

Google Play Store Apps

Project in data exploration and visualization

Maya Al-hatmi 124062

Contents

Introduction	3
Research questions	3
Dataset	4
Description and Summery	4
Preprocessing data	6
Methods	7
Results and discussion	11
Conclusion	15
References	15

Introduction:

Google Play Store is a digital distribution service developed by google to allow users to browse and download applications developed with android software and published through google. I'm interested in studying and analyzing a dataset of google play store apps.

Research Question:

- 1. What category of apps are most prevalent among teenagers.
- 2. How business apps compared to lifestyle apps according to the size.
- 3. What is the relationship between size of app (as independent variable) and rating of app as outcome variable.
- 4. Measure the performance of the users reviews sentiment analysis.

Dataset (Description and summary):

Google play store apps dataset from kaggle website source: https://www.kaggle.com/lava18/google-play-store-apps/discussion/103760

Is a dataset collected by Lavanya Gubta . The dataset organized on CSV file contains 17 features . This multivariate structured dataset contains records of 10841 apps in google play store app ,each record has a unique name.

• The first csv file contains 13 features:

dat	data.head()												
	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone	Art & Design	7-Jan-18	1.0.0	4.0.3 and up
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	15-Jan- 18	2.0.0	4.0.3 and up
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & Design	1-Aug- 18	1.2.4	4.0.3 and up
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	8-Jun-18	Varies with device	4.2 and up
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	20-Jun- 18	1.1	4.4 and up

• The second csv contains 4 more features:

	Арр	Translated_Review	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0	10 Best Foods for You	I like eat delicious food. That's I'm cooking	Positive	1.00	0.533333
1	10 Best Foods for You	This help eating healthy exercise regular basis	Positive	0.25	0.288462
2	10 Best Foods for You	NaN	NaN	NaN	NaN
3	10 Best Foods for You	Works great especially going grocery store	Positive	0.40	0.875000
4	10 Best Foods for You	Best idea us	Positive	1.00	0.300000

Data preprocessing

I. Replace value:

A. Variable size: there are values like '100,00+','100M', and '1000k', therefore, I replace the character of ',' '+' 'M' 'K' with '' so it is better when converting from string to number.

II. Remove nan values:

A. Replace all nan values in the dataset by 0.

III. Remove duplicated rows.

IV. Remove the raw number 10472.

A. Since it causes errors in modelling.

Methods:

- 1. What category of apps are most prevalent among teenagers:
- visualize the category using pie charts . The visualization contains the percentage of each category according to where the content is for teens.

```
In [23]: #what is the most popular app among teenager?
   data1=data.loc[data['Content Rating']=='Teen']
   print(data1)
```

```
4]: #draw pie chart of category
labels = datal['Category'].value_counts().index.tolist()
sizes = [round(item,3) for item in list(datal['Category'].value_counts()/datal.shape[0])]

figl, ax1 = plt.subplots(figsize = (15,15))
ax1.pie(sizes , labels=labels, rotatelabels=True,autopct='%1.1f%%',
shadow=True, startangle=90)
ax1.axis('equal')# Equal aspect ratio ensures that pie is drawn as a circle.
plt.title("Category Distribution",size = 20,loc = "left")
plt.show()
```

2. How business apps compared to lifestyle apps according to the size.

- visualize the size and category using a bar chart.

```
Size=data["Size"]
Category=data['Category']
fig=plt.figure()
ax=fig.add_subplot(111)
rect1=ax.bar(Category,Size,align='center')
plt.xticks(rotation=90,ha='right')
plt.show()
```

- 3. What is the relationship between size of app (as independent variable) and rating of app as outcome variable.
 - build a linear regression model to study the relation between size and rating , and find correlation coefficient.

```
#build regression model
x=data['Size']
y=data['Rating']
plt.figure(figsize=(10,8))
plt.scatter(x,y)
theta1,theata0=np.polyfit(x,y,1)
plt.plot(x,theta1*x + theata0,color='black')
plt.ylabel('Rating of app')
plt.xlabel('Size of app')
plt.title('Relationship between Rating and size')
plt.show()
print("weight of X in regression model",theta1)
print("bias term = ", theata0)
print('correlation coefficient: ',np.corrcoef(x,y))
```

4. Measure the performance of the users reviews sentiment analysis.

- Build a logistic regression model to compute the accuracy of the Sentiment analysis.

```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
df1 = pd.read_csv('googleplaystore_user_reviews.csv')
data2=df1.dropna(how='any',axis=0)
x=data2["Translated_Review"]
y=data2["Sentiment"]
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
encoder.fit(y)
y = encoder.transform(y)
X_train_raw, X_test_raw, y_train, y_test =train_test_split(x, y, test_size=0.2,shuffle=False)
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train_raw)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
X_test = vectorizer.transform( X_test_raw )
predictions = classifier.predict(X_test)
print(predictions)
[2 2 1 ... 0 2 0]
```

- Clustering: cluster the data across Sentiment_Polarity and Sentiment_Subjectivity.

```
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Import the data
df = pd.read_csv('googleplaystore_user_reviews.csv')
# Standardize the data
df = df.iloc[:, 3:5]
#dropping the rows which has null value
final = df.dropna(how='any',axis=0)
X std = StandardScaler().fit transform(final)
# Run local implementation of kmeans
km = KMeans()
km = KMeans(n clusters=2, max iter=1000)
km.fit(X std)
centroids = km.cluster centers
# Plot the clustered data
fig, ax = plt.subplots(figsize=(6, 6))
plt.scatter(X_std[km.labels_ == 0, 0], X_std[km.labels_ == 0, 1],
            c='green', label ='cluster 1')
plt.scatter(X_std[km.labels_ == 1, 0], X_std[km.labels_ == 1, 1],
            c='blue', label ='cluster 2')
plt.scatter(centroids[:, 0], centroids[:, 1], marker='*', s=300,
            c='r', label='centroid')
plt.legend()
plt.xlim([-2, 2])
plt.ylim([-2, 2])
plt.xlabel('Sentiment Polarity')
plt.ylabel('Sentiment Subjectivity')
plt.title('Visualization of clustered data', fontweight='bold')
ax.set aspect('equal')
plt.show()
```

Results:

a. visualize the category using pie charts. The visualization contains the percentage of each category according to the content for teens.

- The result shows that the game is the most prevalent category of apps among teens by 29.8%.
- b. visualize the size and category using a bar chart.

- The bar chart shows that lifestyle apps are larger in size than business apps.
- c. build a linear regression model to study the relation between size and rating ,and calculate correlation coefficient.

weight of X in regression model 0.0019426500553753837

bias term = 4.147214702424731

correlation coefficient: [[1. 0.0803078][0.0803078 1.]]

- Positive correlation shows that as the number of size increases , the mean of rating also tends to increase.
- d. Build a logistic regression model to compute the accuracy of the Sentiment analysis and cluster the data across Sentiment_Polarity and Sentiment_Subjectivity.

```
#calculate the accuracy
score=classifier.score(X_test ,y_test)
score
```

0.883248730964467

- The accuracy of logistic regression is 88%, meaning that the model predicts the Sentiment correctly by 88%.
- The sentiment function of test returns two properties , polarity and subjectivity the clustering of this properties:

Conclusion:

In conclusion, there is an accelerated increase in the number of apps in google play store.

Depending on the results obtained, I expect to see more gaming apps that target teens in particular. I hope to do future analysis on the dataset and perform better results .

References:

https://www.kaggle.com/lava18/google-play-store-apps/tasks?taskId=276