A Differentiable POGLM with Forward-Backward Message Passing

Chengrui Li, Weihan Li, Yule Wang, Anqi Wu @ GaTech CSE

Contents

- 1. Partially observable generalized linear model (POGLM)
- 2. Variational inference (VI)
 - Inference methods
 - Sampling schemes
- 3. Experiments

1 Partially observable generalized linear model (POGLM)

Introduction

- The partially observable generalized linear model (POGLM) is a powerful tool for understanding neural connectivity under the assumption of existing hidden neurons.
- POGLM itself is a difficult problem.
- Two main issues and our contributions:
 - The gradient estimator used in variational inference (VI).
 - The sampling scheme of the variational model.
- Comprehensive experiments on one synthetic and two real-world datasets.

POGLM

• V visible neurons and H = N - V hidden neurons.

visible/hidden spike counts
$$\begin{bmatrix} \boldsymbol{x}_t \\ \boldsymbol{z}_t \end{bmatrix} \sim \operatorname{Pois} \begin{pmatrix} \begin{bmatrix} \boldsymbol{f}_t \\ \boldsymbol{g}_t \end{bmatrix} \end{pmatrix}$$
 visible/hidden firing rates

$$\begin{bmatrix} \boldsymbol{f}_t \\ \boldsymbol{g}_t \end{bmatrix} = \sigma \left(\begin{bmatrix} \boldsymbol{b}_V \\ \boldsymbol{b}_H \end{bmatrix} + \begin{bmatrix} \boldsymbol{W}_{V \leftarrow V} & \boldsymbol{W}_{H \leftarrow V} \\ \boldsymbol{W}_{V \leftarrow H} & \boldsymbol{W}_{H \leftarrow H} \end{bmatrix} \left(\sum_{l=1}^L \psi_l \begin{bmatrix} \boldsymbol{x}_{t-1} \\ \boldsymbol{z}_{t-1} \end{bmatrix} \right) \right)$$
 bias weight convolved history

- Observed variable: visible spike train $X = [x_1, ..., x_T]^T \in \mathbb{N}^{T \times V}$.
- Latent variable: hidden spike train $\mathbf{Z} = [\mathbf{z}_1, ..., \mathbf{z}_T]^{\mathrm{T}} \in \mathbb{N}^{T \times H}$.
- Generative parameter set: $\theta = \{ \boldsymbol{b} \in \mathbb{R}^{V+H}, \boldsymbol{W} \in \mathbb{R}^{(V+H)\times(V+H)} \}$.

2 Variational inference (VI)

Variational inference (VI)

- Variational model $q(\mathbf{Z}|\mathbf{X};\phi)$ parameterized by ϕ .
- Inference methods: $z_t \sim \text{Pois}(g_t)$.
- Sampling schemes: g_t = function(X; ϕ).
- Evidence lower bound:

$$ELBO(X; \theta, \phi) = \mathbb{E}_q[\ln p(X, Z; \theta) - \ln q(Z|X; \phi)]$$

Inference methods: Gradient estimators

	score function	pathwise
distribution	any distribution	continuous distribution with reparameterization trick $\mathbf{Z} \mathbf{X}; \phi = r(\boldsymbol{\epsilon} \mathbf{X}; \phi)$
samples	$\left\{\mathbf{Z}^{(k)}\right\}_{k=1}^{K} \sim q(\mathbf{Z} \mathbf{X};\phi)$	$\left\{\boldsymbol{\epsilon}^{(k)}\right\}_{k=1}^K \sim R(\boldsymbol{\epsilon})$
$\frac{\partial \mathrm{ELBO}(\boldsymbol{X};\theta,\phi)}{\partial \phi} \approx$	$\frac{\partial}{\partial \phi} \frac{-1}{2K} \sum_{k=1}^{K} \left[\ln p(\mathbf{X}, \mathbf{Z}^{(k)}; \theta) - \ln q(\mathbf{Z}^{(k)} \mathbf{X}; \phi) \right]$	$\frac{\partial}{\partial \phi} \frac{1}{K} \sum_{k=1}^{K} \left[\ln p(\mathbf{X}, r(\boldsymbol{\epsilon}^{(k)} \mathbf{X}; \phi); \theta) - \ln q(r(\boldsymbol{\epsilon}^{(k)} \mathbf{X}; \phi) \mathbf{X}; \phi) \right]$

Inference methods: Relaxation

Inference methods: Candidate distributions

• Replace the distribution $\mathbb{P}[z;g]$ in the generative and variational model with the following distributions governed by $\mathbb{E}[z]=g$.

Sampling schemes

3 Experiments

Synthetic

Retinal ganglion neurons (Pillow & Scott, 2012)

Primary visual cortex (cncrs: PVC-5)

Summary

Thanks for listening!