Node-screening tests for the ℓ_0 -penalized least-squares problem

Théo Guyard*, Cédric Herzet[†], Clément Elvira[‡]

*Applied Mathematics Department, INSA Rennes, France | †SIMSMART team, INRIA Rennes-Bretagne Atlantique, France | ‡SCEE team, CentraleSupelec Rennes, France

Objectives

Reduce the optimization time of a Branch-and-Bound (BnB) solving the ℓ_0 -penalized least-squares problem by detecting nodes of the search tree that cannot yield a global optimizer.

Introduction

• Sparse decomposition aims at finding some approximation of a vector \mathbf{y} as the linear combination of a few columns of a dictionary \mathbf{A} . The ℓ_0 -penalized least-squares problem is one way to achieve this :

 ℓ_0 -penalized least-squares problem

- Highlights:
- NP-hard problem
- Mixed-Integer Program (MIP) reformulation thanks to the Big-M constraint
- Addressable with BnB algorithms
- Recent advances by Atamturk et. al.:
- Screening tests to detect zero and non-zero element of the solution
- This allows a dimensionality reduction in pre-processing
- Our contributions :
- Node-screening tests to detect combinations of zero and non-zero elements that cannot yield an optimal solution.
- This allows a dimensionality reduction at any step of the optimization process.

BnB procedures

• Generic procedure :

- Particularized to our problem :
- Binary decision tree where new decision concerning the *nullity of a coefficient* is taken at each node
- Each node is defined by (S_0, S_1, \bar{S}) where S_0 and S_1 contain the indices which are forced to be *zero* and *non-zero* and where \bar{S} gathers all the *unfixed* indices.
- What impacts the efficiency of the algorithm:
- Number of nodes processed
- Ability to process nodes quickly

Node-screening tests

- Underlying idea:
- i) We are at a given node ν
- ii) We select an unfixed index i
- iii) We compute a lower bound $d_l^{\nu \cup \{i\}}$ on $p_l^{\nu \cup \{i\}}$ at a very low computational cost
- iv) If $d_l^{\nu \cup \{i\}} > p_u$, then the node $\nu \cup \{i\}$ needs not be explored

But ... It is like the pruning step isn't it?

- Differences with the pruning step:
- We can test *any* unfixed index
- Node-screening tests do not bring any computational overhead
- They allow to fix multiple variables simultaneously

Main ingredients

- In the BnB, p_l^{ν} is obtained by solving the convex relaxation of the initial problem with the current node constraints
- We construct the *dual* of this relaxation
- Duals have a very similar expression between consecutive nodes
- This allows compute the lower bound $d_l^{\nu \cup \{i\}}$ with no additional cost for several i
- And therefore to prune *multiple nodes* simultaneously!

Numerical results

- Data generation:
- 1) Generate a random matrix $\mathbf{A} \in \mathbf{R}^{500 \times 1000}$ with a correlation ρ between the columns
- 2) Generate a k-sparse vector $\mathbf{x}^{\dagger} \in \mathbf{R}^n$
- 3) Set $\mathbf{y} = \mathbf{A}\mathbf{x}^{\dagger} + \text{noise with 10dB SNR}$
- 4) Calibrate λ and M statistically to recover \mathbf{x}^{\dagger}
- Concurrent methods:
- Direct method using CPLEX
- Tailored BnB algorithm from Mhenni et. al.
- Tailored BnB algorithm with node-screening

	Direct			BnB			BnB+scr		
ρk	N	Τ	F	N	Τ	$F \mid$	N	Τ	F
5	96	25.9	0	70	1.5	0	56	0.7	0
Mo7 9	292	60.8	0	180	5.1	0	152	3.0	0
	781	102.6	10	483	15.6	0	412	9.8	0
High	1,424	10.2	0	965	6.4	0	725	4.2	0
	17,647	106.5	0	10,461	79.3	0	7,881	52.2	0
	80,694	353.4	50	47,828	346.4	48	41,166	267.0	40

Table: Number of nodes explored (N), solving time in sec (T) and number of instances not solved within 10^3 sec (F).

- Observations:
- BnB+scr outperforms the two other methods
- The reduction in the solution time is more important than the reduction in the number of nodes explored
- Double kiss-cool effect: the bounding step is performed all the faster as *many variables are* fixed by the node-screening tests

Take home message

In a BnB applied to a sparse problem, there is not always need to spend too much computation in the bounding process. Many nodes that can be *easily pruned* by performing *simpler and cheaper tests* like the node-screening one.

