Mérték, integrál, ...

8. Előadás

1. Emlékeztető.

Ha továbbra is (valamilyen $X \neq \emptyset$ halmaz mellett) az (X, Ω, μ) hármas egy mértéktér, akkor igaz az

1. Tétel. Adott az L_0^+ -beli függvényekből álló, monoton növekedő függvénysorozat:

$$f_n \in L_0^+, \ f_n \le f_{n+1} \qquad (n \in \mathbf{N}).$$

Tegyük fel, hogy a $g \in L_0^+$ függvényre $g \leq \sup_n f_n$ teljesül. Ekkor

$$\int g \, d\mu \le \sup_n \int f_n \, d\mu.^1$$

2. Az L^+ függvényosztály.

Legyen az $f_n, g_n \in L_0^+ \ (n \in \mathbb{N})$ függvényekre

$$f_n \le f_{n+1}$$
 és $g_n \le g_{n+1}$ $(n \in \mathbf{N}),$

valamint

$$\sup_{n} f_n = \sup_{n} g_n$$

igaz. Ekkor

$$\sup_{n} \int f_n \, d\mu = \sup_{n} \int g_n \, d\mu.$$

Valóban, alkalmazzuk a fenti 1. Tételt minden $m \in \mathbb{N}$ mellett a $g := g_m$ szereposztással. Ekkor a nyilvánvaló

$$g_m \leq \sup_n g_n$$

becslésből a $\sup_n f_n = \sup_n g_n$ feltétel alapján egyúttal

$$g_m \le \sup_n f_n$$

Valamilyen $h = \sum_{A \in \Omega_0} \alpha_A \cdot \chi_A \in L_0^+$ függvény esetén (amikor is az $\emptyset \neq \Omega_0 \subset \Omega$ véges halmaz, $0 \leq \alpha_A \in \mathbf{R}$ $(A \in \Omega_0)$) a h integrálja: $\int h \, d\mu = \sum_{A \in \Omega_0} \alpha_A \cdot \mu(A) = \sum_{y \in \mathcal{R}_h} y \cdot \mu(\{h = y\})$.

is következik. Ezért az 1. Tétel miatt

$$\int g_m d\mu \le \sup_n \int f_n d\mu,$$

és így

$$\sup_{m} \int g_m \, d\mu \le \sup_{n} \int f_n \, d\mu.$$

A fordított irányú egyenlőtlenség analóg módon adódik.

Azt is írhatjuk, hogy

$$\lim_{n \to \infty} f_n = \lim_{n \to \infty} g_n \implies \lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu.$$

Legyen $L^+ := L^+(\mu)$ azoknak az

$$f: X \to [0, +\infty]$$

függvényeknek a halmaza, amelyekhez megadható olyan $f_n \in L_0^+$ $(n \in \mathbb{N})$ függvényekből álló monoton növekedő sorozat, hogy

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 $(x \in X)$.

Ekkor minden $f \in L^+$ függvény mérhető, a

$$\lim_{n\to\infty} \int f_n \, d\mu$$

határérték pedig az előbbiek szerint független az f-et az L^+ definíciója szerint előállító (f_n) sorozattól. Ez az észrevétel ad értelmet az alábbi definíciónak:

1. Definíció. Ha $f\in L^+$ és egy alkalmas $(f_n): \mathbf{N} \to L_0^+$ monoton növekedő sorozattal $f=\lim_{n\to\infty} f_n$, azaz

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 $(x \in X),$

akkor legyen

$$\int f \, d\mu := \lim_{n \to \infty} \int f_n \, d\mu$$

az f függvénynek a μ mérték szerinti *integrálja*.

A most mondott definíciónk szerint tehát

$$\lim_{n \to \infty} \int f_n \, d\mu = \int \lim_{n \to \infty} f_n \, d\mu,$$

ami az integrálás és a határátmenet felcserélhetőségét jelenti a szóban forgó (f_n) sorozatra.

Nyilvánvaló, hogy $L_0^+ \subset L^+$, és $f \in L_0^+$ esetén az $\int f \, d\mu$ integrál mind a fenti, mind pedig az L_0^+ -beli definíció szerint ugyanazt jelenti. Ui. az f függvényhez választhatjuk az L^+ definíciójában szereplő "előállító" (f_n) függvénysorozatot az $f_n := f \quad (n \in \mathbb{N})$ utasításnak megfelelően, amikor is

$$\lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \int f \, d\mu = \int f \, d\mu = \int f \, d\mu$$

(ahol az első három " $\int \dots d\mu$ " integrál az L_0^+ -beli definíció szerint, az utolsó pedig az L^+ -beli definíció szerint értendő).

Az L^+ függvényhalmaz "kimeríti" a nemnegatív, mérhető függvények osztályát:

2. Tétel. $Az \ f: X \to [0, +\infty]$ függvény akkor és csak akkor eleme az L^+ -nak, ha az f mérhető.

Bizonyítás. Nyilván már csak a tétel elégségesség részét kell igazolni. Tegyük fel ehhez, hogy a szóban forgó

$$f:X\to [0,+\infty]$$

függvény mérhető. Legyen ekkor

$$A_{in} := \begin{cases} \{i \cdot 2^{-n} \le f < (i+1) \cdot 2^{-n}\} & (i = 0, ..., n \cdot 2^{n} - 1) \\ \{f \ge n\} & (i = n \cdot 2^{n}) \end{cases}$$
 $(n \in \mathbf{N}).$

Az A_{in} $(i = 0, ..., n \cdot 2^n)$ halmazok minden $\mathbf{N} \ni n$ -re az Ω-ban vannak, páronként diszjunktak:

$$A_{in} \cap A_{jn} = \emptyset$$
 $(i \neq j = 0, ..., n \cdot 2^n),$

és
$$\bigcup_{i=0}^{n \cdot 2^n} A_{in} = X$$
. Ha

$$f_n := \sum_{i=0}^{n \cdot 2^n} i \cdot 2^{-n} \cdot \chi_{A_{in}} \qquad (n \in \mathbf{N}),$$

akkor az f_n -ek nyilván valamennyien L_0^+ -beliek. Gondoljuk meg, hogy

$$f_n \le f_{n+1} \qquad (n \in \mathbf{N}).$$

Valóban, az $x \in A_{in}$ $(i < n \cdot 2^n)$ elemekre $f_n(x) = i \cdot 2^{-n}$, valamint

$$A_{in} = A_{2i\,n+1} \bigcup A_{2i+1\,n+1}$$

miatt

$$f_{n+1}(x) = \begin{cases} 2i \cdot 2^{-n-1} & (x \in A_{2i\,n+1}) \\ (2i+1) \cdot 2^{-n-1} & (x \in A_{2i+1\,n+1}) \end{cases} \ge i \cdot 2^{-n} = f_n(x).$$

Ha viszont $x \in A_{n \cdot 2^n n}$, akkor $f(x) \ge n$ és $f_n(x) = n$. Így $f(x) \ge n + 1$ esetén

$$f_{n+1}(x) = n+1 > f_n(x),$$

az f(x) < n+1esetben pedig valamilyen $j = n \cdot 2^{n+1}, ..., (n+1) \cdot 2^{n+1} - 1$ mellett

$$j \cdot 2^{-n-1} \le f(x) < (j+1) \cdot 2^{-n-1}$$

tehát $f_n(x) = n \le j \cdot 2^{-n-1} = f_{n+1}(x)$.

Azt kell már csak belátnunk, hogy

$$\lim_{n\to\infty} f_n = f.$$

Ui. $f_n(x) = n \ (n \in \mathbb{N})$, ha az $x \in X$ pntban $f(x) = +\infty$, azaz ekkor

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n = +\infty = f(x).$$

Ha pedig $f(x) < +\infty$, akkor egy alkalmas $N \in \mathbb{N}$ mellett az $N < n \in \mathbb{N}$ indexekre f(x) < n, azaz egy $i = 0, ..., n \cdot 2^n - 1$ mellett $x \in A_{in}$, amikor

$$i \cdot 2^{-n} = f_n(x) \le f(x) < (i+1) \cdot 2^{-n} = f_n(x) + 2^{-n}.$$

Így a közrefogási elv miatt $\lim_{n\to\infty} f_n(x) = f(x)$.

Az L^+ függvényosztály elemeire is fennállnak az integrálható függvényekkel szemben "elvárt" alapvető tulajdonságok:

3. Tétel. Tetszőleges $f,g\in L^+$ függvények és $0\leq \alpha\in \mathbf{R}$ szám esetén

- a) $f + \alpha g, fg, \max\{f, g\}, \min\{f, g\} \in L^+;$
- b) $\int (f + \alpha g) d\mu = \int f d\mu + \alpha \cdot \int g d\mu;$
- c) $f \leq g \implies \int f d\mu \leq \int g d\mu$.

Amennyiben

$$f, g \in L^+, f \le g, \int f d\mu < +\infty$$

és létezik a

$$g - f: X \to [0, +\infty]$$

függvény, akkor $g - f \in L^+$ és

$$\int (g - f) d\mu = \int g d\mu - \int f d\mu.$$

Ui. a g-f függvény mérhető, így $g-f\in L^+$. Következésképpen a nyilvánvaló g=(g-f)+f egyenlőség és a 3. Tétel b) állítása alapján

$$\int g \, d\mu = \int (g - f) \, d\mu + \int f \, d\mu.$$

A következő tétel azt mutatja, hogy az L^+ függvényosztály azon az úton, ahogyan az L_0^+ -ból eljutottunk az L^+ -hoz, tovább már nem bővíthető.

4. Tétel (Beppo Levi²). Minden monoton növekedő $(f_n): \mathbf{N} \to L^+$ függvénysorozatra

$$f := \lim_{n \to \infty} f_n = \sup_n f_n \in L^+$$

 $\acute{e}s$

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu = \sup_n \int f_n \, d\mu.$$

Bizonyítás. Tudjuk, hogy bármely $n \in \mathbb{N}$ esetén egy-egy alkalmas monoton növő $v_{nm} \in L_0^+ \ (m \in \mathbb{N})$ sorozattal³

$$f_n = \lim_{m \to \infty} v_{nm}$$
 és $\int f_n d\mu = \lim_{m \to \infty} \int v_{nm} d\mu$.

Legyen

$$v_n := \max\{v_{ik} : i, k = 0, ..., n\}$$
 $(n \in \mathbf{N}).$

 $^{{}^{2}}$ Beppo Levi (1875 – 1961).

³Tehát $v_{nm} \le v_{nm+1} \ (m \in \mathbf{N}).$

Ekkor

$$v_n \in L_0^+, v_n \le v_{n+1} \qquad (n \in \mathbf{N})$$

és

$$v_n \le f_n \le f$$
 $(n \in \mathbf{N}).$

Ezért

$$g := \lim_{n \to \infty} v_n = \sup_n v_n \le f.$$

Továbbá $n, i, k \in \mathbb{N}, i, k \leq n$ mellett

$$v_{ik} \le v_n \le g,$$

így

$$f_i = \lim_{k \to \infty} v_{ik} \le g \qquad (i \in \mathbf{N}),$$

tehát

$$f = \lim_{i \to \infty} f_i \le g.$$

Következésképpen

$$f = g = \lim_{n \to \infty} v_n,$$

amiből $f \in L^+$, és a fenti 1. Definícióra tekintettel

$$\int f \, d\mu = \lim_{n \to \infty} \int v_n \, d\mu$$

következik.⁴

Ugyanakkor minden $n \in \mathbb{N}$ természetes számra $f_n \leq f$ és (az integrál monotonitása (ld. 3. Tétel) miatt)

$$\int f_n \, d\mu \le \int f \, d\mu,$$

tehát

$$\sup_{n} \int f_n \, d\mu \le \int f \, d\mu.$$

Továbbá a $v_n \leq f_n$ egyenlőtlenség alapján

$$\int v_n \, d\mu \le \int f_n \, d\mu \qquad (n \in \mathbf{N}),$$

és ezzel

$$\int f \, d\mu = \lim_{n \to \infty} \int v_n \, d\mu \le \sup_n \int f_n \, d\mu.$$

 $^{^4}$ Az $f \in L^+$ tartalmazás az $0 \le f$ mérhetősége miatt már a 2. Tételből is adódik.

Mindez (az előző becsléssel együtt) a 4. Tétel állításának a második részét igazolja. ■

Tehát tetszőleges monoton növő $(f_n): \mathbf{N} \to L^+$ sorozatra

$$\int \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu,$$

ami megint csak (most már az L^+ -ban) az integrálás és a határátmenet felcserélhetőségét jelenti (monoton sorozatokra).

Vezessük be az alábbi fogalmat: tegyük fel, hogy adott az X halmaz elemeire vonatkozó valamilyen T tulajdonság. Ez azt jelenti, hogy bármelyik $x \in X$ esetén el tudjuk dönteni, hogy a T tulajdonság az x-re igaz vagy sem. Például: az

$$f, q: X \to \overline{\mathbf{R}}$$

függvények esetén T(x) jelentse azt, hogy az $x \in X$ pontban f(x) = g(x).

2. Definíció. Azt mondjuk, hogy a T tulajdonság μ -majdnem mindenütt igaz, ha van olyan $A \in \Omega$ halmaz, hogy $\mu(A) = 0$, és tetszőleges $x \in X \setminus A$ esetén a T teljesül az x-re.

Röviden a "majdnem mindenütt" kifejezést fogjuk használni: T μ -m.m. (esetenként T m.m.). Például az

$$f = q \quad \mu\text{-m.m.}$$

szimbólumsor azt jelenti, hogy egy alkalmas $A \in \Omega$ halmazzal $\mu(A) = 0$, és az f(x) = g(x) egyenlőség minden $x \in X \setminus A$ esetén igaz.

- **5. Tétel.** A fenti (X, Ω, μ) mértéktér esetén
 - a) minden $f \in L^+$ függvényre fennáll, hogy

$$\int f \, d\mu = 0 \iff f = 0 \text{ μ-m.m.};$$

- b) ha $f, g \in L^+$ és
 - $f = g \ \mu$ -m.m., $akkor \int f d\mu = \int g d\mu$;
 - $f \leq g$ μ -m.m., $akkor \int f d\mu \leq \int g d\mu$;
- c) ha $f \in L^+$ és $\int f d\mu < +\infty$, akkor $|f| < +\infty$ μ -m.m.

Bizonyítás. Az a) állítás bizonyításához legyen

$$A := \{ f \neq 0 \}, \ A_n := \{ f \ge 1/n \}$$
 $(0 < n \in \mathbf{N}).$

Az f függvény mérhetősége miatt a most definiált halmazok valamennyien az Ω -ban vannak,

$$A_n \subset A_{n+1} \quad (0 < n \in \mathbf{N}) \text{ és } \bigcup_{n=1}^{\infty} A_n = A,$$

ezért

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Az A_n halmaz értelmezését figyelembe véve bármelyik $0 < n \in \mathbf{N}$ indexre

$$f \ge \frac{1}{n} \cdot \chi_{A_n},$$

így

$$0 = \int f \, d\mu \ge \int \frac{1}{n} \cdot \chi_{A_n} \, d\mu = \frac{1}{n} \cdot \mu(A_n) \qquad (0 < n \in \mathbf{N}).$$

Innen $\mu(A) \geq 0$ miatt már nyilvánvaló, hogy

$$\mu(A_n) = 0 \qquad (0 < n \in \mathbf{N}),$$

amiből $\mu(A) = 0$ az előbbiek alapján rögtön adódik.

Fordítva, ha $\mu(A) = 0$ és

$$f_n := n \cdot \chi_A \qquad (n \in \mathbf{N}),$$

akkor $f_n \in L_0^+$ és

$$\int f_n d\mu = n \cdot \mu(A) = 0 \qquad (n \in \mathbf{N}).$$

A Beppo Levi-tétel alapján tehát a $g := \sup_n f_n$ függvényre $g \in L^+$ és

$$\int g \, d\mu = \sup_{n} \int f_n \, d\mu = 0$$

igaz. Mivel $f \leq g$, ezért $0 \leq \int f \, d\mu \leq \int g \, d\mu = 0$, így $\int f \, d\mu = 0$.

A b) állításhoz legyen most

$$A := \{ f \neq g \},\$$

ekkor $A \in \Omega$, ezért a feltételek alapján $\mu(A) = 0$, és a

$$B := X \setminus A = \{f = g\}$$

jelöléssel

$$f = f \cdot \chi_A + f \cdot \chi_B, \quad g = g \cdot \chi_A + g \cdot \chi_B.$$

Továbbá

$$f \cdot \chi_A, \ f \cdot \chi_B, \ g \cdot \chi_A, \ g \cdot \chi_B \in L^+.$$

Mivel

$$f \cdot \chi_A = 0, \ g \cdot \chi_A = 0 \quad \mu\text{-m.m.}$$

és $f \cdot \chi_B = g \cdot \chi_B$, ezért (részben az a) állítás miatt)

$$\int f \cdot \chi_A \, d\mu = \int g \cdot \chi_A \, d\mu = 0,$$
$$\int f \cdot \chi_B \, d\mu = \int g \cdot \chi_B \, d\mu.$$

Következésképpen

$$\int f d\mu = \int f \cdot \chi_A d\mu + \int f \cdot \chi_B d\mu =$$
$$\int g \cdot \chi_A d\mu + \int g \cdot \chi_B d\mu = \int g d\mu.$$

Ha $f \leq g \;\; \mu\text{-m.m.},$ akkor egy alkalmas $A \in \Omega, \, \mu(A) = 0 \;\; \text{halmazzal}$

$$f(x) \le g(x)$$
 $(x \in X \setminus A)$.

Legyen

$$F := f \cdot \chi_{X \setminus A}, \ G := g \cdot \chi_{X \setminus A},$$

ekkor $F,G\in L^+,\ f=F$ $\mu\text{-m.m.},\ g=G$ $\mu\text{-m.m.}$ és $F\leq G$. Ezért a b) állítás előbb belátott első része szerint

$$\int f \, d\mu = \int F \, d\mu \le \int G \, d\mu = \int g \, d\mu.$$

Lássuk be végül a c)-t. Ha

$$A := \{ |f| = +\infty \},$$

akkor a fentiekhez hasonlóan $A\in\Omega$, és tetszőleges nemnegatív α számmal $\alpha\cdot\chi_A\leq |f|$, tehát

$$\alpha \cdot \mu(A) \le \int |f| d\mu =: q < +\infty.$$

Speciálisan

$$\mu(A) \le \frac{q}{n} \qquad (0 < n \in \mathbf{N}),$$

amiből $\mu(A) \geq 0$ és $\lim_{n \to \infty} (q/n) = 0$ miatt $\mu(A) = 0$ már nyilván következik.

- **6. Tétel** (Fatou⁵-lemma). Tekintsük az (X, Ω, μ) mértékteret. Ekkor:
 - a) $tetsz \tilde{o} leges (f_n) : \mathbf{N} \to L^+ f \ddot{u} g g v \acute{e} n y s o roz a t r a^6$

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu;$$

b) ha az a)-ban szereplő (f_n) sorozathoz van olyan $F \in L^+$ függvény, amelyikre $\int F d\mu < +\infty$ és $f_n \leq F$ μ -m.m. $(n \in \mathbf{N})$, akkor $\limsup_{n \to \infty} \int f_n d\mu \leq \int \limsup_{n \to \infty} f_n d\mu.$

Bizonyítás. Az a) állítás igazolásához legyen

$$f:=\liminf_{n\to\infty}f_n.$$

Tudjuk, hogy $f \in L^+$. Ha

$$g_n := \inf_{m > n} f_m \qquad (n \in \mathbf{N}),$$

akkor $g_n \in L^+$ $(n \in \mathbf{N})$, és a (g_n) sorozat nyilván monoton növekedő módon konvergál az f-hez. Ezért alkalmazható a Beppo Levi-tétel, miszerint

$$\int f \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu.$$

Az itt szereplő függvények értelmezése miatt triviális

$$g_n \le f_m \qquad (n \le m \in \mathbf{N})$$

becslés alapján $\int g_n d\mu \leq \int f_m d\mu$ is igaz az előbbi m,n indexekre. Tehát tetszőleges $n \in \mathbf{N}$ mellett

$$\int g_n \, d\mu \le \inf_{m > n} \int f_m \, d\mu,$$

⁵Pierre Joseph Louis Fatou (1878 – 1929).

 $^{^{6}\}mathrm{A} \ \underline{g} := \liminf_{n \to \infty} f_{n} \ \mathrm{függv\'enyre} \ g(x) := \liminf_{n \to \infty} f_{n}(x) \ (x \in X), \ \mathrm{ahol \ egy}$ $c_{n} \in \overline{\mathbf{R}} \ (n \in \mathbf{N}) \ \mathrm{sorozatra} \ \lim\inf_{n \to \infty} c_{n} := \lim_{n \to \infty} (\inf_{k \geq n} c_{k}). \ \mathrm{Anal\acute{o}g} \ \mathrm{m\'odon}, \ \mathrm{a}$ $h := \lim\sup_{n \to \infty} f_{n} \ \mathrm{f\"{u}ggv\'enyt} \ \mathrm{a} \ h(x) := \lim\sup_{n \to \infty} f_{n}(x) \ (x \in X) \ \mathrm{el\~{o}\'{u}r\'assal} \ \mathrm{defini\'aljuk}, \ \mathrm{ahol } \ \lim\sup_{n \to \infty} c_{n} = \lim\sup_{n \to \infty} (\sup_{k \geq n} c_{k}). \ \mathrm{A} \ \mathrm{sz\'{o}ban} \ \mathrm{forg\'{o}} \ (c_{n}) \ \mathrm{sorozatnak}$ akkor és csak akkor van hat\'{ar\'{e}r\'{e}t\'{e}ke}, ha $\lim\inf_{n \to \infty} c_{n} = \lim\sup_{n \to \infty} c_{n}, \ \mathrm{amikor} \ \mathrm{is}$ $\lim_{n \to \infty} c_{n} = \lim\inf_{n \to \infty} c_{n} = \lim\inf_{n \to \infty} c_{n} = \lim\sup_{n \to \infty} c_{n}.$

amiből

$$\int f \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \le \lim_{n \to \infty} \inf_{m \ge n} \int f_m \, d\mu = \liminf_{n \to \infty} \int f_n \, d\mu,$$

azaz a kívánt egyenlőtlenség adódik.

A Fatou-lemma b) része egyszerűen következik az a)-ből. A b)-beli feltételek miatt ui. minden $n \in \mathbb{N}$ esetén egy alkalmas $A_n \in \Omega$ halmazzal $\mu(A_n) = 0$ és

$$f_n(x) \le F(x)$$
 $(x \in X \setminus A_n).$

Továbbá (ld. 5. Tétel c)) valamilyen $B \in \Omega$ mellett $\mu(B) = 0$ és

$$F(x) < +\infty$$
 $(x \in X \setminus B)$.

Ha tehát

$$A := B \bigcup \Big(\bigcup_{n=0}^{\infty} A_n\Big),$$

akkor $A \in \Omega$, $\mu(A) = 0$ és

$$f_n(x) \le F(x) < +\infty$$
 $(n \in \mathbb{N}, x \in X \setminus A).$

Legyen ezek után a $C := X \setminus A$ halmazzal

$$F_n := F - f_n \cdot \chi_C \qquad (n \in \mathbf{N}).$$

Itt $F_n \in L^+$ $(n \in \mathbb{N})$. Alkalmazzuk az a) állítást az (F_n) sorozatra:

$$\int \liminf_{n \to \infty} F_n \, d\mu = \int \liminf_{n \to \infty} (F - f_n \cdot \chi_C) \, d\mu = \int (F - \limsup_{n \to \infty} f_n \cdot \chi_C) \, d\mu =$$

$$\int F \, d\mu - \int \limsup_{n \to \infty} f_n \cdot \chi_C \, d\mu \le \liminf_{n \to \infty} \int (F - f_n \cdot \chi_C) \, d\mu =$$

$$\lim_{n \to \infty} \left(\int F \, d\mu - \int f_n \cdot \chi_C \, d\mu \right) = \int F \, d\mu - \limsup_{n \to \infty} \int f_n \cdot \chi_C \, d\mu.$$

Innen – figyelembe véve, hogy $0 \le \int F \, d\mu < +\infty$ teljesül –

$$\limsup_{n \to \infty} \int f_n \cdot \chi_C \, d\mu \le \int \limsup_{n \to \infty} f_n \cdot \chi_C \, d\mu$$

következik. Ugyanakkor nyilván

$$f_n \cdot \chi_C = f_n \ \mu - \text{m.m.} \ (n \in \mathbf{N})$$

és

$$\limsup_{n \to \infty} f_n \cdot \chi_C = \limsup_{n \to \infty} f_n \ \mu - \text{m.m.},$$

ezért

$$\int f_n \cdot \chi_C \, d\mu = \int f_n \, d\mu \quad (n \in \mathbf{N}),$$
$$\int \limsup_{n \to \infty} f_n \cdot \chi_C \, d\mu = \int \limsup_{n \to \infty} f_n \, d\mu,$$

és ezzel a b)-ben jelzett egyenlőtlenségeket kapjuk. ■

3. Megjegyzések

i) A "majdnem mindenütt" terminológiával kapcsolatban külön is felhívjuk a figyelmet a következőkre: a " $T~\mu$ -m.m." állítás

hogy (μ -)nullamértékű az a halmaz, amelyik azokból a pontokból áll (ezeknek a halmaza legyen Y), amelyekre a T nem teljesül, azaz, hogy

$$\mu(Y) = 0.$$

Előfordulhat ui., hogy

$$Y \notin \Omega$$
.

Csupán annyit mondhatunk, hogy valamilyen

$$A \in \Omega, \, \mu(A) = 0$$

halmaz lefedi az Y halmazt: $Y\subset A$. Ha a μ mérték teljes, és a T tulajdonság μ -m.m. igaz, akkor persze $Y\in\Omega$ (lévén az Y egy $(\mu$ -)nullamértékű halmaznak a részhalmaza) és $\mu(Y)=0$.

ii) A Beppo Levi-tételnek a függvénysorokra vonatkozó alakja a következő:

ha
$$g_n \in L^+$$
 $(n \in \mathbf{N})$, akkor $\sum_{n=0}^{\infty} g_n \in L^+$ és

$$\int \sum_{n=0}^{\infty} g_n \, d\mu = \sum_{n=0}^{\infty} \int g_n \, d\mu.$$

Ui. legyen

$$f_n := \sum_{k=0}^n g_k \qquad (n \in \mathbf{N}),$$

ekkor az (f_n) sorozatra alkalmazható a Beppo Levi-tétel, és így

$$\int \lim_{n \to \infty} f_n \, d\mu = \int \sum_{n=0}^{\infty} g_n \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu =$$
$$\lim_{n \to \infty} \sum_{k=0}^{n} \int g_k \, d\mu = \sum_{n=0}^{\infty} \int g_n \, d\mu.$$

iii) Ha $X:={\bf N},\ \Omega:={\mathcal P}(X),$ a μ pedig egy tetszőleges mérték az $\Omega\text{-n},$ akkor legyen

$$\alpha_n := \mu(\{n\}) \qquad (n \in \mathbf{N}).$$

Könnyű meggondolni, hogy most

$$L^+ = [0, +\infty]^{\mathbf{N}},$$

azaz az L^+ a nemnegatítv sorozatok által alkotott halmaz. Továbbá tetszőleges $f: \mathbf{N} \to [0, +\infty]$ sorozatra

$$\int f \, d\mu = \sum_{n=0}^{\infty} f(n) \cdot \alpha_n.$$