

Mathematik für Infotronik (28)

Gerald Kupris 15.12.2010

Hochschule Deggendorf

Funktionen-Steckbrief

Trigonometrische Funktionen

Mit trigonometrischen Funktionen oder auch Winkelfunktionen bezeichnet man rechnerische Zusammenhänge zwischen Winkel und Seitenverhältnissen, insbesondere in rechtwinkligen Dreiecken.

Sinusfunktion (sin),

Kosinusfunktion (cos),

Tangensfunktion (tan oder tg)

Kosekansfunktion (Kehrwert des Sinus: csc)

Sekansfunktion (Kehrwert des Kosinus: sec)

Kotangensfunktion (Kehrwert der Tangens: cot)

Aufgabe zur Gruppenarbeit

Teilen Sie sich in Gruppen auf und stellen Sie die folgenden trigonometrischen Funktionen in einem kurzen Vortrag vor (Definition, Steckbrief inklusive Umkehrfunktion, Beziehungen zu den anderen trigonometrischen Funktionen):

Sinusfunktion (sin),

Kosinusfunktion (cos),

Tangensfunktion (tan oder tg)

Kosekansfunktion (Kehrwert des Sinus: csc)

Sekansfunktion (Kehrwert des Kosinus: sec)

Kotangensfunktion (Kehrwert der Tangens: cot)

Trigonometrische Funktionen

$$\sin \alpha = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} = \frac{a}{c}$$

$$\cos \alpha = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}} = \frac{b}{c}$$

$$\tan \alpha = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{a}{b}$$

$$\sin \beta = \frac{\text{Gegenkathete von } \beta}{\text{Hypotenuse}} = \frac{b}{c}$$

$$\cos \beta = \frac{\text{Ankathete von } \beta}{\text{Hypotenuse}} = \frac{a}{c}$$

$$\tan \beta = \frac{\text{Gegenkathete von } \beta}{\text{Ankathete von } \beta} = \frac{b}{a}$$

15.12.2010 5

Wir betrachten den Punkt P auf dem Einheitskreis und auf einer Geraden, die um den Winkel α gegen die x-Achse gedreht ist. Der Kosinus des Winkels α ist die x-Koordinate des Punktes P, der Sinus des Winkels α ist die y-Koordinate des Punktes P. Die Funktionen Sinus und Kosinus ordnen jedem Winkel x im Bogenmaß aus der Menge der reellen Zahlen den entsprechenden Sinus- und Kosinuswert zu.

15.12.2010 6

Eigenschaften des Sinus

- ▶ Bereiche: $D = \mathbb{R}$, W = [-1, 1]
- Periode: $p = 2\pi$, Symmetrie: ungerade
- Nullstellen: $x = k \pi$
- Extremstellen: $x_H = \frac{\pi}{2} + 2k\pi$, $x_T = \frac{3\pi}{2} + 2k\pi$

Eigenschaften des Kosinus

- ▶ Bereiche: D = R, W = [-1, 1]
- Periode: $p = 2\pi$, Symmetrie: gerade
- Nullstellen: $x = \frac{\pi}{2} + k\pi$
- Extremstellen: x_H = 2kπ, x_T = π+2kπ

Für jede beliebige reelle Zahl x gelten folgende Formeln:

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\int \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\cos(\pi - x) = -\cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

Für beliebige reelle Zahlen x und y gelten die Additionstheoreme:

- $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$

Für jede beliebige reelle Zahl x gelten die Doppelwinkelformeln:

- $\cos(2x) = \cos^2 x \sin^2 x$

Tangens und Kotangens

Die Funktion Tangens ordnet einem Winkel x im Bogenmaß das Verhältnis aus Sinus und Kosinus zu:

$$\tan x = \frac{\sin x}{\cos x}.$$

Der Tangens ist für alle reellen Zahlen außer $\dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$ definiert.

Die Funktion Kotangens ordnet einem Winkel x im Bogenmaß das Verhältnis aus Kosinus und Sinus zu:

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}.$$

Der Kotangens ist für alle reellen Zahlen außer . . . , -2π , $-\pi$, 0, π , 2π , 3π , . . . definiert.

Tangens

Eigenschaften des Tangens

• Definitionsbereich: $x \neq \frac{\pi}{2} + k\pi$

- Wertebereich: W = ℝ
- Periode: p = π
- Symmetrie: ungerade
- Nullstellen: $x = k \pi$

Kotangens

Eigenschaften des Kotangens

• Definitionsbereich: $x \neq k \pi$

• Wertebereich: $W = \mathbb{R}$

Periode: $p = \pi$

Symmetrie: ungerade

Nullstellen: $x = \frac{\pi}{2} + k\pi$

Tangens und Kotangens

Für beliebige reelle Zahlen x und y gelten die Additionstheoreme

$$tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$

sofern die Nenner nicht null sind.

Allgemeine Kosinusfunktion

Eine allgemeine Kosinusfunktion wird durch

$$f(t) = A\cos(\omega t + \varphi)$$

beschrieben. Dabei bezeichnet A>0 die Amplitude, $\omega>0$ die Kreisfrequenz und φ den Phasenwinkel oder die Phasenverschiebung.

Eigenschaften der allgemeinen Kosinusfunktion

- Periode: $T = \frac{2\pi}{\omega}$
- Nullstellen: $t = -\frac{\varphi}{\omega} + \frac{T}{4} + \frac{kT}{2}$
- ► Hochpunktstellen: $t = -\frac{\varphi}{\omega} + k T$
- ► Tiefpunktstellen: $t = -\frac{\varphi}{\omega} + \frac{T}{2} + k T$

Quellen

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München, 2010

Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer Verlag, Springer Verlag, Berlin 2003

http://de.wikipedia.org