Feuille 8 – Applications linéaires (Suite)

Exercice 1:

Dans \mathbb{R}^3 , on pose $B_c=\{e_1,e_2,e_3\}$ la base canonique de \mathbb{R}^3 , et on définit $u\in\mathcal{L}(\mathbb{R}^3)$ par :

$$u(e_1) = -2e_1 + 2e_3$$
, $u(e_2) = 3e_2$, $u(e_3) = -4e_1 + 4e_3$

- 1) Trouver une expression de u(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
- 2) Déterminer une base et la dimension de ker(u). Est-ce un endomorphisme injectif ? surjectif ? bijectif ?
- 3) Déterminer le rang de u, puis déterminer une base de l'image de u.
- 4) Montrer que $E = \ker(u) \oplus \operatorname{Im}(u)$.

Exercice 2:

Soit E un \mathbb{K} -espace vectoriel. Soit F un sev de E, notons G un supplémentaire de F dans E. Ainsi pour tout $x \in E$, il existe $x_F \in F$, $x_G \in G$, tels que $x = x_F + x_G$.

On dit qu'un endomorphisme p est un « projecteur sur F par rapport à G » si pour tout $x \in E$, on a

$$p(x) = x_F$$
.

- 1) Soit p un projecteur de E. Montrer que $p^2 = p$. (On admettra la réciproque dans la suite de l'exercice).
- 2) Soient p et q deux projecteurs de E différents et non nuls.
 - a) Soit $\lambda \in \mathbb{R}^*$ tel que $p = \lambda q$. Montrer que $\lambda^2 = \lambda$.
 - b) Montrer que la famille (p, q) est nécessairement libre.
- 3) Soient p et q deux projecteurs de E.
 - a) Supposons que p+q soit un projecteur. Montrer que $p \circ q + q \circ p = 0$, puis que

$$p \circ q = -p \circ (q \circ p) = q \circ p$$

b) Montrer que p+q est un projecteur de E si et seulement si $p \circ q = q \circ p = 0$.

Exercice supplémentaire :

Soient:

$$I = \int_0^{\pi} e^x \cos(x) dx$$
, $J = \int_0^{\pi} e^x \sin(x) dx$.

1) Montrer que

$$I = I - e^{\pi} - 1$$
 et $I = -I$.

2) En déduire la valeur de *I* et *J*.