

Borrower: SHH

Lending String: *TXA,VYT,JNA,EXW,EXW

Patron: Smith, Ken

Journal Title: Congressus numerantium.

Volume: 34 Issue:

Month/Year: 1982Pages: 277-297

Article Author:

Article Title: W.L. Kocay; Partial automorphisms and the reconstruction of

bidegreed graphs

Imprint: Winnipeg, Man.; Utilitas

Mathematica Pu

ILL Number: 85310200 12/19/2011 11:20 AM (Please update within 24 hours)

Call #: QA1 .C76

Location: Stk

Scan Charge

Maxcost: \$5.00

Shipping Address:

Sam Houston State University 1830 Bobby K Marks Dr/ 48 HOU TExpress **NEWTON GRESHAM LIBRARY--ILL** HUNTSVILLE, TEXAS 77341-2179

Fax: 936-294-1597 Ariel: ariel.shsu.edu Email: ariel.shsu.edu Odyssey: oclc.shsu.edu

Note: RAPID Unmediated Location:

FOUND

Partial Automorphisms and the Reconstruction of Bi-degreed Graphs

W. L. Kocay

ABSTRACT We examine the reconstruction of graphs with only two degrees, k and k-1. We use a method of partial automorphisms [2] to show that in a graph G, if k=3 and there are only two vertices of degree two, then G is in most cases reconstructible. In the cases for which we cannot prove the reconstructibility of G, we determine much of the structure of G.

Although this is a very special case, the method is sufficiently general that it can likely be applied to many other situations.

1. Introduction.

The reconstruction of graphs with only two degrees, k and k-l, is a long-outstanding problem in reconstruction theory [1], and it is often thought that if the reconstruction conjecture is false, then this is where counter-examples are likely to be found.

In this paper, we use a technique of Godsil and Kocay [2] to show that in a graph G, if k=3 and there are only two vertices of degree two, then G is in most cases reconstructible. In the case for which we cannot prove the reconstructibility of G, we determine much of the structure of G.

Let G be a simple graph and let $u,v \in V(G)$. We denote an edge joining u and v by uv. Thus u and v are adjacent in G if $uv \in E(G)$, and non-adjacent if $uv \notin E(G)$. If $uw \notin E(G)$, we write G+uv for the graph obtained from G by adding the edge uv. Similarly

CONGRESSUS NUMERANTIUM, VOL. 34 (1982), pp. 277-297

if $u \approx E(G)$, we can remove it to get G-uv.

We may also delete one or more vertices of $\,G\,$ to get vertex-deleted subgraphs of $\,G\,$. In this case we write $\,G\!$ -u when one vertex is deleted, and $\,G\!$ -{u,v} when several are deleted.

Let G and H be graphs with all vertices of degree three but two, which have degree two, and suppose that G and H are reconstructions of each other, i.e., there exists a <u>hypomorphism</u> $\phi: V(G) \rightarrow V(H)$, a bijection such that $G-u \cong H-\phi(u)$, for every $u \in V(G)$.

Let $u,v \in V(G)$ be vertices of degree two. Then G+uv is a 3-regular graph. We show that H is isomorphic to a subgraph of G+uv, and that G+uv has a non-trivial automorphism p. In many cases $p^{\ell}(G) \cong H$, for some ℓ , so that $G\cong H$, proving that G is in fact reconstructible.

This is an illustration of what seems to be a general technique: given graphs G and H which are reconstructions of each other, embed them both into a larger graph which has a non-trivial automorphism group. Use the symmetries of the larger graph to show that in fact $G^{\cong}H$, thereby proving that G is reconstructible.

ha

2. The Isomorphism p.

Now let G and H be as above and suppose that $u \in V(G)$ and $x \in V(H)$ are vertices of degree two such that $G-u \cong H-x$. Without loss of generality, we can use the isomorphism $G-u \cong H-x$ to give a common labelling to G-u and H-x, and take G-u = H-x, so that V(G-u) = V(H-x) = V.

Let $v \in V$ be such that $\deg_G v=2$. If $uv \in E(G)$, then G is easily obtained from G-u by rejoining u to the unique vertices of degree one and two in G-u, since $\deg_G u=2$. Thus we can assume that $uv \notin E(G)$.

Let uw,uzeE(G), where v+w+z+v. Since there are only two vertices of degree two in G, it must be that H is formed from H-x (=G-u) by joining x to v and z, say. Then $\deg_H w = \deg_G v = 2$, and G-v \cong H-w, since G and H are reconstructions of each other. Thus H is obtained from G by altering just one edge. This is depicted in the following illustration.

get vertex.
e vertex ig
ree three
are

are
hism
u∈V(G).
Huv is a
oh of
nny cases

fact

eal s of each divial o show that

eV(G) and hout loss a common

then G vertices of ume that

on H-x
ov = 2,
other.

Figure 2.1

Obviously G+uv \cong H+xw. We will show that in fact G+uv has a non-trivial automorphism that will often guarantee that G \cong H.

We have labelled the vertices adjacent to u,w,x, and v by the letters a,b,r,s, and z. Although we must have $a\neq b$ and $r\neq s$, we do not discount the possibility that a=z, r=z, b=r, etc. However we can always assume that $a\neq r$ and $b\neq s$.

It will be convenient to work with the graph $\Gamma=G\cup H$, illustrated below. Without loss of generality, we can assume that Γ is connected.

Figure 2.2

Let $p\colon G-v\to H-w$ be an isomorphism. Notice that p maps $V(\Gamma)-\{x,v\}$ to $V(\Gamma)-\{u,w\}$. Since p is one-to-one and onto, this immediately gives the following.

2.1. Lemma. There exist positive integers k_1 and k_2 such that either

- i) $p^{k_1}(u) = v$ and $p^{k_2}(w) = x$; or
- ii) $p^{k_1}(u) = x$ and $p^{k_2}(w) = v$.

<u>Proof.</u> Consider p(u). Either $p(u) \in \{x,v\}$, or we can find $p^2(u)$. We continue like this, iterating p, until we find $p^{k_1}(u) \in \{x,v\}$ for some positive integer k_1 . Similarly $p^{k_2}(w) \in \{x,v\}$.

G-v and H-w are illustrated below.

Figure 2.3

for the only

plu,r,

% consider

ie assume the prove the is reconstruction

Suppose tha

in to By L

in so that

in p¹(u)x. N

is adjacent

in so that p

ist to three

in this is a

it.

ı If k

By the process to the that the state of the

Now the only vertices of degree two in G-v are u,r, and s, and those in H-w are a,b, and x. This gives the following.

2.2. Lemma $p\{u,r,s\} = \{x,a,b\}.$

We consider the two cases of Lemma 2.1 separately.

3. $p^{k_1}(u)=v \text{ and } p^{k_2}(w)=x$

We assume throughout this section that $p^{k_1}(u)=v$ and $p^{k_2}(w)=x$. We prove that in this case we must always have $G\cong H$, so that G is reconstructible. The proof proceeds by a sequence of lemmas.

3.1. Lemma $k_1 \le k_2 + 1$.

<u>Proof.</u> Suppose that $k_1 \ge k_2 + 2$. First note that $k_1 \ne 1$, so that $p(u) \ne v$. By Lemma 2.2 we can take $p(u) = a \ne v$. We know that $uw \in E(G-v)$, so that $p^{k_2}(uw) \in E(\Gamma)$, by the definition of p. But $p^{k_2}(uw) = p^{k_2}(u) \times Now \quad p^{k_2}(u) \ne p^{k_1}(u) = v$. It follows that $p^{k_2}(u) = z$, since x is adjacent only to v and z. However we also know that v = E(G-v) so that $p^{k_2}(v) \in E(\Gamma)$. But $p^{k_2}(v) = x + 2v + 1 + 2v + 1$

It will be convenient to denote the sets $\{u,p(u),p^2(u),...,v=p^{k_1}(u)\}$ and $\{w,p(w),p^2(w),...,x=p^{k_2}(w)\}$ by [u,v] and [w,x], respectively. These sets have a natural order specified by p, and we shall use this order to take smaller intervals, such as $[u,p^{k_1-1}(u)]$, [p(u),x], etc.

3.2. Lemma If $k_1 = k_2+1$, then $V(\Gamma)=[u,v]\cup[w,x]$.

<u>Proof.</u> By the proof of Lemma 3.1, we see that $z=p^{k}2(u)$, so that p(z)=v. Note that the following sequence of edges are all edges of Γ : uw, p(uw), $p^2(uw)$,..., $p^{k}2(uw)=zx$. These edges match the vertices of

[w,x] to those of [u,z]. Similarly the following are all in $E(\Gamma)$: wa, p(wa), $p^2(wa)$, ..., $p^{k_2}(wa) = xv$. They match the vertices of [w,x] to [a,v]. This accounts for two edges incident with each vertex of [a,z] and [w,x], and one edge with u and v.

. Sinc

ાં ક. Iા દુ કે{ફ)=પ્ર

wited the

tave 0(

i shows t

heorem

en, the

mence of

is odd it

of the said the said

sia p

wit, i

Sim

By Lemma 2.2 we can take p(s)=x. (this includes the possibility that w=s). Now vs \in E(Γ), so that the following sequence of edges all belong to E(Γ): vs, $p^{-1}(vs)$, $p^{-2}(vs)$,..., $p^{-k_2+1}(vs)=p^2(u)w$. This matches the vertices [w,s] to [$p^2(u)$,v], so that every vertex now has degree three except for a and v, which have degree two, and u, which has degree one. But $uz\in E(\Gamma)$, so that $p(uz)=av\in E(\Gamma)$. This gives a and v degree three, u degree two, and z degree four, which accounts for all the edges of Γ . Therefore $V(\Gamma)=[u,v]v[w,x]$.

 Γ is drawn below in the case $k_1=6$ and $k_2=5$. p is represented by a shift to the right. Notice that when $k_1=k_2+1$, we must have a=r, since $wp(a)=wp^2(u)\in E(\Gamma)$. Therefore p(a)=b, so that a=r, by Lemma 2.2.

 $k_1 = 6, k_2 = 5$

Figure 3.1

We now define θ : G+uv \rightarrow G+uv, an extension of p, as follows: If $y \in V(G) \setminus \{v,s\}$, then $\theta(y) = p(y)$. We also set $\theta(v) = w$ and $\theta(s) = u$.

<u>Proof.</u> Since p is an isomorphism, we need only check the vertices v and s. In G+uv, v is adjacent to u,s, and r(=a). Thus we must have $\theta(v)=w$ adjacent to $\theta(u)=p(u)=a$, $\theta(s)=u$, and $\theta(r)=p(r)=b$. This is indeed the case.

Similarly s is adjacent to $p^{-1}(z)$, z, and v in G+uv. We must have $\theta(s)=u$ adjacent to $\theta(p^{-1}(z))=z$, $\theta(z)=p(z)=v$, and $\theta(v)=w$, which shows that θ is an automorphism as required. \square

3.4. Theorem If $k_1 = k_2 + 1$ is odd, then G+uv is a prism. If k_1 is even, then G+uv is a Möbius ladder.

<u>Proof.</u> Let k_1 be odd. Consider the path given by the following sequence of adjacent vertices w, $p^2(u)$, $p^2(w)$, $p^4(u)$,.... Since k_1 is odd it must end in $p^k 1^{-1}(u) = z$. We complete it to a circuit as follows: z, u, w. The remaining vertices also form a circuit: p(w), $p^3(u)$, $p^3(w)$, $p^5(u)$, ..., $p^k 1(u) = v$, r = p(u), p(w). The circuits have the same length $(k_1 - 1)/2$ and corresponding vertices are matched by the edges wp(u), $p^2(w)p^3(u)$,... to form a prism.

If k_1 is even, then the sequence $w, p^2(u), p^2(w), p^4(u), \ldots$ ends in $p^{k_1}(u)=v$. We continue it as follows: $v, r=p(u), p(w), p^3(u), p^3(w), \ldots, z, u, w$. Instead of two circuits with corresponding vertices matched, we have altered two edges in the circuits to make one long circuit, i.e., we now have a Möbius ladder. \square

Figure 3.2.

It is clear from Figure 32 that $G+uv\cong H+xw$, and that the isomorphism takes u to x. Thus G=(G+uv)-uv and $H\cong(G+uv)-uw$. However, by Theorem 3.4 we see that the edges uv and uw lie in different orbits of the group generated by θ : uv is one of the "matching" edges and uw is one of the "circuit" edges. Thus $G \not\equiv H$ But then it is easy to see that G and H are not in fact reconstructions of each other.

3.5. Theorem If $k_1 = k_2 + 1$, then G is reconstructible.

<u>Proof.</u> Since G is got by removing a "matching" edge of G+uv, most vertex deleted subgraphs of G will have an induced subgraph isomorphic to a 6-cycle.

Figure 3.3

No vertex-deleted subgraph of H will have this induced subgraph. But G and H were supposed to be reconstructions of each other. $\hfill\Box$

3.6. Lemma $k_1 \ge k_2 - 1$.

<u>Proof.</u> Suppose that $k_1 \leq k_2 - 2$. First note that $k_2 \geq 3$, so that $p(w) \neq x$. By Lemma 2.2 we can take p(s) = x, where $p^{k_2 - 1}(w) = s \neq w$. We know that vs, vx $\epsilon E(\Gamma)$, so that $p^{-k_1}(vs)$, $p^{-k_1}(vx) \in E(\Gamma)$, i.e., u $p^{k_2 - k_1 - 1}(w)$, u $p^{k_2 - k_1}(w) \in E(\Gamma)$. But $uw \in E(\Gamma)$, too, so that $deg_{\Gamma} u \geq 3$, a contradiction. Therefore $k_1 \geq k_2 - 1$.

3.7. Theorem If $k_1 = k_2-1$, then G is reconstructible.

<u>Proof.</u> This is really the same case as Lemma 3.2. and Theorem 3.4. Simply substitute u for x, p(u) for $p^{-1}(x)$, $p^2(u)$ for $p^{-2}(x)$, etc. Substitute p^{-1} for p, and interchange k_1 and k_2 to get the same situation. By Theorem 3.5., G is reconstructible. \Box

We have still to consider the case $k_1 = k_2$. We define $V' = V(\Gamma) \setminus \{[u,v] \cup [w,x]\}$. By Lemma 2.2 we can assume that p(u) = a, and p(s) = x, where we include the possiblity that a=v or w=s.

3.8. Lemma If $k_1 = k_2$, then $z \in V'$.

t the

the G≇H

onstruc-

ach

huv)-uv,

<u>Proof.</u> Suppose that $z \in [u,v]$. Write $z = p^{\ell}(u)$ where $1 \le \ell < k_1$. Now $xz \in E(\Gamma)$ so that $p^{-\ell}(xz) = p^{-\ell}(x)u \in E(\Gamma)$. Now u is adjacent only to w and z, and $p^{-\ell}(x) \ne z$. Therefore $p^{-\ell}(x) = w$, or $\ell = k_1$, a contradiction. Therefore $z \notin [u,v]$. Similarly $z \notin [w,x]$. It follows that $z \in V'$.

3.9. Lemma If $k_1 = k_2$ then $b, r \in V'$, $z = p^{k_1}(b)$, and $r = p^{k_1}(z)$.

<u>Proof.</u> First note that p maps V' onto itself. Hence p is an automorphism of the induced subgraph $\Gamma[V']$ of Γ . We know that $z \in V'$ and that $uz \in E(\Gamma)$. Hence $p^{\ell}(uz) \in E(\Gamma)$ for every ℓ such that $1 \le \ell \le k_1$. In particular $p^{k_1}(uz) = vp^{k_1}(z) \in E(\Gamma)$. It follows that $p^{k_1}(z) \in V'$ and that $p^{k_1}(z) = r$, since v is adjacent to x, r, and s, and s, $x \in [w,x]$.

Similarly $xz \in E(\Gamma)$ so that $p^{-k}(xz) \in E(\Gamma)$ for $1 \le k \le k_1$. But then $p^{-k_1}(xz) = w p^{-k_1}(z) \in E(\Gamma)$, where $p^{-k_1}(z) \in V'$. It follows that $b = p^{-k_1}(z)$, or $z = p^{k_1}(b)$, since w is adjacent to a, b, and u, and a, $u \in [u,v]$. \square

The structure of Γ is now largely determined. We have the vertices [w,x] matched to the vertices [u,v] by the edges uw, p(uw), $p^2(uw)$,... $p^{k_1}(uw)$. Also the vertices [w,s] are matched to the vertices [a,v] by the edges wa, p(wa),... $p^{k_1-1}(wa)$. The vertices [w,x] are matched to vertices in V' by the edges uz, p(uz), $p^2(uz)$,...,

 $p^{k_1}(uz) = vr$, by Lemma 3.9. This accounts for all edges incident with $[u,v] \cup [w,x]$. This situation is illustrated below in the case $k_1 = k_2 = 5$. p is represented by a shift to the right.

G:

Figure 3.4

We now define a map $\theta: G+uv \to G+uv$ as before. If $y \in V(G) \setminus \{v,s\}$, then $\theta(y) = p(y)$. Also $\theta(v) = w$ and $\theta(s) = u$. 3.10 Lemma. θ is an automorphism of G+uv.

Proof. We need only check the vertices v and s. The vertices adjacent to v are u,r, and s. Thus, we must have $\theta(v)=w$ adjacent to $\theta(u)=p(u)=1$, $\theta(r)=p(r)=b$, and $\theta(s)=u$. Similarly s is adjacent to $p^{-1}(v)$, v, and $p^{-1}(a)$. Thus $\theta(s)=u$ must be adjacent to $\theta(p^{-1}(v))=v$, $\theta(v)=w$, and $\theta(p^{-1}(z))=z$, which is the case. It follows that θ is an automorphism. \square

The action of θ on G+uv is illustrated in the diagram following. θ is represented by a clockwise rotation. The case $k_1=k_2=4$ is shown.

II edges intere

s beine. [

and 1(s):

Die willis

T) FY RE

Similariy 1

most be also

is the con

the diam

e tase

p³(b) p(z) p(z) p²(u) p³(u) p³(u) p³(z)

Figure 3.5

3.11 Theorem. If $k_1 = k_2$ then G = H.

We know that G = (G + uv) - uv and that $H \cong (G + uv) - uw$, by Figure 2.2. Notice that $\theta^k 1^{k+1} (uv) = \theta^k 1^{k+1} (uv) \theta^k 1^{k+1} (vv) = \theta(vv) \theta^{k+1} (vv) = v\theta(vv) \theta^{k+1} (vv) \theta^$

The diagram makes it graphically clear that $G \cong H$. This works because $k_1 + k_2 + 1$ is an odd number. In Section 5, we shall see that sometimes $k_1 + k_2 + 1$ can be even, in which case θ is not sufficient to guarantee that $G \cong H$. We call the isomorphism $p:G - v \to H - w$ a partial automorphism of G + uv since it can be extended to an automorphism of G + uv. Notice that the proof that G is reconstructible has relied on only two things: the degree sequence of G, and the two vertex-deleted subgraphs corresponding to the vertices of degree two. This was sufficient to force G to be reconstructible. Considering a third vertex-deleted subgraph would introduce another partial automorphism G. We expect that the combined symmetries of G and two undefined G in the remaining

case, but this seems to be a difficult thing to do.

4. $p^{k_1}(u) = x$ and $p^{k_2}(w) = v$.

We assume throughout this section that $p^{k_1}(u) = x$ and $p^{k_2}(w) = v$. By Lemma 2.1 this is the remaining case to consider. We prove that except for a small number of special exceptions, we must have $k_1 = k_2 + 1$.

4.1 Lemma. $k_1 \le k_2 + 2$. If $k_1 = k_2 + 2$, then $k_1 = 3$ and $k_2 = 1$.

Proof. Suppose that $k_1 \ge k_2 + 3$. Then $k_1 \ge 4$, and by Lemma 2.2, we can take p(u) = a, and p(s) = x. Now we and wa $\epsilon E(\Gamma)$ so that $p^k 2(wu) = vp^k 2(u) \epsilon E(\Gamma)$ and $p^k 2(wa) = vp^k 2^{k+1}(u) \epsilon E(\Gamma)$. But then v is joined to $p^k 2(u)$, $p^k 2^{k+1}(u)$, $s = p^k 1^{k+1}(u)$, and $x = p^k 1(u)$. If $k_1 \ge k_2 + 3$, this is impossible, since v is adjacent only to v, s, and s. Therefore $k_1 \le k_2 + 2$. If $k_1 = k_2 + 2$, this is possible only if $s = p^k 2^{k+1}(u)$ and $r = p^k 2(u)$. By Lemma 2.2 this requires that $b = s = p^k 2^{k+1}(u)$. But since $v = p^k 2(u)$. By Lemma 2.2 this requires that $v = p^k 2(u)$. Thus $v = p^k 2(u)$ is adjacent to $v = p^k 2(u)$, we have $v = p^k 2(u)$ if follows that $v = p^k 2(u) = b = s = p^k 2^{k+1}(u)$, or $v = p^k 2(u)$. It follows that $v = p^k 2(u) = b = s = p^k 2^{k+1}(u)$, or $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$. It follows that $v = p^k 2^{k+1}(u)$, or $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$. It follows that $v = p^k 2^{k+1}(u)$, or $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$. It follows that $v = p^k 2^{k+1}(u)$, or $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$. It follows that $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$, and $v = p^k 2^{k+1}(u)$. It follows that $v = p^k 2^{k+1}(u)$.

ther that

G = 1

k, 4

 \mathbf{k}_1

4.3

Pro fol

th

_pk

z :

aı

As in Section 3, we set $V' = V(\Gamma) \setminus \{[u,x] \cup [w,v]\}$.

4.2 Theorem. If $k_1 = 3$ and $k_2 = 1$, then $G \cong H$.

<u>Proof.</u> By the proof of Lemma 4.1, we have p(u) = a = r and $p^2(u) = s = b$. We know that w is adjacent to u, a, and b, and v is adjacent to a = r, b = s, and x. Thus all edges adjacent to w and v are accounted for.

If z=a, then we have a(=r) adjacent to u, x, w, and v. Furthermore $p(uz)=ab\in E(\Gamma)$. Thus $\deg_{\Gamma}z=5$, a contradiction. Similarly $z\neq b$. It follows that $z\in V'$. Since $uz\in E(\Gamma)$, we have ap(z), $bp^2(z)\in E(\Gamma)$, where p(z), $p^2(z)\in V'$. But then $p^3(uz)=$

 $xp^3(z) \in E(\Gamma)$, so that $p^3(z) = z$. This is illustrated below.

 $k_1 = 3$ and $k_2 = 1$.

Figure 4.1

We define $\theta: G+uv \to G+uv$ as follows. If $y \in V(G)\setminus \{s,v\}$, then $\theta(y)=p(y)$. Also $\theta(s)=u$ and $\theta(v)=w$. It is easy to see that θ is an automorphism of G+uv. But $\theta^3(uv)=uw$. It follows that $G=(G+uv)-uv \subseteq (G+uv)-uw \subseteq H$, as required. \square

By Lemma 4.1 and Theorem 4.2, it follows that we can take $k_1 \le k_2 + 1$. In Lemma 4.3 and Theorem 4.4, we show that we can also take $k_1 \ge k_2$.

4.3 Lemma. $k_1 \ge k_2 - 1$. If $k_1 = k_2 - 1$, then $k_1 = 1$ and $k_2 = 2$.

Proof. Suppose that $k_1 \le k_2 - 2$. Then $k_2 \ge 3$. Since $uw \in E(\Gamma)$, it follows that $p^k 1(uw) = xp^k 1(w) \in E(\Gamma)$. Therefore $p^k 1(w) = z$. If $k_1 \ge 2$, then we can take p(u) = a. Since $wa \in E(\Gamma)$, we have $p^{k_1 - 1}(wa) = p^{k_1 - 1}(w)x \in E(\Gamma)$. This is impossible, since x is adjacent only to v and $z = p^{k_1}(w)$. Hence, $k_1 = 1$, and p(w) = z.

Now $uz \in E(\Gamma)$ so that $p(uz) = xp^2(w) \in E(\Gamma)$. If $k_2 \ge 3$, then x is joined to z = p(w), $p^2(w)$, and v, a contradiction. Therefore $k_2=2$, and the lemma follows. \square

4.4 Theorem. If $k_1 = 1$ and $k_2 = 2$, then $G \cong H$.

Proof. By Lemma 4.3 we have p(w) = z and p(z) = v. It is easy to see that a, b, r, s \in V'. We know that w is joined to a and b. Hence z is joined to p(a), $p(b) \in$ V' and v is joined to $p^2(a)$, $p^2(b) \in$ V'. Therefore $\{r,s\} = \{p^2(a), p^2(b)\}$, and $p\{r,s\} = \{a,b\}$.

p(**W**)

e(v Sir

If we define $\theta: G+uv \to G+uv$ by $\theta(u)=u$, $\theta(v)=w$, and $\theta(y)=p(y)$ for $y \in V(G)\setminus \{u,v\}$, then it is easy to see that θ is an automorphism of G+uv for which $\theta(uv)=uw$, from which it follows that $G \cong H$. \square

 $k_1 = 1$ and $k_2 = 2$.

Figure 4.2

4.5 Lemma. If $k_1 = k_2$, the $k_1 \le 2$.

Proof. If $k_1 = 2$, we can take p(u) = a and $p^{-1}(x) = r$, by Lemma 2.2. Since wa, $vr \in E(\Gamma)$, we have $p^k 1^{-1}(wa) = p^{-1}(v)x \in E(\Gamma)$ and $p^{-k} 1^{+1}(vr) = p(w) \ u \in E(\Gamma)$. This requires that $p^{-1}(v) = z = p(w)$, which implies that $k_1 = k_2 = 2$. The lemma follows. \square

4.6 Theorem. If $k_1 = k_2$, then $G \cong H$.

<u>Proof.</u> By Lemma 4.5 there are two cases to consider. We take $k_1 = k_2 = 2$ first.

If $k_1 = k_2 = 2$, then by the proof of Lemma 4.5, we have p(w)=z, p(z)=v, and p(u)=a=r and p(r)=x. This is illustrated below.

$$k_1 = k_2 = 2$$

Figure 4.3

We must have $b \in V'$. Since $wb \in E(\Gamma)$, we also have edges zp(b) and $vp^2(b)$, where $p^2(b) = s$, and p(s) = b, since p maps V' to itself.

It is easily verified that $\theta:G+uv+G+uv$, define by $\theta(r)=u$, $\theta(v)=w$, and $\theta(y)=p(y)$ for $y \in V(G) \setminus \{r,v\}$, is an automorphism of G+uv. Since $\theta^4(uv)=uw$, it follows as before that $G\cong H$.

The case $k_1 = k_2 = 1$ is illustrated below.

Figure 4.4

We must have z, a, b, r, $s \in V'$. Since $uz \in E(\Gamma)$, we have $p(uz) = xp(z) \in E(\Gamma)$, or z is fixed by p. We also have $p\{a,b\} = \{r,s\}$ and $p\{r,s\} = \{a,b\}$. If we define $\theta: G+uv+G+uv$ by $\theta(u)=u$, $\theta(v)=w$, $\theta(y)=y$ for $y \in V(G)\setminus \{u,v\}$, then θ is an automorphism of G+uv such that $\theta(uv)=uw$. As before, we have $G\cong H$. \square

5.3

froof

,k2-£ ,k2-£

i.e.,

conve

5.3 a

5. $\frac{k_1 = k_2 + 1}{2}$

We have shown that if $k_1 \neq k_2+1$, then $G \cong H$, i.e., G is reconstructible. If $k_1 = k_2+1$, then we are not, in general, able to prove that $G \cong H$, using only the degree sequence and the two vertex-deleted subgraphs corresponding to the vertices of degree two. We can, however, determine quite a lot of the structure of G and H.

We assume throughout this section that $p^{k_1}(u) = x$ and $p^{k_2}(w) = v$, where $k_1 = k_2 + 1$. We begin with some lemmas.

5.1 Lemma If $z \in [u,x]$, then k_1 is even and $z = p^{k_1/2}(u)$.

<u>Proof.</u> Write $z = p^{\ell}(u)$, where $1 \le \ell < k_1$. Since uz, $xz \in E(\Gamma)$, it follows that $p^{k_1-\ell}(uz) = p^{k_1-\ell}(u)x \in E(\Gamma)$. Therefore $p^{k_1-\ell}(u)=z=p^{\ell}(u)$, so that $k_1 = 2\ell$, as required. \square

By Lemma 2.2 we can take p(u)=a and p(r)=x. This includes the possibility that a=r. We can now take p(s)=b. Thus $s \in [u,x]$ if and only if b is.

5.2 Lemma If s,b \in [w,v] then k_1 is even and $s = p^{k_1/2-1}(w)$ and $b = p^{k_1/2}(w)$.

<u>Proof.</u> Write $b = p^{\ell}(w)$, where $1 \le \ell \le k_2$. Now where k_2 is that $p^{k_2-\ell}(w) = p^{k_2-\ell}(w) \cdot e^{k_2-\ell}(w) \cdot e^{k_2-\ell}(w) = p^{k_2-\ell}(w) \cdot e^{k_2-\ell}(w) \cdot e^{k_2-\ell}(w)$ so that $k_2-\ell = \ell-1$, or $k_1 = 2\ell$, as required. \square

5.3 Lemma $z \in [w,v]$ if and only if s, b $\in [u,x]$.

<u>Proof.</u> Write $z = p^{\ell}(w)$, where $1 \le w < k_2$. Now $uz \in E(\Gamma)$, so that $p^{k_2-\ell}(uz) = p^{k_2-\ell}(u)$ $v \in E(\Gamma)$. Since $k_2 = k_1-1$, we know that $p^{k_2-\ell}(u) \ne r = p^{-1}(x)$, so that $s = p^{k_2-\ell}(u)$. Therefore $b = p(s) = p^{k_1-\ell}(u)$, i.e., we have shown that $z \in [w,v]$ implies that s,b $\in [u,x]$. The converse is similarly proved. \square

The three situations considered by Lemmas 5.1, 5.2, and 5.3 are illustrated below.

 $z \in [u,x]$

Figure 5.1

s, b ϵ [w,v]

Figure 5.2

 $z \in [w,v]$ and $s, b \in [u,x]$

Figure 5.3

As before we define $\theta:G+uv+G+uv$ as follows. If $y \in V(G)\setminus\{r,v\}$, then $\theta(y)=p(y)$. Also $\theta(r)=u$ and $\theta(v)=w$.

 $\underline{5.4 \text{ Lemma}}$ θ is an automorphism of G+uv.

<u>Proof.</u> We need only check the vertices r and v. The vertices adjacent to r are always v, $p^{-1}(v)$, and $p^{-1}(z)$, since p(r)=x. Thus $\theta(r)=u$ must be adjacent to $\theta(v)=w$, $\theta(p^{-1}(v))=v$, and $\theta(p^{-1}(z))=z$. This is the case.

The vertices adjacent to v are always u, r, and s. Thus $\theta(v)=w$ must be adjacent to $\theta(u)=a$, $\theta(r)=u$, and $\theta(s)=b$. This is also the case, so that θ is an automorphism. \square

The action of θ is most easily seen in the following diagram. We illustrate the case z, s, b ϵ V', k_1 = 6 and k_2 = 5. θ is represented by a double clockwise rotation.

The orbit bipartiti of edges deduce t

G-8(w) 8²
are like
H-a0(w)²
satisfie
it has p
Similar

graph, have man

5.5 Th

Figure 5.4

The graph G+uv always contains a cycle of even length $2k_1$. The orbits of u and w under the group generated by θ form a bipartition of the cycle. But uv and uw fall into different orbits of edges. Unless the graph admits other symmetries, too, we cannot deduce that $G \cong H$.

Notice that the graph G satisfies $G-wa\cong G-re^{-1}(v)$, and $G-\theta(w)e^2(u)\cong G-\theta^{-1}(r)e^{-2}(v)$, etc., i.e., it has pairs of edges which are likely pseudo-similar (see [2] and [3]). Similarly H satisfies $H-a\theta(w)\cong H-rv$, etc. Moreover the vertex-deleted subgraph G'=G-u(=H-x) satisfies $G'-a\cong G'-r$, and $G'-\theta(a)\cong G'-\theta^{-1}(r)$, etc., i.e., it has pairs of vertices which are likely pseudo-similar ([2], [3]). Similarly, H'=H-w ($\cong G-v$) satisfies $H'-v\cong H'-\theta(w)$, etc.

It is interesting to note that if $\,G\,$ is a non-reconstructible graph, then both $\,G\,$ and its vertex-deleted subgraphs are likely to have many pseudo-similar edges and/or vertices.

5.5 Theorem. If $z \in [u,x]$ and $s, b \in [w,v]$, then $G^{\cong}H$.

<u>Proof.</u> First notice that G+uv is a cycle of length $2k_1$, with all the main diagonals present, since $z = p^{k_1/2}(u)$ and $b = p^{k_1/2}(w)$, by Lemmas 5.1 and 5.2. It is then easy to see that uv and uw are similar edges in G+uv, since they are adjacent edges along the cycle. Thus $G = (G+uv)-uv \cong (G+uv)-uw \cong H$. \square

23

37

4]

In the case $z \in [w,v]$ and $s,b \in [u,x]$, we have $V(\Gamma) = [u,x] \cup [w,v]$. Give is a bipartite graph consisting of a cycle of length $2k_1$, with some chords, which are not necessarily main diagonals, present. If we write $z = p^k(w)$, where $1 \le w < k_2$, then depending on the values of k and k_1 , we will sometimes have $G \cong H$, and sometimes $G \not\cong H$. The author does not immediately see how to prove G reconstructible in this case. Perhaps some such similar G is non-reconstructible.

In the preceding constructions, we have used the structure of the graph local to the vertices u, v, w, and x in order to prove reconstructibility. We have G-u=H-x and $G-v\cong H-w$. We must also have the vertex-deleted subgraphs $\{G-w, G-z, G-r, G-s\}$ isomorphic to $\{H-v, H-z, H-a, H-b\}$ in some order. This would introduce another partial isomorphism t. Most probably the combined symmetries of p and t would enable us to prove that the graphs of this section are reconstructible. However this would require a more detailed structure of the graph local to a, b, r, and s, and this would result in a great multiplication of cases to be considered.

It seems to the author that the method of partial automorphisms is a powerful one for obtaining structural information about a graph which is assumed to be non-reconstructible.

Lastly, we mention that similar calculations have been done for the case in which G has two vertices of degree k-l and the rest of degree k. These are too long to include here, and can be found in [4].

REFERENCES

[1] J. A. Bondy and R. L. Hemminger, Graph reconstruction - a survey, J. of Graph Theory, 1(1977) 227-268.

ith all w), by similar

Thus

a cycle in

, then

see how

inilar

tructure
to prove
must also
morphic to
another
symmetries
this settle
catled
sould result

auto-Mation

i been done and the non be found in

ie .

- [2] C. D. Godsil and W. L. Kocay, Constructing graphs with pairs of pseudo-similar vertices, submitted to JCT(B).
- [3] W. L. Kocay, On pseudo-similar vertices, Ars Combinatoria, 10(1980) 147-163.
- [4] W. L. Kocay, Partial automorphisms and the reconstruction conjecture, in preparation.