4.1.5 Résumé fonctions

De manière générale, on a pour toutes les fonctions :

- a correspond à un étirement/une compression; ici, on a toujours : a > 0.
- h correspond au déplacement droite/gauche (dans le sens inverse du signe).
- k correspond au déplacement haut/bas.
- f(-x) est une réflexion sur l'axe y.

$$f(x) = (x = 1) - f(x) = -\sqrt{x}$$

Fonction logarithmique

- Forme générale : $y = \pm \log_a (\pm (x h)) + k$
- $X = \beta$ — Toutes les fonctions logarithmiques ont une asymptote verticale a.v.:
- Pour toutes les fonctions logarithmiques, on a : $Im = \bigcup$

$$D = \Im R + \infty \Gamma$$

$$\star y = -\log_a(x - h) + k$$

$$\star y = \log_a \left(-(x-h) \right) + k$$

$$D = \int -\infty$$
, β

$$\star y = -\log_a \left(-(x-h) \right) + k$$

$$D = \int_{-\infty}^{\infty} -\infty$$

Fonction exponentielle

- Forme générale : $y = \pm a^{\pm(x-h)} + k$ Toutes les fonctions logarithmiques ont une asymptote horizontale a.h.: $\forall = R$
- Pour toutes les fonctions exponentielles, on a : $b = \Omega$

$$\star \ y = a^{x-h} + k$$

$$\star y = -a^{x-h} + k \quad \beta$$

$$Im = \bigcap -\infty$$
; &

$$\star \ y = a^{-(x-h)} + k$$

$$Im = \int \mathcal{B} + \infty \int$$

$$\star y = -a^{-(x-h)} + k$$

R

R

$$Im = \int -\infty$$
 ; & [

Fonction puissance paire

- Forme générale : $y = \pm a(x h)^n + k$ avec n paire.
- f(x) = x = f(x) = f(x)— La fonction puissance paire est une fonction paire, càd $f(-x) = \int_{-\infty}^{\infty} (x)^{-x} dx$
- Toutes les fonctions puissances paires ont un sommet S:
- Pour toutes les fonctions puissances paires, on a : $D = \Omega$

$$\star y = a(x-h)^n + k = \Omega \left(-(x-h)\right)^n + \Omega$$

$$Im = \int R + \infty \int$$

$$\star \ y = -a(x-h)^n + k =$$

$$Im = \int -\infty$$

Fonction **a** puissance impaire

- Forme générale : $y = \pm a(x h)^n + k$ avec n impaire.

 La fonction puissance impaire est une fonction impaire, càd f(-x) = -f(x) and f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires, on a f(-x) = -f(x) and f(-x) = -f(x) are tions de puissance impaires.
- Pour toutes les fonctions de puissance impaires, on a : $Im = \Omega$

$$\star \ y = a(x-h)^n + k = -Q \left(-(x-k) \right)^n k \quad \star \ y = -a(x-h)^n + k = Q \left(-(x-k) \right)^n + Q \left(-(x-k) \right)^n +$$

Fonction racine paire

- Forme générale : $y = \pm a \sqrt[n]{\pm (x-h)} + k$ avec n paire.
- Toutes les fonctions racine paires ont un point de départ $A: \bigcap (\bigcap_{k} k)$

$$\star \ y = a\sqrt[n]{x - h} + k$$

$$D = \bigcap \bigcap \log \bigcap Im = \bigcap \bigcap \bigcap \log \bigcap$$

$$\star \ y = -a\sqrt[n]{x-h} + k$$

$$\star \ y = a \sqrt[n]{-(x-h)} + k$$

$$D =]-\infty$$
 , β] $Im = [\beta] + \infty [$

$$\star y = -a \sqrt[n]{-(x-h)} + k$$

$$D = \int -\infty$$
, β $Im = \int -\infty$, β

Fonction racine impaire

- Forme générale : $y = \pm a \sqrt[n]{x h} + k$ avec n impaire.
- $f(x) = \sqrt[3]{x}$ $f(x) = \sqrt[3]{x}$ — La fonction racine impaire est une fonction impaire, cad. f(-x) = -f(x)
- Toutes les fonctions racine impaires ont un point d'inflexion $I: \pm (\beta, \beta)$
- Pour toutes les fonctions racine impaires, on a : $D = \Omega$
- Pour toutes les fonctions racine impaires, on a $Im = \int \int$

$$\star \ y = a\sqrt[n]{x - h} + k =$$

$$\star y = -a\sqrt[n]{x-h} + k = D \sqrt{-(x-h)} + R$$

Fonction polynomiale

- Forme générale : $y = \pm a(x x_1)(x x_2) \cdot \ldots \cdot (x x_n) + k$
- Pour toutes les fonctions polynomiales, on a $D = \Omega$
- Toutes les fonctions polynomiales avec k = 0 coupent l'axe x en : $\mathcal{P}(X_1 \circ)$ $\mathcal{P}(X_2 \circ)$ $\mathcal{P}(X_3 \circ)$...
- Toutes les fonctions polynomiales avec $k \neq 0$ passent par les points : $\mathcal{P}(\mathbf{x}, \mathbf{k}) \quad \mathcal{P}(\mathbf{x}, \mathbf{k}) \quad \mathcal{P}(\mathbf{x}, \mathbf{k})$

$$\star y = \pm a(x - x_1)(x - x_2) \cdot \ldots \cdot (x - x_n)$$

o "a muss man ankand eines Punktis berechnen! "à se calcule à l'aide d'un point supplémentaire