

## Trial Examination 2023

# **VCE Mathematical Methods Units 3&4**

Written Examination 1

**Suggested Solutions** 

#### Question 1 (4 marks)

a. 
$$f(x) = (4x - 2)^{-1}$$
  
 $f'(x) = -(4x - 2)^{-2} \times 4 \text{ OR } \frac{-4}{(4x - 2)^2} \text{ OR } \frac{-1}{(2x - 1)^2}$ 

**b.** i. 
$$\int \frac{1}{4x - 2} dx = \frac{1}{4} \log_e(4x - 2) + c \text{ OR } \frac{1}{4} \log_e(2x - 1) + c$$
 A1

Note: Responses do not require c in order to obtain full marks.

ii. 
$$\int_{1}^{5} f(x)dx = \frac{1}{4} \left[ \log_{e}(4x - 2) \right]_{1}^{5} = \frac{1}{4} \left( \log_{e}(18) - \log_{e}(2) \right)$$

$$= \frac{1}{4} \log_{e}(9)$$

$$= \log_{e} \left( \sqrt{3} \right)$$
A1

## Question 2 (2 marks)

$$f(x) = \int 3\sin(2x)dx$$

$$= -\frac{3}{2}\cos(2x) + c$$

$$f\left(\frac{\pi}{3}\right) = 1 \Rightarrow -\frac{3}{2}\cos\left(\frac{2\pi}{3}\right) + c = 1$$

$$\left(-\frac{3}{2}\right) \times \left(-\frac{1}{2}\right) + c = 1$$

$$f(x) = -\frac{3}{2}\cos(2x) + \frac{1}{4}$$

## Question 3 (4 marks)

 $c = \frac{1}{4}$ 

a. 
$$f'(x) = 3x^2 + 6x$$

$$f'(x) = 0 \Rightarrow 3x(x+2) = 0 \Rightarrow x = 0 \text{ or } x = -2 \notin D_f$$

$$f(0) = 0 \Rightarrow (0,0)$$
A1

b.



correct shape with an inflection point A1 correct endpoints and stationary point with (-2, 4) excluded A1

## Question 4 (3 marks)

a.

|                  | В     | <b>B</b> ' |              |
|------------------|-------|------------|--------------|
| $\boldsymbol{A}$ | $k^2$ | 0.2        |              |
| A'               | 0.1   |            | 1.6 <i>k</i> |
|                  |       |            |              |

$$Pr(A' \cap B') = 1 - (k^2 + 0.2 + 0.1) = 0.7 - k^2 \text{ OR } Pr(A' \cap B') = 1.6k - 0.1$$

Note: Responses do not require a table to obtain full marks.

**b.** 
$$Pr(A') = 1.6k = 0.1 + 0.7 - k^2$$
 M1
$$k^2 + 1.6k - 0.8 = 0$$

$$5k^2 + 8k - 4 = 0$$

$$k = -2 \text{ or } k = \frac{2}{5}$$

$$k = \frac{2}{5}$$
A1

Question 5 (3 marks)

$$\cos^2(3x) = \frac{1}{4}$$
 M1

$$3x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\begin{bmatrix}
\cos(3x) = \frac{1}{2} \\
\cos(3x) = -\frac{1}{2}
\end{bmatrix} \Rightarrow \begin{bmatrix}
3x = \frac{\pi}{3} \\
3x = -\frac{\pi}{3}
\end{bmatrix}$$
M1

$$x = -\frac{\pi}{9} \quad \text{or} \quad x = \frac{\pi}{9}$$

Question 6 (2 marks)

$$x_new = \frac{x - c}{b}$$

$$y_new = ay + d$$

### Question 7 (4 marks)

**a.** Three numbers are obtained.

The first number can be any number; hence, the probability is  $\frac{6}{6}$ .

The second number must be the same as the first; hence, the probability is  $\frac{1}{6}$ .

The third number must be the same as the first; hence, the probability is  $\frac{1}{6}$ .

Multiplying all the probabilities gives:

$$\frac{6}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

**b.** The first number can be any number; hence, the probability is  $\frac{6}{6}$ .

The second number must be the same as the first; hence, the probability is  $\frac{1}{6}$ .

The third number must be different to the first; hence, the probability is  $\frac{5}{6}$ .

The order of the numbers can be arranged in three ways.

Multiplying all the probabilities by the number of possible ways gives:

$$3 \times \frac{6}{6} \times \frac{1}{6} \times \frac{5}{6} = \frac{15}{36} \text{ OR } \frac{5}{12}$$

**c.** A: all numbers are greater than 3

B: exactly two numbers are the same

Determining  $A \cap B$ :

The first number must be greater than 3; hence, the probability is  $\frac{3}{6}$ .

The second number must be the same as the first; hence, the probability is  $\frac{1}{6}$ .

The third number must be greater than 3 but not the same as the previous number; hence,

the probability is  $\frac{2}{6}$ .

The order of the numbers can be arranged in three ways.

Multiplying all the probabilities by the number of possible ways gives:

$$3 \times \frac{3}{6} \times \frac{1}{6} \times \frac{2}{6}$$

Determining *B*:

The answer from **part b.**  $\left(\frac{15}{36}\right)$  is used.

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

$$= \frac{3 \times \frac{3}{6} \times \frac{1}{6} \times \frac{2}{6}}{\frac{15}{36}}$$

$$= \frac{1}{5}$$
A1

Note: For M1, a correct numerator or denominator is sufficient to obtain the mark.

Question 8 (12 marks)

**a.** 
$$x > 2$$
 **OR**  $(2, \infty)$ 

b.



correct shape A1 correct x-intercept and vertical asymptote A1

c.



$$\begin{split} \frac{1}{2} \Big( f(3) + 2 f(4) + 2 f(5) + f(6) \Big) &= \frac{1}{2} \Big( 0 + 2 \log_e(2) + 2 \log_e(3) + \log_e(4) \Big) \\ &= \frac{1}{2} \Big( \log_e(4) + \log_e(9) + \log_e(4) \Big) \\ &= \frac{1}{2} \log_e(144) \\ &= \log_e(12) \end{split} \tag{M1}$$

Note: Responses do not require a graphic to obtain full marks.

**d.** 
$$R_g \subseteq D_f = (2, \infty)$$
 M1

The restricted graph of g(x) from a to  $\infty$  such that its range is contained in  $(2, \infty)$  is as follows.



M1

Note: Accept any equivalent graphical or non-graphical method.

Hence, 
$$a = 0$$
.

e. 
$$h(x) = \log_e(x^2 + 4x)$$

$$\mathbf{f.} \qquad D_h = D_g = (0, \infty)$$
 A1

Note: Accept the response from part d. for this mark.

For 
$$x > 0$$
,  $x^2 + 4x \in R^+ \Rightarrow \log_e(x^2 + 4x) \in R$ .  
 $R_h = R$ 

Question 9 (6 marks)

 $y = (4 - 2a)x + a^2$ 

a. 
$$f'(x) = 4 - 2x$$
  
 $m = f'(a) = 4 - 2a$  M1  
 $y - f(a) = m(x - a)$   
 $y - 4a + a^2 = (4 - 2a)(x - a)$   
 $y = (4 - 2a)x - 4a + 2a^2 + 4a - a^2$ 

**b.** 
$$S(a) = \int_0^2 (4 - 2a)x + a^2 - f(x) dx$$

$$= \left[ (2 - a)x^2 + a^2x - 2x^2 + \frac{x^3}{3} \right]_0^2$$

$$= 4(2 - a) + 2a^2 - 8 + \frac{8}{3}$$

$$= 2a^2 - 4a + \frac{8}{3}$$
A1

c. 
$$S'(a) = 4a - 4$$
  
 $S'(a) = 0 \Rightarrow a = 1$  gives the minimum area.  
The maximum area occurs for  $a = 0$  or  $a = 2$ .