

Network Infrastructures

A.A. 2019-2020 Prof. Francesca Cuomo

Review on Data Networking and the Internet

Inter-Networks: Networks of Networks

- · What is it?
 - "Connect many disparate physical networks and make them function as a coordinated unit ..." -Douglas Comer
 - Many => scale
 - Disparate => heterogeneity
- Result: Universal connectivity!
 - The inter-network looks like one large switch,
 - User interface is sub-network independent

Inter-Networks: Networks of Networks

Inter-Networks: Networks of Networks

- Internetworking involves two fundamental problems: heterogeneity and scale
- · Concepts:
 - Translation, overlays, address & name resolution, fragmentation: to handle heterogeneity
 - Hierarchical addressing, routing, naming, address allocation, congestion control: to handle scaling

IP: Internet Protocol

- · Layer 3 protocol
- Defines
 - Packet format
 - Address format
 - Data (named datagram) forwarding procedures
- Best-effort service
 - connectionless
 - unrealiable
 - With no QoS guarantess
- Specified in RFC 791 (november 1981)

IP protocol

- Connectionless delivery
 - Stateless approach
 - » No state information on datagram kept in routers
 - » No connection concept at IP layer
 - Each datagram routed independently
 - » Two packets with the same source and destination can follow two different paths
 - » In practice, most packets follow a fixed route, unless
 - Link faiulure
 - Parallel links among routers
- No QoS guarantees
 - All packets treated fairly
 - Extensions to the traditional IP QoS model

9

IP protocol: unreliable delivery

- In case of:
 - Failure (ex. out of service router, link failure)
 - » Datagram dropped end error message sent to the source
 - Buffer shortage
 - » Datagram dropped (no error message sent, since the datagram cannot be stored)
 - Checksum error (error control only over the header!)
 - » Datagram dropped
 - » No error message sent, since address may be wrong

Scalable Forwarding, Structured Addresses

- Address has structure which aids the forwarding process.
- Address assignment is done such that nodes which can be reached without resorting to L3 forwarding have the same prefix (network ID)

Scalable Forwarding, Structured Addresses

- A simple comparison of network ID of destination and current network (broadcast domain) identifies whether the destination is "directly" connected
 - I.e. Reachable through L2 forwarding only
- Within L3 forwarding, further structure can aid hierarchical organization of routing domains (because routing algorithms have other scalability issues)

13

Internet Routing Drivers

- Technology and economic aspects:
 - Internet built out of cheap, unreliable components as an overlay on top of leased telephone infrastructure for WAN transport.
 - » Cheaper components => fail more often => topology changes often => needs dynamic routing
 - Components (including end-systems) had computation capabilities.
 - » Distributed algorithms can be implemented
 - Cheap overlaid inter-networks => several entities could afford to leverage their existing (heterogeneous) LANs and leased lines to build inter-networks.
 - » Led to multiple administrative "clouds" which needed to interconnect for global communication.

Internet Routing Model

- · 2 key features:
 - Dynamic routing
 - Intra- and Inter-AS routing, AS = locus of admin control
- Internet organized as "autonomous systems" (AS).
 - AS is internally connected
- Interior Gateway Protocols (IGPs) within AS.
 - Eg: RIP, OSPF, HELLO
- Exterior Gateway Protocols (EGPs) for AS to AS routing.
 - Eg: EGP, BGP-4

15

Hierarchical routing

- · Ideal (conceptually simpler) case
 - All routers are identical
 - Flat network, no hierarchy
- Not useable in practice
 - Scalability: with 100 million of destination :
 - » All destinations in a single routing rable?
 - » Routing info exchange would require too much bandwidth
 - Administrative autonomy
 - » Internet = network of networks
 - » Each network administrator is willing to control rotuing functions within its domain

Hierarchical routing: route aggregation

Hierarchical addressing permits more efficient announcements of routing infos

Hierarchical routing: route aggregation

If ISP A has a more specific path to Organization

Hierarchical routing

- Router aggregated in Autonomous System (AS)
 - Networks with complex structure (many subnets and routers) but with the same administrative authority
 - Router within the same AS use the same routing protocol
 - Intra-AS routing protocols: (IGP: Interior Gateway Protocol)
 - » Routers belonging to different AS may use different IGP protocols

19

Hierarchical routing

- In each AS there exist "gateway" routers
 - Responsible to route to destinations external to the AS
 - Run intra-AS routing protocols with all other AS routers
 - Run also inter-AS routing protocols (EGP: Exterior Gateway Protocol)
- We can identify an internal routing (IGP) and an external routing (EGP)

Requirements for Intra-AS Routing

- Should scale for the size of an AS.
 - Low end: 10s of routers (small enterprise)
 - High end: 1000s of routers (large ISP)
- Different requirements on routing convergence after topology changes
 - Low end: can tolerate some connectivity disruptions
 - High end: fast convergence essential to business (making money on transport)
- Operational/Admin/Management (OAM) Complexity
 - Low end: simple, self-configuring
 - High end: Self-configuring, but operator hooks for control
- Traffic engineering capabilities: high end only

23

Requirements for Inter-AS Routing

- Should scale for the size of the global Internet.
 - Focus on reachability, not optimality
 - Use address aggregation techniques to minimize core routing table sizes and associated control traffic
 - At the same time, it should allow flexibility in topological structure (eg: don't restrict to trees etc)
- Allow policy-based routing between autonomous systems
 - Policy refers to arbitrary preference among a menu of available options (based upon options' attributes)
 - In the case of routing, options include advertised AS-level routes to address prefixes
 - Extensible to meet the demands for newer policies.

The Congestion Problem

- · Problem: demand outstrips available capacity
- If <u>information</u> about λ_i , λ and μ is <u>known</u> in a <u>central</u> location <u>where</u> control of λ_i or μ can be effected with <u>zero time</u> delays,
 - the congestion problem is solved!
- Unfortunately, we have incomplete info, require a distributed solution with time-varying timedelays

25

Congestion: A Close-up View

- knee point after which
 - throughput increases very slowly
 - delay increases fast
- cliff point after which
 - throughput starts to decrease very fast to zero (congestion collapse)
 - delay approaches infinity
- Note (in an M/M/1 queue)
 - delay = 1/(1 utilization)

Congestion Control vs. Congestion Avoidance

- Congestion control goal
 - stay left of cliff
- Congestion avoidance goal
 - stay left of knee
- · Right of cliff:
 - Congestion collapse

27

Goals of Congestion Control

- To guarantee stable operation of packet networks
 - Sub-goal: avoid congestion collapse
- To keep networks working in an <u>efficient</u> status
 - Eg: high throughput, low loss, low delay, and high utilization
- To provide <u>fair</u> allocations of network bandwidth among competing flows in steady state
 - For some value of "fair" ☺

QoS Challenges

- TCP/UDP/IP suite provides best-effort, no guarantees on expectation or variance of packet delay
- Streaming applications delay of 5 to 10 seconds is typical and has been acceptable, but performance deteriorate if links are congested (transoceanic)
- Real-Time Interactive requirements on delay and its jitter have been satisfied by overprovisioning (providing plenty of bandwidth), what will happen when the load increases?...

QoS Challenges

- Most router implementations use only First-Come-First-Serve (FCFS or FIFO) packet processing and transmission scheduling
- To mitigate impact of "best-effort" protocols, we can:
 - Use UDP to avoid TCP and its slow-start phase...
 - Buffer content at client and control playback to remedy jitter
 - Adapt compression level to available bandwidth

31

Fundamental QoS Problems

FIFO

0000101 B

Scheduling Discipline

- In a FIFO service discipline, the performance assigned to one flow is convoluted with the arrivals of packets from all other flows!
 - Cant get QoS with a "free-for-all"
 - Need to use new scheduling disciplines which provide "isolation" of performance from arrival rates of background traffic

Solution Approaches in IP Networks

- Just add more bandwidth and enhance caching capabilities (over-provisioning)!
- Need major change of the protocols :
 - Incorporate resource reservation (bandwidth, processing, buffering), and new scheduling policies
 - Set up service level agreements with applications, monitor and enforce the agreements, charge accordingly
- Need moderate changes ("Differentiated Services"):
 - Use two traffic classes for all packets and differentiate service accordingly
 - Charge based on class of packets
 - Network capacity is provided to ensure first class packets incur 33 no significant delay at routers

Internet transport layer

- Two alternative protocols: TCP e UDP
- · Different service models:
 - TCP is connection oriented, reliable, it provides flow and congestion control, it is stateful, it supports only unicast traffic
 - UDP is connectionless, unreliable, stateless, it supports multicast traffic
- Common characteristics:
 - Multiplexing and demultiplexing of application processes through the port mechanism
 - Error detection over header and dati (optional in UDP)

35

Mux/demux: ports

- Final destination of data is not the host but an application process running in the host
- Interface between application processes and the network architecture is named port
 - Integer number over 16 bit
 - There is an association between ports and processes
 - » Public server process are statically associated to well-know ports, with an identifier smaller than 1024 (e.g.: 80 for WWW, 25 for email)
 - » Client processes use ports dynamically assigned by the operating system, with an identifier larger than 1024
 - Each client process on a given host has a unique port number within that host

UDP: User Datagram Protocol

- Connectionless transport protocol
- · No delivery guarantee
- Two main functions:
 - Application process multiplexing through port abstraction
 - checksum (optional) to verify data integrity
- Applications using UDP should solve (if interested)
 - Reliability issues
 - » Data loss, data duplication
 - Sequence control
 - Flow and congestion control
- Standardized in RFC 768

37

UDP: packet format

UDP: applicability

- · UDP is useful when:
 - Operating in local area, a reliable network (NFS)
 - All application data are contained in a single packet, so that there is no need to open a connection for a single packet (DNS)
 - Full reliability is not fundamental (some intercative video/audio service)
 - A fast protocol is needed
 - » Connection opening overhead avoided
 - » Retransmission mechanisms to ensure reliability cannot be used due to strict timing constraints
 - Application manages retransission mechanisms (DNS)
 - Need to send data at constant rate or at a rate independent from the network (some interactive video-audio services)

39

TCP protocol

- · TCP (Transmission Control Protocol) is
 - Connection oriented
 - Reliable (through retransmission)
 - » Correct and in-order delivery of stream of data
 - Flow control
 - Congestion control
- Used by applications requiring reliability
 - telnet (remote terminal)
 - ftp (file transfer protocol)
 - smtp (simple mail transfer protocol)
 - http (hypertext transfer protocol)

TCP

- Multiplexing/demultiplexing through ports
- Connection opened between two TCP entities (service similar to a virtual circuit)
 - bidirectional (full duplex)
 - With error and sequence control
- It is more complex than UDP, it requires more CPU and memory, state information (port numbers, window size, etc) must be kept in each host for each TCP connection

41

TCP

- TCP freely segments and reassembles data:
 - Manages byte stream generated by application protocols; unstructured data at TCP level
 - A FIFO buffer byte oriented is the interface between TCP and application processes
- Window protocol to ensure reliability
- Flow control and congestion control operates on the transmitter window size
 - Flow control executed by the TCP receiver exploiting the window field in the TCP header
 - Congestion control autonomously executed by the TCP transmitter

TCP: connection identification

- A TCP connection is identified uniquely by:
 - Source and destination IP addresses (layering principle violation)
 - Source and destination port numbers
 - Example: TCP connection identifed by porta 15320 on host with IP address 130.192.24.5 and port 80 on host with IP address 193.45.3.10
- Note that TCP and UDP use port numbers are independent

RTP

- Real-Time Transport Protocol is an Internet protocol standard to manage real-time transmission of multimedia data
- RTP is commonly used in Internet telephony applications.
- RTP combines its data transport with a control protocol (RTCP), which makes it possible to monitor data delivery for large multicast
- RTP runs on top of UDP

45

RTP

- RTP includes:
 - a sequence number, which is used to detect lost packets;
 - payload identification, which describes the specific media encoding so that it can be changed if it has to adapt to a variation in bandwidth;
 - frame indication, which marks the beginning and end of each frame;
 - source identification, which identifies the originator of the frame;
 - intramedia synchronization, which uses timestamps to detect different delay jitter within a single stream and compensate for it

RTPC

- RTPC includes:
 - quality of service (QoS) feedback, which includes the numbers of lost packets, round-trip time, and jitter, so that the sources can adjust their data rates accordingly;
 - session control, which uses the RTCP BYE packet to allow participants to indicate that they are leaving a session;
 - identification, which includes a participant's name, e-mail address, and telephone number for the information of other participants;
 - intermedia synchronization, which enables the synchronization of separately transmitted audio and video streams.