Adrian Derda,

Michał Karmański,

Mateusz Adamczak,

Bartosz Kacperkiewicz

Spis treści

2014-04-11

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

Zarządzanie w systemach i sieciach komputerowych - projekt

Problem szeregowania zadań na równoległych procesorach

AUTOR:

Prowadzący zajęcia:

Adrian Derda, Michał Karmański, Mateusz Adamczak, Bartosz Kacperkiewicz Dr inż. Robert Wójcik, W4/I-6

Adrian Derda,

Michał Karmański,

Mateusz Adamczak,

Bartosz Kacperkiewicz

Spis treści

2014-04-11

OCENA PRACY:

Spis treści

arządzanie w systemach i sieciach komputerowych - projekt1	
1	
. 1	
1	
1	
2	
3	

Sformułowanie problemu

2014-04-115

Adrian Derda, Michał Karmański,

Mateusz Adamczak,
Bartosz Kacperkiewicz

1. Sformułowanie problemu

1.1 Podłoże projektu

Jako temat naszego projektu wybraliśmy szeregowanie zadań na równoległych procesorach. Jest to zagadnienie o tyle ciekawe, że korzystamy z niego na co dzień w każdym komputerze posiadającym więcej niż jeden procesor. Specjalnie opracowane algorytmy umożliwiają taki rozdział procesów względem procesorów, aby uzyskać możliwie jak najkrótszy czas przetwarzania zadania przy jednoczesnym maksymalnym wykorzystaniu procesora.

2. Metoda i algorytmy rozwiązywania problemu

Do rozwiązania problemu zostaną wykorzystane najbardziej rozpowszechnione algorytmu służące szeregowaniu zadań. Będą to:

- a. FCFS (First-Job First-Served) [1]
- b. SJF (Shortest Job First) [2]
- c. SRT (Shortest Remaining Time) [3]
- d. Algorytm priorytetowy [1]
- e. Algorytm rotacyjny [4]

3. Metoda implementacji

Program zostanie zaimplementowany w języku programowania C# wraz z platformą .NET. Na samym początku zostaną zaimplementowane algorytmy służące do szeregowania zadań na procesorach, a następnie po ich przetestowaniu zostanie wykonany graficzny interfejs użytkownika (GUI). W ramach jego działania użytkownik będzie miał dostęp do pełnej funkcjonalności stworzonego uprzednio programu.

Sposób testowania i ocena jakości rozwiązań

Adrian Derda,

2014-04-115

Michał Karmański, Mateusz Adamczak,

Bartosz Kacperkiewicz

4. Sposób testowania i ocena jakości rozwiązań

Ocena jakości rozwiązań opierać się będzie o wyliczenia parametrów dla poszczególnych instancji problemów. Badane wskaźniki to:

- średnni czas wykonania pojedyńczego zadania dla różnych instancji problemu.
- średni czas oczekiwania zadania na wykonanie.
- procentowy czas zajętości procesora.
- średni termin zakończenia wszystkich zadań

Taki sposób analizy odzwierciedla aspekty które są obserwowane bezpośrednio przez użytkownika (zauważa on opoźnienia pracy systemu itp.) co pozwoli nam określić jakość pracy z systemem opierającym się o badane rozwiązania, z drugiej strony dane te pozwolą na oszacowanie wynikowego stopnia efektywności procesora.

W przypadku algorytmu karuzelowego analizując opisane wskaźniki postaramy się ustalić optymalny kwant czasu przełączania kontekstu

Sposób testowania opierał się będzie o generowanie instancji problemu, która następnie rozwiązana zostanie przez założone algorytmy, otrzymane dane w postaci wskaźników opisanych powyżej będą ze sobą zestawiane i analizowane pod kątem wspomnianej jakości pracy i efektywności procesora - tak spreparowane informacje pozwolą wysnuć pewne wnioski na temat wad i zalet badanych metod, jak rownież określać ich przydatność w danym środowisku.

Literatura

2014-04-115

Adrian Derda,
Michał Karmański,
Mateusz Adamczak,
Bartosz Kacperkiewicz

Literatura

- [1] Chrobot A., Systemy operacyjne zarządzanie procesami, http://achilles.tu.kielce.pl/Members/achrobot/archiwum/i-semestr/pdf/so/ (aktualne na dzień 8.03.2014)
- [2] Nowak S., Dąbrowski W., Michalak G., http://www.isep.pw.edu.pl/~slawekn/info1/lekcja5/segment4/main.html, (aktualne na dzień 01.04.2014)
- [3] Hasyim N., Shortestjob first algorithm, http://naharhasyim.blogspot.com/2013/03/shortest-job-first-algorithm.html, (aktualne na dzień 02.04.2014)
- [4] Przykłady algorytmów planowania przydziału procesora, http://smurf.mimuw.edu.pl/node/895, (aktualne na dzień 01.04.2014)
- [5] Pokrywka M., Algorytm karuzelowy (round-robin)
 http://akkd.porubis.pl/bezklasowe/round-robin (aktualne na dzień 01.04.2014)