Michael Ehrig
micha.ehrig@outlook.com
michael.ehrig@bit.edu.cn

Assignment 1

We use the notations and conventions from the course, e,g. a map refers to a continuous map, a space refers to a topological space, S^1 denotes the unit circle, D^2 the unit disc, etc.

Exercise 1. Let $\mathcal{I} = \{0, \frac{1}{2}, 1\}$ and fix the collection of subsets $\mathcal{B} = \{\{0\}, \{1\}, \mathcal{I}\}$.

- (a) Show that \mathcal{B} is a basis for a topology of \mathcal{I} .
- (b) Determine all open subsets of \mathcal{I} with respect to the topology $\mathcal{U}_{\mathcal{B}}$ generated by \mathcal{B} .
- (c) Show that \mathcal{I} is path-connected and contractible.

Exercise 2.

- (a) Let $f: D^2 \to D^2$ be a map such that f(x) = x for $x \in S^1$. Show that f is surjective. Hint: This can be done very similar to the proof of the Brouwer fixed point theorem in the course.
- (b) Show that a loop $f: I \to S^1$ with the property $f(s + \frac{1}{2}) = -f(s)$ for $0 \le s \le \frac{1}{2}$ cannot be nullhomotopic, i.e. $f \not\simeq \omega_0$.

 Hint: We used a loop with this property in a proof in the course.
- (c) Show that there exists no map $g: S^2 \to S^1$ such that g(-x) = -g(x). *Hint:* Using such a map g, construct a suitable loop to apply part (b).

Exercise 3. Let X be a space.

- (a) Show that X is contractible if and only if id_X is nullhomotopic.
- (b) Assume that X is contractible and there exists $A \subset X$ together with a retraction $r: X \to A$. Show that A is contractible.
- (c) Show that the following are equivalent
 - (i) X is contractible,
 - (ii) every map $f: X \to Y$ (for a space Y) is nullhomotopic,
 - (iii) every map $f: Y \to X$ (for a space Y) is nullhomotopic.

Exercise 4. Show that there exists no retraction $r: X \to A$ for the following situations

- (a) $X = \mathbb{R}^n$ and A an arbitrary subspace homeomorphic to S^1 .
- (b) $X = S^1 \times D^2$ and $A = S^1 \times S^1$ the boundary of X.
- (c) $X = D^2 \vee D^2$ and $A = S^1 \vee S^1$ for the pointed spaces $(D^2, (1, 0))$ and $(S^1, (1, 0))$. Hint: One can argue with the methods from the course why A has a non-trivial fundamental group without specifically calculating it.
- (d) $X = D^2/_{\sim}$, for $(1,0) \sim (-1,0)$, and $A = \pi(S^1)$ the image of the boundary of D^2 under the quotient map π .

Hint: There is a natural way to identify A with $S^1 \vee S^1$.