(19)日本国特許庁 (JP) (12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-237476

(43)公開日 平成8年(1996)9月13日

(51) Int. Cl. 6	識別記号	庁内整理番号	FΙ				技術表示箇所
H04N 1/40			H 0 4 N	1/40	101	Z	
1/19				1/04	103	. C	

審査請求 未請求 請求項の数2 〇L (全16頁)

(71)出願人 590000798 (21)出願番号 特願平7-297064 ゼロックス コーポレイション XEROX CORPORATION (22)出願日 平成7年(1995)11月15日 アメリカ合衆国 ニューヨーク州 146 44 ロチェスター ゼロックス スクエ (31) 優先権主張番号 3 4 3 3 9 0 ア (番地なし) 1994年11月22日 (32)優先日 (72)発明者 ジョージ ウォルバーグ 米国 (US) (33)優先権主張国 アメリカ合衆国 11375 ニューヨー ク州 フォレスト ヒルズ セブンティー ファースト ロード 109-20 ア パートメント サード フロアー (74)代理人 弁理士 中島 淳 (外1名)

最終頁に続く

(54) 【発明の名称】データ処理方法及びデジタル出力データ生成方法

(57) 【要約】

【課題】 「理想の」即ち均一なモーション条件下で動 作するスキャナと一致する出力デジタル画像を生成す

【解決手段】 機械的な振動の存在下で走査される画像 を定義するデータを処理し、復元出力画像を生成するた めに画像プロセッサにおいて実行される方法であって; 第1メモリ内に画像放射照度データを格納し、該データ の各項が原稿の領域サンプルを表現し;第2メモリ内に 該データと関連する速度データを格納し、該速度データ が原稿に関して不均一な速度で移動する走査要素の相対 的な瞬間速度を反映し;該放射照度及び速度データを用 いて近似関数をモデル化し、時間の任意点において画像 放射照度を表現し:公称走査速度と固定されたサンプリ ング時間期間の関数として制御点を識別し;該制御点を 用いて近似関数を再サンプリングし、原稿の領域毎に復 元される放射照度レベルを決定すること;を含む。

【特許請求の範囲】

【請求項1】 機械的な振動の存在下で走査される画像 を定義するデータを処理し、復元出力画像を生成するた めに画像プロセッサにおいて実行される方法であって、 第1メモリ内に画像放射照度データを格納し、第1メモ リ内に格納された放射照度データの各項が原稿の領域の サンプルを表現するステップと、

第2メモリ内に該画像放射照度データと関連する速度デ ータを格納し、該速度データが原稿に関して不均一な速 テップと、

該画像放射照度データと速度データを用いて、近似関数 をモデル化し、時間の任意点において画像放射照度を表 現するステップと、

公称走査速度と固定されたサンプリング時間周期の関数 として制御点を識別するステップと、

該制御点を用いて近似関数を再サンプリングし、原稿の 領域毎に復元放射照度レベルを決定するステップと、 を含むデータ処理方法。

【請求項2】 画像入力装置内の機械的な振動によって 生じるアーチファクトが実質的に存在しない元の画像を 定義するデジタル出力データを生成するために画像入力 デバイスにおいて実行される方法であって、

画像データを獲得し、該画像データを第1メモリに格納 するステップと、

同時に、位置データを獲得して画像データと関連する瞬 間速度データを生成し、該瞬間速度データを第2メモリ に格納するステップと、

該瞬間速度データと該画像データを用いて、元の画像の 放射照度分布の基本モデルを再構成するステップと、 理想の走査条件下で基本モデルを再サンプリングして、 機械的な振動により生じるアーチファクトが実質的に存 在しない元の画像を定義するデジタル出力データを生成 するステップと、

を含むデジタル出力データ生成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、機械的な振動の存 在下で走査されるデジタル画像を復元するための方法に 関し、更に詳細には機械的な振動から得られた歪みを反 転し、機械的な振動のない均一なモーション条件下で動 作するスキャナによる出力と同じようにデジタル出力を 生成することに関する。

[0002]

【従来技術及び発明が解決しようとする課題】本発明 は、デジタルコンピュータのようなデータ又は画像処理 システムにおいて動作し、機械的な振動の存在下で走査 された画像を復元するので、画像の品質を向上させる。 機械的な振動の存在下で走査される画像は、輝度の変動 (brightness fluctuation)や幾何歪み(geometric warpi ng) のようなアーチファクト(artifacts、生成物) を受 けやすい。

【0003】ドキュメント (原稿、文書) スキャナの一 つの実施の形態では、線形センサアレイ(LSA)は、 典型的にはプラテン上に配されたドキュメントの下を、 理想的には均一な速度で通過する。露光領域を走査する と、LSA内の単一の光センサの出力はセンサにより受 け取られた積分放射照度に比例する。センサアレイの振 動性モーション(動き)が認められる時、露光領域の実 度で移動する走査要素の相対的な瞬間速度を反映するス 10 サイズは時間的に変化(time-varying)する。これが、輝 度の変動や幾何学的なひずみのようなアーチファクトを 道く」

> 【0004】モーションがアナログ画像形成システムの 解像度に及ぼす影響は研究されてきた。特に扱われる問 題は、感光性画像形成媒体の積分時間中にモーションに よって生じる画像のぼけの特徴付けに関する。典型的な ケースでは、該ばけは、一般的に画像全体にあり、線形 又は振動性モーションによって生じ得る。ぼけは一定で ある。その理由は、従来の写真用カメラ又はフラッシュ 露光ゼログラフィックシステムと同様に、アナログ画像 20 形成システムは一般的に一回に画像の全空間範囲を獲得 するからである。本発明は、各ラインが光感知アレイの 異なる任意速度により得られ得るラスター又はスキャン ライン方法でデジタル化される画像に関するという点で ワーク(作業)の本体とは異なる。

> 【0005】画像形成デバイスにおける望ましくないメ カニカルモーションを修正又は補償する方法を開示する 多数の特許や出版物がある。それらには例えば、米国特 許第5, 153, 644号(1992年10月6日発 30 行、ヤング(Yang)等):米国特許第4,628,368 号 (1986年9月9日発行、クラタ(Kurata)等);ゼ ロックス社の公開ジャーナル(Xerox Disclosure Journa 1) (15巻、No.1、1990年1月/2月、31 頁)の「デジタルプリンタにおける振動感度を減少する ための冗長ラスタリング(Redundant Rastering for Dec reased Vibration Sensivity in Degital Printers) 」;ゼロックス社の公開ジャーナル(18巻、No. 1、1993年1月/2月、7~9頁)の「画像スキャ

Scanners)」等がある。. 【0006】何人かの著者達は、スリット走査フォトコ ピー機やデジタルプリンタの不均一な受光体(例えば、 感光体)モーション及び他のノイズソースの影響につい て考察してきた。それらには、画像形成サイエンスジャ ーナル(Journal of ImagingScience) [1988年11 月/12月、238~247頁、32(6)、アールロ ース(R. Loce) 及びダブリュ ラマ(W. Lama) 著}の 「フォトコピー機の露光ストローブ(Exposure Strobing in Photocopiers)」:応用フォトグラフィック技術ジ ャーナル(Journal of Applied Photographic Engineeri

ナ用モジュラードライバー(Modular Driver For Image

ng) [1976年、86~92頁、2、エフ ペステン レイナ(F. Bestenreiner)、ユー ゲイス(U. Geis)、 ジェイ ヘルンベルガー(J. Helmberger)、及びケー スタッドラー(K. Stadler)著〕の「線毎に記録された画 像における周期的干渉構造のビジビリティー及び補正(V isibility and Correction of Periodic Interference Structures in Line-by-Line Recorded Images) 」;写 真科学・技術者協会第3回国際会議の議事録:ノンイン パクトプリンタの最近の進歩(Proceedings of the SPSE Third International Congress: Recent Advances in N 10 on-Impact Printing Technologies) の「レーザビーム プリンタハーフトーン複製に対する受光体ドラムの回転 速度のばらつきの影響(Effect of Photoreceptor Drum Rotational Speed Variation on Laser Beam Printer H alftone Reproduction) 」 (1986年8月、サンフラ ンシスコ、168~172頁、ケー タキグチ、ティー ミヤギ、エー オカムラ、エイチ イショシ、及びエ フ シバタ著〕;画像形成テクノロジージャーナル(Jou rnal of Imaging Technology) [1989年15、4 6、ディー ハス(D. Haas) 著〕の「走査線空間に於け るばらつきによって生成されるハーフトーン画像のコン トラスト変調(Contrast Modulation in Halftone Image s Produced by Variation in Scan Line Spacing);写 真科学・技術者協会第3回国際会議の議事録:ノンイン パクトプリンタの最近の進歩の「ドットマトリックスプ リンタに於けるピクセル配置エラーに起因するカラーエ ラー(Color Error due to Pixel Placement Errors in a Dot Matrix Printer)」(1986年8月、257~ 260頁、エス ブルームパーグ(S. Bloomberg)及びピ ー エンゲルドラム(P. Engeldrum)著〕;及び画像形成 テクノロジージャーナル〔1990年、6~11頁、1 6 (1) アール ロース及びダブリュ ラマ著〕の「ゼ トルラフィック画像バープリンタにおける振動に起因す るハーフトーンバンディング(Halftone Banding due to Vibrations in a Xerographic Image Bar Printer)

【0007】本発明の目的は、「理想の」即ち均一なモーション条件下で動作するスキャナと一致する出力デジタル画像を生成することである。本明細書に記載される画像復元方法は、線形センサアレイと走査されるドキュメントとの間の相対的な瞬間速度を用いて、処理ベースとなる画像放射照度分布の区分的一定(piecewise constant)又は区分的線形モデルを再構成する。次に、その再構成された画像は、理想の走査条件下での再サンプリング(標本化)に適しており、復元出力デジタル画像を生成する。

[0008]

」、がある。

【課題を解決するための手段】本発明に従って、機械的な振動の存在下で走査される画像を定義するデータを処理し、復元出力画像を生成するために画像プロセッサに 50

おいて実行される方法が提供され、該方法は:第1メモリ内に画像放射照度データを格納し、第1メモリ内に格納された放射照度データの各項が原稿(original document) の領域のサンプルを表現すること;第2メモリ内に該画像放射照度データと関連する速度データを格納する。該速度データが原稿に関して不均一な速度で移動する。 該速度データが原稿に関して不均一な速度で移動像ルルを要素の相対的な瞬間速度を反映すること;該動像ルルと;公称走査速度と固定されたサンプリング時間の任意点において画像放射照度を表現すること;公称走査速度と固定されたサンプリング時間間に変更として制御点を識別すること;該制御点を用い近の関数を再サンプリングし、原稿の領域毎に復元放射照度レベルを決定すること;と、を含む。

【0009】本発明の別の態様によれば、画像入力デバイス内の機械的な振動によって生じるアーチファクカカデッタル出元の画像を定義するデジタル出行される方法が提供され、該方法は:画像データを獲得して画像データを獲得して画像データと関連する瞬間速度データを第2メモリに格納すること;時間速度データを第2メモリに格納である。 重像データを獲得して画像データと関連する瞬間速度データを第2メモリに格納でいて、近一タを集2メモリに格納である。 重像データを第2メモリに格納である。 重像データを第2メモリに格納である。 重像データを第2メモリに格納である。 重像データを第2メモリに格が、デするの画像で上、変異である。 重像の放射照度分布の基本モデルを再サンプリングして、での画像の走査条件下で基本モデルを再サンプリングのに存在しない、元の画像を定義するデジタル出力データを生成すること;と、を含む。

【0010】本発明の態様は、従来の画像入力スキャナやこのようなデバイス中で用いられる電気機械的測定に伴う問題の観察に基づき、振動の衝撃や他の不均一なモーションを最小化する。この態様は、画像の放射レベルとドキュメントに関する走査アレイのモーション分布に関して得られたデータに基づいて出力画像を再構成することによりこれらの問題を緩和する技法の発見に基づく。該技法は、例えば、原稿スキャナ、デジタルコピー機、及びファクシミリマシンを含む画像入力端末装置により生成される情報を処理するのに適したデータ又は画像処理装置によって実施され得る。

【0011】本明細書に記載される技法は有利である。 その理由は、デジタル原稿スキャナ内の振動を最小化するような他の機械的なアプローチと比較して安価であるからである。更に、該技法を用いて、不均一モーションの条件下で生成された画像を再構成し、不均一性が画像領域に記録される放射照度レベルに及ぼす影響を除去する。

[0012]

【発明の実施の形態】用語「データ」は、本明細書では、情報を示すか又は含み、特に画像の放射照度、位置、及び速度情報を含む物理的な信号を指す。

【0013】「データ処理システム」は、データを処理

5

する物理的なシステムである。「画像処理システム」は、画像の特性を表現するデータを処理するために主に使用されるコンピュータワークステーションのようなデータ処理システムである。

【0014】「画像」は、物理的な光のパターンである。画像は、文字、語、及びテキストと共に図形のような他の特徴もまた含み得る。画像は「セグメント(部分)」に分割することができ、その各々自体が画像である。2次元アレイの例は、相対モーションが線形センサアレイ(LSA)とドキュメントの間に加えられる時に、(LSA)によってドキュメントの表面から得られる画像放射照度データのアレイである。

【0015】「ピクセル」は、画像が所与のシステム内で分割される最小セグメント又は領域である。データの各項目が「値(value)」を提供する画像を定義するアレイにおいて、領域のカラーを示す各値は「ピクセル値(pixel value)」を示す。各ピクセル値は、画像の「2値フォーム」ではピット、画像の「グレイスケールフォーム」ではグレイスケール値、又は画像の「カラー座標フォーム」では1組のカラー空間座標であり、2値フォーム、グレイスケールフォーム、カラー座標フォームはそれでれ、画像を定義する2次元アレイである。

【0016】「画像入力デバイス」は画像を受け取って、画像のバージョンを定義するデータ項目を提供することができるデバイスである。「スキャナ」は画像入力デバイスであり、ドキュメントを走査するか又はラスター化することによる等のラスタ走査オペレーションによって画像を受け取る。

【0017】「画像出力デバイス(IOT)」は、画像を定義するデータ項目を受け取り、出力として画像を提供できるデバイスである。「ディスプレイ」は、出力画像を人間が視覚できるフォーム(形態)で提供する画像出力デバイスである。「ディスプレイ画像」又は単に「画像」は、ディスプレイにより表示される目に見えるパターンである。

【0018】本発明は、例示的な静止ドキュメント移動キャリッジ式スキュナ20が示される図1及び2に示利用るようなデジタル走査の実施の形態を伴った特有の利用法を見いだす。本発明は、ドキュメントで間に相対動作とせいるために、原稿と線形センサアレロでは対動では、原稿と線形センサが固定された走査でファンの間に相対動では、で対して移動する移動ドキュメントが固定式スキャナを含むでするとは、ボーンと明機)、ページにおける使用法を見いだす。スキャナ20は開発入力デバイスにおける使用法を見いだす。スキャナ20は原クリンスで開発していた。カースンを生成する。更にスキャナ20は、基のアレイを生成する。更にスキャナ20は、エンドリ56、側部(サイド)58、及び端部(エンド)

60があるハウジング54を含む。スキャナ20の上部64は、走査される最大ドキュメント50に適用するようにサイズ設定されたほぼ矩形の透明プラテン52を組み込む。ドキュメント50はプラテン52上に手作業か又は適切な自動ドキュメントハンドラ(図示せず)によって配され得る。

【0019】走査キャリッジ68はハウジング54内で移動可能に支持され、プラテン52の下で1つ以上の長手方向に延出するレール70上を往復移動する。キャリッジ68と螺合される駆動スクリュー74の形をとったキャリッジ駆動手段が提供され、スクリュー74を時計回り方向か又は反時計回り方向に、正逆転可能キャリッジ駆動ステップモータ76によって回転させ、キャリッジ68を図1の矢印によって示される前進方向か又は逆方向のいずれかに移動させるように働く。

【0020】電荷結合素子(CCD)のような線形感知アレイ78は、プラテン52との予め定められた動作関係で走査キャリッジ68に適切に取り付けられ、該プラテン上に載置されている原稿を走査する。図1にレンズ80及びミラー82により例示された適切な光学系のは、プラテン52の幅を横切り、キャリッジ68の移動方向(走査方向)に直交するように延出する線状領域に、アレイ78の焦点を合わせるように提供される。ランプ84は、アレイ78が焦点をあわせる線状領域を照射するように提供される。単一の走査アレイ78を示し、それについて説明するが、複数セグメント(CCDs)を当接したり組み合わせてより大きなアレイを形成できる。

【0021】図1及び図2を参照すると、スキャナ20は通信回線86を介して、図2に画像ワーク処理ステーション30として示されるローカル又は遠隔画像処理システムと結合するように用いられる。ワークステーション30は、データプロセッサと、それに関連して、スキャナ20内に組み込まれるメモリとを含んでもよいし、又は該ステーションは図示されたパーソナルコンピュータのような独立型システムとすることもできる。更に、スキャナ20は、スキャナ20の画像信号をデジタルフォーマットへ変換後、ワークステーション30へ出力する前に一時的に格納する比較的小さなメモリバッファ90を含む。

【0022】ここではエンコーダ94の形をとって示される適切なキャリッジ位置又は速度センサが提供される。エンコーダ94は駆動スクリュー74の回転を感知するようにモータ76の反対側又は後側に取り付けられ、スクリュー74が回転すると、レール70に沿った走査キャリッジ68の移動を表す連続クロックバルスを生成する。エンコーダ94により出力される各クロックパルス又はクロックパルスのブロックが、キャリッジ68の移動及びその上に支持されるLSAとに一走査線小50部分(fractional portion)と等しい距離で対応するよう

に、エンコーダ94のクロックパルス出力は設定される。プラテン52上のドキュメントに対して走査キャリッジ68の変位を感知するための他の構成も考えられ得る。例えば、エンコーダ94は、示差エンコーダ(differential encoder)とすることができ、どんな時にも走査キャリッジの瞬間速度を示す信号を生成できる。

【0023】適切な、マイクロプロセッサベースのコントローラ96は、画像処理ワークステーション30による画像データに対する要求に応答するように原稿50を走査する時に、スキャナ20の構成要素部分のオペレーションを制御して同期するために提供される。コントローラ96は制御信号をライン104から受け取り、それをライン106へ送る。適切なモータコントローラ98が提供され、コントローラ96からの制御信号に応答してキャリッジ駆動モータ76の始動、停止、方向、及び速度を制御する。コントローラ96はまたLSA78の集積(積分)、転送と出力及び走査ランプ84の点灯を制御する。

【0024】画像データの出力は、データライン102を介して得られ、該データラインは、各々がドキュメント50の領域(エリア又はリージョン)を表現する個々の画像ピクセルの強度信号(intensity signal)を、ワークステーション30に並列に送る。各ラスタ又は走査線と関係する位置/速度情報もまたワークステーション30へ送られる。ここで、該情報は先に記載したようにエントローラ96によって累積(集積)され、ワークステーション30へデータライン105を介して送られる。次に画像処理ワークステーション30はスキャナにより出

カされる画像及びモーションデータに対して動作し、それらをワークステーション内に格納し、図3のフローチャートに従って、復元画像40を生成する。

【0025】図3を参照すると、3つの主要な動作ステージ、即ちデータ獲得、データ処理、及び出力、は画像処理ワークステーションにより行われる。データ獲得ステージでは、スキャナ20によって生成された画像プロとは、メモリで受け取られてそこに格納される(プロック120)。同様に、画像データと同時にスキャナにて獲得された位置情報もまたメモリで受け取られてそこに格納され(プロック122)、画像処理システーとで接納されると、画像復元工程を行うことによりデータ処理ステージを開始(プロック124)し、出力として補正又は復元画像40を生成する。

【0026】先ず、入力走査を時間領域(domain)におけるサンプリング、次いで均一及び不均一な速度に対する空間領域に関して記載する。

【0027】時間領域におけるサンプリング

20 図 4 を参照して、LSA中の単一光センサの出力について考察すると、H(x)を画像放射照度分布とし、S(x-X(t))を時間 t でX(t)に位置される静的な光センサ感度分布(プロファイル)とする。

【0028】光センサによって生成されるある瞬間の電荷 C(X(t)) は、空間に関して積分された、放射照度分布と光センサ感度分布との積により得られる。

[0029]

【数1】

$$C(X(t)) = \int_{-\infty}^{\infty} H(x)S(x-X(t))dx. \tag{1}$$

【0030】この相互相関積分を畳み込みとして下記式(2)のように表すことができる。

[0031]

【数2】

C(X(t)) = H(X(T)) + S(-X(t)).

(2)

瞬間の電荷を積分即ち累積して、次にそれを時間間隔T 、でサンプリングすることによって行われる。ここで、

 $T_{...}$ $\leq T$, である。n 番目のサンプルは、下記式 (3) により得られる。

[0033]

【0032】デジタル化は、時間の周期T., に対する 40 【数3】

$$F(n) = \int_{nT_c}^{nT_s + T_{acc}} C(X(t))dt = \int_{nT_c}^{nT_s + T_{acc}} H(X(T)) * S(-X(t))dt.$$
(3)

【0034】式 (3) の積分を、矩形関数(rect; rect function) との畳込みと置き換えて、下記式

(4) を得ることができる。

[0035]

【数4】

$$F(t) = \sum_{n} \delta(t - nT_s) \quad (H(X(t)) * K(t)) \quad , \tag{4}$$

ここで

$$K(t) = rect(t/T_{acc}) * S(-X(t)), \text{ and}$$
(5)

$$rect(t) = \begin{cases} 1 & -0.5 < t \le 0.5 \\ 0 & その他の場合 \end{cases}$$
 (6)

[0036] 矩形における一定オフセット、即ちT... /2 は、表示の便宜上削除されたことがわかる。更に、累積された電荷を周期T, でサンプリングすることにより、デイラックデルタ(δ)関数のアレイにより、サンプルの集合(コレクション)を時間関数として記すことができる。

【0037】累積された電荷は、画像放射照度Hの核(カーネル; kernel) Kとの畳込みとなり、該核Kは、感度関数Sと累積時間T...。中に生じたモーションぼけとを結合する。Sを静的な積分アパーチュア(static integration aperture) と称し、Kを動的な積分アパーチュアと称する。その理由は、モーションぼけを考慮するからである。Sの形が矩形であり、累積時間中のLSAとドキュメントとの間に均一な相対速度が存在する場合、Kは梯形の形をとる。不均一な速度が与えられると、梯形に歪みが生じる。

【0038】スキャナ20(図1)のサンプリングエレクトロニクスは、等しい時間間隔にわたって画像放射照

度をデジタル化する。従って、上記に見られたように時間的関数としてサンプルの集合を記すことは分かりやすい。一方、興味ぶかいことは、振動モーションがデジタル化された画像に及ぼす影響である。画像の欠点を分析する目的のために、空間座標xに関してFを計算し直すことにより、振動の影響を最もよく理解することができる

【0039】LSAとドキュメントの間の相対速度が定数(一定)値V。である場合、位置関数X(t)は、下記式(7)となる。

$$[0040] X (t) = V, t$$
 (.7)

【0041】相対速度が不均一である場合、偏差は(周期的に)振動しがちであるので、該速度はフーリエ級数として表され、下記式(8)の位置関数を得ることができる。

[0042]

【数5】

$$X_{vib}(t) = \int_{0}^{t} V(t')dt' = V_0(t) + \sum_{i} \frac{A_i}{2\pi f_i} \left(\cos(\phi_i) - \cos(2\pi f_i t + \phi_i) \right)$$
(8)

【0043】速度の振幅は、典型的には公称速度V、の1%未満である。次に、振動の存在下で取られるサンプルは、振動位置関数X、、(t)を式(3)に置換することによって表現され得る。次に、この結果を空間座標において計算し直し、テイラー級数近似(Taylor series

approximation)を用いて、tから独立して表現される 結果に到達する。

[0044]

【数 6 】

$$F_{vib}(n) = \begin{cases} C(X) \left(V_0^{-1} - V_0^{-2} \sum_{i} A_i \sin(2\pi\beta_i X + \Phi_i) \right) dX. \end{cases}$$
 (9)

【0045】ここで、上側と下側の積分限界(integration limits)は光センサ積分が生じる線形スパンの両端を表す。従って、不均一な速度は2通りの方法で電荷累積積分に影響を及ぼすことがわかる。即ち、積分限界が変更され、シヌソイド(正弦波)の低振幅の和である第2

項(Ierm)が現れる。これらの2つのそれぞれの影響は、 振動による画像信号のFM及びAM変調として考えられ 得る。シヌソイドの和は、変化する積分限界を補償する 働きをするために、それら変調はきつく結合される。積 分限界は信号が時間よりも空間において積分されるとい う理由のみから変化する。これらの影響の役割は、振動の存在下で一定強度(constant intensity)のリージョン (領域) を画像形成する時にフラットフィールド(flat [ield) 応答を維持する際のそれらの影響を考慮することにより最良に認識され得る。

【0046】スキャナ(IIT)例

フォトサイトの「性質」を概略的に特徴付けたので、不均一な相対モーションの問題は、図1と2のスキャナの動作パラメータに関して記載されることになる。例えば、400ドット/インチ(dpi)スキャナでは、LSAは約2.5インチ/秒又は63.5 μ m/msecで原稿の上を通過する。次のように仮定する。

(1) アレイ上の各光センサは、ほぼ 5μ mの幅であり、0.11023の倍率の場合、走査方向に約 63.5μ mの静的な視野を有する。

(2) 走査線を得るための時間は1msecである。 (その時間のほぼ90%を電荷を累積するために使用 し、残りの10%を電荷の読込み及びクリーニングのよ うな他のオペレーションために使用する。) 即ち、累積 時間は0.9msecであり、累積が1msec毎に開 始する。

(3) 瞬間の電荷生成は、線形であり、放射照度はセンサにより受け取られる。

(4) LSAの実速度 V (t) は、典型的には公称速度と1%よりも少なく変化する。速度誤差は振動となりやすいために、変動(バリエーション)はシヌソイドの和としてモデル化され得る。分析するキー周波数は、ドキュメント空間においておよそ1サイクル(周波)/mmに対応する周波数である。これは、この周波数における目の高い感度のためである。ここで考えられる典型的なスキャナの場合、感度の時間的周波数は約(1サイクル/mm)×(63.5 mm/秒)×(0.11023)、即ち7.0 $^{(4)}$

【0047】図5では、これらの特有のパラメータを用 いて、ドキュメント上を通過する時の個々の光センサの 均一なモーションを示す。図5の上のグラフの実線14 0は、積分間隔(integration intervals) (0-4) の 始まりで光センサの視野(field of view) を表現し、破 線142は、積分間隔の終わりで光センサの視野を表現 する。各間隔が開始する時間は対応する光センササイト (位置) より低く示される (msec)。 累積時間が 0. 9msecで、間隔の周期が1. 0msecなの で、各間隔の両端部で視野は重なる。これは、光センサ が介在領域を露光しない場合に生じ得るエイリアシング アーチファクトの生成を回避するという望ましい特性で ある。更に、センサの視野下の全ポイントが等しく重み 付けされることが考えられる。即ち、感度関数S(x) はドキュメント空間に 6 3. 5 μ m の幅を有する矩形関 数である。

【0048】LSA内の単一光センサ上に累積する電荷

は、1つの累積間隔中に横切られるドキュメントの領域と関連する領域サンプルを生成する。そのサンプルは、核K(式(4)引によって重み付けされた基本の放射照度分布の重み付き積分である。重みは放射照度分布の点の累積電荷への寄与を反映する。放射照度分布の点の寄与は、該点が光センサの移動視野に露出される時間の量として計算される。光センサ視野の両端部の点に対するより短い露光時間のために、領域サンプルの核の形は梯形であり、実際にはほぼ三角形である。こられの核は、図5の下部に示され、梯形の核が示された値を変化する例示的な走査位置(ミクロン)を有する。一定の走査速度だとすれば、各梯形の頂部は平面になる。静的視野が無限小に狭かったならば、核はスケール化された矩形関数となるであろう。

12

[0049] 図5の下の方のグラフを参照すると、時間 0 において、光センサが 0 μ mに位置され、 63.5μ mの視野に関して -31.75μ mと 31.75μ mと 0 間の走査線間隔を「見る」。 LSA内の光センサが 63.5μ m/msecで原稿を横切るように走査方向に 移動すると、光センサは観察された画像から生成される 電荷を積分する。図示されるように、0.9 msecの 累積時間の終わりに、光センサは 57.15μ mの位置に到達し、 25.40μ mと 88.90μ mの間に広がる視野を有する。この第1サンプルの累積電荷は、核 K と乗算された基本の放射照度分布の積分と等しい。 視野が 31.75μ mから 95.25μ mに広がる累積が 1 msecで再び開始し、電荷がサンプルされる 1.9 msec間続く。従って、図 5 は、最初の 4 回の完全な累積間隔を示す。

30 【0050】画像復元

40

50

線形センサアレイ上の感光性サイトの動作について記載 したので、次に注意を振動の存在下で走査された画像を 再現するための方法に向ける。最初に、幾つかの簡便化 仮定、及び不均一な速度の問題が建設的な解決をもたら すような方法で制約されることが可能となる画像モデル の描写、について記載する。なされたキーとなる仮定は 静的な積分アパーチュアSが、動的な積分アパーチュア Kが矩形関数に近似され得るほど十分に狭いということ である。これは幾つかの物理的システムに関して合理的 であり、最小の計算を必要とする画像復元方法を提供す る。この場合、各領域のサンプルは、電荷累積時間中に わたる画像放射照度関数の重み付けされていない積分で ある。更に、累積時間とサンプリング時間は同じであ る、即ち電荷を読み込みまた消去するのに必要とされる 時間はごくわずかな時間である(T。。 ≒T.)という ことを仮定する。更に説明すると、図6(A)は、領域 サンプルFnの集台と基本の放射照度Hを示し、放射照 度Hから領域サンプルF、が生成される。均一なLSA 速度の理想の場合では、一定の時間間隔下、で生成され たサンプルは、一定の空間間隔のH下の領域と関係す

る。センサが不均一な速度で移動すると、例えば、図 6 (B) に示されるように、一定の時間間隔で生成されたサンプルは、不規則な空間間隔でH下の領域と関係し、同一の入力値Hが異なる出力値F。 をどのように生じるかは明白である。

【0051】本明細書中で請求される画像復元方法は、 Hが一定の空間間隔で再サンプリング(又は、より適切 には再積分) されるように領域サンプルから基本の画像 放射照度分布を推定する。瞬間LSA速度V(t)の正 確な知識がある場合でさえ、不運にもこの問題は制約条 件下にある。連続放射照度データをまばらな領域サンプ ルから推定することはできない。その理由はそれぞれの 間隔下で同一の積分値を有する無限数の放射照度分布が 存在するからである。発展のために、放射照度分布は線 形スプライン (区分的線形関数) としてモデル化され る。一定間隔(図7のH') においてのみ変化できる区 分的線形セグメントから構成されるようにHをモデル化 することによって、不均一な間隔を定める所与の領域サ ンプルF.と位置X.があればHを正確に推定すること が可能になる。実施では、間隔の大きさが小さい、例え ば63.5μmであれば、Hに対するこの区分的線形制 約条件は不合理であり、対象の画像のクラスは連続トー ンとなる。幾つかのマーキング方法及び印刷用紙のぼけ 特性について考えると、ハーフトーンとテキストを区分 的線形関数としてモデル化することもまた合理的であ る。区分的線形及び区分的一定モデル(近似関数)に関 して記載されたが、他の近似関数も働くことができる。

【0055】要素 a:、b:及びc:はそれぞれ y:、y:、y:、 y:、 の重みである。重みは既知のx、とx,の位置によって表現される。最初と最後の行(row)は、境界条件の選択により影響を受ける。簡略化のために境界反復(border replication)を選択して、画像領域の外側に置かれるピクセル値を決定する。即ち、y: yo とy。 = yo. である。従って、追加の項(c.)が三重対角マトリックスドの最後の行に必要とされる場合、該項はb: に加えられる。その理由は、それは、最後に反復されたピクセルの影響を反映するからである。

【0056】Yの制御点は、周知の領域サンプルFを三 50 理するために使用される。

一度、本明細費中に記載される一般的な近似関数方法が 理解されれば、他の近似関数に関する代替表現を得ることは簡単であろう。

14

【0052】画像を復元する際の主なタスクは線形スプラインの制御点Y。を再生することである。図7に示されるように、一度、制御点Y。が決定されると、Hを線形スプラインとして再構成することができ、領域サンプルはまた一定間隔で容易に計算され得る。このように理想のスキャナの出力と一致する出力は画像処理ワークステーションによって生成され得る。従って、図7は画像放射照度分布Hとその線形スプライン近似H、を示す。制御点Y。(強調して示される)は、一定間隔X、=V。T、にある(V。は公称速度、T、はサンプリング周期)。

【0053】領域サンプル及び位置情報が一定時間間隔でスキャナによって集められるが、1つの重要な仮定は、2つの連続的なLSA領域サンプルが同一の線形スプラインセグメント中にあるか又は2つのセグメントにまたがるべきであるということである。例えば、図8は、最初の場合を示し、サンプル位置の両端(XAとXB)が同一スプラインセグメント中にある。図9は2番目の場合を示し、領域サンプル(X'A-X'B)は2つのスプラインセグメントにまたがる。図8と図9に示された2つの場合を扱うと、集合表現は式KY=Fの三重対角系(Iridiagonal system)を生じる。

[0054]

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \bullet \\ \bullet \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 2F_0/W_0 \\ 2F_1/W_1 \\ 2F_2/W_2 \\ \bullet \\ \bullet \\ 2F_{n-2}/W_{n-2} \\ 2F_{n-1}/W_{n-1} \end{bmatrix}$$
(10)

重対角マトリックスドの逆行列と乗算することによって 40 求められる。即ち、Y=K「Fである。三重対角マトリックスドの逆行列は、良く知られた方法を用いて線形時間で解くことができる有効な関数を有する。 AとBの位置に関して先に記載された2つのケースが拡張され得ることに留意することは重要である。例えば、AとBは2つのスプラインセグメントよりもより広がることが考えられる。この緩い条件は、マトリックスドがもはや三重対角でない、即ち、より多くの非対角要素が非ゼロとなることを含意する。帯状対角線形系の式を解くための有効な方法は、下記に示され、核ドに対する梯形の形を処

非常に近い。従って、図10は点 x 。、 x 。 x . 及び X 、により範囲を定められた梯形の3つの間隔を示す。 梯形がLSA位置 x 、及び x 。を越えて延出するので、 累積時間を広くすることに注意されたい。3つの梯形間 隔の範囲を定める点は、各光センサの視野(FOV)に より表現される。図4では、例えばFOV=1ドットサイズである。FOV=0は、SがインパルスでKが矩形 関数である理想のケースに対応する。矩形SはS=矩形(x /FOV)で記述され得る。w=FOV/2の場 10 合、光センササイト x 、及び x 。によって梯形制御点の下記式が決定され得る。

(11)

[0058]

$$x_1 = MIN(x_A + w . x_B - w)$$
 (12)

$$x_2 = MAX(x_A + w, x_B - w) \tag{13}$$

$$x_3 = x_B + w \tag{14}$$

核 K は式 (15) のように定義される

$$K(x) = K_0(x) + K_1(x) + K_2(x),$$
 (15)

【0059】式中、K、(x) は、図10に示されたものである。更に、図11は放射照度関数H に適用されるKを示す。

【0060】梯形間隔が1つのスプラインセグメント中にある場合及び1対のスプラインセグメントにまたがる場合を考えると、既に記載されたように制御点の値を求めることが可能になる。各領域サンプルは、実際には3つの寄与から構成される。即ち、梯形核Kの3つの間隔の各々からである。各梯形間隔は、それが1つ又は2つ

のスプラインセグメント中にあるか否かに依存し、制約を2つか3つの線形スプライン制御点にそれぞれ加える。3つの間隔は、各々3つの制御点の重複する集合を制約するので、各領域サンプルに寄与する5つの近隣点まで存在し得る。全体として、下記式(16)に示されるように五重対角系の式を生じる。

[0061]

【数 9 】

$$\begin{bmatrix} b0 & c_0 & d_0 & e_0 \\ a_1 & b_1 & c_1 & d_1 & e_1 \\ & \bullet & \bullet & \bullet \\ & & a_{n-4} & b_{n-4} & c_{n-4} & d_{n-4} & e_{n-4} \\ & & & a_{n-3} & b_{n-3} & c_{n-3} & d_{n-3} \\ & & & & a_{n-2} & b_{n-2} & c_{n-2} \\ & & & & a_{n-1} & b_{n-1} \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ \bullet \\ \bullet \\ y_{n-4} \\ y_{n-3} \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} F_0 \\ F_1 \\ \bullet \\ \bullet \\ F_{n-4} \\ F_{n-3} \\ F_{n-2} \\ F_{n-1} \end{bmatrix}$$

$$(16)$$

【0062】マトリックスは1つの部分対角要素と、3つの超対角要素とからなる。要素 a_i 、 b_i 、 c_i 、 d_i 及び e_i は y_i ,、 y_i 、 y_i +, y_i +: 及び y_i , +, のそれぞれ重みである。それらは、既知の x_i 及び x_i +, により表される。

【0063】視野(FOV)が非0である時、光センサ 及びc…」に反映される。画像の境界を越えてピクセルが境界に沿って配置される場合に画像境界を越えるピク に適用するであろう欠けているa。、e……及びd…」セルが考慮されなければならない。FOVは、1ドット の項はb。、d……及びc…」に戻るように単に加えらサイズと等しいかそれよりも少なくなるように制限され 50 れなければならない。最終的に、制御点は、バンド対角

マトリックスに最適化された有効な下部三角 - 上部三角 (LU)分解アルゴリズムを用いて、バンド対角系の式を解くことによって求められる。

【0064】本発明の上記記載は、動的な積分アパーチュアを説明するために矩形及び梯形の核を仮定する画像復元方法に焦点をあてた。これらの核は、点のスプレッドファンクションとLSA内の各要素のモーションははとの結合された影響を説明する。しかしながら、上記議論を通して維持された一つの仮定は、画像放射照度分布日は、区分的線形モデル(図7参照)によって十分にモデル化され得るということである。五重対角系においてより滑らかな基本関数が所望される場合、該系の式において追加の制約条件が必要とされ、より広いパンドが期待されるであろう。

【0065】しかしながら、画像放射照度分布Hのより高いオーダーの近似は本発明では実際に望ましくない。直観的に、よりスムーズなモデルは、速いエッジ変化が過度のオーバーシュート又はエッジの不連続性に近いアンダーシュート無しにモデル化されないようにする。これは、周知のギブスの現象(Gibbs phenomenon)と同様であり、該現象は、不完全な周波数項(frequency terms)から成る集合(truncated set) を用いてフーリエ級数で信号を再構成する場合のエッジ付近のリンギングを予見する現象である。例えば、図12を参照すると、F。値としてステップエッジ(参照番号200)を考えると、

振動202は、エッジを左から右へ横切った後に存在する。カーブの各セグメント下の領域は、再構成された放射照度関数日、によって満たされたままであるが、同時に積分が演算シフトである間隔として、振動がシス場中に導入される場合に問題が発生する。このような場りもむしろ基礎モデルのために過度のリンギングを有テルのために過度のリンギングを有テルのとが期待される。日に関するよりスムーズなモデルのために一次なモデルので、区分的一定近似(piecewise constant approximation)の影響について考えることが必要になる。このアプローチの利点は、不連続性が多いで要になる。このアプローチの利点は、不連続性があいで、変になる。テキスト及びハーフトの理されるということである。テキスト及びハーフトーン画像は主にステップエッジ(付近)から構成で、これは重要な考察である。更に区分的一定間隔は単一のドットサイズに限定される。

【0066】図12を参照すると、Hに合う区分的一定近似は、実線で示されるようにステップエッジに特によく適合する。代入を平易にすることによって、式(17a)~(17c)(12プラインにつき1つの梯形)及び式(18a)~(18c)(複数のスプラインセグメントにまたがる梯形)の領域サンプルによって未知制御点に対して置かれた制約条件に関する式を得ることができる。

[0067]

【数10】

$$\frac{6F_{n_0}}{W_n} = y_n \left(x_0^2 - 2x_1^2 + x_0x_1 - 3x_0 + 3x_1 \right) + y_{n+1} \left(-x_0^2 + 2x_1^2 - x_0x_1 \right)$$
 (17a)

$$\frac{2F_{n_1}}{w_n} = y_n \left(x_1^2 - x_2^2 + 2x_1 + 2x_2 \right) + y_{n+1} \left(-x_1^2 + x_2^2 \right) \tag{17b}$$

$$\frac{6F_{n_2}}{W_n} = y_n \left(2x_2^2 - x_3^2 + x_2x_3 - 3x_2 + 3x_3\right) + y_{n+1} \left(-2x_2^2 + x_3^2 - x_2x_3\right) \tag{17c}$$

[0068]

$$\frac{6F_{n_0}}{w_n} = y_n \left((1-x_0)^2 \right) + y_{n+1} \left((x_0+2)(1-x_0) + x_1(3-2x_1) \right) + y_{n+2} \left(2x_1^2 \right)$$
 (18a)

$$\frac{2F_{n_1}}{w_n} = y_n \left((1-x_1)^2 \right) + y_{n+1} \left(1-x_1^2 + (2-x_2)x_2 \right)$$
 (18b)

$$\frac{6F_{n_2}}{W_n} = y_n \left(2(1-x_2)^2\right) + y_{n+1} \left((2x_2+1)(1-x_2) + x_3(3-x_3)\right) + y_{n+2} \left(x_3^2\right)$$
 (18c)

【 $0\ 0\ 6\ 9$ 】 梯形間隔が $1\ A$ プラインセグメント中にある時の各領域サンプルの寄与に関する式は、下記式($1\ 9\ a$) \sim ($1\ 9\ c$)に示される。

[0070]

【数12】

$$\frac{2F_{n_0}}{w_n} = y_n \left(x_1 - x_0 \right)$$
 (19a)

$$\frac{F_{n_1}}{w_n} = y_n \left(x_2 - x_1 \right) \tag{19b}$$

$$\frac{2F_{n_2}}{w_n} = y_n \left(x_3 - x_2 \right) \tag{19c}$$

【0071】 梯形間隔が2スプラインセグメントに跨がる時の各領域サンプルの寄与に関する式は、下記式(2

50 0 a) ~ (20c) に示される。

30

20

$$\frac{2F_{n_0}}{w_n} = y_n \left(1 - x_0 \right) + y_{n+1} \left(x_1 \right)$$
 (20a)

$$\frac{F_{n_1}}{W_n} = y_n \left(1 - x_1 \right) + y_{n+1} \left(x_2 \right) \tag{20b}$$

$$\frac{2F_{n_2}}{W_n} = y_n \left(1 - x_2 \right) + y_{n+1} \left(x_3 \right) \tag{20c}$$

【0073】復元処理の数理的な基礎について記載した ので、次に、記載された方法を実現し、振動の存在下で 走査された画像を復元するための詳細を、図13のフロ ーチャートに示す。本発明の発展は、歪みモデルとシュ ミレートされた走査処理(simulated scanning process) に基づき、本発明の方法が振動歪みを有するデジタル化 方法によって生成された画像の補正又は再構成に特定の 適用性を有することが確立された。該方法は概して、図 13のフローチャートに関して説明される3つのサブプ ロセス、即ち、(a)線形センサアレイの瞬間速度を特 徴付けること(240)、(b)基礎となる放射照度分 布の区分多項式モデル(piecewise polynominal model) を再構成すること(242)、及び(c)再構成画像を 理想の走査条件下で再サンプリングして、復元出力を生 成すること(244)、から構成される。

【0074】劣化画像を復元させるための該方法への入 力値であるパラメータは:積分時間T...、光センサの 視野FOV、及び時間の関数(dX/dt)として走査 アレイの位置を監視するために使用される位置/速度セ ンサ (エンコーダー) 94によって提供された速度V (t) を含む。図13のステップ248及び250でそ れぞれ説明されるように、これらの入力値は得られてメ モリ内に格納される。公称速度を正規化して、積分距離 X... の累積時間T... に対する等式が可能になる。更 に、全振幅を公称速度の割合として表現することができ る。あるものはスキャナによって提供された入力データ から、またあるものは事前定義値として、これらのパラ メータが一度決定されると、図2の画像処理システム は、図示されたように行われる。

【0075】不均一な速度で移動するLSAによって劣 化された領域サンプルは、入力画像データ獲得ステップ 248と格納ステップ250の部分のように収集され て、画像処理メモリ中に格納される。各サンプル領域の 評価は3ステージ、即ち梯形間隔毎に1回行われる。ス テップ252によって計算され、また図10及び11に 示されるように、式(11)~(14)が計算されて、 各累積スパンにおける間隔の範囲を定める4つの点を決 定する。3箇所の梯形間隔毎にエンドポイントをチェッ クし(ステップ258)、それらが同一スプラインセグ メント中にあるか、又は2つのセグメントにまたがるか を決定する(検査ステップ260)。検査260の結果 は、式(17)及び(19)、又は(18)及び(2

0) が使用されることを決定し、各領域サンプルを制御 点に関係づける。特に、同一間隔内に複数のエンドポイ ントを有するサンプルの場合、式(17a)~(17 c) を区分的線形モデルに使用し、また式(19a)~ (19 c) を区分的一定表現に使用する (ステップ26 4)。同様に、式(18a)~(18c)は区分的線形 表現としてセグメントにまたがるエンドポイントに使用 され、また式(20a)~(20c)は区分的一定表現 に使用される(ステップ266)。検査260及びその 結果として得られるステップ264及び266における 式の選択により、式(16)に示された式Kのバンド対 角系の行毎のマトリックス要素を計算することが可能に なる(ステップ270)。領域サンプルFとそれらの領 域サンプルに関して計算された位置は、各間隔に対して 1回、3回の繰り返しが検査ステップ272によって制 御された後、式Kのバンド対角系に挿入される。式 (1 6) の列毎のマトリックス要素の計算は、3か所の梯形 間隔の各々に対して補償する3フェーズで計算される。 区分的線形スプラインの場合、式(17a)~(17 c) (同一内にある) 又は式(18a)~(18c) (またがっている) における項は、マトリックス要素中 に累積される。これらの式における2と6の因数(ファ クタ)は線形スプライン制御点に関する係数中にたたみ 込まれる。このように、3フェーズ後の総計により、 (F_{*},+F_{*},+F_{*})/W_{*}又は、単にF_{*}/W_{*}を直 接列ペクトルF中に格納することが可能になる(ステッ プ254)。Fは画像ライン毎に変化するが、Kは同じ ままであるので、1回だけ求められるべきであることに

【0076】次に、ステップ276は、KY=Fの制御 点Yを求める。既に記載されたようにバンド対角マトリ ックスに最適化されたLU分解アルゴリズムを用いて、 ステップ276で制御点Yを求める。次に、「理想の条 件」下のスキャナシュミレーション(又はより適切には 積分)をYに適用して復元された出力画像を生成する (ステップ278)。理想の条件とは、単に、決定され た制御点によって範囲を限定される均一なスプライン間 隔の積分を示す。ステップ280の出力は、機械的振動 のない場合にスキャナによって生成されたであろう画像 40 データを表現する復元画像である。

【0077】次の処理は上記記載したように行われ、出 カスキャナによって生成された各画像ラスタ中のピクセ ル毎に画像データを復元又は補正する。機械的な振動の 衝撃が走査方向にだけ存在する一次元振動システムに関 して記載されたが、本発明はまた有意な交差走査(走査 方向に対して垂直)振動モーションを有するシステムで 生成される画像を復元する際にも同様に適用性を有す る。更に、本発明は区分的線形モデルと区分的一定モデ ルとの両方、即ち近似関数に関して記載されたが、本発 50 明をこのような関数に限定することは意図されない。他

21

の近似関数もまた本明細書中に記載された同様の一般的 な方法(手順)において作用するであろう。

[0078]

【発明の効果】総括すると、本発明は機械的な振動の存 在下で走査されたデジタル画像を復元又は補正すること により出力画像の品質を向上させるための方法及び装置 に関する。原稿スキャナでは、プラテン上に配置された 原稿に対して移動する線形センサは、公称走査速度の変 化が観察されるような方法で走査される。スキャナが露 光領域全体を走査すると、線形センサアレイ中の単一光 センサの出力がセンサにより受け取られた積分放射照度 に比例することを認識するので、センサアレイの振動性 モーションが認められる時、露光領域の実際のサイズは 時間的変化する。この変化や振動が輝度変動や幾何学的 なひずみのようなアーチファクトを導くが、これは、本 発明の方法により除去されるか又は著しく減少される。 特に、センサ線形アレイの瞬間速度を使用して、放射照 度分布の基礎の区分多項式モデルを再構成する。次にそ の再構成画像モデルを理想の走査条件下でサイサンプリ ングして復元出力を生成する。

【図面の簡単な説明】

【図1】本発明に従って処理するデジタル化画像を生成するために用いられるタイプのラスタ入力スキャナの概略図である。

【図2】本発明による好適なラスタ入力スキャナと画像 処理システムの概略ブロック図である。

【図3】本発明に従って使用される画像処理システムの

様々な動作段階を示す一般化されたデータフローダイア グラムである。

【図4】線形センサアレイ素子と画像放射照度関して光 センサの感度を距離の関数として示すグラフである。

【図5】多重積分周期にわたって走査する時の線形センサアレイフォトサイトに対する積分サイトと核の図的表現である。

【図6】(A)及び(B)は、それぞれ均一な及び不均 一な光センサの速度下で取られた領域サンプルを示す。

【図7】本発明に従って用いられる画像放射照度をモデル化するために使用される区分的線形近似を示す。

【図8】本発明の実施の形態により扱われる同一間隔のサンプリングケースを示す。

【図9】本発明の実施の形態により扱われる2つの間隔にまたがるサンプリングケースを示す。

【図10】本明細書で使用された再構成サンプリング方法において用いられる梯形型核の図を示す。

【図11】本発明の方法に従ってデータをサンプリング するために用いられている図10の梯形核の図を示す。

20 【図12】画像の強度の突然変化が存在する時、区分的 線形再構成によって生じるリンギングの影響の図を示 す。

【図13】本発明に従って不均一条件下で得られた画像 データを復元するように、図2の画像処理システムによって実行される個々の処理ステップを示すフローチャート。

【図5】

【図12】

【図13】

フロントページの続き

(72)発明者 ロバート ピー. ロス アメリカ合衆国 14580 ニューヨー ク州 ウェブスター ストニー ポイント トレイル 206