Statistique descriptive bidimensionnelle Chapitre II : Deux variables qualitatives

Anas KNEFATI

Université Rennes 2

Plan

- 1 Présentation des données : Tableau de contingence
- 2 Fréquences conjointes et fréquences marginales
- 3 Distributions conditionnelles
 - Définition
 - Représentations graphiques
- Indices de liaison
 - Khi deux : χ^2
 - Autre indicateurs liés au χ^2

Plan

- 1 Présentation des données : Tableau de contingence
- 2 Fréquences conjointes et fréquences marginales
- Oistributions conditionnelles
 - Définition
 - Représentations graphiques
- Indices de liaison
 - Khi deux : χ^2
 - Autre indicateurs liés au χ^2

- ullet X: Variable qualitative avec ℓ modalités : $x_1, x_2, ..., x_i, ..., x_\ell$
- ullet Y: Variable qualitative avec c modalités : $y_1,y_2,...,y_j,...,y_c$

Tableau de contingence

- X : Variable qualitative avec ℓ modalités : $x_1, x_2, ..., x_i, ..., x_\ell$
- Y: Variable qualitative avec c modalités : $y_1, y_2, ..., y_j, ..., y_c$

X	<i>y</i> 1	<i>y</i> 2		y_j		Ус	Total
	n ₁₁	n ₁₂		n _{1j}	• • •	n _{1c}	n _{1.}
<i>x</i> ₂	n ₂₁	n_{22}		n_{2j}	• • •	n_{2c}	<i>n</i> ₂ .
:	:						:
x_i	n_{i1}	n_{i2}		n _{ij}	• • • •	n _{ic}	n _i .
•	•						÷
$_{-}$ \times_{ℓ}	$n_{\ell 1}$	$n_{\ell 2}$	• • •	$n_{\ell j}$	• • •	$n_{\ell c}$	n_{ℓ}
Total	n _{.1}	n.2		n _{.j}		n _{.c}	n

• n_{ij} : Effectif conjoint de la ligne i et de la colonne j

- X : Variable qualitative avec ℓ modalités : $x_1, x_2, ..., x_i, ..., x_\ell$
- Y: Variable qualitative avec c modalités : $y_1, y_2, ..., y_j, ..., y_c$

X	<i>y</i> 1	<i>y</i> 2		y_j		Ус	Total
	n ₁₁	n ₁₂		n _{1j}		n _{1c}	n _{1.}
x_2	n ₂₁	n_{22}	• • •	n_{2j}	• • •	n_{2c}	n _{2.}
: : :	:						:
Xi	n _{i1}	n_{i2}	• • • •	n _{ij}	• • • •	n _{ic}	n _i .
: :							:
x_ℓ	$n_{\ell 1}$	$n_{\ell 2}$	• • •	$n_{\ell j}$	• • •	$n_{\ell c}$	n_{ℓ}
Total	n _{.1}	n _{.2}		n _{.j}		n _{.c}	n

- n_{ij} : Effectif conjoint de la ligne i et de la colonne j
- Effectif marginal de la ligne $i: n_{i.} = n_{i1} + n_{i2} + \cdots + n_{ic} = \sum_{j=1}^{c} n_{ij}$.

- X: Variable qualitative avec ℓ modalités: $x_1, x_2, ..., x_i, ..., x_\ell$
- Y: Variable qualitative avec c modalités : $y_1, y_2, ..., y_j, ..., y_c$

X	<i>y</i> 1	<i>y</i> 2		Уj		Ус	Total
	n ₁₁	n ₁₂		n _{1j}	• • •	n _{1c}	n _{1.}
<i>x</i> ₂	n ₂₁	n_{22}	• • •	n_{2j}	• • •	n_{2c}	<i>n</i> _{2.}
:	:						:
x_i	n _{i1}	n_{i2}		n _{ij}	• • • •	n _{ic}	n _{i.}
:	:						:
x_ℓ	$n_{\ell 1}$	$n_{\ell 2}$	• • •	$n_{\ell j}$	• • •	$n_{\ell c}$	n_{ℓ}
Total	n _{.1}	n _{.2}		n _{.j}		n _{.c}	n

- n_{ij} : Effectif conjoint de la ligne i et de la colonne j
- Effectif marginal de la ligne $i: n_{i.} = n_{i1} + n_{i2} + \cdots + n_{ic} = \sum_{i=1}^{c} n_{ij}$.
- Effectif marginal de la colonne $j: n_{.j} = n_{1j} + n_{2j} + \cdots + n_{\ell j} = \sum_{i=1}^{\ell} n_{ij}$.

- X: Variable qualitative avec ℓ modalités : $x_1, x_2, ..., x_i, ..., x_\ell$
- Y: Variable qualitative avec c modalités : $y_1, y_2, ..., y_j, ..., y_c$

X	Y	<i>y</i> 1	<i>y</i> ₂	 y_j		Ус	Total
	<i>x</i> ₁	n ₁₁	n ₁₂	 n _{1j}		n _{1c}	n _{1.}
	<i>x</i> ₂	n ₂₁	n_{22}	 n_{2j}		n_{2c}	<i>n</i> ₂ .
	:						:
	x_i	n _{i1}	n_{i2}	 n _{ij}		n _{ic}	n _{i.}
	:						:
	x_ℓ	$n_{\ell 1}$	$n_{\ell 2}$	 $n_{\ell j}$	• • •	$n_{\ell c}$	n_{ℓ}
	Total	n _{.1}	n _{.2}	 n _{.j}		n _{.c}	n

- n_{ij} : Effectif conjoint de la ligne i et de la colonne j
- Effectif marginal de la ligne $i: n_{i.} = n_{i1} + n_{i2} + \cdots + n_{ic} = \sum_{i=1}^{c} n_{ij}$.
- Effectif marginal de la colonne $j: n_{.j} = n_{1j} + n_{2j} + \cdots + n_{\ell j} = \sum_{i=1}^{\ell} n_{ij}$.
- Effectif total : $n = \sum_{i=1}^{\ell} \sum_{j=1}^{c} n_{ij} = \sum_{i=1}^{\ell} n_{i.} = \sum_{j=1}^{c} n_{.j}$

Exemple : Femmes et hommes ont-ils les mêmes habitudes de lecture ?

Enquête faite sur les jeunes (16-24 ans) : INSEE 2012

- X : Sexe (F et M)
- Y: Taux de lecture de livres en 2012
 - y = 0: aucun
 - y = 1: moins de 6
 - y = 2: de 6 à moins de 12
 - y = 3: de 12 à moins de 24
 - y = 4 : plus de 24

X	0	1	2	3	4	Total
F	27	36	22 12	9	5	99
Н	54	23	12	6	4	99
Total	81	59	34	15	9	198

•
$$n_{1} = 27 + 36 + 22 + 9 + 5 = 99$$
 et $n_{2} = 54 + 23 + 12 + 6 + 4 = 99$

•
$$n_{.1} = 27 + 54 = 81$$
, $n_{2.} = 36 + 23 = 59$, etc

$$n = 99 + 99 = 198$$

Plan

- Présentation des données : Tableau de contingence
- 2 Fréquences conjointes et fréquences marginales
- Oistributions conditionnelles
 - Définition
 - Représentations graphiques
- Indices de liaison
 - Khi deux : χ^2
 - Autre indicateurs liés au χ^2

Fréquences conjointes et fréquences marginales

Définition

• Fréquence conjointe de la ligne i et et de la colonne j : $f_{ij} = \frac{n_{ij}}{n}$

Fréquences conjointes et fréquences marginales

Définition

- Fréquence conjointe de la ligne i et et de la colonne j : $f_{ij} = \frac{n_{ij}}{n}$
- Fréquence marginale de la ligne $i: f_{i.} = \frac{n_{i.}}{n}$
- Fréquence marginale de la colonne $j: f_{,j} = \frac{n_{,j}}{n}$

Fréquences conjointes et fréquences marginales

Définition

- Fréquence conjointe de la ligne i et et de la colonne j : $f_{ij} = \frac{n_{ij}}{n}$
- Fréquence marginale de la ligne $i: f_{i.} = \frac{n_{i.}}{n}$
- Fréquence marginale de la colonne $j: f_j = \frac{n_{,j}}{n}$

Exemple : Habitudes de lecture

Table : Tableau des fréquences conjointes et fréquences marginales

X	0	1	2	3	4	f _{i.}
F	0.14	0.18	0.11	0.05	0.03 0.02	0.50
Н	0.27	0.12	0.06	0.03	0.02	0.50
$f_{.j}$	0.41	0.30	0.17	0.08	0.05	1.00

$$f_{13} = 0.11$$
, $f_{25} = 0.02$, $f_{2.} = 0.5$ et $f_{.1} = 0.41$

Plan

- Présentation des données : Tableau de contingence
- 2 Fréquences conjointes et fréquences marginales
- 3 Distributions conditionnelles
 - Définition
 - Représentations graphiques
- Indices de liaison
 - Khi deux : χ^2
 - Autre indicateurs liés au χ^2

Définition

Profils lignes : Habitudes de lecture en France (2012)

Distribution conditionnelle de Y sachant que l'on est dans la modalité x_i de X: définie par les fréquences

	X	0	1	2	3	4	Total
	F	0.27	0.36	0.22	0.1	0.05	1
,	Н	0.55	0.23	0.12	0.06	0.04	1

$$f_{Y=y_j|X=x_i} = \frac{n_{ij}}{n_{i.}}$$
 (notée $f_{j|i}$)

Définition

Profils lignes: Habitudes de lecture en France (2012)

Distribution conditionnelle de Y sachant que l'on est dans la modalité x_i de X: définie par les fréquences

	X	0	1	2	3	4	Total
	F	0.27	0.36	0.22	0.1	0.05	1
`	Н	0.55	0.23	0.12	0.06	0.04	1

$$f_{Y=y_j|X=x_i} = \frac{n_{ij}}{n_{i.}}$$
 (notée $f_{j|i}$)

Profils colonnes: Habitudes de lecture en France (2012)

Distribution conditionnelle de X sachant que l'on est dans la modalité y_j de Y: définie par les fréquences

$$f_{X=x_i|Y=y_j} = \frac{n_{ij}}{n_{.i}}$$
 (notée $f_{i|j}$)

X	0	1	2	3	4
F	0.33	0.61	0.65	0.60	0.56
Н	0.33 0.67	0.39	0.35	0.40	0.44
	1	1	1	1	1

Représentations graphiques

Figure: Profils-colonnes

Représentations graphiques

Figure: Profils-colonnes

Figure : Profils-lignes

Plan

- Présentation des données : Tableau de contingence
- 2 Fréquences conjointes et fréquences marginales
- Oistributions conditionnelles
 - Définition
 - Représentations graphiques
- Indices de liaison
 - Khi deux : χ^2
 - Autre indicateurs liés au χ^2

Khi deux : χ^2

Propriété

Les trois propriétés suivantes sont équivalentes :

- Tous les profils-lignes sont identiques;
- Tous les profils-colonnes sont identiques;
- Pour tout couple d'indices (i, j), on a

$$rac{n_{ij}}{n_{.j}} = rac{n_{i.}}{n}$$
 ou encore $n_{ij} = rac{n_{i.} imes n_{.j}}{n}$

Tableau d'indépendance théorique

- Ses éléments sont les effectifs théoriques : $n_{ij}^* = \frac{n_{i.} \times n_{.j}}{n}$.
- Ce tableau correspond à l'absence de lien entre les deux variables qualitatives X et Y
- Le khi deux : $\chi^2 = \sum_{i=1}^{\ell} \sum_{j=1}^{c} \frac{(n_{ij} n_{ij}^*)^2}{n_{ij}^*}$

Exemple

Tableau d'indépendance théorique : $n_{ij}^* = \frac{n_{i.} \times n_{.j}}{n}$.

	0	1	2	3	4
F	27	36	22	9	5
Н	54	23	12	6	4

Table 2 : Effectifs observés

Exemple

Tableau d'indépendance théorique : $n_{ij}^* = \frac{n_{i.} \times n_{.j}}{n}$.

	0	_	_	_	-
F	27	36	22	9	5
Н	54	23	12	6	4

	0	1	2	3	4
F	40.5	29.5	17	7.5	4.5
Н	40.5	29.5	17	7.5	4.5

Table 2 : Effectifs observés

Table 1 : Effectifs théoriques

Exemple

Tableau d'indépendance théorique :
$$n_{ij}^* = \frac{n_{i.} \times n_{.j}}{n}$$
.

	0	1	2	3	4
F	27	36	22	9	5
Н	54	23	12	6	4

Table 2 : Effectifs observés

Table 1 : Effectifs théoriques

Tableau des valeurs partielles : $\frac{(n_i - n_{ij}^*)^2}{n_{ij}^*}$

	0	1	2	3	4
F	4.5	1.43	1.47	0.3	0.06
Н	4.5	1.43 1.43	1.47	0.3	0.06

Alors
$$\chi^2 = 4.5 + 1.43 + 1.47 + ... + 0.06 = 15.52$$

Exemple : Tableau des contributions au χ^2

Tableu des contributions : Valeur partielle/ χ^2

	0	1	2	3	4
F	0.29	0.09	0.09	0.03	0
Н	0.29 0.29	0.09	0.09	0.03	0

Exemple : Tableau des contributions au χ^2

Tableu des contributions : Valeur partielle/ χ^2

	0	1	2	3	4
F	0.29	0.09	0.09	0.03	0
Н	0.29	0.09	0.09 0.09	0.03	0

Tableau des contributions en pourcentage : 100 imes Valeur partielle/ χ^2

	0	1	2	3	4
F	28.99	9.21	9.47	1.93	0.4
Н	28.99	9.21	9.47	1.93	0.4

Propriétés

- $\chi^2 \ge 0$
- $\chi^2 = n \left[\left(\sum_{i=1}^{\ell} \sum_{j=1}^{c} \frac{n_{ij}^2}{n_{i,} \times n_{,j}} \right) 1 \right]$
- $\chi^2 = 0$ ssi n est dans un cas d'indépendance stricte
- χ^2 est d'autant plus grand que la liaison entre les deux variables considérées est plus forte
- $\chi^2 \le n \times \min(\ell 1, c 1)$, cela signifie que χ^2 dépend de n, ℓ et c, ce qui est gênant pour l'interprétation concrète de ce coefficient.

Autre indicateurs liés χ^2

Coef de Pearson

 $\Phi^2 = \frac{\chi^2}{n}$, c'est un coefficient indépendant de n

Coef de Tschuprow

$$T = \sqrt{\frac{\Phi^2}{\sqrt{(\ell-1)(c-1)}}}$$
, c'est indépendant de n , ℓ et c

Coef de Cramer

$$C = \sqrt{\frac{\Phi^2}{\min(\ell,c)-1}}$$
, c'est aussi indépendant de n , ℓ et c

Remarques sur T et C

- $0 \le T \le C \le 1$
- *T* et *C* sont d'autant plus grands que la liaison entre les deux variables considérées est forte
- Dans la pratique, T et C sont rarement supérieurs à 0.5.

Exemple : Habitudes de lecture en France (2012)

$$\Phi^2 = \frac{\chi^2}{n} = \frac{15.52}{198} \approx 0.08.$$

•
$$T = \sqrt{\frac{\Phi^2}{\sqrt{(\ell-1)(c-1)}}} = \sqrt{\frac{0.08}{\sqrt{(2-1)(5-1)}}} \approx 0.2$$

•
$$C = \sqrt{\frac{\Phi^2}{\min(\ell,c)-1}} = \sqrt{\frac{0.08}{\min(2.5)-1}} \approx 0.28$$

Comme C (ou T) est proche de zéro, alors la dépendance entre le taux de lecture et le sexe est faible.