

Mecânica dos Fluidos I

(Engenharia Aeroespacial)

Problemas da semana 13 7 a 11 de Dezembro de 2015

Problema 1

Um jacto de ar inside sobre um objecto parado. A temperatura estática longe do objecto é $T_{\infty} = 20$ °C, a temperatura no ponto de estagnação é $T_0 = 40$ °C. A pressão estática longe do objecto é a pressão ambiente, $p_{\infty} = 10^5$ Pa.

- 1. Calcule a velocidade do jacto longe do objecto e o respectivo número de Mach;
- 2. Determine a massa volúmica do ar do jacto;
- 3. Calcule a pressão no ponto de estagnação.
- 4. Existe uma onda de choque antes do ponto de estagnação?
- 5. Se, mantendo as temperaturas indicadas acima e as propriedades do ar, duplicar a pressão ambiente, quais as respostas que se alterariam?

Soluções:

(1) A velocidade é $v_{\infty}=200,5$ m/s, o número de Mach é $M_{\infty}=0,584$. (2) A massa volúmica é $\rho_{\infty}=1,19$ kg/m³. (3) A pressão de estagnação isentrópica é $p_0=1,256\times 10^5$ Pa. (4) Não pode haver uma onda de choque num escoamento subsónico. (5) Pela definição de temperatura adiabática de estagnação, a velocidade manter-se-ia, o número de Mach também só depende da temperatura e a razão p/p_0 também seria a mesma. Alteravam-se a massa volúmica (na proporção das pressões) e a pressão de estagnação isentrópica (também na proporção das pressões estáticas p_{∞}).

Problema 2

Um modelo é ensaiado num túnel aerodinâmico de secção constante A=4 m². Mediram-se a pressão estática e a temperatura estática em secções em que o escoamento é uniforme, a montante $(p_1=1,00000\times 10^5 \text{ Pa}, T_1=290,0 \text{ K})$ e a jusante $(p_2=9,79813\times 10^4 \text{ Pa}, T_2=289,8 \text{ K})$ O escoamento é de ar. A potência térmica trocada com o exterior é praticamente nula. Determine a resistência do modelo.

Soluções:

A resistência é $D = 7{,}119 \times 10^3 \text{ N}.$

Problema 3

Um compressor radial (cf. figura 1) aspira ar atmosférico ($p_{01} = 10^5$ Pa e $T_{01} = 293$ K). A área da secção de entrada é $A_1 = 0.2$ m² e a área periférica do rotor na secção de saída é $A_2 = 0.01$ m². O caudal é $\dot{m} = 16$ kg/s, a velocidade à saída do rotor é $v_2 = 500$ m/s. O ar que sai do rotor é desacelerado parcialmente no estator até à secção de saída $A_3 = 0.2$ m². Considere que o escoamento de entrada e o escoamento no estator são perfeitamente isentrópicos, excepto nalguma possível onda de choque frontal (tudo isto só é válido como primeira aproximação) e admita que a compressão é reversível, sem troca de calor (hipóteses que também são apenas aproximadas).

Figura 1: Esquema do compressor: o ar entra axialmente, com uma área A_1 , sai do rotor com área periférica A_2 e sai do estator com área $A_3 = A_1$. À direita, fotografia do rotor.

- 1. Calcule a velocidade do ar à entrada, a sua temperatura e pressão.
- 2. Calcule a temperatura e pressão do ar à saída do rotor.
- 3. Calcule a potência fornecida ao fluido pelo compressor.
- 4. Calcule a pressão de estagnação isentrópica à saída do rotor.
- 5. É de esperar uma onda de choque no estator?
- 6. Admita que ocorre uma onda de choque frontal logo à saída do rotor. Calcule o número de Mach e a pressão de estagnação isentrópica imediatamente a seguir à onda de choque.
- 7. Calcule a pressão do ar à saída do estator.
- 8. Calcule a velocidade do ar à saída do estator.
- 9. Trace a evolução da pressão p ao longo do escoamento, bem como um diagrama T-s, desde 0 (atmosfera parada) até 3 (à saída do estator).

Soluções:

(1) À entrada, a velocidade é $v_1 = 68,66$ m/s, a temperatura é $T_1 = 290,65$ K e a pressão é $p_1 = 9,7226 \times 10^4$ Pa. (2) À saída do rotor, a temperatura é $T_2 = 435,40$ K e a pressão é $p_2 = 4,0001 \times 10^4$ Pa.

(3) A potência fornecida ao fluido é $P=4,252\times 10^6$ W. (4) A pressão de estagnação isentrópica à saída do rotor é $p_{02}=9.640\times 10^5$ Pa. (5) É de esperar uma onda de choque porque o escoamento é supersónico à saída do rotor ($M_2=1,195$) e desacelera para subsónico. Se o escoamento fosse isentrópico no estator, para aquele caudal mássico e condições de estagnação poderia ser $M_3=0,02813$ ou $M_3=4,760$, mas só a alternativa subsónica corresponde a uma desaceleração. Em princípio, um escoamento supersónico não desacelera até subsónico sem onda de choque. (6) Depois da onda de choque, o

número de Mach é $M_{ch2}=0.8053$ e a pressão de estagnação isentrópica é $p_{0_{ch2}}=9.7053\times 10^5$ Pa. (7) A pressão do ar à saída do estator é $p_3=9.7000\times 10^5$ Pa. (8) A velocidade à saída é $v_3=13.25$ m/s.

José Maria C. S. André