

Therese M-L Andersson

Biostatistics 1:Introduction to biostatistics

November 2024

Introduction

- Previously we have modelled linear relationships between Y (response) & X (predictor)
- The truth is almost never linear; but sometimes good enough
- One alternative is to categorise continuous variables
- Continuous non-linear relationships are more flexible, and sometimes preferable

Example data

■ Let's say that we want to model the relationship between the predictor X and the response Y, plotted in the graph below

Figure 1: Scatter plot of example data, tmp

Linear function

Karolinska Institutet

Linearity gives the result below

Figure 2: Linearity

This can be written as:

$$y = f(x) = \beta_0 + \beta_1 \cdot x$$

$$y = f(x) = \beta_0 \cdot b_0(x) + \beta_1 \cdot b_1(x)$$

■
$$y = f(x) = \sum_{i=0}^{1} \beta_i \cdot b_i(x)$$
,
where $b_0(x) = 1$, $b_1(x) = x$ are called **basis** functions

Alternatively (and in this case better), we can fit a non-linear model using polynomials

Call:
$$lm(formula = y ~ x + I(x^2), data = tmp)$$

Coefficients:

	Estimate	Std. Erro	r t value	Pr(> t
(Intercept)	0.8655	0.1834	4.721 5	.43e-06
x	-3.5223	0.8409	-4.189 4	.82e-05
I(x^2)	3.2885	0.8092	4.064 7	.82e-05

R-squared: 0.1066

Figure 3: Polynomial with degree 2

This can be written as:

$$f(x) = \sum_{i=0}^{2} \beta_i \cdot b_i(x)$$

What are the basis functions?

Alternatively (and in this case better), we can fit a non-linear model using polynomials

Call:
$$lm(formula = y ~ x + I(x^2), data = tmp)$$

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.8655 0.1834 4.721 5.43e-06 -3.5223 0.8409 -4.189 4.82e-05 $I(x^2)$ 3.2885 0.8092 4.064 7.82e-05

R-squared: 0.1066

Figure 3: Polynomial with degree 2

This can be written as:

$$f(x) = \sum_{i=0}^{2} \beta_i \cdot b_i(x)$$

What are the basis functions?

$$b_0(x) = 1, b_1(x) = x, b_2(x) = x^2$$

More flexibility with higher degree polynomials

Call: $lm(formula = y ~ x + I(x^2) + I(x^3), data = tmp)$

Coefficients:

	-		
	Estimate	Std. Error	t value Pr(> t
(Intercept)	1.2678	0.2432	5.212 6.25e-07
x	-8.2389	2.0854	-3.951 0.000121
I(x^2)	14.9631	4.8052	3.114 0.002222
I(x^3)	-7.7315	3.1383	-2.464 0.014918

Figure 4: Polynomial with degree 3

R-squared: 0.1423

This can be written as:

$$f(x) = \sum_{i=0}^{3} \beta_i \cdot b_i(x)$$

What are the basis functions?

I)

More flexibility with higher degree polynomials

I)

Call: $lm(formula = y ~ x + I(x^2) + I(x^3), data = tmp)$

Coefficients:

	Estimate	Std. Erron	r t value Pr(> t
(Intercept)	1.2678	0.2432	5.212 6.25e-07
x	-8.2389	2.0854	-3.951 0.000121
I(x^2)	14.9631	4.8052	3.114 0.002222
I(x^3)	-7.7315	3.1383	-2.464 0.014918

Figure 4: Polynomial with degree 3

R-squared: 0.1423

This can be written as:

$$f(x) = \sum_{i=0}^{3} \beta_i \cdot b_i(x)$$

What are the basis functions?

$$b_0(x) = 1, b_1(x) = x, b_2(x) = x^2, b_3(x) = x^3$$

Piecewise

If polynomials do not work, we can:

- divide the total function into parts using **knots** Here: $m_1 = 0.2$, $m_2 = 0.5$, $m_3 = 0.8$
- fit various polynomials for each part

Piecewise constant

Figure 5: Piecewise constant

$$f(x) = \sum_{i=0}^{3} \beta_i \cdot b_i(x)$$

Call:

Coefficients:

Estimate Std. Error t value Pr(>|t|)
xp1 0.6335 0.1339 4.731 5.22e-06
xp2 -0.1247 0.1093 -1.140 0.2560
xp3 0.1364 0.1093 1.248 0.2142
xp4 0.3479 0.1339 2.598 0.0103

R-squared: 0.1797

Basis functions:

$$b_0(x) = 1$$
 if $(x < m_1)$,
 $b_1(x) = 1$ if $(m_1 \ge x < m_2)$,
 $b_2(x) = 1$ if $(m_2 \ge x < m_3)$,
 $b_3(x) = 1$ if $(x > m_3)$.

Piecewise cubic

Figure 6: Piecewise cubic

Basis functions:

$$b_0(x) = 1, b_1(x) = x, b_2(x) = x^2, b_3(x) = x^3$$
 if $(x < m_1)$ and 0 otherwise, $b_4(x) = 1, b_5(x) = x, b_6(x) = x^2, b_7(x) = x^3$ if $(m_1 \ge x < m_2)$ and 0 otherwise, $b_8(x) = 1, b_9(x) = x, b_{10}(x) = x^2, b_{11}(x) = x^3$ if $(m_2 \ge x < m_3)$ and 0 otherwise, $b_{12}(x) = 1, b_{13}(x) = x, b_{14}(x) = x^2, b_{15}(x) = x^3$ if $(x < m_1)$ and 0 otherwise.

Call: lm(formula = v ~ 0 + int1 + int2 + int3 + vant4 +xp3 + xp4 + xpsq1 + xpsq2 + xpsq3 + xpsq4 + xpcub1 +

xpcub2 + xpcub3 + xpcub4, data = tmp) Coefficients: 0.3936 0.3439 1.145

Estimate Std. Error t value Pr(>|t|) int1 0.25445 int2 2.5333 4.8950 0.518 0.60564 int3 96.1711 32.9519 2.919 0.00413 int4 -292 9223 368 6509 -0.7950.42826 xp1 -10.291614.1744 -0.7260.46906 0.0537 44.2323 0.001 0.99903 xp2 хр3 -473.5037 153, 9935 -3.0750.00255 xp4 984.3260 1229.2547 0.801 0.42469 189.9589 157.9880 1.202 0.23134 xpsq1 xpsq2 -40.7607 128.7640 -0.317 0.75208 xpsq3 756.3631 237.6620 3.183 0.00182 xpsq4 -1087.6323 1363.4194 -0.7980.42644 -635.6230 503.0196 -1.264xpcub1 0.20856 xpcub2 52.1983 121.1653 0.431 0.66730 -392.4121 121.1653 -3.239 0.00151 xpcub3 395.6790 503.0196 0.787 0.43290 xpcub4 R-squared: 0.7609

Alternatively, the same function can be rewritten with different basis functions as:

Karolinsk Institutet

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

$$+ \beta_4 (x - m_1)_+^0 + \beta_5 (x - m_1)_+^1 + \beta_6 (x - m_1)_+^2 + \beta_7 (x - m_1)_+^3$$

$$+ \beta_8 (x - m_2)_+^0 + \beta_9 (x - m_2)_+^1 + \beta_{10} (x - m_2)_+^2 + \beta_{11} (x - m_2)_+^3$$

$$+ \beta_{12} (x - m_3)_+^0 + \beta_{13} (x - m_3)_+^1 + \beta_{14} (x - m_3)_+^2 + \beta_{15} (x - m_3)_+^3$$

The + function is defined as:

$$u_+ = u \text{ if } u > 0$$

$$u_+ = 0$$
 if $u \le 0$

and

$$u_{+}^{0} = 1 \text{ if } u > 0$$

$$u_{\perp}^0 = 0$$
 if $u \leq 0$

- The fitted function in the previous slide is not continuous
- To connect the function at the knots and make the function more smooth, continuity constraints can be enforced by removing specific terms
- This gives the function:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sum_{i=1}^3 \beta_{i+3} (x - m_i)^3$$

- This function is an example of regression splines
- You will be asked to derive the above equation in an exercise.

- Splines are defined by piecewise polynomials of a certain degree (k) connected at specific points called knots (m).
- Smoothness is enforced by continuity in derivatives up to degree k-1 at each knot.

Truncated power basis functions:

$$b_0(x) = 1,$$
 $b_i(x) = x^i,$ for $i = 1, ..., k$ $b_{k+j}(x) = (x - m_j)_+^k,$ for $j = 1, ..., M$

Also possible to restrict the function to be linear before the first and after the last knot (more on that later).

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.1152	0.2587	0.445	0.65679	
x	4.1446	6.4288	0.645	0.52016	
I(x^2)	29.3238	42.6074	0.688	0.49242	
I(x^3)	-145.2250	81.9182	-1.773	0.07839	
xptr1	283.2815	93.0715	3.044	0.00278	
xptr2	-294.7164	25.8616	-11.396	< 2e-16	
xptr3	358.0500	85.8638	4.170	5.26e-05	

R-squared: 0.7224

Figure 7: Cubic spline

■ Typically, *cubic* polynomials (k = 3) are used due to their ability to maintain smoothness while minimising complexity [1].

B-splines

- Firstly proposed by de Boor (1978)
- They are based on the idea of Cubic Beizier curve

$$C_0(t) = (1-t)^3 m_0 + 3(1-t)^2 \cdot t \cdot m_1 + 3(1-t) \cdot t^2 \cdot m_2 + t^3 \cdot m_3,$$
 where $m_0, \dots m_3$ are knots

- Basis function B_i of order k is defined recursively
- The basis function of order 0 $B_{i,0}$ depends on 2 knots, m_i, m_{i+1} , while $B_{i,1}$ depends on 3 knots $m_i, m_i + 1, m_{i+2}$, and $B_{i,k}$ depends on k+2 knots

B-splines, features

- The number of needed B basis functions i = n + k + 1, where n the number of internal knots
- The B-spline basis functions are nonzero over an interval spanning at most k + 2 knots, i.e. $B_{i,k}$ is positive for $x \in (t_i, t_{i+k+1})$ and zero for outside the interval
- Non zero basis functions sums to 1

B-basis functions, example

Figure 8

- The number of basis $\frac{\text{Karolinska}}{\text{Institutet}}$ functions = 4 + 3 + 1 = 8
- Each of them must be non-zero at most 5 knots (5 consecutive intervals), here max is 3
- All of them sum to 1
- Each basis function can be split into an increasing section and a decreasing one, except
- The first and last curve are the only monotonous functions in the entire set (strictly decreasing / strictly increasing)

Natural splines

Cubic polynomial functions can be unstable near the boundaries, thus, extrapolation can be challenging

Additional constraints: f(x) is linear beyond the boundaries, i.e. the first & second derivatives are zero outside the boundaries

Definition: If $\mathbf{B_3}(\mathbf{x})$ represent the cubic B-spline basis vector, then $N(x) = \mathbf{H^T} \cdot \mathbf{B_3}(\mathbf{x})$ is a vector of natural cubic basis if $\mathbf{C^T} \cdot \mathbf{H} = 0$, where $\mathbf{C^T}$ is a matrix of second derivatives of B-basis functions at boundary knots:

$$\mathbf{C} = \left(\frac{d^2\mathbf{B_3(x)}}{dx^2}\big|_{x=L}, \frac{d^2\mathbf{B_3(x)}}{dx^2}\big|_{x=U}\right)$$

and **H** is a $i \times l$ full column rank matrix (i = m + 3 + 1 is the number of B-basis functions, l = m + 2 is the number of natural spline basis functions, and m is the number of internal knots)

Natural splines

Matrix C can be explicitly written down for cubic B-splines

Then the chosen matrix **H** consists of nonnegative elements. The natural cubic basis are thus nonnegative within the boundary [3]:

Figure 9

Natural vs B-splines

Figure 10

Smoothing splines

Karolinska Institutet

All above discussed splines are referred to regression splines.

Smoothing splines, also known as *P-splines*, is a commonly used penalized regression splines. It based on the cubic B-spline basis function and a second-order difference penalty defined as:

$$J_{\beta}^* = \sum (\Delta^2 \beta_k)^2$$

P-spline offers an alternative approach to smoothly model the underlying function by incorporating a penalty functions and a large amount of knots[2].

Do not require knot selection, but may not capture complex relationships in the data.

Determining the parameter on the penalty function can lead to an additional optimization problem.

Bs, Ns, & penalised

Figure 11: Caption

Choice of the number and location of knots

- [1] P.L. Smith. "Splines As a Useful and Convenient Statistical"
 Tool". In: The American Statistician 33.2 (1979), pp. 57–62.
 ISSN: 00031305. URL:
 http://www.jstor.org/stable/2683222 (visited on 05/23/2023).
- [2] A. Perperoglou et al. "A review of spline function procedures in R". In: BMC Medical Research Methodology 19.46 (2019). DOI: https://doi.org/10.1186/s12874-019-0666-3. URL: https://doi.org/10.1186/s12874-019-0666-3.
- [3] Wenjie Wang and Jun Yan. "Shape-Restricted Regression Splines with R Package splines2". In: *Journal of Data Science* 19.3 (2021), pp. 498–517. ISSN: 1680-743X. DOI: 10.6339/21-JDS1020.