force, and brought the lowest vessel-barometer reading of the month, as already mentioned.

Duststorm near the West Indies.—From the United States Army transport John R. R. Hannay, C. W. Lorin, master; second officer S. Elliot, observer; the following account of a duststorm met at sea has been received:

On March 15, 10 a. m., G. C. T. (about 5.30 a. m. ship's time), in latitude 21°42′ N., longitude 66°45′ W., experienced a duststorm which left a black, gritty, residue on the vessel. The dust appeared in patches much the same as rain squalls, this condition lasting for about 1 hour. Wind northwest, force 5.

Fog.—The reports at hand imply that there was about as much fog during March over the portions of the North Atlantic which are well covered by reports as there had been during the preceding February. A little was noted over the northern Gulf of Mexico, and some was encountered near the eastern coast of the United States from North Carolina to Maine. March usually brings more fog to these regions than was reported during this month.

Near midocean some fog was observed on the 29th and 30th within the square 35° to 40° N., 45° to 50° W. Over the main North Atlantic the fortnight from 10th to 23d yielded no report whatever of fog, but within the north-central portion of the Gulf of Mexico some was observed during the 16th and 17th.

The leading 5° square for fogginess was that from 35° to 40° N., 70° to 75° W., with a count of 4 days. The normal March occurrence there is 8 days.

OCEAN GALES AND STORMS, MARCH 1941

Vessel	Vo	rage		at time of parometer	Gale be-	Time of lowest ba-	Gale end-	Lowest barom-	Direc- tion of wind	Direction and force of wind at	Direc- tion of wind	Direction and highest	Shifts of wind near time of
Vessel	From-	То-	Latitude	Longitude	gan, Mar.	March	ed, Mar.	eter	when gale began	time of lowest barometer	when gale ended	force of wind	lowest baromete
NORTH ATLANTIC OCEAN			.,	.,				Milli-		1,00			V
Flomar, Am. S. S. Delisle, Am. S. S. Steel Worker, Am. S. S. Major Wheeler, Am. S.	Cristobal New York Cristobal San Juan	New York San Juan Boston New York	30 35 N. 38 40 N. 35 01 N. 28 06 N.	74 00 W. 73 10 W. 75 20 W. 70 00 W.	1 28 1 28 1 27 1	2a, 1 4a. 1 8a, 1 1p, 1	2 1 2 2	1, 005. 1 989. 8 1, 008. 1 1, 006. 8	WNW. NE NW	WNW, 10 NNW, 10 NW, 8 NW, 7	NW N NNW. NNW.	WNW, 10 N, 11 NW, 8 NW, 8	NNW-N. W-NW.
S. Nightingale, Am. S. S. Michigan, Am. S. S. Santa Paula, Am. S. S. Exeter, Am. S. S. West Kyska, Am. S. S. Cayuga, U. S. C. G.	Cristobal do New York Bermuda Cristobal On Station No.	dodoBermudaNew Yorkdo	28 24 N. 27 50 N. 34 42 N. 34 00 N. 32 45 N. 38 48 N.	74 42 W. 74 14 W. 67 48 W. 66 12 W. 75 00 W. 60 06 W.	1 1 2 4 4	1p,1 4p, 1 2a, 2 4n, 2 8p, 4 8a, 5	2 2 2 2 2 4 5	1,009.8 1,010.2 990.5 990.5 1,009.1 1,000.7	NW NW WSW WNW SW	NW, 8 WNW, 10 SW, 8 SW, 9 WNW, 11 SSW, 11	NNW NNW W NW WNW WNW	NW, 9 WNW, 10 8W, 8 NW, 9 WNW, 11 88W, 11	W-WNW. W-SW-W. SW-WNW. WSW-WNW. SW-SSW-W.
Esso Aruba, Am. S. S Zarembo, Am. S. S Esso Bayway, Am. S. S. Mormacswan, Am. S. S. Duane, U. S. C. G	New York Takoradi Boston Trinidad On Station No.	Caripito	35 29 N. 36 54 N. 34 18 N. 35 50 N. 38 18 N.	70 46 W. 70 54 W. 73 00 W. 67 38 W. 59 15 W.	8 8 8 9 8	12p, 8 2a, 9 4a, 9 6p, 9 9p, 9	8 9 9 10 10	997. 6 995. 9 997. 6 993. 9 1, 003. 1	S SSE S SSW	S, 6. SW, 8 W, 6. WSW, 7 SSW, 8	8 WNW. W W	S, 0 S, 9 S, 9 S, 9 S, 9	S-SW. 8-WNW. 8-W, SW-W. None.
Excambion, Am. S. S Broad Arrow, Am. S. S Governor John Lind, Am. S. S.	Lisbon Cartagena Ponce	Bermuda Paulsboro Boston	37 30 N. 27 24 N. 29 00 N.	27 30 W. 74 30 W. 68 15 W.	9 14 14	10p, 9 2p, 14 12p, 14	10 14 15	996. 3 1, 007. 8 997. 6	NW W 8W	NW, 8 WNW, 8 NW, 8	NNE. NNW NNW	NNE,8 NW,8 NNW,8	WNW-NNW. WNW-NNW. W-NNW.
Excambion, Am. S. S	At Bermuda St. Thomas Station No. 2do Ponce	Bermuda Norfolk Boston	32 18 N. 228 25 N. 34 12 N. 39 00 N. 35 42 N.	64 46 W. 64 07 W. 63 18 W. 45 30 W. 69 18 W.	14 14 15 16 17	8a, 15 2p, 15 4a, 17 3p, 17	15 16 15 18 20	990, 2 990, 5 998, 6 987, 5 1, 004, 1	E SE WSW	N, 10 W, 9 NNE, 9 S, 7 W, 6	N NW N W WNW.	NE, 11 E, 11 WNW, 9	E-N. ENE-N. SE-SW. WSW-WNW.
Spencer, U. S. C. G	On Station No.		38 18 N.	46 18 W.	19	8a, 19	19	1,008.1	88W	SSW, 9	8W	SSW, 9	None.
Hamilton, U. S. C. G Duane, U. S. C. G Exeter, Am. S. S Cathlamet, Am. S. S Spencer, U. S. C. G	On Station No. 1. Station No. 1. Lisbon Freetown On Station No.	Boston Bermuda New York	38 54 N. 40 00 N. 36 06 N. 37 06 N. 38 24 N.	64 00 W. 32 06 W. 71 18 W. 45 48 W.	19 19 24 25 26	1p, 19 2p, 19 4p, 24 1p, 25 3a, 27	20 20 24 25 27	999.3 998.0 1,011.2 1,001.7 1,003.1	WNW. SSW NW	W,8 W,8 SSW,8 NNW,7 SW,7	W SSW NW	W, 10 WNW, 9 SSW, 8 NW, 9 SE, 9	WNW-W W-WNW. SSW-W. S-NNW-NW. SW-W.
A Vessel	2. New York La Cruz Port Arthur New York Trinid#d On Station No.1	Curacao Philadelphia Boston San Juan New York	34 30 N. 35 43 N. 35 45 N. 35 24 N. 35 90 N. 38 36 N. 39 06 N.	72 24 W. 73 55 W. 74 06 W. 72 06 W. 71 14 W. 59 30 W. 58 12 W.	28 28 28 28 28 28 29 30	7a, 28 8a, 28 10a, 28 1p, 28 4p, 28 5a, 29 12m, 30	28 28 29 28 29 29 29	993. 0 991. 2 987. 8 984. 1 987. 5 994. 6 990. 5	WSW E SW SW SSW SE	WSW, 6 NE, 9 N, 8 WSW, 10 W, 8 SSW, 8 W, 5	W N NW NW NW WSW	WSW, 9 NE, 11 N, 8 WSW, 10 NW, 9 SSW, 9 SW, 9	SE-WSW. E-N. E-NNW. SW-NW. W-NW. SSW-WSW. SE-W-NW.
NORTH PACIFIC OCEAN													
Lahaina, Am. S. S. Arizonan, Am. S. S. Illinois, Am. S. S. Admiral Cole, Am. S. S. Lahaina, Am. S. S. Mapele, Am. S. S.	San Francisco Balboa Tacoma Cebu, P. I San Francisco Kaanapali, H.	Honolulu Los Anceles Shanghai Los Angeles Honolulu San Francisco	35 48 N. 15 36 N. 46 24 N. 34 30 N. 34 00 N. 233 04 N.	126 24 W. 94 24 W. 155 00 E. 144 30 W. 131 00 W. 135 49 W.	1 1 2 2 2 2	4p, 1 4p, 1 4a, 2 2a, 2 4a, 3 12p, 2	2 1 2 3 3 4	1, 007. 8 1, 011. 5 976. 0 1, 009. 8 998. 6 1, 006. 4	W NNW E W WSW	8W, 6 N, 8 SW, 6 W, 6 WSW, 8 WNW, 9	W NNE WNW. NNW WSW NNW	W, 8 NNE, 8 NW, 8 WNW, 8 WSW, 10 WNW, 9	SW-WSW. NNW-NNE. SW-N. S-WNW. WSW-NW. WNW-NNW.
Makua, Am. S. S. La Placeutia, Am. S. S. Illinois, Am. S. S. Lahaina, Am. S. S. Autoria, Am. S. S. Aurora, Am. M. S. La Placentia, Am. S. S. Makaweli, Am. S. S. California Standard,	Honolulu Oleum, Calif Tacoma San Francisco Port Townsend Vladivostok Oleum, Calif Honolulu Yokohama	do. Honolulu. Shanghai. Honolulu. do. Los Angeles. Honolulu. San Francisco. do.	30 24 N. 35 16 N. 42 30 N. 29 06 N. 41 00 N. 44 54 N. 29 14 N. 29 53 N. 43 15 N.	142 24 W. 128 31 W. 143 00 E. 142 48 W. 135 00 W. 155 54 E. 141 47 W. 143 38 W. 178 38 E.	2 2 4 6 6 6 7 5 8	2a, 2 1p, 3 2a, 5 8a, 6 3p, 6 9p, 6 2p, 7 2p, 8 6a, 8	3 4 5 6 7 7 7 8 8	1, 013. 5 992. 6 1, 005. 4 1, 011. 2 1, 009. 1 996. 6 1, 007. 8 1, 015. 6 987. 1	NW SE W NNW NW NW	SW, 5 WNW, 9 WSW, 8 WNW, 5 SE, 8 W, 10 NNW, 9 N, 7 NW, 8	NNW. NNW. W SSW. NW N NNE N	NW, 9 NW, 9 WSW, 8 NW, 8 SE, 8 NW, 10 NNW, 9 NNW, 9 NNW, 10	SW-NW, SW-NW, WNW-NW, SE-SSE, W-NW, None, N-NNE, WSW-NW,
Pan. M. S. Hawaiian, Am. S. S. Patricia Skakel, Am. S.	Balboado	San Diego Los Angeles	16 00 N. 213 55 N.	94 24 W. 96 10 W.	8 8	2p, 8 4p, 8	8 8	1, 010. 5 1, 011. 9	NNW	NNW, 9 NNE, 6	NNE.	N. 9 NNE, 8	NNW-N. NNE-NE.
S. McKeesport, Am. S. S. Aurora, Am. M. S. Collingsworth, Am. S. S. McKeesport, Am. S. S. McKeesport, Am. S. S. McKeesport, Am. S. S. Cuba Maru, Jap. M. S. Kiyo Maru, Jap. M. S. Texmar, Am. S. S. Paul Shoup, Am. S. S. Genyo Maru, Jap. M. S. Gryoko Maru, Jap. M. S. Gryoko Maru, Jap. S. S.	Hong Kong Vladivostok Tandoc, P. I Hong Kong Honolulu Yokohama Dairen Los Angeles Ventura Kobe Yokohama	dodododosan Francisco. Seattle Los Angeles Balboa. San Francisco Lus Angeles Willapa.	32 12 N. 47 30 N. 29 12 N. 32 48 N. 34 24 N. 35 45 N. 45 05 N. 9 38 N. 35 39 N. 36 00 N. 49 42 N.	161 06 E. 168 24 E. 170 18 E. 179 54 W. 133 12 W. 144 00 E. 175 15 W. 86 32 W. 121 36 W. 143 00 E. 154 00 W.	8 9 11 12 10 11 18 19 20 20 22	11a, 9 8p, 9 11p, 10 12p, 11 6a, 12 2p, 12 4p, 18 2a, 20 6p, 20 12m, 19 1a, 22	9 9 14 12 13 12 19 20 20 20 22	1, 012. 3 992. 9 1, 016. 6 1, 023. 3 1, 000. 5 4 1, 000. 0 4 984. 3 1, 008. 5 1, 017. 3 4 902. 7 905. 9	SS WNW NNW NW S W ENE NW	S, 8 W, 3 SW, 5 WNW, 6 N, 9 S, 8 WNW, 11 NE, 5 NW, 8 SSW, 4 SE, 8	W N NNW N N WNW NE NW	S, 8 S, 10 NNW, 9 NNW, 8 NNW, 9 S, 9 W, 11 NE, 8 NW, 8 NW, 9 SE, 8	S-W. S-W. NNW-NNE. S-N. W-WNW.
Collingsworth, Am. S. S. Schoharie, Am. S. S. Schoharie, Am. S. S. Neosho, U. S. S. West Portal, Am. S. S. Matsonia, Am. S. S.	Tandoc, P. I Honoluludo Los Angeles San Francisco	Los AngelesdoSeattleBalbonHonolulu	49 42 N. 34 30 N. 30 18 N. 43 42 N. 14 52 N. 33 48 N.	122 18 W. 137 12 W. 129 06 W. 94 51 W. 134 18 W.	20 22 22 26 26 29 30	4p, 23 4p, 27 4a, 29 4p, 20 8a, 30	20 20 22 23 28 28 29 31	1, 015, 6 1, 010, 5 998, 3 1, 007, 5 994, 9	NNW NNW NE WSW	SE, 8 N, 7. NW, 8 E, 3 N, 8 WSW, 9	N NW NNW N	8E, 8 N, 8 NW, 8 NNW, 9 N, 0 W, 10	None. WSW-W.

¹ February.

⁹ Position approximate.

³ April.

⁴ Barometer uncorrected.

WEATHER ON THE NORTH PACIFIC OCEAN

By WILLIS E. HURD

Atmospheric pressure.—With the movements of cyclones over northern waters in March 1941, many of the principal centers of low pressure entered or remained for several days over the western part of the Gulf of Alaska. Kodiak this month was close to the center of the Aleutian Low, with a mean pressure of 997.2 millibars (29.45 inches), which is 8.2 millibars (0.24 inch) below the March normal. Low barometer prevailed throughout higher latitudes, with a secondary center west of the Aleutian Islands.

From the California coast southwestward about twothirds of the way to the Hawaiian Islands, several depressions of the month contributed to lower the average barometer several millimeters under the normal. The North Pacific anticyclone lay to the westward of the depressed region, and from Honolulu across Midway Island to the coast of China, the barometer averaged above the normal for March.

Table 1.—Averages, departures, and extremes of atmospheric pressure at sea level, North Pacific Ocean, March 1941, at selected stations

Stations	Average pressure	Depar- ture from normal	Highest	Date	Lowest	Date
	Millibars	Millibars	Millibars		Millibars	
Barrow Dutch Harbor	1, 025. 1	+4.1	1,040	25	1,006 978	30
St. Paul		-6.9 -3.6	1, 021	9, 13	981	30
Kodiak		-8.2	1,016	13	984	4
Juneau	1, 012. 2	-1.7	1,029	9	998	20
Tatoosh Island		+1.3	1, 034	8	989	1
San Francisco		-4.1	1,027	8	1,000	31
Mazatlan		-0.1	1,015	1-4, 11-12	1,010	22
Honolulu	1, 019. 0	+1.7	1,025	30	1,013	13
Midway Island		+4.5	1,028	14, 16-17, 31	1,002	23
Guam		-0.2	1,016	5	1,007	9
Manila		+0.6	1,016	5	1,009	9, 10, 17
Hong Kong		-0.6	1,022	4	1,010	23
Naha		+0.7	1, 026	5	1,006	17
Titijima		+1.9	1,028	6	1,010	18
Petropavlovsk	1, 001. 1	-6.0	1,016	7	985	22

NOTE.—Data based on 1 daily observation only, except those for Juneau, Tatoosh Island, San Francisco, and Honolulu, which are based on 2 observations. Departures are computed from best available normals related to time of observations.

Cyclones and gales.—Despite the depth of the Aleutian Low, which gave evidence of much cyclonic activity in higher latitudes of the North Pacific in March 1941, there were only a few reports from ships to show the existence of gale-force winds along the northern steamship routes. Early in the month, rather severe storm conditions occurred in waters east of northern Japan and the Kuril Islands, accompanied by snow squalls to heavy snows from the 2d to 7th, as reported by several vessels. In connection with this storm, the American S. S. Illinois, near 46° N., 155° E., had a low barometer of 976 millimeters (28.82 inches) on the 2d, followed by a northwest gale of force 8. The highest wind of record for the period was a westerly gale of force 10, reported by the American M. S. Aurora on the 6th, near 45° N., 156° E. On the 9th the Aurora ran into a further gale, of force 10 from the south, near 47½° N., 168° E.

In middle longitudes the only gales of consequence arising from passing cyclones of higher latitudes occurred on the 8th and 18th. Both were accompanied by moderately low barometer. The earlier, of force 10, was experienced by the Panamanian M. S. California Standard, near 43° N., 179° E.; the latter, of force 11—the highest of the month—by the Japanese M. S. Kiyo Maru, near 45° N., 175° W.

In middle latitudes northwesterly gales of force 9 were met in the high-pressure area north of Midway

Island on the 12th. A short distance out from Yokohama force 9 gales occurred on the 12th and 20th in cyclones of moderate intensity. Between southern Japan and Midway Island, isolated fresh gales were noted on the 1st, 8th, and 11th.

As in the preceding December and February, the stormiest part of the ocean in March was that between about 28° and 40° N., from the California coast westward to approximately 145° W. Several depressions affected this area between the beginning and ending of the month. The earliest gale, of force 8, on the 1st, occurred about 200 miles west of San Francisco, in connection with a Low off the Oregon coast.

On March 2 a cyclone center appeared near 40° N., 140° W. It moved east-southeastward and on the 4th entered the middle California coast. The storm was only moderately deep, the American S. S. La Placentia reporting a barometer of 992.6 millibars (29.31 inches) on the 3d, accompanied by a northwest gale of force 9, near 35° N., 128½° W. The highest wind, of force 10 from west-southwest, was encountered by the American S. S. Lahaina late on the 2d, near 34° N., 130° W.

What appeared to be a secondary depression gathered on the 5th near 38° N., 148° W., at the southern extremity of a cyclone central over the Gulf of Alaska. From the 6th to the 14th it took a slow, meandering course, performing two distinct loops before finally entering the southern California coast. During the 6th to 8th the center oscillated between about 27° and 32° N., 140° and 135° W. To the westward lay a bank of high pressure. Between the HIGH and the Low strong northwesterly winds occurred, at times rising to force 8 and 9. The disturbance lost energy during the 9th and 10th, but on the 11th and 12th, it again exhibited local strength, with northwesterly gales of force 8 to 9 near 34°-35° N., 133° to 136° W.

On the 20th, 22d, and 23d strong northerly winds, at times rising to force 8, were experienced by vessels in the vicinity of Point Arguello. These occurred on the eastern edge of a high-pressure area lying off the California coast.

From the 26th to 31st another disturbance which formed west of California moved from approximately 35° N., 132° W., to about 40° N., 135° W., accompanied on the 26th and 27th by strong northwesterly winds, highest force 8 to 9, west of the center. The heaviest wind, a west gale of force 10, lowest barometer 994.9 millibars (29.38 inches), was reported on the 30th by the American S. S. Matsonia, near 34° N., 134° W.

S. S. Matsonia, near 34° N., 134° W.

Tehuantepecers and Papagayos.—Norther-type gales occurred in the Gulf of Tehuantepec as follows: of force 7 on the 14th and 15th; of force 8 on the 1st; and of force 9 on the 8th and 29th. Off the Costa Rican coast a northeasterly Papagayo of force 7 occurred on the 14th and one of force 8, on the 19th.

Fog.—Ships encountered a few scattered fogs on various parts of the ocean. In coastal waters they reported fog on 3 days off British Columbia; on 5 days off Washington; on 3 days off Oregon; and on 1 day off California.

FIJI HURRICANE OF FEBRUARY 20, 1941

By WILLIS E. HURD

Through kindness of Capt. E. R. Johanson, master of the American S. S. *Monterey*, a copy of "The South Sea Weekly—Special Hurricane Edition," of March 10, 1941, has been received, containing an account of the hurricane which struck the Fiji Islands on the 20th of the preceding February.

The storm was of a very erratic nature. It originated as a depression over northern Tonga several days prior to the 20th, crossed the Fiji Islands as still a weak Low, backed later toward the Tongas, then returned to Fiji, intensifying with great rapidity. The high winds began from the south in the morning, and reached their greatest force from the north in the afternoon. The calm center crossed Levuka, beginning at about 11:45 a.m. and continuing for nearly an hour. During this period the sun shone for a few minutes. The lowest barometer, read as the light central winds were giving place to heavy northerly gales, was 28.37 inches (960.7 millibars). At Suva the maximum velocity was 110 miles. The rainfall at Suva amounted to 6.49 inches for the 24-hour period 8 a. m. of the 20th to 8 a. m. of the 21st.

Considerable damage was done in various parts of the islands to houses, fruit trees, and crops. Several small vessels were stranded on the reefs and beaches, and some were destroyed. A few lives were reported lost.

RIVER STAGES AND FLOODS

By BENNETT SWENSON

The precipitation pattern for March coincided very closely with that for February. As in February, precipitation was well above normal in the States from Texas westward to the ocean. All of the States in the northern. central, and eastern parts of the country were below normal except for South Carolina and Florida which were above normal. The central Mississippi and Ohio Valleys again were the driest sections of the country. River stages were unusually low in these sections. The Mississippi River at Vicksburg, Miss., had lower stages than previously recorded in March since 1895.

High water and light to moderate flooding continued in much of eastern Texas, in Arizona, and in California. These floods and others that occurred during the month are given below.

Atlantic Slope drainage.—The weather remained cold during most of the month with only short periods of high temperature. The snow cover in the Northeast was reduced somewhat with only moderate rises in the streams. At the end of the month the average snow depth over the Connecticut Basin was 9.6 inches with a water content of

3.1 inches; in the Susquehanna Basin above Towanda, Pa., the snow depth averaged 3.5 inches and below Towanda, only a trace.

Slight flooding occurred in the Neuse and Savannah Rivers during the month. In the Neuse River, flood stage was exceeded at Smithfield, N. C., on March 30. The Savannah River experienced two rises to slightly above flood stage at Clyo, Ga., and Ellenton, S. C. No damage was reported.

East Gulf of Mexico drainage.—Heavy rains on March 6-7, averaging about 3 inches over the Black Warrior and Tombigbee Rivers and 2.5 inches over the Pearl and Pascagoula Rivers, resulted in substantial rises in these rivers. Minor flooding occurred in the Tombigbee River below Demopolis, Ala., and at a few points in the Pearl and Pascagoula Rivers. The damage in the Tombigbee is estimated at \$2,000, and in the Pearl and Pascagoula at

Upper Mississippi Basin.—Flooding occurred in the Zumbro-Whitewater Rivers in Minnesota and in the Rock River in Illinois during the latter part of the month. No damage was reported except for a loss amounting to \$2,500 in the Zumbro-Whitewater Basin.

Missouri Basin.—Ice broke up in the Heart River which drains into the Missouri River just below Bismarck, N. Dak., on March 26. During the night the Heart River rose considerably, the water being backed up by the solid ice in the Missouri. Some bottom lands were flooded but no damage resulted.

Flood stages were reached and exceeded in the Big Sioux and Floyd Rivers. Because of the earliness of the season there was no appreciable damage.

The following report was submitted by the official in charge, Helena, Mont .:

An earlier-than-usual spring run-off of water from melted snow and ice in the upper drainage basin of the west and north forks of the Milk River was dammed by ice jams until March 21, when a breakup began. The water was released and overflowed the banks and inundated a large tract of land near the mouth of the streams in the vicinity of Chinook, Blaine County. Flood waters continued on the 22d, cresting on the 23d. When the flood waters reached the Milk River on the 23d, ice jams formed in that stream and caused flooding.

Most of the damage resulting from the flood occurred in the vicinity of Chinook, with lesser damage occurring near Harlem. The aggregate damage has been estimated at \$10,000.

Red Basin.—Heavy rains in the watershed of the Ouachita and Little Missouri Rivers on March 6-7 caused flood stages in the Ouachita at Camden, Ark., from March 9-14 with only slight damage resulting.

River stages continued high in the Sulphur River from rains occurring at the end of February and again on March 6-7. The river crested at Ringo Crossing, Tex., on March 8 at a stage of 28.5 feet and at Naples, Tex., on March 11 at 27.6 feet. Losses were reported in the previous report.

West Gulf of Mexico drainage.—Rains were again above normal in eastern Texas during March and river stages continued high. Minor flooding occurred but with no appreciable damage.

Colorado River Basin .- Heavy rains, principally over the Verde River watershed, caused a rise in that river and in the Salt River into which it flows, the Salt River cresting at a stage of 7.4 feet at Phoenix, Ariz., on March The flood was of a minor nature but was of much interest due to the fact that there had been no flow in the Salt River since the recent construction of Bartlett Dam on the Verde River which had contributed to the flood problem in Phoenix prior to the construction of that dam.

As a result of warnings issued no losses were experienced and it is estimated that the savings as the result of the warnings approximated \$5,000.

Rains were heavy in central Arizona during the middle of March resulting in a local flood in Pinal Creek and considerable damage to highways. Two lives were lost in connection with a sudden rise in Clear Creek, a tributary of the Little Colorado River near Winslow, Ariz.

Pacific Slope drainage.—Stream discharges were high in most of California during the month. A surplus of water moved into the Tulare Lake Basin and additional farm lands were inundated. A mild flood occurred in the lower Eel River on March 1-2.

Another flood in the long series that marked the 1940-41 season began in the Sacramento Valley on the last day of February. The official in charge, Sacramento, Calif., reports as follows:

Following the high water that occurred in this valley during the second week in February, frequent rains kept the water levels moderately high until near the end of the month, when flood conditions again developed in the upper Sacramento River.

During the closing days of February an unusually extensive system of low pressure which was charted off the Pacific coast caused

general rains over northern California, with heavy amounts beginning in Shasta County on the 27th. On the morning of the 28th, an intensive secondary cyclonic center was located about 150 miles southwest of the San Francisco Bay, and during its slow advance northward that day, winds of gale force occurred in the open valleys. At the Sacramento Municipal Airport a current velocity of 52 miles an hour was registered, while at the city office 41 miles represented the extreme velocity.

The high winds caused some damage to power and telephone lines, trees, farm buildings, etc., locally in the San Joaquin and Sacramento Valleys.

The upper Sacramento River began to rise rapidly on the morning of the 28th, and flood warnings were issued during the day for the river from Red Bluff to the mouth of Stony Creek. On March 1 the crest stage at Red Bluff was 25.6 feet, or 2.6 feet above the flood stage and 0.9 foot above that which occurred in the early part of February this year.

Stony Creek was especially high, as indicated by the unusually high stage of 12.4 feet at St. John. This represents the highest water there since the record high of 13.9 feet which occurred just 1 year ago. This creek was responsible for the washing out of the east approach of the bridge over Stony Creek on the Orland-Chico high washing to the control of the bridge over Stony Creek on the Orland-Chico

highway.

Despite the fact that both the Sacramento River at Red Bluff and Stony Creek at St. John carried more water than they did during the flood of the forepart of February, the resultant maximum gage heights at Hamilton City and Colusa were slightly lower than in the first February freshet this year. This is mainly true, it is believed, because the east-side creeks, such as Deer, Mill, and

Antelope, were not discharging so heavily.

On March 2 it was reported that a 50-foot break occurred in the east-side levee at Goodman Ranch, about 5 miles north of Butte City, allowing water from the Sacramento River to escape more rapidly into the already heavily flooded Butte Basin.

During the peak of the flood Butte City was isolated because of the flooding of the highways in that vicinity. The town of Tehama also suffered a similar experience. Many highways throughout the valley were temporarily closed either by overflow water or the accumulation of local drainage in low places.

The State Highway Department reported that cloudburst conditions in mountain areas caused heavy damage locally by washing out highway embankments. The principal areas affected were the Feather River Canyon, the Sacramento River Canyon, and the highway along Willow Creek, in Shasta County, on the road from Reading to Weaverville. Other damage was done in places by mountain streams.

Excessive run-off during the present flood period occurred only in the upper Sacramento drainage area. The American and Feather Rivers, as was the case in previous floods this season, were not

exceptionally high.

However, on March 3, the slowly rising river at Sacramento occasioned the closing of the flood-control gages on Highway 40 at North Sacramento. The Sacramento River reading at that time was 26.2 feet, but about 1 foot of water had been held back along the low section of the highway by the use of sand bags.

The lower San Joaquin River reached its peak on March 6 with a stage of 15.5 feet at Lathrop, or 1.5 feet below the flood stage there. In the vicinity of Durham Ferry bridge, mostly on the River Junction Farms, there was considerable flooding of lowland, caused by old levee breaks (those of previous years) which had not been repaired. The actual losses sustained in this area were not heavy because the water was not high enough to affect farm houses

and also because crop planting, in general, had purposely been delayed.

The flooded lowlands throughout the valleys represented approximately the same areas that were previously flooded this season, including the island tracts of Little Holland, Liberty, and Prospect in the Yolo bypass. As the earlier flood waters had only partially receded, the actual additional damage to inundated lands was comparatively light, although the resultant loss due to the continuously water-covered areas, thus delaying and preventing the planting of seasonal crops, was considerable and difficult to evaluate. Also the sustained high water on the levees resulted in seepage conditions that killed fruit trees in many lowland orchards adjacent to the

The total losses have been estimated at about \$600,000.

TABLE OF FLOOD LOSSES AND SAVINGS DURING MARCH 1941

River and drainage	Tangi- ble prop- erty	Ma- tured crops	Pros- pective erops	Live- stock and other mov- able farm prop- erty	Sus- pen- sion of busi- ness	Total losses	Sav- ings as result of flood warn- ings
BAST GULF OF MEXICO DRAINAGE							11
Tombigbee River Pascagoula River Pearl River MISSISSIPPI SYSTEM					\$1,000 10,000 3,000	\$2,000 10,000 3,000	\$2,500 6,000 1,500
Upper Mississippi Basin	1110				17		
Zumbro-Whitewater Rivers - Missouri Basin	2, 215		\$285			2, 500	
Milk River in Montana						10,000	
Red Basin			F 111				
Ouachita River				\$500	1,000	1, 500	5, 500
Guadalupe River							1, 200
GULF OF CALIFORNIA DRAINAGE							
Salt River 1							5,000
PACIFIC SLOPE DRAINAGE							
San Joaquin River Sacramento River	8, 000 450, 000	\$2,130 40,000	20, 000 70, 000		5, 000	30, 130 565, 000	5, 000

1 Figures on losses not available.

FLOOD-STAGE REPORT FOR MARCH 1941

River and station	Flood	Above stages-		Cr	est
	stage	From-	То-	Stage	Date
ATLANTIC SLOPE DRAINAGE Neuse: Smithfield, N. C	Feet 13 11	29 16	(i) 18	Feet 13. 8 11. 2	36
Tombigbee: Lock No. 4, Demopolis, Ala Lock No. 3, Whitfield, Ala Lock No. 2, Pennington, Ala Lock No. 1, Salitpa, Ala Chickasawhay: Shubuta, Miss Pascagoula: Merrill, Miss Pearl:	39 33 46 31 26 22	9 7 9 9 8 11	14 17 15 18 9 13	44. 2 46. 4 48. 0 33. 4 27. 0 22. 4	12 12 13 14-15 9
Jackson, Miss. Pearl River, La. MISSISSIPPI SYSTEM		8 21 11	19 24 18	22. 4 19. 8 13. 6	15 25 14
Upper Mississippi Basin Rock: Moline, Ill	10	22	27	10.6	24
Floyd: James, Ia		{		16.6 -13.2 13.2	13 21
Red Basin				1100	111111111111111111111111111111111111111
Ouachita: Camden, ArkSulphur:	26	8	15	29.5	11
Ringo Crossing, Tex	20 22	(4) 6 2	1 10 17	28. 5 27. 6	11
Sabine: Logansport, La	25	11	14	25.8	18
Trinidad, TexLong Lake, Tex	28 40	(3) 1 12	13 4 16	32. 2 40. 9 41. 0	10 3 14
Liberty, Tex	24	(4) 7	2 26	24.3 26.2	13
Guadalupe: Victoria, Tex PACIFIC SLOPE DRAINAGE	21	19 20	20 23	22. 2 25. 9	19 22
Sacramento Basin					
Stony Creek: St. John, Calif Sacramento: Red Bluff, Calif Hamilton City, Calif Knights Landing, Calif	12 23 20 30	(2) 1 1	1 2 1 8	12. 4 25. 55 20. 1 31. 7	1 1 1 4
Eel Basin					
Eel: Fernbridge, Calif	17.5	1	2	18.05	1

1 Continued into next month.

2 Continued from preceding month.

CLIMATOLOGICAL DATA

CONDENSED CLIMATOLOGICAL SUMMARY OF TEMPERATURE AND PRECIPITATION BY SECTIONS

[For description of tables and charts, see REVIEW, January, pp. 30-31]

In the following table are given for the various sections of the climatological service of the Weather Bureau the monthly average temperature and total rainfall; the stations reporting the highest and lowest temperatures, with dates of occurrence; the stations reporting the greatest and least total precipitation; and other data as indicated by the several headings.

The mean temperature for each section, the highest and lowest temperatures, the average precipitation, and the greatest and least monthly amounts are found by using all trustworthy records available.

The mean departures from normal temperatures and precipitation are based only on records from stations that have 10 or more years of observations. Of course, the number of such records is smaller than the total number of stations.

		76	Te	mpera	ture						Precipit	tation		
	93	from		Mont	hly ex	tremes			93	from	Greatest monthl	y	Least monthly	
Section	Section average	Departure the norms	Station	Highest	Date	Station	Lowest	Date	Section average	Departure from	Station	Amount	Station	Amount
	o F.	• F.		• F.			° F.		In.	In.		In.		In
labama	50.7	-5.3	Andalusia	87	26	Madison	15	1	4.60	-1.15	Helena	9.41	Waterloo	2
rizona	50.1	-1.6	Wellton	89	23	Ft. Valley Devils Knob	3	8	2.97	+1.94	Pinal Eanch	8.63	Tombstone	1.
rkansas	47. 5 52. 6	-5.1	Texarkana	80	3	Devils Knob	13	17	2, 21	-2.40 +1.26	Hope. Mount Wilson	6.76	Fayetteville Exp	4
California		+1.2	IndioAkron	89	26 1	2 stations Spicer	$-2 \\ -29$	15	1.98	+1.26	Wolf Creek Pass	17. 74 10. 87	Cow Creek Fort Lupton	
Plorida	60.4	-4.8	Davenport		20	Hilliard		2	3.74	+.64	DeFuniak Springs	9,85	Ponte Vedra Beach	
eorgia	50.1	-6.1	Albany	82	25	2 stations	22 16	1 18	4.48	31	A morione	6, 68	Savannah No. 1	2
daho	39.8	+3.9	Arrowrock	81	20 25 17	Island Park Dam		14	.74	-1.04	Americus Deception Creek	2.37	2 stations	-
llinois.	36.8	-4.0	3 stations	72	13	Freeport	-5	17	1.19	-1.93	Chicago (Airport)	3, 49	Chester	
ndiana		-4.7	2 stations		20	La Porte	-2	17 17	. 92	-2.75	Hobart	1.90	Chester Shelbyville	1:
owa	33. 5	-1.1	do	71	30	3 stations	-10	18	.99	73	Postville (near)	2.50	Denison	1.
Cansas		-3.0	St. Francis	81	11	2 stations	10	18	.90	53	Pratt	2.33	Quinter	1:
Centucky		-5.8	Middlesboro	74	22	Lynch (near)	2	1	1.65	-2,96	Pikeville	3, 45	Rumsey	
ouisiana	54.8	-5.8	3 stations	74 84	1 16	Grand Cane	26	11	4.72	+.07	Lake Arthur (near).		Rumsey	2.
ouisiana Aaryland-Delaware	36. 9	-5.7	2 stations	69	3	2 stations	-8	2	2.17	-1.41	2 stations	3, 48	2 stations	1.
fichigan	25. 9 25. 5 51. 0	-3.6	do	58	1 23	Kenton Meadowlands	-22	6	1. 10	-1.01	Holland	2.85	Ludington	1
linnesota	25. 5	-1.0	Redwood Falls	64	30	Meadowlands	-29	18	. 93	-, 25	Rochester	2.54	Grand Marais	
dississippi	51.0	-5.9	3 stations	80	14	5 stations	20	1	4.77	92	Laurel	8.31	Hernando	1.
dississippidissouri	40, 5	-3.4	Sikeston	78	21	Unionville	7	1	. 78	-2.41	Neosho	2.98	2 stations	
dontana	35, 2	+3.9	Forsyth	75	31	2 stations		1 13	. 49	49	Neosho	1, 94	Ennis	
Nebraska		-1.5	2 stations	80	11	Atkinson	-4	13	.78	32	Hay Springs	1.90	Overton	
Vevada	42.9	+2.3	Overton	102	31	Tem Piute	0	15	. 93	06	Charleston Ranger Station.	3, 52	2 stations	
New England	27.9	-4.2	2 stations	58	1 23	First Conn. Lake, N. H.	-21	1 13	2.34	-1.03	Bar Harbor, Me	6, 80	Bethlebem, N. H	
New Jersey	34.5	-4.7	do	63	31	Charlotteburg	3	18	2.76	-1.01	Toms River	5.95	Culvers Lake	1.
New Mexico	41.4	-2.3	Carlsbad	85	1	Eagle Nest	-17	10	2.33	+1.55	Lee Ranch	8.06	San Marcial	
New York	1	-5.5	Poughkeepsie	62	31	Stillwater Reservoir.	-24	7	2.28	-, 78	Whiteface Moun-	4.09	Poughkeepsie	
North Carolina	44.0 24.5 33.4	-5.9	Louisburg	81	23	Mount Mitchell	-6	18	3.88	29	Lumberton	7.56	Elkin	1.
North Dakota	24.5	+.7	5 stations	68	29	Edmore	-25	17	. 58	18	Cavalier	1.36	Bowman	
)hio	33. 4	-5.3	2 stations	69	1 20	2 stations	3	1 17	. 97	-2.41	Canton	2. 55	Put-in-Bay	
Oklahoma	46. 5	-4.3	Buffalo	81	31	Kenton		11	. 92	-1.22	Carnasaw Tower	2.85	Norman	
Oregon	41.1	+3.5	Powers	84	10	Olive LakeLawrenceville	-2	1 13	. 98	-1.78	Brookings	4, 63	Andrews. McKeesport Columbia	
ennsylvania	31.8	-5.7	New Castle	67		Lawrenceville	-10	14	2. 10	-1.40	Zionsville	4, 57	McKeesport	
outh Carolina	48.4	-6.2	New Castle McColl No. 2	78	20	Chesars riend	1.4	1	4. 52	+.68	Ferguson Harvey's Ranch	6.91	Columbia	2.
outh Dakota	31. 1	2 -5. 5	Vivian	78 73 77	24 20 30 23	Britton. Gatlinburg	-12	17	2.90	56 -2.43	Harvey's Ranch	2.09 5.60	Ludlow Wildersville	1:
			2 0 17 11 11		7.10	Color Sci. 188	V.0.				C - 10 20 10 10			1
Texas	52.7 39.6	-5.8 +1.1	Laredo 2 stations	94 75	1 17	Pampa 2 stations	13 -5	17	3. 16 1. 88	+1.13 +.46	Bon Wier. Mount Baldy Ranger Station.	7. 29 5. 45	Presidio Bonanza	:
Virginia	39.9	-5.8	Danville	74	23	Big Meadows	-2	18	2. 26	-1.39	Pennington Gap	4.18	Radford	
Vashington	47. 2	+5.6	South Bend	80	27	2 stations	12	1 12	1.43	-2.09	Quinault	7.62	Mansfield (near)	
Vashington Vest Virginia		-7.5	Seneca State Forest.	72	1 22	Alpena	-7	2	1.95	-1.94	Mullens	4.74	Shinnston	
Wisconsin Wyoming	25. 4 30. 9	-3.8 +.9	3 stationsdo	60 72	30 1 29	Prentice (near) Foxpark	-28 -35	18 12	1. 25	47 16	Williams Bay Quaking Aspen Creek.	2.36 3.06	Oconto Deaver	
					-	The second second				- 31/	the term to the part of the same to the			1
laska (February)	16.5	+9.6	do	57	12	Fort Yukon	-42	25	1.30	62	Latouche	21.87	Big Delta	
Iawaii Puerto Rico	68.7 75.1	+.1	2 stations	89 97	1 19	Haleakala (Maui)	28 50	29	7.00	-1.41 88	Kukui La Mina (El Yun-	46.00 7.02	5 stations Cayey	
	70.1	+1.8	do	147	1 12	Garzas	2983	4	1 26 64 1		La Villa (El Yun-	4. 02	VAVEV	4

¹ Other dates also.

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS

		vatio		J'A	Pressur	re	10	Te	empe	erate	are d	of th	e ai				of the	A	Pre	cipitat	ion	003	V	Vind		13			120	tenths		l ice on
District and station	er above level	above	apove	ced to	reduced to	from	+mean	from		-	ımı			m m	range	wet thermometer	dew point	humidity	101	from	I inch	ourly	direction		aximu		of	days		cloudiness, (1	200
Man wollenge	Barometer Sea leve	Thermometer	Anemometer	Station, reduced t	Sea level, redumean of 24 l	Departure	Mean max.+ min.+2	Departure	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet the	Mean tempe dew	Mean relative	Total	Departure	Days with 0.01	Average hourly velocity	0.6	Miles per	Direction	Date	Clear days	Partly cloudy	Cloudy days	2	Total snowfall	Snow, sleet, an
New England	Ft.	Ft.	Ft.	In.	In.	In.	°F.	°F. -2.6			°F	°F.	0	°F.	°F.	°F.	°F.	% 69	In. 2,48	7 In. -1.0	,11	Miles	(01) 7291		(1) TO		0	ar GJ	mi La	0-10 5.4	In.	In.
Eastport. Greenville, Maine Portland, Maine 1 Concord 2 Burlington 2 Northfield Boston 1 Nantucket. Block Island Providence 2 Hartford 1 New Haven 3 Middle Atlantic States	103 289 403 876 124 12 26 159	54 111 122 333 144 111 577	41 25 72 48 60 62 90 46 78	28. 62 29. 71 29. 53 29. 46 28. 91 29. 71 29. 83 29. 84 29. 70	29. 82 29. 82 29. 86 29. 92 29. 89 29. 85 29. 84 29. 87 29. 88 29. 90		3 27. 8 21. 4 1 27. 3 1 29. 8 3 23. 6 1 22. 2 2 33. 4 1 34. 2 1 33. 5 0 34. 0 36. 9	-4. 8 -1. 0 -5. 8 -4. 2 -2. 2 -1. 3 -1. 9 -1. 7 -3. 4 -1. 8	47 5 50 5 52 5 44 2 46 2 56 3 48 48 57 57 55 54	15	31 37 38 32 32 40 40 39 42 41	-10 0 -3 -14 12 16 15 11	13 13 13 18	17 21 16	21 39 40 40 32 46 33 22 22 32 35 35 32		15 18 18 16	69 68 77 60 73 71 64 68 65	3. 38 2. 24 1. 44 2. 13 1. 83 3. 40	-1. 6 -1. 6 +. 1 7 2 +. 1 -1. 6 -1. 8	14 11 9 12 13 13 12 9 10 10	8. 7 8. 0 9. 1 7. 7 13. 6 16. 4 19. 4 15. 1	nw. nw. n. nw. nw. nw. nw. nw. nw.	43 	w. w. nw. ne. ne. ne. ne. ne. ne.	12 17 26 19 4 8 1 1 18 19 8	12 6 16 10 7 7 10 14 17 15 12 16	8 8 8 8 8 3 1	17 11 13 16 16 13 14 13 11 15	4. 5 5. 5 6. 5 6. 5 5. 5 4. 9 4. 7	37. 7 19. 8 17. 2 27. 7 26. 6 13. 1 11. 2 6. 9 19. 5 18. 7	30.
Albany 1 Binghamton New York Harrisburg 1 Philadelphia 2 Reading Scranton Atlantic City Trenton Baltimore 2 Washington Cape Henry Lynchburg Norfolk 2 Richmond 3	314 374 114 323 805 52 190 123 112 18	57 415 30 174 47 72 37 89 100 62 8 144 80	454 49 367 306 104 172 107 215 85 54 184 125	29. 03 29. 57 29. 58 29. 84 29. 62 29. 04 29. 90 29. 74 29. 86 29. 87 29. 27 29. 27 29. 27	29. 99 29. 92 29. 99 29. 96 29. 96 29. 96 29. 99 30. 00 29. 99 30. 03 30. 01	03 08 04 05 06 06 04 02 02 02	27. 9 28. 3 35. 7 36. 0 37. 4 35. 6 30. 4 36. 8 35. 5 40. 1 39. 8 41. 8 42. 8 44. 0	-4.8 -4.3 -2.0 -2.9 -3.4 -4.4 -5.3 -1.8	49 51 58 60 57 56 54 54 58 68 68	31 27 31 31 23 31 22 31 3 3 3 3	49 49 49	1 4 14 13 16 14 10 17 16 15 15 24 19 21 21	18 18 18 18 18 18 18 18	20 19 27 27 30 28 23 29 28 32 31 34 32 35 31	38 39 34 35 32 32 31 34 32 34 36 34 40	23 24 29 30 31 29 31 30 33 36 35 36 35 36	17 20 20 21 24 20 24 22 23 22 31 24 30 25	66 76 56 59 66 55 62 60 54 52 70 52 68 60	1. 85 2. 65 2. 52 2. 10 2. 80 2. 68 1. 64 2. 26 2. 20 2. 57 2. 09 11. 47 2. 50 2. 43	8 -0.0 -1.1 9 6 8 -1.6 7 -1.1 -1.5 -1.2 8	10 13 11 7 10 10 10 6 10 6 8	12. 4 7. 6 18. 3 9. 8 14. 5 13. 8 7. 9 10. 8 12. 5 9. 2 14. 6 8. 9 11. 6 9. 9	nw.	47 30 61 35 38 46 32 54 30 40 28 42 31 30 27	nw. nw. nw. n. e. nw. ne. w. sw. nw. nw.	12 29	11	8 6 10 6 9 9 11 11	14 16 13 14 11 10 13 10 11 11 12 9 9 13 15 9	6. 2 1 6. 8 2 4. 9 1 6. 0 1 4. 6 1 4. 6 1 5. 2 5. 4 1 5. 4 5. 7 5. 7 5. 0	27. 5 15. 9 16. 6 11. 3 17. 6 20. 7 5. 7 9. 4 12. 1	
South Atlantic States Asheville Charlotte * Greensboro * Hatteras Raleigh * Wilmington Charleston * Columbia, S. C. * Greenville, S. C. Augusta * Savannah * Jacksonville * Jacksonville * Jacksonville * Jacksonville *	886	6	86 56 50 69 107 92 91 78	27. 65 29. 18 29. 07 29. 99 29. 61 29. 95 29. 88 29. 66 28. 92 29. 84 29. 97 30. 00	30. 02 30. 03 30. 00 30. 02 30. 03 30. 03 30. 03 30. 03 30. 03	03 04 03 02 03 02 03 02 01	46. 3 42. 2 45. 9 44. 8 49. 0 51. 4 49. 6 46. 6 50. 5 54. 2 57. 8	-5.4 -4.3 -6.0 -5.6 -3.3 -5.5 -4.8	69	21 21 21 24 20 20 24 25 24 4 4 21	52 57 54 52 56 59 58 60 57 62 64 68	15 24 16 26 23 27 28 25 23 26 27 28	18 18 2 1 18 1 1 2 18 1 1 1 1 1 1 1 1 1	30 36 30 40 33 40 44 39 36 39 45 48	38 35 43 24 38 30 23 32 32 34 30 31	33 37 35 42 37 42 44 42 45 45 48	26 30 27 38 28 34 38 35 34 39 43	63 68 71	3. 47 3. 18 3. 58 3. 52 4. 21 4. 04 3. 03 3. 55 2. 37 4. 66 4. 84 2. 54 2. 18	+.5 -1.0 5 +.7 5 7	12 12 10 7 9 9 13 12 11 13 12	9. 8 8. 3 10. 0 14. 9 10. 9 10. 7 11. 3 9. 4 8. 2 6. 9 11. 7 8. 5	sw. sw. n. sw. nw. nw. n. sw. nw.	29 29 34 36 34 33 25 30 24 31 25	nw. nw. sw. n. sw. nw. nw. nw.	18 15 18 1 17 11 14 3 4 13 17 8	8 10 4 10 10	11 9 10 12 13 7	15 8 14 12	6. 0 5. 3 5. 2 6. 1 5. 5 6. 8 5. 0 5. 9 5. 9 5. 8 6. 3	4.4 1.3 T T 1.0 T T T T T T	
Florida Peninsula Key West ² Miami ³ Tampa ¹ East Gulf States	21 25 35	10 124 5	168	30, 00 30, 00 30, 01		03 06 03	66, 2 69, 4 67, 4 61, 7 52, 1	-3.7 -3.2 -2.8 -5.1 -5.5		21 27 23	75 74 70	52 38 39	2	64 60 54	22 26 26	63 59 55	61 56 51	79 77	4, 19 3, 12 5, 01 4, 43 5, 22	+2.2 +1.7 +2.8 +2.0 0.0	6 6 8	10. 5 9. 4 11. 6	80.	35 32 29	8.	9 26 8	8	16 15 17	6 8 9	5. 5 5. 2 5. 4 5. 9 6. 3	.0	.0
Atlanta 1 Macon 2 Thomasville Apalachicola Pensacola Anniston Birmingham 2 Mobile 2 Montgomery 3 Meridian 2 Vicksburg 2 New Orleans 3 West Gulf States	1, 173 370 273 35 56 741 700 57 218 375 247 53	5 79 49 11 54 9 11 86 92 67 82 76	72 87 58 51 79 48 161 105 92 102 84	29. 64 29. 78 30. 01 30. 00 29. 31 29. 99 29. 82 29. 66 29. 79	30. 04 30. 04 30. 08 30. 05 30. 06 30. 06 30. 06 30. 06 30. 06 30. 06	02 02 +. 02 00 00 01 01 +. 01 +. 02 +. 01	46. 6 50. 0 56. 6 55. 9 48. 2 48. 6 55. 2 52. 0 50. 6 51. 9 57. 4	-5.4 -6.7 -5.0 -4.4 -4.3 -6.8 -5.8 -6.5 -6.6	67 73 77 80 71 72 77	24 4 26 26 26 26 3 3	57 61 64 64 64 59 58 64 61 60 61 66	22 25 26 30 30 22 21 29 26 26 29 34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36 39 42 49 48 37 39 46 43 41 43 49	34 37 27 33 37 33 31 30 35 30 26	40 43 51 50 41 49 45 45 44 50	33 36 47 45 36 45 39 40 39 46	65 67 79 71 69 76 68 73 73 73	4. 05 3. 93 6. 01 4. 43 9. 71 4. 71 5. 44 5. 49 4. 84 4. 43 6. 03 2. 69	-1.0 +.2 +4.9 3 5 -1.2 8 +.5 -2.0	13 10 12 7 11 13 10 14	11. 7 8. 4 9. 8 8. 7 8. 2 11. 0 8. 5 7. 2 9. 8 8. 1	nw. nw. n. nw. n. n. n. n. n. n.	29	nw. se. nw. s. se. sw. sw. sw.	7 4 7 11 10 6 10 10 10	9 8 7 6 8 11 8 7 8 9 6 8	9 8 13 7 9 5 7 8 8	14 16 12 16 11 18 17 15 14 16	6. 2 6. 1 6. 4 6. 3 6. 5 6. 5 6. 5 6. 5 6. 5 6. 5	.0.0.0 TT.0.00.0 T.0.00.0	.00.00.00.00.00.00.00.00.00.00.00.00.00
West Guif States Shreveport ² Bentonville Fort Smith. Little Rock ³ Austin ² Brownsville ² Corpus Christi ³ Dallas ⁴ Fort Worth ¹ Galveston ³ Houston ³ Palestine Port Arthur San Antonio ¹	463 357 605 57 20 512 679 54 138 510 34	92 12 57 94 68 88 11 6 35 106 157 64 59 28	51 82 102 90 96 78 46 56 114 190 72 134	28. 74 29. 57 29. 70 29. 41 29. 93 30. 00 29. 51 29. 33 29. 98 29. 90 29. 53 30. 01	29, 99 30, 03 30, 06 30, 06 30, 04	+. 04 +. 12 +. 05 +. 05 +. 05 +. 08 +. 08 +. 06	55. 0 62. 9 59. 8 52. 0 51. 9 57. 2 57. 4 52. 8 56. 4	-5. 4 -5. 2 -3. 8 -4. 6 -5. 2 -5. 7 -5. 3 -5. 2 -5. 9 -6. 3	76 76 85 88 79 80 81 80 83 80 83	31 31 31 31 31 31 31 31 31 31 31	62 54 58 56 64 70 65 62 62 63 65 61 63 66	39 31 30	17 17 18 18 18 13 13 18 18 18	44 33 38 39 46 56 54 42 42 52 50 44 49 46	35 33 35 36 31 29 42 39 21 31 35 27	45 41 41 48 58 55 45 45 45 53 51 46	39 32 36 44 55 53 39 39 50 47 38		2, 11 3, 69 , 58 , 80 1, 58 4, 66 3, 49 1, 99 2, 36 1, 52 6, 65 5, 59 3, 11 4, 55 2, 95	+2.4 +2.2 +.4 5 8 +4.0 +2.1 4 +1.3	11 10 11 11 9	12.3 7.9 8.3 8.9 8.7 11.1 11.1 12.4 11.7 11.6 9.3 15.0 9.4	n. e. ne. n. se. n. n. nw. s. se. n. ne.	34 21 25 26 28 31 36 35 43 29 30 23 40 35	sw. sw. sw. nw. nw. e.	31 2 3 3 7 18 17 2 9 8 2 2 2 9	79979359956943	9 10 12 8 5 6 5 6 7 7 7 9 8	17 22 21 16 15 19 18	6.8 6.5 5.5 6.5 6.7 8.0 7.8 6.5 6.5 7.3 6.5 7.4 17.6	T 2.0 T .0 .0 .0 .0 .0 .0 .0 .0 .0	.00

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vatio rum			Pressur	re						of the	_				the			cipitat		NS-	_	Wind	mark.					tenths		th
District and station	above	above	above	ct peo	reduced to	from	+mean	from			ım			m	range	wet thermometer	dew point	relative humidity	0	from	1 inch	ourly	direction		aximu			days		cloudliness, te		and lee
	Barometer al	Thermometer a	Anemometer	Station reduced t	Sea level, red mean of 24	Departure	Mean max.+1	Departure f	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily	Mean wet the	Mean tempe dew	Mean relative	Total	Departure	Days with 0.01 or more	Average ho velocity	Prevailing di	Miles per	Direction	Date	Clear days	loudy	Cloudy days	Average cloud	Total snowfall	Snow, sleet, and ice ground at end of month
Ohio Valley and Ten- nesses	Ft.	Ft.	Ft.	In.	In.	In.	°F.				°F.	°F.		°F.	°F.	• F.	°F.	% 69	In. 1,51	In. -2,6		Miles			14					0-10	In.	In.
Chattanooga 1 Knoxville 2 Memphis 2 Nashville 3 Lexington Louisville 2 Evansville 1 Indianapolis 2 Cincinnati 2 Columbus 2 Dayton 2 Elkins 2 Parkersburg. Pittsburgh 1	995 399 546 989 525 431 823 575 627 822 900 1,947	66 78 167 6 106 5 98 68 11 90 186 61 77	120 38 129 149 51 110 213 78 84	28. 98 29. 64 29. 48 29. 01 29. 50 29. 61 29. 17 29. 46 29. 39 29. 16 39. 09 27. 95 29. 36	30. 06 30. 08 30. 08 30. 11 30. 08 30. 09 30. 09 30. 09 30. 07 30. 08 30. 06	+ 04 + 03 + 04 + 04 + 04 + 04 + 04 + 04 + 04	31. 4	-4.7 -4.9 -5.0 -5.2 -5.0 -5.9 -3.6 -3.7 -4.3 -5.5 -8.0 -7.2 -8.2	73 71 69 68 68 64 67 67 67 60 62 64 63	22 21 22 20 20 20 20 20 20 20 20 20 20 20 20	49 50 45 47 47	9	18	28 32 30 28 28 28 26 26 21	38 35 25 33 36 33 35 36 32 34 31 28 45 38	38 36 40 38 33 34 30 32 31 28 29 27 30 27	26 27 25 27	65 67 67 64 65 71 73 69 74 74	4. 13 1. 39 1. 71 2. 27 1. 20 . 89 1. 12 1. 08 1. 13	-3.9 -3.4 -2.0 -3.2 -3.3 -2.8 -2.7 -2.8 -2.9	7 12 12 8 7 8 8 8 12 7 15	6.7 8.9 10.2 10.0 9.1 10.7 8.8 10.4 10.8 7.3	ne. n. ne. n. n. n. n. n. n. n. n. n.	35 26 24 32 37 37 31 32 31 37 29 27 34	nw. n. nw. sw. sw. sw. sw. sw.	3 16 16 16 11 11 11 11 11 12 16 16	5 11 16 14 10 9 9 9 6 10 6	469839856	13 12 14 11 11 12 14 19 13 17 16 19	6.6 6.1 6.1 5.7 5.7 5.1 5.7 5.9 6.1 6.8 6.2 7.1 6.2 6.5	T 1. 2 2. 7 . 4 . 6 T 13. 3 8. 2 15. 3	.0
Lower Lake Region Buffalo 3	448 836 335 523 596 714 762 629 628 857	10 77 71 5 5 57 27 5 79 69	61 100 85 69 51 81 54 67 87	29. 46 29. 60 29. 31 29. 26 29. 21 29. 37 29. 13	29, 99 30, 01 29, 99 30, 06 30, 06 30, 08 30, 08	02 01 03 +. 04 +. 03	28. 8 30. 5 31. 8 31. 4 32. 3	-4.9 -5.1 -4.2 -4.6 -6.6 -5.3 -4.7 -4.1 -3.3 -3.9	52 44 54 43 52 48 54 57 57	24 24 16 31 24 31 3 3	32 36 33 34 34 35	-9 3	13	13	27 41 36 23 26 33 33 31 34 32	24 20 24 23 25 27 26 27	16 19 20 23 23 23 22 22 23	78 78 70 84 82 85 78 76 75	1. 96 2. 20 2. 85 1. 16 1. 28 1. 03 1. 05 1. 41	6 9 3 6 6 2 -1.5 -1.4 -1.7 -1.5 -1.8	16 11 10 13 14 14 11 14 9 7	9.6 9.9 10.9 12.7 11.8 8.5 14.3 9.7 10.2	w. nw. nw. sw. nw. nw. nw. nw. nw.	56 30 35 34 47 42 26 47 29 32 30	w. nw. sw. w. sw. w. w. nw.	17 17 18 18 17 18 16 16 16 17	7	13 9 12 8	14 15 18 13 10 15 9 16	5.9 6.7 6.2 6.8 5.8 6.5	23. 2 16. 5 19. 6 32. 4 5. 4 7. 0	.0 1.5 .0 T .0
Upper Lake Region	730	5	78	29. 26	30.08	+.05	30. 4 26. 7	-3.0 -1.5		3	38	8	17	23	32	26	21	72 76	1, 25	8	9	9. 9	nw.	33		16	4	14	- 1	6.6	2.8	.0
Alpena Escanaba Grand Rapids 3 Lansing Marquette Sault Sto Marie 2 Chicago Green Bay Milwaukee 1 Duluth North Dakota	612 707 878 734 614 673 617 681		72 244 90 73 52 131 141	29. 38 29. 42 29. 27 29. 11 29. 27 29. 38 29. 34 29. 40 29. 33 28. 84	30. 11 30. 07 30. 09 30. 10 30. 08 30. 09 30. 10 30. 10	+.07 +.04 +.06 +.05 +.06 +.07 +.07	24. 6 30. 1 28. 5 25. 7 22. 6 32. 0 25. 9	+.4 -3.3 -3.7 +.9 +1.0 -3.3 -2.7	47 52 49 45 45 54 48 52 42	31 30 23 30 31	32 33 38 36 32 31 37 34 36 32	-1 6 6 1 -6 1 -6 -7 -15	7 17 17 17 17 17 17 17 17 17	15 16 23 20 19 14 27 18 22 17	32 28 28 31 30 35 31 32 32 38	20 22 25 25 22 18 29 23 26 21	15 18 21 22 18 14 24 19 22 17	71 77 78 84 75 76 72 74 77 77	.73 .71 2.08 1.67 .30 .41 2.60 1.34 1.82 .85 0,73	-1.3 -1.2 4 7 -2.0 -1.4 7 6 7	8 8 5 5	8.5	n. nw. nw. nw. nw. ne. ne.	33 34 29 32 35	nw.	17 3 16 17 16 17 16 3 16 16	7 8	7 8 6	16 13 15 16 11 16 20 18 18	5. 7 6. 4 5. 8 5. 8 6. 6 5. 5 6. 5 7. 0 7. 2 6. 8	0.3 0.1 6.4 3.0 4.5	- 0
Moorhead, Minn. ² Bismarck ¹ Devils Lake Lemmon, S. Dak Grand Forks Williston Upper Mississippi Valley	940 1, 677 1, 478 2, 602 832 1, 878	50 4 11 4 11 42	41	29, 09 28, 32 28, 52 27, 33 29, 22 28, 12	30, 15 30, 17 30, 16 30, 14 30, 17 30, 17	+. 07 +. 11 +. 11 +. 13	24. 4 26. 6 20. 1 27. 6 19. 9 26. 6	+1.7 +2.4 +.3 +3.7	56 64 47	29 30 29 29 29 29 29	32 37 29 38 29 36	-8 -16	16	17 17 11 17 10 17	27 37 32 43 35 38	24 24 19 26 19 24	22 20 18 22 17 18	88 79 91 72	. 54 . 79 . 86 . 94 . 88 . 72	5 1 +.1	9 6 5 8 5	8. 7 11. 2 9. 9	n. nw. n. nw. nw.	48 42	w. nw. nw.	18 15 15 15	8 6 6 9 2 9	9 4 10	16 16 16	7.01	5. 2 0. 2 7. 6 9. 6 8. 5 7. 3	.0 .3 .0 .3 .0
Minneapolis-St. Paul, Minn. Minn. Springfield, Minn. La Crosse ² Madison ² Charles City Davenport ² Des Moines ² Dubuque Keokuk Cairo. Peoria ² Springfield, Ill. ² St. Louis ⁸ Missouri Valley	714 974 i, 015 606 860 699 614 358 609 636	32 4 11 70 10 66 5 60 64 87 11 5 179	99 79 78 93 45 191	29. 08 28. 99 29. 31 29. 02 29. 00 29. 42 29. 15 29. 33 29. 70 29. 42 29. 39 29. 47	30, 13 30, 11 30, 11 30, 12 30, 11 30, 10	+. 07 +. 07 +. 07 +. 07 +. 08 +. 06 +. 07 +. 05 +. 07 +. 07 +. 06	28. 1 29. 8 29. 6 27. 9 30. 6	1 -1.5 +.2 -2.2 -1.2 -4.2 -1.6	61 60 54 61	30 30 31 30 31 30 31 3 20 20	36 37 38 35 38 42 45 40 46 52 44 47 50	-1 -7 -8 -2 4 8 -3 10 19 7	17 17 17 17 17 17 17 17 17 17 18 18	20 23 21 21 23 27 28 24 29 34 27 29 32	34 34 33 32 32 32 35 30 33 29 32 35	25 27 25 25 27 30 30 28 31 31	24 22 21 24 26 26 23 27 27 27 26	77 78 77 80 77 76 72 78 74 60	1, 38 .77 .65 2, 25 2, 29 1, 33 1, 40 .94 2, 17 .40 .58 1, 86 1, 34 .60 0, 76	-1.0 6 +.6 +.2 4 9 8 +.1 -2.0 -3.2 -1.8 -2.8 -1.2	10 8 8 9 7 9 8 10 5 8 6 5	10. 4 5. 6 8. 4 6. 8 9. 8 10. 5 6. 6 8. 5 9. 7 7. 7 211. 5 11. 6	nw. n. nw. n.	23 36 24 32 38 27 32 30 23 35	nw.	16 3 16 16 16 16 11 3 16 16	8 3 8 8 10 9 9 9 10 9 14 8 10	13 8 7 6 7 6 5	16 15 15 16 15 15 16 17 13 14 11 18 13	6. 4 1 6. 5 1 5. 9 1 6. 0 6. 1	6. 2 3. 3 2. 6 0. 9 8. 6 7. 9	T T .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
Columbia, Mo. ² Kansas City ¹ 18. Joseph ² Springfield, Mo. ¹ Topeka Lincoln ² Jamaha ¹ Valentine ² Sloux City ² Huron ¹ Northern Slope	784 963 967 , 324 987 , 189 , 105 , 598 , 138 , 306	6 38 11 5 65 11 31 46 64 26	76 49 78 87 81 44 54	29. 02 28. 81 28. 91 27. 32	30. 10 30. 11 30. 09	+. 07 +. 08 +. 07 +. 10 +. 08 +. 09 +. 08 +. 08	40. 9 40. 6 40. 0 40. 4 36. 8 37. 0 32. 9 34. 3 30. 4	-1.7 -2.1 5 -5.2 -2.2 7	73 72 70 74 70 68	31 31 31 31 31 30	51 45 46	16 14 16 13 11 6	17 17 17 17 17 17 17 17	23 26	34 35 34 33 36 31 31 45 34 35	33 34 33 34 34 31 31 29 30 27	26 28 28 29 28 27 26 24 26 22	65 64 75 71 67 77 70 75 78 74	.61 .87 .96 1.01 1.43 .72 .36 .66 .58	-2.3 -1.7 -1.5 -2.4 7 6 -1.0 4 6 5	5 7 7 8 7 6 4 11 8 8	12.0 9.7 11.8 9.9 10.1 11.3	nw. nw. nw. n. nw. n.	36 30 35 29 32 45 29 40	nw. nw. s. n. nw. nw. nw. n.	16 16 16 2 16 16 16 15 16	9 8 7 10 7	12 13 9 11 4 8	12 8 10 8 9 8 14 6 13 8 17 6 16 7 16 6 16 7 16 6	5. 8 5. 6 5. 4 6. 2 6. 9 6. 2 6. 6 7. 1 6. 8 6. 3	9. 2 7. 3 3. 4 6. 6	.0
Northern Stope Sillings 3 3 3 3 3 3 3 3 3	, 570 , 507 , 124 , 263 , 973 , 371 , 259 , 094 , 352 , 790 , 241 , 821	18 11 5 80 48 48 50 5 60 6 12	67 35 91 56 55 58 39 68 42 46	27. 43 25. 81 26. 64 26. 95 27. 58 26. 66 23. 95 24. 65 26. 12 23. 85	30. 08 - 30. 13 30. 05 30. 05 30. 13 30. 13 30. 06 30. 09 30. 09 30. 12 30. 10		35. 4 33. 2 36. 6 13. 3 39. 8 33. 8 31. 9 31. 6 10. 1	+6. 1 +4. 2 +7. 7 +6. 9 +5. 2 7 -1. 5 -2. 3	66 67 70 63 70 66 66 61 68 55	29 31 31 31 29 29 31 1 31 31 31	50 55 50 44 42 42 40 46 41	-1 6 17 17	16 2 13 3 14 3 16 2 16 2 12 2 14 2 12 2 13 2	24 32 30 24 22 22 22 22 22	49 41 42 37 30 39 38 40 37 48 38 50	30 28 31 36 34 28 27 27 27 27 29 27	24 22 24 29 27 23 22 22 23 24	69 67 62 63 63 70 74 71	0. 76 . 63 . 27 . 31 . 27 . 54 . 23 . 45 1. 37 2. 68 . 42 1. 05 . 65	-0.2 2 5 7 4 5 +.4 +1.5 7 +.1	11 5 5 6 8 10 12 13 11 11	8.0	n. nw.	34 44 33 30 37 34 44 33 40 30	n nw. n. ne. w. n. n. n. n. nw. nw. nw.	8 15 15 12 8 15 15 15 9 8 8 8	3 6 3 6 4	7 2	15 7 11 5 15 6 13 5 15 6 17 7 16 6 21 7		T .0	.0 .0 .0 .0 .0 .0 .0 .0 .0

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vatio rume		1	Pressur	re e	-	Ter	mpe	ratu	re of	f the	air				of the	y	Pre	cipitat	ion	-	7	Wind						tenths	foe on
District and station	Barometer above	Thermometer above	Anemometer above ground	Station reduced to mean of 24 hours	Sea level, reduced to mean of 24 hours	Departure from	Mean max.+mean min2	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	nimu	Greatest daily range	Mean wet thermometer	Mean temperature of	Mean relative humidity	Total	Departure from	Days with 0.01 Inch or more	Average hourly velocity	Prevailing direction		Direction		Clear days	Partly cloudy days		ge cloudliness,	Total snowfall
Middle Slope	Ft.	Ft.	Ft.	In.	In.	In.	°F.	°F. -2,9	°F.		F.	°F.	0	F	F.	°F.	°F.	% 68	In. 1, 05	In. -0.2		Miles								-10 6, 0	In.
Denver ² Pueblo ¹ Concordia Code City Vichita ¹ Oklahoma City ² Chadron, Nebr	5, 292 4, 685 1, 392 2, 509 1, 358 1, 214 3, 439	106 5 50 10 6 10 5	26	25, 25 28, 60 27, 42 28, 62 28, 77	30. 00 30. 12 30. 07 30. 09 30. 08	+. 08 +. 11 +. 10 +. 10 +. 10	37. 2 39. 6 38. 5 40. 2 40. 6 46. 2 34. 6	-2.5 -2.6 -4.5 -3.8	73 73 74 74 74	1 18 31 31 31 31 18	47 52 48 51 51 56 45	12 18 18 19	12 17 13 17	28 28 30 29 30 36 24	38 51 37 41 33 36 45	30 33 33 34 35 39 30	23 25 28 29 30 32 24	65 64 72 70 71 64		+1.1 2 1 6 -1.4	5 6 8 7	9.1	n. n. n. s. n.	36 42 26 35 43 29	n. nw. n. ne.	9 10 9 16 9	10 5 9 7 12 11 4	9 11 10 10 9	17 11 14 9	6. 5 16 6. 6 13 5. 6 16 6. 3 6. 0 15 6. 0	2. 5 0. 8 8. 8 8. 9
Southern Slope Abilene 2	1, 738 3, 676 960 3, 566	10 10 63 75	49 71	29,00	30.03 30.00	+. 08 +. 05	49, 9 51, 2 43, 2 57, 6 47, 6		83 86	31	61 54 67 59		17	32 48	36 43 45 45	44 36 50 40	37 30 43 31	68 70 65	2, 23 1, 66 2, 55 1, 89 2, 82	+1.4 +1.8 +1.2 +2.1	6 6 7 5	10, 8 10, 5 9, 1 9, 3	e. se.	32 32 24 33		15 2 10 2	10 12 3 8	5 7 11 13	16	5.7	3. 1 4. 5 . 0 6. 6
Southern Plateau Paso 2 Ibuquerque 1 anta Fe 2 lagstaff	3, 778 4, 972 7, 013 6, 907	82 5 38 10	34 53 59	25. 00 23. 18 23. 26		+.09	45. 0 39. 0 37. 6	-2.0 9 7 +1.7	70 61 60	31 31 30	65 57 49 49	22 16 14	10 10 8	42 33 29 26	35 35 30 44 36	42 37 33 33 50	30 29 27 29	49 60 70 30	1. 88 1. 63 1. 00 1. 72 2. 31	+1.4 +1.3 +.6 +.9	12	9.3 9.9 6.6 9.0	8e. 8 8W.	25 41 31 34	nw. nw. s.	21 9 9	9 4 7	8	4 16 19	6. 8 10 5. 3	7.5
hoenix 3 ucson 1 uma adependence				29. 78		01 +. 01	64. 8 49. 6	+.7 +1.1		19	72 77 63	46	3	52	35 36	53 39		54	1. 54 . 56 1. 44	+4.1 +1.2 +.1 +0.3	6 4	5. 7		29		31	13 19 13	8	4	3.0	.0 T
eno 3	6, 090 4, 339 5, 473 4, 357	61 12 5 10 86 60	20 56 46 210	25. 58 25. 57	29, 98 29, 94 29, 98 29, 94 29, 97 29, 91	03 02 01 03	44. 3 42. 0 42. 5 39. 4 44. 8 44. 2	+3.2 +2.5 +1.2 +3.1 +.6	62 70 64 68	27	52 58 53	24 14	15 2	32 27 26	39 27 46 41 30 29	34 34 34 37 36	24 23 29 27	57 52 61 54	. 26 . 37 . 42 2. 47 2. 33 1. 70	6 5 +1.4 +.4 +.9	4 6 3 11 8 8		se. ne. sw. nw.	25 26 27 28 27	sw. sw. ne.	19	16 13 13 12 10 10	8 4 9	5 10 10 15 15 12 12	3. 7 4. 7 5. 7 5. 4 5. 7	.6 .3 2.1 1.5 1.3
Northern Plateau aker ¹	3, 471 2, 739 4, 478 1, 929 991 1, 076	36 5 5 27 57 57 58	49 31 42	26. 44 27. 15 25. 44 27. 98 28. 94 28. 87	30.00 30.00 30.04	+. 01 03 01 +. 03 . 00	45. 4 39. 2 45. 6 50. 8 49. 8	+5.9 +4.7 +5.7	73	27 17 17 28 31 26	58	20	14 3	33	36 35 36 36 31 38	35 38 34 40 42	29 28 27 32 30	68 54 63 61 51	0, 44 .04 .18 .93 .69 .78 .24	-0,6 -1.1 5 8 1 -2,2	3 3 5 7 9 2	6.3 5.2	se. sw. ne.	23 42 34 34 28 25	SW. nw. s. sw. w. sw.	23 1 17 17	9	6 11 13 13	12 12 12 12 9 11 9	5. 5 6. 0	T .0 1.0 .0 .0 .0 .0
Region orth Head	125 194 86 1, 329	5 90 172 9 29 68 45	321 201 61 58 106	29. 76 29. 87 29. 79 29. 90 28. 56 29. 83 29. 43	29. 99 30. 01 30. 00 30. 00 29. 97 30. 00 29. 98	02 +. 02 . 00 +. 04 02 06	51. 6 53. 1 51. 8 50. 3 50. 6 54. 9	+6.4 +8.2 +7.6 +7.4 +3.7 +8.0 +5.5	75 69 63	11 11 10 12 27	62 60 54 65 64	35 40 29	14 4 14 4 19 4 14 3 23 4	15 13 16 16	31 28 13 44 30	47 46 47 43 46 46	43 40 44 35 40 40	77 69 81 62 68 67	2. 07 1. 48 1. 90 3. 83 1. 03 2. 01 1. 08	-3.5 -1.6 -1.7 -4.0 7 -1.9 -2.2 +0.4	14 9 12 14 9 9	14.3	n. n. e. s. nw.	48 31 36 42 20 25	s. sw. sw. e. ne. w.	17 17 17 10 10	8 13 9 9 10 12 9	7 11 5 6 6	11 8 11 8 17 6 15 8 13 8 15 6	5. 2 5. 7 6 5 5. 2 5. 6	.0 .0 .0 .0 .0
Region reka. edding 1 cramento 3 n Francisco. South Pacific Coast	60 722 66 155	72 20 92 112	34	29, 92 29, 17 29, 88 29, 77	29, 99 29, 95 29, 95 29, 94	07 08 12	57. 4 58. 4	+3.1	71 80 76 75	9	59 66 66 64	41 40 41 48	20 4 20 4 6 4 2 5	17	25 30 26 18	49 47 51 52	47	51 70 69	4. 31 5. 32 2. 86 4. 75 5. 30	9 +.6 +.3 +1.8 +3.3	12 10 9 8	6. 8 8. 2 7. 7 8. 3	se. nw. se. w.	27 34 36 32	SW. S0. NW. S0.	1 1 23 3	7897	6 4 16 11	19 6 13	6.8	.0
Region esno 1 es Angeles n Diego 1	327 338 87	5 223 20	250	29. 61 29. 60 29. 87	29, 96	04 06 05	57. 2 60. 6 62. 0	+2.2 +3.1 +5.3	78 83 82	9 6	68 69 70	40 47 47	7 4 3 5 3 5	16 52 54	33 28 30	52 53 56	47 47 51	65	1. 86 8. 14 5. 89	+.3 +5.4 +4.2	9 11 11	5.3 8.3 7.4	nw. e. w.	27 34 29	nw. nw. s.	19 20 4	9 10 10	6 9	16 12 12	6. 3 5. 3 5. 1	.0
West Indies n Juan, P. R Panama Canal	82	10					1	+2.0		28 8		69 1			19				2. 43	7	13	10. 4	e.	28	nw.	1	3	21	7	5. 9	.0
lboa Heights stobal	118 36	6	97_		29. 86	01 02	82. 2	+.7	88		86			8		75	73 3		2.27	5 +. 8	11	10.0	n.	29	n. n.	19	6	25 24	7		.0
irbanks neau me Hawaiian Islands	454 80 22	5	116 4		29. 89 29. 78		39. 6 12. 2	+5.0 +5.9 +4.2	45 56 35	24 2 26 4 19	28 - 44 19 -	28 1 24 26	1 3		46 23	37	33	66 76 68	6. 23 . 39	+.6	24 11	4. 9 6. 8 9. 2	e. s. ne.	18 19 38	e. se.	24 29	9	1 2	29 1	3	3. 4 1
polulu	38	86	100	30. 05	30. 09		71.8	+.4				65 3				64	59 RY,			-2.0	12	11.3	e.	27	ne.	30	3	18	10	3. 2	.0

Data are Airport records.
 Barometric and hygrometric data from airport, other data from city office records.
 Observations taken bihourly.
 Pressure not reduced to a mean of 24 hours.

Barometric data from airport records, other data from city office records.
 Wind, and clear, partly cloudy, and cloudy data, from city office records; other data from airport.
 Note.—Except as indicated by notes 1, 2, 5, and 6, data in table are city office records.

CORRECTED DATA FOR SEPTEMBER 1940

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS

version brigh of		vatio		ntos IIII.	Pressur	е		Ter	nper	atur	re of	the	air				of the	· A	Pre	eipitat	ion		100	Wind	-15					tenths		o on
District and station	above	above	above	ced to	reduced to	from	max.+mean min.+2	from			ımı			ım	range	wet thermometer	dew point	humidity		from	11 inch	ourly	direction		aximu elocit;		I I	days	10	188	18	and of mo
Distille and station	Barometer sea leve	Thermometer	Anemometer	Station, reduced t	Sea level, red mean of 24 l	Departure	Mean max min.+2	Departure	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet the	Mean tempe dew	Mean relative	Total	Departure	Days with 0.01	Average hourly velocity	Prevailing di	Miles per	Direction	Date	Clear days	Partly cloudy	Cloudy days	Average clouding	Total snowfall	Snow, sleet, and ice
Upper Mississippi Valley 1	Ft.	Ft.	Ft.	In.	In.	In.	°F.	°F. +1.5	°F.		°F.	°F.		°F.	·F.	°F.	°F.	% 70	In. 0, 92	In2.7	1	Mi.			=0700 300 h		N L		01	0-10 3,7	In.	In
Minneapolis, St. Paul, Minn Springfield, Minn La Crosse ¹ Madison ³ Charles City Davenport ¹ Des Moines ³ Dubuque Keokuk Cairo Peoria ³ Springfield, Ill. ² St. Louis ⁵	974 1, 015 606 860 699 614 358	111 700 100 100 100 100 100 100 100 100	42 48 78 51 161 99 79 78 93 45 191	29. 45 29. 36 29. 44 29. 69 29. 45 29. 42	30. 06 30. 09 30. 12 30. 11 30. 12 30. 08 30. 10 30. 09 30. 07 30. 11	+. 08 +. 09 +. 11 +. 09 +. 06 +. 07 +. 06 +. 07 +. 07 +. 07 +. 07	65. 3 66. 0 64. 0 62. 9 63. 6 67. 2 67. 6 64. 9 68. 0 70. 9 66. 6	+3.9 +1.8 +2.6 +1.6 +2.0 +.9 +.5 -6 +2.3 +1.2	91 93 87 87 88 93 92 91 93 94 94 94	19 7 20 20 7 21 21 20 21 22 20 21 22 20	78 74 72 75 78 79 76 80	36 34 37 40 36 40 36 41 45 34 40 44	26 25 26 26 25 26 26 26 26 27 26 27 26 27	54 54 54 54 52 56 56 54 57 60 54 57 61	36 33 29 28 32 28 32 31 31 31 36 30 29	57 57 56 55 56 56 58 87 58 60 56 55	52 52 52 53 53 52 53 52 55 52 55	71 77 78 76 74 67 72 64 64 73 68	.41 .94 .29 .84 2.63 1.69 .35 1.48 .04 1.75 1.16	-2.7 -3.7 -2.6 -1.6 -3.3 -2.8 -1.1 -2.6 -3.3	5 7 6 7 5 2 2 2 7 1 1 2 3	4.6 6.5 5.1 7.7 8.0 4.7 5.4 5.8 3.9	8. 8. 80. 80. 80. 8. 8. 8. 80. 100. 8.	28 19 26 17 24 15 19 28 14 25 24	ne. se. ne. n. sw. n.	9 24 17 24 24 9 13 24 25 24 9	12 8 19 18 17 14 20 16 21 16	10 16 8 0 9 7 4 7 5 8	8 6 3 6 4 9 6 7	4.0 4.8 5.0 2.8 3.7 3.4 4.6 3.0 3.9 2.4 3.9		
Missouri Valley Columbia, Mo.*	784	6	66	29. 26	30. 10	+.07	69. 1	+1.0	95		82	39	11	57 59	38	59	54	68 69	. 32	-4.0	4	8.7		19		10	17	8	5	4.5 3.5	.0	
Kansas City ¹ St. Joseph ³ Springfield, Mo. ¹ Topeka Lincoln ³ Omaha ¹ Valentine Sloux City ³ Huron ¹	967 1, 324 987 1, 189 1, 105 2, 598 1, 138	11 5 65 11 31 46 64	78 87 81 44 54	29. 06 29. 06 28. 70 29. 03 28. 80 29. 03 27. 32 28. 85 28. 64	30. 08 30. 10 30. 07 30. 04 30. 06 30. 00 30. 05	+. 05 +. 07 +. 05 +. 06 +. 04 +. 07	70. 0 69. 6 67. 8 70. 2 70. 6 69. 0 68. 6 68. 0	+1.2 -1.1 +1.5 +4.2 +2.2 +6.1 +4.6	93 90 98 100 95 100 94	8 8 7 7 7	81 80 79 81 83 81 82 79	37 36 38 38 38 38 30 35	11 26 26 12 26 11 25 11 12 25	59 56 59 58 57 55	35 36 35 41 36 44 45 53	61 60 60 61 58 59 57 58	57 56 56 52 54 50 54	80 75 68 64 66 62 69	1. 20 1. 74 . 56 1. 22 2. 77	-3.1 -1.1 -2.6 -1.2 -2.6	8 4 4 7 4 7 4	8. 0 7. 0 8. 1 7. 8 9. 1 9. 3 8. 7 8. 8 13. 5	s. se. s. se. s. s.	28 20 30 23 25 25 30 29 40	n. n. sw. sw.	9 9 24 9 9 8 18 7	10 16 16 8 12 14 8	12 10 4 11 13 9 11 12	10 11 5 7 11 8	3.5 4.5 5.7 4.2 4.4 5.5 4.7	.00.00	

SEVERE LOCAL STORMS

[Compiled by Mary O. Souder from reports submitted by Weather Bureau officials]
[The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of tornadoes will appear in the United

Place	Date	Time	Width of path, yards	Loss of life	Value of property destroyed	Character of storm	Remarks
Washington, D. C	7					Snow	The heaviest snow ever recorded in March, 8 inches, measured during
		- 1 3				la la ciulifi	this storm. Traffic delayed and thousands of Government workers were forced to walk home. All available snow removal equipment and
Maryland, throughout the	7					do	1,500 city employees ordered out to clean highways and streets. At 10 p. m., 9 inches of snow was measured. Between 5 and 6 p. m., street
State.						V words I	cars in all sections of Baltimore, Md., were at a standstill, haited by motorists helplessly skidding on slippery streets. Though not serious many accidents were reported. Steamer traffic delayed, some dropped anchor until the weather cleared.
New York State, except ex- treme western portion.	9-11					do	Heavy snow drifted badly; some schools closed; motor traffic delayed.
South Dakota	15	9 p. mmid- night.		*****		High wind, rain, and snow.	Property damaged; traffic by cars, planes, and trucks hampered badly with some cancelation. High northerly winds and low temperatures continued throughout the day of the 16th.
North Dakota-Minnesqta	15-16			32	\$250,000	Blizzard	This storm was centered over northern Minnesota at 6:30 a. m. of the 15th At 12:30 a. m., of the 16th, the low-pressure area was centered north Lake Superior. The wind was 12 miles per hour from the southwest at
E 10/10/15/15		E. B.	5.4				Moorhead, Minn., just before the sudden wind-shift occurred at 9:25 p. m., of the 15th. By 9:30 p. m., the wind had shifted to the northwest and the Fargo airport recorded 46 miles per hour at 9:35 p. m. Extreme wind velocity of 85 miles from the northwest,, was recorded at Grand Forks, N. Dak. Snowfall was light. The ground was covered in nor-
			+				thern counties with considerable snow from previous storms and the wind caused much drifting, the drifts measuring from 10 to 12 feet in north-central counties. A number of farmers who were out-of-doors collapsed and were frozen to death not far from their homes. Many motorists who were stranded on the highways or went off the road because of poor visibility were found dead from being frozen to death in their stalled cars, from being overcome by carbon monoxide gas, or from sheer exhaustion as they collapsed after abandoning their automobiles to seek shelter. Thousands of birds perished as well as some livestock and much poultry. Small property damage and some damage to overhead wire systems. Thirty-two persons lost their lives in Minnesota. There were many cases of frost bite, some serious enough to require amputation of arms or legs.
Wisconsin	15-17	******		1		Snow	Strong winds drifted the snow measuring 0.5 to 4.0 inches in the northern portion of the State. Only side roads became impassable and many automobiles were stalled. 3 men, working on stalled cars were injured, I fatally, when struck by cars whose drivers were unable to see in the
Michigan	16					do	blinding snowstorm. The storm swept over Michigan from the northwest, accompanied by
							strong winds and a sudden fall in temperature. Driving hazardous; little property damage reported.
New York State	17-19			9		do	Light to moderate snow accompanied by low temperatures and high winds caused the worst blizzard conditions of the winter. Many main highways blocked, most secondary roads impassable, hundreds of motorists ma- rooned in highways and rural towns, bus schedules canceled and train
Hutchinson, Kans	31	2 p. m	17	0	50	Tornado	service delayed. Many schools closed from 1 to 2 days. A vortex was observed. Roofs on several houses damaged; path about 400 vards long.

SOLAR RADIATION AND SUNSPOT DATA FOR MARCH 1941

SOLAR RADIATION OBSERVATIONS

By HELEN CULLINANE

Measurements of solar radiant energy received at the surface of the earth are made at 9 stations maintained by the Weather Bureau and at 10 cooperating stations maintained by other institutions. The intensity of the total radiation from sun and sky on a horizontal surface is continuously recorded (from sunrise to sunset) at all these stations by self-registering instruments; pyrheliometric measurements of the intensity of direct solar radiation at normal incidence are made at frequent intervals on clear days at two Weather Bureau stations (Madison, Wis.; Lincoln, Nebr.) and at the Blue Hill Observatory at Harvard University. Occasional observations of sky polarization are taken at the Weather Bureau station at Madison and at Blue Hill Observatory.

The geographic coordinates of the stations, and descriptions of the instrumental equipment, station exposures, and methods of observation, together with summaries of the data obtained, up to the end of 1936, will be found in the Monthly Weather Review, December 1937, pp. 415 to 441; further descriptions of instruments and methods are given in Weather Bureau Circular Q.

Table 1 contains the measurements of the intensity of direct solar radiation at normal incidence, with means and their departures from normal (means based on less than 3 values are in parentheses). At Lincoln the observations are made with the Marvin pyrheliometer; at Madison and Blue Hill they are obtained with a recording thermopile, checked by observations with a Smithsonian silverdisk pyrheliometer at Blue Hill. The table also gives vapor pressures at 7:30 a. m. and at 1:30 p. m. (75th meridian time).

Table 2 contains the average amounts of radiation received daily on a horizontal surface from both sun and sky during each week, their departures from normal and the accumulated departures since the beginning of the year. The values at most of the stations are obtained from the records of the Eppley pyrheliometer recording on either a microammeter or a potentiometer.

Total solar and sky radiation was somewhat above normal at Washington, Madison, Chicago, New York, Twin Falls, and Friday Harbor, and considerably deficient at Lincoln and Fresno.

Normal incidence measurements at Blue Hill Observatory showed a considerable excess in radiation, while at Madison there was an excess in February and a deficiency in March.

No polarization measurements were made during March at either Madison or Blue Hill.

A new cooperating station has been started at State College, Pa., and data from this station will appear regularly in the REVIEW beginning with the April number.

Table 1.—Solar radiaton intensities during February 1941 [Gram-calories per minute per square centimeter of normal surface]

				1	Sun's z	enith d	listano	Ð			
J.H.	7:30 a. m.	78.7°	75.7°	70.7°	60.0°	0.00	60.0°	70.7°	75.7°	78.7°	1:30 p. m.
Date	75th					Air ma	58				Local
	mer. time			м.				P.	м.		solar
	e	5.0	4.0	3.0	2.0	*1.0	2.0	3.0	4.0	5.0	e
Feb. 18	mm. 0.4	cal. 0.98	cat. 1. 10	cal. 1. 26	cal. 1, 42	cal. 1.60	cal. 1.40	cal.	cal.	cal.	mm. 0.7
Feb. 19	0.4	.88	1.03	1.15	1.37	1.58	1.40				0.8
Feb. 20 Feb. 25	0.5	1.04	1. 10	1, 22	1. 43	1.60	1.42				1.1
Feb. 28	1.4	.96	1.11	1.21	1. 39	1. 55	1.39	1. 25			2.0
Means Departures		02	1.10	1.22	1.40	1.58	1.40	(1.25) + .08			

Solar radiation intensities during March 1941

	Madaon, Wis.										
1.2	.96	1.06	1.16	1.37	1.65						
1.6 2.0	.80	.92	1.06	1.26	1.62	1.38					
1.3	.99	1.15	1.26	1. 42	1. 55	1.43					
1.1	. 92	1.06	1.21	1.37	1. 55	1.38					
0.4	1.03	1.14	1.30	1.46	1.64						

Mar. 5	1.6	. 80	. 92	1.06	1.26	1.62	1.38	 	 2.
Mar. 7	2.0	. 87	. 92	1.04	1.30	1. 55		 	 2.
Mar. 13	1.3	. 99	1.15	1.26	1.42	1.55	1.43	 	 2.
Mar. 14	1.1	. 92	1.06	1.21	1.37	1.55	1.38	 	2
Mar. 17	0.4	1.03	1.14	1.30	1.46	1.64		 	 0.
Mar. 18	0.6	. 94	1.03		A STATE	100.00		 	 1.
Mar. 21	2.2	. 68	. 79	1.04	1.21	1.48		 	 2
Mar. 22	3.0	.47	. 61	. 81	1. 15			 	 3.
Mar. 28	3.6				1. 16	1.55		 	 3.
Mar. 29	2.3	. 57	. 62	. 77	. 92	1.38			 3.
Means		.82	. 93	1, 07	1, 26	1,55	1.40	 	
Departures		06	07	07	05	01	+. 10	 	

Blue Hill Observatory

Mar. 2	2.8	0.98	1.08	1. 20	1.35		1.36	1. 26	1.14	1.04	2
Mar. 5	1.5	1.04	1.14	1. 20	1.38		1.38	1.22	1.06	. 96	1
Mar. 6	1.8	. 81	. 93	1.11							2
Mar. 10	2, 2	1.00	1. 10	1. 22	1.34						2
Mar. 13	1.5	1.06	1.17	1. 27	1.40		1.36	1. 22	1.09	. 98	1
Mar. 14	1.5	1.03	1.11	1. 22	1.34		1.26	1.11			1
Mar. 20	1.4							1. 19	1.06	. 96	1
Mar. 21	1.5			1.14	1.28		1.31	1.15			1 2
Mar. 22	2.1		1.13	1.22	1.36		1.28	1.16	1.04	. 96	2
Mar. 23	2.5	. 94	1.03	1.15	1.30	1.49	1.31	1.14	1.00	. 88	2
Mar. 26	2.9	. 83	. 96	1.09	1.29	1.50	1.28				2
Mar. 27	2.9	. 70	. 81	. 97							3
Mar. 31	1.6	. 90	1.00		1. 26				.77		1
Means		. 93	1.04	1.16	1.33	(1.50)	1, 32	1. 18	1, 02	. 96	
Departures		+.03	+.06	+.06	+.09	+.07	+.08	+.09	+.05	+.08	

^{*}Extrapolated.

Table 2.—Average daily totals of solar radiation (direct+diffuse) received on a horizontal surface [Gram-calories per square centimeter]

					lor	am-catorii	s her squ	are centur	neverl							
Week beginning—	Wash- ington	Madison	Lincoln	Chicago	New York	Fresno	Cam- bridge	Fair- banks	Twin Falls	La Jolla	New- port	New Orleans	River- side	Blue Hill	Albu- querque	Friday Harbor
Feb. 26	279	cal. 261 231 454 393 347	cal. 269 263 392 309 376	cal. 197 267 307 367 271	cal. 318 258 356 464 458	cal. 145 449 351 510 410	cal. 243 255 342 370 428	cal. 131 108 216 235 229	cal. 262 436 472 395 377	cal. 328 412 365 487 453	cal. 268 281 371 401 449	cal. 384 316 277 251 481	cal. 240 438 316 473 404	cal. 227 268 360 383 441	eal. 498 461 390 309 618	cal. 195 323 286 350 343
				D	EPART	URES F	ROM W	EEKLY	NORMA	LS						
Feb. 26	-32 +76	-9 -70 +131 +65 -9	-48 -68 +22 -80 -4	-1 +50 +69 +108 +17	+90 0 +87 +143 +66	-118 +46 -65 +56 -56	-18 -19 +15 -8 +18	-8 -48 +15 +24 -55	-8 +111 +137 +1 +26	-65 +15 -29 +66 -14	-14 -19 +15 -5 +34	+112 -9 -71 -106 +147	-128 +14 -95 +91 +21	-74 -26 +46 -11 +54	+57 +9 -20 -53 +90	+28 +104 +75 +66 +28
		-		ACC	UMULA	TED DI	PARTU	RES ON	APRIL	1, 1941					•	
	+2,051	+1, 120	-3, 331	+2,093	+5, 012	-2,618	+7	-392	+1,799	-1, 428	+175	+1,743	-3, 577	-532	+511	+3, 451

PROVISIONAL RELATIVE SUNSPOT NUMBERS FOR FEBRUARY 1941

[Based on observations at Zurich and Locarno. Data furnished through the courtesy of Prof. W. Brunner, Eidgen. Sternwarte, Zurich, Switzerland]

February 1941	Relative numbers	February 1941	Relative numbers	February 1941	Relative numbers
1	*a 75	11	36	21	d 40
2	69	12	30	22	26
3	a 65	13		23	15
4		14	29	24	Ecd 46
5	Mcd 85	15	a 27	25	54
6	a 64	16	8?	26	46
7	57	17	21	27	b 50
8	43	18	22	28	*ad 56
9	d 58	19	Wc 28	-0	
10	47	20			

Mean, 25 days=43.9

^{•=}Observed at Locarno.

a = Passage of an average-sized group through the central meridian.

b = Passage of a large group through the central meridian.

c=New formation of a group developing into a middle-sized or large center of activity:

E, on the eastern part of the sun's disk; W, on the western part; M, in the central-circle zone.

d = Entrance of a large or average-sized center of activity on the east limb.

Ohart I. Departure (F.) of the Mean Temperature from the Normal, and Wind Roses for Selected Stations,

HOURLY PERCENTAGES Lines show amount of excess or deficiency Shuded portions show excess (+)
Unshaded portions show deficiency (-)

Chart I. Departure (°F.) of the Mean Temperature from the Normal, and Wind Roses for Selected Stations, March 1941

Chart II. Tracks of Centers of Anticyclones, March 1941. (Inset) Departure of Monthly Mean Pressure from Normal

Chart III. Tracks of Centers of Cyclones, March 1941. (Inset) Change in Mean Pressure from Preceding Month

(Inset) Change in Mean Pressure from Preceding Month Tracks of Centers of Cyclones, March 1941.

clone at 7:30 p. m. (75th meridian time).

Circle indicates position of cyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of cyclone at 7:30 p. m. (75th meridian time).

Chart IV. Percentage of Clear Sky Between Sunrise and Sunset, March 1941

Chart V. Total Precipitation, Inches, March 1941. (Inset) Departure of Precipitation from Normal

O to I inch

Total Precipitation, Inches, March 1941. (Inset) Departure of Precipitation from Normal Chart V.

Chart VI. Isobars at Sea Level and Isotherms at Surface; Prevailing Winds, March 1941

Chart VII. Total Snowfall, Inches, March 1941. (Inset) Depth of Snow on the Ground at 7:30 p.m., Monday, March 24, 1941

(Insect) Depth of Snow on the Ground at 7:30 p.m., Monday, March 24, 1941

Total Snowfall, Inches, March 1941. Chart VII.

Isobars (mb) for 1,524 Meters (5,000 ft.) and Isotherms (°C.) and Resultant Winds for 1,500 Meters (m. s.1.) March 1941 Isobars and isotherms based on radiosonde observations at 12:30 a. m. (E.S.T.) and winds based on pilot-balloon observations at 5:00 a. m. (E.S.T.). -842 846 Chart VIII. 100

Chart IX. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T) and Resultant Winds 5:00 a.m. (ES.T.) for 3,000 Meters (m.s.l.) March 1941

Chart X. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters

Chart X. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters (m.s.l.) March 1941

Chart XI. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 10,000 Meters (m. s. l.) March 1941

