ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1 LISTA 2

- 1. Pokaż, że każdy homomorfizm $\pi_1 S^1 \to \pi_1 S^1$ realizuje się jako indukowany homomorfizm φ_* dla pewnego odwzorowania $\varphi: S^1 \to S^1$.
- 2. Określmy odwzorowanie $f: S^1 \times I \to S^1 \times I$ wzorem $f(e^{i\theta}, s) = (e^{i(\theta + 2\pi s)}, s)$ tak ,że na brzegowych okręgach $S^1 \times \{0\}$ i $S^1 \times \{1\}$ jest ono identycznością. Uzasadnij, że f jest homotopijne z identycznością przez homotopię f_t będącą identycznościa na okręgu $S^1 \times \{0\}$ dla wszystkich t, lecz nie jest homotopijne z identycznością przez homotopię f_t będącą dla każdego t identycznością na obu okręgach brzegowych. Wskazówka: rozważ co f robi ze zbiorem punktów $(1,s):s\in I$.
- 3. Pokaż, że nie istnieją retrakcje $r: X \to A$ gdy:
 - (a) $X = R^3$ zaś A jest dowolną podprzestrzenią homeomorficzną z S^1 ;
 - (b) $X = S^1 \times D^2$ jest pełnym torusem zaś $A = S^1 \times S^1$ jest jego brzegowym torusem;
 - (c) $X = S^1 \times D^2$, zaś A jest okręgiem jak na rysunku poniżej;

- (d) X jest suma dwóch dysków D^2 połączonych jednym brzegowym punktem, zaś A jest suma ich brzegowych okręgów.
- 4. Uzasadnij, że następujące pary przestrzeni nie są homeomorficzne:
 - (a) S^2 i D^2 ; (b) S^2 i S^n dla $n \neq 2$.
- 5. Niech X bedzie przestrzenią otrzymaną z dysku D^2 przez sklejenie dwóch różnych punktów brzegowych.
 - (a) Wykaż, że $\pi_1 X = Z$.
 - (b) Czy podzbiór $A\subset X$ otrzymany z brzegu dysku D^2 i homeomorficzny z dwoma okręgami sklejonymi jednym punktem jest retraktem X?
- 6. Czy brzeg wstęgi Möbiusa jest retraktem całej wstęgi?
- 7. Uzasadnij, że każde otwarte spójne otoczenie U punktu x na płaszczyźnie, po usunięciu tego punktu, ma nietrywialną grupę podstawową.
- 8. Skorzystaj z podanego na wykładzie lematu pomocniczego do dowodu homotopijnej niezmienniczości grupy podstawowej i udowodnij następujący fakt. Niech $f_t: X \to X$ będzie homotopią, dla której odwzorowania f_0 i f_1 są identycznościami. Wówczas dlka dowolnego $x_0 \in X$ pętla $f_t(x_0)$ reprezentuje element z centrum grupy podstawowej $\pi_1(X, x_0)$.
- 9. Niech M będzie macierzą rozmiaru 3×3 o wszystkich wyrazach dodatnich. Uzasadnij, że macierz ta ma wektor własny o dodatniej wartości własnej. Wskazówka: rozważ trójkat $T=\{(x,y,z): x+y+z=1, x\geq 0, y\geq 0, z\geq 0\}$ oraz odwzorowanie h:

 $T \to T$ będące złożeniem odwzorowania liniowego o macierzy m oraz rzutu centralnego względem punktu (0,0,0); zastosuj twierdzenie Brouwera.

Komentarz: jest to fragment tzw. twierdzenia Perrona-Frobeniusa.

- 10. Niech A będzie retraktem drogowo spójnej przestrzeni X, i załóżmy że $\pi_1 A$ jest podgrupą normalną w $\pi_1 X$. Uzasadnij, że wówczas $\pi_1 X = \pi_1 A \times [\pi_1 X/\pi_1 A]$.
- 11. Uzasadnij bezpośrednio, bez korzystania z twierdzenia van Kampena, że jeśli X jest sumą dwóch otwartych jednospójnych podzbiorów, $X = U \cup V$, których przekrój $U \cap V$ jest drogowo spójny, to $\pi_1 X = 0$.
- 12. Zastosuj poprzednie zadanie do alternatywnego dowodu jednospójności sfer S^n dla $n \geq 2$.
- 13. Uzasadnij, że dla $n \geq 3$ i dla dowolnego skończonego zbioru P punktów z R^n przestrzeń $R^n \setminus P$ jest jednospójna. Uzasadnij tą samą tezę dla sfery S^n występującej w miejsce przestrzeni R^n .
- 14. Niech X będzie sumą skończonej rodziny prostych w R^n przechodzących przez $0 \in R^n$. Uzasadnij, że dla $n \ge 4$ mamy $\pi_1(R^n \setminus X) = 0$.

Zadania dotyczące homotopijnej równoważności

Rozwiąż ćwiczenia (exercises) nr 1-6 oraz 9-13 ze stron 18-19 książki A. Hatchera "Algebraic Topology" (z zestawu ćwiczeń na końcu Chapter 0), oraz zadania poniżej.

Dla ciągłego odwzorowania $f: X \to Y$ rozważny przestrzeń zwaną cylindrem odwzorowania f, oznaczoną przez M_f , określoną jako iloraz sumy rozłącznej $(X \times [0,1]) \sqcup Y$ zadany utożsamieniami postaci $(x,1) \sim f(x): x \in X$ (z topologią ilorazową). Rozważmy też stożek odwzorowania f, oznaczony przez C_f , jako iloraz $C_f := M_f/(X \times \{0\})$, gdzie $X \times \{0\}$ traktujemy jako podzbiór w M_f .

- 15. Uzasadnij, że przestrzeń Y traktowana w naturalny sposób jako podprzestrzeń w cylindrze M_f (dla $f:X\to Y$) jest jego retraktem deformacyjnym. Dlaczego ten sam argument nie działa dla $Y\subset C_f$?
- 16. Wykorzystaj fakt, że $\pi_1(S^1) \neq 0$ dla pokazania, że dal odwzorowania $f: X \to Y$ stożek C_f na ogół nie jest homotopijnie równoważny z Y.
- 17. Uzasadnij, że jeśli $f:X\to Y$ jest homotopijną równoważnością, to odwzorowanie $h:X\to M_f$ zadane przez $h(x)=(x,0)\in X\times\{0\}\subset M_f$ także jest homotopijną równoważnością.
- 18. Uzasadnij, że jeśli odwzorowania $f,g:X\to Y$ są homotopijne, to stożki C_f i C_g są homotopijnie równoważne.
- 19. Uzasadnij bezpośrednio z definicji, że każdy spójny skończony graf X jest homotopijnie równowańy z bukietem $1-\chi(X)$ okręgów, gdzie $\chi(X)$ to charakterystyka Eulera grafu X. WSKAZÓWKA: na rozgrzewkę uzasadnij najpierw, że graf o kształcie litery θ jest homotopijnie równoważny z bukietem dwóch okręgów.