

TEKNOFEST 2020 ROKET YARIŞMASI Saraç Roket Takımı Atışa Hazırlık Raporu (AHR)

Takım Yapısı

TAKIM KAPTANI &
AERODINAMIK SORUMLUSU
ALI UYSAL
/ 11. SINIF

MEKANİK SORUMLUSU SEMİH TİRYAKİOL / 11. SINIF

YAZILIM SORUMLUSU AHMET YAVUZ HİÇDURMAZ / 10. SINIF

ELEKTRONİK SORUMLUSU YAHYA ÇAKIR / 11. SINIF

GÖRSEL TASARIM SORUMLUSU FATİH MEHMET YILDIZ / 11. SINIF

AERODİNAMİK GÖREVLİSİ EMİRHAN TALHA YEŞİLBAĞ / 10. SINIF

MEKANİK GÖREVLİSİ FATİH AKSOY / 9. SINIF

YAZILIM GÖREVLİSİ YUNUS EMRE KÖYCEĞİZ / HAZIRLIK

KTR'den Değişimler

Değişimin konusu	KTR'de hangi sayfada	KTR'deki içerik	AHR'deki içerik	AHR'de hangi sayfada

Roket Alt Sistemleri

Parça Adı	Üretim Durumu
Burun Konisi	Üretildi
Üst Gövde	Üretildi
Alt Gövde	Üretildi
Kanatçıklar	Üretildi
Yayı	Üretildi
Faydalı Yük Gövdesi	Üretildi
Faydalı Yük Kurşun Ağırlık	Üretildi
Burun Konisi Mekanik Sistem	Üretildi
İç Entegrasyon Gövdesi Mekanik Sistem	Üretildi
İç Entegrasyon Gövdesi	Üretildi
Paraşüt Taşıyıcıları	Üretildi
Merkezleme Halkaları	Üretildi
Motor Bloğu	Üretildi
Motor Yatağı	Üretildi
Aviyonik	Üretildi
Faydalı Yük Paraşütü	Üretildi
Sürüklenme Paraşütü	Üretildi
Ana Paraşüt	Üretildi

SARAGRINI OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

Burun – Detay

Burun konimiz OpenRocket benzetimlerindeki kararlılığından dolayı parabolik yapıya sahiptir. Fiberglasst'an üretilmiştir. Üretilmiş burun konimizin uzunluğu 30 cm, et kalınlığı 2 mm, shoulderuzunluğu 19 cm, shoulderiç çap 119 mm, shoulderdiş çap 125 mm ve shoulderet kalınlığı 3 mm'dir. Zirve noktasında faydalı yük, faydalı yük paraşütü ve sürüklenme paraşütünü serbest bırakan mekanik sistemimiz burun konisinde bulunmaktadır. Zirvede ilk ayrılma gerçekleştikten sonra burun konisi üzerindeki mapa ile faydalı yük paraşütüne bağlı olup roketin ana gövdesinden bağımsız bir biçimde faydalı yükle birlikte inecektir.

SARACTARIMI Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı yük gövdesi 3B baskı tekniği ile üretilmiştir ve KTR'den sonra iki adet değişiklik gerçekleştirilmiştir. İlki uydu gövdesinin malzeme seçiminde PLA yerine PETG kullanılmasıdır. Bunun sebebi atış alanında hava sıcaklığı nedeniyle PLA'nın yumuşama olasılığına dair Teknofest eğitimlerinden alınan geri dönüşlerdir. İkinci değişim ise uydu gövdesi tasarımındadır. Basitçe faydalı yük için gerekli olmadığını düşündüğümüz bölümü uydudan bağımsız basıp yay ve uydu arasına yerleştirdik ve yay kapağına sabitledik. Böylece sürüklenme paraşütünün uydu ve yay arasında sıkışması engellendi. Her iki değişiklik de test edildi ve testler başarıyla sonuçlandı; PETG'den basılan uydumuz faydalı yük paraşütünün mapaya uygulayacağı kuvvetten katbekat fazla olan 500 Newton'luk çekme gerilmesi testini başarıyla geçmiştir ve ikiye bölüp uydudan ayırdığımız sürüklenme paraşütü kapsülü zirve ayrılmada sorunsuz ve beklendiği biçimde çalışmaktadır. Ayrıca yüksek yoğunluğu nedeniyle faydalı yükün kütlesini 4kg çıkarmak için kullanılması planlanan döküm kurşun ağırlığın üretimi KTR'de de belirtildiği gibi insan sağlığını tehdit etmesi sebebiyle sanayide gerçekleştirilmiştir.

Kurtarma Sistemi Mekanik Görünüm

Burun Konisi Mekanik Sistem

İç Entegrasyon Gövdesi Mekanik Sistem

31 Temmuz 2020 Cuma

Ayrılma Sistemi – Detay

Roketimizde iki farklı zamanda ayrılma gerçekleşmektedir. İlki zirve noktasında, burun konisinde bulunan ve yayın gerilimi altındaki alüminyum dillerin 2 adet 60 kg'lık servo motor vasıtasıyla içeri çekilmesiyle birlikte serbest kalan yayın sırasıyla; burun konisi, faydalı yük paraşütü, faydalı yük ve sürüklenme paraşütünü fırlatarak gerçekleşir. İkincisi ise 700 metre kala iç entegrasyon gövdesindeki dillerin 2 adet 20 kg'lık servo motoru ile içeri çekilmesiyle sürüklenme paraşütü tarafından yukarıya çekilen ve henüz ayrılmamış üst gövdenin alt gövdeden ayrılmasıyla gerçekleşir. Malzeme seçimi olarak ise hafif bir alüminyum alaşımı olan 7000 serisi tercih edildi. Ayrılma sistemlerinin tamamının üretimi bitmiştir. Üst mekanik sistem ve alt gövde mekanik sistemi test edilip testleri başarıyla geçmişlerdir.

Paraşütler – Detay

Paraşütlerin üretimini kritik tasarım raporunun ardından kritik tasarım raporun da belirtilen ölçülerde(Ana Paraşüt 250 cm, Faydalı Yük Paraşütü 110 cm, Sürüklenme Paraşütü 80 cm) ve belirtilen renklerde(Ana Paraşüt Kırmızı-Siyah, Faydalı Yük Paraşütü Yeşil-Siyah, Sürüklenme Paraşütü Turuncu-Siyah) üretilmiştir. Paraşütler deneyimli bir terziyle birlikte sanayi tipi dikiş makinesin de gore parçalarımızdan(Ana Paraşüt 12 parça, Faydalı Yük Paraşüt 8 parça, Sürüklenme Paraşüt 6 parça) çift dikiş gidilerek üretildi. Paraşüt iplerini ilk olarak elastic cord olarak belirlemiştik. Ancak plan yönetimimizdeki farklılıkla ikinci seçenek olarak düşündüğümüz paracordu tercih ettik. Geçen sene de kullandığımız ve her hangi bir sıkıntı görülmeyen elastic cordlarımızı Faydalı Yük paraşütün üretiminde kullandık. Ana ve Sürüklenme paraşütümüzde ise bir tekstil firmasında yaptırmış olduğumuz çekme-kopma testleri sonucunda 700 Newtondan daha fazla kuvvete dayanabilen paracord iplerimizi kullandık. Ekte belirteceğimiz raporlarda hem kullandığımız paracordlara hem de tekrar kullandığımız elastic cordlara uygulanan testlerin sonuçları detaylı bir şekilde belirtilmektedir. Paraşüt iplerinin paraşütlere bağlantısını yine sanayi tipi makine ile çok kuvvetli bir şekilde yapıldı. Şok kordonunun çok önemli olduğu fikri ile çok fazla kuvvetlere dayanabilmesi için çift şok kordonu birlikte kullanmayı düşünüyoruz.

Aviyonik Sistem Mekanik Görünüm

Aviyonik Sistem – Detay

Aviyonik sistemin pcbleri üretilmiştir. Sadece kablolama işlemleri kalmıştır. Kablolama işlemine 05.08.2020'de başlancaktır. Bu işlemin 2 günde bitirilmesi planlanmaktadır.
 Antenler, sensörler, komponentler yedekli olarak temin edilmiştir. Ayrıca yedek GNSS ve telemetri modülleri de sipariş edilmiş ve gümrüğü geçmiştir. 05.08.2020 tarihinden gelecekleri tahmin edilmektedir.,
 Piller yedekli olarak temin edilmiştir. Herhangi bir pil bozulması durumunda yedekleri ile değiştirilecektir.
 Aviyonik sistem bir kutunun içine yerleştirilmiştir. Bu sayede hakemlerin inceleme yapmak istemeleri durumunda, sadece bir konnektör aviyonik kutudan sökülerek aviyonik sistem roketten çıkarılabilecek ve mekanik sistemi çalıştırma dışında bütün fonksiyonları yerine getirebilecektir. Böylece aviyonik sistem daha iyi bir şekilde gözlemlenebilecek ve herhangi bir arıza veya güncelleme durumunda kolaylık sağlayacaktır. Ayrıca yazılım güncellemesi yapılmak istendiği zaman aviyonik

sistemin önünde bulunan kapak açılacak ve yazılım bir usb kablo ile, aviyonik kutu roketten çıkarılmadan

güncellenebilecektir.

Kanatçıklar Mekanik Görünüm

Kanatçıklar – Detay

Roketimizde pasif kontrol sistemi olarak 4 adet kanatçık kullanılmıştır. Kanatçıklarımız fiberglass üretimi olup 3mm kalınlığındadır. Uçuş ve iniş sırasında bağlantı noktalarından hasar alma ihtimalini azaltmak için gövde yerine merkezleme halkalarına cıvatalarla tutturuluduktan sonra kanatçıklar gövde üzerine açılan gediklere sıkı geçmeyle girmiştir. Böylece kanatçıklar iki yönden sabitlenmiştir. Uçuşta kanatlara binecek yükü kanadın taşıyıp taşımayacağı test edilmiştir. Testte kanatçığın hücum kenarına yaklaşık 600 Newton uygulanmıştır ve test sonucu başarılıdır.

Roket Genel Montaji

☐ Tüm roketin montaj adımları belirlenmiş bir sistematik içerisinde fotoğraflarla ve destekleyici videolar ile gösterilmeli ve anlatılmalıdır.

Öncelikli olarak burun konimizi yayı, burun konisi üst gövdenin ağızına gelinceye kadar sıkıştıracağız ve gövdenin alt kısmından gönderdiğimiz komutla sistemi çalıştırıp dillerimizi burun konisinin içinden üst gövdedeki deliklere geçireceğiz. Bu sayede iki parça birbirine sağlam bir biçimde bağlanmış olacak. Sonrasında üst gövdenin alt kısmında bulunan 19 cmlikiç entegrasyon gövdemizin diğer ucunu alt gövdemize yerleştireceğiz ve aynı burun konisinde yaptığımız gibi sistemimizi çalıştırarak 3 dil yardımıyla üst ve alt gövdeyi birbirine sabitleyeceğiz. En son olarak da motor montajımızı yapacağız. Bu şekilde roketimiz tamamen montajlanmış ve Teknofestyetkililerine teslim etmeye hazır olmuş olacak.

Bu kısım 4 yansıyı geçmemelidir.

Roket Motoru Montajı

Motorun montajı esnasında motorun (16) iç tüpe sığmaması gibi bir durumla karşılaşmamak için iç tüpümüz (7) alüminyum plaka bükülerek üretilecektir. Bu sayede iç çapta ufak oynamalara müsait bir iç tüpümüz olacaktır. Roketimizin kalan montajları tamamen bittikten sonra roketimizin içine motor montaj parçamız (5) merkezleme halkalarımız (3-4-8) ve motor yatağımız vidalanacaktır. (Motor yatağında herhangi bir vida deliği olmayacak, merkezleme halkalarını sabitleyen vidaların uçları tarafından sıkıştırılarak sabitlenecek sonrasında epoksilenecek). Devamında ve motorumuzun ucuna motor bloğu (2) eklenip iç tüpümüzün içine sürüldükten sonra iç tüpümüzün sonunda bulunan motor sabitleme parçasına 3/8-16 UNC altıgen başlı vida (6) ile sabitlenecektir. Bu vidalama işlemi roketimizin gövdesine yerleştirdiğimiz küçük kapak (13) açılarak yapılacaktır. En son olarak da bu kapağımız kapatılacak ve roketimiz atışa hazır olacaktır.

Atış Hazırlık Videosu

Roketin yarışmanın	ikinci günü e	en fazla 1	.0 dakikada	uçuşa	hazır	hale getirileceğini	kanıtlayan	denemelerin	en '	fazla 1
dk'lık bir video ile g	österilmesi ge	erekmekt	edir.							

Bu kısım 1 yansıyı geçmemelidir.

Test Adı	Test Yöntemi	Test Düzeneği	Sonuçlar	
Vakumlu Kavanoz Testi	Kartın üstünde bulunan sensörlerin düşük basınçlardaki gürültüleri ölçülecek ve roketin ulaşacağı basınçlarda algoritmalar test edilecektir.	Hacamat pompası ile kavanozun vakumlanması	Katlar başarılı bir şekilde düşük basınçta çalıştılar	https://www.youtube.com/watch?v=W EvLAONP9Ew
Arbalet Dikey Atış Testi	Gerçekte atılacak olan rokete benzer şekilde hazırlanan düzenek fırlatılacaktır. Böylece roket algoritmalarının performansı yükseltilecektir.	Sigma profilden üretilen arbalet sistemine roket maketini ray butonları ile oturtarak fırlatılması	Algoritmalar zirve esnasında tetiklendi. Başarı ile sonuçlandı.	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s
Arbalet Yivli Atış Testi	Ana kartın algoritmasında kullanılan z ekseninin -roketin kendi etrafında yaptığı dönüşün- zirve algılamasına etkisi gözlemlenecektir.	Sigma profilden üretilen arbalet sistemine roket maketini ray butonları ile oturtarak fırlatılması	Kanatlar sayesinde yiv kazanan maket roketin z ekseninin algoritmaya bir etkisi olmadığı kanıtlandı. Test başarılı.	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s
Jiroskop Kalman Filtreleme Testi	Jiroskop sensöründen gelen verilerin filtrelenmesi ve sarsıntı durumunda hata riskinin düşürülmesi amaçlanmıştır.	Aviyonik Sistem	Gürültü engellendi. Test başarılı.	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s
Yedek bilgisayar hata ayıklama testi	Ana kart sensörlerinde bir hata olduğu zaman, yedek kartın kontrolü eline alması ve zirveyi tetikleme süresi test edilecektir.	Aviyonik Sistem	Sistem hataları engellendi. Test başarılı.	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s
Yer istasyonu ile konum belirleme testi:	Roketin yer istasyonuyla bağlantısı koptuğunda, roketin yerini tespit etmek için kullanılacak yazılım test edilecektir.	-	Roketin düşüş yeri saptandı. Test başarılı	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s
Aviyonik Sistem Pil Kullanım ve Dayanım Testi:	Aviyonik kartların kaç amper çektiği ve satın alınacak pillerin ne kadar dayanacağı tespit edilecektir.	Aviyonik Sistem	Piller 2 saat dayandı. Test başarılı.	https://www.youtube.com/watch?v=B 1FE4zWB9bw&t=54s

Test Adı	Test Yöntemi	Test Düzeneği	Sonuçlar	linkler
Multiplexer ile Servo Motor Kontrolü Testi:	Ana ve yedek kartın her ikisinin de servo motorları sürebilmeleri için multiplexer kullanılacaktır.	Aviyonik sistem	Multiplexer devresi ile servolar sürüldü. Test başarılı.	https://www.youtube.c om/watch?v=WEvLA0N P9Ew
GNSS Hassasiyet Testi:	Telemetri sinyallerinin ve fiberglass borunun GNSS modülünün konum belirlemesine etkisi test edilecektir.	Fiberglass boru içine koyulacak olan aviyonik kartın üzerinde telemetri, GNSS modülü ve sensörler bulunacaktır.	GNSS verileri düzgün bir şekilde geldi test başarılı. Test başarılı.	https://www.youtube.c om/watch?v=WEvLA0N P9Ew
Aviyonik Sistem Uzun Süre Çalışma Testi:	Aviyonik sistem uzun süre boyunca çalıştığında, bir sorun çıkıp çıkmayacağı incelenecektir.	Aviyonik Sistem	2 saatten fazla dayandılar. Test başarılı.	https://www.youtube.c om/watch?v=WEvLA0N P9Ew

Test Adı	Test Yöntemi	Test Düzeneği	Sonuçlar	
Telemetrik sistem veri aktarımı testi:	Telemetri modülünün hangi konfigürasyonlarda en iyi çalıştığı incelenecek ve belirlenen şekilde iyileştirilecektir		Telemetri sistemi 80byte Boyutundaki verileri başarı ile gönderdi. Test başarılı.	https://www.youtube.c om/watch?v=F9HBrjrXn h8
Telemetrik sistem menzil testi:	Testin amacı, roketimizin yer üssünden uzaklaşması sonucunda veri alımının, en az 3km boyunca devam ettiğini teyit etmektir.	Araba ile 5 km yer istasyonundan uzklaşıldı	5km uzaklıktan verileri kesinti olmada gönderdi. Test başarılı.	https://www.youtube.c om/watch?v=F9HBrjrXn h8

Test Adı	Test Yöntemi	Test Düzeneği	Sonuçlar	
Faydalı Yük Paraşüt Açılma Testi	Faydalı yük paraşütünün faydalı yükü taşımasını test ettik.	Yüksek bir pencereden fırlatıldı.	Başarılı bir şekilde açıldı	https://www.youtube.com/watch?v =f6keETQL7Kk
Faydalı Yük Paraşüt Açılma Testi	Burun konisindeki mekanik sistemin çalışmasını test ettik.		Başarılı	https://www.youtube.com/watch?v =f6keETQL7Kk
Kanat Mukavemet Testi	Kanada binen aerodinamik yükler kanatta deformasyon oluşturuyor mu	Vinç kantarını kanadın hücum kenarına bağlayıp çektik	Başarılı	https://www.youtube.com/watch?v =NGokYcFgA1g&t=5s
İç Yapısal Mukavemet Testi	İç yapısallar dayanır mı	Araba ve vinç kantarı kullanılarak yapıldı	Başarılı	https://www.youtube.com/watch?v =HFMO9WkdTYE
Ana Paraşüt Açılma ve İp Dayanım Testi	Ana paraşüt yeterli hıza indiriyor mu	Yüksek pencereden atıldı	Başarılı	https://www.youtube.com/watch?v =F5cuvuxf3AM
Faydalı Yük Paraşütü Mapa Dayanım Testi	PETG gerilmeye dayanacak mı	Vinç kantarına bağlayıp çekildi	Başarılı	https://www.youtube.com/watch?v =V4_Qm_ZldRY

Yarışma Alanı Planlaması

Montaj ve atış günleri için takım üyelerinin iş planı tablo halinde paylaşılmalıdır.
Acil durum eylem planı oluşturulmalıdır.
Riskler belirlenip, risklerin nasıl ele alınacağı tablo halinde belirtilmelidir. Örneğin, AHR teslim tarihinde tedariği gecikmiş bir alt sistem ve/veya üretiminde sorun çıkmış bir parça risk olarak ele alınabilir. Bu risk için nasıl bir çözüm bulunacağı ve montai gününe risk giderilmiş bir sekilde, hazır oalrak gelineceği açıklanmalıdır.

Bu kısım 3 yansıyı geçmemelidir.

Yarışma Alanı Planlaması

Takım Üyesi Adı	Görev
Ali UYSAL	Takım Kaptanı
Yahya ÇAKIR	Atış Alanı Sorumlusu
Semih TİRYAKİOL	Atış Sorumlusu
Ahmet Yavuz HİÇDURMAZ	Haberleşme
Emirhan Talha Yeşilbağ	Kurtarma Sorumlusu
Fatih AKSOY	Mekanik Sorumlusu