ALGEBRA UNI

CHAPTER 8

LOGARITM OS

LOGARITMACION EN R

Definición:

Es el proceso mediante el cual se calcula un logaritmo mediante reglas formales dentro del conjunto R.

Logaritmo (Log):

El logaritmo de un numero positivo en una base positiva diferente de la unidad es el exponente que debe afectar a dicha base para obtener el numero propuesto.

Matemáticamente:

$$log_b(N) = m$$
(1)

Donde:

N = Numero propuesto ; N > 0.

b = Base del logaritmo; b > 0, $b \ne 1$.

 $m = Logaritmo ; m \in C.$

Según la definición:

$$b^{m} = N$$
(2)

Veamos algunos ejemplos:

$$log_3(x) = 12 \leftrightarrow 3^{12} = x$$

$$\log_x(23) = 5 \iff x^5 = 23$$

Teorema:

Reemplazando (1) en (2) tenemos:

$$b^{\log}b^{(N)}=N$$

Veamos algunos ejemplos:

$$5^{\log_5(10)} = 10 ; 2^{\log_2(\pi)} = \pi$$

PRINCIPALES SISTEMAS DE LOGARITMOS

1. Sistema decimal:

Aquí la base es 10 y en su notación no es necesario su escritura.

$$log_{10}(N) = log(N)$$

Al logaritmo del sistema decimal se le da el nombre de logaritmo decimal, vulgar o de Briggs.

2. Sistema natural:

Aquí la base es el numero trascendente **e** cuyo valor aproximado es 2,7182.

Este numero irracional es conocido como el numero de Napier.

$$log_{e}(N) = ln(N)$$

Al logaritmo del sistema natural se le da el nombre de logaritmo natural, hiperbólico o neperiano.

Observación:

Existen infinitos sistemas de logaritmos pues cada sistema se forma con un valor de la base.

Teoremas:

01. El logaritmo de la unidad es cero.

$$\log_{\mathbf{b}}(1) = \mathbf{0}$$

02. El logaritmo de la base es uno.

$$log_b(b) = 1$$

Ejemplo aplicativo 01. Reducir.

$$ln(e) + log(tan(\frac{\pi}{4}rad))$$

Resolución:

Si k es la forma reducida, tenemos:

$$k = log_e(e) + log_{10}(1)$$

 $k = 1 + 0 = 1$

Ejemplo aplicativo 02. Calcule el logaritmo de 125 en base 25:

Resolución:

Sea x el logaritmo solicitado, luego:

$$\log_{25}(125) = x$$

Por definición y teorema:

$$25^{X} = 125 \leftrightarrow 5^{2X} = 5^{3}$$
$$2x = 3 \rightarrow x = 1,5$$

Propiedades:

01.
$$\log_b(M) + \log_b(N) = \log_b(M N)$$

02.
$$\log_b(M) - \log_b(N) = \log_b(\frac{M}{N})$$

03.
$$\log_b (M^n) = n. \log_b (M)$$

04.
$$\log_{\mathbf{b}}(M) = \log_{\mathbf{b}^m}(M^m)$$
; $m \neq 0$

Reglas adicionales:

01.
$$\log_{b^n} (b^m) = \frac{m}{n}$$
; $n \neq 0$

02.
$$\log_{\sqrt[n]{b}}(\sqrt[m]{b}) = \frac{n}{m} ; m, n \neq 0$$

Ejemplo aplicativo 03. Reducir:

$$log_{\sqrt{7}}(\sqrt[3]{7}) + log_{2^6}(2^{10}) + 5^{\log_5(4)}$$

Resolución:

Si k es la forma reducida, tenemos:

$$k = \frac{2}{3} + \frac{10}{6} + 4 = \frac{2}{3} + \frac{5}{3} + 4 = \frac{7}{3} + 4$$
$$k = \frac{19}{3}$$

Cambio de base (de base b a base m):

$$\log_b(N) = \frac{\log_m(N)}{\log_m(b)}$$

Veamos algunos ejemplos de la formula anterior.

 $log_5(12)$ a base 7:

$$\log_5(12) = \frac{\log_7(12)}{\log_7(5)}$$

 $log_3(2)$ a base 2:

$$\log_3(2) = \frac{\log_2(2)}{\log_2(3)}$$
$$\log_3(2) = \frac{1}{\log_2(3)}$$

Propiedad:

$$log_b(a) = \frac{1}{log_a(b)}$$

a y b son positivos distinto de la unidad.

Regla de la cadena:

$$log_b(a) \cdot log_a(c) \cdot log_c(d) = log_b(d)$$

Veamos un ejemplo:

$$k = log_5(7) \cdot log_7(2) \cdot log_2(25)$$

$$k = log_5 (25)$$

$$k = log_5(5^2) = 2. log_5(5) = 2.1 = 2$$

Transformaciones adicionales:

01. Siendo c cualquier numero real y b un **Cologaritmo (colog):** positivo distinto de la unidad.

$$c = log_b (b^c)$$

Por ejemplo 5 =
$$log_7(7^5) = log_{\pi}(\pi^5)$$

02. Siendo a , b y c positivos tal que b es distinto de la unidad.

$$a^{\log b}(c) = c^{\log b}(a)$$

Por ejemplo $2^{\log_5(13)} = 13^{\log_5(2)}$

COLOGARITMO Y ANTILOGARITMO

Siendo **N** un numero positivo y **b** cualquier positivo distinto de la unidad:

$$colog_b(N) = -log_b(N)$$

Por ejemplo:

$$colog_2(8) = -log_2(8) = -3.1 = -3$$

Antilogaritmo (antilog):

Siendo **P** un numero real y **b** un numero positivo distinto de la unidad.

$$antilog_b(P) = exp_b(P) = b^P$$

Veamos algunos ejemplos:

antilog₅ (0) =
$$\exp_5$$
 (0) = 5^0 = 1
antilog₃ (4) = \exp_3 (4) = 3^4 = 81
antilog₇ (-1) = \exp_7 (-1) = 7^{-1} = $\frac{1}{7}$

Reglas de composición:

02.
$$\log_b (anti\log_b (x)) = x ; x \in R$$

03. antilog_b (colog_b (x)) =
$$\frac{1}{x}$$
; x > 0

04.
$$\operatorname{colog_b}(\operatorname{antilog_b}(x)) = -x ; x \in \mathbb{R}$$

Ejemplo aplicativo 04. Reducir:

$$\operatorname{antilog}_{\sqrt{7}}\left(4\right)+\operatorname{colog}_{3}\left(9\right)+\log_{16}\left(4\right)$$

Resolución:

Según la definición tenemos:

antilog
$$\sqrt{7}$$
 (4)= $\sqrt{7}^4$ = 7^2 = 49

$$colog_3(9) = -log_3(3^2) = -2.1 = -2$$

$$log_{16}(4) = log_{(4^2)}(4) = \frac{1}{2}$$

Finalmente siendo k es la forma reducida:

$$k = 49 - 2 + \frac{1}{2} = 47 + \frac{1}{2} = \frac{95}{2}$$

PRÁCTICA PARA

LA CLASE

1. Si
$$a+b=ab$$
 y $\frac{1}{\log_a(ab)} + \frac{1}{\log_b(a+b)} = \sqrt{x} - 1$.
Calcule $\frac{x}{2}$.

- A) 2 B) 4 C) √5
- D) 0,5 E) 1

$$\frac{1}{\log_a(ab)} + \frac{1}{\log_b(a+b)} = \sqrt{x} - 1$$

$$\frac{1}{\log_a(ab)} + \frac{1}{\log_b(ab)} = \sqrt{x} - 1$$

$$\log_{(ab)}(a) + \log_{(ab)}(b) = \sqrt{x} - 1$$

$$\log_{(ab)}(ab) = \sqrt{x} - 1$$

$$1 = \sqrt{x} - 1 \qquad \qquad 2 = \sqrt{x}$$

$$2 = \sqrt{x}$$

$$x = 4$$

Halle el valor de log_{2√2} 0,25

A)
$$-\frac{1}{3}$$

A)
$$-\frac{1}{3}$$
 B) $-\frac{2}{3}$ C) $-\frac{4}{3}$

C)
$$-\frac{4}{3}$$

D)
$$-\frac{5}{3}$$
 E) -2

$$\log_{2\sqrt{2}} 0.25 = m$$

$$\log_{2\sqrt{2}} 0.25 = m \qquad (2\sqrt{2})^m = 0.25$$

$$\left(2^{\frac{3}{2}}\right)^m = 2^{-2}$$
 $2^{\frac{3m}{2}} = 2^{-2}$

$$2^{\frac{3m}{2}} = 2^{-2}$$

$$\rightarrow \frac{3m}{2} = -2$$

$$\therefore m = -\frac{4}{3}$$

Simplifique

$$K = \log_{\left[\frac{4}{25}\right]}(\log_{32} 4)$$

- A) 0,25
- B) 0,5
- C) 0,75

D) 1

E) 1,25

$$K = \log_{\left[\frac{4}{25}\right]} \left(\log_{2^5} 2^2\right)$$

$$K = \log_{\left(\frac{2}{5}\right)^2} \left(\frac{2}{5}\right)$$

$$K = \log_{\left(\frac{2}{5}\right)^2} \left(\frac{2}{5} \log_2 2\right)$$

$$K = \frac{1}{2} \log_{\left(\frac{2}{5}\right)} \left(\frac{2}{5}\right)$$

$$\therefore k = \frac{1}{2}$$

- Si log4 = x, log9 = y, el valor de la expresión $\log \frac{1024}{91} + 2\log 36$ en términos de x e y es
- A) 5x-24 B) 3x-4y C) 2x-5y
- D) 4x–3v E) 7x

dato:
$$\log 2^2 = x \to \log 2 = \frac{x}{2}$$
 $\log 3^2 = y \to \log 3 = \frac{y}{2}$

$$\log 3^2 = y \to \log 3 = \frac{y}{2}$$

 $piden \log\left(\frac{2^{10}}{3^4}\right) + 2\log 6^2$

$$10.\frac{x}{2} - 4.\frac{y}{2} + 4\left[\frac{x}{2} + \frac{y}{2}\right]$$

$$10\log 2 - 4\log 3 + 4[\log 3 + \log 2]$$

$$5x - 2y + 2x + 2y$$

5. Si
$$5^{\log_b 3} + 7^{\log_7 b^2} = 3^{\log_b 5} + \log_{\sqrt[3]{3}} 3$$
, calcule $b^2 + 2$.

- A) -5 B) 5 C) {5; -1}
- D) -1 E) {1; -5}

$$5^{\log_b 3} + 7^{\log_b b^2} = 5^{\log_b 3} + \log_{3/3} 3^3$$

$$b^2 = 3\log_3 3$$

$$b^2 = 3$$

$$\therefore b^2 + 2 = 5$$

Indique el valor de

$$\left[\frac{\log_3 2\sqrt{4}}{4} \cdot \frac{\log_2 3\sqrt{9}}{9}\right]^{\log_6 5}$$

- A) 1 B) 5
- C) 25

- D) 125 E) 625

RESOLUCIÓN

$$\left[{}^{\log_3 2} \sqrt{2^2}, {}^{\log_2 3} \sqrt{3^2} \right]^{\log_6 5}$$

$$[2^{\log_2 3}, 3^{\log_3 2}]^{\log_6 5^2}$$

$$\left[\left(\begin{array}{c} \log_3 \sqrt[2]{2}, \log_2 \sqrt[3]{3} \end{array} \right)^2 \right]^{\log_6 5}$$

$$[3.2]^{\log_6 25}$$

$$\left[\frac{1}{2^{\log_3 2}}, \frac{1}{3^{\log_2 3}}\right]^{2 \log_6 5}$$

∴ 25

A)
$$\frac{3-a}{3(1-a)}$$
 B) $\frac{3-a}{1-a}$ C) $\frac{2-a}{1-a}$

B)
$$\frac{3-a}{1-a}$$

C)
$$\frac{2-a}{1-a}$$

D)
$$\frac{2-a}{2(1-a)}$$
 E) $\frac{3+a}{3(1+a)}$

$$\frac{3+a}{3(1+a)}$$

$$M = \frac{1}{3}\log_5 500 \to M = \frac{1}{3}[\log_5 125 + \log_5 4]$$

$$M = \frac{1}{3} [3 + 2 \log_5 2] \rightarrow M = \frac{1}{3} \left[3 + 2 \frac{\log 2}{\log 5} \right]$$

$$M = \frac{1}{3} \left[3 + 2 \frac{\log 2}{\log \left(\frac{10}{2} \right)} \right] \to M = \frac{1}{3} \left[3 + 2 \frac{\log 2}{1 - \log 2} \right]$$

Reemplazandoel dato:

$$M = \frac{1}{3} \left[3 + 2 \frac{a}{1 - a} \right]$$

$$M = \frac{1}{3} \left[\frac{3 - 3a + 2a}{1 - a} \right]$$

$$\therefore M = \frac{3-a}{3(1-a)}$$

8. Si
$$\log_a 3 = \log_b 2$$
 y $ab = 10$, halle el valor de b.

A)
$$\frac{\log 5}{\sqrt{2}}$$
 B) $\frac{\log 6}{\sqrt{2}}$ C) $\frac{\log 4}{\sqrt{2}}$

D)
$$\frac{\log 7}{\sqrt{2}}$$
 E) $\frac{\log 11}{\sqrt{2}}$

$$\log_a 3 = \log_b 2 = k \rightarrow 3 = a^k \land 2 = b^k$$
 Piden "b"

$$Del\ dato: ab = 10 \rightarrow a^k.b^k = 10^k$$

$$2 = b^{\log 6}$$

$$3.2 = 10^k \rightarrow 6 = 10^k$$

$$2^{\frac{1}{\log 6}} = b$$

$$\log 6 = k$$

$$\therefore b = \sqrt[log 6]{2}$$

Reduzca

$$\frac{1}{1 + \log_3(10e)} + \frac{1}{1 + \text{Ln}(30)} + \frac{1}{1 + \log(3e)}$$

- A) 1 B) log3 C) Ln(10)
- D) Ln(10) E) log(3e)

$$M = \frac{1}{\log_3 3 + \log_3(10e)} + \frac{1}{\ln e + \ln(30)} + \frac{1}{\log 10 + \log(3e)}$$

$$M = \frac{1}{\log_3(30e)} + \frac{1}{\ln(30e)} + \frac{1}{\log 30e}$$

$$M = \log_{(30e)}(3) + \log_{(30e)}(e) + \log_{(30e)}(10)$$

$$M = \log_{(30e)}(30e)$$

Los logaritmos decimales de 2 y 3 son

calcule log√2880 con cuatro cifras decimales.

- A) 11,4116 B) 1,7236
- C) 2,2236

- D) 1,7080 E) 2,0103

RESOLUCIÓN

$$M = \frac{1}{2} [\log(10x288)]$$

$$M = \frac{1}{2}[1 + 5\log 2 + 2\log 3]$$

$$M = \frac{1}{2}[1 + \log(32x9)]$$

reemplazamos los datos:

M = 1,7236

$$M = \frac{1}{2} [1 + \log 32 + \log 9]$$

$$M = \frac{1}{2}[1 + 5(0,3010) + 2(0,4711)]$$

Si a > b > c > 1, reduzca

$$E = \frac{\log_c a + 1}{\log_c b \cdot \log_b \left(a^2 c^2\right)}$$

- A) $\frac{1}{2}$ B) $\frac{ac}{b}$

D) 1

E) 2

$$E = \frac{\log_c a + \log_c c}{\log_c b \cdot \log_b (a^2 c^2)}$$

$$E = \log_{(ac)^2} (ac)$$

$$E = \frac{\log_c(ac)}{\log_c(a^2, c^2)}$$

$$\therefore E = \frac{1}{2}$$

Si log15=a, log21=b y log35=c, halle log49.

A)
$$b+c-a$$

B)
$$a-b+c$$

A)
$$b+c-a$$
 B) $a-b+c$ C) $2a-b+c$

RESOLUCIÓN

$$\log 5 + \log 3 = a \dots (i)$$

$$(ii) - (i)$$
: $\log 7 - \log 5 = b - a \dots (iv)$

$$\log 7 + \log 3 = b \dots (ii)$$

$$(iii) + (iv)$$
: $2 \log 7 = c + b - a$

$$\log 7 + \log 5 = c \dots (iii)$$

 $\therefore \log 49 = c + b - a$

Si se verifica que

$$\log_{\frac{11}{10}} \left[\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} \right]^{-n} = n$$

calcule $log(n^2+10n)$.

- A) 3log2 B) 2log2 C) 3+log2
- D) 2+log2 E) 2+log3

RESOLUCIÓN

$$\log_{\frac{11}{10}} \left[1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1} \right]^{-n} = n$$

$$\log_{\frac{11}{10}} \left[\frac{n}{n+1} \right]^{-n} = n \quad \rightarrow \quad \left[\frac{n+1}{n} \right]^{n} = \left(\frac{11}{10} \right)^{n}$$

 \rightarrow n = 10 reemplazamos en lo que piden:

$$\log(10^2 + 10x10) \rightarrow \log 200 \rightarrow \log(2x100)$$

 $\therefore 2 + \log 2$

Halle los valores de x que satisfacen la ecuación

$$5^{\log_x \left(x^2 - 5x + 15\right)} = 3^{\log_x 25}$$

- A) 2 \(\neq 2 \)
 B) 2 \(\neq 3 \)
 C) 2 \(\neq 4 \)
- D) 3 v 0 E) 3 v 5

$$5^{\log_x(x^2-5x+15)} = (5^2)^{\log_x 3}$$

$$5^{\log_X(x^2 - 5x + 15)} = 5^{\log_X 3^2}$$

$$\rightarrow \log_x(x^2 - 5x + 15) = \log_x 9$$

•
$$x > 0 \land x \neq 1$$

$$x^2 - 5x + 15 = 9$$

$$x^2 - 5x + 6 = 0$$

$$\rightarrow (x-2)(x-3) = 0$$

$$x - 2 = 0 \lor x - 3 = 0$$

$$\therefore x = 2 \vee 3$$

Calcule

$$E = \left[\frac{1}{2 + \log_3 5}\right] \left[\frac{1}{1 - \log_{45} 9}\right] \left[\frac{\text{Ln25}}{\text{Ln3}}\right]$$

- A) 2 B) 5 C) $\frac{1}{2}$ D) $\frac{1}{5}$ E) 10^{-1}

$$E = \left[\frac{1}{2 \cdot \log_3 3 + \log_3 5} \right] \left[\frac{1}{\log_{45} 45 - \log_{45} 9} \right] \log_3 25$$

$$E = \left[\frac{1}{\log_3 3^2 + \log_3 5}\right] \left[\frac{1}{\log_{45} \left(\frac{45}{9}\right)}\right] \log_3 25 \qquad E = \log_{45} 3.\log_5 45.\log_3 25$$

$$E = \left[\frac{1}{\log_3 45}\right] \left[\frac{1}{\log_{45} 5}\right] \log_3 25$$

$$E = \log_{45} 3.\log_5 45.\log_3 25$$

$$E = \log_5 25$$

Si log_{ab}a=4, a>1, b>1. Calcule

$$\log_{ab} \left(\frac{\sqrt[3]{a}}{\sqrt{b}} \right)$$

- A) $\frac{7}{3}$ B) $\frac{5}{6}$ C) $\frac{13}{6}$ D) $\frac{4}{3}$ E) $\frac{17}{6}$

RESOLUCIÓN

•
$$(ab)^4 = a \rightarrow a^3b^4 = 1 \rightarrow \sqrt{b} = a^{-\frac{3}{8}}$$

Reemplazando:

$$\log_{ab}\left(\frac{a^{\frac{1}{3}}}{a^{-\frac{3}{8}}}\right) \to \log_{ab}(a)^{\frac{17}{24}} \to \frac{17}{24}\log_{ab}a \to \frac{17}{24}(4)$$

- 17. Si $\log_4 x + \log_x 2 = \frac{3}{2}$. Halle el mayor valor de log_ab, siendo a y b soluciones de la ecuación.
 - A) $\frac{1}{2}$ B) 2 C) 4

- D) $\frac{1}{4}$ E) 1

$$\frac{1}{2}\log_2 x + \frac{1}{\log_2 x} = \frac{3}{2}$$

$$(\log_2 x)^2 - 3\log_2 x + 2 = 0$$

$$(\log_2 x - 2)(\log_2 x - 1) = 0$$

$$(\log_2 x)^2 + 2 = 3\log_2 x$$

$$(\log_2 x)^2 + 2 = 3\log_2 x \rightarrow \log_2 x = 2 \lor \log_2 x = 1$$

$$x = 4 \quad \forall \quad x = 2$$

piden:

$$\log_2 4 \ \lor \ \log_4 2$$

$$\rightarrow$$
 2 V $\frac{1}{2}$

 $\therefore mayor = 2$

18. Si $\log_3 5 = a$, entonces $\log_{15} 81$ es

A)
$$4(a+1)^{-1}$$

A)
$$4(a+1)^{-1}$$
 B) $2(a+1)^{-1}$ C) $(a+4)^{-1}$

C)
$$(a+4)^{-1}$$

D)
$$3(a+2)^2$$
 E) $4(a+2)^{-1}$

RESOLUCIÓN

hacemos un cambio de base :

$$\log_{15} 81 = \frac{\log_3 81}{\log_3 15} \rightarrow \frac{4}{\log_3 5 + \log_3 3}$$

$$\frac{4}{a+1}$$

 $\therefore \log_{15} 81 = 4(a+1)^{-1}$

Resuelva la ecuación

$$(\log x)^{\frac{\cos\log \operatorname{antilog} x}{\log\log x}} = 10^{-2}$$

- A) 0
 B) 1
 C) 2

- D) 3
 E) 4

$$(\log x)^{\frac{-\log 10^x}{\log \log x}} = 10^{-2} \qquad (\log x)^{\log \log x}^{10^{-x}} = 10^{-2}$$

$$(\log x)^{\log_{\log x} 10^{-x}} = 10^{-2}$$

$$(\log x)^{\frac{\log 10^{-x}}{\log \log x}} = 10^{-2}$$

$$10^{-x} = 10^{-2}$$

$$\therefore x = 2$$

- A) 2004²⁰⁰⁶ B) 2005²⁰⁰⁶ C) 2005²⁰⁰⁴
- D) 2004²⁰⁰⁵ E) 2006²⁰⁰⁵

$$\log_{(2006)}(\log_{2005}(\log_{2004} x)) = 0 \qquad \to \qquad \log_{2004} x = 2005$$

$$\log_{2005}(\log_{2004} x) = 1$$

$$\therefore x = 2004^{2005}$$