

Pontifícia Universidade Católica de Minas Gerais - Ciência da Computação

Disciplina: Teoria dos Grafos e Computabilidade

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

3ª AVALIAÇÃO - 20 pontos

Nome:

1) Com base no teorema de Berge, determine um emparelhamento máximo para o seguinte grafo. (05 pts)

Você deve iniciar com um emparelhamento $M = \emptyset$ e demonstrar cada iteração do método de cálculo (OBS: é obrigatório demonstrar o método passo a passo).

2) A prova de natação de revezamento 4 × 100 *medley* envolve quatro nadadores diferentes, os quais nadam sucessivamente distâncias de 100 metros nos estilos *costas*, *peito*, *borboleta* e *livre*. O treinador de uma equipe possui seis nadadores que podem fazer parte do revezamento. Os tempos médios (em segundos) dos nadadores em cada um dos estilos são os seguintes:

	Costas	Peito	Borboleta	Livre
Nadador 1	65	73	63	57
Nadador 2	67	70	65	58
Nadador 3	68	72	69	55
Nadador 4	67	75	70	59
Nadador 5	71	69	75	57
Nadador 6	69	71	66	59

Utilizando o <u>método Húngaro</u>, determine como o treinador deve atribuir nadadores aos estilos de forma a minimizar a soma dos tempos médios obtidos pelos quatro nadadores selecionados para a prova de revezamento. (OBS: é obrigatório demonstrar o método passo a passo). (05 pts)

3) Considere um grafo G simples conexo e planar com n vértices e m arestas. Prove que $m \le 3n - 6$, para m > 1. (05 pts)

4) Determine o número cromático do seguinte grafo e justifique sua resposta (resposta sem justificativa ou cuja justificativa não seja adequada será desconsiderada). (05 pts)

