Álgebra Booleana – Resumo (parte 3)

Expressões Equivalentes

Quando duas expressões booleanas diferentes tem como resultado a mesma tabela verdade, dizemos que essas expressões são equivalentes, ou seja, implementam a mesma função. Veja exemplos a seguir.

Exemplo 1

A expressão $\overline{A \cdot B}$ é equivalente à expressão $\overline{A} + \overline{B}$

Vamos calcular a tabela verdade das duas expressões.

Calculando a tabela verdade da expressão A.B

Calculando para A=0 e B=0

$$Y = \overline{0.0}$$

$$Y = \frac{31}{0}$$

$$Y = 1$$

$$Y = \overline{0.1}$$

$$Y = \frac{312}{0}$$

Calculando para A=1 e B=0

$$Y = \overline{1.0}$$

$$Y = \overline{0}$$

$$Y = 1$$

Calculando para A=1 e B=1

$$Y = \overline{1.1}$$

$$Y = \frac{1}{1}$$

$$\dot{Y} = 0$$

Portanto, a tabela verdade da expressão $\overline{A \cdot B}$ fica assim:

Α	В	A.B	
0	0	1	
0	1	1	
1	0 1		
1	1	0	

Agora vamos calcular a tabela-verdade da expressão $\overline{A}+\overline{B}$

Calculando a tabela verdade da expressão $\overline{A}+\overline{B}$

Calculando para A=0 e B=0

 $Y = \overline{0} + \overline{0}$

Y = 1+1

Y = 1

Calculando para A=0 e B=1

 $Y = \overline{0} + \overline{1}$

Y = 1+0

Y = 1

Calculando para A=1 e B=0

 $Y = \overline{1} + \overline{0}$

Y = 0+1

Y = 1

Calculando para A=1 e B=1

 $Y = \overline{1} + \overline{1}$

Y = 0+0

Y = 0

Portanto a tabela verdade da expressão $\overline{A}+\overline{B}$ fica assim:

Α	В	Ā+B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Ou seja, as duas tabelas-verdade ficaram iguais, portanto as duas expressões são **EQUIVALENTES**.

Α	В	A.B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Α	В	Ā+B
0	0	1
0	1	1
1	0	1
1	1	0

Exemplo 2

A expressão $\overline{A+B}$ é equivalente à expressão $\overline{A}.\overline{B}$

Vamos calcular a tabela verdade das duas expressões.

Calculando a tabela verdade da expressão $\overline{A+B}$

Calculando para A=0 e B=0

$$Y = \overline{0+0}$$

$$Y = \frac{0}{0}$$

$$Y = 1$$

Calculando para A=0 e B=1

$$Y = \overline{0+1}$$

$$Y = 1$$

$$Y = 0$$

Calculando para A=1 e B=0

$$Y = \overline{1+0}$$

$$Y = \frac{1}{1}$$

$$Y = 0$$

Calculando para A=1 e B=1

$$Y = \overline{1+1}$$

$$Y = \frac{1}{1}$$

$$Y = 0$$

Portanto a tabela verdade da expressão $\overline{A+B}$ fica assim:

Α	В	A+B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Agora vamos calcular a tabela-verdade da expressão \overline{A} . \overline{B}

Calculando a tabela-verdade da expressão \overline{A} . \overline{B}

Calculando para A=0 e B=0

 $Y = \overline{0}.\overline{0}$

Y = 1.1

Y = 1

Calculando para A=0 e B=1

 $Y = \overline{0}.\overline{1}$

Y = 1.0

Y = 0

Calculando para A=1 e B=0

 $Y = \overline{1}.\overline{0}$

Y = 0.1

Y = 0

Calculando para A=1 e B=1

 $Y = \overline{1}.\overline{1}$

Y = 0.0

Y = 0

Portanto a tabela-verdade da expressão \overline{A} . \overline{B} fica assim:

Α	A B		
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Ou seja, as duas tabelas-verdade ficaram iguais, portanto as duas expressões são **EQUIVALENTES**.

Α	В	A+B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Α	В	Ā.B
0	0	1
0	1	0
1	0	0
1	1	0

Exemplo 3

As expressões $A \cdot B$ e $\overline{\overline{A} + \overline{B}}$ possuem a mesma tabela verdade, portanto, são expressões equivalentes.

A.B é equivalente a $\overline{A}+\overline{B}$

A	В	A.B
Θ	Θ	Θ
Θ	1	Θ
1	ΘΘ	
1	1	1

Α	В	Ā	B	Ā+B	Ā+B
Θ	Θ	1	1	1	Θ
Θ	1	1	0	1	Θ
1	Θ	0	1	1	Θ
1	1	0	0	0	1

Exemplo 4

As expressões A+B e $\overline{\overline{A}.\overline{B}}$ possuem a mesma tabela verdade, portanto, são expressões equivalentes.

A+B é equivalente a $\overline{\overline{A}.\overline{B}}$

Α	В	A+B
Θ	Θ	Θ
Θ	1	1
1	Θ	1
1	1	1

Α	В	Ā	B	Ā.B	A.B
Θ	Θ	1	1	1	Θ
Θ	1	1	0	Θ	1
1	Θ	0	1	Θ	1
1	1	0	0	Θ	1

Expressões NÃO equivalentes - CUIDADO

Em outros casos, expressões que parecem ser equivalentes, na verdade não são. Veja exemplos abaixo:

Exemplo 5

A expressão $\overline{A.B}$ não é equivalente à expressão $\overline{A}.\overline{B}$

			A.B é
A	В	A.B	A.B
Θ	Θ	0	1
Θ	1	0	1
1	Θ	0	1
1	1	1	0

diferente de \overline{A} . \overline{B}								
	A	В	Ā	В	Ā. B			
	Θ	Θ	1	1	1			
	Θ	1	1	0	Θ			
	1	Θ	0	1	Θ			
	1	1	0	0	Θ			

Exemplo 6

A expressão $\overline{A+B}$ não é equivalente à expressão $\overline{A}+\overline{B}$

A	В	Ā	B	Ā + B
Θ	Θ	1	1	1
Θ	1	1	0	1
1	Θ	0	1	1
1	1	0	0	0