	大 JUST	风间多词	TONTEA	CHLIC	OSE ONE!
		Solution			Marks
I. Since I	$P(A \cup B) = P(A)$	$+ P(B) - P(A \cap B)$)		IM
and I	$P(A \cap B) = P(A)$	P(B)			1M
∴ (0.7 = 0.4 + P(B) -	0.4 P(B)			IA
ī	P(B) = 0.5				1A
					(4)
2. (a) Since	$u=e^{2x}$, $\therefore \frac{\mathrm{d}t}{\mathrm{d}t}$	$\frac{t}{t}=2e^{2x}.$			1A
		$2u \bigg) \cdot 2u = 2 - 4u^2$			$\boxed{ 1M+1A 1M \text{ for } \left(\frac{1}{u}-2u\right)\cdot 2u}$
$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} = \left(\frac{1}{u} - \frac{1}{u}\right)$	$2u) \cdot 2e^{2x} = \left(\frac{1}{e^{2x}}\right)$	$-2e^{2x}$) $\cdot 2e^{2x} = 2-4$	le ^{4x}	IM+[A
	$u-u^2+c$				
$y = \ln$	$e^{2x} - (e^{2x})^2 + c$				IM
y = 2x	$e^{2x} - (e^{2x})^2 + c$ $c - e^{4x} + c$				
$\frac{dy}{dy} =$	$2-4e^{4x}$				IA f.t.
dx					
(b) Using	(a), $y = \int (2-x)^{-x}$	-4e ^{4x})ix			1M
	=2x-	$e^{4x} + c$ for some	constant c.		
		1, we have $c=2$			
j	$y = 2x - e^{4x} + 2$				1A
3. (a) $a = 8$,	b = 6, $c = 5$	a=8, b	=7, c=5		IA+1A IA for anyone correct
					(award 1A for a=18, b=3637, c=65)
4.5			Nation 0	Man	Using $a = 8$, $b = 7$, $c = 5$ will give
(b)	e replacement	Min Q ₁	Median Q ₃ 75 36 52	Max 66	1A Min Q ₁ Q ₂ Q ₃ Max
	replacement	12 23 22		68	1A Before 18 22.75 36 52 66 After 12 22.75 36.5 52 68
	70				Atter 12 22.75 30.3 32 68
				······	
	60				
	50				
	JU				İ
	S 40				
•	₹ 40				
				······································	
	30				
					1M any box-and-whisker
	20				diagram with correct scale
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				IA all correct, same scale
	10	Before	After		(6)
2001-AS-M & S-	16	replacement	replacement		1

		只限教師參閱 FOR TEACHERS'	USE ONLY
		Solution	Marks
4.	(a)	$(1+ax)^{-\frac{1}{n}} = 1 + \left(-\frac{1}{n}\right)(ax) + \frac{1}{2}\left(-\frac{1}{n}\right)\left(-\frac{1}{n} - 1\right)(ax)^2 + \cdots$ $= 1 - \frac{a}{n}x + \frac{(n+1)a^2}{2n^2}x^2 + \cdots$	IM+IA IM for any 2 terms correct
		Solving $\frac{a}{n} = \frac{4}{3}$ and $\frac{(n+1)a^2}{2n^2} = \frac{32}{9}$, we have $9(n+1)\left(\frac{4n}{3}\right)^2 = 64n^2$	IM (IA for anyone if the first two rows are omitted)
		n+1=4 $n=3 and a=4$	1A+1A
	(b)	The expansion is valid for $-\frac{1}{4} < x < \frac{1}{4}$. $ x < \frac{1}{4}$	IM (6)
5.	(a)		IM correct to 4 d.p. IM
	(b)	$\frac{dR}{dt} = \frac{-2400t}{(t^2 + 150)^2}$ $\frac{d^2R}{dt^2} = \frac{7200(t^2 - 50)}{(t^2 + 150)^3}$ $< 0 \text{for } 0 \le t \le 6$ $\therefore \text{The graph of } R \text{ is concave downward in the interval } 0 \le t \le 6.$ The approximation in (a) is an underestimate.	1A 1M(6)
			·

2001-AS-M & S-17

	Solution	Marks
6. (a)	The probability that the heaviest student is in the selection $= \frac{C_2^9}{C_3^{10}}$	1M denominator, maybe awarded in (b) or (c) below 1M numerator
	$=C_1^3\left(\frac{1}{10}\right)$	IM C₁ IM 1 10
	$=1-\frac{9}{10}\cdot\frac{8}{9}\cdot\frac{7}{8}$	IM denominator IM numerator with fraction subtracted by
	$=\frac{3}{10}$	1A
(b)	The probability that the heaviest one out of the 3 selected students is the 4th heaviest among the ten students	
	$=\frac{C_0^4}{C_0^{10}}$	1M numerator
	$=C_1^3\left(\frac{1}{10}\right)\left(\frac{6}{9}\right)\left(\frac{5}{8}\right)$	$\boxed{\text{IM}} \text{ for } \left(\frac{1}{10}\right) \left(\frac{6}{9}\right) \left(\frac{5}{8}\right)$
	$=\frac{1}{8}$ 0.125	1A
(c)	The probability that the 2 heaviest student are not both selected $=1-\frac{C_1^8}{C_1^{10}}$	IM for numerator and probability
	$= \left(\frac{8}{10}\right) \left(\frac{7}{9}\right) \left(\frac{6}{8}\right) + C_1^3 \left(\frac{2}{10}\right) \left(\frac{8}{9}\right) \left(\frac{7}{8}\right)$	subtracted by I IM Sum of the two cases
,	$=\frac{14}{15}$ 0.9333	1A a-1 for r.t. 0.933
		(7)
7. (a)	The required probability = 0.39×0.58	1A numerator
	$0.48 \times 0.65 + 0.39 \times 0.58 + 0.13 \times 0.5$ = 0.375 (p)	1A denominator
(b)	The required probability $= C_2^5 (0.375)^2 (1 - 0.375)^3$	1M binomial, for any p
	= 0.3433	1M $C_2^5 p^2 (1-p)^3$, for p in (a) 1A $a-1$ for r.t. 0.343(6)
	I & S-18	

			只限教師參閱 FOR TEACHERS'	USE ONLY
			Solution	Marks
8.	(a)	(i)	Since $G(0) = 9$, $\therefore 2a - 12 + (a + 12) = 9$ a = 3	1
		(ii)	$G(x) = 6 - 12e^{-kx} + 15e^{-2kx}$ $G'(x) = 12ke^{-kx} - 30ke^{-2kx}$ $= 6ke^{-kx}(2 - 5e^{-kx})$	IA
			G'(x) = 0 when $e^{-kx} = \frac{2}{5}$ or $x = \frac{1}{k} \ln \frac{5}{2}$ $\frac{0.9163}{k}$	IA
			and G'(x) $\begin{cases} < 0 & \text{when } 0 \le x < \frac{1}{k} \ln \frac{5}{2} \\ > 0 & \text{when } x > \frac{1}{k} \ln \frac{5}{2} \end{cases}$	IM
			$G(x) \text{ is minimum when } e^{-kx} = \frac{2}{5}.$	
			$G''(x) = -12k^2 e^{-kx} + 60k^2 e^{-2kx}$ When $e^{-kx} = \frac{2}{5}$, $G''(x) = \frac{24}{5}k^2 > 0$	
			Since $G(x)$ has only one stationary point for $x \ge 0$, $G(x)$ is minimum when $e^{-kx} = \frac{2}{5}$.	IM
		(ii)	$G(x) = 6 - 12e^{-kx} + 15e^{-2kx}$ $= 15(e^{-2kx} - \frac{4}{5}e^{-kx}) + 6$	
			$=15(e^{-kx}-\frac{2}{5})^2+\frac{18}{5}$	IM+IA
			G(x) is minimum when $e^{-kx} = \frac{2}{5}$.	IM
			The minimum CDO = $\left[6 - 12\left(\frac{2}{5}\right) + 15\left(\frac{2}{5}\right)^2\right]$ mg/L	
			= 3.6 mg/L	IA f.t. (5)
	(b)	(i)	Solving $G(x) = 4.5$, we have $6 - 12e^{-kx} + 15e^{-2kx} = 4.5$ $10(e^{-kx})^2 - 8e^{-kx} + 1 = 0$	1M
			$e^{-kx} = \frac{4 \pm \sqrt{6}}{10}$	1A
			$x = -\frac{1}{k} \ln \frac{4 \pm \sqrt{6}}{10}$	
			Hence $ -\frac{1}{k} \ln \frac{4 - \sqrt{6}}{10} + \frac{1}{k} \ln \frac{4 + \sqrt{6}}{10} = 2.85 $ $ \frac{1}{k} \ln \frac{4 + \sqrt{6}}{4 - \sqrt{6}} = 2.85 $	IM+IA
			$k 4 - \sqrt{6}$ $k \approx 0.5 \qquad (1 \text{ d.p.})$	1A
2001	-AS-N	1 & S	-19	

六败教師參閱 FOR TEACHERS	USE ONE!
Solution	Marks
(ii) $G'(x) = 6e^{-0.5x} - 15e^{-x}$ $G''(x) = -3e^{-0.5x} + 15e^{-x}$ $= 3e^{-0.5x} (5e^{-0.5x} - 1)$ $G''(x) = 0 \text{ when } x = -\frac{1}{0.5} \ln \frac{1}{5} (\approx 3.2)$ $x = -\frac{1}{k} \ln \frac{1}{5}$	IM
and $G''(x)$ $\begin{cases} < 0 & \text{when } x > -\frac{1}{0.5} \ln \frac{1}{5} \qquad \left[x > -\frac{1}{k} \ln \frac{1}{5} \right] \\ > 0 & \text{when } 0 \le x < -\frac{1}{0.5} \ln \frac{1}{5} \qquad \left[0 \le x < -\frac{1}{k} \ln \frac{1}{5} \right] \end{cases}$ $G'''(x) = 1.5e^{-0.5x} (1 - 10e^{-0.5x}) \qquad \left[12k^3 e^{-kx} (1 - 10e^{-kx}) \right]$ When $e^{-kx} = \frac{1}{5}$, $G'''(x) = -0.3 < 0 \qquad \left[-2.4k^3 < 0 \right]$	IM
$G'''(x) = 1.5e^{-0.5x} (1 - 10e^{-0.5x})$ When $e^{-kx} = \frac{1}{5}$, $G'''(x) = -0.3 < 0$ $-2.4k^3 < 0$	
Since $G'(x)$ has only one stationary point for $x \ge 0$, $G'(x)$ is greatest when $e^{-kx} = \frac{1}{5}$.	IM
 3.2 km downstream from the location of discharge of the waste, the rate of change of the CDO is greatest. 	1A
(iii) Solving $G(x) = 5.5$, we have $30e^{-x} - 24e^{5x} + 1 = 0$ $e^{-0.5x} = \frac{12 \pm \sqrt{114}}{30}$	
$x = -\frac{1}{0.5} \ln \frac{12 \pm \sqrt{114}}{30}$ $x \approx 0.6 \text{ or } 6.2$ $\therefore \text{ The river will return to be healthy } 6.2 \text{ km downstream form the location of discharge of waste.}$	1A 1
Since $\lim_{x\to\infty} G(x) = \lim_{x\to\infty} (6-12e^{-0.5x} + 15e^{-x}) = 6 > 5.5$ The river will return to be healthy. Solving $G(x) = 5.5$, we have $x \approx 0.6$ or 6.2 The river will return to be healthy 6.2 km downstream form the location of discharge of waste.	[]
-C N. # C 20	l .

	Solution	Marks
(a) (i)	$\ln P'(t) = -kt + \ln \frac{0.04ak}{1 - a}$	IA
	From the graph,	
	$-k \approx \frac{-8 - (-3.5)}{18 - 0}$, $k \approx 0.25$	1A a-1 for more than 2 d.p.
	$\ln \frac{0.04ak}{1-a} \approx -3.5$, $a \approx 0.7512 \approx 0.75$	IA a-1 for more than 2 d.p.
	$P'(t) \approx 0.03e^{-0.25t}$	
	$P(t) \approx -0.12e^{-0.25t} + c$ for some constant c	IM
	Since P(0) = 0.09, $\therefore c \approx 0.21$ Hence P(t) $\approx -0.12e^{-0.25t} + 0.21$	1 A
	Hence $P(t) \approx -0.12e^{-0.23t} + 0.21$	
(ii)	$\mu = P(3) \approx 0.1533$	1A $\mu \in [0.1530, 0.1533]$
(iii)	Stabilized PPI in town $A = \lim_{t \to \infty} P(t) = 0.21$	IM+1A
		(8)
(b) (i)	Suppose $b = 0.09$.	
	(1) $Q'(t) = 0.24(3t+4)^{-\frac{3}{2}}$	
	and the part of the contract o	
	$Q(t) = \frac{1}{3}(0.24)(-2)(3t+4)^{-\frac{1}{2}} + c \qquad \text{for some constant } c$	1A
	$=-0.16(3t+4)^{-\frac{1}{2}}+c$	
	Since Q(0) = 0.09, \therefore c = 0.17	1A
	If $Q(t) = \mu \approx 0.1533$	
	$-0.16(3t+4)^{-\frac{1}{2}}+0.17\approx0.1533$	IM
	$(3t+4)^{\frac{1}{2}} \approx \frac{0.16}{0.0167}$	
	Since $3t + 4 > 0$ $\therefore t \approx 29.3$	4 = (28 2 20 2)
		$t \in [28.2, 29.3]$
	i.e. the PPI will reach the value of μ . Since $Q(0) = 0.09$, $\lim_{t \to \infty} Q(t) = 0.17$ and	
	Q is continuous and strictly increasing $(Q'(t) > 0)$,	1M
	Q can reach any value between 0.09 and 0.17	[
	including $\mu \approx 0.1533$.	
	(II) Stabilized PPI in town $B = \lim_{t \to \infty} Q(t) = 0.17$	
	The stabilized PPI will be reduced by 0.04.	1A
(ii)	0.05 < b (<1). Otherwise, $Q'(t) \le 0$ and the PPI will not increase.	1A
	It follows that the epidemic will not break out.	1
		(7)
		1

大阪教師多聞 TON TEACHENS	OSE ONE!
Solution	Marks
10. (a) $f(0) = g(0)$ $\Rightarrow k = \frac{45}{3} = 15$	IA
$f(9) = g(9)$ $\Rightarrow \frac{15}{a} = \frac{90}{12}$ $\Rightarrow a = 2$	1A (2)
(b) Since $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{5x + 45}{x + 3} = -\infty$ and $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \frac{5x + 45}{x + 3} = +\infty$, $\therefore x = -3$ is a vertical asymptote.	1A
Since $\lim_{x \to 2\infty} f(x) = \lim_{x \to 2\infty} \frac{5 + \frac{45}{x}}{1 + \frac{3}{x}} = 5$,	
y = 5 is a horizontal asymptote.	1A(2)
(c) $y = g(x)$ $x = -3$ y $(0, 15)$	
y = 5 (14.26, 5)	
(-9, 0) O	
y = f(x)	IA asymptotes IA shape and position IA intercepts and intersections(3)
(d) (i) $A = \int_0^9 \frac{5x+45}{x+3} dx$ = $\int_0^9 \left(5 + \frac{30}{x+3}\right) dx$	1A
= $[5x + 30 \ln(x + 3)]_0^p$ = $45 + 30 \ln 4$ 86.5888	IA ignore limits IA <i>a</i> -1 for r.t. 86.589
2001-AS-M & S-22	

只限教師參閱 FOR TEACHERS	USE ONLY
Solution	Marks
(ii) Let $u = 2^{-\frac{1}{9}x}$, then $\ln u = -\frac{\ln 2}{9}x$ and $dx = -\frac{9}{\ln 2} \cdot \frac{1}{u} \cdot du$.	iM
$\int_{a}^{a+9} 15 \cdot 2^{-\frac{1}{9}x} dx$	
$= \int_{2^{-u/9}}^{2^{-(u/9)-1}} 15u \left(-\frac{9}{\ln 2} \cdot \frac{1}{u}\right) du$	IM change of variable and limits
$= \left[-\frac{135}{\ln 2} u \right]_{2^{-\alpha/2}}^{2^{-(\alpha/2)-1}}$	IM ignore limits
$= \frac{135}{\ln 2} \left(2^{-\frac{\alpha}{9}} - 2^{-\frac{\alpha}{9}-1} \right)$	
$=\frac{135}{2\ln 2}\cdot 2^{-\frac{\alpha}{9}}$	IA
Let $u = 2^{-\frac{1}{9}x}$, then $\ln u = -\frac{\ln 2}{9}x$ and $dx = -\frac{9}{\ln 2} \cdot \frac{1}{u} \cdot du$.	IM
$\int 15 \cdot 2^{-\frac{1}{9}x} dx = \int 15u \left(-\frac{9}{\ln 2} \cdot \frac{1}{u} \right) du$	
$= -\frac{135}{\ln 2} \cdot 2^{-\frac{1}{9}x} + c \qquad \text{for some constant } c.$	IM
$\int_{\alpha}^{\alpha+9} 15 \cdot 2^{-\frac{1}{9}x} dx = \frac{135}{\ln 2} \left(2^{-\frac{\alpha}{9}} - 2^{-\frac{\alpha}{9}-1} \right)$	IM
$= \frac{135}{2 \ln 2} \cdot 2^{-\frac{\alpha}{9}}$	IΛ
$\int_{\alpha}^{\alpha+9} 15 \cdot 2^{-\frac{1}{9}x} dx = 15 \int_{\alpha}^{\alpha+9} e^{-\frac{1}{9}x \ln 2} dx$	IM
$= \frac{-9 \times 15}{\ln 2} \left[e^{-\frac{1}{9}x \ln 2} \right]_{\alpha}^{\alpha + 9}$	[IM] ignorė limits
$=\frac{-135}{\ln 2}\left[2^{-\frac{1}{9}x}\right]_{\alpha}^{\alpha+9}$	IM
$= \frac{135}{\ln 2} \left(2^{-\frac{\alpha}{9}} - 2^{-\frac{\alpha}{9} - 1} \right)$	
$=\frac{135}{2 \ln 2} \cdot 2^{-\frac{\alpha}{9}}$	IA
If $\frac{135}{2 \ln 2} \cdot 2^{-\frac{\alpha}{9}} = 45 + 30 \ln 4$, then	
$-\frac{\alpha}{9}\ln 2 = \ln \left[\left(45 + 30 \ln 4 \right) \frac{2 \ln 2}{135} \right]$	
<i>α</i> ≈ 1.5253	1A a-1 for r.t. 1.525
M & S-23	

只限教師參閱

FOR	TEA	CH	ER	S

FOR TEACHERS' USE (UNL	Υ
---------------------	-----	---

		只阪教師参阅 FUR TEACHER	S USE ONLY
		Solution .	Marks
11.		and X_B be the numbers of persons entered the building using A and B respectively within a 15-minute period.	
	(a) (i)	$P(X_A = 0) = \frac{(3.2)^0 e^{-3.2}}{0!} = e^{-3.2} \boxed{0.0408}$ (p_1)	1A a-l for r.t. 0.041
	(ii)	$P(X_B = 0) = \frac{(2.7)^0 e^{-2.7}}{0!} = e^{-2.7} \boxed{0.0672}$ (p ₂)	1A <i>a</i> -1 for r.t. 0.067
	(iii)	$P(X_A + X_B \ge 1) = 1 - P(X_A = 0 \text{ and } X_B = 0)$ $= 1 - P(X_A = 0) P(X_B = 0)$ $= 1 - e^{-3.2} e^{-2.7}$ $= 1 - e^{-5.9}$ $\boxed{0.9973}$	1M 1 – $(p_1)(p_2)$ 1A a –1 for r.t. 0.997
	(iv)	$P(X_A + X_B = 2)$ = $P(X_A = 2) P(X_B = 0) + P(X_A = 1) P(X_B = 1) + P(X_A = 0) P(X_B = 1)$ = $\frac{(3.2)^2 e^{-3.2}}{2!} \cdot e^{-2.7} + \frac{3.2e^{-3.2}}{1!} \cdot \frac{2.7e^{-2.7}}{1!} + e^{-3.2} \cdot \frac{(2.7)^2 e^{-2.7}}{2!}$ = $17.405e^{-5.9}$ 0.0477	2) 1M for the 3 cases 1A 1A
	(b) (i)	Since k is the most probable number of persons entered the building within a 15-minute period, $P(X = k - 1) \le P(X = k) \text{ and } P(X = k + 1) \le P(X = k)$ Hence $\frac{\lambda^{k-1}e^{-\lambda}}{(k-1)!} \le \frac{\lambda^k e^{-\lambda}}{k!}$ and $\frac{\lambda^{k+1}e^{-\lambda}}{(k+1)!} \le \frac{\lambda^k e^{-\lambda}}{k!}$ $\lambda \le k + 1$ $\lambda - 1 \le k$	1M+1M 1
	(ii)	From (b)(i), $k = 5$. The probability required $= C_2^4 [P(X = k)]^2 [1 - P(X = k)]^2 [P(X = k)]$ $= C_2^4 \left(\frac{(5.9)^5 e^{-5.9}}{5!} \right)^2 \left(1 - \frac{(5.9)^5 e^{-5.9}}{5!} \right)^2 \left(\frac{(5.9)^5 e^{-5.9}}{5!} \right)$ ≈ 0.0183	IM for binomial IM for all 1A a-1 for r.t. 0.018(8)

		只限教師領	參閱	FOR TEACHERS'	US	E ONLY
			Solution		Mai	·ks
12. Le	t E_{X} and	E_{γ} be the lifetimes o	f brand X and	brand Y CFLs respectively.		
(a)	$P(E_X <$	8200) = 0.1151 ⇒	$P\left(\frac{E_X - \mu}{400} < \frac{8}{400}\right) = -1$	•	14	for either
		⇒	$\mu = 8760$		iA	To Chile
	$P(E_{\gamma} < i$		$P\left(\frac{2\gamma - 8800}{\sigma}\right)$ $\frac{8200 - 8800}{\sigma} = \frac{3200 - 8800}{\sigma}$ $\sigma = 600$	$<\frac{8200-8800}{\sigma}$ = 0.1587	1A	
	$a_1 = 0.3$	811, $a_2 = 0.0548$			1A	
		$120 \; , \; b_2 = 0.2586 \; , \; b_3$	= 0.2120			$b_1 = b_3 \in [0.2101, 0.2120]$
	b ₁ =	$= 0.2109$, $b_2 = 0.2608$	$b_3 = 0.2109$			$b_2 \in [0.2586, 0.2624]$ (5)
(b)	standard smaller th I shall ch	n of the lifetimes of the deviation of the lifetime on that of brand Y. oose brand X because oose brand Y because	es of brand X of the lifetimes of	CFLs is significantly its CFLs are more reliable.	1M	
	getting a	long life CFL.			[M]	
	I shall ch	oose brand Y because	the mean lifetin	ne is larger.	IM	
(c)	(i) Let	X_a , X_b and X_c 1	oe the lifetimes	of lamps a , b and c resp.		(1)
	(1)	The required proba = $P(X_a > 8200)[P(X$	bility ₆ > 8200 or <i>X</i>	' _c > 8200)]	1M	
		$= [1 - P(E_X < 8200)]$	•	00)]2}	1M	
		≈ (1-0.0808)(1-0.08	308 ²)		1M	
		$\approx 2(0.9192)^2(1-0.91)^2$	92) + (0.9192) ³		ΙM	[M+IM
		≈ 0.9132			۱A	
	(11)	The required proba $= \frac{P(X_a < 8200) P(X_a)}{1 - (1 - 0.0808)^2}$ $= \frac{0.0808(1 - 0.0808)^2}{1 - 0.9132}$	$b > 8200) P(X_c)$ 0.9132	> 8200)		for numerator for denominator
		= 0.7865			1A	
2001-AS-	м & S-25					

Solution Note that $P(E_X < 8200) \approx 0.0808$ and $P(E_Y < 8200) \approx 0.1578$. Since a brand X CFL is less likely than a brand Y CFL to have a lifetime less than 8200 hours, and lamp a is the most critical lamp for the lighting system to work (according to the result of (c)(i)(II)), Lamp a should be a brand X CFL. Hence I will put the brand Y CFL as lamp b or c . Let X_a and Y_a be the lifetimes of lamp a when using brand X CFL and brand Y CFL respectively. Similar notations are used for the othe two lamps. $P(Y_a > 8200)[P(X_b > 8200 \text{ or } X_c > 8200)]$ $= (1-0.1587)(1-0.0808^2)$ $= 0.8358$ $P(X_a > 8200)[P(Y_b > 8200 \text{ or } X_c > 8200)]$ $= (1-0.0808)[(1-0.0808) + (1-0.1587) - (1-0.0808)(1-0.1587)]$ $= 0.9074$ Hence putting the brand Y CFL as lamp b or c will yeild a better system.	
and $P(E_Y < 8200) \approx 0.1578$. Since a brand X CFL is less likely than a brand Y CFL to have a lifetime less than 8200 hours, and lamp a is the most critical lamp for the lighting system to work (according to the result of (c)(i)(II)), \therefore Lamp a should be a brand X CFL. Hence I will put the brand Y CFL as lamp b or c . Let X_a and Y_a be the lifetimes of lamp a when using brand A CFL and brand A CFL respectively. Similar notations are used for the othe two lamps. $P(Y_a > 8200)[P(X_b > 8200 \text{ or } X_c > 8200)]$ $= (1-0.1587)(1-0.0808^2)$ $= 0.8358$ $P(X_a > 8200)[P(Y_b > 8200 \text{ or } X_c > 8200)]$ $= (1-0.0808)[(1-0.0808) + (1-0.1587) - (1-0.0808)(1-0.1587)]$ $= 0.9074$ Hence putting the brand A CFL as lamp A 0 or A 1 will yield a better	1A with explanation
	IA with explanation(9)

只限教師參閱 FOR TEACHERS' USE ONLY		
Solution	Marks	
13. Let X be the number of Grade A potatoes in the 8 selected potatoes.		
(a) $P(X \le 1 \mid p = 0.65) \approx 0.0002 + 0.0033$ ≈ 0.0035 0.0036	1M 1A (2)	
(b) (i) $P(X \le 3 \mid p = 0.65) \approx 0.0002 + 0.0033 + 0.0217 + 0.0808$ ≈ 0.1060 0.1061 0.1061	IM 1A	
(ii) $P(X > 3 \mid p = 0.2)$ $\approx 0.0459 + 0.0092 + 0.0011 + 0.0001 + 0.0000$ $\approx 1 - (0.1678 + 0.3355 + 0.2936 + 0.1468)$ ≈ 0.0563	IM IM IA (5)	
(c) The required probability $= C_2^3 q^2 (1-q) + C_3^3 q^3$ $\approx C_2^3 (0.1060)^2 (1-0.1060) + C_3^3 (0.1060)^3$ $\approx 0.0313 \qquad \boxed{0.0314}$	IM for the 2 cases IM for 1st term IM for 2nd term IM+1M+1M IA(4)	
(d) The probability that the farmer will wrongly reject the claim is 0.1060 whereas the probability that his wife will wrongly reject the claim is 0.313. Therefore the farmer will have a bigger chance of rejecting the claim wrongly.	IM (1)	
(e) $P(X \le 2 \mid p = 0.65) \approx 0.0252$ $P(X \le 3 \mid p = 0.65) \approx 0.0252 + 0.0808 \approx 0.1060$ Since $P(X \le 2 \mid p = 0.65) < 0.05 < P(X \le 3 \mid p = 0.65)$ $\therefore k = 2$.	IM+1A 1M for 0.05 as a value between IA independent(3)	