Week 1

Preliminaries: moment generating function, joint distribution, conditional probability, random sum and basic concepts of stochastic processes.

1 Random variable (vector), moment generate function and joint distribution

Let Ω denote the set of all outcomes in an experiment.

- A random variable (r.v.) X is defined to be a function X: $\Omega \to R$.
- We define

$$F(t) = P(X \le t) = P\{\omega : X(\omega) \le t\}, \quad t \in R$$

the distribution function of X.

• X is called discrete if there is a finite or denumerable set of real values x_1, x_2, \dots such that

$$p_i = P(X = x_i) > 0, \quad i = 1, 2, \dots \text{ and } \sum_{i=1}^{\infty} p_i = 1.$$

Binomial variable $X \sim B(n, p)$:

Poisson variable $X \sim Poisson(\lambda)$:

ullet X is called continuous if there is a non-negative function p(s) such that

$$F(t) = \int_{-\infty}^{t} p(s)ds.$$

p(s) is called density function of X.

Normal variable $X \sim N(0, 1)$:

Exponential variables $X \sim Exp(\lambda)$:

• The m-th moment of a r.v. X:

$$EX^m = \sum_{i=1}^{\infty} x_i^m P(X = x_i)$$
 or $EX^m = \int_{-\infty}^{\infty} x^m p(x) dx$

Note that $var(X) = EX^2 - (EX)^2$.

EX is called the expectation of X. EX^m exists if $E|X|^m < \infty$.

If
$$X \sim Poisson(\lambda)$$
, then $EX = \lambda$ and $var(X) = \lambda$.

If
$$X \sim Exp(\lambda)$$
, then $EX = 1/\lambda$ and $var(X) = 1/\lambda^2$.

• Moment generating function (mgf) of X: $g(s) = Es^X, s \ge 0$.

Another definition: $g(t) = Ee^{tX}, t \in R$.

If X only takes non-negative integers, g(x) is also called the probability generating function (pgf) of X, i.e.,

$$g(s) = Es^X = \sum_{j=0}^{\infty} s^j p_j$$
, where $p_j = P(X = j)$.

If
$$X \sim Possion(\lambda)$$
, then $g(s) = Es^X = e^{\lambda(s-1)}$;

if
$$X \sim Exp(\lambda)$$
, then $g(t) = Ee^{tX} = (1 - t/\lambda)^{-1}$ for $t < \lambda$.

• The joint distribution function of $X_1, X_2, ..., X_n$ [random vector $(X_1, ..., X_n)$] is defined as

$$F(x_1, x_2, ..., x_n) = P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n), \quad x_i \in R.$$

- Joint distribution of discrete (X, Y):

$$P(X = k, Y = j) = \dots$$

- Joint density of continuous (X,Y): $p(s,t) \geq 0, s,t \in R$,

$$P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(s, t) ds dt$$

• $X_1, X_2, ..., X_n$ are said to be independent if, for all $x_j \in R$,

$$F(x_1, x_2, ..., x_n) = P(X_1 \le x_1) P(X_2 \le x_2) ... P(X_n \le x_n).$$

If $X_1, X_2, ..., X_n$ are independent, then, for $A_1, A_2, ..., A_n \subset R$,

$$P(X_1 \in A_1, X_2 \in A_2, ..., X_n \in A_n)$$

= $P(X_1 \in A_1) P(X_2 \in A_2) ... P(X_n \in A_n).$

Discrete random variable:

$$P(X = x_k, Y = y_i) = P(X = x_k) P(Y = y_i), \text{ all } k, j$$

Continuous random variable:

$$p(s,t) = p_X(s) p_Y(t)$$
, all $s, t \in R$.

• Three useful theorems

Th1.1. Suppose that $X_1, X_2, ..., X_n$ are independent with mgfs $g_1(s), ..., g_n(s)$, respectively. Then the mgf of $S_n = \sum_{k=1}^n X_k$ is given by

$$g(s) = Es^{S_n} = \prod_{k=1}^n g_k(s).$$

Proof.

Th1.2. (adv) Let X be a r.v. only takes integer values. Then the dist of X is uniquely determined by its pgf $g(s) = Es^X$, $0 \le s \le 1$.

Th1.3. (adv) Let
$$g(t) = Ee^{tX}$$
. If $var(X) < \infty$, then

$$EX = g'(t)\big|_{t=0}, \quad var(X) = g''(t)\big|_{t=0} - [g'(t)\big|_{t=0}]^2.$$

2 Conditional probability and conditional expectation

For events A and B, we define

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \text{if } P(B) > 0.$$

If X is a discrete RV, the **conditional distribution** of X given the event B is

$$P(X = x|B) = \frac{P(X = x, B)}{P(B)}, \quad x = x_1, x_2, \dots$$

and the **conditional expectation** of X given B is

$$E[X|B] = \sum_{j=1}^{\infty} x_j P(X = x_j \mid B).$$

Note that $E[X|B] = E(XI_B)/P(B)$ if P(B) > 0.

• Suppose that X and Y are two discrete rvs, taking values $x = x_i, i = 1, 2, ...$ and $y = y_j, j = 1, 2, ...$, respectively. If $P(Y = y) \neq 0$, then

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}, \quad x = x_1, x_2, \dots$$

The law of total probability:

$$P(X = x) = \sum_{j=1}^{\infty} P(X = x \mid Y = y_j) P(Y = y_j).$$

Total expectation theorem:

$$EX = \sum_{j=1}^{\infty} E(X \mid Y = y_j) P(Y = y_j).$$

Proof.

• Suppose that X and Y are two continuous rvs having a joint density f(x,y). Let $f_X(y) = \int f(x,y)dy$ and $f_Y(y) = \int f(x,y)dx$ be marginal densities of X and Y, respectively. The **conditional density** of X given by Y = y is

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}.$$

Note that: If X and Y are independent, then $f_{X|Y}(x \mid y) = f_X(x)$ or $f(x,y) = f_X(x)f_Y(y)$.

We have:

$$P(a \le X \le b \mid Y = y) = \int_a^b f_{X|Y}(x \mid y) dx,$$

$$E(X \mid Y = y) = \int x f_{X|Y}(x \mid y) dx,$$

$$EX = \int \int x f(x, y) dx dy$$
$$= \int E(X \mid Y = y) f_Y(y) dy$$

• Conditional expectation as a Random Variable

Conditional expectations such as E(X|Y=2) or E(X|Y=5) are numbers. So $\psi(y):=E(X\mid Y=y)$ is a function of y

If we consider $\psi(Y) = E(X|Y)$, it is a random variable, which is usually called **the conditional expectation** of X given Y.

It has the following properties:

- If X and Y are independent, then $E(X \mid Y) = EX$;
- If $E|X| < \infty$, then $EX = E[E(X \mid Y)]$;
- For any functional g(X,Y) of (X,Y), we have

$$E[g(X,Y) \mid Y = y] = E[g(X,y) \mid Y = y].$$

In particular, if X and Y are independent, then

$$E[g(X,Y) \mid Y = y] = Eg(X,y).$$

- If
$$Z = g(Y)$$
, then $E(XZ \mid Y) = Z E(X \mid Y)$.

• Example : Let X and Y be independent having the same distribution with $E|X|<\infty$. Let Z=X+Y . Find E(Z|X), E(X|Z), E(XZ|X), E(XZ|Z).

3 Random sum and basic concepts of random processes

Very often in applications, we need to consider random sum: $S_N = \sum_{k=1}^N X_k$, where

- N is a random variable taking non-negative integer values with $P(N = j) = p_j, j = 0, 1, 2, ...$;
- $X_k, k \ge 1$, is a sequence of random variables.

- Queueing: N := the number of customers arriving in a specific time period, $X_k :=$ the service time required by the ith customer. Then S_N denotes the total service time required by customers arriving in that time period.
- Risk Theory: N := the number of claims arriving at an insurance company in a given week, $X_k :=$ the amount of the kth claim. Then S_N denotes the total liability for that week.

We have the following result.

• Wald's identity: If X_k are iid with $E|X_1| < \infty$ and N is non-negative integer value rv such that $\{N = n\}$ is independent of $X_1, X_2, ...$, then $ES_N = ENEX_1$ provided that $EN < \infty$.

Proof. By using the total expectation theorem: $(S_0 := 0)$

$$ES_{N} = \sum_{j=0}^{\infty} E(S_{N} | N = j) P(N = j)$$

$$= \sum_{j=0}^{\infty} E(\sum_{k=1}^{j} X_{k}) P(N = j) \text{ (due to the independence between } N \text{ and } X_{k})$$

$$= \sum_{j=0}^{\infty} (jEX_{1}) P(N = j)$$

$$= EX_{1} \sum_{j=0}^{\infty} jP(N = j) = EX_{1}EN.$$

A stochastic process is a collection of random variables

$$(X_t, t \in T) = (X_t(\omega), t \in T, \omega \in \Omega),$$

defined on some probability space (Ω, \mathcal{F}, P) , where T is an index set such as $T = \{0, 1, 2, ...\}$ or $T = [0, \infty)$, etc. We denote **state space** by S, the set of all possible values of $X_t, t \in T$.

- Let $X_k, k \ge 1$ be i.i.d r.vs only taking integer values. Let $S_0 = 0$ and $S_n = \sum_{k=1}^n X_k$. $\{S_n, n \ge 0\}$ is a random process with state space $S = \{...-2, -1, 0, 1, 2, ...\}$, This process is commonly called **Random walk**.
- Let X_t denote the total number of some events (telephone calls, customer arrivals, etc) that occurs within the time interval [0, t]. $\{X_t, t \in [0, \infty)\}$ is a random process with state space $S = \{0, 1, 2, ...\}$. This process will become the well-known **Poisson process** under some additional conditions.
- Let X_k denote the S&P 500 index in the k-th day in 1979. $\{X_k, k = 1, 2, ..., 365\}$ is a random process with state space $S = (0, \infty)$.

Remarks:

- A stochastic process is actually a function of two variables t and ω :
 - (a) for a fixed time t, it is a r.v. $X_t = X_t(\omega), \omega \in \Omega$;
 - (b) for a fixed ω , it is a function of time $X_t = X_t(\omega), t \in T$, which is called a **realization**, a **trajectory**, or a **sample** path of the process X.

It may be useful for the intuition to think of t as "time" and each ω as an individual "particle", "stock price" or "experiment". Then the picture $X_t(\omega)$ would represent the position (or the result) at time t of the particle (stock price, or experiment) ω . The idea is that if we run an experiment and observe the random values of $X_t(\omega)$ as time evolves, we are in fact looking at a sample path $\{X_t(\omega): t \geq 0\}$ for some fixed $\omega \in \Omega$. If we rerun the experiment, we will in general observe a different sample path.

• The finite-dimensional distributions (fdds) of the stochastic process $X_t, t \in T$, are the distribution of the finite-dimensional vectors

$$(X_{t_1},...,X_{t_n}), t_1,...,t_n \in T,$$

for all possible choices of times $t_1, ..., t_n \in T$ and every $n \geq 1$.

The family of fdds determines many (but not all) important properties of a stochastic process, describing the relationships among the random variables, $X_t, t \in T$.

• The process $\{X_t, t \in T\}$ is **strictly stationary** if the fdds are invariant under shifts of the index t:

$$(X_{t_1},...,X_{t_n}) =_d (X_{t_1+h},...,X_{t_n+h}),$$

for all possible $t_1, t_2, ..., t_n \in T$, $n \ge 1$, and h such that $t_1 + h, t_2 + h, ..., t_n + h \in T$, where $=_d$ denotes the same in distribution.

• The process $\{X_t, t \in T\}$ is **weakly stationary** if its mean and covariance functions are invariant under shifts of the index t:

$$EX_{t+h} = EX_t, \qquad Cov(X_{s+h}, X_{t+h}) = Cov(X_s, X_t)$$

for all possible $s, t \in T$, and h such that $s + h, t + h \in T$.

• The two modes of stationarity do not imply each other. Clearly, weak stationarity does not imply strictly stationarity. On the other hand, if $\{X_t, t \in T\}$ is strictly stationary, it may not have first and/or second moments, which is required for weak stationarity. Of course, if the second moments of X_t exist, then strictly stationarity does imply weak stationarity.

- Many important processes deal with properties of increments. Let $\{X_t, t \in T\}$ be a stochastic process and $T \in R$ be an interval.
 - X_t is said to have **stationary increments** if $X_t X_s =_d X_{t+h} X_{s+h}$, for all t, s and h with $t + h, s + h \in T$.
 - X_t is said to have **independent increments** if for for all $t_i \in T$ with $t_1 < t_2 < ... < t_n$ and $n \ge 1$

$$X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$$

are independent random variables.

Independence and stationarity are clearly two distinct concepts. Processes with increments satisfying both requirements are an important class of processes in stochastic calculus.

A random process may be considered as a well-defined process once its state space S, index set T and the joint distribution family are prescribed. Depending on the nature of the state space S and the index set T, we may classify random processes into four classes:

- **1.** Both S and T discrete: discrete valued random processes. The random walk and Markov chain are in this class.
- **2.** S discrete and T continuous: discrete valued continuous parametric random processes. The Poisson process and point processes are in this class.
- **3.** S continuous and T discrete: continuous random process with discrete parameter. Many financial random processes, such as the process in Ex 1.3, in this class.
- **4.** Both S and T continuous: continuous random processes. Brownian motion, etc, are in this class.