高级Hive 潭唐华

课程大纲

- Hive数据压缩
- ·Hive数据存储
- · Hive企业优化

Hive数据压缩

- 压缩格式: bzip2, gzip, lzo, snappy等
- 压缩比: bzip2>gzip>lzo bzip2最节省存储空间
- 解压速度: Izo>gzip>bzip2 Izo解压速度是最快的

压缩特点

- Hadoop jobs are usually IO bound;
- Compression reduces the size of data transferred across network;
- Overall job performance may be increased by simple enabing compression;
- Splittability must be taken into account;

MapReduce中的压缩

MapReduce支持压缩格式

- Zlib → org.apache.hadoop.io.compress.DefaultCodec
- Gzip → org.apache.hadoop.io.compress.GzipCodec
- o Bzip2 → org.apache.hadoop.io.compress.BZip2Codec
- Lzo → com.hadoop.compression.lzo.LzoCodec
- Lz4 → org.apache.hadoop.io.compress.Lz4Codec
- Snappy → org.apache.hadoop.io.compress.SnappyCodec

MapReduce压缩设置

Compressed File format is auto recognized with extension. Codec must be defined in core-site.xml. Input Usage Compress mapreduce.map.output.compress = True; Intermediate Data mapreduce.map.output.compress.codec = CodecName; (Map Output) mapreduce.output.fileoutputformat.compress = Compress Job True: Output mapreduce.output.fileoutputformat.compress.codec (Reducer Output) = CodecName;

Hive压缩设置

Compressed Input Usage	Can be defined in table definition STORED AS INPUTFORMAT \"com.hadoop.mapred.DeprecatedLzoTextInputFormat\"
Compress Intermediate Data (Map Output)	SET hive.exec.compress.intermediate = True; SET mapred.map.output.compression.codec = CodecName; SET mapred.map.output.compression.type = BLOCK / RECORD; Use faster codecs such as Snappy, Lzo, LZ4 Useful for chained mapreduce jobs with lots of intermediate data such as joins.
Compress Job Output (Reducer Output)	SET hive.exec.compress.output = True; SET mapred.output.compression.codec = CodecName; SET mapred.output.compression.type = BLOCK / RECORD;

课程大纲

- · Hive数据压缩
- · Hive数据存储
- · Hive企业优化

Hive数据存储

- Hive支持文件格式
 - TextFile
 - RCFILE
 - ORC
 - Parquet
 - AVRO

行存储和列存储

Logical table representation

а	b	С
a1	b1	c1
a2	b2	c2
a3	b3	сЗ
a4	b4	c4
a5	b5	с5

Row layout

Column layout

ORC格式(hive/shark/spark支持)

存储方式采用数据按行分块,每块按照 列存储

压缩快, 快速列存取

效率比rcfile高,是rcfile的改良版本

PARQUET格式

■ PARQUET格式 (twitter+cloudera开源, Hive、Spark、drill, Impala、Pig等支持)

- > 列式存储格式
- 高效压缩和编码,且使用更少的IO 操作取出需要的数据。
- ➤ Parquet比较复杂,其灵感主要来自于dremel, Parquet存储结构的主要亮点是支持嵌套数据结构以 及高效且种类丰富的算法(以应对不同值分布特征的 压缩)

压缩对比

课程大纲

- · Hive数据压缩
- · Hive数据存储
- Hive企业优化

Hive企业优化

- 大表【拆分】
 - 子表
- 外部表、分区表
 - 结合使用
 - 多级分区
- 数据
 - 存储格式 (textfile、orcfile、parquet)
 - 数据压缩 (snappy)

- ♦ SQL
 - 优化SQL语句
 - join , filter
- MapReduce
 - Reduce Number
 - JVM重用
 - 推测执行

Hive企业优化

◆ 并行执行

hive. exec. parallel. thread. number

8

hive. exec. parallel

false

◆ Reduce数目

mapreduce. job. reduces

1

◆ JVM重用

mapreduce.job.jvm.numtasks

1

◆ 推测执行

mapreduce.map.speculative	true
hive. mapred. reduce. tasks. speculative. execution	true
mapreduce.reduce.speculative	true

◆ Map数目

hive.merge.size.per.task

256000000

严格模式

-- 对分区表进行查询,在 where 子句中没有加分区过滤的话,将禁止提交任务 (默认: nonstrict)

set hive.mapred.mode=strict;

注: 使用严格模式可以禁止 3 种类型的查询:

- (1) 对于分区表,不加分区字段过滤条件,不能执行
- (2) 对于 order by 语句, 必须使用 limit 语句。
- (3) 限制笛卡尔积的查询(join 的时候不使用 on,而使用 where 的)。

Hive传递参数

hivevar和hiveconf传递变量的方法

hive -hivevar -f file	hive -hivevar tbname='a' -hivevar count=10 -f filename.hql
hive -hivevar -e cmd	hive -hivevar tbname='a' -hivevar count=10 -e 'select * from \${hivevar:tbname} limit \${hivevar:count}'
hive -hiveconf -f file	hive -hiveconf tbname='a' – hiveconf count=10 -f filename.hql
hive -hiveconf -e cmd	hive -hiveconf tbname='a' -hiveconf count=10 -e 'select * from \${hivevar:tbname} limit \${hivevar:count}'

元数据备份

- mysql备份:备份的数据库名称是metastore
- \$ mysqldump -uroot -p metastore > /path/metastore.sql
- mysql还原:
- 方式1: \$ mysql -uroot -p metastore < /path/metastore.sql
- 方式2: \$ mysql -uroot -p
- mysql> source /path/metastore.sql;

总结

- · Hive数据压缩和文件存储格式
- · Hive企业优化策略