

Tutorium 5: Sortieren

Holger Ebhart | 20. Mai 2015

TUTORIUM ZUR VORLESUNG ALGORITHMEN I IM SS15						
000011100	91 0011100100	1011110110	0100000100	0100000010	<i>JJJ000J00J</i>	
000110111	1 1001001011	0001000100	0001111001	0110111010	<i>JJ0JJ0JJJJ</i>	
10011111001	1010001100	1001111101	0110000100	10000000000	0100101011	
1100010001	0110110110	0000010011	1110111011	1110101101	0010011110	
0111110011	1000011111	0111111000	0110001100	0001000111	0001111011	
1000011101	1011101010	1000101001	0110011101	010001011	7 7770770070	
1100001111	1101100110	1110101101	1001001000	11000100	10 0011001010	
1001000100	0010011010	0001111110	1011111100	1000001	.001 0111000011	
0011100101	1111001101	0001110111	0101110100	011001	0110 110110011.	7

Gliederung

- 4. Übungsblatt
- Sortieren
 - Insertionsort
 - Mergesort
 - Quicksort
 - Heapsort
 - Untere Schranke
 - Aufgaben
- 3 Zu Übungsblatt 5

4. Übungsblatt

Holger Ebhart - Sortieren

Insertionsort

Idee:

betrachte die Elemente an jeder Stelle 1, ..., n schiebe das Element solange vor, bis der Vorgänger nicht mehr größer ist

Algorithmus:

Laufzeit

Average-Case: $O(n^2)$ Worst-Case: $O(n^2)$

4. Übungsblatt

Insertionsort

Idee:

betrachte die Elemente an jeder Stelle 1, ..., n schiebe das Element solange vor, bis der Vorgänger nicht mehr größer ist

Algorithmus:

Laufzeit:

4. Übungsblatt

Average-Case: $O(n^2)$ Worst-Case: $O(n^2)$ Best-Case: O(n)

Mergesort

Idee:

Splitte die Menge solange in zwei Teile, bis einelementige Mengen entstehen merge die Mengen wieder zusammen und sortiere dabei

Laufzeit:

Average-Case: $O(n \cdot \log n)$ Worst-Case: $O(n \cdot \log n)$

Mergesort

Idee:

Splitte die Menge solange in zwei Teile, bis einelementige Mengen entstehen merge die Mengen wieder zusammen und sortiere dabei

Laufzeit:

Average-Case: $O(n \cdot \log n)$ Worst-Case: $O(n \cdot \log n)$ Best-Case: $O(n \cdot \log n)$

Mergesort

Algorithmus:

```
procedure mergeSort(A:Array[1...n] of Digit, s,e:Digit)
2
            if s = e then
3
                     return A[s]:
4
            else
                     merge(mergeSort(A, s, (s+e)/2),
                        mergesort(A, (s+e)/2 +1, e));
6
7
   procedure merge(A:Array[1...n/m] of Digit)
8
            C: Array [1...(m+n)] of Digit
9
            for i := 1 to m+n do
10
                     C[i] := min(A[1],B[i])
11
                     if C[i] = A[1] then 1++
12
                     else i++
13
            end
14
            return c;
```

20. Mai 2015

- Median teilt eine Menge M in zwei gleichgroße Untermengen auf
 - |M| ungerade $\rightarrow m = sort(M)_{\frac{|M|+1}{2}}$
 - $|M| \text{ gerade} \rightarrow m = \frac{sort(M)_{\frac{|M|}{2}} + sort(M)_{\frac{|M|}{2} + 1}}{2}$
- Median ist ½ Perzentil
- Wie berechnet man das $\frac{1}{3}$ Perzentil eines unsortierten Arrays mit n Elementen?
 - Gehen Sie davon aus es sei eine Medianfunktion gegeben die den Median von m Elementen in O(m) berechnet. Stellen Sie sicher, dass ihr Algorithmus in O(n) läuft.

- Median teilt eine Menge M in zwei gleichgroße Untermengen auf
 - |M| ungerade $\rightarrow m = sort(M)_{\frac{|M|+1}{2}}$
 - $|M| \text{ gerade} \rightarrow m = \frac{\textit{sort}(M)_{\frac{|M|}{2}} + \textit{sort}(M)_{\frac{|M|}{2} + 1}}{2}$
- Median ist ½ Perzentil
- Wie berechnet man das $\frac{1}{3}$ Perzentil eines unsortierten Arrays mit n Elementen?
 - Gehen Sie davon aus es sei eine Medianfunktion gegeben die den Median von m Elementen in O(m) berechnet. Stellen Sie sicher, dass ihr Algorithmus in O(n) läuft.

- Median teilt eine Menge M in zwei gleichgroße Untermengen auf
 - |M| ungerade $\rightarrow m = sort(M)_{\frac{|M|+1}{2}}$
 - $|M| \text{ gerade} \rightarrow m = \frac{sort(M)_{\frac{|M|}{2}} + sort(M)_{\frac{|M|}{2} + 1}}{2}$
- Median ist ½ Perzentil

- Median teilt eine Menge M in zwei gleichgroße Untermengen auf
 - |M| ungerade $\rightarrow m = sort(M)_{\frac{|M|+1}{2}}$
 - $|M| \text{ gerade} \rightarrow m = \frac{\textit{sort}(M)_{\frac{|M|}{2}} + \textit{sort}(M)_{\frac{|M|}{2}+1}}{2}$
- Median ist ½ Perzentil
- Wie berechnet man das $\frac{1}{3}$ Perzentil eines unsortierten Arrays mit n Elementen?
 - Gehen Sie davon aus es sei eine Medianfunktion gegeben die den Median von m Elementen in O(m) berechnet. Stellen Sie sicher, dass ihr Algorithmus in O(n) läuft.

20. Mai 2015

Quicksort

Idee:

tue bis nur noch einelementige Mengen existieren nehme Pivot m und bilde Mengen mit Elementen <,>,= m konkateniere die Mengen der Reihenfolge nach

Laufzeit:

Average-Case: $O(n \cdot \log n)$

Worst-Case: $O(n^2)$

Best-Case: $O(n \cdot \log n)$

8/14

Quicksort

Idee:

tue bis nur noch einelementige Mengen existieren nehme Pivot m und bilde Mengen mit Elementen <,>,= m konkateniere die Mengen der Reihenfolge nach

Laufzeit:

Average-Case: $O(n \cdot \log n)$

Worst-Case: $O(n^2)$

Best-Case: $O(n \cdot \log n)$

Quicksort

Algorithmus:

```
procedure quickSort(A:Array[1...n] of Digit)
2
            pick pivot m
            B,C,D:Array of Digit
            a=1,b=1,c=1:Digit
            for i := 1 to n do
6
                     if A[i] > m then B[b++] := A[i]
                     else if A[i] < m then D[d++] := A[i]
8
                     else C[c++] := A[i]
9
            end
10
            return quickSort(B) + C + quickSort(D)
11
12
   procedure merge(A:Array[1...n/m] of Digit)
13
            C: Array [1...(m+n)] of Digit
14
            for i := 1 to m+n do
                     C[i] := min(A[1],B[j])
15
16
                     if C[i] = A[1] then 1++
17
                     else j++
18
            end
                                          4□ > 4周 > 4 至 > 4 至 > 至 り Q (~)
```

4. Übungsblatt

Sortieren

Heapsort

Idee:

Füge alle Elemente in einen Heap ein entnehme stets das kleinste Element

```
Laufzeit:

Average-Case: O(n \cdot \log n)

Worst-Case: O(n \cdot \log n)

Best-Case: O(n \cdot \log n)

Algorithmus:
```


Heapsort

Idee:

Füge alle Elemente in einen Heap ein entnehme stets das kleinste Element

```
Laufzeit:
Average-Case: O(n \cdot \log n)
Worst-Case: O(n \cdot \log n)
```

Best-Case: $O(n \cdot \log n)$

Algorithmus:

Untere Schranke

Vergleichsbasiertes Sortieren von n Elementen:

- $n!(<2^H)$ verschiedene Möglichkeiten
- baue binären Entscheidungsbaum mit den n! Möglichkeiten (mit max. 2^H Blättern)
- Baum hat Höhe n · log n
- lacksquare o $n \cdot \log n$ Vergleiche

Aufgabe 1

Es sei die folgende Zahlenfolge gegeben:

$$\textit{Z}_{1} = (6, 8, 7, 33, 56, 1, 14, 16, 29)$$

Sortieren sie Z_1 mit

- Insertionsort
- Mergesort
- Quicksort (*Pivot* = $\lfloor \frac{|Z_i|}{2} \rfloor$)

und geben Sie jeweils die Anzahl benötigter Vergleiche an.

Aufgabe 2

Welcher der folgenden Algorithmen sollte für welche Zahlenfolge gewählt werden. Begründen Sie warum.

Algorithmen:

- Insertionsort
- Mergesort
- Quicksort ($Pivot = \lfloor \frac{|Z_i|}{2} \rfloor$)

Zahlenfolgen:

- $Z_1 = 8, 7, 6, 5, 4, 3, 2, 1$
- $Z_2 = 1, 8, 2, 3, 7, 4, 6, 5$
- $Z_3 = 1, 2, 3, 4, 5, 6, 7, 8$

Inversionen

Geben Sie die Anzahl an Inversionen in folgenden Folgen an. Geben Sie bei a) und b) zusätzlich noch jeweils alle Inversionen an.

- a) $F_1 = 1, 3, 2, 5, 4, 0$
- b) $F_2 = 34, 21, 34, 56, 99$
- c) $F_3 = 67, 5, 87, 32, 34, 55, 3, 99, 82, 49$
- d) $F_4 = 9, 8, 7, 6, 5, 4, 3, 2, 1$

Vielen Dank für eure Aufmerksamkeit! Bis zum nächsten Mal.

stackoverflow.com

